The testcorr Package

Violetta Dalla

National and Kapodistrian University of Athens

Liudas Giraitis

Queen Mary University of London

Peter C. B. Phillips

Yale University,
University of Auckland,
University of Southampton,
Singapore Management University

Abstract

The R package **testcorr** implements standard and robust procedures for testing the significance of the autocorrelation in univariate data and the cross-correlation in bivariate data. It also includes tests for the significance of pairwise Pearson correlation in multivariate data and the i.i.d. property for univariate data. The standard testing procedures on significance of correlation are used commonly by practitioners while their robust versions were developed in Dalla, Giraitis, and Phillips (2020), where the tests for i.i.d. property can be also found. This document briefly outlines the testing procedures and provides simple examples.

Keywords: autocorrelation, cross-correlation, Pearson correlation, i.i.d., R.

1. Introduction

Inference on the significance of the autocorrelation $\rho_k = \operatorname{corr}(x_t, x_{t-k})$ or the cross-correlation $\rho_{xy,k} = \operatorname{corr}(x_t, y_{t-k})$ is a common first step in the analysis of univariate $\{x_t\}$ or bivariate $\{x_t, y_t\}$ time series data. Moreover, it is common to test the significance of pair-wise correlations $\rho_{x_ix_j} = \operatorname{corr}(x_{it}, x_{jt})$ in multivariate $\{x_{1t}, x_{2t}, ..., x_{pt}\}$ data, cross-sectional or time series. Standard inference procedures¹ are valid for i.i.d. univariate or mutually independent bivariate/multivariate data and their size can be significantly distorted otherwise, in particular, by heteroscedasticity and dependence. The robust methods² given in Dalla *et al.* (2020) allow testing for significant autocorrelation/cross-correlation/correlation under more general settings, e.g., they allow for heteroscedasticity and dependence in each series and mutual dependence across series.

The R (R Core Team 2019) package **testcorr** includes the functions ac.test and cc.test that implement the standard and robust procedures for testing significance of autocorrelation and cross-correlation, respectively. Moreover, the package provides the function rcorr.test that evaluates the sample Pearson correlation matrix for multivariate data with robust p-values for testing sig-

¹Like those implemented in the stats (R Core Team 2019), sarima (Boshnakov and Halliday 2019), portes (Mahdi and McLeod 2018) and Hmisc (Harrell Jr, with contributions from Charles Dupont *et al.* 2019) packages, functions stats::acf, stats::ccf, stats::Box.test, sarima::acfIidTest, sarima::whiteNoiseTest with h0 = "iid", portes::LjungBox, stats::cor.test and Hmisc::rcorr.

²These robust methods are valid under more general settings compared to those in the sarima (Boshnakov and Halliday 2019) and normwhn.test (Wickham 2012) packages, functions sarima::acfGarchTest, sarima::acfWnTest, sarima::whiteNoiseTest with h0 = "garch" and normwhn.test::whitenoise.test.

nificance of its elements. The package also contains the function iid.test that conducts testing procedures for the i.i.d. property³ of univariate data introduced in Dalla *et al.* (2020). Sections 2-5 describe the testing procedures that each function implements and provide examples. Section 6 outlines some suggestions relating to the application of the testing procedures.

2. Testing zero autocorrelation: ac.test

For a univariate time series $\{x_t\}$, given a sample $x_1, ..., x_n$, the null hypothesis $H_0: \rho_k = 0$ of no autocorrelation at lag k = 1, 2, ... is tested at α significance level using the sample autocorrelation $\widehat{\rho}_k$ and the $100(1-\alpha)\%$ confidence band (CB) for zero autocorrelation, obtained using the corresponding t-type statistics (t_k "standard" and \widetilde{t}_k "robust").^{4,5} The null hypothesis $H_0: \rho_1 = ... = \rho_m = 0$ of no autocorrelation at cumulative lags m = 1, 2, ... is tested using portmanteau type statistics (Ljung-Box LB_m "standard" and \widetilde{Q}_m "robust").⁶ The following notation is used.

Standard procedures:

$$CB(100(1-\alpha)\%) = (-z_{\alpha/2}/\sqrt{n}, z_{\alpha/2}/\sqrt{n}), \quad t_k = \sqrt{n}\widehat{\rho}_k, \quad LB_m = (n+2)n\sum_{k=1}^m \frac{\widehat{\rho}_k^2}{n-k}.$$

Robust procedures:

$$CB(100(1-\alpha)\%) = (-z_{\alpha/2}\frac{\widehat{\rho}_k}{\widetilde{t}_k}, z_{\alpha/2}\frac{\widehat{\rho}_k}{\widetilde{t}_k}), \quad \widetilde{t}_k = \frac{\sum_{t=k+1}^n e_{tk}}{\left(\sum_{t=k+1}^n e_{tk}^2\right)^{1/2}}, \quad \widetilde{Q}_m = \widetilde{t}' \, \widehat{R}^{*-1} \, \widetilde{t},$$

where $e_{tk} = (x_t - \bar{x})(x_{t-k} - \bar{x}), \ \bar{x} = n^{-1} \sum_{t=1}^n x_t, \ \tilde{t} = (\tilde{t}_1, ..., \tilde{t}_m)'$ and $\hat{R}^* = (\hat{r}_{jk}^*)$ is a matrix with elements $\hat{r}_{jk}^* = \hat{r}_{jk} I(|\tau_{jk}| > \lambda)$ where λ is the threshold,

$$\widehat{r}_{jk} = \frac{\sum_{t=\max(j,k)+1}^{n} e_{tj} e_{tk}}{(\sum_{t=\max(j,k)+1}^{n} e_{tj}^{2})^{1/2} (\sum_{t=\max(j,k)+1}^{n} e_{tk}^{2})^{1/2}}, \ \tau_{jk} = \frac{\sum_{t=\max(j,k)+1}^{n} e_{tj} e_{tk}}{(\sum_{t=\max(j,k)+1}^{n} e_{tj}^{2} e_{tk}^{2})^{1/2}}.$$

Applying standard and robust tests, at significance level α , $H_0: \rho_k = 0$ is rejected when $\widehat{\rho}_k \notin CB(100(1-\alpha)\%)$ or $|t_k|, |\widetilde{t}_k| > z_{\alpha/2}$. In turn, $H_0: \rho_1 = ... = \rho_m = 0$ is rejected when $LB_m, \widetilde{Q}_m > \chi_{m,\alpha}^2$. Here, $z_{\alpha/2}$ and $\chi_{m,\alpha}^2$ stand for the upper $\alpha/2$ and α quantiles of N(0,1) and χ_m^2 distributions.

Example

We provide an example to illustrate testing for zero autocorrelation of a univariate time series $\{x_t\}$ using the function ac.test. We simulate n=300 data as GARCH(1,1): $x_t=\sigma_t\varepsilon_t$ with $\sigma_t^2=1+0.2x_{t-1}^2+0.7\sigma_{t-1}^2$ and $\varepsilon_t\sim \text{i.i.d.}\ N(0,1).^7$ The series $\{x_t\}$ is not autocorrelated but is not i.i.d. This is one of the models examined in the Monte Carlo study of Dalla *et al.* (2020). They

³Existing procedures include the rank test, the turning point test, the test for a Bernoulli scheme and the difference-sign test which are included in the package spgs (Hart and Martínez 2018), functions spgs::rank.test, spgs::turningpoint.test, spgs::diid.test, spgs::diffsign.test.

⁴Robust CB for zero autocorrelation provides a robust acceptance region for H_0 .

⁵The standard procedure is implemented by stats::acf, sarima::acfIidTest and sarima::whiteNoiseTest with h0 = "iid".

⁶The standard procedure is implemented by stats::Box.test, sarima::acfIidTest, sarima::whiteNoiseTest with h0 = "iid" and portes::LjungBox.

⁷We initialize $\sigma_1^2 = \text{var}(x_t) = 10$, simulate 400 observations and drop the first 100.

find that the standard testing procedures are a bit oversized (e.g. by around 8% when k, m = 1), while the robust tests are correctly sized. We choose a realization where this is evident.

```
R> set.seed(1798)
R> e <- rnorm(400)
R> x <- matrix(0, nrow = 400, ncol = 1)
R> s2 <- matrix(0, nrow = 400, ncol = 1)
R> s2[1] <- 10
R> x[1] <- sqrt(s2[1]) * e[1]
R> for (t in 2:400) {
R> s2[t] <- 1 + 0.2 * (x[t - 1] ^ 2) + 0.7 * s2[t - 1]
R> x[t] <- sqrt(s2[t]) * e[t]
R> }
R> x <- x[101:400]</pre>
```

We use the function ac.test to evaluate the results on testing for maximum 10 lags at significance level $\alpha = 5\%$ with threshold $\lambda = 2.576$. The plots are shown in the Plots pane and the table is printed on the Console. We don't pass any variable's name and set to 2 the scaling factor of the fonts in the plots.⁸

We have the following testing outputs:

⁸The default values are alpha = 0.05, lambda = 2.576, plot = TRUE, table = TRUE, var.name = NULL and scale.font = 1. Setting scale.font = 2 is useful in order to upscale the fonts in the plots in order to export them as displayed here; the default value is suggested for viewing the plots in the Plots pane.

