

Robótica Móvel

Transformações homogêneas e Espaço de configurações

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Introdução

Coordenadas homogêneas

- Tratar as transformações de maneira uniforme
 - Translação é não linear (não pode ser combinada)
- Coordenadas homogêneas
 - Também chamadas de coordenadas projetivas
 - Transformações rígidas → Transformações lineares

$$^{A}P=\begin{bmatrix} p_{x}\\ p_{y}\\ p_{z} \end{bmatrix}$$
 Adicionar um novo elemento no vetor, conhecido como fator de escala.

Coordenadas homogêneas

- Representação matricial de transformações afins e projetivas
 - Inversões e combinações de transformações lineares simplificadas para inversão ou multiplicação das matrizes correspondentes
- Matrizes de Transformações Homogêneas
 - Forma mais elegante de compor transformações
 - Rotações, Translações e Escala
 - Também servem para descrever frames

$$T = \begin{bmatrix} R & P \\ 0 & 1 \end{bmatrix}$$

Transformação homogênea

$$\begin{bmatrix} AP \\ 1 \end{bmatrix} = \begin{bmatrix} AR \\ BR \\ 0 \end{bmatrix} \begin{bmatrix} AP_{BORG} \\ 0 \end{bmatrix} \begin{bmatrix} BP \\ 1 \end{bmatrix}$$

$$^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG} \rightarrow {}^{A}P = {}^{A}_{B}T^{B}P$$

Transformação homogênea

Transformação homogênea Exemplo

• Seja $\{B\}$ um referencial rotacionado $\theta = 30^\circ$ em torno de \hat{Z}_A e transladado 10 unidades em \hat{X}_A e 5 unidades em \hat{Y}_A . Dado o ponto BP , defina ABT e AP .

$${}^{B}P = \begin{bmatrix} 3 \\ 7 \\ 0 \end{bmatrix} \qquad {}^{A}T = \begin{bmatrix} 0,866 & -0,500 & 0,000 & 10,0 \\ 0,500 & 0,866 & 0,000 & 5,0 \\ 0,000 & 0,000 & 1,000 & 0,0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{A}P = {}^{A}T^{B}P = \begin{vmatrix} 9,098 \\ 12,562 \\ 0,000 \end{vmatrix}$$

Transformação homogênea Exemplo

Transformações compostas

• Se o referencial $\{C\}$ é conhecido em relação a $\{B\}$, e $\{B\}$ é conhecido em relação a $\{A\}$. Como obter AP dado CP ?

■ 1)
$${}^{B}P = {}^{B}T {}^{C}P$$

■ 2) ${}^{A}P = {}^{A}T {}^{B}P$ \longrightarrow ${}^{A}P = {}^{A}T {}^{B}T {}^{C}P$

Pode-se então, definir:

$$_{C}^{A}T = _{B}^{A}T_{C}^{B}T$$

Transformações compostas

$${}_{C}^{A}T = \begin{bmatrix} {}_{B}^{A}R_{C}^{B}R & {}_{B}^{A}R_{C}^{B}R & {}_{B}^{A}R_{C}^{B}P_{CORG} + {}^{A}P_{BORG} \\ 0 & 0 & 1 \end{bmatrix}$$

Transformações compostas Exemplo

• Seja $\{C\}$ um referencial rotacionado $\theta = -45^\circ$ em torno de \hat{Z}_B e transladado -6 unidades em \hat{Y}_B . Seja $\{B\}$ um referencial rotacionado $\theta = 45^\circ$ em torno de \hat{Z}_A e transladado 5 unidades em \hat{X}_A e 10 unidades em \hat{Y}_A . Dado CP , defina ACT e AP .

