CSI - 3105 Design & Analysis of Algorithms Course 9

Jean-Lou De Carufel

Fall 2019

Greedy Algorithms

A *greedy algorithm* arrives at a solution by making a sequence of choices, each of which simply looks the best at the moment.

The hope is that locally-optimal choices will lead to a globally-optimal solution.

Making Change

How can a given amount of money be made with the least number of coins of a given denominations? (Assume that you have an unlimited amount of coins of each denomination (!))

Making Change

How can a given amount of money be made with the least number of coins of a given denominations? (Assume that you have an unlimited amount of coins of each denomination (!))

Algorithm MakingChange(x)

- 1: $Coins = \{5, 10, 25, 100, 200\}$
- 2: Sum = 0
- 3: while $Sum \neq x$ do
- 4: Let $c \in Coins$ be the largest denomination such that $Sum + c \le x$.
- 5: **if** there is no such denomination **then**
- 6: **return** "No Solution"
- 7: end if
- 8: Add c to the change that will be returned.
- 9: Sum = Sum + c
- 10: end while

(D) (B) (B) (B) (B) (B) (C)

Question: In the Republik of Informatik, the only denominations available are 1, 4 and 6 cents. Does *MakingChange* produce an optimal solution for all possible inputs?

Section 4.2: The [0,1]-Knapsack Problem

Find a greedy algorithm to solve the following problem.

input:

- *n* objects such that object i $(1 \le i \le n)$ has a positive value v_i and a positive weight w_i .
- A maximum weight W.

output: A vector $X = (x_1, x_2, ..., x_n)$ such that

- $0 \le x_i \le 1$
- The total value $x_1v_1 + x_2v_2 + ... + x_nv_n$ is maximized.
- The total weight is not too heavy: $x_1w_1 + x_2w_2 + ... + x_nw_n \le W$.

ロト 4回 ト 4 重 ト 4 重 ト 3 単 の 9 ()

		2			
Vi	20	30	66	40	60
Wi	10	30 20	30	40	50

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	20 10	20	30	40	50

•
$$x_3 = 1$$

			3		
Vi	20	30	66	40	60
Wi	10	20	66 30	40	50

- $x_3 = 1$
- $x_5 = 1$

i	1	2	3	4	5
Vi	20	30	66	40	60
w_i	10	20	66 30	40	50

- $x_3 = 1$
- $x_5 = 1$
- $x_4 = 0.5$

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	66 30	40	50

- $x_3 = 1$
- $x_5 = 1$
- $x_4 = 0.5$
- Total value: 146

•
$$x_1 = 1$$

i	1	2	3	4	5
Vi	20	30	66	40	60
W_i	10	20	66 30	40	50

- $x_1 = 1$
- $x_2 = 1$

i	1	2	3	4	5
Vi	20	30	66	40	60
w_i	10	20	66 30	40	50

- $x_1 = 1$
- $x_2 = 1$
- $x_3 = 1$

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	66 30	40	50

- $x_1 = 1$
- $x_2 = 1$
- $x_3 = 1$
- $x_4 = 1$

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	66 30	40	50

Let us try to make greedy choices with respect to weights.

- $x_1 = 1$
- $x_2 = 1$
- $x_3 = 1$
- $x_4 = 1$
- Total value: 156

This proves that greedy choices with respect to values **does not** lead to an optimal solution in general.

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	30 20 1.5	2.2	1	1.2

•
$$x_3 = 1$$

			3		
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

- $x_3 = 1$
- $x_1 = 1$

			3		
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

- $x_3 = 1$
- $x_1 = 1$
- $x_2 = 1$

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

- $x_3 = 1$
- $x_1 = 1$
- $x_2 = 1$
- $x_5 = 0.8$

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

- $x_3 = 1$
- $x_1 = 1$
- $x_2 = 1$
- $x_5 = 0.8$
- Total value: 164

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	30 20 1.5	2.2	1	1.2

Let us try to make greedy choices with respect to values per unit of weight.

- $x_3 = 1$
- $x_1 = 1$
- $x_2 = 1$
- $x_5 = 0.8$
- Total value: 164

This proves that greedy choices with respect to weights **does not** lead to an optimal solution in general.

