Temporal Variations In Vapor Intrusion-Induced Indoor Air Contaminant Concentrations

Jonathan G. V. Ström,[†] Yuanming Guo,[‡] Yijun Yao,[†] and Eric M. Suuberg*,[†]

†Brown University, School of Engineering, Providence, RI, USA

‡Arizona State University, School of Sustainable Engineering and the Building

Environment, Tempe, AZ, USA

E-mail: eric_suuberg@brown.edu

2 Abstract

10

11

12

13

14

15

16

Temporal variability in indoor air contaminant concentrations at vapor intrusion (VI) sites has been a concern for some time. We consider the source of the reported variability at VI sites located near Hill Air Force Base (AFB) in Utah, an EPA experimental house in Indiana, and Naval Air Station North Island in California. We focus in particular on how the indoor/outdoor pressure differences and air exchange rates affected indoor air contaminant concentrations at these sites. We investigate how these dynamics differ for a site that is characterized by a preferential pathway (like Hill AFB) and VI sites that are not influenced by such pathways, using three-dimensional fluid dynamics models and statistical analysis of the aforementioned sites. For a preferential pathway to impact a VI site, there must exist a medium allowing effective communication between a contaminant-delivering preferential pathway and the indoor air space, e.g. a permeable subslab space that may be provided by a gravel layer. At sites characterized by significant advective transport from the subslab to the indoor air space, much of the short-term variability in indoor air contaminant concentration can be explained by an impact of fluctuations in indoor/outdoor pressure differences.

Meanwhile, air exchange rate variation drives most of the short-term variability at sites characterized by minor variations in advective transport.

Introduction

Long term vapor intrusion (VI) studies in both residential and larger commercial structures
have raised concerns regarding significant observed transient behavior in indoor air contaminant concentrations. ^{1–7} Such variations make it difficult for those charged with protecting
human health to formulate a response - should evaluation of the risk of exposure be based
upon observed peak concentrations, or long-term averages, or something else? There is even
uncertainty within the VI community regarding how to best develop sampling strategies to
address this problem. ^{1,3,8} What represents a reasonable sampling strategy for a particular
site a single 8-hour sample? Repeated 8-hour samples? Month-long samples? Continuous
monitoring?

VI involves the migration of volatilizing contaminants from soil, groundwater or other subsurface sources into overlying structures. The basic nature of VI has been understood for some time and it has been the subject of much study, but some aspects remain poorly understood, such as the causes of the sometimes observed large temporal transients in indoor air concentrations. Results from a house operated by Arizona State University (ASU) near Hill AFB in Utah, an EPA experimental house in Indianapolis, IN and a large warehouse at the Naval Air Station (NAS) North Island, CA have all shown significant transient variations in indoor air contaminant concentrations. All were outfitted with sampling and monitoring equipment that allowed tracking temporal variation in indoor air contaminant concentrations on time scales of hours. All have shown that these concentrations vary significantly with time - orders of magnitude on the timescale of a day or days. 5,9,10

In one instance the source of the variation was clearly established during the study of the site. At the ASU house a drain pipe (or "land drain") connected to a sewer system was discovered beneath the house. Careful isolation of this source led to a clear conclusion
that this "preferential pathway" for contaminant vapor migration significantly contributed
to observed indoor air contaminant levels and their fluctuations. ^{10,11} While in this case the
issue of a contribution from a preferential pathway was clearly resolved, what it left open
was a question of whether existence of such a preferential pathway would always be expected
to lead to large fluctuations in indoor air contaminant concentrations.

Similarly, a sewer pipe has recently been suggested to be a source of the contaminants found in the EPA Indianapolis house. That site was also characterized by large indoor air contaminant concentration fluctuations. ^{7,12} Sewer lines have been previously implicated as VI sources at several sites. ^{12–15} A Danish study has estimated that roughly 20% of all VI sites in central Denmark involve significant sewer VI pathways. ¹⁶ Thus while consideration of sewer or other preferential pathways is now part of normal good practice in VI site investigation, ¹ it is still not known whether the existence of such pathways automatically means that large temporal fluctuations are necessarily to be expected.

In some of the above cited cases, ^{13,15} a sewer provided a pathway for direct entry of contaminant into the living space. While potentially important in many instances, this scenario is not further considered here where the focus is on pathways that deliver contaminant via the soil beneath a structure. It is, however, now known that even absent a preferential pathway, there may be significant transient variation in indoor air contaminant concentrations at VI sites.^{2,4,17} One example is the site at NAS North Island at which no preferential pathways have been identified. Instead, a building at this site is characterized by significant temporal variations in indoor-outdoor pressure differential.⁵ It is believed that this is the origin of the observed indoor air contaminant concentration fluctuations at that site.

This paper investigates the sources of the temporal variation in indoor air contaminant concentrations in both the presence and absence of preferential pathways. In this work, the latter scenarios are referred to as "normal" VI scenarios, in which there is typically a groundwater source of the contaminant. Specifically, we pose the question of just how

much variation in indoor air contaminant concentration may be expected at such normal VI sites vs. those characterized by preferential pathways within the soil beneath the site. The conditions required for preferential pathways to become significant contributors to temporal variations in indoor air contaminant concentrations are also explored, and the consequences for sampling strategies are discussed.

$^{-1}$ Methods

76 Statistical Analysis Of Field Data

To frame the question of just how much variability in indoor air contaminant concentrations
is actually observed, field datasets have been analyzed. For this purpose, datasets from
the ASU house in Utah, the EPA Indianapolis site and North Island NAS were chosen for
analysis. Readers are referred to the original published works for details regarding data
acquisition. 3,5,7,9,10

The ASU house data were obtained over a period of several years. During part of this time, controlled pressure method (CPM) tests were being conducted, in which the house was underpressurized to an extent greater than that characterizing "normal" house operation, thus increasing VI potential. ^{6,9,18} The period of CPM testing is thus excluded from the analysis. Likewise, the existence of a preferential pathway at the ASU house needs to be considered in examining that dataset; during some of the testing at that site, this pathway was cut off, resulting in "normal" VI conditions in which the main source of contaminant was diffusion of contaminant vapor from an underlying groundwater source.

