

Kurs: Python und Akustik Datum der Abgabe: 23.07.2023

Projekt Raumakustik

User guide

Autor*innen:
Malte Cohrt (473643)
Flora Henning (463764)
Noah Jens (467614)
Moritz Thömen (383306)

Dozent:

Prof. Dr.-Ing. Ennes SARRADJ

Inhaltsverzeichnis

1	Allg	gemeines	1	
2	Berechnungen und Bewertung der Sprachverständlichkeit			
	2.1	Äquivalente Absorptionsfläche	1	
	2.2	Nachhallzeit	2	
	2.3	Sprachverständlichkeit	2	
3	Gra	aphial User Interface (GUI) und Programmfunktionen	3	
	3.1	Nachhallzeitenanalyse	5	
	3.2	Datenbank	5	
	3.3	Feinauslegung	5	
	3.4	User guide	8	
4	Eingabeparameter und Beispiel			
	4.1	Eingabeparameter	8	
	4.2	Schritt für Schritt Beispiel zur Nachhallzeitanalyse	9	
5	Git	GitHub repository		
A	A Anhang - Beispiel PDF Protokoll			
Li	terat	aur	16	

1 Allgemeines

Die Software ermöglicht eine Abschätzung der Nachhallzeit in Anlehnung an DIN EN 12354-6 [1] und eine Bewertung der Sprachverständlichkeit für Räume der Gruppe A nach DIN 18041 [2] (siehe Abschnitt 2.3).

Dabei werden Methoden der statistischen Akustik genutzt, um eine Approximation der vorherrschenden raumakustischen Eigenschaften zu erlangen.

2 Berechnungen und Bewertung der Sprachverständlichkeit

Im folgenden werden Annahmen, Formeln und Limitationen der zugrundeliegenden Berechnungen aufgeführt und diskutiert. In Zuge dessen wird auch auf die Bewertung der Sprachverständlichkeit und ihre Limitationen eingegangen.

2.1 Äquivalente Absorptionsfläche

Die Äquivalente Absorptionsfläche A bildet die Absorptionsflächen des Raumes auf eine vollständig absorbierende Fläche ab und wird nach folgender Formel berechnet:

$$A = \sum_{j} \alpha_{d,j} S_j + A_{luft} \tag{1}$$

Dabei ist α_d der diffuse Absorptionsgrad¹ (im Folgenden nur noch Absorptionsgrad genannt) einer Oberfläche und S der zugehörige Flächeninhalt. A_{luft} gibt die Dämpfung in Luft als zusätzliche äquivalente Absorptionsfläche an und wird nach Gleichung (2) in der DIN EN 12354-6 [1] berechnet. Der Dämpfungskoeffizient ist dafür der Tabelle 1 aus [1] entnommen und konstant für 20°C und einer Luftfeuchtigkeit von 30% bis 50% approximiert, der Objektanteil wird gemäß Abschnitt 4.5 in [1] für leer stehende Räume zu 0,05 approximiert.

Die Gleichung (1) entspricht damit der Gleichung (1) in DIN EN 12354-6 [1] bei Vernachlässigung von Objektabhängiger Absorption. Damit wird die Nachhallzeit für unmöblierte Räume berechnet, dies entspricht in der Regel einer worst case Approximation, da tatsächliche Bedingungen zu kürzeren Nachhallzeiten tendieren, die pure Sprachverständlichkeit nicht beeinträchtigen.

Die Absorptionsgrade sind Frequenzabhängig und werden in Oktavbändern mit den Mittenfrequenzen 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz und 4 kHz angegeben.

Zusätzlich zu der Asorption der raumbegrenzenden Flächen wird der Einfluss von Personen im Raum auf die Äquivalente Absorptionsfläche berücksichtigt (siehe Abschnitt 4.1).

¹Über Einfallswinkel gemittelt.

