GOVERNMENT OF INDIA

ARCHÆOLOGICAL SURVEY OF INDIA

CENTRAL ARCHÆOLOGICAL LIBRARY

ACCESSION NO. 18950 CALL No. 624.183/C.A.J.

D.G.A. 79

18950

蛎

624.183 C.A.J.

1961

THE CONCRETE ASSOCIATION OF INDIA

Cement House, 121, Queen's Road, Bombay

Price Rs. 6.00

First Edition 1953 Second Edition 1958 Third Edition 1961

III ARY, DEW DELMI.

18950

18.63

C.A.I.

PREFACE

We have great pleasure in bringing out the third and revised edition of this Handbook. A word of apology is due to our readers as several months have passed since the last edition was sold out and circumstances beyond our control delayed the publication of this revised edition.

The Handbook will be found useful by overseers and contractors whose theoretical background of reinforced concrete design is limited but who nevertheless are called upon sometimes to design minor concrete structures. It will also find a place on the bookshelf of the junior engineer, and such other engineers whose main careers are spent in other branches of civil engineering such as drainage, irrigation, or water supply, but who are sometimes entrusted with the design and construction of a concrete structure, in which case it would be too much to expect them to remember the long formulae for design of R. C. structures.

Most of the present day concrete work in India is based on the recommendations of the Indian Standards Institution and the tables, charts, etc., in this book are mostly in conformity with stresses and modular ratios suggested by the Institution. Charts and tables are also given for the requirements of the Bombay Municipal Corporation whose bye-laws are slightly different from those of the I. S. I. Code no. 456-1957.

Before concluding this preface it would not be out of place to say a word or two about the most important and much discussed problem of the design of concrete mixes. This aspect of concrete engineering is practically new to the vast majority of Indian engineers who so far were working on the basis of arbitrary mixes found suitable in practice. A method of rationally designing concrete mixes has been given in this Handbook and we trust Indian engineers will make extensive use of it

henceforth, and let us have the reports of their findings. It should be noted that certain modifications and additions have been made in this method given in the first edition in order to make them more useful and practical.

Thanks are due to Mr. N. H. Mohile, B.E., M.I.E. (India), M.I.Struct.E (Lond.), of this Association whose efforts are mostly responsible in bringing out this Handbook.

The book is published with a sincere hope that it will fulfil the long felt need for a concise reference book on the design and technology of concrete.

CONTENTS

	apter 1					Page
Portland Cement						3
						10
***						18
						20
		• •				
Ch	apter 2					
RTIONING OF CONC	RETE	•				
Definition of Terms				- 1 _		31
Essential Requirements	of Conc	rete				34
Proportioning of Concr	ete					35
Ch	apter 3					
, BENDING MOMENT	'S AND	SH	EARI	NG FO	RCES	ŝ
Dead Loads						67
Live Loads						74
Diagrams and Formula Shearing Force	e for B	endir	g Mo	ments	and	80
Bending Moment Chart	s for S	labs	and I	Beams		94
Bending Moment Table	es for S	Slabs	and	Beams		96
Ch	apter 4					
	•					
			stants	for S	labs	101
-						105
						106
•						107
Tables						119
	Portland Cement Aggregates Water Reinforcement Ch RTIONING OF CONCE Definition of Terms Essential Requirements Proportioning of Conce Ch BENDING MOMENT Dead Loads Live Loads Diagrams and Formula Shearing Force Bending Moment Chart Bending Moment Table Ch OF R.C.C. SLABS Design Formulae, Stres and Rectangular Beams Two-way Slabs Examples Charts	Portland Cement Aggregates Water Reinforcement Chapter 2 RTIONING OF CONCRETE Definition of Terms Essential Requirements of Conc Proportioning of Concrete Chapter 3 BENDING MOMENTS AND Dead Loads Live Loads Diagrams and Formulae for B Shearing Force Bending Moment Charts for S Bending Moment Tables for S Chapter 4 N OF R.C.C. SLABS Design Formulae, Stresses and and Rectangular Beams Two-way Slabs Examples Charts	Portland Cement Aggregates Water Reinforcement Chapter 2 PRTIONING OF CONCRETE Definition of Terms Essential Requirements of Concrete Proportioning of Concrete Chapter 3 S. BENDING MOMENTS AND SHI Dead Loads Live Loads Diagrams and Formulae for Bendin Shearing Force Bending Moment Charts for Slabs Bending Moment Tables for Slabs Chapter 4 N OF R.C.C. SLABS Design Formulae, Stresses and Con and Rectangular Beams Two-way Slabs Examples Charts	Portland Cement Aggregates Water Reinforcement Chapter 2 PRTIONING OF CONCRETE Definition of Terms Essential Requirements of Concrete Proportioning of Concrete Chapter 3 S. BENDING MOMENTS AND SHEARD Dead Loads Live Loads Diagrams and Formulae for Bending Moment Charts for Slabs and I Bending Moment Tables for Slabs and I Chapter 4 NOF R.C.C. SLABS Design Formulae, Stresses and Constants and Rectangular Beams Two-way Slabs Examples Charts	Portland Cement Aggregates Water Reinforcement Chapter 2 RTIONING OF CONCRETE Definition of Terms Essential Requirements of Concrete Proportioning of Concrete Chapter 3 BENDING MOMENTS AND SHEARING FO Dead Loads Live Loads Diagrams and Formulae for Bending Moments Shearing Force Bending Moment Charts for Slabs and Beams Bending Moment Tables for Slabs and Beams Chapter 4 N OF R.C.C. SLABS Design Formulae, Stresses and Constants for Sand Rectangular Beams Two-way Slabs Examples Charts	Portland Cement Aggregates Water Reinforcement Chapter 2 RTIONING OF CONCRETE Definition of Terms Essential Requirements of Concrete Proportioning of Concrete Chapter 3 BENDING MOMENTS AND SHEARING FORCES Dead Loads Live Loads Diagrams and Formulae for Bending Moments and Shearing Force Bending Moment Charts for Slabs and Beams Bending Moment Tables for Slabs and Beams Chapter 4 N OF R.C.C. SLABS Design Formulae, Stresses and Constants for Slabs and Rectangular Beams Two-way Slabs Examples Charts

Chapter 5

RECTA	NGULAR BEAMS						Page
5.1	Beams with Tension	Reinfor	cement				131
5.2	Beams with Tension a	and Con	mpressi	on Rei	nforcer	nent	131
5.3	Steel Beam Theory		4.6		* *		133
5.4	Tables and Charts						134
5.5	Examples		• •				141
		Chapter	6				
T-BEA	MS AND LBEAMS						
6.1	General.						145
6.2	Practical Design	٠.					145
6.3	Design Formulae						147
6.4	Standard T-Beams						150
6.5	Illustrative Examples						154
		Chapter	7				
SHEAL	t						
7.1	General						161
7.2	Tables and Charts						162
7.3	Example	• •					166
		Chapter	8				
COLUI	MNS.						
8.1	General Formulae				* 1		171
8.2	Details of Columns						172
8.3	Effect of Slenderness	of Colu	imns o	n Safe	Load		174
8.4	Helical Binding of C	olumns					176
8.5	Estimates of Formwor	k for	Colum	ns		4	176
8.6	Charts and Tables of	Comm	only I	Used C	olumn	s	177
8.7	Columns with Eccentr	ic Load	ing or	Subject	ted to	B.M	192
8.8	Illustrative Examples			3.00			193

	Chapter 9			
COLUM	IN FOOTINGS			Pag
9.1	General			 19
9.2	Illustrative Example			 19
9.3	Safe Loads on Foundations			200
9.4	Design Tables			 20
	Chapter 10			
RETAIN	JING WALLS			
10.1	Small Retaining Walls			205
	Example			 200
				 200
CIDCIII	Chapter 11 AR TANKS			
	General			215
11.2	Illustrative Example			220
	Chapter 12			
	ENT KINDS OF CONCRETE			
	Prestressed Concrete			225
12.2	Precast (Prefabricated) Concrete		¥	227
12.3	Shot Concrete or Gunite			 228
	Lightweight Concrete	- 4		 231
	Air-entrained Concrete	4.7		 232
12.6	Colloidal Concrete or Colcrete			 232
12.7	Prepacked Concrete			 233
12.8	Saw Dust Concrete			 233
	Chapter 13			
MISCELI	LANEOUS INFORMATION			
13.1	Soil-cement			239
13.2	Asbestos Cement			249
13.3				 249
13.4				 251
13.5				 252
13.6	Effects of Acids, Oils and Salts on (Concrete		 252

Chapter 14

GE	NER	AL DATA, TABLES, ETC.					Page
		Crushing Strength of Stones .					265
		Strength of Lime Mortars					265
		Safe Permissible Loads on Maso	onry			4	265
		Wind Velocity and Pressure					266
		Water Velocity and Pressure.					266
		Working Stresses for Timber					267
•		Daily Task Work for Artisans		Labor	urers		268
		Properties of Circles etc					270
							271
		Moments of Inertia					272
		Conversion Factors				* *	273
		Metric Measures .					275
		Metric and Foot-Pounds Equiva	alent	5			276
		British Weights Expressed as In			ghts		279
		Weights and Measures					280

CHAPTER 1

MATERIALS

CONTENTS

	_						Page
1.1	Portland	Cement					3
	1.1.1	Definition					3
	1.1.2	Various kinds of ceme	ents (oth	er tl	nan or	dinary	3
	1.1.3	Storage				* .	6
	1.1.4	Standard specifications					6
	1.1.5	Adulteration					9
	1.1.6	Useful memoranda on	cement				9
1.2	Aggregat	tes					10
	1.2.1	Definition.					10
	1.2.2	General requirements					.10
	1.2.3	Site treatment of aggre	gates				10
	1.2.4	Storage of aggregates					11
	1.2.5	Tests on aggregates					12
	1.2.6	Miscellaneous notes					16
	1.2.7	Useful data on aggrega	ates				17
1.3	Water						18
	1.3.1	Function of water					18
	1.3.2	Field tests for water					18
	1.3.3	Quantity of water					19
	1.3.4	Useful data					19
1.4	Reinforce	ment					20
	1.4.1	Steel reinforcement					20
	1.4.2	General requirements					20
	1.4.3				rticular	s	20
	1.4.4	Areas, weights, etc. of		-			25
		-					

CHAPTER 1

MATERIALS

1.1 Portland Cement.

1.1.1 DEFINITION.

Portland cement is defined as a product obtained by intimately mixing together calcarcous and argillaceous and/or other silica, alumina, or iron oxide bearing materials, burning them at a clinkering temperature and grinding the resulting clinker. After burning no material other than gypsum or air entraining agents is added.

1.1.2 VARIOUS KINDS OF CEMENT (OTHER THAN ORDINARY CEMENT).

1.1.2.1 Rapid Hardening (also called High Early Strength Cement).

- (a) Materials used for manufacture: Same as ordinary cement but more carefully prepared and carrying higher lime content.
- (b) Burning operations: At a temperature higher than that of ordinary cement.
 - (c) Grinding: Finer than ordinary.
 - (d) Setting properties: Same as ordinary type.
- (e) Hardening properties: Attains in 7 days the strength of 28 days old normal cement and so saves cost of moulds, etc., by about 30 per cent.

1.1.2.2. For other properties see page 8.

1.1.2.3 White Cement and Coloured Cement.

(Note.—White cement "Silvicrete" is now made in India by A.C.C. Ltd.)

- (a) Materials used for manufacture: Pure limestone free from any iron content.
- (b) Strength, etc.: Up to B.S.S. or I.S.S., but slightly less than normal cement.

Coloured cement is made by mixing white cement with inorganic colours about 5 to 10% at the time of grinding.

1.1.2.4 Aluminous (also called High Alumina) Cement.

[Not made in India. Imported brands are: Ciment Fondu Lightning (U.K.), Lumnite (U.S.A.) etc.]

(a) Manufacture : Mixture of bauxite and lime is heated

to fusion at high temperature.

- (b) Setting: Initial Between 2 and 6 hours. Final Within 2 hours of initial set.
- (c) Hardening: Very rapid. Final strength developed within 24 hours.
- (d) Special qualities: Immune from attacks of sea-water, sulphate bearing waters, frost, etc. Forms excellent refractory concrete stable up to 1500°C.

Precautions: Contamination with ordinary cement to be avoided. Other properties see Table on page 8.

1.1.2.5 Portland Blast Furnace Slag Cement.

- (a) Manufacture: Clinker of normal Portland cement is ground with 65 to 25% of granulated slag.
- (b) Properties: Same as ordinary cement; advantageous for marine structure and massive structures e.g. dams, and in sulphate-bearing soils.

For other properties see page 8.

1.1.2.6 Masonry Cement.

- (a) Manufacture: Ordinary Portland cement is mixed with hydrated lime or calcium or aluminium stearate or paraffin oil.
- (b) Properties: Gives more workable and plastic mortar and hence more suitable for masonry and plaster works.

1.1.2.7 Low Heat Cement.

(a) Properties: Less heat is evolved during setting. Hence more suitable for large mass concrete works, where heat of hydration does not dissipate easily and so cracks the concrete after cooling. It however hardens a little slowly.

For other properties see page 8.

1.1.2.8 Air Entraining Cement.

- (a) Manufacture: Rosin and Vinsol resin or vegetable fats and oils such as tallow and olive oil and other fatty acids such as stearic and oleic acids are ground with ordinary cement.
- (b) Properties: Development of microscopic air bubbles while setting forms minute voids in the concrete and increases

its resistance against freezing, and scaling action of salts like calcium chloride, etc. Three to five per cent air trapped in the concrete in the form of tiny individual bubbles improves the workability of the concrete, permitting a reduction in the water cement ratio, reduces shrinkage and improves durability, etc.

1.1.2.9 Pozzolanic or Silica Cement.

- (a) Manufacture: Ordinary cement clinker and pozzolana (about 30%) are ground together. The pozzolana may be natural such as diatomaceous earth or pumice, or artificial such as burnt clay.
- (b) Properties: The pozzolana reacts with free lime in the concrete which otherwise is affected by corrosive water. Addition of pozzolana also improves such qualities of the concrete as water-tightness and fire resistance. The concrete is also of low heat type.

1.1.2.10 Modified Cement.

Gives lower heat of hydration than normal cement and has improved resistance to sulphates.

1.1.2.11 Extra Rapid Hardening Cement.

Has a rapid initial set that may vary according to temperature from 5 to 30 minutes and its hardening rate is considerably faster than that for rapid hardening Portland cement. This cement is intended to allow concreting to proceed in cold weather. It is also used when very high early strength is required. Mixing and placing operations should be speeded up so that the concrete is placed before initial set takes place and preferably within 15 minutes. Shrinkage may be a little greater than when ordinary cement is used.

1.1.2.12 Water-repellent Portland Cement.

Is mainly used in renderings to check moisture penetration. When used in concrete it is most important to control the composition of the mix and the mixing time very carefully or too much air may be entrained and the strength of the concrete reduced.

1.1.2.13 Waterproof Portland Cement.

Is not subject to air-entrainment and therefore needs no precautions during mixing apart from the care always required in making good concrete. Concrete made with it has

rather more resistance to penetration by water and some oils than has concrete made with ordinary Portland cement.

1.1.2.14 Sulphate-resisting Cement.

Is specially designed to resist attack by mineral sulphates in soils and ground waters (up to 0.1 per cent sulphur trioxide in ground waters and up to 0.5 per cent sulphur trioxide in subsoil. It is essential that concrete used in situations where sulphates are present be dense and well made.

1.1.2.15 Super-sulphated Cement.

Resists attack by the highest concentration of sulphates normally found in ground waters and soils, and by peaty acids and vegetable oils. It also stands up to some acids and oily liquids. Its early strength is similar to that of Portland blast furnace eement (B.S. 146), but it has higher strength from three days onwards. It is also a low-heat eement.

Concrete mixes are similar to those for ordinary Portland cement, but should not be leaner than 1:6, and over-sanding should particularly be avoided. For rendering or mortar 1:2 or 1:2½ is recommended. Surfaces of freshly laid concrete should be kept moist for three days or a powdery finish will result.

1.1.3 STORAGE.

All possible precautions for keeping moisture away are necessary. The storage shed should have a pucca floor raised at least 6 inches from ground, with air-tight doors and windows. Bulk storage is preferable for longer interval. Fig. 1-1 gives a design of an ideal godown.

Reduction of Strength in Storage.

The following reduction may be expected at 28 days:—
After storage of 3 months 20% minimum.

After storage of 6 months 30% minimum.

After storage of 1 year 40% minimum.

After storage of 2 years 50% minimum.

1.1.4 STANDARD SPECIFICATIONS.

Summary of specifications controlling the manufacture of various cements, used in India is given on page 8.

TOTAL CAPACITY
OF BUILDING
PASSAGE: 1900 BAGS.
WHEN PILED
IS BAGS HIGH

DOTTED LINES SHOW
FUTURE EXTERNION

24-0*

PLAN

Fig. 1-1 Suggested building for storing 65 tons of Portland cement

PROPERTIES OF CEMENTS

Type of Cement		Ordinary Portland Cement	Rapid-harden log Portland Cement (1)	Portland Blastfurnse Cement	Low-heat Portland Coment	High Alumina Cement	
Star	dard .	I. S. 269 (1958)	I. 8. 269 (1958)	I. 8. 455 (1953)	1, S, 269 (1958)	B. S. No. 91 (1947)	
-	Maximum Residue By weight on I.S. Test Sieve No. 9	10 per cent	& per ceut	10 per cent		8 per cent	
Fineness (3)	Minimum Specific Surface Sq. em per gm (A.P. method)	2250	3250	2250	3200	2250	
Minimum Tensile Strength(2)	1 day 3 days	20	20 30	20	=	=	
kg/cm²	7 days	25		30			
Minimum Compressive Strength (2) kg/em*	1 day 3 days 7 days 28 days	115 175	115 210 —	115 175	70 115 265	400 420	
Setting times	Initial	No	tiess than i	• 1	2 to 6		
(Hours)	Final	No	t more than 1	†10	†2 after Inititals ei		
Soundness (Le Chatelier)	Expansion	, No	t more than 10		†1 mm.		
Heat of hydration	7 days 28 Days		ne specified	Cals.perGM † 65 † 75	None specified		
	S-SiO ₁ A-Al ₂ O ₂ F-Fe ₂ O ₃ C-CaO	2.88+1.2A+0	C — 0.75 2.88 + 1.2A + 0.65 F			A •0.85 †1.8	
Chemical composition	Admixture after burning			with I. S. No. 269)	None (except gyp- sum and water)	None (except water)	
	MgO 80,	†5 per cent †2.75 per cent		†5%	15% 12.75%	_	
	Insoluble residue	†1.5%					
	Loss on Ignition	†4 per cent				-	

Notes: 1. 2.

[&]quot;High Early Strength Cement."
Alternative tests, Strength at any age must be greater than strength at earlier agea.
Alternative Tests (Except for Low Heat Portland Cement)
Denotes not less than,
Denotes not more than.

1.1.5 ADULTERATION.

Field Test for Adulteration.

- (a) A sample of doubtful stuff should be burned for about 20 minutes on a steel plate heated by a stove. Adulterated sample changes its colour, while unadulterated cement remains unchanged.
- (b) Make small pats, say 2"x2"x1" with adulterated and genuine cement. Pats made with doubtful cement can be broken easily with pressure of your fingers.

It is always advisable to send the sample to laboratory for full analysis and tests.

1.1.6 USEFUL MEMORANDA ON CEMENT.

1 jute bag contains 50 kg of cement.

1 ton of Portland cement-20 jute bags-24 cft.

1 barrel of cement in U.S.A. weighs 376 lb

6 barrels of cement make 1 tonne.

1 cft. of cement loosely filled weighs 90 lb

1 cft. of cement tightly packed weighs up to 110 lb in storage structures.

Silvicrete white cement weighs 85 lb per cft.

Rapid hardening cement weighs 75 lb per cft.

Ciment Fondu Aluminous Cement weighs 87 lb per cft.

1 cubic yard of cement-11/12 tons.

1 cubic foot of loose cement neat as cement paste will cover about 10.4 sq. ft. (1 inch thick).

1 cft. of neat cement (90 lb) will cover 2.2 sq. yds. (1" thick).

1 cft. of neat cement (90 lb) will cover 1.9 sq. yds. (#" thick).

1 cft. of neat cement (90 lb) will cover 1.7 sq. yds. (4" thick).

1 cft. of neat cement (90 lb) will cover 1.4 sq. yds. (f" thick).

1 cft. of neat cement (90 lb.) will cover 1.1 sq. yds. (1" thick).

1 cft. of loose Portland cement will make:

4.3 cft. of 1:2: 4 concrete. 5.0 cft. of 1:2\frac{1}{2}: 5 concrete.

5.8 cft. of 1:3 : 6 concrete.

7.5 cft. of 1:4 : 8 concrete.

1.2 Aggregates.

1.2.1 DEFINITION.

Inert material such as sand, pebbles, gravel, crushed stone, industrial by-products etc., which is mixed with Portland cement and water to produce concrete or mortar is called aggregate.

1.2.2. GENERAL REQUIREMENTS.

Necessary characteristics: The aggregates must be clean, dense, hard, durable, structurally sound, capable of developing good bond with cement, weather-resisting and unaffected by water. Aggregates for road work must have good wearing qualities. When fire-proof construction is needed the aggregates must possess fire-resisting qualities. In case of industrial byproducts, blast furnace slag, which is a non-metallic product consisting essentially of silicates and alumino silicates of lime and of other base obtained along with iron in a blast furnace, must not contain more than 40% lime. Cinders must be obtained as a product of high temperature combustion and must not contain more than ½% of sulphur and 1% of sulphates. Similarly coke breeze must be free from sulphur and unburnt coal.

1.2.3 SITE TREATMENT OF AGGREGATES.

Site treatment: This is necessary if the aggregate as supplied is short of requirement as regards cleanliness and grading. Screening can be done by hand or mechanically to adjust the grading. If the material requires cleansing, washing may be resorted to, but precautions against loss of fine material should be taken. A simple arrangement for mechanical washing device is shown diagramatically in Fig. 1-3.

1.2.4 STORAGE OF AGGREGATES.

Precautions.—Avoid storing on dusty, muddy or grassy spots. Dumps must be protected from exposure to dust. Old steel sheets or wooden planks may be used as platforms for storage. On large works storage bins may be used. When stored on ground, the bottom layer of aggregates, say 3" deep, should be rejected. Correct and incorrect methods of handling and storing aggregates are shown diagramatically in Fig. 1-4.

A. Belt Conveyor. B. Truck unloading material at the top of pile and allowing same to run down slope.

Fig. 1-4 (a)

When bins are used for storing aggregates they should have bottoms sloping about 50° in all directions and corners of the bottom should be properly rounded. [Flat or insufficiently sloping bottomed bins are not suitable.]

While filling the bins material should be made to drop in the centre and not against sides to avoid segregation.

Fig. 1-4 (b)

The aggregates should not segregate into various sizes while storing, otherwise there will be serious difference in the quality of concrete produced.

1.25 TESTS ON AGGREGATES.

1.2.5.1. Laboratory Tests.

- (a) Sieve analysis.
- (b) Determination of clay, silt and dust.
- (c) Determination of organic impurities.
- (d) Specific gravity and absorption.
- (e) Aggregate crushing test.
- (f) Bulk density or unit weight.
- (g) Determination of voids.
- (h) Test for coal and lignite.

Selection of sample.—Care is necessary to have a fairly representative sample. A large quantity, say 12 cwts., should be collected by taking one cwt. from different heaps. This should be reduced to required quantity by method of quartering as shown in Fig. 1-5.

Fig. 1-5. Method of quartering aggregates for sampling.

Minimum quantity.—Different tests require different minimum quantity of aggregates as given below:—

Test	To be supplied to the laboratory	To be tested
Sieve analysis 2½" to 1½" aggregates ‡" to ¾" aggregates Fine aggregates	l½ cwt. 1 cwt. 28 lb	50 lb 20 lb 1 lb
Determination of clay etc. 2½" to 1½" aggregates ‡" to ½" aggregates Fine aggregates	1 cwt. 28 lb 2 lb	14 lb 1 lb 1 lb
Specific gravity and absorption Coarse aggregates Fine aggregates	4 lb	2 lb
Aggregate crushing strength 2" to \frac{1}{2}" size \frac{1}{2}" to \frac{1}{2}" size Fine aggregates	2 cwt	1 cwt. 14 lb 2 lb
Bulk density Coarse aggregate Fine aggregate	2 cwt	75 lb 15 lb
Voids test Coarse aggregate Fine aggregates		500 cc 100 cc

- (a) Sieve test: A known weight of dry aggregates is passed through a set of standard sieves of size 3", 1½", ½", ½", ½", in the case of coarse aggregate, and Indian Standard Test Sieves Nos. 240, 120, 60, 30, 15, in case of fine aggregates, and percentage retained is noted.
- (b) Determination of clay, etc.: A certain fixed quantity of material is sieved through 240 sieve. Material retained on the sieve is washed with sodium oxalate solution of 0.8 grs. per litre strength. This solution is again sieved through No. 240 sieve, and 150 m.l. of this solution taken. This solution is mixed with the material that has passed the No. 240 sieve. A soft rubber pestle is used for mixing the material without causing any attrition. The mixture is kept in a sedimentation tube and after 100 seconds a certain amount is taken in a pipette. This quantity is evaporated in a crucible and weight of residue taken. From this data the percentage of clay, etc., is known.
- (c) Organic impurities: A 12 oz. medicine bottle is filled to 4½ oz. mark with sand and 3% solution of sodium hydro-oxide is added up to 7 oz. mark. The colour of the liquid is compared with standard colour chart.
- (d) Specific gravity: A certain sample of material properly washed to remove dust is dried in an oven and weighed. The sample is then immersed in distilled water and entrained air from the sample is removed by gentle rodding. The sample is then placed in a wire basket suspended in water and weighed. The weight of saturated sample immersed in water is thus obtained. The specific gravity is calculated from the result.
- (e) Aggregate crushing value: A weighed quantity of aggregates is placed in a metal cylinder fitted with a plunger. This plunger is subjected to a specified compression and the aggregate is sieved to remove the material crushed by the compression. The weight of the fines formed is expressed as a percentage of the total sample.
- (f) Bulk density: Weight of material held by a container of unit volume when filled under specified conditions is found out.
- (g) Voids: A cylindrical metal measure is filled one-third with water and dry aggregate is then added and tamped to exclude air. The process is repeated till the measure is filled to the top and further water added till the measure overflows. The volume of water added gives the volume of voids in the aggregate, from which the required percentage can be calculated.

(h) Coal and lignite: This is found by removing the particles by flotation in a liquid with a specific gravity of 2 (made from a mixture of carbon tetrachloride and acetylene tetrabromide).

1.2.5.2. Field Tests.

Sieve analysis is done in the same way as above but all the sieves are not necessary.

Silt test: A glass vessel is filled half with sand, and water is added up to three-fourth height. After shaking vigorously the contents are allowed to settle for one hour. This gives a fair idea about the quantity of silt in the sample.

Organic matter and void tests: Same as laboratory tests.

1.2.5.3 Particle Shape and Surface Texture.

In addition to above, a report on aggregates should also contain information about particle shape and surface texture of the aggregates as per following description:—

Fig. 1-6. Characteristic specimens of concrete aggregates.

(a) Particle Shape.

Classification	Description	Examples.
Rounded	Fully waterworn or completely shaped by attrition.	River gravel, wind blown sand, desert sand etc.
Irregular	Naturally irregular or partly shaped by attrition and having rounded edges.	Pit sand & gravels land or dug flints, cuboid rock etc.
Angular	Having well defined edges.	Crushed rock of all types.
Flaky	Material (usually angular) of which thickness is small relative to width and length.	Crushed rock of all types. Laminated rocks.

(b) Surface Texture.

Texture.	Example.
Glassy	Flint, vitrious sand.
Smooth	Slate, marble etc.
Granular	Sandstone, oolite etc.
Crystalline	Fine basalt.
	Medium dolerite.
Pitted fine slag	Coarse granite, gneiss etc.
Honeycombed porous	Coarse slag, brick, pumice, etc.

1.2.6 MISCELLANEOUS NOTES.

Bulking of sand: The volumetric expansion of sand due to moisture content is called bulking. Finer sands bulk more than coarser varieties. As the moisture increases and the sand

MATERIALS

becomes fully saturated, it occupies the same volume as dry sand.

Type of sand	% Moisture by weight	% Bulking by volume.
Fine	5 10 15 20 27	38 32 22 10
Medium	5 10 15 20	29 22 12 0
Coarse	5 10 15	18 12 2

1.2.7 USEFUL DATA ON AGGREGATES.

Wei	ght lb/c	ft.	
Fine and dry river sand (lo			 90
Medium ,			 95
Coarse			 100
Burnt clay ballast			 70
Beach or river shingle ?" to	1"		 100
Gravel-coarse loose, unscr			 115
Broken brick 2" to 3" guage	e		 80
" stone			 100
Stone screening # to #			 90
Broken granite 2" to 3"			 105
Granite chipping 1" down			 95
Coke breeze 1" down			 45
Clinker hard furnace 1" to	1"		 70
Pumice stone			 40
Blast furnace slag 11" to 2"			 90
Honeycomb slag			 40

Voids: (Approximate percentage)

Sand (moist	and fir	ne)				43
Sand (coars	e)					35
Sand (mixed	d)					38
Sand (dry n						30
Stone screen						58
Broken stor	ie 1" an	d under				46
,,	2"	**				45
21	21"	**			• •	41
		Specifi	c Gra	vity		
Trap						2.9
Granite						2.7
Slate	• •					2.7
Gravel	• •					2.66
Sand						2.65
Limestone						2.60
Sandstone						2.40

1.3 Water.

1.3.1 FUNCTION OF WATER

1.3.1.1 Chemical.

Water and various compounds in cement react chemically in the process of setting and hardening of cement. Portland cement contains about 65% of lime. For complete hydration of all the lime in 100 lb of cement about 21 lb of water are required. In setting, complete hydration does not take place: hence about 14 lb of water are sufficient.

1.3.1.2 Physical.

- (a) Water distributes the cement evenly so that every particle of stone and sand is coated by it and brought into intimate contact with each other.
- (b) Water acts as lubricant and gives workability to the mixture.

1.3.2 FIELD TESTS FOR WATER.

1.3.2.1 Acids.

Can be detected by litmus paper.

1.3.2.2 Sulphates.

Acidify the water with dilute sulphuric acid and then add a little barium chloride solution. Formation of white precipitate indicates presence of sulphates. This should be compared with the local tap water similarly treated.

1.3.2.3 Chlorides.

Acidify water with a little nitric acid and add a few drops of 10% silver nitrate solution. A thick white precipitate indicates chlorides.

1.3.2.4 Carbon dioxide.

Add a few drops of dilute hydrochloric acid. A rapid evolution of CO₂ will then take place.

1.3.3 OUANTITY OF WATER. .

(a) Mixing concrete.—For exact quantity, detailed information is given in chapter on proportioning of concrete, but for estimating purposes the following figures may be used.

Mix	1:3:6	1:2:4	1:13:31	1:11/2:3	1:1:2
Dry aggregates	71	61	6	5 <u>1</u>	5
Damp aggregates	61	6	51	5	41

(The above figures give quantity of water in gallons per cwt. of cement.)

(b) Other purposes.—For washing aggregates, curing, etc. 75 to 80 gallons may be assumed per 100 cft. of concrete work.

1.3.4 USEFUL DATA.

One cft. of water = 6.23 Imperial gallons.
= 7.48 U.S.A. gallons.
= 62.4 lb (at 60° F.).

One Imperial gallon = 4.55 litres.
= 4 qrts.
= 0.16 cft.
= 1.2 U.S.A. gallon.

One U.S.A. gallon = 0.83 Imperial gallon.

One ton of water = 1 cubic metre.
= 244 Imperial gallons.
= 35.9 cft.

One cft. of sea water = 64.1 lb

1.4 Reinforcement.

1.4.1 STEEL REINFORCEMENT.

Steel reinforcement comprises of:

- (a) mild steel rods,
- (b) cold drawn mild steel wire,
- (c) twisted bars, single or double,
- (d) welded fabrics,
- (e) expanded steel,
- (f) ribbed mesh steel sheets acting as shuttering also, and
- (g) R.S. sections such as joists, channels, rails, etc.

1.4.2 GENERAL REQUIREMENTS.

- (a) Freedom from surface defects.
- (b) Freedom from rust scales, (moderate surface rusting may be permitted).
- (c) Freedom from oil, grease or paint; (lime or cement wash is permissible).

1.4.3 STRUCTURAL REQUIREMENTS AND OTHER PARTICULARS.

(a) M.S. rods (b) Cold drawn M.S. wire

Material	Size D=Dia-		m Stress	Elon	gation	Internal radius of
	meter in inches	Yield	Ultimate	Length	per cent	cold bend
Mild Steel	Over 1" 1" To 1" Below 1"	Not spe- cified.	25 to 27	4.5D 9D 9D	24 20 16	1.5D D D
Medium Tensile Steel	Over 1" † To 1" Below †"	22 23 Do.	37	4.5D 9D 9D	22 18 14	1.5D D D
Cold Drawn Wire	All Sizes	Not Speci- fied	37 to 42	9D	71	D

(c) Twisted bars. (B.S. Standard).

Material	Size D=Dia-		um stress	Elong	ation.	Diameter
	meter in inches	Yield	Ultimate	Length	Percent	bend
Twin Twisted Bars	Over 1' f' to 1' f' to f' Below f'	54,000	63,000	5.7D 5.7D 11.3D 11.3D	16 16 14 12	3D 2D 2D 2D 2D
Twisted Square Bars	Over }" †!" to !" #" to †!" Below #"	60,000 Do. Do. 70,000	70,000 Do. Do. 80,000	4.5D 4.5D 9D 9D	16 16 14 12	4.2D 2.8D 2.8D 2.8D

D=Diameter of one round bar or side of square rod before being twisted.

Isteg twisted bars are mild steel bars treated by patent cold twisting and stretching process. The length after twisting is the same as original bars. Faulty rods break in the process of twisting, hence the rods which remain can stand higher stresses being without any defect. Yield point of these rods is at 54,000 lb per square inch. Bond stress of 540 lb per sq. inch and tensile stress of 27,000 lb per sq. inch can be permitted. Hooks, etc., which are required for anchorage can also be omitted and hence there is a saving of 33 per cent in weight of reinforcement.

- (d) Welded fabrics (Plain and twisted steel).—Several fabrics are available, names of a few being:
 - 1. B.R.C.

3. Matchar

2. Maxweld

4. Twist Steel

5. Spun Groove, etc.

Manufacture of plain fabrics is controlled by B.S.S. 1221.

The fabric is to consist of main wires and cross-wire electrically welded.

The fabric is to be made of hard drawn steel wire complying with B.S.S. 785 and can be made both in oblong and square

mesh. All joints and junctions are to be electrically welded. For twisted steel fabrics, cold twisted steel bars complying with B.S.S. 1144 are to be used. In case of oblong mesh, cross bars may be of plain hard-drawn steel wire complying with B.S.S. 785.

Fig. 1-7 B. R. C. Fabric.

(i) B.R.C. Fabric: Made from hard-drawn steel wire and consists of a wire mesh made up of a series of parallel longitudinal wires held at fixed distances apart by means of transverse wires at right angles to longitudinal wires (See Fig. 1-7). A higher working tensile strength of 25,000 lb per sq. inch is recommended by the manufacturers. Properties of standard sizes of B.R.C. Fabric are given in the following table. The fabric is available in sheets 7 ft. wide.

		Size of M	fesh and	or Wire		
Ref. No. of Fabric	Distance of Longi- tudinal	Distance of Cross	Gauge (Imp	of Wire erial)	Sectional Area Per Ft.	Weight Lb/ d.
rabiic	Wires, Inches	Wires, Inches	Longi- tudinal	Cross	Width Sq. In.	<i>y</i> =.
1 2 3 4 5	3	16	4/0 3/0 2/0 1/0	4 4 6 6 6	.5027 .4347 .3805 .3298 .2827	16.35 14.27 12.31 10.76 9.32
6 7 8 9 10	3	16 12 	2 3 4 5 6	7 8 9 10 10	.2393 .1995 .1691 .1412 .1158	7.88 6.57 5.67 4.71 3.94
12 14 65 610	" 6 6	" 6 6	8 10 5 10	12 12 5 10	.0804 .0515 .0706 .0257	2.72 1.83 4.32 1.58

(ii) Maxwell fabrics: These are also of the same type as B.R.C. and their references Nos. 403, 303, 203, 103, 1, 2, 3, 4, 5B, 6, 8, 10, 56 and 106 correspond approximately with Reference Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 65 and 610 of B.R.C. fabrics.

Fabrics Nos. 3, 4 and 5 are not very common in this country and hence particulars of the same have not been given.

(e) Expanded steel: This is made from steel plates and sheets by cutting them and expanding them into diamond-shaped meshes of different sizes. Manufacture is controlled by B.S.S. 1221, Part C, main requirements being:

The blank steel plates shall have ultimate stress between 26 to 32 tons per sq. inch.

The strength of the fabric is Minimum ultimate tensile stress 75,000 lb per sq. in.

22	yield stress	50,000 ,,	"
22	elongation	71%	

Due to absence of any joints in the mesh work the fabric can be stressed to 20,000 lb per sq. inch in design work.

(f) Ribbed mesh steel sheets (See Fig. 1-8): The 'V' shaped ribs give rigidity to the fabrics and the meshwork is so shaped that it retains the wet concrete without appreciable loss of the same through the openings. Only timber joists are required for supporting the fabric at definite intervals depending upon the thickness of slab. This type of reinforcement is very convenient and economical in case of curved surfaces where

'V'-SHAPED RIB

HY RIB RIBBED MISH SHEET

Fig. 1-8

shuttering cost is heavy (see Fig. 1-8). "Hyrib" and "Self-sentering" are two common trade names for such reinforcement available in this country in pre-war days.

1.4.4 AREAS, WEIGHTS, ETC. OF BARS. Round and Square M.S. Bars.

Weight in pounds per lineal foot. Area in sq. inches and Perimeter in inches.

Dia-		Ro	und			Squ	uare	
meter or Side in inches	Weight	Area	Peri- meter	Lineal feet in 1 cwt.	Weight	Area	Peri- meter	Lineal feet in 1 cwt.
3/16	.094	.028	.589	1192	.120	.035	.75	933
1/4	.167	.049	.785	667	.213	.062	1.00	526
5/16	.261	.077	.982	428	.332	.097	1.25	337
3/8	.376	.110	1.178	297	.478	.140	1.50	234
7/16	.511	.150	1.375	218	.651	.191	1.75	172
1/2	.669	.196	1.571	167	.849	.250	2.00	132
9/16	.845	.248	1.767	132	1.076	.316	2.25	104
5/8	1.043	.307	1.963	107	1.328	.390	2.50	84
11/16	1.262	.371	2.160	88	1.607	.472	2.75	70
3/4	1.502	.442	2.336	74	1.912	.562	3.00	59
12/16	1.763	.518	2.553	63	2.245	.660	3.25	50
7/8	2.044	.601	2.749	54	2.653	.765	3.50	43
15/16	2.347	.690	2.945	45	2.988	.879	3.75	37
1	2.670	.785	3.142	42	3.400	1.000	4.00	33
11	3.380	.994	3.534	33	4.343	1.265	4.50	26
11	4.172	1.227	3.927	27	5.312	1.562	5.00	22
14	5.049	1.484	4.320	22	6.428	1.820	5.50	17.5
11	6.008	1.767	4.713	18.5	6.650	2.250	6.00	15.6
2	10.68	3.141	6.283	10.5	13.60	4.000	8.00	8.2

		I	Areas pe	r foot	width fo	r vario	us spac	ings.		
Spac- ing				Diam	eter of	bars.				
	3/16"	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8*	1"
3"	0.110	0.196	0.307	0.442	0.601	0.785	1.227	1.767	2.405	3.142
31"	0.095	0.168	0.263	0.379	0.515	0.673	1.052	1.515	2.060	2.690
4"	0.083	0.147	0.230	0.331	0.451	0.589	0.930	1.325	1.804	2.356
41"	0.074	0.131	0.205	0.295	0.401	0.524	0.818	1.178	1.604	2.090
5	0.066	0.118	0.184	0.265	0.361	0.471	0.736	1.060	1.443	1.885
51"	0.060	0.107	0.167	0.241	0.328	0.428	0.669	0.964	1.312	1.714
6"	0.055	0.098	0.153	0.221	0.301	0.393	0.614	0.884	1.203	1.571
61"	0.051	0.091	0.142	0.204	0.278	0.365	0.566	0.816	1.110	1.450
7"	0.047	0.084	0.131	0.189	0.258	0.337	0.526	0.797	1.031	1.346
71"	0.044	0.079	0.123	0.177	0.241	0.314	0.491	0.707	0.962	1.257
8"	0.041	0.074	0.115	0.166	0.225	0.295	0.461	0.663	0.902	1.178
81"	0.039	0.069	0.108	0.156	0.212	0.272	0.433	0,624	0.849	1.109
9"	0.037	0.065	0.102	0.147	0.200	0.262	0.409	0.589	0.802	1.047
91"	0.035	0.062	0.097	0.140	0.190	0.248	0.388	0.586	0.760	0.992
10	0.033	0.059	0.092	0.139	0.180	0.236	0.368	0.530	0.722	0.942
101"	0.032	0.056	0.088	0.126	0.172	0.224	0.351	0.505	0.687	0.898
11	0.030	0.054	0.084	0.120	0.164	0.214	0.335	0.482	0.656	0.857
12"	0.028	0.049	0.077	0.110	0.150	0.196	0.307	0.442	0.501	0.785
15"	0.022	0.039	0.061	0.088	0.120	0.157	0.245	0.359	0.481	0.628
18"	0.018	0.032	0.051	0.074	0.100	0.131	0.205	0.295	0.401	0.524
24"	0.014	0.025	0.038	0.055	0.075	0.098	0.153	0.221	0.301	0.393

						Areas fo	Areas for given Numbers (sq.	umpere	(ad - fu-)					
							Dismete	Diameter of Bars						
Nos.	3/16	1/4"	8/16"	3/8	7/16"	1/2	8/8	3/40	7/8	74	34"	11	11.	74.
1	0.028	0.040	0.077	0.110	0.150	0.196	0.307	0.442	0.601	0.785	0.994	1.87	1.484	1.767
2	0.055	0.008	0.153	0.221	0.301	0.393	0.614	0.884	1.203	1.671	1.988	2,45	2.97	3.63
92	0.082	0.147	0.230	0.331	0.461	0.680	0.920	1.325	1.804	9.36	2.98	89.68	4.45	5.30
+	0.110	0.196	0.307	0.442	0.601	0.785	1.227	1.767	2.41	3.14	8.88	4.91	6.94	7.8
2	0.138	0.245	0.384	0.552	0.752	0.982	1.534	2.21	3.01	3.93	4.97	6.16	7.42	8.8
9	0.165	0.208	0.460	0.663	0.005	1.178	1.841	2.66	19.8	4.71	8.8	7.36	8.91	10.60
7	0.193	0.344	0.657	0.773	1.062	1.374	2.15	3.09	4.21	6.50	9.0	8.59	10.39	12.37
80	0.221	0.393	919.0	0.884	1.202	1.571	2.45	3.68	4.81	6.28	7.96	9.85	11.88	14.14
o l	0.248	0.442	0.690	0.994	1.353	1.767	2.76	3.98	6.41	7.07	8.95	11.04	13.36	15.90
10	0.276	0.401	0.767	1.104	1.503	1.963	\$.07	4.42	0.01	7.85	16.0	12.27	14.85	17.67
11	0.304	0.640	0.844	1.215	1.654	2.16	3.37	4.86	6.61	8.64	10.08	13.50	16 33	19.44
12	0.331	0.580	0.920	1.895	1.804	2.36	8.68	6.30	3.1	9.42	11.93	14.73	17 82	21.21
13	0.359	0.638	0.997	1.436	1.054	2 65	3.90	5.74	7.82	10.21	12.99	15.95	19.30	20.21
14	0.387	0.687	1.074	1.547	2.10	2.75	1.30	6.10	8.40	11.00	13.92	17.18	50 70	21 75
15	0.414	0.736	1.151	1.657	22.25	2.05	4.60	6.63	9.02	11.78	14.91	18.41	22 22	26.51
16	0.442	0.786	1.227	1.768	2.41	3.14	16.4	7.07	9.62	12.57	15.90	19 64	E ST	72 82
17	0.469	0.836	1.304	1.878	2.56	3 34	21.0	7.61	10 22	13.55	16.90	20 86	22 22	30 04
18	0.497	0.884	1.381	1 980	2.71	3.63	5.52	7.96	10 88	14.14	17.89	21	26 73	31.81
10	0.626	0.933	1.457	\$.10	2.86	3.73	8.8	8.30	11.43	14.92	18.89	23. 25.	22.22	23 57
22	0.562	0.982	1.534	15.5	3.01	3.93	6.14	8.84	12.03	15.71	19.88	24.54	99 70	25 24

					Weig	of per so	. yard to	Weight per sq. yard for various specings (10.)	spacing	(10°)				
							Diameter	r of bars						
Spacing	\$/16	1/6"	5/10-	8/8	7/16-	1/2	5/8"	3/4.	7/8	1.	11.8	11/6	13/8	11/2
21.	4 .06	7.23	11.27	16.94	22.08	28.86	45.06	64.88	88.50	115.34	146.02	180.23	218.12	260.00
20	8.30	8.02	9.41	13.53	18.40	24.04	37.60	24.07	73.70	96.12	121.68	150.19	181.60	216.28
38.	2.90	6.15	8.07	11.60	15.72	20.61	32.20	46.40	68.80	82.30	104.30	128.73	155.80	185.39
	2.54	4.51	7.07	10.16	13.80	18.03	28.16	40.55	55.40	72.00	91.26	112.64	136.32	162 22
1.17	2.26	4.01	6.27	9.05	12.26	16.05	25.03	\$6.10	49.20	80.10	81.20	100.13	121.21	144.20
2.	2.03	3.61	5.64	8.12	11.01	14.42	22.62	\$2.50	44.20	57.67	78.20	90.08	109.05	120.77
2.5	1.86	3.28	5.13	7.38	10.01	13.12	20.50	29.51	40.25	52.59	68.50	81.99	99.25	117.20
.0	1.60	3.01	4.71	8.78	9.20	12.03	18.77	27.02	36.84	48.10	60.84	75.09	80 87	108.14
.49	1.56	2.78	4.34	6.25	8.49	11.09	17.32	24.05	34.67	44.40	58.25	69.48	83.80	99.82
2	1.45	25.55	4.03	\$.80	7.85	10.31	16.09	23.17	31.68	41.20	62.20	64.37	77.89	92.80
71.	1.35	2.41	8.77	5.41	7.36	9.62	15.02	21.68	20.50	38.50	48.80	80.08	72.71	86.80
8	1.27	2.20	3.52	5.07	8.90	9.06	14.08	20.31	27.70	\$6.10	45.53	56.30	68.16	81.25
8	1.19	2.12	3.32	4.76	8.60	8.40	13.25	19.06	26.07	38.97	43.06	53.10	84.15	78.60
8	1.13	2.00	3.14	4.61	6.14	8.0%	12.51	18.02	24.53	32.08	40.80	90.09	99.00	72.30
10	1.07	1.90	2.97	4.27	6.70	7.59	11.86	17.06	23.28	\$0.38	38.60	47.42	67.39	68.50
10,	1.02	1.80	60.00	4.06	5.51	7.20	11.26	16.22	22.08	28.80	\$6.58	45.06	29.19	64.88
11.	0.03	1.64	2.57	3.69	5.03	9.56	10.24	14.74	20.02	28.22	\$3.30	40.96	49.57	68.90
20	0.86	1.50	2.36	8.38	4.6	6.02	0.30	13.62	18.41	24.00	30.42	37.54	45.44	24.07
18,	0.68	1.20	1.88	2.71	3.68	4.61	7.54	10.82	14.72	19.20	24.38	30.10	36.35	43.28
18,	0.56	1.00	1.87	9. 98	8 8	10.4	A 9A	0.03	12.26	18.02	20.23	25.04	30.29	\$6.05

CHAPTER 2

PROPORTIONING OF CONCRETE

CONTENTS

2.1	Definition	of Terms .			• •		Page 31
2.2	Essential	Requirements of Co.	ncrete .			٠.	34
2.3	Proportion	ning of Concrete	• •				35
	2.3.1	Arbitrary method		• •			35
	2.3.2	Voids method	• •	• •			35
	2.3.3	Fineness modulus n	ethod				36
	2.3.4	Grading curves met	hod		• •		45
	2.3.5	Method of trial mi	xes				54

CHAPTER 2

PROPORTIONING OF CONCRETE

2.1 Definition of Terms.

2.1.1 INTRODUCTION.

Concrete is a mixture of cement, water and aggregates, which consolidates into a hard mass due to chemical reaction between cement and water. Each of the four ingredients has its separate function. Coarse aggregates act as filler. Fine aggregates fill in the voids in the coarse aggregates and cement and water form the binder. The science of proportioning of concrete is therefore mainly concentrated on the principle of obtaining a durable and strong concrete at the most economical rate. It is obvious that a properly designed concrete mix for certain requirements of strength should have the minimum possible ecment content to make the mix economical.

