Trabajo Práctico N° 2: Modelos de Datos de Panel Lineales.

Ejercicio 1.

Utilizar, nuevamente, la base de datos "cornwell.dta" provista para el Problem Set 1. Considerar el siguiente modelo de regresión:

 $ln\ crmrte_{it} = \beta_0 + \beta_1 \ ln\ prbarr_{it} + \beta_2 \ ln\ prbconv_{it} + \beta_3 \ ln\ prbpris_{it} + \beta_4 \ ln\ avgsen_{it} + \beta_5 \ ln\ polpc_{it} + \sum_{\tau=1}^{87} \beta_{\tau} I\{t=\tau\} + \mu_i + \varepsilon_{it}.$

(a) Utilizando el comando egen de STATA, construir las medias individuales de las variables del modelo.

Stata.

(b) Aplicar la transformación within al modelo. Luego, estimar el modelo transformado por POLS.

POLS:

Source SS Model 7.81221835 Residual 10.1785214 Total 17.9907397	619 .03	MS 10201668 16443492 02855673	Number of obs F(11, 619) Prob > F R-squared Adj R-squared Root MSE	= = =	630 43.19 0.0000 0.4342 0.4242 .12823
	Std. err.			 % conf. 	interval]
within_lprbarr 3597944 within_lprbconv 2858733 within_lprbpris 1827812 within_lavgsen 0044879 within_lpolpc .4241142 within_d82 .0125802 within_d83 0792813 within_d84 1177281 within_d85 1119561 within_d86 0818268 within_d87 0404704	.0299699 .0196143 .0300086 .024449 .0243741 .0199141 .0197277 .0199815 .0201954 .0198078 .0194497	-12.01 -14.57 -6.09 -0.18 17.40 0.63 -4.02 -5.89 -5.54 -4.13 -2.08	0.00032 0.00024 0.85405 0.000 .37 0.52802 0.00011 0.00015 0.00012	43919 17122 25009 62483 65271 80225 69678 51616 07254 86657	2473547 1238502 .043525 .4719802 .0516875 04054 0784884 0722962 0429282 0022751

(c) Comentar sobre la validez de los errores estándar del inciso previo.

Los errores estándar reportados tienden a ser pequeños comparados a los verdaderos. El problema se encuentra en que los grados de libertad de aplicar OLS al modelo transformado no coinciden con el denominador del estimador consistente para σ_{ε}^2 . Por consiguiente, excepto que T sea lo suficientemente grande, se necesita corregir este denominador.

(d) Utilizar el comando xtreg para estimar, nuevamente, el modelo usando efectos fijos.

FE:

Fixed-effects (within) regression Group variable: county				Number o	of obs = of groups =	630 90
R-squared: Within = Between = Overall =	= 0.4066			Obs per	<pre>group: min = avg = max =</pre>	7 7.0 7
corr(u_i, Xb)	= 0.2068	(2)	, .	F(11,89) Prob > F	· =	11.49
		(Std.	err. adjı 	isted for 	90 clusters	in county)
lcrmrte	 Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
lprbconv lprbpris lavgsen lpolpc d82 d83	1827812 0044879 .4241142 .0125802 0792813 1177281 1119561 0818268		-6.05 -5.55 -4.04 -0.13 5.00 0.79 -4.05 -5.42 -4.36 -3.46 -1.67 -3.14	0.000 0.000 0.893 0.000 0.434 0.000 0.000 0.000 0.001	4779557388246427275380707535 .255409501922461181544160869162938612877450885087 -2.617904	1835001 0928085 .0617777 .592819 .044385 0404081 0745872 0609736 0348792 .0075678
sigma_u sigma_e rho		(fraction	of variar	nce due to	o u_i)	

⁽e) Estimar el modelo usando diferencias finitas de primer orden.

