Statistics for Chemical Engineers: From Data to Models to Decisions

Victor M. Zavala

Department of Chemical and Biological Engineering University of Wisconsin-Madison

victor.zavala@wisc.edu

Chapter 6: Statistical Data Analysis and Learning (Part I)

This material supports "Statistics for Chemical Engineers" by Victor M. Zavala, ©, 2025

Statistical Data Analysis and Learning

- Data science and machine learning (ML) are fields that provide tools for:
 - Data Analysis (e.g., dimension reduction, time-series, clustering, computer vision)
 - Predictive Modeling (e.g., neural nets, kriging, classification)
 - Artificial Intelligence (e.g., data collection, experimentation, learning, control)
- Some tools used are derived from statistical principles while others are derived from other mathematical principles (e.g., geometry, optimization, linear algebra).
- Our focus here is discussing general statistical principles behind such tools.

Statistical Data Analysis and Learning

- Data is at the core of modeling and decision-making tasks.
- Data is what allows us to characterize the behavior of systems and appears in different forms such as spatial fields, time series, images, video, and text.
- Ultimately, our goal is to extract knowledge from such data (in the form of a model) to characterize and analyze the dominant trends.

Statistical Data Analysis and Learning

- We will discuss advanced techniques to extract knowledge from data and to use this knowledge to make predictions and decisions.
- We will explore techniques to extract interesting features of the data.
- We will see how to use this info to analyze and compare complex systems, identify abnormal behavior, build predictive models, and make decisions.
- We will discuss predictive modeling techniques that do not require parameters (called non-parametric) to make predictions.
- We will explore parametric modeling techniques that are universal (can use data to predict virtually any type of behavior seen in practice).
- Techniques mimic how brain learns from data collected from our sensory systems.

- Consider questions:
 - How can I interpret and extract knowledge (e.g., trends) from high-dimensional data?
 - How can I reduce (compress) data to facilitate analysis, visualization, storage, and use?
- We analyze data that is stationary (as opposed to time-dependent).
- Stationary data involves obs that are independent over time.
- Time-dependent involves obs that are correlated over time (more difficult).

• Have RVs $X = (X_1, X_2, ..., X_n)$ and want to create a *mixture* of the form:

$$T = \sum_{i=1}^{n} w_i X_i = w^T X$$

where $w_i \in \mathbb{R}$ are mixture proportions, collected in vector $w = (w_1, w_2, ..., w_n)$.

- Consider questions:
 - What proportions w give product T that contains maximum information about X?
 - ullet What proportions w give product T that contains second most information about X?
 - What proportions w give product T that contains minimum information about X?
- Think about analogy of this statistical mixing process with that of physical mixing.
- In physical process, want to mix flows of different quality so that product is valuable.
- Statistical mixing problem can be solved using PCA.

Figure: Statistical mixing problem to be studied using principal component analysis (PCA).

- Collect obs $x_{\omega} \in \mathbb{R}^n$, $\omega \in \mathcal{S}$ for $X = (X_1, X_2, ..., X_n)$.
- Make implicit assumption that obs are i.i.d. samples of X.
- Store obs in $S \times n$ data matrix:

$$\mathbf{X} = \left[\begin{array}{cccc} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{S,1} & x_{S,2} & \cdots & x_{S,n} \end{array} \right]$$

ullet Normalize (re-scale) columns of matrix ${f X}$ in such a way that

$$\frac{1}{S} \sum_{\omega=1}^{S} \mathbf{X}_{\omega,j} = 0, \quad j = 1, ..., n$$

(e.g., by substracting means of each variable).

ullet One can show that sample covariance matrix of X is:

$$\hat{\text{Cov}}(X) = \mathbf{X}^T \mathbf{X}.$$

• Matrix $\mathbf{X}^T\mathbf{X}$ is known as *kernel* matrix and we denote this as Σ .

