Задача A. Memory snow

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Во время празднования зимнего фестиваля Рем попыталась назвать Субару по имени. Из-за неназванных обстоятельств вместо этого она произнесла строку $s(|s| \le 10^5)$ состоящую из букв S и U. Субару заинтересовал следующий факт: сколько существует подстрок фразы Рем, таких что их длина хотя бы 3, и они содержат ровно одну букву S или ровно одну букву U.

Так как строка достаточно длинная, Субару запутался в вычислениях, и попросил Вас о помощи.

Формат входных данных

В единственной строке вводится строка $s(|s|\leqslant 10^5)$ — текст, который произнесла Рем из букв S и U.

Формат выходных данных

В единственной строке выведите ответ на задачу — количество подстрок строки s длины хотя бы 3, которые содержат какую-то из букв $S,\,U$ в единственном экземпляре.

Примеры

стандартный ввод	стандартный вывод
USSUU	3
SUSU	2

Замечание

Пусть n = |s|, тогда:

Nº	Дополнительные ограничения	Баллы за подзадачу	Необходимые подзадачи
1	$n \leqslant 500$	20	
2	$n \leqslant 5000$	30	1
3	$n \leqslant 10^5$	50	1, 2

Задача В. Микроконтроллеры

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 second
Ограничение по памяти: 128 megabytes

Михаил придумал решение задачи аппаратного кодирования видео с помощью последовательно соединенных микроконтроллеров. Каждый микроконтроллер выполняет определенную часть задачи, после чего передает данные следующему микроконтроллеру (получается некий конвейер из микроконтроллеров). В устройстве используется N микроконтроллеров, которые должны быть соединены последовательно: первый со вторым, второй с третьим и т. д. По задумке, микроконтроллеры располагались на плате в одну горизонтальную линию.

Михаил заказал платы с микроконтроллерами на фабрике, однако получилось так, что микроконтроллеры вместо того, чтобы стоять последовательно, оказались в хаотичном порядке! Поскольку заказ был довольно дорогим, Михаил решил максимально использовать имеющуюся плату, т.е. последовательно соединить дорожками наибольшее количество микроконтроллеров в цепочку вида $1-2-\ldots-m$. Оставшуюся часть придется заказать заново.

Плата, на которой расположены микроконтроллеры, будет односторонней (все дорожки расположены на одной плоскости и, естественно, не могут пересекаться). Если в микроконтроллер дорожка со входным сигналом входит сверху, то дорожка с выходным сигналом должна выходить из него обязательно снизу, и наоборот. Микроконтроллеры расположены вплотную друг к другу (проложить между ними дорожку нельзя). Обойти линию микроконтроллеров дорожкой слева или справа также нельзя (только сверху или снизу). Сверху и снизу от линии микроконтроллеров плата имеет достаточные размеры и позволяет проложить любое число дорожек.

Помогите Михаилу определить, какое максимальное количество последовательных микроконтроллеров удастся соединить, начиная с первого.

Формат входных данных

В первой строке входного файла задано число N — длина полоски из микроконтроллеров. Во второй строке задана перестановка из N чисел — порядок расположения микроконтроллеров.

Формат выходных данных

Выведите единственное число — максимальное количество микроконтроллеров, которые удастся соединить последовательно, начиная с первого.

Примеры

stdin	stdout
7	5
5 1 4 7 6 3 2	

Замечание

Тесты состоят из трех групп.

- 1. Тест 1, из условия, оценивается в 0 баллов.
- 2. В тестах этой группы количество микроконтроллеров N не превосходит 5000. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- 3. В тестах этой группы количество микроконтроллеров N не превосходит $100\,000$. Эта группа оценивается в 40 баллов, баллы начисляются только при прохождении всех тестов этой и предыдущей группы.
- 4. В тестах этой группы количество микроконтроллеров N не превосходит $1\,000\,000$. Эта группа оценивается в $30\,$ баллов, баллы начисляются только при прохождении всех тестов из всех групп.

Задача С. Миллион алых роз

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Восьмое марта только началось, а перед входом в цветочный магазин «Аделина» уже выстроилась огромная очередь желающих приобрести букеты красивейших свежих алых роз. Хозяин магазина Александр понимал, что день сегодня предстоит нелегкий. Поэтому он решил предварительно узнать у каждого из ожидающих покупателей, сколько всего роз тот хотел бы приобрести. Полученные числа Александр аккуратно выписал на листок и понял, что в одиночку ему не справиться.

Чтобы ускорить процесс формирования букетов, хозяин магазина позвал на помощь своего коллегу Михаила. Александр показал ему полученный только что список и предложил выписать подпоследовательность размеров букетов, формированием которых Михаил готов заняться.

