Linear Regression

Prof. Alessandro Lucantonio

Aarhus University - Department of Mechanical and Production Engineering

?/?/2023

Weight-Height example

Dataset: heights and weights of different people.

Task: build a model that predict the height given the weight.

Figure: Data plot

A solution - Linear regression model

Some remarks on data.

- Regression problem (continuous output).
- ▶ Data with different order of magnitude.

A possible solution to this problem is represented by **linear** regression (LR).

Figure: Trained model (in red)

General ingredients

Notation:

- x: a data sample.
- y: the data target corresponding to x
- N: number of data.

Model/hypothesis: $h_{\mathbf{w}}(x) = w_1 x + w_0$, where $\mathbf{w} = [w_0, w_1]$ is the vector of parameter that has to be learned. In our example, x is the weight of a single sample and $h_{\mathbf{w}}(x)$ corresponds to the prediction of its height.

Usually the vector \mathbf{w} is called **weights vector** and the set $\mathcal{H} := \{h_{\mathbf{w}} | \mathbf{w} \in \mathbb{R}^2\}$ is called **hypothesis space**.

How to learn w from data?

Mean squared error (MSE)

Given a training sample x_i and a model $h_{\mathbf{w}}$ we can predict the target computing $h_{\mathbf{w}}(x_i)$. To evaluate how good is the prediction we compute the error $(h_{\mathbf{w}}(x_i) - y_i)^2$.

 $(h_{\mathbf{w}}(x_i) - y_i)^2 \ge 0$ and $(h_{\mathbf{w}}(x_i) - y_i)^2 = 0$ if and only if $h_{\mathbf{w}}(x_i) = y_i$. The **mean squared error** (MSE) is:

$$E(\mathbf{w}) := \frac{1}{N} \sum_{i=1}^{N} (h_{\mathbf{w}}(x_i) - y_i)^2.$$

To find the best model we minimize the training error, hence in this case the MSE.

$$oldsymbol{w} \in rg \min_{ ilde{oldsymbol{w}} \in \mathbb{R}^2} E(ilde{oldsymbol{w}}).$$

n-dimensional LR

Dataset samples.

Previous case: $x \in \mathbb{R}$, $y \in \mathbb{R}$.

Now: $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}$.

Notation: x_j^i is the *j*-th coordinate of the *i*-th sample.

Hypothesis.

Previous case:

$$h_w(x) = w_1 x + w_0,$$

where $w = [w_0, w_1]$.

Now:

$$h_{\mathbf{w}}(\mathbf{x}) = w_n x_n + w_{n-1} x_{n-1} + \dots + w_1 x_1 + w_0$$

= $\sum_{i=0}^{n} w_i \tilde{x}_i = \mathbf{w}^T \tilde{\mathbf{x}},$

where
$$\mathbf{w} = [w_0, \dots, w_n]$$
 and $\tilde{\mathbf{x}} = [1, x_1, \dots, x_n]_{1, \dots, n}$

n-dimensional LR

MSE.

Previous case:

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (h_{\mathbf{w}}(x_i) - y_i)^2.$$

Now:

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (h_w(\mathbf{x}^i) - y^i)^2$$
$$= \frac{1}{N} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$= \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

where

$$\mathsf{X} := \left| \begin{array}{c} \ddot{\mathbf{x}}^1 \\ \vdots \\ \ddot{\mathbf{x}}^N \end{array} \right| \quad \mathbf{y} = \left| \begin{array}{c} y_1 \\ \vdots \\ y_N \end{array} \right|.$$

Spot the minimum - Gradient descent

How to find $\mathbf{w} \in \arg\min_{\tilde{\mathbf{w}} \in \mathbb{R}^2} E(\tilde{\mathbf{w}})$? Main idea:

- \triangleright Start with a random \mathbf{w}^0 .
- For $j \geq 0$, update $\mathbf{w}^{j+1} := \mathbf{w}^j + \mathbf{d}^j$, where \mathbf{d}^j is such that

$$E(\mathbf{w}^{j+1}) \leq E(\mathbf{w}^{j})$$

Gradient descent: $\mathbf{d}^{j} = -\alpha \nabla E(\mathbf{w}^{j})$. α is called **learning rate**.

Gradient descent and normal equation for LR

We have $E(\mathbf{w}) = \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$, hence

$$\nabla E(\boldsymbol{w}) = \frac{1}{N} \nabla (||X\boldsymbol{w} - \boldsymbol{y}||^2) = \frac{2}{N} X^T (X\boldsymbol{w} - \boldsymbol{y})$$

Normal equation (\iff holds if X^TX is invertible):

$$\nabla E(\mathbf{w}) = 0 \iff \frac{2}{N} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$
$$\iff \mathbf{X}^{T} \mathbf{X} \mathbf{w} = \mathbf{X}^{T} \mathbf{y}$$
$$\iff \mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Gradient descent main iteration for LR:

$$\mathbf{w}^{j+1} := \mathbf{w}^j - \frac{2\alpha}{N} \mathsf{X}^\mathsf{T} (\mathsf{X} \mathbf{w}^j - \mathbf{y})$$

Normal equation vs gradient descent

Normal equation:

- No hyperparameter (explicit solution).
- No need to iterate.
- \triangleright $\mathcal{O}(n^3)$, hence slow when n is large.

Gradient descent:

- ▶ Need to choose the learning rate α .
- Needs many iterations.
- \triangleright $\mathcal{O}(kn^2)$, hence fast when n is large.

Tips and Tricks - Standardization

General (not only for LR): features must be on a similar scale!

- Speed up the convergence of gradient descent.
- ▶ Try to have (on average) $-1 \le x^i \le 1$.

Common techniques:

► **Feature scaling**. Compute the max **M** and the min **m** data value. Then normalize each feature as follows

$$\mathbf{x}_{\text{norm}}^{i} = \frac{\mathbf{x}^{i} - \mathbf{m}}{\mathbf{M} - \mathbf{m}}$$

▶ Mean normalization. Compute mean μ and standard deviation σ of the data. Then normalize each feature as follows

$$x_{\mathsf{norm}}^i = \frac{x^i - \mu}{\sigma}$$

Tips and Tricks - Invertibility of X^TX

What happens when X^TX is not invertible? Invertibility of $X^TX = \text{column of } X$ linearly independent (preprocessing information)

If a column is linearly dependent to the other then a feature is correlated with others (redundant feature).

Solution: discard that feature. The information carried by that feature is contained in some of the others.

Polynomial regression (PR)

LR corresponds to linear hypothesis, i.e. of the form

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

PR corresponds to polynomial hypothesis, i.e. of the form

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{j=0}^{n} w_j x_j^j.$$

More in general: linear basis expansion (LBE)

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{j=0}^{n} w_j \phi_j(\mathbf{x}),$$

where $\phi_i : \mathbb{R}^n \to \mathbb{R}$.

