

INTELIGÊNCIA ARTIFICIAL

APRENDIZADO POR REFORÇO: DEEP Q-NETWORKS

GRUPO:

ANDRÉ LUIS, BRENO, CAIO, GIUSEPPE, MATHEUS, VINÍCIUS E YAN

TÓPICOS

- Introdução
- História e Motivação
- Ideia Geral do Algoritmo
- O que possibilitou o DQN?
- Definição Formal do 1º Algoritmo
- Conclusão e Impacto

INTRODUÇÃO

PIIC Minas

Deep Q-Learning é uma técnica de aprendizado de máquina que une rede neural convolucional com aprendizado por reforço para ensinar uma inteligência artificial a obter sucesso em um ambiente recebendo apenas imagens dele como entrada

Enquanto a rede é responsável pela visualização da imagem, detecção de características e tomada de decisão, o aprendizado por reforço faz a avaliação da ação executada por meio da recompensa recebida a cada instante.

HISTÓRIA E MOTIVAÇÃO

01

ANTES DO DEEP Q-NETWOROK (DQP)

Q-learning é um algoritmo de aprendizado por reforço que ajuda um agente a aprender a tomar decisões ótimas em um ambiente, estimando o valor de cada ação em cada estado. Este, funcionava só com tabelas, inviável para estados de alta dimensão.

02

DEEPMIND (2013-2015)

- Artigo inicial: Playing Atari with
 Deep Reinforcement Learning
 (2013)
- Artigo formal: Human-level
 control through deep
 reinforcement learning (2015,
 Nature)

03

CONTRIBUIÇÃO HISTÓRICA

IA aprende a jogar Atari só olhando a tela, sem codificar regras. Essa foi a primeira vez que uma rede neural foi usada com sucesso em um ambiente de aprendizado por reforço de alta complexidade, superando até mesmo jogadores humanos em vários jogos

IDEIA GERAL DO ALGORITMO

- 1.0 agente observa uma **imagem** (estado atual do jogo).
- 2. Essa imagem é processada por uma CNN (Rede Neural Convolucional), que extrai as principais características visuais.
- 3. A rede retorna os valores estimados Q(s, a) para cada ação possível.
- 4.O agente escolhe a ação com maior valor (ou explora aleatoriamente com uma estratégia como ε-greedy).
- 5. A ação é executada, e o agente recebe uma recompensa e observa o novo estado.
- 6. A experiência (estado, ação, recompensa, novo estado) é armazenada em uma **memória de replay**.

Durante o treinamento, o agente amostra essas experiências da memória e atualiza os pesos da rede com base na diferença entre o valor estimado e o alvo, calculado com base no Q-learning.

OQUE POSSIBILITOU ODON?

EXPERIENCE REPLAY

- Armazena experiências anteriores em um buffer.
- Durante o treinamento,
 seleciona um mini-batch
 aleatório.
- Quebra correlações
 temporais e melhora a
 eficiência de aprendizado.

TARGET NETWORK:

- Uma cópia da rede
 principal (chamada rede alvo) é usada para calcular
 os valores-alvo de Q.
- Ela é atualizada com menos frequência,
 estabilizando o processo de atualização dos pesos.

E-GREEDY:

- Estratégia de exploração: com probabilidade ε, ο agente escolhe uma ação aleatória.
- Com probabilidade 1 ε,
 escolhe a ação com maior
 valor Q estimado.
- ε é decrescido ao longo do tempo.

DEFINIÇÃO FORMAL DO PRIMEIRO ALGORITMO

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights for episode =1,M do
Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1,T do
With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)
Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1}) Store transition (\phi_t,a_t,r_t,\phi_{t+1}) in \mathcal{D}
Sample random minibatch of transitions (\phi_j,a_j,r_j,\phi_{j+1}) from \mathcal{D}
Set y_j=\left\{ \begin{array}{cc} r_j & \text{for terminal } \phi_{j+1} \\ r_j+\gamma\max_{a'}Q(\phi_{j+1},a';\theta) & \text{for non-terminal } \phi_{j+1} \end{array} \right.
Perform a gradient descent step on (y_j-Q(\phi_j,a_j;\theta))^2 according to equation 3 end for end for
```


INPUT

Imagens ou pixels.

OUTPUT

Ação Ótima

CONCLUSÃO E IMPACTO

O DQN foi um divisor de águas no Aprendizado por Reforço. Ele mostrou que é possível aplicar redes neurais profundas em tarefas de decisão complexas, mesmo com entradas de alta dimensão como imagens

Double DQN

Dueling DQN

Rainbow DQN

Utilizando o DQN: Notebook - Colab

REFERÊNCIAS BIBLIOGRÁFICAS

Artigo de 2013 – DeepMind:

2025.

MNHI, Volodymyr et al. Playing Atari with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602, 2013. Disponível em: https://arxiv.org/abs/1312.5602. Acesso em: 31 maio 2025.

Artigo de 2015 – DeepMind (Nature):

MNHI, Volodymyr et al. Human-level control through deep reinforcement learning. Nature, v. 518, p. 529–533, 2015. DOI: 10.1038/nature14236. Disponível em: https://www.nature.com/articles/nature14236. Acesso em: 31 maio

Trabalho de Conclusão de Curso – USP (2018):

TAVARES, Vikttor Cruz. Uma introdução ao Aprendizado por Reforço Profundo: estudo e implementação do algoritmo Deep Q-Network. Universidade de São Paulo, Instituto de Matemática e Estatística, 2018. Disponível em:

https://bccdev.ime.usp.br/tccs/2018/viktt/monografia_revisada.pdf. Acesso em: 31 maio 2025.

MUITO OBRIGADO

André Luis Silva
Breno Pires
Caio Diniz
Giuseppe Cordeiro
Matheus Fagundes
Vinícius Miranda
Yan Sabarense

