First-Order Predicate Logic (FOL)

Symbols

- usually $c, d, c_1, c_2, ..., d_1, d_2 ...$ Constant symbols
- Variables usually $x, y, z, ..., x_1, x_2, ..., y_1, y_2 ...$
- usually $f, g, h, ..., f_1, f_2, ..., g_1, g_2$, ... Function symbols
- usually P, Q, ..., P_1 , P_2 , ..., Q_1 , Q_2 , ... Predicate symbols (relation symbols)
- Connectives \neg . \land . \lor . \rightarrow . and \leftrightarrow
- Quantifiers ∀ and ∃
- '(', ')', and ',' Punctuation

Term

- Atomic term Any constant symbol or variable symbol.
- Function application t_1, \ldots, t_n are terms, f is an n-ary function symbol, then $f(t_1, \ldots, t_n)$ is a term.
 - \bigwedge For n=2 you may use infix notation $(t_1 f t_2)$
- Closure Nothing else is a term.

Formulae

- Atomic formula Expression of the form $P(t_1, ..., t_n)$, where P is an n-ary predicate symbol and each t_i is a term (1 $\leq i \leq$ n).
 - \wedge For n=2 you may use infix notation $(t_1 \ P \ t_2)$
- 2 Negation If α is a formula, then $(\neg \alpha)$ is a formula.
- 3 Binary connective If α , β are formulae, and \circledast is a binary connective, then $\alpha \circledast \beta$ is a formula.
- 4 Quantifiers If α is a formula, and x is a variable, then each of $(\forall x \alpha)$ and $(\exists x \alpha)$ is a formula.
- Closure Nothing else is a formula.

Semantics

- f A Interpretation $\mathcal I$
 - Domain/Universe Non-empty set $dom(\mathcal{I})$
 - Constants For each constant symbol c, a member $c^{\mathcal{I}} \in \text{dom}(\mathcal{I})$
 - Functions For each function symbol $f^{(i)}$, an *i*-ary function $f^{\mathcal{I}}$
 - Relations For each relation symbol $R^{(i)}$, an *i*-ary relation $R^{\mathcal{I}}$
- **B** Environment E Assigns a value to each variable
- C Satisfaction of Formulas An iterpretation \mathcal{I} and an environment E satisfy a formula α , denoted $\mathcal{I} \models_E \alpha$, if $\alpha^{(\mathcal{I}, E)} = T$, or $\mathcal{I} \models \alpha$, if $\alpha^{(\mathcal{I}, E)} = T$ for all environments