Curso 2014-15

T. (1 punto) Enuncia el principio de los intervalos encajados.

2. (1 punto) Di cuales de los siguientes conjuntos son equipotentes a N. Justifica la respuesta: $\mathbb{Q},\ \mathbb{Q}\backslash\mathbb{Z},\ [0,1]$

3 (2 puntos) Justifica si las siguientes afirmaciones son verdaderas o falsas:

- a) Si un subconjunto no vacío de números reales tiene infimo, tiene mínimo.
- b) Todo subconjunto no vacío de Z y mayorado tiene máximo.
- c) Todo subconjunto no vacío de Z está minorado.
- d) Todo subconjunto no vacío de N tiene mínimo.

4. *(2 puntos)*

a) Prueba que si $n \in \mathbb{N}$ y $k \in \mathbb{N} \cup \{0\}$ son tales que $k \leq n-1$, entonces se verifica que

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

- **b)** Deduce que $\binom{n}{k} \in \mathbb{N}$ para todo $n \in \mathbb{N}$ y $k \in \mathbb{N} \cup \{0\}$ tales que $k \leq n$.
- **5.** (4 puntos) Sean A y B subconjuntos no vacíos de \mathbb{R}^+ y mayorados.
 - a) Prueba que AB está mayorado y se verifica

$$Sup AB = Sup A Sup B,$$

donde

$$AB = \{ab : a \in A, b \in B\}.$$

- b) Prueba que A y B tienen máximo si, y sólo si, AB tiene máximo.
- c) Calcula el supremo de AB, siendo

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}, \qquad B = \left\{ 3 - \frac{1}{2^n} : n \in \mathbb{N} \right\}$$

¿Tiene máximo AB7