11-442 / 11-642: Search Engines

Evaluating Search Effectiveness

Jamie Callan
Carnegie Mellon University
callan@cs.cmu.edu

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

© 2017, Jamie 6

The Cranfield Methodology: Creating Test Collections

Two methods of creating test collections are common

- 1. Developed by a community (e.g., a research community)
 - Usually designed to be useful for a long time ("reusable")
 - Must accommodate today's system(s) and future systems
 - Higher effort, higher expense
- 2. Developed by an organization (e.g., a company)
 - Usually designed to address specific needs
 - Usually lower effort, lower expense
 - Usually a short lifespan

3

© 2017, Jamie Calla

Cranfield@TREC

The U.S. National Institute of Standard and Technologies (NIST) supports scientific and commercial progress by defining state-of-the-art measurement capabilities

In 1992, NIST began providing resources for large-scale evaluation of text retrieval

- Annual production of tasks and test collections
- The Text REtrieval Conference (TREC)
 - An annual forum for comparison of methods and results
- Most TREC evaluation is based on the Cranfield methodology

4

Cranfield@TREC

Each year, TREC defines a set of tasks ("tracks")

TREC 2015 tracks

- Clinical decision support: Link cases to relevant information
- Contextual suggestions: Suggest activities based on context
- Dynamic domain: Dynamic information needs
- Live QA: Answer questions from a live question stream
- Microblog: Search and filtering of Twitter data
- Tasks: Figure out the task a person is trying to accomplish
- Temporal summarization: Monitor an event over time
- Total recall: High recall with a human in the loop

© 2017. Jamie Calla

Cranfield@TREC: Creating Test Collections

Most TREC tracks produce test collections

- The research community defines a task
 - E.g., Microblog retrieval
- NIST works with researchers to obtain a document collection
- NIST defines information needs and queries
 - Sometimes in collaboration with industry or other groups
- The research community identifies documents to be judged
 - Pooling: Run your favorite technique, submit your results
- NIST employees and/or participants judge the documents

Cranfield@TREC: International Siblings

Other sponsors have developed similar efforts to produce test collections focused on topics of interest to them

- CLEF (Europe)
 - Originally cross-lingual retrieval, now other topics too
- NTCIR (Japan)
 - Originally Asian languages, now other topics too
- FIRE (India)
 - Originally Indian languages, now other topics too

7

© 2017, Jamie Callar

Cranfield@TREC: Summary

Characteristics of TREC test collections

- A relatively large number of queries
- Large pools of assessed documents
- Widespread use

Sort of an "open source" approach to creating datasets

• NIST enables creation, but does not do all of the work itself

8

Cranfield@TREC: Summary

TREC test collections are designed to be reusable

- The pool of judged documents is <u>large enough</u> and <u>diverse enough</u> to produce accurate measurements for techniques that did not contribute to the pool
- They must accommodate today's system(s) and future systems
- This is an essential property of TREC collections

The lifespan of a typical TREC test collection is 5-10 years

• Some datasets have been used for 20+ years

9

© 2017, Jamie Callar

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

10

Cranfield@Work

TREC collections may not cover your particular needs

- E.g., because you use proprietary information
- E.g., because the source of information is new

You may need to create your own test collection

- This happens all the time
 - In industry
 - In research environments (such as ours)

What factors must you consider?

11

© 2017, Jamie Callan

Cranfield@Work: How Many Information Needs Are Needed?

Suppose that you are building your own corpus ...how many information needs do you need?

- The rule of thumb has been
 - 25 provides a rough estimate
 - 50 is relatively reliable
 - 100 is reliable
 - 200 is very reliable

Are these heuristics valid? What is our goal?

- To calculate MAP reliably?
- To distinguish among systems reliably?

12

Cranfield@Work: How Many Information Needs Are Needed?

Evaluation based on a few information needs is unreliable

Info		Standard	95%
Needs	MAP	Deviation	Confidence Interval
5	0.283	0.056	[0.173, 0.393]
25	0.283	0.025	[0.234, 0.332]
150	0.283	0.010	[0.263, 0.303]

13

(Adapted from Sanderson & Zobel, 2005)

Cranfield@Work: How Many Information Needs Are Needed?

Evaluation based on a few information needs is unreliable

Info		Standard	95%	Indri
Needs	MAP	Deviation	Confidence Interval	Gov2
5	0.172	0.039	[0.095, 0.250]	BOW queries
10	0.276	0.020	[0.238, 0.315]	•
25	0.265	0.029	[0.208, 0.321]	
50	0.260	0.020	[0.221, 0.299]	The
100	0.290	0.014	[0.263, 0.317]	population
148	0.287	0.014	[0.259, 0.315]	changes

Usually 50 information needs is considered "good enough"

• 100-200 information needs is considered very reliable

14

2017, Jamie Callan

Cranfield@Work: Confidence Intervals

Example

- MAP = 0.283
- N = 25 (information needs)
- Standard deviation = 0.025
- $CI_{95\%} = [0.283 1.96 \times 0.025, 0.283 + 1.96 \times 0.025]$ = [0.234, 0.332]
 - -95% of samples will have MAP ∈ [0.234, 0.332]
 - It does not mean that the true MAP \in [0.234, 0.332]

5 © 2017, Jamie Call

Cranfield@Work: How Many Information Needs Are Needed?

Usually 50 information needs is considered "good enough"

- Good enough to identify the <u>best system</u> relatively reliably
- Maybe not good enough to provide a reliable estimate of MAP
- 100-200 information needs is considered very reliable

Industry often uses hundreds of information needs (queries)

Why this difference?

- Researchers have fewer resources
- Small differences can be important to industry, but are less important to researchers

Cranfield@Work: Relevance Assessments

Relevance is difficult to define precisely

- A relevant document is one that <u>a person</u> judges as <u>useful</u> in the context of a specific information need
 - Different people define "useful" differently
 - A person will define "useful" differently at different times
 - A person's judgment depends upon many factors
 - » E.g., what the person knew before reading the document
- This is a really important concept

Does it matter that people judge relevance differently?

17

© 2017, Jamie Callar

Cranfield@Work: Reliability of Relevance Assessments

Common complaint: The relevance judgments are biased against my system

- Because the assessor made mistakes
- Because some relevant documents were not judged
 - And thus are considered non-relevant

Is this complaint justified?

Cranfield@Work: How Do Three TREC Assessors Compare?

R: Relevant NR: Not relevant Judgmen					nts	rel		ıment by al	•	dged ssessors
Three	A ₁	NR	NR	NR	NR	R	R	R	R	
TREC -	$\mathbf{A_2}$	NR	NR	R	R	NR	NR	R	R	
Assessors	<u>A</u> ₃	NR	<u>R</u>	<u>NR</u>	<u>R</u>	NR	<u>R</u>	NR	<u>R</u>	<u>Judged</u>
ľ	202	32	168	0	0	21	127	1	51	400
	203	194	1	4	1	20	3	4	6	233
TREC	204	138	55	1	6	119	39	8	34	400
Topics	205	200	0	0	0	119	20	59	2	400
(Info	206	200	0	0	0	17	6	16	8	247
Needs)	207	171	7	5	17	6	16	3	49	274
1 (ccus)	208	171	21	1	7	6	23	2	23	254
19 (Voorhees and Over)										

Cranfield@Work: Does it Matter Which Assessments You Use?

Switching assessments clearly affects objective evaluations

- Precision, Recall, MRR, R-Prec, ...
- Objective evaluations describe the user experience
 - But they don't identify which technique is better

Does switching assessments affect <u>comparative</u> evaluations?

• i.e., system A vs. system B, or system A vs. system A'

Cranfield@Work: Does it Matter Which Assessments You Use?

Suppose you have 3 people judge 49 TREC topics

- You can create 3⁴⁹ sets of relevance judgments
 - Use assessor i for topic j, generate all combinations of i and j

How often do the different sets of relevance assessments disagree about which system is best?

- Evaluate 33 systems using 100,005 sets of relevance judgments
 - $-A_1, A_2, A_3,$ Union (A_1, A_2, A_3) , Intersection (A_1, A_2, A_3)
 - 100,000 randomly generated combinations
 - Use mean average precision (MAP) as the metric
- Rank the systems
- Compare the rankings produced by each set of assessments

2

(Voorhees, 1998)

Cranfield@Work: Does it Matter Which Assessments You Use?

Cranfield@Work: Does it Matter Which Assessments You Use?

Significant overlap in the bars, so this looks bad ... is it?

