1 Lista 15 - Exercícios

1.1 Equações Polinomiais: Definições, Teoremas, Relações de Girrard e Raízes Reais e Complexas

- 1. Resolver as seguintes equações polinomiais
 - (a) $(x+1)(x^2-x+1) = (x-1)^3$
 - (b) (x+2)(x+3) + (x-2)(1-x) = 4(1+2x)
 - (c) $(x^2+1)(x^4-1)-(x^2-1)(x^4+1)=2(x^4-x^2-1)+3$
- 2. Monte uma equação polinomial cujas raízes são -2, -1, 1 e 4 com multiplicidade 1.
- 3. Construir uma equação polinomial cujas as raízes são $1 + \sqrt{2}i$, $1 \sqrt{2}i$.
- 4. Se na equação $x^3 75x + 250 = 0$, m é raíz dupla e n = -2m é a outra raíz, encontre m e n.
- 5. Calcule a soma o produto das raízes da equação

$$2x^4 + 3x^3 + 4x^2 + 5x + 6 = 0$$

- 6. Calcular a soma dos quadrados e a soma dos cubos das raízes da equação $x^3 px^2 + qx r = 0$.
- 7. Se o conjunto solução da equação $x^4 \alpha x^3 + \beta x^2 \gamma x + \delta = 0$ é $S = \{a, b, c, d\}$, calcular, em função de α , β , γ e δ o número

$$y = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

- 8. Calcular a área do triângulo cujos lados são as raízes da equação $x^3 + \alpha x^2 + \beta x + \gamma = 0$, onde α, β e γ são dados. Dica: Use a Fórmula de Hierão.
- 9. Resolver a equação $x^3 6x^2 + 11x 6 = 0$ sabendo que as raízes estão em P.A.
- 10. Sendo a,b e c raízes da equação $x^3 3x + 54 = 0$, calcular

$$\log\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$$

- 11. Provar que se a e b são raízes de $x^2 px + B^m = 0$, teremos $\log_B a^a + \log_B b^b + \log_B a^b + \log_B b^a = mp$
- 12. Resolver a equação $x^7 x^6 + 3x^5 3x^4 + 3x^3 3x^2 + x 1 = 0$ sabendo que i é uma das raízes da equação e tem multiplicidade 3.

1