(المحاضرة 4)

المحاضرة 4

√ الفقرات الرئيسية المط<mark>لوبة بهذه المحاضرة</mark>

خوار زمية السمبلكس ذات المرحلتين

- مسألة المرحلة الأولى.
- مسألة المرحلة الثانية.
- مناقشة بعض الحالات الخاصة.

• بعض الأسئلة المهمة:

- متى يتم الانتقال للمرحلة الثانية أثناء استخدام خوارزمية السمبلكس ذات المرحلتين. (Page 68)
- ◄ هل عدد الجداول للحصول على الحل الأمثل متساوى في حالتي السمبلكس ذات التقنية M والسمبلكس ذات المرحلتين (مع التعليل). (Page 72)

مسألة المرحلة الأولى:

هي مسألة min بدالة هدف تساوي مجموع المتحولات الاصطناعية ولها قيود المسألة الأصلية بعد كتابة تلك القيود ب<mark>الصياغة القياسية الموسعة.</mark>

مسألة المرحلة الثانية:

هى مسألة بدالة هدف المسألة الأصلية ويتوافق نمطها (max or min) مع المسألة الأصلية، وتحدد قيودها من الجدول الأمثل لمسألة المرحلة الأولى بعد حذف أعمدة المتحولات الاصطناعية.

د. زياد قناية الصفحة 1 من 6

المحاضرة 4

تمارین تتعلق بالمحاضرة 4

تمرين 1: استخدام خوارزمية السمبلكس ذات المرحلتين لحل مسألة البرمجة الخطية الآتية

$$\max z = x_1 + 2x_2$$

subject to

$$x_1 + x_2 \ge 8$$

$$x_1 + 3x_2 \ge 12$$

$$x_1 + x_2 \le 10$$

$$x_1 + x_2 \le 10$$

$$x_1, x_2 \ge 0$$

الحل: الصياغة القياسية الموسعة للقيود ه<mark>ي:</mark>

$$x_1 + x_2 - x_3 + R_1 = 8$$

$$x_1 + 3x_2 - x_4 + R_2 = 12$$

$$x_1 + x_2 + x_5 = 10$$

$$x_1, \dots, x_5, R_1, R_2 \ge 0$$

$$r = R_1 + R_2$$

وتكون دالة الهدف للمرحلة 1 هي:

ولدينا:

$$R_1 = 8 - x_1 - x_2 + x_3$$

$$R_2 = 12 - x_1 - 3x_2 + x_4$$

وبالتعويض في دالة الهدف للمرحلة 1 نجد<mark>:</mark>

 $r = -2x_1 - 4x_2 + x_3 + x_4 + 20$

مسألة المرحلة 1 هي:

subject to

$$x_1 + x_2 - x_3 + R_1 = 8$$

$$x_1 + 3x_2 - x_4 + R_2 = 12$$

$$x_1 + x_2 + x_5 = 10$$

$$x_1, \dots, x_5, R_1, R_2 \ge 0$$

ويكون جدول السمبلكس الأول للمرحلة 1 ك<mark>الأتى:</mark>

العام الدراسي 2024-2023

المحاضرة 4

بحوث العمليات - سنة 4 رياضيات تطبيقية

القاعدة	x_1	x_2	x_3	<i>x</i> ₄	R_1	R_2	x_5	الحل
r	2	4	-1	-1	0	0	0	20
R_1	1	1	-1	0	1	0	0	8
R_2	1	3	0	-1	0	1	0	12
x_5	1	1	0	0	0	0	1	10

جدول السمبلكس الأول (المرحلة 1)

القاعدة	x_1	x_2	x_3	x_4	R_1	R_2	x_5	الحل
r	<u>2</u> 3	0	-1(1/3	0	$-\frac{4}{3}$	0	4
R_1	$\frac{2}{3}$	0	-1	1/3	1	$-\frac{1}{3}$	0	4
x_2	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0	1/3	0	4
x_5	<u>2</u> 3	0	0	$\frac{1}{3}$	0	$-\frac{1}{3}$	1	6

القاعدة	x_1	x_2	<i>x</i> ₃ <	X ₄	$\mathcal{L}_{R_{\mathbb{I}}}$	R_2	x_5	الحل
r	0	0	0	0	Ğ	-1	0	0
x_1	1	0	$-\frac{3}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	0	6
x_2	0	1	<u>1</u> 2	$-\frac{1}{2}$	$-\frac{1}{2}$	<u>1</u> 2	0	2
x_5	0	0	1	0	-1	0	1	2

جدول السمبلكس الثالث والأمثل (المرحلة 1)

وهذا الجدول يعطينا الحل الأمثل لمسألة المرحلة الأولى، ويما أن القيمة المثلى r=0 ننتقل إلى المرحلة الثانية، ومن هذا الجدول وبعد حذف أعمدة المتحولات الاصطناعية نجد المعادلات التالية:

$$x_1 - \frac{3}{2}x_3 + \frac{1}{2}x_4 = 6$$

$$x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 = 2$$

$$x_3 + x_5 = 2$$

 $x_3 + x_5 \equiv 2$ والتي تعد قيوداً لمسألة المرحلة 2، ومن الق<mark>يدين الأول والثاني نجد:</mark>

$$x_1 = \frac{3}{2}x_3 - \frac{1}{2}x_4 + 6$$

$$x_2 = -\frac{1}{2}x_3 + \frac{1}{2}x_4 + 2$$

وبالتعويض في دالة الهدف الأصلية $z = x_1 + 2x_2$ نجد:

$$z = \frac{1}{2}x_3 + \frac{1}{2}x_4 + 10$$

لذلك يمكن كتابة مسألة المرجلة 2 كالآتى:

 $\max \ z = \frac{1}{2}x_3 + \frac{1}{2}x_4 + 10$

subject to

$$x_1 - \frac{3}{2}x_3 + \frac{1}{2}x_4 = 6$$

$$x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 = 2$$

$$x_3 + x_5 = 2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

وبذلك يكون الجدول الأول للمرحلة 2 على النحو الأتي:

القاعدة	x_1	x_2	x_3	X_4	x_5	الحل
Z	0	0	<u>_1</u>	$-\frac{1}{2}$	0	10
x_1	1	0	$-\frac{3}{2}$	$\frac{1}{2}$	0	6
x_2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	2
x_5	0	0	1) / 0	1	2

جدول السمبلكس الأول (المرحلة 2)

القاعدة	x_1	x_2	<i>X</i> ₃	x_4	x_5	الحل
Z	1	0	-2	0	0	16
x_4	2	0	-3	1	0	12
x_2	1	01	171	0	0	8
x_5	0	0	1	0	1	2

جدول السمبلكس الثاني (المرحلة 2)

القاعدة	x_1	x_2	x_3	X_4	x_5	الحل
Z	1	0	0	80	2	20
x_4	 2	05	0	1	3	18
x_2	1	Q_1	0	0	1	10
x_3	0	0	1	0	1	2

جدول السمبلكس الثالث (المرحلة 2)

وهذا الجدول يعطينا الحل الأمثل وهو:

 $x_1 = 0, x_2 = 10$

وتكون القيمة المثلى للمسألة الأصلية هي:

z = 20

تمرين 2: استخدام خوارزمية السمبلكس ذات المرحلتين لحل مسألة البرمجة الخطية الآتية:

$$max \ z = 3x_1 + 4x_2$$
 $subject \ to \ 5x_1 + x_2 \ge 5$
 $3x_1 + 2x_2 \ge 6$
 $2x_1 \le 7$
 $x_1, x_2 \ge 0$

الحل: (يتم تكملة الحل من قبل الطالب)

القاعدة	x_1	x_2	<i>x</i> ₃	x ₄	R_1	R_2	x ₅	الحل
r			4			I		
R_1	5	1	-1	0	1	0	0	
R_2	3	1	0	-1	0	1	0	
x_5	2	0	0	0	0	0	1	

جدول السمبلكس الأول (المرحلة 1)

القاعدة	x_1	x ₂	x_3 x_4	R_1	R_2	<i>x</i> ₅	الحل
r					I		
$\overline{x_1}$	1	$\frac{1}{5}$	$-\frac{1}{5}$ 0	1 5	0	0	
R_2	0	2 5	$\frac{3}{5}$	$-\frac{3}{5}$	1	0	
<i>x</i> ₅	0	$-\frac{2}{5}$	$\frac{2}{5}$ 0	$-\frac{2}{5}$	0	1	

جدول السمبلكس الثاني (المرحلة 1)

القاعدة	x_1	x_2	<i>x</i> ₃	x ₁	R_1	R_2	<i>x</i> ₅	الحل
r			0 \					
x_1	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	
x_3	0	$\frac{2}{3}$	1	$-\frac{5}{3}$	-1	$\frac{5}{3}$	0	
x_5	0	$-\frac{2}{3}$	0	$\frac{2}{3}$	0	$-\frac{2}{3}$	1	

جدول السمبلكس الثالث والأمثل (المرحلة 1)

