

SISTEMA DE TRANSPORTE PÚBLICO COLETIVO DE PASSAGEIROS DO MUNICÍPIO DE SÃO PAULO

Tecnologia Embarcada

ESPECIFICAÇÃO TÉCNICA DA ARQUITETURA DE COMUNICAÇÃO DE DADOS ENTRE AVL E CENTRAL

Volume II / III

RT_TE003

Setembro / 2014

ÍNDICE

1	APRES	APRESENTAÇÃO	
2	INTRO	DDUÇÃO	04
3	REQUISITOS DE INFRAESTRUTURA		05
	3.1.	Arquitetura / Sistema Operacional	05
	3.2.	Redundância	05
	3.3.	Controle de Dados	05
	3.4.	Segurança	06
		3.4.1. Controle de Acesso	06
	3.5.	Desempenho	06
	3.6.	Monitoramento	06
		3.6.1. Quebra de Serviço	07
4	REQUISITOS DE MANUTENIBILIDADE		08
	4.1.	Manutenibilidade	08
		4.1.1. Documentação	08
		4.1.2. Analisabilidade	08
		4.1.3. Modificabilidade	08
		4.1.4. Estabilidade	80
		4.1.5. Testabilidade	08
	4.2.	Interoperabilidade	09
5	DIAGE	RAMA	10
6	ANEX	01	
	Documento de Especificação do Protocolo de Comunicação		
	ΔVI – Central		

1 APRESENTAÇÃO

Dando prosseguimento processo de modernização tecnológica dos equipamentos embarcados da frota de ônibus da cidade de São Paulo, a São Paulo Transporte S/A apresenta, através deste documento, o Volume II que consiste na Especificação Técnica da Arquitetura de Comunicação de Dados entre os equipamentos embarcados – conforme especificações funcionais publicadas no Volume I – e o Sistema Integrado de Monitoramento (SIM).

A comunicação entre os equipamentos embarcados e o SIM deverá ser realizada por meio de um *GATEWAY*, a ser desenvolvido e fornecido pelo Fornecedor. O *gateway* deve ser entendido como o tradutor entre o atual protocolo do Fornecedor e o Protocolo do SIM (cujo detalhamento encontrase anexo a este documento). Deverá ser instalado no ambiente de homologação da SPTRANS para a fase de realização dos testes de comunicação de dados em ambos os sentidos. Esse ambiente será disponibilizado em Data Center de mercado, a ser divulgado oportunamente.

Conforme descrito no Volume I, o futuro CCO será preparado para atender plenamente todas as funções de planos e programações, operação e controle do sistema de transporte. Entretanto, cabe esclarecer que os equipamentos deverão estar preparados para atendimento das necessidades na atual fase (monitoramento através do SIM), na fase transitória e na fase futura (operação através do CCO).

Sendo assim, cabe ressaltar que o Protocolo do SIM e o *gateway* serão utilizados até que o processo de desenvolvimento e implantação do futuro CCO esteja concluído, exigindo, assim, a manutenção do ambiente de homologação durante todo o processo.

Caso o Fornecedor avalie que a Comunicação de Dados seja realizada através de alterações em seu próprio equipamento, prescindindo o *gateway*, a solução deverá ser submetida à análise da SPTRANS.

Este documento está estruturado em 06 capítulos.

Dúvidas técnicas relativas ao Protocolo do SIM e ao *gateway* poderão ser esclarecidas através do fórum de discussão acessível pelo endereço http://fte.websim05.sim.sptrans.com.br.

INTRODUÇÃO 2

Os requisitos que seguem nesse documento para o gateway foram especificados tendo como base os aspectos previstos no ITIL (Information Technology Infrastructure Library) e na NBR ISO/IEC 27002.

As características esperadas do *gateway* serão avaliadas mediante os aspectos que seguem:

- Infraestrutura
- Disponibilidade
- Confiabilidade / Integridade
- Segurança
- Desempenho
- Manutenibilidade
- Interoperabilidade

3 REQUISITOS DE INFRAESTRUTURA

- Arquitetura / Sistema Operacional
- Gabinete
- Fonte Elétrica
- Rede / Switch
- Qualidade
- Disponibilidaade
- Recuperabilidade
- Redundância
- Confiabilidade / Integridade
- Segurança
- Desempenho
- Monitoramento

3.1. Arquitetura / Sistema Operacional

Servidor deverá suportar os sistemas operacionais, em suas últimas versões, homologadas pelo fabricante do servidor.

3.2. Redundância

O Fornecedor deve apresentar um ambiente mínimo de redundância para garantia de alta disponibilidade do serviço de monitoramento:

- Balanceamento de Carga (NLB);
- Failover Clustering;
- Em caso de falha no *gateway* Master, o *gateway Slave* deve assumir todas as funcionalidades no máximo em 5 segundos.

