Geisel School of Medicine at Dartmouth Dartmouth-Hitchcock Medical Center CURRICULUM VITAE

NAME: Joshua Levy PhD Date Prepared: 4/21/2023

Address: Office:

Department of Pathology & Laboratory Medicine

Dartmouth-Hitchcock Medical Center

One Medical Center Drive Lebanon, NH 03756 Tel: (603) 650-3844

E-mail: Joshua.j.Levy@hitchcock.org

Website: https://levylab.host.dartmouth.edu/

GitHub: https://github.com/jlevy44

LinkedIn: https://www.linkedin.com/in/joshua-levy-87044913b/

ORCiD: https://orcid.org/0000-0001-8050-1291

Google Scholar: https://scholar.google.com/citations?user=vR39CWkAAAAJ

MyNCBI: https://www.ncbi.nlm.nih.gov/myncbi/1fgQvdpod0SEEc/bibliography/public/

I. EDUCATION:

2017 BS in Physics

University of California, Berkeley, CA

College of Letters & Sciences: Highest Distinction graduation (top 1%)

2021 PhD in Quantitative Biomedical Sciences (Data Science)

Dartmouth College, Geisel School of Medicine, Hanover, NH

Co-mentors: Brock C. Christensen PhD (Department of Epidemiology)

Louis J. Vaickus MD, PhD (Department of Pathology and Laboratory Medicine)

Technical and Research skills:

Python • R • Shell • Supercomputer • Machine Learning • Dataviz • PyTorch • NLP

Sklearn • Plotly • Aircraft Pilot • Dask • Matlab • Javascript • C++ • SQL Deep Learning • Docker • AWS • LaTEX • Nextflow • CWL Pipelines • Stan

Comp. Vision • Sensibly Constructing Statistical Golems • Graph Neural Networks

Relevant coursework:

Hierarchical, Bayesian Modeling, Social Network Analysis, Epidemiology, Biostatistics, Bioinformatics, Linear Algebra, Diff. Eq., Multivar. Calc., C++, Python, Statistics, Machine Learning, Health Promotion, Policy, Management, Quantum Computing and

Stat Mechanics

II. POSTDOCTORAL TRAINING: N/A

III. ACADEMIC APPOINTMENTS:

2021-present Assistant Professor, Geisel School of Medicine at Dartmouth,

Departments of Pathology and Laboratory Medicine, and Dermatology

2021-present Adjunct Professor, Geisel School of Medicine at Dartmouth,

Department of Epidemiology

2021-present Faculty, Geisel School of Medicine at Dartmouth,

Quantitative Biomedical Sciences

2022-present Faculty, Dartmouth Hitchcock Medical Center,

Department of Medicine, Section of Radiation Oncology

IV. INSTITUTIONAL LEADERSHIP ROLES:

2018-present EDIT (Emerging Diagnostic and Investigative Technologies) Research Program

Editor, Department of Pathology and Laboratory Medicine, DHMC.

Co-director of EDIT Machine Learning and Whole Genome Sequencing arms.

V. LICENSURE AND CERTIFICATION: N/A

VI. HOSPITAL OR HEALTH SYSTEM APPOINTMENTS: N/A VII. OTHER PROFESSIONAL POSITIONS (NON-DARTMOUTH):

April 2015- CiBER lab, Berkeley, CA Biomechanics Research Assistant

Jun 2016 • Agama Lizard Turns: Matlab and ProAnalyst analysis of lizard turning tendencies

Jun 2016- Lawrence Berkeley National Lab, Software Developer

May 2020 JGI Affiliate, Berkeley, CA

• Novel computational methods elucidate quality biofuels: pangenome phylogenetics, genomics workflows, metagenomics binning, machine learning via large-scale, automated,

supercomputer pipelines (Python/Nextflow)

Jun - Dec 2017 San Francisco Department of Public Health: Tuberculosis Control, Public Service Aide

San Francisco, CA

• Evaluated patient data integrity and transition to electronic health records.

May-Aug 2018 Zymergen, Emeryville, CA Software Engineer Intern

 \bullet Constructed many different HPC AWS bioinformatics pipelines using CWL Docker, and

Seven Bridges, storing results in SQL databases.

• Used Convolutional Neural Networks and hyperbolic embeddings to explore

relationships between gene and function for discovery of biomaterials.

Jan 2020- ArcticAl, Hanover, NH Chief Technical Officer

Developing core technology, IP, and vision for intraoperative medical device

May 2022- ViewsML, Hanover, NH Scientific Advisor

• Consulting and informatics for virtual staining technologies

Oct 2020- Veterans Affairs Healthcare System,

present White River Junction, VT Statistical Consultant

• Consulting on machine learning-based natural language processing software for suicide

risk prediction

Oct 2022- DCC Trace Element Analysis Core,

present Lebanon, NH Statistical Consultant

• Consulting on machine learning-based and statistical methods for assessing high

resolution elemental imaging maps

2018-present 2018-present 2018-present 2019 2019 2017 2016	CITI Program, Biomedical Responsible Conduct of Research (RCR) course completion CITI Program, Biomedical Data or Specimens Research Basic course, completion CITI Program, Good Clinical Practice (US, FDA focus) clinical trials with investig and medical devices (GCP) course completion Supervised Teaching Workshop, Mentor Skills Development NIH Grant Workshop Coaching Corps Leadership Development Program Crisis Support Counselor Training Program	ı
IX. TEACHING	ACTIVITIES:	
B. GRADUATE Courses: Professional Lo	evel / Online:	
TBD	Applied Machine Learning (QBS)	150 hr/yr
Graduate Leve	l:	
2022	Participation in Scientific Research (QBS 195)	150 hr/yr
2021-2022	Independent Study (QBS 195) (x6 students)	150 hr/yr
2022	Master's Capstone Experience (QBS 185)	150 hr/yr
2021	Faculty Seminar Student Projects (QBS 110.5)	150 hr/yr
2023	QBS Journal Club- Machine Learning	20 hr/yr
2023	QBS Journal Club– AI and Placental Histology	20 hr/yr
Lectures:		
2020	Introduction to Python (QBS 146)	2 hr/yr
2021	Introduction to Neural Networks (QBS 177)	2 hr/yr
2021	Application of Hierarchical Bayesian Methods to Machine Learning (QBS 122)	3 hr/yr

Supervised Teaching:

Graduate Level:

2021-2022

2022-2023

2021

2022

2023

2019	Foundations of Biostatistics (QBS 120)	150 hr/yr
2020-2021	Statistical Learning for Big Data (QBS 177)	150 hr/yr
2021	Hierarchical Bayesian Modeling (QBS 122)	150 hr/yr

3 hr/yr

3 hr/yr

2 hr/yr

2 hr/yr

2 hr/yr

Machine Learning in Pathology (QBS 110)

Introduction to Neural Networks (QBS 177)

Introduction to Neural Networks (QBS 177)

Artificial Intelligence @ Dartmouth Health (ENGS 56)

R Software Packaging (QBS 181)

Graduate Workshop:

2020 Fundamentals of Bioinformatics and High-Performance Computing 3 hr/yr

C. UNDERGRADUATE MEDICAL EDUCATION:

Medical Student Enrichment Elective:

2023	Introduction to Data Science and Applications	50 hr/yr
2023	Digital Health Scholars Program – Medical Curriculum Design	40 hr/yr

D. GRADUATE MEDICAL EDUCATION:

Pathology Residents

2023 Medical Informatics & AI 20 hr/yr

X. RESEARCH ADVISING/MENTORING:

Program Director, EDIT (Emerging Diagnostic and Investigative Technologies)

DPLM's newly established EDIT Lab sponsors highly qualified high school students to participate in a 10week remote internship exploring research topic in digital pathology, machine learning and statistics. Through a series of lectures, guided projects and IRB supported basic research, students develop algorithms to explore various diagnostic spaces in pathology from cancer detection, to gigapixel image manipulation to text prediction. Undergraduate, Master's and medical students have participated in the ongoing year-round internship program. Joshua Levy and Louis Vaickus manage and organize the internship as Co-PI's. At the end of the 10-week program, internship culminates with a presentation to the DPLM faculty, residents and technical staff. Twenty interns have manuscripts in pre-print and submitted to journals; five have been published. The 2020 internship was so popular that we were able to recruit over 25 new interns for 2021 with many alumni returning to give selected lectures and mentor incoming students. We have run pilot programs for the past 3 years, and last summer, 2022, we had 36 high school students (many from rural NH/VT), who presented at national conferences, participated in science fairs, co-authored academic papers, matriculated to college, and successfully applied for scholarships. Students in the EDIT AI program work as members of existing labs to develop and apply AI technologies across a range of diagnostic methods and medical specialties, from cancer detection and gigapixel image manipulation to text prediction and spatial omics. Students are mentored by biomedical researchers and clinicians and discuss their work with clinical collaborators in a weekly seminar series. They learn to design and pitch projects, to use and develop opensource, reproducible biomedical informatics software, and to work in a team culture that promotes broad collaboration. At the end of the summer, students present in a center-wide poster and presentation session. Mentors meet with students prior to these presentations and students are encouraged to consider how their work would impact "big picture" clinical practices rather than only focusing on computational aspects. Students are challenged to think critically about the successful design of clinically impactful technologies. Our goal is that students' experiences in EDIT AI will continue to shape how they engage project stakeholders both during and after their time at Dartmouth. The EDIT AI program is currently under review at the NIH for a R25 Science Educational Partnership grant (PAR-20-153). Last year's end-of-summer presentation day featuring select student groups can be found here:

https://www.youtube.com/watch?v=RCHfBC6jEQk and our virtual conference page is https://editai.conference.levylab.host.dartmouth.edu/ (password: edit2022).

