DEFINICIONS (I)

- L'eficiència en la cerca d'un element en un arbre binari de cerca es mesura en termes de:
 - Nombre de comparacions
 - Alçària de l'arbre
- Arbre completament equilibrat: els elements de l'arbre han d'estar repartits en el mateix nombre entre el subarbre esquerre i el dret, de tal forma que la diferència en nombre de nodes entre els dos subarbres siga com a máxim 1
- Problema: el manteniment de l'arbre
- Arbres AVL: desenvolupats per Adelson-Velskii i Landis (1962). Els AVL són arbres equilibrats respecte a l'altura dels subarbres:

"Un arbre està equilibrat respecte a l'altura si i només si per a cada un dels nodes ocorre que les altures dels dos subarbres difereixen com a màxim en 1"

- Consequència 1. Un arbre buit està equilibrat respecte a l'altura
- Consequència 2. L'arbre equilibrat òptim serà aquell que compleix:

$$n = 2^h - 1$$
, on $n = nombre de nodes i h = altura$

Tema 3. El tipus arbre

3.2. Arbres AVL

DEFINICIONS (II)

- Si T es un arbre binari no buit amb TL i TR com a subarbres esquerre i dret respectivament, llavors T està equilibrat respecte a l'altura si i només si
 - TL i TR són equilibrats respecte a l'altura, i
 - | hl hr | ≤ 1 on hl i hr són les altures respectives de TL i TR
- El factor d'equilibri FE (T) d'un node T en un arbre binari es defineix com hr - hl. Per a qualsevol node T en un arbre AVL, es compleix FE (T) = -1, 0, 1

OPERACIONS BÀSIQUES. INSERCIÓ (I)

- Representació d'arbres AVL
 - Mantindre la informació sobre l'equilibri de forma implícita en l'estructura de l'arbre
 - Atribuir a cada node i emmagatzemar-hi el factor d'equilibri de forma explícita TNodoArb {

Titem fitem; TArbBin fiz, fde; int FE; }

- Inserció en arbres AVL. Casos:
 - Després de la inserció de l'ítem, els subarbres I i D igualaran les seues altures

3

Tema 3. El tipo árbol

3.2. Arbres AVL

OPERACIONS BÀSIQUES. INSERCIÓ (II)

 Després de la inserció, I i D tindran distinta altura, però sense vulnerar la condició d'equilibri

Si hI > hD i es fa inserció en I, o hI < hD i es fa inserció en D. Formes de rotació: II, ID, DI, DD

OPERACIONS BÀSIQUES. INSERCIÓ (III)

Tema 3. El tipo árbol

3.2. Arbres AVL

OPERACIONS BÀSIQUES. INSERCIÓ. EXEMPLE (IV)

Exemple. Inserir en el següent arbre els elements 5 i 12

* Cal tindre en compte que l'actualització del FE de cada node s'efectua des les fulles cap a l'arrel de l'arbre

OPERACIONS BÀSIQUES. INSERCIÓ. IMPLEMENTACIÓ (V)

```
ENTRADA/SALIDA I : Iterador; Crece: Integer; c : Item ;
ALGORITMO INSERTAR
                                                  VAR CreceIz, CreceDe: Integer; B: Arbol;
     ENTRADA/SALIDA
                                                  METODO
              A: AVL; c: Item
                                                  si EsVacioArbIt (I) entonces
     VAR I: Iterador; Crece: Integer;
                                                     B = Enraizar (c); Mover (I, B); Crece = TRUE;
     METODO
              I = Primer(A);
                                                     CreceHijo = CreceIz = CreceDe = FALSE;
              InsertarAux ( I, c, Crece );
                                                      si ( c < Obtener ( I ) ) entonces
     fMETODO
                                                         INSERTARAUX ( \mbox{HijoIzq} ( \mbox{I} ), c, \mbox{CreceIz} );
                                                         CreceHijo = CreceIz;
                                                      sino
                                                         si ( c > Obtener ( I ) ) entonces
                                                            INSERTARAUX (HijoDer (I), c, CreceDe);
                                                            CreceHijo = CreceDe;
                                                         fsi
                                                      si CreceHijo entonces
                                                         caso de:
                                                            1) ( CreceIz y FE ( I ) = 1 ) ó ( CreceDe y FE ( I ) = -1 ):
                                                      Crece = FALSE; FE(I) = 0;
                                                            2) CreceIz y FE (I) = 0: FE (I) = -1; Crece = TRUE;
                                                             3) CreceDe y FE ( I ) = 0 : FE ( I ) = 1 ; Crece = TRUE;
                                                             4) CreceIz y FE ( I ) = -1 : EquilibrarIzquierda ( I, Crece ) ;
                                                            5 ) CreceDe y FE ( I ) = 1 : EquilibrarDerecha ( I, Crece ) ;
                                                                       fcaso
                                                                       Crece=FALSE;
                                                     fsi
                                                  fMETODO
```

