DEPARTAMENTO DE ELETRÓNICA, TELECOMUNICAÕES E INFORMÁTICA

Simulação e Otimização

Relatório Final do Mini-Projeto de Simulação

André Oliveira, 107637 Alexandre Cotorobai, 107849

Mestrado em Engenharia Informática

Professor: Prof. Nuno Lau 12 de maio de 2025

Índice

1	Intr	odução	,											
2	Exe	rcício 1		2										
	2.1	Introdu	ução	2										
	2.2	Metod	ologia de Implementação	3										
		2.2.1	Inicialização e Definição de Parâmetros	3										
		2.2.2	Modelação dos Recursos e Entidades	3										
		2.2.3	Implementação do Processo bus	4										
		2.2.4	Geração dos Processos e Monitorização	4										
		2.2.5	Cálculo das Estatísticas e Execução da Simulação	5										
		2.2.6	Fluxogramas e Considerações sobre a Implementação	5										
	2.3	Resulta	ados	8										
		2.3.1	Métricas Obtidas com a Configuração Base (média com 1000 seeds diferentes) .	8										
		2.3.2	Análise Gráfica	8										
		2.3.3	Determinação da Capacidade Máxima do Sistema	10										
		2.3.4	Síntese	10										
3	Exe	rcício 2		11										
	3.1	Introdu	ıção	11										
	3.2	mentos Teóricos da Aproximação Numérica	12											
		3.2.1	Método de Euler	12										
		3.2.2	Método de Runge-Kutta de Quarta Ordem (RK4)	12										
		3.2.3	Como as Aproximações se Aproximam da Solução Exata	13										
	3.3	Metod	ologia de Implementação	13										
		3.3.1	initialize()	13										
		3.3.2	update()	14										
		3.3.3	observe()	14										
	3.4	Resulta	ados	15										
		3.4.1	Comparação com $\Delta t = 0.1$	15										
		3 1 2	Comparação com $\Delta t = 0.01$	15										

4	Conclusão																						1 7
	3.4.3	Síntese Comparativa	•	 	٠		•	•	•	 		•	•	•		•		 •		•	•	٠	16

Introdução

O presente relatório foi desenvolvido no âmbito da unidade curricular de Simulação e Otimização, integrada no Mestrado em Engenharia Informática da Universidade de Aveiro. Este trabalho visa aplicar técnicas de simulação a problemas com características distintas, explorando a sua modelação computacional e análise de resultados.

Ao longo do projeto, foram utilizados métodos numéricos e estatísticos para representar e estudar o comportamento de sistemas dinâmicos e estocásticos. As abordagens adotadas permitiram não só compreender o impacto de diferentes parâmetros no desempenho dos sistemas simulados, como também avaliar a eficácia dos métodos implementados.

A realização deste trabalho permitiu reforçar competências na construção de simuladores, na análise de dados obtidos e na avaliação de desempenho de sistemas complexos. Os resultados obtidos são discutidos e interpretados de forma a fundamentar as decisões tomadas ao longo do desenvolvimento.

Exercício 1

2.1 Introdução

A manutenção eficiente de frotas de transporte urbano é um fator crítico para assegurar a fiabilidade e a sustentabilidade operacional dos serviços públicos. Neste contexto, a simulação de sistemas de manutenção oferece uma abordagem poderosa para analisar e otimizar o desempenho de instalações complexas, onde múltiplos recursos e eventos aleatórios influenciam diretamente na capacidade de resposta e na qualidade do serviço.

Este projeto tem como objetivo a modelação e simulação de uma instalação de manutenção de autocarros urbanos, utilizando conceitos de Simulação de Eventos Discretos (*Discrete Event Simulation – DES*). A instalação em estudo é composta por uma estação de inspeção única e duas estações paralelas de reparação. Os autocarros chegam à instalação com tempos entre chegadas (*interarrival times*) exponencialmente distribuídos com média de 2 horas, sendo todos sujeitos a uma inspeção com duração uniformemente distribuída entre 15 minutos e 1,05 horas. Historicamente, 30% dos autocarros requerem reparações, as quais são realizadas numa das duas estações paralelas, também alimentadas por uma única fila (*FIFO*), com duração uniformemente distribuída entre 2,1 e 4,5 horas.

