Expt. No. 7

Page No....

	Page No
"Newton's Rings"	
Objective: To determine wavelength sodium light with the stings arrangement.	of monochromatic help of Newton's
a plane glass plate, sa glass plate, sa glass plate avoiangement, a triaveline lens, a lamb and a spheromet	large radius of Curvature, d'un lamp, 45° incliner ng microscope, reading ter.
reflects the past of incident linght. The light beam incident on lens	The two nuse they are derived between glass plate Can be considered as The exporiment produces
Teach	her's Signature:

Date	
Expt. No	
The light incident on glass plate again partially reflets from the thin film and the observed from the microscope placed on the the dark and bright circular concentric fringes seen due to interference.	cled hen ob- are
The phase difference between beams reflected from a point of distance away from the centre can be call as follow:	int culated
Phase difference = 2T (additional path travelled by one the beam.	d)+1
$\simeq 2\pi (2t) + \pi$	
$=\frac{4\pi}{\lambda}\left(R-\sqrt{\left(R^{2}-91^{2}\right)}\right)+\pi$	
$=\frac{4\pi R}{\lambda}\left(1-\left(1-\frac{91^2}{2R^2}\right)\right)+\pi$ (by binor theo	mial, rem.)
$= \frac{2\pi 9^2}{\lambda R} + \pi$	
Here phase difference due to suffection is taken IT. In order to get bright stings, we must be constructive interference i.e. phase difference between two suffected beam must be 0, ±21T, ±41T. -, ±2nT.	ave
Teacher's Signature:	

E Comment	Date
Expt. No	7 5 8 2 Page No
Fast n-th bright Idark sin	g, we have
Fast Bright sting	Foot Doork sting
$2\pi h = \frac{2\pi 9h^2}{\lambda R} + \pi$	$\frac{(2n+1)\pi}{2R} = \frac{2\pi 9 \ln^2}{2R} + \pi$
Therefore $91n^2 = (n-1)\lambda R$	Therefore $9in^2 = 2n\lambda R$
$\lambda = \frac{D_{n+p}^2 - D_n^2}{4PR}$	$\lambda = \frac{D_{n+p}^2 - D_n^2}{4-PR}$
where $D_n = 2Mn$	
clean the glass blate an	the source light Least Count of the toravelling. d the lens surface and place the lens over the glass plate lined glass plate.
Move the microscope in v Rampden's eye piece of Carosp where set the Centeral dasik aling.	entical disrection to focus the the micoroscope on its ne cross at wise at the
	Teacher's Signaturer

-																
Date	 		-												-	-
	 -	-	_	_	_	_	_	_	7	-	Ξ	-	7	_	_	_

-													
Expt.	N	0.					-		-	*			

Page No.....

and outer boundary, we measure the separation between c and D i.e. outer boundary on one side and inner boundary on the other side.

Now notate slowly the knob in sevence disrection and necond observations.

Observations !-

value of one main scale division of travelling microscope = 0.1 cm

Total number of divisions on vornier scale = n = 100

Least Count of micoroscope = $\frac{0.1 \text{ cm}}{100}$ = 0.001 cm

let value of P=4

Teacher's Signature:

order of the sting	Reading Surface the Min	foor the of left so	inner ide of	swel	ing fan the ace of shi the shing	ght side	Diameter Xy-Xy (cm)	Dn ² (cm ²)	$\frac{D_{n+p}^2 - D_n^2}{(cm)^2}$	Mean (em)	
	Mainscale (cm)	vennier scale (cm)	Total (XL) (Cm)	Main Scale (cm)	vonier scale (cm)	Total (291) (Cm)	Hash Hash	0.4225	D ² D ² - 0.097		
20 18 16 14 12 10 08 06	0.3 0.2 0.2 0.2 0.2 0.1	0.024 0.011 0.081 0.060 0.038 0.016 0.078 0.049	0.324 0.311 0.281 0.260 0.238 0.216 0.178 0.179	-0.1	-0.026 -0.009 -0.093 -0.068 -0.038 -0.019 -0.081 -0.053	-0.326 -0.309 -0.293 -0.268 -0.238 -0.219 -0.181 -0.153	0.528 0.476 0.435 0.359	0.3844 0.3295 0.2788 0.2266 0.1892	2 - 2 0 107	0.038	

* Radius of Curvature (R) = 100.0075 cm

	Date
Expt. No	Page No.
Calculations !-	The team will be a second
We have, R= 10	10,0075cm
Date - Da =	= 0.0983 cm²
p=4	
then	
	.0983 cm
4 PR 4	-X4X100.0075
-5	
$\lambda = 6.143 \times 10^{-5} \text{ cm} =$	6.143 X10 m
or $\lambda = 614.3 \text{nm}$	
Mothed TI's Form Comble ald	1 1 1 2 2 4 2 2
Method II! - From Graph, slope	log line = 41K
slobe of line = AB _ 0.4	23-0-135 0 024
slope of line = $AB = 0.4$	20-8
slope of line = MN 0.33	0-0.225 - 0.026
PN 16	-12
Taking Mean of both slopes, slope of line = 0.0	we get
slope of line = 0.0	25.
NOD 0.025 = $4\lambda (100.007)$	5)
$\lambda = 6.249 \times 10^{-5} \text{ cm}$	
or [2 = (24 2	
$\lambda = 624.9 \text{nm}$	
	Teacher's Signature:

Date	
Expt. No	
Regult: The wavelength of sodium light is 614.3 n	m
Precautions: 1- 1 The microscope should be parallel to the edge of the glaps plate. The year place the Crops wire tangential to the outer side of a ring on one side of the central spot then the Crops wire should be placed tangential to the inner side of the same numbered ring on the other side of central spot. The travelling microscope should move only in one direction.	
Teacher's Signature:	