PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 99/558
C12N 15/12, C07K 14/47, C12N 5/10	A2	(43) International Publication Date: 4 November 1999 (04.11.
(21) International Application Number: PCT/JPc (22) International Filing Date: 27 April 1999 ((AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(30) Priority Data: 10/119395 28 April 1998 (28.04.98)	,	Published Without international search report and to be republish upon receipt of that report.
(71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP Nishi-Ohnuma 4-chome, Sagamihara-shi, K 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).	?]; 4- Kanagav	1, va
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, k 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 2 (JP).	Kanagay , 4–1–2	va .8,
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, O Osaka 540-0001 (JP).		

(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

A protein comprising any of the amino acid sequences represented by Sequence Nos. 1 to 9, a DNA coding for said protein, exemplified by a cDNA comprising any of the base sequences represented by Sequence Nos. 10 to 18, and an expression vector of said cDNA as well as an eucaryotic cell expressing said cDNA. Said protein and eucaryotic cell having said protein on the membrane surface can be provided by expression of a cDNA coding for a human protein having a transmembrane domain and of a recombinant of the human cDNA.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT .	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΔU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UÁ	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	rc	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	- SG	Singapore		

1

DESCRIPTION

HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAS ENCODING THESE PROTEINS

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic cells expressing said cDNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against said proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by said cDNAs. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already.

It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-

10

15

20

25

30

cryptogenic diseases. For instance, a gene of a membrane protein having twelve transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has been clarified that several membrane proteins act as receptors when a virus infects the cells. For instance, HIV-1 is revealed to infect into the cells through mediation of a membrane protein fusin having a membrane protein on the T-cell membrane, a CD-4 antigen, and seven transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, many membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique on the change in the membrane permeability. However, this method is applicable only to cloning of a gene of a membrane protein with a known function.

hydrophobic proteins possess membrane general, transmembrane domains inside the proteins, wherein, after synthesis thereof in the ribosome, these domains remain in the the membrane. phospholipid membrane to be trapped in Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

DISCLOSURE OF INVENTION

5

10

15

20

30

The object of the present invention is to provide novel human proteins having transmembrane domains, DNAs coding for said proteins, and expression vectors of said DNAs as well as transformation eucaryotic cells that are capable of expressing said DNAs.

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having transmembrane domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having transmembrane domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 9. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 10 to 19, 21, 23, 25, 27, 29, 31, 33 and 35, as well as expression vectors that are capable of expressing any of said DNAs by in vitro eucaryotic cells and transformation translation orin eucaryotic cells that are capable of expressing said DNAs and of producing the above-mentioned proteins.

BRIEF DESCRIPTION OF DRAWINGS

- 25 Fig. 1: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02000.
 - Fig. 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02061.
 - Fig. 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by

4

clone HP02163.

Fig. 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02219.

5 Fig. 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02256.

Fig. 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10390.

Fig. 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10474.

Fig. 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10527.

Fig. 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10528.

20

25

30

10

15

BEST MODE FOR CARRYING OUT THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the transmembrane domains of the present invention, wherein the method for obtainment by the recombinant DNA technology is employed preferably. For instance, in vitro expression of the prot ins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a

template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to expression of a large amount of the encoded protein by using prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case in which one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translation region of said cDNA is subjected to recombination to a vector having an RNA polymerase promoter, followed by addition to an in vitro translation system such as a rabbit riticulocyte lysate or a wheat germ extract, containing an RNA polymerase corresponding to the promoter. RNA polymerase inhibitors are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase inhibitors are exemplified by pKA1, pCDM8, pT3/7 18, pT7/3 19, pBluescript II, and so on. Furthermore, a membrane protein of the present invention can be expressed as the form incorporated in the microsome membrane, when a dog pancreas microsome or the like is added into the reaction system.

In the case in which a protein of the present invention is produced by expressing the DNA using a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translation region in the cDNA of the present invention is constructed in an expression vector having an origin, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, after transformation of the host cells with said expression vector, the thus-obtained transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

6

fragment containing an optional region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion coding for said cDNA can be obtained by cleavage of said fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so on.

In the case in which one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a transmembrane protein on the cell-membrane surface, when the translation region of said cDNA is subjected to recombination to an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus laevis egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins on the membrane surface. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the electroporation method, the potassium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the

objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

5

10

15

20

25

30

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1 to 9. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavagesite determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. When sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins wherein sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs coding

8

for the above-mentioned proteins. Said DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

5

10

15

20

25

30

The cDNAs of the present invention can be cloned, for example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A) RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by containing either of the base sequences represented by Sequenc Nos. 10 to 18 or the base sequences represented by Sequence Nos. 19, 21, 23, 25, 27, 29, 31, 33 and 35. Table 1 summarizes the

clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

5 Table 1

10

15

20

Sequence No.	HP No.	Cell	Number of bases	Number of amino acids
1, 10, 19	HP02000	Liver	1705	268
2, 11, 20	HP02061	Saos-2	1759	236
3, 12, 21	HP02163	Saos-2	1069	261
4, 13, 22	HP02219	Stomach Cancer	1759	328
5, 14, 23	HP02256	Stomach Cancer	1697	300
6, 15, 24	HP10390	Stomach Cancer	814	182
7, 16, 25	HP10474	Saos-2	511	66
8, 17, 26	HP10527	Saos-2	1126	183
9, 18, 27	HP10528	Saos-2	2015	324

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 10 to 19, 21, 23, 25, 27, 29, 31, 33 and 35.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 10 to 19, 21, 23, 25, 27, 29, 31, 33 and 35 shall come within the scope of the present invention.

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall

WO 99/55862

5

10

15

20

25

30

10

PCT/JP99/02226

come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 9.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos. 10 to 18 or in the base sequences represented by Sequence Nos. 19, 21, 23, 25, 27, 29, 31, 33 and 35. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders;

WO 99/55862

5

10

15

20

25

30

11

PCT/JP99/02226

as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" in the process of discovering other novel selecting and making oligomers polynucleotides; for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions

12

can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources of supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one

or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertaqnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

14

limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; devries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 -Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

15

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective multiple sclerosis, systemic tissue disease, ervthematosus. rheumatoid arthritis, autoimmune inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graftversus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may

10

15

20

25

30

16

also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, requires continuous non-antigen-specific, process which exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in Typically, in tissue transplants, tissue transplantation. the transplant is initiated through rejection of recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a

peptide having an activity of another B lymphocyte antigen blocking antibody), B7-1, B7-3)or prior transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by T cells, and thus acts as such as immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

30

efficacy of particular blocking reagents preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to immunosuppressive effects of CTLA4Ig fusion examine the proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells

10

15

20

25

30

that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the Preventing the activation of pathology of the diseases. autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of wellcharacterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be

enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

5

10

15

20

25

30

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a For example, tumor cells obtained combination of peptides. from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention

10

15

20

25

30

20

having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA

78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

5

10

15

20

25

30

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Greene Publishing Associates and Strober, Pub. Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that

10

15

20

25

WO 99/55862 PCT/JP99/02226

22

activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of

5

10

15

20

25

30

factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow progenitor transplantation or with peripheral cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which

WO 99/55862

5

10

15

20

25

30

will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lymphohematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the

25

treatment of burns, incisions and ulcers.

5

10

15

20

25

30

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament

WO 99/55862

5

10

15

20

25

30

tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of The compositions of the present tendons or ligaments. invention may provide an environment to attract tendon or stimulate growth of tendonligament-forming cells, ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel tendon or ligament defects. The and other compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

26

PCT/JP99/02226

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral injuries, peripheral neuropathy and localized nerve neuropathies, and central nervous system diseases, such as Huntington's disease, Alzheimer's, Parkinson's disease. sclerosis, and syndrome. amyotrophic lateral Shy-Drager Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders,

27

such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

30

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

15

20

25

30

A protein of the present invention may also exhibit inhibin-related activities. Inhibins activinor characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of Thus, a protein of the follicle stimulating hormone (FSH). present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

29

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays

WO 99/55862

5

10

15

20

25

30

PCT/JP99/02226

that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

30

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and liqunds are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-

inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), inhibiting or promoting chemotaxis of cells involved in the inhibiting orpromoting cell inflammatory process, extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemiareperfusion injury, endotoxin lethality, arthritis, complementrejection, nephritis, mediated hyperacute cytokine chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be to treat anaphylaxis and hypersensitivity to antigenic substance or material.

Tumor Inhibition Activity

5

10

15

20

25

30

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing,

eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

5

10

15

20

25

30

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral including, without limitation, appetite, characteristics, libido, stress, cognition (including cognitive disorders), depressive disorders) (including and behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another

34

material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

25

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Preparation of Poly(A) * RNA

The osteosarcoma cell line Saos-2 (ATCC HTB 85), tissues of stomach cancer delivered by the operation, and the liver were used for human cells to extract mRNAs. The cell line was incubated by a conventional procedure.

After about 1 g of the human cells was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, a total mRNA was prepared according to the literature [Okayama, H. et al., "Method in Enzymology", Vol. 164, Academic Press, 1987]. This was subjected to chromatography on oligo(dT)-cellulose column washed with a 20 mM Tris-hydrochloride buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A) RNA according to the above-described literature.

30 (2) Construction of cDNA Library

Ten micrograms of the above-mentioned poly(A) RNA were

dissolved in a 100 mM Tris-hydrochloride buffer solution (pH 8), one unit of an RNase-free, bacterial alkaline phosphatase was added, and the reaction was run at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin acid pyrophosphatase (Epicentre Technologies) and a total 100 μ l volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a solution of a decapped poly(A) $^+$ RNA.

5

10

15

20

25

30

The decapped poly(A) $^{+}$ RNA and 3 nmol of a chimeric DNA-RNA oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') were dissolved in a solution containing 50 mM Trishydrochloride buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol, whereto was added 50 units of T4RNA ligase and a total 30 μ l volume of the resulting mixture was reacted at 20°C for 12 hours. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a chimeric-oligo-capped poly(A) $^{+}$ RNA.

After digestion of vector pKAl (Japanese Patent Kokai Publication No. 1992-117292) developed by the present inventors with KpnI, about 60 dT tails were added using a terminal transferase. A vector primer to be used below was prepared by digestion of this product with EcoRV to remove a dT tail at one side.

After 6 μ g of the previously-prepared chimeric-oligo-capped poly(A)⁺ RNA was annealed with 1.2 μ g of the vector

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

36

primer, the resulting product was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), 200 units of a reverse transcriptase (GIBCO-BRL) were added, and the reaction in a total 20 µl volume was run at 42°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mm NaCl, 10 mM MgCl2, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and a total 20 μ l volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 20 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl₂, 10 mM (NH₄)₂SO₄, and 50 μ g/ml of the bovine serum albumin. Thereto were added 60 units of an Escherichia coli DNA ligase and the resulting mixture was reacted at 16°C for 16 hours. To the reaction solution were added 2 μ l of 2 mM dNTP, 4 units of Escherichia coli DNA polymerase I, and 0.1 unit of Escherichia coli RNase H and the resulting mixture was reacted at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used for transformation of *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was sprayed on the 2xYT agar culture medium containing 100 μ g/ml ampicillin and the mixture was incubated at 37°C overnight. A colony formed on the agar medium was picked up at random and inoculated on 2 ml of the 2xYT culture medium containing 100 μ g/ml ampicillin. After incubation at 37°C overnight, the culture mixture was

WO 99/55862

5

10

15

20

25

30

centrifuged to separate the mycelia, from which a plasmid DNA was prepared by the alkaline lysis method. The plasmid DNA was subjected to double digestion with EcoRI and NotI, followed by 0.8% agarose gel electrophoresis, to determine the size of the cDNA insert. Furthermore, using the thus-obtained plasmid as a template, the sequence reaction was carried out by using an M13 universal primer labeled with a fluorescent dye and a Taq polymerase (a kit of Applied Biosystems) and then the product was examined with a fluorescent DNA sequencer (Applied Biosystems) to determine an about 400-bp base sequence at the 5'-terminus of the cDNA. The sequence data were filed as the homo/protein cDNA bank database.

(3) Selection of cDNAs Encoding Proteins Having Transmembrane Domains

A base sequence registered in the homo/protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon was examined. Then, the selection was signal for the presence of a sequence that characteristic to a secretory protein at the N-terminus of the portion encoded by the ORF. These clones were sequenced from the both 5' and 3' directions by the use of the deletion method using exonuclease III to determine the whole base sequence. The hydrophobicity/hydrophilicity profiles were proteins encoded by the ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of a putative transmembrane domain in the amino acid sequence of an encoded protein, this protein was judged as a membrane protein.

(4) Functional Verification of Secretory Signal Sequence or Transmembrane Domains

WO 99/55862

5

10

15

20

25

30

It was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] that the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the above-mentioned steps functions as a secretory signal sequence. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site existing at the downstream of the portion expected for encoding the secretory signal sequence. In the case in which this restriction site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the T4DNA polymerase. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter and a cDNA encoding the secretory signal sequence at the downstream of the promoter was separated by agarose gel electrophoresis. The resulting fragment was inserted between HindIII in pSSD3 (DDBJ/EMBL/GenBank Registration No. AB007632) and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal sequence of the target cDNA and the urokinase protease domain.

38

PCT/JP99/02226

After Escherichia coli (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ l) was added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there were used as controls suspensions of single-stranded phage particles prepared in the same manner from pSSD3 and from the vector pKA1-UPA containing a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene

39

163: 193-196 (1995)].

5

10

15

20

25

30

The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 \times 10 5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of TRANSFECTAM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM calcium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the tansfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. In the case in which a clear circle appears on the fibrin plate, it is judged that the cDNA fragment codes for the amino acid sequence functioning as a secretory signal sequence. On the other hand, in case in which a clear circle is not formed, the cells were washed well, then the fibrin sheet was plac d on the cells, and incubation was carried out at 37°C for 15 hours. In case in which a clear

portion is formed on the fibrin sheet, it indicates that the urokinase activity was expressed on the cell surface. In other words, the cDNA fragment is judged to code for the transmembrane domains.

5 (5) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 μl volume of the reaction solution containing 12.5 μ l of T_NT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to kit), 2 µl of an amino acid mixture (methioninefree), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7RNA polymerase, and 20 U of RNasin. To 3 μl of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for subjected to SDS-polyacrylamide gel 3 minutes and then The molecular weight of the translation electrophoresis. product was determined by carrying out the autoradiography.

25 (6) Expression by COS7

10

15

20

30

Escherichia coli bearing the expression vector of the protein of the present invention was infected with helper phage M13K07 and single-stranded phage particles were obtained by the above-mentioned procedure. The thus-obtained phage was used for introducing each expression vector in the culture cells originating from the simian kidney, COS7. After incubation at 37°C for 2 days in the presence of 5% CO₂, the incubation was

continued for one hour in the culture medium containing [35S]cystine or [35S]methionine. Collection and dissolution of the cells, followed by subjecting to SDS-PAGE, allowed to observe the presence of a band corresponding to the expression product of each protein, which did not exist in the COS7 cells.

(7) Northern Blot Hybridization

5

10

15

20

25

30

Northern blot hybridization was carried out in order to examine the expression pattern in the human tissues. Filters where poly(A)[†] RNAs isolated from each of human tissues are blotted were purchased from Clontech. After excision of a cDNA fragment from the objective clone, followed by agarose-gel electrophoresis to isolate the cDNA fragment, labeling with [³²P]dCTP (Amersham) was carried out by using a random primer labeling kit (TAKARA SHUZO). The hybridization was carried out by using a solution attached to the blot paper according to the protocol.

(8) Clone Examples <HP02000> (Sequence Nos. 1, 10, and 19)

Determination of the whole base sequence of the cDNA insert of clone HP02000 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 186-bp 5'-nontranslation region, an 807-bp ORF, and a 712-bp 3'nontranslation region. The ORF codes for a protein consisting of 268 amino acid residues and there existed two putative Figure 1 depicts the transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was almost identical with the molecular weight of 30,481 predicted from the ORF. When expressed in COS 7 cells, an expression product of about 32 kDa was observed in the membrane fraction.

10

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the rat organic cation transporter (EMBL Accession No. Y09945). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the rat organic cation transporter (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 67.5% in the N-terminal 169 amino acid residues.

Table 2

15 HS MAFEELLSQVGGLGRFQMLHLVFILPSLMLLIPHILLENFAAAIPGHRCWVHMLDNNTGS ***.**.**.**.** RN MAFQDLLNQVGSLGRFQILQMTFILIFNIIISPHSLLENFTAVIPNHRCWVPILDNDTVS HS GNETGILSEDALLRISIPLDSNLRPEKCRRFVHPQWQLLHLNGTIHSTSEADTEPCVDGW 20 RN GNDNGNLSQDDILLRVSIPLDSDLRPEKCRRFVQPQWDLLHLNGTFSSVTEPDTEPCVDGW HS VYDQSYFPSTIVTKWDLVCDYQSLKSVVQFLLLTGMLVGGIIGGHVSDRWLVESARWLII RN VYDQSTFLSTIITEWDLVCESQSLDSIAKFLFLTGILVGNILYGPLTDRFGRRLILICAS HS TNKLDEGLKALRKVARTNGIKNAEETLNIEVVRSTMQEELDAAQTKTTVCDLFRNPSMRK 25 RN LQMAVTETCAAFAPTFLIYCSLRFLAGISFSTVLTNSALLIIEWTRPKFQALATGLLLCA HS RICILVFLRKKISRKRHKNDCYTKVTKF RN GAIGQTVLAGLAFTVRNWHHLHLAMSVPIFFLLVPTRWLSESARWLIMTNKLQKGLKELI 30

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

43

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA680184) in EST, but any of the sequences was shorter than the present cDNAs and was not found to contain the initiation codon.

An investigation of the expression pattern in the tissues by northern blot hybridization using the cDNA fragment of the present invention has revealed the expression only in the liver.

