Advanced Statistical Computing

Dr. Ke Deng Center for statistical Science Tsinghua University, Beijing

邓 柯 清华大学统计学研究中心

kdeng@tsinghua.edu.cn

融合式教学安排

	线下课堂	腾讯会议	网络学堂	微信群
发布公告				√
课件下载			✓	
直播视频		\checkmark		
直播音频		\checkmark		
课堂互动	√			
课程作业			✓	
课后答疑	√	√		

请在教室佩戴口罩

你没口罩别跟我说话

Advanced Statistical Computing Lecture 0

Introduction & Preliminary Knowledge

Dr. Ke Deng Center for statistical Science Tsinghua University, Beijing

邓 柯 清华大学统计学研究中心

kdeng@tsinghua.edu.cn

Course Rules

Homework	30%	Class Participation	5%
Midterm Exam	30%	Final Exam	35%

5 "random" roll calls in the semester, 1 point each time

Textbooks & Online Materials

[T1] Geof Givens & Jennifer Hoeting (2013) *Computational Statistics* (2nd Edition), Wiley. (http://onlinelibrary.wiley.com/book/10.1002/9781118555552)

Online Materials, Data Sets & Programs

[O1] http://www.stat.colostate.edu/computationalstatistics/

[O2] http://statweb.stanford.edu/ susan/courses/s227/

[O3] http://www.stat.purdue.edu/chuanhai/teaching/Stat598D/

Reference books

[R1] James E. Gentle (2009) Computational Statistics, Springer.

[R2] Martin A. Tanner (1996) Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, Springer.

[R3] Jun S. Liu (2001) Monte Carlo Strategies in Scientific Computing, Springer.

Major Topics of the Course

- Optimization
 - Solving nonlinear equations
 - Combinational optimization
 - EM algorithm
- Integration & Monte Carlo Simulation
 - Numerical integration
 - Monte Carlo integration
 - Markov chain Monte Carlo
- Bootstrapping
- Density Estimation & Smoothing
- Practical Techniques

Preliminary Knowledge

- Calculus
- Probability distributions & the exponential family
- Likelihood inference
- Bayesian inference
- Statistical limit theorem
- Markov chain
- Basic concepts of computing
- Programming languages for computing
 - − **R**, MATLAB, C++, ...

"Big oh" & "Little oh"

- Problem setting:
 - \triangleright Let f and g be functions defined on a common (possibly infinite) interval.
 - \triangleright Let z_0 be a point in this interval or a boundary point of.
 - We require $g(z) \neq 0$ for all $z \neq z_0$ in a neighborhood of z_0 .
- We say $f(z) = \mathcal{O}(g(z))$, if there exists a constant M such that $|f(z)| \le M|g(z)|$ as $z \to z_0$.
 - For example, $(n+1)/(3n^2) = \mathcal{O}(n-1)$ as $n \to \infty$.
- we say f(z) = o(g(z)), if $\lim_{z \to z_0} f(z)/g(z) = 0$.
 - For example, $f(x_0 + h) f(x_0) = hf'(x_0) + o(h)$ as $h \to 0$ if f is differentiable at x_0 .

Note: the same notation can be used for describing the convergence of a sequence $\{x_n\}$ as $n \to \infty$, by letting $f(n) = x_n$.

Taylor Polynomial

Let $k \ge 1$ be an integer and let the function $f: \mathbf{R} \to \mathbf{R}$ be k times differentiable at the point $a \in \mathbf{R}$. The Taylor polynomial of f at a is defined as:

$$P_k(x) = f(a) + f'(a)(x-a) + rac{f''(a)}{2!}(x-a)^2 + \dots + rac{f^{(k)}(a)}{k!}(x-a)^k$$

- * Remainder term: $R_k(x) = f(x) P_k(x)$
 - Peano form: $R_k(x) = o(|x-a|^k), \quad x \to a.$

Let
$$h_k(x) = \left\{ egin{array}{ll} rac{f(x) - P(x)}{(x-a)^k} & x
eq a \ 0 & x = a \end{array}
ight.$$

It's easy to show $\lim_{x\to a} h_k(x) = 0$ by repeated application of L'Hôpital's rule

