MATH-F-112 - MATHÉMATIQUES Exercices - Module A Nicolas Richard

Renato Costa Ribeiro

 $25~{\rm septembre}~2015$

Table des matières

1 Logique 2

Chapitre 1

Logique

Rappel:

Logique

NON/NOTonjonctionDisjonAtNon/nopli/caRon

A	$\neg A$	A	В	$A \wedge$	BB		\mathbb{B}	$A \Rightarrow B$
0	1	0	0	0.0	0	00	0	1
1	0	0	1	0 0	01	01	$1 \parallel$	1
		1	0	1 0	00 00	11	$0 \parallel$	0
		1	1	1 1	$1 \parallel \parallel$	11	$1 \parallel$	1

Démonstration par récurrence

On veut une propriété P(m) por tout $m \in \mathbb{N}$

· Cas de base : Montrons P(0)

· Cas récursif :

Supposons que P(m) est vrai pour m=k $(k \in \mathbb{N} \text{ quelconque})$ et montrons P(m) pour m=k+1

· Remarque :

 $\overline{P(k)}$ s'appelle l'hypothèse de récurrence

1.1

1.2

$$(1)$$
. $A \lor B \lor C$

$$(2). C \Rightarrow A$$

$$(3). B \Rightarrow (A \lor C)$$

Pour savoir si A est le coupable il faut : $(1) \land (2) \land (3)$

			$A \lor B \lor C$	$C \Rightarrow A$		$B \Rightarrow (A \lor C)$
\mathbf{A}	В	\mathbf{C}	$ \qquad \qquad (1)$	(2)	$A \vee C$	(3)
0	0	0	0	1	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Comme nous pouvons le constater, la dernière colonne uprouve que $(1) \land (2) \land (3) \Leftrightarrow A$. A est donc le coupable.

1.3

a. Faux. Faisons une table de vérité pour le cas où $P \Rightarrow L$ et $L \Rightarrow P$. Le résultat n'est pas le même. L'affirmation est donc fausse.

P	L	$P \Rightarrow L$	$L \Rightarrow P$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

- b. Vrai. $E \Rightarrow C$ et $C \Rightarrow P$.
- c. Faux. $(P \lor T) \Leftrightarrow (P \Rightarrow \neg T)$

P	T	$\neg T$	$P \vee T$	$P \Rightarrow \neg T$
0	0	1	0	1
0	1	0	1	1
1	0	1	1	1
1	1	0	1	0

- d. Vrai. $R \Rightarrow H$
- e. Vrai. $N \Rightarrow F$
- f. Faux. $(D \Rightarrow P) \Leftrightarrow (\neg D \Rightarrow \neg P)$

D	P	$D \Rightarrow P$	$\neg D \Rightarrow \neg P$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

g. Vrai.
$$(D \Rightarrow P) \Leftrightarrow (\neg P \Rightarrow \neg D)$$

1.9

b. Démontrons que $\forall m \in \mathbb{N} \setminus \{0\}$:

$$\underbrace{1^3 + 2^3 + \dots + m^3}_{\sum_{i=1}^{m} i^3} = \frac{m^2(m+1)^2}{4} \quad (1.1)$$

· Cas de base : Lorsque m = 1, on a bien que :

$$\underbrace{1^3 + \dots + m^3}_{= 1} = \underbrace{\frac{m^2(m+1)^2}{4}}_{= 1}$$

· <u>Cas récursif</u> : Supposon que l'on sait que :

$$\sum_{i=1}^{k} i^3 = \frac{k^2(k+1)^2}{4}$$

Montrons alors l'équation (1.1) lorsque m = k + 1 (pour un $k \in \mathbb{N} \setminus \{0\}$):

On a:

$$\sum_{i=1}^{k+1} i^3 = 1^3 + \dots + k^3 + (k+1)^3$$

$$= \sum_{i=1}^k i^3 + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{4} + (k+1)^3$$

$$= \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$$

$$= \frac{(k+1)^2}{4}(k^2 + 4k + 4)$$

$$\frac{(k+1)^2(k+2)^2}{4} = \frac{(k+1)^2(k+2)^2}{4}$$
ok