МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра РАПС

ОТЧЕТ

по практической работе № 5

по дисциплине «Теория принятия решений»

ТЕМА: ТРАНСПОРТНАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ОТКРЫТОЙ МОДЕЛЬЮ Вариант 1

Студент гр. 9492	 Викторов А.Д
Преподаватель	Белов А.М.

Санкт-Петербург 2023 Дана следующая матрица тарифов и значения объема грузов:

14	5	27	29	23	18
17	7	16	19	2	14
20	12	15	29	5	16
14	24	18	7	14	22
8	11	11	9	21	•

Составим таблицу

Таблица 1

	B_1	B_2	B_3	B_4	B_5	a_{i}
A_1	14	5	27	29	23	18
A_2	17	7	16	19	2	14
A_3	20	12	15	29	5	16
A_4	14	24	18	7	14	22
b_{j}	8	11	11	9	21	

Так как сумма поставок и сумма потребностей различается делаем вывод, что данная транспортная задача обладает открытой моделью.

Для решения этой и подобных задач была разработана программа в среде Matlab, реализующая следующий алгоритм:

- 0. Изменение топологии матриц для формирования закрытой модели.
- 1. Построить опорный план по одному из правил: метод северо-западного угла, метод минимального элемента.
- 2. Вычислить потенциалы поставщиков и потребителей U_i и V_j , решив систему уравнений вида U_i + V_j = c_{ij} для занятых клеток.
 - 3. Вычислить оценки Sij для всех свободных клеток по формуле:

$$S_{ij} = C_{ij} - (U_i + V_j) \cdot$$

Если все $S_{ij} \geq 0$, то полученный план — оптимальный, при этом если все $S_{ij} > 0$, то этот план единственный.

Если хотя бы одна оценка $S_{ij}=0$, имеем бесчисленное множество оптимальных планов с одним и тем же значением целевой функции.

4. Если хотя бы одна оценка $S_{ij} < 0$, то план неоптимальный. Переходим к другому плану. Для этого выбираем $\min\{S_{ij} < 0\}$ и эта соответствующая клетка

будет перспективной. Строим для нее цикл. Получаем новый план. Для нового плана находим потенциалы и т. д.

Код программы представлен в листинге 1.

Листинг 1 - Исходный код программы.

```
clc, clear
% Исходные данные
A0 = [18; 14; 16; 22]; % Запасы на базах A1, A2, A3
ВО = [8; 11; 11; 9; 21]; % Потребности в пунктах В1, В2, В3, В4, В5
C0 = [14, 5, 27, 29, \overline{23};
      17, 7, 16, 19, 2;
      20, 12, 15, 29, 5;
      14, 24, 18, 7, 14]; % Матрица тарифов
if sum(A0) == sum(B0)
    disp("closed")
elseif sum(A0) > sum(B0)
    disp("open")
    B0 = [B0; sum(A0) - sum(B0)];
    C0 = [C0 zeros(size(A0,1),1)];
elseif sum(A0) < sum(B0)</pre>
    % error
end
A = A0;
B = B0;
C = C0;
% Создание пустой матрицы для плана перевозок
plan = zeros(size(A, 1), size(B, 1));
totalCost = 0; % Переменная для хранения общей стоимости перевозок
% Цикл для заполнения плана перевозок методом минимального элемента
while any(A) && any(B)
    [minCost, minIndex] = min(C(:)); % Находим минимальный тариф
    [i, j] = ind2sub(size(C), minIndex); % Получаем индексы минимального
элемсоstsента
    % Вычисляем количество груза для перевозки
    amount = min(A(i), B(j));
    plan(i, j) = amount; % Заполняем ячейку плана перевозок
    % Обновляем остаток груза на базе и в пункте назначения
    A(i) = A(i) - amount;
    B(j) = B(j) - amount;
                                                        Листинг 1 - Продолжение.
    % Подсчет стоимости для текущей перевозки
    totalCost = totalCost + amount * C(i, j);
    % Помечаем использованный тариф как бесконечность
    C(i, j) = inf;
end
disp('План перевозок методом минимального элемента:');
```

```
disp(plan);
fprintf('Общая стоимость перевозок: %d\n', totalCost); % Вывод общей стоимости
перевозок
A = A0;
B = B0;
C = C0;
% Инициализация переменных
m = numel(A);
n = numel(B);
U = zeros(m, 1); % Потенциалы для баз
V = zeros(n, 1); % Потенциалы для пунктов
totalCost = 0; % Переменная для хранения общей стоимости перевозок
optimalPlan = zeros(m, n); % Пустая матрица для оптимального плана перевозок
% Основной цикл метода потенциалов
while true
    % Поиск потенциалов
    for i = 1:m
        for j = 1:n
            if A(i) > 0 && B(j) > 0
                V(j) = C(i, j) - U(i);
            end
        end
    end
    for j = 1:n
        for i = 1:m
            if A(i) > 0 \&\& B(j) > 0
                U(i) = C(i, j) - V(j);
            end
        end
    end
    % Нахождение минимальной оценки
    S = inf; % оценка
    for i = 1:m
        for j = 1:n
            if A(i) > 0 && B(j) > 0
                S = min(S, C(i, j) - U(i) - V(j));
            end
        end
    end
    % Обновление плана перевозок и подсчет общей стоимости
    for i = 1:m
        for j = 1:n
            if A(i) > 0 \&\& B(j) > 0
                                                            Листинг 1 – Окончание.
                if C(i, j) - U(i) - V(j) == S
                    amount = min(A(i), B(j));
                    A(i) = A(i) - amount;
                    B(j) = B(j) - amount;
                    totalCost = totalCost + amount * C(i, j); % Подсчет стоимости для
текущей перевозки
                    optimalPlan(i, j) = amount; % Заполнение оптимального плана
перевозок
```

```
end
end
end
end

% Если все запасы и потребности выполнены, выход из цикла
if S == inf
break;
end
end

disp('Оптимальный план перевозок:');
disp(optimalPlan); % Вывод оптимального плана перевозок
fprintf('Общая стоимость перевозок: %d\n', totalCost); % Вывод общей стоимости
перевозок после завершения алгоритма
```

В свою очередь в программе предусмотрено определение типа задачи (открытая или закрытая). В случае открытой задачи, матрицы автоматически модифицируются, модель получается закрытой по методологии из учебного пособия.

Результат работы программы представлен в листинге 2

Листинг 2 – Результат работы программы.

type: open							
План	План перевозок		методом	ми	минимального элемен		элемента:
	0	8	0	0	0	10	
	0	0	0	0	14	0	
	0	3	6	0	7	0	
	8	0	5	9	0	0	

Общая стоимость перевозок: 494

Оптимальный план перевозок:

7	11	0	0	0	0
0	0	0	0	14	0
0	0	9	0	7	0
1	0	2	9	0	10

Общая стоимость перевозок: 464