Data Mining

Supervised Machine Learning

Dr. Hanna Köpcke Wintersemester 2020

Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de

Übersicht

Inhaltsverzeichnis

- Einführung
- Entscheidungsbäume
- Support Vector Machines
- Neuronale Netze

Supervised Learning

- Daten zu einem Paar (x, y)
 - x ist ein Vektor aus Merkmalen (Features):
 - verschiedene Datentypen möglich
 - Beispiel: (Age, Male, Class)
 - y ist eine Bezeichnung (Label),
 - eine reelle Zahl oder eine Kategorie (Klasse)
 - Beispiel: Survived
- Ziel: Auffinden einer Funktion (Modell) f mit

$$y = f(x)$$

- Vielzahl an Funktionen möglich
- Bewertung und Auswahl der Funktion über Daten
 - Aufteilung in Trainings- und Testdaten (z.B. 80% vs. 20%)
 - Schätzen der Funktion über Trainingsdaten: Fehler möglichst gering
 - Bewerten der Funktion an Testdaten: Fehler möglichst gering

Age	Male	Class	Survived
Child	True	1	Yes
Adult	True	2	No
Adult	False	1	Yes
Child	True	3	No

Trainings-/
Testdaten

Methoden des Supervised ML

Bewährte Methoden (Ausschnitt)

Lineare Regression

Logistische Regression

Linear Discriminant Analysis

K-Nearest Neighbors

Naïve Bayes

Entscheidungsbäume

Support Vector Machines

Neuronale Netze

- Generelles Problem bei hochdimensionalen Daten:
 Overfitting (Funktion passt sich den zufälligen Fehlern an)
- Lösung z.B.
 - Dimensionsreduktion über PCA/SVD oder Clustering
 - Regularisierung (Ridge, Lasso)
 - Informationskriterien, z.B. AIC, BIC, DIC, WAIC, ...

Inhaltsverzeichnis

- Einführung
- Entscheidungsbäume
- Support Vector Machines
- Neuronale Netze

Entscheidungsbäume

- Variable *Y*: numerisch (Regression) oder kategorial (Klassifikation)
- Vorhersage von Y durch X über eine Baumstruktur
 - Folge den Ästen des Baums entsprechend den Werten von X
 - Vorhersagewert für Y an den Blattknoten

Erstellen eines Entscheidungsbaums (Regression)

Ziel: Aufteilung der Variaben aus X in Regionen R_1, R_2, \dots, R_I , so dass

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \widehat{y_{R_j}} \right)^2$$

minimiert wird ($\widehat{y_{R_j}}$ bezeichnet den Vorhersagewert der Region R_j).

Vorhersagewert ist der Mittelwert der Datenpunkte der Region

Erstellen eines Entscheidungsbaums (Regression)

Ziel: Aufteilung der Variaben aus X in Regionen R_1, R_2, \dots, R_I , so dass

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \widehat{y_{R_j}} \right)^2$$

minimiert wird ($\widehat{y_{R_j}}$ bezeichnet den Vorhersagewert der Region R_j).

- Vorhersagewert ist der Mittelwert der Datenpunkte der Region
- **Problem**: zu viele mögliche Aufteilungen in *J* Regionen
- Ausweg: Recursive Binary Splitting
 - Wiederholte Auswahl einer Variable X_j und eines Schwellenwerts s, so dass die beiden Regionen $R_1(j,s) = \{x | x_j < s\}$ und $R_2(j,s) = \{x | x_j \geq s\}$ die folgende Summe minimieren:

$$\sum_{i:x_{i}\in R_{1}(j,s)} (y_{i} - \widehat{y_{R_{1}}})^{2} + \sum_{i:x_{i}\in R_{2}(j,s)} (y_{i} - \widehat{y_{R_{2}}})^{2}$$

