Методы оптимизации Лекция 1: Введение. Выпуклые множества

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

7 сентября 2020 г.

О чём этот курс?

Теория: сентябрь — середина октября

- Выпуклые множества и функции
- Условия оптимальности
- Основы теории двойственности

Практика: середина октября — середина декабря

- Постановки задач оптимизации
- Методы решения задач без ограничений
- Методы решения задач с простыми ограничениями
- Линейное программирование
- ▶ Задачи конической оптимизации и SDP

▶ Лекция и семинар каждую неделю

- ▶ Лекция и семинар каждую неделю
- Отчётность

- ▶ Лекция и семинар каждую неделю
- Отчётность
- ► Репозиторий со слайдами лекций: https://github.com/amkatrutsa/optimization-fivt

- ▶ Лекция и семинар каждую неделю
- Отчётность
- Репозиторий со слайдами лекций: https://github.com/amkatrutsa/optimization-fivt
- ▶ Репозиторий со старыми семинарами: https://github.com/amkatrutsa/seminars-fivt

Литература

Основная книга

S. Boyd and L. Vandenberghe *Convex Optimization* https://web.stanford.edu/~boyd/cvxbook/

Теория

- ▶ Ю.Е. Нестеров Введение в выпуклую оптимизацию
- A. Nemirovski Lecture notes on Modern Convex Optimization
- S. Bubeck Convex
 Optimization: Algorithms and Complexity
- R. T. Rockafellar Convex analysis

Практика

- J. Nocedal, S. J. Wright Numerical Optimization
- P. E. Gill, W. Murray,
 M. H. Wright Practical optimization
- ▶ Б.Т. Поляк Введение в оптимизацию

Формализация задачи выбора элемента из множества

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - ▶ выбор активов (portfolio optimization)
 - оптимальное управление

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - ▶ выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - ▶ выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - ▶ выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике
 - и другие

Основные этапы использования методов оптимизации при решении реальных задач:

1. Определение целевой функции

- 1. Определение целевой функции
- 2. Определение допустимого множества решений

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи
- 5. Реализация алгоритма и проверка его корректности

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

 $\mathbf{x} \in \mathbb{R}^n$ — искомый вектор

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{} f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) = 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{ iny } f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- $lackbox{f F}_k({f x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ функции ограничений

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
$$f_j(\mathbf{x}) \le 0, \ j = p+1, \dots, m,$$

- $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{lack} f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- $lackbox{f F}_k({f x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ функции ограничений

Пример: выбор объектов для вложения денег и определение в какой объект сколько вкладывать

- х размер инвестиций в каждый актив
- $lacktriangledown f_0$ суммарный риск или вариация прибыли
- f_k бюджетные ограничения, min/max вложения в актив, минимально допустимая прибыль

Определение

Точка \mathbf{x}^* называется точкой **глобального** минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой **глобального** минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой **локального** минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из окрестности точки \mathbf{x}^* и допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой глобального минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой локального минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из окрестности точки \mathbf{x}^* и допустимого множества.

Альтернативная запись задачи

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in X} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
$$f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m,$$

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

- Линейное программирование
- Задача наименьших квадратов
- ▶ Задача о малоранговом приближении матрицы
- Выпуклая оптимизация

История развития

- ▶ 1940-ые линейное программирование
- ▶ 1950-ые квадратичное программирование
- ▶ 1960-ые геометрическое программирование
- ▶ 1990-ые полиномиальные методы внутренней точки для задач конической оптимизации

▶ Решение задач огромной размерности $(\sim 10^8 - 10^{12})$

- ightharpoonup Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация

- ightharpoonup Решение задач огромной размерности $(\sim 10^8-10^{12})$
- Распределённая оптимизация
- Быстрые методы высокого порядка

- ightharpoonup Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность

- ightharpoonup Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность
- ▶ Невыпуклые задачи определённой структуры