Tests for zero autocorrelation of x

Lag	AC	Stand.	CB(95%)	Robust	CB(95%)	Lag	t	p-value	t-tilde	p-value	Lag	LB	p-value	Q-tilde	p-value
		T-37 DE-2700						:	:		:	:	:	:	
1	0.169	(-0.113)	. 0.113)	(-0.257	0.257)	1	2.929	0.003	1.292	0.196	1	8.664	0.003	1.669	0.196
2	0.157	(-0.113)	0.113)	(-0.238	0.238)	2	2.726	0.006	1.296	0.195	2	16.194	0.000	3.348	0.187
3	-0.009	(-0.113)	, 0.113)	(-0.209	0.209)	3	-0.153	0.878	-0.083	0.934	3	16.218	0.001	3.355	0.340
4	0.030	(-0.113)	, 0.113)	(-0.159	0.159)	4	0.517	0.605	0.369	0.712	4	16.491	0.002	3.491	0.479
5	-0.054	(-0.113)	, 0.113)	(-0.155	0.155)	5	-0.937	0.349	-0.682	0.495	5	17.390	0.004	3.957	0.556
6	-0.039		, 0.113)	(-0.137	0.137)	6	-0.678	0.498	-0.560		61	17.862	0.007	4.270	0.640
7	0.006	(-0.113)	, 0.113)	(-0.146	0.146)	7	0.101	0.920	0.078		7	17.872	0.013	4.276	0.747
8	-0.045		, 0.113)		0.132)	8	-0.777	0.437	-0.664		8	18.497	0.018	4.717	0.787
9	-0.045	(-0.113)	, 0.113)	(-0.136	, 0.136)	9	-0.775	0.438	-0.645	0.519	9	19.121	0.024	5.132	0.823
10	0.002	(-0.113)	, 0.113)	(-0.145	0.145)	10	0.036	0.972	0.028	0.978	10	19.122	0.039	5.133	0.882

The left-hand side plot is graphing for maximum 10 lags, the sample autocorrelation $\widehat{\rho}_k$ ("AC"), the standard and robust CB(95%). The right-hand side plot is graphing for maximum 10 lags, the cumulative test statistics LB_m , \widetilde{Q}_m and their critical values at 5% significance level ("cv(5%)"). The table reports the results of the plots along with the p-values for all the statistics: standard t_k ("t") and LB_m ("LB") and robust \widetilde{t}_k ("t-tilde") and \widetilde{Q}_m ("Q-tilde"). The columns of the table can each be extracted by adding \$lag, \$ac, \$scb, \$rcb, \$t, \$pvt, \$ttilde, \$pvttilde, \$lb, \$pvlb, \$qtilde, \$pvqtilde at the end of the function call.

From the left-hand side plot we can conclude that $H_0: \rho_k = 0$ is rejected at $\alpha = 5\%$ when k = 1, 2 and is not rejected at $\alpha = 5\%$ when k = 3, ..., 10 using standard methods, but is not rejected at $\alpha = 5\%$ for any k using robust methods. From the right-hand side plot we can conclude that the cumulative hypothesis $H_0: \rho_1 = ... = \rho_m = 0$ is rejected at $\alpha = 5\%$ for all m using standard methods, but is not rejected at any m using robust methods. Subsequently, from the p-values in the table we find that using standard methods, $H_0: \rho_k = 0$ is rejected at $\alpha = 1\%$ when k = 1, 2 and is not rejected at $\alpha = 10\%$ when k = 3, ..., 10, whereas using robust methods it is not rejected at $\alpha = 10\%$ for any k. Using standard methods the cumulative hypothesis $H_0: \rho_1 = ... = \rho_m = 0$ is rejected at $\alpha = 0.1\%$ for m = 2, at $\alpha = 1\%$ when m = 1, 3, ..., 6 and at $\alpha = 5\%$ for m = 7, ..., 10, whereas using robust methods it is not rejected at $\alpha = 10\%$ for any m. Overall, standard testing procedures show evidence of autocorrelation, although the series is not autocorrelated. The robust testing procedures provide the correct inference.

3. Testing zero cross-correlation: cc.test

For a bivariate time series $\{x_t, y_t\}$, given a sample $(x_1, ..., x_n), (y_1, ..., y_n)$, the null hypothesis $H_0: \rho_{xy,k} = 0$ of no cross-correlation at lag k = 0, 1, 2, ... is tested at α significance level using the sample cross-correlation $\widehat{\rho}_{xy,k}$ and the $100(1-\alpha)\%$ confidence band (CB) for zero cross-correlation, obtained using the corresponding t-type statistics $(t_{xy,k}$ "standard" and $\widetilde{t}_{xy,k}$ "robust"). The null hypothesis $H_0: \rho_{xy,0} = ... = \rho_{xy,m} = 0$ of no cross-correlation at cumulative lags m = 0, 1, 2, ... is tested using portmanteau type statistics (Haugh-Box $HB_{xy,m}$ "standard" and $\widetilde{Q}_{xy,m}$ "robust"). The following notation is used.

