Series de Tiempo Introducción

Edgar Javier López Moreno

Universidad los Libertadores

Marzo, 2020

Índice

- 1 Introducción
- 2 Conceptos Fundamentales
- 3 Tendencia
- 4 Códigos en R

Contenido Básico del Curso

- Clase 1: Introducción
- Clase 2: ARMA y ARIMA
- Clase 3: Raíz unitaria y estimación
- Clase 4: Diagnostico y pronostico

Cryer y Chan (2008), Time Series Analysis with applications in R. Wei, W. (2005), Time Series Análisis: Univariate and Multivariate Methods.

Introducción

Series de tiempo en la vida cotidiana

- Meteorología
- Economía
- Agricultura

Objetivo

Modelar y predecir valores futuros basados en la historia

Ejemplo Meteorología

Metodología Box - Jenkins

- Paso 1: **Especificación del modelo:**Buscar modelos tentativos y el menor número de parámetros (principio de parsimonia).
- Paso 2: **Ajuste del modelo:**Realizar las mejores estimaciones.
- Paso 3: **Diagnóstico:**Evaluar la calidad del modelo que se especificó y estimó.
- Paso 4: Si la evaluación del modelo es buena, se procede a realizar pronósticos, de los contrario se debe volver a comenzar desde el Paso 1.

Definiciones importantes

Proceso estocástico

La secuencia de variables aleatorias $\{y_t: t=0,\pm 1,\pm 2,...\}$ es llamado proceso estocástico y sirve como modelo para una serie de tiempo observada.

Función de media

Para el proceso estocástico $\{y_t: t=0,\pm 1,\pm 2,...\}$ la función de media es definida por $\mu_t=E(y_t)\ \forall t=0,\pm 1,\pm 2,...$

Definiciones importantes

Función de autocovarianza

La función de autocovarianza $\gamma_{t,s}$ es definida como

$$\gamma_{t,s} = Cov(y_t, y_s) \ \forall t, s = 0, \pm 1, \pm 2, \dots$$

donde
$$Cov(y_t, y_s) = E[(y_t - \mu_t)(y_s - \mu_s)] = E(y_t y_s) - \mu_t \mu_s$$

Función de autocorrelación

La función de autocorrelación $\rho_{t,s}$ es definida como

$$\rho_{t,s} = \frac{\textit{Cov}(\textit{y}_t,\textit{y}_s)}{\sqrt{\textit{Var}(\textit{y}_t)\textit{Var}(\textit{y}_s)}} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}} \ \forall t,s=0,\pm 1,\pm 2,...$$

Propiedades de las funciones de autocovarianza y autocorrelación

$$\gamma_{t,t} = Var(y_t)$$

$$\gamma_{t,s} = \gamma_{s,t}$$

$$|\gamma_{t,s}| \leq \sqrt{\gamma_{t,t}\gamma_{s,s}}$$

$$\rho_{t,t} = 1$$

$$\rho_{t,s} = \rho_{s,t}$$

■
$$|\rho_{t,s}| \le 1$$

 $\rho_{t,s}$ cercano a ± 1 indica fuerte dependencia lineal. $\rho_{t,s}$ cercano a 0 indica debil dependencia lineal. $\rho_{t,s}$ igual a 0 se dice que y_t y y_s están no correlacionados.

Definición: Caminata Aleatoria

Sea e_1, e_2, e_3, \ldots una secuencia de variables aleatorias independientes e idénticamente distribuidas (iid) con media cero y varianza σ_e^2 . Sea $\{y_t: t=0,\pm 1,\pm 2,\ldots\}$ construido como:

$$y_1 = e_1$$

 $y_2 = e_1 + e_2$
 \vdots
 $y_t = e_1 + e_2 + ... + e_t \longrightarrow y_t = y_{t-1} + e_t$

Así, tenemos que:

$$\mu_t = E(y_t) = \sum_{i=1}^t E(e_i) = 0$$
 $Var(y_t) = var\left(\sum_{i=1}^t e_i\right) = t\sigma_e^2$

Caminata Aleatoria

Supongamos que $1 \le t \le s$, entonces

$$\gamma_{t,s} = Cov(y_t, y_s)$$

$$= \sum_{i=1}^{s} \sum_{j=1}^{t} Cov(e_i, e_j)$$

$$= t\sigma_e^2$$

Luego $\rho_{t,s}$ para una caminata aleatoria es obtenida como:

$$\rho_{t,s} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}}$$
$$= \sqrt{\frac{t}{s}}$$

Definición: Media Móvil

Sea
$$\{y_t:t=0,\pm1,\pm2,...\}$$
 construida como: $y_t=rac{e_t+e_{t+1}}{2}$ luego,
$$\mu_t=E\left(rac{e_t+e_{t+1}}{2}
ight)=0$$

$$Var(y_t)=rac{1}{2}\sigma_e^2$$

Media Móvil

Tenemos así que:

$$\gamma_{t,s} = egin{cases} rac{\sigma_e^2}{2} &, & |t-s| = 0 \ rac{\sigma_e^2}{4} &, & |t-s| = 1 \ 0 &, & |t-s| > 1 \end{cases}$$
 $ho_{t,s} = egin{cases} 1 &, & |t-s| = 0 \ rac{1}{2} &, & |t-s| = 1 \ 0 &, & |t-s| > 1 \end{cases}$

Definición: Estacionariedad

Estrictamente Estacionario

Un proceso $\{y_t\}$ se dice estrictamente estacionario si la distribución conjunta de $y_{t_1}, y_{t_2}, ..., y_{t_n}$ es la misma distribución conjunta de $y_{t_1-k}, y_{t_2-k}, ..., y_{t_n-k}$ para todas las escogencias de $t_1, t_2, ..., t_n$.

Propiedades Estacionariedad

Así, tenemos que:

$$E(y_t) = E(y_{t-k})$$

 $Var(y_t) = Var(y_{t-k})$

Lo cual implica que $Cov(y_t, y_s) = Cov(y_{t-k}, y_{t-s})$ Si k = s, tenemos que:

$$\gamma_{t,s} = Cov(y_{t-s}, y_0) = Cov(y_0, y_{t-s})$$

$$= Cov(y_0, y_{|t-s|})$$

$$= \gamma_{0,|t-s|}$$

Propiedades Estacionariedad

Simplificando, podemos escribir $\gamma_k = Cov(y_t, y_{t-k})$, luego:

$$\rho_{k} = Corr(y_{t}, y_{t-k})$$
$$= \frac{\gamma_{k}}{\gamma_{0}}$$

- $\gamma_k = \gamma_{-k}$
- $|\gamma_k| \leq \gamma_0$
- $\rho_0 = 1$
- $\rho_{k} = \rho_{-k}$
- $|\rho_k| \leq 1$

Definición: Débilmente Estacionaria

Débilmente Estacionario

Un proceso $\{y_t\}$ se dice débilmente estacionario o de segundo orden si:

- La función de media es constante para todo t.
- $\gamma_{t,t-k} = \gamma_{0,k}$ para t y k.

Definición: Ruido Blanco

Ruido Blanco

Un proceso $\{e_t\}$ iid estrictamente estacionario con media constante μ_t , $\gamma_k = Var(e_t)$ y $\rho_k = 1$ para todo k = 0.

Tendencia

En un proceso estacionario la función de media puede ser constante en el tiempo, pero no necesariamente es así. Vamos a considerar funciones relativamente simples.

Estimación de la función de media

Media constante

 $y_t = \mu + x_t$, con $E(x_t) = 0$ para todo t. Podemos estimar μ con \overline{Y}

Métodos de regresión

Considerando $\mu_t = \beta_0 + \beta_1 t$ y por mínimos cuadrados tenemos que:

$$\widehat{\beta_1} = \frac{\sum_{t=1}^n (y_t - \overline{Y})(t - \overline{t})}{\sum_{t=1}^n (t - \overline{t})^2}, \quad \widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \overline{t}$$

luego
$$\widehat{\mu_t} = \widehat{\beta_0} + \widehat{\beta_1}\overline{t}$$
 con $\overline{t} = (n+1)/2$.

Ejemplos de estimación de la media

Tendencia estacional o cíclico

Considere el modelo $y_t = \mu_t + x_t$ donde $E(x_t) = 0$ para todo t y la estimación estacional. Luego,

$$\mu_t = \begin{cases} \beta_1 & \textit{para} \quad t = 1, 13, 25, \dots \\ \beta_2 & \textit{para} \quad t = 2, 14, 26, \dots \\ & \vdots \\ \beta_{12} & \textit{para} \quad t = 12, 24, 36, \dots \end{cases}$$

Ejemplos de estimación de la media

Ejemplos de estimación de la media

Análisis de ajuste a la regresión

Desviación estándar residual

$$s = \sqrt{\frac{1}{n-p} \sum_{t=1}^{n} (y_t - \widehat{\mu}_t)^2}$$

con:

- p el número de parámetros.
- \blacksquare n-p los grados de libertad.

Un valor pequeño de s significa un buen ajuste.

Coeficiente de determinación R^2

El coeficiente de determinación es la correlación que hay entre la serie observada y la estimada.

Función de autocorrelación

La función de autocorrelación muestral se define como,

$$\gamma_k = \frac{\sum_{t=k+1}^{n} (y_t - \overline{Y})(y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (y - \overline{Y})^2} \quad k = 1, 2, \dots$$

Autocorrelograma

Códigos en R

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- · Download R for Linux
- Download R for (Mac) OS X
- · Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

Sistema de carpetas

```
doc inpath outpath src
```

