МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 2

на тему «Принципы нелинейного кодирования и декодирования»

Дисциплина: СиСПИ

Группа: 21ПТ(в)1

Выполнил: Резаев М. К.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

2 Задание. Выполнить кодирование дискретных отсчетов методом ИКМ и декодирование кодовых комбинаций цифрового сигнала. Величины эталонных напряжений для нижней границы каждого сегмента и при кодировании внутри сегмента представлены на рисунке 1.

Номер	Эталонное	Эталонные напряжения при			
сегмента	напряжение	кодировании в пределах сегмента			
N _c	нижней	$8\Delta_i(A)$	$4\Delta_i(B)$	$2\Delta_{i}I(C)$	$\Delta_i(D)$
	границы				
	сегмента				
0	0	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$
1	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$
2	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$
3	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$
4	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$
5	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$
6	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$
7	$1024\Delta_0$	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$

Рисунок 1 - Величины эталонных напряжений

- 3 Выполнение задания.
- 3.1 Кодирование. Был получен вариант задания. Вариант задания представлен в таблице 1.

Таблица 1 — Вариант задания для кодирования

Номер варианта	Значения дискретных отсчетов в единицах Δ			
26	2034	-300	1777	

- 3.1.1 Кодирование отсчета 2034Δ .
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 7;
- Были определены уровни квантования в пределах сегмента: 1111;
- Закодированный дискретный отсчет: 1111 1111.
- 3.1.2 Кодирование отсчета -300Δ .
- Была определена полярность отсчета: 0;

- Был определен сегмент отсчета: 5;
- Были определены уровни квантования в пределах сегмента: 0010;
- Закодированный дискретный отсчет: 0101 0010.
- 3.1.3 Кодирование отсчета 1777Δ .
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 7;
- Были определены уровни квантования в пределах сегмента: 1011;
- Закодированный дискретный отсчет: 1111 1011.
- 3.2 Декодирование. Был получен вариант задания. Вариант задания представлен в таблице 2.

Таблица 2 — Вариант задания для декодирования

Номер	Десятичное число кодовых				
варианта	комбинаций				
26	177	234	200		

- 3.2.1 Декодирование числа 177.
- Был получен двоичный код числа: 1011 0001.
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 3;
- Был определен дискретный отсчет: 68Δ.
- 3.2.2 Декодирование числа 234.
- Был получен двоичный код числа: 1110 1010.
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 6;
- Был определен дискретный отсчет: 832Δ.
- 3.2.3 Декодирование числа 200.
- Был получен двоичный код числа: 1100 1000.
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 4;
- Был определен дискретный отсчет: 192Δ .

4 Вывод: были изучены принципы нелинейного кодирования и декодирования.