References: Organized by chapter

This section lists the references segmented by chapter. Note that the book's scripts can be downloaded from the <u>GitHub repository</u> and all code contained within this repository are licensed under the Apache 2.0 license.

Frequently Asked Questions (FAQs)

Core reference:

1. Voicebook repository (GitHub). https://github.com/jim-schwoebel/voicebook

Introduction: Defining Voice Computing

Figure I.2.1: Timeline of Voice Computing: Historical Periods.

2. Figure drawn in sketch.io by author.

Table I.2.1: History of Voice Computing.

- 3. Hyoid bone. https://en.wikipedia.org/wiki/Hyoid bone
- 4. Hyoid bone. https://www.livescience.com/7468-hyoid-bone-changed-history.html
- 5. Language. https://en.wikipedia.org/wiki/Language
- 6. Musical notation. https://en.wikipedia.org/wiki/Musical notation
- 7. Printing press. https://en.wikipedia.org/wiki/Printing press
- 8. Wolfgang von Kempelen's speaking machine. https://en.wikipedia.org/wiki/Wolfgang von Kempelen%27s speaking machine
- 9. Luigi Aloisio Galvani. https://en.wikipedia.org/wiki/Luigi Galvani
- 10. Music box. https://en.wikipedia.org/wiki/Music box
- 11. Charles Wheatsone. https://en.wikipedia.org/wiki/Charles Wheatstone
- 12. Phonautograph. https://en.wikipedia.org/wiki/Phonautograph
- 13. Player piano. https://en.wikipedia.org/wiki/Player piano#/media/File:Pianola1.JPG
- 14. Alexander Graham Bell. https://en.wikipedia.org/wiki/Alexander Graham Bell
- 15. Phonograph. https://en.wikipedia.org/wiki/Phonograph
- 16. Carbon Microphone. https://en.wikipedia.org/wiki/Carbon microphone
- 17. David Edward Hughes. https://en.wikipedia.org/wiki/David Edward Hughes
- 18. Thomas Edison. https://en.wikipedia.org/wiki/Thomas Edison
- 19. Emil Berliner. https://en.wikipedia.org/wiki/Emile_Berliner
- 20. Santiago Ramón y Cajal.
 - https://en.wikipedia.org/wiki/Santiago_Ram%C3%B3n_y_Cajal
- 21. Cajal drawings.
 - https://hyperallergic.com/361875/a-19th-century-illustrated-tour-through-the-brain-goes-on-tour/
- 22. Valdemar Poulsen. https://en.wikipedia.org/wiki/Valdemar Poulsen
- 23. Sound film. https://en.wikipedia.org/wiki/Sound_film
- 24. Microphone. https://en.wikipedia.org/wiki/Microphone
- 25. Nathaniel Baldwin. https://en.wikipedia.org/wiki/Nathaniel Baldwin
- 26. Western Electric. https://en.wikipedia.org/wiki/Western Electric
- 27. Chester Williams Rice. https://en.wikipedia.org/wiki/Chester Williams Rice
- 28. Edward W. Kellogg. https://en.wikipedia.org/wiki/Edward W. Kellogg
- 29. The Jazz Singer. https://en.wikipedia.org/wiki/The Jazz Singer
- 30. Ribbon Microphone. https://en.wikipedia.org/wiki/Ribbon_microphone

- 31. Magnetic Tape. https://en.wikipedia.org/wiki/Magnetic tape
- 32. Past, present, and future of speech recognition technology.

 https://medium.com/swlh/the-past-present-and-future-of-speech-recognition-technology-cf13c179aaf
- 33. Koss Corporation. https://en.wikipedia.org/wiki/Koss Corporation
- 34. IBM Shoebox. https://en.wikipedia.org/wiki/IBM Shoebox
- 35. Compact Cassette. https://en.wikipedia.org/wiki/Compact_Cassette
- 36. Electret microphone. https://en.wikipedia.org/wiki/Electret_microphone
- 37. Dynamic microphone. https://en.wikipedia.org/wiki/Microphone#Dynamic microphone
- 38. Sony. https://en.wikipedia.org/wiki/Sony
- 39. Bop Till You Drop. https://en.wikipedia.org/wiki/Bop_till_You_Drop
- 40. Personal computer. https://en.wikipedia.org/wiki/Personal computer
- 41. Philips. https://en.wikipedia.org/wiki/Philips
- 42. Silicon microphone. https://en.wikipedia.org/wiki/Microphone
- 43. PlainTalk. https://en.wikipedia.org/wiki/PlainTalk
- 44. Ray Kurzweil. https://en.wikipedia.org/wiki/Ray Kurzweil
- 45. IBM Tangora. https://en.wikipedia.org/wiki/Timeline of speech and voice recognition
- 46. James McClelland (psychologist). https://en.wikipedia.org/wiki/James_L._McClelland
- 47. David Rumelhart. https://en.wikipedia.org/wiki/David_Rumelhart
- 48. Worlds of Wonder (toy company). https://en.wikipedia.org/wiki/Worlds_of_Wonder_(toy_company)
- 49. Digital Compact Cassette. https://en.wikipedia.org/wiki/Digital Compact Cassette
- 50. The internet. https://en.wikipedia.org/wiki/Internet
- 51. Nuance Communications. https://en.wikipedia.org/wiki/Nuance Communications
- 52. Python programming language. https://en.wikipedia.org/wiki/Python_(programming_language)
- 53. Guido van Rossum. https://en.wikipedia.org/wiki/Guido_van_Rossum
- 54. WorldWideWeb. https://en.wikipedia.org/wiki/WorldWideWeb
- 55. Tim Berners-Lee. https://en.wikipedia.org/wiki/Tim Berners-Lee
- 56. Sound eXchange (SoX). https://en.wikipedia.org/wiki/SoX
- 57. Waveform Audio File Format (WAV). https://en.wikipedia.org/wiki/WAV
- 58. CMU Sphinx. https://en.wikipedia.org/wiki/CMU Sphinx
- 59. DVD. https://en.wikipedia.org/wiki/DVD
- 60. FLAC. https://en.wikipedia.org/wiki/FLAC
- 61. FFmpeg. https://en.wikipedia.org/wiki/FFmpeg
- 62. NLTK. https://github.com/nltk/nltk
- 63. Sound card. https://en.wikipedia.org/wiki/Sound card
- 64. iTunes Store. https://en.wikipedia.org/wiki/ITunes Store
- 65. Skype. https://en.wikipedia.org/wiki/Skype
- 66. Blue ray disks. https://en.wikipedia.org/wiki/Blu-ray
- 67. Google translate. https://en.wikipedia.org/wiki/Google Translate
- 68. National security agency. https://en.wikipedia.org/wiki/National Security Agency

- 69. GOOG-411. https://en.wikipedia.org/wiki/GOOG-411
- 70. Scikit-learn. https://en.wikipedia.org/wiki/Scikit-learn
- 71. David Cournapeau. https://en.wikipedia.org/wiki/David_Cournapeau
- 72. Mini and micro-cards. https://en.wikipedia.org/wiki/Secure Digital#Micro
- 73. Google Chrome. https://en.wikipedia.org/wiki/Google_Chrome
- 74. Voice search. https://en.wikipedia.org/wiki/Voice_search
- 75. Kaldi. https://en.wikipedia.org/wiki/Kaldi
- 76. Kaldi website. http://kaldi-asr.org/
- 77. Siri. https://en.wikipedia.org/wiki/Siri
- 78. Opus (audio format). https://en.wikipedia.org/wiki/Opus (audio format)
- 79. PS4. https://en.wikipedia.org/wiki/PlayStation_4
- 80. Amazon Alexa. https://en.wikipedia.org/wiki/Amazon Alexa
- 81. Cortana. https://en.wikipedia.org/wiki/Cortana
- 82. Tensorflow. https://en.wikipedia.org/wiki/TensorFlow
- 83. Speech Recognition. https://en.wikipedia.org/wiki/Speech_recognition
- 84. Librosa library.
 - http://conference.scipy.org/proceedings/scipy2015/pdfs/brian mcfee.pdf
- 85. History of Microphones. https://thoughtco.com/history-of-microphones-1992144.
- 86. History of recording. http://www.charm.rhul.ac.uk/history/p20_4_1.html
- 87. Liquid and condenser microphones.
 - https://microphone238.weebly.com/liquid--condenser-microphones.html
- 88. How MEMS microphones work.
 - https://www.edn.com/design/analog/4430264/Basic-principles-of-MEMS-microphones-
- 89. Number of android users.
 - https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
- 90. The Machines that Learned to Listen.
 - http://www.bbc.com/future/story/20170214-the-machines-that-learned-to-listen
- 91. From Audrey to Siri. http://www.icsi.berkeley.edu/pubs/speech/audreytosiri12.pdf
- 92. Timeline of speech and voice recognition.
 - https://en.wikipedia.org/wiki/Timeline of speech and voice recognition
- 93. Speech recognition before Siri and what is to come.
 - https://www.androidauthority.com/speech-recognition-life-before-siri-and-whats-to-come-67994/
- 94. PyAudioAnalysis.
 - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144610
- 95. Keras. https://en.wikipedia.org/wiki/Keras
- 96. AirPods. https://en.wikipedia.org/wiki/AirPods
- 97. Google Assistant. https://en.wikipedia.org/wiki/Google Assistant
- 98. Wavenet. https://en.wikipedia.org/wiki/WaveNet
- 99. Homepod. https://en.wikipedia.org/wiki/HomePod

Figure 1.3.1: Smart speaker market.

100. Figure taken from Voicebot.ai.

https://voicebot.ai/2018/06/03/u-s-smart-speaker-market-share-apple-debuts-at-4-1-a mazon-falls-10-points-and-google-rises/

Table I.3.1: Industries Affected by Voice Computing.

