E-402-STFO PROBLEMS FOR MODULE E

CREATED BY HENNING ULFARSSON

This module is concerned with k-nearest neighbors.

You get a perfect score for this module by getting 65 points or more.

Problem 1 (1 point). Write a function mEp1(x,y) that given two vectors x and y of the same length, computes the Euclidean distance between x and y.

Problem 2 (1 point). Write a function $\mathtt{mEp2}(\mathtt{x},\mathtt{y})$ that given two vectors \mathtt{x} and \mathtt{y} of the same length, computes the Manhattan distance between \mathtt{x} and \mathtt{y} .

Problem 3 (2 points). Write a function mEp3(x,y) that given two vectors x and y of the same length, containing only 0's and 1's, computes the Hamming distance between x and y.

Problem 4 (7 points). Write a function $\mathtt{mEp4}(\mathtt{x},\mathtt{y})$ that given two vectors \mathtt{x} and \mathtt{y} of the same length, containing only 0's and 1's, computes the Levenshtein distance between \mathtt{x} and \mathtt{y} .

Problem 5 (4 points). Write a function $\mathtt{mEp5}(x,y)$ that given two vectors x and y of the same length, which is a square, computes the rank distance between the matrices constructed from the vectors.

Date: Updated November 7, 2013.

Problem 6 (15 points). Write a function mEp6(L,dist) that given a list L of tuples, (P,a), where P is a point (or vector) with n coordinates, and a is an integer representing the label of the point P, checks whether the points in L satisfy the axiom of neighborliness with respect to the distance dist.

Problem 7 (15 points). Write a function mEp7(L,J,dist) that given a list L of tuples, (P,a), where P is a point (or vector) with n coordinates, and a is an integer representing the label of the point P, and another list J, containing points Q that need to be labelled, outputs a labelled version of J, using the nearest (in the metric dist) labelled neighbor of each Q to guess the label. Ties should be broken by choosing the lower valued label.

Problem 8 (10 points). Write a function mEp8(L,J,dist,k) that given a list L of tuples, (P,a), where P is a point (or vector) with n coordinates, and a is an integer representing the label of the point P, and another list J, containing points Q that need to be labelled, outputs a labelled version of J, using the k nearest (in the metric dist) labelled neighbor of each Q to guess the label (so the most common label gets chosen. Ties should be broken by choosing the lower valued label).

Problem 9 (20 points). Repeat the exploration done on the page http://jeremykun.com/2012/08/26/k-nearest-neighbors-and-handwritten-digit-classification/ on the same data (always use the first half to train on, do not shuffle the data) for all the metrics above and find which k is best for each. Write a short \LaTeX report.

School of Computer Science, Reykjavík University, Menntavegi 1, 101 Reykjavík, Iceland

E-mail address: henningu@ru.is