Skriftlig eksamen på Økonomistudiet Sommeren 2018

MATEMATIK B

Fredag den 17. august 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

1. årsprøve 2018 S-1B rx

Skriftlig eksamen i Matematik B Fredag den 17. august 2018

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. I vektorrummet \mathbf{R}^5 betragter vi hyperplanen H_0 med ligningen

$$2x_1 + x_2 - x_3 + x_4 + 2x_5 = 0,$$

idet $x = (x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5$.

(1) Bestem vektorer $v_1, v_2, v_3, v_4 \in \mathbf{R}^5$, så

$$H_0 = \operatorname{span}\{v_1, v_2, v_3, v_4\}.$$

- (2) Vi betragter mængden $M = \{(t, t, -3t, t, 2t) \in \mathbf{R}^5 \mid t \in \mathbf{R}\}$. Vis, at M er et underrun af \mathbf{R}^5 , og bestem fællesmængden $F = M \cap H_0$.
- (3) Vi betragter mængden $U = \{(t, t, t, p, q) \in \mathbf{R}^5 \mid t, p, q \in \mathbf{R}\}$. Vis, at

$$U = \operatorname{span}\{u_1, u_2, u_3\},\$$

hvor $u_1, u_2, u_3 \in \mathbf{R}^5$.

- (4) Udregn normerne $||u_1 u_2||$, $||u_1 u_3||$ og $||u_2 u_3||$.
- (5) Bestem mængden

$$U^{\perp} = \{ x \in \mathbf{R}^5 \mid \forall u \in U : x \perp u \}.$$

Opgave 2. Vi betragter mængderne

$$D = \{(x, y) \in \mathbf{R}^2 \mid x \ge 0\} \text{ og } D^O = \{(x, y) \in \mathbf{R}^2 \mid x > 0\}$$

samt den funktion $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = \sqrt{x} + y + xy^2.$$

- (1) Bestem værdimængden for funktonen f.
- (2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D^O$.

- (3) Vis, at funktionen f ikke har nogen stationære punkter i mængden D^O .
- (4) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D^O$, og vis, at f hverken er konveks eller konkav på mængden D^O .

Vi betragter mængden

$$K = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \land 0 \le y \le 1\}.$$

(5) Godtgør, at restriktionen af funktionen f til mængden K har både en største værdi og en mindste værdi, og bestem disse værdier.

Vi betragter den funktion $g: \mathbf{R} \to \mathbf{R}$, som er givet ved forskriften

$$\forall t \in \mathbf{R} : q(t) = f(e^{2t}, t).$$

(6) Bestem en forskrift for Taylorpolynomiet P_2 af anden orden for g ud fra punktet $t_0 = 0$.

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + (\cos t)x = (\sin t)e^{\cos t - \sin t}.$$

(1) Bestem den fuldstændige løsning til differentialligningen (*).

- (2) Bestem den specielle løsning $\tilde{x}=\tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0)=2018e$ er opfyldt.
- (3) Bestem differentialkvotienten

$$\frac{d\tilde{x}}{dt}(0),$$

og vis, at løsningen $\tilde{x} = \tilde{x}(t)$ er aftagende i en omegn af punktet t = 0.

Opgave 4. Lad A og B være $n \times n$ matricer. Vi ved, at

$$det(AB) = det(A) det(B)$$
 og $det(A^T) = det(A)$,

idet A^T er den til A transponerede matrix.

(1) Vis, at

$$\det(AA^T) = (\det(A))^2.$$

(2) Idet E betegner $n \times n$ enhedsmatricen, skal man vise, at

$$\det((A - tE)^T) = \det(A^T - tE)$$

for $t \in \mathbf{R}$.

- (3) Vis, at matricerne A og A^T har de samme egenværdier.
- (4) Lad $a \in \mathbf{R}$ være vilkårligt valgt. Vis, at

$$\det \begin{pmatrix} a_{11} & \dots & a_{1n} & 0 \\ a_{21} & \dots & a_{2n} & 0 \\ \vdots & \dots & \vdots & 0 \\ a_{n1} & \dots & a_{nn} & 0 \\ 0 & \dots & 0 & a \end{pmatrix} = a \det(A),$$

hvor

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ & & \dots & & \\ a_{n1} & \dots & a_{nn} \end{pmatrix}.$$