Day 15

Machine Learning

```
In [1]:
              import numpy as np
              import pandas as pd
              import matplotlib.pyplot as plt
In [2]:
           1
              import os
          3
             print(os.path.sep)
In [3]:
           2
          3
             FILE PATH = ".." +os.path.sep + "Python-Practice-code" +os.path.sep + "housing.csv"
             housing = pd.read csv(FILE PATH)
In [4]:
             type(housing)
Out[4]: pandas.core.frame.DataFrame
              len(housing)
In [5]:
Out[5]: 20640
In [6]:
             housing.head()
Out[6]:
                       latitude
                                housing_median_age
            longitude
                                                       total_rooms total_bedrooms
                                                                                     population households median_income median_ho
         0
              -122.23
                         37.88
                                                 41.0
                                                             880.0
                                                                              129.0
                                                                                          322.0
                                                                                                        126.0
                                                                                                                        8.3252
               -122.22
                         37.86
                                                 21.0
                                                            7099.0
                                                                             1106.0
                                                                                         2401.0
                                                                                                       1138.0
                                                                                                                        8.3014
               -122.24
                         37.85
                                                 52.0
                                                            1467.0
                                                                              190.0
                                                                                          496.0
                                                                                                        177.0
                                                                                                                        7.2574
               -122.25
                                                                                                        219.0
                         37.85
                                                 52.0
                                                            1274.0
                                                                              235.0
                                                                                          558.0
                                                                                                                        5.6431
               -122.25
                         37.85
                                                 52.0
                                                            1627.0
                                                                              280.0
                                                                                          565.0
                                                                                                        259.0
                                                                                                                        3.8462
In [7]:
              housing[:5]
Out[7]:
            longitude latitude housing_median_age
                                                       total_rooms total_bedrooms
                                                                                     population
                                                                                                 households median_income median_ho
         0
               -122.23
                         37.88
                                                 41.0
                                                             0.088
                                                                              129.0
                                                                                          322.0
                                                                                                        126.0
                                                                                                                        8.3252
              -122.22
                         37.86
                                                 21.0
                                                            7099.0
                                                                             1106.0
                                                                                         2401.0
                                                                                                       1138.0
                                                                                                                        8.3014
               -122.24
                                                            1467.0
                                                                              190.0
                                                                                          496.0
                                                                                                        177.0
                         37.85
                                                 52.0
                                                                                                                        7.2574
                                                                              235.0
                                                                                                        219.0
               -122.25
                         37.85
                                                 52.0
                                                            1274.0
                                                                                          558.0
                                                                                                                        5.6431
               -122.25
                         37.85
                                                 52.0
                                                            1627.0
                                                                              280.0
                                                                                          565.0
                                                                                                        259.0
                                                                                                                        3.8462
```

_	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_h
	0 -122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	
	1 -122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	
	2 -122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	
	3 -122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	
	4 -122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	
	5 -122.25	37.85	52.0	919.0	213.0	413.0	193.0	4.0368	
	6 -122.25	37.84	52.0	2535.0	489.0	1094.0	514.0	3.6591	
	7 -122.25	37.84	52.0	3104.0	687.0	1157.0	647.0	3.1200	
	8 -122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	
	9 -122.25	37.84	52.0	3549.0	707.0	1551.0	714.0	3.6912	
	4								
I -	Data columns (# Column 0 longitude	Non 2064	-Null Count Dtype 0 non-null float64						
-	Data columns (# Column 0 longitude 1 latitude 2 housing_m 3 total_room: 4 total_bedro 5 population 6 households 7 median_inc 8 median_ho	total 10 co Non 2064 20640 edian_age s 206 coms 20 206 206 come 2 use_value cimity 2 (9), object	olumns): -Null Count Dtype 0 non-null float64 non-null float64 20640 non-null float64 0433 non-null float64 40 non-null float64 40 non-null float64 40 non-null float64 20640 non-null float64 20640 non-null float64						
	Data columns (# Column 0 longitude 1 latitude 2 housing_m 3 total_room: 4 total_bedro 5 population 6 households 7 median_inc 8 median_ho 9 ocean_prox httypes: float64 nemory usage:	total 10 cc Non 2064 20640 edian_age s 206 2066 come 2 come 2 use_value cimity 2 (9), object 1.6+ MB	olumns): -Null Count Dtype 0 non-null float64 non-null float64 20640 non-null float64 0433 non-null float64 40 non-null float64 40 non-null float64 40 non-null float64 20640 non-null float64 20640 non-null float64	4					
O]: 0]: 2	Data columns (# Column 0 longitude 1 latitude 2 housing_m 3 total_rooms 4 total_bedro 5 population 6 households 7 median_inc 8 median_ho 9 ocean_prox dtypes: float64 memory usage: 1 len(housi	total 10 cc Non 2064 20640 edian_age s 206 2064 2066 come 2 use_value cimity 2 (9), object 1.6+ MB	olumns): -Null Count Dtype 0 non-null float64 20640 non-null float64 20640 non-null float64 0433 non-null float64 40 non-null float64 40 non-null float64 40 non-null float64 20640 non-null float64 20640 non-null float64 (1)	4 (O])					
-	Data columns (# Column 0 longitude 1 latitude 2 housing_m 3 total_rooms 4 total_bedro 5 population 6 households 7 median_inc 8 median_ho 9 ocean_prox dtypes: float64 memory usage: 1 len(housi 207	total 10 cc Non 2064 20640 edian_age s 206 2064 2066 come 2 use_value cimity 2 (9), object 1.6+ MB	olumns): -Null Count Dtype 0 non-null float64 non-null float64 20640 non-null float64 0433 non-null float64 40 non-null float64 40 non-null float64 40 non-null float64 20640 non-null float64 20640 non-null float64 (1) (1) (1) (2) (3) (4) (5) (5) (6) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	4 (O])					

