FRANK JONES INTEGRATION THEORY SOLUTIONS

JAEMIN OH

Date: June 8, 2020.

1

16 JAEMIN OH

section F. Some Calculations.

Problem 31.

 $\overline{\mu}(A) = 0$ implies existence of $B, C \in \mathcal{M}$ such that $B \subset A \subset C$ and $\mu(B) = \mu(C) = 0$. So $\emptyset \subset E \subset C$, $\emptyset, C \in \mathcal{M}$ and $\mu(C) = 0$. By definition of $\overline{\mathcal{M}}$, $E \in \overline{\mathcal{M}}$ and $\overline{\mu}(E) = \mu(C) = 0$.

Problem 32.

Let $B \in \overline{\mathcal{M}}$. Then there are $A, C \in \mathcal{M}$ such that $A \subset B \subset C$, $\mu(C \setminus A) = 0$. Let $N = B \setminus A \subset C \setminus A$ which is μ -null set. Then $B = A \cup N$. So every elements in $\overline{\mathcal{M}}$ can be expressed as the form of $A \cup N$ such that $A \in \mathcal{M}$ and N is subset of μ -null set.

On the contrary, consider $A \cup N$, $A \in \mathcal{M}$ and N is subset of N' which is μ -null set. Then $A \subset A \cup N \subset A \cup N'$ with $\mu(A \cup N' \setminus A) = 0$, $A, A \cup N' \in \mathcal{M}$. So $A \cup N \in \overline{\mathcal{M}}$.

Problem 33.

Let \mathcal{A} be an union of \mathcal{M} and collection of subsets of μ -null sets. By problem 32, $\overline{\mathcal{M}} \subset \sigma(\mathcal{A})$. But $\mathcal{A} \subset \overline{\mathcal{M}}$ because $\overline{\mathcal{M}}$ is complete and containing \mathcal{M} . Therefore $\sigma(\mathcal{A}) = \overline{\mathcal{M}}$.

Problem 36.

 $\{f > \frac{1}{k}\}$ must be finite since $\sum_{x \in X} f(x) < \infty$. Therefore $\bigcup \{f > \frac{1}{k}\} = \{f > 0\}$ is countable.

Problem 37.

Let F be finite subset of \mathbb{N} . Then $\sum_{x \in F} f(x) \leq \sum_{k=1}^{F_{\text{max}}} f(k)$. Therefore $\sum_{x \in F} f(x) \leq \lim_{n \to \infty} \sum_{k=1}^{n} f(k)$. Conversely, $\sum_{k=1}^{n} f(k) \leq \sum_{x \in F} f(x) \leq \sum_{x \in \mathbb{N}} f(x)$ for each n.

Proposition says when counting measure and nonnegative measurable function is given, $\int_X f d\mu = \sum_{x \in X} f(x)$.

Problem 38.

First assume $f \in L^1$. Then |f| is nonnegative function. So $\int_X |f| \, d\mu = \sum_{x \in X} |f(x)| < \infty$ by proposition above.

Conversely, $\sum_{x \in X} |f(x)| = \int_X |f| d\mu < \infty$. Therefore $\int_X f^{\pm} d\mu \leq \int_X |f| d\mu < \infty$. So $f \in L^1$.

section G. Miscellany.

Problem 43.

Define $\varphi(E) = \int_E f d\mu$. Then $\varphi(\emptyset) = 0$ and φ is countably additive. Let $P_n = \left\{ x \in X : f(x) \ge \frac{1}{n} \right\}$. Then P_n is measurable hence $\varphi(P_n) = 0$ for all n. $\varphi(P_n) = \int_{P_n} f d\mu \ge \frac{1}{n} \int_{P_n} f d\mu = \frac{1}{n} \mu(P_n)$. Hence $\mu(P_n) = 0$ for all n. Therefore $\mu\left(\left\{x \in X : f(x) > 0\right\}\right) = \mu\left(\bigcup_{n=1}^{\infty} P_n\right) = 0.$

Similarly, we can deduce that $\mu(\{x \in X : f(x) < 0\}) = 0$. Therefore f = 0 a.e.

Problem 44.

Define $\varphi(E) = \int_E f d\lambda$ for $E \in \mathcal{L}$. Such φ has same property as in problem 43. Note that $\varphi(\lbrace x \rbrace) = 0$ for each $x \in \mathbb{R}$ since one-point set is null set.

Every open set $G \subset \mathbb{R}$ can be expressed as nonoverlapping union of special rectangles. So $\varphi(G) = \sum_{k=1}^{\infty} \varphi([a_k, b_k])$ where $G = \bigcup_{k=1}^{\infty} [a_k, b_k]$.

Also, \mathbb{R} is open. Therefore $\varphi(F) = \varphi(\mathbb{R} - G)$ for all closed set $F \subset \mathbb{R}$. Then $\varphi(F_{\sigma}) = 0$. All Lebesgue measurable set E can be expressed as $F_{\sigma} \cup N$ where N is a null set.

Therefore $\varphi(E) = 0$ for all $E \in \mathcal{L}$. By previous problem, we get f = 0 λ -a.e.

Problem 45.

Define $\nu(A) = \lambda \, (A \cap [-1,1])$. Then $\int_{[a,b]} 1_E - \frac{1}{2} d\nu = 0$ for all $-\infty < a < b < \infty$. Note that $\int_{\mathbb{R}} \left| 1_E - \frac{1}{2} \right| d\nu = \frac{1}{2} \lambda \, ([-1,1]) < \infty$ So $1_E - \frac{1}{2} \in L^1 \, (\nu)$. Every open set $G \subset \mathbb{R}$ can be expressed as countably many nonoverlapping spectrum of L and L so that L is a spectrum of L and L is a spectrum of L in L is a spectrum of L and L is a spectrum of L in L

cial rectangle $[a_k, b_k]$. Therefore $\int_G \left(1_E - \frac{1}{2}\right) d\nu = 0$. Therefore $\int_F \left(1_E - \frac{1}{2}\right) d\nu = 0$ for all closed $F \subset \mathbb{R}$. And it implies $\int_{F_{\sigma}} \left(1_E - \frac{1}{2}\right) d\nu = 0$. Every $A \in \mathcal{L}$ can be expressed as $F_{\sigma} \cup N$ where N is μ -null set. Therefore

 $\int_A \left(1_E - \frac{1}{2}\right) d\nu = 0$ for all $A \in \mathcal{L}$. By problem 43, $1_E = \frac{1}{2} \nu$ -a.e.

But $x: 1_E \neq \frac{1}{2} = \mathbb{R}$ and $\nu(\mathbb{R}) = \mu([-1,1]) > 0$ which is contradiction. Therefore, there is no such E.