Algebra di Lie Corso di Laurea in Matematica A.A. 2022-2023

Docente: Andrea Loi

- 1. Si dimostri che se $\lambda \in \mathbb{C}$ è un autovalore per una matrice $B \in M_n(\mathbb{C})$ allora e^{λ} è un autovalore per e^B . Si deduca che se $G = SL_2(\mathbb{R})$ il gruppo lineare speciale allora l'applicazione esponenziale exp : $\text{Lie}(G) \to G$ non è suriettiva (Suggerimento per la seconda parte: si usi la prima parte per dimostrare che se $A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ allora non esiste B tale che $e^B = A$).
- 2. Dimostrare che l'applicazione exp : $\mathbb{R}^2 \to \mathbb{T}^2$, $(t,s) \mapsto (e^{2\pi it}, e^{2\pi is})$ induce una bigezione tra le sottolagebre di Lie di $\mathbb{R}^2 = \text{Lie}(\mathbb{T}^2)$ (con il bracket nullo) e i sottogruppi di Lie connessi del toro \mathbb{T}^2 .
- 3. Dimostrare che il gruppo $SU(2)=\{A\in GL_2(\mathbb{C})\mid A^*=A^{-1} \wedge \det A=1\}$ è diffeomorfo a S^3 e $\mathrm{Lie}(SU(2))=\{\begin{pmatrix} iv_1 & v_2+iv_3 \\ -v_2+iv_3 & -iv_1 \end{pmatrix}| v_1,v_2,v_3\in \mathbb{R}^3\}.$ (Suggerimento per la prima parte: mostrare che per ogni $A\in SU(2)$ esistono $a,b\in \mathbb{C}$ tali che $|a|^2+|b|^2=1$ tali che $A=\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$).
- 4. Dimostrare che l'applicazione

$$F: \mathbb{R}^3 \to \operatorname{Lie}(SU(2)), v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \mapsto M_v := \begin{pmatrix} iv_1 & v_2 + iv_3 \\ -v_2 + iv_3 & -iv_1 \end{pmatrix}$$
 (1)

è un isomorfismo tra spazi vettoriali su \mathbb{R} . Verificare inoltre che

$$[M_u, M_v] = 2M_{u \times v}, \forall u, v \in \mathbb{R}^3$$
(2)

e

$$tr(M_u M_v) = -2u \cdot v, \forall u, v \in \mathbb{R}^3, \tag{3}$$

dove $u \times v$ (risp. $u \cdot v$) denota il prodotto vettoriale (risp. scalare) in \mathbb{R}^3 .

Dedurre che $(\text{Lie}(SU(2)), -\frac{1}{2}\operatorname{tr}(\cdot, \cdot))$ è uno spazio euclideo isometrico a (\mathbb{R}^3, \cdot) e che l'algebra di Lie $(\mathbb{R}^3, 2\times)$ è isomorfa all'algebra $\operatorname{Lie}(SU(2))$.

5. Dimostrare che dati $A \in SU(2)$ e $v \in \mathbb{R}^3$ esiste $w \in \mathbb{R}^3$ tale che $AM_vA^{-1} = M_w$, dove M_v è definita nell'Esercizio 4. Dedurre che per ogni $A \in SU(2)$ esiste una matrice $F(A) \in GL_3(\mathbb{R})$ tale che w = F(A)v e quindi

$$AM_vA^{-1} = M_{F(A)v}. (4)$$

Dimostrare che in effetti $F(A) \in O(3)$. (Suggerimento per l'ultima parte: usare la (3) nell'Esercizio 4 per verificare che $F(A) \cdot u = F(A) \cdot v$, $\forall u, v \in \mathbb{R}^3$).

6. Sia $A=\begin{pmatrix}a&b\\-\bar{b}&\bar{a}\end{pmatrix}\in SU(2)$ con $a,b\in\mathbb{C}$ e $|a|^2+|b|^2=1$ (cfr. Esercizio 3). Dimostrare che la matrice F(A) definita nell'Esercizio 5 si scrive come:

1

$$F(A) = \begin{pmatrix} |a|^2 - |b|^2 & 2Im(a\bar{b}) & 2Re(a\bar{b}) \\ -2Re(iab) & Re(a^2 + b^2) & Re[i(a^2 - b^2)] \\ -2Im(iab) & Im(a^2 + b^2) & Im[i(a^2 - b^2)] \end{pmatrix}.$$
 (5)

7. Si consideri l'applicazione

$$F: SU(2) \to O(3), A \mapsto F(A), \tag{6}$$

dove $F(A) \in O(3)$ è definita nell'Esercizio 5. Si dimostri che F è un omomorfismo algebrico e che $\operatorname{Ker}(F) = \{\pm I\}$. Si dimostri inoltre che F è continua e si deduca che $F(SU(2)) \subseteq SO(3)$. (Suggerimento per il calcolo del $\operatorname{Ker} F$: si usi il fatto che se $A \in SU(2) \in \operatorname{Ker} F$ se e solo se A commuta con ogni elemento di $\operatorname{Lie}(SU(2))$ e, in particolare, commuta con le matrici $E_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$).

- 8. Sia $F: SU(2) \to SO(3)$ l'applicazione (6). Si dimostri che $F_{*I}(M_u)(v) = 2M_{u \times v}$, per ogni $u, v \in \mathbb{R}^3$ e che quindi $F_{*I}(M_u) = 2\begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix}$). Si deduca che $F_{*I}: \text{Lie}(SU(2)) \to \text{Lie}(SO(3))$ è un isomorfismo di algebre di Lie e che F è un diffeomorfismo locale.
- 9. Dedurre dagli Esercizi 7 e 8 che l'applicazione $F:SU(2)\to SO(3)$ è un omomorfismo suriettivo di gruppi di Lie e che quindi $\frac{SU(2)}{\pm I}$ è un gruppo di Lie isomorfo a SO(3).
- 10. Dimostrare che SO(3) è diffeomorfo a $\mathbb{R}P^3$. (Suggerimento: si usi l'Esercizio 3 e l'Esercizio 9).