Wine Reviews 数据挖掘报告

姓名: 贺鹏飞 学号: 3220180700

数据可视化和摘要

导入数据

% E:\MyWorkplace\DataMining\wine-reviews\winemag-data_first150k.csv

```
‰ 初始化变量。
```

```
filename = 'E:\MyWorkplace\DataMining\wine-reviews\winemag-data_first150k.csv';
```

startRow = 2;

%% 每个文本行的格式:

- % 列 1: 双精度值 (%f)
- % 列 2: 分类 (%C)
- % 列 3: 文本 (%q)
- % 列 4: 文本 (%q)
- % 列 5: 双精度值 (%f)
- % 列 6: 双精度值 (%f)
- % 列 7: 分类 (%C)
- % 列 8: 分类 (%C)
- % 列 9: 分类 (%C)
- % 列 10: 分类 (%C)
- % 列 11: 文本 (%g)

 $formatSpec = '\%f\%C\%q\%q\%f\%f\%C\%C\%C\%C\%q\%[^\n\r]';$

颁 打开文本文件。

fileID = fopen(filename, 'r');

‰ 根据格式读取数据列。

dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'TextType', 'string', 'EmptyValue', NaN, 'HeaderLines' ,startRow-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');

‰ 关闭文本文件。

fclose(fileID);

```
% 将导入的数组分配给列变量名称
VarName1 = dataArray{:, 1};
country = dataArray{:, 2};
description = cellstr(dataArray{:, 3});
designation = cellstr(dataArray{:, 4});
points = dataArray{:, 5};
price = dataArray{:, 6};
province = dataArray{:, 7};
region_1 = dataArray{:, 8};
region_2 = dataArray{:, 9};
variety = dataArray{:, 10};
winery = cellstr(dataArray{:, 11});
```

‰ 清除临时变量

clearvars filename delimiter startRow formatSpec fileID dataArray ans;

数据摘要

对标称属性 country、province、region1、region2、variety,给出每一个可能的频数,并将统计结果保存在 Excel 文件中,每一个属性对应一个活动页。在这里按照从大到小的顺序列出前五项,完整表格参见 Excel 文件"Tabulate_150k.xls"。

5% 标称属性的频数

```
coun=tabulate(country);

prov=tabulate(province);

reg1=tabulate(region_1);

reg2=tabulate(region_2);

vari=tabulate(variety);

xlswrite('frequency_150k.xls',coun,'country');

xlswrite('frequency_150k.xls',prov,'province');

xlswrite('frequency_150k.xls',reg1,'region1');

xlswrite('frequency_150k.xls',reg2,'region2');

xlswrite('frequency_150k.xls',vari,'variety');
```

表 1.属性 Country 的频数和频率

Country	频数	频率
US	62397	41.34%
Italy	23478	15.56%
France	21098	13.98%
Spain	8268	5.48%
Chile	5816	3.85

表 2.属性 Province 的频数和频率

Province	频数	频率
California	44508	29.49%
Washington	9750	6.46%
Tuscany	7281	4.82%
Bordeaux	6111	4.05%
Northern Spain	4892	3.24%

表 3.属性 Region1 的频数和频率

Region1	频数	频率
Napa Valley	6209	4.93%
Columbia Valley (WA)	4975	3.95%
Mendoza	3586	2.84%
Russian River Valley	3571	2.84%
California	3462	2.75%

表 4.属性 Region2 的频数和频率

Region2	频数	频率
Central Coast	13057	21.42%
Sonoma	11258	18.47%
Columbia Valley	9157	15.02%
Napa	8801	14.44%
California Other	3516	5.768%

表 5.属性 Variety 的频数和频率

7		
Variety	频数	频率
Chardonnay	14482	9.60%
Pinot Noir	14291	9.47%
Cabernet Sauvignon	12800	8.48%
Red Blend	10062	6.67%
Bordeaux-style Red Blend	7347	4.87%

对数值属性 price 和 points,给出他们的最大、最小、均值、中位数、四分位数及缺失值的个数。由于数据集中含有缺失项,所以分别使用 MATLAB 函数:nanmax、nanmin、nanmean、nanmedian、quantile、ismissing。

数值属性 price
max_price=nanmax(price);
min_price=nanmin(price);
mean_price=nanmean(price);
median_price=nanmedian(price);

```
quantile_price1=quantile(price,0.25,1);
quantile_price3=quantile(price,0.75,1);
miss_price=sum(ismissing(price));

    数值属性 points
max_points=nanmax(points);
min_points=nanmin(points);
mean_points=nanmean(points);
median_points=nanmedian(points);
quantile_points1=quantile(points,0.25,1);
quantile_points3=quantile(points,0.75,1);
miss_points=sum(ismissing(points));
```

表 6.属性 points

最大值	最小值	均值	中位数	第一四分	第三四分	缺失值个
				位数	位数	数
100	80	87.8884	88	86	90	0

表 7.属性 price

最大值	最小值	均值	中位数	第一四分	第三四分	缺失值个
				位数	位数	数
2300	4	33.1315	24	16	40	13695

数据可视化

对数值属性 points,绘制直方图,QQ 图以及盒图。Points 的 QQ 图分布趋近于一条直线,因此 points 服从正态分布。

%points

figure;

histogram(points);

title('points-直方图');

xlabel('point');

ylabel('频数');

figure;

qqplot(points);

title('points-QQ 图');

figure;

boxplot(points);

title('points-盒图');

set(gca,'XTickLabel',{' '});

对数值属性 price,绘制直方图,QQ 图以及盒图。price 的 QQ 图分布不是一条直线,因此 price 不服从正态分布

%% price

figure;

histogram(price);

title('price-直方图');

xlabel('price');

ylabel('频数');

figure;

qqplot(price);

title('price-QQ 图');

figure;

boxplot(price);

title('price-盒图');

set(gca,'XTickLabel',{' '});

数据缺失的处理

经统计,属性 price 缺失 13695 项,分别使用下列四种策略对缺失值进行处理,并可视化地对比新旧数据集。(a)(b)(c)为原始数据集的图像,(d)(e)(f)为处理后的数据集图像。

- (1) 将缺失部分剔除
- (2) 用最高频率值来填补缺失值
- (3) 通过属性的相关关系来填补缺失值
- (4) 通过数据对象之间的相似性来填补缺失值

1. 将缺失部分剔除

```
title('price-QQ 图');
figure;
boxplot(rmprice);
title('price-盒图');
set(gca,'XTickLabel',{' '});
```


2.用最高频率值来填补缺失值

% 用最高频率值来填补缺失值 most_fill_price=price; most_fill_price(ismissing(price))=mode(price);

3.通过属性的相关关系来填补缺失值

通过观察,发现 points 属性和 price 的属性具有线性相关,因此使用线性插值法求出缺失的 price 值。

‰ 通过属性的相关关系来填补缺失值

linear_fill_price=price;

a=polyfit(points,price,1);

linear_fill_price(ismissing(price))=polyval(a,points(ismissing(price)));

4.通过数据对象之间的相似性来填补缺失值

使用 k-临近算法对数据按照相似性分类,将未缺失的数据项作为训练集,缺失 price 的数据项作为测试集。使用 matlab 的 knnclassify 函数实现。

%% 通过数据相似性填补缺失值

knnprice=price;

test_data=points(ismissing(price));

train_data=points(rmmissing(price));

train_label=rmmissing(price);

knnprice(ismissing(price))=knnclassify(test_data,train_data,train_label);