HIGH SCHOOL STUDENTS:

2020 Summer Cohort

2020	Ajay Prabhakar	EDIT Summer Intern	Morphology Hierarchy
2020	Kaien Yang	EDIT Summer Intern	Secure Data Encryption
2020	Richard Zhan	EDIT Summer Intern	Virtual Staining
2020-Present	Sumanth Ratna	EDIT Summer Intern	Segmentation
2020-2021	Harsha Harish	EDIT Summer Intern	Cell/Tissue Clustering
2020-2021	Nishitha Vattikonda	EDIT Summer Intern	Natural Language Processing

2021 Summer Cohort

2021 Julliller	Conort		
2021-Present	Sachin Kumar	EDIT Summer Intern	3D Tissue Modeling
2021-Present	Ramya Reddy	EDIT Summer Intern	Morphological-Molecular Alteration
2021-Present	Ram Reddy	EDIT Summer Intern	Morphological-Molecular Alteration
2021-Present	Akshat Alok	EDIT Summer Intern	Omics Deep Staging Models
2021-Present	Zarif Azher	EDIT Summer Intern	Multimodal Integration
2021-Present	Andrew Wang	EDIT Summer Intern	Cellular Hierarchy

2021-Present	Akash Pamal	EDIT Summer Intern	Surgical Cell Modeling
2021-Present	Irfan Nafi	EDIT Summer Intern	Surgical Cell Modeling
2021-Present	Tarushii Goel	EDIT Summer Intern	Surgical Cell Modeling
2021-Present	Abhinav Angirekula	EDIT Summer Intern	Surgical Cell Modeling
2021-Present	Cristian Clewis	EDIT Summer Intern	Tissue Staging Models
2021-Present	Abena Kyereme-Tuah	EDIT Summer Intern	Tissue Staging Models
2021-Present	Sameeksha Garg	EDIT Summer Intern	Tissue Staging Models
2021-Present	Sagar Gupta	EDIT Summer Intern	Omics Deep Staging Models
2021	John Kim	EDIT Summer Intern	3D Tissue Modeling
2021	Aryan Kumawat	EDIT Summer Intern	3D Tissue Modeling
2021	Adnan Murtaza	EDIT Summer Intern	3D Tissue Modeling
2021-Present	Edward Zhang	EDIT Summer Intern	Ink Imputation Histology
2021-Present	Taein Kim	EDIT Summer Intern	Ink Imputation Histology
2021-Present	Nikhil Kalidasu	EDIT Summer Intern	Cell Detection
2021	Mohan Liu	EDIT Summer Intern	Stain Preference
2021-Present	Michael Cheng	EDIT Summer Intern	Cytology Translation

2022 Summer Cohort

2022 Julilliel	Conort		
2022-Present	Utkarsh Goyal	EDIT Summer Intern	DNAm
2022-Present	Sanjay Jacob	EDIT Summer Intern	CRISPR
2022-Present	Anish Suvarna	EDIT Summer Intern	Mohs
2022-Present	Eric Feng	EDIT Summer Intern	Spatial Omics
2022-Present	Michael Fatemi	EDIT Summer Intern	Spatial Omics
2022-Present	Ananya Gottumukkala	EDIT Summer Intern	Microbiome
2022-Present	Aryaman Khanna	EDIT Summer Intern	Mohs
2022-Present	Ram Vempati	EDIT Summer Intern	Mohs
2022-Present	Nikhil Pesala	EDIT Summer Intern	Mohs
2022-Present	Sameer Gabbita	EDIT Summer Intern	DNAm
2022-Present	Neha Reddy	EDIT Summer Intern	CRISPR
2022-Present	Audhav Durai	EDIT Summer Intern	Mohs
2022-Present	Christal Wang	EDIT Summer Intern	Satellites
2022-Present	UnCheng Leong	EDIT Summer Intern	Virtual Staining
2022-Present	Hyunjae Chung	EDIT Summer Intern	DNAm
2022-Present	Sayan Bhattacharya	EDIT Summer Intern	Satellites
2022-Present	Will Crampton	EDIT Summer Intern	Disease Staging
2022-Present	Amruta Rajeev	EDIT Summer Intern	CRISPR
2022-Present	An Le	EDIT Summer Intern	Satellites
2022-Present	Nancy Hernandez	EDIT Summer Intern	Radiation Oncology
2022-Present	Ananya Pamal	EDIT Summer Intern	Satellites
2022-Present	Rushank Goyal	EDIT Summer Intern	Omics
2022-Present	Charlie Spivak	EDIT Summer Intern	Merkel Cell
2022-Present	Adam Gilbert-Diamond	EDIT Summer Intern	Merkel Cell
2022-Present	Cyril Sharma	EDIT Summer Intern	Spatial Omics
2022-Present	Christopher Perriello	EDIT Summer Intern	Virtual Staining
2022-Present	Sophie Chen	EDIT Summer Intern	Mohs

A. <u>UNDERGRADUATE</u>

Dartmouth College, Hanover NH

2019-Present Jason Zavras - Presidential Scholar

Computational Stain Normalization

Intra-institutional digital stain preference

2020-Present Jason McFadden Evaluation AI Technologies

2021	Osezele Okoruwa	Stain Preference
2021-2022	Jean Yuan	Medical Informatics
2021-2022	Daniel Dong	Medical Informatics
2022-Present	William Chen	Data Evaluation

2022-Present John Zavras - Presidential Scholar

Spatial Profiling

2022-PresentSabin HartDNA Methylation2022-PresentGokul SrinivasanDermatology2022-PresentDavid KaufmannCancer Immunology2022-PresentCinay DilibalMedical Informatics

2022-Present Julia Shen Placenta 2023-Present Kamren Khan Dermatology

2023-Present Art Robinson Dermatology Phone Application Photoaging

George Mason University

2022-Present Suchita Hadimani Image analysis

Middlebury College

2021-Present Jack Greenburg Natural Language Processing for CPT Code Billing

University of Michigan

2021-Present Carly Miles Medical Informatics

UC Santa Cruz

2022-Present Bailey Thompson Medical Informatics

University of New Hampshire

2022-Present Tess Cronin Machine Learning Review

Other Institutions

2022 Deepanshu Mody DNAm Aging

2022 Serin Han TBD

B. **GRADUATE**:

2020-Present	Brody McNutt	Master's Student (QBS)	Secure Data Encryption
2020-2022	Julian Gullett	Master's Student (QBS)	Evaluation AI Technologies
2021-Present	Yunrui Lu	Master's Student (QBS)	Natural Language Processing
2021-Present	Uhuru Kamau	Master's Student (QBS)	Natural Language Processing
2021-Present	Shuyang Lu	Master's Student (QBS)	Natural Language Processing
2021-Present	Taylor Hudson	Master's Student (QBS)	CRISPR
2021-Present	Sean McOsker	Master's Student (QBS)	Model Explainability
2022-Present	Natt Chan	Master's Student (QBS)	Pathology
2022-Present	Ojas Ramwala	UWashington/NYU CS PhD	Digital Pathology
2021-Present	Elizabeth Anderson	PhD Student (QBS)	Placenta Histology
2021-2022	Jeff Joseph	PhD Rotation (QBS) & Qual	Spatial Correlations
2022	Peiying Hua	PhD Rotation (QBS)	NLP
2022-Present	Alos Diallo	PhD Rotation (QBS)	Spatial Transcriptomics
2023-Present	Grace Rosner	PhD Rotation (MCB)	Spatial Transcriptomics
2023-Present	Thadryan Sweeney	PhD Rotation (QBS)	Regression Trees
2021-Present	Sean Pietrowicz	Master's Student (QBS)	Mental Health
2022-Present	Chenhao Zhao	Master's Student (QBS)	Bayesian Statistics
2022-Present	Matthew Chan	Master's Student (QBS)	Medical Informatics