The rat organic cation transporter has been found as a membrane protein associated with a drug excretion in the kidney [Grundemann, D. et al., Nature 372: 549-552 Accordingly, the protein of the present invention that is its homologue is considered to possess a similar function and can be utilized for the diagnosis and treatment of diseases that are associated with abnormalities of this enzyme. Furthermore, this is considered to be associated with a drug excretion, so that the cells expressing this protein can be used as a tool for designing this drug. In addition, since this protein is expressed specifically in the liver, a substance prepared so as to possess an affinity with this protein can be applied to the drug delivery system to the liver.

<HP02061> (Sequence Nos. 2, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP02061 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 141-bp 5'-nontranslation region, a 711-bp ORF, and a 907-bp 3'-nontranslation region. The ORF codes for a protein consisting of 236 amino acid residues and there existed two putative transmembrane domains. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation

resulted in formation of a translation product of 26 kDa that was almost identical with the molecular weight of 25,593 predicted from the ORF.

5

10

15

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the human neuroendocrine-specific protein C (PIR Accession No. I60904). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the human neuroendocrine-specific protein C (PC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The C-terminal 187 amino acid residues possessed a homology of 59.9% with the human neuroendocrine-specific protein C.

Table 3

HS MAEPSAATQSHSISSSSFGAEPSAPGGGGSPGACPALGTKSCSSSCAVHDLIFWRDVK	ŒТ
0 *****.*	*.*
PC MQATADSTKMDCVWSNWKSQAIDLLYWRDIK	ŒΤ
HS GFVFGTTLIMILSLAAFSVISVVSYLILAILSVTISFRIYKSVIQAVQKSEEGHPFKA	\YL
*.***. *****.** ** ** **.********.****	***
PC GIVFGSFLLLLFSLTQFSVVSVVAYLALAALSATISFRIYKSVLQAVQKTDEGHPFKA	\YL
5 HS DVDITLSSEAFHNYMNAAMVHINRALKLIIRLFLVEDLVDSLKLAVFMWLMTYVGAVF	'nG
*** *** . **** . ******** .** .***	***
PC ELEITLSQEQIQKYTDCLQFYVNSTLKELRRLFLVQDLVDSLKFAVLMWLLTYVGALF	'nG
HS ITILILAELLIFSVPIVYEKYKTQIDHYVGIARDQTKSIVEKIQAKLPGIAKKKAE	
.******.** ****.***.*****	
PC LTLLLMAVVSMFTLPVVYVKHQAQIDQYLGLVRTHINAVVAKIQAKIPG-AKRHAE	

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. AA362885) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02163> (Sequence Nos. 3, 12, and 23)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02163 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 179-bp 5'-nontranslation region, a 786-bp ORF, and a 104bp 3'-nontranslation region. The ORF codes for a protein consisting of 261 amino acid residues and there existed one 3 depicts domain. Figure putative transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was almost identical with the molecular weight of 29,932 predicted from the ORF. When expressed in COS 7 cells, an expression product of about 28 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the presence of sequences that were analogous to a yeast hypothetical protein of 29.4 kDa (SWISS-PROT Accession No. P36039). Table 4 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the yeast hypothetical protein of 29.4 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively.

The both proteins possessed a homology of 33.2% in the entire region.

Table 4

5 HS MAGPELLLDSNIRLWVVLPIVIITFFVGMIRHYVSI .*..***... **.*** *. ..*...*. SC MTINQHLQQLLFNRIDKTTSSIQQARAPQMLLDDQLKYWVLLPISIVMVLTGVLKQYIMT HS LL---QSDKKLTQEQVSDSQVLIRSRVLRENGKYIPKQSFLTRK-YYFNN-PEDGFFKKT 10 SC LITGSSANEAQPRVKLTEWQYLQWAQLLIGNGGNLSSDAFAAKKEFLVKDLTEERHLAKA HS KRK-----VVPPSPMTDPTM---LTDMMKGNVTNVLPMILIGGWINMTFSGFVTTKVPFP *.*..**.* . .* ***... .* ..* *.* *.**. ..*** * . . SC KQQDGSQAGEVPNPFNDPSMSNAMMNMAKGNMASFIPQTIIMWWVNHFFAGFILMQLPFP 15 H3 LTLRFKPMLOOGIELLTLDASWVSSASWYFLNVFGLRSIYSLI-LGODNAADOSRMOEQ ** .** *** ** SC LTAKFKEMLQTGIICQDLDVRWVSSISWYFISVLGLNPVYNLIGLNDQDMGIQAGIGGPQ HS MTGAAMAMPADTNKAFKTEWEALELTDHOWALDDVEEELMAKDLHFEGMFKKELQTSIF 20 SC APKALHNHRLTKQCMRWLTI

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. Z43161) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30 <HP02219> (Sequence Nos. 4, 13, and 25)

25

Determination of the whole base sequence of the cDNA insert of clone HP02219 obtained from cDNA libraries of human

47

stomach cancer revealed the structure consisting of a 58-bp 5'nontranslation region, a 987-bp ORF, and a 714-bp 3'nontranslation region. The ORF codes for a protein consisting of 328 amino acid residues and there existed one putative depicts the transmembrane domain. Figure hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 39 kDa that was almost identical with the molecular weight of 37,299 predicted from the ORF. When expressed in COS 7 cells, an expression product of about 39 kDa was observed in the membrane fraction.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to Alabidopsis thaliana dTDP-glucose 4-6-dehydratase homologue (PIR Accession No. S58282). Table 5 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the Alabidopsis thaliana dTDP-glucose 4-6-dehydratase homologue (AT). Therein, the marks of * and . represent an amino acid residue identical with the protein of the present invention and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 57.2% in 145 amino acid residues at the C-terminal region.

Table 5

MVSKALLRLVSAVNRRRMKLLLGIALLAYVASVWGNFVNMSFLLNRSIQENGELKIE HS AT RVVVTGGAGFVGSHLVDRLMARGDTVTVVDNFFTGRKENVMHHFSNPNFEMIRHDVVEPI 5 HS SKIEEMVEPLREKIRDLEKSFTQKYPPVKFLSEKDRKRILITGGAGFVGSHLTDKLMMDG AT LLEVDQIYHLACPASPVHYKFNPVKTIKTNVVGTLNMLGLAKRVGARFLLTSTSEVYGDP HS HEVTVVDNFFTGRKRNVEHWIGHENFELINHDVVEPLYIEGVEVRVARIFNTFGPRMHMN **** ***** **** 10 AT LOHPOVETYWGNVNPIGVRSCYDEGKRTAETLIMDYHRGSNVEVRIARIFNTYGPRMCID HS DGRVVSNFILQALQGEPLTVYGSGSQTRAFQYVSDLVNGLVALMNSNVSSPVNLGNPEEH AT DGRVVSNFVAQALRKEPLTVYGDGKQTRSFQFVSDLVEGLMRLMEGEHVGPFNLGNPGEF HS TILEFAQLIKNLVGSGSEIQFLSEAQDDPQKRKPDIKKAKLMLGNEPVVPLEEGLNKAIH 15 AT TMLELAKVVQETIDPNANIEFRPNTEDDPHKRKPDITKAKELLGWEPKVSLRQGLPLMVK HS YFRKELEYQANNQYIPKPKPARIKKGRTRHS 20 AT DFRORVFGDQKEGSSAAATTTKTTSA

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. U46355) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

PCT/JP99/02226

<HP02256> (Sequence Nos. 5, 14, and 27)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP02256 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 131-bp 5'-nontranslation region, a 903-bp ORF, and a 663-bp 3'nontranslation region. The ORF codes for a protein consisting of 300 amino acid residues and there existed one transmembrane depicts the N-terminus. Figure 5 domain at the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 33 kDa that was almost identical with the molecular weight of 32,943 predicted from the ORF. When expressed in COS cells, an expression product of about 30 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the Caenorhabditis elegans hypothetical protein T11F9.11 (PID Accession No. 1403260). Table 6 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the Caenorhabditis elegans hypothetical protein T11F9.11 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively.

The both proteins possessed a homology of 41.7% in the entire region.

Table 6

5 HS MKFLLDILLLPLLIVCSLESFVKLFIPK---RRKSVTGEIVLITGAGHGIGRLTAYEFA . .* * *.*. **** CE MDRALDFVKMVVGTLFFIVLNFFKNFLPNGVLPRKSVEGKKVLITGSGSGIGRLMALEFA HS KLKSKLVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSIL *.*. **** *. . **. **. **. ** 10 ** ...*.**** *** CE KLGAEVVIWDVNKDGAEETKNQVVKAGGKASTFVVDLSQYKDIHKVAKETKEAVGDIDIL HS VNNAGVVYTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHV **** CE INNAGIVTGKKLFDCPDELMEKTMAVNTNALFYTAKNFLPSMLEKDNGHLVTIASMAGKT HS SVPFLLAYCSSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTG-F--IKNPSTSLG 15 CE GCVGLVDYCASKHGAIGCHDSIAMEILAQKKYGVNTTLVCPFFIDTGMFHGVTTKCPALF HS PTLEPEEVVNRLMHGILTEOKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIG CE PILEANYAVECTVEAILTNRPLLCMPKASYLILALIGLLPIESQVMMADFFGTNESMNDF 20 HS YKMKAQ CE KGRQKND

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. H61494) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the

present invention.

5

10

15

20

25

30

<HP10390> (Sequence Nos. 6, 15, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10390 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 144-bp 5'-nontranslation region, a 549-bp ORF, and a 121-bp 3'nontranslation region. The ORF codes for a protein consisting of 182 amino acid residues and possessed one transmembrane depicts the N-terminus. Figure 6 domain hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Introduction of an expression vector, wherein the HindIII-BstXI (treated with T4RNA polymerase) fragment containing a cDNA portion coding for the N-terminal 50 amino acid residues of the present protein was inserted into the HindIII-Smal site of pSSD3, into the COS7 cells revealed the urokinase activity on the surface of the cells to indicate that the present protein is the type-II membrane protein. In vitro translation resulted in formation of a translation product of 20 kDa that was almost identical with the molecular weight of 20,639 predicted from the ORF. When expressed in COS cells, an expression product of about 19 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has not identified any known protein having an analogy. Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. AA315322) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

52

<HP10474> (Sequence Nos. 7, 16, and 31)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10474 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 22-bp 5'-nontranslation region, a 201-bp ORF, and a 288-bp codes 3'-nontranslation region. The ORF for consisting of 66 amino acid residues and possessed one transmembrane domain at the C-terminus. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 7,599 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. Also, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. H30340) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10527> (Sequence Nos. 8, 17, and 33)

Determination of the whole base sequence of the cDNA insert of clone HP10527 obtained from cDNA libraries of the human osteosarcoma cell line Saos-2 revealed the structure consisting of a 113-bp 5'-nontranslation region, a 552-bp ORF, and a 461-bp 3'-nontranslation region. The ORF codes for a protein consisting of 183 amino acid residues and possessed three putative transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyt-Doolittle method, of the present protein. As the result of in

53

vitro translation, there was produced a translation product of about 21 kDa, which is nearly equal to a molecular weight of 21,111 as expected from ORF.

The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. Also, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. AA310892) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10528> (Sequence Nos. 9, 18, and 35)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10528 obtained from cDNA libraries of the human osteosarcoma cell line Saos-2 revealed the structure consisting of a 53-bp 5'-nontranslation region, a 975-bp ORF, and a 987-bp 3'-nontranslation region. The ORF codes for a protein consisting of 324 amino acid residues and possessed seven putative transmembrane domains. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. As the result of in vitro translation, there was produced a translation product of about 32 kDa, which is nearly equal to a molecular weight of 34,227 as expected from ORF.

The search of the protein data base using the amino acid sequence of the present protein has revealed it had an analogy to the epithelial cell growth arrest-inducible gene product (PID Accession No. 998569). Table 7 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the epithelial cell growth arrest-inducible gene product (GA). Therein, the marks of -, *, and . represent

a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 34.7% in the entire region.

5

30

Table 7

	Table /
HS	MGPWGEPELLVWRPEAVASEPPVPVGLEVKLGALVLLLVLTLLCSLVPICVLRRPGANHE
	**** * **.*** *.*.***
GA	MEQLLGIKLGCLFALLALTLGCGLTP1CFKWFQ1DAAR
нѕ	GSASRQKALSLVSCFAGGVFLATCLLDLLPDYLAAIDEALAALHV
	* .* .*.***** **
GA	GHHRRVLRLIGCISAGVFLGAGFMHMTAEALEEIESQIQKFMVQNRSASERNSSGDAD
HS	TLQFPLQEFILAMGFFLVLVMEQITLAYKEQSGPSPLEETRALLGTVNGGPQHWHDGP
	* *.******** * * **
GA	SAHMEYPYGELIISLGFFLVFFLESLALQCCPGA-AGGSTVQDEEWGGAHIFE
нѕ	GVPQASGAPATPSALRACVLVFSLALHSVFEGLAVGLQRDRARAMELCLALLLHKGILAV
	*** ******************
GA	LHSHGHLPSPSKGPLRALVLLLSLSFHSVFEGLAVGLQPTVAATVQLCLAVLAHKGLVVF
HS	SLSLRLLQSHLRAQVVAGCGILFSCMTPLGIGLGAALAES-AGPLHQLAQSVLEGMAAGT
	**
GA	GVGMRLVHLGTSSRWAVFSILLLALMSPLGLAVGLAVTGGDSEGGRGLAQAVLEGVAAGT
HS	FLYITFLEILPQELASSEQRILKVILLLAGFALLTGLLFIQI
	.****.*.*
G.	LELYVTFLEILPRELASPEAPLAKWSCVAAGEAFMAFIALWA

The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. Also, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of

55

90% or more (for example, Accession No. AA206511) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic cells expressing said cDNAs. All of the proteins of the present invention exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as relating to the control carcinostatic agents proliferation and the differentiation of the cells or antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized for large-scale expression of said proteins. Cells, wherein these membrane protein genes are introduced to possess said proteins on the membrane surface, can be utilized for detection of the screening of novel low-molecular corresponding ligands, pharmaceuticals, and so on.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited

10

15

20

25

30

WO 99/55862 PCT/JP99/02226

56

5' and 3*'* untranslated regions, coding sequences, alternatively spliced exons, introns, promoters, enhancers, and The corresponding genes can silencer or suppressor elements. be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic An "isolated gene" is a gene that has been materials. separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by Transgenic animals that have multiple reference herein). copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are Transgenic animals that have modified genetic provided. control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are corresponding the provided which the gene(s) in polynucleotide sequences disclosed herein have been partially

WO 99/55862

5

10

15

20

25

30

57

PCT/JP99/02226

or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected positive/negative genetic selection strategies (Mansour et al., Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s).

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at

least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the

desired species.

5

10

15

20

25

30

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides

59

disclosed herein.

5

10

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highlystringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) [‡]	Hybridization Temperature and Buffer [†]	Wash Temperature and Buffer [†]
Λ	DNA : DNA	≥50	65°C; 1×SSC •or•	65℃; 0.3×SSC
			42°C; 1×SSC,50% formamide	
В	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67℃; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
Ε .	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65℃; 1×SSC
			42°C; 4×SSC,50% formamide	
Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67℃; 4×SSC -or-	67℃; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70℃; 4×SSC -or-	67℃; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA: DNA	≥50	50°C; 4×SSC -or-	50℃; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55℃; 4×SSC -or-	55℃; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA: RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60℃; 2×SSC
			45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

^{‡:} The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid

•

WO 99/55862

5

10

15

20

25

30

61

PCT/JP99/02226

length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity. †: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

CLAIMS

- 1. A protein comprising any of the amino acid sequences represented by Sequence Nos. 1 to 9.
- 5 2. A DNA coding for any of the proteins as claimed in Claim 1.
 - 3. A cDNA comprising any of the base sequences represented by Sequence Nos. 10 to 18.
- 4. The cDNA as claimed in Claim 3 comprising any of the base sequences represented by Sequence Nos. 19, 21, 23, 25, 27, 29, 31, 33 and 35.
 - 5. An expression vector capable of expressing the DNA as claimed in any of Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells.
- 6. A transformation eucaryotic cell capable of expressing the DNA as claimed in any of Claim 2 to Claim 4 and producing the protein as claimed in Claim 1.

Fig. 1

Fig. 2

Fig. 3

WO 99/55862

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

• ------

WO 99/55862 PCT/JP99/02226

1

Sequence listing

<110> Sagami Chemical Research Center

5 <120> Human Proteins Having Transmembrane Domains and DNAs Encoding these Proteins

<130> 661099

10 <140>

<141>

<150> JP 10-119395

<151> 1998-04-28

15

<160> 36

<170> Windows 95 (Word 98)

20

<210> 1

<211> 268

<212> PRT

<213> Homo sapiens

25

<400> 1

Met Ala Phe Glu Glu Leu Leu Ser Gln Val Gly Gly Leu Gly Arg Phe

1 . 5 10 15

Gln Met Leu His Leu Val Phe Ile Leu Pro Ser Leu Met Leu Leu Ile

30 20 25 30

Pro His Ile Leu Leu Glu Asn Phe Ala Ala Ala Ile Pro Gly His Arg

35 40 45

Cys Trp Val His Met Leu Asp Asn Asn Thr Gly Ser Gly Asn Glu Thr

50 55 60

35 Gly Ile Leu Ser Glu Asp Ala Leu Leu Arg Ile Ser Ile Pro Leu Asp

	65					70					75					80
	Ser	Asn	Leu	Arg	Pro	Glu	Lys	Cys	Arg	Arg	Phe	Val	His	Pro	Gln	Trp
					85					90					95	
	Gln	Leu	Leu	His	Leu	Asn	Gly	Thr	Ile	His	Ser	Thr	Ser	Glu	Ala	Asp
5				100					105					110		
	Thr	Glu	Pro	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Gln	Ser	Tyr	Phe	Pro
			115					120					125			
	Ser	Thr	Ile	Val	Thr	Lys	Trp	Asp	Leu	Val	Cys	Asp	Tyr	Gln	Ser	Leu
		130					135					140				
10	Lys	Ser	Val	Val	Gln	Phe	Leu	Leu	Leu	Thr	Gly	Met	Leu	Val	Gly	Gly
	145					150					155					160
	Ile	Ile	Gly	Gly	His	Val	Ser	Asp	Arg	Trp	Leu	Val	Glu	Ser	Ala	Arg
					165					170					175	
	Trp	Leu	Ile	Ile	Thr	Asn	Lys	Leu	Asp	Glu	Gly	Leu	Lys	Ala	Leu	Arg
15				180					185					190		
	Lys	Val		Arg	Thr	Asn	Gly		Lys	Asn	Ala	Glu		Thr	Leu	Asn
			195					200				_	205			a 1
	Ile		Val	Val	Arg	Ser		Met	Gln	Glu	GLu		Asp	Ala	Ala	Gin
2.2		210		_,		_	215	_		•		220	C	Vat	N	T
20		Lys	Thr	Thr	vaı		Asp	Leu	Pne	Arg	ASn 235	PIO	ser	Met	Arg	шуS 240
	225	T1.	~	T1-	T	230	Dho	T ON	7~~	Tue		Tlo	Sor	Arg	Tare	
	Arg	116	cys	TTE	245	Val	FIIC	neu	Arg	250	пуз	110	Jul	my	255	1119
	иie	Tare	Δen) en		ጥለም	ጥከተ	Lve	Val	Thr	Lvs	Phe				
25	1112	цуз	nan	260		TYL	1111	цуз	265		- 175	1110				
20				200					200							
	<21	0> 2														
		1> 2														
		2> P														
30	<21	.3> H	amo	sapi	ens											
	<40	0> 2	!													
	Met	: Ala	Glu	Pro	Ser	Ala	Ala	Thr	Gln	Ser	His	Ser	Ile	Ser	Ser	Ser
	1				5	,				10	ı				15	
35	Ser	Phe	Gly	Ala	Glu	Pro	Ser	Ala	Pro	Gly	Gly	Gly	Gly	ser	Pro	Gly

PCT/JP99/02226 WO 99/55862

3.

25

Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys Ser Ser Ser Cys Ala Val .

40

His Asp Leu Ile Phe Trp Arg Asp Val Lys Lys Thr Gly Phe Val Phe

5 50 55

> Gly Thr Thr Leu Ile Met Leu Leu Ser Leu Ala Ala Phe Ser Val Ile 75 70

> Ser Val Val Ser Tyr Leu Ile Leu Ala Leu Leu Ser Val Thr Ile Ser

85

Phe Arg Ile Tyr Lys Ser Val Ile Gln Ala Val Gln Lys Ser Glu Glu 10 105

Gly His Pro Phe Lys Ala Tyr Leu Asp Val Asp Ile Thr Leu Ser Ser

120 125 115

Glu Ala Phe His Asn Tyr Met Asn Ala Ala Met Val His Ile Asn Arg

135 15

Ala Leu Lys Leu Ile Ile Arg Leu Phe Leu Val Glu Asp Leu Val Asp

155 160 145

Ser Leu Lys Leu Ala Val Phe Met Trp Leu Met Thr Tyr Val Gly Ala

165 170

20 Val Phe Asn Gly Ile Thr Leu Leu Ile Leu Ala Glu Leu Leu Ile Phe 190

Ser Val Pro Ile Val Tyr Glu Lys Tyr Lys Thr Gln Ile Asp His Tyr

185

200

Val Gly Ile Ala Arg Asp Gln Thr Lys Ser Ile Val Glu Lys Ile Gln

25 215

180

Ala Lys Leu Pro Gly Ile Ala Lys Lys Lys Ala Glu

230 235 225

<210> 3

30 <211> 261

<212> PRT

<213> Homo sapiens

<400> 3

35 Met Ala Gly Pro Glu Leu Leu Leu Asp Ser Asn Ile Arg Leu Trp Val 4.

+																
	1				. 5					10					15	
	Val	Leu	Pro	Ile	Val	Ile	Ile	Thr	Phe	Phe	Val	Gly	Met	Ile	Arg	His
	,			20					25					30		
	Tyr	Val	Ser	Ile	Leu	Leu	Gln	Ser	Asp	Lys	Lys	Leu	Thr	Gln	Glu	Gln
5			35					40					45			
	Val	Ser	Asp	Ser	Gln	Val	Leu	Ile	Arg	Ser	Arg	Val	Leu	Arg	Glu	Asn
		50					55					60				
	Gly	Lys	Tyr	Ile	Pro	Lys	Gln	Ser	Phe	Leu	Thr	Arg	Lys	Tyr	Tyr	Phe
	65					70					75					80
10	Asn	Asn	Pro	Glu	Asp	Gly	Phe	Phe	Lys	Lys	Thr	Lys	Arg	Lys	Val	Val
					85					90				٠.	95	
	Pro	Pro	Ser	Pro	Met	Thr	Asp	Pro	Thr	Met	Leu	Thr	Asp	Met	Met	Lys
				100					105					110		
	Gly	Asn	Val	Thr	Asn	Val	Leu	Pro	Met	Ile	Leu	Ile	Gly	Gly	Trp	Ile
15			115					120					125			
	Asn	Met	Thr	Phe	Ser	Gly	Phe	Val	Thr	Thr	Lys	Val	Pro	Phe	Pro	Leu
		130					135					140				
	Thr	Leu	Arg	Phe	Lys	Pro	Met	Leu	Gln	Gln	Gly	Ile	Glu	Leu	Leu	Thr
	145					150					155					160
20	Leu	Asp	Ala	Ser	Trp	Val	Ser	Ser	Ala	Ser	Trp	Tyr	Phe	Leu	Asn	Val
					165					170					175	
	Phe	Gly	Leu	Arg	Ser	Ile	Tyr	Ser	Leu	Ile	Leu	Gly	Gln	Asp	Asn	Ala
				180					185					190		
	Ala	Asp	Gln	Ser	Arg	Met	Met	Gln	Glu	Gln	Met	Thr	Gly	Ala	Ala	Met
25			195					200					205			
	Ala	Met	Pro	Ala	Asp	Thr	Asn	Lys	Ala	Phe	Lys	Thr	Glu	Trp	Glu	Ala
		210					215					220				
	Leu	Glu	Leu	Thr	Asp	His	Gln	Trp	Ala	Leu			Val	Glu	Glu	Glu
	225					230					235					240
30	Leu	Met	Ala	Lys	Asp	Leu	His	Phe	Glu			Phe	Lys	Lys	Glu	Leu
					245					250					255	
	Gln	Thr	Ser													
				260												

5

<211> 328 <212> PRT <213> Homo sapiens

5	<400> 4		•					
	Met Val	Ser Lys	Ala Leu	Leu Arg	Leu Val	Ser Ala	Val Asn	Arg Arg
	1		5		10			15
	Arg Met	Lys Leu	Leu Leu	Gly Ile	Ala Leu	Leu Ala	Tyr Val	Ala Ser
		20			25		30	
10	Val Trp	Gly Asn	Phe Val	Asn Met	Ser Phe	Leu Leu	Asn Arg	Ser Ile
		35		40			45	
	Gln Glu	Asn Gly	Glu Leu	Lys Ile	Glu Ser	Lys Ile	Glu Glu	Met Val
	50			55		60	1	
	Glu Pro	Leu Arg	Glu Lys	Ile Arg	Asp Leu	Glu Lys	Ser Phe	Thr Gln
15	65		70			75		80
	Lys Tyr	Pro Pro	Val Lys	Phe Leu	Ser Glu	Lys Asp	Arg Lys	Arg Ile
			85		90			95
	Leu Ile	Thr Gly	Gly Ala	Gly Phe	Val Gly	Ser His	Leu Thr	Asp Lys
		100			105		110	ı
20	Leu Met	Met Asp	Gly His	Glu Val	Thr Val	Val Asp	Asn Phe	Phe Thr
		115		120)		125	
	Gly Arg	Lys Arg	Asn Val	Glu His	Trp Ile	Gly His	Glu Asn	Phe Glu
	130			135		140)	
	Leu Ile	Asn His	Asp Val	Val Glu	Pro Leu	Tyr Ile	Glu Gly	Val Glu
25	145		150	•		155		160
	Val Arg	Val Ala	Arg Ile	Phe Asr	Thr Phe	Gly Pro	Arg Met	His Met
			165		170			175
	Asn Asp	Gly Arg	Val Val	. Ser Ası	Phe Ile	Leu Glr	Ala Leu	Gln Gly
		180	•		185		190	•
30	Glu Pro	Leu Thr	Val Tyr	Gly Ser	Gly Ser	Gln Thr	Arg Ala	Phe Gln
		195		200)		205	
	Tyr Val	Ser Asp	Leu Val	. Asn Gly	Leu Val	Ala Lev	Met Asr	Ser Asn
	210			215		220)	
	Val Ser	Ser Pro	Val Asr	Leu Gly	Asn Pro	Glu Glu	ı His Thr	: Ile Leu
35	225		230)		235		240

	GLu	Phe	ALa	GIN	Leu 245	ше	гÃ2	Asn	Leu	250	GIĀ	ser	GIÀ	ser	255	me
	Gl n	Dhe	Leu	Sar		Δla	Gln	Agn	Aen		Gln	Tws	Ara	Ivs		Asp
	GIII	FIIC	Dea	260	GIU	пда	OIII	-mp	265	110	U			270		
5	Ile	Lvs	Lys		Lys	Leu	Met	Leu	Gly	Trp	Glu	Pro	Val	Val	Pro	Leu
Ü		-3-	275		-1-			280		•			285			
	Glu	Glu	Gly	Leu	Asn	Lvs	Ala	Ile	His	Tyr	Phe	Arq	Lys	Glu	Leu	Glu
		290	2				295			•		300	-			
	Tyr	Gln	Ala	Asn	Asn	Gln	Tyr	Ile	Pro	Lys	Pro	Lys	Pro	Ala	Arg	Ile
10	305					310					315					320
	Lys	Lys	Gly	Arg	Thr	Arg	His	Ser								
					325											
	<210	0> 5														
15	<21	1> 3	00													
	<21	2> P	RT													
	<21	3> H	omo s	sapi	ens											
	<40	0> 5														
20	Met	Lys	Phe	Leu	Leu	Asp	Ile	Leu	Leu	Leu	Leu	Pro	Leu	Leu	Ile	Val
	1				5					10					15	
	Cys	Ser	Leu	Glu	Ser	Phe	Val	Lys	Leu	Phe	Ile	Pro	Lys	Arg	Arg	Lys
				20					25					30		
	Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly	His	Gly	Ile
25			35					40					45			
	Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser	Lys	Leu	Val
		50)				55					60	1			
	Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala	Ala	Lys	Cys
	65					70					75					80
30	Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	. Asp	Cys	Ser	Asn
					85	i				90					95	
	Arg	Glu	ı Asp	Ile	Туг	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala	Glu	Ile	Gly
				100)				105	i				110	ı	
	Asp	Val	. Ser	Ile	Leu	Val	Asr	Asn	Ala	Gly	Val	. Val	Тут	Thr	Ser	Asp
35			115	,				120)				125	5		

	Leu	Phe	Ala	Thr	Gln	Asp	Pro	Gln	Ile	Glu	Lys	Thr	Phe	Glu	Val	Asn
		130					135					140				
	Val	Leu	Ala	His	Phe	Trp	Thr	Thr	Lys	Ala	Phe	Leu	Pro	Ala	Met	Thr
	145					150					155					160
5	Lys	Asn	Asn	His	Gly	His	Ile	Val	Thr	Val	Ala	Ser	Ala	Ala	Gly	His
					165					170					175	
	Val	Ser	Val	Pro	Phe	Leu	Leu	Ala	Tyr	Cys	Ser	Ser	Lys	Phe	Ala	Ala
				180					185					190		
	Val	Gly	Phe	His	Lys	Thr	Leu	Thr	Asp	Glu	Leu	Ala	Ala	Leu	Gln	Ile
10			195					200					205			
	Thr	Gly	Val	Lys	Thr	Thr		Leu	Cys	Pro	Asn		Val	Asn	Thr	Gly
		210					215					220				
	Phe	Ile	Lys	Asn	Pro		Thr	Ser	Leu	Gly		Thr	Leu	Glu	Pro	
	225					230				_	235				_	240
15	Glu	Val	Val	Asn	_	Leu	Met	His	Gly		Leu	Thr	Glu	Gln		Met
					245					250			_		255	
	Ile	Phe	Ile		Ser	Ser	Ile	Ala		Leu	Thr	Thr	Leu		Arg	He
				260					265	_		• -	-1.	270	T	7
	Leu	Pro	Glu	Arg	Phe	Leu	Ala		Leu	Lys	Arg	тàг		Ser	Val	тÀг
20		_	275	-			_	280			•••	63 m	285			
	Phe		Ala	Val	Ile	GIĀ			Met	цуs	ALA					
		290					295					300				
	-21	m 6														
ຄະ		0> 6 1> 1														
25		1> 1 2> P														
			owo KI	cani	enc.											
	~21	J- 1.		Sapı	CITO											
	<40	0> 6														
30				מרנים	Glv	Tro	Leu	Ala	Leu	Leu	Leu	Glv	Ala	Leu	Leu	Gly
00	1		1		, 5			•		10		•			15	
			Tro	Ala			Ser	Gln	Asp			Cys	Gly	Ala	Cys	Arg
			F	20		. – 3			25			•	•	30		,
	Ala	Lev	ı Val			Leu	Glu	Trp			Ala	Gln	Val			Lys
35			35	_				40					45			

	Lys	Thr	Ile	Gln	Met	Gly	Ser	Phe	Arg	Ile	Asn	Pro	Asp	Gly	Ser	Gln
		50					55					60				
	Ser	Val	Val	Glu	Val	Pro	Tyr	Ala	Arg	Ser	Glu	Ala	His	Leu	Thr	Glu
	65					70					75					80
5	Leu	Leu	Glu	Glu	Ile	Cys	Asp	Arg	Met	Lys	Glu	Tyr	Gly	Glu	Gln	Ile
					85					90					95	
	Asp	Pro	Ser	Thr	His	Arg	Lys	Asn	Tyr	Val	Arg	Val	Val	Gly	Arg	Asn
				100					105					110		
	Gly	Glu	Ser	Ser	Glu	Leu	Asp	Leu	Gln	Gly	Ile	Arg	Ile	Asp	Ser	Asp
10			115					120					125			
	Ile	Ser	Gly	Thr	Leu	Lys	Phe	Ala	Cys	Glu	Ser	Ile	Val	Glu	Glu	Tyr
		130					135					140				
	Glu	Asp	Glu	Leu	Ile	Glu	Phe	Phe	Ser	Arg	Glu	Ala	Asp	Asn	Val	Lys
	145					150					155					160
15	Asp	Lys	Leu	Cys	Ser	Lys	Arg	Thr	Asp	Leu	Cys	Asp	His	Ala	Leu	His
					165					170					175	
	Ile	Ser	His	Asp	Glu	Leu										
				180												
20	<21	0> 7														
	<21	1> 6	6													
		2> P														
	<21	3> H	omo s	sapi	ens											
~-																
25		0> 7		_		_					_	_	- 3	•	•	6 3
	_	Glu	vaı	Asp		Pro	Gly	Val	Asp	_	Arg	Asp	GIY	Leu		GIU
	1	_		_,	5				_	10		-1	•-	•••	15	D
	Arg	Arg	GIY			Glu	Gly	Gly			Asn	Phe	Asp		Arg	PTC
0.0			43	20			_	_	25 -					30	•	~
30	GIN	ser	-		Asn	GŢĀ	Leu		Lys	His	Ser	Tyr	_	Leu	Asp	Leu
	_	_	35				_	40	•	•	_,	_	45			- 1
	Trp			Ile	Leu	Phe	_		Val	Val	Phe			Val	Tyr	Phe
	_	50					55					60				
	Leu	Pro														

9,

	<210	8 <														
	<211	> 18	33													
	<212	?> PF	T													
5	<213	3> HC	omo s	sapie	ens											
	<400)> 8														
	Met	Ala	Ser	Arg	Ala	Gly	Pro	Arg	Ala	Ala	Gly	Thr	Asp	Gly	Ser	Asp
	1				5					10					15	
10	Phe	Gln	His	Arg	Glu	Arg	Val	Ala	Met	His	Tyr	Gln	Met	Ser	Val	Thr
				20					25					30		
	Leu	Lys	Tyr	Glu	Ile	Lys	Lys	Leu	Ile	Tyr	Val	His	Leu	Val	Ile	Trp
			35					40					45			
	Leu	Leu	Leu	Val	Ala	Lys	Met	Ser	Val	Gly	His	Leu	Arg	Leu	Leu	Ser
15		50					55					60				
	His	Asp	Gln	Val	Ala	Met	Pro	Tyr	Gln	Trp	Glu	Tyr	Pro	Tyr	Leu	Leu
	65					70					75					80
	Ser	Ile	Leu	Pro	Ser	Leu	Leu	Gly	Leu	Leu	Ser	Phe	Pro	Arg	Asn	Asn
					85					90					95	
20	Ile	Ser	Tyr	Leu	Val	Leu	Ser	Met	Ile	Ser	Met	Gly	Leu	Phe	Ser	Ile
				100					105					110		
	Ala	Pro		Ile	Tyr	Gly	Ser		Glu	Met	Phe	Pro	Ala	Ala	Gln	Gln
			115					120					125			
	Leu	_	Arg	His	Gly	Lys		Tyr	Arg	Phe	Leu		Gly	Phe	Ser	Ala
25	_	130					135			_		140				_
			Ile	Met	Tyr		Val	Leu	Val	Leu		Val	Gln	Val	His	
	145		_	_	_	150	_	_	_	_	155	_	_	_,	- 4	160
	Trp	Gln	Leu	Tyr		Ser	Lys	Lys	Leu			ser	Trp	Pne		ser
00	_,			_	165		_			170					175	
30	Thr	GIN	GLu	_	_	His	Lys									
				180												

