Семинар 3

Общая информация:

• Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$. Введем следующе обозначение для множества решений системы Ax=0:

$$\ker A = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

- Для произвольных множеств X и Y обозначение $X \subseteq Y$ означает, что X подмножество в Y, а $X \subsetneq Y$, что X собственное подмножество в Y, то есть подмножество неравное Y.
- Если $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ многочлен с вещественными коэффициентами, а $A \in \mathrm{M}_n(\mathbb{R})$, то можно определить p(A) следующим образом

$$p(A) = a_0 \mathbf{I} + a_1 A + \ldots + a_n A^n$$

где $I \in M_n(\mathbb{R})$ – единичная матрица (внедиагональные элементы равны нулю, а на диагонали – единицы).

Задачи:

- 1. Задачник. §17, задача 17.1 (а, б, г).
- 2. Найти многочлен второй степени с вещественными коэффициентами такое, что

$$f\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right) = \left(\begin{smallmatrix}4&-5\\-5&4\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}2&1\\0&2\end{smallmatrix}\right) = \left(\begin{smallmatrix}-3&-1\\0&-3\end{smallmatrix}\right) \quad \text{if} \quad f\left(\begin{smallmatrix}2&1\\-1&3\end{smallmatrix}\right) = \left(\begin{smallmatrix}-4&0\\0&-4\end{smallmatrix}\right)$$

- 3. Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B \in \mathrm{M}_{k\,n}(\mathbb{R})$. Показать, что
 - (a) Условие $\ker A \subseteq \ker B$ влечет, что количество главных неизвестных Bx = 0 меньше или равно количества главных неизвестных Ax = 0.
 - (b) Условие $\ker A \subsetneq \ker B$ влечет, что количество главных неизвестных Bx = 0 строго меньше количества главных неизвестных Ax = 0.
 - (c) Пусть $A \in M_n(\mathbb{R})$ матрица такая, что $A^m = 0$ для некоторого m. Покажите, что тогда $A^n = 0$.
- 4. Пусть матрица $J(\lambda) \in \mathrm{M}_n(\mathbb{R})$ имеет следующий вид¹

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

- (а) Найти все $A \in M_n(\mathbb{R})$ такие, что $AJ(\lambda) = J(\lambda)A$.
- (b) Доказать, что для любого многочлена p(x) с вещественными коэффициентами верна формула

$$p(J(\lambda)) = \begin{pmatrix} p(\lambda) & \frac{p^{(1)}(\lambda)}{1!} & \frac{p^{(2)}(\lambda)}{2!} & \dots & \frac{p^{(n-1)}(\lambda)}{(n-1)!} \\ 0 & p(\lambda) & \frac{p^{(1)}(\lambda)}{1!} & \dots & \frac{p^{(n-2)}(\lambda)}{(n-2)!} \\ 0 & 0 & p(\lambda) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \frac{p^{(1)}(\lambda)}{1!} \\ 0 & 0 & \dots & 0 & p(\lambda) \end{pmatrix}$$

где $p^{(k)}(\lambda)$ – значение k-ой производной p(x) в точке $\lambda,$ а $n!=1\cdot 2\cdot \ldots \cdot n.$

¹Такая матрица называется Жордановой клеткой.