Assignment 1: CS6023 GPU Programming

by CS15B049

Q1: The value of the following device properties are:

L1 cache supported locally: TRUE L1 cache supported globally: TRUE L2 cache size (in bytes): 1572864

maximum allowed number of threads per block: 1024

registers are allocated per block: 65536

registers are available in a Streaming Multiprocessor: 65536

warp size: 32

total amount of memory available in the GPU (in bytes): 11995578368

Q2: The roof line model graph is:

calculation of peak performance = (number of SM**wrap_size)*2*2*clock_rate = (15*32)*2*2*745000000 = 1.43 TFLOPS memory bandwidth = 288 GB/sec

The graph:

Q3: The code is submitted along with this report.

Q4: The runtime configuration:

size of vector (N) = 32768 num of ops per thread = 1

Optimal Configuration for N=32768:

Threads per block = 256 Blocks per grid = 128

Graph:

Observation: The run time decreases as num of threads per block increases and till it saturates the hardware and after it increasing number of threads increase runtime.

Q5: The runtime configuration : size of vector
$$(N) = 32768$$

Using optimal Configuration from Q4:

(i) Num of threads per block = 256 and varying block per grid wrt num of ops per thread as N remains constant.

Which gives optimal runtime at number of ops per thread = 4;

(ii) Kepping number of blocks per grid = 128 and varying number of threas as number of operations per thread increases.

Which gives optimal value = 4.

Combining both graphs into one: Both gives optimal at 4

Q6 : The runtime configuration (using optimal from above): num of ops per thread = 4

(i) Keeping Number of threads per block to optimal =256 , and increasing N from $2^{\wedge}15\;$ to $2^{\wedge}20\;$

(ii) Keeping Number of block per grid to optimal = 128 , and increasing N from 2^15 to 2^20

Combining both graphs in one:

