Traffic Modeling and Analysis

Work done by: Ramsamy, Saifullah, Dinil Mon Divakaran (M.S Research Scholars)

Guided by

Prof. Timothy A. Gonsalves & Dr. Hema A. Murthy

Outline

- Problem Definition
- Traffic Classification
 - Vector Quantization (VQ)
 - Gaussian Mixture Models (GMM)
 - Test results
- Denial of Service (DoS) attack
- Linear prediction (LP) analysis
- TCP SYN flooding attack detection
- Conclusion

Introduction

• Internet growth has resulted in huge amount of data.

• Data can be used for bandwidth management, traffic prediction, network planning, Quality of Service, anomaly detection etc.

• Modeling and analysis of traffic data give useful information.

Problem definition

• Traffic modeling and classification.

• Linear prediction (LP) analysis for denial of service (DoS) attack detection.

⇒ Traffic Modeling and Classification

DoS attack and LP analysis

• TCP SYN flooding attack detection

Why not port based classification?

- Firewall related problems relaying of non-web traffic using port 80.
- Ports are not defined with IANA registration for all applications.
- Non-privileged users run WWW servers on ports other than 80.
- Some well-known ports are used by multiple applications.
- Dynamic allocation of server ports (eg. FTP).

Parameters for modeling

• Traffic characteristics depends on the protocol or service.

• Commonly used parameters : packet size, packet inter-arrival time, flow duration, packet train size, packet train length.

Packet train: (src host, src port, dst host, dst port).
 Packet train length: Number of packets in a train.
 Packet train size: Number of bytes in a train.

• Input traffic data represented as vectors: $\mathbf{X} = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}\}\$ $\mathbf{x_i} = \{\textit{packet train length, packet train size}\}$

Clusters in Pattern Space (Vector Quantisation)

PARTITIONED VECTOR

SPACE X = CENTROID OF

REGION

An Algorithm for Vector Quantisation

The average distortion D_i in cell C_i is given by

$$D_i = \frac{1}{N} \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mathbf{z}_i)$$

where

- \mathbf{z}_i is the centroid of cell C_i and
- $d(\mathbf{x}, \mathbf{z}_i) = (\mathbf{x} \mathbf{z}_i)^T (\mathbf{x} \mathbf{z}_i)$
- N is the number of vectors

The centroids that are obtained finally are then stored in a codebook called the **VQ codebook**.

Modeling Using Vector Quantization

• Traffic data considered as vectors

$$\mathbf{X} = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}\}$$

where $\mathbf{x_i} = \{packet \ train \ length, \ packet \ train \ size\}$

• X divided into a set of k clusters, $C = \{C_1, C_2, ..., C_k\}$, such that

$$\bigcup_{i=1}^{k} C_i = \mathbf{X} \qquad and \qquad \bigcap_{i=1}^{k} C_i = \phi$$

Algorithm for obtaining Clusters for Traffic Modeling

- Randomly select k vectors as the centroids of the k clusters.
- A vector \mathbf{x} belongs to cluster C_i , if

$$\|\mathbf{x} - \mu_{\mathbf{i}}\| < \|\mathbf{x} - \mu_{\mathbf{j}}\|$$
 for all $j \neq i$

- \Rightarrow partitions vectors into clusters.
- Recompute centroid after each iteration.
- ⇒ Obtain clusters for each traffic class.

Figure 1: System based on VQ

Classification Using VQ

- For each vector, find the distance from every traffic class.
 - \Rightarrow Find the distance to the nearest cluster of a traffic class.
- Find the distance of the input set from each traffic class.
- The traffic class of the given input set is identified as the one to which the distance is minimum.

Bayesian Classification using GMM

• X divided into k mixtures, $\{m_1, m_2, ..., m_k\}$

$$p(m_i) = \frac{n_{m_i}}{N}$$

 θ_i is the vector with components μ_i and σ_i of the mixture m_i .

• Probability of x belonging to a mixture m_i [1]

$$p(\theta_{\mathbf{i}}|\mathbf{x}) \approx p(m_i) \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma_i}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu_{\mathbf{i}})^t \mathbf{\Sigma_i}^{-1}(\mathbf{x} - \mu_{\mathbf{i}})}$$

• A vector \mathbf{x} belongs to mixture m_i , if

$$p(\theta_{\mathbf{i}}|\mathbf{x}) > p(\theta_{\mathbf{j}}|\mathbf{x})$$
 for all $j \neq i$

• θ_i recomputed at the end of each iteration.

Bayesian Classification using GMM (continued)

• Given a set of input vectors $\mathbf{X} = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}\}$ and s being a traffic class, probability that a vector $\mathbf{x_i}$ is of traffic class s

$$p(\mathbf{x_i}, s) = \max_{j} p(\theta_j | \mathbf{x_i})$$
 $1 \le j \le n(s)$

n(s) is the number of mixtures in the traffic class denoted by s.

• Probability that the given set is of a particular traffic class s

$$P(s) = \prod_{i=1}^{N} p(\mathbf{x_i}, s)$$

where N is the total number of vectors.

• Input set of vectors belongs to the class having maximum probability.

Test Results

Traffic Type	Accuracy	
HTTP	99.27%	
SMTP	96.38%	
DNS	100%	
POP3	90.56%	
SSH	88.40%	

(a) VQ based

Traffic Type	Accuracy	
HTTP	99.60%	
SMTP	99.30%	
DNS	100%	
POP3	97.20%	
SSH	96.92%	

(b) GMM based

Table 1: Results using one hour data

Test Results (continued)

Traffic Type	Accuracy	
HTTP	99.78%	
SMTP	99.67%	
DNS	100%	
POP3	96.28%	
SSH	94.53%	

Table 2: Results using GMM for 15 minutes data

- Successful in classifying traffic.
- Can not be used for detection of a class of attacks Denial of Service attacks.

• Traffic Modeling and Classification

 \Rightarrow DoS attack and LP analysis

• TCP SYN flooding attack detection

- Legitimate users denied service.
- UDP flooding, ICMP flooding, Smurf attack, TCP Reset attack, TCP SYN flooding etc.
- Distributed DoS.
- Low intensity and high intensity attacks.
- Loss incurred
 - From e-commerce companies like Amazon to small ISPs.
 - Top source of financial loss due to cybercrime in 2004 [2].
- Detection and Prevention

Figure 2: TCP Connection establishment

Properties of TCP SYN flooding attack

- One of the most commonly used attacks [3].
- Easy to launch.
- Achieved by sending less than 20 packets per second.
- Defense mechanisms (SYN cookies, RandomDrop, SYN cache, SYNkill, SYNDefender etc.) have limitations
- Since most of the applications use TCP, detection becomes all the more important.

Linear Prediction (LP) analysis

• LP approximately estimates a signal, s_n , as linearly weighted summation of past samples [4]

$$\tilde{s}_n \approx \sum_{k=1}^p a_k s_{n-k}$$

• Error percentage

$$e_n = \frac{s_n - \tilde{s}_n}{s_n} * 100$$

• What is s_n ?

• Traffic Modeling and Classification

• DoS attack and LP analysis

 \Rightarrow TCP SYN flooding attack detection

Algorithm for DoS attack detection

- ⇒ Detect deviation from normal traffic.
- Initial frame $\{s_1, s_2, s_3, s_4, s_5, s_6\}$ s_i corresponds to difference in number of incoming SYN and outgoing SYN+ACK in i^{th} time slot.
- Compute the predictor coefficients $\{a_1, a_2, a_3, a_4\}$.
- Predict next signal value. Obtain actual signal value.
- Compute e, if $e > \alpha(threshold)$, then probability of attack is high.
- Recompute LP coefficients periodically using normal frames.

Plot of error for signal values

Power spectrum analysis

• Frame is advanced by one signal value.

$$F_{1} = \{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\}$$

$$F_{2} = \{s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\}$$

$$F_{3} = \{s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\}$$

$$\vdots$$

• Transfer function,

$$H(z) = \frac{G}{1 + \sum_{k=1}^{p} a_k z^{-k}}$$

where G is the gain factor.

• Compute spectrum for each frame.

Spectrum for half-open connections to TeNeT network

Detection using Entropy estimation

• Entropy is estimated for each spectrum.

• For normal frames, deviation of entropy from frame to frame is of the order of 10^{-3} .

• Entropy of a frame with one anomalous signal value deviates in the order of 10^{-1} .

Performance evaluation

SYNs per	Best	Worst
second	delay	delay
20	8	17
30	7	16
40	6	15
50-90	5	14
≥ 100	4	13

Table 3: Detection delay in seconds for different attack rates

Detection and Defense

- Detection system can be installed on firewalls and leaf router.
- Firewalls \Rightarrow low-intensity SYN flooding attack detection.
- Attack detection ⇒ trigger defense mechanism like SYNDefender on firewall.
- Routers ⇒ high-intensity SYN flooding attack detection.
- Attacks to paralyze defense mechanism will be detected at the router level.

Conclusion

- ⇒ Bayesian classification using GMMs gives highly accurate classification.
- ⇒ packet train length together with packet train size form better parameters for identifying traffic compared to existing ones in literature .
- ⇒ Linear prediction analysis of traffic is a new approach to detect DoS attacks.
- ⇒ The difference in number of SYN and SYN/ACK packets is a new parameter to detect TCP SYN flooding attack.

References

- [1] Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*, Wiley-Interscience Publication, second edition, 2001.
- [2] L. Gordon et al., *CSI/FBI Computer Crime and Security Survey*, Computer Security Inst., 2004.
- [3] David Moore, Geoffrey M. Voelker, and Stefan Savage, "Inferring Internet Denial-of-Service Activity," in *Proceedings of the 10th USENIX Security Symposium*, 2001, pp. 9–22.
- [4] J. Makhoul, "Linear Prediction: A Tutorial Review," *Proceedings of the IEEE*, vol. 63(4), pp. 561–580, 1975.