<u>FD:</u>

Source	SS	df	MS			= 540 = 36.66
Model Residual			.87296209 .02381167	8 Prob 4 R-sq	> F uared	= 36.66 = 0.0000 = 0.4326 = 0.4208
Total	22.1989586	540	.04110918		_	= .15431
D.lcrmrte	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
lprbarr D1.	3274942	.0299801	-10.92	0.000	3863889	2685995
lprbconv D1.		.0182341	-13.06	0.000	2739268	2022864
lprbpris D1.	1650462	.025969	-6.36	0.000	2160613	1140312
lavgsen D1.		.0220909	-0.99	0.325	0651574	.021636
lpolpc D1.	.3984264	.026882	14.82	0.000	.3456177	.451235
d82 D1.		.0170579	0.45	0.651	0257961	.0412229
d83 D1.		.0234564	-3.60	0.000	1305182	03836
d84 D1.		.0287464	-4.34	0.000	1811344	068192
d85 D1.	121561	.03315	-3.67	0.000	1866827	0564392
d86 D1.		.0366763	-2.35	0.019	1583823	0142842
d87 D1.		.0399728	-0.95 	0.345	116318	.0407316

Ejercicio 2.

Utilizar la base de datos provista "murder.dta". La base de datos es una muestra longitudinal de estados de EE.UU., para los años 1987, 1990 y 1993.

(a) Estimar por OLS el efecto de las ejecuciones (x) sobre la tasa de homicidios (murder rates, m) controlando por desempleo (u) y año:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + v_{i,t},$$

Notar que se omitió la dummy temporal para el año 1987. Interpretar los resultados.

POLS:

Source	SS	df	MS	Number F(4, 1	of obs	s = =	153 3.05
Model Residual	977.390644 11867.9475		244.347661 80.1888343	Prob > R-squa	F red	=	0.0190 0.0761 0.0511
Total			84.5088034	Root M	squared SE	ı – =	8.9548
mrdrte	Coefficient		t 1	 P> t	[95% (conf.	interval]
exec unem d90 d93 _cons		.1939295 .4508653 1.816934 1.774768 3.069517	3.08 (1.47 (0.91 (0.002 0.143 0.367	22047 .49982 915 -1.8998	207 515 342	.5459832 2.281751 6.26582 5.114476 4.201349

(b) ¿Por qué podría ser importante tener en consideración los efectos temporales agregados en el modelo?

Tener en consideración los efectos temporales agregados en el modelo podría ser importante si la tasa de homicidios es afectada por factores macroeconómicos externos que afectan a todos los estados de EE.UU. de la misma manera. Por lo tanto, si no se incluyen estas variables, se debe suponer que cualquier cambio en la media de la tasa de homicidios en el tiempo se debe a las ejecuciones o a la tasa de desempleo y no a factores externos. Por otra parte, controlar por estas variables hace más factible que se cumpla el supuesto de ausencia de autocorrelación serial.

(c) Ahora, considerar la siguiente modificación en el modelo:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + c_i + e_{i,t}$$

donde c_i es un efecto individual por estado. Estimar la ecuación usando efectos fijos.

<u>FE:</u>

Fixed-effects (within) regr Group variable: id		f obs = f groups =			
R-squared: Within = 0.0734 Between = 0.0037 Overall = 0.0108			Obs per o	min =	3.0
corr(u_i, Xb) = 0.0010			F(4,98) Prob > F		1.94 0.1098
mrdrte Coefficient	Std. err.	t	P> t	[95% conf	. interval]
exec 1383231 unem .2213158 d90 1.556215 d93 1.733242 _cons 5.822104	.1770059 .2963756 .7453273 .7004381	0.75 2.09 2.47	0.457 0.039 0.015	366832 .0771369 .3432454	.8094636 3.035293 3.123239
sigma_u 8.7527226 sigma_e 3.5214244 rho .86068589			ce due to	=	
F test that all u_i=0: F(50	, 98) = 1/.18	3		Prob >	F = 0.0000

(d) Repetir la estimación del inciso previo usando diferencias finitas de primer orden.

