NYGC high coverage sequence dataset

The high coverage dataset used in the present study consists of 3202 samples sequenced to 30X coverage by NYGC. The dataset includes 2504 samples of the original 1000 Genomes Project's phase three panel (available in ENA as study ERP114329, https://www.ebi.ac.uk/ena/browser/view/PRJEB31736) plus 698 further samples related to the main phase 3 panel (available in ENA under study ERP120144, https://www.ebi.ac.uk/ena/browser/view/PRJEB36890).

Alignment generation pipeline used by NGYC

The high coverage dataset sequences were produced using PCR-free sequencing libraries sequenced Illumina NovaSeq 6000 platform with 150bp paired-end reads. Reads were aligned to hs38DH human reference genome (GRCh38 assembly with additional decoy sequences and HLA genes) available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38 reference genome

/GRCh38 full analysis set plus decoy hla.fa. The initial alignments at lane level were generated using BWA-MEM algorithm (Li, 2013) (https://github.com/lh3/bwa, v0.7.15), with Piccard tools

(https://broadinstitute.github.io/picard, v2.4.1) then used to fix mate-pair information, merge lane-level BAM files into a single sample-level file, mark duplicate reads and coordinate sort the sample-level BAM file. Base quality scores were recalibrated using known SNPs with GATK (https://github.com/broadinstitute/gatk/, v3.5), and the final alignment files in CRAM format with their associated CRAI index files generated using Samtools (https://www.htslib.org/, v1.3.1) and.

These final alignment files, available on the 1000genomes.ebi.ac.uk ftp server at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/ are the source of the high coverage mitochondrial sequence data we use in the present study.

For the full details of the NYGC high coverage dataset sequence alignment and processing pipeline see https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000G 2504 high coverage/20190405 NYGC b38 pipeline description.pdf

Sequence alignment index files

High coverage sequences of the 2504 samples of the 1000 Genomes Project's phase 3 panel:

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_2504_high_coverage.sequence.index

High coverage sequences of the additional 698 related samples:

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_698_related_high_coverage.sequence.index

High coverage MT sequence data retrieval and initial processing: Samtools

The high coverage mitochondrial sequence dataset used in the present study was obtained by extracting the reads mapped to the MT genome from the 3202 high coverage whole genome alignment CRAM files made available by NYGC. We used SAMtools v1.7 to extract the mitochondrial reads and generate pileup format files for each sample from the subset of MT reads passing our chosen minimum base call and mapping quality criteria.

Pipeline

STEP 1: Retrieve reads mapped to MT genome and save locally in BAM format

samtools view -b -X path/to/remote/CRAM path/to/remote/CRAI chrM:1-16569 -o output.bam

<u>Inputs</u>

path/to/remote/CRAM	Full alignment in CRAM format
path/to/remote/CRAI	The corresponding alignment index file in CRAI format

Outputs

output.bam	Extracted mitochondrial alignment in BAM format

Options

chrM:1-16569	Set region of interest to full MT genome
-b	Specify output in BAM format
-X	Specify alignment index file location

STEP 2: Index the created BAM file

samtools index -b input.bam

Inputs

input.bam	Mitochondrial read alignment in BAM format
<u>Outputs</u>	
input.bam.bai	Index file saved in the same directory as the input BAM file

STEP 3: Generate pileup format TXT file from reads passing specified quality control criteria

samtools mpileup -f rCRS.fa -q25 -Q30 -d0 --incl-flags 99,147,83,163 -a input.bam -o output.txt;

Inputs

rCRS.fa	rCRS reference sequence in FASTA format
input.bam	Mitochondrial read alignment in BAM format

Outputs

output.txt	Text file in pileup format

Settings

-Q30	Set minimum base quality (BAQ): 30
-q25	Set minimum read mapping quality (MAPQ): 25
-d0	Remove limit on maximum number reads to include
incl-flags 99,147,83,163	Only include properly mapped read pairs where both reads are
	mapped in correct orientation with correct insert size
-a	Output all positions, including those with zero depth

CONSENSUS CALLING: Generated mitochondrial sequence alignment BAM files were also used to call sample consensus sequences. We used Samtools version 1.15, with simple consensus calling mode and applying the same SAM flag and read mapping quality score thresholds as used for pileup generation. In order to maintain the same consensus sequence length as rCRS any deletions were included while insertions were excluded.

STEP 1: Call consensus sequence for each sample

samtools consensus -m simple -aq -r chrM:1-16569 --show-ins no --show-del yes --rf 99,147,83,163 --min-MQ 25 -f fasta input.bam -o cons seq.fa

Inputs

fasta

<u>inputs</u>	
input.bam	Sample sequence alignment in BAM format
<u>Outputs</u>	
cons_seq.fa	Sample consensus sequence in FASTA format
<u>Options</u>	
-m simple	Use simple consensus calling mode (frequency counting algorithm)
-r chrM:1-16569	Include all MT genome positions
-a	Output all bases in region
-q	Use base quality scores
min-MQ 25	Only use reads with mapping quality 25 or higher
incl-flags 99,147,83,163	Only include properly mapped read pairs where both reads are
	mapped in correct orientation with correct insert size
show-del yes	Include deletions as '*'
show-ins no	Exclude insertions

Specify output in FASTA format

High coverage MT sequence pileup parsing: Python

Pileup format

Pileup is a tab delimited text format where each line represents one sequence position and consists of 5 columns: (1) sequence identifier (str), (2) position number (int), (3) reference base (char), (4) number of reads covering the position (int), (5) bases called at this position (str) and, optionally, (6) base quality scores at this position (str).

The encoding used in the base call string:

Forward direction	Reverse direction	Interpretation
	,	Reference match
ACTGN	actgn	Reference mismatch
٨		Start of a read marker
Any single character following '^'		Read mapping quality as ASCII value -33
\$		End of a read marker
*		Placeholder for 2 nd deleted base onwards in a multi-bp deletion
+[length][sequence_inserted]		Insertion after this base
-[length][sequence deleted]		Deletion after this base

STEP 1: Parse each sample pileup file to obtain a tally of all possible base calls found at any given MT genome position in that sample.

Script: Pileup parsing.py

Inputs

in_file.txt	Sample-level sequence alignment file in pileup format
ref_file.txt	Text file with MT reference sequence (rCRS)

Outputs

out_file.txt	Tab-delimited output .txt file with position data and parsed read counts organised in
	21 columns (headers: "Chromosome", "Position", "Reference", "Reads", "Total_As",
	"Total_Cs", "Total_Ts", "Total_Gs", "Total_Ns", "For_As", "Rev_As", "For_Cs",
	"Rev_Cs", "For_Ts", "Rev_Ts", "For_Gs", "Rev_Gs", "For_Ns", "Rev_Ns", "Insertions",
	"Deletions"), with each line corresponding to one mtDNA position

Algorithm structure

- > Load rCRS reference sequence from ref file.txt as a string
- > Create empty output file out file.txt and write the first line of column headers
- > Read the input pileup file in file.txt line by line. For each line:
 - >> Split the line into the Chromosome ID, Position, Reference base, Read count and a Pileup string
 - >> Parse the pileup string one character at a time as follows
 - >>> Forward reference match (".") Increment the relevant forward base counter
 - >>> Forward reference mismatch ('A'/'C'/'G'/'T'/'N') Increment the corresponding forward counter
 - >>> Reverse reference match (",") Increment the relevant reverse base counter
 - >>> Reverse reference mismatch ('a'/'c'/'q'/'t'/'n') Increment the corresponding reverse counter
 - >>> Start of an indel ("+"/"-") increment the insertion ("+") or deletion ("-") counter and move pointer forward to skip the indel sequence
 - >>> Base in a multi-bp deletion ('*') increment the counter for deletions
 - >>> Start of read marker ("\$") move pointer to skip the character
 - >>> End of read marker ("^") move pointer to skip this and the following quality score character
 - >> Assemble tab delimited output string containing position number, reference base, total read count and the parsed counts of different base calls and indels and write it as a new line into the out file.txt
- > If the pileup file is missing data for any positions, the reference base is read from rCRS and a line with 0s for all counters written to the output file for that position

STEP 2: Aggregate base count data from individual samples into a population level data files such that each output data file contains an array of base call counts with one row per sample and one column per mtDNA position.