Stopp, falls z.B. in jede Region weniger als 5 Datenpunkte fallen

Entscheidungsbaum für Klassifikation

- Vorhersagewert ist der häufigste Wert der Datenpunkte einer Region
- Fehlermaß: z.B. Entropie

$$H(Y) = -\sum_{y \in \text{Dom"ane von } Y} p_y \log_2 p_y$$

- Der Wert p_y gibt die Wahrscheinlichkeit der Ausprägung Y = y
 - Hohe Entropie: gleichverteiltes Y
 - Niedrige Entropie: ungleiche Verteilung

Niedrige Entropie

Hohe Entropie

Entropie: Beispiel

- X: Abschluss
- Y: mag den Film "Casablanca"
- Schätzen der Wahrscheinlichkeiten über relative Häufigkeiten

-
$$P(Y = Ja) = \frac{3}{8}, P(Y = Nein) = \frac{5}{8}$$

- $P(Y = Ja|X = Mathe) = \frac{1}{4}$
- $P(Y = Nein|X = Mathe) = \frac{3}{4}$

X	Y
Mathe	Ja
Geschichte	Nein
Informatik	Ja
Mathe	Nein
Mathe	Nein
Informatik	Ja
Mathe	Nein
Geschichte	Nein

Entropie:

$$H(Y) = -\frac{3}{8}\log_2\frac{3}{8} - \frac{5}{8}\log_2\frac{5}{8} \approx 0.95$$

Spezifische bedingte Entropie:

$$H(Y|X = Mathe) = -\frac{1}{4}\log\frac{1}{4} - \frac{3}{4}\log\frac{3}{4} \approx 0.81$$

Entropie: Beispiel

Bedingte Entropie:

$$H(Y|X) = \sum_{x \in O_X} P(X = x)H(Y|X = x)$$

x	P(X = x)	H(Y X=x)
Mathe	$\frac{1}{2}$	0.81
Geschichte	$\frac{1}{4}$	0
Informatik	$\frac{1}{4}$	0

X	Υ
Mathe	Ja
Geschichte	Nein
Informatik	Ja
Mathe	Nein
Mathe	Nein
Informatik	Ja
Mathe	Nein
Geschichte	Nein

$$H(Y|X) = \frac{1}{2} \cdot 0.81 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = 0.4$$

Ziel: Auswahl des Attributs X mit niedrigstem H(Y|X)

Beste Aufteilung eines Knotens

- Anschließend
 - X ist numerisch: Auswahl des Schwellenwertes
 - X ist kategorisch: Auswahl von Kategorien
- Beispiel:
 - Aufteilung: X = Mathe vs. $X \neq Mathe$
 - $H(Y|X = Mathe) = 0.81 \text{ und } H(Y|X \neq Mathe) = 1$
 - Spezifische bedingte Entropie gewichtet nach der Anzahl der Einträge pro Kindsknoten:

$$\frac{1}{2} \cdot H(Y \mid X = Mathe) + \frac{1}{2} H(Y \mid X \neq Mathe) = 0.9$$

- Aufteilung: $X = Informatik \text{ vs. } X \neq Informatik$
 - $H(Y|X = Informatik) = 0 \text{ und } H(Y|X \neq Informatik) = 0.65$
 - $\frac{1}{4} \cdot H(Y|X = Informatik) + \frac{3}{4}H(Y|X \neq Informatik) = 0.48$
- Aufteilung: X = Geschichte vs. $X \neq Geschichte$
 - H(Y|X = Geschichte) = 0 und $H(Y|X \neq Geschichte) = 1$
 - $\frac{1}{4} \cdot H(Y|X = Geschichte) + \frac{3}{4}H(Y|X \neq Geschichte) = \frac{3}{4}$

Entscheidungsbäume

- Leicht zu verstehen, implementieren und interpretieren
- Parallelisierbar:
 - B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: Massively parallel learning of tree ensembles with MapReduce. In Proc. VLDB 2009.
 - J. Ye, J.-H. Chow, J. Chen, Z. Zheng. Stochastic Gradient Boosted Distributed
 Decision Trees. In Proc. CIKM 2009.
- Sowohl f
 ür kategoriale als auch metrische Ergebnisvariable Y geeignet
- Problem: Overfitting (Überanpassung des Modells an die Daten)
 - Overfitting bei zu vielen Ebenen
 - Doch bei wenigen Ebenen k\u00f6nnen nur wenige Attribute verwendet werden und die Vorhersagegenauigkeit ist oft gering

