Criando a Árvore de Decisão?

outlook temperature humidity windy

- > Temos 4 atributos "candidatos" a ser o nó raiz.
- >Qual devemos escolher?
 - ➤ Buscar o que tenha maior ganho de informação!

outlook	temperature	humidity	windy	play	
sunny	hot	high	FALSE	no	
sunny	hot	high	TRUE	no	
overcast	hot	high	FALSE	yes	
rainy	mild	high	FALSE	yes	
rainy	cool	normal	FALSE	yes	
rainy	cool	normal	TRUE	no	
overcast	cool	normal	TRUE	yes	
sunny	mild	high	FALSE	no	
sunny	cool	normal	FALSE	yes	
rainy	mild	normal	FALSE	yes	
sunny	mild	normal	TRUE	yes	
overcast	mild	high	TRUE	yes	
overcast	hot	normal	FALSE	yes	
rainy	mild	high	TRUE	no	

Entropia

Teoria da Informação

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Se todas as instancias de S pertencem a mesma classe E(S) = 0

Se S contem o mesmo número de instancia para cada classe, E(s) = 1

Cálculo da Entropia - Classe

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

$$E(S) = \left(-\frac{9}{14}\log_2\left(\frac{9}{14}\right)\right) + \left(-\frac{5}{14}\log_2\left(\frac{5}{14}\right)\right)$$

$$E(S) = 0.94$$

outlook	temperature	humidity	windy	play
			·	
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Cálculo da Entropia - Outlook

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Outlook (sunny – para yes e no)

$$E(S) = \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) + \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.97$$

Outlook (overcast – para yes e no)

$$E(S) = \left(-\frac{4}{4}\log_2\left(\frac{4}{4}\right)\right) + \left(-\frac{0}{4}\log_2\left(\frac{0}{4}\right)\right) = 0$$

Outlook (rainy – para yes e no)

$$E(S) = \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) + \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0.97$$

outlook	temperature	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Cálculo da Entropia - Temperature

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Temperature (hot – para yes e no)

$$E(S) = \left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) + \left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) = 1$$

Temperature (mild – para yes e no)

$$E(S) = \left(-\frac{4}{6}\log_2\left(\frac{4}{6}\right)\right) + \left(-\frac{2}{6}\log_2\left(\frac{2}{6}\right)\right) = 0.91$$

Temperature (cold – para yes e no)

$$E(S) = \left(-\frac{3}{4}\log_2\left(\frac{3}{4}\right)\right) + \left(-\frac{1}{4}\log_2\left(\frac{1}{4}\right)\right) = 0.81$$

outlook	temperature	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Cálculo da Entropia - Humidity

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Humidity (high – para yes e no)

$$E(S) = \left(-\frac{3}{7}\log_2\left(\frac{3}{7}\right)\right) + \left(-\frac{4}{7}\log_2\left(\frac{4}{7}\right)\right) = 0.98$$

Humidity (normal – para yes e no)

$$E(S) = \left(-\frac{6}{7}\log_2\left(\frac{6}{7}\right)\right) + \left(-\frac{1}{7}\log_2\left(\frac{1}{7}\right)\right) = 0.59$$

outlook	temperature	humidity	windy	play
Odtiook	temperature		•	piuy
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Cálculo da Entropia - Windy

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Windy (True – para yes e no)

$$E(S) = \left(-\frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) + \left(-\frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) = 1$$

Windy (False – para yes e no)

$$E(S) = \left(-\frac{6}{8}\log_2\left(\frac{6}{8}\right)\right) + \left(-\frac{2}{8}\log_2\left(\frac{2}{8}\right)\right) = 0.81$$

outlook	temperature	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Ganho de Informação (Information Gain)

$$\text{IG}(S,A) = E(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} E(S_i)$$
 Outlook
$$\text{sunny overcast rainy}$$

$$\text{IG}(S,A) = 0.94 - \frac{5}{14} * 0.97 - \frac{4}{14} * 0 - \frac{5}{14} * 0.97 = 0.2471$$

$$\text{Entropia Classe}$$

$$\text{Proporção Entropia Proporção Entropia overcast overcast rainy}$$

$$\text{Proporção rainy rainy}$$

Classe

Ganho de Informação (Information Gain)

$$IG(S,A) = Entropia(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropia(S_i)$$

Outlook

$$IG(S,A) = 0.94 - \frac{5}{14} * 0.97 - \frac{4}{14} * 0 - \frac{5}{14} * 0.97 = 0.2471$$

Temperatures

$$IG(S,A) = 0.94 - \frac{4}{14} * 1 - \frac{6}{14} * 0.91 - \frac{4}{14} * 0.81 = 0.0328$$

Humidy

$$IG(S,A) = 0.94 - \frac{7}{14} * 0.97 - \frac{7}{14} * 0.59 = 0.16$$

Windy

$$IG(S,A) = 0.94 - \frac{6}{14} * 1 - \frac{8}{14} * 0.81 = 0.048$$

_					
	outlook	temperature	humidity	windy	play
•	sunny	hot	high		no
	sunny	hot	high	TRUE	no
	overcast	hot	high	FALSE	yes
	rainy	mild	high	FALSE	yes
	rainy	cool	normal	FALSE	yes
	rainy	cool	normal	TRUE	no
	overcast	cool	normal	TRUE	yes
	sunny	mild	high	FALSE	no
	sunny	cool	normal	FALSE	yes
	rainy	mild	normal	FALSE	yes
	sunny	mild	normal	TRUE	yes
	overcast	mild	high	TRUE	yes
	overcast	hot	normal	FALSE	yes
	rainy	mild	high	TRUE	no

Primeiro nodo

outlook 🕶	temperature 🔻	humidity 🔻	windy 🔻	play
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
rainy	mild	normal	FALSE	yes
rainy	mild	high	TRUE	no

outlook 🕶	temperature 🔻	humidity -	windy	play 🔻
overcast	hot	high	FALSE	yes
overcast	cool	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes

Particionando sunny

outlook 🕶	temperature 🔻	humidity 🔻	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Entropia Classe $E(sunny) = \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) + \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0,97$

Cálculo da Entropia - Temperature

outlook 🕶	temperature 🔻	humidity 🔻	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Temperatura (hot para yes e no)

$$E(S) = \left(-\frac{0}{2}\log_2\left(\frac{0}{2}\right)\right) + \left(-\frac{2}{2}\log_2\left(\frac{2}{2}\right)\right) = 0$$

Temperatura (mild para yes e no)

$$E(S) = \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) + \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Temperatura (cool para yes e no)

$$E(S) = \left(-\frac{1}{1}\log_2\left(\frac{1}{1}\right)\right) + \left(-\frac{0}{1}\log_2\left(\frac{0}{1}\right)\right) = 0$$

Cálculo da Entropia - Humidity

outlook 🕶	temperature 🔻	humidity 🔻	windy 🔻	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Humidity (high para yes e no)

$$E(S) = \left(-\frac{0}{3}\log_2\left(\frac{0}{3}\right)\right) + \left(-\frac{3}{3}\log_2\left(\frac{3}{3}\right)\right) = 0$$

Humidity (normal para yes e no)

$$E(S) = \left(-\frac{2}{2}\log_2\left(\frac{2}{2}\right)\right) + \left(-\frac{0}{2}\log_2\left(\frac{0}{2}\right)\right) = 0$$

Cálculo da Entropia - Windy

outlook 🕶	temperature 🔻	humidity 🔻	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

windy (False para yes e no)

$$E(S) = \left(-\frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) + \left(-\frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.91$$

Humidity (True para yes e no)

$$E(S) = \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) + \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Ganho de Informação (Information Gain)

$$IG(S, A) = Entropia(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropia(S_i)$$

Temperatures

$$IG(S,A) = 0.97 - \frac{2}{5} * 0 - \frac{2}{5} * 1 - \frac{1}{5} * 0 = 0.57$$

Humidity

IG(S, A) = 0.97
$$-\frac{3}{5} * 0 - \frac{2}{5} * 0 = 0.97$$

Windy

$$IG(S,A) = 0.97 - \frac{3}{5} * 0.91 - \frac{2}{5} * 1 = 0.024$$

outlook 🕶	temperature 🔻	humidity 🔻	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Próximo nodo

outlook 🕶	temperature 🔻	humidity 🕶	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no

outlook 🕶	temperature	*	humidity 🕶	windy 🔻	play ▼
sunny	cool		normal	FALSE	yes
sunny	mild		normal	TRUE	yes

Continuando

Continuando

Finalizando

