Trabalho 1 PAA

Arthur Koichi Nakao, Cristian Eidi Yoshimura Outubro 2024

Sumário

1	Intr	odução	3
2	Aná	ise dos algoritmos	3
	2.1	Bubble sort	3
	2.2	Bubble sort melhorado	3
	2.3	Quick sort com pivô no primeiro elemento	4
	2.4	Quick sort com pivô no elemento central	5
	2.5	Insertion sort	6
	2.6	Shell sort	7
	2.7	Selection sort	7
	2.8	Heap sort	8
	2.9	Merge sort	8
3	Con	clusão	9
	3.1	Melhor desempenho	9
		3.1.1 Aleatório	9
		3.1.2 Crescente	0
		3.1.3 Decrescente	0
	3.2	Geral	1
		3.2.1 Aleatório	1
		3.2.2 Crescente	1
		3.2.3 Decrescente 1	3

1 Introdução

Esse trabalho visa realizar a análise de diferentes tipos de algoritmos de ordenação. Esses são o Bubble sort(sem melhoramento e com melhoramento), Quick sort(pivô no primeiro elemente e no primeiro elemento), Insertion sort, Shell sort, Selection sort, Heap sort e Merge sort. Os algoritmos foram feitos em linguagem C e foram testados 100 vezes para cada tamanho de vetor.

2 Análise dos algoritmos

2.1 Bubble sort

Conforme feito em aula, a complexidade do bubble sort em seu melhor, pior e médio caso é $\Theta(n^2)$.

imagem do gráfico:

2.2 Bubble sort melhorado

A melhoria do bubble sort diminui a complexidade de maneira significante somente se o vetor já estiver semi ordenado(no caso os testes de melhor caso foram feitos com vetores já ordenados), pois se um vetor estiver realmente aleatorizado, é mais provavel que o mesmo só ficará ordenado nos últimos laços de repetição do código.

Concluindo-se que o melhor caso é $\Theta(n)$ e seu pior caso, como também o caso médio é $\Theta(n^2)$

Imagem do gráfico:

imagem sem as ordenações de complexidade $\Theta(n^2)$:

2.3 Quick sort com pivô no primeiro elemento

Análise também feita em aula, onde no somente o pior caso possui complexidade $\Theta(n^2)$, pois uma das partições possui um tamnho muito pequeno e os outros casos possuem complexidade $\Theta(n \log n)$.

imagem do gráfico:

imagem sem os casos de complexidade $\Theta(n^2)$:

2.4 Quick sort com pivô no elemento central

A análise do quick sort com pivô no elemento central é semelhante ao quick sort com pivô no primeiro elemento, por isso seu pior caso é $\Theta(n^2)$ e seu melhor e médio é $\Theta(n\log n)$, porém seu pior caso não ocorre mais, em um vetor já ordenado.

imagem do gráfico:

2.5 Insertion sort

Em aula o algoritmo insertion sort foi analisado onde seu melhor caso é um vetor já ordenado, pois não há necessidade de trocar o valor dos elementos do vetor, assim possuindo complexidade $\Theta(n)$, e nos casos restantes a complexidade é $\Theta(n^2)$.

imagem sem as ordenações de complexidade $\Theta(n^2)$:

2.6 Shell sort

Foi visto em aula que a complexidade do shell sort usando a razão $2^k - 1$ é $\Theta(n^{\frac{3}{2}})$. imagem do gráfico:

2.7 Selection sort

Conforme estudado em aula o insertion sort possui complexidade $\Theta(n^2)$ em todos os casos, porque o número de processos segue uma progressão aritmética. imagem do gráfico:

2.8 Heap sort

Em aula foi visto que a função buildMaxHeap possui complexidade $\Theta(n)$ e a função maxHeapfy tem complexidade $\Theta(\log n)$, porém é repetida n-1 vezes. Podendo-se concluir que a complexidade é $\Theta(n\log n)$.

imagem do gráfico:

2.9 Merge sort

Em aula foi utilizado o teorema mestre para calcular a complexidade do merge sort e o resultado foi $\Theta(n \log n)$.

imagem do gráfico:

3 Conclusão

3.1 Melhor desempenho

3.1.1 Aleatório

Comparando os algoritmos em ordem aleatória, foi observado que o algoritmo de maior desempenho foi o quick sort com pivô no primeiro elemento.

imagem do gráfico dos algoritmos em ordem aleatória(somente os que possuem $O(n^{\frac{3}{2}})$ para a escala permitir a visualização):

3.1.2 Crescente

Comparando os algoritmos em ordem crescente, foi observado que o algoritmo de maior desempenho foi o bubble sort melhorado.

imagem do gráfico dos algoritmos em ordem crescente(somente os que possuem $\Theta(n)$:

3.1.3 Decrescente

Comparando os algoritmos em ordem decrescente, foi observado que o algoritmo de maior desempenho foi o quick sort com pivô no elemento do meio.

imagem do gráfico dos algoritmos em ordem decrescente (somente os que possuem $O(n^{\frac{3}{2}})$:

3.2 Geral

Separação do gráfico dos algoritmos em cada ordem em relação a sua complexidade.

3.2.1 Aleatório

imagem do gráfico com $O(n^2)$:

imagem do gráfico com $O(n^{\frac{3}{2}})$:

3.2.2 Crescente

imagem do gráfico com $O(n^2)$:

imagem do gráfico com O(n):

3.2.3 Decrescente

imagem do gráfico com $O(n^2)$:

imagem do gráfico com $O(n^{\frac{3}{2}})$:

