

COMPUTER SCIENCE AND ENGINEERING

Indian Institute of Technology, Palakkad CS4150: Computer Networks Lab

Lab 3 (MAC protocols)

07 Sep, 2021

- 1. Consider a slotted system with $n \ge 1$. In each slot, each user generates a new ethernet frame with probability λ/n , where $\lambda \in [0,1]$. Assume that slot length is τ , and ethernet frame transmission time is T. All users use a common channel and have to compete with each other for an opportunity to successfully transmit their frames. For a long enough simulation run, average throughput is defined as number of successful transmissions upon number of slots.
 - (a) Use slotted ALOHA with $T = \tau$ and n = 100, and plot the average throughput as a function of λ . Plot the theoretical prediction and compare with the simulation results. Assume that frames generated are not queued.

(b) Frames generated are queued. Use p-persistent CSMA with $T=3\tau$ and n=100, and plot the average throughput as a function of λ for p=0.5 and p=0.01

[50]

[50]