- Remainder term: $R_k(x) = f(x) P_k(x)$
 - Peano form: $R_k(x) = o(|x-a|^k), \quad x \to a.$

• Mean-value forms:
$$R_k(x) = \frac{f^{(k+1)}(\xi)}{k!}(x-\xi)^k \frac{G(x)-G(a)}{G'(\xi)}$$

$$\operatorname{Let} F(t) = f(t) + f'(t)(x-t) + rac{f''(t)}{2!}(x-t)^2 + \cdots + rac{f^{(k)}(t)}{k!}(x-t)^k$$

$$F(x) = f(x)$$
 $F(a) = P_k(x)$

$$R_k(x) = f(x) - P_k(x) = F(x) - f(a)$$

$$\frac{R_k(x)}{G(x) - G(a)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi)}{G'(\xi)} \implies R_k(x) = \frac{f^{(k+1)}(\xi)}{k!} (x - \xi)^k \frac{G(x) - G(a)}{G'(\xi)}$$

$$R_k(x) = rac{f^{(k+1)}(\xi)}{k!} (x-\xi)^k rac{G(x) - G(a)}{G'(\xi)}.$$

For
$$\forall F, G \in C_1[a, x]$$
, $\frac{F'(\xi)}{G'(\xi)} = \frac{F(x) - F(a)}{G(x) - G(a)} \longrightarrow \xi \in (a, x)$

- * Remainder term: $R_k(x) = f(x) P_k(x)$
 - Peano form: $R_k(x) = o(|x-a|^k), \quad x \to a.$
 - Mean-value forms: $R_k(x) = \frac{f^{(k+1)}(\xi)}{k!}(x-\xi)^k \frac{G(x)-G(a)}{G'(\xi)}$

Cauchy's intermediate value theorem

For
$$\forall F, G \in C_1[a, x], \ \frac{F'(\xi)}{G'(\xi)} = \frac{F(x) - F(a)}{G(x) - G(a)}$$

Intermediate value theorem

For
$$\forall f \in C_1[a, x], f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

- * Remainder term: $R_k(x) = f(x) P_k(x)$
 - Peano form: $R_k(x) = o(|x-a|^k), \quad x \to a.$

• Mean-value forms:
$$R_k(x) = \frac{f^{(k+1)}(\xi)}{k!}(x-\xi)^k \frac{G(x)-G(a)}{G'(\xi)}$$

> Lagrange form: $R_k(x) = \frac{f^{(k+1)}(\xi_L)}{(k+1)!}(x-a)^{k+1}$

Cauchy form: $R_k(x) = \frac{f^{(k+1)}(\xi_C)}{k!}(x-\xi_C)^k(x-a)$

- * Remainder term: $R_k(x) = f(x) P_k(x)$
 - Peano form: $R_k(x) = o(|x-a|^k), \quad x \to a.$
 - Mean-value forms: $R_k(x) = \frac{f^{(k+1)}(\xi)}{k!}(x-\xi)^k \frac{G(x)-G(a)}{G'(\xi)}$
 - ightharpoonup Lagrange form: $R_k(x) = \frac{f^{(k+1)}(\xi_L)}{(k+1)!}(x-a)^{k+1}$
 - ightharpoonup Cauchy form: $R_k(x) = rac{f^{(k+1)}(\xi_C)}{k!}(x-\xi_C)^k(x-a)$
- Integral form: $R_k(x) = \int_a^x \frac{f^{(k+1)}(t)}{k!} (x-t)^k dt$

Taylor's Theorem

Taylor's theorem provides a polynomial approximation to a function f:

Suppose f has finite (n+1)th derivative on (a,b) and continuous nth derivative on [a,b]. Then for any $x_0 \in [a,b]$ distinct from x, the Taylor series expansion of f about x_0 is

$$f(x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x_0)(x - x_0)^i + R_n$$

where $f^{(i)}(x_0)$ is the *i*th derivative of f evaluated at x_0 , and

$$R_n = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}$$

for some point ξ in the interval between x and x_0 .

Note that: $R_n = \mathcal{O}(|x - x_0|^{n+1})$ as $|x - x_0| \to 0$.

