

ERASynth Micro: USB-Powered, Low-Priced, Open Source, RF Signal Generator

PRELIMINARY DATASHEET

GENERAL DESCRIPTION

ERASynth Micro is an open source analog RF signal generator featuring an Arduino Micro micro-controller and a touch display. ERASynth Micro uses advanced PLL/VCO technology, coupled with an internal ultra-low phase noise frequency reference to form a programmable analog signal generator capable of generating a low phase noise signals up to 6.4 GHz. ERASynth Micro provides fast frequency switching and fine-tuning resolution using a dual loop PLL architecture. ERASynth Micro also offers frequency, amplitude and pulse modulation capabilities. The frequency tuning and control commands are loaded into the instrument via the serial interface or via Touch Display or Windows GUI.

FEATURES

Architecture: Dual loop Fractional-N PLL driven by a 10 MHz reference.

Frequency Range: 12.5 MHz to 6.4 GHz

Amplitude Range: -50 to +15 dBm

Phase Noise: -115 dBc/Hz @ 1 GHz output and 10 kHz offset

Frequency Switching Time: 1ms (typ)

Reference: Ultra-low noise 50 MHz VCXO locked to a ±500 ppb TCXO

MCU: ATMEGA32U4-MU (same as in the Arduino Micro board)

Interfaces:

• Touch Display Module (3.2" Nextion NX4024T032)

Micro-USB for power input and serial access

• REF IN (SMA) for external reference input

• REF Out (SMA) for 10 MHz reference output

• RF Out (SMA)

• Expansion connector: External trigger input, external modulation input, microphone input, GPIO (I2C) and SPI

Dimensions: 57 cm x 118 cm x 23 cm

Weight: 120g (including LCD screen)

Power Input: 5V

Power Consumption: <2W

Enclosure: Injection molded plastic case

Open Source: Schematics, embedded Arduino code, LCD screen source code and RS-232

command set

Modulation: AM, FM, Pulse (Internal and external)

Figure 1: ERASynth Micro general block diagram

ELECTRICAL CHARACTERISTICS

	Minimum	Typical	Maximum
Supply Voltage	4.5 V	5 V	5.5 V
Supply Current		400 mA	
Supply Current, RF Out Muted		200 mA	
Minimum Output Power			-50 dBm
Maximum Output Power (*)		15 dBm	
Output Level Accuracy		± 1.5 dB	
Output Power Resolution		1 dB	
Frequency Resolution	1 Hz		
Frequency Accuracy		±500 ppb	
Minimum Dwell Time**	1 ms		
External Reference Input Level	-10 dBm	0 dBm	+10 dBm
External Reference Locking Range		10 MHz ± 30 ppm	
External Trigger Low Level Input Voltage	0 V		0.7 V
External Trigger High Level Input Voltage	2 V		3.3 V
External Modulation Input Voltage Level			± 2.5 V
RF Output Impedance		50 Ohm	

^{*} See Figure 2 for 15 dBm output power.

^{**} Dwell time: Duration of each signal point in a sweep sequence set by user.

THERMAL CHARACTERISTICS

Operating temperature range: 0 to +50 $^{\circ}\text{C}$

Non-operating temperature range: -40 to +85 °C

Warm-up time: 5 minutes

TYPICAL PERFORMANCE

1) Output Power

Figure 2: ERASynth Micro 15 dBm Power Output

2) Spectral Purity

Broadband Non-Harmonic Spurious Emissions

Frequency	dBc (typical) at 0 dBm specified output power	
12.5 MHz – 6.4 GHz	-48 dBc	

Harmonics (2nd or 3rd harmonics, whichever is worse)

Frequency	dBc (typical) at 0 dBm specified output power	
100 MHz	-13 dBc	
1 GHz	-16 dBc	
2 GHz	-26 dBc	
3 GHz	-36 dBc	
6 GHz	-43 dBc	

Sub-Harmonics (1/2 or 1/3 harmonics, whichever is worse)

Frequency	dBc (typical) at 0 dBm specified output power
30 MHz	-86 dBc
100 MHz	-67 dBc
1 GHz	-59 dBc
3 GHz	-70 dBc
6 GHz	-68 dBc

3) Phase Noise

Frequency Offset (@ 1GHz output)	dBc (typical)	
1 kHz	-102 dBc/Hz	
10 kHz	-115 dBc/Hz	
100 kHz	-119dBc/Hz	
1 MHz	-135 dBc/Hz	

Figure 3: Phase Noise @ 1GHz output 1 kHz offset

Figure 4: Phase Noise @ 1GHz output 10 kHz offset

Figure 5: Phase Noise @ 1GHz output 100 kHz offset

Figure 6: Phase Noise @ 1GHz output 1 MHz offset

4) Modulation

Amplitude Modulation (AM)

Modulation Depth	30 dB (typ) (*)	
Maximum Depth (Linear)	%95	
Internal Modulation Waveforms	Sine, Triangle, Ramp, Square	
Maximum Internal Modulation Frequency	20 kHz (typ)	
Maximum External Modulation Frequency	1 kHz (typ)	
External Input	± 2.5 V (typ)	
External Input Impedance	10 kΩ (typ)	
*Measured with power set at max. amplitude range. AM is clipped when available power (min. or max.) is reached.		

Frequency Modulation (FM)

Maximum Deviation	25 MHz	10 kHz (typ)
	50 MHz	25 kHz (typ)
	100 MHz	50 kHz (typ)
	200 MHz	100 kHz (typ)
	400 MHz	200 kHz (typ)
	800 MHz	400 kHz (typ)
	1600 MHz	800 kHz (typ)
	3200 MHz	1600 kHz (typ)
Internal Modulation Waveforms	Sine, Triangle, Ramp, Square	
Maximum Internal Modulation Frequency	20 kHz (typ)	
Maximum External Modulation Frequency	1 kHz (typ)	
External Input	± 2.5 V (typ)	
External Input Impedance	10 kΩ (typ)	

Pulse Modulation

On/Off Ratio	100 MHz	49 dB (typ)
	1 GHz	50 dB (typ)
	3 GHz	57 dB (typ)
	6 GHz	48 dB (typ)
Minimum Pulse Width	50 us (typ)	
Minimum Pulse Period	100 us (typ)	
Maximum Pulse Period	999 s	
Rise Time (10 to 90%)	7 us (typ)	
Fall Time (10 to 90%)	3 us (typ)	
External Input	+3.3 V = RF ON, 0 V = RF OFF	
External Input Impedance	5 kΩ (typ)	