Fifth grade students from two neighboring counties took a placement exam.

- Group 1, from County A, consisted of 8 students. The sample mean score for these students was 77.2 and the sample variance is 15.3.
- Group 2, from County B, consisted of 10 students and had a sample mean score of 75.3 and the sample variance is 19.7.

From previous years of data, it is believed that the scores for both counties are normally distributed.

Derive a test to determine whether or not the two population means are the same.

$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$

 $\overline{X}_1 - \overline{X}_2$ is normally distributed

$$\overline{X}_1 - \overline{X}_2 \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1} \right)$$

 $\overline{X}_1 - \overline{X}_2$ is normally distributed

$$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

• \overline{X}_1 - \overline{X}_2 is normally distributed

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \sim$$

If both sample sizes are large, the sample variances are decent approximations for the true variances, so do the test as in the last Lesson. (approximate Z-test)

• $\overline{X}_1 - \overline{X}_2$ is normally distributed

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \sim$$

If at least one sample size is small, the sample variances are not great approximations for the true variances.

- Suppose that $X_{1,1}, X_{1,2}, ..., X_{1,n_1}$ is a random sample of size n_1 from the normal distribution with mean μ_1 and variance σ_1^2 .
- Suppose that $X_{2,1}, X_{2,2}, ..., X_{2,n}$ is a random sample of size n_2 from the normal distribution with mean μ_2 and variance σ_2^2 .
- Suppose that σ_1^2 and σ_2^2 are unknown and that the samples are independent.
- Suppose that σ_1^2 and σ_2^2 are equal!

- Since we are assuming that $\sigma_1^2 = \sigma_2^2$, there is no need for subscripts.
- Call the common value σ^2 .
- We have two sample variances, S_1^2 and S_2^2 that we would like to combine into a single estimator for σ^2 .
- Call the combined estimator a pooled variance and denote it by S_p^2 .

Pooled Variance

How about

$$S_p^2 = \frac{S_1^2 + S_2^2}{2} \quad ?$$

We won't use this because:

- If one sample variance is from a larger sample, we'd like to give it more weight.
- The distribution...?

Pooled Variance

Define

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Note that
$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} = \underbrace{\frac{(n_1 - 1)S_1^2}{\sigma^2} + \underbrace{\frac{(n_2 - 1)S_2^2}{\sigma^2}}_{\chi^2(n_1 - 1)}$$

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} \sim N(0, 1)$$

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\sigma^{2}}}$$

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) S_{p}^{2}}}$$

$$= \frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\sigma^{2}}} \cdot \sqrt{\frac{\sigma^{2}}{S_{p}^{2}}}$$

$$= \frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\sigma^{2}}} / \sqrt{\frac{S_{p}^{2}}{\sigma^{2}}}$$

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\sigma^{2}}}$$

$$\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}} \sigma^{2}} / (n_{1} + n_{2} - 2)$$

So,

$$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) S_{p}^{2}}} \sim t(n_{1} + n_{2} - 2)$$

$$H_0: \mu_1 - \mu_2 = 0$$

Step One:

$$H_1: \mu_1 - \mu_2 \neq 0$$

Choose an estimator for $\theta = \mu_1 - \mu_2$.

$$\hat{\theta} = \overline{X}_1 - \overline{X}_2$$

Step Two:

Give the "form" of the test.

Reject H₀, in favor of H₁ if either

$$\hat{\theta} > c$$
 or $\hat{\theta} < -c$

for some c to be determined.

$$H_0: \mu_1 - \mu_2 = 0$$

Step Three:

$$H_1: \mu_1 - \mu_2 \neq 0$$

$$\alpha = P(Type I Error)$$

$$= P(Reject H_0; \theta = 0)$$

$$= P(\overline{X}_1 - \overline{X}_2 > c \text{ or } \overline{X}_1 - \overline{X}_2 < -c; \theta = 0)$$

$$= 1 - P(-c \le \overline{X}_1 - \overline{X}_2 \le c ; \theta = 0)$$

$$\mu_1 - \mu_2 = 0$$

Step Three:

$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$

$$= 1 - P(-c \le \overline{X}_1 - \overline{X}_2 \le c ; \theta = 0)$$

- Subtract $\mu_1 \mu_2$ (which is 0)
- Divide by

$$\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S_P^2$$

 $H_0: \mu_1 = \mu_2$

Step Three:

$$H_1: \mu_1 \neq \mu_2$$

$$\alpha = 1 - P(-d \le T \le d)$$

where
$$T \sim t(n_1 + n_2 - 2)$$

and

$$d = c / \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S_P^2$$

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

Step Three:

$$P(-d \le T \le d) = 1 - \alpha$$

$$\Rightarrow d = t_{\alpha/2, n_1 + n_2 - 2}$$

$$\Rightarrow c = t_{\alpha/2, n_1 + n_2 - 2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_P^2}$$

$$H_0: \mu_1 = \mu_2$$

Step Four:

$H_1: \mu_1 \neq \mu_2$

Conclusion:

Reject H₀, in favor of H₁, if

$$\overline{X}_1 - \overline{X}_2 > t_{\alpha/2, n_1 + n_2 - 2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_P^2}$$

or

$$\overline{X}_1 - \overline{X}_2 < -t_{\alpha/2, n_1 + n_2 - 2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_P^2}$$

Fifth grade students from two neighboring counties took a placement exam.

- Group 1, from County A, consisted of 8 students. The sample mean score for these students was 77.2 and the sample variance is 15.3.
- Group 2, from County B, consisted of 10 students and had a sample mean score of 75.3 and the sample variance is 19.7.

From previous years of data, it is believed that the scores for both counties are normally distributed.

Can we say that the true means for Counties A and B are different?

Test the relevant hypotheses at level 0.01.

$$H_0: \mu_1 = \mu_2 \qquad H_1: \mu_1 \neq \mu_2$$

$$n_1 = 8$$
 $n_1 = 10$ $\overline{x}_1 = 77.2$ $\overline{x}_1 = 75.3$ $s_1^2 = 15.3$ $s_2^2 = 19.7$

$$\alpha = 0.01$$
 $t_{0.005,16} = 2.92$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$\overline{x}_1 - \overline{x}_2 = 77.2 - 75.3 = 1.9$$

$$t_{\alpha/2,n_1+n_2-2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_P^2}$$

$$= 2.92 \sqrt{\left(\frac{1}{8} + \frac{1}{10}\right)} (17.775)$$

Since
$$\overline{x}_1 - \overline{x}_2 = 1.9$$
 is not

- above 5.840, or
- below -5.840

we fail to reject H_0 , in favor of H_1 at 0.01 level of significance.

The data do not indicate that there is a significant difference between the true mean scores for counties A and B.