1. Introducción
 2. Estudio y evaluación del modelo completo
 3. Selección del mejor modelo
 4. Diagnóstico
 5. Calcular el Error de test
 6. Conclusión

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

Conjunto de datos: SWISS

Susana Chen, Carmen Martínez, Óscar Mesa y Eva de Vega

26 de marzo de 2023

- 1.Introducción
- 2 2. Estudio y evaluación del modelo completo
- 3 3.Selección del mejor modelo
- 4. Diagnóstico
- 5 5.Calcular el Error de test
- 6. Conclusión

1.Introducción
 2. Estudio y evaluación del modelo completo
 3.Selección del mejor modelo
 4.Diagnóstico
 5.Calcular el Error de test
 6.Conclusión

1.INTRODUCCIÓN

1.Introducción

> head(conjunto_swiss)

	Fertility	Agriculture	Examination	Education	Catholic	Infant.Mortality
Courtelary	927.112	197	173	139	115	257
Delemont	13615.935	7390	983	1475	13901	3637
Franches-Mnt	7919.850	3399	428	428	7997	1730
Moutier	1990.560	847	278	162	783	471
Neuveville	1814.840	1027	401	354	122	486
Porrentruy	4906.928	2276	580	451	5840	1715

1.1. Descripción de las variables

· Fertility: Es la media estandarizada común de fertilidad.

```
> typeof(Fertility)
[1] "double"
```

· Agriculture: Número de hombres agricultores.

```
> typeof(Agriculture)
[1] "double"
```

• Examination: Número de reclutas que reciben la calificación más alta en el examen del ejército.

```
> typeof(Examination)
[1] "double"
```

· Education: Número de habitantes con estudios superiores.

```
> typeof(Education)
[1] "double"
```

· Catholic: Número de católicos.

```
> typeof(Catholic)
[1] "double"
```

· Infant.Mortality: Niños que viven menos de un año.

```
> typeof(Infant)
[1] "double"
```

I. Introducción
 Selección del modelo completo
 3. Selección del mejor modelo
 4. Diagnóstico
 5. Calcular el Error de test
 6. Conclusión

2. ESTUDIO Y EVALUACIÓN DEL MODELO COMPLETO

2. Estudio y evaluación del modelo completo

> summary(conjunto swiss)

```
Fertility
                    Agriculture
                                                       Education
                                                                                       Infant.Mortality
                                     Examination
                                                                         Catholic
       : 308.4
                                                     Min.
                                                                      Min.
                                                                                       Min.
                                                                                                   61.0
                                    Min.
                                              173
1st Ou.: 1755.0
                   1st Ou.: 1117
                                    1st Ou.:
                                               330
                                                     1st Ou.:
                                                                175
                                                                      1st Ou.:
                                                                                 201
                                                                                       1st Ou.:
                                                                                                  478.5
Median: 6763.7
                                    Median :
                                               708
                                                                586
                                                                      Median: 1463
                                                                                       Median: 1715.0
                   Median :
                             3095
                                                     Median :
       : 8386.6
                          : 5508
                                             2379
                                                               2008
                                                                             : 5130
                                                                                                2493.6
Mean
                   Mean
                                    Mean
                                                     Mean
                                                                      Mean
                                                                                       Mean
3rd Ou.:10927.5
                   3rd Ou.: 7287
                                    3rd Ou.: 2516
                                                     3rd Ou.: 1484
                                                                      3rd Ou.: 8168
                                                                                        3rd Ou.: 3152.0
       :45908.6
                           :40489
                                            :28012
                                                             :40126
                                                                              :32055
                                                                                               :13628.0
Max.
                   Max.
                                    Max.
                                                     Max.
                                                                      Max.
                                                                                       Max.
```

I.Introducción
 Sestudio y evaluación del modelo completo
 3.Selección del mejor modelo
 4.Diagnóstico
 5.Calcular el Error de test
 6.Conclusión

1. Introducción
 2. Estudio y evaluación del modelo completo
 3. Selección del mejor modelo
 4. Diagnóstico
 5. Calcular el Error de test
 6. Conclusión

1. Introducción
 2. Estudio y evaluación del modelo completo
 3. Selección del mejor modelo
 4. Diagnóstico
 5. Calcular el Error de test