System rankings are very similar with different assessments

- On average, swap 3% of entries to convert between rankings
- Most swaps are between systems that have $\Delta MAP < 1\%$
- Probability of a swap is very low if \triangle MAP is ≥ 0.05

Systems tend to move together

- A set of assessments affects most systems in the same way
 - "Easy" assessors, "hard" assessors

23

(Voorhees, 1998)

Cranfield@Work: Creating Test Collections

So, you're evaluating search engines for some organization...
...how do you build them a test collection?

- 1. Collect a large set of representative documents
 - Easy
- 2. Collect a set of representative information needs
 - At least 25, preferably 50-100
- 3. Translate each information need into a set of queries
 - At least several queries per information need

© 2017, Jamie Callan

Page 12

Cranfield@Work: Building Your Own Test Collection

- 4. Run each query against each search engine
 - Save the top N documents
 - Preferably at least 50 documents per query
- 5. Pool all results for an information need
 - Different queries, different engines
 - Sort them into random order
- 6. Have a person judge each document
 - One person judges all documents for one information need
 - » Important!: The work can't be split among people
 - Ideally, the judge created the information need

25

© 2017, Jamie Calla

Characteristics of the Cranfield Methodology

Each user is as <u>an expert</u> (on their information need)

- This creates some implicit requirements or assumptions
 - Users are well-trained, don't get bored, don't make mistakes
- In reality, results for any individual query are unreliable
- The assessments are accurate enough to rank search engines

The test collection is static

- Relevance judgments collected today will be useful tomorrow
- Relevance of one document is independent of other documents

The test collection is reusable

26

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

27

2017, Jamie Callan

Evaluation in a Dynamic Environment

The Cranfield methodology is difficult to apply to web search

- Tens of millions of queries per day
- Information needs for most queries are unknown
- Clicks are not relevance judgments
- The test collection is dynamic

Web search engines do use the Cranfield methodology

• They have use trained assessors, similar to NIST

But, they also use other metrics and methodologies...

28

Evaluation in a Dynamic Environment: Interleaved Testing

Interleaved testing is a common experimental methodology

- Input: Two rankings produced by different methods
- Output: One ranking composed of documents from each method
 - A fair ranking that does not favor either method
- Gather data: Which method produces better results?
 - Which method provides documents that get more clicks?

Evaluation in a Dynamic Environment: Interleaved Testing

Requirements for an interleaving procedure

- The user should not notice it
- It should be robust to user biases
- It shouldn't alter the search experience
- It should lead to user behavior that reflects user preferences

We consider two interleaving methods

- Balanced interleaving
- Team-draft interleaving

There are other methods, but this gives you the general idea

Evaluation in a Dynamic Environment: Interleaved Testing Procedure

One trial

- User submits query
- Select two rankers ("A" and "B")
- Interleave the rankings produced by "A" and "B"
- Track the user's clicks on the interleaved document ranking
- When the user stops clicking
 - Assign credit to "A" and "B" based on clicks
 - Declare "A" or "B" the winner of this trial

Repeat until enough trials are collected

• Each trial is a <u>different query</u> and a <u>different user</u>

31

2017, Jamie Callan

Evaluation in a Dynamic Environment: Balanced Interleaving

```
Input: Rankings A = (a_1, a_2, \dots) and B = (b_1, b_2, \dots) I \leftarrow (\cdot); k_a \leftarrow 1; k_b \leftarrow 1; AFirst \leftarrow RandomBit(\cdot) \dots decide which ranking gets priority while (k_a \leq |A|) \wedge (k_b \leq |B|) do if not at end of A or B if (k_a < k_b) \vee ((k_a = k_b) \wedge (AFirst = 1)) then if A[k_a] \not\in I then I \leftarrow I + A[k_a] \dots append next A result k_a \leftarrow k_a + 1 else if B[k_b] \not\in I then I \leftarrow I + B[k_b] \dots append next B result k_b \leftarrow k_b + 1 end if end while Output: Interleaved ranking I
```

- Decide once which method goes first
- When a duplicate document is found, increment the counter
 - But, the document is not added to the interleaved ranking

(Chapelle et al, 2012)

!

