Rensselaer 2020 REU Notebook

Alex Striff

May to July 2020

Contents

1	Project description (May 27, 2020)	2
2	Getting started (May 27, 2020)	2
3	Intensity-level entropy	2
4	Effect of smoothing on intensity-level entropy 4.1 Natural image	6 7
5	Local metrics (May 28, 2020) 5.1 Induced metrics	13 13
6	Kernels	14
7	Boxcar intensity-level entropy 7.1 Standard deviation	19
8	Fractal dimensions (May 29, 2020)	22

9	Fractal dimension regression	23
	9.1 Box-counting dimension	24
	9.2 Information dimension	30
10	Probability and inference (May 30, 2020)	35
11	Ising images (June 1, 2020)	36
12	Ising images	36
	12.1 Standard Ising (on a torus)	37
	12.2 Image-edge Ising	38
	12.3 Image-metric Ising	42
	12.3.1 Unrestricted swapping motion	42
	12.3.2 Nearest-neighbor wapping motion	45
13	Statistical Mechanics of Images (June 3, 2020)	47

1 Project description

May 27, The aim of this REU project is to quantify the information present in images by the principled application of methods from statistical physics. The approach is to find a suitable notion of entropy which captures the salient features of particular kinds of images. We will consider a variety of features motivated by intuition or domain knowledge, and then move to machine learning as a tool for discovering other features.

2 Getting started

May 27. The initial goal is to characterize the most naïve calculation, which I'll call the *2020 intensity entropy*. This does *not* take into account the spatial correlation of pixels in an image.

3 Intensity-level entropy

Given a discrete random variable X with support \mathfrak{X} , the *Shannon entropy* is

$$H = \sum_{x \in \mathcal{X}} -P(x) \ln P(x).$$

The *intensity-level entropy* is the Shannon entropy of the empirical distribution of intensity values.

```
import numpy as np
    def shannon_entropy(h):
        """The Shannon entropy in bits"""
        return -sum(p*np.log2(p) if p > 0 else 0 for p in h)
    def intensity_distribution(data):
        """The intensity distribution of 8-bit `data`."""
        hist, _ = np.histogram(data, bins=range(256+1), density=True)
        return hist
   def intensity_entropy(data):
10
        """The intensity-level entropy of 8-bit image data"""
11
        return shannon_entropy(intensity_distribution(data))
12
13
   def intensity_expected(f, data):
        """The intensity-distribution expected value of `f`."""
15
        return sum(p*f(p) for p in intensity_distribution(data))
```

4 Effect of smoothing on intensity-level entropy

```
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter, ImageOps
from src.utilities import *
from src.intensity_entropy import *
```

4.1 Natural image

```
img = ImageOps.grayscale(Image.open('test.jpg'))
scale = max(np.shape(img))
data = np.array(img)
img
```


intensity_entropy(img)

7.51132356216608

The problem with the intensity entropy is that it is usually near maximum (8 bits for these grayscale images).

```
def intensity_blur(img, scales, display=True):
    scale = max(np.shape(img))

results = []

for k in scales:
    simg = img.filter(ImageFilter.GaussianBlur(k * scale))
    data = np.array(simg)
    ihist, ibins = np.histogram(data, bins=range(256+1), density=True)
    S = shannon_entropy(ihist)
    if display:
        hist = plt.hist(ibins[:-1], ibins, weights=ihist, alpha=0.5)
        results.append((k, simg, hist, S))

else:
    results.append((k, S))
```

```
if display:
    plt.axvline(x=np.mean(np.array(img)))

return results

results = intensity_blur(img, np.linspace(0, 1.5, num=50), False)

plt.plot(*np.transpose(results), 'o-')
plt.ylim((0, 8))
plt.xlabel = "Smoothing"
plt.ylabel = "Intensity Entropy (bits)"
```



```
rimgs = [img for _, img, _, _ in intensity_blur(img, [0, 0.01, 0.05, 0.125, 0.25, 0.5])]
plt.show()
```


4.2 Random pixel values

```
rsize = 250
randimg = Image.fromarray((256*np.random.rand(*2*[rsize])).astype('uint8'))
randimg
```