<210> 9 <211> 324 <212> PRT

<213> Homo sapiens

	<400	> 9														
	Met	Gly	Pro	Trp	Gly	Glu	Pro	Glu	Leu	Leu	Val	Trp	Arg	Pro	Glu	Ala
5	1				5					10					15	
	Val	Ala	Ser	Glu	Pro	Pro	Val	Pro	Val	Gly	Leu	Glu	Val	Lys	Leu	Gly
				20					25					30		
	Ala	Leu	Val	Leu	Leu	Leu	Val	Leu	Thr	Leu	Leu	Cys	Ser	Leu	Val	Pro
			35					40					45			
10	Ile	Cys	Val	Leu	Arg	Arg	Pro	Gly	Ala	Asn	His	Glu	Gly	Ser	Ala	Ser
		50					55					60				
	Arg	Gln	Lys	Ala	Leu	Ser	Leu	Val	Ser	Cys	Phe	Ala	Gly	Gly	Val	Phe
	65					70					75					80
	Leu	Ala	Thr	Cys	Leu	Leu	Asp	Leu	Leu	Pro	Asp	Tyr	Leu	Ala	Ala	Ile
15					85					90					95	
	Asp	Glu	Ala	Leu	Ala	Ala	Leu	His	Val	Thr	Leu	Gln	Phe	Pro	Leu	Gln
				100					105					110		
	Glu	Phe	Ile	Leu	Ala	Met	Gly	Phe	Phe	Leu	Val	Leu	Val	Met	Glu	Gln
			115					120					125			
20	Ile	Thr	Leu	Ala	Tyr	Lys	Glu	Gln	Ser	Gly	Pro	Ser	Pro	Leu	Glu	Glu
		130					135					140				
	Thr	Arg	Ala	Leu	Leu	Gly	Thr	Val	Asn	Gly	Gly	Pro	Gln	His	Trp	His
	145					150					155					160
	Asp	Gly	Pro	Gly	Val	Pro	Gln	Ala	Ser	Gly	Ala	Pro	Ala	Thr	Pro	Ser
25					165					170					175	
	Ala	Leu	Arg	Ala	Cys	Val	Leu	Val	Phe	Ser	Leu	Ala	Leu	His	Ser	Val
				180					185					190		
	Phe	Glu	Gly	Leu	Ala	Val	Gly	Leu	Gln	Arg	Asp	Arg	Ala	Arg	Ala	Met
			195					200					205			
30	Glu	Leu	Cys	Leu	Ala	Leu	Leu	Leu	His	Lys	Gly	Ile	Leu	Ala	Val	Ser
		210					215					220)			
	Leu	Ser	Leu	Arg	Leu	Leu	Gl'n	Ser	His	Leu	Arg	Ala	Gln	Val	Val	Ala
	225					230					235					240
	Gly	Cys	Gly	Ile	Leu	Phe	Ser	Cys	Met	Thr	Pro	Leu	Gly	Ile	Gly	Leu
35					245	,				250)				255	

35 <213> Homo sapiens

WO 99/55862 PCT/JP99/02226

11. .

	Gly Ala Ala Leu Ala Glu Ser Ala Gly Pro Leu His Gln Leu Ala Gln	
	260 265 270	
	Ser Val Leu Glu Gly Met Ala Ala Gly Thr Phe Leu Tyr Ile Thr Phe	
	275 280 285	
5	Leu Glu Ile Leu Pro Gln Glu Leu Ala Ser Ser Glu Gln Arg Ile Leu	
	290 295 300	
	Lys Val Ile Leu Leu Leu Ala Gly Phe Ala Leu Leu Thr Gly Leu Leu	
	305 310 315 320	
	Phe Ile Gln Ile	
10		
	<210> 10	
	<211> 804	
	<212> DNA	
	<213> Homo sapiens	
15		
	<400> 10	
	atggeettig aggagetett gagteaagtt ggaggeettg ggagattica gatgetteat	60
	ctggttttta ttcttccctc tctcatgtta ttaatccctc atatactgct agagaacttt	120
	gctgcagcca ttcctggtca tcgttgctgg gtccacatgc tggacaataa tactggatct	180
20	ggtaatgaaa ctggaatcct cagtgaagat gccctcttga gaatctctat cccactagac	240
	tcaaatctga ggccagagaa gtgtcgtcgc tttgtccatc cccagtggca gcttcttcac	300
	ctgaatggga ctatccacag cacaagtgag gcagacacag aaccctgtgt ggatggctgg	360
	gtatatgatc aaagctactt cccttcgacc attgtgacta agtgggacct ggtatgtgat	420
	tatcagtcac tgaaatcagt ggttcaattc ctacttctga ctggaatgct ggtgggaggc	480
25	atcataggtg gccatgtctc agacaggtgg ctggtggaat ctgctcggtg gttgataatc	540
	accaataaac tagatgaggg cttaaaggca cttagaaaag ttgcacgcac aaatggaata	600
	aagaatgctg aagaaaccct gaacatagag gttgtaagat ccaccatgca ggaggagctg	660
	gatgcagcac agaccaaaac tactgtgtgt gacttgttcc gcaaccccag tatgcgtaaa	720
	aggatetgta teetggtatt tttgagaaaa aaaateteaa ggaaaaaggea taaaaatgat	780
30	tgctacacaa aagtgaccaa attt	804
		•
	<210> 11	
	<211> 708	
	<212> DNA	

12.

	<400> 11	
	atggcggagc cgtcggcggc cactcagtcc cattccatct cctcgtcgtc cttcggagcc	60
	gagecgteeg egeeeggegg eggegggage eeaggageet geeeegeeet ggggaegaag	120
5	agctgcagct cctcctgtgc ggtgcacgat ctgattttct ggagagatgt gaagaagact	180
	gggtttgtct ttggcaccac gctgatcatg ctgctttccc tggcagcttt cagtgtcatc	240
	agtgtggttt cttacctcat cctggctctt ctctctgtca ccatcagctt caggatctac	300
	aagtccgtca tccaagctgt acagaagtca gaagaaggcc atccattcaa agcctacctg	360
	gacgtagaca ttactctgtc ctcagaagct ttccataatt acatgaatgc tgccatggtg	420
10	cacatcaaca gggccctgaa actcattatt cgtctctttc tggtagaaga tctggttgac	480
	tccttgaagc tggctgtctt catgtggctg atgacctatg ttggtgctgt ttttaacgga	540
	atcaccette taattettge tgaactgete atttteagtg teeegattgt etatgagaag	600
	tacaagaccc agattgatca ctatgttggc atcgcccgag atcagaccaa gtcaattgtt	660
	gaaaagatcc aagcaaaact ccctggaatc gccaaaaaaa aggcagaa	708
15		
	<210> 12	
	<211> 783	
	<212> DNA	
	<213> Homo sapiens	
20		
	<400> 12	
	atggcagggc cagaactgtt gctcgactcc aacatccgcc tctgggtggt cctacccatc	60
	gttatcatca ctttcttcgt aggcatgatc cgccactacg tgtccatcct gctgcagagc	120
	gacaagaagc tcacccagga acaagtatct gacagtcaag tcctaattcg aagcagagtc	180
25	ctcagggaaa atggaaaata cattcccaaa cagtctttct tgacacgaaa atattatttc	240
	aacaacccag aggatggatt tttcaaaaaa actaaacgga aggtagtgcc accttctcct	300
	atgactgatc ctactatgtt gacagacatg atgaaaggga atgtaacaaa tgtcctccct	360
	atgattetta ttggtggatg gateaacatg acatteteag getttgteae aaceaaggte	420
	ccatttccac tgaccctccg ttttaagcct atgttacagc aaggaatcga gctactcaca	480
30	ttagatgcat cctgggtgag ttctgcatcc tggtacttcc tcaatgtatt tgggcttcgg	540
	agcatttact ctctgattct gggccaagat aatgccgctg accaatcacg aatgatgcag	600
	gagcagatga egggagcage catggecatg eeegcagaca caaacaaage tttcaagaca	660
	gagtgggaag ctttggagct gacggatcac cagtgggcac tagatgatgt cgaagaagag	720
	ctcatggcca aagacctcca cttcgaaggc atgttcaaaa aggaattaca gacctctatt	780
35	ttt	783

13/

	<210> 13						
	<211> 984		•				
	<212> DNA						
5	<213> Homo	sapiens					
	<400> 13						
	atggtgagca	aggcgctgct	gegeetegtg	tctgccgtca	accgcaggag	gatgaagctg	60
	ctgctgggca	tegeettget	ggcctacgtc	gcctctgttt	ggggcaactt	cgttaatatg	120
10	agctttctac	tcaacaggtc	tatccaggaa	aatggtgaac	taaaaattga	aagcaagatt	180
	gaagagatgg	ttgaaccact	aagagagaaa	atcagagatt	tagaaaaaag	ctttacccag	240
	aaatacccac	cagtaaagtt	tttatcagaa	aaggatcgga	aaagaat tt t	gataacagga	300
	ggcgcagggt	togtgggctc	ccatctaact	gacaaactca	tgatggacgg	ccacgaggtg	360
	accgtggtgg	acaatttctt	cacgggcagg	aagagaaacg	tggagcactg	gatcggacat	420
15	gagaacttcg	agttgattaa	ccacgacgtg	gtggagcccc	tctacatcga	gggcgtggaa	480
	gtgcgagtgg	ccagaatctt	caacaccttt	gggccacgca	tgcacatgaa	cgatgggcga	540
	gtagtcagca	acttcatcct	gcaggcgctc	cagggggagc	cactcacggt	atacggatcc	600
	gggtctcaga	caagggcgtt	ccagtacgtc	agcgatctag	tgaatggcct	cgtggctctc	660
	atgaacagca	acgtcagcag	cccggtcaac	ctggggaacc	cagaagaaca	cacaatccta	720
20	gaatttgctc	agttaattaa	aaaccttgtt	ggtagcggaa	gtgaaattca	gtttctctcc	780
	gaagcccagg	atgacccaca	gaaaagaaaa	ccagacatca	aaaaagcaaa	gctgatgctg	840
	gggtgggagc	ccgtggtccc	gctggaggaa	ggtttaaaca	aagcaattca	ctacttccgt	900
	aaagaactcg	agtaccaggc	aaataatcag	tacatcccca	aaccaaagcc	tgccagaata	960
	aagaaaggac	ggactcgcca	cagc				984
25							
	<210> 14						
	<211> 900						
	<212> DNA						
	<213> Homo	sapiens					
30							
	<400> 14						
	atgaaatttc	ttctggacat	cetectgett	ctcccgttac	tgatcgtctg	ctccctagag	60
	tecttegtga	agctttttat	tcctaagagg	agaaaatcag	tcaccggcga	aatcgtgctg	120
	attacaggag	ctgggcatgg	aattgggaga	ctgactgcct	atgaatttgc	taaacttaaa	180
35	agcaagctgg	ttctctggga	tataaataag	catggactgg	aggaaacagc	tgccaaatgc	240

14.

	aagggactgg	gtgccaaggt	tcataccttt	gtggtagact	gcagcaaccg	agaagatatt	300
	tacagetetg	caaagaaggt	gaaggcagaa	attggagatg	ttagtatttt	agtaaataat	360
	gctggtgtag	tctatacatc	agatttgttt	gctacacaag	atcctcagat	tgaaaagact	420
	tttgaagtta	atgtacttgc	acatttctgg	actacaaagg	catttcttcc	tgcaatgacg	480
5	aagaataacc	atggccatat	tgtcactgtg	gcttcggcag	ctggacatgt	ctcggtcccc	540
	ttcttactgg	cttactgttc	aagcaagttt	gctgctgttg	gatttcataa	aactttgaca	600
	gatgaactgg	ctgccttaca	aataactgga	gtcaaaacaa	catgtctgtg	tcctaatttc	660
	gtaaacactg	gcttcatcaa	aaatccaagt	acaagtttgg	gacccactct	ggaacctgag	720
	gaagtggtaa	acaggctgat	gcatgggatt	ctgactgagc	agaagatgat	ttttattcca	780
10	tcttctatag	cttttttaac	aacattggaa	aggatectte	ctgagcgttt	cctggcagtt	840
	ttaaaacgaa	aaatcagtgt	taagtttgat	gcagttattg	gatataaaat	gaaagcgcaa	900
	<210> 15						
	<211> 546						
15	<212> DNA						
	<213> Hamo	sapiens					
	<400> 15						
	atgaaaggct	ggggttggct	ggccctgctt	ctgggggccc	tgctgggaac	cgcctgggct	60
20	cggaggagcc	aggateteca	ctgtggagca	tgcagggctc	tggtggatga	actagaatgg	120
	gaaattgccc	aggtggaccc	caagaagacc	attcagatgg	gatctttccg	gatcaatcca	180
	gatggcagcc	agtcagtggt	ggaggtgcct	tatgcccgct	cagaggccca	cctcacagag	240
	ctgctggagg	agatatgtga	ccggatgaag	gagtatgggg	aacagattga	tecttecace	300
	catcgcaaga	actacgtacg	tgtagtgggc	cggaatggag	aatccagtga	actggaccta	360
25	caaggcatcc	gaatcgactc	agatattagc	ggcaccctca	agtttgcgtg	tgagagcatt	420
	gtggaggaat	acgaggatga	actcattgaa	ttcttttccc	gagaggctga	caatgttaaa	480
	gacaaacttt	gcagtaagcg	aacagatctt	tgtgaccatg	ccctgcacat	atcgcatgat	540
	gagcta						
30	<210> 16						
	<211> 198						
	<212> DNA						
	<213> Hamo	sapiens					

35 <400> 16

15.

	atggaggtgg	acgcaccggg	tgttgatggt	cgagatggtc	teegggageg	gcgaggcttt	60
	agcgagggag	ggaggcagaa	cttcgatgtg	aggcctcagt	ctggggcaaa	tgggcttccc	120
	aaacactcct	actggttgga	cctctggctt	ttcatccttt	tcgatgtggt	ggtgtttctc	180
	tttgtgtatt	ttttgcca					198
5							
	<210> 17						
	<211> 549						
	<212> DNA						
	<213> Homo	sapiens					
10							
	<400> 17						
	atggcgtctc	gagcaggccc	gcgagcggcc	ggcaccgacg	gcagcgactt	tcagcaccgg	60
	gagcgcgtcg	ccatgcacta	ccagatgagt	gtgaccctca	agtatgaaat	caagaagctg	120
	atctacgtac	atctggtcat	atggctgctg	ctggttgcta	agatgagcgt	gggacacctg	180
15	aggctcttgt	cacatgatca	ggtggccatg	ccctatcagt	gggaataccc	gtatttgctg	240
	agcattttgc	cctctctctt	gggccttctc	teettteece	gcaacaacat	tagctacctg	300
-	gtgctctcca	tgatcagcat	gggactcttt	tccatcgctc	cactcattta	tggcagcatg	360
	gagatgttcc	ctgctgcaca	gcagctctac	cgccatggca	aggcctaccg	tttcctcttt	420
	ggtttttctg	ccgtttccat	catgtacctg	gtgttggtgt	tggcagtgca	agtgcatgcc	480
20	tggcagttgt	actacagcaa	gaagctccta	gactcttggt	tcaccagcac	acaggagaag	540
	aagcataaa						549
	<210> 18						
	<211> 972						
25	<212> DNA						
	<213> Homo	sapiens					
	<400> 18						
	atggggccct	ggggagagcc	agageteetg	gtgtggcgcc	ccgaggcggt	agcttcagag	60
30	cctccagtgo	ctgtggggct	ggaggtgaag	ttgggggcc	tggtgctgct	getggtgete	120
	accetectet	gcagcctggt	geceatetgt	gtgctgcgcc	ggccaggagc	: taaccatgaa	180
	ggctcagctt	: cccgccagaa	agecetgage	ctagtaagct	gtttegeggg	gggegtettt	240
	ttggccactt	gtctcctgga	cetgetgeet	gactacctgg	ctgccataga	tgaggccctg	300
	gcagccttgc	acgtgacgct	ccagttccca	ctgcaagagt	tcatcctggc	catgggcttc	360
35	ttcctggtcc	tggtgatgga	gcagatcaca	ctggcttaca	aggagcagto	: agggccgtca	420

	cctctggagg aaacaagggc tctgctggga acagtgaatg gtgggccgca gcattggcat	480
	gatgggccag gggtcccaca ggcgagtgga gccccagcaa ccccctcagc cttgcgtgcc	540
	tgtgtactgg tgttctccct ggccctccac tccgtgttcg aggggctggc ggtagggctg	600
	cagegagace gggeteggge catggagetg tgeetggett tgetgeteea caagggeate	660
5	ctggctgtca gcctgtccct gcggctgttg cagagccacc ttagggcaca ggtggtggct	720
	ggctgtggga tcctcttctc atgcatgaca cctctaggca tcgggctggg tgcagctctg	780
	gcagagtegg caggaectet gcaccagetg gcccagtetg tgctagaggg catggcaget	840
	ggcacctttc tctatatcac ctttctggaa atcctgcccc aggagctggc cagttctgag	900
	caaaggatee teaaggteat tetgeteeta geaggetttg eeetgeteae tggeetgete	960
10	ttcatccaaa tc	972
	<210> 19	
	<211> 1705	
	<212> DNA	
15	<213> Homo sapiens	
	<400> 19	
	aagaactgag gaagctettt eeactaegge tgtattgeac tggtgagtee gggeecatgg	60
	atgagaaatt gatgcgagga tcaatacaag cttaatttga attaataaaa ggaaatattt	120
20	tetecettig aacttatete egiaaageea tigigeetee tetigggggt caegigitea	180
	caatca atg gcc ttt gag gag ctc ttg agt caa gtt gga ggc ctt ggg	228
	Met Ala Phe Glu Glu Leu Leu Ser Gln Val Gly Gly Leu Gly	
	1 5 10	
	aga ttt cag atg ctt cat ctg gtt ttt att ctt ccc tct ctc atg tta	276
25	Arg Phe Gln Met Leu His Leu Val Phe Ile Leu Pro Ser Leu Met Leu	
	15 20 25 30	
	tta atc cct cat ata ctg cta gag aac ttt gct gca gcc att cct ggt	324
	Leu Ile Pro His Ile Leu Leu Glu Asn Phe Ala Ala Ile Pro Gly	
	35 40 45	
30	cat cgt tgc tgg gtc cac atg ctg gac aat aat act gga tct ggt aat	372
	His Arg Cys Trp Val His Met Leu Asp Asn Asn Thr Gly Ser Gly Asn	
	50 55 60	
	gaa act gga atc ctc agt gaa gat gcc ctc ttg aga atc tct atc cca	420
	Glu Thr Gly Ile Leu Ser Glu Asp Ala Leu Leu Arg Ile Ser Ile Pro	
35	65 70 75	•