2022-Present	Bofan Chen	Master's Student (QBS)	Imaging
2022-Present	Digvijay Yadav	Master's Student (QBS)	Surgical Technologies
2022-Present	Ayush Chakraborty	Master's Student (QBS)	NLP
2022-Present	Minchuan Qin	Master's Student (QBS)	Image Analysis
2022-Present	Sunishka Jain	Master's Student (CS)	NLP
2021-Present	Marietta Montivero	Geisel MD PhD Student	Surgical Excision/Dermatology
C. MEDICAL ST	TUDENTS:		
2020-2021	Eren Veziroglu	Medical Student	Digital Spatial Profiling
2020-2021	Mustafa Nasir Moin	Medical Student	Digital Spatial Profiling
2022-Present	Raven Bennett	Geisel MD Student	Microbiome
2022-Present	Shahin Shahsavari	Geisel MD Student	Skin Aging
2022-Present	Faraz Farhadi	Geisel MD Student	Orthopedics
2022-Present	Harun Sugito	Geisel MD Student	Orthopedics
2022	Alex Lindqwister	Geisel MD Student	Med Al Education
2022-Present	Angel Moore	Geisel MD Student	Med Al Dermatology
2022-Present	Elizabeth Krogman	Geisel MD Student	Med AI Dermatology
2022-Present	Soo Hwan Park	Geisel MD Student	NLP
2022-Present 2022-Present	Travis Byrum Liam Locke	Geisel MD Student Geisel MD Student	NLP NLP
2022-Present	Nicholas An	Geisel MD Student	Skin Photoaging
2023-Present	Meave Otieno	Geisel MD Student	Cancer Informatics
2018-2021	Christian Haudenschild	Medical Student Minnesota	
2010 2021	Christian Haddenseima	Wedical Stadent Willinesott	Trederated Bata Networks
D. RESIDENTS			
2019-2021	Robert Hamilton	Pathology Resident/Fellow	_
2019-2021	Chris Jackson	•	Virtual Immunofluorescence
2020-2021	Ryan Glass		Bayesian Cytology Prediction
2022-Present	Abdol Aziz	Prospective Resident	Graph Neural Networks
E. RESEARCH	ASSOCIATES:		
2018-2021	Jorge Lima	Data Scientist	Pressure Injury Prediction
2020-Present		Assistant Professor	NLP Suicide Risk
2021-Present	Brady Hunt	Data Scientist	Radiation Oncology
2019-Present	Carly Bobak	Data Scientist	Graphs & Networks
F. FACULTY:			
2022-Present	Marthony Robins	Medical Physicist	Radiation Oncology
XI. ADVISING /	MENTORING:		
	ADUATE STUDENTS: N/A		
B. GRADUATE			
2020 QBS Stud			
2020-2022	Julian Gullett	Master's Student (QBS)	Career Mentoring
2021-Present	Sean Pietrowicz	Master's Student (QBS)	Career Mentoring
2022 QBS Facu	ılty Mentor		
2022	Alos Diallo	QBS PhD Student	Career Mentoring
2022	Kevin Rouse	Master's Student (QBS)	Career Mentoring
2022	Anton Hung	Master's Student (QBS)	Career Mentoring
2022	Sukriti Ghosh	Master's Student (QBS)	Career Mentoring

2022	Aislinn Gilmour	Master's Student (QBS)	Career Mentoring
2022	Tianyue Zhou	Master's Student (QBS)	Career Mentoring

C. MEDICAL STUDENTS: N/A

D. RESIDENTS/FELLOWS/RESEARCH ASSOCIATES: N/A

XII. ENGAGEMENT, COMMUNITY SERVICE / EDUCATION:

2015	American Heart Association Advocacy, Advocacy Intern, Oakland, CA
2011-2019	Special Olympics, Head Coach, Walnut Creek, CA
2015-2018	Coaching Corps, King Middle School, Basketball Coach, Berkeley, CA
2015-2018	Coaching Corps Berkeley Chapter Executive Recruitment Coordinator, Berkeley, CA
2015-2017	American Foundation for Suicide Prevention, Outreach Coordinator, Berkeley, CA
2011-2016	Telescope Makers Workshop, Astronomy Docent and Telescope Maker, Mount Diablo
	Astronomical Society, Berkeley, CA
2015-2018	National Suicide Prevention Lifeline, American Foundation for Suicide Prevention, Oakland,
	CA
2019	New Hampshire Academy of Sciences Mentor, Lyme, NH
2019	New Hampshire Special Olympics Volunteer, Lyme, NH
2020	Community Outreach Executive, Student Council, Hanover, NH
	Special Olympics and Upper Valley Haven Shelter Food
2023	Dartmouth Undergraduate Admissions Recruitment & Outreach Collaboration

XIII. RESEARCH ACTIVITIES:

Present:

Presen	<u>L</u> :			
2021-	Prouty Grant CRISPR Targeting of Merkel Cell Polyomavirus	Levy J (Co-PI)	\$50,000	
2020-	Prouty Grant Validation of In-Vivo Imaging (20%)	LeBeouf M (Co-PI)	\$50,000	
2021-	Sun Damage Reversal Therapies (COBRE Pilot, P20GM104416)	Levy J (PI)	\$80,000	
2022-	Dartmouth Hitchcock ORO Capital Investment,	Levy J (Co-PI)	\$250,000	
	Pathology Advanced Computational Environment			
2021-	Richard Baughman Scholar Award	Levy J (PI)	\$300,000	
2022-	Student Digital Pathology Laboratory 2.0 (Neukom)	Levy J (Co-PI)	\$18,000	
2022-	Stephen Marsh Tenney, M.D., Medical Student Fellowship Awar	rd Co-Mentor	\$30,000	
2022-	Burroughs Wellcome Fellowship	Co-Mentor	\$60,000	
2022-	Conflict Analysis VA Web Intervention: A Whole Health	Levy (Site-PI)	DH-\$12,000	
	Resource for Rural Veterans			
2022-	R24 Biomedical National Elemental Imaging Resource (BNEIR)	Levy J (Site-PI)	DH-\$271,000	
2022-	NIGMS P20GM130454 Project Leader: Predicting colon cancer r	netastasis through spat	ial molecular	
	characterization of the tumor immune microenvironment	Levy J (PI)	\$1,250,000	
2022	22 Informatics Software to Develop Cell-Type Specific Spatial Molecular, Elemental and Histological			
	Signatures Associated with Tumor Metastasis	Levy J (PI)	\$60,000	
2022	Machine Learning Strategies for Predicting the Risk of Suicide U	sing Clinical Note Text	\$2,000,000	
	Department of Defense	Levy J (Site-PI)	DH-\$465,000	
2023	Phase IIa interim analysis of the effects of L-serine in ALS	Levy J (Co-I)	\$20,000	
Past:			4	
2016	Online Mental Health Education at UC Berkeley	Levy J (Co-PI)	\$30,000	
2019	Burroughs Wellcome Fund, Big Data Life Sciences Fellow 100% effort	Levy J (PI)	\$60,000	
2020	I-Corps Business Development (33% effort)	Levy J (Co-PI)	\$3,000	
2020	COBRE CQB Paper Travel Award	Levy J (PI)	\$2,000	
		/ • (/	T = 1000	

2021	Dartmouth Entrepreneurs Startup Competition Finalist (33%)	Levy J (Co-PI)	\$5,000
2020-	Dartmouth Hitchcock ORO Capital Investment,	Levy J (Co-PI)	\$160,000
2022	QDP-Alpha (33% effort)	- / - (/	,,
2020	Neukom Institute CompX	Sriharan A (Co-I)	\$40,000
2020	Virtual Flow Cytometry (20% effort)	Simulati / (CO 1)	γ -10,000
2020	Neukom Institute CompX	Lover L (Co. DI)	¢2E 000
2020	•	Levy J (Co-PI)	\$25,000
2020	Virtual Laboratory for Students (95% effort)	(51)	d= 000
2020	Quantitative Biomedical Sciences, TA Fellowship	Levy J (PI)	\$5,000
	100% effort		
2021	Single Cell Genomics Core Visium Pilot Funds	Levy J (Co-PI)	\$10,000
2022	ELLIS Travel Award, EDIT students Ram and Ramya Reddy	Levy J (PI)	\$3,000
2021-	IDeA States Pediatric Clinical Trials, Biostatistics Consulting	Levy J (Co-I)	\$5,000
2022			(directs)
2020-	Dartmouth-Hitchcock Department of Psychiatry, Tucker Award	Levis M (Co-I)	\$24,000
2022			(directs)
2022	Hitchcock Foundation Pilot, Komal Satti	Levy J (Co-I)	\$40,000
	How Obesity Influences the Immune Repertoire in Children. A Pil	ot Study	
		,	
Pendir	ng:		
2022	Opening DOORS to Low-Cost Library Synthesis for CRISPR		
	Off-Target Screening	Levy J (PI)	\$40,000
2022	Deep Learning Histomorphological Choriocarcinoma Triage	2017 3 (1.17	φ .σ,σσσ
	System (American Cancer Society)	Levy J (PI)	\$30,000
2022	Development of a crowd peer review platform for	Levy 5 (1 1)	730,000
2022	transdisciplinary computational research	Levy J (Co-PI)	\$40,000
2021	Advancing Clinical Translational Science through Validation of E		•
2021	Intelligence Technologies	Levy J (PI)	\$1,250,000
2022	-		
2022	Machine Learning, NLP, Suicide Prevention	Levis M (Co-I)	\$18,000
2022			(directs)
2022	Evaluating choriocarcinoma risk factors in first trimester miscar		-
	learning histological assessments of abnormal villous morpholo		\$30,000
2022	Emerging Diagnostic and Investigative Technologies (EDIT) AI: a		
	underserved high school students exploring artificial intelligence	• •	
		Levy J (PI)	\$1,250,000
2022	Pre-operative Stereotactic Radiosurgery (SRS) for Brain Metasta		
	Oxygen (HBO): an Exploratory Molecular Marker Analysis	Levy J (Co-PI)	\$100,000
2022	Impact of Phenols on Healthy Placental Growth	Levy J (Site-PI)	\$4,000,000
2023	Characterizing microbiomic and transcriptomic profiles in		
	hidradenitis Suppurativa	Levy J (Co-I)	\$100,000
2023	Cell Type Metals, Spatial Transcriptomics Placenta	Levy J (PI)	\$500,000
2023	Deep Learning Placenta Histopathology	Levy J (PI)	\$500,000
2023	Confidence Intervals for High Dimensional Imaging and Networl		
		Levy J (Site-PI)	\$500,000
		2-,- (3.00)	,,

XIV. PROGRAM DEVELOPMENT:

Aug 2018 – present:

EDIT (Emerging Diagnostic and Investigative Technologies)

Research Program, Department of Pathology and Laboratory Medicine, DHMC, Lebanon, NH

• Investigating emerging diagnostic deep learning technologies: molecular, histopathological, text, and image (Founder EDITor)

- Collaborating with other EDITors to automate diagnostic technologies
- User-centered design and validation.
- Machine-learning arm co-lead, whole genome sequencing
- Internship program co-head: conception, mentorship, skill development

XV. ENTREPRENEURIAL ACTIVITIES:

Related to the design of deep learning techniques for the analysis of whole slide images and high-resolution anorectal manometry devices (ongoing).

