Optimization Theory

Lecture 07

Fudan University

luoluo@fudan.edu.cn

Outline

1 Lower Complexity Bound

Nonsmooth Convex Optimization

Outline

Lower Complexity Bound

2 Nonsmooth Convex Optimization

Nesterov's Acceleration

Nesterov's acceleration:

$$\begin{cases} \mathbf{y}_t = \mathbf{x}_t + \beta_t(\mathbf{x}_t - \mathbf{x}_{t-1}), \\ \mathbf{x}_{t+1} = \mathbf{y}_t - \eta_t \nabla f(\mathbf{y}_t). \end{cases}$$

Can we further accelerate Nesterov's acceleration?

First-Order Methods

Let us check our possibilities in minimizing *L*-smooth convex functions by first-order methods.

Assumption

An iterative method \mathcal{M} generates a sequence of test points $\{x_t\}$ such that

$$\mathbf{x}_t \in \mathbf{x}_0 + \operatorname{span}\{\nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{t-1})\}.$$

"Worst Functions" and Zero-Chain

Consider the following functions

$$f_t(\mathbf{x}) = \frac{L}{4} \left(\frac{1}{2} \left(x_1^2 + \sum_{i=1}^{t-1} (x_i - x_{i+1})^2 + x_t^2 \right) - x_1 \right),$$

for t = 1, ..., d, where $\mathbf{x} = [x_1, ..., x_d]^{\top}$.

Let $\mathbb{R}^{t,d} = \{ \mathbf{x} \in \mathbb{R}^d : x_{t+1} = \dots = x_d = 0 \}$, that is the subspace of \mathbb{R}^d , in which only the first t components of the point can differ from zero.

Lemma

Let $\mathbf{x}_0 = \mathbf{0}$. Then for any sequence $\{\mathbf{x}_1, \dots, \mathbf{x}_t\}$ satisfying the condition

$$\mathbf{x}_t \in \mathcal{L}_t = \operatorname{span}\{\nabla f_t(\mathbf{x}_0), \dots, \nabla f_t(\mathbf{x}_{t-1})\},\$$

we have $\mathcal{L}_t \subset \mathbb{R}^{t,d}$.

"Worst Functions"

Consider the following functions

$$f_t(\mathbf{x}) = \frac{L}{4} \left(\frac{1}{2} \left(x_1^2 + \sum_{i=1}^{t-1} (x_i - x_{i+1})^2 + x_t^2 \right) - x_1 \right),$$

for t = 1, ..., d, where $\mathbf{x} = [x_1, ..., x_d]^{\top}$. They are *L*-smooth and convex.

We can verify $\nabla^2 f(\mathbf{x}) = \frac{L}{4} \mathbf{A}_t$ with

$$\boldsymbol{A}_t = \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & -1 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

"Worst Functions"

The equation $\nabla f(\mathbf{x}^*) = \mathbf{0}$ leads to

$$x_i^* = \begin{cases} 1 - \frac{i}{t+1}, & i = 1, \dots, t, \\ 0, & i = t+1, \dots, d. \end{cases}$$

Then we have

$$f(\mathbf{x}^*) = -\frac{L}{8} \left(1 - \frac{i}{t+1} \right).$$

and

$$\|\mathbf{x}^*\|_2^2 \leq \frac{t+1}{3}.$$

"Worst Functions"

Lemma

For all $\mathbf{x} \in \mathbb{R}^{p,d}$, we have $f_k(\mathbf{x}) = f_p(\mathbf{x})$ for $p = k, k + 1, \dots, d$.

Corollary

For any $\{\mathbf x_t\}_{t=1}^p$ with $\mathbf x_0 = \mathbf 0$ and $\mathbf x_t \in \mathcal L_t$, we have $\mathbf x_t \in \mathbb R^{t,d} \subseteq \mathbb R^{p,d}$ and

$$f_p(\mathbf{x}_t) = f_t(\mathbf{x}_t) \geq f_t^*$$

for any p = t, t + 1, ..., d.

Lower Complexity Bound (Convex)

Theorem

For any t such that $t \in [1, (d-1)/2]$ and any $\mathbf{x}_0 \in \mathbb{R}^d$, there exists an L-smooth and convex function $f : \mathbb{R}^d \to \mathbb{R}$ such that for any first-order algorithm \mathcal{M} with

$$\mathbf{x}_t \in \mathbf{x}_0 + \operatorname{span}\{\nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{t-1})\},$$

we have

$$f(\mathbf{x}_t) - f^* \ge \frac{3L \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{8(t+1)^2},$$

where \mathbf{x}^* is the minimizer of f and $f^* = f(\mathbf{x}^*)$.

Lower Complexity Bound

- The above theorem is valid when the iteration number is not too large as compared with the dimension the variables.
- Without a direct use of finite dimensional arguments, we cannot justify a better complexity of the corresponding numerical scheme.
- Nesterov's acceleration is optimal for minimizing smooth and convex function by first-order methods.

Lower Complexity Bound (Strongly Convex)

Consider the d-dimensional regularized "worst functions"

$$f(\mathbf{x}) = \frac{L - \mu}{4} \left(\frac{1}{2} \left(x_1^2 + \sum_{i=1}^{d-1} (x_i - x_{i+1})^2 + \left(1 - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right) x_d^2 \right) - \beta x_1 \right) + \frac{\mu}{2} \left\| \mathbf{x} \right\|_2^2,$$

for t = 1, ..., d, where $\mathbf{x} = [x_1, ..., x_d]^\top$, $\beta > 0$ and $\kappa = L/\mu$.

- **1** The functions are *L*-smooth and μ -strongly convex.
- 2 The zero-chain property still holds.
- **3** The minimizer is $\mathbf{x}^* = [q, q^2, \dots, q^d]$ with $q = (\sqrt{\kappa} 1)/(\sqrt{\kappa} + 1)$.

Lower Complexity Bound (Strongly Convex)

Theorem

For any t and d such that $t \leq d/2$, $d \geq 2$ and any $\mathbf{x}_0 \in \mathbb{R}^d$, there exists an L-smooth and μ -strongly convex function $f : \mathbb{R}^d \to \mathbb{R}$ such that for any first-order algorithm \mathcal{M} with

$$\mathbf{x}_t \in \mathbf{x}_0 + \operatorname{span}\{\nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{t-1})\},$$

we have

$$f(\mathbf{x}_t) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2t}.$$

where \mathbf{x}^* is the minimizer of f and $f^* = f(\mathbf{x}^*)$.

Lower Complexity Bound (Nonconvex)

The lower complexity bound for finding an ϵ -stationary point of L-smooth nonconvex function are based on

$$f(\mathbf{x}) = \frac{\sqrt{\mu}}{2}(x_1 - 1)^2 + \frac{1}{2}\sum_{i=1}^t (x_{i+1} - x_i)^2 + \mu \sum_{i=1}^T \Gamma_r(x_i),$$

where
$$\mathbf{x} = [x_1, \dots, x_{T+1}]^{\top} \in \mathbb{R}^{T+1}$$
 and $\Gamma_r(x) = 120 \int_1^x \frac{t^2(t-1)}{1+(t/r)^2} dt$.

- ① Let $r \ge 1$ and $\mu \le 1$. For any $\mathbf{x} \in \mathbb{R}^{T+1}$ such that $x_T = x_{T+1} = 0$, we have $\|\nabla f(\mathbf{x})\|_2 \ge \mu^{3/4}/4$.
- 2 The lower complexity bound is $\Omega(L\epsilon^{-2}(f(\mathbf{x}_0)-f^*))$.
- See details in paper "Yair Carmon, John C. Duchi, Oliver Hinder, Aaron Sidford. Lower bounds for finding stationary points II: first-order methods. Mathematical Programming. 185(1):315–355, 2021."

Outline

Lower Complexity Bound

Nonsmooth Convex Optimization

Nonsmooth Convex Optimization

We consider optimization with a nonsmooth objective function

$$\min_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x}).$$

Here we assume that $f: \mathbb{R}^d \to \mathbb{R}$ is a Lipschitz convex function defined on a convex and closed set $\mathcal{C} \subseteq \mathbb{R}^d$, but not necessarily smooth.

For constrained optimization, we assume the projection operator

$$\operatorname{proj}_{\mathcal{C}}(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$

can be efficiently computed for all $\mathbf{y} \in \mathbb{R}^d$.

Subgradient Descent Method

Suppose $\mathcal{C} = \mathbb{R}^d$, we have introduced gradient descent

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x})$$

converges by taking $\eta_t = \eta > 0$.

For nonsmooth case, we can replace the gradient by the subgradient and introduce projection step

$$\begin{cases} \tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{g}_t, \\ \mathbf{x}_{t+1} = \operatorname{proj}_{\mathcal{C}}(\tilde{\mathbf{x}}_{t+1}) \end{cases}$$

for $t = 0, 1 \dots$, where $\mathbf{g}_t \in \partial f(\mathbf{x}_t)$ and

$$\lim_{t\to+\infty}\eta_t=0.$$

Convergence Analysis (Convex)

Theorem

A convex function f is G-Lipschitz continuous on $\operatorname{dom} f$ if

$$\max_{\mathbf{g} \in \partial f(\mathbf{x})} \{\|\mathbf{g}\|_2\} \leq G$$

for all $\mathbf{x} \in \text{dom } f$.

Theorem

Let $\mathbf{z} = \mathrm{proj}_{\mathcal{C}}(\mathbf{y})$ for some convex and closed $\mathcal{C} \subseteq \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^d$, then

$$\|\mathbf{z} - \mathbf{x}\|_2^2 \le \|\mathbf{y} - \mathbf{x}\|_2^2$$

for any $\mathbf{x} \in \mathcal{C}$.

Convergence Analysis (Convex)

We assume the convex function $f: \mathbb{R}^d \to \mathbb{R}$ satisfies

$$\max_{\mathbf{g} \in \partial f(\mathbf{x})} \{ \|\mathbf{g}\|_2 \} \le G$$

on domain C. Then for all $\hat{\mathbf{x}} \in C$, we have

$$\frac{1}{\sum_{t=0}^{T-1} \eta_t} \sum_{t=0}^{T-1} \eta_t f(\mathbf{x}_t) \leq f(\hat{\mathbf{x}}) + \frac{\|\mathbf{x}_0 - \hat{\mathbf{x}}\|_2^2 + \sum_{t=0}^{T-1} \eta_t^2 G^2}{2 \sum_{t=0}^{T-1} \eta_t}.$$

1 Taking $\eta_t = \eta_0/\sqrt{T}$ leads to

$$\frac{1}{T}\sum_{t=0}^{T-1}f(\mathbf{x}_t) \leq f(\hat{\mathbf{x}}) + \frac{\|\mathbf{x}_0 - \hat{\mathbf{x}}\|_2^2 + \eta_0^2 G^2}{2\eta_0 \sqrt{T}}.$$

2 Taking $\eta_t = \eta_0/(\sqrt{t+1} + \sqrt{t})$ leads to

$$\sum_{t=0}^{T-1} \frac{f(\mathbf{x}_t)}{\sqrt{T(t+1)} + \sqrt{Tt}} \leq f(\hat{\mathbf{x}}) + \frac{\left\|\mathbf{x}_0 - \hat{\mathbf{x}}\right\|_2^2 + \eta_0^2 (\ln(2T-1) + 2)G^2/2}{2\eta_0 \sqrt{T}}.$$

Convergence Analysis (Strongly Convex)

If we additionally suppose f is μ -strongly convex and set

$$\eta_t = \frac{2}{\mu(t+1)},$$

then

$$\sum_{t=0}^{T-1} \frac{t}{T(T-1)} f(\mathbf{x}_t) \le f(\hat{\mathbf{x}}) + \frac{2G^2}{\mu(T-1)}.$$