Evaluation in a Dynamic Environment: Balanced Interleaving

Assume that people read from top to bottom

- They click on documents that look interesting
- They stop when they are satisfied or frustrated

At each rank, each method contributes about 50% of the documents

- Fair: Each method has an equal opportunity to present documents
- A random clicker would click equally on documents from each method

34

© 2017, Jamie

Given an interleaved ranking I with clicks C

• c_{max}: Rank of the last click (the last document viewed)

Use rankings to depth $k = min\{j: (i_{c_{max}} = a_j) \lor (i_{c_{max}} = b_j)\}$

- $\{a_1,..,a_k\} \cup \{b_1,..,b_k\}$ covers all docs in $\{i_1,..,i_{c_{max}}\}$
- $\begin{array}{ll} \bullet \ \# \ clicks_a = \mid c_j \colon i_{c_j} \in \{a_1, \, ..., \, a_k\} \mid & \textbf{clicks on a's top k} \\ \bullet \ \# \ clicks_b = \mid c_j \colon i_{c_j} \in \{b_1, \, ..., \, b_k\} \mid & \textbf{clicks on b's top k} \\ \end{array}$

The method that gets the most clicks wins the trial

Aggregate results for all trials to find the best ranker

$$\Delta(A,B) = \frac{wins(A) + 0.5 \times ties(A,B)}{wins(A) + wins(B) + ties(A,B)}$$

(Chapelle et al, 2012)

<u>C</u>

 $\mathbf{c_1}$

 $\mathbf{c_2}$

Evaluation in a Dynamic Environment: Balanced Interleaving

Example

- Clicked: ✓
- $c_{max}=3$
- k=2
 - Depth needed in R₁ or R₂ to find all clicked docs
- # clicks_{R1}=1
- # clicks $_{R_2}$ =2

R₂ wins this trial

		put king	Interleaved Ranking
Rank	R ₁	R_2	R ₁ first
1	a	b	a
2	<u>b</u> _	e	b ✓
3	С	a	e ✓
4	d f		с
5	g g		d
6	h h		f
•	:	:	:

(Chapelle et al, 2012)

Example

- Clicked: ✓
- $c_{max}=3$
- k=2
 - Depth needed in R₁ or R₂
 to find all clicked docs
- # clicks_{R1}=1
- # clicks_{R2}=2

R₂ wins this trial

		put	Interleaved	
	Ran	king	Ranking	
Rank	R_1	R_2	R ₂ first	
1	a	ь	b	✓
2	<u>b_</u>	e	a	
3	c	a	e	✓
4	d	f	c	
5	g	g	f	
6	h h		d	
:	:	:	:	

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Interleaving

Interleaving is repeated for many trials

Query	User	First Ranker	Winner
buy ipad	Hongyu	R_2	R_1
deep learning tutorial	Vallari	R_1	R_1
cat videos	Ye	R_1	R_2
pittsburgh weather	Arpita	R_2	Tie
shoes	Varshini	R_2	R_1
gifts for mom	Qing	R_1	R_2
: : :		:	:

Tally results from all trials to declare a winner

$$\Delta(R_1, R_2) = \frac{wins(R_1) + 0.5 \times ties(R_1, R_2)}{wins(R_1) + wins(R_2) + ties(R_1, R_2)}$$

Balanced Interleaving can behave unexpectedly

- Suppose a user clicks on just one result randomly
- $\frac{3}{4}$ of the outcomes favor R_2

Why?

- ³/₄ of the documents are ranked higher by R₂ than R₁
- k considers too little information

	Input Ranking		Bala	inced
Rank	$\begin{bmatrix} R_1 & R_2 \end{bmatrix}$		R ₁ first	R ₂ first
1	a	b	a	b
2	b	c	b	a
3	С	d	С	С
4	d	a	d	d

(Chapelle et al, 2012)

39

Evaluation in a Dynamic Environment: Team-Draft Interleaving

- On each round, randomize which method goes first
- When a duplicate document is encountered, skip to the next

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Team Draft Interleaving

Evaluation in a Dynamic Environment: Team-Draft Interleaving

Consider an interleaved ranking I with clicks C <u>C</u> • c_{max}: Rank of the last click (the last document viewed) i_1 i_2 i_3 i_4 i_5 i_6 i_7 i_8 $\mathbf{c_1}$ Clicks attributed to each method are $\# \text{ clicks}_a = |c_j : i_{c_j} \in \text{Team}_a|$ clicks on docs from a # clicks_b= $|c_j: i_{c_i}$ \in Team_b clicks on docs from b The method that gets the most clicks wins the trial \mathbf{c}_{\max} Aggregate results for all trials to find the best ranker i₉ $\Delta(A,B) = \frac{wins(A) + 0.5 \times ties(A,B)}{wins(A) + wins(B) + ties(A,B)}$ (Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Team-Draft Interleaving