- I-Corps Incubator
- Dartmouth Innovations Accelerator
- DRIVEN Accelerator
- Dartmouth Entrepreneurs Startup Competition Finalists
- 3 Patents Pending

XVI. MAJOR COMMITTEE ASSIGNMENTS:

International: N/A

National: N/A

Institutional:

2018-

- 2021 Synergy Biostatistics Consultant, Geisel School of Medicine at Dartmouth, Hanover, NH
- 2022- DCC Trace Element Analysis Core Statistical/Machine Learning Consultant, Hanover, NH
- 2022- CQB COBRE Project Leader, Hanover, NH

2019-

2021 Burroughs Wellcome Fund Fellow, Geisel School of Medicine at Dartmouth, Hanover, NH

2018-

- 2020 Graduate Student Council Executive, Dartmouth College, Hanover, NH
- 2021- Quantitative Biomedical Sciences Ad-Hoc Reviewer Master's Admission Committee, Hanover, NH
- 2022- Biostatistics and Bioinformatics Shared Resource Faculty, Hanover, NH
- 2022- Bioinformatics Curriculum Committee, Quantitative Biomedical Sciences, Hanover, NH
- 2022 PhD Qualification Exam Committee Chair, Jeff Joseph, Hanover, NH
- 2023 Bachelor's High Honors Thesis Committee Member & Co-Advisor, Gokul Srinivasan, Hanover, NH

XVII. MEMBERSHIPS, OFFICE, AND COMMITTEE ASSIGNMENTS IN PROFESSIONAL SOCIETIES:

2017-

2019 Artificial Intelligence (AI) Enthusiast Club, Walnut Creek, CA, Founder

2018-

- 2019 QuantBlitz Data Science Club, Hanover, NH, Member
- 2019 Epidemiology Students Club, Hanover, NH, Member

2020-

2021 Natural Language Processing (NLP) Consultant, Department of Psychiatry, Hanover, NH

2019-

- 2020 International Society for Computational Biology and Bioinformatics
- 2022 Association for Computing Machinery
- 2021- Quantitative Biomedical Sciences Ad-Hoc Reviewer Master's Admission Committee, Hanover, NH
- 2022- Dartmouth Cancer Center, Cancer Population Sciences
- 2022- Dartmouth Cancer Center, Metals in cancer working group
- 2022- Dartmouth Cancer Center, Biostatistics and Bioinformatics Shared Resource
- 2022- Quantitative Biomedical Sciences Bioinformatics Curriculum Committee, Hanover, NH

XVIII. EDITORIAL BOARDS:

2021- Frontiers in Medical Technology

present Co-Guest Editor

2021- Cancers

present Co-Guest Editor

XIX. JOURNAL REFEREE ACTIVITY:

Crohn's and Colitis 360 (x1)

Pacific Symposium on Biocomputing (x3)

BMC Biomedical Medical Research Methodology (x1)

Laboratory Investigation (x2)

PLOS Computational Biology (x3)

Cancer Cytopathology (x1)

Computational Statistics & Data Analysis (x1)
Computerized Medical Imaging and Graphics (x2)

Computer Methods and Programs in Biomedicine (x2)

Clinical Epigenetics (x2)

Journal of Translational Medicine (x1)

Neural Processing Letters (x1)

All Life (x1)

BMC Medical Informatics (x2)

BMC Bioinformatics (x2)

The Lancet (x1)

Nature Communications (x3)
Nature Scientific Reports (x3)

IEEE Journal of Biomedical and Health Informatics (x1)

Bioinformatics (x1)

Frontiers in Education (x2)

Cancers (x2)

Annals of Applied Statistics (x1)

Journal of Medical Artificial Intelligence (x1)

NAR Genomics and Bioinformatics (x1)

Biomolecules (x1)

American Journal of Pathology (x1)

XX. AWARDS AND HONORS:

2015-2017 UC Berkeley, Dean's List (Fall 2015, Spring 2016)

Honors (All Semesters); Highest Distinction; Cum. GPA: 3.97 / 4.0; Major GPA: 3.98 / 4.0

2020 Geisel School of Medicine at Dartmouth College

Center for Quantitative Biology Travel Award \$2,000

2020 BIOSTEC 2020 Comp2Clinic Workshop, Best Paper

2021 Modern Pathology Article Top Pick of January 2021

2022 Guarini School of Graduate and Advanced Studies

Hannah Croasdale Award for academic excellence \$1,000

2023 2022 Faculty Publication Recognition,

Department of Pathology and Laboratory Medicine, DH

XXI. INVITED PRESENTATIONS:

- (*) those presentations to which an individual invitation was extended
- (#) those presentations that were meetings where a poster/talk, was presented at a large society meeting)
- (^) if the talk/presentation was applicable as a CME activity.

International:

- 2020 Preliminary Evaluation of Generative Image Translation Technologies for Histopathology Podium presentation (Best Paper Award), Biomedical Engineering Systems and Technologies (Biostec) 2020 C2C Workshop, Valletta, Malta
- 2022 Federated Data Networks, SIGAPP ACM 2022, Virtual Conference
- 2022 Multimodal Learning, SIGAPP ACM 2022, Virtual Conference
- 2022 Graph Neural Networks for Lymphocyte Prediction, GeoMedIA Workshop, MICCAI, Amsterdam

National

- 2017 Snapshots of genome evolution and population dynamics in the allopolyploid grass Brachypodium hybridum. Poster, American Society of Plant Biologists (ASPB), Honolulu, HI
- 2020 PathFlowAI: Scalable Digital Pathology
 Pacific Symposium Biocomputing 2020, Kona, HI
- 2021 Topological Feature Extraction for Whole Slide Images with Graph Neural Networks Podium Talk, Pacific Symposium Biocomputing 2021, Kona, HI
- 2021 Digital spatial profiling identifies novel biomarkers for locally invasive tumors, *Association for Molecular Pathology 2021*, Virtual
- 2022 Mixed effects machine learning on spatially localized immuno-oncology markers for colon metastasis prediction
 Pacific Symposium Biocomputing 2022, Kona, HI
- 2023 Advancing Clinical Translational Sciences through Validation of Emerging Artificial Intelligence Technologies, Cedars Sinai Medical Center, Los Angeles CA
- 2023 Artificial Intelligence for Prediction of Spatial Transcriptomics from Whole Slide Images, Enhanced with CytAssist, 10x Genomics User Group Meeting, Boston MA

Local/Regional

- Where are Your Bug's Genes and What do They Do? Workflow Automation and Machine Learning for Gene Annotation and Function. Zymergen, Emeryville, CA & Seattle, WA
- 2019 Machine Learning Analytics of Pancancer Methylation Microarray and RNA-sequencing Profiles at Susceptibility Loci. Poster, Celebration of Biomedical Research at Dartmouth (CBRaD), Hanover, NH
- 2019 MethylNet: A Modular Deep Learning Approach to DNA Methylation Prediction Quantitative Biomedical Sciences: (QBS) Retreat and NCCC Retreat, Hanover NH
- 2020 PathFlowAI: Scalable Digital Pathology
 Dartmouth-Hitchcock Retreat, Hanover NH

2020	Improving Data Representation Software for DNAm and Histopathology, Research in Progress, QBS, Hanover, NH
2020	Mortality Prediction from Satellite Imagery Burroughs Wellcome Fellowship, Hanover, NH
2020	Automating the Paris System Burroughs Wellcome Fellowship, Hanover, NH
2021	Opportunities for Machine Learning Research in Pathology and Dermatology Department of Dermatology, Hanover, NH
2021	Introduction to Neural Networks, Guest Lecture for QBS Class, Hanover NH
2021	Application of Hierarchical Bayesian Methods for Medical Artificial Intelligence, Guest Lecture for QBS Class, Hanover NH
2021	Uncertainty in Disease Staging, Research in Progress, QBS, Hanover NH
2021	Emerging Diagnostic and Investigative Technologies: Validation of Deep Learning Technologies for DNA Methylation and Histopathology, Thesis Seminar Talk, Hanover NH
2021	Emerging Machine Learning Methods in Digital Pathology, EDIT Seminar Talk, Hanover NH
2021	Opportunities for Machine Learning Research in Pathology, QBS, Hanover NH
2021	R Software Packaging, Guest Lecture for QBS Class, Hanover NH
2021	Research Overview, Department of Epidemiology, Hanover NH
2021	Mixed effects machine learning on spatially localized immuno-oncology markers for colon metastasis prediction, NCCC Retreat, Lebanon NH
2022	Introduction to Machine Learning and Research Opportunities in Pathology and Dermatology, Geise School of Medicine Medical Student Al Interest Group, Lebanon NH
2022	Rapid 100% Margin Assessment through AI in the Surgical Pathology Setting, Melanoma Retreat, DHMC, Lebanon NH
2022	EDIT Machine Learning Internship Program, Dermatology Research Night, DHMC, Lebanon NH
2022	Introduction to Neural Networks, Guest Lecture for QBS177 Class, Hanover NH
2022	Advancing Clinical Translational Sciences through Validation of Emerging Artificial Intelligence Technologies, Cancer Population Sciences, Hanover NH
2022	Medical AI Opportunities, Oakland Tech, Oakland CA
2022	Artificial Intelligence @ Dartmouth Health, Guest Lecture for ENGS 56, Thayer School of Engineering Hanover NH
2022	Virtual QBS Master's Capstone Conference, QBS, Hanover NH

