Homework 5

Student name: Zihan Zeng

Course: ECE 6143 Machine Learning – Professor: Yury Dvorkin Due date: December 2, 2021

Problem 1

Solution. First, we need to denote some events:

Denote	Events			
$\overline{A_1}$	The car is behind the door 1			
A_2	The car is behind the door 2			
A_3	The car is behind the door 3			
$\overline{B_1}$	I choose the door 1 first			
B_2	I choose the door 2 first			
B_3	I choose the door 3 first			
$\overline{C_1}$	The host open the door 1			
C_2	The host open the door 2			
C_3	The host open the door 3			

Suppose I chose door 1, and the host opened the door 3, so the question is to compare

$$P(A_1 | B_1, C_3)$$

 $P(A_2 | B_1, C_3)$

We can get that $P(A_1) = P(A_2) = P(A_3) = \frac{1}{3}$ Because the host knows that the car is behind which door, so:

$$P(C_3 \mid A_1) = \frac{1}{2}$$

$$P(C_3 \mid A_2) = 1$$

$$P(C_3 \mid A_3) = 0$$

$$P(C_3) = \frac{\frac{1}{2} + 1 + 0}{3} = \frac{1}{2}$$

$$P(A_1 \mid B_1, C_3) = \frac{P(B_1, C_3 \mid A_1) * P(A_1)}{P(B_1, C_3)}$$

$$\therefore P(B_1, C_3 \mid A_1) = P(B_1 \mid A_1) * P(C_3 \mid A_1) = \frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

$$P(B_1, C_3) = P(B_1) * P(C_3) = \frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

$$\therefore P(A_1 \mid B_1, C_3) = \frac{\frac{1}{6} * \frac{1}{3}}{\frac{1}{6}} = \frac{1}{3}$$

Similarly:

$$P(A_2 \mid B_1, C_3) = \frac{P(B_1, C_3 \mid A_2) * P(A_2)}{P(B_1, C_3)}$$

$$\therefore P(B_1, C_3 \mid A_2) = P(B_1 \mid A_2) * P(C_3 \mid A_2) = \frac{1}{3} * 1 = \frac{1}{3}$$

$$P(B_1, C_3) = P(B_1) * P(C_3) = \frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

$$\therefore P(A_2 \mid B_1, C_3) = \frac{\frac{1}{3} * \frac{1}{3}}{\frac{1}{6}} = \frac{2}{3}$$

Conclusion: Change the door.

Problem 2

Solution. The distribution:

$$p(x_1,...,x_t) = \prod_{i=1}^{5} p(x_i \mid \text{ parents }_i) = p(x_1) p(x_2 \mid x_1) p(x_3) p(x_4 \mid x_1,x_3) p(x_5 \mid x_2,x_4)$$

By using the Bayes ball algorithm:

- 1. **False**: Because we do not know x_1 , so x_4 would affect each other. If the student is hard working, maybe the lead him have good performance in testing.
- 2. **False**: Because we know x_5 , so x_2 and x_4 would affect each other. If the student have good grade, but he is good at taking tests, maybe it leads him understand the material better.
- 3. **True**: Because we already know x_1 and x_3 , so that x_2 and x_4 would not affect each other
- 4. **False**: We know x_4 , so that x_1 and x_3 would affect each other, and x_1 would have impact in x_5 , so that x_3 and x_5 are not conditionally independent.
- 5. **True**: x_5 and x_3 are conditionally independent because we already know x_1, x_2, x_4 , therefore x_5 and x_3 have been determined and can not affect each other.
- 6. False: Using D-separation method, we get route 1-2-5-4-3
- 7. **True**: Using D-separation method, we get that 1-4-3 blocked, 1-2-5 blocked
- 8. True: Using D-separation method, we get that 2-5-4-3 blocked, 2-1-4-3 blocked
- 9. False: Using D-separation method, we get route 2-5-4-3
- 10. **False**: Using D-separation method, we get route 3-4-1-2

Problem 3

Solution. See the **Figure 1** in the **final page**.

Problem 4

Solution. This is the Constructed Junction Tree: (The source code is in the attachment.)

Result:

	$x_2 = 0$	$x_2 = 1$	
$x_1 = 0$	0.0405	0.4451	0.4856
$x_1 = 1$	0.3237	0.1908	0.5145
	0.3642	0.6359	
	$x_2 = 0$	$x_2 = 1$	
$x_1 = 0$	0.2601	0.1040	0.3641
$x_1 = 1$	0.0578	0.5780	0.6358
	0.3179	0.6820	
	$x_2 = 0$	$x_2 = 1$	
$x_1 = 0$	0.1192	0.1987	0.3179
$x_1 = 1$	0.6395	0.0426	0.6821
	0.7587	0.2413	
	$x_2 = 0$	$x_2 = 1$	
$x_1 = 0$	0.5690	0.1897	0.7587
$x_1 = 1$	0.0603	0.1810	0.2413
	0.6293	0.3707	

Problem 5

Solution.

(The source code is in the attachment.)

Day 1: **Happy** Day 2: **Angry** Day 3: **Angry** Day 4: **Angry** Day 5: **Angry**

Junction Tree:

Figure 1: Problem 3