FD:

Source	SS	df	MS	Number of F(4, 98)	obs =	102 1.61
Model Residual		4 98	29.7758244 18.49272	Prob > F R-squared	=	0.1778 0.0617
Total			18.9351947		=	
cmrdrte	Coefficient		t	P> t [9	5% conf.	interval]
cexec cunem cd90 cd93	1150682 .1630854 1.51099 1.725263	.1473871 .3079049 .6608967 .8533453	0.53 2.29	0.59844 0.024 .19	407553 479419 994623 318275	.1774166 .7741126 2.822518 3.418699

(e) Brindar un ejemplo bajo el cual la variable de ejecuciones no sería, estrictamente, exógena (condicional en c_i). Observación: Para obtener estimaciones consistentes, el modelo de efectos fijos asume exogeneidad estricta de las variables explicativas condicionadas en c_i .

Un ejemplo bajo el cual la variable de ejecuciones $(x_{i,t})$ no sería estrictamente exógena (condicional en c_i) podría ser si los estados aumentan las ejecuciones futuras en respuesta a los *shocks* positivos actuales de la tasa de homicidios. Dado el tramo de tiempo relativamente corto de la base de datos, la retroalimentación de la tasa de homicidio a las

ejecuciones futuras puede no ser muy preocupante, ya que el proceso judicial en los casos de pena capital tiende a moverse lentamente. Por supuesto, si se acelerara debido a un aumento de la tasa de homicidios, eso podría violar la exogeneidad estricta. Con una serie temporal más larga, se podría añadir $x_{i,t+1}$ (e, incluso, valores de un futuro más lejano) y estimar la ecuación por FE, comprobando la significatividad estadística de la variable $x_{i,t+1}$. En el caso de que se encuentre que esta variable es estadísticamente significativa, se tendría evidencia a favor de que no se cumple el supuesto de exogeneidad estricta.

(f) Repetir la estimación del inciso (c) usando el estimador de GLS para diferencias finitas de primer orden. Comprobar que los coeficientes estimados son iguales a los obtenidos por FE.

```
bfdgls[4,1]
mrdrte
exec -.13832306
unem .22131582
d90 1.5562147
d93 1.7332421
```

(g) Reestimar el modelo del inciso (c) usando efectos aleatorios. Implementar el test de Hausman. ¿Cuál es el mejor estimador?

RE:

Random-effects Group variable	_	on			of obs of groups		153 51
R-squared: Within = Between = Overall =	= 0.0731			Obs per	group: min avg max	=	3 3.0 3
corr(u_i, X) =	= 0 (assumed)						8.52 0.0743
mrdrte	Coefficient	Std. err.	z	P> z	[95% cor	nf.	interval]
unem d90 d93	0543375 .3947507 1.732981 1.699913 4.635132	.2848133 .7478556 .7065606	1.39 2.32 2.41	0.166 0.020 0.016	1634732 .2672106 .3150796	2 5	.9529745 3.19875 3.084746
sigma_e	8.2056677 3.5214244 .84447636	(fraction	of varian	ce due to	o u_i)		

	Coeffi (b) est_fe	cients (B) est_re	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
exec unem d90 d93	1383231 .2213158 1.556215 1.733242	0543375 .3947507 1.732981 1.699913	0839856 1734349 1767658 .0333292	.0767503 .0819749

 $\tt b$ = Consistent under H0 and Ha; obtained from xtreg. $\tt B$ = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

```
chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 5.78
Prob > chi2 = 0.2165
(V b-V B is not positive definite)
```

Por lo tanto, se puede observar que, considerando un nivel de significación del 10%, el mejor estimador es el de efectos fijos, ya que se rechaza la hipótesis nula de no correlación entre los regresores y los efectos fijos, por lo que el estimador de efectos aleatorios no es consistente.

Ejercicio 3.

