

Description

The VSM82P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

V_{DS} =-60V,I_D =-82A

 $R_{DS(ON)}$ <13m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <16m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

Load switch

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM82P06-T2	VSM82P06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	-82	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	-58	Α	
Pulsed Drain Current	I _{DM}	-328	А	
Maximum Power Dissipation	P _D	150	W	
Derating factor		1.0	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	722	mJ	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	1.0	°C/W]
--	------------------	-----	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.2	-1.8	-2.4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	11	13	mΩ
		V _{GS} =-4.5V, I _D =-20A	-	13	16	mΩ
Forward Transconductance	g Fs	V _{DS} =-5V,I _D =-20A	-	25	-	S
Dynamic Characteristics (Note4)	·		•			
Input Capacitance	C _{lss}	\/ 20\/\/ 0\/	-	5604	-	PF
Output Capacitance	C _{oss}	V_{DS} =-30V, V_{GS} =0V, F=1.0MHz	-	356	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	265	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	18	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =1.5 Ω ,	-	20	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	55	-	nS
Turn-Off Fall Time	t _f		-	35	-	nS
Total Gate Charge	Qg	V - 20 I - 20 A	-	62.1		nC
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-20A, V_{GS} =-10V	-	9.3		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	16.8		nC
Drain-Source Diode Characteristics	•		•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =-20A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-82	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F =-20A	-	49		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs ^(Note3)	-	71		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\!\!\mathrm{C}$,V_{DD}=-30V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 ID Current Derating vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance