In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear\_model import LinearRegression,LogisticRegressio
from sklearn.model\_selection import train\_test\_split

In [2]: df=pd.read\_csv("/Users/bob/Downloads/FP1\_air/csvs\_per\_year/csvs\_per
 df

#### Out[2]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx         | OXY  | 0_3       |
|--------|----------------------------|------|------|------|------|------|------------|-------------|------|-----------|
| 0      | 2007-<br>12-01<br>01:00:00 | NaN  | 2.86 | NaN  | NaN  | NaN  | 282.200012 | 1054.000000 | NaN  | 4.030000  |
| 1      | 2007-<br>12-01<br>01:00:00 | NaN  | 1.82 | NaN  | NaN  | NaN  | 86.419998  | 354.600006  | NaN  | 3.260000  |
| 2      | 2007-<br>12-01<br>01:00:00 | NaN  | 1.47 | NaN  | NaN  | NaN  | 94.639999  | 319.000000  | NaN  | 5.310000  |
| 3      | 2007-<br>12-01<br>01:00:00 | NaN  | 1.64 | NaN  | NaN  | NaN  | 127.900002 | 476.700012  | NaN  | 4.500000  |
| 4      | 2007-<br>12-01<br>01:00:00 | 4.64 | 1.86 | 4.26 | 7.98 | 0.57 | 145.100006 | 573.900024  | 3.49 | 52.689999 |
|        |                            |      |      |      |      |      |            |             |      |           |
| 225115 | 2007-<br>03-01<br>00:00:00 | 0.30 | 0.45 | 1.00 | 0.30 | 0.26 | 8.690000   | 11.690000   | 1.00 | 42.209999 |
| 225116 | 2007-<br>03-01<br>00:00:00 | NaN  | 0.16 | NaN  | NaN  | NaN  | 46.820000  | 51.480000   | NaN  | 22.150000 |
| 225117 | 2007-<br>03-01<br>00:00:00 | 0.24 | NaN  | 0.20 | NaN  | 0.09 | 51.259998  | 66.809998   | NaN  | 18.540001 |
| 225118 | 2007-<br>03-01<br>00:00:00 | 0.11 | NaN  | 1.00 | NaN  | 0.05 | 24.240000  | 36.930000   | NaN  | NaN       |
| 225119 | 2007-<br>03-01<br>00:00:00 | 0.53 | 0.40 | 1.00 | 1.70 | 0.12 | 32.360001  | 47.860001   | 1.37 | 24.150000 |

225120 rows × 17 columns

### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 225120 entries, 0 to 225119 Data columns (total 17 columns):

| #                                                                          | Column    | Non-Null Count  | Dtype   |  |  |  |  |
|----------------------------------------------------------------------------|-----------|-----------------|---------|--|--|--|--|
| 0                                                                          | date      | 225120 non-null | object  |  |  |  |  |
| 1                                                                          | BEN       | 68885 non-null  | float64 |  |  |  |  |
| 2                                                                          | CO        | 206748 non-null | float64 |  |  |  |  |
| 3                                                                          | EBE       | 68883 non-null  | float64 |  |  |  |  |
| 4                                                                          | MXY       | 26061 non-null  | float64 |  |  |  |  |
| 5                                                                          | NMHC      | 86883 non-null  | float64 |  |  |  |  |
| 6                                                                          | N0_2      | 223985 non-null | float64 |  |  |  |  |
| 7                                                                          | N0x       | 223972 non-null | float64 |  |  |  |  |
| 8                                                                          | 0XY       | 26062 non-null  | float64 |  |  |  |  |
| 9                                                                          | 0_3       | 211850 non-null | float64 |  |  |  |  |
| 10                                                                         | PM10      | 222588 non-null | float64 |  |  |  |  |
| 11                                                                         | PM25      | 68870 non-null  | float64 |  |  |  |  |
| 12                                                                         | PXY       | 26062 non-null  | float64 |  |  |  |  |
| 13                                                                         | S0_2      | 224372 non-null | float64 |  |  |  |  |
| 14                                                                         | TCH       | 87026 non-null  | float64 |  |  |  |  |
| 15                                                                         | T0L       | 68845 non-null  | float64 |  |  |  |  |
|                                                                            |           | 225120 non-null |         |  |  |  |  |
| <pre>dtypes: float64(15), int64(1), object(1) memory usage: 29.2+ MB</pre> |           |                 |         |  |  |  |  |
| memo                                                                       | ry usage: | 29.2+ MD        |         |  |  |  |  |

