Druhá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Druhá přednáška

Program

- sémantika výrokové logiky
- normální formy
- vlastnosti a důsledky teorií
- extenze teorií

Materiály

Zápisky z přednášky, Sekce 2.2-2.4 z Kapitoly 2

2.2 Sémantika výrokové logiky

Pravdivostní hodnota: příklad

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a) φ platí při ohodnocení p = 0, q = 0, r = 0

(b) φ neplatí při ohodnocení $p=1,\ q=0,\ r=1$

Sémantika logických spojek

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
Ω	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

$$\begin{array}{ll} \frac{0}{1} \frac{1}{0} & f_{\neg}(x) = 1 - x \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}} & f_{\wedge}(x, y) = \min(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\vee}(x, y) = \max(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\leftrightarrow}(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\leftrightarrow}(x, y) \end{array}$$

Výroky a booleovské funkce

sémantika logických spojek je daná booleovskými funkcemi, každý výrok určuje *složenou* booleovskou funkci, tzv. pravdivostní funkci

např.
$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ v jazyce } \mathbb{P}' = \{p, q, r, s\}$$

$$f_{\varphi, \mathbb{P}'}(x_0, x_1, x_2, x_3) = f_{\leftrightarrow}(f_{\lor}(x_0, f_{\neg}(x_1)), f_{\to}(x_2, f_{\land}(x_0, x_1)))$$

pravdivostní hodnota φ při ohodnocení $p=1,\ q=0,\ r=1,\ s=1$:

$$egin{aligned} f_{arphi,\mathbb{P}'}(1,0,1,1) &= f_{\leftrightarrow}(f_{\lor}(1,f_{\lnot}(0)),f_{\rightarrow}(1,f_{\land}(1,0))) \ &= f_{\leftrightarrow}(f_{\lor}(1,1),f_{\rightarrow}(1,0)) \ &= f_{\leftrightarrow}(1,0) \ &= 0 \end{aligned}$$

Pravdivostní funkce formálně

Pravdivostní funkce výroku φ v konečném jazyce $\mathbb P$ je funkce $f_{\varphi,\mathbb P}\colon \{0,1\}^{|\mathbb P|} \to \{0,1\}$ definovaná induktivně:

- je-li φ *i*-tý prvovýrok z \mathbb{P} : $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=x_i$
- je-li $\varphi=(\neg\varphi')$: $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=f_{\neg}(f_{\varphi',\mathbb{P}}(x_0,\ldots,x_{n-1}))$
- je-li $(\varphi' \square \varphi'')$ kde $\square \in \{\land, \lor, \to, \leftrightarrow\}$: $f_{\varphi, \mathbb{P}}(x_0, \ldots, x_{n-1}) = f_{\square}(f_{\varphi', \mathbb{P}}(x_0, \ldots, x_{n-1}), f_{\varphi'', \mathbb{P}}(x_0, \ldots, x_{n-1}))$

Poznámka: Pravdivostní funkce $f_{\varphi,\mathbb{P}}$ závisí pouze na proměnných odpovídajících prvovýrokům z $Var(\varphi) \subseteq \mathbb{P}$.

Je-li výrok v *nekonečném* jazyce \mathbb{P} , můžeme se omezit na jazyk $\mathsf{Var}(\varphi)$ (který je konečný) a uvažovat pravdivostní funkci nad ním.

Modely

Pravdivostní ohodnocení reprezentuje 'reálný svět' (systém) v námi zvoleném 'formálním světě', proto mu také říkáme model

Model jazyka \mathbb{P} : libovolné pravdivostní ohodnocení $v \colon \mathbb{P} \to \{0,1\}$ Množina všech modelů: $M_{\mathbb{P}} = \{v \mid v \colon \mathbb{P} \to \{0,1\}\} = \{0,1\}^{\mathbb{P}}$

```
\begin{split} \mathbb{P} &= \{p,q,r\}, \text{ ohodnocení } p \text{ je pravda, } q \text{ nepravda, a } r \text{ pravda:} \\ \text{formálně } \mathbf{v} &= \{(p,1),(q,0),(r,1)\} \text{ ale píšeme}^1 \text{ jen } \mathbf{v} &= (1,0,1) \\ \\ \mathbb{M}_{\mathbb{P}} &= \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} \end{split}
```

 $^{^1}$ Formálně ztotožňujeme $\{0,1\}^{\mathbb{P}}$ s $\{0,1\}^{|\mathbb{P}|}$, množina \mathbb{P} je uspořádaná.

Platnost

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1 Výrok φ v jazyce \mathbb{P} , model $v \in M_{\mathbb{P}}$. Pokud $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$.

Množina všech modelů resp. $nemodelů \varphi$:

$$\frac{\mathsf{M}_{\mathbb{P}}(\varphi)}{\mathsf{M}_{\mathbb{P}}(\varphi)} = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[1]$$
$$\overline{\mathsf{M}_{\mathbb{P}}(\varphi)} = M_{\mathbb{P}} \setminus M_{\mathbb{P}}(\varphi) = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \not\models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[0]$$

Je-li jazyk zřejmý z kontextu, můžeme vynechat, ale jinak ne!

$$\begin{split} \mathsf{M}_{\{p,q\}}(p \to q) &= \{(0,0),(0,1),(1,1)\} \\ \mathsf{M}_{\{p,q,r\}}(p \to q) &= \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,1,0),(1,1,1)\} \end{split}$$

Platnost teorie, model teorie

Teorie T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. Podobně jako pro výrok: v je modelem T, $v \models T$, $v \in M_{\mathbb{P}}(T)$.

Někdy píšeme $M_{\mathbb{P}}(T,\varphi)$ místo $M_{\mathbb{P}}(T \cup \{\varphi\})$, $M_{\mathbb{P}}(\varphi_1,\varphi_2,\ldots,\varphi_n)$ místo $M_{\mathbb{P}}(\{\varphi_1,\varphi_2,\ldots,\varphi_n\})$.

Všimněte si:

- $M_{\mathbb{P}}(T,\varphi) = M_{\mathbb{P}}(T) \cap M_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(T) = \bigcap_{\varphi \in T} M_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(\varphi_1) \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2) \supseteq \cdots \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2, \dots, \varphi_n)$

Najděme modely
$$T = \{p \lor q \lor r, q \rightarrow r, \neg r\}$$
 (v jazyce $\mathbb{P} = \{p, q, r\}$):

$$\mathsf{M}_{\mathbb{P}}(r) = \{(0,0,0), (0,1,0), (1,0,0), (1,1,0)\}$$
 $\mathsf{M}_{\mathbb{P}}(r,q \to r) = \{(0,0,0), (1,0,0)\}$
 $\mathsf{M}_{\mathbb{P}}(T) = \{(1,0,0)\}$

Další sémantické pojmy

- výrok φ (nad \mathbb{P}) je pravdivý, tautologie, platí (v logice), $\models \varphi$, pokud platí v každém modelu, $M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}$
- lživý, sporný, pokud nemá žádný model, M_ℙ(φ) = ∅
 (Být lživý není totéž, co nebýt pravdivý!)
- nezávislý, pokud platí v nějakém modelu a neplatí v nějakém jiném modelu, tj. není pravdivý ani lživý, ∅ ⊊ M_ℙ(φ) ⊊ M_ℙ
- splnitelný, pokud má nějaký model, tj. není lživý, $M_{\mathbb{P}}(\varphi) \neq \emptyset$

výroky φ, ψ (ve stejném jazyce) jsou (logicky) ekvivalentní, $\varphi \sim \psi$, pokud mají stejné modely, tj. $\varphi \sim \psi \Leftrightarrow M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}(\psi)$

- pravdivé jsou např.: \top , $p \lor q \leftrightarrow q \lor p$
- Iživé: \bot , $(p \lor q) \land (p \lor \neg q) \land \neg p$
- nezávislé a také splnitelné: p, p ∧ q
- ekvivalentní: $p \sim p \lor p$, $p \to q \sim \neg p \lor q$, $\neg p \to (p \to q) \sim \top$

Sémantické pojmy vzhledem k teorii

relativně k dané teorii T (omezíme se na její modely)

- pravdivý/platí v T, důsledek T, $T \models \varphi$ je-li $M_{\mathbb{P}}(T) \subseteq M_{\mathbb{P}}(\varphi)$
- Iživý/sporný v T pokud $M_{\mathbb{P}}(\varphi) \cap M_{\mathbb{P}}(T) = M_{\mathbb{P}}(T, \varphi) = \emptyset$.
- nezávislý v T pokud $\emptyset \subsetneq M_{\mathbb{P}}(T, \varphi) \subsetneq M_{\mathbb{P}}(T)$,
- splnitelný v T, konzistentní s T pokud $M_{\mathbb{P}}(T,\varphi) \neq \emptyset$ (platí v alespoň jednom modelu T)
- φ a ψ jsou ekvivalentní v T, T-ekvivalentní, $\varphi \sim_T \psi$ platí-li v týchž modelech T, tj. $\varphi \sim_T \psi \Leftrightarrow \mathsf{M}_{\mathbb{P}}(T,\varphi) = \mathsf{M}_{\mathbb{P}}(T,\psi)$

např. pro $T = \{p \lor q, \neg r\}$:

- výroky $q \lor p$, $\neg p \lor \neg q \lor \neg r$ jsou pravdivé v T
- výrok $\neg p \lor \neg q \lor r$ je v T lživý
- výroky $p \leftrightarrow q, p \land q$ jsou v T nezávislé, a také splnitelné
- platí $p \sim_T p \vee r$ (ale $p \not\sim p \vee r$)

Univerzálnost logických spojek

množina logických spojek je univerzální, pokud:

- každá booleovská funkce je pravdivostní funkcí nějakého výroku vybudovaného z těchto spojek
- ekvivalentně: každá množina modelů nad konečným jazykem je množinou modelů nějakého výroku

Tvrzení $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální.

[Důkaz na příštím slidu.]

Další zajímavé logické spojky:

- Shefferova spojka (NAND, ↑)
- $p \uparrow q \sim \neg(p \land q),$

Pierceova spojka (NOR, ↓)

 $p \downarrow q \sim \neg (p \lor q),$

Exclusive-OR (XOR, ⊕)

$$p \oplus q \sim (p \lor q) \land \neg (p \land q)$$

např. $\{\uparrow\}$ je univerzální, $\{\land,\lor\}$ není

Důkaz, že $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální

Mějme $f: \{0,1\}^n \to \{0,1\}$, resp. $M = f^{-1}[1] \subseteq \{0,1\}^n$

Pro jediný model: $\varphi_v = \text{'musím být model } v'$

- příklad: $v = (1,0,1,0) \rightsquigarrow \varphi_v = p_1 \land \neg p_2 \land p_3 \land \neg p_4$
- ullet obecně: $v=(v_1,\ldots,v_n)$, použijeme značení $p^1=p$, $p^0=
 eg p$

$$\varphi_{v} = p_{1}^{v_{1}} \wedge p_{2}^{v_{2}} \wedge \cdots \wedge p_{n}^{v_{n}} = \bigwedge_{i=1}^{n} p_{i}^{v(p_{i})} = \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Pro více modelů: 'musím být alespoň jeden z modelů z M'

$$\varphi_M = \bigvee_{v \in M} \varphi_v = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Zřejmě $\mathsf{M}(\varphi_M) = M$ neboli $f_{\varphi_M,\mathbb{P}} = f$, a φ_M používá jen $\{\neg, \land, \lor\}$. Protože $p \land q \sim \neg(p \to \neg q)$ a $p \lor q \sim \neg p \to q$, mohli bychom φ_M ekvivalentně vyjádřit i pomocí $\{\neg, \to\}$.

2.3 Normální formy

CNF a DNF

- literál je prvovýrok nebo jeho negace, $\bar{\ell}$ je opačný literál k ℓ (pro pozitivní $\ell=p$ je $\bar{\ell}=\neg p$, pro negativní $\ell=\neg p$ je $\bar{\ell}=p$)
- klauzule je disjunkce literálů $C = \ell_1 \lor \ell_2 \lor \cdots \lor \ell_n$ (jednotková klauzule je samotný literál, prázdná klauzule je \bot)
- výrok je v konjunktivní normální formě (CNF) je-li konjunkcí klauzulí (prázdný CNF výrok je ⊤)
- elementární konjunkce je konjunkce literálů $E = \ell_1 \wedge \cdots \wedge \ell_n$ (jednotková el. konjunkce je samotný literál, prázdná je \top)
- výrok je v disjunktivní normální formě (DNF) je-li disjunkcí elementárních konjunkcí (prázdný DNF výrok je 1)

například:

- $(p \lor q) \land (p \lor \neg q) \land \neg p$ je v CNF
- $\neg p \lor (p \land q)$ je v DNF
- φ_{v} je v CNF i DNF, φ_{M} je v DNF