4.2.1 Beware: GIGO

The boundary effects and discrete kernel of ImageFilter.GaussianBlur renders the data unreliable after the "minimum" of the intensity entropy with smoothing. This is immediately clear after even small smoothing for random pixel values, since there are no spatial correlations.

```
results = intensity_blur(randimg, np.linspace(0, 0.3, num=75), False)

plt.plot(*np.transpose(results), 'o-')

plt.ylim((0, 8))

plt.xlabel = "Smoothing"

plt.ylabel = "Intensity Entropy (bits)"
```


- rimgs = [img for _, img, _, _ in intensity_blur(randimg, [0.01, 0.05, 0.25])]
- 1 plt.show()


```
__, axarr = plt.subplots(1, len(rimgs))
for i, subimg in enumerate(rimgs):
axarr[i].imshow(subimg, cmap='gray')
plt.show()
```


The rightmost image should be uniform: the renormalization emphasizes incorrect deviations. These are what keep the intensity entropy from vanishing.

4.3 Comparing different levels of smoothing

Is composing *n* Gaussian blurs with variance σ^2 the same as doing one with variance $n\sigma^2$ (considering the boundary effects and discrete kernel)?

```
nsmooths = 10
cimg = img
noneimg = cimg.filter(ImageFilter.GaussianBlur(np.sqrt(nsmooths)*2))
noneimg
```



```
nimg = cimg
for _ in range(nsmooths):
nimg = nimg.filter(ImageFilter.GaussianBlur(2))
nimg
```


Answer: **No** The differences between results at different scales can be pretty wack.

Image.fromarray((255*rescale(np.array(nimg) - np.array(oneimg))).astype('uint8'))

5 Local metrics

May 28, Given an image $I: X \times Y \to \mathbb{Z}_n$, we will now consider local metrics for the 2020 information it contains.

I want to be careful in understanding the statistical assumptions I am making, so I'll try to be explicit about distinguishing true distributions from empirical distributions, and how the assumptions behind postulating the existence of empirical distributions relate to the actual calculation being done. This should also aid in learning more solid probability theory.

5.1 Induced metrics

Definition 1 (Lists). Given a set *S*, the collection of lists of elements from *S* is

$$\mathsf{List}(S) = \bigcup_{n \in \mathbb{Z}_{>0}} S^n,$$

where a list (tuple) $s \in S^n$ is a map $s : \mathbb{Z}_n \to S$ and |s| = n.

Definition 2 (Image distributions). An *image distribution* is a map D that takes an image I and produces a random variable $D(I): \Omega \to E$.

We are constructing empirical distributions from image data according to some map $M: \text{Img} \to \text{List}(\Omega)$, which produces the list of values V = M(I). Then the probability of D(I) taking a value in a subset $S \subseteq E$ is

$$P(X \in S) = \frac{1}{|V|} \sum_{s \in S} |V^{-1}(\{s\})|.$$

Example 1. The intensity-level entropy is a function of the *nonnegative* random variable from the image distribution of intensity values. That is, the map M takes an image and returns the list of its intensity values.

Definition 3 (Induced image distributions). Given an image distribution D, and a subset $S \subseteq \text{dom } I$, we construct the *induced image distribution* $D|_S$ by

$$D|_{S}(I) = D(I|_{S}).$$

Definition 4 (Induced random variable). Given an image I, an image distribution D and collection of subsets $\{S_i\}$ of dom I, a function H admits the random variables

$$H_i = (H \circ D|_{S_i})(I)$$

Definition 5. The *r-box* at (x, y) is $B_r(x, y) = [x - r, x + r] \times [y - r, y + r]$.

Given two real random variables A and B with joint PDF $f_{A,B}(a, b)$, the PDF of their sum is

$$f_{A+B}(c) = \int_{-\infty}^{\infty} da \, f_{A,B}(a, a-c) = \int_{-\infty}^{\infty} db \, f_{A,B}(b-c, b). \tag{1}$$

For independent A and B, Eq. 1 reduces to $f_{A+B} = f_A * f_B$ over the marginals.

