

Superpoderes Matemáticos para Concursos Militares
Volume 5A

2ª edição

# COLÉGIO NAVAL 2012-2016

Renato Madeira www.madematica.blogspot.com

# Sumário

| INTRODUÇÃO                                      | 2   |
|-------------------------------------------------|-----|
| CAPÍTULO 1 - ENUNCIADOS                         | 3   |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2015/2016 | 3   |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2014/2015 | 9   |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2013/2014 | 15  |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2012/2013 | 21  |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2011/2012 | 27  |
| CAPÍTULO 2                                      | 34  |
| RESPOSTAS E CLASSIFICAÇÃO DAS QUESTÕES          | 34  |
| QUADRO RESUMO DAS QUESTÕES DE 1984 A 2015       | 37  |
| CLASSIFICAÇÃO DAS QUESTÕES POR ASSUNTO          |     |
| CAPÍTULO 3                                      |     |
| ENUNCIADOS E RESOLUÇÕES                         | 42  |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2015/2016 | 42  |
| NOTA 1: Círculo de nove pontos                  | 52  |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2014/2015 |     |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2013/2014 | 81  |
| NOTA 2: Reta Simson                             | 93  |
| PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2012/2013 | 99  |
| NOTA 3: Fórmula de Legendre-Polignac:           | 104 |
| PROVA DE MATEMÁTICA COLÉCIO NAVAL 2011/2012     |     |

# **INTRODUÇÃO**

Esse livro é uma coletânea com as questões das Provas de Matemática do Concurso de Admissão ao Colégio Naval (CN) dos anos de 1984 a 2016, mais uma "faixa bônus" com 40 questões anteriores a 1984, detalhadamente resolvidas e classificadas por assunto. Na parte A serão apresentadas as provas de 2012 a 2016, totalizando 100 questões.

No capítulo 1 encontram-se os enunciados das provas, para que o estudante tente resolvê-las de maneira independente.

No capítulo 2 encontram-se as respostas às questões e a sua classificação por assunto. É apresentada também uma análise da incidência dos assuntos nesses 35 anos de prova.

No capítulo 3 encontram-se as resoluções das questões. É desejável que o estudante tente resolver as questões com afinco antes de recorrer à sua resolução.

Espero que este livro seja útil para aqueles que estejam se preparando para o concurso da Colégio Naval ou concursos afins e também para aqueles que apreciam Matemática.

Renato de Oliveira Caldas Madeira é engenheiro aeronáutico pelo Instituto Tecnológico de Aeronáutica (ITA) da turma de 1997 e Mestre em Matemática Aplicada pelo Fundação Getúlio Vargas (FGV-RJ); participou de olimpíadas de Matemática no início da década de 90, tendo sido medalhista em competições nacionais e internacionais; trabalha com preparação em Matemática para concursos militares há 20 anos e é autor do blog "Mademática".

#### **AGRADECIMENTOS**

Gostaria de agradecer aos professores que me inspiraram a trilhar esse caminho e à minha família pelo apoio, especialmente, aos meus pais, Cézar e Sueli, pela dedicação e amor.

Gostaria ainda de dedicar esse livro à minha esposa Poliana pela ajuda, compreensão e amor durante toda a vida e, em particular, durante toda a elaboração dessa obra e a meu filho Daniel que eu espero seja um futuro leitor deste livro.

Renato Madeira

Acompanhe o blog <u>www.madematica.blogspot.com</u> e fique sabendo dos lançamentos dos próximos volumes da coleção X-MAT!

Volumes já lançados:

Livro X-MAT Volume 1 EPCAr 2011-2015 Livro X-MAT Volume 2 AFA 2010-2015 Livro X-MAT Volume 3 EFOMM 2009-2015

Livro X-MAT Volume 4 ESCOLA NAVAL 2010-2015

Livro X-MAT Volume 6 EsPCEx 2011-2016

# **CAPÍTULO 1 - ENUNCIADOS**

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2015/2016

- 1) Seja S a soma dos valores inteiros que satisfazem a inequação  $\frac{(5x-40)^2}{x^2-10x+21} \le 0$ . Pode-se afirmar que
- a) S é um número divisível por 7.
- b) S é um número primo.
- c) S<sup>2</sup> é divisível por 5.
- d)  $\sqrt{S}$  é um número racional.
- e) 3S+1 é um número ímpar.
- 2) Dado o sistema  $S:\begin{cases} 2x-ay=6\\ -3x+2y=c \end{cases}$  nas variáveis x e y, pode-se afirmar que
- a) existe  $a \in \left[ \frac{6}{5}, 2 \right]$  tal que o sistema S não admite solução para qualquer número real c.
- b) existe  $a \in \left[\frac{13}{10}, \frac{3}{2}\right]$  tal que o sistema S não admite solução para qualquer número real c.
- c) se  $a = \frac{4}{3}$  e c = 9, o sistema S não admite solução.
- d) se a  $\neq \frac{4}{3}$  e c = -9, o sistema S admite infinitas soluções.
- e) se  $a = \frac{4}{3}$  e c = -9, o sistema S admite infinitas soluções.
- 3) Seja  $k = \left(\frac{9999...997^2 9}{9999...994}\right)^3$  onde cada um dos números 9999...997 e 9999...994, são

constituídos de 2015 algarismos 9. Deseja-se que  $\sqrt[i]{k}$  seja um número racional. Qual a maior potência de 2 que o índice i pode assumir?

- a) 32
- b) 16
- c) 8
- d) 4
- e) 2

- 4) Para capinar um terreno circular plano, de raio 7 m, uma máquina gasta 5 horas. Quantas horas gastará essa máquina para capinar um terreno em iguais condições com 14 m de raio?
- a) 10
- b) 15
- c) 20
- d) 25
- e) 30
- 5) Para obter o resultado de uma prova de três questões, usa-se a média ponderada entre as pontuações obtidas em cada questão. As duas primeiras questões têm peso 3,5 e a 3ª, peso 3. Um aluno que realizou essa avaliação estimou que:
- I sua nota na 1ª questão está estimada no intervalo fechado de 2,3 a 3,1; e
- II sua nota na 3ª questão foi 7.

Esse aluno quer atingir média igual a 5,6. A diferença da maior e da menor nota que ele pode ter obtido na 2ª questão de modo a atingir o seu objetivo de média é

- a) 0,6
- b) 0,7
- c) 0,8
- d) 0,9
- e) 1
- 6) Qual a medida da maior altura de um triângulo de lados 3, 4, 5?
- a)  $\frac{12}{5}$
- b) 3
- c) 4
- d) 5
- e)  $\frac{20}{3}$
- 7) Observe a figura a seguir.



A figura acima representa o trajeto de sete pessoas num treinamento de busca em terreno plano, segundo o método "radar". Nesse método, reúne-se um grupo de pessoas num ponto chamado de "centro" para, em seguida, fazê-las andar em linha reta, afastando-se do "centro". Considere que o raio de visão eficiente de uma pessoa é 100 m e que  $\pi = 3$ .

Dentre as opções a seguir, marque a que apresenta a quantidade mais próxima do mínimo de pessoas necessárias para uma busca eficiente num raio de 900 m a partir do "centro" e pelo método "radar".

- a) 34
- b) 27
- c) 25
- d) 20
- e) 19
- 8) Num semicírculo S, inscreve-se um triângulo retângulo ABC. A maior circunferência possível que se pode construir externamente ao triângulo ABC e internamente ao S, mas tangente a um dos catetos de ABC e ao S, tem raio 2. Sabe-se ainda que o menor cateto de ABC mede 2. Qual a área do semicírculo?
- a)  $10\pi$
- b)  $12,5\pi$
- c)  $15\pi$
- d)  $17,5\pi$
- e)  $20\pi$
- 9) Seja x um número real tal que  $x^3 + x^2 + x + x^{-1} + x^{-2} + x^{-3} + 2 = 0$ . Para cada valor real de x, obtémse o resultado da soma de  $x^2$  com seu inverso. Sendo assim, a soma dos valores distintos desses resultados é
- a) 5
- b) 4
- c) 3
- d) 2
- e) 1
- 10) Observe a figura a seguir.



A figura acima é formada por círculos numerados de 1 a 9. Seja "TROCA" a operação de pegar dois desses círculos e fazer com que um ocupe o lugar que era do outro. A quantidade mínima S de "TROCAS" que devem ser feitas para que a soma dos três valores de qualquer horizontal, vertical ou diagonal, seja a mesma, está no conjunto:

- a) {1, 2, 3}
- b) {4, 5, 6}
- c)  $\{7, 8, 9\}$
- d) {10, 11, 12}
- e) {13, 14, 15}
- 11) Seja n um número natural e  $\oplus$  um operador matemático que aplicado a qualquer número natural, separa os algarismos pares, os soma, e a esse resultado, acrescenta tantos zeros quanto for o número obtido. Exemplo:  $\oplus (3256) = 2 + 6 = 8$ , logo fica: 800000000. Sendo assim, o produto  $[\oplus (20)] \cdot [\oplus (21)] \cdot [\oplus (22)] \cdot [\oplus (23)] \cdot [\oplus (24)] \cdot \ldots \cdot [\oplus (29)]$  possuirá uma quantidade de zeros igual a
- a) 46
- b) 45
- c) 43
- d) 41
- e) 40
- 12) Na multiplicação de um número k por 70, por esquecimento, não se colocou o zero à direita, encontrando-se, com isso, um resultado 32823 unidades menor. Sendo assim, o valor para a soma dos algarismos de k é
- a) par.
- b) uma potência de 5.
- c) múltiplo de 7.
- d) um quadrado perfeito.
- e) divisível por 3.
- 13) Seja ABC um triângulo de lados medindo 8, 10 e 12. Sejam M, N e P os pés das alturas traçadas dos vértices sobre os lados desse triângulo. Sendo assim, o raio do círculo circunscrito ao triângulo MNP é
- a)  $\frac{5\sqrt{7}}{7}$
- b)  $\frac{6\sqrt{7}}{7}$
- c)  $\frac{8\sqrt{7}}{7}$
- d)  $\frac{9\sqrt{7}}{7}$
- e)  $\frac{10\sqrt{7}}{7}$

14) ABC é um triângulo equilátero. Seja D um ponto do plano de ABC, externo a esse triângulo, tal que DB intersecta AC em E, com E pertencendo ao lado AC. Sabe-se que BÂD = AĈD = 90°. Sendo assim, a razão entre as áreas dos triângulos BEC e ABE é

- a)  $\frac{1}{3}$
- b)  $\frac{1}{4}$
- c)  $\frac{2}{3}$
- d)  $\frac{1}{5}$
- e)  $\frac{2}{5}$

15) Seja ABCD um quadrado de lado "2a" cujo centro é "O". Os pontos M, P e Q são os pontos médios dos lados AB, AD e BC, respectivamente. O segmento BP intersecta a circunferência de centro "O" e raio "a" em R e, também OM, em "S". Sendo assim, a área do triângulo SMR é

- a)  $\frac{3a^2}{20}$
- b)  $\frac{7a^2}{10}$
- c)  $\frac{9a^2}{20}$
- d)  $\frac{11a^2}{20}$
- e)  $\frac{13a^2}{20}$

16) Observe a figura a seguir.



Seja ABC um triângulo retângulo de hipotenusa 6 e com catetos diferentes. Com relação à área 'S' de ABC, pode-se afirmar que

- a) será máxima quando um dos catetos for  $3\sqrt{2}$ .
- b) será máxima quando um dos ângulos internos for 30°.
- c) será máxima quando um cateto for o dobro do outro.
- d) será máxima quando a soma dos catetos for  $\frac{5\sqrt{2}}{2}$ .
- e) seu valor máximo não existe.
- 17) Sejam  $A = \{1, 2, 3, ..., 4029, 4030\}$  um subconjunto dos números naturais e  $B \subset A$ , tal que não existem x e y,  $x \neq y$ , pertencentes a B nos quais x divida y. O número máximo de elementos de B é N. Sendo assim, a soma dos algarismos de N é
- a) 8
- b) 9
- c) 10
- d) 11
- e) 12
- 18) O número de divisores positivos de  $10^{2015}$  que são múltiplos de  $10^{2000}$  é
- a) 152
- b) 196
- c) 216
- d) 256
- e) 276
- 19) Dado que o número de elementos dos conjuntos A e B são, respectivamente, p e q, analise as sentenças que seguem sobre o número N de subconjuntos não vazios de  $A \cup B$ .
- $I N = 2^p + 2^q 1$
- II  $N = 2^{pq-1}$
- III  $N = 2^{p+q} 1$
- IV  $N = 2^p 1$ , se a quantidade de elementos de  $A \cap B$  é p.

Com isso, pode-se afirmar que a quantidade dessas afirmativas que são verdadeiras é:

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4
- 20) No triângulo isósceles ABC, AB = AC = 13 e BC = 10. Em AC marca-se R e S, com CR = 2x e CS = x. Paralelo a AB e passando por S traça-se o segmento ST, com T em BC. Por fim, marcam-se U, P e Q, simétricos de T, S e R, nessa ordem, e relativo à altura de ABC com pé sobre BC. Ao analisar a medida inteira de x para que a área do hexágono PQRSTU seja máxima, obtém-se:
- a) 5
- b) 4
- c) 3
- d) 2
- e) 1

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2014/2015

- 1) Seja x um número real tal que  $x + \frac{3}{x} = 9$ . Um possível valor de  $x \frac{3}{x}$  é  $\sqrt{a}$ . Sendo assim, a soma dos algarismos de "a" será:
- (A) 11
- (B) 12
- (C) 13
- (D) 14
- (E) 15
- 2) Considere que as pessoas A e B receberão transfusão de sangue. Os aparelhos utilizados por A e B liberam, em 1 minuto, 19 e 21 gotas de sangue, respectivamente, e uma gota de sangue de ambos os aparelhos tem  $0,04\,\text{m}\ell$ . Os aparelhos são ligados simultaneamente e funcionam ininterruptamente até completarem um litro de sangue. O tempo que o aparelho de A levará a mais que o aparelho de B será, em minutos, de aproximadamente:
- (A) 125
- (B) 135
- (C) 145
- (D) 155
- (E) 165
- 3) A solução real da equação  $\sqrt{x+4} + \sqrt{x-1} = 5$  é:
- (A) múltiplo de 3.
- (B) par e maior do que 17.
- (C) ímpar e não primo.
- (D) um divisor de 130.
- (E) uma potência de 2.
- 4) Observe as figuras a seguir.



Figura I



Figura II

Uma dobra é feita no retângulo  $10~\text{cm} \times 2~\text{cm}$  da figura I, gerando a figura plana II. Essa dobra está indicada pela reta suporte de PQ. A área do polígono APQCBRD da figura II, em cm $^2$ , é:

- (A)  $8\sqrt{5}$
- (B) 20
- (C)  $10\sqrt{2}$
- (D)  $\frac{35}{2}$
- $(E) \ \frac{13\sqrt{6}}{2}$
- 5) Seja ABC um triângulo retângulo de hipotenusa 26 e perímetro 60. A razão entre a área do círculo inscrito e do círculo circunscrito nesse triângulo é, aproximadamente:
- (A) 0,035
- (B) 0,055
- (C) 0,075
- (D) 0,095
- (E) 0,105
- 6) Considere que ABC é um triângulo retângulo em A, de lados AC=b e BC=a. Seja H o pé da perpendicular traçada de A sobre BC, e M o ponto médio de AB, se os segmentos AH e CM cortam-se em P, a razão  $\frac{AP}{PH}$  será igual a:
- $(A) \frac{a^2}{b^2}$
- (B)  $\frac{a^3}{b^2}$
- (C)  $\frac{a^2}{b^3}$
- (D)  $\frac{a^3}{b^3}$
- (E)  $\frac{a}{b}$
- 7) Se a fração irredutível  $\frac{p}{q}$  é equivalente ao inverso do número  $\frac{525}{900}$ , então o resto da divisão do período da dízima  $\frac{q}{p+1}$  por 5 é:
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

- 8) Um número natural N, quando dividido por 3, 5, 7 ou 11, deixa resto igual a 1. Calcule o resto da divisão de N por 1155, e assinale a opção correta.
- (A) 17
- (B) 11
- (C) 7
- (D) 5
- (E) 1
- 9) Considere o operador matemático '\*' que transforma o número real X em X+1 e o operador ' $\oplus$ ' que transforma o número real Y em  $\frac{1}{Y+1}$ .
- Se  $\oplus \left\{ * \left[ * \left( \oplus \left\{ \oplus \left\{ * \left( \oplus \left\{ * 1 \right\} \right) \right] \right\} \right) \right] \right\} = \frac{a}{b}$ , onde a e b são primos entre si, a opção correta é:
- (A)  $\frac{a}{b} = 0,27272727...$
- (B)  $\frac{b}{a} = 0,2702702...$
- (C)  $\frac{2a}{b} = 0,540540540...$
- (D) 2b+a=94
- (E) b-3a=6
- 10) Analise as afirmativas abaixo.
- I) Se  $2^x = A$ ,  $A^y = B$ ,  $B^z = C$  e  $C^k = 4096$ , então  $x \cdot y \cdot z \cdot k = 12$ .
- II)  $t^m + (t^m)^p = (t^m)(1 + (t^m)^{p-1})$ , para quaisquer reais t, m e p não nulos.
- III)  $r^q + r^{q^w} = (r^q)(1 + r^{q^{(w-1)}})$ , para quaisquer reais q, r e w não nulos.
- IV) Se  $\left(10^{100}\right)^x$  é um número que tem 200 algarismos, então x é 2 .

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são falsas.
- (B) Apenas as afirmativas III e IV são falsas.
- (C) Apenas as afirmativas I e III são falsas.
- (D) Apenas as afirmativas I, II e IV são falsas.
- (E) Apenas as afirmativas I, III e IV são falsas.
- 11) Considere a equação do  $2^{\circ}$  grau  $2014x^2 2015x 4029 = 0$ . Sabendo-se que a raiz não inteira é dada por  $\frac{a}{b}$ , onde "a" e "b" são primos entre si, a soma dos algarismos de "a+b" é:
- (A) 7
- (B) 9
- (C) 11
- (D) 13
- (E) 15

- 12) Sobre os números inteiros positivos e não nulos x, y e z, sabe-se:
- I)  $x \neq y \neq z$

II) 
$$\frac{y}{x-z} = \frac{x+y}{z} = 2$$

III) 
$$\sqrt{z} = \left(\frac{1}{9}\right)^{-\frac{1}{2}}$$

Com essas informações, pode-se afirmar que o número  $(x-y)\frac{6}{7}$  é:

- (A) ímpar e maior do que três.
- (B) inteiro e com dois divisores.
- (C) divisível por cinco.
- (D) múltiplo de três.
- (E) par e menor do que seis.
- 13) Suponha que ABC seja um triângulo isósceles com lados AC=BC, e que "L" seja a circunferência de centro "C", raio igual a "3" e tangente ao lado AB. Com relação à área da superfície comum ao triângulo ABC e ao círculo de "L", pode-se afirmar que:
- (A) não possui um valor máximo.
- (B) pode ser igual a  $5\pi$ .
- (C) não pode ser igual a  $4\pi$ .
- (D) possui um valor mínimo igual a  $2\pi$ .
- (E) possui um valor máximo igual a  $4.5\pi$ .
- 14) Considere que N seja um número natural formado apenas por 200 algarismos iguais a 2, 200 algarismos iguais a 1 e 2015 algarismos iguais a zero. Sobre N, pode-se afirmar que:
- (A) se forem acrescentados mais 135 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.
- (B) independentemente das posições dos algarismos, N não é um quadrado perfeito.
- (C) se forem acrescentados mais 240 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.
- (D) se os algarismos da dezena e da unidade não forem iguais a 1, N será um quadrado perfeito.
- (E) se forem acrescentados mais 150 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.
- 15) A equação  $K^2x-Kx=K^2-2K-8+12x$ , na variável x, é impossível. Sabe-se que a equação na variável y dada por  $3ay+\frac{a-114y}{2}=\frac{17b+2}{2}$  admite infinitas soluções. Calcule o valor de  $\frac{ab+K}{4}$ , e assinale a opção correta.
- (A) 0
- **(B)** 1
- (C) 3
- (D) 4
- (E) 5

- 16) A equação  $x^3 2x^2 x + 2 = 0$  possui três raízes reais. Sejam p e q números reais fixos, onde p é não nulo. Trocando x por py+q, a quantidade de soluções reais da nova equação é:
- (A) 1
- (B) 3
- (C) 4
- (D) 5
- (E) 6
- 17) Considere que ABC é um triângulo acutângulo inscrito em uma circunferência L. A altura traçada do vértice B intersecta L no ponto D. Sabendo-se que AD=4 e BC=8, calcule o raio de L e assinale a opção correta.
- (A)  $2\sqrt{10}$
- (B)  $4\sqrt{10}$
- (C)  $2\sqrt{5}$
- (D)  $4\sqrt{5}$
- (E)  $3\sqrt{10}$
- 18) Sabendo que  $2014^4 = 16452725990416$  e que  $2014^2 = 4056196$ , calcule o resto da divisão de 16452730046613 por 4058211, e assinale a opção que apresenta esse valor.
- (A) 0
- (B) 2
- (C) 4
- (D) 5
- (E) 6
- 19) Sobre o lado BC do quadrado ABCD, marcam-se os pontos "E" e "F" tais que  $\frac{BE}{BC} = \frac{1}{3}$  e
- $\frac{\text{CF}}{\text{BC}} = \frac{1}{4}$ . Sabendo-se que os segmentos AF e ED intersectam-se em "P", qual é, aproximadamente, o percentual da área do triângulo BPE em relação à área do quadrado ABCD?
- (A) 2
- (B) 3
- (C) 4
- (D) 5
- (E) 6

20) Observe a figura a seguir.



Na figura, o paralelogramo ABCD tem lados 9 cm e 4 cm. Sobre o lado CD está marcado o ponto R , de modo que CR = 2 cm ; sobre o lado BC está marcado o ponto S tal que a área do triângulo BRS seja  $\frac{1}{36}$  da área do paralelogramo; e o ponto P é a interseção do prolongamento do segmento RS com o prolongamento da diagonal DB. Nessas condições, é possível concluir que a razão entre as medidas dos segmentos de reta  $\frac{DP}{BP}$  vale:

- (A) 13,5
- (B) 11
- (C) 10,5
- (D) 9
- (E) 7,5

## PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2013/2014

1) Sejam 
$$P = \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{5}\right)\left(1 + \frac{1}{7}\right)\left(1 + \frac{1}{9}\right)\cdot\left(1 + \frac{1}{11}\right)$$
 e  $Q = \left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{11}\right)$ . Qual é o valor de  $\sqrt{\frac{P}{Q}}$ ?

- (A)  $\sqrt{2}$
- (B) 2
- (C)  $\sqrt{5}$
- (D) 3
- (E) 5
- 2) Sabendo que ABC é um triângulo retângulo de hipotenusa BC = a, qual é o valor máximo da área de ABC?
- $(A) \ \frac{a^2\sqrt{2}}{4}$
- (B)  $\frac{a^2}{4}$
- $(C) \ \frac{3a^2\sqrt{2}}{4}$
- (D)  $\frac{3a^2}{4}$
- (E)  $\frac{3a^2}{2}$
- 3) Considere um conjunto de 6 meninos com idades diferentes e um outro conjunto com 6 meninas também com idades diferentes. Sabe-se que, em ambos os conjuntos, as idades variam de 1 ano até 6 anos. Quantos casais podem-se formar com a soma das idades inferior a 8 anos?
- (A) 18
- (B) 19
- (C) 20
- (D) 21
- (E) 22
- 4) Seja  $A \cup B = \{3,5,8,9,10,12\}$  e  $B \cap C_X^A = \{10,12\}$  onde A e B são subconjuntos de X, e  $C_X^A$  é o complementar de A em relação a X. Sendo assim, pode-se afirmar que o número máximo de elementos de B é
- (A) 7
- (B) 6
- (C) 5
- (D) 4
- (E) 3

- 5) Dada a equação  $(2x+1)^2(x+3)(x-2)+6=0$ , qual é a soma das duas maiores raízes reais desta equação?
- (A) 0
- (B) 1
- (C)  $\sqrt{6} \frac{1}{2}$
- (D)  $\sqrt{6}$
- (E)  $\sqrt{6} + 1$
- 6) Analise a figura a seguir.



A figura acima exibe o quadrado ABCD e o arco de circunferência APC com centro em B e raio AB=6. Sabendo que o arco AP da figura tem comprimento  $\frac{3\pi}{5}$ , é correto afirmar que o ângulo PCD mede:

- (A)  $36^{\circ}$
- $(B) 30^{\circ}$
- (C)  $28^{\circ}$
- (D) 24°
- (E)  $20^{\circ}$
- 7) Qual é o valor da expressão  $\left[ \left( 3^{0,333...} \right)^{27} + 2^{2^{17}} \sqrt[5]{239 + \sqrt[3]{\frac{448}{7}}} \left( \sqrt[3]{3} \right)^{3^3} \right]^{\sqrt[7]{92}}$ ?
- (A) 0,3
- (B)  $\sqrt[3]{3}$
- (C) 1
- (D) 0
- (E) -1

- 8) Analise as afirmativas abaixo, em relação ao triângulo ABC.
- I Seja AB = c, AC = b e BC = a. Se o ângulo interno no vértice A é reto, então  $a^2 = b^2 + c^2$ .
- II Seja AB = c, AC = b e BC = a. Se  $a^2 = b^2 + c^2$ , então o ângulo interno no vértice A é reto.
- III Se M é ponto médio de BC e AM =  $\frac{BC}{2}$ , ABC é retângulo.
- IV Se ABC é retângulo, então o raio de seu círculo inscrito pode ser igual a três quartos da hipotenusa.

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são verdadeiras.
- (B) Apenas a afirmativa I é verdadeira.
- (C) Apenas as afirmativas II e IV são verdadeiras.
- (D) Apenas as afirmativas I, II e III são verdadeiras.
- (E) Apenas as afirmativas II, III e IV são verdadeiras.
- 9) Assinale a opção que apresenta o conjunto solução da equação  $\frac{(-3)}{\sqrt{x^2-4}}-1=0$ , no conjunto dos

números reais.

- (A)  $\{-\sqrt{13}, \sqrt{13}\}$
- (B)  $\{\sqrt{13}\}$
- (C)  $\{-\sqrt{13}\}$
- (D) {0}
- (E) Ø
- 10) Seja a , b , x , y números naturais não nulos. Se  $a \cdot b = 5$  ,  $k = \frac{2^{(a+b)^2}}{2^{(a-b)^2}}$  e  $x^2 y^2 = \sqrt[5]{k}$  , qual é o algarismo das unidades do número  $(y^x x^y)$ ?
- (A) 2
- (B) 3
- (C) 5
- (D) 7
- (E) 8
- 11) Sabe-se que a média aritmética dos algarismos de todos os números naturais desde 10 até 99, inclusive, é k. Sendo assim, pode-se afirmar que o número  $\frac{1}{k}$  é
- (A) natural.
- (B) decimal exato.
- (C) dízima periódica simples.
- (D) dízima periódica composta.
- (E) decimal infinito sem período.

12) Uma das raízes da equação do  $2^{\circ}$  grau  $ax^2 + bx + c = 0$ , com a, b, c pertencentes ao conjunto dos números reais, sendo  $a \neq 0$ , é igual a 1. Se b-c=5a então,  $b^c$  em função de a é igual a

- $(A) -3a^2$
- (B)  $2^{a}$
- (C)  $2a \cdot 3^a$
- (D)  $\frac{1}{(2a)^{3a}}$
- (E)  $\frac{1}{2^{(3a)} \cdot a^{(3+a)}}$

13) Seja ABC um triângulo acutângulo e "L" a circunferência circunscrita ao triângulo. De um ponto Q (diferente de A e de C) sobre o menor arco AC de "L" são traçadas perpendiculares às retas suportes dos lados do triângulo. Considere M , N e P os pés das perpendiculares sobre os lados AB , AC e BC, respectivamente. Tomando MN=12 e PN=16, qual é a razão entre as áreas dos triângulos BMN e BNP?

- (A)  $\frac{3}{4}$
- (B)  $\frac{9}{16}$
- (C)  $\frac{8}{9}$
- (D)  $\frac{25}{36}$
- (E)  $\frac{36}{49}$

14) Sabe-se que o ortocentro H de um triângulo ABC é interior ao triângulo e seja Q o pé da altura relativa ao lado AC. Prolongando BQ até o ponto P sobre a circunferência circunscrita ao triângulo, sabendo-se que BQ = 12 e HQ = 4, qual é o valor de QP?

- (A) 8
- (B) 6
- (C) 5,5
- (D) 4,5
- (E) 4

15) Analise a figura a seguir.



Na figura acima, a circunferência de raio 6 tem centro em C. De P traçam-se os segmentos PC, que corta a circunferência em D, e PA, que corta a circunferência em B. Traçam-se ainda os segmentos AD e CD, com interseção em E. Sabendo que o ângulo APC é  $15^{\circ}$  e que a distância do ponto C ao segmento de reta AB é  $3\sqrt{2}$ , qual é o valor do ângulo  $\alpha$ ?

- (A)  $75^{\circ}$
- (B)  $60^{\circ}$
- (C)  $45^{\circ}$
- (D)  $30^{\circ}$
- (E)  $15^{\circ}$

16) Considere que ABCD é um trapézio, onde os vértices são colocados em sentido horário, com bases AB=10 e CD=22. Marcam-se na base AB o ponto P e na base CD o ponto Q, tais que AP=4 e CQ=x. Sabe-se que as áreas dos quadriláteros APQD e PBCQ são iguais. Sendo assim, pode-se afirmar que a medida x é:

- (A) 10
- (B) 12
- (C) 14
- (D) 15
- (E) 16

17) O maior inteiro "n", tal que  $\frac{n^2 + 37}{n + 5}$  também é inteiro, tem como soma dos seus algarismos um valor igual a

- (A) 6
- (B) 8
- (C) 10
- (D) 12
- (E) 14

18) Dado que a e b são números reais não nulos, com  $b \neq 4a$ , e que  $\begin{cases} 1 + \frac{2}{ab} = 5 \\ \frac{5 - 2b^2}{4a - b} = 4a + b \end{cases}$ , qual é o valor

- de  $16a^4b^2 8a^3b^3 + a^2b^4$ ?
- (A) 4
- (B)  $\frac{1}{18}$
- (C)  $\frac{1}{12}$
- (D) 18
- (E)  $\frac{1}{4}$

19) Sabendo que  $2^x \cdot 3^{4y+x} \cdot (34)^y$  é o menor múltiplo de 17 que pode-se obter para x e y inteiros não negativos, determine o número de divisores positivos da soma de todos os algarismos desse número, e assinale a opção correta.

- (A) 12
- (B) 10
- (C) 8
- (D) 6
- (E) 4

20) Considere, no conjunto dos números reais, a desigualdade  $\frac{2x^2 - 28x + 98}{x - 10} \ge 0$ . A soma dos valores

inteiros do conjunto solução desta desigualdade, que são menores do que  $\frac{81}{4}$ , é

- (A) 172
- (B) 170
- (C) 169
- (D) 162
- (E) 157

## PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2012/2013

- 1) Para x = 2013, qual é o valor da expressão  $(-1)^{6x} (-1)^{x-3} + (-1)^{5x} (-1)^{x+3} (-1)^{4x} (-1)^{2x}$ ?
- (A) -4
- (B) -2
- (C) 0
- (D) 1
- (E) 4
- 2) Analise as afirmativas a seguir.
- I)  $9,\overline{1234} > 9,123\overline{4}$
- II)  $\frac{222221}{222223} > \frac{555550}{555555}$
- III)  $\sqrt{0,444...} = 0,222...$
- IV)  $2^{\sqrt[3]{27}} = 64^{0.5}$

Assinale a opção correta.

- (A) Apenas as afirmativas II e III são verdadeiras.
- (B) Apenas a afirmativa I é verdadeira.
- (C) Apenas a afirmativa II é verdadeira.
- (D) Apenas a afirmativa III é verdadeira.
- (E) Apenas as afirmativas II e IV são verdadeiras.
- 3) Um trapézio isósceles tem lados não paralelos medindo  $10\sqrt{3}$ . Sabendo que a bissetriz interna da base maior contém um dos vértices do trapézio e é perpendicular a um dos lados não paralelos, qual é a área desse trapézio?
- (A)  $75\sqrt{3}$
- (B)  $105\sqrt{3}$
- (C)  $180\sqrt{3}$
- (D)  $225\sqrt{3}$
- (E)  $275\sqrt{3}$
- 4) Os números  $(35041000)_7$ ,  $(11600)_7$  e  $(62350000)_7$  estão na base 7. Esses números terminam, respectivamente, com 3, 2 e 4 zeros. Com quantos zeros terminará o número na base decimal  $n=21^{2012}$ , na base 7?
- (A) 2012
- (B) 2013
- (C) 2014
- (D) 2015
- (E) 2016

- 5) No retângulo ABCD, o lado BC = 2AB. O ponto P está sobre o lado AB e  $\frac{AP}{PB} = \frac{3}{4}$ . Traça-se a reta  $\overrightarrow{PS}$  com S no interior de ABCD e C  $\in \overrightarrow{PS}$ . Marcam-se ainda, M  $\in$  AD e N  $\in$  BC de modo que MPNS seja um losango. O valor de  $\frac{BN}{AM}$  é:
- (A)  $\frac{3}{7}$
- (B)  $\frac{3}{11}$
- (C)  $\frac{5}{7}$
- (D)  $\frac{5}{11}$
- (E)  $\frac{7}{11}$
- 6) O número  $N=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot (\ldots)\cdot (k-1)\cdot k$  é formado pelo produto dos k primeiros números naturais não nulos. Qual é o menor valor possível de k para que  $\frac{N}{7^{17}}$  seja um número natural, sabendo que k
- é împar e não é múltiplo de 7?
- (A) 133
- (B) 119
- (C) 113
- (D) 107
- (E) 105
- 7) Qual é o menor valor positivo de 2160x +1680y, sabendo que x e y são números inteiros?
- (A) 30
- (B) 60
- (C) 120
- (D) 240
- (E) 480
- 8) Um número inteiro possui exatamente 70 divisores. Qual é o menor valor possível para |N+3172|
- (A) 2012
- (B) 3172
- (C) 5184
- (D) 22748
- (E) 25920

9) Observe a figura a seguir.



A figura acima apresenta um quadrado ABCD de lado 2. Sabe-se que E e F são os pontos médios dos lados DC e CB, respectivamente. Além disso, EFGH também forma um quadrado e I está sobre o lado GH, de modo que  $GI = \frac{GH}{4}$ . Qual é a área do triângulo BCI?

- (A)  $\frac{7}{8}$
- (B)  $\frac{6}{7}$
- (C)  $\frac{5}{6}$
- (D)  $\frac{4}{5}$
- (E)  $\frac{3}{4}$

10) Determine, no conjunto dos números reais, a soma dos valores de  $\,x\,$  na igualdade:

$$\left(\frac{1}{1+\frac{x}{x^2-3}}\right)\cdot \left(\frac{2}{x-\frac{3}{x}}\right) = 1.$$

- (A)  $-\frac{2}{3}$
- (B)  $-\frac{1}{3}$
- (C) 1
- (D) 2
- (E)  $\frac{11}{3}$

- 11) Em dois triângulos,  $T_1$  e  $T_2$ , cada base é o dobro da respectiva altura. As alturas desses triângulos,  $h_1$  e  $h_2$ , são números ímpares positivos. Qual é o conjunto dos valores possíveis de  $h_1$  e  $h_2$ , de modo que a área de  $T_1 + T_2$  seja equivalente à área de um quadrado de lado inteiro?
- $(A) \varnothing$
- (B) unitário
- (C) finito
- (D)  $\{3,5,7,9,11,\ldots\}$
- (E) {11,17,23,29,...}
- 12) Qual é o total de números naturais em que o resto é o quadrado do quociente na divisão por 26?
- (A) zero.
- (B) dois.
- (C) seis.
- (D) treze.
- (E) vinte e cinco.
- 13) Na fabricação de um produto é utilizado o ingrediente A ou B. Sabe-se que, para cada 100 quilogramas (kg) do ingrediente A devem ser utilizados 10 kg do ingrediente B. Se, reunindo x kg do ingrediente A com y kg do ingrediente B, resulta 44000 gramas do produto, então
- (A)  $y^x = 2^{60}$
- (B)  $\sqrt{x \cdot y} = 5\sqrt{10}$
- (C)  $\sqrt[10]{y^x} = 256$
- (D)  $\sqrt[4]{x^y} = 20$
- (E)  $\sqrt{\frac{y}{x}} = 2\sqrt{5}$
- 14) Seja  $P(x) = 2x^{2012} + 2012x + 2013$ . O resto r(x) da divisão de P(x) por  $d(x) = x^4 + 1$  é tal que r(-1) é:
- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2

15) Uma divisão de números naturais está representada a seguir.



D=2012 é o dividendo, d é o divisor, q é o quociente e r é o resto. Sabe-se que  $0 \neq d=21$  ou q=21. Um resultado possível para r+d ou r+q é:

- (A) 92
- (B) 122
- (C) 152
- (D) 182
- (E) 202

16) Seja  $a^3b - 3a^2 - 12b^2 + 4ab^3 = 287$ . Considere que a e b são números naturais e que ab > 3. Qual é o maior valor natural possível para a expressão a + b?

- (A) 7
- (B) 11
- (C) 13
- (D) 17
- (E) 19

17) Sabendo que  $A = \frac{3 + \sqrt{6}}{5\sqrt{3} - 2\sqrt{12} - \sqrt{32} + \sqrt{50}}$ , qual é o valor de  $\frac{A^2}{\sqrt[6]{A^7}}$ ?

- (A)  $\sqrt[5]{3^4}$
- (B)  $\sqrt[7]{3^6}$
- (C)  $\sqrt[8]{3^5}$
- (D)  $\sqrt[10]{3^7}$
- (E)  $\sqrt[12]{3^5}$

18) Somando todos os algarismos até a posição 2012 da parte decimal da fração irredutível  $\frac{5}{7}$  e, em seguida, dividindo essa soma por 23, qual será o resto dessa divisão?

- (A) 11
- (B) 12
- (C) 14
- (D) 15
- (E) 17

- 19) Sabendo que n é natural não nulo, e que  $x \# y = x^y$ , qual é o valor de  $(-1)^{n^4+n+1} + \left(\frac{2\#(2\#(2\#2))}{((2\#2)\#2)\#2}\right)$ ?
- (A) 127
- (B) 128
- (C) 255
- (D) 256
- (E) 511
- 20) Observe a figura a seguir.



Na figura acima, sabe-se que  $k > 36^{\circ}$ . Qual é o menor valor natural da soma x + y + z + t, sabendo que tal soma deixa resto 4, quando dividida por 5, e resto 11, quando dividida por 12?

- (A) 479°
- (B)  $539^{\circ}$
- (C) 599°
- (D) 659°
- (E) 719°

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2011/2012

- 1) É correto afirmar que o número  $5^{2011} + 2 \cdot 11^{2011}$  é múltiplo de
- (A) 13
- (B) 11
- (C) 7
- (D) 5
- (E) 3
- 2) A solução real da equação  $\frac{7}{x-1} \frac{8}{x+1} = \frac{9}{x^2-1}$  é um divisor de
- (A) 12
- (B) 14
- (C) 15
- (D) 16
- (E) 19
- 3) A soma das raízes de uma equação do  $2^\circ$  grau é  $\sqrt{2}$  e o produto dessas raízes é 0,25. Determine o valor de  $\frac{a^3-b^3-2ab^2}{a^2-b^2}$ , sabendo que 'a' e 'b' são as raízes dessa equação do  $2^\circ$  grau e a>b, e assinale a opção correta.
- (A)  $\frac{1}{2}$
- (B)  $\frac{\sqrt{3}-2}{4}$
- (C) -1
- (D)  $\sqrt{2} + \frac{1}{4}$
- (E)  $\sqrt{2} \frac{1}{4}$
- 4) Sejam 'a', 'b' e 'c' números reais não nulos tais que  $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = p$ ,  $\frac{a}{b} + \frac{b}{a} + \frac{c}{a} + \frac{a}{c} + \frac{b}{c} + \frac{c}{b} = q$  e ab + ac + bc = r. O valor de  $q^2 + 6q$  é sempre igual a
- (A)  $\frac{p^2r^2+9}{4}$
- (B)  $\frac{p^2r^2 9p}{12}$
- (C)  $p^2r^2 9$
- (D)  $\frac{p^2r^2-10}{4r}$

(E) 
$$p^2r^2 - 12p$$

- 5) A quantidade de soluções reais e distintas da equação  $3x^3 \sqrt{33x^3 + 97} = 5$  é
- (A) 1
- (B) 2
- (C) 3
- (D) 5
- (E) 6
- 6) Num paralelogramo ABCD de altura CP=3, a razão  $\frac{AB}{BC}=2$ . Seja 'M' o ponto médio de AB e 'P' o pé da altura de ABCD baixada sobre o prolongamento de AB, a partir de C. Sabe-se que a razão entre as áreas dos triângulos MPC e ADM é  $\frac{S(MPC)}{S(ADM)}=\frac{2+\sqrt{3}}{2}$ . A área do triângulo BPC é igual a
- (A)  $\frac{15\sqrt{3}}{2}$
- (B)  $\frac{9\sqrt{3}}{2}$
- $(C) \ \frac{5\sqrt{3}}{2}$
- (D)  $\frac{3\sqrt{3}}{2}$
- (E)  $\frac{\sqrt{3}}{2}$
- 7) O valor de  $\sqrt{9^{0.5} \times 0.333... + \sqrt[7]{4 \times \sqrt{0.0625}}} \frac{(3.444... + 4.555...)}{\sqrt[3]{64}}$  é
- (A) 0
- (B)  $\sqrt{2}$
- (C)  $\sqrt{3} 2$
- (D)  $\sqrt{2} 2$
- (E) 1
- 8) Dado um quadrilátero convexo em que as diagonais são perpendiculares, analise as afirmações abaixo.
- I Um quadrilátero assim formado sempre será um quadrado.
- II Um quadrilátero assim formado sempre será um losango.
- III Pelo menos uma das diagonais de um quadrilátero assim formado divide esse quadrilátero em dois triângulos isósceles.

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.

- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas II e III são verdadeiras.
- (E) Todas as afirmativas são falsas.
- 9) Observe a figura a seguir



A figura acima mostra, num mesmo plano, duas ilhas representadas pelos pontos 'A' e 'B' e os pontos 'C', 'D', 'M' e 'P' fixados no continente por um observador. Sabe-se que  $A\hat{C}B = A\hat{D}B = A\hat{P}B = 30^{\circ}$ , 'M' é o ponto médio de CD = 100 m e que PM = 10 m é perpendicular a CD. Nessas condições, a distância entre as ilhas é de:

- (A) 150 m
- (B) 130 m
- (C) 120 m
- (D) 80 m
- $(E) 60 \, m$
- 10) Numa pesquisa sobre a leitura dos jornais A e B, constatou-se que 70% dos entrevistados leem o jornal A e 65% leem o jornal B. Qual o percentual máximo dos que leem os jornais A e B?
- (A) 35%
- (B) 50%
- (C) 65%
- (D) 80%
- (E) 95%
- 11) Analise as afirmações abaixo referentes a números reais simbolizados por 'a', 'b' ou 'c'.
- I A condição  $a \cdot b \cdot c > 0$  garante que 'a', 'b' e 'c' não são, simultaneamente, iguais a zero, bem como a condição  $a^2 + b^2 + c^2 \neq 0$ .
- II Quando o valor absoluto de 'a' é menor do que b > 0, é verdade que -b < a < b.
- III Admitindo que b > c, é verdadeiro afirmar que  $b^2 > c^2$ .
- Assinale a opção correta.
- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.

- (D) Apenas as afirmativas I e II são verdadeiras.
- (E) Apenas as afirmativas I e III são verdadeiras.
- 12) Observe a figura abaixo.



A figura apresentada foi construída por etapas. A cada etapa, acrescentam-se pontos na horizontal e na vertical, com uma unidade de distância, exceto na etapa 1, iniciada com 1 ponto.

Continuando a compor a figura com estas etapas e buscando um padrão, é correto concluir que

- (A) cada etapa possui quantidade ímpar de pontos e a soma desses 'n' primeiros ímpares é n<sup>2</sup>.
- (B) a soma de todos os números naturais começando do 1 até 'n' é sempre um quadrado perfeito.
- (C) a soma dos pontos das 'n' primeiras etapas é  $2n^2-1$ .
- (D) cada etapa 'n' tem 3n-2 pontos.
- (E) cada etapa 'n' tem 2n+1 pontos.
- 13) O número real  $\sqrt[3]{26-15\sqrt{3}}$  é igual a
- (A)  $5 \sqrt{3}$
- (B)  $\sqrt{7-4\sqrt{3}}$
- (C)  $3 \sqrt{2}$
- (D)  $\sqrt{13-3\sqrt{3}}$
- (E) 2
- 14) A divisão do inteiro positivo 'N' por 5 tem quociente ' $q_1$ ' e resto 1. A divisão de ' $4q_1$ ' por 5 tem quociente ' $q_2$ ' e resto 1. A divisão de ' $4q_2$ ' por 5 tem quociente ' $q_3$ ' e resto 1. Finalmente, dividindo ' $4q_3$ ' por 5, o quociente é ' $q_4$ ' e o reto é 1. Sabendo que 'N' pertence ao intervalo aberto (621,1871), a soma dos algarismos de 'N' é
- (A) 18
- (B) 16
- (C) 15
- (D) 13
- (E) 12

- 15) Assinale a opção que apresenta o único número que NÃO é inteiro.
- (A)  $\sqrt[6]{1771561}$
- (B)  $\sqrt[4]{28561}$
- (C)  $\sqrt[6]{4826807}$
- (D)  $\sqrt[4]{331776}$
- (E)  $\sqrt[6]{148035889}$
- 16) A expressão  $\sqrt[3]{-(x-1)^6}$  é um número real. Dentre os números reais que essa expressão pode assumir, o maior deles é:
- (A) 2
- (B)  $\sqrt{2} 1$
- (C)  $2-\sqrt{2}$
- (D) 1
- (E) 0
- $17) \text{ Sejam } A = \left[7^{2011}, 11^{2011}\right] \text{ e } B = \left\{x \in \mathbb{R} \mid x = (1-t) \cdot 7^{2011} + t \cdot 11^{2011} \text{ com } t \in \left[0,1\right]\right\}, \text{ o conjunto } t \in \left[0,1\right]$
- A-B é
- (A)  $A \cap B$
- (B)  $B \{11^{2011}\}$
- (C)  $A \{7^{2011}\}$
- (D) A
- $(E) \varnothing$
- 18) Um aluno estudava sobre polígonos convexos e tentou obter dois polígonos de 'N' e 'n' lados  $(N \neq n)$ , e com 'D' e 'd' diagonais, respectivamente, de modo que N-n=D-d. A quantidade de soluções corretas que satisfazem essas condições é
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) indeterminada.

19) Considere a figura abaixo.



A razão  $\frac{S(MPQ)}{S(ABC)}$ , entre as áreas dos triângulos MPQ e ABC, é

- (A)  $\frac{7}{12}$
- (B)  $\frac{5}{12}$
- (C)  $\frac{7}{15}$
- (D)  $\frac{8}{15}$
- (E)  $\frac{7}{8}$

20) Observe a ilustração a seguir.



Qual a quantidade mínima de peças necessárias para revestir, sem falta ou sobra, um quadrado de lado 5, utilizando as peças acima?

(A) 12

- (B) 11
- (C) 10
- (D) 9
- (E) 8

#### RESPOSTAS E CLASSIFICAÇÃO DAS QUESTÕES

# CAPÍTULO 2 RESPOSTAS E CLASSIFICAÇÃO DAS QUESTÕES

# PROVA DE MATEMÁTICA – COLÉGIO NAVAL 2015/2016

- 1) b (Inequação produto-quociente)
- 2) e (Sistemas lineares)
- 3) a (Bases de numeração)
- 4) c (Regra de três)
- 5) c (Médias)
- 6) c (Geometria Plana relações métricas no triângulo retângulo)
- 7) b (Geometria Plana comprimento da circunferência)
- 8) b (Geometria Plana áreas de regiões circulares)
- 9) d (Equações polinomiais)
- 10) b (Raciocínio lógico)
- 11) d (Potências e raízes)
- 12) a (Sistemas de numeração)
- 13) c (Geometria Plana Triângulos pontos notáveis)
- 14) b (Geometria Plana Áreas)
- 15) a (Geometria Plana Áreas)
- 16) e (Geometria Plana Áreas)
- 17) a (Múltiplos e divisores)
- 18) d (Múltiplos e divisores)
- 19) a (Conjuntos)
- 20) b (Geometria Plana Áreas)

## PROVA DE MATEMÁTICA - COLÉGIO NAVAL 2014/2015

- 1) E (Fatoração)
- 2) A (Razões e proporções)
- 3) D (Equações irracionais)
- 4) D (Áreas)
- 5) D (Áreas)
- 6) A (Relações métricas no triângulo qualquer)
- 7) B (Números racionais)
- 8) E (MMC)
- 9) C (Números racionais)
- 10) B (Potências e raízes)
- 11) D (Equação do 2° grau)
- 12) E (Sistemas lineares)
- 13) A (Áreas)
- 14) B (Divisibilidade)
- 15) D (Equação do 1º grau)
- 16) B (Equação polinomial)
- 17) C (Relações métricas no triângulo qualquer)

#### RESPOSTAS E CLASSIFICAÇÃO DAS QUESTÕES

- 18) A (Fatoração)
- 19) D (Áreas)
- 20) C (Áreas)

## PROVA DE MATEMÁTICA - COLÉGIO NAVAL 2013/2014

- 1) B (Operações com frações)
- 2) B (Triângulo retângulo área)
- 3) D (Contagem)
- 4) B (Conjuntos)
- 5) C (Equações redutíveis ao 2º grau)
- 6) A (Circunferência comprimentos e ângulos)
- 7) C (Potências e raízes)
- 8) D (Triângulos retângulos)
- 9) E (Equações irracionais)
- 10) E (Múltiplos e divisores)
- 11) D (Contagem e médias)
- 12) D (Equação do 2° grau e potenciação)
- 13) A (Triângulos pontos notáveis e área)
- 14) E (Triângulos pontos notáveis)
- 15) B (Ângulos na circunferência)
- 16) A (Área de trapézios)
- 17) D (Múltiplos e divisores)
- 18) E (Sistemas não lineares)
- 19) D (Potenciação e múltiplos e divisores)
- 20) D (Inequação produto-quociente)

#### PROVA DE MATEMÁTICA – COLÉGIO NAVAL 2012/2013

- 1) A (Potências e raízes)
- 2) E (Números racionais)
- 3) D (Quadriláteros)
- 4) A (Sistemas de numeração)
- 5) B (Quadriláteros)
- 6) D (Múltiplos e divisores)
- 7) D (MDC e MMC)
- 8) A (Múltiplos e divisores)
- 9) E (Áreas)
- 10) C (Equações fracionárias)
- 11) A (Divisibilidade e congruências)
- 12) C (Operações com números naturais)
- 13) C (Misturas)
- 14) B (Polinômios)
- 15) C (Operações com números naturais)
- 16) A (Produtos notáveis e fatoração)
- 17) E (Racionalização)
- 18) C (Números racionais)

- 19) C (Potências e raízes)
- 20) C (Triângulos ângulos, congruência, desigualdades e pontos notáveis)

### PROVA DE MATEMÁTICA - COLÉGIO NAVAL 2011/2012

- 1) E (Divisibilidade e congruências)
- 2) A (Equações fracionárias)
- 3) E (Produtos notáveis e fatoração)
- 4) C (Produtos notáveis e fatoração)
- 5) A (Equações irracionais)
- 6) B (Áreas)
- 7) D (Potências e raízes)
- 8) E (Quadriláteros)
- 9) B (Ângulos na circunferência e arco capaz)
- 10) C (Conjuntos)
- 11) D (Números reais)
- 12) A (Sequências)
- 13) B (Racionalização)
- 14) D (Múltiplos e divisores)
- 15) C (Divisibilidade e congruências)
- 16) E (Potências e raízes)
- 17) E (Função do 1° grau)
- 18) A (Polígonos ângulos e diagonais)
- 19) B (Áreas)
- 20) D (Divisibilidade e congruências)

# **QUADRO RESUMO DAS QUESTÕES DE 1984 A 2016**

|                                                                       | _  |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |    |    |      |      |      |      |                |      |       |      |      |      |      |      |      |     |       |            |
|-----------------------------------------------------------------------|----|------|------|------|------|------|------|------|----------|----------|------|------|------|------|------|------|------|----|----|------|------|------|------|----------------|------|-------|------|------|------|------|------|------|-----|-------|------------|
| ASSUNTO                                                               | PB | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991     | 1992     | 1994 | 1995 | 1996 | 1997 | 1996 | 1999 | 2000 |    |    | 2003 | 2004 | 2005 | 2006 | 2007           | 2008 | 20 09 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |     |       | PERCENTUAL |
| Raciocinio lógico                                                     | _  | _    |      |      |      |      |      | _    | 1        |          | 1    |      |      |      |      |      |      | 2  | 1  |      |      |      |      |                |      | _     |      |      | _    |      |      |      | 1   | 6     | 0,9%       |
| Conjuntos                                                             |    | 1    | 2    | 2    | 1    | 1    | 1    | _    | 1        | 1        | _    | 1    |      |      | 2    | 1    |      | 1  |    | _    | -    |      | 1    | 1              | 1    |       |      | 1    | 1    |      | 1    |      | 1   | 22    | 3,3%       |
| Operações com números naturais e inteiros                             | 1  |      | _    |      |      |      |      | _    | 1        | 1        |      |      | 1    |      |      |      |      | _  |    | _    |      | 1    |      | $\blacksquare$ |      | 1     | 1    |      | _    | 2    |      |      |     | ă.    | 1,2%       |
| Números racionais                                                     | 1  |      |      |      | 1    |      |      |      |          | 1        |      | 1    | 2    | 1    | 1    |      | 1    |    |    |      | 1    |      |      |                |      |       |      |      |      | 2    | 1    | 2    |     | 14    | 2,1%       |
| Conjuntos numéricos e números reais                                   |    |      | _    |      |      | 2    |      |      |          | _        | 1    |      |      |      |      | 2    |      | _  |    |      |      |      |      |                | 1    |       |      |      | 1    |      |      |      |     | 7     | 1,1%       |
| Sistemas de numeração                                                 | 1  |      |      |      |      | 1    |      | 1    |          | 1        |      |      |      | 1    |      |      | 1    |    |    | 1    |      |      |      |                | 1    |       | 2    |      |      | 1    |      |      | 2   | 12    | 1,8%       |
| Múltiplos e divisores                                                 | 2  | 1    |      | 1    |      |      |      | 1    | 1        | 1        |      |      | 1    |      |      |      |      |    | 2  |      | 1    | 1    |      | 2              |      | 1     | 1    | 1    | 1    | 2    | 3    |      | 2   | 23    | 3,5%       |
| Divisibilidade e crongruencia                                         |    | 1    |      |      | 1    |      |      |      |          |          | 1    |      | 1    |      |      |      |      | 1  |    |      | 1    | 2    |      |                |      |       | 2    | 1    | 3    | 1    |      | 1    |     | 16    | 2,4%       |
| Função parte inteira                                                  |    |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |    |    |      |      |      |      |                |      |       |      | 1    |      |      |      |      |     | 1     | 0,2%       |
| MDC/MMC                                                               | 1  |      |      |      | 1    |      |      | 1    |          |          | 1    |      |      |      |      |      |      | 1  | 2  | 1    | 1    |      | 2    |                | 1    | 2     |      |      |      | 1    |      | 1    |     | 15    | 2,3%       |
| Razões e proporções                                                   |    | 2    |      |      | 1    |      | 1    |      | 1        |          |      |      | 2    |      | 2    |      | 1    | 1  |    | 1    | 1    |      | 1    |                | 2    |       | 1    |      |      |      |      | 1    |     | 18    | 2,7%       |
| Regra de três                                                         | 3  |      |      |      |      |      |      |      |          |          |      |      | 1    |      |      |      |      |    |    |      |      |      |      |                |      |       |      |      |      |      |      |      | 1   | 2     | 0,3%       |
| Porcentagem                                                           |    |      | 1    |      |      |      |      |      |          | 1        |      | 1    |      | 1    |      |      | 1    | 1  |    |      | 1    |      |      | 1              |      | 2     |      |      |      |      |      |      |     | 10    | 1,5%       |
| Divisão em partes proporcionais e regra de sociedade                  |    |      | 1    | 1    |      |      |      |      |          |          |      |      |      |      |      |      |      |    |    |      |      | 1    |      | 1              | 1    |       |      |      |      |      |      |      |     | 5     | 0,8%       |
| Operações com mercadorias                                             |    |      |      | 1    |      |      | 1    | 1    |          |          | 1    |      | 1    | 1    | 1    |      |      | 1  |    | 1    |      |      | 1    |                |      |       |      | 1    |      |      |      |      |     | 11    | 1,7%       |
| Juros simples e compostos                                             |    |      |      |      |      | 1    |      | 1    | 1        |          | 1    | 1    |      |      |      | 1    |      |    |    |      |      |      | 1    |                | 1    |       |      |      |      |      |      |      |     | 8     | 1,2%       |
| Mistures                                                              | 1  |      |      |      | 1    |      |      |      |          |          |      |      |      |      |      | 1    |      |    | 1  |      |      |      |      |                |      |       | 1    |      |      | 1    |      |      |     | 5     | 0,8%       |
| Médias                                                                |    | 1    | 1    |      |      |      |      | 1    |          |          |      | 1    |      |      |      |      |      | 1  | 1  |      |      |      |      | 1              |      |       |      |      |      |      |      |      | 1   | 8     | 1,2%       |
| Contagem e calendário                                                 |    |      |      |      | 1    |      |      |      |          | 1        |      |      |      | 1    |      |      |      |    |    | 2    |      |      |      |                | 1    |       |      |      | -    |      | 2    |      |     |       | 1,2%       |
| Problemas tipo torneira                                               | 1  |      | 1    |      | _    |      |      | -    |          | <u> </u> | 1    |      |      |      | _    |      | _    | _  | _  |      |      |      | 1    | 1              | 1    |       | _    |      | -    |      | _    |      |     | - 5   | 0,8%       |
| Siptema métrico                                                       |    |      | 1    | 1    |      |      | 1    |      |          | -        | 1    |      | 1    | 1    |      |      |      | _  |    |      |      |      |      |                |      |       |      |      | _    |      |      |      |     | 6     | 0,9%       |
| Potências e raizes                                                    | 1  | 3    | 2    | +    | -    |      | 1    | -    | -        | _        | •    |      | •    | 1    | -    | 1    | 3    | 3  |    | _    | ,    | ,    |      | ,              |      | 1     | -    |      | 2    | 2    |      | ٠.   | ,   | 35    | 5,3%       |
| Produtos notáveis e fatoração                                         | 2  |      | 1    | 1    | 1    | 1    | 1    | •    | i        | 1        | 1    | •    | 2    | -    | 2    | 1    | -    | 1  |    | _    | -    | 2    | 1    | 3              | 2    | +     | -    |      | 2    |      | •    | 2    | -   | 29    | 4.4%       |
| Racionalização e radical duplo                                        | 2  | •    | •    | +    | ÷    | 1    | +    | 1    | +        | •        | +    |      |      | 1    | -    | 1    |      | -  | 1  | 1    |      | 1    |      | -              | -    | +     |      | _    | 1    | +    |      | -    |     | 15    | 2.3%       |
| Equação do 2º grau                                                    | 5  | 1    | 2    | +    | 1    | 2    | +    | 1    | +        |          | •    | 2    |      | •    |      | 1    | 7    | _  | 1  |      | 1    | 2    |      | -              |      | 1     | 1    | _    | -    | •    | 1    |      |     | 24    | 3,6%       |
| Função quadrática                                                     | 1  |      | 1    | -    | 1    | 1    | 1    | 1    | -        | -        | 1    | -    | -    |      | 1    | 1    | -    | -  | -  | 2    | -    | 1    | 1    | 1              | -    | 1     | 1    | _    | -    |      | -    | -    |     | 16    | 2,4%       |
| Função quarrenca<br>Equações fracionárias                             | •  | -    | •    |      | •    | -    | •    | •    |          | 1        | -    |      | _    |      | -    | •    |      | _  | 1  | -    | -    | -    |      | -              |      | 1     | •    | 1    | 1    | ,    |      |      |     | 6     | 0.9%       |
| Equações tracionarias<br>Equações biquadradas e redutiveis ao 2º grau | -  | -    | 1    | ,    |      |      | _    | -    | _        | 4        | 1    | 2    |      | 1    | 2    |      |      | _  | 1  |      | 1    |      | ,    | -              |      | -     | _    | -    | -    |      | ٠,   |      |     | 18    |            |
|                                                                       | 3  | 1    | -    | -    |      |      | 1    | -    | 1        | 4        | -    | 1    |      | 1    | - 2  |      | -    | -  | -  | 1    | 1    |      | 1    | 1              | 1    | 1     | _    | 1    |      |      | 1    |      |     |       | 2,7%       |
| Equações e inequações irracionais                                     | -  |      |      |      |      |      | -    |      | -        | -        | _    |      |      | -    |      |      |      | -  | _  | -    | _    |      |      | -              |      | -     |      | _    | 1    |      | 1    | 1    |     | 13    | 2,0%       |
| Polinômios e equações polinomiais                                     | -  | 1    | 1    | 3    | 2    | 1    |      | 1    | _        | ⊢        | _    | 1    | _    |      |      |      |      | —  | _  | _    | 1    | 1    |      | $\blacksquare$ |      | _     | _    | 2    |      | 1    |      | 1    | 1   | 17    | 2,6%       |
| Sequências                                                            | -  | -    | -    |      | _    |      | _    | -    | _        | -        | _    | _    | _    |      |      |      |      | -  | _  |      | -    |      |      | -              |      | _     | _    | _    | 1    |      | _    |      |     | 1     | 0,2%       |
| Função do 1º grau                                                     |    |      | _    | 1    | _    |      | _    |      | _        | ⊢        |      |      | _    |      |      |      |      | _  |    | 1    | -    |      |      |                |      | _     | _    | _    | 1    |      | _    |      |     | 3     | 0,5%       |
| Equação do 1º grau e problemas do 1º grau                             | 1  | 1    |      |      |      |      |      | 1    |          | _        | 1    |      |      | 1    | 1    |      | 2    |    | 1  |      |      |      |      |                |      |       |      |      | _    |      |      | 1    |     | 9     | 1,4%       |
| Sistemas lineares e problemas relacionados                            | _  | 1    | 2    |      | _    | 1    | 2    |      |          | 1        | 1    | 1    |      | 1    |      | 2    | 1    | 1  | 1  | 1    | 2    |      | 1    | 1              |      | 1     | 1    |      | _    |      |      | 1    | 1   | 24    | 3,6%       |
| Sistemas não lineares e problemas relacionados                        | 1  | 1    |      | 1    |      | 1    | 1    | 1    | 1        | _        |      |      |      |      |      |      |      | _  |    | 1    |      |      |      | 1              |      | 1     |      | 3    | _    |      | 1    |      |     | 13    | 2,0%       |
| Inequações                                                            |    |      |      |      |      |      |      |      |          |          | 1    | 1    |      | 1    |      |      |      |    |    | 1    |      |      |      |                |      |       |      | 1    |      |      |      |      |     | - 5   | 0,8%       |
| Inequações produto-quociente                                          | 1  | 1    |      | 1    | 2    |      | 1    | 1    | 1        |          | _    |      |      |      | 1    |      |      | _  |    |      |      | 1    | 1    |                |      |       | 1    |      | _    |      | 1    |      | 1   | 13    | 2,0%       |
| Desigualdades                                                         |    |      |      |      |      |      |      |      |          | _        |      |      |      |      |      |      |      |    |    |      |      |      |      |                |      |       |      | 1    |      |      |      |      |     | 1     | 0,2%       |
| Fundamentos e ángulos                                                 |    |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |    |    |      |      |      |      |                | 1    |       |      |      |      |      |      |      |     | 1     | 0,2%       |
| Triángulos - ángulos, congruência e desigualdades                     |    |      | 1    | 1    |      |      |      |      | 1        |          |      | 1    | 1    | 1    | 1    | 1    | 2    | 2  | 1  |      |      |      | 1    |                |      |       |      |      |      | 1    |      |      |     | 15    | 2,3%       |
| Triangulos - pontos notáveis                                          |    |      |      |      |      |      |      |      |          |          |      | 1    | 1    | 1    |      | 1    |      |    |    |      | 1    |      |      |                |      |       | 1    | 1    |      |      | 2    |      | 1   | 10    | 1,5%       |
| Triángulos retángulos                                                 |    |      |      |      |      |      | 1    |      |          | 1        | 1    |      | 1    |      |      | 1    |      |    |    |      |      | 1    | 1    |                |      | 1     |      |      |      |      | 1    |      | 1   | 10    | 1,5%       |
| Triángulos - semelhança e relações métricas                           | 2  | 1    | 1    | 2    | 2    | 1    | 1    | 1    |          | 1        |      |      |      |      | 1    | 2    |      |    |    |      | 2    |      | 1    |                | 1    |       | 1    |      |      |      |      | 2    |     | 20    | 3,0%       |
| Quadriláteros                                                         | 1  |      | 1    | 2    |      | 1    | 1    |      |          | 1        |      | 1    |      | 1    |      |      |      | 1  |    |      | 1    | 1    |      | 1              |      | 1     | 1    | 1    | 1    | 2    |      |      |     | 18    | 2,7%       |
| Poligonos - ángulos e diagonais                                       | 2  |      | 2    |      | 1    | 1    |      | 1    | 1        |          | 1    | 1    |      | 1    | 1    |      |      | 1  |    |      |      |      | 2    |                |      |       |      |      | 1    |      |      |      |     | 14    | 2,1%       |
| Poligonos regulares - relações métricas                               |    |      |      | 1    |      |      |      | 1    | 1        |          | 1    |      | 1    |      |      | 1    | 1    |    |    |      | 1    |      | 2    | 1              |      |       |      |      |      |      |      |      |     | 11    | 1,7%       |
| Circunferência - posições relativas e segmentos tangentes             | 1  |      |      | 1    |      |      |      |      | 1        |          | 1    |      | 1    |      |      | 1    |      |    |    | 1    | 1    |      |      | 1              | 1    | 1     | 1    | 1    |      |      |      |      |     | 12    | 1,8%       |
| Arco capaz, ângulos e comprimentos na circunferência                  |    | 1    |      |      | 1    | 1    |      |      | 1        | 1        |      |      |      | 1    |      |      | 1    | 1  |    | 2    |      |      |      |                | 1    | 1     | 1    |      | 1    |      | 2    |      | 1   | 17    | 2,6%       |
| Circunferência - relações métricas e potência de ponto                | 3  | 2    |      |      |      |      | 1    | 1    |          |          |      | 1    | 1    |      | 2    |      |      |    | 1  | 1    |      | 1    |      |                |      |       |      |      |      |      |      |      |     | 11    | 1,7%       |
| Áreas                                                                 | 3  | 3    | 3    | 1    | 4    | 2    | 2    | 2    | 2        | 2        | 1    | 1    | 1    | 2    | 1    | 1    | 4    | 1  | 5  | 2    |      | 3    | 1    | 2              | 2    | 1     | 2    | 3    | 2    | 1    | 2    | 5    | 5   | 69    | 10,5%      |
| TOTAL POR PROVA                                                       | 40 |      | 25   | 25   | 25   | 20   | 20   | 20   | 20       | 20       | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20 | 20 | 20   | 20   | 20   | 20   | 20             | 20   | 20    | 20   | 20   | 20   | 20   | 20   | 20   | 20  | 660   | 100,0%     |
| Artimética                                                            | 11 | 6    | 7    | 6    | 7    | 5    | 4    | 6    | 6        | 7        | 8    | 5    | 10   | 6    | 6    | 5    | 4    | 9  | 7  | 6    | 6    | 5    | 7    | 7              | 10   | 6     | II.  | 5    | 6    | 10   | 7    | 5    | 8   | 210   | 31,82%     |
| Algebra                                                               | 17 |      | 10   | 11   | 10   | 9    | 10   | 8    | 7        | 7        | 7    | 9    | 3    | 7    | 8    | 7    | 8    | 5  | 6  | 8    | 8    | 9    | 5    | í              | 4    | 9     | 5    | 9    | 9    | 6    | 6    | 8    | 4   | 242   | 36,67%     |
| Geometria Plana                                                       | 12 |      | 8    | 8    |      | 6    |      | 6    | <u> </u> | 6        | ÷    | 6    | 7    | 7    | -    | -    | -    | 6  | -  | 6    | -    | -    | H.   | -              | 6    | -     | -    | -    | -    | 4    | -    | -    | -   | 208   | 31,5 2%    |
| COMPANIA FINIA                                                        | 44 | - /  | -    | - 4  | -    | 0    |      |      | -        | 0        | -    |      | -    | - /  | 0    | - 18 | - 4  |    | -  | - 0  | - 0  | 0    | - 4  | - 2            | ti)  | -     | -    | 0    | -    | 4    | -    | -    | - 1 | 45/18 | 415.6%     |

