Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Курский государственный университет» Кафедра программного обеспечения и администрирования информационных систем

Направление подготовки: 02.03.03 Математическое обеспечение и администрирование информационных систем Профиль: Проектирование информационных систем и баз данных Форма обучения очная

Отчет по лабораторной работе №8.1

«Синтез микропрограммного автомата с жесткой логикой по граф-схеме алгоритма»

дисциплина «Прикладная теория цифровых автоматов»

вариант 9

Выполнил:

студент группы 213.1

Козявин М.С.

Проверил:

к.т.н., профессор кафедры ПОиАИС

Бабкин Е.А.

Цель работы: приобретение практических навыков по проектированию микропрограммных автоматов с жесткой логикой (МПА ЖЛ).

Задания:

- 1. Разметка состояний ГСА для автомата Мура;
- 2. Построение графа автомата Мура;
- 3. Разметка состояний ГСА для автомата Мили;
- 4. Построение графа автомата Мили;
- 5. Построение структурной таблицы автомата Мили;
- 6. Построение функциональной схемы микропрограммного автомата Мили.

Вариант: 9

Разметка состояний ГСА для автомата Мура

Построение графа автомата Мура

Разметка состояний ГСА для автомата Мили

Построение графа автомата Мили

Построение структурной таблицы автомата Мили для RS-триггеров

Состояние автомата	Код		
Состолние автомата	$T_1T_2T_3$		
a_1	000		
a_2	001		
a_3	010		
a_4	011		
a_5	100		
a_6	101		
a_7	110		
a_8	111		

Исходное	Условие	Состояние	Функции возбуждения						Управляющие
состояние	перехода	перехода	T_1		T_1 T_2		T_3		сигналы
			S_1	R_1	S_2	R_2	S_3	R_3	
$(a_1) 000$	1	$(a_2) \ 001$	0	1	0	1	1	0	y_0, y_2, y_{22}
$(a_2) \ 001$	1	$(a_3) 010$	0	1	1	0	0	1	y_1, y_3
$(a_3) 010$	1	$(a_4) \ 011$	0	1	1	0	1	0	y_6, y_8, y_{19}, y_{25}
$(a_4) \ 011$	1	$(a_5) 100$	1	0	0	1	0	1	y_{26}, y_3
$(a_5) 100$	<i>x</i> ₃	$(a_6) 101$	1	0	0	1	1	0	y_6, y_8, y_{17}, y_{24}
	\overline{x}_3	$(a_4) \ 011$	0	1	1	0	1	0	_
$(a_6) 101$	1	$(a_7) 110$	1	0	1	0	0	1	y_{28}, y_3, y_{27}
$(a_7) 110$	1	$(a_8) 111$	1	0	1	0	1	0	y ₂₃
$(a_8) 111$	x_4	$(a_1) 000$	0	1	0	1	0	1	y_6, y_8, y_{19}, y_{25}
	\overline{x}_4	$(a_3) 010$	0	1	1	0	0	1	_

Функции возбуждения:

$$T_1 = a_4 \vee a_5 x_3 \vee a_6 \vee a_7$$

$$T_2 = a_2 \vee a_3 \vee a_5 \overline{x}_3 \vee a_6 \vee a_7 \vee a_8 \overline{x}_4$$

$$T_3 = a_1 \lor a_3 \lor a_5 x_3 \lor a_5 \overline{x}_3 \lor a_7 = a_1 \lor a_3 \lor a_5 (x_3 \lor \overline{x}_3) \lor a_7$$
$$= a_1 \lor a_3 \lor a_5 \lor a_7$$

Функции выходных сигналов:

$$y_0, y_2, y_{22} = a_1$$

 $y_1 = a_2$
 $y_3 = a_2 \lor a_4 \lor a_6$
 $y_6, y_8 = a_3 \lor a_5 x_3 \lor a_8 x_4$
 $y_{19}, y_{25} = a_3 \lor a_8 x_4$
 $y_{26} = a_4$
 $y_{17}, y_{24} = a_5 x_3$
 $y_{28}, y_{27} = a_6$
 $y_{23} = a_7$

Построение функциональной схемы микропрограммного автомата Мили.

Функциональная схема

Тестирование функциональной схемы

Заключение

Выходная реакция функциональной схемы автомата Мили верна, следовательно, граф, схема и структурная таблица графа построены верно.