Imperial College London

[E1.11 (Maths) ISE 2010]

B.ENG. and M.ENG. EXAMINATIONS 2010

MATHEMATICS (INFORMATION SYSTEMS ENGINEERING E1.11)

Date Wednesday 2nd June 2010 10.00 am - 1.00 pm

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO

Answer ANY SEVEN questions.

Answers to questions from Section A and Section B should be written in different answer books.

CALCULATORS MAY NOT BE USED.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 7 pages, with a total of 9 questions. Ask the invigilator for a replacement if your copy is faulty.]

© 2010 Imperial College London

SECTION A

1. (i) If $z_1 = 1 + 7i$, and $z_2 = 4 + 3i$, find $|z_1|$ and $|z_2|$.

Find the real and imaginary parts of $\frac{z_1}{z_2}$.

What are the modulus and argument of this number?

Verify directly in this case that $|z_1/z_2| = |z_1|/|z_2|$.

(ii) If x and y are real, find the real and imaginary parts of

$$\cos(x+iy)$$
.

Hence show that

$$|\cos(x+iy)|^2 = \cos^2(x) + \sinh^2(y)$$
.

2. (i) Evaluate the partial sum

$$S_N = \sum_{n=1}^N \left(\frac{1}{n(n+1)}\right).$$

Evaluate the limit, if it exists,

$$\lim_{N\to\infty}S_N.$$

State whether the infinite series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} \right)$$

is convergent or not.

Hence, using the comparison test, state whether the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

is convergent or divergent.

(ii) Explain what is meant by the radius of convergence of a power series.

Calculate the radius of convergence of the following power series:

$$\sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1} .$$

Investigate its convergence at both of the endpoints of the interval of convergence.

(iii) Calculate the Maclaurin series for the function $f(x) = \ln(1+x)$. Split this function into its odd and even parts f_{odd} and f_{even} , and write down both f_{odd} and its Maclaurin series.

3. (i) Evaluate the following limits, or else show that they do not exist:

(a)
$$\lim_{n \to 1} \frac{n^3 - 1}{n^4 - 4n + 3} ,$$

(b)
$$\lim_{n \to 1} \frac{n^3 - 1}{n^4 - 4n^2 + 3} ,$$

(c)
$$\lim_{x \to \pi/2} \frac{\sin x - \csc x}{\cos^2(x)} ,$$

(d)
$$\lim_{n \to \infty} \frac{n^2 + 1}{(n-2)(n-3)} .$$

(ii) Using L'Hôpital's rule, evaluate

$$\lim_{x \to 0} \frac{\sin(x^2)}{1 - \cos(x)} .$$

4. Evaluate the definite integrals

$$\int_0^\infty x^3 \exp(-x) \, \mathrm{d}x \; ;$$

(ii)
$$\int_{e}^{e^2} \frac{1}{x \ln x} \mathrm{d}x \; ;$$

(iii)
$$\int_{3}^{4} \frac{(x+1)}{(x^{2}-3x+2)} \, \mathrm{d}x \ .$$

PLEASE TURN OVER

- 5. Solve the ordinary differential equations
 - (i) $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x+3y}{x+y} ;$
 - (ii) $\frac{\mathrm{d}y}{\mathrm{d}x} xy = \exp\left(\frac{x^2}{2}\right) , \text{ with } y(0) = 1 ;$
 - (iii) $\frac{{\rm d}^2 y}{{\rm d} x^2} \ + \ 3 \, \frac{{\rm d} y}{{\rm d} x} \ + \ 2y \ = \ \exp(x), \ \ {\rm with} \ \ y(0) \ = \ 0 \, , \ \ {\rm and} \ \ y'(0) \ = \ 0 \; .$

PLEASE TURN OVER

SECTION B

6. (i) Let u = u(x, y) where $x = s^2 + t^2$ and y = 2st.

Prove that

$$s\frac{\partial u}{\partial s} \ + \ t\frac{\partial u}{\partial t} \ = \ 2\left(x\frac{\partial u}{\partial x} \ + \ y\frac{\partial u}{\partial y}\right) \ .$$

(ii) Find the stationary points of the function $f(x,y)=x^3-3xy^2+12y$, and determine their nature.