The NAS North Island dataset has not (as far as is known) been influenced by a preferential pathway, but the structure there was subject to "large" internal pressure fluctuations. By "large" is meant still only of order 10-20 Pa, but these were greater than those generally recorded at the ASU house during normal operations. The underlying soil at NAS North Island is sandy⁵ and more permeable than that at the ASU site, which will be shown to lead

to greater pressure sensitivity in the former case.

The Indianapolis site investigation also spanned a number of years and periodically in-96 cluded the testing of a sub-slab depressurgiation system (SSD) for VI mitigation. Only the period before the installation of this system was considered in the present analysis. It is likely a sewer line beneath the structure acted as a preferential pathway. 12 Unlike at the ASU house, this preferential pathway was never removed or blocked, making it impossible 100 to isolate the role of the preferential pathway at this site. It is still of interest to consider 101 the data from this site because of the completeness and extensiveness of the data collection. 102 Figure 1 illustrates a typical reported series of indoor air trichloroethylene (TCE) concen-103 tration measurements from this site. There is almost a two order of magnitude variation in 104 the concentration data. 105

Some of the analysis of the above three field data sets relies on a probability density 106 estimation technique called "kernel density estimation" (KDE). KDE is a technique used for 107 estimating the probability distribution of a random variable(s) by using multiple kernels, or 108 weighting functions to characterize the data sets. In this case, Gaussian kernels are used to 109 create the KDEs. This means that it is presumed that the variables of interest (i.e., indoor 110 air contaminant concentrations and indoor-outdoor pressure differentials, as sampled) are normally distributed around mean values and that there are statistical fluctuations associated with each sampling event. In this instance, the scipy statistical package was used to construct 113 the KDEs, assuming a bandwidth parameter determined by Scott's rue. The SciPy Python 114 library was used to conduct all statistical analysis and data processing. 19 115

116 Modeling Work

A previously described three-dimensional computational fluid dynamics model of a generic VI impacted house has been used to elucidate certain aspects of transient VI processes. In the present work, there has been an addition of a preferential pathway to the "standard" model that has been described before in publications by this group. ^{20–22} As in the earlier

Figure 1: Typical data on indoor air TCE contaminant concentrations at the Indianapolis site. 7

studies, only the vadose zone soil domain is directly modeled. Figure 2 shows a cutaway view of the relevant modeling domain.

Figure 2: Foundation and vadose zone soil represented in the modeling. Note that here a gravel sub-base material is shown, but in certain simulations, that material is absent and the surrounding soil directly contacts the foundation slab. Different assumptions are made regarding the preferential pathway, here shown as a pipe entering the gravel sub-base. In some cases, the preferential pathway has been "turned off".

The modeled VI impacted structure is assumed to have a 10x10 m foundation footprint, 123 with the bottom of the foundation slab lying 1 m below ground surface (bgs), simulating 124 a house with a basement. The indoor air space is modeled as a continuously stirred tank 125 (CST)¹ and all of the contaminant entering the house is assumed to enter with soil gas 126 through a 1 cm wide crack located between the foundation walls and the foundation slab 127 around the perimeter of the house. All of the contaminant leaving the indoor air space 128 is assumed to do so via air exchange with the ambient. The indoor control volume is here 129 assumed to consist of only of the basement, having a total volume of 300 m³. Clearly different 130 assumptions could be made regarding the structural features and the size of the crack entry 131 route, but for present purposes, this is unimportant as the intent is only to show for "typical" 132 values what the influence of some critical parameters is.

The modeled surrounding soil domain extends 5 meters from the perimeter of the house 134 and is assumed to consist of sandy loam, except as noted otherwise. Directly beneath the 135 foundation slab, there is assumed to be a 30 cm (one foot) thick gravel layer, except in 136 certain cases here this sub-base material is assumed to be the same as the surrounding soil 137 (termed a "uniform" soil scenario). The groundwater beneath the structure is assumed to 138 be homogeneously contaminated with TCE selected as a prototypical contaminant. The 130 groundwater itself is not modeled, as the bottom of the model domain is defined by the top 140 of the water table. Where relevant, the preferential pathway is modeled as a 10 cm (4") pipe 141 that opens into the gravel sub-base beneath the structure. The air in the pipe is also assumed 142 to be contaminated with TCE at a vapor concentration equal to the vapor in equilibrium 143 with the groundwater contaminant concentration below the structure, modified by a scaling 144 factor χ (allowing the contaminant concentration in the pipe to be parameterized). This 145 model illustrates the concept of a "preferential pathway", as the pipe carries contaminant 146 vapor to the immediate vicinity of the foundation, by a path that circumvents the usual soil diffusion pathway. 148

The ground surface and the pipe are both sources of air to the soil domain. Both are as-149 sumed to exist at reference atmospheric pressure. Soil gas transport is governed by Richard's equation, a modified version of Darcy's Law, taking the variability of soil moisture in the 151 vadose zone into account. 23 The van Genuchten equations are used to predict the soil mois-152 ture content and thus the effective permeability of the soil.²⁴ The effective diffusivity of 153 contaminant in soil is calculated using the Millington-Quirk model. ²⁵ The transport of con-154 taminant vapor in the soil is assumed to be governed by the advection-diffusion equation, in 155 which either advection or diffusion may dominate depending upon position and particular 156 circumstances. The key working equations and the boundary conditions are summarized in 157 Table 1.

