Teoria de Grupos: notas de estudo

Guilherme Philippi

22 de janeiro de 2021

Sumário

1	Gru	
	1.1	Lei de composição
	1.2	Grupos
	1.3	Subgrupos
	1.4	Homomorfismos
	1.5	Isomorfismos
		1.5.1 Relações de Equivalência e Partições
		1.5.2 Coclasses
\mathbf{R}	eferê	ncias Bibliográficas

Capítulo 1

Grupos

1.1 Lei de composição

Definição 1.1.1 (Lei de Composição). Uma Lei de Composição sobre S é uma função $F: S \times S \longrightarrow S$.

Definição 1.1.2. Para $a, b, c \in S$, uma Lei de Composição F é dita

- Associativa se F(F(a,b),c) = F(a,F(b,c));
- Comutativa se F(a,b) = F(b,a).

Observação 1.1.1. Usaremos a notação F(a,b) = ab, para simplificar a escrita de propriedades.

Proposição 1.1.1. Seja uma lei associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos $a_1, \ldots, a_n \in S$ (diremos $[a_1 \cdots a_n]$) com as seguintes propriedades:

- 1. o produto [a₁] de um elemento é o próprio elemento;
- 2. o produto $[a_1a_2]$ de dois elementos é dado pela lei de composição;
- 3. para todo inteiro $1 \le i \le n$, $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$.

Demonstração. A demonstração dessa proposição é feita por indução em n.

Definição 1.1.3. Dizemos que $e \in S$ é *identidade* para uma lei de composição se ea = ae = a para todo $a \in S$.

Proposição 1.1.2. O elemento identidade é único.

Demonstração. Se e, e' são identidades, já que e é identidade, então ee' = e' e, como e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única.

Observação 1.1.2. Usaremos $\vec{1}$ para representar a identidade multiplicativa e $\vec{0}$ para denotar a aditiva.

Definição 1.1.4 (Elemento inverso). Seja uma lei de composição que possua uma identidade. Um elemento $a \in S$ é chamado *invertível* se há um outro elemento $b \in S$ tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por a^{-1} e a chamaremos *inversa de a*.

Proposição 1.1.3. Se $a, b \in S$ possuem inversa, então a composição $(ab)^{-1} = b^{-1}a^{-1}$.

Observação 1.1.3 (Potências). Usaremos as seguintes notações:

- $a^n = a^{n-1}a$ é a composição de $a \cdots a$ n vezes;
- a^{-n} é a inversa de a^n ;
- $a^0 = \vec{1}$.

Com isso, tem-se que $a^{r+s} = a^r a^s$ e $(a^r)^s = a^{rs}$. (Isso não induz uma notação de fração $\frac{b}{a}$ a menos que seja uma lei comutativa, visto que ba^{-1} pode ser diferente de $a^{-1}b$). Para falar de uma lei de composição aditiva, usaremos -a no lugar de a^{-1} e na no lugar de a^n .

1.2 Grupos

Definição 1.2.1 (Grupo). Um grupo (G, *) é um conjunto G onde uma lei de composição * é dada sobre G tal que as seguintes propriedades são satisfeitas:

1. (Associatividade). Para todo $a, b, c \in G$, tem-se

$$(a*b)*c = a*(b*c);$$

2. (Existência da identidade). Existe um elemento $\vec{1} \in G$ tal que, para todo $a \in G$,

$$\vec{1} * a = a * \vec{1} = a;$$

3. (Existência do inverso). Para todo $a \in G$ existe um elemento $a' \in G$ tal que

$$a * a' = a' * a = \vec{1}$$
.

Observação 1.2.1. É comum abusar da notação e chamar um grupo (G, *) e o conjunto de seus elementos G pelo mesmo simbolo, omitindo a lei de composição quando não houver necessidade.

Definição 1.2.2 (Grupo abeliano). Um *grupo abeliano* é um grupo com uma lei de composição comutativa. Costuma-se usar a notação aditiva para grupos abelianos.

Proposição 1.2.1 (Lei do cancelamento). Seja a, b, c elementos de um grupo G. Se ab = ac, então b = c.

1.3 Subgrupos

Definição 1.3.1 (Subgrupo). Um subconjunto H de um grupo G é chamado de subgrupo de G (e escreve-se $H \leq G$) se possuir as seguintes propriedades:

- 1. (Fechado). Se $a, b \in H$, então $ab \in H$;
- 2. (Identidade). $1 \in H$;

3. (Inversível). Se $a \in H$, então $a^{-1} \in H$.

Observação 1.3.1 (Lei de composição induzida). Veja que a propriedade 1 necessita de uma lei de composição. Usamos a lei de composição de G para definir uma lei de composição de H, chamada lei de composição induzida. Essas propriedades garantem que H é um grupo com respeito a sua lei induzida.

Definição 1.3.2 (Subgrupo apropriado). Todo grupo G possui dois subgrupos triviais: O subgrupo formado por todos os elementos de G e o subgrupo $\{\vec{1}\}$, formado pela identidade de G. Diz-se que um subgrupo é um subgrupo apropriado se for diferente desses dois.

Exemplo 1.3.1. Utilizando da notação multiplicativa, define-se o *subgrupo cíclico* H gerados por um elemento arbitrário x de um grupo G como o conjunto de todas as potências de x: $H = \{\dots, x^{-2}, x^{-1}, \vec{1}, x, x^2, \dots\}$.

Definição 1.3.3. Chama-se *ordem* de um grupo G o número |G| de elementos de G.

Também pode-se definir um subgrupo de um grupo G gerado por um subconjunto $U \subset G$. Esse é o menor subgrupo de G que contém U e consiste de todos os elementos de G que podem ser espressos como um produto de uma cadeia de elementos de U e seus inversos.

Exemplo 1.3.2. O grupo de quaternions H é o menor subgrupo do conjunto de matrizes 2×2 complexas invertíveis que não é cíclico. Isso consiste nas oito matrizes

$$H = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\},\$$

onde

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{i} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ \mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Os dois elementos \mathbf{i}, \mathbf{j} geram H, e o calculo leva as formulas

$$\mathbf{i}^4 = 1$$
, $\mathbf{i}^2 = \mathbf{j}^2$, $\mathbf{j}\mathbf{i} = \mathbf{i}^3\mathbf{j}$.

1.4 Homomorfismos

Definição 1.4.1 (Homomorfismo de grupo). Sejam (G, *) e (G', \cdot) dois grupos. Um homomorfismo $\varphi: G \longrightarrow G'$ é um mapeamento tal que

$$\varphi(a * b) = \varphi(a) \cdot \varphi(b), \ \forall \ a, b \in G.$$
 (propriedade de homomorfismo)

Quando isso acontece, dizemos que o mapeamento φ preserva a estrutura algébrica de grupo.

Exemplo 1.4.1 (Inclusão). Seja H o subgrupo de um grupo G. O homomorfismo $i: H \longrightarrow G$ é dito inclusão de H em G, definido por i(x) = x.

Proposição 1.4.1. Um homomorfismo $\varphi: G \longrightarrow G'$ mapeia a identidade de G à identidade de G' e transforma as inversas de G nas respectivas inversas em G'. Isto e, $\varphi(\vec{1}) = \vec{1}$ e $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Definição 1.4.2 (Imagem). A imagem de um homomorfismo $\varphi: G \longrightarrow G'$ é o subconjunto de G'

im
$$\varphi = \{x \in G' \mid x = \varphi(a), \text{ para algum } a \in G\} = \varphi(G).$$

Proposição 1.4.2. A imagem de um homomorfismo $\varphi: G \longrightarrow G'$ é um subgrupo de G'.

Definição 1.4.3 (Núcleo). O *núcleo* do homomorfismo $\varphi: G \longrightarrow G'$ é o subconjunto de G formado pelos elementos que são mapeados pela identidade em G':

nu
$$\varphi = \{ a \in G \mid \varphi(a) = 1 \} = \varphi^{-1}(1).$$

Proposição 1.4.3. O núcleo de um homomorfismo $\varphi: G \longrightarrow G'$ é um subgrupo de G.