6 Kernels

Generalized to arbitrary functions on subregions of images.

import numpy as np

```
def box(x, y, r):
    return np.s_[max(0, x-r) : x+r+1, max(0, y-r) : y+r+1]

def mapbox(r, f, a):
    return np.reshape([f(a[box(*i, r)]) for i in np.ndindex(np.shape(a))], np.shape(a))

def mapboxes(rs, f, a):
    return (mapbox(r, f, a) for r in rs)

def mapallboxes(f, a):
    return mapboxes(range(max(np.shape(a))), f, a)

def mapblocks(h, w, f, a):
    return np.array([[f(y) for y in np.array_split(x, w, axis=1)]
    for x in np.array_split(a, h)])
```

7 Boxcar intensity-level entropy

```
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter, ImageOps
from src.utilities import *
from src.intensity_entropy import *
from src.kernels import *
plt.rcParams['image.cmap'] = 'inferno'
```

Let's compare the boxcar images for intensity entropy to those for a positive function on an image (the standard deviation) and for different functions of the induced intensity distribution.

```
img = ImageOps.grayscale(Image.open('test.jpg'))
scale = max(np.shape(img))
data = np.array(img)
plt.imshow(img);
```


7.1 Standard deviation

plt.imshow(mapbox(2, np.std, np.array(img)));

7.2 Intensity entropy

plt.imshow(mapbox(2, intensity_entropy, np.array(img)));


```
boxSes = list(mapboxes([1,2,3,10,20,50], intensity_entropy, np.array(img)))

_, axarr = plt.subplots(2, np.ceil(len(boxSes)/2).astype('int'))

for i, subimg in enumerate(boxSes[:3]):
    axarr[0,i].imshow(subimg)

for i, subimg in enumerate(boxSes[3:]):
    axarr[1,i].imshow(subimg)

plt.show()
```


7.3 Replace surprisal with other functions

To what extent do the surprisal-related results depend upon the specific form of the *surprisal* $x \mapsto -\log(x)$ in the expected value of the intensity distribution? We will replace the expected surprisal with the expected f, for different functions f on the empirical probabilities of a pixel taking some intensity.

Laurent: $p \mapsto -1 + 1/p$.

```
plt.imshow(mapbox(2, lambda I: intensity_expected(lambda p: -1 + 1/p if p > 0 else 0, I), \rightarrow np.array(img)));
```


Taylor: $p \mapsto -(1+p)$.

plt.imshow(mapbox(2, lambda I: intensity_expected(lambda p: -(1+p), I), np.array(img)));

7.4 Intensity entropy on disjoint blocks

```
plt.imshow(mapblocks(100, 100, intensity_entropy, np.array(img)),
aspect=np.divide(*np.shape(img)));
```



```
plt.imshow(mapblocks(25, 25, intensity_entropy, np.array(img)),
aspect=np.divide(*np.shape(img)));
```


8 Fractal dimensions

May 29, The previous results hint at characterizing the growth of the intensity entropy with different discretizations.

Definition 6. The *Rényi entropy of order* $\alpha \geq 0$ of a discrete random variable X with support $\mathfrak X$ is

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P(x)^{\alpha} = \frac{\alpha}{1-\alpha} \log ||P||_{\alpha},$$

where $||P||_{\alpha}$ denotes the α -norm of the vector of probability values. The limit $\alpha \to 1$ reproduces the Shannon entropy.

Definition 7. Given a real random variable X, define a discretized random variable

$$\langle X \rangle_{\varepsilon} = \frac{\lfloor \varepsilon X \rfloor}{\varepsilon}.$$

Then the generalized dimension of X is

$$d_{\alpha}(X) = \lim_{\varepsilon \to 0} \frac{H_{\alpha}(\langle X \rangle_{\varepsilon})}{\log \varepsilon} = \lim_{\varepsilon \to 0} \frac{\alpha}{1 - \alpha} \log (\|\langle X \rangle_{\varepsilon}\|_{\alpha} - \varepsilon).$$

The case $\alpha \to 1$ is the *information dimension* of X. The generalized dimension may be estimated from linear regression of $H_{\alpha}(\langle X \rangle_{\varepsilon})$ with $\log \varepsilon$ as the independent variable.

