## A function MRI mind-reading game

Charles Zheng and Yuval Benjamini

Stanford University

March 28, 2015

#### Section 1

### Introduction

### Functional MRI



### Functional MRI

| Stimuli x                                                       | Response y                                                 |
|-----------------------------------------------------------------|------------------------------------------------------------|
| $ \begin{pmatrix} 1.0 \\ 0 \\ 3.0 \\ 0 \\ -1.2 \end{pmatrix} $  | $\begin{pmatrix} 1.2 \\ 0 \\ -1.8 \\ -1.2 \end{pmatrix}$   |
| $ \begin{pmatrix} 0 \\ -2.2 \\ -3.1 \\ 4.5 \\ 0 \end{pmatrix} $ | $\begin{pmatrix} -1.2 \\ -1.9 \\ 0.5 \\ 0.6 \end{pmatrix}$ |

# **Encoding vs Decoding**

- Encoding: predict y from x.
- Decoding: reconstruct x from y (mind-reading).

# A mind-reading game: Classification



# A mind-reading game: Classification



# A mind-reading game: Identification



### Test Data (new images!)



### Statistical formulation I

#### Training data.

- Given training classes  $S_{\text{train}} = \{ \text{train}:1, \dots, \text{train}:k \}$  where each class train: i has features  $x_{\text{train}:i}$ .
- For  $t = 1, ..., T_{train}$ , choose class label  $z_{train:t} \in S_{train}$ ; generate

$$y_{\mathsf{train}:t} = f(x_{z_{\mathsf{train}:t}}) + \epsilon_t$$

where f is an unknown function, and  $\epsilon_t$  is i.i.d. from a known or unknown distribution.

#### Test data.

- Given test stimuli  $S_{\text{test}} = \{\text{test:}1,\dots,\text{test:}\ell\}$  with features  $\{x_{\text{test:}1},\dots,x_{\text{test:}\ell}\}$
- Task: for  $t = 1, ..., T_{\mathsf{test}}$ , predict  $\hat{z}_{\mathsf{test}:t} \in \mathcal{S}_{\mathsf{train}}$  from  $y_{\mathsf{test}:t}$ ; try to minimize misclassification rate

#### Statistical formulation II

- f is an unknown function
- P is a known or unknown distribution over image features
- Training data. Draw  $x_{\text{train}:i} \sim P$  for i = 1 hdots, k.
- Test data. Draw  $x_{\text{train}:i} \sim P$  for  $i = 1 \text{ hdots}, \ell$ .
- Theoretical question: Analyze average misclassification rate when classes are generated this way

## Toy example I



#### Model.

- Features x are one-dimensional real numbers, as are responses y. Parameter  $\beta$  is also a real number.
- Model is linear:  $y \sim N(x\beta, \sigma_{\epsilon}^2)$
- ullet Suppose we estimated  $\hat{eta}$  from training data.



## Toy example I: Test data



- Generate features  $x_{\text{test}:1}, \ldots, x_{\text{test}:\ell}$  iid  $N(0, \sigma_x^2)$ .
- Hidden labels  $z_{\text{test}:t}$  are iid uniform from  $S_{\text{train}}$ . Generate  $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$
- ullet Estimate  $\hat{z}_{\mathsf{test}:t}$  by maximum likelihood assuming  $\hat{eta}$  is correct. Thus:

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} (\hat{\beta} x_{z} - y_{\text{test}:t})^{2}$$