3. SELECCIÓN DEL MEJOR MODELO

Definimos las variables explicativas y la variable respuesta:

- > Fertility<-conjunto_swiss\$Fertility
- > Agriculture<-conjunto_swiss\$Agriculture</p>
- > Examination<-conjunto_swiss\$Examination
- > Education<-conjunto_swiss\$Education
- > Catholic<-conjunto_swiss\$Catholic
- > Infant<-conjunto_swiss\$Infant.Mortality

En forma matricial nos queda la siguiente ecuación de regresión:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \beta_{4}x_{i4} + \beta_{5}x_{i5} \text{ con } i \in \{1, ..., 47\}$$

$$Y_{47\times1} = X_{47\times6}\beta_{6\times1} + \varepsilon_{47\times1}$$

Nuestro modelo y sus coeficientes son:

```
> model<-lm(Fertility~Agriculture+Examination+Education+Catholic+Infant, data=conjunto_swiss)
> modelScoefficients
(Intercept) Agriculture Examination Education Catholic Infant
117.1875172 0.06906732 -0.44990220 -0.35570581 0.01914249 3.83994829
```

Realizamos el siguiente contraste de hipótesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$$

$$H_1: \beta_i = 0$$

```
> summary(model)
call:
lm(formula = Fertility ~ Agriculture + Examination + Education +
   Catholic + Infant, data = conjunto_swiss)
Residuals:
   Min
           10 Median 30
                                 Max
-2269.2 -476.5 -67.7 406.1 2346.0
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 117.18755 195.25119 0.600 0.551684
Agriculture 0.06906 0.04651 1.485 0.145189
Examination -0.44990 0.17573 -2.560 0.014244 *
Education -0.35571 0.09509 -3.741 0.000562 ***
Catholic 0.01914 0.02647 0.723 0.473683
Infant 3.83995 0.21926 17.513 < 2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 902 on 41 degrees of freedom
Multiple R-squared: 0.9911, Adjusted R-squared: 0.99
F-statistic: 915.4 on 5 and 41 DF. p-value: < 2.2e-16
```

3.1.Métodos basados en pruebas

3.1.1) Método Forward

En cada iteración, vamos añadiendo la variable explicativa que cumpla:

$$p$$
-valor $< \alpha_{critic} = 0.05$

Primera Iteración

Infant.Mortality:
$$Pr(>t) < 2 \cdot 10^{-16} < \alpha_{\it critic} = 0.05$$

	Df	Sum of Sq	RSS	AIC	F value	Pr>F
<none></none>			3756931492	857,25		
Agriculture	1	2490455546	1266475947	808,14	88,490	$3,406 \cdot 10^{-12}$
Examination	1	1397162087	2359769405	837,39	26,643	$5,359 \cdot 10^{-6}$
Education	1	785611536	2971319956	848,22	11,898	0,001231
Catholic	1	820867437	2936064056	847,66	12,581	0,000924
Infant.Mortality	1	3341249575	415681917	755,78	361,710	$< 2,2 \cdot 10^{-16}$

Segunda Iteración

Examination:
$$Pr(>t) < 2.2 \cdot 10^{-16} < \alpha_{critic} = 0.05$$

	Df	Sum of Sq	RSS	AIC	F value	Pr>F
<none></none>			41568197	755,78		
Agriculture	1	298539564	117142353	698,25	112,1349	$1{,}109\cdot10^{-13}$
Examination	1	367054893	48627024	643,93	332,1284	$< 2,2 \cdot 10^{-16}$
Education	1	365564388	50117529	658,35	320,9423	$< 2.2 \cdot 10^{-16}$
Catholic	1	17595127	398086790	755,75	1,9448	0,1702

Observación

Aunque había otra variable explicativa con, aparentemente el mismo *p-valor* (en este caso era *Education*) nos hemos decantado por *Examination* ya que su *valor F* era más grande y sabemos que cuanto más grande es, más pequeño es el *p-valor*.