Table 1: Governing equations, boundary conditions & model input parameters. (See below for table of nomenclature).

(a) Governing equations

Unsteady-CST	$V \frac{dc_{ m in}}{dt} = \int_{A_{ m ck}} j_{ m ck} dA - c_{ m in} A_e V_{ m slab}$
Richard's equation	$\nabla \cdot \rho \Big(- \frac{\kappa_s}{\mu} k_r \nabla p \Big) = 0$
Millington-Quirk	$D_{ ext{eff}} = D_{ ext{air}} rac{ heta_g^{10/3}}{ heta_t^2} + rac{D_{ ext{water}}}{K_H} rac{ heta_w^{10/3}}{ heta_t^2}$
Advection-diffusion equation	$\frac{\partial}{\partial t} \Big(\theta_w c_w + \theta_g c \Big) = \nabla (D_{\text{eff}} \cdot \nabla c) - \vec{u} \cdot \nabla c$
	Se = $\frac{\theta_w - \theta_r}{\theta_{+} - \theta_{-}} = [1 + \alpha z ^n]^{-m}$
van Genuchten equations	$ heta_g = heta_t^{r_t} - heta_w$
	$k_r = (1 - \mathrm{Se})^l [1 - (\mathrm{Se}^{-m})^m]^2$
	m = 1 - 1/n

(b) Boundary conditions

Boundary	Richard's equation	Advection-diffusion equation
Foundation crack	$p = p_{\rm in/out}$ (Pa)	$j_{ m ck} = rac{uc}{1-\exp{(uL_{ m slab}/D_{ m air})}}$
Groundwater source	$No\ flow$	$c = c_{\rm gw} K_H \left(\mu \rm g/m^3\right)$
Groundsurface	p = 0 (Pa)	$c = 0 \; (\mu \mathrm{g/m^3})$
Preferential pathway	p = 0 (Pa)	$c = c_{\rm gw} K_H \chi \; (\mu g/m^3)$

(c) Soil & gravel properties $^{26-28}$

Soil	$\kappa_s (\mathrm{m}^2)$	$\rho (\mathrm{kg/m^3})$	θ_s	θ_r	$\alpha (1/m)$	\overline{n}
Gravel	$1.3 \cdot 10^{-9}$	1680	0.42	0.005	100	3.1
Sandy Loam	$5.9 \cdot 10^{-13}$	1460	0.39	0.039	2.7	1.4

(d) Trichloroethylene (diluted in air) properties 27,28

$D_{\rm air}~({ m m}^2/{ m h})$	$D_{\rm water}~({\rm m}^2/{\rm h})$	$\rho (\mathrm{kg/m^3})$	$\mu (\mathrm{Pa} \cdot \mathrm{s})$	K_H	M (g/mol)
$2.47 \cdot 10^{-2}$	$3.67 \cdot 10^{-6}$	1.614	$1.86 \cdot 10^{-5}$	0.403	131.39

(e) Building properties

$V_{\text{base }}(\text{m}^3)$	$L_{\rm slab}$ (cm)	$A_e (1/hr)$
300	15	0.5

Results & Discussion

Variation In Indoor Air Contaminant Concentration Over Time

High frequency measurement of indoor air contaminant concentrations, $c_{\rm in}$, such as those

2 in Figure 1, took place at both the ASU House and the Indianapolis House over significant

periods (Indianapolis: ca 1.7 years, ASU house: ca 3.5 years). 3,7 Furthermore, at the Indianapolis site $c_{\rm in}$ for three different contaminants, chloroform, TCE, and tetrachloroethylene (PCE) were all collected, allowing examination of the variability of each VI contaminant. The NAS North Island NAS dataset was obtained over a much shorter duration (9 days), and is therefore not examined in this portion of the analysis. It should also be noted that the ASU house used 4-hour sorbent tubes, while Indianapolis took instantaneous "grab" samples.

Figure 1 showed a large degree of temporal variation in one of the components, and the 170 data for the other components were quite similar. What is apparent upon closer examination 171 of such data is that the actual day-to-day variations are typically not nearly as large as those 172 observed when tracking the data for a longer time. To demonstrate this point, the quotient 173 of the maximum and minimum $c_{\rm in}$ values (denoted as $c_{\rm max}/c_{\rm min}$) are shown as a function of 174 time in Figure 3. The values shown in Figure 3 are the means of the quotients calculated for 175 samples separated by the indicated times and the error bars indicate the 95th percentile of 176 all the data points. Hypothetical resampling periods of one, two, three days, and the same 177 number of weeks, and months were chosen. 178

For example, if the data are examined in terms of the mean maximum variation observable 179 over the course of 24 hours (one day) the variation is no greater than about a factor of two for any of the contaminants at the Indianapolis house or for TCE at the ASU house (when 181 the preferential pathway was closed). The mean variability at the latter was only a bit higher 182 (about a factor of 3) when the preferential pathway was open. In other words, a sampling 183 protocol that involves sampling on two consecutive days would typically not uncover the 184 large temporal variations that characterize the site over longer periods of time. As Figure 185 1 shows, there are certainly isolated days in which a larger daily change was observed, but 186 these were not typical, to the extent that they fall outside of the 95% criteria used in defining 187 the error bars. So while such unusual jumps might be seen (for unknown reasons) in a very 188 small percentage of cases, the expectation is much more represented by what is shown in 189

Figure 3: Mean values of the maximum change in indoor air contaminant concentration that may be expected over a given time period. (e.g., 1D is 1 day, 2W is 2 weeks, and 3M is 3 months). The error bars are the 95% confidence intervals.

Figure 3.

