Teorema da Aproximação Universal

Caio Lins

9 de março de 2021

1 Um pouco sobre Espaços Métricos

Para estudar os próximos resultados, precisaremos do Teorema da Categoria de Baire. Pelo bem da completude do texto, primeiro introduziremos algumas noções relativas a Espaços Métricos que serão utilizadas na demonstração.

Definição 1.1. Dado um conjunto X qualquer, uma m'etrica em X é uma função $d: X \times X \to \mathbb{R}$ tal que:

- i) d(x, x) = 0;
- ii) d(x,y) > 0 se $x \neq y$;
- iii) d(x,y) = d(y,x);
- iv) $d(x,z) \le d(x,y) + d(y,z)$.

Definição 1.2. Um espaço métrico é um par (X, d) onde X é um conjunto e d é uma métrica em X.

Por vezes, onde não houver prejuízo ao entendimento do texto, utilizaremos apenas o nome do conjunto para nos referirmos ao espaço métrico por ele formado.

Definição 1.3. Um suconjunto M de um espaço métrico (X,d) é dito limitado se existe $c \in \mathbb{R}$ tal que $d(x,y) \leq c$ para todos $x,y \in M$. Nesse caso, o definimimos o diâmetro de M, denotado por diam M, como sup $\{d(x,y) \; ; \; x,y \in M\}$. Se M é ilimitado, ou seja, dado c > 0 existem $x,y \in M$ com d(x,y) > c, dizemos que diam $M = \infty$.

Definição 1.4. Dado um espaço métrico (X, d) e um ponto $a \in X$, chamamos de bola aberta de raio r centrada em a, e denotamos por B(a, r), o conjunto

$$\{x \in X \; ; \; d(x,a) < r\} \, .$$

Definição 1.5. Dado um espaço métrico (X,d) e um subconjunto $Y \subset X$, chamamos de *interior* de Y, e denotamos por int Y, o subconjunto de Y formado pelos elementos $a \in Y$ tais que existe r > 0 satisfazendo $B(a,r) \subset Y$.

Definição 1.6. Um subconjunto A de um espaço métrico (X, d) é dito aberto se A = int A.

Definição 1.7. Dado um subconjunto M de um espaço métrico (X,d), um ponto $x \in X$ é dito aderente a M se toda bola aberta centrada em x tiver interseção não-vazia com M. Chamamos de fecho de M, e denotamos por \overline{M} , o conjunto dos pontos de aderência de M.

Definição 1.8. Um subconjunto F de um espaço métrico (X,d) é dito fechado se $F = \overline{F}$.

Definição 1.9. Dada uma sequência $(x_n)_{n\in\mathbb{N}}$ de elementos do espaço métrico (X,d), ou seja, uma função $f: \mathbb{N} \to X$, dizemos que (x_n) converge para $L \in X$ se, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que, para $n \geq n_0$, vale $d(x_n, L) < \varepsilon$. Se para todo $L \in X$ é falso que $\lim x_n = L$, dizemos que (x_n) é divergente.

Definição 1.10. Uma sequência $(x_n)_{n\in\mathbb{N}}$ de elementos do espaço métrico X é dita de Cauchy se, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que, para $n, m \ge n_0$, vale $d(x_n, x_m) < \varepsilon$. Equivalentemente, (x_n) é de Cauchy se, para $n \ge n_0$, vale $d(x_n, x_{n+p}) < \varepsilon$ para todo $p \in \mathbb{N}$.

Proposição 1. Toda sequência convergente $(x_n)_{n\in\mathbb{N}}$ no espaço métrico X é de Cauchy

Demonstração. Seja $L=\lim x_n$. Dado $\varepsilon>0$, tome $n_0\in\mathbb{N}$ de modo que, para $n\geq n_0$, valha $d(n,L)<\varepsilon/2$. Então, se $n,m\geq n_0$ temos

$$d(x_n, x_m) \le d(x_n, L) + d(x_m, L) = \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Exemplo 1. Embora toda sequência convergente seja de Cauchy, é falso que dado um espaço métrico qualquer, toda sequência de Cauchy convirja para um ponto pertencente a ele. Por exemplo, considerando o conjunto \mathbb{Q} com a métrica d induzida pela métrica de \mathbb{R} , temos que toda sequência de racionais convergindo para um irracional é de Cauchy, mas diverge em \mathbb{Q} .

Proposição 2. Se $(x_n)_{n\in\mathbb{N}}$ em um espaço métrico X é de Cauchy e possui um valor de aderência (ou seja, existe uma subsequência convergente (x_{n_k}) de (x_n)), então (x_n) converge para esse valor de aderência.

Demonstração. Seja $L \in X$ o limite da subsequência (x_{n_k}) . Então, dado $\varepsilon > 0$ conseguimos obter $k_0 \in \mathbb{N}$ tal que, se $k > k_0$, então $d(x_{n_k}, L) < \varepsilon/2$. Também conseguimos $n_0 \in \mathbb{N}$ tal que, se $n, m \ge n_0$ então $d(x_n, x_m) < \varepsilon/2$. Tome $\ell > \max\{n_0, k_0\}$. Então claramente $n_\ell \ge \ell$ e, com isso,

$$d(x_{\ell}, L) \le d(x_{\ell}, x_{n_{\ell}}) + d(x_{n_{\ell}}, L) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Definição 1.11. Um espaço métrico (X, d) é dito *completo* se toda sequência de Cauchy em X converge para um elemento de X.

Proposição 3. Um espaço métrico (X, d) é completo se, e somente se, dada uma sequência decrescente $F_1 \supset F_2 \supset \cdots$ de conjuntos não-vazios fechados em X, tais que $\lim \dim F_n = 0$, existe $a \in X$ com

$$\{a\} = \bigcap_{n=1}^{\infty} F_i.$$

Demonstração. Suponha que X seja completo e considere $(F_n)_{n\in\mathbb{N}}$ como no enunciado do Teorema. Para cada conjunto F_n , escolha $x_n \in F_n$, formando uma sequência $(x_n)_{n\in\mathbb{N}}$ de Cauchy. De fato, como lim diam $F_n = 0$, dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para $n \geq n_0$, temos $d(x,y) < \varepsilon$ para todos $x, y \in F_n$. De $F_1 \supset F_2 \supset \cdots$ concluímos que $n, m > n_0$ implicam $x_n, x_m \in F_{n_0}$ o que implicate $d(x_n, x_m) < \varepsilon$.

Da completude de X concluímos que existe $x = \lim x_n$. Como todos F_n são fechados e, para $m \ge n$ temos $x_m \in F_n$, conclui-se que $x \in F_n$ para todo $n \in \mathbb{N}$, ou seja,

$$x \in \bigcap_{n=1}^{\infty} F_n$$
.

Suponha, agora, que X seja um espaço métrico no qual toda sequência de fechados como a do enunciado convirja. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de Cauchy em X. Defina, para cada $n\in\mathbb{N}$, o conjunto $F_n=\{x_n,x_{n+1},\dots\}$. Então $(\overline{F_n})_{n\in\mathbb{N}}$ é uma sequência decrescente de conjuntos fechados tais que lim diam $\overline{F_n}=\lim$ diam $F_n=0$. Por hipótese, existe $a\in\bigcap\overline{F_n}$. Como a é limite de sequência de pontos de F_k para todo $k\in\mathbb{N}$, para cada k podemos escolher $a_{n_k}\in F_k$ de modo que $d(a,a_{n_k})<1/k$ e, assim, $\lim a_{n_k}=a$. Claramente $n_k>k$ para todo $k\in\mathbb{N}$, portanto, passando a uma subsequência se necessário, a_{n_k} é subsequência de (x_n) o que implica, como (x_n) é de Cauchy, $\lim x_n=a$.

Teorema 1.1 (Teorema da Categoria de Baire). Se (X, d) é um espaço métrico completo e A_1, A_2, \ldots são abertos densos em X, então

$$A = \bigcap_{i=1}^{\infty} A_i$$

 \acute{e} denso em X.

Demonstração. Devemos mostrar que dado V um conjunto aberto em X, temos $A \cap V \neq \emptyset$. Nossa estratégia será construir uma sequência decrescente $F_1 \supset F_2 \supset \cdots$ de conjuntos fechados não-vazios tais que lim diam $F_n = 0$ e, para todo $n \in \mathbb{N}$, $F_n \subset A_n \cap V$. Então, pela Proposição 3, o ponto x que satisfaz $\{x\} = \bigcap F_n$ é tal que $x \in V$ e $x \in F_n \subset A_n$ para todo n, ou seja, $x \in A$ e, portanto, $x \in A \cap V$.

Começamos obeservando que, como A_1 é denso, $A_1 \cap V$ é um conjunto aberto não-vazio. Logo, existe B_1 bola aberta não-vazia de raio menor que 1, tal que $\overline{B_1} \subset A_1 \cap V$. Suponha, agora, definidos B_1, \ldots, B_n de forma que, para todo $1 < k \le n$, B_k é uma bola aberta não-vazia de raio menor que 1/k tal que $\overline{B_k} \subset V \cap A_k \cap B_{k-1}$. Novamente, como A_{n+1} é denso, $A_{n+1} \cap B_n$ é um conjunto aberto não vazio. Logo, definimos B_{n+1} como uma bola aberta não-vazia contida em $A_{n+1} \cap B_n$, de raio menor que 1/(n+1) tal que $\overline{B_{n+1}} \subset A_{n+1} \cap B_n \subset A_{n+1} \cap V$.

Com isso, obtemos uma sequência decrescente $B_1 \supset \cdots \supset B_n \supset \cdots$ de bolas abertas não-vazias, com o raio de B_n menor que 1/n, cujos fechos $\overline{B_1} \supset \cdots \supset \overline{B_n} \supset \cdots$ formam uma sequência decrescente de conjuntos fechados não-vazios, com diam $\overline{B_n} \leq 1/n$ e $\overline{B_n} \subset A_n \cap V$ para todo $n \in \mathbb{N}$, o que, como apontado anteriormente, termina a prova.