Standard procedures:

$$CB(100(1-\alpha)\%) = (-z_{\alpha/2}/\sqrt{n}, z_{\alpha/2}/\sqrt{n}), \quad t_{xy,k} = \sqrt{n}\widehat{\rho}_{xy,k}, \quad HB_{xy,m} = n^2 \sum_{k=0}^{m} \frac{\widehat{\rho}_{xy,k}^2}{n-k}.$$

⁹Robust CB for zero cross-correlation provides a robust acceptance region for H_0 .

 $^{^{10}\}mathrm{The}$ standard procedure is implemented by $\mathtt{stats::ccf}.$

¹¹The standard procedure is not provided in any R package. A version of the Haugh-Box statistic involving also the autocorrelations of each series is implemented by portes::LjungBox.

Robust procedures:

$$CB(100(1-\alpha)\%) = (-z_{\alpha/2} \frac{\widehat{\rho}_{xy,k}}{\widetilde{t}_{xy,k}}, z_{\alpha/2} \frac{\widehat{\rho}_{xy,k}}{\widetilde{t}_{xy,k}}), \quad \widetilde{t}_{xy,k} = \frac{\sum_{t=k+1}^{n} e_{xy,tk}}{\left(\sum_{t=k+1}^{n} e_{xy,tk}^{2}\right)^{1/2}}, \quad \widetilde{Q}_{xy,m} = \widetilde{t}'_{xy} \, \widehat{R}_{xy}^{*-1} \, \widetilde{t}_{xy},$$

where $e_{xy,tk} = (x_t - \bar{x})(y_{t-k} - \bar{y}), \ \bar{x} = n^{-1} \sum_{t=1}^n x_t, \ \bar{y} = n^{-1} \sum_{t=1}^n y_t, \ \tilde{t}_{xy} = (\tilde{t}_{xy,0}, ..., \tilde{t}_{xy,m})'$ and $\hat{R}_{xy}^* = (\hat{r}_{xy,jk}^*)$ is a matrix with elements $\hat{r}_{xy,jk}^* = \hat{r}_{xy,jk} I(|\tau_{xy,jk}| > \lambda)$ where λ is the threshold,

$$\widehat{r}_{xy,jk} = \frac{\sum_{t=\max(j,k)+1}^{n} e_{xy,tj} e_{xy,tk}}{(\sum_{t=\max(j,k)+1}^{n} e_{xy,tj}^2)^{1/2} (\sum_{t=\max(j,k)+1}^{n} e_{xy,tj}^2)^{1/2}}, \ \tau_{xy,jk} = \frac{\sum_{t=\max(j,k)+1}^{n} e_{xy,tj} e_{xy,tk}}{(\sum_{t=\max(j,k)+1}^{n} e_{xy,tj}^2 e_{xy,tk}^2)^{1/2}}.$$

Applying standard and robust tests, at significance level α , $H_0: \rho_{xy,k}=0$ is rejected when $\widehat{\rho}_{xy,k} \notin CB(100(1-\alpha)\%)$ or $|t_{xy,k}|, |\widetilde{t}_{xy,k}| > z_{\alpha/2}$. In turn, $H_0: \rho_{xy,0}=...=\rho_{xy,m}=0$ is rejected when $HB_{xy,m}, \widetilde{Q}_{xy,m}>\chi^2_{m,\alpha}$. Here, $z_{\alpha/2}$ and $\chi^2_{m,\alpha}$ stand for the upper $\alpha/2$ and α quantiles of N(0,1) and χ^2_m distributions.

The above procedures where outlined for $k, m \ge 0$. For k, m < 0, the tests are analogously defined, noting that $\hat{\rho}_{xy,k} = \hat{\rho}_{yx,-k}$, $t_{xy,k} = t_{yx,-k}$, $\tilde{t}_{xy,k} = \tilde{t}_{yx,-k}$, $HB_{xy,m} = HB_{yx,-m}$, $\tilde{Q}_{xy,m} = \tilde{Q}_{yx,-m}$.

Example

We provide an example to illustrate testing for zero cross-correlation of a bivariate time series $\{x_t, y_t\}$ using the function cc.test. We simulate n = 300 data as noise and SV-AR(1) using the same noise in the AR(1) part: $x_t = \varepsilon_t$ and $y_t = \exp(z_t)u_t$ with $z_t = 0.7z_{t-1} + \varepsilon_t$, ε_t , $u_t \sim$ i.i.d. N(0,1), $\{\varepsilon_t\}$ and $\{u_t\}$ mutually independent. The series $\{x_t\}$ and $\{y_t\}$ are uncorrelated but are not independent of each other, both are serially uncorrelated and only $\{x_t\}$ is i.i.d. This is one of the models examined in the Monte Carlo study of Dalla et al. (2020). They find that the standard testing procedures are rather oversized (e.g. by around 25% when k, m = 0), while the robust tests are correctly sized. We choose a realization where this is evident.

```
R> set.seed(227)
R> e <- rnorm(400)
R> set.seed(492)
R> u <- rnorm(300)
R> x <- e[101:400]
R> z <- matrix(0, nrow = 400, ncol = 1)
R> for (t in 2:400) {
R> z[t] <- 0.7 * z[t - 1] + e[t]
R> }
R> z <- z[101:400]
R> y <- exp(z) * u</pre>
```

We use the function cc.test to evaluate the results on testing for maximum ± 10 lags at significance level $\alpha = 5\%$ with threshold $\lambda = 2.576$. The plots are shown in the Plots pane and the table is

¹²We initialize $z_1 = Ez_t = 0$, simulate 400 observations and drop the first 100.

printed on the Console. We don't pass any variables' names and set to 2 the scaling factor of the fonts in the plots. 13

```
R> library(testcorr)
R > cc.test(x, y, max.lag = 10, alpha = 0.05, lambda = 2.576, plot = TRUE,
           table = TRUE, var.names = NULL, scale.font = 2)
```

We have the following testing outputs:

068

-0.069

0.067

0.113,

0.113

000

-0.125 -0.213

The left-hand side plot is graphing for maximum ± 10 lags, the sample cross-correlation $\hat{\rho}_{xu,k}$ ("CC"), the standard and robust CB(95%). The right-hand side plot is graphing for maximum ± 10 lags, the cumulative test statistics $HB_{xy,m}$, $Q_{xy,m}$ and their critical values at 5% significance level ("cv(5%)"). The table reports the results of the plots along with the p-values for all the statistics: standard $t_{xy,k}$ ("t") and $HB_{xy,m}$ ("HB") and robust $\tilde{t}_{xy,k}$ ("t-tilde") and $\tilde{Q}_{xy,m}$ ("Q-tilde"). The columns of the table can each be extracted by adding \$lag, \$cc, \$scb, \$rcb, \$t, \$pvt, \$ttilde, \$pvttilde, \$hb, \$pvhb, \$qtilde, \$pvqtilde at the end of the function call.

0.000000

391

18.217 19.673 21.062 24.084 24.205 25.154 25.911

From the left-hand side plot we can conclude that $H_0: \rho_{xy,k}=0$ is rejected at $\alpha=5\%$ when k=-2,-1,0,1 and is not rejected at $\alpha=5\%$ for $k\neq -2,-1,0,1$ using standard methods, but

¹³The default values are alpha = 0.05, lambda = 2.576, plot = TRUE, table = TRUE, var.names = NULL and scale.font = 1. Setting scale.font = 2 is useful in order to upscale the fonts in the plots in order to export them as displayed here; the default value is suggested for viewing the plots in the Plots pane.

is not rejected at $\alpha=5\%$ for any k using robust methods. From the right-hand side plot we can conclude that the cumulative hypothesis $H_0: \rho_{xy,0}=...=\rho_{xy,m}=0$ is rejected at $\alpha=5\%$ for all m using standard methods, but is not rejected at any m using robust methods. Subsequently, from the p-values in the table we find that using standard methods, $H_0: \rho_{xy,k}=0$ is rejected at $\alpha=1\%$ when k=-2,-1,0, at $\alpha=5\%$ for k=1, at $\alpha=10\%$ when k=-5,7 and is not rejected at $\alpha=10\%$ for all $k\neq -5,-2,-1,0,1,7$, whereas using robust methods it is not rejected at $\alpha=10\%$ for any k. Using standard methods the cumulative hypothesis $H_0: \rho_{xy,0}=...=\rho_{xy,m}=0$ is rejected at $\alpha=0.1\%$ when m=-10,...,-1,1,2 and at $\alpha=1\%$ for m=0,3,...,10, whereas using robust methods it is not rejected at $\alpha=10\%$ for any m. Overall, standard testing procedures show evidence of cross-correlation, although the series are uncorrelated from each other. The robust testing procedures provide the correct inference.

4. Testing zero Pearson correlation: rcorr.test

For multivariate series $\{x_{1t},...,x_{pt}\}$, given a sample $(x_{11},...,x_{1n}),...,(x_{p1},...,x_{pn})$, the null hypothesis $H_0: \rho_{x_ix_j}=0$ of no correlation between variables $\{x_{it},x_{jt}\}$ is tested at α significance level using the sample Pearson correlation $\hat{\rho}_{x_ix_j}$ and the p-value of the robust t-type statistic $\tilde{t}_{x_ix_j}$. This robust procedure is obtained from the $\tilde{t}_{xy,k}$ test of Section 3 setting $x=x_i, y=x_j$ and k=0.

