Tablas de Verdad y el Conector E

¿De donde se obtiene que $PEQ \equiv P \wedge (\neg Q)$?

Se obtiene verificando las tablas de verdad o partiendo de un lado y llegando a otro aplicando teoremas, leyes y axiomas (lo mismo pasa con las leyes de Morgan). "Para verificar entonces que dos proposiciones son equivalentes, basta entonces calcular, en una tabla de verdad conjunta o en dos tablas de verdad separadas, los valores de verdad de cada proposición." - Equivalencias Lógicas.

En este caso demostraremos porque son lógicamente equivalentes usando tablas de verdad.

P	Q	PEQ	P	\overline{Q}	$P \wedge (\neg Q)$
V	V	F	V	V	F
V	F	V	V	F	V
F	V	F	F	V	F
F	F	F	F	F	F

Ahora uno puede usar la equivalencia para estudiar propiedades del operador E.

Por ejemplo, vamos si el operador E es idempotente (como el ∧ o el ∨)

$$PEP \equiv P \wedge (\neg P)$$

Para que sea **idempotente** se tiene que dar que la tabla de verdad de P tiene que ser igual a $P \wedge (\neg P)$.

Pero en este caso es obvio que no se da ya que

L	P	$\neg P$	$P \wedge (\neg P)$
	V	F	F
	V	F	F
	F	V	F
	F	V	F

, como podemos ver, $P \wedge (\neg P)$ no es lógicamente equivalente a P.

Acá, tienen como probar que se cumple la propiedad de la comnutatividad del \wedge y del \vee

https://www.wolframalpha.com/input/?i=%5BP%26%26+Q%2C+Q%26%26P%5D

Las tablas de verdad de $P \wedge Q$ coinciden con la de $Q \wedge P$. Por lo tanto se da que $P \wedge Q \equiv Q \wedge P$ (que significa que es conmutativa porque valen lo mismo), y acá tienen la tabla del \vee .

https://www.wolframalpha.com/input/?i=%5BP%7C%7CQ%2C+Q%7C%7CP%5D

Ahora si queremos probar si el operador E es asociativo tenemos que probar que:

 $(PEQ)ER \equiv PE(QER)$. Esto podemos hacerlo partiendo de un lado y llegar al otro, o partiendo de ambos lados y llegando a la misma expresión, o a través de tablas de verdad de la siguiente manera:

P	Q	R	$P \land \neg Q \land \neg R$	$P \land \neg (Q \land \neg R)$
Т	Т	Т	F	Т
T	Т	F	F	F
Т	F	Т	F	T
Т	F	F	T	T
F	Т	Т	F	F
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

En esta tabla estoy tomando en consideración que $PEQ \equiv P \wedge (\neg Q)$.

O tratando de llegar como dije anteriormente de un lado al otro. Por ejemplo partimos de (PEQ)ER y queremos llegar a $PE(QER) \equiv P \land \neg (Q \land \neg R)$ de la siguiente forma:

$$(PEQ)ER \equiv (P \land \neg Q) \land (\neg R)$$

$$\equiv P \land (\neg Q \land \neg R) \quad (Asociatividad \ del \ \land)$$

$$\equiv P \land \neg (Q \lor R) \quad (Morgan)$$

$$\equiv PE(Q \lor R)$$

Y como se puede ver queríamos llegar a PE(QER) es decir a $P \wedge \neg (Q \wedge \neg R)$ pero llegamos a $P \wedge \neg (Q \vee R)$.

Y tampoco es **conmutativa** porque no podés llegar desde PEQ hasta QEP, es decir desde $P \land \neg Q$ hasta $Q \land \neg P$. Y si te queda dudas mira esta tabla de verdad:

https://www.wolframalpha.com/input/?i=%5B%28P%26%26%7EQ%29%2C%28Q%26%26%7EP%29%5D

Es obvio que $P \land \neg Q$ va a ser True cuando Q sea falso y P sea verdadero. Y $Q \land \neg P$ va a ser verdadera cuando Q sea verdadera y P sea falsa. Por lo tanto las dos proposiciones se hacen verdaderas en diferentes estados entonces no son lógicalmente iguales.