Das Modell der äquivalenten Absorptionsfläche ist nach Kapitel 4.6 der DIN EN 12354-6 [1] begrenzt auf Räume mit:

- "regelmäßig ausgebildeten Volumina: keine Dimension sollte mehr als das 5fache jede[r] andere[n] Dimension betragen"
- "gleichmäßig verteilter Absorption: der Absorptionsgrad sollte zwischen Paaren gegenüberliegender Oberflächen um nicht mehr als um einen Faktor 3 abweichen, außer wenn einige Schallstreuende Objekte vorhanden sind"
- "nicht zu vielen Objekten"

2.2 Nachhallzeit

Die Nachhallzeit T wird gemäß der Formel (5) in DIN EN 12354-6 [1] berechnet, wobei der Objektanteil - äquivalent zu Abschnitt 2.1 - vernachlässigt und der Faktor $^{55,3}/c_0$ zu 0, 161 approximiert wird. Daraus ergibt sich folgende Berechnung:

$$T = \frac{V}{A} \cdot 0,161 \text{ s m}^{-1} \tag{2}$$

Dabei ist V das Volumen des Raumes.

Da die äquivalente Absorptionsfläche frequenzabhängig ist wird auch die Nachhallzeit in den oben genannten Oktavbändern berechnet.

2.3 Sprachverständlichkeit

Eine Evaluation der Sprachverständlichkeit greift üblicherweise auf Größen zurück, die zeitabhängig sind und eine Art Vergleich von Direktschall und frühen Reflexionen zum gesamten einfallenden Schall beinhalten. In diesem Fall soll jedoch eine Bewertung mithilfe von stationären Größen eines diffusen Schallfeldes vorgenommen werden.

Dazu sollen, entsprechend Abschnitt 4.2.3 in DIN 18041 [2], die Anforderungen an die Nachhallzeit erfüllt werden. Dies kommt keiner Evaluation von zeitabhängigen Parametern der Raumakustik zur Bewertung der Sprachveständlichkeit gleich, gibt jedoch einen groben Überblick bei der Planung und Auslegung von Räumen.

Die Räume der Gruppe A werden in verschiedene Nutzungasarten gegliedert (siehe Tabelle 1), welche ein minimales und maximales Raumvolumen für typische Nutzung aufweisen² und deren volumenabhängige, nutzungsspezifische Nachhallzeiten nach den Formeln (1) bis (6) in

 $^{^2}$ Alle Raumvolumina außerhalb dieser Grenzen werden nicht berücksichtigt - Werte in Abschnitt 4.2.3 der DIN 18041 [2].

Abbildung 1: Fehlerschranken des Vergleichs von Nachhallzeit T zu Soll-Nachhallzeit T_soll nach DIN 18041 [2]

DIN 18041 [2] berechnet werden.

Diese Soll-Nachhallzeit wird anschließend mit der nach Gleichung (2) abgeschätzten Nachhallzeit verglichen. Wenn der Wert dieses Nachhallzeitenvergleichs in den frequenzabhängigen Fehlerschranken der Abbildung 1 liegt gelten die Anforderungen an die Nachhallzeit als erfüllt und in diesem Sinne die Sprachverständlichkeit im Maße der "Subjekiven Wahrnehmung" in Tabelle 1 als gegeben.

Eine zu lange Nachhallzeit ist bei der Auslegung der Raumakustik kritischer zu betrachten als eine zu kurze. Es ist ein "linearer frequenzabhängiger Verlauf der Nachhallzeit anzustreben, [...] [j]edoch beeinträchtigt ein moderater Anstieg der Nachhallzeit zu tiefen Frequenzen die Hörsamkeit nicht" [2].

3 Graphial User Interface (GUI) und Programmfunktionen

Im folgenden Abschnitt wird die grafische Schnittstelle zwischen user und Programm (GUI: Graphical-User-Interface) vorgestellt.

Das Programm hat mehrere Seiten (Nachhallzeitenanalyse, Datenbank, Feinauslegung, User guide), die über einen Pfeil in der linken oberen Ecke der Startseite abrufbar sind (siehe

Tabelle 1: Kurzbezeichung und Beschreibung der Nutzungsarten von Räumen der Gruppe A $\,$ - Verändert auf Grundlage von Tabelle 1 in [2]