7. Define the function f(x) on the interval $-\pi < x \le \pi$ by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \le \pi \\ 0, & \text{if } -\pi < x < 0. \end{cases}$$

Show that the Fourier series of f(x) is

$$\frac{\pi}{4} - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\cos[(2m+1)x]}{(2m+1)^2} + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(nx)}{n}.$$

Hence evaluate the infinite sums

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \text{ and } \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} .$$

(i) Use Laplace transforms to find a function y = y(t) satisfying the differential equation

$$\frac{d^2y}{dt^2} - y + t^2 = 0$$

with y(0) = 2, y'(0) = 0.

(No credit will be given if you use another method.)

(ii) Use Laplace transforms to find functions x, y of t satisfying the simultaneous differential equations

$$\frac{dx}{dt} + \frac{dy}{dt} - y = 2 ,$$

$$\frac{dx}{dt} - \frac{dy}{dt} + x = t^2 + 2t ,$$

with x(0) = 2, y(0) = 0.

(i) Consider the three planes given by the equations

$$\mathbf{v}.(1,1,1) = -1$$

$$\begin{array}{lll} \mathbf{v}.(1,1,1) & = & -1, \\ \mathbf{v}.(1,-1,a) & = & -3, \\ \mathbf{v}.(2,0,1) & = & b, \end{array}$$

$$\mathbf{v}.(2,0,1) = b$$

where $\mathbf{v} = (x, y, z)$. For which values of a and b do these three planes

- (a) meet in exactly one point?
- (b) meet in a line?
- (c) not meet at all?
- (ii) Let

$$A = \left(\begin{array}{cc} -1 & -10 \\ 5 & 14 \end{array}\right) .$$

- (a) Find an invertible 2×2 matrix P such that $P^{-1}AP$ is diagonal.
- (b) Find a 2×2 matrix B such that $B^2 = A$.

END OF PAPER

DEPARTMENT MATHEMATICS

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$a = a_1 i + a_2 j + a_3 k = (a_1, a_2, a_3)$$

Scalar (dot) product:

 $a.b = a_1b_1 + a_2b_2 + a_3b_3$

Vector (cross) product:

$$a \times b = \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \end{bmatrix}$$

Scalar triple product:

[a, b, c] = a.bxc=b.cxa=c.axb=
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$ Vector triple product:

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2!} z^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} z^3 + \dots \quad (\alpha \text{ arbitrary, } |z| < 1)$$

$$e^{r} = 1 + x + \frac{x^{2}}{2i} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} \div \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

cosiz = coshz; coshiz = cosz; siniz = isinhz; sinhiz = isinz.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} D f D^{n-1}g + \ldots + \binom{n}{r} D^{r} f D^{n-r}g + \ldots + D^{n}fg.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $c_n(h) = h^{n+1} f^{(n+1)} (u + \theta h) / (n+1)!, \quad 0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y=y(x)$$
, then $f=F(x)$, and $\frac{dF}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial z} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a,b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a.b.}$ If D>0 and $f_{xx}(a,b)<0$, then (a,b) is a maximum; If D>0 and $f_{xx}(a,b)>0$, then (a,b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)]$, so that $\frac{a}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2)=t$: $\sin\theta=2t/(1+t^2), \quad \cos\theta=(1-t^2)/(1+t^2), \quad d\theta=2\,dt/(1+t^2).$
 - (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a}\right) = \ln \left(\frac{x}{a} + \left(1 + \frac{x^2}{a^2}\right)^{1/2}\right).$$

$$\int (x^3 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a}\right) = \ln \left|\frac{x}{a} + \left(\frac{x^2}{a^2} - 1\right)^{1/2}\right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x) = 0 occurs near x = a, take $x_0 = a$ and $x_{n+1} = x_n - [f(x_n)/f'(x_n)], n = 0, 1, 2 \dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[y_0 + y_1 \right]$.
- ii. Simpson's rule (2-strip): $f_{\rm s0}^{x_I}\,y(x)dx\approx (h/3)\left[y_0+4y_1+y_2\right].$
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two estimates of I obtained by using Simpson's rule with intervals h and h/2. Then, provided h is small enough,

$$1+(I_2-I_1)/15$$
,

is a better estimate of I.

