

Зачем изучаем смешанное целочисленное программирование

- Лучший практический в общем случае метод для оптимизации в целочисленных переменных
- Сильно отличается от ранее рассмотренных методов тем, что использует линейную алгебру и математические свойства задачи
- Гарантирует глобальную оптимальность и наиболее эффективный в общем случае подход к оптимизации
- Рассмотрим уже полюбившееся задачи в рамках новой парадигмы

Линейное программирование

$$\min \ c_1x_1 \ + \cdots + c_nx_n$$
 При этом
$$a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1$$

 $x_i \ge 0$

- п переменных
- т ограничений
- О Переменные неотрицательные
- Ограничения определяют неравенства
- Решается за полиномиальное время симплекс метод, двойственный метод и т.д.

Гиперплоскости

Гиперплоскости

Линейное программирование

$$\min \ c_1x_1 \ + \cdots + c_nx_n$$
 При этом
$$a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1$$

$$x_i \ge 0$$

 Теорема: Как минимум одна точка, где целевая функция достигает минимума находится в вершине допустимого множества

Гиперплоскости

Базисное решение

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

• • •

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

$$x_i \ge 0$$

- Попробуем начать с системы линейных уравнений, для описания многогранника
- Решать такие задачи мы умеем

Базисное решение

$$x_1 = b_1 + \sum_{i=m+1}^{n} a_{1i} x_i$$

$$x_m = b_m + \sum_{i=m+1}^n a_{mi} x_i$$

$$x_i \ge 0$$

 Решение будет заключаться в выражении базисных переменных через небазисные

Решение системы неравенств

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

. . .

 $a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$

$$a_{11}x_1 + \dots + a_{1n}x_n + s_1 = b_1$$

. . .

$$a_{m1}x_1 + \dots + a_{mn}x_n + s_m = b_m$$

$$s_i \ge 0$$

n!

m!(n-m)!

Пример

$$3x_1 - 2x_2 + x_3$$
 = 1
 $2x_1 + x_4 + x_6 = 2$
 $x_1 + x_5 + x_6 = 3$

Пример

Пример

 $\frac{1}{3}$

3

Симплекс метод

- Когда можно остановиться?
- Базисное решение оптимально тогда, когда целевая функция выражена в базисных переменных с неотрицательными коэффициентами:

$$c_0 + c_1 x_1 + \ldots + c_n x_n$$

Симплекс метод

min
$$x_1 + x_2 + x_3 + x_4 + x_5$$
 subject to

Оптимальное решение

min
$$6 - 3x_1$$
 $- 3x_2$ subject to $x_3 = 1 - 3x_1$ $- 2x_2$ $x_4 = 2 - 2x_1$ $+ x_2$ $x_5 = 3 + x_1$

Смешанное целочисленное программирование

Целочисленное программирование

Целочисленное программирование

$$\max \ c_1x_1 \ + \cdots + c_nx_n$$
 При этом
$$a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1$$

$$x_i \ge 0$$
, x_i целые

- п переменных
- т ограничений
- О Переменные неотрицательные и целые
- Ограничения определяют неравенства
- Наличие целочисленности переводит задачу из класса Р в NP

Задача наполнения рюкзака

1.6 кг 1900\$

0.25 кг 1100\$

0.25 кг 1100\$

0.48 кг 1200\$

0.04 κΓ 430\$

0.04 кг 430\$

Вместимость рюкзака 1.8 кг

Задача наполнения рюкзака

Maximize $\sum_{i \in 1...j} v_i x_i$

При этом, $\sum_{i \in 1...j} w_i x_i \le k$, $x_i \in \{0,1\}$, $(i \in 1...j)$

Необходимо открыть склады в таких местах, чтобы минимизировать расходы на содержание складов и на транспортировку клиентам

- Как мы можем представить эту задачу в качестве задачи целочисленного программирования?
 - Что будет в качестве переменных?
 - Что будет в качестве ограничений?
 - Что будет целевой функцией?
 - Переменные
 - Для каждого склада бинарная переменная $x_w, x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная $y_{wc}, y_{wc} = 1$ если клиент с обслуживается складом w