Considerar el siguiente modelo:

$$y_{it} = x_{it}\beta + \mu_i + \nu_{it}, i = 1, 2, ..., N; t = 1, 2, ..., T,$$

donde $x_{it} \sim^{iid} \mathcal{N}(0, 1)$, $\mu_i \sim^{iid} \mathcal{N}(0, \sigma_{\mu}^2)$, $v_{it} \sim^{iid} \mathcal{N}(0, \sigma_{\nu}^2)$ y $\mu_i \perp v_{it}$ para todo i, t. Suponer $\beta = \sigma_{\mu}^2 = \sigma_{\nu}^2 = 1$ y T = 10. La idea es realizar experimentos de Monte Carlo para evaluar la eficiencia de distintos estimadores de β .

- (a) Caso 1: N=5. Realizar un experimento de Monte Carlo con 1000 simulaciones. Reportar media, desvío estándar y RMSE de la estimación de β usando: POLS, RE y FE.
- **(b)** Repetir el punto anterior con N=10, 30, 50, 100 y 500.

```
N 5
                           N 10
                                     N 30
                                               N 50
                                                        N 100
                                                                  N 500
media beta~s .99804484 .99234775 1.0019568 1.0039147 1.0005582
                                                              .99963949
de beta pols .19410442 .14170935 .07988537
                                          .06148401
                                                    .04521915
                                                               .02023065
rmse beta ~s .1940172 .14184504
                                .0798694 .06157782
                                                    .04519998
                                                               .02022375
media_beta~e .99311721 .99036578 1.0021895 1.0027847 1.0005854
                                                               .99967618
                                                    .03388416
 de_beta_fe .15215654 .10712643 .06006592 .04603343
                                                               .01449802
.10750542
                                .06007579
                                           .0460946
                                                    .03387227
                                                               .01449439
                      .99075022 1.0022435 1.0029077
                                                     1.0005371
                                                               .99967278
 de_beta_re .15558624 .10656719 .05945567
                                          .04579737
                                                     .0335924
                                                               .01453039
rmse beta re .15569433 .10691477 .05946827 .04586672
                                                    .03357989
                                                               .01452681
```

(c) Comentar los resultados obtenidos y su conclusión de qué estimador debiera utilizarse en la práctica.

En primer lugar, es importante destacar que, dados los supuestos del modelo, los tres estimadores en consideración son consistentes. Por lo tanto, se debería esperar que, a medida que el tamaño muestral aumenta, la media de las estimaciones de β con los diferentes estimadores estén cerca del valor poblacional (β = 1). Ahora bien, para N < 10, el estimador FE es el que mejor funciona en términos de sesgo y de eficiencia. Luego, a partir de un tamaño de muestra de N= 30, ya se observa cómo el estimador RE es el más eficiente de todos, es decir, es el que presenta un menor desvío estándar, lo cual se vincula a que, dados los supuestos del modelo, es el estimador con la menor varianza asintótica. En resumen, si, en la práctica, se trabajara con un modelo donde se supone que se cumplen los supuestos del modelo del inciso, entonces, para N muy pequeño se optaría por utilizar el estimador FE, mientras que, a partir de N= 30, se optaría por el estimador RE.

Ejercicio 4.

Basado en el Ejercicio 10.18 de Wooldridge (2010). Utilizar la base de datos "wagepan.dta" para responder las preguntas a continuación.

(a) Utilizando lwage como variable dependiente, estimar un modelo que contenga un intercepto y las variables dummy de año d81 a d87. Estimar el modelo por POLS, RE, FE y FD. ¿Qué se puede concluir acerca de los coeficientes de las variables dummy?

