

Redes de Computadores

Licenciatura em Engenharia Informática (LEI) Licenciatura em Engenharia Eletrotécnica e de Computadores (LEEC)

Atividade Laboratorial nº 4:

Configuração e Teste de uma Rede com 2 Routers

ÍNDICE

1. Int	rodução	
	rodução aos Routers	
2.1.	Para que serve um Router	
2.2.	Redes Locais e a sua Interligação	4
2.3.	Comparação de Modelos de Routers	4
2.4.	Hardware de um Router	5
2.5.	Portas e Interfaces de um Router	6
2.6.	Wan Interface Cards (WIC)	7
2.7.	Processo de Inicialização de um Router	8
2.8.	Routing Information Protocol (RIP)	
3. Rea	alização Prática	10
3.1.	Desenho e Configuração Base da uma Rede de Teste .	10
3.2.	Configuração Básica dos Routers	10
3.3.	Observação das Tabelas de Routing	12
3.4.	Configuração do Protocolo de Routing RIP	13
3.5.	Resumo dos comandos	
4. Rel	atório	14

1. Introdução

Este trabalho de laboratório tem como objetivo fundamental a familiarização com a operação e configuração de routers.

Num primeiro capítulo, de índole mais teórica, apresentam-se diversos aspetos relacionados com a utilidade, constituição e operação de um router.

Na parte prática, será configurada uma rede de 2 routers (cada um com a sua rede local). Configura-se nos routers o seu *hostname*, os endereços IP, as palavra-chave de consola, o acesso remoto, a mensagem de arranque e o protocolo *Routing Information Protocol* (RIP).

Depois da rede estar configurada, utiliza-se o comando **show ip route** para se observar o conteúdo da tabela de routing (*routing table*) dos routers.

2. Introdução aos Routers

Um router é um equipamento fundamental na rede local e nas redes de dados das operadoras de internet (ISP, do inglês *Internet Service Providers*). Neste capítulo vai se conhecer diversos aspetos relacionados com este equipamento, nomeadamente:

- Para que serve e como é utilizado;
- Comparação de diversos modelos/gamas;
- Descrição do hardware e portas existentes;
- Apresentação dos módulos de interface Wan Interface Cards (WIC)
- Descrição do processo de inicialização;
- Protocolo Routing Information Protocol (RIP)

2.1. Para que serve um Router

Um router (que em português se traduz para <u>encaminhador</u>) é um equipamento que <u>encaminha</u> pacotes de dados entre rede de computadores. Quando um pacote entra no router, o mesmo observa o seu endereço de destino e, consultando a sua **tabela de routing**, escolhe a melhor alternativa para efetuar o seu encaminhamento.

2.2. Redes Locais e a sua Interligação

Como se pode observar na Figura 1, os *routers* podem ser encontrados na fronteira de qualquer rede local e na infraestrutura de rede das operadoras de internet (ISP).

Figura 1 – Redes Locais ligadas à internet.

2.3. Comparação de Modelos de Routers

Na Figura 2 pode-se observar diversos modelos de *routers* empresariais da empresa CISCO Systems. A escolha do *router* mais adequado depende de diversos fatores, tais como:

- Capacidade de encaminhamento de dados;
- Número de portas de ligação;
- Tipos de portas de ligação (cabo UTP, fibra ótica, etc.);
- Existência de redundância de hardware;

O modelo ISR 1941 é um equipamento de gama baixa, utilizado por exemplo em pequenas empresas, sem requisitos especiais de utilização da rede de dados. Os modelos intermédios (ISR 2901 e ISR 4221) devem ser utilizados em redes que devem disponibilizar uma capacidade de encaminhamento elevada. Este requisito pode

aparecer com a dimensão da empresa, ou por exemplo, se são utilizadas soluções de trabalho baseadas em PCs e servidores na *cloud*. Finalmente, os equipamentos de gama alta (com o exemplo do ASR 9006), são utilizados quando se pretende aliar a elevada capacidade de encaminhamento, a uma elevada disponibilidade (graças à redundância de *hardware*) e a modularidade do equipamento.

Figura 2 – Routers empresariais CISCO. (a) CISCO ISR 1941; (b) CISCO ISR 2901; (c) CISCO ISR 4221; e (d) CISCO ASR 9006.

2.4. Hardware de um Router

Na Figura 3 pode-se observar o diagrama de blocos do *hardware* de um *router*. Este diagrama tem muitas similaridades com o diagrama de blocos de um computador.

Figura 3 – Diagrama de Blocos do Hardware de um Router.

