Производни на крива на Безие

Разгл. кр. на Безие $\mathbf{C}(u)$ деф. чрез n+1 контр. т. \mathbf{P}_0 , \mathbf{P}_1 , ..., \mathbf{P}_n :

$$\mathbf{C}(u) = \sum_{i=0}^{n} B_{n,i}(u) \mathbf{P}_{i}, \qquad B_{n,i}(u) = \frac{n!}{i! (n-i)!} u^{i} (1-u)^{n-i}$$

 \Rightarrow

$$\frac{\mathrm{d}}{\mathrm{d}u}B_{n,i}(u) = B'_{n,i}(u) = n\left(B_{n-1,i-1} - B_{n-1,i}(u)\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}u}\mathbf{C}(u) = \mathbf{C}'(u) = \sum_{i=0}^{n} B'_{n,i}(u)\mathbf{P}_i = \sum_{i=0}^{n-1} B_{n-1,i}(u)\{n(\mathbf{P}_{i+1} - \mathbf{P}_i)\}$$

Нека пол.
$$\mathbf{Q}_i = n(\mathbf{P}_{i+1} - \mathbf{P}_i), i \in \{0,1,...,n-1\}$$
 \Rightarrow

$$\mathbf{C}'(u) = \sum_{i=0}^{n-1} B_{n-1,i}(u)\mathbf{Q}_i$$

C'(u) е кр. на Безие от ст. (n-1) дефин. чрез n контр. т. \mathbf{Q}_0 , \mathbf{Q}_1 , \mathbf{Q}_2 , ..., \mathbf{Q}_{n-1} като $\mathbf{Q}_i = n(\mathbf{P}_{i+1} - \mathbf{P}_i)$ и се нарича ходограф на $\mathbf{C}(u)$.

 ${\bf P}_{i+1} - {\bf P}_i$ е в-рът по i-тото рамо ${\bf P}_i {\bf P}_{i+1}$ на полигона Π на ${\bf C}(u)$.

Кривите на Безие се допират до първото и последното рамо на полигона им

Ot
$$\mathbf{C}'(u) = \sum_{i=0}^{n-1} B_{n-1,i}(u) \mathbf{Q}_i$$
, $B_{n-1,i}(0) = B_{n-1,i}(1) = 0 \implies$

$$\mathbf{C}'(0) = n(\mathbf{P}_1 - \mathbf{P}_0), \quad \mathbf{C}'(1) = n(\mathbf{P}_n - \mathbf{P}_{n-1}) \qquad \Rightarrow \quad \mathbf{C}'(0) \uparrow \uparrow \overrightarrow{\mathbf{P}_0 \mathbf{P}_1}, \quad \mathbf{C}'(1) \uparrow \uparrow \overrightarrow{\mathbf{P}_{n-1} \mathbf{P}_n}.$$

Съединяване на две криви на Безие с C^1 -непрекъснатост

Нека I крива P(u) се опр. чрез P_0 , P_1 , P_2 , ..., P_m и ∴ ст. ѝ е m.

Нека II крива $\mathbf{Q}(u)$ се опр. чрез \mathbf{Q}_0 , \mathbf{Q}_1 , \mathbf{Q}_2 , ..., \mathbf{Q}_n и ∴ ст. ѝ е n.

Ако съед. P(u) и Q(u), то трябва $P_m \equiv Q_0$. $\therefore \exists C^0$ -непрек. в т. на съед.

Понеже ${\bf P}(u)$ се доп. до ${\bf P}_{m-1}{\bf P}_m$, а ${\bf Q}(u)$ — до ${\bf Q}_0{\bf Q}_1$, то за да $\exists~G^1$ -непрек.,

трябва т. \mathbf{P}_{m-1} , $\mathbf{P}_m = \mathbf{Q}_0$ и \mathbf{Q}_1 да са колинеарни, както и $\overline{\mathbf{P}_{m-1}\mathbf{P}_m}$ $\uparrow \uparrow \overline{\mathbf{Q}_0\mathbf{Q}_1}$.

$$\mathbf{P}_{m-1}$$
 $\mathbf{P}_m = \mathbf{Q}_0$ \mathbf{Q}_1

За да ∃ C^1 -непрек., трябва $P'(1) = Q'(0) \iff$

$$m(\mathbf{P}_m - \mathbf{P}_{m-1}) = n(\mathbf{Q}_1 - \mathbf{Q}_0).$$

$$\Rightarrow$$
 $|\mathbf{P}_m - \mathbf{P}_{m-1}| / |\mathbf{Q}_1 - \mathbf{Q}_0| = n/m$.

Отляво е кр. на Безие от ст. 4, а отдясно е кр. на Безие от ст. 5.

Тъй като посл. рамо **3-0** на C_1 и първ. рамо **0-1** на C_2 не са колинеарни, то C_1 и C_2 не се съединяват с C^1 -непрек. в т. на съед. 0.

Следв. съставна крива е G^1 -непрек., но не е C^1 -непрек.

Лявата дъга е от степен 4, а дясната – от степен 7.

Отнош. на посл. рамо на лявата към първ. рамо на дясната е $\approx 1 \neq 7/4 = 1.75$.

3а да ∃ C^1 -непр., трябва

да увеличим посл. рамо **3-0** на C_1 и да намалим първ. рамо **0-1** на C_2 .

Тогава \Rightarrow G^1 -непр. \mathbf{C}_1 и \mathbf{C}_2 в т. на съед. 0.

Ако $P_0 = P_n$ и още P_1 , P_0 , P_{n-1} са колинеарни, то кр. на Безие ще бъде затворена и G^1 -непр. в т. на съед.:

Това не е елипса, а полиномна крива от ст. 6.

Кр. на Безие като полиномни не могат да задават трансцендентни криви, такива като експоненциални и логаритмични криви, хиперболи, елипси или в частност окръжности.

Зависимост между производната и алгоритъма на дьо Кастелжо

$$\mathbf{C}'(u) = \sum_{i=0}^{n-1} B_{n-1,i}(u) \{ n(\mathbf{P}_{i+1} - \mathbf{P}_i) \}$$

$$= n \left[\left(\sum_{i=0}^{n-1} B_{n,i}(u) \mathbf{P}_{i+1} \right) - \left(\sum_{i=0}^{n-1} B_{n,i}(u) \mathbf{P}_i \right) \right]$$

$$\mathbf{C}_1(u) = \sum_{i=0}^{n-1} B_{n,i}(u) \mathbf{P}_{i+1}$$
 $\mathbf{C}_2(u) = \sum_{i=0}^{n-1} B_{n,i}(u) \mathbf{P}_i$

$$C_1(u): P_1, P_2, ..., P_n;$$
 $C_2(u): P_0, P_1, ..., P_{n-1}$

 $= n[\mathbf{C}_1(u) - \mathbf{C}_2(u)],$

$$\mathbf{C}'(u) = n[\mathbf{C}_1(u) - \mathbf{C}_2(u)]$$

Прилагаме алг. дК:

Отсечката м/у (n-1)0 и (n-1)1 е посл. отс.

от мреж. на дК.

Т. n0 лежи на тази отс., така че

$$d((n-1)0,n0) / d((n-1)0,(n-1)1) = u.$$

T.
$$(n-1)1 = C_1(u)$$
, T. $(n-1)0 = C_2(u)$

 \Rightarrow C₁(u) - C₂(u) = в-рът от т. (n-1)0 до т. (n-1)1,

a
$$C'(u) = n (C_1(u)-C_2(u)).$$

Последният полигон (който е отсечка) от мрежата на дьо Кастелжо се допира до кривата на Безие в т. C(u).

Напр. от алг. дК за u = 0,5 ⇒

посл. отсечка от мрежата на дК

се допира до кривата в т. C(0,5).

