Project #1: Undoing the Chain Rule Pre-Work

PW 1 Recall that the circle of radius 2 centered at (1,3) is described in the plane by the equation $(x-1)^2 + (y-3)^2 = 4$.

- (a) This equation does **not** define a function. Why?
- (b) However, the equation for a circle can be used to define several functions *implicitly*. What do you think this means?
- (c) Use the chain rule to find the slope of a tangent line at a fixed point (x_0, y_0) of the graph of one of these implicit functions.

PW 2 The graph of the equation $y^2 = x^3 - x$ is a famous elliptic curve related to the proof of Fermat's Last Theorem¹.

- (a) Give a formula for the slope of a tangent line to any point (x_0, y_0) of this curve. Where are the tangents vertical?
- (b) Suppose a function f(x) is implicitly defined by the curve $y^2 = x^3 x$. What differential equation does f(x) satisfy?
- (c) Sketch the slope-field for the differential equation in (b). Plot the elliptic curve $y^2 = x^3 x$ on the same plane. You can use the grid on the back of this page for your slope field.
- (d) Does the differential equation you came up with in part (b) have any solutions that aren't defined implicitly by the curve $y^2 = x^3 x$? If so, sketch one of these solutions on your slope-field. If not, explain.

 $^{^{1}}$ see http://en.wikipedia.org/wiki/Fermat

Use the dot grid below to sketch your slope field for PW 2 (c). Sketch a dash at each (x, y) gridpoint whose slope matches the value of y' for the corresponding values of (x, y).

You may find it helpful to make a table of x, y and y' values and take advantage of any symmetry you notice.