- ightharpoonup Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность
- ▶ Невыпуклые задачи определённой структуры
- Приложения выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{ op} \mathbf{x}$$

s.t. $\mathbf{a}_i^{ op} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

нет аналитического решения

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{ op} \mathbf{x}$$

s.t. $\mathbf{a}_i^{ op} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

- нет аналитического решения
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- ► симплекс-метод для решения таких задач входит в Top-10 алгоритмов XX века

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

▶ имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} \mathbf{b}$
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология
- имеет статистическую интерпретацию

Малоранговое приближение (low-rank approximation)

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|_F$$
 s.t. $\operatorname{rank}(\mathbf{X}) \leq k$

Малоранговое приближение (low-rank approximation)

$$\min_{\mathbf{X} \in \mathbb{R}^{m imes n}} \|\mathbf{A} - \mathbf{X}\|_F$$
 s.t. $\mathsf{rank}(\mathbf{X}) \leq k$

Teopeмa (Eckart-Young, 1993)

Пусть $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} - c$ ингулярное разложение (SVD) матрицы \mathbf{A} , где $\mathbf{U} = [\mathbf{U}_k, \mathbf{U}_{r-k}] \in \mathbb{R}^{m \times r}$, $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k, \ldots, \sigma_r)$, $\mathbf{V} = [\mathbf{V}_k, \mathbf{V}_{r-k}] \in \mathbb{R}^{n \times r}$ и $r = \mathrm{rank}(\mathbf{A})$. Тогда решение задачи можно записать в виде:

$$\mathbf{X} = \mathbf{U}_k \hat{\mathbf{\Sigma}} \mathbf{V}_k^{\top},$$

где
$$\hat{\mathbf{\Sigma}} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k)$$
.

Сжатие

- ▶ Изображение $493 \times 700 \times 3$
- ▶ Каков эффективный ранг матрицы для каждого цвета?

Коэффициент сжатия $\frac{3\times (493\times 10+10+10\times 700)}{493\times 700\times 3}=0.035$

Коэффициент сжатия $\frac{3\times (493\times 50+50+50\times 700)}{493\times 700\times 3}=0.173$

Коэффициент сжатия $\frac{3\times (493\times 100+100+100\times 700)}{493\times 700\times 3}=0.346$

▶ Коэффициент сжатия $\frac{3 \times (493 \times 150 + 150 + 150 \times 700)}{493 \times 700 \times 3} = 0.519$

Определение ранга

- Убывание сингулярных чисел связано с ошибкой аппроксимации
- lacktriangle Выбор ранга по величине сингулярного числа σ_k

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i=1,\ldots,m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$f(\alpha {\bf x}_1+\beta {\bf x}_2) \leq \alpha f({\bf x}_1)+\beta f({\bf x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

нет аналитического решения

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- ▶ часто сложно «увидеть» задачу выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- ▶ часто сложно «увидеть» задачу выпуклой оптимизации
- существуют приёмы для преобразования задачи к стандартному виду

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Локальный оптимум является глобальным

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

 Любую ли задачу выпуклой оптимизации можно эффективно решить?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

- Любую ли задачу выпуклой оптимизации можно эффективно решить?
- Можно ли эффективно решить невыпуклые задачи оптимизации?

Структура задачи

▶ От простого к сложному

Структура задачи

- ▶ От простого к сложному
- От общего к частному

Структура задачи

- ▶ От простого к сложному
- ▶ От общего к частному
- ▶ Чем больше информации о задаче вам известно, тем быстрее вы можете её решить

Структура задачи

- ▶ От простого к сложному
- ▶ От общего к частному
- ▶ Чем больше информации о задаче вам известно, тем быстрее вы можете её решить
- Параллельные варианты методов могут существенно ускорить процесс решения задачи

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $x,y\in C$ выполнено

$$\alpha x + (1 - \alpha)y \in C.$$

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $x,y\in C$ выполнено

$$\alpha x + (1 - \alpha)y \in C.$$

Примеры

Многоугольники

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $x,y\in C$ выполнено

$$\alpha x + (1 - \alpha)y \in C$$
.

Примеры

- Многоугольники
- Гиперплоскости

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $x,y\in C$ выполнено

$$\alpha x + (1 - \alpha)y \in C$$
.