1.5 Isomorfismos

Definição 1.5.1 (Isomorfismo de grupos). Dois grupos (G, *) e (G', \cdot) são ditos isomórficos se possuírem um homomorfismo bijetivo entre si, isto é, há um mapeamento bijetivo $\varphi: G \longrightarrow G'$ (chamado relação de isomorfismo) que respeita a propriedade de homomorfismo:

$$\varphi(a * b) = \varphi(a) \cdot \varphi(b)$$
, para todo $a, b \in G$.

Observação 1.5.1. Usa-se a notação $G \approx G'$ para dizer que G é isomorfo a G'.

Definição 1.5.2 (Classe de isomorfismo). Diz-se que o conjunto de grupos isomórfos a um dado grupo G é a classe de isomorfismo de G.

Proposição 1.5.1. Qualquer dois grupos em uma mesma classe de isomorfismo também são isomorfos entre si.

Definição 1.5.3 (Automorfismo). Quando uma relação de isomorfismo $\varphi: G \longrightarrow G$ é definida de um grupo G para ele mesmo, chamamos esse tipo de isomorfismo de automorfismo de G.

Exemplo 1.5.1 (Conjugação). Seja $b \in G$ um elemento fixo. Então, a conjugação de G por b é o mapeamento φ de G para ele mesmo definido por

$$\varphi_b(x) = bxb^{-1}.$$

Esse é um automorfismo porque:

• é compatível com a propriedade de homomorfismo:

$$\varphi_b(xy) = bxyb^{-1} = bx\vec{1}yb^{-1} = bxb^{-1}byb^{-1} = \varphi_b(x)\varphi_b(y);$$

• é um mapa bijetivo visto que existe a função inversa $\varphi_b^{-1}(x) = b^{-1}xb = \varphi_{b^{-1}}(x)$ (isto é, a conjugação por b^{-1}) que, de forma análoga, também é compatível com a propriedade de homomorfismo.

Observação 1.5.2. Se o grupo é abeliano possui a conjugação trivial: $bab^{-1} = abb^{-1} = a$ (mapa identidade). Porém, qualquer grupo não comutativo tem alguma conjugação não trivial, isto é, existe ao menos um b no grupo tal que $ba \neq ab$ para algum a, portanto, possui pelo menos um automorfismo não trivial: a conjugação do grupo por b.

Definição 1.5.4 (Conjugado). O elemento bab^{-1} é chamado conjugado de a por b. Dois elementos $a, a' \in G$ são ditos conjugados se existe $b \in G$ tal que $a' = bab^{-1}$.

Observação 1.5.3. O conjugado tem uma interpretação muito útil: Se escrevermos bab^{-1} como a', então

$$ba = a'b$$
.

Ou seja, pode-se pensar na conjugação como a mudança em a que resulta de mover b de um lado para o outro na equação.

Proposição 1.5.2. Seja $\varphi: G \longrightarrow G'$ um homomorfismo. Se $a \in \text{nu } \varphi$ e b é qualquer elemento do grupo G, então o conjugado $bab^{-1} \in \text{nu } \varphi$.

Definição 1.5.5 (Subgrupo normal). Um subgrupo N de um grupo G é chamado subgrupo normal (escreve-se $N \subseteq G$) se para cada $a \in N$ e $b \in G$, o conjugado $bab^{-1} \in N$.

Observação 1.5.4. Fica claro que o núcleo de um homomorfismo é um subgrupo normal. Além disso, todo subgrupo de um grupo abeliano também é um subgrupo normal, porém, isso não é necessariamente verdade em subgrupos de grupos não abelianos (veja Observação 1.5.2).

Definição 1.5.6 (Centro de um grupo). O centro Z(G) de um grupo G é o conjunto de elementos que comutam com todo elemento de G:

$$Z(G) = \{z \in G \mid zx = xz \text{ para todo } x \in G\}.$$

Proposição 1.5.3. O centro de todo grupo é um subgrupo normal do grupo.

