CADET SECTIONTIME OF DEPARTURE	
--------------------------------	--

DEPARTMENT OF CHEMISTRY & LIFE SCIENCE

CH402, AY2022-2023 WRITTEN PARTIAL REVIEW I 55 Minutes, C-Hour 16 February 2023

SCOPE: CHAPTERS: 12, 14

TEXT: Peters, Timmerhaus & West

INSTRUCTIONS

References Permitted: Open note and open book; Mathematica; Excel; CHEMCAD.

- 1. You will have 55 minutes for the exam.
- 2. Do not mark this exam or open it until "begin work" is given.
- 3. Solve the problems in the space provided. Show all work to receive full credit.
- 4. There are 3 problems on 4 pages in this exam (not including the cover page).
- 5. Write your name on the top of each sheet.
- 6. Save all work and save it frequently.
- 7. Final CHEMCAD file must be saved in SharePoint to receive partial credit.

(TOTAL WEIGHT: 200 POINTS)

DO NOT WRITE IN THIS SPACE

PROBLEM	VALUE	CUT
A	80	
В	60	
С	60	
TOTAL CUT		
GRADE	200	

THE FOLLOWING INFORMATION IS REQUIRED FOR QUESTIONS A, B, & C

Air used in a catalytic oxidation process is to be heated from 15 to 470 $^{\circ}$ C before entering the process. The heating is accomplished with the use of product gases, which cool from 480 to 200 $^{\circ}$ C.

A one-pass shell-and-tube TEMA type AEL exchanger with single-segmental baffles has been proposed. The tubes are type 316 stainless-steel, with type A-240-316 stainless steel used for the tube sheet, shell, channel material, and baffles.

The properties of the hot gases can be considered identical to those of air.

Both streams enter the exchanger at 1020 kPa.

The hot gasses are sent through the tubes and the air is sent through the shell.

The flow rate for the air (shell-side flow rate) has been set at 5.6 kg/s.

The inside and outside diameters for the tubes are 0.0191 and 0.0254 m, respectively. The tubes will be arranged in line with a square pitch of 0.0381 m with fixed tube sheets. The tubesheet thickness is equal to the outside diameter of the tubes.

The shell-side and tube-side fouling factors are zero.

Baffles are single segmental.

The exchanger operates for 8000 h/yr.

Installation costs are 15% of purchased cost, and annual fixed charges including maintenance are 20% of the installed cost.

The energy cost is \$0.16/kWh.

No utility fluid is used so the annual cost of utility fluid may be ignored.

Design Constraints: The upper limit on the tube length is 20 m and the upper limit on the shell diameter is 10 m.

Problem: Weight: 80

Use CHEMCAD to perform a 3-step *design* analysis on the proposed heat exchanger and answer the following questions: (1) Determine the number and length of tubes, the inside diameter of the shell, and the required area of the exchanger. (2) Determine the largest resistance to heat transfer in the exchanger. (2) Determine the February 2023 total installed cost of the heat exchanger.

SOLUTION:

Blue arrows indicate the 1-2-3 heat exchanger design process.

Step 1 (CH485 Level 1). Basic heat exchanger design. Gives flow rates, temperatures, and heat duties. Utility option in exchanger used to calculate flow rate of stream 1.

Step 2 (CH485 Level 2). Detailed internal design. Calculation performed in "design" mo using "Sizing." Entry of user specs with CHEMCAD calculating transport properties and optimizing number and length of tubes and baffle spacings and cuts.

Step 3 (CH485 Level 3). Simulation. Calculation performed in "shell-and-tube simulation mode 1." Determines shell- and tube-side pressure drops, outlet temperatures, and costs.

TABULATED ANALYSIS - DESIGN (LEVEL 2)

Overall Data:					
Area Total	m2	452.39	% Excess		0.06
Area Required	m2	442.94			97.14
=					
Area Effective	m2	443.20			97.08
Area Per Shell	m2	443.20			2.67E+06
Weight LMTD C 62.0	04 LMTD	CORR Fa	ctor 1.0000 CORR LM	MTD C	62.04
Shell-side Data: Crossflow Vel. m/sec	c 5.1E+00		ne Vel. 3.4E+00 Windo	ow Vel	
Film Coef. W/m2-K		217.18	2		34741
Allow Press. Drop	kPa	34.47	Calc. Press. Drop	kPa	47.47
Inlet Nozzle Size	m	0.20	Press. Drop/In Nozzle	e kPa	2.68
Outlet Nozzle Size	m	0.15	Press. Drop/Out Nozzl	e kPa	4.06
			Mean Temperature	С	241.94
Rho V2 IN kg/m-sec2) 1	245 46	Press. Drop (Dirty)		
KIIO VZ IN Kg/III-Sec2	2	1113.10	Fless. Diop (Diity)	Kra	00.09
Stream Analysis:					
SA Factors: A 12.5	54 B 5	79.75	C 1.90 E 5.82	F	0.00
Ideal Cross Vel. m			deal Window Vel. m/sec	_	4.49
ideal Cross Vel. III,	sec	0.39 1	deal window ver. m/sec		4.49
Tube-side Data:					
Film Coef. W/m2-K		242.41	Reynolds No.		41497
· · · · · · · · ·	lr.D.o.			kPa	15.03
Allow Press. Drop	kPa	34.47	-		
Inlet Nozzle Size	m	0.25	Press. Drop/In Nozzle		
Outlet Nozzle Size	m	0.20	Press. Drop/Out Nozzl	.e kPa	2.13
Interm. Nozzle Size	m	0.00	Mean Temperature	C	340.38
Velocity	m/sec	11.59	Mean Metal Temperatur	re C	285.89
	,				
Clearance Data:					
Baffle to shell m		0.0048	Bundle diameter n	1	0.9756
Tube hole clear. m		0.0008	Outer tube clear. n	ı	0.0150
Bundle top space m		0.0000	In-line pass clear.		0.0000
Bundle btm space m		0.0000			0.0159
bullate belli space III		0.0000	Pass Clearance ii	.L	0.0139
Baffle Parameters:					
Number of Baffles			31		
Baffle Type		Q i	ngle Segmental		
Baffle space def.		Ła	ge-Edge		
Inlet Space	m		0.546		
Center Space	m		0.362		
Outlet Space	m		0.546		
Baffle Cut, % Diamet	cer		21.000		
Baffle Overlap	m		0.038		
Baffle Cut Direction			Horizontal		
Number of Int. Baff			0		
Baffle Thickness	m		0.006		
Shell:					
Shell O.D. m		1.02	Orientation		Н
Shell I.D. m		0.99	Shell in Series		1
		0.99	Shell in Parallel		1
		AEL	Max. Heat Flux Btu/f	+2_h~	0.00
Type Imping. Plate Ir	mningamant		Sealing Strip		5
Imping. Place I	mpingement	riale	searing strip		5

