CONTINUOUS PROBABILITY DISTRIBUTIONS

Normal Probability Distribution

Bell curves and z-scores

7.1 Identify the three defining characteristics of the normal probability distribution.

The normal probability distribution is a bell-shaped continuous distribution that fulfills the following conditions:

- The distribution is symmetrical around the mean.
- · The mean, median, and mode are the same value.
- · The total area under the curve is equal to one.

 $P(X < x) \Rightarrow \text{Use Z-Chart}$

Continuous Uniform Distribution

Going from a bell-shaped to a box-shaped distribution

7.38 Identify the defining characteristics of the continuous uniform distribution.

The continuous probability distribution is defined by two values, a and b, that represent the minimum and maximum values respectively. All intervals of the same length between a and b are equally probable.

To calculate the probability that a random variable will lie between x_1 and x_2 in the distribution, apply the following equation.

$$P(x_1 \le x \le x_2) = \frac{x_2 - x_1}{b - a}$$

Using the Normal Distribution to Approximate the Binomial Distribution

Another binomial probability shortcut

7.30 Describe the conditions under which the normal distribution can be used to approximate the binomial distribution.

If *n* represents the number of trials in which only outcomes *p* and *q* may occur, the normal distribution can be used to approximate the binomial distribution as long as $np \ge 5$ and $nq \ge 5$.

Continuity correction is used when a continuous distribution (such as the normal distribution) is used to approximate a discrete distribution (such as the binomial distribution). To correct for continuity, add 0.5 to a boundary of x or subtract 0.5 from a boundary of x as directed below:

- Subtract 0.5 from the *x*-value representing the left boundary under the normal curve.
- Add 0.5 to the *x*-value representing the right boundary under the normal curve.

Note that continuity correction is unnecessary when n > 100.

Calculate the mean and standard deviation of the binomial distribution.

$$\mu = np$$
$$\sigma = \sqrt{npq}$$

The problem asks you to calculate $P(7 \le x \le 8)$. Apply the continuity correction to adjust the boundaries: $P(6.5 \le x \le 8.5)$.

Calculate the z-scores for endpoints x = 6.5 and 8.5.

Exponential Distribution

Like the Poisson distribution, but continuous

7.45 Identify the defining characteristics of the exponential distribution.

The exponential probability distribution is a continuous distribution commonly used to measure the time between events of interest, such as the time between customer arrivals at a retail store or the time between failures in a process.

In Chapter 6, the variable λ was used to represent the mean of the Poisson distribution, a discrete distribution that counted the number of times an event occurred during a specific time period. The mean and the standard deviation of the exponential distribution are both $\frac{1}{\lambda}$.

The exponential distribution is the continuous counterpart of the discrete Poisson distribution. For example, if a random variable follows the Poisson distribution with an average occurrence of two times per minute (λ = 2), then the same random variable also follows the exponential distribution with a mean and standard deviation of $\frac{1}{\lambda} = \frac{1}{2} = 0.5$.

If *x* is a random variable that follows the exponential distribution, then the probability that $x \ge t$ is $e^{-\lambda t}$.

$$P(x \ge t) = e^{-\lambda t}$$

$$P(X < x) = 1 - e^{-\gamma x}$$