Taylor's Theorem (Multivariate version)

Suppose f is a real-valued function of a p-dimensional variable x, possessing continuous partial derivatives of all orders up to and including n+1 with respect to all coordinates, in an open convex set containing x and $x_0 \neq x$. Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \sum_{i=1}^{n} \frac{1}{i!} D^{(i)}(f; \mathbf{x}_0, \mathbf{x} - \mathbf{x}_0) + R_n,$$

where

$$D^{(i)}(f; \mathbf{x}, \mathbf{y}) = \sum_{j_1=1}^{p} \cdots \sum_{j_i=1}^{p} \left\{ \left(\frac{d^i}{dt_{j_1} \cdots dt_{j_i}} f(\mathbf{t}) \Big|_{\mathbf{t}=\mathbf{x}} \right) \prod_{k=1}^{i} y_{j_k} \right\}$$

$$R_n = \frac{1}{(n+1)!} D^{(n+1)}(f; \boldsymbol{\xi}, \mathbf{x} - \mathbf{x}_0)$$

for some point ξ in the interval between x and x_0 .

Note that: $R_n = \mathcal{O}(|x - x_0|^{n+1})$ as $|x - x_0| \to 0$.

Reference

- Reference: [T1] Chapter 1
- Further reading:
 - [R1] Chapter 1: Mathematical & Statistical Preliminaries

Advanced Statistical Computing Lecture 1

Optimization & Solving Nonlinear Equation (I)

Dr. Ke Deng Center for statistical Science Tsinghua University, Beijing

邓 柯 清华大学统计学研究中心

kdeng@tsinghua.edu.cn

Major Topics of the Course

- Optimization
 - Solving nonlinear equations
 - Combinational optimization
 - EM algorithm
- Integration & Monte Carlo Simulation
 - Numerical integration
 - Monte Carlo integration
 - Markov chain Monte Carlo
- Bootstrapping
- Density Estimation & Smoothing
- Practical Techniques

Optimization in Statistical Inference

- MLE: central to statistical inference
- Minimizing risk: in a Bayesian decision problem
- Solving nonlinear least squares problems
- Finding highest posterior density intervals

•

Finding MLE by solving the score equation below:

$$\mathbf{l}'(\boldsymbol{\theta}) = \left(\frac{dl(\boldsymbol{\theta})}{d\theta_1}, \dots, \frac{dl(\boldsymbol{\theta})}{d\theta_n}\right)^{\mathrm{T}} = \mathbf{0},$$

Optimization is intimately linked with **solving (non-linear) equations**

Several Typical Scenarios

- Score equation with a straightforward analytic solution
 - Very rare in practice
- Linear score equation
 - Easy to solve
- Linear objective function with linear inequality constraints
 - More difficult, but can be solved by linear programming techniques
 - such as, the simplex method or interior point methods
- Nonlinear score equation with no analytic solution
 - optima are routinely found using a variety of effective off-the-shelf numerical optimization software

Motivation of Study

A good question:

It seems like optimization is a solved problem whose study here might be a low priority, why do not we simply omit it?

Reasons for a careful study of this topic here:

- Optimization software is confronted with a new problem every time the user presents a new function to be optimized
- Even the best optimization software often initially fails to find the maximum for tricky likelihoods and requires tinkering to succeed
- Therefore, the user must understand enough about how optimization works to tune the procedure successfully

Major Topics of the Course

- Optimization
 - Solving nonlinear equations
 - Combinational optimization
 - EM algorithm
- Integration & Monte Carlo Simulation
 - Numerical integration
 - Monte Carlo integration
 - Markov chain Monte Carlo
- Bootstrapping
- Density Estimation & Smoothing
- Practical Techniques

Univariate Optimization Problem

❖ An example:

Target function to maximize:
$$g(x) = \frac{\log x}{1+x}$$
 \Rightarrow $g'(x) = \frac{1+1/x - \log x}{(1+x)^2} = 0$

no analytic solution

Fig. 2.1 The maximum occurs at $x^* \approx 3.59112$, indicated by the vertical line.

