Introdução à computação quântica

Alexandre C. Ricardo Amanda G. Valério Tiago de S. Farias

Sumário

Parte 1: Fundamentos Teóricos (~1h30)

- Recapitulação de mecânica quântica
- Computação clássica e mecânica quântica
- Portas lógicas
- Execução de algoritmos quânticos
- Pós-processamento
- Software & Hardware quânticos

Parte 2: Algoritmos quânticos na prática ~(1h30 - 2h)

- Geração de Estados de Bell
- Teleportação quântica
- Algoritmos Variacionais e Quantum Machine Learning

Mecânica quântica

Recapitulando: Equação de Schrödinger, Estados Quânticos e Notação de Dirac

Equação de Schrödinger dependente do tempo:

$$i\hbarrac{\partial}{\partial t}\ket{\psi(t)}=\hat{H}\ket{\psi(t)}$$

- Vetor de estado $|\psi\rangle$ (ket) descreve o sistema quântico.
- Vetor dual $\langle \psi |$ (bra). Produto interno: $\langle \psi | \phi \rangle$
- ullet Evolução unitária: Existe $\,U(t)\,$ unitária que satisfaz $\,|\psi(t)
 angle=U(t)|\psi(0)
 angle$
- Evolução unitária preserva probabilidade entre os estados estacionários
- Equação linear: Combinação linear de soluções também é solução
- ullet Base de soluções estacionárias $\{|\psi_n
 angle\}_{n=1,2,...}$

O qubit e a base computacional

O qubit é um sistema quântico de dois níveis, representando a versão quântica do bit clássico.

A base computacional é a base na qual representamos as operações em computação quântica.

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix} \hspace{1cm} |1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

Estado geral de um qubit:

$$|\psi
angle = lpha |0
angle + eta |1
angle \qquad lpha, eta \in \mathcal{C}, \, |lpha|^2 + |eta|^2 = 1$$

Superposição

Superposição é representada pela combinação linear de **estados da base**.

$$|\psi
angle = lpha |0
angle + eta |1
angle$$

NÃO significa que a partícula *está* nos dois estados da base ao mesmo tempo, mas sim que existe uma **distribuição de amplitudes de probabilidade não nulas** entre os dois estados da base.

Esfera de Bloch

Ferramenta visual para visualizar estados de um único qubit.

Estado de um único qubit:

$$|\psi
angle = \cos(heta/2)|0
angle + e^{i\phi}\,\sin{(heta/2)}$$

Pode ser visto como uma esfera de raio unitário parametrizada pelos ângulos $\{ heta,\phi\}$

Emaranhamento

Adicionando mais uma partícula ao nosso sistema:

$$|\psi
angle = lpha |00
angle + eta |01
angle + \gamma |10
angle + \delta |11
angle$$

Emaranhamento ocorre quando não existem bases nas quais podemos fatorar o estado em produtos tensoriais.

Emaranhamento

Exemplo de estado emaranhado: Estados de Bell.

$$|\psi^+
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle).$$

Exemplo de estado não-emaranhado: Superposição uniforme

$$egin{align} ig|\psi
angle &=rac{1}{2}(\ket{00}+\ket{01}+\ket{10}+\ket{11})\ &=rac{1}{\sqrt{2}}(\ket{0}+\ket{1})\left(\ket{0}+\ket{1}
ight) \end{aligned}$$

Interferência

Operações unitárias podem gerar interferência entre estados quânticos.

Recurso em computação quântica importante para diversos algoritmos (Deutsch-Jozsa, Shor, Grover)

Probabilidade clássica: Sempre real e positiva

Amplitudes de estados quânticos: números complexos -> podem se cancelar ou amplificar

Medida

Medida colapsa o estado do sistema

Exemplo:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Pode retornar:

- ullet |0
 angle com probabilidade $|lpha|^2$
- $|1\rangle$ com probabilidade $|\beta|^2$

