Who's behind that movie?

Ignacio Perez, Aisha Kigongo

Director: **Tim Burton**

Genre:

Action

Fantasy

Director: **Joel Schumacher** Genre:

• Action,

Adventure

• Crime

Director: **Christopher Nolan** Genre:

Action

Thriller

Crime

Goal

What is the predicted rating of a new movie given the experience of the crew working on it?

Crew:

- Directors
- Actors
- Screenwriters
- Producers

Data

- 2 datasets: Movielens & IMDb
 - Movielens
 - Dataset 1: 100K ratings
 - Dataset 2: 10M ratings
 - IMDb
 - Movies
 - Crew
 - Writers
 - Director
 - Producers
 - Actors
 - ...etc

Data: Challenges

- Difficulty in parsing and loading the data.
 - IMDb data organized into very small chunks
 - e.g directors.list, actors.list, producers.list etc
- Different naming standards (movies, genres)
 - for example
 - The Magnificent Seven vs Magnificent Seven, The
 - Seven vs Se7ven
- Size: 4gb,
 - IMDb lists approx. 1gb
 - prepared for Map-Reduce jobs
 - organized in python arrays

Methods

- Vector Analysis
 - Cosine distance vs. Rating
- Naive Bayes Classifier
 - For the prediction

Experience Vector

		Action	Mystery	Thriller	Crime	Comedy	Drama	Romance	Rating
Tom Hanks	Angel & demons		1	1					6.6
	Joe v. the Volcano					1		1	5.5
	Forrest Gump						1	1	8.7
	Average Experience Vector		6.60	6.60		5.50	8.70	7.10	
	Weighted Experience Vector		3.30	3.30		2.75	4.35	7.10	
Liam Neeson	Taken	1		1	1				6.2
	Chloe		1	1			1		6.3
	The A-team	1		1					6.8
	Average Experience Vector	6.50	6.30	6.43	6.20		6.30		
	Weighted Experience Vector	4.33	2.10	6.43	2.07		2.10		
Movie	х	2.17	2.70	4.87	1.03	1.38	3.23	3.05	
	Movie intention		2.70	4.87					

Experience

• Dimensions : Genre

• Factor : average ratings

		Action	Mystery	Thriller	Crime	Comedy	Drama	Romance	Rating
Tom Hanks	Angel & demons		1	1					6.6
	Joe v. the Volcano					1		1	5.5
	Forrest Gump						1	1	8.7
	Average Experience Vector		6.60	6.60		5.50	8.70	7.10	
	Weighted Experience Vector		3.30	3.30		2.75	4.35	7.00	
Liam Neeson	Taken	1		1	1				6.2
	Chloe		1	1			1		6.3
	The A-team	1		1					6.8
	Average Experience Vector	6.50	6.30	6.43	6.20		6.30		
	Weighted Experience Vector	4.33	2.10	6.43	2.07		2.10		
Movie	x	2.17	2.70	4.87	1.03	1.38	3.23	3.50	

User Comparison

- Cosine Distance (or 1 Cosine Similarity)
- User Weighted Vector

Movie	X	2.17	2.70	4.87	1.03	1.38	3.23	3.50	
	Movie intention		2.70	4.87					
User	Angel & demons			1					6
0301	Zoolander		1	•		1		1	7
	Braveheart		_			_	1	1	10
	User Vector		7.0	6.0		7.0	10.0	8.5	
	Weighted User Vector		3.5	3.0		3.5	5.0	8.5	

Process

- Initially the vector gave us confusing results, but after reviewing of the data, we got positive insights:
 - Inclusion of actors without filters introduced irrelevant information into the model
 - Filtering the dataset: The directors, writers and producers are 100% involved in the movie.
- The relation between cosine similarity and the ratings was less strong than the expected.
 - But allowed us to improve the next step

Cosine Distance (X) v Freq. per Rating(Y)

Note: Vertical axis => Count of reviews; Horizontal axis => cosine similarity.

Classifier

- Naives Bayes Classifier
 - One classifier per user
 - We assigned a specific rating instead of working with ranges as defined in the literature

$$P(rating=1|DinMovie) = \frac{P(DinMovie|rating=1) * P(rating=1)}{P(DinMovie|rating=1) * P(rating=1) + P(DinMovie|rating!=1) * P(rating!=1)}$$

Methodology

For each user:

- Remove one movie from the user reviews.
 - With the rest of the crew, get the params for the classifier (individual classifier)
 - The classifier will return a probability for each rating (1-5) for the removal movie
 - The rating with the maximum probability is the answer of the classifier
- Using the movielens 100K dataset
 - Bayes OK 21919, Bayes Error 67691
 - Total 89610
 - Success 24%

Future steps

- Improve the vectors:
 - Consider the actors/actresses dataset, but evaluating the amount of "work" for each move based on the role. i.e (leading role v. supporting role)
 - New parameters for the classifier using the cosine similarity
 - Baseline rating for the vector analysis