Taller Interpolación - Integración

Métodos Numéricos

Departamento de Computación Facultad de Ciencias Exactas y Naturales

8 de junio de 2016

Interpolación

- Polinomio Interpolador
 - Φ es un polinomio.

- Polinomio Interpolador
 - Φ es un polinomio.
 - ▶ **Unicidad:** Existe un único polinomio p de grado menor o igual que n tal que $p(x_i) = f(x)_i$ para todo i.

- Polinomio Interpolador
 - Φ es un polinomio.
 - ▶ <u>Unicidad</u>: Existe un único polinomio p de grado menor o igual que n tal que $p(x_i) = f(x)_i$ para todo i.
 - Interpolador de Lagrange:

$$p(x) = f(x_0)L_0(x) + \dots + f(x_n)L_n(x),$$
 con $L_k(x) = \prod_{i=0, i\neq k}^n \frac{(x-x_i)}{(x_k-x_i)}$

Dada $f: \mathbb{R} \to \mathbb{R}$ y n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$, con $x_i \neq x_j \ \forall \ i \neq j$, buscamos una función Φ tal que $\Phi(x_i) = f(x_i) \ \forall i$.

- Polinomio Interpolador
 - Φ es un polinomio.
 - ▶ <u>Unicidad</u>: Existe un único polinomio p de grado menor o igual que n tal que $p(x_i) = f(x)_i$ para todo i.
 - Interpolador de Lagrange:

$$p(x) = f(x_0)L_0(x) + \dots + f(x_n)L_n(x),$$
 con $L_k(x) = \prod_{i=0, i \neq k}^n \frac{(x-x_i)}{(x_k-x_i)}$

► Diferencias Divididas:

$$p(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

$$con \begin{cases} f[x_i] &= f(x_i) \\ f[x_i, \dots, x_{i+k}] &= \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i} \end{cases}$$

Dada $f: \mathbb{R} \to \mathbb{R}$ y n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$, con $x_i \neq x_j \ \forall \ i \neq j$, buscamos una función Φ tal que $\Phi(x_i) = f(x_i) \ \forall i$.

► Polinomio Interpolador

Dada $f: \mathbb{R} \to \mathbb{R}$ y n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$, con $x_i \neq x_j \ \forall \ i \neq j$, buscamos una función Φ tal que $\Phi(x_i) = f(x_i) \ \forall i$.

► Polinomio Interpolador

▶ Prop: Sea $f \in C^{n+1}[x_0, x_n]$, el error cometido al aproximar f(x) usando p(x) (con $gr(p) \le n$), con $x \in [x_0, x_n]$ es:

$$E(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i) \quad \text{con } \xi(x) \in (x_0, x_n)$$

Dada $f: \mathbb{R} \to \mathbb{R}$ y n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$, con $x_i \neq x_j \ \forall \ i \neq j$, buscamos una función Φ tal que $\Phi(x_i) = f(x_i) \ \forall i$.

Polinomio Interpolador

Prop: Sea $f \in C^{n+1}[x_0, x_n]$, el error cometido al aproximar f(x) usando p(x) (con $gr(p) \le n$), con $x \in [x_0, x_n]$ es:

$$E(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i) \quad \text{con } \xi(x) \in (x_0, x_n)$$

▶ Ej: Error del polinomio interpolador lineal para n = 1 y $x \in [x_0, x_1]$

$$E(x) = \frac{f''(\xi(x))}{2}(x - x_0)(x - x_1), \text{ con } \xi(x) \in (x_0, x_1)$$

- Interpolación Fragmentaria Lineal
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con una recta (polinomio lineal).

- Interpolación Fragmentaria Lineal
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con una recta (polinomio lineal).
 - ▶ Puede pensarse como *n* (sub)problemas de interpolación lineal.

- Interpolación Fragmentaria Lineal
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con una recta (polinomio lineal).
 - ▶ Puede pensarse como *n* (sub)problemas de interpolación lineal.
 - ▶ El error cometido al interpolar $x \in [x_i, x_{i+1}]$ es:

$$E_i(x) = \frac{f''(\xi(x))}{2}(x - x_i)(x - x_{i+1}), \text{ con } \xi(x) \in (x_i, x_{i+1})$$

- Interpolación Fragmentaria Lineal
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con una recta (polinomio lineal).
 - ▶ Puede pensarse como *n* (sub)problemas de interpolación lineal.
 - ▶ El error cometido al interpolar $x \in [x_i, x_{i+1}]$ es:

$$E_i(x) = \frac{f''(\xi(x))}{2}(x - x_i)(x - x_{i+1}), \text{ con } \xi(x) \in (x_i, x_{i+1})$$

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - $S_i(x_i) = f(x_i)$ y $S_i(x_{i+1}) = f(x_{i+1})$, $i = 0 \dots n-1$ (interpola).

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - $S_i(x_i) = f(x_i)$ y $S_i(x_{i+1}) = f(x_{i+1})$, i = 0 ... n-1 (interpola).
 - $\gt S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), \quad i = 0 \dots n-2$ (derivada primera contínua).

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - $S_i(x_i) = f(x_i)$ y $S_i(x_{i+1}) = f(x_{i+1}), i = 0...n-1$ (interpola).
 - $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), \quad i = 0 \dots n-2$ (derivada primera contínua).
 - $S_i'(x_{i+1}) = S_{i+1}''(x_{i+1}), \quad i = 0 \dots n-2$ (derivada segunda contínua).

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - $S_i(x_i) = f(x_i) \text{ y } S_i(x_{i+1}) = f(x_{i+1}), \quad i = 0 \dots n-1 \text{ (interpola)}.$
 - $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), \quad i = 0 \dots n-2$ (derivada primera contínua).
 - $S_i'(x_{i+1}) = S_{i+1}''(x_{i+1}), \quad i = 0 \dots n-2$ (derivada segunda contínua).
 - Si es natural, $S_0''(x_0) = S_{n-1}''(x_n) = 0$.

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - $S_i(x_i) = f(x_i)$ y $S_i(x_{i+1}) = f(x_{i+1})$, $i = 0 \dots n-1$ (interpola).
 - $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), \quad i = 0 \dots n-2 \text{ (derivada primera contínua)}.$
 - $igspace{} S_i'(x_{i+1}) = S_{i+1}''(x_{i+1}), \quad i = 0 \dots n-2 \ (derivada segunda contínua).$
 - Si es natural, $S_0''(x_0) = S_{n-1}''(x_n) = 0$.
 - Si es sujeto a f, $S'_0(x_0) = f'(x_0)$ y $S'_{n-1}(x_n) = f'(x_n)$.

- Trazador Cúbico: Splines
 - Φ es una función partida. Une cada par $\{(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))\}$ con un polinomio S_i tal que:
 - $gr(S_i) \leq 3$
 - ▶ $S_i(x_i) = f(x_i)$ y $S_i(x_{i+1}) = f(x_{i+1})$, i = 0 ... n 1 (interpola).
 - $S'_i(x_{i+1}) = S'_{i+1}(x_{i+1}), \quad i = 0 \dots n-2$ (derivada primera contínua).
 - $igspace{} S_i'(x_{i+1}) = S_{i+1}''(x_{i+1}), \quad i = 0 \dots n-2 \ (derivada segunda contínua).$
 - Si es natural, $S_0''(x_0) = S_{n-1}''(x_n) = 0$.
 - Si es sujeto a f, $S'_0(x_0) = f'(x_0)$ y $S'_{n-1}(x_n) = f'(x_n)$.
 - Φ resulta en una interpolación "suave" de f.

Dada $f: \mathbb{R} \to \mathbb{R}$ y n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$, con $x_i \neq x_j \ \forall \ i \neq j$, buscamos una función Φ tal que $\Phi(x_i) = f(x_i) \ \forall i$.

