Definition of inner code

eta: code length u: number of codes

 $\begin{array}{l} \mathcal{C}_i\!\subset\!\Sigma^\beta: \mathsf{code}\ (i\!\in\![\nu\rangle) \\ \boldsymbol{b}\!=\!(b_0,\ldots,b_{\nu-1}): \mathsf{bit\text{-width}} \end{array} \right] |\mathcal{C}_i| = 2^{b_i}$

 $R_{
m I} = rac{1}{2neta} \sum_{i=0}^{
u-1} b_i$: inner code rate

Metric

$$\mathbf{x} = (x_0, \dots, x_{\beta - 1}) \in \mathbb{B}^{\beta}$$

$$\mathbf{y} = (y_0, \dots, y_{\beta - 1}) \in \mathbb{B}^{\beta}$$

$$\vdots \{0, 1\}$$

metric $d(\boldsymbol{x}, \boldsymbol{y})$:

insertion: (insert 0 or 1) + (delete the last bit) deletion: (delete one bit) + (append 0 or 1)

substitution: invert one bit

Construction from binary code

$$\begin{aligned} & \boldsymbol{b}' = (b'_0, \dots, b'_{\nu-1}) \in [\beta+1)^{\nu} \\ & \text{even } \beta: \ 2^{b'_i} \le {\beta \choose \beta/2} & (b_i = b'_i + \beta) \\ & \text{odd } \beta: & \ 2^{b'_i} \le {\beta \choose (\beta-1)/2} = {\beta \choose (\beta+1)/2} \end{aligned}$$

			b'							
β	t	$\binom{\beta}{t}$	0	1	2	3	4	5	6	7
2	1	2	T	T	_	_	_	_	_	_
3	1, 2	3	T	T	F	_	_	_	_	_
4	2	6	T	T	T	F	_	_	_	_
5	2, 3	10	T	T	T	T	F	_	_	_
6	3	20	T	T	T	T	T	F	_	_
7	3, 4	35	T	T	T	T	T	T	F	_
8	4	70	T	T	T	T	T	T	T	F
9	4, 5	126	T	T	T	T	T	T	T	F

[computer search: candidate codes]

input: β, b', t

output: $\mathcal{L} = \{\mathcal{B}^0, \dots, \mathcal{B}^{m-1}\} \quad (\mathcal{B}^j \subset \mathbb{B}^\beta)$

(list of highest score codes)

constraint: $|\mathcal{B}^j|=2^{b'}, \forall oldsymbol{u}\in\mathcal{B}^j, w(oldsymbol{u})=t$

objective: maximize

 $\min_{oldsymbol{x},oldsymbol{y}\in\mathcal{B}^j}d(oldsymbol{x},oldsymbol{y})\quad (oldsymbol{x}
eq oldsymbol{y})$

[computer search: code sequence]

input: $(\mathcal{L}_0, \dots, \mathcal{L}_{\nu-1})$ output: $(\mathcal{B}_0, \dots, \mathcal{B}_{\nu-1})$

constraint: $\mathcal{B}_i \in \mathcal{L}_i$

objective: minimize $\max_{i \in [
u)} \left| \mathcal{B}_i \cap \mathcal{B}_{|i+1|_
u} \right|$

Evaluation of inner code

 $\text{channel input:} \quad u \in \mathbb{F}_{2^{b(i,\nu)}}$

channel output: $oldsymbol{p} \in \mathbb{P}_{2^{b(i,
u)}}$ (APP from inner code)

(a) HD+H(p): $v = (v, Q_{\lambda}(H(p)))$

 $Q_{\lambda}: \lambda$ -level quantization

(b) list output: (list size λ)

 $\boldsymbol{v} = (v_0, \dots, v_{\lambda-1})$

 $= \operatorname{arg\,max}(\boldsymbol{p}, \lambda) \in \mathbb{F}^{\lambda}_{2^{b(i,\nu)}}$

