Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	me:				☐ Bachel	lor	□ ET	
				☐ Maste	r	□ TI		
Voi	rname:				□ Diplon	n	□ KW	
					☐ Magist	ter	□	
Ma	ıtr.Nr:				□ Erasm	us		
	Ich bin mit der Veröffentlic	chung	des Kl	ausure	rgebnisses in	n Web		
	unter meiner verkürzten M	·						
]		
		A1	A2	A3	Summe			
Hin	weise:							
лшv 1.	Füllen Sie vor Bearbeitung o	lor Vla	ucur de	s Dock	blatt volletän	dia und	corafiltia aus	
2.	Schreiben Sie die Lösungen jeweils direkt auf den freien Platz unterhalb der Aufgabenstellung.							
3.	Die Rückseiten können be							
	Rückseite nicht ausreichen, ist dennoch kein eigenes Papier zu verwenden . Die Klausurauf-							
	sicht teilt auf Anfrage zusät							
4.	Ein nichtprogrammierbarer Taschenrechner und ein einseitig handbeschriebenes DIN-A4-							
	Blatt sind als Hilfsmittel erlaubt.							
5.	Bearbeitungszeit: 90 min.							
6.	Keinen Bleistift und auch keinen Rotstift verwenden!							
7.	7. Bei Multiple-Choice-Fragen gibt es je richtiger Antwort einen halben Punkt, je falscher Antwort							
	wird ein halber Punkt abgezogen. Im schlechtesten Fall wird die Aufgabe mit null Punkten							
	bewertet.							
8.	8. Grundsätzlich müssen bei allen Skizzen die Achsen vollständig beschriftet werden.							
Ich habe die Hinweise gelesen und verstanden: (Unterschrift)								
ich h	nade die Hinweise gelesen und	versta	ınden: .	• • • • •			(Unterschrift)	
		-						
	Technische Universität Berlin			Klausu	r im Lehrgebiet			

Signale und Systeme

am 02.03.2022

Blatt: 1

Fachgebiet Nachrichtenübertragung

Prof. Dr.-Ing. T. Sikora

Erklärung zur Prüfungsfähigkeit

Ich erkläre, dass ich mich prüfungsfähig fühle. (§7 (10) Satz 5+6 AllgPO vom 13. Juni 2012)
(Datum und Unterschrift der Studentin/ des Studenten)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 02.03.2022	

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	6
2	Zeitkontinuierliche Systeme	12
3	Zeitdiskrete Signale und Systeme	17

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 02.03.2022	

Erklärung zur Prüfungsfähigkeit

Ich erkläre, dass ich mich prüfungsfähig fühle. (§7 (10) Satz 5+6 AllgPO vom 13. Juni 2012)
(Datum und Unterschrift der Studentin/ des Studenten)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 02.03.2022	

Inhaltsverzeichnis

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 02.03.2022	

1 Zeitkontinuierliche Signale

12,5 Punkte

4 P

1.1 Gegeben sei das folgende, zeitkontinuierliche Signal $u_1(t)$:

a) Geben Sie eine geschlossene mathematische Beschreibung von $u_1(t)$ unter Zuhilfenahme von Elementarsignalen an.

$$U_{A}(t) = \left(-\frac{A}{27} + -A\right) \cdot \prod_{27} (t+7) + \prod_{47} (t-27)$$

b) Skizzieren Sie das Signal $u_2(t) = \frac{1}{2}u_1(-t+T)$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 02.03.2022	

c) Wie groß ist die Energie des Signals $u_1(t)$?

