CS112: Data Structures

Lecture 12:

Heaps Graphs Shortest path

Final Exam

- Wednesday, August 16
 - 2 weeks from today
- 6:00 PM
- In our normal lecture room
- More cumulative than Exam 2 was
- Topic list and practice exam will be on Sakai

- Today's topics
 - Heaps
 - Graphs
 - shortest path

Review: Priority Queues

- Each data item has a priority
- Add items to queue in any order
- Remove items in priority order
 - add A:5, B:6, C:3
 - remove B
 - add D:4
 - remove A, remove D

Priority Queue as an Array

- · Either as sorted or unsorted, one of
 - add item to queue, or
 - remove highest priority itemis O(n)
- Can we add and remove in less than O(n)?

Heap

- A heap is a way to implement a priority queue with O(log n) complexity
- A heap is a complete binary tree
 - all levels except maybe the last are full
 - last level filled from left to right

New: Heap

• And the number at a node is greater than the number at any descendant

Heap Representation

- Store heap in an array
 - For node at index j, children are at 2j+1 and 2j+2
 - Parent at floor((j-1)/2)
 - Root at index 0

Heap Insert

Add node at end of last level

• Move up restoring order (filter up)

Big O of insertion

- O(H) where H is height of whole tree
 - = O(log(n)) where n is number of nodes
- Heap is a complete binary tree so this is impossible:

Heap Deletion

- Copy out data at root
- Delete last node on last row & put data in root
- Move down restoring order (filter down)

Filter Down

- Compare current node and its two children
 - if current node largest, stop
 - if left child is largest
 swap data of current and left, current ← left
 - similarly if right child is largest

12

Big O of deletion

- O(H) where H is height of whole tree
 - = O(log(n)) where n is number of nodes

- Go through the array in reverse order
 - from parent of the last leaf
 - to index 0
- At each node, do filter-down

- Work at a node is O(h) where h is height of subtree rooted at that node
- In a complete binary tree, majority of nodes close to bottom, so adds up to O(n)

Implementing a heap

See tree/Heap.java

Heap Sort

- Heapify unsorted array: O(n)
- Remove all n items from the heap, one by one: n*O(log n) = O(n log n)
- Total: $O(n)+O(n \log n) = O(n \log n)$

Review: Graphs

Generalization of trees

- Digraph (Directed Graph)
 - Like a tree but any vertex can point to any other

- E.g., Twitter follows relationship

Graphs

Generalization of trees

- Graph
 - like digraph but arcs have no direction

- E.g., Facebook friends relationship

Graphs

- Weighted Graph
 - Positive integer weights on each edge

Applications

- Paths
 - On streets (eg Google Maps)
- Electrical networks
 - Power lines
 - Printed Circuits
- Constraints
 - Ordering constraints on building steps eg counters before sinks
- Many more

Notation

• Arcs are named by the vertices they connect

- Neighbors of a vertex: vertices that it shares an arc with
 - Neighbors of A are B and C
- Degree of a vertex: number of neighbors
 - Degree of A is 2, degree of B is 3

- In degree (in a digraph): number of vertices that have arcs to this vertex
 - In degree of B is 1
- Out degree (in a digraph): number of vertices that have arcs from this vertex
 - Out degree of B is 2

CS112: Slides for Prof. Steinberg's lecture

- (Simple) Path
 - Sequence of arcs(A,B),(B,C)
 - May not revisit a vertex(B,A),(A,C),(C,B),(B,D)
 - Except last vertex may =
 first
 (B,A),(A,C),(C,B)
- Vertex A is reachable from B if there is a path from B to A

Path

On digraph must follow arc directions

(A,B),(B,D)

(A,C),(C,B)

- A cycle is a path from a node back to itself
 (A, B)(B, D)(D, A)
- A graph with no cycles is called acyclic

Connected Graph
 For any two vertices X and Y
 there is a path from X to Y.

not connected

- Strongly Connected Digraph
 - For any two vertices X and Y there is a path from X to Y. (Paths must follow arc directions)
- Weakly Connected Digraph
 Corresponding graph is
 connected (i.e., ignoring arc
 direction)

