

Trends in Multi-Agent Deep Reinforcement Learning for Distributed Computing

Prof. Joongheon Kim

Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory https://joongheon.github.io joongheon@korea.ac.kr

Ph.D. Students/Candidates

Won Joon Yun

(Ph.D. Student at EE@KU)

MyungJae Shin

(Reseacher at SNUH)

Soyi Jung

(Ph.D. Candidate at ECE@Ajou)

Faculty Collaborators

Prof. Jae-Hyun Kim

(ECE@Ajou)

Prof. Marco Levorato

(CS@UC-Irvine)

Prof. David Mohaisen

(CS@UCF)

Related Projects

Hanyang-ITRC (5G/Unmanned Vehicle **Research Center)**

- [PI] Hanyang University
- [WP2] Ajou University

Review: Reinforcement Learning Mechanism

Review: Reinforcement Learning Mechanism

Objective: Arrive at the destination

What agent can do...

Move to 16 direction!

Review: Conventional Reinforcement Learning Mechanism

Iterate until the scenario terminated!

Trajectory(Dataset):
$$\tau = \{s_0, a_0, r_0, s_1, a_1, ..., s_T\}$$

Objective Function:
$$J(\theta) = E_{\tau}[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})] \leftarrow \text{Maximize!}$$

[1] Watkins., Q-Learning, 1989

Review: Conventional Reinforcement Learning Mechanism

Iterate until the scenario terminated!

Trajectory(Dataset): $\tau = \{s_0, a_0, r_0, s_1, a_1, \dots, s_T\}$

Objective Function: $J(\theta) = E_{\tau}[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})] \leftarrow \text{Maximize!}$

Review: Reinforcement Learning Mechanism

Iterate until the scenario terminated!

Trajectory(Dataset): $\tau = \{s_0, a_0, r_0, s_1, a_1, \dots, s_T\}$

Objective Function: $J(\theta) = E_{\tau}[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})] \leftarrow \text{Maximize!}$

Review: Deep Reinforcement Learning Mechanism

Iterate until the scenario terminated!

Trajectory(Dataset): $\tau = \{s_0, a_0, r_0, s_1, a_1, \dots, s_T\}$

Objective Function: $J(\theta) = E_{\tau}[\sum_{t=0}^{T} \gamma^{t} \cdot r(s_{t}, a_{t})] \leftarrow \text{Maximize!}$

[2] V. Mnih., Playing Atari with Deep Reinforcement Learning, NIPS 2013

DQN-based CommNet

 $h^i_j:j$ -th agent's hidden state variable in i-th layer $c^i_j:j$ -th agent's communitive state variable in i-th layer

 $\{s_1, ..., s_J\}$

$$h_j^{i+1} = f^i(h_j^i, c_j^i)$$

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

[3] S. Sukhbaatar et al., Learning Multiagent Communication with Backpropagation, NIPS 2016

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

Summary of CommNet

CommNet

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information between agents?
- → G2ANet will be the solution to the above problem.

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information between agents?

G2ANet will be the solution to the above problem.

[4] Y. Liu et al., Multi-Agent Game Abstraction via Graph Attention Neural Network, *Proc. AAAI 2020*

• States of agent are mapped into nodes (vertices).

G2ANet Architecture

G2ANet Architecture: Abstraction

G2ANet Architecture: Hard Attention

G2ANet Architecture: Soft Attention

Soft Attention

$$Score = \mathbf{q} \cdot \mathbf{k} = \mathbf{q}^T * \mathbf{k}$$
 $Score_{scaled} = \frac{Score}{\sqrt{n}}$
 $Attention(\mathbf{q}, \mathbf{k}, \mathbf{v}) = Score_{scaled} * \mathbf{v}$

Soft Attention Output (message)

	0.11	0.84	0.4
	0.1	0.18	0.72
	0.34	0.38	0.28
	0.16	0.14	0.70

G2ANet Architecture: Soft Attention & GNN

0

0

0

0.16 0.14 0.70

0

0

0

Comm/Vet: PV/ESS-Enabled Electric Vehicle Charging Stations

<u>Authors:</u> MyungJae Shin (Korea Univ.), Prof. Dae-Hyun Choi (Chung-Ang Univ.), and Prof. Joongheon Kim (Korea Univ.)

[7] M. Shin, D.-H. Choi, and J. Kim, "Cooperative Management for PV/ESS-Enabled Electric-Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach," *IEEE Transactions on Industrial Informatics*, 16(5):3493-3503, May 2020.

Comm/Vet: Multi-UAV Charging Systems

<u>Authors:</u> Soyi Jung (Ajou Univ.), Won Joon Yun (Korea Univ.), MyungJae Shin (Korea Univ.), Prof. Joongheon Kim (Koera Univ.), and Prof. Jae-Hyun Kim (Ajou Univ.)

Comm/Vet: Multi-UAV Charging Systems

<u>Authors:</u> Soyi Jung (Ajou Univ.), Won Joon Yun (Korea Univ.), MyungJae Shin (Korea Univ.), Prof. Joongheon Kim (Koera Univ.), and Prof. Jae-Hyun Kim (Ajou Univ.)

CommNet: Autonomous Surveillance Drones

<u>Authors:</u> MyungJae Shin (Korea Univ.), Won Joon Yun (Korea Univ.), Soyi Jung (Ajou Univ.), Soohyun Park (Korea Univ.), Prof. David Mohaisen (UCF), Prof. Joongheon Kim (Koera Univ.), and Prof. Jae-Hyun Kim (Ajou Univ.)

G2ANet: Autonomous Drone Trajectory Learning

<u>Authors:</u> Won Joon Yun (Korea Univ.), Yoo Jeong Ha (Korea Univ.), Soyi Jung (Ajou Univ.), Prof. Jae-Hyun Kim (Ajou Univ.), Prof. David Mohaisen (UCF), and Prof. Joongheon Kim (Koera Univ.)

Thank you for your attention!

- Special thanks to Won Joon Yun (Ph.D. Student at EE, Korea Univ.)
- More questions?
 - joongheon@korea.ac.kr