Questão 1

Uma barra rígida, sem massa, tem três massas iguais ligadas a ela, como na figura. A barra pode girar livremente em um plano vertical

em torno de um eixo sem atrito perpendicular a ela passando pelo ponto P, e é solta a partir do repouso na posição horizontal em t = 0. Supondo $m \in d$ conhecidos, encontre:

- a) o momento de inércia do sistema em torno do eixo em t = 0;
- b) o torque agindo sobre o sistema em t = 0;
- c) a aceleração angular do sistema em t = 0;
- d) a aceleração linear da massa "3";
- e) a máxima energia cinética do sistema;
- f) a máxima velocidade angular atingida pela barra

Questão 2

Mostre que num sistema de partículas, o torque total (em relação a um ponto Q) produzido pelo peso das partículas, pode ser escrito como $\tau = \vec{R} \times (M\vec{g})$, onde \vec{R} é a posição do centro de massa em relação ao ponto Q, $M = \sum m_i$ é a soma das massas das partículas \vec{g} é a aceleração gravitacional.

Questão 3

Um disco uniforme de massa M = 2.0 kg e raio R = 8.0 cm é montado sobre um eixo horizontal fixo, sem atrito. Um fio de massa desprezível enrolado na borda do disco suporta um bloco de massa 4.0 kg.

- a) qual é o torque total do sistema em ralação ao ponto O?;
- b) quando o bloco tem uma velocidade v, o disco tem uma velocidade angular $\omega = v/R$. Determine o momento angular do sistema em torno de O;
- c) usando o fato de que $\vec{\tau} = \frac{d\vec{L}}{dt}$ e o resultado do item b), calcule a aceleração do bloco.

Questão 4

Um pinguim de massa m cai do ponto A, sem velocidade inicial, a uma distância horizontal D da origem de um sistema de coordenadas (x,y,z).

- a) qual é o momento angular \vec{l} do pinguim durante a queda, em relação ao ponto O?;
- b) qual é o torque $\vec{\tau}$ em relação ao ponto O a que é submetido o pinguim devido à força gravitacional mg?;

c) verifique que
$$\frac{d\vec{l}}{dt} = \vec{\tau}$$

Ouestão 5

Uma haste rígida de massa M e comprimento l pode girar sem atrito em torno do seu centro fixo O (Figura). Duas partículas de massas m_1 e m_2 são presas às suas extremidades. Este sistema gira num plano vertical com uma velocidade angular instantânea ω .

- a) ache uma expressão para o módulo do momento angular do sistema;
- b) ache uma expressão para o módulo da aceleração angular do sistema quando a haste forma um ângulo θ com a horizontal.

Questão 6

Uma barra de comprimento L e massa M repousa sobre uma mesa horizontal sem atrito. Um pequeno objeto de massa m, movendo-se com velocidade v, como mostra a figura ao lado, colide elasticamente com a barra.

- a) Que grandezas são conservadas na colisão?
- b) Qual deve ser a massa do objeto para que ele fique em repouso após a colisão?

Questão 7

Uma barra homogênea de massa M e comprimento d pode girar em torno de um eixo fixo em uma de suas extremidades. Uma bola de massa de modelar, com massa m e velocidade v, atinge a barra a uma distância x do eixo e fica grudada na barra. Determine:

- a) o momento de inércia do sistema bola+barra;
- b) o momento angular do sistema após a colisão;
- c) a razão entre a energia final e a energia inicial do sistema.

Questão 8

Um disco uniforme de massa M e raio R gira com velocidade angular ω_0 em torno de um eixo horizontal que passa por seu centro.

- a) determine a energia cinética e o momento angular do disco;
- b) Um pedaço de massa *m* quebra na beirada do disco e sobe verticalmente acima do ponto no qual se desprendeu (ver figura ao lado). Até que altura ele sobe, antes de começar a cair?
- c) qual a velocidade angular final do disco quebrado?

Questão 9

Uma partícula de massa m desce de uma altura h deslizando sobre uma superfície sem atrito e colide com uma haste vertical uniforme (de massa M e comprimento l), ficando grudada nela,

conforme a figura abaixo. A haste pode girar livremente em torno de um eixo horizontal que passa por O.

- a) qual é o momento angular da massa *m* em relação a *O* no instante em que ela atinge a haste?;
- b) qual é a velocidade angular do conjunto (massa+haste) logo após a colisão?;
- c) encontre o valor do ângulo θ para o qual a haste para momentaneamente.

Questão 10

Na figura ao lado, uma criança de 30 kg está em pé na borda de um carrossel parado de massa 100 kg e raio 2,0 m. O momento de inércia do carrossel em relação ao eixo de rotação é 150 kg.m 2 . A criança agarra uma bola de massa 1,0 kg lançada por um colega. Imediatamente antes de a bola ser agarrada ela tem uma velocidade v de módulo 12 m/s, fazendo um ângulo 37^0 com a reta tangente à borda

do carrossel, como mostra a figura. Qual a velocidade angular do carrossel imediatamente após a criança agarrar a bola?