- 101. Voice computing growth rates. Taken from 4-traders and Businesswire.
- 102. Machine learning CAGR / market size. Taken from Healthitanalytics.com
- 103. Voice assistants CAGR/ market size. Taken from Marketresearchfuture.
- 104. Connected cars CAGR / market size. Taken from Globalnewswire.
- 105. Call centers CAGR / market size. Taken from PRNewswire.
- 106. Speech recognition CAGR / market size. Taken from <u>Statistica</u> and <u>MarketsandMarkets</u>.
- 107. Voice biometrics CAGR / market size. Taken from Technavio and Techsciresearch.
- 108. Digital health CAGR / market size. Taken from Staista
- 109. Voice messaging CAGR / market size. Taken from IDC.
- 110. Text to speech software CAGR / market size. Taken from <u>MarketsandMarkets</u> and <u>MarketsandMarkets</u>.
- 111. Smart Agriculture CAGR / market size. Taken from Zion Market Research.
- 112. Cloud computing infrastructure CAGR / market size. Taken from <u>Forbes</u> and <u>Marketsandmarkets</u>.
- 113. Connected home CAGR / market size. Taken from Statista.
- 114. Digital logistics CAGR / market size. Taken from PRNewswire.
- 115. Recruiting CAGR / market size. Taken from <u>Statista</u> and <u>PRNewswire.</u>
- 116. Interactive Voice Response CAGR / market size. Taken from <u>MarketsandMarkets</u> and <u>Marketresearchfuture</u>.
- 117. Market research CAGR / market size. Taken from Statista and Ibisworld.
- 118. Radio broadcast advertising CAGR / market size. Taken from PwC.

Figure I.4.1: Data scientists and degree requirements.

119. Data scientists and degree requirements.

https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists-will-soar-28-by-2020/#24eb12f47e3b

Other references

120. Best graduate degree CS programs.

https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings

121. <u>Eric Schrock</u>. The Future of Enterprise Voice Computing. <u>https://medium.com/@eschrock/the-future-of-enterprise-voice-computing-890f28763c6</u>

- 122. Voice computing growth stats. Taken from <u>4-traders</u> and <u>Businesswire</u>.
- 123. Past, present, and future of speech recognition technology.

https://medium.com/swlh/the-past-present-and-future-of-speech-recognition-technology-cf13c179aaf

Chapter 1: Fundamentals

Chapter 1: Voice Computing Fundamentals

Table 1.1.1: List of microphones and their utility.

- 124. Condenser microphone. https://en.wikipedia.org/wiki/Condensor_microphone
- 125. Dynamic microphone. https://en.wikipedia.org/wiki/Dynamic microphone
- 126. Ribbon microphone. https://en.wikipedia.org/wiki/Ribbon microphone
- 127. Condenser MEMS microphone. https://en.wikipedia.org/wiki/Microphone
- 128. Piezoelectric MEMS microphone. https://en.wikipedia.org/wiki/Microphone
- 129. Electret microphone. https://en.wikipedia.org/wiki/Electret microphone
- 130. Noise-cancelling microphone.

https://en.wikipedia.org/wiki/Noise-canceling microphone

Figure 1.1.1: Sample figure illustrating how a codec works.

- 125. Figure drawn in sketch.io by author.
- 126. Hard disk (image). https://en.wikipedia.org/wiki/Hard_disk_drive
- 127. Codec example.

https://www.pcmag.com/encyclopedia/term/56334/codec-examples

Figure 1.1.2: Difference between mono vs. stereo signals.

- 128. Figure drawn in sketch io by author.
- 129. Difference between mono and stereo.

https://music.stackexchange.com/questions/24631/what-is-the-difference-between-mono-and-stereo

130. The 7 Best PC Sound Cards to Buy in 2018.

https://www.lifewire.com/best-pc-sound-cards-833111

Table 1.1.3: Common Audio Coding Formats.

- 131. Timeline of audio formats. https://en.wikipedia.org/wiki/Audio format
- 132. MP3 format. https://en.wikipedia.org/wiki/MP3
- 133. WAV format. https://en.wikipedia.org/wiki/WAV
- 134. AAC format. https://en.wikipedia.org/wiki/Advanced Audio Coding
- 135. FLAC format. https://en.wikipedia.org/wiki/FLAC
- 136. OPUS format. https://en.wikipedia.org/wiki/Opus (audio format)

Table 1.1.4: Speaker types and their utility.

- 137. Headphones. https://en.wikipedia.org/wiki/Headphones
- 138. Dynamic speaker. https://en.wikipedia.org/wiki/Loudspeaker
- 139. Piezoelectric speaker. https://en.wikipedia.org/wiki/Piezoelectric speaker
- 140. Electrostatic loudspeaker. https://en.wikipedia.org/wiki/Electrostatic loudspeaker
- 141. Loudspeaker. https://en.wikipedia.org/wiki/Loudspeaker
- 142. Ribbon loudspeaker. https://en.wikipedia.org/wiki/Loudspeaker

Table 1.3.1: How to Read/Write Audio files.

143. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_1_fundamentals

Table 1.4.1: Libraries for manipulating audio files.

- 144. Pydub. https://github.com/jiaaro/pydub
- 145. Pysox. https://github.com/rabitt/pysox
- 146. Wave. https://docs.python.org/3/library/wave.html#wave.open
- 147. Librosa. https://librosa.github.io/librosa/generated/librosa.core.load.html
- 148. Scipy.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html

Table 1.4.2: Useful Sox Commands in Terminal.

149. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Table 1.4.3: Useful Pydub Commands.

- 150. Pydub. https://github.com/jiaaro/pydub
- 151. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.5.1: How to Playback Audio Flles Synchronously.

152. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.5.2: How to Playback Audio Files Asynchronously.

153. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.6.1: How to check available microphones.

154. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_1_fundamentals

Figure 1.6.2: How to record audio files synchronously.

155. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_1_fundamentals

Figure 1.6.3: How to record audio files asynchronously.

156. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.7.1: How to convert audio files using ffmpy module.

- 157. Ffmpy. http://ffmpy.readthedocs.io/en/latest/
- 158. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.7.2: How to convert audio files using FFmpeg.

159. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

160. FFmpeg. https://www.ffmpeg.org/

Table 1.8.1: Comparison between open source and proprietary transcription engines.

- 161. PocketSphinx. https://github.com/cmusphinx/pocketsphinx-python
- 162. Deepspeech. https://github.com/mozilla/DeepSpeech
- 163. Google Speech API. https://cloud.google.com/speech-to-text/docs/
- 164. Watson Speech to Text. https://www.ibm.com/watson/services/speech-to-text/
- 165. Bing Speech.

https://azure.microsoft.com/en-us/services/cognitive-services/speech/

Figure 1.8.1: How to transcribe with Pocketsphinx.

166. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.8.2: Output from Figure 1.8.1.

167. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.8.3: How to setup environment variables for the Google Speech API.

168. Stackoverflow.

https://stackoverflow.com/questions/30461201/how-do-i-edit-path-bash-profile-on-osx

Figure 1.8.4: How to transcribe with Google Speech API.

- 169. Google Cloud Speech-to-text. https://cloud.google.com/speech-to-text/
- 170. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.9.1: How to playback text with default settings.

- 171. Pyttsx3. https://github.com/nateshmbhat/pyttsx3
- 172. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.9.2: How to play back text with default settings.

172. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Figure 1.9.3: How to play back text using Google TTS.

- 173. Google TTS. https://en.wikipedia.org/wiki/Google Text-to-Speech
- 174. Voicebook repository: Chapter 1.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 1 fundamentals

Python libraries

- 175. FFmpeg. https://www.ffmpeg.org/
- 176. SoX. http://sox.sourceforge.net/Docs/Features
- 177. Librosa. https://librosa.github.io/librosa/generated/librosa.core.load.html
- 178. Opuslib. https://github.com/OnBeep/opuslib
- 179. Os. https://docs.python.org/3/library/os.html
- 180. Pydub. https://github.com/jiaaro/pydub
- 181. Pygame. https://www.pygame.org/news
- 182. Pykaldi. https://github.com/pykaldi/pykaldi
- 183. PySoundfile. https://pysoundfile.readthedocs.io/en/0.9.0/
- 184. Pysox https://github.com/rabitt/pysox
- 185. Scipy.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html

- 186. Simpleaudio. https://pypi.org/project/simpleaudio/
- 187. Snack Soundkit. http://www.speech.kth.se/snack/
- 188. SpeechRecognition. https://pypi.org/project/SpeechRecognition/
- 189. Wave. https://docs.python.org/3/library/wave.html#wave.open

Tutorials

190. How to setup Google Client Libraries (Google Speech API).

https://cloud.google.com/speech-to-text/docs/quickstart-client-libraries

- 191. How to setup Google TTS. https://cloud.google.com/text-to-speech/
- 192. Wave generation in python (WAVE library).

http://blog.acipo.com/wave-generation-in-python/

Stack Overflow Conversations

193. Converting stereo to mono format.

https://stackoverflow.com/questions/30401042/stereo-to-mono-wav-in-python

194. Debugging Python opus.

https://stackoverflow.com/questions/17728706/python-portaudio-opus-encoding-decoding

195. Difference between synchronous and asynchronous programming.

https://stackoverflow.com/questions/748175/asynchronous-vs-synchronous-execution-what-does-it-really-mean

196. How to record audio in python.

https://stackoverflow.com/questions/892199/detect-record-audio-in-python

197. How to play back audio in python.

https://stackoverflow.com/questions/307305/play-a-sound-with-python

198. How to train Google's WaveNet model.

https://stackoverflow.com/questions/41679110/how-to-use-tensorflow-wavenet

Other links and references.

- 199. Audio codec. https://en.wikipedia.org/wiki/Audio codec
- 200. Analog-to-digital converter. https://en.wikipedia.org/wiki/Analog-to-digital converter
- 201. Analog signal. https://en.wikipedia.org/wiki/Analog signal
- 202. Audio format. https://en.wikipedia.org/wiki/Audio coding format
- 203. Capacitor. https://en.wikipedia.org/wiki/Capacitor
- 204. Digital-to-analog converter.

https://en.wikipedia.org/wiki/Digital-to-analog converter

205. Difference between stereo and mono signals.

https://music.stackexchange.com/questions/24631/what-is-the-difference-between-mono-and-stereo

- 206. Environment variable. https://en.wikipedia.org/wiki/Environment variable
- 207. FFmpeg. https://en.wikipedia.org/wiki/FFmpeg
- 208. Kaldi. http://kaldi-asr.org/
- 209. Microphone. https://en.wikipedia.org/wiki/Microphone
- 210. Opus. http://opus-codec.org
- 211. Podcasting equipment. https://www.podcastinsights.com/podcast-equipment/
- 212. Pressure. https://en.wikipedia.org/wiki/Pressure
- 213. Signal. https://en.wikipedia.org/wiki/Signal
- 214. Sound card. https://en.wikipedia.org/wiki/Sound card
- 215. Sound pressure. https://en.wikipedia.org/wiki/Sound pressure
- 216. Sound localization. https://en.wikipedia.org/wiki/Sound_localization
- 217. SoX. https://en.wikipedia.org/wiki/SoX
- 218. Stereographic projection. https://en.wikipedia.org/wiki/Stereographic projection
- 219. Useful FFmpeg commands.

https://www.labnol.org/internet/useful-ffmpeg-commands/28490/

220. Useful SoX Commands.

https://www.thegeekstuff.com/2009/05/sound-exchange-sox-15-examples-to-manipula te-audio-files/

221. Wolfram alpha, word count from characters.

https://m.wolframalpha.com/input/?i=1%2C000%2C000+characters&lk=3

Chapter 2: Collection

Table 2.1.1: List of microphones and their utility.