- Переменные
 - Для каждого склада бинарная переменная x_w , $x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная $y_{wc}, y_{wc} = 1$ если клиент с обслуживается складом w
- Ограничения
 - Склад может обслужить клиента, только если он открыт: $y_{wc} \le x_w$
 - Клиент должен обслуживать одним и только одним складом

$$\sum_{w \in W} y_{wc} = 1$$

- Переменные
 - Для каждого склада бинарная переменная $x_w, x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная $y_{wc}, y_{wc} = 1$ если клиент с обслуживается складом w
- 🗎 Целевая функция
 - Minimize $\sum_{w \in W} c_w x_w + \sum_{w \in W, c \in C} t_{w,c} y_{w,c}$, где c_w фиксированные расходы на содержание склада, $t_{w,c}$ расходы на доставку от склада w до клиента с.

$$\begin{aligned} &\textit{Minimize} \sum_{w \in W} c_w x_w + \sum_{w \in W, c \in \mathcal{C}} t_{w,c} \, y_{w,c} \\ &\textit{При этом } y_{wc} \leq x_w \, (w \in W, c \in \mathcal{C}) \\ &\sum_{w \in W} y_{wc} = 1 \, (c \in \mathcal{C}) \\ &x_w \in \{0,1\} \, (w \in W) \\ &y_{wc} \in \{0,1\} \, (w \in W, c \in \mathcal{C}) \end{aligned}$$

- Переменные
 - Для каждого склада бинарная переменная $x_w, x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная y_{wc} , $y_{wc} = 1$ если клиент с обслуживается складом w
- О Почему не используем
 - y_c как целое число с номером склада для клиента с?

Бинарные переменные

- Смешанное целочисленное программирование любит бинарные переменные
 - **Ц**елочисленные переменные часто бинарны
 - Легко задавать линейные ограничения
 - Когда используются бинарные переменные
- О По прежнему много вариантов в моделировании
 - Переменные, ограничения, целевая функция может задаваться по-разному

Метод ветвей и границ

- Как решить задачу смешанного целочисленного программирования?
 - Активно исследовать область решения
 - Метод ветвей и границ
 - Ограничение поиск оптимистично релаксации
 - Ветвление разбиение задачи на подзадачи
- Смешанное целочисленное программирование имеет натуральную релаксацию
 - 📉 Линейная релаксация
 - Удаление целочисленности в переменных

- Решаем линейную релаксацию
 - Если линейная релаксация хуже, чем лучшее уже найденное решение, отрезаем часть области
 - Если линейная релаксация имеет целочисленное решение, мы имеем выполнимое решение
 - В противном случае, ищем целое х такое, что x ≥ [f] и x ≤ [f], где f дробное решение линейной релаксации, т.е. повторяем алгоритм с двумя подзадачами

- О Фокус на целевую функцию
 - Релаксация даёт оптимистичное ограничение
- Отсечение базируется на неоптимальности
 - Отсекаем заведомо неоптимальные узлы
- Релаксация выполнимости
 - Релаксация на целочисленность
- Глобальный взгляд на релаксацию
 - Рассматриваем все ограничения задачи

Задача наполнения рюкзака

Maximize $\sum_{i \in 1...j} v_i x_i$

При этом, $\sum_{i \in 1...j} w_i x_i \le k$, $0 \le x_i \le$, $1 \ (i \in 1...j)$

- Линейная релаксация
 - Похожа на жадный алгоритм
- Как происходит ветвление?
 - Переменные с дробными значениями
 - Самый ценный предмет не может быть помещён полностью
- Что означают подзадачи?
 - Берём или не берём тот или иной предмет что собирается сделать линейная релаксация?

i	Vi	Wi
1	45	5
2	48	8
3	35	3

$$K = 10$$

- Когда метод ветвей и границ эффективен?
 - Когда нужно отсечь неоптимальные значения рано
 - Необходимое условие: линейная релаксация сильна
 - Что такое хорошая модель СЦП?
 - Модель с хорошей линейной релаксацией

Необходимо открыть склады в таких местах, чтобы минимизировать расходы на содержание складов и на транспортировку клиентам

- Переменные
 - Для каждого склада бинарная переменная $x_w, x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная $y_{wc}, y_{wc} = 1$ если клиент с обслуживается складом w
- Ограничения
 - Склад может обслужить клиента, только если он открыт: $y_{wc} \le x_w$
 - Клиент должен обслуживать одним и только одним складом

$$\sum_{w \in W} y_{wc} = 1$$

$$Minimize \sum_{w \in W} c_w x_w + \sum_{w \in W, c \in C} t_{w,c} y_{w,c}$$
 При этом
$$y_{wc} \leq x_w \ (w \in W, c \in C)$$