Weeks of temporal separation in sampling events are required to observe the large variations of concern. Orders of magnitude differences begin to manifest themselves over the course of months. This is not surprising, since those who performed the measurements have already reported that there were seasonal aspects to the values obtained. This would be consistent with requiring months to see the more significant variations.

This analysis also suggests that certain types of preferential pathways contribute to larger variations on shorter timescales (ASU House). Even though there was a preferential pathway present at the Indianapolis House, the transients associated with its presence were of a slower nature and the behavior was not unlike what was observed at ASU House when the preferential pathway was closed. This warns that the mere existence of a preferential

pathway is not by itself sufficient to create a situation of large variations over short sampling times.

The longer the resampling period, the larger the maximum variability in observed indoor
air contaminant concentrations. In the case of the ASU House with the preferential pathway
open, the variability went from less than a threefold difference on the timescale of a day, to
two to three orders of magnitude over the course of weeks. Thus there are different timescales
that characterize different extents of variation, again pointing to the existence of more than
a single factor that determines variability.

Multiple samples taken over a short time period, e.g. a few days, are unlikely to uncover significant variation in indoor air contaminant concentration; the larger transient variations typically manifest after longer time periods.

Statistical Analysis of Field Data

The data in Figure 1 and Figure 3 raise the question of what then actually determines the large degree of temporal variation sometimes reported. The rate of advective entry of soil gas into a structure is frequently cited as playing an important role in determining entry rate of contaminant. This advective entry rate is closely linked to the indoor-outdoor pressure difference, as can be caused by the "stack effect", for example. Thus we first consider how much variability there might be in the pressure driving force for advection, and if this can explain the observed variability in observed indoor air contaminant concentrations.

The pressure difference between the indoor and outdoor/ambient ($p_{in/out}$) leads to advection, by which contaminants are drawn into (or prevented from) entering a structure. Changes in $p_{in/out}$ can take place quickly, leaving open the possibility of their impacting VI far more rapidly than can fluctuations in say groundwater depth or contaminant concentration (these latter processes take weeks or even months to impact the overlying structure).

We examine the relationship between $p_{\rm in/out}$ and $c_{\rm in}$ by constructing the two-dimensional kernel density estimation (KDE) plots seen in Figure 4. The KDE plots allow us to view the measured distributions of $p_{\rm in/out}$ and $c_{\rm in}$, and develop a visual impression of how well these distributions correlate with one another. For this analysis we considered two VI sites, NAS North Island and the ASU House. The ASU House dataset was divided into two periods, one before and the other after the land drain (called the preferential pathway (PP) from here on) had been closed. By comparing these two periods on a single plot, the impact of the preferential pathway becomes clearer.

Figure 4: 2D-KDE plot showing the distributions of indoor air contaminant concentration, the indoor/outdoor pressure difference, and how they correlate to each other.

In Figure 4, the indoor air contaminant concentration $c_{\rm in}$ is normalized to the mean $c_{\rm in,mean}$ of each dataset, allowing comparison of the impact $p_{\rm in/out}$ on $c_{\rm in}$ independently from the large differences in absolute values of indoor air concentrations at the different sites. A value of 10 on the y-axis indicates that the corresponding plotted value of $c_{\rm in}$ is 10 times

greater than the mean for the dataset, and 0.1 indicate that it is one tenth of the mean.

Inspection of the range of normalized $c_{\rm in}$ values in Figure 4 again shows the two order of magnitude spread in observed values, implying a sampling at one particular time might give a value that is two orders of magnitude different than a result from a different time. Such issues have of course already been pointed out by the investigators who obtained the data.

The power of this KDE representation is that it permits evaluation of the relationship of two independently measured data - the indoor air contaminant concentration and the

of two independently measured data - the indoor air contaminant concentration and the indoor-outdoor pressure difference. Examining the data in this manner immediately points to an important difference between the data from the ASU House and those from NAS North Island. At NAS North Island site $p_{\rm in/out}$ varies significantly; the 5th and 95th percentile of $p_{\rm in/out}$ are -19.9 and 7.4 Pa respectively. This may be contrasted with 5th and 95th percentile $p_{\rm in/out}$ at the ASU house: -1.4 and 2.1 Pa (with the PP open), and -2.1 and 2.27 Pa (PP closed).

The much larger under- and overpressurization of the NAS North Island site compared to the ASU House makes the pressure dependence of indoor air concentration much more visible at the former site. The Pearson's r-value for the correlation between $p_{\text{in/out}}$ and c_{in} for each dataset is shown in the legend, and confirms what is apparent to the eye; the pressure driving force is a determining factor for observed contamination at NAS North Island. But the broadness of the band of the NAS North Island concentration data set suggests that there is still a source of variability in c_{in} that has not been fully captured - this will be addressed below.

The ASU house datasets offer a different picture. The variability of $c_{\rm in}$ is just as large, or even larger than at NAS North Island, yet the $p_{\rm in/out}$ varied far less. The weaker dependence of $c_{\rm in}$ on the pressure difference is confirmed by the much lower r-values for the correlations between the variables. In other words, there is not nearly as strong a correlation between variation in indoor air contaminant concentration and pressure difference for the ASU House as there was for NAS North Island. These results strongly suggest that there are other factors besides indoor pressure determining indoor air contaminant concentrations, and their variations, that may not be accounted for in applying this method.