Производни от по-висок ред

Ако
$$\mathbf{Q}_i = n(\mathbf{P}_{i+1} - \mathbf{P}_i)$$
, то $\frac{\mathrm{d}}{\mathrm{d}u}\mathbf{C}(u)$ e:

$$\mathbf{C}'(u) = \sum_{i=0}^{n-1} B_{n-1,i}(u) \mathbf{Q}_i$$

$$\mathbf{C}''(u) = \sum_{i=0}^{n-2} B_{n-2,i}(u) \{ (n-1)(\mathbf{Q}_{i+1} - \mathbf{Q}_i) \}$$

$$= \sum_{i=0}^{n-2} B_{n-2,i}(u) \{ n(n-1)(\mathbf{P}_{i+2} - 2\mathbf{P}_{i+1} + \mathbf{P}_i) \}$$

 \Rightarrow подв. триедър и \varkappa в т. $\mathbf{C}(u)$ за някое u.

Крайна разлика от 0. ниво е $\mathbf{D}_i^0 = \mathbf{P_i}$, $0 \le i \le n$

Крайна разлика от 1. ниво е

$$\mathbf{D}_{i}^{1} = \mathbf{D}_{i+1}^{0} - \mathbf{D}_{i}^{0} = \mathbf{P}_{i+1} - \mathbf{P}_{i}, \quad 0 \le i \le n-1$$

Крайна разлика от 2. ниво е

$$\mathbf{D}_{i}^{2} = \mathbf{D}_{i+1}^{1} - \mathbf{D}_{i}^{1}, \quad 0 \le i \le n-2$$

Крайна разлика от k. ниво е

$$\mathbf{D}_{i}^{k} = \mathbf{D}_{i+1}^{k-1} - \mathbf{D}_{i}^{k-1}, \quad 0 \le i \le n-k$$

$$\mathbf{C}'(u) = n \sum_{i=0}^{n-1} B_{n-1,i}(u) (\mathbf{P}_{i+1} - \mathbf{P}_i) = n \sum_{i=0}^{n-1} B_{n-1,i}(u) (\mathbf{D}_{i+1}^0 - \mathbf{D}_i^0)$$

$$= n \sum_{i=0}^{n-1} B_{n-1,i}(u) \mathbf{D}_i^1$$

$$\mathbf{C}''(u) = n(n-1) \sum_{i=0}^{n-2} B_{n-2,i}(u) (\mathbf{D}_{i+1}^1 - \mathbf{D}_i^1) = n(n-1) \sum_{i=0}^{n-2} B_{n-2,i}(u) \mathbf{D}_i^2$$

Продълж. този процес и изчисл. k-тата производна $\mathbf{C}^{(k)}(u)$ чрез \mathbf{D}_{i}^{k} :

$$\mathbf{C}^{(k)}(u) = n(n-1) \dots (n-k+1) \sum_{i=0}^{n-k} B_{n-k,i}(u) \left(\mathbf{D}_{i+1}^{k-1} - \mathbf{D}_{i}^{k-1} \right)$$

$$= n(n-1) \dots (n-k+1) \sum_{i=0}^{n-k} B_{n-k,i}(u) \mathbf{D}_{i}^{k}$$

$$= \frac{n!}{(n-k)!} \sum_{i=0}^{n-k} B_{n-k,i}(u) \mathbf{D}_{i}^{k}$$

За да изч. $\mathbf{C}^{(k)}(u)$ за някое u:

- 1) изч. **D**_i^k и
- 2) прил. алг. дК за нам. на т., съотв. на u в/у кр. на Безие, опр. чрез \mathbf{D}_{i}^{k} .

За изч. на \mathbf{D}_{i}^{k} изп. схемата:

Накрая прил. алг. дК за точките от кол. k за фикс. u и получ. $\mathbf{C}^{(k)}(u)$.

Подразделяне на крива на Безие

Подразделяне на дадена кр. на Безие ${\bf C}$ е задаването ѝ като ${\bf C}={\bf C}_1\cup {\bf C}_2;$ ${\bf C}_1, {\bf C}_2$ – криви от същия вид, съед. в избр. т. на ${\bf C}$:

```
Дадена е Безие кр. на \mathbf{C}(u), u \in [0;1] от ст. n чрез \Pi = \{\mathbf{P}_0, \mathbf{P}_1, \mathbf{P}_2, ..., \mathbf{P}_n\} и u_0 \in [0;1]. Да се нам. \partial se Безие кр. \mathbf{C}_1(u) и \mathbf{C}_2(u) от ст. n, като \mathbf{C}_1(u) е опр. чрез \Pi_1 = \{\mathbf{Q}_0, \mathbf{Q}_1, \mathbf{Q}_2, ..., \mathbf{Q}_n\} за u \in [0, u_0], а \mathbf{C}_2(u) – чрез \Pi_2 = \{\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_n\} за u \in [u_0, 1], така че \mathbf{C}_1(u) и \mathbf{C}_2(u) да са двете части на \mathbf{C}(u) разделена от т. \mathbf{C}(u_0).
```

- 1) Нам. се т. $C(u_0)$ в/у C(u) чрез алг. дК.
- 2) $\mathbf{C}_1(u)$ и $\mathbf{C}_2(u)$ се деф. като отделни Безие кр.

$$\mathbf{Q}_0 = \mathbf{P}_{00} = \mathbf{P}_0$$
, $\mathbf{Q}_1 = \mathbf{P}_{10}$, $\mathbf{Q}_2 = \mathbf{P}_{20}$, $\mathbf{Q}_3 = \mathbf{P}_{30}$, $\mathbf{Q}_4 = \mathbf{P}_{40}$, $\mathbf{Q}_5 = \mathbf{P}_{50}$ in $\mathbf{Q}_6 = \mathbf{P}_{60} = \mathbf{P}(u_0)$

$$R_0 = P_{60} = P(u_0)$$
, $R_1 = P_{51}$, $R_2 = P_{42}$, $R_3 = P_{33}$, $R_4 = P_{24}$, $R_5 = P_{15}$ μ $R_6 = P_{06} = P_{60}$

На Δ схема на алг. дК, Π_1 на $\mathbf{C}_1(u)$ са по горния ръб на Π_1 в посоката на \to , а Π_2 на $\mathbf{C}_2(u)$ са по долния ръб на Π_2 в посока *обратна* на \to .

Отс. $\boxed{\mathbf{50\text{-}51}}$ се допира до $\mathbf{C}(u)$ в т. $\mathbf{60} \Rightarrow$ посл. рамо $\boxed{\mathbf{50\text{-}60}}$ на $\mathbf{C}_1(u)$ се доп. до $\mathbf{C}_1(u)$, а първ. рамо $\boxed{\mathbf{60\text{-}51}}$ на $\mathbf{C}_2(u)$ се доп. до $\mathbf{C}_2(u)$.

Защо е необходимо подразделяне на крива?

Приложения на подразделянето на крива С:

- за изч. на прес. т. на C₁ и C₂
- за интерпр. на С
- за улесняване дизайна на С
- за редакт. дизайна на **C** подразд. **C** на **C** $_1$ и **C** $_2$ в подх. т. на задовол. и незадовол. част; запазваме задовол. част и изменяме незадовол.

Можем да прил. многократно подразделяне, но за да запазим гладкото C^1 -съед. на частите на \mathbf{C} , трябва да запазваме колинеарността на т. на съед. и 2-те съседни контр. точки.

Коректност на алгоритъма за подразделяне

Нека

$$\mathbf{C}(u) = \sum_{i=0}^{n} B_{n,i}(u) \mathbf{P}_{i}$$

Съгл. Δ схема на алг. дК, т. P_{k0} се изч. от контр. т. P_0 , P_1 , ..., P_k при фикс. u_0 за u:

$$\mathbf{P}_{k0} = \sum_{i=0}^{k} B_{k,i}(u) \mathbf{P}_{i}$$

Безие кр. от ст. n, деф. чрез \mathbf{P}_{00} = \mathbf{P}_0 , \mathbf{P}_{10} , \mathbf{P}_{20} ,, \mathbf{P}_{n0} за $t \in [0,1]$ е

$$\mathbf{C}_1(t) = \sum_{k=0}^n B_{n,k}(t) \mathbf{P}_{k0}.$$

Дефин. интервал е $[0,u_0]$, а не [0,1]. Затова сменяме параметъра.

Заместваме P_{k0} в $C_1(t)$ и \Rightarrow

$$\mathbf{C}_1(t) = \sum_{k=0}^n \left\{ B_{n,k}(t) \left[\sum_{i=0}^k B_{k,i}(u_0) \mathbf{P}_i \right] \right\}$$

∴ $\mathbf{C}_1(t)$ е деф. чрез дадените контр. точки \mathbf{P}_0 , \mathbf{P}_1 , ..., \mathbf{P}_n .

Да изч. коеф. на \forall т. \mathbf{P}_i .

Разгл. т. \mathbf{P}_h . Когато $k \ge h$, членът $B_{k,h}(u_0)$ е коеф. на \mathbf{P}_h . \therefore коеф. на \mathbf{P}_h в $\mathbf{C}_1(t)$ е:

$$= B_{n,h}(t)B_{h,h}(u_0) + B_{n,h+1}(t)B_{h+1,h}(u_0) + \dots + B_{n,n}(t)B_{n,h}(u_0)$$

$$= \sum_{j=0}^{n-h} B_{n,h+j}(t)B_{h+j,h}(u_0)$$

$$= \sum_{j=0}^{n-h} \left[\binom{n}{h+j} t^{h+j} (1-t)^{n-(h+j)} \right] \left[\binom{h+j}{h} u_0^h (1-u_0)^j \right]$$

Членовете $(tu_0)^h$, както и n! и h! от биномните коеф. могат да се изнесат пред Σ и

$$= \frac{n!}{h!} (tu_0)^h \sum_{j=0}^{n-h} \left\{ \frac{1}{((n-h)-j)! \, j!} [t(1-u_0)]^j (1-t)^{(n-h)-j} \right\}$$

Умножаваме и разделяме с (n-h)! и ∴

$$= \frac{n!}{h! (n-h)!} (tu_0)^h \sum_{j=0}^{n-h} \left\{ \frac{(n-h)!}{((n-h)-j)! j!} [t(1-u_0)]^j (1-t)^{(n-h)-j} \right\}$$

Използваме формулата за биномното развитие:

$$(a+b)^m = \sum_{s=0}^m \left\{ \frac{m!}{s! (m-s)!} a^s b^{m-s} \right\}$$

$$\Rightarrow$$

$$\sum_{j=0}^{n-h} \left\{ \frac{(n-h)!}{((n-h)-j)! j!} [t(1-u_0)]^j (1-t)^{(n-h)-j} \right\} = [t(1-u_0) + (1-t)]^{n-h}$$
$$= (1-tu_0)^{n-h}$$

Оттук коефициентът на \mathbf{P}_h е:

$$\binom{n}{h}(tu_0)^h(1-tu_0)^{n-h} = B_{n,h}(tu_0)$$

Зависимостта м/у C(u) и частта ѝ върху [0,u] е:

$$\mathbf{C}_1(t) = \sum_{h=0}^n B_{n,h}(tu_0)\mathbf{P}_h = \mathbf{C}(tu_0)$$

 \therefore t се изменя в [0,1] и се описва $\mathbf{C}_1(t) \Leftrightarrow tu_0$ се мени в $[0,u_0]$ и се описва $\mathbf{C}(u)$ от $\mathbf{C}(0)$ до т. $\mathbf{C}(u_0)$.

Освен това, $\mathbf{C}_1(t) = \mathbf{C}(tu_0)$ и \therefore $\mathbf{C}_1(t)$ за $t \in [0,1]$ е частта на $\mathbf{C}(u)$ за $u \in [0,u_0]$.

Това доказва, че алгоритъмът за подразделяне на крива на Безие е коректен.

Повишаване степента на Безие крива

Необходимост от повишаване ст. на Безие крива *без* да се променя формата ѝ:

- Изравняване на ст. на 2 криви с цел по-лесно съед. с гладкост.
- По-голяма гъвкавост при правенето на дизайн на сложни форми.

Нека $\mathbf{C}(u)$ е Безие кр. от ст. n, деф. чрез $\Pi = \{\mathbf{P}_0, \, \mathbf{P}_1, \, \mathbf{P}_2, \, ..., \, \mathbf{P}_n\}$

и искаме да увеличим ст. ѝ до n+1 *без* промяна на формата ѝ.

 \Rightarrow трябва да нам. нов Π' от n+2 контр. точки.

Очевидно P_0 и P_n трябва да се запазят \therefore трябват n нови контр. точки.

Нека \mathbf{Q}_0 , \mathbf{Q}_1 , \mathbf{Q}_2 , ..., \mathbf{Q}_{n+1} — новите контр. точки и $\mathbf{Q}_0 = \mathbf{P}_0$ и $\mathbf{Q}_{n+1} = \mathbf{P}_n$. Другите са:

$$\mathbf{Q}_{i} = \frac{i}{n+1} \mathbf{P}_{i-1} + \left(1 - \frac{i}{n+1}\right) \mathbf{P}_{i}, \quad 1 \le i \le n$$

⇒ различава се от алг. дК

$$\frac{\mathbf{P}_{i-1}\mathbf{Q}_i}{\mathbf{P}_{i-1}\mathbf{P}_i} = 1 - \frac{i}{n+1} \neq \text{const}$$

Ефект на *отрязване на ъглите* при дадените контролни точки:

Напр. n = 4 и $\Pi = P_0 - P_1 - P_2 - P_3 - P_4$ – дадения контр. полигон

7 n + 1 = 5 и Q_1 , Q_2 , Q_3 , Q_4 − новите контр. т., а Q_1 − Q_2 − Q_3 − Q_4 − корекцията на Π

пунктираните отсечки се махат (т.е. отрязват се ъглите)

$$\Pi' = P_0 - Q_1 - Q_2 - Q_3 - Q_4 - P_4 -$$
 новия контр. полигон за ст. 5.

i	1 - i/(n+1)
1	0.8
2	0.6
3	0.4
4	0.2

Ст. повишение — k пъти

 \Rightarrow Π се увеличава с k нови контр. т. и Π' се премества по-близо до ${f C}$;

$$n \to \infty \Rightarrow \Pi^{(\infty)} \to \mathbf{C}$$

Коректност на алгоритъма за повишаване на степента

Нека $\mathbf{C}(u)$ от ст. n чрез $\Pi = \{\mathbf{P}_0, \, \mathbf{P}_1, \, ..., \, \mathbf{P}_n\}$, а $\mathbf{D}(u)$ от ст. n+1 е деф. чрез $\Pi' = \{\mathbf{Q}_0 = \mathbf{P}_0, \, \mathbf{Q}_1, \, \mathbf{Q}_2, \, ..., \, \mathbf{Q}_n, \, \mathbf{Q}_{n+1} = \mathbf{P}_n\}$. Ще нам. неизв. n контр. т. \mathbf{Q}_i .

$$C(u) = D(u) \implies C^{(k)}(u) = D^{(k)}(u), k = 1,2,3,...,n \implies C^{(k)}(0) = D^{(k)}(0) \implies Q_i$$

- 1) Ham. \mathbf{Q}_1 or $\mathbf{C}'(0) = \mathbf{D}'(0)$.
- 2) Доп., че \mathbf{Q}_1 , \mathbf{Q}_2 , ..., \mathbf{Q}_{k-1} са нам. и
- 3) Изп. тези резултати, за да нам. \mathbf{Q}_k .

