1 Préliminaires

On se place dans $(\mathbb{R}^n, \langle \cdot | \cdot \rangle)$ euclidien, le produit scalaire canonique étant défini par :

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \langle x \mid y \rangle = {}^t x \cdot y = \sum_{k=1}^n x_k y_k$$

On note:

- $-\mathcal{M}_n(\mathbb{R})$ l'algèbres des matrices carrées réelles d'ordre n;
- $-GL_n(\mathbb{R})$ le groupe multiplicatif des matrices réelles inversibles d'ordre n;
- $-\mathcal{S}_n(\mathbb{R})$ l'espace vectoriel des matrices réelles d'ordre n symétriques.
- $-\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices réelles d'ordre n symétriques positives.
- $-\mathcal{S}_n^{++}(\mathbb{R})$ l'ensemble des matrices réelles d'ordre n symétriques définies positives.
- $-\mathcal{O}_n(\mathbb{R})$ le groupe multiplicatif des matrices réelles d'ordre n orthogonales.
- Si $A \in \mathcal{M}_n(\mathbb{R})$, on désigne par u l'endomorphisme de \mathbb{R}^n qu'elle définit dans la base canonique.

Exercice 1 Montrer que $S_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension $\frac{n(n+1)}{2}$.

Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique?

Exercice 3 Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $\ker(u)$ et $\operatorname{Im}(u)$ sont supplémentaires orthogonaux, c'est-à-dire que :

$$\mathbb{R}^n = \ker\left(u\right) \stackrel{\perp}{\oplus} \operatorname{Im}\left(u\right)$$

2 Réduction des matrices symétriques réelles

On note toujours u l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice A.

Exercice 4 Montrer que les valeurs propres d'une matrice symétrique réelle A sont toutes réelles.

Exercice 5 Montrer le résultat de l'exercice précédent dans le cas n=2 en utilisant le polynôme caractéristique.

Pour toute valeur propre (réelle) λ de $A \in \mathcal{S}_n(\mathbb{R})$, on désigne par $E_{\lambda} = \ker(u - \lambda I_d)$ l'espace propre associé.

Exercice 6 Montrer que si λ est une valeur propre (réelle) de $A \in \mathcal{S}_n(\mathbb{R})$, on a alors:

$$\mathbb{R}^n = \ker\left(u - \lambda I_d\right) \stackrel{\perp}{\oplus} \operatorname{Im}\left(u - \lambda I_d\right)$$

l'espace $\operatorname{Im}(u - \lambda I_d)$ étant stable par u.

Exercice 7 Montrer que si λ , μ sont deux valeurs propres (réelles) distinctes de $A \in \mathcal{S}_n(\mathbb{R})$, alors les espaces propres E_{λ} et E_{μ} sont orthogonaux.

Exemple 1 Montrer que si λ_1 est une valeur propre (réelle) de $A \in \mathcal{S}_n(\mathbb{R})$, $e_1 \in \mathbb{R}^n \setminus \{0\}$ un vecteur propre associé, alors l'hyperplan $H = (\mathbb{R}e_1)^{\perp}$ est stable par u et la matrice dans une base orthonormée de la restriction de u à H est symétrique (on suppose ici que $n \geq 2$).

Exercice 8 Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que si F est un sous-espace vectoriel de \mathbb{R}^n stable par u, alors F^{\perp} est aussi stable par u.

Une récurrence nous permet alors de montrer le résultat suivant (théorème spectral pour les matrices symétriques réelles).

Exercice 9 Montrer que toute matrice symétrique réelle $A \in \mathcal{S}_n(\mathbb{R})$ se diagonalise dans une base orthonormée, c'est-à-dire qu'il existe une matrice orthogonale $P \in \mathcal{O}_n(\mathbb{R})$ et une matrice diagonale D telles que tPAP soit diagonale.

Exercice 10 Vérifier que le résultat de l'exercice précédent n'est plus valable pour les matrices complexes.

