Christos Dimitrakakis

October 1, 2020

What is it?

What is it?

► Meritocracy.

What is it?

- ► Meritocracy.
- Proportionality and representation.

What is it?

- ► Meritocracy.
- Proportionality and representation.
- ► Equal treatment.

What is it?

- ► Meritocracy.
- Proportionality and representation.
- Equal treatment.
- Non-discrimination.

Example 1 (College admissions)

- ► Student A has a grade 4/5 from Gota Highschool.
- ▶ Student *B* has a grade 5/5 from Vasa Highschool.

Example 1 (College admissions)

- Student A has a grade 4/5 from Gota Highschool.
- ▶ Student B has a grade 5/5 from Vasa Highschool.

Example 2 (Additional information)

- ightharpoonup 70% of admitted Gota graduates with 4+ get their degree.
- ▶ 50% of admitted Vasa graduates with 5 get their degree.

Example 1 (College admissions)

- ▶ Student A has a grade 4/5 from Gota Highschool.
- ▶ Student B has a grade 5/5 from Vasa Highschool.

Example 2 (Additional information)

- ightharpoonup 70% of admitted Gota graduates with 4+ get their degree.
- ▶ 50% of admitted Vasa graduates with 5 get their degree.

We still don't know how a specific student will do!

Solutions

Example 1 (College admissions)

- ▶ Student A has a grade 4/5 from Gota Highschool.
- ▶ Student B has a grade 5/5 from Vasa Highschool.

Example 2 (Additional information)

- ▶ 70% of admitted Gota graduates with 4+ get their degree.
- ▶ 50% of admitted Vasa graduates with 5 get their degree.

We still don't know how a specific student will do!

Solutions

Admit everybody?

Example 1 (College admissions)

- ► Student *A* has a grade 4/5 from Gota Highschool.
- ▶ Student B has a grade 5/5 from Vasa Highschool.

Example 2 (Additional information)

- ▶ 70% of admitted Gota graduates with 4+ get their degree.
- ▶ 50% of admitted Vasa graduates with 5 get their degree.

We still don't know how a specific student will do!

Solutions

- Admit everybody?
- Admit randomly?

Example 1 (College admissions)

- ► Student *A* has a grade 4/5 from Gota Highschool.
- ▶ Student B has a grade 5/5 from Vasa Highschool.

Example 2 (Additional information)

- ightharpoonup 70% of admitted Gota graduates with 4+ get their degree.
- ▶ 50% of admitted Vasa graduates with 5 get their degree.

We still don't know how a specific student will do!

Solutions

- Admit everybody?
- Admit randomly?
- Use prediction of individual academic performance?

Proportional representation

Little progress is being made to improve diversity in genomics

Share of samples in genetic studies, by ancestry

■373 studies, up to 2009 ■2,511 studies, up to 2016

Hiring decisions

Dominated by men

Top U.S. tech companies have yet to close the gender gap in hiring, a disparity most pronounced among technical staff such as software developers where men far outnumber women. Amazon's experimental recruiting engine followed the same pattern, learning to penalize resumes including the word "women's" until the company discovered the problem.

GLOBAL HEADCOUNT

Male Female

EMPLOYEES IN TECHNICAL ROLES

Fairness and information

Example 3 (College admissions data)

School	Male	Female
Α	62%	82%
В	63%	68%
C	37%	34%
D	33%	35%
Е	28%	24%
F	6%	7%
Average	45%	38%

His honour the machine of which: re-offend† *From a representative sample of the US Department of Justice database 1990-2009 †Failure to appear in court and re-arrest before trial

Whites get lower scores than blacks¹

Black White

Figure: Apparent bias in risk scores towards black versus white defendants.

But scores equally accurately predict recidivsm²

Figure: Recidivism rates by risk score.

But non-offending blacks get higher scores

Figure: Score breakdown based on recidivism rates.

Graphical models and independence

- Why is it not possible to be fair in all respects?
- Different notions of conditional independence.
- Can only be satisfied rarely simultaneously.

