CHAPITRE 1

Les Polynômes Orthogonaux

www.cafeplanck.com info@cafeplanck.com

CHAPITRE 1

Fonctions de carré sommable3	3
Espace des fonctions de carré sommable $L^2_{_{\scriptscriptstyle W}}ig(a,big)$	}
Carré de la norme de f	ŀ
La norme de f 4	ŀ
Orthogonalité4	
Orthonormalité4	ŀ
Analogie5	5
Bases orthonormées de l'espace $L^2_{_W}ig(a,big)$ 6	<u>,</u>
Relation orthonormalité6)
Développement d'une fonction sur la base $\{f_i(x)\}$ 6	,
Les coefficients C_n	<u>,</u>
Analogie	7
Analogie8	3
Théorème de Stone-Weierstrassç)
Procédé de Gram-Schmidt)
Formule de Rodrigues11	L
Procédé de Rodrigues11	L
Quelques applications des polynômes orthogonaux classiques14	ļ

Les Polynômes Orthogonaux

Fonctions de carré sommable

Les fonctions de carré sommable sont des fonctions pour lesquelles,

$$\int_{-\infty}^{b} w(x) \left| f(x) \right|^2 dx < \infty \tag{0.1}$$

w(x) appelée fonction poids, est une fonction à valeurs finies et strictement positive dans a < x < b.

Exemples

Espace des fonctions de carré sommable $L^2_w(a,b)$

L'ensemble des fonctions de carré sommable forme l'espace $L^2_w(a,b)$. La structure de $L^2_w(a,b)$ est celle d'un espace de Hilbert. Autrement dit, $L^2_w(a,b)$ est un espace vectoriel munie le produit scalaire :

$$\langle f | g \rangle = \int_{a}^{b} w(x) f^{*}(x) g(x) dx < \infty \quad , \quad a \le x \le b$$
 (0.2)

Avec les propriétés suivantes.

Pour tous les fonctions f , g et h de $L^2_{_{\it w}} ig(a,big)$ et tous les nombres complexes c .

$$\langle f | g \rangle = \langle g | f \rangle^*$$

$$\langle f + g | h \rangle = \langle f | g \rangle + \langle g | h \rangle$$

$$\langle f | cg \rangle = c \langle f | g \rangle_{1}$$

$$\langle cf | g \rangle = c^* \langle f | g \rangle_{2}$$

$$\langle f | f \ge 0 \text{ et } \langle f | f \rangle = 0 \Leftrightarrow f = 0$$

 $^{^{\}scriptscriptstyle 1}$ Le produit scalaire est linéaire par rapport à la deuxième fonction de la couple.

² Le produit scalaire est anti linéaire par rapport à la première fonction de la couple.

² Le produit scalaire est anti linéaire par rapport à la première fonction de la couple.

Carré de la norme de f

Le carré de la norme de f définie par :

$$\langle f | f \rangle = \int_{a}^{b} w(x) |f(x)|^{2} dx$$
 (0.3)

La norme de f

La norme de f définie par :

$$\sqrt{\langle f|f\rangle} = \sqrt{\int_{a}^{b} w(x) |f(x)|^{2} dx}$$
(0.4)

Orthogonalité

Les fonctions f et g sont orthogonales si

$$\langle f | g \rangle = \int_{a}^{b} w(x) f^{*}(x) g(x) dx = 0$$
 (0.5)

Orthonormalité

Les fonctions f et g sont orthonormale si

$$\langle f | f \rangle = 1$$

 $\langle g | g \rangle = 1$
 $\langle f | g \rangle = 0$ (0.6)

