Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design

Anthony Baietto¹, Jayson Boubin¹, Patrick Farr², Trevor J. Bihl³

- Department of Computer Science and Engineering, Ohio State University¹
- Applied Research Solutions²
- U.S. Air Force Research Laboratory³

Outline

- Introduction
- Existing Solutions and their Limitations
- Our Solution
- Results
- Conclusion

Increased Wireless Spectrum Interference

- 4G/5G
 Telecommunication
 Networks
- Mobile Sensors
- IoT Devices

Interference Mitigation - Spectral Notching

Avoid transmitting in saturated stop-band

Selected Convex Optimization Algorithms

- Re-Iterative Uniform Weight Optimization Algorithm (RUWO)
- T. Higgins, T. Webster, and A. K. Shackelford, "Mitigating interference via spatial and spectral nulling," *IET Radar, Sonar & Navigation*, vol. 8, no. 2, pp. 84–93, 2014.
- Error Reduction Algorithm (ERA)
- J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt., vol. 21, pp. 2758–2769, Aug 1982.

Algorithm	Notch Depth (dBm)	Dell r720 2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM Latency (ms)	Raspberry Pi 3B Broadcom BCM2837, 1GB RAM Latency (ms)	
RUWO	202.2	1064.98 ± 10.94	453,965.43 ± 4131.61	
ERA	31.9	185.47 ± 3.87	1982.04 ± 29.27	

Neural Networks (NN)

- Superior non-linear function approximation when sufficiently trained
- Portable
- Validated in prior research (pre/post-processing)
- J. Boubin, A. M. Jones, and T. Bihl, "Neurowav: Toward realtime waveform design for vanets using neural networks," in *2019 IEEE Vehicular Networking Conference (VNC)*, pp. 1–4, 2019.
- P. Farr, A. M. Jones, T. Bihl, J. Boubin, and A. DeMange, "Waveform design implemented on neuromorphic hardware," in *2020 IEEE International Radar Conference (RADAR)*, pp. 934-939, 2020.
- A. Baietto, J. Boubin, P. Farr, T. J. Bihl, A. M. Jones, and C. Stewart, "Lean neural networks for autonomous radar waveform design," *Sensors*, vol. 22, no. 4, 2022.

This Work

- End-to-end neural network model for spectral notching applied to 1024Hz radar waveforms
- Target embedded device constraints
- Use ubiquitous Tensorflow / Keras modeling

Tailored Loss Function

Popular loss functions, such as Mean Squared Error (MSE) rely on problem-agnostic coefficient vectors

Tailored Loss Function

Incorporate desired waveform characteristics into neural network loss function

Ideal Waveform Characteristics

- 1) Clear Pass-band
- (2) Deep Notch
- (3) Clean Roll Off
- (4) Constant Modulus
- (5) Matching Phase

Tailored Network Architecture

Incorporate problem representation into the neural network structure

Results: Correctness

Neural networks capture algorithm performance within 2% cosine similarity of RUWO

Results: Latency and Energy

Almost 2000x speedup on embedded devices over RUWO

Algorithm	Dell r720 2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM		Raspberry Pi 3B Broadcom BCM2837, 1GB RAM	
	Latency (ms)	Energy (J)	Latency (ms)	Energy (J)
RUWO	1064.98 ± 10.94	261.3 ± 6.5	453,965.43 ± 4131.61	1510.5 ± 14.8
ERA	185.47 ± 3.87	45.5 ± 1.4	1982.04 ± 29.27	6.5 ± 0.1
NN MSE	23.19 ± 1.86	$\textbf{3.7} \pm \textbf{0.3}$	230.98 ± 2.74	$\textbf{0.6} \pm \textbf{0.01}$
NN Tailored Loss Function	20.72 ± 0.44	3.7 ± 0.1	233.92 ± 3.16	0.6 ± 0.01
NN Tailored Network Architecture	23.35 ± 0.29	4.1 ± 0.6	250.90 ± 0.63	0.7 ± 0.01

Conclusion

- Advanced neural network-backed waveform design
- Demonstrated importance of subject matter expertise for neural network construction
- Satisfactory notched waveforms on embedded devices with significant latency reduction

Questions?

Anthony Baietto: baietto.2@osu.edu