Script: Merge counts.py

Inputs

[SampleID]_basecounts.txt	Multiple tab-delimited text files generated by Pileup_parsing.py,
	each listing founts of different types of base calls recorded at each mtDNA
	position in a specific sample

Outputs: 19 tab delimited .txt files

Sample_IDs.txt	List of the processed sample IDs
For_As.txt	Counts of A/C,G,T or N calls in forward sequencing at each mtDNA
For_Cs.txt	position (columns) in each sample (rows)
For_Gs.txt	
For_Ts.txt	
For_Ns.txt	
Rev_As.txt	Counts of A/C,G,T or N calls in reverse sequencing direction at each
Rev_Cs.txt	mtDNA position (columns) in each sample (rows)
Rev_Gs.txt	
Rev_Ts.txt	
Rev_Ns.txt	
All_As.txt	Total counts of A/C,G,T or N calls across both sequencing directions at
All_Cs.txt	each mtDNA position (columns) in each sample (rows)
All_Gs.txt	
All_Ts.txt	
All_Ns.txt	
Insertions.txt	Number of reads recording insertions or deletions at each mtDNA position
Deletions.txt	(columns) in each sample (rows)
Reads.txt	Total analysed reads at each position (columns) in each sample (rows)

Algorithm structure

- > Create output directory
- > Create 19 empty output files for recording sample IDs (Sample_IDs.txt), total read counts (Reads.txt), indel counts (Insertions.txt, Deletions.txt), and different base call counts in forward direction (For_As.txt, For_Cs.txt, For_Gs.txt, For_Ts.txt, For_Ns.txt), reverse direction (Rev_As.txt, Rev_Cs.txt, Rev_Gs.txt, Rev_Ts.txt, Rev_Ns.txt) and across both directions (All_As.txt, All_Cs.txt, All_Cs.txt, All_Cs.txt, All_Ns.txt), and write header line to each output file file.
- > Access the input directory and loop through sample-level base count data files, processing each one at a time:
 - >> Extract sample ID from file name
 - >> Read sample-level base count data file columns into separate arrays
 - >> Insert sample ID at the start of each column-derived base count array and write the array as tab-delimited string into a new line of the appropriate output file
 - >> Append the column-derived data arrays as a tab delimited strings to the corresponding output files as new lines.
 - >> Append sample ID to Sample IDs.txt file

High coverage MT sequence allele frequency calculation: MATLAB

Step 1: Import read count data

Load read count matrices from .txt files. Transpose all variables such that positions = rows and samples = columns. Save all produced variables into .mat files.

Code: SCRIPT_1_Basecount_import.m

Variables generated in step 1		Dimensions & data type			
SampleIDs			1 x 3202	string	7 letter G1K project sample IDs
Individuals			1 x 3202	double	Numeric IDs (original processing order)
Positions	Positions			double	mtDNA position numbers
Reads_TOTAL	J		16569 x 3202	double	Total reads at each position in each sample
Basecalls	Forward	A	16569 x 3202	double	Base counts at each position in each sample.
		С	16569 x 3202	double	Rows – Positions
		G	16569 x 3202	double	Columns – Samples
		T	16569 x 3202	double	
		N	16569 x 3202	double	
	Reverse	А	16569 x 3202	double	
		С	16569 x 3202	double	
		G	16569 x 3202	double	
		T	16569 x 3202	double	
		N	16569 x 3202	double	
	All	А	16569 x 3202	double	
		С	16569 x 3202	double	
		G	16569 x 3202	double	
		Т	16569 x 3202	double	
		N	16569 x 3202	double	
Indels	Insertions		16569 x 3202	double	Indel counts at each position in each sample
Deletions		3	16569 x 3202	double	

Basecall and Indel variables grouped into higher level data structures

Step 2: Import MT reference and sample consensus sequences

Import from FASTA file rCRS reference sequence and 3202 sample consensus sequences. Apply following modifications to consensus sequences:

- (1) replace all deletions marked as '*' with '-';
- (2) set position 3107 as '-';
- (3) change all letters to be upper case;
- (4) set any non- A/C/G/T/N/- characters as 'N'.

Code: SCRIPT_2_consensus_seq_import.m

Variables generated in step 2	Dimensions & d	ata type	
ConsensusSeqs	16569 x 3202	char	Sample consensus sequences
rCRS	16569 x 1	char	rCRS sequence

Step 3: Calculate total and consensus base frequencies

Excluding indels, calculate total read counts and base frequencies. Identify excess and consensus read fractions, calculate consensus and excess read counts and consensus base frequencies.

