Sistemas de numeración para enteros

Organización de computadoras

Universidad Nacional de Quilmes

25 de abril de 2014

Repaso

- Registros no visibles al programador
 - PC
 - IR
- Q Rutinas
 - Modularización
 - Reuso
- Contratos
 - Modo de direccionamiento directo
- Pila
- Q3
 - O CALL/RET

Para hoy tenemos

- Sistemas de numeración para enteros
 - Signo-Magnitud
 - Complemento a 2
 - Exceso

Para hoy tenemos

- Sistemas de numeración para enteros
 - Signo-Magnitud
 - Interpretar
 - o representar
 - Omplemento a 2
 - Interpretar
 - epresentar
 - Exceso
 - Interpretar
 - 2 representar

En el sistema decimal usamos el signo '-' para representar números negativos

En el sistema decimal usamos el signo '-' para representar números negativos

¿Cómo podemos simular el signo?

En el sistema decimal usamos el signo '-' para representar números negativos

¿Cómo podemos simular el signo?

Reservando un bit para indicar signo:

0 --- positivo

1···negativo

Ejemplo

SM(8)

S M M M M M M M

- S = Signo
- M = Magnitud

Interpretación SM()

Interpretación en Signo Magnitud

- On el primer bit se indica el signo
- 2 Los restantes bits se interpretan como en BSS()

Interpretación en Signo Magnitud

- Con el primer bit se indica el signo
- 2 Los restantes bits se interpretan como en BSS()

Ejemplo

```
SM(4) S M M M \mathcal{I}_{SM}(0001) = \mathcal{I}_{SM}(1001) = \mathcal{I}_{SM}(10
```

Interpretación en Signo Magnitud

- Con el primer bit se indica el signo
- 2 Los restantes bits se interpretan como en BSS()

Ejemplo

Ejercicio: interpretar en SM(2)

```
\mathcal{I}_{SM}(00) = \mathcal{I}_{SM}(01) = \mathcal{I}_{SM}(10) = \mathcal{I}_{SM}(11) =
```

Ejercicio: interpretar en SM(2)

$$\mathcal{I}_{SM}(00) = 0$$
 $\mathcal{I}_{SM}(01) = 2^0 = 1$
 $\mathcal{I}_{SM}(10) = (-1) \times (0) = 0$
 $\mathcal{I}_{SM}(11) = (-1) \times (2^0) = -1$

Comparar SM(3) con BSS(3)

Graficar la interpretación de los sistemas BSS(2) y SM(2)

Comparar SM(3) con BSS(3)

Ejercicio: interpretar en SM(3)

```
\mathcal{I}_{SM}(000) = \mathcal{I}_{SM}(001) = \mathcal{I}_{SM}(010) = \mathcal{I}_{SM}(011) = \mathcal{I}_{SM}(100) = \mathcal{I}_{SM}(101) = \mathcal{I}_{SM}(110) = \mathcal{I}_{SM}(111) = \mathcal{I}
```

¡Graficar!

Ejercicio: interpretar en SM(3)

$$\begin{split} &\mathcal{I}_{SM}(000) = 0 \\ &\mathcal{I}_{SM}(001) = 2^0 = 1 \\ &\mathcal{I}_{SM}(010) = 2^1 = 2 \\ &\mathcal{I}_{SM}(011) = (2^1 + 2^0) = 3 \\ &\mathcal{I}_{SM}(100) = (-1) \times (0) = 0 \\ &\mathcal{I}_{SM}(101) = (-1) \times (2^0) = -1 \\ &\mathcal{I}_{SM}(110) = (-1) \times (2^1) = -2 \\ &\mathcal{I}_{SM}(111) = (-1) \times (2^1 + 2^0) = -3 \end{split}$$

¡Graficar!