$$\sum_{w \in W} y_{wc} = 1 \ (c \in C)$$

$$x_w \in \{0,1\} \ (w \in W)$$

$$y_{wc} \in \{0,1\} \ (w \in W, c \in C)$$

- Переменные
 - Для каждого склада бинарная переменная $x_w, x_w = 1$ если склад w открыт
 - Для каждого клиента бинарная переменная y_{wc} , $y_{wc} = 1$ если клиент с обслуживается складом w
- Ограничения
 - Склад может обслужить клиента, только если он открыт: $y_{wc} \le x_w$
 - Клиент должен обслуживать одним и только одним складом

$$\sum_{w \in W} y_{wc} = 1$$

- Как записать ограничения иначе?
 - $\sum_{c \in C} y_{wc} \le |\mathsf{C}| x_w$

$$Minimize \sum_{w \in W} c_w x_w + \sum_{w \in W, c \in C} t_{w,c} y_{w,c}$$

$$\prod_{v \in W} y_{wv} \leq |C| x_w \ (w \in W)$$

$$\sum_{v \in W} y_{wv} = 1 \ (v \in C)$$

$$x_w \in \{0,1\} \ (w \in W)$$

$$y_{wv} \in \{0,1\} \ (w \in W, c \in C)$$

- Какая из моделей лучше?
 - Новая имеет одно ограничение вместо |С| ограничений для каждого склада
- Рассмотрим в контексте линейной релаксации

- Решение для
 - $y_{wc} \le x_w \ (w \in W, c \in C)$
- Это также решение для
 - $\sum_{c \in C} y_{wc} \le |\mathsf{C}| x_w \ (w \in W)$
- О Но не наоборот
- О Изначальная модель имеет лучшую линейную релаксацию

- Решение для
 - $y_{wc} \le x_w \ (w \in W, c \in C)$
- Это также решение для

$$\sum_{c \in C} y_{wc} \le |\mathsf{C}| x_w \ (w \in W)$$

- О Но не наоборот
- 🔍 Изначальная модель имеет лучшую линейную релаксацию

Cw	S c P	Obj1	Obj2	%
16	50	932,615	844,807	9.5
16	50	1,010,541	853,434	15.6
25	50	796,648	659,341	17.2
50	50	793,439	631,421	20.4

```
m = gp.Model('warehouse_location')
select = m.addVars(num_facilities, vtype=GRB.BINARY, name='Select')
assign = m.addVars(custumer, vtype=GRB.BINARY, name='Assign')
m.addConstrs((assign[(c,f)] <= select[f] for c,f in cartesian_prod), name='Setup2ship')
m.addConstrs((gp.quicksum(assign[(c,f)] for f_in_range(num_facilities)) == 1 for c in_range(num_customers)), name='Demand')
m.setObjective(select.prod(setup_cost)+assign.prod(shipping_cost), GRB.MINIMIZE)
m.optimize()</pre>
```

Gurobi Python API from Gurobi

Метод ветвей и границ для СЦП

- Когда метод ветвей и границ эффективен?
 - Когда нужно отсечь неоптимальные значения рано
 - Необходимое условие: линейная релаксация сильна
 - Что такое хорошая модель СЦП?
 - Модель с хорошей линейной релаксацией

Раскраска карты

- Постановка:
 - Необходимо раскрасить карту таким образом, чтобы две граничащие территории не имели одинаковый цвет
- Теорема о 4 цветах для раскраски карты:
 - Любая карта может быть раскрашена в 4 цвета
 - Доказана экспериментально

Раскраска карты

```
model = cp_model.CpModel()
color = [
    model.NewIntVar(0, 3, 'color%i' % i) for i in data['region']
max c =
for i in data['region']:
    color[i]<=max_c/
for i, j in edges.itertuples(index=False):
    model.Add(color[int(i)]!=color[int(j)])
solver = cp_model.CpSolver()
model.Minimize(max c)
```

Python, lib ortools cp solver from Google-OR package

Большое М

- Условие «не равно» не является линейным ограничением
- Можно использовать два неравенства

$$x \neq y \rightarrow x \leq y - 1$$
 and $x \geq y + 1$

- Условие and (дизъюнкция) не поддерживается СЦП
- Введем бинарную переменную b и достаточно большое M, такое что:

$$x \le y - 1 + bM$$
$$x \ge y + 1 - (1 - b)M$$

- При различных значениях b
 - При b = 1 выполняется ограничение $x \leq y-1+bM$ автоматически, а второе ограничение $x \geq y+1$
 - При b = 0 выполняется ограничение $x \leq y + 1 (1 b)M$ автоматически, а второе ограничение $x \leq y 1$