- Numerical optimization is in a great appeal
- Graphing g(x) is often the first and very useful step
- We see that the maximum is around 3

Three Primary Methods

- *M*₁: Bisection/Bracketing Method
- *M*₂: Newton's Method
 - M_2' : Fisher scoring (special case of M_2)
 - M_2'' : Secant method (approximation of M_2)
- *M*₃: Fixed-Point/Functional Iteration
 - M_3' : Fixed-point method with naïve updating function
 - M_3'' : Fixed-point method with scaled updating function

M_1 : Bisection Method

Target function:

$$g(x) = \frac{\log x}{1+x}$$
 \Longrightarrow $g'(x) = \frac{1+1/x - \log x}{(1+x)^2}$

Starting values:

$$a_0 = 1, b_0 = 5,$$
and $x^{(0)} = 3$

28

M_1 : Bisection Method

Suppose:

- g' is continuous on $[a_0, b_0]$ intermediate value $[a_0, b_0]$ for which $g'(x^*) = 0$ $g'(a_0)g'(b_0) \le 0$

- there exists at least one x^* in
 - hence x^* is a local optimum of g

Bisection method constructs a sequence of nested intervals to capture x^* :

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \cdots$$
 and so forth

Starting value: $x^{(0)} = (a_0 + b_0)/2$

Updating equations:
$$[a_{t+1}, b_{t+1}] = \begin{cases} [a_t, x^{(t)}] & \text{if } g'(a_t)g'(x^{(t)}) \le 0, \\ [x^{(t)}, b_t] & \text{if } g'(a_t)g'(x^{(t)}) > 0 \end{cases}$$

$$x^{(t)} = \frac{1}{2}(a_t + b_t) \iff x^{(t)} = a_t + (b_t - a_t)/2$$
numerically more stable

Note: if g has more than one root in the starting interval, it is easy to see that bisection will find one of them, but will not find the rest.

Stopping Rule

* Two reasons to stop:

- if the procedure appears to have achieved satisfactory convergence
- > or, if it appears unlikely to do so soon

* Two basic stopping criterion:

➤ absolute convergence criterion

$$\left|x^{(t+1)} - x^{(t)}\right| < \epsilon$$
 Tolerable imprecision

> relative convergence criterion

$$\frac{\left|x^{(t+1)} - x^{(t)}\right|}{\left|x^{(t)}\right|} < \epsilon \quad \text{ or } \quad \frac{\left|x^{(t+1)} - x^{(t)}\right|}{\left|x^{(t)}\right| + \epsilon} < \epsilon$$

Numerically more stable if $x^{(t)}$ is too close to zero

Guarantee of Convergence in Theory

• Precision of bisection method at the *t*th step:

$$b_t - a_t = 2^{-t}(b_0 - a_0) \rightarrow 0$$
 when $n \rightarrow \infty$

- When g' is continuous, the method ensures that $g'(a_t)g'(b_t) \leq 0$
- continuity therefore implies that $g'(x(\infty))^2 \le 0$, thus $g'(x(\infty)) = 0$
- Therefore, $x(\infty)$ must be a root of g, and the bisection method is guaranteed to converge to a root in $[a_0, b_0]$.

Note that:

In practice, numerical imprecision in a computer may thwart convergence.

Practical Issues

- The outcome depends on:
 - g, the starting value, and the optimization algorithm tried
- A bad starting value can lead to
 - divergence, cycling, discovery of a misleading local optimum, ...
- Find a good starting value near the global optimum by
 - graphing, preliminary estimates (e.g., method-of-moments estimates), educated guesses, and trial and error.
- If computing speed limits the total number of iterations
 - It is wise not to use one long run of the optimization procedure
 - A collection of runs from multiple starting values are preferred
 - > gain **confidence** in your result
 - > avoid being fooled by local optima or stymied by convergence failure.

Extensions of Bisection

- Bisection method is an example of a bracketing method
 - ➤ a method that bounds a root within a sequence of nested intervals of decreasing length
- Bisection is quite a slow approach
 - ➤ It requires a rather large number of iterations to achieve a desired precision, relative to other methods discussed below
- Other bracketing methods include
 - ➤ Secant bracket---- equally slow after an initial period of greater efficiency
 - ➤ Illinois method, Ridders's method and Brent's method ---- faster

Advantages of Bracketing Method

Despite relatively slow, bracketing methods have advantages below:

- Perform robustly on most problems:
 - guarantee a root can be found as long as g' is continuous on $[a_0, b_0]$.
- Avoid worries about g'':
 - the existence, behavior, or ease of deriving g''

Bracketing methods continue to be reasonable alternatives to the methods below that rely on greater smoothness of g.