3.3. Controle de Dados

Devem ser configurados no Sistema Operacional e no Sistema de Banco de Dados do ambiente os controles de *log's* de acessos para detectar possíveis tentativas de manipulação dos dados registrados no ambiente.

3.4. Segurança

3.4.1. Controle de Acesso

Este controle visa evitar problemas de seguranças decorrentes do acesso lógico indevido a informação não privilegiada por parte de certos usuários.

São requisitos do negócio para Controle de Acesso:

- Gerência de acesso dos usuários
- Responsabilidade / Atribuições dos usuários
- Controle de Acesso ao Sistema Operacional
- Controle de Acesso às aplicações
- Notificação do uso e acesso ao sistema

Durante a instalação do *gateway* devem ser fornecidos dados de acesso ao Sistema Operacional e Banco de dados, junto com um usuário com permissões de administrador e senha temporária. A senha deverá ser alterada no primeiro acesso da SPTRANS.

3.5. Desempenho

A tabela abaixo apresenta a referência para o desempenho desejado do serviço do gateway:

Estudo de Volume / tempo				
Quantidade de Veículos	15.000			
Transmissão de Dados	5 s			
Tamanho do Pacote	1 Kb			
Média de Transmissão por Segundo	3.000/s			
Volume por Segundo	3 Mb/s			
Número de Conversões por Segundo	3.000/s			
Tempo de uma Conversão	30 ms			

Figura 01

3.6. Monitoramento

Deve ser disponibilizado um Painel de Controle definido em conjunto com a SPTRANS contendo métricas de monitoramento do ambiente, tais como:

- Tempo máximo de indisponibilidade total;
- CPU (uso);
- Memória RAM (uso);
- Disco Rígido (uso);
- Disco Rígido (IOPs);
- Rede (IO);
- Embarcados Conectados;
- Eventos por Segundo;

Latência máxima permitida;

Esse painel de controle deve ser acessível via web e protegido por usuário e senha. Deve ser disponibilizado acesso aos dados via protocolo de gerenciamento SNMP. .

3.6.1. Quebra de Serviço

Para cada item definido como métrica de desempenho no monitoramento deve ser estabelecido o nível de criticidade com alertas automáticos encaminhados por email a SPTRANS.

REQUISITOS DE MANUTENIBILIDADE

4.1. Manutenibilidade

Entende-se por manutenibilidade a facilidade com que um sistema ou componente de software pode ser modificado para se corrigir falhas, melhorar desempenho (ou outros atributos), ou ser adaptado a mudanças no ambiente; (IEEE 610.12, 1990).

Seguem os requisitos de manutenibilidade segmentados por:

- Documentação
- Analisabilidade
- Modificabilidade
- Estabilidade
- Testabilidade

4.1.1. Documentação

Deve ser entregue documentação detalhada de todo o ambiente para possíveis futuras consultas e manutenção.

4.1.2. Analisabilidade

O ambiente fornecido deve permitir com facilidade diagnosticar eventuais problemas e identificar as causas das deficiências ou falhas.

4.1.3. Modificabilidade

O sistema deve permitir facilidade de modificação de comportamento e parâmetros a partir dos valores definidos pela SPTRANS.

4.1.4. Estabilidade

O sistema deve se manter estável e imune a efeitos colaterais decorrentes a modificações introduzidas.

4.1.5. Testabilidade

Deve ser fornecido ambiente de homologação que reproduz com exatidão o ambiente de produção, capaz de ser usado para testes de novas funcionalidades e outras alterações no Protocolo do SIM. Os requisitos e cenários a serem testados são objeto de detalhamento do Volume III, a ser divulgado.

4.2. Interoperabilidade

"Habilidade de dois ou mais sistemas (computadores, meios de comunicação, redes, software e outros componentes de tecnologia da informação) de interagir e de intercambiar dados de acordo com um método definido, de forma a obter os resultados esperados." (ISO).

- Protocolo SPTRANS
- Protocolo SNMP v1
- Futuro Protocolo

DIAGRAMA

Datacenter AVL Gateways SPTrans SIM **Fabricantes** Servidores Internet Slave Switch Pábricante Y Slavé Switch Fabricante Z Switch Switch

Figura 02

6 ANEXO I - Documento de Especificação do Protocolo de Comunicação AVL - Central

O Protocolo de Comunicação AVL – Central encontra-se em sua versão 3.0.

Projeto:	Responsável:
TECNOLOGIA EMBARCADA	SPTRANS DG
Documento:	Emissão:
DOCUMENTO DE ESPECIFICAÇÃO TÉCNICA DA ARQUITETURA DE COMUNICAÇÃO DE DADOS ENTRE AVL E CENTRAL (Rt_Vol-II_Protocolo-V01.pdf)	24.SET.2014
Revisão:	Folhas:
01	11 / 11