

Redes de Computadores

Camada de Rede - II

Prof. Me. Ricardo Girnis Tombi

VLSM – Variable Length Subnet Mask

Uma rede (classe A, B ou C) pode ser dividida em várias sub-redes, cada uma delas com um tamanho fixo. Por exemplo, uma rede classe C pode ser dividida em 08 sub-redes com a máscara /27 (três bits emprestados).

Máscara: /27

11111111.11111111.11111111.11100000

Rede classe C (254 hosts) dividida em sub-redes

VLSM – Variable Length Subnet Mask

Com o conceito de VLSM, pode se dividir as sub-redes em outras sub-redes, cada uma com o tamanho necessário para satisfazer os requisitos de projeto. Simplificadamente pode se dizer "sub-redes das sub-redes".

dividida em sub-redes

VLSM – Projeto

Você é o administrador de rede em uma empresa, e tem que fazer o projeto de endereçamento de três escritórios a partir do endereço IP 192.125.5.0/24, conforme apresentado a seguir:

Filial - Curitiba

Iniciar por Curitiba por ser o maior. Como precisamos de 50 hosts, temos que utilizar 6 bits para hosts $(2^6 - 2 = 62 > 50)$.

Utilizando 6 bits para hosts temos 2 bits para sub-rede ou seja, teremos uma máscara /26

Curitiba: 192.125.5.0/26	00	192.125.5.0
endereço de rede: 192.125.5.0	01	192.125.5.64
endereço de broadcast: 192.125.5.63	10	192.125.5.128
endereço de hosts: 192.125.5.1 a 192.125.5.62	11	192.125.5.192

Filial – São Paulo

O próximo passo é fazer o mesmo procedimento para São Paulo.

Ou seja, precisamos de 28 hosts $(2^5 - 2 = 30 > 28)$.

Utilizamos 5 bits para hosts e 3 para rede, ficando uma máscara /27.

São Paulo: 192.125.5.64/27	000	192.125.5.0
endereço de rede: 192.125.5.64	001	192.125.5.32
endereço de broadcast: 192.125.5.95	010	192.125.5.64
endereço de hosts: 192.125.5.65 a 192.125.5.94	011	192.125.5.96
	100	192.125.5.128
	101	192.125.5.160
	110	192.125.5.192
	111	192.125.5.224

Filial – Brasília

De forma análoga em Brasília teremos 15 hosts.

Ou seja, 5 bits para hosts $(2^5 - 2 = 30 > 15)$ e 5 bits para rede.

Como já utilizamos a rede 192.125.5.64/27 para São Paulo, utilizaremos a próxima para São Paulo, ficando da seguinte forma

Brasília: 192.125.5.96/27	000	192.125.5.0
endereço de rede: 192.125.5.96	001	192.125.5.32
endereço de broadcast: 192.125.5.127	010	192.125.5.64
endereço de hosts: 192.125.5.97 a 192.125.5.126	011	192.125.5.96
	100	192.125.5.128
	101	192.125.5.160
	110	192.125.5.192
	111	192.125.5.224

Enlace – Curitiba - Brasília

Primeiramente vamos calcular os endereços do enlace entre Curitiba Brasília.

Precisamos apenas de 2 endereços de hosts (um para cada interface serial de cada roteador).

Logo, 2 bits para hosts é o suficiente e ficamos uma máscara /30 ficando da seguinte forma::

Enlace Curitiba-Brasília: 192.125.5.128/30

endereço de rede: 192.125.5.128

endereço de broadcast: 192.125.5.131

endereço de hosts: 192.125.5.129 e 192.125.5.130

Enlace – Curitiba – São Paulo

Analogamente ao enlace Curitiba-Brasília definimos os endereços do enlace entre Curitiba-São Paulo.

Precisamos apenas de 2 endereços de hosts (um para cada interface serial de cada roteador).

Logo, 2 bits para hosts é o suficiente e ficamos uma máscara /30 ficando da seguinte forma:

Enlace Curitiba-São Paulo: 192.125.5.132/30

endereço de rede: 192.125.5.132

endereço de broadcast: 192.125.5.135

endereço de hosts: 192.125.5.133 e 192.125.5.134

Diagrama do Projeto

Mapa de endereçamento do projeto

PERGUNTAS?