Повт. процеса n пъти и пресм. всички нови контр. т.

Основният случай

1) Първ. произв. на **С**(*u*) е

$$\frac{\mathrm{d}}{\mathrm{d}u}\mathbf{C}(u) = \mathbf{C}'(u) = \sum_{i=0}^{n-1} B_{n-1,i}(u) \{n(\mathbf{P}_{i+1} - \mathbf{P}_i)\}$$

$$\Rightarrow$$
 C'(0) = $n(P_1 - P_0)$. Аналог. D'(0) = $(n+1)(Q_1 - Q_0) = (n+1)(Q_1 - P_0)$.

$$C'(0) = D'(0) \Rightarrow$$

$$n(\mathbf{P}_1 - \mathbf{P}_0) = (n+1)(\mathbf{Q}_1 - \mathbf{P}_0)$$

$$\mathbf{Q}_1 = \frac{1}{n+1} \mathbf{P}_0 + \left(1 - \frac{1}{n+1} \right) \mathbf{P}_1$$

Индукционната стъпка

- 2) Да доп., че $\mathbf{Q}_0 = \mathbf{P}_0$, \mathbf{Q}_1 , ..., \mathbf{Q}_{k-1} са коректно изч.
- 3) Трябва да се покаже, че \mathbf{Q}_k е също коректно намерена.

Това се прави чрез $\mathbf{C}^{(k)}(u) = \mathbf{D}^{(k)}(u)$.

$$\mathbf{C}(u) = \mathbf{D}(u) \Longrightarrow \mathbf{C}^{(k)}(0) = \mathbf{D}^{(k)}(0).$$

От тази връзка и известните $\mathbf{Q}_0 = \mathbf{P}_0$, \mathbf{Q}_1 , ..., \mathbf{Q}_{k-1} ще пресм. \mathbf{Q}_k .

$$\mathbf{C}^{(k)}(u) = \frac{n!}{(n-k)!} \sum_{i=0}^{n-k} B_{n-k,i}(u) \mathbf{D}_i^k$$

$$\mathbf{D}_i^k = \sum_{i=0}^k (-1)^{k-j} \binom{k}{j} \mathbf{P}_{i+j}$$

$$\mathbf{C}^{(k)}(0) = \frac{n!}{(n-k)!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \mathbf{P}_{j}$$

Аналог. за D(u) от ст. n + 1

$$\mathbf{D}^{(k)}(0) = \frac{(n+1)!}{(n-k+1)!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \mathbf{Q}_j$$

$$\mathbf{C}^{(k)}(0) = \mathbf{D}^{(k)}(0) \Rightarrow ... \Rightarrow$$

$$(n+1)\mathbf{Q}_{k} = (n-k+1)\mathbf{P}_{k} - (-1)^{k}k\mathbf{P}_{0}$$

$$+ \sum_{j=1}^{k-1} (-1)^{k-j} {k \choose j} [(n-k+1)\mathbf{P}_{j} - (n+1)\mathbf{Q}_{j}]$$

По индукц. хипотеза, за j от 0 до k - 1, \mathbf{Q}_j е изв. и се изч. чрез:

$$\mathbf{Q}_j = \frac{j}{n+1} \mathbf{P}_{j-1} + \left(1 - \frac{j}{n+1}\right) \mathbf{P}_j$$

Зам. го в израза за $(n+1)\mathbf{Q}_k \Rightarrow ... \Rightarrow$

$$(n+1)\mathbf{Q}_k = k\mathbf{P}_{k-1} + (n-k+1)\mathbf{P}_k$$

$$\mathbf{Q}_k = \frac{k}{n+1} \mathbf{P}_{k-1} + \left(1 - \frac{k}{n+1}\right) \mathbf{P}_k$$

.:. съгл. метода на матем. индукция окончателно установяваме, че

алгоритъмът за повишаване на степента е коректен.