I.5 - INVERTIBILITÀ LOCALE

Proposizione: sia $f: \Omega \to \mathbb{C}$, derivabile in Ω aperto di \mathbb{C} e $z_0 \in \Omega$. Se la derivata di f in z_0 è diversa da zero, allora f è localmente invertibile in un intorno U di z_0 , nel senso che è invertibile la restrizione di f valutata in U. Detta φ l'inversa locale, essa è derivabile in $f(z_0)$ e la sua derivata è:

$$\varphi'|_{f(z_0)} = \frac{1}{f'(z_0)}$$

Esempi:

• $f(z) = e^z$, $f'(z_0) = e^{z_0} \neq 0 \ \forall z_0 \in \mathbb{C} \rightarrow f$ è localmente invertibile e:

$$\varphi'|_{e^{z_0}} = \frac{1}{e^{z_0}} \rightarrow \varphi'(w_0) = \frac{1}{w_0}$$

• $f(z) = z^n$, $f'(z_0) = nz_0^{n-1} \neq 0 \quad \forall z_0 \neq 0 \rightarrow f$ è localmente invertibile per ogni $z_0 \neq 0$.

Richiamo di analisi B: teorema di inversione locale

Sia $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2$, una funzione vettoriale f(x, y) = (u(x, y), v(x, y)) classe C^I . Se il Jacobiano di f nel punto (x_0, y_0) è diverso da zero, allora esistono un intorno V di (x_0, y_0) ed un intorno W di $f(x_0, y_0)$ tali che f è una corrispondenza biunivoca tra $V \in W$. È quindi definita in W una funzione φ che è l'inversa di f e la cui Jacobiana è l'inversa della Jacobiana di f:

$$J[\varphi]_{f(x,y)} = \{J[f]_{(x,y)}\}^{-1}$$

Dimostrazione:

Sia f = u + iv, con u e v di classe C^l (tale richiesta, che può sembrare più restrittiva delle ipotesi della proposizione, è in realtà sempre verificata quando valgono quest'ultime) e $z_0 = x_0 + iy_0$. Consideriamo ora la funzione vettoriale equivalente (u, v) e valutiamone il Jacobiano in (x_0, y_0) :

$$f'(z_0) = u_x - iu_y = v_y + iv_x = \alpha + i\beta \quad \Rightarrow \quad J(u, v)\big|_{(x_0, y_0)} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \quad \to \quad \det J(u, v)\big|_{(x_0, y_0)} = \alpha^2 + \beta^2$$

Poiché tale determinante è sempre diverso da zero (essendo per ipotesi $\alpha + i\beta \neq 0$), possiamo applicare il teorema di inversione locale per le funzioni vettoriali. Abbiamo quindi l'esistenza di una funzione definita in un intorno di $f(z_0)$, $\Phi = (\varphi_1, \varphi_2)$ che inverte localmente (u, v) ovvero, in altri termini, una funzione complessa $\varphi = \varphi_1 + i\varphi_2$ che inverte localmente f.

Sappiamo inoltre dallo stesso teorema che Φ è di classe C^l e che il suo Jacobiano in (x_0, y_0) è:

$$J(\Phi)|_{f(z_0)} = \left[J(u,v)|_{f(z_0)}\right]^{-1} = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

Ne deriva quindi che l'inversa φ rispetta anch'essa le condizioni di Cauchy-Riemann e quindi è derivabile (essendo φ_1 e φ_2 differenziabili). In particolare la sua derivata è:

$$\varphi'|_{f(z_0)} = \frac{\alpha - i\beta}{\alpha^2 + \beta^2} = \frac{1}{\alpha + i\beta} = \frac{1}{f'(z_0)}$$

Richiamo di analisi B: forme differenziali lineari in \mathbb{R}^2

Sia $\underline{F}(x, y) = (A(x, y), B(x, y))$, con $A \in B$ di classe C^l , un campo vettoriale $\Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2$. L'applicazione seguente è chiamata **forma differenziale** associata ad \underline{F} :

$$\omega := A(x, y)dx + B(x, y)dy$$

Se il campo \underline{F} è irrotazionale, la forma differenziale ad esso associata si dice <u>chiusa</u>. Nel piano una condizione necessaria e sufficiente perché ω sia chiusa è che:

$$A_y = B_x$$

Se il campo \underline{F} è conservativo (ovvero esiste una funzione U(x, y), detta potenziale, tale che \underline{F} sia il gradiente di U(x,y)), la forma differenziale ad esso associata si dice esatta.

Si chiama curva (o cammino) nel piano l'insieme di:

- una parametrizzazione, ovvero una funzione \underline{r} : $[a, b] \subseteq \mathbb{R} \to \mathbb{R}^2$
- un sostegno γ , ovvero l'immagine di \underline{r} in \mathbb{R}^2

Se la parametrizzazione è una funzione di classe C^{I} , la curva si dice <u>regolare</u> (se la condizione precedente è valida tranne che in un numero finito di punti la curva si dirà invece <u>regolare a tratti</u>).

Se succede che $\underline{r}(a) = \underline{r}(b)$, allora si parla di curva chiusa o <u>circuito</u>.

NB: curve con lo stesso sostegno possono essere parametrizzate in maniera differente

Due curve con parametrizzazioni $r: [a, b] \to \Omega \subseteq \mathbb{R}^2$ e $\tilde{r}: [c, d] \to \Omega \subseteq \mathbb{R}^2$ si dicono <u>equivalenti</u> se esiste una funzione φ crescente di classe C^l tale che:

$$\tilde{r} = r \circ \varphi$$

Si consideri un insieme $\Omega \subseteq \mathbb{R}^2$ e due curve i cui sostegni siano entrambi contenuti in Ω . Si dice che esse sono Ω -omotope se possono essere deformate con continuità una nell'altra. Se ciò avviene si dice che le due curve appartengono alla stessa classe di omotopia.

Si definisce l'integrale di ω lungo una cammino γ che ammette parametrizzazione $\underline{r}(t) = (r_1(t), r_2(t))$, dove $\underline{r}: [a, b] \subseteq \mathbb{R} \to \mathbb{R}^2$, la seguente espressione (che non dipende dalla parametrizzazione scelta per γ):

$$\int_{\gamma} \omega := \int_{a}^{b} \left[A(r_1(t), r_2(t)) r_1'(t) + B(r_1(t), r_2(t)) r_2'(t) \right] dt$$

Si possono dimostrare i seguenti risultati: siano γ un circuito e χ un cammino aperto del piano di estremi (x_0, y_0) e (x, y) i cui sostegni appartengano al dominio della forma differenziale ω

- ω esatta $\Leftrightarrow \int_{\gamma} \omega = 0 \ \forall \gamma \Leftrightarrow \int_{\chi} \omega$ dipende solo dagli estremi di χ .
 - In questo caso esiste una funzione potenziale U(x, y) tale che: $U(x, y) = \int_{\chi} \omega$
- ω chiusa $\Rightarrow \int_{\gamma} \omega$ dipende solo dalla classe di omotopia di γ .

- Alcuni cammini di uso frequente vengono indicati con una notazione particolare:
 - \checkmark $C_r(z_0)$: circonferenza centrata in z_0 di raggio r (percorsa una volta in senso antiorario)

$$r(t) = z_0 + re^{it}, t \in [0, 2\pi]$$

✓ $C_r(z_0)$: semicirconferenza inferiore $r(t) = z_0 + re^{it}$, $t \in [\pi, 2\pi]$

✓ $[z_1, z_2]$: segmento orientato di estremi z_1 e z_2 $r(t) = z_1 + t(z_2 - z_1), t \in [0, 1]$

- Se γ_1 e γ_2 sono due cammini con un estremo in comune e parametrizzazioni r_1 ed r_2 , tali che r_1 : $[a, b] \to \Omega$ e r_2 : $[b, c] \to \Omega$ ' (e quindi $r_1(b) = r_2(b)$), indichiamo con $\gamma_1 + \gamma_2$ il cammino individuato dalla parametrizzazione r: $[a, b] \cup [b, c] \to \mathbb{C}$, tale che le sue restrizioni su [a, b] e su [b, c] siano rispettivamente uguali a r_1 e r_2 .
- \checkmark [$z_1, z_2, ..., z_n$]: spezzata poligonale che congiunge i punti $z_1, ..., z_n$ [$z_1, z_2, ..., z_n$] = [z_1, z_2] + [z_2, z_3] + ... + [z_{n-1}, z_n]
- ✓ Se γ ha parametrizzazione $r: [a, b] \to \Omega$, indichiamo con -γ il cammino una cui parametrizzazione è data da $\varphi: [0, 1] \to \Omega$, con $\varphi = r[b + t(a b)]$.

I.6 - Primitive

Sia data una funzione $f: \Omega$ aperto $di \mathbb{C} \to \mathbb{C}$. Si vuole sapere se esiste una funzione $F: \Omega \to \mathbb{C}$, che chiameremo **primitiva** di f, tale che la sua derivata sia uguale ad f in ogni punto di Ω :

$$F'(z) = f(z), \quad \forall z \in \Omega$$

Osservazione:

Se una primitiva F esiste, essa è definita a meno di una costante arbitraria. Infatti:

- 1. F è primitiva, $c \in \mathbb{C} \rightarrow (F + c)' = f$
- 2. F_1 , F_2 primitive $\rightarrow (F_1 F_2)' = f f = 0 \Rightarrow F_1 F_2 = c$

Sia dunque f = u + iv una funzione nota e F = U + iV la primitiva per ora incognita che si vuole determinare.