Níveis de Programação

- Linguagens de programação
- Assembly
- Microcontroladores/Nível eletrônico


```
print("Hello, World!")
```

```
#include <stdio.h>
int main() {
  printf("Hello World\n");
  return 0;
}
```

```
print("Hello, World!")
```

```
#include <stdio.h>
int main() {
  printf("Hello World\n");
  return 0;
}
```

```
format ELF64 executable 3
    segment readable executable
    entry main
    main:
        lea rdi, [msg]
        mov rax, 14
        mov rdx, rax
        mov rsi, rdi
        mov rdi, 1
13
        mov rax, 1
14
        syscall
        xor rdi, rdi
        mov rax, 60
16
        syscall
17
18
    segment readable writable
20
    msg db 'Hello world!', 10, 0
22
```


https://www.pontogpp.com.br/tecnicos/desvendando-as-portas-logicas

https://www.autocorerobotica.com.br/74hc00-ci-porta-logica-nand

- Toda a computação clássica pode ser realizada por um conjunto de portas clássicas
- Abstratamente, podemos definir modelos matemáticos universais de computação
 - o Máquina de Turing

- Toda a computação clássica pode ser realizada por um conjunto de portas clássicas
- Abstratamente, podemos definir modelos matemáticos universais de computação
 - Máquina de Turing

- Toda a computação clássica pode ser realizada por um conjunto de portas clássicas
- Abstratamente, podemos definir modelos matemáticos universais de computação
 - Máquina de Turing
- Tese de Church-Turing:

Tudo que é computável, pode ser computado por uma máquina de Turing

- Toda a computação clássica pode ser realizada por um conjunto de portas clássicas
- Abstratamente, podemos definir modelos matemáticos universais de computação
 - Máquina de Turing
- Tese de Church-Turing:

Tudo que é computável, pode ser computado por uma máquina de Turing

Vantagens da computação quântica

- Tempo de processamento:
 - o exploração de problemas que já demandam muito tempo de processamento (classe NP)
- Custo energético
- Melhores soluções
- Exploração do comportamento de redes neurais
- Teorema da não-clonagem

Vantagens da computação quântica

- Tempo de processamento:
 - o exploração de problemas que já demandam muito tempo de processamento (classe NP)
- Custo energético
- Melhores soluções
- Exploração do comportamento de redes neurais
- Teorema da não-clonagem

Emaranhamento + Superposição

- Permitem percorrer todo espaço de solução em menos passos
- "Paralelismo Quântico"

$$|\psi
angle = lpha |00
angle + eta |01
angle + \gamma |10
angle + \delta |11
angle$$

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix}$$

Porta Hadamard

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Portas de Pauli

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Portas de rotação

$$----\left[RX(\theta)\right]$$

$$RX(\theta) = \begin{bmatrix} cos(\theta/2) & -isen(\theta/2) \\ -isen(\theta/2) & cos(\theta/2) \end{bmatrix}$$

$$RY(\theta) = \begin{bmatrix} cos(\theta/2) & -sen(\theta/2) \\ sen(\theta/2) & cos(\theta/2) \end{bmatrix}$$

$$RZ(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$$

$$RX(\theta)|0\rangle = \cos(\theta/2)|0\rangle - i sen(\theta/2)|1\rangle$$

$$RX(\theta)|1\rangle = -i sen(\theta/2)|0\rangle + \cos(\theta/2)|1\rangle$$

Porta de fase / porta T

$$P(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$
$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

$$P(\theta)|0\rangle = |0\rangle$$

$$P(\theta)|1\rangle = e^{i\theta}|1\rangle$$

CNOT (CX)

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$CNOT = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$$

$$CNOT_{1\rightarrow 2}|00\rangle = |00\rangle$$

$$CNOT_{1\rightarrow 2}|10\rangle = |11\rangle$$

$$CNOT_{1\rightarrow 2}|01\rangle = |01\rangle$$

$$CNOT_{1\rightarrow 2}|11\rangle = |10\rangle$$

SWAP

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$SWAP|\phi\rangle\otimes|\psi\rangle=|\psi\rangle\otimes|\phi\rangle$$

Porta Toffoli (CCNOT, CCX)

$$CCNOT_{1,2\rightarrow3}|110\rangle = |111\rangle$$

- Conjunto de portas que permite implementar qualquer algoritmo
- Qualquer unitária pode ser representada como uma composição de portas desse conjunto

• Conjuntos universais de portas

Portas de Clifford (H, S, CNOT) + porta T

$$T = \begin{vmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{vmatrix}$$

• Porta Toffoli + porta Hadamard

• Portas de rotação + CNOT

Decomposição

- Computadores quânticos não implementam todas as portas possíveis de forma direta
- Devemos decompor unitárias na combinação de portas disponíveis, desde que forme um conjunto universal, isso é eficiente?

Decomposição

• Teorema de Solovay-Kitaev:

Qualquer unitária pode ser decomposta eficientemente em portas básicas com precisão polilogarítmica

$$O(4^n \operatorname{polylog}(1/\epsilon))$$

Circuitos quânticos

Vandersypen, Lieven M. K., et al. "Experimental Realization of Shor's Quantum Factoring Algorithm Using Nuclear Magnetic Resonance." Nature, vol. 414, no. 6866, Dec. 2001, pp. 883–87

Execução de algoritmos quânticos

Como Executar um Algoritmo Quântico?

Simulação de algoritmos quânticos (computação clássica):

- Cálculo numérico
- Simuladores especializados (Qiskit's Aer, Pennylane's Lightning, Classiq's Simulator, Cirq's Simulator.)

Execução por Hardware Quântico:

- Execução do circuito no computador quântico
- Requerem pagamento (exceto alguns casos)

Ruído e decoerência

A Eq. de Schrödinger descreve a dinâmica de **sistemas quânticos fechados**. Na prática:

- Sistemas quânticos não são 100% isolados, gerando baixa interação com o ambiente.
- A interação com o ambiente leva a perda da informação dos qubits para o ambiente.
- Efeitos comuns de decoerência são o decaimento e a defasagem:

NISQ: Noisy Intermediate-Scale Quantum

- Noisy: Computadores quânticos com erros.
 - Intermediate-Scale: Escala intermediária (50 1000 qubits).
 - Muitos qubits -> impossível simular classicamente.
 - Número de qubits, ainda assim, pequeno demais para protocolos de correção de erros
- Podem retornar bons resultados com circuitos rasos.
- Existe potencial para "benefício quântico" em tarefas específicas, sem comprovação.

Pós-processamento

Fazendo medidas em circuitos quânticos

- Medir qubits -> colapso da função de onda em estados da base computacional
- Após medir os resultados de um computador quântico, temos bits clássicos
- Resultados probabilísticos
- Muitos shots -> Estatística do sistema

$$|\psi
angle = lpha |0
angle + eta |1
angle$$

$$P(|0
angle)=|lpha|^2 \qquad \qquad P(|1
angle)=|eta|^2$$

- Operadores de Pauli: $\{I, X, Y, Z\}$
- Pauli String: Produto Tensorial de Operadores de Paulo através dos qubits
- Qualquer observável pode ser decomposto em Pauli Strings
- Importante para obter informações do sistema. Reconstrução de fase relativa:

$$|\psi
angle = \cos{(heta/2)}|0
angle + e^{i\phi}\sin{(heta/2)}|1
angle$$

• Reconstrução de fase relativa:

$$|\psi
angle = \cos{(heta/2)}|0
angle + e^{i\phi}\sin{(heta/2)}|1
angle$$

Medindo somente a base computacional (0s e 1s):

$$P(0)=\cos^2{(heta/2)} \qquad \qquad P(1)=\sin^2{(heta/2)}$$

• Reconstrução de fase relativa:

$$|\psi
angle = \cos{(heta/2)}|0
angle + e^{i\phi}\sin{(heta/2)}|1
angle$$

Medindo somente a base computacional (0s e 1s):

$$P(0)=\cos^2{(heta/2)} \qquad \qquad P(1)=\sin^2{(heta/2)}$$

Sem informação sobre a fase relativa.

