Robust and Fast Seizure Detection in the IoT Edge

M. A. Sayeed¹, S. P. Mohanty², E. Kougianos³, V. P. Yanambakha⁴, and H. P. Zaveri⁵

University of North Texas, Denton, TX, USA.^{1,2,3,4} Yale University, New Haven, CT, USA.⁵

Email: mdsayeed@my.unt.edu 1, saraju.mohanty@unt.edu 2, elias.kougianos@unt.edu 3, vy0017@unt.edu4 hitten.zaveri@yale.edu 5

Outline of the talk

- Introduction
- Novel Contributions
- Design of the Proposed System
- Implementation and Results
- Conclusions and Future Research

Introduction

- Epilepsy and Seizures
- Significance of Seizure Detection

Epilepsy and Seizures

- Epilepsy is characterized by recurrent and spontaneous seizures.
- □ A seizure is defined as an abnormal electrical activity in the brain marked by loss of consciousness and convulsions.
- People with epilepsy are more prone to sudden unexplained death (SUDEP) than healthy people

Motivations: Seizure Detection

- ☐ Traditional healthcare is unable to accommodate the needs of the increasing world population.
- → Anti-epileptic drugs are not an effective cure for refractory patients.
- Surgery is not an alternative to anti-epileptic drugs if the seizure focus is located on the eloquent area of the cortex.
- ☐ As a result, seizure detection is of high importance, as early detection leads to an appropriate and timely treatment.

Novel Contributions

- ☐ Statistical features show considerable potential in distinguishing seizure and non-seizure behavior, and the use of a naïve Bayes classifier leads to improved classification accuracy.
- ☐ The proposed edge-IoT framework reduces latency compared to cloud-IoT frameworks and provides universal connectivity with ambient intelligence.

Design of the Proposed System

- ☐ Edge Computing: Edge-IoT perspective
- DWT-based Feature Extraction
- ☐ Naïve Bayes Classifier

Edge Computing: Edge-IoT perspective

Seizure Detection Paradigm

Architecture: Epileptic Seizure Detection

Feature Extraction From Discrete Wavelet Transform (DWT)

- □ Analysis of the EEG signals requires time-frequency (TF) decomposition to capture both low and high frequency information.
- ☐ The sub-band frequency ranges are: D1 (43.486.8Hz), D2 (21.7-43.4Hz), D3 (10.85-21.7Hz), D4 (5.4310.85Hz), and A4 (0-5.43Hz).
- ☐ The following statistical parameters are extracted from the decomposed EEG signals: variance, standard deviation, and energy.

Naïve Bayes Classifier

- ☐ A naïve Bayes classifier is based on Bayesian theory and requires fewer data for training.
- □ A class label is given to the attribute based on the highest posterior probability.

Implementation of the Proposed System..

- ☐ The proposed system was implemented using Simulink and the Arduino UNO R3 microcontroller board.
- ☐ ThingSpeak, an open data platform, was utilized to gather data in the cloud.

Results-EEG Waveforms

Results...

Extracted feature coefficients for dataset A

Coefficients	Variance	Standard Deviation	Energy
D1	25.21	5.02	2.85e+04
D2	587.55	24.23	3.04e+05
D3	5.39e+03	73.45	1.44e+06
D4	9.90e+03	99.52	1.98e+06
A4	1.54e+04	124.25	4.05e+06

Results...

Extracted feature coefficients for dataset E

Coefficients	Variance	Standard Deviation	Energy
D1	1.42e+03	37.98	1.89e+06
D2	6.43e+04	253.73	4.87e+07
D3	7.01e+05	837.56	3.06e+08
D4	6.96e+05	834.76	1.88e+08
A4	1.71e+06	1.31e+03	4.08e+08

Results: Cloud-IoT VS Edge-IoT

System Details	Latency
Clod-IoT Framework	2.5 sec
Edge-IoT Framework	1.4 sec

- □ Latency includes both computation time as well transmission delay.
- ☐ Edge-based IoT provides 44% reduction in latency which is highly important for critical biomedical applications.

Results- Comparison

Author	Methods	Accuracy (%)
Shoeb et al. [2009]	Support Vector Machines	78.74
Kumar et al. [2014]	Neural Network	95
Tawfiq et al. [2016]	Weighted Permutation Entropy	96.5
Sharmila et al. [2016]	Feature Extraction and k- NN classifier	97.08
Proposed System [2018]	DWT and naïve Bayes Classifier	98.65

Conclusion and Future Research

- ☐ The proposed edge-IoT framework reduces latency significantly while maintaining high classification accuracy.
- □ Future research includes implementing a drug delivery system with the proposed system for seizure detection and simultaneous drug injection.

Thank You !!!

Slides Will Be Available at:

http://www.smohanty.org