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_i
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.
4								•

In [14]:

1 housing.hist(bins=60,figsize=(20,15))

d:\python-practice-code\venv\lib\site-packages\pandas\plotting_matplotlib\tools.py:400: MatplotlibDeprecationWarning: The is_first_col function was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use ax.get_subplotspec().is_first col() instead.

if ax.is first col():

Out[14]: array([[<AxesSubplot:title={'center':'longitude'}>,

<AxesSubplot:title={'center':'latitude'}>,

<AxesSubplot:title={'center':'housing median age'}>],

[<AxesSubplot:title={'center':'total rooms'}>,

<AxesSubplot:title={'center':'total bedrooms'}>,

<AxesSubplot:title={'center':'population'}>],

[<AxesSubplot:title={'center':'households'}>,

<AxesSubplot:title={'center':'median_income'}>,

<AxesSubplot:title={'center':'median_house_value'}>]],

dtype=object)


```
In [15]:
               #(housing.median income) # housing['median income'] ## Two notations for selecting a particular attribute from a dataframe
In [16]:
               np.min(housing.median income)
Out[16]: 0.4999
              np.max(housing['median income'])
In [17]:
Out[17]: 15.0001
               from sklearn.model selection import StratifiedShuffleSplit
In [18]:
In [19]:
               corr = housing.corr()
In [20]:
               corr
Out[20]:
                                 Iongitude
                                              latitude housing_median_age total_rooms
                                                                                          total_bedrooms
                                                                                                            population
                                                                                                                        households
                                                                                                                                     mediar
                      longitude
                                 1.000000
                                            -0.924664
                                                                  -0.108197
                                                                                0.044568
                                                                                                 0.069608
                                                                                                                           0.055310
                                                                                                             0.099773
                        latitude
                                 -0.924664
                                             1.000000
                                                                   0.011173
                                                                                -0.036100
                                                                                                 -0.066983
                                                                                                             -0.108785
                                                                                                                          -0.071035
          housing_median_age
                                 -0.108197
                                             0.011173
                                                                   1.000000
                                                                                -0.361262
                                                                                                 -0.320451
                                                                                                             -0.296244
                                                                                                                          -0.302916
                   total_rooms
                                 0.044568
                                            -0.036100
                                                                  -0.361262
                                                                                1.000000
                                                                                                 0.930380
                                                                                                             0.857126
                                                                                                                           0.918484
                total_bedrooms
                                 0.069608
                                           -0.066983
                                                                  -0.320451
                                                                                0.930380
                                                                                                 1.000000
                                                                                                             0.877747
                                                                                                                           0.979728
                     population
                                 0.099773
                                           -0.108785
                                                                  -0.296244
                                                                                0.857126
                                                                                                 0.877747
                                                                                                              1.000000
                                                                                                                           0.907222
                    households
                                 0.055310 -0.071035
                                                                  -0.302916
                                                                                0.918484
                                                                                                 0.979728
                                                                                                             0.907222
                                                                                                                           1.000000
                                 -0.015176
                                                                   -0.119034
                                                                                0.198050
                                                                                                 -0.007723
                                                                                                             0.004834
                                                                                                                           0.013033
                median_income
                                           -0.079809
           median_house_value -0.045967 -0.144160
                                                                   0.105623
                                                                                0.134153
                                                                                                 0.049686
                                                                                                             -0.024650
                                                                                                                           0.065843
In [21]:
               #import seaborn as sns
In [22]:
               #plt.figure(figsize=(15,8))
            1
            2
               #sns.heatmap(corr,annot=True,cmap='ocean')
In [23]:
               corr.median house value.sort values(ascending=False)
Out[23]: median house value 1.000000
         median\_income
                             0.688075
         total rooms
                           0.134153
         housing_median_age 0.105623
         households
                           0.065843
         total bedrooms
                            0.049686
         population
                          -0.024650
         longitude
                         -0.045967
         latitude
                        -0.144160
         Name: median house value, dtype: float64
In [24]:
               len(housing.median income.unique())
Out[24]: 12928
In [25]:
               len(np.ceil(housing.median income).unique())
Out[25]: 16
```

```
In [26]:
               #housing['income cat1']=np.ceil(housing.median income)
In [27]:
                #housing.income cat1.value counts().sort index(ascending=True)
In [28]:
               housing['income cat']=np.ceil(housing.median income / 1.5)
In [29]:
               housing.income cat.value counts().sort index(ascending=True)
Out[29]: 1.0
                822
          2.0
                6581
          3.0
                7236
          4.0
                3639
          5.0
                1423
          6.0
                532
          7.0
                189
          8.0
                105
          9.0
                 50
          10.0
                 14
                 49
          11.0
          Name: income cat, dtype: int64
In [30]:
               # Capping
               housing.income_cat.where(housing.income_cat < 5,5.0, inplace=True)
In [31]:
               housing.income cat.value counts().sort index(ascending=True)
Out[31]: 1.0
               822
          2.0
               6581
          3.0 7236
          4.0 3639
          5.0 2362
          Name: income cat, dtype: int64
In [32]:
               housing.income cat.value counts().sort index(ascending=True) / len(housing)
Out[32]:
         1.0 0.039826
          2.0
               0.318847
          3.0 0.350581
          4.0 0.176308
          5.0 0.114438
          Name: income_cat, dtype: float64
In [33]:
               from sklearn.model selection import StratifiedShuffleSplit
In [34]:
               type(housing.income cat)
Out[34]:
         pandas.core.series.Series
In [35]:
               strat split = StratifiedShuffleSplit(n splits=1, test size=0.2, random state=42)
In [36]:
                #strat split.split(housing,housing.income cat) will create a generator which will generate 2 index train ix and test ix
                # we are receiving their value by for loop because a generator's value is accepted via a for loop.
            3
               # iloc takes the index and train ix and test ix are actually list whereas strat train and strat test are actually dataframe
            4
               for train_ix, test_ix in strat_split.split(housing, housing.income_cat):
                  strat_train = housing.iloc[train_ix]
            5
                  strat_test = housing.iloc[test_ix]
```

Out[37]: 1.0 0.039850 2.0 0.318859 3.0 0.350594 4.0 0.176296 5.0 0.114402 Name: income cat, dtype: float64 In [38]: strat test.income cat.value counts().sort index(ascending=True) / len(strat test) Out[38]: 1.0 0.039729 2.0 0.318798 3.0 0.350533 4.0 0.176357 5.0 0.114583 Name: income cat, dtype: float64 In [39]: #as inplace =True is not written here that means the drop command is not being performed on the actual dataset otherway #we can say that the categorical attribute income_cat is being dropped after taking the whole data frame temporarily in 3 #another data frame. axis=1 is written to make the dataframe understand that the drop function will work at axis=14 #otherwise dataframe understands that the function will be performed at axis=0 5 #strat train and strat test these two datasets are being formed in this way which will be used for #learning purpose of the machine. strat train = strat train.drop('income cat', axis=1) strat test = strat test.drop('income cat',axis=1) In [40]: 1 strat train Out[40]: longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median 17606 -121.89 37.29 38.0 1568.0 351.0 710.0 339.0 2.7042 18632 -121.93 37.05 14.0 679.0 108.0 306.0 113.0 6.4214 471.0 14650 -117.20 32.77 31.0 1952.0 936.0 462.0 2.8621 3230 -119.61 36.31 25.0 1847.0 371.0 1460.0 353.0 1.8839 3555 -118.59 17.0 6592.0 1525.0 4459.0 1463.0 3.0347 34.23 6563 -118.13 34.20 46.0 1271.0 236.0 573.0 210.0 4.9312 12053 -117.56 33.88 40.0 1196.0 294.0 1052.0 258.0 2.0682 13908 872.0 2098.0 765.0 -116.40 34.09 9.0 4855.0 3.2723 11159 -118.01 31.0 1960.0 380.0 1356.0 356.0 4.0625 33.82 -122.45 52.0 3095.0 682.0 1269.0 639.0 3.5750 16512 rows × 10 columns

strat train.income cat.value counts().sort index(ascending=True) / len(strat train)

In [37]:

:	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	mediai
5241	-118.39	34.12	29.0	6447.0	1012.0	2184.0	960.0	8.2816	
10970	-117.86	33.77	39.0	4159.0	655.0	1669.0	651.0	4.6111	
20351	-119.05	34.21	27.0	4357.0	926.0	2110.0	876.0	3.0119	
6568	-118.15	34.20	52.0	1786.0	306.0	1018.0	322.0	4.1518	
13285	-117.68	34.07	32.0	1775.0	314.0	1067.0	302.0	4.0375	
20519	-121.53	38.58	33.0	4988.0	1169.0	2414.0	1075.0	1.9728	
17430	-120.44	34.65	30.0	2265.0	512.0	1402.0	471.0	1.9750	
4019	-118.49	34.18	31.0	3073.0	674.0	1486.0	684.0	4.8984	
12107	-117.32	33.99	27.0	5464.0	850.0	2400.0	836.0	4.7110	
2398	-118.91	36.79	19.0	1616.0	324.0	187.0	80.0	3.7857	
4128 r	ows × 10 c	olumns							
1 x 2 y 3 x	train = strat test = strat	t_train.me _test.drop(op('median_house_value dian_house_value 'median_house_value', a an_house_value						•
1 x 2 y 3 x 4 y	train = strat test = strat	t_train.me _test.drop(dian_house_value 'median_house_value', a						•
1 x 2 y 3 x 4 y	train = strat_test = strat_test = strat_test = strat_train_	t_train.me test.drop(test.media	dian_house_value 'median_house_value', a	axis=1)	total_bedrooms	population	households	median_income	
1 x 2 y 3 x 4 y	train = strat test = strat test = strat train	t_train.me test.drop(test.media	dian_house_value 'median_house_value', a an_house_value	axis=1)	total_bedrooms 351.0	population 710.0	households 339.0	median_income 2.7042	
1 x 2 y 3 x 4 y 1 x	train = stra test = strat test = strat train longitude -121.89	t_train.me test.drop(test.media	dian_house_value 'median_house_value', a an_house_value housing_median_age	total_rooms 1568.0 679.0	351.0 108.0	710.0 306.0			ocean_ <′
1 x 2 y 3 x 4 y	train = stra test = strat test = strat train longitude -121.89	t_train.me test.drop(test.media	dian_house_value 'median_house_value', an_house_value housing_median_age 38.0	total_rooms 1568.0	351.0	710.0	339.0	2.7042	ocean_
1 x 2 y 3 x 4 y 1 1 x 17606 18632	train = strat test = strat test = strat train longitude -121.89 -121.93 -117.20	latitude 37.29 37.05	dian house value 'median_house_value', a an_house_value housing_median_age 38.0 14.0	total_rooms 1568.0 679.0	351.0 108.0	710.0 306.0	339.0 113.0	2.7042 6.4214	ocean_ <′
1 x 2 y 3 x 4 y 1 7606 18632 14650	train = stra _test = strat_ test = strat_ train longitude -121.89 -121.93 -117.20 -119.61	latitude 37.29 37.05 32.77	dian_house_value 'median_house_value', an_house_value housing_median_age 38.0 14.0 31.0	total_rooms 1568.0 679.0 1952.0	351.0 108.0 471.0	710.0 306.0 936.0	339.0 113.0 462.0	2.7042 6.4214 2.8621	ocean_ <′
1 x 2 y 3 x 4 y 1 1 x 17606 18632 14650 3230 3555	train = strat_test = strat_test = strat_test = strat_test = strat_train longitude -121.89 -121.93 -117.20 -119.61 -118.59	latitude 37.29 37.05 32.77 36.31	housing_median_age 38.0 14.0 31.0 25.0 17.0	total_rooms 1568.0 679.0 1952.0 1847.0 6592.0	351.0 108.0 471.0 371.0 1525.0	710.0 306.0 936.0 1460.0 4459.0	339.0 113.0 462.0 353.0 1463.0	2.7042 6.4214 2.8621 1.8839 3.0347	ocean_ <′ <′ NE/
1 x 2 y 3 x 4 y 17606 18632 14650 3230 3555 6563	train = strat test = strat test = strat train longitude -121.89 -121.93 -117.20 -119.61 -118.59 -118.13	latitude 37.29 37.05 32.77 36.31 34.23 34.20	housing_median_age 38.0 14.0 31.0 25.0 17.0 46.0	total_rooms 1568.0 679.0 1952.0 1847.0 6592.0 1271.0	351.0 108.0 471.0 371.0 1525.0 	710.0 306.0 936.0 1460.0 4459.0 573.0	339.0 113.0 462.0 353.0 1463.0 210.0	2.7042 6.4214 2.8621 1.8839 3.0347 4.9312	ocean_ <′ <′ NE/
1 x 2 y 3 x 4 y 1 1 x 17606 18632 14650 3230 3555 6563 12053	train = strat_test = strat_test = strat_test = strat_test = strat_test = strat_train longitude -121.89 -121.93 -117.20 -119.61 -118.59118.13 -117.56	latitude 37.29 37.05 32.77 36.31 34.23 34.20 33.88	housing_median_age an_house_value housing_median_age 38.0 14.0 31.0 25.0 17.0 46.0 40.0	total_rooms 1568.0 679.0 1952.0 1847.0 6592.0 1271.0 1196.0	351.0 108.0 471.0 371.0 1525.0 236.0 294.0	710.0 306.0 936.0 1460.0 4459.0 573.0	339.0 113.0 462.0 353.0 1463.0 210.0 258.0	2.7042 6.4214 2.8621 1.8839 3.0347 4.9312 2.0682	ocean_ <′ <′ NE/
1 x 2 y 3 x 4 y 17606 18632 14650 3230 3555 6563 12053 13908	train = strat test = strat test = strat train longitude -121.89 -121.93 -117.20 -119.61 -118.59 -118.13 -117.56 -116.40	latitude 37.29 37.05 32.77 36.31 34.23 34.20 33.88 34.09	housing_median_age an_house_value housing_median_age 38.0 14.0 31.0 25.0 17.0 46.0 40.0 9.0	total_rooms 1568.0 679.0 1952.0 1847.0 6592.0 1271.0 1196.0 4855.0	351.0 108.0 471.0 371.0 1525.0 236.0 294.0	710.0 306.0 936.0 1460.0 4459.0 573.0 1052.0 2098.0	339.0 113.0 462.0 353.0 1463.0 210.0 258.0 765.0	2.7042 6.4214 2.8621 1.8839 3.0347 4.9312 2.0682 3.2723	ocean_ <′ <′ NE/
1 x 2 y 3 x 4 y 1 1 x 17606 18632 14650 3230 3555 6563 12053	train = strat_test	latitude 37.29 37.05 32.77 36.31 34.23 34.20 33.88 34.09 33.82	housing_median_age an_house_value housing_median_age 38.0 14.0 31.0 25.0 17.0 46.0 40.0	total_rooms 1568.0 679.0 1952.0 1847.0 6592.0 1271.0 1196.0	351.0 108.0 471.0 371.0 1525.0 236.0 294.0	710.0 306.0 936.0 1460.0 4459.0 573.0	339.0 113.0 462.0 353.0 1463.0 210.0 258.0	2.7042 6.4214 2.8621 1.8839 3.0347 4.9312 2.0682	ocean_ <′ <′ NE/

```
In [44]:
           1 y train
Out[44]: 17606
                286600.0
         18632
                 340600.0
         14650
                196900.0
         3230
                 46300.0
         3555
                254500.0
         6563
               240200.0
         12053 113000.0
         13908
                 97800.0
         11159
                225900.0
         15775 500001.0
         Name: median house value, Length: 16512, dtype: float64
In [45]:
           1 x_test
Out[45]:
                 longitude
                           latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_
           5241
                   -118.39
                              34.12
                                                    29.0
                                                               6447.0
                                                                               1012.0
                                                                                           2184.0
                                                                                                         960.0
                                                                                                                        8.2816