1.5.1 Relações de Equivalência e Partições

Definição 1.5.7 (Partições). Seja S um conjunto. Uma particão P de S é uma subdivisão de S em subconjuntos não vazios e não sobrepostos, isto é, uma união de conjuntos disjuntos.

Exemplo 1.5.2. Pode-se particionar o conjunto dos números inteiros \mathbb{Z} na união de disjuntos $P \cup I$, onde $P = \{z \in \mathbb{Z} \mid z \text{ é par}\} \in I = \{z \in \mathbb{Z} \mid z \text{ é impar}\}.$

Definição 1.5.8 (Relações de equivalência). Uma relação de equivalência sobre um conjunto S é uma relação que se mantém sobre um subconjunto de elementos de S. Escreve-se $a \sim b$ para representar a equivalência de $a, b \in S$, que precisa respeitar as seguintes propriedades:

- 1. (Transitiva). Se $a \sim b$ e $b \sim c$, então $a \sim c$;
- 2. (Simétrica). Se $a \sim b$, então $b \sim a$;
- 3. (Reflexiva). $a \sim a$.

Observação 1.5.5. A noção de partição em S e a relação de equivalência em S são lógicamente equivalentes: Dada uma partição P sobre S, pode-se definir uma relação de equivalência R tal que, se a e b estão no mesmo subconjunto partição, então $a \sim b$ e, dada uma relação de equivalência R, podemos definir uma partição P tal que o subconjunto que contêm a é o conjunto de todos os elementos b onde $a \sim b$. Esse subconjunto é chamado de classe de equivalência de a

$$C_a = \{b \in S \mid a \sim b\}$$

e S é particionado em classes de equivalência.

Proposição 1.5.4. Sejam C_a e C_b duas classes de equivalência do conjunto S. Se existe d tal que $d \in C_a$ e $d \in C_b$, então $C_a = C_b$.

Observação 1.5.6. Seja um conjunto S. Suponha que exista uma relação de equivalência ou uma partição sobre S. Então, pode-se construir um novo conjunto \bar{S} formado pelas classes de equivalência ou os subconjuntos partições de S. Essa construção induz uma notação muito útil: para $a \in S$, a classe de equivalência de a ou o subconjunto partição que contém a serão denotados como o elemento $\bar{a} \in \bar{S}$. Desta forma, a notação $\bar{a} = \bar{b}$ significa que $a \sim b$ e chamamos $a, b \in S$ de representantes das respectivas classes de equivalência $\bar{a}, \bar{b} \in \bar{S}$.

Definição 1.5.9. Seja um mapeamento $\varphi: S \longrightarrow T$. Chama-se de relação de equivalência determinada por φ a relação dada por $\varphi(a) = \varphi(b) \Rightarrow a \sim b$. Além disso, para um elemento $t \in T$, o subconjunto de $\varphi^{-1}(t) = \{s \in S \mid \varphi(s) = t\}$ é dito imagem inversa de t por φ .

Proposição 1.5.5. Seja um mapeamento $\varphi: S \longrightarrow T$ e $t \in T$ um elemento qualquer de T. Se a imagem inversa $\varphi^{-1}(t)$ é não vazia, então $t \in \text{im } \varphi$ e $\varphi^{-1}(t)$ forma uma classe de equivalência $\bar{\varphi} \in \bar{S}$ através da relação determinada por φ .

Definição 1.5.10 (Congruência). Seja $\varphi: G \longrightarrow G'$ um homomorfismo. A relação de equivalência definida por φ é usualmente denotada por Ξ ao invés de \sim e a chamamos de congruência:

$$\varphi(a) = \varphi(b) \implies a \equiv b$$
, para $a, b \in G$.

Proposição 1.5.6. Seja $\varphi: G \longrightarrow G'$ um homomorfismo e $a,b \in G$. Então as seguintes afirmações são equivalentes:

- $\varphi(a) = \varphi(b)$
- b = an, para algum $n \in nu \varphi$
- $a^{-1}b \in nu \varphi$.