### CLASSIFICAÇÃO DAS QUESTÕES POR ASSUNTO

### **ARITMÉTICA**

RACIOCÍNIO LÓGICO: 2016-10; 2002-14; 2001-1; 2001-6; 1994-20; 1991-2;

CONJUNTOS: 2016-19; 2014-4; 2012-10; 2011-11; 2008-15; 2007-6; 2006-3; 2001-15; 1999-4; 1998-9; 1998-17; 1995-18; 1992-4; 1991-3; 1989-14; 1988-5; 1987-6; 1986-1; 1986-2; 1985-1; 1985-18; 1984-1

OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS: 2013-12; 2013-15; 2010-14; 2009-13; 2005-2; 1996-14; 1992-1; 1991-1; FB-16

NÚMEROS RACIONAIS: 2015-7; 2015-9; 2014-1; 2013-2; 2013-18; 2004-8; 2000-4; 1998-20; 1997-11; 1996-19; 1996-20; 1995-16; 1992-13; 1987-7; FB-12

CONJUNTOS NUMÉRICOS E NÚMEROS REAIS: 2012-11; 2008-20; 1999-10; 1999-15; 1994-11; 1988-1; 1988-2

SISTEMAS DE NUMERAÇÃO: 2016-3; 2016-12; 2013-4; 2010-3; 2010-13; 2008-5; 2003-18; 2000-3; 1997-3; 1992-6; 1990-9; 1988-3; FB-23

MÚLTIPLOS E DIVISORES: 2016-17; 2016-18; 2014-10; 2014-17; 2014-19; 2013-6; 2013-8; 2012-14; 2011-4; 2010-8; 2009-18; 2007-11; 2007-17; 2005-10; 2004-4; 2002-6; 2002-11; 1996-11; 1992-14; 1991-4; 1990-11; 1986-4; 1984-7; FB-7; FB-13

DIVISIBILIDADE E CONGRUÊNCIA: 2015-14; 2013-11; 2012-1; 2012-15; 2012-20; 2011-5; 2010-5; 2010-15; 2005-13; 2005-16; 2004-9; 2001-19; 1996-18; 1994-9; 1987-2; 1984-2

FUNÇÃO PARTE INTEIRA: 2011-8;

MDC E MMC: 2015-8; 2013-7; 2009-4; 2009-14; 2008-11; 2006-2; 2006-9; 2004-5; 2003-4; 2002-2; 2002-4; 2001-3; 1994-5; 1990-8; 1987-4; FB-38

RAZÕES E PROPORÇÕES: 2015-2; 2010-19; 2008-12; 2008-18; 2006-12; 2004-16; 2003-13; 2001-5; 2000-5; 1998-7; 1998-15; 1996-6; 1996-17; 1991-6; 1989-9; 1987-1; 1984-4; 1984-21

REGRA DE TRÊS: 2016-4; 1996-16; FB-9; FB-25; FB-30

PORCENTAGEM: 2009-10; 2009-15; 2007-4; 2004-6; 2001-16; 2000-19; 1997-2; 1995-3; 1992-20; 1985-6

DIVISÃO EM PARTES PROPORCIONAIS E REGRA DE SOCIEDADE: 2008-14; 2007-10; 2005-14; 1986-11; 1985-11

OPERAÇÕES COM MERCADORIAS: 2011-10; 2006-19; 2003-15; 2001-11; 1998-6; 1997-4; 1996-12; 1994-16; 1990-16; 1989-8; 1986-6

JUROS SIMPLES E COMPOSTOS: 2008-4; 2006-15; 1999-8; 1995-8; 1994-3; 1991-7; 1990-6; 1988-4

MISTURAS: 2013-13; 2010-7; 2002-7; 1999-3; 1987-3; FB-39

MÉDIAS: 2016-5; 2007-19; 2002-9; 2001-9; 1995-14; 1990-10; 1985-25; 1984-3

CONTAGEM E CALENDÁRIO: 2014-3; 2014-11; 2008-9; 2003-1; 2003-9; 1997-5; 1992-5; 1987-9

PROBLEMAS TIPO TORNEIRA: 2008-16; 2007-3; 2006-14; 1994-10; 1985-3; FB-37

SISTEMA MÉTRICO: 1997-10; 1996-10; 1994-13; 1989-13; 1986-13; 1985-23

### ÁLGEBRA

POTÊNCIAS E RAÍZES: 2016-11; 2015-10; 2014-7; 2013-1; 2013-19; 2012-7; 2012-16; 2010-18; 2009-8; 2007-7; 2005-9; 2004-11; 2004-14; 2001-4; 2001-13; 2001-14; 2000-6; 2000-9; 2000-11; 1999-5; 1998-16; 1997-15; 1995-12; 1991-5; 1990-2; 1989-5; 1988-7; 1987-16; 1987-24; 1986-7; 1985-2; 1985-15; 1984-5; 1984-6; 1984-15; FB-3

PRODUTOS NOTÁVEIS E FATORAÇÃO: 2015-1; 2015-18; 2013-16; 2012-3; 2012-4; 2009-12; 2008-1; 2008-3; 2007-8; 2007-9; 2007-12; 2006-16; 2005-12; 2005-15; 2001-7; 1999-12; 1998-10; 1998-14; 1996-3; 1996-15; 1994-19; 1992-8; 1991-13; 1989-10; 1988-14; 1987-17; 1986-16; 1985-8; 1984-12; FB-8; FB-33

RACIONALIZAÇÃO E RADICAL DUPLO: 2013-17; 2012-13; 2009-19; 2005-11; 2003-3; 2002-5; 1999-2; 1997-18; 1994-8; 1991-10; 1990-14; 1989-11; 1988-6; 1987-5; 1986-9; FB-10; FB-14

EQUAÇÃO DO 2° GRAU: 2015-11; 2014-12; 2010-6; 2009-20; 2008-8; 2005-3; 2005-19; 2004-12; 2002-15; 2000-15; 1999-20; 1996-4; 1995-2; 1995-15; 1991-12; 1990-4; 1989-7; 1988-8; 1988-11; 1987-20; 1986-3; 1985-4; 1985-17; 1984-10; FB-11; FB-17; FB-28; FB-29; FB-32

FUNÇÃO QUADRÁTICA: 2010-12; 2009-16; 2007-14; 2006-6; 2005-17; 2003-10; 2003-14; 1999-18; 1998-19; 1994-2; 1990-18; 1989-17; 1988-13; 1987-21; 1985-13; 1984-8; FB-36

EQUAÇÕES FRACIONÁRIAS: 2013-10; 2012-2; 2011-20; 2009-3; 2002-17; 1992-12;

EQUAÇÕES BIQUADRADAS E REDUTÍVEIS AO 2° GRAU: 2014-5; 2008-10; 2006-20; 2004-15; 2002-19; 2000-17; 1998-3; 1998-8; 1997-14; 1995-17; 1995-20; 1994-15; 1992-10; 1992-11; 1992-16; 1992-18; 1986-15; 1985-10

EQUAÇÕES E INEQUAÇÕES IRRACIONAIS: 2015-3; 2014-9; 2012-5; 2011-12; 2009-7; 2007-13; 2004-2; 2003-16; 1997-7; 1995-7; 1991-8; 1989-12; 1984-11; FB-24; FB-34; FB-40

POLINÔMIOS E EQUAÇÕES POLINOMIAIS: 2016-9; 2015-16; 2013-14; 2011-2; 2011-13; 2005-4; 2004-19; 1995-4; 1990-20; 1988-12; 1987-14; 1987-25; 1986-8; 1986-10; 1986-14; 1985-19; 1984-13

SEQUÊNCIAS: 2012-12;

FUNÇÃO DO 1° GRAU: 2012-17; 2003-19; 1986-12

EQUAÇÃO DO 1º GRAU E PROBLEMAS DO 1º GRAU: 2015-15; 2002-18; 2000-7; 2000-10; 1998-4; 1997-1; 1994-14; 1990-7; 1984-16; FB-15

SISTEMAS LINEARES E PROBLEMAS RELACIONADOS: 2016-2; 2015-12; 2010-4; 2009-1; 2007-1; 2006-11; 2004-1; 2004-17; 2003-8; 2002-3; 2001-18; 2000-16; 1999-11; 1999-17; 1997-17; 1995-11; 1994-12; 1992-17; 1989-4; 1989-15; 1988-10; 1985-9; 1985-22; 1984-14

SISTEMAS NÃO LINEARES E PROBLEMAS RELACIONADOS: 2014-18; 2011-15; 2011-16; 2011-18; 2009-2; 2007-16; 2003-5; 1991-9; 1990-19; 1989-6; 1988-9; 1986-5; 1984-9; FB-31

INEQUAÇÕES: 2011-17; 2003-2; 1997-12; 1995-9; 1994-18;

INEQUAÇÕES PRODUTO QUOCIENTE: 2016-1; 2014-20; 2010-9; 2006-8; 2005-6; 1998-18; 1991-11; 1990-3; 1989-20; 1987-8; 1987-13; 1986-21; 1984-17; FB-6

DESIGUALDADES: 2011-19;

#### **GEOMETRIA PLANA**

FUNDAMENTOS E ÂNGULOS: 2008-2

TRIÂNGULOS – ÂNGULOS, CONGRUÊNCIA, DESIGUALDADES: 2013-20; 2006-1; 2002-12; 2001-17; 2001-20; 2000-12; 2000-20; 1999-19; 1998-12; 1997-19; 1996-1; 1995-19; 1991-16; 1986-18; 1985-7

TRIÂNGULOS – PONTOS NOTÁVEIS: 2016-13; 2014-13; 2014-14; 2011-14; 2010-11; 2004-3; 1999-1; 1997-13; 1996-7; 1995-5;

TRIÂNGULOS RETÂNGULOS: 2016-6; 2014-8; 2009-17; 2006-17; 2005-18; 1999-16; 1996-9; 1994-4; 1992-7; 1989-1;

TRIÂNGULOS – SEMELHANÇA E RELAÇÕES MÉTRICAS: 2015-6; 2015-17; 2010-10; 2008-7; 2006-18; 2004-10; 2004-20; 1999-9; 1999-14; 1998-2; 1992-19; 1990-1; 1989-16; 1988-15; 1987-12; 1987-22; 1986-22; 1986-25; 1985-12; 1984-22; FB-4; FB-19

QUADRILÁTEROS: 2013-3; 2013-5; 2012-8; 2011-9; 2010-17; 2009-6; 2007-5; 2005-5; 2004-13; 2001-2; 1997-20; 1995-1; 1992-9; 1989-3; 1988-20; 1986-19; 1986-20; 1985-21; FB-20

POLÍGONOS – ÂNGULOS E DIAGONAIS: 2012-18; 2006-7; 2006-13; 2001-10; 1998-11; 1997-6; 1995-10; 1994-7; 1991-14; 1990-5; 1988-18; 1987-11; 1985-5; 1985-16; FB-2; FB-18

POLÍGONOS – RELAÇÕES MÉTRICAS: 2007-2; 2006-4; 2006-10; 2004-18; 2000-13; 1999-6; 1996-5; 1994-1; 1991-18; 1990-12; 1986-23

CIRCUNFERÊNCIA – POSIÇÕES RELATIVAS E SEGMENTOS TANGENTES: 2011-6; 2010-1; 2009-9; 2008-17; 2007-18; 2004-7; 2003-7; 1999-13; 1996-13; 1994-17; 1991-15; 1986-17; FB-22

ARCO CAPAZ, ÂNGULOS E COMPRIMENTOS NA CIRCUNFERÊNCIA: 2016-7; 2014-6; 2014-15; 2012-9; 2010-16; 2009-5; 2008-6; 2003-6; 2003-17; 2001-12; 2000-18; 1997-8; 1992-3; 1991-19; 1988-17; 1987-18; 1984-20

CIRCUNFERÊNCIA – RELAÇÕES MÉTRICAS E POTÊNCIA DE PONTO: 2005-20; 2003-11; 2002-20; 1998-1; 1998-5; 1996-8; 1995-13; 1990-15; 1989-19; 1984-18; 1984-23; FB-21; FB-26; FB-27

ÁREAS: 2016-8; 2016-14; 2016-15; 2016-16; 2016-20; 2015-4; 2015-5; 2015-13; 2015-19; 2015-20; 2014-2; 2014-16; 2013-9; 2012-6; 2012-19; 2011-1; 2011-3; 2011-7; 2010-2; 2010-20; 2009-11; 2008-13; 2008-19; 2007-15; 2007-20; 2006-5; 2005-1; 2005-7; 2005-8; 2003-12; 2003-20; 2002-1; 2002-8; 2002-10; 2002-13; 2002-16; 2001-8; 2000-1; 2000-2; 2000-8; 2000-14; 1999-7; 1998-13; 1997-9; 1997-16; 1996-2; 1995-6; 1994-6; 1992-2; 1992-5; 1991-17; 1991-20; 1990-13; 1990-17; 1989-2; 1989-18; 1988-16; 1988-19; 1987-10; 1987-15; 1987-19; 1987-23; 1986-24; 1985-14; 1985-20; 1985-24; 1984-24; 1984-25; FB-1; FB-5; FB-35

# CAPÍTULO 3 ENUNCIADOS E RESOLUÇÕES

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2015/2016

- 1) Seja S a soma dos valores inteiros que satisfazem a inequação  $\frac{(5x-40)^2}{x^2-10x+21} \le 0$ . Pode-se afirmar que
- a) S é um número divisível por 7.
- b) S é um número primo.
- c) S<sup>2</sup> é divisível por 5.
- d)  $\sqrt{S}$  é um número racional.
- e) 3S+1 é um número ímpar.

#### RESPOSTA: b

### RESOLUÇÃO:

$$\frac{(5x-40)^2}{x^2-10x+21} \le 0 \Leftrightarrow (5x-40)^2 = 0 \lor x^2-10x+21 < 0 \Leftrightarrow x = 8 \lor 3 < x < 7$$
$$(5x-40)^2 = 0 \Leftrightarrow 5x-40 = 0 \Leftrightarrow 5x = 40 \Leftrightarrow x = 8$$
$$x^2-10x+21 < 0 \Leftrightarrow (x-3)(x-7) < 0 \Leftrightarrow 3 < x < 7$$

Os valores inteiros que satisfazem à inequação são 4, 5, 6 e 8.

Assim, S=4+5+6+8=23 que é um número primo.

- 2) Dado o sistema  $S: \begin{cases} 2x ay = 6 \\ -3x + 2y = c \end{cases}$  nas variáveis x e y, pode-se afirmar que
- a) existe  $a \in \left[\frac{6}{5}, 2\right[$  tal que o sistema S não admite solução para qualquer número real c.
- b) existe  $a \in \left[\frac{13}{10}, \frac{3}{2}\right]$  tal que o sistema S não admite solução para qualquer número real c.
- c) se  $a = \frac{4}{3}$  e c = -9, o sistema S não admite solução.
- d) se a  $\neq \frac{4}{3}$  e c = -9, o sistema S admite infinitas soluções.
- e) se  $a = \frac{4}{3}$  e c = -9, o sistema S admite infinitas soluções.

#### RESPOSTA: e

RESOLUÇÃO: (O enunciado dessa questão foi adequado, pois a mesma estava incorreta da maneira como foi proposta.)

O sistema S admite solução única, se  $\frac{2}{-3} \neq \frac{-a}{2} \Leftrightarrow a \neq \frac{4}{3}$  (sistema possível e determinado).

Se  $a = \frac{4}{3}$  e  $\frac{6}{c} = \frac{2}{-3} \Leftrightarrow c = -9$ , então o sistema S admite infinitas soluções (sistema possível e indeterminado).

Se  $a = \frac{4}{3} e \frac{6}{c} \neq \frac{2}{-3} \Leftrightarrow c \neq -9$ , então o sistema S não admite soluções (sistema impossível).

Logo, a alternativa correta é a letra e).

3) Seja  $k = \left(\frac{9999...997^2 - 9}{9999...994}\right)^3$  onde cada um dos números 9999...997 e 9999...994, são

constituídos de 2015 algarismos 9. Deseja-se que  $\sqrt[i]{k}$  seja um número racional. Qual a maior potência de 2 que o índice i pode assumir?

- a) 32
- b) 16
- c) 8
- d) 4
- e) 2

### RESPOSTA: a

# RESOLUÇÃO:

$$9999...997 = 10^{2016} - 3$$

$$9999...994 = 10^{2016} - 6$$

$$k = \left(\frac{9999...997^2 - 9}{9999...994}\right)^3 = \left(\frac{\left(10^{2016} - 3\right)^2 - 3^2}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3 + 3\right)\left(10^{2016} - 3 - 3\right)}{10^{2016} - 6}\right)^3 = \left(\frac{\left(10^{2016} - 3\right)^2 - 3^2}{10^{2016} - 3}\right)^3 = \left(\frac{\left(10^{2016} - 3\right)^2 - 3^2}{10^{2016} - 3}\right$$

$$= \left(\frac{10^{2016} \cdot \left(10^{2016} - 6\right)}{10^{2016} - 6}\right)^3 = \left(10^{2016}\right)^3 = 10^{6048}$$

$$\sqrt[i]{k} = \sqrt[i]{10^{6048}} = 10^{\frac{6048}{i}} \in \mathbb{Q} \Leftrightarrow \frac{6048}{i} \in \mathbb{Z}$$

Como  $6048 = 2^5 \cdot 3^3 \cdot 7$ , então a maior potência de 2 que o índice i pode assumir é  $2^5 = 32$ .

- 4) Para capinar um terreno circular plano, de raio 7 m, uma máquina gasta 5 horas. Quantas horas gastará essa máquina para capinar um terreno em iguais condições com 14 m de raio?
- a) 10
- b) 15
- c) 20
- d) 25
- e) 30

#### RESPOSTA: c

# RESOLUÇÃO:

Um terreno circular plano de 7 m de raio tem área  $S = \pi \cdot 7^2 = 49\pi \text{ m}^2$ .

Assim, a máquina gasta 5 horas para capinar  $49\pi \text{ m}^2$ , ou seja, ela capina  $\frac{49\pi \text{ m}^2}{5 \text{ h}} = 9.8\pi \text{ m}^2/\text{h}$ .

Um terreno em iguais condições com 14 m de raio tem área  $S' = \pi \cdot 14^2 = 196\pi \, m^2$ . Logo, a máquina gastará  $\frac{196\pi \, m^2}{9,8\pi \, m^2/h} = 20 \, h$  para capinar esse terreno.

- 5) Para obter o resultado de uma prova de três questões, usa-se a média ponderada entre as pontuações obtidas em cada questão. As duas primeiras questões têm peso 3,5 e a 3ª, peso 3. Um aluno que realizou essa avaliação estimou que:
- I sua nota na 1ª questão está estimada no intervalo fechado de 2,3 a 3,1; e
- II sua nota na 3ª questão foi 7.

Esse aluno quer atingir média igual a 5,6. A diferença da maior e da menor nota que ele pode ter obtido na 2ª questão de modo a atingir o seu objetivo de média é

- a) 0,6
- b) 0,7
- c) 0,8
- d) 0,9
- e) 1

#### RESPOSTA: c

# RESOLUÇÃO:

Seja  $x_i$  a nota da i-ésima questão, então  $2,3 \le x_1 \le 3,1$  e  $x_3 = 7$ . Para que sua média seja 5,6, devemos ter:

$$\frac{3,5 \cdot x_1 + 3,5 \cdot x_2 + 3 \cdot x_3}{3,5 + 3,5 + 3} = 5,6 \Leftrightarrow 3,5x_1 + 3,5x_2 + 3 \cdot 7 = 56 \Leftrightarrow x_1 + x_2 = 10$$

$$2,3 \le x_1 \le 3,1 \Leftrightarrow 2,3 \le 10 - x_2 \le 3,1 \Leftrightarrow -3,1 \le x_2 - 10 \le -2,3 \Leftrightarrow 6,9 \le x_2 \le 7,7$$

Portanto, a diferença da maior e da menor nota que ele pode ter obtido na  $2^a$  questão é  $2,3 \le x_1 \le 7,7-6,9=0,8$  .

- 6) Qual a medida da maior altura de um triângulo de lados 3, 4, 5?
- a)  $\frac{12}{5}$
- b) 3
- c) 4
- d) 5

e) 
$$\frac{20}{3}$$

RESPOSTA: c

RESOLUÇÃO:



Como  $3^2 + 4^2 = 5^2$ , o triângulo em questão é retângulo. Logo, duas de suas alturas são os dois catetos 3 e 4.

A terceira altura pode ser obtida a partir das relações métricas como segue:  $a \cdot h = b \cdot c \Leftrightarrow 5 \cdot h = 3 \cdot 4 \Leftrightarrow h = \frac{12}{5} = 2,4$ .

Portanto, a maior altura mede 4 unidades de comprimento.

7) Observe a figura a seguir.



A figura acima representa o trajeto de sete pessoas num treinamento de busca em terreno plano, segundo o método "radar". Nesse método, reúne-se um grupo de pessoas num ponto chamado de "centro" para, em seguida, fazê-las andar em linha reta, afastando-se do "centro". Considere que o raio de visão eficiente de uma pessoa é 100 m e que  $\pi = 3$ .

Dentre as opções a seguir, marque a que apresenta a quantidade mais próxima do mínimo de pessoas necessárias para uma busca eficiente num raio de 900 m a partir do "centro" e pelo método "radar".

- a) 34
- b) 27

- c) 25
- d) 20
- e) 19

#### **RESPOSTA:**

RESOLUÇÃO: (As opções dessa questão foram alteradas, pois a mesma foi anulada da maneira como foi originalmente proposta.)



Os pontos A e B representam a posição de duas pessoas consecutivas e M o ponto médio do arco AB. Para que todo o perímetro seja coberto deve-se ter  $AM \le 100$ .

Como arco(AM) > AM, se adotarmos arco(AM) = 100, então temos uma boa aproximação de AM e que satisfaz AM < 100.

Assim, temos  $\operatorname{arco}(AB) = 2 \cdot \operatorname{arco}(AM) = 2 \cdot 100 = 200$ .

A quantidade de arcos de comprimento 200 que "cabem" na circunferência de raio 900 é  $\frac{2\pi\cdot 900}{200} = 9\cdot \pi \approx 9\cdot 3 = 27 \ .$ 

Logo, uma boa aproximação para o mínimo de pessoas necessárias é 27.

- 8) Num semicírculo S, inscreve-se um triângulo retângulo ABC. A maior circunferência possível que se pode construir externamente ao triângulo ABC e internamente ao S, mas tangente a um dos catetos de ABC e ao S, tem raio 2. Sabe-se ainda que o menor cateto de ABC mede 2. Qual a área do semicírculo?
- a)  $10\pi$
- b)  $12,5\pi$
- c)  $15\pi$
- d)  $17.5\pi$
- e)  $20\pi$

RESPOSTA: b

RESOLUÇÃO:

Inicialmente, observemos que, quando inscrevemos um triângulo retângulo em um semicírculo, a hipotenusa desse triângulo é igual ao diâmetro do semicírculo.

A maior circunferência possível que se pode construir externamente ao triângulo ABC e internamente ao S, mas tangente a um dos catetos de ABC e ao S, tangencia o maior cateto.

A figura a seguir ilustra a situação descrita.



Considerando que BC seja o maior cateto de ABC, então o centro da circunferência está sobre o raio MP que coincide com a mediatriz da corda BC.

Sendo  $N \in MP$  o ponto médio de BC, então MN é base média do triângulo e  $MN = \frac{AC}{2} = \frac{2}{2} = 1$ .

Portanto, o raio do semicírculo é MP=MN+NO+OP=1+2+2=5 e sua área é  $S_S = \frac{\pi \cdot 5^2}{2} = 12,5\pi \text{ u.a.}.$ 

- 9) Seja x um número real tal que  $x^3 + x^2 + x + x^{-1} + x^{-2} + x^{-3} + 2 = 0$ . Para cada valor real de x, obtémse o resultado da soma de  $x^2$  com seu inverso. Sendo assim, a soma dos valores distintos desses resultados é
- a) 5
- b) 4
- c) 3
- d) 2
- e) 1

#### RESPOSTA: d

RESOLUÇÃO: (O enunciado dessa questão foi alterado para que a questão ficasse mais clara.)

$$x^{3} + x^{2} + x + x^{-1} + x^{-2} + x^{-3} + 2 = 0 \Leftrightarrow (x^{3} + x^{-3}) + (x^{2} + x^{-2}) + (x + x^{-1}) + 2 = 0$$

Seja  $x + x^{-1} = y$ , então

$$x + x^{-1} = y \Rightarrow (x + x^{-1})^2 = y^2 \Leftrightarrow x^2 + 2 + x^{-2} = y^2 \Leftrightarrow x^2 + x^{-2} = y^2 - 2$$

$$x + x^{-1} = y \Rightarrow (x + x^{-1})^3 = y^3 \Leftrightarrow x^3 + x^{-3} + 3 \cdot x \cdot x^{-1} \cdot (x + x^{-1}) = y^3 \Leftrightarrow x^3 + x^{-3} = y^3 - 3y$$

Substituindo as duas expressões obtidas na equação original, temos:

$$(x^{3} + x^{-3}) + (x^{2} + x^{-2}) + (x + x^{-1}) + 2 = 0 \Leftrightarrow (y^{3} - 3y) + (y^{2} - 2) + y + 2 = 0 \Leftrightarrow y^{3} + y^{2} - 2y = 0$$
$$\Leftrightarrow y(y^{2} + y - 2) = 0 \Leftrightarrow y = 0 \lor y = 1 \lor y = -2$$

Vamos encontrar os valores de x associados a cada valor de y.

$$\begin{split} y &= 0 \Rightarrow x + x^{-1} = 0 \Leftrightarrow x + \frac{1}{x} = 0 \Leftrightarrow x^2 + 1 = 0 \Leftrightarrow x \notin \mathbb{R} \\ y &= 1 \Rightarrow x + x^{-1} = 1 \Leftrightarrow x + \frac{1}{x} = 1 \Leftrightarrow x^2 - x + 1 = 0 \Leftrightarrow \Delta = (-1)^2 - 4 \cdot 1 \cdot 1 = -3 < 0 \Leftrightarrow x \notin \mathbb{R} \\ y &= -2 \Rightarrow x + x^{-1} = -2 \Leftrightarrow x + \frac{1}{x} = -2 \Leftrightarrow x^2 + 2x + 1 = 0 \Leftrightarrow x = -1 \left( \text{dupla} \right) \end{split}$$

Assim, o único valor real de x é a raiz dupla x = -1 obtida quando y = -2. Assim, temos:

$$y = -2 \Rightarrow x = -1 \Rightarrow x^2 + x^{-2} = y^2 - 2 = (-2)^2 - 2 = 2$$

Portanto, a soma dos valores distintos de  $x^2 + x^{-2} \notin 2$ .

