

Diseño de Infraestructuras de Redes Grado en Ingeniería de Computadores

Depto. de Arquitectura de Computadores Universidad de Málaga

© Guillermo Pérez Trabado 2006-2017

Sections

- Design Methodology
- Physical Structure
- Logical Structure
- Mapping

• • • DESIGN METHODOLOGY

Estructura física y lógica

- La estructura física de la red depende del diseño del edificio y comprende la distribución de:
 - Cableado estructurado: fibra óptica, par trenzado, otros medios.
 - Armarios repartidores: contienen los equipos activos de transmisión.
 - Puntos de acceso: rosetas con los enchufes donde se conectan los equipos terminales.
 - Acometida desde el exterior: es el punto donde se interconecta la red interna con la red de un proveedor de servicios públicos de transmisión de datos.
- La estructura lógica de la red depende de los servicios a implementar:
 - Aspectos administrativos tales como agrupación/división en departamentos y requerimientos de seguridad.
 - Número y distribución de los equipos servidores y clientes de aplicaciones.
 - Limitaciones técnicas tales como protocolos basados en difusión (broadcast).

• • • PHYSICAL STRUCTURE

Criterios de diseño físico

- Partir de la topología de la organización
 - Sucursales: sites en una ciudad, país, continente, etc.
 - Diseño de cada sucursal: plano del edificio, campus con varios edificios, etc.
 - Distancias dentro de la planta.
 - Número de equipos.
 - Necesidades especiales: movilidad, salas de conferencias, robótica móvil, flotas de vehículos, zonas verdes y grandes espacios.

Escala del diseño

- Sites en distintas ciudades del planeta
- Sites repartidos por una ciudad

- Campus con varios edificios cercanos
- Un solo edificio

Cableado estructurado de un edificio

Cableado estructurado de un edificio

Cableado estructurado de un edificio

Elementos del cableado estructurado

- Acometida
 - Punto Terminador de Red

- Canalizaciones
 - Acometida
 - **Troncales**
 - Verticales
 - Horizont<u>ale</u>s<mark>≡</mark>
 - Acceso □
- Centros de Proceso de Datos y repartidor primario
 - Servidores de datos
 - Routers
 - Firewalls
 - Routers WAN (modems)
 - Paneles de Parcheo
- Repartidores secundarios
 - **Switches**
 - Paneles de Parcheo
- Puntos de Acceso
 - Conector RJ-45
 - Latiguillo de red al equipo

Ubicación de los repartidores

- Regla básica
 - Usar par de cobre siempre que la distancia lo permita
 - ◆ El par de cobre debe medir menos de 100m incluyendo latiguillos (90m entre panel de parcheo y caja de red)
- Enrutamiento
 - → ¿En línea recta?
 - + Cables más cortos
 - Cables cruzando espacios privados, canalizaciones individuales
 - Topología Manhatan
 - - Cables más largos
 - + Cableado por espacios comunes (pasillos), canalizaciones colectivas

• • • LOGICAL STRUCTURE

Criterios de diseño lógico

- Diseño de la red en función de las aplicaciones existentes y la estructura de la organización
 - Separar internet de intranet
 - Dividir intranet en segmentos
 - Aislar desktops de departamentos entre si
 - Aislar servidores de aplicaciones entre si
- Conectar solo aquellos componentes que necesitan dialogar
 - Servidores de aplicaciones con sus clientes
 - Clientes del mismo grupo de trabajo (concepto de workgroup)

Estructura lógica: Clases de seguridad y flujos de datos

Modelo para la solución

- El diseño lógico resultante es un grafo de VLANs y routers IP
 - Las VLANs son subredes de nivel 2
 - Los routers son pasarelas de nivel 3
- Seguridad
 - Las VLANs proporcionan aislamiento a las subredes de la empresa
 - Los routers controlan la interconexión filtrando todo lo que no esté expresamente autorizado en el diseño lógico (firewalls)

Estructura lógica: VLANs y routers

Refinamiento top-down

- La solución se ha de desarrollar mediante diseño descendente (top-down)
 - En cada paso se especifican más detalles sobre la implementación de cada componente
- Algunos pasos que no hay que olvidar
 - Pasar de un grafo abstracto a un grafo con la ubicación física (sites) de cada subred de la empresa
 - Solucionar la interconexión entre sites especificando el uso de enlaces y routers WAN de tecnologías concretas

Estructura lógica: Enlaces y routers WANs (ej. 1)

Logical Structure

Estructura lógica: Enlaces y routers WANs (ej. 2)

Implementación del diseño lógico

- La implementación final del diseño lógico consiste en:
 - Elegir los modelos concretos de switches que van en los repartidores en función de las caracterísicas adicionales que necesitemos además de conmutar paquetes Ethernet.
 - Elegir los modelos de routers y/o firewalls necesarios para incorporar al árbol de switches. Normalmente en la raiz (core switch).
 - Configurar las VLANs en los switches.
 - Configurar los Trunks Ethernet 802.1Q en los switches.
 - Configurar los interfaces en cada VLAN de los routers y sus tablas de enrutamiento.
 - Elegir la tecnología WAN de los enlaces a alquilar y las características de cada enlace (BW y QoS) negociando un contrato SLA con un operador de telecomunicaciones.
 - ◆ Elegir los modelos de routers WAN necesarios y configurar los enlaces WAN y sus tablas de enrutamiento.

Implementación: equipos activos

Implementación: racks de equipos

Flexibility through Soft. Configuration

- Old networks (1980-1990)
 - Low flexibility.
 - LAN topology was defined by cables and hubs.
 - LAN interconection was defined by cables and router interfaces.
 - Only routing tables and ACLs could be defined by software.
 - Security depends on existing cables.
- Current networks (1990-)
 - High flexibility.
 - Virtual LAN topology can be defined by software (Ethernet VLANs).
 - ◆ LAN interconection can be defined by software (routers can define virtual interfaces, links can be multiplexed, VLANs act as virtual cables).
 - Remote networks can join as a single logical network using Virtual Private Network protocols (VPN).
 - Security depends on proper configuration.