► Trazador Cúbico: Splines

Ejemplo: Splines vs. Lagrange

Ejemplo: Splines vs. Lagrange

Splines

Ejemplo: Splines vs. Lagrange

f(x)

- Ojo con las unidades!
 - ightharpoonup X(t[h])[km] pocisión (kilómetros) en cada instante (horas).
 - ▶ $X'(t[h])[\frac{km}{h}]$ velocidad $(\frac{km}{h})$ en cada instante (h).
 - $X''(t[h])[\frac{km}{h^2}]$ aceleración $(\frac{km}{h^2})$ en cada instante (h).
 - Al interpolar: $X(t[h])[km] = P_X(t[h])[km] + E_X(t[h])[km]$.
 - ▶ Al acotar el error: $|E_X(t[h])[km]| < C[km]$ (donce C es la cota).

- Ojo con las unidades!
 - ightharpoonup X(t[h])[km] pocisión (kilómetros) en cada instante (horas).
 - $X'(t[h])[\frac{km}{h}]$ velocidad $(\frac{km}{h})$ en cada instante (h).
 - ▶ $X''(t[h])[\frac{km}{h^2}]$ aceleración $(\frac{km}{h^2})$ en cada instante (h).
 - Al interpolar: $X(t[h])[km] = P_X(t[h])[km] + E_X(t[h])[km]$.
 - ▶ Al acotar el error: $|E_X(t[h])[km]| < C[km]$ (donce C es la cota).
 - ► Si se aseguran de trabajar todo en km y h, pueden ignorar las unidades y ser felices!!

Integración Numérica

Repaso - Métodos de Integración Numérica

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

Repaso - Métodos de Integración Numérica

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

- ► Fórmulas de Newton-Cotes
 - ► Elegimos n+1 puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$ en el intervalo [a, b], de tal manera que:
 - $x_0 = a$
 - \triangleright $x_n = b$
 - $> x_{i+1} x_i = h > 0$ para todo i (son equidistantes)
 - ► Calculamos el polinomio interpolador P de esos puntos (de grado $\leq n$).
 - $\int_a^b f(x)dx = \int_a^b P(x)dx + \int_a^b E(x)dx,$ donde E(x) es el error de la interpolación.
 - ► Calculamos $\int_a^b P(x)dx$ de forma exacta usando una fórmula cerrada (que dependerá del grado del polinomio).
 - $\int_a^b E(x)dx$ es el error cometido en la integración.

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

► Fórmulas de Newton-Cotes

- ► Fórmulas de Newton-Cotes
 - ▶ Regla de Trapecios: n = 1 (2 puntos), $\{(x_0, f(x_0)), (x_1, f(x_1))\}$

$$\int_{a}^{b} P(x)dx = \frac{h}{2}(f(x_0) + f(x_1))$$
$$\int_{a}^{b} E(x)dx = -\frac{h^3}{12}f''(\xi), \quad \text{con } \xi \in (x_0, x_1)$$

- ► Fórmulas de Newton-Cotes
 - ▶ Regla de Trapecios: n = 1 (2 puntos), $\{(x_0, f(x_0)), (x_1, f(x_1))\}$

$$\int_{a}^{b} P(x)dx = \frac{h}{2}(f(x_{0}) + f(x_{1}))$$

$$\int_{a}^{b} E(x)dx = -\frac{h^{3}}{12}f''(\xi), \quad \text{con } \xi \in (x_{0}, x_{1})$$

$$y = f(x)$$

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

► Fórmulas de Newton-Cotes

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

► Fórmulas de Newton-Cotes

Dada $f: \mathbb{R} \to \mathbb{R}$, buscamos aproximar la integral propia $\int_a^b f(x) dx$.

