Notazione: $\sqrt[-]{x} := \frac{1}{\sqrt{x}}$ Basi generalizzate $|x\rangle = \xi_x(x) = \delta(x - x_0) \qquad \langle x_0 | x_0' \rangle = \delta(x_0 - x_0') \qquad \text{Esiti misure e probabilità (Principio 4)}$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0') \qquad |\psi\rangle = \sum_{k=1}^{N} c_k |a_k\rangle \qquad |\psi\rangle = \sum_{k=1}^{N} \sum_{i=1}^{d_k} \frac{|\langle a_{k,i} | \psi \rangle|^2}{||\psi||^2} \qquad dw(a) = \rho(a) da = \frac{|\langle a | \psi \rangle|^2}{||\psi||^2}$ $|\psi\rangle = \sum_{k=1}^{N} c_k |a_k\rangle \qquad |\psi\rangle = \sum_{k=1}^{N} \sum_{i=1}^{d_k} \frac{|c_i^k|^2}{|i\psi||^2} \qquad |\psi\rangle = \int da \, c(a) |a\rangle$ $|\psi\rangle = \sum_{k=1}^{N} c_k |a_k\rangle \qquad |\psi\rangle = \sum_{i=1}^{N} \sum_{i=1}^{d_k} \frac{|c_i^k|^2}{|i\psi||^2} \qquad \rho(a) = \frac{|c(a)|^2}{||\psi||^2}$ Roba di Ehrenfest $[X, f(X, P)] = i\hbar \frac{\partial f}{\partial P}$ $[P, f(X, P)] = -i\hbar \frac{\partial f}{\partial X}$ d_k degenerazione

Per trovare una base di autovettori comuni (sapendo già che gli operatori commutano, e se entrambi hanno degenerazioni):

- 1. Trovo autovalori e autovettori di $A \in B$;
- 2. Autovettori associati ad autovalori non degeneri sono automaticamente autovettori comuni;
- 3. Per autovettori associati ad autovalori degeneri, faccio la prova (applico B a un autovettore degenere di A);
- 4. Se è anche autovettore di B, sono a posto (è autovettore comune);
- 5. Se non lo è:
 - (a) Definisco un nuovo vettore come combinazione lineare degli autovettori della base dell'autospazio degenere in questione;
 - (b) Impongo che questo nuovo vettore sia autovettore di B;
 - (c) Risolvo il sistema di equazioni trovando i coefficienti della combinazione lineare;
 - (d) Per come è stato definito, questo vettore è autovettore sia di A che di B.

Per capire se un insieme di osservabili compatibili costituisce un ICOC:

- 1. Se gli osservabili sono compatibili, esiste una base comune di autovettori;
- 2. A ogni autovettore, associo una label costituita da una lista dei corrispondenti autovalori per ogni osservabile;

3. Se ogni label è unica, l'insieme è un ICOC.

Matrici di Pauli $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$ Trasformazione unitaria $A' = UAU^{\dagger}$