Большое М

- Как с этим работает линейная релаксация?
 - $x \le y 1 + bM$
 - $x \ge y + 1 (1 b)M$
 - Выберем b=0.5
 - Половина большого числа это все ещё большое число
 - В основном линейная релаксация будет игнорировать эти ограничения

Большое М

$$egin{array}{lll} obj &\in \{0,1,2,3\} \ \operatorname{color}_c &\in \{0,1,2,3\} \ b_{c1,c2} &\in \{0,1\} \ M &= 4 \end{array} \hspace{0.5cm} ext{ LP: } obj &= 0.0 \ \operatorname{color} &= 0.0 \ b &= 0.25 \ Hyжен как минимум 1 цвет \ \operatorname{ontumanshux} \mathsf{BetBeй} \ \mathsf{5} \ \mathsf{Subject to} \end{array}$$

 $obj \ge \operatorname{color}_c \ (c \in C)$

 $color_{c_1} \le color_{c_2} - 1 + b_{c_1,c_2}M$

 $(c_1, c_2 \in C \text{ and adjacent})$

 $\operatorname{color}_{c_1} \ge \operatorname{color}_{c_2} + 1 - (1 - b_{c_1, c_2})M$

Раскраска карты

- Сможем ли мы найти модель получше?
- О СЦП любит бинарные переменные, поэтому все переменные переведём к 0 и 1
 - Используем бинарные переменные $b_{x=0}$, $b_{x=1}$, $b_{x=2}$, $b_{x=3}$
 - $b_{x=i}$ равно 1, если переменная равна x=i
- Добавим ограничение по природе переменной, может быть только 1 цвет

$$b_{x=0} + b_{x=1} + b_{x=2} + b_{x=3} = 1$$

- \bigcirc Добавим «не равно» $x \neq y$
 - $b_{x=1} + b_{y=1} \le 1$
 - $b_{x=2} + b_{y=2} \le 1$
 - $b_{x=3} + b_{y=3} \le 1$

Раскраска карты в бинарных переменных

$$egin{array}{ll} obj &\in \{0,1,2,3\} \ \operatorname{color}_{c,v} &\in \{0,1\} \ \min & obj \ \mathrm{subject\ to} \end{array}$$

$$\begin{array}{ccc} \mathsf{LP:} & obj & = 0.\overline{27} \\ & \operatorname{color}_{c,0} & = 0.5 \\ & \operatorname{color}_{c,1} & = 0.\overline{27} \\ & \operatorname{color}_{c,2} & = 0.\overline{136} \\ & \operatorname{color}_{c,3} & = 0.\overline{09} \\ \end{array}$$

Нужно как минимум 2 цвета

$$obj \ge v \times \text{color}_{c,v}$$
 $(c \in C, v \in 0..3)$

$$\sum_{v=0}^{3} \text{color}_{c,v} = 1$$
 $(c \in C)$

 $color_{c_1,v} + color_{c_2,v} \le 1$ $(c_1, c_2 \in C \text{ and adjacent}, c_1, c_2 \in C)$

Оптимальных ветвей 12

Доверительных 22

Раскраска карты в бинарных переменных

- Можно присвоить любой из стран конкретный цвет, это сузит поиск
- Объединить ограничения, это улучшит релаксацию

$$obj \ge v \times \text{color}_{c,v} \quad (c \in C, v \in 0..3)$$

$$\sum_{v=0}^{3} \text{color}_{c,v} = 1 \quad (c \in C)$$

$$obj \ge \sum_{v=0}^{3} v \times \text{color}_{c,v} \quad (c \in C)$$

Раскраска карты в бинарных переменных

- Добавляем линейное ограничение, такое что:
 - Оно не удаляет допустимых значений
 - Отсекает неоптимальные значения для линейной релаксации

$$\max x_2$$

При этом
$$3x_1 + 2x_2 \le 6$$
 $-3x_1 + 2x_2 \le 0$ $x_i \ge 0, x_i$ целые

Базовое выполнимое решение

О По решению симплекс метода для линейного программирования:

$$x_1 = b_1 + \sum_{j=m+1} a_{1j} x_j$$

. . .