Ejercicio: intertar en SM(8)

Ejercicio: intertar en SM(8)

$$\mathcal{I}_{SM}(10001011) = (-1) \times (1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0}) = -11$$

$$\mathcal{I}_{SM}(00001011) = (1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0}) = 11$$

$$\mathcal{I}_{SM}(10100111) = (-1) \times (2^{5} + 2^{2} + 2^{1} + 2^{0}) = -37$$

$$\mathcal{I}_{SM}(00100111) = (2^{5} + 2^{2} + 2^{1} + 2^{0}) = 37$$

$$\mathcal{I}_{SM}(11011000) = (-1) \times (2^{6} + 2^{4} + 2^{3}) = -88$$

$$\mathcal{I}_{SM}(00000000) = 0$$

$$\mathcal{I}_{SM}(10000000) = (-1) \times (0) = 0$$

$$\mathcal{I}_{SM}(01111111) = (2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0}) = 127$$

$$\mathcal{I}_{SM}(11111111) = (-1) \times (2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0}) = -127$$

• ¿Cuál es el rango de un sistema SM(2)? ••• [-1,1]

- ¿Cuál es el rango de un sistema SM(2)? ••• [-1,1]
- ¿Cuál es el rango de un sistema SM(3)? --- [-3, 3]

- ¿Cuál es el rango de un sistema SM(2)? ••• [-1, 1]
- ¿Cuál es el rango de un sistema SM(3)? --- [-3, 3]
- ¿Cuál es el rango de un sistema SM(4)? \cdots [-7,7]

- ¿Cuál es el rango de un sistema SM(2)? ••• [-1,1]
- ¿Cuál es el rango de un sistema SM(3)? ••• [–3, 3]
- ¿Cuál es el rango de un sistema SM(4)? •••• [-7,7]
- ¿Cuál es el rango de un sistema SM(6)? *** ¡Ejercicio!

Rango del Signo-Magnitud

Mínimo

El número más chico representable será el que tenga la magnitud más grande pero con signo negativo.

Máximo

El número más grande representable se logrará con la magnitud más grande posible y signo positivo.

Rango del Signo-Magnitud

Mínimo

El número más chico representable será el que tenga la magnitud más grande pero con signo negativo.

Máximo

El número más grande representable se logrará con la magnitud más grande posible y signo positivo.

Ejemplo

SM(8):

- El número más grande es: $\mathcal{I}_{sm}(01111111) = (2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0) = 127$
- Y el más chico es: $\mathcal{I}_{sm}(11111111) = -1 \times (2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0) = -127$

.: Por lo tanto, el rango del sistema sm de 8 bits es [-127,127].

Doble representación del cero

Doble representación del cero

¿Cúantos números pueden representarse en SM(8)? ; 2^8 ?

¡No!

- El número 0 tiene dos representaciones posibles:
 - magnitud cero con signo positivo
 - magnitud cero con signo negativo.
- En SM(8) el cero puede ser escrito como: $\mathcal{I}_{sm}(00000000) = \mathcal{I}_{sm}(10000000) = 0$

Representación en Signo-Magnitud

Representación en Signo-Magnitud

- Se representa el signo con el bit de la izquierda.
- ② Se representa la **magnitud** como en BSS(n-1): método de las divisiones sucesivas sobre el valor absoluto

Ejemplo

Representar el número 18 en SM(8):

Ejemplo

Representar el número 18 en SM(8):

Ejemplo

Representar el número 18 en SM(8):

0

- \forall Asi, $\mathcal{R}(18) = 10010$.
- ② Completar los 7 bits : $\mathcal{R}_{bss(7)}(18) = 0010010$

Ejemplo

Representar el número 18 en SM(8):

- Asi, R(18) = 10010.
- Ompletar los 7 bits $\mathcal{R}_{bss(7)}(18) = 0010010$
- 3 Anteponer el bit de signo: $\Longrightarrow \mathcal{R}_{sm(8)}(18) = 00010010$

Representación en SM(8)

Ejemplo

Representar el número -18 en SM() en 8 bits:

Ejemplo

Representar el número -18 en SM() en 8 bits:

Ejemplo

Representar el número -18 en SM() en 8 bits:

- \forall Asi, $\mathcal{R}(18) = 10010$.
- Ompletar los 7 bits $\therefore \mathcal{R}_{bss(7)}(18) = 0010010$

Ejemplo

Representar el número -18 en SM() en 8 bits:

- Asi, R(18) = 10010.
- ② Completar los 7 bits $\therefore \mathcal{R}_{bss(7)}(18) = 0010010$
- 3 Anteponer el bit de signo: $\Longrightarrow \mathcal{R}_{sm(8)}(-18) = 10010010$

Ejercicio

- Representar el número -10
- Representar el 128
- Representar el 63

Aritmética en Signo-Magnitud

- Se debe analizar primero los signos.
- Luego proceder como en BSS, sumando o restando según caso.

Suma en SM(n)

- Si alguno de los dos operandos es cero, el resultado será el otro operando.
- Si los signos son iguales (ambos 0 o ambos 1), el resultado tendrá el mismo signo y sumaremos las magnitudes usando la suma de BSS de (N-1) bits.
- Si los signos son diferentes, debemos identificar cual de los dos operandos tiene la magnitud mayor.
 - a Si las dos magnitudes son iguales, el resultado será cero.
 - b Si no, el signo del resultado será el signo del operando que tiene la magnitud mayor y la magnitud del resultado se obtendrá restando en BSS de (N-1) bits la magnitud menor de la magnitud mayor.

Suma en SM(n)

Ejercicios

- 0001 + 0110
- 0 1010 + 0101
- **1001** + 1110

Resta en SM(n)

 Se procede como la suma pero cambiando antes el signo del sustraendo (es decir, invirtiendo el bit de la izquierda del segundo operando

Binario Sin Signo

¿Que números podemos representar en BSS(2)?

Asociando las cadenas a otros números

Complemento a 2

Mecanismo para interpretar una cadena $C=b_{n-1}...b_0$

- Las cadenas se dividen en 2:
 - Las mas bajas para los positivos (y el cero)
 - Q Las mas altas para los negativos

cadenas bajas 00 (positivos) 01

cadenas altas 10 (negativos) 11

cadenas bajas 000 (positivos) 001 010 011

cadenas altas 100 (negativos) 101 110 111

cadenas bajas	0000	cadenas altas	1010
(positivos)	0001	(negativos)	1011
	0010		1010
	0011		1011
	0100		1100
	0101		1101
	0110		1110
	0111		1111

Mecanismo para interpretar una cadena $C=b_{n-1}...b_0$

a) Si comienza con 0 ($b_{n-1}=0$) entonces interpretar como Binario Sin Signo

Mecanismo para interpretar una cadena $C=b_{n-1}...b_0$

- a) Si comienza con 0 ($b_{n-1}=0$) entonces interpretar como Binario Sin Signo
- b) Si comienza con 1 $(b_{n-1}=1)$ entonces:

Mecanismo para interpretar una cadena $C=b_{n-1}...b_0$

- a) Si comienza con 0 ($b_{n-1}=0$) entonces interpretar como Binario Sin Signo
- b) Si comienza con 1 ($b_{n-1}=1$) entonces:
 - Invertir los bits de la cadena
 - Sumar 1
 - 3 Interpretar como *Binario* Sin Signo
 - Multiplicar por -1

Ejemplo: Interpretar 1001

a) ¿Comienza con 0?

Ejemplo: Interpretar 1001

a) ¿Comienza con 0? No

- a) ¿Comienza con 0? No
- b) Si comienza con 1

- a) ¿Comienza con 0? No
- b) Si comienza con 1
 - Invertir los bits de la cadena: \Rightarrow 0110

- a) ¿Comienza con 0? No
- b) Si comienza con 1
 - **1** Invertir los bits de la cadena: \Rightarrow 0110
 - **②** Sumar $1 \Rightarrow 0110 + 1 = 0111$

- a) ¿Comienza con 0? No
- b) Si comienza con 1
 - **1** Invertir los bits de la cadena: \Rightarrow 0110
 - ② Sumar $1 \Rightarrow 0110 + 1 = 0111$
 - **③** Interpretar como *Binario Sin Signo* \Rightarrow I(0111)= 7

- a) ¿Comienza con 0? No
- b) Si comienza con 1
 - **1** Invertir los bits de la cadena: \Rightarrow 0110
 - ② Sumar $1 \Rightarrow 0110 + 1 = 0111$
 - Interpretar como Binario Sin Signo $\Rightarrow I(0111) = 7$
 - Multiplicar por $-1 \Rightarrow 1(0111) = -7$

Comparación entre interpretaciones

Cadena de bits	Interpretación en BSS	Interpretación en CA2
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Comparación entre interpretaciones

Cadena de bits	Interpretación en BSS	Interpretación en CA2
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Hay dos casos:

Hay dos casos:

Si X >= 0 se representan como en BSS()

Hay dos casos:

- Si X >= 0 se representan como en BSS()

 - - Invertir los bits de la cadena
 - Sumar 1

Ejemplo: Representar -1

- X >= 0 no
- - Representar |-1| en $BSS(n) \Rightarrow R(1) = 0001$

- X >= 0 no
- - ② Invertir los bits \Rightarrow 1110

- X >= 0 no
- - ② Invertir los bits $\Rightarrow 1110$
 - \bigcirc Sumar $1 \Rightarrow 1111$

- X >= 0 no
- - ② Invertir los bits $\Rightarrow 1110$
 - \bigcirc Sumar $1 \Rightarrow 1111$

Ejercicios en *CA*2(4)

- Representar 0
- Q Representar 1
- Representar 6
- Representar el -5
- Representar el -8

Ejercicios en CA2(4)

- $0 R(0) \Rightarrow 0000_2$
- ② $R(1) \Rightarrow 0001_2$

 En un sistema de CA2(2) se pueden representar 2² = 4 números diferentes.

- En un sistema de CA2(2) se pueden representar 2² = 4 números diferentes.
- La mitad de ellos (4/2 = 2) son positivos (incluyendo el cero) ⇒ irán de 0 a 1.

- En un sistema de CA2(2) se pueden representar 2² = 4 números diferentes.
- La mitad de ellos (4/2 = 2) son positivos (incluyendo el cero) ⇒ irán de 0 a 1.
- La otra mitad son negativos, yendo del −2 al −1.

- En un sistema de CA2(2) se pueden representar 2² = 4 números diferentes.
- La mitad de ellos (4/2 = 2) son positivos (incluyendo el cero) ⇒ irán de 0 a 1.
- La otra mitad son negativos, yendo del −2 al −1.

Rango de CA2(2): [-2, 1]

En general...

En general...

Positivos : son
$$\frac{2^{N}}{2} = 2^{N-1}$$
 de 0 a $2^{N-1} - 1$

En general...

Positivos : son
$$\frac{2^N}{2} = 2^{N-1}$$
 ···· de 0 a $2^{N-1} - 1$
Negativos (2^{N-1}) ···· del -1 a

En general...

En general...

Positivos : son
$$\frac{2^{N}}{2} = 2^{N-1}$$
 de 0 a $2^{N-1} - 1$
Negativos (2^{N-1}) del -1 a -2^{N-1}

Rango de
$$CA2(n)$$
: $[-2^{N-1}; 2^{N-1} - 1]$

Aritmética en CA2

Las operaciones de suma y resta en CA2() son exactamente las mismas que las de BSS()

Aritmética en CA2

Las operaciones de suma y resta en CA2() son exactamente las mismas que las de BSS()

¡Q3 sabe operar en Complemento a 2!

Suma: interpretación

Ejercicio: sumar y verificar resultados

$$+\frac{1001}{0101}$$

$$+ \frac{0011}{0010}$$

$$+ \frac{1011}{0111}$$

Suma: interpretación

$$+\frac{{\overset{1}{\overset{0}{1001}}}}{{\overset{0}{1010}}}{{\overset{0}{1110}}}$$

$$+\frac{0.110}{0011}$$

$$+\frac{0.110}{1001}$$

$$+\frac{3}{2}$$

Resta: interpretación

Ejercicio: restar y verificar resultados

$$\begin{array}{c}
-0011 \\
0110 \\
\hline
1101
\end{array}$$

$$\begin{array}{r} - & 0011 \\ \hline 0010 \\ \hline 0001 \end{array}$$

$$\frac{1011}{0011}$$

Resta: interpretación

$$- 0011 \\ 0110 \\ \hline 1101$$

$$\begin{array}{c} 1001 \\ 0101 \\ \hline 0100 \end{array}$$

$$\begin{array}{r} - & 0011 \\ 0010 \\ \hline 0001 \end{array}$$

$$\begin{array}{c} 1011 \\ 0011 \\ \hline 1000 \end{array}$$

Exceso

Exceso

Motivación: Las cadenas se "desplazan" hacia los positivos o los negativos sobre la recta

Exceso

Motivación: Las cadenas se "desplazan" hacia los positivos o los negativos sobre la recta

Exceso 4

 $\begin{tabular}{ll} \textbf{9} & \textbf{9} &$

$$X' = X + \Delta$$

 $\begin{tabular}{ll} \textbf{O} Se desplaza el valor a representar sumándole un valor constante Δ \\ \end{tabular}$

$$X' = X + \Delta$$

2 Se representa como en Binario Sin Signo

$$C = \mathcal{R}_{bss}(X')$$

Suponer el sistema Ex(3,4) (3 bits y $\Delta = 4$)

Ejemplo $\bigcirc X = 2$

$$0 X = 2$$

②
$$X' = X + \Delta = 2 + 4 = 6$$

Ejemplo
$$\bullet$$
 $X = 2$

②
$$X' = X + \Delta = 2 + 4 = 6$$

Ejemplo
$$\mathbf{0} X = 2$$

②
$$X' = X + \Delta = 2 + 4 = 6$$

$$\mathfrak{O} \ \mathcal{R}_{bss(3)}(X') = \mathcal{R}_{bss(3)}(6) = 110$$

Ejemplo
$$\mathbf{0} X = -2$$

Ejemplo
$$\mathbf{0}$$
 $X = 2$

②
$$X' = X + \Delta = 2 + 4 = 6$$

$$\mathcal{R}_{bss(3)}(X') = \mathcal{R}_{bss(3)}(6) = 110$$

Ejemplo
$$\mathbf{0} X = -2$$

②
$$X' = X + \Delta = -2 + 4 = 2$$

- Eiemplo $\bigcirc X = 2$
 - $X' = X + \Lambda = 2 + 4 = 6$
 - $\mathcal{R}_{bss(3)}(X') = \mathcal{R}_{bss(3)}(6) = 110$
- Ejemplo $\bigcirc X = -2$
 - $X' = X + \Delta = -2 + 4 = 2$
 - $\mathfrak{S}_{bss(3)}(X') = \mathcal{R}_{bss(3)}(2) = 010$

Ejemplo
$$\mathbf{0} X = 2$$

②
$$X' = X + \Delta = 2 + 4 = 6$$

Ejemplo
$$\mathbf{0} X = -2$$

②
$$X' = X + \Delta = -2 + 4 = 2$$

Suponer el sistema Ex(3,4) (3 bits y $\Delta=4$)

Ejemplo
$$\mathbf{0} X = 2$$

$$X = 2$$

$$X' = X + \Delta = 2 + 4 = 6$$

Ejemplo
$$\mathbf{0} X = -2$$

$$X' = X + \Delta = -2 + 4 = 2$$

¿Cómo tiene que ser X' para que pueda ser representado en BSS?

Exceso: Interpretación

Se interpreta como en Binario Sin Signo

$$X' = \mathcal{I}_{bss}(C)$$

Se interpreta como en Binario Sin Signo

$$X' = \mathcal{I}_{bss}(C)$$

② Se resta el desplazamiento

$$X = X' - \Delta$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

Ejemplo
$$\bigcirc$$
 $C = 111$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

- Ejemplo \bigcirc C = 111
 - $X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$
 - $X = X' \Lambda = 7 3 = 4$

Ejemplo
$$\bullet$$
 \bullet \bullet \bullet \bullet

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

Ejemplo
$$\bullet$$
 \bullet \bullet \bullet \bullet

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

$$X = X' - \Delta = 0 - 3 = -3$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

$$X = X' - \Delta = 0 - 3 = -3$$

Ejemplo
$$\mathbf{0}$$
 $C = 100$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

$$X = X' - \Delta = 0 - 3 = -3$$

Ejemplo
$$\mathbf{0}$$
 $C = 100$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(100) = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

$$X = X' - \Delta = 0 - 3 = -3$$

Ejemplo
$$\mathbf{0}$$
 $C = 100$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(100) = 4$$

$$X = X' - \Delta = 4 - 3 = 1$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

Ejemplo
$$\bullet$$
 \bullet \bullet \bullet \bullet

②
$$X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(100) = 4$$

$$X = X' - \Delta = 4 - 3 = 1$$

Ejemplo
$$\mathbf{0}$$
 $C = 111$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(111) = 7$$

$$X = X' - \Delta = 7 - 3 = 4$$

Ejemplo
$$\mathbf{0}$$
 $C = 000$

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(000) = 0$$

$$X = X' - \Delta = 0 - 3 = -3$$

Ejemplo
$$\bullet$$
 \bullet \bullet \bullet \bullet

$$2 X' = \mathcal{I}_{bss(3)}(C) = \mathcal{I}_{bss(3)}(100) = 4$$

$$X = X' - \Delta = 4 - 3 = 1$$

Exceso: otros desplazamientos

• Ex(3,8)

• Ex(3,-1)

• Las cadenas están ordenadas con respecto a los números

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,\!0) =$$

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,\!0) = \mathcal{I}_{bss}(0.,\!0) - \Delta =$$

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,0) = \mathcal{I}_{bss}(0.,0) - \Delta = -\Delta$$

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,0) = \mathcal{I}_{bss}(0.,0) - \Delta = -\Delta$$

$$\mathcal{I}_{ex}(1.,1) =$$

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,0) = \mathcal{I}_{bss}(0.,0) - \Delta = -\Delta$$

$$\mathcal{I}_{\text{ex}}(1.,\!1) = \mathcal{I}_{\text{bss}}(1.,\!1) - \Delta =$$

- Las cadenas están ordenadas con respecto a los números
- Mínimo: Representado por la cadena 0...0

$$\mathcal{I}_{ex}(0.,0) = \mathcal{I}_{bss}(0.,0) - \Delta = -\Delta$$

$$\mathcal{I}_{ex}(1.,1) = \mathcal{I}_{bss}(1.,1) - \Delta = 2^n - 1 - \Delta$$

•
$$Ex(2,3) \Rightarrow Rango = [-3,0]$$

•
$$Ex(2,3) \Rightarrow Rango = [-3,0]$$

•
$$Ex(3,4) \Rightarrow Rango = [-4,3]$$

- $Ex(2,3) \Rightarrow Rango = [-3,0]$
- $Ex(3,4) \Rightarrow Rango = [-4,3]$
- $Ex(3,8) \Rightarrow Rango = [-8, 2^3 1 8]$

•
$$Ex(2,3) \Rightarrow Rango = [-3,0]$$

•
$$Ex(3,4) \Rightarrow Rango = [-4,3]$$

•
$$Ex(3,8) \Rightarrow Rango = [-8, 2^3 - 1 - 8]$$

•
$$Ex(3,-1) \Rightarrow Rango = [1,2^3-1+1]$$