Exercice 11 Diagonaliser dans une base orthonormée la matrice :

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right)$$

Exercice 12 On se donne deux réels α, β et $A(\alpha, \beta)$ est la matrice d'ordre $n \geq 2$:

$$A(\alpha,\beta) = \begin{pmatrix} \beta & \alpha & \alpha & \cdots & \alpha \\ \alpha & \beta & \alpha & \cdots & \alpha \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \alpha & \cdots & \alpha & \beta & \alpha \\ \alpha & \cdots & \alpha & \alpha & \beta \end{pmatrix}$$

- 1. Déterminer les valeurs propres de $A(\alpha, \beta)$.
- 2. Diagonaliser $A(\alpha, \beta)$ dans une base orthonormée.

Exercice 13 Soit $A = ((a_{ij}))_{1 \le i,j \le n} \in \mathcal{S}_n(\mathbb{R})$ de valeurs propres $\lambda_1, \dots, \lambda_n$. Montrer que :

$$\sum_{1 \le i, j \le n} a_{ij}^2 = \sum_{i=1}^n \lambda_i^2.$$

Exercice 14 Soit $\{A_i \mid i \in I\}$ une famille de matrices symétriques réelles dans $S_n(\mathbb{R})$ (I est un ensemble d'indice non nécessairement fini). Montrer que ces matrices sont simultanément diagonalisables dans une base orthonormée (i. e. il existe une matrice orthogonale P telle que pour tout $i \in I$ la matrice tPA_iP est diagonale) si, et seulement si les matrices A_i commutent deux à deux.

Exercice 15 Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ [resp. $A \in \mathcal{S}_n^{++}(\mathbb{R})$] si et seulement si toutes ses valeurs propres sont positives [resp. strictement positives].

Si $A \in \mathcal{S}_n^+(\mathbb{R})$ [resp. $A \in \mathcal{S}_n^{++}(\mathbb{R})$] alors $\det(A) = \prod_{k=1}^n \lambda_k \ge 0$ [resp. $\det(A) > 0$], où les λ_k sont les valeurs propres distinctes ou confondues de A.

Exercice 16 Soit $A \in \mathcal{S}_n(\mathbb{R})$ telle que $A^p = I_n$ où p est un entier naturel non nul. Montrer que $A^2 = I_n$.

Exercice 17 Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ si, et seulement si, il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = {}^tBB$.

Exercice 18 Une matrice $A = ((a_{ij}))_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ est dite à diagonale strictement dominante si :

$$\forall i \in \{1, 2, \dots, n\}, |a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|.$$

1. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$ une valeur propre de A. Montrer qu'il existe un indice $i \in \{1, 2, \dots, n\}$ tel que :

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|.$$

(théorème de Gerschgörin-Hadamar).

2. Montrer qu'une matrice symétrique réelle à diagonale strictement dominante $A = ((a_{ij}))_{1 \leq i,j \leq n}$ est définie positive si, et seulement si, $a_{ii} > 0$ pour tout i compris entre 1 et n.

3 Racine carrée d'une matrice réelle symétrique positive

Exercice 19 Montrer que si $A \in \mathcal{S}_n^+(\mathbb{R})$, il existe alors une unique $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.

Avec les notations de l'exercice précédent, on dit que B est la racine carrée positive de $A \in \mathcal{S}_n^+(\mathbb{R})$. Cette racine carrée B est dans $\mathcal{S}_n^{++}(\mathbb{R})$ si $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Exercice 20 Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n^{+}(\mathbb{R})$. Montrer que AB a toutes ses valeurs propres réelles positives et est diagonalisable.

4 Décomposition polaire

Exercice 21 Montrer que toute matrice $A \in GL_n(\mathbb{R})$ peut s'écrire de manière unique $A = \Omega S$ où Ω est une matrice orthogonale et S une matrice symétrique définie positive.

De la densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, on peut déduire une généralisation à $\mathcal{M}_n(\mathbb{R})$ du théorème de décomposition polaire des matrices inversibles. Pour ce faire on a besoin du résultat suivant.

Exercice 22 Montrer que l'ensemble $\mathcal{O}_n(\mathbb{R})$ des matrices réelles orthogonales est compact dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 23 Montrer que $\mathcal{O}_n(\mathbb{R})$ est un sous-groupe compact maximal de $GL_n(\mathbb{R})$, c'est-à-dire que $\mathcal{O}_n(\mathbb{R})$ est compact et que si G est sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $\mathcal{O}_n(\mathbb{R})$, alors $G = \mathcal{O}_n(\mathbb{R})$.

