T5 - Bobinas de Helmholtz. Momento Dipolar e Momento Torsor Aplicado a Espiras Móveis Imersas num Campo Magnético Uniforme

1. Introdução

O módulo do campo de indução magnética, $|\vec{B}'|$, gerado no centro de uma espira (ou uma bobine compacta com N espiras, que se lhe assemelhe) pela corrente elétrica de intensidade i' que a percorre, é dado por:

$$B' = \frac{\mu_0 Ni'}{2R} \tag{1}$$

onde: R = raio da(s) espira(s).

 μ_0 = constante de permeabilidade magnética do meio (ar \cong vazio), igual a $4\pi \times 10^{-7}$ (T m/A)

 \vec{B}' é um vetor cujo sentido é determinado pela regra da mão direita, onde os dedos indicam o sentido da corrente e o polegar o sentido do campo, conforme a Figural.

Figura 1

Mas esta espira percorrida pela corrente i' constitui um dipolo magnético cujo momento, $\vec{m}^{\, 1}$, também está localizado no centro da espira e com a direção dada pela regra da mão direita (dedos no sentido da corrente e polegar dá o sentido de m) é:

$$\vec{m} = Ni'\vec{A} \tag{2}$$

onde, $\vec{A} = \pi R^2 \vec{u}_{normal}$, é a área de cada uma das N espiras².

PS: Este momento dipolar magnético é um vetor que representa a intensidade da fonte magnética com a orientação do vetor área que é perpendicular à área da espira.

Ora, se esta espira com corrente i' for colocada num campo magnético externo \vec{B}_{ext} , isto é, gerado por outro agente, o binário das forças que atuam sobre ela produzem-lhe um momento torsor $\vec{\tau}$ (torque), que tende a orientar o seu momento magnético \vec{m} na direção do campo externo \vec{B}_{ext} :

$$\vec{\tau} = \vec{m} \times \vec{B}_{ext} \tag{3}$$

Figura 2: Vetores $\vec{\tau}$ (apontado para fora da folha), \vec{m} e \vec{B}_{ext} : (ambos no plano da folha) na espira de 3 voltas representada de perfil, com a corrente saindo da espira na parte inferior.

T5 - Momento dipolar e momento torsor

^{^1} Na literatura este vetor \overrightarrow{m} é representado por $\overrightarrow{\mu}$. Para evitar uma possível confusão com a permeabilidade magnética μ_0 optou-se por utilizar \overrightarrow{m} .

 $^{^{2}}$ Deve observar-se que a eq.(2) é válida para qualquer forma geométrica planar da espira.

O torque saindo para fora do plano da figura corresponde a uma rotação da espira no sentido anti-horário, tendendo a alinhar \overrightarrow{m} com \overrightarrow{B}_{ext} . O módulo de $\overrightarrow{\tau}$ é dado por:

$$|\vec{\tau}| = mB_{ext}sen\theta \tag{4}$$

onde heta é o ângulo formado entre os vetores \overrightarrow{m} e \overrightarrow{B}_{ext} .

No laboratório, uma espira circular com N voltas vai ficar suspensa numa região com um campo magnético uniforme de módulo $\left| \overrightarrow{B}_{ext} \right|$, produzido por um arranjo especial de bobinas — Bobinas de Helmholtz. Estas bobinas, percorridas por uma corrente i, colocadas verticalmente e paralelas entre si, com uma separação igual ao raio R, criam um campo magnético cujo módulo, $\left| \overrightarrow{B}_{ext} \right|$, é dado por:

$$\left| \overrightarrow{B}_{ext} \right| = \frac{8\mu_0 ni}{5^{3/2}R} \tag{5}$$

Utilizando os dados do fabricante, $R=0.20\mathrm{m}$ e n=154 voltas, o campo de indução magnética produzido na região central entre as duas grandes bobinas de Helmholtz pode ser facilmente calculado em função da corrente i, expressa em ampere, por:

$$\left| \vec{B}_{ext} \right| = 6.93 \times 10^{-4} i \tag{6}$$

Então vem:

$$|\vec{\tau}| = mB_{ext}sen\theta = 6.93 \times 10^{-4}\pi i i' NR^2 sen\theta$$
 (7)

Como a espira que vai ficar suspensa é circular, com diâmetro de d = 12 cm e três voltas, e será percorrida por uma corrente i^\prime , o

valor de $|\vec{m}|$ da eq.(2) fica $|\vec{m}|=0.03393i'$, isto é, dependente do valor da corrente que nela circula.

