Vector Space Axioms

Let F be a field, and let V be a set. Then $(V, +, \cdot)$ is a vector space over F if and only if the following axioms hold:

- 1. Closure under addition: For all $u, v \in V, u + v \in V$.
- 2. Commutativity of addition: For all $u, v \in V$, u + v = v + u.
- 3. Associativity of addition: For all $u, v, w \in V$, (u + v) + w = u + (v + w).
- 4. **Existence of zero vector:** There exists an element $0 \in V$ such that for all $v \in V$, v + 0 = v.
- 5. Existence of additive inverses: For all $v \in V$, there exists an element $-v \in V$ such that v + (-v) = 0.
- 6. **Scalar multiplication by 1:** For all $v \in V$, $1 \cdot v = v$, where 1 is the multiplicative identity of F.
- 7. **Distributive property over addition:** For all a, $b \in F$ and $v \in V$, $a(v+w)=(a\cdot v)+(a\cdot w)$.
- 8. Distributive property over scalar addition: For all $a, b \in F$ and $v \in V$, $(a+b) \cdot v = (a \cdot v) + (b \cdot v)$.