

Objetivos

- Conhecer o formato de uma instrução
- Entender os modos de endereçamento de uma instrução

Introdução

- Já conhecemos:
 - As partes do computador
 - As partes da CPU
- As instruções orientam a CPU

- Mas como são as instruções?
- Vamos relembrar um pouco sobre a CPU

O Processador e os Registradores

Diagrama

O Processador e os Registradores

- Procedimento de execução:
- UC busca dado na origem (memória, cache, dispositivo)
- UC armazena informação em um registrador
- UC comanda que ULA processe
- ULA lê informação do registrador e processa
- ULA armazena resultado em um registrador
- UC transfere dado do registrador para o destino (memória, cache, dispositivo)

O Processador e os Registradores

Diagrama

OPERAÇÕES EXECUTADAS PELA ULA

Operações da ULA

- Que tipo de operação a ULA executa?
- Ela é uma espécie de calculadora...
 - Adição (ADD)
 - Subtração (SUB)
 - Multiplicação (MUL)
 - Divisão (DIV)
 - − E (AND)
 - Ou (OR)
 - Não (NOT)
 - Ou Exclusivo (XOR)

Operações da ULA

- Em que dados ela opera?
 - SEMPRE nos registradores
 - Usualmente o resultado é armazenado no primeiro registrador
 - ADD A,B Soma B em A
 - NOT A Inverte os bits de A
- Em geral existe um registrador preferencial para armazenar os resultados
 - Acumulador
 - A, AX, EAX... (na arquitetura x86)

Responsabilidades da UC

- Analogia: Pessoa (UC) usando Calculadora (ULA)
- Responsabilidades
 - Controlar a execução de instruções na ordem certa
 - Leitura da memória principal e Entradas
 - Escrita na memória principal e Saídas
 - Controlar os ciclos de interrupção

Operações da UC

- ULA: NÃO executa instruções para acessar a memória e dispositivos
 - Ler (LD, LOAD)
 - Armazenar (STORE)
 - Movimentar (MOV)
 - Escrita em Dispositivo (OUT)
 - Leitura de Dispositivo (IN)
- Essas instruções são executadas pela UC

Instruções da CPU

- Vimos que algumas instruções são executadas pela ULA e outras pela UC...
- Mas quais são as instruções?
- Como são as instruções?

- Vamos começar por "quais são"
 - Organizando em categorias

Instruções da CPU

- Transferência de Dados (UC)
 - MOVE, STORE, LOAD, EXCHANGE, PUSH, POP...
- Operações de E/S (UC)
 - READ, WRITE, IN, OUT...
- Operações Aritméticas (ULA)
 - ADD, SUB, MULT, DIV, INC, DEC...
- Operações Lógicas e Conversão (ULA)
 - AND, OR, NOT, XOR, TST, CMP, SHIFT, TRANS, CONV
- Transferência de Controle (UC)
 - JUMP, CALL, HALT, BRANCH

Instruções da CPU

- Nem todos os processadores possuem todas essas instruções!
- Oconjunto de instruções que um processador aceita é chamado de...
 - CONJUNTO DE INSTRUÇÕES
- Ou, em inglês
 - INSTRUCTION SET

- Mas como são essas instruções?
 - Essas palavras estarão na memória?

Como são as instruções?

- Obviamente não são letras na memória
- Cada instrução: um conjunto de bits
- Exemplo: ADD A,r
 - Função: soma o valor de um registrador r em A

E o que vai nos bits do "r"?

Como são as instruções?

- Exemplo: ADD A,r
 - Função: soma o valor de um registrador r em A

Registrador	Α	В	C	D	E	Н	L	
Bits	111	000	001	010	011	100	101	

- Exemplo: ADD A,D

←-	<u> </u>	ADD A					
1	0	0	0	0	0	1	0

Como são as instruções?

- Há instruções que são executadas...
 - Parte pela ULA
 - Parte pela UC
- Exemplo: ADD A,n
 - Função: soma um número n em A

Como são as Instruções

- Exemplo: ADD A,0x24
 - Função: soma um número 0x24 em A

 Na prática, a UC carrega 0x24 em um registrador temporário X e solicita que a ULA some ADD A,X

- Vimos que a ULA processa e a UC busca
- A UC só é capaz de ler dados de uma única maneira?

- Vimos que a ULA processa e a UC busca
- A UC só é capaz de ler dados de uma única maneira?
- NÃO!
- AUC consegue ler dados através de diversas maneiras chamadas de "modos de endereçamento"
- Estas estratégias serão apresentadas a seguir

- Endereçamento a Registradores
 - O dado já está em um registrador
 - Desnecessário acessar a memória
 - Ex.: LD A,В

- Endereçamento Imediato
 - O dado "faz parte" da instrução
 - O dado está em seguida à instrução
 - Ex.: LD A,20

Endereçamento Direto

- O dado está em uma posição fixa da memória
- Acesso feito indicando o endereço do dado
- Ex.: LD A,[2000]

Endereçamento Indireto

- Odado está em posição variável da memória
- Oendereço é indicado por um registrador
- Ex.: LD A,[B] (o endereço do dado é indicado pelo conteúdo do registrador "B"

- Endereçamento por Deslocamento
 - Odado está em uma posição fixa de uma tabela
 - Registrador indica o início da tabela na memória

LD A,(IX+10)

Endereçamento por Pilha

- Odado é armazenado em um local especial chamado <u>pilha</u>
- Não é preciso indicar o endereço

- Ex.: PUSH HL / POP HL

Resumo

- CPU: tem um conjunto de instruções
- Instruções: sequências de bits
 - Nomes mnemônicos associados a elas
- ULAnão acessa a memória, quem faz é a UC
- UC: permite muitas formas de indicar o endereço de um dado a ser lido