- 222. Condenser microphone. https://en.wikipedia.org/wiki/Condensor-microphone
- 223. Dynamic microphone. https://en.wikipedia.org/wiki/Dynamic microphone
- 224. Ribbon microphone. https://en.wikipedia.org/wiki/Ribbon microphone
- 225. Condenser MEMS microphone. https://en.wikipedia.org/wiki/Microphone
- 226. Piezoelectric MEMS microphone. https://en.wikipedia.org/wiki/Microphone
- 227. Electret microphone. https://en.wikipedia.org/wiki/Electret microphone
- 228. Noise-cancelling microphone.

https://en.wikipedia.org/wiki/Noise-canceling microphone

Table 2.1.2: Distance from microphone and volume drop.

229. N/A. Figure constructed from author's intuition.

Table 2.1.3: Recording environments and noise profiles

230. N/A. Figure constructed from author's intuition.

Table 2.1.4: Common audio recording settings

231. Nyquist rate. https://en.wikipedia.org/wiki/Nyquist_rate

Table 2.2.1: Types of microphone arrays.

232. UMA-8 microphone array.

https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array

- 233. Respeaker. Amazon link.
- 234. Matrix creator. https://www.element14.com/community/docs/DOC-86328
- 235. Blue Yeti microphone. Amazon link.

Figure 2.3.1: How mixers work and connect to voice computers.

- 236. Figure created by author.
- 237. Sound card. https://en.wikipedia.org/wiki/Sound card
- 238. Hard disk. https://en.wikipedia.org/wiki/Hard_disk_drive

Figure 2.4.1: Active-synchronous (AS) mode

239. as record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.4.2: Active-asynchronous (AA) mode.

240. aa_record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.4.3: Passive synchronous (PS) mode.

241. ps_record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_2_collection

Figure 2.4.4: Passive-asynchronous (PA) mode.

242. pa_record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.4.5: Active-passive-asynchronous (APS) mode.

243. aps_record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.4.6: Active-passive-asynchronous (APA) mode.

244. record_apa.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.1: How to remove noise from file.

245. Remove_noise.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.2: How to change volume.

246. Change-volume.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_2_collection

Figure 2.5.3: How to trim audio files.

247. Trim audio.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.4: How to combine audio files.

248. Combine.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_2_collection

Figure 2.5.5: How to transcode audio files.

249. Transcode.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.6: How to convert sample rates.

250. Change samplerate.py

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_2_collection

Figure 2.5.7: How to change number of channels.

251. Change_channels.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.8: How to trim silence.

252. Trim silence.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.5.9: List of software packages that can help analyzing audio files.

253. TenTopReviews.

http://www.toptenreviews.com/software/multimedia/best-voice-recording-software/

Figure 2.6.1: How to implement speaker diarization in the terminal.

254. Diarize.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.6.2: Output of speaker diarization script.

255. Picture taken by author on Macbook pro.

256. Diarize.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.6.3: Transcript output of speaker diarization script.

257. Diarize.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.7.1: Converting voice files to .FLAC format.

258. Convert flac.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.7.2: Converting voice files to .OPUS format.

259. Convert opus.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_2_collection

Figure 2.7.3: Unpacking compressed .FLAC or .OPUS files.

260. Unpack files.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Table 2.7.1: List of storage mediums and cost.

261. USB flash drive, Amazon.

- 262. SD card. Amazon.
- 263. Hard disk. Amazon.
- 264. Cloud provider. AWS pricing.

Figure 2.7.4: Uploading files to a FTP server.

265. Store_ftp.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Figure 2.7.5: Uploading files to google storage.

266. Store_gcp.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Table 2.8.1: Ways to publish non-streaming voice content.

- 267. Gmail. https://en.wikipedia.org/wiki/Gmail
- 268. iPhone. https://en.wikipedia.org/wiki/IPhone
- 269. Facebook. https://en.wikipedia.org/wiki/Facebook
- 270. YouTube. https://en.wikipedia.org/wiki/YouTube
- 271. Google Assistant. https://en.wikipedia.org/wiki/Google Assistant
- 272. Siri. https://en.wikipedia.org/wiki/Siri
- 273. Cortana. https://en.wikipedia.org/wiki/Cortana
- 274. Amazon Alexa. https://en.wikipedia.org/wiki/Amazon_Alexa
- 275. iTunes. https://en.wikipedia.org/wiki/ITunes
- 276. Dropbox (Service). https://en.wikipedia.org/wiki/Dropbox (service)
- 277. Google Drive. https://en.wikipedia.org/wiki/Google Drive
- 278. LinkedIn.https://en.wikipedia.org/wiki/LinkedIn
- 279. Twitter. https://en.wikipedia.org/wiki/Twitter
- 280. Spotify. https://en.wikipedia.org/wiki/Spotify
- 281. Pandora Radio. https://en.wikipedia.org/wiki/Pandora Radio
- 282. Soundcloud. https://en.wikipedia.org/wiki/SoundCloud
- 283. Slack Technologies. https://en.wikipedia.org/wiki/Slack Technologies
- 284. Kaggle. https://en.wikipedia.org/wiki/Kaggle

Table 2.8.2: Ways to publish streaming voice content.

- 285. Cell phone. https://en.wikipedia.org/wiki/Mobile_phone
- 286. Facetime. https://en.wikipedia.org/wiki/FaceTime
- 287. NPR. https://en.wikipedia.org/wiki/NPR
- 288. CNN. https://en.wikipedia.org/wiki/CNN
- 289. Facebook Live.

https://en.wikipedia.org/wiki/List of Facebook features#Live streaming

290. Hangouts on Air.

https://en.wikipedia.org/wiki/Google%2B#Hangouts and Hangouts On Air

291. Slack calling feature. https://en.wikipedia.org/wiki/Slack Technologies

- 292. GoToMeeting. https://en.wikipedia.org/wiki/GoToMeeting
- 293. Amazon Chime. https://aws.amazon.com/chime/
- 294. Google Duo. https://en.wikipedia.org/wiki/Google_Duo
- 295. Zoom Video Communications.

https://en.wikipedia.org/wiki/Zoom Video Communications

296. Uberconference. https://en.wikipedia.org/wiki/UberConference

Figure 2.9.1: Using the MEMUPPS mindset to label audio files.

297. label memups.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 2 collection

Python libraries

- 298. Pysoundfile. https://pysoundfile.readthedocs.io/en/0.9.0/
- 299. Sounddevice. https://python-sounddevice.readthedocs.io/en/0.3.11/
- 300. OS module. https://docs.python.org/3/library/os.html
- 301. Sox. http://sox.sourceforge.net/
- 302. PyAudioAnalysis.

https://github.com/tyiannak/pyAudioAnalysis/wiki/5.-Segmentation

- 303. FFmpeg. https://www.ffmpeg.org/
- 304. Opus codec. http://opus-codec.org/
- 305. FLAC codec. https://xiph.org/flac/
- 306. Google Cloud Storage client library.

https://cloud.google.com/storage/docs/reference/libraries

- 307. FTPlib. https://docs.python.org/3/library/ftplib.html
- 308. Shutil. https://docs.python.org/3/library/shutil.html
- 309. Zipfile. https://docs.python.org/3/library/zipfile.html
- 310. Pytaglib. https://pypi.org/project/pytaglib/

Other references

311. [August 2017]. Bankole, Kalonji. Enhancing Voice Recognition with a Matrix Microphone Array. Medium.

https://medium.com/kkbankol-events/raspberry-pi-15662c3ca881

Chapter 3: Featurization

Table 3.1.1: Useful numpy commands.

312. Numpy commands.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.2.1: List of common audio features.

313. Mel spectrogram frequency coefficients.

https://dsp.stackexchange.com/questions/12812/mfcc-calculation

314. Mel spectrogram frequency delta coefficients.

https://dsp.stackexchange.com/questions/12812/mfcc-calculation

315. Fundamental frequency. https://en.wikipedia.org/wiki/Fundamental_frequency

- 316. Jitter. https://en.wikipedia.org/wiki/Jitter
- 317. Shimmer. http://www.wevosys.com/knowledge/ data knowledge/107.pdf
- 318. Formant Frequencies.

http://clas.mq.edu.au/speech/acoustics/frequency/tubes.html

319. File duration.

https://stackoverflow.com/questions/7833807/get-wav-file-length-or-duration

- 320. Root mean square energy. https://en.wikipedia.org/wiki/Root mean square
- 321. Spectral centroid. https://en.wikipedia.org/wiki/Spectral centroid
- 322. Spectral flux. https://en.wikipedia.org/wiki/Spectral-flux
- 323. Onset strength.

http://docs.twoears.eu/en/latest/afe/available-processors/onset-strength/

324. Spectral contrast.

https://pdfs.semanticscholar.org/ed54/e0250f106a208cb693d50dbfd13df2d9cd9e.pdf

- 325. Spectral flatness. https://en.wikipedia.org/wiki/Spectral flatness
- 326. Spectral rolloff.

https://www.sciencedirect.com/science/article/pii/S1051200412002473

327. Zero crossing rates. https://en.wikipedia.org/wiki/Zero-crossing_rate

Figure 3.2.1: Extracting audio features with librosa library.

328. Librosa_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.2.2: Extracting audio features with PyAudioAnalysis.

329. Pyaudio features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.2.3: Extracting audio features with SoX CLI.

330. Sox features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.1.2: Standardized Audio Research Feature Embeddings.

331. VGGish Audioset embedding.

https://github.com/tensorflow/models/tree/master/research/audioset

332. OpenSMILE embeddings. https://audeering.com/technology/opensmile/

Figure 3.2.4: Extracting AudioSet features.