A simulação foi desenvolvida com recurso à linguagem Python e à biblioteca SimPy, que oferece uma estrutura orientada a processos para a simulação de eventos discretos. Nesta abordagem, os autocarros são representados como processos individuais que evoluem ao longo do tempo, interagindo com recursos limitados como a estação de inspeção e as estações de reparação. A simulação decorre durante um total de 160 horas simuladas, e recolhe métricas de desempenho do sistema, nomeadamente:

- Atraso médio em cada fila;
- Comprimento médio de cada fila;
- Utilização da estação de inspeção;
- Utilização das estações de reparação.

A estrutura da simulação foi organizada da seguinte forma:

- As chegadas de autocarros são geradas segundo um processo estocástico com distribuição exponencial, utilizando um gerador de chegadas contínuo;
- A estação de inspeção é modelada como um recurso com capacidade unitária;
- As estações de reparação são representadas como um recurso com capacidade dois, partilhado entre todos os autocarros que requerem reparação;

- São utilizados temporizadores internos para modelar os tempos de serviço (inspeção e reparação), com distribuições uniformes conforme os parâmetros fornecidos;
- Estatísticas como tempos de espera e utilização de recursos são calculadas com base no histórico de eventos e acumuladores dedicados.

Além da simulação base, será realizada uma experiência adicional com o objetivo de determinar a taxa de chegada de autocarros máxima (mínimo tempo médio entre chegadas) que o sistema consegue suportar de forma eficiente, sem gerar atrasos excessivos ou sobrecarga nos recursos. Esta análise permitirá estimar a capacidade máxima da instalação e identificar eventuais pontos críticos operacionais.

Esta introdução estabelece assim o enquadramento teórico e técnico para a realização do exercício 1, servindo de base para a descrição da implementação, análise dos resultados e eventuais melhorias ao modelo.

2.2 Metodologia de Implementação

Para a implementação do simulador de manutenção de autocarros foi utilizada a linguagem Python, recorrendo à biblioteca SimPy, que permite a modelação orientada a processos em simulações de eventos discretos. Esta abordagem possibilita a definição modular dos componentes do sistema, nomeadamente a estação de inspeção, as estações paralelas de reparação e o mecanismo de monitorização.

2.2.1 Inicialização e Definição de Parâmetros

Para assegurar a reprodutibilidade dos resultados e estabelecer o ambiente simulado, definiram-se diversos parâmetros constantes que determinam os tempos de operação e as probabilidades de transição dos processos. Segue um excerto ilustrativo da sua definição:

```
RANDOM_SEED = 42

SIMULATION_TIME: float = 160

MEAN_INTERARRIVAL: float = 2.0

INSPECTION_CAPACITY: int = 1

INSPECTION_TIME_MIN: float = 0.25

INSPECTION_TIME_MAX: float = 1.05

REPAIR_CAPACITY: int = 2

REPAIR_TIME_MIN: float = 2.1

REPAIR_TIME_MAX: float = 4.5

REPAIR_PROB: float = 0.3
```

Estes valores estabelecem o tempo total da simulação (160 horas), os intervalos de tempo entre chegadas de autocarros (média exponencial de 2 horas), bem como os tempos de serviço para inspeção e reparação (distribuições uniformes). A probabilidade de um autocarro necessitar de reparação foi fixada em 30%. Além disso, a capacidade da estação de inspeção é de 1 autocarro, enquanto a capacidade da estação de reparo é de 2 autocarros simultaneamente.

2.2.2 Modelação dos Recursos e Entidades

No modelo, a estação de inspeção é implementada como um recurso com capacidade unitária, enquanto as estações de reparação são simuladas como um recurso com duas unidades, partilhadas entre os autocarros que requerem reparação. A criação destes recursos é efetuada conforme o excerto abaixo:

```
inspection_station: InspectionStation = InspectionStation(env) # Capacidade 1
repair_station: RepairStation = RepairStation(env) # Capacidade 2
```

Cada recurso possui um acumulador que regista o tempo em que se encontra ocupado, permitindo posteriormente o cálculo da sua utilização.