In [4]: df1=df.dropna()
df1

### Out[4]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | ОХҮ  | 0_3       |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|
| 4      | 2007-<br>12-01<br>01:00:00 | 4.64 | 1.86 | 4.26 | 7.98 | 0.57 | 145.100006 | 573.900024 | 3.49 | 52.689999 |
| 21     | 2007-<br>12-01<br>01:00:00 | 1.98 | 0.31 | 2.56 | 6.06 | 0.35 | 76.059998  | 208.899994 | 1.70 | 1.000000  |
| 25     | 2007-<br>12-01<br>01:00:00 | 2.82 | 1.42 | 3.15 | 7.02 | 0.49 | 123.099998 | 402.399994 | 2.60 | 7.160000  |
| 30     | 2007-<br>12-01<br>02:00:00 | 4.65 | 1.89 | 4.41 | 8.21 | 0.65 | 151.000000 | 622.700012 | 3.55 | 58.080002 |
| 47     | 2007-<br>12-01<br>02:00:00 | 1.97 | 0.30 | 2.15 | 5.08 | 0.33 | 78.760002  | 189.800003 | 1.62 | 1.000000  |
|        |                            |      |      |      |      |      |            |            |      |           |
| 225073 | 2007-<br>02-28<br>23:00:00 | 2.12 | 0.47 | 2.51 | 4.99 | 0.05 | 43.560001  | 83.889999  | 2.57 | 13.090000 |
| 225094 | 2007-<br>02-28<br>23:00:00 | 0.87 | 0.45 | 1.19 | 2.66 | 0.13 | 40.000000  | 61.959999  | 1.79 | 20.440001 |
| 225098 | 2007-<br>03-01<br>00:00:00 | 0.95 | 0.41 | 1.55 | 3.11 | 0.05 | 36.090000  | 63.349998  | 1.74 | 17.160000 |
| 225115 | 2007-<br>03-01<br>00:00:00 | 0.30 | 0.45 | 1.00 | 0.30 | 0.26 | 8.690000   | 11.690000  | 1.00 | 42.209999 |
| 225119 | 2007-<br>03-01<br>00:00:00 | 0.53 | 0.40 | 1.00 | 1.70 | 0.12 | 32.360001  | 47.860001  | 1.37 | 24.150000 |

25443 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >



```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fd5495b9150>]



```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

# Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: 

v LinearRegression

LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fd5437eb850>



```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.34
                   1130
          1.33
                   1067
          1.35
                   1037
          1.36
                   1002
          1.32
                    991
          3.03
                       1
          4.07
                       1
          3.70
                       1
          2.52
                       1
          0.58
```

Name: TCH, Length: 250, dtype: int64

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 14025 2.0 11418

Name: TCH, dtype: int64

### Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fd543867dc0>



```
In [17]: las=la.score(x_test,y_test)
```

# Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]: 

▼ Ridge

Ridge(alpha=1)

```
In [19]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[19]: <matplotlib.collections.PathCollection at 0x7fd54384bee0>



```
In [20]: rrs=rr.score(x_test,y_test)
```

## **ElasticNet**

```
In [21]: en=ElasticNet()
         en.fit(x_train,y_train)
Out [21]:
          ▼ ElasticNet
          ElasticNet()
In [22]: | prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[22]: <matplotlib.collections.PathCollection at 0x7fd5313f3010>
           25
           20
           15
           10
            5
                          5
                                    10
                                                                   25
                0
                                              15
                                                         20
In [23]: ens=en.score(x_test,y_test)
In [24]: print(rr.score(x_test,y_test))
          rr.score(x_train,y_train)
```

Logistic

Out[24]: 0.8640132513733083

0.9031092096516402

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 14025
                 11418
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fd5314f5a50>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

### **Random Forest**

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
          plt.figure(figsize=(80,40))
          plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[38]: [Text(0.5206473214285714, 0.9285714285714286, '0_3 <= 18.185\ngini</pre>
          = 0.493 \times = 11219 \times = [9946, 7864] \times = Yes'),
           Text(0.26674107142857145, 0.7857142857142857, 'NMHC <= 0.225 \ngin
          i = 0.27 \text{ nsamples} = 3787 \text{ nvalue} = [972, 5075] \text{ nclass} = No'),
           Text(0.140625, 0.6428571428571429, 'NO_2 \le 91.22 \neq 0.496 
          samples = 1005 \cdot \text{nvalue} = [740, 878] \cdot \text{nclass} = \text{No'}
           Text(0.07142857142857142, 0.5, 'station <= 28079015.0 \ngini = 0.5
          \nsamples = 844\nvalue = [701, 670]\nclass = Yes'),
           Text(0.03571428571428571, 0.35714285714285715, 'NO_2 <= 76.305 \ng
          ini = 0.377 \setminus samples = 395 \setminus samples = [465, 157] \setminus samples = Yes'),
           Text(0.017857142857142856, 0.21428571428571427, 'NOx <= 182.4 \ngi
          ni = 0.332 \setminus samples = 306 \setminus samples = [394, 105] \setminus samples = Yes'),
           Text(0.008928571428571428, 0.07142857142857142, 'gini = 0.314\nsa
          mples = 294\nvalue = [387, 94]\nclass = Yes'),
           Text(0.026785714285714284, 0.07142857142857142, 'gini = 0.475 \nsa
          mples = 12\nvalue = [7, 11]\nclass = No'),
           Text(0.05357142857142857, 0.21428571428571427, 'PM10 <= 44.9\ngin
          i = 0.488 \setminus samples = 89 \setminus samples = [71, 52] \setminus samples = Yes'),
           Text(0.044642857142857144, 0.07142857142857142, 'gini = 0.428 \nsa
In [39]: print("Linear:", lis)
print("Lasso:", las)
          print("Ridge:", rrs)
          print("ElasticNet:",ens)
          print("Logistic:",los)
          print("Random Forest:",rfcs)
```

Linear: 0.903105908273488 Lasso: 0.49881871289711766 Ridge: 0.9031092096516402

ElasticNet: 0.8369295468530789 Logistic: 0.5470981265557447

Random Forest: 0.8717012914093206

## **Best Model is Random Forest**

In [40]: df2=pd.read\_csv("/Users/bob/Downloads/FP1\_air/csvs\_per\_year/csvs\_pe
df2

### Out[40]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | OXY  | 0_3       |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|
| 0      | 2008-<br>06-01<br>01:00:00 | NaN  | 0.47 | NaN  | NaN  | NaN  | 83.089996  | 120.699997 | NaN  | 16.990000 |
| 1      | 2008-<br>06-01<br>01:00:00 | NaN  | 0.59 | NaN  | NaN  | NaN  | 94.820000  | 130.399994 | NaN  | 17.469999 |
| 2      | 2008-<br>06-01<br>01:00:00 | NaN  | 0.55 | NaN  | NaN  | NaN  | 75.919998  | 104.599998 | NaN  | 13.470000 |
| 3      | 2008-<br>06-01<br>01:00:00 | NaN  | 0.36 | NaN  | NaN  | NaN  | 61.029999  | 66.559998  | NaN  | 23.110001 |
| 4      | 2008-<br>06-01<br>01:00:00 | 1.68 | 0.80 | 1.70 | 3.01 | 0.30 | 105.199997 | 214.899994 | 1.61 | 12.120000 |
|        |                            |      |      |      |      |      |            |            |      |           |
| 226387 | 2008-<br>11-01<br>00:00:00 | 0.48 | 0.30 | 0.57 | 1.00 | 0.31 | 13.050000  | 14.160000  | 0.91 | 57.400002 |
| 226388 | 2008-<br>11-01<br>00:00:00 | NaN  | 0.30 | NaN  | NaN  | NaN  | 41.880001  | 48.500000  | NaN  | 35.830002 |
| 226389 | 2008-<br>11-01<br>00:00:00 | 0.25 | NaN  | 0.56 | NaN  | 0.11 | 83.610001  | 102.199997 | NaN  | 14.130000 |
| 226390 | 2008-<br>11-01<br>00:00:00 | 0.54 | NaN  | 2.70 | NaN  | 0.18 | 70.639999  | 81.860001  | NaN  | NaN       |
| 226391 | 2008-<br>11-01<br>00:00:00 | 0.75 | 0.36 | 1.20 | 2.75 | 0.16 | 58.240002  | 74.239998  | 1.64 | 31.910000 |

226392 rows × 17 columns

### In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226392 entries, 0 to 226391
Data columns (total 17 columns):

| Data  |           | (total 17 Columns, |           |
|-------|-----------|--------------------|-----------|
| #     | Column    | Non-Null Count     | Dtype     |
|       |           |                    |           |
| 0     | date      | 226392 non-null    | object    |
| 1     | BEN       | 67047 non-null     | float64   |
| 2     | CO        | 208109 non-null    | float64   |
| 3     | EBE       | 67044 non-null     | float64   |
| 4     | MXY       | 25867 non-null     | float64   |
| 5     | NMHC      | 85079 non-null     | float64   |
| 6     | N0_2      | 225315 non-null    | float64   |
| 7     | N0x       | 225311 non-null    | float64   |
| 8     | 0XY       | 25878 non-null     | float64   |
| 9     | 0_3       | 215716 non-null    | float64   |
| 10    | PM10      | 220179 non-null    | float64   |
| 11    | PM25      | 67833 non-null     | float64   |
| 12    | PXY       | 25877 non-null     | float64   |
| 13    | S0_2      | 225405 non-null    | float64   |
| 14    | TCH       | 85107 non-null     | float64   |
| 15    | T0L       | 66940 non-null     | float64   |
| 16    | station   | 226392 non-null    | int64     |
| dtype | es: float | 64(15), int64(1),  | object(1) |
| memo  | ry usage: | 29.4+ MB           |           |
|       |           |                    |           |

In [42]: df3=df2.dropna()
df3

### Out[42]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | OXY  | 0_3       |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-----------|
| 4      | 2008-<br>06-01<br>01:00:00 | 1.68 | 0.80 | 1.70 | 3.01 | 0.30 | 105.199997 | 214.899994 | 1.61 | 12.120000 |
| 21     | 2008-<br>06-01<br>01:00:00 | 0.32 | 0.37 | 1.00 | 0.39 | 0.33 | 21.580000  | 22.180000  | 1.00 | 35.770000 |
| 25     | 2008-<br>06-01<br>01:00:00 | 0.73 | 0.39 | 1.04 | 1.70 | 0.18 | 64.839996  | 86.709999  | 1.31 | 23.379999 |
| 30     | 2008-<br>06-01<br>02:00:00 | 1.95 | 0.51 | 1.98 | 3.77 | 0.24 | 79.750000  | 143.399994 | 2.03 | 18.090000 |
| 47     | 2008-<br>06-01<br>02:00:00 | 0.36 | 0.39 | 0.39 | 0.50 | 0.34 | 26.790001  | 27.389999  | 1.00 | 33.029999 |
|        |                            |      |      |      |      |      |            |            |      |           |
| 226362 | 2008-<br>10-31<br>23:00:00 | 0.47 | 0.35 | 0.65 | 1.00 | 0.33 | 22.480000  | 25.020000  | 1.00 | 33.509998 |
| 226366 | 2008-<br>10-31<br>23:00:00 | 0.92 | 0.46 | 1.21 | 2.75 | 0.19 | 78.440002  | 106.199997 | 1.70 | 18.320000 |
| 226371 | 2008-<br>11-01<br>00:00:00 | 1.83 | 0.53 | 2.22 | 4.51 | 0.17 | 93.260002  | 158.399994 | 2.38 | 18.770000 |
| 226387 | 2008-<br>11-01<br>00:00:00 | 0.48 | 0.30 | 0.57 | 1.00 | 0.31 | 13.050000  | 14.160000  | 0.91 | 57.400002 |
| 226391 | 2008-<br>11-01<br>00:00:00 | 0.75 | 0.36 | 1.20 | 2.75 | 0.16 | 58.240002  | 74.239998  | 1.64 | 31.910000 |

25631 rows × 17 columns

In [43]: df3=df3.drop(["date"],axis=1)

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >



```
In [45]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

### Linear

In [46]: li=LinearRegression()
li.fit(x\_train,y\_train)

Out[46]: 

▼ LinearRegression

LinearRegression()

```
In [47]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7fd54aacd2a0>



```
In [48]: lis=li.score(x_test,y_test)
```

```
In [49]: df3["TCH"].value_counts()
```

```
Out[49]: 1.38
                   1274
          1.37
                   1246
          1.36
                   1243
          1.39
                   1242
          1.35
                   1209
          3.30
                      1
          2.95
                      1
          3.38
                      1
          2.51
          1.02
```

Name: TCH, Length: 177, dtype: int64

```
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[50]: 2.0 12904 1.0 12727

Name: TCH, dtype: int64

### Lasso

```
In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

In [52]: prediction1=la.predict(x\_test)
 plt.scatter(y\_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fd55143e290>



In [53]: las=la.score(x\_test,y\_test)

# Ridge

In [54]: rr=Ridge(alpha=1)
 rr.fit(x\_train,y\_train)

```
In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[55]: <matplotlib.collections.PathCollection at 0x7fd54457dea0>



```
In [56]: rrs=rr.score(x_test,y_test)
```

# **ElasticNet**

ElasticNet()

```
In [57]: en=ElasticNet()
en.fit(x_train,y_train)

Out[57]: v ElasticNet
```

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fd5445fc940>



```
In [59]: ens=en.score(x_test,y_test)
```

0.6686325972014862

Out[60]: 0.6552401520013147

# Logistic

```
In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
    df3=df3.replace(g)
    df3["TCH"].value_counts()
```

Out[61]: High 12904 Low 12727

Name: TCH, dtype: int64

```
In [62]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [63]: lo=LogisticRegression()
    lo.fit(x_train,y_train)

Out[63]: v LogisticRegression
    LogisticRegression()

In [64]: prediction3=lo.predict(x_test)
    plt.scatter(y_test,prediction3)

Out[64]: <matplotlib.collections.PathCollection at 0x7fd5449f6890>
```



## **Random Forest**

In [66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model\_selection import GridSearchCV

High

```
In [67]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [68]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [71]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: rfcs=grid_search.best_score_
In [73]: | rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
        plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[74]: [Text(0.5114583333333333, 0.9285714285714286, 'TOL <= 4.835\ngini</pre>
        = 0.5 \ln = 11347 \ln = [8960, 8981] \ln = No'),
         i = 0.436 \setminus samples = 7485 \setminus samples = [8047, 3809] \setminus samples = Yes'),
         = 0.435 \times = 1795 \times = [914, 1945] \times = No')
         Text(0.06666666666666667, 0.5, 'MXY \le 1.325 \mid 0.474 \mid sample 
        es = 1055 \cdot value = [647, 1029] \cdot value = No'),
         Text(0.03333333333333333, 0.35714285714285715, 'TOL <= 3.185\ngin
        i = 0.499 \setminus samples = 516 \setminus samples = [437, 410] \setminus samples = Yes'),
         ni = 0.496 \setminus samples = 451 \setminus samples = [404, 335] \setminus samples = Yes'),
         mples = 229\nvalue = [176, 204]\nclass = No'),
         Text(0.025, 0.07142857142857142, 'gini = 0.463\nsamples = 222\nva
        lue = [228, 131] \setminus nclass = Yes'),
         Text(0.05, 0.21428571428571427, 'NMHC <= 0.135 \setminus gini = 0.424 \setminus nsam
        ples = 65\nvalue = [33, 75]\nclass = No'),
         Text(0.041666666666666664, 0.07142857142857142, 'gini = 0.43 \nsam
        print("Linear:",lis)
print("Lasso:",las)
In [75]:
        print("Ridge:", rrs)
        print("ElasticNet:",ens)
        print("Logistic:",los)
        print("Random Forest:",rfcs)
```

Linear: 0.6686214896300879 Lasso: 0.4702435204100489 Ridge: 0.6686325972014862

ElasticNet: 0.5832313700304619 Logistic: 0.5042912873862159 Random Forest: 0.8318935211402727

## **Best model is Random Forest**