Bagging und Random Forests

- Ausweg: Kombination mehrerer Entscheidungsbäume geringer Tiefe
- Über z.B. Bagging
 - Ziehen mehrerer Zufallsstichproben aus den Daten (mit Zurücklegen)
 - Ein Entscheidungsbaum geringer Tiefe pro Stichprobe
 - Mittelwert/häufigster Wert über alle Bäume ergibt Vorhersage
- Random Forest:
 Zusätzlich zum Bagging
 wird beim Lernen der
 Bäume an jedem Knoten
 nur eine kleine (zufällige)
 Auswahl der Attribute
 betrachtet

Inhaltsverzeichnis

- Einführung
- Entscheidungsbäume
- Support Vector Machines
- Neuronale Netze

Klassifizierung über Hyperebene

- Numerischer Merkmalsvektor $\mathbf{x} = (x_1, ... x_n)$
- Binäre Variable $y \in \{-1, +1\}$

Klassifizierung über Hyperebene

- Numerischer Merkmalsvektor $\mathbf{x} = (x_1, ... x_n)$
- Binäre Variable $y \in \{-1, +1\}$
- Eine Hyperebene des \mathbb{R}^n teilt diesen Raum in 2 Bereiche
- Die Gewichte $\mathbf{w} = (w_0, w_1, ..., w_n) \in \mathbb{R}^{n+1}$ beschreiben eine Hyperebene H über

$$H = \left\{ x \in \mathbb{R}^n | w_0 + \sum_{i=1}^n w_i \, x_i = 0 \right\}$$

Klassifizierung über Hyperebene:

$$\hat{y} = +1$$
, falls $w_0 + \sum_i w_i x_i > 0$
 $\hat{y} = -1$, falls $w_0 + \sum_i w_i x_i < 0$

Klassifizierung über Hyperebene

Ziel: Finden der Parameter **w**, so dass der Raum der Merkmalsvektoren in zwei Teile aufgespalten wird und Punkte mit dem gleichen Label auf der gleichen Seite sind

Auswahl der Hyperebene

Welche Hyperebene ist die beste?

Maximal Margin Classifier

Verwendung der Hyperebene mit maximalen Abstand γ zu den Daten

Maximal Margin Classifier

Ziel: Suche nach Gewichten $w = (w_0, w_1, ..., w_n)$, so dass **1. der Rand** (Margin) γ maximal ist und 2. für alle Daten (x,y), gilt:

Sei
$$\mathbf{w}' = (w_1, ..., w_n)$$
. Für den Rand gilt: $\gamma = \frac{1}{|w'|}$ γ ist maximal, wenn $\sqrt{\sum_{i=1}^n \mathbf{w}_i^2}$ minimal ist.

Maximal Margin Classifier

Sei
$$\mathbf{w}' = (w_1, ..., w_n)$$
. Für \mathbf{x}^+ gilt:

$$1 = w_0 + \sum_{i=1}^n w_i x_i^+$$

$$= w_0 + \mathbf{w}' \cdot \mathbf{x}^+$$

$$= w_0 + |\mathbf{w}'| |\mathbf{v}'|$$

$$= w_0 + |\mathbf{w}'| (|\mathbf{v}| + \gamma)$$

$$= w_0 + |\mathbf{w}'| |\mathbf{v}| + |\mathbf{w}'| \gamma$$

$$= w_0 + \mathbf{w}' \cdot \mathbf{x} + |\mathbf{w}'| \gamma$$

$$= 0 + |\mathbf{w}'| \gamma$$

Orthogonale Projektion von x^+ auf w'

