

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method for obtaining closed form expressions for subsurface temperature depth distribution along with its error bounds, the method comprising:
~~providing inputs selected from defining~~ at least two different types of boundary conditions involving at least three different heat sources;
selecting computer inputs from said defined boundary conditions; and
using said inputs in a computerized stochastic heat conduction equation incorporating
random thermal conductivity to obtain a mean and variance in temperature fields for said input,
said equation being:

$$\frac{d}{dz} \left\{ (\bar{K} + K'(z)) \frac{dT}{dz} \right\} = -A(z) \quad (1)$$

where

T is the temperature ($^{\circ}\text{C}$),

A(z) is the radiogenic heat source ($\mu\text{W}/\text{m}^3$),

$K(z) = \bar{K} + K'(z)$ is the thermal conductivity ($\text{W}/\text{m}^{\circ}\text{C}$)

which is expressed as a sum of a deterministic component \bar{K} and a random component

$K'(z)$ is the random component with mean zero and a Gaussian colored noise correlation

structure represented by

$$E(K'(z)) = 0 \quad (2)$$

$$E(K'(z_1)K'(z_2)) = \sigma \frac{2}{K} = \sigma \frac{2}{K} e^{-\rho|z_1-z_2|} \quad (3)$$

where

$\sigma \frac{2}{K}$ is the variance in thermal conductivity (W/m°C)

ρ is the correlation decay parameter m⁻¹ (or 1/ ρ is the correlation length scale) and z₁ and z₂ are the depths (m).

2. (Previously Presented) A method as in claim 1 wherein one of said boundary conditions represents the condition of heat sources and is selected from the group consisting of Zero (A(z)=0), Constant (A(z) = A) and exponentially decreasing with depth (A(z) = A₀e^{-z/D})

3. (Previously Presented) A method as in claim 1 wherein said boundary conditions comprise constant surface temperature and constant surface heat flow.

4. (Previously Presented) A method as in claim 1 wherein said boundary conditions comprise constant surface temperature and constant basal heat flow.

5. (Previously Presented) A method as in claim 1 wherein a parameter used is that of radiogenic heat generation.

6. (Previously Presented) A method as in claim 1 carried out electronically using a computing means and wherein appropriate numerical values are given for controlling thermal parameters directly in boxes that appear on a screen of the computing means, thereby instantaneously computing and plotting the mean and error bounds on the temperature depth distribution.

7. (Previously Presented) A method as in claim 1 wherein the subsurface is one of a group consisting of: an oil field, a natural gas field, tectonically active area and a mineral resource area.