POLS:

Source		df	MS			4,360 50.54
Model	92.9668229	7	13.280974	7 Prob	> F =	0.0000
Residual	1143.56282 +		.26276719	2 R-squ - Mdi P	ared = -squared =	0.0752
	1236.52964				_	.51261
	Coefficient				[95% conf.	
d81	.1193902	.0310529	3.84	0.000	.0585107	.1802697
d82	.1781901	.0310529	5.74	0.000	.1173106	.2390696
d83	.2257865	.0310529	7.27	0.000	.1649069	.286666
d84		.0310529	9.56	0.000	.2359386	.3576976
d85	.3459333	.0310529	11.14	0.000		.4068128
d86	.4062418 .4730023	.0310529 .0310529	13.08	0.000	.3453623	.4671213
					.4121228	.5338818
_cons	1.393477	.0219577	63.46	0.000	1.350429	1.436525
RE:						
Random-effects Group variable		on			f obs = ef groups =	
R-squared:				Oha nan	~~~~	
K-Squared: Within =	- 0 0000			Obs per	min =	8
Between =					avg =	
Overall =					max =	8
Overair -	- 0.0732				max –	0
corr(u_i, X) =	= 0 (assumed)			Wald chi Prob > c	2(7) = hi2 =	
lwage	Coefficient	Std. err.			[95% conf.	interval]
d81	1	.021487	5.56	0.000	.0772765	.1615039
d82	•	.021487	8.29	0.000	.1360764	.2203038
d83	.2257865	.021487	10.51	0.000	.1836728	.2679001
d84		.021487	13.81	0.000	.2547044	.3389318
d85	•	.021487	16.10	0.000	.3038196	.388047
d86		.021487	18.91	0.000	.3641281	.4483555
d87	.4730023		22.01	0.000	.4308886	.515116
_cons	1.393477	.0219577	63.46	0.000	1.350441	1.436513
siama u	+ .37007665					
sigma_a						
rho		(fraction	of varian	ce due to	u_i)	

\mathbf{H}	н	٠
T .		•

Fixed-effects (within) regression Group variable: nr					obs = groups =	•
R-squared: Within = Between = Overall =				Obs per g	min = avg = max =	-
corr(u_i, Xb)	= 0.0000			F(7,3808) Prob > F	=	105.56 0.0000
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d82 d83 d84 d85 d86 d87	.1193902 .1781901 .2257865 .2968181 .3459333 .4062418 .4730023 1.393477	.021487 .021487 .021487 .021487 .021487	8.29 10.51 13.81 16.10 18.91 22.01	0.000 0.000 0.000 0.000 0.000		.2203172 .2679135 .3389452 .3880604 .4483688 .5151294
sigma_e	.39074676 .35469771 .54824631	(fraction	of varian	ice due to	u_i)	
F test that al	l u_i=0: F(54	4, 3808) =	9.71		Prob > 1	F = 0.0000
Source	SS 	df 	MS		of obs = 808) =	•

				F/7 30	08) =	14 06
Model Residual	19.3631642 749.249837	7 3 , 808	2.76616631	Prob > R-squar	F = ed =	0.0000 0.0252
	768.613001	3,815		Root MS		.44357
	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d81	•					
d82 D1.	 .1781901 	.0268709	6.63	0.000	.1255074	.2308728
d83 D1.	.2257865	.03291	6.86	0.000	.1612636	.2903093
d84 D1.	•	.0380011	7.81	0.000	.2223136	.3713226
d85 D1.	•	.0424866	8.14	0.000	.2626347	.4292319
d86 D1.		.0465417	8.73	0.000	.3149927	.4974908
d87 D1.	.4730023	.0502708	9.41	0.000	.3744421	.5715626

Tabla comparativa:

	(1)	(2)	(3)	(4)
	POLS	RE	FE	FD
d81	0.119*** (0.0311)	0.119*** (0.0215)	0.119*** (0.0215)	0.119***
d82	0.178***	0.178***	0.178***	0.178***
	(0.0311)	(0.0215)	(0.0215)	(0.0269)
d83	0.226***	0.226***	0.226***	0.226***
	(0.0311)	(0.0215)	(0.0215)	(0.0329)
d84	0.297***	0.297***	0.297***	0.297***
	(0.0311)	(0.0215)	(0.0215)	(0.0380)
d85	0.346***	0.346***	0.346***	0.346***
	(0.0311)	(0.0215)	(0.0215)	(0.0425)
d86	0.406***	0.406***	0.406***	0.406***
	(0.0311)	(0.0215)	(0.0215)	(0.0465)
d87	0.473***	0.473***	0.473***	0.473***
	(0.0311)	(0.0215)	(0.0215)	(0.0503)
_cons	1.393*** (0.0220)	1.393*** (0.0220)	1.393*** (0.0152)	
N	4360	4360	4360	3815
r2	0.0752		0.163	0.0252

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Por lo tanto, lo que se puede concluir acerca de los coeficientes de las variables *dummy* es que son numéricamente idénticos.

(b) Añadir las variables constantes en el tiempo educ, black e hisp al modelo, y estimar por POLS y RE. ¿Cómo se comparan los coeficientes? ¿Qué ocurre si se estima la ecuación por FE?

Juan Menduiña

POLS:

Source	SS	df	MS		1210)	4,360 73.66
Model Residual		4,349	17.9091659	9 Prob 7 R-sq	- > F = quared =	0.0000 0.1448 0.1429
Total	•				R-squared = MSE =	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d81	.1193902	.029871	4.00	0.000	.0608279	.1779526
d82		.029871	5.97	0.000	.1196277	.2367524
d83		.029871	7.56	0.000	.1672241	.2843488
d84	.2968181	.029871	9.94	0.000	.2382557	.3553804
d85	.3459333	.029871	11.58	0.000	.287371	.4044957
d86	.4062418	.029871	13.60	0.000	.3476794	.4648041
d87	.4730023	.029871	15.83	0.000	.41444	.5315647
educ	.0770943	.0043766	17.62	0.000	.0685139	.0856747
black	1225637	.0237021	-5.17	0.000	1690319	0760955
hisp	.024623	.0213056	1.16	0.248	0171468	.0663928
_cons	.4966384	.0566686	8.76	0.000	.3855391	.6077377
RE:						
Random-effects Group variable	_	on			of obs = of groups =	4,360 545
R-squared:				Obs per	group:	
Within =	= 0.1625				min =	8
Between =					avg =	8.0
Overall =	= 0.1448				max =	8
corr(u_i, X) =	= 0 (assumed)				i2(10) = chi2 =	
lwage	Coefficient +	Std. err.	Z 	P> z	[95% conf.	interval]
d81	.1193902	.021487	5.56	0.000	.0772765	.1615039
d82	.1781901	.021487	8.29	0.000	.1360764	.2203038
d83	.2257865	.021487	10.51	0.000	.1836728	.2679001
d84	.2968181	.021487	13.81	0.000	.2547044	.3389318
d85	.3459333	.021487	16.10	0.000	.3038196	.388047
d86	.4062418	.021487	18.91	0.000	.3641281	.4483555
d87		.021487	22.01	0.000	.4308886	.515116
educ		.009177		0.000	.0591076	.0950809
black				0.014		
hisp		.0446744	0.55	0.582	0629371	.1121831
_cons	.4966384	.1122718	4.42	0.000	.2765897	.7166871
sigma_u	+ .34337144					
	.35469771					
rho	.48377912	(fraction	of variand	ce due t	o u_i)	

FE:

Fixed-effects (within) regression Group variable: nr					obs = groups =	•
R-squared: Within = 0.1625 Between = . Overall = 0.0752			Obs per g	roup: min = avg = max =		
corr(u_i, Xb)	= 0.0000				= =	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d82 d83 d84 d85 d86 d87 educ black hisp	.2257865 .2968181 .3459333 .4062418 .4730023	.021487 .021487 .021487 .021487 .021487 .021487 (omitted) (omitted) (omitted)	8.29 10.51 13.81 16.10 18.91 22.01	0.000 0.000 0.000 0.000 0.000	.0772631 .136063 .1836594 .254691 .3038063 .3641147 .4308753	.2203172 .2679135 .3389452 .3880604 .4483688 .5151294
sigma_e	sigma_u .39074676 sigma_e .35469771 rho .54824631 (fraction of variance due to u_i)					
F test that all $u_i=0$: F(544, 3808) = 9.71			Prob > 1	F = 0.0000		

