Machine Learning

Manel Martínez Ramón

Department of Electrical and Computer Engineering The University of New Mexico

October, 2018

Some definitions of machine learning

Computational intelligence is intended to give machines the ability to learn from what they can observe of the surrounding environment, and then act as a consequence of what they learned.

What do we mean by machine? Any man-made device or system of devices:

- ▶ Robots;
- ightharpoonup Cars;
- ► Home appliances;
- ► The electrical grid;
- ► The communicatios systems;
- Medical systems;
- **.** .

In general, any thing that can hold a processor (computer) inside and that is wanted to be autonomous.

Some definitions of machine learning

OK, but what in the world is *learning*?

▶ Learning can be viewed as a process where the input consists of any available **data**, from which **information** is extracted, and then **knowledge** is inferred from this information.

Some definitions of machine learning

OK, but what in the world is *learning*?

▶ Learning can be viewed as a process where the input consists of any available **data**, from which **information** is extracted, and then **knowledge** is inferred from this information.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

Example: Construct a machine that classifies between adult men and women from measuring their height and hips diameter.

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

Example: Construct a machine that classifies between adult men and women from measuring their height and hips diameter.

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

Example: Construct a machine that classifies between adult men and women from measuring their height and hips diameter.

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

Example: Construct a machine that classifies between adult men and women from measuring their height and hips diameter.

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

- ▶ We take both measures.
- ► We arbitrarily put hips diameter in the vertical dimension.
- ▶ We then put the height in the horizontal dimension.

- ▶ We do it with as many data as we can collect.
- Since we are in two dimensions, we can se a structure in the data.
- ► A machine will "see" it in many dimensions.

- ► These data are labelled for training.
- For us to see the structure, we put colors in this example.
- ► For the machine, we label the data with -1 for men (red dots)...

ightharpoonup ...and women are +1 (pink dots).

► this being, of course, arbitrary.

- ► The machine simply places a line separating both sets.
- ► Parameters a and b contain the knowledge.

- Classification
 - if $a \times height + b \times hips > 0 \rightarrow Woman$.
 - ▶ if $a \times height + b \times hips < 0 \rightarrow Man$
- ▶ Where is the knowledge here?

- ► The machine simply places a line separating both sets.
- Parameters a and b contain the knowledge.

- ▶ Classification
 - if $a \times height + b \times hips > 0 \rightarrow Woman$.
 - if $a \times height + b \times hips < 0 \rightarrow Man$.
- ▶ Where is the knowledge here?

- ► The machine simply places a line separating both sets.
- Parameters a and b contain the knowledge.

- ► Classification
 - if $a \times height + b \times hips > 0$ Woman.
 - if $a \times height + b \times hips < 0 \rightarrow Man$.
- ▶ Where is the knowledge here?

Lesson outcomes

Main elements of this lesson:

- ▶ A definition of machine learning, with a definition of the processs data-information-knowledge.
- ▶ An example of learning machine, feature extraction, classification and associated notation.