List 09: logit/probit-regression

N.V. Artamonov

Содержание

1	Fitting & coefficients' interpretation	1
	1.1 approve equation #1 (probit)	1
	1.2 approve equation #2 (logit)	2
	1.3 labour force equation #1 (probit)	
	1.4 labour force equation #2 (logit)	
2	z-test	3
	2.1 approve equation #1 (probit)	3
	2.2 approve equation #2 (logit)	3
	2.3 labour force equation #1 (probit)	
	2.4 labour force equation #2 (logit)	4
3	LR-test: overall significance	5
	3.1 approve equation #1 (probit)	5
	3.2 approve equation #2 (logit)	5
	3.3 labour force equation #1 (probit)	6
	3.4 labour force equation #2 (logit)	7
4	Wald-test: joint significance	9
	4.1 swiss labour force equation #1	9

1 Fitting & coefficients' interpretation

1.1 approve equation #1 (probit)

For the dataset loanapp consider probit-regression approve on appine, mortno, unem, dep, male, married, yjob, self

Specification: $P(approve=1) = \Phi(\beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self)$

An alternative specification: $probit(P(approve=1)) = \beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self$

Fit the model and report coefficinets. Round the answer to 3 decimal places.

The answer:

(Intercept)	appinc	mortno	unem	dep	male
1.142	-0.001	0.407	-0.031	-0.083	0.020
married	yjob	self			
0.221	-0.001	-0.158			

Give the interpretation of coefficients.

1.2 approve equation #2 (logit)

For the dataset loanapp consider logit-regression approve on appine, mortno, unem, dep, male, married, yjob, self

 $\begin{aligned} & \text{Specification: } P(approve=1) = \Lambda(\beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self) \end{aligned}$

An alternative specification: $logit(P(approve=1)) = \beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self$

Здесь
$$logit(P(approve=1)) = log \frac{P(approve=1)}{1-P(approve=1)} = log \frac{P(approve=1)}{P(approve=0)}$$

Fit the model and report coefficients. Round the answer to 3 decimal places.

The answer:

Give the interpretation of coefficinets..

1.3 labour force equation #1 (probit)

For the dataset TableF5-1 consider probit-regression LFP on WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Specification:
$$P(LFP=1) = \Phi(\beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC))$$

An alternative specification: $probit(P(LFP=1)) = \beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC)$

Fit the model and report coefficinets. Round the answer to 3 decimal places.

The answer:

Give the interpretation of coefficients.

1.4 labour force equation #2 (logit)

For the dataset TableF5-1 consider logit-regression LFP on WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Specification:
$$P(LFP=1) = \Lambda(\beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC))$$

An alternative specification: $logit(P(LFP=1)) = \beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC)$

Здесь
$$logit(P(LFP=1)) = \log \frac{P(LFP=1)}{1-P(LFP=1)} = \log \frac{P(LFP=1)}{P(LFP=0)}$$

Fit the model and report coefficients. Round the answer to 3 decimal places.

The answer:

(Intercept)	WA	I(WA^2)	WE	KL6	K618
-3.241	0.007	-0.001	0.180	-1.414	-0.104
CIT	UN	log(FAMINC)			
-0.217	-0.018	0.333			

Give the interpretation of coefficinets..

2 z-test

2.1 approve equation #1 (probit)

For the dataset loanapp consider probit-regression approve on appine, mortno, unem, dep, male, married, yjob, self

Fit the model and report the output result of z-test

The answer:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                       0.1085 10.5241 <2e-16 ***
(Intercept)
            1.1418
            -0.0005
                        0.0004 - 1.3564
                                        0.1750
appinc
            0.4071
                                        <2e-16 ***
mortno
                        0.0869 4.6840
                                        0.0579
            -0.0308
                        0.0162 -1.8961
unem
                        0.0352 -2.3558
                                        0.0185 *
dep
            -0.0828
                        0.0998 0.2002
                                        0.8413
male
             0.0200
married
            0.2208
                        0.0869 2.5394
                                        0.0111 *
yjob
            -0.0007
                        0.0345 -0.0202
                                        0.9839
            -0.1583
                        0.1073 -1.4751
                                        0.1402
self
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Significance level is 10%

Evaluate critical value. Round the answer to 3 decimal places.

```
[1] 1.645
```

Which coefficients are significant? The answer

```
[1] "(Intercept)" "mortno" "unem" "dep" "married"
```

2.2 approve equation #2 (logit)

