EE1002/CG1108 Practice questions

1. Assume $R_0=1\Omega$, $R_1=1\Omega$, $R_2=1\Omega$, $R_3=1\Omega$., and $V_s=12V$ in the circuit.

a) Find
$$i_a, i_b, i_c$$
. [4 A ,8 A ,20 A]

b) The current through each resistance.

$$[i_{R_0} = 4A, i_{R_1} = 4A, i_{R_2} = 8A, i_{R_3} = 12A]$$

2. A practical volt meter has an internal resistance r_m . What is the value of r_m if the meter reads 11.81V when connected as shown in the circuit.

 $[1554k\Omega]$

$$R_1 = 1\Omega, R_2 = 0.5\Omega, R_3 = 0.25\Omega, R_r = 0.25\Omega, R_5 = 0.25\Omega$$

[0.33]

4. Find the Thevenin equivalent circuit for the circuit between nodes a and b.

 $[5V, 30\Omega]$

5. Compute the Norton's equivalent of the circuit between nodes a and b.

 $[0.05A, 200\Omega]$

6. Find the Thevenin equivalent resistance seen by the load resistor $\,R_{\scriptscriptstyle L}\,$ in the circuit.

 $[23.81\Omega]$

7. In the circuit determine the current $\it I$ and the voltage $\it V_{AB}$ for each of the cases $\it R=2,0,6\,\Omega$.

[16V, 10V, 28V]

8. In the circuit determine the voltage across the terminals X and Y when (a) they are on open-circuit, (b) they are short-circuited and (c) a resistor of 1Ω is connected across them. Determine also the current I for all three cases.

[(a) 6V, 0A; (b)12A, 0V; (c) 4V, 4A]

9. Determine the current gain $\,A_i = rac{i_{load}}{i_{in}}\,.$

[-75.76]

10. Determine the voltage $\,v_{\scriptscriptstyle o}^{}$ in the circuit.

[20V]

11. For the circuit, solve for $\,i_{\scriptscriptstyle s}\,.$

[-1A]

12. Find the voltage $V_{{\scriptscriptstyle AB}}$ in the circuit.

[-23V]