Fórmulas de Newton-Cotes

- ► Fórmulas de Newton-Cotes
 - ▶ **Regla de Simpson:** n = 2 (3 puntos), $\{(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))\}$ $\{(x_1 = \frac{x_0 + x_2}{2}), (x_1 = \frac{x_0 + x_2}{2})\}$

$$\int_a^b P(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2))$$

$$\int_{a}^{b} E(x)dx = -\frac{h^{5}}{90}f^{(iv)}(\xi), \quad \text{con } \xi \in (x_{0}, x_{2})$$

- ► Fórmulas de Newton-Cotes
 - ▶ **Regla de Simpson:** n = 2 (3 puntos), $\{(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))\}$ $\{x_1 = \frac{x_0 + x_2}{2}\}$.

$$\int_{3}^{b} P(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2))$$

$$\int_{3}^{b} E(x)dx = -\frac{h^{5}}{90}f^{(iv)}(\xi), \quad \text{con } \xi \in (x_{0}, x_{2})$$

- ► Reglas Compuestas
 - ▶ Regla de Trapecios Compuesta: n+1 puntos, $\{(x_0, f(x_0)), \ldots, (x_n, f(x_n))\}$ equidistantes $(x_{i+1} x_i = h > 0)$. $x_0 = a$. $x_n = b$.

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left(f(x_0) + 2 \left(\sum_{j=1}^{n-1} f(x_j) \right) + f(x_n) \right) \underbrace{-\frac{h^2}{12} (x_n - x_0) f''(\xi)}_{error}$$

con
$$\xi \in (x_0, x_n)$$

- Reglas Compuestas
 - ▶ Regla de Trapecios Compuesta: n+1 puntos, $\{(x_0, f(x_0)), \ldots, (x_n, f(x_n))\}$ equidistantes $(x_{i+1} x_i = h > 0)$. $x_0 = a, x_n = b$.

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left(f(x_0) + 2 \left(\sum_{j=1}^{n-1} f(x_j) \right) + f(x_n) \right) \underbrace{-\frac{h^2}{12} (x_n - x_0) f''(\xi)}_{error}$$

$$con \ \xi \in (x_0, x_n)$$

- ► Reglas Compuestas
 - ▶ Regla de Simpson Compuesta: n + 1 puntos, n par, $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}$ equidistantes $(x_{i+1} x_i = h > 0)$. $x_0 = a$. $x_n = b$.

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(\sum_{j=1}^{n/2} \left(f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right) \right) \underbrace{-\frac{h^{4}}{180} (x_{n} - x_{0}) f^{(iv)}(\xi)}_{}$$

con
$$\xi \in (x_0, x_n)$$

- Reglas Compuestas
 - ▶ Regla de Simpson Compuesta: n+1 puntos, n par, $\{(x_0, f(x_0)), \ldots, (x_n, f(x_n))\}$ equidistantes $(x_{i+1} x_i = h > 0)$. $x_0 = a, x_n = b$.

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(\sum_{j=1}^{n/2} \left(f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right) \right) \underbrace{-\frac{h^{4}}{180} (x_{n} - x_{0}) f^{(iv)}(\xi)}_{error}$$

con
$$\xi \in (x_0, x_n)$$

Figura: Algoritmo Polar Non Return to Zero

Figura : Introducción de ruido en el cable

Figura : Interpretación de bits y errores

$$BER = \frac{\text{cantidad de bits interpretados de forma errónea}}{\text{cantidad de bits recibidos}}$$

$$BER = rac{ ext{cantidad de bits interpretados de forma errónea}}{ ext{cantidad de bits recibidos}}$$

Figura : Ejemplo de transmisión de 18 bits

$$BER = rac{ ext{cantidad de bits interpretados de forma errónea}}{ ext{cantidad de bits recibidos}} = rac{3}{18} pprox 0,17$$

Figura : Ejemplo de transmisión de 18 bits

¿PREGUNTAS?

Bibliografía

- Numerical Analysis. Burden, Faires. Brooks/Cole, Cengage Learning, 2005.
- ► Communication Networks. Fundamental Concepts and Key Architectures.. Leon-Garcia, Widjaja. The McGraw Companies, 2001.