9 Fractal dimension regression

```
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter, ImageOps
from scipy import interpolate
from scipy import integrate
from src.intensity_entropy import *
from src.kernels import *
plt.rcParams['image.cmap'] = 'inferno'

img = ImageOps.grayscale(Image.open('test.jpg'))
scale = max(np.shape(img))
data = np.array(img)
img
```


9.1 Box-counting dimension

```
def boxdim(data):

ss = np.linspace(2, min(np.shape(data)))

boxes = [np.log(np.sum(mapblocks(

ε, ε, lambda x: 1 if np.any(x) else 0, data))) for ε in εs]

logεs = np.log(εs)

endεs = logεs[[0, -1]]

dimfit = np.polyfit(np.log(εs), boxes, 1) # [slope, intercept]

plt.plot(endes, dimfit[0]*endes + dimfit[1])

plt.plot(loges, boxes, '+')

plt.xlabel('Scale (ln ε)')

plt.ylabel('Box count (ln N)')

return dimfit[0]
```

boxdim(data)

2.0087040269581435


```
sky = data.copy()
sky[sky < 128+32] = 0
Image.fromarray(sky)
```


1 boxdim(sky)

1.7877778191348215

- nosky = data.copy() nosky[nosky < 128+64] = 0 Image.fromarray(nosky)

boxdim(nosky)

1.6214794967487127

dots = data.copy()
dots[nosky < 128+64+16] = 0
Image.fromarray(dots)</pre>

boxdim(dots)

1.2821025677557252

9.2 Information dimension

```
def discretize(f, a, b, \epsilon, N=20):
         return [integrate.simps(f(np.linspace(c - \epsilon/2, c + \epsilon/2, N)), dx=\epsilon / (N - 1))
                  for c in np.arange(a + \epsilon/2, b, \epsilon)]
    def infodim(dist, s=1e-5):
         1 = len(dist)
         spl = interpolate.splrep(range(l), dist, s=s)
         f = lambda x: interpolate.splev(x, spl)
         \epsilon s = 1 / np.linspace(10, 1)
         loges = -np.log2(es)
         endes = loges[[0, -1]]
         entropies = [shannon_entropy(discretize(f, 0, 1, \epsilon)) for \epsilon in \epsilons]
         dimfit, cov = np.polyfit(logss, entropies, 1, cov='unscaled')
11
         plt.plot(endss, dimfit[0]*endss + dimfit[1])
12
         plt.plot(logss, entropies, '+')
13
         plt.xlabel('Scale (lg \epsilon)')
14
         plt.ylabel('Shannon entropy (bits)')
15
```

return dimfit[0], cov[0,0]

The Gaussian distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

is continuous, so its information dimension is 1.

```
def gaussian(\mu, \sigma, x):
return np.exp(-(x - \mu)**2 / (2*\sigma**2)) / (\sigma*np.sqrt(2*np.pi))
```

infodim((10/256) * gaussian(0, 1, np.linspace(-5, 5, 256)))

(1.0014184290221988, 0.015707497682893923)

The rectified Gaussian distribution $g(x) = \Theta(x)f(x) + \delta(x)/2$ is half-continuous, so its information dimension is 1/2.

```
dist = np.concatenate([[0]*256, (5/256)*gaussian(0, 1, np.linspace(0, 5, 256))])
plt.plot(dist);
```


infodim(dist)

(0.4979088715795226, 0.012313889825394398)

Now that we've validated infodim, what does it say about the intensity distribution of an image?

- dist = intensity_distribution(img)
- plt.plot(dist);

infodim(dist)

 $(0.98265843047326,\ 0.015707497682893923)$

10 Probability and inference

May 30, Let's look at a simple inference problem before considering images. This example illustrates how the approach founded on probability theory differs from the naïve statistical approach usually taken by physicists.

Example 2 (Biased coin tosses). Consider tossing a biased coin N times to obtain n heads. What is the probability p' that the next coin toss comes up heads?

The temptation is to claim n/N as the probability, but this is *incorrect* if we want to allow all consistent biases. The problem with this solution is that the most probable bias is assumed to be the true bias.

The probability of getting m heads if a single head has probability p is

$$P(m \mid p) = \binom{N}{m} p^m (1 - p)^{N - m}.$$

We have no other information, so we assume that all of the biases are equally likely. This means that P(p) is constant (the uniform prior). The distribution of

biases p given the observation of m heads is then

$$P(p\mid m) = \frac{P(m\mid p)P(p)}{P(m)} = \frac{P(m\mid p)P(p)}{\int_0^1 \mathrm{d}\tilde{p}\,P(m\mid \tilde{p})P(\tilde{p})} = \frac{P(m\mid p)}{\int_0^1 \mathrm{d}\tilde{p}\,P(m\mid \tilde{p})}.$$

We compute that

$$P(m) = \binom{N}{m} \int_{0}^{1} dp \, p^{m} (1-p)^{N-m} = \binom{N}{m} \frac{m!(N-m)!}{(N+1)!} = \frac{1}{N+1},$$

so the next coin toss is heads with probability

$$p' = \int_{0}^{1} dp \, P(\text{head} \mid n, \, p) P(p \mid n) = \int_{0}^{1} dp \, p \, P(p \mid n)$$
$$= \int_{0}^{1} dp \, p(N+1) \binom{N}{n} p^{n} (1-p)^{N-n} = \frac{n+1}{N+2}.$$

For n=3 and N=10, p'=0.33. This is a more conservative estimate than p'=0.30 from the most probable bias.