2.2.3 Implementação do Processo bus

Cada autocarro é modelado como um processo que passa por duas fases principais: inspeção e, se necessário, reparação. O processo implementa os seguintes passos:

Fase de Inspeção O autocarro solicita acesso à estação de inspeção, sendo registado o tempo de espera até ao início do serviço. Após a obtenção do recurso, procede-se à inspeção:

```
arrival_time: float = env.now

with inspection_station.resource.request() as req:
    yield req
    wait_time = env.now - arrival_time
    inspection_wait_times.append(wait_time)
    yield env.process(inspection_station.inspect(bus_id))
```

Fase de Reparação Com probabilidade definida em 30%, o autocarro é encaminhado para a estação de reparação. O tempo de espera para este serviço é igualmente registado:

```
if random.random() < REPAIR_PROB:
    with repair_station.resource.request() as req:
        yield req
        repair_wait = env.now - repair_arrival_time
        repair_wait_times.append(repair_wait)
        yield env.process(repair_station.repair(bus_id))</pre>
```

2.2.4 Geração dos Processos e Monitorização

A chegada de autocarros é simulada através de um processo estocástico, que gera intervalos entre chegadas segundo uma distribuição exponencial:

```
bus_count: int = 0
while True:
    bus_count += 1
    env.process(bus(env, f"Bus {bus_count}", inspection_station, repair_station))
    interarrival_time: float = random.expovariate(1.0 / MEAN_INTERARRIVAL)
    yield env.timeout(interarrival_time)
```

Simultaneamente, o sistema regista, a intervalos regulares, o comprimento das filas de espera para cada recurso, permitindo a monitorização dinâmica do estado do sistema:

```
inspection_queue_lengths.append(len(inspection_station.resource.queue))
repair_queue_lengths.append(len(repair_station.resource.queue))
yield env.timeout(sample_interval)
```

2.2.5 Cálculo das Estatísticas e Execução da Simulação

Ao final da execução, são calculadas diversas métricas de desempenho, que permitem avaliar a eficácia do sistema simulado. Entre as estatísticas computadas destacam-se os tempos médios de espera nas filas, os comprimentos médios das mesmas e a utilização dos recursos:

```
avg_inspection_wait: float = (
    statistics.mean(inspection_wait_times) if inspection_wait_times else 0.0
)
avg_repair_wait: float = (
    statistics.mean(repair_wait_times) if repair_wait_times else 0.0
)
avg_inspection_queue: float = (
    statistics.mean(inspection_queue_lengths) if inspection_queue_lengths else 0.0
)
avg_repair_queue: float = (
    statistics.mean(repair_queue_lengths) if repair_queue_lengths else 0.0
utilization_inspection: float = (
    inspection_station.busy_time / (INSPECTION_CAPACITY * SIMULATION_TIME) * 100
)
utilization_repair: float = (
    repair_station.busy_time / (REPAIR_CAPACITY * SIMULATION_TIME) * 100
)
```

Finalmente, a função principal orquestra o fluxo global da simulação, iniciando os processos de geração e monitorização dos autocarros:

```
env.process(bus_generator(env, inspection_station, repair_station))
env.process(monitor_queues(env, inspection_station, repair_station))
env.run(until=SIMULATION_TIME)
```

Todos os tempos são posteriormente convertidos para um formato compreensível (horas, minutos e segundos) através da função convert_hours_to_hms().

Esta arquitetura modular e claramente delineada permite não só a análise detalhada dos indicadores de desempenho do sistema (tais como atrasos e utilização dos recursos) como também a realização de experiências adicionais. Por exemplo, foi possível avaliar a capacidade máxima da instalação, determinando o menor intervalo médio entre chegadas de autocarros que o sistema consegue suportar sem que sejam gerados atrasos excessivos.

2.2.6 Fluxogramas e Considerações sobre a Implementação

A Figura 2.1 apresenta os fluxogramas que representam os principais eventos da simulação: chegada dos autocarros, fim da inspeção e fim da reparação. Estes diagramas serviram como ferramenta essencial para a conceção inicial da lógica do sistema, descrevendo o fluxo sequencial e as condições decisivas que regem o comportamento dos autocarros na instalação.

Figura 2.1: Fluxogramas dos eventos principais da simulação.

No entanto, é importante salientar que, apesar da utilidade dos fluxogramas para visualizar o processo, a implementação prática diferiu significativamente da abordagem clássica de Simulação de Eventos Discretos. Isto deve-se ao facto de termos utilizado a biblioteca SimPy, que segue um paradigma orientado a processos. Assim, não foi necessário implementar manualmente um grafo de eventos nem criar eventos futuros explicitamente.

Com SimPy, cada autocarro é encapsulado num processo autónomo, onde a lógica sequencial (por exemplo, inspeção seguida ou não de reparação) é definida diretamente no código através de instruções yield. Isso significa que operações como "um evento disparar outro evento futuro" (exemplificado nos fluxogramas quando o fim da inspeção leva ao início da reparação) são geridas de forma automática pela *framework*. A coordenação entre processos e recursos (como filas e estações) é igualmente assegurada internamente, eliminando a necessidade de uma lista global de eventos ou de mecanismos explícitos para agendar eventos futuros.

