$$TSS = ESS + RSS$$

$$\sum_{i=n}^{n} (y_i - y_i)^2 = \sum_{i=n}^{n} (y_i - y_i)^2 + \sum_{i=n}^{n$$

$$\frac{\partial}{\partial \beta} \left(\underline{Y} - \underline{X} \hat{\beta} \right)^{\mathsf{T}} \left(\underline{Y} - \underline{X} \hat{\beta} \right) = 0$$

$$\mathsf{LS}(\beta)$$

LS(
$$\hat{\beta}$$
) = $Y^TY - Y^TX\beta - \beta^TX^TY + \beta^TX^TX\beta$
= $Y^TX\beta$ (scalar)

$$= \frac{1}{2} \frac{$$

$$\frac{\partial}{\partial \beta} (LS\beta) = -2X^{T}Y + 2X^{T}X\beta = 0$$

$$\frac{\partial}{\partial \beta} d^{T}\beta = d \qquad \text{lecours}(X^{T}X)^{T} = X^{T}X$$

=>
$$x^{T}y = (x^{T}x)^{2}$$

=> $(x^{T}x)^{T}x^{T}y = \hat{B}$
 $e = (e_{1})$
• $E(e) = E[Y - \hat{Y}] = E[Y] - E[\hat{Y}]$
= $XB - XB = 0$
• $Cou(e) = (ov(Y - \hat{Y}) = (ov(Y - HY))$
 $HY = (ov((I - H) - Y))$
= $(I - H) \cdot (ov(Y) \cdot (I - H)^{T} + ($

$$=3^{2}(I-H-H+H)=3^{2}(I-H)$$