

1.1 DIGITAL SYSTEMS

Jean-Pierre Deschamps

1 PHYSICAL SYSTEM

Set of interconnected objects or elements that realize some function. Characterized by

- a set of input signals,
- a set of output signals,

- TYPE (voltage, force, temperature, position of a switch, etc.),
- RANGE.

a relation between input and output signals.

Input and output signals

pos: selector position;

temp: temperature measured by the sensor;

onoff: binary signal (two values: ON or OFF).

Relation between inputs and outputs

```
if temp < pos - half_degree then onoff <= on;
elsif temp > pos + half_degree then onoff <= off;
end if;
wait for 10 s;
end loop;</pre>
```


Type and range of input and output signals

pos represents the position of a selector between two extreme positions (10 and 30); its value might be any position in

$$pos_{10} \le pos \le pos_{30}$$
;

Type and range of input and output signals

• **temp** represents the ambient temperature; assuming that the sensor measures temperatures between 0 and 50 degrees, its value might be any temperature in

$$temp_0 \le temp \le temp_{50}$$
;

onoff has only two possible values: ON and OFF.

UAB
nus infinite) set Ucifersitat Autonoma
de Barcelona

Signals such as **pos** and **temp** that can take any value within a continuous (and thus infinite) set values, are called ...

ANALOG SIGNALS

Signals such as **onoff** whose values belong to a finite set (in this case a 2-element set), are called ...

DIGITAL (or DISCRETE) SIGNALS

1 PHYSICAL SYSTEM: chronometer

Input and output signals

reset, start, stop: position of three push-buttons;

ref: 10 Hz square wave, $V_L = 0V$, $V_H = 1V$;

h: integer between 0 and 23;

m and s: integers between 0 and 59;

t: integer between 0 and 9.

1 PHYSICAL SYSTEM: chronometer

Relation between inputs and outputs (natural language)

- when **reset** is pushed down, h = m = s = t = 0;
- when start is pushed down, the chronometer starts counting; h, m, s and t represent the elapsed time in tenth of seconds;
- when stop is pushed down, the chronometer stops counting; h, m, s and t represent the latest elapsed time.

Question

Assume that the current state of the chronometer is

17 hours, 22 minutes, 59 seconds, 9 tenth;

What will be the chronometer state after the next clock pulse?

- 1. 17 hours, 23 minutes, 60 seconds, 10 tenth;
- 2. 18 hours, 22 minutes, 59 seconds, 9 tenth;
- 3. 17 hours, 23 minutes, 0 seconds, 0 tenth;
- 4. 17 hours, 22 minutes, 59 seconds, 8 tenth;

1 PHYSICAL SYSTEM: chronometer

Type and range of input and output signals

All input and output signals are digital (or discrete)

- reset, start, stop: two values (ON, OFF);
- ref: two values (0 V, 1 V);
- h: 24 values (0, 1, 2, ···, 23);
- m and s: 60 values (0, 1, 2, ..., 59);
- *t* :10 values (0, 1, 2, … , 9)

Systems whose all inputs and outputs are digital signals are called ...

DIGITAL SYSTEMS.

(Exercise)

Formally describe (pseudo-code) the relation between input and output signals of the chronometer.

- Use a variable ref_positive_edge equal to TRUE when there is a positive edge (0 to 1 transition) on signal ref, and equal to FALSE in the contrary case.
- Assume that a procedure update(h, m, s, t), that adds a tenth of second to the elapsed time, has been previously defined.

Use instructions such as:

```
If ... then ... else ...
While ... loop ...
Loop ...
```


(Solution)


```
loop
  if reset = 0N then h \le 0; m \le 0; s \le 0; t \le 0;
  elsif start = ON then
     while stop = OFF loop
        if ref positive edge = TRUE then
           update(h, m, s, t);
        end if;
     end loop;
  end if;
end loop;
```


SUMMARY

- Definition of digital signals and of digital systems.
- System considered as a "black box" with inputs and outputs, and a relation between inputs and outputs that defines its behavior.
- Examples of input –output specification using pseudo-instructions.

1.2 DIGITAL SYSTEM DESCRIPTION

Jean-Pierre Deschamps

1.2

1. Functional description

Description of the relation between Inputs and Outputs, without information about the internal structure.

- 1.a Explicit functional description
- 1.b Implicit functional description: Algorithmic description

1.a Explicit functional description

Ejemplo: temperature controller (simplified)

Assume that

- desired temperature (pos) = 20 degrees;
- measured temperature (temp) has been discretized and belongs to $\{0, 1, 2, \dots, 49, 50\}$.