333. Audioset_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.2.7: Extracting all audio features.

334. Audio features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.3.1: List of common text features.

- 335. Keyword frequency. https://en.wikipedia.org/wiki/Reserved_word
- 336. Character frequency. https://en.wikipedia.org/wiki/Character (symbol)
- 337. Part of speech tag. https://en.wikipedia.org/wiki/Part of speech

- 338. Sentiment polarity. https://textblob.readthedocs.io/en/dev/
- 339. Brunet's index. https://www.cs.toronto.edu/~kfraser/Fraser15-JAD.pdf
- 340. Morphological features. https://spacy.io/usage/linguistic-features
- 341. Syntactic features. https://en.wikipedia.org/wiki/Syntax
- 342. Named entity recognition. https://en.wikipedia.org/wiki/Named-entity_recognition

Figure 3.3.1: Various ways to transcribe audio data.

343. Record transcribe.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.3.1: Common ways to manipulate strings in python.

344. String_commands.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_3_featurization

Figure 3.3.2: Extracting text features using nltk.

345. Nltk_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_3_featurization

Figure 3.3.2: Extracting linguistic features using spacy.

346. Spacy_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.3.3: Using word2vec models for featurization with gensim.

347. Gensim features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.3.4: Extracting all text features.

348. Text_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.4.1: Building mixed features.

349. Make mixed features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.4.1: List of random mixed features from executing make mixed features.py.

350. Make mixed features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_3_featurization

Table 3.5.1: Table of meta voice features.

- 351. Table assembled from author's intuition and understanding of various datasets and machine learning models within NeuroLex.
- 352. Accent dataset. https://www.kaggle.com/rtatman/speech-accent-archive/version/1

Figure 3.5.1: Extracting meta features (71).

353. Meta features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.6.1: List of automated feature selection methods.

354. Principal Component Analysis.

https://en.wikipedia.org/wiki/Principal component analysis

355. Independent Component Analysis.

https://en.wikipedia.org/wiki/Independent component analysis

- 356. K-means clustering. https://en.wikipedia.org/wiki/K-means_clustering
- 357. Canonical correlation analysis. https://en.wikipedia.org/wiki/Canonical correlation
- 358. Partial least squares regression.

https://en.wikipedia.org/wiki/Partial least squares regression

359. Manifold learning.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Manifold_learning_algorithms

360. Supervised dictionary learning.

https://en.wikipedia.org/wiki/Sparse dictionary learning

361. Linear discriminant analysis.

https://en.wikipedia.org/wiki/Linear discriminant analysis

- 362. Correspondence analysis. https://en.wikipedia.org/wiki/Correspondence analysis
- 363. Variational autoencoders. https://en.wikipedia.org/wiki/Autoencoder

Figure 3.6.1: Implementing unsupervised techniques.

364. Dimensionality_reduction.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Figure 3.6.2: Implementing supervised techniques.

365. Dimensionality_reduction.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 3 featurization

Table 3.6.1: Feature selection methods.

366. Introduction to feature selection methods.

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/

Figure 3.7.1: How to select features.

367. Sleect_features.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_3_featurization

Table 3.7.1: Python libraries for feature selection.

- 368. Scikit-learn. http://scikit-learn.org/stable/
- 369. MLpy. http://mlpy.sourceforge.net/
- 370. Scikit-feature. http://featureselection.asu.edu/
- 371. ReliefF. https://pypi.org/project/ReliefF/
- 372. MLfeatureselection. https://github.com/duxuhao/Feature-Selection
- 373. MLxtend. http://rasbt.github.io/mlxtend/
- 374. Scikit-rebate. https://github.com/EpistasisLab/scikit-rebate

- FeatureselectionGA.
 - https://github.com/kaushalshetty/FeatureSelectionGA/blob/master/feature_selection_g a.pv
- 376. Bortua. https://pypi.org/project/Boruta/
- 377. EL5. http://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
- 378. Yellowbrick. http://www.scikit-yb.org/en/latest/

Research papers

- 379. ALU, D., ZOLTAN, E., & STOICA, I. C. (2017). Voice Based Emotion Recognition with Convolutional Neural Networks for Companion Robots. SCIENCE AND TECHNOLOGY, 20(3), 222-240.
- 380. Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., André, E., Busso, C., ... & Truong, K. P. (2016). The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Transactions on Affective Computing, 7(2), 190-202.
- 381. Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 776-780). IEEE.
- 382. Fraser, K. C., Meltzer, J. A., & Rudzicz, F. (2016). Linguistic features identify Alzheimer's disease in narrative speech. Journal of Alzheimer's Disease, 49(2), 407-422.

Libraries

- 383. Librosa. https://librosa.github.io/librosa/core.html
- 384. PyAudioAnalysis. https://github.com/tyiannak/pyAudioAnalysis
- 385. SoX. http://sox.sourceforge.net/
- 386. OpenSMILE. https://audeering.com/technology/opensmile/
- 387. AudioSet. https://github.com/tensorflow/models/tree/master/research/audioset
- 388. NLTK. https://www.nltk.org/
- 389. Spacy. https://spacy.io/
- 390. Gensim. https://radimrehurek.com/gensim/
- 391. Textblob. https://textblob.readthedocs.io/en/dev/
- 392. Scikit-learn.

http://scikit-learn.org/stable/auto_examples/index.html#general-examples

- 393. Keras. https://keras.io/
- 394. Tensorflow. https://www.tensorflow.org/
- 395. Megaman. https://github.com/mmp2/megaman
- 396. MLpy. http://mlpy.sourceforge.net/
- 397. Scikit-feature. http://featureselection.asu.edu/
- 398. Yellowbrick. http://www.scikit-yb.org/en/latest/
- 399. Microsoft Azure text feature library.
 - https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/

Tutorials

400. Feature selection tutorial.

https://hub.packtpub.com/4-ways-implement-feature-selection-python-machine-learnin g/

401. Univariate selection.

https://blog.datadive.net/selecting-good-features-part-i-univariate-selection/

402. Collinear features tutorial.

https://towardsdatascience.com/a-feature-selection-tool-for-machine-learning-in-python-b64dd23710f0

403. Feature importance tutorial.

https://machinelearningmastery.com/feature-selection-in-python-with-scikit-learn/)

- 404. http://scikit-learn.org/stable/modules/feature-selection.html
- 405. Grid search tutorial.

https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-6-feature-engineering-and-feature-selection-8b94f870706a

406. Visualizing heat maps.

https://www.kaggle.com/kanncaa1/feature-selection-and-data-visualization

407. Linear models / LARS LASSO tutorial.

http://scikit-learn.org/stable/modules/linear model.html#lars-lasso

Chapter 4: Data modeling

Figure 4.1.1: Difference between classification and regression models.

- 408. Figured made by author.
- 409. Kismet (image). https://en.wikipedia.org/wiki/Kismet (robot)

Figure 4.1.2: Difference between unsupervised and supervised models.

410. Quora.

https://www.quora.com/What-is-the-difference-between-supervised-and-unsupervised-learning-algorithms

Figure 4.1.3: Deep learning model.

411. Deep learning book (image).

http://neuralnetworksanddeeplearning.com/chap6.html

Figure 4.2.1: How to build YouTube speech datasets.

412. Make_playlist.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

413. Download playlist.pv.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_4_modeling

Table 4.2.1: List of open source datasets.

- 414. Common voice dataset. https://www.kaggle.com/mozillaorg/common-voice
- 415. Google Audioset. https://research.google.com/audioset/
- 416. Urban sound dataset.

https://serv.cusp.nyu.edu/projects/urbansounddataset/urbansound8k.html

- 417. NeuroLex disease dataset. https://github.com/NeuroLexDiagnostics/train-diseases
- 418. NeuroLex emotion dataset. https://github.com/NeuroLexDiagnostics/train-emotions
- 419. Karoldvl. https://github.com/karoldvl/ESC-50
- **Table 4.3.3:** Proprietary voice datasets.
 - 420. Linguistic data consortium. https://www.ldc.upenn.edu/
- Figure 4.3.1: How to consistently label samples manually.
 - 421. Label_samples.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

- Figure 4.3.2: Downloading videos from spreadsheet.
 - 422. Y_scrape.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

- Figure 4.3.3: Automated labeling of emotions using YouTube.
 - 423. Figure constructed using author's intuition.
 - 424. OpenCV.

https://media.readthedocs.org/pdf/opencv-python-tutroals/latest/opencv-python-tutroals.pdf

- 425. Scikit-video. http://www.scikit-video.org/stable/io.html
- **Table 4.4.1:** Various machine learning algorithms and their biases.
 - 426. Thoughtful Machine Learning with Python (pages 17 and 18). Added in various other supervised techniques and removed some unsupervised techniques.
- **Figure 4.4.2:** Downloading training data using train diseases repo.
 - 427. Y scrape.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

- **Figure 4.4.3:** Building machine learning algorithms in terminal.
 - 428. Train_audioclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

- **Figure 4.4.3:** Text output of the training session.
 - 429. Schiozphrenia controls.txt.

https://github.com/iim-schwoebel/voicebook/tree/master/chapter 4 modeling

- **Table 4.4.2:** Performance of various machine learning models and feature embeddings.
 - 430. Train audioclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

431. Train textclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_4_modeling

432. Train audiotextclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

433. Train_w2vclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Table 4.4.5: Applying model to predict new classes.

434. Load_audioclassify.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Table 4.6.1: Types of regression models: pros/cons.

- 435. Ordinary least squares. https://en.wikipedia.org/wiki/Ordinary least squares
- 436. Ridge regression. https://en.wikipedia.org/wiki/Tikhonov regularization
- 437. Lasso (statistics). https://en.wikipedia.org/wiki/Lasso (statistics)
- 438. Multi-task lasso. http://scikit-learn.org/stable/modules/linear_model.html
- 439. Elastic net. https://en.wikipedia.org/wiki/Elastic_map
- 440. Multi-task elastic net. http://scikit-learn.org/stable/modules/linear_model.html
- 441. Least angle regression (LARS).

https://en.wikipedia.org/wiki/Least-angle_regression

- 442. LARS lasso. http://scikit-learn.org/stable/modules/linear_model.html
- 443. Orthogonal matching pursuit. https://en.wikipedia.org/wiki/Matching pursuit
- 444. Bayesian ridge regression.

https://en.wikipedia.org/wiki/Bayesian linear regression

445. Automatic relevance determination.

http://scikit-learn.org/stable/modules/linear_model.html

- 446. Logistic regression. https://en.wikipedia.org/wiki/Logistic regression
- 447. Stochastic gradient descent.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

- 448. Perceptron. https://en.wikipedia.org/wiki/Perceptron
- 449. Passive aggressive algorithms.

http://scikit-learn.org/stable/modules/linear model.html

- 450. Robustness regression. https://en.wikipedia.org/wiki/Robust_regression
- 451. Random sample consensus.

http://scikit-learn.org/stable/modules/linear model.html

- 452. Theil-Sen estimator. http://scikit-learn.org/stable/modules/linear_model.html
- 453. Huber regression. http://scikit-learn.org/stable/modules/linear_model.html
- 454. Polynomial regression. http://scikit-learn.org/stable/modules/linear_model.html

Figure 4.6.1: Building regression models in python from CLI.

455. Train_audioregression.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.6.2: Building regression models in python from CLI.

456. Train audioregression.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Table 4.7.1: Deep learning terms and definitions.

- 457. Neural network. https://en.wikipedia.org/wiki/Artificial_neural_network
- 458. Layers. https://devblogs.nvidia.com/deep-learning-nutshell-core-concepts/
- 459. Neuron. https://devblogs.nvidia.com/deep-learning-nutshell-core-concepts/
- 460. Weights.

https://datascience.stackexchange.com/questions/19099/what-is-weight-and-bias-in-deep-learning

- 461. Epoch. https://www.guora.com/What-is-an-epoch-in-deep-learning
- 462. Batch size.

https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network

463. Regularization.

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularizat ion-techniques/

464. Loss functions.

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c

465. Backpropagation. https://en.wikipedia.org/wiki/Backpropagation

Figure 4.7.1: Building a simple deep learning model in keras (MLP).

466. Keras mlp.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.7.2: Complete list of neural networks.

467. Becominghuman.ai.

https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463.

Figure 4.7.3: Training a keras model from audio features.

468. Train_audiokeras.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_4_modeling

Figure 4.7.4: Training a keras model from audio features.

469. Train audiokeras.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.7.5: Applying keras-based deep learning models on new data.

470. Load_audiokeras.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.8.1: Tuning parameters for the gradient boosting classifier.

471. Sklearn.ensemble.

 $\underline{http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingCl}\\ \underline{assifier.html}$

Figure 4.8.2: How TPOT works.

472. TPOT. https://github.com/EpistasisLab/tpot

Figure 4.8.3: How to train a classification model using TPOT.

473. train_audioTPOT.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.8.4: How to load a TPOT classification model.

474. Load audiotpot.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.8.5: How to train a regression model using TPOT.

475. Train_audioTPOT.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Figure 4.8.6: How to load a regression model using TPOT.

476. Load_audioTPOT.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 4 modeling

Table 4.8.1: List of AutoML engines and repositories.

- 477. Devol. https://github.com/joeddav/devol
- 478. Clarifai. https://clarifai.com/
- 479. H20.ai. https://www.h2o.ai/
- 480. Datarobot. https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.11.1/
- 481. Google cloud ML platform.

https://cloud.google.com/ml-engine/docs/tensorflow/technical-overview

482. Microsoft Azure ML platform.

https://azure.microsoft.com/en-us/services/machine-learning-studio/

Datasets

- 478. Common voice dataset. link
- 479. Google Audioset. link
- 480. NeuroLex disease dataset. link.

Libraries

- 481. Pandas. link.
- 482. Xlsxwriter. link.
- 483. Pytube. link.
- 484. SpeechRecognition. link.
- 485. Librosa. link.
- 486. PyAudioAnalysis. link.
- 487. Spacy. link.
- 488. NLTK. link.
- 489. Gensim. link.
- 490. Numpy. link.
- 491. Scikit-learn, link.
- 492. Statsmodels. link.
- 493. Keras. link.
- 494. Tensorflow. link.
- 495. TPOT. <u>link.</u>
- 496. Devol. link.
- 497. Clarifai. link.

- 498. H20.ai. link.
- 499. DataRobot. link.
- 500. Google Cloud ML engine. link.
- 501. Microsoft Azure ML. link.

Other references

- 502. <u>Deep learning book</u>. Book to get started.
- 503. Udacity class. Free class to get started with ML.
- 504. KDNuggets. Blog dedicated exclusively to data science / machine learning.
- 505. <u>Machine Learning Yearning</u>. Andrew Ng's new machine learning book to guide you through building ML algorithms.
- 506. Machine learning Reddit. Reddit posts about machine learning.
- 507. Google alert ML. often good to keep up with what google is doing
- 508. <u>Machine learning mastery blog</u>. lots of tutorials to get started.
- 509. Machine learning weekly. hand-curated tutorials 1 /mo.
- 510. MIT news machine learning. Keep up with what MIT is doing with ML.
- 511. Cortana machine learning. Keep up with what microsoft is doing with Cortana.
- 512. Stats and Bots. Medium blog with lots of code examples.
- 513. Indico. Blog about ML
- 514. FastML. Machine learning made easy.
- 515. <u>Machine learning theory</u>. All about machine learning theory.
- 516. BigML. ML made simple (2 posts/wk).
- 517. <u>DataDive</u>. Rich blog history on machine learning from researcher at microsoft (visualizations).

Chapter 5: Generation

Figure 5.1.1: How Google Duplex works.

518. Image source: Google Al blog. here.

Table 5.2.1: Types of machine-generated data.

- 519. Text messaging. https://en.wikipedia.org/wiki/Text messaging
- 520. Email. https://en.wikipedia.org/wiki/Email
- 521. Poetry. https://en.wikipedia.org/wiki/Poetry
- 522. Summary. https://en.wikipedia.org/wiki/Abstract (summary)
- 523. News article. https://en.wikipedia.org/wiki/Article (publishing)#News articles
- 524. Blog post. https://en.wikipedia.org/wiki/Blog
- 525. Chatbot. https://en.wikipedia.org/wiki/Chatbot

Figure 5.2.1: Generating text messages.

526. Generate text.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.2.2: Generating emails.

528. Generate email.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.2.3: Generating poems.

529. Generate_poem.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.2.4: Summarizing Wikipedia articles.

530. Generate summary.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_5_generation

Figure 5.2.5: Generating blog posts.

531. Generate_blogpost.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.2.6: Generating a chatbot from FAQ training data.

532. Make chatbot.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.2.7: Engaging with a chatbot via CLI.

533. Make_chatbot.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Table 5.3.1: Types of machine-generated audio data.

534. TTS model. https://en.wikipedia.org/wiki/Speech synthesis

Table 5.3.1: Generating TTS files locally with python (in terminal).

535. Generate tts.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.3.2: Manipulating audio (in terminal).

536. Generate_filtered.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Figure 5.3.3: Remixing audio (in terminal).

537. Generate remix.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_5_generation

Figure 5.4.1: Voice chatbot as a form of mixed data.

538. Make_vchatbot.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 5 generation

Datasets

539. <u>ENRON dataset</u> (emails)

540. <u>NUS-SMS-corpus</u> (text messages)

541. <u>Blog corpus</u> (blogs)

542. 20 newsgroups (news)

Libraries

- 543. <u>Textgenrnn</u>.
- 544. Sumy.
- 545. Chatterbot.
- 546. NLTK.
- 547. Spacy.
- 548. Librosa.
- 549. Soundfile.
- 550. Random.
- 551. Chatterbot.
- 552. Pvttsx3.
- 553. PocketSphinx.
- 554. Keras.
- 555. Tensorflow.

Chapter 6: Visualizations

Table 6.1.1: Visualization libraries in python.

- 556. Matplotlib. https://matplotlib.org/tutorials/introductory/sample_plots.html
- 557. Seaborn. https://seaborn.pydata.org/
- 558. Ggplot. http://ggplot.yhathq.com/
- 559. Bokeh. https://bokeh.pydata.org/en/latest/
- 560. Pygal. http://pygal.org/en/stable/
- 561. Plotly dash. https://plot.ly/
- 562. Geoplotlib. https://github.com/andrea-cuttone/geoplotlib
- 563. Gleam. https://github.com/dgrtwo/gleam
- 564. Missingno. https://github.com/ResidentMario/missingno
- 565. Leather. https://leather.readthedocs.io/en/0.3.3/

Figure 6.2.1: Visualizing streaming audio data in python.

566. Audio stream.pv.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_6_visualization

Figure 6.2.1: Visualizing streaming audio data in python.

567. Audio_path.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.2.2: Making spectrograms with librosa.

568. Audio_spectrogram.py.

https://github.com/iim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.2.3: Plotting many audio files by spectrum and oscillograms.

569. Audio_plotmany.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.2.4: Plotting many audio files by spectral power density.

570. Audio plotspd.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.2.4: Plotting many audio files as KNN clusters.

571. Audio_cluster.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.1: Plotting words in real-time.

572. Text_stream.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.2: Word stream visualization.

573. Text_path.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.3: Word frequency plots.

574. Text freqplot.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.4: Wordcloud plots.

575. Text_wordcloud.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.5: Parsed tree plots.

576. Text tree.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.6: Named entity visualization.

577. Text entity.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.7: Word network plots.

578. Networkx. https://networkx.github.io/

579. Text network.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.8: tSNE plots.

580. Text tsne.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.3.9: Plotting many tNSE embeddings.

581. Text_tsne_many.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.4.1: Mixed features CLI plot.

582. Mixed_stream.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.4.2: Mixed features path plot.

583. Mixed path.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.4.3: Making videos of plots using opency.

584. Mixed video.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.5.1: Visualizing streaming meta features.

585. Meta_stream.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 6 visualization

Figure 6.5.2: Visualizing multiple streaming meta features.

586. Meta_multi.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_6_visualization

Figure 6.5.2: Visualizing non-streaming meta features.

587. Meta_nonstream.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_6_visualization

Libraries

- 588. Matplotlib
- 589. Seaborn
- 590. Ggplot
- 591. <u>Bokeh</u>
- 592. Pygal
- 593. Plotly Dash
- 594. Geoplotlib
- 595. Gleam
- 596. Missingno
- 597. Leather
- 598. Librosa
- 599. Soundfile
- 600. Sounddevice
- 601. NLTK
- 602. Spacy
- 603. NetworkX
- 604. Sounddevice
- 605. OpenCV
- 606. Keras
- 607. Scikit-learn

Other references

608. Kaggle. https://www.kaggle.com/vinayshanbhag/visualizing-audio-data

609. Medium.

https://medium.com/@LeonFedden/comparative-audio-analysis-with-wavenet-mfccs-umap-t-sne-and-pca-cb8237bfce2f

610. Galvanize.

https://blog.galvanize.com/data-science-projects-classifying-and-visualizing-musical-pitch/

Chapter 7: Designing voice computers

Table 7.1.1: Types of assembled voice computing hardware.

- 611. Desktop computer. https://en.wikipedia.org/wiki/Desktop computer
- 612. iMac. https://www.apple.com/imac/
- 613. Laptop. https://en.wikipedia.org/wiki/Laptop
- 614. Macbook pro. https://www.apple.com/macbook-pro/
- 615. Raspberry pi. https://en.wikipedia.org/wiki/Raspberry-Pi
- 616. Jasper. http://jasperproject.github.io/documentation/
- 617. Mycroft. https://mycroft.ai/
- 618. Ardunio. https://gist.github.com/xmfcx/3e6be68dd655cd7058085702e0bcb4b0
- 619. Cell phone. https://en.wikipedia.org/wiki/Mobile_phone
- 620. iPhone. https://www.apple.com/ios/siri/
- 621. Amazon Echo. https://en.wikipedia.org/wiki/Amazon Echo
- 622. Google assistant. https://developers.google.com/actions/
- 623. Apple HomePod. https://www.apple.com/homepod/

Table 7.1.2: Types of voice computing software.

- 624. Alexa voice service. https://developer.amazon.com/alexa-voice-service
- 625. Google Assistant SDK. https://developers.google.com/assistant/sdk/overview
- 626. Cortana skills kit. https://developer.microsoft.com/en-us/cortana
- 627. Jovo software framework. https://github.com/jovotech/jovo-framework-nodejs
- 628. Jasper. http://jasperproject.github.io/documentation/
- 629. Mycroft. https://mycroft.ai/
- 630. Nala. https://github.com/jim-schwoebel/nala

Table 7.2.1: Hardware considerations for voice computers.

- 631. Unit cost. https://en.wikipedia.org/wiki/Unit_cost
- 632. User. https://en.wikipedia.org/wiki/User (system)
- 633. Central processing unit. https://en.wikipedia.org/wiki/Central processing unit
- 634. Microphone distance.https://en.wikipedia.org/wiki/Microphone
- 635. Wifi. https://en.wikipedia.org/wiki/Wi-Fi
- 636. Electric power. https://en.wikipedia.org/wiki/Electric power
- 637. Cloud storage. https://en.wikipedia.org/wiki/Cloud storage
- 638. Bluetooth protocol. https://en.wikipedia.org/wiki/List of Bluetooth protocols

Figure 7.2.1: Cost-driven hardware design flow diagram.

- 639. Motherboard. https://en.wikipedia.org/wiki/Motherboard
- 640. Form factor. https://en.wikipedia.org/wiki/Form_factor_(design)

- 641. Arduino. https://en.wikipedia.org/wiki/Arduino
- 642. Raspberry pi. https://en.wikipedia.org/wiki/Raspberry Pi
- 643. Microphone. https://en.wikipedia.org/wiki/Microphone
- 644. Sound card. https://en.wikipedia.org/wiki/Sound card
- 645. CPU. https://en.wikipedia.org/wiki/Central processing unit
- 646. Graphics card. https://en.wikipedia.org/wiki/Video card
- 647. Hard disk. https://en.wikipedia.org/wiki/Hard disk drive
- 648. Monitor. https://en.wikipedia.org/wiki/Computer monitor
- 649. Wifi chip. https://en.wikipedia.org/wiki/Wi-Fi
- 650. Bluetooth. https://en.wikipedia.org/wiki/Bluetooth
- 651. Loudspeaker. https://en.wikipedia.org/wiki/Loudspeaker
- 652. Power supply. https://en.wikipedia.org/wiki/Power_supply
- 653. Computer case. https://en.wikipedia.org/wiki/Computer_case

Table 7.2.1.1: List of microphones, their utility, cost

- 654. Condensor microphone (cost). Amazon.
- 655. Dynamic microphone (cost). Amazon.
- 656. Ribbon microphone (cost). Amazon.
- 657. MEMS microphone (cost). Amazon.
- 658. Electret microphone (cost). Amazon.
- 659. Noise-cancelling microphone (cost). Amazon.

Table 7.2.1.2: Types of microphone arrays.

660. UMA-8 Microphone Array.

https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array

- 661. Respeaker. Amazon.
- 662. Element 14. https://www.element14.com/community/docs/DOC-86328
- 663. Blue Yeti microphone. Amazon.

Table 7.2.2.1: List of [Raspberry Pi]-upgradeable sound cards

664. HiFiBerry DAC+ Standard.

https://www.hifiberry.com/shop/boards/hifiberry-dacplus-rca-version/

- 665. IQaudIO PiDAC+. http://igaudio.co.uk/hats/9-pi-digiamp-0712411999650.html
- 666. JustBoom DAC Hat.

https://www.amazon.com/Audio-Amplifier-Raspberry-Class-D-192KHz/dp/B01M32PG X4/ref=sr_1_1?ie=UTF8&qid=1532963601&sr=8-1&keywords=justboom+dac+hat

Table 7.2.2.2: List of PC-enabled sound cards and their costs.

- 667. Asus Xonar DSX PCIe 7.1 (cost and image). Amazon.
- 668. Asus Xonar GHX PCIe GX2.5 (cost and image). Amazon
- 669. Creative Sound Blaster Audigy FX (cost and image). Amazon.
- 670. Creative Sound Blaster ZxR PCIe (cost and image). Amazon.
- 671. Creative Sound Blaster Z (cost and image). Amazon.
- 672. Creative Sound Blaster Audigy PCIe RX (cost and image). Amazon
- 673. Asus Essence STX II (cost and image). Amazon

Figure 7.2.3.1: Different form factors in motherboard designs.

674. Form factor (image). https://en.wikipedia.org/wiki/Form_factor_(design)

Table 7.2.3.1: List of desktop motherboards and their costs (2018).

- 675. 5x5 motherboard by intel.
- 676. ASUS Q87T/CSM LGA 1150 Intel Q87 HDMI SATA 6Gb/s USB 3.0 Thin Mini-ITX Intel Motherboard For AiO And Ultra Slim System.
- 677. Gigabyte GA-H110M-A LGA1151 Intel H110 Micro ATX DDR4 Motherboard
- 678. MSI Pro Series Intel B250 LGA 1151 DDR4 HDMI USB 3.1 ATX Motherboard (B250 PC MATE).
- 679. MSI ProSeries AMD Ryzen B350 DDR4 VR Ready HDMI USB 3 micro-ATX Motherboard (B350M PRO-VDH).

Table 7.2.4.2: List of desktop CPUs and their costs.

- 680. AMD Turion X2 Ultra ZM-84 TMZM84DAM23GG Mobile CPU Processor Socket S1G2 638pin 2.3GHz 2MB (cost and image). Amazon.
- 681. Intel E6550 2.33 dual core 4mb 1333 mhz cpu SLA9X (cost and image). Amazon.
- 682. XCSOURCE ESP32S Development Board (cost and image). Amazon.
- 683. Intel Celeron D 336 2.8GHz CPU (cost and image). Amazon.
- 684. AMD FX-4300 Quad-Core Vishera Processor 3.8GHz Socket AM3+, Retail FD4300WMHKBOX (cost and image). Amazon.
- 685. Intel Computer CPU 1.7 8 BX80660E52609V4 (cost and image). Amazon.

Figure 7.2.5.1: List of RAM memory and prices.

- 686. A-tech micron 4GB RAM
- 687. Corsair 8GB RAM
- 688. Corsair 16GB RAM
- 689. Corsair 32GB RAM

Table 7.2.6.1: List of storage mediums and costs.

- 690. USB flash drive. Amazon.
- 691. SD card. Amazon.
- 692. Hard disk. Amazon.
- 693. Cloud provider. AWS pricing.

Table 7.2.7.1: List of computer monitors and costs.

- 694. LED monitors (cost). Amazon.
- 695. LED monitor (image). Amazon.
- 696. Touchscreen monitors (cost). Amazon.
- 697. Touchscreen monitor (image). Amazon.
- 698. Projector (cost). Amazon.
- 699. Projector (image). Amazon.

Table 7.2.8.1: Types of radiofrequency transceivers and costs.

700. Hack RF-one SDR.

- 701. Ubertooth One.
- 702. Yarstick One USB transceiver.
- 703. <u>Seeedstudio Kiwi SDR</u>.

Figure 7.2.9.1: Types of IoT-enabled devices that can connect to voice computers.

704. Figure taken from GE's connect WiFi kitchen webset.

http://www.geappliances.com/ge/connected-appliances/

Table 7.2.9.1: List of WiFi network adapters and costs.

- 705. Plugable USB 2.0 Wireless N 802.11n 150 Mbps Nano WiFi Network Adapter.
- 706. TP-Link TL-WN881ND N300 PCI-E Wireless WiFi network Adapter card for pc.
- 707. Feb Smart Wireless Dual Band N600 (2.4GHz 300Mbps or 5GHz 300Mbps) PCI Express (PCIe) Wi-Fi Adapter Network Card.
- 708. ASUS Dual-Band Wireless-AC1900 PCI-E Adapter (PCE-AC68).

Table 7.2.10: List of bluetooth transceivers and costs.

- 709. Whitelabel Bluetooth 4.0 USB Dongle Adapter.
- 710. Gigabyte GC-WB867D-I REV Bluetooth 4.2/Wireless AC/B/G/N Band Dual Frequency 2.4Ghz/5.8Ghz Expansion Card.
- 711. <u>Intel Dual Band Wireless-AC 7260 2x2 Network plus Bluetooth adapter</u> (7260.HMWWB.R).

Table 7.2.11.1: Speaker types and their utility.

- 712. Headphones. https://en.wikipedia.org/wiki/Headphones
- 713. Dynamic speaker. https://en.wikipedia.org/wiki/Loudspeaker
- 714. Piezoelectric speaker. https://en.wikipedia.org/wiki/Piezoelectric speaker
- 715. Electrostatic loudspeaker. https://en.wikipedia.org/wiki/Electrostatic loudspeaker
- 716. Loudspeaker. https://en.wikipedia.org/wiki/Loudspeaker
- 717. Ribbon loudspeaker. https://en.wikipedia.org/wiki/Loudspeaker

Table 7.2.11.2: List of speaker types and costs.

- 718. ARVICKA Blue LED USB Speakers- Wired Laptop Speakers 2.0 Channel.
- 719. DOSS Touch Wireless Bluetooth V4.0 Portable Speaker with HD Sound and Bass (Black).
- 720. Anker Soundcore Bluetooth Speaker.
- 721. ION Audio Tailgater (iPA77) | Portable Bluetooth PA Speaker with Mic, AM/FM Radio, and USB Charge Port.

Table 7.2.12.1: List of power supply / battery types and costs (2018).

- 722. Kuman Lithium Battery Pack Expansion Board Power Supply.
- 723. <u>energyShield 2 Pro Arduino Battery, Solar Powered, Eco Mode, Real Time Clock, and Fuel Gauge</u>.
- 724. Rosewill Gaming Power Supply, Arc Series 750 Watt (750W).
- 725. NEXGADGET 42000mAh power

Table 7.2.13: List of housing types and costs.

- 726. Custom raspberry pi housing.
- 727. <u>Custom arduino housing</u>.
- 728. <u>DIYPC Skyline-06-WG</u>.
- 729. Thermaltake View 71 RGB.

Figure 7.2.13: Outer housing of the Apple Homepod in terms of its interior parts.

730. Apple HomePod. https://www.apple.com/homepod/

Figure 7.3.1.1: Using PyBluez for bluetooth data transmission.

- 731. PyBluez. https://github.com/pybluez/pybluez
- 732. Bluetooth.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.2.1: Using Wireless module to connect to a WiFi network.

- 733. Wireless. https://pypi.org/project/wireless/
- 734. Wifi.py. https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.3.1: Connecting to Arduino devices through COM ports.

- 735. Pyserial. https://pythonhosted.org/pyserial/
- 736. Pyserial.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.4.1: Using transcription tools for wake words.

737. Wake_transcribe.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Figure 7.3.4.2: Performance of various wakeword engines (python).

738. Wake word benchmarks, https://github.com/Picovoice/wakeword-benchmark

Figure 7.3.4.3: Hotword detection with PocketSphinx.

739. Wake pocket.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Figure 7.3.4.4: Hotword detection with Snowboy.

740. Wake snowboy.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.4.5: Training keywords with porcupine from CLI.

741. Wake porcupine.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Figure 7.3.4.6: Hotword detection with Porcupine.

742. Wake_porcupine.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.5.1: Building a keyword corpus for training a PocketSphinx language model.

743. ./data/corpus.txt.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.3.4.2: Getting model files from the sphinx knowledge base generator.

744. LMTool. http://www.speech.cs.cmu.edu/tools/lmtool-new.html

Figure 7.3.5.3: Implementing a custom transcription model.

745. Transcribe custom.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.1: Meet Nala - the open source voice assistant.

746. Nala. https://github.com/jim-schwoebel/nala

Figure 7.4.1.1: Setting up environment variables.

747. Medium.

https://medium.com/@himanshuagarwal1395/setting-up-environment-variables-in-macos-sierra-f5978369b255

Figure 7.4.2.1: Recording user queries.

748. Record.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Figure 7.4.3.1: Function to transcribe audio.

749. Transcribe.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.4.1: Specifying wake word engines.

750. Wakeup.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.5.1: Customizing text-to-speech engine.

751. ./nala/Nala.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.6.1: Registration process.

752. ./nala/nala.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Table 7.4.2.2: Modifiable settings.

753. ./nala/settings.json (after registering).

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.7.1: Loading databases.

754. ./nala/nala.py.

https://github.com/iim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.8.1: Visualizing the intent loop.

755. Created by author to describe how Nala understands user queries.

Figure 7.4.8.2: Coding the intent loop.

756. ./nala/nala.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.8.3: Closing the intent loop.

757. ./nala/nala.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.9.1: Creating an action.

758. ./nala/actions/makajoke.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_7_design

Figure 7.4.9.2: Initializing import statements and helper functions for actions.

759. ./nala/actions/makajoke.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.9.3: using sys.argv[1] to pass through directory information.

760. ./nala/actions/makajoke.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.9.4: How to update the database while coding actions.

761. ./nala/actions/makajoke.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Table 7.4.8.1: Action-intent pairs for Nala.

762. ./nala/actions (folder) and ./nala/nala.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 7 design

Figure 7.4.10: Piecing it together.

763. Nala. https://github.com/jim-schwoebel/nala

Hardware Platforms

764. <u>iMac</u>

765. Macbook pro

766. Jasper

767. Mycroft

768. Arduino

769. iPhone / Siri

770. Amazon Echo

771. Google Assistant

772. Apple HomePod

Software platforms

773. Alexa voice service (AVS)

- 774. Google assistant SDK
- 775. Jovo software framework
- 776. <u>Jasper voice bot software</u>
- 777. Mycroft Al
- 778. Nala

Python libraries

- 779. Pybluez
- 780. Wireless
- 781. Wifi
- 782. <u>Pyserial</u>
- 783. <u>PyVISA</u>
- 784. PocketSphinx
- 785. Snowbird
- 786. Porcupine
- 787. PocketSphinx Language models
- 788. <u>PyKaldi</u>
- 789. <u>LIUM diarization models</u>
- 790. <u>Sys</u>
- 791. Os
- 792. <u>Pyttsx3</u>

Other resources

793. Voice recognition project with Arduino.

http://www.instructables.com/id/Speech-Recognition-with-Arduino/

794. Jasper python library.

https://maker.pro/raspberry-pi/tutorial/the-best-voice-recognition-software-for-raspberry-pi

- 795. Google assistant tutorial. https://developers.google.com/actions/
- 796. Sonos. https://musicpartners.sonos.com/?g=node/442
- 797. USA today.

https://www.usatoday.com/story/tech/news/2018/07/07/a-foolish-take-many-americans -are-talking-to-their-devices/36563399/

Chapter 8: Server architectures

Figure 8.1.1: The client-server model.

798. Mozilla Firefox (edited image).

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction

- Figure 8.1.2: Web browsers that can play back audio media via HTML5 tag.
 - 799. HTML5 audio (edited image). https://en.wikipedia.org/wiki/HTML5 audio
- Figure 8.1.3: How WebRTC architectures work within the client-server model.

```
800.
          WebRTC. https://webrtc.org/
   801.
          HTML5rocks. https://www.html5rocks.com/en/tutorials/webrtc/basics/
Table 8.1.1: Types of servers.
   802. Tower server.
   803. Rack server.
   804. Blade server.
Table 8.1.2: Types of server software.
   805. Apache web server.
   806. Nginx web server (Engine-X).
   807. LiteSpeed web server.
   808. Lighttpd.
Table 8.1.3: Common database types and their pros/cons.
   809. MongoDB.
   810. Postgres.
   811. MySQL.
   812. J<u>SON</u>.
Figure 8.1.4: Load balancing server traffic.
   813. Load balancing. https://en.wikipedia.org/wiki/Load balancing (computing)
Table 8.1.3: Types of servers.
          Servers (table copied from here). https://en.wikipedia.org/wiki/Server (computing)
Figure 8.1.3: Monolithic vs. microservice architectures.
```

- 815. Martin Flower's blog (image credit). Link.
- Figure 8.1.4: Comparing virtual machines (VMs) and container environments.
 - Docker. https://www.docker.com/what-container 816.
 - 817. VMWare virtual machines.

https://www.vmware.com/support/ws5/doc/ws newguest setup simple steps.html

- **Figure 8.1.5:** Using Kubernetes as a container orchestration platform.
 - 818. Redhat (images). link.
- Figure 8.1.6: Using Apache Kafka for data pipelines.
 - 819. Scotch.io (image). link.
- **Figure 8.2.1:** Spinning up a web server with Flask framework.
 - 820. Flask_project.py.

https://qithub.com/iim-schwoebel/voicebook/tree/master/chapter 8 server

- **Figure 8.2.2:** Spinning up a web server with Django framework.
 - Django_server.py. 821.

https://github.com/iim-schwoebel/voicebook/tree/master/chapter 8 server

Figure 8.2.3: How NGINX server work with python.

822. Patrick Software Blog. link.

Figure 8.2.4: Installing and configuring a NGINX-WSGI server with Flask.

823. Homebrew. https://brew.sh/

Figure 8.2.5: Using Postman for testing GET/POST requests.

824. flask_project.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Figure 8.3.1: Installing mongoDB from the terminal and launching it.

825. Installing mongodb. https://docs.mongodb.com/manual/installation/

Table 8.3.1: Common mongoDB commands in python executed with the pymongo module.

826. Pymongo. https://api.mongodb.com/python/current/

827. Mongo commands.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Figure 8.3.2: Overcoming security message to install Robo3T on mac operating systems.

828. Screenshots from the installation process. https://robomongo.org/

Figure 8.3.3: Setting up a new mongoDB database connection locally using Robo3T.

829. Screenshots from the setup process. https://robomongo.org/

Table 8.4.1: Some things that you can do with Kafka.

830. Introduction to Apache Kafka.

https://www.confluent.io/blog/introduction-to-apache-kafka-for-python-programmers/

831. TechBeacon.

https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it

Figure 8.4.1: How to launch a kafka cluster from the command line (port 9092).

832. Kafka guickstart. https://kafka.apache.org/guickstart

Figure 8.4.2: Making a kafka producer.

833. Kafka producer.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter_8_server

Figure 8.4.3: Making a kafka consumer.

834. Kakfa_consumer.py

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Table 8.5.1: Variables needed to setup a minio client.

835. Minio client SDK for python. https://github.com/minio/minio-py

Figure 8.5.1: Spinning up a minio client in python as an alternative to S3.

836. Minio client SDK for python. https://github.com/minio/minio-py

837. Minio.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Figure 8.6.1: Authentication with the OAuth2 protocol.

838. Digital Ocean (image).

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

Figure 8.6.2: How to use Auth0 for user authentication.

839. Auth0 python client. https://github.com/auth0/auth0-python

840. Auth0.py.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Table 8.7.1: Common docker terms and definitions.

841. Docker commands and best practices cheat sheet.

https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-she et/

Table 8.7.2: Useful docker commands.

842. Docker Hub. https://docs.docker.com/docker-hub/

843. Using docker with python (YouTube video).

https://www.youtube.com/watch?v=VhabrYF1nms

Table 8.8.1: Common software testing techniques.

844. Software testing. https://en.wikipedia.org/wiki/Software_testing

845. Types of automated tests.

https://www.atlassian.com/continuous-delivery/different-types-of-software-testing

Table 8.8.2: Useful unittest() comparison functions.