- 2022 Virtual EDIT AI Conference, DHMC, Hanover NH
- 2022 EDIT: Advancing Clinical Translational Sciences through Validation of Emerging AI Technologies, QBS, Hanover NH
- 2023 Introduction to Neural Networks, Guest Lecture for QBS177 Class, Hanover NH
- 2023 Advancing Clinical Translational Sciences through Validation of Emerging Artificial Intelligence Technologies, Cancer Epidemiology Special Seminar, Hanover NH
- 2023 Predicting colon cancer metastasis through spatial molecular characterization of the tumor immune microenvironment, Cancer for Quantitative Biology Research in Progress, Hanover NH
- 2023 Predicting colon cancer metastasis through spatial molecular characterization of the tumor immune microenvironment, Cancer for Quantitative Biology External Advisory Committee Meeting, Hanover NH
- 2023 Artificial Intelligence @ Dartmouth Health, Guest Lecture for ENGS 56, Thayer School of Engineering, Hanover NH

XXII. BIBLIOGRAPHY:

A. Peer-reviewed publications in print or other media

PhD Thesis:

1. **Levy J.** Emerging Diagnostic and Investigative Technologies: Validation of Deep Learning Technologies for DNA Methylation and Histopathology. 2021

Reviews:

1. Levy J, Vaickus L. Applications of AI in Anatomic Pathology. Advances in Molecular Pathology, 2021

Book Chapters:

1. Levy J, Vaickus L. Applications of AI in Molecular Pathology. Diagnostic Molecular Pathology, 2023

Original articles:

- 1. **Levy J**, Titus A, Salas L, Christensen B. PyMethylProcess convenient high-throughput preprocessing workflow for DNA methylation data. Bioinformatics. 2019.
- 2. **Co-first:** *Gordon SP, * **Levy J**, Vogel JP. PolyCRACKER, a robust method for the unsupervised partitioning of polyploid subgenomes by signatures of repetitive DNA evolution. BMC Genomics. 2019.
- 3. **Levy J**, Titus AJ, Petersen CL, Chen Y, Salas LA, Christensen BC. MethylNet: An Automated and Modular Deep Learning Approach for DNA Methylation Analysis. BMC Bioinformatics. 2020.
- 4. **Levy J**, Salas LA, Christensen BC, Sriharan A, Vaickus LJ. PathFlowAI: A High-Throughput Workflow for Preprocessing, Deep Learning and Interpretation in Digital Pathology. Pacific Symposium on Biocomputing, 2020;25:403–14.
- 5. **Levy J**, O'Malley AJ. Don't Dismiss Logistic Regression: The Case for Sensible Extraction of Interactions in the Era of Machine Learning. BMC Medical Research Methodology. 2020.

- Levy J, et al. Preliminary Evaluation of the Utility of Deep Generative Histopathology Image
 Translation at a Mid-Sized NCI Cancer Center. Proceedings of the 13th International Joint
 Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) Volume 3:
 BIOINFORMATICS
- 7. **Levy J**, et. al. Topological Feature Extraction of Whole Slide Images with Graph Neural Networks. Pacific Symposium on Biocomputing. 2021.
- 8. **Levy J**, et. al. A Large-Scale Internal Validation Study of Unsupervised Virtual Trichrome Staining Technologies on Non-alcoholic Steatohepatitis Liver Biopsies. Modern Pathology, 2021
- 9. **Levy J**, Chen Y, et al. Biologically Motivated Organization of DNAm Neural Networks, Inspired by Capsule Networks, NPJSBA, 2021.
- 10. **Levy J**, et. al. Journey across Epidemiology's Third Variables: An Anesthesiologist's Guide for Successfully Navigating Confounding, Mediation, and Effect Modification. BMJ RAPM, 2021.
- 11. **Levy J**, Lebeaux, R. M., Hoen, A. G., et al. Using Satellite Images and Deep Learning to Identify Associations Between County-Level Mortality and Residential Neighborhood Features Proximal to Schools: A Cross-Sectional Study. Frontiers in Public Health 9, 1652 (2021).
- 12. **Levy J**, Bobak C, et. al. Mixed Effects Machine Learning Models for Colon Cancer Metastasis Prediction using Spatially Localized Immuno-Oncology Markers. Pacific Symposium on Biocomputing. 2022.
- 13. Levy, J., Vattikonda, N., Haudenschild, C., Christensen, B. & Vaickus, L. Comparison of Machine Learning Algorithms for the Prediction of Current Procedural Terminology (CPT) Codes from Pathology Reports. *Journal of Pathology Informatics* (2022)
- 14. Co-first: *Kelliher, M., *Levy, J., *Nerenz, R., et.al. Comparison of Symptoms and Antibody Response Following Administration of Moderna or Pfizer SARS-CoV-2 Vaccines. *Archives of Pathology & Laboratory Medicine* (2022).
- 15. **Levy, J. J.** et al. Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Electronic Medical Records. Frontiers in Medical Technology 4, (2022).
- 16. **Levy J**, et. al. *Uncovering Additional Predictors of Urothelial Carcinoma from Voided Urothelial Cell Clusters Through a Deep Learning Based Image Preprocessing Technique*. Cancer Cytopathology 2022.
- 17. **Levy J**, et. al. Large-Scale Longitudinal Comparison of Urine Cytological Classification Systems Reveals Potential Early Adoption of The Paris System Criteria. *Journal of the American Society of Cytopathology* 2022.
- 18. **Levy J**, et. al. Video-Based Deep Learning to Detect Dyssynergic Defecation with 3D High-Definition Anorectal Manometry. *Digestive Diseases and Sciences*, 2022
- 19. Levy J, Vaickus L. Virtual Staining. Pathology Outlines (2022).
- 20. **Levy J**, et. al. Artificial Intelligence, Bioinformatics, and Pathology: Emerging Trends Part I– An Introduction to Machine Learning Technologies. *Advances in Molecular Pathology (2023)*.

- 21. **Levy J**, et. al. Artificial Intelligence, Bioinformatics, and Pathology: Emerging Trends Part II— Current Applications in Anatomic and Molecular Pathology. *Advances in Molecular Pathology (2023)*.
- 22. **Levy J**, et. al. Identification of Spatial Proteomic Signatures of Colon Tumor Metastasis using the Digital Spatial Profiler. *The American Journal of Pathology* (2023).
- 23. Levy J, Vaickus L. Automated Assessment of Cytology Specimen. Pathology Outlines (2023).
- 24. **Levy J**, et. al. Examining longitudinal markers of bladder cancer recurrence through a semi-autonomous machine learning system for quantifying specimen atypia from urine cytology. *Cancer Cytopathology* (2023)
- 25. **Levy J**, et. al. Large-Scale Validation Study of an Improved Semi-Autonomous Urine Cytology Assessment Tool: AutoParis-X. *Cancer Cytopathology* (2023)
- 26. Azher, Z. L., Vaickus, L. J., Salas, L. A., Christensen, B. C. & **Levy, J. J.** Development of Biologically Interpretable Multimodal Deep Learning Model for Cancer Prognosis Prediction. ACM/SIGAPP SAC 2022.
- 27. Haudenschild, C., Vaickus, L. & **Levy, J.** Configuring a federated network of real-world patient health data for multimodal deep learning prediction of health outcomes. ACM/SIGAPP SAC 2022.
- 28. Reddy R*, Reddy R*, ..., Levy J. Graph Neural Networks Ameliorate Potential Impacts of Imprecise Large-Scale Autonomous Immunofluorescence Labeling of Immune Cells on Whole Slide Images, *Proceedings of Machine Learning Research* (2022)
- 29. Farhadi F, ..., **Levy J**. Applications of Artificial Intelligence in Orthopaedic Surgery. *Frontiers in Medical Technology (2022)*.
- 30. Greenburg J, ..., Levy J. Development of an Interactive Web Dashboard to Facilitate the Reexamination of Pathology Reports for Instances of Underbilling of CPT Codes. *Pathology Informatics* (2022)
- 31. Fatemi M, ..., **Levy J**. Inferring Spatial Transcriptomics Markers from Whole Slide Images to Characterize Metastasis-Related Spatial Heterogeneity of Colorectal Tumors: A Pilot Study. *Pathology Informatics*, 2023
- 32. Copeland-Halperin L, Reategui M, **Levy J**, et al. Does the Timing of Postoperative Showering Impact Infection Rates? A Systematic Review and Meta-Analysis. JPRAS. 2020.
- 33. Gordon SP, Moreira BC, **Levy J**, et. al. Gradual polyploid genome evolution revealed by a pangenomic analysis of Brachypodium hybridum and its diploid progenitors. Nature Comm. 2020.
- 34. Brady R, Levy J, et. al. The mediating effects of perceived vulnerability to disease in the relation between disgust and contamination-based OCD. J Anxiety Disord. 2021
- 35. Copeland-Halperin L, Reategui M, **Levy J**, et. al. MRI Screening after Silicone Implant-based Breast Surgery: A Survey of Patient Awareness of and Adherence with FDA Recommendation. *Plastic and Reconstructive Surgery*. 2022
- 36. Glass, R. E., Marotti, J. D., Kerr, D. A., ..., **Levy, J. J.**, et al. Using molecular testing to improve the management of thyroid nodules with indeterminate cytology: an institutional experience with review of molecular alterations. Journal of the American Society of Cytopathology (2021).

