

Acides faibles dans l'eau

Thème: Constitution et transformations de la matière

Capacités mathématique

> Résoudre une équation du second degré.

Capacités numériques

- Déterminer, à l'aide d'un langage de programmation, le taux d'avancement final d'une transformation, modélisée par la réaction d'un acide sur l'eau.
- ▷ Tracer, à l'aide d'un langage de programmation, le diagramme de distribution des espèces d'un couple acide-base de pKA donné

Équilibre et composition initiale

L'acide glycolique est un acide faible de formule brute $C_2H_4O_3$. Il est très présent dans les produits cosmétiques car il améliore la texture et l'apparence de la peau.

→ L'espèce majoritaire est-elle acide ou basique?

Données expérimentales

Formule brute : $C_2H_4O_3$

 $pK_A = 3.8 \text{ à } 25^{\circ}C$

Volume de la solution préparée : $V = 100 \ mL$

Concentration en soluté apporté : $Ci = 1,0 \times 10^{-3} \ mol.L^{-1}$

Exploitation

Travail théorique

- 1. Ecrivez l'équation de la réaction entre l'acide glycolique et l'eau. En déduire le couple acide/base de l'acide glycolique.
- 2. Établissez un tableau d'avancement de la réaction en utilisant des expressions littérales
- 3. Exprimez l'avancement maximal x_{max} en fonction de Ci et V.
- 4. En déduire l'expression de l'avancement final x_f en fonction de Ci, V et τ .
- 5. À l'aide du tableau d'avancement, donnez l'expression de $[H_3O^+]_f$ et $[C_2H_3O_3^-]_f$ en fonction de C_i et τ .
- 6. En déduire l'expression du pH en fonction de C_i et τ .
- 7. À l'aide du tableau d'avancement, montrez que l'expression de $[C_2H_4O_3]_f$ s'écrit $Ci(1-\tau)$.
- 8. Exprimez la constante d'acidité K_A en fonction de Ci et de τ .
- 9. En utilisant les expressions précédentes, établissez l'équation du second degré :

$$C_i \tau^2 + K_A \tau - K_A = 0$$

10. En utilisant la définition de la constante d'acidité $K_A = \frac{[\mathrm{H_3O^+}]_f \cdot [\mathrm{C_2H_3O_3}^-]_f}{[\mathrm{C_2H_4O_3}]_f}$, montrez que :

$$[C_2H_3O_3^-]_f = [C_2H_4O_3]_f \cdot 10^{(pH-pK_A)}$$

11. Si on note p_A , le pourcentage de l'espèce $C_2H_4O_3$, et p_B , le pourcentage de l'espèce $C_2H_3O_3^-$, montrez que l'on obtient les deux relations suivantes :

$$\begin{cases} p_B = p_A \cdot 10^{(pH - pK_A)} \\ p_B + p_A = 100\% \end{cases}$$

12. Résolvez ce système d'équations.

Travail sur Python

Réalisez le notebook en cliquant sur le lien suivant : lien vers le notebook.

Déposez le notebook dans le casier du professeur.