846. Unittest. https://docs.python.org/2/library/unittest.html

Figure 8.8.1: Using the unittest module.

847. Unittest. https://docs.python.org/2/library/unittest.html

848. Unittest.pv.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Figure 8.8.2: Running automated tests in a docker container.

849. ./docker/Dockerfile.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Table 8.9.1: Common GitHub terms and definitions.

850. Assembled from author's intuition and memory.

Table 8.9.2: Common GitHub CLI commands.

851. GitHub cheat sheet. https://education.github.com/git-cheat-sheet-education.pdf

Figure 8.9.1: Setting up the Heroku CLI.

852. Heroku. https://devcenter.heroku.com/articles/heroku-cli

Table 8.9.3: Common Heroku CLI commands.

853. Heroku command line. https://devcenter.heroku.com/categories/command-line

Figure 8.9.2: Deploying code through Heroku.

854. Deployment. https://devcenter.heroku.com/categories/deployment

Table 8.10.1: Common kubernetes terms and definitions.

855. Glossary of terms.

https://kubernetes.io/docs/reference/glossary/?fundamental=true

Table 8.10.2: Getting used to the kubectl CLI.

856. Kubectl installation. https://kubernetes.io/docs/tasks/tools/install-kubectl/

Figure 8.10.1: Combining docker with kubernetes.

857. Techbeacon (image).

https://techbeacon.com/one-year-using-kubernetes-production-lessons-learned

Figure 8.10.2: Sample .yml file to spin up NGINX server.

858. ./nginx.yml.

https://github.com/jim-schwoebel/voicebook/tree/master/chapter 8 server

Python libraries

859. Unittest() framework

860. Pytest

861. <u>Auth0</u>

862. Minio

863. Kafka-python

864. Json

865. Sqlite3

866. Pyycopa

867. Pymongo

868. Flask-pymongo

869. <u>Jinja</u>

870. ReST API / Flask

871. Gunicorn

872. Uwsgi

873. <u>Virtualenv</u>

874. Flask

875. Django

Software tools

876. VMware workstation pro

877. <u>Docker</u>

878.	<u>Heroku</u>
879.	Kubernetes
880.	GCP Kubernetes Engine documentation
881.	Github cheat sheet
882.	AWS S3
883.	Robo 3T
884.	<u>Postman</u>
Other references	
885.	RTP.
886.	<u>Client-server model</u>
887.	Microservices vs. monoliths
888.	Basics of web architecture
889.	Web servers.
890.	<u>MongoDB</u>
891.	<u>Postgres</u>
892.	<u>MySQL</u>
893.	<u>JSON</u>
894.	HTML5 audio tag
895.	HTML5 video tag
896.	WebRTC API
897.	Media Capture Streams API
898.	Mediastreams Recording API
899.	Nginx web server
900.	Difference between containers and virtual machines
901.	VMware workstation pro
902.	<u>Docker</u>
903.	Kubernetes

Chapter 9: Security, legal, and ethical considerations

Figure 9.1.1: The voice security framework (VSF).

904. Created by author.

Figure 9.1.1.1: List of cloud providers by market share.

905. Parkmycloud (image).

https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/

Table 9.1.1.1: Types of ciphers for encrypting/decrypting data.

906. Pycryptodome. https://pycryptodome.readthedocs.io/en/latest/

Figure 9.1.1.2: How to generate a secure public key.

907. Generate_password.py.

https://github.com/jim-schwoebel/voicebook/blob/master/chapter 9 security/generate

password.py

Figure 9.1.1.3: How to encrypt an audio file.

908. Encrypt_file.py.

https://github.com/jim-schwoebel/voicebook/blob/master/chapter_9_security/generate_password.py

Figure 9.1.1.4: How to decrypt an audio file.

909. Decrypt file.py.

https://github.com/jim-schwoebel/voicebook/blob/master/chapter_9_security/generate_password.py

Table 9.1.5.1: Security certifications.

- 910. HIPAA Certification
- 911. HITRUST Certification
- 912. <u>PCI DSS</u>

Table 9.1.6.1: Voice security vulnerabilities.

- 913. Voice squatting.
- 914. Voice Masquerading.
- 915. Voice Adversarial Attack.
- 916. Weak voice authentication / physical security.
- 917. DophinAttack.

Table 9.1.7.1: List of blockchain platform relevant to voice computing.

- 918. Voise.
- 919. Video Coin.
- 920. CellTrust blockchain.
- 921. Langnet.
- 922. Snips AIR.
- 923. Flask blockchain tutorial.

Figure 9.2.1: The voice legal framework (VLF).

924. Figure made by author.

Table 9.2.1.1: Important laws and their descriptions.

- 925. Wiretap Act of 1968.
- 926. <u>California Connected Televisions Statute</u>.
- 927. One / two party consent laws.
- 928. Child online privacy protection rule.
- 929. Computer Fraud and Abuse Act.
- 930. General Data Protection Regulation.
- 931. Health Insurance Portability and Accountability Act.

Table 9.2.2.1: Recent court cases and laws affecting consumer privacy.

- 932. Personal Data Notification and Protection Act.
- 933. United States vs. Carpenter.

Table 9.2.3.1: Rights you have for sound recordings under the US Copyright Act of 1976.

934. Copyright law of the United States.

https://en.wikipedia.org/wiki/Copyright_law_of_the_United_States

Figure 9.3.1: The voice ethics framework (VEF).

935. Figure made by author.

Table 9.3.1: Risks voice computers pose to under users.

936. Table made by author from intuition.

Table 9.3.2: Actions the larger voice community can take to reduce consumer risks.

- 937. Table made by author from intuition.
- 938. Common voice project. https://voice.mozilla.org/en
- 939. Audioset. https://research.google.com/audioset/
- 940. American with disabilities act of 1990.

https://en.wikipedia.org/wiki/Americans with Disabilities Act of 1990

941. Federated machine learning models.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

942. Copyright law of the United States.

https://en.wikipedia.org/wiki/Copyright law of the United States

943. Patents. https://en.wikipedia.org/wiki/Patent.

Chapter 10: Getting involved

Figure 10.1.1: YouTube Video of NeuroLex's story.

944. Voicecamp demo day. https://www.youtube.com/watch?v=oiCY3dcAbX0

Table 10.1.1: Summary of voice biomarker studies.

945. García, Adolfo M., et al. "How language flows when movements don't: An automated analysis of spontaneous discourse in Parkinson's disease." Brain and Language 162 (2016): 19-28.

http://www.sciencedirect.com/science/article/pii/S0093934X16300256

946. Khodabakhsh, Ali, et al. "Evaluation of linguistic and prosodic features for detection of Alzheimer's disease in Turkish conversational speech." EURASIP Journal on Audio, Speech, and Music Processing 2015.1 (2015): 9.

https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-015-0052

947. König, Alexandra, et al. "Automatic speech analysis for the assessment of patients with predementia and Alzheimer's disease." Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 1.1 (2015): 112-124.

http://www.sciencedirect.com/science/article/pii/S2352872915000160

948. Pestian, John P., et al. "A machine learning approach to identifying the thought markers of suicidal subjects: a prospective multicenter trial." Suicide and

life-threatening behavior (2016).

http://onlinelibrary.wiley.com/doi/10.1111/sltb.12312/full

949. Bedi, Gillinder, et al. "Automated analysis of free speech predicts psychosis onset in high-risk youths." npj Schizophrenia 1 (2015): 15030.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849456/

Figure 10.2.1: The NeuroLex Innovation Fellows program timeline.

950. Application link. http://innovate.neurolex.co

Table 10.3.1: List of open source voice datasets.

- 951. Common Voice Dataset.
- 952. Google Audioset.
- 953. Urban Sound dataset.
- 954. NeuroLex Disease Dataset.
- 955. NeuroLex Emotion Dataset.
- 956. Mivia audio events dataset.
- 957. Karoldvl.

Table 10.3.2: List of some open source voice projects.

- 958. Librosa
- 959. Pyaudioanalysis
- 960. Soundfile
- 961. Sounddevice
- 962. SpeechRecognition
- 963. PocketSphinx
- 964. SIDEKIT

Table 10.4.1: Voice computing conferences (2018).

- 965. Smart Voice Summit
- 966. Conversational Interaction Conference
- 967. Bottish
- 968. Superbot
- 969. SpeechTEK
- 970. Voice & Beyond
- 971. Conversational Commerce Conference
- 972. Business of Bots
- 973. Voicecon
- 974. Connections: Connected Home Conference
- 975. Voice Summit
- 976. ML Conf
- 977. The Voice of Healthcare Summit
- 978. Conversational Commerce Conference
- 979. All About Voice
- 980. AWS re:INVENT
- 981. Voice Conference

- 982. CES
- 983. The Alexa Conference
- 984. <u>Lingofest</u>

Table 10.4.1: List of voice-related research conferences.

985. List abridged. http://www.cstr.ed.ac.uk/research/conferences/sby-cdate.html

Figure 10.6.1: The voice tech landscape.

986. Voice tech landscape.

https://medium.com/point-nine-news/voice-tech-landscape-150-startups-mapped-and-analysed-82c5adaf710

- 987. Amazon Alexa.
- 988. Facebook.
- 989. Google Assistant.
- 990. Microsoft Cortana.
- 991. IBM Watson.
- 992. Sonos.
- 993. <u>Bose</u>.
- 994. Twilio.

Table 10.7.1: List of accelerators to launch your voice startup.

- 995. Y-Combinator. https://www.ycombinator.com/rfs/#voice
- 996. Techstars. https://www.techstars.com/
- 997. Betaworks. https://betaworks.com/voicecamp/
- 998. Alexa accelerator. https://www.techstars.com/programs/alexa-program/

NeuroLex resources

- 999. NeuroLex's story (video).
- 1000. The Innovation Fellows Program.
- 1001. TRIBE FAQ document.
- 1002. TRIBE 2 Demo Day.
- 1003. <u>Train diseases repository</u>.

Other references

- 999. Stanford University.
- 1000. <u>Carnegie Mellon University</u> (Language technologies institute).
- 1001. Johns Hopkins University (Center for Speech Language Technology).
- 1002. Georgia Tech.
- 1003. <u>University of Pennsylvania (Department of Linguistics)</u>.
- 1004. Massachusetts Institute of Technology (EECS).
- 1005. University of Washington.
- 1006. <u>UC Berkeley</u> (Computational Linguistics).