19. Таймеры в микроконтроллерах фирмы INTEL MCS-51

4.1 ТАЙМЕРЫ / СЧЕТЧИКИ ВНЕШНИХ СОБЫТИЙ

Два программируемых 16-ти битовых таймера/счетчика (Т/С 0 и Т/С 1) могут быть использованы в качестве таймеров или счетчиков внешних событий. При работе в качестве таймера содержимое Т/С инкрементируется в каждом машинном цикле, т. е. через каждые 12 периодов резонатора. При работе в качестве счетчика содержимое Т/С инкрементируется под воздействием перехода "1-0" внешнего входного сигнала, подаваемого на соответствующий вывод (T0 или T1). Максимальная входная частота счетчиков: Ft / 24.

РЕЖИМЫ РАБОТЫ Т/С определяются кодом, записанным в РЕГИСТР РЕЖИМОВ T/C (TMOD):

РЕГИСТР РЕЖИМОВ ТАЙМЕРОВ / СЧЕТЧИКОВ (ТМОД)

Прямой адрес TMOD: dir - 89H. 3 M1.1 M0.1GATE 0 | C/~T 0 | M1.0

M0.0

Таблица 13 – *Выбор режимов таймеров / счетчиков (*ТМОD)

TMOD:

GATE 1 C/~T 1

Биты TMOD	Обозна- чение	Выбор режима				
0, 1	M0, M1	Определяют один из 4-х режимов работы, отдельно				
4, 5		для Т/С 1 и Т/С 0:	M1	M0	Режим	
			0	0	0	
			0	1	1	
			1	0	2	
			1	1	3	
2	C/~T 0	Определяет работу отдельно для каждого счетчика в				
6	C/~T 1	режиме:				
	Cr I I	$C/^{\sim}T=0$ – таймера;				
		$C/^{\sim}T = 1$ — счетчика внешних событий.				
3	GATE 0	Разрешает управлять счетчиком от внешнего вывода				
7	GATE 1	(~INT0 – для T/C 0, ~INT1 – для T/C 1):				
		GATE = 0 – управление запрещено,				
		GATE = 1 – управление разрешено.				

РЕГИСТР УПРАВЛЕНИЯ/СТАТУСА Т/С и внешними прерываниями (TCON) предназначен для приема и хранения кодов управляющего слова.

РЕГИСТР УПРАВЛЕНИЯ/СТАТУСА Т/С И ВНЕШНИМИ ПРЕРЫВАНИЯМИ (TCON)

Прямой байтовый адрес TCON: dir - 88h. Допускается адресация отдельных бит TCON: bit - 88h 8Fh.

6 5 4 3 2 1 0 8Ch 88h Адрес: bit 8Fh 8Eh 8Dh 8Bh 8Ah 89h TCON IE 0 IT 0 TF 1 TR 1 TF 0 TR 0IE 1 IT 1

Таблица 14 – *Назначение битов ТСОN*

Биты	Обоз-		
TMOD	на-	Назначение разрядов TCON	
	чение		
5	TF 0	Флаги переполнения Т/С, устанавливаются аппаратно	
7	TF 1	при переполнении соответствующего Т/С (переходе из	
		состояния «все единицы» в состояние «все нули»).	
		Если прерывание от соответствующего Т/С разрешено,	
		то установка флага ТГ вызовет прерывание. Флаги ТГ	
		0 или TF 1 сбрасываются аппаратно при передаче	
		управления подпрограмме обработки соответствую-	
		щего прерывания	
4	TR 0	Разрешение счета отдельно для каждого Т/С:	
6	TR 1	TR = 0 – счет остановлен,	
		TR = 1 — разрешение счета.	
1	IE 0	Флаги запроса внешних прерываний по входам ~INT0	
3	IE 1	и ~INT1 соответственно; устанавливаются аппаратно	
		(от внешних устройств) или программно и вызывают	
		подпрограмму обработки прерываний. Если прерыва-	
		ние вызвано по фронту сигнала, эти флаги сбрасыва-	
		ются аппаратно при переходе к подпрограмме. Если	
		прерывание было вызвано низким уровнем на входе	
		~INT0 (~INT1), то сброс флага должна выполнять под-	
		программа обслуживания прерывания, воздействуя на	
	TITE O	источник прерывания для снятия запроса.	
0	IT 0	Управление видом прерывания отдельно по входам	
2	IT 1	~INT 0 или ~INT 1 :	
		IT = 0 — прерывание по уровню (низкому),	
		IT = 1 — прерывание по фронту «1–0»	

РЕЖИМ РАБОТЫ «0» (M0=0, M1=0) функционально совместим с таймером/счетчиком микроконтроллера MCS-48. Деление импульсов Машинных Циклов (МЦ) на 32 выполняют 5 младших разрядов регистров TL 0, TL 1.

Логика работы в РЕЖИМЕ 0 на примере T/C 0 показана на рис. 6 Для T/C 1 логика работы аналогична.

Рис. 6 - Логика работы Т/С 0 в РЕЖИМЕ 0 (в РЕЖИМЕ 1 Т<math>L 0 - 8 бит)

Счет начинается при установке бита TR 0 регистра TCON в состояние «1». (Если бит TR = 0, то регистры соответствующих таймеров/ счетчиков TH и TL могут использоваться как дополнительные POHы).

Установка бита GATE в единичное состояние позволяет в режиме внутреннего таймера измерять длительность импульсного сигнала, подаваемого на вход внешнего прерывания ~INT.

РЕЖИМ РАБОТЫ «1» (М0=1, М1=0) аналогичен РЕЖИМУ «0». Отличие состоит в том, что таймерные регистры TL, TH - 16-ти разрядные.

РЕЖИМ РАБОТЫ «2» (М0=0, М1=1) представляет собой 8-ми разрядный делитель TL 0 (или TL 1) с переменным (программируемым) коэффициентом деления. При каждом переполнении 8-ми разрядного счетчика TL 0 устанавливается флаг TF 0 и происходит перезагрузка счетчика TL 0 из регистра TH 0 (рис. 7). Для T/С 1 логика работы аналогична.

РЕЖИМ РАБОТЫ «3» различный для T/C 0 и T/C 1.

Счетчик T/C 1 бессмысленно программировать в режиме «3», потому что он будет заблокирован (сохраняет свое текущее значение).

Счетчик T/C 0 в РЕЖИМЕ «3» представляет собой два независимых 8-ми разрядных счетчика TL 0 и TH 0.

TL 0 может работать в режиме таймера и в режиме счетчика. За ним сохраняются все биты управления T/C 0 и входные сигналы T0, ~INT0 (см. рис. 8). TH 0 может работать только в режиме таймера, использует бит включения TR 1 и выставляет флаг переполнения TF 1 (рис. 8).

Этот режим позволяет реализовать два восьмибитовых таймера из T/C 0, если T/C 1 уже занят — формирует частоту обмена для последовательного интерфейса (последовательного порта).