### 10) Observe a figura a seguir.



A figura acima é formada por círculos numerados de 1 a 9. Seja "TROCA" a operação de pegar dois desses círculos e fazer com que um ocupe o lugar que era do outro. A quantidade mínima S de "TROCAS" que devem ser feitas para que a soma dos três valores de qualquer horizontal, vertical ou diagonal, seja a mesma, está no conjunto:

- a)  $\{1, 2, 3\}$
- b) {4, 5, 6}
- c)  $\{7, 8, 9\}$
- d) {10, 11, 12}
- e) {13, 14, 15}

RESPOSTA: b

### RESOLUÇÃO:

O valor da soma comum S é um terço da soma das três verticais. Quando somamos as três verticais, somamos cada um dos números uma única vez. Assim, temos:

$$S = \frac{1+2+3+4+5+6+7+8+9}{3} = \frac{\underbrace{(1+9)\cdot 9}{2}}{3} = 15.$$

Somando a vertical central, a horizontal central e as duas diagonais, somamos todos os elementos uma vez, exceto o elemento central N que é somado quatro vezes. Portanto, quatro vezes a soma comum S=15 é igual à soma dos números de 1 a 9 mais três vezes o termo central N (note que o elemento central N aparece uma vez na soma dos números de 1 a 9). Assim, temos:

$$4.15 = (1+2+...+9) + 3N \Leftrightarrow 60 = \frac{(1+9).9}{2} + 3N \Leftrightarrow 3N = 15 \Leftrightarrow N = 5.$$

Observe agora que cada elemento dos cantos do quadrado aparece em três somas (uma horizontal, uma vertical e uma diagonal), os elementos em meio de lados aparecem em duas somas (uma vertical e uma horizontal) e o elemento central do quadrado aparece em quatro somas (uma vertical, uma horizontal e duas diagonais).

O número 9 só pode aparecer em duas filas nas ternas  $\{9,1,5\}$  e  $\{9,2,4\}$ . Logo, o 9 deve estar no meio de um dos lados do quadrado, com 2 e 4 completando esse lado, e 1 no meio do lado oposto.

Logo, 2 e 4 são elementos de canto e deve ser opostos a 8 e 6, respectivamente. Daí é fácil completar o quadrado, como mostra a figura a seguir.



Observe que, no quadrado obtido, os elementos dos cantos são números pares e os elementos em meio de lados são ímpares e na configuração original isso está invertido.

Inicialmente, precisamos de 4 trocas para colocar os números pares nos cantos.



Agora, basta trocar 3 com 7 e depois 7 com 9, resultando um quadrado mágico conforme pedido. Para tanto, foram necessárias 6 trocas.

11) Seja n um número natural e  $\oplus$  um operador matemático que aplicado a qualquer número natural, separa os algarismos pares, os soma, e a esse resultado, acrescenta tantos zeros quanto for o número obtido. Exemplo:  $\oplus (3256) = 2 + 6 = 8$ , logo fica: 800000000. Sendo assim, o produto  $[\oplus (20)] \cdot [\oplus (21)] \cdot [\oplus (22)] \cdot [\oplus (23)] \cdot [\oplus (24)] \cdot \dots \cdot [\oplus (29)]$  possuirá uma quantidade de zeros igual a

- a) 46
- b) 45
- c) 43
- d) 41
- e) 40

#### RESPOSTA: d

# RESOLUÇÃO:

$$[\oplus(21)] = [\oplus(23)] = [\oplus(25)] = [\oplus(27)] = [\oplus(29)] = 200 = 2 \cdot 10^2$$

$$\left[ \oplus (20) \right]^{(2+0)} = 200 = 2 \cdot 10^2$$

$$\left[ \oplus (22) \right]^{(2+2)} = 40000 = 4 \cdot 10^4$$

$$\left[ \oplus (24) \right]^{(2+4)} = 6000000 = 6 \cdot 10^6$$

$$\left[ \oplus (26) \right]^{(2+6)} = 8000000000 = 8 \cdot 10^8$$

$$\left[ \oplus (28) \right]^{(2+8)} = 1000000000000 = 10 \cdot 10^{10}$$

$$[\oplus(20)]\cdot[\oplus(21)]\cdot[\oplus(22)]\cdot[\oplus(23)]\cdot[\oplus(24)]\cdot\ldots\cdot[\oplus(29)]=$$

$$= (2 \cdot 10^2)^5 \cdot (2 \cdot 10^2) \cdot (4 \cdot 10^4) \cdot (6 \cdot 10^6) \cdot (8 \cdot 10^8) \cdot (10 \cdot 10^{10}) =$$

 $=12288 \cdot 10^{41}$ 

Logo, o produto termina em 41 zeros.

- 12) Na multiplicação de um número k por 70, por esquecimento, não se colocou o zero à direita, encontrando-se, com isso, um resultado 32823 unidades menor. Sendo assim, o valor para a soma dos algarismos de k é
- a) par.
- b) uma potência de 5.
- c) múltiplo de 7.
- d) um quadrado perfeito.
- e) divisível por 3.

### RESPOSTA: a

### **RESOLUÇÃO:**

O número 70·k sem o zero à direita é igual a 7k. Assim, temos:

 $70k - 7k = 32823 \Leftrightarrow 63k = 32823 \Leftrightarrow k = 521$ 

Portanto, a soma dos algarismos de k = 521 é 5+2+1=8 que é par.

- 13) Seja ABC um triângulo de lados medindo 8, 10 e 12. Sejam M, N e P os pés das alturas traçadas dos vértices sobre os lados desse triângulo. Sendo assim, o raio do círculo circunscrito ao triângulo MNP é
- a)  $\frac{5\sqrt{7}}{7}$
- b)  $\frac{6\sqrt{7}}{7}$
- c)  $\frac{8\sqrt{7}}{7}$
- $d) \frac{9\sqrt{7}}{7}$
- e)  $\frac{10\sqrt{7}}{7}$

RESPOSTA: c

RESOLUÇÃO:



O círculo circunscrito ao triângulo MNP (triângulo órtico) é o círculo de nove pontos, cujo raio é igual a  $\frac{R}{2}$ , onde R é o raio do círculo circunscrito ao triângulo ABC.

Para calcular R, vamos calcular a área do triângulo ABC de duas formas distintas.

$$S_{ABC} = \sqrt{p(p-a)(p-b)(p-c)} = \frac{a \cdot b \cdot c}{4R} \Leftrightarrow R = \frac{abc}{4\sqrt{p(p-a)(p-b)(p-c)}}$$

onde a = 8, b = 10, c = 12 e  $p = \frac{8 + 10 + 12}{2} = 15$ . Assim, temos:

$$R = \frac{abc}{4\sqrt{p(p-a)(p-b)(p-c)}} = \frac{8 \cdot 10 \cdot 12}{4\sqrt{15 \cdot 7 \cdot 5 \cdot 3}} = \frac{16\sqrt{7}}{7}.$$

Portanto, o raio do círculo circunscrito ao triângulo MNP é  $\frac{R}{2} = \frac{8\sqrt{7}}{7}$  u.c.

#### **NOTA 1: Círculo de nove pontos**

A distância do circuncentro de um triângulo a um dos lados é metade da distância do ortocentro ao vértice oposto.



Demonstração:

Sejam  $AH_1$  e  $BH_2$  duas alturas do  $\Delta ABC$  que se cruzam no ortocentro H.

Sejam OM e ON segmentos pertencentes às mediatrizes dos lados BC e AC, que se cruzam no circuncentro O.

$$\begin{cases} AH \parallel OM \\ BH \parallel ON \\ AB \parallel MN \wedge MN = 2 \cdot AB \end{cases} \Rightarrow OM = \frac{AH}{2} \wedge ON = \frac{BH}{2}$$

O círculo dos nove pontos de um triângulo tem raio igual à metade do raio do círculo circunscrito; tem centro no ponto médio do segmento que une o ortocentro ao circuncentro; contém os três pontos médios dos lados; contém os três pés das alturas; e contém os três pontos médios dos segmentos que unem o ortocentro aos vértices.



Demonstração:



Seja A' ponto médio de AH, então AA' = A'H = OM, então  $\Delta A'HE \equiv \Delta MOE \Rightarrow A'E = EM \land HE = EO$ 

Como HA'= A'A e HE=EO, o segmento A'E é base média do  $\triangle$ AHO, então A'E =  $\frac{OA}{2} = \frac{R}{2}$ , onde R é o raio do círculo circunscrito ao  $\triangle$ ABC.

No triângulo retângulo  $A'H_1M$ , a ceviana  $H_1E$  é a mediana relativa à hipotenusa, então  $H_1E=A'E=EM=\frac{R}{2}$ .

Adotando procedimento análogo em relação aos vértices B e C, conclui-se que  $H_2E=B\,'E=EN=\frac{R}{2}\,\,e\,\,H_3E=C\,'E=EP=\frac{R}{2}\,.$ 

Assim, sabemos que os pontos M, N e P;  $H_1$ ,  $H_2$  e  $H_3$ ; A', B' e C' todos distam  $\frac{R}{2}$  do ponto E médio de HO, donde esses 9 pontos pertencem a um mesmo círculo de centro E e raio  $\frac{R}{2}$ .

- 14) ABC é um triângulo equilátero. Seja D um ponto do plano de ABC, externo a esse triângulo, tal que DB intersecta AC em E, com E pertencendo ao lado AC. Sabe-se que BÂD = AĈD = 90°. Sendo assim, a razão entre as áreas dos triângulos BEC e ABE é
- a)  $\frac{1}{3}$
- b)  $\frac{1}{4}$
- c)  $\frac{2}{3}$
- d)  $\frac{1}{5}$
- e)  $\frac{2}{5}$

RESPOSTA: b

RESOLUÇÃO: 1ªSOLUÇÃO:



Seja ABC um triângulo equilátero de lados  $x\sqrt{3}$ , conforme a figura.

Inicialmente, devemos observar que a razão entre as áreas dos triângulos BEC e ABE é igual à razão entre os segmentos CE e AE, pois os dois triângulos têm vértice comum e base sobre a mesma reta. Vamos prolongar AD e BC até sua interseção em F para obter uma figura similar à do teorema de Menelaus.

$$B\hat{A}D = B\hat{A}C + C\hat{A}D = 90^{\circ} \Rightarrow 60^{\circ} + C\hat{A}D = 90^{\circ} \Leftrightarrow C\hat{A}D = 30^{\circ}$$

$$\hat{BFA} = 180^{\circ} - \hat{BAF} - \hat{ABF} = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$$

$$\hat{FCD} = 180^{\circ} - \hat{BCA} - \hat{ACD} = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$$

No triângulo retângulo ACD, temos:

$$\cos 30^{\circ} = \frac{AC}{AD} = \frac{\sqrt{3}}{2} \Leftrightarrow \frac{x\sqrt{3}}{AD} = \frac{\sqrt{3}}{2} \Leftrightarrow AD = 2x$$

$$sen 30^{\circ} = \frac{CD}{AD} = \frac{1}{2} \Leftrightarrow \frac{CD}{2x} = \frac{1}{2} \Leftrightarrow CD = x$$

Como  $\hat{FCD} = \hat{CFD} = 30^{\circ}$ , o triângulo CFD é isósceles, o que implica  $\hat{DF} = \hat{CD} = x$ .

Como FÂC =  $A\hat{F}C = 30^{\circ}$ , o triângulo AFC é isósceles, o que implica  $CF = CA = x\sqrt{3}$ .

Aplicando o teorema de Menelaus ao ACF com a secante BED, temos:

$$\frac{AD}{FD} \cdot \frac{CE}{AE} \cdot \frac{FB}{CB} = 1 \Leftrightarrow \frac{2x}{x} \cdot \frac{CE}{AE} \cdot \frac{2x\sqrt{3}}{x\sqrt{3}} = 1 \Leftrightarrow \frac{CE}{AE} = \frac{1}{4}.$$

Portanto, 
$$\frac{S_{BEC}}{S_{ABE}} = \frac{CE}{AE} = \frac{1}{4}$$
.

2ª SOLUÇÃO:



Seja ABC um triângulo equilátero de lados  $x\sqrt{3}$ , conforme a figura, e seja  $EH = h\sqrt{3}$  a perpendicular ao lado AB traçada por E.

Inicialmente, devemos observar que a razão entre as áreas dos triângulos BEC e ABE é igual à razão entre os segmentos CE e AE, pois os dois triângulos têm vértice comum e base sobre a mesma reta. No triângulo retângulo AHE, temos:

$$sen 60^{\circ} = \frac{HE}{AE} = \frac{\sqrt{3}}{2} \Leftrightarrow \frac{h\sqrt{3}}{AE} = \frac{\sqrt{3}}{2} \Leftrightarrow AE = 2h$$

$$cos 60^{\circ} = \frac{AH}{AE} = \frac{1}{2} \Leftrightarrow \frac{AH}{2h} = \frac{1}{2} \Leftrightarrow AH = h$$

No triângulo retângulo ACD, temos:

$$B\hat{A}D = B\hat{A}C + C\hat{A}D = 90^{\circ} \Rightarrow 60^{\circ} + C\hat{A}D = 90^{\circ} \Leftrightarrow C\hat{A}D = 30^{\circ}$$

$$\cos 30^{\circ} = \frac{AC}{AD} = \frac{\sqrt{3}}{2} \Leftrightarrow \frac{x\sqrt{3}}{AD} = \frac{\sqrt{3}}{2} \Leftrightarrow AD = 2x$$

$$\triangle BHE \sim \triangle BAD \Rightarrow \frac{BH}{BA} = \frac{HE}{AD} \Leftrightarrow \frac{x\sqrt{3} - h}{x\sqrt{3}} = \frac{h\sqrt{3}}{2x} \Leftrightarrow 2x\sqrt{3} - 2h = 3h \Leftrightarrow h = \frac{2x\sqrt{3}}{5}$$

Portanto, 
$$\frac{S_{BEC}}{S_{ABE}} = \frac{CE}{AE} = \frac{x\sqrt{3} - 2h}{2h} = \frac{x\sqrt{3} - 2 \cdot \frac{2x\sqrt{3}}{5}}{2 \cdot \frac{2x\sqrt{3}}{5}} = \frac{\frac{x\sqrt{3}}{5}}{\frac{4x\sqrt{3}}{5}} = \frac{1}{4}$$
.

15) Seja ABCD um quadrado de lado "2a" cujo centro é "O". Os pontos M, P e Q são os pontos médios dos lados AB, AD e BC, respectivamente. O segmento BP intersecta a circunferência de centro "O" e raio "a" em R e, também OM, em "S". Sendo assim, a área do triângulo SMR é

a) 
$$\frac{3a^2}{20}$$

b) 
$$\frac{7a^2}{10}$$

c) 
$$\frac{9a^2}{20}$$

d) 
$$\frac{11a^2}{20}$$

e) 
$$\frac{13a^2}{20}$$

RESPOSTA: a

RESOLUÇÃO:



Aplicando o teorema de Pitágoras ao triângulo retângulo BAP, temos:

$$BP^{2} = BA^{2} + PA^{2} = (2a)^{2} + a^{2} = 5a^{2} \Leftrightarrow BP = a\sqrt{5}$$

$$\sin \theta = \frac{PA}{BP} = \frac{a}{a\sqrt{5}} = \frac{1}{\sqrt{5}}$$

Considerando a potência do ponto B em relação à circunferência, temos:

$$BR \cdot BP = BM^2 \iff BR \cdot a\sqrt{5} = a^2 \iff BR = \frac{a}{\sqrt{5}}.$$

$$\triangle BMS \sim \triangle BAP \Longrightarrow \frac{MS}{AP} = \frac{BM}{BA} \Longleftrightarrow \frac{MS}{a} = \frac{a}{2a} \Longleftrightarrow MS = \frac{a}{2}$$

A área do triângulo BMR é dada por 
$$S_{BMR} = \frac{BM \cdot BR}{2} sen \theta = \frac{a \cdot \frac{a}{\sqrt{5}}}{2} \cdot \frac{1}{\sqrt{5}} = \frac{a^2}{10}$$
.

Portanto, a área do triângulo SMR é dada por

$$S_{_{SMR}} = S_{_{BMS}} - S_{_{BMR}} = \frac{a \cdot \frac{a}{2}}{2} - \frac{a^2}{10} = \frac{3a^2}{20} \, .$$

16) Observe a figura a seguir.



Seja ABC um triângulo retângulo de hipotenusa 6 e com catetos diferentes. Com relação à área 'S' de ABC, pode-se afirmar que

- a) será máxima quando um dos catetos for  $3\sqrt{2}$ .
- b) será máxima quando um dos ângulos internos for 30°.
- c) será máxima quando um cateto for o dobro do outro.
- d) será máxima quando a soma dos catetos for  $\frac{5\sqrt{2}}{2}$ .
- e) seu valor máximo não existe.

RESPOSTA: e

RESOLUÇÃO:



Seja, sem perda de generalidade, AC = 6 a hipotenusa do triângulo retângulo ABC.

A área do triângulo ABC é dada por  $S_{ABC} = \frac{AC \cdot h}{2} = \frac{6 \cdot h}{2} = 3h$ , onde h é a altura relativa à hipotenusa.

Todos os triângulos retângulos de hipotenusa AC = 6 estão inscritos em uma circunferência de raio  $R = \frac{AC}{2} = \frac{6}{2} = 3$  e centro em O, ponto médio de AC.

Dessa forma, o valor máximo da altura relativa à hipotenusa é  $h_{máx} = OM = R = 3$ .

Entretanto, quando  $h = h_{máx} = 3$  o triângulo é retângulo isósceles e o enunciado afirma que os catetos devem ser diferentes, o que implica  $h \neq 3$ .

Sendo assim, conclui-se que  $\,h\in\left]0,3\right[\,\,e\,\,S_{_{ABC}}=3h\in\left]0,9\right[\,.$ 

Portanto, não existe valor máximo para a área de ABC (o valor 9 é o supremo da área).

17) Sejam  $A = \{1, 2, 3, ..., 4029, 4030\}$  um subconjunto dos números naturais e  $B \subset A$ , tal que não existem x e y,  $x \neq y$ , pertencentes a B nos quais x divida y. O número máximo de elementos de B é N. Sendo assim, a soma dos algarismos de N é

- a) 8
- b) 9
- c) 10
- d) 11
- e) 12

#### RESPOSTA: a

### **RESOLUÇÃO:**

Observemos que, se  $n \in \mathbb{N}$ , então o menor múltiplo natural de n é 2n. Dessa forma, no conjunto  $B = \{(n+1), (n+2), ..., 2n\}$  não há dois números tais que um divide o outro.

Vamos provar que para qualquer  $k \in \mathbb{N}$  tal que  $1 \le k \le n$ , existe um múltiplo de k no conjunto B, ou seja, vamos encontrar um  $p \in \mathbb{N}$  tal que  $n+1 \le kp \le 2n$ .

$$n+1 \leq kp \leq 2n \Longleftrightarrow \frac{n+1}{k} \leq p \leq \frac{2n}{k}$$

Como  $\frac{2n}{k} - \left(\frac{n+1}{k}\right) = \frac{n+1}{k} > 1$ , pois n+1 > k, então existe pelo menos um número natural p entre  $\frac{n+1}{k}$  e  $\frac{2n}{k}$ .

Sendo assim, provamos que, dado um conjunto  $A = \{1, 2, 3, ..., 2n\}$ , o maior subconjunto de A no qual não há dois números tais que um divide o outro é  $B = \{(n+1), (n+2), ..., 2n\}$ .

No caso do enunciado, temos  $A = \{1, 2, 3, ..., 4029, 4030\}$  e o subconjunto com o número máximo de elementos é  $B = \{2016, 2017, ..., 4030\}$ . O número de elementos de B é N = 4030 - 2016 + 1 = 2015, cuja soma dos algarismos é 2 + 0 + 1 + 5 = 8.

- 18) O número de divisores positivos de  $10^{2015}$  que são múltiplos de  $10^{2000}$  é
- a) 152
- b) 196
- c) 216
- d) 256
- e) 276

#### RESPOSTA: d

# RESOLUÇÃO:

Um múltiplo positivo de  $10^{2000}$  é da forma  $k \cdot 10^{2000}$ , onde  $k \in \mathbb{N}^*$ .

Para que  $k \cdot 10^{2000}$  seja um divisor positivo de  $10^{2015}$ , o número  $\frac{10^{2015}}{k \cdot 10^{2000}} = \frac{10^{15}}{k}$  deve ser um inteiro positivo.

Portanto, a quantidade de valores de k, que corresponde à quantidade de divisores positivos de  $10^{2015}$  que são múltiplos de  $10^{2000}$ , é igual ao número de divisores positivos de  $10^{15} = 2^{15} \cdot 5^{15}$ , ou seja,  $d(10^{15}) = (15+1) \cdot (15+1) = 256$ .

- 19) Dado que o número de elementos dos conjuntos A e B são, respectivamente, p e q, analise as sentenças que seguem sobre o número N de subconjuntos não vazios de  $A \cup B$ .
- $I N = 2^p + 2^q 1$
- II  $N = 2^{pq-1}$
- III  $N = 2^{p+q} 1$

IV -  $N = 2^p - 1$ , se a quantidade de elementos de  $A \cap B$  é p.

Com isso, pode-se afirmar que a quantidade dessas afirmativas que são verdadeiras é:

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4

RESPOSTA: a

### RESOLUÇÃO:

$$\#(A) = p e \#(B) = q$$

$$\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B) = p + q - \#(A \cap B)$$

A quantidade de subconjuntos de  $A \cup B$  é  $\#(P(A \cup B)) = 2^{\#(A \cup B)} = 2^{p+q-\#(A \cap B)}$ .

A quantidade de subconjuntos não vazios de  $A \cup B$  é  $N = \#(P(A \cup B)) - 1 = 2^{p+q-\#(A \cap B)} - 1$ . Portanto, todas as alternativas são falsas.

20) No triângulo isósceles ABC, AB = AC = 13 e BC = 10. Em AC marca-se R e S, com CR = 2x e CS = x. Paralelo a AB e passando por S traça-se o segmento ST, com T em BC. Por fim, marcam-se U, P e Q, simétricos de T, S e R, nessa ordem, e relativo à altura de ABC com pé sobre BC. Ao analisar a medida inteira de x para que a área do hexágono PQRSTU seja máxima, obtém-se:

- a) 5
- b) 4
- c) 3
- d) 2
- e) 1

RESPOSTA: b

RESOLUÇÃO:



$$QR \parallel BC \Rightarrow \Delta AQR \sim \Delta ABC \Rightarrow \frac{S_{AQR}}{S_{ABC}} = \left(\frac{13 - x}{13}\right)^2 \Leftrightarrow S_{AQR} = \left(\frac{13 - x}{13}\right)^2 \cdot S_{ABC}$$

$$\begin{split} \text{ST} \parallel \text{AB} &\Rightarrow \Delta \text{CST} \sim \Delta \text{CAB} \Rightarrow \frac{\text{S}_{\text{CST}}}{\text{S}_{\text{CAB}}} = \left(\frac{x}{13}\right)^2 \Leftrightarrow \text{S}_{\text{CST}} = \text{S}_{\text{BPU}} = \left(\frac{x}{13}\right)^2 \cdot \text{S}_{\text{ABC}} \\ \text{S}_{\text{PQRSTU}} &= \text{S}_{\text{ABC}} - \text{S}_{\text{AQR}} - \text{S}_{\text{BPU}} - \text{S}_{\text{CST}} = \left(1 - \left(\frac{13 - x}{13}\right)^2 - 2 \cdot \left(\frac{x}{13}\right)^2\right) \cdot \text{S}_{\text{ABC}} = \left(26x - 3x^2\right) \cdot \frac{\text{S}_{\text{ABC}}}{13^2} \end{split}$$

Como  $S_{ABC} = \frac{10 \cdot 12}{2} = 60$  é uma constante, a área do hexágono PQRSTU será máxima quando o trinômio do 2º grau  $f(x) = -3x^2 + 26x$  atingir o seu valor máximo, o que ocorre no x do vértice, ou seja, em  $x_V = \frac{-26}{2 \cdot (-3)} = \frac{13}{3} = 4\frac{1}{3}$ .

Como o valor do x do vértice não é inteiro, vamos calcular o valor do trinômio nos inteiros mais próximos. Assim, temos:  $f(4) = -3 \cdot 4^2 + 26 \cdot 4 = 56$  e  $f(5) = -3 \cdot 5^2 + 26 \cdot 5 = 55$ . Portanto, a medida inteira de x que faz a área do hexágono ser máxima é x = 4.

### PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2014/2015

- 1) Seja x um número real tal que  $x + \frac{3}{x} = 9$ . Um possível valor de  $x \frac{3}{x}$  é  $\sqrt{a}$ . Sendo assim, a soma dos algarismos de "a" será:
- (A) 11
- (B) 12
- (C) 13
- (D) 14
- (E) 15

RESPOSTA: E

**RESOLUÇÃO:** 

$$x + \frac{3}{x} = 9 \Rightarrow \left(x + \frac{3}{x}\right)^2 = 9^2 \Leftrightarrow x^2 + 2 \cdot x \cdot \frac{3}{x} + \frac{9}{x^2} = 81 \Leftrightarrow x^2 + \frac{9}{x^2} = 75$$
$$x^2 - 2 \cdot x \cdot \frac{3}{x} + \frac{9}{x^2} = 75 - 6 \Leftrightarrow \left(x - \frac{3}{x}\right)^2 = 69 \Leftrightarrow x - \frac{3}{x} = \pm\sqrt{69}$$

Portanto, a = 69 e a soma de seus algarismos é 6+9=15.

- 2) Considere que as pessoas A e B receberão transfusão de sangue. Os aparelhos utilizados por A e B liberam, em 1 minuto, 19 e 21 gotas de sangue, respectivamente, e uma gota de sangue de ambos os aparelhos tem  $0,04 \, \text{m}\ell$ . Os aparelhos são ligados simultaneamente e funcionam ininterruptamente até completarem um litro de sangue. O tempo que o aparelho de A levará a mais que o aparelho de B será, em minutos, de aproximadamente:
- (A) 125
- (B) 135
- (C) 145
- (D) 155
- (E) 165

RESPOSTA: A (As opções foram alteradas, pois não havia alternativa correta na formulação original da questão)

**RESOLUÇÃO:** 

O aparelho de A libera 19 gotas de  $0.04 \,\mathrm{m}\ell$  por minuto, ou seja,  $19 \cdot 0.04 \cdot 10^{-3} \,\ell = 76 \cdot 10^{-5} \,\ell$ . O tempo necessário para completar  $1 \,\ell$  de sangue é  $\frac{1}{76 \cdot 10^{-5}} = \frac{100000}{76} \,\mathrm{min}$ .

O aparelho de B libera 21 gotas de  $0,04\,\mathrm{m}\ell$  por minuto, ou seja,  $21\cdot0,04\cdot10^{-3}\,\ell=84\cdot10^{-5}\,\ell$ . O tempo necessário para completar  $1\,\ell$  de sangue é  $\frac{1}{84\cdot10^{-5}}=\frac{100000}{84}\,\mathrm{min}$ .

Assim, o tempo que o aparelho de A levará a mais que o aparelho de B é  $\frac{100000}{76} - \frac{100000}{84} = 25000 \left(\frac{1}{19} - \frac{1}{21}\right) = \frac{50000}{399} \approx 125 \text{ min}.$ 

- 3) A solução real da equação  $\sqrt{x+4} + \sqrt{x-1} = 5$  é:
- (A) múltiplo de 3.
- (B) par e maior do que 17.
- (C) ímpar e não primo.
- (D) um divisor de 130.
- (E) uma potência de 2.

#### RESPOSTA: D

### **RESOLUÇÃO:**

A condição de existência das raízes quadradas é  $x+4 \ge 0 \Leftrightarrow x \ge -4$  e  $x-1 \ge 0 \Leftrightarrow x \ge 1$ . Portanto, devemos ter  $x \ge 1$ .

$$\sqrt{x+4} + \sqrt{x-1} = 5 \Leftrightarrow (\sqrt{x+4} + \sqrt{x-1})^2 = 5^2 \Leftrightarrow$$

$$\Leftrightarrow x+4+2\sqrt{x+4}\sqrt{x-1} + x-1 = 25 \Leftrightarrow 2\sqrt{(x+4)(x-1)} = 22-2x \Leftrightarrow$$

$$\Leftrightarrow \sqrt{(x+4)(x-1)} = 11-x \Leftrightarrow (\sqrt{(x+4)(x-1)})^2 = (11-x)^2 \wedge 11-x \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (x+4)(x-1) = 121-22x+x^2 \wedge x \le 11 \Leftrightarrow$$

$$\Leftrightarrow x^2+3x-4=121-22x+x^2 \wedge x \le 11 \Leftrightarrow$$

$$\Leftrightarrow 25x=125 \wedge x \le 11 \Leftrightarrow x=5$$

Observe que a condição de existência inicial é  $x \ge 1$ , então x = 5 é solução da equação.

Portanto, a solução da equação é um divisor de 130.

# 2ª SOLUÇÃO:

Lembrando a condição de existência obtida na  $1^a$  solução, devemos ter  $x \ge 1$ .

Sejam  $a = \sqrt{x+4}$  e  $b = \sqrt{x-1}$ , a equação  $\sqrt{x+4} + \sqrt{x-1} = 5$  é equivalente a + b = 5.

Elevando a e b ao quadrado, temos:

$$a^2 = x + 4 \land b^2 = x - 1 \Rightarrow a^2 - b^2 = (x + 4) - (x - 1) = 5$$

$$\Leftrightarrow$$
  $(a+b)(a-b)=5$ 

Substituindo a+b=5 na igualdade acima, obtemos  $5 \cdot (a-b) = 5 \Leftrightarrow a-b=1$ .

Dessa forma, resulta o sistema 
$$\begin{cases} a+b=5 \\ a-b=1 \end{cases} \Leftrightarrow a=3 \ \land \ b=2 \ .$$

Vamos agora calcular x retornando a substituição. Assim, temos:

$$\sqrt{x+4} = 3 \Leftrightarrow (\sqrt{x+4})^2 = 3^2 \Leftrightarrow x+4=9 \Leftrightarrow x=5$$

Observe que  $\sqrt{x-1} = 2 \Leftrightarrow x-1 = 4 \Leftrightarrow x = 5$  resulta no mesmo valor. Além disso, cabe notar também que esse valor satisfaz a condição de existência  $x \ge 1$ .

4) Observe as figuras a seguir.





Figura I

Uma dobra é feita no retângulo  $10~\text{cm} \times 2~\text{cm}$  da figura I, gerando a figura plana II. Essa dobra está indicada pela reta suporte de PQ . A área do polígono APQCBRD da figura II, em cm², é:

- (A)  $8\sqrt{5}$
- (B) 20
- (C)  $10\sqrt{2}$
- (D)  $\frac{35}{2}$
- (E)  $\frac{13\sqrt{6}}{2}$

RESPOSTA: D

# RESOLUÇÃO:

A área do polígono APQCBRD é igual à área do retângulo ABCD menos a área do triângulo PQR.



O polígono APQCBRD é obtido dobrando-se o retângulo ABCD, então  $\hat{APQ} + \hat{QPB} = 180^{\circ}$  (\*) e  $\hat{CQP} + \hat{PQD} = 180^{\circ}$ .

Além disso, AP || DQ o que implica  $\hat{APQ} + \hat{PQD} = 180^{\circ}$  (\*\*).

Comparando (\*) e (\*\*), conclui-se que  $\hat{QPB} = \hat{PQD}$ , ou seja,  $\hat{QPR} = \hat{PQR}$ .

Daí conclui-se que o triângulo PQR é isósceles e PR = QR = x.

Traçando-se  $PH \perp RQ$ , obtemos o retângulo APHD no qual AP = DH = 4.

Portanto, HQ = DQ - DH = 5 - 4 = 1 e RH = RQ - HQ = x - 1.

Aplicando o teorema de Pitágoras ao triângulo retângulo PHR, temos:

$$(x-1)^2 + 2^2 = x^2 \Leftrightarrow x^2 - 2x + 1 + 4 = x^2 \Leftrightarrow x = \frac{5}{2}.$$

Logo, 
$$S_{APQCBRD} = S_{ABCD} - S_{PQR} = 10 \cdot 2 - \frac{x \cdot 2}{2} = 20 - x = 20 - \frac{5}{2} = \frac{35}{2} \text{ u.a.}$$

- 5) Seja ABC um triângulo retângulo de hipotenusa 26 e perímetro 60. A razão entre a área do círculo inscrito e do círculo circunscrito nesse triângulo é, aproximadamente:
- (A) 0,035
- (B) 0,055
- (C) 0,075
- (D) 0,095
- (E) 0,105

RESPOSTA: D

RESOLUÇÃO:



Vamos demonstrar dois resultados que são válidos para qualquer triângulo retângulo.

Seja um triângulo retângulo ABC de hipotenusa a , catetos b e c , semiperímetro  $p = \frac{a+b+c}{2}$  , raio do círculo inscrito r e raio do círculo circunscrito R .

