Матрицы

МАТРИЦЕЙ НАЗЫВАЕТСЯ ПРЯМОУГОЛЬНАЯ ИЛИ КВАДРАТНАЯ ТАБЛИЦА, ЗАПОЛНЕННАЯ ЧИСЛАМИ.

Второй столбец
$$A_{n\times m} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{array}{c} \textbf{Вторая строка} \\ a_i - i\text{-я строка} \\ a_j - j\text{-й столбец} \\ A \ m \times n \text{- матрица} \\ a_{ij} - \text{элемент матрицы} \end{array}$$

Виды матриц

- Квадратная (n = m)
- Матрица-строка (n = 1)
- Матрица-столбец (m = 1)
- Нулевая ($a_{ii} = 0$ для хвсех i,j)
- Единичная ($a_{ij}=0$ если і \neq і ; $a_{ii}=1$) только для квадратных Треугольная ($a_{ij}=0$ если і \neq і)

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \quad D = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} \quad T = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Важная характеристика квадратной матрицы — - её определитель
$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Если $\Delta = 0$, то матрица вырождена или особенная.

Другая характеристика - след матрицы

$$\operatorname{Tr} A = a_{11} + a_{22} + \dots + a_{nn}$$

Линейные операции над матрицами

- Умножение на число $B=\alpha\cdot A \implies b_{ij}=\alpha\cdot a_{ij} \quad \forall i,j$ для любых чисел и любых матриц
- Сложение $C = A + B \implies c_{ij} = a_{ij} + b_{ij} \quad \forall i,j$ только для матриц одинакового размера!

Пример.
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} - 2 \begin{pmatrix} 5 & -1 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} -9 & 5 \\ -6 & 10 \end{pmatrix}$$

Свойства линейных операций

1. Коммутативность сложения

$$A + B = B + A$$

2. Ассоциативность сложения

$$(A+B)+C=A+(B+C)$$

3. Коммутативность умножения на число

$$\alpha \cdot A = A \cdot \alpha$$

4. Ассоциативность относительно числового

множителя
$$(\alpha\beta)A = \alpha(\beta A)$$

5. Дистрибутивность умножения на число относительно сложения $\alpha(A+B) = \alpha A + \alpha B$

Транспонирование суммы
$$(A+B)^T = A^T + B^T$$

Умножение матриц

Произведением матриц A и B называется матрица C, элемент c_{ij} которой равен сумме произведений элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}$$

Таким образом

$$A \cdot B = C \implies c_{ij} = \sum_{k=1}^{N} a_{ik} b_{kj}$$

<u>Размеры матриц должны быть согласованы:</u>

Число столбцов матрицы-первого сомножителя равно числу строк матрицы-второго сомножителя.

$$A_{n \times m} \cdot B_{m \times l} = C_{n \times l}$$

Схема вычисления элемента $m{c}$

Пример.

$$\begin{pmatrix} 1 & -2 & 3 \\ -4 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 - 4 - 9 \\ 4 + 0 - 15 \end{pmatrix} = \begin{pmatrix} -14 \\ -11 \end{pmatrix}$$

Матрицы A и B **перестановочные** или **коммутирующие**, если для них выполняется условие: AB = BA.

Это значит, что такие матрицы – *квадратные*.

Важно! единичная матрица коммутирует с любой квадратной того же размера: AE = EA = A

Свойства умножения матриц

1. Ассоциативность умножения

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

2. Дистрибутивность умножения относительно сложения $(A+B)\cdot C = A\cdot C + B\cdot C;$

$$C \cdot (A+B) = C \cdot A + C \cdot B$$

3. Ассоциативность произведения относительно умножения на число

$$\alpha(A \cdot B) = (\alpha A) \cdot B = A \cdot (\alpha B)$$

4. Транспонирование произведения

$$(A \cdot B)^T = B^T \cdot A^T$$

5. Определитель произведения $\det (A \cdot B) = \det A \cdot \det B$ (для квадратных матриц)

Обратная матрица

Матрица A^{-1} называется **обратной** по отношению к матрице A, если выполняется условие

$$A \cdot A^{-1} = A^{-1} \cdot A = E \quad .$$

где Е – единичная матрица того же порядка.