Tabla comparativa:

	(1)	(2)	(3)
	POLS	RE	FE
d81	0.119***	0.119***	0.119***
	(0.0299)	(0.0215)	(0.0215)
d82	0.178***	0.178***	0.178***
	(0.0299)	(0.0215)	(0.0215)
d83	0.226***	0.226***	0.226***
	(0.0299)	(0.0215)	(0.0215)
d84	0.297***	0.297***	0.297***
	(0.0299)	(0.0215)	(0.0215)
d85	0.346***	0.346***	0.346***
	(0.0299)	(0.0215)	(0.0215)
d86	0.406***	0.406***	0.406***
	(0.0299)	(0.0215)	(0.0215)
d87	0.473***	0.473***	0.473***
	(0.0299)	(0.0215)	(0.0215)
educ	0.0771*** (0.00438)	0.0771*** (0.00918)	0
black	-0.123*** (0.0237)	-0.123** (0.0497)	0
hisp	0.0246 (0.0213)	0.0246 (0.0447)	0
_cons	0.497*** (0.0567)	0.497***	1.393***
N	4360	4360	4360
r2	0.145		0.163

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Por un lado, se puede observar que las estimaciones de POLS y RE son numéricamente idénticas, ya que, si el modelo incluye sólo efectos temporales agregados y covariables específicas del individuo que no tienen variación temporal, entonces, los coeficientes de POLS son iguales a los de RE.

Por otra parte, lo que ocurre si se estima la ecuación por FE es que los coeficientes asociados a las variables constantes en el tiempo no se pueden estimar y, en consecuencia, cuando se incluyen variables constantes en el tiempo, la estimación de la constante en FE no es igual a la estimación de la constante en POLS/RE.

-.017931

.7122189

-.2271964

.2810579

(c) ¿Son iguales los errores estándar de POLS y RE del inciso (b)? ¿Cuáles son, probablemente, más fiables?

Los errores estándar de POLS y RE del inciso (b) no son iguales. Los errores estándar de POLS suponen, además de homocedasticidad, que no hay correlación serial en el error compuesto, es decir, que no considera la posible presencia de heterogeneidad individual no observable. Los errores estándar de RE, al menos, en su estructura estándar, permiten la presencia de correlación serial (en particular, la cual es igual para todos los pares de períodos (t, s)). Esto puede ser demasiado restrictivo, pero es menos restrictivo que los habituales errores estándar de POLS.

(d) Obtener los errores estándar robustos para POLS. ¿Son preferibles estos o los errores estándar habituales de RE?

POLS (con errores estándar robustos):

black | -.1225637 .0532662

.4966384 .1097474

hisp |

cons |

Linear regress	sion			Number F(10, 5 Prob > R-squar Root MS	Fed	= = = =	4,360 49.41 0.0000 0.1448 .4931
		(Sto	d. err.	adjusted	for 545	clust	ers in nr)
 lwage 	 Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
d81 d82 d83 d84 d85 d86 d87 educ	.1193902 .1781901 .2257865 .2968181 .3459333 .4062418 .4730023	.0244086 .0241987 .0243796 .0271485 .0263181 .0273064 .025996	4.89 7.36 9.26 10.93 13.14 14.88 18.20 8.55	0.000 0.000 0.000 0.000 0.000 0.000 0.000	.0714 .1306 .1778 .2434 .2942 .3526 .4219	6558 8968 4894 2358 6029	.1673369 .2257243 .2736761 .3501468 .3976309 .4598807 .5240672

Estos errores estándar robustos son preferibles a los errores estándar habituales de RE, ya que estos errores estándar robustos permiten cualquier tipo de correlación serial y de heterocedasticidad de los disturbios que varían en el tiempo.

