MA3151-Matrices and Calculus UNIT - II DIFFERENTIAL CALCULUS

Simha's Classes

S.Narasimhan

Differential Calculus

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

Domain and range of functions

1. Find the domain of the function $f(x) = \frac{2x^3 - 5}{x^2 + x - 6}$. Solution:

For Video Explanation of this problem, Click Here

2. Find the domain of the function $f(x) = \frac{2x^3 - 5}{x^2 + x + 6}$. Solution:

For Video Explanation of this problem, Click Here

3. Find the domain of the function $f(x) = \frac{1}{x^2 - x}$

For Video Explanation of this problem, Click Here

Limit of a function

1. Find $\lim_{x \to \infty} (\sqrt{x^2 + x + 1} - x)$

Solution:

For Video Explanation of this problem, Click Here

2. Evaluate $\lim_{x\to 5} (2x^2 - 3x + 4)$.

Solution:

For Video Explanation of this problem, Click Here

3. Evaluate the limit $\lim_{x\to 1} \frac{x^2 - 4x}{x^2 - 3x - 4}$.

Solution:

For Video Explanation of this problem, Click Here

4. Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Solution:

Continuity

1. If $f(x) = \begin{cases} a^2x - 2a, & x \ge 2\\ 12, & x < 2 \end{cases}$ is continuous for every real x, then find the

value of a.

Solution: For Video Explanation of this problem, Click Here

2. For what values of a and b, is
$$f(x) = \begin{cases} -2, & x \le -1 \\ ax - b, & -1 < x < 1, \text{ continuous} \\ 3, & x \ge 1 \end{cases}$$

at every x?

Solution:

For Video Explanation of this problem, Click Here

3. Show that the function f(x) is continuous on $(-\infty, \infty)$

$$f(x) = \begin{cases} 1 - x^2, & x \le 1\\ \log x, & x \ge 1 \end{cases}$$

Solution:

For Video Explanation of this problem, Click Here

4. For what values of the constant c is the function f continuous on $(-\infty, \infty)$?.

$$f(x) = \begin{cases} cx^2 + 2x; & x < 2\\ x^3 - cx; & x \ge 2 \end{cases}$$

Solution:

For Video Explanation of this problem, Click Here

Differentiation rules

If f(x) and g(x) are functions of x and differentiable, then

1.
$$\frac{d}{dx}\left(f\left(x\right) + g\left(x\right)\right) = \frac{d}{dx}f\left(x\right) + \frac{d}{dx}g\left(x\right)$$

2.
$$\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) + f(x)\frac{d}{dx}g(x)$$

3.
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{\left[g(x)\right]^{2}}$$

Using the first Principle of derivative, find the first derivative of the following function :

$$(1) x^2$$

Solution:

For Video Explanation of this problem, Click Here

$$(2) \sqrt{x}$$

Solution:

For Video Explanation of this problem, Click Here

(3)
$$\frac{1}{x}$$
Solution:

For Video Explanation of this problem, Click Here

 $(4) \cos x$

Solution:

For Video Explanation of this problem, Click Here

 $(5) \sin x$

Solution:

For Video Explanation of this problem, Click Here

 $(6) \log x$

Solution:

For Video Explanation of this problem, Click Here

$$(7) e^{x}$$

Solution:

For Video Explanation of this problem, Click Here

Differentiation product rule

1. Evaluate
$$\frac{d}{dx}(3x^5 \log x)$$
.

Solution:

For Video Explanation of this problem, Click Here

2. If $f(x) = xe^x$ then find f'(x). Also find the n-th derivative $f^n(x)$. Solution:

For Video Explanation of this problem, Click Here

3. Differentiate
$$y = (2x+1)^5 (x^3 - x + 1)^4$$
.

Solution:

4. Find
$$\frac{dy}{dx}$$
, if $y = x^2 e^{2x} (x^2 + 1)^4$. Solution:

For Video Explanation of this problem, Click Here

5. If
$$y = x \log \left(\frac{x-1}{x+1} \right)$$
, then find $\frac{dy}{dx}$.

Solution:

For Video Explanation of this problem, Click Here

Differentiation quotient rule

1. Find
$$\frac{d}{dx} \left(\frac{x^3}{3x - 2} \right)$$

For Video Explanation of this problem, Click Here

2. Find
$$\frac{dy}{dx}$$
, if $y = \frac{(x^2 + 8)}{(2x + 3)}$

Solution:

For Video Explanation of this problem, Click Here

Differentiation Parametric function

1. Find
$$\frac{dy}{dx}$$
, if $x = \cos t + t \sin t$ and $y = \sin t - t \cos t$
Solution:

For Video Explanation of this problem, Click Here

Logarithmic differentiation

1. Find the differential coefficients of
$$\frac{(a-x)^2(b-x)^3}{(c-2x)^3}$$
.

Solution:

For Video Explanation of this problem, Click Here

2. If
$$y^x = x^{\sin y}$$
, Find y' .

Solution:

For Video Explanation of this problem, Click Here

3. If
$$y = (\sin x)^{\cos x}$$
, Find $\frac{dy}{dx}$. Solution:

4. If
$$x^y = e^{x-y}$$
, show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

Solution:

For Video Explanation of this problem, Click Here

Implicit differentiation

1. Find
$$\frac{dy}{dx}$$
, if $x^3 + y^3 = 3axy$.

Solution:

For Video Explanation of this problem, Click Here

2. Find y'' if $x^4 + y^4 = 16$.

Solution:

For Video Explanation of this problem, Click Here

3. Find y' for $\cos(xy) = 1 + \sin y$

Solution:

For Video Explanation of this problem, Click Here

Derivative of inverse Functions

1. Find the derivative of $f(x) = \cos^{-1}\left(\frac{b+a\cos x}{a+b\cos x}\right)$. Solution:

For Video Explanation of this problem, Click Here

Applications of derivatives

Equation of tangent line

1. Find the slope of the circle $x^2 + y^2 = 25$ at (3, -4).

For Video Explanation of this problem, Click Here

1. If $x^2 + y^2 = 25$, then find $\frac{dy}{dx}$ and also find an equation of the tangent line to the curve $x^2 + y^2 = 25$ at the point (3,4).

Solution:

2. Differentiate the function $f(x) = \frac{\sec x}{1 + \tan x}$. For what values of x, the graph of f(x) has a horizontal tangent? Solution:

For Video Explanation of this problem, Click Here

3. Find the equation of the tangent line to the curve $y = \frac{e^x}{(1+x^2)}$ at the point $(1, \frac{e}{2})$

Solution:

For Video Explanation of this problem, Click Here

Applications of derivatives: Maxima and minima

1. Find the point of inflection of $f(x) = x^3 - 9x^2 + 7x - 6$. Solution:

For Video Explanation of this problem, Click Here

- 1. For the function $f(x) = 2x^3 + 3x^2 36x$, find
- (i) the intervals on which it is increasing or decreasing.
- (ii) the local maximum and minimum value of f.
- (iii) the intervals of concavity and the inflection points. Solution:

For Video Explanation of this problem, Click Here

2. Find the maxima and minima of the function $x^5 - 5x^4 + 5x^3 + 10$. Solution:

For Video Explanation of this problem, Click Here

3. Find the maximum and minimum values of the function $2x^3 - 3x^2 - 36x + 10$. Solution:

For Video Explanation of this problem, Click Here

4. Find the absolute maximum and absolute minimum values of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ on the interval [-2, 3]. Solution:

For Video Explanation of this problem, Click Here

5. Find the absolute maximum and minimum values of the function $f(x) = \log(x^2 + x + 1)$ in [-1, 1]. Solution:

For Video Explanation of this problem, Click Here

6. Find the local maxima and minima for the function of the curve $y=x^4-4x^3$.

Solution:

For Video Explanation of this problem, Click Here

7. Find the intervals on which $f(x) = -x^3 + 12x + 5$; $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values? What are the values?

Solution: