In the Claims

1	1. (Currently Amended) A method of fabricating a microelectromechanical system, said
2	method comprising:
3	providing a substrate comprising a handle layer of silicon, a device layer of silicon and a
4	sacrificial layer of silicon disposed between the said handle layer and the said device layer, the
5	handle layer being separated from the sacrificial layer by a first dielectric layer, the sacrificial
6	layer being separated from the device layer by a second dielectric layer;
7	forming an isolation trench that extends through at least the sacrificial layer, the isolation
8	trench defining a release area in the sacrificial layer;
9	forming a micromechanical structure in the said device layer by etching the silicon of the
10	device layer; and
11	removing at least a portion of the said sacrificial layer of silicon underlying the said
12	micromechanical structure to release the said micromechanical structure for movement.
1	2. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 1, wherein the said silicon of the said sacrificial layer is single crystal
3	silicon.
1	3. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 1, wherein said forming step further comprises: forming an the
3	isolation trench that extends through at least the said device layer.

Claim 4 (Cancelled)

1

1

2

5. (Currently Amended) <u>The A method of fabricating a microelectromechanical system, as per as claimed in claim 14</u>, wherein the said silicon of the said device layer is polysilicon.

6. (Currently Amended) <u>The A method of fabricating a microelectromechanical system, as per as claimed in claim 14</u>, wherein the said silicon of the said device layer is single crystal silicon.

Claim 7 (Cancelled)

- 8. (Currently Amended) <u>The A method of fabricating a microelectromechanical system, as per as claimed in claim 14, wherein at least a portion of the sacrificial layer of silicon is removed by said removing step further comprising:</u>
- placing a photoresist layer on top of the said device layer over at least the said micromechanical structure;
- forming release etch holes through <u>the said</u> photoresist layer and <u>the said</u> second dielectric layer; and etching <u>the said</u> sacrificial layer of silicon underlying <u>the said</u> micromechanical structure.
- 9. (Currently Amended) <u>The A method of fabricating a microelectromechanical systems</u> as per as claimed in claim 8, wherein <u>the said</u> first dielectric layer is used as an etch stop for <u>the said</u> etching of <u>the said</u> sacrificial layer.
- 10. (Currently Amended) <u>The A method of fabricating a microelectromechanical systems</u> as per as claimed in claim 8, wherein the said second dielectric layer is used as an etch stop for the said etching of the said sacrificial layer.
- 11. (Currently Amended) <u>The A method of fabricating a microelectromechanical system, as per as claimed in claim 8, wherein the said isolation trench is used as an etch stop for the said etching of the said sacrificial layer.</u>
- 12. (Currently Amended) The A method of fabricating a microelectromechanical system, as per as claimed in claim 14, wherein the said handle layer has actuation electrodes formed thereon.

1	13. (Currently Amended) <u>The Amethod of fabricating a microelectromechanical system</u>
2	as per as claimed in claim 12, said forming step further comprising:
3	forming via posts extending through at least the said sacrificial layer to contact the said
4	actuation electrodes.
1	14. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 13, wherein the said via posts additionally extend through the said
3	device layer.
1	15. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 14, wherein actuation electrodes are formed on the bottom of the said
3	sacrificial layer.
1	16. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 1, said method further comprising:
3	bonding a silicon-on-insulator wafer to a handle wafer of silicon to create the said
4	substrate.
1	17. (Currently Amended) A method of fabricating a microelectromechanical system, as
2	per claim 1, said method further comprising:
3	providing a substrate comprising a handle layer of silicon, a device layer of silicon and a
4	sacrificial layer of silicon disposed between the handle layer and the device layer;
5	bonding a first silicon-on-insulator wafer to a handle wafer of silicon and removing a
6	handle layer of the said first silicon on insulator wafer to create the said sacrificial layer; and
7	bonding a second silicon on insulator wafer to the said sacrificial layer and removing a
8	handle layer of the said second silicon on insulator wafer to create the said device layer;
9	forming a micromechanical structure in the device layer; and
10	removing at least a portion of the sacrificial layer of silicon underlying the
11	micromechanical structure to release the micromechanical structure for movement.

1	18. (Currently Amended) A method of fabricating a microelectromechanical system, as
2	per claim 1, said method further comprising:
3	providing a substrate comprising a handle layer of silicon, a device layer of silicon and a
4	sacrificial layer of silicon disposed between the handle layer and the device layer;
5	bonding a first wafer of silicon to a second wafer of silicon and; bonding a third wafer of
6	silicon to the said first wafer of silicon; and to create the whereby said substrate is created;
7	forming a micromechanical structure in the device layer; and
8	removing at least a portion of the sacrificial layer of silicon underlying the
9	micromechanical structure to release the micromechanical structure for movement.
1	19. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 1, wherein the said micromechanical structure is any one of a micro-
3	optical device, an inertial sensor, or an actuator.
1	20. (Currently Amended) The A method of fabricating a microelectromechanical system,
2	as per as claimed in claim 19, wherein the said micro-optical device is a micromirror.
1	21. (Currently Amended) The A method of releasing fabricating a
2	microelectromechanical structure for movement system as claimed in claim 1, said
3	micromechanical structure etched in a silicon device layer, said method further comprising:
4	etching a the silicon sacrificial layer disposed between the said micromechanical
5	structure and a the silicon handle layer.
1	22. (Currently Amended) The A method of releasing fabricating a micromechanical
2	structure for movement system, as per as claimed in claim 21, wherein the said micromechanical
3	structure is a micromirror.
1	Claims 23 42 (Cancelled)