Esercitazioni Controllo Digitale

Prof. C. Carnevale, claudio.carnevale@unibs.it

Dato il sistema avente funzione di trasferimento:

$$G(s) = \frac{10}{0.1s^2 + 1.1s + 1}$$

- 1. Progettare un controllore C(s) tale che il sistema controllato:
 - 1. Insegua un setpoint a scalino con un errore asintoticamente nullo
 - 2. Abbia una massima sovraelongazione del 10%
 - 3. Arrivi a regime in un tempo di 1s
- 2. Simulare il sistema controllato

Tempo	L(s)	$G_{cl}(s) = \frac{L(s)}{1 + L(s)}$
$e_{\infty}=0$ su ingresso a scalino	$L = \frac{1}{s}\widetilde{L}(s)$	$G_{cl}(0) = 1$
_		

Tempo	L(s)	$G_{cl}(s) = \frac{L(s)}{1 + L(s)}$
$e_{\infty}=0$ su ingresso a scalino	$L = \frac{1}{s}\widetilde{L}(s)$	$G_{cl}(0) = 1$
$S\% < \bar{S}$	$PM = 100\xi$	$G_{cl} \simeq = \mu \frac{\omega_n}{s^2 + 2\xi \omega_n + \omega_n^2}$

Tempo	L(s)	$G_{cl}(s) = \frac{L(s)}{1 + L(s)}$
$e_{\infty}=0$ su ingresso a scalino	$L = \frac{1}{s}\widetilde{L}(s)$	$G_{cl}(0) = 1$
$S\% < \bar{S}$	$PM = 100\xi$	$G_{cl} \simeq = \mu \frac{\omega_n}{s^2 + 2\xi \omega_n + \omega_n^2}$
$Ta_2 \leq \bar{T}$	$\omega_t \ge \bar{\omega}_t$ Se $PM > 75$, $\omega_t \simeq \frac{5}{\bar{T}}$ Se $PM < 75$, $\omega_t = \omega_n$	$ar{T}\simeq rac{4}{\xi\omega_n} \ \omega_n\simeq rac{4}{\xiar{T}}$

Tempo	L(s)	$G_{cl}(s) = \frac{L(s)}{1 + L(s)}$
$e_{\infty}=0$ su ingresso a scalino	$L = \frac{1}{s}\widetilde{L}(s)$	$G_{cl}(0) = 1$
$S\% < \bar{S}$	$PM = 100\xi$	$G_{cl} \simeq = \mu \frac{\omega_n}{s^2 + 2\xi \omega_n + \omega_n^2}$
<u> </u>	$\omega_t \geq \bar{\omega}_t$	_ 4
$Ta_2 \leq T$	Se $PM > 75$, $\omega_t \simeq \frac{5}{\overline{T}}$	$\bar{T} \simeq \frac{4}{\xi \omega_n}$ $\omega_n \simeq \frac{4}{\xi \bar{T}}$
	Se $PM < 75$, $\omega_t = \omega_n$	$\omega_n \simeq \frac{4}{\xi \bar{T}}$
Disturbo d su linea di retroazione	$ L(j\omega) \le X \text{ per } \omega \ge \omega_d$	$ G_{cl}(j\omega) \leq X \text{ per } \omega \geq \omega_d$
a pulsazione ω_d attenuato di X dB		