Assim, enquanto os fluxogramas ilustram claramente o fluxo concetual, a implementação aproveitou a abstração do SimPy para simplificar substancialmente o desenvolvimento, focando-se apenas na definição do comportamento sequencial dos processos, deixando a complexidade da gestão de eventos a cargo da *framework*.

Adicionalmente, após a conclusão desta implementação orientada a processos com SimPy, foi desenvolvida uma segunda implementação alternativa, desta vez não orientada a processos. Nesta nova versão, aplicou-se a abordagem clássica de Simulação de Eventos Discretos, com a construção explícita de um grafo de eventos, como mostrado na Figura 2.2, e o controlo manual da lista de eventos futuros. Esta implementação permitiu uma comparação direta entre os dois paradigmas e reforçou a compreensão sobre as diferenças práticas na gestão e coordenação dos eventos da simulação.

Figura 2.2: Grafo de Eventos.

O grafo de eventos é composto pelos seguintes nós (eventos):

- Chegada: Representa a chegada de um autocarro à instalação;
- Fim da Inspeção: Representa o término da inspeção de um autocarro;
- Fim da Reparação: Representa o término do reparo de um autocarro.

Para clarificar a lógica do agendamento de eventos, o grafo utiliza diferentes tipos de setas, cada uma com um significado específico:

• Seta Grossa (Heavy Arrow)

Representa eventos que são agendados para ocorrer **após um tempo não-nulo** (ou seja, com um atraso programado). Exemplos diretamente observados no código incluem:

- Agendamento da **próxima chegada** de autocarro;
- Agendamento do **fim da inspeção** (entre 0,25 e 1,05 horas);
- Agendamento do **fim do reparo** (entre 2,1 e 4,5 horas);
- Agendamento da próxima inspeção da fila (quando há autocarros a aguardar e a estação fica livre);
- Agendamento do próximo reparo da fila (quando há autocarros a aguardar e a estação fica livre).

• Seta Fina (Thin Arrow)

Representa eventos agendados para ocorrer **imediatamente**, ou seja, com atraso nulo, embora no código atual não existam exemplos concretos deste tipo de evento.

• Seta Serrilhada (Jagged Arrow)

Representa eventos **agendados no início da simulação**. No código, este tipo de seta corresponde ao agendamento inicial do evento Chegada, que inicia todo o fluxo da simulação.

O comportamento dinâmico da simulação segue esta sequência:

1. Início da simulação:

• É agendada a primeira Chegada de um autocarro.

2. Quando um autocarro chega (Chegada):

- Agenda-se outro evento Chegada para manter o fluxo contínuo de chegadas.
- O autocarro inicia a inspeção imediatamente se a estação estiver livre ou entra na fila caso contrário.
- Se a inspeção começar, é agendado o evento Fim da Inspeção.

3. Quando a inspeção termina (Fim da Inspeção):

- Se houver fila de inspeção, agenda-se o próximo evento Fim da Inspeção para o autocarro da fila.
- Com 30% de probabilidade, o autocarro segue para reparo:
 - Se a estação de reparo estiver livre, inicia-se o reparo e agenda-se o evento Fim de Reparação.
 - Caso contrário, o autocarro entra na fila de reparo.

4. Quando o reparo termina (Fim de Reparação):

 Se houver fila de reparo, agenda-se o próximo evento Fim da Reparação para o autocarro da fila.

Este esquema de setas e eventos permite compreender não apenas a lógica sequencial da simulação, mas também os diferentes tempos de espera associados a cada transição, reforçando a clareza do funcionamento interno do modelo.

2.3 Resultados

Após executar a simulação durante 160 horas, recolheram-se várias métricas que permitem avaliar o desempenho deste sistema. Os dados foram extraídos a partir dos acumuladores estatísticos referidos na Secção 2.2 e analisados com recurso ao *Jupyter Notebook*, permitindo a geração de gráficos que exploram o comportamento do sistema face a diferentes taxas de chegada.

2.3.1 Métricas Obtidas com a Configuração Base (média com 1000 seeds diferentes)

- Tempo médio de espera na inspeção: ≈ 10 minutos e 39 segundos;
- Tempo médio de espera na reparação: ≈ 5 minutos e 54 segundos;
- Comprimento médio da fila de inspeção: ≈ 0.089 autocarros;
- Comprimento médio da fila de reparação: ≈ 0.015 autocarros;
- Utilização da estação de inspeção: ≈ 32.566%;
- Utilização das estações de reparação: $\approx 24.338\%$.