Exercice 24 Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire $A = \Omega S$ où Ω est une matrice orthogonale et S une matrice symétrique positive.

Remarque 1 Si A est de rang r < n, alors la décomposition ci-dessus n'est pas unique. En effet, on peut diagonaliser la matrice symétrique positive S dans une base orthonormée $(e_i)_{1 \le i \le n}$ avec $Se_i = \lambda_i e_i$ pour $1 \le i \le n$ où $\lambda_i = 0$ pour $1 \le i \le n - r$ et $\lambda_i > 0$ sinon (si A n'est pas inversible alors il en est de même de S et 0 est valeur propre de S). Les Ωe_i sont alors uniquement déterminés pour $n - r + 1 \le i \le n$, mais pour $1 \le i \le n - r$ il n'y a pas unicité.

Le théorème de décomposition polaire des matrices inversibles peut s'exprimer comme suit en utilisant la compacité de $\mathcal{O}_n(\mathbb{R})$.

Exercice 25 Montrer que l'application $(\Omega, S) \longmapsto \Omega S$ réalise un homéomorphisme de $\mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ sur $GL_n(\mathbb{R})$.

5 Rayon spectral des matrices symétriques

On munit l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ de la norme matricielle $\|\cdot\|$ induite par la norme euclidienne de \mathbb{R}^n . On rappelle que si $A \in \mathcal{M}_n(\mathbb{C})$, son rayon spectral est le réel :

$$\rho(A) = \max_{\lambda \in \operatorname{sp}(A)} |\lambda|.$$

Le théorème de diagonalisation des matrices symétriques réelles permet de calculer la norme d'une matrice réelle.

Exercice 26 Montrer que si $A \in \mathcal{S}_n(\mathbb{R})$, alors :

$$||A|| = \rho(A)$$
.

Exercice 27 Soient A et B deux matrices symétriques réelles. Montrer que :

$$\rho(AB) \leq \rho(A) \rho(B)$$
.

Exercice 28 Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on a :

$$||A|| = \sqrt{||tAA||} = \sqrt{\rho(tAA)}.$$

Exercice 29 On désigne par A la matrice réelle d'ordre n supérieur ou égal à 2 définie par :

$$A = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix}.$$

- 1. Calculer les valeurs propres de ^tAA.
- 2. Calculer ||A||.

Exercice 30 On désigne par A la matrice réelle d'ordre n supérieur ou égal à 2 définie par :

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & -1 \\ -1 & 1 & 0 & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -1 & 1 & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}.$$

- 1. Calculer les valeurs propres de ^tAA.
- 2. Calculer ||A||.

6 Réduction des formes quadratiques sur \mathbb{R}^n

On peut associer une forme quadratique à une matrice symétrique réelle $A=((a_{ij}))_{1\leq i,j\leq n}$ en posant, pour tout $x\in\mathbb{R}^n$:

$$q(x) = \langle Ax \mid x \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) x_{i} = \sum_{i=1}^{n} a_{ii} x_{i}^{2} + 2 \sum_{1 \le i < j \le n} a_{ij} x_{i} x_{j}.$$

La forme polaire associée est alors définie par :

$$\forall (x,y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \ \varphi(x,y) = \frac{1}{2} \left(q(x+y) - q(x) - q(y) \right) = \langle Ax \mid y \rangle,$$

soit:

$$\varphi(x,y) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} = \sum_{i=1}^{n} a_{ii} x_{i} y_{i} + \sum_{1 \le i < j \le n} a_{ij} \left(x_{i} y_{j} + x_{j} y_{i} \right).$$

Réciproquement si q est une forme quadratique sur \mathbb{R}^n de forme polaire φ , sa matrice dans la base canonique $(e_i)_{1 \leq i \leq n}$ (ou dans une base quelconque) de \mathbb{R}^n , $A = ((\varphi(e_i, e_j)))_{1 \leq i,j \leq n}$, est symétrique.

On se donne $A \in \mathcal{S}_n(\mathbb{R})$ et on désigne par u l'endomorphisme de \mathbb{R}^n et par q la forme quadratique qui lui sont canoniquement associés. On note φ la forme polaire de q.