Substituindo as expressões de $|\overrightarrow{m}|$ e $|\overrightarrow{B}_{ext}|$ na eq.(4), resulta:

$$|\vec{\tau}| = 2,35 \times 10^{-5} ii' sen\theta \tag{8}$$

REFERÊNCIAS BIBLIOGRÁFICAS

Alonso, Finn; Física, Um Curso Universitário; vol. 2; cap. 15.

Halliday, Resnick; cap. 34.

2. Procedimento experimental

O dispositivo experimental contém uma balança de torção, muito frágil e sensível, constituída por um fio metálico que pode ser torcido pelo operador, de um determinado ângulo α , que não deve ser confundido com θ entre \overline{m} e \overline{B}_{ext} . O fabricante calibrou esta balança de torção para fornecer diretamente os valores da força $|\overline{F}|$, expressa em mN (10⁻³ N), para cada ângulo α imposto pelo operador à balança, sempre que precisa de reequilibrá-la. O torque $|\overline{t}|$ é calculado multiplicando-se a força $|\overline{F}|$ pelo diâmetro da espira (d=12 cm):

$$|\vec{\tau}| = 0.12 \times F \tag{9}$$

onde $|\vec{\tau}|$ é expresso em Newton metro.

A eq. (8) permite investigar a dependência do momento torsor $(|\vec{\tau}|)$ com três variáveis: a corrente i' na(s) espira(s), a corrente i, que alimenta as bobinas de Helmholtz, e o ângulo inicial (θ) entre a normal da espira (que coincide com \vec{m}) e o campo externo \vec{B}_{ext} . Em princípio, bastaria fixar os valores numéricos para duas destas variáveis e ver a dependência de $|\vec{\tau}|$ com a terceira.

• Como primeiro exemplo, deverá ser utilizado inicialmente $\theta=90^{\rm o}$, que corresponde ao plano da espira paralelo ao campo \vec{B}_{ext} e a corrente na(s) espira(s) $i'=3{,}00\,{\rm A}$. Substituindo na eq.(8) fica:

$$|\vec{\tau}| = 7.05 \times 10^{-5} i \tag{10}$$

A condição expressa pela eq.(10) vai ser determinada experimentalmente, ou seja, o momento do binário produzido na espira será medido em função da corrente nas bobinas de Helmholtz. Pretende-se verificar quanto o coeficiente angular do gráfico $|\vec{\tau}| = f(i)$ obtido experimentalmente difere do valor teórico proposto acima.

Para verificar experimentalmente a dependência do momento torsor sobre a espira em função da sua corrente i', (cf: eq.(7)) aplica-se uma corrente i nas bobinas de Helmholtz (que vão fazer o papel de um imenso íman permanente) com um valor constante e arbitrário, por exemplo, $i=2,00\,\mathrm{A}$, e também empregando $\theta=90^{\circ}$, o que resulta em:

$$|\vec{\tau}| = 4.7 \times 10^{-5} i \tag{11}$$

Nota: Uma importante aplicação prática do momento torsor exercido sobre uma espira num campo magnético externo é no galvanómetro de d'Arsonval. O campo magnético no galvanómetro é produzido por um íman permanente na forma de U, porém cortado de tal forma que o campo magnético seja radial na direção da bobina. Desta maneira, o ângulo θ entre \vec{B}_{ext} e a normal (que coincide com a direção de \vec{m}) ao plano da bobina é de $\theta=90^{\circ}$, para qualquer orientação da bobina no intervalo de medida da corrente. O momento torsor provocado pela força devido ao campo magnético do íman permanente é proporcional à corrente na bobina móvel, de acordo com uma equação linear do tipo da eq.(10), $|\vec{r}| = const \times i'|$ e compensado pelo momento torsor de restauração aplicado pela mola de sustentação.

ullet Para verificar a dependência do momento torsor aplicado à(s) espira(s) no seno do ângulo entre $ec{m}$ e $ec{B}_{ext}$ (sen heta) ter-se-á de

fixar o valor da corrente , i , de alimentação das bobines de Helmholtz (fixa-se o campo \vec{B}_{ext}), bem como o valor da corrente que percorre a(s) espira(s) i' (fixa-se o valor de $|\vec{m}|$), e varia-se o ângulo θ com intervalos de 15° entre -90° e 90°.

Por exemplo, $i' = 3,00 \,\mathrm{A}$ e $i = 2,00 \,\mathrm{A}$, donde:

$$|\vec{\tau}| = 14.1 \times 10^{-5} sen\theta \tag{12}$$

• Como complemento, pode também ser verificada a dependência de $|\vec{\tau}|$ no momento do binário magnético das espiras suspensas, \vec{m} , mudando ora o n° de voltas de cada espira/bobina suspensa (N=1,2,3), ora a dimensão dessas espiras (d = 12 cm, 9cm e 6 cm). Naturalmente, neste caso terão de ser mantidos constantes todos os outros parâmetros. Usando os mesmos valores indicativos de atrás:

$$|\vec{\tau}| = mB_{ext}sen\theta = 6.93 \times 10^{-4}\pi i NR^2 sen\theta = 1.3 \times 10^{-2}NR^2$$
 (13)

2.1 Material

- o fonte de tensão para alimentação das bobines de Helmholtz (20 VDC/5 A).
- o Fonte de tensão (30Vdc/3A)
- o Balança de torção Phywe e suportes.
- o Par de bobinas de Helmholtz e suportes.
- o 2 multímetros digitais.
- o 5 espiras com diâmetro = 12 cm, 8 e 5 cm e N = 1, 2 e 3 voltas para diâmetro = 12 cm.
- o Teslimetro medidor de campo magnético. (facultativo).

2.2. Descrição do procedimento experimental:

- Montar o circuito gerador do campo magnético, ilustrado na figura 3 - circuito de alimentação das bobinas de Helmholtz. A montagem das duas bobinas em série e percorridas por corrente no mesmo sentido (ligações 1-1 e 2-2) cria campos magnéticos que se somam.

Figura 4 Circuito de alimentação das espiras.

Instruções gerais para as medidas

Suspensa sobre as bobines está a "balança de torção". Esta balança é muito frágil e:

- O ponto zero da balança é ajustado rodando o botão inferior, de modo que o quadro móvel que sustenta a espira circular fique alinhado com a travessa horizontal.
- Na parte superior da balança de torção, o cursor/escala é ajustado para a indicação zero.
- Os momentos dos binários que serão medidos são muito pequenos e requerem visualização cuidadosa sobre a travessa horizontal.
 A medida é feita rodando o cursor/escala circular de forma a repor a indicação do zero inicial. Isto é, de forma a compensar o momento do binário que acabou de ser aplicado. A leitura é feita na escala graduada de 0 a 3.

PRIMEIRA PARTE - Momento magnético (TABELA I)

- 1 Confira as ligações elétricas de acordo com o esquema.
- O ângulo inicial entre a espira e o campo \vec{B} é indicado no pequeno disco vermelho que sustenta a espira, em divisões de 15

graus. Utilize a espira móvel com N = 3 e
$$\theta = \frac{\pi}{2}$$
.

- 3 Ajuste o zero da balança de torção. O cursor/escala deve indicar zero e o quadro móvel deve estar alinhado com a travessa horizontal.
- 4 Antes de ligar a fonte de tensão que alimenta a espira, verifique se o seletor de tensões está no mínimo e o de corrente a

meio. A espira suspensa no campo magnético suporta uma corrente máxima de 4A. Ligue a fonte e aplique uma corrente entre 2,0 e 3,0 A.