	cta	gac	tca	aat	ctg	agg	cca	gag	aag	tgt	cgt	cgc	ttt	gtc	cat	ccc	468
	Leu	Asp	Ser	Asn	Leu	Arg	Pro	Glu	Lys	Cys	Arg	Arg	Phe	Val	His	Pro	
		80					85					90					
	cag	tgg	cag	ctt	ctt	cac	ctg	aat	ggg	act	atc	cac	agc	aca	agt	gag	516
5	Gln	Trp	Gln	Leu	Leu	His	Leu	Asn	Gly	Thr	Ile	His	Ser	Thr	Ser	Glu	
	95					100					105					110	
	gca	gac	aca	gaa	ccc	tgt	gtg	gat	ggc	tgg	gta	tat	gat	caa	agc	tac	564
	Ala	Asp	Thr	Glu	Pro	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Gln	Ser	Tyr	
					115					120					125		
10	ttc	cct	tcg	acc	att	gtg	act	aag	tgg	gac	ctg	gta	tgt	gat	tat	cag	612
	Phe	Pro	Ser	Thr	Ile	Val	Thr	Lys	Trp	Asp	Leu	Val	Cys	Asp	Tyr	Gln	
				130					135					140			
	tca	ctg	aaa	tca	gtg	gtt	caa	ttc	cta	ctt	ctg	act	gga	atg	ctg	gtg	660
	Ser	Leu	Lys	Ser	Val	Val	Gln	Phe	Leu	Leu	Leu	Thr	Gly	Met	Leu	Val	
15			145					150					155				
	gga	ggc	atc	ata	ggt	ggc	cat	gtc	tca	gac	agg	tgg	ctg	gtg	gaa	tct	708
	Gly	Gly	Ile	Ile	Gly	Gly	His	Val	Ser	Asp	Arg	Tip	Leu	Val	Glu	Ser	
		160		•			165					170					
	gct	cgg	tgg	ttg	ata	atc	acc	aat	aaa	cta	gat	gag	ggc	tta	aag	gca	756
20	Ala	Arg	Trp	Leu	Ile	Ile	Thr	Asn	Lys	Leu	Asp	Glu	Gly	Leu	Lys	Ala	
	175					180					185					190	
	ctt	aga	aaa	gtt	gca	cgc	aca	aat	gga	ata	aag	aat	gct	gaa	gaa	acc	804
	Leu	Arg	Lys	Val	Ala	Arg	Thr	Asn	Gly	Ile	Lys	Asn	Ala	Glu	Glu	Thr	
					195					200					205		
25	ctg	aac	ata	gag	gtt	gta	aga	tcc	acc	atg	cag	gag	gag	ctg	gat	gca	852
	Leu	Asn	Ile	Glu	Val	Val	Arg	Ser	Thr	Met	Gln	Glu	Glu	Leu	Asp	Ala	
				210					215					220			
	gca	cag	acc	aaa	act	act	gtg	tgt	gac	ttg	ttc	cgc	aac	ccc	agt	atg	900
	Ala	Gln	Thr	Lys	Thr	Thr	Val	Cys	Asp	Leu	Phe	Arg	Asn	Pro	Ser	Met	
30			225					230					235				
	cgt	aaa	agg	atc	tgt	atc	ctg	gta	ttt	ttg	aga	aaa	aaa	atc	tca	agg	948
	Arg	Lys	Arg	Ile	Cys	Ile	Leu	Val	Phe	Leu	Arg	Lys	Lys	Ile	Ser	Arg	
		240					245					250					
	aaa	agg	cat	aaa	aat	gat	tgc	tac	aca	aaa	gtg	acc	aaa	ttt	taa	gaagcct	1000
35	Lys	Arg	His	Lys	Asn	Asp	Cys	Tyr	Thr	Lys	Val	Thr	Lys	Phe	:		

18.

	233		. 200	,		200					
	tcatgagct	tg attg	gtgggg a	aattcagaa	a aaaaaaa	atac a	aggaaaag	aa c	cacac	cagaa	1060
	gggtttttt	tt cccta	acaacc a	ıgcaagaaca	a tatatta	agat a	acatgaat	ct o	caatt	ataat	1120
	tatggcatt	ta attto	gcattt t	atttcaaaa	ttaactt	gtg g	gggacatg	rta a	atcto	ttgag	1180
5	caatctgat	ta tttt	gggaa g	rtcctttaaa	aagttad	caaa 1	tttatcaa	ta a	aatta	ctagt	1240
	agataagat	tg attca	agaaac a	aaagaaaat	cacagaa	atta q	ggatgtgg	ct c	ggctg	gtgta	1300
	tgaagcacc	ca tgtga	atgaat t	cataaagtt	gcaaaa	gtca a	aaacaata	ct c	gtaca	itgcaa	1360
	ccagaaato	ca aaata	aatcc a	gaaatagag	acctata	ataa a	atgcattt	aa t	cacat	gatac	1420
	ttttgacat	ta ataag	gccatt g	gaaaacgga	a aagatta	agat a	actaaata	ac a	attga	ctatc	1480
10	tctttgtaa	aa tacag	ntcact a	aatgatgtt	agttact	ttt d	ccatggtg	ga a	atttt	aatta	1540
	ctttttctt	tt gtaat	ttttc t	ctctgtata	ttttaaa	acaa a	atagetgg	ta t	agtt	tacaa	1600
	tattataaa	ag atatt	gttca a	attgaaggg	g caaaggo	cag g	gttcagca	at t	ttca	aactg	1660
	tatgtacat	tt taata	aaata a	ctataaatt	aaaaaat	ctat a	atttc				1705
15	<210> 20										
	<211> 268	3									
	<212> PRT	r									
	<213> Hon	no sapie	ens								
20	<400> 20										
	M∈	et Ala E	Phe Glu	Glu Leu I	eu Ser (Gln Va	al Gly G	ly I	Leu G	3ly	
		1		5		1	10				
	Arg Phe G	Gln Met	Leu His	Leu Val	Phe Ile	Leu 1	Pro Ser	Leu	Met	Leu	
	15		20)		25				30	
25	Leu Ile F	Pro His	Ile Leu	Leu Glu	Asn Phe	Ala A	Ala Ala	Ile	Pro	Gly	
			35		40				45		
	His Arg C	Cys Trp	Val His	Met Leu	Asp Asn	Asn :	Thr Gly	Ser	Gly	Asn	
		50			55			60			
	Glu Thr G	Gly Ile	Leu Ser	Glu Asp	Ala Leu	Leu I	Arg Ile	Ser	Ile	Pro	
30		65		70			75				
	Leu Asp S	Ser Asn	Leu Arg	Pro Glu	Lys Cys	Arg A	Arg Phe	Val	His	Pro	
	80			85			90				
	Gln Trp (Gln Leu	Leu His	Leu Asn	Gly Thr	Ile I	His Ser	Thr	Ser	Glu	
	95		100)		105				110	
35	Ala Asp T	Fhr Glu	Pro Cys	Val Asp	Gly Trp	Val S	Tyr Asp	Gln	Ser	Tyr	

WO 99/55862

19*i*

PCT/JP99/02226

					115					120					125		
	Phe	Pro	Ser	Thr	Ile	Val	Thr	Lys	Trp	Asp	Leu	Val	Cys	Asp	Tyr	Gln	
				130		ē			135					140			
	Ser	Leu	Lys	Ser	Val	Val	Gln	Phe	Leu	Leu	Leu	Thr	Gly	Met	Leu	Val	
5			145					150					155				
	Gly	Gly	Ile	Ile	Gly	Gly	His	Val	Ser	Asp	Arg	Trp	Leu	Val	Glu	Ser	
		160					165					170					
	Ala	Arg	Trp	Leu	Ile	Ile	Thr	Asn	Lys	Leu	Asp	Glu	Gly	Leu	Lys	Ala	
	175					180					185					190	
10	Leu	Arg	Lys	Val	Ala	Arg	Thr	Asn	Gly	Ile	Lys	Asn	Ala	Glu	Glu	Thr	
					195					200					205		
	Leu	Asn	Ile	Glu	Val	Val	Arg	Ser	Thr	Met	Gln	Glu	Glu	Leu	Asp	Ala	
				210					215					220			
	Ala	Gln	Thr	Lys	Thr	Thr	Val	Cys	Asp	Leu	Phe	Arg	Asn	Pro	Ser	Met	
15			225					230					235				
	Arg	Lys	Arg	Ile	Cys	Ile	Leu	Val	Phe	Leu	Arg	Lys	Lys	Ile	Ser	Arg	
		240					245					250					
	Lys	Arg	His	Lys	Asn	Asp	Cys	Tyr	Thr	Lys	Val	Thr	Lys	Phe			
	255					260					265						
20																	
	<210)> 2	1														
	<21	1> 1	759														
	<212	2> DI	N/A														
	<213	3> H	omo:	sapi	ens												
25																	
	<400	0> 2	1														
	_	_	-		•	_			_		-	_		_		agccag	60
	ttg	ccgg	att a	attc	tatt	tc c	cctc	cctc	t ct	cccg	cccc	gta	tctc	ttt	tcac	ecttet	120
	CCC	accc	tcg	ctcg	cgta	gc c	atg	gcg	gag	ccg	tcg	gcg	gcc	act	cag	tee	171
30							Met	Ala	Glu	Pro			Ala	Thr	Gln	Ser	
							1				5					10	
	cat	tcc	atc	tcc	tcg	tcg	tcc	ttc	gga	gcc	gag	ccg	tee	gcg	ccc	ggc	219
	His	Ser	Ile	Ser			Ser	Phe	Gly	Ala	Glu	Pro	Ser	Ala	Pro	Gly	
					15					20					25		
35	ggc	ggc	ggg	agc	cca	gga	gcc	tgc	CCC	gcc	ctg	ggg	acg	aag	agc	tgc	267

	Gly	Gly	Gly	Ser	Pro	Gly	Ala	Cys	Pro	Ala	Leu	Gly	Thr	Lys	Ser	Cys	
				30					35					40			
	agc	tcc	tcc	tgt	gcg	gtg	cac	gat	ctg	att	ttc	tgg	aga	gat	gtg	aag	315
	Ser	Ser	Ser	Cys	Ala	Val	His	Asp	Leu	Ile	Phe	Trp	Arg	Asp	Val	Lys	
5			45					50		*			55				
	aag	act	ggg	ttt	gtc	ttt	ggc	acc	acg	ctg	atc	atg	ctg	ctt	tcc	ctg	363
	Lys	Thr	Gly	Phe	Val	Phe	Gly	Thr	Thr	Leu	Ile		Leu	Leu	Ser	Leu	
		60					65					70					
	-	_		-	-		-		gtt					_	-		411
10		Ala	Phe	Ser	Val	Ile	Ser	Val	Val	Ser		Leu	Ile	Leu	Ala		
	75					80					85					90	
			-			_			atc								459
	Leu	Ser	Val	Thr		Ser	Phe	Arg	Ile	-	Lys	Ser	Val	Ile		Ala	
					95					100					105		
15	•	-	_		-	-			cca			-		_	-	-	507
	Val	Gln	Lys		Glu	Glu	Gly	His	Pro	Phe	Lys	Ala	Tyr		Asp	vaı	
				110					115				_ 4	120			555
	-			_			-	_	ttc								555
00	Asp	He		Leu	Ser	Ser	Glu		Phe	HIS	Asn	туг		Asn	ATa	ALA	
20	- *		125	_+_				130					135	at a		~+~	603
	_						_	_	aaa								603
	Met	140	HIS	шe	ASII	Arg	145	Leu	Lys	Leu	116	150	ALG	Leu	PILE	Deu	
	_+-			- +-		~~~		++~	225	ata	-a-		++0	2+4	+00	cta	651
05	_	_	_	_	-											ctg Leu	031
25	155	GIU	ASP	Leu	val	160	SET	Trea	гуу	Ten	165	vai	File	FIEC	π₽	170	
		200	tat	att	aat		at t	+++	aac	aas		acc	ctt	cta	att		699
	_			-		_	_		Asn								
	ricc	1111	-y-	Val	175		vai	1110	ווטוז	180	110	1111	200	200	185		
30	act	gaa	cta	ctc			agt	atc	cca		atc	tat	gag	aag		aag	747
00	-	-	-				_	-	Pro		_			_			
				190		20			195			-,-		200		-3-	
	acc	cad	att			tat.	att	gga			cas	gat.	cad			tca	795
		_		_					Ile	-	_						
35			205	_		-1-		210					215		-4-		
-																	

21

WO 99/55862 PCT/JP99/02226

	att gtt gaa aag atc caa gca aaa ctc cct gga atc gcc aaa aaa aag	843
	Ile Val Glu Lys Ile Gln Ala Lys Leu Pro Gly Ile Ala Lys Lys	
	220 225 230	
	gca gaa taagtacatg gaaaccagaa atgcaacagt tactaaaaca ccatttaata g	900
5	Ala Glu	
	235	
	ttataacgtc gttacttgta ctatgaagga aaatactcag tgtcagcttg agcctgcatt	960
	ccaagetttt tttttaattt ggtgttttet eecateettt eeetttaaee etcagtatea	1020
	agcacaaaaa ttgatggact gataaaagaa ctatcttaga actcagaaga agaaagaatc	1080
10	aaattcatag gataagtcaa taccttaatg gtggtagagc ctttacctgt agcttgaaag	1140
	gggaaagatt ggaggtaaga gagaaaatga aagaacacct ctgggtcctt ctgtccagtt	1200
	ttcagcacta gtcttactca gctatccatt atagttttgc ccttaagaag tcatgattaa	1260
	cttatgaaaa aattatttgg ggacaggagt gtgatacett cettggtttt tttttgcage	1320
	cctcaaatcc tatcttcctg ccccacaatg tgagcagcta cccctgatac tcctttctt	1380
15	taatgattta actatcaact tgataaataa cttataggtg atagtgataa ttcctgattc	1440
	caagaatgcc atctgataaa aaagaataga aatggaaagt gggactgaga gggagtcagc	1500
	aggeatgetg eggtggeggt caetecetet gweactatee eeagggaagg aaaggeteeg	1560
	ccatttggga aagtggtttc tacgtcactg gacaccggtt ctgagcatta gtttgagaac	1620
	tegtteeega atgtgettte etecetetee eetgeeeace teaagtttaa taaataaggt	1680
20	tgtacttttc ttactataaa ataaatgtct gtaactgctg tgcactgctg taaacttgtt	1740
	agagaaaaaa ataacctgc	1759
	•	
	<210> 22	
	<211> 236	
25	<212> PRT	
	<213> Homo sapiens	
	<400> 22	
	Met Ala Glu Pro Ser Ala Ala Thr Gln Ser	
30	1 5 10	
	His Ser Ile Ser Ser Ser Phe Gly Ala Glu Pro Ser Ala Pro Gly	
	15 20 25	
	Gly Gly Gly Ser Pro Gly Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys	
	30 35 40	
35	Ser Ser Ser Cys Ala Val His Asp Leu Ile Phe Trp Arg Asp Val Lys	