Team-Draft can behave unexpectedly

- Suppose a query has 3 intents
 - 49% of the users: a is relevant
 - 49% of the users: b is relevant
 - -2% of the users: c is relevant

	Input		TeamDraft		
	Ranking		R_1	R_2	
Rank	R_1	R_2	First	First	
1	a	b	a	ь	
2	ь	c	ь	a	
3	:	:	:	С	

R1 satisfies 98% of search intents with the top 2 results

- But, if users click on only the <u>first</u> relevant document, R2 wins 51% of the trials
 - This is an artifact of how duplicates are handled
 - Only the method that suggested the document higher gets credit

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Search Engines Tested

ArXiv.org

- 700K academic articles, scientific users, about 70K searches
- Ranking strategies created by degrading a baseline

Bing

- Team-Draft interleaving was performed on a % of US traffic
- Five pairs of proprietary ranking functions, 220K searches
 - -3 functions with \triangle MAP and NDCG > 0.5% absolute
 - -2 functions with \triangle MAP and NDCG < 0.2% absolute
- 12,000 queries were also manually assessed on a 5-point scale

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Search Engines Tested

Yahoo

- Balanced interleaving was performed on a % of US traffic
- All pairs of four proprietary ranking functions, about 20M searches
 - The current production method and 3 candidates for next release
 - Two rankers were very similar (variants on a theme)
 - The maximum differences in MAP and NDCG are < 0.65% relative
- 2,000 queries were also manually assessed

(Chapelle et al, 2012)

45

Evaluation in a Dynamic Environment: Data Collected

	Experiment	al Condition	Number of	Number of		
	Type	Function(s)	Searches	Days	First Day	
	Team-Draft	$\mathcal{B}_{\mathrm{B}} \succ \mathcal{A}_{\mathrm{B}}$	220,000	4	July 21, 2009	
ρū	Team-Draft	$C_{\mathrm{B}} \succ A_{\mathrm{B}}$	190,000	4	Aug 4, 2009	
Bing	Team-Draft	$C_B \succ B_B$	220,000	4	Aug 11, 2009	
щ	Team-Draft	$\mathcal{D}_{\mathrm{B}} \succ \mathcal{C}_{\mathrm{B}}$	220,000	4	July 7, 2009	
	Team-Draft	$\mathcal{F}_{\mathrm{B}} \succ \mathcal{E}_{\mathrm{B}}$	220,000	4	Sept 1, 2009	
	Non-Comp	$\mathcal{A}_{\mathtt{Y}}$	$\overline{73.9}\ \overline{\mathrm{M}}$	33	Mar 17, 2010	
	Non-Comp	$\mathcal{B}_{\mathtt{Y}}$	10.4 M	33	Mar 17, 2010	
	Non-Comp	$\mathcal{C}_{\mathtt{Y}}$	41.8 M	33	Mar 17, 2010	
-:	Non-Comp	$\mathcal{D}_{\mathtt{Y}}$	$72.4~\mathrm{M}$	33	Mar 17, 2010	
300	Balanced	$\mathcal{D}_{Y} \succ \mathcal{C}_{Y}$	13.9 M	42	May 12, 2010	
Yahoo!	Balanced	$\mathcal{D}_{\mathtt{Y}} \succ \mathcal{B}_{\mathtt{Y}}$	1.5 M	5	Apr 14, 2010	
	Balanced	$\mathcal{D}_{\mathtt{Y}} \succ \mathcal{A}_{\mathtt{Y}}$	677,000	2	Apr 7, 2010	
	Balanced	$C_{Y} \succ B_{Y}$	1.5 M	5	Apr 14, 2010	
	Balanced	$C_{Y} \succ A_{Y}$	680,000	2	Apr 7, 2010	
	Balanced	$\mathcal{B}_{Y} \succ \mathcal{A}_{Y}$	1.6 M	5	Apr 9, 2010	
	(Chapelle et al, 2012)					

Evaluation in a Dynamic Environment: Does Interleaving Agree With Assessors?