11 Ising images

June 1, What happens if we apply a model from statistical physics to an image? 2020

12 Ising images

```
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter, ImageOps
import imageio
plt.rcParams['image.cmap'] = 'gray'

from ipywidgets import IntProgress
from IPython.display import display
import time
```

12.1 Standard Ising (on a torus)

In grayscale for fun.

```
def neighbors(a, i, j):
    return np.hstack([a[:,j].take([i-1,i+1], mode='wrap'),
                      a[i,:].take([j-1,j+1], mode='wrap')])
def energy(img, i, j):
    return -1 + np.sum(np.abs(img[i, j] - neighbors(img, i, j)))
def isingstep(\beta, img):
    w, h = np.shape(img)
    i = np.random.randint(w)
    j = np.random.randint(h)
    E0 = energy(img, i, j)
    img[i, j] *= -1
    E1 = energy(img, i, j)
    P = np.exp(-\beta*(E1 - E0)) if E1 > E0 else 1
    if np.random.rand() > P: # Restore old
        img[i, j] *= -1
    return img
img = 2*np.random.rand(50, 50) - 1
plt.imshow(img);
```



```
n = 100000
for i in range(n):
    isingstep(3 * (np.pi / 2) / np.arctan(n - i), img)
plt.imshow(img);
```


12.2 Image-edge Ising

```
edges = Image.open("ising-edges.png")
edata = np.array(edges) > 128
edges
```



```
def eenergy(img, edges, i, j):
        """Edge-modified Ising energy: 0 on edge."""
        if edges[i, j]:
            return 0
        w, h = np.shape(img)
        c = img[i, j]
        1 = img[i-1, j] if i > 0 else img[w-1, j]
        r = img[i+1, j] if i < w-1 else img[0, j]
        t = img[i, j-1] if j > 0 else img[i, h-1]
        b = img[i, j+1] if j < h-1 else img[i, 0]
10
        return -img[i, j] * (1 + r + t + b)
11
12
    def nenergy(img, edges, i, j):
        """Neighbor-modified Ising energy: 0 interactions with edges."""
14
        if edges[i, j]:
15
            return 0
16
        w, h = np.shape(img)
18
        c = img[i, j]
        1 = r = t = b = 0
20
        if i > 0:
21
            1 = img[i-1, j] if not edges[i-1, j] else 0
22
23
            1 = img[w-1, j] if not edges[w-1, j] else 0
25
        if i < w - 1:
26
            r = img[i+1, j] if not edges[i+1, j] else 0
27
        else:
28
            r = img[0, j] if not edges[0, j] else 0
29
        if j > 0:
31
            t = img[i, j-1] if not edges[i, j-1] else 0
32
        else:
33
            t = img[i, h-1] if not edges[i, h-1] else 0
34
35
        if j < h - 1:
36
            b = img[i, j+1] if not edges[i, j+1] else 0
37
        else:
38
            b = img[i, 0] if not edges[i, 0] else 0
40
        return -img[i, j] * (1 + r + t + b)
41
42
    def eisingstep(\beta, img, edges):
        w, h = np.shape(img)
44
        i = np.random.randint(w)
```

```
j = np.random.randint(h)
46
        E0 = nenergy(img, edges, i, j)
47
        img[i, j] *= -1
48
        E1 = nenergy(img, edges, i, j)
49
        P = np.exp(-\beta*(E1 - E0)) if E1 > E0 else 1
50
        if np.random.rand() > P: # Restore old
51
             img[i, j] *= -1
52
        return img
53
54
    def frame(writer, data):
55
        writer.append\_data((255 * ((eimg + 1) / 2)).astype('uint8'))
    img = Image.open("ising-letters.png")
    eimg = -1 + 2 * (np.array(img) / 255)
    plt.imshow(eimg);
```


movie.gif: Full neighbor Ising.

```
n = 1000000
f = IntProgress(min=0, max=1 + (n-1) // 1000) # instantiate the bar
display(f)
with imageio.get_writer('movie.gif', mode='I') as writer:
frame(writer, eimg)
for i in range(n):
```

```
eisingstep(0.5 * (np.pi / 2) / np.arctan(n - i), eimg, edata)

if i % 1000 = 0:

f.value += 1

frame(writer, eimg)

plt.imshow(eimg);
```

