

蓝牙mesh开发者培训

蓝牙技术联盟开发者关系经理 任凯

微信

音频传输

- 无线耳机
- 无线扬声器
- 车载信息娱乐系统

点对点

1:1

蓝牙BR/EDR

数据传输

- 体育和健身装置
- 医疗和健康装置
- 周边装置和配件

点对点

1:1

位置服务

- 地标信息
- 导航
- 物品及资产追踪

广播

1:m

设备层网络

- 控制系统
- 监控系统
- 自动化系统

mesh

m:m

低功耗蓝牙 Bluetooth Low Energy (LE)

探索、创新、开拓

开发者需要了解的启动配置相关基本 概念

- 可能支持PB-ADV,或可能支持PB-GATT,或两者均支持;
- 采用PB-GATT的启动配置设备无法对 采用PB-ADV的新设备进行启动配置, 反之亦然;
- PB-GATT采用L2CAP进行封包的分片 与重组;

经Provisioning之后,被启

动配置的节点拥有:

- NetKey;
- 密钥索引, NetKey索引;
- Flags;
- IVI, IV Index;
- Unicast Address;

开发者需要知晓:

- Output OOB size
- Output OOB action;
- Input OOB size
- Input OOB action;

工业级安全

蓝牙mesh, 工业级安全性

- •使用256位椭圆曲线和OOB认证对节点进 行认证;
- •利用AES-128 CCM对消息进行保护
- •在网络层和应用层分别进行加密和认证
- •具有添加黑名单功能
- 具有临时访客接入功能

这意味着什么?

能够针对以下攻击提供保护:

- •暴力攻击
- •中继攻击
- •中间人攻击
- •垃圾桶攻击
- •访客攻击

Provisioner

启动配置

- Raspberry Pi 3;
- BlueZ v5.49;
- 重新编译的内核;
- SSH 连接;
- meshctl 作为启动配置工具;

新设备

- micro:bit 板作为新设备请求 加入mesh网络;
- 固件基于Zephyr项目;
- OOB 输出位数: 4;
- OOB 动作: 数值或字母数值 混合编制

探索、创新、开拓

element/model

Primary Element

Configuration Server Model

Health Server Model

Generic OnOff Server Model

Vendor Model ...

节点

Primary Element

Configuration Server Model

Health Server Model

Generic OnOff Server Model

Secondary Element

Health Server Model

Generic OnOff Server Model

Vendor Model ...

Secondary Element

Health Server Model

Generic OnOff Server Model

Vendor Model ...

节点

Primary Element

Configuration Server Model

Health Server Model

Generic OnOff Server Model

Secondary Element

Health Server Model

Generic OnOff Client Model

Vendor Model ...

Secondary Element

Health Server Model

Generic OnOff Client Model

Vendor Model ...

Primary element

Configuration Server Model

Health Server Model

Generic OnOff Server Model

Vendor Model ...

节点

Switch Models

Generic On/Off Client

State Binding

Light Models

Generic On/Off Server

Light Lightness Server

Light HSL Server

Light LC Server

Scene Server

Time Server

Sensor Models

Sensor Server

状态: 开/关 = 开

消息(message)和状态(state)

- 节点通过发送消息实现彼此间的相互通信
- 节点具有能够反映其状态的状态值(例如 "开"或"关")
- 访问消息基于状态值进行操作
 - 设置 (SET) 状态变更
 - 获取(GET) 检索状态值
 - **状**态(STATUS) 通报当前状态

Access message帧结构

CRC

(3)

AppKey

AppKey列表

索引	AppKey
0x00	KEY0
0x01	KEY1
0x02	KEY2
0x03	KEY3
n	KEYn

针对开发者的贴士:

- 应用密钥是用于确保upper传输 层的通信安全
- AppKey添加/更新/删除/状态/获取/列表和AppKey&Model绑定 是通过Configuration Models执 行的;

AppKey & Model binding

暂存的 信息

"设置温度阈值"

发送至: 传感器 "设置温度阈值"

开发者需要了解的友谊相关基本概念:

- □ Friend需要RAM来暂存消息;
- □ Friend节点支持的低功耗节点越多、消耗的RAM也越多;
- RAM 消耗 = 低功耗节点计数 * 暂存buffer数量 * buffer的长度
- □ 知道何种中断源能够在低功耗节点休眠 时将其唤醒;
- □ 知道有多少低功耗模式支持,并选择合 理的模式;
- □ 知道从休眠到待机需要多长时间;

探索、创新、开拓

- 无需经provisioning配置;
- 预配置AppKey、NetKey和DevKey;
- 预配置Unicast Address
- 通过按下按钮B,循环订阅不同的组播 地址(Group Address)
 - 0xC000 "卧室",
 - 0xC001 "起居室",
 - 0xC002 "餐厅",
 - 0xC003 "车库"

micro:bit

USB大容量存储设备

Windows

盘符,如 D:¥

macOS

出现于"Finder - 设备"部分

安装于 /Volumes/MICROBIT

探索、创新、开拓

2018年蓝牙市场最新资讯

手机、平板电脑 及个人电脑

智能楼宇

音频及娱乐

智能工业

互联设备

智慧城市

汽车

智能家居

白皮书:选择蓝牙mesh硬件之前需要了解的三

官方微信

官方微博

谢谢

Thank you!