- 37. Glass, R. E., **Levy, J. J.,** Motanagh, S. A., et al. Atypia of undetermined significance in thyroid cytology: Nuclear atypia and architectural atypia are associated with different molecular alterations and risks of malignancy. Cancer Cytopathology 129, 966–972 (2021).
- 38. Azizgolshani, N., Petersen, C. L., Chen, Y., **Levy, J.J.**, et al. DNA 5-hydroxymethylcytosine in pediatric central nervous system tumors may impact tumor classification and is a positive prognostic marker. Clinical Epigenetics (2021).
- 39. Torres, V., Hodge, S., Chen, E., **Levy, J.** & Vaickus, L. Rapid tumor margin analysis using paired-agent imaging to guide Mohs micrographic surgery. in *Proc. of SPIE Vol* vol. 11943 1194304–1 (2022)
- 40. Torres, V., Hodge, S., Chen, E., **Levy, J.** & Vaickus, L. Whole-Tissue Margin Evaluation for Mohs Surgery Using Paired-Agent Imaging. *Optica Biophotonics Congress: Optics in the Life Sciences (2023)*
- 41. Lindqwister A, ..., **Levy J,** Sin J. Al-RADS: Successes and Challenges of a Novel Artificial Intelligence Curriculum for Radiologists Across Different Delivery Formats. *Frontiers in Medical Technology* (2022).
- 42. Ondrasik R, **Levy J**, et. al. Passive Order Auditing Associated with Reductions in Red Blood Cell Utilization. National Blood Shortage Experience. *Transfusion* (2022).
- 43. Levis M, **Levy J**, et. al. Leveraging unstructured electronic medical record notes to derive population-specific suicide risk models. *Psychiatry Research* (2022).
- 44. Levis M, **Levy J**, et. al. Leveraging Natural Language Processing to Improve Electronic Health Record Suicide Risk Prediction. *Journal of Clinical Psychiatry (2022)*
- 45. Levis M, **Levy J**, et. al. Dynamic Suicide Topic Modeling: Deriving population-specific, psychosocial, and time-sensitive suicide risk variables from EHR psychotherapy notes. *Clinical Psychology & Psychotherapy* (2023)
- 46. Copeland-Halperin L, Reategui M, **Levy J**, et. al. A Systematic Review and Meta-Analysis of Factors Pertaining to Gastronomy Tube Placement. *Journal of Reconstructive Microsurgery Open* 2022.
- 47. Hong J, Quon R, Song Y, Xie T, **Levy J**, et. al. Seizure onset in the supplementary motor area drives remapping of the mesial frontal motor areas. *Neurosurgery* 2022.
- 48. Copeland-Halperin L, Reategui M, **Levy J**, et. al. Predictors of Gastrostomy Tube Placement in Head and Neck Cancer Patients at a Rural Tertiary Care Hospital. *Journal of Reconstructive Microsurgery Open 2022*.
- 49. Kerr D, Goyette E, **Levy J**, et. al. Utility of Retrospective Molecular Analysis in the Diagnosis of Problematic Mesenchymal Neoplasms. *International Journal of Surgical Pathology.* 2022.
- 50. Kranyk A, ... **Levy J,** et al. Alopecia Areata and Thyroid Screening in Down Syndrome: Leveraging Epic Cosmos Dataset. *Journal of the American Academy of Dermatology, 2023*
- 51. Zhang Z, ..., **Levy J**, et. al. HiTAIC: hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. *Nucleic Acids Research Cancer*, 2023.

52. Bobak C, ..., **Levy J**, et. al.. GRANDPA: GeneRAtive Networks using Degree and Property Augmentation for the simulation and generation of privacy-preserving healthcare networks. *Applied Network Science*, 2023.

Manuscripts in review:

- 1. **Levy J**, et. al. Pathflow-MixMatch for Whole Slide Image Registration: An Investigation of a Segment-Based Scalable Image Registration Method
- 2. Levy J, et. al. GCN4R: Latent Position of Actors in Social Networks with Graph Neural Networks
- 3. **Levy J**, Bobak C, et. al. Bridge Category Models: Development of Bayesian Modelling Procedures to Account for Bridge Ordinal Ratings for Disease Staging
- 4. **Levy J**, Bobak C, et. al. Application of Hierarchical Bayesian Bridge Modeling Approaches for Estimating Inter-Rater Variability in Fibrosis Staging
- 5. **Levy J**, Bobak C, et. al. An Improvement to the Virtual Trichrome Assessment through Bridge Category Models
- 6. **Levy J**, LeBoeuf M, Christensen C, Vaickus L. ArcticAI: A Deep Learning Platform for Rapid and Accurate Histological Assessment of Intraoperative Tumor Margins
- 7. Co-first: Levis M*, Levy J*, et. al. Dynamic Suicide Topic Modeling in High Risk Veterans.
- 8. **Levy J**, et. al. Beyond Hype: The Key Role of Implementation and Education in Realizing the Promise of Emerging Medical AI Technologies
- 9. McNutt B, ..., Levy J. Federated Learning for Multicenter Collaborations of Small Biomedical Research Institutions: A Framework for Navigating Challenges and Realizing Opportunities
- 10. Ahzer Z, ..., Levy J. Assessment of Emerging Pretraining Strategies in Interpretable Multimodal Deep Learning for Cancer Prognostication
- 11. Srinivasan, G, ..., **Levy J**. A systematic review of deep learning models trained and tested using the HAM10000 dataset: an overview of recent advancements and challenges
- 12. Co-senior: Chacko R, ..., Levy J*, LeBoeuf M*. Integration of a deep learning basal cell carcinoma detection and tumor mapping algorithm into the Mohs micrographic surgery workflow: a simulated, retrospective study
- 13. Coconubo D, Levy J, et. al. Molecular Testing Results as a Quality Metric in Thyroid AUS Cases
- 14. Farrel K, **Levy J**, et. al. Vaginal Birth after Cesarean in Northern New England: Adoption and Impact of a Regional Guideline
- 15. Montagnese B, **Levy J**, et al., Machine learning prediction of neurocognitive deficits using central auditory tests
- 16. Torres V, Hodge S, **Levy J**, et. al., Paired-agent imaging as a rapid en face margin screening method in Mohs micrographic surgery

- 17. Burdick T, Mecchella J, **Levy J**, et al. Appendectomy is associated with five-fold increased risk of colorectal cancer in two, large EHR datasets.
- 18. Park S, **Levy J**, et. al. Development of a Digital Health Scholars Program: integration of artificial intelligence and its applications into a preclinical medical curriculum.

Select manuscripts in preparation:

- 1. **Levy J**, et. al. HistoBayes: An Interactive Web Application for Bayesian Deep Learning on Histopathology, with Applications in Cytopathology
- 2. Levy J, et. al. Hyperbolic MethylMaps: Hyperbolic Embeddings Pseudotime Bulk DNA Methylation
- 3. Levy J, et. al. InteractMethylXtract: Random Forest Selected DNA Methylation Interactions
- 4. Levy J, Haudenschild C, et. al. MetaCRACKER: Deep Clustering of Metagenomic Reads
- 5. **Levy J**, LeBoeuf M, Christensen C, Vaickus L. Quantitative machine learning method to assess the quality of frozen specimens during intraoperative margin assessments
- 6. **Levy J**, LeBoeuf M, Christensen C, Vaickus L. Deep learning approach for intraoperative margin assessment for Mohs micrographic resection of squamous cell carcinoma tumors
- 7. **Levy J**, Christensen C, Vaickus L, Shah E. Multicenter Prospective Validation of Anorectal Manometry AI Technologies
- 8. Levy J*, Ratna S*, et al. PyNuclei: A Software Framework for Nuclei Segmentation
- 9. Levy J*, Harish H*, et al. DeepCellCluster: A Software Framework for Nuclei Clustering
- 10. **Levy J**, Glaser A, et. al. DNA Methylation Brain Cell-Type Adjustment and Meta-Analysis Reveals Important Markers of Huntington's Disease
- 11. **Levy J**, et. al. Turing Test 2.0: Improving Clinical Applicability of Visual Inspection of Virtual Staining Technologies
- 12. Levy J, et. al. On the Potential for Selection Bias using Digital Spatial Profiling Technologies
- 13. Levy J, et. al. PathologyOutlines Application of Graph Neural Networks To Whole Slide Images
- 14. Levy J, et. al. PathologyOutlines Artificial Intelligence
- 15. Levy J, et. al. PathologyOutlines Computational Methods for Molecular Pathology
- 16. Levy J, et. al. Perspectives on Technology and Stakeholder Readiness Stress Testing
- 17. **Levy J**, et. al. Impact of Travel Distance to Nearest Clinic on Health Outcomes for Patients with Cutaneous Squamous Cell Carcinomas
- 18. Levy J, et. al. Impact of Autostaining on Spatial Transcriptomics Assays (spatial heterogeneity)
- 19. Levy J, et. al. A Deep Learning Assessment of the CytAssist Spatial Transcriptomics Platform
- 20. **Levy J**, et. al. Hologic AutoParis-X
- 21. Levy J, et. al. Impact of H&E Staining on Spatial Elemental Mapping
- 22. Levy J, et. al. Co-registration tool for Spatial Elemental Mapping
- 23. Levy J, et. al. Statistical Analysis Platform for Multimodal Spatial Elemental Mapping
- 24. Anderson E, ..., **Levy J**. Quantitative Deep Learning Approach to Assess Risk of Choriocarcinoma from Products of Conception
- 25. Davis M, ..., Levy J. Expanding diversity of dermatological images, an opinion piece
- 26. Davis M, ..., Levy J. Research letter on SCC Mohs Deep Learning Application
- 27. Davis M, ..., Levy J. Al in Dermatology
- 28. Cronin T, ..., **Levy J**. Machine Learning Approaches to Develop Quantitative Histomorphological Placental Signatures of Abnormal Fetal Development: A Comprehensive Review
- 29. Pietrowicz S, ..., **Levy J**. EDIT AI: Internal Evaluation of Pilot Remote Machine Learning and Healthcare High School Internship Program
- 30. Pietrowicz S, ..., Levy J. Mitigating Bias In Al-Augmented Clinical Decision Making by Diversifying the STEM Workforce through Engaging Students from Underserved Backgrounds through a Remote Instruction Model
- 31. Hunt B, ..., **Levy J**. Development of a Cell Phone Fluorescence Assessment Hardware for Examining Photocarcinogenesis
- 32. McFadden J, ..., Levy J. A Survey on Cell Phone Technologies Outfitted to Study Fluorescence Spectra