IntProgress(value=0, max=1000)

imovie.gif: Normal Ising.

```
n = 1000000
img = eimg
with imageio.get_writer('imovie.gif', mode='I') as writer:
frame(writer, img)
for i in range(n):
    isingstep(0.5 * (np.pi / 2) / np.arctan(n - i), img)
    if i % 1000 = 0:
    frame(writer, img)
plt.imshow(img);
```


12.3 Image-metric Ising

12.3.1 Unrestricted swapping motion

Swapping preserves the intensity distribution.

```
def sienergy(img, init, i, j):
    """Inversion-symmetric image energy"""
    eq = takewrap(img, i, j) = takewrap(init, i, j)
    return -np.abs(np.sum(2*eq - 1))

def ienergy(img, init, i, j):
    """Image energy based on 3x3 block deviation"""
    return np.abs(init[i, j] - img[i, j])

def swisingstep(β, img, edges):
    w, h = np.shape(img)
```

```
i0 = np.random.randint(w)
12
        i1 = np.random.randint(w)
13
        j0 = np.random.randint(h)
14
        j1 = np.random.randint(h)
15
        E0 = ienergy(img, edges, i0, j0) + ienergy(img, edges, i1, j1)
        img[i0, j0], img[i1, j1] = img[i1, j1], img[i0, j0]
17
        E1 = ienergy(img, edges, i0, j0) + ienergy(img, edges, i1, j1)
18
        P = np.exp(-\beta^*(E1 - E0)) if E1 > E0 else 1
        if np.random.rand() > P: # Restore old
            img[i0, j0], img[i1, j1] = img[i1, j1], img[i0, j0]
21
        return img
22
23
    def nnisingstep(\beta, img, edges):
24
        w, h = np.shape(img)
25
        i0 = np.random.randint(w)
        i1 = int((i0 + np.sign(np.random.rand() - 1/2)) \% w)
27
        j0 = np.random.randint(h)
        j1 = int((j0 + np.sign(np.random.rand() - 1/2)) \% h)
29
        E0 = ienergy(img, edges, i0, j0) + ienergy(img, edges, i1, j1)
30
        img[i0, j0], img[i1, j1] = img[i1, j1], img[i0, j0]
31
        E1 = ienergy(img, edges, i0, j0) + ienergy(img, edges, i1, j1)
32
        P = np.exp(-\beta^*(E1 - E0)) if E1 > E0 else 1
        if np.random.rand() > P: # Restore old
34
            img[i0, j0], img[i1, j1] = img[i1, j1], img[i0, j0]
        return img
    img = Image.open("barbara.png")
    eimg = -1 + 2 * (np.array(img) / 255)
    initimg = eimg.copy()
    plt.imshow(initimg);
```


swmovie.gif: Image metric Ising (arbitrary swaps with ienergy).

```
n = 2000000
    f = IntProgress(min=0, max=(1 + (n-1) // 1000)) # instantiate the bar
    with imageio.get_writer('swmovie.gif', mode='I') as writer:
        frame(writer, eimg)
        for i in range(n):
            k = i/n
            swisingstep(3, eimg, initimg)
            if i % 1000 = 0:
                f.value += 1
10
                frame(writer, eimg)
11
          for i in range(n):
12
             k = i/n
              swisingstep(4*(1 - k) + 1e-3*k, eimg, initimg)
              if i \% 1000 = 0:
                 f.value += 1
                  frame(writer, eimg)
          for i in range(n):
18
            k = i/n
              swisingstep(1e-3*(1-k)+4*k, eimg, initimg)
              if i \% 1000 = 0:
                  f.value += 1
```

```
# frame(writer, eimg)
24
25 plt.imshow(eimg);
```

IntProgress(value=0, max=2000)