Em seguida vai se descrever, de forma resumida, a função de cada um destes blocos:

- **CPU**: Unidade de Processamento do Sistema
- **Memória RAM**: Executa o IOS, guardo o ficheiro **running-config**, armazena as tabelas de *routing* e de ARP, armazena os pacotes de dados;
- Memória ROM: Responsável pelo arranque e teste (POST) do sistema;
- Memória FLASH: Armazena o IOS e outros ficheiros;
- Memória NVRAM: Guarda o ficheiro startup-config;
- Controlador: Circuito integrado dedicado que faz a interface entre as portas
 Ethernet, a porta de consola e os módulos WAN Interface Card (WIC), com o
 processador do router.

2.5. Portas e Interfaces de um Router

Na Figura 4 apresenta-se o painel traseiro do *router* da série 19xx da empresa CISCO Systems. Este router tem neste painel:

- 3 ranhuras (slots) para módulos WAN Interface Cards (WIC);
- 2 portas Ethernet (WAN e LAN)

- 2 ranhuras (slots) para cartões compact FLASH;
- 2 Portas de consola (RJ45 e USB);

Figura 4 – Painel traseiro de um router.

2.6. Wan Interface Cards (WIC)

Os routers possuem ranhuras (*slots*) para se encaixar módulos de interface denominadas de *WAN Interface Cards* (WIC). Existem cerca de 20 destes módulos, para ligação às mais diversas tecnologias de transmissão de dados. Na Figura 5 mostram-se 6 módulos WIC, a saber: switch de 4 portas Gigabit Ethernet, adaptador com uma ranhura *Small Form Pluggable* (SFP) para fibra ótica, interface para redes sem fios, modem LTE/GPRS, modem para cabo coaxial e modem ADSL.

Figura 5 – WAN Interface Cards (WIC).

2.7. Processo de Inicialização de um Router

O processo de inicialização de um *router* apresenta diversos passos, a saber:

- O sistema arranca com o programa da memória ROM e efetua o Power On Self Test (POST) do hardware;
- 2. O mesmo programa carrega e descomprime para a memória RAM, o IOS presente na memória FLASH;
- 3. Se não existir o IOS na memória FLASH, e tenha sido configurado no *router* um servidor de TFTP, o programa vai descarregar o IOS a partir do servidor de TFTP;
- A configuração do router (running config) é carregada a partir do ficheiro startup config, existente na memória NVRAM;
- Caso não exista o ficheiro startup config na memória NVRAM, e tenha sido configurado um servidor de TFTP no router, o programa vai descarregar o ficheiro de configuração a partir do servidor de TFTP.

2.8. Routing Information Protocol (RIP)

O protocolo *Routing Information Protocol* (RIP) é um dos protolocos de *routing* mais antigos. O RIP pertence à família dos denominados protocolos de *routing* dinâmicos. Neste tipo de protocolos, os *routers* trocam pacotes entre si, por forma a informar das redes locais existentes e como alcançá-las. A *tabela de routing* é assim construída de forma automática com base nas informações de *routing* recebidas.

O RIP apresenta diversas limitações, que fazem com que hoje em dia se utilize normalmente o protocolo *Open Shortest Path First* (OSPF). Das principais limitações do RIP, destacam-se:

- Utiliza como métrica para escolher um caminho alternativo, o número de saltos (hops), que corresponde ao número de routers pelo cominho;
- Na escolha de um caminho alternativo n\u00e3o considera a largura de banda das liga\u00f3\u00f3es (links) entre routers.
- O número máximo de saltos (hops) permitido é 15.

Neste trabalho de laboratório vai se configurar o RIP numa rede com 2 routers.

3. REALIZAÇÃO PRÁTICA

Em seguida, apresentam-se as atividades práticas a desenvolver neste laboratório.

Deve registar as capturas de ecrã pedidas, efetuar comentários às mesmas e responder às questões colocadas. Mais tarde, deve elaborar um relatório seguindo as recomendações dadas na última secção deste guia.

3.1. Desenho e Configuração Base da uma Rede de Teste

Desenhe no Packet Tracer a rede apresentada na Figura 1.

Figura 6 – Rede de Teste.

Configure os nomes (*display* e *hostname*) dos PCs e Switches. Configure os endereços IP, as máscaras de rede e os *default gateways* dos PCs, mostrados na Tabela 1.

Nome do Equipamento	Interface	Endereço IP	Máscara de Rede	Gateway
GAD	F0/0	192.168.0.1	255.255.255.0	
GAD	F0/1	192.168.1.1	255.255.255.0	
ВНМ	F0/0	192.168.2.1	255.255.255.0	
BUIN	F0/1	192.168.1.2	255.255.255.0	
PC1	NIC	192.168.0.10	255.255.255.0	192.168.0.1
PC2	NIC	192.168.2.10	255.255.255.0	192.168.2.1

Tabela 1 – Tabela de Endereçamento IP.