Tubes:

Number		465	Tube Type		Bare
<u>Length</u>	m	12.19	Free Int. Fl A	rea m2	0.00
Tube O.D.	m	0.025	Fin Efficiency		0.000
Tube I.D.	m	0.019	Tube Pattern		SQUAR
Tube Wall Thk.	m	0.003	Tube Pitch	m	0.038
No. Tube Pass		1			
Inner Roughnes	s m	0.0000016			
Number of tube	sheets	2	Tubesheet thic	kness, m	0.025
Resistances:					
Shell-side Fil			m2-K/W	0.00460	
Shell-side Fou	ling		m2-K/W	0.00000	
Tube Wall			m2-K/W	0.00020	
Tube-side Foul	ing		m2-K/W	0.00000	
Tube-side Film	l.		m2-K/W	0.00413	
Reference Fact	or (Total o	outside area/i	nside area base	d on tube ID)	1.330
Pressure Drop D	istributio	n:			
Tube Side		-	Shell Side		
Inlet Nozzle	kPa	2.9362	Inlet Nozzle	kPa	2.6835
Tube Entrance	kPa	0.1836	Impingement	kPa	1.5896
Tube	kPa	5.5017	Bundle	kPa	23.3226
Tube Exit	kPa	0.3093	Outlet Nozzle	kPa	4.0553
End	kPa	0.0000	Total Fric.	kPa	30.0614
Outlet Nozzle	kPa	2.1257	Total Grav.	kPa	-0.0753
Total Fric.	kPa	11.0565	Total Mome.	kPa	17.4793
Total Grav.	kPa	0.0717	Total	kPa	47.4654
Total Mome.	kPa	3.9018			
Total	kPa	15.0300			

The completed CHEMCAD flowsheet is shown on page 2 and the detailed tabulated results on pages 3-4, with answers to questions (1) and (2) are highlighted in yellow.

Number of tubes: 465 //ANS

Length of the tubes: 12.19 m //ANS

Inside diameter of the shell: 0.99 m //ANS

Required area of the exchanger: 442.94 m² //ANS

Largest resistance to heat transfer in the exchanger: 0.00460 m²K/W Shell-side //ANS

The installed cost is determined by activating the "costing report" in the Cost Estimations tab in the Level 3 heat exchanger.

February 2023 total installed cost: \$452,477 //ANS

Use equation 14-91 to determine the total annual operating costs for the shell-and-tube exchanger as designed in Problem A assuming utility costs are zero. Do not optimize.

SOLUTION:

Equation 14-91 is found in the PTW textbook on page 739, and the stream properties are shown in the stream stream box from CHEMCAD:

$$C_{\scriptscriptstyle T} = A_{\scriptscriptstyle 0} \cdot K_{\scriptscriptstyle F} \cdot C_{\scriptscriptstyle A_{\scriptscriptstyle 0}} + m_{\scriptscriptstyle u} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle u} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle i} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle i} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle 0} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle 0}$$

C_T Total annual costs, dollars/yr

A₀ Outside tube area, m²

K_E Annual fixed charges factor (maintenance, etc) as a fraction of installed cost, dimensionless

 C_{A_0} Installed cost of the heat exchanger per unit outside tube area, dollars/m²

m_u Mass flow rate of utility fluid, kg/hr

H_v Hours of operation per year

C_u Cost of utility fluid, dollars/kg

E₁ Power loss due to fluid flow inside heat exchanger tubes per unit outside tube area, N·m/s per m²

 C_i Cost of supplying $1 \ N \cdot m$ to pump fluid through the inside of the tubes, dollars/ $N \cdot m$

 E_0 Power loss experienced on the shell side per unit outside tube area, $N \cdot m/s$ per m^2

 C_0 Cost of supplying $1 \text{ N} \cdot \text{m}$ to pump fluid through the shell side, dollars/N \cdot m

Stream No.	9	10	11	12
Name				
Overall				
Temp C	480.0000	200.7530	15.0000	468.8719
Pres kPa	1020.0000	1005.0000	1020.0000	972.5267
Mass flow kg/sec	8.9728	8.9728	5.6000	5.6000
Actual dens kg/m3	4.6808	7.3275	12.3104	4.5305

