Nov 14, 2023	
	Today:
o	Global Dynamics in NGM
6	lutro to NGM with uncertainty
	last clano: - Fiscal Policy in model w/ Kuman Capital
[EEK]	(Ctel) = B[1-8k+ (1-Ckt)F'k (tel)]
[EEH]	$\left(\frac{C_{t+1}}{e_t}\right)^{\sigma} = \beta \left[1-S_n + (1-C_{nt})F_n'(t+1)\right]$
	Case 1:
	$8k = 8n$, $C_{nt} = C_{kt} = C$
	k= ph, growth rate Petti I as c 1
	Case 2:
	St = Sh, Tet = Tety = Te Tht = Thtel = Th
	(1- 2c) F' = (1-2n) F'n

	Bellman:
	$V(k) = \max_{k'} \left[U(f(k) - k') + \beta V(k') \right]$
drom	Envelope thesem !-
•	u'(f(k)-k')f'(k)
	$v(k) = u(f(k) - g(k)) + B^{V}(g(k))$
	v'(k) = u'(f(k) - g(k))(f'(k) - g'(k))
	+ Bv'(g(k)) · g'(k)
	Recall FOC:
	W(f(k)-g(k)) = BV'(g(k))
•	v'(k) = u'(f(k) - g(k))(f'(k) - g'(k)) +
	+ u'(f(k)-g(k)) g'(k)
	= u'(f(k) - g(k)) f'(k)

Theorem :

Let
$$T(z)$$
 be a strictly concave function.
(i.e. $T'' < 0$)

$$\Rightarrow [T'(z) - T'(z')](z-z') \leq 0$$
with $=$ iff $z=z'$

Proof:

$$z < z' \Rightarrow \tau'(z) > \tau'(z')$$
 $z > z' \Rightarrow \tau'(z) < \tau'(z')$
 $z = z' \Rightarrow \equiv$

From:
$$v'(k) = u'(f(k) - g(k)) \cdot f'(k)$$
 (tanulope)
 $v'(g(k)) = \int u'(f(k) - g(k))$ (foc)

$$= \left[f'(k) - \frac{1}{\beta}\right] \left(k - g(k)\right) \leq 0$$

	$ \begin{array}{ccc} \text{af} & f'_{k} > 1 \implies k < g(k) \\ \text{B} & \end{array} $
	$\Rightarrow k < g(k) < g(k_{ss}) = k_{ss}$
	g(k) ∈ (k, kes)
	of f'k<⊥ ⇒ k>kss
	$k > g(k) > g(k_{s}) = k_{ss}$
	g(k) \(\int \(\text{K}_{SS}, \text{K} \)
\Rightarrow	The steady state will be globally stable.
*	Criticism of NGM:
\rightarrow	Temporary growth. 2 Both violates the
\rightarrow	very short pd. of growth