Equazione di Schrödinger	Visuale di Schrödinger	Equazione di Heisenberg	Visuale di Heisenberg		Sistema conservativo		
$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \psi(t)\rangle = H(t) \psi(t)\rangle$	$\begin{cases} \psi(t)\rangle_S = U(\Delta t) \psi(t_0)\rangle_S \\ A_S(t) = A_S(t_0) \end{cases}$	$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} A_H(t) = [A_H, H_H]$	$\begin{cases} \psi(t)\rangle_H = \psi(t_0)\rangle_H \\ A_H(t) = U^{\dagger}(\Delta t)A_H(t_0)U(\Delta t) \end{cases}$		$U(t,t_0) = e^{-\frac{i}{\hbar}H(t-t_0)}$		
Matrice densità	Stato puro	Stato misto	Proprietà generali		$N\ket{n}=n\ket{n}$		
$ \rho(t) = \psi(t)\rangle \langle \psi(t) $	$\rho^2(t) = \rho(t)$	$\rho(t) = \sum_{k} p_k \rho_k(t)$	$\rho^{\dagger}(t) = \rho(t)$ $\langle A \rangle_{\psi}(t) = Tr(\rho(t))$		$a n\rangle = \sqrt{n} n-1\rangle$		
$ \rho_{pn}(t) = \langle u_p \rho(t) u_n \rangle = \bar{c}_n(t) c_p(t) $		Oscillatore armonico	$Tr(\rho(t)) = 1$ $i\hbar \frac{d\rho(t)}{dt} = [H(t), \rho(t)]$		$a^{\dagger} n \rangle = \sqrt{n+1} n+1 \rangle$		
Condizioni al contorno buche di potenziale		$H = \hbar\omega \left(N + \frac{1}{2} \right)$	$\hat{X} := \sqrt{\frac{m\omega}{\hbar}} X \qquad a = \sqrt[\pi]{2} (\hat{X} + i\hat{P})$		$[a,a^{\dagger}]=1$		
Continuità di ψ nelle	Continuità di ψ' nelle	$N = a^{\dagger}a$			$[N,a^{\dagger}]=a^{\dagger}$		
discontinuità di V	discontinuità finite di V	$u_n(x) = \left\lceil \frac{1}{n!2^n} \right\rceil$	[N,a] = -a				
Soluzioni buche di p	. , ,	Metodo perturbativo $\langle k^{(0)} \hat{W} n^{(0)}\rangle$					
E > V:	E = V	Metodo perturbativo $\frac{E < V}{sh(x) - A_0 \rho^x + B_0 - \rho^x} E_n^{(1)} = \langle n^{(0)} \hat{W} n^{(0)} \rangle; n^{(1)} \rangle = -\sum_{k \neq n} \frac{\langle k^{(0)} \hat{W} n^{(0)} \rangle}{E_k^{(0)} - E_n^{(0)}} k^{(0)} k^{(0)} $					
$\psi(x) = Ae^{ikx} + Be^{-ikx}$	$\psi(x) = A + Bx$	$\psi(x) = Ae^{\rho x} + Be^{-\rho x}$			-		
$k := \sqrt{\frac{2m(E-V)}{\hbar^2}}$	$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$	$ ho:=\sqrt{rac{2m(V-E)}{\hbar^2}}$	$E_n^{(2)} = \langle n^{(0)} \hat{W} n^{(1)} \rangle = -\sum_{k \neq n} \frac{\left \langle k^{(0)} \hat{W} n^{(0)} \rangle \right ^2}{E_L^{(0)} - E_n^{(0)}}$				
Momento angolare $J_{\pm} k j r$	$\binom{(0)}{i} W \ket{n_j^{(0)}}$ (dà le correzioni						
$J_{\pm}J_{\mp} = J^2 - J_z(J_z \mp \hbar)$	$J_z J_{\pm} = J_{\pm} (J_z \pm \hbar)$	Particelle identiche al primo ordine del'autovalore degenere)					
	etrico	Antisimmetico					
$\psi(\vec{x}_1, \vec{x}_2) = \frac{1}{\sqrt{2}[1 + \delta_{mn}(\sqrt{2} - 1)]} \left(\psi_m(\vec{x}_1) \psi_n(\vec{x}_2) + \psi_n(\vec{x}_1) \psi_m(\vec{x}_2) \right) \qquad \psi(\vec{x}_1, \vec{x}_2) = \frac{1}{\sqrt{2}} \left(\psi_m(\vec{x}_1) \psi_n(\vec{x}_2) - \psi_n(\vec{x}_1) \psi_m(\vec{x}_2) \right)$							
Bosoni si trovano in stati simmetrici di spin Fermioni si trovano in stati antisimmetrici di spin							

Meccanica classica

Equazioni di Lagrange Equazioni di Hamilton $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i} \qquad \quad \dot{q}_i = \frac{\partial H}{\partial p_i}; \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i} \qquad \dot{q}_i = \frac{\partial H}{\partial p_i}; \ \dot{p}_i = -\frac{\partial L}{\partial q_i}$$

Roba matematica

Error function	Integrale di Seno $(n \in \mathbb{N} \setminus \{0\})$		Commutatori cancri	Prodotto misto	
$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	1	$(n-1)!! \sqrt{\pi}$	n pari	[A, BC] = [A, B]C + B[A, C]	$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
Polinomi di Hermite	$I_n(a) = \int_0^\infty x^n e^{-ax^2} dx = \left\{ \right.$	$\left\{\begin{array}{c} 2^{\frac{n}{2}} \\ (\frac{n-1}{2})! \end{array}\right\} \left\{\begin{array}{c} a^{n+1} \end{array}\right\}$	n dispari	[AB, C] = A[B, C] + [A, C]B	$ec{a} imes (ec{b} imes ec{c}) = ec{b} (ec{a} \cdot ec{c}) - ec{c} (ec{a} \cdot ec{b})$
$H_n(z) = (-)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$		$\begin{cases} \frac{(n-1)!!}{\frac{n}{2}} \sqrt{\frac{\pi}{a^{n+1}}} & \mathbf{I} \\ \frac{(\frac{n-1}{2})!}{\frac{n+1}{2a}} & \mathbf{I} \end{cases}$		[AB, CD] = A[B, C]D + AC[B, D] +	$(\vec{a} imes \vec{b}) imes \vec{c} = \vec{b} (\vec{c} \cdot \vec{a}) - \vec{a} (\vec{b} \cdot \vec{c})$
$= \left(2z - \frac{d}{dz}\right) H_{n-1}(z)$		· 2a 2		+[A,C]DB+C[A,D]B	Goniometria marastoniana
Formule Eulero	Integrale di D'Eramo	Integrale utile $(n, m \in \mathbb{Z} \setminus \{0\})$			$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$
$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}}$	$\int_{\mathbb{R}} dx e^{-\alpha x^2 + \beta x} = \frac{\sqrt{\pi}}{\alpha} e^{\frac{\beta^2}{4\alpha}}$	$\int_0^1 dz \sin^2(n\pi z) \sin^2(m\pi z) = \frac{1}{4} \left(1 + \frac{1}{2} \delta_{mn} \right)$			$\cos^2\theta = \frac{1+\cos 2\theta}{2}$
$e^{i\theta} + e^{-i\theta}$					