Примеры

- Многоугольники
- Гиперплоскости
- ▶ Шары в любой норме и эллипсоиды

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $x,y\in C$ выполнено

$$\alpha x + (1 - \alpha)y \in C.$$

Примеры

- Многоугольники
- Гиперплоскости
- ▶ Шары в любой норме и эллипсоиды
- ▶ Симметричные положительно определённые матрицы

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$C = \bigcap_{i \in \mathcal{I}} C_i.$$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$C = \bigcap_{i \in \mathcal{I}} C_i.$$

Доказательство

▶ Рассмотрим $x,y \in C \rightarrow x, y \in C_i, \forall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$C = \bigcap_{i \in \mathcal{I}} C_i.$$

- ▶ Рассмотрим $x, y \in C \rightarrow x, y \in C_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $z = \alpha x + (1 \alpha)y$, $\alpha \in [0, 1]$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$C = \bigcap_{i \in \mathcal{I}} C_i.$$

- ▶ Рассмотрим $x, y \in C \rightarrow x, y \in C_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $z = \alpha x + (1 \alpha)y$, $\alpha \in [0, 1]$
- ▶ Так как все C_i выпуклы, то $z \in C_i, \ \forall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$C = \bigcap_{i \in \mathcal{I}} C_i.$$

- ▶ Рассмотрим $x, y \in C \rightarrow x, y \in C_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $z = \alpha x + (1 \alpha)y$, $\alpha \in [0, 1]$
- ▶ Так как все C_i выпуклы, то $z \in C_i, \ \forall i \in \mathcal{I}$
- lacktriangle Следовательно, $z\in C$ и C выпукло

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

Доказательство

▶ Пусть C — выпуклое множество и $x,y \in C$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- ▶ Пусть C выпуклое множество и $x,y \in C$
- lacktriangle Пусть f линейное отображение вида f(x) = Ax + b

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- ▶ Пусть C выпуклое множество и $x,y \in C$
- lacktriangle Пусть f линейное отображение вида f(x) = Ax + b
- ▶ Покажем, что $\alpha f(x) + (1-\alpha)f(y) \in f(C)$, где $\alpha \in [0,1]$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- ▶ Пусть C выпуклое множество и $x,y \in C$
- lacktriangle Пусть f линейное отображение вида f(x) = Ax + b
- ▶ Покажем, что $\alpha f(x) + (1-\alpha)f(y) \in f(C)$, где $\alpha \in [0,1]$
- Действительно,

$$\alpha f(x) + (1 - \alpha)f(y) = \alpha (Ax + b) + (1 - \alpha)(Ay + b) = A(\alpha x + (1 - \alpha)y) + b = Az + b = f(z),$$

где
$$z = \alpha x + (1 - \alpha)y \in C$$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

▶ Пусть C_1, C_2 — выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{x_1 + x_2 \mid x_1 \in C_1, \ x_2 \in C_2\}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть C_1, C_2 выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{x_1 + x_2 \mid x_1 \in C_1, \ x_2 \in C_2\}$
- ▶ Пусть $\hat{x}=\hat{x}_1+\hat{x}_2$ и $\tilde{x}=\tilde{x}_1+\tilde{x}_2$ лежат в C. Покажем, что в C лежит точка $\alpha\hat{x}+(1-\alpha)\tilde{x}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть C_1, C_2 выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{x_1 + x_2 \mid x_1 \in C_1, \ x_2 \in C_2\}$
- ▶ Пусть $\hat{x}=\hat{x}_1+\hat{x}_2$ и $\tilde{x}=\tilde{x}_1+\tilde{x}_2$ лежат в C. Покажем, что в C лежит точка $\alpha\hat{x}+(1-\alpha)\tilde{x}$
- ▶ Действительно, $\alpha \hat{x} + (1-\alpha)\tilde{x} = [\alpha \hat{x}_1 + (1-\alpha)\tilde{x}_1] + [\alpha \hat{x}_2 + (1-\alpha)\tilde{x}_2] = y_1 + y_2,$ где $y_1 \in C_1$ и $y_2 \in C_2$ в силу выпуклости множеств C_1, C_2 .