7. LAPLACE TRANSFORMS

Transform	aF(s) + bG(s)	$s^2F(s) - sf(0) - f'(0)$	-dF(s)/ds	F(s)/s		$n!/s^{n+1}$, $(s>0)$	$\omega/(s^2+\omega^2),\ (s>0)$	e^{-sT}/s , $(s, T > 0)$
Function	af(t) + bg(t)	42 1/413	(1)(1)	16, 5(1) d1		$t^n(n=1,2)$	sin ωί	$s/(s^2 + \omega^2), (s > 0)$ $H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$
Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	sF(s)-f(0)	F(s-a)	$(\partial/\partial\alpha)F(s,\alpha)$	F(s)G(s)	1/8	1/(s-a), (s>a)	$s/(s^2+\omega^2), (s>0)$
Function	(1)	1P/Jp	eat /(t)	$(\theta/\theta\alpha)f(t,\alpha)$	$\int_0^t f(u)g(t-u)du$, _ :	Cal	10200

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{T} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ...$, and

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

EIII - ISEI - Maths - 2010 SOLUTIONS - ISE 1 (1) E1.11

A1. (i) If $z_1 = 1 + 7i$, and $z_2 = 4 + 3i$, then

$$|z_1| = \sqrt{1^2 + 7^2} = \sqrt{50} = 5\sqrt{2}$$

and

$$|z_2| = \sqrt{4^2 + 3^2} = 5.$$

We have

$$\frac{z_1}{z_2} = \frac{1+7i}{4+3i} = \frac{(1+7i)(4-3i)}{4^2+3^2}.$$

Expanding the numerator and denominator, we find

$$\frac{z_1}{z_2} = \frac{(4+21) + (28-3)i}{25} = 1+i.$$

Thus $\Re(\frac{z_1}{z_2}) = \Im(\frac{z_1}{z_2}) = 1$. The modulus

$$|\frac{z_1}{z_2}| = \sqrt{2},$$

its argument is

$$\arg(\frac{z_1}{z_2}) = \arg(1+i) = \tan^{-1}(1) = \pi/4.$$

We see easily that $|z_1/z_2|=|z_1|/|z_2|$; that is

$$\sqrt{2} = \frac{5\sqrt{2}}{\sqrt{2}}.$$

(ii) If x and y are real,

$$\cos(x+iy) = \cos(x)\cos(iy) - \sin(x)\sin(iy) =$$

$$= \cos(x)\cosh(y) - i\sin(x)\sinh(y).$$

Hence

$$|\cos(x+iy)|^2 = \cos^2(x)\cosh^2(y) + \sin^2(x)\sinh^2(y) =$$

$$= \cos^2(x)(1+\sinh^2(y)) + (1-\cos^2(x))\sinh^2(y) = \cos^2(x) + \sinh^2(y),$$

as required.

My

mer

ZEEN T

SIMILAR

2

2

4

4

A2. (i) The partial sum

$$S_N = \sum_{n=1}^N \left(\frac{1}{n(n+1)} \right)$$
$$= \sum_{n=1}^N \left[\frac{1}{n} - \frac{1}{n+1} \right]$$
$$= 1 - \frac{1}{N+1}.$$

The limit exists, and is

$$\lim_{n\to\infty} S_N = 1.$$

Hence the infinite series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} \right)$$

is convergent; the limit is 1.

Using the comparison test, noting that for n > 0,

$$\frac{1}{n^2} > \frac{1}{n(n+1)} > \frac{1}{(n+1)^2}$$

we see that the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

is convergent.

(ii) If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some z_0 , then by the comparison test it converges for $|z| < |z_0|$. The series thus converges in some interval |z| < R, and diverges for |z| > R. R is called the radius of convergence of the power series. To calculate the radius of convergence of the power series:

$$\sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1},$$

consider the ratio of successive terms, applying the ratio test.

$$\lim_{n \to \infty} \frac{z^{2n+1}}{2n+1} \frac{2n-1}{z^{2n-1}}$$

$$= \lim_{n \to \infty} \frac{2n-1}{2n+1} z^2 = z^2.$$

The series converges if this limit $z^2 < 1$.