22

			45					50					55			
	Lys	Thr	Gly	Phe	Val	Phe	Gly	Thr	Thr	Leu	Ile	Met	Leu	Leu	Ser	Leu
		60					65					70				
	Ala	Ala.	Phe	Ser	Val	Ile	Ser	Val	Val	Ser	Tyr	Leu	Ile	Leu	Ala	Leu
5	75					80					85					90
	Leu	Ser	Val	Thr	Ile	Ser	Phe	Arg	Ile	Tyr	Lys	Ser	Val	Ile	Gln	Ala
					95					100					105	
	Val	Gln	Lys	Ser	Glu	Glu	Gly	His	Pro	Phe	Lys	Ala	Tyr	Leu	Asp	Val
				110					115					120		
0	Asp	Ile	Thr	Leu	Ser	Ser	Glu	Ala	Phe	His	Asn	Tyr	Met	Asn	Ala	Ala
			125					130					135			
	Met	Val	His	Ile	Asn	Arg	Ala	Leu	Lys	Leu	Ile	Ile	Arg	Leu	Phe	Leu
		140					145					150				
	Val	Glu	Asp	Leu	Val	Asp	Ser	Leu	Lys	Leu	Ala	Val	Phe	Met	Trp	Leu
15	155					160					165					170
	Met	Thr	Tyr	Val	Gly	Ala	Val	Phe	Asn	Gly	Ile	Thr	Leu	Leu	Ile	Leu
					175					180					185	
	Ala	Glu	Leu	Leu	Ile	Phe	Ser	Val	Pro	Ile	Val	Tyr	Glu	Lys	Tyr	Lys
				190					195					200		
90	Thr	Gln	Ile	Asp	His	Tyr	Val	Gly	Ile	Ala	Arg	Asp	Gln	Thr	Lys	Ser
			205					210					215			
	Ile	Val	Glu	Lys	Ile	Gln		Lys	Leu	Pro	Gly	Ile	Ala	Lys	Lys	Lys
		220					225					230				
	Ala	Glu														
25	235															
		0> 2:														
	<21	1> 1	069													
	<21	2> D	NA.													
30	<21	3> H	omo :	sapi	ens											

agtggaagac caggcagccc agctgaaggc agtaagctcg gctcacagtc gcaggagagt

tctggggtac acgggcaaag gggcttgaga aggcccggag gcgaagccga agagaagcaa

ctgtgccccg gagaagagaa gctcgcccat tccagactgg gaaccagctt tcagtgaag

60 120

179

<400> 23

	atg	gca	ggg	cca	gaa	ctg	ttg	ctc	gac	tcc	aac	atc	cgc	ctc	tgg	gtg	227
	Met	Ala	Gly	Pro	Glu	Leu	Leu	Leu	Asp	Ser	Asn	Ile	Arg	Leu	Trp	Val	
	1				5					10					15		
	gtc	cta	ccc	atc	gtt	atc	atc	act	ttc	ttc	gta	ggc	atg	atc	cgc	cac	275
5	Val	Leu	Pro	Ile	Val	Ile	Ile	Thr	Phe	Phe	Val	Gly	Met	Ile	Arg	His	
				20					25					30			
	tac	gtg	tcc	atc	ctg	ctg	cag	agc	gac	aag	aag	ctc	acc	cag	gaa	caa	323
	Tyr	Val	Ser	Ile	Leu	Leu	Gln	Ser	Asp	Lys	Lys	Leu	Thr	Gln	Glu	Gln	
			35					40					45				
10	gta	tct	gac	agt	caa	gtc	cta	att	cga	agc	aga	gtc	ctc	agg	gaa	aat	371
	Val	Ser	Asp	Ser	Gln	Val	Leu	Ile	Arg	Ser	Arg	Val	Leu	Arg	Glu	Asn	
		50					55					60					
	gga	aaa	tac	att	CCC	aaa	cag	tct	ttc	ttg	aca	cga	aaa	tat	tat	ttc	419
	Gly	Lys	Tyr	Ile	Pro	Lys	Gln	Ser	Phe	Leu	Thr	Arg	Lys	Tyr	Tyr	Phe	
15	65					70					75					80	
	aac	aac	cca	gag	gat	gga	ttt	ttc	aaa	aaa	act	aaa	cgg	aag	gta	gtg	467
	Asn	Asn	Pro	Glu	Asp	Gly	Phe	Phe	Lys	Lys	Thr	Lys	Arg	Lys	Val	Val	
					85					90					95		
	cca	cct	tct	cct	atg	act	gat	cct	act	atg	ttg	aca	gac	atg	atg	aaa	515
20	Pro	Pro	Ser	Pro	Met	Thr	Asp	Pro	Thr	Met	Leu	Thr	Asp	Met	Met	Lys	
				100					105					110			
									atg								563
	Gly	Asn		Thr	Asn	Val	Leu	Pro	Met	Ile	Leu	Ile	Gly	Gly	Trp	Ile	
			115					120					125				
25									aca		-	-				_	611
	Asn		Thr	Phe	Ser	Gly		Val	Thr	Thr	Lys	Val	Pro	Phe	Pro	Leu	
		130					135					140					
									cag		-						659
••		Leu	Arg	Phe	Lys		Met	Leu	Gln	Gln	Gly	Ile	Glu	Leu	Leu		
30	145					150					155					160	
									gca								707
	Leu	Asp	Ala	Ser		Val	Ser	Ser	Ala		Trp	Tyr	Phe	Leu		Val	
					165					170					175		
0.5									ctg		-			_		-	755
35	Phe	Gly	Leu	Arg	Ser	Ile	Tyr	Ser	Leu	Ile	Leu	Gly	Gln	Asp	Asn	Ala	

		180		185	190	
	gct gac ca	aa tca cga	atg atg cag	gag cag atg	acg gga gca	gcc atg 803
	Ala Asp Gl	in Ser Arg	Met Met Gln	Glu Gln Met	Thr Gly Ala	Ala Met.
	19	95	200		205	
5	gcc atg co	ec gca gac	aca aac aaa	gct ttc aag	aca gag tgg	gaa gct 851
	Ala Met Pr	o Ala Asp	Thr Asn Lys	Ala Phe Lys	Thr Glu Trp	Glu Ala
	210		215		220	
	ttg gag ct	tg acg gat	cac cag tgg	gca cta gat	gat gtc gaa	gaa gag 899
	Leu Glu Le	eu Thr Asp	His Gln Trp	Ala Leu Asp	Asp Val Glu	Glu Glu
10	225		230	235		240
	ctc atg go	cc aaa gac	ctc cac ttc	gaa ggc atg	ttc aaa aag	gaa tta 947
	Leu Met Al	la Lys Asp	Leu His Phe	Glu Gly Met	Phe Lys Lys	Glu Leu
		245		250		255
	cag acc to	et att ttt	tgaagaccga	gcagggatta g	ctgtgtcag gaa	octtgg 1000
15	Gln Thr Se	er Ile Phe				
		260				
	agttgcactt	aaccttgt:	aa ctttgtttg	g agctggcacc	tottgaalta a	aaaggagga 1060
	tgcacgagc					1069
20	<210> 24					
	<211> 261					
	<212> PRT					
	<213> Homo	sapiens				
25	<400> 24					
	Met Ala Gl	ly Pro Glu	Leu Leu Leu	Asp Ser Asn	Ile Arg Leu	Trp Val
	1	5		10		15
	Val Leu Pr	co Ile Val	Ile Ile Thr	Phe Phe Val	Gly Met Ile	Arg His
		20		25	30	
30	Tyr Val Se	er Ile Leu	Leu Gln Ser	Asp Lys Lys	Leu Thr Gln	Glu Gln
•	3	35	40	•	45	•
	Val Ser As	sp Ser Gln	Val Leu Ile	Arg Ser Arg	Val Leu Arg	Glu Asn
	50		55		60	
	Gly Lys Ty	yr Ile Pro	Lys Gln Ser	Phe Leu Thr	Arg Lys Tyr	Tyr Phe
35	65		70	75		80

	Asn	Asn	Pro	Glu	Asp	Gly	Phe	Phe	Lys	Lys	Thr	Lys	Arg	Lys	Val	Val	
		•			85					90					95		
	Pro	Pro	Ser	Pro	Met	Thr	Asp	Pro	Thr	Met	Leu	Thr	Asp	Met	Met	Lys	<i>:</i>
				100					105					110		•	
5	Gly	Asn	Val	Thr	Asn	Val	Leu	Pro	Met	Ile	Leu	Ile	Gly	Gly	Trp	Ile	
			115					120					125				
	Asn		Thr	Phe	Ser	Gly		Val	Thr	Thr	Lys		Pro	Phe	Pro	Leu	
		130					135					140	_				
		Leu	Arg	Phe	Lys		Met	Leu	Gln	Gln		Ile	Glu	Leu	Leu		
10	145			_	_	150	_				155	_		_		160	
	Leu	Asp	Ala	Ser	Trp	Val	Ser	Ser	Ala		Trp	Tyr	Phe	Leu		Val	
			_	_	165		_	_	_	170	_			_	175		
	Phe	GLY	Leu	-	Ser	ше	'I'yr	ser		шe	Leu	GLY	GIN	_	Asn	ALA	
. ~	31.	3	~ 1-	180	.	Mat.	\	C1-	185	61 -	1 454	m	<i>C</i> 3	190	71 -	Mat	
15	ALA	Asp		ser	Arg	met	met	200	GIU	GIN	met	Thr	_	Ala	ALA	Met	
	210	Mot	195	71a	Nam	mb.s	200		71.	Dha	T	mb~	205	П	C1	710	
	Ата	210	PIO	MIG	Asp	1111	215	пÀр	MIG	PILE	пÃЭ	220	GIU	пр	GIU	ALG	
	T.e.ii		T e n	ጥኪሞ	Asp	His		כדגנט	Δla	Ten	Asn		Val	Glu	Glu	Glu	
20	225	Ozu	Dou		ımp	230	0111		ıııu	Dou	235		•	OLU	014	240	
20		Met	Ala	Ivs	Asp		His	Phe	Glu	Glv		Phe	Lvs	Lvs	Glu		
					245					250			_1_	-1-	255		
	Gln	Thr	Ser	Ile													
				260													
25																	
	<210)> 2:	5														
	<21	1> 11	759														
	<212	2> DI	AV.			•											
	<21	3> Ho	conc	sapi	ens												
30																	
	<40	0> 2!	5														·
	att	gtgca	agc a	aggc	gggc	cc c	cgcg	cggc	a gg	gece	tgga	ccc	gege	ggc ·	tece	9 999	5
	atg	gtg	agc	aag	gcg	ctg	ctg	cgc	ctc	gtg	tct	gcc	gtc	aac	cgc	agg	10
	Met	Val	Ser	Lys	Ala	Leu	Leu	Arg	Leu	Val	Ser	Ala	Val	Asn	Arg	Arg	
35	1				5					10					15	÷	

26.

PCT/JP99/02226

WO 99/55862

	agg	atg	aag.	çtg	ctg	ctg	ggc	atc	gcc	ttg	ctg	gcc	tac	gtc	gcc	tct	154
	Arg	Met	L ys	Leu	Leu	Leu	Gly	Ile	Ala	Leu	Leu	Ala	Tyr	Val	Ala	Ser	
				20					25					30			
	gtt	tgg	ggc	aac	ttc	gtt	aat	atg	agc	ttt	cta	ctc	aac	agg	tct	atc	202
5	Val	Trp	Gly	Asn	Phe	Val	Asn	Met	Ser	Phe	Leu	Leu	Asn	Arg	Ser	Ile	
			35					40					45				
	cag	gaa	aat	ggt	gaa	cta	aaa	att	gaa	agc	aag	att	gaa	gag	atg	gtt	250
	Gln	Glu	Asn	Gly	Glu	Leu	Lys	Ile	Glu	Ser	Lys	Ile	Glu	Glu	Met	Val	
		50					55					60					
10	-			-				_	gat		-						298
	Glu	Pro	Leu	Arg	Glu	Lys	Ile	Arg	Asp	Leu	Glu	Lys	Ser	Phe	Thr	Gln	
	65					70					75					80	
	aaa	tac	cca	cca	gta	aag	ttt	tta	tca	gaa	aag	gat	cgg	aaa	aga	att	346
	Lys	Tyr	Pro	Pro		Lys	Phe	Leu	Ser		Lys	Asp	Arg	Lys	_	Ile	
15					85					90					95		
									gtg								394
	Leu	Ile	Thr	-	Gly	Ala	Gly	Phe	Val	Gly	Ser	His	Leu		Asp	Lys	
				100					105					110			440
00									acc								442
20	Leu	Met		Asp	GIY	HIS	GIU		Thr	vaı	vaı	Asp		Pne	Pne	THE	
			115					120	.	-+-			125	224	++-	~~~	400
			-	-					tgg								490
	GTÅ	130	_	Arg	ASII	val	135	UTS	Trp	116	GIY	140		HSII	FIIC	Gru	
25	++~			020	~ 3 ~	ata		~2 ~	ccc	ata	+20			aac	ata	raa	538
20					-				Pro								330
	145		ווטת	1113	nap	150		OIU	110	100	155	110	014	CL	,,,	160	
			ata	acc	aga			aac	acc	ttt		cca	cac	ato	cac		586
		-		-	-				Thr				-	_		-	
30		,			165					170					175		
	aac	gat	aaa	cga		atc	age	aac	ttc		cta	саσ	aca	ctc		aaa	634
		-		_	-	-	_		Phe		-	_					•
			2	180					185					190		•	
	gag	cca	ctc			tac	qqa	tcc	_	tct	сап	aca	agg			cag	682
35				_	_						_					Gln	

			195					200					205				
	tac	gtc	agc	gat	cta	gtg	aat	ggc	ctc	gtg	gct	ctc	atg	aac	agc	aac	730
	Tyr	Val	Ser	Asp	Leu	Val	Asn	Gly	Leu	Val	Ala	Leu	Met	Asn	Ser	Asn	
		210					215					220					
5	gtc	agc	agc	ccg	gtc	aac	ctg	ggg	aac	cca	gaa	gaa	cac	aca	atc	cta	778
	Val	Ser	Ser	Pro	Val	Asn	Leu	Gly	Asn	Pro	Glu	Glu	His	Thr	Ile	Leu	
	225					230					235					240	
	gaa	ttt	gct	cag	tta	att	aaa	aac	ctt	gtt	ggt	agc	gga	agt	gaa	att	826
	Glu	Phe	Ala	Gln	Leu	Ile	Lys	Asn	Leu	Val	Gly	Ser	Gly	Ser	Glu	Ile	
10					245					250					255		
	cag	ttt	ctc	tcc	gaa	gcc	cag	gat	gac	cca	cag	aaa	aga	aaa	cca	gac	874
	Gln	Phe	Leu	Ser	Glu	Ala	Gln	Asp	Asp	Pro	Gln	Lys	Arg	Lys	Pro	Asp	
				260					265					270			
	atc	aaa	aaa	gca	aag	ctg	atg	ctg	ggg	tgg	gag	ccc	gtg	gtc	ccg	ctg	922
15	Ile	Lys	Lys	Ala	Lys	Leu	Met	Leu	Gly	Trp	Glu	Pro	Val	Val	Pro	Leu	
			275					280					285				
	gag	gaa	ggt	tta	aac	aaa	gca	att	cac	tac	ttc	cgt	aaa	gaa	ctc	gag	970
	Glu	Glu	Gly	Leu	Asn	Lys	Ala	Ile	His	Tyr	Phe	Arg	Lys	Glu	Leu	Glu	
		290					295					300					
20	tac	cag	gca	aat	aat	cag	tac	atc	ccc	aaa	cca	aag	cct	gcc	aga	ata	1018
	Tyr	Gln	Ala	Asn	Asn	Gln	Tyr	Ile	Pro	Lys	Pro	Lys	Pro	Ala	Arg	Ile	
	305					310					315					320	
	aag	aaa	gga	cgg	act	cgc	cac	agc	tgaa	acto	ctc a	actt	ttag	ga c	acaa	gac	1070
	Lys	Lys	Gly	Arg	Thr	Arg	His	Ser									
25					325												
	tac	catt	gta (cact	tgat	gg ga	atgt	attt	t tg	gctt	tttt	ttg	ttgt	gt '	ttaa	agaaag	1130
	acti	ttaad	cag	gtgt	catg	aa g	aaca	aact	g gaa	attt	catt	ctg	aagc	ttg (cttt	aatgaa	1190
	atg	gatg	tgc (ctaa	aagc	tc c	cctc	aaaa	a act	tgca	gatt	ttg	cctt	gca (cttt	ttgaat	1250
	ctc	tctt	ttt i	atgt	aaaa	ta go	cgta	gatg	c ato	ctct	gcgt	att	ttca	agt '	tttt	ttatct	1310
30	tgc	tgtg	aga (gcat	atgt	tg t	gact	gtcg	t tg	acag	tttt	att	tact	ggt '	ttct	ttgtga	1370
	agc	tgaa	aag	gaac	atta	ag c	ggga	caaa	a aa	tgcc	gatt	tta	ttta	taa	aagt	gggtac	1430
	tta	ataa	atg :	agto	gtta	ta c	tatg	cata	a aga	aaaa	atcc	tag	cagt	att	gtca	ggtggt	1490
	ggt	gcgc	egg (catt	gatt	tt a	gggc	agat	a aa	agaa	ttct	gtg	tgag	agc	ttta	tgtttc	1550
	tct	ttta	att (caga	gttt	tt c	caag	gtct	a ct	tttg	agtt	gca	aact	tga	cttt	gaaata	1610
35	ttc	ctat	tag ·	tcat	gatc	aa 🗗	gata	ttta	a aa	tcac	tact	ata	ttt	gct	acat	atctgg	1670

	ggc	3 9999	jca ç	gtto	1 9999	gg ca	caaa	igtta	aca	tatt	ctt	ggtt	aacc	at o	gtta	aatat	1730
	gcta	attt	aa t	caaaa	atatt	g aa	acto	acc									1759
	<210	> 26	5														
5	<213	l> 32	28														
	<212	2> PF	T														
	<213	3> Hc	amo s	sapie	ens												
_		0> 26									_			_		_	
10		Val	Ser	Lys		Leu	Leu	Arg	Leu		Ser	Ala	Val	Asn		Arg	
	1		_	_	5	_				10					15		
	Arg	Met	гĀг		Leu	Leu	GIĀ	TTE		Leu	Leu	Ala	ıyr		ALA	ser	
	**-1	m	01	20	Dh.a	**-1		1	25	Dh.a	T a	T	2	30	Com	T10	
	vai	Trp	35	ASII	Pne	Val	ASII	40	ser	Pile	Tea	Leu	45	Arg	per	TTE	
15	Cln	Glu		Cl v	Glu	Lou	Tue		Glu	Sor	Tuc	Tlo	_	Glu	Mot	Val	
	GIII	50	ASII	GLY	GIU	Leu	Б уБ	116	GIU	Ser	шуз	60	O,Lu	Olu	race	Val	
	Glu	Pro	Len	Ara	Glu	Lvs		Ara	Asp	Leu	Glu		Ser	Phe	Thr	Gln	
	65					70		,			75					80	
20		Tyr	Pro	Pro	Val		Phe	Leu	Ser	Glu		Asp	Arg	Lys	Arg	Ile	
	•	•			85	•				90	•	-		-	95		
	Leu	Ile	Thr	Gly	Gly	Ala	Gly	Phe	Val	Gly	Ser	His	Leu	Thr	Asp	Lys	
				100			_		105					110			
	Leu	Met	Met	Asp	Gly	His	Glu	Val	Thr	Val	Val	Asp	Asn	Phe	Phe	Thr	
25			115					120					125				
	Gly	Arg	Lys	Arg	Asn	Val	Glu	His	Trp	Ile	Gly	His	Glu	Asn	Phe	Glu	
		130					135					140					
	Leu	Ile	Asn	His	Asp	Val	Val	Glu	Pro	Leu	Tyr	Ile	Glu	Gly	Val	Glu	
	145					150					155					160	
30	Val	Arg	Val	Ala	Arg	Ile	Phe	Asn	Thr	Phe	Gly	Pro	Arg	Met	His	Met	
					165					170					175		
	Asn	Asp	Gly	Arg	Val	Val	Ser	Asn	Phe	Ile	Leu	Gln	Ala	Leu	Gln	Gly	
				180					185					190			
	Glu	Pro	Leu	Thr	Val	Tyr	Gly	Ser	Gly	Ser.	Gln	Thr	Arg	Ala	Phe	Gln	
35			195					200					205				

