Quando Alguma Coisa é Igual a Alguma Outra Coisa? Relativizando a Noção de Igualdade

Guilherme & Pablo

Abril de 2021

- Vamos balançar os braços sim!
- Esse é um seminário sobre *Filosofia da Matemática* e não sobre áreas específicas
- Nem todos os seminários são assim
- Vamos usar algumas áreas de exemplo, mas as ideias do seminário são mais gerais
- Em particular vamos usar exemplos mais geométricos
- É tudo bem se você não entender alguma parte
- Se tiver dúvida, pergunte!

Quando a = b?

Quando a = b?

- Parece uma questão simples
- Eu ganho alguma coisa além de trabalho diferenciando esse objetos?

Quanto Vale a Pena Diferenciar?

Quanto Vale a Pena Diferenciar?

Quanto Vale a Pena Diferenciar?

• No rascunho da FUVEST tanto faz o tamanho do quadrado

Desenhos no Papel

• Rotações

• Reflexões

• Translações

• Escalonamentos

Transformação que Não Estraga o Objeto

- Transformação que não estraga o objeto
- Dizemos que a=b se existe $f:a\longrightarrow b$
- Igualdades como funções
- $\bullet \ f$ tem de ser uma correspondência um-pra-um (bijeção), mas isso não suficiente
- Qual a palavra mágica? Isomorfismo!
 - Mesma forma
 - Equivalente
- Aparece em *Álgebra Linear* e em muitas outras áreas que vocês vão encontrar ao longo da graduação!

Vale a Pena Diferenciar?

ullet Quadrado Grande e Quadrado Pequeno: forma ${\bf vs}$ área

 $\bullet\,$ Plano Euclidiano e Plano Complexo: vetor ${\bf vs}$ corpo

Topologia

- Agora vamos focar em um exemplo mais específico e sofisticado
- A área da Topologia estuda espaços com noções de proximidade ou adjacência

• Esse não é um seminário sobre Topologia

Deformações Contínuas

- Amassar massinha preserva a noção de adjacência
 - Não pode rasgar a massinha
 - Não pode fechar o buraco
- Nosso objeto é a superfície da massinha + a noção de adjacência

A Caneca e a Rosquinha

- Existe uma deformação contínua da caneca no donut (transformação que não estraga o objeto)
- A caneca e o donut são iguais aos olhos da Topologia
- Mas o quê isso tem a ver com função?
- Vamos ver um exemplo mais concreto

A Projeção Estereográfica

 $\bullet\,$ A facima preserva noção de adjacência (é contínua)

Mapas Mundi

Figura: A Projeção Estereográfica da Terra

Figura: A Projeção Equidistante na Bandeira da ONU

Mapas Mundi

- As projeções são iguais aos olhos da Topologia mas diferentes aos olhos da Geometria
- Todas essas projeções são deformações contínuas
- Diferentes projeções preservam coisas diferentes
 - Projeção Estereográfica preserva ângulos
 - Bandeira da ONU preserva distâncias
- Coisas podem ser iguais em contexto e diferentes em outro

• $\chi = \text{#v\'ertices} - \text{#arestas} + \text{#faces}$

- Se o poliedro é convexo então $\chi=2$
- Se a = b então $\chi_a = \chi_b!$
- Se $\chi_a \neq \chi_b$ então $a \neq b!$

•
$$\chi_a = 2 \neq 0 = \chi_b$$

• Para provar que a = b basta achar $f: a \longrightarrow b$

 $\exists f: a \longrightarrow b$ que não estraga o objeto

• Para provar que $a \neq b$ preciso mostrar que

$$\not\exists f: a \longrightarrow b$$
 que não estraga o objeto

$$\forall f: a \longrightarrow b, \ f \text{ estraga o objeto}$$

- Verificar que duas coisas são diferentes é muito mais difícil que verificar que duas coisas são iguais!
- Invariantes
 - Quero mostrar que $a \neq b$
 - Encontro alguma coisa que é preservada pela minha noção de igualdade
 - ullet Verifico que essa coisa muda de a para b
 - Então $a \neq b$

• $\chi_a \neq \chi_b$ justamente por que

#buracos de $a \neq$ #buracos de b

A Ideia por Trás do Buraco (Homotopia)

A Ideia por Trás do Buraco (Homotopia)

ullet buraco \Longrightarrow loop que não contrai

 $\mathbf{v}\mathbf{s}$

• $esfera \neq donut!$

• $plano \neq plano sem um ponto!$

A Terra é Plana?

 $\bullet\,$ Suponhamos que sim

Nem Tudo é Perfeito na Vida...

• No plano todo loop pode ser contraido a um ponto

 $\bullet\,$ Na esfera todo loop pode ser contraido a um ponto

- Mas o plano e a esfera não são iguais para a Topologia!
- Nem todo invariante é perfeito...
 - Invariantes não nos permitem saber se a = b
 - Invariantes nos permitem talvez saber se $a \neq b$
- Tensão constante

Nem Tudo é Perfeito na Vida...

ser fácil de calcular

vs

diferenciar as coisas bem o suficiente

and they lived happily ever after