12.3.2 Nearest-neighbor wapping motion

```
img = Image.open("barbara.png")
eimg = -1 + 2 * (np.array(img) / 255)
initimg = eimg.copy()
plt.imshow(initimg);
```


nnmovie.gif: Image metric Ising (neighborly swaps with ienergy).

```
n = 2000000
    f = IntProgress(min=0, max=3*(1 + (n-1) // 1000)) # instantiate the bar
    with imageio.get_writer('nnmovie.gif', mode='I') as writer:
        frame(writer, eimg)
        for i in range(n):
            k = i/n
            nnisingstep(5*(1 - k) + 1e-4*k, eimg, initimg)
            if i % 1000 = 0:
                f.value += 1
10
                frame(writer, eimg)
11
        for i in range(n):
12
            nnisingstep(1e-4, eimg, initimg)
            if i % 1000 = 0:
14
                f.value += 1
15
                frame(writer, eimg)
16
        for i in range(n):
17
            k = i/n
18
            nnisingstep(1e-4*(1 - k) + 5*k, eimg, initimg)
            if i % 1000 = 0:
                f.value += 1
                frame(writer, eimg)
```

plt.imshow(eimg);

IntProgress(value=0, max=6000)

13 Statistical Mechanics of Images

June 3, Given the qualitative success of the image-metric based Ising images, we consider 2020 generalizations.

Definition 8. An *N*-element image space over metric spaces (K, d) and (P, a) is the space $Img = (P \times K)^N$. A corresponding image is an element of Img.

The space P determines the spatial arrangement of the image, and is usually two-dimensional Euclidean space. We usually consider the subset of an image space where the P-coordinates are fixed, in a grid layout. The space K determines the qualities of an image at a point in P. This is usually a color or intensity space, and in practical applications is a machine integer like $128 \in \mathbb{Z}_8$.

Definition 9. An *image system* on an image space lmg consists of a *ground image* $I_0 \in \text{Img}$ and a *dispersion relation* $E : \mathbb{R} \to \mathbb{R}$. This defines the *energy* of an image

I as

$$E(I) = \sum_{(p_0, k_0) \in I_0} \sum_{k \in \{k : (p_0, k) \in I\}} E(d(k_0, k)).$$

Example 3. For usual images in $((\mathbb{Z}_n \times \mathbb{Z}_m) \times \mathbb{Z}_{256})^N$, where N = nm and the positions of I_0 and I coincide (indexed by i and j), we have

$$E(I) = \sum_{i=1}^{n} \sum_{j=1}^{m} E(d(k_0^{ij}, k^{ij})) = \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon \left| k_0^{ij} - k^{ij} \right|^1,$$

with typical choices of E and d.

In the binary case $(K = \mathbb{Z}_2)$, we have N independent two-level systems.

Example 4 (Grayscale images). Consider a pixel of a ground grayscale image, with integer value $k_0 \in 0, ..., K-1$ for even K. There are then

$$2g = 2$$
 $\begin{cases} k_0, & k_0 < K/2 \\ K - k_0 - 1, & \text{else} \end{cases}$

energy values that occur twice, and K - 2g energy values that occur once (like |x| on an interval like [-3, 5]). Thus the partition function for this single pixel is

$$\begin{split} Z_g &= \sum_{k=-g}^{K-g-1} e^{-\beta \varepsilon |k|} = 1 + \sum_{k=1}^g e^{-\beta \varepsilon k} + \sum_{k=1}^{K-g-1} e^{-\beta \varepsilon k} \\ &= 1 + \frac{e^{-\beta g \varepsilon} \left(e^{\beta g \varepsilon} - 1 \right)}{e^{\beta \varepsilon} - 1} + \frac{e^{-\beta (K-g-1)\varepsilon} \left(e^{\beta (K-g-1)\varepsilon} - 1 \right)}{e^{\beta \varepsilon} - 1} \end{split}$$

and the partition function for the whole image is

$$Z = \prod_{q=0}^{-1+K/2} Z_g^{NP(g)},$$

where NP(g) is the number of pixels in the ground image with the given g-value. We then see that

$$\ln Z = \sum_{g=0}^{-1+K/2} NP(g) \ln Z_g = N \left\langle \ln Z_g \right\rangle_G,$$

where G is the random variable that takes the value g with probability P(g). It then follows that $\langle E/N \rangle = \langle E_g \rangle_G$ and $S/N = \langle S_g \rangle_G$ as usual for extensive variables.