→ ASSIGNMENT 5

HARSH KUMAR

21BDS0391

harsh.kumar2021d@vitstudent.ac.in

```
# HARSH KUMAR
# 21BDS0391
# harsh.kumar2021d@vitstudent.ac.in

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score

# Load the dataset (assuming it's a CSV file)
data = pd.read_csv('Mall_Customers.csv')
```

→ 1) Understanding the data

print(data.head(10))

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
5	6	Female	22	17	76
6	7	Female	35	18	6
7	8	Female	23	18	94
8	9	Male	64	19	3
9	10	Female	30	19	72

print(data.describe())

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.00000	73.000000
max	200.000000	70.000000	137.000000	99.000000

print(data.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
dtyp	es: int64(4), object(1)		

memory usage: 7.9+ KB

None

→ 2) Data Preprocessing

```
X = data[['Annual Income (k$)', 'Spending Score (1-100)']]
```

```
# Standardize features (scaling)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled
```

```
[ 0.58933599, -0.39597992],
[ 0.58933599, 1.42863343],
[ 0.62750542, -1.48298362],
 0.62750542, 1.81684904],
 0.62750542, -0.55126616],
 0.62750542, 0.92395314],
 0.66567484, -1.09476801],
[ 0.66567484, 1.54509812],
 0.66567484, -1.28887582],
  0.66567484, 1.46745499],
 0.66567484, -1.17241113],
 0.66567484, 1.00159627],
 0.66567484, -1.32769738],
 0.66567484, 1.50627656],
 0.66567484, -1.91002079],
 0.66567484, 1.07923939],
 0.66567484, -1.91002079],
 0.66567484, 0.88513158],
 0.70384427, -0.59008772],
 0.70384427, 1.27334719],
 0.78018313, -1.75473454],
 0.78018313, 1.6615628 ],
0.93286085, -0.93948177],
 0.93286085, 0.96277471],
 0.97103028, -1.17241113],
 0.97103028, 1.73920592],
[ 1.00919971, -0.90066021],
[ 1.00919971, 0.49691598],
 1.00919971, -1.44416206],
 1.00919971, 0.96277471],
[ 1.00919971, -1.56062674],
[ 1.00919971, 1.62274124],
[ 1.04736914, -1.44416206],
[ 1.04736914, 1.38981187], [ 1.04736914, -1.36651894],
[ 1.04736914, 0.72984534],
 1.23821628, -1.4053405 ],
[ 1.23821628, 1.54509812],
[ 1.390894 , -0.7065524 ], [ 1.390894 , 1.38981187],
             , 1.38981187],
[ 1.42906343, -1.36651894],
[ 1.42906343, 1.46745499],
[ 1.46723286, -0.43480148],
[ 1.46723286, 1.81684904],
[ 1.54357172, -1.01712489],
[ 1.54357172, 0.69102378],
[ 1.61991057, -1.28887582],
 1.61991057, 1.35099031],
[ 1.61991057, -1.05594645],
[ 1.61991057, 0.72984534],
 2.00160487, -1.63826986],
[ 2.00160487, 1.58391968],
[ 2.26879087, -1.32769738],
[ 2.26879087, 1.11806095],
[ 2.49780745, -0.86183865],
[ 2.49780745, 0.92395314],
 2.91767117, -1.25005425],
[ 2.91767117, 1.27334719]])
```

3) Unsupervised Machine Learning Approach (K-Means Clustering)

```
# Determine the optimal number of clusters using the Elbow method
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
    kmeans.fit(X_scaled)
    wcss.append(kmeans.inertia)
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change fr
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
       warnings.warn(
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(
```

```
# Plot the Elbow method graph
plt.figure(figsize=(8, 6))
plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('WCSS')
plt.grid(True)
plt.show()
```



```
# Based on the Elbow method, K=5
kmeans = KMeans(n_clusters=5, init='k-means++', random_state=42)
cluster_labels = kmeans.fit_predict(X_scaled)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(

data['Cluster'] = cluster_labels
data.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1- 100)	Cluster	
0	1	Male	19	15	39	2	Ш
1	2	Male	21	15	81	3	
2	3	Female	20	16	6	2	
3	4	Female	23	16	77	3	
4	5	Female	31	17	40	2	

```
# Visualizing the clusters
plt.figure(figsize=(10, 6))
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=cluster_labels, cmap='rainbow')
plt.title('Customer Segmentation')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```


Evaluating quality using silhouette score
silhouette_avg = silhouette_score(X_scaled, cluster_labels)
print(f'Silhouette Score: {silhouette_avg}')

Silhouette Score: 0.5546571631111091