Homework #4

Nikhil Unni

- 1. This problem deals with subgroups of $GL(2,\mathbb{R})$.
 - (a) Prove that the set

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R}) : a, b, c, d \in \mathbb{Z} \right\}$$

is NOT a subgroup of $GL(2, \mathbb{R})$.

We can disprove by example. Say we have two matrices from H:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}$$

which are both invertible (both ad-bc are nonzero) and have integer values for every cell.

Subgroups have the condition where for all $a, b \in H$, ab^{-1} must be in H as well. Given A and B above in H:

$$AB^{-1} = \begin{pmatrix} \frac{5}{4} & \frac{-1}{4} \\ 1 & 0 \end{pmatrix}$$

And because AB^{-1} has noninteger cell values, it is not in H, therefore showing that H is not a subgroup of $GL(2,\mathbb{R})$.

(b) Find an infinite subset of the set H defined in part (a) which is a cyclic subgroup of $GL(2,\mathbb{R})$.

Let our cyclic subgroup generator be:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Where the inverse is:

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

I'll prove that any $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for all $n \in \mathbb{Z}$.

Base Case : for n=0 this is true, since this is just the identity matrix.

 $A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Recursive Case: Assume the inductive hypothesis (that the integer maps to "b" in the matrix):

$$A^{n-1} = \begin{pmatrix} 1 & n-1 \\ 0 & 1 \end{pmatrix}$$

Then by simple matrix multiplication we see:

$$A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

and

$$A^{n-2} = \begin{pmatrix} 1 & n-1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n-2 \\ 0 & 1 \end{pmatrix}$$

Which proves the inductive hypothesis for all \mathbb{Z} (since we can exponentiate forwards or backwards inductively from 0). A generates an infinite subset of H (all A^n are invertible since ad - bc = 1, and all cells are in \mathbb{Z}). Also, for all A,B in our generated subgroup:

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a-b \\ 0 & 1 \end{pmatrix}$$

And since integer addition and subtraction are closed, every AB^{-1} is also in the subgroup, proving that it's a valid subgroup of H.

(c) Find an infinite subset of H which is a noncyclic subgroup of $GL(2,\mathbb{R})$.

Matrices of the form:

$$M = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in GL(2, \mathbb{R}) : a, b, d \in \mathbb{Z}, ad = \pm 1 \right\}$$

This is a special case of H, as it constrains all 4 elements. But as we can see, it's closed under multiplication:

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} m & n \\ 0 & q \end{pmatrix} = \begin{pmatrix} am & an + bq \\ 0 & dq \end{pmatrix}$$

$$(am)(dq) = (ad)(mq) = \pm 1$$

We can also clearly see that the identity element is just the identity matrix, which is also of the same form. And because ad - bc for all matrices in M is nonzero (because it is a subset of invertible matrices,

all matrices in M must be invertible as well), every matrix in M has a multiplicative inverse:

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}^{-1} = \frac{1}{\pm 1} \begin{pmatrix} d & -b \\ 0 & a \end{pmatrix}^{-1}$$

And we get matrix multiplication associativity for free. So it is a valid subgroup of $GL(2,\mathbb{R})$. We can also prove by example that it's noncyclic. Since noncyclic subgroups are also commutative (because addition of exponents is commutative), we can just show that our subgroup is noncommutative:

$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$

So our subgroup is noncyclic.

- 2. Here we will think about products of groups.
 - (a) Prove that if G and H are groups, then $G \times H$, with a componentwise binary operation is a group.

First we show that $G \times H$ is closed under the componentwise binary operation. For two $a=(g_1,h_1),b=(g_2,h_2)\in G\times H$: $ab=(g_1g_2,h_1h_2)$. Since G and H are groups, all g_1g_2 are in G, and all h_1h_2 are in H, so all ab are in $G\times H$.

Next we show that every element has an identity by which it can multiply with to yield our identity, (e_g, e_h) , the tuple of G and H's identities:

$$ab = (g_1g_2, h_1h_2)$$

Then

$$(ab)(ab)^{-1} = (g_1g_2, h_1h_2)((g_1g_2)^{-1}, (h_1h_2)^{-1}) = (e_g, e_h)$$

Because G and H are groups, then all g_1g_2 and h_1h_2 multiplied by their repsective inverse yields the identity of the group. And the tuple of the identites (which is our new group's identity) is in $G \times H$.

Next, we can show that any element multiplied by our new identity yields itself:

$$a = (g, h), e = (e_a, e_h),$$
 so ae should be a.

$$(g,h)(e_g,e_h) = (ge_g,he_h) = (g,h)$$

Since any element in G multiplied by e_g yields itself, and any element in H multiplied by e_h yields itself, this formulation is correct.

Finally, we have to show associativity, that, for some $a = (g_1, h_1), b = (g_2, h_2), c = (g_3, h_3) \in G \times H$:

$$(ab)c = a(bc)$$

$$(ab)c = (g_1g_2, h_1h_2)(g_3, h_3) = ((g_1g_2)g_3, (h_1h_2)h_3)$$

$$a(bc) = (g_1, h_1)(g_2g_3, h_2h_3) = (g_1(g_2g_3), h_1(h_2h_3))$$

Because binary operations on G and H are both associative, these two end up being the same:

$$(g_1g_2g_3, h_1h_2h_3)$$

proving associativity for the componentwise binary operation on $G \times H$.

- (b) Consider the example $\mathbb{C}^* \times \mathbb{C}^*$. Find two subgroups of order 8 in $\mathbb{C}^* \times \mathbb{C}^*$ one which is cyclic and one which is not.
 - 1. Let our first cyclic subgroup be $U_1 \times U_8$, where the identity is (1,1), and the generator is $(1,e^{2pi(1/8)})$. The generator generates all 8 elements $(1,e^{2pi(n/8)})$, for $0 \ge n < 7$. And for any $a,b \in U_1 \times U_8$,

$$ab^{-1} = (1, e^{2pi(n/8)})(1, e^{2pi(-m/8)}) = (1, e^{2pi(n-m/8)})$$

which is still in our subgroup.

2. Let our second noncyclic subgroup be $U_2 \times U_4$. We can see that the order of the subgroup is 8, since the order of U_2 and U_4 are 2 and 4 respectively. It is also a valid subgroup of $\mathbb{C}^* \times \mathbb{C}^*$, since for any $a, b \in U_2 \times U_4$:

$$ab^{-1} = (e^{2pi(n/2)}, e^{2pi(m/4)})(e^{2pi(-p/2)}, e^{2pi(-q/4)}) = (e^{2pi(n-p/2)}, e^{2pi(m-q/4)})$$

which is still in our subgroup. We can show that nothing can generate all 8 elements by running through each element and its order:

$$(e^{2pi(0/2)}, e^{2pi(0/4)})$$
, order 1

$$(e^{2pi(0/2)}, e^{2pi(1/4)})$$
, order 4

$$(e^{2pi(0/2)}, e^{2pi(2/4)})$$
, order 2

$$(e^{2pi(0/2)}, e^{2pi(3/4)})$$
, order 4

$$(e^{2pi(1/2)}, e^{2pi(0/4)}), \text{ order } 2$$

$$(e^{2pi(1/2)}, e^{2pi(1/4)})$$
, order 4

$$(e^{2pi(1/2)}, e^{2pi(2/4)})$$
, order 2

$$(e^{2pi(1/2)}, e^{2pi(3/4)})$$
, order 4

Since none of the possible elements have order 8, none of them can serve as a generator, meaning that the group is noncyclic.

- 3. This problem is about cyclic groups and generators.
 - (a) Find two choices of n so that Z_n has exactly 4 different generators. Justify your answer.
 - 1. For n = 5, we can show that our only generators are $\bar{1}, \bar{4}, \bar{2}, \bar{3}$ exhaustively:

```
\bar{0}, order 1
```

 $\bar{1}$, order 5

 $\bar{2} \to \{\bar{2}, \bar{4}, \bar{1}, \bar{3}, \bar{0}\}, \text{ order } 5$

 $\bar{3} \to \{\bar{3}, \bar{1}, \bar{4}, \bar{2}, \bar{0}\}, \text{ order } 5$

 $\bar{4}$, order 5

2. For n = 8, we can show that our only generators are $\bar{1},\bar{3},\bar{5},\bar{7}$ exhaustively:

 $\bar{0}$, order 1

 $\bar{1}$, order 8

 $\bar{2}$, order 4

 $\bar{3}, \to \{\bar{3}, \bar{6}, \bar{1}, \bar{4}, \bar{7}, \bar{2}, \bar{5}, \bar{0}\}, \text{ order } 8$

 $\bar{4}$, order 2

 $\bar{5}, \to \{\bar{5}, \bar{2}, \bar{7}, \bar{4}, \bar{1}, \bar{6}, \bar{3}, \bar{0}\}, \text{ order } 8$

 $\bar{6}, \to \{\bar{6}, \bar{4}, \bar{2}, \bar{0}, \text{ order } 4$

 $\bar{7}$, order 8

- (b) Which of the following groups are cyclic groups?
 - 1. $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic, and is generated by $(\bar{1}, \bar{1})$.

In order it will generate:

$$\{(\bar{1},\bar{1}),(\bar{0},\bar{2}),(\bar{1},\bar{0}),(\bar{0},\bar{1}),(\bar{1},\bar{2}),(\bar{0},\bar{0})\}$$

2. $\mathbb{Z}_2 \times \mathbb{Z}_4$ is noncyclic. Because $\mathbb{Z}_2 \times \mathbb{Z}_4$ is isomorphic to $U_2 \times U_4$, it's the same problem as asking if $U_2 \times U_4$ is cyclic or not. And I already solved this exhaustively on problem 2b. Since $U_2 \times U_4$ is noncyclic, that means $\mathbb{Z}_2 \times \mathbb{Z}_4$ is noncyclic as well.