ArXiv.org

- Varying amounts of manual degradation of current ranker
- Interleaving identifies the better ranker (usually w/ significance)

Bing & Yahoo

- When assessors find a significant difference, interleaving agrees
- Interleaving may find a difference significant that assessors don't

Often interleaving can provide statistically significant results where manual assessments cannot

• A "small" number of manually-assessed queries

47

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Does Interleaving Agree With Assessors?

Interleaving identifies the best ranker

... does it also indicate the magnitude of the difference?

Bing

- 0.88 correlation w/ NDCG@5 (Team-Draft)
 - 0.69 correlation w/ MAP (Team-Draft)

Yahoo

- 0.70 correlation w/ DCG@5 (Balanced)

Note that the number of queries affects the error bars

- 12,000 queries for Bing
- 2,000 queries for Yahoo

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Metrics

Dynamic environments often use metrics based on user behavior

- Abandonment rate: % of queries that receive no clicks
- Reformulation rate: % of queries that are reformulated
- Queries per session: Session == Information need
- Clicks per query, Clicks@1
- pSAT-clicks: % of documents with dwell time > 30 seconds
- pSkip: % of documents that are skipped
- Max Reciprocal Rank, Mean Reciprocal Rank
- Time to First Click, Time to Last Click

49

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Does Interleaving Agree With Behavior?

Interleaving does not predict changes in user behavior well

- E.g., Queries per Session, Abandonment Rate, ...
- It predicts Clicks@1, but only with very large numbers of queries
 - The Yahoo experiment

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: How Many Queries Are Needed?

To achieve 95% confidence

- ArXiv.org: About 200K queries
- Yahoo:
 - A few hundred thousand queries for rankers of different quality
 - A few million queries for rankers of similar quality

Interleaving reaches significance faster than Clicks@1

• 1 hour for interleaving vs. 1 day for Clicks@1

(Chapelle et al, 2012)

51

Evaluation in a Dynamic Environment

More sophisticated methods of counting clicks improve the sensitivity and convergence rates for Team-Draft Interleaving

- Not covered due to lack of time
- This is an active research topic

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

53

© 2017, Jamie Calla

Overview of the Evaluation Unit: Cranfield vs. Interleaved Evaluation

We focused more on Cranfield than interleaving ... why?

- Cranfield is more established
 - It has been used for years and is well-understood
- Cranfield supports a wide variety of metrics
 - It provides better information about ranking behavior
- Cranfield can be used in most situations
 - Interleaving requires query traffic that you may not have

However, interleaving is a powerful tool, when you can use it

• Inexpensive, adaptive, sensitive to small differences

54

Overview of the Evaluation Unit: Cranfield vs. Interleaved Evaluation

Use the method that has the properties you need

Property	Cranfield	Interleave
Relevance = satisfying an information need	Y	Y
The assessor has the information need	Usually	Y
Requires human assessors	Y	N
Requires a large amount of query traffic	N	Y
Supports a variety of metrics	Y	Y
Sensitive to small differences among methods	N	Y
Reusable test collections	Optional	N
Dynamic test collections	N	Y
Quickly test new methods	Optional	Y
Quickly test new methods	Optional	Y

For More Information

- C. Buckley and E. M. Voorhees. "Evaluating evaluation measure stability." Proceedings of SIGIR 2000. pp. 33-40. 2000.
- C. Buckley and E. M. Voorhees. "Retrieval evaluation with incomplete information." Proceedings of SIGIR 2004. pp. 25-32. 2004.

 O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved search evaluation. Transactions on Information Systems, 30(1). 2012.
- E. M. Voorhees. "Variations in relevance judgements and the measurement of retrieval effectiveness." Proceedings of SIGIR '98. pp. 315-323. 1998.

 E. M. Voorhees. "Evaluation by highly relevant documents." Proceedings of SIGIR 2001. pp. 74-82. 2001.
- pp. 74-62. 2001.

 E. M. Voorhees and C. Buckley. "The effect of topic set size on retrieval experiment error." Proceedings of SIGIR 2002. pp. 316-323. 2002.

 M. Sanderson and J. Zobel. "Information retrieval system evaluation: Effort, sensitivity, and reliability." Proceedings of SIGIR 2005. pp. 162-169.