The data for the ASU House also offer an insight into the role of the preferential pathway. 266 At first glance it may seem like the $c_{\rm in}$ values for the periods when the PP is open and closed 267 are relatively comparable. However, the 5th and 95th percentiles values of $c_{\rm in}/c_{\rm in,mean}$ differ 268 significantly as may be seen in Table 2. It is clear that existence of the preferential pathway 260 dramatically increases the variability in indoor air contaminant concentration. This again 270 is entirely consistent with what the investigators of that site have already reported. 11 The 271 correlation with indoor-outdoor pressure difference is weak in the ASU house cases, so there 272 are clearly factors other than pressure difference that determine the variability in each. These 273 will be explored with the help of a modeling analysis presented below. 274

Table 2: 5th and 95th percentile values of $p_{\rm in/out}$ and $c_{\rm in}/c_{\rm in,mean}$ in Figure 4.

	North	Island NAS	ASU	house PP Open	ASU	House PP Closed
Percentile	$5 ext{th}$	$95 \mathrm{th}$	5th	$95 \mathrm{th}$	5th	$95 \mathrm{th}$
$p_{\rm in/out}$ (Pa)	-19.9	7.4	-1.4	2.1	-2.1	2.27
$c_{\rm in}/c_{\rm in,mean}$	4.1	0.2	13.5	0.2	3.3	0.4

²⁷⁵ Variability Of Attenuation to Subslab Concentrations

Observed temporal variations in indoor air contaminant concentrations might be explained 276 by temporal variations in subslab contaminant concentrations. To examine how variability in 277 subslab contaminant concentration might contribute to variability in indoor air contaminant 278 concentration, data on the attenuation from subslab ($\alpha_{\text{subslab}} = c_{\text{in}}/c_{\text{subslab}}$) were examined. 279 The dataset utilized for this was that from the ASU House. The c_{subslab} values were taken from a soil gas probe labeled as "6" at the ASU house. This probe was located closest to 281 both the exit of the preferential pathway pipe, and to a reported breach in the foundation 282 that served as a key entry pathway for contaminant getting into the house. 11 The results 283 are shown in Figure 5, which shows the full distributions for both the case in which the 284

preferential pathway was "open" and when it "closed".

286

287

288

289

290

Figure 5: Boxplot of \log_{10} (subslab to indoor air contaminant attenuation) at the ASU house site. The box shows the quartiles of the distribution, the whiskers the extent of the distribution.

It is apparent that during the period when the preferential pathway was closed, α_{subslab} did not vary significantly, and was quite close to the EPA recommended α_{subslab} value of 0.03.¹ Thus during the period when the preferential pathway was closed, large temporal variations in subslab concentrations could not have been driving the variations in indoor air contaminant concentrations.

When the PP was open, there was considerably more variability in the subslab concentration values, and the mean value was higher than in the case where the preferential pathway was closed. It was also not uncommon for the observed α_{subslab} to exceed unity. While large α_{subslab} values may sometimes indicate indoor sources at a site, there were none at the ASU house. A more likely explanation is that even though probe "6" was located in close proximity to the exit of the preferential pathway, there might have still existed significant spatial variability in c_{subslab} that could not be captured with a single measurement. This suggests caution is needed in profiling subslab contaminant concentrations in the presence of preferential pathways - significant variations are possible.

What the results of Figure 5 do clearly show is that the existence of a preferential pathway
of the kind at ASU House (and idealized in Figure 1) can influence the temporal variation
of subslab concentrations in a much less predictable way than those observed in "normal"
VI scenarios.

304 Modeling Results

Pressure Effects

Having established the potential impacts of certain inputs on determining variability in indoor air contaminant concentrations, the mathematical model of VI can help further elucidate other key aspects. The results of calculations on a scenario corresponding to Figure 2 are presented in Figure 6. This scenario is not intended to exactly represent the situation at ASU House, but it is similar in the key aspect of having a preferential pathway delivering contaminant to a gravel sub-base. The full, complex geometry of the ASU House has not been represented, but the modeled structure is of comparable size, and will be subject to operational parameters based upon what were measured at that site. The general modeling conditions are those shown in Table 1.

In the calculation results shown in the top panel of Figure 6, a preferential pathway is 315 assumed to provide air containing contaminant vapor at a concentration equivalent to the 316 vapor in equilibrium with the underlying groundwater source. Here, the indoor air exchange 317 rate A_e was assumed to be a constant 0.5 per hour, and $p_{\rm in/out}$ was varied from -5 to 5 Pa. 318 Values of predicted indoor air contaminant concentrations, $c_{\rm in}$ were obtained from steady 319 state calculations. The predicted $c_{\rm in}$ values were then normalized by the assumed vapor 320 concentration in equilibrium with groundwater c_{gw} , giving the attenuation from groundwater 321 $\alpha_{\rm gw}$. The predicted values of $\alpha_{\rm gw}$ as a function of $p_{\rm in/out}$ are given by the central blue line in 322 the upper panel of Figure 6. These predicted values are compared to actual measured $\alpha_{\rm gw}$ 323 values from the ASU House for the period during which the preferential pathway was open

Figure 6: Simulated preferential pathway scenarios compared to actual ASU house field data. Field data are binned in 40 evenly spaced pressure bins, with the dot representing the mean and errors bars the 95% confidence interval of data at a particular pressure range. Shaded blue represent the range of model predictions for the indicated pressure difference, due to air exchange rate variability (using 5th and 95th percentile values of measured exchange rates). Top panel is for various cases representing an "open" preferential pathway, the lower panel with the pathway "closed".

325 (blue points).

326

The model successfully predicts the observed trends in $\alpha_{\rm gw}$ as $p_{\rm in/out}$ decreases (increased

depressurization) but somewhat underpredicts $\alpha_{\rm gw}$ as the house is overpressurized. Most significantly, the model captures that even for a small increase in depressurization (0 to -5 Pa) a very large increase in $\alpha_{\rm gw}$ (two order of magnitude) can occur.