Kurzbeschreibung in Interface	Beschreibung	Subjektive Wahrnehmung
Musik	Vorwiegend musikalische Darbietungen	Gute Hörsamkeit für unverstärkte Musik. Sprachliche Darbietungen sind nur mit gewissen Einschränkungen der Sprachverständlichkeit möglich.
Sprache/ Vortrag	Sprachliche Darbietungen stehen im Vordergrund, in der Regel von einer (frontalen) Position. Gleichzeitige Kommunikation zwischen mehreren Personen an verschiedenen Stellen im Raum wird selten durchgeführt.	Sprachliche Darbietungen einzelner Sprecher erzielen eine hohe Sprachverständlichkeit. Musikalische Darbietungen werden in der Regel als zu transparent und klar empfunden, jedoch günstig für musikalische Probenarbeit.
Sprache/ Vortrag inklusiv	Räume der Nutzungsart "Sprache/ Vortrag" für Personen, die in besonderer Weise auf gutes Sprachverstehen angewiesen sind	Sprachliche Darbietungen einzelner Sprecher erzielen eine hohe Sprachverständlichkeit, auch für Personen mit Höreinschränkungen oder bei z. B. fremdsprachlicher Nutzung.
Unterricht/ Kommunikation	Kommunikationsintensive Nutzungen mit mehreren gleichzeitigen Sprechern verteilt im Raum	Sprachliche Kommunikation ist mit mehreren (teilweise gleichzei- tigen) Sprechern möglich.
Unterricht/ Kommunikation inklusiv	Kommunikationsintensive Nutzungen mit mehreren gleichzeitigen Sprechern verteilt im Raum entsprechend Nutzungsart "Sprache/ Vortrag inklusiv" bzw. "Unterricht/ Kommunikation", jedoch für Personen, die in besonderer Weise auf gutes Sprachverstehen angewiesen sind. Für Räume größer als 500 m3 und für musikalische Nutzungen ist diese Nutzungsart nicht geeignet.	Sprachliche Kommunikation ist mit mehreren (teilweise gleichzeitigen) Sprechern möglich, auch für Personen mit Höreinschränkungen oder bei z. B. fremdsprachlicher Nutzung.
Sport	In Sport- und Schwimmhallen kommunizieren mehrere Grup- pen (auch gleichzeitig) mit unter- schiedlichen Inhalten	Sprachliche Kommunikation über kurze Entfernungen ist im Allgemeinen gut möglich.

Abbildung 2) und im folgenden näher erläutert werden.

3.1 Nachhallzeitenanalyse

Auf der Startseite findet die Nachhallzeitenanalyse statt. Nach Eingabe der nötigen Parameter (erläuterung der Parameter in Abschnitt 4.1 und Beispiel in Abschnitt 4.2) kann im Bereich Ergebnisse die Nachallzeit sowie der Nachhallzeitenvergleich (erklärung in Abschnitt 2.3) in Oktavbändern grafisch ausgegeben werden. Dies geschieht durch Auswahl des jeweiligen Reiters und Betätigen der Schaltflächen "Nachhallzeit berechnen" bzw. "Nachhallzeitenvergleich berechnen" (siehe Abbildung 3).

Am Ende der Nachhallzeitenanalyse können die Eingabeparameter in einer ".json" Session-Datei exportiert werden, sodass später daran weiter gearbeitet werden kann. Dementsprechend kann zu Anfang der Nachallzeitenanalyse eine bestehende Session importiert werden.

3.2 Datenbank

Die Inhalte der Datenbank sind ausfürhlich auf der Seite "Datenbank" zu finden (für seiten-Navigation siehe Abbildung 2).

Sie beinhaltet die frequenzabhängigen Absorptionsgrade, welche in Oktavbändern mit den Mittenfrequenzen 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz und 4 kHz angegeben werden (siehe Abbildung 4). Als Quelle der Datenbank dienen dabei die Tabelle G.1 der DIN 18041 [2] und Teile einer Datenbank der Physikalisch-Technischen Bundesanstalt [3].

Die Datenbank ist standardmäßig in 4 Kategorien eingeteilt:

- Wand
- Boden
- Decke
- Absorber

Den Kategorien können individuelle Materialien hinzugefügt werden (genaue Beschreibung in Abschnitt 4.2.5).

Außerdem kann die Datenbank nach Kategorien oder Frequenzen gefiltert werden, um für ein Frequenzband das Material mit dem maximalen Absorptionsgrad zu finden.

3.3 Feinauslegung

Wenn der gegebene Raum die Anforderung an die Nachhallzeit nicht erfüllt kann mit dem tool Feinauslegung eine Anpassung vorgenommen werden.

(a) In rot markierter Pfeil öffnet Liste der Seiten

(b) Liste der Seiten

Abbildung 2: Anleitung zum Abrufen der Seiten

Abbildung 3: Plot der Nachhallzeit im Abschnitt "Ergebnisse" der web-app

Abbildung 4: Seite der Datenbank

Dabei wird der Flächeninhalt einer Subfläche mit einem Slider skaliert und die Auswirkungen auf die Nachhallzeit bzw. den Nachhallzeitenvergleich in einem Graph direkt abgelesen. Damit ist eine schnellere und übersichtlichere Möglichkeit gegeben die raumakustischen Verhältnisse zu verändern und die (maximalen) Auswirkung abschätzen zu können.

Im Falle von Absorbermaterial sollte die Position im Raum nach Abschnitt 5.4 in DIN 18041 [2] ausgewählt werden.

3.4 User guide

Auf der Seite "User guide" kann dieses Dokument direkt in der web-app aufgerufen und heruntergeladen werden.

4 Eingabeparameter und Beispiel

Im folgenden Abschnitt werden die Eingabeparameter des Programms und ein Schritt für Schritt Beispiel der Nachhallzeitenanalyse vorgestellt.

4.1 Eingabeparameter

Für die Berechnung der Nachhallzeit und dem Vergleich zur Soll-Nachhallzeit sind folgende Parameter nötig:

Nutzungsart

Festlegung der Nutzungsart nach DIN 18041 [2], entsprechend der Tabelle 1.

Raumvolumen

Es wird das Volumen des leeren Raumes in Kubikmetern angegeben werden.

Anzahl und Namen der Grundflächen

Eine Grundfläche bezeichnet die Fläche der gesamten raumbegrenzenden Fläche. Schallabsorbierende Elemente, Türen, Fenster oder ähnliche Elemente an der Wand, die einen anderen Absorptionsgrad haben werden als Subflächen bezeichnet (vergleiche Abbildung 5). Diese Kategorisierung soll eine übersichtlichere Auflistung der Wandelemente ermöglichen.

Flächeninhalt der Wände

Die Flächeninhalte von Grundflächen und Subflächen werden getrennt, jeweils in Quadratmetern, angegeben. Während der Berechnung der äquivalenten Absorptionsfläche werden Flä-

Abbildung 5: Schematische Darstellung von Grund- und Subflächen

cheninhalte der Subflächen mit denen der Grundfläche verrechnet, um die Nachhallzeit zu ermitteln.

Material der Wände

Das Material der Wände ist frequenzabhängigen Absorptionsgraden zugeordnet und wird für Grundflächen und Subflächen festgelegt.

Die Materialien und zugehörige Absorptionsgrade sind in der Datenbank abgelegt (siehe Abschnitt 3.2).

Personen im Raum

Um die Nachhallzeit an die Personen im Raum anzupassen wird ein Wert zur Äquivalenten Absorptionsfläche addiert, welcher von zwei Parametern abhängt.

Aus einer Datenbank, welche mit den Einträgen aus Tabelle A.1 in DIN 18041 [2] gefüllt ist, wird eine der gegebenen Personenbeschreibungen ausgewählt. Diese korrespondiert mit einer frequenzabhängigen Schallabsorptionsfläche je Person, welche durch Multiplikation mit der Personenanzahl die zu addierende äquivalente Absorptionsfläche ergibt.

4.2 Schritt für Schritt Beispiel zur Nachhallzeitanalyse

Im folgenden Abschnitt wird eine Schritt für Schritt Anleitung zum Aufbau einer Nachhallzeitenanalyse vorgestellt. Informationen zu den Parametern, Auswahlmöglichkeiten in dropdown Menüs und deren Quelle sind in Abschnitt 4.1 besprochen.

Abbildung 6: Beispiel vom hochladen einer bestehenden Session-Datei

Abbildung 7: Eingabeparameter für die Nachhallzeitenanalyse

0. Laden einer Session-Datei

Gegebenenfalls kann unter dem ersten Menüpunkt "Session-Datei hochladen" eine bestehende Session importiert werden (mehr zur Speicherung folgt weiter unten).

Nachdem die ".json" Datei hochgeladen wurde muss die Session mit der Schaltfläche "Session aktualisieren" in die web-app geladen werden (siehe Abbildung 6.

1. Nutzungsart

Es wird die Kurzbeschreibung der Nutzungsart aus einem dropdown Menü ausgewählt (siehe Abbildung 7).

2. Volumen

Im Eingabefeld wird das Volumen des leeren Raumes angegeben (siehe Abbildung 7).

3. Name der Grundfläche

Mithilfe des Eingabefeldes kann jede Grundfläche individuell benannt werden. Nach dem Eingeben des Namens wird die Grundfläche durch drücken der Schaltfläche "Hinzufügen" in den

Abbildung 8: Eingabe von Personen

Reiter aufgenommen (siehe Abbildung 7).

Die zuletzt hinzugefügte Grundfläche kann wieder entfernt werden, indem die Schaltfläche "Entfernen" betätigt wird.

4. Personen

Bei Auswahl der checkbox "Personen" erscheint ein neuer Reiter (siehe Abbildung 8).

Im linken Feld wird in einem dropdown Menü die Beschreibung der Personen abgefragt. Anschließend wird in einem Textfelf auf der rechten Seite die Anzahl der Personen mit dieser Beschreibung eingetragen.

Falls sich mehrere Personengruppen mit verschiedenen Beschreibungen im Raum befinden kann über die Schaltfläche "Add Personen" eine Gruppe hinzugefügt werden. Die Eingabe erfolgt äquivalent zur ersten.

Mit der "Remove Personen" Schaltfläche kann die unterste Personengruppe entfernt werden.

5. Grund- und Subflächen

Jede Grundfläche hat einen eigenen Reiter (siehe Abbildung 7).

Im linken Eingabefeld wird der Flächeninhalt der entsprechenden Grundfläche angegeben. Im mittleren Eingabefeld wird die Kategorie des Wandmaterials aus einem dropdown Menü ausgewählt. Im rechten Eingabefeld wird das Wandmaterial aus der entsprechenden Kategorie mithilfe eines dropdown Menüs gewählt.

Darunter befindet sich die Schaltfläche "Subfläche hinzufügen", über welche eine Subwand auf der korrespondierenden Grundfläche erzeugt wird. Äquivalent zu der Eingabe der Grundflächenparameter wird hier die Subfläche charakterisiert.

Mit der Schaltfläche "Subfläche entfernen" kann der letzte Eintrag aus der Liste entfernt werden.

Falls ein neues Material hinzugefügt werden soll muss zuerst auf die Seite "Datenbank" navigiert werden (für seiten-Navigation siehe Abbildung 2). Dort können im unteren Abschnitt der Seite das neue Material, die Zielkategorie und die Absorptionsgrade in Oktavbändern von 125 Hz bis 4000 Hz angegeben werden (siehe Abbildung 4). Die Absorptionsgrade haben dabei einen Punkt als Dezimaltrennzeichen und müssen mit einem Komma getrennt werden.

Der Eintrag muss mit der Schaltfläche "Eintrag hinzufügen" bestätigt werden. Das neue Material befindet sich nach dem Bestätigen in der Datenabank.

6. Ergebnisse

Im unteren Teil der web-app werden die Ergebnisse grafisch dargestellt. Dabei kann im Reiter "Nachhallzeit" die Nachhallzeit geplottet werden und im Reiter "Nachhallzeitenvergleich" die Abweichung zur Soll-Nachhallzeit nach Abbildung 1 angezeigt werden. Wenn der Nachhallzeitenvergleich eines Oktavbandes außerhalb der Fehlerschranken liegt wird der entsprechende Teil des Graphen rot angezeigt, ansonsten blau. Wenn alle Teile des Graphen blau sind ist die Sprachverständlichkeit im Maße der "Subjektiven Wahrnehmung" in Tabelle 1 gegeben.

Die Graphen können zudem als ".png" Datei heruntergeladen werden, indem auf das Foto icon in der oberen rechten Ecke der Graphen geklickt wird.

7. Feinauslegung

Über die Seite Feinauslegung (für seiten-Navigation siehe Abbildung 2) kann eine bessere Abstimmung der Nachhallzeit und des Nachhallzeitenvergleichs vorgenommen werden (siehe 3.3).

Dazu wird in der ersten Eingabe die Grundfläche ausgewählt, auf der die zu variierende Subfläche liegt. Anschließend wird die Subfläche aus dem Reiter auf der rechten Seite ausgewählt (siehe Abbildung 9).

Mit dem darunter liegenden Slider kann der Flächeninhalt der Subfläche skaliert werden. Nun können verschiedene Konfigurationen von akustisch wirksamen Subflächen getestet werden, um eine optimale Nachhallzeit zu finden.

Wenn die Feinauslegung zufriedenstellend ist können die Einstellungen auf dem unteren Teil der Seite mit der Schaltfläche "Übernehmen" in die Nachhallzeitenanalyse übertragen werden.

8. PDF Protokoll und Session-Datei exportieren

Unter dem Abschnit Exportieren der Ergebnisse kann mit der Schaltfläche "Erstellen der PDF und Session-Datei" ein PDF Protokoll mit den Eingabeparametern und Graphen, sowie eine Session-Datei zur weiteren Bearbeitung der Session generiert werden (siehe Abbildung 10). Nachdem die Dateien erstellt worden sind können sie über die Schaltfläche "Download" zusammen in einer ".zip" Datei heruntergeladen werden.

Abbildung 9: Feinauslegung der Nachhallzeitenanalyse

Abbildung 10: Abschnitt zum herunterladen von PDF Protokoll und Session-Datei (nach betätigen der "Erstellden der PDF und Session-Datei" Schaltfläche)

Ein Beispiel des PDF Protokolls ist im Anhang A gezeigt.

5 GitHub repository

Der gesamte Programmcode ist in einem GitHub repository zur Verfügung gestellt, welches über https://github.com/moritzxt/raumakustik/blob/main/Nachhallzeitenanalyse.py aufgerufen werden kann.

Neben dem Quellcode enthält das repository eine Readme zur ersten Orientierung und eine mit Sphinx genertierte Dokumentation. In der Dokumentation wird kurz und knapp das Setup und Starten des Programms beschrieben und in Bildern ein Überblick über die Funktionalität geliefert sowie der Quellcode dokumentiert.

A Anhang - Beispiel PDF Protokoll

Protokoll Nachhallzeitenanalyse

Nutzungsart: Sprache/Vortrag

Volumen: 400 m³

Personen

Beschreibung: Person sitzend auf ungepolsterter Bestuhlung

Anzahl: 50

Wand 1

Fläche: 50 m²
Kategorie: Wand
Material: Glattputz
Subwand 1:
Fläche: 30.0 m²

Kategorie: Absorber

Material: Holzwolle-Leichtbauplatten 35 mm , direkt auf Wand

Wand 2

Fläche: 50 m² Kategorie: Wand Material: Glattputz

Wand 3

Fläche: 25 m²
Kategorie: Wand
Material: Glattputz
Subwand 1:
Fläche: 2.0 m²
Kategorie: Wand
Material: Tür, Holz, lackiert

Wand 4

Fläche: 25 m² Kategorie: Wand Material: Glattputz

Boden

Fläche: 200 m² Kategorie: Boden

Material: Parkettfußboden, auf Blindboden

Decke

Fläche: 200 m²
Kategorie: Wand
Material: Glattputz
Subwand 1:

Fläche: 50.0 m² Kategorie: Decke

Material: Gipsplatten Rasterdecke 12/25 Quadratlochung, 7,8 % Lochflächenanteil, 65 mm zur Rohdecke, Akustikvlies, 20 mm

Mineralwollauflage

Nachhallzeitenvergleich

Nachhallzeit

Literatur

- [1] DIN EN 12354-6:2004-04. Bauakustik Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften Teil 6: Schallabsorption in Räumen; Deutsche Fassung EN 12354-6:2003. Beuth Verlag GmbH.
- [2] DIN 18041:2016-03. Hörsamkeit in Räumen Anforderungen, Empfehlungen und Hinweise für die Planung. Beuth Verlag GmbH.
- [3] Physikalisch-Technische Bundesanstalt. THE ROOM ACOUSTICS ABSORPTION CO-EFFICIENT DATABASE. https://www.ptb.de/cms/ptb/fachabteilungen/abt1/fb-16/ag-163/absorption-coefficient-database.html. Accessed: 27.06.2023.