Analysis of Natural Selection

Michael G. Campana

Overview

- Many methods of inferring selection from genomic data
- All require additional verification/experiments to ensure selective effects

Overview

- Purifying Selection using ROH
- Prediction of SNP effects on genes
- GWAS

- Purifying selection causes runs-ofhomozygosity (ROH) around selected gene
- Length of ROH inversely proportional to time since selective event
- Subsequent recombination reduces ROH length
- ROH algorithms vary greatly in terms of models, output, sensitivity, etc.

Interpreting ROH

- ROH identifies regions under selection, not genes selected nor cause/direction of selection
- Needs further investigation to link ROH to selection
- Inbreeding also causes ROH
- ROH need to be defined for target species due to variation in effective pop sizes, heterozygosity, etc.

So how do we narrow the gene list?

Variant Effect Prediction

- Some variants are more likely to be functional than others
- E.g. variants in introns are less likely to have an effect
- Non-synonymous substitutions/nonsense substitutions more likely to have functional significance than synonymous substitutions

N/S ratio

- Ratio of non-synonymous to synonymous substitutions
- Genes under positive selection >1
- Most genes <1 since most nonsynonymous subs are deleterious (purifying selection)
- HOWEVER interpreting significant deviations dependent on background N/S ratio

dN/dS

- Non-synonymous substitution per nonsynonymous site/synonymous substitution per synonymous site
- Interpretation same as N/S
- dN/dS accounts for codon redundancy (BETTER)

Standard genetic code

1st	2nd base								3rd
base		Т		С		Α		G	
Т	TTT	(Phe/F) Phenylalanine	TCT	(Ser/S) Serine	TAT	(Tyr/Y) Tyrosine	TGT	(Cys/C) Cysteine	Т
	TTC		TCC		TAC		TGC	(Oys/O) Oystellie	С
	TTA	(Leu/L) Leucine	TCA		TAA	Stop (Ochre) [B]	TGA	Stop (Opal) [B]	Α
	TTG		TCG		TAG	Stop (Amber) [B]	TGG	(Trp/W) Tryptophan	G
С	CTT		CCT	(Pro/P) Proline	CAT	(His/H) Histidine	CGT	(Arg/R) Arginine	Т
	CTC		CCC		CAC		CGC		С
	CTA		CCA		CAA	(Gln/Q) Glutamine	CGA		Α
	CTG		CCG		CAG		CGG		G
Α	ATT	(Ile/I) Isoleucine	ACT	(Thr/T) Threonine	AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	Т
	ATC		ACC		AAC		AGC		С
	ATA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	Α
	ATG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G
G	GTT	(Val/V) Valine	GCT	(Ala/A) Alanine	GAT	(Asp/D) Aspartic acid	GGT	(Gly/G) Glycine	Т
	GTC		GCC		GAC		GGC		С
	GTA		GCA		GAA	(Glu/E) Glutamic acid	GGA		Α
	GTG		GCG		GAG		GGG		G

Codon

- Each base in codon can mutate 3 ways (9 total possibilities)
- Not all amino acids have same ratios of nonsynonymous possibilities

Example

- Substitution of TGG → TGA (Trp → Stop)
- N = 1, nonsyn subs for Trp: 9

- Substitution of AGA → AGC (Arg → Ser)
- N = 1, nonsyn subs for Arg: 7

Sites calculation

 Sum of sequence length multiplied by nonsyn/syn proportion at each site

- TGG-AGA (Trp-Arg)
- nonsyn sites = 3 * (9/9) + 3 * (7/9) = 5.333
- syn sites = 3 * (0/9) + 3 * (2/9) = 0.667

Example

- TGG-AGA-AGA → TGA-AGC-AGG
- N = 1, S = 1
- N/S = 1
- nonsyn sites = 7.667
- syn sites = 1.333
- dN = 1/7.667
- dS = 1/1.333
- dN/dS = 0.174

Caveat

- Simple count estimates of N/S and dN/dS are underestimates
- Back mutations and multiple mutations at a site not counted
- More complex algorithms use ML to estimate these rates to improve accuracy

SnpEff

- Software that models the effects of variants in a VCF by comparison against annotations in a GFF file
- Genes with splice site mutations, nonsense, missense mutations more likely to be under selection

Functional Modelling

- Missense/nonsense mutations/etc are not necessarily selected
- Protein folding algorithms can predict whether mutations have selective effects
- Only functional/transgenic experiments can truly verify function of these mutations

SnpSift

- Extracts genes with classes of mutations from SnpEff models
- I.e. can look for all genes with nonsense mutations

Pathway Annotation

- Known gene functions are categorized using Gene Ontology (GO) terms
- Various other databases (Kyoto Encylopedia of Gene and Genomes [KEGG], PANTHER)
- Pathway selection can be determined by finding statistically overly frequent GO terms in a likely-selected gene list (e.g. DAVID)

GWAS

- Genome Wide Association Study
- Capitalizes on Linkage Disequilibrium
- Dense of panel of known SNPs equally spaced across genome
- Genes under selection will be in disequilibrium with SNPs that are physically close

GWAS

- Experiment is divided into (large) sets of cases and controls
- F_{ST} and statistical association between allele frequencies and trait calculated for each SNP
- Very large number of tests requires stringent correction for multiple testing (e.g. Bonferroni correction)
- Individuals need to be corrected for background kinship

GWAS

- Only gives REGION of selection
- Region needs to be investigated using other methods (gene annotations, functional experiments)
- Many GWAS experiments find only ambiguous linkages to certain traits, especially traits with large numbers of additive small-effects