Михаила не интересует оптимальное распределение работы. Не интересуют его также максимальный, минимальный и даже средний размеры формируемых им букетов. Все, что он хочет знать, — количество различных непустых подпоследовательностей в списке Александра по модулю $10^9 + 7$.

Формат входных данных

В первой строке вводится целое число N — количество ожидающих покупателей ($1 \le N \le 1\,000\,000$). Вторая строка содержит N натуральных чисел, i-е из которых описывает, сколько роз желает купить i-й человек в очереди ($1 \le a_i \le 1\,000\,000$).

Формат выходных данных

Выведите ответ на вопрос, терзающий Михаила, — количество различных подпоследовательностей в составленном Александром списке по модулю $1\,000\,000\,007\,(10^9+7)$.

Примеры

stdin	stdout
4	13
1 2 1 3	

Замечание

Подпоследовательностью $\{x_{n_k}\}$ называется числовая последовательность, которая составлена из членов последовательности $\{x_n\}$ и в которой порядок следования ее элементов совпадает с их порядком следования в исходной последовательности $\{x_n\}$.

В тесте из условия Михаил может найти следующие 13 различных подпоследовательностей: $\{1\}$, $\{1,1\}$, $\{1,1,3\}$, $\{1,2\}$, $\{1,2,1\}$, $\{1,2,1,3\}$, $\{1,2,3\}$, $\{1,3\}$, $\{2\}$, $\{2,1\}$, $\{2,1,3\}$, $\{2,3\}$, $\{3\}$. Тесты к этой задаче состоят из четырех групп.

- Тест 1. Тест из условия, оцениваемый в ноль баллов.
- Тесты 2–15. В тестах этой группы $1 \le a_i \le N \le 15$. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- Тесты 16–31. В тестах этой группы $1 \le N \le 3\,000$, $1 \le a_i \le 10^5$. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Тесты в этой группе оцениваются **независимо.**

Тестирование на тестах каждой группы производится только в случае прохождения всех тестов из **всех предыдущих** групп.

Задача D. Memento

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4.5 секунд Ограничение по памяти: 256 мегабайт

Во время очередного зимнего фестиваля Субару получил в подарок от Беатрис массив a_1, a_2, \ldots, a_n в кольце по модулю $10^9 + 7$. К массиву прилагались операции, i-я операция была задана l_i, r_i и x_i : изменить значение a_j на $a_j + x_i$ для всех $l_i \leqslant j \leqslant r_i$. По какой-то причине Субару заинтересовал подсчёт некой статистики по версиям массива в разные моменты времени.

Всего Субару хочет узнать ответы на q запросов следующего вида: если рассмотреть версии массива после операций с x_i по y_i и элементы массива с l_i по r_i , то чему равна сумма:

 $(\sum_{t=r_i}^{y_i}\sum_{k=l}^{r_i}a_{t\,k}^2)\ mod\ (10^9+7)$, где $a_{t,k}-k$ -й элемент массива после применения t операций.

Формат входных данных

Первая строка входного файла содержит три целых числа $n, m, q \ (1 \le n, m, q \le 5 \cdot 10^4)$, длина массива, количество операций и количество запросов Субару.

Вторая строка содержит n чисел $a_1, a_2, \ldots, a_n \; (|a_i| < 10^9 + 7)$ — исходный массив.

Далее следуют m строк, i-я из которых содержит три целых числа l_i , r_i и $x_i (1 \le l_i \le r_i \le n, |x_i| < 10^9 + 7)$, очередную операцию над массивом.

Далее следуют q строк, i-я из которых содержит четыре числа l_i, r_i, x_i и $y_i (1 \le l_i \le r_i \le n, 0 \le x_i \le y_i \le m)$, очередной запрос Субару.

Формат выходных данных

Для каждого запроса выведите в отдельной строке единственное число — ответ на него по модулю 10^9+7 .

Примеры

стандартный ввод	стандартный вывод
3 1 1	1
8 1 6	
2 3 2	
2 2 0 0	
4 3 3	180
2 3 2 2	825
1 1 6	8
1 3 3	
1 3 6	
2 2 2 3	
1 4 1 3	
4 4 2 3	

Замечание

Nº	Дополнительные ограничения	Баллы за подзадачу	Необходимые подзадачи
1	$n, m, q \leqslant 100$	10	
2	$n, m, q \leqslant 1000$	20	1
3	$m \leqslant 1000$	10	1, 2
4	q=1	15	
5	$n, m, q \leqslant 30000$	25	1, 2
6	Нет дополнительных	20	1 - 5