TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k) x^k$	C(n,k)
$= 1 + C(n, 1)x + C(n, 2)x^{2} + \dots + x^{n}$	
$(1+ax)^n = \sum_{k=0}^n C(n,k)a^k x^k$ = 1 + C(n, 1)ax + C(n, 2)a^2 x^2 + \cdots + a^n x^n	$C(n,k)a^k$
n	
$(1+x^r)^n = \sum_{k=0} C(n,k)x^{rk}$ = 1 + C(n, 1)x^r + C(n, 2)x^{2r} + \cdots + x^{rn}	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k
$\frac{1}{1-x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \dots$	1 if <i>r</i> <i>k</i> ; 0 otherwise
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \dots$	k+1
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$	C(n+k-1,k) = C(n+k-1, n-1)
$= 1 + C(n, 1)x + C(n + 1, 2)x^{2} + \cdots$	
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$
$= 1 - C(n, 1)x + C(n + 1, 2)x^{2} - \cdots$	
$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$	$C(n+k-1,k)a^{k} = C(n+k-1,n-1)a^{k}$
$= 1 + C(n, 1)ax + C(n + 1, 2)a^{2}x^{2} + \cdots$	
$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	1/k!
$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	$(-1)^{k+1}/k$

Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.