$$Wun = \int_{-17}^{0} (-\frac{A}{27}t - A)^{2}dt + \int_{0}^{67} A^{2}dt$$

$$= \int_{-17}^{0} (\frac{A^{2}}{47^{2}}t^{2} + A^{2} + \frac{A^{2}}{7}t) dt + A^{2} \cdot U^{7}$$

$$= \frac{A^{2}}{127^{2}}t^{3} + A^{2}t + \frac{A^{2}}{27}t^{2} \Big|_{-17}^{0} + UA^{2}T$$

$$= \frac{A^{2}}{3727^{2}} \cdot (0 + 8T^{3}) + A^{3} \cdot 2T - \frac{A^{2}}{27} \cdot K^{3} + UA^{2}T$$

$$= \frac{4V}{3}A^{2}T$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 02.03.2022	

d) — Gegeben sei $u_3(t) = A \square_{2T}(t)$ bestimmen Sie $u_3(t) * \delta(t-2T)$

Klausur im Lehrgebiet	
Signale und Systeme	Blatt: 8
am 02.03.2022	

1.2 Gegeben sei das Signal u(t):

a) Berechnen Sie für das gegebene Signal u(t) die Autokorrelationsfunktion 4 P $r_{uu}(au)$. Fassen Sie das Ergebnis soweit wie möglich zusammen.

$$u(t) = \left(-\frac{A}{T}t + A\right) \cdot \prod_{T} \left(t - \frac{T}{A}\right)$$

link
$$t+2=0 \Rightarrow t=-2$$

realls $t+2=1 \Rightarrow t=-2+1$

の -M+T c0 =) でっす

- A (t-T)

YIAIA = 0

D - 72+770 N - 72+7 L7 → 0 L/2 L-7

1 -7 6x60 run(10) = Tun(-10) = A2 (372-623+375)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 02.03.2022	

6,5 P

b) Skizzieren Sie $r_{uu}(\tau)$ im Bereich $-T \le \tau \le T$.

c) Wann wird $r_{uu}(\tau)$ maximal? Begründen Sie Ihre Antwort.

bei ~=0

da in diesem Fall alle iberlagergny/grife khalidskeit vorllegt

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 10
Prof. DrIng. T. Sikora	am 02.03.2022	

1,5 P

1.3 Berechnen Sie die Fouriertransformierte des folgenden Signals x(t). Fassen 2 P Sie das Ergebnis so weit wie möglich zusammen.

 $\alpha''(\xi) = \frac{4}{9} \delta(x+4T) - \frac{4}{9} \delta(x+3T) - \frac{4}{9} \delta(x) - \frac{4}{9} \delta(x) - \frac{4}{9} \delta(x-2T) - \frac{4}{9} \delta(x-2T) + \frac{4}{9}$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 02.03.2022	

2 Zeitkontinuierliche Systeme

7,5 Punkte

1 P

2.1 Gegeben sei das folgende Netzwerk und die Übertragungsfunktion H(s). 2 P Hinweis: Beide Widerstände in dem Netzwerk sind identisch!

a) Geben Sie die Impulsantwort des Systems h(t) im Zeitbereich an.

b) Skizzieren Sie die Impulsantwort des Systems im Bereich $-\frac{L}{R} \le t \le \frac{2L}{R}$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 13
Prof. DrIng. T. Sikora	am 02.03.2022	

2.2 Das PN-Diagramm eines inversen Filters, welches Verzerrungen eines Übertragungskanals am Empfänger vollständig kompensiert, ist gegeben. Das Filter wird als zeitkontinuierliches System angenommen.

4 P

Skizziere das PN-Diagramm des verzerrungsbehafteten Kanals. Entscheiden Sie, ob es sich bei den folgenden Angaben um wahre oder falsche Aussagen handelt. Begründen Sie Ihre Antwort kurz

a) Das inverse Filter am Empfänger ist ein Allpass.

b) Ohne Filter ist das Kanalsystem nicht stabil.

c) Das Filter ist minimalphasig.

† d) Das PN-Diagramm des Übertagungskanals, hätte Polstellen mit positivem Realteil.

🕇 e) Das PN- Diagramm des Übertragungskanals zeigt, dass es sich um einen Allpass handelt .

