

Artificial Bee Colony

Métaheuristic presentation

Paul Barde et Tristan Karch October 18, 2017

ISAE-Supaero

Généralités

Méthode par population : Le but est de reproduire le comportement social et collaboratif d'une colonie d'abeilles pour approximer un minimum global d'une fonction que l'on peut évaluer (mais qui peut être inconnue).

Fonctionnement

Une colonie d'abeille se compose de trois types d'individus qui résolvent le compromis d'exploitation/exploration pour des sources de nectars :

- Abeilles ouvrières (employed bees): autant que de sources de nectars: elles les exploitent.
- Abeilles observatrices/curieuses (onlookers): autant (ou moins) que d'ouvrières. Vont exploiter les sources les plus prometteuses.
- Abeilles éclaireuses (scout) : explorent aléatoirement le domaine pour trouver de nouvelles sources.

Subtilités - Fonction continue $\mathcal{R}^n \to \mathcal{R}$

- Un voisinage V_i de la source X_i ? : $X_i = \{x_{i,1}, x_{i,2}, \dots, x_{i,n}\}$, alors $V_{i_k} = X_{i_k} + \Phi_{i_k} \times (X_{i_k} X_{j_k})$ avec $\Phi_{i_k} \sim \mathcal{U}[-1, 1]$
- Sélectionner les sources prometteuses ? $P_i = \frac{fit_i}{\sum_j fit_j}$
- Abandonner une source? Au bout de t exploitations sans amélioration.

Implémentation

C'est parti pour la résolution de deux problèmes sur notebook!

Conclusion

Performant mais a utiliser sur des problèmes adaptées :

- Minimisation d'une fonction sur un espace continu
- Éviter les problèmes pour lesquels l'algorithme est contre-intuitif et dur à adapter : exploration d'espaces à topologie particulière tel que le TSP