The calculation of inelastic neutrino/dark matter nucleus scattering

Wei-Chih Huang

Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77845, USA s104021230@tamu.edu

May 10, 2022

Collaborators: B. Dutta, J. Newstead, V. Pandey, C. Johnson

Based on Inelastic nuclear scattering from neutrinos and dark matter (to appear soon)

Coherent elastic neutrino-nucleus scattering

$$rac{d\sigma}{dT} = rac{G_F^2 M}{\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - rac{T}{E_
u}
ight)^2 - (G_V^2 - G_A^2) rac{MT}{E_
u^2}
ight]$$

v (neutral current)

E_v: Neutrino Energy, T: Nuclear recoil energy, M: Nuclear mass, Q: Momentum transfer

Freedman,'74, Freedman, Schramm, Tubbs,'77

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} \frac{Q_W^2}{4} F^2(Q) \left(2 - \frac{MT}{E_\nu^2}\right) \qquad \begin{array}{l} \textbf{For T$<<$E_\nu$,} \\ \textbf{Q_w} = \textbf{N} - (\textbf{1} - \textbf{4} \sin^2\!\theta_\textbf{W}) \textbf{Z} \end{array}$$

$$\rightarrow \frac{d\sigma}{dT} \propto N^2$$

- Large Cross-section, but tiny nuclear recoil energy
- Detector are now sensitive to ~ keV to 10's of keV recoils

COHERENT @ ORNL: 1 GeV proton beam CCM @ LANL: 800 MeV proton beam

Prompt: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Delayed:
$$\mu^+ \rightarrow e^+ + \overline{\nu_\mu} + \nu_e$$

Inelastic neutrino-nucleus scattering

$$rac{d\sigma_{inel}^{
u}}{d\Omega} = rac{2G_F^2}{\pi(2J+1)}E_f^2 \ W(2m_N E_r)$$

W = linear combination of multipole operators, which is the real challenge

This is crucial to understand the new physics

Nuclear Response Function

$$W_{M}^{\tau\tau'}(y) = \sum_{J=0,2,...}^{\infty} \langle j_{N} || M_{J;\tau}(q) || j_{N} \rangle \langle j_{N} || M_{J;\tau'}(q) || j_{N} \rangle$$

$$W_{\Phi''}^{\tau\tau'}(y) = \sum_{J=0,2,...}^{\infty} \langle j_{N} || \Phi''_{J;\tau}(q) || j_{N} \rangle \langle j_{N} || \Phi''_{J;\tau'}(q) || j_{N} \rangle$$

$$W_{\Phi''M}^{\tau\tau'}(y) = \sum_{J=0,2,...}^{\infty} \langle j_{N} || \Phi''_{J;\tau}(q) || j_{N} \rangle \langle j_{N} || M_{J;\tau'}(q) || j_{N} \rangle$$

Multipole Operator

$$\mathcal{M}_{LM} = F_1^N M_L^M + \frac{\mathbf{q}^2}{4m_N^2} (F_1^N + 2F_2^N) \left(\Phi_L^{"M} - \frac{1}{2} M_{LM} \right)$$

Run slowly by mathematica

Bigstick is nuclear shell model code.

Anand, Fitzpatrick, Haxton, PRC. 2014

Johnson, Ormand, McElvain, Shan, 2018

Q: Is there a shortcut?

Gamow-Teller operator

Gamow-Teller operator $\frac{1}{2}\hat{\sigma}\hat{\tau_0}$

Strength function

$$\sigma_{
u}^{GT} = rac{G_f^2 g_A^2}{\pi (2J+1)} E_f^2 |\langle J_f || \sum_{i=1}^A rac{1}{2} \hat{\sigma_i} \hat{ au_0} || J_i
angle|^2$$
 $rac{d\sigma_{inel}^{
u}}{d\Omega} = rac{2G_F^2}{\pi (2J+1)} E_f^2 \ W(2m_N E_r)$

In low recoil energy limit, GT cross section can be related to T^{el5} in multipole analysis.

$$\sigma_{\nu}^{GT} \approx \sigma^{\mathrm{multipole}}$$
 (with only T_{el5} , other terms ignored)

Multipole vs Gamow-Teller states

We've calculated 16 multipole states (including the ground state), and around 500 states with GT strength (nearly half of them are zero)

Comparison between two formalisms

Bigstick output

Formalism	Energy	Spin	Isospin	Density matrix	Strength
Multipole	Yes	Yes	Yes	Yes	Yes (via dm)
Gamow-Teller	Yes	No	No	No	Yes

Pros and cons

Formalism	pros	cons
Multipole	Detailed, inclusive	Heavy task
Gamow-Teller	Easy, quick	Less detailed

GT is sufficient for us

Neutrino nucleus cross section plots

DM-nucleus scattering

Production of $DM(\chi_1)$ at COHERENT

There is also another process: Charge exchange

- $\pi^- + p \to \pi^0 + n$
- $\pi^0 \rightarrow \gamma + A'$
- $\pi^{-/+} + p/n \to n/p + A'$
- ullet Dark Bremsstrahlung: $e^{\pm *}
 ightarrow e^{\pm} + A'$

Lagrangian $\mathcal{L}\supset g_D A'_\mu ar\chi \gamma^\mu \chi + e \epsilon Q_q A'_\mu ar q \gamma^\mu q$

DM-nucleus scattering

deNiverville, Pospelov, Ritz, 2011 Dutta et al., 2020 COHERENT Collaboration, 2019 COHERENT Collaboration, 2021 CCM Collaboration, 2021

Dark matter nucleus scattering

$$\begin{aligned} \frac{d\sigma}{dE_r}\Big|_{el} &= \frac{e^2\epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2)(2m_N E_r + m_{A'}^2)^2} \Big[2E_\chi^2 m_N (1 - \frac{E_r}{E_\chi} - \frac{m_N^2 E_r + m_\chi^2 E_r}{2m_N E_\chi^2}) \Big]_{10^{-32}} \\ &+ E_r^2 m_N \Big] |F(2m_N E_r)|^2 \\ \frac{d\sigma}{dE_r}\Big|_{inel} &= \frac{2e^2\epsilon^2 g_D^2}{p_\chi p_\chi' (2m_N E_r + m_{A'}^2)^2} \frac{m_N}{2\pi} \frac{4\pi}{2J + 1} |\langle J_f || \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 || J_i \rangle|^2 \\ \epsilon &= 10^{-4}, g_D = \sqrt{2\pi} \end{aligned}$$

$$m_\chi = 30 MeV, m_{A'} = 90 MeV$$

$$10^{-36}$$

Event rate ratio

Scattering	Experiment	Elastic / Inelastic
ν - 40 Ar	COHERENT	364.051
ν - 40 Ar	CCM	364.051
ν - 133 Cs	COHERENT	32075.17
ν^{-127}	COHERENT	2813.77
χ -40Ar (π 0)	CCM	18.76
χ -40 Ar (π^{-})	CCM	16.61
χ - ¹³³ Cs	COHERENT	1782.69
χ -127	COHERENT	685.24

Dark matter has lower ratio as it has higher energy than nu.

Conclusion

- This work is important. One can understand the new physics
- We calculate the inelastic cross section and event rate ratio for neutrino and DM nucleus scattering

- Gamow-Teller transitions dominate the inelastic cross section

- The ratio is smaller in DM scattering because DM has higher energy than nu

- The inelastic contribution is roughly 1% of the elastic

Backup slides

Backup

Nuclear response function $\; M_{JM}(q\vec{x}_i) \equiv j_J(qx_i) Y_{JM}(\Omega_{x_i})$

where Y_{JM} is Bessel spherical harmonics

ν N scattering: Inelastic cross section (Multipole)

$$W(2m_{N}E_{r}) = \sum_{J\geqslant 1, spin} \left[\frac{1}{2} (\vec{I} \cdot \vec{I}^{*} - I_{3}I_{3}^{*}) \left(|\langle J_{f}| | \mathcal{T}^{mag} | |J_{i}\rangle|^{2} + |\langle J_{f}| | \mathcal{T}^{el} | |J_{i}\rangle|^{2} \right) - i(\vec{I} \times \vec{I}^{*})_{3} Re(|\langle J_{f}| | \mathcal{T}^{mag} | |J_{i}\rangle| |\langle J_{f}| | \mathcal{T}^{el} | |J_{i}\rangle|)^{*} \right] + \sum_{J\geqslant 0, spin} \left[I_{0}I_{0}^{*} |\langle J_{f}| |\mathcal{M}| |J_{i}\rangle|^{2} + I_{3}I_{3}^{*} |\langle J_{f}| |\mathcal{L}| |J_{i}\rangle|^{2} - 2Re(I_{3}I_{0}^{*} |\langle J_{f}| |\mathcal{L}| |J_{i}\rangle| |\langle J_{f}| |\mathcal{M}| |J_{i}\rangle|^{*}) \right]$$

Neutrino current $I_{\mu} = \bar{\nu} \gamma_{\mu} \frac{(1-\gamma_5)}{2} \nu$, recoil momentum q

Hoferichter, Menéndez, Schwenk, PRD, 2020

$$\begin{split} \mathcal{M} &= \mathcal{M}_{LM} + \mathcal{M}_{LM}^5 = \left\{ F_1^N M_L^M + \frac{\mathbf{q}^2}{4m_N^2} (F_1^N + 2F_2^N) (\Phi_L^{''M} - \frac{1}{2} M_{LM}) \right\} + \left\{ -i \frac{|\mathbf{q}|}{m_N} G_A^N \left[\Omega_L^M + \frac{1}{2} \Sigma_L^{''M} \right] \right\} \\ \mathcal{L} &= \mathcal{L}_{LM} + \mathcal{L}_{LM}^5 = \left\{ \frac{q^0}{|\mathbf{q}|} \mathcal{M} \right\} + \left\{ i \left[G_A^N (1 - \frac{\mathbf{q}^2}{8m_N^2}) - \frac{\mathbf{q}^2}{4m_N^2} G_P^N \right] \Sigma_L^{''M} \right\} \\ \mathcal{T}^{el} &= \mathcal{T}_{LM}^{el} + \mathcal{L}_{LM}^{el5} = \left\{ \frac{|\mathbf{q}|}{m_N} \left[F_1^N \Delta_L^{'M} + \frac{F_1^N + F_2^N}{2} \Sigma_L^M \right] \right\} + \left\{ i G_A^N (1 - \frac{\mathbf{q}^2}{8m_N^2}) \Sigma_L^{'M} \right\} \\ \mathcal{T}^{mag} &= \mathcal{T}_{LM}^{mag} + \mathcal{L}_{LM}^{mag5} = \left\{ -i \frac{|\mathbf{q}|}{m_N} \left[F_1^N \Delta_L^M - \frac{F_1^N + F_2^N}{2} \Sigma_L^M \right] \right\} + \left\{ G_A^N (1 - \frac{\mathbf{q}^2}{8m_N^2}) \Sigma_L^M \right\} \end{split}$$