Tube-side pressure drop = 1020 - 1005.000 = 15.000 kPa = 15,000.0 PaTube-side average density = $(4.6808 + 7.3275)/2 = 6.00415 \text{ kg/m}^3$

Tube-side mass flow rate = 8.9728 kg/s

Shell-side pressure drop = 1020 - 972.5267 = 47.4733 kPa = 47,473.3 PaShell-side average density = $(12.3104 + 4.5305)/2 = 8.42045 \text{ kg/m}^3$

$$A_0 = \pi \cdot D_0 \cdot L \cdot N_P = \pi \cdot 0.0254 \,\text{m} \cdot 12.19 \,\text{m} \cdot 465 = 452.314 \,\text{m}^2$$

$$C_{A_0} = $452,477 / 452.314 \text{ m}^2 = $1,000.360 / \text{ m}^2$$

$$K_{\rm F} = 0.2$$

$$C_{n} = 0$$

$$H_v = 8,000 \, hrs$$

$$C_i = $0.16 / kWh$$

$$E_{i} = \frac{15,000.0 \frac{N}{m^{2}} \cdot 8.9728 \frac{kg}{s} \cdot \frac{1 \, m^{3}}{6.00415 kg}}{452.314 \, m^{2}} = 49.560 \, \frac{W}{m^{2}} = 0.049560 \, \frac{kW}{m^{2}}$$

$$E_0 = \frac{47,473.3 \frac{N}{m^2} \cdot 5.600 \frac{kg}{s} \cdot \frac{1 \, m^3}{8.42045 \, kg}}{452.314 \, m^2} = 69.801 \, \frac{W}{m^2} = 0.069801 \, \frac{kW}{m^2}$$

$$\begin{split} C_T = & \, 452.314 \, \text{m}^2 \cdot 0.2 \cdot \frac{\$1,000.360}{\text{m}^2} \\ & + 452.314 \, \text{m}^2 \cdot 0.049560 \frac{\text{kW}}{\text{m}^2} \cdot 8,000 \, \text{h} \cdot \frac{\$0.16}{\text{kWh}} \\ & + 452.314 \, \text{m}^2 \cdot 0.049560 \frac{\text{kW}}{\text{m}^2} \cdot 8,000 \, \text{h} \cdot \frac{\$0.16}{\text{kWh}} \\ = & \, \$\underline{147,882} \end{split}$$

Problem: Weight: 60

- (1) Determine the total purchased cost of a compressor designed to increase the tube-side hot gasses from the outlet pressure at the exchanger back to 1020 kPa. The compressor is centrifugal with an open drip-proof 1200 RPM motor and a variable sped drive coupling. Determine the cost must be in February 2023.
- (2) If the air temperature must be within 0.5 degrees of 470 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)

Should be: If the air temperature must be within 0.5 degrees of 200 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)

SOLUTION:

The CHEMCAD flowsheet is shown below with temperatures and pressures indicated in the TP boxes. The unit op cost specifications and cost estimation windows follow on the next page. The total purchase cost is \$88,939 in February 2023.

A screenshot of the pump cost estimation window is shown above. The purchased cost is obtained after cadets check the button "Run the costing report after calculating the unit." Cadets must also update the pump/compressor cost index to 1347.6 for February 2023.

- (1) The purchased cost in February 2023 is \$206,336 and is circled in red. //ANS
- (2) The question was worded incorrectly. It should have been: "If the air temperature must be within 0.5 degrees of 200 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)"

Cadet: APPROVED SOLUTION

The answer for the intended question is that the compressor heats the gasses \sim 2.6 degrees so the area of the heat exchanger can be reduced, saving money on the cost of the heat exchanger. //**ANS**

As a result of the instructor error, cadets receive credit for any reasonable answer.

CADET	SECTION	TIME OF DEPARTURE

DEPARTMENT OF CHEMISTRY & LIFE SCIENCE

CH402, AY2022-2023 WRITTEN PARTIAL REVIEW I 55 Minutes, D-Hour 16 February 2023 TEXT: Peters, Timmerhaus & West SCOPE: CHAPTERS: 12, 14

References Permitted: Open note and open book; Mathematica; Excel; CHEMCAD.

INSTRUCTIONS

- 1. You will have 55 minutes for the exam.
- 2. Do not mark this exam or open it until "begin work" is given.
- 3. Solve the problems in the space provided. Show all work to receive full credit.
- 4. There are 3 problems on 4 pages in this exam (not including the cover page).
- 5. Write your name on the top of each sheet.
- 6. Save all work and save it frequently.
- 7. Final CHEMCAD file must be saved in SharePoint to receive partial credit.

(TOTAL WEIGHT: 200 POINTS)

DO NOT WRITE IN THIS SPACE

PROBLEM	VALUE	CUT
A	80	
В	60	
С	60	
TOTAL CUT		
GRADE	200	

THE FOLLOWING INFORMATION IS REQUIRED FOR QUESTIONS A, B, & C

Air used in a catalytic oxidation process is to be heated from 15 to 270 $^{\circ}$ C before entering the process. The heating is accomplished with the use of product gases, which cool from 480 to 20 $^{\circ}$ C.

A one-pass shell-and-tube TEMA type AEL exchanger with single-segmental baffles has been proposed. The tubes are type 316 stainless-steel, with type A-240-316 stainless steel used for the tube sheet, shell, channel material, and baffles.

The properties of the hot gases can be considered identical to those of air.

Both streams enter the exchanger at 1020 kPa.

The hot gasses are sent through the tubes and the air is sent through the shell.

The flow rate for the air (shell-side flow rate) has been set at 5.6 kg/s.

The inside and outside diameters for the tubes are 0.0191 and 0.0254 m, respectively. The tubes will be arranged in line with a square pitch of 0.0381 m with fixed tube sheets. The tubesheet thickness is equal to the outside diameter of the tubes.

The shell-side and tube-side fouling factors are zero.

Baffles are single segmental.

The exchanger operates for 8000 h/yr.

Installation costs are 15% of purchased cost, and annual fixed charges including maintenance are 20% of the installed cost.

The energy cost is \$0.16/kWh.

No utility fluid is used so the annual cost of utility fluid may be ignored.

Design Constraints: The upper limit on the tube length is 20 m and the upper limit on the shell diameter is 10 m.

Problem: Weight: 80

Use CHEMCAD to perform a 3-step *design* analysis on the proposed heat exchanger and answer the following questions: (1) Determine the number and length of tubes, the inside diameter of the shell, and the required area of the exchanger. (2) Determine the largest resistance to heat transfer in the exchanger. (2) Determine the February 2023 total installed cost of the heat exchanger.

SOLUTION:

Blue arrows indicate the 1-2-3 heat exchanger design process.

Step 1 (CH485 Level 1). Basic heat exchanger design. Gives flow rates, temperatures, and heat duties. Utility option in exchanger used to calculate flow rate of stream 1.

Step 2 (CH485 Level 2). Detailed internal design. Calculation performed in "design" mode using "Sizing." Entry of user specs with CHEMCAD calculating transport properties and optimizing number and length of tubes and baffle spacings and cuts.

Step 3 (CH485 Level 3). Simulation. Calculation performed in "shell-and-tube simulation mode 1." Determines shell- and tube-side pressure drops, outlet temperatures, and costs.

TABULATED ANALYSIS - DESIGN (LEVEL 2)

Overall Data:						
Area Total	m2	578.96	% Excess			2.48
Area Required	m2	552.36		W/m2-K		48.73
Area Effective	m2	566.08		•		47.55
Area Per Shell		566.08		•		1.48E+06
	m2		-		D G	
Weight LMTD C	54.85 I	LMTD CORR Fa	ctor 1.000	O CORR LMT	D C	54.85
Shell-side Data: Crossflow Vel. of Film Coef. W/m. Allow Press. Drown Inlet Nozzle Side Outlet Nozzle Side Rho V2 IN kg/m.	2-K op kPa ze m ize m	196.81 34.47 0.20 0.15	Reynolds No Calc. Press Press. Drop Press. Drop Mean Tempe:	s. Drop p/In Nozzle p/Out Nozzle	kPa kPa kPa C	41132 41.61 2.68
Ctroom Apolicaia:						
Stream Analysis:	14 70	D 77 07	0 1 60	п ())		0 00
SA Factors: A		в 77.27	C 1.69	E 6.33	F.	0.00
Ideal Cross Vel	. m/sec	5.55 I	deal Window	Vel. m/sec		3.21
Tube-side Data:						
Film Coef. W/m	2-K	87.42	Reynolds N			13662
Allow Press. Dr	op kPa	34.47	Calc. Pres	s. Drop	kPa	20.56
Inlet Nozzle Si	ze m	0.15	Press. Dro	p/In Nozzle	kPa	2.78
Outlet Nozzle S	ize m	0.09	Press. Dro	p/Out Nozzle	kPa	3.95
Interm. Nozzle	Size m	0.00	Mean Tempe:	rature	С	250.00
Velocity	m/sec			Temperature	С	168.37
V3133137	, 201		110011 110001	10	•	100.07
Clearance Data:						
Baffle to shell	m	0.0048	Bundle dia	meter m		1.0518
Tube hole clear		0.0048	Outer tube			0.0150
Bundle top space		0.0000	In-line pa			0.0000
Bundle btm space	e m	0.0000	Pass clear	ance m		0.0159
Baffle Parameter Number of Baffle				39		
Baffle Type		Si	ngle Segmen	tal		
Baffle space de	f.	Ed	ge-Edge			
Inlet Space		m	0.	483		
Center Space		m	0.	320		
Outlet Space		m	0.	483		
Baffle Cut, % D	iameter		21	.000		
Baffle Overlap		m	0.	038		
Baffle Cut Dire	ction		Horizon			
Number of Int.				0		
Baffle Thickness		m	0	006		
Dallic Hitchiles	_		J.			
Shell:						
Shell O.D.	m	1.09	Orientat	ion		Н
Shell I.D.	m	1.07	Shell in	-		1
Bonnet I.D.	m	1.07		Parallel		1
Type		AEL		Flux Btu/ft:	2-hr	0.00
Imping. Plate	Tmning	ement Plate	Sealing		د 11T	5
Imping. Flace	TIIID11136	LINGIIC FIACE	bearing i	20T TD		5

Tubes:

Number		541	Tube Type		Bare
Length	m	13.41	Free Int. Fl A	rea m2	0.00
Tube O.D.	m	0.025	Fin Efficiency		0.000
Tube I.D.	m	0.019	Tube Pattern		SQUAR
Tube Wall Thk.	m	0.003	Tube Pitch	m	0.038
No. Tube Pass		1			
Inner Roughnes	s m	0.0000016			
Number of tube	sheets	2	Tubesheet thic	kness, m	0.025
Resistances:					
Shell-side Fil	.m		m2-K/W	0.00508	
Shell-side Fou	ling		m2-K/W	0.00000	
Tube Wall			m2-K/W	0.00023	
Tube-side Foul	ing		m2-K/W	0.00000	
Tube-side Film	ı		m2-K/W	0.01144	
Reference Fact	or (Tota	l outside area/i	nside area base	d on tube ID)	1.330
Pressure Drop D	istribut	ion:			
Tube Side			Shell Side		
Inlet Nozzle	kPa	2.7814	Inlet Nozzle	kPa	2.6767
Tube Entrance	kPa	0.0170	Impingement	kPa	1.5896
Tube	kPa	0.5322	Bundle	kPa	24.7382
Tube Exit	kPa	0.0160	Outlet Nozzle	kPa	2.8247
End	kPa	0.0000	Total Fric.	kPa	30.2395
Outlet Nozzle	kPa	3.9483	Total Grav.	kPa	-0.1021
Total Fric.	kPa	7.2948	Total Mome.	kPa	11.4696
Total Grav.	kPa	0.0667	Total	kPa	41.6070
Total Mome.	kPa	13.2014			
Total	kPa	20.5629			

The completed CHEMCAD flowsheet is shown on page 2 and the detailed tabulated results on pages 3-4, with answers to questions (1) and (2) are highlighted in yellow.

Number of tubes: 541 //ANS

Length of the tubes: 13.41 m //ANS

Inside diameter of the shell: 1.07 m //ANS

Required area of the exchanger: 552.36 m² //ANS

Largest resistance to heat transfer in the exchanger: 0.01144 m²K/W Tube-side //ANS

The installed cost is determined by activating the "costing report" in the Cost Estimations tab in the Level 3 heat exchanger.

February 2023 total installed cost: \$588,633 //ANS

Use equation 14-91 to determine the total annual operating costs for the shell-and-tube exchanger as designed in Problem A assuming utility costs are zero. Do not optimize.

SOLUTION:

Equation 14-91 is found in the PTW textbook on page 739, and the stream properties are shown in the stream stream box from CHEMCAD:

$$C_{\scriptscriptstyle T} = A_{\scriptscriptstyle 0} \cdot K_{\scriptscriptstyle F} \cdot C_{\scriptscriptstyle A_{\scriptscriptstyle 0}} + m_{\scriptscriptstyle \mu} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle u} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle i} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle i} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle 0} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle 0}$$

- C_T Total annual costs, dollars/yr
- A₀ Outside tube area, m²
- K_F Annual fixed charges factor (maintenance, etc) as a fraction of installed cost, dimensionless
- C_{A_0} Installed cost of the heat exchanger per unit outside tube area, dollars/m²
- m_u Mass flow rate of utility fluid, kg/hr
- H_v Hours of operation per year
- C_u Cost of utility fluid, dollars/kg
- E_i Power loss due to fluid flow inside heat exchanger tubes per unit outside tube area, $N \cdot m/s$ per m^2
- $\boldsymbol{C}_{_{i}}$ Cost of supplying 1 $N\cdot m$ to pump fluid through the inside of the tubes, dollars/N \cdot m
- E_0 Power loss experienced on the shell side per unit outside tube area, $N \cdot m/s$ per m^2
- $\boldsymbol{C_0}$ Cost of supplying 1 N \cdot m to pump fluid through the shell side, dollars/N \cdot m

Stream No.	9	10	11	12
Name	Tube In	Tube Out	Shell In	Shell Out
Overall				
Temp C	480.0000	19.5527	15.0000	270.2131
Pres kPa	1020.0000	998.9630	1020.0000	977.2355
Mass flow kg/sec	3.0520	3.0520	5.6000	5.6000
Actual dens kg/m3	4.6808	11.8632	12.3104	6.2139

Tube-side pressure drop = 1020 - 998.9630 = 21.0370 kPa = 21,037.0 PaTube-side average density = $(4.6808 + 11.8632)/2 = 8.2720 \text{ kg/m}^3$ Tube-side mass flow rate = 3.0520 kg/s

Shell-side pressure drop = 1020 - 977.2355 = 42.7645 kPa = 42,764.5 PaShell-side average density = $(12.3104 + 6.2139)/2 = 9.26215 \text{ kg/m}^3$

$$A_0 = \pi \cdot D_0 \cdot L \cdot N_P = \pi \cdot 0.0254 \,\text{m} \cdot 13.41 \,\text{m} \cdot 541 = 578.908 \,\text{m}^2$$

$$C_{A_0} = $588,633 / 578.908 \text{ m}^2 = $1,016.799 / \text{ m}^2$$

$$K_{\rm F} = 0.2$$

$$C_{ij} = 0$$

$$H_v = 8,000 \, hrs$$

$$C_i = $0.16 / kWh$$

$$E_{i} = \frac{21,037.0 \frac{N}{m^{2}} \cdot 3.0520 \frac{kg}{s} \cdot \frac{1 m^{3}}{8.2720 kg}}{578.908 m^{2}} = 13.408 \frac{W}{m^{2}} = 0.013408 \frac{kW}{m^{2}}$$

$$E_0 = \frac{42764.5 \frac{N}{m^2} \cdot 5.600 \frac{kg}{s} \cdot \frac{1 m^3}{9.26215 \, kg}}{578.908 \, m^2} = 44.663 \, \frac{W}{m^2} = 0.044663 \, \frac{kW}{m^2}$$

