Quotients, dual spaces

Professor K. A. Ribet

October 3, 2025

Announcements

The problems in §3D have been moved to HW #6. The bonus problem has not budged.

My office hours are Mondays 1:30–3 PM and Thursday 10:30 AM–noon

Next to last Foothill DC lunch with Prof. Ribet is *today* at noon

U.S. Cardiologist Warns Aging Seniors About Blueberries for Breakfast

Quotient spaces

If U is a subspace of V, we have defined a vector space V/U along with a surjective map ("quotient map")

$$\pi: V \rightarrow VU$$
.

If W is a vector space, there is a natural linear map $\mathcal{L}(V/U,W) \to \mathcal{L}(V,W)$, $f: S \longmapsto S \circ \pi$. A linear map $V \to W$ of the form $S \circ \pi$ is said to *factor through* π .

Proposition

The function f is an injective linear map $\mathcal{L}(V/U,W) \to \mathcal{L}(V,W)$ whose image is the set of linear maps $V \to W$ whose restriction to U is 0.

A paraphrase: a linear map $V \to W$ factors through π if and only if its null space contains U.

Quotients

Proposition

The function f is an injective linear map $\mathcal{L}(V/U,W) \to \mathcal{L}(V,W)$ whose image is the set of linear maps $V \to W$ whose restriction to U is 0.

"A linear map $V \to W$ factors through π if and only if its null space contains U."

On Wednesday, we proved this. If $T:V\to W$ is identically 0 on U, then $T=S\circ\pi$, where $S:V/U\to W$ is defined by the formula S(v+U)=Tv. That Tu=0 for all $u\in U$ ensures that S is well defined. So we're in good shape, and the class on Wednesday ended at a good breakpoint.

The range and null space of S

Let $T: V \to W$ be a linear map and let $U \subseteq V$ be a subspace that is *contained in* null T. Let S be the unique linear map $V/U \to W$ such that $T = S \circ \pi$.

Proposition

The range of S is the range of T.

The range of S is the set of all S(v + U), but S(v + U) = Tv. Thus the range of S consists of all vectors $Tv \in W$ and is therefore the range of T.

Proposition

The null space of *S* is the quotient (null T)/U.

The null space of S is the set of all $v + U \in V/U$ such that S(v + U) = 0. This is the set of all v + U for which Tv = 0, i.e., the set of all v + U with $v \in \text{null } T$. This is the quotient (null T)/U of the proposition.

LADR's map \tilde{T}

A slightly different perspective. Start with a linear map

T:V
ightarrow W, and let $U=\operatorname{null} T.$ Then $T=S\circ\pi$ for some

 $S: V/(\operatorname{null} T) \to W.$

In LADR, the map S in this situation is called \tilde{T} .

Proposition (3.107)

If U = null T, the map $\tilde{T}: V/U \to W$ is injective. Its range is the range of T.

This follows from our more general discussion, since the null space of \tilde{T} is (null T)/U = (null T)/(null T) = 0.

Functoriality

Starting with $\pi: V \to V/U$, we produced and studied a linear map $\mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$.

More generally, if $\pi: V \to X$ is some linear map (not necessarily surjective), there's an induced linear map

$$\mathcal{L}(X, W) \to \mathcal{L}(V, W), \qquad S \mapsto S \circ \pi.$$

Note that the displayed map goes in the opposite direction from π in the sense that π goes from $V \to X$ and the induced map goes from an object related to X to an object related to V.

Denizens of Evans Hall would write π^* for the induced map and say that $\mathcal{L}(\bullet,W)$ depends *contravariantly* on the first argument

•. Remember that "contra" means "against or contrary to"; mathematicians interpret this as "opposite of."

Functoriality

Suppose that α is a linear map $W \to Y$. Then composition with α gives rise to a linear map $\mathcal{L}(V, W) \to \mathcal{L}(V, Y)$:

$$\alpha_*: \mathcal{L}(V, W) \to \mathcal{L}(V, Y), \qquad T \mapsto \alpha \circ T.$$

The Evans folk like to say that $\mathcal{L}(V, \bullet)$ is covariant in the second variable.

