

1/17

Figure 1 : Alignment of the BASB024 polynucleotide sequences.
Identity to SeqID No:1 is indicated by a dot, and a dash (“-“) indicates a missing nucleotide.

*	20	*	40	*
Seqid1 :	ATGAGATCTTCTTCGGTTGAAGCCGATTGTTTATCTTATGGGTGT	:	50	
Seqid3 :	:	50	
Seqid5 :C.....	:	50	

60	*	80	*	100
Seqid1 :	TATGCTATATCATCATAGTTATGCCGAAGATGCAGGGCGCGCGGGCAGCG	:	100	
Seqid3 :	:	100	
Seqid5 :	..C.....T.....	:	100	

*	120	*	140	*
Seqid1 :	AGGCGCAGATAACAGGTTTGAAAGATGTGCACGTCAAGCGAAGCGCGTA	:	150	
Seqid3 :	:	150	
Seqid5 :	:	150	

160	*	180	*	200
Seqid1 :	CCGAAAGACAAAAAGTGTACCGATGCCGTGCCGTATCGACCCGTCA	:	200	
Seqid3 :	:	200	
Seqid5 :	:	200	

*	220	*	240	*
Seqid1 :	GGATATATTCAAATCCAGCGAAAACCTCGACAACATCGTACGCAGCATCC	:	250	
Seqid3 :	:	250	
Seqid5 :	:	250	

260	*	280	*	300
Seqid1 :	CCGGTGCCTTACACAGCAAGATAAAAGCTCGGGCATTGTGTCTTGAAT	:	300	
Seqid3 :	:	300	
Seqid5 :	:	300	

09/762926

WO 00/11182

PCT/EP99/05989

2/17

* 320 * 340 *

Seqid1 : ATTCGGCGACAGCGGTTCGGGCGGGCAATACGATGGTGGACGGCAT : 350
Seqid3 : : 350
Seqid5 : : 350

* 360 * 380 * 400

Seqid1 : CACGCAGACCTTTATTGACTTCTACCGATGCAGGGCAGGGCAGGCCGGT : 400
Seqid3 : : 400
Seqid5 : : 400

* 420 * 440 *

Seqid1 : CATCTCAATTGGTGACATCTGTCGACAGCAATTATTGCCGGACTGGAT : 450
Seqid3 : : 450
Seqid5 : : 450

* 460 * 480 * 500

Seqid1 : GTCGTCAAAGGCAGCTTCAGCGGCTCGGCAGGCATCAACAGCCTTGCCGG : 500
Seqid3 : : 500
Seqid5 : : 500

* 520 * 540 *

Seqid1 : TTGGCGAATCTGGACTTTAGGCCTGGATGACGTCGTTAGGGCAATA : 550
Seqid3 : : 550
Seqid5 : : 550

* 560 * 580 * 600

Seqid1 : ATACCTACGGCCTGCTGCTAAAGGTCTGACCGGCACCAATTCAACCAAA : 600
Seqid3 : : 600
Seqid5 : : 600

* 620 * 640 *

Seqid1 : GGTAATGCGATGGCGGCGATAGGTGCGCGCAAATGGCTGGAAAGCGGAGC : 650

09/762926

WO 00/11182

PCT/EP99/05989

3/17

Seqid3 : : 650
Seqid5 : : 650

660 * 680 * 700
Seqid1 : ATCTGTCGGTGTGCTTACGGCACAGCAGGCGCACGTGGCGAAAATT : 700
Seqid3 : GCGT : 700
Seqid5 : GCGT : 700

* 720 * 740 *
Seqid1 : ACCCGGTGGCGGCCGGCAGCACATCGAAATTGGCGCGGAATAT : 750
Seqid3 : : 750
Seqid5 : : 750

760 * 780 * 800
Seqid1 : CTGGAACGGCGAACAGCGATATTTGTACAAGAAGGC GGTTGAAATT : 800
Seqid3 : G : 800
Seqid5 : T G G .. T .. CT : 800

* 820 * 840 *
Seqid1 : CAATTCCAACAGCGGAAAATGGGAGCGGGATTC CAAAGGCCGTACTGGA : 850
Seqid3 : : 850
Seqid5 : G A AAC.G.... : 850

860 * 880 * 900
Seqid1 : AAACCAAGTGGTATCAAAATACAATGACCCCCAAGAACTGC AAAAATAC : 900
Seqid3 : : 900
Seqid5 : ..TA....CC....A....T....CA.....A..... : 897

* 920 * 940 *
Seqid1 : ATCGAAGGTATGACAAAAGCTGGCGGGAAAACCTGGCGCCGCAATACGA : 950
Seqid3 : : 950
Seqid5 : : 947

4/17

960 * 980 * 1000

Seqid1 : CATCACCCCCATCGATCCGTCCAGCCTGAAGCAGCAGTCGGCAGGCAATC : 1000
 Seqid3 : : 1000
 Seqid5 : : 997

* 1020 * 1040 *

Seqid1 : TGTTTAAATTGGAATACGACGGCGTATTCAATAAATACACGGCGCAATT : 1050
 Seqid3 : : 1050
 Seqid5 : : 1047

1060 * 1080 * 1100

Seqid1 : CGCGATTTAACACCAAAATCGGCAGCCGCAAAATCATCAACCGCAATTA : 1100
 Seqid3 : : 1100
 Seqid5 : : 1097

* 1120 * 1140 *

Seqid1 : TCAATTCAATTACGGTTTATCTTAAACTCATATGCCAACCTCAATCTGA : 1150
 Seqid3 : : 1150
 Seqid5 : ...G.....G....G...C.G...A..... : 1147

1160 * 1180 * 1200

Seqid1 : CCGCAGCCTACAATTGGGCAGGCAGAAATATCCGAAAGGGTCGAAGTTT : 1200
 Seqid3 : : 1200
 Seqid5 : : 1197

* 1220 * 1240 *

Seqid1 : ACAGGGCTGGGGCTTTAAAAGATTTGAAACCTACAACAAACGCGAAAAT : 1250
 Seqid3 : : 1250
 Seqid5 :G..... : 1247

1260 * 1280 * 1300

Seqid1 : CCTCGACCTAACAAACACCGCCACCTCCGGCTGCCCGCGAAACCGAGT : 1300
 Seqid3 : : 1300
 Seqid5 : : 1297

WO 00/11182

PCT/EP99/05989

5/17

* 1320 * 1340 *

Seqid1 : TGCAAACCACCTTGGGCTTCATTATTCACAAACGAATACGGCAAAAC : 1350

Seqid3 : : 1350

Seqid5 : : 1347

1360 * 1380 * 1400

Seqid1 : CGCTTCCTGAAGAATTGGGCTGTTTCGACGGTCCGGATCAGGACAA : 1400

Seqid3 : : 1400

Seqid5 :T..... : 1397

* 1420 * 1440 *

Seqid1 : CGGGCTTATTCTATTGGGGCGGTTAACGGCGATAAAGGGCTGCTGC : 1450

Seqid3 : : 1450

Seqid5 : : 1447

1460 * 1480 * 1500

Seqid1 : CCCAAAATCAACCATCGTCCAACCGGCCGGCAGCCAATATTCAACACG : 1500

Seqid3 : : 1500

Seqid5 :T..... : 1497

* 1520 * 1540 *

Seqid1 : TTCTACTTCGATGCCGCGCTAAAAAGACATTACCGCTAACTACAG : 1550

Seqid3 : : 1550

Seqid5 : : 1547

1560 * 1580 * 1600

Seqid1 : CACCAATACCGTCGGCTACCGTTCGGCGCGAATATACGGCTATTACG : 1600

Seqid3 : : 1600

Seqid5 : : 1597

* 1620 * 1640 *

Seqid1 : GCTCGGATGACGAATTAAAGCGGGCATTGGAGAAAACCTGCCGACATAC : 1650

09/762926

WO 00/11182

PCT/EP99/05989

6/17

Seqid3 : : 1650
Seqid5 : : 1647

1660 * 1680 * 1700
Seqid1 : AAGAACATTGCAACCAGAGCTGCGGAATTATGAACCGTATTGAAAAA : 1700
Seqid3 : : 1700
Seqid5 : G.....G..... : 1697

* 1720 * 1740 *
Seqid1 : ATACGGCAAAAGCGGCCAACACCATTGGTCAGCATTAGTGCGGACT : 1750
Seqid3 : : 1750
Seqid5 : : 1747

1760 * 1780 * 1800
Seqid1 : TCGCGATTATTCATGCCGTTGCCAGCTATTGCGCACACACCGTATG : 1800
Seqid3 : : 1800
Seqid5 : : 1797

* 1820 * 1840 *
Seqid1 : CCCAACATCCAAGAAATGTATTTCCAAATCGCGACTCCGGCGTTCA : 1850
Seqid3 : : 1850
Seqid5 : : 1847

1860 * 1880 * 1900
Seqid1 : CACCGCTTAAAACCAGAGCGCGCAAACACTGGCAATTGGCTCAATA : 1900
Seqid3 : : 1900
Seqid5 : : 1897

* 1920 * 1940 *
Seqid1 : CCTATAAAAAGGATTGTTAAAACAAGATGATACATTAGGATTAACG : 1950
Seqid3 : : 1950
Seqid5 : : 1947

09/762926

WO 00/11182

PCT/EP99/05989

7/17

1960

1980

2000

Seqid1 : GTCGGCTACCGCAGCCGCATCGACAACACTACATCCACAACAGTTACGGGAA : 2000
 Seqid3 : : 2000
 Seqid5 : : 1997

* 2020

* 2040

*

Seqid1 : ATGGTGGGATTGAAACGGGAATATTCCGAGCTGGGTCAAGCAGCACCGGGC : 2050
 Seqid3 : : 2050
 Seqid5 :G..... : 2047

2060

2080

2100

Seqid1 : TTGCCTACACCATCCAACACCGCAATTCAAAGACAAAGTACACAAACAC : 2100
 Seqid3 : : 2100
 Seqid5 :T.....G..... : 2097

* 2120

* 2140

*

Seqid1 : GGTTTGAGTTGGAGCTGAATTACGATTATGGCGTTTTCACCAACCT : 2150
 Seqid3 : : 2150
 Seqid5 : : 2147

2160

2180

2200

Seqid1 : TTCTTACGCCATCAAAAAAGCACGCAACCGACCAACTTCAGCGATGCGA : 2200
 Seqid3 : : 2200
 Seqid5 : : 2197

* 2220

* 2240

*

Seqid1 : GCGAATCGCCAACAATGCGTCAAAGAACGACCAACTCAAACAAGGTTAT : 2250
 Seqid3 : : 2250
 Seqid5 : : 2247

2260

2280

2300

Seqid1 : GGGTTGAGCAGGGTTCCGCCCTGCCGCGAGATTACGGACGTTGGAAGT : 2300
 Seqid3 : : 2300

09/762926

WO 00/11182

PCT/EP99/05989

9/17

* 2620 * 2640 *

Seqid1 : AACGCAGCGTTATTACAGTTGCTGACCCGAAAGACAAGGACGAAGAAG : 2650

Seqid3 : : 2650

Seqid5 :C..... : 2647

2660 * 2680 * 2700

Seqid1 : TAACGTGTAATGCTGATAAAACGTTGTGCAACGGCAAATACGGCGGCACA : 2700

Seqid3 : : 2700

Seqid5 : : 2697

* 2720 * 2740 *

Seqid1 : AGCAAAAGCGTATTGACCAATTTGCACGCCGACGCACCTTTGATAAC : 2750

Seqid3 : : 2750

Seqid5 : : 2747

2760

Seqid1 : GATGAGCTACAAGTTTAA : 2769

Seqid3 : : 2769

Seqid5 : : 2766

09/762926

10/17

Figure 2 : Alignment of the BASB024 polypeptide sequences.
Identity to SeqID No:2 is indicated by a dot, and a dash ("—") indicates a missing amino acid.

* 20 * 40 *

Seqid2 : MRSSFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVAKRV : 50
Seqid4 : : 50
Seqid6 :T...Y..... : 50

60 * 80 * 100

Seqid2 : PKDKKVFTDARAVSTRQDIFKSSENLDNIVRSIPGAFTQQDKSSGIVSLN : 100
Seqid4 : : 100
Seqid6 : : 100

* 120 * 140 *

Seqid2 : IRGDSGFGRVNTMVDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLD : 150
Seqid4 : : 150
Seqid6 : : 150

160 * 180 * 200

Seqid2 : VVKGSFSGSAGINSLAGSANLRTLGVDDVVQGNNTYGLLKGLTGTNSTK : 200
Seqid4 : : 200
Seqid6 : : 200

* 220 * 240 *

Seqid2 : GNAMAAIGARKWLESGASVGVLYGHSSRTWAQNYRVGGGGQHIGNFGAEY : 250
Seqid4 :SV..... : 250
Seqid6 :SV..... : 250

09/762926

WO 00/11182

PCT/EP99/05989

11/17

260 * 280 * 300

Seqid2 : LERRKQRYFVQEGLKFNSNSGKWERDFQRPYWTKWYQKYNDPQELQKY : 300

Seqid4 : : 300

Seqid6 :A.....D.....L..QQ..Y.P.KN..N-..... : 299

* 320 * 340 *

Seqid2 : IEGHDKSWREN LAPQYDITPIDPSSLKQQSAGNLFKLEYDGVFNKYTAQF : 350

Seqid4 : : 350

Seqid6 : : 349

360 * 380 * 400

Seqid2 : RDLNTKIGSRKIINRNYQFN YGLSLNSYANLNLTAA YNSGRQKYPKGSKF : 400

Seqid4 : : 400

Seqid6 :P.T..... : 399

* 420 * 440 *

Seqid2 : TGWGLLKDFETYNNAKILDLNNTATFRLPRETELQTTLGFNYFHNEYGKN : 450

Seqid4 : : 450

Seqid6 : : 449

460 * 480 * 500

Seqid2 : RFPEELGLFFDGP DQDN GLYSYLGRFKGDKGLLPQKSTIVQPAGSQYFNT : 500

Seqid4 : : 500

Seqid6 : : 499

* 520 * 540 *

Seqid2 : FYFDAALKDIYRLNYSTNTVGYRGGEYTGYGSDEFKRAFGENSPTY : 550

Seqid4 : : 550

Seqid6 : : 549

09/762926

WO 00/11182

PCT/EP99/05989

12/17

560 * 580 * 600

Seqid2 : KKHCNQSCGIYEPVLKKYGKKRANNHSVISADFGDYFMPFASYSRTHRM : 600

Seqid4 : : 600

Seqid6 :R..... : 599

* 620 * 640 *

Seqid2 : PNIQEMYFSQIGDSGVHTALKPERANTWQFGNTYKKGLLKQDDTLGLKL : 650

Seqid4 : : 650

Seqid6 : : 649

660 * 680 * 700

Seqid2 : VGYRSRIDNYIHNVYKGWWDLNGNIPSWVSSTGLAYTIQHRNFKDKVHKH : 700

Seqid4 : : 700

Seqid6 :D..... : 699

* 720 * 740 *

Seqid2 : GFELELNYDYGRFFTNLNSAYQKSTQPTNFSDAESPNNAASKEDQLKQGY : 750

Seqid4 : : 750

Seqid6 : : 749

760 * 780 * 800

Seqid2 : GLSRVSALPRDYGRLEVGTWRILGNKLTLGGAMRYFGKSIRATAEERYIDG : 800

Seqid4 : : 800

Seqid6 : : 799

* 820 * 840 *

Seqid2 : TNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYPEKKNLIFRAEVKN : 850

Seqid4 : : 850

Seqid6 :F..... : 849

09/762926

WO 00/11182

PCT/EP99/05989

13/17

860

880

900

Seqid2 : LFDRRYIDPLDAGNDAATQRYYSSFDPKDKDEEVTCNADKTLNGKYGGT : 900

Seqid4 : : 900

Seqid6 : D. : 899

*

920

Seqid2 : SKSVLTNFARGRTFLITMSYKF : 922

Seqid4 : : 922

Seqid6 : : 921

09/762926 = 05989

14/17

Figure 3. Expression and purification of recombinant BASB024 in *E. coli*.

15/17

Figure 4 : Coomassie stained SDS-PAGE of the purification fractions of BASB024

1 2 3 4 5

Lanes : 1 : MW : 175, 83, 62, 47.5, 32.5, 25, 16.5, 6.5
 2 : Start
 3 : Flowthrough
 4 : 5 mM imidazole pool
 5 : BASB024 enriched pool

16/17

Figure 5 : Western blot of purified recombinant BASB024 protein probed with anti-His antibody

Lanes : 1 : MW : 175, 83, 62, 47.5, 32.5, 25, 16.5, 6.5
 2 : Start
 3 : Flowthrough
 4 : 5 mM imidazole pool
 5 : BASB024 enriched pool

17/17

Figure 6 : Anti-BASB024 antibodies in human convalescent sera by western-blotting using native BASB024 into the gel.

