Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.3.1

по курсу общей физики на тему:

«Измерение удельного заряда электрона методом магнитной фокусировки и магнетрона»

Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет определено отношение заряда электрона к его массе методом фокусировки и методом магнетрона.

2 Теоретические сведения

На заряд q, движущийся со скоростью v в магнитном поле B действует сила Лоренца:

 $\vec{F} = q\vec{v} \times \vec{B}$

Изначальную скорость движения электрона можно найти, зная разность потенциалов V, пройденную электронном:

$$\frac{mv^2}{2} = eV$$

Электрон движется в магнитном поле под некоторым углом α к вектору магнитной индукции. Разложим скорость на две составляющие:

$$v_{\perp} = v \sin \alpha, \quad v_{\parallel} = v \cos \alpha$$

Сила F является центростремительной силой, поэтому:

$$m\frac{v_{\perp}^2}{R} = ev_{\perp}B$$

В направлении поля B на электрон не действуют никакие силы, следовательно в этом направлении электрон движется равномерно со скоростью v_{\parallel} . Траектория электрона представляет собой винтовую линию. Следовательно, время одного оборота $T_{\rm c}$ (циклотронный периода) равно $T=2\pi R/v_{\perp}$. Выражая R и v_{\perp} из предыдущих формул получаем:

$$T_{\rm c} = \frac{2\pi m}{eB}$$

За это время электрон проходит вдоль магнитного поля расстояние

$$L = v_{\parallel} T_{\rm c} = \frac{2\pi v \cos \alpha}{(e/m)B}$$

Когда углы невелики формулу можно записать в виде:

$$L \approx \frac{2\pi \upsilon}{(e/m)B}$$

Таким образом, расстояние L не зависит от угла α (для малых углов),так что все электроны, вышедшие из одной точки, после одного оборота вновь соберутся в точке в одной точке (сфокусируются). Обозначим через B_{Φ} индукцию магнитного поля, при котором наступает фокусировка. Исходя из предыдущих формул получим:

$$\frac{e}{m} = \frac{8\pi^2 V}{L^2 B_{\Phi}^2} \tag{1}$$

Оборудование

Метод магнитной фокусировки

В этом методе удельный заряд электрона вычисляется по формуле:

$$\frac{e}{m} = \frac{8\pi^2 V}{l^2} \left(\frac{n^2}{B_{\Phi}^2}\right) \tag{2}$$

где V — ускоряющий потенциал в электронной трубке, l — путь электрона, B_{Φ} — фокусирующие поле, n — номер фокуса.

Метод магнетрона

В этом методе заряд электрона определяется по формуле:

$$\frac{e}{m} = \frac{8V_{\rm a}}{B_{\rm \kappa p}^2 r_{\rm a}^2} \tag{3}$$

где $V_{\rm a}$ – анодное напряжение, $B_{\rm \kappa p}$ – критическое поле (Рис. 1), $r_{\rm a}$ – радиус анода.

Рис. 1. Зависимость анодного тока от индукции магнитного поля в соленоиде

3 Оборудование

Метод магнитной фокусировки

Рис. 2. Схема установки для измерений e/m методом магнитной фокусировки

В работе используется: электронно-лучевая трубка и блок питания к ней; источник постоянного тока; соленоид; электростатический вольтметр; милливеберметр; ключи.

Экспериментальная установка

Основной частью установки является электронный осциллограф С1-1, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями. Пропустив пучок сквозь две узких диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью v_{\parallel} . Небольшое переменное напряжение, поступающее с клеммы «Контрольный сигнал» осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. Угол α отклонения пучка от оси трубки, таким образом, зависит от времени, и электроны прочерчивают на экране трубки светящуюся линию. При увеличении магнитного поля линия на экране сокращается,

3 Оборудование

постепенно стягиваясь в точку, а затем снова удлиняется. Второе прохождение через фокус происходит в том случае, когда электроны на пути от катода к экрану описывают два витка спирали, третье — при трёх витках.

Анодное напряжение, определяющее продольную скорость электронов, измеряется электростатическим киловольтметром.

Магнитное поле в соленоиде создаётся постоянным током (Рис. 2), сила которого регулируется ручками источника питания и измеряется амперметром А источника. Ключ К служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра (mWb на Рис. 2). Этот прибор измеряет изменение магнитного потока, пронизывающего измерительную (пробную) катушку, которая намотана на один каркас с соленои-дом.

Метод магнетрона

В работе используются: электронная лампа е цилиндрическим анодом; соленоид; источники питания лампы и соленоида; вольтметр постоянного тока; миллиамперметр, амперметр.

Экспериментальная установка

Схема установки приведена на Рис. 3. Двухэлектродная лампа Л с цилиндрическим анодом специально изготовлена из немагнитных материалов. Анод лампы состоит из трёх металлических (нержавеющая сталь) цилиндров одинакового диаметра.

Два крайних цилиндра электрически изолированы от среднего небольшими зазорами и используются для устранения краевых эффектов на торцах среднего цилиндра, ток с которого используется при измерениях. В качестве катода используется тонкая (диаметром 50 мкм) хорошо натянутая вольфрамовая проволока, расположенная по оси всех трёх цилиндров анодной системы. Катод лампы разогрева-

Рис. 3. Схема установки для измерений e/m методом магнетрона

ется переменным током, отбираемым от стабилизированного источника питания. С этого же источника на анод лампы подаётся постоянное напряжение $V_{\rm a}$ (0-120 В), регулируемое с помощью потенциометра и измеряемое вольтметром V.

Лампа закреплена в соленоиде. Магнитное поле в соленоиде создаётся постоянным током (Рис. 3), сила которого регулируется ручками источника питания и измеряется амперметром A

Индукция магнитного поля в соленоиде рассчитывается по току $I_{\scriptscriptstyle \rm M}$, протекающему через обмотку соленоида.

4 Результаты измерений и обработка результатов

Метод магнитной фокусировки

Ускоряющее напряжение V:

$$V = 0.94 \pm 0.02 \text{ kB}$$

Путь электрона l:

$$l = 26, 5 \pm 0, 1 \text{ cm}$$

Площадь поперечного сечения, умноженная на число витков SN:

$$SN = 3000 \pm 100 \text{ cm}^2$$

Откалибруем милливеберметр. Φ_1 – начальное положение стрелки. Φ_2 – положение стрелки, после размыкания ключа, когда в системе был ток I. Вычислим магнитную индукцию при фокусировке B_{Φ} по формуле $B_{\Phi} = |\Phi_1 - \Phi_2|/SN$

Направление движения	Φ_1 , мВб	Φ_2 , мВб	I, A	B_{Φ} , м ${ m T}{ m J}$
тока				
	4	3,2	0,59	2,67
В одну сторону	4	2,4	1,19	5,33
	4	1,6	1,78	8,00
	5	1,7	2,4	11,00
	6	1,9	2,98	13,67
	5	5,7	0,6	2,33
В другую	5	6,6	1,2	5,33
	5	7,3	1,77	7,67
	4	7,2	2,37	10,67
	3	6,9	2,92	13,00

Таблица 1. Калиброка миливеберметра

Снимем зависимость I_{Φ} от номера фокуса n:

	3 одну горону	В другую			
n	I_{Φ}	n	I_{Φ}		
1	0,59	1	0,6		
2	1,2	2	1,19		
3	1,79	3	1,78		
4	2,4	4	2,36		
5	2,99	5	2,91		

Таблица 2. Зависимость I_{Φ} от номера фокуса n

Построим график зависимости B_{Φ} от тока I.

Рис. 4. График зависимости B_{Φ} от тока I

Усредняя значение I_{Φ} и высчитывая значение B_{Φ} по Рис. 4 построим график зависимости B_{Φ} от номера фокуса n:

Рис. 5. График зависимости B_{Φ} от номера фокуса n

По графику на Рис. 5 и по формуле (2) находим удельный заряд электрона.

$$\left| \frac{e}{m} \right| = (1,92 \pm 0,05) \cdot 10^{11} \ \mathrm{K}$$
л/кг

Метод магнетрона

Радиус анода:

$$r_{\rm a} = 12 \pm 1 \; {\rm mm}$$

Коэффициент пропорциональности между вектором магнитной индукции B и током через соленоид $I_{\scriptscriptstyle \rm M}$:

$$K = (2, 8 \pm 0, 1) \cdot 10^{-2} \text{ Tm/A}$$

Снимем зависимость анодного тока $I_{\rm a}$ от тока $I_{\rm m}$ через соленоид при постоянной разности потенциалов на аноде лампы $V_{\rm a}$. B считаем по формуле $B=KI_{\rm m}$

	1					1	1				
$I_{\mathrm{a}},$	$I_{\scriptscriptstyle \mathrm{M}},$	B,									
мкА	мА	мкТл									
V_{\cdot}	$f_{\rm a} = 70$) B	V_i	a = 80	В	V	$f_{a} = 90$) B	$V_{\rm a}$	= 110	0 B
392	12	336	404	64	1792	408	108	3024	412	124	3472
416	44	1232	408	88	2464	360	136	3808	380	144	4032
400	60	1680	396	100	2800	328	152	4256	344	180	5040
384	80	2240	392	104	2912	312	160	4480	320	192	5376
376	96	2688	368	112	3136	296	172	4816	280	204	5712
344	108	3024	352	120	3360	256	184	5152	256	212	5936
332	124	3472	344	124	3472	212	188	5264	180	220	6160
300	136	3808	352	128	3584	208	192	5376	104	228	6384
276	148	4144	344	136	3808	168	196	5488	48	240	6720
252	156	4368	332	140	3920	120	200	5600	24	252	7056
236	160	4480	316	144	4032	48	208	5824			
212	164	4592	304	148	4144	24	220	6160			
168	168	4704	300	152	4256	$V_{\rm a}$	= 10	0 B			
124	172	4816	292	156	4368	420	96	2688			
96	176	4928	284	160	4480	408	116	3248			
56	184	5152	272	164	4592	368	140	3920			
24	192	5376	260	168	4704	344	160	4480			
20	200	5600	240	172	4816	300	180	5040			
12	216	6048	216	176	4928	280	188	5264			
I/	$f_{a} = 80$) B	152	184	5152	256	196	5488			
<i>V</i>	a — 00	, Б	180	180	5040	224	200	5600			
404	12	336	112	188	5264	164	208	5824			
404	24	672	40	196	5488	100	216	6048			
404	32	896	24	208	5824	72	220	6160			
408	40	1120	4	240	6720	28	236	6608			

Таблица 3. Зависимость анодного тока $I_{\rm a}$ от тока $I_{\rm m}$ через соленоид при постоянной разности потенциалов на аноде лампы $V_{\rm a}$

Погрешность измерения анодного тока $I_{\rm a}$ и тока $I_{\rm m}$ через соленоид примем равной цене деления измеряющего эти величины прибора:

$$\Delta I_{\mathrm{a}} = 4 \mathrm{\ MKA}$$
 $\Delta I_{\mathrm{m}} = 4 \mathrm{\ MA}$

По результатам в Таблице 3 построим график зависимости $I_{\rm a}$ от $B.~B_{\rm kp}$ определим, усредняя значения B при максимальных перепадах $I_{\rm a}$ при малых изменениях B.

Рис. 6. График зависимости $I_{\rm a}$ от индукции магнитного поля в соленоиде B

По графику на Рис. 6 составим таблицу зависимости $B_{\rm kp}^2$ от $V_{\rm a}$

$B_{\rm \kappa p}^2, \ {\rm T}{\rm \pi} \cdot 10^{-6}$	$\Delta B_{\mathrm{\kappa p}}^2$, $\mathrm{T\pi} \cdot 10^{-6}$	$V_{\rm a},~{ m B}$	$\Delta V_{\rm a},~{ m B}$
22,37	2,37	70	1,4
24,98	2,50	80	1,6
28,73	2,68	90	1,8
31,72	2,82	100	2,0
34,81	2,95	110	2,2

Таблица 4. Зависимость квадрата критического значения магнитной индукции магнитного поля в соленоиде $B_{\rm kp}$ от потенциала на аноде лампы $V_{\rm a}$

По результата в Таблице 4 построим график зависимости квадрата критического значения магнитной индукции $B_{\rm kp}$ от потенциала на аноде лампы $V_{\rm a}$

Рис. 7. График зависимости квадрата критического значения магнитной индукции $B_{
m kp}$ от потенциала на аноде лампы $V_{
m a}$

Использую формулу (3) вычислим удельный заряд электрона:

$$\left| \frac{e}{m} \right| = (1, 8 \pm 0, 2) \cdot 10^{11} \text{ Kл/кг}$$

5 Обсуждение результатов и выводы

В работе был определен удельный заряд электрона методом магнитной фокусировки и методом магнетрона.

Метод магнитной фокусировки:

$$\left| rac{e}{m}
ight| = (1,92 \pm 0,05) \cdot 10^{11} \ \mathrm{K}$$
л/кг $(\varepsilon = 3\%)$

Метод магнетрона:

$$\left| \frac{e}{m} \right| = (1, 8 \pm 0, 2) \cdot 10^{11} \text{ K/kg} \quad (\varepsilon = 11\%)$$

Табличное значение:

$$\left|\frac{e}{m}\right| = 1,76 \cdot 10^{11} \text{ K} \text{л/к} \text{г}$$

Результат, полученный методом магнитной фокусировки, получился несколько завышен. Это может быть связано с влиянием магнитов, находящихся не далеко от установки, на показания миливеберметра.