ALGORITMO INSERTARAUX

Tema 3. El tipo árbol

8

3.2. Arbres AVL

OPERACIONS BÀSIQUES. INSERCIÓ. IMPLEMENTACIÓ (VI)

```
ALGORITMO EQUILIBRARIZQUIERDA
    ENTRADA/SALIDA I : Iterador; Crece: Integer;
    VAR J, K: Iterador; int E2;
   METODO
                                                                                                                          \bigcircB FE = 0
                                                           //ROTACIÓN II
             si ( FE (HijoIzq (I ) = -1 entonces
                            Mover (J, HijoIzq (I));
                            Mover (HijoIzq (I), HijoDer (J));
                            Mover (HijoDer (J), I);
FE (J) = 0; FE (HijoDer (J)) = 0;
                            Mover (I,J);
                                                           //ROTACIÓN ID
                             Mover (J, HijoIzq (I));
                            Mover (K, HijoDer (J));
                            E2 = FE(K);
                            Mover (HijoIzq (I), HijoDer (K));
Mover (HijoDer (J), HijoIzq (K));
                            Mover (HijoIzq (K), J);
                            Mover (HijoDer (K), I);
                            FE(K) = 0;
                            caso de E2
                                -1: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 1;
                                +1: FE (HijoIzq (K)) = -1; FE (HijoDer (K)) = 0;
                                0: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 0;
                            Mover (I, K);
             Crece = FALSE:
    fMETODO
```

EXERCICIS inserció

- 1) Construïu un arbre AVL format pels nodes inserits en el següent ordre amb etiquetes 4, 5, 7, 2, 1, 3, 6
- 2) Inseriu les mateixes etiquetes amb el següent ordre: 1, 2, 3, 4, 5, 6, 7

9

Tema 3. El tipo áxbol

3.2. Arbres AVL

OPERACIONS BÁSIQUES. ESBORRAT (I)

- Esborrat en arbres AVL. Casos:
 - Esborrar l'ítem ens portará en l'arbre a un FE = 0, no serà necessari reequilibrar

 Esborrar l'ítem ens portará en l'arbre a un FE = ±1; en aquest cas tampoc serà necessari reequilibrar

OPERACIONS BÀSIQUES. ESBORRAT (II)

- Rotacions simples
 - ROTACIÓ DD (+2,0)

(+2,+1) L'altura de l'arbre decreix

12

Tema 3. El tipo árbol

3.2. Arbres AVL

OPERACIONS BÀSIQUES. ESBORRAT (III)

- **■** Rotacions simples
 - ROTACIÓ II (-2,0)

(-2,-1) L'altura de l'arbre decreix

OPERACIONS BÀSIQUES. ESBORRAT (IV)

■ Rotacions dobles

n ROTACIÓ DI (+2,-1) L'altura de l'arbre decreix

ROTACIÓ ID

 (-2,+1)

 L'altura de l'arbre decreix

14

Tema 3. El tipo árbol

3.2. Arbres AVL

OPERACIONS BÀSIQUES. INSERCIÓ I ESBORRAT

Estudi de les complexitats d'ambdós algoritmes

L'anàlisi matemàtica de l'algorisme d'inserció és un problema encara no resolt. Els assatjos empírics donen suport la conjectura que l'altura esperada per a l'arbre AVL de *n* nodes és

$$h = log2(n) + c$$
 / c és una constant xicoteta

- Aquests arbres han d'utilitzar-se només si les recuperacions d'informació (cerques) són considerablement més freqüents que les insercions → a causa de la complexitat de les operac. d'equilibratge
- Es pot esborrar un element en un arbre equilibrat amb $\log(n)$ operacions (en el cas més desfavorable)

Diferències operacionals d'esborrat i inserció:

- En fer una inserció d'una sola clau es pot produir com a màxim una rotació (de dos o tres nodes)
- L'esborrat pot requerir una rotació en tots els nodes del camí de cerca
- Les anàlisis empíriques donen com a resultat que, mentre es presenta una rotació per cada dos insercions,
- només se'n necessita una per cada cinc esborrats. L'esborrat en arbres equilibrats és, doncs, tan senzill (o tan complicat) com la inserció

EXERCICIS esborrat

Donat el següent arbre AVL d'entrada, feu-hi els esborrats següents mateix: 4, 8, 6, 5, 2, 1, 7. (Nota: en esborrar un node amb 2 fills, substituïu pel major de l'esquerra)

Tema 3. El tipo árbol

3.2. Arbres AVL

EXERCICIS esborrat

2) Donat el següent arbre AVL d'entrada, feu-hi els esborrats següents: 55, 32, 40, 30. (Nota: en esborrar un node amb 2 fills, substituïu pel major de l'esquerra)

Preguntes de tipus test: Vertader vs. Fals

- Els arbres AVL són aquells on el nombre d'elements en els subarbres esquere i dret difereixen com a molt en 1
- Quan es fa un esborrat en un arbre AVL, en el camí de tornada arrere per actualitzar els factors d'equilibri, com a molt només es fa una rotació
- El següent arbre està equilibrat respecte a l'altura

