Activity No. <1.2>		
Hands-on Activity 1.2 Basic C++ Programming		
Course Code: CPE010	Program: Computer Engineering	
Course Title: Data Structures and Algorithms	Date Performed: 09/09/2024	
Section: CPE21S4	Date Submitted:09/11/2024	
Name(s): Danica T. Guariño	Instructor: Maria Rizette Sayo	
0.0 ()		

6. Output

Section	Answer
Header File Declaration Section	#include <iostream></iostream>
Global Declaration Section	int count = 0;
Class Declaration and Method Definition Section	class Triangle { private: double totalAngle, angleA, angleB, angleC; public: // Step 3: Constructor and methods Triangle(double A, double B, double C); void setAngles(double A, double B, double C); const bool validateTriangle(); }; Triangle::Triangle(double A, double B, double C) { angleA = A; angleB = B; angleC = C; totalAngle = A + B + C; } void Triangle::setAngles(double A, double B, double C) { angleB = B; angleC = C; totalAngle = A + B + C; } const bool Triangle::validateTriangle() { return (totalAngle == 180); }
Main Function	int main() { // Driver code

```
Triangle set1(40, 30, 110);
                                                               if (set1.validateTriangle()) {
                                                                  std::cout << "The shape is a valid triangle.\n";
                                                               } else {
                                                                 std::cout << "The shape is NOT a valid triangle.\n";
                                                               return 0;
Method Definition
                                                             Triangle::Triangle(double A, double B, double C) {
                                                               angleA = A;
                                                               angleB = B;
                                                               angleC = C;
                                                               totalAngle = A + B + C;
                                                             void Triangle::setAngles(double A, double B, double C) {
                                                               angleA = A;
                                                               angleB = B;
                                                               angleC = C;
                                                               totalAngle = A + B + C;
                                                            const bool Triangle::validateTriangle() {
                                                               return (totalAngle == 180);
                                                            }
```

7. Supplementary Activity

1. Create a C++ program to swap the two numbers in different variables.

2. Create a C++ program that has a function to convert temperature in Kelvin to Fahrenheit.

3. Create a C++ program that has a function that will calculate the distance between two points.

- 4. Modify the code given in ILO B and add the following functions:
 - a. A function to compute for the area of a triangle
 - b. A function to compute for the perimeter of a triangle
 - c. A function that determines whether the triangle is acute-angled, obtuse-angled or 'others.'

```
main.cpp × +
                                                                                                          main.cpp > ...
         double computePerimeter(double sideA, double sideB, double sideC) {
                                                                                                                    Triangle 1 is valid: 1
Triangle 2 is valid: 1
Triangle 1 Area: 10.8253
Triangle 1 Perimeter: 15
Triangle 1 Type: Acute-angled
             return sideA + sideB + sideC;
         std::string determineTriangleType() {
                  return "Acute-angled";
             } else if (angleA > 90 || angleB > 90 || angleC > 90) {
              } else if (angleA == 90 || angleB == 90 || angleC == 90) {
        Triangle triangle1(60, 60, 60);
         Triangle triangle2(90, 45, 45);
         std::cout << "Triangle 1 is valid: " << triangle1.validateTriangle() << std::endl;</pre>
         std::cout << "Triangle 2 is valid: " << triangle2.validateTriangle() << std::endl;
         double sideA = 5, sideB = 5, sideC = 5;
        std::cout << "Triangle 1 Area: " << triangle1.computeArea(sideA, sideB, sideC) << std::endl;</pre>
         std::cout << "Triangle 1 Perimeter: " << triangle1.computePerimeter(sideA, sideB, sideC) <<
     std::endl;
         std::cout << "Triangle 1 Type: " << triangle1.determineTriangleType() << std::endl;</pre>
          return 0;
```

8. Conclusion

Overall, this C++ activity was quite informative. I utilized C++ to demonstrate its applicability in various scenarios, including converting Kelvin to Fahrenheit, swapping two variables, and calculating the distance between two points. These exercises helped me understand more of C++'s practical applications and how to use its variables efficiently. Furthermore, the structured exercises strengthened my understanding of key programming topics such as object-oriented programming. This practice not only reinforced my theoretical understanding but also helped me improve my practical skills. While I excelled at learning and implementing complicated topics, I recognized the need to enhance my code optimization and debugging abilities. Continuous practice and additional research will be crucial in overcoming these issues and improving my C++ skills.

9. Assessment Rubric