MATH 1080 Vagnozzi

12.3: Calculus in Polar Coordinates

Learning Objectives. Upon successful completion of Section 12.3, you will be able to...

- Answer conceptual questions involving calculus in polar coordinates.
- Find the slope of the line tangent to a polar curve at a given point.
- Find the points at which a polar curve has horizontal or vertical tangent lines.
- Find intersection points for two polar curves.
- Find the area of a region bounded by polar curves.
- Find the lengths of polar curves.

Tangents to Polar Curves

Given a polar curve $r = f(\theta)$, how do we find $\frac{dy}{dx}$?

Example. Let's consider the polar curve $r = 1 + \cos \theta$. Find the slope of the line tangent to the curve at $\theta = \frac{\pi}{2}$.

Tangents to Polar Curves. The slope $\frac{dy}{dx}$ of the line tangent to a polar curve $r = f(\theta)$ is

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}.$$

Horizontal tangents occur where ______, provided that ______.

Vertical tangents occur where ______, provided that ______.

Example. Let's again consider the polar curve $r = 1 + \cos \theta$. Find the points (r, θ) where the graph has horizontal or vertical tangents.