Project Development Phase Model Performance Test

Date	18 November 2023	
Project Name	TrafficTelligence: Advanced Traffic Volume Estimation With Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: Random Forest Regressor MAE - 507.9025692355565, RMSE - 801.6894273058929 R2 score: On Test - 0.8356571592510573 On Train - 0.9770921235220543	In [33] import talearn.emrics in metric representations are represented as a second content of the content of t
2.	Tune the Model	Hyperparameter Tuning: Result of Hyperparameter tuning - {'max_depth': 23, 'n_estimators': 24} After Hyperparameter Tuning: R square score: On Train - 0.964255906132786 On Test - 0.8284691833318581 Root mean squared error: 819.0338269811183 Mean absolute error: 516.6675220665472 After PCA: R square score: On Train - 0.9718652757585765	NBF = RandomForestRegressor(max_depth= 23, n_estimators= 24, random_state= 1231) NBF.fit(x_train, y_train) RandomForestRegressor(max_depth=23, n_estimators=24, random_state= 1231) RandomForestRegressor(max_depth=23, n_estimators=24, random_state=1231) Print("B square score on train set and test set are:", NBF.score(x_train, y_train), NBF.score(x_test, y_test)) print("Boot mean squared error: ", np.sqr(mean_squared_error(y_test, NBF.predict(x_test)))) print("Mean absolute error: ", np.sqr(mean_squared_error(y_test, NBF.predict(x_test)))) R square score on train set and test set are: 0.964255965132786 0.8284691833318581 Rean absolute error: \$16.6673228665472 RandomForestRegressor() RandomForestRegressor() Print("Ron set assisted error ", np.sqr(mean_squared_error(y_test, NBF.Ac.score(PCA_trest, y_test)), NBF.Ac.score(PCA_trest, y_test)) print("Ron set Salard error ", np.sqr(mean_squared_error(y_test, NBF.Ac.score(PCA_trest, y_test))) print("Ron set Salard error ", neen_solutt_error(y_test, NBF.Ac.score(PCA_trest, y_test))) Root mean squared error i; neen_solutt_error(y_test, NBF.Ac.score(PCA_trest, y_test)) Root mean squared error i : neen_solutt_error(y_test, NBF.Ac.score(PCA_trest, y_test)) Root mean squared error i : neen_solutt_error(y_test, NBF.Ac.score(PCA_trest))) Root mean squared error i : neen_solutt_error(y_test, NBF.Ac.score(PCA_trest))) Root mean squared error i : neen_solutt_error(y_test, NBF.Ac.score(PCA_trest)) Root mean squared error i : neen_solutt_error(y_test, NBF.Ac.score(test, N
		On Test - 0.8032429906444858 Root mean squared error: 877.1944347759498 Mean absolute error: 590.8631417902708 Validation Method - Train – Test split	