

QUIZ • 10 MIN

Linear Regression with Multiple Variables

TOTAL POINTS 5

1. Suppose *m*=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

1 point

Submit your assignment

DUE Apr 12, 11:59 PM PDT ATTI midterm exam	Apr 12, 11:59 PM PDT ATTEMPTS .3 every 8 houes n exam (midterm exam) fi		m
89	7921	96	
72 Receive grade	5184	74	Grade
TO PASS 80% or higher 94	8836	87	_
69	4761	78	

2

Start

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

-0.76

1 point

2. You run gradient descent for 15 iterations

with lpha=0.3 and compute J(heta) after each

iteration. You find that the value of $J(\theta)$ increases over

time. Based on this, which of the following conclusions seems

most plausible?

- $\alpha = 0.3$ is an effective choice of learning rate.
- Rather than use the current value of lpha, it'd be more promising to try a larger value of lpha (say lpha=1.0).
- Rather than use the current value of lpha, it'd be more promising to try a smaller value of lpha (say lpha=0.1).