- Kernel contains all info of *X*; variance is measure of *info content*.
- Kernel is closely related to cov matrix of parameter estimates for structural models.
- Mixture $T = w^T X$ is an RV and one can show that $\hat{\mathbb{V}}[T] = w^T \Sigma w$.
- Sample variance of T is thus related to sample covariance of X (Σ).
- Proportions that contain max information of X are those that max variance of T:

$$\max_{w} \ w^{T} \mathbf{\Sigma} w \text{ s.t. } ||w|| = 1$$

- Solution w_1 is eigenvec of Σ associated with largest eigv λ_1 (i.e., $\Sigma w_1 = \lambda_1 w_1$).
- Eigv is $\lambda_1 = w_1^T \Sigma w_1$ (is measure of info content).
- Optimal mixture associated with eigenvec is given by $T_1 = w_1^T X$.

Can identify mixture that contains 2nd most info by solving:

$$\max_{w} w^{T} \Sigma w \text{ s.t. } ||w|| = 1, \ w^{T} w_{1} = 0.$$

- Solution w_2 is eigenvec associated with 2nd largest eigenv $\lambda_2 = w_2^T \Sigma w_2$.
- Constraint $w_2^T w_1 = 0$ (a.k.a. orthogonality constraint) ensures that mixture $T_2 = w_2^T X$ is not correlated to mixture $T_1 = w_1^T X$.
- This guarantees that T_2 and T_1 provide complementary (non-redundant) info.
- Can continue procedure to obtain all eigenvecs w_k , k = 1, ..., n of Σ .
- Each eigenvec w_k has mixture $T_k = w_k^T X$ with info content $\lambda_k = w^T \Sigma w$.
- Mixtures are ranked in order of info content $\lambda_1 \geq \lambda_2 \geq \dots \lambda_n$.

• Set of eigenvecs and eigenv can be used to decompose kernel as:

$$\Sigma = \lambda_1 w_1 w_1^T + \lambda_2 w_2 w_2^T + \dots + \lambda_n w_n w_n^T$$

- ullet Truncating series (drop smallest eigenvs) enables compression of Σ .
- ullet Eigendecomposition of Σ can be written in compact form:

$$\mathbf{\Sigma} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^T$$

where $\mathbf{W} \in \mathbb{R}^{n \times n}$ is:

$$\mathbf{W} = [w_1 | w_2 | \dots | w_n].$$

- Matrix $\mathbf{\Lambda} \in \mathbb{R}^{n \times n}$ is diagonal with entries $\mathbf{\Lambda}_{k,k} = \lambda_k$.
- Eigenvalues are usually visualized using spectrum, which summarizes information content.

 Eigenvalues are usually visualized using spectrum, which summarizes % of total information content.

$$\alpha_k = 100 \cdot \frac{\lambda_k}{\sum_{j=1}^n \lambda_j}, \ k = 1, ..., n.$$

 Spectrum that decays rapidly indicates that matrix has a high degree of redundancy (can be compressed more easily).

Figure: Illustration of spectrum of a couple of covariance matrices small amount of redundancy (solid) and high amount of redundancy (dashed).

- Mixtures $T_1, T_2, ... T_n$ (a.k.a. principal components) contain all info about X.
- ullet Eigenvec matrix ${f W}$ projects data ${f X}$ into space of PCs as:

$$T = XW$$

where $\mathbf{T} \in \mathbb{R}^{S \times n}$ is matrix with entries $\mathbf{T}_{i,j}$, i = 1, ..., S, j = 1, ..., n.

- Here, $T_{i,j}$ is the *i*-th observation of PC T_j .
- PCA can be seen as a projection of the data from a physical space to an information space (a.k.a. as latent space).
- Can project back from latent space to physical space using $\mathbf{X} = \mathbf{T}\mathbf{W}^T$.

Figure: Projection of data from physical space to information/latent space (and back) using the eigenvectors $\mathbf{W}.$

• From projection T = XW:

$$\hat{\mathbf{Cov}}(T) = \mathbf{T}^T \mathbf{T}$$

$$= \mathbf{W}^T \mathbf{X}^T \mathbf{X} \mathbf{W}$$

$$= \mathbf{W}^T \mathbf{W} \mathbf{\Lambda} \mathbf{W} \mathbf{W}$$

$$= \mathbf{\Lambda},$$

- Here, we use property that $\mathbf{W}^T \mathbf{W} = \mathbf{I}$ (eigenvecs are orthogonal).
- ullet PCs are thus uncorrelated and all info of T (variance) is contained in eigenvalues.
- Projection T = XW transforms data from physical space (under which X lives) into an information space (under which T lives).
- Note: it is not necessary to normalize data to apply PCA.
- Normalization is required if one seeks to interpret $\mathbf{X}^T\mathbf{X}$ as covariance of X.

Example: PCA Analysis for Gibbs Reactor Data ch6_gibbs_pca.m

- Dataset with measurements of pressure, temperature, and conversion (P, T, C).
- ullet If visualize data in 3D (P,T,C) space, separates in clusters (failure/normal mode).
- Humans can only visualize data in a small number of dimensions (typically 2D plots).
- Imagine we visualize our data in 2D by ignoring temperature (P, C).
- Visualizing data in this reduced space hides clusters in the data.
- Common issue with visualizing data in many dimensions (hundreds to thousands).
- Specifically, reduction might hide key aspects of data.

Example: PCA Analysis for Gibbs Reactor Data ch6_gibbs_pca.m

- We visualize data in 2D but in info space of PCs (T_1, T_2) and of (T_2, T_3) .
- Visualization clearly reveals the clusters.

Figure: 3D visual in physical space of P,T,C (top-left). 2D visualization in physical space of C,P (top-right). 2D visual in info space of T_1,T_2 (bottom-left) and of T_2,T_3 (bottom-right).

Principal Component Estimation

- Previously explored strategies to estimate params for models $y = X\theta$.
- Discussed how data redundancy leads to rows or columns in X that are linear dependent and how this can lead to high param variance (low precision).
- We can use PCA to identify and eliminate data redundancies.
- Kernel $\mathbf{X}^T\mathbf{X}$ is related to covariance of estimates $\hat{\theta}$ as:

$$Cov(\hat{\theta}) = \sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{W}\boldsymbol{\Lambda}\mathbf{W}^{T})^{-1}$$

$$= \sigma^{2}\mathbf{W}\boldsymbol{\Lambda}^{-1}\mathbf{W}^{T}$$

$$= \sigma^{2}(\lambda_{1}^{-1}w_{1}w_{1}^{T} + \lambda_{2}^{-1}w_{2}w_{2}^{T} + \dots + \lambda_{n}^{-1}w_{n}w_{n}^{T}).$$

 Small eigs of X^TX lead to large variances of estimates. This is often a sign of strong correlations or collinearities (linear dependencies).

Principal Component Estimation

- It makes sense to build $y = X\theta$ by pre-processing (cleaning) data X.
- Specifically, remove effect of small eigs associated with non-informative data.
- This is done by partitioning eigenvector matrix:

$$\begin{aligned} \mathbf{W} &= [\mathbf{W}_1 | \mathbf{W}_2] \\ &= [\underbrace{w_1, w_2, ..., w_{n_1}}_{\text{low information}} | \underbrace{w_{n_1+1}, w_{n_1+2}, ..., w_{n}}_{\text{high information}}]. \end{aligned}$$

• This induces a partitioning of eigs matrix:

$$\mathbf{\Lambda} = \left[\begin{array}{c|c} \mathbf{\Lambda}_1 & \\ \hline & \mathbf{\Lambda}_2 \end{array} \right],$$

- We project (reduce) input data into information space as $T_1 = XW_1$.
- Build a reduced model of form $\mathbf{y} = \mathbf{T}_1 \gamma$ where $\gamma \in \mathbb{R}^{n_1}$ are the parameters.
- ullet Projection reduces number of params (from n in heta to n_1 in $\gamma)$.

Principal Component Estimation

• Estimate params γ by solving:

$$\hat{\gamma} \in \underset{\gamma}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{T}_1 \gamma\|_2^2.$$

Covariance of estimate is:

$$Cov(\hat{\gamma}) = \sigma^2 (\mathbf{T}_1^T \mathbf{T}_1)^{-1}.$$

- Estimated params $\hat{\gamma}$ live in info space that differs from physical space of θ .
- Estimate of params in original physical space is $\hat{\theta} = \mathbf{W}_1 \hat{\gamma}$.
- One can show that:

$$Cov(\hat{\theta}) = \sigma^{2} \mathbf{W}_{1} \mathbf{\Lambda}_{1}^{-1} \mathbf{W}_{1}^{T}$$
$$= \sigma^{2} (\lambda_{1}^{-1} w_{1} w_{1}^{T} + \lambda_{2}^{-1} w_{2} w_{2}^{T} + \dots + \lambda_{n_{1}}^{-1} w_{n_{1}} w_{n_{1}}^{T})$$

As desired, data pre-processing removes effect of small eigs.