8 / 11

i	1	2	3	4	5
Vi	20	30	66	40	60
Wi	10	20	30	40	50
$\frac{v_i}{w_i}$	2	1.5	66 30 2.2	1	1.2

Let us try to make greedy choices with respect to values per unit of weight.

- $x_3 = 1$
- $x_1 = 1$
- $x_2 = 1$
- $x_5 = 0.8$
- Total value: 164

This proves that greedy choices with respect to weights **does not** lead to an optimal solution in general.

What about greedy choices with respect to values per unit of weight.

Is this optimal ?!

Lemma

If the objects are selected in order of decreasing $\frac{V_i}{w_i}$, then the greedy choice finds an optimal solution.

Lemma

If the objects are selected in order of decreasing $\frac{v_i}{w_i}$, then the greedy choice finds an optimal solution.

Proof:

Greedy choice with respect to value: $x_3 = 1$ $x_5 = 1$ $x_4 = 0.5$ total value: 146 Greedy choice with respect to weight:

X1 = 1

X2 = 1

total value: 156

X3 = 1

Xu = 1 X4=1 Greedy choice with respect to value per unit weigh $\chi_3 = 1$ $\chi_1 = 1$ $\chi_2 = 1$ $\chi_5 = 0.8$ Is this optimal? Lemma: If objects are selected in order of decreasing Ni , then the greed, choice finds an optimal solution. Proof: We can suppose that $\frac{N_1}{W_1}$ $\frac{N_2}{W_2}$ $\frac{N_1}{W_2}$ $\frac{N_2}{W_n}$

Let X=(x1, x2,..., xn) be a solution corresponding to the greedy algorithm with respect to wi

If xi=1 for all 1≤i≤ng then the solu-

Otherwise, lat 1 = j = n be the smallest index such that x; < 1. We have

 $\chi_i = 1$ (i < j)

 $0 \le \chi_j < 1$ $2 \le 2 \le 1 \le 1$ $2 \le 2 \le 2 \le 2$ (i > j)

 $\sum_{i=1}^{\infty} \chi_i w_i = 0 \quad (1)$

Let $Y = (X_1, Y_2, ..., Y_n)$ be any solution such that x $\sum_{i=1}^n Y_i w_i \leq W$. (2) W = want to show that <math>Y is not better than X.

and of yiel (I fien)

From 11) and (2), we have 2 x; w; - 5 y; w; >, 0 $\sum_{i=1}^{n} (x_i - y_i) W_i >_0$ (3) Let us compare the value for X to the value for Y. 5 x: N: - 5 y: N: = \(\(\times \) = 5 (xi-yi) Wi Ni We multiply by 1! = 5 (x; - y;) W; N; + (x; - y;) w; N; So Xi-Yi >, o. + \(\frac{\sqrt{\colored}{\sqrt{\colored}}}{\sqrt{\colored}}\) (Xi-Yi) W; \(\sqrt{\colored}\) \(\sqrt{\colored} 50 (xi-Yi) wi wi > (xi-Yi) wi wi For juicen, xi=0. So Xi-Yi so Moreover, Ni & Nj. So (x:-y:) w: w: > (x:-yi) · w: w:

So here is how to solve the problem:

- Step 1 : Compute all the $\frac{v_i}{w_i}$'s.
- Step 2 : Sort the objects in decreasing order of $\frac{v_i}{w_i}$ (use Merge Sort).
- Step 3: Build the solution by applying the greedy choice with respect to decreasing order of $\frac{v_i}{w_i}$.

How much time does it take?

So here is how to solve the problem:

- Step 1 : Compute all the $\frac{v_i}{w_i}$'s.
- Step 2 : Sort the objects in decreasing order of $\frac{v_i}{w_i}$ (use Merge Sort).
- Step 3: Build the solution by applying the greedy choice with respect to decreasing order of $\frac{v_i}{w_i}$.

How much time does it take?

Step 1 : O(n) time

Step 2 : $O(n \log(n))$ time

Step 3 : O(n) time

Total time : $O(n) + O(n \log(n)) + O(n) = O(n \log(n))$

Is there a faster algorithm?

Is there a faster algorithm?

What do we do if x_i must satisfy $x_i \in \{0,1\}$ instead of $x_i \in [0,1]$?

Is there a faster algorithm?

What do we do if x_i must satisfy $x_i \in \{0,1\}$ instead of $x_i \in [0,1]$? Refer to Chapter 5.