$$C_{T} = 578.908 \,\mathrm{m}^{2} \cdot 0.2 \cdot \frac{\$1,016.799}{\mathrm{m}^{2}}$$

$$+ 578.908 \,\mathrm{m}^{2} \cdot 0.013408 \frac{\mathrm{kW}}{\mathrm{m}^{2}} \cdot 8,000 \,\mathrm{h} \cdot \frac{\$0.16}{\mathrm{kWh}}$$

$$+ 578.908 \,\mathrm{m}^{2} \cdot 0.044663 \frac{\mathrm{kW}}{\mathrm{m}^{2}} \cdot 8,000 \,\mathrm{h} \cdot \frac{\$0.16}{\mathrm{kWh}}$$

$$= \$160,757$$

$$= \$160,757$$

Problem: Weight: 60

- (1) Determine the total purchased cost of a compressor designed to increase the tube-side hot gasses from the outlet pressure at the exchanger back to 1020 kPa. The compressor is centrifugal with an explosion-proof 1800 RPM motor and a chain-drive coupling. Determine the cost must be in February 2023.
- (2) If the air temperature must be within 0.5 degrees of 270 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)

Should be: If the air temperature must be within 0.5 degrees of 20 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)

SOLUTION:

The CHEMCAD flowsheet is shown below with temperatures and pressures indicated in the TP boxes. The unit op cost specifications and cost estimation windows follow on the next page. The total purchase cost is \$88,939 in February 2023.

A screenshot of the pump cost estimation window is shown above. The purchased cost is obtained after cadets check the button "Run the costing report after calculating the unit." Cadets must also update the pump/compressor cost index to 1347.6 for February 2023.

(1) The purchased cost in February 2023 is \$88,939 and is circled in red. //ANS

Cadet: APPROVED SOLUTION

(2) The question was worded incorrectly. It should have been: "If the air temperature must be within 0.5 degrees of 20 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)"

The answer for the intended question is that the compressor heats the gasses ~2.3 degrees so the area of the heat exchanger can be reduced, saving money on the cost of the heat exchanger. //ANS

As a result of the instructor error, cadets receive credit for any reasonable answer.

CADET	SECTION	TIME OF DEPARTURE	
-------	---------	-------------------	--

DEPARTMENT OF CHEMISTRY & LIFE SCIENCE

CH402, AY2022-2023 WRITTEN PARTIAL REVIEW I 55 Minutes, Make-up 21 February 2023

SCOPE: CHAPTERS: 12, 14

TEXT: Peters, Timmerhaus & West

References Permitted: Open note and open book; Mathematica; Excel; CHEMCAD.

INSTRUCTIONS

- 1. You will have 55 minutes for the exam.
- 2. Do not mark this exam or open it until "begin work" is given.
- 3. Solve the problems in the space provided. Show all work to receive full credit.
- 4. There are 3 problems on 4 pages in this exam (not including the cover page).
- 5. Write your name on the top of each sheet.
- 6. Save all work and save it frequently.
- 7. Final CHEMCAD work must be saved in SharePoint to receive partial credit.

(TOTAL WEIGHT: 200 POINTS)

DO NOT WRITE IN THIS SPACE

PROBLEM	VALUE	CUT
A	80	
В	60	
С	60	
TOTAL CUT		
GRADE	200	

THE FOLLOWING INFORMATION IS REQUIRED FOR QUESTIONS A, B, & C

Methane used in a catalytic gas-to-liquids synfuel process is to be heated from 15 to 300 °C before entering the reactor. The heating is accomplished with the use of hot product gases, which cool from 380 to 35 °C.

A stainless-steel (type A-240-316) one-pass shell-and-tube TEMA type AEL exchanger with single-segmental baffles has been proposed.

Both streams enter the exchanger at 1020 kPa.

The properties of the hot gases can be considered identical to those of air.

The hot gasses are sent through the tubes and the methane is sent through the shell.

The flow rate for the methane has been set at 7.6 kg/s.

The inside and outside diameters for the tubes are 0.0191 and 0.0254 m, respectively. The tubes will be arranged in a diamond (45°) pitch of 0.0381 m with fixed tube sheets. The tubesheet thickness is equal to the outside diameter of the tubes.

The shell-side and tube-side fouling factors are zero.

The exchanger operates for 8000 h/yr.

Installation costs are 18% of purchased cost, and annual fixed charges including maintenance are 23% of the installed cost.

The energy cost is \$0.17/kWh.

The annual cost of utility fluid may be ignored.

Design Constraints: The upper limit on the tube length is 20 m and the upper limit on the shell diameter is 10 m.

Problem: Weight: 80

Use CHEMCAD to perform a 3-step *design* analysis on the proposed heat exchanger, and answer the following questions: (1) Determine the number and length of tubes, the inside diameter of the shell, and the required area of the exchanger. (2) Determine the largest resistance to heat transfer in the exchanger. (2) Determine the February 2023 total installed cost of the heat exchanger.

SOLUTION:

Step 1 (Level 1). Basic heat exchanger design. Gives flow rates,

Step 2 (Level 2). Design. Calculation performed in "Design" mode in "Sizing." Used to determine details of internal exchanger design.

Step 3 (Level 3). Simulation. Calculation performed in "Shell-and-tube Simulation Mode 1." Used to determine pressure drops, outlet temperatures, and costs.

