# STAT406- Methods of Statistical Learning Lecture 12

Matias Salibian-Barrera

UBC - Sep / Dec 2017

- Trees can be highly variable
- Trees computed on samples from the sample population can be quite different from each other
- For example, we split the Boston data in two...

#### Boston - Half 1



#### Boston - Half 2



- Linear regression, for example, is not so variable
- Estimated coefficients computed on the same two halfs

```
(Intercept) crim zn indus chas
[1,] 39.21 -0.13 0.04 0.04 2.72
[2,] 33.12 -0.10 0.05 -0.01 2.80

nox rm age dis rad tax
[1,] -20.07 3.45 0 -1.44 0.28 -0.01
[2,] -14.18 4.15 0 -1.46 0.34 -0.02

ptratio black lstat
[1,] -1.01 0.01 -0.56
[2,] -0.90 0.01 -0.50
```

- If we could average many trees trained on independent samples from the same population, we would obtain a predictor with lower variance
- If  $\hat{f}_1$ ,  $\hat{f}_2$ , ...,  $\hat{f}_B$  are B regression trees, then their average is

$$\hat{f}_{av}(\mathbf{x}) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_{i}(\mathbf{x})$$

- However, we generally do not have B training sets...
- We can **bootstrap** the training set to obtain B pseudo-new-training sets
- Let  $(Y_1, \mathbf{X}_1)$ ,  $(Y_2, \mathbf{X}_2)$ , ...,  $(Y_n, \mathbf{X}_n)$  be the training sample, where

$$(Y_j, \mathbf{X}_j) \sim F_0$$

- If we knew F<sub>0</sub>, then we could generate / simulate new training sets, and average the resulting trees...
- We do not know F<sub>0</sub>, but we have an estimate for it
- Let  $F_n$  be the empirical distribution of our only training set  $(Y_1, \mathbf{X}_1)$ ,  $(Y_2, \mathbf{X}_2)$ , ...,  $(Y_n, \mathbf{X}_n)$

We know that

$$F_n \xrightarrow[n\to\infty]{} F_0$$

(in what sense?)

- Bootstrap generates / simulates samples from F<sub>n</sub>
- Taking a sample of size n from  $F_n$  is the same as sampling with replacement from the training set  $(Y_1, \mathbf{X}_1), (Y_2, \mathbf{X}_2), \ldots, (Y_n, \mathbf{X}_n)$

- To apply bagging to a regression tree, take B independent samples (with replacement) from the training set
- Obtain the B trees:  $\hat{f}_1^*$ ,  $\hat{f}_2^*$ , ...,  $\hat{f}_B^*$
- and average their predictions

$$\hat{f}_{\text{bag}}(\mathbf{x}) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_{i}^{*}(\mathbf{x})$$

- Generally, we apply bagging on "large" trees, without pruning them (try to retain their low-bias and reduce their variance by averaging)
- With the Boston data set, if we apply bagging to the regression tree computed on the training set, and then use it to predict on the test set, we obtain:

• B = 1> mean((dat.te\$medv - pr.ba)^2) [1] 16.44972 • B = 5> mean((dat.te\$medv - pr.ba)^2) [1] 15.12332 • B = 100> mean((dat.te\$medv - pr.ba)^2) [1] 12.30543 • B = 500> mean((dat.te\$medv - pr.ba)^2) [1] 12.32504

B = 2000
mean((dat.te\$medv - pr.ba)^2)
[1] 11.8116
B = 5000
mean((dat.te\$medv - pr.ba)^2)
[1] 11.85943

- This approach applies to any predictor (not only trees)
- It will be particularly useful for low-bias / high-variance predictors

#### Classification



# Predict hand-written digits



- In general, we have n observations (training)
- $(g_1, \mathbf{x}_1), (g_2, \mathbf{x}_2), \ldots, (g_n, \mathbf{x}_n)$
- we would like to build a classifier, a function  $\hat{g}(\mathbf{x})$  to predict the true class g of a future observation  $(g, \mathbf{x})$  (for which g is unknown)

- In general, there are K possible classes,  $c_1, c_2, \ldots, c_K$ . In other words  $g \in \{c_1, c_2, \ldots, c_K\}$
- Consider the following loss function

$$L(a,b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}$$

• Find a classifier  $\hat{g}(\mathbf{x})$  such that

$$E_{(G,\mathbf{X})}[L(G,\hat{g}(\mathbf{X}))] \leq E_{(G,\mathbf{X})}[L(G,h(\mathbf{X}))]$$

for any other function h

$$E_{(G,\mathbf{X})}\left[L\left(G,\hat{\mathbf{g}}(\mathbf{X})\right)\right] = E_{\mathbf{X}}\left\{E_{G|\mathbf{X}}\left[L\left(G,\hat{\mathbf{g}}(\mathbf{X})\right)\right]\right\}$$
$$= E_{\mathbf{X}}\left\{\sum_{j=1}^{K}L\left(c_{j},\hat{\mathbf{g}}(\mathbf{X})\right)P\left(G=c_{j}|\mathbf{X}\right)\right\}$$

• It is sufficient to find  $\hat{g}(\mathbf{X})$  that minimizes

$$egin{aligned} \sum_{j=1}^{K} L\left(c_{j}, \hat{g}(\mathbf{X})
ight) P\left(G = c_{j} \middle| \mathbf{X}
ight) \ &= \sum_{c_{j} 
eq \hat{g}(\mathbf{X})} P\left(G = c_{j} \middle| \mathbf{X}
ight) \ &= 1 - P\left(G = \hat{g}(\mathbf{X}) \middle| \mathbf{X}
ight) \end{aligned}$$

• Hence, the optimal classifier satisfies

$$P(G = \hat{g}(\mathbf{X})|\mathbf{X}) \geq P(G = c_i|\mathbf{X})$$
 for all  $c_i$ 

## More than 2 groups

• In other words,  $\hat{g}(\mathbf{X})$  should be the class with the highest probability

$$\hat{g}(\mathbf{X}) = \arg \max_{\mathbf{g} \in \{c_1, \dots, c_K\}} P(G = \mathbf{g} | \mathbf{X})$$

 "Assign X to the class with largest posterior probability given X"