Exemples

Analogie

	u et v éléments de $^{\circ}$ n	u et v éléments de £ n	f et g éléments de $L^2_{_{\scriptscriptstyle W}}ig(a,big)$
Produit scalaire	$\langle u v \rangle = u^T v = \sum_{i=1}^n u_i v_i$	$\langle u v \rangle = u^{\dagger} v = \sum_{i=1}^{n} u_{i}^{*} v_{i}$ $= (u_{1}^{*} u_{2}^{*} \dots u_{n}^{*}) \begin{pmatrix} v_{1} \\ v_{2} \\ M \\ v_{n} \end{pmatrix}$	$\langle f g \rangle = \int_{a}^{b} w(x) f^{*}(x) g(x) dx$ Avec, $a \le x \le b$
Carré de la norme	$\langle u u \rangle = u^T u = \sum_{i=1}^n u_i u_i$	$\left\langle u \middle u \right\rangle = \sum_{i=1}^{n} u_{i}^{*} u_{i}$	$\langle f f \rangle = \int_{a}^{b} w(x) f^{*}(x) f(x) dx$
La norme	$\sqrt{\langle u u\rangle} = \sqrt{u^T u} = \sqrt{\sum_{i=1}^n u_i u}$	$\sqrt{\langle u u \rangle} = \sqrt{\sum_{i=1}^{n} u_i^* u_i}$	$\sqrt{\langle f f\rangle} = \sqrt{\int_a^b w(x) f^*(x) f(x) dx}$
Normalité	$\langle u u \rangle = 1$ $\langle v v \rangle = 1$	$\langle u u \rangle = 1$ $\langle v v \rangle = 1$	$\langle f f \rangle = 1$ $\langle g g \rangle = 1$
Orthogonalité	$\langle u v \rangle = 0$	$\langle u v \rangle = 0$	$\langle f g \rangle = 0$
Orthonormalité	$\langle u u \rangle = 1$ $\langle v v \rangle = 1$ $\langle u v \rangle = 0$	$\langle u u \rangle = 1$ $\langle v v \rangle = 1$ $\langle u v \rangle = 0$	$\langle f f \rangle = 1$ $\langle g g \rangle = 1$ $\langle f g \rangle = 0$

Tableau 1

Bases orthonormées de l'espace $L^2_w(a,b)$

Soit un ensemble dénombrable de fonction de $L_w^2(a,b)$:

$$\{f_i(x)\} = \{f_1(x), f_2(x), f_3(x), K\}$$

Avec
$$f_1(x)$$
, $f_2(x)$, $f_3(x)$, $K \in L_w^2(a,b)$.

L'ensemble $\left\{f_i(x)\right\}$ forment une base orthonormale de l'espace $L^2_{\scriptscriptstyle{W}}\!\left(a,b\right)$, si

1. Les éléments de $\{f_i(x)\}$ soient orthogonale. (Tous ses éléments soient perpendiculaire l'un à l'autre.

$$\left\langle f_i \middle| f_j \right\rangle = \int_a^b w(x) f_i^*(x) f_j(x) dx = 0 \quad , \quad i \neq j$$
 (0.7)

2. Les éléments de $\{f_i(x)\}$ soient normale. (La norme de tous ses éléments soit l'unité.)

$$\left\langle f_i \middle| f_j \right\rangle = \int_a^b w(x) f_i^*(x) f_j(x) dx = 1 \quad , \quad i = j$$
 (0.8)

Relation orthonormalité

De (0.7) et (0.8) on peut dériver la relation orthonormalité :

$$\left\langle f_i \middle| f_j \right\rangle = \int_a^b w(x) f_i^*(x) f_j(x) dx = \delta_{ij} \tag{0.9}$$

Exemple

Développement d'une fonction sur la base $\{f_i(x)\}$

Les éléments de la base $\{f_i(x)\}$ sont linéairement indépendants et forment un ensemble complet.