On rappelle que le cône isotrope de q est définie par :

$$q^{-1}\{0\} = \{x \in \mathbb{R}^n \mid q(x) = 0\}$$

et le noyau de q (ou de φ) est défini par :

$$\ker(q) = \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n, \ \varphi(x, y) = 0\}$$

Le noyau de q est contenu dans son cône isotrope (pour $x \in \ker(q)$, on a en particulier $q(x) = \varphi(x, x) = 0$). On dit que q (ou φ) est non dégénérée si son noyau est réduit à $\{0\}$.

On rappelle qu'une forme quadratique q est dite positive [resp. définie positive] si $q(x) \ge 0$ [resp. q(x) > 0] pour tout $x \in \mathbb{R}^n$ [resp. $x \in \mathbb{R}^n \setminus \{0\}$]. Avec $q(x) = \langle Ax \mid x \rangle$, on voit que cela revient à dire que la matrice symétrique A est positive [resp. définie positive].

On rappelle que deux vecteurs x, y de \mathbb{R}^n sont dits orthogonaux relativement à φ si φ (x, y) = 0 et pour toute partie non vide X de \mathbb{R}^n , l'orthogonal de X relativement à φ est le sous-ensemble de \mathbb{R}^n formé des vecteurs orthogonaux à tous les vecteurs de X, il est notée X^{\perp} et on a :

$$X^{\perp} = \left\{ y \in \mathbb{R}^n \mid \forall x \in X, \ \varphi\left(x, y\right) = 0 \right\}.$$

Le novau de q est l'orthogonal de \mathbb{R}^n .

Exercice 31 *Montrer que* $\ker(q) = \ker(u)$.

Exercice 32 Montrer que si q est une forme quadratique positive, on a alors pour tous vecteurs x, y dans \mathbb{R}^n :

$$\left|\varphi\left(x,y\right)\right| \le \sqrt{q\left(x\right)}\sqrt{q\left(y\right)},$$

 $où \varphi$ est la forme polaire de q.

Exercice 33 Montrer que pour A positive, on a $q^{-1}\{0\} = \ker(u) = \ker(q)$, c'est-à-dire que le cône isotrope de q est égal à son noyau.

On note $S^1 = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$ la sphère unité de \mathbb{R}^n . Cette sphère unité est compacte puisqu'on est en dimension finie.

Exercice 34 Montrer que le réel $\lambda_1 = \sup_{x \in S^1} q(x)$ est valeur propre de A.

Exercice 35 Montrer que la matrice A se diagonalise dans une base orthonormée de \mathbb{R}^n .

On se donne une forme quadratique non nulle q sur \mathbb{R}^n .

Exercice 36 Montrer qu'il existe un entier r compris entre 1 et n, des réels non nuls $\lambda_1, \dots, \lambda_r$ et des formes linéaires indépendantes ℓ_1, \dots, ℓ_r tels que :

$$\forall x \in \mathbb{R}^n, \ q(x) = \sum_{j=1}^r \lambda_j \ell_j^2(x)$$

Exercice 37 Réduire la forme quadratique q définie sur \mathbb{R}^3 par :

$$q(x) = -x_1^2 - x_2^2 - x_3^2 + 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Exercice 38 Réduire la forme quadratique q définie sur \mathbb{R}^3 par :

$$q(x) = -x_1^2 - x_2^2 - x_3^2 + 2(x_1x_2 + x_1x_3 + x_2x_3)$$

La réduction de Gauss peut s'écrire :

$$\forall x \in \mathbb{R}^n, \ q(x) = \sum_{j=1}^n \lambda_j \ell_j^2(x)$$

où on a posé $\lambda_{r+1} = \cdots = \lambda_n = 0$ dans le cas où $r \leq n-1$.

Exercice 39 Montrer que la forme polaire φ de q est définie par :

$$\forall (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \ \varphi(x, y) = \sum_{j=1}^n \lambda_j \ell_j(x) \ell_j(y)$$

Exercice 40 Étant donnée une base (ℓ_1, \dots, ℓ_n) de l'espace vectoriel $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ des formes linéaires de \mathbb{R}^n , montrer qu'il existe une base (f_1, \dots, f_n) de \mathbb{R}^n telle que :

$$\ell_i(f_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \quad (1 \le i, j \le n)$$

Dans la situation du lemme précédent, on dit que (ℓ_1, \dots, ℓ_n) est la base duale de (f_1, \dots, f_n) .

