CS 535 Homework 2

Due: 6pm, Sep. 22, 2022

- 1. Suppose M and N are two disjoint matchings in a graph. Give an O(|M| + |N|)-time algorithm to decompose $M \cup N$ into two disjoint matchings M' and N' such that $|M'| |N'| \in \{0, \pm 1\}$.
- 2. Let G = (U, W, E) be a bipartite graph. Given a maximum matching M of G, describe a linear-time algorithm to compute a Hall set $T \subseteq U$.
- 3. Let G = (U, W, E) be a bipartite graph. A vertex in $U \cup W$ is essential if it is covered by all maximum matchings. Suppose M is a maximum matching in G. Give a linear-time algorithm to find all essential vertices in G.
- 4. Let D = (V, A; w) be a directed graph with positive edge weight function w. Give an $O(|V|(|A| + |V|\log |V|))$ -time algorithm to find a collection of vertex-disjoint circuits in D whose total edge weight is maximum.
- 5. Suppose that there are m machines and n jobs. Each job j has a processing time p_{ij} on machine i. A scheduling for them partitions the n jobs into m sequences J_1, J_2, \dots, J_m , and assigns J_i (possibly empty) to the machine i for $1 \le i \le m$. If a job j appears as the k-th job in J_i , it would finish at time which is the sum of the processing time of the first k jobs in J_i . Give a polynomial-time algorithm to compute a scheduling which minimizes the total finishing times of all jobs.
- 6. [PhD Session only] Let $G = (U, W, E; \ell)$ be an edge-weighted bipartite graph with $\ell(e) > 0$ for each $e \in E$. Suppose that the total weight of the edges incident to each vertex in $U \cup W$ is exactly one.
 - (a) Show that |U| = |W| and G has a perfect matching. (Hint: Use the Hall's condition.)
 - (b) Let n := |U| and m := |E|. Give an $O(m^2)$ -time algorithm to decompose ℓ into a linear combination of at most m n + 1 incidence vectors of perfect matchings in G. (Hint: Use a warm-start to generate all but the first perfect matchings.)