Self-ensembling for object detection

Geoff French - g.french@uea.ac.uk

Colour Lab (Finlayson Lab)

University of East Anglia, Norwich, UK

Thanks to

My supervisory team: Prof. G. Finlayson, Dr. M. Mackiewicz

Competition organisers and all participants

Overview

IN A NUTSHELL

Adapted self-ensembling – originally designed for classification – for object detection scenarios

We will set the scene by describing selfensembling for classification and Faster R-CNN for object detection

After which we will describe our object detection approach

Self-ensembling for classification

Self-ensembling is one of a class of algorithms that use *consistency* regularization [Oliver18]

Self-ensembling developed for semisupervised learning in [Laine17]

Further developed in [Tarvainen17] (mean teacher model)

We adapted it for use in domain adaptation [French18] and achieved 1st place in VisDa 2017 classification competition

Mean-teacher model

Student and teacher networks

Mean-teacher model

Student is standard classifier DNN

Mean-teacher model

Weights of teacher network are exponential moving average of student network

Source domain sample:

Predict class probabilities with student network and compute supervised cross-entropy loss (with data augmentation)

one sample

augment twice, differently each time (translation, flip)

One path through student network Second through teacher (different dropout)

Result: two predicted probability vectors

Consistency loss: train student network to minimise squared difference between probability predictions

Further adaptations for domain adaptation described in our earlier work [French18]

(separate batches for source/target, confidence thresholding, class balancing loss)

Faster R-CNN for object detection

Faster R-CNN [Ren15] is composed of two parts:

Region proposal network (RPN) R-CNN head (final output)

Region proposal network (RPN) generates proposed boxes that may surround objects of interest

RPN is a fully convolutional network that generates predictions on a regular grid.

RPN Predictions correspond to anchor boxes; regularly spaced boxes across the image (constant for each resolution)

RPN predictions are combination of probability of presence of object and box-deltas that scale and move an anchor box to match that of a detected object

Boxes from the RPN are filtered using non-maximal suppression (NMS), resulting in *proposals*

R-CNN head

The *proposal* boxes are used to crop regions from upper layers of backbone network

R-CNN head

These feature crops as passed to the R-CNN classification and regression network that determines the class of the detection and predicts final box deltas to refine the scale and position of the box

R-CNN head

A final NMS filtering step yields the resulting detections

Self-ensembling for object detection

Model is Faster R-CNN that uses a ResNet-50 based feature pyramid network [Lin17] as a backbone

We use mean-teacher, so two networks (teacher is EMA of student weights though)

For labelled (source domain images)

Data augmentation:

Random crop/translation
Horizontal flip
Uniform scale between 0.75x and 2.5x

For unlabelled (target domain images)

We augment the image twice (differently); one through teacher network, the other through student

For unlabelled (target domain images)

We found that limiting our target domain augmentation to translation/crops and horizontal flips worked best (no scaling).

We apply consistency regularization to the predictions from the R-CNN head of the network

We found that applying consistency regularization to the output of the region proposal network (RPN) did not help

We also found that attempting to use the predictions from the R-CNN head as pseudo-labels for the RPN didn't help either

Results

VisDa 2018 detection results

Team	Affiliation	Src mAP	Adapt mAP
1 VARMS	JD AI Research, CV Lab	17.9	48.6
2 Ours	Colour Lab, UAE	10.2	13.5
3 UQ_SAS	University of Queensland	11.1	12.1

Conclusions

We have adapted self-ensembling to work in an object detection setting

More work to do

See if we can improve performance

Analyse the effect of different parts of the approach

Test on different datasets

THANK YOU!

References

[French18] Geoff French, Michal Mackiewicz, Mark Fisher "Selfensembling for visual domain adaptation." *ICLR 2018*.

[Laine 17] Samuli Laine and Timo Aila. "Temporal Ensembling for Semi-Supervised Learning." *ICLR* 2017.

[Li16] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. "Revisiting batch normalization for practical domain adaptation." 2016. [Lin17] Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B. and Belongie, S.J., "Feature Pyramid Networks for Object Detection" CVPR 2017

[Oliver18] Oliver, A., Odena, A., Raffel, C., Cubuk, E.D. and Goodfellow, I.J., "Realistic Evaluation of Semi-Supervised Learning Algorithms" 2018.

[Ren15] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" NIPS 2015.

[Tarvainen17] Antti Tarvainen and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results." 2017.