Dual space

If V and W are vector spaces, we live happily with $\mathcal{L}(V,W)$. It's a space of linear maps. It's a space of $m \times n$ matrices. We're totally comfortable.

Make the choice $W = \mathbf{F}$. It's a special case, so we're still comfortable. It's a space of $1 \times n$ matrices. Chill.

Now say that $\mathcal{L}(V, \mathbf{F})$ is the *dual space* V'. Suddenly we're uneasy.

Refer to the linear maps $V \to \mathbf{F}$ in $\mathcal{L}(V, \mathbf{F})$ as *linear functionals*. Our palms are sweaty.

Use Greek letters like φ for the linear maps $W \to \mathbf{F}$ and we're quaking.

Welcome to §3F.

Dual space

The vector space dual to a space V is $V' = \mathcal{L}(V, \mathbf{F})$. If V has dimension n, V' has dimension $1 \cdot n = n$.

Suppose that V has a basis v_1, \ldots, v_n . Is there a natural basis of V' that results from v_1, \ldots, v_n ?

This question becomes *easier* if we replace **F** by W and say that w_1, \ldots, w_m is a basis for W. Then $\mathcal{L}(V, W)$ is the space of $m \times n$ matrices; it has a basis consisting of the matrices with a 1 in the kth row and ℓ th column and 0s elsewhere (for $k = 1, \ldots, m$ and $\ell = 1, \ldots, n$). The matrix with a 1 in place ℓ, k and 0s elsewhere represents the linear map sending v_k to w_ℓ and all other basis vectors of V to 0.

Dual space

Again: a basis of $\mathcal{L}(V, W)$ is given by the linear maps sending v_k to w_ℓ and all other basis vectors of V to 0. There is one for each k between 1 and n and each ℓ between 1 and m.

Now take $W = \mathbf{F}$ and use the list of length one "1" as a basis of \mathbf{F} . Then $V' = \mathcal{L}(V, \mathbf{F})$ has a basis consisting of the n different linear maps gotten by sending some v_k to 1 and all other v_j to 0. If k is between 1 and n, the linear map taking v_k to 1 and the other basis vectors to 0 is called φ_k .

The linear maps $\varphi_1, \varphi_2, \ldots, \varphi_n$ form a basis of $\mathcal{L}(V, \mathbf{F})$ that is called the "dual basis"; it's the basis dual to v_1, \ldots, v_n .

Dual basis

Again, if V has dimension n, $V' = \mathcal{L}(V, \mathbf{F})$ also has dimension n.

If v_1, \ldots, v_n is a basis of $V, \varphi_1, \ldots, \varphi_n$ is the basis of V' that is dual to v_1, \ldots, v_n . Here's a nifty formula:

$$\varphi_k: \mathbf{v}_j \mapsto \begin{cases} 1 & \text{if } j = k; \\ 0 & \text{if } j \neq k. \end{cases}$$

A more compact version:

$$\varphi_k(\mathbf{v}_j) = \delta_{kj}.$$

Dual basis gives coordinates

Now suppose that v is a vector in V. Then there are unique scalars $\lambda_1, \ldots, \lambda_n$ such that $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$.

Formula (3.114)

For k = 1, ..., n, $\lambda_k = \varphi_k(v)$.

Compute to see this:

$$\varphi_k(\mathbf{v}) = \varphi_k(\sum_j \lambda_j \mathbf{v}_j) = \sum_j \lambda_j \varphi_k(\mathbf{v}_j) = \sum_j \lambda_j \delta_{kj} = \lambda_k.$$

Special case where $V = \mathbf{F}^n$

If $V = \mathbf{F}^n$ and the basis is the standard basis e_1, \dots, e_n , then the λ_j for a vector $v = (x_1, \dots, x_n)$ are the coordinates x_1, x_2 , etc. Thus

$$\varphi_k((x_1,\ldots,x_n))=x_k$$

for all k = 1, ..., n.

Dual map

If $T: V \to W$ is a linear map, there is an induced linear map

$$T^*: \mathcal{L}(W, \mathbf{F}) \to \mathcal{L}(V, \mathbf{F}), \qquad \psi \in \mathcal{L}(W, \mathbf{F}) \longmapsto \psi \circ T \in \mathcal{L}(V, \mathbf{F}).$$

This map is called T' and is said to be the map *dual to T*. We write

 $T':W'\to V'$.

Dual maps

Axler lists a number of basic properties of dual maps (3.120 in LADR):

- (S + T)' = S' + T' for $S, T \in \mathcal{L}(V, W)$;
- $(\lambda T)' = \lambda T'$ for $T \in \mathcal{L}(V, W)$;
- (ST)' = T'S' for $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, X)$.

These are all things that you should check. For example, (ST)' is the map from X' to V' taking $\varphi \in \mathcal{L}(X, \mathbf{F})$ to $\varphi \circ (ST)$. But

$$\varphi \circ (ST) = (\varphi \circ S) \circ T = T'(\varphi \circ S) = T'(S'\varphi).$$

Matrix of dual map

Let $T: V \to W$ be a linear map with V and W finite-dimensional. Choose bases v_1, \ldots, v_n and w_1, \ldots, w_m of V and W. The matrix of T relative to these bases is

$$\mathcal{M}(T)=(a_{ij}), \quad Tv_j=\sum_{i=1}^m a_{ij}w_i \text{ for } j=1,\ldots n.$$

The dual of T is the map $T': W' \to V'$, $\psi \mapsto \psi \circ T$.

Let $\varphi_1, \ldots, \varphi_n$ be the basis of V' dual to v_1, \ldots, v_n . Analogously, let ψ_1, \ldots, ψ_m be the basis of W' dual to w_1, \ldots, w_m .

Then T and T' are represented by matrices $\mathcal{M}(T)$ and $\mathcal{M}(T')$ of dimensions $m \times n$ and $n \times m$, respectively.

Formula

The matrices $\mathcal{M}(T)$ and $\mathcal{M}(T')$ are transposes of each other.

Matrix of dual map

Formula

The matrices $\mathcal{M}(T)$ and $\mathcal{M}(T')$ are transposes of each other.

If
$$\mathcal{M}(T')=(b_{ij})$$
, then $T'(\psi_j)=\psi_jT=\sum_i b_{ij}\varphi_i$ for each

j = 1, ..., m. The formula to be proved is $b_{ij} = a_{ji}$ for each i and j. I.e., the formula states (for each j)

$$\psi_j T \stackrel{?}{=} \sum_i a_{ji} \varphi_i.$$

The two sides of the desired equality are linear maps $V \to W$. A key fact is that two linear maps $V \to W$ are equal if they agree on the basis vectors v_1, \ldots, v_n .

Thus the formula is equivalent to the equality

$$\psi_j(Tv_k) \stackrel{?}{=} \sum_i a_{ji} \varphi_i(v_k)$$

for all j = 1, ..., m and k = 1, ..., n.

Matrix of dual map

Formula

The matrices $\mathcal{M}(T)$ and $\mathcal{M}(T')$ are transposes of each other.

The left-hand side of the equality to be verified is

$$\psi_j(\sum_i a_{ik} w_i) = \sum_i a_{ik} \psi_j(w_i) = a_{jk},$$

the point being that $\psi_j(w_i)$ is 0 except when i = j, when it's 1.

The right-hand side $\sum_{i} a_{ji} \varphi_i(v_k)$ also collapses to a single term, and for the same reason: $\varphi_i(v_k)$ is 0 except when i = k (when it's 1). The single term is a_{ik} , as for the left-hand side.