Techni	sche Universität Berlin	Klausur im Lehrgebiet	
Fachgebie	t Nachrichtenübertragung	Signale und Systeme	Blatt: 14
Pro	of. DrIng. T. Sikora	am 02.03.2022	

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 15
Prof. DrIng. T. Sikora	am 02.03.2022	

2.3 Gegeben sei das folgende Blockschaltbild

a) Leiten Sie die Impulsantwort des Systems h(t) im Zeitbereich her.

1 P

1,5 P

b) Ermitteln Sie die Übertragungsfunktion des Systems H(jw) im Spektralbereich.

$$Y(j\omega) = X(j\omega) \cdot H_2(j\omega) \cdot H_2(j\omega)$$

$$H(jw) = \frac{Y(jw)}{K(jw)} = H_1H_4 + H_2H_3$$

 $2=e^{3W}=e^{TS}=e^{\frac{2\pi}{W_T}S}$ $\Rightarrow S=\frac{3W}{2\pi}W_T$ $(\frac{S}{2},\frac{G}{2})\rightarrow W=\frac{\pi}{2}\Rightarrow S=\frac{3\frac{\pi}{2}}{2\pi}\cdot W_T$ $=\frac{3}{8}W_T$ $(\frac{S}{2},\frac{G}{2})\rightarrow W=-\frac{\pi}{4}\Rightarrow S=-\frac{W-2}{8};$

=> S= 3 WTJ

beschriftung.

(- \frac{1}{2}, \frac{2}{2}) -> W= \frac{3}{4} \tag{7}

3 Zeitdiskrete Signale und Systeme

10,5 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme

5 P

3 P

2 P

a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an.

► □ minimalphasig

b) Skizzieren Sie den Amplitudengang des Systems. Achten Sie auf die Achsen-

3.2 Gegeben sei folgendes zeitdiskretes Filter

3,5 P

1 P

a) Bestimmen Sie die Differenzengleichung. Verwenden Sie **keine** Hilfssignale. 0,5 P

y (n)= 21(1)+3 x(n-1)+4 (x(n-2)) - y(n-1)

b) Berechnen Sie die Systemfunktion. $Y(z) = 2X(z) + 3X(z) \cdot z^{-1} + 4X(z) z^{-1} - Y(z) z^{-1}$

$$H(f) = \frac{k(g)}{\lambda(g)} = \frac{1+3f_{-1}+kf_{-1}}{5+3f_{-1}+kf_{-1}} = \frac{f_{-1}+g}{5f_{-1}+g}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 18
Prof. DrIng. T. Sikora	am 02.03.2022	

1 P

c) Berechnen Sie die Pol- und Nullstellen der Systemfunktion.

$$\frac{2^{2}+\frac{3}{4}+1}{2^{2}+1}=0$$

$$\frac{2}{4}+\frac{7}{4}+\frac{7}{4}=-\frac{23}{16}$$

$$\frac{2}{20}=-\frac{3}{4}+\frac{13}{4}$$

$$\frac{2}{4}+\frac{7}{4}=0=\pm(\frac{3}{4}+1)$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 19
Prof. DrIng. T. Sikora	am 02.03.2022	

d) Handelt es sich um einen FIR- oder IIR Filter? Begründe kurz. 0,5 P

IIR Es gibl relursiv und nicht relewsivteil
Richterphy

e) Ist das Filter stabil? Begründen Sie Ihre Antwort. 0,5 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 20
Prof. DrIng. T. Sikora	am 02.03.2022	

3.3 Ein FIR-Filter habe die Impulsantwort $h(n)=\{4;8;5\}$.Bestimmen Sie die Antwort des Filters auf das Eingangssignal $x(n)=\{1;1;1\}$ mittels zeitdiskreter Faltung.

2 P

y(n) { 4,12, 17, 13,5}

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 21
Prof. DrIng. T. Sikora	am 02.03.2022	