Alors toute fonction F(x) de $L^2_w(a,b)$ peut se développer d'une façon unique sur cette base.

$$F(x) = \sum_{n=1}^{\infty} C_n f_n(x)$$
 (0.10)

Les coefficients C_n

Pour trouver le C_n , on à,

$$F(x) = \sum_{n=1}^{\infty} C_n f_n(x)$$

On multiplie par $w(x) f_m^*(x)$,

$$w(x)f_m^*(x)F(x) = w(x)f_m^*(x)\sum_{n=1}^{\infty} C_n f_n(x)$$

On intègre selon x,

$$\int_{-\infty}^{+\infty} dx w(x) f_{m}^{*}(x) F(x) = \int_{-\infty}^{+\infty} dx w(x) f_{m}^{*}(x) \sum_{n=1}^{\infty} C_{n} f_{n}(x) = \sum_{n=1}^{\infty} C_{n} \int_{-\infty}^{+\infty} dx w(x) f_{m}^{*}(x) f_{n}(x) = \sum_{n=1}^{\infty} C_{n} \delta_{mn}$$

$$\int_{-\infty}^{+\infty} dx w(x) f_{n}^{*}(x) F(x) = C_{n}$$
Donc,
$$C_{n} = \left\langle f_{n} \middle| F \right\rangle = \int_{-\infty}^{+\infty} dx w(x) f_{n}^{*}(x) F(x)$$
(0.11)

Exemple

Analogie

	Espace ° 3	Espace $L_w^2(a,b)$
Base	$\left\{e_{i}\right\} = \left\{e_{1}, e_{2}, e_{3}\right\}$	$\{f_i(x)\}$
Normalité de la base	$e_i.e_j = 1$, $i = j$	$\int_{a}^{b} w(x) f_i^*(x) f_j(x) dx = 1 , i = j$
Orthogonalité de la base	$e_i.e_j = 0$, $i \neq j$	$\int_{a}^{b} w(x) f_{i}^{*}(x) f_{j}(x) dx = 0 , i \neq j$
Orthonormalité de la base	$e_i.e_j = \delta_{ij}$	$\int_{a}^{b} w(x) f_{i}^{*}(x) f_{j}(x) dx = \delta_{ij}$
Développement sur la base	$u = \sum_{n=1}^{3} a_n e_n$	$F(x) = \sum_{n=1}^{\infty} C_n f_n(x)$
Les composantes	$a_n = e_n.u$	$C_n = \left\langle f_n \middle F \right\rangle = \int_{-\infty}^{+\infty} w(x) f_n^*(x) F(x) dx$

Tableau 2

Analogie

Base de	o 3	Base de $L^2_wig(a,big)$	
Vecteurs	u ₁ y a u ₂ a	$1, x, x^2, K$	Fonctions
Vecteurs orthogonaux	$\alpha = \beta = \gamma = 90^{\circ}$	$1, x, \frac{1}{2}(3x^2 - 1), K$	Fonctions orthogonaux
Vecteurs orthonormaux	$\alpha = \beta = \gamma = 90^{\circ}$ $ \mathbf{u}_1 = \mathbf{u}_2 = \mathbf{u}_3 $	$\frac{1}{\sqrt{2}}, x, \frac{1}{2}\sqrt{\frac{5}{2}}(3x^2 - 1), K$	Fonctions orthonormaux
Exemple de Développement D'un vecteur sur la base	$\mathbf{v} = 2\mathbf{u}_1 + 5\mathbf{u}_2 - 3\mathbf{u}_3$	$F(x) = 2\frac{1}{\sqrt{2}}, 5x, -3\frac{1}{2}\sqrt{\frac{5}{2}}(3x^2 - 1), K$	Exemple de Développement D'une fonction sur la base

Tableau 3

Théorème de Stone-Weierstrass

Toute fonction F(x) continue, sur [a,b] peut être approchée uniformément par une suite de fonctions polynômiales.

$$F(x) = \sum_{k=0}^{\infty} a_k x^k$$

Exemple

Procédé de Gram-Schmidt

Procédé de Gram-Schmidt est un algorithme pour construire une base orthonormée à partir d'un ensemble dénombrable de fonction de $L^2_w(a,b)$.

On le montre par un exemple.

Soit un ensemble dénombrable de fonction de $L_w^2(a,b)$:

$$\{1, x, x^2, x^3, \ldots\}$$

On veut construire une base orthonormale $\{p_k(x)\}$, à partir de cet ensemble.

On considère,

$$p_0(x) = 1$$

$$p_1(x) = ax + b$$

Donc, on doit trouver a et b. On suppose que la base doit être orthogonale pondérée par w(x) = 1 dans $-1 \le x \le 1$:

$$\int_{-1}^{+1} dx w(x) p_0(x) p_1(x) = 0 \Rightarrow \int_{-1}^{+1} (ax + b) dx = 0 \Rightarrow \frac{1}{2} ax^2 + bx + C \Big|_{-1}^{1} = 0 \Rightarrow b = 0$$

Pout trouver a on a besoin d'un standard, soit $p_k(1) = 1$ pour tout k, donc,

$$p_1(1) = 1 \Rightarrow a \times 1 + 0 = 1 \Rightarrow a = 1$$

Alors:

$$p_1(x) = x$$

Maintenant on considère,

$$p_2(x) = ax^2 + bx + c$$

Donc, on doit trouver a, b et c.

Encore une fois on suppose que la base doit être orthogonale pondérée par w(x) = 1 dans $-1 \le x \le 1$:

$$\int_{-1}^{+1} dx w(x) p_0(x) p_2(x) = 0 \Rightarrow \int_{-1}^{+1} (ax^2 + bx + c) dx = 0 \Rightarrow \frac{1}{31} ax^3 + \frac{1}{2} bx^2 + cx^2 + C \Big|_{-1}^{1} = 0 \Rightarrow \frac{2}{3} a + 2c = 0$$

$$\int_{-1}^{+1} dx w(x) p_1(x) p_2(x) = 0 \Rightarrow \int_{-1}^{+1} x(ax^2 + bx + c) dx = 0 \Rightarrow \frac{1}{4} ax^4 + \frac{1}{3} bx^3 + \frac{1}{2} cx^2 + C \Big|_{-1}^{1} = 0 \Rightarrow b = 0$$

$$p_{2}(1) = 1 \Rightarrow a + c = 1$$

Donc,

$$\begin{cases} \frac{2}{3}a + 2c = 0 \\ a + c = 1 \end{cases} \Rightarrow a = \frac{3}{2}, c = -\frac{1}{2}$$

Alors,

$$p_2(x) = \frac{1}{2} (3x^2 - 1)$$

De même ... on peut trouver $p_3(x)$, $p_4(x)$, K

Les polynômes orthogonaux suivants qu'on les a trouvé son les polynômes de Legendre.

$$p_0(x) = 1$$

$$p_1(x) = x$$

$$p_2(x) = \frac{1}{2} (3x^2 - 1)$$

...

On peut les normalisés en les divisent chaque un par sa norme.

$$p(x) = \frac{p_0(x)}{\sqrt{\int_a^b w(x) |p_0(x)|^2 dx}} = \frac{1}{\sqrt{2}}$$

$$\mathcal{P}_{f}(x) = \frac{p_{1}(x)}{\sqrt{\int_{a}^{b} w(x) |p_{1}(x)|^{2} dx}} = \sqrt{\frac{3}{2}}x$$

$$p_2(x) = \frac{p_2(x)}{\sqrt{\int_a^b w(x) |p_2(x)|^2 dx}} = \frac{1}{2} \sqrt{\frac{5}{2}} x (5x^2 - 3)$$

. . .

Et Voilà la base orthonormée qu'on voudrait construire :

$$\left\{ \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \frac{1}{2}\sqrt{\frac{5}{2}}x(5x^2 - 3), \dots \right\}$$

Exemple

Formule de Rodrigues

Les polynômes,

$$p_n(x) = \frac{1}{K_n} \frac{1}{w(x)} \frac{d^n}{dx^n} [w(x)g(x)^n]$$
(0.12)

Avec les conditions suivants,

- 1. g(x) c'est un polynôme de degrés 0,1 ou 2.
- 2. $p_1(x)$ c'est un polynôme de degrés 1.
- 3. w(x) appelée, fonction poids, est une fonction à valeurs finies et strictement positive dans a < x < b.
- 4. Les conditions frontières w(a)g(a) = w(b)g(b) = 0.