          10970
                   -117.86
                              33.77
                                                    39.0
                                                               4159.0
                                                                                655.0
                                                                                           1669.0
                                                                                                         651.0
                                                                                                                        4.6111
          20351
                   -119.05
                              34.21
                                                    27.0
                                                               4357.0
                                                                                926.0
                                                                                           2110.0
                                                                                                         876.0
                                                                                                                        3.0119
           6568
                   -118.15
                                                    52.0
                                                               1786.0
                                                                                306.0
                                                                                           1018.0
                                                                                                         322.0
                                                                                                                        4.1518
                              34.20
          13285
                                                                                314.0
                                                                                           1067.0
                                                                                                         302.0
                   -117.68
                              34.07
                                                    32.0
                                                               1775.0
                                                                                                                        4.0375
          20519
                   -121.53
                              38.58
                                                    33.0
                                                               4988.0
                                                                                1169.0
                                                                                           2414.0
                                                                                                        1075.0
                                                                                                                        1.9728
                                                                                           1402.0
                                                                                                                                   NE/
          17430
                   -120.44
                              34.65
                                                    30.0
                                                               2265.0
                                                                                512.0
                                                                                                         471.0
                                                                                                                        1.9750
                                                                                           1486.0
           4019
                   -118.49
                              34.18
                                                    31.0
                                                               3073.0
                                                                                674.0
                                                                                                         684.0
                                                                                                                        4.8984
          12107
                   -117.32
                              33.99
                                                    27.0
                                                               5464.0
                                                                                850.0
                                                                                           2400.0
                                                                                                         836.0
                                                                                                                        4.7110
           2398
                   -118.91
                              36.79
                                                     19.0
                                                               1616.0
                                                                                324.0
                                                                                            187.0
                                                                                                          0.08
                                                                                                                        3.7857
         4128 rows × 9 columns
In [46]:
              y_test
Out[46]: 5241
                500001.0
         10970
                240300.0
         20351 218200.0
         6568
                182100.0
         13285 121300.0
         20519 76400.0
         17430 134000.0
         4019 311700.0
         12107
                133500.0
         2398
                 78600.0
         Name: median house value, Length: 4128, dtype: float64
         Data Preprocessing
In [47]:
              x train num=x train.drop('ocean proximity',axis=1)
             x_train_cat=x_train['ocean_proximity']
```