Questão 11

Um rapaz de massa m = 60 kg encontra-se parado em um ponto da circunferência de uma plataforma horizontal de massa $M = 3.0 \times 10^2$ kg e raio R = 3.0 m, inicialmente parada. Essa plataforma pode girar em torno de um eixo vertical com atrito desprezível. O rapaz começa a andar

- ao longo da circunferência com velocidade constante de 2,0 m/s em relação à plataforma.
- a) quais são as velocidades angulares do rapaz e da plataforma no referencial terrestre?;
- b) de quanto terão girado o rapaz e a plataforma, no referencial terrestre, quando o rapaz completar uma volta em relação à plataforma?

M R

Questão 12

A massa da Terra é aproximadamente 6,0 x 10^{24} kg. Se um iceberg de 1,0 x 10^{13} kg se desloca desde o polo norte até uma latitude de 45^{0} , qual é a modificação resultante na duração do dia? A duração do dia fica maior ou menor?

Questão 13

Um projétil de massa m move-se para a direita com velocidade v_i . Ele bate e gruda na extremidade de uma haste de massa M e comprimento d que está montada num eixo sem atrito que passa por seu centro.

- a) calcule a velocidade angular do sistema imediatamente após a colisão;
- b) determine a porcentagem de energia mecânica perdida por causa da colisão.

Ouestão 14

Um bloco de madeira de massa M, sobre uma superfície horizontal sem atrito, é ligado a uma vareta de comprimento l e massa desprezível. A barra pode girar

livremente em torno da outra extremidade. Uma bala de massa m, movendo-se paralelamente à superfície e perpendicularmente à vareta, atinge o bloco com velocidade v e se aloja nele.

- a) qual é o momento angular do sistema (bala + bloco)?
- b) que fração da energia cinética inicial é perdida na colisão?

Questão 15

Um pedaço de massa de modelar, com massa m e velocidade v, é atirado contra um cilindro de massa M e raio R. O cilindro está inicialmente em repouso sobre um eixo horizontal fixo que passa pelo seu centro de massa. A trajetória da massa é perpendicular ao eixo e a uma distância d do centro do cilindro (d < R).

- a) calcule a velocidade angular do sistema imediatamente após a massa bater e grudar no cilindro;
- b) calcule a energia cinética do conjunto nesse instante;
- c) a energia mecânica se conserva no processo? Explique sua resposta.

Questão 16

Uma barata de massa m encontra-se sobre a borda de um disco uniforme de massa 4m que pode girar livremente em torno de seu centro como um carrossel. Inicialmente a barata e o disco giram juntos com uma velocidade angular ω_i . A barata então caminha até metade da distância ao centro do disco.

- a) qual é a nova velocidade angular do sistema barata-disco?
- b) qual é a razão entre a nova energia cinética do sistema e a sua energia cinética inicial
- c) o que é responsável pela variação da energia cinética?

Questão 17

Uma esfera de massa M e raio R desce rolando ao longo de um plano inclinado de um ângulo θ em relação à horizontal. Determine a velocidade da esfera ao atingir a base do plano utilizando:

- a) considerações sobre energia;
- b) a 2^a lei de Newton;
- c) calcule a força de atrito que age sobre a esfera.

Questão 18

Uma pessoa lança uma bola de boliche de raio R=11 cm ao longo de uma pista. A bola desliza na pista, com velocidade inicial $v_{\rm CM,0}=8,5$ m/s e velocidade angular inicial nula. O coeficiente de atrito cinético entre a bola e a pista é 0,21. A força de atrito cinético $f_{\rm c}$ agindo sobre a bola provoca uma aceleração linear e um torque que provoca uma aceleração angular

F-128 – Física Geral I – 2º Semestre 2012

LISTA DO CAPÍTULO 11

da bola. Quando a velocidade $v_{\rm CM}$ diminui o bastante e a velocidade angular ω aumenta o bastante, a bola para de deslizar e passa a rolar suavemente.

a) neste instante, qual é o valor de $v_{\rm CM}$ em termos de ω ?

Durante o deslizamento, quais são:

- b) a aceleração linear?;
- c) a aceleração angular da bola?;
- d) por quanto tempo a bola desliza?;
- e) que distância a bola desliza?;
- f) qual a velocidade linear da bola no instante em que começa a rolar suavemente?

Na figura, uma força horizontal constante F é aplicada a um cilindro maciço de raio R e massa M através de uma linha de pescar enrolada nele. Supondo que o cilindro rola sem escorregar em uma superfície horizontal, mostre que:

- a) a aceleração do centro de massa do cilindro é 4F/3M;
- b) a força de atrito é para a direita e tem módulo igual a F/3;
- c) se o cilindro parte do repouso, qual é a velocidade de seu CM após ter rolado por uma distância d?

Ouestão 20

Uma esfera sólida homogênea de raio r é colocada na superfície interna de uma tigela hemisférica de raio R >> r. A esfera é solta a partir do repouso de uma posição que forma um ângulo θ com a vertical e rola sem escorregar. Determine a velocidade angular da esfera quando ela atinge o fundo da tigela.

Questão 21

Exercício 40 (pág. 321) do livro texto. (Tome $\tau_s = 8 \text{ N.m.}$)

Ouestão 22

Exercício 55 (pág. 322) do livro texto.

Questão 23

Exercício 69 (pág. 324) do livro texto.

Questão 24

Exercício 71 (pág. 324) do livro texto.

Questão 25

Exercício 77 (pág. 324) do livro texto.