• Develop a model that predicts conversion as a function of different vars:

$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + \theta_5 X_5 + \epsilon$$

- X_1 is press, X_2 is CO flow, X_3 is H_2 flow, X_4 is CH_3OH flow, and X_5 is temp.
- Have total of n+1=6 params and S=250 obs.
- Some of the data is redundant (variables are strongly correlated).
- However, it is difficult to know which set of variables can predict conversion or if there is a minimum set of variables that we should consider.

- Standard MLE gives estimates $\hat{\theta}$ with good SSE of 2.44 \times 10⁻³.
- However, we find that covariance matrix of these parameters is singular.
- This is because the eigs of kernel matrix $\mathbf{X}^T\mathbf{X}$ are:

$$\lambda = (1.45\times10^8, 2.36\times10^5, 1.97\times10^3, -2.99\times10^{-8}, 1.47\times10^{-10}, -1.72\times10^{-11}).$$

• Three parameters cannot be estimated reliably.

- To eliminate effect, we obtain eigenvecs ${\bf W}$ and eliminate columns corresponding to three smallest eigs, to give ${\bf W}_1$.
- We reduce data $\mathbf{T}_1 = \mathbf{X}\mathbf{W}_1$ and estimate $\hat{\gamma}$ and $\hat{\theta} = \mathbf{W}_1\hat{\gamma}$.
- SSE value remains the same 2.44×10^{-3} but variances are:

$$\mathbb{V}(\hat{\theta}) = (7.34 \times 10^{-13}, 3.19 \times 10^{-7}, 1.77 \times 10^{-7}, 2.49 \times 10^{-7}, 2.56 \times 10^{-7}, 2.49 \times 10^{-7}).$$

• Parameters can be estimated reliably with data reduction.

Figure: Fit of linear model under standard estimation (left) and PCA estimation (right).

Sparse PCA

- Eigenvector w contains proportions of mixture $T = \sum_{j=1}^{n} w_j X_j$.
- ullet Magnitudes $|w_j|$ reveal key (dominant) input variables (ingredients) in our mixture.
- Number of variables can be quite large (e.g., hundreds) and we want to find a handful of key variables.

Sparse PCA

• Sparse PCA sparsifies eigenvec w_i by solving regularized problem:

$$\tilde{w}_j \in \underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{X}w_j - \mathbf{X}w\|_2^2 + \kappa \|w\|_1$$

- Finds vector w that minimizes distance to data projection obtained with w_j and minimizes $||w||_1 = \sum_{i=1}^n |w_i|$.
- $\kappa \in \mathbb{R}_+$ is param that trades-off sparsity of eigenvec \tilde{w}_j and proximity to w_j .
- Sparsification is applied to eigenvecs $w_j,\ j=1,...,n$ to obtain a sparse $\tilde{\mathbf{W}}$.
- If κ is large, sparse eigenvec \tilde{w}_j will contain a single variable.

Example: Sparse PCA for Gibbs Reactor ch6_gibbs_pca_estimation_sparse.m

• Applying PCA to $\mathbf{X}^T\mathbf{X}$ we obtain:

$$\mathbf{W} = \begin{bmatrix} -0.00 & -0.00 & -0.00 & -0.00 & 0.00 & -0.00 \\ -0.19 & -0.84 & 0.50 & -0.20 & 0.01 & -0.01 \\ -0.04 & 0.23 & 0.38 & -0.03 & -0.43 & -0.79 \\ -0.61 & 0.40 & 0.45 & -0.59 & 0.53 & 0.06 \\ -0.09 & -0.25 & -0.45 & -0.04 & 0.59 & -0.62 \\ -0.76 & -0.09 & -0.45 & -0.78 & -0.42 & 0.02 \end{bmatrix}.$$

- Last 3 eigenvecs responsible for small eigs but do not indicate variable driving behavior.
- To identify problematic variables, we apply sparse PCA and obtain:

• Suggests to eliminate X_5 (temperature), X_2 (CO flow), and X_4 (CH₃OH flow).

