Cut Sparsifier of Arbitrary Graphs

-Let's check if the same subsampling also works for arbitrary graph G = (V, t)

- Same as before, E[|E(H)|] = p |E(G)|,

Yucy, E[[E(U, Ū)]= = [Ec(U, Ū)]

=> All cuts are preserved up to scaling
by a factor 1/p in expectation!

- Next, we use the concentration bound to analyze the followings:

 $\Rightarrow \Pr \left\{ C_{H} > (1+\epsilon) \mathbb{E}[C_{H}] \right\} \leqslant e^{-\epsilon^{*} \mathbb{E}[C_{H}]} = e^{-\frac{\epsilon^{*}}{2} \mathbb{E}[C_{H}]}$

- Note that this Failure probability is exponentially decreaseing in C_G .

- In the case of G being a complete graph, we can simply obtain the bound $C_G > ng$

 $C_{G} = |U| \cdot |\bar{U}|$ and we know that either $|U| = q \geqslant \eta$ or $|\bar{U}| = n - q \gg \eta$.

However, for the case of whitrary graphs, we cannot obtain this kind of bound because no assumption can be made about the Etructure of G.

- Instead, we will use the fact about the number of cuts of small size.

Lemma 2 [Kanger]: Let G be a graph with n vertices.

Let C_G^* denote the size of minimum cuts of G. Then, for every $\alpha \ge 1$, the number of cuts of size at most $\alpha \ge 1$.

Observation: A cut of size $d \tilde{c}_g$ fails with probability at most $e^{-\frac{\epsilon^2 p}{3} d \tilde{c}_g^*}$

- Suppose among all cuts of size

d. C. we want each cut to deviate from

its mean more than a factor of 1+ E,

independently, with propability at most 1 then,

 $n^{2d} \cdot e^{-\frac{\varepsilon^{2}pd}{3}c^{*}} \leq \frac{1}{n} ad$ $2d + ad \leq e^{2}pd c^{*}$ $2p = q/(d+2) \ln n \leq e^{2}p/6 c^{*}$ $p = (d+2) \ln n$ $\frac{\varepsilon^{2}}{\varepsilon^{2}} c^{*}_{p}$

Note that for each cut to deviate more than a factor of $(1\pm\epsilon)$, independently, we have $\frac{2}{n^{ad}}$ for the bounded probability.

- Now, with $p \ge \frac{cd+2}{2} \ln n$ Pr $\int any \ cut \ fails \ y \le Pr \int all \ cut \ fails \ independenty \forall \

\[
\begin{align*}
2 \left(\frac{1}{n^2} \) & \ = \frac{e^2p \cdot a \cdot c^2}{3} \]

Therefore, the subsampling succeeds w. h. <math>p$.

- In addition, given the value of C_G^* before hand, the subsampling works in O(m) time, and the resulting sparsifier H has $E[IE(H)I] > (O(td)) \log n \cdot m$ = O(m) = O(m)

So, the number of edges decreases roughly by a factor of 0 limitation due to this result later.

Theorem 3:

The subsampling can construct a spasifier H of an arbitrary graph G, where $|E(H)| = \widetilde{\Theta}(\frac{m}{e^2c_G})$, with high probability of success.

Appendix:
$$\int \frac{1}{n^{d}} dd = \int \frac{1}{n^{d}} dd$$

$$= \frac{1}{\ln n} + C \int \frac{1}{\ln n} dd$$

$$= O\left(\frac{n^{2}}{\ln n}\right) = O\left(\frac{1}{n \log n}\right)$$

$$= O\left(\frac{1}{n}\right)$$