Example

We provide an example to illustrate testing zero correlation between variables of a 4-dimensional series $\{x_{1t}, x_{2t}, x_{3t}, x_{4t}\}$ using the function rcorr.test. We use the simulated data from the series $\{x_t, y_t, z_t, u_t\}$ of Section 3. The pairs $\{x_t, u_t\}$ and $\{z_t, u_t\}$ are independent, $\{x_t, y_t\}$ and $\{y_t, z_t\}$ are uncorrelated but are dependent, while $\{x_t, z_t\}$ and $\{y_t, u_t\}$ are correlated. From the four series only $\{x_t\}$ and $\{u_t\}$ are i.i.d. We bind the series into a matrix.

```
R> matx <- cbind(x, y, z, u)
```

We use the function rcorr.test to evaluate the results on testing. The plot is shown in the Plots pane and the tables are printed on the Console. We don't pass any variables' names and set to 1.5 the scaling factor of the fonts in the plot. 14

```
R> library(testcorr)
R> rcorr.test(matx, plot = TRUE, table = TRUE, var.names = NULL,
+ scale.font = 1.5)
```

We have the following testing outputs:

¹⁴The default values are plot = TRUE, table = TRUE, var.names = NULL and scale.font = 1. Setting scale.font = 1.5 is useful in order to upscale the fonts in the plot in order to export it as displayed here; the default value is suggested for viewing the plot in the Plots pane.

The plot is a heatmap of the sample Pearson correlations $\hat{\rho}_{x_ix_j}$ among all pairs i,j of variables and their p-values (in parenthesis) for testing significance of correlation. Four shades of red, from dark to light, indicate significance at level $\alpha = 0.1\%, 1\%, 5\%, 10\%$, respectively, and white indicates non-significance at level $\alpha = 10\%$. The two tables report the results of the plot. The tables can each be extracted by adding pc, pv at the end of the function call.

From the p-values in the plot and the right-hand side table we can conclude that $H_0: \rho_{xy} = 0$, $H_0: \rho_{xu} = 0$, $H_0: \rho_{yz} = 0$ and $H_0: \rho_{zu} = 0$ are not rejected at $\alpha = 10\%$, $H_0: \rho_{xz} = 0$ is rejected at $\alpha = 0.1\%$ and $H_0: \rho_{yu} = 0$ is rejected at $\alpha = 1\%$. Overall, the robust testing procedure provides the correct inference. In contrast, the standard procedure 15 gives wrong inference when the series are uncorrelated but dependent. To demonstrate this, we use the function rcorr from the package **Hmisc** (Harrell Jr et al. 2019) to evaluate the sample Pearson correlations and their p-values for testing significance of correlation.

```
R> library(Hmisc)
```

R> print(format(round(rcorr(matx)\$r, 3), nsmall = 3), quote = FALSE)

R> print(format(round(rcorr(matx)\$P, 3), nsmall = 3), quote = FALSE)

¹⁵The standard procedure is implemented by Hmisc::rcorr and stats::cor.test. In these functions, the standard t-test differs slightly from that given in Section 3. In Hmisc::rcorr and stats::cor.test the statistic $t'_{x_ix_j} = \widehat{\rho}_{x_ix_j}\sqrt{(n-2)/(1-\widehat{\rho}_{x_ix_j}^2)}$ and critical values from the t_{n-2} distribution are used, while in Section 3 we take $t_{x_ix_j} = \sqrt{n}\,\widehat{\rho}_{x_ix_j}$ and critical values from the N(0,1) distribution. For big samples, they give very similar results under H_0 . For example, in Section 3 we find p-value of 0.00112 in testing $H_0: \rho_{xy} = 0$ with the standard t_{xy} test, while in the output from Hmisc::rcorr it is 0.00106 using the standard t'_{xy} test.

We have the following outputs:

	X	y	Z	u		X	y	Z	u
Х	1.000	0.188	0.716	0.005	X	NA	0.001	0.000	0.936
У	0.188	1.000	0.280	0.210	У	0.001	NA	0.000	0.000
ź	0.716	0.280	1.000	0.020				NA	
u	0.005	0.210	0.020	1.000	u	0.936	0.000	0.735	NA

From the p-values in the right-hand side table we can conclude that $H_0: \rho_{xu} = 0$ and $H_0: \rho_{zu} = 0$ are not rejected at $\alpha = 10\%$, $H_0: \rho_{xz} = 0$, $H_0: \rho_{yz} = 0$ and $H_0: \rho_{yu} = 0$ are rejected at $\alpha = 0.1\%$ and $H_0: \rho_{xy} = 0$ is rejected at $\alpha = 1\%$. Hence, using the standard procedure we wrongly conclude that the series $\{x_t\}$ with $\{y_t\}$ and $\{y_t\}$ with $\{z_t\}$ are correlated.

