

FIG. 1

FIG. 2

FIG. 3

FIG. 4

TABLE I
Lipid and apoE levels in plasma and VLDL from different lines of mice

Mice were in a mixed genetic background (C57BL6/ICR) and analyzed at 2-4 months of age. TC, total cholesterol; TG, triglycerides; E3, human apoE3; mE, mouse apoE; LDLR, LDL receptor; mE0, homozygous mouse apoE knockout; LDLR1, heterozygous LDL receptor knockout; LDLR0, homozygous LDL receptor knockout.

	Plasma							VLDL-TG		
Mice	n	Human apoE3	Mouse apoE	TC	TG	п	Human apoE3	Mouse apoE	ApoC-II	production rate
			mg/dl					μg/mg		μ u /h/kg
Nontransgenic	18	0	7 ± 2	79 ± 10	47 ± 20	6	0	19 ± 4	32 ± 6	148 ± 18
E3low/mE0	12	13 ± 2	0	$60 \pm 6^{\circ}$	54 ± 10	6	23 ± 5	0	26 ± 5	168 ± 19
E3high/mE0	15	30 ± 4	0	78 ± 19	128 ± 36°	6	38 ± 5	0	$13 \pm 2^{\circ}$	$221 \pm 11^{a,b}$
LDLŘí	19	0	10 ± 3	134 ± 14^{a}	55 ± 18	6	0	24 ± 6	25 ± 5	•
E3low/mE0/LDLR1	13	17 ± 2	0	136 ± 10°	62 ± 17					
E3high/mE0/LDLR1	17	45 ± 4	0	148 ± 14°	361 ± 69°,c	6	46 ± 4	0	7 ± 1ª,c	
LDLR0	15	0	$15 \pm 3^{\circ}$	255 ± 34°	86 ± 19^{a}	6	0	30 ± 7°	20 ± 3°	
E3low/mE0/LDLR0	9	23 ± 3	0	261 ± 11°	89 ± 18^{a}					
E3/high/mE0/LDLR0	16	54 ± 4	0	294 ± 37^{a}	$532 \pm 59^{a,d}$	6	55 ± 7	0	$3 \pm 1^{a,d}$	$199 \pm 16^{\circ}$

[&]quot; p < 0.01 versus nontransgenic mice."
b p < 0.05 versus hE3low/mE0 mice.

p < 0.01 versus LDLR1 mice. p < 0.01 versus LDLR0 mice.

TABLE II

Effect of apoE expression levels of VLDL triglyceride production in McA-RH7777 cells stably transfected with various apoE isoforms Values are means of duplicate experiments.

	ApoE in	medium	VLDL triglyceride secretion		
Cell lines	Human apoE	Mouse apoE	Without heparinase	With heparinase	
	ng/mg cell protein/h		dpm/mg cell protein/4 h		
McA-RH7777 McA-Neo McA-apoE2-1 McA-apoE2-2 McA-apoE2-3 McA-apoE3-1 McA-apoE3-2 McA-apoE3-2 McA-apoE4-1	0 0 309 1210 2200 338 1237 2436 318	353 368 321 332 364 327 339 345 368 347	5273 5451 5193 3277 2103 1958 1640 818 2878 2491	5604 5719 6682 8828 11576 6223 7815 9896 6540 8224	
McA-apoE4-2 McA-apoE4-3	1153 2192	355	832	10924	

TABLE III Lipid and apoE levels in plasma and VLDL from normal or type IV hyperlipidemic human subjects VLDL cholesterol and triglyceride and HDL cholesterol were calculated from the Superpose 6 chromatography profiles of plasma lipoproteins by summing the individual fractions (Fig. 4, A and B). FFA, free fatty acids; TC, total cholesterol; TG, triglycerides.

	_		Plasma						VLDL .		
	Exp.	n	ApoE	TC	VLDL-TC	HDL-TC	TG	VLDL-TG	ApoE	ApoC-II	VLDL lipolysis
		mg/dl						1	μg/mg TG		nmol FFA/h
I. I	Plasma sample comparisons										
1	Normolipidemic control	6	3.3 ± 0.6	193 ± 14	6 ± 2	54 ± 4	69 ± 27	22 ± 10	13 ± 3	39 ± 7	6068 ± 579
3	Type IV-1 $200 < TG < 300$)	19	8.2 ± 1.9^{4}	204 ± 27	49 ± 7°	$37 \pm 7^{\circ}$	237 ± 24^{a}	105 ± 13°	$24 \pm 3^{\circ}$	18 ± 3ª	4888 ± 524°
7	Type IV-2 $300 < TG < 400$)	4	11.1 ± 0.9^a	221 ± 25	66 ± 3^{a}	34 ± 3^{a}	$348 \pm 27^{\circ}$	152 ± 12°	$30 \pm 2^{\alpha}$	13 ± 2^{a}	4252 ± 353°
Г	Type IV-3 (TG > 400)	4	$13.6 \pm 1.3^{\circ}$	254 ± 15°	76 ± 9°	33 ± 6^{a}	$447 \pm 36^{\circ}$	200 ± 23°	37 ± 2°	10 ± 2°	3741 ± 214°
II. F	Effects of apolipoproteins on lipolysis		•								
	Control + apoE3b	6	14.0 ± 0^{a}						31 ± 3°	11 ± 1ª	4132 ± 414°
	Type IV-2 + apoCII°	4									5598 ± 198

*p < 0.01 versus control.
 Purified human apoE3 was added to control human plasma at a final concentration of 14 mg/dl. After incubation at 37 °C for 20 min, VLDL were isolated and analyzed for apoE content and LPL-mediated lipolysis.
 *Purified human apoC-II (16 μg) was added to VLDL (30 μg of triglycerides) isolated from plasma of Type IV-2 subjects and its effect on

LPL-mediated lipolysis was determined.

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

Nontransgenic Production VLDL Liver Clearance Clearance Clearance VLDL Clearance Clearance Clearance

FIG. 14

TABLE IY

Plasma Lipid Levels of ApoE3 Transgenic Rabbits

Rabbits were analyzed at 8–12 months of age. TC, total cholesterol; TG, triglyceride.

	n	ApoE3	TC	TG
			mg/dl	
MALE		· _	26 ± 5	42 ± 27
Nontransgenic	4	. 0		26 ± 15 .
ApoE3 low	6	8 ± 2	37 ± 18	20 = 10
(<10 mg/dl) ApoE3 medium	5	15 ± 4	109 ± 49°	72 ± 48
(10–20 mg/dl) ApoE3 high	6	28 ± 4	224 ± 73^{b}	198 ± 74^{b}
(>20 mg/dl)				
FEMALE				. •
	4	0	38 ± 8	31 ± 6
Nontransgenic ApoE3 low	4	8 ± 1	49 ± 6	25 ± 9
(<10 mg/dl) ApoE3 medium	3	14 ± 4	108 ± 40^{a}	83 ± 54
(10–20 mg/dl) ApoE3 high	3	29 ± 2	182 ± 26 ^b	154 ± 33^{b}

^ap < 0.05 versus nontransgenics.

FIG. 15

 $^{^{}b}p < 0.005 \ versus \ nontransgenics.$