

Smt. Kamala & Sri Venkappa M. Agadi College of Engineering & Technology, Lakshmeshwar-582116

(Approved by AICTE, New Delhi & Affiliated to VTU Belagavi, ISO 9001:2015 Certified)

Department of Information Science and Engineering

"Deep Fake Video Detection"

Using Deep Learning

Under the Guidance of Miss. Kavita G

PRESENTED BY:

GULAM JEELANI NIBHA FATIMA 2KA20IS010 2KA20IS020

MD SAAD MANIYAR TAUFIQ RAZA 2KA20IS018 2KA20IS033

FINAL YEAR STUDENTS
INFORMATION SCIENCE ENGINEERING
SKSVMACET-LAXMESHWAR

CONTENTS

DEPT: ISE

INTRODUCTION

- □ DEEP FAKE A Deep fake is a machine learning generated image or video that has been manipulated to misrepresent someone.
- □ <u>DEEP LEARNING</u> Deep learning is a branch of machine learning that concentrates on CNN.
- ☐ DEEP FAKE VIDEO DETECTOR is a sophisticated tool designed to identify manipulated videos created through advanced technological means

LITERATURE SURVEY

	Year	Author	Topic	Techniques Used	Limitation		
01	2020	Nikita S, Anton V	Combining Deep Learning and Super- Resolution Algorithms for Deep Fake Detection	Inconsistent Head Pose Analysis & CNN ResNet50 Model	Accuracy Scalability Ethical Implications		
02	2022	Aditya Jagtap, Saloni Sharma	Synthetic Content Detection in Deepfake Video using Deep Learning	Convolutional Neural Networks (CNN) & Long Short-Term Memory (LSTM).	 Scope Real-time Detection Robustness 		
03	2023	Fahad Mira	Deep Learning Technique for Recognition of Deep Fake Videos	Lip-Syncing and Neural Networks, Artificial Neural Networks, Cyber Secure.	 Data Dependency Detection Challenges Speed and Efficiency 		

- > Why Deep Fake Detection?
- > Can we detect Deep fakes with naked eyes?

☐ Why Deep Fake Detection?

- ✓ Fake News
- ✓ Financial fraud
- ✓ Celebrity unusual video
- ✓ Revenge porn
- ✓ Politician videos

☐ Can we detect Deep fakes with naked eyes?

Real or Fake?

RESULT

Real Fake

Fake Fake

Fake Real

OBJECTIVES

- > To identify manipulation content.
- > To develop Robust Detection Models.
- > To perform Metrics Definition.
- > To preserves Authenticity and Enhancing Cybersecurity.

Some of machine learning algorithms and computer vision techniques to achieve the above objectives are:

1]CNN 2] LSTM

3]ResNext 4]RNN

SYSTEM SPECIFICATIONS

FUNCTIONAL SPECIFICATIONS

- Video Input Handling.
- Deepfake Detection Model.
- Dataset Integration.
- Real-time Processing.
- Model Evaluation.

NON FUNCTIONAL SPECIFICATIONS

- > Performance.
- > Accuracy.
- > Scalability.
- > Reliability.

SYSTEM REQUIREMENTS

DEPT: ISE

METHODOLOGY

System Architecture

Model Architecture

ResNext-50

			-		
stage	output	ResNeXt-50 (32×4d)			
conv1	112×112	7×7, 64, stride 2			
	56×56	3×3 max pool, stride 2			
conv2		1×1, 128			
COHVZ		$3 \times 3, 128, C=32 \times 3$			
		1×1, 256			
	28×28	[1×1, 256	_		
conv3		3×3, 256, <i>C</i> =32 ×4			
		1×1,512			
	14×14	[1×1,512]			
conv4		$3 \times 3, 512, C=32 \times 6$,		
		1×1, 1024			
	7×7	1×1, 1024			
conv5		3×3, 1024, C=32 ×3	3		
		1×1, 2048			
11		global average pool			
	1×1	1000-d fc, softmax			
# params.		25.0 ×10 ⁶			

Sequential Layer

2048 shape input vector and 2048 latent features along with 0.4 chance of dropout and ReLU Activation function

	Model Name	Dataset	No of Videos	Sequence Length	Accuracy
	model_90_acc_20_frames_FF_data	Face Forensic++		20	90.95477387
	model_95_acc_40_frames_FF_data		2000	40	95.22613065
	model_97_acc_60_frames_FF_data			60	97.48743719
	model_97_acc_80_frames_FF_data			80	97.73366834
	model_97_acc_100_frames_FF_data			100	97.76180905
Results	model_84_acc_10_frames_final_data		6000	10	84. 662519
	model_87_acc_20_frames_final_data			20	87.79160186
	model_89_acc_40_frames_final_data	Our Dataset		40	89.3468118195956
	model_91_acc_60_frames_final_data			60	91.5909797822706
	model_92_acc_80_frames_final_data	_		80	92.4981855883877
	model_93_acc_100_frames_final_data			100	92.10883877

CONCLUSION

DEPT: ISE

[1] X. Yang, Y. Li, and S. Lyu, "Exposing deep fakes using inconsistent head poses," ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, 2019.

[2] C. Vaccari and A. Chadwick, "Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news," Social Media+ Society, vol. 6, pp. 2 056 305 120 903 408–2 056 305 120 903 408, 2020

[3] Sheng-Yu Wang, "CNN-generated images are surprisingly easy to spot...for now," Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020

[4] M. Masood, "Deepfakes Generation and Detection: State-of-the-art, open challenges, countermeasures, and way forward," Applied Intelligence, pp. 1–53, 2022.

Thank you