5. Testing i.i.d. property: iid.test

For a univariate series $\{x_t\}$, given a sample $x_1,...,x_n$, the null hypothesis of the i.i.d. property is tested at lag k=1,2,... by verifying $H_0: \rho_{x,k}=0, \rho_{|x|,k}=0$ or $H_0: \rho_{x,k}=0, \rho_{x^2,k}=0$, using the $J_{x,|x|,k}$ and $J_{x,x^2,k}$ statistics.¹⁶ The null hypothesis of the i.i.d. property at cumulative lags m=1,2,... is tested by verifying $H_0: \rho_{x,k}=0, \rho_{|x|,k}=0, k=1,...,m$ or $H_0: \rho_{x,k}=0, \rho_{x^2,k}=0, k=1,...,m$, using the $C_{x,|x|,m}$ and $C_{x,x^2,m}$ statistics. The following notation is used.

$$J_{x,|x|,k} = \frac{n^2}{n-k} (\widehat{\rho}_{x,k}^2 + \widehat{\rho}_{|x|,k}^2), \quad C_{x,|x|,m} = \sum_{k=1}^m J_{x,|x|,k},$$
$$J_{x,x^2,k} = \frac{n^2}{n-k} (\widehat{\rho}_{x,k}^2 + \widehat{\rho}_{x^2,k}^2), \quad C_{x,x^2,m} = \sum_{k=1}^m J_{x,x^2,k},$$

where $\widehat{\rho}_{x,k} = \widehat{\operatorname{corr}}(x_t, x_{t-k})$, $\widehat{\rho}_{|x|,k} = \widehat{\operatorname{corr}}(|x_t - \bar{x}|, |x_{t-k} - \bar{x}|)$, $\widehat{\rho}_{x^2,k} = \widehat{\operatorname{corr}}((x_t - \bar{x})^2, (x_{t-k} - \bar{x})^2)$ and $\bar{x} = n^{-1} \sum_{t=1}^n x_t$ with $\widehat{\operatorname{corr}}$ denoting the sample correlation estimate.

Applying the tests, at significance level α , $H_0: \rho_{x,k}=0, \rho_{|x|,k}=0$ or $H_0: \rho_{x,k}=0, \rho_{x^2,k}=0$ is rejected when $J_{x,|x|,k}>\chi^2_{2,\alpha}$ or $J_{x,x^2,k}>\chi^2_{2,\alpha}$. In turn, $H_0: \rho_{x,k}=0, \rho_{|x|,k}=0, k=1,...,m$ or $H_0: \rho_{x,k}=0, \rho_{x^2,k}=0, k=1,...,m$ is rejected when $C_{x,|x|,m}>\chi^2_{2m,\alpha}$ or $C_{x,x^2,m}>\chi^2_{2m,\alpha}$. Here, $\chi^2_{m,\alpha}$ stands for the upper α quantile of χ^2_m distribution.

Example

We provide an example to illustrate testing for the i.i.d. property of a univariate series $\{x_t\}$ using the function iid.test. We use the simulated data from the series $\{x_t\}$ of Section 3. The series $\{x_t\}$ is i.i.d.

We use the function iid.test to evaluate the results on testing for maximum 10 lags at significance level $\alpha = 5\%$. The plots are shown in the Plots pane and the table is printed on the Console. We don't pass any variable's name and set to 2 the scaling factor of the fonts in the plots.^{17,18}

 $[\]frac{16 \text{Notation: } \rho_{x,k} = \operatorname{corr}(x_t, x_{t-k}), \ \rho_{|x|,k} = \operatorname{corr}(|x_t - \mu|, |x_{t-k} - \mu|), \ \rho_{x^2,k} = \operatorname{corr}((x_t - \mu)^2, (x_{t-k} - \mu)^2) \text{ and } \mu = Ex_t.$

¹⁷The first letter of the variable's name is used as subscript instead of x in the statistics when var.name is not NULL.

¹⁸The default values are alpha = 0.05, plot = TRUE, table = TRUE, var.name = NULL and scale.font = 1. Set-

We have the following testing outputs:

The plots are graphing for maximum 10 lags, the test statistics $J_{x,|x|,k}$, $J_{x,x^2,k}$ (left), the cumulative test statistics $C_{x,|x|,m}$, $C_{x,x^2,m}$ (right) and their critical values at 5% significance level ("cv(5%)"). The table reports the results of the plots along with the p-values for all the statistics: $J_{x,|x|,k}$ ("J[x,|x]"), $J_{x,x^2,k}$ ("J[x,x^2]"), $C_{x,|x|,m}$ ("C[x,|x]") and $C_{x,x^2,m}$ ("C[x,x^2]"). The columns of the table can each be extracted by adding \$lag, \$jab, \$pvjab, \$jsq, \$pvjsq, \$cab, \$pvcab, \$csq, \$pvcsq at the end of the function call.

From the left-hand side plot we can conclude that $H_0: \rho_{x,k} = 0$, $\rho_{|x|,k} = 0$ is not rejected at $\alpha = 5\%$ for any k except k = 3, 8 or $H_0: \rho_{x,k} = 0$, $\rho_{x^2,k} = 0$ is not rejected at $\alpha = 5\%$ for any k except k = 8. From the right-hand side plot we can conclude that the cumulative hypothesis $H_0: \rho_{x,k} = 0$, $\rho_{|x|,k} = 0$, k = 1, ..., m is not rejected at k = 5% for any k = 0, k = 1, ..., m is not rejected at k = 5% for any k = 0, k = 1, ..., m is not rejected at k = 1, ..., m is rejected at k = 1, ..., m

ting scale.font = 2 is useful in order to upscale the fonts in the plots in order to export them as displayed here; the default value is suggested for viewing the plots in the Plots pane.

rejected at $\alpha = 10\%$ for m = 1, 3, 4, 8 and is not rejected at $\alpha = 10\%$ for $m \neq 1, 3, 4, 8$. Overall, the testing procedures provide the correct inference.

6. Remarks

The theory and Monte Carlo study in Dalla et al. (2020) suggest that:

- (i) In testing for autocorrelation the series needs to have constant mean.
- (ii) In testing for cross-correlation each of the series needs to have constant mean and to be serially uncorrelated when applying the portmanteau type statistics or at least one when applying the t-type tests.
- (iii) In testing for Pearson correlation at least one of the series needs to have constant mean and to be serially uncorrelated.
- (iv) For relatively large lag it may happen that the robust portmanteau statistic is negative. In such a case, missing values (NA) are reported for the statistic and its p-value.
- (v) The values $\lambda = 1.96, 2.576$ are good candidates for the threshold in the robust portmanteau statistics, with $\lambda = 2.576$ performing better at relatively large lags.

Acknowledgments

Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from the Kelly Fund at the University of Auckland and a KLC Fellowship at Singapore Management University.

References

- Boshnakov GN, Halliday J (2019). sarima: Simulation and Prediction with Seasonal ARIMA Models. R package version 0.8.1, URL https://CRAN.R-project.org/package=sarima.
- Dalla V, Giraitis L, Phillips PCB (2020). "Robust Tests for White Noise and Cross-Correlation." Cowles Foundation, Discussion Paper No. 2194, URL https://cowles.yale.edu/sites/default/files/files/pub/d21/d2194-r.pdf.
- Harrell Jr FE, with contributions from Charles Dupont, et al. (2019). **Hmisc**: Harrell Miscellaneous. R package version 4.2-0, URL https://CRAN.R-project.org/package=Hmisc.
- Hart A, Martínez S (2018). spgs: Statistical Patterns in Genomic Sequences. R package version 1.0-2, URL https://CRAN.R-project.org/package=spgs.
- Haugh LD, Box GEP (1977). "Identification of Dynamic Regression (Distributed Lag) Models Connecting Two Time Series." *Journal of the American Statistical Association*, **72**(357), 121–130. doi:10.1080/01621459.1977.10479920.

Ljung GM, Box GEP (1978). "On a Measure of Lack of Fit in Time Series Models." *Biometrika*, **65**(2), 297–303. doi:10.1093/biomet/65.2.297.

Mahdi E, McLeod AI (2018). portes: Portmanteau Tests for Univariate and Multivariate Time Series Models. R package version 3.0, URL https://CRAN.R-project.org/package=portes.

Pearson K (1896). "Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia." *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, **187**, 253–318. doi:10.1098/rsta. 1896.0007.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wickham P (2012). *normwhn.test*: Normality and White Noise Testing. R package version 1.0, URL https://CRAN.R-project.org/package=normwhn.test.

Yule UG (1926). "Why Do we Sometimes Get Nonsense-Correlations between Time-Series? A Study in Sampling and the Nature of Time-Series." Journal of the Royal Statistical Society, 89(1), 1–63. doi:10.2307/2341482.

Affiliation:

Violetta Dalla

Department of Economics

National and Kapodistrian University of Athens

Athens 10559, Greece

E-mail: vidalla@econ.uoa.gr

URL: http://en.econ.uoa.gr/contact-info-dalla-violeta.html

Liudas Giraitis

School of Economics and Finance

Queen Mary University of London

London E1 4NS, UK

E-mail: l.giraitis@qmul.ac.uk

URL: https://www.qmul.ac.uk/sef/staff/liudasgiraitis.html

Peter C. B. Phillips

Department of Economics

Yale University

New Haven CT 06520-8281, USA

E-mail: peter.phillips@yale.edu

URL: https://economics.yale.edu/people/faculty/peter-phillips