МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Информационной безопасности

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Криптография и защита информации»

Тема: Изучение асимметричных протоколов и шифров

Студент гр.8382	 Нечепуренко Н.А.
Преполаватель	Племянников А.К

Санкт-Петербург

Цели работы.

Исследовать протокол Диффи-Хеллмана, шифр RSA и получить практические навыки работы с ними, в том числе с использованием приложения Cryptool 1 и 2.

Протокол Диффи-Хеллмана.

Задание.

- 1. Запустите утилиту Indiv.Procedures -> Protocols -> Diffie-Hellman demonstration...и установите все опции информирования в ON.
- 2. Выполните последовательно все шаги протокола.
- 3. Сохраните лог-файл протокола для отчета (пиктограмма с изображением ключа).
- 4. Используйте полученный общий ключ для зашифровки и расшифровки произвольного сообщения. Шифр выберите самостоятельно.

Основные теоретические положения.

Протокол Диффи-Хеллмана является первым из опубликованных криптопреобразований на основе открытых ключей. Поэтому этот протокол ещё называют обменом ключами по схеме Диффи-Хеллмана.

Цель протокола — обеспечить двум пользователям возможность получения симметричного секретного ключа путем обмена данными по незащищенному каналу связи. Протокол Диффи-Хеллмана состоит из следующих операций (рисунок 1):

Рисунок 1 – Схема протокола Диффи-Хеллмана

- 1. Устанавливаются открытые параметры р, g:
 - р большое простое число порядка 300 десятичных цифр (1024 бита),
 - g первообразный корень по модулю р.
- 2. Каждая из сторон генерирует закрытый ключ большое число х и у соответственно.
- 3. На каждой стороне вычисляется открытый ключ:
 - $R_1 = g^x \mod p$,

- $R_2 = g^y \mod p$
- 4. Стороны обмениваются открытыми ключами и вычисляют симметричный общий ключ К:

$$K=R_2^x\mod p=R_1^y\mod p$$

Реализация протокола Диффи-Хеллмана в Cryptool 1.

Запустим утилиту Diffie-Hellman Demonstration. С ее помощью сгенерируем р и g, а также закрытые ключи x и y (см. рис. 2).

Рисунок 2 – Интерфейс Diffie-Hellman Demonstration

Выполнив все шаги протокола получаем общий ключ (см. рис. 3).

Рисунок 3 — Результат исполнения протокола Diffie-Hellman

Логи протокола приведены на рисунке 4.

Рисунок 4 – Логи исполнения протокола Diffie-Hellman

Зашифруем и расшифруем произвольный текст порядка 1000 символов шифром AES, используя префикс общего ключа. Результат приведен на рисунке ниже.

Рисунок 5 – Пример зашифровки и расшифровки текста с использованием обшего ключа

Вывод.

Протокол Диффи-Хеллмана позволяет используя свойства малой теоремы Ферма обмениваться открытыми ключами, генерируя общий закрытый ключ шифрования. Средствами Cryptool 1 и утилиты Diffie-Hellman Demonstration было сгенерировано большое простое число р, его первообразный корень g, а также две закрытые части ключа. Затем был вычислен общий ключ, с помощью которого был зашифрован, а затем расшифрован некоторый открытый текст.

Шифр RSA.

Задание.

- 1. Запустите утилиту Indiv.Procedures -> RSACryptosystem
 - -> RSA Demonstration
- 2. Задайте в качестве обрабатываемого сообщения свою Ф.И.О.
- 3. Сгенерируйте открытый и закрытый ключи.
- 4. Зашифруйте сообщение. Сохраните скриншот результата.
- 5. Расшифруйте сообщение. Сохраните скриншот результата.
- 6. Убедитесь, что расшифрование произошло корректно.

Основные теоретические положения.

Алгоритм RSA представляет собой асимметричный блочный шифр, в котором и открытый, и шифрованный текст представляются целыми числами из диапазона от 0 до n-1 для некоторого n.

