Part 4 Chapter 16

참고만 할 것 (시험범위 제외)

Fourier (#21011) Analysis

Chapter Objectives

- Sinusoids for curve fitting.
- Fourier series
- Euler's formula.
- Fourier integral and transform
- Discrete Fourier transform (DFT)
- Fast Fourier transform (FFT)

Fourier Analysis is based on the premise that more complicated functions(e.g., time series) can be represented by sum of simpler trigonometric functions.

Periodic Functions

Any periodic function is one for which

$$f(t) = f(t + T)$$
 where $T =$ the period

function	graph	period
$\sin x$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2π
$\cos x$	0.6 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	2π
constant	3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d	ε

Examples

$$f(t) = \cos\frac{t}{3} + \cos\frac{t}{4}$$
 Find its period (T)

$$f(t) = f(t+T) \Longrightarrow \cos\frac{t}{3} + \cos\frac{t}{4} = \cos\frac{1}{3}(t+T) + \cos\frac{1}{4}(t+T)$$

$$\cos\theta = \cos(\theta + 2m\pi)$$

$$\frac{T}{3} = 2m\pi$$

$$\frac{T}{4} = 2n\pi$$

$$T = 6m\pi$$

$$T = 24\pi$$
 smallest T

Vertical Stretch or Compression

(Amplitude change)

$$y = A \sin x$$

$$y = A \cos x$$

Amplitude =
$$|A|$$

$$y = \cos x$$

$$Amplitude = 1$$

$$y = 3\cos x$$

$$Amplitude = 3$$

$$y = \frac{1}{2}\cos x$$

Amplitude =
$$\frac{1}{2}$$

Horizontal Stretch or Compression (Period change)

$$y = A \sin \omega x$$

$$y = A \sin \omega x$$
 $y = A \cos \omega x$

 $y = \sin(2x)$

Period =
$$T = \frac{2\pi}{\omega}$$

$$period = T = \frac{2\pi}{2} = \pi$$

Vertical Shifts

$$y = A\sin(\omega x) + B$$
 $y = A\cos(\omega x) + B$

Vertical Shift = B units

$$y = \cos x + 2$$
 Shift 2 units upward

$$y = \cos x$$
 Parent Graph

$$y = \cos x - 3$$
 Shift 3 units downward

Phase Shifts

$$y = A \sin(\omega x - \phi) + B$$

$$y = A \sin(\omega x - \phi) + B$$
 $y = A \cos(\omega x - \phi) + B$

Phase shift =
$$\frac{\phi}{\omega}$$
 units

$$y = \sin x$$

$$y = \sin\left(x - \frac{\pi}{4}\right)$$

Phase shift $\frac{\pi}{4}$ units to right.

$$y = A\sin(\omega x - \phi) = A\sin(\omega(x - \frac{\phi}{\omega})), \ \omega > 0$$

$$or$$

$$y = A\cos(\omega x - \phi) = A\cos(\omega(x - \frac{\phi}{\omega})), \omega > 0$$

Sinusoids (sine wave, 정현파(正弦波))

- Sine 또는 Cosine 함수로 표현된 함수
 - 규칙적인 반복 (주기, cycle)
 - 진폭(amplitude)

$$f(t) = A_0 + C_1 \cos(\omega_0 t + \theta)$$

$$\text{Mean value Amplitude frequency shift} \qquad \omega_0 = 2\pi f = \frac{2\pi}{T} \qquad \text{T = period f = Frequency (1/T)}$$

$$A_0$$
=1.7, C_1 =1, T=1.5s
 ω_0 = $2\pi/T$ = $2\pi/(1.5s)$,
 θ = $(\pi/3)$ radians = 1.0472 (= 0.25s),
 f = 1/T = $(1 \text{ cycle})/(1.5s)$ = 0.6667 Hz

The oscillation of an springmass system around the equilibrium is a sine wave

Alternative Representation of Sinusoids

$$f(t) = A_0 + C_1 \cos(\omega_0 t + \theta)$$

$$f(t) = A_0 + C_1 \cos(\omega_0 t + \theta)$$
 $f(t) = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t)$

The two forms are related by

$$C_1 = \sqrt{A_1^2 + B_1^2}$$
 $\theta = \arctan(-B_1/A_1)$

Alternative Representation of Sinusoids

•
$$f(t) = A_0 + C_1 \cos(\omega_0 t + \theta)$$
 -----(1)

$$-C_1\cos(\omega_0 t + \theta) = C_1[\cos(\omega_0 t)\cos(\theta) - \sin(\omega_0 t)\sin(\theta)] -----(2)$$

$$-(2) \rightarrow (1) : f(t) = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t)$$

•
$$A_1 = C_1 \cos(\theta)$$
, $B_1 = -C_1 \sin(\theta)$

•
$$\theta = \arctan(-B_1/A_1)$$
, $C_1^2 = A_1^2 + B_1^2$

$$f(t) = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t)$$
: Linear model

Alternative Representation of Sinusoids

•
$$f(t) = A_0 + C_1 \cos(\omega_0 t + \theta)$$
 or
= $A_0 + C_1 \sin(\omega_0 t + \delta)$

$$-\sin(\omega_0 t + \delta) = \cos(\omega_0 t + \delta - \pi/2)$$

$$-\theta = \delta - \pi/2$$

Least-Square Fit of a Sinusoid

$$y = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t) + e$$

$$y = a_0z_0 + a_1z_1 + a_2z_2 + \cdots + a_mz_m + e$$

where $z_0 = 1$, $z_1 = \cos(\omega_0 t)$, $z_2 = \sin(\omega_0 t)$, and all other z's = 0.

$$S_r = \sum_{i=1}^{N} \left\{ y_i - [A_0 + A_1 \cos(\omega_0 t_i) + B_1 \sin(\omega_0 t_i)] \right\}^2$$

The normal equations

$$\begin{bmatrix} N & \Sigma \cos(\omega_0 t) & \Sigma \sin(\omega_0 t) \\ \Sigma \cos(\omega_0 t) & \Sigma \cos^2(\omega_0 t) & \Sigma \cos(\omega_0 t) \sin(\omega_0 t) \\ \Sigma \sin(\omega_0 t) & \Sigma \cos(\omega_0 t) \sin(\omega_0 t) & \Sigma \sin^2(\omega_0 t) \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ B_1 \end{bmatrix} = \begin{bmatrix} \Sigma y \\ \Sigma y \cos(\omega_0 t) \\ \Sigma y \sin(\omega_0 t) \end{bmatrix}$$

where there are N observations equi-spaced at intervals of Δt and with a total record length of T=(N-1) Δt . For this situation, the following average values can be determined

$$\frac{\sum \sin(\omega_0 t)}{N} = 0 \qquad \frac{\sum \cos(\omega_0 t)}{N} = 0$$

$$\frac{\sum \sin^2(\omega_0 t)}{N} = \frac{1}{2} \qquad \frac{\sum \cos^2(\omega_0 t)}{N} = \frac{1}{2}$$

$$\frac{\sum \cos(\omega_0 t) \sin(\omega_0 t)}{N} = 0$$

for equispaced points the normal equations become

$$\begin{bmatrix} N & 0 & 0 \\ 0 & N/2 & 0 \\ 0 & 0 & N/2 \end{bmatrix} \begin{Bmatrix} A_0 \\ A_1 \\ B_1 \end{Bmatrix} = \begin{Bmatrix} \Sigma y \\ \Sigma y \cos(\omega_0 t) \\ \Sigma y \sin(\omega_0 t) \end{Bmatrix}$$

$$\begin{cases} A_0 \\ A_1 \\ B_1 \end{cases} = \begin{bmatrix} 1/N & 0 & 0 \\ 0 & 2/N & 0 \\ 0 & 0 & 2/N \end{bmatrix} \begin{cases} \Sigma y \\ \Sigma y \cos(\omega_0 t) \\ \Sigma y \sin(\omega_0 t) \end{cases}$$

$$A_0 = \frac{\Sigma y}{N}$$
 $A_1 = \frac{2}{N} \Sigma y \cos(\omega_0 t)$ $B_1 = \frac{2}{N} \Sigma y \sin(\omega_0 t)$

$$y = 1.7 + \cos(4.189t + 1.0472)$$

Generate 10 discrete values for this curve at intervals of $\Delta t = 0.15$ for the range t = 0 to 1.35

The data required to evaluate the coefficients with $\omega=4.189$ are

t	y	$y \cos(\omega_0 t)$	y sin(ωot)
0	2.200	2.200	0.000
0.15	1.595	1.291	0.938
0.30	1.031	0.319	0.980
0.45	0.722	-0.223	0.687
0.60	0.786	-0.636	0.462
0.75	1.200	-1.200	0.000
0.90	1.805	-1.460	-1.061
1.05	2.369	-0.732	-2.253
1.20	2.678	0.829	-2.547
1.35	2.614	2.114	-1.536
Σ=	17.000	2.502	-4.330

$$A_0 = \frac{\sum y}{N}$$
 $A_1 = \frac{2}{N} \sum y \cos(\omega_0 t)$ $B_1 = \frac{2}{N} \sum y \sin(\omega_0 t)$

$$A_0 = \frac{17.000}{10} = 1.7$$
 $A_1 = \frac{2}{10}2.502 = 0.500$ $B_1 = \frac{2}{10}(-4.330) = -0.866$

$$y = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t) + e$$

$$A_0 = \frac{17.000}{10} = 1.7$$
 $A_1 = \frac{2}{10}2.502 = 0.500$ $B_1 = \frac{2}{10}(-4.330) = -0.866$

Thus, the least-squares fit is $y = 1.7 + 0.500 \cos(\omega_0 t) - 0.866 \sin(\omega_0 t)$

$$\theta = \arctan\left(-\frac{-0.866}{0.500}\right) = 1.0472$$
 $C_1 = \sqrt{(0.5)^2 + (-0.866)^2} = 1.00$

$$C_1 = \sqrt{(0.5)^2 + (-0.866)^2} = 1.00$$

$$y = 1.7 + \cos(\omega_0 t + 1.0472)$$

$$\delta = \theta + \pi/2$$

or alternatively, $y = 1.7 + \sin(\omega_0 t + 2.618)$

General Model

The foregoing analysis can be extended to the general model

$$f(t) = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t) + A_2 \cos(2\omega_0 t) + B_2 \sin(2\omega_0 t) + \cdots + A_m \cos(m\omega_0 t) + B_m \sin(m\omega_0 t)$$

where, for equally spaced data, the coefficients can be evaluated by

$$A_0 = \frac{\sum y}{N}$$

$$A_j = \frac{2}{N} \sum y \cos(j\omega_0 t)$$

$$B_j = \frac{2}{N} \sum y \sin(j\omega_0 t)$$

$$j = 1, 2, \dots, m$$

- Although these relationships can be used to fit data in the regression sense, that is, N > (2m + 1),
 - an alternative application is to employ them for interpolation when N=(2m+1)
 - This is the approach used in the Continuous Fourier series.

Continuous Fourier Series

- In the course of studying heat-flow problems,
 - Fourier showed that an arbitrary periodic function can be represented by an infinite series of sinusoids of harmonically related frequencies.
- For a function with period *T*, a continuous Fourier series can be written

$$f(t) = a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + \cdots$$
 or more concisely,

$$f(t) = a_0 + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)]$$

where $\omega_0 = 2\pi/T$ is called the *fundamental frequency* and

its constant multiples $2\omega_0$, $3\omega_0$, etc., are called *harmonics*.

the coefficients can be computed via

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_0 t) dt \quad \text{and} \quad b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_0 t) dt \quad \text{for } k = 1, 2, \dots$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$
 (Euler Formulas)

- Harmonics (高調波, 고조파)
 - 사인파가 아닌 주기적 반복파형은 기본주파수를 가지는 사인파와 사인파의 정수배의 주파수를 갖는 파동으로 분해되는데,
 - 이 때 반복파형을 구성하는 기본파 이외의 파동들:고조파
 - 주파수가 n배인 파동: n차 고조파
 - 음 : 배음 (악기의 음색은 고조파를 포함하는 정도에 따라 달라짐)
 - 전자파: 기본진동수에 대해 그 배수(倍數)에 따라 제2 또는 제3조파(調波)

Example: Periodic Rectangular Wave (1)

• Given function f(x)

$$f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases},$$

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_0 = \frac{1}{2\pi} \left[-\int_{-\pi}^0 k dx + \int_0^\pi k dx \right] = \frac{1}{2\pi} \left(-k\pi + k\pi \right) = 0 \qquad \text{average height} \tag{we can derive 0 from graph)}$$

$$a_n = \frac{1}{\pi} \left[\int_{-\pi}^0 (-k) \cdot \cos nx \, dx + \int_0^{\pi} k \cdot \cos nx \, dx \right] = \frac{1}{\pi} \left[-\frac{k}{n} \sin nx \Big|_{-\pi}^0 + \frac{k}{n} \sin nx \Big|_{-\pi}^0 \right] = 0$$

$$(\sin(x))' = \cos(x)$$

$$(\cos(x))' = -\sin(x)$$

$$\int \sin ax \, dx = -\frac{1}{a}\cos ax + C$$

$$\int \cos ax \, dx = \frac{1}{a}\sin ax + C$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C$$

$$a_0 = a_n = 0$$

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^0 (-k) \cdot \sin nx dx + \int_0^{\pi} k \cdot \sin nx dx \right] = \frac{1}{\pi} \left[\frac{k}{n} \cos nx \Big|_{-\pi}^0 - \frac{k}{n} \cos nx \Big|_0^{\pi} \right]$$
$$= \frac{1}{\pi} \left[\frac{k}{n} - \frac{k}{n} \cos n\pi - \frac{k}{n} \cos n\pi + \frac{k}{n} \right] = \frac{2k}{\pi n} (1 - \cos n\pi)$$

$$b_n = \frac{2k}{\pi n} (1 - \cos n\pi) = \begin{cases} \frac{4k}{n\pi} & \text{if } n = odd \\ 0 & \text{if } n = even \end{cases}$$

$$\cos n\pi = \begin{cases} -1 & if \quad n = odd \\ 1 & if \quad n = even \end{cases}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases}$$

Problem Statement. Use the continuous Fourier series to approximate the square or rectangular wave function

$$f(t) = \begin{cases} -1 & -T/2 < t < -T/4 \\ 1 & -T/4 < t < T/4 \\ -1 & T/4 < t < T/2 \end{cases}$$

Because the average height of the wave is zero, a value of $a_0 = 0$ can be obtained directly. The remaining coefficients can be evaluated as

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\omega_0 t) dt$$

$$= \frac{2}{T} \left[-\int_{-T/2}^{-T/4} \cos(k\omega_0 t) dt + \int_{-T/4}^{T/4} \cos(k\omega_0 t) dt - \int_{T/4}^{T/2} \cos(k\omega_0 t) dt \right]$$

The integrals can be evaluated to give

$$a_k = \begin{cases} 4/(k\pi) & \text{for } k = 1, 5, 9, \dots \\ -4/(k\pi) & \text{for } k = 3, 7, 11, \dots \\ 0 & \text{for } k = \text{even integers} \end{cases}$$

Similarly, it can be determined that all the b's = 0. Therefore, the Fourier series approximation is

$$f(t) = \frac{4}{\pi} \cos(\omega_0 t) - \frac{4}{3\pi} \cos(3\omega_0 t) + \frac{4}{5\pi} \cos(5\omega_0 t) - \frac{4}{7\pi} \cos(7\omega_0 t) + \cdots$$

It should be mentioned that the square wave in Fig. is called an *even function* because f(t) = f(-t). Another example of an even function is $\cos(t)$. It can be shown (Van Valkenburg, 1974) that the b's in the Fourier series always equal zero for even functions. Note also that *odd functions* are those for which f(t) = -f(-t). The function $\sin(t)$ is an odd function. For this case, the a's will equal zero.

Euler's Formula

- Named after Leonhard Euler
 - the fundamental relationship between the trigonometric functions and the complex exponential function.
 - sometimes denoted cis(x) ("cosine plus *i* sine")
 - Euler's formula states that, for any real number x in radians,

$$e^{ix} = \cos x + i\sin x$$

Time Versus Frequency Domains

- To this point, our discussion of Fourier approximation has been limited to the time domain.
 - Although it is not as familiar, the <u>frequency domain</u> provides an alternative perspective for characterizing the behavior of oscillating functions.
- As amplitude can be plotted versus time, so also can it be plotted versus frequency.
 - The sinusoid can be conceived of as existing a distance 1/T out along the frequency axis and running parallel to the time axes.

As in (Fig. c), this projection is a measure of the sinusoid's maximum positive amplitude C1.

Amplitude

1/T

(c)

- One more parameter, namely, the phase angle, is required to position the curve relative to t = 0.
 - The phase angle is determined as the distance (in radians) from zero to the point at which the positive peak occurs.
 - If the peak occurs before zero, it is said to be advanced
 - the positive phase angle
 - If the peak occurs after zero, it is said to be delayed
 - the negative phase angle
 - For (Fig. d), the peak leads zero and the phase angle is plotted as $+\pi/2$.

line spectra

Fourier Integral and Transform

- Periodic functions can be approximated by Fourier series
 - Although the Fourier series is a useful tool for investigating the spectrum of a periodic function, there are many waveforms that do not repeat themselves regularly.
 - For example, a lightning bolt occurs only once (or at least it will be a long time until it occurs again), but it will cause interference with receivers operating on a broad range of frequencies (TVs, radios, and shortwave receivers).
- Such evidence suggests that a nonrecurring signal such as that produced by lightning exhibits a continuous frequency spectrum.
- Because such phenomena are of great interest to engineers, an alternative to the Fourier series would be valuable for analyzing these aperiodic waveforms.

- In (Fig. b), a doubling of the pulse train's period has two effects on the spectrum.
 - First, two additional frequency lines are added on either side of the original components.
 - Second, the amplitudes of the components are reduced.
 - As the period is allowed to approach infinity, these effects continue as more and more spectral lines are packed together until the spacing between lines goes to zero.
 - At the limit, the series converges on the continuous Fourier integral, depicted in (Fig. c).

It can be derived from the exponential form of the Fourier series

$$f(t) = \sum_{k=-\infty}^{\infty} \tilde{c}_k e^{ik\omega_0 t}$$
 where $\tilde{c}_k = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-ik\omega_0 t} dt$ $\omega_0 = 2\pi/T \text{ and } k = 0, 1, 2, \dots$

- The transition from a periodic to a nonperiodic function can be effected by allowing the period to approach infinity.
 - as T becomes infinite, the function never repeats itself and thus becomes aperiodic.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega_0) e^{i\omega_0 t} d\omega_0 \tag{19.25}$$
 and the coefficients become a continuous function of the frequency variable ω , as in
$$F(i\omega_0) = \int_{-\infty}^{\infty} f(t) e^{-i\omega_0 t} dt \tag{19.26}$$

- The function $F(i\omega_0)$, as defined by Eq. (19.26), is called the Fourier integral of f(t).
 - Eqs. (19.25) and (19.26) are collectively referred to as the Fourier transform pair.
 - $F(i\omega_0)$ is also called the Fourier transform of f(t).

Discrete Fourier Transform (DFT)

- Spectral analysis is the process of identifying component frequencies in data.
 - For discrete data, the computational basis of spectral analysis is the discrete Fourier transform (DFT).
 - The DFT transforms time(or space)-based data into frequency-based data.
- In engineering, functions are often represented by finite sets of discrete values.
 - Data is often collected in or converted to such a discrete format.
 - N equi-spaced subintervals with widths of $\triangle t = T/N$.
 - f_n designates a value of the continuous function f(t) taken at t_n
 - Note that the data points are specified at n = 0, 1, 2, ..., N 1.
 - A value is not included at n = N.

The sampling points of the discrete Fourier series.

A discrete Fourier transform can be written as

$$F_k = \frac{1}{N} \sum_{n=0}^{N} \left[f_n \cos(k\omega_0 n) - i f_n \sin(k\omega_0 n) \right]$$

and

$$f_n = \sum_{k=0}^{N-1} \left[F_k \cos(k\omega_0 n) + i F_k \sin(k\omega_0 n) \right]$$

• (Eqs. 19.27 and 19.28) represent the discrete analogs of (Eqs. 19.26 and 19.25, *Fourier transform pair*), respectively.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega_0) e^{i\omega_0 t} d\omega_0 \qquad (19.25)$$

and the coefficients become a continuous function of the frequency variable ω , as in

$$F(i\omega_0) = \int_{-\infty}^{\infty} f(t)e^{-i\omega_0 t} dt$$
 (19.26)

Fast Fourier Transform (FFT)

- It is computationally burdensome to calculates the Discrete Fourier Transform (DFT), because *N*² operations are required.
 - For data samples of even moderate size, the direct determination of the DFT can be extremely time-consuming.
- The Fast Fourier transform (FFT), is an algorithm that has been developed to compute the DFT in an extremely economical fashion.
 - Its speed stems from the fact that it utilizes the results of previous computations to reduce the number of operations.
 - In particular, it exploits the periodicity and symmetry of trigonometric functions to compute the transform with approximately N log₂ N operations.
 - For N = 50 samples, the FFT is about 10 times faster than the standard DFT.
 - For *N* = 1000, it is about 100 times faster.

• THE END