$${}^{C}P = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \quad {}^{B}T = \begin{bmatrix} 0,707 & -0,707 & 0,000 & 0 \\ 0,707 & 0,707 & 0,000 & -6,0 \\ 0,000 & 0,000 & 1,000 & 0,0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{A}T = \begin{bmatrix} 0,707 & 0,707 & 0,000 & 5,0 \\ -0,707 & 0,707 & 0,000 & 10,0 \\ 0,000 & 0,000 & 1,000 & 0,0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{C}^{A}T = {}_{B}^{A}T {}_{C}^{B}T$$
 ${}_{AP} = {}_{C}^{A}T^{C}P = \begin{bmatrix} 11,242\\ 7,757\\ 0,000 \end{bmatrix}$

Transformações compostas Exemplo

- Considere um referencial $\{B\}$ conhecido em relação a $\{A\}$
- Como fazer se quisermos o contrário?
 - Descrição de $\{A\}$ em relação a $\{B\}$
 - Ou seja, temos $\frac{A}{B}T$ e deseja-se obter $\frac{B}{A}T$

- Pode-se calcular a inversa da matriz 4×4
 - Não é o mais eficiente computacionalmente

- Como ser mais eficiente?
 - Estrutura inerente à transformação
- Vamos calcular B_AR e ${}^B_{AORG}$ a partir de ${}^AP_{BORG}$ e A_BR
- Utilizando propriedades vistas anteriormente
 - A inversa é igual a sua transposta: ${}^B_A R = {}^A_B R^T$
 - Alterar a descrição de ${}^AP_{BORG}$ para $\{B\}$ usando

$${}^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$$

• A descrição de ${}^AP_{BORG}$ em $\{B\}$ é dada por

$$^{B}(^{A}P_{BORG}) = ^{B}_{A}R^{A}P_{BORG} + ^{B}P_{AORG}$$

• A origem do sistema $\{B\}$ descrita em $\{B\}$ é zero. Logo, o lado esquerdo da equação acima deve ser zero, assim temos

$$^{B}P_{AORG} = -^{B}_{A}R^{A}P_{BORG} = -^{A}_{B}R^{TA}P_{BORG}$$

$${}_{A}^{B}T = \begin{bmatrix} {}_{B}^{A}R^{T} & {}_{-B}^{A}R^{T} {}^{A}P_{BORG} \\ 0 & 0 & 1 \end{bmatrix}$$

Notação:
$${}_{A}^{B}T = {}_{B}^{A}T^{-1}$$

Inversão de transformações Exemplo

• Seja $\{B\}$ um referencial rotacionado $\theta = 30^\circ$ em torno de \hat{Z}_A , e transladado 4 unidades ao longo de \hat{X}_A e 3 unidades ao longo de \hat{Y}_A . Dado $_B^AT$ defina $_A^BT$.

$$_{B}^{A}T = \begin{bmatrix} 0,866 & -0,500 & 0,000 & 4,0 \\ 0,500 & 0,866 & 0,000 & 3,0 \\ 0,000 & 0,000 & 1,000 & 0,0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{A}_{B}T = \begin{bmatrix} 0.866 & -0.500 & 0.000 & 4.0 \\ 0.500 & 0.866 & 0.000 & 3.0 \\ 0.000 & 0.000 & 1.000 & 0.0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{B}_{A}T = \begin{bmatrix} 0.866 & 0.500 & 0.000 & -4.964 \\ -0.500 & 0.866 & 0.000 & -0.598 \\ 0.000 & 0.000 & 1.000 & 0.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equações de transformações

De quantas formas diferentes o referencial $\{D\}$ pode ser descrito em relação a $\{U\}$?

Equações de transformações

• O referencial $\{D\}$ pode ser obtido como

$${}_D^UT = {}_A^UT {}_D^AT$$
 ou ${}_D^UT = {}_B^UT {}_C^BT {}_D^CT$

Equação de transformações

$${}_{A}^{U}T{}_{D}^{A}T = {}_{B}^{U}T{}_{C}^{B}T{}_{D}^{C}T$$

Equações de transformações

- ullet Podem ser resolvidas para se encontrar transformações no caso de n transformações desconhecidas e n equações
- No caso anterior, se ${}_{C}^{B}T$ fosse desconhecido

$$_{C}^{B}T = _{B}^{U}T^{-1}_{A}^{U}T_{D}^{A}T_{D}^{C}T^{-1}$$

Para compor frames, quando os *vetores* se alinham, simplesmente calculamos o produto das transformações. Se um *vetor* apontar para o lado oposto em uma cadeia de transformações, simplesmente calculamos o seu inverso primeiro.

