Formulação

Uma formulação de Programação Linear que modela um sistema de distribuição hipotético composto por usinas hidroelétricas e termoelétricas, que será operado pelos próximos meses. O modelo propõe como que cada usina, em cada mês, deverá operar a fim de suprir a demanda do sistema de modo a minimizar os custos de geração.

Os dados do modelo estão situados na pasta db, em que o arquivo:

afluencia.csv Contem a afluência de cada usina hidroelétrica em cada mês de operação

termos.csv Contem os parâmetros das usinas termoelétricas

hidro.csv Contem os parâmetros das usinas hidroelétricas

Modelo matemático

Usinas hidráulicas

As Hidroelétricas terão o objetivo de ser mais eficiente em questão a retenção de água. Possuem um reservatório A_{ih} com capacidade mínima \mathbf{R}_h^{\min} e máxima \mathbf{R}_h^{\max} especificados e existirá uma afluência \mathbf{C}_{ih} determinística. A defluência, será dividida em duas variáveis de decisão, serão, *Volume Vertido* e *Volume Turbinado*, o restante ficará *Armazenado* para utilização nos próximos meses. Vertimento será penalizado juntamente com o turbinamento em função do nível atual do reservatório.

Conservação hidráulica

O nível do reservatório depende do nível armazenado do mês anterior, portanto, para $i \in \mathbf{I}, \forall i > 1$

$$V_{ih} + T_{ih} + A_{ih} = A_{i-1,h} + C_{ih}$$
 (Conservação hidraulica)

Quando i = 1, isto é, no primeiro mês, defini-se o nível inicial dos reservatórios.

$$V_{ih} + T_{ih} + A_{ih} = R_h^{\text{inicial}} + C_{ih}$$
 (Condição inicial)

E quando i = |I|, isto é, no ultimo mês, defini-se o nível mínimo dos reservatórios.

$$A_{ih} \ge R_h^{\text{final}}$$
 (Condição final)

Geração

A Geração da hidrelétrica é ponderada pela Conversão hidráulica μ_h

$$G_{ih} = \mu_h V_{turb}$$

Custo

Por simplificação, o custo do uso da água pode se resumir a zero. Para termos o melhor controle dos níveis dos reservatórios de modo geral, utiliza-se uma penalização no custo, definida como uma proporção linear entre o reservatário no nível minimo e no reservatório cheio.

$$\ell_{ih} := \frac{A_{ih} - R_h^{max}}{R_h^{min} - R_h^{max}}$$
 (Penalização do Reservatório)

Exemplificando, quando o reservatório estiver no nível máximo,

$$A_{ih} = R_{ih}^{\max} \implies \ell_{ih} = 0$$

Analogamente quando o reservatório estiver no nível minimo,

$$A_{ih} = R_{ih}^{\min} \implies \ell_{ih} = 1$$

Usinas Térmicas

As usinas térmicas são aquelas que utilizam-se da conversão de uma fonte de calor (geralmente combustíveis fósseis) para a geração de energia elétrica. No modelo são parametrizadas pelas suas capacidades operacionais $G_t^{min} \leq G_{it} \leq G_t^{max}$ e o custo do combustível γ_t

Custo

Baseia-se na quantidade de combustível usado para gerar tal demanda, modelado pela contante do Custo da geração térmica γ_t

$$C_{it} = \gamma_t G_{it}$$

Conjuntos

- I Conjunto dos meses
- H Conjunto das usinas hidroelétricas
- T Conjunto das usinas termoelétricas

Parametros

${f M}$	$\mathbf{M}\in\mathbb{R}$	Big-M
$R_h^{\rm inicial}$	$h \in \mathbf{H}$	Volume do reservatório da usina h no primeiro mês (m ³)
R_h^{final}	$h \in \mathbf{H}$	Volume do reservatório da usina h no ultimo mês (m ³)
C_{ih}	$i \in \mathbf{I}, h \in \mathbf{H}$	Afluência no reservatório da usina h no mês i (m ³)
μ_h	$h \in \mathbf{H}$	Fator de conversão hidráulica (MWh \cdot m ⁻³)
γ_t	$t \in \mathbf{T}$	Custo da geração térmica $(\$ \cdot MWh^{-1})$
D_i	$i \in \mathbf{I}$	Demanda de energia do mês i (MWh)

Variáveis

$$V_{ih}$$
 $i \in \mathbf{I}, h \in \mathbf{H}$ Volume vertido da usina h no mês i (m³)

 T_{ih} $i \in \mathbf{I}, h \in \mathbf{H}$ Volume turbinado da usina h no mês i (m³)

 A_{ih} $i \in \mathbf{I}, h \in \mathbf{H}$ Volume restante no reservatório da usina h no mês i (m³)

 D_i^* $i \in \mathbf{I}$ Deficit de energia do mês i (MWh)

 G_{it} $i \in \mathbf{I}, t \in \mathbf{T}$ Geração térmica da usina t no mês i (MWh)

$$\begin{aligned} & \min & & \sum_{i \in \mathbf{I}} \mathbf{M} D_i^* + \sum_{i \in \mathbf{I}} (\mathbf{M} V_{ih} + \ell_{ih}) + \sum_{i \in \mathbf{I}} \gamma_t G_{it} \\ & \text{s.a.} & & V_{ih} + T_{ih} + A_{ih} = R_h^{\text{inicial}} + C_{ih} & i \in \mathbf{I} \cap \{1\}, h \in \mathbf{H} \\ & & V_{ih} + T_{ih} + A_{ih} = A_{i-1,h} + C_{ih} & i \in \mathbf{I} \setminus \{1\}, h \in \mathbf{H} \\ & & A_{ih} \geq R_h^{\text{final}} & i = |\mathbf{I}|, h \in \mathbf{H} \\ & & \mu_h T_{ih} + G_{it} + D_i^* = D_i & i \in \mathbf{I}, h \in \mathbf{H}, t \in \mathbf{T} \\ & & V_{ih} \geq 0 & i \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{H} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I}, h \in \mathbf{I} \\ & & & I_{ih} \in \mathbf{I} \\ & & & I_$$