Kaggle Seasons #06

Meet the Crew

Karl

What is Kaggle?

- The platform for everything Al/ML/Data Science
- Go-to platform for ML/Data Science competitions
- Teams competing from all around the world
- Boosts Employability (amazing for CV!)
- Opportunity to:
 - Meet talented people
 - Discover cutting edge methods
 - Develop real-world skills from real-life industry projects

Last Semester Review

- Participated in 1 external hackathon at Google
- Organized our own Christmas Hackathon with 5+ teams competing
- Held several social events
- Competed in several monthly Kaggle competitions (10 teams)
 - November competition with 7 teams (shown next slide)

Last Semester Review

#	Δ	Team	Members	Score	Entries	Last Solution
964	- 212	QMML - JoFraMo	000	0.94025	1	2mo
1051	₹ 89	QMML - EEI	000	0.94015	15	2mo
1510	▼ 96	QMML - RKRA	9 9	0.93908	1	2mo
1551	→ 139	QMML - Tanisha Srivastava	(1)	0.93896	1	2mo
1552	- 139	QMML - Big Data Energy	999	0.93896	2	2mo
2199	→ 53	QMML - Herb	999	0.92977	1	2mo
2300	~ 15	QMML - Buckshots	899	0.92503	7	2mo

Plans for this semester

- Lectures and interactive sessions with Kaggle grandmasters
- More external hackathons for all skill ranges
- Industry-focused competitions
- More social events
- More collaborations with societies and companies

What now?

- 1. Fill out the survey form (shown next slide)
- 2. Go to your group (survey based results)
- 3. Talk to everyone in the group
- 4. Break into teams of 3-4

5 Minutes for Sign-up!

SLACK FORM

Intro to Gradient Boosting

What is gradient boosting? (Continued)

- Gradient boosting is a form of generalised form of boosting
- Boosting is an ensemble learning approach which starts from weak models and iteratively improves them with the help of other weak models
- Gradient boosting achieves iterative improvement by training new models on the residuals of previous models
- Instead of fitting models directly on residuals, which can often be noisy, gradient boosting instead fits on more noise-resistant, gradient-based estimators of residuals, hence the name (more details next week!)

What is gradient boosting? (Continued)

- Gradient boosting works most effectively with decision trees as the initial weak learners, as they are less prone to overfitting
- Therefore, almost all state-of-the-art gradient boosting algorithms are based on decision trees
- Notable examples are CatBoost, XGBoost, and LightGBM (again, more details next week!)
- Gradient boosting generally outperforms traditional supervised learning algorithms such as linear/logistic regression, random forest, etc on structured data

What is gradient boosting? (Continued)

model rank	accuracy	F1 score	AUC	model rank	accuracy	F1 score	AUC
#1	LightGBM	LightGBM	LightGBM	#7	GBM	GBM	GBM
	randomized	randomized	randomized		Bayesian	Bayesian	Bayesian
	9.75	9.62	9.46		6.50	6.17	6.50
#2	LightGBM	LightGBM	LightGBM	#8	CatBoost	CatBoost	CatBoost
	Bayesian	Bayesian	Bayesian		Bayesian	Bayesian	Bayesian
	7.54	8.25	8.38		6.17	6.08	6.21
#3	XGBoost	CatBoost	XGBoost	and the second	CatBoost	CatBoost	GBM
	no tuning	no tuning	randomized	#9	randomized	randomized	randomized
	7.50	7.54	7.21		5.71	5.50	6.12
#4	CatBoost	XGBoost	XGBoost	#10	XGBoost	XGBoost	CatBoost
	no tuning	no tuning	Bayesian		Bayesian	Bayesian	randomized
	7.12	7.50	6.88		5.54	5.33	5.96
#5	XGBoost	XGBoost	CatBoost	#11	LightGBM	LightGBM	LightGBM
	randomized	randomized	no tuning		no tuning	no tuning	no tuning
	6.88	6.88 7.04 6.75			5.25	4.83	5.21
#6	GBM	GBM	XGBoost		GBM	GBM	GBM
	randomized randomized no tuning #5.58 6.62 6.54		no tuning	#12	no tuning	no tuning	no tuning
			5000	3.46	3.50	2.79	

Table 6: Final rankings of 12 models for accuracy, F1 score and AUC

[1] Florek, P. & Zagdański, A. Benchmarking state-of-the-art gradientboosting algorithms for classification. Preprint at https://doi.org/10.48550/arXiv.2305.17094 (2023)

How important is gradient boosting in ML?

How important is gradient boosting in ML?

VERY. Next question.

How important is gradient boosting in ML?

- Gradient boosting is the current state of the art for supervised learning on structured data
- The vast majority of Kaggle competition winners and top performance utilise gradient boosting somewhere in the loop
- However, gradient boosting is less optimal for unstructured data, which requires more adaptive approaches such as NNs
- Gradient boosting also isn't as effective on high-dimensional datasets due its lack of parallelisation and computational cost

Thanks for listening!

