1 Учебники

- 1. Колмогоров
- 2. Люстерник, Соболев (Краткий Курс Функционального Анализа)
- 3. Вайнберг Функциональный Анализ
- 4. Бахарев

2 Метрические пространства

Пусть есть некоторое множество M, мы хотим ввести предел (непрерывность, производную и тд) на этом множестве.

Надо ввести расстояние (метрику).

Определение 1 (Метрика). *Метрикой* ρ на множестве M называется отображение $\rho: M \times M \to [0, +\infty)$ удовлетворяющее следущим свойствам (аксиомам):

1.
$$\rho(x,y) \ge 0, \rho(x,u) = 0 \iff x = y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \le \rho(x,y) + \rho(y,z)$$

Пара (M, ρ) называется метрическим пространством.

Пример 1.1.

$$M = \mathbb{R}, \rho(x, y) = |x - y| \tag{1}$$

Пример 1.2.

$$M = \mathbb{R}^n, ||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$
 (2)

Пример 1.3 (Транспортная метрика (Матхэтеннская)).

$$\rho(A,B) = \min$$
 ломанная соединяющая A,B (3)

Пример 1.4. M – город

$$\rho(A,B) = \min$$
 время за которое можно добраться $A \to B$ (4)

Пример 1.5. M – множество всех непрерывных функций $f(t):[0,1]\to\mathbb{R}$, M=C([0,1])

$$\rho(f_1, f_2) = \max_{t \in [0,1]} |f_1(t) - f_2(t)| \tag{5}$$

тах ∃ по теореме Вейрштрасса

$$(M, \rho) = C[0, 1]$$
 (6)

Это одно из важнейших пространств функционального анализа

Пример 1.6. Обозначим $M = \{ M$ ножество всех последовательностей $\{x_n\} = (x_1, x_2, \dots, x_n, \dots), x_k \in \mathbb{R} \}$

$$\rho(\{x_n\}, \{y_n\}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$
(7)

- 1. Ряд сходится для любых последовательностей так как мажорируется рядом $\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$
- 2. Докажем, что выполняется неравентство треугольника Рассмотрим вспогательную функцию

$$f(t) = \frac{t}{1+t} : [0, +\infty] \to \mathbb{R}$$
 (8)

Ясно что $f(t)=1-\frac{1}{1+t}$ данная функция возрастаетс так как $\frac{1}{1+t}$ убывает. Отсюда следует, что

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|+|b|}{1+|a|+|b|} = \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

$$(9)$$

$$f(|a+b|) \le f(|a|+|b|) \le f(|a|) + f(|b|)$$

$$(10)$$

Мы доказали неравенство треугольника для всех членов ряда

 $Paccмomum \{z\}$

$$\frac{|x_n - y_n|}{1 + |x_n - y_n|} = \frac{|x_n - z_n + z_n - y_n|}{1 + |x_n - z_n + z_n - y_n|} \le \frac{|x_n - z_n|}{1 + |x_n - z_n|} + \frac{|z_n - y_n|}{1 + |z_n - y_n|} \tag{11}$$

$$\rho(x_n, y_n) \le \rho(x_n, z_n) + \rho(z_n, y_n)$$

Понятие метрики позволяет на метрическом пространстве (M, ρ) вводить «старые» понятия из анализа.

1. Открытый шар радиуса r с центром в точке x_0

$$B_r(x_0) := \{ x \in M \mid \rho(x, x_0) < r \}$$
(13)

2. Замкнутый шар радиуса r с центром в точке x_0

$$\overline{B}_r(x_0) := \{ x \in M \mid \rho(x, x_0) \le r \}$$
 (14)

- 3. $X \subset M$ назывется открытым, если $\forall x \in X \; \exists B_r(x) \subset X$
- 4. Множество X называется замкнутым если дополнение к нему $(M\backslash X)$ является открытым
- 5. Точка x_0 называется внутренней точкой X, если $\exists B_r(x_0 \subset X \ , X \$ открытое \iff любая точка внутренняя

- 6. x_0 называется предельной точкой множества X, если $\forall r>0$ $B_r(x_0)\cap X$ содержит бесконечно много точек из X
- 7. x_0 называется изолированной точкой множества X если $\exists B_r(x_0): B_r(x_0) \cap X = \{x_0\}$ Изолированная точка не может быть предельной
- 8. Точка x_0 называется внешней для множетсва X, если существует такой шар с центром в x_0 , что его пересечение с X пусто
- 9. Точка x_0 называется граничной точкой множества X если $\forall r$ в шаре $B_r(x_0)$ содержатся точки как $x \in X$, так и $x \notin X$

Коллекция фактов (без доказательсва, упражнения, дз)

- 1. Другое определение замкнутости. X замкнуто \iff содержит все свои предельные точки
- 2. Добавление к X всех его предельных точек называется пополнением X. Полученное множество обозначат \overline{X}

$$\overline{X} = X \cup \{$$
 Пределные точки $\}$ (15)

- 3. \overline{X} замкнутое
- 4. X замкнутое $\iff X = \overline{X}$
- 5. Принцим трихотомии (деления на 3) \forall множества X и $\forall x \in M$ возможен только один из трех вариантов
 - (a) x внутренняя точка $x \in \text{Int } X$
 - (b) x граничная точка $x \in \delta X$
 - (c) x внешняя точка

Верны формулы

(a)
$$\overline{X} = X \cup \delta X$$

- (b) $\overline{X_1 \cup X_2} = \overline{X_1} \cup \overline{X_2}$
- (с) Объединение любого числа открытых множеств