• Reconstrução de fase relativa:

$$|\psi
angle = \cos{(heta/2)}|0
angle + e^{i\phi}\sin{(heta/2)}|1
angle$$

Medindo somente os valores esperados de X e Y:

$$egin{aligned} \langle X
angle &= \langle \psi | X | \psi
angle = \left(\cos{(heta/2)} \langle 0| + e^{-i\phi} \sin{(heta/2)} \langle 1|
ight) \left(\cos{(heta/2)} | 1
angle + e^{i\phi} \sin{(heta/2)} | 0
angle
ight) = \sin{ heta} \cos{\phi} \ &\langle Y
angle &= \langle \psi | X | \psi
angle = \left(\cos{(heta/2)} \langle 0| + e^{-i\phi} \sin{(heta/2)} \langle 1|
ight) \left(i \cos{(heta/2)} | 1
angle - i e^{i\phi} \sin{(heta/2)} | 0
angle
ight) = \sin{ heta} \sin{\phi} \ &\phi = \arctan{\left(\langle Y
angle / \langle X
angle
ight)} \end{aligned}$$

Tomografia de estados quânticos

- Reconstrução do estado quântico completo
- Requer medidas em todas as bases (Pauli Strings)
- Custo exponencial
- Útil apenas em baixa escala, para prova de conceito

Tomografia de estados quânticos

- Reconstrução do estado quântico completo
- Requer medidas em todas as bases (Pauli Strings)
- Custo exponencial
- Útil apenas em baixa escala, para prova de conceito
- Alternativa: shadow tomography

Hardware - Qubits Supercondutores

ibm_kingston

Hardware - Íons Aprisionados

Hardware - Íons Aprisionados

Hardware - Átomos Neutros

Computing Inc.

Hardware

- Ressonância magnética nuclear
- Computação fotônica
- Quantum Dots
- Quantum Annealing

Software

Algoritmos quânticos

Estados de Bell

• Estados maximamente entrelaçados

$$|\psi_{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \qquad |\phi_{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$
$$|\psi_{-}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \qquad |\phi_{-}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

Estados de Bell

Teleportação quântica

Teleportação quântica

Algoritmo quântico variacional

Se pudermos controlar o ângulo da porta, podemos controlar o estado de saída.

Porta parametrizada

Se pudermos controlar o ângulo da porta, podemos controlar o estado de saída.

Aprendizado de máquina quântico: uma família de algoritmos

- Quantum kernel
- Quantum Feature Map
- Variational Quantum Algorithm
- Variational Quantum Eigensolver
- QAOA
- Quantum Support Vector Machine
- Quantum neural networks
- Quantum Boltzmann Machine
- Quantum annealing

Aprendizado de máquina quântico: uma família de algoritmos

- Quantum kernel
- Quantum Feature Map
- Variational Quantum Algorithm
- Variational Quantum Eigensolver
- QAOA
- Quantum Support Vector Machine
- Quantum neural networks
- Quantum Boltzmann Machine
- Quantum annealing

Preparar dados

• Executar circuito

• Obter medidas

• Otimizar parâmetros

Preparar dados

- Preparar dados
 - Codificação de dados clássicos
 - Preparação de estados quânticos
 - o QRAM

$$\mathbf{RY(} \bullet \mathbf{)} | 0 \rangle = | \phi \rangle$$

• Executar circuito e realizar medida

• Executar circuito e realizar medida

Otimizar parâmetros

$$medidas \rightarrow \langle O \rangle$$

função custo
$$\mathcal{L} = \mathcal{L}(\langle O
angle, \langle \hat{O}
angle)$$

atualizar parâmetros
$$\theta \leftarrow \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$

Otimizar parâmetros

função custo
$$\mathcal{L} = \frac{1}{2} (\langle \hat{O} \rangle - \langle O \rangle)^2$$

• Diferenciação automática → simulação clássica

$$|\psi\rangle = U_n(\theta_n)U_{n-1}(\theta_{n-1})...U_k(\theta_k)...U_1(\theta_1)|\phi\rangle$$

$$\frac{\partial|\psi\rangle}{\partial\theta_k} = U_n(\theta_n)U_{n-1}(\theta_{n-1})...\frac{\partial U_k(\theta_k)}{\partial\theta_k}...U_1(\theta_1)|\phi\rangle$$

• Regra do parameter-shift → computadores quânticos

$$\nabla_{\theta} \langle O \rangle = \frac{1}{2} (\langle O \rangle (\theta + \pi/2) - \langle O \rangle (\theta - \pi/2))$$

Vamos ao código!

https://github.com/tiago939/minicurso_cq2025