Graphical models

Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability

Let P is a probability measure on (Ω, Σ) . Then let the random variable $x = (x_1, \ldots, x_n)$ so that $x : \Omega \to X$, $X = \prod_i X_i$. The joint probability of x can be written in terms of the underlying probability measure P:

$$\mathbb{P}(\boldsymbol{x} \in A) = P(\{\omega \in \Omega \mid \boldsymbol{x}(\omega) \in A\}).$$

Factorisation

$$\mathbb{P}(x) = \mathbb{P}(x_B \mid x_C) \mathbb{P}(x_C), \qquad B, C \subset [n]$$

12 / 41

C. Dimitrakakis Fairness October 1, 2020

Graphical models

Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability

Let P is a probability measure on (Ω, Σ) . Then let the random variable $x = (x_1, \ldots, x_n)$ so that $x : \Omega \to X$, $X = \prod_i X_i$. The joint probability of x can be written in terms of the underlying probability measure P:

$$\mathbb{P}(\boldsymbol{x} \in A) = P(\{\omega \in \Omega \mid \boldsymbol{x}(\omega) \in A\}).$$

Factorisation

So we can write any joint distribution as

C. Dimit
$$\mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_{1}, \dots, x_{n-1}) = \mathbb{P}(x_n \mid x_1, \dots, x_{n-1})$$

Directed graphical models

Figure: Graphical model for the factorisation $\mathbb{P}(x_3 \mid x_2) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_1)$.

Conditional independence

We say x_i is conditionally independent of x_B given x_D and write $x_i \mid x_D \perp \!\!\! \perp x_B$ iff

$$\mathbb{P}(x_i, x_B \mid x_D) = \mathbb{P}(x_i \mid x_D) \mathbb{P}(x_B \mid x_D).$$

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

13 / 41

C. Dimitrakakis Fairness October 1, 2020

Example 4 (Smoking and lung cancer)

Figure: Smoking and lung cancer graphical model, where *S*: Smoking, *C*: cancer, *A*: asbestos exposure.

Explaining away

Even though S,A are independent, they become dependent once you know C

Example 5 (Time of arrival at work)

Figure: Time of arrival at work graphical model where T is a traffic jam and x_1 is the time John arrives at the office and x_2 is the time Jane arrives at the office.

Conditional independence

Even though x_1, x_2 are correlated, they become independent once you know T.

Example 6 (Treatment effects)

Figure: Kidney treatment model, where x: severity, y: result, a: treatment applied

	Treatment A	Treatment B
Small stones	87	270
Large stones	263	80
Severity	Treatment A	Treatment B
Small stones)	93%	87%
Large stones	73%	69%
Average	78%	83%

Example 7 (School admission)

Figure: School admission graphical model, where z: gender, s: school applied to, a: whether you were admitted.

School	Male	Female
A	62%	82%
В	63%	68%
C	37%	34%
D	33%	35%
E	28%	24%
F	6%	7%
Average	45%	38%

Exercise 1

Factorise the following graphical model.

Exercise 1

Factorise the following graphical model.

$$\mathbb{P}(x) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4)$$

C. Dimitrakakis Fairness

Factorise the following graphical model.

C. Dimitrakakis Fairness October 1, 2020 19/41

Factorise the following graphical model.

$$\mathbb{P}(\boldsymbol{x}) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4 \mid x_3)$$

C. Dimitrakakis Fairness O

What dependencies does the following factorisation imply?

$$\mathbb{P}(x) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4 \mid x_2, x_3)$$

$$x_3$$

$$x_4$$

$$x_2$$

C. Dimitrakakis Fairness October 1, 2020 20/41

What dependencies does the following factorisation imply?

$$\mathbb{P}(x) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4 \mid x_2, x_3)$$

| ロ ト 4 週 ト 4 夏 ト 4 夏 ト | 夏 | 釣 9 G

Deciding conditional independence

There is an algorithm for deciding conditional independence of any two variables in a graphical model.

C. Dimitrakakis Fairness October 1, 2020 21/41

Inference and prediction in graphical models

Figure: Inference and prediction in a graphical model

Inference of latent variables

$$\mathbb{P}(\theta \mid x_1,\ldots,x_t)$$

- Model parameters.
- System states.

(ロト 4回 ト 4 巨 ト 4 巨 ト) 巨) りへの

C. Dimitrakakis Fairness October 1, 2020 22 / 41

Inference and prediction in graphical models

Figure: Inference and prediction in a graphical model

Prediction

$$\mathbb{P}(x_{t+1} \mid x_1, \dots, x_t) = \int_{\Theta} \mathbb{P}(x_{t+1} \mid \theta) d \mathbb{P}(\theta \mid x_1, \dots, x_t)$$

Predictions are testable.

< ロ > ∢回 > ∢ 国 > ∢ 国 > ↓ 国 → かへで

 C. Dimitrakakis
 Fairness
 October 1, 2020
 22 / 41

Coin tossing, revisited

Example 8

The Beta-Bernoulli prior

Figure: Graphical model for a Beta-Bernoulli prior

$$\theta \sim \mathcal{B}eta(\xi_1, \xi_2),$$
 i.e. ξ are Beta distribution parameters (3.1) $x \mid \theta \sim \mathcal{B}ernoulli(\theta),$ i.e. $P_{\theta}(x)$ is a Bernoulli (3.2)

C. Dimitrakakis

23 / 41

Example 9

The *n*-meteorologists problem (continuation of Exercise ??)

- Meteorological models $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$
- Rain predictions at time t: $p_{t,\mu} \triangleq P_{\mu}(x_t = rain)$.
- Prior probability $\xi(\mu) = 1/n$ for each model.
- Decision a, resulting in utility $U(a, x_{t+1})$

Figure: Inference, prediction and decisions in a graphical model.

C. Dimitrakakis Fairness October 1, 2020 24 / 41

Measuring independence

Theorem 10

If $x_i \mid x_D \perp \!\!\! \perp x_B$ then

$$\mathbb{P}(x_i \mid x_B, x_D) = \mathbb{P}(x_i \mid x_D)$$

Example 11

$$\|\mathbb{P}(a \mid v, z) - \mathbb{P}(a \mid v)\|_1$$

which for discrete a, y, z is:

$$\max_{i,j} \| \mathbb{P}(a \mid y = i, z = j) - \mathbb{P}(a \mid y = i) \|_{1} = \max_{i,j} \| \sum_{k} \mathbb{P}(a = k \mid y = i, z = j) - \mathbb{P}(a \mid y = i,$$

Measuring independence

Theorem 10

If $x_i \mid x_D \perp \!\!\! \perp x_B$ then

$$\mathbb{P}(\mathsf{x}_i \mid \boldsymbol{x}_B, \boldsymbol{x}_D) = \mathbb{P}(\mathsf{x}_i \mid \boldsymbol{x}_D)$$

This implies

$$\mathbb{P}(\mathsf{x}_i \mid x_B = \mathsf{b}, x_D) = \mathbb{P}(\mathsf{x}_i \mid x_B = \mathsf{b}', x_D)$$

so we can measure independence by seeing how the distribution of x_i changes when we vary x_B , keeping x_D fixed.

Example 11

$$\|\mathbb{P}(a \mid y, z) - \mathbb{P}(a \mid y)\|_1$$

which for discrete a, y, z is:

$$\max_{i,j} \| \mathbb{P}(a \mid y = i, z = j) - \mathbb{P}(a \mid y = i)\|_{1} = \max_{i,j} \| \sum_{k} \mathbb{P}(a = k \mid y = i, z = j) - \mathbb{P}(a \mid y = i,$$

An alternative model for coin-tossing This is an elaboration of Example ?? for hypothesis testing.

Figure: Graphical model for a hierarchical prior

- \blacktriangleright μ_1 : A Beta-Bernoulli model with $\mathcal{B}eta(\xi_1, \xi_2)$
- \blacktriangleright μ_0 : The coin is fair.

$$\theta \mid \mu = \mu_0 \sim \mathcal{D}(0.5),$$
 i.e. θ is always 0.5 (3.3)

$$\theta \mid \mu = \mu_1 \sim \text{Beta}(\xi_1, \xi_2),$$
 i.e. θ has a Beta distribution (3.4)

$$x \mid \theta \sim \mathcal{B}ernoulli(\theta),$$
 i.e. $P_{\theta}(x)$ is Bernoulli (3.5)

Here the posterior over the two models is simply October 1, 2020 26/41

Bayesian testing of independence

(b) Θ_1 does not assume independence

Example 13

Assume data $D = \{x_1^t, x_2^t, x_3^t \mid t = 1, ..., T\}$ with $x_i^t \in \{0, 1\}$.

$$P_{\theta}(D) = \prod_{t} P_{\theta}(x_3^t \mid x_2^t) P_{\theta}(x_2^t \mid x_1^t) P_{\theta}(x_1^t), \qquad \theta \in \Theta_0$$
 (3.6)

$$P_{\theta}(D) = \prod P_{\theta}(x_3^t \mid x_2^t, x_1^t) P_{\theta}(x_2^t \mid x_1^t) P_{\theta}(x_1^t), \qquad \theta \in \Theta_1$$
 (3.7)

C. Dimitrakakis Fairness October 1, 2020 27 / 41

Bayesian testing of independence

(b) Θ_1 does not assume independence

Example 13

$$\theta_1 \triangleq P_{\theta}(\mathbf{x}_1^t = 1) \tag{μ_0, μ_1}$$

$$\theta_{2|1}^{i} \triangleq P_{\theta}(x_{2}^{t} = 1 \mid x_{1}^{t} = i)$$
 (μ_{0}, μ_{1})

$$\theta_{3|2}^{j} \triangleq P_{\theta}(x_{3}^{t} = 1 \mid x_{2}^{t} = j)$$
 (\mu_{0})

$$\theta_{3|2,1}^{i,j} \triangleq P_{\theta}(x_3^t = 1 \mid x_2^t = j, x_1^t = i)$$
 (\mu_1)

27 / 41

C. Dimitrakakis Fairness October 1, 2020

Figure: Hierarchical model.

$$\mu_i \sim \phi$$
 (3.6)

$$\theta \mid \mu = \mu_i \sim \xi_i \tag{3.7}$$

Marginal likelihood

$$\mathbb{P}_{\phi}(D) = \phi(\mu_0) \, \mathbb{P}_{\mu_0}(D) + \phi(\mu_1) \, \mathbb{P}_{\mu_1}(D) \tag{3.8}$$

$$\mathbb{P}_{\mu_i}(D) = \int_{\Theta_i} P_{\theta}(D) \, \mathrm{d}\xi_i(\theta). \tag{3.9}$$

C. Dimitrakakis Fairness October 1, 2020 28 / 41

Figure: Hierarchical model.

Marginal likelihood

$$\mathbb{P}_{\phi}(D) = \phi(\mu_0) \, \mathbb{P}_{\mu_0}(D) + \phi(\mu_1) \, \mathbb{P}_{\mu_1}(D) \tag{3.6}$$

$$\mathbb{P}_{\mu_i}(D) = \int_{\Theta_i} P_{\theta}(D) \, \mathrm{d}\xi_i(\theta). \tag{3.7}$$

Model posterior

$$\phi(\mu \mid D) = \frac{\mathbb{P}_{\mu}(D)\phi(\mu)}{\sum_{i}\mathbb{P}_{\mu_{i}}(D)\phi(\mu_{i})}$$
(3.8)

28 / 41

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (3.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \tag{3.10}$$

C. Dimitrakakis Fairness October 1, 2020 29 / 41

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (3.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) = \int_{\Theta} P_{\theta}(D) \frac{\mathrm{d}\psi(\theta)}{\mathrm{d}\psi(\theta)} \, \mathrm{d}\xi(\theta)$$

(3.10)

29 / 41

C. Dimitrakakis Fairness

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (3.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) = \int_{\Theta} P_{\theta}(D) \frac{\, \mathrm{d}\xi(\theta)}{\, \mathrm{d}\psi(\theta)} \, \mathrm{d}\psi(\theta)$$

(3.10)

29 / 41

C. Dimitrakakis Fairness

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (3.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta}(D) \frac{\, \mathrm{d}\xi(\theta_n)}{\, \mathrm{d}\psi(\theta_n)}, \qquad \theta_n \sim \psi$$
 (3.10)