2.1.2 WATER-CEMENT RATIO.

It is the ratio of weight or volume of water used for mixing (correction of absorption by aggregates should be made), to weight or volume of cement in the concrete mixture. It may also be expressed as so many gallons of water per cwt. of cement Since volume of cement is a variable term depending upon the manner in which a volumetric measure is filled, it is now common to express the water cement ratio on weight basis. Prof. D. Abrams discovered that the strength of concrete is solely governed by the amount of water used in making the concrete and is independent of the ratio of cement to aggregates provided the concrete is workable. The results of thousands of experiments carried out by him with various cement aggregate ratios are shown in Fig. 2-1 from which it will be noted that mixes varying from neat cement to 1:15 give the same strength. The countion of the curve is:—

$$S = \frac{A}{Bx}$$
 or log $S = \log A - x \log B$

S=compressive strength in Ib./sq. inch.

x= Volume of mixing water
Volume of cement

(Note.—1 cft. of cement is assumed to weigh 94 lb)

A and B are constants depending upon age of concrete, quality of cement and aggregates, climatic conditions, mixing, etc.

For washed and graded gravel, and for workable mix mixed in a machine for one minute, the values of A and B are: A-14000 and B-9 for 28 days strength (for special control B-7).

Note:—Lean and rich mixtures give same strength for same w/c ratio. The figures represent cylinder strengths, which are three-fourths the corresponding cube strengths approximately.

Flg. 2-1

It should be noted that though the water cement ratio law holds good universally the values of the constants A and B may vary according to the quality of cement, aggregates, etc. The values of compressive strength as given in curve in Fig. 2-1 are low, compared to present day values, as there is considerable progress in the manufacture of cement. The following values should therefore be used. Where the magnitude of the job permits the values of the constants should be found by actual experiments.

	Crushing Strength	Ratio	Water-Cement Ratio			
Remarks	lb./ " @ 7 days	By volume	By wt.	Gals/cwt.		
mix too	5600	.52	.36	4		
dry for	4950	.58	.40	41		
hand com-	4300	.64	. 45	5		
paction	3750	.71	.49	5 5 5 2 6		
mix work	3250	.77	.54	6		
able for	2850	.83	.58	61		
hand com-	2400	. 90	.63	7		
paction	2120	.96	.67	71		
paction	1850	1.03	.71	7½ 8		
wet mix	1670 -	1.10	. 76	81		
Swel Illix	1500	1.16	.80	9		

(Note.—The figures are for cube test.)
(One cwt, of cement=1.25 cft.)

2.1.3 WORKABILITY.

It has been defined in the simplest form as ease with which concrete can be mixed, handled, transported and placed. Workability will therefore vary according to the type of mould that is being used for the concrete structure under construction, and the obstruction to the free flow of concrete caused by the spacing and nature of the reinforcement. Rational measure of workability is therefore not easy. A more scientific definition of workability would therefore be that property of concrete which determines the amount of useful internal work required to produce full compaction.

Measurement of Workability.

(a) Slump test is very widely used in practice. Sometimes, however, accurate results are not possible by this test due to distorted slumps as shown in figure below. (Fig. 2-2.)

Fig. 2-2. Distorted slump.

(b) Compacting factor test.—It is a better test and depends on the definition of workability on basis of internal work as mentioned above. The apparatus used consists of two inverted cone hoppers and a cylindrical container (vide Fig. 2-3).

Fig. 2-3

A is filled fully with representative sample of concrete. The hinged door at bottom is opened and concrete falls into B. The hinged door of B is then opened and concrete falls into C from which surplus concrete is struck off with steel floats. The contents of C are then weighed, the weight being say W. C is again filled with the same sample, in 2 inch layers, the concrete being compacted by heavy ramming or vibration, and then weighed, weight being say w. The compacting factor is then W/w.

2.2 Essential Requirements of Concrete.

These are:-

- (a) Strength.
- (b) Durability.
- (c) Resistance to wear.
- (d) Water-tightness.
- (e) Compactness.
- (f) Workability.
- (g) . Economy.
- (a) Strength.—The capacity to withstand without injury the stresses developed when being used as a structural material.

- (b) Durability.—The property of resisting the chemical and physical destructive actions, such as—
 - (i) Leaching due to lime contents in the cement being dissolved by pure and distilled waters.
 - (ii) Expansion and contraction resulting from temperature and alternate drying and wetting.
 - (iii) Freezing and thawing of water sucked in small crevices by capillary action.
 - (iv) Disintegration by alkaline, acidic or saline waters.
- (c) Resistence to wear.—Especially in case of pavements and roads.
- (d) Water-tightness.—Obstructing through passage of water after initial absorption takes place.
- (e) Compactness.—Is the proportion between the volume of concrete produced and the absolute volume of the aggregates and cement used.
- (f) Workability.—Ease with which concrete can be handled, transported and placed.
- (g) Economy.—Is effected by using local aggregates with minimum amount of cement and designing the mix properly to get the specified strength.

2.3 Proportioning of Concrete.

There are various methods of proportioning as given below.

2.3.1 ARBITRARY PROPORTIONS.

The proportions of cement, sand and coarse aggregates are specified as 1:2:4; 1:3:6, etc., mostly by volume.

2.3.2 SIMPLE VOIDS METHOD.

Voids in the coarse aggregates are to be filled in by the sand and voids in sand are to be filled in by coment paste. Ten per cent extra sand and 15 per cent extra cement paste are provided to allow for additional voids created by wedging action of sand particles on the coarse aggregates and that of cement particles on the sand.

Example.—Design a concrete mix if coarse aggregates and sand have 43% and 32% voids respectively.

Sand required for 100 cft. of coarse aggregate =43+.43×10=47.3 cft.

Cement paste required = $(47.3 \times .32) + (47.3 \times .32 \times .15) = 17.406$ cft. ... Dry cement required= $17.406 \times 1.2 = 20.9$ cft. =20.9 cft.

... Proportions of cement: sand: coarse aggregate == 20.9: 47.3: 100 == 1: 2.31: 4.9

2.3.3 FINENESS MODULUS METHOD.

2.3.3.1 Object.

The arbitrary mix method described in para 2.3.1 has certain drawbacks, as the exact strength of the arbitrary mix is not known and such mixes are usually uneconomical. It is, therefore, necessary to specify concrete of a stipulated strength, and to work out an economical mix by some rational method. The following paras explain in a simple manner the convenient methods which may be adopted with advantage.

2.3.3.2 Variables in Design of Concrete Mix.

The variables in the design of a mix are:

- (a) Water-cement ratio.
- (b) Cement content for a unit quantity of concrete.
 - (c) Workability, grading of aggregates, and proportions of fine and coarse aggregates.

2.3.3.3 Data required for Designing a Concrete Mix.

It is necessary to ascertain the following data before designing a satisfactory concrete mix.

The safe compressive strength of concrete to which a structure is designed is specified and the workability required is also given. As use has to be made of available aggregate, the grading of both coarse and fine aggregates, their weights, their bulking percentage and the water content must be known. These can be easily determined.

2.3.3.4 Relation between the Minimum and Average Crushing Strength.

Table 1 gives the estimated relation between the minimum and average crushing strength of works cubes for different conditions.

This serves as a guide for determining the average strength on which the mix design is to be based when the minimum strength is specified.

2.3.3.5 Water-Cement Ratio.

Table 2 gives the relation between the crushing strength and water-cement ratio for fully compacted concrete using ordinary Portland cement. The water-cement ratio is determined for the average strength.

2.3.3.6 Workability and Slump.

The degrees of workability for various requirements are given in Table 3, and knowing the conditions of work, the required slump is determined from this table.

2.3.3.7 Weight of Cement per 100 cft. of Concrete.

The quantity of cement per 100 cft. of concrete may be determined from Table 4 in which the total quantity of water per 100 cft. of concrete is given. These values divided by the water-cement ratio give the required quantity of cement.

2.3.3.8 Absolute Volumes of Water, Cement and Mixed Aggregates.

The quantity of water and of cement per 100 eft. of concrete being found, the absolute volumes of these two are obtained by dividing the weights by their absolute specific gravities. The absolute volume of mixed aggregate is then 100 minus absolute volumes of water and cement. The absolute specific gravities for cement, fine and coarse aggregates may be taken as 3.15, 2.65 and 2.8 respectively.

2.3.3.9 Determination of Fineness Modulii of Fine and Coarse Aggregates and Calculation of the Proportions of Fine and Coarse Aggregates.

The proportions of coarse and fine aggregates to produce optimum workability is obtained through Fineness Modulus. The fineness modulii of the coarse and of the fine aggregates are determined separately by ascertaining the percentage retained on each of the I.S. sieves.

The sum of the percentages retained divided by 100 gives the F.M. Suitable F.M. for mixed aggregates are given in Fig. 2-4 (a) & (b).

The percentage of fine aggregate is obtained from $\frac{F_o - F_m}{F_c - F_r} \times 100$. Values of F_o and F_f i.e. the F.M. of coarse and fine aggregates respectively, are determined as above and the value of F_m , the F.M. for mixed aggregate, is taken from charts in Fig. 2-4.

2.3.3.10 Absolute Volumes and Weights of Fine and Coarse Aggregates.

Once the proportions of coarse and fine aggregates are determined as explained, the absolute volumes of these aggre-

gates are obtained from these proportions. The weights of the aggregates are determined by multiplying the absolute volumes by absolute specific gravity and the weight of water.

2.3.3.11 Determination of Nominal Mix.

The nominal mix is obtained by dividing the weights of the various components by the weight of cement.

2.3.3.12 Quantity of Mixing Water Required.

In order to determine the quantity of mixing water required per 100 cft. of concrete, the free moisture in the aggregates has to be taken into account; the free moisture being obtained by multiplying the percentage of water in each aggregate by the weight required for 100 cft. of concrete. This free moisture is to be deducted from the total quantity of mixing water as determined in para 2.3.3.8.

2.3.3.13 Field Mix by Weight.

The field mix by weight is obtained by taking into consideration the free moisture in the aggregates in the nominal mix.

2.3.3.14 Field Mix by Volume.

It is often convenient to prepare a concrete mix by volume, and in such a case, bulking of the aggregates has to be taken into consideration. Bulking is the increase in volume of aggregates due to the presence of water. The method of correction for this item is shown in the example.

2.3.3.15 Quantity of Mixing Water Required per Bag of Cement.

The mixing water required after allowing for the free moisture in the aggregates is easily obtained by dividing the mixing water as obtained in para 2.3.3.12 by the number of bags of cement required per 100 cft. of concrete as determined in para 2.3.3.7.

Table 1

Estimated relation between the minimum and average crushing strengths of works cubes for different works conditions.

Conditions	Minimum strength as percentage of average strength.
Very good control with weigh- batching, constant supervision, etc.	75
Fair control	60
Poor control	40

Table 2

Relation between cube crushing strength and water-cement ratio by weight for fully compacted concrete (ordinary Portland cement).

Water-cement ratio	Cube crushing	strength p.s.i.
by weight	7 days	28 days
0.35	5,700	7,500
0.40	5,000	6,700
0.45	4,300	6,000
0.50	3,600	5,300
0.55	3,100	4,600
0.60	2,600	4,000
0.65	2,200	3,500
0.70	1,900	3,100
0.75	1,600	2,800
0.80	1,500	2,500

Notes: 1. Cylinder strength may be taken as 3/4 of cube strength.

2. Strengths at 3 months and 1 year are approximately 25% and 67% greater than the strength at 28 days.

Table 3

Degrees of workability for various requirements.

Degree of workability	Slump in inches	Use for which concrete is suitable.
"Very Low"	0 to 1	Vibrated concrete in roads or other large sections.
"Low"	1 to 2	Mass concrete foundation without vibration. Simple reinforced sections with vibration.
" Medium "	2 to 4	For normal reinforced work without vibration and heavily reinforced sections with vibration.
"High"	4 to 7	For sections with congested reinforcement. Not normally suitable for vibration.

Table 4.
Water content per 100 cft. of concrete for 3" slump.

Max. size of coarse aggregate	1	₹"	1"	11/2"	2"	3*
Water in lb.				-	a firmana a tanga	
(a) for rounded coarse aggregate	1241	1149	1111	1037	982	926
(b) for angular coarse aggregate	1333	1241	1204	1122	1074	1019

For each 1" increase or decrease in slump, increase or decrease the water content by 3 percent.

Fineness modulii of mixed aggregates for different maximum size of aggregates are given by chart in Fig. 2-4, for 3"-4" and 6"-7" slump.

Fig. 2-4 (a)
FINENESS MODULUS OF MIXED AGGREGATES.

Fig. 2-4 (b)
FINENESS MODULUS OF MIXED AGGREGATE

EXAMPLE

(Paragraph numbers in this example are identical with the paragraph numbers in the text of section 2.3.3.)

3. Data

- 3.1 Safe compressive stress-750 lb. per sq. in.
- 3.2 Workability-medium
- 3.3 Aggregates available
 - 3.3.1 Coarse aggregates

‡" gravel (rounded coarse aggregate) with 52% passing ‡" sieve.

	Weight of coarse aggregates Bulking percentage Water content Specific gravity 95 lb per cft. 2.56 1% 2.8.
	3.3.2 Fine aggregates % passing B.S. No. 100 sieve (15) 4 ,, 52 ,, (30) 22 ,, 25 ,, (60) 58 ,, 14 ,, (120) 76 ,, 7 ,, (240) 90 ,, 3/16 ,, (480) 100 (Figures in brackets indi-
	Weight of fine aggregates Bulking Water content Sp. gravity 3.4 Control Weight of fine aggregates 105 lb per cft. 14.3% 2% 2.65 Fair
4.	Average crushing strength = $\frac{750 \times 3}{0.6}$ (Refer Table 1)
5.	Water-cement ratio = 3,750 p.s.i. = 0.62 (Refer Table 2) (i.e. 7 gals/cwt of cement).
	Slump required = 3' (Refer Table 3) Determination of the weight of cement per 100 cft. of concrete.
	Weight of cement per 100 cft. of concrete Total quantity of water per 100 cft. of concrete Water-cement ratio (Refer per 100 cft. of concrete Water-cement ratio
	$= \frac{1149}{0.62}$
8.	= 1853 lb=16.6 bags. Absolute volumes of water, cement and mixed aggregates (Vide (c) para 2.3.5)
	8.1 Absolute volume of water = $\frac{1149}{62.4}$ = 18.4
	8.2 Absolute volume of cement $\frac{1853}{3.15 \times 62.4} = 9.4$
	Absolute volume of water and cement = 18.4+9.4 = 27.8 cft. 8.3 Therefore, absolute vol-
9.	ume of mixed aggregates = 100-27.8 = 72.2 cft. F.M. of fine and coarse aggregates and proportion of fine and coarse aggregates.
	:42

9.1 F.M. of coarse aggregate Fe

Parc T.C		
Sieve	Passing	Retained
3/4"	98 %	2%
3/8	52 %	48%
3/8 3/16	0%	100%
7	0%	100%
14	0%	100%
25	0%	100%
52	0%	100%
100	0%	100%
		650

$$F_c = \frac{650}{100} = 6.50$$

9.2 F.M. of fine aggregate F.

gate re		
Sieve	Passing	Retained
100	4%	96%
52	22 %	78 %
25	58%	42 %
14	76%	24 %
7	90%	10%
3/16	100%	0%
		250

$$F_f = \frac{250}{100} = 2.50$$

- 9.3 F.M. of mixed aggregates for \(\frac{1}{4}'' \) max. size of aggregates, 7 gals of water per bag of cement, 3" to 4" slump and cement content of 16.6 bags per 100 cft. of concrete, 4.90 (Ref. Fig. 2-4a)
 - 9.4 Percentage of fine aggregate=

$$\frac{F_{e}-F_{m}}{F_{e}-F_{f}} = \frac{6.50-4.90}{6.50-2.50} = \frac{1.6}{4.0} = 40\%$$

- 9.5 Percentage of coarse aggregate = 100 40 = 60%. 10. Absolute volumes and weights of fine and coarse aggregates.
 - 10.1 Absolute volume of fine aggregate=72.2×.40=28.9
 - 10.2 Absolute volume of coarse aggregate= $72.2 \times .60 = 43.3$
 - 10.3 Therefore the weight of fine aggregate per 100 cft. of concrete = $28.9 \times 2.65 \times 62.4 = 4778$ lb
 - 10.4 And weight of coarse aggregate per 100 cft. of concrete= 43.3×2.80×62.4=7567 lb
- 11. Nominal mix = $\frac{1853}{1853} : \frac{4778}{1853} : \frac{7567}{1853}$ = 1 : 2.58 : 4.08

12. Mixing water required per 100 cft. of concrete.

Water content of FA = $4778 \times .02 = 95$ lb

Water content of CA = $7567 \times .01 = 76$ lb

Total water content of FA and CA = 171 lb

Hence mixing water required=1149-171=978 lb=97.8 gallons per 100 cft. of concrete after allowing for moisture in the aggregates.

13. Field mix by weight (taking into consideration weight of water in aggregates)

$$\frac{1853}{1853} : \frac{4778 + 95}{1853} : \frac{7567 + 76}{1853}$$
$$1 : 2.63 : 4.13$$

14. Field mix by volume (taking into consideration bulking of materials)

Volume of cement in bags $\frac{1853}{112} = 16.6$ bags

Volume of FA Wt. of FA per allowing for bulking = Wt. of FA per (1+bulking percentage Wt. of FA per cft. of FA)

$$=\frac{4778}{105}$$
 (1 + $\frac{14.3}{100}$) = 52.0 cft.

Volume of CA Wt. of CA per

after allowing = 100 cft. of concrete (1+bulking percentage for bulking = Wt. of CA per cft. of CA)

$$= \frac{7567}{95} \times \left(1 + \frac{2.56}{100}\right) = 81.8$$

Field mix by volume is therefore

$$\frac{16.6}{16.6}$$
: $\frac{52.0}{16.6}$: $\frac{81.8}{16.6}$

1 bag cement: 3.14 cft. sand: 4.93 cft. of coarse aggregate

This works out to 1:2.28:4.00 when the aggregates are in the dry state.

15. Quantity of mixing water required per bag of cement after allowing for moisture in the aggregates

$$=\frac{97.8}{16.6}=5.89$$
 gallons

The quantity of water required is:

 $=\frac{1149}{16.6}=6.92$ gallons when the aggregates are in the dry state.

2.3.4 GRADING CURVES METHOD OF PROPORTIONING

- 2.3.4.1 In this method, the average crushing strength, water-cement ratio and the degree of workability are determined as in the previous method, use being made of Tables 1, 2 and 3.
- 2.3.4.2 The aggregate-cement ratio is obtained from Table 6. These ratios are given for \(\frac{3}{6}''\), \(\frac{3}{6}''\) and \(1\frac{1}{6}''\) aggregates and for four different gradings in each case, as depicted in graphs Nos. A, B and C.

- 2.3.4.3 Suitable proportions of fine and coarse aggregates are determined from these graphs as illustrated in the second example.
- 2.3.4.4 The nominal mix is read off from the results obtained in preceding para 2.3.4.3.
- 2.3.4.5 The field mix by weight is obtained by multiplying the nominal mix proportions by the weight of a bag of cement and adding the weight of free moisture.
- 2.3.4.6 The quantity of mixing water is obtained by multiplying the water-cement ratio by the weight of a bag of cement and deducting the free moisture in the aggregates.
- 2.3.4.7 The field mix by volume is obtained in the same way as in para 2.3.3.14.

The limitation of this method is that aggregate-cement ratio Tables are available for \(\frac{2}{3}'' \) and \(1\frac{1}{2}'' \) aggregates only at present.

Table 6 and graphs A and B and C are taken from the U.K. Road Research Laboratory Note No. 4 on "Design of Concrete Mixes", and Tables 1, 2 and 3 are based on data given in the same brochure. Hence B.S. Sieve Nos. are retained in this section.

TABLE No. 6a Aggregate-cement ratio required to give four degrees of workability with different gradings and types of aggregate.

Work	Degree of Workability		Very Low	Low			Low	A			Medium	E E			High	gh	
gate (Con Good Good Good Good Good Good Good Go	Grading of aggre- gate (Curve No. on Graph B)	-	64	60	4	-	61	m	*	-	61	m	7	-	©1	63	*
	0.35	4.6	4.5	80 73	8.2	80	3.6	3.2	3.1	3.1	3.0	20	2.7	63	e1	2.6	61
	0.40	8.8	6.3	5.3	5.6	5.3	5.1	4.0	4.1	4.2	4.2	3.9	3.7	3.6	3.7	3.5	63
' ‡'	0.45	8.0	7.7	6.7	8.0	6.9	8.8	5.0	5.1	5.3	5.3	5.0	40	4.6	+.8	10.4	4.1
Sisw	0.50			8.0	7.0	8.2	8.0	7.0	6.0	6.3	6.3	5.9	6.4	5.0	12	83 63	4.8
pà.	0.55				8.1			8.2	6.9	7.3	7.3	7.4	₹.9	6.3	6.0	6.1	10
oite.	09.0								7.7			8.0	4.5		1.2	6.8	6.1
r que	0.65								10				7.8		7.7	7.4	6.6
məc	0.70															7.9	7.2
-193	0.75																7.6
Wa	08.0																
	0.85																
	00 0																

Degree of Workability		Very	Very Low			Low	M			Medium	um			High	gh	
Grading of aggregate (Curve No. on Graph B)		61	က	4	-	61	m	+	-	C1	m	4	~	64	69	4
0.35	3.7	3.7	3.6	3.0	3.0	3.0	3.0	2.7	2.6	2.6	63	2.5	4.	2.5	2.5	2.2
0.40	8.8	4.7	4.7	4.0	3.9	3.9	80	30.	3.3	3.4	3.5	3.2	3.1	3.5	3.2	63
0.45	6.0	80	5.7	6.0	4.8	4.00	4.6	4.3	4.0	4.1	4.2	3.8		3.9	3.9	5.
o S	7.2	8.8	6.5	5.9	5.5	10	4.6	5.0	4.6	4.8	8.4	4.5		4.4	4.	4.1
W (8.3	7.8	7.3	6.7	6.2	6.2	6.0	5.7		5.4	5.4	10		*	9.9	4.7
0.60 0.60	9.4	8.6	8.0	7.4	8.8	6.9	6.7	6.2		6.0	6.0	5.6			4.10	10
0.0				8.0	7.4	7.5	7.3	6.8			6.4	6.1			50.00	5.6
0.70					8.0	8.0	7.7	7.4			8.8	8.8			8.2	6.1
0.75								7.9			7.6	7.0			6.8	#C
0.80											7.6	7.4				7.0
0.85				•							7.8	7.8				7.4
0.90												8.1				7 7
0.95																α
1.00																

6.3 6.7 7.0 2.7 00 63 2.1 3.00 5.5 High 5.00 4.9 6.1 3.5 CD 3.5 CV 3.0 6.3 2.0 2.2 2.7 3.3 7.8 6.9 7.3 4 2.3 2.9 3.9 5.8 8.6 7.1 7.5 8.0 00 Medium TABLE No. 6c 1 in. Crushed rock aggregate. 4.0 3.7 4.7 5.2 6.2 3.1 5.7 4.2 3.1 3.0 3.7 .3 8.4 5.3 20.00 6.8 ci 2.5 3.2 3.9 4.5 6.0 5.6 6.5 7.0 2.00 7.4 6.1 3 LOW 3 7.7 7.0 7.5 O 3.5 0.9 2.7 4.3 7.4 2.7 5.0 6.9 7.5 8.0 4.6 9.0 3.7 6.0 8.6 5.4 7.2 8.2 7.7 Very Low 3 4.2 5.8 5.0 6.6 7.8 8 64 4.5 6.5 7.2 3.2 5.5 7.8 8.3 8.7 Grading of aggregate (Curve No. Degree of Workability 0.35 0.40 0.45 0.60 0.55 0.60 0.65 0.70 0.75 08.0 0.85 0.90 0.95 8. Water-cement ratio by weight.

grading of aggre-		Very	Very Low			Low	*			Medium	ma			High	d.	,
on Graph C)	-	61	69	4	-	61	69	4	-	64	. 60	4	-	63	w.	*
0.35	4.0	3.9	3.5	23.53	4.6	3.3	83.20	61	2.9	2.8	2.6	20.02	15.7	2.5	2.3	61
0.40	6:3	5.3	4.7	4.3	4.6	10.4	4.2	8	89	3.8	3.7	3.4	es 53:	63	3	3.1
919M	8.5	6.5	6.9	6.3	5.6	6.8	5.3	8.	4.6	4.1	4.6	4.	4.1	7.4	4	4.0
0.50	7.7	7.7	7.1	6.3	6.7	8.8	6.3	5.7	5.4	5.7	6.5	5.1	4.8	43		4
otts:			8:3	7.3	7.6	7.8	2.50	8.6	6.2	6.5	6.3	80.		5.9	6.0	10
0.60								7.4	7.0	7.3	7.1	9.6			6.7	64
. 65 50.0								8.1	7.8	8.1	7.8	61			7.3	6.9
		÷			٠							7.9				7.4
W. 0.75					:	•.										×
0.80			•													

EXAMPLE ...

(Paragraph numbers in this example are identical with the paragraph numbers in the text of section 2.3.4.)

2.3.4.1 Data,

Safe compressive stress. 750 lb per sq. in.

Workability-Medium.

Aggregates available:				
Coarse aggregates	#" grav	el (rou:	nded	coarse
	aggregat	e) with	40%	pass-
	ing 3" sid	•		•
Weight of C.A.	90 lb per	cft.	g* 0. 0	
. Bulking percentage	2.56			
Water content	1%			
Fine aggregates	% passing	No 100	sieve	2
	,,	52	. ,,	10
•	,,	: 25	11	45
	•. #	14	**	67
		7	,,	87
		. 3	,,,	100
Weight of F.A.	. 100 lb pe	er cft.		
3 3. Bulking percentage	-14.3	****	. *	
Water content	2%			
Control	Fair			
Average crushing strength	$=\frac{750\times}{0.6}$		Tab	le 1)
•	$=3,750 \mathrm{m}$	o.s.i.		
Water-cement ratio	=0.62	(Refe	Tab!	le 2)
Slump required	3"	(Refe	Tabl	le 3)

2.3.4.2 Aggregate-Cement Ratio:

For a medium workability and w/c ratio of 0.62, two different aggregate-cement ratios are obtained from Table 6 as follows, irregular gravel being assumed:

For grading No. 3 ... 6.2 No. 4 5.8

For an economic mix, the aggregate-cement ratio must be as high as possible, i.e., in this case, our grading should approximate to standard grading No. 3 (please refer to graph B).

2.3.4.2 Proportions of Fine and Coarse Aggregates.

The following three trial mixes are prepared:

	Sand	Coarse
		Aggregate
A	30%	70%
B	35%	65 %
С	40%	60%

The sieve analysis of these three mixes is determined and the results are as follows:—

	Percentage	Percentage of material passing sieve						
B.S. Sieve	Sample containing 30% sand	Sample containing 35% sand	Sample containing 40% sand					
27 100	1							
No. 100	0.6	0.7	0.7					
,, 52	3.0	3.5	4.0					
,, 25	13.5	15.75	18.0					
,, 14	20.5	23.4	26.8					
., 7	26.0	30.4	34.8					
3/16 in.	30.0	36.0	40.0					
3/8 in.	58.0	60.0	64.0					
3/4' in.	-100.0	100.0	100.0					

Curves of these gradings are drawn on a tracing paper to the same scale as the optimum grading curves in graph A.

This tracing paper is superimposed on the optimum grading curves to ascertain which of the above three mixes approximates to optimum grading No. 3.

In this case, mix C approximates to optimum grading No. 3, hence, the mix containing 40% sand is suitable.

Hence proportion of sand
$$= 6.2 \times \frac{40}{100} = 2.48$$

and , of coarse aggregate $= 6.2 \times \frac{60}{100} = 3.72$

2.3.4.4 Nominal Mix.

Therefore the nominal mix =
$$1:2.48:3.72$$

say = $1:2.5:3.7$

2.3.4.5 Field Mix by Weight.

The quantities of materials required by weight are:

Cement =112 lb

Sand $2.5 \times 112 = 280$ lb plus weight of free moisture $(.02 \times 280 = 5.6) = 286$ lb

Gravel $3.7 \times 112 = 415$ lb plus weight of free moisture $(.01 \times 415 = 4.15) = 419$ lb

The field mix by weight is therefore—

$$\frac{112}{112}$$
: $\frac{286}{112}$: $\frac{419}{112}$ i.e. 1: 2.55: 3.74

2.3.4.6 Quantity of Mixing Water.

Water 0.62×112=69.5—free moisture in sand and coarse aggregate (9.75) =59.50 lb , =say 6 gallons

2.3.4.7 Field Mix by Volume.

The quantities of materials required by volume are:

Cement =1 bag

Sand $\frac{280}{100} \times 1.143 = 3.2 \text{ cft.}$

Gravel $\frac{419}{90} \times 1.0256 = 4.75$ cft.

The field mix by volume is therefore 1 bag: 3.2 cft.: 4.75 cft.

2.3.4.8 Remarks.

A slight variation in the mix from the results of the first example may be noted. This is due to the fact that the percentage of sand to gravel by the method of trial and error has been taken as 40 whereas in the first Example, it is calculated to be 40 by the Fineness modulus method.

2.3.5 THE METHOD OF TRIAL MIXES.

(Portland Cement Association, U.S.A.)

In this method also laboratory data on trial concrete mixes made with varying sizes and proportions of aggregates and water content are made use of, in arriving at the proper type of mix for a particular job. Various steps followed in this method are:—

(a) Selection of w/c ratio to get the strength and dura-

bility desired.

(b) Selection of slump for desired workability and

maximum size of aggregates to be used.

(c) Selection of approximate trial mix for the particular type of aggregates to be used on the job. The total water content and sand to coarse aggregate ratio of this trial mix is used and the exact trial mix for the given aggregates is calculated. If the aggregates as supplied in the field are wet, correction for moisture is made.

(a) W/C RATIOS FOR VARIOUS TYPES OF CONSTRUCTION OR EXPOSURE CONDITIONS

Type or Location		Wide R	or Mode ange of Long Fre	Tempera	turn	Mild Climate					
of Structure	Thin Section		Moderate Section		Heavy Section Mass	Thin Section		Moderata Section		Heavy Section	
	R.C.C.	Plain	R.C.C.	Plain	Concrete	R.C.C.	Plain	R.C.C.	Plain	Concrete	
At the Water Line in Hydraulic Structures Subject to Intermit- tent Saturation								. :			
In Sea Water In Fresh Water	.44 .49	.49	.49	.43	.63	.44 .42	.49	.44 ,63	.53		
Hydraulic Structures away from Water Line but subject to frequent wetting By Sea Water By Fresh Water	.49	.58	88	.63	.63	.49 .03	.53	.64	.02	.63	
Ordinary exposed Structures, Buildings, etc.	53	.68	.64.	.42	.62	53	.10	.02	.01	67	
Submerged Struc- tures. In Sea Water In Fresh Water	.63	.68	.88	.62	.62	.63	.51	.44	.62 .	.02	
Pavement Slabs Wearing Slabs Base Slabs	.40	.63	·			.82	.64				

Curves for selecting w/c ratio for particular strength.

(Portland Cement Association's figures.)

Fig. 2-5.

Results of experiments by Indian Railways for compressive strength of Indian cements (Standard Cylinders).

W/c Ratio by weight	.33	.45	. 55	.66	.78	.89
Min. Compressive Strength @ 7 days lb/□"	2900	2420	1980	1580	1200	920
Average Comp. Strength @ 7 days lb/	3500	3000	2550	2150	1780	1500
Average Comp. Strength @ 28 days taken as. 150% Strength @ 7 days	5250	4500	3825	3225	2670	2250

It will be noted that there is slight difference in the figure in the above two as well as those in table in paragraph 2.3.3. Hence the w/c ratio should be selected by judgment for small jobs and for important big jobs actual tests should be made and curves plotted accordingly.

(b) Slump for particular job:—To be selected according to nature of work. Maximum size of aggregates to be used will depend on nature of work and should be as per following table:—

Minimum dimension	Max. size of aggregate in inches								
of section in inches	R.C. walls beams & columns.	Unreinfor- ced walls	Heavily reinforced- Slabs.	Lightly reinforced Slabs.					
2 to 5	± to ‡	ŧ	‡ to 1	1 to 11					
6 to 11	1 to 11	11	11	1½ to 3					
12 to 29	11 to 3	3	11 to 3	3					
30 or more	11 to 3	6	3	3 to 6					

(c) Typical trial mixes.—These are given for medium consistency concrete made with coarse, medium and fine sand and rounded or angular coarse aggregate varying from ?" maximum size to 2" maximum size. In calculating the quantities of materials it is necessary to use the principle of absolute volume. It is assumed that in, say, 1 cubic yard of compact concrete water occupies all the voids in cement powder. The cement-water paste occupies all the voids in the sand, and mortar of cement and sand in its turn occupies all the voids in the coarse aggregate. Thus the volume of concrete produced by any combination of materials equals the sum of absolute volume of cement and aggregates and the volume of water. The absolute volume of a loose material is the actual total volume of solid matter in all the loose particles and is obtained as follows:—

Absolute volume = Wt. of loose material Sp. gravity × unit wt. of water

Specific gravities of materials used in concrete are:-

Cement 3.15; Sand 2.65; Gravel 2.65; Trap 2.80; Granite 2.70; Hard Stone 2.55; Lime Stone 2.65; and Water 1.0.

SUGGESTED TRIAL MIXES FOR CONCRETE OF MEDIUM CONSISTENCY. (Slump=3") Fine Sand. (F.M. 2.2. to 2.6) Rounded Coarse Aggregates.

Max.	Water	Sand		wt. of nent	Per C	ubic Yar	d of Co	ncrete	Yield Cubic ft
of C.A.	Gals/ Cwt of cement	%age of Total	Sand Lb	Gravel Lb	Water Lb	Cement	Sand	Gravel Lb	per Cwt of Cemen
1	5	41	200	290	310	6.2	1260	1800	4.35
11	5 5	36 32	185 178	325 380	300 280	6.1 5.7	1115 1020	1930 2180	4.43
2	5	29	178	430	270	5.4	960	2300	5.05
ŧ	51	42	230	320	310	5.6	1310	1810	4.8
111	5 <u>1</u> 5 <u>1</u>	37 33	215 203	362 415	300 280	5.4 5.2	1170 1055	1985 2170	4.93 5.20
2	51	30	203	475	270	4.85	985	2320	. 5.60
ŧ	6	43	263	345	310	5.2	1360	1800	5.20
111	6 6	38 34	245 232	394 451	300 280	5.0 4.8	1230 1110	1980 2165	5.35 5.65
2	6	31	232	520	270	4.45	1035	2300	6.10
ł	61	44	292	375	310	4.8	1400	1795	5.63
111	61 61	39 35	275 267	430 495	300 280	4.65 4.38	1265 1170	1980 2160	5.88 6.19
2	61	32	262	560	270	4.10	1080	. 2300	6.60
ŧ	7	45	327	400	310	4.45	1460	1775	6.1
1 11	7 7	40 36	304 292	460 520	300 280	4.30	1300 1200	1965 2130	8.3
2	7	33	292	590	270	3.85	1125	2275	7.0
1	71	46	361	430	310	4.1	1495	1765	.6.6
1 11	71 71	41 37	332 328	482 560	300 280	4.0 3.8	1345 1240	1945 2115	6.7
2	71	34	322	625	270	3.6	1160	2260	7.5
1	8	47	400	334	310	3.85	1540	1750	7.0
111	8	42 38	370 357	512 585	300 280	3.8	1395 1290	1935 2105	7.2 7.5
2	8	38	357	670	270	5.83	1200	2240	8.1

ii Fine Sand (F.M. 2.2 to 2.6) Angular Coarse Aggregates.

Max.	Water	Sand		wt. of nent	Per C	ubic Yar	d of Co	ncrete	Yield Cubic ft
of C.A.	Gals/ Cwt of cement	%age of Total	Sand	Stone	Water Lb	Cement	Sand Lb	Stone	per Cwt of Cemen
ŧ	5	46	202	238	335	6.73	1300	1600	4.02
111	5 5	41 37	185 185	268 310	325 305	6.55 6.22	1210 1150	1755 1925	4.12
2	5	34	185	352	295	5.98	1085	2065	4.60
	51	47	- 232	262	335	6.13	1420	1605	4.40
i 11.	51 51	42 38	214 208	298 345	325 309	5.96 5.62	1280 1170	1775 1945	4.52
2	51	35	208	387	295	5.37	1120	2080	5.02
	- в	-48	262	280	- 335	5.62	- 1475	1675	4.80
11	6	43 39	244 238	321 369	325 309	5.46 5.20	1330 1240	1755 1920	4.9 5.2
.2	6	36	238	424	295	4.87	1160	2060	5.5
	61	. 49	-298	- 304	335	- 5:2 -	- 1520-	1580-	6.2
1 11	61	44	274 268	345 400	325 309	5.04 4.78	1380 1280	1740 1910	5.3 5.6
2	61	37	268	452	295	4.53	1215	2050	5.9
	7	50	327	327	335	4.78	1570	1570	. 5.6
111	7 7	45 41	304 298	369 428	325 309	4.70	1430 1325	1735 1910	5.7. 6.0
2 .	7	38	298	476	295	4.20	1250	2050	6.4
	71	· 51-	363	345	335	4:45	1615	- 1540	- 6:0
111	7± 7± 7±	46 42	333 333	393 458	325 309	4.36	1460 1370	1715 1890	6.1
2	71	39	327	512	295	3.95	1290	2020	6.8
1 -	8	52	393	363	335	4.20	1650	1525-	- 6:4
111	8	47 43	369 363	417 482	325 309	4.12 3.88	1520 1405	1715 1865	6.66
2	8	40	363	-542	295	3.69	1340	2000	7.3

ii. Medium Sand (F.M. 2.6 to 2.9) Rounded Coarse Aggregates.

Max. Sizo	Water Gals/	Sand %age		wt. of nent	Per C	ubic Yar	d of Co	ncrete	Yield Cubic ft
of C.A.	Cwt of cement	of Total	Sand	Gravel	Water	Cement	Sand	Gravel	per Cwt
		2014	Lb	Lb	Lb	Cwt	Lb	Lb	Cement
- ₁	5	43	214	280	310	6.2	1330	1740	4.35
. i	5 . 5	38 34	196 190	321 369	300 280	6.1 5.7	1190 1090	1945 2110	4:45 4:72
2	5	31	190	417	270	5.4	1025	2240	-5.05
. 1	51	44	244	310	310	5.6	1370	1740	4.80
11	51 51	39 35	226 ⁻ 214	357 405	300 280	5.4 5.2	1235 1115	1950 2115	4:95 5.20
2	51 -	32	. 214	464	. 270	4.9	1045	2260	5.60
ŧ.	6	45	274	333	310	5.2	1425	-1735	5.20
1 1‡	6	40 36	256 244	381 434	300 280	5.0 4.8	1290 1170	1920 2080	5.35 5.65
2	6	33	250	506	270	4.45	1110	2250	6.10
1	61	46	310	363	310	4.8	1480	1740	5.65
1 = 11	i 61	41 37	292 280	417 476	300 280	4.65	1320 1220	1925 2080	5.85 6.19
.2	61	34	280	542	270	4.10	1150	2230	6.60
2	7	47	339	387	310	4.45	1510	1725	6.1
1 1‡	. 7	42 38	321 310	440 500	300 280	4.30 4.10	1375 1275	1890 2060	6.3
2 .	7	35	310	572	270	3.85.	1195	2210	7.0
1	71	48	381	,417	310	4.1	1570	1715	6.6
111	7½ 7½	43 39	352 345	464. 542	300 280	4.0 3.75	1415 1305	.1875 2050	6.7 7.2
2	-71	36 -	. 339	607	. 270 .	. 3.6 .	.1225	2190	7.5
1	8	49	418	434	310	3.85	1610	1680	7.0
1 11	8	44	. 387 374	494 560	300 280	3.8	1465 1355	1870 2020	7.2
2	. 8	. 37	381	643	270	3.85	1280	2160	8.1

iv. MEDIUM SAND (F.M. 2.6 to 2.9) Angular Coarse Aggregates.

Max.	Water	Sand		wt. of nent	Per C	ubic Yar	d of Co	ncrete	Yield Cubic ft
of C.A.	Gals/ Cwt of cement	%age of Total	Sand	Stone	Water	Cement	Sand	Stone	per Cwt of Cemen
			Lb	Lb	Lb	Cwt	Lb	Lb	Cemen
ŧ	5	48	208	226	335	6.73	1400	1520	4.02
1 11	5 5	43 39	196 190	262 298	325 305	6.55 6.22	1290 1185	1715 1850	4.12 4.35
2	5	36	190	345	295	5.98	1120	2030	4.60
ŧ	5}	49	238	250	335	6.13	1460	1535	4.40
1	51 51	44	226 333	286 333	325 305	5.96 5.62	1350 1240	1705 1875	4.52
2	51	37	375	375	295	5.37	1185	2015	5.02
ŧ	6	50	274	274	335	5.62	1540	1540	4.80
1 11	6	45 41	256 250	310 357	325 305	5.46 5.20	1400 1300	1690 1860	4.95 5.20
2	6	38	250	411	295	4.87	1220	2000	5.55
1	61	51	304	292	335	5.20	1580	1520	5.20
1 11	61	46 42	286 280	333 387	325 305	5.04 4.78	1440 1340	1680 1850	5.35 5.65
2	61	39	280	440	295	4.53	1270	2000	5.95
ž	7	52	339	316	335	4.78	1625	1510	5.65
1 11	7 7	47 43	316 310	357 417	325 305	4.70	1480 1380	1680 1855	5.75 6.05
2	7	40	316	470	295	4.20	1325	1975	6.42
1	71	53	375	333	335	4.45	1670	1485	6.05
111	7± 7±	48 44	352 352	381 440	325 305	4.36 4.12	1535 1445	1665 1810	6.15
2	71	41	345	494	295	3.95	1360	1950	6.85
ŧ	8	54	411	345	335	4.20	1725	1540	6.42
1	8	49	381	400	325	4.12	1570	1640	6.60
11	8	45	381	470	305	3.86	1470	1820	7.00
2	8	42	381	524	295	3.69	1410	1935	7.32

v. Coarse Sand (F.M. 2.9 to 3.2) Rounded Coarse Aggregates.

Max. Size	Water	Sand		wt. of	Per C	ubic Yar	d of Co	ncrete	Yield Cubic f
of C.A.	Gals/ Cwt of cement	%age of Total	Sand	Stone	Water	Cement	Sand	Stone	per Cwi of Cemen
			Lb	Lb	Lb	Cwt	Lb	Lb	Cemen
ž	5	45	220	274	310	6.4	1370	1700	4.3
111	5 5	40 36	208 202	310 357	300 280	6.1 5.7	1260 1155	1870 2040	4.4
2	5	33	202	405	270	5.4	1090	2175	5.0
1	51	46	256	298	310	5.6	1440	1675	4.8
1 11	5 1 5 1	41 37	238 226	339 393	300 280	5.4 5.2	1300 1180	1855 2045	4.9 5.2
2	51	34	232	446	270	4.9	1130	2175	5.6
ł	6	47	286	321	310	5.2	1490	1675	5.2
111	6	42 38	268 262	369 424	300 280	5.0 4.8	1350 1250	1860 2020	5.3 5.6
2	6	35	262	488	270	4.45	1165	2170	6.1
ž	61	48	321	345	310	4.8	1540	1650	5.6
111	6 <u>1</u>	43 39	304 298	400 464	300 280	4.65 4.38	1400 1300	1840 2030	5.88 6.19
2	.61	36	298	524	270	4.10	1225	2160	6.6
2	7	49	357	369	310	4.45	1590	1640	6.1
1 11	7 7	44 40	333 321	428 482	300 280	4.30 3.10	1430 1320	1835 1985	6.3 6.5
2	7	37	321	554	270	3.85	1240	2140	7.0
ŧ	7}	50	400	400	310	4.1	1640	1640	6.0
1 11/2	71 71	45 41	369 363	446 524	300 280	4.0 3.75	1490 1375	1800 1980	$\frac{6.7}{7.2}$
2	71	38	357	590	270	3.60	1290	2130	7.5
ŧ	8	51	435	417	310	3.85	1680	1610	7.0
1	8	46	405	476	300	.3.80	1530	1800	7.2
11	8	42	393	542	280	3.60	1420	1960	7.5
2	8	39	400	625	270	3.85	1340	2100	8.1

vi. Coarse Sand (F.M. 2.9 to 3.2) Angular Coarse Aggregates.

Max. Size	Water Gals/	Sand		wt. of nent	Per C	ubic Yar	d of Co	ncrete	Yield Cubic ft
of C.A.	Cwt of cement	%age of Total	Sand	Stone	Water	Cement	Sand	Stone	per Cwt of Cemen
	1		1	1	1	1 CWE	LD	LO	
1	5	50	220	220	335	8.73	1480	1480	4.02
111	5	45 41	202 203	250 290	325 305	6.55	1325 1260	1640 1810	4.12 4.25
2 -	. 2	38	199	328	205	5.98	1100	1980	4.60
ŧ	51	51	250	238	335	6.13	1535	1460	4.40
1	51 51	46 42	232 232	275 322	325 305	5.96 5.62	1385 1310	1635 1810	4.52
2	51	39	232	364	295	6.37	1250	1950	5.02
ŧ	6	52	280	262	335	5.62	1575	1475	4.8
1 1±	6	47 43	268 262	296 346	325 305	5.40 5.20	1460 1360	1625 1800	4.95 5.20
2	6	40	263	398	295	4.87	1280	1940	5.55
ł	61	53	316	280	335	5.20	1640	1460	5.20
14	61	48 · 44 ·	290 294	322 368	325 305.	5.04 4.78	1500 1400	1620 1795	5.35 5,65
2	61	41 .	298	430	295	4.53	1350	1920	5.95
1.	7 .	54	350	206	335	4.78	1080	1425	5.65
111	7 - 7	49 45	328 327	346 398	325 305	4.70 4.45	1540 1455	1625 1775	5.75 6.05
2	7	42	330	452	295	4.20	1400	1900	8.42
ž-	71	55	394	322	335	4.45	1750	1430	6.05
1. 11.	71	50 48	229 366	229 430	325 305	4.36	1585 1520	1585 1765	6.15
2.	71 -	43.	302	475.	295	3.95	1430	1880	6.85
-1:	8	56	423.	384	335	4.20	1775	1400	6:42
1.7	8.4.	51	398	380	325	4.12	1040	1570	6.60
117	8	47:-	400	452	305	3.86	1540	1750	7,00
2.3	8	44.	400	506	295	3.69	1473	1870	7.32

Note.—The preceding tables apply to concrete of 3 inches slump and made with natural sand. For concrete with different slump and made with stone sand the following adjustment should be made before using the tables:—

 Increase or decrease water content by 3% for each increase or decrease of 1 inch in slump.

(2) For stone sand increase percentage of sand by about 3 and water content by about 15 lb per cubic yard of concrete. For less workable concrete as in pavements decrease percentage of sand by about 3 and water content by 8 lb per cubic yard of concrete.

Example.

An illustrative example will make the procedure clear. A reinforced concrete structure of thin section is to be exposed to fresh water in a severe climate where freezing and thawing takes place. The strength of concrete required is 3,750 lb/sq. in. The coarse aggregate to be used is gravel 1½" downwards carrying free moisture of 1%. The fine aggregate consists of natural sand of fineness modulus 2.5 with free moisture of 3%. The specific gravities of both are 2.65. The slump required for the concrete is 4".

W/c ratio from table on page 54=.49, i.e., say 5½ gals./cwt.
—do.— graph on page 55=.55

Take the lower figure of .49.

Approximate trial mix from page 57 is

1 cwt. of cement: 203 lb of sand: 415 lb of gravel.

The percentage of sand will be about 33 and 280 lb of water will be required per cubic yard of concrete.

From these assumptions we shall find out the correct trial mix for 4" slump since the table gives figures for 3" slump. Water required for 4" slump = $1.03 \times 28.0 = 29.0$ gallons.

Cement required per cubic yard of concrete

$$\frac{29.0}{5.5} = 5.3$$
 cwt say 5.4 bags

% age of sand given in the table is 33

absolute volume of cement =
$$\frac{5.4 \times 110}{3.15 \times 62.3}$$
 = 3.07 cft.
volume of water required = $\frac{29.0}{6.23}$ = 4.70 cft.

... volume of cement paste = 7.77 cft.

... absolute volume of aggregates =27-7.77 = 19.23 cft.

... absolute volume of sand = $.33 \times 19.23 = 6.35$ cft.

... wt. of surface dry sand = $6.35 \times 2.65 \times 62.3$ = 1048 lb

absolute volume of gravel = $.67 \times 19.23 = 12.90$ cft.

... weight of surface dry gravel = 12.90×2.65×62.3 = 2130 lb

and so for each bag of cement (110 lb)

we require,
$$\frac{1048}{5.4}$$
 = 195 lb of sand and $\frac{2130}{5.4}$ = 394 lb of gravel

Since the sand and gravel are wet we must take

$$195 + \frac{3}{100} \times 195 = 195 + 6 = 201$$
 lb of wet sand

and
$$394 + \frac{1}{100} \times 394 = 394 + 4 = 398$$
 lb of wet gravel

The water to be added to

the mix will be
$$5.5 - \frac{6+4}{10}$$
 gallons

Corrected field mix for trial is

1 bag of cement (110 lb net)

201 lb of sand

398 lb of gravel and

4.50 gallons of water

CHAPTER 3

LOADS, BENDING MOMENTS AND SHEARING FORCES

CONTENTS

			Page
3.1	Dead Loads		67
	(i) Weights of Materials		
	(a) Bituminous substances	• •	67
	(b) Excavated materials		67
	(c) Liquids		68
	(d) Minerals and building stones		68
	(e) Metals		68
	(f) Timber		69
	(g) Solids (miscellaneous)		69
	(h) Stored materials	• •	70
	(ii) Weights of structural items		72
3.2	Live Loads		74
	(a) Floors and roofs, I.S.I		74
	(b) do Bombay Municipal Corporation		78
	(c) do B. S. S		79
	(d) do American		79
3.3	Diagrams and Formulae for Bending Moments and S Forces	Shearin	g 80
3.4	Bending Moments Charts for Slabs and Beams	• •	94
3.5	Bending Moments Tables for Slabs and Beams		96

CHAPTER 3

LOADS, BENDING MOMENTS AND SHEARING FORCES

3.1 Dead Loads.

(I) WEIGHTS OF MATERIALS:

(a) Bituminous substances:

		1	lb/cft.		
Asphaltum			60	to 80	0
*		- 1		allons=	-
			Ton)		
Coal anthracite			97		
,, bituminous			84		
" lignite			78		
" peat			47		
" charcoal light			23		
" heavy			33		
,, coke		••	75		
Graphite	••	• •	31		
Paraffin		• •	56		
Petroleum (crude)	• •	• •	55		
,, (refined)	• •	• •	50		
Pitch	• •	• •	69		
Tar bituminous	• •	• •	75		
Tat breammous	• •	• •	13		
(h) Enganda	4				
(b) Excavate	d mat	eriais :			
Clay dry			63		
" damp plastic			110		
Clay and gravel dry			110		
Earth dry loose			76		
" " packed			95		
" moist loose			78		
" " packed			96		
,, mud flowing			108		
" " packed			115		
Riprap				o 90	
Sand gravel dry loose				o 105	
" pack				o 120	
rest				o 120	
" Wet.	•	• •	110	0 120	

(c) Liquids:

				lb/cft.
Alcohol				49
Acids muriat	ic			75
,, nitric				94
,, sulphu	ric			112
Oils vegetabl	ė			58
., mineral	•	• •	• •	57
Petroleum	• • •		• • •	55
Gasoline		••	• •	12
Water fresh		• •	• •	62.4
	• • •	• •	• •	64.0
Ice	• •	• •		57
100	• •	• •	• •	37
(d) Mine	rals an	d build	ling s	tones:
Asbestos				153
Barytes				281
Basalt				184
Bauxite				159
Chalk				137
Clay marl				137
Copper ore (p	yrites)			262
Dolomite				181
Granite				175
Hematite				325
Gypsum				159
Hornblende				187
Limestone ma	rble			165
Lead ore (gale	ena)			465
Magnesite	· .			187
Porphyry				172
Pumice	٠.			40
Quartz				165
Sandstone				175
Soapstone				169
Lime (ore)				253
Cement				90
Lime (slaked)				36
	(c) N	fetals :		
Aluminium				165
Brass				534
Bronze				509

			1	b/cft.
Chromium				428
Copper	• •	• •	• •	556
Gold	• •	• •		1205
Iron (pig)	• •	• •	• •	450
., (wrought)	• •	• •		485
,, (steel)		• •	• •	490
Lead	• •	• •		
Magnesium	• •	• •		706
	• •	• •	* *	109
Manganese	• •			456
Mercury	• •		• •	848
Nickel				545
Platinum			• •	1330
Silver	• •			656
Tin				459
Tungsten	• •	• •	• •	1180
	(f) T	imber:		
Anjan (Ternima	atia T	omento	sa).	53-60
Anjan (Hardwi	ckia l	Binata)	Dity.	82
Babul (Acacia	Arabi	cal	• •	54
Bambu			• •	71 .
Cocoanut			• •	57-70
Cedar (white) Deal (yellow)	• •			22
Deal (vellow)	• •	• •		27
Fir	• •	• •	• •	25-30
Fir	• •	• •	• •	32
Tambul	• •		• •	47 -
Jambul			10-1	
Kalamb (styph	egyne	parono		42
Khair (acacia c		u)	• •	66
Mango	• •	• • .		42
Oak (write)	• •			46
Eine (rea)	• •			30
Sissue (Tali)		• • •		50
Tamarind	• •			79
Teak				41-45
Walnut	• •	• • •		38."
(g) Soli	ds (n	niscellan	cous)	:
Bricks			• •	100
Bakelite				80-120
Carbon				129
Cork		- ** *		15
Ebony			1	. 76

			11	b/cft.
Glass (common	1			160
Paper		• •	• •	60
Phosphorus	• •	• •	• •	114
Porcelain	• •	• •	• •	150
	• •	• •	• •	67
Resin	• •	• •	• •	
Rubber	• •	• •	• •	58 .
Silicon	• •	• •	• •	155
Sulphur	• •	• •	• • •	128
Wax	• •		• •	60
(h)	Stored	mater	ial :	\$
Animal food				64
Alum	• •	• •	• •	106
Ashes	• •	• •	• • •	40
	• •	• •	• •	
Bagging (jute)			• •	7
Beans (canned)	• •	• •	• •	43
Boiled oil		***		59
Books (on shelv	res) :		• •	40
bulk bulk			*: .	60
Butter	• •			59
Camphor				62
Candles	• •			32
Carpets			1.5	12
Celluloid				84-100
,, goods				10 '
Chains				160
Chocolate				34.
Cigarettes (cases	s) .			15 .
Cloth		11.1		30
Cloves bales				20
Cocoanut oil				58
Coffee bags				28-32
" beans				40
Cotton raw com	nracca	a .	• • •	25-36
,, pressed	presse	a .	• •	17.
" piece god	de	• •	• •	25-30
and the	0.00	• •	• •	
Cutlom economic	5	4).	7 .	43
Cutlery cases	m o' se logo	4.		37
Drugs cases	• •	• •	• •	26
Dyes	• •		• • .	28.
Eggs (crates)	• •	• •	:	:22:
Fancy goods mi	xed		• •	12:
Files (cases)				56
Flour sacks	• •			40

0 00			•	lb/cft.
Fruit (dry)				60
Glycerine (drui	nel			50
Grain barley	113)	• •	• •	39
	• •	• •.	• •	
,, oats	• •	• •	• •	26
" rye		• •		45
,, maize		• •		47
,, rice bag	S			50
,, wheat				49
Ground nuts (b	ags)			39
Hemp				20
Honey	• •			90
Hoisery (cased)		• •	• •	14
Troisery (cased)		• •	• •	57
Ice.			• •	
Jaggery		• •		56
Jute bales				30
Linen goods .			• •	35. =
Machinery case	S	'		28
Manila ropes				32
Milk				64
,, cases			• •	38
	• •		• •	23
powder	• •			
Oilcake bags		• •	• •	41
Paint aluminiu			• •	70
" bitumino	us	4 4, 2		70.
s red lead				195
" zinc		,*,**		150
Paper				60
Perfumery (cas				28
Rags (baled)	,00,	• •		13
	• •	• •		42 -
Rope	• •	* .*-	**;	25
Rubber cases	• •	* * *	• •	
,, raw	• •		• •	50
Salt, bulk	• •	• •	• •	60
,; "bags	'			45
Silk				25
Silk piece good	S			18
Soap (boxed)				57
Soft drinks case	PG			. 27
A			550	59
	• •	****	.* *	45-50
Sugar bags	• •	• •		22
Tea chests	• •		• •	
Tobacco packet	\$	*** *** *		18,
Wine bulk				61
Wine bottles in	cases			37
Wool bales		1.00.	. i.,	20
Woollen piece g	coods			22
Jones P. 1000 6	,		-	

(ii) WEIGHTS OF STRUCTURAL ITEMS:

			lb/cft.
Concrete r	einforced .		144
with	1% steel .		148
	2% ,, .		151
	5% ,, .		161
Concrete:	plain .		140
	with brick ag	gregate	120
	breeze .		70 to 90
	lime .		120
	pumice .		50 to 55
	sawdust .		70
	aerated or ce	11	16
			lb/sft.
Flooring:		1' thick	2
•	fibre board	**	11
	granolithic	,,	12
	hardwood ?"	in mastic	4
	macadam tar	1" thick	11
	terrazzo	**	12
		1	b/cft.
Masonry:	ashlar		165
	rubble		150
	dry rubble		130
	brick		120
		1	b/sft.
Partitions:	9" brickworl	·	90
	3" breeze		24
	2" hollow ble		9
	3"		121
	4" ,,		15
	G. I. sheets		3 .
	lath & plaste	er	8
Clay tile pa	rtitions		
	3" thick		18
		11	sft.
Asbestos ce	ment flat shee		
Plaster: lin	ne 1	thick	9
	ment	,,	11
	psum	,,	7
0,7	-	,,	•

		•	lb/sft.
Roofing:	asbestos sheet {" thick		31
	asbestos sheet		
	roofing complete		10
	bituminous felt		1 ½
	boarding soft wood		
	}" thick		2
	G.I. sheets 24 G		1
	" " 18 G		2
	G.I. sheet roofing		
	complete with		
	purlins etc.		4
	Ruberoid 5 layers		13
	shingles		11
	slates 1.5" thick		7
	tiling clay		81
	,, Mangalore		
	with battens	S	14
	,, single count	rv	
	with battens	•	14
	,, double count	trv	
	with battens		24
	thatching 9" inclu-		
	ding fra		10
	6" inclu	-	
	. ding fra	me	61

3.2 Live Loads.

(a) INDIAN STANDARDS INSTITUTION. Live loads on floors.

		Minimum live loads	Alternative minimum live loads	
Load- ing class No.	Types of floors	lb. per sq. ft. of floor area	Slabs lb. uniformly distributed over span per it. width	Beams lb. uniformly distributed over span
1	2 '	3.	4	5
40a	Floors for residential purposes including dwelling houses.	.40	320	2560
40b	Floors of tenements, hospital wards, bed-rooms and private sitting rooms in hostels, and dormitories.	do.	do.	do.
50	Office floors other than entrance halls, floors, of light workrooms.	50-80	400-640	3200 5120
	Note: The lower value of 50 psf should be taken where separate storage facilities are provided and the high value of 80 psf should be taken where such provisions are lacking.			
60	Floors of banking halls, office entrance halls and office floors below entrance halls and reading rooms.	60	480	3840

LOADS, BENDING MOMENTS AND SHEARING FORCES

	T .	Minimum live loads	Alternative minimum live loads		
Load- ing class No.	. Types of floors	Ib. per sq. ft. of floor area	Slabs lb. uniformly distributed over span per ft. width	Beams lb. uniformly distributed over span	
1	2	3	• 4	5 -	
80	Shop floors used for the display and sale of merchandise; workrooms generally; floors of class rooms in schools, garages for vehicles not exceeding 2½ tons gross weight; places of assembly with fixed seating, churches, chapels, restaurants, circulation space in machinery halls, power stations, etc. where not occupied	80	640	5120	
100	by plant or equipment. Floors of warehouses, workshops, factories and other buildings or parts of building of similar category for light weight loads; office floors for storage and filing purpos- es; places of assembly without fixed seating (pu-	100	800mi	6400	
150	blic rooms in hotels, dance halls, waiting halls, etc.). Floors of warehouses,	150		age floors	
20	workshop factories and other buildings or parts of building of similar cate- gory for medium weight loads; floor of garag- es for vehicles not exceed- ing 4 tons gross weight.		wheel loa	d over	

_				
		Minimum live loads		e minimum loads
Load- ing class No.	Tomas of dans	lb. per sq. ft. of floor area	Slabs lb. uniformly distributed over span per it. width	Beams 1b uniformly distributed over span
1	2	3	4	51
200	Floors of warehouses, workshops factories, and other bldgs. of similar category for heavy wt. loads, floors of book stores, roofs and pavement lights over basements projecting under the public footpath. Stairs, corridors, landings and balconies not liable to overcrowding.	200		
	For class 40(a) loading.	40		,
	For class 40(b) loading.	60		
	In the case of all others.	100	nery o demonstrate of Augustine	
	Balconies liable to over- crowding.	100		

Live loads on roofs.

Туре	Slope	Imposed loads other than wind and snow	Snow loads
Roofs other than sheeted roofs	Flat, sloping or curved with slope upto and including 10°	30 psf measured on plan subject to a minimum of 200 lb. uniformly distributed over any span of one ft. width of the roof slab and 1600 lb uniformly distributed over this span in the case of all beams.	Where snow is encountered additional allowance of 10 lb. per ft. depth of snow measured on plan.
	Sloping or curved roofs from 10° to 30° and including 30°*	15 psf measured on plan or 200 lb. con- centrated load.	do.
	Sloping or curved roofs greater than 30°	nil	do.
Sheeted	Flat, sloping or curved	To provide for loads incidental to maintenance all roof coverings (other than glass) and the supporting structure shall be capable of carrying a load of 180 lb. concentrated on an area of 5 in sq. This load is not in addition to wind load and shall be treated as an occasional load.	do.

For calculating live loads on curved roof divide the curved portion into not less than four parts and determine live loads on each segment appropriate to the seope of the chords of the segments.

(b) BOMBAY MUNICIPAL BUILDING BYELAWS.

		Slabs and other					
Class No.	Type of building or floor or roof	floor construc- tion	walls and foundations				
		per sq. ft, of floor area	per sq. ft. of floor area				
1.	Rooms used for residential purposes: hotel bedrooms: hospital rooms and wards: and corridors	70 lb	60 lb				
2.	Offices, floors above entrance floor	100 lb	90 1Ъ				
3.	Offices, entrance floor and floors below entrance floor: retail shops and garages for private cars of not more than two tons net weight	100 lb	100 lb				
4.	Places of worship: schools: reading rooms: art galleries, and similar uses	100 lb	100 lb				
5.	Corridors not provided for in class one: stairs and landings: Assembly hall: Drill halls: Dance halls: Gymnasia: Light workshops: Public spaces in hotels and hospitals: Theatres: Cinema, Restaurants and Grandstands	Loading to be be ascertained missioner, but 100 lb	provided for to from the Com- nor less than— 100 lb				
6.	Workshops and factories: and garages for motor vehicles other than pri- vates cars of not more than two tons net weight	Loading to be be ascertained missioner, but 150 lb	from the Com-				
7.	Warehouses: book-stor- es: stationery stores and the like	Loading to be public be ascertained missioner, but a	from the Com- not less than—				
8.	Flat roofs and roofs in- clined at an angle with the horizontal of not- more than 20 degress	200 lb 50 lb	200 lb 40 lb				
9.	Any purpose not herein specified:	Loading to be be ascertained in missioner.	provided for to from the Com-				

(c) B. S. CODE.

Class no. and sup (lb. per sq	erimposed Load uare foot)	30	40	50	60	80	100	150	200
Minimum total Load (lb.)	Slabs(per foot width)	240	320	400	480	640	800	-	-
(10.)	Beams	1920	2560	3200	3840	5120	6400		_
Residential Buildings	Houses: Not more one occupa Other (incl.) Hospital wards: do Hotels: Bedrooms sitting-roo		Cla	4	30 40 40 40 100				
Commercial Buildings	Offices: Entrance of Above entrance and Banking halls Retail shops Book and stationer Warehouses (dependent			ss No 50, o:	5 10 6 8 20 s. 10	0 0 0 0			
Industrial Buildings	Workshops and factors on loads) Workroom Light wor storage Power stations and circulation space	Cla	150 c	. 8					
Places of Assembly	School classrooms Without fixed seating With fixed seating: restaurants	3	**	"	10	10			

(d) TYPICAL AMERICAN BUILDING CODE.

(Lb. per sq. foot.)

	/ L 4.			
Apartments Auditoriums and theaters :	40	Corridors, public spaces Roofs, flat	••	100-125 20-40
With fixed seats Without fixed seats Dwellings		School buildings: Classrooms Corridors, public spaces		40-60 100
Hospitals	40	Garages: All types of vehicles Passenger cars only		100-175 75-125
Corridors, lobbies, dining rooms Manufacturing buildings:	100 75-125	Store buildings: Retail Wholesale		75-125 100-125
Office buildings:	125-200	Warehouses: Light storage		75-150 200-250
Office space	50-60	Heavy storage		200-200

3.3 Diagrams and Formulae for B. Ms. and S. Fs.

3.3.1 CANTILEVERS

3.3.2 SIMPLY SUPPORTED BEAMS

3.3.3 PROPPED CANTILEVER

3.3.4 FIXED END BEAMS

3.3.5 TWO EQUAL SPANS

PD = CONCENTRATED DEAD LOAD AT 3RD POINT OF EACH SPAN

DEAD LOAD MOMENTS

MM=0-222PpL

MM=0-111PpL

Ma=-0-333PpL

DEAD LOAD SHEARS V1=V3=0-667Po V2L=V2R=1-333Po

CONCENTRATED LIVE LOADS AT 3RD POINTS OF CHE SPAN CHLY

LIVE LOAD MOMENTS

MM=0-277PLL MM=0-222PLL Ma=0-167PLL

LIVE LOAD SHEAR

V1 = 0 - 833 PL V2L=1-167 PL V5=-0-167 PL

3.3.6 THREE EQUAL SPANS

CENTRAL SPAN LOADED UNIFORMLY

LIVE LOAD MOMENTS

MM=+0.075 WLL

MB =MC =-0.05 WLL

LIVE LOAD SHEARS

V1 = V4 = 0.050 WL

V2R = V5L = 0.5 WL

END SPANS LOADED UNIFORMLY

LIVE LOAD MOMENTS

MH =+0·IO! WLL

MB =Mc =-0·05 WLL

3.4 BM CHARTS FOR SLABS AND BEAMS

Fig. 3.1 BMs in varying spans of slabs with various loadings.

Fig 3.2 BMs in varying spans of beams with various loadings.

TABLE 3-a

Bending moments (in pound feet) for slabs of varying spans with various loadings.

L	M	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	860	380	400	420	440	460	480	500
	w1"/8	80	120	160	200	240	280	320	360	400	440	480	520	560	600	640	680	720	760	800	840	880	920	960	1000
4	w1°/10	64	96	128	160	192	224	256	288	320	352	384	416	448	480	612	544	576	608	640	572	704	736	768	800
	w1*/12	53.33	80	106.7	133.3	160	186.7	213.3	240	266.7	293.3	320	346.7	373.3	400	426.7	453.3	480	506.7	533.8	560	586.7	613.3	640	666.7
	w1*/8	125	187.5	250.0	310.5	375	437.5	500	562.5	625	687.5	750	812.5	876	937.6	1000	1062.6	1126	1187.5	1250	1312.5	1376	1437.6	1500	1562.6
5	w1°/10	100	150	200	250 -	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250
	w1*/12	83.33	125	166.7	208.3	250	291.7	333.3	675	416.7	458.3	500	541.7	583.3	625	666.7	708.3	750	791.7	833.3	875	916.6	958.3	1000	1041.7
	w1*/8	180	270	360	450	840	630	720	810	900	990	1080	1170	1260	1350	1440	1530	1620	1710	1800	1890	1980	2070	2160	2250
6	w11/10	144	216	288	360	432	604	675	648	720	792	864	936	1008	1080	1162	1224	1296	1368	1440	1512	1584	1656	1728	1800
	w1°/12	120	180	240	300	360	420	480	540	600	660	720	780	840	900	960	1020	1080	1140	1200	1260	1340	1380	1440	1500
	w1º/8	246	367.5	490	612.5	735	857.5	980	1102.6	1225	1347.5	1470	1592.6	1715	1837.5	1960	2062.5	2205	2327.5	2450	2572.5	2096	2817.5	2940	3062.6
7	w1*/10	196	294	392	490	588	685	784	882	980	1078	1176	1274	1372	1470	1569	1666	1754	1862	1960	2058	2156	2264	2352	2450
	w1°/12	163.2	245	325.5	408.3	490	571.6	653.3	735	816.6	898.3	979.9	1061.6	1143.2	1224.9	1306.6	1388.2	1469.9	1551.6	1633.2	1714.9	1796.5	1878.2	1959.8	2041.6
	w1º/8	320	480	640	800	960	1120	1280	1440	1600	1760	1920	2080	2240	2400	2560	2720	2880	3040	3200	3360	3520	3680	3840	4000
8	w1*/10	255	384	512	640	768	896	1024	1162	1280	1408	1536	1664	1792	1920	2048	2176	2304	2432	2550	2688	2816	2944	3072	8200
	w1°/12	213.83	320	420.6	533.3	640	746.5	853.2	960	1066.6	1173.2	1280	1386.6	1493.2	1600	1706.7	1813.3	1920	2026.6	2133.3	2240	2345.7	2453.3	2559.9	2666.5
	w1°/8	405	807.5	810	1012.6	1216	1417.6	1620	1822.5	2025	2227.5	2430	2632.5	2835	3037.5	3240	3442.6	3341.3	3847.5	4050	4252.5	4455	4657.6	4860	6062.5
9	w1°/10	324	486	548	810	972	1134	1296	1458	1620	1782	1944	2106	2268	2430	2592	2754	2916	3073	3240	3402	3564	8725	3858	4050
	w1°/12	270	405	540	675	810	945	1080	1215	1350	1485	1620	1765	1890	2025	2160	2295	2430	2545	2700	2835	2970	8105	3240	3376
	w1º/8	800	760	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250	5500	6750	6000	5250
10	w1º/10	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	8200	3400	3600	3800	4000	4200	4400	4600	4800	5000
	w1°/12	833.3	500	666.5	833.3	1000	1165.5	1333.8	1500	1666.5	1883	1909.9	2166.6	2333.2	2500	2668.7	2833.8	3000	3166.6	8333	3499.7	3666	3833	3999.6	4166.5
	w1°/8	605	907.5	1210	1512.6	1816.5	2117.5	2420	2722-6	8025	3327.6	3680	3932.6	4235	4537.5	4840	5142.5	5445	5747.5	6050	6352.5	6655	6957.6	7260	7562.5
11	w1°/10	484	726	968	1210	1452	1694	1936	2178	2420	2662	2904	3146	3386	3630	3872	4114	4356	4593	4840	5082	5324	5566	5808	6050
	w1°/12	408.8	605	806.6	1008.8	1210	1411.6	1613.2	1816	2016.6	2218.2	2420	2621.6	2923.2	3025	3226.7	3428.3	3630	3831.6	4033	4234.7	4436.3	4688	4889.6	5041.6
	w11/8 -	720	1060	1440	1800	2150	2520	2880	3240	8600	3960	4320	4480	5080	5400	5760	5120	6480	6880	7200	7560	7920	8280	8640	9000
12	w1°/10	576	864	1152	1440	1728	2166	2304	2592	2880	3169	3456	3744	4032	4320	4608	4896	6184	5472	5760	6043	6286	6624	6912	7200
	w1°/12	480	720	960	1200	1440	1680	1920	2160	2400	2640	2880	3120	8360	3600	3840	4060	4320	4500	4800	5040	5280	6520	5760	6000
	w1º/8	845	1207.5	1690	2112.5	2535.0	2957.5	3330	3802.5	4225	4647.6	5070	5492.2	6915.0	6337.5	6760	7182.5	7635	8027.5	8450	8872	9295	9717.5	10140	10582.
13	w1°/10	676	1014	1352	1690	2028	2366	2704	3042	3380	3718	4056	4394	4732	5070	5408	5746	6084	6322	6760	7098	7436	7774	8112	8450
	w1°/12	563.33	846	1125.7	1408.3	1690	1971.6	2253.8	2535	2815.5	3098.8	8379.9	3661.5	8943.3	4225	4580.7	4788.3	5070	5351.7	5633.3	6916	5196.6	6478.3	6760	7041.5
	w1*/8	976	1454	1952	2440	2928	3416	8904	4392	4880	5368	5856	6844	5832	7820	7808	8298	8784	9272	9760	10248	10736	11224	11712	12200
14	w1°/10	784	1175	1568	1960	2352	2744	3136	3528	8920	4312	4704	5096	6488	5880	6272	6664	7076	7448	7840	8232	8624	9016	9408	9800
	w1°/12	653.8	980	1806.6	1633	1960	2286.6	2613.3	2940	3266.7	3593.3	3920	4246.7	4573.3	4900	6226.6	5555.3	5880	6206.5	6533.3	6860.0	7186.6	7513.8	7840	8166.7

TABLE 3-b. Bending moments for beams of varying spans with various loadings. $M \,=\, \frac{WL}{12}$

WE	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26 .	27	28	29	30	
1000	8333	10083	12000	14883	16333	18750	21333	24063	27000	30083	33333	35760	40333	40083	48000	52083	56333	60750	65333	70083	75000	1000
1100	9466	11155	18200	15491	17999	20825	23466	26481	29700	33091	35667	40425	44366	48491	62800	67291	61966	66825	71866	77091	82500	1100
1200	10000	12100	14400	16900	19600	22500	25600	28900	32400	36100	40000	44100	48400	52900	57600	62500	57600	72900	78400	84100	90000	1200
1300	10833	13103	16600	18308	21233	24375	27733	31308	85100	39108	43333	47775	52433	57308	62400	57708	73233	78975	84933	91108	97600	1300
1400	11666	14116	16800	19715	23266	26250	29865	33716	37800	42116	45667	51450	58466	61716	67200	72916	78865	85050	91466	98115	105000	1400
1500	12500	15125	18000	21125	24500	28125	32000	36125	40500	45125	50000	65125	60500	60125	72000	78095	84500	91125	97900	105125	112500	1500
1600	13333	15133	19200	22533	25138	30000	34133	39533	43200	48133	53333	58800	64533	70533	76800	83333	90133	97200	104533	112133	120000	1600
1700	14166	17141	20400	23941	27765	31875	36266	40941	45900	51141	56666	62476	68566	74941	81600	88541	95756	103275	110866	119141	127600	1700
1800	15000	18160	21600	26350	29400	33750	38400	43349	48600	64150	50000	66150	72600	79350	86400	93750	101400	109350	117600	126150	185000	1800
1900	15933	19158	22800	26768	31033	35625	40533	46758	51300	57158	63333	59825	76633	83758	91200	98958	107033	115425	124133	133158	142500	1900
2000	16666	20155	24000	28166	82333	87500	42656	48155	54000	60166	66657	78500	80867	88156	96000	104166	112667	121500	130667	140165	150000	2000
2100	17600	21249	25200	29574	33965	39375	44800	50574	56700	63174	70000	77175	84700	92574	100800	109374	118300	127675	137200	147174	157600	2100
2200	18333	22183	25400	30983	35600	41250	46933	52983	69400	66183	73334	80850	86734	95983	105600	114583	123934	133650	143734	154183	155000	2200
2300	19156	23191	27600	32391	37233	43125	49066	65391	52100	59191	76667	84525	92767	101391	110400	119791	129567	139725	150267	161191	172500	2300
2400	20000	24199	28800	33749	39200	45000	51200	57800	54800	72200	80000	88200	96800	105800	115200	125000	135200	145800	156800	168200	160000	2400
2500	20833	25208	80000	35208	40500	46875	58333	60208	57500	75208	83333	91876	100834	110208	120000	130208	140834	151875	153284	175208	187500	2500
2600	21666	26216	81200	36618	42133	48750	55455	52616	70200	78216	86667	95550	104867	114615	124800	135416	146457	157950	159867	182216	195000	2600
2700	22500	27224	32400	89024	43765	60625	57500	55024	72000	81224	90000	90225	108900	113704	129600	140624	162100	164025	176200	189224	202500	2700
2800	29338	28233	33600	39438	45399	52500	69733	57482	75500	84233	93334	102900	112934	123433	134400	145832	167734	170100	182934	196233	210000	2800
2900	24166	29241	34800	40941	47033	54375	61866	59841	78300	87241	96667	106576	116967	127841	139200	151041	163367	175175	189457	203241	217600	2900
3000	25000	30250	86000	42250	49000	66250	64000	72250	81000	90250	100000	110250	121000	132250	144000	166250	169000	182250	196000	210250	225000	3000
3100	25833	31333	87200	43658	50633	58125	66133	74550	83700	93258	103383	113905	125033	136658	148800	161458	174533	188325	202538	217258	232500	3100
3200	26667	82267	38400	45067	62266	60000	58257	77057	86400	98257	106657	117600	129067	141067	153600	156657	180267	194400	209067	224267	240000	3200
3300	27500	88276	39600	48475	63900	51875	70400	79475	89100	99276	110000	121275	133100	145475	158400	181875	186900	200475	215600	231275	247500	3300
3400	28333	84283	40800	47883	66938	53750	42533	81883	91800	102283	113333	124950	187133	149882	153200	177083	191533	206550	222133	238283	255000	3400
3500	29167	35292	42000	49292	57157	55625	74657	84290	94500	105292	116667	128625	141167	154292	168000	182292	197157	212825	228567	245292	262500	3500
3600	80000	36800	43200	50700	58800	57500	76800	86700	97200	108300	120000	132300	145200	158700	172800	187500	202800	218700	235200	252300	270000	3600
3700	80833	37308	44400	52108	60433	59375	78933	89108	99900	111308	123333	135975	149233	163108	173600	192708	208433	224775	241538	259808	277500	3700
8800	31667	39317	45600	53517	62066	71250	81067	91516	102600	113317	125667	139650	153257	167517	182400	197915	214067	230850	248267	265317	285000	3800
3900	32500	39325	46800	64925	62700	73125	83200	93925	105300	117325	180000	143325	157800	171925	187200	203125	219700	285925	254800	273325	292500	3900
4000	23333	40333	48000	66333	69332	75000	85333	95332	,108000	120333	133333	147000	151333	176333	192000	208332	225334	243000	261333	280333	300000	4000

CHAPTER 4

DESIGN OF R.C.C. SLABS

CONTENTS

								Page
4.1	Design Form Rectangular		and	Constan	nts for	Slabs	and	101
	4.1.1 Notati	on ,					• •	101
	4.1.2 Stresse	s and design	cons	tants		• •	• •	102
	4.1.3 Summ	ary						105
4.2	Two-way Sla	bs		• •	• •	• •	• •	105
4.3	Examples		• •	• •	• •	• •		106
4.4	Charts.						• •	107
4.5	Tables			• •	• •	• •		119

-

.

•

d

• •

. 1

7.7

CHAPTER 4

DESIGN OF R.C.C. SLABS

4.1. Design Formulae, Stresses and Constants for Slabs and Rectangular Beams.

4.1.1 NOTATION

fe=permissible compressive unit stress in extreme fibre of concrete. The values adopted in practice for concrete according to different building codes are given in the table in para 4.1.2.1.

t = tensile stress in reinforcement. The values adopted in different building codes are given in table in para 4.1.2.1.

m=modular ratio Es i.e. modulus of elasticity of steel modulus of elasticity of concrete

In most cases, $m = \frac{40,000}{3fc}$. In some codes, however, constant value is assumed.

R.M.=Moment of resistance or bending moment in pounds inches.

At=Cross-sectional area of reinforcement in tension in sq. inches.

b=breadth of beam or slab in inches.

d=effective depth of beam or slab in inches

no=ratio of depth of neutral axis to depth d

a₁=ratio of lever arm of resisting couple to depth d (or j)

a=lever arm or jd

 $p = \frac{A_t}{bd}$ = ratio of area of tension steel to effective area of concrete

4.1.2 STRESSES AND DESIGN CONSTANTS.

4.1.2.1 Stresses

		fc	t	m	Ref.
I.S.I.	456/1957 1:1:2	1150	18000	.11.6	(a)
	$1: 1\frac{1}{2}: 3$ 1: 2: 4	950 750	18000 18000	14 18	(b) (c)
вомва	Y MUNICIPAL CODE 1:1:2 1:11:3 1:2:4	950 850 750	18000 18000 18000	14 16 18	(d) (e) (f)

Other stresses for which design constants, charts, etc., are given as follows:

		fc	t	m
Ref.	(g) (h)	1000	18000	15
Ref.	(b)	750	18000	15

4.1.2.2 Constants

.21 Ratio of depth of neutral axis to effective depth.

The location of the neutral axis is always governed by the stress ratio t/fc and modular ratio m.

DESIGN OF R.C.C. SLABS

The values of no for different values of t/fc and m are given in graph No. 4-1.

.22 Ratio of lever arm to effective depth.

$$a_1 = 1 - \frac{n_o}{3}$$
(2)

The values of a1 for the different codes are as follows:-

.23 Section of reinforcement.

$$A_t = \frac{fc}{t} \times \frac{n_o bd}{2} = pbd \dots (3)$$

$$p = \frac{fc}{t} \times \frac{n_s}{2}$$

At= .0134 bd or 1.34% of the effective sectional area of the section for case a

(b and d measured in inches)

The percentage of reinforcement depends upon the location of the neutral axis and stress ratio. The value of p is given in graph

No. 4-2 for different values of $\frac{t}{fc}$ and m.

.24 Resistance moments.

Measuring b and d in inches,

Design constants for various values of fc, t and m are given in table No. 4-a on page 119.

Values of R.M. and At for slabs of various depths designed for stresses specified by the different codes are given in table 4-b.

The amount of steel as given by formula (3) is the economic amount i.e. both the steel and concrete as stressed to the maximum permitted limits. If steel more than that calculated by formula (3) is used, the steel will be understressed and safe R.M. of the slab will be governed by the concrete. If less steel is used, the concrete will be understressed and the safe R.M. will be governed by steel. The following procedure is necessary to find the safe R.M. of the slab in such cases.

a. Find the neutral axis of the slab by the formula $n_o = \sqrt{p^2 m^2 + 2pm} - pm$

The values of n_o for m=11 to 18 and p=.002 to .02 are plotted in graph No. 4-3.

b. Find lever arm a: j or
$$a_1 = 1 - \frac{n_0}{3}$$

c. Find R.M.

R.M.=At ta when steel provided is less than economic

or R.M. = $\frac{fc}{2}$ n_ojbd² when steel provided is

more than economic

In general R.M.=Qbd2

The different values of Q are given in graph No. 4-4 for different values of p and m. R.M.s for various depths of slab reinforced with varying amount of steel are given in charts 4-5 and 4-6.

4.1.3 SUMMARY

NAME	fc psi	psi psi	m	n	a	At %	Ω
I.S.I. 456/1057 1:1:2	1150	18000	11.6	.426	.858	1.34	210
1:11:3	950	do	14	.420	.860	1.12	173.5
1:2:4	750	do	18	.428	.857	0.89	137.7
BOMBAY MUNICIPAL CODE 1:1:2	950	do	14	.420	.860	1.12	173.5
1:11:3	850	do	16	.430	.857	1.02	157.5
1:2:4	750	do	18	.428	.857	0.89	137.7
	1000	do	15	.450	.850	1.26	193.0
	750	do	15	.385	.872	0.80	125.7

4.2 Two-way slabs.

R. C. slabs can also be designed to span in two directions. These are then divided into two main classes, viz. (i) those simply supported on four sides and (ii) those restrained on four sides. The latter are again subdivided into seven classes as follows according to different edge conditions:

a	Inte	rior	panels.
9	-	- 10	-

a.	interior paners.	
b)	One edge	Discontinuous
c)	Two adjacent edges	-do-
d)	Two short edges	-do-
e)	Two long edges	-do-
f)	Three edges	-do-
g)	Four edges	-do-

Design Tables, etc.

In case of (i) simply supported slabs, the tables or charts already given can be used by assuming the load taken by short span, as 50, 59, 68, 74, 79, 84 per cent of the total load, for span ratios of 1.0, 1.1, 1.2, 1.3, and 1.5 respectively. The balance of 50, 41, 32, 26, 21 and 16% is assumed to be taken by the long span. For restrained slabs, the B. M. coefficients and safe loads are given in tables 4-i & 4-k. The B. M.s for both short and long span are given by product of the appropriate coeff, w and square of short span. For example, if this coefficient is x, then the B.M. is xwlx2.

4.3 Examples

(1) Charts 4-1 & 4-2 and Table 4-a:

Find R.M. and At of a slab where stresses to be adopted are:

m = 15

t/fc = 16000/550 = 29.

 \cdot n_o = .34 from chart 4-1.

 \therefore j = 1-n_o/3=.887

$$\therefore$$
 R.M.= $\frac{1}{2}$ fc×n_o×jbd²=550/2×.34×887bd²
= 83bd²

 A_t (from chart 4-2) = .6%

The same values can be obtained directly from table 4-a.

(2) Charts 4-3 to 4-6

Find R.M. of a slab, effective depth 5" and reinforced with,

(a) .3 sq. inches of steel (5/16" @ 3" c.c.)

(b) .6 —do— (7/16" @ 3½" c.c.)

and designed for fc=750 psi, t=18000 psi and m=18.

Case a Case b
$$p=.3\times100/60=.5\%$$
 $p=.6\times100/60=1.0\%$ n_o (chart 4-3)=.342 $n_o=.445$ $j=1-.445/3=.852$

R.M. =
$$A_t \times t \times jd$$
 fc/2×n_o×j×bd²
.3×18000×.886×5in. lb 750/2×.445×.852×12×5²
=2000 ft. lb 3540 ft. lb

or (from chart 4-4)

$$Q = 80 \text{ bd}^2 \text{ inch lb}$$
 $Q = 142 \text{ bd}^2$
= $80 \times 25 \text{ ft. lb}$ = 142×25
= 2000 ft. lb = 3550 ft. lb

The same values could be obtained direct from chart 4-6.

Chart 4-7 or Table 4-b.

Find R.M. and A_t for a slab (effective depth 6") designed as per Bombay Municipal Code. 1: $1\frac{1}{2}$: 3 mix, refer table 4-b under "e". R.M.=5660 ft. lb and $A_t = .74$ sq. inch or refer chart No. 4-7 or 4-4 giving the same result.

Other Tables and Charts

These are self explanatory giving

- (a) safe load per sq. ft.
- (b) other structural particulars
- (c) quantities of steel and concrete per 100 sft.

for simply supported slabs designed for various values of fc, t and m. For continuous and semi-continuous spans the safe loads may be increased by 50% and 25% respectively.

DESIGN OF R.C.C. SLABS

R. C. C. SLABS Values of n_o for Various Percentages of Steel

Chart 4-3

R. C. C. SLABS

Q for Various Percentages of Steel For Different Codes

Chart 4-4

DESIGN OF R.C.C. SLABS

Chart 4-6

Chart 4-7

DESIGN OF R. C. FLOOR SLABS

Stresses: fc=950 psi; t=18000 psi; m=14

DESIGN OF R. C. FLOOR SLABS

Stresses: fc=850; t=18000 psi, m=16

DESIGN OF R.C.C. FLOOR SLABS STRESSES: fc-1,000. ft-18.000 & m: 15

Chart 4-12.

TABLE 42. Design constants for different values of fc. t and m.

	fe		m -	- 15			101	18 .			m -	14		fo		m -	11.6		The state of the s	m	- 16	
,	10	Q	p	n.	5	Q	р	ת	1	Q	р	n,	3	10	Q	p	n,	5	Q	p	n,	7
	400	49.6	.0084	.273	.909	66.5	.0039	.310	.897	47.6	.0032	.260	.913	400	41.4	.0028	.224	.926	61.8	.0036	.286	.905
	450	60.2	.0042	.297	.901	66.7	.0043	.886	.888	67.1	.0040	.285	.906	450	60.7	.0035	.246	.918	62.6	.0044	.810	.897
	600	71.8	.0060	.319	.894	79.2	.0056	.860	.880	68.4	.0048	.804	.899	500	60.5	.0042	.266	.911	74.0	.0052	.333	.889
- 1	650	83.0	.0059	.840	.897	91.8	.0066	. 388	.872	79.8	.0050	.825	.892	550	71.8	.0049	.285	.905	86.2	.0061	.356	.882
	600	95.0	.0068	.860	.880	104.7	.0076	.408	.866	91.1	.0064	.344	.885	600	81.9	.0057	.303	.899	98.4	.0070	.876	.875
16000	650	107.5	.0077	.379	.874	117.8	.0086	.422	.859	103.6	.0074	.303	.879	650	98.0	.0005	.320	.893	111.2	.0080	.394	.869
	700	120.4	.0087	.396	.869	181.8	.0098	.440	.853	116.3	.0083	.380	.873	700	105.0	.0074	.338	.887	124.8	.0090	.411	.868
	750	138.6	.0097	.413	.862	146.1	.0107	. 456	.843	129.1	.0093	.396	.868	750	117.0	.0083	.354	.882	138.0	.0101	.430	.867
	800	146.9	.0107	. 429	.857	159.1	.0118	.472	.843	142.2	.0103	.412	.868	800	130.0	.0098	.368	.877	151.6	.0112	. 446	.852
	860	160.6	.0118	.443	.852	174.0	.0130	.489	.837	165.8	.0114	.427	.858	850	142.0	.0102	.882	.873	185.8	.0123	.461	.846
	900	174.6	.0129	.458	.847	188.4	.0141	.603	.832	169.1	.0124	.441	.853	900	164.5	.0111	.895	.868	179.6	.0184	.474	.842
	950	188.6	.0140	.471	.843	203.6	.0154	.617	.828	183.2	.0135	.454	.849	950 1000	167.2 180.6	.0121	.408	.854	193.9	.0146	.487	.838
	400	45.8	.0028	.250	.917	61.6	.0032	. 285	.905	43.7	.0026	.237	.921	400	38.2	.0023	.205	.932	47.8	.0029	. 262	.913
	450	66.8	.0034	.278	.909	62.7	.0039	.311	.896	63.2	.0032	.259	.914	450	46.6	.0028	.224	. 925	58.4	.0036	. 286	.905
	200	66.3	.0041	.294	.902	74.1	.0046	.334	.889	63.6	.0039	.280	.907	500	56.8	.0034	.243	.019	69.1	.0043	.308	.897
	650	77.4	.0048	.814	.895	86.1	.0064	.854	.882	74.1	.0046	.299	.900	650	65.8	.0040	. 262	.918	80.4	.0050	, 323	.891
	600	88.9	.0056	.833	.889	98.2	.0062	.374	.875	86.4	.0053	.818	.894	600	76.6	.0048	.278	.907	31.1	.0058	.347	.884
18000	650	100.8	.0063	.351	.883	111.8	.0071	.304	.869	96.8	.0061	.336	.888	850	86.5	.0058	.296	.902	104.9	.0066	.866	.878
	700	113.1	.0072	.368	.877	124.6	.0080	.412	.863	108.9	.0069	.853	.882	700	95.2	.0059	.803	.899	116.8	.0074	.888	.872
4	750	125.7	.0080	.885	.872	137.7	.0089	.428	.857	121.2	.0077	.868	.677	760	108.8	.0068	.326	.891	130.0	.0088	.400	.867
	800	138.7	.0089	.400	.867	151.6	.0099	. 445	.852	133.9	.0086			800	120.6	.0076	.340	.887	143.1	.0092	.415	.862
	850	151.9	.0008	.416	.862							.884	.872	850	132.7	.0084	.354	.882	156.6	.0102	.429	.857 .852
	900					165.4	.0108	. 459	.847	146.9	.0094	.898	.867	960	145.5	.0100	.380	.873	184.8	.0121	459	.847
		166.3	.0107	.429	.857	180.0	.0119	.474	.842	159.9	.0103	.412	.863	1000	170.6 183.7	.0109	.892 .403	.869	198.0 212.0	.0131	.469 .481	.844
1	950	179.0	.0117	.442	.853	194.0	.0128	. 487	.838	178.8	.0112	.425	.858	1100 1150	197.0 210.0	.0127	.416	.862 .858	226.8 241.6	.0157	.806	.836
	1000	193.0	.0126	.465	.848	208.0	.0139	.500	.833	187.0	.0121	.438	.854	1200	223.5	.0145	. 436	.856	255.4	.0171	.615	.828
- 8	400	42.6	.0028	.231	.923	48.1	.0026	.264	.912	40.2	.0022	.219	.917	400	35.2	.0019	.188	.937	44.6	.0024	.248	.919
	450	82.0	.0028	. 252	.916	58.5	.0032	. 288	.904	49.8	.0027	.240	.920	450	43.0	.0023	.206	.931	84.6	.0030	.265	.912
	500	62.0	.0084	.273	.909	69.6	.0089	.311	.896	58.2	.0032	.259	.914	500	61.8	.0028	. 224	.925	64.8	.0036	. 286	.905
	650	72.6	.0040	. 292	.903	81.0	.0046	.331	.890	69.3	.0038	.278	.907	550	61.1	.0036	.242	.919	76.4	.0042	.806	.898
20000	600	83.6	.0047	.810	.897	92.9	.0053	. 356	.888	80.2	.0044	.296	.903	600	70.8	.0039	. 258	.914	86.7	.0048	.824	.892
	650	94.9	.0053	. 828	.891	105.2	.0060	. 869	.877	91.1	.0061	.313	.896	650	80.4	.0044	.273	.909	98.6	.0055	.842	.886
	700	106.7	.0060	.844	.885	117.7	.0068	.886	.871	102.4	.0068	.829	.890	700 750	91.4 102.2	.0060	. 289	.904	110.6 122.8	.0063	.360	880
23.	750	118.8	.0068	.860	.880	130.6	.0076	. 403	.866	114.2	.0065	.844	.885	800 860	113.6 124.5	.0064	.318	.894	136.0	.0078	.891 .406	868
11.3	. 800	181.2	.0076	.876	.876	144.0	.0084	.419	.860	126.3	.0072	.859	.880	900	136.8	.0077	.844	.885	162.0	.0094	.419	.860
	850	144.0	.0083	. 889	.870	157.8	.0092	. 434	.855	139.8	.0079	.373	.876	1000	148.6	.0092	.368	.877	189.5	.0111	.445	.862
	.900	167.0	.0091	.403	.866	172.0	.0101	.448	.861	151.7	.0087	.387	.871	1050	173.8 185.9	.0099	.379	.874	203.9	.0120	.467	.844
	950	170.2	.0099	.416	.861	186.6	.0109	.461	.846	164.6	.0091	.399	.867	1150 1200	199.5 212.4	.0116	.400	.867	231.6	.0138	.478	.841

TABLE 4-b.

Mix		cđ	b d	क d	ပင္သ	& f	9		20		д	
d Inches	RM (ft. lbs.)	A _t (9q. ins.)	R. M.	Ψ	R. M.	3 V	R. M.	A _t	R.M.	Ą	R.M.	Å,
2.25	1030	.37	831	.31	600	.24	764	.27	977	.34	618	.22
2.75	1590	.45	1295	.37	1044	.29	1190	.34	1459	4.	953	.26
3.25	2220	. 53	1760	. 44	1457	.35	1660	.39	2038	6+.	1350	.31
3.50	2570	.57	2100	.48	1690		1930	.43	2364	.53	1543	.34
4.00	3360	.65	2735	. 55	2190	.43	2520	67.	3088	.61	2016	.38
4.50	4258	.73	3480	.63	2800	.48	3190	.55	3907	.68	2540	.43
6.00	5250	. 82	4280	.68	3450	. 53	3940	.61	4823	91.	3150	.48
5.25	3780	.86	4720	17.	3803	. 56	4340	\$	5319	.79	3473	.50
5.50	6357	06.	6190	.75	4175	69.	4760	.67	5838	.83	3812	.53
6.75	0940	.94	5680	.78	4563	.61	5229	.70	6381	.78	4166	.55
6.00	7560	86.	6190	.82	4968	79.	2660	.74	8169	.91	4536	. 68
6.26	8220	1.01	6700	.86	5390	.67	6150	.77	1539	.95	1955	.60
6.50	8870	1.06	7250	.88	5830	69.	6650	.80	8154	86.	5324	.62
6.75	0096	1.10	7840	. 92	6283	.72	7200	.83	8793	1.02	5740	.65
7.00	10290	1.14	8410	.95	6782	.75	7720	.86	9457	1.08	8174	67

Table 4-c.

Simply supported slabs (fc - 1150, t - 18000, m - 11.6) (a)

	SAF	E LO	ED DR	CLUD	BAFR LOAD INCLUDING WEIGHT OF	VEIGI	IT OF	BLA1	SLAB IN PSF. POR	PSF.	POR					DETA	DETAILS OF SLABS	ABS		
терере					SPAN IN	ENI	FERT						cpes)	.0.		,apt	REINFORCEMENT	CENENT	QUANTITIES	HILE
- auto	40	•	-	60	۰	10	=	94	80	2	13	16	Ruseth ol) staded	Area Steelly Steelly Sq. inch	Cover (Inc	Et. Four	Main	Distri- bution	Conerete C. Ft.	Steel
0.			169	120	102	00 00	2	3	0,	91			23.23	.37	9/16	1030	1.@s}.	1.08	223	1.36
3.5			280	199	157	127	105	88	22	99	22		2.75	4.	9//6	1590	1.63	1.87	29.1	1.67
0.4			310	236	187	161	125	106	89	7	29		3.00	6	3/4	1890	1.@11.	1.@c.	83.3	1.83
9.			422	\$21	254	205	170	143	116	104	83	80	3.50	.67	3/4	2570	1.04.	1.00	37.5	9.11
5.0			920	029	332	268	222	187	162	137	120	104	4.00	99.	3/4	3360	1.631.	1.6e.	61.6	2.36
5.0						420	848	292	248	214	187	164	9.00	.82	11/16	6250	1.01	+ @31	20.0	2.95
٠.						462	288	\$21	206	236	202	180	5.25	.86	15/16	5780	1.64	1.63i.	54.1	3.85
6.75						910	620	352	288	260	226	200	5.50	08	15/16	6367	1.66	1.631	2.03	3.15
0.1							977	286	315	283	247	217	5.76	10.	14/16	6942	1.62	1.68.	88.8	3.36
.25							909	024	342	300	270	23	8.00	8	14/16	1560	-ts@.1	1.68	\$0.4	3.36
3.							249	167	373	338	203	257	6.25	1.01	14/16	8220	1.@2.	1.01	62.6	3.76
.75								486	00	363	316	277	6.50	1.08	14/16	8870	1.00	1.67	64.5	3.76
8.0									436	202	25 65	300	6.75	1.10	14/16	0096	1.84	1.07	9.99	4.10
22									069	420	370	355	7.00	1.14	14/16	10290	11.64	1.661	68.7	4.15

Table 4-d.

	QUANTITIES Per 100 sft	Ste Steel	1.16	1.34	1.43	1.71	100	2.20	2.54	2.03	2.90	20.02	2.95	2.99	2.9	3.34	-
	QUA	Concrete C. Pt.	श	20.1	23.3	87.6	47.5	45.8	0.03	54.1	2.93	58.3	60.4	62.5	64.5	88.0	
1.88	CRMENT bars)	Distri- bution	1.810.	1.00.t	1.07	\$/@e.	1.621	\$ @ a	100.1	168.	58.1	1.881	38	1.67	1.67	1.87	
DETAILS OF SLABS	RRINFORCEMENT (round bers)	Main	.t@.t	1.03k	1.00	1.00	100	1.00.	f.est	1.65	1.84	1.841.	1.84	1.81	1.01	1.64	
DETA	.sbas	Et. Por	881	1295	1642	2100	2736	3480	4280	4720	9190	6680	6190	6700	7250	7880	
	(sortor	Cover (in	9/16	9/16	3/6	3/6	3/6	11/16	11/16	11/16	11/16	15/16	16/16	16/16	15/16	15/16	
	1 34	Area Swell Sq. Inc	18.	.87	14.	87	. 65	19.	89	17.	.75	.78	03	.86	88	- 92	-
	(8940a)	Depth (1	2.25	2.75	97	50.00	4	4.5	40	5.26	5.5	6.75	8.00	6.25	6.60	6.76	•
		16				\$	88	108	137	148	162	178	103	808	88	246	
		18			55	75	8	123	156	168	183	202	219	237	252	270	100
PSB		7		9	63	98	111	142	179	193	212	52	262	273	206		,
OF SLAB PSF		13		61	73	00	120	164	207	200	246	269	202	317	343		-
40 J		25	45	27	86	117	151	193	773	202	288	316	375	871			
RIGHT	BET	Ħ	50	86	101	138	179	822	290	310	345						
W DA	SPAN IN FEET	9	92	103	123	168	218	278	350			-					
CUDE	BPAN	a	98	128	162	204	270	343									
DAT (90	101	162	193	262	340	-									
LOAI		-	120	202	245	333											
SAFE LOAD INCLUDING WEIGHT		•	181	287	243			_									
		49	260	413													
		-	416														
(1	depth (achei	Sale	3.0	3.6	0.1	6.5	0.9	6.5	00.9	6.25	9.9	0.7	7.26	2.0	7.75	_	-

DESIGN OF R.C.C. SLABS

Table 4-c. Simply supported slabs (fc - 750, t - 18000, m - 18) (c & f)

	CITIES 00 aft.	Steel	1.03	1.18	1.42	1.64	1.72	1.80	2.10	2.23	2.30	97.5	2.60	2.76	93	2.97	66 6
	QUANTITIES Per 100 aft.	Concrete	25.00	29.17	33.33	37.50	41.67	45.83	60.00	52.08	54.17	56.25	58.83	60.42	62.50	84.58	AR 87
BS	SEMBNT bars)	Distrf- bution	1.010.	Do	1.60	1.08.	1.01	1.00	F.@sl.	1.00°	1.00	1.001	1.011	1.810.	1.60i.	.60	1.00
DETAILS OF SLABS	REINPORCEMENT (round bars)	Main	1.00.1	1.041	1.001.	- @e-	1.001	4.@2.	Hert.	1.00.1	1.01	1.60	1.021	I.@st.	1.00	- @s	1.0011
DELAI	FUCO	Moone Resist Voor	009	1044	1457	1690	2203	2795	8450	\$30\$	4175	4563	1968	6390	5830	6283	A780
	(setion	Cover (li	9/10	9/16	9/16	3/4	3/4	8/4	8/4	3/4	3/4	3/4	3/4	8/4	11/16	11/16	11/14
	.3%	81048 	.240	204	.347	.374	127	.480	.634	.560	.687	+19.	.641	.668	100.	721	2.48
	(eptjot	Debty (1	2.25	2.75	3.25	3.50	4.00	4.60	2.00	5.25	6.60	5.75	0.00	6.25	09.9	6.75	3
- ene 2		16					69	88	110	122	153	146	160	172	187	200	PIR
		12			** ***	8	90	8	122	135	143	168	178	193	207	200	076
Ib/art		7.		57	3	00	8	114	141	156	170	186	304	250	238	257	826
(EAB)		23		61	8	84	108	132	163	180	196	216	235	258	277	208	063
40 :		현		23	81	90	127	155	101	216	123	252	276	300	324	350	376
RIGHT	FEET	Ħ	99	69	88	114	151	186	2	252	276	300	353	356	286	416	447
TO W	N N	9	93	80	117	186	182	822	276	304	335	364	282	430	909	909	940
CUDIN	SPAN IN	0	69	104	144	167	218	276	340	376	410	448	109				
(INCI		∞	83	131	182	118	276	340	430	476	520	029					
LOAD		F	114	171	240	277											
SAFE LOAD (INCLUDING WRIGHT OF SLAB)		ø	155	183													
672		10															
	-	•							-							_	
(1	Depth (Inche)	daf8	8.0	9.6	0.1	9.9	0.0	9.0	0.0	22	0	6.75	0.	98	9	.76	8.0

Table 4-f. Simply supported slabs (fc-850, t-18,000, m-16)

	QUANTITIES	Steel Cwt	1.62	1.20	1.34	1.62	1.71	2.10	2.30	2.43	2.44	9.61	19.65	3.00	96.	3.28	***
	KYAD	Concrete C. Ft.	23	29.1	33.8	37.5	41.6	46.8	50.0	54.1	56.9	58.8	\$00.	62.6	64.5	9.99	4 4 7
BS	SMENT bare)	Distri-	1.010	1.60	1.00	1. @S.	1.00.1	1991	1. @b.	1.64	1.601.	109.1	1.60	188.	. (A. (B.)	北京	2000
DETAILS OF SLABS	BRINFORCEMENT (round bars)	Xain	1.0010°	1.01	1.631	1.001	1.@2.	1.01	1.00.1	f.@ef.	1.884.	1.02	F.85	1.84	1.841.	18	1.4.4
DETA	.spar	E. H.	764	1180	1440	1750	2620	3100	3940	1340	4760	6220	2680	6150	9650	7200	7790
	(sepse	Cover (M	9/16	9/16	13/16	3/4	3/4	3/4	11/16	15/16	15/16	15/16	15/16	15/16	15/16	15/16	15/16
	11.3	Atter Bteel Sq. Inc	.27	.34	.37	.43	9.	10	.61	3	. 67	.70	.74	12.	8.	28.	2
		Depth (li	2.25	2.75	3.00	3.50	4.00	4.5	6.0	6.25	6.5	6.75	0.00	6.25	6.50	6.75	1
		16					79	100	123	136	149	163	177	192	206	7	240
		16					8	113	140	164	169	186	200	218	200	266	274
PSP.		77				20	103	130	161	175	194	213	E	250	270	284	315
SLAE		21		67	38	28	120	151	186	205	220	247	268	250	314	340	
T OF		런	약	99	80	26	140	177	219	193	264	250	314	340		nos tuda	4.0
RIGH	FRET	=	20	70	96	116	166	210	250	286	314	844					
NG N	SPAN IN	10	61	8	115	140	202	255	318	347	Du 0.0 00						
LUDI	SPA	5	76	118	142	174	250	316									
D INC		8 0	8	140	180	219	315	ad to the									
SAFE LOAD INCLUDING WEIGHT OF SLAB PSP.		E-	121	180	230	988											
SAFE		•	170	275	320												
		w	264	380												,	
		+	382														
(B)	digebth (lache	aloT fals	3.0	8.5	0.4	4.6	6.0	6.6	0.9	6.50	6.75	7.0	7.25	7.50	7.75	8.0	8.25

DESIGN OF R.C.C. SLABS

Table 4-g.

R.C.C. SLABS
Simply supported slabs (fc = 750, t = 18000, m = 15) (h)

	90	SAFE LOAD (INCLUDING WRIGHT OF SLAB) INAR	LOAD	CINCI	UDIN.	G W.	THOL	0F 8	LAB)	1b/aft		_				DETA	DETAILS OF SLARS	ABS		
					SPAN	BPAN IN FERT	BRT						iches)	.39	cpes)	900	REI	NFORCEMENT (round bars)	QUANTITIES Fer 100 aft	TTIES 30 sft
4	100	•	1-	80	0	10	п	12	138	31	15	16	Depth (la	Area Steel/ A	Cover (In	nomok steleosi I 200T K.H	Main	Distri- bution	Concrete C. Ft.	Steel
-	204	142	104	80	68	19	61			-			22.52	216	9/16	638	1.603.	1.60.	25.00	1.03
	_	210	155	110	70	76	63	82	46	-			2.76	.264	9/16	958	. 43.	1.810.	20.17	1.18
		801	217	167	133	106	87	7.4	80				3.25	.312	9/16	1850	. 4.	1.@15.	23.53	1.25
		343	253	104	153	124	103	2	73	68	ens ***		3.50	.336	3/4	1643	.fe "	F.@14"	37.50	1.42
_				252	196	191	136	112	8	67	an sage		4.00	384	3/4	2016	1.66	1.@15.	41.67	1.46
	_			390	250	204	168	142	120	102	8	99	4.50	436	3/4	2550	.15 "	1.014	45.83	1.68
				394	310	252	208	176	150	120	112	88	2.00	-480	3/4	3150	6.	1.015	20.00	1.76
6.25				435	345	280	230	105	166	143	127	108	5.25	.504	3/4	3473	: 44.	1.612	52.08	1.90
_				478	876	302	266	212	180	155	136	119	32.50	528	3/8	3812	** **	1.012	54.17	1.90
6.75				620	410	334	27.5	33	196	170	148	130	5.75	.553	3/4	4166	1.84	£@11.	56.23	21.3
0.					448	363	200	251	214	185	191	143	8.00	.676	3/4	4534	1.84	1.610.	68.33	2.13
22.					900	396	328	275	25.2	200	175	164	6.25	000	8/8	4052	1.64.	1.010	60.42	2.13
10.					929	2	350	205	252	217	180	166	8.50	.624	11/16	6324	\$.@e.	1.@10.	62.60	2.30
7.76					670	460	\$80	320	270	200	203	180	6.75	.648	11/16	6740	199.1	1.60	64.58	2.55
_					910	167	407	342	232	250	219	194	7.00	.672	11/16	6174	138.1	1.60	66.67	1.56

Table 4-h. R.C.C. SLABS

(80	SAFE LOAD (INCLUDING WRIGHT	OAD	(INC.	LUDI	W DX	RIGH	T OF	OF SLAB)	PSF						DETA	DETAILS OF SL	SLABS		
depth						SPAN IN	IN E	FEBT						(go4)	.3	pee)	900	REINFORCEMENT	CEMENT	QUANTITIES	TIES
) dals	•	10	•	-	60	0	9	#	. 2	50	7.	15	16	Depth (lac	A168.0 T\[6938 JA	Cover (Inc	Moment Heateleast Toou	Malf	Distri-	Concrete C. Ft.	Street.
8.0	69	818	217	160	81	8	00	92	20					2.25	.340	1/2	976	1.67	1.@15.	25.00	1.30
8.6	_		326	238	182	144	117	28	81	8	00			2.76	.415	1/2	1460	1.6651	12	29.17	1.60
0.4			287	284	218	172	130	115	20	87	11	80		3.00	.452	3/4	1740	. 8	12	33.33	1.74
6.5				285	362	233	180	156	131	112	8	84	7.4	8.50	. 558	1/2	2360	.170	10	\$7.50	1.8
0.9	_			203	388	304	246	204	171	146	126	110	8	4.00	.604	11/16	2080	.08.1	. 10	41.67	2.26
5.5	•		_	_	689	\$88	313	258	217	185	160	130	120	4.50	.680	11/16	2910	.49BH	ه :	45.83	2.45
0.0					-	476	386	819	268	822	197	171	160	2.00	.766	8,3	4820	1.87	b :	60.00	2.77
6.25	_				-	525	23	\$61	205	252	217	189	166	5.25	.793	8/8	5310	1.07	۵ :	52.08	2.77
6.5	_					249	167	886	324	276	238	208	183	5.60	.830	5/8	6840	.98	۲.	54.17	8.38
9.76	_						610	422	355	302	261	123	200	5.75	.868	8/9	6\$80	.989.	۲.	56.25	3.26
7.0			_	5-6-6-6			556	33	385	328	283	247	217	00.0	906	11/16	6940	1.81	٦ :	88.25	8.58
9		_		_	trotoman er		809	609	419	357	308	888	225	6.25	.946	8,8	7530	1.621	6 1	60.42	8.57
7.5		_						540	452	386	333	280	18	6.50	.981	8/9	8150	.885	.0	62.50	3.90
7.75			_					581	480	416	369	\$18	274	6.75	1.020	8/9	8780	.65	6	88.19	8,90
8.0	_			-		_	-		598	44.9	804		900	2	4 040	9 2	0110		1	-	4

DESIGN OF R.C.C. SLABS

Table 4-j.

Coefficients for restrained slabs

•					PAN Z',				
TYPE OF PANEL AND MOMENTS CONSIDERED				VALU	Es of 2	'¥			z'y*
CONSIDERED	1-0	1-1	J-2	1:3	. 1-4	1-5	1.75	2.0 OR MORE	
CASE D INTERIOR PANELS. NEGATIVE MOMENT AT CONTINUOUS EDGE POSITIVE MOMENT AT MID-SPAN	0.025	0.040	0-045	0.035	0.084	0.059	0-071	0-093	0-033
CASE D ONE EDGE DISCONTINUOUS NEGATIVE MOMENT AT CONTINUOUS EDGE POSITIVE MOMENT AT MID-SPAN	0-041	O-047 O-035	0-053	0.057	0-061	0-085	O-075	0-085	0.041
CASE C TWO ADJACENT EDGES DISCONTINUOUS NEGATIVE MOMENT AT CONTINUOUS EDGE POSITIVE MOMENT AT MID-SPAN	0-049	0-055	0-052	O-066 O-050	0-070	O-073	0-082	0-090	0-049 0-037
CASE d TWO SHORT EDGES DISCONTINUOUS NEGATIVE MOMENT POSITIVE MOMENT	0-056 0-044	O-061 O-045	0.065	O-069 O-051	0-071 0-053	0-073 0-055	0-077 0-088	0-080 0-040	0.015
CASE & TWO LONG EDGES DISCONTINUOUS NEGATIVE MOMENT POSITIVE MOMENT	0-035	0-053	0.040	0.085	0.065	0.071	0-077	0.080	0-056 0-046
CASE ! THREE EDGES DISCONTINUOUS NEGATIVE MOMENT AT CONTINUOUS EDGE POSITIVE MOMENT AT MID-SPAN	0-05\$ 0-044	O-055 O-049	0-07I 0-054	0-077	0-061	O-085 O-064	0.013	0-098	0-056
CASE 9 POUR EDGES DISCONTINUOUS POSITIVE MOMENT AT MID-SPAN	0-050	0-057	0.082	0-067	0-071	0-075	0-081	0-083	0.050

TY: LONG SPAN COEFFICIENT FOR ALL SPAN RATIOS

Table 4-k.
Safe loads on restrained slabs of various dimensions

SLAB		-			SAFE LOAD PER SET. EX	CLUDING WEIGHT OF SLAB		
	3	OK	PANEL	PANEL	PANEL	PANEL	PANEL	PANEL
HORT		E	Ly/Lx = 1	$Ly/\ell x = 1.1$	Ly/6x =1.2	$\ell y/\ell x = 1.3$	Ly/ex = 1.4	Ly/6x = 1.5
A S	S. AM	COMPITIONS	10 11 12 13 14 15 16 17 16 X X X X X X X X X X X X X X X X X X	10 11 12 13 14 15 16 17 18 X X X X X X X X X X X 11 12-1 13-2 (4-3) 15-4 16-5 17-6 18-7 15-8	10 11 12 13 14 15 16 17 18 X X X X X X X X X X X X X X X X X X X	10 11 12 13 14 15 16 17 18 X X X X X X X X X X X 13 14-3 15-6 16-9 18-2 19-5 20-8 22-1 23-4	10 11 12 13 14 15 16 17 18 X X X X X X X X X X X X X X X X X X X	10 11 12 13 14 15 16 17 18 X X X X X X X X X X X X X X X X X X
		O	323 265 220 184 153 127 108 90 A's = 0-41 50.1NCH	825 260 211 171 141 117 97 80 65 A's =0-32 59-INCH	264 226 183 142 121 99 79 65 53 A's = 0-30 5Q-INCH	250 122 158 128 103 84 67 54 43 A's = 0.27 50.1NCH	228 179 142 112 92 73 58 42 85 A's = 0-24 5Q.IHCH	204 155 127 100 80 63 50 37 26 A's = 0.22 sq.inch
		Ь	316 253 200 166 136 112 93 76 63	270 214 172 137 113 51 74 65 49 A's=0+36 50-INCH	233 185 147 116 94 76 60 49 39 A'6= 0-32 50-1HCH	212 146 132 105 84 46 52 40 31 A'5 = 0.25 50-1HCH	197 153 120 100 75 59 46 35 26 A's € 0 • 28 50 • INCH	181 142 105 87 67 53 40 30 23 A's = 0.26 50.1NCH
		С	267 188 162 131 106 72 69 56 44 A's #0-41 59,INCH					
4 0-36	6	d	RIS 172 196 109 86 69 56 43 35 A'6 # 0+26 5Q.IHCH	196 154 122 36 76 60 46 35 26 A'5 = 0.24 50-INCH	18 14 11 86 66 46 34 24 18 A's = 0+22 50+1HCH	168 130 102 78 60 47 35 26 17 A's =0-21 50-INCH	16 126 17 75 58 44 33 23 15	156 119 93 67 55 42 30 21 13 A's # 0+20 5Q-INCH
1.4.1		•	880 203 248 203 168 145 118 +9 77	233 185 147 118 54 76 60 45 35 A's =0.43 50.INCH	200 157 124 98 76 42 48 37 27 A's = 0.36 59-INCH	222 141 111 86 66 53 40 30 22 A's = 0.35 SO-INCH	171 132 104 80 62 48 37 26 18 A's = 0 · 34 5 Q. IHCH	158 125 93 75 86 44 93 23 15 A's=0-23 5Q.INCH
		t	203 163 125 105 80 64 51 35 50 A's = 0.41 5Q.INCH	181 141 110 86 66 53 40 27 22 A's = 0.36 50-INCH	1G1 125 93 75 57 46 33 22 15 A's = 0-34 5Q-1HCH	147 112 86 66 49 37 26 17 10 Assorbs Column	134 103 78 59 44 32 22 14 7 A'5=0-29 50-INCH	127 96 73 54 39 29 19 12 6 "A's = 0.28 50.1NCH
		9	150 158 158 128 102 85 67 54 41 A's= 0.41 50.1NCM	214 164 130 106 57 67 53 41 32 A'8 # 0-35 50-INCH	192 150 116 93 71 58 45 34 24 A/5 = 0-33 5Q-INCH	174 135 106 82 63 45 37 27 19 A'5 = 0-31 5Q-IHCH	161 124 98, 75 56 47 32 23 15 As = 0-29 50.1NCH	150 105 69 68 56 49 28 19 12 A'5 # 0 27 5 9 1 1 CH
	I	a	358 290 243 205 171 146 123 A's m q 47 50 INCH	A'S = 0.35 5Q-INCH	374 259 242 197 164 135 110 93 76 A's = 0:36 5Q-INCH	A's = 0.32 5Q. INCH	301 239 192 152 126 102 85 63 53 A'5 = 0-29 50-INCH	A'S = 0.26 SQ. INCH
		ь	A's = 0 - 47 5Q IHCH	A'S = 0.41 SQ.INCH	A's =0.37 SQ.INCH	278 221 177 143 115 98 74 89 46 A's = 0-34 50.1NCH	A's = 0+32 SQ.IHCH	A'S = 0.29 SQ. INCH
4		С	538 262 215 176 143 115 36 79 64 A's#0:47 5Q.INCH	A'S = 0 + 41 5Q - INCH	A'S = 0+37 SQ-INCH	A'S = 0.75 5Q.INCH	A's = 0.33 5Q.INCH	A'S = 0.32 5Q. INCH
1/2 04	H I	d	289 229 164 146 119 57 80 61 80 A's=0-305Q.INCH	A'S = 0.27 60-INCH	' A'5 = O - 2 G SQ-INCH	A'S = 0-24 SQ. HCH	216 169 132 106 83 65 50 38 28 A's = 0-23 so. IHCH	A'5 = 0.23 5Q. INCH
		•	A's m 0-75 80, INCH	A'5=0-50 SQ-INCH	A'S = 0.44 SQ.INCH	241 190 150 119 94 76 60 47 36 AS=0-41 5Q-1HCH	A'S = 0.39 SQ.IHCH	A'5 # 0-37 3 Q-INCH
		1	277 220 174 143 116 91 73 59 46 A'8#0147 \$Q.INCH	A'S = 0.42 5Q-IHCH	A'S=0-39 5Q.IHCH	A'S = 0.36 50.1KCH	A'S E DISA SQUINCH	A 2 B O . S B 2 d · INCH
	\perp	9	830 262 212 172 139 116 95 77 63 A'5=0-47 5Q-INCH	282 222 184 144 183 95 77 61 48 A's = 0.41 50.1NCH	256 202 159 128 100 88 66 51 46 A's = 0-38 \$Q-INCH	232 183 144 114 65 71 67 44 34 A'S = 0-35 50-INCH	A's = 0.43 SQ.IHCH	A5 = 0.87 \$Q.INCH
	T	a	328 278 233 201 170 A's = 0-52 5Q- INGH	372 306 257 216 183 156 130 A'S = 0+43 5Q-IHCH	398 325 267 122 186 154 131 109 A's #0-28 5Q-INCH	352 266 234 193 161 135 111 92 A's = 0-34 54-INCH	A's = 0.32 SQ-INCH	262 280 233 188 154 126 104 84 66 A'S = 0 23 50 INCH
		Ь	350 208 248 208 176 148 126 A's = 0-52 50-INCM	A'S E OLAG SOLINCH	A'5 = 0.41 50 UNCH	372 298 240 196 161 182 108 66 72 A'6 = 0-37 50-1HCH	A'S = 0.35 5Q-INCH	N'S = 0.33 5Q-INCH
		C	350 250 239 138 162 136 115 94 A's = 0.52 50.1HCH	A'S = O-46 SO INCH	A'450.4150.INCH	318 252 203 152 132 107 86 69 55 A'5 mo-39 5Q.INCH	14.5 # 0.37 50 INCH	V.2 EO. 92 26-14CH
5"0-4	14	d	A'A = 0.23 60.INCH	A'6 5 0:30 60 INCH	A'4 5 0.28 50 INCH	300 238 191 152 [21 100 80 64 50 A'5 = 0-27 5Q-INCH	Y 2 E O . SE SOUNCH	7 3 4 0 . 5 3 3 0 . INCH
-		e	A'E = 0.82 50.1HCH	A's = 0.55 SQ.INCH	A'S = 0 + 49 5Q-INCH	315 862 222 171 138 116 94 77 62 A15 = 0:45 59.1HcH	Y 2 PD - 48 BOUNCH	A S B O S S S S INCH
		1	A's = 0:52 BQ.INCH	A's a dide so INCH	A'S STOLAR SOLINGE	263 207 163 130 103 85 64 50 36 A's=0-405Q-INCH	4 2 = 0.3/ 30 inch	233 180 143 112 87 68 56 45 31 A'6 = 0.36 50.INCH
		9	351 269 234 191 160 133 111 90	298 248 198 182 183 109 90 73 A's=0.4659.INCH	A'6 = 0 + 42 50 - 1 HCH	291 247 198 158 126 103 84 67 54 A's = 0-37 59-1NCH	A 5 E D - 3 / 54 - INCH	V2 = 0.3284: IVE
3		a	340 285 246 210 4's = 0.55 5Q .INCH	373 315 266 227 193 163 A's = 0.49 80.1NCH	358 327 278 230 150 163 158 A's = 0.43 59. INCH	351 288 238 199 144 139 117 A's = 0-39 50 INCH	316 253 216 178 149 117 102 A'5 = 0.36 50.1NCH	342 286 233 191 158 131 107 81 A'5 = 0.33 5Q-INCH 216 241 205 166 138 113 91 7
		Ь	363 306 252 218 184 158 A's = 0.59 50 INCH	376 308 258 215 180 183 129 A's = 0.52 5Q.1HCH	A'S=0.46 59.1HCH	363 296 243 200 165 186 113 98 A'5 = 0 : 42 80 INCH	239 273 232 161 145 123 102 83 A's = 0.40 5Q.INCH	A's = 0.37 5Q.IHCH
H		c .	356 293 244 201 170 144 120 A's =0.59 50.thch	306 251 205 171 148 117 97 A'SEO-52 SQ.INCH	373 248 218 174 147 121 99 81 A'S = 0.47 5Q.INCH	A'5 = 0.44 \$9.1HCH	361 286 231 185 154 122 93 60 64 A'5 = 0+42 50-1NCH	A's = 0.40 \$0.1HCH
1/2 0.5	186	d	305 249 205 171 144 117 97 A's #0:37 5Q.INCH	341 276 223 184 151 124 102 84 A'S = 0.24 50.1HCH	314 254 205 165 137 113 \$2 74 A ¹ 5 = 0+32 59-1NCH	A'S = 0-30 \$Q.INCH	A'S = 0-29 50-INCH	A's=0.29 SQ.INC
		e	376 318 268 229 186 4's = 0.95 8Q.INCH	329 268 224 IE4 154 IES 107 A's = 0.62 5Q-INCH	346 281 223 184 155 128 106 87 A'S = 0.55 50-1HCH	A'5 = 0.57 5Q-INCH	382 305 246 200 (G3 135 112 91 75 A's = 0.49 50.1HCH	A's = 0:47 5Q. IHCH
	Г	f	358 291 243 193 161 134 111 94	815 253 205 165 139 113 85 74 A's = 0.52 5Q.INCH	A's # 0.49 5Q-INCH	A'5 = 0.44 INCH	201 238 189 151 120 95 76 59 46 A's = 0.45 5Q.INCH	A'S = 0.41 50.1NCH
1		9	351 286 286 198 168 139 115 A6=0:59 60.INCH	305 243 226 166 137 113 94 A's =0-52 sq.1NCH	A'S = 0.48 SQ-INCH	A'S # 0 . 4 4 6 0 - INCH	354 281 227 183 145 126 97 78 62 A's = 0.42 50.1HCH	A'S & O'S S & C'INCH
-		a	353 308 267 A's=0.6780.INCH	392 333 283 243 206 A's = 0 · 54 5q inch	A's = 0.47 5Q-INCH	259 299 252 211 179 152 A'S = 0:45 5Q.IHCH	395 322 272 225 180 152 133 A'5 = 0.415@.INCH	A's = 0-38 SQ,INCH
		b	350 320 273 233 200 A's=0-67 5Q-INCH	325 270 228 194 166 A's=0.55 50.1NCH	A'5 = 0 - 52	A'S # 0.48 SQ-INCH	A's # 0 45 5Q. INCH	A's = 0 · 42 5Q. INCH
		С	36G 305 252 217 184 155 A'6 = 0.67 6Q.INCH	380 312 259 217 182 151 127	V.7 = 0 - 23 20-INCH	A'SEO. BO SQ.INCH	288 235 195 156 122 102 67 A's = 0.47 50.1NCH	A's 40-45 THCH
64 5.5	-	d	312 259 217 185 152 127 A's = 0:42 \$Q.IHCH	345 280 233 150 160 138 111 A'S = 0-39 SQ.INCH	317 259 209 176 145 120 100 A'S = 0-36 50-1HCH	A's = 0.34 50.1NCH	282 231 185 153 125 104 85 A'5 = 0-83 5Q-INCH	A'S = 0.32 INCH
		e	335 298 225 A's = 1.06 50 INCH	277 233 135 165 139 A's = 0.71 5Q.INCH	A'5 = 0 - 62 SQ-INCH	A'S = 0.58 SQ. INCH	A'S = 0.55 6Q.INCH	A's = 0 . 53 \$Q. 1HCH
	-	•	362 303 243 205 172 143 120 A's s 0.67 50.1HCH			255 205 168 138 110 89 71 A's = 0.51 50.1HCH	298 237 192 155 125 102 81 68 A's=0.48 5Q.INCH	A'S = 0.47 5Q.INCH
33)	-	9	359 295 250 212 179 149			305 245 201 168 139 114 95	352 283 230 185 162 128 104 63	A's = 0 + 47 SQ-INCH

CHAPTER 5

RECTANGULAR BEAMS

CONTENTS

								Page
5.1	Beams with	Tension	Rei	nforcemer	ıt		• •	 131
5.2	Beams with	Tension	and	Compress	ion	Reinford	cement	 131
5.3	Steel Beam	Theory			٠.			 133
5.4	Tables and	Charts			• •	• •	* •	 134
5.5	Examples		• •	• •				 141

CHAPTER 5

RECTANGULAR BEAMS

5.1 Beams with Tension Reinforcement.

The same formulae as those for slabs apply to the design of rectangular beams. However, in the case of slabs, the concrete area is generally sufficient to meet the shear stresses, while in case of rectangular beams provision for shear stresses will have to be made by means of bent-up bars and stirrups.

The charts and tables in this chapter are useful in designing rectangular beams ordinarily employed in practice. Continuous beams in a structure which are treated as T-beams at the centre of the span, act as rectangular beams over supports and the charts can be used for their calculation by placing the required reinforcement at top.

Tables 5a and 5b give R.M. and At for rectangular beams for different concrete and steel stresses.

Charts 5-1 & 5-2 also give R.M. and At as above.

Tables 5-c and 5-d give safe load per ft. run for rectangular beams as above.

Fig. 5-1. Singly reinforced rectangular beams

5.2 Beams with Tension and Compression Reinforcement.

In practice, beams with compression steel have to be used in the following cases:

(a) T-beams, when continuous, behave as rectangular beams at supports and when singly reinforced require considerable depth to take up the B.M. Steel for compression being

automatically available from the two spans adjacent to a support, a doubly reinforced rectangular beam is more suitable from architectural considerations and practical reasons.

- (b) Rectangular beams, lintels, etc. where the depth is necessarily restricted from consideration of headway or other architectural reasons.
- (c) Braces, walls of storage reservoirs, etc. where B.M. reverses according to loading conditions.

Fig. 5-2. Beam with compression reinforcement

In case of (a) and (c), the following formulae give the amount of A₀ and A_t in sq. inches for B.M.=M inch lb.

$$A_{e} = \frac{M-137bd^{2}}{Kd}; \qquad A_{t} = .009 + \frac{M-137bd^{2}}{18000(d-d^{1})}$$
 where $K = \frac{t(m-1)\left(1 - \frac{d'}{d}\right)\left(n_{o} - \frac{d'}{d}\right)}{m(1-n_{o})}$

The values of t being 18000 psi, and n_o=0.43 when fc=750 psi. The values of K are given as follows:

d'/d	.02	.04	.06	.08	.10	.12	. 14	.16	.18	.20
К	11850	11050	10260	9500	8760	8100	7360	6780	6030	5420

In case of (c), it is necessary to provide equal top and bottom steel. In this case, both steel and concrete may not be stressed to the maximum permitted stress. If steel is assumed to be stressed to the maximum permissible limit, the stress in concrete will be below the maximum limit. Alternatively if concrete is fully stressed, steel will be understressed. The following procedure is necessary to find out the R.M. of section reinforced with known amount of A_0 and A_1 :—

RECTANGULAR BEAMS

Determine position of neutral axis by the general formula

$$\begin{array}{l} n_{o} \! = \! \sqrt{[mr \! + \! (m \! - \! 1)r']^{2} \! + \! 2[mr \! + \! (m \! - \! 1)r'\frac{d'}{d}]} \\ - \! [mr \! + \! (m \! - \! 1)r'] \end{array}$$

where
$$r = \frac{At}{bd}$$
 and $r' = \frac{A_e}{bd}$

Use of table 5a will facilitate the calculation.

A = mr + (m-1) r' and B = mr + (m-1) r'
$$\frac{d'}{d}$$

 $n_0 = \sqrt{A^2 + 2B} - A$

The figures in vertical columns give the values of B. For values of A and B calculated as above, the required value of no can be found from the top horizontal column.

After the position of neutral axis is determined, the R.M. can be found by the following formulae:—

$$\frac{M}{bd^2} = t \frac{n_o}{m(1-n_o)} \left[\frac{n_o}{2} (1-\frac{n_o}{3}) + \frac{A_c}{bd} (1-\frac{p}{d}) (n_o - \frac{d'}{d}) \frac{m-1}{n_o} \right] = Q$$

$$\frac{M}{bd^2} = \frac{fc}{2} n_o \left(1 - \frac{n_o}{3} \right) \times \frac{A_c}{bd} \left(1 - \frac{d'}{d} \right) \left(n_o - \frac{d'}{d} \right) \frac{(m-1)}{n_o} fc = Q$$

The smaller of the two values of Q calculated by the above formulae is to be adopted. With fc = 750, t = 18000 and $\frac{d'}{d} = 0.1$, the

values of Q for different percentages of steel and modular ratios are as follows:

The adoption of the above formulae which are rather complicated can be avoided if necessary by finding the moment of inertia of the beam as illustrated in example (2).

5.3 Steel Beam Theory

A beam having equal steel at top and bottom can be treated as a steel beam and its strength may be calculated on the assumption that the concrete area can be neglected as far as bending is concerned.

In this case RM= $t \times A_t (d-d')=18000 A_t (d-d')$

This method however should be used with caution as at higher percentage of steel, the strength by this theory is much more than that obtained by application of standard theory. Hence this method should not be used where p is more than 3%.

5.4 Charts, Tables Etc. for Design.

Table 5a. Position of neutral axis for beams with tension and compression reinforcement.

						_						7	١.	ŧ.												
A.	0.20	0.22	0.24	0.26	0.2	0.30	0.32	0,34	0.36	0.36	0.40	0.42	0,44	0.46	0.46	0.50	0.52	0.5	0.5	0 5	0.60	0 8	0.6	40,6	60.6	0.
0.05 0.06 0.07 0.08 0.09	.030 .032 .034 .036 .038	.035 .037 .040 .042 .044	,041 ,043 ,046 ,048 ,050	.047 .049 .052 .055	0.05	6 .06: 9 .06: 2 .06:	074	.084																		
.10 .12 .13 .14	.040 .042 .044 .046	.048 .048 .051 .053	.053 .055 .058 .060	.060 .060 .065 .068	.07 .07 .07 .07	7 .07: 0 .07: 3 .08: 5 .08:	.083 .086 .090 .093	.095 .095 .095 .105	.101 .104 .108 .112 .115	.114 .118 .122	.128 .132 .136	.147														
15 16 17 18 19	.050 .052 .054 .056 .058								.119 .122 .126 .130				.167 .172 .176	.189				,								
20 21 22 23 24	.060 .062 .054 .055								.137 .140 .144 .148						.211 .216 .221 .226 .230	.240 .245										
25 26 27 28 29	.070 .072 .074 .076	.079 .081 .064 .066							.155 .158 .162 .166																	
									.173 .176 .180 .184 .187		200 204 208						291 296 302 307 312									
									191 194 198 202 205																	
1011213	100 102 104 106	112 114 117 119	125 127 130 132	.138 .140 .143 .146	.151 .154 .157 .160	.165 .168 .171 .174	.179 .182 .186 .189	.194 .197 .201 .204	209 212 218 220 220	224 228 232 236 239	240 244 248 252 256	258 260 265 265 273	273 277 282 286 290	.290 .294 .299 .304 .308	307 312 317 322 326	.325 .330 .335 .340 .345	343 349 354 350 364	362 367 373 378 383	.381 .386 .392 .398 .403	.400 .406 .412 .418	.426 .432 .438					
5 6 7 8 9	110 112 114 116	123 125 128 130	137 139 142 144 146	151 153 156 156 159	165 168 171 174	.180 .163 .186 .189	.195 .196 .202 .205	.211 .214 .216 .221	.227 .230 .234 .238 .241	243 247 251 255 258	260 264 268 272 276	.277 281 .286 .290 .294	.295 .299 .304 .308	.313 .317 .322							.450 .456 .462 .468 .474	47)				
01004	120 122 124 126 128	134 136 139 141	149 151 154 156	184 166 169 172	.179 .182 .185 .188	.195 .198 .201 .204 .207	.211 .214 .218 .221	.228 .231 .235 .238	.245 .246 .232 .256 .259	.262 .266 .270 .274 .277	280 284 288 292 296	258 302 307 311 315	317 321 326 330													
58789	130 132 134 136 138	145 147 150 152	161 163 166 168	177 179 182 185 187	.193 .196 .199 .202	.210 .213 .216 .219 .222	.227 .230 .234 .237 .240	.245 .248 .252 .255 .258	.263 .266 .270 .274 .277	281 285 289 293 296	300 304 308 312	319 323 328 332	339 343 348 352	359 363 368 373	379 384 389 394		421 426 432 437	.443 .448 .454 .459	465 470 476 482			.533 .539 .546 .552 .558	.557 .563 .570 .576	.601		
2	140 147 144 146	56 158 181 163	73 75 78 80	190 192 195 198 200	.207 .210 .213 .216 .218	.225 .228 .231 .234 .237	.243 .246 .250 .253 .253	262 265 269 272 273	281 284 288 292 295	300 304 308 312 315		340 344 349 353	361 365 370 374	382 386 391 396 400	403 406 113 118		447 452 458 463			516 522 528 534 539	.540 .546 .552 .558	454	589 595 602 608 614	488733 488733		
5	150. 152. 154. 156.	87 69 77 78	85 87 90 97	203 205 208 211 213	221 224 227 230 230	240 243 246 249 252	259 262 265 266 272	279 282 286 286 289 297	299 302 306 310 313	319 323 327 331 334	340 344 348 352 356	361 365 370 374 378	383 387 392 396 400	409 414 419 423	37 37 42 46	155 160 163 170	23.53	51 8 i.	.5431	.568 L	576 582 588 594	#20L	64C 64C	673	.651 700	
0	60 62 64 66	78.	97 199 102	216 218 221 221	235 238 241 244	255 258 261 264	275 276 202 203	296 299 303 306	317 320 324 324 326 331	338 342 346 350					151 156 161	175 180 185 190			549 554 560 566						707 714 721 721	.75

Table 5b. Rectangular beams: resistance moments and reinforcement section for various depths and widths.

fc=750, t=18000 and m=18. R.M. in ft. lb

0	6"	8"	0"	10"	12"	14"	15"	16"	18"	20°
d										-
6"	2466 .32	3287 .43	3699 .48	4127 .53	4932	5743 .75	6165 .80	0573	7398	825 1.0
7"	3356	4475	5034 ,56	5618 .62	6713 .75	7831 .87	8391 .04	8050	10060	1123
8"	4384	3845 .37	6576	7338 .71	8768 .85	10220	1.07	11090	13152 1.28	1461
9"	554H ,48	7897 .64	8322	9287	11097	12946	18871 1.20	14793 1.28	16045 1.44	1847
10"	6850	9133	10275	11466	13700	15983	17125	18266	20550	2283
11"	8288	11050	12432	13873	16577	19337	20721	22101	24885 1.70	2702
12"	9864	18161	14798	10511	19728 1.28	23015	24660	26303 1.71	29592	3287
13"	11576	15434	17304	19377	23153	27011	28941 1.74	30869	34729 2.08	3858
14"	18428	17900	20189	22473 1.25	26852 1.50	31326 1.74	33565 1.87	35801 2.00	40278	4476
15"	16412	20549	23118	25798 1.34	30925	35961 1.87	38501 2.00	41008	46237	5137-
16"	17596	23390	26304 1,28	29352 1,42	35072 1.71	40916	43840 2.14	46760 2.24	52608 2.56	5945: 2,8
17"	19796	26304	29694 1.36	33136 1.61	39593	46190	49391	5278H 2.42	50399	6026
18"	22194	20590	33291	37149	44388	51784 2.24	65485 2.40	69181	66185 2.68	7429
10"	.96 24728	32970	37092	1.60	1.92 49457	57698	61821	85990	74077	H27H
20"	1.02 27400	36582	1.52	1.69	2.03	2.37	2.64 68500	2.71 78064	82200	9172
21"	1,07 8020H	1.42	1.6 45312	1.78 50566	2.14	2.40 70485	2.67 75521	2.85 80653	90025	101130
22*	1.12 33154	1.50	49781	1,87 55495	66308	2.62 77857	2.80 82885	2.99 88407	3.86 99462	3.74
23"	36242	49313	1.70 54854	1.98	2.35 72478	2.74 84550	2.94	3.13 96627	3.52 108709	120786
24-	39456	1,64 52606	1.84	2.05 65767	2.46 78912	2.87 92062	3.07 98640	3.28	3.69 118368	131618
25"	1.28	1.71 57081	1.02	2.14 71662	2.56 85625	2.90	8 - 21 107031	3.42	3.85 128437	4,27
26"	1.34	1.78	2.00 69459	2.23 77510	2.67 92612	3.12	3.34	3.66 123478	4.01	154351
27"	1.39	1.85	2.08	2.31 83587	2.78	3.24	8.47 124841	8.70 133159	4.17	166452
25"	1.44	1.92	2.16	2.40	2.88	3.36	3.61	8.65	4.33	4.81
	53704 1.50	1.99	80556 2.24	89893 2.49	107408	125306 3.49	134560 3.74	143205 3.99	161112	4.98
29"	57608 1,55	76801 2.07	86412 2.32	96429 2.58	115217 3.10	134417 3.61	144024 8.87	153617	172825	192025
30"	1.60	82197 2.14	92475 2.40	103194 2.67	123300 3.20	143847 3.74	164126	164394 4.27	184950 4.81	205497
31"	65828 1.66	87763 2.21	98742 2.48	110188 2.76	131667 3.31	158596 3.85	164571 4.14	175588	197485 4.97	219425 5.62
32"	70144	93521 2,28	105216 2.50	117411 2.86	140288 3.42	163665	176702 4.27	187043 4.56	210482 5.18	233809
33"	74596 1.76	99458 2.85	111894 2.64	124884 2.04	149193 8.52	174064 4.11	188491 4.41	198196 4.70	228789 5.29	249651 6.87
34"	79186 1.82	105577	118779	132546	158372 3.63	184763	197965	211154 4.84	237558 5.45	263949 6.05

Table 5-c Rectangular beams: resistance moments and reinforcement section for various depths and widths.

fc=750 t=18000 m=15. R.M. in ft. lb.

4	6"	8"	9"	10"	12*	14"	16*	16"	19*	201
6"	2288 .288	3024 .384	3402 .432	8780 .480	4536 .576	5292 .67	5670 .72	6048	6804	7580
7*	3087	4116 .448	4630	5145 .560	6174	7203 .78	7717	8232	9261 1.01	10290
8"	4032 .384	6376 .612	6048	6720 .640	8064	9498	10040	10752	12096 1.15	13440
9"	6103	6804	7654 .648	8505 .720	10208	11907	12757 1.08	13608	15309	17010
10"	6300	8400	9450 .720	10500	12600	14700	15760 ° 1.20	18800	18900	21000
11"	7623	10164	11434	12706 .880	15235	15187	19037	20329	22869 1.68	25410 1.76
12"	9072	12096 .768	13508	15120	18144 1,152	21168	22680 1.44	24102	27216 1.73	30240 1.92
13"	10847	14196	16970	17746 1.04	21294 1,246	24843 1.46	26517 1.56	28392 1.66	31941	85490 2.08
14"	12348 .072	16464	18522 1.00	20580	24696 1.34	28812 1.67	30870 1.68	32928 1.79	87044 2.05	41160 2.24
16"	14176	18900	21262 1.03	23626 1.20	28350 1.44	33076 1.68	35437 1.80	37800 1.92	42525	47250
16"	16128	21506 1.02	24192 1.15	26890 1,28	82256 1.64	37632 1.79	40320	43008	2.16 48384	63700
17*	18207 .82	24276 1.09	27310 1.22	30345 1,36	36414	42483 1.90	1.92 45617	2.05 48582	2.30 64621	80690
18"	20402	27216 1.16	30618 1.30	34020	40824	47628	51030	2.18 54432	2.45	2.72 68040
19"	22743	30324 1.22	84114	37905	1.73 · 45486	2.02 53067	2.16 56867	2.3	68229	2.88 75810
20"	26200	33600 1.28	1.37 37800	1.62	1.82 50400	2.13 58500	63000	2.43 67200	75600	3,04 84000
21"	27783 1.01	37044 1.34	41674	1,60	66666	64827	2.40 69467	2.66 74088	2.88 85349	8.20 92610
22*	30492 1,056	40656	1.51 46738	1.68 50820	80984	2.85 71148	76230	2.69 81812	3.02 91476	3.36
23"	83327	44436	1.58	50542	2.11 65664	2.46 77763	2.54 83317	2.82 88872	8.17 99981	3.62 111090
24"	1.10 36288	1.47 48384	1.66	60480	2.21 72576	2.58 84672	2.76 90720	2.94 90768	3.31 108864	8.68 120960
25*	1.16 89375	1.64 62500	1.78	05625	2.3 78750	2.69 91875	2.88 98437	3.07 105000	3.46 118125	3.84
26"	1.20	1.60 66784	1.80	70980	2.40 86176	99372	3.00 106470	3.20 113568	3.60 127764	141960
27"	1.24	61236	1.87	2,08 76545	2.60 91854	2.91	3.12	3.33	3.74 137781	4.16 158090
28"	1.80	1.78 65856	74088	2.16 82320	2.69 98784	3.02	3.24	3.46	3.89 148176	164640
29"	1.34 52983	1.79 70644	79474	2.24 88306	2.67 105966	3.14	3.36 132467	3.58	4.03	176610
30"	1.39 . 56700 .	75600	2.09 85050	2.82 94500	2.78	3.25	3.48 141750	3.71 151200	4,18	189000
31"	60548	1.92 60724	90814	2.40	2.88 121086	8.86 141207	3.60 161357	3.84	4.32	4.80
32	04512	86016	2.23 96768	2.48	2.98	3.47 150528	8.73	3.97	4,46 193586	4.98
83"	68603	2.06	102910	2.56	3.07	3.58 160068	3.84 171670	4.10	4.61	6.12
840	72828	97104	2.88	121380	8.17 145666	8.70 169932	3.96 182070	4.22	4.76	5.28
1980	1.63	2.18	2.45	2.72	3.26	3.81	4.08	4.85	4.90	8.44

Table 5-d Rectangular beams: Safe uniformly distributed load including weight of beam lb/rft.

fc=750 psi, t=18,000 psi, m=18

Size	R.M.	At			1	Effectiv	e Span	in Fee	t			
bxd	Ft. Lb	Sq. In.	6	7	8	9	10	12	14	16	18	20
8"× 8"	6860	0.57	1300	956	781	578	468	325	238	182	142	117
8"×10"	9260	0.71	2160	1520	1160	912	740	516	376	289	225	185
8"×12"	13200	0.86	2930	2158	1650	1305	1052	735	540	412	328	264
8"×14"	18200	1.00	4060	2970	2276	1800	1455	1010	742	669	450	364
8"×16"	23400	1.14	6200	3810	2920	2320	1860	1300	940	780	577	467
8"×18"	29500	1.28	6560	4800	3680	2910	2358	1680	1200	920	728	690
8"×20"	36500	1.42			4560	8600	2920	2030	1500	1145	905	734
8" × 22"	44200	1.57			5530	4300	3540	2460	1800	1380	1090	885
8"×24"	52800	1.71				5200	4200	2940	2140	1646	1300	1050
8"×26"	62000	1.85					4950	3440	2530	1960	1560	1240
10°×10°	11400	0.87	2530	1860	1425	1125	910	634	465	356	282	239
10°×12°	16450	1.04	3660	2680	2080	1625	1315	915	672	615	406	328
10"×14"	22380	1.22	4970	3850	2800	2200	1780	1240	915	700	662	446
10"×16"	29300	1.39	6500	4780	3660	2890	2840	1625	1195	923	724	585
18"×18"	37000	1.67		6040	4620	8650	2960	2050	1510	1150	915	740
10"×20"	45700	1.78			5700	4500	3660	2535	1860	1425	1125	914
10"×22"	65000	1.90			6880	5430	4400	3060	2240	1720	1360	1100
10"×24"	65700	2.08				6500	6250	3650	2680	2050	1620	1310
10" × 20"	77000	2.26					6150	4270	3140	2400	1960	1540
10"×28"	89500	2.44						4960	3650	2800	2210	1790
2"×12"	23800	1.25	5300	3880	2880	2350	1900	1820	970	745	587	476
2"×14"	26800	1.46	5950	4370	8350	2650	2140	1490	1000	840	660	535
2"×16"	34800	1.68	7740	5700	4350	3440	2780	1930	1420	1805	860	695
2"×18"	44500	1.68		7260	5550	4400	3560	2470	1815	1390	1100	890
2" × 20"	54700	2.09			6850	5410	4380	3040	2230	1710	1850	1095
2"×22"	66000	2.30				6510	5270	3660	2680	2060	1625	1815
2"×24"	79000	2.50					6310	4380	3220	2460	1945	1575
2"×26"	92600	2.70						5140	3780	2880	2280	1850
2"×28"	107000	2.94						5950	4370	8350	2640	2140
2°×30°	123400	8.14		İ				6850	5040	3860	3040	2400

Note: To the left of the stepped line shear intensity exceeds 76 psi

Table 5-c. Rectangular beams: Safe uniformly distributed load including weight of beam, lb/rft fc=750 psi, t=18000 psi, m=15

Size	R.M.	At				Effe	etive S	Span in	Feet			
b×d	Ft. Lb	Sq. in.	6	7	8	9	10	1 12	114	16	18	20
8"× 8"	5376	.51	1195	880	672	532	430	295	219	168	133	107
8,×10,	8400	.64	1870	1370	1050	830	672	466	343	262	207	168
8"×12"	12096	.77	2680	1970	1512	1195	970	670	494	378	298	242
8"×14"	16404	.90	3600	2090	2058	1630	1322	915	875	515	407	329
8" > 16"	21504	1.02	4770	3500	2688	2120	1730	1190	877	672	530	430
8" > 18"	27216	1.15	6050	4430	8402	2690	2180	1510	1110	850	670	644
8" × 20"	33600	1.28			4200	3320	2890	1865	1370	1050	H30	672
8"×22"	38076	1.41			4820	3950	3120	2160	1580	1240	962	730
8"×24"	48384	1.54				4750	3870	2680	1980	1510	1190	968
8" × 26"	50754	1.66					4550	3150	2320	1780	1400	1135
10°×10°	10500	.8	2330	1710	1310	1035	840	584	428	318	259	210
10"×12"	15120	.96	3360	2460	1800	1490	1210	840	617	472	373	302
10"×14"	20580	1.12	4570	3360	2560	2150	1645	1140	837	643	509	412
10"×15"	20880	1.98	0000	4400	3360	2660	2150	1500	1100	810	667	538
10"×18"	31030	1.44		5500	4250	8360	2720	1900	1390	1062	840	680
10"×20"	42000	1.60			6250	4150	3360	2340	1720	1310	1038	640
10"×22"	50820	1.76			6850	5020	4050	2820	2070	1585	1255	1016
10"×24"	60180	1.92				5970	4840	3840	2470	1885	1490	1210
10"×26"	20085	2.08					5670	3040	2900	2205	1755	1419
10" x 28"	82500	2.04						4580	3360	2570	2035	1656
12"×12"	18148	1.15	4020	2960	2270	1790	1450	1008	740	568	667	363
12"×14"	24696	1,34	5420	4020	3087	2430	1970	1370	1000	770	610	404
12"×16"	32256	1.54	7160	5260	4032	3190	2580	1790	1321	1005	705	645
12° × 18°	40824	1.73		6670	5103	4030	3260	2260	1660	1275	1005	816
12°×20°	50400	1.92			6300	4970	4300	2790	2050	1576	1240	1008
12°×22°	60984	2.11				6000	4870	3370	2470	1900	1500	1220
12"×24"	72576	2.30					5800	4010	2950	2270	1790	1451
12"×26"	85176	2.40						4720	3470	2860	2100	1704
12"×23"	93784	2.69	1.					5470	4010	8090	2430	1975
2"×30"	113400	2.88			-			6300	4620	8540	2800	2227

Chart 5-1 139

Chart 5-2

5.5 Examples.

Example 1:

A beam $12'' \times 20''$ (effective d) is subjected to a BM of 10,00,000 in lb. Find the compressive and tensile reinforcement if d'/d=.10

R. M. of above beam from table No. 5b = 54,800 ft. lb. = 6,57,600 inch lb. and value of constant K for given d'/d = 8760

$$\begin{array}{lll} \therefore \ A_e = \frac{10,00,000-657600}{K\times 20} & = & \frac{342400}{8760\times 20} = & 1.97 \ \text{sq. in.} \\ A_t = .009 \text{bd} + \frac{342400}{18000\times 18} & = & 2.16+1.05 = & 3.21 \ \text{sq. in.} \\ \end{array}$$

Example 2:

Find the safe B. M. for a beam 12" wide and 22" effective depth having 1.7 sq. in. as compressive reinforcement and 2.25 sq. in. as tensile reinforcement. The centre of compression reinforcement is at 2" from top (m=15).

$$r = \frac{2.25}{22 \times 12}$$

$$r' = \frac{1.7}{22 \times 12}$$

$$\therefore mr = 15 \times \frac{2.25}{264} = .128$$

$$(m-l)r' = 14 \times \frac{1.7}{264} = .087$$

$$(m-l)r' \times \frac{d_1}{d} = \frac{2}{22} \times .087 = .008$$

.. from Table no. 5a for A = .128 + .087 = .215 and B = .128 + .008 = .136, $n_0 = .35$ Hence $n_0 = .35 \times 22 = 7.7$ inches.

... I of the beam = $12 \times 7.7^3 \times 1/3$ (concrete in compression) + $14 \times 1.7 \times 5.7^2$ (steel in compression) + $15 \times 2.25 \times (22 - 7.7)^2$ (steel in tension) =1824 + 772 + 6860 = 9456 inch units.

$$M = \frac{I}{y_1} \quad \text{fc} = \frac{9456 \times 750}{7.7} = 920000 \text{ in lb.}$$
or
$$M = \frac{I}{y_2} \quad \frac{t}{m} = \frac{9456 \times 18000}{14.3 \times 15} = 792000 \text{ in. lb.}$$

(y1 and y2 are distances of top and bottom from neutral axis)

... Safe BM = 792000 inch lb.

NOTES.

CHAPTER 6

T-BEAMS AND L-BEAMS

CONTENTS

								Pag
6.1	General	• •	* *	• •	• •	* *	• •	145
6.2	Practical Design	• •	• •		• •	• •	• •	145
6.3	Design Formulae		• •	• •	• •	• •		147
6.4	Standard T-beams			• •		• •	• •	150
6.5	Illustrative Examples							154

CHAPTER 6

T-BEAMS AND L-BEAMS

6.1 General.

In practice in case of T-beams, the thickness of the flange d, is the same as the thickness of slab already calculated to span

Fig 6-1

between the beams. The width of the slab (B) which is supposed to act as the top flange of the beam cannot be determined theoretically but is assumed as follows:

	I.S.I. Code, or Bombay Municipal Code.
T-beam	effective span
• 1	Oistance between the centres of ribs or 12d _a +br
L-beam ·	effective span 6 or delicated controls of the span or 4d, +br

6.2 Practical Design.

The practical procedure followed and formulae used in design of T-beams are described below.

The values of d_s and B are known; the value of d the effective depth is assumed from practical and economical or architectural considerations. For smaller values of d the amount of tension steel is more; for bigger values of d it is less. The most suitable value of d will therefore depend upon the relative cost of steel and concrete and the following formula is sometimes used to find it approximately:

$$d = \sqrt{\frac{rM}{tb_r}} + \frac{d_s}{2}$$

$$M = B.M. \text{ in inch lb}$$

$$r = \frac{\text{cost of 4.38 cwt of steel}}{\text{cost of 1 cft of concrete}}$$

When the value of d is assumed, the value of lever arm also requires to be assumed by judgment. This value will vary from $d-\frac{d_s}{2}$ to $d-\frac{d_s}{3}$. In the case of a thin slab and deep beam, the value will be nearer to $d-\frac{d_s}{2}$ and in the case of a thick slab and shallow beam the value will be nearer to $d-\frac{d_s}{3}$.

Since slabs in buildings are rarely thicker than 6° we may say for practical purposes that the value of lever arm is say upto .95d for deep beams and .89d for comparatively shallow beams. On these assumptions the amount of tensile steel At can be found from chart 6-1.

Value of lever arm given by $d - \frac{d_e}{2}$ errs on the safe side and gives slightly more steel.

If further accuracy is required, charts Nos. 6-2 and 6-3, and table 6-a or formulae on the next page may be used, as follows:—

Find the value of $Q = \frac{M}{Bd^2}$ and ratio d₁/d. Find from chart

6-2 or 6-3 the value of fc for the above values of Q and d_{\bullet}/d . From chart 6-4 find the location of neutral axis for the particular, value of fc and the table 6-a will give the factor j for the particular value of n_{o} and d_{\bullet}/d .

The maximum B.M. which a particular beam can take without causing excessive fc is shown by the dotted lines in charts 6-1. Thus for a T-beam with d=20" and B=52", the B.M. should not exceed 2140000 inch lb in chart 6-1. Otherwise fc will be more than permitted and compression steel will be required.

6.3 Design Formulae.

Alternatively the following formulae can be used for calculations of properties of T-beams when approximate values of d and At are found from the chart No. 6-I and the value of B is taken in conformity with code regulations.

(1) Position of neutral axis
$$n_o d = \frac{Bd_s^2}{2} + mA_t d$$

$$n_o = \frac{1}{1 + (t/mfc)}$$
(2) Value of lever arm $a = jd = d - \frac{d_s}{2} + \frac{d_s^2}{6(2n_o d - d_s)}$
(3) Moment of resistance $= QBd^2$

= fc
$$(1 - \frac{d_s}{2n_0d})$$
 Bad, on concrete
= tA_t a on steel

(Charts Nos. 6-2, 6-3 and table 6-a are based on the above formulae and are drawn on basis of t=18000 psi and m=18 and/or 15)

Table 6-a. Lever arm factor for various ratios of slab depth to effective depth.

no di la	.06	.08	-10	-12	+14	-16-	-18	-20	-22	-24	-26	-28	-30	.32	-34	-36	-36	.40
-20	.97	. 96	-96	. 95	-94	. 94	. 93	- 93										
•25	. 97	-96	. 95	. 95	. 94	- 93	. 93	- 92	. 92	. 92								
-30	. 97	.96	• 95	- 94	. 94	. 93	. 92	- 92	- 91	- 91	.90	.90	-90					
-35	- 97	- 96	•95	-94	. 94	-93	. 92	- 91	- 91	.90	-90	-89	-89	-89	- 88			
-40	• 97	- 96	. 95	-94	. 93	. 93	- 92	- 91	. 90	-90	-89	-89	-88	-88	-67	-87	-87	-87
-45	. 97	- 96	. 95	- 94	.93	- 93	. 92	- 91	-90	- 89	-89	- 88	-88	-87	-67	-86	-86	-65
-50	-97	.96	.95	- 94	. 93	-93	.92	- 91	.90	-89	-89	- 66	-87	-87	-86	-85	-85	-84
-55	- 97	- 96	-95	.94	. 93	. 92	- 92	- 91	.90	-89	-68	-88	-87	-86	85	-85	-84	-84
-60	. 97	- 96	- 95	-94	-93	. 92	. 92	- 91	.90	.89	.08	. 87	-87	-86	-85	-85	-84	.83

6.4 Standard T-Beams.

The table 6-b give particulars of simply supported T-beams carrying uniformly distributed load of 1000 to 3000 lb per running foot. These tables should be used for preliminary designs and estimates.

Notation in Table 6-b:

D = Overall depth of beam in inches

b_r = Thickness of web in inches

Chart 6-1

T-BEAMS AND L-BEAMS

d_s=Minimum thickness of flange in inches necessary to keep compression below 750 psi as permitted by regulations.
a, b, c, d=main steel bars (a and c are in pairs) as shown in sketch on page 157.

K=distance in feet in which shear intensity exceeds 75 psi n_1 =number of stirrups in portion AB (vide example)

 n_2 —Do— BC n_3 —Do— CD

n₄ —Do— DE (where K exceeds AD)

6.4 Standard T-beams

Table 6-b. Cross-section and reinforcement for T-beams for different loadings

fc=750 psi; ft=18000 psi; m=18

Span==8'-0" (effective).	load=lb/rft	uniform	including	wt.	of beam
--------------------------	-------------	---------	-----------	-----	---------

Low	1000	1200	1400	1000	1800	2000	2200	2400	2600	2800	2000	3200	3400	8000
SECTION (vide Table 6-c)	132	B ₄	134	В	B _s	B ₄	13,	B ₁	В	Ba	13,	В,	B.	В,
Main Steel	.6	.7	,н	.0	1.0	1.1	1.2	1.3	1.53	1.53	1.90	1.67	1.9	1.9
a	100	12	5	8	1 2	1 2	5	5	5	6	5	8	3	2
ь	1 2	5	1/2	1	1	5	1	*	1	8	7	3	5	8
o					1/2	1	1	1/2	58	6	5	5	B	8
d														
No. of strps	9	9	9	9	9	9	9	9	9	9	9	9	9	9
na	ı		1	1	1	1	1	1	1	1	1	1	1	1
21.8						1	1	1	1	1	1	1	1	1
n,														
114														B4 500 - 1
K				.25	.7	1.0	1.3	1.5	1.7	1.8	1.8	1.2	1.3	1.5
Concrete cft	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	5.1	5.1	7.7	7.7	7.7
Main Steel lb	33	37	40	40	44	48	52	55	65	65	69	74	78	78
Stirrups lb	10	10	10	10	10	12	12	12	12	12	12	12	12	12

Span=10'-0" (effective).

SECTION (wide Table 6-c)	$\mathbf{B}_{\mathbf{i}}$	B	$\mathbf{B_1}$	$\mathbf{B_{t}}$	B _B	$\mathbf{B}_{\mathbf{s}}$	B,	B_{0}	В	$B_{\mathbf{z}}$	$B_{\mathbf{z}}$	Ba	B,	B,
Main Steel sq. inches	.8	1.2	1.22	1.31	1.5	1.67	1.9	2.1	1.9	1.94	2.1	2.21	2.3	2.53
	5	5	5	8	5 8	*	3	2	2	5	2	3	1	7
b	1		1	5		1	5	5 8	5.	3	5	1	7	78 7
c	_	$\frac{1}{2}$	1/2	1	5 5	*	5	3	5 8	3	2	4	1	3
d			_					-						
No. of {" strps	10	10	10	10	11	11	13	13	13	13	13	15	15	15
n,	1	1	1	1	1	1	1	1	1	2	1	1	1	1
n,					1	1	2	2	2	1	2	2	2	2
n,												1	1	1
n ₄														
K			0.7	1.50	1.50	1.80	2.0	2.3	1.5	1.8	2.0	2.2	2.3	2.5
Concrete of t	5.5	5.5	5.5	5.5	6.3	6.3	6.3	6.8	9.4	9.4	9.4	9.4	9.4	9.4
Main Steellb	44	68	68	67	75	80	88	101	89	98	102	108	114	121
Stirrups, 1b	11	11	11	11	12	12	14	14	14	14	14	16	16	16

Losd	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	8600
SECTION (vide Table 6-c)	B ₁	В,	B,	B,	B,	B,	B,	B.	В,	B,	B,	Ba	B,	В
Main Steel	1.2	1.43	1.67	1.94	2.21	2.3	2.21	2.3	2.68	2.84	8.0	2.68	2.84	3.0
A .	5	5	58	3	3	3	3	2	7 8	7	7 8	7 8	7	7
ь	1 2	1 2	3	3	3	7 8	2	7 8	7 8	34	78	2	4	7
c	i	5	68	5	3	3	3 2	3	3	7	7	2	7	7
d		•		•	•									
No of l'strps	14	14	14	14	14	14	14	14	14	18	20	20	18	20
n _a	1	1	1	1	1	1	1	1	1	1	1	2	1	2
$\mathbf{n}_{\mathbf{s}}$	1	1	1	1	1	1	1	1	1	2	2	2	2	2
n,										1	2	1	1	1
n_4					•									
K		.4	1.0	1.5	2.2	2.6	1.9	2.2	2.5	2.8	3.0	2.4	2.6	2.8
Concrete eft	7.4	7.4	7.4	7.4	7.4	7.4	11.0	11.0	11.0	11.0	11.0	14.0	14.0	14.0
Main Steel lb	73	84	96	111	127	132	121	130	143	153	160	152	162	170
Stirrups lb	16	15	15	15	15	15	15	15	16	19	21	80	27	30
Span=14'-	-0"	(effec	ctive				-							
SECTION (vide Table 6-c)	В,	B _a	B.	B,	B,	B,	В	В.	B.	B,	B,	В	B ₄	В,
Main Steel sq. inches	1.67	1.94	2.8	2.68	2.53	2.84	3.00	3.13	3.60	3.13	3.28	3.60	3.28	3.44
	5	3	3	7	7	78	7	7	7	7 8	7	7	7 8	7
b	1	3	78	7	1	1	7 8	3	7 8	7	3	7 8	1	7
c	5	5	1	3	3	7 8	7	7	7 8	3	7	7	7 8	7 8
d	•			•	•	•	•	3	7	3	3	7	3	3
No. of ‡" strps	16	16	16	16	16	18	18	24	24	20	24	24	29	31
nı	1	1	1	1	1	1	1	1	1	1	1	1	2	2
n,	1	1	1	1	1	2	2	2	2	2	2	2	2	2
n,								1	1	1	1	1	1	2
n ₄								2	2		2	2	1	1
к		1.4	2.2	2.8	2.0	2.5	2.9	3.8	8.5	3.0	3.2	8.5	2.4	2.7
Concrete oft	8.6	8.6	8.6	8.6	12.7	12.7	12.7	12.7	12.7	16,1	16.1	16.1	17.8	17.8
	107	123	146	163	160	170	176	210	230	200	204	226	221	231
Main Steel lb														

Span=16'-0' (effective). load=lb/rft uniform including wt. of beam.

Load	1000	1200	1400	1600	1800	2000	2200	2400	2600	2300	3000	3200	3400	3600
SECTION (vide Table 6-c)	В,	B.	в,	B,	B.	B ₄	Be	n,	В,	B.	B_4	В,	B4	В,
Main Steel eq. luches	1.0	2.21	2.53	2.84	8.31	3.5	3.13	3.6	3.05	3.7	4.02	4.02	4.34	4.53
	3	2	7	7 8	7	7 6	7.	7	1	1	1	1	1	1
ь	5 8	3	2	3	4	7	1	7	78	1	2	2	7	1
0	5	3	2	7	3	78	7 8		7	3	1	1	1	1
đ					2	7	2	7 8 7 8	78	3	2	2	7 8	7 8
No. of # strps.	17	17	17	19	20	20	20	20	24	19	24	24	29	30
n ₁	1	1	1	1	1	1	1	1	1	1	1	1	2	2
n _s	1	1	1	2	2	2	2	2	2	2	3	3	4	4
Ti ₀				1	1	1	2	2	. 2	2	3	3	8	3
n _e									2					1
ĸ		0.5	1.7	2.5	8.2	3.5	2.7	3.2	4.0	2.4	2.8	3.2	3,4	3.7
Concrete oft	16.0	15.0	15.0	15.0	15.0	15.0	18.0	18.0	18.0	27	27	27	27	27
Main Steel lb	127	154	174	204	230	254	230	250	284	271	290	290	310	323
Stirrups lb	18	18	18	20	22	22	25	25	30	80	88	88	47	48

Span=18'-0" (effective.)

SECTION (vide Table 6-c)	В,	B.	B,	B,	B,	B,	B.	B.	B,	B.	$\mathbf{B}_{\mathbf{d}}$	B.
Main Steel sq. inches	2.3	2.84	3.13	3.5	4.0	4.0	4.15	4.53	4.84	4.53	4.72	5.14
	3	7	7	7	1	1	1	1	1	1	1	11
b	7 8	#	7	7	1	7 8	. 1	7	7	1	1	1
, с	2	78	3	7	3	7 8	7 8	1	1	1	1	1
đ			3	7	1	7	78	1	7 8	7	1	1
No of §"atrps.	19	19	20	20	20	23	24	26	24	26	28	28
nı	1	1	1	1	1	1	1	1	1	1	2	2
'n _s	1	1	1	1	1	2	2	3	3	2	3	3
n,			1	1	1	2	2	2	2	3	2	2
n,				1	1		1	2				
K		1.5	2.3	3.4	4.0	8.3	3.8	4.2	3	3.5	3.8	4.2
Concrete cft	16	16	16	15	16	20.5	20.5	20.5	29.5	20.5	29.5	29.5
Main Steel lb	188	223	243	277	309	309	323	850	348	359	372	400
Stirrups lb	21	21	22	22	22	30	30	33	33	35	38	38

T-BEAMS AND L-BEAMS

Span=20'-0' (effective). load=lb/rft uniform including wt. of beam.

Load	1000	1200	1400	1000	1800	2000	2200	2400	2600	2800
SECTION (vide Table 6-c)	В	В,	В,	134	B,	B.	B,	B ₄	В,	В.
Main Steel sq. luches	2.88	3.28	4.00	4.53	4.16	4.72	5.14	4.72	6.14	6.57
	7	7	1	1	1	1	11	1	11	1
b	78347	78788428	1	1	1	1	1	1	1	11
c	7	2	1	1	7	1	1	1	1	11
đ		78	1	78	78	1	1	. 1	1	118
No. of f strps	21	21	21	23	24	25	26	24	26	27
$n_{\rm t}$	1	1	1	1	1	1	1	1	1	1
n _a	1	1	1	1	2	2	2	2	2	2
n,				1	1	2	2	2	2	2
n ₄				2	•	1	2		2	2
K	1.3	2.5	3.6	4.4	8.6	4.2	4.7	8.4	4.1	4.8
Concrete of t	17.0	17.0	17.0	17.0	22.8	22.3	22.5	29.5	29.5	29.5
Main Steel Ib	247	272	327	371	346	391	425	397	431	467
Stirrupe 1b	23	23	23	25	30	32	33	41	45	46

NOTE:

Bearing for beams assumed $\neg D \rightarrow 1$ inches. Qualities should be considered approximate, and are given on basis of total length of beam = Effective span plus $(D \rightarrow 1)$ inches and $d_g \sim 4^*$. Quantity of concrete is for web only. Steel includes anchor bars also. 10 to 15 % added extra for hooks, bends wastage, laps, etc.

Table 6-c. Details of T-beams used in Table 6-b.

	Bi	B _a	B,	В,	Bs	B. 1
D	13	13	16	16	19	22
br	8	9	10	10	10	12
ds	3	3	3	4	3	3

See Fig. 6.1

All dimensions in inches.

a, b, c and d indicate reinforcement bars, a and c being in pairs.

6.5 Illustrative Examples.

Design a simply supported T-beam to carry a load of 1,600 lb per rft. The effective span is 20 ft. and the thickness of floor slab is 4" (assume fc=750, t=18000 psi and m=18)

154

T-BEAMS AND L-BEAMS

$$M = wl^2/8 = \frac{1600 \times 20 \times 20}{8}$$

= 80,000 ft lb or 960,000 in lb

From practical considerations and relative cost of concrete and steel it is presumed that section as per sketch is appropriate

B =
$$\frac{20 \times 12}{3}$$
 = 80" or $(12 \times 4) + 10 = 58$ "

Assume B=58"

Effective depth=16-2.5" (for cover etc. vide sketch) =13.5"

(a) Approximate and safe design.

lever arm = $d - d_s/2 = 13.5 - 2 = 11.5$ inches

$$A_t = \frac{960,000}{18000 \times 11.5} = 4.63$$
 square inches

Check stress in concrete:

Total tension =
$$4.63 \times 18000$$
 = Total compression
= $fc \times 58 \times 4$

... fc = 360 psi average and the maximum will be less than double this value i.e., less than 720 psi while permissible stress is 750 psi.

(b) Accurate design by using charts.

$$t=18000 \text{ psi d}_{\bullet}/d = \frac{4}{13.5} = .296$$

$$QBd^2=Q\times58\times13.5^2=960,000$$

..
$$Q=91.2$$

Refer to chart 6-2

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

.. $6-4$

..

(c) Accurate design by formulae.

fc
$$(1-\frac{d_s}{2n_od})$$
 B d_s =t A_t (formula 3)

i.e.
$$13.5 \text{ n}_{\bullet} = \frac{58 \times 16/2 + 18 \times 13.5 \text{ A}_{t}}{(58 \times 4) + 18 \text{ A}_{t}}$$
 (b)

and
$$n_o = \frac{1}{1 + \frac{t}{mfc}}$$
 (formula 1)

j.e.
$$n_o = \frac{1}{1+1000/fc}$$
 (c)

The above 3 equations (a), (b) and (c) have three unknowns n_o , A_t and fc and can be solved.

The solution can be simplified by trial and error method by assuming probable value of A_t and finding out n_o from (b). This value of n_o is then substituted in equation (a) and the value of fc is found. The correctness of these values is checked by examining if equation (c) is satisfied. Thus in this example we assume, $A_t=4.5$ sq. inches, and substituting it in (b) we get $n_o=.368$. Substituting this value in (a)we get fc=578 psi.

T-BEAMS AND L-BEAMS

The assumption is correct since $n_o = .368$ and fc = 578 psi satisfy equation (c).

In actual design work, all this is not required since the charts and tables simplify the procedure altogether.

Example on use of standard tables

Find the approximate size and other details and quantities of materials required for a T beam 16' effective span, carrying a load of 2,000 lb per rft.

The tables give section B_3 $16'' \times 10''$ reinforced with 6 nos. $7/8\phi$ bars and 20 nos. $3/8\phi$ stirrups. The approximate quantity of concrete is 14.3 cft, whilst 254 lb of main rods and 22 lb of stirrups are required.

The spacing of stirrups and bending of bars is as shown in the sketch. In all 20 stirrups are required 1 in portion AB, 2 in portion BC, 1 in portion CD. One stirrup is provided at the centre of bearing, i.e., at point A. The balance of 10 stirrups is provided in the remaining portion.

In some beams where stirrups are indicated against n_4 they are provided in the portion of beam between point D and end of distance K.

NOTES.

CHAPTER 7

SHEAR

CONTENTS

		Pages
7.1	General	161
7.2	Tables and Charts	162
	Table No. 7a Shear resistance of inclined bars	163
	Table No. 7b Shear resistance of stirrups at various spacings	163
	Table No. 7c Distance from support requiring shear re- inforcement	164
	Chart 7-1 Spacing of stirrups	165
7.3	Example	166

CHAPTER 7

SHEAR

7.1 General

The shear intensity can be considered as uniform over the area ba of a concrete beam.

Distribution of shear stress

The shear stress therefore is $\frac{S}{ab}$ lb/sq inch, where S is the vertical shear in lb, b and d are breadth and depth of beam in inches, respectively.

This stress must not exceed $\frac{fc}{10}$ otherwise separate shear reinforcement is necessary. If the intensity exceeds $\frac{3fc}{10}$ it is necessary to enlarge the section of the beam.

Provision for shear is made generally by:

- (a) Inclined bars.
- (b) Vertical stirrups.
- (a) In ordinary practice special inclined bars are not provided but bars which form the tensile reinforcement are bent up to take shear in such portions of the beam where due to reduction of the bending moment they are no longer necessary for the tensile stress. The points where tensile bars can be bent up are found by drawing the B.M. diagram to scale, on which the tensile value of each bar is sketched to scale.

The following sketches give the location of the point at which part of the tensile steel can be bent up, in case of uniformly distributed load on a simply supported beam.

NOTE:- ALL BARS ARE OF SAME DIAMETER.

Bending of bars for shear

7.2 Tables and Charts.

The shearing resistance of inclined bars is given in Table 7-a. The distance from supports of an uniformly loaded simply supported beam, for which shear steel is required for a particular shear intensity at support, is given in Table 7-c.

(b) If the vertical binders are spaced at a distance p, there will be jd/p number of binders in a length equal to the lever arm of the beam. Then the shear resistance in this portion which is Atjd equals the shear S (A is the area of both the vertical arms

of stirrup). The values of $\frac{At}{p}$ for different sizes and spacings of stirrups are given in Table 7b.

Table 7a
Shear resistance of inclined bars

SHEAR

Diameter —	t.=18000 lt	
of Bar	θ = 45°	<i>θ</i> − 30°
1/2"	2500	1750
5/8"	3900	2750
3/4"	5600	3900
7/8"	7650	5400
1"	10000	7050
11"	12650	8950
11."	15600	11050
1}'	18900	13350
11	22500	15900

 θ is angle of inclination of bar from horizontal.

Table 7b

Shear resistance of stirrups at various spacings

			Va	alues	of S	s/jd i	i.e. A	t/p			t = :	18000	lb/sq	. in.
Stirrup size	Spacing, Inches													
	2"	3"	4"	43"	5"	6-	7"	71"	8*	9"	12"	15"	18"	24
1/4"	882	587	441	391	355	294	252	235	221	196	147	117	98	74
5/10"	1386	924	693	616	554	462	396	370	347	308	231	183	154	115
3/8"	1980	1320	990	880	792	660	566	528	495	440	330	254	220	165
1/2"	3580	2350	1765	1567	1412	1175	1008	940	883	784	588	472	392	294

CONCRETE ENGINEERS' HANDBOOK Table 7c

Distance from support requiring shear reinforcement (for safe shear at 75 lb/sq. in.)