mutual info.: $I(U; \mathbf{V})$

$\nu = 1$	$\beta = 4, \nu = 3$			
$R_{ m I}$	\overline{b}	$R_{ m I}$		
4/8	(4, 4, 4)	12/24		
5/8	(5, 4, 4)	13/24		
6/8	(5, 5, 4)	14/24		
$\overline{\nu=2}$	(6, 4, 4)	14/24		
$R_{\rm I}$	(5, 5, 5)	15/24		
8/16	(6, 5, 4)	15/24		
	(6, 5, 5)	16/24		
	(6, 6, 5)	17/24		
10/16	(6, 6, 6)	18/24		
11/16				
	$\begin{array}{c} R_{\rm I} \\ 4/8 \\ 5/8 \\ 6/8 \\ \hline \nu = 2 \\ \hline R_{\rm I} \\ 8/16 \\ 9/16 \\ 10/16 \\ 10/16 \\ \end{array}$	$\begin{array}{c c} R_{\rm I} \\ \hline 4/8 \\ 5/8 \\ (5,4,4) \\ \hline 6/8 \\ \hline \nu = 2 \\ \hline R_{\rm I} \\ 8/16 \\ 9/16 \\ 10/16 \\ \hline (6,6,5) \\ 10/16 \\ \hline (6,6,6) \\ \hline \end{array}$		

(6,6)|12/16

$\beta =$	$5, \nu = 1$	$\beta = 5$,	$\nu = 2$
\boldsymbol{b}	$R_{ m I}$	\overline{b}	$R_{ m I}$
$\overline{(5)}$	5/10	$\overline{(5,5)}$	10/20
(6)	6/10	(6, 5)	11/20
(7)	7/10	(6, 6)	12/20
(8)	8/10	(7,5)	12/20
		(7,6)	13/20
		(7,7)	14/20
		(8, 6)	14/20
		(8,7)	15/20
		(8, 8)	16/20
			<u>'</u>

params:

β b

3 4, 5

4 6, 7

5 8.9

 $\overline{\nu} = 2$

 $6 \mid 10, 11$

Concatenated coding

channel alphabet: $\Sigma = \{A, T, G, C\}$

outer code: $\mathcal{C}_{\mathrm{o}} \subset \mathbb{F}_{2^b}^{n_{\mathrm{o}}}$ $n_{\rm o}$: code length b: symbol size (bits)

inner code: $C_i \subset \Sigma^{\beta}$ $(i \in [\nu), b < 2\beta)$

code length (symbols) β : number of code books $|\mathcal{C}_i| = 2^b$: number of codewords

 $R=b/2\beta$: inner code rate $\phi_i: \mathbb{F}_{2^b} \to \mathcal{C}_i: ext{ encoding function}$

$\begin{array}{c c} \text{outer} \\ \text{codeword: } \boldsymbol{v} = \begin{array}{c c} \boldsymbol{b} \\ \hline \boldsymbol{v_0} & \boldsymbol{v_1} & \dots & \boldsymbol{v_i} & \dots & \boldsymbol{v_{n_o-1}} \end{bmatrix} \in \mathcal{C}_{\text{o}} \subset \mathbb{F}_{2^b}^{n_{\text{o}}} \\ \text{(inner coding)} & \phi_{ 0 _{\nu}} & \phi_{ 1 _{\nu}} & \phi_{ i _{\nu}} & \phi_{ n_o-1 _{\nu}} \\ \hline \text{inner} \\ \text{codeword: } \boldsymbol{x} = \begin{array}{c c} \boldsymbol{x_0} & \boldsymbol{x_1} & \dots & \boldsymbol{x_i} & \dots & \boldsymbol{x_{n_o-1}} \end{bmatrix} \in \Sigma^n \\ \hline \boldsymbol{\beta} & & & & & & & & & & & & \\ \hline \boldsymbol{\beta} & & & & & & & & & & & \\ \hline \boldsymbol{\beta} & & & & & & & & & & & \\ \hline \boldsymbol{\beta} & & & & & & & & & & & \\ \hline \boldsymbol{\beta} & & & & & & & & & & \\ \hline \boldsymbol{\beta} & & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & & & & & & \\ \hline \boldsymbol{\gamma} & $
(shaping)
· · · · · ·
channel input: $z=oxed{z_0 z_1 \cdots z_i \cdots z_{n_o-1}} \in \Sigma^n$

$\text{prior:} \ \ p(\boldsymbol{x}_i) = \begin{cases} 1/2^b & (\boldsymbol{x}_i \in \mathcal{C}_{|i|_{\nu}}) \\ 0 & (\boldsymbol{x}_i \notin \mathcal{C}_{|i|_{\nu}}) \end{cases}$

Constraint

RL-LB constrained coding $(\ell; w, \delta)$:

* run length coding: $f_{\rm R}(z) \leq \ell$

* local GC-balance: $\left|f_{\mathrm{B}}\left(z_{i}^{i+w-1}
ight)
ight|\leq\delta$ * synchronization: MIR?

vector over Σ : $\boldsymbol{u} = (u_0, \dots, u_{n-1}) \in \Sigma^n$

weight: $w(\boldsymbol{u})_x = |\{i \in [n] \mid u_i = x\}| \ (x \in \Sigma)$

balance: $f_{\mathrm{B}}(\boldsymbol{u}) = w_{\mathsf{G}}(\boldsymbol{u}) + w_{\mathsf{C}}(\boldsymbol{u}) - w_{\mathsf{A}}(\boldsymbol{u}) - w_{\mathsf{T}}(\boldsymbol{u}) \in [-n, n]$

max run length: $f_{\rm R}(\boldsymbol{u}) \in [1, n]$

Inner codebook

$$\mathcal{C}_i = \left\{ (\phi(x_0 y_0), \dots, \phi(x_{\beta-1} y_{\beta-1})) \middle| oldsymbol{x} \in \mathcal{B}_i, oldsymbol{y} \in \mathbb{B}^{eta}
ight\}$$

 $\boldsymbol{x} = (x_0, \dots, x_{\beta-1})$ $\mathbf{y} = (y_0, \dots, y_{\beta-1}) \quad (i \in [\nu])$

 $\mathcal{B}_i \subset \mathbb{B}^{\beta}$ $|\mathcal{C}_i| = 2^{\beta} |\mathcal{B}_i| = 2^b, |\mathcal{B}_i| = 2^{b-\beta}$

 $\phi(\boldsymbol{v})$ v00 A T G C 01 10 11

Marker

rate: $R_{\rm i}=rac{\mu_k}{\mu_k+\mu_r}$

Rate

 $R = R_{\rm o} R_{\rm i} R_{\rm c}$ [bits/symbol]

 $R_{\rm o} \leq$ 1-cross entropy: inner APP

 $R_{\rm i}=\,$ inner code rate

 $R_{\rm c} \leq {\rm bound\ of\ } (\ell;w,\delta) {\rm\ constraint\ }$

bound for given P(X)

 $R_{\rm o}R_{\rm i} \leq I(X;Y)$:

(example)

		β	ν	$R_{\rm I}$	ℓ	δ	b_i	$ {\cal B}_i $
1	3.4.2	3	2	4/6	2	2	4	
							4	$\mathcal{B}_1 \longrightarrow \square$
2	3.5.1	3	1	5/6	3	*	5	\mathcal{B}_0 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare
3	4.5.2	4	2	5/8	2	2	5	\mathcal{B}_0 . The second
							5	\mathcal{B}_1 \blacksquare
4	4.6.1a	4	1	6/8	2	2	6	\mathcal{B}_0 ••••••
5	4.6.1b	4	1	6/8	4	*	6	\mathcal{B}_0 — — — —
6	4.7.1	4	1	7/8	4	*	7	\mathcal{B}_0
7	5.7.2	5	2	7/10	5	5	7	
							7	\mathcal{B}_1
9	5.8.2	5	2	8/10	3	3	8	\mathcal{B}_0 and the second secon
							8	\mathcal{B}_1
10	5.9.1	5	1	9/10	4	*	9	\mathcal{B}_0
8	5.a.2	5	2	15/20	3	3	8	\mathcal{B}_0
							7	\mathcal{B}_1

	-

							(ex2b)		
β	3	3	4	4	4	4	5	5	6
b	4 5		5	6	6	7	8	9	10
ν	2 1		2	1	1 1		2	1	1
$R_{\rm i}$	0.67	0.83 0.63		0.75	0.75	0.88	0.80	0.90	0.83
				a	b				
$(\ell; w, \delta)$	(2;10,2)	(3; *, *)	(2;10,2)	(2;10,2)	(4; *, *)	(4; *, *)	(3;10,2)	(4; *, *)	

NB-IDS channel

block length: alphabet:

 $(|\Sigma| = q)$ error prob.: p_{id} (< $\frac{1}{2}$) (ins/del)

(sub)

input: $\boldsymbol{x} = (x_0, \dots, x_{n-1}) = \Sigma^n$ $\boldsymbol{y} = (y_0, \dots, y_{n'-1}) = \Sigma^{n'}$ output:

(n-D < n' < n+D)

[transmission]

 $\boldsymbol{d} = (d_0, \dots, d_{n-1}, d_n) \in \mathcal{D}^{n+1}$ 1) drift vector:

2) intermediate $z=(z_0,\ldots,z_{n'-1})\in \Sigma^n$

vector: $z_j = x_i \ (j \in [i + d_i, i + d_{i+1}])$ $i \in [n\rangle, \ n' = n + d_n$

 $p(y_i|z_i) = \begin{cases} 1 - p_s & (y_i = z_i) \\ \frac{p_s}{a-1} & (y_i \neq z_i) \end{cases}$ 3) output vector:

 $\max drift: D$

set of drift $\mathcal{D} = \{-D, \dots, 0, \dots, D\}$ values:

 $\mathbf{d} = (d_0 = 0, \dots, d_{n-1}, d_n) \in \mathcal{D}^{n+1}$ drift vector:

 $p(d_{i+1}|d_i) = \begin{cases} 1 - 2p_{\text{id}} & (d_{i+1} = d_i, |d_i| < D) \\ 1 - p_{\text{id}} & (d_{i+1} = d_i, |d_i| = D) \\ p_{\text{id}} & (|d_{i+1} - d_i| = 1, |d_{i+1}| \le D) \longrightarrow \\ 0 & (\text{otherwise}) \end{cases}$

APP by FBA

 $p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{d}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{d})p(\boldsymbol{x}, \boldsymbol{d}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{d})p(\boldsymbol{x})p(\boldsymbol{d})$

$$p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{a}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{a})p(\boldsymbol{x}, \boldsymbol{a}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{a})p(\boldsymbol{x})p(\boldsymbol{a})$$

$$= p(d_0) \prod_{i=0}^{n-1} p\left(\boldsymbol{y}_{i+d_i}^{i+d_{i+1}} \middle| x_i, d_i, d_{i+1}\right) p(d_{i+1}|d_i)p(x_i)$$

segment level synchronization: $n = n_\beta \beta$

$$G\left(\beta', \boldsymbol{y}_{0}^{\beta'-1}\right) \text{ list of } \left[\boldsymbol{x}_{0}^{\beta-1}, \boldsymbol{p}_{0}\left(\boldsymbol{y}_{0}^{\beta'-1} \middle| \boldsymbol{x}_{0}^{\beta-1}, 0, d'\right) \boldsymbol{p}_{0}(d'|0) \right. \left(> p_{\text{th}}\right)\right]$$

$$\boldsymbol{p}_{\alpha}\left(\boldsymbol{y}_{\alpha'}^{\beta'-1}\middle|\boldsymbol{x}_{\alpha}^{\beta-1},d,d'\right)\boldsymbol{p}_{\alpha}(d'|d) = \begin{pmatrix} (d'=\beta'-\beta) \\ (d=\alpha'-\alpha) \end{pmatrix}$$

$$\sum_{\delta \in \{-1,0,1\}} p\left(\boldsymbol{y}_{\alpha'}^{\alpha'+\delta} \middle| x_{\alpha}, d, d+\delta\right) p(d+\delta|d)$$

$$imes oldsymbol{p}_{lpha+1}\left(oldsymbol{y}_{lpha'+\delta+1}^{eta'}\Big|oldsymbol{x}_{lpha+1}^{eta-1},d+\delta,d'
ight)oldsymbol{p}_{lpha+1}(d'|d+\delta)$$

Gtable: int beta double Pid double Ps double Pth LIST[len][y]

LIST: int num XP[num]

XP: int x float p [run-length of random sequence]

prob. of run-length
$$\ell$$
: $p(\ell) = \left(\frac{1}{q}\right)^{\ell-1} \left(\frac{q-1}{q}\right) = \frac{q-1}{q^\ell}$ expectation: $E(\ell) = \sum_{\ell=1}^n \ell p(\ell) = \sum_{\ell=1}^n \frac{(q-1)\ell}{q^\ell}$ $= (q-1)\sum_{\ell=1}^n \frac{\ell}{q^\ell}$ $= \frac{q}{q-1} \left(1 - \frac{1}{q^n}\right) - \frac{n}{q^n}$

[local GC-balance of random sequence]

window size: \boldsymbol{w}

prob. binary vector having weight t : $p_w(t) = {w \choose t}/2^w$

absolute GC-balance: $\sum_{t=0}^{w} p_w(t) \left| w - 2t \right|$

[rate upper bound]

run length: constraint graph(?)

$$\begin{array}{l} \text{local GCB:} \quad \frac{1}{w} \log_2 \left(2^w \sum_{t \in \mathcal{T}} \binom{w}{t} \right) = 1 + \frac{1}{w} \log_2 \left(\sum_{t \in \mathcal{T}} \binom{w}{t} \right) \\ \left(\mathcal{T} = \left\{ t \, | \, |w - 2t| \leq \delta \right\} \right) \end{array}$$

$$\begin{array}{ll} \mathsf{RL+LGCB:} & \frac{1}{w}\log_2\left|\left\{\boldsymbol{u}\in\Sigma^w\middle||f_\mathrm{B}(\boldsymbol{u})|\leq\delta,f_\mathrm{R}(\boldsymbol{u})\leq\ell\right\}\right| \end{array}$$

Concatenated coding

channel alphabet: $\Sigma = \{A, T, G, C\}$ outer code: $C_o \subset \mathbb{F}_{2b}^{n_o}$

 $n_{
m o}: {
m code. } \ {
m C_o} \subset {
m F}_{2^b} \ b: {
m symbol size (bits)}$

inner code: $C_i \subset \Sigma^{\beta}$ $(i \in [\nu), b < 2\beta)$

eta : code length (symbols) ν : number of code books $|\mathcal{C}_i|=2^b$: number of codewords

 $R=b/2\beta$: inner code rate $\phi_i:\mathbb{F}_{2^b}\! o\!\mathcal{C}_i: \ \ ext{encoding function}$

 $\text{prior:} \ \ p(\boldsymbol{x}_i) = \begin{cases} 1/2^b & (\boldsymbol{x}_i \in \mathcal{C}_{|i|_{\nu}}) \\ 0 & (\boldsymbol{x}_i \notin \mathcal{C}_{|i|_{\nu}}) \end{cases}$

vector over Σ : $\boldsymbol{u} = (u_0, \dots, u_{n-1}) \in \Sigma^n$

weight: $w(\boldsymbol{u})_x = |\{i \in [n] \mid u_i = x\}| \ (x \in \Sigma)$

balance: $f_{\mathrm{B}}(oldsymbol{u}) = w_{\mathsf{G}}(oldsymbol{u}) + w_{\mathsf{C}}(oldsymbol{u}) - w_{\mathsf{A}}(oldsymbol{u}) - w_{\mathsf{T}}(oldsymbol{u}) \in [-n,n]$

max run length: $f_{\mathbf{R}}(\mathbf{u}) \in [1, n]$

RL-LB constrained coding $(\ell; w, \delta)$:

* run length coding: $f_{\mathrm{R}}(\boldsymbol{z}) \leq \ell$

 $\overline{\mathcal{C}}$

- * local GC-balance: $\left|f_{\mathrm{B}}\left(z_{i}^{i+w-1}\right)\right| \leq \delta$
- * synchronization: MIR?

[example 1]

forbidden set $\overline{\mathcal{C}} \subseteq \Sigma^{\beta} \setminus \bigcup_{i \in [\nu)} \mathcal{C}_i \quad (|\overline{\mathcal{C}}| \leq 2^{2\beta} - 2^b)$

 $rac{\phi}{\overline{\mathcal{C}}_{*.\lambda}}=\left\{m{u}\in\Sigma^{eta}\,\middle|\,f_{\mathrm{R}}(m{u})\geq\lambda
ight\}$ (RL)

 $\overline{\mathcal{C}}_{\omega,*} = \left\{ oldsymbol{u} \in \Sigma \mid |f_{\mathrm{B}}(oldsymbol{u})| \geq \kappa \right\}$ (LB)

 $\overline{\mathcal{C}}_{\omega,\lambda} = \overline{\mathcal{C}}_{\omega,*} \cup \overline{\mathcal{C}}_{*,\lambda}$ (both)

[example 2a] $\beta = 4, b = 7$

 $C_i = \{ (\phi(x_0 y_0), \dots, \phi(x_3 y_3)) | (x_0, \dots, x_3) \in \mathcal{B}_i, (y_0, \dots, y_3) \in \mathbb{B}^4 \}$

 \mathcal{B}_0 :0011,0101,0110,1001,1010,1100,0010,0100 \mathcal{B}_1 :0011,0101,0110,1001,1010,1100,1101,1011 $|\mathcal{C}_i|=8\times 16=128=2^b$

 $\begin{array}{c|c} v & \phi(v) \\ \hline 00 & \mathsf{A} \\ 01 & \mathsf{T} \\ 10 & \mathsf{G} \\ 11 & \mathsf{C} \\ \end{array}$

[example 2b] $\beta = 5, b = 8$

 $C_i = \{ (\phi(x_0 y_0), \dots, \phi(x_4 y_4)) | (x_0, \dots, x_4) \in \mathcal{B}_i, (y_0, \dots, y_4) \in \mathbb{B}^5 \}$

 \mathcal{B}_0 : 00011,00101,00110,01001,01010,01100,10001,10010,10100,11000

 \mathcal{B}_1 : 11100,11010,11001,10110,10101,10011,01110,01101,01011,00111

 $(\nu = 3)$

 $\overline{\mathcal{C}}$

 $|\mathcal{C}_i| = 8 \times 32 = 256 = 2^b$

 $a = (a_0, \dots, a_4), c = (c_0, \dots, c_4) \in \mathcal{B}_0$

 $\mathbf{b} = (b_0, \dots, b_4), \mathbf{d} = (d_0, \dots, d_4) \in \mathcal{B}_1$

RL: max RL in a and b: 3 (by definition)

max RL in (a, b) : 3 (proof 1) max RL in (b, c) : 3 (proof 2)

(proof 1) length of the last run of a: 1 (run of 1)

2 (run of 0s)

length of the first run of b: 2 (run of 1s)

1 (run of 0)

(proof 2) length of the last run of b: 1 (run of 0)

2 (run of 1s)

length of the first run of c: 2 (run of 0s)

1 (run of 1)

LB: even $w (\geq 10)$

 (a_t^4, b, c_0^{t-1}) :

$$\begin{split} &\frac{1}{w}\log_2\left(\sum_{t\in\mathcal{T}}\left(2^w\binom{w}{t}-\rho_{\ell,w,t}\right)\right)\\ &\rho_{\ell,w,t} = \left|\left\{\boldsymbol{u}\in\Sigma^w|w_{\mathsf{G}}(\boldsymbol{u})+w_{\mathsf{C}}(\boldsymbol{u})=t,f_{\mathsf{R}}(\boldsymbol{u})>\ell\right\}\right| \end{split}$$

```
(eta = 3, b = 4) \ \mathcal{B}_0: 010,100
                                         (\beta = 3, b = 5)
                                          \mathcal{B}_0: 001,010,100,101
 \mathcal{B}_1: 101,110
                                          \mathcal{B}_1: 110,101,011,010
(\beta = 4, b = 6)
                                         (\beta = 4, b = 7) [ex2a]
 \mathcal{B}_0: 0101,0110,1001,1010
                                          \mathcal{B}_0: 0011,0101,0110,1001,1010,1100,0010,0100
 \mathcal{B}_1: 0101,0110,1001,1010
                                          \mathcal{B}_1: 0011,0101,0110,1001,1010,1100,1101,101T
                                                                                                                                 max RL
                                                                                                                                              pattern
                                                                                                              position
(\beta = 5, b = 8) [ex2b]
                                                                                                         (a_0, a_1, a_2, a_3, a_4)
                                                                                                                                      3
                                                                                                                                                10001
 \mathcal{B}_0: 00101,00110,01001,01010,01100,10001,10010,10100
                                                                                                                                      3
                                                                                                                                                *100;0
                                                                                                         (a_1, a_2, a_3, a_4; b_0)
 \mathcal{B}_1: 11010,11001,10110,10101,10011,01110,01101,01011
                                                                                                         (a_2, a_3, a_4; b_0, b_1)
(\beta = 5, b = 9)
                                                                                                         (a_3, a_4; b_0, b_1, b_2)
 \mathcal{B}_0: 00101,00110,01001,01010,01100,10001,10010,10100,...
                                                                                                         (a_4; b_0, b_1, b_2, b_3)
 \mathcal{B}_1: 11010,11001,10110,10101,10011,01110,01101,01011,...
                                                                                                         (b_0, b_1, b_2, b_3, b_4)
                                                                                                                                                01110
                                                                                                                                      3
                                                                                                         (b_1, b_2, b_3, b_4; c_0)
                                                                                                         (b_2, b_3, b_4; c_0, c_1)
                                                                                                         (b_3, b_4; c_0, c_1, c_2)
                                                                                                         (b_4; c_0, c_1, c_2, c_3)
```