3D DATA PROCESSING

Giuseppe Labate mat. 2095665

Topic: Iterative Closest Point Cloud Registration

Goal: Given a source and a target point cloud roughly aligned, find the fine alignment transformation of the source to the target cloud.

1) Work description

Task 1 - find_closest_point

For this task, the objective was to find the nearest target_point for each source_point. To do so, I used a KD-tree to store the target_ point cloud, which accelerates the process of finding the nearest source point.

Next, a $source_clone$ point cloud was created to save the $source_for_icp_$ point cloud, which is the source point cloud transformed by the current estimation of transformation .

To find the closest point, the SearchKNN function with K = 1 was exploited.

When a neighbor is found, its square distance is checked. If it's below a certain arbitrary threshold (0.2 in this case), the source and target indices are saved into two std::vector and the mean square error (MSE) is updated to keep track of the current error.

After the for loop is completed, the root mean square error (RMSE) is calculated by taking the square root of the final MSE.

Finally, a tuple composed of the source_indices, target_indices and RMSE is returned.

Task 2 - get_svd_icp_registration

Here it was requested to apply the singular value decomposition (SVD) to find the transformation from source to target.

To achieve this, the transformed source point cloud, <code>source_for_icp_</code> was saved to source_clone.

The <code>source_for_icp_</code> is the initial source point cloud to which the current estimation of the <code>transformation_was</code> applied.

Next, the centroids for source and target point clouds were calculated and saved in the source_centroid and target_centroid 3D vectors, respectively.

With the centroids identified, the difference between each point in the point cloud and its centroid was retrieved, following the nearest neighbor (NN) matching indices order, returned by find_closest_point.

In other words, for each iteration *i*, the <code>source_clone.points_[source_indices[i]]</code> and <code>target_clone.points_[target_indices[i]]</code> were picked to compute the difference between them and their respective centroids:

```
source point = source point - source centroid;
```

target_point = target_point - target_centroid;
applying the following formulas:

$$m'_i = m_i - m_{centroid}$$

 $d'_i = d_i - d_{centroid}$

Subsequentially, the 3x3 **W** matrix was computed by multiplying the m_i' and the transpose of d_i' and summing the result for each iteration:

$$W = \sum_{i=1}^n m_i' \, d_i'^T$$

Note that m variables represent for target point and d variables represent source points.

The **W** matrix is crucial for finding the transformation between two point clouds. In fact, the rotation matrix can be written as:

$$\hat{R} = \arg\min_{R} \sum_{i=1}^{n} ||m'_i - Rd'_i||^2 = UV^T$$

Given:

$$W = U\Sigma V^T$$

The U and V matrices were found to derive the rotation matrix.

This was achieved by applying the singular value decomposition (SVD) to W by using

```
Eigen::JacobiSVD<Eigen::MatrixXd> svd(W, Eigen::ComputeFullU |
Eigen::ComputeFullV);
```

The special case in which the $det(UV^T) = -1$ was also handled, by computing the rotation matrix as follows:

$$\hat{R} = U \operatorname{diag}(1,1,-1)V^{T}$$

Note that to check if the determinant was negative, it was needed only to compute and multiply det(U) and det(V) because

$$det(UV^T) = det(U) \times det(V^T) = det(U) \times det(V)$$

Figure 1: implementation of SVD

Next, the translation vector was calculated as the difference between the target_centroid and the rotated source_centroid.

Finally, the rotation matrix and translation vector were concatenated into a 4D transformation matrix, which was then returned.

Task 3 - PointDistance

In task 3 the objective was to complete the PointDistance struct to include an auto-differentiable cost function.

This part was similar to the Bundle Adjustment in the previous assignment.

The main difference here was that the function now had to optimize only the transformation array, which is composed by:

- 3 cells for the rotation (expressed in angle-axis representation)
- 3 cells for the translation (tx, ty, tz)

The operator () function was used for two purposes:

- to transform the source_point first by rotating it with the AngleAxisRotatePoint function and then by translating it by exploiting the last 3 cells of transf array;
- to retrieve the residual by computing the difference between transformed source_point and target_point (Note that the residual is 3 dimensional).

Task 4-get 1m icp registration

In this task, it was requested to use the Levenberg-Marquardt algorithm (LM) to find the best roto-translation matrix.

Similar to task 2, the <code>source_for_icp_point</code> cloud was stored in <code>source_clone</code> to easily access to the point cloud with the current estimated transformation.

Next, for each point in <code>source_clone</code>, the cost_function was created using the coupled source and target points as parameters. In the same iteration, the residual block was added to the problem, with the <code>cost_function</code> and the <code>transformation_arr</code> (the array containing the roto-translation transformation) as parameters.

After exiting the loop, the ceres::Solve function was executed to obtain the transformation.

Figure 2: Ceres process to use LM to get the estimated transformation

Once Ceres solved the problem, the transformation_arr vector was accessed to compute the 4D roto-translation matrix transformation.

The rotation matrix **R** was obtained from the first three angle-axis cells using the Eigen::AngleAxisd method.

The translation vector was instead directly extracted from the last three cells.

Finally, the rotation matrix and translation vector were concatenated into a 4D transformation matrix, which was then returned.

Task 5 - execute icp registration

Task 5 was the most important one because it was the function from which all the other functions were called.

A primary for loop iterates up to a maximum of $max_iteration$ (100) times to execute the following steps:

- Find Closest Points: Launch find_closest_point to get coupled points (the source and target indices) and current RMSE.
- Check Convergence: If the absolute difference between previous and current RMSE is less
 than relative_rmse (which is equal to 1e-6 in this case), return because the execution
 converged.
- Update RMSE: Update the prev rmse to current rmse
- Perform ICP Registration: Launch get_lm_icp_registration if mode == "lm" or launch get svd icp registration if mode == "svd"
- Save Transformation: Save the returned transformation into new_transformation
- Update transformation_ and source cloud: Update the transformation_ 4D matrix and transform source_for_icp_ using new_transformation to avoid recalculating the transformed source cloud each time.

If after max_iteration the algorithm hasn't converged, a "Diverged: MAX_ITERATION surpassed." message is sent.

2) Encountered problems

During the assignment, no major problems were encountered.

3) Quantitative results

	SVD RMSE	LM RMSE
BUNNY	0.00401621	0.00341366
DRAGON	0.00568867	0.00564134
VASE	0.0162243	0.0162217

	SVD ITERATIONS	LM ITERATIONS
BUNNY	23	21
DRAGON	13	19
VASE	25	29

4) Qualitative results

4.1) Bunny

4.1.1) Bunny SVD \rightarrow 0.00401621 at iteration 23

4.1.2) Bunny LM \rightarrow 0.0341366 at iteration 21

4.2) Dragon

4.2.1) Dragon SVD \rightarrow 0.00568867 at iteration 13

4.2.2) Dragon LM \rightarrow 0.00564134 at iteration 19

4.3) Vase

4.3.1) Vase SVD \rightarrow 0.0162243 at iteration 25

4.3.2) Vase LM \rightarrow 0.0162217 at iteration 29