1.a Explicit functional description

1	ON
18	ON
19	ON
20	DON'T CHANGE
21	OFF
22	OFF
•••	
49	OFF

OFF

50

1.b Implicit functional description (algorithm):

The preceding example might be described by the following algorithm:

temp	onoff
0	ON
1	ON
18	ON
19	ON
20	DON'T CHANGE
21	OFF
22	OFF
49	OFF
50	OFF

if temp < 20 then onoff <= ON;
elsif temp > 20 then onoff <= OFF;
end if;</pre>

1.2

UAB Universitat Autònoma de Barcelona

1.b Implicit functional description (algorithm):

A second example: A 2-digit adder.

 $X = x_1 x_0$ and $Y = y_1 y_0$ are 2-digit decimal numbers; their sum X+Y is a 3-digit number $Z = z_2 z_1 z_0$.

"Pencil and paper algorithm:


```
carry <= 0;
s_0 \le x_0 + y_0 + carry;
if s_0 > 9 then z_0 <= s_0 - 10; carry <= 1;
           else z_0 \le s_0; carry \le 0;
end if;
s_1 \le x_1 + y_1 + carry;
if s_1 > 9 then z_1 <= s_1 - 10; carry <= 1;
         else z_1 \le s_1; carry \le 0;
end if;
z_2 \ll carry;
```


2. Structural description

UAB
Universitat Autònoma
de Barcelona

- Description of the internal system structure.
- Based on the use of previously defined digital subsytems, that is COMPONENTS.

2. Structural description: 4-digit adder

UAB
Universitat Autònoma
de Barcelona

Assume that a 1-digit adder has been previously defined:

 $carry_{IN}$, $carry_{OUT}$: carries $\in \{0, 1\}$,

x, y, z: decimal digits $\in \{0, 1, 2, \dots, 9\}$,

function: $x + y + carry_{IN} = carry_{OUT}.10 + z$.

2. Structural description: 4-digit adder

UAB
Universitat Autònoma
de Barcelona

The following system is a 4-digit adder made up of 1-digit adders.

It computes: Z = X + Y

where $X = x_3 x_2 x_1 x_0$ and $Y = y_3 y_2 y_1 y_0$ are 4-digit numbers and $Z = z_4 z_3 z_2 z_1 z_0$ is a 5-digit number.

1 2 UAB

de Barcelona

3. Hierarchical description

The previous example (4-digit adder) uses four available components, namely 1-digit adders. Every 1-digit adder might be defined by its function or by its structure.

Example (function):

```
s \le x + y + carry_{IN};

if s_1 > 9 then z \le s - 10; carry_{OUT} \le 1;

else z \le s; carry_{OUT} \le 0;

end if;
```

This is a **2-level** hierarchical description.

3. Hierarchical description

Example of **3-level** hierarchical description.

The following system (structural description) computes

$$z = w + x + y$$

where w, x and y 4-digit numbers and z is a 5-digit number (9999 + 9999 + 9999 = 29,997).

1st HIERARCHY LEVEL

3. Hierarchical description

UMB

de Barcelona

4-digit decimal adder

5-digit decimal adder

2nd HIERARCHY LEVEL

1.2

3. Hierarchical description

Both 4-digit and 5-digit adders are made up of 1-digit adders that might be defined by the Universitat Autònom function:


```
s \le x + y + carry_{IN};

if s_1 > 9 then z \le s - 10; carry_{OUT} \le 1;

else z \le s; carry_{OUT} \le 0;

end if;
```

3rd HIERARCHY LEVEL

3. Hierarchical description

To summarize, an hierarchical description:

- Is a set of interconnected blocks.
- Every block, in turn, is described by its function or by a set of interconnected blocks, and so on.
- The final blocks correspond to available components defined by their function.

UAB
Universitat Autònoma
de Barcelona

Question

Consider an intermediate level (= different from the last one) of a hierarchical description. Check the correct assertion(s):

- 1. All blocks MUST be described by their structure.
- 2. Some blocks CAN be described by their structure.
- 3. Some blocks CAN be described by their function.
- 4. All blocks MUST be described by their function.

SUMMARY

- Functional description.
- Structural description.
- Hierarchical description.

1 2 UAB
Universitat Autònoma
de Barcelona

1.3 DIGITAL ELECTRONIC SYSTEMS

Jean-Pierre Deschamps

1.3

Halir

1. Previous observation

Real digital systems include

- input devices (sensors, keyboards, microphones, cameras, ···),
- output devices (actuators, displays, loudspeakers, motors, ...),
- input converters that translate the input device information to discrete electrical signals,
- output converters that translate discrete electrical data to signals able to control the output devices,
- a digital electronic circuit (the kernel of the system) that generates output data in function of input data.

de Barcelona

This is a course about

Digital Electronic Systems

1.3

Inputs and outputs of a Digital Electronic System are binary encoded data.

Examples:

- numbers (binary code),
- alphanumeric data (ASCII codes),
- others.

2. Digital components

2.1 Binary codification

- Define two voltages $V_L y V_H$.
- 0 is represented by V_I , 1 is represented by V_H .
 - ✓ Example: $V_L = 0$ volt, $V_H = 1$ volt.

2.2 MOS transistors

Most circuits are made up of MOS transistors.

Mos transistor: 3-terminal device (source, gate, drain).

Two types:

2.3 MOS transistors used as switches

... but:

not a good switch for any value of V_{IN} .

2.3.1 *n*MOS switch.

- a "good" switch for transmitting V_L (0 V), but ...
- a "not so good" switch for transmitting V_H (1 V).

Universitat Autònoma

de Barcelona

2.3.2 pMOS switch.

Conclusion: *p*MOS transistor is

- a "good" switch for transmitting V_H (1 V), but ...
- a "not so good" switch for transmitting V_L (0 V).

Universitat Autònoma de Barcelona

2.4 CMOS inverter

 $V_{IN} = 0 \text{ V} : pMOS \text{ transmits } 1 \text{ V}$

 $V_{IN} = 1 \text{ V} : n \text{MOS transmits } 0 \text{ V}$

UMB

Universitat Autònoma de Barcelona

2.4 CMOS inverter

2.5 NAND gate

- (V_{IN1} = 1V) AND (V_{IN2} = 1V): V_{OUT} = 0V (both serially connected nMOS switches transmit 0V);
- $(V_{IN1} = 0V)$ OR $(V_{IN2} = 0V)$: $V_{OUT} = 1V$ (one or both in-parallel connected pMOS switches transmit 1V).

2.5 NAND gate

V _{IN1}	V _{IN2}	V _{OUT}
0 v.	0 v.	1 v.
0 v.	1 v.	1 v.
1 v.	0 v.	1 v.
1 v.	1 v.	0 v.

Question 1

For each combination of values of V_{IN1} and V_{IN2} check the corresponding box if $V_{OUT} = 1$:

1.
$$V_{IN1} = 0$$
, $V_{IN2} = 0$,

2.
$$V_{IN1} = 0$$
, $V_{IN2} = 1$,

3.
$$V_{IN1} = 1$$
, $V_{IN2} = 0$,

4.
$$V_{IN1} = 1$$
, $V_{IN2} = 1$.

1.3

Question 2

Check the box that reflects the operation of the circuit

2.	V_{INI}	V_{IN2}	V_{OUT}
	0	0	0
	0	1	1
	1	0	1
	1	1	0

4.	V_{INI}	V_{IN2}	V_{OUT}
	0	0	1
	0	1	0
	1	0	0
	1	1	0

2.6 Other components

$$V_{IN1}$$
 V_{IN2} V_{OUT}

 $V_{OUT} = 0$ iff (if and only if) $V_{IN1} = 1$ OR $V_{IN2} = 1$

NAND3

$$V_{OUT} = 0 \text{ iff } V_{IN1} = V_{IN2} = V_{IN3} = 1$$

AND2

$$v_{IN1} - v_{OUT}$$

$$V_{OUT} = 1 \text{ iff } V_{IN1} = V_{IN2} = 1$$

2.6 Other components

$$V_{OUT} = 1 \text{ iff } V_{IN1} = 1 \text{ OR } V_{IN2} = 1.$$

AND3

$$V_{OUT} = 1 \text{ iff } V_{IN1} = V_{IN2} = V_{IN3} = 1.$$

2.6 Other components

$$V_{IN}$$
 V_{OUT} V_{OU}

3-STATE BUFFER

... other components such as multiplexers, encoders, decoders, latches, flip flops, etc. , will be defined later on.

ROM (Read Only Memory)

Example: 12-bit ROM

(4 words, 3 bits per word,

address: 2 bits)

General case: $(m \cdot 2^n)$ -bit ROM $(2^n \text{ words}, m \text{ bits per word},$

address: *n* bits)

$X_1 X_0$	$Z_2 Z_1 Z_0$
0 0	010
0 1	111
10	100
11	010

3. Synthesis of Electronic Digital Systems

3. Synthesis of Electronic Digital Systems

SUMMARY

- What do we understand by "digital electronic system"?
- Binary encoding (1s and 0s represented by high and low voltage values).
- Catalog of components.
- Goal of the synthesis of digital electronic systems.