Homework 3

Due date:
Mar.31st, 2021
Turn in your homework in class

Rules:

- Please work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism!
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. [8%] Find v_C , i_L and the energy stored in the capacitor and inductor in the circuit of Fig.1 under dc conditions.

Fig. 1

2. [8%] In the circuit shown in Fig.2

$$v(t) = 50e^{-80t}V,$$
 $t > 0$
 $i(t) = 12e^{-80t} mA,$ $t > 0$

- a) Find the values of R and C.
- b) Calculate the time constant τ .
- c) Determine the energy dissipated on the capacitor in the period of 0 < t < 1s.

Fig. 2

3. [10%] Assuming that the switch in Fig.3 has been in position A for a long time and is moved to position C at t=0, Then at t=2s, the switch moves from C to B. Find $v_C(t)$ for $t \ge 0$.

Fig. 3

4. [10%] Determine v(t) for t > 0 in the circuit of Fig.4 if $v(0_{-}) = 0$.

Fig. 4

5. [10%] Assume that the switch has been closed for a long time, find i(t) for t > 0 in the circuit of Fig.5.

Fig. 5

6. [12%] In the circuit of Fig.6, assume the operational amplifier is ideal and works in linear region. Find v_o and i_o , given that $v_s = 5u(t)V$ and $v(0_-) = 2V$.

Fig. 6

7. [14%] When the input to the circuit shown in Fig.7 is the voltage source with $V_s(t)=5-2u(t)$. The output is the voltage $V_0(t)=6+4e^{-100t}\,\mathrm{V},\ t\geq 0$. Determine the values of R_1,R_2 .

(Assume that the circuit reached steady state before t=0 with op amp working in linear region.)

Fig. 7

8. [14%] The switch in Fig.8 has been open for a long time before t = 0. Find the current through the inductor $i_o(t)$ for $t \ge 0$.

Fig. 8

9. [14%] The voltage source $V_s(t) = 6e^{-5t}V(t \ge 0)$, the capacitor voltage at t = 0 is $v_c(0) = 3V$. Assume the ideal op amp works in linear mode all the time. Find $v_0(t)$.

Fig. 9