3.2. Configuração Básica dos Routers

Configure o router GAD utilizando os comandos:

router(config) # hostname GAD

```
! desligar o processo de procura remota de comandos desconhecidos
GAD(config) # no ip domain-lookup

GAD(config) # interface f0/0

GAD(config-if) # description Rede Local do Router GAD
GAD(config-if) # ip address 192.168.0.1 255.255.255.0

GAD(config-if) # no shutdown

GAD(config-if) # exit

GAD(config) # interface f0/1

GAD(config-if) # description Ligacao GAD-BHM

GAD(config-if) # ip address 192.168.1.1 255.255.255.0

GAD(config-if) # no shutdown

GAD(config-if) # no shutdown

GAD(config-if) # no shutdown
```

Dê o comando

```
GAD# show ip interface brief
```

Registe numa imagem e comente o resultado.

Configure a *password* de acesso local ao router, de acesso ao modo privilegiado e de acesso remoto por telnet, utilizando os comandos:

```
! configuração da palavra chave de acesso de consola

GAD(config) # line console 0

GAD(config-line) # password cisco

GAD(config-line) # login

GAD(config-line) # exit

! configuração da palavra chave de acesso ao modo privilegiado

GAD(config) # enable secret class

! configuração da palavra chave de acesso remoto por telnet

GAD(config) # line vty 0 15

GAD(config-line) # password cisco

GAD(config-line) # login

GAD(config-line) # exit

Configure uma mensagem inicial:

GAD(config) # banner motd &
```

Enter TEXT message. End with the character '&'.

 Registe imagens onde mostra a mensagem inicial, o acesso de consola, o acesso remoto por telnet e acesso ao modo privilegiado.

Utilize o comando ping para confirmar que o PC 1 tem ligação IP ao router GAD.

 Registe uma imagem de confirmação do sucesso do ping. Em caso de falha do ping, resolva o problema.

Realize a configuração do router BHM e registe no relatório todos os comandos necessários.

Teste a ligação IP do PC 2 ao router BHM.

 Registe uma imagem de confirmação do sucesso do ping. Em caso de falha do ping, resolva o problema.

3.3. Observação das Tabelas de Routing

Observe a tabela de routing do router GAD; utilizando o comando:

GAD# show ip route

Registe numa imagem o conteúdo da tabela de routing.

Observe a tabela de routing do router BHM; utilizando o comando:

BHM# show ip route

Registe numa imagem o conteúdo da tabela de routing.

Quais as redes conhecidas?

De que tipo são estas redes?_____

Tente fazer ping do PC1 ao PC2.

Registe uma imagem com o resultado do ping.

Por que razão o ping não é bem-sucedido?

3.4. Configuração do Protocolo de Routing RIP

Nesta secção vai se configurar o protocolo de routing RIP. A configuração a realizar é a seguinte:

```
GAD(config) # router rip

GAD(config-router) # network 192.168.0.0

GAD(config-router) # network 192.168.1.0

GAD(config-router) # exit

GAD(config) # exit

BHM(config) # router rip

BHM(config-router) # network 192.168.1.0

BHM(config-router) # network 192.168.2.0

BHM(config-router) # exit

BHM(config-router) # exit
```

Observe novamente as tabelas de routing dos routers GAD e BHM.

Registe numa imagem o conteúdo das tabelas de routing.

Como se pode saber que o protocolo RIP está activo?

Tente fazer ping do PC1 ao PC2.

• Registe uma imagem com o resultado do ping.

O ping é bem-sucedido?

3.5. Resumo dos comandos

Elabore uma lista com os comandos utilizados neste laboratório, indicando qual a função de cada comando

Comando	Função

4. RELATÓRIO

Deve elaborar um relatório sucinto do trabalho realizado no laboratório. O Relatório deve ser constituído por:

- uma breve introdução;
- uma descrição da realização prática, incluindo as imagens pedidas e respondendo às questões levantadas no enunciado;
- uma secção de conclusões.

Não deve incluir descrições teóricas sobre os temas/assuntos tratados. Utilize o modelo (*template*) disponível no Moodle.

Crie um ficheiro compactado (extensão ZIP ou RAR) onde coloca o **relatório** (em formato pdf) e o **ficheiro** do Packet Tracer. Será esse ficheiro compactado que submeterá no Moodle.

Deve entregar o relatório no Moodle, no prazo de 1 semana em relação à realização da conclusão do trabalho no laboratório. Por cada semana de atraso são descontados 2 valores na nota do relatório.

Este relatório deve ter uma dimensão máxima de 8 páginas, excluindo a capa.