Tecnologias Quânticas Universidade de Aveiro 2018-2019

Coherent One Way (COW) QKD Protocol

João António¹, Daniel Pereira^{2,3}, Armando N. Pinto^{2,3}

Physics Department¹, Department of Electronics, Telecommunications and Informatics², University of Aveiro, Aveiro, Portugal Instituto de Telecomunicações,³, Aveiro, Portugal

©2005, it - instituto de telecomunicações

instituto de telecomunicações

creating and sharing knowledge for telecommunications

INSTITUIÇÕES ASSOCIADAS:

Quantum Key Distribution

Quantum Key Distribution (QKD) is a secure way of sharing a unique random key (composed of 0 and 1) between two parties spatially distant. They later use this random key to encrypt and decrypt messages between them.

Alice	
Message	42
Message in 8bit Binary	00101010
Key	10101011

Bob	
Encrypted Message	10000001
Key	10101011
(Encrypted Message + Key mod 2) Decrypted Message	00101010
Message	42

To share/create the random key, they use two channels, one quantum channel and one Authenticated classic channel (can be eavesdropped but can't be modified).

Step 1 Alice produces:

$$|0\rangle = |\alpha\rangle|0\rangle$$

 $|1\rangle = |0\rangle|\alpha\rangle$
 $|d\rangle = |\alpha\rangle|\alpha\rangle$

where $|0\rangle$ is the vacuum state and $|\alpha\rangle$ is a coherent state of light with intensity $\mu=|\alpha|^2.$

Alice produces $|d\rangle$ with probability f and the quantum signal cannot be divided bitwise (coherence of the laser).

$$|...0d10...\rangle = |...:0\alpha:\alpha\alpha:\alpha0:0\alpha...\rangle$$

Step 3 Bob uses a 90:10 beamsplitter making 90% of the photons into the SPD₁ to arrival time measurements, the remaining 10% are used to measure phase coherence.

In the UMZI (Unbalanced Mach-Zehnder Interferometer) the delayed half of each pulse is recombined in the non-delayed half the next pulse.

In the UMZI (Unbalanced Mach-Zehnder Interferometer) the delayed half of each pulse is recombined in the non-delayed half the next pulse.

Image based on the article 2017 - Roberts - Modulator-free coherent-one-way quantum key distribution

Step 4 Alice informs Bob when she sent a decoy pulse.

Step 5 They calculate the visibility (V) and the QBER (Q) of the key.

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

where the I_{max} and I_{min} are the average pulse intensities for constructive and destructive interference respectively.

They also share a small part of the key in a public channel, to see if there are errors in the message.

A loss of coherence and therefore a reduction of the visibility reveal the presence of an eavesdropper, in which case the key is simply discarded