Exercice 41 Montrer qu'il existe une base $(f_i)_{1 \le i \le n}$ de \mathbb{R}^n dans laquelle la matrice de q est diagonale de la forme :

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

(les r premiers λ_i sont non nuls et les suivants sont nuls). Une telle base $(f_i)_{1 \le i \le n}$ est dite q-orthogonale.

Exercice 42 Montrer que rg(q) = rg(A) = r et :

$$\ker(q) = \{x \in \mathbb{R}^n \mid \ell_1(x) = \ell_2(x) = \dots = \ell_r(x) = 0\}$$

Exercice 43 Si $A \in \mathcal{S}_n(\mathbb{R})$ est de rang r, montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que tPAP soit diagonale de la forme $D = \begin{pmatrix} I_s & 0 & 0 \\ 0 & -I_t & 0 \\ 0 & 0 & 0_{n-r} \end{pmatrix}$ où s,t sont deux entiers naturels tels que s+t=r, I_r la matrice identité d'ordre s si s > 1 ou n'est vas vrésente dans cette décomposition si p = 0, I_t est définie de même et 0_{n-r} est la matrice nulle

d'ordre n-r si r < n ou n'est pas présente dans cette décomposition si r = n.

Le couple d'entiers (s,t) est la signature de q. Il est uniquement déterminé par q comme le montre le résultat suivant.

Exercice 44 Montrer qu'il existe un unique couple (s,t) d'entiers naturels tel que pour toute base $(e_i)_{1 \leq i \leq n}$ de \mathbb{R}^n qui est orthogonale relativement à q, le nombre de vecteurs e_i tels que $q(e_i) > 0$ est égal à s et le nombre de vecteurs e_i tels que $q(e_i) < 0$ est égal à t. De plus, on a $s + t = \operatorname{rg}(q)$.

Exercice 45 Soit F un sous-espace vectoriel de \mathbb{R}^n . Montrer que la restriction de q à F est non dégénérée si, et seulement si, $F \cap F^{\perp} = \{0\}$.

Exercice 46 Soit F un sous-espace vectoriel de \mathbb{R}^n . Montrer que si la restriction de q à F est non dégénérée on a alors $\mathbb{R}^n = F \oplus F^{\perp}$.

Exercice 47 En désignant par \mathcal{P} [resp. \mathcal{N}] l'ensemble de tous les sous-espaces vectoriels F de \mathbb{R}^n tels que la restriction de q à F soit définie positive [resp. définie négative] (\mathcal{P} ou \mathcal{N} peut être vide), montrer que la signature (s,t) de q est donnée par :

$$s = \begin{cases} 0 \text{ si } \mathcal{P} = \emptyset \\ \max_{F \in \mathcal{P}} \dim(F) \text{ si } \mathcal{P} \neq \emptyset \end{cases}$$

et:

$$t = \begin{cases} 0 \text{ } si \text{ } \mathcal{N} = \emptyset \\ \max_{F \in \mathcal{N}} \dim (F) \text{ } si \text{ } \mathcal{N} \neq \emptyset \end{cases}$$

L'utilisation des mineurs principaux de la matrice de q dans une quelconque base de \mathbb{R}^n nous permet de savoir si une forme quadratique est définie positive ou non.

On rappelle que si $A=((a_{ij}))_{1\leq i,j\leq n}$ est une matrice carrée d'ordre n, les mineurs principaux de A sont les déterminants des matrices extraites $A_k=((a_{ij}))_{1\leq i,j\leq k}$ où k est un entier compris entre 1 et n.

Exercice 48 Soit q une forme quadratique non nulle sur \mathbb{R}^n de matrice $A = ((a_{ij}))_{1 \leq i,j \leq n}$ dans la base canonique $(e_i)_{1 \leq i \leq n}$. Montrer que la forme q est définie positive si, et seulement si, tous les mineurs principaux de A sont strictement positifs.