TABULATED ANALYSIS - DESIGN (LEVEL 2)

Simulation: CH402 WPR1 AY22-23 Makeup Case: WPR1 - Rating

TABULATED ANALYSIS						
Overall Data:						
Area Total m2	1229.91	% Excess	-0.01			
Area Required m2	1209.38	U Calc. W/m2-K	110.42			
Area Effective m2	1209.32		110.43			
Area Per Shell m2	1209.32	Heat Duty J/sec	5.82E+06			
Weight LMTD C 43.58	LMTD CORR Fa	actor 1.0000 CORR LMTD C	43.58			
Shell-side Data: Crossflow Vel. m/sec 4. Film Coef. W/m2-K		one Vel. 3.2E+00 Window Vel				
	374.67 34.47	2	37517 44.68			
Allow Press. Drop kPa		<u> </u>				
Inlet Nozzle Size m Outlet Nozzle Size m	0.25 0.20	-				
Outlet Nozzie Size III	0.20	-				
Dhe Wa IN leg/m goga	3203.15	Mean Temperature C				
Rho V2 IN kg/m-sec2	3203.15	Press. Drop (Dirty) kPa	75.95			
Stream Analysis: SA Factors: A 13.27 Ideal Cross Vel. m/sec		C 1.05 E 4.35 F deal Window Vel. m/sec	0.00 4.85			
Tube-side Data:	015 04	D 1 d M -	45007			
Film Coef. W/m2-K	215.84	2	45987			
Allow Press. Drop kPa	34.47	-				
Inlet Nozzle Size m Outlet Nozzle Size m	0.30	<u>=</u>				
	0.25	<u>=</u>				
Interm. Nozzle Size m	0.00	_	207.63			
Velocity m/se	ec 8.14	Mean Metal Temperature C	178.43			
Clearance Data:						
Baffle to shell m	0.0048	Bundle diameter m	1.3566			
Tube hole clear. m	0.0008	Outer tube clear. m	0.0150			
Bundle top space m	0.0000	In-line pass clear. m	0.0000			
Bundle btm space m	0.0000	Pass clearance m	0.0159			
Baffle Parameters:						
Number of Baffles		37				
Baffle Type						
Baffle space def.	Ed	lge-Edge				
Inlet Space	m	0.648				
Center Space	m	0.430				
Outlet Space	m	0.648				
Baffle Cut, % Diameter		23.000				
Baffle Overlap	m	0.038				
Baffle Cut Direction		Horizontal				
Number of Int. Baffles		0				
Baffle Thickness	m	0.006				
Shell:						
Shell O.D. m	1.40	Orientation	Н			
Shell I.D. m	1.37	Shell in Series	1			

Bonnet I.D.	m	1.37	Shell in Paral	.lel	1
Туре		AEL	Max. Heat Flux	Btu/ft2-hr	0.00
Imping. Plate	Impinge	ement Plate	Sealing Strip		5
Tubes:					
Number		903	Tube Type		Bare
Length	m	17.07	Free Int. Fl A	rea m2	0.00
Tube O.D.	m	0.025	Fin Efficiency		0.000
Tube I.D.	m	0.023	Tube Pattern		SOU45
Tube Wall Thk.		0.003	Tube Pitch	m	0.038
No. Tube Pass		1	Tube Treen	ш	0.030
Inner Roughnes	ss m	0.0000016			
Number of tube		2	Tubesheet thic	kness. m	0.025
		_		,	
Resistances:					
Shell-side Fil	.m		m2-K/W	0.00267	
Shell-side Fouling			m2-K/W	0.00000	
Tube Wall			m2-K/W	0.00023	
Tube-side Foul	ing		m2-K/W	0.00000	
Tube-side Film	1		m2-K/W	0.00463	
Reference Fact	or (Total o	outside area/i	nside area base	ed on tube ID)	1.330
Pressure Drop D	istribution	ı:			
Tube Side			Shell Side		
Inlet Nozzle	kPa	4.1698	Inlet Nozzle	kPa	3.5209
Tube Entrance	kPa	0.1375	Impingement	kPa	2.0821
Tube	kPa	4.9148	Bundle	kPa	24.0874
Tube Exit	kPa	0.1723	Outlet Nozzle	kPa	3.4261
End	kPa	0.0000	Total Fric.	kPa	31.0344
Outlet Nozzle	kPa	1.8063	Total Grav.	kPa	-0.0680
Total Fric.	kPa	11.2008	Total Mome.	kPa	13.7123
Total Grav.	kPa	0.1170	Total	kPa	44.6787
Total Mome.	kPa	-0.2062			
Total	kPa	11.1117			

The completed CHEMCAD flowsheet is shown on page 2 and the detailed tabulated results on pages 3-4. From the tabulated results, answers to questions (1) and (2) are highlighted in yellow.

Number of tubes: 903 //ANS

Length of the tubes: 17.07 m //ANS

Inside diameter of the shell: 1.37 m //ANS

Required area of the exchanger: 1,209.38 m² //ANS

Largest resistance to heat transfer in the exchanger: 0.00463 m²K/W (tube-side) //ANS

The purchased cost is determined by activating the "costing report" in the Cost Estimations tab in the Level 3 heat exchanger.

February 2023 total installed cost: \$1,434,290 //ANS

Cadet: APPROVED SOLUTION

Problem: Weight: 60

Determine the total annual operating costs for the shell-and-tube exchanger as designed in Problem A.