- 33. Lu Y, ..., Levy J. Comparison of Deep Learning Approaches for Various Natural Language Processing Tasks on Pathology Reports
- 34. Lu Y, ..., Levy J. Position paper on the role of generative modeling on scientific communication
- 35. Lu S, ..., Levy J. Resident education progression through natural language processing
- 36. Lu Y, ..., Levy J. Case report evaluation through generative modeling: a single-institution experience
- 37. Lu Y, ..., **Levy J**. Generative text modeling of pathologist case reports: how well do you know your colleagues?
- 38. Hudson T, ..., **Levy J**. Degenerate Oligo Optimization with Randomized Synthesis for Low-Cost Library Synthesis for CRISPR Off-Target Screening
- 39. Hudson T, ..., Levy J. Validating DOORS for Off-Target Screening In-Vitro via the OneSeq Assay
- 40. Hudson T, ..., **Levy J**. A Method to Leverage Degenerate Oligo Design for Optimizing CRISPR Guide-Enzyme Pairs
- 41. Gilbert-Diamond A, ..., **Levy J**. In Silico Design of Merkel Cell Polyomavirus CRISPR Guides to Inhibit Merkel Cell Carcinoma
- 42. Montivero M, ..., **Levy J**. Development of a Deep Learning Approach for Cervical Cancer Screening of Pap Smears in Honduras
- 43. Miles C, ..., Levy J. A Machine Learning Approach to Quantify Atypia for Thyroid Cancer Cytopathology
- 44. Miles C, ..., Levy J. Deep Learning Automated Assessment of Thyroid Nodules Improves Evaluation of Atypical Specimens
- 45. Srinivasan G, ..., **Levy J.** A Novel Augmentation Approach for Multiclass Dermatological Image Classification
- 46. Srinivasan G, ..., **Levy J.** Frozen versus Permanent Comparison, Single Cell RNA, Differential Expression
- 47. Srinivasan G, ..., Levy J. Frozen versus Permanent Comparison, Single Cell RNA, Visium Mapping
- 48. McOsker S, ..., Levy J. Data Valuation of Graph Structured Data in Pathology
- 49. Kamau U, ..., **Levy J**. Natural Language Processing Evaluation of Dynamic Topics Corroborates Changing Bladder Cancer Screening Practices in Response to Introduction of Paris System Criteria
- 50. Goel T, ..., Levy J. Point2Cell: Efficient Augmentation of Cell Detection Datasets with Point Annotations, with application to Mohs Surgery
- 51. Goel T, ..., **Levy J**. Exploring effective cell graph neural network training strategies for high resolution real-time intraoperative histological margin assessment
- 52. Goel T, ..., Levy J. Expert in the Loop Approach for Rapid Curation of Nuclei Detection Annotations with Applications to Mohs Surgery
- 53. Zhao B, ..., **Levy J.** Software to Extract Interactions from Bayesian Additive Regression Trees for use in Bayesian Hierarchical Regression Models
- 54. Lu Y, ..., Levy J. Molecular Genomics Quality Control through Tumor Purity Estimation
- 55. Lu Y, ..., Levy J. Tumor Cell Prediction is Improved through Immunofluorescence Tagging and Graph Neural Networks
- 56. Hamilton R, ..., **Levy J**. Dendrite: An NLP Database for Facilitating Structured Querying of Pathology Reports
- 57. Cheng M, ..., Levy J. Deep Learning Appraisal of Hirschsprung's disease
- 58. Suvarna A, ..., **Levy J**. Neural Radiance Fields for 3D Tissue Modeling and Recommendations for Skin Tumor Grossing
- 59. Suvarna A, ..., Levy J. Development of Cell Phone Application for Intraoperative Tissue Grossing
- 60. Fatemi M, ..., Levy J. Large Scale Evaluation of RNA Inference Model to Assess Colorectal Tumor Metastasis
- 61. Levis M, ..., **Levy J**. Network measures over time for SÉANCE Terms to Characterize Suicide at Population Scale
- 62. Sharma C, ..., Levy J. Cell-Graph Neural Networks for Colorectal Cancer RNA Inference
- 63. Hart S, ..., **Levy J**. Disentanglement of Tumor Immune Microenvironment for Colorectal Tumor Metastasis with DNA Methylation

- 64. McNutt B, ..., **Levy J**. Formation of a Federated Learning Working Group for Digital Pathology Applications
- 65. McNutt B, ..., Levy J. HistoCrypt: A Federated Learning Platform for Pathology
- 66. Gullet J, ..., **Levy J**. Review and Tutorial of Hierarchical Bayesian Analyses in Pathology and Potential Machine Learning Applications
- 67. Ahzer Z, ..., **Levy J**. Self-supervised Cross-Modal Spatial Pretraining using Spatial Transcriptomics and Whole Slide Images
- 68. Srinivasan G, ..., Karrs J*, Levy J*. Heme-Counter
- 69. Ratna S, ..., Levy J. Graph Neural Networks for Staging NASH
- 70. Ramwala O, ..., **Levy J**. Improvements in Virtual Trichrome Staining through Contextual Feature Mining
- 71. Zavras J, ..., Levy J. Impact of Stain Normalization on Deep Learning Models
- 72. Zhang E, ..., Levy J. Green Ink Imputation with Graph Neural Networks
- 73. Greenburg J, ..., Levy J. Pressure Injury Prediction using Time-Stamped EHR Datasets
- 74. Chen J, ..., **Levy J**. Bladder Cancer Survival Elucidated through DNA Methylation and Whole Slide Images
- 75. Zheng Z, Levy J, et. al. Cell Type Independent Clock Leveraging DNA Methylation
- 76. Zheng Z, Levy J, et. al. Colon Microbiome DNAm
- 77. Zheng Z, ..., Levy J. Cell Type Dependent Clock Leveraging DNA Methylation
- 78. Jackson C, Levy J, et. al. Smartphone Deployment of Neural Network Ki-67 Interpretation Tool
- 79. Levis M, Levy J, et. al. Dynamic Topic Models Predictive of Suicide Risk for Veterans
- 80. Emeny R, ..., **Levy J**, et. al. Burbank Study: Maternal Self-Reported Depressive Symptoms and Infant Outcomes in Times of COVID-19
- 81. Satti K, ..., Levy J, et. al. Inflammatory Markers Predictive of Changes in BMI in a Pediatric Cohort
- 82. Satti K, ..., **Levy J**, et. al. The Relationship between BMI and Inflammation is Modified through Vitamin D Intake
- 83. Satti K, ..., **Levy J**, et. al. The Relationship between Pediatric BMI, Microbiome Community Composition, T Cell Repertoire
- 84. Carter J, ..., **Levy J**, et. al. Impact of Electrodessication and Curettage for Treating Moderately Differentiated Cutaneous Squamous Cell Carcinomas
- 85. Kerr D, Goyette E, **Levy J**, et. al. Decalcification Protocol with Optimal Timing and Maximal Tissue Preservation for High-Quality Histologic Examination and Molecular Analysis
- 86. Kerr D, Goyette E, Levy J, et. al. Digital Spatial Profiling Reveals Signatures of Dupuytren Treatment
- 87. Romero A, Levy J, et. al. Platelet Age is Not Associated with Increased Transfusion Reaction Rates
- 88. Salem I, ..., Levy J, et. al. PpIX measurements study
- 89. Hamilton R, ..., **Levy J**. AutoML: Investigation of Neural Architecture Search Methods for Digital Pathology Classification Systems
- 90. Hamilton R, ..., **Levy J**, Vaickus L. Signet Ring Cell Carcinoma Evaluation through Deep Learning Approach
- 91. Dunkle A, **Levy J**, et. al. Influenza Test Positivity Rates From 2019-2020 with the Onset of Social Distancing Due To COVID
- 92. Glass R, Levy J, et. al. Comparing NC Ratios between Eyeball and Diameter-Based Measurements
- 93. Levy J, et. al. Transfer Learning for Fracture Detection from CT Scans
- 94. Greene C, ..., **Levy J**. Opportunities and obstacles for deep learning in biology and medicine, 2nd update.