The asymmetry relative to the predictions for depressurization and overpressurization is
due to two factors. First, the preferential pathway acts not only as a source of contaminant
vapor, but also as a source of air to the subslab. Because of the large resistance to soil gas
flow in the surrounding soil, having a local source of air to support the increase of advective
flow into the structure from the subslab region makes a large difference.

The above was proven by a second simulation, where the model was rerun with the 335 preferential pathway present, but with the permeable (gravel) layer in the subslab removed 336 and replaced by the surrounding soil (sandy loam). This gave a "uniform soil" scenario the 337 results of which are shown as an orange line in the top panel of Figure 6. This simulation 338 demonstrates that without a permeable subslab to effectively allow the "advective potential" 339 to be realized, existence of preferential pathway will actually not impact a VI site very 340 much. In order for a preferential pathway to significantly contribute to VI, this requires a 341 scenario involving good advective communication between it the indoor environment. These 342 requirements were met at the ASU House.

A perhaps obvious second requirement is that the preferential pathway must deliver 344 contaminant vapors to be impactful. In another simulation, the permeable (gravel) subslab 345 region was included, but the preferential pathway merely delivered clean air to the subslab. 346 The result of this simulation is shown as the green line in the top panel of Figure 6. This 347 shows that while there was a lightly larger α_{gw} compared to the "uniform soil" scenario, it 348 is nowhere near as significant as when the preferential pathway delivers contaminant vapors. 349 The contaminated and uncontaminated preferential pathway scenarios (blue and green lines 350 respectively) thus bound the range of α_{gw} that would be observed for a given $p_{in/out}$ depending 351 on the contaminant vapor concentration in the preferential pathway. 352

The model is also able to capture the weak trend in $\alpha_{\rm gw}$ with $p_{\rm in/out}$ when a preferential

353

pathway is absent, but when there still exists a permeable subslab region. These results are
shown in the bottom panel of Figure 6. These results are again in agreement with what
was observed at the ASU House when the preferential pathway was closed, i.e. that there
was a much more modest variation in indoor air concentration, irrespective of pressure, when
the preferential pathway was cut off.

The above simulations capture the trend in $\alpha_{\rm gw}$ with $p_{\rm in/out}$ but do not yet capture the 359 full variability of the concentration results over the "most probable" portion of observed 360 pressure distributions shown in Figure 4 (which tend to be from -2 to +2 Pa). The results 361 of Figure 6 show a spread of almost an order of magnitude over this pressure range for the 362 case of the "open" preferential pathway, and almost no spread at all when the preferential 363 pathway is "closed". Hence the predicted variability is roughly an order of magnitude too 364 low, when considering only the influence of pressure. There is a factor that tends to increase 365 the spread of the data one additional order of magnitude beyond what was predicted by the 366 base calculations of Figure 6. We believe that it is variations in air exchange rate, operating in concert with the natural variations in pressure differential, that explain the remaining 368 variability.

370 Air Exchange Rate Effects

Table 3 shows the observed variations in air exchange rates for the ASU House and Indi-371 anapolis House, compared with EPA's summary of the distribution of typical residential air 372 exchange rates. ^{29,30} Examination of these distributions point in a clear direction for modify-373 ing the above model. Instead of using a constant value of air exchange rate, as is customary, 374 its values should be parameterized. A higher air exchange would of course be associated 375 with lower $c_{\rm in}$ and vice versa. Moreover, A_e may sometimes be correlated with $p_{\rm in/out}$. De-376 termining any general relationship between A_e and $p_{\rm in/out}$ is difficult: the structure itself and 377 weather phenomena have a significant effect on air exchange. As the data in the supplemen-378 tary data show (Figure S1), there is no easily discernable correlation between these variables 379

at the ASU site, though there is a hint of slight seasonal dependence. Note: a relationship between A_e and $p_{\text{in/out}}$ may be established for larger $p_{\text{in/out}}$ via the building leakage curves, which are widely used for heating, ventilation and air conditioning systems in construction.

Table 3: Air exchange rate values (1/hr)

Percentile	10th	$50 \mathrm{th}$	90th
$EPA^{29,30}$	0.16 - 0.2	0.35 - 0.49	1.21 - 1.49
ASU house ^{3,11}	0.21	0.43	0.78
Indianapolis ⁷	0.34	0.74	1.27

To show the influence of possible statistical fluctuations of air exchange rate on the predictions of $\alpha_{\rm gw}$ values, the scenarios of Figure 6 were rerun calculated using the 5th and 95th percentile measured A_e values, 0.17 and 0.90 respectively (based upon the actual distributions in Figure S1), providing predicted upper and lower bounds for $\alpha_{\rm gw}$. These bounds are indicated by the shaded blue regions around the center line calculated for an assumed constant A_e of 0.5 per hour.

It is apparent that assuming variability in air exchange rate allows capturing most of the observed variability in α_{gw} . We believe that this explains the portion of the variation in indoor air contaminant concentration data that cannot be explained by either existence of preferential pathways or by the range in indoor depressurization. Thus, we believe that it is the interplay of preferential pathway conditions, with indoor pressure variations and normal air exchange rates that help to explain the observations of significant variations in reported indoor air contaminant concentrations.

Results of Transient Simulations

The above analyses have been conducted under simulated steady state conditions. The conclusions regarding the importance of the different parameters are now examined in actual transient simulations. The model configuration of Figure 2 is run in 24-hour transient simulations to examine how $c_{\rm in}$ fluctuates over the course of a "typical" day. The simulations vary $p_{\rm in/out}$ as one model input, and then assume either a constant or time-varying air exchange rate, A_e . The ASU House dataset was again the source of the "typical" $p_{\rm in/out}$ temporal variation, obtained by examining the median, hourly, diurnal $p_{\rm in/out}$ during the non-CPM periods. The statistically "typical" $p_{\rm in/out}$ cycle may be seen in the upper left panel of Figure 7 (note that values between the hourly median values are interpolated using cubic splines). The "typical" air exchange rate is calculated in exactly the same way and is shown by the blue line in the upper right panel of Figure 7. The orange line is the air exchange rate value assumed for the calculations at constant air exchange rate.

