

MECH468: Modern Control Engineering MECH509: Controls

L1: Introduction

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

Zoom lecture to be recorded and posted on Canvas

MECH 468/509

Remarks before starting ...

- No need to take notes extensively in this course!
 - All the lecture slides will be posted on Canvas.
 - All lectures are recorded and posted on Canvas.
 - You may want to write down some additional information that I present in the lecture and that you feel important.
- Just listen to me carefully!
- Ask me any question at any time!
 - Write your questions in Zoom chat message.
 - Use "raise-hand" functionality in Zoom.
 - Interrupt me by turning on your mic and speaking.

Instructor and TA

- Instructor : Dr. Ryozo Nagamune (Call me "Ryozo".)
 - Associate Professor at MECH Department
 - Email: nagamune@mech.ubc.ca
 - Office hours
 - TuTh 5-6pm, at Zoom location given on Canvas, or
 - by appointment, at Zoom location given by email
 - Research interest: Control theory and applications
 e.g. wind turbine/farm, solar thermal system,
 automotive engine system
- TA for HW marking
 - Yue Niu: niuyueubc@gmail.com

Course information

- Canvas canvas.ubc.ca.
 - All information on this course (including lecture slides and homework) will be posted.
- Email will be sent to you if necessary.
- Recommended co-requisite: Classical control (UBC courses: MECH466, MECH467, ELEC341)
- Required textbook: None
- Optional textbooks: given in Syllabus
- Matlab installed on your computer is required.

https://blogs.ubc.ca/labsos/software-listing/matlab-w-simulink/

Main components of the course and grading scheme

- Live lectures (30 times), MWF at 1-1:50pm
- 5 homework assignments (20%)
 - Schedule is given on Canvas.
 - Scan and upload your answers on Canvas.
 - Late hand-in will NOT be accepted.
 - No plagiarism! (Do NOT copy and paste other's work.)
- Midterm (on Feb 24, Wed, 1-1:50pm) (30%)
- Final (in April) (50% for MECH468, 30% for MECH509)
- Project for MECH509 (20%)

Project (for MECH509 students)

- To show the usefulness and/or the limitation of linear control theory, each student is required to:
 - formulate a realistic control problem (preferably related to his/her own research, or otherwise we can help),
 - do analysis and design for the problem using the course material,
 - analyze the designed controller in simulations (and in experiments if possible),
 - give a seminar, and
 - submit a report.
- Start the project after the midterm.

Policies

- Exams
 - Open-book, no calculators
 - Alternative exams can be arranged:
 - for medical reasons with doctor's notes.
 - for those who live in non-PST time zone.
 - Discuss your case with the instructor before the exam dates.
 - Your exams are invigilated on Zoom or Proctorio. Please make sure that you have a computer with a webcam.
- Students pass this course based on their final course mark greater than or equal to 50%.

Expectations

- Roughly 9 hours of study per week
 - 3-hour lecture
 - 6-hour out-of-class activities (review, reading, homework, exam preparation etc.)
 - Extra 3-hour for MECH509 students (for project)
- Come to the lecture as many times as you can, or otherwise listen to the recorded lecture after each class.
- Questions (both by emails and in-person on Zoom) are welcome at any time (even outside office hours).
 - Ryozo: General questions and technical questions
 - Yue: Questions about HW marking
- Late hand-in will not be accepted.

Modern control engineering

- In this course, we learn a basic "modern" theory of automatic feedback control systems.
 - What is control?
 - What is automatic control? And why?
 - What is feedback control? And why?

What is "Control"?

 Make some object, called system or plant, behave AS WE DESIRE.

"move an object" is not control! "as we desire" is important!

- Imagine "control" around you!
 - Room temperature control
 - Car/bicycle driving
 - Balance of bank account
 - "Control" (move) the position of the pointer
 - Laundry machine
 - Automobile direction and speed control
 - Airplane, rocket, satellite control

What is "Automatic Control"?

- Not manual!
- Why do we need automatic control?
 - Convenient (room temperature control, laundry machine, autonomous car, drone delivery)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter)
 - It exists in nature. (human body temperature control)
 - Low cost, high efficiency, etc. (internal combustion engine, wind turbine, solar thermal collector)
- Many examples of automatic control around us

Open-loop & closed-loop (feedback) control

Open-loop

Closed-loop (feedback)

Examples

- Open-loop control
 - Imagine to drive a car as fast as possible.
 What will you do?
- Closed-loop control (Feedback control)
 - Imagine to drive a car at a constant speed.
 What will you do?

In this course, we are interested in theory for automatic open/closed-loop control systems.

a place of mind

Control system design objective

- Design a controller such that
 - the output follows the reference, namely, the error is reduced, in a "satisfactory" manner
 - even in the face of uncertain disturbance, reference and plant.

Two approaches to controller design

- Model-free controller design
 - Does not rely on a plant's mathematical model
 - For easy control problem (e.g. room temperature control)
 - Non-critical (not safety-critical, not costly) applications
- Model-based controller design (our interest)
 - Rely on a plant's mathematical model
 - For non-trivial control problem (e.g. nanometer precision motion control, stabilization of drone, Segway)
 - Critical applications (e.g. airplane, rocket, etc.)

Model-based controller design

Goals of classical control course

To learn basics of feedback control systems

- Modeling as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Mechanical, electrical, electromechanical systems

Analysis

- Time response, frequency response
- Stability: Routh-Hurwitz criterion, Nyquist criterion

Design

Root locus technique, frequency response technique, PID control, lead/lag compensator

Remarks on classical control

- Weak points
 - Classical control theory deals with only
 - Single-input single-output (SISO) systems
 - Linear time-invariant (LTI) systems
 - No optimality concept in controller design
 - No robustness consideration, except gain margin and phase margin
- Advanced control theories are necessary!
 - Multivariable control
 - Nonlinear and time-varying control
 - Optimal and robust control

Brief history of control engineering

- Classical control (-1950)
 - Transfer function
 - Frequency domain
- Modern control (1960-) (contents in this course)
 - State-space model
 - Time domain
 - Optimality
- Post-modern control (1980-)
 - Robust control
 - Hybrid control, etc.

Continuous-time (CT)

$$\begin{cases} \frac{dx(t)}{dt} &= A(t)x(t) + B(t)u(t) \\ y(t) &= C(t)x(t) + D(t)u(t) \end{cases}$$
$$t \in \mathbb{R}(\text{Real numbers})$$

Discrete-time (DT)

$$\begin{cases} x[k+1] = A[k]x[k] + B[k]u[k] \\ y[k] = C[k]x[k] + D[k]u[k] \\ k \in \mathbb{Z}(\text{Integers}) \end{cases}$$

x : state vector

u: input vector

y: output vector

Advantages of state-space models

- State-space models can represent fairly general systems, such as
 - Multivariable systems
 - Time-varying systems
 - Nonlinear systems
- Under certain conditions, "variables inside the system" (called states) can be
 - controlled without actuators,
 - observed without sensors.
- Analysis and design can be done in a numerically reliable manner.

To learn control theory with linear state-space models

- Modeling as a state-space model
 - Differential or difference equation (instead of TF)
 - Linear algebra (instead of Laplace transform)
- Analysis
 - Stability, controllability, observability
 - Realization, minimality
- Design
 - State feedback, observer
 - Linear Quadratic Regulator (LQR), Kalman Filter
- Matlab simulation

Course plan

Topics	СТ	DT
Modeling Stability Controllability/observability Realization State feedback/observer LQR/Kalman filter		

Summary

- Introduction of the course
- This course gives foundations for advanced control theory. (e.g., nonlinear control, robust and optimal control, adaptive control, digital control, sampled-data control, hybrid control, system identification)
- The course material is applicable to various systems. (e.g., mechanical, electrical, electromechanical, aerospace, fluid, thermal, biological, economic)
- Next, model classification
- Read the course syllabus and schedule (in Canvas).