Internal Report:

1. **Levy J.** Interim analysis— A Phase IIa study of the effects of L-serine in Patients with Amyotrophic Lateral Sclerosis: A Phase II Study

Letters to the Editor: N/A

B. Other scholarly work in print or other media including editorially-reviewed publications (e.g., Op-Ed pieces, Letters to the Editor), print resources (e.g., workshops) and electronic resources (e.g., MOOCs, educational websites, modules, videos, virtual patients): N/A

C. Abstracts:

Presented at National Meetings:

- 1. Glass R, **Levy J**, et. al. Atypia of Undetermined Significance in Thyroid Cytology: Nuclear and Architectural Atypia are Associated with Different Molecular Alterations and Risks of Malignancy (abstract)
- 2. Glass R, **Levy J**, et. al. Utilizing molecular testing to improve the management of thyroid nodules with indeterminate cytology: an institutional experience (abstract)
- 3. Copeland-Halperin L, ... **Levy J,** ... et. al. Oral Cancer Patients Undergoing Resection with Free Flap Reconstruction: Predictors of Gastrostomy Tube Placement, *STARS* 2021
- Stewart T, ..., Levy J, ... et. al. Predictors of Gastronomy Tube Placement for Patients Undergoing Resection of Head and Neck Cancer with Flap-based Reconstruction: Protocol for Systematic Review and Meta-Analysis. ACSVT 2021
- 5. Copeland-Halperin L, ..., **Levy J,** ..., et.al. Indications for Gastrostomy Tube Placement in Oral Cancer Patients Undergoing Resection with Immediate Free Flap Reconstruction. *AHNS* 2021
- 6. Glaser A, **Levy J,** Zhang Z, Salas L. Using Human Neural Tissue Methylation to Decipher Epigenetic Characteristics and Cell Type Pathologies in Huntington's Disease. *Movement and Disorder Society* (2021)
- 7. Copeland-Halperin L, ..., **Levy J,** ..., et.al. Does the Timing of Postoperative Showering Impact Infection and Complication Rates? *NESPRS* 2020
- 8. Barney RE, Palisoul SM, **Levy J**, Vaickus LJ, Lin CC, Tsongalis GJ, Zanazzi G. Digital Spatial Profiling Identifies Novel Biomarkers for Locally Invasive Tumors. J Molec Diagn 2021;23, 1648 (TT31)
- 9. Satti, K, **Levy**, **J**, et al. Effect of Vitamin D on the Relationship Between TNF- α and BMI. Pediatric Academic Societies (PAS) 2022 Meeting
- 10. Jackson C, **Levy J**, Liu X, Vaickus L. Smartphone deployment of neural network Ki67 interpretation tool USCAP (2022)
- 11. Levis M, **Levy J**, et al. Machine Learning and Natural Language Processing for Suicide Risk Prevention Amongst US Veterans (2022)
- 12. Levis M, **Levy J**, et al. Improving Electronic Health Record Suicide Risk Prediction by Leveraging Natural Language Processing. American Psychiatric Association (2023)
- 13. Salem I, ... Levy J, et al. Portable Measurement of Cutaneous Protoporphyrin IX-Associated Fluorescence Intensity at Baseline, *Maui Derm 2023*
- 14. Davis M, ... Levy J. A deep learning algorithm for integration of artificial intelligence in the Mohs Micrographic surgery workflow for treatment of basal cell carcinoma, *American College of MOHS Surgeons 2023*
- 15. Chacko R, ... **Levy J**. Integration of a deep learning basal cell carcinoma detection and tumor mapping algorithm into the Mohs Micrographic Surgery workflow and effects on clinical staffing: a simulated, retrospective study, *American College of MOHS Surgeons 2023*
- 16. Davis M, ... Levy J, et al. Rapid Pearl Abstracts: Pathology/Practice Management, American College of MOHS Surgeons 2023
- 17. Zhang Z, ..., **Levy J**, et. al. DNA methylation-based artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors. *AACR 2023*

Presented at Local Meetings:

- 1. Farrel K, **Levy J**, et. al. Vaginal Birth After Cesarean Section in Northern New England: Assessing the Adoption and Impact of Regional Guidelines, Dartmouth Hitchcock Medical Center, Lebanon, NH
- 2. Catalan P, ..., Gordon S, **Levy J**, et. al. Integrative Genomic Characterization of the Brachypodium Polyploid Model to Unravel Bases of Success of Polyploidy in Flowering Plants, DOE JGI, Berkeley, CA
- Chen Y, Levy J, et. al., Machine Learning Analytics of Pan-cancer Methylation Microarray and RNAsequencing Profiles at Susceptibility Loci, CBRaD 2019

4. Jackson C, **Levy J**, Liu X, Vaickus L. Smartphone deployment of neural network Ki67 interpretation tool Mass General Brigham Research Poster (2022)

Other:

 Chen Y, ... Levy J, et.al. Radiomics analysis on the molecular targeted fluorescence image provides precise tumor mapping for surgery guidance of head and neck cancer. Frontiers in Medical Technology 2022.

D. Conference Session Chair:

Conference Sessions in Preparation / Under Review:

- 1. Carly A. Bobak, Courtney T. Schiebout, Sean McOsker, Yifan Zhao, Samuel Lefkowitz, Brady Hunt, Derek Williamson, Joseph Romano, Kristine A. Giffin, Christian Darabos, **Joshua Levy**, Jason H. Moore, Dennis P. Wall. *HUMAN INTRIGUE: BIG QUESTIONS WITH BIG DATA*
- 2. Samuel Lefkowitz, **Joshua Levy**, Carly A. Bobak. Biological and Medical Applications of Networks and Graph Theory
- 3. Carly A. Bobak, Courtney T. Schiebout, Sean McOsker, Yifan Zhao, Samuel Lefkowitz, Brady Hunt, Kristine A. Giffin, **Joshua Levy**, and Christian Darabos. STORYTELLING WITH DATA SCIENCE

XXIII. Personal Statement:

My formal background and training are in Physics and Quantitative Biomedical Sciences, the latter of which is an interdisciplinary data science discipline at the intersection of Epidemiology, Biostatistics and Bioinformatics. My experience in Physics motivated me to think abstractly about how information could be represented using n-dimensional objects, which has been of great benefit as my research shifted towards applied machine learning. Prior to my PhD training, I learned to develop, implement, and deploy over one hundred sophisticated reproducible, containerized genomics and bioinformatics workflows at scale in High Performance Computing (HPC) computing environments as a software developer/engineer at both the Lawrence Berkeley National Labs and Zymergen, which instilled in me a mindset of doing public good through high throughput computations. My motivations for my recent career aspirations originated through my work in the San Francisco Department of Public Health (SFDPH), where I witnessed first-hand some of the many challenges associated with implementing new digital technologies in a healthcare setting which was, at times, averse to change and frustrations on behalf of the stakeholders. This inspired me to think more critically about how to engage stakeholders, and now that I am in a position to develop and implement these novel biomedical technologies, I have taken these principles to heart by directly integrating with the stakeholders which I aim to benefit. I served as a Burroughs Wellcome Fellow, which enabled me to build closer relationships with the Department of Pathology.

Currently, I serve as an Assistant Professor of the Departments of Pathology and Laboratory Medicine, and Dermatology, an Adjunct Professor of Epidemiology, and faculty in the Quantitative Biomedical Sciences Graduate program and Biostatistics and Bioinformatics Shared Resource (Dartmouth Cancer Center). I am one of the founders and the co-director of the Machine Learning arm of the Emerging Diagnostic and Investigative Technologies (EDIT) program. My research group (https://levylab.host.dartmouth.edu/) aims to justify the use of digital pathology technologies by developing and validating machine learning technologies and envisioning how they would fit into the clinical workflow. As such, I am in an optimal position to develop and implement digital pathology technologies through effective stakeholder engagement. To this end, my doctoral work centered around creating standardized, high throughput, open-source software to enable domain experts to extract key insights from two high dimensional data types, DNA Methylation (DNAm) and histopathological data, while validating emerging technologies which could provide immediate benefit to the end user, such as processes to virtually stain tissue to obviate the need for chemical tissue staining. My research group's aims extend beyond these original objectives to include new aims such as: 1) integration of hierarchical Bayesian statistical methodologies with machine learning technologies to provide fair assessments of digital pathology technologies, 2) further methods development and validation of spatial omics technologies, with 3) applications to further understanding of disease pathogenesis and epidemiology. My lab is also developing health informatics technologies that integrate multiple biomedical data modalities, from natural language

processing to temporally captured diagnostic codes and lab measurements. I am committed to the vision of creating a self-sufficient digital pathology program in EDIT through building an independent research lab composed of researchers with diverse, interdisciplinary skillsets. My mentorship experience to date includes launching a year-round national internship program which has run successfully for three years. I have directly mentored 55 high school, 14 undergraduate, 15 Master's, 13 medical students, and 4 pathology resident fellows, and am taking on PhD rotation students (4 rotation students and 1 MD PhD student). I am currently mentoring one PhD student through the Burroughs Wellcome Fund for their dissertation work to study molecular and histological markers of healthy fetal development. Recently, I was awarded the Hannah T. Croasdale award for academic excellence, which was given based on a "sense of social responsibility to the community of scholars".

I am a member of the Cancer Population Sciences Program, which prides itself on interdisciplinary collaboration amongst basic and physician science researchers, broadly covering the identification of precancerous exposures and somatic alterations elucidated through environmental and molecular epidemiology, using data from translational research to inform our understanding of disease processes and iteratively refine translational work, to the implementation and dissemination of key findings. The research aims of my lab are optimally aligned with these pursuits— my lab is chiefly focused on tackling public health challenges through high throughput computation and building an understanding of which technologies are optimally aligned with stakeholders and thus likely to have a positive impact on the greater community.

Updated by	/ :
Date:	