

connecting layer consists of the iron/nitrogen layer bearing the chemical designation Fe₂N or Fe₃N.

IN THE CLAIMS:

Please amend claims 12-14, 19, 20, 23, 32, 33, 36, 41, and 45-47 as follows (a marked-up version of the amended claims is attached hereto):

- 12. (Amended) Synchronizing device for a shift transmission, comprising at least one outer and one inner synchro ring and at least one intermediate ring, the synchro rings and the intermediate ring in each case having conical surfaces, via which they are connected at least indirectly to one another, and at least one of the synchro rings and the intermediate ring including a metallic basic material, wherein at least one of the synchro rings and the intermediate ring include the metallic basic material which is nitride-hardened in such a way that, by process parameters being set during nitride-hardened in such a way that, by process layer and a non-metallic ε-connecting layer is formed on a conical surface of at least one of the synchro rings and the intermediate ring.
- 13. (Amended) Synchronizing device according to Claim 12, wherein a γ'connecting layer is formed which includes Fe₄N.
- 14. (Amended) Synchronizing device according to Claim 12, wherein a ε-connecting layer is formed which includes Fe₂N or Fe₃N.

of Fe₄N on said first friction surface.

Concel

- 46. (Amended) A method according to Claim 44, further comprising nitride hardening said first synchro ring to form a non-metallic ε-connecting layers of Fe₂N or Fe₃N on said first friction surface.
- 47. (Amended) A method according to Claim 44, further comprising plasma-nitride-hardening said first synchro ring.

Please add the following new claim:

209

48. (New) Synchronizing device according to Claim 20, wherein the γ connecting layer and the ϵ -connecting layer are approximately 10 μ m thick.

(Applicant's Remarks are set forth hereinbelow, starting on the following page.)