Note: Although bisection is very simple in nature, it illustrates the main components of all iterative root-finding procedures.

M₂: Newton's Method

The motivating example:

Score equation with no analytic solution $1 + 1/x - \log x$

Target function to maximize:
$$g(x) = \frac{\log x}{1+x}$$
 \Rightarrow $g'(x) = \frac{1+1/x - \log x}{(1+x)^2} = 0$

- The key idea:
 - Approximated nonlinear score equation with a linear equation nearby $x^{(t)}$:

$$0 = g'(x^*) \approx g'(x^{(t)}) + (x^* - x^{(t)})g''(x^{(t)})$$

- ► Get solution: $x^* = x^{(t)} \frac{g'(x^{(t)})}{g''(x^{(t)})}$
- Updating equation:

$$x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})} = x^{(t)} + h^{(t)}$$

- Technical conditions:
 - \triangleright g' is continuously differentiable
 - $\Rightarrow g''(x^*) \neq 0$

 $h^{(t)} = \frac{(x^{(t)} + 1)(1 + 1/x^{(t)} - \log x^{(t)})}{3 + 4/x^{(t)} + 1/(x^{(t)})^2 - 2\log x^{(t)}}$ for the motivating example

Newton's Method may Fail to Converge

Whether Newton's method converges depends on

- \triangleright the shape of g
- > the starting value

Fig. 2.4 An example in which the Newton's method fails to converge

Convergence of Newton's Method

- Given the two technical conditions for Newton's method to work:
 - \triangleright g' is continuously differentiable
 - $\Rightarrow g''(x^*) \neq 0$

The 1st order Taylor expansion of g' nearby $x^{(t)}$: Require existence of g'''

$$0 = g'(x^*) = g'(x^{(t)}) + (x^* - x^{(t)})g''(x^{(t)}) + \frac{1}{2}(x^* - x^{(t)})^2 g'''(q) \qquad \lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c \& \beta = 2$$

$$\lim_{\delta \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c \& \beta = 2$$

Quadratic convergence

$$\underline{x^{(t)} + h^{(t)}} - x^* = (x^* - x^{(t)})^2 \frac{g'''(q)}{2g''(x^{(t)})} \qquad \qquad \epsilon^{(t+1)} = (\epsilon^{(t)})^2 \frac{g'''(q)}{2g''(x^{(t)})}$$

$$\epsilon^{(t+1)} = (\epsilon^{(t)})^2 \frac{g'''(q)}{2g''(x^{(t)})}$$

For a neighborhood of x^* : $\mathcal{N}_{\delta}(x^*) = [x^* - \delta, x^* + \delta]$

$$c(\delta) = \max_{x_1, x_2 \in \mathcal{N}_{\delta}(x^*)} \left| \frac{g'''(x_1)}{2g''(x_2)} \right| \rightarrow \left| \frac{g'''(x^*)}{2g''(x^*)} \right| \longrightarrow \left| c(\delta)\epsilon^{(t+1)} \right| \leq \left(c(\delta)\epsilon^{(t)} \right)^2$$

$$\left| c(\delta)\epsilon^{(t+1)} \right| \le \left(c(\delta)\epsilon^{(t)} \right)^2$$

If the starting value is not too bad, say

$$\left|\epsilon^{(0)}\right| = \left|x^{(0)} - x^*\right| \le \delta$$

Convergence of Newton's Method

Theorem (a). If g''' is continuous and x^* is a simple root of g', then there exists a neighborhood of x^* for which Newton's method converges to x^* when started from any $x^{(0)}$ in that neighborhood.

Theorem (b). If g' is twice continuously differentiable, is convex, and has a root, then Newton's method converges to the root from *any* starting point.