Forment une base orthogonale de $L_w^2(a,b)$.

Procédé de Rodrigues

Procédé de Rodrigues est un algorithme pour construire une base orthogonale de $L^2_w(a,b)$ par le choix de g(x).

On le montre par un exemple.

Soit $s(x) = \alpha \neq 0$, un polynôme de degrés o. En substituent dans la formule de Rodrigues on à,

$$p_n(x) = \frac{\alpha}{K_n} \frac{1}{w(x)} \frac{d^n}{dx^n} w(x)$$

Pour n = 1 on à,

$$p_1(x) = \frac{\alpha}{K_1} \frac{1}{w(x)} \frac{d}{dx} w(x)$$

Mais, $p_1(x)$ c'est un polynôme de degrés 1, soit $p_1(x) = Ax + B$, donc,

$$Ax + B = \frac{\alpha}{K_1} \frac{1}{w(x)} \frac{d}{dx} w(x)$$

Après simplification on arrive à,

$$\frac{dw(x)}{w(x)} = \frac{(Ax + B)K_1}{\alpha}dx$$

On intègre selon x,

$$\int \frac{dw(x)}{w(x)} = \int \frac{(Ax+B)K_1}{\alpha} dx$$

$$\ln\left|w(x)\right| = \frac{AK_1x^2}{2\alpha} + \frac{BK_1x}{\alpha} + C$$

Mais, w(x) est une fonction strictement positive dans a < x < b, donc,

$$\ln w(x) = \frac{AK_1x^2}{2\alpha} + \frac{BK_1x}{\alpha} + C$$

Alors,

$$w(x) = \exp\left[\frac{AK_1x^2}{2\alpha} + \frac{BK_1x}{\alpha} + C\right]$$

Pour simplifier on peut choisir,

$$A = -\frac{2}{K_1}$$
 , $B = 0$, $C = 0$, donc,

$$w(x) = e^{\frac{x^2}{-\alpha}}$$

Si on applique les conditions frontières,

$$w(a)g(a) = 0 \implies \alpha e^{\frac{a^2}{-\alpha}} = 0$$

Pour $\alpha > 0$ on peut montrer que $a \to \pm \infty$.

$$w(b)g(b) = 0 \implies \alpha e^{\frac{b^2}{-\alpha}} = 0$$

Pour $\alpha > 0$ on peut montrer que $b \to \pm \infty$.

Mais, comme a < b on à,

$$a \rightarrow -\infty$$

$$b \rightarrow +\infty$$

Alors, l'intervalle d'orthogonalité est, $-\infty < x < +\infty$,

Encore une fois pour simplifier on peut choisir, $\alpha = 1$ et donc,

$$w(x) = e^{-x^2}.$$

Maintenant on est prêt de construire la base orthogonale en utilisent le formule de Rodrigues :

$$p_0(x) = \frac{1}{K_0}$$

$$p_1(x) = \frac{-2x}{K_1}$$

$$p_2(x) = \frac{4x^2 - 2}{K_2}$$

$$p_3(x) = \frac{-8x^3 + 12x}{K_3}$$

•••

Historiquement et pour les raisons d'orthogonalité on considère,

$$K_n = (-1)^n$$
 donc,

$$p_0(x) = 1$$

$$p_1(x) = 2x$$

$$p_2(x) = 4x^2 - 2$$

$$p_3(x) = 8x^3 - 12x$$

•••

Ce sont les polynômes de Hermite.

C'est facile à vérifier que les polynômes de Hermite sont orthogonaux dans $-\infty < x < +\infty$.

On peut les normalisés en les divisent chaque un par sa norme.

$$\beta_0(x) = \frac{p_0(x)}{\sqrt{\int_a^b w(x) |p_0(x)|^2 dx}} = \frac{1}{\sqrt[4]{\pi}}$$

$$\beta_1(x) = \frac{p_1(x)}{\sqrt{\int_a^b w(x) |p_1(x)|^2 dx}} = \frac{\sqrt{2}x}{\sqrt[4]{\pi}}$$

$$\beta_2(x) = \frac{p_2(x)}{\sqrt{\int_a^b w(x) |p_2(x)|^2 dx}} = \frac{2x^2 - 1}{\sqrt{2}\sqrt[4]{\pi}}$$

$$\beta_3(x) = \frac{p_3(x)}{\sqrt{\int_a^b w(x) |p_3(x)|^2 dx}} = \frac{x(2x^2 - 3)}{\sqrt{3}\sqrt[4]{\pi}}$$

••••

Et on arrive à une base orthonormale sur laquelle on peut développer les fonctions quelconques.

$$\left\{ \frac{1}{\sqrt[4]{\pi}}, \frac{\sqrt{2}x}{\sqrt[4]{\pi}}, \frac{2x^2 - 1}{\sqrt{2}\sqrt[4]{\pi}}, \frac{x(2x^2 - 3)}{\sqrt{3}\sqrt[4]{\pi}}, K \right\}$$

De façon analogue, on peut dériver les autres polynômes orthogonaux classiques.

Choix de $s(x)$	g(x) = 1	g(x) = x	$g(x) = x^2$
Fonction poids	$w(x) = e^{-x^2}$	$w(x) = x^{\alpha} e^{x}$ Pour, $\alpha > -1$	$w(x) = (1 - x)^{\alpha} (1 + x)^{\beta}$ Pour, $\alpha, \beta > -1$
Intervalle d'orthogonalité	$-\infty < x < +\infty$	0 < <i>x</i> < +∞	$-1 \le x \le +1$
K_n	$K_n = (-1)^n$	$K_n = n!$	
Polynôme	Hermite $H_n(x)$	Laguerre $L_n^{(lpha)}(x)$	Jacobi $P_n^{(\alpha,\beta)}(x)$

Tableau 4

Selon le choix de α et β les polynômes de Jacobi donnent les polynômes de Legendre, Gegenbauer, Chebyshev I et Chebyshev II.

Choix de α et β	$\alpha = \beta = 0$	$\alpha = \beta = \lambda - \frac{1}{2}$	$\alpha = \beta = -\frac{1}{2}$	$\alpha = \beta == \frac{1}{2}$
Fonction poids	w(x) = 1	$w(x) = (1 - x^2)^{\lambda - \frac{1}{2}}$ Pour, $\lambda > -\frac{1}{2}$	$w(x) = (1 - x^2)^{-\frac{1}{2}}$	$w(x) = (1 - x^2)^{\frac{1}{2}}$
Intervalle d'orthogonalité	$-1 \le x \le +1$	$-1 \le x \le +1$	$-1 \le x \le +1$	$-1 \le x \le +1$
K_n	$K_n = (-2)^n n!$			
Polynôme	Legendre $P_n(x)$	Gegenbauer $G_n^{(\lambda)}(x)$	Chebyshev I $T_n(x)$	Chebyshev II $U_n(x)$

Tableau 5

Exemple

<u>Les polynômes orthogonaux classiques</u> <u>Les polynômes orthogonaux associés classique</u>

Exemple

- Hermite
- Laguerre
- <u>Legendre</u>
- <u>Gegenbauer</u>
- Chebyshev I
- Chebyshev II

Quelques applications des polynômes orthogonaux classiques En mécanique quantique:

- Les polynômes d'Hermite donnent les fonctions d'onde de l'oscillateur harmonique.
- Les polynômes de Laguerre donnent la dépendance radiale des fonctions d'onde de l'atome d'hydrogène.
- Les polynômes de Legendre interviennent dans tous les problèmes à symétrie sphérique.

Les polynômes de Chebyshev sont utiles dans les problèmes d'interpolation.