Ray Tracing, Part II

Geoffrey Matthews

Department of Computer Science Western Washington University

Fall 2015

Shading: Phong Reflection

- ▶ Phong reflection model, a combination of three simple shaders
- ▶ A phenomenological model, not a physical one.

Phong reflection

Colors calculated using three vectors:

- Orientation of the surface (the normal)
- Direction toward light
- ▶ Direction toward camera (or *eye*)

Spheres: finding the normal at a point

▶ How do we find the normal?

Spheres: finding the normal at a point

- ► How do we find the normal?
- \triangleright n = p c

(may need to normalize)

▶ How do we find the vector pointing toward the camera?

How do we find the vector pointing toward the camera? camera_position - point_on_sphere

- How do we find the vector pointing toward the camera? camera_position - point_on_sphere
- ▶ How do we find the vector pointing toward the light?

- How do we find the vector pointing toward the camera? camera_position - point_on_sphere
- ▶ How do we find the vector pointing toward the light?
- Depends on the kind of light.
 - Distant lights, like the sun, are a fixed direction.
 - Point lights, are located at a point: light_position point_on_sphere

Shading: Phong Reflection

Given normal, light, and eye vectors, how do we compute each of these factors?

The Ambient Term

- Light comes reflected and mixed from all objects in the environment.
- ▶ Approximate this with a small amount of white light.
- Without this we would get totally black shadows.
- Doesn't use any of the vectors—totally flat.

The Diffuse Term

- Gives the shading falloff of light.
- Side oriented toward light: full object color.
- ▶ Side oriented away from light: black.

The Diffuse Term: Lambertian Reflection

- Objects with rough surfaces reflect light equally in all directions.
- ► Light energy **coming off** surface in any direction will be proportional to the amount of light **falling on** the surface.

The Diffuse Term: Lambertian Reflection

- Light energy falling on a surface is proportional to the cosine of the angle of incidence of the light source.
- ▶ Therefore the diffuse term will be proportional to the cosine of the angle of incidence of the light source.
- Depends only on the light and normal vectors.

The Specular Term

- ▶ Shiny spots are tiny blurry images of the light source.
- They depend on normal, light, and eye vectors.
- ▶ If you move your head, the shiny spots will move, but the lambertian shade will stay the same.

The Specular Term

- ▶ Smooth surfaces act a bit like mirrors.
- Intensity of light will fall off more or less rapidly from the ideal (mirror) reflection vector.
- How do you calculate the reflection vector?

The Reflection Vector

Assume all vectors are normalized, find r

The Reflection Vector

- ▶ Assume all vectors are normalized, find *r*
- $r = \ell 2(\ell (n \cdot \ell)n)$

The Reflection Vector

- ▶ Assume all vectors are normalized, find *r*
- $r = \ell 2(\ell (n \cdot \ell)n)$
- Use $\cos(\phi) = r \cdot e$

Shininess

 $ightharpoonup \cos(x)^i$ for $i \in \{1, 2, 4, 8, 16, 32\}$

Specular reflection

- ► Specular coefficient in (0.25, 0.5, 0.75)
- ► Shininess in (3, 9, 200)

The Halfway Vector: a speed hack

- ▶ Use vector halfway between e and ℓ
- ▶ If n = h, we get the brightest possible reflection.
- Use $cos(\beta) = h \cdot n$ for the falloff.
- ▶ This angle β is about half the angle ϕ found before.
- We can adjust the shininess to handle that.

The Halfway Vector

Add up all the terms

$$k_a C_a + \sum_{m \in \text{lights}} (k_d (L_m \cdot N) C_{m,d} + k_s (R_m \cdot E)^{\alpha} C_{m,s})$$

 C_a, C_s, C_d = ambient, specular, diffuse colors

 k_a, k_s, k_d = ambient, specular, diffuse reflection constants

 $\alpha = \text{shininess}$

 L_m = light vector

N = surface normal

E = eye vector

 R_m = light vector reflected about normal

 $= 2(L_m \cdot N)N - L_m$

Phong reflection

$$k_a C_a + \sum_{m \in \text{lights}} (k_d (L_m \cdot N) C_{m,d} + k_s (R_m \cdot E)^{\alpha} C_{m,s})$$

Phong examples

Microfacets

- ► Assume a surface is made up of tiny mirrors.
- The statistical distribution of these facets will determine the reflection in each direction.
- More sophisticated stochastic models such as these give better approximations to some surfaces than Phong reflection.