Алгоритм шифрования RSA состоит из следующих операций (рисунок 6):

Рисунок 6 – Схема алгоритма RSA

1. Вычисление ключей:

- Генерация двух больших простых чисел p и q (p и q держаться в секрете).
- Вычисление n = p * q
- Выбор произвольного е (e < n), взаимно простого с $\phi(n)$ функцией Эйлера
- Вычисление $d: e \cdot d = 1 \mod \phi(n)$.
- Числа (e, n) открытый ключ, d закрытый ключ, p и q уничтожаются

2. Шифрование:

- Открытый текст разбивается на блоки $m_i : m_i < n$.
- Каждый блок открытого текста преобразуем в шифротекст по фор-

муле:

$$c_i = m_i^e \mod n$$

3. Расшифровка:

- Шифротекст представляется блоками $c_i : c_i < n$.
- Каждый блок шифротекста преобразуется в открытый текст по формуле:

$$m_i = c_i^d \mod n$$

Шифр RSA в Cryptool 1.

С помощью утилиты RSA Demonstration в Crytool 1 сгенерируем открытый и закрытй ключи. Зашифруем сообщение NECHEPURENKO NIKITA ALEKSANDROVICH, результат представлен на рисунке 7.

Рисунок 7 – Шифрование ФИО с помощью RSA

Теперь возьмем шифротекст и проведем дешифровку. Результат представлен на рисунке 8.

Рисунок 8 – Дешифровка ФИО с помощью RSA

Результат дешифровки совпал с исходным текстом.

Выводы.

Шифр RSA - несимметричный шифр, использующий свойства протокола Диффи-Хеллмана. С помощью утилиты Cryptool 1 были сгенерированы открытый и закрытый ключи, а также проведено шифрование и дешифрова-

ния строки, состоящей из ФИО.

Исследование шифра RSA.

Задание.

- 1. Выбрать текст на английском языке (не менее 1000 знаков) и сохранить в файле формата *.txt
- 2. Сгенерировать пары асимметричных RSA-ключей утилитой Digital Signatures -> PKI -> Generate/Import Keys с различными длинами (4 варианта).
- 3. Зашифровать текст (примерно 1000 символов) различными открытыми ключами. Зафиксировать время зашифровки.
- 4. Расшифровать текст различными закрытыми ключами. Зафиксировать время зашифровки.
- 5. Проверить корректность расшифровки. Зафиксировать скриншоты результата

Исследование шифра RSA в Cryptool 1.

Для выполнение поставленных задач был сгенерирован рыбный текст длиной примерно в 1000 символов. Текст приведен на рисунке 9.

Рисунок 9 – Сгенерированный для задания текст

Интерфейс утилиты генерации ключей приведен на рисунке 10.

Рисунок 10 – Интерфейс утилиты генерации ключей

Сгенерируем 4 пары ключей разной длины: 512, 768, 1024 и 2048 битов. Выполним шифровку и дешифровку, зафиксируем время.

Рисунок 11 – Шифровка и дешифровка текста парой ключей длиной 512 бит

Рисунок 12 — Шифровка и дешифровка текста парой ключей длиной 768 битов

Рисунок 13 — Шифровка и дешифровка текста парой ключей длиной 1024 бита

Рисунок 14 – Шифровка и дешифровка текста парой ключей длиной 2048 битов

Зависимость временных затрат на шифровку и дешифровку приведена в таблице 1.

Таблица 1 — Время шифрования/дешифрования в зависимости от размера ключа

Размер ключа, бит	Шифровка, секунд	Дешифровка, секунд
512	0.0	0.0

768	0.0	0.010
1024	0.0	0.010
2048	0.0	0.031

Выводы.

Были сгенерированы 4 пары ключей: 512, 768, 1024 и 2048 битов длиной. Исходный текст длиной примерно 1000 символов был успешно зашифрован и дешифрован. Временные затраты на шифровку оказались меньше точности представления чисел во встроенной в Cryptool 1 утилите. Дешифровка заняла чуть больше времени, но все равно это порядок сотых долей секунды, что приемлемо для использования данного шифра.