- 5 Proceda de modo semelhante com a fonte de tensão que alimenta as bobinas de Helmholtz. Acabou de ser aplicado um campo magnético uniforme no espaço entre bobinas! O quadro móvel sustentando a espira deve ter-se movido. Confira-o olhando sobre a travessa horizontal. Recoloque em zero com o cursor/escala graduada. Leia o valor da força na escala de 0 a 3, quer seja para a esquerda quer para a direita.
- 5 Para calcular o momento do binário em função da corrente nas bobinas de Helmholtz, é necessário ajustar frequentemente o ponto zero da balança de torção, visto que os movimentos do quadro móvel deslocam os cabos de ligação elétrica. Para executar esse procedimento desligue a tensão na fonte.
- Faça as medidas da força de torção com a corrente nas bobinas de Helmholtz crescendo até o valor máximo e, depois decrescendo até zero. Se puder dispor de um teslimetro, use-o para (também) medir diretamente o campo magnético (Bmed) no centro da espira móvel, para cada valor de tensão aplicada (crescente ou decrescente).
- 7 Calcule o valor médio das forças medidas (F), o campo Bcalc e, então os respetivos momentos torsores [eq.(8)]. Anote os valores medidos e os calculados na tabela I.
- 8 Utilize a bússola para identificar o pólo norte das bobinas e da espira. Para evitar interferência, use uma corrente entre 2,5 A e 3,0 A para a espira e desligue a tensão nas bobinas de Helmholtz. Depois aplique a maior corrente nas bobinas e desligue a alimentação

da espira. Nos dois casos observe o sentido das correntes e verifique o pólo norte utilizando a regra da mão direita.

TABELA II

- 1 Utilizando a mesma espira móvel (N=3) verifique agora a dependência angular do momento das forças aplicadas à espira suspensa.
- 2 Posicione a espira móvel inicialmente a um ângulo de 0°, correspondendo ao momento magnético paralelo ao campo magnético das bobinas. Aplique uma corrente entre 2,0 A e 3,0 A na espira móvel (i') e uma tensão de 12V ou 14V nas bobinas. Mantenha a corrente e a tensão escolhidas constantes durante esta experiência.
- 3 Anote na tabela II os valores medidos das forças F_1 e F_2 e os calculados da força média F e do momento torsor.
- 4 Varie a posição angular da espira conforme indicado na tabela, procedendo com as medidas e cálculos conforme instrução anterior.

TABELA III

- 1 Nesta parte da experiência, medirá as forças que atuam em espiras móveis com diferentes diâmetros e números de espiras, imersos em campo magnético uniforme.
- 2 Coloque todas as espiras com os momentos magnéticos perpendiculares ao campo magnético das bobinas ($\theta = \frac{\pi}{2}$).
- 3 Fixe a tensão das bobinas em 12V ou 14V e as correntes nas espiras móveis entre 2A e 3A.
- 4 Utilizando um medidor de campo magnético (Teslimetro), meça os campos B (Bmed) nos centros de cada espira móvel usada.
- Anote os diâmetros das espiras (d), as forças (F) e os campos (Bmed) medidos e os valores calculados dos campos magnéticos (Bcalc) e dos momentos torsores ($|\vec{\tau}|$), completando a tabela III.

6 QUESTIONÁRIO

- 1 Usando os dados da tabela I, faça o gráfico de \vec{t} em função de
- i. Calcule os coeficientes do gráfico e compare com a eq. (9). Escreva a equação experimental que representa o fenómeno.
- Determine a permeabilidade magnética do meio. Calcule o erro experimental relativo ao valor teórico ($\mu_0=4\pi\times10^{-7}$ T m/A).
- 3 Faça diagramas mostrando as correntes nas bobinas, os campos magnéticos, momento magnético e momento torsor.

PRIMEIRA PARTE

TABELA I

Momento magnético:

$$\theta =$$
 ______; i' = _____; A = _____; N = _____

v (v)	i (A)	F ₁ (×10 ⁻³ N)	F ₂ (×10 ⁻³ N)	F(×10 ⁻³ N)	B _{med} (mT)	τ (×10 ⁻⁴ Nm)
2,0						
4,0						
6,0						
8,0						
10,0						
12,0						
14,0						

TABELA II

$$i' =$$
_____; N = 3 espiras; V = _____; i = _____

θ (graus)	F ₁ (×10 ⁻³ N)	F ₂ (×10 ⁻³ N)	F (×10 ⁻³ N)	τ (×10 ⁻⁴ Nm)
0				
30				
45				
60				
90				

TABELA III i' = _____ ; V = ____ ; i = ____

N° de espiras	Diâmetro (m)	F(×10 ⁻³ N)	B _{med} (mT)	B _{calc} (mT)	τ(×10 ⁻⁴ Nm)
3					
2					
1					
1					
1					