Code: SCRIPT_3_Base_frequency_calculation.m

Variables generated in step 3			Dimensions & o	data type	
Reads	Forward		3 variables:		Sum of all A, C, G, T base calls
	Reverse		16569 x 3202	double	
	All				
Frequencies	Forward	A,C,G,T	3 x 4 variables:		Proportion of each base type among the
	Reverse	A,C,G,T	16569 x 3202	double	sum base calls
	All	A,C,G,T			
Consensus_basecalls	Forward	A,C,G,T	3 x 4 variables:		Calls of each base type with proportional
	Reverse	A,C,G,T	16569 x 3202	double	support in the opposite direction
	All	A,C,G,T			
Excess_basecalls	Forward	A,C,G,T	3 x 4 variables:		Excess calls of each base type without
	Reverse	A,C,G,T	16569 x 3202	double	matching support in the opposite direction
	All	A,C,G,T			
Consensus_reads	Forward		3 variables:		Sum of A, C, G, T consensus base calls
	Reverse		16569 x 3202	double	
	All				
Excess_reads	Forward		3 variables:		Sum of A, C, G, T excess base calls
	Reverse		16569 x 3202	double	
	All				
Consensus_frequencies	3	А	4 variables:		Proportion of each base type among sum
		С	16569 x 3202	double	consensus base calls. Consensus
		G			frequencies are the same between
		T			directions.

STANDARD METHOD: Step 4: Sort alleles by total frequencies

Alleles are sorted by total base call count in decreasing frequency order as Major allele, Minor allele 1, Minor allele 2 and Minor allele 3.

Code: SCRIPT_4_Allele_sorting_by_raw_frequency.m

Variables generated in step	4		Dimensions &	data type	
Allele_count			16569 x 3202	double	Number of alleles found at each site
Allele_order	А		4 variables		Index where in the allele order by
	С		16569 x 3202	double	total read count each base is found:
	G				1 = major allele, 2 = minor allele 1,
	Т				3 = minor allele 2, 4 = minor allele 3
Allele_bases	Major		4 variables		Matrices listing bases of each of the
	Minor_1		16569 x 3202	char	sorted alleles
	Minor_2				
	Minor_3				
Allele_reads	Major	For, Rev, All	4 x 3 variables:		Base calls supporting each of the
	Minor_1	For, Rev, All	16569 x 3202	double	sorted alleles. Generated from
	Minor_2	For, Rev, All			"Reads" re-organised by
	Minor_3	For, Rev, All			"Allele_order"
Allele_ frequencies	Major	For, Rev, All	4 x 3 variables:		Frequencies of each of the sorted
	Minor_1	For, Rev, All	16569 x 3202	double	alleles. Produced by re-organising
	Minor_2	For, Rev, All			"Frequencies" in "Allele_order"
	Minor_3	For, Rev, All			

STANDARD METHOD: Step 5: Heteroplasmy identification and filtering based on allele total frequencies

7 different filtration stringency steps based on allele total read counts and raw frequencies are applied. Filtered datasets of alleles passing each step are saved.

Code: SCRIPT_5_ Heteroplasmy_filtering_STANDARD_METHOD.m

Vari	Variables generated in step 5			Dimensions & data type		
Het	Heteroplasmy_filters			7 x 5 table		Table listing settings for each filter
	Allele_masks	Major		4 variables		Masks for allele filter status:
		Minor_1		16569 x 3202	logical	TRUE = allele passes filter,
		Minor_2				FALSE = allele fails filter
		Minor_3				
	Allele_count			16569 x 3202	double	Alleles found passing filter at each site
each filter	Allele_bases	Major		4 variables		Base types of major and minor alleles
Jil.		Minor_1		16569 x 3202	char	that passed the relevant filter
лсh		Minor_2				
		Minor_3				
set for	Allele_reads	Major	For, Rev, All	4 x 3 variables:		Base calls supporting each allele that
set		Minor_1	For, Rev, All	16569 x 3202	double	passed the relevant filter
əļс		Minor_2	For, Rev, All			
/ariable		Minor_3	For, Rev, All			
Λα	Allele_	Major	For, Rev, All	4 x 3 variables:		Frequencies of each allele that passed
	_frequencies	Minor_1	For, Rev, All	16569 x 3202	double	the relevant filter
		Minor_2	For, Rev, All			
		Minor_3	For, Rev, All			
	Heteroplasmic_s:	ites		16569 x 3202	logical	TRUE = 2 or more alleles pass filter
	Homoplasmic_sites			16569 x 3202	logical	TRUE = exactly 1 allele passes filter

CONSENSUS METHOD: Step 6: Sort alleles by consensus frequencies

Alleles are sorted by consensus read count in decreasing frequency order as Major and Minor 1, 2 and 3.

Code: SCRIPT_6_Allele_sorting_by_consensus_frequency.m

Variables generated in step 5			Dimensions &	data type	
Allele_count			16569 x 3202	double	Number of alleles found at each site
Allele_order	A		4 variables	Index where in the allele order each	
	С		16569 x 3202	double	base is by consensus read count:
	G				1 = major allele, 2 = minor allele 1,
	T				3 = minor allele 2, 4 = minor allele 3
Allele_bases	Major		4 variables		Matrices listing base type of each of
	Minor_1		16569 x 3202	char	the sorted alleles
	Minor_2				
	Minor_3				
Allele_consensus_	Major	For, Rev, All	4 x 3 variables:		Consensus base calls supporting each
_reads	Minor_1	For, Rev, All	16569 x 3202	double	allele. Produced by re-organising
	Minor_2	For, Rev, All			"Consensus_reads" in "Allele_order"
	Minor_3	For, Rev, All			
Allele_excess_reads	Major	For, Rev, All	4 x 3 variables:		Excess base calls supporting each
	Minor_1	For, Rev, All	16569 x 3202	double	allele. Produced by re-organising
	Minor_2	For, Rev, All			"Excess_reads" in "Allele_order"
	Minor_3	For, Rev, All			
Allele_consensu_	Major		4 variables:		Consensus frequencies of the sorted
_frequencies	Minor_1		16569 x 3202	double	alleles. Produced by re-organising
	Minor_2				"Consensus_frequencies" in
	Minor_3				"Allele_order"

CONSENSUS METHOD: Step 7: Heteroplasmy identification and filtering based on allele consensus frequencies

7 different filtration stringency steps based on allele consensus read counts and consensus frequencies are applied. Filtered datasets of alleles passing each step are saved in separate sets.

 ${\tt Code: SCRIPT_7_Heteroplasmy_filtering_CONSENSUS_METHOD.m}$

Vari	Variables generated in step 7			Dimensions &	data type	
Het	Heteroplasmy_filters					Table listing settings for each filter
	Allele_masks	Major		4 variables		Masks for allele filter status:
		Minor_1		16569 x 3202	logical	TRUE = allele passes filter,
		Minor_2				FALSE = allele fails filter
		Minor_3				
	Allele_count			16569 x 3202	double	Alleles found passing filter at each site
	Allele_bases	Major		4 variables		Base types of major and minor alleles
		Minor_1		16569 x 3202	char	that passed the relevant filter
ter		Minor_2				
each filter		Minor_3				
ıch	Allele_	Major	For, Rev, All	4 x 3 variables: 16569 x 3202 double		Consensus base calls supporting each filter-passing allele
, ec	_consensus_ _reads	Minor_1	For, Rev, All		double	
fo		Minor_2	For, Rev, All			
set		Minor_3	For, Rev, All			
Variable set for	Allele_	Major	For, Rev, All	4 x 3 variables:	1	Excess base calls supporting each
iak	_excess_	Minor_1	For, Rev, All	16569 x 3202	double	filter-passing allele
Vai	_reads	Minor_2	For, Rev, All			
		Minor_3	For, Rev, All			
	Allele_	Major	For, Rev, All	4 x 3 variables:		Consensus frequencies of each allele
	consensus	Minor_1	For, Rev, All	16569 x 3202	double	that passed the relevant filter
	_frequencies	Minor_2	For, Rev, All			
		Minor_3	For, Rev, All			
	Heteroplasmic_sites			16569 x 3202	logical	TRUE = 2 or more alleles pass filter
	Homoplasmic_sites			16569 x 3202	logical	TRUE = exactly 1 allele passes filter

Allele filtration settings used in STEPS 5 and 7

Ciltan ID	Reads supp	orting allele	Allele frequency		
Filter ID	Overall Per direction		Overall	Per direction	
Filter 1	1	0	0	0	
Filter 2	2	1	0	0	
Filter 3	10	5	0	0	
Filter 4	10	5	0.1%	0	
Filter 5	10	5	0.1%	0.1%	
Filter 6	10	5	1%	0	
Filter 7	10	5	1%	1%	

Standard method: All base calls and allele raw frequencies are considered in allele filtration

Consensus method: Only consensus base calls and allele consensus frequencies are considered in allele filtration