(Note:-Figures tabulated give value of "k" in inches)

Sp.	10'	11'	12'	13'	13'	15'	16'	17'	18'	19"	20"	21"	22'	23"	24'
200	87.5	41.2	45	48.7	52.5	56.2	60	53.7	57.5	71.2	75	78.8	82 5	86.2	90
195	36.9	40.6	44.8	48	51.7	55.4	59	52.8	65.5	70.2	74	77.6	81.3	85	88.7
190	35.32	40	43.5	47.2	50.8	54.4	68	51.7	55.2	59	72.5	76.2	79.8	83.5	87
185	35.7	39.3	42.8	46.4	50	53.5	57.2	50.8	64.3	68	71.5	75	78.5	82.2	85.8
180	35	88.5	42	45.5	49	52.5	55	59.5	53	06.5	70	73.5	77	80.6	84
175	34.3	37.7	41.2	44.5	48	51.5	54.8	58.8	51.7	55.2	68.5	72	75.5	79	82.4
170	83.5	37	40.3	43.6	47	50.8	53.7	57	50.4	53.8	57.2	70.5	74	77.2	80.7
165	82.7	88	39.3	42.5	45.8	49	52.3	55.5	59	52.2	85.5	68.7	72	75.3	78.5
160	81.9	85.1	38.3	41.5	44.7	47.8	51.1	54.2	57.5	50.7	68.8	67	70.3	73.5	75.7
155	31	84.1	37.2	40.3	43.4	46.5	49.7	52.7	56.6	59	62	85.2	58.2	71.4	74.5
150	30	33	86	39	42	45	48	51	54	57	60	63	55	50	72
145	20	81,9	34.8	87.7	40.6	48.5	46.5	49.4	52.2	55.2	58	51	54.9	66.8	60.7
140	27.9	30.7	83.5	86.8	89.1	41.9	44.7	47.5	50.2	53	55	58.7	51.5	54.2	57
135	26.7	29.4	82	34.7	37.4	40	42.8	45.5	49.1	50.7	53.4	56.1	58.8	61,4	54.1
180	25.4	27.8	80.5	33	35.5	88.1	40.7	48.2	45.7	48.2	50.9	53.4	56	58 5	51
125	24	25.4	28.8	31.2	33.5	36	38.4	40.8	43.2	45.7	48	50.5	52.8	55.2	57.7
120	22.5	24.8	27	29.8	31.5	83.8	85	88.3	40.5	42.7	45	47.3	49.8	51.8	54
115	20.1	22.1	24.1	25.1	28.2	80.2	32.2	34.2	36.2	38.2	40.2	42.2	44.2	46.2	48.2
110	19	20.9	22.8	24.7	26.5	28.5	80.4	32.3	34.2	35.1	38	40	41.8	43.7	45.5
105	17.2	18.9	20.6	22.4	24.1	25.8	27.5	20.3	31	32.7	34.4	36.1	37.9	80.5	41.3
100	15	16.5	18	19.5	21	22.5	24	25.5	27	28.5	30	31.5	33	84.5	86
95	12.6	18.8	15.1	15.4	17.5	18.9	20.4	21.4	22.7	23.0	25.2	26.5	27.7	20	30.2
90	10	11	12	18	14	15	16	17	18	19	20	21	22	23	24
85	7	7.7	8.4	9.1	9.8	10.5	11.2	11.9	14.4	15.2	15	15.8	17.6	18.4	19.5
80 -	8.8	4.1	4.5	4.9	5.8	5.5	5	6.4	6.8	7.2	7.5	7.9	8.2	8.7	9
75		- 1				_	N	1	L	-	-				

SHEAR

Chart 7-1. Spacing of Stirrups for Beams

R. C. C. BEAMS. STIRRUP SPACING CHART.

7.3 Example.

Find the shear reinforcement for a beam of breadth = 10" effective depth 20", span 20 ft. with a load of 2,600 prf including self load.

$$a = .86 \times 20 = 17.2$$

Two 1" dia. bars @ 45° take 20,000 lb (Table 7a.)

$$\frac{S}{a} = \frac{6000}{17.2} = 349$$

Hence 3/8" stirrups required at 9" c.c.

or 1 stirrups required 18 c.c.

(from Chart 7-1 or Table No. 7b.)

The above spacing works only in such portion of span where bent up bars are available. For the remaining span the spacing and size of stirrups is found out as follows: Shear taken by concrete, is calculated thus:—

Draw vertical line at $b=10^\circ$ in chart to meet oblique line a=17.5 and read 13,000 lb on vertical scale. This gives shear taken by concrete. Also mark D on the chart on horizontal line giving S/a by drawing a horizontal line from 26000 to meet line a=17.5 and projecting the point of intersection down to get point D (vide figure on page 167).

Thus portion AD of the span requires shear reinforcement either in the form of stirrups or bent bars.

$$\frac{S}{ab} = \frac{26000}{17.2 \times 10} = 151$$

Hence, from Table 7 C the length AD or k is 60". The bent up bars @ 45° cover distance equal to 'a' i.e., 17.2". Hence 43" require full shear to be provided by stirrups. The distance between A to D in the Chart is 29.5 divisions. Thus one division indicates 60 or say 2 inches.

Hence provision for shear in the beam under investigation would be as follows:

From support to 17.2," two 1" dia. bars @ 45° plus \(\frac{1}{2} \) inch stirrups @ 18" c.c.

From D to C a distance of 25 in., 1/2" dia. stirrups @ 4-1/2" c.c. (only in portion not covered by bent bars.)

From C to B a distance of 23', \ dia. stirrups @ 6' c.c.

From B to A a distance of 12", 1" dia. stirrups @ 8" c.c.

SHEAR

NOTES

CHAPTER 8

COLUMNS

CONTENTS

)	Page
8.1	General Formulae	 	171
8.2	Details of Columns	 	172
8.3	Effect of Slenderness of Columns on Safe Load	 	174
8.4	Helical Binding of Columns	 	176
8.5	Estimates of Formwork for Columns	 	176
8.6	Tables and Charts for Commonly Used Columns	 	177
8.7	Columns with Eccentric Load or Subjected to B.M.	 	192
8.8	Illustrative Examples		. 193

CHAPTER 8

COLUMNS

8.1 General Formulae.

The general formula for the design of columns loaded with axial loads is

$$P = \begin{cases} \text{the load carried by} \\ \text{a short column} \end{cases} = \begin{cases} \text{concrete stress} \times \text{concrete area} \\ + \text{ steel stress} \times \text{ steel area} \end{cases}$$

(a) Concrete area is assumed as follows:-

Bombay Municipal Byelaws, d²: Core area (shown hatched in Fig 8-1 less area of steel, A_v.)

I.S.I. Code, D²: Gross cross sectional area area of steel—area of champhers.

- (b) Steel area is the area of longitudinal bars only.
- (c) Concrete stress and modular ratios. (Stress in lb per sq. inch)

I.S.I. 1:2:4 mix 600 psi $1:1\frac{1}{2}:3 ,, 760 ,,$ 1:1:2 920 ,,

Bombay Municipal Byelaws 1:2:4 600 ,; m=18 $1:1\frac{1}{2}:3$ 680 , 16 1:1:2 780 , 14

(d) Steel stress

I.S.I. 18000 psi

Bombay Municipal Byelaws m × concrete stress.

For helical binders 13500 psi.

In case of columns with helical binding, only core area is to be considered.

Value of safe loading in different types of columns calculated on above principles are given in Chart Nos. 8-1, 8-2, 8-3 and 8-4 and Table Nos. 8-a and 8-b.

8.2 Details of Columns

These are shown diagramatically in Figs. 8-1 and 8-2.

I. S. I. CODE

Fig. 8-1

It should be noted that where it is necessary to splice the longitudinal reinforcement the rods must be lapped in contact with one another, the length of the lap being not less than 24 bar diameters.

BOMBAY MUNICIPAL REGULATIONS

Fig. 8-2 173

8.3 Effect of Slenderness of Columns on Safe Load P.

I.S.I., and Bombay Municipal Codes.

Rectangular and round columns v/d	Any column v/g	Safe load allowed
15	50	1.0 × P
18	60	0.9 × P
21	70	0.8 × P
24	80	0.7 × P
27	90	$0.6 \times P$
30	100	$0.5 \times P$
33	110	$0.4 \times P$
. 36	120	$0.3 \times P$
39	130	0.2 × P
42	140	$0.1 \times P$
. 45	150	Nil

Note:—v is the effective column length, d is the least lateral dimension of the column, and g is the least radius of gyration. d and g are taken on gross section basis, except in case of helically bound columns where g is taken on core basis.

COLUMNS

Relation between effective length and actual length.

	Type of Column	Effective Column Length
Column of one sto- rey.	(i) Both ends adequate- ly restrained in posi- tion and direction. (ii) Both ends adequate- ly restrained in posi- tion but not in direc-	0.75 of the actual column length. The actual column length.
	tion. (iii) Both ends adequate- ly restrained in posi- tion but one end res- trained in direction	0.85 of the actual column length.
	(iv) One end adequately restrained in position and direction and imperfectly restrained in both position and direction at the other end.	A value intermediate between the actual column length and twice that length, depending upon the efficiency of the imperfect res-
Columns continuing through two or more storeys.	 (i) Both ends adequately restrained in position and direction. (ii) Both ends adequately restrained in position and imperfectly restrained in direction at one or both ends. 	traint. 0.75 of the distance from floor level to floor level. A value intermediate between 0.75 and 1.00 of the distance from floor level to floor (or roof) level depending upon the efficiency of the direc-
	(iii) One end adequately restrained in position and direction and imperfectly restrained in both position and direction at the other end.	tional restraint. A value intermediate between the distance from floor level to floor (or roof) level and twice that distance depending upon the efficiency of imperfect restraint.

In the Table on p. 175, the actual length is measured between upper surfaces of two floors affording lateral support or the clear distance between supports plus the lateral dimension of the column.

8.4 Helical Binding of Columns.

The safe stress on concrete is the same as given in para 8.1 above but additional load of $2t_bA_b$ (i.e. 27000 A_b lb, t_b being 13500 lb for both codes) can be allowed on the column. However the safe load on the column is to be calculated on core area basis and not on gross area basis.

Thus $P=P_c+P_T+P_n$

where, Pe=load carried by concrete in core

P_T=load carried by vertical steel

P=additional load due to helical binding

 $=2t_bA_b=27000 A_b$

A_b= volume of helical binding per unit length of column.

The pitch of helicals should not be more than 3" or 1/6 of core diameter whichever is less. For practical reasons not more than $\frac{1}{2}$ " ϕ bars and not less than 3/16" dia. bars should be used for forming the helical binding. The values of P_B for different column sizes and arrangement of helical windings can be found from Chart 8-1.

8.5 Estimates of Formwork for Columns.

Tables 8-4 and 8-5 would be found useful for quick estimates of quantity of concrete in columns of various sizes and shapes. Their use is self explanatory.

8.6 Tables and Charts for Commonly Used Columns

Table 8-1. Square Columns (I.S.I. Code 1:2:4 Mix)

	D	a	1	7*	Stir	rups	Bafe	Concrete C.ft. In	Steel L	b./10' ht.
Ref.		Inches	Nos.	Dia. Inches	Pitch Inches	Dia. Inches	Load	10' height	Main	Stirrup
C1	0	8	4	÷	6	t	15.7	2.36	23.00	5.66
C2a C2b	8 8	5 5	4	1	6 71	ì	22.2 26.6	4.25	28.00 43.68	6.10
C3a	9	6	4	1	6	1	27.7	5.48	28.00	7.32
Сзь	9	6	4	1	71	1	31,4	5.48	43.70	5.86
C3o	9	6	4	1 1	9	1	85.3	5.48	68.00	4.76
C4a	10	7	4	1	6	ł	32.8	6.75	28.00	8.55
C4b	10	7	4	1	71	1	38.2	6.75	48.68	6.84
C40	10	7	4	ŧ	9	ŧ	40.4	6.75	63,00	5.55
C4d	10	7	4	ŧ	10}	ł	45.4	6.75	85,86	4.71
C4e	10	7	4	1	12	ł	51.1	6.75	114.51	8.28
C5a	12	9	4	1	71	ŧ	48.0	9.86	48.68	8.80
Сбъ	12	9	4	1	9	est	52.6	9.88	63.00	7.50
C50	12	9	4	1	10}	ł.	57.4	9.86	85.88	6.05
C5d	12	9	4	1	12	1	63.0	9.86	114.81	5.50
C6a	12	9	8	1	10}	1	76.0	9.86	171.36	6.05
C6a	14	11	4	2	9	ž	66.2	13.55	65.00	8.74
Ceb	14	11	4	1	10}	ŧ	71.2	13.55	85.86	7.40
C6o	14	11	4	1	12	1 t	76.7	13.55	114.81	6.71
C7s	15	12	4	Ŧ	10}	Ł	79.4	15.50	85.68	8.06
С7Ъ	15	12	4	1	12	+	84.5	15.50	114.81	7.84
C7c	15	12	4	11	12	3	91.3	15.50	143.72	15.15
C8a	16	13	4	Ŧ	10}	1	87.2	17.40	85.68	7.92
C8b	16	13	4	1	12	- 1	93.0	17.40	114.81	17.90
C8c	16	13	4	11	12	1	99.6	17.40	148.00	17.90
C8a	16	18	8	1	12	4	117.0	17.40	229.62	17.90
C9a	18	15	4	1	12	9	111.0	22.10	114.81	20.62
C9b	18	15	4	11	12	4	117.8	22.10	148.72	20.62
C10a	20	17	4	11	12	-	138.2	27.60	148.72	23.83
C10b	20	17	8	1	12	1	156.5	27.60	229.62	25.83
C10c	20	17	8	11	12	4	169.2	27.60	296.00	23.33
O11s	21	18	8	11	12	+	180.2	\$0.80	206.00	24.80
C11b	21	18	8	11	12	1	104.2	80.80	367.00	24.80

Table 8-2. Square Columns (Bombay Municipal Byelaws 1:2:4 Mix)

Ref.	D	d =		Ay	Stir	rups	Safe	Concret C.ft. in		Lb./10'ht.
No.	Inches	Inches	Nos.	Dia. Inches	Pitch Inches	Dia. Inches	Tons	10' height	Main	Stirrup
Cl	8	8	4	1	6	4	10.25	4.25	28.09	9.6
C2	9	6	4	1	6	1	13.21	6.48	28.00	9.31
C3a	19	7	4	ł	6	1	16.70	6.75	28,00	16.3
СЗЪ	10	7	4	1	71	1	18.72	6.75	48.79	15.3
Cia	12	9	4	1	6	1	27.05	9.86	43.79	
C4b	12	0	4.	1	6	1	29.70	9.86	63.00	18.6
Cic	12	9	4	1	101	1	32.60	9.86	85.86	18.5
CSa	14	11	4	9	71	ì	38.0	13.55	43.79	27.0
C5b	14	11	4	1	9	1	40.5	13.55	63.00	
C5e	14	11	4	1	9	1	43.5	13.55	85.86	27.0
C64	14	11	4	1	9	1	46.79	13.55	114.81	27.0
C6a	16	12	4	ŧ	9	i	46.70	15.69	63,00	32.6
C6b	15	12	4	2	9	1	49.6	15.50	85.86	32.6
Cde	15	12	4	1	9	1	53.00	15.50	114.81	32.6
C7a	16	13	4	2	9	1	53.4	17.49	68.00	68.6
С7Ъ	16	18	4		0	1	56.1	17.49	85.86	58.6
C70	16	18	4	1	9	1	69.6	17.49	114.81	58.6
C74	16	13	4	11	9	1	68.5	17.49	148.72	58.6
C8a	18	16	4	1	8	1	71.2	22.10	85.86	04.4
C8b	18	15	4	1	8	1	74.6	22.10	114.81	84.4
C8e	18	15	4	11	8	3	78.6	22.19	148.72	64.4
C6d	18	15	8	-	8		82.1	22.19	171.36	54.4
C9a	20	17	4	1	7}	1	91.8	27.50	114.81	60.7
CoP	20	17	4	11	7}	1	95.6	27.60	148.72	60.7
Cec	20	18	8	1	71		99.4	27.60	171.36	60.7
C9d	20	17	8	1	71		106.0	27.69	229.82	60.7
C10a	22	19	4	1}	7	1	116		148.72	76.5
C19b	22	19	8	1	7 .	1	118.8		171.36	76.5
C10e	22	19	8	1	7		125.3		229.62	91.5
C10d '	22	19	8	11	7		133.0		207.44	91.5
C11a	24	21	4	12	7	1	140.6		183.60	105.9
C11b	24	21	1-6	i-1	7		143.5		171.36	195.9
C11e	24	21	8	1	7	-	146.50		229.62	
0114	24	21	8	11	7			3.3		105.9

Table 8-3. Square Columns (I.S.I. Code, Different Mixes)

Size (in)		Longitud	inal Steel	Load carried by longitudinal bars at 18.000 lb. per sq. la.	Loa	d carried by the Tons	Column
	No.	Bara Dia.	Area (Sq. in.)	Tons	1:2:4 600 p.s.i.	1:1}:3 700 p.s.l.	1:1:2 920 p.s.i
	4	+	0.79	6.3	21.7	27.3	31.3
8	4	1	8.14	25.3	41.0	45.4	49.5
	4	13	4.91	89.5	54.8	59.0	63.0
	4	3	0.79	6.8	27.1	83.0	38.4
9	4	1	3.14	25.3	45.5	51.5	56.4
	8	1	6.28	50.5	69.9	75.2	80.3
	4	1	1.23	9.9	35.8	42.9	49.6
10	4	11	3.98	32.0	57.2	64.0	70.5
	8	11	7.95	64.0	88.1	95.3	100.9
	+	i	1.23	9.9	41.3	49.9	58.2
11	4	11	4.91	89.5	70.6	78.2	87.6
	4	12	9.62	77.8	108.5	112.8	123.2
	4		1.23	9.9	48.5	57.6	67.6
12	4	12	5.94	47.5	85.9	93.5	103.2
	8	11	9.82	78.5	114.8	123.2	132.7
	4	ž	1.77	14.2	58.4	70.7	82.2
13	8	1	6.28	50.5	93.5	104.9	116.7
	10	11	12.27	100.5	142.1	172.8	184.0
	4	1	1.77	14.2	65.7	79.3	93.1
14	8	1	6.28	50.6	110.8	113.9	127.6
	8	11	14.14	113.5	161.7	174.2	187.8
	6	4	1.84	13.9	73	88.7	104.3
15	8	12	9.82	78.5	135.4	150.7	165.7
,	12	11	17.82	143.0	197.8	. 212.4	226.9
	4	-	2.41	19.4	87.3	104.9	122.6
16	8 .	1#	11.88	95.5	157.6	187.8	194.8
	8	11	19.24	154.5	215.1	234.3	250.8
	4	ł	2.41	19.4	95.4	116.9	136.6
17	8	19	11.88	96.5	169.0	188.9	208.8
	12	11	21.21	170.5	241.5	260.6	280.0

Table 8-3 (Continued)

Sire (in)		Longitud	linal Steel	Load carried by longitudinal bars at 18,000 lb. per sq. in.	Los	f carried by the Tons	Column
	No.	Bars Dja.	Area (Sq. in.)	Tons	1:2:4 600 p.s.i.	1:11:3 760 p.s.i.	1:1:2 920 p.s.l
	4	1	8.14	25.3	110.8	184.6	150.2
18	8	11	14.14	112.6	194.7	216.6	238.4
	8	2	25.18	202.0	281.6	802.7	823.9
	4	1	3.16	25.3	120.9	145.8	171.4
19	12	12	14.78	118.1	210.6	236,6	259.6
	12	12	28.86	283.0	291.7	844.7	368.6
	8	1	3.53	28.8	133.8	102.4	190.0
20	12	18	17.82	148.0	244.7	272.9	298.7
	10	2	81.42	233.0	350.7	877.8	402.3
	8	i	3.53	28.3	145.0	176.4	206.0
21	8	18	19.24	154.2	266.7	297.0	327.5
	10	2	31.42	252.0	361,8	890.7	420.0
	8	i	4.81	38.8	168.8	200.5	271.9
22	12	11	21.21	170.5	294.1	327.2	456.4
	12	2	37.70	303.5	422.2	453.5	565.7

Table 8-4 Sectional Areas and Perimeters of Columns per Foot Height

	Peri- meter.	Area	Peri- meter.	Area	Peri- meter.	Area	Peri- meter.	Area	Dia, or Side
Engin alimate a singeria spirate and	2.67	.44	2.31	.39	2.21	.37	2.09	.35	8"
,	3.33	.69	2.88	.60	2.75	.68	2.62	.55	10°
	4.00	1.00	3.97	.87	3.38	.83	3.14	.79	12"
	4.67	1.37	4.03	1.18	3.88	1.16	3.67	1.07	14"
Note:	5.33	1.78	4.62	1.54	4.42	1.47	4.19	1.40	16"
Cross-sectional a	6.00	2.25	5.19	1.95	4.96	1.87	4.72	1.77	18"
are in sq. ft.	6.67	2.78	5.78	2.41	5.50	2.30	5.24	2.18	20"
perimeters in lis	7.33	8.35	6.35	2.90	6.08	2.78	5.76	2.63	22"
feet.	8.00	4.00	6.94	3.46	6.62	3.31	6.28	3.14	24"
	8.67	4.71	7.50	4.06	7.17	3.89	6.81	6.69	26"
	9.33	5.43	8.06	4.72	7.80	4.51	7.34	4.27	28"
	10.00	6.25	8.66	5.41	8.25	5.18	7.88	4.91	30"
	10.67	7.13	9.22	6.15	8.83	5.89	8.39	5.58	32"
	11.83	8.00	9.78	6.94	9.38	6.68	8.90	6.31	84"
	12.00	9.00	10.49	7.78	9.92	7,45	9,43	7.08	36"
	ARE	squ.	GONAL	HEXA	ONAL	OCTAG	JND	ROU	HAPE

Table 8-5. Sectional Areas of Rectangular Columns in Square Feet.

SIDES	10"	12*	14"	16"	18"	20"	22"	24"	26"	28"	30"	62-	34"	30"
8"	.55	.67	.78	.89	1.00	1.11	1.22	1.84	1.45	1.56	1.67	1.78	1.89	2.01
10"	. 69	.83	.97	1.11	1.25	1.39	1.53	1.67	1.80	1.94	2.08	2.22	2.35	2.49
12"	.83	1.00	1.17	1.83	1.50	1.67	1.83	2.00	2.17	2.83	2.50	2.67	2.83	3.00
14"	.97	1.17	1.37	1.56	1.75	1.95	2.14	2.34	2.58	2.72	2.92	3.12	3.30	3.51
16"	1.11	1.33	1.56	1.78	2.00	2.23	2.45	2.66	2.90	3.11	3.34	3.56	3.78	4,00
16"	1.25	1.50	1.76	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50
20"	1.39	1.67	1.95	2.23	2.50	2.78	8.05	3.33	3.62	3.89	4.17	4.43	4.72	5.01
22"	1.53	1.83	2.14	2.44	2.75	3.05	3.25	3.66	3.97	4.27	4.58	4.89	5.18	5.49
24"	1.67	2.00	2.34	2.66	3.00	3.63	3.66	4.00	4.34	4.66	5.00	5.83	5.66	6.00

Chart 8-1 Columns with helical binders

Chart 8-2. Safe loads on 1:2:4 concrete columns with different percentages of reinforcement

Chart 8-3. Safe loads on 1:13:3 diameter columns with different percentages of reinforcement

Chart 8-4. Safe loads on 1:1:2 concrete columns with different percentages of reinforcement

Chart 8-5. Safe loads on 1:2:4 concrete columns with different percentages of steel in accordance with Bombay Municipal Byelaws

Chart 8-6. Columns with eccentric loads — design factors for sections under compression

Chart 8-7. Columns with eccentric loads — design factors for sections partly under compression and partly under tension

Chart 8-8. Columns with eccentric loads — location of neutral axis.

Chart 8-9. Columns with eccentric loads - safe loads with 1% steel

Chart 8-10. Columns with eccentric loads — safe loads with 2% steel 190

Chart 8-11. Columns with eccentric loads — safe loads with 3% steel.

8.7 Columns with Eccentric Load or Subjected to B.M.

Sometimes columns of a building are not loaded axially but the resultant load is eccentric. Especially in the case of external columns of a building, a portion of the bending moment from the end of the beams is transferred to the columns, and it is necessary to design the column to stand both direct load and B.M.

Eccentrically loaded columns fall under two cases:

- (1) Columns where the whole section is under compression.
- (2) Columns where only part of the section is under compression whereas the other portion is under tension.

Case (1). In this case the value of e/d is less than

$$\frac{1+.33p}{6(1+.17p)}$$
 Thus in the case of columns without steel

this value is 1/6 (i.e. the line of load falls within middle third of the section). The stress fc in concrete is given by the formula

fc =
$$\frac{P}{bd} \left[\frac{1}{1 + .17p} + \frac{e}{d} \times \frac{1}{(.167 + .0544p)} \right]$$

= $\frac{P}{bd} \frac{1}{K_1}$

The value of K_1 can be found from the chart 8-6 for various values of p upto 5% and m=18, $\frac{d}{10}$ being the distance of steel rods from the face of the column.

Case (2). In this case it is necessary to first find out the position of the neutral axis from the formula:

$$n_o^3 + 3\left(\frac{e}{d} - \frac{1}{2}\right)n_o^2 + 6mp\frac{e}{d}n_o - 3mp\left(\frac{2r^2}{d^2} + \frac{e}{d}\right) = 0.$$

This being an equation of the third degree is difficult to solve. For solution Chart 8-8 should be used. After finding the neutral axis, the compressive stresses in concrete and tensile stress in steel are given by:

$$fc = \frac{P}{bd} \times \frac{2n_o}{n_o^2 + 2mpn_o - mp} = \frac{P}{bd} \times \frac{1}{K_2} \dots (a)$$

$$t = mfc \left(\frac{0.9}{n_o} - 1\right) \dots (b)$$

The values of K2 can be found from Chart 8-7.

Charts 8-9, 8-10 and 8-11 give safe loads on eccentrically loaded columns of different sizes and reinforcement.

8.8 Illustrative Examples.

 Find suitable reinforcement for a column 16" × 16" overall size and supporting a load of 90 tons and to be designed according to stresses for 1:2:4 concrete specified by I.S.I.

From chart 8-2, use 1.20% vertical steel i.e. $\frac{256}{100} \times 1.20$ = 3.07 sq. inches, i.e. 4—1° ϕ bars.

2. Find safe load on an octagonal column 12" across flats with a reinforcement of 8-7/8" ϕ bars and 5/16" helical bindings at 1" pitch.

Area of column= $.83 \times 144 = 119.52$ sq. inches (Table 8-4).

Diameter of core

of column =
$$12'' - (1\frac{1}{2}'' + 1\frac{1}{2}'') + (\frac{5'}{16} + \frac{5'}{16})$$

= $9\frac{\pi}{4}''$

- ... Area of core= $\pi (9\frac{5}{8})^2 \times \frac{1}{4} = 72.76$ sq. in.
- $\therefore \text{ Percentage of steel } = \frac{4.81 \times 100}{72.76} = 6.6$
- .. Load carried from Chart 8-2=58 tons

Load carried by helical winding from Chart 8-1 = 28 tons

... Total load =86 tons

Find safe load on a rectangular column 10" × 24", reinforced with eight ξ" φ bars made from 1:1:2 mix. Area of column=240 sq. inches.

Percentage of steel =
$$\frac{4.81 \times 100}{24 \times 10}$$
 = 2

Safe load from Chart 8-4 by referring to vertical scale is 136 tons.

 A column is 12"×12" with 4-7/8 in. bars. It carries a central load of 50,000 lb and a moment 2,50,000 lb inches. Find the stresses in steel and concrete, if m=18.

Eccentricity =
$$\frac{250000}{50,000}$$
 = 5 inches

$$e/d = \frac{5}{12} = 0.42$$

Reinforcement =
$$\frac{2.41}{144} = 1.67\%$$

Interpolating from Chart No. 8-7, K2 =0.39

$$\therefore$$
 fc= $\frac{P}{bd} \times \frac{1}{K_2} = \frac{50000}{144} \times \frac{100}{39} = 890 \text{ p.s.i.}$

From Chart no- 8-8, n_o =0.65

...
$$t = mfc$$
 (.9/n_o-1)
=18×890 (1.38-1.10)=6100 p.s.i.

The column is overstressed as fc is more than 750 p.s.i.

If fc is 750,
$$K_2 = \frac{50000}{750 \times 144} = .465$$

- ... From Chart 8-7, use 2.5% steel i.e. $2.5 \times 1.44 = 3.6$ sq. inches (6-7/8 inch bars).
- Find the safe load for a column 12"×12" with 2% reinforcement, the load being eccentric by 3 inches.
 e/d=3/12=.25
 - ... From Chart 8-9 safe load is 24 tons.

COLUMN FOOTINGS

CONTENTS

						Page
9.1	General		• •	• •	 	197
9.2	Illustrative Example	• •	• •		 	198
9.3	Safe Loads on Foundations		• •	• •		200
9.4	Design Tables					201

COLUMN FOOTINGS

9.1 General.

Footing for a column must be safe against:

(a) Punching shear.

(b) Bending moment and shear due to soil pressure.

In addition, it must be adequately thick to allow proper embedment of the column reinforcement for complete transfer of the column load to the footing. The minimum thickness for the above condition should be 30 times the diameter of the column steel. It is also necessary to check the bond stress in the reinforcement.

(a) Punching shear:

The perimeter of the column × depth of footing × safe punching shear=total punching force.

i.e. $4C \times D \times S_p = p (a^2-C^2)$

Safe punching shear is taken as twice the safe ordinary shear viz. 150 lb/sq. inch for 1:2:4 mix.

(b) Bending moment:

$$M = \frac{Wa}{24} (2+R) (1-R)^2 \text{ inch lb}$$
$$= \frac{Wak}{24} \text{ inch lb}$$

where, W=column load in 1b a=length of the side of the footing in inches.

This moment is at critical section ZZ (face of column) and is caused by soil pressure acting upwards on the hatched portion of the footing.

The values of constant k are given in Chart 9-1 for various values of ratio R. The value of b, the effective breadth of the footing is taken as $C+2d+\frac{1}{2}$ (a—C—2d).

9.2 Illustrative Example

Design a footing for a column for the following conditions:—

W =load on column= 126 tons

C = side of column = 21 inches

p =safe pressure on soil=3 tons/s.ft.= 43.7 lb/sq. in.

S_p =safe punching stress=150 lb./sq. in, m=15

Diameter of column reinforcement=1".

COLUMN FOOTINGS

(a) Size of footing:

Total load on soil = 126 tons + say 10% wt. of footing = 140 tons approximately.

Size of footing =
$$\sqrt{\frac{140}{3}}$$
 = 6.82 ft. = 7'-0" say
=84" =a

(b) Depth for safe punching stress

$$4C \times d \times S_p = p (a^2 - C^2)$$

 $84 \times d \times 150 = 43.7 (84^2 - 21^2)$
 $d = 23'$

Take total depth of footing as 30", the column bars being $1^*\phi$ (The effective depth 'd' may be taken as 27")

(c) Bending moment.

$$R = \frac{21}{84} = .25$$
, so that $k = 1.27$ from Fig 8-1.

$$M = \frac{(126 \times 2240) \times 84}{24} \times 1.27 = 1250000 \text{ inch lb.}$$

Effective width of footing =
$$C+2d+\frac{1}{2}(a-c-2d)$$

= $21+54+\frac{1}{2}(84-21-54)$
= $79\frac{1}{2}=80$ inches.

d for B.M. =
$$\sqrt{\frac{1250000}{126 \times 80}}$$
 = 11.5"

$$A_t = \frac{1250000}{18000 \times .87 \times 27} = 3 \text{ sq. inches.}$$

Use 10 Nos. § φ bars both ways.

Diagonal tension

Shear =
$$2.56 \left[(a^2 - (C+2d)^2) \right]$$
 (on plane yy)
= $2.56 \left[(7^2 - (1.75+4.5)^2) \right]$ = 25.6 tons

... Minimum depth required for safe shear @ 75 p.s.i.
$$\frac{25.6 \times 2240}{4(C+2d) \times 75} = 2.56 \text{ inches}$$

Bond:

Shear at column face
$$=\frac{126}{4}$$
 =31.5 tons

$$a = .86d = .86 \times 27 = 23.2$$

Sum of perimeter of steel=10×1.96=19.6

Local bond stress =
$$\frac{31.5 \times 2240}{23.2 \times 19.6}$$
 = 155 p.s.i.

If this is to be reduced to 100 p.s.i. use 12-2 inch dia. bars.

Note:—For calculating punching shear, the value of p should strictly speaking be taken as $\frac{126}{49}$ i.e. 2.56 tsf. or 39.5 p.s.i.

Details of column footing for columns in Chapter 8 are given in Table 9. These can be used for columns, given in both the tables 8-1 and 8-2. The tables are calculated for safe bond stress of 100 p.s.i. Half the number of bars to be provided each way.

9.3 Safe Loads on Foundations.

(a) Wet Clay	 1	tsf.
(b) Wet Sand	 7	
(c) Firm Clay	 >2	
(d) Sand and Clay mixed in layers		,,
(e) Fine and Dry Sand	 3	**
(f) Hard Dry Clay) .	**
(g) Coarse Sand	 4	##
(h) Gravel	 6	
(i) Soft Rock	 8	
(j) Hardpan	 10	
(k) Medium Rock	15	**
(l) Hard Rock	 40	,

COLUMN FOOTINGS

9.4 Design Tables.

Table 9
SQUARE FOOTINGS

(fc=750 lb/sq. in, t=18000 lb/sq. in, m=18).

Ref. No.			ton/sq.ft				1	ton/sq.ft		
of Column	a (inclies)		C.Ft. Bars Lb			D (inches)	C.Ft.	Bars	tcol	
C1	6'-3"	15	36	12-1"	50	4'-3"	15	17	8-1"	3
C2a	7'-6"	15	58	18-3"	90	5'-0"	15	24	12-1"	65
C2b	8'-0"	18	66	20-1"	112	5'-6"	18	32	12-4"	72
C3a	8'-0"	15	60	16-1"	136	5'-6"	15	20	10-1"	54
СЗЪ	8'-6"	18	74	16-1"	145	6'-0"	18	38	12-1"	78
C3c	9'-8"	22	99	16-1"	157	6'4"	22	48	10-1"	65
C4a	8'-9"	15	72	20-1"	182	6'-3"	15	37	16-4"	100
C4b	9'-3"	18	88	18-1"	178	6'-6"	18	44	14-1"	98
C4c	9'-9"	22	112	18-1"	186	6'-9"	22	54	14-4"	100
C4d	10'-9"	26	145	18-4"	205	7'-0"	26	68	16-1"	77
C40	11'-3"	30	177	18-1"	214	7'-8"	80	75	12-1"	94
C5a	10'-9"	18	118	20-1"	322	7'-6"	18	59	18-1"	148
C5b	11'-0"	22	130	18-1"	297	7'-9"	22	71	18-4"	146
CSo	11'-9"	26	179	16-1"	309	8'-0"	26	84	16-1"	136
C5d	12'-6"	30	216	16-1"	387	8'-6"	30	103	16-1"	145
Cõe	13'-6"	28	230	20-1"	540	9'-3"	26	111	22-1"	218
C6a	12'-6"	22	179	26-1"	488	6'-8"	22	89	24-1"	217
COD	13'-3"	26	225	24-1"	467	9'-0"	28	105	22-4"	207
Cão	14'-0"	30	272	24-1"	504	9'-6"	80	128	22-1"	219
C7a	13'-8"	26	240	26-1"	535	9'-6"	26	117	26-1"	256
С7Ъ	14'-9"	30	301	26-1"	576	9'-9"	80	136	24-1"	243
C7c	15'-9"	34	365	28-1"	815	10'-3"	84	163	24-1"	262
C8a						10'-6"	26	181	30-1"	801
С8Ъ						10'-3"	30	150	28-1"	297
C8o						10'-8"	34	179	28-1"	311
C8d						11'-6"	30	187	24-1"	414
C9a						11'-3"	30	191	24-1"	414
C9b						11'-6"	34	207	24-1'	414
C10a						12'-8"	34	154	28-1"	586
C10P						13'-9"	80	268	24-1"	867
C10c				.		14'-0"	34	305	36-1"	766
Clia						14'-9"	34	238	48-1"	1062
C11b						15'-0"	38	229	48-1".	1080

Sections and reinforcement of footings for soil pressures of } and I ton/s.ft.

Table 9 (contd.)

SQUARE FOOTINGS

Ref. No.		2	ton/sq.ft.	\$ ton/sq.ft.						
Column	A	(inches)	Concrete C.Ft.	Bars	Lb	A	(inches)	Concrete C.Ft.	Bars 8	teel Lb
C1	3'-0"	15	9	12-1"	24	2'-8"	18	7	12-1"	21
C2a	3'-6"	16	12	16-1"	89	3'-0"	16	9	10-1"	83
C2b	8'-9"	18	16	16-1"	41	8'-0"	18	10	10-1"	83
CSa	8'-9"	15	14	16-1"	41	8'-3"	16	11	10-1"	36
СЗЪ	4'-8"	18	20	18-1"	61	8'-3"	18	12	18-}*	39
CSo	4'-3"	22	22	18-1"	61	8'-6"	22	16	18-1"	42
C4s	4'-8"	15	18	18-1"	81	8'-6"	18	12	18-1"	87
C4b	4'-6"	18	21	18-1"	86	8'-6"	18	14	18-1"	67
C4e	4'-9"	22	27	16-1"	81	8'-9"	22	18	16-1"	81
C4d	6'-0"	26	84	14-4"	75	4'-8"	26	25	14-1"	64
C4e	0'-3"	80	41	12-1"	68	4'-8"	80	28	12-4"	55
C5a"	6'-0"	. 18.	27	20-1"	105	4'-6"	18	22	20-1"	94
C5b	5'-3"	22	84	18-4"	100	4'-8"	22	23	18-1"	81
Cse	8'-9"	26	45	16-4"	98	4'-6"	28	28	16-1"	77
CSd	8'-10"	80	50	16-4"	98	4'-8"	'80	-84	10-1"	80
C5e	6'-4"	28	58	22-1"	-146	5'-8"	28	88	. 22-1"	121
C6a	6'-0"	22	44	243"-	150	4'-8"	22	23	24-1"	107
Сер	6'-8"	26	62	20-1"	181	5'-0"	26	84	20-1"	105
Céc	8'-4"	80	59	18-4"	,120	5'-3"	80	42	18-1"	100
C7a	6'-6"	26	57	22-4"	150	5'-4"	26	88	22-4"	127
С7ъ	6'-8"	80	66	20-4"	140	5'-6"	80	47	20-1"	115
07a	7'-0"	84	79	22-4"	161	6'-8"	84	44	22-1"	181
C8a	8'-9"	28	62	24-1"	168	5'-6"	26	42	24-4"	137
Сар	7'-0"	80	72 .	22-1"	161	5'-9"	80	61	22-1"	132
C8e	7'-3"	34	86	24-1"	261	8'-0"	34	61	24-1"	216
C84	8'-0"	80	102	24-1"	288	8'-6"	80	72	24-}*	284
CPa	7'-9"	. 30	90	28-1"	827	6'-3"	30	60	28-1"	262
C05	8'-0"	34	108	22-1"	264	8'-6"	84	70	22-1"	214
C10a	8'-6"	84	118	24-1"	306	7'-0"	84	83	24-1"	252
010ь	9'-8"	30	127	32- <u>1</u> "	444	7'-6"	80	85	82-1"	860
C10e	9'-8"	. 84	140	30-1°	416	7'-6"	84	94	80-1"	857
'C118 -	.0.9.	34	154	32-1"	468	80.	84	106	32-1	884
Clib	10'-3"	88	186	.30-1"	461	8'-3"	88	118	30-1"	. 371

Sections and reinforcement of footings for soll pressures of 2 and 3 tons/s.ft.

RETAINING WALLS

CONTENTS

							Page
10.1	Small Retaining	Walls		 • •	• •	• •	205
10.2	Example			 			206

RETAINING WALLS

10.1 Small Retaining Walls.

Small retaining walls upto 15'-0" are mostly of cantilever type. Retained materials like sand, gravel, earth, etc. exert on the retaining structure, pressure of much the same nature as ordinary fluids. The intensity of this pressure (W_e) depends upon the weight (w), angle of repose (ϕ) and angle of surcharge (α) of the material and is given by the formula:

$$W_e=w \cos \alpha \frac{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \phi}}{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \phi}} = wk_1.$$

When there is no surcharge i.e. when $\alpha=0$, this reduces to

$$W_{\bullet} = w \frac{1 - \sin \phi}{1 + \sin \phi} = wk_1.$$

CHART 10-1.

Factors for conversion of weight of soil to horizontal pressures

Chart No. 10-1 gives the values of k for different values of ϕ and α and Table No. 10-1 gives the values w and ϕ for various filling materials.

In case of a cantilevered retaining wall it is necessary to see that:

- (a) the stem, heel and toe are adequately reinforced for B.M. and shear
- (b) the overturning moment is less than the stabilizing moment
- (c) the pressure on the ground is within safe limits
- (d) the wall is safe against sliding

Charts 10-2 to 10-6 may be used with advantage for preliminary designs which can subsequently be modified slightly by exact calculations.

10.2 Example.

Find approximate dimensions and reinforcement for a cantilever retaining wall 12' high over the ground level with level fill weighing 110 lb/c.ft. and with angle of repose of 30°.

 W_{e} , from Chart 10-1 = .33×110=37 lb

Overturning force P $\left.\right\}$ = 4500 for W_e=40 and H=15 (from Chart 10-4) = 3400 for W_e=30 and H=15

.. for We=37 and H=15, P=4150 lb say

Effective depth of stem (from Chart 10-2) for H=14'-0" =10.8"

and $A_t=1.18$ sq. inch i.e. $\frac{3}{4}$ " ϕ @ $4\frac{1}{2}$ "c.c. For $W_e=37$ (by interpolation) assume $B=.5\times15=7\frac{1}{2}$ ft.

 $W=110\times5\times15=8250 \text{ lb}$

M overturning= 21200 ft. lb (by interpolation) (from Chart 10-4)

Stabilizing M required for a factor of safety of 2 $= \frac{5}{2} \times W = 20500 \text{ lb ft.}$

Try B=9'

Then W=110×6×15=9900 lb and stabilising moment

CHART 10-2

Stem thickness for various depths and horizontal pressures

CHART 10-3

BM's for various depths and horizontal pressures

for a factor of safety of $2 = 9900 \times 3 = 29700$ ft. lb

Frictional force= μ W=.7×9900=6930 lb, which is more than P.

$$m = \frac{P}{W} \times H/3 = \frac{4150}{9900} \times 5 = 2.1 \text{ ft.}$$

$$e=m-\frac{B}{6}=2.1-\frac{9}{6}=0.6$$

$$p_1 = \frac{9900}{9} (1 + \frac{6 \times .6)}{9}) = 1100 \times 1.4 = 1540 \text{ lb/ft.}$$

$$p_2 = \frac{9900}{9} (1 - \frac{6 \times .6}{9}) = 1100 \times .6 = 660 \text{ lb/ft.}$$

Moment in heel for 15' height of fill=20800 ft. lb (from Chart 10-5) and 5' span

$$d = \sqrt{\frac{20800}{137}} = 12.2^{\circ}$$
 max. say 15° overall.

$$A_t = \frac{20500 \times 12}{18000 \times .86 \times 12.2} = 1.33 \text{ sq. in}$$

RETAINING WALLS

Moment in toe
$$= \frac{1540 \times 3^2}{2} = 6900 \text{ ft lb (neglecting small variation of ground pressure)}.$$

$$A_t \text{ for } 14\frac{1}{4}' \text{ effective depth} = \frac{6900 \times 12}{18000 \times .86 \times 14.5}$$

CHART 10-4

= .37 sq. in. i.e. $\frac{6}{10}$ @ 10'

Overturning force for various depths and horizontal pressures.

Chart 10-3 gives the bending moment caused in the vertical member of a cantilever retaining wall due to different values of earth pressure and may be used for finding slab reinforcement at different heights, for economy.

From these approximate details accurate calculation in which W includes the weight of wall, and in which the point of application of W etc. is correctly calculated can be carried out, and final details worked out accurately.

RETAINING WALLS

Table 10-1
Weight and angles of repose for various soils

Material	w (lb/cft.)	φ (degrees)
Sand dry	90 to 100	30
,, moist	100 to 110	35
,, wet	110 to 125	25
Vegetable earth dry	90 to 100	30
-do- moist	100 to 110	45
-do- wet	110 to 120	15
Gravel	90	40
Rubble stone	100 to 110	45
Gravel and sand	100 to 110	25 to 30
Clay dry	120 to 140	30
,, moist	120 to 160	45
,, wet	120 to 160	15
" mud	105 to 120	0
Ashes	40	40

NOTES

CIRCULAR TANKS

CONTENTS

							Page
11.1	General	• •	• •	• •	• •	• •	 215
11.2	Illustrative Example				• •	• •	 220

CIRCULAR TANKS

11.1 General

The pressure of water at a depth of h ft. is 62.5 h lb per sq. ft. In the case of a circular tank the tension in the tank walls caused by the water pressure is therefore $\frac{62.5\text{hD}}{2}$ lb in a ring one foot high, of diameter D ft. and situated at a mean depth of h ft. below the surface. The cross-sectional area of steel rings to be provided in this strip is $\frac{62.5\text{hD}}{2\times12000}$ sq. inches.

The walls of all tanks are, however, restrained at the base being monolithic with the floor and the walls assume the shape shown in sketch below when the tank is filled with water.

Deflection of tank walls

In such a case the water pressure at the bottom is entirely resisted by the cantilever action of the vertical wall which is subjected to tensile stress on the inner face. In case of shallow tanks of large diameter, the tendency of the walls is to act more like vertical cantilevers and hoop stresses are small, whereas in cases of deep tanks of small diameter, hoop stresses are more and cantilever action is very small.

The charts on pages 216-218 give

(a) Capacity of tanks in gallons for various heights and diameters (Chart No. 11-1).

CHART II-I. Capacity of circular tanks for various diameters and lengths

- (b) Position of maximum hoop tension (Chart No. 11-2).
- (c) Amount of maximum hoop tension (Chart No. 11-3).
- (d) Amount of restraint moment (Chart No. 11-4).

The minimum thickness of wall to avoid cracking due to shrinkage should be 0.0004T inches (T being the maximum hoop tension in lb)

CIRCULAR TANKS

CYLINDRICAL TANKS POSITION OF MAX, HOOP TENSION

Position of maximum hoop tension for various height/diameter and thickness/diameter ratios

CHART II-3

Maximum hoop tension for various height/diameter and thickness/diameter ratios

Restraint moments for various height/diameter and thickness/diameter ratios

CIRCULAR TANKS

Table 11 gives details of tanks of different capacities and sizes.

Table 11

Ht. of Water ip- it, ity in als,		15					12					
	D	In- ches	L Ft	A _H	A _v	מ	d	L	A _H	A		
100,000	37	10	6.30	.83	.45	40	9	5.64	.68	.38		
75,000	32	9	5.55	.80	.33	35.5	8	5.30	.64	.36		
50,000	26	8	5.00	.70	.35	29	7	4.6	.58	.31		
30,000	201	7	4.20	.56	.31	221	7	4.2	.45	.25		
10,000	111	7	3.50	.35	.18	13	6	3.6	.28	.16		

Ht. of Water ap- city in als.		10					8					
	D	d	L	A _H	A _v	D	d	L	A _H	A		
100,000	45	8	5.7	.52	.33	50	7	6.0	.35	.27		
75,000	39	7	4.9	.49	.33	431	7	5.2	.35	.27		
50,000	321	6	4.2	.41	.26	351	6	3.8	.32	.25		
30,000	25	6	3.9	.38	.21	28	6	3.5	.28	.19		
10,000	15	6	3.3	.27	.14	16	. 6	3.2	.19	.12		

11.2 Illustrative Example.

Find the stresses in the walls of a circular tank with 10' depth of water and of diameter 25 ft.

Assuming the thickness d of walls as 6"

$$H/d = \frac{10}{.5} = 20$$
 and $H/D = \frac{10}{25} = .4$

From charts we have:

- (a) position of maximum hoop tension
 L=C₂H=.4×10=4 ft. above base.
- (b) Maximum hoop tension

$$T=C_1 - \frac{WH}{2}D$$

= .59×62.5×10/2×25=4700 lb

(c) Restraint Moment

Minimum $d=0.0004\times4700\times1.68$ inches. Provide 6' for practical purposes.

Reinforcement:

$$A_{\text{M}}$$
 (for hoop tension) = $\frac{4700}{12000}$ = .39 sq. in.

Use .6 of above at bottom to allow for fixity between the wall and base.

A. (for restraint moment)

With 1 o bars and 1 cover

Effective depth=6-1.25=4.75°

Lever arm = $.85 \times 4.75^{\circ}$

CIRCULAR TANKS

$$A_{V} = \frac{10500}{12,000 \times .85 \times 4.75} = .22 \text{ sq. ins. approximately}$$

Use 3/8" \$ @ 6" c.c.

Section of tank.

NOTES

DIFFERENT KINDS OF CONCRETE

CONTENTS

							Page					
12.1	Prestressed Concrete											
	12.1.1 Pr	inciples of prestresse	d conci	rete			225					
	12.1.2 A	ivantages of prestres	sed con	crete			225					
	12.1.3 M	ethods of prestressin	g				225					
	12.1.4 Fu	indamental concept					226					
	12.1.5 Us	es of prestressed con	crete				227					
12.2	Precast (P	refabricated) Concre	tc				227					
	12.2.1 Ac	lvantages					227					
	12.2.2 Di	sadvantages					228					
	12.2.3 Re	quirements					228					
	12.2.4 A ₁	plications			• •		228					
12.3	Shot Conci	ete or Gunite					228					
	12.3.1 De	efinition					228					
	12.3.2 Us	es					229					
	12.3.3 Pr	operties of gunite					229					
	12.3.4 No	tes on specifications	for gu	inite v	vork		229					
	12.3.5 De	sign data for gunite			• •	• •	230					
12.4	Lightweigh	t Concrete					231					
	12.4.1 Me	thods					231					
	12.4.2 Li	ghtweight aggregates					231					
	12.4.3 Ac	rated concrete		• •			231					
12.5	Air-entrain	ed Conerete					232					
12.6	Colloidal C	Concrete or Colcrete					232					
12.7	Prepacked	Concrete					233					
12.8	Saw Dust	Concrete					233					

DIFFERENT KINDS OF CONCRETE

12.1 Prestressed Concrete.

12.1.1 PRINCIPLES OF PRESTRESSED CONCRETE.

The principle of prestressed concrete is to introduce internal stresses in the concrete, of nature opposite to those caused by the design load. Hence when the design load operates, the resultant stresses in the concrete are very low.

12.1.2 ADVANTAGES OF PRESTRESSED CONCRETE.

- (a) Economy: spans above 100 ft. are not economical in ordinary R.C. work since so much of concrete is wasted in portion below the neutral axis.
- (b) It is possible to use high tensile steel reinforcement which cannot be used in ordinary R.C. because of necessity to limit the width of minute cracks in the tensile zone to .02 inches.
- (c) The danger of rusting of reinforcement due to atmospheric action in unfavourable areas is entirely eliminated.

12.1.3 METHODS OF PRESTRESSING.

There are two methods:

- (a) Pre-tensioned bonded method.
- (b) Post-tensioned bondless method.

In (a) high tensile steel reinforcement is placed in position and stretched with the help of yokes, hydraulic jacks and abutments. The calculated tension is induced in the wires and concrete is filled into the mould of the prestressed concrete member and allowed to set. When the concrete is sufficiently strong, the tension of the wire is released. The steel while contracting induces compression in the concrete, being bonded to the concrete.

In (b) high tensile steel is placed in the moulds of the prestressed concrete member but is prevented from coming in contact with the concrete being encased in sheaths. The prestressing reinforcement consists of cables made of high tensile steel wires, laid in one or more rings round a core. After the concrete is placed and allowed to attain its normal strength, the high tensile wires are stretched by means of special jacks. The wires are then anchored to the two

ends of the beams or structural member by special anchorages. The compression in the concrete is developed through these anchorages instead of through bond between steel and concrete as in method (a).

12.1.4 FUNDAMENTAL CONCEPT.

The prestressing compression being applied eccentrically produces in the section concerned stresses equal to $\frac{F}{A} + \frac{Fy^{t}y}{I}$

These stresses when combined with the tension and compression due to dead and live load bending give the resulting stresses as shown in Fig. 12-1.

Fig. 12-1

The induced prestressing force is reduced to some extent due to shrinkage of concrete, creep in concrete, plastic flow of steel reinforcement and compression of concrete due to prestressing.

DIFFERENT KINDS OF CONCRETE

12.15 USES OF PRESTRESSED CONCRETE.

Prestressed concrete is being used for various structural items such as bridges, large span roofs, precast roofing joists, railway sleepers, tanks, pressure pipes, etc. etc. The following statements will give some idea about the comparative dimensions and economic possibilities of prestressed concrete.

(1) Prestressed concrete girders vs steel joists.

For the same loading

- (a) Prestressed concrete girders are twice the weight of joists.
- (b) Prestressed concrete girders are one and a half times deeper than steel joists.

(2) R.C.C. vs steel girders

Steel in ordinary R.C.C. girders is 10 per cent of that used in steel joists.

- (3) Prestressed concrete vs R.C.C. girders.
 - (a) Steel required in prestressed concrete girders is 25% of that required in R.C.C. girders, i.e. $2\frac{1}{2}\%$ of that required in steel joists.
 - (b) Concrete in prestressed concrete girders is 50% of that required in ordinary reinforced concrete girders.

12.2 Precast (Prefabricated) Concrete.

Precast (prefabricated) concrete is getting popular day by day.

12.2.1 ADVANTAGES.

- (a) Economy in formwork.
- (b) Possibility of standardization and employment of machinery for manufacture.
- (c) Controlled weather conditions.
- (d) Use of experienced and skilled workmen.
- (e) Temperature effects in the structure are negligible due to many construction joints.
- (f) Defective components can be easily rejected.

12.2.2 DISADVANTAGES.

- (a) Repeated handling may break the units.
- (b) The problem of connecting various units properly is difficult.

12.2.3 REQUIREMENTS.

Precast concrete units must be strong and at the same time light. It is, therefore, necessary to use lightweight concrete in case of non-structural units. Structural units are made either hollow or flanged or are in prestressed concrete so as to cut down the quantity of concrete. It is also necessary to use special methods of consolidation and curing such as vibration, shocks, spinning, steam or electric curing, etc. The concrete also is very carefully designed and made. Typical sections of structural precast concrete units are shown in Fig. 12-2.

12.2.4 APPLICATIONS.

Precast concrete is used for numerous purposes, the following being only a typical list of most important items:

Floors: Channel beams, hollow beams, T-beams, I-beams, etc.

Foundations: Sockets for wooden or steel column

plates —do—

pedestals —do— etc.

piles —do—

Building frames: Portals, gabled frames, etc.

Building units: Hollow and solid blocks, lintels, wall panels (hollow or solid), window and

door sills, cornices, string courses, chimneys, trusses, roofing tiles, etc.

Bridges : Bridge girders, slabs, arch voussoirs.

Miscellaneous : Pipes, transmission line poles, garden

furnitures, drains, silos, tanks, railway sleepers, etc.

12.3 Shot Concrete or Gunite.

12.3.1 DEFINITION.

Cement and sand mortar applied by air pressure is commonly called gunite. Actually such concrete is termed Shot-

DIFFERENT KINDS OF CONCRETE

erete in general and "gunite" is only a trade name for the product of Cement Gnn Company.

12.3.2 USES.

Gunite is used for many purposes, the most important being:—

- (a) Repairing masonry or concrete structures.
- (b) Waterproofing.
- (c) Construction of water tanks.
- (d) Lining of eanals and reservoirs. (Two inches thick gunite is used on brick pitching and three inches on earth slopes.)
- (e) Protection of steel from fire, corrosion, etc.
- (f) Roof and rib protection in mines.
- (g) Walls and roofs etc. of buildings.

12.3.3 PROPERTIES OF GUNITE.

Gunite walls for building are generally 2" thick and are shot on chicken netting stretched against plywood forms. Roofs of buildings are 2 to 3 inches thick. Gunite is used for r.c. domes also.

Strength @ 28 days-6000 lb/sq. inch average.

Modulus of elasticity-4,670,000 lb/sq. inch.

W/C ratio required—.25 to .30 (by weight).

Density-f" gunite slab could stand 700' head of water

11" gunite slab could stand 1600' head of water

12.3.4 NOTES ON SPECIFICATIONS FOR GUNITE WORK.

a. Sand should be of fineness modulus 2.4.

The following grading is recommended:

passing	No.	480	sieve	(I.S.I.)	98	100%
		240	27		70—	95%
		120	,,		60—	85%
	•	60	27		45	65%
		30	2?		15—	35%
		15	"		0	5%

Sand should be slightly moist (3 to 8% moisture).

- b. Air pressure: 35 lb/sq. inch for 100' long hose. Increase 5 lb for every additional 50 ft.
- c. Water pressure: Should be 15 lb more than the air pressure.
- d. Material should be shot at right angles to the surface.

 Loose sand deposits should be removed. A thin edge should be left at each day's work.
- e. The following points to be attended to in case of various works:

Steel encasing: fix $2'' \times 2''$ mesh wire netting at about $\frac{4}{7}''$ from the surface. Remove paint, rust, etc. and apply gunite 1:3 mix by volume.

Floors : apply 1:3 gunite in one coat upto 3\formula 'thickness. For greater thickness apply in 2 coats the final coat being always more than one inch.

Wall slabs and panels: The thickness to be 1\frac{1}{2}" upto 4' span and 2" upto 7' span. The steel fabric reinforcement should not be more than 4" mesh and the area should be 3% of wall cross-section in each direction.

Waterproofing of walls: Clean and sand-blast the surface and apply \(\frac{1}{2} \) gunite 1: 3 mix.

12.3.5 DESIGN DATA FOR GUNITE.

Assumptions: Ultimate compressive stress.

1: 3 mix-4100 lb/sq. inch. 1: 2½ mix-4800 —do—

fc 1500	t 20000	n _o	j .86	р .016	q 276
1800	20000	.47	.84	.021	359
1200	16000	.43	.86	.016	221
1500	16000	.48	.84	.023	805

(Value of modular ratio is 10)

DIFFERENT KINDS OF CONCRETE

12.4 Lightweight Concrete.

It is frequently used in making precast blocks, etc., to keep down the weight of the units. Research has shown that it is possible to make concrete of low cement content, with excellent workability, sufficient strength and adequate heat insulation, and effect appreciable economy in structural load of a building.

12.4.1 METHODS.

Lightweight concrete is made by

- (a) Using light and porous aggregate such as breeze, pumice, etc.
- (b) By adding to the cement slurry, containing little or no aggregate, an aerating agent which causes the paste to foam so that the set material contains a certain proportion of air.

12.4.2 LIGHTWEIGHT AGGREGATES.

These are of three types.

- (a) Natural: such as pumice, breeze, etc.
- (b) By-products: such as blast-furnace slag, coke, breeze, cinders, saw-dust, etc.
- (c) Processed aggregates such as
 Exfoliated vermiculite—a type of mica expanded by heat.

Sintered diatomite—a processed diatomite with soft chalky particles.

Perlite—an expanded perlite composed of frothy particles.

Expanded clay.

Sintered fly ash—a processed material resulting from the combustion of powered fuel in steam power plants.

12.4.3 AERATED CONCRETE.

Hydrogen gas bubbles are generated in a mix containing lime or cement by incorporation of finely divided aluminium or zinc powder about 0.1% of cement. The cellular structure produced in this way is retained after the cement has set and a lightweight product obtained thereby. Sometimes a foaming agent is used, instead of the metal powder, and the mix is whipped up in a special mixer to a fine foam. The weight of aerated cement is 40 to 60 lb per c.ft.

Properties of Lightweight Concrete

Material	Mlx	Wt. Lb/eft.	Compressive strength Lb/sq.in	Transverse atrength Lb/sq. in	Shrinkage	Thermal conductivity
Pumice Concrete	1:6	4570	200—550	100—150	.0408	1.4 B.th.U
Cilnker Concrete	1:6	50-105	150-450	75-250	.080.20	2.8
-do	1:10					2.3
Foamed Slag Concrete.	1:6	80-95}	300-500	200-300	0.03-0.05	1.5-2.2
Cellular Concrete	1:12	87-60	200-500	100240	0.05-0.18	12
Ballast Concrete	1:2:4	140-150	3000-5000	800600	0.03-0.04	7.0

12.5 Air-entrained Concrete.

It is possible to cause in the concrete the inclusion of millions of microscopic bubbles during the process of mixing by using a small amount of certain chemicals either in the mixing water or in the cement. Each bubble of air is encased in a hard glazed shell formed by the surface active force generated by the chemical reaction. Thus the formation of the usual capillary channels by which the water enters the concrete, is prevented and there is no possibility of disintegration of the concrere by freezing and thawing or by leaching. The air bubbles give additional workability permitting smaller w/c ratio and consequently better strength. The segregation of the concrete is prevented due to reduction of w/c ratio and action of the air bubbles. It is also possible to give a better finish to the concrete and improve the surface texture by preventing sand streaking. Vinsol resin is the most common air-entering agent. Several proprietary air-entraining agents are available in the market.

12.6 Colloidal Concrete or Colcrete.

This is a particular process of making concrete in which stone aggregates which are already laid in position are bound together by cement and sand grout mixed in a special type of mixer. A grout of cement, sand and water mixed in the usual manner is not sufficiently fluid to penetrate between the interstices of the aggregates and produce a dense concrete. Cement particles being very fine are difficult to wet as they cling to each other and are also surrounded by a thin film of air. The surface areas of cement and sand are 80% and 19% respectively of the surface area of all the constituents of concrete. Hence, if these two constituents are efficiently wetted,

DIFFERENT KINDS OF CONCRETE

it is easy to get proper quality of concrete. The special type of machine for mixing the grout is shown below (Fig. 12-3).

Fig. 12-3.

The roller A about 8" in diameter rotating anticlockwise at 1200 r.p.m. draws in grout through a volute shaped cavity between the drum and the cowl B. The cowl is hinged at C so that the gap at the end of the volute may be adjusted. A knife-edged plate D nearly touches the roller immediately below the back edge of the cowl and cuts off the liquid and directs it to the back of the tank so that complete mixing is secured. After each mixing the grout is tipped into a sump from where it is removed by a pump. In some machines two stage mixing is done. Cement and water are mixed first and then sand and cement paste subsequently.

Colloidal concrete is very economical as just the required quantity of grout enough to fill in the voids in the coarse aggregate is used. For 1 cubic yard of colloidal concrete only 3 cwt of cement are required as against 5 cwt for usual 1:2: 4 mix. Colcrete is very useful in road and runway construction.

12.7 Prepacked Concrete.

The principle of this method of making concrete is the same as above, but instead of using mechanical methods of effecting thorough mixture of cement, water and sand, certain chemicals are added to the grout. Cheecol is one such chemical compound.

12.8 Saw Dust Concrete.

Mixture of cement and saw-dust can serve as a useful building material with some limitations. The strength of saw-dust concrete is uncertain and must be determined by tests. How-

ever, it may be taken 10 to 20% the strength of normal concrete. The principal use of saw-dust concrete is as an insulating material and for special purposes. The results of tests on saw-dust concrete are given below:—

Building Research Station U.K.

1:2 mix gave 1190 lb/sq. in. we 7 days

1:4 .. 92

New Zealand: (with Pinus insignus as aggregates)

1:2 mix gave 1190 lb/sq. in.

1:4 ,, 725 lb/sq. in.

The following results are also experimentally found with pine wood saw-dust.

Mix	Comp. strength @ 7 days ultimate.	Density
	(lb/sq. in)	(lb/cft)
1:2	1100	75
1:3	500	49
1:4	150	41
1:6	110	40
1:11 sand:11	1300	100

The extractable materials in saw-dust upset the hardening of cement. This can be prevented by using dust from soft woods or by using 20% of the weight of cement of lime or 5% of calcium chloride in the mix. It is advisable to first immerse the saw-dust in boiling water for about 10 minutes and then wash it freely with water. This should be repeated a second time, by mixing 2% ferric sulphate in the boiling water and washing the dust again. Saw-dust concrete absorbs water and hence expands and shrinks on getting wet and dry. This can be prevented by coating the units with water resisting substances and using certain percentage of sand as aggregate.

Consistency of the concrete should be such that the mix compacts itself. The following amounts of water are suggested:

Cement	Saw-dust (slightly damp)	Water
94 lb	. I cft.	5.5 gallons
	2 cft.	5.9 gallons

The finish should be smooth but even, heavy trowelling should not give cement skin on the top.

Fig. 12-2. Precast floor systems, showing from top to bottom 1-beam, Rapid floor, Rali system and T-section

NOTES

CHAPTER 13

MISCELLANEOUS INFORMATION

CONTENTS

		Page
13.1	Soil-cement	239
13.2	Asbestos Cement	249
13.3	Cement Grouting	249
13.4	Cement Admixtures	251
13.5	Waterproofiing of Concrete	252
13.6	Effects of Acids, Oils and Salts on Concrete	252

CHAPTER 13

MISCELLANEOUS INFORMATION

13.1 Soil-cement.

- 1.1 The stabilisation of natural soil, using cement as a stabilising agent, is now a well established form of construction for road bases.
- 1.2 Soil-cement is an intimate mixture of measured amounts of Portland cement, pulverised soil and water, adequately compacted to a high density to form a hard, stable and durable mass. It has the appearance of very dense soil, and its colour is practically that of the soil used in construction. It is a distinctive structural material with its own characteristics and forms a type between a "flexible" and a "rigid" construction.
- 1.3 The manner in which cement acts as a binding material in a soil-cement mixture is a matter of speculation. Studies in the soil-cement laboratory of the Portland Cement Association show that each grain of cement picks up a varying number of soil grains, (depending on the grain size of the soil), and as the cement hydrates and crystallises, a new and larger soil grain or agglomeration is produced. As more and more cement is added to a soil, more soil grains lose their identity to become larger soil grains or agglomerations. The agglomeration of cement and soil grains is shown by the tests of soil-cement mixtures of low cement content. These agglomerations can also be thought of as links in a chain. When enough cement has been added to link all agglomerations together enclosing pockets of trapped soil, the mixture becomes a structural material.

13.1.2 ADVANTAGES OF SOIL-CEMENT.

The outstanding advantages of soil stabilisation with cement are cheapness and speed of construction. The process is economical because the soil can frequently be used as it occurs on the site, and even if it has to be imported, it is usually brought from a nearby pit. The same factor is responsible for the large output of work per day. The method of construction is simple and requires only such equipment as is normally available with all road making authorities. The interruption of traffic during the period of construction is a minimum and in most cases the hardened soil-cement can be put under traffic before any surfacing is provided. As a sub-base in the construction of roads and runways, it forms

an integral part of the structure and enables the thickness of base itself, whether of concrete or of other types of construction to be reduced; it thus gives an economical design for roads and runways which will be required to carry heavy loads. The most important argument in favour of soil-cement is that it is an engineering material that eliminates all guesswork regarding its quality and performance unlike other low-cost paving materials. Specific control tests in the laboratory and in the field assure its success in building strong, durable pavements.

13.1.3 FACTORS AFFECTING SOIL-CEMENT.

The principal factors affecting the quality of soil-cement are soil type, cement content, moisture content, density of compaction and degree of pulverisation in the mixing.

3.1 Soil Type.

There are several systems of soil classification devised to suit the requirements of various types of engineering projects. It is considered that of all the systems, the best suited for road and airfield works are the Casagrande Classification System and the United States Public Roads Administration (USPRA) System. It is not possible to give here detailed descriptions and discussions of these systems; for these the reader is referred to "Soil Mechanics for Road Engineers" published by Her Majesty's Stationery Office, U.K., and other standard works on the subject.

Highly organic soils such as agricultural top soils and peaty soils are quite unsuitable for stabilisation of any kind, but most other soils can be stabilised with cement.

Heavy cohesive soils present difficulties, and before preparing a specification for their treatment, careful laboratory work is required. Often the addition of from 8 to 20 per cent of granular material mixed with pulverised soil will enable this work to be carried out. Lighter clays with liquid limits below 40 per cent have been successfully stabilised without the addition of granular material.

3.2 Cement Content.

The cement content required is determined by means of tests for unconfined compressive strength. The test consists in preparing and testing samples containing different percentages of cement in order to fix the cement content which would be most satisfactory for economy and strength.

The test is usually made with cylindrical specimens of soil-cement which have a height/diameter ratio of 2. The

diameter of the specimens may be 2 in., 4 in., or 6 in., depending on the particle size distribution of the soil. The specimens are cured in a moist atmosphere for a period of seven days and then tested in compression at a rate of 250 lb. per sq. in. per minute, or at a rate of strain of 0.05 in. per minute. A compressive strength of 250 lb./sq. in. after seven days is usually accepted as a satisfactory minimum.

It has been found that the percentage of cement (by weight of dry soil) required to produce suitable soil-cement mixtures normally ranges from 5 to 12 per cent. As it is necessary to have a reasonable proportion of cement to ensure proper distribution in the soil, it is not desirable or practicable to go in for cement contents lower than 5 per cent. In general it may be stated that for purposes of estimating job requirements, a cement content of 8 to 10 per cent may be used.

3.3 Moisture Content.

The effect of moisture content on the quality of soilcement largely arises from its influence on compaction, for good compaction is necessary to bring the materials to the maximum density for a given effort. The best moisture content for compaction is governed by the soil type and the method of compaction. The water/cement ratio concept as used in concrete work is therefore of little value in soil-cement construction.

The required moisture content is determined by means of the standard moisture-density test carried out on soil-cement The moisture density test defines the moisture content at which maximum density is obtained, when the soil is compacted in a standard manner. The degree of compaction obtainable in the test is designed to be comparable with thorough compaction under field conditions. The test consists in dropping a standard rammer a given number of times from a specified height on to a specimen prepared in a standard mould with varying moisture contents. Under a constant force of compaction the density of a soil-cement mixture varies as the moisture content of the mixture varies. With a given amount of compaction there exists for each soil a moisture content termed the optimum moisture content at which a maximum dry density is obtained. If the moisture contents are plotted against the corresponding dry densities, the points will usually form a parabola or a regular type curve the peak of which will indicate the optimum moisture content and the maximum dry density.

3.4 Density.

The density to which the soil-cement mixture should be compacted is also determined by the standard moisture-density test. The density of soil-cement as constructed shall not be below the standard maximum density by more than 5 lb. per cu. ft.

3.5 Degree of Pulverisation in Mixing.

The presence and moisture content of any lumps of clay in the mixture affect the properties of soil-cement mixtures. Investigations carried out by the Portland Cement Association suggest that mixtures containing upto 20 per cent of clay balls which are at about optimum moisture content are not inferior to those possessing no unpulverised lumps. However, if the lumps are initially air dry, they have a very detrimental effect.

13.1.4 CONSTRUCTION.

There are three methods of construction, namely :

- 1. The Pre-mix Method,
- 2. The Mix-in-place Method, and
- 3. The Travelling Plant Method.

All the three have this in common—the soil is pulverised, mixed intimately with the cement and the mixture compacted at the optimum moisture content to the greatest density obtainable.

Whatever method of construction is used, the first step in preparing a site for stabilisation, as with all types of road construction, is to provide suitable drainage. The object of this drainage is to prevent moisture changes in the formation, to intercept any water that may flow towards the road site and to keep the water table at a constant level.

All turf and top soil should be removed and the foundations cleared of stumps, boulders and debris to a depth of about 12 in. The area to be processed should extend one foot beyond the carriageway on both sides. The ground should then be shaped up approximately to its formation level either by hand or by a scraper.

4.1 Pre-mix Method.

In principle the pre-mix method differs little from concrete road construction. After the necessary tests, cement and soil are mixed with the required amount of water in a mechanical mixer. The soil may be that occurring on the site, or if this

is unsuitable for stabilisation, suitable soil may be imported. In gauging the water content, it is desirable to have a little excess of water, especially in dry weather.

Mixing: While the ordinary concrete mixers are satisfactory for granular soils, they are not suitable for the more cohesive types of soil, because the material sticks in the drum. In this case the best results are obtained with double-paddle mixers, pug mills or the roller pan type machines. as, in these, lumps of soil are easily broken np. Whatever type of mixer is used, it must be capable of mixing uniformly and intimately the soil with cement. The mixing time will be longer than that for concrete and will depend largely on the type of soil and the type of mixer. Mixing should continue until the soil-cement mixture is of uniform colour and texture throughout.

Spreading: The mixed materials are spread on the prepared formation and distributed in a uniform loose layer by means of long-handled rakes and shovels. (N.B.—Before spreading it is important to check that the subgrade is thoroughly compacted.) It is essential to have templates available to check the height and shape to which the material is spread.

Compaction: The next step is the thorough compaction of the mixture on which depends very largely the success of the whole operation. Suitable plant for compaction is as follows:

- (a) For cohesive soils: Multi-wheeled pneumatic rollers, smooth-wheeled rollers, and power rammers. The last mentioned are particularly suitable for small areas.
- (b) For granular soils: Smooth-wheeled rollers, vibrating rollers, pneumatic tyred rollers and vibrating beam tampers.

It is better to use a light roller for initial compaction, since a heavy roller tends to bed into the loose material thereby causing ridges and waviness. Rolling should start at the sides and work towards the centre or, where there is a straight cross fall, from the low side towards the high side. Final rolling should be done with a smooth-wheeled roller. A tandem roller which gives uniform pressure produces the best results.

Rolling should continue until the processed soil no longer shows any yield under the roller and until a uniform close-knit surface is obtained. The complete rolling should not occupy more than an hour.

Curing: On completion of the final compaction, the surface of the soil-cement must be prevented from drying out too rapidly. It should be efficiently cured for a period of seven days by sprinkling water or by covering it with wet sand or wet straw. Traffic should be kept off the processed soil for 7 days.

Construction joints: At the end of each day's work a straight transverse construction joint shall be formed by cutting back into the completed work to form a true, vertical face and by installing a temporary wooden header against it. The portion of the completed work, over which the compaction plant has to run on the next day, should be covered with earth to prevent the surface being damaged.

Surfacing: Soil-cement, while capable of carrying heavy loads, will not be resistant to traffic abrasion and it is therefore necessary to provide a surfacing. The minimum requirement is a double surface dressing of bitumen or tar with chippings. For roads carrying heavy traffic a thicker covering of bitumen or a surfacing of concrete may be provided.

4.2 Mix-in-place Method.

Pulverisation: In the mix-in-place method the ground is first scarified and the soil is pulverised to a fine tilth until at least 80 per cent of it, exclusive of stones, passes the standard 3/16 in. sieve. This work is most effectively done by rotary tillers. However, any other machine, (such as ploughs or disc harrows), capable of achieving the same results in a reasonable number of passes may also be used for the purpose.

During pulverisation stones exceeding 3 in. in diameter should be removed as they interfere with processing and may also damage the tines of the rotary tiller.

The depth to which the soil is pulverised should be such as to permit of subsequent compaction. Thus, if the finished thickness of soil-cement base is to be 6 in. (which is the most usual thickness), the soil should be scarified and pulverised to a depth of 8 in. to 9 in.

On completion of the pulverisation the surface should be again graded to the required crossfall or camber and checks should be made to ensure that there is a uniform depth of pulverised soil.

The soil is now ready for processing, but its moisture content should be determined before this is done. The purpose of this is to make due allowance for the moisture content

already present in the soil at the time of the addition of cement and water.

Spreading cement: The next step in the process is the spreading of cement. Coment can be spread mechanically or by hand. In the first case the cement in bulk is fed from a lorry into a mechanical spreader from which it is spread at an even and controlled rate over the soil.

For hand spreading, the bags of cement are spotted at intervals so as to provide the specified percentage of cement. The area to be covered by each bag of cement can be calculated and marked with strings, tapes or lines. Then each bag is split open and the cement spread uniformly on the surface.

Mixing: After the cement has been spread, it is mixed well with the soil. The mixing is usually done with the same plant as was used for pulverising the soil. It is important that the materials should be thoroughly and intimately mixed together. Several passes of the mixing equipment may be required to ensure this, but the number of passes should be kept to the minimum consistent with uniform mixing. Mixing should continue until the soil-cement is of uniform colour and texture throughout the whole area and to the full depth of treatment.

Adding water: At this stage the moisture content of the mix should again be determined and then the required quantity of water, which should be slightly above the optimum in order to make up for losses due to evaporation, etc., added to it. There should be provision for rapid supply of the water; to avoid interruptions two tankers should be used for this purpose, one spraying while the other is being filled.

The water should be distributed evenly over the surface. The water distributor should never be allowed to remain stationary over any spot and thus cause flooding, as this would result in a wet soft area, difficult to put right.

It is preferable, but not always practicable, to distribute the water from the sides of the road by means of a spray bar. If the water tank travels over the loose materials, care should be taken to erase the wheel marks when mixing the water into the soil-cement.

After sufficient quantity of water has been added, it should be mixed thoroughly and uniformly to the full depth of treatment.

Final grading: When the mixing is complete, the surface is shaped upto the required contour or crossfall.

Compaction: The operations for compaction as well as for for the remainder of the work such as curing, construction joints, surfacing etc., are carried out in exactly the same way as for the pre-mix method.

4.3 The Travelling Plant Method.

The general principle of the travelling plant method is that the pulverised soil and cement are lifted into a hopper whence they are fed into the mixer (usually of the pugmill type), and water added as necessary. The mixed material is then discharged on to the road and spread with a grader ready for compaction.

The plant required for this method is expensive and therefore must be kept working continuously, if its use is to be economical.

4.4 Comparison of the Three Methods.

.1 Pre-mix Method.

The advantages are:

- (i) Accurate proportioning of the mixture.
- (ii) Easy control of depth of treatment.
- (iii) Concrete mixers can be used.
- (iv) Small losses of moisture during mixing and transport of the material.

The disadvantages are:

- (i) Relatively small output.
- (ii) Material must be compacted as delivered and not as a complete section.

.2 Mix-in-Place Method.

The advantages are:

- (i) The plant required is simple, relatively cheap and easily transported.
- (ii) The number of machines required can be adjusted to the size of the job.
- (iii) The whole processed section is ready for compaction at the same time.

(iv) A large daily output can be maintained.

The disadvantages are:

- (i) It is not easy to obtain a uniform thickness of treatment.
- (ii) The mixing is not as uniform as in the premix and travelling plant methods.
- (iii) Work is susceptible to changes of weather, and once cement has been spread, the work cannot be stopped.
- (iv) In hot weather, there may be considerable loss of moisture by evaporation.

.3 Travelling Plant Method.

The advantages are:

- (i) Accurate proportioning and control of added water.
- (ii) Uniform mixing.
- (iii) Short mixing time.
- (iv) Uniform thickness of stabilised soil ensured.
- (v) Large output per day.

The disadvantages are:

- (i) High initial cost of plant.
- (ii) Large scale work necessary to run plant economically.
- (iii) A minor breakdown in one piece of plant may cause a complete hold up.

13.1.5 CONTROL OF CONSTRUCTION.

During the construction, checks must be made to ensure its success and that the terms of the specification are being followed. The following points, in particular, should be carefully checked.

5.1 Degree of Pulverisation.

Specifications require that the soil should be pulverised until at least 80 per cent of it, exclusive of coarse particles, normally retained, passes the 3/16 in. B.S. sieve. Tests for the degree of pulverisation should be made on samples of soil taken at intervals of about 200 to 300 ft. along the processed area at points distributed across the width of the area.

5.2 Moisture Content.

Normally a moisture content somewhat higher than that determined by laboratory tests should be adopted in the field to compensate for drying out during processing and compaction. Tests for moisture content during construction should be made at the following stages:

- (i) On completion of pulverisation, to determine approximately how much water would be needed.
- (ii) After mixing soil with the cement to determine precise requirements, and
- (iii) immediately after adding and mixing in any additional water, for cheeking.

5.3 Cement Content.

Inspection of samples obtained with a trowel from the full depth of the layer during processing gives a good indication of the distribution of cement. Such inspections should be made continuously during processing throughout the length and width of the processed area and to the full depth of the loose soil. Uniformity of colour and texture will be the mesure of the even distribution of cement. Where required, however, samples of soil-cement may be analysed periodically to check that the cement content complies with the specifications.

5.4 Dry Density.

The dry density of the compacted soil-cement is a measure of the effectiveness of compaction, and therefore, of the success of the work. The dry density should be checked at intervals for about every 150 sq. yd. of the area processed.

5.5 Thickness of the Processed Layer.

The final thickness should be within + 1/2 in. of the specified thickness, and checks to ensure this should be made at all stages during the construction.

It should be noted that the greatest thickness of stabilised soil that can be satisfactorily produced is governed by the thickness which can be fully compacted with the plant used, as well as by the depth of soil which can be efficiently pulverised and mixed. No layer of soil cement should exceed 9 in. in thickness prior to compaction.

5.6 Regularity of Surface.

It is important that a thin carpet should be of uniform thickness when it is superimposed on the stabilised soil, and this will not be possible, if the surface of the stabilised base is itself very irregular, especially where a machine-laid carpet is to be used.

When tested under a 10-ft straight edge there should generally be no differences of level exceeding 1/4 in. in the finished surface of the stabilised soil, but if the thickness of the superimposed carpet exceeds 3/4 in., a tolerance of 3/8 in. may be allowed. If depressions exceeding this figure are disclosed, they may be made up with fine bituminous macadam or fine cold asphalt.

Care must be taken to adhere to the specified levels throughout the length of the road. The maximum tolerance over the whole road surface should not exceed +1 in.

13.2 Asbestos Cement.

Asbestos cement is a combination of asbestos fibres and Portland cement. Asbestos is an infusible, tough and flexible mineral in fibrous form. The fibres are made of extremely minute threads about 1/1000 mm. in diameter. Suitable type of asbestos for asbestos cement products is found in Russia, Canada and South Africa. Neat Portland cement is mixed with about 15% of asbestos fibres in such a way that all fibres are thoroughly coated with fine cement. This composition is kept under great hydraulic pressure until it sets. The asbestos fibres act in the same way as steel reinforcement used in R.C.C. work, but the mixture possesses the great advantage that it is more resilient. It has been proved to possess indefinite durability and great resistance to transverse and tensile stresses. The cement in these products is reinforced in a most effective manner by an intricate network of carefully blended and opened asbestos fibres.

13.3 Cement Grouting.

Grouting is usually done under high or occasionally at normal pressure. High pressure grouting is done at pressures above 100 lb./sq. inch. There are various methods of pressure grouting such as

- (a) Fluid or pump grouting.
- (b) Plastic grouting (air pressure grouting).
- (a) Fluid grouting is the older method of grouting. Mixtures with a consistency of soft fluid mud are used for injection and usually neat Portland cement or very rich cement and sand mixtures are employed. Since the amount of water used is excessive, the grout has got very little cementing value. A reciprocating pump is used for this work.
- (b) Cement mortar or small aggregate concrete with a slump of 6 to 8 inches is injected by pneumatic pressure by means of special machinery which consists of an air compressor

WALN DISCHARGE WELVE & RIGHT HAND SIDE AIR VALVE. IS CLOSED AIR FROM LEFF HAND VALVE COMING UP THROUGH THE BYPASS AS SHOWN BY DOTTED ARROWS ACTIVITIES Fig. 13-1. Grouting Machine

and a grouting chamber as shown in Fig. 13-1. By proper manipulation of the various valves and the by-pass pipe it is possible to charge and discharge the grout and also agitate the grout.

Grouting is used for various purposes, such as:

- (a) Soil stabilization.
- (b) Solidification of fractured, porous or fissured rock.
- (c) Restoration of completed structures by strengthening the foundations.
- (d) Sealing of rock strata, gravel or other waterlogged ground formations. Preventing contamination of well water from polluted water oozing through porous strata, etc.
- (e) Dry pack concrete construction.
- (f) Cast-in-place pile work, etc.

13.4 Cement Admixtures.

Admixtures consist of powdered materials or liquids to be added to the concrete during its preparation to improve its quality. Most of these are more or less inert and have an indirect effect on the quality of concrete. Admixtures can be classed as of three types, physical, cementitious and pozzolanic.

13.4.1 PHYSICAL ADMIXTURES.

When water is added to the cement, heavier particles of cement settle down and finer particles and water go to the top. The segregation of cement particles is prevented by these admixtures which help in improving the texture of the concrete.

13.4.2 CEMENTITIOUS ADMIXTURES.

These behave more or less like cement and give a richness to the concrete mixture.

13.4.3 POZZOLANIC ADMIXTURES

Pozzolanic admixtures have no cementing value of their own, but they react with the products of hydration of cement to form compounds adding to the strength of the concrete mixture.

Admixtures commonly used are quicklime, slaked lime, diatomaceous earth, bentonite, glue, and salts acting as dispersing agents.

13.5 Waterproofing of Concrete.

13.5.1 WHY REQUIRED

Portland eement concrete has a high resistance to permeation of water when it is gauged with correct quantity of water. In practice, however, we usually add more water to increase the workability and thus increase the voids space in concrete, making it permeable. In order to get watertight concrete, it is necessary to use clean, well graded, non-porous aggregates with sufficient sand to fill in the voids and correct amount of mixing water.

13.5.2 METHODS OF WATERPROOFING.

- (a) Use of internal waterproofers.
- (b) Surface treatments.
- (a) These consist of materials added to cement or concrete. They are available in form of finely ground inert substances such as chalk, diatomaceous earth, silica, dolomitic lime or tale intended to improve the plasticity of the mix and thereby reduce the voids. These are usually employed in conjunction with substances of hydrophobic character e.g. calcium and aluminium soaps. Liquid waterproofers contain substances capable of reacting with a second solution or with cement to form an insoluble product. Examples of this type of solutions are alkali silicates, calcium chloride, zinc sulphate and ordinary soap. Integral waterproofers generally contain calcium chloride soaps, hydrated lime, etc.
- (b) These are asphalt emulsions, iron salamoniac compounds, cement washes, silicate of soda, boiled linseed oil, gelatinous pastes, etc.

13.6 Effects of Acids, Oils and Salts on Concrete.

13.6.1 GENERAL CONSIDERATIONS.

The industrial application of this problem is of great importance in numerous cases where chemicals, oils, and various other industrial liquids are kept in storage in reinforced concrete tanks.

The protective treatments recommended are based, as they must be, on the assumption that the concrete is of a suitable quality, which means a well cured, dense, watertight concrete.

This requires:

(a) Low water-coment ratio, not to exceed 6 gal. of mixing water per bag of cement.

(b) Suitable workability to avoid mixes so harsh and stiff that honeycombing occurs, and those so fluid that water rises to the surface.

(c) Thorough mixing, at least one minute after all materials are in the mixer, or until the mix is uniform.

(d) Proper placing, with spading or vibration to fill all corners and angles of forms without segregation of materials—avoid construction joints.

(c) Adequate curing, protection by leaving forms in place, covering, with wet sand or burlap and sprinkling. Concrete to be kept wet and above 50° F for at least the first week. Not to be subject to hydrostatic pressure during this period.

Many solutions such as brines and salts, which have no chemical effect on concrete, may crystallize upon loss of water. It is especially important that concrete subjected to alternate wetting and drying of such solutions be very dense and non-absorbent. If the concrete is porous it will absorb the solution. Since the crystals require more space than the liquid, they exert considerable pressure which may be sufficient to break down the concrete. Salt solutions corrode steel more rapidly than plain water. In structures which are to be subjected to frequent wetting and drying by these solutions it may be advisable to provide some surface coating such as sodium silicate, linseed oil or one of the varnishes as an added precaution.

13.6.2 SURFACE TREATMENTS.

Materials are available for almost any degree of protection required on concrete. The more common methods of treatment are indicated in the table on pages 256-261, the numbers in the table corresponding to the following numbered paragraphs in which the necessary instructions are given:

(1) Magnesium Fluosilicate or Zinc Fluosilicate.

The treatment consisits of two or more applications. First, a solution of about 1 lb. of the fluosilicate crystals per gallon of water is used. For subsequent applications about 2 lb. of crystals per gallon of water is used. Large brushes are convenient for applying on vertical surfaces, and mops on horizontal areas. Each application should be allowed to dry; after the last has dried, the surface should be brushed and

washed with water to remove crystals which have formed. The treatment densifies and hardens the surface by chemical action. Fluosilicates are available through dealers in chemicals.

(2) Sodium Silicate (commonly called water glass).

This is quite viscous and must be diluted with water to obtain penetration, the amount of dilution depending on the quality of the silicate and the density of the concrete. Silicate of about 42.5 deg. Baume gravity diluted in proportions of 1 gal. with 4 gal. of water makes a good solution. It may be applied in two or three or more coats, allowing each coat to dry thoroughly. On horizontal surfaces it may be poured on and then spread evenly with brooms or brushes. Scrubbing each coat with water after it has hardened provides a better condition for application of succeeding coats. For tanks and similar structures progressively stronger solutions are often used for the succeeding coats.

(3) Linseed Oil.

Only boiled linseed oil should be used. Applied hot, it gives better penetration. Two or three coats may be applied, allowing each to dry thoroughly before the next application. The concrete should be well cured and seasoned before the first application. Linseed oil is sometimes applied after the magnesium fluosilicate treatment, providing a good coating over a hardened surface.

(4) Cumar.

Cumar is a synthetic resin soluble in xylol and similar hydrocarbon solvents. A solution consisting of about 6 lb. of Cumar per gallon of xylol with ½ pint boiled linseed oil makes a good coating. Two or more coats should be applied. Concrete should be fairly dry. The cumar should be powdered to aid dissolving. It is available in grades from dark brown to colourless.

(5) Varnishes.

Any varnish can be applied to dry concrete. High grade varnishes of the spar, china-wood oil, or bakelite types give good protection against many substances. Good varnishes may contain natural or synthetic resins. Two or more coats should be applied.

(6) Bituminous or Coal Tar Paints, Tar and Pitches.

These are usually applied in two coats, a thin priming coat to ensure bond and a thicker finish coat. Concrete must be

dry and dust-fee. Finish coat must be carefully applied to ensure continuity and avoid pin holes. Surface should be touched up where necessary.

(7) Bituminous Enamel.

This is suitable protection against relatively strong acids. It does not resist abrasion at high temperatures. Two materials are used, a priming solution and the enamel proper. The priming solution is of thin brushing consistency and should be applied to dry, dust-free concrete, touching up any uncoated spots before applying the enamel. When primer has dried to a slightly tacky state, it is ready for the enamel. The enamel usually consists of a bitumen with a finely powdered siliceous mineral filler. The filler increases the resistance to flowing and sagging at elevated temperatures, and to abrasion. The enamel should be melted and carefully heated until it is fluid enough to brush. The temperature should not exceed 375° F. When fluid it should be mopped on quickly, as it sets and hardens rapidly.

Bituminous paints and enamels are made by a number of companies.

(8) Bituminous Mastic.

This is used chiefly for floors on account of the thickness of the layer which must be applied, but some mastics can be trowelled on vertical surfaces. Some mastics are applied cold. Others must be heated until fluid. The cold mastic consists of two compositions—the priming solution and the body coat or mastic. The primer is brushed on dry, dust-free concrete. When it has dried to a tacky state, a thin layer—about 1/32" of the mastic is trowelled on. When this has dried, successive 1/32" coats of the mastic are applied, until the required thickness has been built up. The mastic is similar to the primer but is ground with sufficient asbestos and fincly powdered siliceous material fillers to make a very thick, pasty fibrous mass.

The hot mastics are somewhat similar to the mixtures used in sheet asphalt pavements, but contain more asphaltic binder so that when heated to fluid condition, they can be poured and trowelled into place. They are satisfactory only when applied in layers of 1 in. or more in thickness. When ready to lay, the mixture usually consists of about 15 per cent asphaltic binder, 20 per cent finely powdered siliceous mineral filler, and the remainder is sand graded up to ‡ in maximum size.

Mastics are made by a large number of manufacturers.

(9) Vitrified Brick or Tile.

These are special burnt clay products which are not attacked by acids or alkalies. They must, of course, be laid in mortar which is also resistant against the substance to which they are to be exposed. A bed of the mortar is usually placed between the brick or tile and concrete. Some of the acid-proof cements are melted and poured in the joints. Many manufacturers make acid-proof brick and cement.

(10) Glass.

May be cemented to the concrete.

(11) Lead.

May be cemented to the concrete with an asphaltic paint.

(12) Rubber.

One of the largest rubber companies in U.S.A. contracts to treat tanks and other structures with their "Acid-Seal". The material is not for sale to other contractors.

Table 13-1 Effect of various substances on concrete and their treatment.

