Mohamed Noordeen Alaudeen

Senior Data Scientist – Logitech Naïve Bayes Algorithm

NAIVE BAYES CLASSIFIER
WORKS ON THE PRINCIPLES OF
CONDITIONAL PROBABILITY AS
GIVEN BY THE BAYES' THEOREM

BEFORE WE MOVE AHEAD, LET US GO THROUGH SOME OF THE SIMPLE CONCEPTS IN PROBABILITY THAT WE WILL BE USING

LET US CONSIDER THE FOLLOWING EXAMPLE OF TOSSING TWO COINS

Here, the sample space is:

{HH, HT, TH, TT}

- P(Getting two heads) = 1/4
- P(At least one tail) = 3/4
- P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

Bayes' Theorem gives the conditional probability of an event A given another event B has occurred

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

P(A|B) = Conditional Probability of A given B

P(B|A) = Conditional Probability of B given A

P(A) = Probability of event A

P(B) = Probability of event A

TO OUR EXAMPLE

Here, the sample space is:

{HH, HT, TH, TT}

- 1. P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4

THESE TWO USE SIMPLE
PROBABILITIES CALCULATED DIRECTLY
FROM THE SAMPLE SPACE

- 3. P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

TO OUR EXAMPLE

Here, the sample space is:

{HH, HT, TH, TT}

- P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4
- 3. P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

THIS USES CONDITIONAL PROBABILITY, LET US UNDERSTAND THIS IN DETAIL

IN THIS SAMPLE SPACE, LET A BE THE EVENT THAT SECOND COIN IS HEAD AND B BE THE EVENT THAT FIRST COIN IS TAIL

In the sample space:

{HH, HT, TH, TT}

P(Second coin being head given first coin is tail)

- = P(A|B)
- = [P(B|A) * P(A)] / P(B)
- = [P(First coin being tail given second coin is head) * P(Second coin
- being head)] / P(First coin being tail)
- = [(1/2) * (1/2)] / (1/2)
- = 1/2 = 0.5

Understanding Naïve Bayes Classifier

Where is it used?

Speech Recognition

Face Recognition

Anti Virus

Weather Prediction

Let us understand how Bayes' Theorem can be used in Naive Bayes classifier:

Let us learn with an Example - 1

To predict whether a person will purchase a product on a specific combination of Day, Discount and Free Delivery using Naive Bayes Classifier

We have a small sample dataset of 30 rows for our demo

1	Α	В	С	D
1	Day	Discount	Free Delivery	Purchase
2	Weekday	Yes	Yes	Yes
3	Weekday	Yes	Yes	Yes
4	Weekday	No	No	No
5	Holiday	Yes	Yes	Yes
6	Weekend	Yes	Yes	Yes
7	Holiday	No	No	No
8	Weekend	Yes	No	Yes
9	Weekday	Yes	Yes	Yes
10	Weekend	Yes	Yes	Yes
11	Holiday	Yes	Yes	Yes
12	Holiday	No	Yes	Yes
13	Holiday	No	No	No
14	Weekend	Yes	Yes	Yes
15	Holiday	Yes	Yes	Yes

Converting it to frequency table on each category

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Fragues	ov Table	Buy	
Frequen	су таріе	Yes	No
Discount	Yes	19	1
	No	5	5

Fragues	Frequency Table		ıy
Frequen			No
Free Delivery	Yes	21	2
	No	3	4

Frogue	Frequency Table		ıy
Freque			No
	Weekday	9	2
Day	Weekend	7	1
	Holiday	8	3

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Creating a Likelihood table

Now let us calculate the Likelihood table for one of the variable, Day which includes Weekday, Weekend and Holiday

Eroovo	Frequency Table		iy	
Freque	ncy rable	Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Likolih	Likelihood Table		ıy	
Likeliilood lable		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

P(B) = P(Weekday)

$$P(A) = P(No Buy)$$

= 6/30 = 0.2

Based on this likelihood table, we will calculate conditional probabilities as below

Frequency Table		- 0	uy	
Frequ	ency rable	Yes	No	
	Weekday	9	2	- 11
Day	Weekend	7	- 1	8
	Holiday	8	3	- 11
		24	6	30