Figure 7: Transient simulation of a "typical" VI day, using diurnal indoor/outdoor pressure difference and air exchange rate as inputs. Effect of preferential pathway considered.

The result of these simulations are shown in the bottom two panels of Figure 7, where the left and right panels show the results of open and closed preferential pathways, respectively.

The "max change" value in the legends is the quotient of the lowest and highest predicted

concentrations, i.e. a value of two indicate that the maximum daily concentration is twice as high as the lowest. This quantity may be compared with the value that is plotted for 413 "one day" in Figure 3. When the preferential pathway is open, there is a maximum daily 414 variation of roughly a factor of 5, irrespective of whether A_e fluctuates or not, which is 415 somewhat more than the maximum daily variation shown in Figure 3. The relatively small 416 difference between the variable and constant A_e cases indicates that most of the variability 417 during a "typical" day is here attributable to fluctuations in $p_{\rm in/out}$, i.e. the contaminant 418 transport into the modeled structure is advection dominated. Even for the small fluctuations 419 in $p_{\rm in/out}$ the contaminant entry rate fluctuation drives the observed indoor concentration. 420 When the preferential pathway is closed the story is quite different. When air exchange 421 rate is held constant, there is essentially no variation in $c_{\rm in}$. This is again not surprising, as 422 Figure 6 demonstrated that when the preferential pathway is closed, the influence of $p_{\rm in/out}$ 423 on contaminant entry rate (and subsequently $c_{\rm in}$) is small. Combined with the small $p_{\rm in/out}$ 424 this indicates that the contaminant transport into the modeled structure in this scenario is 425 dominated by diffusion. When the air exchange rate is allowed to fluctuate, the maximum 426 daily variation in $c_{\rm in}$ is 1.68, which is in line with what is shown in Figure 3. This shows that 427 for a "typical" day, when the preferential pathway is closed off, much of the daily variation in $c_{\rm in}$ is due to daily fluctuations in air exchange rate. 429

These results demonstrate the complicated nature of temporal variability in $c_{\rm in}$. It is 430 important to recall that only the effects of indoor/outdoor pressure difference and air ex-431 change rate have been considered here, but slower processes, e.g. changes in groundwater 432 contaminant concentration or various seasonal effects can also have a significant impact on 433 VI over time. For the shorter time periods of concern in recent studies of temporal variability 434 in indoor contaminant concentrations we believe that these are dominated by combinations 435 of indoor/outdoor pressure differentials and air exchange rate. For a site where advective 436 communication between the subsurface and the indoor is good, $p_{in/out}$ is likely a significant 437 determinant of $c_{\rm in}$ and its temporal variability. We have shown that that such a scenario 438

may arise due to a preferential pathway entering a permeable sub-base, but may also exist even in the absence of a preferential pathway just as the results from NAS North Island demonstrate. At sites where advective transport into the structure is limited, much of the temporal variability in $c_{\rm in}$ may be attributed to natural fluctuations in air exchange rate.

443 Acknowledgement

This project was supported by grant ES-201502 from the Strategic Environmental Research and Development Program and Environmental Security Technology Certification Program (SERDP-ESTCP).

References

- 448 (1) U.S. Environmental Protection Agency, OSWER Technical Guide for Assessing and
 449 Mitigating the Vapor Intrusion Pathway From Subsurface Vapor Sources To Indoor
 450 Air.
- 451 (2) Folkes, D.; Wertz, W.; Kurtz, J.; Kuehster, T. Observed Spatial and Temporal Distributions of CVOCs at Colorado and New York Vapor Intrusion Sites. 29, 70–80.
- 453 (3) Holton, C.; Luo, H.; Dahlen, P.; Gorder, K.; Dettenmaier, E.; Johnson, P. C. Temporal 454 Variability of Indoor Air Concentrations under Natural Conditions in a House Overlying 455 a Dilute Chlorinated Solvent Groundwater Plume. 47, 13347–13354.
- 456 (4) Johnston, J. E.; Gibson, J. M. Spatiotemporal Variability of Tetrachloroethylene in
 Residential Indoor Air Due to Vapor Intrusion: A Longitudinal, Community-Based
 Study. 24, 564.
- 459 (5) Hosangadi, V.; Shaver, B.; Hartman, B.; Pound, M.; Kram, M. L.; Frescura, C. High-

Table 4: List of abbreviations

$A_{ m ck}$	Crack area
A_e	Air exchange rate
α , n , m , l	van Genuchten parameters
$lpha_{ m gw}$	Attenuation from groundwater contaminant vapor source
$c_{ m in}$	Indoor air contaminant concentration
c	Soil-gas contaminant concentration
c_w	Soil-water contaminant concentration
$c_{ m gw}$	Contaminant groundwater concentration
χ	Preferential pathway contaminant concentration scaling parameter
$D_{ m eff}$	Effective diffusion coefficient
$D_{ m air}$	Diffusion coefficient in air
D_{water}	Diffusion coefficient in water
$j_{ m ck}$	Contaminant molar flux through the foundation crack
κ_s	Saturated soil permeability
K_H	Dimensionless Henry's law constant
k_r	Relative permeability
$L_{ m slab}$	Thickness of the foundation slab
M	Molar mass
μ	Contaminant vapor viscosity
NAS	Naval Air Stations
p	Pressure in soil
$p_{ m in/out}$	Indoor/outdoor pressure difference
PP	Preferential pathway
ho	Density
Se	Soil water saturation
t	time
$ heta_g$	Vapor/gas filled porosity
$ heta_w$	Water filled porosity
$ heta_r$	Residual water filled porosity
$ heta_t$	Total porosity
$ec{u}$	Soil-gas velocity (vector quantity)
VI	Vapor intrusion
$V_{ m base}$	Basement volume
z	Elevation above groundwater

- Frequency Continuous Monitoring to Track Vapor Intrusion Resulting From Naturally
 Occurring Pressure Dynamics. 27, 9–25.
- (6) McHugh, T.; Loll, P.; Eklund, B. Recent Advances in Vapor Intrusion Site Investigations. 204, 783–792.

- 464 (7) U.S. Environmental Protection Agency, Assessment of Mitigation Systems on Vapor 465 Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes 466 under Mitigated And Non-Mitigated Conditions.
- 467 (8) Johnson, P. C.; Holton, C. W.; Guo, Y.; Dahlen, P.; Luo, E. H.; Gorder, K.; Detten468 maier, E.; Hinchee, R. E. Integrated Field-Scale, Lab-Scale, and Modeling Studies for
 469 Improving Our Ability to Assess the Groundwater to Indoor Air Pathway at Chlori470 nated Solvent-Impacted Groundwater Sites.
- 471 (9) Holton, C. W. Evaluation of Vapor Intrusion Pathway Assessment Through Long-Term
 472 Monitoring Studies.
- 473 (10) Guo, Y. Vapor Intrusion at a Site with an Alternative Pathway and a Fluctuating
 474 Groundwater Table.
- (11) Guo, Y.; Holton, C.; Luo, H.; Dahlen, P.; Gorder, K.; Dettenmaier, E.; Johnson, P. C.
 Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations. 49, 13472–13482.
- 478 (12) McHugh, T.; Beckley, L.; Sullivan, T.; Lutes, C.; Truesdale, R.; Uppencamp, R.;
 479 Cosky, B.; Zimmerman, J.; Schumacher, B. Evidence of a Sewer Vapor Transport Path480 way at the USEPA Vapor Intrusion Research Duplex. 598, 772–779.
- (13) Pennell, K. G.; Scammell, M. K.; McClean, M. D.; Ames, J.; Weldon, B.; Friguglietti, L.;
 Suuberg, E. M.; Shen, R.; Indeglia, P. A.; Heiger-Bernays, W. J. Sewer Gas: An Indoor
 Air Source of PCE to Consider During Vapor Intrusion Investigations. 33, 119–126.
- 484 (14) Roghani, M.; Jacobs, O. P.; Miller, A.; Willett, E. J.; Jacobs, J. A.; Viteri, C. R.;
 485 Shirazi, E.; Pennell, K. G. Occurrence of Chlorinated Volatile Organic Compounds
 486 (VOCs) in a Sanitary Sewer System: Implications for Assessing Vapor Intrusion Alter487 native Pathways. 616-617, 1149–1162.

- 488 (15) Riis, C. E.; Christensen, A. G.; Hansen, M. H.; Husum, H.; Terkelsen, M. Vapor Intru489 sion through Sewer Systems: Migration Pathways of Chlorinated Solvents from Ground490 water to Indoor Air. Seventh International Conference on Remediation of Chlorinated
 491 and Recalcitrant Compounds.
- 492 (16) Nielsen, K. B.; Hvidberg, B. Remediation Techniques for Mitigating Vapor Intrusion 493 from Sewer Systems to Indoor Air. 27, 67–73.
- 494 (17) Brenner, D. Results of a Long-Term Study of Vapor Intrusion at Four Large Buildings 495 at the NASA Ames Research Center. 60, 747–758.
- (18) McHugh, T. E.; Beckley, L.; Bailey, D.; Gorder, K.; Dettenmaier, E.; Rivera-Duarte, I.;
 Brock, S.; MacGregor, I. C. Evaluation of Vapor Intrusion Using Controlled Building
 Pressure. 46, 4792–4799.
- (19) Jones, E.; Oliphant, T.; Pearu Peterson, SciPy: Open Source Scientific Tools for Python.
- 501 (20) Shen, R.; Pennell, K. G.; Suuberg, E. M. Influence of Soil Moisture on Soil Gas Vapor

 502 Concentration for Vapor Intrusion. 30, 628–637.
- ⁵⁰³ (21) Yao, Y.; Wang, Y.; Zhong, Z.; Tang, M.; Suuberg, E. M. Investigating the Role of Soil

 Texture in Vapor Intrusion from Groundwater Sources. 46, 776–784.
- Yao, Y.; Mao, F.; Ma, S.; Yao, Y.; Suuberg, E. M.; Tang, X. Three-Dimensional Simulation of Land Drains as a Preferential Pathway for Vapor Intrusion into Buildings.

 46, 1424–1433.
- 508 (23) Richards, L. A. Capillary Conduction of Liquids through Porous Mediums. 1, 318–333.
- van Genuchten, M. T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. 44, 892–898.

- 511 (25) Millington, R. J.; Quirk, J. P. Permeability of Porous Solids. 57, 1200.
- Drainage Layer of Highway Pavement. 39, 654–666.
- 514 (27) Abreu, L. D. V.; Schuver, H. Conceptual Model Scenarios for the Vapor Intrusion
 515 Pathway.
- (28) U.S. Environmental Protection Agency, Users's Guide For Evaluating Subsurface Vapor
 Intrusion Into Buildings.
- 518 (29) U.S. EPA, Exposure Factors Handbook 2011 Edition.
- 519 (30) M. D. Koontz,; H. E. Rector, Estimation of Distributions for Residential Air Exchange 520 Rates.