In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn import preprocessing
import matplotlib.pyplot as plt
sns.set(style="white")
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
```

In [3]:

```
df=pd.read_csv(r"C:\Users\Teju\Downloads\framingham.csv")
df
```

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
0	1	39	4.0	0	0.0	0.0	0	_
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

4238 rows × 16 columns

In [4]:

```
df.head()
```

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0

In [5]:

df.shape

Out[5]:

(4238, 16)

In [6]:

df.info()

Data columns (total 16 columns): Column # Non-Null Count Dtype ---------0 male 4238 non-null int64 1 age 4238 non-null int64 2 education 4133 non-null float64 3 currentSmoker 4238 non-null int64 4 cigsPerDay 4209 non-null float64 5 **BPMeds** 4185 non-null float64 6 prevalentStroke 4238 non-null int64 7 4238 non-null prevalentHyp int64 8 diabetes 4238 non-null int64 9 float64 totChol 4188 non-null 10 sysBP 4238 non-null float64 11 diaBP 4238 non-null float64 float64 12 BMI 4219 non-null 13 heartRate 4237 non-null float64 14 3850 non-null float64 glucose TenYearCHD 4238 non-null int64 dtypes: float64(9), int64(7)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4238 entries, 0 to 4237

memory usage: 529.9 KB

In [7]:

df.describe()

Out[7]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	pre
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	
4	_	_					

In [8]:

```
ax=df["education"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=0.6)
df["education"].plot(kind='density',color='teal')
ax.set(xlabel='education')
plt.xlim(-0,15)
plt.show()
```



```
In [9]:

print(df['education'].mean(skipna=True))
print(df['education'].median(skipna=True))

1.9789499153157513
2.0

In [10]:

print(df['glucose'].isnull().sum()/df.shape[0]*100)

9.155261915998112

In [11]:

print(df['totChol'].isnull().sum()/df.shape[0]*100)
```

In [12]:

```
print(df['totChol'].value_counts())
sns.countplot(x='totChol',data=df,palette='Set2')
plt.show()
240.0
         85
220.0
         70
260.0
         62
210.0
         61
232.0
         59
          . .
392.0
          1
405.0
          1
359.0
          1
398.0
          1
119.0
Name: totChol, Length: 248, dtype: int64
```


In [13]:

```
print(df['totChol'].value_counts().idxmax())
```

In [14]:

```
data=df.copy()
data["education"].fillna(df["education"].median(skipna=True),inplace=True)
data["totChol"].fillna(df["totChol"].median(skipna=True),inplace=True)
data.drop('glucose',axis=1,inplace=True)
```

In [15]:

```
data.isnull().sum()
```

Out[15]:

male 0 0 age 0 education 0 currentSmoker 29 cigsPerDay **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 0 diabetes totChol 0 0 sysBP diaBP 0 BMI 19 heartRate 1 TenYearCHD 0 dtype: int64

In [16]:

```
ax=df["cigsPerDay"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=0.6)
df["cigsPerDay"].plot(kind='density',color='teal')
ax.set(xlabel='cigsPerDay')
plt.xlim(-0,80)
plt.show()
```


In [17]:

```
print(df['cigsPerDay'].mean(skipna=True))
print(df['cigsPerDay'].median(skipna=True))
```

9.003088619624615

0.0

In [19]:

```
print(df['BPMeds'].isnull().sum()/df.shape[0]*100)
```

1.2505899008966492

In [20]:

```
print(df['BMI'].isnull().sum()/df.shape[0]*100)
```

In [21]:

```
print(df['heartRate'].isnull().sum()/df.shape[0]*100)
```

0.023596035865974516

In [22]:

```
print(df['BPMeds'].value_counts())
sns.countplot(x='BPMeds',data=df,palette='Set2')
plt.show()
```

0.0 40611.0 124

Name: BPMeds, dtype: int64

In [23]:

```
print(df['heartRate'].value_counts().idxmax())
```

```
In [24]:
```

```
data["cigsPerDay"].fillna(df["cigsPerDay"].median(skipna=True),inplace=True)
data["BPMeds"].fillna(df["BPMeds"].value_counts().idxmax(),inplace=True)
data["education"].fillna(df["education"].median(skipna=True),inplace=True)
data["totChol"].fillna(df["totChol"].value_counts().idxmax(),inplace=True)
#data.drop('glucose',axis=1,inplace=True)
data.drop('BMI',axis=1,inplace=True)
data.drop('heartRate',axis=1,inplace=True)
```

In [25]:

```
data.isnull().sum()
```

Out[25]:

male	0
age	0
education	0
currentSmoker	0
cigsPerDay	0
BPMeds	0
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
TenYearCHD	0
dtype: int64	

In [26]:

```
data.head()
```

Out[26]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4								

In [27]:

```
plt.figure(figsize=(15,8))
ax=df["education"].hist(bins=15,density=True,stacked=True,color='teal',alpha=0.6)
df["education"].plot(kind='density',color='teal')
ax=data["education"].hist(bins=15,density=True,stacked=True,color='orange',alpha=0.6)
data["education"].plot(kind='density',color='orange')
ax.legend(["education","age"])
ax.set(xlabel='education')
plt.xlim(-0,10)
plt.show()
```


In [28]:

```
data['Disease']=np.where((data["prevalentHyp"]+data["prevalentStroke"])>0,0,1)
data.drop('prevalentHyp',axis=1,inplace=True)
data.drop('prevalentStroke',axis=1,inplace=True)
```

In [29]:

```
training=pd.get_dummies(data,columns=["currentSmoker","totChol","sysBP"])
training.drop('TenYearCHD',axis=1,inplace=True)
training.drop('male',axis=1,inplace=True)
training.drop('diaBP',axis=1,inplace=True)
final_train=training
final_train.head()
```

Out[29]:

	age	education	cigsPerDay	BPMeds	diabetes	Disease	currentSmoker_0	currentSmoker
0	39	4.0	0.0	0.0	0	1	1	
1	46	2.0	0.0	0.0	0	1	1	
2	48	1.0	20.0	0.0	0	1	0	
3	61	3.0	30.0	0.0	0	0	0	
4	46	3.0	23.0	0.0	0	1	0	

5 rows × 490 columns

In [30]:

```
plt.figure(figsize=(15,8))
ax = sns.kdeplot(final_train["age"][final_train.Disease == 1],color="teal")
sns.kdeplot(final_train["age"][final_train.Disease == 0],color="lightcoral")
plt.legend(['Disease','Died'])
ax.set(xlabel='age')
plt.xlim(10,100)
plt.show()
```


In [31]:

```
final_train['IsMinor']=np.where(final_train['age']<=16,1,0)</pre>
print(final_train['IsMinor'])
0
        0
1
        0
2
        0
3
        0
4
        0
4233
        0
4234
        0
4235
        0
4236
        0
4237
        0
Name: IsMinor, Length: 4238, dtype: int32
```

In [32]:

```
sns.barplot(x='Disease',y='education',data=final_train,color="mediumturquoise")
plt.show()
```


In [33]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x='diabetes',y='age',data=df,color="aquamarine")
plt.show()
```


In []: