Дисциплина: Численные методы Лабораторное задание №3

Отчет Тема: Численные методы решения спектральных задач

линейной алгебры

Выполнили:

студенты 3 курса 62 группы Голенский Д.В. Землянухин А.С. Проверила: старший преподаватель Фролова О.А.

Постановка задачи

1. Необходимо реализовать алгоритм по нахождению второго максимального по модулю собственного значения матрицы А и соответствующего ему собственного вектора методом прямых итераций с исчерпыванием.

Метод решения

2.1. Степенной метод (метод прямых итераций)

Степенной метод приспособлен для нахождения наибольшего по модулю собственного значения λ_n и соответствующего ему собственного вектора x_n .

Пусть $x^{(0)}$ — произвольный вектор из R_n . Вычисления итерационного процесса ведутся по схеме

$$\begin{cases} v^{(k)} = x^{(k)} / ||x^{(k)}|| \\ x^{(k+1)} = A v^{(k)}, \end{cases} \quad k = 0, 1, 2, \dots$$
 (2.1.2)

с попутным вычислением чисел

$$\sigma^{(k)} = v^{(k)^T} x^{(k+1)}. \tag{2.1.3}$$

Показано [4], что

26

$$\begin{cases} \sigma^{(k)} \to \lambda_n \\ \nu^{(k)} \to \pm x_n \end{cases}, k \to \infty. \tag{2.1.4}$$

Замечание 1. Во всех приведенных методах берутся евклидовы нормы векторов, т. е.

$$||x|| = \sqrt{x^T x}$$
.

Замечание 2. Если $x_1, x_2, ...x_n$ – ортонормированный базис, составленный из собственных векторов матрицы A, то вектор начального приближения $x^{(0)}$ разложим по этому базису:

$$x^{(0)} = \sum_{i=1}^{n} \xi_i x_i.$$

В степенном методе предполагается, что $\xi_n = -x_n^T x^{(0)} \neq 0$, т. е. что $x^{(0)}$ не ортогонален x_n .

Замечание 3. Скорость сходимости (2.1.2) зависит от отношения $\left| \frac{\lambda_{n-1}}{\lambda_{-}} \right|$:

$$\sigma^{(k)} = \lambda_n \left[1 + O\left(\left| \frac{\lambda_{n-1}}{\lambda_n} \right|^{2k} \right) \right]$$

$$v^{(k)} = \left(\frac{\lambda_n}{|\lambda_n|} \right)^k \frac{\xi_n}{|\xi_n|} \left[x_n + O\left(\left| \frac{\lambda_{n-1}}{\lambda_n} \right|^k \right) \right]$$
(2.1.5)

Если отношение $\left|\frac{\lambda_{n-1}}{\lambda_n}\right|$ близко к единице, то сходимость медленная. Последовательность $\sigma^{(k)}$ всегда сходится быстрее, чем последовательность векторов $v^{(k)}$.

2.2. Метод исчерпывания

Если пара (λ_n, x_n) найдена, то степенной метод можно применить для вычисления пары (λ_{n-1}, x_{n-1}) . Введем в рассмотрение матрицу

$$A^{(1)} = A - \lambda_n x_n x_n^T. (2.2.1)$$

После выбора начального приближения $x^{(0)}$ итерационный процесс организуется по схеме

$$\begin{cases} v^{(k)} = x^{(k)} / \|x^{(k)}\| \\ x^{(k+1)} = A^{(1)} v^{(k)}, \end{cases} \quad k = 0, 1, 2, \dots$$
 (2.2.2)

При этом $v^{(k)} \to \pm x_{n-1}, \ \sigma^{(k)} = v^{(k)^T} x^{(k+1)} \to \lambda_{n-1}$ при $k \to \infty$.

Замечание 1. Можно обойтись без непосредственного определения матрицы $A^{(1)}$, проводя вычисления по схеме

27

$$\begin{cases} v^{(k)} = x^{(k)} / \|x^{(k)}\| \\ x^{(x+1)} = A v^{(k)} - \lambda_n x_n x_n^T v^{(k)}, \end{cases} k = 0, 1, 2, \dots$$
 (2.2.3)

Замечание 2. Теоретически подобным образом можно найти весь спектр матрицы А. Однако из-за ошибок округлений это сделать не удается. Обычно, с достаточной степенью точности определяют лишь две — три последние собственные пары.

Основные процедуры

Входные параметры основной процедуры:

N – размерность системы;

A – двумерный массив размерностью N * N;

 λ_n – максимальное по модулю собственное значение матрицы A;

 x_n – собственный вектор, соответствующий собственному значению λ_n ;

 ε_n — точность определения второго максимального по модулю собственного значения;

 ε_q – точность определения второго собственного вектора;

М – максимальное число допустимых итераций;

Выходные параметры основной процедуры:

IER – код завершения;

К – количество выполненных вращений;

λ – максимальное по модулю собственное значение;

x – второй собственный вектор, соответствующий λ ;

Для улучшения читаемости кода и для удобства были написаны классы:

- 1) Vector класс предназначенный для хранения одномерного double массива, содержащий методы по умножению, сложению векторов, а также печать и нахождению первой и третьей нормы векторов.
- 2) SimpleMatrix класс простых матриц, необходимый для упрощения арифметических операций с матрицами.
- 3) DirectIteration класс, хранящий матрицу A, имеющий метод обратных итераций для нахождения максимального по модулю собственного значения.

Алгоритм:

Следуя методу прямых итераций первым делом необходимо взять случайный вектор x^0 . После этого находятся следующие величины:

$$\mu^k = x^k / ||x^k||, \tag{2}$$

$$x^{k+1} = A^{(1)} * \mu^k, (3)$$

$$\sigma^k = \mu^{k^T} * x^{k+1}, \tag{4}$$

Причём $A^{(1)} = A - \lambda_n x_n x_n^T$. Принимаем за данность то, что $\mu^k \to \pm x_{n-1}$, $\sigma^k \to \lambda_{n-1}$. Таким образом находим необходимые нам неизвестные.

Для численного эксперимента необходимо найти r — меру точности спектральной задачи. Она ищется по формуле $Ax - \lambda x$.

Таким образом алгоритм считаю полностью описанным и завершённым.

Тестирование

размер	диапазон	3	Cp.	Cp.	r	Cp.
			значение собственн	значение собственн		кол-во итерац
			ых	ых		ий
			значений	векторов		
10	-2÷2	e^{-5}	e^{-18}	-8.882e-17	0.02325	53.5
10	-2÷2	e^{-8}	e^{-17}	-1.11e-16	0.000564	40.2
10	-50÷50	e^{-5}	3	-1.332e-16	0.1622	16.8
10	-50÷50	e^{-8}	23	-8.882e-17	0.01031	92.6
30	-2÷2	e^{-5}	2	-6.661e-17	0.1193	67.8
30	-2÷2	e^{-8}	1	-6.661e-17	0.003889	158.7
30	-50÷50	e^{-5}	48	-1.554e-16	0.3762	276.8
30	-50÷50	e^{-8}	-45	-1.11e-16	0.01149	219.6
50	-2÷2	e^{-5}	-2	-4.441e-17	0.1768	79.3
50	-2÷2	e^{-8}	2	-1.11e-16	0.006067	243.2
50	-50÷50	e^{-5}	49	-1.776e-16	0.3317	98.3
50	-50÷50	e^{-8}	50	-2.856e-16	0.01003	480.5