

Sistem Pendukung Keputusan

MOORA

Jurusan Teknologi Informasi Politeknik Negeri Malang

Metode ini memiliki tingkat selektifitas yang baik karena dapat menentukan tujuan dari kriteria yang bertentangan. Dimana kriteria dapat bernilai menguntungkan (*benefit*) atau yang tidak menguntungkan (*cost*). (Rokhman, Rozi, and Asmara 2017).

Metode ini yang diperkenalkan oleh Brauers dan Zavadkas (2006) pertama kali digunakanoleh Brauers dalam suatu pengambilan dengan multi-criteria decision making (MCDM)

Metode MOORA memiliki tingkat fleksibilitas dan kemudahan untuk dipahami dalam memisahkan bagian subjektif dari suatu proses evaluasi kedalam kriteria bobot keputusan dengan beberapa atribut pengambilan keputusan

Langkah metode MOORA

Metode MOORA terdiri dari lima langkah utama (Brauers and Zavadskas, 2006; Chakraborty, 2011; Gadakh, 2011; El-Santawy and Ahmed, 2012, Kalibatas, et al. 2008, Lootsma, 1999) sebagai berikut:

- 1. mengidentifikasi attribut evaluasi
- 2. Membuat matriks keputusan (X)
- 3. Matriks Normalisasi (X*_{ij})
- 4. Menghitungan Nilai Optimasi Multiobjektif
- 5. Menentukan Nilai Rangking dari hasil perhitungan

Langkah 1

Menentukan tujuan untuk mengidentifikasi attribut evaluasi yang bersangkutan dan menginputkan nilai kriteria pada suatu alternatif dimana nilai tersebut nantinya akan diproses dan hasilnya akan menjadi sebuah keputusan.

Langkah 2 : Membuat matriks keputusan (X)

$$X = \begin{bmatrix} x_{11} & \dots & x_{1i} & \dots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{j1} & \dots & x_{jj} & \dots & x_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mi} & \dots & x_{mn} \end{bmatrix}$$

	= respon alternative j pada kriteria i
Xij	= 1, 2, 3, 4,, n adalah nomor urutan
i	atribut atau kriteria
j	= 1, 2, 3, 4,, m adalah nomor urutan
X	alternatif
	= Matriks Keputusan

Brauers, W.K., menyimpulkan bahwa untuk penyebut, pilihan terbaik adalah akar kuadrat dari jumlah kuadrat dari setiap alternatif per attribut. Rasio ini dapat dinyatakan sebagai berikut:

$$X^*_{ij} = \frac{x_{ij}}{\sqrt{\left[\sum_{j=1}^m x_{ij}^2\right]}}$$

Xij = Matriks alternative j pada kriteria i = 1, 2, 3, 4, ..., n adalah nomor urutan atribut atau kriteria j = 1, 2, 3, 4, ..., m adalah nomor urutan alternative = Mariks Normalisasi alternatif j pada kriteria i

Langkah 4 (a): Menghitungan Nilai Optimasi Multiobjektif

Jika atribut atau kriteria pada masing-masing alternatif tidak diberikan nilai bobot.

Ukuran yang dinormalisasi ditambahkan dalam kasus maksimasi (untuk attribut yang menguntungkan) dan dikurangi dalam minimalisasi (untuk attribut yang tidak menguntungkan) atau dengan kata lain mengurangi nilai maximum dan minimum pada setiap baris untuk mendapatkan rangking pada setiap baris, jika dirumuskan maka:

$$y_j^* = \sum_{i=1}^{i=g} x_{ij}^* - \sum_{i=g+1}^{i=n} x_{ij}^*,$$

Keterangan:

i=1, 2, ..., g- kriteria/atribut dengan status maximized; i=g+1, g+2, ..., n- kriteria/atribut dengan status minimized; $\mathcal{V}^*_j =$ Matriks Normalisasi max-min .

Langkah 4(b): Menghitungan Nilai Optimasi Multiobjektif

Jika atribut atau kriteria pada masing-masing alternatif di berikan nilai bobot kepentingan.

Matriks normalisasi terbobot $w_j x_{ij}^*$

Pemberian nilai bobot pada kriteria, dengan ketentuan nilai bobot jenis kriteria maximum lebih besar dari nilai bobot jenis kriteria minimum .Perkalian Bobot Kriteria Terhadap Nilai Atribut Maximum dikurang Perkalian Bobot Kriteria Terhadap Nilai Atribut Minimum, jika dirumuskan maka:

$$y_i = \sum_{j=1}^{g} w_j x_{ij}^* - \sum_{j=g+1}^{n} w_j x_{ij}^*$$

i = 1, 2, ..., g- kriteria/atribut dengan status maximized;
 i = g+ 1, g+ 2, ..., n- kriteria/atribut dengan status minimized;
 W_j = bobot terhadap j
 y_i = nilai penilaian yang telah dinormalisasi dari alternatif 1 th terhadap semua attribut.

Alternatif keputusan harus diberi peringkat urutan preferensi sesuai dengan penurunan nilai Yi*. Penilaian nilai dapat positif atau negatif tergantung pada situasi dan kriteria nilai prioritas.

Tentukan salah satu guru yang layak untuk mendapat promosi jabatan di SMA RM dengan menggunakan metode Moora. Guru yang dipilih yang prestasi khusus baik, sifat kepemimpinan baik, tidak terlalu sibuk/ aktif, absensi (ketidak hadiran) sedikit, mempunyai keahlian untuk ekstrakulikuler, dan hubungan sejawat baik. Diketahui Kriteria dan alternatif sebagai berikut:

No	Alternatif	Keterangan
1	A1	Hamdi.,S.Pd
2	A2	Purwanto.,S.Pd
3	A3	L.Subhan.,M.Pd
4	A4	Dewi Rosatika.,S.Pd
5	A5	Tati Sunarti.,S.Pd

STUDI KASUS & penyelesaian

No	Kriteria	Keterangan	Bobot/w
1	C1	Memiliki Prestasi Khusus	0,290
2	C2	Mempunyai Sifat Kepemimpinan	0,173
3	C3	Keaktifan Dalam Sekolah	0,091
4	C4	Absensi (ketidak hadiran)	0,162
5	C5	Memiliki Ekstrakulikuler	0,080
6	C6	Hubungan Antar Sejawat	0,204

Langkah 1

mengidentifikasi attribut dan menginputkan nilai kriteria

	C1	C2	С3	C4	C5	C6
A1	Ya	Ya	Cukup aktif	Sangat rajin	Ya	Sangat baik
A2	Ya	Ya	Sangat aktif	Cukup rajin	Ya	Cukup baik
А3	Ya	Ya	Sangat aktif	Sangat rajin	Ya	Sangat baik
A4	Ya	Ya	Cukup aktif	Cukup rajin	Tidak	Cukup baik
A5	Ya	Ya	Cukup aktif	Cukup rajin	Ya	Sangat baik

Skala penilaian				
Kode	Nama Kriteria	Keterangan	Nilai	
C1	Memiliki Prestasi khusus	Ya	1	
		Tidak	0	
C2	Memiliki Sifat	Ya	1	
	Kepemimpinan	Tidak	0	
	Keaktifan	Sangat aktif	4	
C3	Dalam	Cukup aktif	3	
	Sekolah	Kurang aktif	2	
		Tidak aktif	1	
C4	Absensi	Sangat rajin	4	
	(ketidak	Cukup rajin	3	
	hadiran)	Kurang rajin	2	
		Tidak rajin	1	
C5	Mempunyai	Ya	1	
CJ	Ektrakulikuler	Tidak	0	
	Hubungan	Sangat baik	4	
C6	Hubungan Antar	Cukup baik	3	
CO	Sejawat	Kurang baik	2	
	o e ja mat	Tidak baik	1	

benefit attribute= C1,C2,C5,C6 cost attribute = C3,C4

Langkah 2

Membuat matriks keputusan (X)

	C1	C2	C3	C4	C5	C6
A1	1	1	3	4	1	4
A2	1	1	4	3	1	3
A3	1	1	4	4	1	4
A4	1	1	3	3	0	3
A5	1	1	3	3	1	4

Langkah 3 Matriks Normalisasi (X*_{ij})