Definição 1.5.11 (Coclasse em relação ao núcleo). Seja $\varphi: G \longrightarrow G'$ um homomorfismo, $a \in G$ e $n \in \text{nu } \varphi$. O conjunto

$$a$$
 nu $\varphi = \{g \in G \mid g = an, \text{ para algum } n \in \text{nu } \varphi\}$

é dito coclasse de nu φ em G.

Observação 1.5.7. Pode-se particionar o grupo G em classes de congruência, formadas pelas coclasses a nu φ . Estas são imagens inversas do mapeamento φ .

Proposição 1.5.7. O homomorfismo de grupo $\varphi: G \longrightarrow G'$ é injetivo se, e somente se, seu núcleo é o subgrupo trivial $\{1\}$.

Observação 1.5.8. Esse resultado da uma forma de verificar se um homomorfismo φ é também um isomorfismo: Se nu $\varphi = \{1\}$ e im $\varphi = G'$, então φ é, pelos respectivos motivos, injetiva e sobrejetiva. Então é um isomorfismo.

1.5.2 Coclasses

Definimos coclasse somente em relação ao núcleo de um homomorfismo mas, na verdade, pode-se definir uma coclasse para qualquer subgrupo H de um grupo G.

Definição 1.5.12 (Coclasse a esquerda). Seja um subgrupo H de um grupo G. O subconjunto da forma

$$aH = \{ah \mid h \in H\}$$

é dito coclasse a esquerda de H em G.

Proposição 1.5.8. A coclasse é uma classe de equivalência para a relação de congruência

$$b = ah \Rightarrow a \equiv b$$
, para algum $h \in H$.

Observação 1.5.9. Daí segue que, como classes de equivalência particionam um grupo, coclasses a esquerda de um subgrupo particionam o grupo.

Definição 1.5.13 (Índice de um subgrupo). O número de coclasses a esquerda de um subgrupo H em um grupo G chama-se *índice de H em G* e é denotado como [G:H].

Observação 1.5.10. Como há uma bijeção do subgrupo H para a coclasse aH, a cardinalidade de aH tem de ser a mesma de H. Isto é, as coclasses de H particionam G em partes de mesma ordem.

Proposição 1.5.9. Seja aH a coclasse do subgrupo H no grupo G. Então, a ordem |G| do grupo G é dada por

$$|G| = |H|[G:H].$$

Proposição 1.5.10 (Teorema de Lagrange). Seja G um grupo finito e H um subgrupo de G. A ordem de H divide a ordem de G.

Definição 1.5.14 (Ordem de um elemento). Seja G um grupo. A ordem de um elemento $a \in G$ é a ordem do grupo cíclico gerado por a.

Proposição 1.5.11. Seja um grupo G com p elementos tal que p é primo e $a \in G$ diferente da identidade. Então G é o grupo cíclico $\{1, a, ..., a^{p-1}\}$ gerado por a.

Observação 1.5.11. Também podemos obter uma expressão para calcular a ordem de um grupo de homomorfismo. Seja $\varphi: G \longrightarrow G'$ um homomorfismo. Como as coclasses a esquerda do núcleo de φ são as imagens inversas φ^{-1} , elas estão em uma correspondência biunívoca com a imagem. Daí segue que

$$[G: \text{nu } \varphi] = |\text{im } \varphi|.$$

Proposição 1.5.12. Seja $\varphi: G \longrightarrow G'$ um homomorfismo onde G e G' são finitos. Então

$$|G| = |nu \varphi| \cdot |im \varphi|.$$

Definição 1.5.15 (Coclasses a direita). Os conjuntos da forma

$$Ha = \{ha \mid h \in H\}$$

chamam-se coclasses a direita de um subgrupo H. Esses são classes de equivalência para a relação de congruência a direita

$$b = ha \Rightarrow a \equiv b$$
, para algum $h \in H$.

Proposição 1.5.13. Seja um subgrupo H de um grupo G. As seguintes afirmações são equivalentes:

- H é subgrupo normal,
- $aH = Ha \ para \ todo \ a \in G$.

Referências Bibliográficas