For the dataset loanapp consider logit-regression approve on appine, mortno, unem, dep, male, married, yjob, self

Fit the model and report the output result of z-test

The answer:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 1.9315 0.1993 9.6891 <2e-16 *** appinc -0.0010 0.0007 -1.4717 0.1411 mortno 0.7868 0.1721 4.5714 <2e-16 ***
```

```
-0.0549
                          0.0294 - 1.8661
                                           0.0620 .
unem
             -0.1608
                          0.0647 - 2.4861
                                           0.0129 *
dep
male
              0.0300
                          0.1859 0.1612
                                           0.8719
                          0.1624
              0.4246
                                  2.6145
                                           0.0089 **
married
yjob
             -0.0065
                          0.0651 -0.0993
                                           0.9209
self
             -0.2804
                          0.1967 -1.4257
                                           0.1539
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Significance level is 5%

Evaluate critical value. Round the answer to 3 decimal places.

[1] 1.96

Which coefficients are significant? The answer

```
[1] "(Intercept)" "mortno" "dep" "married"
```

2.3 labour force equation #1 (probit)

For the dataset TableF5-1 consider probit-regression LFP on WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Fit the model and report the output result of z-test

The answer:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
             -2.0046
                          1.7039 -1.1765
                                            0.2394
(Intercept)
              0.0076
                          0.0701 0.1087
                                            0.9135
WA
I(WA^2)
                          0.0008 -0.6554
             -0.0005
                                            0.5122
WE
              0.1088
                          0.0241
                                  4.5144
                                            <2e-16 ***
KL6
             -0.8513
                          0.1154 - 7.3778
                                            <2e-16 ***
             -0.0632
                          0.0417 - 1.5157
                                            0.1296
K618
                                            0.2328
CIT
             -0.1277
                          0.1070 - 1.1932
UN
             -0.0106
                          0.0157 - 0.6771
                                            0.4983
              0.1996
                          0.1049 1.9021
                                            0.0572 .
log(FAMINC)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Significance level is 10%

Evaluate critical value. Round the answer to 3 decimal places.

```
[1] 1.645
```

Which coefficients are significant? The answer

```
[1] "WE" "KL6" "log(FAMINC)"
```

2.4 labour force equation #2 (logit)

For the dataset TableF5-1 consider logit-regression LFP on WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Fit the model and report the output result of z-test

The answer:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -3.2407
                         2.8337 -1.1436
              0.0070
                         0.1159 0.0602
                                          0.9520
WA
I(WA^2)
             -0.0008
                         0.0013 -0.6061
                                          0.5444
                                          <2e-16 ***
                         0.0404
                                 4.4535
WE
              0.1800
KL6
             -1.4138
                         0.1987 -7.1152
                                          <2e-16 ***
             -0.1042
                         0.0687 -1.5166
                                          0.1294
K618
CIT
             -0.2165
                         0.1765 -1.2267
                                          0.2199
             -0.0176
                         0.0258 -0.6812
                                          0.4957
UN
            0.3331
                         0.1729 1.9272
                                          0.0540
log(FAMINC)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Significance level is 5%

Evaluate critical value. Round the answer to 3 decimal places.

[1] 1.96

Which coefficients are significant? The answer

[1] "WE" "KL6"

3 LR-test: overall significance

3.1 approve equation #1 (probit)

For the dataset loanapp consider probit-regression approve on appine, unem, male, yjob, self

Fit the model and test overall significance. Significance level is 10%.

Evaluate test statistics. Round the answer to 3 decimal places.

The answer:

[1] 8.573

Evaluate critical value. Round the answer to 3 decimal places.

[1] 9.236

Is the regression significant? The answer

[1] "Insignificant"

Which coefficinets are significante?

[1] "(Intercept)" "unem"

3.2 approve equation #2 (logit)

For the dataset loanapp consider logit-regression approve on appine, appine^2, mortno, unem, dep, male, married, yjob, self

Fit the model and test overall significance. Significance level is 5%.

Evaluate test statistics. Round the answer to 3 decimal places.

The answer:

[1] 48.496

Evaluate critical value. Round the answer to 3 decimal places.

[1] 16.919

Is regression significant? The answer

[1] "Significant"

Which coefficinets are significante?

