Lecture 2 \mathcal{L} open subsets of XDef'n: Let X be a set, a collection $B \subseteq P(X)$ is called a basis (for some top. on i). YXEX, IBEB such that XEB, and ii) $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B}$ Such that $x \in B_3 \subseteq B_1 \cap B_2$ (B is directed) <u>e.g.1</u> Let $9 = (a, b) : a, b \in \mathbb{R}$ be the collection of open intervals in \mathbb{R} . cheek that this is a basis: D Fix $x \in \mathbb{R}$. Note $x \in (x-\pi, x+\pi)$ (also $x \in (x-1, x+1)$) i) Fix $B_1, B_2 \in \mathbb{R}$. We'll show their intersection is actually an element of \mathfrak{R} . Let $B_1 = (a_1, a_r)$, $B_2 = (b_1, b_r)$ Note $B_1 \cap B_2 = (\max\{a_1, b_1\}, \min\{a_r, b_r\})$ If XEB, NB2, then this open interval is not empty, and in \$\mathbb{B}\$. egz Let $S = \{B_{\varepsilon}(x) : x \in \mathbb{R}^2\}$ This is a basis on \mathbb{R}^2 <u>e.q.3</u> Let X be a set $\mathcal{B} = \{(x) : x \in X\}$ is a basis for some top on X. eg4. Let (X,T) and (Y,U) be top spaces. Let $B = T \times U = \{A \times B : A \in T, B \in U\}$. This is a basis on $X \times Y$

Idea: A basis is almost a topdogy, we're just missing unions.

Defn: Let \mathcal{B} be a basis on a set X. Let $T_{\mathcal{B}} = \{UC : CSD\}$ (be the collection of all unions of elements of \mathcal{B}) $T_{\mathcal{B}}$ is called the topology generated by \mathcal{B} .

eg. if X=N. $C=\{\{1,2,3\},\{3,100\},\{9,3\}\},$ then $Ue=\{1,2,3\}\cup\{3,100\}\cup\{9,3\}$ so E=P(N)

Proof that Topisa topology

D $\varnothing \in T_{\mathcal{B}}$, because we included it since \mathcal{B} covers X, UB=X 2) [closed under unions] Let $\{UA_{\alpha}: \alpha \in I\}$ be a collection of elements of $T_{\mathcal{B}}$.

U(UAx)= U(UAx)
each Ax SB, so U(UAx)e Zg

Pic: Let 1= (1,2)

3). [Tp is closed under finite intersections]

By induction, we'll only need to show T_B is closed under intersection of two things. Let UA and UC be elements of T_B .

Note (UA) $\Lambda(UC) = U$ [An C, A \in A, $C \in C$] We know T_B is closed under unions so it is enough to show that A $\Lambda C \in T_B$ (Both $A \in C$ are in B)

For each xEANC, 3 Bx EB s.t. XEB SANC

Note that UBx SANC and ANCS UBx XEANC

e.g. If $B=f(a,b):a,b\in\mathbb{R}$ then T_B is the usual topology on \mathbb{R} e.g. If $B=f(x):x\in X$, then T_B is the discrete topology.

e.g.3 B= Rusual \times Rusual . What T_B on R^2 ? This is the usual topology on R^2 !

Pic

