Application 1

Réglage de correcteurs P et AP – Sujet

Ressources de P. Dupas.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$ placé dans une boucle à retour unitaire.

C1-02

C2-04

Question 1 Déterminer la précision du système ε_S pour une entrée échelon unitaire.

Question 2 Justifier le tracer du diagramme de Bode de la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer K pour avoir une marge de phase de 45° . Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Question 4 Déterminer *K* pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p)=\frac{100}{(p+1)^2}$ placé dans une boucle à retour unitaire. On souhaite corrige ce système en utilisant un correcteur à avance de phase de la forme $C(p)=K\frac{1+a\tau p}{1+\tau p}$.

Question 5 Justifier le tracer du diagramme de Bode de G(p).

Éléments de correction

1.
$$\varepsilon_S = \frac{1}{2}$$

3.
$$\omega_{-135}^{\circ} = 2,95 \,\text{rad/s}.$$

4.
$$\omega_{0 \text{ dB}} = 7.17 \text{ rad/s et } M_G = 38 \text{ dB soit } K_P = 79.$$

Question 6 Corriger ce système de sorte que sa marge de phase soit égale à 45°.

Question 7 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

Éléments de correction

1. 2. C(p) 0,53 $\frac{1+3,54\cdot0,053p}{1+0,053p}$. 3.