$$x_m = b_m + \sum_{j=m+1} a_{mj} x_j$$

Базовое выполнимое решение

$$x_1 = b_1$$

• • •

$$x_m = b_m$$

$$x_j = 0 \ (m < j \le n)$$

Допустим, что b_1 - дробное

$$x_1 + \sum_{j=m+1} a_{1j} x_j = b_1$$

$$\sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \le \sum_{j=m+1} a_{1j} x_j$$

$$x_1 + \sum_{j=m+1} [a_{1j}] x_j \le b_1$$

$$x_1 + \sum_{j=m+1} [a_{1j}] x_j$$
 целое

$$x_1 + \sum_{j=m+1} \lfloor a_{1j} \rfloor x_j \le \lfloor b_1 \rfloor$$

$$x_1 + \sum_{j=m+1} \left[a_{1j} \right] x_j \le \lfloor b_1 \rfloor$$

- Ограничение не удаляет допустимых значений
- Ограничение отсекает базовые выполнимые значения, которые могут являться оптимальными для линейной релаксации

Допустим, что b_1 - дробное

$$x_{1} + \sum_{j=m+1} a_{1j} x_{j} = b_{1}$$

$$x_{1} + \sum_{j=m+1} \left[a_{1j} \right] x_{j} \le \left[b_{1} \right]$$

$$=$$

$$\sum_{j=m+1} (a_{1j} - \left[a_{1j} \right]) x_{j} \ge b_{1} - \left[b_{1} \right]$$

$$\sum_{i=m+1} (a_{1i} - |a_{1i}|) x_i - s = b_1 - |b_1|$$

$$s = \sum_{j=m+1} (a_{1j} - \lfloor a_{1j} \rfloor) x_j - (b_1 - \lfloor b_1 \rfloor)$$

- Решаем линейную релаксацию
- Выбираем строку, которая содержит дробную константу и добавляем сечение Гомори
- Применяем двойственный симплекс на обследование выполнимости
- Выполняем пока не найдём целого решения, либо убедимся в выполнимости

 $\max x_2$

При этом

$$3x_1 + 2x_2 \le 6$$

$$-3x_1 + 2x_2 \le 0$$

$$x_i$$
≥ 0, x_i целые

$$min -x_2$$

При этом
$$3x_1 + 2x_2 + x_3 = 6$$

 $-3x_1 + 2x_2 + x_4 = 0$

$$x_i$$
≥ 0, x_i целые

	x_1	x_2	x_3	x_4	b
	0	-1	0	0	0
x_3	3 4	2	014	0	6
x_4	-3	2	0	1	0

	x_1	x_2	<i>x</i> ₃	x_4	b
	0	0	1/4_	1/4	3/2
x_1	17 4	0	1/6	-1/6) 1
x_2	0	1	1/4	1/4	3/2

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

Выразим через x_1 и x_2

$$\min \ -x_2$$
 При этом $3x_1 + 2x_2 + x_3 = 6$ $-3x_1 + 2x_2 + x_4 = 0$ $x_i \ge 0, \ x_i$ целые

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

$$\min -x_2$$

При этом
$$3x_1 + 2x_2 + x_3 = 6$$
 $-3x_1 + 2x_2 + x_4 = 0$ $x_i \ge 0$, x_i целые

Выразим через x_1 и x_2

$$\frac{1}{4}(6 - 3x_1 - 2x_2) + \frac{1}{4}(3x_1 - 2x_2) \ge \frac{1}{2}$$

 $x_2 \le 1$

	x_1	x_2	x_3	x_4	s_1	b
	0	0	1/4	1/4	0	3/2
x_1	1 7	4 o	1/6	-1/6	0	1
x_2	0	1	1/4	1/4	0	3/2
s_1	0	0	-1/4	-1/4	1 []	-1/2

	x_1	x_2	x_3	x_4	s_1	b
	0	0	0	0	0	1
x_1	7	<u> </u>		-1/3	2/3	2/3
x_2	0	1	0	0	1	1
S_1	0	0			-4	2

$$\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$$

 \bigcirc Выразим через x_1 и x_2

$$x_1 - x_2 \ge 0$$

Выпуклая оболочка, сечение многогранником

Сечение многогранником

- Сечение многогранником
 - Отсекает области, образованные выпуклой оболочкой
- Сечение корректно:
 - Не убирает ни одного решения
 - Сечение сильное, насколько это возможно
 - Если мы имеем все из них, то можно решить задачу линейного программирования

Сечение многогранником

- О Использует структуру задачи
 - Строится на базе ограничений задачи
- Должен удалить текущее базовое выполнимое решение.
- Не нужно генерировать все из них
 - Приложение может использовать разные типы отсечений