	Tyr Val Ser Asp Leu Val Asn Gly Leu Val Ala Leu Met Asn Ser Asn	
	210 215 220	
	Val Ser Ser Pro Val Asn Leu Gly Asn Pro Glu Glu His Thr Ile Leu	
	225 230 235 240	
5	Glu Phe Ala Gln Leu Ile Lys Asn Leu Val Gly Ser Gly Ser Glu Ile	
	245 250 255	
	Gln Phe Leu Ser Glu Ala Gln Asp Asp Pro Gln Lys Arg Lys Pro Asp	
	260 265 270	
	Ile Lys Lys Ala Lys Leu Met Leu Gly Trp Glu Pro Val Val Pro Leu	
10	275 280 285	
	Glu Glu Gly Leu Asn Lys Ala Ile His Tyr Phe Arg Lys Glu Leu Glu	
	290 295 300	
	Tyr Gln Ala Asn Asn Gln Tyr Ile Pro Lys Pro Lys Pro Ala Arg Ile	
	305 310 315 320	
15	Lys Lys Gly Arg Thr Arg His Ser	
	325	
	210. 27	
	<210> 27	
90	<211> 1697 <212> DNA	
20	<213> Homo sapiens	
	12137 Maile Suptemb	
	<400> 27	
	aaaaggatac gggagtteet eettgetete geeestacte tttetggtgt tagategage	60
25	taccetetaa aageagttta gagtggtaaa aaaaaaaaaa aacacaccaa aegetegeag	120
	ccacaaaagg g atg aaa ttt ctt ctg gac atc ctc ctg ctt ctc ccg tta	170
	Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu	
	1 5 10	
	ctg atc gtc tgc tcc cta gag tcc ttc gtg aag ctt ttt att cct aag	218
30	Leu Ile Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys	
	15 20 25	
	agg aga aaa tca gtc acc ggc gaa atc gtg ctg att aca gga gct ggg	266
	Arg Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly	
	30 35 40 45	
35	cat gga att ggg aga ctg act gcc tat gaa ttt gct aaa ctt aaa agc	314

30.

	His	Gly	Ile	Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser	
					50		,			55					60		
	aag	ctg	gtt	ctc	tgg	gat	ata	aat	aag	cat	gga	ctg	gag	gaa	aca	gct	362
	Lys	Leu	Val	Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala	
5				65					70					75			
	gcc	aaa	tgc	aag	gga	ctg	ggt	gcc	aag	gtt	cat	acc	ttt	gtg	gta	gac	410
	Ala	Lys	Cys	Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	Asp	
			80					85					90				
	tgc	agc	aac	cga	gaa	gat	att	tac	agc	tct	gca	aag	aag	gtg	aag	gca	458
10	Cys	Ser	Asn	Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala	
		95					100					105					
					gtt							-		-	-		506
	Glu	Ile	Gly	Asp	Val	Ser	Ile	Leu	Val	Asn	Asn	Ala	Gly	Val	Val	Tyr	
	110					115					120					125	
15					ttt												554
	Thr	Ser	Asp	Leu	Phe	Ala	Thr	Gln	Asp	Pro	Gln	Ile	Glu	Lys	Thr	Phe	
					130					135					140		
					ctt							_	-				602
	Glu	Val	Asn		Leu	Ala	His	Phe	Trp	Thr	Thr	Lys	Ala		Leu	Pro	
20				145					150					155			
	_	_		_	aat						-			•	-	_	650
	Ala	Met		Lys	Asn	Asn	His	_	His	Ile	Val	Thr	Val	Ala	Ser	Ala	
			160					165					170				
				-	tcg	_				_	-		_		_	-	698
25	Ala		His	Val	Ser	Val		Phe	Leu	Leu	Ala	_	Cys	Ser	Ser	Lys	
		175					180					185					
					gga					_		_	_	_	_		746
		Ala	Ala	Val	Gly		His	Lys	Thr	Leu		Asp	Glu	Leu	Ala		
	190					195					200					205	
30					gga					_	_	-					794
	Leu	Gln	Ile	Thr	Gly	Val	Lys	Thr	Thr	_	Leu	Cys	Pro	Asn		Val	
					210		•			215					220		
					atc						-	_					842
	Asn	Thr	Gly		Ile	Lys	Asn	Pro		Thr	Ser	Leu	Gly		Thr	Leu	
35				225					230					235			

	gaa cct gag gaa gtg gta aac agg ctg atg cat ggg att ctg act gag	890
	Glu Pro Glu Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu	
	240 245 250	
	cag aag atg att ttt att cca tct tct ata gct ttt tta aca aca ttg	938
5	Gln Lys Met Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu	
	255 260 265	
	gaa agg atc ctt cct gag cgt ttc ctg gca gtt tta aaa cga aaa atc	986
	Glu Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile	
	270 275 280 285	
10	agt gtt aag ttt gat gca gtt att gga tat aaa atg aaa gcg caa	1031
	Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln	
	290 295 300	
	taagcacct agttttctga aaactgattt accaggttta ggttgatgtc atctaatagt	1090
	gccagaattt taatgtttga acttctgttt tttctaatta tccccatttc ttcaatatca	1150
15	tttttgagge tttggeagte tteatttact accaettgtt etttageeaa aagetgatta	1210
	catatgatat aaacagagaa atacctttag aggtgacttt aaggaaaatg aagaaaaaga	1270
	accaaaatga ctttattaaa ataatttcca agattatttg tggctcacct gaaggstttg	1330
	caaaatttgt accataaccg tttatttaac atatatttt atttttgatt gcacttaaat	1390
	tttgtataat ttgtgtttct ttttctgttc tacataaaat cagaaacttc aagctctcta	1450
20	aataaaatga aggactatat ctagtggtat ttcacaatga atatcatgaa ctctcaatgg	1510
	gtaggtttca tcctacccat tgccactctg tttcctgaga gatacctcac attccaatgc	1570
	caaacatttc tgcacaggga agctagaggt ggatacacgt gttgcaagta taaaagcatc	1630
	actgggattt aaggagaatt gagagaatgt acccacaaat ggcagcaata ataaatggat	1690
0.	cacactt	1697
25	1010. 00	
	<210> 28	
	<211> 300 <212> PRT	
30	<213> Homo sapiens	
00	<400> 28	
	Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu	
	1 5 10	
	Leu Ile Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys	
25	15 20 25	

	Arg	Arg	Lys	Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly
	30					35					40					45
	His	Gly	Ile	Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser
					50					55					60	
5	Lys	Leu	Val	Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala
				65					70					75		
	Ala	Lys	Cys	Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	Asp
			80					85					90			
	Cys	Ser	Asn	Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala
10		95					100					105				
	Glu	Ile	Gly	Asp	Val	Ser	Ile	Leu	Val	Asn	Asn	Ala	Gly	Val	Val	Tyr
	110					115					120					125
	Thr	Ser	Asp	Leu		Ala	Thr	Gln	Asp		Gln	Ile	Glu	Lys		Phe
					130					135					140	
15	Glu	Val	Asn		Leu	Ala	His	Phe	-	Thr	Thr	Lys	Ala		Leu	Pro
				145					150					155		_
	Ala	Met	Thr	Lys	Asn	Asn	His		His	Ile	Val	Thr		Ala	Ser	Ala
			160		_		_	165	_			_	170	_	_	_
	Ala	_	His	Val	Ser	Val		Phe	Leu	Leu	Ala		Cys	Ser	Ser	Lys
20		175				_,	180					185	01	.		
		ALA	Ala	vaı	GIĄ		HIS	гуs	Thr	Leu		Asp	GIU	Leu	ALA	
	190	6 7	- 1.		0 3	195	•	m b	m\	 -	200	^	Don	3	mh a	205
	Leu	GIN	Ile	Tnr	_	vai	Lys	Thr	Thr	=	Leu	cys	PIO	ASII		Val
0.5		m\	01	Db -	210	T	3	D	C	215	C	T 0	63	Dana	220	T 011
25	ASII	TILL	Gly		TTE	пĀг	ASII	PIO		ти	Ser	LEU	GIĀ	235	1111	TEGU
	C1	Dwo	Cl.,	225	wal	เรอไ	Non.	7~~	230	Mot	uic	Clu	T10		Шh x	Glu
	GIU	PIO	Glu 240	GIU	Val	Val	ASII	245	TEU	Mec	UTS	Gry	250	Den	1111	Gra
	Gln	Tue	Met	Tla	Dhe	Tla	Dro		Sor	Tla	Ala	Dhe		ጥከተ	¶hr-	T.e.u
30	GIII	255		116	FIIC	116	260		Jer	116	ALU	265		****	****	
00	Glu		Ile	Ten	Dro	Glu			LOII	Mla	Val			Ara	Tws	Tle
	270	_	114	الاتالية	110	275	_	* 11G	L		280		-,5	9	<i>د</i> ړ <i>ــ</i>	285
			Lys	Phe	Asn			Tle	Glv	ተውጥ			Lvs	Ala	Gln	
			~1~		290				~-1	295			_,_		300	

	<210> 29	
	<211> 814	
	<212> DNA	
	<213> Homo sapiens	
5		
	<400> 29	•
	agaateeegg acageeetge teeetgeage caggtgtagt ttegggagee actggggeea	60
	aagtgagagt ccagcggtct tccagcgctt gggccacggc ggcggccctg ggagcagagg	120
	tggagegace ceattaeget aaag atg aaa gge tgg ggt tgg etg gee etg	171
10	Met Lys Gly Trp Gly Trp Leu Ala Leu	
	_ 15	
	ctt etg ggg gee etg etg gga ace gee tgg get egg agg age eag gat	219
	Leu Leu Gly Ala Leu Leu Gly Thr Ala Trp Ala Arg Arg Ser Gln Asp	
	10 15 20 25	
15	ctc cac tgt gga gca tgc agg gct ctg gtg gat gaa cta gaa tgg gaa	267
	Leu His Cys Gly Ala Cys Arg Ala Leu Val Asp Glu Leu Glu Trp Glu	
	30 35 40	
	att gcc cag gtg gac ccc aag aag acc att cag atg gga tct ttc cgg	315
	Ile Ala Gln Val Asp Pro Lys Lys Thr Ile Gln Met Gly Ser Phe Arg	
20	45 50 55	
	atc aat cca gat ggc agc cag tca gtg gtg gag gtg cct tat gcc cgc	363
	Ile Asn Pro Asp Gly Ser Gln Ser Val Val Glu Val Pro Tyr Ala Arg	
	60 65 70	
	tca gag gee cae etc aca gag etg etg gag gag ata tgt gae egg atg	411
25	Ser Glu Ala His Leu Thr Glu Leu Leu Glu Glu Ile Cys Asp Arg Met	
	75 80 85	
	aag gag tat ggg gaa cag att gat cet tee ace cat ege aag aac tae	459
	Lys Glu Tyr Gly Glu Gln Ile Asp Pro Ser Thr His Arg Lys Asn Tyr	
00	90 95 100 105	
30	gta cgt gta gtg ggc cgg aat gga gaa tcc agt gaa ctg gac cta caa	507
	Val Arg Val Val Gly Arg Asn Gly Glu Ser Ser Glu Leu Asp Leu Gln	
	110 115 120	ccc
	ggc atc cga atc gac tca gat att agc ggc acc ctc aag ttt gcg tgt	555
0.5	Gly Ile Arg Ile Asp Ser Asp Ile Ser Gly Thr Leu Lys Phe Ala Cys	
35	125 130 135	

	gag agc att	gtg gag gaa	tac gag gat	gaa ctc att	gaa ttc ttt tcc	603
	Glu Ser Ile	Val Glu Glu	Tyr Glu Asp	Glu Leu Ile	Glu Phe Phe Ser	
	140		145		150	
	cga gag gct	gac aat gtt	aaa gac aaa	ctt tgc agt	aag cga aca gat	651
5	Arg Glu Ala	Asp Asn Val	Lys Asp Lys	Leu Cys Ser	Lys Arg Thr Asp	
	155		160	165	•	
	ctt tgt gac	cat gcc ctg	cac ata tcg	cat gat gag	cta tgaaccactg	700
	Leu Cys Asp	His Ala Leu	His Ile Ser	His Asp Glu	Leu	
	170	175		180		
10	gagcagccca d	cactggcttg at	ggatcacc co	caggaggg gaa	aatggtg gcaatgcctt	760
	ttatatatta 1	t gttttta ct ga	aattaact ga	aaaaatat gaa	accaaaa gtac	814
	<210> 30					
	<211> 182					
15	<212> PRT					
	<213> Homo s	sapiens				
	<400> 30					
			=		Trp Leu Ala Leu	
20			1	5	New Com Cla Non	
	-		Gly Thr Ala		Arg Ser Gln Asp	
	10	15	31c 7c	20 . Well Non Clu	25	
	Leu His Cys		Arg Ala Let		Leu Glu Trp Glu 40	
0.5	T1- 11- 01-	30	Town Town Mbs	35 • Tlo Cla Mot		
25	ite Ata Gin	_	Lys Lys Tiu		Gly Ser Phe Arg 55	
	Tle Bon Dwe	45				
		<u> </u>		r var Gru var	Pro Tyr Ala Arg	
	60 Som Clu Ala		65	. Clu Clu Ile	Cys Asp Arg Met	
20	75	. His Leu Thi	80	85		
30		· Cl. Cl. Cl.			Arg Lys Asn Tyr	•
	•	95		100	105	
	90 Wal Arg Val				Leu Asp Leu Gln	
	var my var	. vai Giy Aig 110	wen ark an	115	120	
25	Clu Ila Awa		Acn Tle Co		Lys Phe Ala Cys	
35	GIY IIE AIG	itte uzb bet	שסט דוב ספי	r GTA THE TER	The tre tre cle	

.

	125		130	135
	Glu Ser Ile Val G	lu Glu Tyr Glu	Asp Glu Leu Ile Glu	Phe Phe Ser
	140	145	150	
	Arg Glu Ala Asp A	on Val Lys Asp	Lys Leu Cys Ser Lys	Arg Thr Asp
5	155	160	165	
	Leu Cys Asp His A	la Leu His Ile	Ser His Asp Glu Leu	
	170	175	180	
	<210> 31			
10	<211> 511			•
	<212> DNA			
	<213> Homo sapien	3		
	<400> 31			
15	gttacgaagc tgcagg		g gtg gac gca ccg gg	
			u Val Asp Ala Pro Gl	y val Asp Gly 10
	CON CAM COM OMO O	1	5 . GGC TTT AGC GAG GGA	_
00		rg Giu Arg Arg 15	Gly Phe Ser Glu Gly 20	25
20			. ggg gca aat ggg ctt	
			: Gly Ala Asn Gly Lev	_
	Asii File Asp vai A	rg Pro Gin Ser	35	40
		ac ete taa ett	tto atc ctt ttc gat	
25			Phe Ile Leu Phe Asp	, , , , , ,
20	45	50 20u 12p 20u 50	_	
			tgacttgttc gctgatat	
	Phe Leu Phe Val T	_		•
	60	65		
30	gttggttctt gagtga	attc tgaaaatg	c tacaaacttc ttgaata	aag aagacaggac 310
	tctcaataga agaatt	tcac atctccaa	g gaccetteet tteatt	tac actttgttac 370
	taatttgcag aactct	atta attgggtag	gg atttcaccca ttcctag	gcta agttcttaaa 430
	attaaaccct ttggtt	cgtg tttaaaaa	t ttcaaacatc tgatgg	ettt acaggggctg 490
	aatataaaag catttg	tact t		511

WO 99/55862

36

PCT/JP99/02226

	<210> 32	
	<211> 66	
	<212> PRT	
	<213> Homo sapiens	
5		
	<400> 32	
	Met Glu Val Asp Ala Pro Gly Val Asp Gly	
	1 5 10	
	Arg Asp Gly Leu Arg Glu Arg Arg Gly Phe Ser Glu Gly Gly Arg Gln	
10	15 20 25	
	Asn Phe Asp Val Arg Pro Gln Ser Gly Ala Asn Gly Leu Pro Lys His	
	30 35 40	
	Ser Tyr Trp Leu Asp Leu Trp Leu Phe Ile Leu Phe Asp Val Val	
	45 50 55	
15	Phe Leu Phe Val Tyr Phe Leu Pro	
	60 65	
	<210> 33	
	<211> 1126	
20	<212> DNA	
	<213> Homo sapiens	
	<400> 33	
	ctcttcacgg agccgcgcg ctgcggggc gcaaataggg tcactgggcc gcttggcggt	60
25	gtcgttgcgg taccaggtcc gcgtgagggg ttcggggggtt ctgggcaggc aca atg	116
	Met	
	1	
	geg tet ega gea gge eeg ega geg gee gge ace gae gge age gae ttt	164
	Ala Ser Arg Ala Gly Pro Arg Ala Ala Gly Thr Asp Gly Ser Asp Phe	
30	5 10 15	
	cag cac egg gag ege gte gee atg cae tae eag atg agt gtg ace etc	212
	Gln His Arg Glu Arg Val Ala Met His Tyr Gln Met Ser Val Thr Leu	
	20 25 30	
	aag tat gaa atc aag aag ctg atc tac gta cat ctg gtc ata tgg ctg	260
35	Lys Tyr Glu Ile Lys Lys Leu Ile Tyr Val His Leu Val Ile Trp Leu	