Estes resultados indicam que o sistema opera de forma eficiente na configuração base, apresentando tempos de espera reduzidos e uma utilização moderada dos recursos.

2.3.2 Análise Gráfica

Para avaliar o comportamento do sistema sob diferentes cargas, realizou-se uma experiência paramétrica variando o tempo médio entre chegadas (alterando assim a taxa de chegada de autocarros). Foram obtidos os seguintes gráficos:

- 1. **Tempos médios de espera (Figura 2.3):** Demonstra que, para taxas superiores a 1.5 autocarros/hora, os tempos de espera começam a aumentar significativamente na fila de inspeção, atingindo valores superiores a 4 horas nos casos extremos, enquanto a fila de reparação mantém-se relativamente estável, indicando que o ponto crítico situa-se na fase de inspeção.
- 2. **Comprimentos médios das filas (Figura 2.4):** Verifica-se que a fila de inspeção cresce de forma exponencial com a taxa de chegada, enquanto a fila de reparação permanece quase constante, mais uma vez, indicando que o ponto crítico situa-se na fase de inspeção.
- 3. **Utilização dos recursos (Figura 2.5):** Observa-se que a estação de inspeção atinge a utilização de 100% a partir de 2.5 autocarros/hora, enquanto as estações de reparação estabilizam entre 70% e 80%.

Figura 2.3: Tempos médios de espera em função da taxa de chegada de autocarros.

Figura 2.4: Comprimentos médios das filas em função da taxa de chegada de autocarros.

Figura 2.5: Utilização dos recursos em função da taxa de chegada de autocarros.

2.3.3 Determinação da Capacidade Máxima do Sistema

A análise paramétrica permitiu identificar os seguintes pontos críticos:

- A estação de inspeção atinge 100% de utilização para uma taxa de chegada próxima dos 2.5 autocarros/hora;
- O tempo médio de espera na inspeção ultrapassa 2 horas para taxas acima deste valor, comprometendo a eficiência operacional;
- A fase de reparação mantém uma utilização inferior a 80%, sem apresentar problemas de congestionamento.

Conclui-se, portanto, que a capacidade máxima sustentável do sistema situa-se entre **2.0 e 2.5 autocarros por hora**. Acima deste intervalo, o sistema entra em regime de sobrecarga, com aumento significativo dos tempos de espera e do comprimento das filas, especialmente na inspeção.

2.3.4 Síntese

A análise dos resultados, suportada tanto por dados estatísticos como por representações gráficas, evidencia que o sistema de manutenção de autocarros apresenta um desempenho robusto na configuração base. Contudo, a investigação paramétrica revela um ponto crítico na estação de inspeção, o qual poderá orientar futuras melhorias na infraestrutura, nomeadamente mediante a duplicação da estação de inspeção ou a implementação de estratégias de balanceamento de carga.

Exercício 2

3.1 Introdução

O estudo do movimento de projéteis sujeitos à resistência do ar é uma aplicação clássica da modelação e simulação de sistemas dinâmicos contínuos. Este tipo de simulação é fundamental em diversas áreas da engenharia e da física, onde a evolução do sistema depende de variáveis que mudam continuamente no tempo segundo leis expressas por equações diferenciais. Quando essas equações não podem ser resolvidas analiticamente, devido à complexidade ou à não linearidade dos termos, recorre-se a métodos numéricos de integração como alternativa viável e eficaz.

No contexto deste projeto, pretende-se simular a trajetória bidimensional de um projétil lançado no ar, considerando os efeitos da gravidade e da resistência do ar. A evolução do sistema é descrita por duas equações diferenciais de segunda ordem que governam a posição do projétil nos eixos x(t) e z(t) (horizontal e vertical, respetivamente), tendo em conta a aceleração devido à força de arrasto (resistência do ar), que é proporcional ao quadrado da velocidade e atua na direção oposta ao movimento.

As equações diferenciais que regem o sistema são:

$$m \cdot \frac{d^2 x(t)}{dt^2} = -u \cdot \left(\frac{dx(t)}{dt}\right)^2 \cdot \operatorname{sign}\left(\frac{dx(t)}{dt}\right)$$
$$m \cdot \frac{d^2 z(t)}{dt^2} = -m \cdot g - u \cdot \left(\frac{dz(t)}{dt}\right)^2 \cdot \operatorname{sign}\left(\frac{dz(t)}{dt}\right)$$

Onde:

- *m* é a massa do projétil;
- g é a aceleração da gravidade;
- *u* é o coeficiente de resistência do ar;
- sign(v) representa o sinal da velocidade (positivo ou negativo).

