Probabilités III

MINES ParisTech

12 décembre 2021 (#a708971)

Question 1	Soient X	$\sim \mathcal{E}(\lambda), \ \lambda >$	$0, \text{ et } Y \sim$	$\mathcal{B}(1/2)$ c	leux variab	oles aléatoir	es
réelles indépe	ndantes, et	Z = XY +	$(1-Y)\lambda$.	La densi	té $f_{Z Y=1}$	est égale à	
п	(\ _v) 1	()					

- $\sqcup A : \frac{\lambda}{2} \exp(-\lambda z) 1_{\mathbb{R}_+^*}(z)$
- \square B: $\lambda \exp(-\lambda z) 1_{\mathbb{R}^*_+}(z)$
- \square C : Z n'admet pas de densité
- \square D : $Z = \lambda$ p.s.

Question 2 (réponses multiples) Avec les hypothèses précédentes, on a

Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} 1_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0.$ Quelle est la densité de Y|X=x?

- \square A: $\exp(-y)$
- $\square \ \mathrm{B} : 1_{[0,x]}(y)$
- $\Box C : \frac{1}{x} 1_{[0,x]}(y)$ $\Box D : \lambda \exp(-\lambda x)$

Question 4 En déduire la valeur de $\mathbb{E}(Y)$:

- $\Box A : 1/2$
- \square B: x/2
- $\Box \ C : \frac{1}{2\lambda}$ $\Box \ D : \lambda^2$

Question 5 Soit (X, Y) un vecteur gaussien d'espérance (μ_X, μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de X|Y vaut :