[1] "(Intercept)" "I(appinc^2)" "mortno" "dep" "married"

3.3 labour force equation #1 (probit)

For the dataset TableF5-1 consider a collection of probit-regression. Fitting results

	Зависимая переменопя				
	LFP				
	(1)	(2)	(3)	(4)	
WA		0.1084* (0.0635)			
I(WA2)		-0.0014* (0.0007)			
WE	0.1088*** (0.0241)				
KL6	-0.8513*** (0.1154)				
K618	-0.0632 (0.0417)				
CIT		-0.1026 (0.1029)			
UN		-0.0101 (0.0152)			
log(FAMINC)	0.1996* (0.1049)	0.3621*** (0.0957)			
Constant		-5.2365*** (1.5600)			
Observations Log Likelihood Akaike Inf. Crit.		-502.2236	-509.6532	-514.5631	

Note: *p<0.1; **p<0.05; ***p<0.01

For each regression evauate LR-statistics for overall significance. Round the answer to 3 decimal places.

The answer

Regression LR.stat

1 105.066
2 25.299
3 10.440
4 0.620

For each regression evaluate necessary critical value. Significance level is 10%. Round the answer to 3 decimal places.

The answer

Regression Critical

1 13.362
2 9.236
3 7.779
4 4.605

Which regression is significant?

Regression Significance
Significant
Significant
Significant
Significant
Insignificant

3.4 labour force equation #2 (logit)

For the dataset TableF5-1 consider a collection of logit-regressions. fitting results

Note:		*p<0.1	=======; ; **p<0.05;	***p<0.01
Observations Log Likelihood Akaike Inf. Crit.	-462.2363	-475.6736	-489.7908	-514.5605
Constant		-4.3882*** (1.5718)		
log(FAMINC)		0.2808* (0.1683)		
UN		-0.0287 (0.0254)		
CIT		-0.2753 (0.1726)		
K618		0.0509 (0.0594)		
KL6		-1.0154*** (0.1646)		
WE	0.1800*** (0.0404)	0.2028*** (0.0396)		
	(0.0013)			

For each regression evauate LR-statistics for overall significance. Round the answer to 3 decimal places.

The answer

========	
Regression	LR.stat
1	105.274
2	78.399
3	50.165
4	0.625

For each regression evaluate necessary critical value. Significance level is 5%. Round the answer to 3 decimal places.

The answer

========	=======
Regression	Critical
1	15.507
2	12.592
3	11.070
4	7.815

Which regression is significant?

========	
Regression	Significance
1	Significant
2	Significant
3	Significant
4	Insignificant

4 Wald-test: joint significance

4.1 swiss labour force equation #1

For the dataset SwissLabour consider logit-regression participation on income, income^2, age, age^2, youngkids, oldkids, foreign

Fitting result

Standard errors:MLE

	Est.	S.E.	z val.	р	VIF
(Intercept) income I(income^2) age I(age^2) youngkids oldkids foreignyes	-9.4763 1.8753 -0.1377 3.4025 -0.4846 -1.1813 -0.2471 1.0728	17.2451 3.2660 0.1552 0.6866 0.0851 0.1723 0.0843 0.1870	-0.5495 0.5742 -0.8875 4.9553 -5.6916 -6.8578 -2.9321 5.7371	0.5827 0.5658 0.3748 0.0000 0.0000 0.0000 0.0034 0.0000	276.5677 276.4963 83.0214 83.3744 1.5869 1.4726 1.0847

Fit the model and test the following hypothesis with Wlad test (use χ^2 -statistics). Significance level is 5%.

4.1.1 Hypothesis 1

Test the significance of income, i.e. test the hypothesis $H_0: \beta_{income} = \beta_{income^2} = 0$.

Evaluate test statistics and its P-value.

Evaluate critical value. Round the answer to 3 decimal places.

Conclusion

[1] "Significant"

4.1.2 Hypothesis 2

Test the significence of the number of kids, i.e. the hypothesis $H_0: \beta_{youngkids} = \beta_{oldkids} = 0$. Evaluate test statistics and its P-value.

Chisq Pr(> Chisq)
48.420 0

Evaluate critical value. Round the answer to 3 decimal places.

[1] 5.991

Conclusion

[1] "Significant"

4.1.3 Hypothesis 3

Test the significence of age, i.e. the hypothesis $H_0: \beta_{age} = \beta_{age^2} = 0.$

Evaluate test statistics and its P-value.

Chisq Pr(> Chisq)
58.911 0

Evaluate critical value. Round the answer to 3 decimal places.

[1] 5.991

Conclusion

[1] "Significant"