

Introduction

Motivation

• The second-hand property price increased significantly in Shanghai

Difficult for buyers and sellers to estimate price of second-hand property

Introduction

Motivation

Objective

- Utilize Shanghai second hand property dataset from Lianjia to
 - 1. Forecaste the price of second hand property by using regression analysis
 - 2. Identify factors which influence the price significantly

Contents

Introduction 20% **Data-preprocessing** 40% **Regression Analysis** 60% **Variable Importance** 80% **Conclusion** 100%

Data Description

Data Source

We use python to automatically scrap it from Lianjia.com

- Advantage of our data
 - 1. Large Volumn 21299 records, each described by 22 features
 - 2. Updated on the market of the nearest twenty days

Visualization

Density plot of price

Using log-transformation to reduce the skewness

Visualization

- Density plot of price
- Bloxplot for Price

The number of outliers is reduced after log-transformation

Data Transformation

Dummy encoding for 15 categorical features -> 63 dummy factors

A categorical variable with n features -> (n-1) dummy variables

id	X		id	а	b
1	а	Dummy	1	1	0
2	b	Dummy encoding	2	0	1
3	С		3	0	0

Extraction from 7 columns of text data -> 12 numerical features

E.g: extracting (5, 2, 1, 2) from text information "five rooms two living rooms one kitchen two toilets"

Missing data imputation

- Summarizing missing data
 - 1. Proportion of missing data is small or zero
 - 2. Imputation is still needed to avoid a waste of information
- Missing data imputation
 - 1. Pin down optimal hyperparameter with a pipeline consisting of
 - (1) KNN imputer (2) random forest regressor in a five-fold cross validation process
 - 2. Fit the KNN imputer on training data and then apply to testing data

Standardization

Scale of numerical features differ greatly

total_floo	area_size	elevator	date_on_r	last_transa	bedrm_no	parlour_no	kitchen_no	toilet_no
6	52.01	0	42	5155	2	2	1	1
6	49.77	0	26	2092	1	1	1	1
5	65.75	0	184	4573	2	1	1	1
6	86.37	0	199	4090	2	2	1	1
21	71.22	1	68	1543	2	1	1	1
6	162.14	0	367	2384	5	2	1	2
30	185.87	1	513	6702	3	2	1	2
12	94.73	1	121	2311	3	1	1	1
5	84.77	0	90	4776	2	2	1	1
6	85.95	0	213	4387	2	2	1	1

• Use the mean and variance from training data to perform standarization

Further visualization

[min(y), max(y)]

Explanantion

- Apply PCA to project the dataset to a three-dimensioanl space
- Looking it from three angles, our data is well-separated

Regression Analysis

Regression Analysis

Model Selection Strategies

Parameter selection

Adjust parameter condidate sequence:

the picked one lies in the middle of set (instead of boundary)

X	1	2	3	4	
		2	3	4	5

Computation Speed

Allow python to do parallel computing for acceleration

Regression Analysis

Model Evaluation Strategies

R-square	$\frac{\sum_{i=1}^{N} (\hat{y} - \bar{y})^2}{\sum_{i=1}^{N} (y - \bar{y})^2}$
RMSE	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y-\hat{y})^2}$
MAE	$\frac{1}{N}\sum_{i=1}^{N} y-\hat{y} $

R-Square

How well the model explains the variation of target variable

Root-Mean-Squared Error (RMSE) and Mean-Absolute-Error

How deviate our prediction from the truth

Shares the same unit of dependent variable

OLS

Advantage

- Computationally efficient
- Easily undertstand

Drawback

Inflexibility: imposed linear restrictions

	R-square	RMSE	MAE
Training	0.8516	0.2476	0.1886
Testing	0.8450	0.2557	0.1948

Support Vector Machine Regression

Principle

Fit more instances on the street along the hyperplane

Grid Search Using 5-folds cross-validation

- The kernel function controls non-linearity
- Radial basis function kernel is selected

Support Vector Machine Regression

	R-square	RMSE	MAE	
Training	0.9429	0.1535	0.1134	
Testing	0.8888	0.2166	0.1541	

K-Nearest Neighbor Regression

Advantage

Non-parametric in the sense that the number of parameters is unrestricted

Grid Search Using 5-folds cross-validation

The most crucial parameter: K=1

	R-square	RMSE	MAE
Training	1.0	0.0	0.0
Testing	0.7901	0.2976	0.2271

Decision Tree Regression

Advantage

- > Flexible: piecewise decision boundary
- > Robust: not sensitive to outliers

Decision Tree Regression

Grid Search Using 5-folds cross-validation

Depth of tree should be selected

Otherwise, python will split data until only pure leaf nodes left

We also tuned 4 other paramaters

E.g., number of features to consider when looking for the best split

	R-squared	RMSE	MAE
Training	0.9206	0.1811	0.137
Testing	0.8741	0.2305	0.1679

Decision Tree Regression

Results

	R-squared	RMSE	MAE
Training	0.9206	0.1811	0.1370
Testing	0.8741	0.2305	0.1609

Limitations

Variance - Solve by Random Forest

Gap between training and testing accuracy

Bias - Solve by Boosting Algorithms

There is still space to improve model fitting

Random Forest

Principle

Pass data points by each tree trees and average the result

Grid Search Using 5-folds cross-validation

Random forest is hard to overfit

Tuning the tree depth is not rewarding; Set to be 30 here.

number of features used in each tree, number of trees in the whole forest

	R-squared	RMSE	MAE
Training	0.9892	0.0667	0.0484
Testing	0.9172	0.187	0.1345

Boosting Algorithms

Principle

Ada Boosting

Grow additional trees, assigning higher weight to instances with larger error before

Gradient Boosting

Add at each step a new decision tree that best reduces the loss function before

XGB Boosting

Regularization could be implemented compared with Gradient boosting

Grid Search Using 5-folds cross-validation

- We tuned learning rate for all of these three models
- There are also other paramters selected

Boosting Algorithms

	R-squared	RMSE	MAE
Ada (training)	0.9998	0.0101	0.0029
Ada (testing)	0.9191	0.1848	0.1269
Gradient (training)	0.9954	0.0436	0.0336
Gradient (testing)	0.8583	0.2445	0.1709
XGB (training)	0.9867	0.0742	0.0584
XGB (testing)	0.9197	0.1841	0.1334

- Ada and XGB are excellent
- Gradient boosting overfits

Overall Comparison

Results on Testing Data

	R-squared	RMSE	MAE
OLS	0.8450	0.2557	0.1948
KNN	0.7901	0.2976	0.2271
SVR	0.8888	0.2166	0.1541
Decision Tree	0.8741	0.2305	0.1697
Random Forest	0.9172	0.1870	0.1345
Ada boosting	0.9191	0.1848	0.1269
Gradient boosting	0.8584	0.2445	0.1709
XGB boosting	0.9197	0.1841	0.1334

Variable Importance

Criteria

Predictive power

In tree-based models, it is the reduction of node impurity

Based on the best three models mentioned before
 Random forest, Ada boosting, XGB boosting

Results

- Random forest and Ada boosting
 Area-size (numerical), Inner (dummy), Office (dummy)
- XGB boosting

Office, Jinshan (dummy), Nongming (dummy)

Variable Importance (Visualization)

XGB boosting

Ada boosting

Gradient boosting

Summary

Data

Second-hand house data scraped from Lianjia.com

Pre-Processing

Visualization, Cleaning, Transformation

Model Building

Our best model gives a R-squared around 0.92

Variable Importance

Variables with good explanatroy power are identified