Tercera Iteración

Education: $Pr(>t) < 0.0002196 < \alpha_{critic} = 0.05$

	Df	Sum of Sq	RSS	AIC	F value	Pr>F
<none></none>			48627024	656,93		
Agriculture	1	2961590	45665434	655,98	2,7887	0,1021947
Education	1	13358152	35268872	643,83	16,2863	0,0002196
Catholic	1	1941217	46685807	657,01	1,7880	0,1882059

3.2. Métodos basados en criterios

Los posibles modelos son:

```
> summary(model)
call:
lm(formula = Fertility ~ Agriculture + Examination + Education +
   Catholic + Infant, data = conjunto swiss)
Residuals:
            10 Median
-2269.2 -476.5 -67.7
                         406.1 2346.0
coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 117.18755 195.25119
                                0.600 0.551684
Agriculture
            0.06906
                        0.04651
                                 1.485 0.145189
Examination -0.44990
                        0.17573 -2.560 0.014244 *
            -0.35571
Education
                        0.09509
                                -3.741 0.000562 ***
Catholic
           0.01914
                        0.02647
                                 0.723 0.473683
Infant
            3 83995
                        0 21926 17 513 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 902 on 41 degrees of freedom
Multiple R-squared: 0.9911.
                             Adjusted R-squared:
F-statistic: 915.4 on 5 and 41 DF. p-value: < 2.2e-16
```

- $lue{1}$ Fertility \sim Infant
- **②** Fertility ∼ Examination + Infant
- Fertility \sim Examination + Education + Infant
- Fertility \sim Agriculture + Education + Examination + Infant
- ullet Fertility \sim Agriculture + Examination + Education + Catholic + Infant

3.2.1.R cuadrado ajustado


```
> MR2adj<-summary(models)$adjr2
> MR2adj
[1] 0.8868972 0.9864684 0.9899572 0.9901522 0.990039
> which.max(MR2adj)
[1] 4
> plot(models,scale="adjr")
```

3.2.2.Cp de Mallows

3.2.3. Criterio de Información de Bayes (BIC)


```
> MBIC<-summary(models) $bic

> MBIC

[1] -95.76727 -192.76694 -204.01138 -202.18854 -198.93389

> which.min(MBIC)

[1] 3

> plot(models,scale="bic")

> install.packages("MASS")
```

3.2.4. Criterio de Información de Akaike (AIC)

```
> #ATC
> SCOPE<-(~.)
> stepAIC(modelo_completo, scope=SCOPE.k=2)
Start: AIC=645.21
Fertility ~ Agriculture + Examination + Education + Catholic +
    Infant
             Df Sum of Sa
- Catholic
                   425301 33780501 643.81
                           33355200 645.21
<none>
- Agriculture 1
                  1793764 35148964 645.67
- Examination 1
                5332289 38687490 650.18
- Education
              1 11383630 44738830 657.01
- Infant
              1 249523972 282879173 743.69
Step: AIC=643.81
Fertility ~ Agriculture + Examination + Education + Infant
             Df Sum of Sa
<none>
                           33779724 643.81
- Agriculture 1
                  1489148
                           35268872 643.83
+ Catholic
                   425447
                           33354278 645.21
- Examination 1 8432237 42211961 652.28
- Education
              1 11885710 45665434 655.98
- Infant
              1 310151705 343931429 750.87
Call:
lm(formula = Fertility ~ Agriculture + Examination + Education +
    Infant, data = conjunto_swiss)
Coefficients:
(Intercept) Agriculture Examination
                                       Education
                                                       Infant
                                        -0.32488
  169.64188
                0.06116
                            -0.50652
                                                      3.90494
```

Como hemos obtenido dos modelos candidatos a mejor modelo, realizamos un contraste de hipótesis:

```
> modelo_mejor<-lm(Fertility~Examination+Education+Infant)
> modelo_mejor2<-lm(Fertility~Agriculture+Examination+Education+Infant)
> anova(modelo_mejor, modelo_mejor2)
Analysis of Variance Table

Model 1: Fertility ~ Examination + Education + Infant
Model 2: Fertility ~ Agriculture + Examination + Education + Infant
    Res.Df    RSS Df Sum of Sq    F Pr(>F)
1    43 35268872
2    42 33779724    1 1489148    1.8515    0.1809
```

El mejor modelo es:

 $\textit{Fertility} \sim \textit{Examination} + \textit{Education} + \textit{Infant}$

Estudio y evaluación del modelo completo
 Selección del mejor modelo
 Jiagnóstico
 S.Calcular el Error de test

4. DIAGNÓSTICO

4.1.Linealidad, normalidad y homocedasticidad

- Linealidad.
- Normalidad.

```
> #Normalidad
```

- > #Vamos a usar el test de Shapiro-Wilk
- > shapiro.test(resid(modelo_mejor))

Shapiro-Wilk normality test

```
data: resid(modelo_mejor)
W = 0.95708, p-value = 0.08238
```

Normal Q-Q Plot

Homocedastidad.

```
studentized Breusch-Pagan test
```

```
data: modelo_mejor
BP = 3.3069, df = 3, p-value = 0.3467
```


< ≣ >

4.2. Autocorrelación

Como el p-valor es menor que 0.05 existe autocorrelación entre los errores.

```
> durbinWatsonTest(bestmodel)
lag Autocorrelation D-W Statistic p-value
     1     0.04244051     1.90737     0.702
Alternative hypothesis: rho != 0
```

1. Introducción
 2. Estudio y evaluación del modelo completo
 3. Selección del mejor modelo
 4. Diagnóstico
 5. Calcular el Error de test
 6. Conclusión

4.3 ESTUDIO DE OUTLIERS, INFLUYENTES Y LEVERAGE

4.3.1.Outliers

Aplicamos el método de Bonferroni con un nivel de significación del 0.05 para detectar outliers:

4.3.1. Outliers

Obtenemos la observación Sierre (la número 37) como outlier.

```
>> bestmodel_sin_37<-lm(Fertility~Examination+Education+Infant, data=conjunto_swiss_sin37)
> bestmodel_sin_37

call:
lm(formula = Fertility ~ Examination + Education + Infant, data = conjunto_swiss_sin37)

Coefficients:
(Intercept) Examination Education Infant
89,8321 -0.5522 -0.3667 4.1261
```

4.3.1. Outliers

Como el p-valor es menor que 0.05 existe autocorrelación entre los errores.

```
> durbinWatsonTest(bestmodel_sin_37)
lag Autocorrelation D-W Statistic p-value
1   -0.1036541   2.200708   0.486
Alternative hypothesis: rho != 0
```

4.3.1. Outliers

Como el p-valor es menor que 0.05 existe normalidad.

4.3.1. Outliers

Perdemos la homocedasticidad pues el p-valor es menor que 0.05

4.3.2. Observaciones influyentes

Para ver las observaciones influyentes hemos utilizado tres métodos distintos: la distancia de Cook, los DFFITS y los DFBETAS. Estos son los resultados que hemos obtenido:

4.3.2. Observaciones influyentes

DFFITS estandarizados

DFBETAS estandarizados

Estudio del modelo sin la observación V. de Geneve.

```
Shapiro-Wilk normality test
   data: resid(posible modelo sin45)
  W = 0.94078, p-value = 0.02094
    > bptest(posible modelo sin45)
           studentized Breusch-Pagan test
    data: posible modelo sin45
    BP = 1.6853, df = 3, p-value = 0.6402
> durbinWatsonTest(posible modelo sin45)
 lag Autocorrelation D-W Statistic p-value
          0.06527015
                      1.863147
                                      0.584
Alternative hypothesis: rho != 0
```

Estudio del modelo sin la observación Paysd'enhaut.

```
> shapiro.test(resid(posible modelo sin27))
              Shapiro-Wilk normality test
      data: resid(posible_modelo_sin27)
      W = 0.9159. p-value = 0.002724
       > bptest(posible_modelo_sin27)
               studentized Breusch-Pagan test
       data: posible_modelo_sin27
       BP = 2.0947, df = 3, p-value = 0.553
> durbinWatsonTest(posible modelo sin27)
 lag Autocorrelation D-W Statistic p-value
           0.1193181
                      1.74736 0.346
Alternative hypothesis: rho != 0
```

Estudio del modelo sin la observación Lavaux.

```
> shapiro.test(resid(posible_modelo_sin20))
       Shapiro-Wilk normality test
data: resid(posible_modelo_sin20)
W = 0.94157, p-value = 0.02241
   > bptest(posible modelo sin20)
           studentized Breusch-Pagan test
    data: posible_modelo_sin20
    BP = 1.9598, df = 3, p-value = 0.5808
> durbinWatsonTest(posible modelo sin20)
 lag Autocorrelation D-W Statistic p-value
          0.02323095
                         1.947479 0.784
 Alternative hypothesis: rho != 0
```

Estudio del modelo sin la observación Porrentruy.

```
> shapiro.test(resid(posible_modelo_sin6))

Shapiro-Wilk normality test

data: resid(posible_modelo_sin6)
W = 0.94645, p-value = 0.03429

> bptest(posible_modelo_sin6)
    studentized Breusch-Pagan test

data: posible_modelo_sin6
BP = 3.4924, df = 3, p-value = 0.3217

> durbinWatsonTest(posible_modelo_sin6)
lag Autocorrelation D-W Statistic p-value
1    0.02629031    1.936485    0.738
Alternative hypothesis: rho != 0.738
```

Estudio del modelo sin la observación Sarine.

```
> shapiro.test(resid(posible_modelo_sin10))
       Shapiro-Wilk normality test
data: resid(posible_modelo_sin10)
W = 0.95504, p-value = 0.0735
  > bptest(posible modelo sin10)
          studentized Breusch-Pagan test
  data: posible modelo sin10
  BP = 2.1482, df = 3, p-value = 0.5422
 > durbinWatsonTest(posible modelo sin10)
  lag Autocorrelation D-W Statistic p-value
           0.04657698
                          1.899036
                                    0.74
  Alternative hypothesis: rho != 0
```

Estudio del modelo sin la observación La Chauxdfnd.

```
> shapiro.test(resid(posible_modelo_sin40))
        Shapiro-Wilk normality test
data: resid(posible_modelo_sin40)
W = 0.95488, p-value = 0.07243
   > bptest(posible_modelo_sin40)
          studentized Breusch-Pagan test
   data: posible_modelo_sin40
   BP = 3.0309, df = 3, p-value = 0.3869
> durbinWatsonTest(posible modelo sin40)
lag Autocorrelation D-W Statistic p-value
                        1.890029
Alternative hypothesis: rho != 0
```

4.4.Colinealidad

Como el valor del determinante es muy grande, descartamos la opción de que la matriz sea casi singular. Concluímos que no existe multicolinealidad.

```
> X<-cbind(rep(1,length(Fertility)),Examination,Education,Infant)
> det(t(X)%*%X)
[1] 6.218467e+26
```

4.4.1.Leverage

Estudio y evaluación del modelo completo
 Selección del mejor modelo
 J.Diagnóstico
 S.Calcular el Error de test

5. CALCULAR EL ERROR DE TEST

5. Calcular el Error de test

Separeremos los datos entre 70 % entrenamiento y 30 % test y realizaremos la validación cruzada.

```
> model.exh
Subset selection object
Call: regsubsets.formula(Fertility ~ ., data = conjunto_swiss[train,
    1:6], method = "exhaustive")
5 Variables (and intercept)
                 Forced in Forced out
Agriculture
                     FALSE
                                 FALSE
Examination
                     FALSE
                                 FALSE
Education
                     FALSE
                                 FALSE
Catholic
                     FALSE
                                 FALSE
Infant.Mortality
                     FALSE
                                 FALSE
1 subsets of each size up to 5
Selection Algorithm: exhaustive
```

```
> summary(model.exh) #todos los modelos posibles para los `predictores
Subset selection object
Call: regsubsets.formula(Fertility ~ ., data = conjunto swiss[train,
    1:6], method = "exhaustive")
5 Variables (and intercept)
                  Forced in Forced out
Agriculture
                      FALSE
                                  FALSE
Examination
                      FALSE
                                  FALSE
Education
                      FALSE
                                  FALSE
Catholic
                      FALSE
                                  FALSE
Infant.Mortality FALSE
                                  FALSE
1 subsets of each size up to 5
Selection Algorithm: exhaustive
         Agriculture Examination Education Catholic Infant.Mortality
                                                        m \le n
                                                        m \le n
                      m \times m
                                   m \ge m
                                                        H \oplus H
                                   n e n
                      \mathbf{H} \triangleq \mathbf{H}
                                            0.20
                                                        m \le m
    > val.errors
    [1] 50899007 20279332 2991010 3047738
                                                3051125
   > coef(model.exh, which.min(val.errors))
         (Intercept)
                           Agriculture Education Infant.Mortality
         -39.7102481
                             0.2150309
                                              -0.4950186
                                                                  3.3301860
```

Estudio y evaluación del modelo completo
 Selección del mejor modelo
 A.Diagnóstico
 S.Calcular el Error de test
 6.Conclusión

6. CONCLUSIÓN

6.1. Nuevas observaciones

Creamos un nuevo data.frame() con 3 nuevas provincias suizas

> newdataframe

```
Fertility Agriculture Education Examination Catholic Infant
1 13.20 40.31 23 20.11 50.31 62.31
2 50.30 52.54 2 12.19 36.54 21.00
3 18.93 39.99 5 20.51 27.89 24.70
```

1.Introducción
2. Estudio y evaluación del modelo completo
3.Selección del mejor modelo
4.Diagnóstico
5.Calcular el Error de test
6.Conclusión

6.1. Nuevas observaciones

El valor estimado de la fertilidad y sus intervalos de confianza al 95 %:

```
Yhat S_yhat IntervConfInf IntervConfSup
1 37673.40 177.1037 37233.36 38113.45
2 12901.66 178.3231 12458.59 13344.74
3 13973.17 178.1431 13530.53 14415.80
```

Mejor modelo,

$$Y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\beta_3x_{i3}+\varepsilon_i, \quad i=1,\cdots,46$$
 siendo $\beta_0=145,57623$, $\beta_1=-0,63120$, $\beta_2=-0,33337$ y $\beta_3=4,18837$

Su tabla ANOVA es:

Su valor R^2 es 0.9899132. En el summary observamos:

```
> summarv(bestmodel sin 10)
call:
lm(formula = Fertility ~ Examination + Education + Infant, data = conjunto_swiss_sin10)
Residuals:
    Min
            10 Median
-1905.3 -464.5 -124.2 376.7 2575.7
coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 145.57623 179.19163 0.812 0.421140
Examination -0.63120 0.14011 -4.505 5.22e-05 ***
            -0.33337 0.08314 -4.010 0.000244 ***
Education
            4.18837 0.09424 44.445 < 2e-16 ***
Infant
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 889.7 on 42 degrees of freedom
Multiple R-squared: 0.9906, Adjusted R-squared: 0.9899
F-statistic: 1473 on 3 and 42 DF, p-value: < 2.2e-16
```

También hemos observado que un modelo igual de bueno es el que relaciona las variables 'Agriculture', 'Education' e 'Infant'.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, \quad i = 1, \dots, 47$$

siendo
$$\beta_0=849,82333$$
, $\beta_1=0,84578$, $\beta_2=1,60544$ y $\beta_3=-0.46890$

Su tabla ANOVA es:

```
Analysis of Variance Table
```

```
Response: Fertility
           Df
                  Sum Sq
                            Mean Sq F value
                                              Pr(>F)
              2490455546 2490455546 311.369 < 2.2e-16
Agriculture
Examination
               897597291
                          897597291 112.222 1.457e-13
Education
               24947226
                           24947226
                                      3.119
                                              0.08448 .
Residuals
           43 343931429
                          7998405
Signif. codes:
                  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Su valor R^2 es 0.9947118. En el summary observamos:

```
call:
lm(formula = Fertility ~ Agriculture + Examination + Education.
   data = conjunto swiss)
Residuals:
             10 Median
    Min
                                      мах
-10623.2 -1071.9 -614.9 1121.7 6186.5
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 849,82333 557,81880 1,523 0,1350
Agriculture 0.84578 0.06492 13.029 < 2e-16 ***
Examination 1.60544 0.35824 4.482 5.42e-05 ***
Education -0.46890 0.26550 -1.766 0.0845 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2828 on 43 degrees of freedom
Multiple R-squared: 0.9085, Adjusted R-squared: 0.9021
F-statistic: 142.2 on 3 and 43 DF, p-value: < 2.2e-16
```