Lemma. 5: Farkas's Lemma For any $m \times n$ matrix A and $m \times 1$ vector b, exactly one of following is true

- 1. There exists $x \in \mathbb{R}^n$ such that $x \ge 0$ and Ax = b
- 2. There exists $y \in \mathbb{R}^m$ such that $A^T y \leq 0$ and $b^T y > 0$

Lemma. 7: Farkas's Lemma variant For any $m \times n$ matrix A and $m \times 1$ vector b, exactly one of following is true

- 1. There exists $x \in \mathbb{R}^n$ such that $x \geq 0$ and $Ax \leq b$
- 2. There exists $y \in \mathbb{R}^m$ such that $y \ge 0$, $A^T y \ge 0$ and $b^T y < 0$

Question 1: LP Theory

1. use lemma 5 prove lemma 7

Proof. Equivalent to proving $(7.1) \iff \neg (7.2)$

- (a) (\Rightarrow) Assume (7.1) true, 2 cases
 - i. Exists $x \in \mathbb{R}^m$ such that $x \geq 0$ and Ax = b, then (5.1) is true and (5.2) is false. By contradiction, assume (7.2) is true, let $y' \in \mathbb{R}^m$ such that $y' \geq 0$, $A^T y' \geq 0$ and $b^T y' < 0$. Let y = -y', therefore, there exists $y \in \mathbb{R}^m$ such that $A^T y \leq 0$ and $b^T y > 0$, which is saying (5.2) is true, hence contradiction. Therefore (7.2) is false
 - ii. Otherwise, exists $x \in \mathbb{R}^m$ such that $x \geq 0$ and Ax < b, then (5.1) is false and (5.2) is true. Let $y \in \mathbb{R}^m$ be any vector satisfying (5.2), we claim y > 0. By contradiction assume $y \leq 0$, then b < 0 since $b^T y > 0$ (5.2). Use $b^T y > 0$ again, $y \neq 0$, so y < 0. Therefore Ax < b < 0. Multiply y < 0 to both sides, we have

$$y^t(Ax) > 0 \quad \to \quad (A^T y)^T x > 0$$

Contradiction since $x \geq 0$ and $A^T y \leq 0$ (5.2). Therefore y > 0 for all y satisfying (5.2). Therefore, no $y \in \mathbb{R}^m$ exists satisfying (5.2) for which $y \leq 0$, i.e.

$$\nexists y \in \mathbb{R}^m, \ y \le 0 \quad A^T y \le 0 \quad b^T y > 0$$

therefore

$$\nexists y \in \mathbb{R}^m, \ y \ge 0 \quad A^T y \ge 0 \quad b^T y < 0$$

which is equivalent to (7.2) false

(b) (\Leftarrow) Idea is that given (7.2) false, we want to construct matrices \tilde{A} and \tilde{b} satisfying constraints for (7.2) as well as (5.2),

$$\tilde{A}_{m \times (m+n)} = \begin{pmatrix} -A & -I \end{pmatrix} \qquad \tilde{b}_{m \times 1} = \begin{pmatrix} -b \end{pmatrix}$$

Therefore, (7.2) can be rewritten as,

$$\nexists y \in \mathbb{R}^m, y \ge 0 \quad A^T y \ge 0 \quad b^T y < 0 \qquad \rightarrow \qquad \nexists y \in \mathbb{R}^m, \tilde{A}^T y \le 0 \quad \tilde{b}^T y > 0$$

where the latter formulation is simply saying (5.2) is false, therefore (5.1) is true, i.e.

$$\exists \tilde{x} \in \mathbb{R}^{m+n}, \, \tilde{x} \ge 0 \quad \tilde{A}\tilde{x} = \tilde{b}$$

let $\tilde{x} = (x, x')$ where $x \in \mathbb{R}^n, x' \in \mathbb{R}^m$, note $x, x' \ge 0$, also

$$(-A \quad -I)\begin{pmatrix} x \\ x' \end{pmatrix} = (-b) \qquad \Longleftrightarrow \qquad -Ax - x' = -b$$

therefore $Ax = b - x' \le b$ since $x' \ge 0$, therefore,

$$\exists x \in \mathbb{R}^n, x \ge 0 \quad Ax \le b$$

hence (7.1) is true.

2. Use lemma 7, prove for any $m \times n$ matrix A and $m \times 1$ matrix b such that $\{x : Ax \le b, x \ge 0\} \ne \emptyset$, and any $n \times 1$ vector c, the system of inequalities

$$c^T x \ge 1$$
 $Ax \le b$ $x \ge 0$

is infeasible if and only if there exists a $y \in \mathbb{R}^m$, $y \ge 0$, such that $A^T y \ge c$ and $b^T y < 1$

Proof. Define

$$\tilde{A} = \begin{pmatrix} A \\ -c^T \end{pmatrix} \qquad \tilde{b} = \begin{pmatrix} b \\ -1 \end{pmatrix}$$

Then proving the following suffices

$$\nexists x \in \mathbb{R}^n, \ \tilde{A}x \le \tilde{b} \quad x \ge 0 \qquad \iff \qquad \exists y \in \mathbb{R}^m, \ y \ge 0 \quad A^T y \ge c \quad b^T y < 1$$

(a) (\Leftarrow) let $\tilde{y} = (y \ 1)$, then,

$$\exists \tilde{y} \in \mathbb{R}^{m+1} \,,\, \tilde{y} \geq 0 \quad \tilde{A}^T \tilde{y} \geq 0 \quad \tilde{b}^T \tilde{y} < 0$$

lhs follows by Farkas's lemma.

(b) (⇒) Assume lhs true, by Farkas's lemma,

$$\exists \tilde{y} \in \mathbb{R}^{m+1}, \ \tilde{y} \ge 0 \quad \tilde{A}^T \tilde{y} \ge 0 \quad \tilde{b}^T \tilde{y} < 0$$

Let $\tilde{y} = \begin{pmatrix} y & a \end{pmatrix}$ satisfying the condition above. If $a \neq 0$, let $\tilde{y}' = \frac{1}{a}\tilde{y} = \begin{pmatrix} 1/ay & 1 \end{pmatrix}$. Since a > 0,

$$\tilde{A}\tilde{y}' = \frac{1}{a}\tilde{A}\tilde{y} \ge 0$$
 $\tilde{b}^T\tilde{y}' = \frac{1}{a}\tilde{b}^T\tilde{y} < 0$

Since $\tilde{A}\tilde{y}' = A^Ty - c$ and $\tilde{b}^T\tilde{y}' = b^Ty - 1$, then $A^Ty \ge c$ and $b^Ty < 1$. This proves rhs true. Now we consider the case where a = 0. We claim a = 0 is not possible. Since if a = 0, then we note y in \tilde{y} statisfies $A^Ty \ge 0$ and $b^Ty \le 0$

$$\exists y \in \mathbb{R}^m \,,\, y \ge 0 \quad A^T y \ge 0 \quad b^T y \le 0 \qquad \stackrel{Farkas}{\to} \qquad \nexists x \in \mathbb{R}^n \,,\, x \ge 0 \quad Ax \le b$$

which contradicts the assumption that $\{x : Ax \leq 0 \mid x \geq 0\} \neq \emptyset$