Design Report AR App for Museum

GROUP 12

Anurag Ramteke 150101010

Ayush Jain 150101012

Deshmukh Udayraj 150101021

Table of Contents

TABLE OF CONTENTS

- 1. INTRODUCTION 2
- 1.1 Purpose
- 1.2 Overview
- 2. SYSTEM OVERVIEW
- 3. SYSTEM ARCHITECTURE
- 3.1 Architectural Design
- 3.2 Decomposition Description
- 3.3 Design Rationale
- 4. DATA DESIGN
- 4.1 Data Description
- 4.2 Data Dictionary
- 5. COMPONENT DESIGN

1.Introduction

1.1 Purpose

The purpose of the design document is to give software development team overall guidance to the architecture of the software project.

1.2 Overview

The design document tells through ERD diagram, decomposition diagram and DFD diagram the entire architecture of the software to be developed.

2. SYSTEM OVERVIEW

Functionality: The app has to show information about the monuments from a museum when placed in the camera view. For showing the information the app will be using augmented reality. After capturing the image or simply pointing the phone camera towards the monument, the app will detect the monument and then information about that artifact being captured will be shown

Context: Context of the system is visitors of the museum who have access to a smartphone, their camera phones and the monuments in the museum.

Design Approach: The approach followed in this document is function-oriented design approach.

3. SYSTEM ARCHITECTURE

3.1 Contextual Diagram

3.2 Decomposition Description

Process Decomposition of the project is as follows -

4. Data Description

The Data process of the project.

4.1. DFD level 1

4.2. DFD level 2

4.3 ERD

4.4 Data dictionary:

Alphabetically ordered list of functions and data-items

Entity Name	Data Type	Description
ARobject	objBoundary+relative 3Dpoints	Defines the object boundary and relative 3d positions of the boundary of the detected monument
Color	{integer}3	RGB value of a point(pixel)
Creators	Array of Strings	Name of creator(s)
date	integer	-
Date-of-creation	year+month+date	The date, month and year that monument was created
History	Array of Strings	Recent searches, previous visits, list of already covered artifacts
meaning	string	Meaning of the monument explained by the creators and/or philosophers
month	integer	-
name	string	Name of the Monument
objBoundary	{screenPoint}2	two points of the rectangular Boundary
objdata	string	encoded 3D object data points
ObjectInfo	Array of Strings	Name, meaning, historical data and significance and date of creation of the monument
point	posX+posY+posZ+Co lor	Coordinates of a point and color of that point(pixel)
posX	integer	-
posY	integer	-
posZ	integer	-

relative3Dpoints	{point}*	Points of the rectangular Boundary relative to each other
screenPoint	posX+posY	Coordinates of a point on device screen
year	integer	-
	image	Camera's original captured frame
ImageFrame		
AugmentedFrame	image	The image frame with overlay of the AR objects
MotionSensorData	GyroscopeData + AccelerometerData	The total available sensors data
GyroscopeData	{integer}3	gyroscope measures the rate of change of the Axz angle. Its components along the 3 axes.
AccelerometerData	{integer}3	Components of the Force Vector along the 3 axes.

5. Component Design

In this section, we take a closer look at what each component does in a more systematic way.

Detect Object:-The camera will point towards the object and detect it(the user doesn't have to take the picture, the picture will be taken automatically for the history log

Function Name	Detect Object	
Data Input	ImageFrame	
Data Input Type	ImageFrame	
Data Output	Detection status, objCoordinates & Id of a detected object	
Steps to Detect Object		
Step 1	Enhance the image frame	
Step 2	Scan the image for any object matching with the database (using Viola Jones Algorithm)	
Step 3	If multiple objects are matching, scan for presence of the registered QR code, if QR code is not found, return [Detection status as "Require QR code", objCoordinates as detected and Id as NULL]	
Step 4	Return Detection status, objCoordinates & Id	

Show Information :- After detecting the object, all the related information should be loaded.

Function Name	Show Information	
Data Input	Object_Id & objCoordinates & Screen dimensions	
Data Output	ImageFrame + ARobject + objCoordinates + MotionSensorData	
Steps to Show Information		
Step 1	Retrieve Artifact Info from the database using object Id	
Step 2	Create AR object(Artifact Info)	
Step 3	Return Place VR objects(ImageFrame + ARobject + objCoordinates + MotionSensorData)	

Create AR objects:- Based on the object detected it will create an AR object and will show on the screen.

Function Name	Create AR Object	
Data Input	Artifact Info	
Data Output	relative3Dpoints	
Steps to Create Ar Object		
Step 1	Load the 3D information template from database.	
Step 2	Put details of Artifact Info (i.e. name,meaning,history,etc) into respective string fields of the template.	
Step 3	Calculate dimensions of the projection of the filled 3D template onto the screen (i.e. X-Y plane). Store them as objBoundary	
Step 4	Store the Points' positions relative to the common origin as relative3Dpoints	
Step 5	Combine objBoundary and relative3Dpoints together into an ARobject data.	
Step 6	Return ARobject	

Place AR objects:- According to the collected sensor data, the object is shown besides the object after doing following check accordingly.

Function Name	place AR object	
Data Input	ImageFrame + ARobject + objCoordinates + MotionSensorData	
Data Output	objBoundary and AugmentedFrame	
Steps to place AR object		
Step 1	Calculate projection image of the ARobject using Projection Formula and the relative orientation calculated from MotionSensorData	
Step 2	Shade the projection image using vertex Shader by taking objCoordinates	
Step 3	Create AugmentedFrame by overlaying the ARobject's projection onto the imageFrame.	
Step 4	Return AugmentedFrame	