.024623 .0411235 0.60 0.550 -.0561573

-2.30 0.022

4.53 0.000

(e) Obtener los errores estándar robustos de RE. ¿Cómo se comparan con los errores estándar robustos de POLS y por qué?

RE (con errores estándar robustos):

9					4,360 545
0.1296			Obs per	group: min = avg = max =	8 8.0 8
- 0 (assumed)	(St	d. err. a	Prob >	chi2 =	494.13 0.0000 ters in nr)
Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
.1781901 .2257865 .2968181 .3459333 .4062418 .4730023 .0770943 1225637 .024623	.0241987 .0243796 .0271485 .0263181 .0273064 .025996 .0090198 .0532662 .0411235	7.36 9.26 10.93 13.14 14.88 18.20 8.55 -2.30 0.60	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.549 0.000	.0715502 .1307616 .1780033 .2436081 .2943508 .3527222 .422051 .0594157 2269636 0559775 .2815375	.1672302 .2256186 .2735696 .3500281 .3975159 .4597613 .5239536 .0947728 0181638 .1052236 .7117392
	c: nr = 0.1625 = 0.1296 = 0.1448 = 0 (assumed) Coefficient	Robust Coefficient std. err. .1193902 .0244086 .1781901 .0241987 .2257865 .0243796 .2968181 .0271485 .3459333 .0263181 .4062418 .0273064 .4730023 .025996 .0770943 .00901981225637 .0532662 .024623 .0411235 .4966384 .1097474	Robust Coefficient std. err. z .1193902 .0244086 4.89 .1781901 .0241987 7.36 .2257865 .0243796 9.26 .2968181 .0271485 10.93 .3459333 .0263181 13.14 .4062418 .0273064 14.88 .4730023 .025996 18.20 .0770943 .0090198 8.55 -1225637 .0532662 -2.30 .024623 .0411235 0.60 .4966384 .1097474 4.53	Coefficient std. err. z P> z .1193902 .0244086 4.89 0.000 .1781901 .0241987 7.36 0.000 .2257865 .0243796 9.26 0.000 .2257865 .0243796 9.26 0.000 .2968181 .0271485 10.93 0.000 .3459333 .0263181 13.14 0.000 .4062418 .0273064 14.88 0.000 .4730023 .025996 18.20 0.000 .4730023 .025996 18.20 0.000 .0770943 .0090198 8.55 0.0001225637 .0532662 -2.30 0.021 .024623 .0411235 0.60 0.549 .4966384 .1097474 4.53 0.000	Number of groups = Obs per group:

sigma_u | .34337144 sigma_e | .35469771 rho | .48377912 (fraction of variance due to u_i)

Tabla comparativa:

	(1) POLS (robu~) R	(2) E (robust)			
d81	0.119*** (0.0244)	0.119***			
d82	0.178*** (0.0242)	0.178*** (0.0242)			
d83	0.226*** (0.0244)	0.226*** (0.0244)			
d84	0.297*** (0.0271)	0.297*** (0.0271)			
d85	0.346*** (0.0263)	0.346*** (0.0263)			
d86	0.406*** (0.0273)	0.406*** (0.0273)			
d87	0.473*** (0.0260)	0.473*** (0.0260)			
educ	0.0771*** (0.00902)	0.0771*** (0.00902)			
black	-0.123** (0.0533)	-0.123** (0.0533)			
hisp	0.0246 (0.0411)	0.0246 (0.0411)			
_cons	0.497*** (0.110)	0.497*** (0.110)			
N r2	4360 0.145	4360			
Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01					

Por lo tanto, se puede observar que estos errores estándar son numéricamente idénticos a los errores estándar robustos de POLS porque se tiene un solo estimador y, entonces, hay una sola varianza robusta.