Os segmentos das tangentes ao círculo inscrito a partir do vértice B são BD = BE = p - a. Logo, o quadrilátero BDIE é um quadrado e r = p - a.

Além disso, como a hipotenusa do triângulo subentende um ângulo inscrito de  $90^{\circ}$ , então a hipotenusa  $AC = a = 2R \Leftrightarrow \boxed{R = \frac{a}{2}}.$ 

No caso em questão, temos a=26 e  $2p=60 \Leftrightarrow p=30$ . Aplicando os resultados obtidos, temos r=p-a=30-26=4 e  $R=\frac{a}{2}=\frac{26}{2}=13$ .

Portanto, a razão entre as áreas do círculo inscrito e do circunscrito é  $\frac{S_{inc}}{S_{circun}} = \frac{\pi r^2}{\pi R^2} = \left(\frac{r}{R}\right)^2 = \left(\frac{4}{13}\right)^2 = \frac{16}{169} \approx 0,095 \,.$ 

- 6) Considere que ABC é um triângulo retângulo em A , de lados AC=b e BC=a. Seja H o pé da perpendicular traçada de A sobre BC , e M o ponto médio de AB , se os segmentos AH e CM cortam-se em P , a razão  $\frac{AP}{PH}$  será igual a:
- $(A) \frac{a^2}{b^2}$
- (B)  $\frac{a^3}{b^2}$

(C) 
$$\frac{a^2}{b^3}$$

(D) 
$$\frac{a^3}{b^3}$$

(E) 
$$\frac{a}{b}$$

RESPOSTA: A

RESOLUÇÃO:



Aplicando o teorema de Menelaus ao triângulo AHB com ceviana CPM, temos:

$$\frac{CH}{CB} \cdot \frac{PA}{PH} \cdot \frac{MB}{MA} = 1 \Leftrightarrow \frac{AP}{PH} = \frac{BC}{CH} \,.$$

Considerando as relações métricas no triângulo retângulo ABC, temos:

$$AC^2 = BC \cdot CH \Leftrightarrow b^2 = a \cdot CH \Leftrightarrow CH = \frac{b^2}{a}$$
.

Portanto, 
$$\frac{AP}{PH} = \frac{BC}{CH} = \frac{a}{\frac{b^2}{a}} = \frac{a^2}{b^2}$$
.

7) Se a fração irredutível  $\frac{p}{q}$  é equivalente ao inverso do número  $\frac{525}{900}$ , então o resto da divisão do período da dízima  $\frac{q}{p+1}$  por 5 é:

- (A) 0
- **(B)** 1
- (C) 2
- (D) 3
- (E) 4

**RESPOSTA: B** 

RESOLUÇÃO:

O inverso do número  $\frac{525}{900}$  é  $\frac{900}{525} = \frac{12}{7}$ , em sua forma irredutível. Logo, p = 12 e q = 7.

A dízima  $\frac{q}{p+1}$  é dada por  $\frac{q}{p+1} = \frac{7}{13} = 0, \overline{538461}$ , onde a barra indica o período.

Portanto, o resto do período da dízima, 538461, por 5 é 1.

- 8) Um número natural N, quando dividido por 3, 5, 7 ou 11, deixa resto igual a 1. Calcule o resto da divisão de N por 1155, e assinale a opção correta.
- (A) 17
- (B) 11
- (C) 7
- (D) 5
- (E) 1

RESPOSTA: E

**RESOLUÇÃO:** 

Se N deixa resto 1 na divisão por 3, 5, 7 ou 11, então N-1 é múltiplo de 3, 5, 7 ou 11, ou seja, N-1 deve ser múltiplo de  $\operatorname{mmc}(3,5,7,11) = 3 \cdot 5 \cdot 7 \cdot 11 = 1155$ .

Portanto, N-1 é múltiplo de 1155 e o resto da divisão de N por 1155 é 1.

9) Considere o operador matemático '\*' que transforma o número real X em X+1 e o operador ' $\oplus$ ' que transforma o número real Y em  $\frac{1}{Y+1}$ .

Se  $\oplus \Big\{ * \Big[ * \Big( \oplus \Big\{ \oplus \Big[ * \Big( \oplus \{*1\} \Big) \Big] \Big\} \Big) \Big] \Big\} = \frac{a}{b}$ , onde a e b são primos entre si, a opção correta é:

- (A)  $\frac{a}{b} = 0,27272727...$
- (B)  $\frac{b}{a} = 0,2702702...$
- (C)  $\frac{2a}{b} = 0,540540540...$
- (D) 2b+a=94
- (E) b-3a=6

RESPOSTA: C

# RESOLUÇÃO:

$$*1 = 1 + 1 = 2$$

$$\oplus$$
 {\*1} =  $\oplus$  {2} =  $\frac{1}{2+1}$  =  $\frac{1}{3}$ 

$$*(\oplus \{*1\}) = *(\frac{1}{3}) = \frac{1}{3} + 1 = \frac{4}{3}$$

$$\oplus [*(\oplus \{*1\})] = \oplus \left[\frac{4}{3}\right] = \frac{1}{\frac{4}{3}+1} = \frac{1}{\frac{7}{3}} = \frac{3}{7}$$

$$\oplus \left\{ \oplus \left[ * \left( \oplus \left\{ *1 \right\} \right) \right] \right\} = \oplus \left\{ \frac{3}{7} \right\} = \frac{1}{\frac{3}{7} + 1} = \frac{1}{\frac{10}{7}} = \frac{7}{10}$$

$$*(\oplus \{\oplus [*(\oplus \{*1\})]\}) = *(\frac{7}{10}) = \frac{7}{10} + 1 = \frac{17}{10}$$

$$*[*(\oplus \{\oplus [*(\oplus \{*1\})]\})] = *[\frac{17}{10}] = \frac{17}{10} + 1 = \frac{27}{10}$$

$$\oplus \left\{ * \left[ * \left( \oplus \left\{ \oplus \left[ * \left( \oplus \left\{ * 1\right\} \right) \right] \right\} \right) \right] \right\} = \oplus \left\{ \frac{27}{10} \right\} = \frac{1}{\frac{27}{10} + 1} = \frac{10}{37}$$

$$\oplus \left\{ * \left[ * \left( \oplus \left\{ \oplus \left[ * \left( \oplus \left\{ * 1\right\} \right) \right] \right\} \right) \right] \right\} = \frac{a}{b} = \frac{10}{37} \Rightarrow a = 10 \land b = 37 \Rightarrow \frac{2a}{b} = \frac{20}{37} = 0,54054054...$$

10) Analise as afirmativas abaixo.

I) Se 
$$2^x = A$$
,  $A^y = B$ ,  $B^z = C$  e  $C^k = 4096$ , então  $x \cdot y \cdot z \cdot k = 12$ .

II) 
$$t^m + (t^m)^p = (t^m)(1+(t^m)^{p-1})$$
, para quaisquer reais  $t$ ,  $m$  e  $p$  não nulos.

III) 
$$r^q + r^{q^w} = (r^q)(1 + r^{q^{(w-1)}})$$
, para quaisquer reais  $q$ ,  $r$   $e$   $w$  não nulos.

IV) Se  $\left(10^{100}\right)^x$  é um número que tem 200 algarismos, então x é 2.

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são falsas.
- (B) Apenas as afirmativas III e IV são falsas.
- (C) Apenas as afirmativas I e III são falsas.
- (D) Apenas as afirmativas I, II e IV são falsas.
- (E) Apenas as afirmativas I, III e IV são falsas.

#### **RESPOSTA: B**

### **RESOLUÇÃO:**

I) VERDADEIRA

$$C^{k} = (B^{z})^{k} = B^{z \cdot k} = (A^{y})^{z \cdot k} = A^{y \cdot z \cdot k} = (2^{x})^{y \cdot z \cdot k} = 2^{x \cdot y \cdot z \cdot k} = 4096 = 2^{12} \iff x \cdot y \cdot z \cdot k = 12$$

II) VERDADEIRA

$$t^{m} + (t^{m})^{p} = t^{m} + t^{m} \cdot (t^{m})^{p-1} = (t^{m})(1 + (t^{m})^{p-1})$$

III) FALSA

$$r^{q} + r^{q^{w}} = r^{q} + r^{q} \cdot r^{(q^{w} - q)} = (r^{q})(1 + r^{(q^{w} - q)}) \neq (r^{q})(1 + r^{q^{(w-1)}}),$$

IV) FALSA

Se  $\left(10^{100}\right)^x$  tem 200 algarismos, então  $10^{199} \le \left(10^{100}\right)^x = 10^{100x} < 10^{200} \Leftrightarrow 1,99 \le x < 2$ .

- 11) Considere a equação do  $2^{\circ}$  grau  $2014x^2 2015x 4029 = 0$ . Sabendo-se que a raiz não inteira é dada por  $\frac{a}{b}$ , onde "a" e "b" são primos entre si, a soma dos algarismos de "a+b" é:
- (A) 7
- (B) 9
- (C) 11
- (D) 13
- (E) 15

#### RESPOSTA: D

# RESOLUÇÃO:

Inicialmente, observamos que x=-1 é raiz da equação, pois  $2014 \cdot (-1)^2 - 2015 \cdot (-1) - 4029 = 2014 + 2015 - 4029 = 0$ . Logo, a equação possui uma raiz inteira x=-1 e uma raiz não inteira  $\frac{a}{b}$ .

O produto das raízes da equação é  $\sigma_2 = (-1) \cdot \left(\frac{a}{b}\right) = \frac{-4029}{2014} \Leftrightarrow \frac{a}{b} = \frac{4029}{2014} \Leftrightarrow a = 4029 \land b = 2014$  e a+b=4029+2014=6043 cuja soma dos algarismos é 6+4+3=13.

Note que  $a = 4029 = 3 \cdot 17 \cdot 79$  e  $b = 2014 = 2 \cdot 19 \cdot 53$  não possuem fatores comuns em suas fatorações canônicas, sendo portanto primos entre si.

- 12) Sobre os números inteiros positivos e não nulos x, y e z, sabe-se:
- I)  $x \neq y \neq z$

II) 
$$\frac{y}{x-z} = \frac{x+y}{z} = 2$$

III) 
$$\sqrt{z} = \left(\frac{1}{9}\right)^{-\frac{1}{2}}$$

Com essas informações, pode-se afirmar que o número  $(x-y)\frac{6}{7}$  é:

- (A) ímpar e maior do que três.
- (B) inteiro e com dois divisores.
- (C) divisível por cinco.
- (D) múltiplo de três.
- (E) par e menor do que seis.

RESPOSTA: E

**RESOLUÇÃO:** 

$$\sqrt{z} = \left(\frac{1}{9}\right)^{-\frac{1}{2}} = 9^{\frac{1}{2}} = 3 \Leftrightarrow z = 3^2 = 9$$

$$\frac{y}{x-9} = \frac{x+y}{9} = 2 \Leftrightarrow \begin{cases} 2x-y=18\\ x+y=18 \end{cases} \Leftrightarrow x = 12 \land y = 6$$

Logo,  $(x-y)\frac{6}{z} = (12-6)\frac{6}{9} = 4$  que é um número par e menor do que seis.

- 13) Suponha que ABC seja um triângulo isósceles com lados AC=BC, e que "L" seja a circunferência de centro "C", raio igual a "3" e tangente ao lado AB. Com relação à área da superfície comum ao triângulo ABC e ao círculo de "L", pode-se afirmar que:
- (A) não possui um valor máximo.
- (B) pode ser igual a  $5\pi$ .
- (C) não pode ser igual a  $4\pi$ .
- (D) possui um valor mínimo igual a  $2\pi$ .
- (E) possui um valor máximo igual a  $4,5\pi$ .

RESPOSTA: A

RESOLUÇÃO:



A área comum S entre o triângulo ABC e o círculo "L" está sombreada na figura e é um setor circular de raio 3 e ângulo  $\hat{C}$ .

Como o ângulo  $\hat{C}$  varia de  $0^{\circ}$  a  $180^{\circ}$ , com os dois extremos excluídos, então o valor da área comum varia entre 0 e a área da semicircunferência, ou seja,  $0 < S < \frac{\pi \cdot 3^2}{2} = 4,5\pi$ .

Portanto, a área comum não possui valor máximo.

Note que o valor  $4.5\pi$  é o supremo dessa área (menor dos limitantes superiores), mas não o seu máximo, pois ele nunca é assumido.

- 14) Considere que N seja um número natural formado apenas por 200 algarismos iguais a 2, 200 algarismos iguais a 1 e 2015 algarismos iguais a zero. Sobre N, pode-se afirmar que:
- (A) se forem acrescentados mais 135 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.
- (B) independentemente das posições dos algarismos, N não é um quadrado perfeito.
- (C) se forem acrescentados mais 240 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.
- (D) se os algarismos da dezena e da unidade não forem iguais a 1, N será um quadrado perfeito.
- (E) se forem acrescentados mais 150 algarismos iguais a 1, e dependendo das posições dos algarismos, N poderá ser um quadrado perfeito.

# **RESPOSTA: B**

# RESOLUÇÃO:

## (A) FALSA

Se forem acrescentados mais 135 algarismos iguais a 1, independentemente das posições dos algarismos, a nova soma dos algarismos de N é S(N) = 600 + 135 = 735 que é múltiplo de 3 e não é múltiplo de 9. Portanto, N não será quadrado perfeito.

#### (B) VERDADEIRA

A soma dos algarismos de N é  $S(N) = 200 \cdot 2 + 200 \cdot 1 + 2015 \cdot 0 = 600$ .

Como 3 | 600, então N é múltiplo de 3. Mas, 9 / 600, portanto, N não é múltiplo de 9.

Assim, conclui-se que N não é quadrado perfeito.

#### (C) FALSA

Se forem acrescentados mais 240 algarismos iguais a 1, independentemente das posições dos algarismos, a nova soma dos algarismos de  $N \in S(N) = 600 + 240 = 840$  que é múltiplo de 3 e não é múltiplo de 9. Portanto, N não será quadrado perfeito.

## (D) FALSA

Vide desenvolvimento da alternativa (B).

#### (E) FALSA

Se forem acrescentados mais 150 algarismos iguais a 1, independentemente das posições dos algarismos, a nova soma dos algarismos de N é S(N) = 600 + 150 = 750 que é múltiplo de 3 e não é múltiplo de 9. Portanto, N não será quadrado perfeito.

15) A equação  $K^2x - Kx = K^2 - 2K - 8 + 12x$ , na variável x, é impossível. Sabe-se que a equação na variável y dada por  $3ay + \frac{a-114y}{2} = \frac{17b+2}{2}$  admite infinitas soluções. Calcule o valor de  $\frac{ab+K}{4}$ , e assinale a opção correta.

- (A) 0
- **(B)** 1
- (C) 3
- (D) 4
- (E) 5

# RESPOSTA: D

# RESOLUÇÃO:

Vamos escrever a equação  $K^2x - Kx = K^2 - 2K - 8 + 12x$  na forma Ax = B. Assim, temos:

$$K^{2}x - Kx = K^{2} - 2K - 8 + 12x \Leftrightarrow (K^{2} - K - 12)x = K^{2} - 2K - 8 \Leftrightarrow$$

$$\Leftrightarrow$$
  $(K-4)(K+3)x = (K-4)(K+2)$ 

Como a equação acima é impossível devemos ter

$$(K-4)(K+3) = 0 \Leftrightarrow K = 4 \lor K = -3$$

$$(K-4)(K+2) \neq 0 \Leftrightarrow K \neq 4 \land K \neq -2$$

Portanto, devemos ter K = -3.

Vamos agora escrever a equação  $3ay + \frac{a-114y}{2} = \frac{17b+2}{2}$  na forma Ax = B. Assim, temos:

$$3ay + \frac{a-114y}{2} = \frac{17b+2}{2} \Leftrightarrow 6ay + a-114y = 17b+2 \Leftrightarrow (6a-114)y = 17b-a+2$$

Como a equação acima admite infinitas soluções, devemos ter

$$6a - 114 = 0 \iff a = 19$$

$$17b-a+2=0 \Rightarrow 17b-19+2=0 \Leftrightarrow b=1$$

Portanto, devemos ter a = 19 e b = 1.

Logo, 
$$\frac{ab+K}{4} = \frac{19\cdot 1 + (-3)}{4} = \frac{16}{4} = 4$$
.

- 16) A equação  $x^3-2x^2-x+2=0$  possui três raízes reais. Sejam p e q números reais fixos, onde p é não nulo. Trocando x por py+q, a quantidade de soluções reais da nova equação é:
- (A) 1
- (B) 3
- (C) 4
- (D) 5
- (E) 6

# **RESPOSTA: B**

# RESOLUÇÃO:

Sejam  $r_i \in \mathbb{R}$ , i=1,2,3, as três raízes reais da equação  $x^3-2x^2-x+2=0$ .

Trocando x por py+q, obtém-se uma nova equação  $(py+q)^3-2(py+q)^2-(py+q)+2=0$ , cujas raízes satisfazem  $py+q=r_i$ , i=1,2,3.

Note que, como p é não nulo, a equação do primeiro grau  $py+q=r_i$  possui uma única solução, ou seja, para cada raiz real da equação original, há uma raiz real correspondente na equação transformada. Portanto, a nova equação possui 3 soluções reais.

- 17) Considere que ABC é um triângulo acutângulo inscrito em uma circunferência L. A altura traçada do vértice B intersecta L no ponto D. Sabendo-se que AD=4 e BC=8, calcule o raio de L e assinale a opção correta.
- (A)  $2\sqrt{10}$
- (B)  $4\sqrt{10}$
- (C)  $2\sqrt{5}$
- (D)  $4\sqrt{5}$
- (E)  $3\sqrt{10}$

#### RESPOSTA: C

## RESOLUÇÃO:



Inicialmente, observemos que, como o triângulo ABC é acutângulo, seu ortocentro é interior ao triângulo e o ponto D está no menor arco AC. Seja H o pé da altura traçada do vértice B e R o raio do círculo de centro O circunscrito ao triângulo.

Como ângulos inscritos que subentendem o mesmo arco são iguais, temos:  $A\hat{C}B = A\hat{D}B$  e  $C\hat{B}D = C\hat{A}D$ .

Os triângulos retângulos AHD e BHC são semelhantes, pois possuem ângulos iguais. Assim, temos:

$$\frac{\text{HD}}{\text{HC}} = \frac{\text{HA}}{\text{HB}} = \frac{\text{AD}}{\text{BC}} = \frac{4}{8} \Leftrightarrow \frac{\text{HD}}{\text{HC}} = \frac{\text{HA}}{\text{HB}} = \frac{1}{2}.$$

Sejam HA = x e HD = k, então HB = 2x e HC = 2k.

Aplicando o teorema de Pitágoras ao triângulo retângulo AHB, temos:

$$AB^2 = HA^2 + HB^2 \Leftrightarrow x^2 + (2x)^2 = 5x^2 \Leftrightarrow AB = x\sqrt{5}$$
.

Vamos agora calcular a área do triângulo ABC de duas formas diferentes.

$$S_{ABC} = S_{AHB} + S_{CHB} = \frac{x \cdot 2x}{2} + \frac{2x \cdot 2k}{2} = x^2 + 2kx$$

$$S_{ABC} = \frac{AB \cdot AC \cdot BC}{4R} = \frac{x\sqrt{5} \cdot (x + 2k) \cdot 8}{4R} = \frac{2\sqrt{5} \left(x^2 + 2kx\right)}{R}$$

Igualando as duas expressões de  $S_{ABC}$ , temos:  $x^2 + 2kx = \frac{2\sqrt{5}(x^2 + 2kx)}{R} \Leftrightarrow R = 2\sqrt{5}$  u.c..

- 18) Sabendo que  $2014^4 = 16452725990416$  e que  $2014^2 = 4056196$ , calcule o resto da divisão de 16452730046613 por 4058211, e assinale a opção que apresenta esse valor.
- (A) 0
- (B) 2
- (C) 4
- (D) 5
- (E) 6

## RESPOSTA: A

# RESOLUÇÃO:

Como 16452730046613 = 16452725990416 + 4056196 + 1 e 4058211 = 4056196 + 2014 + 1, é conveniente fazer 2014 = x.

Assim, o problema torna-se obter o resto da divisão de  $x^4 + x^2 + 1$  por  $x^2 + x + 1$ .

Vamos fatorar  $x^4 + x^2 + 1$ . Assim, temos:

$$x^4 + x^2 + 1 = (x^4 + 2x^2 + 1) - x^2 = (x^2 + 1)^2 - x^2 = (x^2 + 1 + x)(x^2 + 1 - x)$$

Portanto, o resto da divisão de  $x^4 + x^2 + 1$  por  $x^2 + x + 1$  é zero, o que implica que o resto de 16452730046613 por 4058211 também é zero.

- 19) Sobre o lado BC do quadrado ABCD, marcam-se os pontos "E" e "F" tais que  $\frac{BE}{BC} = \frac{1}{3}$  e
- $\frac{CF}{BC} = \frac{1}{4}$ . Sabendo-se que os segmentos AF e ED intersectam-se em "P", qual é, aproximadamente,

o percentual da área do triângulo BPE em relação à área do quadrado ABCD?

- (A) 2
- (B) 3
- (C) 4
- (D) 5
- (E) 6

RESPOSTA: D

# **RESOLUÇÃO:**



Seja L o lado do quadrado ABCD.

Vamos analisar os pontos de divisão do lado BC.

$$\frac{BE}{BC} = \frac{1}{3} \Leftrightarrow \frac{BE}{L} = \frac{1}{3} \Leftrightarrow BE = \frac{L}{3}$$

$$\frac{CF}{BC} = \frac{1}{4} \Leftrightarrow \frac{CF}{L} = \frac{1}{4} \Leftrightarrow CF = \frac{L}{4}$$

O segmento EF é então dado por EF = BC - BE - CF =  $L - \frac{L}{3} - \frac{L}{4} = \frac{5L}{12}$ .

Como EF || AD, os triângulos EPF e DPA são semelhantes. Assim, temos:

$$\frac{PR}{PQ} = \frac{EF}{AD} = \frac{5L/12}{L} = \frac{5}{12} \Leftrightarrow \frac{PR}{5} = \frac{PQ}{12} = \frac{PR + PQ}{5 + 12} = \frac{L}{17} \Leftrightarrow PR = \frac{5L}{17} \land PQ = \frac{12L}{17} \,.$$

A área do triângulo BPE é dada por  $S_{BPE} = \frac{BE \cdot PR}{2} = \frac{\frac{L}{3} \cdot \frac{5L}{17}}{2} = \frac{5L^2}{102}$ .

Assim, 
$$\frac{S_{BPE}}{S_{ABCD}} = \frac{\frac{5L^2}{102}}{L^2} = \frac{5}{102} \approx 5\%$$
.

Vamos fazer uma solução alternativa, utilizando razões entre áreas.



Supondo, sem perda de generalidade, que o lado do quadrado ABCD é igual a 12x. Assim, temos:

$$\frac{BE}{BC} = \frac{BE}{12x} = \frac{1}{3} \Leftrightarrow BE = 4x$$
$$\frac{CF}{BC} = \frac{CF}{12x} = \frac{1}{4} \Leftrightarrow CF = 3x$$

O segmento EF é então dado por EF=BC-BE-CF=12x-4x-3x=5x.

Como EF || AD, os triângulos EPF e DPA são semelhantes. Assim, temos:

$$\frac{PF}{PA} = \frac{PE}{PD} = \frac{EF}{AD} = \frac{5x}{12x} = \frac{5}{12}$$

Vamos agora identificar a área do triângulo BPE. Seja  $S_{EPF} = 25 s$  e, considerando que triângulos de mesmo vértice a base sobre a mesma reta possuem áreas proporcionais às medidas de suas bases, temos:

$$\frac{S_{EPF}}{S_{EPB}} = \frac{EF}{EB} = \frac{5x}{4x} = \frac{5}{4} \Leftrightarrow \frac{25s}{S_{EPB}} = \frac{5}{4} \Leftrightarrow S_{EPB} = 20s$$

$$\frac{S_{FBP}}{S_{PBA}} = \frac{PF}{PA} = \frac{5}{12} \Leftrightarrow \frac{45s}{S_{PBA}} = \frac{5}{12} \Leftrightarrow S_{PBA} = 108s$$

$$\frac{S_{BAF}}{S_{FAC}} = \frac{BF}{CF} = \frac{9x}{3x} = 3 \Leftrightarrow \frac{153s}{S_{FAC}} = 3 \Leftrightarrow S_{FAC} = 51s$$

$$S_{ABCD} = 2 \cdot S_{ABC} = 2 \cdot 204s = 408s$$

Portanto, a razão entre a área do triângulo BPE e a área do quadrado ABCD é  $\frac{S_{BPE}}{S_{ABCD}} = \frac{20s}{408s} = \frac{5}{102} \approx 5\% \ .$ 

20) Observe a figura a seguir.



Na figura, o paralelogramo ABCD tem lados 9 cm e 4 cm. Sobre o lado CD está marcado o ponto R , de modo que CR = 2 cm ; sobre o lado BC está marcado o ponto S tal que a área do triângulo BRS seja  $\frac{1}{36}$  da área do paralelogramo; e o ponto P é a interseção do prolongamento do segmento RS com o prolongamento da diagonal DB. Nessas condições, é possível concluir que a razão entre as medidas dos segmentos de reta  $\frac{DP}{RP}$  vale:

- (A) 13,5
- (B) 11
- (C) 10,5
- (D) 9
- (E) 7,5

RESPOSTA: C

RESOLUÇÃO:



 $S_{ABCD} = AB \cdot AD \cdot sen \alpha = 9 \cdot 4 \cdot sen \alpha = 36 sen \alpha$ 

$$S_{BCR} = \frac{CR \cdot CB}{2} \cdot sen \, \alpha = \frac{2 \cdot 4}{2} \cdot sen \, \alpha = 4 sen \, \alpha$$

$$S_{CRS} = \frac{CR \cdot CS}{2} \cdot \operatorname{sen} \alpha = \frac{2 \cdot x}{2} \cdot \operatorname{sen} \alpha = x \operatorname{sen} \alpha$$

$$S_{BRS} = S_{BCR} - S_{CRS} = 4 sen \alpha - x sen \alpha = (4 - x) sen \alpha$$

$$\frac{S_{BRS}}{S_{ABCD}} = \frac{1}{36} \Leftrightarrow \frac{(4-x)\sin\alpha}{36\sin\alpha} = \frac{1}{36} \Leftrightarrow 4-x = 1 \Leftrightarrow x = 3$$

Aplicando o teorema de Menelaus ao triângulo BCD com ceviana PSR, temos:

$$\frac{PB}{PD} \cdot \frac{SC}{SB} \cdot \frac{RD}{RC} = 1 \Leftrightarrow \frac{PB}{PD} \cdot \frac{3}{1} \cdot \frac{7}{2} = 1 \Leftrightarrow \frac{DP}{BP} = \frac{21}{2} = 10,5.$$

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2013/2014

1) Sejam 
$$P = \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{5}\right)\left(1 + \frac{1}{7}\right)\left(1 + \frac{1}{9}\right)\cdot\left(1 + \frac{1}{11}\right)$$
 e  $Q = \left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{11}\right)$ . Qual é o valor de  $\sqrt{\frac{P}{O}}$ ?

- (A)  $\sqrt{2}$
- (B) 2
- (C)  $\sqrt{5}$
- (D) 3
- (E) 5

RESPOSTA: B

**RESOLUÇÃO:** 

$$P = \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{5}\right)\left(1 + \frac{1}{7}\right)\left(1 + \frac{1}{9}\right) \cdot \left(1 + \frac{1}{11}\right) = \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{8}{7} \cdot \frac{10}{9} \cdot \frac{12}{11}$$

$$Q = \left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{11}\right) = \frac{4}{5} \cdot \frac{6}{7} \cdot \frac{8}{9} \cdot \frac{10}{11}$$

$$\frac{P}{Q} = \frac{4 \cdot 6 \cdot 8 \cdot 10 \cdot 12}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11} \cdot \frac{5 \cdot 7 \cdot 9 \cdot 11}{4 \cdot 6 \cdot 8 \cdot 10} = \frac{12}{3} = 4 \Rightarrow \sqrt{\frac{P}{Q}} = \sqrt{4} = 2$$

2) Sabendo que ABC é um triângulo retângulo de hipotenusa BC = a, qual é o valor máximo da área de ABC?

- $(A) \ \frac{a^2\sqrt{2}}{4}$
- (B)  $\frac{a^2}{4}$
- (C)  $\frac{3a^2\sqrt{2}}{4}$
- (D)  $\frac{3a^2}{4}$
- (E)  $\frac{3a^2}{2}$

**REPOSTA: B** 

RESOLUÇÃO:



O triângulo retângulo ABC de hipotenusa BC = a está inscrito em uma circunferência de diâmetro BC. Assim, cada ponto sobre essa circunferência (exceto B e C) determina um triângulo retângulo ABC.

A área de cada um desses triângulos é dada pelo semiproduto da hipotenusa pela altura relativa à hipotenusa, ou seja,  $S_{ABC} = \frac{a \cdot h_A}{2}$ . Sabendo que a medida da hipotenusa é constante, então o triângulo de área máxima será aquele que tiver a altura relativa à hipotenusa máxima. Como o vértice A está sobre a circunferência de diâmetro BC = a, então o valor máximo da altura relativa à hipotenusa é igual ao raio da circunferência, ou seja,  $(h_A)_{MAX} = \frac{a}{2}$ .

Portanto, o valor da área máxima do triângulo retângulo ABC é

$$(S_{ABC})_{MAX} = \frac{a \cdot (h_A)_{MAX}}{2} = \frac{a \cdot (a/2)}{2} = \frac{a^2}{4}$$
 unidades de área.

- 3) Considere um conjunto de 6 meninos com idades diferentes e um outro conjunto com 6 meninas também com idades diferentes. Sabe-se que, em ambos os conjuntos, as idades variam de 1 ano até 6 anos. Quantos casais podem-se formar com a soma das idades inferior a 8 anos?
- (A) 18
- (B) 19
- (C) 20
- (D) 21
- (E) 22

RESPOSTA: D

# **RESOLUÇÃO:**

Tendo em consideração que a soma das idades dos membros de um casal deve ser menor do que 8, temos as seguintes possibilidades para a formação de casais:

O menino de 1 ano pode fomar casal com qualquer menina, então há 6 possíveis casais.

O menino de 2 anos pode formar casal com meninas de 1 a 5 anos, então há 5 possíveis casais.

O menino de 3 anos pode formar casal com meninas de 1 a 4 anos, então há 4 possíveis casais.

O menino de 4 anos pode formar casal com meninas de 1 a 3 anos, então há 3 possíveis casais.

O menino de 5 anos pode formar casal com meninas de 1 ou 2 anos, então há 2 possíveis casais.

O menino de 6 anos pode formar casal com a menina de 1 ano, então há 1 possível casal.

Portanto, o número de casais que se pode formar é  $6+5+4+3+2+1=\frac{7\cdot 6}{2}=21$ .

Observe que se representássemos as idades no plano cartesiano com as idades dos meninos nas abscissas e das meninas na ordenadas, teríamos uma malha de 6.6=36 pontos que representariam possíveis casais e os casais com soma das idades inferior a 8 anos seriam os pontos abaixo da reta x + y = 8 (marcados de azul na figura).



4) Seja  $A \cup B = \{3,5,8,9,10,12\}$  e  $B \cap C_X^A = \{10,12\}$  onde A e B são subconjuntos de X, e  $C_X^A$  é o complementar de A em relação a X. Sendo assim, pode-se afirmar que o número máximo de elementos de B é

- (A) 7
- (B) 6
- (C) 5
- (D) 4
- (E) 3

**RESPOSTA: B** 

# RESOLUÇÃO:

Inicialmente, observemos que, se  $A \subset X$ , então o complementar de A em relação a X está definido e  $C_X^A = X - A$ .

Se  $B \cap C_X^A = \{10,12\}$ , então 10 e 12 são elementos de B e não são elementos de A .

Se  $A \cup B = \{3,5,8,9,10,12\}$ , então  $B \subset \{3,5,8,9,10,12\}$ . Portanto,  $\#(B) \le 6$ .

Observe, no entanto, que  $B = \{3,5,8,9,10,12\}$  e  $A = \{3,5,8,9\}$  satisfazem às condições do enunciado, então o número máximo de elementos de  $B \in G$ .

Observe a situação descrita acima representada em um diagrama de Venn, onde a área sombreada representa  $C_x^A = X - A$ :



Note que o número máximo de elementos do conjunto B ocorre quando todos os elementos do conjunto  $\{3,5,8,9\}$  estão em  $A \cap B$ .

- 5) Dada a equação  $(2x+1)^2(x+3)(x-2)+6=0$ , qual é a soma das duas maiores raízes reais desta equação?
- (A) 0
- **(B)** 1
- (C)  $\sqrt{6} \frac{1}{2}$
- (D)  $\sqrt{6}$
- (E)  $\sqrt{6} + 1$

#### RESPOSTA: C

RESOLUÇÃO: (As opções dessa questão foram alteradas, pois não havia opção correta da maneira como a questão foi proposta originalmente.)

Observemos inicialmente que (x+3)+(x-2)=2x+1, então uma boa substituição de variável é  $y=\frac{2x+1}{2}=x+\frac{1}{2} \Leftrightarrow x=y-\frac{1}{2}$ . Dessa forma, temos:

$$(2x+1)^{2}(x+3)(x-2)+6=0 \Rightarrow (2y)^{2} \cdot \left(y - \frac{1}{2} + 3\right) \cdot \left(y - \frac{1}{2} - 2\right) + 6 = 0$$
  
$$\Leftrightarrow 4y^{2} \cdot \left(y + \frac{5}{2}\right) \cdot \left(y - \frac{5}{2}\right) + 6 = 0 \Leftrightarrow 4y^{2} \cdot \left(y^{2} - \frac{25}{4}\right) + 6 = 0$$
  
$$\Leftrightarrow 4y^{4} - 25y^{2} + 6 = 0$$

Note que a substituição de variável efetuada apresentou como resultado uma equação biquadrada. Vamos resolvê-la.

$$y^2 = \frac{25 \pm \sqrt{(-25)^2 - 4 \cdot 4 \cdot 6}}{2 \cdot 4} = \frac{25 \pm 23}{8} \iff y^2 = \frac{1}{4} \lor y^2 = 6 \iff y = \pm \frac{1}{2} \lor y = \pm \sqrt{6}$$

Retornando a substituição, temos:

$$x_1 = \left(-\frac{1}{2}\right) - \frac{1}{2} = -1; \ x_2 = \left(\frac{1}{2}\right) - \frac{1}{2} = 0; \ x_3 = -\sqrt{6} - \frac{1}{2}; \ x_4 = \sqrt{6} - \frac{1}{2}$$

Portanto, o conjunto solução da equação é  $S = \left\{-\sqrt{6} - \frac{1}{2}, -1, 0, \sqrt{6} - \frac{1}{2}\right\}$  e a soma das duas maiores

raízes reais é 
$$0 + \left(\sqrt{6} - \frac{1}{2}\right) = \sqrt{6} - \frac{1}{2}$$
.

Uma solução alternativa e, talvez, mais intuitiva seria efetuar a conta e identificar raízes por inspeção.

$$(2x+1)^{2}(x+3)(x-2)+6=0 \Leftrightarrow (4x^{2}+4x+1)(x^{2}+x-6)+6=0 \Leftrightarrow 4x^{4}+8x^{3}-19x^{2}-23x=0$$

$$\Leftrightarrow x(4x^3 + 8x^2 - 19x - 23) = 0$$

Por inspeção, identificamos que x = -1 é raiz da equação  $4x^3 + 8x^2 - 19x - 23 = 0$ , pois  $4 \cdot (-1)^3 + 8 \cdot (-1)^2 - 19 \cdot (-1) - 23 = 0$ , ou seja, x + 1 é um fator de  $4x^3 + 8x^2 - 19x - 23$ .

Vamos aplicar o algoritmo de Briot-Ruffini para efetuar a divisão de  $4x^3 + 8x^2 - 19x - 23$  por x + 1.

Assim, temos  $4x^3 + 8x^2 - 19x - 23 = (x+1)(4x^2 + 4x - 23)$ .

Portanto, a equação original pode ser escrita como  $x(x+1)(4x^2+4x-23)=0$ .

As raízes da equação do  $2^{\circ}$  grau  $4x^2 + 4x - 23 = 0$  são dadas por

$$x = \frac{-4 \pm \sqrt{16 - 4 \cdot 4 \cdot (-23)}}{2 \cdot 4} = \frac{-4 \pm 8\sqrt{6}}{8} = -\frac{1}{2} \pm \sqrt{6}.$$

Portanto, o conjunto solução da equação é  $S = \left\{-\sqrt{6} - \frac{1}{2}, -1, 0, \sqrt{6} - \frac{1}{2}\right\}$  e a soma das duas maiores

raízes reais é 
$$0 + \left(\sqrt{6} - \frac{1}{2}\right) = \sqrt{6} - \frac{1}{2}$$
.

6) Analise a figura a seguir.



A figura acima exibe o quadrado ABCD e o arco de circunferência APC com centro em B e raio AB = 6. Sabendo que o arco AP da figura tem comprimento  $\frac{3\pi}{5}$ , é correto afirmar que o ângulo PCD mede:

- (A)  $36^{\circ}$
- (B)  $30^{\circ}$
- (C)  $28^{\circ}$
- (D) 24°
- (E)  $20^{\circ}$

RESPOSTA: A

RESOLUÇÃO:



Na figura acima, sejam  $\hat{ABP} = \alpha$  e  $\hat{PCD} = \theta$ .

O comprimento de um arco de circunferência de raio r determinado por um ângulo central  $\alpha$  rad é  $\ell=\alpha\cdot r$ .

Logo, se o arco AP tem comprimento  $\frac{3\pi}{5}$ , então o ângulo ABP em radianos é dado por  $\alpha \cdot 6 = \frac{3\pi}{5} \Leftrightarrow \alpha = \frac{\pi}{10} \text{ rad} = \frac{180^{\circ}}{10} = 18^{\circ}$ .

Como o #ABCD é um quadrado, então  $\hat{ABC} = 90^{\circ}$  e  $\hat{PBC} = 90^{\circ} - \alpha = 90^{\circ} - 18^{\circ} = 72^{\circ}$ .

O ângulo  $PBC = 72^{\circ}$  é o ângulo central que determina o arco PC, então  $PC = 72^{\circ}$ .

Como CD $\perp$ BC, então o ângulo PĈD= $\theta$  é um ângulo de segmento, o que implica  $\theta = \frac{PC}{2} = \frac{72^{\circ}}{2} = 36^{\circ}$ .

- 7) Qual é o valor da expressão  $\left[ \left( 3^{0,333...} \right)^{27} + 2^{2^{1^7}} \sqrt[5]{239 + \sqrt[3]{\frac{448}{7}}} \left( \sqrt[3]{3} \right)^{3^3} \right]^{\sqrt[3]{92}} ?$
- (A) 0,3
- (B)  $\sqrt[3]{3}$
- (C) 1
- (D) 0
- (E) -1

# RESPOSTA: C

#### **RESOLUÇÃO:**

$$\left[ \left( 3^{0,333...} \right)^{27} + 2^{2^{17}} - \sqrt[5]{239} + \sqrt[3]{\frac{448}{7}} - \left( \sqrt[3]{3} \right)^{3^3} \right]^{\sqrt[3]{92}} = \\
= \left[ \left( 3^{1/3} \right)^{27} + 2^{2^1} - \sqrt[5]{239} + \sqrt[3]{64} - \left( 3^{1/3} \right)^{27} \right]^{\sqrt[3]{92}} = \\
= \left[ 2^2 - \sqrt[5]{239} + 4 \right]^{\sqrt[3]{92}} = \left[ 4 - \sqrt[5]{243} \right]^{\sqrt[3]{92}} = \\
= \left[ 4 - \sqrt[5]{3^5} \right]^{\sqrt[3]{92}} = \left[ 4 - 3 \right]^{\sqrt[3]{92}} = \left[ 1 \right]^{\sqrt[3]{92}} = 1$$

- 8) Analise as afirmativas abaixo, em relação ao triângulo ABC.
- I Seja AB = c, AC = b e BC = a. Se o ângulo interno no vértice A é reto, então  $a^2 = b^2 + c^2$ .
- II Seja AB = c, AC = b e BC = a. Se  $a^2 = b^2 + c^2$ , então o ângulo interno no vértice A é reto.
- III Se M é ponto médio de BC e AM =  $\frac{BC}{2}$ , ABC é retângulo.

IV – Se ABC é retângulo, então o raio de seu círculo inscrito pode ser igual a três quartos da hipotenusa.

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são verdadeiras.
- (B) Apenas a afirmativa I é verdadeira.

- (C) Apenas as afirmativas II e IV são verdadeiras.
- (D) Apenas as afirmativas I, II e III são verdadeiras.
- (E) Apenas as afirmativas II, III e IV são verdadeiras.

#### RESPOSTA: D

# **RESOLUÇÃO:**

#### I – VERDADEIRA

Se  $\hat{A} = 90^{\circ}$ , então o triângulo ABC é retângulo de hipotenusa BC = a e vale o teorema de Pitágoras  $a^2 = b^2 + c^2$ .

# II - VERDADEIRA

Se  $a^2 = b^2 + c^2$ , então o ângulo oposto ao lado BC = a é reto, ou seja,  $\hat{A} = 90^{\circ}$ . Esse resultado é uma consequência da recíproca do teorema de Pitágoras, da Síntese de Clairaut ou da lei dos cossenos, como mostraremos a seguir.

Pela lei dos cossenos, temos  $a^2 = b^2 + c^2 - 2bc \cdot \cos \hat{A}$ . Substituindo  $a^2 = b^2 + c^2$  na expressão anterior, resulta  $b^2 + c^2 = b^2 + c^2 - 2bc \cdot \cos \hat{A} \Leftrightarrow 2bc \cdot \cos \hat{A} = 0 \Leftrightarrow \cos \hat{A} = 0 \Leftrightarrow \hat{A} = 90^\circ$ .

#### III – VERDADEIRA

A afirmação estabelece que se a medida de uma mediana é igual à metade da medida do lado a que ela se refere, então o triângulo é retângulo. Nós sabemos que a mediana relativa à hipotenusa de um triângulo retângulo é igual à metade da hipotenusa, o que é pedido é a "volta" dessa afirmação. Vamos analisar a situação com auxílio da figura a seguir:



Se M é ponto médio de BC e  $AM = \frac{BC}{2}$ , então AM = BM = CM e os triângulos AMB e AMC são isósceles.

Fazendo  $\hat{ABM} = \hat{BAM} = \theta$ , o ângulo externo  $\hat{AMC}$  é tal que  $\hat{AMC} = \hat{ABM} + \hat{BAM} = \theta + \theta = 2\theta$ .

No triângulo isóscele s AMC, temos 
$$\hat{CAM} = \hat{ACM} = \frac{180^{\circ} - 2\theta}{2} = 90^{\circ} - \theta$$
.

Portanto, o ângulo do vértice A é dado por  $\hat{A} = B\hat{A}C = B\hat{A}M + C\hat{A}M = \theta + (90^{\circ} - \theta) = 90^{\circ}$ , ou seja, o triângulo ABC é retângulo de hipotenusa BC.

#### IV - FALSA

Lema: Seja um triângulo retângulo ABC de hipotenusa BC = a e semiperímetro p, então o raio do círculo inscrito é r = p - a.



Demonstração:

$$\left. \begin{array}{l} \overline{IE} \perp \overline{AC} \wedge \overline{IF} \perp \overline{AB} \\ \overline{IE} = \overline{IF} = r \end{array} \right\} \Rightarrow \# IEAF \ \ \acute{e} \ um \ quadrado \Rightarrow r = \overline{AE} = \overline{AF} = p - a$$

Voltando a afirmação do enunciado e usando a expressão r = p - a, temos:

$$r = p - a = \frac{a + b + c}{2} - a = \frac{b + c - a}{2} < \frac{a + a - a}{2} = \frac{a}{2} < \frac{3}{4}a$$
.

9) Assinale a opção que apresenta o conjunto solução da equação  $\frac{(-3)}{\sqrt{x^2-4}}-1=0$ , no conjunto dos

números reais.

(A) 
$$\{-\sqrt{13}, \sqrt{13}\}$$

(B) 
$$\{\sqrt{13}\}$$

(C) 
$$\{-\sqrt{13}\}$$

(D) 
$$\{0\}$$

(E) 
$$\emptyset$$

RESPOSTA: E

**RESOLUÇÃO:** 

$$\frac{(-3)}{\sqrt{x^2 - 4}} - 1 = 0 \Leftrightarrow \frac{(-3)}{\sqrt{x^2 - 4}} = 1 \Leftrightarrow \sqrt{x^2 - 4} = -3$$

Como no conjunto dos números reais  $\sqrt{x^2-4}\,$  é sempre maior ou igual a 0, então o conjunto solução da equação é  $S\!=\!\varnothing$ .

10) Seja a , b , x , y números naturais não nulos. Se  $a \cdot b = 5$  ,  $k = \frac{2^{(a+b)^2}}{2^{(a-b)^2}}$  e  $x^2 - y^2 = \sqrt[5]{k}$  , qual é o

algarismo das unidades do número  $(y^x - x^y)$ ?

- (A) 2
- (B) 3
- (C) 5
- (D) 7
- (E) 8

# RESPOSTA: E

# **RESOLUÇÃO:**

$$k = \frac{2^{(a+b)^2}}{2^{(a-b)^2}} = 2^{(a+b)^2 - (a-b)^2} = 2^{4ab} = (2^4)^{ab} = 16^5$$

$$x^{2} - y^{2} = \sqrt[5]{k} = \sqrt[5]{16^{5}} = 16 \Leftrightarrow (x + y)(x - y) = 16$$

Logo, (x+y) e (x-y) são divisores naturais de 16, ou seja, pertencem ao conjunto  $d(16) = \{1, 2, 4, 8, 16\}$ .

Note que (x+y)+(x-y)=2x, então (x+y) e (x-y) têm a mesma paridade.

Além disso, como x e y são números naturais não nulos, então x + y > x - y.

Dessa forma, devemos ter x + y = 8 e x - y = 2, o que implica x = 5 e y = 3.

Portanto,  $(y^x - x^y) = (3^5 - 5^3) = (243 - 125) = 118$ , cujo algarismo das unidades é 8.

- 11) Sabe-se que a média aritmética dos algarismos de todos os números naturais desde 10 até 99, inclusive, é k. Sendo assim, pode-se afirmar que o número  $\frac{1}{k}$  é
- (A) natural.
- (B) decimal exato.
- (C) dízima periódica simples.
- (D) dízima periódica composta.
- (E) decimal infinito sem período.

#### RESPOSTA: D

# RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)

Cada algarismo de 1 a 9 aparece 9 vezes como algarismo das unidades e 10 vezes como algarismo das dezenas. Portanto, a soma dos algarismos de todos os números naturais desde 10 até 99, inclusive, é dada por

$$S = (1+2+3+4+5+6+7+8+9) \cdot 19 = \frac{(1+9)\cdot 9}{2} \cdot 19 = 45\cdot 19$$

Desde 10 até 99, inclusive, há (99-10)+1=90 números de 2 algarismos, ou seja, um total de  $2\cdot 90=180$  algarismos.

Logo, a média aritmética dos algarismos de todos os números naturais desde 10 até 99, inclusive, é dada por  $k = \frac{45 \cdot 19}{180} = \frac{19}{4}$ .

Assim,  $\frac{1}{k} = \frac{4}{19}$  que só possui fatores diferentes de 2 e 5 no denominador, o que implica que o número  $\frac{1}{k}$  é uma dízima periódica simples.

- 12) Uma das raízes da equação do  $2^{\circ}$  grau  $ax^2 + bx + c = 0$ , com a, b, c pertencentes ao conjunto dos números reais, sendo  $a \neq 0$ , é igual a 1. Se b-c=5a então,  $b^c$  em função de a é igual a
- $(A) -3a^2$
- (B)  $2^{a}$
- (C)  $2a \cdot 3^a$
- (D)  $\frac{1}{(2a)^{3a}}$
- (E)  $\frac{1}{2^{(3a)} \cdot a^{(3+a)}}$

## RESPOSTA: D

# RESOLUÇÃO:

Se 1 é raiz da equação  $ax^2 + bx + c = 0$ , então  $a \cdot 1^2 + b \cdot 1 + c = 0 \Leftrightarrow a + b + c = 0 \Leftrightarrow b + c = -a$ .

Dessa forma, b e c ficam determinados, em função de a , pelo sistema:  $\begin{cases} b+c=-a\\ b-c=5a \end{cases}.$ 

Resolvendo o sistema, temos b = 2a e c = -3a.

Portanto,  $b^{c} = (2a)^{-3a} = \frac{1}{(2a)^{3a}}$ .

- 13) Seja ABC um triângulo acutângulo e "L" a circunferência circunscrita ao triângulo. De um ponto Q (diferente de A e de C) sobre o menor arco AC de "L" são traçadas perpendiculares às retas suportes dos lados do triângulo. Considere M , N e P os pés das perpendiculares sobre os lados AB, AC e BC respectivamente. Tomando MN = 12 e PN = 16, qual é a razão entre as áreas dos triângulos BMN e BNP?
- (A)  $\frac{3}{4}$
- (B)  $\frac{9}{16}$
- (C)  $\frac{8}{9}$

- (D)  $\frac{25}{36}$
- (E)  $\frac{36}{49}$

## **RESPOSTA: A**

# RESOLUÇÃO:

Inicialmente, observemos que os pontos M, N e P são colineares (esses pontos estão sobre a reta simson do ponto Q em relação ao  $\Delta ABC$ ).



Como os pontos M, N e P são colineares, então os triângulos BMN e BNP têm bases sobre a mesma reta suporte (a simson de Q), o que implica que os triângulos possuem altura comum no vértice B.

Sabemos que, para triângulos que possuem altura comum, a razão entre suas áreas é igual à razão entre suas bases. Assim, temos:

$$\frac{S_{BMN}}{S_{BNP}} = \frac{MN}{PN} = \frac{12}{16} = \frac{3}{4}.$$

#### **NOTA 2: Reta Simson**

Os pés das três perpendiculares traçadas de um ponto do círculo circunscrito a um triângulo aos lados do triângulo são colineares, sendo a reta que contém esses três pontos chamada **reta de simson do ponto P**.



Demonstração:

$$\begin{split} &B\hat{C}_1P=B\hat{A}_1P=90^\circ \Rightarrow B\hat{C}_1P+B\hat{A}_1P=180^\circ \Rightarrow \#BA_1PC_1 \text{ \'e inscrit\'ivel } \Rightarrow B\hat{P}C_1=B\hat{A}_1C_1\\ &P\hat{A}_1C=P\hat{B}_1C=90^\circ \Rightarrow \#PA_1B_1C \text{ \'e inscrit\'ivel } \Rightarrow C\hat{A}_1B_1=C\hat{P}B_1\\ &A\hat{C}_1P=A\hat{B}_1P=90^\circ \Rightarrow A\hat{C}_1P+A\hat{B}_1P=180^\circ \Rightarrow \#AB_1PC_1 \text{ \'e inscrit\'ivel } \Rightarrow B_1\hat{P}C_1=180^\circ-\hat{A}\\ &P \text{ est\'a no c\'irculo circunscrito ao } \Delta ABC \Rightarrow \#ABPC \text{ \'e inscrit\'ivel } \Rightarrow B\hat{P}C=180^\circ-\hat{A}\\ &\Rightarrow B_1\hat{P}C_1=B\hat{P}C\Rightarrow B_1\hat{P}B+B\hat{P}C_1=B\hat{P}B_1+B_1\hat{P}C\Leftrightarrow B\hat{P}C_1=B_1\hat{P}C\Rightarrow B\hat{A}_1C_1=C\hat{A}_1B_1\\ &Logo, \text{ os pontos } C_1, \text{ $A_1$ e $B_1$ s\~ao colineares.} \end{split}$$

- 14) Sabe-se que o ortocentro H de um triângulo ABC é interior ao triângulo e seja Q o pé da altura relativa ao lado AC. Prolongando BQ até o ponto P sobre a circunferência circunscrita ao triângulo, sabendo-se que BQ = 12 e HQ = 4, qual é o valor de QP?
- (A) 8
- (B) 6
- (C) 5,5
- (D) 4,5
- (E) 4

**RESPOSTA: E** 

RESOLUÇÃO:



Se o ortocentro de um triângulo é interior ao triângulo, então esse triângulo é acutângulo. Sejam AD e CE as outras duas alturas do triângulo, então o ortocentro H é o ponto de interseção de BQ, AD e CE.

Como  $\hat{BEC} = \hat{COB} = 90^{\circ}$ , então o #BEQC é inscritível e  $\hat{ABP} = \hat{ACE}$ .

Mas, o ângulo inscrito  $\hat{ACP}$  é tal que  $\hat{ACP} = \frac{AP}{2} = \hat{ABP} = \hat{ACE}$ .

Portanto, no triângulo HCP, a ceviana CQ é altura e bissetriz, o que implica que o triângulo HCP é isósceles e CQ é também mediana. Logo, HQ = QP = 4 u.c.

# 15) Analise a figura a seguir.



Na figura acima, a circunferência de raio 6 tem centro em C. De P traçam-se os segmentos PC, que corta a circunferência em D, e PA, que corta a circunferência em B. Traçam-se ainda os segmentos AD e CD, com interseção em E. Sabendo que o ângulo APC é  $15^{\circ}$  e que a distância do ponto C ao segmento de reta AB é  $3\sqrt{2}$ , qual é o valor do ângulo  $\alpha$ ?

- (A)  $75^{\circ}$
- (B)  $60^{\circ}$
- (C)  $45^{\circ}$
- (D)  $30^{\circ}$
- (E) 15°

**RESPOSTA: B** 

# **RESOLUÇÃO:**



Seja M o ponto médio do segmento AB, então  $CM \perp AB$ , o que implica  $CM = 3\sqrt{2}$  (distância do ponto C ao segmento AB).

No triângulo retângulo BMC, temos CB = 6 e  $CM = 3\sqrt{2}$ , então

$$\operatorname{sen} \hat{CBM} = \frac{CM}{CM} = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2} \iff \hat{CBM} = 45^{\circ} \text{ e } \hat{BCM} = 45^{\circ}.$$

No triângulo retângulo PMC, temos  $\hat{PCM} = 90^{\circ} - 15^{\circ} = 75^{\circ}$ , então

$$\hat{DCB} = \hat{DCM} - \hat{BCM} = 75^{\circ} - 45^{\circ} = 30^{\circ}$$
.

Como o ângulo  $D\hat{C}B = 30^{\circ}$  é um ângulo central, então  $BD = 30^{\circ}$  e o ângulo inscrito  $B\hat{A}D = \frac{BD}{2} = \frac{30^{\circ}}{2} = 15^{\circ}$ .

O ângulo  $\hat{ADC}$  é ângulo externo do triângulo  $\hat{ADP}$ , então  $\hat{ADC} = \hat{DAP} + \hat{DPA} = 15^{\circ} + 15^{\circ} = 30^{\circ}$ . O ângulo  $\hat{BED} = \alpha$  é ângulo externo do triângulo  $\hat{CDE}$ , então  $\alpha = \hat{ECD} + \hat{EDC} = 30^{\circ} + 30^{\circ} = 60^{\circ}$ .

- 16) Considere que ABCD é um trapézio, onde os vértices são colocados em sentido horário, com bases AB=10 e CD=22. Marcam-se na base AB o ponto P e na base CD o ponto Q, tais que AP=4 e CQ=x. Sabe-se que as áreas dos quadriláteros APQD e PBCQ são iguais. Sendo assim, pode-se afirmar que a medida x é:
- (A) 10
- (B) 12
- (C) 14

- (D) 15
- (E) 16

RESPOSTA: A

RESOLUÇÃO:



Sabendo que o quadrilátero ABCD é um trapézio de bases AB e CD, então AB || CD.

Os quadriláteros APQD e PBCQ possuem bases sobre os segmentos paralelos AB e CD, então são trapézio de mesma altura h (distância entre AB e CD).

Como os quadriláteros APQD e PBCQ possuem a mesma área, então temos:

$$S_{APQD} = S_{PBCQ} \Leftrightarrow (22 - x + 4) \cdot \frac{h}{2} = (x + 6) \cdot \frac{h}{2} \Leftrightarrow 26 - x = x + 6 \Leftrightarrow x = 10 \text{ u.c.}.$$

17) O maior inteiro "n", tal que  $\frac{n^2 + 37}{n+5}$  também é inteiro, tem como soma dos seus algarismos um

valor igual a

- (A) 6
- (B) 8
- (C) 10
- (D) 12
- (E) 14

RESPOSTA: D

**RESOLUÇÃO:** 

$$\frac{n^2+37}{n+5} = \frac{n^2-25+25+37}{n+5} = \frac{(n+5)(n-5)+62}{n+5} = (n-5) + \frac{62}{n+5} \in \mathbb{Z}$$

Para que o número acima seja inteiro, (n+5) deve ser divisor de 62.

O maior inteiro n para o qual (n+5) é divisor de 62 ocorre quando (n+5) é igual ao maior divisor inteiro de 62, ou seja, o próprio 62. Assim, temos:  $n+5=62 \Leftrightarrow n=57$  cuja soma dos algarismos é 5+7=12.

18) Dado que a e b são números reais não nulos, com  $b \neq 4a$ , e que  $\begin{cases} 1 + \frac{2}{ab} = 5 \\ \frac{5 - 2b^2}{4a - b} = 4a + b \end{cases}$ , qual é o valor

de  $16a^4b^2 - 8a^3b^3 + a^2b^4$ ?

- (A) 4
- (B)  $\frac{1}{18}$
- (C)  $\frac{1}{12}$
- (D) 18
- (E)  $\frac{1}{4}$

RESPOSTA: E

# RESOLUÇÃO:

Inicialmente, observemos que a condição  $b \neq 4a$  garante que o denominador 4a - b que aparece no sistema é não nulo.

$$\begin{cases} 1 + \frac{2}{ab} = 5 \Leftrightarrow \frac{2}{ab} = 4 \Leftrightarrow ab = \frac{1}{2} \\ \frac{5 - 2b^2}{4a - b} = 4a + b \Leftrightarrow 5 - 2b^2 = 16a^2 - b^2 \Leftrightarrow 16a^2 + b^2 = 5 \end{cases}$$

$$16a^4b^2 - 8a^3b^3 + a^2b^4 = a^2b^2(16a^2 + b^2) - 8a^3b^3 = \left(\frac{1}{2}\right)^2 \cdot 5 - 8 \cdot \left(\frac{1}{2}\right)^3 = \frac{5}{4} - 1 = \frac{1}{4}$$

- 19) Sabendo que  $2^x \cdot 3^{4y+x} \cdot (34)^y$  é o menor múltiplo de 17 que pode-se obter para x e y inteiros não negativos, determine o número de divisores positivos da soma de todos os algarismos desse número, e assinale a opção correta.
- (A) 12
- (B) 10
- (C) 8
- (D) 6
- (E) 4

RESPOSTA: D

**RESOLUÇÃO:** 

$$2^{x} \cdot 3^{4y+x} \cdot (34)^{y} = 2^{x} \cdot 3^{4y+x} \cdot (2 \cdot 17)^{y} = 2^{x} \cdot 3^{4y+x} \cdot 2^{y} \cdot 17^{y} = 2^{x+y} \cdot 3^{4y+x} \cdot 17^{y}$$

Para que o número acima seja o menor múltiplo de 17 que pode-se obter para x e y inteiros não negativos, devemos ter y = 1 e x = 0.

Assim, o número resultante é  $2^{0+1} \cdot 3^{4 \cdot 1 + 0} \cdot 17^1 = 2^1 \cdot 3^4 \cdot 17 = 2754$ , cuja soma dos algarismos é 2 + 7 + 5 + 4 = 18.

A quantidade de divisores inteiros positivos de  $18 = 2 \cdot 3^2$  é d $(18) = (1+1) \cdot (2+1) = 6$ .

20) Considere, no conjunto dos números reais, a desigualdade  $\frac{2x^2 - 28x + 98}{x - 10} \ge 0$ . A soma dos valores

inteiros do conjunto solução desta desigualdade, que são menores do que  $\frac{81}{4}$ , é

- (A) 172
- (B) 170
- (C) 169
- (D) 162
- (E) 157

#### RESPOSTA: D

RESOLUÇÃO: (As opções dessa questão foram alteradas, pois não havia opção correta da maneira como a questão foi proposta originalmente.)

$$\frac{2x^2 - 28x + 98}{x - 10} \ge 0 \Leftrightarrow \frac{2 \cdot \left(x^2 - 14x + 49\right)}{x - 10} \ge 0 \Leftrightarrow \frac{2 \cdot \left(x - 7\right)^2}{x - 10} \ge 0 \Leftrightarrow x = 7 \lor x - 10 > 0 \Leftrightarrow x = 7 \lor x > 10$$

Portanto, o conjunto solução da inequação é  $S = \{7\} \cup ]10, +\infty[$  .

Os valores inteiros do conjunto solução que são menores que  $\frac{81}{4} = 20,25$  são 7,11,12,13,14,15,16,17,18,19,20, cuja soma é  $7 + \frac{(11+20)\cdot 10}{2} = 162$ .

# PROVA DE MATEMÁTICA - COLÉGIO NAVAL - 2012/2013

1) Para x = 2013, qual é o valor da expressão  $(-1)^{6x} - (-1)^{x-3} + (-1)^{5x} - (-1)^{x+3} - (-1)^{4x} - (-1)^{2x}$ ?

(A) -4

(B) -2

(C) 0

(D) 1

(E) 4

RESPOSTA: A

# **RESOLUÇÃO:**

Observe inicialmente que:  $(-1)^n = \begin{cases} 1, & \text{se n \'e par} \\ -1, & \text{se n \'e \'impar} \end{cases}$ 

Para x = 2013, todos os expoentes, exceto 5x são pares. Assim, temos:

$$(-1)^{6x} - (-1)^{x-3} + (-1)^{5x} - (-1)^{x+3} - (-1)^{4x} - (-1)^{2x} = 1 - (1) + (-1) - (1) - (1) = -4$$
.

2) Analise as afirmativas a seguir.

I)  $9,\overline{1234} > 9,123\overline{4}$ 

II) 
$$\frac{222221}{222223} > \frac{555550}{555555}$$

III) 
$$\sqrt{0,444...} = 0,222...$$

IV) 
$$2^{\sqrt[3]{27}} = 64^{0.5}$$

Assinale a opção correta.

- (A) Apenas as afirmativas II e III são verdadeiras.
- (B) Apenas a afirmativa I é verdadeira.
- (C) Apenas a afirmativa II é verdadeira.
- (D) Apenas a afirmativa III é verdadeira.
- (E) Apenas as afirmativas II e IV são verdadeiras.

#### RESPOSTA: E

## **RESOLUÇÃO:**

I) FALSA

$$9,\overline{1234} = 9,1234\overline{1}234... < 9,1234\overline{4}4... = 9,123\overline{4}$$

II) VERDADEIRA

Seja x = 1111111, então

$$\frac{222221}{222223} - \frac{555550}{555555} = \frac{2x-1}{2x+1} - \frac{5x-5}{5x} = \left(1 - \frac{2}{2x+1}\right) - \left(1 - \frac{1}{x}\right) = \frac{1}{x} - \frac{2}{2x+1} = \frac{1}{x\left(2x+1\right)} > 0$$

$$\Leftrightarrow \frac{222221}{222223} > \frac{555550}{555555}$$

III) FALSA

$$\sqrt{0,444...} = \sqrt{\frac{4}{9}} = \frac{2}{3} = \frac{6}{9} = 0,666... \neq 0,222...$$

IV) VERDADEIRA

$$2^{\sqrt[3]{27}} = 2^3 = 8$$

$$64^{0.5} = (8^2)^{0.5} = 8^{2 \cdot 0.5} = 8$$

- 3) Um trapézio isósceles tem lados não paralelos medindo  $10\sqrt{3}$ . Sabendo que a bissetriz interna da base maior contém um dos vértices do trapézio e é perpendicular a um dos lados não paralelos, qual é a área desse trapézio?
- (A)  $75\sqrt{3}$
- (B)  $105\sqrt{3}$
- (C)  $180\sqrt{3}$
- (D)  $225\sqrt{3}$
- (E)  $275\sqrt{3}$

RESPOSTA: D

RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)



Seja ABCD um trapézio isósceles que satisfaz as condições descritas no enunciado e  $\hat{BAD} = \hat{ABC} = 2\theta$ .

A diagonal AC é bissetriz de  $B\hat{A}D = 2\theta$ , então  $B\hat{A}C = C\hat{A}D = \theta$ .

Como AB  $\parallel$  CD, então DĈA = CÂB =  $\theta$ .

Portanto,  $\hat{CAD} = \hat{ACD} = \theta$ , o  $\Delta ACD$  é isósceles e  $CD = AD = 10\sqrt{3}$ .

Os ângulos adjacentes a um mesmo lado não paralelo de um trapézio são suplementares, então

$$\hat{ABC} + \hat{BCD} = 180^{\circ} \Leftrightarrow 2\theta + (90^{\circ} + \theta) = 180^{\circ} \Leftrightarrow \theta = 30^{\circ}.$$

No triângulo retângulo ABC, temos:  $\frac{BC}{AB} = \operatorname{sen} B\hat{A}C \Leftrightarrow \frac{10\sqrt{3}}{AB} = \operatorname{sen} 30^{\circ} = \frac{1}{2} \Leftrightarrow AB = 20\sqrt{3}$ .

No triângulo retângulo BCC', temos:  $\frac{\text{CC'}}{\text{BC}} = \text{sen } \hat{\text{CBC'}} \Leftrightarrow \frac{\text{CC'}}{10\sqrt{3}} = \text{sen } 60^{\circ} = \frac{\sqrt{3}}{2} \Leftrightarrow \text{CC'} = 15$ .

Logo, a área do trapézio ABCD é dada por:

$$S_{ABCD} = \frac{(AB + CD) \cdot CC'}{2} = \frac{(20\sqrt{3} + 10\sqrt{3}) \cdot 15}{2} = 225\sqrt{3} \text{ u.a.}.$$

- 4) Os números  $(35041000)_7$ ,  $(11600)_7$  e  $(62350000)_7$  estão na base 7. Esses números terminam, respectivamente, com 3, 2 e 4 zeros. Com quantos zeros terminará o número na base decimal  $n=21^{2012}$ , na base 7?
- (A) 2012
- (B) 2013
- (C) 2014
- (D) 2015
- (E) 2016

RESPOSTA: A

RESOLUÇÃO:

$$n = 21^{2012} = (3.7)^{2012} = 3^{2012} \cdot 7^{2012}$$

Como  $7^{2012}$  é  $(1 \underbrace{00...0}_{2012 \text{ zeros}})_7$ , então  $n = 21^{2012}$  termina com 2012 zeros na base 7.

- 5) No retângulo ABCD, o lado BC = 2AB. O ponto P está sobre o lado AB e  $\frac{AP}{PB} = \frac{3}{4}$ . Traça-se a reta  $\overrightarrow{PS}$  com S no interior de ABCD e C  $\in$   $\overrightarrow{PS}$ . Marcam-se ainda, M  $\in$  AD e N  $\in$  BC de modo que MPNS seja um losango. O valor de  $\frac{BN}{AM}$  é:
- (A)  $\frac{3}{7}$
- (B)  $\frac{3}{11}$
- (C)  $\frac{5}{7}$
- (D)  $\frac{5}{11}$
- (E)  $\frac{7}{11}$

**RESPOSTA: B** 

RESOLUÇÃO: 1ª RESOLUÇÃO:



$$\frac{AP}{PB} = \frac{3}{4} \Leftrightarrow \frac{AP}{3} = \frac{PB}{4} = k \Leftrightarrow AP = 3k \land PB = 4k$$

$$BC = 2 \cdot AB = 2 \cdot (3k + 4k) = 14k$$

Seja CN = x, então, como o #MPNS é um losango, a reta  $\overrightarrow{PS}$  é a mediatriz do segmento MN, o que implica CM = CN = x.

Aplicando o teorema de Pitágoras ao ΔCDM, temos:

$$DM^2 + DC^2 = CM^2 \Leftrightarrow DM^2 = x^2 - (7k)^2 = x^2 - 49k^2 \Leftrightarrow DM = \sqrt{x^2 - 49k^2}$$
.

Aplicando o teorema de Pitágoras aos ΔAMP e ΔBNP, temos:

$$MP^2 = AP^2 + AM^2 = (3k)^2 + \left(14k - \sqrt{x^2 - 49k^2}\right)^2 = 156k^2 + x^2 - 28k\sqrt{x^2 - 49k^2}$$

$$NP^2 = BN^2 + BP^2 = (14k - x)^2 + (4k)^2 = (14k - x)^2 + 16k^2 = 212k^2 - 28kx + x^2$$

Como o #MPNS é um losango, então MP = NP, então

$$156k^2 + x^2 - 28k\sqrt{x^2 - 49k^2} = 212k^2 - 28kx + x^2 \Leftrightarrow -2k + x = \sqrt{x^2 - 49k^2}$$

$$\Leftrightarrow 4k^2 - 4kx + x^2 = x^2 - 49k^2 \Leftrightarrow x = \frac{53k}{4}$$

Portanto,

$$BN = 14k - x = 14k - \frac{53k}{4} = \frac{3k}{4}$$

$$AM = 14k - \sqrt{x^2 - 49k^2} = 14k - \sqrt{\left(\frac{53k}{4}\right)^2 - 49k^2} = 14k - \frac{45k}{4} = \frac{11k}{4}$$

Logo, 
$$\frac{BN}{AM} = \frac{\frac{3k}{4}}{\frac{11k}{4}} = \frac{3}{11}$$
.

2ª RESOLUÇÃO:

$$\frac{AP}{PB} = \frac{3}{4} \Leftrightarrow \frac{AP}{3} = \frac{PB}{4} = k \Leftrightarrow AP = 3k \land PB = 4k$$

$$BC = 2 \cdot AB = 2 \cdot (3k + 4k) = 14k$$

Como o #MPNS é um losango, a reta  $\overrightarrow{PS}$  é a mediatriz do segmento MN, o que implica  $\Delta CMO \equiv \Delta CNO$  e  $\hat{MCO} = \hat{NCO} = \theta$ .

Como AD || BC, então  $\hat{CMD} = \hat{MCN} = 2\theta$ .

No triângulo retângulo BCP, temos  $tg \theta = \frac{BP}{BC} = \frac{4k}{14k} = \frac{2}{7}$ .

No triângulo retângulo CDM, temos  $tg 2\theta = \frac{CD}{MD} = \frac{7k}{MD}$ 

Utilizando a relação 
$$\operatorname{tg} 2\theta = \frac{2\operatorname{tg} \theta}{1-\operatorname{tg}^2 \theta} = \frac{2\cdot\frac{2}{7}}{1-\left(\frac{2}{7}\right)^2} = \frac{28}{45}, \text{ temos } \frac{7\mathrm{k}}{\mathrm{MD}} = \frac{28}{45} \Leftrightarrow \mathrm{MD} = \frac{45\mathrm{k}}{4}.$$

Logo, AM = AD - MD = 
$$14k - \frac{45k}{4} = \frac{11k}{4}$$

Aplicando o teorema de Pitágoras ao triângulo retângulo AMP, temos:

$$MP^2 = AM^2 + AP^2 = \left(\frac{11k}{4}\right)^2 + (3k)^2 = \frac{265k^2}{16}$$
.

Como o #MPNS é um losango, então NP = MP e, aplicando o teorema de Pitágoras ao triângulo retângulo BNP, temos:

$$BN^2 = NP^2 - BP^2 = \frac{265k^2}{16} - (4k)^2 = \frac{9k^2}{16} \Leftrightarrow BN = \frac{3k}{4}$$
.

Logo, 
$$\frac{BN}{AM} = \frac{\frac{3k}{4}}{\frac{11k}{4}} = \frac{3}{11}$$
.

6) O número  $N = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot (...) \cdot (k-1) \cdot k$  é formado pelo produto dos k primeiros números naturais não nulos. Qual é o menor valor possível de k para que  $\frac{N}{7^{17}}$  seja um número natural, sabendo que k

é ímpar e não é múltiplo de 7?

- (A) 133
- (B) 119
- (C) 113
- (D) 107
- (E) 105

RESPOSTA: D

# RESOLUÇÃO:

Para que  $\frac{N}{7^{17}}$  seja um número natural, é necessário que  $N = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot (...) \cdot (k-1) \cdot k = k!$  tenha pelo menos 17 fatores 7.

A quantidade de fatores 7 em N = k! é dada por  $\left\lfloor \frac{k}{7} \right\rfloor + \left\lfloor \frac{k}{7^2} \right\rfloor + \left\lfloor \frac{k}{7^3} \right\rfloor + \dots = 17$  (fórmula de Polignac).

$$\left\lfloor \frac{k}{7} \right\rfloor + \left\lfloor \frac{k}{7^2} \right\rfloor + \left\lfloor \frac{k}{7^3} \right\rfloor + \dots = 17 \Rightarrow \left\lfloor \frac{k}{7} \right\rfloor \le 17 \Rightarrow \frac{k}{7} < 18 \Leftrightarrow k < 18 \cdot 7 < 7^3$$

Como 
$$k < 7^3$$
, então  $\left| \frac{k}{7^3} \right| = \left| \frac{k}{7^4} \right| = \left| \frac{k}{7^5} \right| = \dots = 0$ . Portanto,

$$\left\lfloor \frac{\mathbf{k}}{7} \right\rfloor + \left\lfloor \frac{\mathbf{k}}{7^2} \right\rfloor + \left\lfloor \frac{\mathbf{k}}{7^3} \right\rfloor + \dots = 17 \Leftrightarrow \left\lfloor \frac{\mathbf{k}}{7} \right\rfloor + \left\lfloor \frac{\mathbf{k}}{7^2} \right\rfloor = 17.$$

Se 
$$49 \le k \le 98 \Rightarrow 8 \le \left\lfloor \frac{k}{7} \right\rfloor + \left\lfloor \frac{k}{7^2} \right\rfloor \le 14 + 2 = 16$$
. Logo,  $k > 98$ .

Se  $98 < k < 147 \Rightarrow \left\lfloor \frac{k}{7^2} \right\rfloor = 2$ , então devemos ter  $\left\lfloor \frac{k}{7} \right\rfloor = 15$ . O menor valor para o qual isso ocorre é  $k = 15 \cdot 7 = 105$ , mas como k é ímpar e não é múltiplo de 7, então o menor valor de k é 107.

# NOTA 3: Fórmula de Legendre-Polignac:

A função maior inteiro (ou função piso) é a função que associa a cada número real x o maior inteiro maior ou igual a x e é denotada por  $\lfloor x \rfloor$ .

$$x=\lfloor x\rfloor + \{x\}$$
 , onde  $\,0\,{\leq}\,\{x\}\,{<}\,1\,$  é a parte fracionária de  $x$ 

Exemplo: 
$$\lfloor 2 \rfloor = 2$$
,  $\lfloor 2, 1 \rfloor = 2$ ,  $\lfloor -2, 1 \rfloor = -3$ 

A **fórmula de Legendre-Polignac** estabelece que se p é primo e  $n \in \mathbb{Z}_+^*$ , então o expoente de p em n! é dado por

$$\left\lfloor \frac{\mathbf{n}}{\mathbf{p}} \right\rfloor + \left\lfloor \frac{\mathbf{n}}{\mathbf{p}^2} \right\rfloor + \left\lfloor \frac{\mathbf{n}}{\mathbf{p}^3} \right\rfloor + \dots$$

Exemplo: Em quantos zeros termina  $1000!=1\cdot 2\cdot 3\cdot 4\cdot ...\cdot 1000$ ?

Para cada fator 10 de um número, há um zero no final de sua representação decimal. Uma potência de 10 é formada por um fator 2 e um fator 5. Como há mais fatores 2 do que 5, para encontrar a quantidade de fatores 10 em 1000!, basta contar a quantidade de fatores 5. Isso é feito dividindo-se 1000 sucessivamente por 5 como segue:

Somando-se os quocientes, encontramos a quantidade de fatores 5, ou seja, 200+40+8+1=249. Logo, a quantidade de zeros no final da representação de 1000! é 249.

Alternativamente, poderíamos utilizar a fórmula de Legendre-Polignac para encontrar a quantidade de fatores 5 em 1000!. Assim,

$$\left\lfloor \frac{1000}{5} \right\rfloor + \left\lfloor \frac{1000}{5^2} \right\rfloor + \left\lfloor \frac{1000}{5^3} \right\rfloor + \left\lfloor \frac{1000}{5^4} \right\rfloor = 200 + 40 + 8 + 1 = 249.$$

Note que se  $k \ge 5$ , temos  $\left| \frac{1000}{5^k} \right| = 0$ .

- 7) Qual é o menor valor positivo de 2160x +1680y, sabendo que x e y são números inteiros?
- (A) 30
- (B) 60
- (C) 120
- (D) 240
- (E) 480

RESPOSTA: D

# RESOLUÇÃO:

Se  $x, y \in \mathbb{Z}$ , então  $2160x + 1680y = 240 \cdot (9x + 7y)$  é sempre múltiplo do mdc(2160, 1680) = 240. Portanto, o menor valor positivo de  $2160x + 1680y = 240 \cdot (9x + 7y)$  é mdc(2160, 1680) = 240, que ocorre, por exemplo, para x = -3 e y = 4.

- 8) Um número inteiro possui exatamente 70 divisores. Qual é o menor valor possível para |N+3172|?
- (A) 2012
- (B) 3172
- (C) 5184
- (D) 22748
- (E) 25920

**RESPOSTA: A** 

# RESOLUÇÃO:

Inicialmente, devemos observar que, para que tenhamos o menor valor possível de |N+3172|, N deve ser negativo.

Seja  $N = \pm p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \dots \cdot p_k^{\alpha_k}$  a decomposição canônica do número inteiro N. A quantidade de divisores inteiros (positivos ou negativos) de N é dada por

$$d(N) = 2 \cdot (\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdot \dots \cdot (\alpha_k + 1) = 70 = 2 \cdot 5 \cdot 7$$
.

Assim, temos os seguintes casos:

1° caso: 
$$\alpha_1 = 4$$
,  $\alpha_2 = 6$  e  $\alpha_3 = \dots = \alpha_k = 0 \implies N = -p_1^4 \cdot p_2^6 \implies |N| \ge 3^4 \cdot 2^6 = 5184$ 

2° caso: 
$$\alpha_1 = 34$$
 e  $\alpha_2 = \alpha_3 = \dots = \alpha_k = 0 \implies N = -p_1^{34} \implies |N| \ge 2^{34} > 2^{13} = 8192$ 

Portanto, o menor valor possível para |N+3172| ocorre quando  $N=-2^6 \cdot 3^4=-5184$  e é igual a |N+3172|=|-5184+3172|=2012.

9) Observe a figura a seguir.



A figura acima apresenta um quadrado ABCD de lado 2. Sabe-se que E e F são os pontos médios dos lados DC e CB, respectivamente. Além disso, EFGH também forma um quadrado e I está sobre o lado GH, de modo que  $GI = \frac{GH}{4}$ . Qual é a área do triângulo BCI?

- (A)  $\frac{7}{8}$
- (B)  $\frac{6}{7}$
- (C)  $\frac{5}{6}$
- (D)  $\frac{4}{5}$
- (E)  $\frac{3}{4}$

RESPOSTA: E

RESOLUÇÃO:



Seja IJ 
$$\perp$$
 BH  $\Rightarrow$   $\Delta$ HIJ  $\sim$   $\Delta$ HGC  $\Rightarrow$   $\frac{JI}{CG} = \frac{HI}{HG} = \frac{3}{4} \Leftrightarrow JI = \frac{3}{4}CG = \frac{3}{4}$ .

Observando que JI é a altura relativa à base BC do  $\Delta BCI$ , então a área do  $\Delta BCI$  é dada por:

$$S_{BCI} = \frac{BC \cdot JI}{2} = \frac{2 \cdot \frac{3}{4}}{2} = \frac{3}{4} \text{ u.a.}.$$

10) Determine, no conjunto dos números reais, a soma dos valores de x na igualdade:

$$\left(\frac{1}{1+\frac{x}{x^2-3}}\right)\cdot \left(\frac{2}{x-\frac{3}{x}}\right) = 1.$$

- (A)  $-\frac{2}{3}$
- (B)  $-\frac{1}{3}$
- (C) 1
- (D) 2
- (E)  $\frac{11}{3}$

RESPOSTA: C

# RESOLUÇÃO:

Condições de existência:

$$x \neq 0$$

$$x^2 - 3 \neq 0 \Leftrightarrow x \neq \pm \sqrt{3}$$

$$\frac{x}{x^2 - 3} \neq -1 \Leftrightarrow x^2 + x - 3 \neq 0 \Leftrightarrow x \neq \frac{-1 \pm \sqrt{13}}{2}$$

$$\left(\frac{1}{1+\frac{x}{x^2-3}}\right)\cdot \left(\frac{2}{x-\frac{3}{x}}\right) = 1 \Leftrightarrow \left(\frac{1}{\frac{x^2-3+x}{x^2-3}}\right)\cdot \left(\frac{2}{\frac{x^2-3}{x}}\right) = 1 \Leftrightarrow \left(\frac{x^2-3}{x^2+x-3}\right)\cdot \left(\frac{2x}{x^2-3}\right) = 1 \Leftrightarrow \left(\frac{x^2-3}{x^2+x-3}\right)\cdot \left(\frac{x^2-3}{x^2-3}\right) = 1 \Leftrightarrow \left(\frac{x^2-3}{x^2-3}\right)\cdot \left(\frac{$$

$$\Leftrightarrow \frac{2x}{x^2 + x - 3} = 1 \Leftrightarrow x^2 - x - 3 = 0 \Leftrightarrow x = \frac{1 \pm \sqrt{13}}{2}$$

As raízes encontradas satisfazem às condições de existência. Portanto,  $S = \left\{ \frac{1 \pm \sqrt{13}}{2} \right\}$  e a soma dos

valores de x é  $\frac{1+\sqrt{13}}{2} + \frac{1-\sqrt{13}}{2} = 1$ .

Observe que a soma das raízes pode ser obtida aplicando-se as relações entre coeficientes e raízes na equação do  $2^{\circ}$  grau  $x^2 - x - 3 = 0$  o que resulta  $\frac{-(-1)}{1} = 1$ . Entretanto, ainda assim é necessário calcular as raízes a fim de garantir que elas satisfazem as condições de existência.

- 11) Em dois triângulos,  $T_1$  e  $T_2$ , cada base é o dobro da respectiva altura. As alturas desses triângulos,  $h_1$  e  $h_2$ , são números ímpares positivos. Qual é o conjunto dos valores possíveis de  $h_1$  e  $h_2$ , de modo que a área de  $T_1 + T_2$  seja equivalente à área de um quadrado de lado inteiro?
- $(A) \varnothing$
- (B) unitário
- (C) finito
- (D) {3,5,7,9,11,...}
- (E) {11,17,23,29,...}

## RESPOSTA: A

## **RESOLUÇÃO:**

O triângulo  $T_1$  tem altura  $h_1$  e base correspondente  $2h_1$ . Logo sua área é  $S_{T_1} = \frac{2h_1 \cdot h_1}{2} = h_1^2$ .

O triângulo  $T_2$  tem altura  $h_2$  e base correspondente  $2h_2$ . Logo sua área é  $S_{T_2} = \frac{2h_2 \cdot h_2}{2} = h_2^2$ .

Seja a área de  $\,T_1+T_2\,$  seja equivalente à área de um quadrado de lado  $\,k\in\mathbb{Z}$  , então

$$S_{T_1} + S_{T_2} = k^2 \iff h_1^2 + h_2^2 = k^2$$
.

Como  $h_1$  e  $h_2$  são números ímpares positivos, podemos supor  $h_1 = 2a + 1$  e  $h_2 = 2b + 1$ , com  $a,b \in \mathbb{Z}_+$ . Assim, temos:  $h_1^2 + h_2^2 = k^2 \Leftrightarrow (2a + 1)^2 + (2b + 1)^2 = k^2 \Leftrightarrow 4\left(a^2 + b^2 + a + b\right) + 2 = k^2$ .

Entretanto, os restos dos quadrados perfeitos por 4 são 0 ou 1. Portanto, não existem a e b que satisfaçam a igualdade acima e, consequentemente, o conjunto dos valores de h<sub>1</sub> e h<sub>2</sub> que satisfazem as condições do enunciado é vazio.

- 12) Qual é o total de números naturais em que o resto é o quadrado do quociente na divisão por 26?
- (A) zero.
- (B) dois.
- (C) seis.
- (D) treze.
- (E) vinte e cinco.

#### RESPOSTA: C

## RESOLUÇÃO:

Sejam q e  $r=q^2$ , respectivamente, o quociente e o resto da divisão de  $n \in \mathbb{N}$  por 26, então, pelo algoritmo da divisão de Euclides, temos:

$$n = 26 \cdot q + r \Leftrightarrow n = 26 \cdot q + q^2 \ e \ 0 \leq r < 26 \Leftrightarrow 0 \leq q^2 < 26 \Leftrightarrow q \in \left\{0.1, 2, 3, 4, 5\right\}.$$

$$\Rightarrow$$
 (q,n)  $\in$  {(0,0);(1,27);(2,56);(3,87);(4,120);(5,155)}

Portanto, há seis naturais n que satisfazem as condições do enunciado.

- 13) Na fabricação de um produto é utilizado o ingrediente A ou B. Sabe-se que, para cada 100 quilogramas (kg) do ingrediente A devem ser utilizados 10 kg do ingrediente B. Se, reunindo x kg do ingrediente A com y kg do ingrediente B, resulta 44000 gramas do produto, então
- (A)  $y^x = 2^{60}$
- (B)  $\sqrt{x \cdot y} = 5\sqrt{10}$
- (C)  $\sqrt[10]{y^x} = 256$
- (D)  $\sqrt[4]{x^y} = 20$
- (E)  $\sqrt{\frac{y}{x}} = 2\sqrt{5}$

#### RESPOSTA: C

RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)

Como 44000 g = 44 kg, então x + y = 44.

Se, para cada  $100\,\mathrm{kg}$  do ingrediente A devem ser utilizados  $10\,\mathrm{kg}$  do ingrediente B, então a quantidade de A é sempre dez vezes a quantidade de B, ou seja,  $x=10\mathrm{y}$ .

$$\Rightarrow$$
 10y + y = 44  $\Leftrightarrow$  y = 4  $\land$  x = 40.

Logo, 
$$\sqrt[10]{y^x} = \sqrt[10]{4^{40}} = 4^4 = 2^8 = 256$$
.

14) Seja  $P(x) = 2x^{2012} + 2012x + 2013$ . O resto r(x) da divisão de P(x) por  $d(x) = x^4 + 1$  é tal que r(-1) é:

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2

## RESPOSTA: B

## RESOLUÇÃO:

Considerando a fatoração  $x^n + 1 = (x+1)(x^{n-1} - x^{n-2} + ... + x^2 - x + 1)$  para n ímpar, temos:

$$x^{2012} + 1 = (x^4)^{503} + 1 = (x^4 + 1) \left[ (x^4)^{502} - (x^4)^{501} + \ldots + (x^4)^2 - (x^4) + 1 \right]$$

$$\Leftrightarrow 2x^{2012} = 2(x^4 + 1)\left[ (x^4)^{502} - (x^4)^{501} + \dots + (x^4)^2 - (x^4) + 1 \right] - 2.$$

Substituindo a expressão acima em P(x), temos:

$$P(x) = 2x^{2012} + 2012x + 2013 = 2(x^{4} + 1)[(x^{4})^{502} - (x^{4})^{501} + ... + (x^{4})^{2} - (x^{4}) + 1] - 2 + 2012x + 2013 = 2(x^{4} + 1)[(x^{4})^{502} - (x^{4})^{501} + ... + (x^{4})^{2} - (x^{4}) + 1] + 2012x + 2011$$

Portanto,  $r(x) = 2012x + 2011 e r(-1) = 2012 \cdot (-1) + 2011 = -1$ .

15) Uma divisão de números naturais está representada a seguir.

D=2012 é o dividendo, d é o divisor, q é o quociente e r é o resto. Sabe-se que  $0 \neq d=21$  ou q=21. Um resultado possível para r+d ou r+q é:

- (A) 92
- (B) 122
- (C) 152
- (D) 182
- (E) 202

#### RESPOSTA: C

## RESOLUÇÃO:

Pelo algoritmo da divisão de Euclides, temos:  $D = d \cdot q + r \Leftrightarrow 2012 = d \cdot q + r$ , com  $0 \le r < d$ .

Se d = 21, temos:  $2012 = 21.95 + 17 \Leftrightarrow q = 95 \land r = 17 \Rightarrow r + d = 21 + 17 = 38 e r + q = 95 + 17 = 112$ 

.

Se q = 21, temos:  $2012 = d \cdot 21 + r$ . Como  $0 \le r < d$ , então

$$21d \le 2012 < 21d + d = 22d \Leftrightarrow 21 \le \frac{2012}{d} < 22 \Leftrightarrow \frac{2012}{22} < d \le \frac{2012}{21} \Leftrightarrow 92 \le d \le 95.$$

Assim, com q = 21, temos os seguintes casos:

$$d = 92 \Rightarrow r = 80 \Rightarrow r + d = 172 \land r + q = 101$$

$$d = 93 \Rightarrow r = 59 \Rightarrow r + d = 152 \land r + q = 80$$

$$d = 94 \Rightarrow r = 38 \Rightarrow r + d = 132 \land r + q = 59$$

$$d = 95 \Rightarrow r = 17 \Rightarrow r + d = 112 \land r + q = 38$$

Dentre as opções apenas 152 é um valor possível para r+d ou r+q.

- 16) Seja  $a^3b 3a^2 12b^2 + 4ab^3 = 287$ . Considere que a e b são números naturais e que ab > 3. Qual é o maior valor natural possível para a expressão a + b?
- (A) 7
- (B) 11
- (C) 13
- (D) 17
- (E) 19

#### RESPOSTA: A

## **RESOLUÇÃO:**

$$a^{3}b - 3a^{2} - 12b^{2} + 4ab^{3} = 287 \Leftrightarrow ab(a^{2} + 4b^{2}) - 3(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab - 3)(a^{2} + 4b^{2}) = 7 \cdot 41 \Leftrightarrow (ab -$$

Pela desigualdade das médias, temos  $\frac{a^2 + 4b^2}{2} \ge \sqrt{a^2 \cdot 4b^2} = 2ab > 6 \Leftrightarrow a^2 + 4b > 12$ .

Como os dois fatores são números naturais positivos, temos os seguintes casos possíveis:

1° caso:

$$\begin{cases} ab - 3 = 1 \\ a^2 + 4b^2 = 287 \end{cases} \Leftrightarrow \begin{cases} ab = 4 \\ a^2 + 4b^2 = 287 \end{cases}$$

$$b = \frac{4}{a} \Rightarrow a^2 + 4 \cdot \left(\frac{4}{a}\right)^2 = 287 \Leftrightarrow a^4 - 287a^2 + 64 = 0 \Leftrightarrow a^2 = \frac{287 \pm \sqrt{82113}}{2} \notin \mathbb{N}$$

2° caso:

$$\begin{cases} ab-3=7 \\ a^2+4b^2=41 \end{cases} \Leftrightarrow \begin{cases} ab=10 \\ a^2+4b^2=41 \end{cases}$$

$$b = \frac{10}{a} \Rightarrow a^2 + 4 \cdot \left(\frac{10}{a}\right)^2 = 41 \Leftrightarrow a^4 - 41a^2 + 400 = 0 \Leftrightarrow a^2 = 25 \lor a^2 = 16 \Leftrightarrow a = \pm 5 \lor a = \pm 4$$

Como a,  $b \in \mathbb{N}$ , então temos:

$$a = 5 \Rightarrow b = 2 \Rightarrow a + b = 7$$

$$a = 4 \Longrightarrow b = \frac{10}{4} = \frac{5}{2} \notin \mathbb{N}$$

Portanto, o único valor possível de a+b é 7.

- 17) Sabendo que  $A = \frac{3 + \sqrt{6}}{5\sqrt{3} 2\sqrt{12} \sqrt{32} + \sqrt{50}}$ , qual é o valor de  $\frac{A^2}{\sqrt[6]{A^7}}$ ?
- (A)  $\sqrt[5]{3^4}$
- (B)  $\sqrt[7]{3^6}$
- (C)  $\sqrt[8]{3^5}$
- (D)  $\sqrt[10]{3^7}$
- (E)  $\sqrt[12]{3^5}$

RESPOSTA: E

**RESOLUÇÃO:** 

$$A = \frac{3 + \sqrt{6}}{5\sqrt{3} - 2\sqrt{12} - \sqrt{32} + \sqrt{50}} = \frac{3 + \sqrt{6}}{5\sqrt{3} - 4\sqrt{3} - 4\sqrt{2} + 5\sqrt{2}} = \frac{\sqrt{3}(\sqrt{3} + \sqrt{2})}{\sqrt{3} + \sqrt{2}} = \sqrt{3}$$
$$\frac{A^2}{6\sqrt{A^7}} = \frac{A^2}{A^{7/6}} = A^{2-\frac{7}{6}} = A^{5/6} = (3^{1/2})^{5/6} = 3^{5/12} = {}^{12}\sqrt{3^5}$$

- 18) Somando todos os algarismos até a posição 2012 da parte decimal da fração irredutível  $\frac{5}{7}$  e, em seguida, dividindo essa soma por 23, qual será o resto dessa divisão?
- (A) 11
- (B) 12
- (C) 14
- (D) 15
- (E) 17

RESPOSTA: C

## RESOLUÇÃO:

A fração  $\frac{5}{7}$  é uma dízima periódica. Vamos efetuar a divisão para identificar o período.

Quando o resto 5 se repete os números na parte decimal também se repetirão, portanto  $\frac{5}{7} = 0,\overline{714285}$ 

O período da dízima periódica é 714285, que possui 6 algarismos e cuja soma é 7+1+4+2+8+5=27.

Assim, somando os algarismos da parte decimal até a posição 2012 = 6.335 + 2, somaremos 335 períodos completos e mais os algarismos 7 e 1.

Portanto, a soma encontrada é 335·27+7+1=9053 que dividida por 23 deixa resto 14.

- 19) Sabendo que n é natural não nulo, e que  $x \# y = x^y$ , qual é o valor de  $(-1)^{n^4+n+1} + \left(\frac{2\#(2\#(2\#2))}{((2\#2)\#2)\#2}\right)$ ?
- (A) 127
- (B) 128
- (C) 255
- (D) 256
- (E) 511

#### RESPOSTA: C

## **RESOLUÇÃO:**

$$2\#(2\#(2\#2)) = 2\#(2\#(2^2)) = 2\#(2\#4) = 2\#(2^4) = 2\#16 = 2^{16}$$

$$((2#2)#2)#2 = ((2^2)#2)#2 = (4#2)#2 = (4^2)#2 = 16#2 = 16^2 = (2^4)^2 = 2^8$$

 $n \in \mathbb{N} \Rightarrow n^4 + n + 1 = n \left( n^3 + 1 \right) + 1$  é impar, pois n e  $\left( n^3 + 1 \right)$  têm paridades contrárias, ou seja, pelo menos um deles é par  $\Rightarrow \left( -1 \right)^{n^4 + n + 1} = -1$ .

$$\Rightarrow (-1)^{n^4+n+1} + \left(\frac{2\#(2\#(2\#2))}{((2\#2)\#2)\#2}\right) = -1 + \left(\frac{2^{16}}{2^8}\right) = -1 + 2^8 = 255$$

20) Observe a figura a seguir.



Na figura acima, sabe-se que  $k > 36^{\circ}$ . Qual é o menor valor natural da soma x + y + z + t, sabendo que tal soma deixa resto 4, quando dividida por 5, e resto 11, quando dividida por 12?

- (A) 479°
- (B) 539°
- (C) 599°
- (D)  $659^{\circ}$
- (E)  $719^{\circ}$

RESPOSTA: C

RESOLUÇÃO:



Vamos utilizar que, em um triângulo qualquer, o ângulo externo é igual à soma dos dois ângulos internos não adjacentes a ele e que a soma dos ângulos externos é igual a 360°.

