Feedforward Neural Network Design (HSCD Assignment 1)

Name : Ashutosh Rajendra Karve

Roll no : 01021

Email : 2024ht01021@wilp.bits-pilani.ac.in

Contact :+91 9765541324

Date :10/10/2024

Place : Pune, Maharashtra

1. Introduction:

In this assignment, a **Feedforward Neural Network** (FNN) with one hidden layer was implemented using Verilog HDL. The network architecture consists of four inputs, a hidden layer with three neurons, and an output layer with two neurons. Each neuron uses a **ReLU** (**Rectified Linear Unit**) activation function, which ensures that the output of the neurons is non-negative.

2. Vivado Project Setup

2.1 Project Creation

The project was created in Vivado, targeting the ZedBoard (Zynq-7000). The RTL project was set up for Verilog coding.

(Project Name (FeedForward_NN) >> Next)

2.2 Design Sources Overview

The design consists of the **feedforward_nn.v** file for the network and the **tb_feedforward_nn.v** file for the testbench. Both files were added as design and simulation sources, respectively.

Example: how to add files >> (feedforward_nn.v) (design source)

3. Network Architecture

The network was implemented with the following layers:

- Input Layer: 4 inputs, each 8-bit signed.
- Hidden Layer: 3 neurons with ReLU activation.
- Output Layer: 2 outputs, each 8-bit signed.

3.1 ReLU Activation Function

The ReLU function ensures that the output of a neuron is non-negative, and is defined as follows:

3.2 Weights and Bias Initialization

The weights and biases for both the hidden layer and the output layer were initialized as signed 8-bit values.

```
| Redforward_nnv x to_feedforward_nnv x to_feedforw
```

4. Testbench Design

The testbench was created to validate the functionality of the feedforward neural network. The testbench provides input values to the network and captures the outputs. **Three test cases** were used to assess the behavior of the network.

4.1 Testbench Code

```
feedforward_nn.v × tb_feedforward_nn.v × Untitled 2 ×
                                                                                                                                                                        ? 🗆 🖰
E/BitsPilaniMTech/Learning/BitsLearning/Hardware_Software_Co_Design/HSCD_Projects//ivado/KarveAshutosh01021Assignment01/FeedForward_NN/FeedForward_NN.srcs/sim_1/new/tb_feedforward_nn.v
                                                                                                                                                                              Ф
Q 🗎 🛧 🗻 🐰 🛅 🛣 📈 🗷 🖸
          module tb_feedforward_nn;
                                to the neural network (testbench will drive these signals)
             reg signed [7:0] inl;
             reg signed [7:0] in2;
reg signed [7:0] in3;
reg signed [7:0] in4;
              wire signed [7:0] outl;
             wire signed [7:0] out2;
                 Instantiate the feedforward neural network module
                  .in2(in2),
                                  //Ashutosh Rajendra Karve
// BITS-PILANI
// 01021
                  .in3(in3),
                  .in4(in4),
                  .outl(outl),
                  .out2(out2)
              // Testbench procedure to provide input values and observe outputs
             initial begin
                  // Test case 1
inl = 8'sdl; in2 = 8'sdl; in3 = 8'sdl; in4 = 8'sdl;
                  #10; // Wait for 10 time units
                  inl = 8'sd5; in2 = -8'sd3; in3 = 8'sd2; in4 = -8'sd1;
     00
                  in1 = -8'sd2; in2 = 8'sd4; in3 = -8'sd3; in4 = 8'sd1;
                    End the simulation
                  $finish;
```

5. Simulation Results

5.1 Running the Simulation

The testbench was run using Vivado's behavioral simulation. The waveform viewer shows the changes in inputs and corresponding outputs of the network.

5.2 Test Case 1:

- Inputs:
 - o in1 = 01, in2 = 01, in3 = 01, in4 = 01
- Outputs:
 - out1 = 0c (12 in decimal)
 - out2 = 00 (0 in decimal)

Explanation:

- out1 = 0c (12) indicates that the neural network computed a positive result for the first output neuron.
- out2 = 00 is expected, as the network output likely produced a negative result before ReLU was applied, which ReLU correctly converted to 0.

5.3 Test Case 2:

- Inputs:
 - o in1 = 05, in2 = fd (-3 in decimal), in3 = 02, in4 = ff (-1 in decimal)
- Outputs:
 - o out1 = 18 (24 in decimal)
 - out2 = 00 (0 in decimal)

Explanation:

- out1 = 18 (24) is a positive output, indicating that the input combination resulted in a valid, non-negative result after ReLU.
- out2 = 00 means that the network's second output neuron computed a negative value before ReLU was applied, and ReLU converted it to 0.

5.4 Test Case 3:

- Inputs:
 - o in1 = fe (-2 in decimal), in2 = 04, in3 = fd (-3 in decimal), in4 = 01
- Outputs:
 - out1 = 00 (0 in decimal)
 - out2 = 1f (31 in decimal)

Explanation:

- out1 = 00 shows that the first output neuron computed a negative result before ReLU, which was correctly zeroed out.
- out2 = 1f (31) is a valid positive result from the second output neuron, which was not affected by ReLU since it was non-negative.

6. Synthesis and Elaboration

6.1 Synthesis Results

The design was successfully synthesized, and the resulting netlist was generated.

6.2 Elaboration Results

The elaboration process verified that the design was correctly structured.

7. Conclusion

This assignment involved the successful implementation and testing of a simple feedforward neural network with ReLU activation using Verilog HDL. The simulation results verified the functionality of the network, confirming that the design behaved as expected for each test case.