Tarik Dzanic

Curriculum Vitae

Education

Aug. 2019 – May 2023	Texas A&M University Ph.D. Ocean Engineering
Aug. 2018 – July 2019	Georgia Institute of Technology M.Sc. Aerospace Engineering
Sep. 2014 – May 2018	Princeton University B.S.E. Mechanical and Aerospace Engineering, <i>cum laude</i>

Experience

June 2023 – Present	Sidney Fernbach Postdoctoral Fellow Lawrence Livermore National Lab, Center for Applied Scientific Computing
May 2023 – Aug. 2023	Visiting Scholar Princeton University, Department of Mechanical and Aerospace Engineering
April 2023 – May 2023	Visiting Researcher NASA Ames Research Center, Aerothermodynamics Branch
June 2020 – May 2023	Computing Scholar Intern Lawrence Livermore National Lab, Center for Applied Scientific Computing
May 2017 – Sep. 2017	Computational Aerodynamicist Intern Haas Formula One Team

Publications

Journal Articles

- 12. Continuously bounds-preserving discontinuous Galerkin methods for hyperbolic conservation laws **T. Dzanic**. *Submitted*.
- 11. DynAMO: Multi-agent reinforcement learning for dynamic anticipatory mesh optimization with applications to hyperbolic conservation laws
 - T. Dzanic, K. Mittal, D. Kim, J. Yang, S. Petrides, B. Keith, R. Anderson. Submitted.
- 10. Positivity-preserving discontinuous spectral element methods for compressible multi-species flows W. Trojak, **T. Dzanic**. *Submitted*.
- 9. On the anti-aliasing properties of entropy filtering for under-resolved turbulent flows **T. Dzanic**, W. Trojak, F. Witherden. *Submitted*.
- 8. Validation of wall boundary conditions for simulating complex fluid flows via the Boltzmann equation: Momentum transport and skin friction
 - T. Dzanic, F. Witherden, L. Martinelli. Physics of Fluids, 36, 017109, 2024.
- 7. Positivity-preserving entropy filtering for the ideal magnetohydrodynamics equations
 - T. Dzanic, F. Witherden. Computers & Fluids, 266, 106056, 2023.
- 6. A positivity-preserving and conservative high-order flux reconstruction method for the polyatomic Boltzmann–BGK equation
 - T. Dzanic, F. Witherden, L. Martinelli. Journal of Computational Physics, 486, 112146, 2023.
- 5. Bounds preserving temporal integration methods for hyperbolic conservation laws
 - T. Dzanic, W. Trojak, F. Witherden. Computers & Mathematics with Applications, 135, 6-18, 2023.

- 4. Positivity-preserving entropy-based adaptive filtering for discontinuous spectral element methods **T. Dzanic**, F. Witherden. *Journal of Computational Physics*, 468, 111501, 2022.
- 3. Utilizing time-reversibility for shock capturing in nonlinear hyperbolic conservation laws **T. Dzanic**, W. Trojak, F. Witherden. *Computers & Fluids*, 247, 105652, 2022.
- 2. Partially-averaged Navier–Stokes simulations of turbulence within a high-order flux reconstruction framework
 - T. Dzanic, S. Girimaji, F. Witherden. Journal of Computational Physics, 456, 110992, 2022.
- 1. Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes
 - C. Cox, W. Trojak, T. Dzanic, F. Witherden, A. Jameson. Computers & Fluids, 221, 104922, 2021.

Conference Papers

- 9. Direct molecular gas dynamics simulations of re-entry vehicles via the Boltzmann equation **T. Dzanic**, L. Martinelli. *AIAA SciTech*, 2024.
- 8. Towards full molecular gas dynamics simulations of complex flows via the Boltzmann equation **T. Dzanic**, L. Martinelli. *Cambridge Unsteady Flow Symposium*, 2024.
- 7. Multi-agent reinforcement learning for adaptive mesh refinement
 - J. Yang, K. Mittal, **T. Dzanic**, S. Petrides, B. Keith, B. Peterson, D. Faissol, R. Anderson. *International Conference on Autonomous Agents and Multiagent Systems*, p.14-22, 2023.
- 6. Reinforcement learning for adaptive mesh refinement
 - J. Yang, **T. Dzanic**, B. Peterson, J. Kudo, K. Mittal, V. Tomov, J.S. Camier, T. Zhao, H. Zha, Tz. Kolev, R. Anderson, D. Faissol. *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 26, p.5997-6014, 2023.
- 5. Shock capturing methods in high-order flux reconstruction I: Graph viscosity and convex limiting approaches
 - W. Trojak, **T. Dzanic**, F. Witherden. *AIAA SciTech*, 2021.
- 4. Numerical analysis and prediction of aero-optical effects
 - D. Hartman, T. Dzanic, F. Witherden, A. Tropina, R. Miles. AIAA SciTech, 2021.
- 3. Fourier spectrum discrepancies in deep network generated images
 - T. Dzanic, K. Shah, F. Witherden. Neural Information Processing Systems (NeurIPS), 33, p.3022-3032, 2020.
- 2. Non-equilibrium wall modeling for large eddy simulation of stalled iced airfoils
 - T. Dzanic, J. Oefelein. AIAA SciTech, 2020.
- 1. Higher-order implicit large eddy simulations of a VFE-2 delta wing
 - T. Dzanic, L. Martinelii. AIAA SciTech, 2019.

Selected Invited Talks & Presentations

- Structure-preserving finite element methods for multi-physics applications

 Office of Science Advanced Scientific Computing Research (ASCR) Principal Investigator Meeting. Albuquerque, NM, USA.
- Constructing provably robust, constraint-satisfying finite element methods for computational physics *Brown University*. Providence, RI, USA.
- High-order computational fluid dynamics schemes on GPU architectures *NASA Ames Research Center*. Mountain View, CA, USA.
- Constructing provably robust, constraint-satisfying finite element methods for computational physics Lawrence Livermore National Lab. Livermore, CA, USA.
- Positivity-preserving entropy-based adaptive filtering for shock capturing *PyFR Seminar Series, Imperial College London*. London, UK.

Funding

Principal Investigator

2023 - 2024

Continuously bounds-preserving finite element methods for multi-physics applications Sponsor: Department of Energy Laboratory Directed Research and Development (\$190,000/yr)

Achievements

2023 - 2025	Sidney Fernbach Postdoctoral Fellowship, Lawrence Livermore National Lab
2023	Editor's Pick, Physics of Fluids
2023	Art of Science Showcase, Air Force Office of Scientific Research
2019	Department Excellence Fellowship, Texas A&M University
2018	George Bienkowski Memorial Prize Recipient, Princeton University
2014 – 2018	Questbridge Scholar, Princeton University

Teaching Experience

2022	■ Teaching Assistant for OCEN 345: Theory of Ocean Engineering Structures Texas A&M University
2021	■ Teaching Assistant for OCEN 405: Finite Element Analysis in Engineering Design Texas A&M University
2020	■ Teaching Assistant for OCEN 261: Applied Numerical Methods with Python Texas A&M University
2018-2019	■ Teaching Assistant for AE 3340: Design and Systems Engineering Methods Georgia Institute of Technology