Comme application de ce résultat, on a l'exercice suivant.

Exercice 49 Montrer que $S_n^{++}(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$.

Exercice 50 Montrer que $S_n^+(\mathbb{R})$ est un fermé convexe de $\mathcal{M}_n(\mathbb{R})$ et que son intérieur est $S_n^{++}(\mathbb{R})$.

Exercice 51 Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $\operatorname{Tr}(A) = 0$ si, et seulement si, il existe une base orthonormée de \mathbb{R}^n telle que la matrice de u dans cette base a tous ses termes diagonaux nuls.

Exercice 52 Montrer que toute matrice $A \in \mathcal{S}_n^{++}(\mathbb{R})$ s'écrit de manière unique sous la forme $A = {}^tBB$, où B est une matrice triangulaire supérieure de termes diagonaux tous strictement positifs (décomposition de Cholesky).

7 Adjoint d'un endomorphisme d'espace euclidien

On se place ici dans un espace euclidien $(E, \langle \cdot | \cdot \rangle)$ de dimension n, où on a noté $\langle \cdot | \cdot \rangle$ un produit scalaire sur E. On note $\mathcal{L}(E)$ l'espace des endomorphismes de E.

On rappelle que le dual de E, c'est-à-dire l'ensemble E^* de toutes les formes linéaires sur E, est un espace vectoriel de dimension $n = \dim(E)$.

Les résultats suivants nous permettent de définir l'adjoint d'un endomorphisme.

Exercice 53 Montrer que pour toute forme linéaire ℓ sur E, il existe un unique vecteur $a \in E$ tel que :

$$\forall x \in E, \ \ell\left(x\right) = \left\langle x \mid a\right\rangle.$$

Exercice 54 Montrer que pour tout endomorphisme $u \in \mathcal{L}(E)$, il existe un unique endomorphisme $u^* \in \mathcal{L}(E)$ tel que :

$$\forall (x, y) \in E^2, \langle u(x) | y \rangle = \langle x | u^*(y) \rangle$$

Définition 1 Avec les notations du théorème précédent, on dit que u* est l'adjoint de u.

Exercice 55 Montrer que si \mathcal{B} est une base orthonormée de E et u un endomorphisme de E de matrice A dans cette base, alors la matrice de u^* dans \mathcal{B} est la transposée tA .

Exercice 56 Montrer que our tous endomorphismes u, v dans $\mathcal{L}(E)$, on a:

- 1. $(u^*)^* = u$.
- 2. $(u \circ v)^* = v^* \circ u^*$.
- 3. $si \ u \in GL(E)$, $alors \ u^* \in GL(E) \ et \ (u^*)^{-1} = (u^{-1})^*$.
- 4. $\ker(u^*) = (\operatorname{Im}(u))^{\perp} \ et \ \operatorname{Im}(u^*) = (\ker(u))^{\perp}$.
- 5. $\operatorname{rg}(u^*) = \operatorname{rg}(u)$.

Remarque 2 Avec le point 5. on retrouve l'égalité $\operatorname{rg}({}^{t}A) = \operatorname{rg}(A)$ pour toute matrice réelle A.

Définition 2 Un endomorphisme $u \in \mathcal{L}(E)$ est dit auto-adjoint (ou symétrique) si $u^* = u$.

On note S(E) l'ensemble de tous les endomorphismes symétriques de E.

Exercice 57 Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est symétrique si, et seulement si, sa matrice dans une base orthonormée de E est symétrique.

Exercice 58 Montrer que S(E) est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\frac{n(n+1)}{2}$.

Exercice 59 Montrer que si u, v sont deux endomorphismes symétriques de E, alors la composée $u \circ v$ est symétrique si, et seulement si, u et v commutent.

Exercice 60 Montrer qu'un projecteur p de E est un projecteur orthogonal si, et seulement si, il est symétrique.

Exercice 61 Montrer qu'une symétrie s de E est une symétrie orthogonale si, et seulement si, elle est symétrique.

Exercice 62 Montrer que pour tout endomorphisme u de \mathbb{R}^n , il existe un sous espace vectoriel F de \mathbb{R}^n de dimension 1 ou 2 qui est stable par u.