$9_{23} (K9a_{16})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^5 - u^4 + 2u - 1 \rangle$$

$$I_2^u = \langle u^{16} - u^{15} - 2u^{14} + 3u^{13} + 4u^{12} - 7u^{11} - 3u^{10} + 10u^9 - 9u^7 + 3u^6 + 5u^5 - 4u^4 + 2u^2 - 2u + 1 \rangle$$

$$I_3^u = \langle u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 - u^4 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - u^{3} - 2u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{4} - u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - u^{3} + u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - u^{3} - u^{2} - 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^3 + 4u^2 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1,c_3,c_5 \ c_8$	$u^5 + u^4 + 4u^3 + 2u^2 + 4u + 1$
c_2, c_4, c_6 c_9	$u^5 + u^4 + 2u + 1$
C ₇	$u^5 - 4u^4 + 9u^3 - 9u^2 + 4u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_8	$y^5 + 7y^4 + 20y^3 + 26y^2 + 12y - 1$
c_2, c_4, c_6 c_9	$y^5 - y^4 + 4y^3 - 2y^2 + 4y - 1$
C ₇	$y^5 + 2y^4 + 17y^3 + 23y^2 + 88y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.760506 + 0.815892I	6.30195 + 1.13825I	-3.90398 - 2.34058I
u = -0.760506 - 0.815892I	6.30195 - 1.13825I	-3.90398 + 2.34058I
u = 1.001870 + 0.741764I	4.78344 - 10.61130I	-6.76481 + 7.85454I
u = 1.001870 - 0.741764I	4.78344 + 10.61130I	-6.76481 - 7.85454I
u = 0.517281	-0.786636	-12.6620

$$\text{II. } I_2^u = \langle u^{16} - u^{15} - 2u^{14} + 3u^{13} + 4u^{12} - 7u^{11} - 3u^{10} + 10u^9 - 9u^7 + 3u^6 + \\ 5u^5 - 4u^4 + 2u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{11} + 2u^{9} - 4u^{7} + 4u^{5} - 3u^{3} + 2u \\ -u^{11} + u^{9} - 2u^{7} + u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{8} - 2u^{6} + 2u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{13} + 2u^{11} - 5u^{9} + 6u^{7} - 6u^{5} + 4u^{3} - u \\ u^{15} - 3u^{13} + 6u^{11} - 9u^{9} + 8u^{7} - 6u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{13} + 2u^{11} - 5u^{9} + 6u^{7} - 6u^{5} + 4u^{3} - u \\ u^{15} - 3u^{13} + 6u^{11} - 9u^{9} + 8u^{7} - 6u^{5} + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_8	$u^{16} + 5u^{15} + \dots - 4u^2 + 1$
c_2, c_4, c_6 c_9	$u^{16} + u^{15} + \dots + 2u + 1$
	$(u^8 + 2u^7 + 3u^6 + u^4 + 2u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_8	$y^{16} + 11y^{15} + \dots - 8y + 1$
c_2, c_4, c_6 c_9	$y^{16} - 5y^{15} + \dots - 4y^2 + 1$
	$(y^8 + 2y^7 + 11y^6 + 10y^5 + 7y^4 + 10y^3 + 6y^2 + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.017320 + 0.191091I	-1.08130 + 5.29622I	-12.10789 - 6.28296I
u = -1.017320 - 0.191091I	-1.08130 - 5.29622I	-12.10789 + 6.28296I
u = 0.908738 + 0.252477I	-0.328380 - 0.252703I	-10.38985 + 0.96511I
u = 0.908738 - 0.252477I	-0.328380 + 0.252703I	-10.38985 - 0.96511I
u = 0.708362 + 0.611401I	-0.328380 + 0.252703I	-10.38985 - 0.96511I
u = 0.708362 - 0.611401I	-0.328380 - 0.252703I	-10.38985 + 0.96511I
u = 0.724199 + 0.826388I	5.63436 + 4.73566I	-5.11364 - 2.91588I
u = 0.724199 - 0.826388I	5.63436 - 4.73566I	-5.11364 + 2.91588I
u = -0.866890 + 0.696274I	2.35506 + 2.67607I	-4.38861 - 3.32415I
u = -0.866890 - 0.696274I	2.35506 - 2.67607I	-4.38861 + 3.32415I
u = 0.960503 + 0.654282I	-1.08130 - 5.29622I	-12.10789 + 6.28296I
u = 0.960503 - 0.654282I	-1.08130 + 5.29622I	-12.10789 - 6.28296I
u = -0.977539 + 0.749941I	5.63436 + 4.73566I	-5.11364 - 2.91588I
u = -0.977539 - 0.749941I	5.63436 - 4.73566I	-5.11364 + 2.91588I
u = 0.059947 + 0.622852I	2.35506 - 2.67607I	-4.38861 + 3.32415I
u = 0.059947 - 0.622852I	2.35506 + 2.67607I	-4.38861 - 3.32415I

III.
$$I_3^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_3, c_5 c_8	u+1	
c_2, c_4, c_6 c_7, c_9	u-1	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	y-1	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-4.93480	-18.0000

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_8	$(u+1)(u^5 + u^4 + \dots + 4u + 1)(u^{16} + 5u^{15} + \dots - 4u^2 + 1)$
c_2, c_4, c_6 c_9	$(u-1)(u^5 + u^4 + 2u + 1)(u^{16} + u^{15} + \dots + 2u + 1)$
<i>c</i> ₇	$(u-1)(u^5 - 4u^4 + 9u^3 - 9u^2 + 4u + 4)$ $\cdot (u^8 + 2u^7 + 3u^6 + u^4 + 2u^2 + 2u + 1)^2$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_5 c_8	$(y-1)(y^5 + 7y^4 + \dots + 12y - 1)(y^{16} + 11y^{15} + \dots - 8y + 1)$	
c_2, c_4, c_6 c_9	$(y-1)(y^5 - y^4 + \dots + 4y - 1)(y^{16} - 5y^{15} + \dots - 4y^2 + 1)$	
C ₇	$(y-1)(y^5 + 2y^4 + 17y^3 + 23y^2 + 88y - 16)$ $\cdot (y^8 + 2y^7 + 11y^6 + 10y^5 + 7y^4 + 10y^3 + 6y^2 + 1)^2$	