Also:
$$1 = |w'|\gamma$$

Rand γ ist maximal, wenn

$$|w'| = \sqrt{\sum_{i=1}^n w_i^2}$$
 minimal

Linear nicht trennbare Daten

 Falls Daten nicht linear trennbar, Einführung einer Bestrafung für falsche Zuordnungen:

$$\min_{w} \sum_{i=1}^{n} w_i^2 + C \cdot (\# \text{ falsche Zuordnungen})$$

- Optimaler Wert f
 ür den Parameter C kann über Testdaten ermittelt werden
 - C groß: wichtig ist die Trennung der Daten (soweit möglich)
 - C klein: wichtig ist ein großer Rand

Linear nicht trennbare Daten

- Nicht alle falschen Zuordnungen sind gleich wichtig
- Bestrafung ξ_i

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \mathbf{w}_{i}^{2} + \mathbf{C} \cdot \sum_{j} \xi_{j}$$

• Hinge Loss für Datenpunkt (x_i, y_i) :

$$\xi_j \coloneqq \max\left(0.1 - y_j\left(w_0 + \sum_{i=1}^n w_i x_{ji}\right)\right)$$

- $-\xi_i = 0$ falls x_i auf "richtiger Seite" der Ränder
- $-\xi_j \le 1$ falls x_j auf "richtiger Seite" der Hyperebene
- $\xi_i > 1$ falls x_i auf "falschen Seite" der Hyperebene

Support Vector Classifier

Zielfunktion:

$$\min_{\mathbf{w}} \sum_{i=1}^{\mathbf{n}} \mathbf{w}_i^2 + \mathbf{C} \cdot \sum_{j} \max \left(0, 1 - y_j \left(w_0 + \sum_{i=1}^{n} w_i \, x_{ji} \right) \right)$$

- Schätzung der Parameter: (Stochastic) Gradient Descent
- Als Support-Vektoren bezeichnet man die Punkte des Datensatzes, welche direkt auf den Rändern oder auf der falschen Seite des zugehörigen Randes liegen → nur Support-Vektoren beeinflussen die Klassifizierung neuer Datenpunkte
- Sei S die Menge der Support-Vektoren und $\alpha_S \in \mathbb{R}$, $s \in S$, dazugehörige Parameter. Der Klassifizierer lässt sich in folgender Form schreiben:

$$f(x) = w_0 + \sum_{S \in S} \alpha_S (x \cdot x_S)$$

Support Vector Machine

Erweiterung des (linearen) Support Vector Classifier über Kernel:

$$f(x) = w_0 + \sum_{s \in S} \alpha_s K(x, x_s)$$

Polynomial Kernel

Radial Kernel

$$K(x, x_S) = (1 + x \cdot x_S)^d$$
 $K(x, x_S) = \exp\left(-r\sum_{i=1}^n (x_i - x_{Si})^2\right)$

Vergleich

Support Vector Machines	Entscheidungsbäume
Klassifikation: gewöhnlich 2 Klassen (erweiterbar auf mehrere Klassen)	Regression & Klassifikation (mehrere (~10) Klassen)
Attribute sind numerisch bzw. binär	Attribute sind numerisch oder kategorial
Verwendung tausender, spärlich besetzter Attribute	Beschränkung auf wenige, dicht besetzte Attribute
Schwer interpretierbar	Gut interpretierbar
 Beispiele: Textklassifikation (Genre, Sentiment Analysis, Spamfilter) Gesichtserkennung 	 Beispiele: Kundenklassifikation (Segmentierung) Operations Research (Entscheidungen in Unternehmen)

Inhaltsverzeichnis

- Einführung
- Entscheidungsbäume
- Support Vector Machines

Neuronale Netze

Neuron (Perzeptron)

Quelle: https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/neuronale-netze-ein-blick-in-die-black-box.html

Neuronale Netze

Neuronale Netze bestehen aus, in Schichten angeordnete, Knoten, wobei die Ausgabe einer Schicht die Eingabe der nächsten Schicht darstellt

- Eingabeschicht
- Mehrere versteckte Schichten
- Ausgabeschicht

Quelle: http://cs231n.github.io/neural-networks-1/

Aktivierungsfunktion

- Lernen der Gewichte über Gradient Descent
- Gute Funktionen für Gradient Descent:
 - 1. Stetig und (fast überall) differenzierbar
 - 2. Ableitung wird nicht zu klein (über dem erwarteten Wertebereich)
 - 3. Ableitung wird nicht zu groß (über dem erwarteten Wertebereich)

Z

Aktivierungsfunktionen

Sigmoid

$$\sigma(x) = \frac{e^x}{1 + e^x}$$

Hyperbolic Tangent

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Aktivierungsfunktionen

ReLU (Rectified Linear Unit)

$$f(x) = \max(0, x)$$

ELU (Exponential Linear Unit)

$$f(x) = \begin{cases} x & , x \ge 0 \\ \alpha(e^x - 1) & , x < 0 \end{cases}$$

Kostenfunktion zur Bewertung der Ergebnisse

- Variable Y: numerisch (Regression)
- Sei N die Anzahl der Datenpunkte, y_j die tatsächlichen Bezeichnungen und \hat{y}_j die, durch das Neuronale Netz vorhergesagten, Bezeichnungen
- Mean Squared Error:

$$MSE = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2$$

Gradient

$$\nabla_{\hat{y}_j} MSE = \frac{\partial MSE}{\partial \hat{y}_i} = \frac{1}{N} 2(\hat{y}_j - y_j)$$

Optimierungsalgorithmus zum Lernen der Gewichte

- Anpassung der Gewichte (w_{ij} und u_j) mit dem Ziel der Minimierung der Kostenfunktion
- Effizientes Verfahren: Gradient Descent mit Backpropagation

Backpropagation: Algorithmus

- 1. [Forwardpropagation]: Die Eingabewerte x_i laufen vorwärts durch das Netz und an jedem Neuron j wird mit Hilfe der Aktivierungsfunktion φ das Aktivierungslevel \hat{a}_i berechnet.
- 2. [Backpropagation]:
 - a) Für jedes Neuron j wird der Fehler δ_i berechnet:
 - Falls Neuron j in der Ausgabeschicht liegt: $\delta_j = \varphi'(net_j) * (\hat{y}_j y_j)$
 - Falls Neuron j ein Hidden Neuron ist: $\delta_j = \varphi' (net_j) * \sum_k (\delta_k * w_{jk})$ (dabei läuft k über alle Neuron j nachgeschalteten Neuronen)

Dabei ist die Netzeingabe net_j definiert durch $net_j = \sum_{i=1}^n x_i w_{ij}$

- b) Berechnung der Gewichtsänderung: $\Delta w_{jk} = \eta * \delta_k * \hat{a}_j$ (mit η als Lernrate)
- 3. Wiederhole Schritte 1 und 2 bis der Ausgangsfehler kleiner als ein gegebener Wert ist

Backpropagation: Beispiel (I)

- Sigmoid Aktivierungsfunktion $\varphi(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$
- Ableitung: $\varphi'(x) = \varphi(x) * (1 \varphi(x))$
- Fehler δ_j
 - Ausgabeneuron: $\delta_j = \hat{y}_j * (1 \hat{y}_j)^* (y_j \hat{y}_j)$
 - Hidden Neuron: $\delta_j = \hat{a}_j * (1 \hat{a}_j) * \sum_k (\delta_k * w_{jk})$

Data Mining

Backpropagation: Beispiel (II)

•
$$\delta_{n_5} = \hat{y}_{n_5} * (1 - \hat{y}_{n_5}) * (y_{n_5} - \hat{y}_{n_5}) = 0.648 * (1 - 0.648) * (0 - 0.648) = -0.148$$

•
$$\delta_{n_4} = \hat{a}_{n_4} * (1 - \hat{a}_{n_4}) * (\delta_{n_5} * w_{n_4 n_5}) = 0.5 * (1 - 0.5) * (-0.148 * 0.98) = -0.036$$

•
$$\delta_{n_3} = \hat{a}_{n_3} * (1 - \hat{a}_{n_3}) * (\delta_{n_5} * w_{n_3 n_5}) = 0.5 * (1 - 0.5) * (-0.148 * 0.24) = -0.009$$

Backpropagation: Beispiel (III)

$$\Delta w_{n_4n_5} = \eta * \delta_{n_5} * \hat{a}_{n_4} = 1 * (-0.148)*0.5 = -0.074$$
 Neuer Wert für $w_{n_4n_5} = 0.98 - 0.074 = 0.90$

Convolutional Neural Networks (CNN)

Quelle: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolutional Layer

- Filter = Einteilung einer Schicht in Partitionen und Zuordnung jeder
 Partition zu nur einem Knoten der folgenden Schicht
- Faltungsmatrix (Filterkernel) wird über die Eingabe bewegt.
- Filter verwendet die selben Gewichte für jede Partition
- Mehrere Filter pro Schicht

Convolutional Neural Networks (CNN)

Filter für 2-dimensionale Eingabe:

- CNN eignen sich besonders für die Verarbeitung für Bildern
- Filter der ersten versteckten Schicht können darauf trainiert werden bestimmte einfache Formen zu erkennen, z.B. eine Ecke/Gerade
- Nachfolgende (Convolutional) Schichten können diese dann zu komplexeren Formen zusammensetzen, z.B. ein Kopf, eine Ampel,...

CNN: Beispiel

Erkennen handgeschriebener Zahlen

```
0000000000000000
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
44844444444
66666666666666666
   8888888888888888
   99999999
```

Quelle: https://en.wikipedia.org/wiki/MNIST_database

CNN: Beispiel

Erkennen von Kleidung (Bildsegmentierung)

Quelle: https://towardsdatascience.com/stuart-weitzman-boots-designer-bags-and-outfits-with-mask-r-cnn-92a267a02819

CNN: Beispiel

Erkennen von frei werdenden Parkplätzen / Zählung von Menschen

Quellen:

- https://medium.com/@ageitgey/snagging-parking-spaces-with-mask-r-cnn-and-python-955f2231c400
- https://nanonets.com/blog/crowd-countingreview/?utm_source=reddit&utm_medium=social&utm_campaign=drcrco&utm_content=dl

Recurrent Neural Networks (RNN)

- Spezielle Netzwerke f
 ür Verarbeitung von Sequenzen, z.B.
 - Text (Sequenz aus Wörtern)
 - Videos (Sequenz aus Bilder)
- Beispiel: Text

- Eingabe $x = (x_1, ..., x_n)$ bezeichnet ein Wort (One-Hot Encoded: Dimension n ist die Anzahl der möglichen Wörter; genau eine Eins an der Stelle des Wortes,

ansonsten nur Nullen)

- Beachtung der Reihenfolge der Wörter über zyklische Verbindung innerhalb einer Schicht
- Zyklische Schicht kann sich Zustände "merken" und beeinflusst die Verarbeitung des nächsten Wortes

Data Mining

RNN: Beispiel

- Klassifizierung von Texten
- Positive oder negative Rezensionen

> sample_predict('The movie was cool.

The animation and the graphics were out of this world. I would recommend this movie.')

[[0.4186573]]

> sample_predict('The movie was not good. The animation and the graphics were terrible. I would not recommend this movie.')

IIO 0574663311

Quelle: https://www.tensorflow.org/tutorials/text/text_classification_rnn

RNN: Beispiel

Maschinelle Übersetzung

2 hintereinander geschaltete RNN:

Decoder

Quelle: https://medium.com/analytics-vidhya/a-must-read-nlp-tutorial-on-neural-machine-translation-the-technique-powering-google-translate-c5c8d97d7587

RNN: Beispiel

- Textgenerierung: z.B. Gedichte
- Eingabe des Nutzers: Thema oder Bild

Mountains

A hundred thousand Morrison formation,

An ancient crown of gold or mountain

chains,

Mountains from the land of elevation,

A northern storm across the hills and

plains.

the sun is a beautiful thing in silence is drawn between the trees only the beginning of light

Quellen:

- http://xingshi.me/data/pdf/ACL2017demo.pdf
- https://arxiv.org/pdf/1804.08473.pdf