Chapter 20. Transaction

1. Does the schedule below suffer from the lost update anomaly? Justify your answer for A=100, B=200, temp=3.

T_1	T_2
read(A) $A := A - 50$	read(A) temp := A * 0.1 A := A - temp write(A) read(B)
write(A) read(B) B := B + 50 write(B) commit	B := B + temp write(B) commit

2. Consider the two serial schedules A and B. Discuss if schedules C and D are serializable to schedules A or B. Consider X=90, Y=90, N=3, M=2. Can you propose another serializable schedule. Use also an example illustrating your answer.

(c)	<i>T</i> ₁	<i>T</i> ₂		<i>T</i> ₁	<i>T</i> ₂	
Time	read_item(X); X := X - N; write_item(X); read_item(Y); Y := Y + N; write_item(Y);	read_item(X); X := X + M; write_item(X);	Time	read_item(X); X := X - N; write_item(X); read_item(Y); Y := Y + N; write_item(Y);	read_item(X); X := X + M; write_item(X);	
Schedule C				Schedule D		

3. Use any of the schedules above to explain the (a) Atomicity and (b) Isolation properties of Transactions in the context of ACID properties. Show also, if applicable, a case where such properties are not met!