For |z|=1, the series diverges, by comparison with $\sum_{n=0}^{\infty} \frac{1}{n}$.

(iii) The Maclaurin series for the function $f(x) = \ln(1+x)$ is found by successively differentiating, and evaluating these derivatives at x = 0:

$$f(x) = \ln(1+x), \qquad f(0) = 0,$$

My

Mr

$$f'(x) = \frac{1}{1+x}, \qquad f'(0) = 1,$$

$$f''(x) = -\frac{1}{(1+x)^2}, \qquad f''(0) = -1,$$
...
$$f^{(n)}(x) = (-1)^{(n+1)}(n-1)! \frac{1}{(1+x)^n}, \qquad f^{(n)}(0) = (-1)^{(n+1)}(n-1)!...$$

The series is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Here this gives

$$f(x) = \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{x^n}{n}.$$

Note the zeroth term vanishes.

Splitting f(x) into its odd and even parts we get

$$f_{odd} = \frac{1}{2}(\ln(1+x) - \ln(1-x)) = \ln(\sqrt{\frac{1+x}{1-x}})$$

and

$$f_{even} = \frac{1}{2}(\ln(1+x) + \ln(1-x)) = \ln(\sqrt{1-x^2}).$$

The Maclaurin series for f_{odd} consists of the odd power terms in the series for f:

$$f_{odd}(x) = \sum_{n=0}^{\infty} \frac{1}{2n+1} z^{2n+1}.$$

My mus

A3. (a) (i) To evaluate $\lim_{n\to 1} \frac{n^3-1}{n^4-4n+3}$, divide top and bottom by n-1; we get:

$$\lim_{n \to 1} \frac{n^2 + n + 1}{n^3 + n^2 + n - 3}$$

Here the numerator has the limit 3, but the denominator has the limit zero - the limit of the quotient does not exist.

(ii) Similarly

$$\lim_{n \to 1} \frac{n^3 - 1}{n^4 - 4n^2 + 3} = \lim_{n \to 1} \frac{n^2 + n + 1}{n^3 + n^2 - 3n - 3} = \lim_{n \to 1} \frac{\ln m_{n-1} n^2 + n + 1}{\ln m_{n-1} n^3 + n^2 - 3n - 3} = \lim_{n \to 1} \frac{3}{-4} = -\frac{3}{4}.$$

(\tilde{N}) Multiply top and bottom by $\sin(x)$:

$$\lim_{x \to \pi/2} \frac{\sin x - \csc x}{\cos^2(x)} =$$

$$\lim_{x \to \pi/2} \frac{\sin^2 x - 1}{\cos^2(x)\sin x} =$$

$$\lim_{x \to \pi/2} \frac{-1}{\sin x} = -1.$$

(iv) Divide top and bottom by n^2 :

$$\lim_{n \to \infty} \frac{n^2 + 1}{(n - 2)(n - 3)} = \lim_{n \to \infty} \frac{1 + 1/n^2}{(1 - 2/n)(1 - 3/n)} = 1.$$

(b) The numerator and denominator both vanish as $x \to 0$. Hence, using L'Hôpital's rule, we find:

$$\lim_{x \to 0} \frac{\sin(x^2)}{1 - \cos(x)} =$$

$$\lim_{x \to 0} \frac{2x \cos(x^2)}{\sin(x)} =$$

$$\lim_{x \to 0} 2\frac{x}{\sin(x)} \lim_{x \to 0} \cos(x^2) = 2.$$

My mus

A4. (i) To evaluate

$$\int_0^\infty x^3 \exp(-x) \mathrm{d}x,$$

integrate by parts repeatedly:

$$\int_0^\infty x^3 \exp(-x) dx$$

$$= \int_0^\infty 3x^2 \exp(-x) dx$$

$$= \int_0^\infty 6x \exp(-x) dx$$

$$\int_0^\infty 6 \exp(-x) dx = 6[-\exp(-x)]_0^\infty = 6.$$

(ii) To evaluate $\int_e^{e^2} \frac{1}{x \ln x} \mathrm{d}x$, substitute $u = \ln(x)$, $\mathrm{d}x/x = \mathrm{d}u$:

$$\int_{x=e}^{e^2} \frac{1}{x \ln x} dx =$$

$$\int_{u=1}^{2} \frac{1}{u} du =$$

$$[\ln(u)]_1^2 = \ln(2).$$

(iii) Put the integrand into partial fractions:

$$\int_{3}^{4} \frac{(x+1)}{(x^{2} - 3x + 2)} dx =$$

$$\int_{3}^{4} \frac{a}{x-1} + \frac{b}{x-2}$$

We find a(x-2) + b(x-1) = x+1, so a = -2, b = 3.

$$\int_{3}^{4} \frac{-2}{x-1} + \frac{3}{x-2} =$$

$$[-2\ln(|x-1|) + 3\ln(|x-2|)]_{3}^{4} = -2\ln(3/2) + 3\ln(2/1)$$

$$= 5\ln(2) - 2\ln(3).$$

79

My mus

5

A5. (i) To solve the homogeneous ode

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x + 3y}{x + y},$$

set y = xu(x):

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{2 + 3u}{1 + u}$$

SO

$$x\frac{du}{dx} = -\left(\frac{2+3u}{1+u} + \frac{u+u^2}{1+u}\right)$$
$$= -\frac{2+2u+u^2}{1+u}$$

This is separable

$$\int_{-\infty}^{x} \frac{\mathrm{d}x'}{x'} = -\int_{-\infty}^{u(x)} \frac{(1+u')\mathrm{d}u'}{2+2u'+u'^2}$$
$$= -\frac{1}{2}\ln(2+2u+u^2) + k.$$

Thus, integrating and exponentiating,

$$x\sqrt{2+2\frac{y}{x}+\frac{y^2}{x^2}} = K,$$

that is

$$(2x^2 + 2xy + y^2) = K^2.$$

(ii)

$$\frac{\mathrm{d}y}{\mathrm{d}x} - xy = \exp(\frac{x^2}{2}),$$
with $y(0) = 1$.

Multiply by the integrating factor $\exp(-x^2/2)$:

$$\frac{\mathrm{d}}{\mathrm{d}x}(y\exp(-x^2/2)) = 1,$$

so that

$$y\exp(-x^2/2) = x - x_0,$$

or

$$y = (x - x_0) \exp(x^2/2)$$
.

Set x = 0, y = 1, giving $1 = -x_0$, so that

$$y = (x+1) \exp(x^2/2)$$
.

(iii)

$$rac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3rac{\mathrm{d}y}{\mathrm{d}x} + 2y = \exp(x), \qquad ext{with} \quad y(0) = 0, ext{ and } \quad y'(0) = 0.$$

MUL

The auxiliary equation is $m^2+3m+2=0$; its roots are $m=-1,\ m=-2$. Hence the CF is

$$y_{CF} = A \exp(-x) + B \exp(-2x).$$

The PI must be a multiple of the exponential on the rhs - try

$$y_{PI} = \alpha \exp(x);$$

we see that this is a solution if $\alpha = 1/6$. Hence the general solution is

$$y = A \exp(-x) + B \exp(-2x) + \frac{1}{6} \exp(x).$$

This satisfies y(0)=A+B+1/6, y'(0)=-A-2B+1/6, so A=-1/2, B=1/3, giving the required solution:

$$y = -\frac{1}{2}\exp(-x) + \frac{1}{3}\exp(-2x) + \frac{1}{6}\exp(x).$$

My mer

	EXAMINATION SOLUTIONS 2006-07 9-10	Course ISG
Question 6		Marks & seen/unseen
Parts	(a) $\frac{\partial u}{\partial s} = u_x \frac{\partial x}{\partial s} + u_y \frac{\partial y}{\partial s}$ = $2s u_x + 2t u_y$	L
	$\frac{du}{dt} = 2tu_{x} + 2su_{y}$	2
	Sus + tu = s (2sun + 2tuy) + t (2tun + 2suy)	
	= (252+2+2) un + 45+ mg	
	= 2nun + 2yuy.	4
	(b) $f(x,y) = x^3 - 3xy^2 + 12y$	
	$f_n = 3x^2 - 3y^2, f_9 = -6xy + 12.$	2_
	At stationally pts, $x^2-y^2=0 (1)$ $xy=2 (2)$	
	By w, y= ± x. If y=x, (2) => x2= 2.	
	If $y = -\pi$, $12 \Rightarrow x^2 = -2 \times$ So stationary $y = are (52, 52), (-52, -52)$. Now $f_{nn} = 6\pi$, $f_{ny} = -6y$, $f_{yy} = -6\pi$.	6
	At (52, 62), fan > 0 as fan fay - fay < 0: MIN	2
	At (-52,-52), fax < 0 & fax for - fax < 0 : MAX	2
	Setter's initials Checker's initials	Page num

	EXAMINATION SOLUTIONS 2006=07- 9-10	ise1
Question		Marks & seen/unseen
Parts	Forier coeps:	
	$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) = \frac{\pi}{\pi} \int_{0}^{\pi} x dx = \frac{\pi}{2}$	1
	TO T	
	an = I Safin coonnon	
	77 -11	
	= # ST n coons dr	
	= t ([x.tsminx]" - J"tsminndm)	
	= [
	$= \frac{1}{n^2\pi} \left(\cos n\pi - 1 \right) = \left\{ \begin{array}{c} 0, & \text{neven} \\ -2, & \text{nodd} \end{array} \right.$	5
	n'm, nodo.	
	1 12	
	$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x dx$	
	= I Sansina da	
	$= \frac{1}{17} \left(\left[x \frac{1}{n} \cos nx \right]_{0}^{T} + \int_{0}^{T} \frac{1}{n} \cos nx da \right)$	
	= 4 ([
	$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(\cos n\pi + \left[\frac{1}{n^2} \sin n\lambda \right]_{\alpha}^{\pi} \right)$	
	= - 1 . (-1) + 0	
	$= \left(-1\right)^{n+1}$	2
	So Fourier series is	
	Setter's initials Checker's initials	Page num
	Mul W	
	10	

	EXAMINATION SOLUTIONS 2006-07	Course
Question 7, A		Marks & seen/unseen
Parts	ao + Zanconn + Zbusink	1.
	= \frac{\pi}{4} - \frac{2}{\pi} \sum_{n=1}^{\cong} \frac{\cong}{n} + \frac{\sum_{n=1}^{\cong}}{n} + \frac{\sum_{n=1}^{\cong}}{n} \frac{\chi^n + \sum_{n=1}^{\cong}}{n} \frac{\chi^n + \sum_{n=1}^{\cong}}{n} \frac{\chi^n + \sum_{n=1}^{\cong}}{n} \frac{\chi^n + \sum_{n=1}^{\chi}}{n} \frac{\chi^n + \sum_{n=1}^{	
	$= \frac{\pi}{4} - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\cos(2m+1)\pi}{(2m+1)^2} + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin^n n}{n}$	2
	Put $x = 0$: As $f(x)$ is continuous at $x = 0$,	
	Formier series equals $f(0)$, to	,
	$0 = \frac{\pi}{4} - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{1}{(2m+1)^{n}}$	
	Here $\sum_{(2m+1)^2} = \frac{\pi^2}{8}$.	3
	Put $n = \frac{\pi}{2}$: as cos $(2m\pi i)\frac{\pi}{2} = 0$ and sui $n\frac{\pi}{2} = \begin{cases} 0 & \text{if } n \text{ even} \\ (-1)^n & \text{if } n = 2k+1 \end{cases}$	
	Force series gives $f(\frac{\pi}{2}) = \frac{\pi}{2} = \frac{\pi}{4} + \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$	
	$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$	4
-	Setter's initials Checker's initials	Page numbe

	EXAMINATION SOLUTIONS 2006-07	Course
uestion		Marks & seen/unseen
arts	(a) $y''-y+t^2=0$, $y(0)=2$, $y'(0)=0$.	
	Take Laplace transforms:	
	s2(y) - 2s - L(y) + L(+2) = 0	3
	As $L(t^2) = \frac{2}{5^3}$ huis sures	
	$(s^2-1) L(y) = 2s - \frac{2}{s^3} = \frac{2(s^4-1)}{s^3}$	
	Hence $L(y) = \frac{2(s^2+1)}{s^3} = \frac{2}{s} + \frac{2}{s^2}$	3
	Thus y = 2++2	2
	(b) $x'+y'-y=2$ $x'-y'+x=t^2+2t$	
	Take Laplace trusforms:	
	(1) $sL(x) - 2 + sL(y) - L(y) = \frac{2}{s}$	
	(2) $SL(x)-2-SL(y)+L(x)=\frac{2}{s^3}+\frac{2}{s^2}$	
	& 2.13 (6.1)	
	(1) $sL(x) + (s-1)L(y) = 2 + \frac{2}{s} = \frac{2(s+1)}{s}$	4
	(2) $(s+1)L(n) - sL(y) = \frac{2}{s^3} + \frac{2}{s^2} + 2$	
	$= 2 (s^3 + s + 1)$	
	Setter's initials Checker's initials	Page number
	Mil	

	EXAMINATION SOLUTIONS 2006-07	Course 1
Question 8, 4		Marks & seen/unseen
Parts	So (1) x (5+1) - (2) x 5 gwé	
	$(2s^{2}-1) L(y) = \frac{2(s+1)^{2}}{s} - \frac{2(s^{3}+s+1)}{s^{2}}$	
	$= \frac{2(s^{3}+2s^{2}+s-s^{3}-s-1)}{s^{2}}$	
	$= \frac{2(2s^2-1)}{s^2}$	4
	So $L(y) = \frac{2}{s^2}$, hence $y = 2t$	2
	From (1), $S \sqcup x) = 2 + \frac{2}{s} - (s-1) \sqcup (s)$	
	$= 2 + \frac{2}{s} - \frac{(2s-2)}{s^2}$ $= 2 + \frac{2}{s^2}$	
	$\&$ $L(x) = \frac{2}{s} + \frac{2}{s^3}, \& x = 2 + t^2$	2_
	Setter's initials Checker's initials	Page numbe

	EXAMINATION SOLUTIONS 2006-07	Course 1S€ 1
uestion		Marks & seen/unseen
Parts	(a) Savie ha hues eque simultaneously gures system with augmented matix	
	$\begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & a & -3 \\ 2 & 0 & 1 & b \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & -2 & a-1 & -2 \\ 0 & -2 & -1 & b+2 \end{pmatrix}$	
	$ \begin{array}{c} $	4
	So lastegn is -az = 6+4.	
	Derefore	
	(i) system has I solm (in planes ment in 1 pt)	2
	(ii) system has a line of some (ii. places meet in	2
	a huma) is a = 0, b = -4	
	iii) system has no solve (ii. planes don't meet) if $a = 0$, $b \neq -4$	2
	Setter's initials Checker's initials	Page number
	new Wy	

	EXAMINATION SOLUTIONS 2006-07	Course 1S€ 1
uestion ملک		Marks & seen/unseen
arts	(b) Evalues of A:	
	$\begin{vmatrix} -1-\lambda & -10 \\ 5 & 14-\lambda \end{vmatrix} = \lambda^2 - 13\lambda + 36$	
	= (2-9)(2-4).	
	So evalues are 4, 9.	3
	2=4 Evectos are soms of	
	(-5 -10; °) → an evector (2)	
•	$\frac{2-9}{5}$ $\binom{-10}{5}$ \rightarrow an evector $\binom{-1}{0}$.	
	$S P = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \text{ with work}$	3
	(other aurues conset of cause).	
	The so $P^{-1}AP = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$.	
	Take $B = P \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} P^{-1}$	
	$= \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$	
	$= \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}.$	4
		Page numbe
	Setter's initials Checker's initials	Page numbe