Атака грубой силы на RSA.

Задание.

- 1. Запустите утилиту Indiv. Procedures -> RSACryptosystem -> RSA Demonstration
- 2. Установите переключатель в режим «Choose two prime...».
- 3. Выберите параметры р и q так, чтобы n=pq> 256.
- 4. Задайте открытый ключ е.
- 5. Зашифруйте произвольное сообщение и передайте его вместе с n и е коллеге. В ответ получите аналогичные данные от коллеги.
- 6. Запустите утилиту Indiv.Procedures -> RSA Cryptosystem -> RSA Demonstration и установите переключатель в режим «For data encryption...»
- 7. Выполните факторизацию модуля п командой Factorize...
- 8. Используйте полученный результат для расшифровки сообщения полученного от коллеги. Проверьте корректность.

Атака грубой силы на RSA в Cryptool 1.

Коллеге был передан открытый ключ $e=2^{16}+1$, модуль N=35237 и шифротекст: 32371~#~18289~#~17453~#~32371~#~06570~#~31629~#~25208~#~00161 #~05924~#~10136~#~21969~#~06260~#~32371~#~17453~#~02556.

Интерфейс утилиты атаки методом грубой силы с использованием факторизации N приведен на рисунке 15.

Рисунок 15 – Атака методом грубой силы, факторизация N

С помощью утилиты были получены р и q, равные 167 и 211 соответ-

ственно. Дешифруем полученное от коллеги сообщение (см. рис. 16).

Demonstration		
RSA using the private	and public key or using only the public k	ey
(p-1)(q-1) is the Eu	numbers p and q. The composite number iler totient. The public key e is freely chose ilated such that d = e^(-1) (mod phi(N)).	N = pq is the public RSA modulus, and phi(N) = n but must be coprime to the totient. The private
 For data encryption and the public key 		ed the public RSA parameters: the modulus N
Prime number entry—		
Prime number p	167	Generate prime numbers
Prime number q	211	
RSA parameters		
RSA modulus N	35237	(public)
phi(N) = (p-1)(q-1)	34860	(secret)
Public key e	2^16+1	
Private key d	27893	Update parameters
RSA encryption using (e / decryption using d [alphabet size: 256]	
Input as C text	• numbers	Alphabet and number system options
Ciphertext coded in no	umbers of base 10	
53 # 32371 # 06570	# 31629 # 25208 # 00161 # 05924 # 101	36 # 21969 # 06260 # 32371 # 17453 # 02556
Decryption into plainte	ext m[i] = c[i]^d (mod N)	
		00073 # 00070 # 00089 # 00079 # 00085 # 0
Output text from the d	ecryption (into segments of size 1; the sym	bol '#' is used as separator).
	M#E#I#F#Y#O#U#C#A#N	<u> </u>
Plaintext		
CRACKMEIFYOUCA	N	
1277 1277 1277	•	
Encrypt	Decrypt	Close
Епстурс	Бесіурі	Close

Рисунок 16 – Дешифровка полученного шифротекста

Атака была успешно проведена.

Выводы.

Была успешно проведена атака методом грубой силы на шифротекст с использованием факторизации модуля. Для небольших сомножителей эта

операция может выполниться за приемлемое время, поэтому в современных системах используются большие простые числа, порядка 300 десятичных цифр, что делает атаку методом грубой силы практически невозможной за приемлемое время.

Имитация атаки на гибридную криптосистему.

Задание.

- 1. Подготовьте текст передаваемого сообщения на английском с вашим именем в конце.
- 2. Запустите утилиту Analysis -> Asymmetric Encr...-> Side-Channel attack on «Textbook RSA»...
- 3. Настройте сервер, указав в качестве ключевого слова ваше имя, используемое в конце текста.
- 4. Выполните последовательно все шаги протокола.
- 5. Сохраните лог-файлы участников протокола для отчета.

Основные теоретические положения.

Модель гибридной криптосистемы, асимметричная составляющая которой использует асимметричный шифр (например RSA) представлена на рисунке 17.