SOLUTION:

Use Equation 14-91 in the PTW textbook on page 739 with the stream box from CHEMCAD:

$$C_{\scriptscriptstyle T} = A_{\scriptscriptstyle 0} \cdot K_{\scriptscriptstyle F} \cdot C_{\scriptscriptstyle A_{\scriptscriptstyle 0}} + m_{\scriptscriptstyle \mu} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle u} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle i} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle i} + A_{\scriptscriptstyle 0} \cdot E_{\scriptscriptstyle 0} \cdot H_{\scriptscriptstyle y} \cdot C_{\scriptscriptstyle 0}$$

C_T Total annual costs, dollars/yr

 A_0 Outside tube area, m^2

K_F Annual fixed charges factor (maintenance, etc) as a fraction of installed cost, dimensionless

 C_{A_0} Installed cost of the heat exchanger per unit outside tube area, dollars/m²

m_u Mass flow rate of utility fluid, kg/hr

H_v Hours of operation per year

C_u Cost of utility fluid, dollars/kg

 E_i Power loss due to fluid flow inside heat exchanger tubes per unit outside tube area, $N \cdot m/s$ per m^2

 $C_{_{i}}$ Cost of supplying 1 N \cdot m to pump fluid through the inside of the tubes, dollars/N \cdot m

 E_0 Power loss experienced on the shell side per unit outside tube area, $N \cdot m/s$ per m^2

 $\boldsymbol{C_0}$ Cost of supplying 1 N \cdot m to pump fluid through the shell side, dollars/N \cdot m

Stream No.	9	10	12	11
Name	HG		CH4	
Overall				
Temp C	380.0000	35.2623	15.0000	299.7734
Pres kPa	1020.0000	1008.9029	1020.0000	975.3494
Mass flow kg/sec	16.1900	16.1900	7.6000	7.6000
Std liq m3/h	67.3659	67.3659	91.2001	91.2001
Actual dens kg/m3	5.3956	11.3559	6.9673	3.2779

Tube-side pressure drop = 1020 - 1008.9029 = 11.0971 kPa = 11,097.1 Pa

Tube-side average density = $(5.3964 + 11.3559)/2 = 8.37615 \text{ kg/m}^3$

Tube-side mass flow rate = 16.1900 kg/s from level 1

Shell-side pressure drop = 1020 - 975.3494 = 44.6506 kPa = 44,650.6 Pa

Shell-side average density = $(6.9673 + 3.2779)/2 = 5.1226 \text{ kg/m}^3$

Shell-side mass flow rate = 7.6000 kg/s from level 1

$$A_{_{0}}=\pi\cdot D_{_{O}}\cdot L\cdot N_{_{P}}=\pi\cdot 0.0254\,m\cdot 17.07\,m\cdot 9003=1230.00\,m^{2}$$

$$C_{A_0} = \$1,434,290/1230.00 \,\text{m}^2 = \$1,166.089/\,\text{m}^2$$

$$K_{\rm F} = 0.23$$

$$C_{n} = 0$$

$$H_v = 8,000 \, hrs$$

$$C_i = \$0.17 / kWh$$

$$E_{i} = \frac{11,097.1 \frac{N}{m^{2}} \cdot 16.1900 \frac{kg}{s} \cdot \frac{1m^{3}}{8.37165 \, kg}}{1230.00 \, m^{2}} = 17.4384 \, \frac{W}{m^{2}} = 0.0174384 \, \frac{kW}{m^{2}}$$

$$E_{0} = \frac{44,650.6 \frac{N}{m^{2}} \cdot 7.600 \frac{kg}{s} \cdot \frac{1 m^{3}}{5.1226 \, kg}}{1230.00 \, m^{2}} = 53.8574 \, \frac{W}{m^{2}} = 0.0538574 \, \frac{kW}{m^{2}}$$

$$\begin{split} C_T = &1230.00\,\text{m}^2 \cdot 0.23 \cdot \frac{\$1166.089}{\text{m}^2} \\ &+ 1230.00\,\text{m}^2 \cdot 0.0174384 \frac{\text{kW}}{\text{m}^2} \cdot 8,000\,\text{h} \cdot \frac{\$0.17}{\text{kWh}} \\ &+ 1230.00\,\text{m}^2 \cdot 0.0538574 \frac{\text{kW}}{\text{m}^2} \cdot 8,000\,\text{h} \cdot \frac{\$0.17}{\text{kWh}} \\ = &\frac{\$449,150}{\text{mas}} \end{split}$$

Problem: Weight: C 60

- (1) Determine the total purchased cost of a compressor designed to increase the tube-side hot gasses from the outlet pressure at the exchanger back to 1020 kPa. The compressor is centrifugal with an explosion-proof 3600 RPM motor and a belt-drive coupling. Determine the cost must be in February 2023.
- (2) If the hot gas air temperature must be within 0.5 degrees of 35 °C at the outlet of the compressor, how does the addition of the compressor impact the design of the heat exchanger? (No simulation, explain only.)

SOLUTION:

The CHEMCAD flowsheet is shown below with temperatures and pressures indicated in the TP box. Unit Ops Cost estimation windows follow below. The total purchase cost is \$172,102 in February 2023.

A screenshot of the pump cost estimation window is shown above. The purchased cost is obtained <u>after</u> cadets check the button "Run the costing report after calculating the unit." Cadets must also update the pump/compressor cost index to 1347.6 and the cost index year to February 2023.

- (1) The purchased cost in February 2023 is circled in red and is equal to \$172,102. //ANS
- (2) Compression of a gas causes heating, thus the compressor will heat the gasses somewhat. This means the flow rate of the air can be reduced somewhat or the area of the heat exchanger can be reduced somewhat. //ANS