Wave transmission – MATLAB project 2

Subject: A double stub matching network and its frequency response

The figure below depicts a double stub matching system, with short-circuited stubs. The line parameters are: $v_p = 310^8$, $Z_C = 50\Omega$ and the distance between the stubs is $D = 1.25 \ cm$

A. For a given load $Z_L = 100 + jX$ [Ω], calculate the stubs lengths L_A , L_B to eliminate reflections in the main line at frequency $f_o = 3$ GHz.

The value of $X = 10 \cdot \text{times}$ [the modulo-10 sum of your ID digits] (example, if your ID# is 123456, then the sum is 21 and the modulo 10 sum is 1)

- B. Calculate and plot the input reflection coefficient for the system found in item A, in the frequency range 2 GHz 4 GHz at steps of 10 MHz.
- C. Repeat item B for the same system except that now L_A is longer by $\lambda_o/2$ compared with the value found in item A, where λ_o is the wavelength at f_o , and compare the results to those of section B.
- D. The system is now connected to a generator $V_G(\omega)=1V$ with output impedance of $Z_G=75\Omega$. Calculate and plot the power absorbed by the load in the frequency range 2 GHz 4 GHz for the system found in item A. Explain the results in view of the results of item B.

Submission Guidelines

- 1. The project is performed and submitted in pairs, but students who want it may also do it by their own.
- 2. All answers should be explained.
- 3. Attach your code at the end of the report.
- 4. All pairs will be examined on the project. Please bring the hard copy of your report to the exam.