	C1	C2	C3	C4	C5	C6
A1	1	1	3	4	1	4
A2	1	1	4	3	1	3
A3	1	1	4	4	1	4
A4	1	1	3	3	0	3
A5	1	1	3	3	1	4
	$X11 = \frac{1}{\sqrt{11}}$	$\frac{1}{1^2 + 1^2 + 1^2 + 1^2}$	$\frac{1}{(2^2+1^2)} = 0.447$	X^* $i = krite$ $j = alte$	ria 🎵	$\frac{x_{ij}}{\sum_{j=1}^{m} x_{ij}^2}$
	C1	C2	C3	C4	C5	C6
A1	> 0,447	0,447	0,391	0,521	0,500	0,492
A2	0,447	0,447	0,521	0,391	0,500	0,369
A3	0,447	0,447	0,521	0,521	0,500	0,492
A4	0,447	0,447	0,391	0,391	0	0,369
A5	0.447	0.447	0.391	0.391	0.500	0.492

Langkah 4(a)

Menghitung Nilai Optimasi Multiobjektif

Bobot(w))	0,290	0,173	0,091	0,162	0,080	0,204
	X	C1	C2	C3	C4	C5	C6
A1		0,447	0,447	0,391	0,521	0,500	0,492
A2		0,447	0,447	0,521	0,391	0,500	0,369
A3		0,447	0,447	0,521	0,521	0,500	0,492
A4		0,447	0,447	0,391	0,391	0	0,369
A5		0,447	0,447	0,391	0,391	0,500	0,492

Matriks normalisasi terbobot $w_j x_{ij}^*$

	C1	C2	C3	C4	C5	C6
A1	0,130	0,077	0,036	0,084	0,040	0,100
A2	0,130	0,077	0,047	0,063	0,040	0,075
A3	0,130	0,077	0,047	0,084	0,040	0,100
A4	0,130	0,077	0,036	0,063	0,000	0,075
A5	0,130	0,077	0,036	0,063	0,040	0,100

Langkah 4(b) *Menghitung Nilai Optimasi Multiobjektif*

Alternatif	Max(C1+C2+C 5+C6)	Min (C3+C4)	Nilai Yi = Max - Min
A1	0,348	0,120	0,228
A2	0,322	0,111	0,212
А3	0,348	0,132	0,216
A4	0,282	0,099	0,184
A5	0,348	0,099	0,249

Attribute	Kriteria	Keterangan
benefit	C1	Memiliki Prestasi Khusus
benefit	C2	Mempunyai Sifat Kepemimpinan
cost	C3	Keaktifan dalam sekolah
cost	C4	Absensi(ketidak hadiran)
benefit	C5	Memiliki Ekstrakulikuler
benefit	C6	Hubungan Antar Sejawat

Max (benefit attribute)= C1+C2+C5+C6 Min (cost attribute) = C3+C4

Langkah 5 Menentukan Nilai Rangking dari hasil perhitungan (Yi)

Alternatif	Nilai Yi = Max - Min	Ranking
A1	0,228	2
A2	0,212	4
А3	0,216	3
A4	0,184	5
A5	<mark>0,249</mark>	<mark>1</mark>

Kesimpulan:

Berdasarkan Sistem pendukung keputusan metode MOORA diketahui salah satu guru yang layak untuk mendapat promosi jabatan di SMA RM adalah alternative A5 (Tati Sunarti., S.Pd)

References:

- Revi, Ahmad, Iin Parlina, and Sri Wardani. "Analisis Perhitungan Metode MOORA dalam Pemilihan Supplier Bahan Bangunan di Toko Megah Gracindo Jaya." *InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan* 3.1 (2018): 95-99.
- Rokhman, Syaiful, Imam Fahrur Rozi, and Rosa Andrie Asmara. 2017.
 "Pengembangan Sistem Penunjang Keputusan Penentuan UKT Mahasiswa Dengan Menggunakan Metode Moora Studi Kasus Politeknik Negeri Malang." Jurnal Informatika Polinema 3(4): 36–42
- Sa, Y. (2019). Analisis Penggunaan Metode AHP dan MOORA untuk Menentukan Guru Berprestasi sebagai Ajang Promosi Jabatan.