O dualitě

zaměníme-li $0 \longleftrightarrow 1$, negace zůstává stejná, z \land se stává \lor a naopak

- φ nad $\{\neg, \land, \lor\}$, zaměníme-li \land, \lor a znegujeme-li prvovýroky: duální $\psi \sim \neg \varphi$, modely φ jsou nemodely ψ , $f_{\psi}(\neg x) = \neg f_{\varphi}(x)$
- CNF a DNF jsou duální pojmy
- pravdivost je duální k nesplnitelnosti

Pozorování: Výrok v CNF je pravdivý, právě když každá klauzule má dvojici opačných literálů.

Duálně: Výrok v DNF je nesplnitelný, pokud každá elementární konjunkce má dvojici opačných literálů.

Převod do normální formy: sémanticky (příklad)

mějme výrok
$$\varphi = p \leftrightarrow (q \lor \neg r)$$

jeho modely jsou
$$M = \{(0,0,1), (1,0,0), (1,1,0), (1,1,1)\}$$

najdeme DNF a CNF výroky se stejnými modely, tj. ekvivalentní φ

DNF sestrojíme tak, že pro každý model přidáme elementární konjunkci vynucující právě tento model:

$$\varphi_{\mathrm{DNF}} = (\neg p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r)$$

při konstrukci CNF potřebujeme nemodely φ :

$$\overline{M} = \{(0,0,0), (0,1,0), (0,1,1), (1,0,1)\}$$

každá klauzule zakáže jeden nemodel:

$$\varphi_{\mathrm{CNF}} = (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r)$$

Převod do normální formy: sémanticky

Tvrzení: Buď \mathbb{P} konečný, $M \subseteq M_{\mathbb{P}}$ libovolná. Potom existují DNF a CNF výroky $\varphi_{\mathrm{DNF}}, \varphi_{\mathrm{CNF}}$, že $M = M_{\mathbb{P}}(\varphi_{\mathrm{DNF}}) = M_{\mathbb{P}}(\varphi_{\mathrm{CNF}})$.

$$\begin{split} \varphi_{\text{DNF}} &= \bigvee_{v \in \mathcal{M}} \bigwedge_{p \in \mathbb{P}} p^{v(p)} \\ \varphi_{\text{CNF}} &= \bigwedge_{v \in \overline{\mathcal{M}}} \bigvee_{p \in \mathbb{P}} \overline{p^{v(p)}} = \bigwedge_{v \notin \mathcal{M}} \bigvee_{p \in \mathbb{P}} p^{1-v(p)} \end{split}$$

Důkaz: $\varphi_{\mathrm{DNF}} = \varphi_{M}$ říká 'jsem jeden z modelů z M'

 $arphi_{
m CNF}$ říká 'nejsem žádný z nemodelů z M', je duální k $arphi_{
m DNF}' = arphi_{\overline{M}}$ pro doplněk M, nebo přímo: modely klauzule $C_v = \bigvee_{p \in \mathbb{P}} p^{1-v(p)}$ jsou $M_C = M_{\mathbb{P}} \setminus \{v\}$, tedy každá klauzule zakazuje jeden nemodel \square

Důsledek: Každý výrok (v libovolném, i nekonečném jazyce ℙ) je ekvivalentní nějakému výroku v CNF a nějakému výroku v DNF.

Důkaz: použijeme konečný jazyk $\mathbb{P}' = \mathsf{Var}(\varphi), \ M = \mathsf{M}_{\mathbb{P}'}(\varphi)$

Převod do normální formy: syntakticky

Hledat všechny modely je neefektivní, lze i syntakticky pomocí ekvivalentních úprav.

Pozorování: Nahradíme-li podvýrok ψ výroku φ ekvivalentním ψ' , výsledný výrok φ' je také ekvivalentní φ .

Postup úprav:

- 1. přepiš ekvivalenci a implikaci pomocí ¬, ∧, ∨
- přesuň negace dolů (k listům) ve stromu výroku pomocí de Morganových pravidel, odstraň dvojité negace
- přesuň dolů disjunkce (pro CNF) resp. konjunkce (pro DNF) pomocí distributivity ∧ a ∨
- 4. případně zjednoduš (odstranění duplicit, tautologií apod.)

Důkaz, že funguje: indukcí dle struktury výroku

Převod do normální formy: syntakticky (příklad)

mějme opět výrok $\varphi = p \leftrightarrow (q \lor \neg r)$

přepsat ekvivalence a implikace

$$p \leftrightarrow (q \lor \neg r) \sim (p \rightarrow (q \lor \neg r)) \land ((q \lor \neg r) \rightarrow p)$$
$$\sim (\neg p \lor q \lor \neg r) \land (\neg (q \lor \neg r) \lor p)$$

• negace dolů

$$(\neg p \lor q \lor \neg r) \land ((\neg q \land r) \lor p)$$

do CNF (+ seřadíme prvovýroky v klauzulích)

$$(\neg p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$

do DNF (+ zjednodušení)

$$(\neg p \land \neg q \land r) \lor (p \land q \land r) \lor (p \land \neg r)$$

Ekvivalentní úpravy

Implikace a ekvivalence:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

Negace:

$$\neg(\varphi \land \psi) \sim \neg \varphi \lor \neg \psi$$
$$\neg(\varphi \lor \psi) \sim \neg \varphi \land \neg \psi$$
$$\neg \neg \varphi \sim \varphi$$

Konjunkce (převod do DNF):

$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
$$(\varphi \vee \psi) \wedge \chi \sim (\varphi \wedge \chi) \vee (\psi \wedge \chi)$$

Disjunkce (převod do CNF):

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\varphi \land \psi) \lor \chi \sim (\varphi \lor \chi) \land (\psi \lor \chi)$$

2.4 Vlastnosti a důsledky teorií

Vlastnosti teorií

- sporná: $T \models \bot$, ekvivalentně: nemá model, platí v ní vše
- bezesporná (splnitelná): není sporná, tj. má model
- kompletní: bezesporná + každý výrok je v ní pravdivý nebo lživý (nemá nezávislé výroky), ekvivalentně: právě jeden model
- ekvivalence teorií: T ~ T' právě když M_P(T) = M_P(T') (různé axiomatizace týchž vlastností)
 - $T_1 = \{p, p \rightarrow q, \neg q\}$ je sporná
 - $T_2=\{p\lor q,r\}$ je bezesporná, ale není kompletní, např. $p\land q$ je v ní nezávislý: platí v modelu (1,1,1), neplatí v (1,0,1)
 - $T_2 \cup \{\neg p\}$ je kompletní, jediným modelem je (0,1,1).
- ekvivalentní teorie: $\{p \rightarrow q, r\} \sim \{(\neg p \lor q) \land r\}$

Důsledky teorií

je-li
$$T$$
 v jazyce \mathbb{P} , množina všech důsledků teorie T v jazyce \mathbb{P}' :
$$\mathsf{Csq}_{\mathbb{P}'}(T) = \{ \varphi \in \mathsf{VF}_{\mathbb{P}'} \mid T \models \varphi \}$$

pokud
$$\mathbb{P}' = \mathbb{P}$$
: $\mathsf{Csq}_{\mathbb{P}}(T) = \{ \varphi \in \mathsf{VF}_{\mathbb{P}} \mid \mathsf{M}_{\mathbb{P}}(T) \subseteq \mathsf{M}_{\mathbb{P}}(\varphi) \}$

Tvrzení: Jsou-li T, T' teorie a $\varphi, \varphi_1, \ldots, \varphi_n$ výroky v jazyce \mathbb{P} :

- (i) $T \subseteq \mathsf{Csq}_{\mathbb{P}}(T)$
- $\mathsf{(ii)} \ \mathsf{Csq}_{\mathbb{P}}(\mathsf{T}) = \mathsf{Csq}_{\mathbb{P}}(\mathsf{Csq}_{\mathbb{P}}(\mathsf{T}))$
- (iii) pokud $T\subseteq T'$, potom $\mathsf{Csq}_\mathbb{P}(T)\subseteq \mathsf{Csq}_\mathbb{P}(T')$
- (iv) $\varphi \in \mathsf{Csq}_{\mathbb{P}}(\{\varphi_1, \dots, \varphi_n\})$ právě když $\models (\varphi_1 \land \dots \land \varphi_n) \to \varphi$

Důkaz: snadný, použijte následující:

- M(Csq(T)) = M(T)
- je-li $T \subseteq T'$ potom $M(T) \supseteq M(T')$
- $\models \psi \rightarrow \varphi$ právě když $\mathsf{M}(\psi) \subseteq \mathsf{M}(\varphi)$