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

- ▶ Пусть C_1, C_2 выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{x_1 + x_2 \mid x_1 \in C_1, \ x_2 \in C_2\}$
- ▶ Пусть $\hat{x}=\hat{x}_1+\hat{x}_2$ и $\tilde{x}=\tilde{x}_1+\tilde{x}_2$ лежат в C. Покажем, что в C лежит точка $\alpha\hat{x}+(1-\alpha)\tilde{x}$
- ▶ Действительно, $\alpha \hat{x} + (1-\alpha)\tilde{x} = [\alpha \hat{x}_1 + (1-\alpha)\tilde{x}_1] + [\alpha \hat{x}_2 + (1-\alpha)\tilde{x}_2] = y_1 + y_2,$ где $y_1 \in C_1$ и $y_2 \in C_2$ в силу выпуклости множеств C_1, C_2 .

Следствие

Линейная комбинация выпуклых множеств — выпуклое множество

Определение

Множество K называется конусом, если для любого $x \in K$ и произвольного числа $\theta \geq 0$ выполнено $\theta x \in K$.

Определение

Множество K называется **выпуклым** конусом, если для любых точек $x_1, x_2 \in K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 x_1 + \theta_2 x_2 \in K$.

Определение

Множество K называется конусом, если для любого $x \in K$ и произвольного числа $\theta \geq 0$ выполнено $\theta x \in K$.

Определение

Множество K называется **выпуклым** конусом, если для любых точек $x_1, x_2 \in K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 x_1 + \theta_2 x_2 \in K$.

Важные конусы

Определение

Множество K называется конусом, если для любого $x \in K$ и произвольного числа $\theta \geq 0$ выполнено $\theta x \in K$.

Определение

Множество K называется **выпуклым** конусом, если для любых точек $x_1, x_2 \in K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 x_1 + \theta_2 x_2 \in K$.

Важные конусы

▶ Неотрицательный октант $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} o \mathsf{LP}$

Определение

Множество K называется конусом, если для любого $x \in K$ и произвольного числа $\theta \geq 0$ выполнено $\theta x \in K$.

Определение

Множество K называется **выпуклым** конусом, если для любых точек $x_1, x_2 \in K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 x_1 + \theta_2 x_2 \in K$.

Важные конусы

- ▶ Неотрицательный октант $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} o \mathsf{LP}$
- ▶ Конус второго порядка $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x||_2 \le t\} \to \mathsf{SOCP}$

Определение

Множество K называется конусом, если для любого $x \in K$ и произвольного числа $\theta \geq 0$ выполнено $\theta x \in K$.

Определение

Множество K называется **выпуклым** конусом, если для любых точек $x_1, x_2 \in K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 x_1 + \theta_2 x_2 \in K$.

Важные конусы

- ▶ Неотрицательный октант $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} \to \mathsf{LP}$
- ▶ Конус второго порядка $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x||_2 \leq t\} \to \mathsf{SOCP}$
- lacktriangle Конус симметричных положительно полуопределённых матриц $\mathbf{S}^n_+ o \mathsf{SDP}$

Выпуклая оболочка (convex hull)

Определение

Выпуклой оболочкой множества X называется такое множество $\mathrm{conv}(X)$, что

- оно является пересечением всех выпуклых множеств, содержащих X
- lacktriangle оно содержит все выпуклые комбинации точек из X

$$conv(X) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in X, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}$$

 оно является минимальным по включению выпуклым множеством, содержащим X

▶ При постановке задачи допустимое множество получилось невыпуклым

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой
- ▶ Решить задачу на этом множестве

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой
- ▶ Решить задачу на этом множестве
- Восстановить некоторым образом приближённое решение из исходной области

▶ Постановки задач оптимизации: целевая функция, допустимое множество, ограничения

- ▶ Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- ▶ Примеры задач оптимизации и приложения

- ▶ Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- ▶ Примеры задач оптимизации и приложения
- Выпуклые множества

- ▶ Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- ▶ Примеры задач оптимизации и приложения
- Выпуклые множества
- ▶ Способы определения является ли множество выпуклым