Грани

- \supset Для того, чтобы найти грань в R^n
 - Найти n аффинно независимых решений (точек), удовлетворяющих ограничению, как равенству
 - Аффинная независимость
 - x_1, \dots, x_n аффинно независимы тогда и только тогда, когда $(x_1, 1), \dots, (x_n, 1)$ линейно независимы

Расположение складов

$$\begin{aligned} &\textit{Minimize} \sum_{w \in W} c_w x_w + \sum_{w \in W, c \in \mathcal{C}} t_{w,c} \, y_{w,c} \\ &\textit{При этом } y_{wc} \leq x_w \, (w \in W, c \in \mathcal{C}) \\ &\sum_{w \in W} y_{wc} = 1 \, (c \in \mathcal{C}) \\ &x_w \in \{0,1\} \, (w \in W) \\ &y_{wc} \in \{0,1\} \, (w \in W, c \in \mathcal{C}) \end{aligned}$$

Грани

Какие будут грани для неравенства

$$y_{wc} \le x_w$$

 \bigcirc Рассмотрим $y_{w,1} \le x_w$ и найдем n точек

	W	1	2		n	
	0	0	0		0	1
	1	1	0		0	1
\	1	1	1		0	1
•						
•	1	1	0	0	1	1

Сечение покрытием, метод ветвей и сечения

Сечение покрытием

- Рассмотрим ограничения типа
 - $\sum_{j=1..n} a_j x_j \le b$
- Какие грани будут у этого ограничения?
- Покрытие
 - Множество $C \subseteq N = \{1, ..., n\}$ является покрытием, если $\sum_{j \in \mathbb{C}} a_j > b$
 - Покрытие минимально, если $C\setminus \{j\}$ не покрытие для любого $j\in C$
 - Если
 - Множество $C \subseteq N = \{1, ..., n\}$ является покрытием, тогда $\sum_{j \in \mathbb{C}} x_j \leq |C| 1$ соответствует неравенству

Сечение покрытием

- Рассмотрим ограничения типа
 - $11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19$
- Несколько минимальных покрытий для этого неравенства

$$x_1 + x_2 + x_3 \le 2$$

$$x_3 + x_4 + x_5 + x_6 \le 3$$

Сильнее сечения покрытием

- 🔾 Если
 - Множество $C \subseteq N = \{1,...,n\}$ является покрытием, тогда $\sum_{j \in E(\mathbb{C})} x_j \leq |C| 1$ соответствует неравенству $\sum_{j=1..n} a_j x_j \leq b$, где $E(C) = C \cup \{j \mid \forall i \in C : a_j \geq a_i\}$
- Рассмотрим ограничения типа

$$11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19$$

$$x_3 + x_4 + x_5 + x_6 \le 3$$

- О Сильнее, чем покрытие неравенства
 - $x_1 + \dots + x_6 \le 3$

Метод ветвей и сечения

- Основная идея
 - Формулируем задачу как СЦП
 - 2. Решаем линейную релаксацию, если линейная релаксация целая, останавливаемся
 - 3. Ищем многогранник, который усекает линейную релаксацию, если это возможно. Если возможно, то идём в пункт 2
 - 4. В противном случае, идём на другую ветку

Отделение для сечения покрытием

- \bigcirc Покрытие неравенства $\sum_{j\in\mathbb{C}}x_j\leq |\mathcal{C}|-1$
- Может быть записано как

$$\sum_{j \in C} (1 - x_j) \ge 1$$

 \bigcirc Это означает, что существует $C\subseteq N$ удовлетворяющее

$$\sum_{j\in C} (1-x_j^*) < 1$$

- $\sum_{j\in\mathbb{C}}a_j>b$
- Это эквивалентно задаче

$$\min \sum_{j \in N} (1 - x_j^*) z_j$$

- При этом $\sum_{j \in N} a_j z_j > b \ z_j \in \{0,1\}$
- Если минимум этой задачи ниже 1, значит есть сечение, все переменные имеют значение 1 для сечения.

Отделение для сечения покрытием

- Рассмотрим ограничения типа
 - $45x_1 + 46x_2 + 79x_3 + 54x_4 + 53x_5 + 125x_6 \le 178$
- О Имеет дробное решение

$$x^* = (0, 0, \frac{3}{4}, \frac{1}{2}, 1, 0)$$

- Задача отделения
 - $\min z_1 + z_2 + \frac{1}{4}z_3 + \frac{1}{2}z_4 + z_6$
 - При этом $45z_1 + 46z_2 + 79z_3 + 54z_4 + 53z_5 + 125z_6 > 178$

