```
In [80]: import pandas as pd import seaborn as sns
```

In [81]: data=pd.read_csv("/home/placement/Desktop/usha g1/fiat500.csv")

In [82]: data.describe()

Out[82]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [83]: data1=data.loc[(data.model=="lounge")]
 data1

Out[83]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
11	12	lounge	51	366	17500	1	45.069679	7.704920	10990
1528	1529	lounge	51	2861	126000	1	43.841980	10.515310	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.361120	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.994500	10800
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990

1094 rows × 9 columns

localhost:8888/notebooks/ridge.ipynb

```
In [84]: datal=data.drop(['lat','lon','ID'],axis=1)
    datal
```

Out[84]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [85]: data1=pd.get_dummies(data1)
```

```
In [86]: data1.shape
```

Out[86]: (1538, 8)

localhost:8888/notebooks/ridge.ipynb

In [87]: data1

Out[87]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [88]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [89]: y
Out[89]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [90]: from sklearn.model selection import train test split
          x_train, x_test,y_train, y_test = train_test_split(x, y, test_size=0.33,random_state=42)
In [91]: x test.head(5)
Out[91]:
                engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                        51
                                  3197 120000
                                                         2
            481
                                                                     0
                                                                               1
                                                                                          0
            76
                        62
                                  2101 103000
                                                         1
                                                                     0
                                                                               1
                                                                                          0
           1502
                        51
                                  670
                                       32473
                                                         1
                                                                     1
                                                                               0
                                                                                          0
                                       29000
           669
                        51
                                  913
                                                         1
                                                                     1
                                                                               0
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                     1
                                                                               0
                                                                                          0
In [92]: import warnings
          warnings.filterwarnings("ignore")
```

localhost:8888/notebooks/ridge.ipynb 5/9

```
In [93]: #ridge regression
         from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(x train, y train)
Out[93]:
          ▶ GridSearchCV
          ▶ estimator: Ridge
                ▶ Ridge
In [94]: ridge_regressor.best_params_
Out[94]: {'alpha': 30}
In [95]: ridge=Ridge(alpha=30)
         ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
In [96]: from sklearn.metrics import mean_squared_error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[96]: 579521.7970897449
In [97]: from sklearn.metrics import r2 score
         r2 score(y test,y pred ridge)
Out[97]: 0.8421969385523054
```

localhost:8888/notebooks/ridge.ipynb

```
In [98]: Results= pd.DataFrame(columns=['Actual', 'Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(10)
```

Out[98]:

_		index	Actual	Predicted	ld
	0	481	7900	5869.741155	0
	1	76	7900	7149.563327	1
	2	1502	9400	9862.785355	2
	3	669	8500	9719.283532	3
	4	1409	9700	10035.895686	4
	5	1414	9900	9650.311090	5
	6	1089	9900	9669.183317	6
	7	1507	9950	10115.128380	7
	8	970	10700	9900.241944	8
	9	1198	8999	9347.080772	9

```
In [102]: import matplotlib.pyplot as plt
    sns.lineplot(x='Id',y='Actual',data=Results.head(50))
    sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
    plt.plot()
```

Out[102]: []