 $\triangle$ EGH:  $t = 2k + \alpha \Leftrightarrow \alpha = t - 2k$ 

 $\Delta$ FIJ :  $z = 3k + \beta \Leftrightarrow \beta = z - 3k$ 

 $\Delta$ AJH :  $\theta = \alpha + \beta$ 

 $\triangle ABC: x + y + \theta = 360^{\circ}$ 

$$x + y + \theta = 360^{\circ} \Rightarrow x + y + (\alpha + \beta) = 360^{\circ} \Rightarrow x + y + (t - 2k) + (z - 3k) = 360^{\circ}$$

$$\Leftrightarrow x + y + z + t = 360^{\circ} + 5k > 360^{\circ} + 5 \cdot 36^{\circ} = 540^{\circ}$$

A soma  $x+y+z+t>540^\circ$  deixa resto 4, quando dividida por 5, e resto 11, quando dividida por 12, então (x+y+z+t)+1 é múltiplo de 5 e de 12, e, portanto, múltiplo de 60.

O menor múltiplo de 60 maior do que 541 é 600, então

$$(x+y+z+t)+1 = 600 \Leftrightarrow x+y+z+t = 599^{\circ}$$
.

## PROVA DE MATEMÁTICA – COLÉGIO NAVAL – 2011/2012

1) É correto afirmar que o número  $5^{2011} + 2 \cdot 11^{2011}$  é múltiplo de

- (A) 13
- (B) 11
- (C) 7
- (D) 5
- (E) 3

#### RESPOSTA: E

## RESOLUÇÃO:

Como  $5 \equiv -1 \pmod{3}$  e  $11 \equiv -1 \pmod{3}$ , vamos calcular inicialmente o resto na divisão por 3:

$$5^{2011} + 2 \cdot 11^{2011} \equiv (-1)^{2011} + 2 \cdot (-1)^{2011} \equiv -1 - 2 \equiv 0 \pmod{3}$$

Logo,  $5^{2011} + 2 \cdot 11^{2011}$  é múltiplo de 3.

Observe ainda que:

$$5^{2011} + 2 \cdot 11^{2011} \equiv 5^{2011} + 2 \cdot (-2)^{2011} \equiv 5^{2011} - 2^{2011} \equiv 5 \cdot (5^2)^{1005} - 2 \cdot (2^6)^{335} \equiv 1005$$

$$\equiv 5 \cdot (-1)^{1005} - 2 \cdot (-1)^{335} \equiv -5 + 2 \equiv -3 \equiv 10 \pmod{13}$$

$$5^{2011} + 2 \cdot 11^{2011} \equiv 5^{2011} + 2 \cdot 0^{2011} \equiv 5 \cdot \left(5^5\right)^{402} \equiv 5 \cdot 1^{402} \equiv 5 \pmod{11}$$

$$5^{2011} + 2 \cdot 11^{2011} \equiv (-2)^{2011} + 2 \cdot 4^{2011} \equiv -2^{2011} + 2^{4023} \equiv -2 \cdot \left(2^3\right)^{670} + \left(2^3\right)^{1341} \equiv -2^{11} + 2^{11} = -2^{11} + 2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} = -2^{11} =$$

$$\equiv -2 \cdot 1^{670} + 1^{1341} \equiv -2 + 1 \equiv -1 \equiv 6 \pmod{7}$$

$$5^{2011} + 2 \cdot 11^{2011} \equiv 0^{2011} + 2 \cdot 1^{2011} \equiv 2 \pmod{5}$$

Logo,  $5^{2011} + 2.11^{2011}$  não é múltiplo de 13, 11, 7 ou 5.

- 2) A solução real da equação  $\frac{7}{x-1} \frac{8}{x+1} = \frac{9}{x^2-1}$  é um divisor de
- (A) 12
- (B) 14
- (C) 15
- (D) 16
- (E) 19

#### RESPOSTA: A

#### RESOLUÇÃO:

Condição de existência:  $x \neq \pm 1$ 

$$\frac{7}{x-1} - \frac{8}{x+1} = \frac{9}{x^2-1} \Leftrightarrow 7(x+1) - 8(x-1) = 9 \Leftrightarrow x = 6$$

Logo, a solução real da equação é 6 que é um divisor de 12.

3) A soma das raízes de uma equação do  $2^\circ$  grau é  $\sqrt{2}$  e o produto dessas raízes é 0,25. Determine o valor de  $\frac{a^3-b^3-2ab^2}{a^2-b^2}$ , sabendo que 'a' e 'b' são as raízes dessa equação do  $2^\circ$  grau e a>b, e assinale a opção correta.

(A) 
$$\frac{1}{2}$$

(B) 
$$\frac{\sqrt{3}-2}{4}$$

$$(C) -1$$

(D) 
$$\sqrt{2} + \frac{1}{4}$$

(E) 
$$\sqrt{2} - \frac{1}{4}$$

RESPOSTA: E

**RESOLUÇÃO:** 

$$a+b=\sqrt{2}$$

$$a \cdot b = 0,25 = \frac{1}{4}$$

$$(a-b)^2 = a^2 + b^2 - 2ab = (a+b)^2 - 4ab = (\sqrt{2})^2 - 4 \cdot \frac{1}{4} = 1$$

$$a > b \Rightarrow a - b = 1$$

$$\frac{a^3 - b^3 - 2ab^2}{a^2 - b^2} = \frac{a^3 - ab^2 - b^3 - ab^2}{a^2 - b^2} = \frac{a\left(a^2 - b^2\right) - b^2\left(a + b\right)}{a^2 - b^2} = \frac{(a + b)\left(a^2 - ab - b^2\right)}{(a + b)(a - b)} = \frac{a^2 - ab - b^2}{a - b}$$

$$= \frac{(a+b)(a-b)-ab}{a-b} = a+b-\frac{ab}{a-b} = \sqrt{2}-\frac{\frac{1}{4}}{1} = \sqrt{2}-\frac{1}{4}$$

4) Sejam 'a', 'b' e 'c' números reais não nulos tais que  $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = p$ ,  $\frac{a}{b} + \frac{b}{a} + \frac{c}{a} + \frac{a}{c} + \frac{b}{c} + \frac{c}{b} = q$  e ab + ac + bc = r. O valor de  $q^2 + 6q$  é sempre igual a

(A) 
$$\frac{p^2r^2+9}{4}$$

(B) 
$$\frac{p^2r^2 - 9p}{12}$$

(C) 
$$p^2r^2 - 9$$

(D) 
$$\frac{p^2r^2-10}{4r}$$

(E) 
$$p^2r^2 - 12p$$

RESPOSTA: C

**RESOLUÇÃO:** 

$$pr = \left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}\right)(ab + ac + bc) = 1 + \frac{c}{b} + \frac{c}{a} + \frac{a}{c} + \frac{a}{b} + 1 + \frac{b}{c} + 1 + \frac{b}{a} = 3 + q$$

$$\Rightarrow p^2r^2 = (q+3)^2 \Leftrightarrow p^2r^2 = q^2 + 6q + 9 \Leftrightarrow q^2 + 6q = p^2r^2 - 9$$

- 5) A quantidade de soluções reais e distintas da equação  $3x^3 \sqrt{33x^3 + 97} = 5$  é
- (A) 1
- (B) 2
- (C) 3
- (D) 5
- (E) 6

RESPOSTA: A

RESOLUÇÃO:

$$3x^{3} - \sqrt{33x^{3} + 97} = 5 \Leftrightarrow \sqrt{33x^{3} + 97} = 3x^{3} - 5$$
$$\Leftrightarrow \left(\sqrt{33x^{3} + 97}\right)^{2} = \left(3x^{3} - 5\right)^{2} \wedge 3x^{3} - 5 \ge 0$$

A condição  $3x^3 - 5 \ge 0 \Leftrightarrow x^3 \ge \frac{5}{3}$  será verificada no final.

$$\Leftrightarrow 33x^3 + 97 = 9x^6 - 30x^3 + 25 \Leftrightarrow x^6 - 7x^3 - 8 = 0 \Leftrightarrow x^3 = -1 \lor x^3 = 8$$

Como  $x^3 \ge \frac{5}{3}$ , então  $x^3 = 8 \Leftrightarrow x = 2$ .

Logo, há apenas uma solução real.

- 6) Num paralelogramo ABCD de altura CP=3, a razão  $\frac{AB}{BC}=2$ . Seja 'M' o ponto médio de AB e 'P' o pé da altura de ABCD baixada sobre o prolongamento de AB, a partir de C. Sabe-se que a razão entre as áreas dos triângulos MPC e ADM é  $\frac{S(MPC)}{S(ADM)}=\frac{2+\sqrt{3}}{2}$ . A área do triângulo BPC é igual a
- (A)  $\frac{15\sqrt{3}}{2}$
- (B)  $\frac{9\sqrt{3}}{2}$
- (C)  $\frac{5\sqrt{3}}{2}$

(D) 
$$\frac{3\sqrt{3}}{2}$$

(E) 
$$\frac{\sqrt{3}}{2}$$

**RESPOSTA: B** 

RESOLUÇÃO:



$$\frac{AB}{BC} = 2 \Leftrightarrow BC = \frac{AB}{2} = AM = MB$$

Como os triângulos MPC e ADM possuem alturas de mesma medida, a razão entre as suas áreas é igual à razão entre as suas bases.

$$\frac{S(MPC)}{S(ADM)} = \frac{MP}{AM} = \frac{2 + \sqrt{3}}{2} \Leftrightarrow \frac{MB + BP}{AM} = 1 + \frac{\sqrt{3}}{2} \Leftrightarrow 1 + \frac{BP}{BC} = 1 + \frac{\sqrt{3}}{2} \Leftrightarrow \frac{BP}{BC} = \frac{\sqrt{3}}{2} \Rightarrow \frac{BP}{\sqrt{3}} = \frac{BC}{2} = k$$

Aplicando o teorema de Pitágoras no  $\triangle BPC: BP^2 + CP^2 = BC^2 \Leftrightarrow (\sqrt{3}k)^2 + 3^2 = (2k)^2 \Leftrightarrow k = 3$ 

$$\Rightarrow$$
 S(BPC) =  $\frac{BP \cdot PC}{2} = \frac{3\sqrt{3} \cdot 3}{2} = \frac{9\sqrt{3}}{2}$  unidades de área

7) O valor de 
$$\sqrt{9^{0.5} \times 0.333... + \sqrt[7]{4 \times \sqrt{0.0625}}} - \frac{(3.444... + 4.555...)}{\sqrt[3]{64}}$$
 é

- (A) 0
- (B)  $\sqrt{2}$
- (C)  $\sqrt{3} 2$
- (D)  $\sqrt{2} 2$
- **(E)** 1

RESPOSTA: D

RESOLUÇÃO:

$$\sqrt{9^{0,5} \times 0,333... + \sqrt[7]{4 \times \sqrt{0,0625}}} - \frac{(3,444... + 4,555...)}{\sqrt[3]{64}} = \sqrt{3 \times \frac{1}{3} + \sqrt[7]{4 \times \sqrt{\frac{625}{10000}}}} - \frac{7,999...}{\sqrt[3]{2^6}} = \sqrt{1 + \sqrt[7]{4 \times \frac{25}{100}}} - \frac{8}{2^2} = \sqrt{1 + \sqrt[7]{4 \times \frac{1}{4}}} - 2 = \sqrt{1 + \sqrt[7]{1}} - 2 = \sqrt{2} - 2$$

- 8) Dado um quadrilátero convexo em que as diagonais são perpendiculares, analise as afirmações abaixo.
- I Um quadrilátero assim formado sempre será um quadrado.
- II Um quadrilátero assim formado sempre será um losango.
- III Pelo menos uma das diagonais de um quadrilátero assim formado divide esse quadrilátero em dois triângulos isósceles.

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas II e III são verdadeiras.
- (E) Todas as afirmativas são falsas.

#### **RESPOSTA: E**

# RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)

#### I-FALSA

Se as diagonais têm medidas diferentes ou não se cortam ao meio, o quadrilátero não será um quadrado.

II - FALSA

Se as diagonais não se cortam ao meio, o quadrilátero não será um losango.

III – FALSA

Basta observar o contra exemplo a seguir.



Esse contraexemplo também mostra que as afirmativas I e II são FALSAS.

9) Observe a figura a seguir



A figura acima mostra, num mesmo plano, duas ilhas representadas pelos pontos 'A' e 'B' e os pontos 'C', 'D', 'M' e 'P' fixados no continente por um observador. Sabe-se que  $A\hat{C}B = A\hat{D}B = A\hat{P}B = 30^{\circ}$ , 'M' é o ponto médio de CD = 100 m e que PM = 10 m é perpendicular a CD. Nessas condições, a distância entre as ilhas é de:

- (A) 150 m
- (B) 130 m
- (C) 120 m
- (D) 80 m
- (E) 60 m

**RESPOSTA: B** 

RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)



Como  $\hat{ACB} = \hat{ADB} = \hat{APB} = 30^{\circ}$ , então C, D e P pertencem ao arco capaz de  $30^{\circ}$  sobre  $\overline{AB}$ .

Como M é ponto médio de  $\overline{CD}$  e  $\overline{PM} \perp \overline{CD}$ , então  $\overline{PM}$  é uma flecha da circunferência e seu prolongamento passa pelo centro O.

Seja R o raio da circunferência que contém o arco capaz, então, aplicando o teorema de Pitágoras no triângulo retângulo OCM, temos:

$$(R-10)^2 + 50^2 = R^2 \Leftrightarrow R^2 - 20R + 100 + 2500 = R^2 \Leftrightarrow R = 130$$
.

Como o  $\triangle OAB$  é equilátero, então  $\overline{AB} = R = 130 \text{ m}$ .

- 10) Numa pesquisa sobre a leitura dos jornais A e B , constatou-se que 70% dos entrevistados leem o jornal A e 65% leem o jornal B . Qual o percentual máximo dos que leem os jornais A e B ?
- (A) 35%
- (B) 50%
- (C) 65%
- (D) 80%
- (E) 95%

RESPOSTA: C

RESOLUÇÃO: (O enunciado dessa questão foi alterado, pois a mesma estava incorreta da maneira como foi proposta originalmente.)

Seja n(X) o percentual de leitores associados ao conjunto X. n(A) = 70%

$$n(B) = 65\%$$

O percentual máximo dos que leem os jornais A e B é o valor máximo de  $n(A \cap B)$ .

Pelo princípio da inclusão-exclusão:  $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 

$$\Leftrightarrow$$
 n(A \cap B) = n(A) + n(B) - n(A \cup B) = 70\% + 65\% - n(A \cup B) = 135\% - n(A \cup B)

Como 
$$n(A \cup B) \ge n(A) = 70\%$$
, então  $n(A \cap B)_{MAX} = 135\% - 70\% = 65\%$ .

Note que esse valor máximo ocorre quando  $B \subset A$ , o que implica  $n(A \cap B) = n(B)$ .

- 11) Analise as afirmações abaixo referentes a números reais simbolizados por 'a', 'b' ou 'c'.
- I-A condição  $a \cdot b \cdot c > 0$  garante que 'a', 'b' e 'c' não são, simultaneamente, iguais a zero, bem como a condição  $a^2 + b^2 + c^2 \neq 0$ .
- II Quando o valor absoluto de 'a' é menor do que b > 0, é verdade que -b < a < b.
- III Admitindo que b > c, é verdadeiro afirmar que  $b^2 > c^2$ .

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas I e II são verdadeiras.
- (E) Apenas as afirmativas I e III são verdadeiras.

#### **RESPOSTA: D**

## **RESOLUÇÃO:**

## I – VERDADEIRA

$$a \cdot b \cdot c > 0 \Longrightarrow a \neq 0 \land b \neq 0 \land c \neq 0 \Longrightarrow a^2 > 0 \land b^2 > 0 \land c^2 > 0 \Longrightarrow a^2 + b^2 + c^2 \neq 0$$

Note que a condição inicial garante que nenhum dos três números é nulo, que é uma condição mais forte do que os três números não serem simultaneamente nulos.

#### II - VERDADEIRA

Pela definição de valor absoluto (módulo), temos se b > 0, então  $|a| < b \Leftrightarrow -b < a < b$ .

Isso pode ser demonstrado da seguinte maneira:

$$|a| = \begin{cases} a, & \text{se } a \ge 0 \\ -a, & \text{se } a < 0 \end{cases}$$

Se  $a \ge 0$ , então  $|a| < b \Leftrightarrow a < b$ . Logo,  $0 \le a < b$ .

Se a < 0, então  $|a| < b \Leftrightarrow -a < b \Leftrightarrow -b < a$ . Logo, -b < a < 0.

Fazendo a união dos dois intervalos temos o conjunto solução da inequação |a| < b que é -b < a < b.

#### III - FALSA

Basta considerar o contra exemplo seguinte: -1 > -2 e  $(-1)^2 = 1 < 2 = (-2)^2$ .

A condição  $b > c > 0 \Rightarrow b^2 > c^2$  seria verdadeira.

12) Observe a figura abaixo.



A figura apresentada foi construída por etapas. A cada etapa, acrescentam-se pontos na horizontal e na vertical, com uma unidade de distância, exceto na etapa 1, iniciada com 1 ponto.

Continuando a compor a figura com estas etapas e buscando um padrão, é correto concluir que

- (A) cada etapa possui quantidade ímpar de pontos e a soma desses 'n' primeiros ímpares é n<sup>2</sup>.
- (B) a soma de todos os números naturais começando do 1 até 'n' é sempre um quadrado perfeito.
- (C) a soma dos pontos das 'n' primeiras etapas é  $2n^2 1$ .
- (D) cada etapa 'n' tem 3n-2 pontos.
- (E) cada etapa 'n' tem 2n+1 pontos.

#### RESPOSTA: A

## RESOLUÇÃO:

Na n-ésima etapa são acrescentados n pontos na horizontal e n pontos na vertical, mas o ponto da "quina" foi contado na horizontal e na vertical, logo o total de pontos acrescentados na n-ésima etapa é n+n-1=2n-1.

Assim, a quantidade de pontos acrescentados a cada etapa é ímpar.

A soma das quantidades de pontos das n primeiras etapas é:

$$S'_n = 1 + 3 + 5 + \dots + (2n-1)$$

$$\Rightarrow 2 \cdot S'_n = (1 + (2n - 1)) + (3 + (2n - 3)) + \dots + ((2n - 3) + 3) + ((2n - 1) + 1) = n \cdot 2n \Leftrightarrow S'_n = n^2 + (2n - 1) + ($$

A soma de todos os naturais de 1 até n é

$$S_n = 1 + 2 + 3 + \dots + n \Leftrightarrow 2S_n = (1 + n) + (2 + (n - 1)) + \dots + ((n - 1) + 2) + (n + 1) = n \cdot (n + 1) \Leftrightarrow S_n = \frac{n \cdot (n + 1)}{2}$$

Note que  $S_n = \frac{n(n+1)}{2}$  não é um quadrado perfeito.

Logo, a única alternativa correta é a letra (A).

- 13) O número real  $\sqrt[3]{26-15\sqrt{3}}$  é igual a
- (A)  $5 \sqrt{3}$
- (B)  $\sqrt{7-4\sqrt{3}}$
- (C)  $3-\sqrt{2}$
- (D)  $\sqrt{13-3\sqrt{3}}$

(E) 2

**RESPOSTA: B** 

## **RESOLUÇÃO:**

Para resolver esse problema deve-se observar o produto notável  $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ . Considerando a expressão

$$(a-b\sqrt{3})^3 = a^3 - 3a^2b\sqrt{3} + 3a(b\sqrt{3})^2 - (b\sqrt{3})^3 = (a^3 + 9ab^2) - 3(a^2b + b^3)\sqrt{3}.$$

Vamos então tentar identificar números positivos a e b tais que  $26-15\sqrt{3} = (a^3+9ab^2)-3(a^2b+b^3)\sqrt{3}$ .

$$26 = 8 + 18 = 2^3 + 9 \cdot 2 \cdot 1^2 \land 15 = 3(2^2 \cdot 1 + 1^3) \Rightarrow a = 2 \land b = 1 \Rightarrow 26 - 15\sqrt{3} = (2 - \sqrt{3})^3$$
.

Note que para identificar o valor de a testamos os cubos perfeitos menores que 26.

$$\Rightarrow \sqrt[3]{26 - 15\sqrt{3}} = \sqrt[3]{(2 - \sqrt{3})^3} = 2 - \sqrt{3}$$

$$(2 - \sqrt{3})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \Rightarrow 2 - \sqrt{3} = \sqrt{7 - 4\sqrt{3}}$$

$$\Rightarrow \sqrt[3]{26 - 15\sqrt{3}} = 2 - \sqrt{3} = \sqrt{7 - 4\sqrt{3}}$$

- 14) A divisão do inteiro positivo 'N' por 5 tem quociente ' $q_1$ ' e resto 1. A divisão de ' $4q_1$ ' por 5 tem quociente ' $q_2$ ' e resto 1. A divisão de ' $4q_2$ ' por 5 tem quociente ' $q_3$ ' e resto 1. Finalmente, dividindo ' $4q_3$ ' por 5, o quociente é ' $q_4$ ' e o reto é 1. Sabendo que 'N' pertence ao intervalo aberto (621,1871), a soma dos algarismos de 'N' é
- (A) 18
- (B) 16
- (C) 15
- (D) 13
- (E) 12

#### **RESPOSTA: D**

#### **RESOLUCÃO:**

Escrevendo cada uma das divisões com base no algoritmo de Euclides e somando 4 unidades a cada uma das equações, temos:

$$N = 5 \cdot q_1 + 1 \Longrightarrow N + 4 = 5(q_1 + 1)$$

$$4q_1 = 5 \cdot q_2 + 1 \Longrightarrow 4(q_1 + 1) = 5(q_2 + 1)$$

$$4q_2 = 5 \cdot q_3 + 1 \Longrightarrow 4(q_2 + 1) = 5(q_3 + 1)$$

$$4q_3 = 5 \cdot q_4 + 1 \Longrightarrow 4(q_3 + 1) = 5(q_4 + 1)$$

Multiplicando as quatro equações obtidas, temos:  $4^3(N+4) = 5^4(q_4+1)$ .

$$mdc(4,5) = 1 \Rightarrow 5^4 \mid (N+4) \Rightarrow \exists k \in \mathbb{Z} \text{ tal que } N+4 = 5^4 \cdot k \Leftrightarrow N = 625k-4$$

$$N \hspace{-0.1cm}\in\hspace{-0.1cm} \left(621,1871\right) \hspace{-0.1cm} \Rightarrow \hspace{-0.1cm} 621 \hspace{-0.1cm}<\hspace{-0.1cm} N \hspace{-0.1cm}<\hspace{-0.1cm} 1871 \hspace{-0.1cm} \Rightarrow \hspace{-0.1cm} 621 \hspace{-0.1cm}<\hspace{-0.1cm} 625k \hspace{-0.1cm} -\hspace{-0.1cm} 4 \hspace{-0.1cm}<\hspace{-0.1cm} 1871 \hspace{-0.1cm} \Rightarrow \hspace{-0.1cm} k \hspace{-0.1cm} = \hspace{-0.1cm} 2$$

$$\Rightarrow$$
 N = 625 · 2 - 4 = 1246

Logo, a soma dos algarismos de N é 1+2+4+6=13.

- 15) Assinale a opção que apresenta o único número que NÃO é inteiro.
- (A)  $\sqrt[6]{1771561}$
- (B)  $\sqrt[4]{28561}$
- (C) <sup>6</sup>√4826807
- (D)  $\sqrt[4]{331776}$
- (E)  $\sqrt[6]{148035889}$

## RESPOSTA: C

## RESOLUÇÃO:

Vamos analisar o último algarismo dos quadrados perfeitos e dos cubos perfeitos.

As congruências abaixo são calculadas módulo 10.

$$0^2 \equiv 0$$
;  $1^2 \equiv 1$ ;  $2^2 \equiv 4$ ;  $3^2 \equiv 9$ ;  $4^2 \equiv 6$ ;  $5^2 \equiv 5$ ;  $6^2 \equiv 6$ ;  $7^2 \equiv 9$ ;  $8^2 \equiv 4$ ;  $9^2 \equiv 1$ 

$$0^3 = 0$$
;  $1^3 = 1$ ;  $2^3 = 8$ ;  $3^3 = 7$ ;  $4^3 = 4$ ;  $5^3 = 5$ ;  $6^3 = 6$ ;  $7^3 = 3$ ;  $8^3 = 2$ ;  $9^3 = 9$ 

Assim, o número 4826807 não é quadrado e não é cubo perfeito, logo  $\sqrt[6]{4826807} \notin \mathbb{Z}$ .

Note que 
$$\sqrt[6]{1771561} = \sqrt[6]{11^6} = 11$$
,  $\sqrt[4]{28561} = \sqrt[4]{13^4} = 13$ ,  $\sqrt[4]{331776} = \sqrt[4]{24^4} = 24$  e  $\sqrt[6]{148035889} = \sqrt[6]{23^6} = 23$  são todos inteiros.

- 16) A expressão  $\sqrt[3]{-(x-1)^6}$  é um número real. Dentre os números reais que essa expressão pode assumir, o maior deles é:
- (A) 2
- (B)  $\sqrt{2} 1$
- (C)  $2 \sqrt{2}$
- (D) 1
- (E) 0

#### **RESPOSTA: E**

#### **RESOLUÇÃO:**

$$\sqrt[3]{-(x-1)^6} = -(x-1)^2$$

$$(x-1)^2 \ge 0 \Longrightarrow -(x-1)^2 \le 0.$$

Logo, o valor máximo de  $\sqrt[3]{-(x-1)^6} = -(x-1)^2$  é 0 que ocorre quando x = 1.

Essa conclusão poderia ser obtida também observando que o valor máximo da expressão é a ordenada do vértice da função quadrática  $y = -(x-1)^2$  cujo vértice é V = (1,0).

17) Sejam 
$$A = \begin{bmatrix} 7^{2011}, 11^{2011} \end{bmatrix}$$
 e  $B = \{ x \in \mathbb{R} \mid x = (1-t) \cdot 7^{2011} + t \cdot 11^{2011} \text{ com } t \in [0,1] \}$ , o conjunto  $A - B$  é

(A) 
$$A \cap B$$

(B) 
$$B - \{11^{2011}\}$$

(C) 
$$A - \{7^{2011}\}$$

- (D) A
- (E) Ø

#### RESPOSTA: E

## **RESOLUÇÃO:**

A expressão  $x = (1-t) \cdot 7^{2011} + t \cdot 11^{2011}$  é uma função do primeiro grau em t que associa cada valor de t a um valor de x.

$$x = (1-t) \cdot 7^{2011} + t \cdot 11^{2011} = (11^{2011} - 7^{2011})t + 7^{2011}$$

Como essa função do primeiro grau possui domínio [0,1], sua imagem é  $[7^{2011},11^{2011}]$ , logo  $B = [7^{2011},11^{2011}]$  e  $A - B = \emptyset$ .

Abaixo está apresentado o gráfico que representa essa função. Observe que esse gráfico é um segmento de reta que liga o ponto  $\left(0,7^{2011}\right)$  ao ponto  $\left(1,11^{2011}\right)$ .



Note ainda que a expressão utilizada no enunciado é uma expressão conhecida para representação dos elementos de um intervalo real qualquer a partir do intervalo [0,1]:  $[a,b] = \{x \mid x = a \cdot (1-t) + b \cdot t, t \in [0,1]\}$ .

18) Um aluno estudava sobre polígonos convexos e tentou obter dois polígonos de 'N' e 'n' lados  $(N \neq n)$ , e com 'D' e 'd' diagonais, respectivamente, de modo que N-n=D-d. A quantidade de soluções corretas que satisfazem essas condições é

- (A) 0
- **(B)** 1
- (C) 2
- (D) 3
- (E) indeterminada.

#### RESPOSTA: A

# RESOLUÇÃO:

$$N-n = D-d \Leftrightarrow N-n = \frac{N(N-3)}{2} - \frac{n(n-3)}{2} \Leftrightarrow 2(N-n) = N^2 - 3N - n^2 + 3n$$

$$\Leftrightarrow$$
  $N^2 - n^2 = 5(N-n) \Leftrightarrow (N+n)(N-n) = 5(N-n)$ 

$$N \neq n \Longrightarrow N-n \neq 0 \Longrightarrow N+n=5$$

Mas N e n são gêneros de polígonos, então  $N \ge 3$  e  $n \ge 3$ , o que implica  $N + n \ge 6$ . Logo, não há nenhuma solução correta (A).

19) Considere a figura abaixo.



A razão  $\frac{S(MPQ)}{S(ABC)}$ , entre as áreas dos triângulos MPQ e ABC, é

- (A)  $\frac{7}{12}$
- (B)  $\frac{5}{12}$
- (C)  $\frac{7}{15}$

(D) 
$$\frac{8}{15}$$

(E) 
$$\frac{7}{8}$$

**RESPOSTA: B** 

## RESOLUÇÃO:

$$\frac{S(AQM)}{S(ABC)} = \frac{AQ \cdot AM}{AB \cdot AC} = \frac{4c \cdot b}{5c \cdot 3b} = \frac{4}{15}$$
$$\frac{S(BPQ)}{S(ABC)} = \frac{BP \cdot BQ}{BC \cdot BA} = \frac{3a \cdot c}{4a \cdot 5c} = \frac{3}{20}$$
$$\frac{S(CMP)}{S(ABC)} = \frac{CM \cdot CP}{CA \cdot CB} = \frac{2b \cdot a}{3b \cdot 4a} = \frac{1}{6}$$

$$S(MPQ)+S(AQM)+S(BPQ)+S(CMP)=S(ABC)$$

$$\Leftrightarrow S(MPQ) + \frac{4}{15}S(ABC) + \frac{3}{20}S(ABC) + \frac{1}{6}S(ABC) = S(ABC)$$
$$\Leftrightarrow S(MPQ) = \left(1 - \frac{4}{15} - \frac{3}{20} - \frac{1}{6}\right)S(ABC) = \frac{5}{12}S(ABC) \Leftrightarrow \frac{S(MPQ)}{S(ABC)} = \frac{5}{12}$$

## 20) Observe a ilustração a seguir.



Qual a quantidade mínima de peças necessárias para revestir, sem falta ou sobra, um quadrado de lado 5, utilizando as peças acima?

- (A) 12
- (B) 11
- (C) 10
- (D) 9
- (E) 8

#### RESPOSTA: D

## RESOLUÇÃO:

A peça I possui área  $S_1 = 1 \cdot 2 = 2$  e a peça II possui área  $S_2 = 2^2 - 1^2 = 3$ .

Um quadrado de lado 5 possui área  $5^2 = 25$ .

Supondo que sejam utilizadas x peças do tipo I e y peças do tipo II para revestir o quadrado, então  $2 \cdot x + 3 \cdot y = 25$ .

Para encontrar a quantidade mínima de peças, devemos obter o valor mínimo de x + y.

Como mdc(2,3)=1, a equação acima pode ser resolvida como segue:  $2x+3y=25 \Leftrightarrow \begin{cases} x=2+3t \\ y=7-2t \end{cases}, t \in \mathbb{Z} \ .$ 

Mas, como x e y são as quantidades de peças, ambos devem ser não negativos.

$$\begin{cases} x = 2 + 3t \ge 0 \Leftrightarrow t \ge -\frac{2}{3} \\ y = 7 - 2t \ge 0 \Leftrightarrow t \le \frac{7}{2} \end{cases} \Rightarrow -\frac{2}{3} \le t \le \frac{7}{2}$$

$$t \in \mathbb{Z} \Rightarrow t \in \{0,1,2,3\}$$

Como x+y=(2+3t)+(7-2t)=9+t e  $t\in\{0,1,2,3\}$ , então o valor mínimo procurado é  $\left(x+y\right)_{MIN}=9+0=9$ , que ocorre quando t=0. Neste caso, x=2 e y=7.

A figura a seguir ilustra o caso encontrado acima



Acompanhe o blog <u>www.madematica.blogspot.com</u> e fique sabendo dos lançamentos dos próximos volumes da coleção X-MAT!

# Volumes já lançados:

Livro X-MAT Volume 1 EPCAr 2011-2015

Livro X-MAT Volume 2 AFA 2010-2015

Livro X-MAT Volume 3 EFOMM 2009-2015

Livro X-MAT Volume 4 ESCOLA NAVAL 2010-2015

Livro X-MAT Volume 6 EsPCEx 2011-2016