Material	Effect on concrete	Surface treatment
ACIDS.		
Acetic	Disintegrates slowly	5, 6, 7
Acid waters	Natural acid waters may erode surface mortar, but usually action then stops	1, 2, 3, 4, 5, 6, 7
Carbolic	Disintegrates slowly	1, 2, 3, 5
Carbonic	Disintegrates slowly	2, 3, 4, 5, 6, 7
Humic	Depends on humus material but may cause slow disintegration	
Hydrochloric	Disintegrates	8, 9, 10, 11, 12
Hydrofluoric	Disintegrates	8, 9, 11, 12
Lactic	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Muriatic	Disintegrates	8, 9, 10, 11, 12
Nitric •	Disintegrates	8, 9, 10, 11, 12
Oxalic ·	None	None
Phosphoric,	Attacks surface slowly	1, 2, 3, 4, 5, 6, 7
Sulphuric	Disintegrates	8, 9, 10, 11, 12
Sulphurous	Disintegrates	8, 9, 10, 11, 12
Tannic :	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7

. Material	Effect on concrete	Surface treatmen
SALTS AND ALKALI	ES	
Carbonates of Ammonia Potassium Sodium	Weak solutions and dry salts will not affect concrete. Strong solutions may cause slow disintegration and concrete should be treated	1, 3, 4, 5, 6, 7
Chlorides of Calcium Potassium Sodium	None unless concrete is alternately wet and dry with the solution, when it is advisable to treat with	1, 3, 4, 5, 6, 7
Chlorides of		
Ammonia		:.
Copper Iron Magnesium Mercury Zinc	Disintegrates slowly	1, 3, 4, 5, 6, 7
Fluorides	None except ammonium fluoride	3, 4, 5, 8, 7
Hydroxides of		
Ammonia		
Potassium Sodium	None	1, 3, 4, 5, 6, 7
Nitrates of		
	Disintegrates	8, 9, 10, 11, 12
Calcium	None .	None
Potassium	Disintegrates slowly	1, 3, 4, 5, 6, 7
Sodium	Disintegrates slowly	1, 3, 4, 5, 6, 7
Potassium Perman-		
ganate ·	None	None
Silicates	None	None
Sulphates of Ammonia	Disintegrates	8, 9, 10, 11, 12
Sulphates of		44
Aluminum		
Calcium	•	
Cobalt	•	*** *
Copper	•	
Iron	Disintegrates	1, 3, 4, 5, 6, 7
Manganese Nickel	~	
Potassium		
Sodium		
Zinc		• •

Material	Effect on concrete	Surface treatmen
PETROLEUM OILS	- politicade de seus executarios de la companya del companya del companya de la c	
Heavy oils below 30 Baume	None	None
*Light oils above 30° Baume	None—Some loss from penetration	1, 2, 3, 5
Benzine Gasoline Kerosene Naphtha	None—Considerable loss from penetration	1, 2, 3, 6
CHEMICALS		
Coal	Great majority of structures show no deterioration, Exceptional cases have been coal, high in pyrites (sulphide of iron) and moisture showing some action but the rate is greatly retarded by deposit of an insoluble film. Action may be stopped by surface treatments	1, 2, 3, 4, 5, 6, 7
Corn syrup	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Electrolyte	Depends on liquid. For lead and zinc refining use	7, 8, 9, 10, 12
Formalin	Aqueous solution of formaldehyde disintegrates concrete	9, 10, 11, 12
Fruit juices	Most fruit juices have little if any effect as tartaric acid and citric acid do not appreciably affect concrete. Floors under raisin seeding machines have shown some effect, probably due to poor concrete	1. 2
Glucose	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Glycerine	None	None
Honey	None	None
Lye	Same as sodium hydroxide	1, 2, 3, 4, 5, 6, 7
Milk	Sweet milk should have no effect but if allowed to sour the lactic acid will attack	1, 2, 3, 4, 5, 6, 7
Molasses	Does not affect dense, thoroughly cured concrete. Dark, partly refined molasses may attack concrete that is not thoroughly cured. Such concrete may be protected with	
	may be protected with	2, 5

Material	Effect ou concrete	Surface treatment
Nitre	Same as nitrate of potassium	1, 3, 4, 5, 6, 7
Sal ammoniac	Same as ammonium chloride—causes slow disintegration	1, 3, 4, 5, 6, 7
Sal soda	Same as sodium carbonate	1, 3, 4, 5, 6, 7
Salt petre	Same as nitrate of potassium	1, 3, 4, 5, 0, 7
Sauserkraut	Little, if any, effect, Protect taste with	1, 2
Silage	Attacks concrete slowly	3, 4, 5, 6, 7
Sugar (cane or beet)	No effect on concrete that is thoroughly cured	None.
Sulphite liquor	Attacks concrete slowly	1, 2, 3, 4, 5, 6, 7
Tanning liquor	Depends on liquid. Most of them have no effect. Tanneries using chromium report no effects. If liquor is acid, protect with	1, 2, 3, 4, 5, 6, 7
Vinegar	Disintegrates (see acetic acid)	1, 2, 3, 4, 5, 6, 7
Washing soda	Same as sodium carbonate	1, 3, 4, 5, 6, 7
Whey	The lactic acid will attack concrete	1, 2, 3, 4, 5, 6, 7
Wine	Many wine tanks with no surface coating have given good results but taste of first batch may be affected unless concrete has been given tartaric acid treatment	For fine wines the concrete has been treated with 2 or 3 applications of tartaric acid solution. (1 lb. tartaric acid in 3 pints water.) Sodium silicate is also effective. In a few cases tanks are lined with glass-tile.
Wood pulp	None	None.
Alizarin Anthracene Benzol Carbozol Cumol	None	None
Paraffin Pitch Toluol Xylol		
Carbolineum Creosote Cresol Lysol Phenol	Disintegrates slowly	1, 2, 3, 5

VEGETABLE OILS

Material	Effect on concrete		Surface treatment
Cotton seed	No action if air is excluded. disintegration if exposed to air	Slight	None 1, 2
Rosin	None		None
Almond Castor China-wood Cocoanut Linseed Olive Peanut Poppy seed Rope seed Soy-bean Tung Walnut	Disintegrates surface slowly		1, 2
Turpentine	None-Considerable penetration		1, 2

Applied in thin coats the material quickly oxidizes and has no effect. Results indicated above are for constant exposure to the material in liquid form.

FATS AND FATTY ACIDS (Animal)

Material	Effect on concrete	Surface treatment
Fish oil	Most fish oils attack concrete slightly. Menhaden oil does not	1, 2
Folio to Lard and lard oil Tallow and tallow oil	Disintegrates surface slowly	1, 2

MISCELLANEOUS

Material	Effect on concrete	Surface treatment
Alcohol	None	None
Ammonia water (Am. Hydrozide)	Disintegrates slowly	1, 3, 4, 5, 6, 7
Baking soda	Same as sodium bicarbonate—no effect in weak solutions and dry salts. For strong solutions treat concrete	1, 2, 3, 4, 5, 6, 7
Beer	Beer will cause no progressive dis- integration of concrete, but in beer storage and fermenting tanks a spe- cial coating is used to guard against contamination of beer	Coating made and applied by a New York Company.
Bleaching powder	Mixtures of calcium chloride and calcium hypochloride do not affect dense concrete	None
Borax, boracic acid, boric acid	No effect	None
Brine (salt)	No effect on dense concrete. Where subject to frequent wetting and drying of brine provide	1, 2, 3, 4, 5, 6, 7
Buttermilk	Same as milk	1, 2, 3, 4, 5, 6, 7
Charged water	Same as carbonic acid—slow attack	1, 2, 3, 4, 5, 6, 7
Caustic Soda	(Sodium hydroxide) Disintegrates	1, 2, 3, 4, 5, 6, 7
Cider	Disintegrates (See acetic acid)	1, 2, 3, 4, 5, 6, 7
Cinders	May cause some disintegration	1, 2, 3, 4, 5, 6, 7

CHAPTER 14

GENERAL DATA, TABLES, ETC.

CONTENTS

					Page
14.1	Crushing Strength of Stones				265
14.2	Strength of Lime Mortars	•	• •		265
14.3	Safe Permissible Loads on Masonry .		• •		265
14.4	Wind Velocity and Pressure	•			266
14.5	Water Velocity and Pressure	•	• •		266
14.6	Working Stresses for Timber				267
14.7	Daily Task Work for Artisans and Labour	rers			268
14.8	Properties of Circles, etc	,	• •		270
14.9	Areas of Small Circles		• •		271
14.10	Moments of Inertia	•			272
14.11	Conversion Factors		• •		273
14.12	Metric Measures		• •		275
14.13	Metric and Foot-Pounds Equivalents				276
14.14	British Weights Expressed as Indian Weight	ghts			279
14.15	Weights and Measures			• •	280

1.0 1: 1

CHAPTER 14

GENERAL DATA, TABLES, ETC.

14.1 Crushing Strength of Stones

Granite		Tons/s.ft. 1000 to 700
Trap		400
Basalt		1000
Sandstone (hard)		600
,, (medium)		400
Limestone (hard)		400
,, (soft)		100
Brick (1st class)		100
Cement concrete 1:2:4		180

14.2 Strength of Lime Mortars

	.,	3 months Tons/sq.ft.	27 months Tons/sq.ft
Hydraulic Kankar Lime	1:1	71	107
	1:11	66	104
	1:2	64	118
	$1:2\frac{1}{2}$	52	104
	1:3	46	85
Fat lime	1:2	- 48	_
-do- Surkhi	2:1:6	59	
-do- Blacksoil Surkh	2:1:6	49	• —

14.3 Safe Permissible Loads on Masonry

		Tons/s.ft.
.1.	Brick in mud	11
2.	Brickbat concrete in lime	2
3.	Stone metal concrete in lime	3 to 31
4.	Laterite masonry in lime	2 .
5.	-do- (good quality stone)	3

		Tons/s.ft.
6.	Country brickwork in lime	2 to 31
	1st Class ,, ,,	4 to 5
8.	C. R. Masonry in lime	3.5 to 7
9.	—do— (granite)	5
10.	Country bricks in cement	4 to 6
11.	1st Class bricks —do—	8
	Granite ashlar	15
13.	Trap —do—	20
14.	Cement concrete	
	1:2:4	32
	1:3:6	25
·	1:4:8	19

14.4 Wind Velocity and Pressure

	Nature of wind.	Equivalent velocity miles per hour.	Mean wind pressure lb per sq. foot.
1.	Moderate breeze	15	0.67
2.	Fresh breeze	21	1.31
3.	Strong breeze	27	2.30
4.	Strong gale	50	7.70
5.	Whole gale	59	10.50
	Storm	. 68	14.00

The following approximate values may be adopted for structures not more than 30 ft. high.

Zone 1: Areas south-west and west of line passing throughout but excluding Hyderabad (Sind), Baroda and Ratnagiri. Areas approximately within 50 miles of the coast line between Masulipatam and Akyab.

Zone 2: Areas inland of a line running through and including Gwalior, Chitorgarh, Aurangabad, Tirupur, Madura, Trichinopoly, Jalarpet, Cuddapah, Dornakal, Jharsuguda and Allahabad.

Zone 3... Other parts excluding above.

Wind pressure p = 8 psf ... for H = 0 to 10 ft.

12 ,, ... 10 to 20 ft.

15 ,... 20 to 30 ft.

Take twice for Zone 1 and 1 for Zone 2.

14.5 Water Velocity and Pressure

P=1.8V2 for fresh water.

=1.85V2 for salt water.

where, V=velocity of current in feet/sec.

P=pressure on a plane normal to the current in lb per

14.6 Working Stresses for Timber

	3*****		Bending			1	Compression (lb/sq. in)				
Name	Youngs Modu-	Modu- lus. (1b per sq. in)		Shear	Parallel to grain			Perpendicular to grain			
	,,,,,	λ	в	0		A	В	С	A .	В	0
No. 1 Quality	<u>.</u>										
Burma Teak	1600	2200	2000	1670	125	1700	1580	1230	700	520	420
M. P. Toak	1200	1820	1650	1300	120	1380	1280	1000	670	600	400
Ysilow Pine	1630	1740	1580	1240	120	1850	1250	980	400	300	240
Kail	986	950	860	680	110	970	900	700	170	125	100
Deodar	1348	1740	1580	1240	100	1870	1270	990	440	330	260
Sal	1920	2120	1930	1510	175	1610	1400	1090			
Jarrah	1500	2800	2090	1660	_	870	810	630			
No. 2 Quality	<u>.</u>										
Burmah Teak	1400	1830	1600	1300	115	1380	1280	1000	600	470	\$80
K. P. Teak	1060	1510	1300	1070	110	1120	1000	810	570	450	360
Yellow Pine	1420	1450	1240	1020	105	1100	980	800	840	270	220
Kall	858	790	680	560	95	790	700	570	140	110	90
Deodar	1170	1440	1235	1020	90	1110	990	810	880	295	240
Sal	1670	1770	1610	1250	160	1230	1090	890			
Tarrah	1800	1910	1640	1350	-	710	630	610			

Note: A Inside location.

B Outside location.

C Wat location.

14.7 Daily Task Work for Artisans and Labourers

(Working day 81 hours)

(1) Excar	vation:	(5'	lift	and	100'	lead)
-----------	---------	-----	------	-----	------	-------

Earth	75	cſt.	per man
Soft murum	50	,,	,,
Average murum	35	,,	**
Hard murum	25	,,	**
Soft rock	16	,,	**
Hard rock	8	,,	,,

(2) Breaking metal

Trap stone	1½" size	10	cft.	per man
Quartz	-do-	13	,,	,,
Laterite	-do-	20	,,	**
Brick	-do-	50	,,	,,

(3) Conveying metal on head

Lead 100 ft.	85	cft.	per man
200 ,,	65	,,	**
300 ,,	50	,,	**
600 ,,	33		**

(4) Masonry

Ashlar stone		2 (cft. c	ne mas	on and I man
Coursed rubb	ole 1st class	9	,,	**	,,
-do-	2nd ,,	121	,,	**	,,
-do-	3rd "	20	,,	,,	**
Brick 1st clas	SS	17	,,	,,	,,
" 2nd "		25	,,	,,	**

(5) Plastering

# thick cement	33 s.ft. c	ne mason	and I man
Roughcast	90 ,,	,,	,,
Pointing	60 .,,	**	**

GENERAL DATA, TABLES, ETC.

(6) Flooring

Flagstone (lådi)	30 to 40	sq. ft.
Dressed trap stone	5	22
Cement concrete	30	.,

(7) Carpenter

Panelled doors 4'×7'	10	days per piece
Plain planked	4	,,
Glazed windows	6	**
Venetianed windows	14	**
Teakwood work (framing)	2	cft.
-do- (joinery)	1	,,
Woodwork in Mangalore tiled roof	100	sft.
-do- in G.C.I. roof	33	,,

(8) Precast concrete work (in steel moulds)

Pipes 6" diameter	12 nos.
Roofing tiles	90 ,,
Hollow blocks	100 ,, (I mason and
(in hand machine)	2 coolies)
Paving flags	30 ,,

(9) Cutting and bending reinforcement

1" \phi to \frac{1}{4}" \phi	2 cwts. one fitter
1" φ	$2\frac{1}{2}$,.
# φ to 2" φ	4 ,,

(10) Erecting formwork 20 s.ft.

(11) Finishing

Whitewashing 3 coats	400	s.ft.	
Distempering	200	,,	
Cement washing 2 coats	400	,,,	

14.8 Properties of Circles, Etc.

Dia × 3.1416 Circumference of circle

Side of an equal square .8862 Dia x

Side of an inscribed square .7071 Dia X

Area of a circle $Dia^2 \times$.7854

Area of a sector length of arc x 1 radius

 $.7854 \times long axis \times short axis$ Area of ellipse

Area of parabola Base × height × 1

Area of parallelogram Height x base

Area of trapezium Sum of parallel sides × H/2

Volume or surfaces.

 $4 \pi r^2$ Lateral surface of a sphere

cylinder 2 = rh

 $\pi r \sqrt{h^2 + r^2}$ cone

Contents of a sphere

do $\pi r^2 h/3$ cone

do cylinder $\pi r^2 h$

pyramid area of base × perpendicular do

height ÷ 3

270

Chord of angle
$$A = \frac{c}{r}$$

Versed sine of angle $\frac{1}{2}A = \frac{h}{r}$

$$=1-\cos\frac{A}{2}$$

Area of circle = π r² = .7854d² Circumference of circle = 2π r π = 3.141593 π ² = 9.869604 Arc length abc = rA (A in radians) one radian = 57.296°

$$1 = \sqrt{h^{2} + c^{2}/4}$$

$$c = 2\sqrt{2rh - h^{2}}$$

$$r = \frac{4h^{2} + c^{2}}{8h}$$

$$h = r - \sqrt{r^{2} - c^{2}/4}$$

I about a diameter = $\frac{\pi d^4}{64}$ = .0491d⁴

Side of a square having periphery equal to circumference of circle $\frac{r\pi}{2}$

Diameter of a circle circumscribed about a square = side of square × 1.41421.

14.9 Areas of Small Circles Advancing by 32nds of an inch

Diameter in inches	Area eq. inches	Diameter in inches	Area sq.inches	Diameter in inches	Area sq. inches	Diameter in inches	Area eq. inches
1/82	.0008	9/32	.0621	17/32	.2217	25/32	.4794
1/16	.0031	5/16	.0767	9/16	.2485	13/16	.5185
3/12	.0069	11/32	.0928	19/32	.2769	27/32	.5591
1/8	.0123	3/8	.1104	5/8	. \$068	7/8	.6013
5/32	,0192	13/32	.1296	21/32	3382	29/32	.6450
3/16	.0278	7/16	.1503	11/16	.3712	15/16	.6903
7/32	.0376	15/32	.1725	23/32	.4057	31/32	.7871
1/4	.0491	1/2	.1963	3/4	.4418	1	.7854

· 14.10 Moments of Inertia

$$I_{XX} = \frac{b'y_1^3 + by^3 - (b-b')(y-t)^3}{3}$$

$$I_{xx} = \frac{bd^3 - b'd'^3}{12}$$

GENERAL DATA, TABLES, ETC.

14.11 Conversion Factors

Multiply by	To convert	То	
7000	Pounds (avoir)	Grains (troy)	.000143
28.35	Ounces (avoir)	Grammes	.0352
.065	Grains	-do-	15.38
50.8	Cwts.	Kilogrammes	.01968
1016.0	Tons	-do-	.000984
4.546	Gallons	Litres	.22
10	Gallons of water	Pounds	.1
.454	Pounds of water	Litres	.2202
70.3	lb/sq. inch	gms/sq. cm.	.0142
2.3	-do-	Head of water ft.	.434
0.7	-do-	,, M.	1.4285
.068	-do-	atmospheres	14.7
1.575	Tons/sq. inch	Kg/mm ²	.635
4.883	Lbs./sq. ft.	Kg/m²	.205
.593	Lbs./Cubic yd.	Kg/m³	1.686
16.02	Lbs./Cubic ft.	Kg/m³	.0624
.0998	Lbs./gal.	Kg/Litre	10.02
.138	Foot lbs.	Kg meters	7.23
.33	Foot Tons	Tonnes meters	3
1014	H.P.	Force-de-cheval	.9861
746	,,	Watts	.00134
33000	"	Ft. lb/min	_
76	,,	Kg. m/sec.	.01316
	To obtain	From	Multiply by above

Multiply by	To Convert	То	
44	Watts	Ft. 1b/min	.0227
0.1	**	Kg m/sec.	10
0.252	Heat units	Calories	3.97
14.7	Atmospheres	Lb./Sq. inch	. 068
0.70	German candles	English Candles	1.1111
9.55	Carcels	Candles	.1047
.737	Joules	Ft. 1bs.	1.357
88	Miles/hour	Ft./min.	.01134
197	meters/sec.	Ft./min.	.00508
1.8	C.H.O.	B.Th.U.	.5555
0.0208	Centipoise	Lb/m ² sec.	48
1.488	lbs./ft.	kg/m	0.672
0.496	lbs./yd.	-do-	2.016
3333.33	tons/ft.	-do-	0.0003
1111.11	tons/yd.	-do-	0.0009
0.2818	lb./mile	kg/kilometer	3.548
10.936	tons/sft.	tonnes/meter ²	0.0914
1.215	tons/syd.	-do-	0.823
1.329	tons/cu. yd.	tonnes/m³	0.752
0.01426	grains/gallon	gm./litre	70.12
48.905	gallons/sft.	litres/m ²	0.0204
25.8	inch/tons	kg/meters	0.0387
0.477	lbs./H.P.	kg per cheval	2.235
0.0916	sft./H.P.	m ² /cheval	10.913
0.0279	cft./H.P.	m³/cheval	35.806
2.713	Heat units/H.P.	calories/m ²	0.369
	To obtain	From	Multiply by

14.12 Metric Measures

(1) Length:

Millimeter (m	m)		_	.039370 inches
Centimeter		101 mm	=	.393704 ,,
Decimeter	722	10 ² mm	sales	3.937043 ,,
Meter	==	103 mm	=	39.370428 ,,
			200	3.281 ft.
Decimeter	==	10 ⁴ mm	=	393.70428 inches
			==	32.80869 ft.
Hectometer	=	10 ⁵ mm	=	328.0869 ft.
Kilometer	===	106 mm	_	3280.869 ft.

(2) Area

(3) Capacity.

Millilitre	=	.0610254 cubic inches.
Centilitre	-	10 Mililitres = .610254 cubic in.
Litre	=	10^3 Mililitres = 61.0254 cubic in.
Kilolitre	=	35.3156 cubic ft.

(4) Weight.

Milligramme =
$$\frac{1}{10}$$
 Centigramme = $\frac{1}{10^3}$ gramme
Gramme = .015432 grains.
Gramme = 0.03527 oz.
Kilogramme = 10³ Grammes = 2.2046 lb
Tonne = 1000 Kilogrammes = .9843 long tons

(5) Volume.

14.13 Metric Equivalents of Feet and Inches

(figures indicate metres)

eet → Inches	0	1	2	3	4	5	6	7	8	9	10	11	12
ů -	.0	.305	.610	.914	1.219	1.524	1.829	2.133	2.438	2.743	3.048	3.352	3.657
1	.0254	.330	.635	.940	1.244	1.549	1.854	2.158	2.463	2.768	3.073	3.378	3.682
2	.0508	.350	.660	.965	1.269	1.575	1.880	2.184	2.489	2.794	3.099	3.403	3.708
3	.0762	.381	.686	.991	1.295	1.600	1.905	2.209	2.514	2.819	3.124	3.429	3.733
4	. 1016	.406	.711	1.016	1.320	1.626	1.931	2.235	2.540	2.844	3.150	3.454	3.759
5	.1270	.432	.737	1.041	1.346	1.651	1.956	2.260	2.565	2.870	3.175	3.479	3.784
6	. 1524	.457	.762	1.066	1.371	1.676	1.981	2.285	2.590	2.895	3.200	3.505	3.810
7	.1778	.483	.787	1.092	1.397	1.702	2.007	2.311	2.616	2.921	3.226	3.530	3.835
8	.2032	. 508	.813	1.117	1.422	1.727	2.032	2.336	2.641	2.946	3.251	3.555	3.860
9	.2286	. 533	.838	1.142	1.448	1.753	2.057	2.362	2.667	2.972	3.276	3.581	3.886
10	. 2540	. 559	.864	1.168	1.473	1.778	2.083	2.387	2.692	2.997	3.302	3.606	3.911
11	.2794	.584	.889	1.193	1.498	1.803	2.108	2.412	2.717	3.022	3.327	3.623	3.936

INCH EQUIVALENTS OF CENTIMETERS AND MILLIMETERS

,	0	1	2	3	4	5	6	7	8	9	10 cms.
n/m 0	.0	. 3937	.7874	1.1811	1.5748	1.9685	2.3622	2.7559	3.1495	3.5423	3,9370 inches
1	.0394	.4331	.8268	1.2205	1.6142	2.0079	2.4016	2.7953	3.1890	3.5827	
2	.0787	.4724	.8661	1.2598	1.6536	2.0473	2.4410	2.8347	3.2284	3.6221	
3	.1181	.5118	.9055	1.2992	1.6929	2.0866	2.4803	2.8740	3.2677	3.6614	
4	.1575	.5512	.9449	1.3386	1.7323	2.1260	2.5197	2.9134	3.3071	3,7008	
5	.1968	.5906	.9843	1.3780	1.7717	2.1654	2.5591	2.9528	3.3465	3.7402	
6	.2362	.6299	1.0236	1.4173	1.8110	2.2047	2.5984	2.9922	3.3859	3.7796	
7	. 2756	.6693	1.0630	1.4567	1.8504	2.2441	2.6378	3.0315	3.4252	3.8189	
8	.3150	.7087	1.1024	1.4961	1.8898	2.2835	2.6772	3.0709	3.4846	3.8583	
9	.3543	.7480	1.1417	1.5354	1.9291	2.3228	2.7166	3.1103	3.5040	3.8977	

GENERAL DATA, TABLES, ETC.

METRIC EQUIVALENTS.

(millimetres from inches and sixteenths)

Inch	0	1/16	1	3/16	1/4	5/16	3/8	7/16
0		1.58	3.17	4.76	6.35	7.93	9.52	. 11.11
1	25.400	26.98	28.47	30.16	31.74	33.33	34.92	36.51
2	50.799	52.38	53.97	55.58	57.14	58.73	60.32	61.91
3	76.199	77.78	79.37	80.96	82.54	84.13	85.72	87.81
4	101.60	103.19	104.77	106.36	107.95	109.54	111.12	112.71
6	127.00	128.59	180.17	131.76	133.35	134.94	136.52	138.11
6	152.40	153.98	155.57	157.16	158.75	160.33	161.92	163.51
7	177.80	179.88	190.97	182.56	184.15	185.73	187.32	188.91
6	203.20	204.78	206.37	207.96	209.55	211.13	212.73	214.31
9	228.60	230.18	231.77	233.36	234.94	234,53	238.12	239.71
10	254.00	255.58	257.17	258.76	260.35	261.93	.263.52	265.11
11	279.39	280.95	282.57	234.16	285.74	287.33	288.92	290.51
12	304.79	806.88	307.97	309.56	311.14	312.73	314.32	315.91
1,8	330.19	831.78	333.37	334.98	335.54	838.13	439.72	341.31
14	355.69	857.18	358.77	360.36	351.94	-363.53	365.12	366.71
15	380.99	382.58	384.17	385.76	337.84	888.98	390.52	392.1
16 .	408.39	407.98	409.57	411:17	412.74	414.33	415.92	417.5
: 17	431.79	433.88	484.97	436.58	438.14	439.78	441.82	442.9
16	.457,19	458.78	460.37	461.96	463.54	465.13	460.72	468.3

METRIC EQUIVALENTS

(millimetres from inches and sixteenths)

Inch	1/2	9/16	5/8	11/16	3/4	13/16	7/8	10/10
0	12.70	14.28	15.87	17.40	19.05	20.63	12.21	23,8
1	88.09	89.68	41.27	42,80	44.44	45.03	47.62	49.21
.2	63.49	65.08	66.67	68.26	69.84	71.43	73.02	74.61
3	83.89	90.48	92.07	98.66	95.24	96.88	98.42	100.01
41	114.30	115.89	117.47	119.06	120.65	122.24	123.82	125.41
6	139.70	141.28	142.87	144.45	146.05	147,03	149.22	150.81
6	165.10	166.68	168.27	169.86	171.45	173.63	174.62	176.21
7	190.50	192.08	193.67	195.28	196.85	198.48	200.02	201.61
8	-215.90	217.48	219.07	220.66	222.25	223.85	225.42	227.01
9	241.80	242.88	244.47	246.06	247.65	249.23	250.82	252.41
107	266.70	268.28	269.87	271.48	278.05	274.63	276.22	277.81
11	292.10	293.68	295.27	296.86	298.44	200.03	301.62	308.21
12	817.50	319.08	320.67	322.26	323.84	825.43	\$27.02	828.61
13	342.90	344.48	346.07	847.66	849.24	850,83	352.42	854.01
14	868.80	369,83	371.47	373.06	374.64	\$76.23	877.82	379.41
15	393.69	395.28	296.87	898.40	400.04	401.63	403.22	404.81
16	419.09	420.68	422.27	428.85	425.44	427.03	428.62	480.20
17	444.49	446.08	447.67	449.25	450.84	452.43	454.02	455.60
18.	469.89	471.48	475.07	474.65	476.24	477.83	479.42	481.00

14.14 Table of British Weights Expressed in Indian Weights

		VV CI	_	1	1				1 11	_	ma allah	Toda	
Eng	liela	India	in	Engl	lah	Indi	an	English	Indi	AD	English	Indi	AD.
Lb	2	Mds.St	81		16	21	31	34	925	22	90	2450	0
	4		2		18	24	20	36	980	0	92	2504	18
	8		3	Tons	1	27	9	38	1034	18	94	2558	86
	8		4		2	54	18	40	1088	36	96	2613	13
	10		5		3	81	27	42	1143	13	98	2667	11
	12		8		- 4	108	86	44	1197	31	100	2722	9
	14		7		5	136	4	46	1252	9	200	5444	18
	16		8		6	163	13	48	1306	27	400	10888	86
	18		9		7	190	22	50	1301	4	500	13611	4
	20		10		8	217	81	52	1415	22	1000	27222	9
	22		11		9	245	0	54	1470	0		1	
	24		12		10	272	9	66	1524	18	100 Mds :	-3.678	Tons
	26		13		11	299	18	58	1578	36	1 Ton-	-27.22	Mds.
Qrts	1		14		12	326	27	60	1633	13	1 Md.	-82.29	Lb
	2		27		13	853	36	62	1687	81			
	3	1	1		14	881	4	64	1742	9			
Cwt	1	1	14		15	408	13	66	1798	27			
	2	2	29		16	435	22	68	1851	4			
	3	4	3		17	462	31	70	1905	22			
	4	8	18		18	490	0	72	1960	0			
	5	6	82		19	517	9	74	2014	18			
	6	8	7		20	544	18	76	2068	86			
	7	9	21		22	598	36	78	2123	18			
	8	10	86		24	658	13	80	2177	31			
	9	12	10		26	707	81	82	2232	9			
	10	13	24		28	762	9	84	2286	27			
	12	16	13		80	816	27	86	2341	4			
	14	19	2		32	871	4	85	2395	-22			

14.15 Weights and Measures

```
8 Ruttees
                      I masha
                                     = 3/175 dr.
                                                       Avois
   12 mashas
                      I Tola
                                     = 12/175
                                     = 2 2/35 OZ
   5 Tolas
                      1 chattak
               =
  16 chattaks =
                      1 secr
                                    = 2^{2/25} lb
  40 seers
                                     = 82^{2/27} lb
                      1 maund
               -
   4 chattaks =
                     20 Tolas
                                     = 2^{2/85} lb
   4 Paus
                      1 seer
               -
   5 seers
                      1 Pansari
  16 Drams
                      1 ounce
  16 ounces
                      1 pound
               100
  14 pounds
                      1 stone
               =
 28 pounds
112 pounds
               =
                      1 quarter
                      1 hundredweight (cwt.)
  20 cwts.
                      1 Ton.
               =
   I long ton = 2240 pounds
   I short ton = 2000 do
   4 inches
                     1 hand
   9 inches
                     1 span
  12 inches
                     1 foot
   3 feet
               =
                     1 yard
   5 feet
               =
                     I pace
  6 feet
               =
                     1 fathom
  51 yards
                     1 rod pole
              =
   4 poles
                     1 chain
               =
  10 chains
                     1 furlong
  8 furlongs
              =
                     I mile (one nautical mile=6080 ft.)
  3 miles
              =
                     I league (I Knot = 1 nautical mile/hour.)
144 square inches
                          1 square foot
  9 square feet
                          1 square yard
                      =
301 square yards
                          1 square perch
                      =
 40 perches
                          1 rood
                      ===
  4 roods
                          1 acre
                    = /
640 acres
                          1 square mile
                      =
 an acre
                          4840 sq. yds.
cubic foot
                        . 1728 cubic inches
cubic yard
                            27 cubic feet.
stack of wood
                           108 cubic feet.
  1 bushel
                          2150.42 cubic inches.
  1 ton (shipping)
                            40 cubic feet.
  1 British bushel'
                             1.2837 c.ft.
```

CHARTS

	Page
Beams, Bending moments for loads, spans and end cond	
tions of r.c	
Beams, R.M. and At for various stresses and sizes of	
0	. 139-140
Beams, design for various stresses of r.c. tee	. 148
Beams, values of ds/d against Q for simply supported tee.	. 149
Beams, —do—	. 154
Beams, values of no for various stresses of tee	. 154
Beams, stirrup spacing for r.c	. 165
Columns, safe load for various sizes and percentages	of
steel in r.c.	. 183-186
Columns, effect of helical binding in r.c	. 182
Columns, design of, with eccentric loads	. 187
Columns, location of N.A. with eccentric loads for	. 189
	. 187
Columns, safe load for different sizes with eccentric load	i-
ing and 1% steel	. 190
Columns, —do— with 2% steel	. 190
Columns, —do— with 3% steel	. 191
Fineness modulus of mixed aggregates	. 40
Footings, values of constant K against ratio R for r.c	. 198
Grading curves	. 45
Retaining walls, values of constant k1 against sur	r-
charge ∝ for	. 205
Retaining walls, value of pressure P against depth of fil	
ing for ·· ·· ·· ··	
Retaining walls, effective depth of stem against depth of	of
filling for vertical member of	. 209

	rage
Retaining walls, B.M. against depth of filling for vertical member of	208
Retaining walls, B.M. against depth of filling for heel member of	210
Slabs, bending moment per foot width for various loads, spans and end conditions of r.c	94
Slabs, values of no for different stress ratios for r.c	107
Slabs, values of p for different stress ratios for r.c	108
Slabs, values of no for various percentages of steel for r.c	109
Slabs, values of Q for various percentages of steel and values of m for r.c	110
Slabs, R.M. for various amounts of steel for r.c	111-112
Slabs, R.M. and At for different mixes for r.c	113
Slabs, design for various stresses of r.c. floor	114-118
Tanks, capacity in gallons for various heights and diameters of	216
Tanks, position of maximum hoop tension in	217
Tanks, amount of maximum hoop tension in	217
Tanks, value of restraint moment in	218
Water-cement ratio	32, 55

TABLES

	Table No.	Page
Aggregate—cement ratio for workability (3	•	
rounded aggregate)	. 6a	47
Aggregate—Do—(% irregular gravel aggregate	e) 6b ·	48
Aggregate—Do— $(\frac{3}{4}"$ crushed rock aggregate).	. 6c	49
Aggregate—Do—(1½" irregular river grave	el	
aggregate)	. 6d	50
Beams, values of bending moments for .	. 3(b)	97
Beams, values of neutral axis factors	. 5(a)	134
Beams, R.M. and At for various depths an	d	
widths of rectangular	. 5(b)	135
Beams, —do—	. 5(c)	136
Beams, safe load uniformly distribute	d	
including self weight for rectangular .	. 5(d)	137
Beams, —do—	. 5(e)	138
Beams, values of j for tee	. 6(a)	147
Beams, design for various spans and loads of	of	
tee	. 6(b)	150
Columns, design of square Bombay Municipa	al	
Byelaws	. 8-2	178
Columns, —do— (I.S.I. Code)	. 8-3	179
	8-1	177
Concrete, strength of cubes for various world	K-	
ing conditions	. 1	38
Concrete, cube crushing strength vs. water	er	
Outroile Carro	. 2	39
Concrete, degree of workability for various		0.0
requirements		39
Concrete, water content per 100 c.ft. of	4	40
283		

				7	Table No.	Page
Footings, de	esign of square	• •		• •	9	201
Retaining v	vall, weight and	angle	of re	pose		
for var	ious materials	• •	• •	• •	10-1	211
Shear, inclin	ned bars resistance	e of			7(a)	163
Shear, dista	nce along beam r	equiri	ng steel	for	7(c)	165
Shear, spaci	ng of various size	s of st	irrups f	or	7(b)	163
Slabs, bendi	ng moments for re	einforc	ed cond	rete	3(a)	96
Slabs, value	es of design const	ants f	or diffe	rent		
values	of fc, t, m				4(a)	119
Slabs, RM a	nd At for various	depth	s and di	ffer-		
ent mix	ces of r.c		• •		4(b)	120
Slabs, simpl	y supported r.c.	• •			4(c)	121
Slabs	do				4(d)	122
Slabs	do				4(e)	123
Slabs	-do-				4(f)	124
Slabs	-do-				4(g)	125
Slabs	-do-				4(h)	126
Slabs, two v	vay		• •			127, 128
	rent capacities of				11	219

INDEX

A

ADULTERATION OF CEMENT 9
AERATED CONCRETE 231
AGGREGATES,
GENERAL 10
Lightweight 232
Particle shape 15
Site treatment 10
Storage of 11
Tests on 12
Weights of 17

AGGREGATE-CEMENT RATIO 51 AIR-ENTRAINING CEMENT 4 AIR-ENTRAINED CONCRETE 232 ALUMINOUS CEMENT 4 ASBESTOS CEMENT 249

В

BEAMS

Charts for 139, 148 Continuous beams 86 L beams 145 Rectangular beams 129 Tee beams 143, 147, 150

BENDING MOMENT DIAGRAMS 80 BLAST FURNACE CEMENT 4 BULKING OF SAND 16

C

CANTILEVERS 80, 83

Moment Diagrams 80, 83

Shear Diagrams 80, 83

CEMENT

Admixtures 251
Adulteration tests for 9

Air-entraining 4 Aluminous 4 Asbestos 249 Blast furnace 4 Coloured 3 Extra rapid hardening 5 Low heat 4 Masonry 4 Modified 5 Pozzolanic 5 Rapid hardening 3 Soil 239 Specifications of 6 Storage of 6 Sulphate resisting 6 Super sulphated 6 Waterproof 5 Water repellent 5 Weight of 9

COLUMNS 169

Details of 172, 173, Eccentric loading of 192 Footings 197 Helical binding of 176 Slenderness effect on 174

COLLOIDAL CONCRETE 232 COLOURED CEMENTS 3

CONCRETE

Aerated 231
Air-entrained 232
Colloidal 232
Effects of acids, oils on 252
Essential requirements of 34
Gunite or shot concrete 228
Light-weight 231
Mix design of 35
Precast 227
Prepacked 233
Prestressed 225
Proportioning of 35

Saw dust 233
Shot concrete 228
Slump tests of 33
Water-cement ratio of 31
Waterproofing of 252
Weight of 72
Workability of 33

CONTINUOUS BEAMS

Moment diagrams of 86 Shear diagrams of 86

Conversion Factors 273 Circle, Properties of 270

 \mathbf{D}

DESIGN OF

Circular tanks 215 Columns 171, 177 Concrete mixes 35 Footings 197, 201 Rectangular beams 131 Slabs 101, Tee beams 145

F

Fineness Modulus 37 Footings 197

Soil pressure 200

FLOOR

Slabs 101 Systems 235

G

GROUTING 249
GUNITE 228
GRADING CURVES 45

L

L-BEAMS 143

LIGHTWEIGHT

Aggregates 231 Concrete 231

LOADS

Dead loads 67 Live loads 74 Safe permissible on masonry 265

LOW HEAT CEMENT 4

M

MASONRY CEMENTS 4 MODIFIED CEMENTS 5 MODULAR RATIO 101, 102 MOMENT

> Bending 80-97 Inertia of sections 272 Resistance 101, 146

> > N

NEUTRAL AXIS 102, 105, 133

P

POZZOLANIC CEMENTS 5
PREFABRICATED (PRECAST)
CONCRETE

Advantages of 227 Disadvantages of 228 Requirements of 228 Uses of 228

Prepacked Concrete 233
Prestressed Concrete

Advantages of 225 Methods of 225 Principles of 225 Theory of 226 Uses of 227

PROTECTIVE TREATMENTS 253

RAPID HARDENING CEMENT 3 REINFORCEMENT (see steel) RETAINING WALLS

> Cantilevered 205 Charts for 207-210 Earth pressures 211

> > S

SAND, BULKING OF 16 SAW DUST CONCRETE 233 SHOT CONCRETE 228 SHEAR

> Diagrams 80 to 93 Stirrups 162

SLABS

Charts for design of 106 Formulae 107 Tables for design of 119 Two-way 105

SLUMP OF CONCRETE 33, 56

SOIL CEMENT

Construction 242 Requirements of 240 Tests for 247

SPECIFICATIONS FOR CEMENT 6

STEEL

Allowable stresses 20 Areas of 25, 26 Expanded steel 23 Mesh sheets of 24 Spacing of 25 Weights of 25, 27 Welded fabric 21

STEEL BEAM THEORY 133

STORAGE OF

Aggregates 11 Cements 6

STRENGTH OF

Concrete 39 Steel 20 Stones 265 Timber 267

SURFACE TREATMENTS 253
SPECIFICATIONS FOR CEMENT 6
SPECIFIC GRAVITY 18

T

TANKS

Circular 213

T-Beams 143 Timber 267 Task-Work 268 Trial Mixes 54 Water

> Function of 18 Tests for 18 Weight of 19

Water Cement Ratio 31 Water Proofing of Concrete 252

WEIGHTS OF

Aggregates 17 Cement 9 Concrete 72 Materials 67 Steel 27 Timber 69 Water 19, 68

Weights and Measures 280 Wind Pressures 266

NOMENCLATURE

a	tart or span of a beam.		
a	Lever arm.		
a1	(Vide j).		
At	Cross-sectional area of tensile reinforcement.		
A _b	Volume of helical winding per unit length of column.		
A_a	Cross-sectional area of compression reinforcement.		
$A_{\mathbf{H}}$	Horizontal reinforcement for tank walls.		
$A_{\mathbf{v}}$	Vertical reinforcement for columns, tank walls, etc.		
В	Width of base of retaining wall.		
В	Width of table of T-beam.		
b	Breadth of beam or slab (in inches).		
ь	Part of span of a beam.		
br.	Breadth of web of T-beam.		
C ₁	Numerical coefficient giving value of maximum hoop tension in a circular tank.		
Cg	Numerical coefficient showing place of maximum hoop tension in circular tank.		
D	Overall depth of beam in inches.		
D	Gross size of a column.		
D.	Effective depth of footing.		
D	Diameter of the tank.		
d	Effective depth of a slab or a beam.		
d	Diameter or side of core area of a r.c. column.		

d	Thickness of the side of a circular tank.
ď	Effective diameter of column measured across core in direction of lateral supports.
d ₁	Distance of centre of compression steel from top of the beam.
d.	Depth of flange of T-beam.
d.	Diameter of vertical bars of a column.
e	The eccentricity of load.
f_o	Compressive unit stress in extreme fibre of concrete
F or FM	Fineness modulus of aggregates.
$\mathbf{F_e}$	Fineness modulus of coarse aggregates.
F	Fineness modulus of fine aggregates.
Fm	Fineness modulus of mixed aggregates.
$\mathbf{F}_{\mathbf{x}}$	Shear force at a distance x from a particular support.
g	Least equivalent radius of gyration ascertained on the core area.
Н	Height of the retaining wall from foundation.
H ₁	Height of the retaining wall measured from top of base.
h	Height of water in a tank.
jd	Lever arm of a section.
j	Ratio of lever arm of resisting couple to depth d.
K	Distance in feet from support in which shear intensity exceeds the safe limit. (Reference T-beam tables).
K	Ditto in inches (Ref. shear tables).
$\left\{ egin{array}{c} K_1 \\ K_2 \end{array} \right\}$	Factors used in design of rectangular beams with compression reinforcement.
354104 15	2008년 1일도 11일도 12명이 12일 12일 12일 20일이다. 12일

1	Actual length of a column taken as clear distance between lateral supports.
l_x , l_y	Short and long spans of two-way slab respectively.
M	Bending moment.
M _A M _B etc.	Bending moments at particular points A, B, etc. on a beam.
M_x	Bending moment at any point x on a beam.
m	Modular ratio.
n_o	Neutral axis factor for columns under bending.
n ₁ n ₂ etc.	Number of stirrups in various portions of a T-beam.
P P ₁ P ₂ P _p	Concentrated loads on beams.
P	Overturning force on retaining wall.
P	Total load on a column.
P_c	Load carried by concrete in core of a column.
P _T	Load carried by vertical steel of a column.
P,	Load carried by helical binding of a column.
P	Ratio of area of tensile steel to effective area of concrete (vide r).
p	Pitch of links in a column or stirrups in a beam.
psi	Pounds per square inch.
psf	Pounds per square foot.
Q	Qualifier giving value of resisting moment of a section in terms of breadth and depth of a section.
R	Ratio of side of column to side of base.

RA, R. End reaction in a beam. R.M. Resisting moment of a section. Ratio of area of tensile steel to effective area of concrete (vide p). Ratio of cost of one cft. of steel to cost of one cft. of r concrete. Ratio of compressive steel in a section to the effective T1 area of the section $=\frac{A_0}{bd}$. S Vertical shear in pounds on a beam. t Tensile unit stress in steel. tsi tons per square inch. tsf tons per square foot. Virtual length of a column. V_1 Vertical shears at non-continuous end of beams. V_2 V₂L Vertical shear at continuous ends of beams. V₂R L and R denotes shear at left or right of the support. Shear at support of a beam. \mathbf{v}_{\bullet} W Total load on one span of a beam. W. Total live load on one span of beam. Wn Total dead load on one span of a beam. Load per unit length of a beam. W. Intensity of pressure exerted by a retained granular material. Zx, Zy B.M. coefficients, two-way slabs. Angle of repose of a granular material. Angle of surcharge of a granular material. Angle of bend of shear steel, efficient of friction.

> Ist ed.|1953|5000 2nd ed.|1958|6000 3rd ed.|1961|4000