Extenze teorií: neformálně

Extenze teorie T je jakákoliv teorie, která splňuje vše, co platí v T

- dodatečné požadavky o systému: jednoduchá extenze
- přidání nových částí k systému (a v původním platí totéž, co předtím): konzervativní extenze

Úvodní příklad o barvení grafů:

- T₃ (úplná obarvení s hranovou podmínkou) je jednoduchou extenzí teorie T₁ (částečná obarvení bez ohledu na hrany)
- T'₃ (přidání nového vrcholu) je konzervativní, ale ne jednoduchou extenzí T₃
- ullet T_3' je extenze T_1 , která není ani jednoduchá, ani konzervativní

Extenze teorií: formálně

Buď T v jazyce \mathbb{P} . Extenze teorie T je libovolná teorie T' v jazyce $\mathbb{P}' \supseteq \mathbb{P}$ splňující $\mathsf{Csq}_{\mathbb{P}}(T) \subseteq \mathsf{Csq}_{\mathbb{P}'}(T')$,

- jednoduchá: $\mathbb{P}' = \mathbb{P}$
- konzervativní: $Csq_{\mathbb{P}}(T) = Csq_{\mathbb{P}}(T') = Csq_{\mathbb{P}'}(T') \cap VF_{\mathbb{P}}$ "nové důsledky musí obsahovat nové prvovýroky"
- 1. T' je jednoduchá extenze T, právě když $\mathbb{P}' = \mathbb{P}$ a $M_{\mathbb{P}}(T') \subseteq M_{\mathbb{P}}(T)$.
- 2. T' je extenze T, právě když $M_{\mathbb{P}'}(T')\subseteq M_{\mathbb{P}'}(T)$. Tj. restrikce modelů T' na \mathbb{P} musí být modely $T\colon \{v\!\upharpoonright_{\mathbb{P}}\mid v\in M_{\mathbb{P}'}(T')\}\subseteq M_{\mathbb{P}}(T)$
- 3. T' je konzervativní extenze T, je-li to extenze a navíc každý model T lze expandovat na model T' (tj. každý model T získáme restrikcí $n\check{e}_{j}ak\acute{e}ho$ modelu T' na jazyk \mathbb{P}): $\{v \mid_{\mathbb{P}} | v \in M_{\mathbb{P}'}(T')\} = M_{\mathbb{P}}(T)$
- 4. T' je extenze T a zároveň T je extenze T', právě když $T \sim T'$.
- 5. Kompletní jednoduché extenze T odpovídají modelům T (jednoznačně až na ekvivalenci).

Extenze teorií: příklad

- mějme $T=\{p o q\}$ v jazyce $\mathbb{P}=\{p,q\}$, teorie $T_1=\{p \wedge q\}$ v jazyce \mathbb{P} je jednoduchá extenze $T\colon \mathsf{M}_{\mathbb{P}}(T_1)\subseteq \mathsf{M}_{\mathbb{P}}(T)$
- T_1 je kompletní, až na ekvivalenci všechny jednoduché kompletní extenze T jsou: T_1 , $T_2 = \{\neg p, q\}$, a $T_3 = \{\neg p, \neg q\}$
- teorie $T' = \{p \leftrightarrow (q \land r)\}$ v $\mathbb{P}' = \{p, q, r\}$ je extenze $T \colon \mathbb{P} \subseteq \mathbb{P}'$ a $M_{\mathbb{P}'}(T') \subseteq M_{\mathbb{P}'}(T)$, restrikce modelů T' na \mathbb{P} jsou $\{(0,0),(0,1),(1,1)\} \subseteq M_{\mathbb{P}}(T)$
- protože dokonce $\{(0,0),(0,1),(1,1)\}=M_{\mathbb{P}}(T)$, každý model T lze rozšířit na model T', T' je konzervativní extenze T
- každý výrok v jazyce $\mathbb P$ platí v T, právě když platí v T', ale výrok $p \to r$ je novým důsledkem: platí v T' ale ne v T
- teorie $T'' = \{ \neg p \lor q, \neg q \lor r, \neg r \lor p \}$ v jazyce \mathbb{P}' je extenze T, ale ne konzervativní, neboť v ní platí $p \leftrightarrow q$, což neplatí v T (nebo proto, že model (0,1) teorie T nelze rozšířit na model teorie T'')