C. Dimitrakakis Fairness October 1, 2020 29 / 41

$$\mathbb{P}_{\xi}(D)$$

Example 14 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_1, \ldots, x_T)$$

(3.14)

Example 14 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_1, \dots, x_T)
= \mathbb{P}_{\xi}(x_2, \dots, x_T \mid x_1) \mathbb{P}_{\xi}(x_1)$$
(3.11)

(3.14)

Example 14 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_1, \dots, x_T)$$

$$= \mathbb{P}_{\xi}(x_2, \dots, x_T \mid x_1) \mathbb{P}_{\xi}(x_1)$$

$$= \prod_{k=0}^{T} \mathbb{P}_{\xi}(x_k \mid x_1, \dots, x_{t-1})$$
(3.11)

(3.14)

Example 14 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_{1}, \dots, x_{T}) \tag{3.11}$$

$$= \mathbb{P}_{\xi}(x_{2}, \dots, x_{T} \mid x_{1}) \, \mathbb{P}_{\xi}(x_{1}) \tag{3.12}$$

$$= \prod_{t=1}^{T} \mathbb{P}_{\xi}(x_{t} \mid x_{1}, \dots, x_{t-1}) \tag{3.13}$$

$$= \prod_{t=1}^{T} \int_{\Theta} P_{\theta_{n}}(x_{t}) \, \mathrm{d} \, \underbrace{\xi(\theta \mid x_{1}, \dots, x_{t-1})} \tag{3.14}$$

posterior at time t

(3.14)

Example 14 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

Further reading

Python sources

- A simple python measure of conditional independence src/fairness/ci_test.py
- A simple test for discrete Bayesian network src/fairness/DirichletTest.py
- Using the PyMC package https://docs.pymc.io/notebooks/Bayes_factor.html

(ロト 4 🗇 ト 4 호 ト 4 호 ト - 호 - 约 Q @

C. Dimitrakakis Fairness October 1, 2020 31/41

 $\pi(a \mid x)$ (policy)

 $\pi(a \mid x)$ (policy)

32 / 41

 $\pi(a \mid x)$ (policy)

 $\mathbb{P}(y \mid a, x)$ (outcome)

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x)$$
 (outcome)

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x)$$
 (outcome)

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x)$$
 (outcome)

$$U(a, y)$$
 (utility)

Independence

Black

Figure: Apparent bias in risk scores towards black versus white defendants.

$$\mathbb{P}^{\pi}_{\theta}(a \mid z) = \mathbb{P}^{\pi}_{\theta}(a)$$

(non-discrimination)

33 / 41

a Assigned score.

$$\mathbb{P}^{\pi}(y \mid a, z) = \mathbb{P}^{\pi}(y \mid a)$$
 (calibration) $\mathbb{P}^{\pi}(a \mid y, z) = \mathbb{P}^{\pi}(a \mid y)$ (coordinate) October 1, (balance)

7 Race imitrakakis

- y Result.
- a Assigned score.
- z Race.

$$\mathbb{P}^{\pi}(y \mid a, z) = \mathbb{P}^{\pi}(y \mid a)$$
$$\mathbb{P}^{\pi}(a \mid y, z) = \mathbb{P}^{\pi}(a \mid y)$$

(calibration)
(balance)

October 1, 2020 34 /41

C. Dimitrakakis Fairness October 1, 2020

Meritocratic decision

$$a_t(\theta, x_t) \in \operatorname*{arg\,max}_{a} \mathbb{E}_{\theta}(U \mid a, x_t) = \int_{\mathcal{Y}} U(a_t, y) \mathbb{P}_{\theta}(y \mid a_t, x_t)$$
 (4.1)

C. Dimitrakakis Fairness October 1, 2020 35 / 41

Smooth fairness

$$D[\pi(a \mid x), \pi(a \mid x')] \le \rho(x, x'). \tag{4.2}$$

Figure: A Lipschitz function

The constrained maximisation problem

$$\max_{\pi} \left\{ \mathit{U}(\pi) \mid \rho(\mathit{x}, \mathit{x}') \leq \epsilon \right\} = \left\{ (4.3) \left((4.3) \right) \right\} =$$

C. Dimitrakakis

Fairness

October 1, 2020

Fairness metrics: balance

$$F_{\text{balance}}(\theta, \pi) \triangleq \sum_{y, z, a} | \mathbb{P}_{\theta}^{\pi}(a \mid y, z) - \mathbb{P}_{\theta}^{\pi}(a \mid y) |^{2}$$
 (4.4)

<ロト < 部 > ∢ 重 > ∢ 重 > ・ 重 ・ 釣 Q で

C. Dimitrakakis Fairness October 1, 2020 37/41

The value of a policy

Fairness metrics: balance

$$F_{\text{balance}}(\theta, \pi) \triangleq \sum_{y, z, a} | \mathbb{P}_{\theta}^{\pi}(a \mid y, z) - \mathbb{P}_{\theta}^{\pi}(a \mid y) |^{2}$$
 (4.4)

Utility: Classification accuracy

$$U(\theta,\pi) = \mathbb{P}^{\pi}_{\theta}(y_t = a_t)$$

<ロト < /p>
◆ロト
◆ロト
◆ こと
・ こと

C. Dimitrakakis Fairness October 1, 2020 37 / 41

The value of a policy

Fairness metrics: balance

$$F_{\text{balance}}(\theta, \pi) \triangleq \sum_{y, z, a} | \mathbb{P}_{\theta}^{\pi}(a \mid y, z) - \mathbb{P}_{\theta}^{\pi}(a \mid y) |^{2}$$
 (4.4)

Utility: Classification accuracy

$$U(\theta,\pi)=\mathbb{P}^{\pi}_{\theta}(y_t=a_t)$$

Use λ to trade-off utility and fairness

$$V(\lambda, \theta, \pi) = (1 - \lambda) \underbrace{U(\theta, \pi)}_{\text{unfairness}} - \lambda \underbrace{F(\theta, \pi)}_{\text{unfairness}}$$
(4.5)

4 D > 4 B > 4 E > 4 E > 9 Q P October 1, 2020 37 / 41

C. Dimitrakakis Fairness

Model uncertainty

θ is unknown

Theorem 15

A decision rule in the form of a lottery, i.e.

$$\pi(a \mid x) = p_a$$

can be the only way to satisfy balance for all possible θ .

Possible solutions

- \triangleright Marginalize over θ ("expected" model)
- Use Bayesian reasoning

C. Dimitrakakis Fairness October 1, 2020 38 / 41

The value of a policy

Let λ represent the trade-off between utility and fairness.

$$V(\lambda, \theta, \pi) = \lambda \underbrace{U(\theta, \pi)}_{\text{tairness violation}} - \underbrace{(1 - \lambda)F(\theta, \pi)}_{\text{fairness violation}}$$
(4.6)

C. Dimitrakakis Fairness October 1, 2020 39/41

The Bayesian decision problem

The Bayesian value of a policy

$$V(\lambda, \xi, \pi) = \int_{\Theta} V(\lambda, \theta, \pi) \, \mathrm{d}\xi(\theta). \tag{4.7}$$

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 - 夕久で

39 / 41

C. Dimitrakakis Fairness October 1, 2020

Online resources

- COMPAS analysis by propublica https://github.com/propublica/compas-analysis
- ▶ Open policing database https://openpolicing.stanford.edu/

(ロト 4回 ト 4 巨 ト 4 巨 ト) 巨) りへの

C. Dimitrakakis Fairness October 1, 2020 40 / 41

Learning outcomes

Understanding

- Graphical models and conditional independence.
- Fairness as independence and meritocracy.

Skills

- Specify a graphical model capturing dependencies between variables.
- Testing for conditional independence.
- Verify if a policy satisfies a fairness condition.

Reflection

- How should we be fair with respect to sensitive attributes?
- Balancing the needs of individuals, the decision maker and society?
- Does having more data available make it easier to achieve fairness?
- What is the relation to game theory and welfare economics?

C. Dimitrakakis Fairness October 1, 2020 41 / 41