ν N scattering: Inelastic cross section (Multipole)

$$\begin{split} \frac{d\sigma_{inel}^{\nu}}{d\Omega} &= \frac{2G_F^2}{\pi(2J+1)} E_f^2 \cos^2\frac{\theta}{2} \Big\{ \sum_{J=0}^{\infty} |\langle J_f || \hat{\mathcal{M}}_J + \frac{q_0}{q} \hat{\mathcal{L}}_J || J_i \rangle|^2 \\ &+ \left[-\frac{q_\mu^2}{2q^2} + \tan^2\frac{\theta}{2} \right] \sum_{J=1}^{\infty} \left[|\langle J_f || \hat{\mathcal{T}}_J^{el} || J_i \rangle|^2 + |\langle J_f || \hat{\mathcal{T}}_J^{mag} || J_i \rangle|^2 \right] \\ &\mp 2 \tan\frac{\theta}{2} \left[-\frac{q_\mu^2}{q^2} + \tan^2\frac{\theta}{2} \right]^{1/2} \sum_{J=1}^{\infty} Re\left(\langle J_f || \hat{\mathcal{T}}_J^{mag} || J_i \rangle \langle J_f || \hat{\mathcal{T}}_J^{el} || J_i \rangle^* \right) \Big\} \end{split}$$

Backup Multipole operators

Multipole operators are defined by

$$\hat{\mathcal{M}}_{JM} = M_{JM} + M_{JM}^{5} = \int d^{3}x [j_{J}(qx)Y_{JM}(\Omega_{x})]\hat{\mathcal{J}}_{0}(x)$$

$$\hat{\mathcal{L}}_{JM} = L_{JM} + L_{JM}^{5} = \frac{i}{q} \int d^{3}x [\nabla [j_{J}(qx)Y_{JM}(\Omega_{x})]] \cdot \hat{\mathcal{J}}(x)$$

$$\hat{\mathcal{T}}_{JM}^{el} = T_{JM}^{el} + T_{JM}^{el5} = \frac{1}{q} \int d^{3}x [\nabla \times j_{J}(qx)\mathbf{Y}_{JJ1}^{M}(\Omega_{x})] \cdot \hat{\mathcal{J}}(x)$$

$$\hat{\mathcal{T}}_{JM}^{mag} = T_{JM}^{mag} + T_{JM}^{mag5} = \int d^{3}x [j_{J}(qx)\mathbf{Y}_{JJ1}^{M}(\Omega_{x})] \cdot \hat{\mathcal{J}}(x)$$

Backup: Nuclear response functions

Nuclear response functions are defined by

$$\begin{array}{lcl} M_{JM} & = & F_{1}^{(1)}(q_{\mu}^{2})M_{J}^{M} \\ L_{JM} & = & \frac{q_{0}}{q}M_{JM} \\ T_{JM}^{el} & = & \frac{q}{m_{n}}(F_{1}^{(1)}(q_{\mu}^{2})\Delta_{J}^{'M} + \frac{1}{2}\mu^{(1)}(q_{\mu}^{2})\Sigma_{J}^{M}) \\ T_{JM}^{mag} & = & -\frac{iq}{m_{n}}(F_{1}^{(1)}(q_{\mu}^{2})\Delta_{J}^{M} - \frac{1}{2}\mu^{(1)}(q_{\mu}^{2})\Sigma_{J}^{'M}) \\ M_{JM}^{5} & = & \frac{iq}{m_{n}}(F_{A}^{(1)}(q_{\mu}^{2})\Omega_{J}^{'M} + \frac{1}{2}q_{0}F_{P}^{(1)}(q_{\mu}^{2})\Sigma_{J}^{''M}) \\ L_{JM}^{5} & = & i\left(F_{A}^{(1)}(q_{\mu}^{2}) - \frac{q^{2}}{2m_{n}}F_{P}^{(1)}(q_{\mu}^{2})\right)\Sigma_{J}^{''M} \\ T_{JM}^{el5} & = & iF_{A}^{(1)}(q_{\mu}^{2})\Sigma_{J}^{'M} \\ T_{JM}^{mag5} & = & F_{A}^{(1)}(q_{\mu}^{2})\Sigma_{J}^{M} \end{array}$$

Backup: Nucleon form factor

In previous slide m_n is nucleon mass and

$$\mu^{(1)}(q_{\mu}^2) = F_1^{(1)}(q_{\mu}^2) + 2m_n F_2^{(1)}(q_{\mu}^2)$$
. In low recoil energy limit $F_1^{(1)}(0) = 1$, $F_A^{(1)}(0) \sim -1.26$, $F_P^{(1)}(0) = \frac{2M_n F_A^{(1)}(0)}{m_p}$, $\mu^{(1)}(0) \sim 4.706$.

We use mathematica package SevenOperators (0706.2210) and nuclear shell model code BIGSTICK (1303.0905) to calculate the nuclear response functions.

Backup

Dirac form factor
$$F_1^N=Q^N+\frac{\langle r_1^2\rangle^N}{6}q^2$$

Pauli form factor $F_2^N=\kappa^N$
with charge Q^N , magnetic moment $\kappa^p\approx 1.796, \kappa^n\approx -1.913$
and charge radius $\langle r_1^2\rangle^N=\langle r_E^2\rangle^N-\frac{3\kappa_N}{2m_N^2}$
with $\langle r_E^2\rangle^p\approx 0.707fm^2, \langle r_E^2\rangle^n\approx -0.116fm^2$

Pseudoscalar form factor
$$G_P = -\frac{4m_N g_{\pi NN} F_{\pi}}{q^2 - M_{\pi}^2} - \frac{2}{3} g_A m_N^2 \langle r_A^2 \rangle$$

Axial vector form factor $G_A = \frac{g_A}{(1 - q^2/M_A^2)^2}$ with $F_{\pi} \approx 92.28 MeV$

$$\frac{g_{\pi NN}^2}{4\pi} \approx 13.7, \langle r_A^2 \rangle \approx 0.46 fm^2, g_A \approx 1.276, M_A \approx 1 GeV$$

4□ > 4□ > 4 □ > 4

Backup: DM current

Spin sum of DM current $I_{\mu} = \bar{\chi} \gamma^{\mu} \chi$ is given by

$$\sum_{s_i,s_f} I_{\mu} I_{\nu}^* = \sum_{s_i,s_f} \bar{\chi}(p_f) \gamma^{\mu} \chi(p_i) \bar{\chi}(p_i) \gamma^{\mu} \chi(p_f)$$

$$\sum_{s_i, s_f} l_0 l_0^* = 2 - \frac{m_N E_r}{E_\chi^2} + \frac{m_\chi^2}{4E_\chi^2}$$

$$\sum_{s_i, s_f} l_3 l_3^* = 2 - 3 \frac{m_N E_r}{E_\chi^2} - \frac{m_\chi^2}{4E_\chi^2}$$

$$\sum_{s_i, s_f} l_3 l_0^* = 2 - \frac{m_N E_r}{E_\chi^2}$$

$$\sum_{s_i, s_f} \vec{l} \cdot \vec{l}^* = 2 + \frac{m_N E_r}{E_\chi^2} - \frac{3m_\chi^2}{4E_\chi^2}$$

 $\sum (\vec{l} \times \vec{l}^*)_3 = 0$

 S_i, S_f

Backup DM Energy spectra

- Coherent Captain-Mills (CCM) experiment (LANL). [800 MeV protons hit a tungsten target, total 7 tons (fiducial) LAr of detector 20m from the target. $\sim 10^{22}$ POT (protons-on-target) per year, currently ongoing] Aguilar-Arevalo, et al, 2021
- COHERENT experiment (ORNL) [1 GeV protons hit a mercury target, 14.6kg Csl of detector 19.3m from the target, $\sim 10^{23}$ POT

Backup Gamow-Teller transition

 $^{40} Ar$ with $\textit{E}_{\nu} = 30 \text{MeV}$

Backup Gamow-Teller transition

 ^{133}Cs with $\textit{E}_{\nu}=30\text{MeV}$

Backup Gamow-Teller transition

 ^{127}I with $\textit{E}_{\nu}=30\text{MeV}$

Backup Helm vs gs to gs: 40Ar

Backup Helm vs gs to gs: 133Cs and 127I

