CIS102 Tutorial 2 Answers

Goldsmiths College, University of London

October 27 2005

1. (a)
$$\{b \in \mathbb{Z} : -2 \le b \le 3\} = \{-2, -1, 0, 1, 2, 3\}$$

(b)
$$\{5^t : t \in \mathbb{Z}, t \ge 0\} = \{5^0, 5^1, 5^2, 5^3, \ldots\} = \{1, 5, 25, 125, \ldots\}$$

2. (a)
$$\{8, 10, 12, 14, 16, 18, 20\} = \{2m : m \in \mathbb{Z}, 4 \le m \le 10\}$$

(b)
$$\{0, 3, -3, 6, -6, 9, -9, \ldots\} = \{3n : n \in \mathbb{Z}\}\$$

3. (a)
$$S = 0, 1, 2, 3, 4, 5$$

 $|S| = 6$

(b)
$$|\mathcal{P}(S)| = 2^{|S|} = 2^6 = 64$$

(c)
$$X = 1, 3, 5$$

 $1 \in X$

 $X \subseteq S$

 $\emptyset \subseteq S$

 $X \in \mathcal{P}(X)$

4.
$$X = \{a, b, c\}, Y = \{a, c, d, f\}, \mathcal{U} = \{a, b, c, d, e, f\}$$

 $X \subseteq \mathcal{U}, y \subseteq \mathcal{U}$

$$Y'=\{b,e\}$$

$$X \cup Y = \{a, b, c, d, f\}$$

$$X \cap Y' = \{b\}$$

5. $A \subseteq \mathcal{U}, B \subseteq \mathcal{U}$

= B'

(b)	A	B	$A \cup B$	$(A \cup B)'$	A'	B'	$A' \cap B'$
	0	0	0	1	1	1	1
	0	1	1	0	1	0	0
	1	0	1	0	0	1	0
	1	1	1	0	0	0	0

Coulumns $(A \cup B)'$ and $A' \cap B'$ are the same, therefore they are equivalent regions of \mathcal{U} , so $(A \cup B)' \equiv A' \cap B'$

6. (a)
$$(A \cup B) \cup C \equiv A \cup (B \cup C)$$

(b)
$$\mathcal{U} = \{1, 2, 3, 4, 5\}$$

 $[A \subseteq \mathcal{U}, B \subseteq \mathcal{U}, C \subseteq \mathcal{U} | (A - B) - C \neq A - (B - C)]$

$$A = \{1, 3, 5\}, B = \{2, 3, 4\}, c = \{1, 2, 3\}$$

(c) The binary operation set difference is not associative.

7. (a)

(b)

(c) $X = (B \cup C) \cap A'$