$$F' = U_x - iU_y = V_y + iV_x = u + iv \quad \Rightarrow \quad \begin{cases} U_x = u \\ U_y = -v \end{cases} \quad e \quad \begin{cases} V_x = v \\ V_y = u \end{cases}$$

Il problema equivale a trovare i potenziali U e V (se esistono) delle seguenti due <u>forme differenziali</u>: $\omega_1 = u(x, y)dx - v(x, y)dy = U_x dx + U_y dy$

$$\omega_2 = v(x, y)dx + u(x, y)dy = V_x dx + V_y dy$$

Dalla teoria sulle forme differenziali si può quindi dedurre che:

- f ammette primitive se e solo se ω_1 e ω_2 sono esatte.
- f è olomorfa se e solo se ω_1 e ω_2 sono chiuse.
- Se f ammette primitive, allora f è olomorfa.
- Se f olomorfa e Ω è semplicemente connesso, allora f ammette primitive.

Questi risultati sono riassunti brevemente nel seguente schema:

Sia γ un cammino nel piano complesso e $r(t) = r_1(t) + ir_2(t)$, con $r: [a,b] \to \Omega$, una sua parametrizzazione. Si definisce l'integrale di f(z) lungo γ come:

$$\int_{\gamma} f(z)dz := \int_{a}^{b} f(r(t))r'(t)dt$$

Tale integrale può essere scritto in forma estesa nella seguente maniera:

$$\int_{a}^{b} f(r(t))r'(t)dt = \int_{a}^{b} \{ [u(r_{1}(t), r_{2}(t))r_{1}'(t) - v(r_{1}(t), r_{2}(t))r_{2}'(t)] + i[v(r_{1}(t), r_{2}(t))r_{1}'(t) - u(r_{1}(t), r_{2}(t))r_{2}'(t)] \} dt$$

Dalle relazioni precedenti si ricava che:

- $\int_{\gamma} f(z)dz = \int_{\gamma} (\omega_1 + i\omega_2).$
- $\int_{\gamma} f(z)dz = 0 \Leftrightarrow \int_{\gamma} \omega_i = 0 \ i = 1, 2.$
- $\int_{\gamma} f(z)dz = 0 \quad \forall \gamma \ circuito \ in \ \Omega \ se \ e \ solo \ se \ f \ ammette \ primitive.$
- *Teorema di Morera*: se $\int_{\gamma} f(z)dz = 0 \quad \forall \gamma \ circuito \ in \ \Omega$ allora f è olomorfa.
- *Teorema di Cauchy:* se f è olomorfa allora $\int_{\gamma} f(z)dz$ dipende solo dalla classe di omotopia di γ .

Osservazioni:

• Dal teorema di Cauchy segue subito che dati due circuiti γ_1 e γ_2 tra loro omotopi e f olomorfa:

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

Tale integrale è poi nullo se i due circuiti sono omotopi anche a zero.

- Il fatto che $\Omega \subseteq \mathbb{C}$ sia semplicemente connesso è sempre vero localmente. Più precisamente, se f è olomorfa su Ω , allora $\forall z_0 \in \Omega \ \exists U(z_0) \colon \ f|_U$ ammette primitive.
- $\oint_{\gamma} f(z)dz$ non dipende dalla parametrizzazione scelta per γ .

Esempio:

 $f(z) = \frac{1}{z}$, con $\Omega = \mathbb{C} \setminus \{0\}$: fè olomorfa in Ω , ma non ammette primitive definite su tutto Ω .

$$f(z) = f(x+iy) = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2} \implies u(x,y) = \frac{x}{x^2+y^2}, \ v(x,y) = -\frac{y}{x^2+y^2}$$

$$u(x,y) = \frac{x^2+y^2-2x^2}{x^2+y^2} - \frac{y^2-x^2}{x^2+y^2} - \frac{y^$$

$$u_x(x,y) = \frac{x^2 + y^2 - 2x^2}{\left(x^2 + y^2\right)^2} = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} = v_y; \qquad u_y = -\frac{2xy}{\left(x^2 + y^2\right)^2} = -v_x$$

Si ha che u e v sono differenziabili e rispettano le condizioni di Cauchy-Riemann: f è quindi olomorfa. Si provi ora a calcolare l'integrale di tale funzione lungo una circonferenza centrata nell'origine degli assi e raggio 1 (quindi su $\gamma = C_1(0)$):

$$r(t) = e^{it} = \cos t + i \sin t, \ t \in [0, 2\pi]$$

 $\oint_{\gamma} f(z)dz = \int_{0}^{2\pi} f(r(t))r'(t)dt = \int_{0}^{2\pi} e^{-it}ie^{it}dt = 2\pi i \neq 0, \text{ da cui si deduce che } \omega_{1} \text{ e } \omega_{2} \text{ non sono esatte e quindi } f \text{ non ammette primitive.}$