Теорема. Всякая невырожденная квадратная матрица имеет обратную и притом только одну.

Доказательство существования - для матриц 2 или 3 порядка.

Доказательство единственности – в общем виде (от противного)

Формула для вычисления обратной матрицы

$$A^{-1} = \frac{1}{\det A} \left(A^* \right)^T$$

А* - матрица алгебраических дополнений элементов матрицы A (присоединённая матрица).

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad \begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

Пример. Найти матрицу, обратную к матрице $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ Решение.

$$A_{11} = \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 4; A_{12} = -\begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} = 1; A_{13} = \begin{vmatrix} 0 & 2 \\ 1 & 2 \end{vmatrix} = -2;$$

$$A_{21} = -\begin{vmatrix} 2 & -1 \\ 2 & 3 \end{vmatrix} = -8; A_{22} = \begin{vmatrix} 1 & -1 \\ 1 & 3 \end{vmatrix} = 4; A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0;$$

$$A_{31} = \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} = 4; A_{32} = -\begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = -1; A_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2$$

$$A^* = \begin{pmatrix} 4 & 1 & -2 \\ -8 & 4 & 0 \\ 4 & -1 & 2 \end{pmatrix} \quad \begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} 4 & -8 & 4 \\ 1 & 4 & -1 \\ -2 & 0 & 2 \end{pmatrix} \quad A^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 & 4 \\ 1 & 4 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$

Свойства обращения матриц

1. Определитель обратной матрицы обратный к определителю матрицы.

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

2. Обращение произведения матриц

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

3. Транспонирование обратной матрицы $\left(A^{-1}\right)^{I} = \left(A^{T}\right)^{-1}$

$$\left(A^{-1}\right)^{I} = \left(A^{T}\right)^{-1}$$

4. Обращение обратной матрицы

$$\left(A^{-1}\right)^{-1} = A$$

Для матриц 2 порядка

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Матричная запись систем линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, & \Longrightarrow & AX = B \\ \dots & & & \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$

Если матрица А <u>невырождена</u>, то $oldsymbol{X} = oldsymbol{A}^{-1} oldsymbol{\cdot} oldsymbol{R}$

$$X = A^{-1} \cdot B$$

Пример.

Решить матричное уравнение $\ A \cdot X \cdot B = C$, где

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 9 & 11 \\ -14 & -20 \end{pmatrix}$$

Решение.

Очевидно, $X = A^{-1} \cdot C \cdot B^{-1}$

$$\det A = 1; \quad A^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \quad \det B = 1; \quad B^{-1} = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix};$$

$$X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 9 & 11 \\ -14 & -20 \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 14 & 20 \\ 9 & 11 \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 5 & -3 \end{pmatrix}.$$

Элементарные преобразования матриц. Эквивалентность матриц

Элементарные преобразования матриц:

- 1. Перестановка строк (столбцов) матрицы
- 2. Умножение какой-либо строки (столбца) матрицы на одно и то же число, не равное нулю.
- 3. Прибавление к какой-либо строке (столбцу) матрицы другой строки (столбца), умноженной на одно и то же число.

Замечание:

Для каждого элементарного преобразования существует обратное, тоже элементарное.

Матрицы A и B называются **эквивалентными** ($A \sim B$), если одна из них может быть получена из другой с помощью элементарных преобразований.

При помощи элементарных преобразований любую матрицу можно привести к матрице, у которой в правом верхнем («северо-западном») углу находится единичная матрица, а остальные элементы равны нулю. Такая матрица называется канонической.

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \implies \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Единичная матрица порядка n — **каноническая** для всех невырожденных квадратных матриц порядка n.

Каждое элементарное преобразование равносильно **умножению** матрицы **справа** или **слева** на квадратную матрицу, полученную из единичной матрицы, над которой произведено именно это элементарное преобразование (такую матрицу будем называть *матрицей специального вида*).

