Lending Club Case Study

Exploratory Data Analysis

Summary

- Problem Statement
- Data Summary
- Data Cleaning
- Data conversions
- Derived Columns
- Outliers
- Univariate Analysis
- Bivariate Analysis
- Correlation

Problem Statement

Problem:

- There is a consumer finance company which specialises in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile. Two types of risks are associated with the bank's decision:
- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company
- Need to EDA to understand how consumer attributes and loan attributes influence the tendency of default.

Data Summary

- Loan.csv file contains 39717 rows and 111 columns.
- There are two types of attributes Loan Attribute and Customer attributes.

Data Cleaning

- There was no header or footer rows present which need to be deleted.
- Deleted the rows which have "loan_status" as "Current". Lender who are still paying loans, they can fully pay the loan or can be charged off. These rows will not help us make decision.
- Deleted the columns which are having all the values as Null
- Deleted the columns 'member_id' and 'url'
- Deleted the columns which are having values as text/description as these columns will not contribute to EDA
- Deleted the columns not available during loan approval process, like 'earliest_cr_line', 'last_pymnt_amnt' etc.
- Deleted the columns which are having more than 40% of values as null.
- Two columns were having null values still . The percentage of the null values was very less, so dropping the rows 4.484537418669155 %.

Data Conversion

- Removed months from the column "term" and converting the data type into int from object
- Removed "%" from "int_rate" and converting the data type into float
- Converted 'issue_d' to date
- Converted 'emp_length' to integer

Derived Columns

• Derived columns for issue month and issue year from "issue_d"

Univariate Analysis

Univariate Analysis

- Used Box Plot to analyse the distribution and removed outliers.
- Below are the before and after removing outliers Box Plot for the column 'loan_amnt'.

Before

After

Loan Status

• The number of fully paid loan is more than the number of charged off loan.

Purpose

 Analysed the values of 'purpose' based on the value of 'loan_status' as charged off. It is clearly visible that when the 'purpose' field with value 'debt_consolidation' is having most 'Charged Off' loans

Issue Year and Month

 Analysed the distribution of the years and months when the charged off loan was issues.

Bivariate Analysis

Annual Income vs loan purpose

Applicants with higher salary mostly applied loans for "home_improvment", "house", "renewable_energy" and "small_businesses"

Annual Income vs Home Ownership

 Applicants with higher salary mostly have home ownership status as 'MORTGAGE'

Annual Income vs Loan Amount

 Across all the income groups, the loan_amount is higher for people who defaulted.

Loan Amount vs Purpose

 Most of the purposes, the loan_amount is higher for people who defaulted.

Loan Amount vs Employment Length

 Across all the employment length groups, the loan_amount is higher for people who defaulted.

Loan Amount vs Grade

 People who defaulted more when grade is F and loan amount is between 15k-20k

Grade vs Interest rate

 People who defaulted more when grade G and interest rate above 20%

Correlation

Correlations

Strong Correlation:

- loan_amt has a strong correlation with funded_amt
- loan_amt has a strong correlation with funded_amt_inv
- funded_amt has a strong correlation with funded_amt_inv

Negative Correlation:

- loan_amnt, funded_amount, f unded_amount_inv have negative correlation with pub_rec_bankrupticies
- annual income has a negative correlation with dti