• Weighted graph: each arc has a numerical weight

Representing Graphs

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

Representing Graphs

- Adjacency matrix
 - n x n boolean matrix: weight of the arc or -1

Representing Graphs

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

Adjacency Matrix

- Space cost: v^2 booleans where v is number of vertices
- If v is large, v^2 is huge
 - Facebook: $v = 10^9$, $v^2 = 10^{18}$ 1,000,000,000,000,000,000
 - An average Facebook user has about 350 friends
 - if e is number of edges, $e = 10^9 * 175$
 - Fraction of Trues in matrix = $10^9 * 175 / 10^{18} = 1.75 * 10^{-7}$ $\approx 1 / 5,000,000$

Sparse vs Dense Graphs

Sparse

Dense

Representing Graphs

- Adjacency list
 - -for each node, a linked list of edges that touch it

Representing Graphs

- Adjacency list
 - -for each node, a linked list of edges that touch it
 - -Space cost: 2 * (v + e) = O(v+e)
 - -For Facebook: $2*(10^9 + 175 * 10^9)$ = $350*10^9$

Representing Graphs

- Adjacency list
 - for each node, linked list of edges

Time costs, Worst case

	Is there and edge from i to j	List the neighbors of i
Adjacency matrix	O(1)	O(v)
Adjacency list	O(d)	O(d)

d is degree of vertex i, d<v (usually d << v)

New: Shortest Path

- weighted digraph
 - weights are all > 0
- "length" of a path = sum of weights of arcs on path
- given start vertex, end vertex, find shortest path from start to end

Shortest Paths

- What is the shortest path
 - from A to E?
 - from A to F?

Shortest Paths

• If a shortest path from A to E runs through F, the part from A to F is a shortest path from A to F

- These can be put together to form a tree
- A Shortest Path Tree

- Grow a tree of shortest paths from start
 - grow it one vertex at a time, closest to farthest
- Fringe: nodes that are not in the tree yet but have a neighbor in the tree

- Vertices in the tree have
 - a link: first step on the shortest path back to start
 - a distance: the length of that whole path back to start

- Vertices in the fringe have
 - a link: an arc to the tree if > 1 of these, use the arc that gives the shortest path back to start
 - a distance: the length of the path using link

Algorithm:

Put start vertex in the tree
While there are any vertices in fringe
Let v be vertex in fringe with
smallest distance-from-start.
Put v in the tree.
Update fringe

Update fringe

- Neighbors of v that are not in tree or fringe get added to fringe
- Neighbors of v that are in the fringe get checked: would changing link to be v result in a smaller distance? If so, change link and distance

J → tree, Update fringe

$J \rightarrow tree$

Update fringe: neighbors → fringe

Update fringe: Check neighbors' links

Step:	1
Node	SLD
Α	Tx0
В	FA5
С	FA4
D	FA7
Е	Nxx
G	Nxx

State:

T: in Tree

F: in Fringe

N: Neither

Step:	1	2
Node	SLD	SLD
Α	Tx0	
В	FA5	FA5
С	FA4	TA4
D	FA7	FA7
Е	Nxx	Nxx
G	Nxx	FC12

Step:	1	2	3
Node	SLD	SLD	SLD
Α	Tx0		
В	FA5	FA5	TA5
С	FA4	TA4	
D	FA7	FA7	FB6
Е	Nxx	Nxx	Nxx
G	Nxx	FC12	FC12

Step:	1	2	3	4
Node	SLD	SLD	SLD	SLD
Α	Tx0			
В	FA5	FA5	TA5	
С	FA4	TA4		
D	FA7	FA7	FB6	TB6
E	Nxx	Nxx	Nxx	FD7
G	Nxx	FC12	FC12	FC12

Step:	1	2	3	4	5
Node	SLD	SLD	SLD	SLD	SLD
Α	Tx0				
В	FA5	FA5	TA5		
С	FA4	TA4			
D	FA7	FA7	FB6	TB6	
E	Nxx	Nxx	Nxx	FD7	TD7
G	Nxx	RC12	FC12	FC12	FE9

Step:	1	2	3	4	5	6
Node	SLD	SLD	SLD	SLD	SLD	SLD
Α	Tx0					
В	FA5	FA5	TA5			
С	FA4	TA4				
D	FA7	FA7	FB6	TB6		
E	Nxx	Nxx	Nxx	FD7	TD7	
G	Nxx	FC12	FC12	FC12	FE9	TE9