Theorem (c). When starting from somewhere in an interval [a, b], the Newton's method will converge from any $x^{(0)}$ in the interval if

- 1. $g''(x) \neq 0$ on [a, b],
- 2. g'''(x) does not change sign on [a, b],
- 3. g'(a)g'(b) < 0, and
- **4.** |g'(a)/g''(a)| < b-a and |g'(b)/g''(b)| < b-a

M₂: Fisher Scoring

- A variate of Newton's method in finding MLE
- Updating equation in original Newton's method:

$$x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})} \xrightarrow{g = \log-\text{likelihood } l} \theta^{(t+1)} = \theta^{(t)} - \frac{l'(\theta^{(t)})}{l''(\theta^{(t)})}$$

Basic property of Fish Information:

$$-l''(\theta) \rightarrow I(\theta) \qquad \qquad \theta^{(t+1)} = \theta^{(t)} + l'(\theta^{(t)})I(\theta^{(t)})^{-1}$$

Fisher information

• Alternative updating equation

Notes

- Fisher scoring and Newton's method have the same asymptotic properties
- For individual problems one may be computationally/analytically easier than the other
- ➤ Generally, Fisher scoring works better in the beginning to make rapid improvements, while Newton's method works better for refinement near the end.

M_2'' : Secant Method

- An approximation of Newton's method when g'' is difficult to calculate
- Updating equation in original Newton's method:

$$x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})}$$
Replace g'' by discrete-difference
$$[g'(x^{(t)}) - g'(x^{(t-1)})]/(x^{(t)} - x^{(t-1)})$$

Alternative updating equation

$$x^{(t+1)} = x^{(t)} - g'(x^{(t)}) \frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})}$$

Convergence of Secant Method

Convergence:

Under conditions akin to those for Newton's method, the secant method will converge to the root x^*

Convergence order

$$\epsilon^{(t+1)} = x^{(t+1)} - x^*$$

convergence with order β

$$\lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c$$

Q1: what's the convergence order of Secant Method?

Q2: does it converge faster or

$$\epsilon^{(t+1)} = \left[\frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})} \right]$$

$$\epsilon^{(t+1)} = x^{(t+1)} - x^* \lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c$$
order of Secant Method?

Q2: does it converge faster slower than the Newton's?

$$\epsilon^{(t+1)} = x^{(t)} - g'(x^{(t)}) \frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t)})}$$

$$\epsilon^{(t+1)} = \left[\frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})} \right] \left[\frac{g'(x^{(t)})/\epsilon^{(t)} - g'(x^{(t-1)})/\epsilon^{(t-1)}}{x^{(t)} - x^{(t-1)}} \right] \left[\epsilon^{(t)} \epsilon^{(t-1)} \right]$$

Convergence of Secant Method

Convergence:

Under conditions akin to those for Newton's method, the secant method will converge to the root x^*

Convergence order

$$\epsilon^{(t+1)} = x^{(t+1)} - x^*$$

convergence with order β

$$\lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c$$

Q1: what's the convergence order of Secant Method?

Q2: does it converge faster or slower than the Newton's?

 $\epsilon^{(t+1)} \approx d^{(t)} \epsilon^{(t)} \epsilon^{(t-1)}$

$$\epsilon^{(t+1)} = x^{(t+1)} - x^* \qquad \lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^{\beta}} = c$$

$$Q2: \text{ does it converge faster or slower than the Newton's?}$$

$$x^{(t+1)} = x^{(t)} - g'(x^{(t)}) \frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})}$$

$$A^{(t)} \to 1/g''(x^*) \text{ as } x(t) \to x^* \text{ for continuous } g''$$

$$\epsilon^{(t+1)} = \left[\frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})}\right] \left[\frac{g'(x^{(t)})/\epsilon^{(t)} - g'(x^{(t-1)})/\epsilon^{(t-1)}}{x^{(t)} - x^{(t-1)}}\right] \left[\epsilon^{(t)}\epsilon^{(t-1)}\right]$$

$$x^{(t)} = x^{(t)} - x^{(t-1)}$$

$$x^{(t)} = x^{(t)} - x^{(t)}$$

$$x^{(t)}$$

Convergence of Secant Method

Convergence:

Under conditions akin to those for Newton's method, the secant method will converge to the root x^*

Convergence order

Q1: what's the convergence order of Secant Method?

