2022 SUMMER

업데이터 통계학 스터디

Chapter 7 – Point Estimation 2

Sufficiency

Sufficiency

Ex. Y_1, \dots, Y_n : iid Bernoulli(p)

Inference about p uses count of successes $S = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$

Do we lose information about p in going from n observations to 1 sum?

Sufficiency

Ex. Y_1, \dots, Y_n : $iid\ Unif(0, \theta)$, Good estimator based on $W = Y_{(n)}$

Does W contain all information about θ available from data?

Data reduction: $Y_1, \dots, Y_n \to S = \sum_{i=1}^n Y_i$ or $W = Y_{(n)}$

Idea: A sufficient statistic compresses data without losing information about the parameter.

Sufficient Statistics

Definition (SS)

 Y_1, \dots, Y_n : random sample from a distribution with unknown θ .

A statistic $U = U(Y_1, \dots, Y_n)$ is a sufficient statistic if conditional distribution of Y_1, \dots, Y_n given U does not depend on θ .

Meaning: if you already know $U = U(Y_1, \dots, Y_n)$, any other statistic does not have any extra information about θ .

```
Y_1, \dots, Y_n: iid\ Bernoulli(p)
Let S = \sum_{i=1}^{n} Y_i \sim Bin(n, p). Find a distribution of Y_1, \dots, Y_n | S?
```

Likelihood Function

Definition

 y_1, \dots, y_n : sample observations taken on corresponding random variables Y_1, \dots, Y_n whose distributions depend on θ . The likelihood function of the sample is

$$L(\theta|y_1,\dots,y_n) = f(y_1|\theta) \times \dots \times f(y_n|\theta)$$

Likelihood = joint probability/density function of Y_1, \dots, Y_n

 Y_1, \dots, Y_n : $iid\ Exponential(\theta)$ $L(\theta|y_1, \dots, y_n) = ?$

Factorization Theorem

Theorem

 $U = U(Y_1, \dots, Y_n)$ is a SS for θ iff we can write the likelihood in the form as

$$L(\theta) = g(u(y_1, \dots, y_n), \theta)h(y_1, \dots, y_n)$$

 Y_1, \dots, Y_n : iid Exponential(θ)

Find a SS for θ

 Y_1, \dots, Y_n : iid Geometric(p) Find a SS for p

 Y_1, \dots, Y_n : iid Bernoulli(p) Find a SS for p

 Y_1, \dots, Y_n : $iid\ Uniform(0, \theta)$ Find a SS for θ

```
Y_1, \dots, Y_n: iid Gamma(\alpha, \beta)
```

- 1) α is known, Find a SS for β
- 2) β is known, Find a SS for α
- 3) α and β are both unknown, SS for (α, β)

```
Y_1, \dots, Y_n: iid N(\mu, \sigma^2)
```

- 1) σ^2 is known, Find a SS for μ
- 2) μ is known, Find a SS for σ^2
- 3) μ and σ^2 are both unknown, SS for (μ, σ^2)

Sufficient Statistics

Notes:

• Any 1-1 function of a sufficient statistic is a sufficient statistic.

Ex.
$$Exp(\theta)$$
: $U = \sum Y_i$, $V = \frac{1}{n} \sum Y_i$

- Any statistic from which a sufficient statistic is calculated is also a sufficient statistic. Ex) Random sample itself
- Many possible SS's ⇒ MSS(Minimal Sufficient Statistics)