

Q1

Method ①:

$$2z + 1 = |w| \tag{1}$$

$$2w - z = 4 + 24i \tag{2}$$

From (2):
$$z = 2w - 4 - 24i$$

Substitute into (1):
$$2(2w-4-24i)+1=|w|$$

$$4w - 7 - 48i = |w|$$

Let
$$w = a + bi$$

$$4(a+bi)-8-48i+1 = \sqrt{a^2+b^2}$$

$$(4a-7)+(4b-48)i = \sqrt{a^2+b^2}$$

Comparing Imaginary parts,

$$4b - 48 = 0$$

$$b = 12$$

Comparing Real parts,

$$4a-7=\sqrt{a^2+b^2}$$

$$4a - 7 = \sqrt{a^2 + 12^2}$$
 **

$$(4a-7)^2 = a^2 + 144$$

$$15a^2 - 56a - 95 = 0$$

$$\Rightarrow a = -\frac{19}{15} \text{ or } a = 5$$

From **, since 4a-7 = a positive real number,

when
$$a = -\frac{19}{15}$$
, $4a - 7 = 4\left(-\frac{19}{15}\right) - 7 < 0$

$$\Rightarrow$$
 reject $a = -\frac{19}{15}$

$$\therefore a = 5, b = 12, z = 2(5+12i)-4-24i = 6$$

$$\Rightarrow$$
 $w = 5 + 12i$, $z = 6$

Method 2:

$$2z + 1 = |w| \tag{1}$$

$$2w - z = 4 + 24i$$
 (2)

2z+1= a positive real number \Rightarrow Let z=x and w=a+bi

From (2): 2(a+bi)-x=4+24i

Comparing Real and Imaginary parts,

2a - x = 4

 $2b = 24 \Rightarrow b = 12$

From (1): $2x+1 = \sqrt{a^2+b^2}$ (3)

Substitute b = 12 and x = 2a - 4 into (3):

$$2(2a-4)+1=\sqrt{a^2+12^2}$$

$$4a - 7 = \sqrt{a^2 + 12^2}$$

**

$$(4a-7)^2 = a^2 + 144$$

$$16a^2 - 56a + 49 = a^2 + 144$$

$$15a^2 - 56a - 95 = 0$$

$$\Rightarrow a = -\frac{19}{15} \text{ or } a = 5$$

$$\Rightarrow x = -\frac{98}{15} \text{ or } x = 6$$

However 2z + 1 = a positive real number,

When
$$x = -\frac{98}{15}$$
, $2z + 1 = 2\left(-\frac{98}{15}\right) + 1 < 0$

$$\Rightarrow$$
 reject $x = -\frac{98}{15}$ and $a = -\frac{19}{15}$

$$x = 6$$
, $a = 5$, $b = 12$

$$\Rightarrow$$
 $w = 5 + 12i$, $z = 6$

$$\Omega^2$$

(a) When
$$x = \frac{1}{n}$$
, $y = \frac{\frac{1}{n}}{\sqrt{1 + (\frac{1}{n})^2}}$
When $x = \frac{2}{n}$, $y = \frac{\frac{2}{n}}{\sqrt{1 + (\frac{2}{n})^2}}$
... ...

When $x = \frac{n-1}{n}$, $y = \frac{\frac{n-1}{n}}{\sqrt{1 + (\frac{n-1}{n})^2}}$

$$A = \frac{1}{n} \left(\frac{\frac{1}{n}}{\sqrt{1 + (\frac{1}{n})^2}} \right) + \frac{1}{n} \left(\frac{\frac{2}{n}}{\sqrt{1 + (\frac{2}{n})^2}} \right) + \frac{1}{n} \left(\frac{\frac{3}{n}}{\sqrt{1 + (\frac{3}{n})^2}} \right) \dots + \frac{1}{n} \left(\frac{\frac{n-1}{n}}{\sqrt{1 + (\frac{n-1}{n})^2}} \right)$$

$$= \frac{1}{n^2} \left(\frac{1}{\sqrt{1 + (\frac{1}{n})^2}} + \frac{2}{\sqrt{1 + (\frac{2}{n})^2}} + \frac{3}{\sqrt{1 + (\frac{3}{n})^2}} + \dots + \frac{n-1}{\sqrt{1 + (\frac{n-1}{n})^2}} \right)$$

$$= \frac{1}{n^2} \left(\frac{n}{\sqrt{n^2 + 1^2}} + \frac{2n}{\sqrt{n^2 + 2^2}} + \frac{3n}{\sqrt{n^2 + 3^2}} + \dots + \frac{(n-1)n}{\sqrt{n^2 + (n-1)^2}} \right)$$

$$= \frac{1}{n} \left(\frac{1}{\sqrt{n^2 + 1^2}} + \frac{2}{\sqrt{n^2 + 2^2}} + \frac{3}{\sqrt{n^2 + 3^2}} + \dots + \frac{(n-1)}{\sqrt{n^2 + (n-1)^2}} \right)$$

 $=\frac{1}{n}\sum_{n=1}^{n-1}\frac{r}{\sqrt{n^2+r^2}}$ (shown)

(b)
$$\lim_{n \to \infty} A = \int_{0}^{1} \frac{x}{\sqrt{1 + x^{2}}} dx$$

$$= \frac{1}{2} \int_{0}^{1} 2x \cdot (1 + x^{2})^{-\frac{1}{2}} dx$$

$$= \frac{1}{2} \left[\frac{(1 + x^{2})^{\frac{1}{2}}}{\frac{1}{2}} \right]_{0}^{1}$$

$$= \sqrt{2} - 1$$

-	$\overline{}$	
	-	E
•	₩.	м

(a) r - q is parallel to p

$$\implies r - q = \lambda p$$

$$r = q + \lambda p$$

The point R lies on a line that passes through the point Q and is parallel to the vector \underline{p} .

(b)
$$\left(\begin{array}{c} (r - q) \cdot p = 0 \end{array} \right)$$

$$\underline{r} \cdot p - q \cdot p = 0$$

$$r \cdot p = q \cdot p$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$$

$$2x - 5y + 3z = -7$$

The point R lies on a plane that contains the point Q and is perpendicular to the vector \underline{p} .

Q4	
(a)	There is only one(positive) real root in the equation $f(x) = 0$.
	Since the equation has all real coefficients, then the two other roots must be a pair of complex conjugates.
(b)	Since $x = 1 - 2i$ is a root of $2x^3 - 7x^2 + 16x + c = 0$,
	2(-11+2i)-7(-3-4i)+16(1-2i)+c=0
	15 + c = 0
	$\therefore c = -15 \text{ (shown)}$
(c)	Since all the coefficients are real, $x = 1 + 2i$ is another root
	of $2x^3 - 7x^2 + 16x + c = 0$.
	$2x^3 - 7x^2 + 16x - 15 = 0$
	[x-(1+2i)][x-(1-2i)](2x-k)=0
	[(x-1)+2i)][(x-1)-2i)](2x-k)=0
	$[x^2-2x+5](2x-k)=0$
	Comparing the coefficient of constant term (or by long division), $-5k = -15 \implies k = 3$
	Therefore, the last root is $x = \frac{3}{2}$
	The roots are $x = 1 + 2i$, $x = 1 - 2i$, $x = \frac{3}{2}$
(d)	$2x^3 - 7x^2 + 16x + c = 0$
	Replace x with $\frac{1}{w}$
	$2\left(\frac{1}{w}\right)^{3} - 7\left(\frac{1}{w}\right)^{2} + 16\left(\frac{1}{w}\right) - 15 = 0$ $2 - 7w + 16w^{2} - 15w^{3} = 0$
	$2 - /W + 10W - 13W^{-} = 0$

Hence, the roots are
$$\frac{1}{w} = 1 + 2i$$
; $\frac{1}{w} = 1 - 2i$; $\frac{1}{w} = \frac{3}{2}$

$$w = \frac{1}{1 + 2i} = \frac{1}{5} - \frac{2}{5}i$$

$$w = \frac{1}{1 - 2i} = \frac{1}{5} + \frac{2}{5}i$$

$$w = \frac{2}{3}$$

_	_
α	_
.,	. 7
~	_

(a) Method ①:

The *n*th term, u_n , is always one degree less than S_n since $u_n = S_n - S_{n-1}$.

If S_n is quadratic, u_n would be linear but it is not since there is no common difference between consecutive terms.

Method 2: Proof by Contradiction

Suppose
$$S_n = an^2 + bn + c$$

$$S_n = an^2 + bn + c$$

$$a+b+c=-4$$

$$4a + 2b + c = -4 - 2 = -6$$

$$9a + 3b + c = -6 + 12 = 6$$

$$16a + 4b + c = 6 + 38 = 44$$

Using G.C., no solution found.

Hence S_n cannot be a quadratic polynomial.

$$S_n = an^3 + bn^2 + cn + d$$

$$a+b+c+d=-4$$

$$8a + 4b + 2c + d = -4 - 2 = -6$$

$$27a + 9b + 3c + d = -6 + 12 = 6$$

$$64a + 16b + 4c + d = 6 + 38 = 44$$

Using G.C.,

$$a = 2, b = -5, c = -1, d = 0$$

$$S_n = 2n^3 - 5n^2 - n$$

(c)
$$u_{n} = S_{n} - S_{n-1}$$

$$= 2n^{3} - 5n^{2} - n - \left[2(n-1)^{3} - 5(n-1)^{2} - (n-1)\right]$$

$$= 2n^{3} - 5n^{2} - n - \left[2(n^{5} - 3n^{2} + 3n - 1) - 5(n^{2} - 2n + 1) - n + 1\right]$$

$$= 2n^{3} - 5n^{2} - n - \left(2n^{3} - 11n^{2} + 15n - 6\right)$$

$$= 6n^{2} - 16n + 6$$
(d)
$$\sum_{n=0}^{2m} (u_{n} - u_{n-1})$$

$$= u_{10} - u_{0}$$

$$+ u_{3} - u_{11}$$

$$+ u_{3} - u_{11}$$

$$+ u_{2m-1} - u_{2m-2}$$

$$+ u_{2m} - u_{2m-1}$$

$$= u_{2m} - u_{0}$$

$$= 6(2m)^{2} - 16(2m) + 6 - \left[6(9)^{2} - 16(9) + 6\right]$$

$$= 24m^{2} - 32m - 342$$

Q6	
(a)	By observation, $d = 1$
	Hence, $y = x + 2 + \frac{n}{x - 1} = \frac{(x + 2)(x - 1) + n}{x - 1} = \frac{x^2 + x - 2 + n}{x - 1}$
	By comparison, $a = b = 1$
(b)	$y = \frac{x^2 + x + c}{x - 1}$
	$\frac{dy}{dx} = \frac{(2x+1)(x-1) - (x^2 + x + c)}{(x-1)^2} = \frac{x^2 - 2x - 1 - c}{(x-1)^2}$
	For stationary points to occur, $\frac{dy}{dx} = 0$
	$x^2 - 2x - 1 - c = 0$
	Hence, equation must yield 2 real roots, i.e $D > 0$
	$(-2)^2 - 4(1)(-c-1) > 0$
	4+4c+4>0
	c > -2

 $\int \sqrt{15 - x^2} \, \mathrm{d}x$ $= \int \sqrt{15 - x^2} \, \frac{\mathrm{d}x}{\mathrm{d}\theta} \, \mathrm{d}\theta$ $= \int \sqrt{15 - 15\sin^2\theta} \sqrt{15}\cos\theta \, d\theta$ $= \int \sqrt{15(1-\sin^2\theta)} \sqrt{15}\cos\theta \,d\theta$ $=15\int \cos^2\theta d\theta$ $=15\int \frac{\cos 2\theta + 1}{2} d\theta$ $=\frac{15}{2}\left(\frac{\sin 2\theta}{2} + \theta\right) + C$ $=\frac{15}{2}(\sin\theta\cos\theta+\theta)+C$ $= \frac{15}{2} \left[\frac{x}{\sqrt{15}} \cdot \frac{\sqrt{15 - x^2}}{\sqrt{15}} + \sin^{-1} \left(\frac{x}{\sqrt{15}} \right) \right] + C$

$$x = \sqrt{15}\sin\theta$$

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sqrt{15}\cos\theta$$

Method ①: **(b)**

$$x = 6\cos\theta, \quad y = 2\sqrt{2}\sin\theta \quad - \quad 0$$

$$x^2 + y^2 = 15 \qquad \qquad -$$

 $= \frac{1}{2}x\sqrt{15-x^2} + \frac{15}{2}\sin^{-1}\left(\frac{x}{\sqrt{15}}\right) + C$

$$(6\cos\theta)^{2} + (2\sqrt{2}\sin\theta)^{2} = 15$$

$$36\cos^{2}\theta + 8\sin^{2}\theta = 15$$

$$36(1-\sin^{2}\theta) + 8\sin^{2}\theta = 15$$

$$36-36\sin^{2}\theta + 8\sin^{2}\theta = 15$$

$$28\sin^{2}\theta = 21$$

$$\sin^{2}\theta = \frac{3}{4}$$

$$\sin\theta = \frac{\sqrt{3}}{2} \text{ or } -\frac{\sqrt{3}}{2} \text{ (rej. } \because \sin\theta > 0 \text{ for } P)$$

$$\theta = \frac{\pi}{3}$$
When $\theta = \frac{\pi}{3}$, $x = 6\cos\frac{\pi}{3} = 6\left(\frac{1}{2}\right) = 3$

$$y = 2\sqrt{2}\sin\frac{\pi}{3} = 2\sqrt{2}\left(\frac{\sqrt{3}}{2}\right) = \sqrt{6}$$

$$\therefore P(3, \sqrt{6})$$

Method 2:

$$x = 6\cos\theta$$
, $y = 2\sqrt{2}\sin\theta$

Using $\cos^2 \theta + \sin^2 \theta = 1$,

$$\left(\frac{x}{6}\right)^2 + \left(\frac{y}{2\sqrt{2}}\right)^2 = 1$$

$$\frac{x^2}{36} + \frac{y^2}{8} = 1 \quad - \quad \bigcirc$$

$$x^2 + y^2 = 15$$

Substitute 2 into 1:

$$\frac{x^2}{36} + \frac{15 - x^2}{8} = 1$$

$$8x^2 + 36(15 - x^2) = 288$$

$$28x^2 = 252$$

$$x^2 = 9$$

$$x = 3$$
 or -3 (rej. : $x > 0$ for P)

When
$$x = 3$$
, $y^2 = 15 - 9 = 6$

$$y = \sqrt{6}$$
 or $-\sqrt{6}$ (rej. : $y > 0$ for P)

$$\therefore P(3, \sqrt{6})$$

(c) Method ①:

Area of region
$$R = \underbrace{\int_0^3 y_2 dx}_{\text{curve } C_2} - \underbrace{\int_0^3 y_1 dx}_{\text{curve } C_1}$$

For C₂:

$$\int_{0}^{3} y_{2} dx = \int_{0}^{3} \sqrt{15 - x^{2}} dx$$

$$= \left[\frac{1}{2} x \sqrt{15 - x^{2}} + \frac{15}{2} \sin^{-1} \left(\frac{x}{\sqrt{15}} \right) \right]_{0}^{3}$$

$$= \frac{3}{2} \sqrt{6} + \frac{15}{2} \sin^{-1} \left(\frac{3}{\sqrt{15}} \right)$$

$$= \frac{3}{2} \sqrt{6} + \frac{15}{2} \sin^{-1} \left(\frac{\sqrt{15}}{5} \right)$$

For C₁:

$$\int_{0}^{3} y_{1} dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 2\sqrt{2} \sin \theta \frac{dx}{d\theta} d\theta$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 2\sqrt{2} \sin \theta (-6 \sin \theta) d\theta$$

$$= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 2 \sin^{2} \theta d\theta$$

$$= -6\sqrt{2} \left[\frac{\pi}{3} - \frac{\sin 2\theta}{2} \right]_{\frac{\pi}{2}}^{\frac{\pi}{3}}$$

$$= -6\sqrt{2} \left[\left(\frac{\pi}{3} - \frac{\sin \left(\frac{2\pi}{3} \right)}{2} \right) - \left(\frac{\pi}{2} - \frac{\sin \left(\pi \right)}{2} \right) \right]$$

$$= -6\sqrt{2} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4} - \frac{\pi}{2} \right)$$

$$= -6\sqrt{2} \left(-\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right)$$

$$= \sqrt{2}\pi + \frac{3\sqrt{6}}{2}$$
Area of region $R = \frac{3}{2}\sqrt{6} + \frac{15}{2}\sin^{-1}\left(\frac{\sqrt{15}}{5} \right) - \sqrt{2}\pi - \frac{3}{2}\sqrt{6}$

$$= \frac{15}{2}\sin^{-1}\left(\frac{\sqrt{15}}{5} \right) - \sqrt{2}\pi$$

where
$$m = \frac{15}{2}$$
 and $n = \frac{1}{5}$

Method 2: [Not possible]

Area of region
$$R = \underbrace{\int_0^3 y_2 dx}_{\text{curve } C_2} - \underbrace{\int_0^3 y_1 dx}_{\text{curve } C_1}$$

For C₂:

$$\int_0^3 y_2 \, dx = \int_0^3 \sqrt{15 - x^2} \, dx$$

$$= \left[\frac{1}{2} x \sqrt{15 - x^2} + \frac{15}{2} \sin^{-1} \left(\frac{x}{\sqrt{15}} \right) \right]_0^3$$

$$= \frac{3}{2} \sqrt{6} + \frac{15}{2} \sin^{-1} \left(\frac{3}{\sqrt{15}} \right)$$

$$= \frac{3}{2} \sqrt{6} + \frac{15}{2} \sin^{-1} \left(\frac{\sqrt{15}}{5} \right)$$

For C₁:

$$\frac{y^2}{8} = 1 - \frac{x^2}{36}$$

$$y^2 = 8 - \frac{2}{9}x^2$$

$$y = \sqrt{8 - \frac{2}{9}x^2} \text{ (rej - ve :: } y > 0\text{)}$$

$$\int_0^3 y_1 \, dx = \int_0^3 \sqrt{8 - \frac{2}{9}x^2} \, dx$$

$$= \frac{\sqrt{2}}{3} \int_0^3 \sqrt{36 - x^2} \, dx$$

(a) Length of
$$BC = 2r \cos \theta$$

Length of $CD = 2r \sin \theta$

$$P = 2[AB + BC + CD]$$

$$= 2[4r + 2r\cos\theta + 2r\sin\theta]$$

$$= 4r(2 + \cos\theta + \sin\theta) \text{ (shown)}$$

(b)
$$\frac{\mathrm{d}P}{\mathrm{d}\theta} = 4r\left(-\sin\theta + \cos\theta\right)$$

At maximum P, $4r(-\sin\theta + \cos\theta) = 0$

$$\sin \theta = \cos \theta$$

$$\tan \theta = 1$$

$$\theta = \frac{\pi}{4}$$

Method ①:

θ	$\left(\frac{\pi}{4}\right)^{-}$	$\frac{\pi}{4}$	$\left(\frac{\pi}{4}\right)^{+}$
$\frac{\mathrm{d}P}{\mathrm{d}\theta}$	>0	0	< 0
	/		/

Hence, P is maximum when $\theta = \frac{\pi}{4}$.

Method 2:

$$\frac{\mathrm{d}^2 P}{\mathrm{d}\theta^2} = 4r \left(-\cos\theta - \sin\theta\right)$$

When
$$\theta = \frac{\pi}{4}$$
,

$$\frac{\mathrm{d}^2 P}{\mathrm{d}\theta^2} = 4r \left(-\cos\frac{\pi}{4} - \sin\frac{\pi}{4} \right) < 0$$

Hence, P is maximum when $\theta = \frac{\pi}{4}$.

Maximum Distance =
$$4r\left(2 + \cos\frac{\pi}{4} + \sin\frac{\pi}{4}\right)$$

= $4r\left(2 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right)$
= $4r\left(2 + \sqrt{2}\right)$ metres

(c)	3 minutes = 180 seconds
	$4r(2+\sqrt{2})$
	Time to complete one loop = $\frac{4r(2+\sqrt{2})}{6}$
	0
	To find maximum value of r ,
	$\frac{4r\left(2+\sqrt{2}\right)}{6}=180$
	$r = \frac{180 \times 6}{4\left(2 + \sqrt{2}\right)}$
	$4(2+\sqrt{2})$
	$270 2 - \sqrt{2}$
	$=\frac{270}{\left(2+\sqrt{2}\right)}\times\frac{2-\sqrt{2}}{2-\sqrt{2}}$
	$=135\left(2-\sqrt{2}\right)$
	$=270-135\sqrt{2}$
(d)	Area of $\triangle BCD = \frac{1}{2} (2r)(2r\cos\theta\sin\theta)$
	$=2r^2\cos\theta\sin\theta$
	Area of $ABCDEF = (4r)(2r) + 2(2r^2\cos\theta\sin\theta)$
	$=8r^2+4r^2\cos\theta\sin\theta$
	$=8r^2+4r^2\cos\theta\sin\theta$
	π
	When $\theta = \frac{\pi}{4}$ and $r = 270 - 135\sqrt{2}$,
	Cost of planting grass for ABCDEF
	$=0.15 \times \left[8 \left(270 - 135\sqrt{2} \right)^2 + 4 \left(270 - 135\sqrt{2} \right)^2 \cos \frac{\pi}{4} \sin \frac{\pi}{4} \right]$
	= \$9380.75 < \$10000
	Hence, management can afford to cover the entire shape ABCDEF with grass.

Q10			
(a)			
,	nth d	day Number of daily views at the end of <i>n</i> th day	
	1	1196	
	2	3(1196)	
	3	3 ² (1196)	
	G.P. with firs	rst term = 1196 and common ratio = 3	
	Number of daily views at the end of the third day		
	$=3^2(1196)$		
	=10764		
a >	T . 1	o t and the t	
(b)	Total number of views at the end of the 7 th day		
	$=\frac{1196(3^7-1)}{3}$		
	3-1		
	=1307228		
	< 5000 000		
	The video will	ill not go viral.	
(c)	$\frac{n}{-1} [2(576) + ($	(n-1)(780) $> 100 000$	
	$\left[\frac{n}{2}\left[2(576)+(n-1)(780)\right]>100\ 000\right]$		
	$576n + 390n^2 - 390n > 100\ 000$		
	$390n^2 + 186n - 100\ 000 > 0$		
	Using G.C.,		
	n < -16.253	or $n > 15.776$	
	OR		

n	$390n^2 + 186n - 100\ 000$	
15	-9460	< 0
16	2816	> 0
17	15872	> 0

Least n = 16

(d) Total number of comments at the end of Day 16

$$= \frac{16}{2} [2(576) + (16-1)(780)]$$
OR = 100 000 + 2816 (from G.C. table)
= 102816

n	Start of Day	End of Day
1	$102\ 816-w$	$1.03(102\ 816-w)$
		$=1.03(102\ 816)-1.03w$
2	1.03(102 816)-1.03w-w	$1.03[1.03(102\ 816)-1.03w-w]$
		$= (1.03)^2 (102 816) - (1.03)^2 w - 1.03w$
3	$(1.03)^2 (102816) - (1.03)^2 w - 1.03w - w$	$(1.03)^3 (102816) - (1.03)^3 w - (1.03)^2 w - 1.03w$

Number of comments by the end of Day *n*

where M = 102816

$$= (1.03)^{n} (102 816) - (1.03)^{n} w - (1.03)^{n-1} w - \dots -1.03w$$

$$= (1.03)^{n} (102 816) - \left[(1.03)^{n} w + (1.03)^{n-1} w + \dots +1.03w \right]$$

$$= (1.03)^{n} (102 816) - \frac{1.03w \left[(1.03)^{n} - 1 \right]}{1.03 - 1}$$

$$= (1.03)^{n} (102 816) - \frac{103w}{3} \left[(1.03)^{n} - 1 \right] \text{ (shown)}$$

(e)
$$(1.03)^{31} (102 \ 816) - \frac{103w}{3} [(1.03)^{31} - 1] \le 0$$

$$\frac{103w}{3} [(1.03)^{31} - 1] \ge (1.03)^{31} (102 \ 816)$$

$$w \ge 4990.961031$$

$$w \ge 4991$$