! Поясним на примере. $A \to \tilde{A}, \quad E \to \tilde{E} \quad \Rightarrow \tilde{E} \cdot A = \tilde{A}$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Следовательно, приведение матрицы к каноническому виду равносильно цепочке произведений (справа и слева) на такие матрицы специального вида.

Критерий эквивалентности матриц

Матрицы **A** и **B** эквивалентны тогда и только тогда, когда найдутся две невырожденные матрицы **S** и **T** такие, что **B** = **S·A·T**.

Задача для самостоятельного решения:

Найти такие **S** и **T** для
$$A = \begin{pmatrix} -3 & -1 \\ 2 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 3 & 7 \\ 1 & 1 \end{pmatrix}$$

Вычисление обратной матрицы с помощью элементарных преобразований

$$egin{pmatrix} \left(A\middle|E
ight) \ \downarrow \ \left(E\middle|A^{-1}
ight) \ \end{pmatrix}$$

Пример.

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & -2 & -3 \\ -1 & 1 & 2 \end{pmatrix}$$

Решение матричных уравнений вида *АХ=В* с помощью элементарных преобразований

$$egin{pmatrix} (A \mid B) \ \downarrow \ (E \mid X) \end{pmatrix}$$

Пример.

$$\begin{cases} x_1 - x_2 + 2x_3 = 2\\ 2x_1 + 3x_2 - x_3 = -1\\ 3x_1 + x_2 + x_3 = 0 \end{cases}$$

Ранг матрицы

Ранг матрицы - наибольший порядок её ненулевого минора

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}$$
 выделен минор порядка 3. Базисный минор ?

Пример:
$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 2 & 0 & 4 & 0 \\ 3 & 0 & 6 & 0 \end{pmatrix}; \quad r(A) = \operatorname{rang} A = 1.$$

$$r(A) = \operatorname{rang} A = 1$$

Свойства ранга матрицы

- 1. При элементарных преобразованиях матрицы её ранг не меняется.
- 2. При транспонировании ранг не меняется.

Следствие.

Ранг равен числу единиц в канонической матрице, эквивалентной данной.

$$\begin{pmatrix} 2 & -1 & 2 & 1 \\ 3 & -3 & 1 & 5 \\ 5 & -4 & 3 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \quad r = 2.$$

Теорема о ранге

Ранг матрицы равен числу линейно независимых строк этой матрицы.

Доказательство.

Без ограничения общности считаем, что базисный минор находится в «северо-западном» углу:

$$rang(A) = r;$$
 $\Delta = \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \cdots & \cdots & \cdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix} \neq 0$

Допустим, что число линейно независимых строк равно \boldsymbol{p} . Очевидно, $r \leq p$.

Докажем, что любая i —ая строка при i > r линейно выражается через первые r строк матрицы.

Рассмотрим определитель порядка r + 1

$$\Delta^* = \begin{vmatrix} a_{11} & \cdots & a_{1r} & a_{1j} \\ \cdots & \cdots & \cdots \\ a_{r1} & \cdots & a_{rr} & a_{rj} \\ a_{i1} & \cdots & a_{ir} & a_{ij} \end{vmatrix}, \quad \varepsilon \partial e \quad i > r, \ 1 \le j \le n$$

Если $1 \le j \le r$, то $\Delta^* = 0$ (два одинаковых столбца).

Если $r+1 \leq j \leq n$, то $\Delta^*=0$ (минор порядка r+1).

Разложим **Δ*** по последнему столбцу

$$A_{1j} \cdot a_{1j} + A_{2j} \cdot a_{2j} + \dots + A_{rj} \cdot a_{rj} + \Delta \cdot a_{ij} = 0$$

Это означает, что i —ая строка линейно выражается через первые r строк. Следовательно, p=r .

Теорема доказана.

Следствия:

- $r(AB) \le r(A)$; $r(AB) \le r(B)$;
- при умножении на невырожденную ранг не меняется.

Итак,

ранг матрицы это

- порядок наибольшего ненулевого минора,
- число линейно независимых строк (столбцов),
- число единиц на главной диагонали канонической матрицы.