HW 5 Math 672

Due Fri, Oct. 7 in class.

- 0. Read Chapter 4.
- 1. Consider the parallel lines $L = \mathbb{V}(x)$ and $L' = \mathbb{V}(x-1)$ in \mathbb{A}^2 . Let \overline{L} and $\overline{L'}$ denote their projective closures in \mathbb{P}^2 (embed \mathbb{A}^2 into \mathbb{P}^2 via the map $(x,y) \mapsto [x:y:1]$). Recall that \mathbb{P}^2 is covered by the open charts $U_x = \{x \neq 0\}$, $U_y = \{y \neq 0\}$ and $U_z = \{z \neq 0\}$. Show that when restricted to the affine chart $U_y \cong \mathbb{A}^2$, the lines \overline{L} and $\overline{L'}$ are no longer parallel.
- 2. Let $f_i(x_1, \ldots, x_n)$ and $g_i(x_1, \ldots, x_n)$ be polynomials for $1 \leq i \leq m$. Consider the open subset U of \mathbb{A}^n defined by

$$U = \mathbb{A}^n \setminus \mathbb{V}(g(x_1, \dots, x_n))$$

where $g(x_1, \ldots, x_n) = \prod_{i=1}^m g_i(x_1, \ldots, x_n)$. Define a function $F: U \to \mathbb{A}^m$ by

$$F(x_1, \dots, x_n) = \left(\frac{f_1(x_1, \dots, x_n)}{g_1(x_1, \dots, x_n)}, \dots, \frac{f_m(x_1, \dots, x_n)}{g_m(x_1, \dots, x_n)}\right).$$

Prove that F is a morphism of quasiprojective varieties (as defined in section 4.1).

- 3. 4.2.3
- 4. Let $U = \mathbb{A}^2 \setminus \{(0,0),(1,1)\}$. Find a basis of U consisting of affine varieties.
- 5. Let $V = \mathbb{A}^2$, let $U_1 = V \setminus \mathbb{V}(x)$, $U_2 = V \setminus (\mathbb{V}(x) \cup \mathbb{V}(x-1))$ and $U_3 = V \setminus \mathbb{V}(x,y)$. Calculate $\mathcal{O}_V(U_i)$ for $1 \le i \le 3$.