		35					40					45					
	ctg	ctg	gtt	gct	aag	atg	agc	gtg	gga	cac	ctg	agg	ctc	ttg	tca	cat	308
	Leu	Leu	Val	Ala	Lys	Met	Ser	Val	Gly	His	Leu	Arg	Leu	Leu	Ser	His	
	50					55					60					65	
5	gat	cag	gtg	gcc	atg	ccc	tat	cag	tgg	gaa	tac	ccg	tat	ttg	ctg	agc	356
	Asp	Gln	Val	Ala	Met	Pro	Tyr	Gln	Trp	Glu	Tyr	Pro	Tyr	Leu	Leu	Ser	
					70					75					80		
	att	ttg	ccc	tct	ctc	ttg	ggc	ctt	ctc	tcc	ttt	ccc	cgc	aac	aac	att	404
	Ile	Leu	Pro	Ser	Leu	Leu	Gly	Leu	Leu	Ser	Phe	Pro	Arg	Asn	Asn	Ile	
10				85					90					95			
	agc	tac	ctg	gtg	ctc	tcc	atg	atc	agc	atg	gga	ctc	ttt	tcc	atc	gct	452
	Ser	Tyr	Leu	Val	Leu	Ser	Met	Ile	Ser	Met	Gly	Leu	Phe	Ser	Ile	Ala	
			100					105					110				
	cca	ctc	att	tat	ggc	agc	atg	gag	atg	ttc	cct	gct	gca	cag	cag	ctc	500
15	Pro	Leu	Ile	Tyr	Gly	Ser	Met	Glu	Met	Phe	Pro	Ala	Ala	Gln	Gln	Leu	
		115					120					125					
	tac	cgc	cat	ggc	aag	gcc	tac	cgt	ttc	ctc	ttt	ggt	ttt	tct	gcc	gtt	548
	Tyr	Arg	His	Gly	Lys	Ala	Tyr	Arg	Phe	Leu	Phe	Gly	Phe	Ser	Ala	Val	
	130					135					140					145	
20	tcc	atc	atg	tac	ctg	gtg	ttg	gtg	ttg	gca	gtg	caa	gtg	cat	gcc	tgg	596
	Ser	Ile	Met	Tyr	Leu	Val	Leu	Val	Leu	Ala	Val	Gln	Val	His	Ala	Trp	
					150					155					160		
	cag	ttg	tac	tac	agc	aag	aag	ctc	cta	gac	tct	tgg	ttc	acc	agc	aca	644
	Gln	Leu	Tyr	Tyr	Ser	Lys	Lys	Leu	Leu	Asp	Ser	Trp	Phe	Thr	Ser	Thr	
25				165					170					175			
	cag	gag	aag	aag	cat	aaa	tga	agcc	tct 1	ttgg	ggtga	aa g	cctg	gaca [.]	t cc	catcga	700
	Gln	Glu	Lys	Lys	His	Lys											
			180														
	atga	aaag	gac a	acta	gtac	ag c	ggtt	ccaa	a ato	ccct	tctg	gtg	attt	tag (cago	tgtgat	760
30	gtt	ggta	cct	ggtg	caga	oc a	ggcc	aaag	t to	tgga	aagc	tec	ttt	gcc i	atct	gctgag	820
	gtg	gcaa	aac 1	tata	attt	at to	cctg	gttg	g cta	agaa	ctgg	gtg	accg	aca (gcta	tgaaac	880
	aaa	tttc	agc '	tgtt	tgaa	gt t	gaac	tttg	a gg	tttt	tctt	taa	gaat	gag	cttc	gteett	940
	gcc	tcta	ctc (ggtc	attc	tc c	ccat	ttcc	a to	catt	accc	ctt	agcc	att	gaga	ctaaag	1000
	gaa	atag	gga a	ataa	atca	aa t	tact	tcat	c tc	tagg	tcac	999	tcag	gaa .	acat	ttgggc	1060
35	agc	tgct	ccc ·	ttgg	cago	tg t	ggtc	tect	c tg	caaa	gcat	ttt	aatt	aaa	aacc	tcaata	1120

	aaga	atg															1126
	<210)> 34	l														
		l> 18															
5		> PF						:									
U		3> Ho		eanie	ne												
	~21.	>- III	AID S	apro	1112												
	<400	O> 34	1														
															ŀ	1et	
10																1	
	Ala	Ser	Arg	Ala	Gly	Pro	Arg	Ala	Ala	Gly	Thr	Asp	Gly	Ser	Asp	Phe	
				5					10					15			
	Gln	His	Arg	Glu	Arg	Val	Ala	Met	His	Tyr	Gln	Met	Ser	Val	Thr	Leu	
			20					25					30				
15	Lys	Tyr	Glu	Ile	Lys	Lys	Leu	Ile	Tyr	Val	His	Leu	Val.	Ile	Trp	Leu	
		35			•		40					45					
	Leu	Leu	Val	Ala	Lys	Met	Ser	Val	Gly	His	Leu	Arg	Leu	Leu	Ser	His	**
	50					55					60					65	
	Asp	Gln	Val	Ala	Met	Pro	Tyr	Gln	Trp	Glu	Tyr	Pro	Tyr	Leu	Leu	Ser	
20					70					75					80		
	Ile	Leu	Pro	Ser	Leu	Leu	Gly	Leu	Leu	Ser	Phe	Pro	Arg	Asn	Asn	Ile	
				85					90					95			
	Ser	Tyr	Leu	Val	Leu	Ser	Met	Ile	Ser	Met	Gly	Leu	Phe	Ser	Ile	Ala	
			100					105					110				
25	Pro	Leu	Ile	Tyr	Gly	Ser	Met	Glu	Met	Phe	Pro	Ala	Ala	Gln	Gln	Leu	
		115					120					125					
	Tyr	Arg	His	Gly	Lys	Ala	Tyr	Arg	Phe	Leu	Phe	Gly	Phe	Ser	Ala	Val	
	130					135					140				•	145	
	Ser	Ile	Met	Tyr	Leu	Val	Leu	Val	Leu	Ala	Val	Gln	Val	His	Ala	Trp	
30					150					155					160		
	Gln	Leu	Tyr	Tyr	Ser	Lys	Lys	Leu	Leu	Asp	Ser	Trp	Phe	Thr	Ser	Thr	
				165					170					175			
	Gln	Glu	Lys	Lys	His	Lys											
			180														
35																	

39.

WO 99/55862

	<210	> 35	,														
	<211	> 20	15														
	<212	> DN	IA														
	<213	> Hc	amo s	apie	ens												
5																	
	<400	> 35	j														
	atgt	agto	jag a	ccct	cgcg	ga go	rtctg	gagag	j tca	ctgg	gagc	tacc	agaa	ige a	atc a	itg	56
															N	<u>fet</u>	
																1	
10	ggg																104
	Gly	Pro	Trp	_	Glu	Pro	GLu	Leu		Val	Trp	Arg	Pro		Ala	Vai	
				5					10					15			150
	_									ctg							152
15	Ala	ser		Pro	Pro	vaı	PIO		GIY	Leu	GIU	vaı		Leu	GIY	Ala	
15			20					25			+	200	30	~+~		ota	200
	_		-	-	_					ctc Leu							200
	Deu	35	Leu	LEU	Leu	vai	40	1111	Lieu	шел	Cys	45	1000	val	110	116	
	tat		cta	CGC	caa	cca		act.	aac	cat	gaa		tca	act	tcc	cac	248
20	_		-	_				_		His							
	50			5		55	2				60					65	
	cag	aaa	gcc	ctq	agc	cta	gta	agc	tgt	ttc	gcg	ggg	ggc	gtc	ttt	ttg	296
										Phe							
		-			70					75					80		
25	gcc	act	tgt	ctc	ctg	gac	ctg	ctg	cct	gac	tac	ctg	gct	gcc	ata	gat	344
	Ala	Thr	Cys	Leu	Leu	Asp	Leu	Leu	Pro	Asp	Tyr	Leu	Ala	Ala	Ile	Asp	
				85					90					95			
	gag	gcc	ctg	gca	gcc	ttg	cac	gtg	acg	ctc	cag	ttc	cca	ctg	caa	gag	392
	Glu	Ala	Leu	Ala	Ala	Leu	His	Val	Thr	Leu	Gln	Phe	Pro	Leu	Gln	Glu	
30			100					105					110				
	ttc	atc	ctg	gcc	atg	ggc	ttc	ttc	ctg	gtc	ctg	gtg	atg	gag	cag	atc	440
	Phe	Ile	Leu	Ala	Met	Gly	Phe	Phe	Leu	Val	Leu	Val	Met	Glu	Gln	Ile	
		115					120					125					
	aca	ctg	gct	tac	aag	gag	cag	tca	ggg	ccg	tca	cct	ctg	gag	gaa	aca	488
35	Thr	Leu	Ala	Tvr	Lys	Glu	Gln	Ser	Glv	Pro	Ser	Pro	Leu	Glu	Glu	Thr	

PCT/JP99/02226

	130					135					140					145	
	agg	gct	ctg	ctg	gga	aca	gtg	aat	ggt	ggg	ccg	cag	cat	tgg	cat	gat	536
	Arg	Ala	Leu	Leu	Gly	Thr	Val	Asn	Gly	Gly	Pro	Gln	His	Trp	His	Asp	
					150					155					160		
5	ggg	cca	ggg	gtc	cca	cag	gcg	agt	gga	gcc	cca	gca	acc	ccc	tca	gcc	584
	Gly	Pro	Gly	Val	Pro	Gln	Ala	Ser	Gly	Ala	Pro	Ala	Thr	Pro	Ser	Ala	
				165					170					175			
	ttg	cgt	gcc	tgt	gta	ctg	gtg	ttc	tcc	ctg	gcc	ctc	cac	tcc	gtg	ttc	632
	Leu	Arg	Ala	Cys	Val	Leu	۷al	Phe	Ser	Leu	Ala	Leu	His	Ser	Val	Phe	
10			180					185					190				
	gag	ggg	ctg	gcg	gta	ggg	ctg	cag	cga	gac	cgg	gct	cgg	gcc	atg	gag	680
	Glu	Gly	Leu	Ala	Val	Gly	Leu	Gln	Arg	Asp	Arg	Ala	Arg	Ala	Met	Glu	
		195				*	200					205					
	ctg	tgc	ctg	gct	ttg	ctg	ctc	cac	aag	ggc	atc	ctg	gct	gtc	agc	ctg	728
15	Leu	Cys	Leu	Ala	Leu	Leu	Leu	His	Lys	Gly	Ile	Leu	Ala	Val	Ser	Leu	
	210					215					220					225	
•	tcc	ctg	cgg	ctg	ttg	cag	agc	cac	ctt	agg	gca	cag	gtg	gtg	gct	ggc	776
	Ser	Leu	Arg	Leu	Leu	Gln	Ser	His	Leu	Arg	Ala	Gln	Val	Val	Ala	Gly	
					230					235					240		
20	tgt	ggg	atc	ctc	ttc	tca	tgc	atg	aca	cct	cta	ggc	atc	9 99	ctg	ggt	824
	Cys	Gly	Ile	Leu	Phe	Ser	Cys	Met	Thr	Pro	Leu	Gly	Ile	Gly	Leu	Gly	
				245					250					255			
	gca	gct	ctg	gca	gag	tcg	gca	gga	cct	ctg	cac	cag	ctg	gcc	cag	tct	872
	Ala	Ala	Leu	Ala	Glu	Ser	Ala	Gly	Pro	Leu	His	Gln	Leu	Ala	Gln	Ser	
25			260					265					270				
					-	-	-		acc							-	920
	Val	Leu	Glu	Gly	Met	Ala	Ala	Gly	Thr	Phe	Leu	Tyr	Ile	Thr	Phe	Leu	
		275					280					285					
									agt								968
30	Glu	Ile	Leu	Pro	Gln	Glu	Leu	Ala	Ser	Ser	Glu	Gln	Arg	Ile	Leu	Lys	
	290					295					300					305	
	gtc	att	ctg	ctc	cta	gca	ggc	ttt	gcc	ctg	ctc	act	ggc	ctg	ctc	ttc	1016
	Val	Ile	Leu	Leu			Gly	Phe	Ala			Thr	Gly	Leu			
					310					315					320		
35	atc	caa	atc	tag	gggg	ctt	caag	agag	gg g	cagg	ggag	a tt	gatg	atca	ggt	gc	1070

PCT/JP99/02226 WO 99/55862

41

Ile Gln Ile

	ccctgttctc	cattecatea	cccagttgtg	gggaatagga	aggaaagggg	aagggaaata	1130
	ctgaggacca	aaaagttctc	tgggagctaa	agatagagcc	tttggggcta	tctgactaat	1190
5	gagagggaag	tgggcagaca	agaggctggc	cccagtccca	aggaacaaga	gatggtcaag	1250
	tcgctagaga	catatcaggg	gacattagga	ttggggaaga	cacttgactg	ctagaatcag	1310
	aggttggaca	ctatacataa	ggacaggctc	acatgggagg	ctggaggtgg	gtacccagct	1370
	gctgtggaac	gggtatggac	aggtcataaa	cctagagtca	gtgtcctgtt	ggtcctagcc	1430
	catttcagca	ccctgccact	tggagtggac	ccctcctact	cttcttagcg	cctaccctca	1490
10	tacctatctc	cctcctccca	tctcctaggg	gactggcgcc	aaatggtctc	tccctgccaa	1550
	ttttggtatc	ttctctggcc	tctccagtcc	tgcttactcc	tctattttta	aagtgccaaa	1610
	caaatcccct	tectettet	caaagcacag	taatgtggca	ctgagcccta	cccagcacct	1670
	cagtgaaggg	ggcctgcttg	ctctttattt	tggtcccgga	teetggggtg	gggcagaaat	1730
	attttctggg	ctggggtagg	aggaaggttg	ttgcagccat	ctactgctgc	tgtaccctag	1790
15	gaatatgggg	acatggacat	ggtgtcccat	gcccagatga	taaacactga	gctgccaaaa	1850
	catttttta	aatacacccg	aggagcccaa	gggggaaggg	caatgcctac	cccagcgtt	1910
	atttttgggg	agggagggct	gtgcataggg	acatattctt	tagaatctat	tttattaact	1970
	gacctgtttt	gggacctgtt	acccaaataa	aagatgtttc	tagac	•	2015
20	<210> 36						

<211> 324

<212> PRT

<213> Homo sapiens

25 <400> 36

Met

Gly Pro Trp Gly Glu Pro Glu Leu Leu Val Trp Arg Pro Glu Ala Val 5 10 15

Ala Ser Glu Pro Pro Val Pro Val Gly Leu Glu Val Lys Leu Gly Ala 30 25

Leu Val Leu Leu Val Leu Thr Leu Leu Cys Ser Leu Val Pro Ile 35 40 45

Cys Val Leu Arg Arg Pro Gly Ala Asn His Glu Gly Ser Ala Ser Arg

	Gln	Lys	Ala	Leu	Ser	Leu	Val	Ser	Суз	Phe	Ala	Gly	Gly	Val	Phe	Leu
					70					75					80	
	Ala	Thr	Cys	Leu	Leu	Asp	Leu	Leu	Pro	Asp	Tyr	Leu	Ala	Ala	Ile	Asp
				85					90					95		
5	Glu	Ala	Leu	Ala	Ala	Leu	His	Val	Thr	Leu	Gln	Phe	Pro	Leu	Gln	Glu
			100					105					110			
	Phe	Ile	Leu	Ala	Met	Gly	Phe	Phe	Leu	Val	Leu	Val	Met	Glu	Gln	Ile
		115					120					125				
	Thr	Leu	Ala	Tyr	Lys	Glu	Gln	Ser	Gly	Pro	Ser	Pro	Leu	Glu	Glu	Thr
10	130					135					140					145
	Arg	Ala	Leu	Leu	Gly	Thr	Val	Asn	Gly	Gly	Pro	Gln	His	Trp	His	Asp
					150					155					160	
	Gly	Pro	Gly	Val	Pro	Gln	Ala	Ser	Gly	Ala	Pro	Ala	Thr	Pro	Ser	Ala
				165					170					175		
15	Leu	Arg	Ala	Cys	Val	Leu	Val	Phe	Ser	Leu	Ala	Leu	His	Ser	Val	Phe
			180					185					190			
	Glu	Gly	Leu	Ala	Val	Gly	Leu	Gln	Arg	Asp	Arg	Ala	Arg	Ala	Met	Glu
		195					200					205				
	Leu	Cys	Leu	Ala	Leu	Leu	Leu	His	Lys	Gly	Ile	Leu	Ala	Val	Ser	Leu
20	210					215					220					225
	Ser	Leu	Arg	Leu	Leu	Gln	Ser	His	Leu	Arg	Ala	Gln	Val	Val	Ala	Gly
					230					235					240	
	Cys	Gly	Ile	Leu	Phe	Ser	Cys	Met	Thr	Pro	Leu	Gly	Ile	Gly	Leu	Gly
				245					250				•	255		
25	Ala	Ala	Leu	Ala	Glu	Ser	Ala	Gly	Pro	Leu	His	Gln	Leu	Ala	Gln	Ser
			260					265					270			
	Val	Leu	Glu	Gly	Met	Ala	Ala	Gly	Thr	Phe	Leu	Tyr	Ile	Thr	Phe	Leu
		275					280					285				
	Glu	Ile	Leu	Pro	Gln	Glu	Leu	Ala	Ser	Ser	Glu	Gln	Arg	Ile	Leu	Lys
30	290					295					300					305
	Val	Ile	Leu	Leu	Leu	Ala	Gly	Phe	Ala	Leu	Leu	Thr	Gly	Leu	Leu	Phe
					310					315			-		320	
	Ile	Gln	Ile													