Q2: does it converge faster or slower than the Newton's?

$$1 - \beta + 1/\beta = 0$$

$$\beta = (1 + \sqrt{5})/2 \approx 1.62$$

*M*₃: Fixed-Point Iteration

- Fixed-point of a function G
 - a point whose evaluation by function G equals itself, i.e., G(x) = x.
- Fixed-point strategy for finding roots of g'
 - determine a function G for which g'(x) = 0 if and only if G(x) = x
 - transform the problem:

finding a root of g' finding a fixed point of G

– hunt for a fixed point:

updating iteratively by $x^{(t+1)} = G(x^{(t)})$

- Specify function G
 - any suitable function G may be tried
 - the most obvious choice is $G(x) = g'(x) + x \implies x^{(t+1)} = g'(x^{(t)}) + x^{(t)}$

updating equation

Convergence of Fixed-Point Method

- The convergence of this method depends on whether *G* is *contractive*
- To be contractive on [a, b], G must satisfy
 - **1.** $G(x) \in [a, b]$ whenever $x \in [a, b]$, and
 - 2. $|G(x_1) G(x_2)| \le \lambda |x_1 x_2|$ for all $x_1, x_2 \in [a, b]$ for some $\lambda \in [0, 1)$. Lipschitz condition

Contractive Mapping Theorem: If G is contractive on [a, b], then there exists a unique fixed point x^* in this interval, and the fixed-point algorithm will converge to it from any starting point in the interval. The error at step t is

$$|x^{(t)} - x^*| \le \frac{\lambda^t}{1 - \lambda} |x^{(1)} - x^{(0)}|$$

Convergence: not universally assured, unless the Lipschitz condition holds, e.g., $|G'(x)| \le \lambda < 1$ for all x in [a, b]

The order of convergence: depends on λ if fixed-point iteration converges

Choose the Form of G

- The effectiveness of fixed-point iteration is highly dependent on the chosen form of *G*
- For example, consider finding the root of $g'(x) = x + \log x$
 - $ightharpoonup G(x) = (x + e^{-x})/2$ converges quickly
 - $ightharpoonup G(x) = e^{-x}$ converges more slowly
 - $ightharpoonup G(x) = -\log x$ fails to converge at all

***** Exercise 1:

Please verify the above statements by comparing the order of convergence for different specifications of function *G*

Adjust Updating Function G by Scaling

Fixed-point method

$$G(x) = g'(x) + x$$
 for interval $[a, b]$ using the naïve updating function

Convergence condition:

$$G'(x) = |g''(x) + 1| < 1$$
 on [a, b]
may not hold for many cases

- The rescaled function fits the framework $\alpha g'(x) = 0$ if and only if g'(x) = 0
- We can choose α to guarantee convergence $G_{\alpha}'(x) = |\alpha g''(x) + 1| < 1$

Solution: we rescale g'(x) by $G_{\alpha}(x) = \alpha g'(x) + x$

- Technical requirement
 - \triangleright g'' is bounded
 - \triangleright g'' does not change sign on [a, b]

Notes

- Although one could carefully calculate a suitable α , it may be easier just to try a few values
- If the method converges quickly, then the chosen α was suitable

Scaled Fixed-Point Method: an Example

Target function:

$$g(x) = (\log x)/(1+x)$$

Updating equation:

$$G(x) = \alpha g'(x) + x$$

Scale parameter:

$$\alpha = 4$$

***** Exercise 2:

Deduce the concrete form of $|\alpha g''(x) + 1|$ to show why let $\alpha = 4$ is a good choice?

Exercise 3:

The two dash lines in the right figure looks parallel. Can you show whether this conjecture is correct?

Fig. 2.6 First three steps of scaled fixed-point iteration

Summary of Methods

- *M*₁: Bisection/Bracketing Method
- *M*₂: Newton's Method
 - M_2' : Fisher scoring (special case of M_2)
 - M_2'' : Secant method (approximation of M_2)
- *M*₃: Fixed-Point/Functional Iteration
 - M_3' : Fixed-point method with naïve updating function
 - M_3'' : Fixed-point method with scaled updating function

Note: Newton's method M_2 and its variations are all special case of M_3

Reference

- Reference: [T1] Chapter 2.1
- Further reading:
 - [R1] Chapter 6: Solution of Nonlinear Equations & Optimization

Further Reading

- Reference: [T1] Chapter 2.1
- Further reading:
 - [R1] Chapter 6: Solution of Nonlinear Equations & Optimization