Dimensionality Reduction for Data Visualization Using Nature-Inspired Algorithms

1. Introduction

This project aims to simplify the visualization of high-dimensional data through a comparative exploration of traditional and nature-inspired dimensionality reduction techniques. The system supports repeated executions to assess algorithm stability and performance variability.

2. Dataset

- Dataset Used: Load Digits Dataset from Scikit-learn
- Features: 64 numerical attributes representing pixel values of 8x8 images of handwritten digits (0-9).
- Classes: 10 distinct classes representing digits 0 to 9.
- Preprocessing: Standardization using StandardScaler was applied to normalize the feature set prior to dimensionality reduction

3. Algorithms Implemented

ALGORITHM	DESCRIPTION
PCA	Linear projection preserving global variance
T-SNE	Non-linear embedding preserving local structure
UMAP	Non-linear method optimizing topology and manifold learning
ISOMAP	Graph-based approach preserving geodesic distances

SELF-ORGANIZING MAP (SOM)	Neural network simulating topological self-organization
AUTOENCODER	Deep learning model compressing and reconstructing data
AUTOENCODER + T-SNE	Combines autoencoder-based compression with t-SNE visualization

4. Algorithm Descriptions

4.1 PCA (Principal Component Analysis)

• How It Works:

- 1. **Standardize the data** (mean = 0, variance = 1).
- 2. **Compute the covariance matrix** to understand how features vary together.
- 3. **Calculate eigenvectors** (shows a direction in the feature space) **and eigenvalues** (tells how important that direction) of the covariance matrix.
- 4. **Sort the eigenvectors** by their corresponding eigenvalues in descending order (most important first).
- 5. **Select the top** *k* **eigenvectors** to form the new feature space.
- 6. **Project the data** onto this new subspace.

• Strengths:

- ✓ Preserves global structure

Limitations:

- X Ineffective on non-linear datasets
- **X** Sensitive to feature scaling
- X May lose local data structure

Best For:

Linear datasets, preprocessing for other machine learning tasks

• Real-World Application:

✓ Gene Expression Analysis – PCA helps reduce thousands of gene
expression variables to visualize differences between cancerous and normal
cells.

4.2 t-SNE (t-distributed Stochastic Neighbor Embedding)

• How It Works:

1. Compute Pairwise Similarities:

In high-dimensional space, t-SNE measures the similarity between points using a <u>Gaussian distribution</u>.

2. Map to Lower Dimensions:

It places points in 2D/3D space, it uses <u>a Student's t-distribution</u> to model the pairwise similarity.

3. Minimize the Difference:

It minimizes the Kullback-Leibler divergence (KL divergence) between the high-dimensional and low-dimensional similarity distributions by gradient descent.

• Strengths:

- arphi Powerful for visualizing complex datasets

• Limitations:

- \times Computationally intensive $(O(n^2))$
- **X** Results vary between runs
- **✗** Global structure is not preserved

• Real-World Application:

✓ Word Embedding Visualization – Used to visualize semantic relationships in pre-trained word vectors (e.g., Word2Vec or GloVe).

4.3 UMAP (Uniform Manifold Approximation and Projection)

• How It Works:

1. Builds a high-dimensional graph:

Models your data's local neighborhood using a distance metric (like Euclidean).

2. Projects into low-dimensional space:

Tries to preserve the structure of the graph in a lower-dimensional space (e.g., 2D).

3. Optimizes a cross-entropy loss between high- and low-dim graphs:

Unlike t-SNE (which minimizes KL-divergence), UMAP uses cross-entropy to balance local and global fidelity.

• Strengths:

- ✓ Preserves both local and global structure
- ✓ More stable than t-SNE

• Limitations:

- X Sensitive to hyperparameters
- X May underperform with extremely high-dimensional data

Best For:

Large-scale data visualization

• Real-World Application:

✓ Single-cell RNA sequencing (scRNA-seq) – UMAP is widely used to visualize cell clusters in biomedical research.

4.4 Isomap (Isometric Mapping)

• How It Works:

1. Builds a neighborhood graph:

- Connect each point to its k-nearest neighbors.
- Edges represent distances between connected points.

2. Compute geodesic distances:

Use shortest path between two points along a curved surface between all pairs along the graph.

3. Apply classical MDS:

Find a low-dimensional embedding that preserves these pairwise distances.

• Strengths:

- ✓ Effective for non-linear manifolds
- ✓ Outperforms PCA on curved datasets

• Limitations:

- **X** Sensitive to noise
- **X** Requires full connectivity for meaningful paths

• Best For:

Manifold learning in datasets like 3D objects and sensor networks

Real-World Application:

4.5 SOM (Self-Organizing Map)

• How It Works:

1. Initialize a 2D grid of nodes (neurons), each with a random weight vector the same size as input vectors.

2. For each input:

- Find the Best Matching Unit (BMU) the node whose weight vector is closest to the input.
- Update BMU and its neighbors to move closer to the input vector.
- Over time, neighboring neurons become specialized to similar inputs.

3. This results in a 2D map where:

After many rounds, each neuron becomes specialized — One neuron might represent "red flowers".

• Strengths:

- ✓ Produces intuitive visualizations
- arphi Maintains topological relationships

• Limitations:

- ➤ Rigid 2D grid structure
- **X** Requires careful tuning of parameters

Best For:

Clustering, interpretable 2D mappings

• Real-World Application:

✓ Customer Segmentation – Used in marketing to segment customers based on purchase behavior and demographics.

4.6 Autoencoder

• How It Works:

1. Encoder:

- Learns to compress the input.
- Example: 784-dim image \rightarrow 32-dim code.

2. Bottleneck (Latent Space):

- The compressed low-dimensional representation.
- This is the useful part for visualization or clustering.

3. Decoder:

- Learns to reconstruct the input from the compressed code.

• Strengths:

- ✓ Learns complex non-linear structures
- ✓ Flexible architecture (e.g., denoising, variational)

• Limitations:

- **X** Requires large training data
- X Interpretability is low compared to linear models

• Best For:

High-dimensional data (e.g., images, audio), anomaly detection

• Real-World Application:

✓ Network Intrusion Detection – Autoencoders detect anomalies in network traffic by learning a compact representation of normal patterns.

4.7 Autoencoder + t-SNE

• How It Works:

1. Train Autoencoder:

Input \rightarrow Encoder \rightarrow Bottleneck \rightarrow Decoder \rightarrow Output Goal: output \approx input

2. Extract Bottleneck Features:

Use only the encoder to compress your data: compressed_data = encoder.predict(X)

3. Apply t-SNE:

Use t-SNE(n_components=2).fit_transform(compressed_data) to reduce the compressed vectors to 2D.

4. Plot the Result:

You'll get a 2D scatter plot showing natural clusters and patterns.

• Strengths:

- ✓ More efficient than pure t-SNE
- arphi Preserves structure while denoising input

• Limitations:

- **X** Inherits t-SNE limitations
- X Requires two-step model training

• Best For:

Extremely high-dimensional datasets (e.g., genomics)

• Real-World Application:

✓ Genomics Data Visualization – Applied in bioinformatics to reduce and visualize thousands of gene features in genetic disease studies.

5. GUI Functionality

- Dropdown to select dimensionality reduction algorithm
- Dynamic parameter input fields based on selected algorithm
- "Run" button to execute algorithm
- "Run 30 Repetitions" button for reproducibility testing
- Embedded matplotlib canvas to display 2D scatter plots

7. Parameter Customization

METHOD	PARAMETERS	ROLES
PCA	n_components	Specifies how many principal components you want to keep when reducing the dimensionality
T-SNE	n_components perplexity	Effective neighbors: Low perplexity → focuses more on local structure (small clusters) High perplexity → preserves larger-scale structure
UMAP	n_components n_neighbors min_dist	Controls local & global structure preservation. Controls how tightly UMAP clusters. Low min_dist (e.g., 0.1) → Tighter clusters. High min_dist (e.g., 0.8) → Looser, more spread-out clusters.
ISOMAP	n_components n_neighbors	
SOM	grid_size	Determines the number of nodes (neurons) available

to represent the input space. Larger grids → finer representation but slower training. Smaller grids → faster but may under-represent
representation but slower training. Smaller grids → faster but may under-represent
may under-represent
complex data.
sigma Controls the degree of smoothing during training.
High sigma → broad influence (more generalization).
Low sigma → narrow influence (more detail).
Determines the update learning_rate strength for neurons during training.
Higher learning rate → faster adaptation, but risk of instability.
Lower learning rate → slower but more stable training.
AUTOENCODER encoding_dim Smaller encoding_dim → More compression (may lose information)
Larger encoding_dim → Retains more information but less compression
Monitor loss on validation epochs data to avoid overtraining.

	batch_size	Number of samples processed before model weights are updated. Smaller batch size → Slower but more generalizable
		Larger batch size → Faster training but risk of local minima.
AUTOENCODER + T-SNE	All above + perplexity	

8. Self-Organizing Map (SOM) Configuration

• Library Used: MiniSom

• **Grid Topology:** grid_size × grid_size

• Training Iterations: 100

• Distance Metric: Euclidean

• Initialization: Random weights

Here is how you can incorporate the **Results** section into your documentation in a clear, professional, and consistent format:

9. Results

To evaluate and compare the effectiveness of each dimensionality reduction technique, multiple quantitative metrics were computed. These include:

- **ARI** (**Adjusted Rand Index**): Measures clustering similarity to ground truth labels.
- **NMI (Normalized Mutual Information):** Quantifies shared information between cluster assignments and true classes.
- Silhouette Score: Assesses how well-separated and compact the clusters are.
- **Trustworthiness:** Indicates the preservation of local structure from high- to low-dimensional space.
- Accuracy (KNN): Classification accuracy using a 5-Nearest Neighbors classifier on the 2D-transformed data.

• **Time (s):** Execution time in seconds (single run).

Algorithm	ARI	NMI	Silhouette	Trustworthiness	Accuracy (KNN)	Time (s)
PCA	0.3249	0.4642	0.3770	0.8180	0.6767	3.066
t-SNE	0.7705	0.8333	0.5750	0.9928	0.9783	4.362
UMAP	0.8712	0.8985	0.6961	0.9804	0.9811	2.892
Isomap	0.5576	0.7010	0.4739	0.8575	0.8692	3.095
SOM	0.1357	0.2535	0.4284	0.9495	0.8531	2.643
Autoencoder	0.1074	0.2359	0.3492	0.7191	0.5565	2.948
Autoencoder + t- SNE	0.6890	0.7716	0.5212	0.9868	0.9577	3.344

Key Observations:

- UMAP consistently outperformed other techniques across most metrics including ARI, NMI, Silhouette Score, and KNN accuracy, making it the most effective method for this dataset.
- **t-SNE** and **Autoencoder** + **t-SNE** also delivered high-quality visualizations with strong clustering behavior and trustworthiness.
- **SOM** performed surprisingly well in preserving topology but had limited clustering capability.
- **PCA** and **Isomap** were moderate performers, with PCA being faster but less expressive.
- **Autoencoder** alone underperformed in this context, indicating that raw latent space may not always align with class boundaries without additional techniques like t-SNE.

Let me know if you want a visual comparison (e.g., a bar chart or radar plot) or if you want to include visual outputs (scatter plots) for each method.

10. Repetition and Reproducibility

- The "Run 30 Repetitions" feature runs the selected algorithm 30 times with different random seeds.
- **Seed Logging:** All seeds used are saved to seeds_used.txt for future reference and reproducibility.