Questões	Valores	Notas
1.a	3.0	
2. ^a	3.0	
3. ^a	4.0	
Total	10.0	

 2^a Prova de MA141 — 17/05/2012 (NOITE)

Nome:		
RA·	Turma:	

ATENÇÃO: Será corrigida a redação da resposta. Cada resposta deve ser redigida com todos os detalhes. Caso duas ou mais provas apresentem alguma resposta cujas redações coincidam em mais de 50%, essa questão será **ZERADA** em todas elas. Não é permitido **DESTACAR** as folhas da prova.

(1) (3 pontos) São dados quatro vértices, $O=(0,0,0), A=(-2,-1,1), B=(1,1,1), e\ C=(5,1,-1)$ de um paralelepípedo, cuja distribuição está esquematizada no desenho abaixo.

Essa figura \tilde{NAO} um $\tilde{CUBO}!$ Cada face um paralelogramo (no necessariamente reto, isto , no necessariamente um retngulo) e duas faces opostas so paralelas.

- (a) Encontrar a equação do plano que contém os vértices 0, A, e B.
- (b) Encontrar a equação do plano que contém os vértices C, D, e E.
- (c) Encontrar a equação da reta que passa pelos vértices C e D.
- (d) Encontrar a coordenadas dos pontos $D \in E$.
- (2) (0,5 pontos cada item) Sejam u, v e w são vetores no espaço então: Responda às perguntas abaixo com "CERTA" ou "ERRADA". Respostas **sem** justificativa **não** serão conderadas.
 - (a) Se $u \times v \neq \vec{0}$ e u é ortogonal a v então $u \times (u \times v)$ é paralelo a v.
 - (b) O conjunto $\{(m,2,-3) \mid m \in \mathbb{R}\}$ representa uma reta.
 - (c) Existe um vetor u que é ortogonal a (2,3,-1) e a (2,-4,6) e tem norma $3\sqrt{3}$.
 - (d) Se $u \in v$ so vetores tais que $u \cdot v = 0$, então u = 0 ou v = 0.
- (3) (3 pontos) Dados o plano $\pi : 2x + 2y z = 6$ e o ponto P : (2, 2, -4),
 - (a) Encontre a distância de P a π .
 - (b) Encontre a equação da reta que passa por P e é ortogonal a π .
 - (c) Encontre o ponto Q em π de forma que a distância de P a Q seja igual a distândica de P a π

Incluir na prova, por favor, **todas** as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!

GABARITO

1) Primeiramente observamos que por ser um paralelepípedo temos

$$\vec{CD} = \vec{OA} = (-2, -1, 1)$$
 $\vec{DE} = \vec{OB} = (1, 1, 1)$

a) (1,0) O plano π que contém O, A, B está caracterizado por

$$\begin{cases} N_{\pi} = \vec{OA} \times \vec{OB} \\ P_{\pi} = O = (0, 0, 0) \end{cases} \implies N_{\pi} = \begin{vmatrix} i & j & k \\ -2 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = (-2, 3, -1)$$

b) (0.5) O plano α que contém C, D, E é paralelo a π e portanto, está caracterizado por

$$\begin{cases} N_{\alpha} = N_{\pi} = (-2, 3, -1) \\ P_{\alpha} = C = (5, 1, -1) \end{cases}$$

Donde α : -2x + 3y - z = -2(5) + 3(1) - (-2x + 3y - z) = -2(5) + 3(1) + 3(

$$\alpha: -2x + 3y - z = -6.$$

c) (0.5) A reta r que passa por C e D é paralela a reta que passa por O e A donde segue que

$$\begin{cases} V_r = \vec{OA} = (-2, -1, 1) \\ P_r = C = (5, 1, -1) \end{cases}$$

Portanto r = (5, 1, -1) + t(-2, -1, 1) $t \in \mathbb{R}$

d) (1,0)Sabemos que $\vec{CD} = \vec{OA} = (-2, -1, 1)$ e que C = (5, 1, -1) donde

$$D = (-2, -1, 1) + (5, 1, -1) = (3, 0, 0)$$

Por outro lado $\vec{DE} = \vec{OB} = (1, 1, 1)$ donde

$$E = (1, 1, 1) + (3, 0, 0) = (4, 1, 1)$$

a) (0,75) Certa. Utilizando $u \times (w \times v) = (u \cdot w)v - (u \cdot v)w$ e que $u \cdot v = 0$ temos

$$u \times (u \times v) = ||u||^2 v - (u \cdot v)u = ||u||^2 v$$

Donde segue que $u \times (u \times v)$ é paralelo a v.

- b) (0.75) Certa. r = (0, 2, -3) + m(1, 0, 0) $m \in \mathbb{R}$
- c) (0,75) Certa. Seja

$$V = (2, 3, -1) \times (2, -4, 6) = \begin{vmatrix} i & j & k \\ 2 & 3 & -1 \\ 2 & -4 & 6 \end{vmatrix} = (14, -14, -14) \neq 0$$

Agora escolhemos $W=\frac{3\sqrt{3}}{14\sqrt{3}}V=3(1,-1,-1)=(3,-3,-3)$ e temos o vetor procurado. d) (0,75) Errada. $u=(1,0,0)\neq 0$ e $v=(0,1,0)\neq 0$ mas $u\cdot v=0$

- 3) Sabemos que $\pi = 2x + 2y z = 6$ donde $N_{\pi} = (2, 2, -1)$ e $P_{\pi} = (3, 0, 0)$.
 - a) (1,0) Da fórmula de distancia.

$$d(P,\pi) = \frac{|P\vec{P}_{\pi} \cdot N|}{||N||} = \frac{|(1, -2, 4) \cdot (2, 2, -1))|}{\sqrt{4 + 4 + 1}} = \frac{6}{3} = 2$$

b) (1,5) A reta está caracterizada

$$\left\{ \begin{array}{l} V_r = N_\pi = (2,2,-1) \\ P_r = P = (2,2,-4) \end{array} \right. \implies r = (2,2,-4) + t(2,2,-1) \qquad t \in \mathbb{R}$$

c) (1,5) Procuramos $r \cap \pi$. Neste caso existe um t_0 tal que $(2+2t_0, 2+2t_0, -4-t_0) \in \pi$, isto é

$$2(2+2t_0) + 2(2+2t_0) - (-4-t_0) = 6 \implies 9t_0 = 6-12 = -6 \implies t_0 = -2/3$$

Então

$$Q = \left(2 - \frac{4}{3}, 2 - \frac{4}{3}, -4 + \frac{2}{3}\right) = \left(\frac{2}{3}, \frac{2}{3}, \frac{-10}{3}\right)$$