Example: Sparse PCA for Gibbs Reactor ch6_gibbs_pca_estimation_sparse.m

• Elimination of X_5, X_2, X_4 does not affect model fit and provides precise estimates.

Figure: Fit of linear model under PCA estimation (left) and fit using subset of variables identified with sparse PCA (right).

- PCA relies on eigendecomp $\Sigma = \mathbf{W} \Lambda \mathbf{W}^T$.
- SVD is a generalization of eigendecomp.
- Eigendecomp can only be applied to square matrices (e.g., Σ) while SVD can be applied to rectangular matrices (e.g., X).
- SVD is broadly applicable for reduction of different forms of data (e.g., images).

- To explain how SVD works, it is convenient to think about this in context of PCA.
- ullet Consider data matrix $\mathbf{X} \in \mathbb{R}^{S imes n}$ (assume $n \leq S$) and its decomposition:

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

- $\mathbf{U} \in \mathbb{R}^{S \times n}$ is left eigenvec matrix, $\mathbf{V} \in \mathbb{R}^{n \times n}$ is right eigenvec matrix.
- $\mathbf{S} \in \mathbb{R}^{S \times n}$ is singular value (SV) matrix.
- Matrix S contains SVs $s_j \in \mathbb{R}, \ j=1,...,n$ in diagonal.
- Singular values are ordered in magnitude $s_1 \geq s_2 \geq \cdots \geq s_n$.

- Number of non-zero singular values reveals rank of X.
- Rank is max number of linearly independent rows (same as number of linearly independent columns).
- Since we have assumed that $n \leq S$ (most common case in applications), ${\bf X}$ is regular if rank is n.
- If matrix is non-regular it means that there are redundant rows or columns.
- ullet In PCA, a non-regular ${f X}$ means that there are redundant observations or variables.
- SVs can thus help us detect and eliminate data redundancies.

- Matrices U, V are orthogonal and thus satisfy $U^TU = I$ and $V^TV = I$.
- Consequently, we can observe that:

$$\mathbf{X}^T \mathbf{X} = (\mathbf{U} \mathbf{S} \mathbf{V}^T)^T (\mathbf{U} \mathbf{S} \mathbf{V}^T)$$
$$= \mathbf{V} \mathbf{S}^T \mathbf{S} \mathbf{V}^T.$$

- By defining W = V and $\Lambda = S^T S$, we obtain standard PCA.
- Eigs of $\mathbf{X}^T\mathbf{X}$ and singular values of \mathbf{X} are related as $\lambda_i = s_i^2, \ i = 1,...,n.$

• SVD of X can be written as an expansion:

$$\mathbf{X} = \sum_{j=1}^{n} s_j u_j v_j^T$$

- $s_j = \mathbf{S}_{j,j}$ and u_j and v_j are j-th columns of \mathbf{U} and \mathbf{V} , respectively.
- ullet One can truncate expansion to obtain a compressed representation of the matrix ${f X}.$

• Perform SVD on X (this has S=250 rows and n=6 columns) to obtain:

$$diag(\mathbf{S}) = (12059.49, 486.03, 44.43, 0.00, 0.00, 0.00).$$

- Matrix has a rank of 3 (there are 3 non-zero singular values), matrix is irregular.
- By inspecting data matrix (few rows):

$$\mathbf{X} = \left[\begin{array}{cccccc} 1.00 & 166.98 & 25.56 & 451.12 & 74.44 & 583.15 \\ 1.00 & 170.71 & 24.75 & 449.51 & 75.25 & 583.15 \\ 1.00 & 141.17 & 32.22 & 464.44 & 67.78 & 583.15 \\ 1.00 & 146.63 & 30.64 & 461.28 & 69.36 & 583.15 \\ 1.00 & 164.67 & 26.08 & 452.16 & 73.92 & 583.15 \\ 1.00 & 157.43 & 27.79 & 455.59 & 72.21 & 583.15 \\ \end{array} \right].$$

• 1st and 6th columns are linearly dependent but rest of dependencies are less obvious.