In [48]:	1	x_train_num							
Out[48]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
	1760	6 -121.89	37.29	38.0	1568.0	351.0	710.0	339.0	2.7042
	1863	-121.93	37.05	14.0	679.0	108.0	306.0	113.0	6.4214
	1465	-117.20	32.77	31.0	1952.0	471.0	936.0	462.0	2.8621
	323	-119.61	36.31	25.0	1847.0	371.0	1460.0	353.0	1.8839
	355	-118.59	34.23	17.0	6592.0	1525.0	4459.0	1463.0	3.0347
	656	-118.13	34.20	46.0	1271.0	236.0	573.0	210.0	4.9312
	1205	-117.56	33.88	40.0	1196.0	294.0	1052.0	258.0	2.0682
	1390	-116.40	34.09	9.0	4855.0	872.0	2098.0	765.0	3.2723
	1115	-118.01	33.82	31.0	1960.0	380.0	1356.0	356.0	4.0625
	1577	'5 -122.45	37.77	52.0	3095.0	682.0	1269.0	639.0	3.5750
	1651	2 rows × 8 co	olumns						
n [49]:	1	x train cat							
ut[49]:	1760 1863								
	1465								
	3230 3555	INLAND <1H OCE							
	3333		-111						
	6563	INLAND							
	1205: 1390:								
	11159	9 <1H OCE.	AN						
	1577:			gth: 16512, dtype: objec	.+				
	Ivalliv	. occan_proxi	illity, Len	giii. 10312, dtype. 00jee					
	lm	putatio	on						
i [50]:	1	x_train_num.	info()						
		s 'pandas.core							
		Index: 16512 o columns (total							
		olumn		l Count Dtype					
		ngitude titude 1		n-null float64 -null float64					
				512 non-null float64					
		tal_rooms		on-null float64					
		tal_bedrooms opulation		non-null float64 on-null float64					
		ouseholds		on-null float64					
		edian_income	1651	2 non-null float64					
		s: float64(8) ory usage: 1.1	MB						
	mem	ory usage. 1.1	14117						
n [51]:	1	# total_bedro	oms has s	ome missing values whic	ch have to be to	ackled.			
. FEO3	1	16510 16054							
n [52]:	1	16512-16354							

Out[52]: 158

```
In [53]:
              from sklearn.impute import SimpleImputer
 In [54]:
               imputer = SimpleImputer(strategy='median')
 In [55]:
              imputer.fit(x train num)
Out[55]: SimpleImputer(strategy='median')
              imputer.statistics
 In [56]:
Out[56]: array([-118.51 , 34.26 , 29. ,2119.5 ,433. ,1164. ,
              408. , 3.5409])
 In [57]:
              x train num ndarray = imputer.transform(x train num)
 In [58]:
              x_train_num_ndarray[:5]
Out[58]: array([[-1.2189e+02, 3.7290e+01, 3.8000e+01, 1.5680e+03, 3.5100e+02,
              7.1000e+02, 3.3900e+02, 2.7042e+00],
             [-1.2193e+02,\ 3.7050e+01,\ 1.4000e+01,\ 6.7900e+02,\ 1.0800e+02,
              3.0600e+02, 1.1300e+02, 6.4214e+00],
             [-1.1720e+02, 3.2770e+01, 3.1000e+01, 1.9520e+03, 4.7100e+02,
              9.3600e+02, 4.6200e+02, 2.8621e+00],
             [-1.1961e+02, 3.6310e+01, 2.5000e+01, 1.8470e+03, 3.7100e+02,
              1.4600e+03, 3.5300e+02, 1.8839e+00],
             [-1.1859e+02, 3.4230e+01, 1.7000e+01, 6.5920e+03, 1.5250e+03,
              4.4590e+03, 1.4630e+03, 3.0347e+00]])
 In [59]:
              x train num df = pd.DataFrame(x train num ndarray, columns = x train num.columns)
 In [60]:
              x train num df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 16512 entries, 0 to 16511
         Data columns (total 8 columns):
          # Column
                           Non-Null Count Dtype
                           -----
          0 longitude
                           16512 non-null float64
          1 latitude
                          16512 non-null float64
          2 housing_median_age 16512 non-null float64
                             16512 non-null float64
          3 total rooms
                             16512 non-null float64
          4 total bedrooms
            population
                            16512 non-null float64
          6 households
                             16512 non-null float64
                               16512 non-null float64
          7 median income
         dtypes: float64(8)
         memory usage: 1.0 MB
```