Libratib	ood Table	Bu	iy	
Likelin	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

$$P(B) = P(Weekday) = 11/30 = 0.367$$

$$P(A) = P(No Buy) = 6/30 = 0.2$$

$$P(B|A) = P(Weekday | No Buy) = 2/6 = 0.33$$

$$P(A|B) = P(No Buy | Weekday)$$

$$= (0.33 * 0.2) / 0.367 = 0.179$$

Based on this likelihood table, we will calculate conditional probabilities as below

	y	Đ _i	oney Table	Ernovu
	No	Yes	ency Table	Freque
11	2	9	Weekday	
8	1	7	Weekend	Day
11	3	8	Holiday	
30	6	24		

Likelih	ood Table	В	ry	
Likeiin	ood lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

$$P(B) = P(Weekday) = 11/30 = 0.367$$

$$P(A) = P(Buy) = 24/30 = 0.8$$

$$P(B|A) = P(Weekday | Buy) = 2/6 = 0.375$$

If A equals Buy, then

$$P(A|B) = P(Buy | Weekday)$$

$$= (0.375 * 0.8) / 0.367 = 0.817$$

As the Probability(Buy | Weekday) is more than Probability(No Buy | Weekday), we can conclude that a customer will most likely buy the product on a Weekday Similarly, we can find the likelihood of occurrence of an event involving all three variables WE HAVE THE FREQUENCY TABLES
OF ALL THE THREE INDEPENDENT
VARIABLES. WE WILL NOW
CONSTRUCT LIKELIHOOD TABLES
FOR ALL THE THREE

Francis	Frequency Table		y
Freque	mcy lable	Yes	No
	Weekday	3	7
Day	Weekend	8	2
	Holiday	9	1

Likolih	Likelihood Table		ıy	
Likelin			No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Likelihood Tables

Likelihood Table		Buy		
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Free Delivery	Yes	21/24	2/6	23/30
	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

= 0.178

Likelihood Tables

Likelihood Table		Buy		
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Free Delivery	Yes	21/24	2/6	23/30
	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = Buy

$$= 0.986$$

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

PROBABILITIES OF PURCHASE ON THIS DAY!

> PROBABILITIES TO GET THE LIKELIHOOD OF THE EVENTS

SUM OF PROBABILITIES = 0.986 + 0.178 = 1.164

LIKELIHOOD OF PURCHASE = 0.986 / 1.164 = 84.71 %

LIKELIHOOD OF NO PURCHASE

O.178 / 1.164 = 15.29 %

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

AS 84.71% IS GREATER THAN 15.29%, WE CAN CONCLUDE THAT AN AVERAGE CUSTOMER WILL BUY ON A HOLIDAY WITH DISCOUNT AND FREE DELIVERY

Example 2

From the dataset we have obtained, we will populate frequency tables for each of the attribute

Frequency Table		Play		
		Yes	No	
Cummu	Yes	3 ₽	4	
Sunny	No	6	1	

Frequency Table		Play	
		Yes	No
Windy	Yes	6	2
Windy	No	3	3

Frequency Table		Play		
		Yes	No	
Season	Summer	3	2	
	Monsoon	4	0	
	Winter	2	3	

For each of the frequency tables, we will find the likelihoods for each of the cases

Here, c = Play and x = Variables like Season, Sunny & Windy.

Likelihood of 'Yes' given Summer is:

$$P(c \mid x) = P(Yes \mid Summer) = P(Summer \mid Yes)* P(Yes) / P(Summer) = (0.33 x 0.64) / 0.36 = 0.60$$


```
P(c | x) = P(Play = Yes | Winter, Sunny = No, Windy = Yes)

= P(Winter | Yes) * P(Sunny = No | Yes) * P(Windy = Yes | Yes) * P(Yes)

P(Winter) * P(Sunny = No) * P(Windy = Yes)
```

= (2/9) * (6/9) * (6/9) * (9/14) / (5/14) * (7/14) * (8/14) = 0.6223

Since the probability is greater than 0.5, we should play football on that day.