Example: SVD for Gibbs Reactor ch6_gibbs_pca_estimation_svd.m

- 1st and 6th columns are linearly dependent but rest of dependencies are less obvious.
- Redundancies are identified as:

$$\begin{aligned} \operatorname{rank}(\mathbf{X}[:,1]) &= 1 \\ \operatorname{rank}(\mathbf{X}[:,1,2]) &= 2 \\ \operatorname{rank}(\mathbf{X}[:,1,2,3]) &= 3 \\ \operatorname{rank}(\mathbf{X}[:,1,2,3,4]) &= 3 \\ \operatorname{rank}(\mathbf{X}[:,1,2,3,4,5]) &= 3 \\ \operatorname{rank}(\mathbf{X}[:,1,2,3,4,5,6]) &= 3 \end{aligned}$$

- 4th, 5th, and 6th columns are dependent on the 1st, 2nd, and 3rd columns.
- These dependencies arise due to mass balances (conservation); sum of some flows results in another flow.

- Any matrix X can be represented as grayscale image; each entry corresponds to a
 pixel and number at such entry is intensity (i.e., how dark pixel is).
- ullet Similarly, any grayscale image can be represented as a matrix ${f X}$ and this is the basic property that enables image processing (e.g., compression and filtering).
- To illustrate this, consider matrix (notice symmetry and decaying magnitudes):

X =	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	1	1	1	0	0	0
	0	0	1	2	4	4	2	1	0	0
	0	1	2	6	9	9	6	2	1	0
	0	1	4	9	14	14	9	4	1	0
	0	1	4	9	14	14	9	4	1	0
	0	1	2	6	9	9	6	2	1	0
	0	0	1	2	4	4	2	1	0	0
	0	0	0	1	1	1	1	0	0	0
	0	0	0	0	0	0	0	0	0	0

• What is image corresponding to this matrix? What if this is corrupted with noise?

Figure: Image corresponding to matrix X (top-left) and to perturbed matrix X_{ϵ} (top-right). Image corresponding to compression of matrix X (bottom-left) and of perturbed matrix X_{ϵ} (bottom-right) using first singular value.

- \bullet Images contain 10×10 =100 pixels and capture spatial pattern of matrices.
- To human eye, it is easier to visualize patterns using images.
- However, matrix representation enables analysis, storage, and manipulation.
- Perform SVD of image $X = USV^T$ and write as expansion:

$$\mathbf{X} = \sum_{i=1}^{10} s_i \mathbf{u}_i \mathbf{v}_i^T$$

where \mathbf{u}_i and \mathbf{v}_i are vectors of dimension 10.

• From SVD we find that image has 4 non-zero singular values:

- 1st SV dominates, image can be approximated as $\mathbf{X} \approx s_1 \mathbf{u}_1 \mathbf{v}_1^T$.
- We have reduced the amount of data that we need to store by 80%.
- SVD applied to noisy image can be used to eliminate noise.
- Compression possible because of strong redundancies in the image (note that it is symmetric in all directions).

Example: Image Compression using SVD ch6_svd_reconstruction.m

- Decompose complex image $\mathbf{X} = \sum_{k=1}^{n} s_k \mathbf{u}_k \mathbf{v}_k^T$.
- Large components tend to contain broad (global) features while small components contain granular (local) features such as noise.
- By truncating expansion to compress image, we ignore (filter out) granular behavior.
- Image is matrix X of dimension 605×605 and has total of 366,025 pixels.

Example: Image Compression using SVD ch6_svd_reconstruction.m

- Upon applying SVD, we find that matrix is full rank (regular).
- Obtain approx images by truncating series with n = 1, 3, 10, 100.
- Coarse features develop quickly (n=3) while granular features develop slowly.
- Elements $s_j u_j v_j^T$ of SVD series encode different "features" of image.
- Observe that a nearly perfect image is obtained with n = 100.
- Truncating series filters out granular features (imperceptible to human eye).

Example: Image Compression using SVD ch6_svd_reconstruction.m

Figure: Original image (left) and compressions using n=1,3,10,100 singular values (right).