Scaling

In [61]:	1	from sklearn.preprocessing import StandardScaler
In [62]:	1	scaler = StandardScaler()
In [63]:	1	x_train_num_ndarray = scaler.fit_transform(x_train_num_df)

For handling Categorical Attribute

Ordinal Encoder

```
In [65]:
               x train cat.unique()
Out[65]: array(['<1H OCEAN', 'NEAR OCEAN', 'INLAND', 'NEAR BAY', 'ISLAND'],
             dtype=object)
 In [66]:
              from sklearn.preprocessing import OrdinalEncoder
 In [67]:
               ord encoder = OrdinalEncoder()
 In [68]:
               x_train_cat_ndarray = ord_encoder.fit_transform(x_train_cat.values.reshape(-1, 1))
 In [69]:
              x train cat ndarray[:5]
Out[69]: array([[0.],
             [0.],
             [4.],
             [1.],
             [0.]]
 In [70]:
            1 x train cat[:5]
Out[70]: 17606
                 <1H OCEAN
         18632
                <1H OCEAN
         14650 NEAR OCEAN
         3230
                   INLAND
         3555
                 <1H OCEAN
         Name: ocean_proximity, dtype: object
 In [71]:
              ord encoder.categories
Out[71]: [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
             dtype=object)]
               from sklearn.preprocessing import OneHotEncoder
 In [72]:
               hot_encoder = OneHotEncoder(sparse=False)
 In [73]:
              x train cat hot encoded ndarray = hot encoder.fit transform(x train cat.values.reshape(-1, 1))
 In [74]:
```

Combine the Preprocessed Results

```
In [76]:
            1 x train final = np.c [x train num ndarray, x train cat hot encoded ndarray]
In [77]:
              x_train_final.shape
Out[77]:
         (16512, 13)
In [78]:
               from sklearn.linear model import LinearRegression
In [79]:
               lin_reg = LinearRegression()
In [80]:
               lin_reg.fit(x_train_final, y_train)
Out[80]: LinearRegression()
In [81]:
              y hat = lin reg.predict(x train final)
In [82]:
            1 y_hat[0]
Out[82]: 212480.0
In [83]:
              y_train[0]
Out[83]: 452600.0
```

Custom Transformer

Out[86]: 8

```
In [84]:
              from sklearn.base import BaseEstimator, TransformerMixin
In [85]:
               class DataFrameSelector(BaseEstimator, TransformerMixin):
                 def init (self,attrs=[]):
           3
                    self.attrs = attrs
           4
                 def fit(self, X, y=None):
           5
                    return self
           6
                 def transform(self, X):
           7
                   return X[self.attrs].values
           8
           9
                 def fit transform(self, X, y=None):
          10
                   return self.fit(X, y).transform(X)
          11
              ds = DataFrameSelector(attrs = x_train.columns[:-1])
In [86]:
              ds.fit transform(x train).shape[1]
```

```
In [87]:
            1 x train.columns[:-1]
Out[87]: Index(['longitude', 'latitude', 'housing median age', 'total rooms',
              'total bedrooms', 'population', 'households', 'median income'],
             dtype='object')
 In [88]:
               x train[['longitude', 'latitude', 'housing median age', 'total rooms',
                    'total bedrooms', 'population', 'households', 'median income']].values
Out[88]: array([[-121.89, 37.29, 38., ..., 710., 339.,
                2.7042],
              [-121.93 , 37.05 , 14. , ..., 306. , 113. ,
              [-117.2 , 32.77 , 31. ,..., 936. , 462. ,
                2.8621],
              [-116.4 , 34.09 , 9. ,..., 2098. , 765. ,
                3.2723],
              [-118.01 , 33.82 , 31. ,..., 1356. , 356. ,
                4.0625],
              [-122.45 , 37.77 , 52. , ..., 1269. , 639. ,
                3.575 ]])
```

Pipelining

```
In [89]:
               from sklearn.pipeline import Pipeline, FeatureUnion
In [90]:
                num pipe = Pipeline([
                     ('selector', DataFrameSelector(attrs=x train.columns[:-1])),
            2
            3
                     ('imputer', SimpleImputer(strategy='median')),
            4
                     ('scaler', StandardScaler())])
            5
            6
               cat pipe = Pipeline([
                     ('selector', DataFrameSelector(attrs=[x train.columns[-1]])),
            8
                     ('hot encoder', OneHotEncoder(sparse=False))
            9
                1)
           10
               full pipe = FeatureUnion([
           11
           12
                     ('num pipe', num pipe),
           13
                     ('cat pipe', cat pipe)])
In [91]:
            1 x train final = full pipe.fit transform(x train)
In [92]:
               x test final = full pipe.fit transform(x test)
In [93]:
               Lin reg = LinearRegression()
In [94]:
            1 Lin_reg.fit(x_train_final, y_train)
Out[94]: LinearRegression()
In [95]:
               y pred train = Lin reg.predict(x train final)
In [96]:
               from sklearn.metrics import mean squared error
In [97]:
               mse train = mean squared error(y train, y pred train)
```

```
In [98]:
                rmse train = np.sqrt(mse train)
  In [99]:
                rmse_train
 Out[99]: 69054.94433245908
 In [100]:
                y_pred_test = Lin_reg.predict(x_test_final)
 In [101]:
                mse_test = mean_squared_error(y_test, y_pred_test)
 In [102]:
                rmse\_test = np.sqrt(mse\_test)
 In [103]:
                 rmse test
Out[103]: 67368.05288226946
 In [104]:
                 from sklearn.tree import DecisionTreeRegressor
 In [105]:
                tree_reg = DecisionTreeRegressor()
 In [106]:
             1 tree_reg.fit(x_train_final, y_train)
Out[106]: DecisionTreeRegressor()
 In [107]:
                y_pred_train_tree = tree_reg.predict(x_train_final)
 In [108]:
                mse = mean_squared_error(y_train, y_pred_train_tree)
             1
 In [109]:
                mse
Out[109]: 0.0
 In [110]:
                y_pred_test_tree = tree_reg.predict(x_test_final)
 In [111]:
                mse = mean_squared_error(y_test, y_pred_test_tree)
 In [112]:
                 rmse = np.sqrt(mse)
 In [113]:
                rmse
Out[113]: 74340.08257413437
 In [114]:
                 from \ sklearn.ensemble \ import \ Random Forest Regressor
 In [115]:
                 forest_reg = RandomForestRegressor()
 In [116]:
                 forest_reg.fit(x_train_final, y_train)
Out[116]: RandomForestRegressor()
 In [117]:
                y_pred_train = forest_reg.predict(x_train_final)
```

```
In [118]:
               rmse = np.sqrt(mean squared error(y train, y pred train))
In [119]:
               rmse
Out[119]: 18309.90304151225
In [120]:
               y pred test = forest reg.predict(x test final)
In [121]:
               rmse = np.sqrt(mean squared error(y test, y pred test))
In [122]:
               rmse
Out[122]: 54457.38614560365
          k-Fold Cross Validation
In [123]:
               from sklearn.model selection import cross val score
In [126]:
               mses = -cross val score(lin reg, x train final, y train, cv = 10, scoring='neg mean squared error')
In [127]:
               mses
Out[127]: array([4.54755748e+09, 4.54152781e+09, 4.69813534e+09, 5.57389458e+09,
              5.25226443e+09, 4.63734690e+09])
          Performance Tuning
In [129]:
               from sklearn.model selection import GridSearchCV
In [133]:
               param grid = [
            2
                  {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
            3
                  {'bootstrap': [False], 'n estimators': [3, 10], 'max features': [2, 3, 4]}
            4 ]
            5 forest reg = RandomForestRegressor()
               grid search = GridSearchCV(forest reg, param grid, cv=5, scoring = 'neg mean squared error', return train score = True)
In [134]:
               grid search.fit(x train final, y train)
Out[134]: GridSearchCV(cv=5, estimator=RandomForestRegressor(),
                 param grid=[{'max features': [2, 4, 6, 8],
                         'n_estimators': [3, 10, 30]},
                        {'bootstrap': [False], 'max_features': [2, 3, 4],
                         'n_estimators': [3, 10]}],
                 return train score=True, scoring='neg mean squared error')
In [135]:
              grid search.best params
Out[135]: {'max_features': 8, 'n_estimators': 30}
In [136]:
               final model = grid search.best params
   In [ ]:
```