SC 617

Quiz-Week5

Gyandev Satyaram Gupta, 190100051

1. Define absolute continuity? 1

A function $f:[a,b]\to\mathbb{R}$ is absolutely continuous on [a,b] iff, for any $\epsilon>0$, there is a $\delta>0$ such that

$$\sum_{i=1}^{n} |f(\alpha_i) - f(\beta_i)| < \epsilon$$

for any finite collection of subintervals (α_i, β_i) of [a, b] with $\sum_{i=1}^n |\alpha_i - \beta_i| < \delta$

2. You have $\dot{\mathbf{x}}_1 = x_2$ and $\dot{\mathbf{x}}_2 = -\lambda_1 x_1 - \lambda_2 x_2$ $\lambda = [\lambda_1, \lambda_2]^T$ and $\lambda \in D$ where $D = \{(\lambda_1, \lambda_2) \in \mathbb{R}^2 | \lambda_1, \lambda_2 > 0\}$ Use integration lemma to prove λ as ULES

 $x(t_0) = x_0 , \mathbf{x} = [x_1, x_2]^T$

the solution is given by $\mathbf{x}(\mathbf{t}) = exp(At)x(t_0)$

here the matrix $A = [[0, 1], [-\lambda_1, -\lambda_2]]$ and matrix -A is positive definite so the matrix A is negative definite and t is a positive no. so ||exp(At)|| is bounded above take it to be c

$$||x(t)||_p = ||exp(At)x(t_0)|| \le c||x_0||$$

hence so by the integration lemma we can say that for all $x_0 \in B_r$ and all $t_0 > 0$ λ is ULES

¹Ref. P. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice Hall 1996