Problem Set 5

Oskar Idland

Problem 1 figure 1

Which of the following reactions are allowed and which are forbidden by the conservation laws appropriate to weak interactions?

(a)
$$\nu_{\mu} + p \to \mu^{+} + n$$

(b)
$$\nu_e + p \to n + e^- + \pi^+$$

(c)
$$\Lambda \to \pi^+ + e^- + \bar{\nu}_e$$

$$\begin{array}{ll} \text{(b)} \ \, \nu_e + p \to n + e^- + \pi^+ \\ \text{(d)} \ \, K^+ \to \pi^0 + \mu^+ + \nu_\mu \\ \text{(f)} \ \, \tau^+ \to \mu^+ + \bar{\nu}_\mu + \nu_\tau \end{array}$$

(e)
$$\nu_e + p \to e^- + \pi^+ + p$$

(f)
$$\tau^+ \to \mu^+ + \bar{\nu}_{\mu} + \nu$$

Figure 1: Problems 3.1

The following must be conserved:

- Lepton number.
- Baryon number.
- Charge.
- Energy and momentum.
- CPT
- a) No: Lepton number is not conserved.
- b) No: Charge is not conserved.
- c) No: Baryon number is not conserved.
- d) Yes.
- e) Yes.
- f) No: Lepton number is not conserved.

Problem 2(3.3)

In Section 3.1.3 it is stated that electron neutrinos interact with electrons in a different way from muon and tauon neutrinos. Justify this remark by considering the lowestorder Feynman diagrams for $\nu_e + e^- \to \nu_e + e^-$ and $\nu_\mu + e^- \to \nu_\mu + e^-$

The electron neutrino can interact through both the neutral Z^0 -boson and the W^- -boson. The muon-neutrino can only interact with the electron through the neutral Z^0 -boson, to conserve lepton number of each generation on each side of the vertices.

Problem 3(3.5)

A KamLAND-type experiment detects $\bar{\nu}^-$ neutrinos at a distance of 200 m from a nuclear reactor and finds that the flux is $(90\pm10)\%$ of that expected if there were no oscillations. Assuming a two-component model with maximal mixing $(\theta=45^\circ)$ and a mean neutrino energy of 3 MeV, use this result to estimate the squared mass difference of the $\bar{\nu}_e$ and its oscillating partner.

Problem 4 (3.6)

If the Sun is assumed to be a uniform spherical plasma consisting of nucleons, with radius 7×105 km and total mass 2×1030 kg, calculate the mean free path $\lambda = 1/n \sigma$ of solar neutrinos from the dominant reaction (3.38) where n is the number of nucleons per unit volume and σ , the neutrino-nucleon ross-section, may be written $\sigma = 0.7$ EL \times 10–42 m2, where EL is the neutrino laboratory energy in GeV.

Problem 5 (1.3)

A proton and antiproton at rest in an S-state annihilate to produce $\pi^0\pi^0$ pairs. Show that this reaction cannot be a strong interaction.

$$p\bar{p} \to \pi^0 \pi^0$$
 (1)

The left hand side has parity -1, but the right +1. This is not possible under the strong interaction.