A abordagem adotada consiste na resolução numérica destas equações utilizando dois métodos distintos:

- 1. **Método de Euler (Forward Euler)**, um método explícito simples e intuitivo, que permite obter aproximações sucessivas das variáveis de estado em passos discretos de tempo Δt ;
- 2. **Método de Runge-Kutta de quarta ordem (RK4)**, que proporciona uma maior precisão na aproximação das soluções, com um custo computacional ligeiramente superior, mas com vantagens significativas em termos de estabilidade e erro numérico.

Foi desenvolvido um único programa de simulação que implementa ambos os métodos de integração numérica, Euler e Runge-Kutta de quarta ordem (RK4), permitindo traçar a trajetória do projétil ao longo do tempo, bem como a evolução das suas velocidades horizontais e verticais. O utilizador pode selecionar qual dos métodos pretende utilizar ou optar por executar ambos, de forma a permitir uma comparação direta dos resultados obtidos. Todos os parâmetros iniciais, incluindo posição inicial, velocidades iniciais, massa, resistência do ar, tempo final e passo temporal, são configuráveis, podendo ser definidos através da linha de comandos.

Por fim, será realizada uma análise comparativa entre os dois métodos de integração, com o intuito de avaliar a **precisão numérica** de cada abordagem, identificar diferenças nos resultados obtidos e discutir as vantagens e limitações de cada técnica de simulação no contexto do problema proposto.

3.2 Fundamentos Teóricos da Aproximação Numérica

Na simulação da trajetória do projétil, o objetivo é resolver equações diferenciais que descrevem a evolução contínua do sistema ao longo do tempo. Na maioria dos casos, não existe uma solução analítica exata para essas equações, especialmente quando o sistema envolve componentes não lineares (como a resistência do ar proporcional ao quadrado da velocidade). Assim, recorremos a **métodos numéricos** para obter aproximações sucessivas do estado do sistema.

3.2.1 Método de Euler

O método de Euler é uma técnica simples para aproximar soluções de equações diferenciais. Baseia-se na expansão em série de Taylor, considerando apenas o primeiro termo:

$$x(t + \Delta t) \approx x(t) + \Delta t \cdot f(x(t), t)$$

Este método aproxima a derivada da função pelo seu valor atual e atualiza o estado com um pequeno incremento temporal Δt . Contudo, esta simplicidade faz com que o método seja **condicionalmente estável** e apresente **erros de truncamento significativos** quando Δt não é suficientemente pequeno. O erro global deste método é da ordem de $O(\Delta t)$.

3.2.2 Método de Runge-Kutta de Quarta Ordem (RK4)

O método RK4 é, também, uma técnica para aproximar soluções de equações diferenciais, que melhora a estimativa ao considerar várias avaliações intermédias da função derivada. O RK4 calcula a inclinação em quatro pontos distintos dentro do intervalo Δt :

$$K_{1} = \Delta t \cdot f(x(t), t)$$

$$K_{2} = \Delta t \cdot f\left(x(t) + \frac{K_{1}}{2}, t + \frac{\Delta t}{2}\right)$$

$$K_{3} = \Delta t \cdot f\left(x(t) + \frac{K_{2}}{2}, t + \frac{\Delta t}{2}\right)$$

$$K_{4} = \Delta t \cdot f\left(x(t) + K_{3}, t + \Delta t\right)$$

A atualização final é dada por:

$$x(t + \Delta t) = x(t) + \frac{K_1 + 2K_2 + 2K_3 + K_4}{6}$$

Este método apresenta **ordem de precisão quatro**, ou seja, o erro local por passo é da ordem de $O(\Delta t^5)$ e o erro global é $O(\Delta t^4)$, tornando-o substancialmente mais robusto e preciso do que o método de Euler.

3.2.3 Como as Aproximações se Aproximam da Solução Exata

Ambos os métodos transformam o problema contínuo de integração numa sequência de atualizações discretas. Teoricamente, a solução exata seria:

$$x(t) = x(0) + \int_0^t f(x(s), s) ds$$

Os métodos numéricos substituem esta integral contínua por somas finitas, aproximando a área sob a curva derivada por retângulos (Euler) ou por aproximações mais sofisticadas (RK4).

À medida que $\Delta t \to 0$, estas aproximações convergem para a solução exata. Contudo, há sempre um compromisso entre **precisão** e **custo computacional**, onde passos mais pequenos reduzem o erro, mas aumentam o tempo de execução..

3.3 Metodologia de Implementação

A implementação da simulação da trajetória de um projétil foi realizada em *Python*, recorrendo a métodos de integração numérica para resolver as equações diferenciais não lineares que descrevem o sistema. Tanto o método de Euler como o método de Runge-Kutta de quarta ordem (RK4) foram implementados no mesmo programa, permitindo a sua comparação num mesmo ambiente de execução.

Toda a arquitetura do programa segue o ciclo clássico de simulação de modelos contínuos abordado na unidade curricular: **initialize()**, **update()** e **observe()**.

3.3.1 initialize()

O programa permite a definição dos parâmetros iniciais da simulação através de argumentos na linha de comandos. Estes incluem a posição inicial (x_0, z_0) , as velocidades iniciais (v_{x0}, v_{z0}) , a massa m, o coeficiente de resistência do ar u, a aceleração da gravidade g, o passo temporal Δt e o tempo final t_{final} . Um excerto do código que ilustra esta funcionalidade é o seguinte:

```
parser = argparse.ArgumentParser()
parser.add_argument('--x0', type=float, default=0.0)
parser.add_argument('--z0', type=float, default=0.0)
parser.add_argument('--vx0', type=float, default=10.0)
parser.add_argument('--vz0', type=float, default=10.0)
parser.add_argument('--m', type=float, default=1.0)
parser.add_argument('--u', type=float, default=0.1)
parser.add_argument('--g', type=float, default=9.8)
parser.add_argument('--dt', type=float, default=0.01)
parser.add_argument('--tfinal', type=float, default=2.0)
```

Durante esta fase, são também inicializadas todas as variáveis do sistema e estruturas de armazenamento para recolha de dados, tal como as listas que guardam posições e velocidades ao longo do tempo.

3.3.2 update()

Método de Euler

O método de Euler foi implementado de forma iterativa, calculando a nova posição e velocidade a cada passo Δt , conforme se segue:

```
def update_euler(self) -> None:
    ax: float = -(self.drag / self.mass) * self.vx * abs(self.vx)
    az: float = -self.gravity - (self.drag / self.mass) * self.vz * abs(self.vz)
    self.x += self.dt * self.vx
    self.vx += self.dt * ax
    self.z += self.dt * self.vz
    self.vz += self.dt * az
```

Esta rotina corresponde à fase de update() do ciclo de simulação, onde as variáveis de estado são atualizadas com base nas equações diferenciais do sistema.

Método de Runge-Kutta de Quarta Ordem

Para maior precisão, foi também implementado o método RK4, utilizando a fórmula clássica com os coeficientes K_1 a K_4 . A evolução da velocidade e posição é calculada com base em médias ponderadas das derivadas em pontos intermédios:

```
def update_rk4(self) -> None:
    state: np.ndarray = np.array([self.x, self.z, self.vx, self.vz])

def f(state: np.ndarray) -> np.ndarray:
    x, z, vx, vz = state
    ax: float = -(self.drag / self.mass) * vx * abs(vx)
    az: float = -self.gravity - (self.drag / self.mass) * vz * abs(vz)
    return np.array([vx, vz, ax, az])

dt: float = self.dt
    k1: np.ndarray = f(state)
    k2: np.ndarray = f(state + 0.5 * dt * k1)
    k3: np.ndarray = f(state + 0.5 * dt * k2)
    k4: np.ndarray = f(state + dt * k3)
    state_next: np.ndarray = state + (dt / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
    self.x, self.z, self.vx, self.vz = state_next
```

Tal como no método de Euler, esta fase também representa a componente update() da simulação, com a diferença de incorporar várias estimativas intermédias que melhoram a precisão da atualização.

3.3.3 observe()

Os resultados de cada simulação, posições e velocidades ao longo do tempo, foram armazenados em estruturas de dados (listas) que representam a fase de observe(). Estes dados foram posteriormente exportados para análise em *Jupyter Notebook*, permitindo gerar gráficos comparativos entre os métodos.

Esta separação de responsabilidades, initialize(), update() e observe(), permite não só uma estruturação clara do código como também facilita a sua reutilização, extensão e validação.

3.4 Resultados

Após a implementação dos dois métodos de integração numérica, foram realizados testes com diferentes passos temporais Δt , com o objetivo de comparar a precisão e estabilidade de cada abordagem. Os dados recolhidos permitiram traçar a evolução da posição e da velocidade do projétil ao longo do tempo, analisando a divergência dos resultados entre os métodos conforme a granularidade temporal.

3.4.1 Comparação com $\Delta t = 0.1$

A Figura 3.1 apresenta a trajetória do projétil obtida pelos dois métodos com um passo temporal de $\Delta t = 0.1$. Observa-se uma discrepância significativa entre os resultados de Euler e RK4, sendo evidente que o método de Euler apresenta erros acumulados consideráveis, especialmente na componente vertical da trajetória. Estes erros resultam numa estimativa prematura do impacto no solo, comprometendo a precisão da simulação.

Figura 3.1: Comparação das trajetórias para $\Delta t = 0.1$ entre os métodos de Euler e RK4.

3.4.2 Comparação com $\Delta t = 0.01$

Com um passo temporal mais reduzido, $\Delta t = 0.01$, ambos os métodos convergem para trajetórias muito semelhantes, como ilustrado na Figura 3.2. O método de Euler torna-se mais estável e a sua aproximação melhora consideravelmente, embora ainda se verifiquem pequenas diferenças na posição final do projétil. O método de RK4, por outro lado, mantém a sua elevada precisão mesmo com passos maiores, sendo visivelmente mais robusto a variações no passo temporal.

Figura 3.2: Comparação das trajetórias para $\Delta t = 0.01$ entre os métodos de Euler e RK4.

3.4.3 Síntese Comparativa

A análise dos gráficos permite concluir que:

- O método de Euler apresenta erros acumulados mais visíveis com passos de tempo maiores, podendo conduzir a trajetórias irrealistas;
- O método de RK4 é substancialmente mais preciso e estável, mesmo com passos maiores, sendo preferível quando a precisão é prioritária;
- Para passos pequenos ($\Delta t \leq 0.01$), ambos os métodos produzem resultados coerentes, embora RK4 continue a demonstrar superioridade na fidelidade dos valores finais.

Estes resultados demonstram claramente a vantagem do método de Runge-Kutta de quarta ordem na simulação de sistemas contínuos, sobretudo quando o custo computacional adicional é aceitável em troca de maior precisão.

Conclusão

A realização deste mini-projeto permitiu consolidar conhecimentos fundamentais no domínio da Simulação e Otimização, através da aplicação prática de duas abordagens distintas: a simulação de eventos discretos e a simulação de sistemas dinâmicos contínuos.

No Exercício 1, foi modelada uma instalação de manutenção de autocarros utilizando a biblioteca SimPy. Esta abordagem orientada a processos revelou-se eficaz para representar o comportamento de um sistema estocástico com múltiplos recursos e filas. A simulação permitiu obter métricas relevantes como os tempos médios de espera, a utilização dos recursos e o comprimento médio das filas. A análise paramétrica demonstrou que o ponto crítico do sistema reside na estação de inspeção, a qual atinge rapidamente os 100% de utilização quando a taxa de chegada de autocarros se aproxima dos 2.5 autocarros/hora. Esta limitação poderá ser mitigada com a duplicação da estação ou a introdução de estratégias de balanceamento de carga.

No Exercício 2, foi desenvolvido um simulador da trajetória de um projétil sujeito à resistência do ar, com a implementação dos métodos numéricos de Euler e Runge-Kutta de quarta ordem. A estrutura modular adotada, baseada no ciclo initialize() – update() – observe(), facilitou a experimentação e comparação entre métodos. Os resultados evidenciaram que o método de Euler apresenta erros significativos com passos de tempo maiores, enquanto o método RK4 mostrou-se consistentemente mais preciso e robusto, mesmo com passos maiores.

Ambos os exercícios demonstraram a importância da simulação como ferramenta de análise e apoio à decisão em sistemas complexos, quer no contexto de eventos discretos com múltiplas entidades e recursos, quer na modelação de sistemas físicos contínuos regidos por equações diferenciais.

Por fim, destaca-se que foi também elaborado um ficheiro README.md, o qual contém instruções detalhadas sobre a execução dos programas desenvolvidos, os requisitos necessários, bem como exemplos de utilização e explicações sobre a estrutura do código. Este ficheiro serve de guia útil para qualquer utilizador que pretenda replicar os resultados ou adaptar os simuladores a novos cenários.