Рисунок 17 – Модель гибридной криптосистемы

Шифрование в рамках модели осуществляется следующим образом:

- 1. Сообщение шифруется симметричным секретным ключом.
- 2. Секретный ключ шифруется открытым ключом получателя.
- 3. Зашифрованное сообщение и ключ объединяются в цифровой конверт, который отправляется получателю.
- 4. Получатель сначала расшифровывает секретный ключ своим закрытым ключом, а затем расшифровывает этим секретным ключом шифровку сообщения.

Атака на модель гибридной криптосистемы основана на том, что злоумышленник сначала перехватывает цифровой конверт, содержащий зашифрованное сообщение и зашифрованный секретный ключ, затем, модифицирует шифровку ключа из конверта и побитово восстанавливает зашифрованный секретный ключ, анализируя положительные и отрицательные ответы сервера.

Имитация атаки на гибридную криптосистему в Cryptool 1.

Протокол работы атаки приведен на рисунке 18.

Рисунок 18 – Атака на гибридную криптосистему в Cryptool 1.

Заключение.

- 1. Был изучен протокол Диффи-Хеллмана, позволяющий используя свойства малой теоремы Ферма обмениваться открытыми ключами по незащищенному каналу, генерируя общий закрытый ключ шифрования. Для работы протокола выбираются открытые параметры: большое простое число p, g первообразный корень по модулю p. Стороны генерируют числа x и y, используя которые вычисляются открытые ключи сторон: $R_1 = g^x \mod p$ и $R_2 = g^y \mod p$ соответственно. Общий закрытый ключ вычисляется как $K = R_1^y \mod p = R_2^x \mod p$. Средствами Cryptool 1 было сгенерировано большое простое число p, его первообразный корень g, а также две закрытые части ключа. Затем был вычислен общий ключ, с помощью которого был зашифрован, а затем расшифрован некоторый открытый текст.
- 2. Был изучен асимметричный блочный шифр RSA. Исходный текст представляется числами от 0 до n-1 для некоторого n. Генерируются 2 больших числа p и q, вычисляется n=pq. Затем выбирается произвольное e(e < n), взаимно простое с $\phi(n)$ функцией Эйлера. Вычисляется закрытый ключ $d:e\cdot d=1\mod\phi(n)$. Числа (e,n) открытый ключ, p и q уничтожаются. Для шифровки открытый текст разбивается на блоки $m_i:m_i < n$ и преобразуется по формуле $c_i=m_i^e\mod n$. Для дешифровки используется формула $m_i=c_i^d\mod n$. С помощью утилиты Cryptool 1 были сгенерированы открытый и закрытый ключи, а также проведено шифрование и дешифрования строки, состоящей из ФИО.
- 3. Были сгенерированы 4 пары ключей: 512, 768, 1024 и 2048 битов длиной. Исходный текст длиной примерно 1000 символов был успешно зашифрован и дешифрован. Временные затраты на шифровку оказались меньше точности представления чисел во встроенной в Cryptool 1 утилите. Дешифровка заняла чуть больше времени, но все равно это порядок сотых долей секунды,

что приемлемо для использования данного шифра.

- 4. Была успешно проведена атака методом грубой силы на шифротекст с использованием факторизации модуля. Для небольших сомножителей эта операция может выполниться за приемлемое время, поэтому в современных системах используются большие простые числа, порядка 300 десятичных цифр, что делает атаку методом грубой силы практически невозможной за приемлемое время.
- 5. Средствами Cryptool 1 была успешно произведена атака на гибридную криптосистему. В таких системах сообщение шифруется симметричным ключом, а симметричный ключ открытым ключом получателя. После этого происходит передача конверта, который состоит из зашифрованного сообщения и зашифрованного симметричного ключа. Атака на модель гибридной криптосистемы основана на том, что злоумышленник сначала перехватывает конверт, затем, модифицирует шифровку ключа из конверта и побитово восстанавливает зашифрованный секретный ключ, анализируя положительные и отрицательные ответы сервера.