Equações de transformações Exemplo

$${}_{G}^{B}T = {}_{T}^{B}T {}_{G}^{T}T$$

$${}_{G}^{B}T = {}_{S}^{B}T {}_{G}^{S}T$$

$${}_{S}^{B}T{}_{G}^{S}T = {}_{T}^{B}T{}_{G}^{T}T$$

$$_{G}^{T}T = _{T}^{B}T^{-1}_{S}T_{G}^{S}T$$

- Descrição espacial
 - Não define totalmente o corpo rígido
 - Como tratar todas as partes do robô?

- Configuração
 - Especificação mínima para se determinar as posições de todos os pontos do robô em relação a um sistema de coordenadas fixo

Fonte: Lectures on Robotic Planning and Kinematics

- Considere o robô triangular ao lado:
 - Se ele puder realizar apenas <u>translações</u>, como representar seus estados (configurações)?
 - E se ele puder agora realizar <u>rotações</u>?

$$q=(x,y,z,\phi,\theta,\psi)$$
Translação Rotação

Espaços

Espaço de trabalho (workspace)

$$\blacksquare \mathbb{R}^n \Rightarrow \mathcal{W} = \mathbb{R}^2 \text{ (2D) ou } \mathcal{W} = \mathbb{R}^3 \text{ (3D)}$$

• Espaço de configurações (C-space)

- ullet Conjunto de todas as possíveis configurações instantâneas do robô (sistema mecânico) no espaço de trabalho ($\mathcal W$)
- Robô no plano: $\mathcal{C} = \mathbb{R}^2$ ou $\mathcal{C} = \mathbb{R}^2 \times \mathbb{S}^1 \Rightarrow SE(2)$
- Robô no espaço: $C = \mathbb{R}^3 \times SO(3) \Rightarrow SE(3)$

Grupo de transformações homogêneas em 2D

Grupo de transformações homogêneas em 3D

Espaços

Espaço de trabalho (\mathcal{W})

Espaço de configurações (\mathcal{C})

- Representação do robô
 - Um ponto no C-space (configuração completa)
 - Cada eixo representa uma das variáveis

- Conjunto de pontos do robô
 - ullet Região ocupada em ${\mathcal W}$ para uma dada configuração

 - Geometria real do robô pode ser simplificada → invólucro

- Conjuto de regiões com obstáculos no ambiente
 - \bullet $\mathcal{O} \subset \mathcal{W}$
- Espaço de configurações proibidas
 - Conjunto das configurações interceptam um obstáculo
- Espaço de configurações livres (válidas)
 - $C_{free} = C \setminus C_{obs}$
 - Fundamental na etapa de planejamento!

Obstáculos

Fonte: Principles of Robot Motion: Theory, Algorithms, and Implementation

Tratar como um ponto no novo espaço gerado!

Sem rotação

- Como calcular o C-space?
 - Força bruta: amostrar "todas" configurações e testar colisões
 - Útil em casos bem simples, mas pode ser muito ineficiente
- Minkowski sum (addition)
 - Também conhecida como dilatação morfológica
 - lacktriangle Dado dois conjuntos de vetores de posições P e Q

$$P \oplus Q = \{ p + q \in \mathbb{R}^n \mid p \in P, q \in Q \}$$

Minkowski sum

Bem relacionado com o que queremos, mas não podemos aplicar exatamente desse jeito (temos posições inválidas).

Alguma ideia de como resolver?

Varrer todos os pontos de Q por P, ou seja, transladando Q de modo que sua origem (ponto de referência comum dos vetores posição) passe por todos os pontos de P, e tomando a união de todos os pontos resultantes.

Minkowski sum

 $P \oplus -Q \Rightarrow P \ominus Q$

Intuição geométrica

Planejamento de caminhos

