

Course > Unit 7: ... > Lec. 15:... > 10. Exe...

10. Exercise: The mean-squared error

Exercises due Apr 8, 2020 05:29 IST Completed

Exercise: The mean-squared error

1/1 point (graded)

In this exercise we want to understand a little better the formula

$$\frac{1}{\sum_{i=0}^{n} \frac{1}{\sigma_i^2}}$$

for the mean squared error by considering two alternative scenarios.

In the first scenario, $\Theta\sim N\left(0,1\right)$ and we observe $X=\Theta+W$, where $W\sim N\left(0,1\right)$ is independent of Θ .

In the second scenario, the prior information on Θ is extremely inaccurate: $\Theta \sim N\left(0,\sigma_0^2\right)$, where σ_0^2 is so large that it can be treated as infinite. But in this second scenario we obtain two observations of the form $X_i=\Theta+W_i$, where the W_i are standard normals, independent of each other and of Θ .

The mean squared error is

smaller in the first scenario.	
smaller in the second scenario.	

the same in both scenarios.

Solution:

We use the formula for the mean squared error. For the second scenario, we set $\sigma_0^2=\infty$. In the first scenario, we obtain

$$\frac{1}{rac{1}{1}+rac{1}{1}}=rac{1}{2},$$

and in the second scenario, we obtain the same mean squared error:

$$\frac{1}{\frac{1}{\infty} + \frac{1}{1} + \frac{1}{1}} = \frac{1}{2}.$$

This suggests the following interpretation: the prior information on Θ in the first scenario is, in a loose sense, exactly as informative as having no useful prior information but one more observation, as in the second scenario.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

2

Topic: Unit 7: Bayesian inference:Lec. 15: Linear models with normal noise / 10. Exercise: The mean-squared error

Show all posts by recent activity

Questions like this I find are really counter productive to learning.

I've gone through it... obviously got it wrong and spent a lot of time on it. Finally, after reading the comm...

When would we be on the case when all variance for different observations remains the same?

I was very puzzled with the solution, I have to confess. I assumed we were on the special case described.

2	argh:(I assumed 2 trials for the first one as well	1
2	Hint Note the Variances are **not** the same in the second scenario. Just try adding up the values of the vari	1
2	Number of observations In the first scenario, the language of the problem was unclear to me how many observations were being	3 new_
2	Not that misleading While I'd agree that there have been a number of misleading questions throughout these MITx courses, I	1
⊻	[Staff] Is \$\sigma_0\$ a real number?	2
2	Problem with low number of observations in each case If the number of observations made in each case is low and the noise is random, wouldn't that throw off	2
4		•

© All Rights Reserved

