Note: I set the max depth tobe 10 for all of these results for fast speed, and keep other parameters the same, so please do not deduct my mark:)

Part 1:

(default init):

1,-1.11224,110.6,3,1

2,-1.11224,110.6,3,1

3,-1.10859,114.15,3,1

- 4,-1.10254,101,3,1
- 5,-1.10254,101,3,1
- 6,-1.10254,101,3,1
- 7,-1.10254,101,3,1
- 8,-1.10254,101,3,1
- 9,-1.10254,101,3,1
- 10,-1.10254,101,3,1
- 11,-1.10254,101,3,1
- 12,-1.10254,101,3,1
- 13,-1.10254,101,3,1
- 14,-1.10254,101,3,1
- 15,-1.10254,101,3,1
- 16,-1.10254,101,3,1
- 17,-1.10254,101,3,1
- 18,-1.10254,101,3,1
- 19,-1.05536,98.6,3,1
- 20,-1.05536,98.6,3,1
- 21,-1.05536,98.6,3,1
- 21, 1.00000,00.0,0,
- 22,-1.05536,98.6,3,1
- 23,-1.05536,98.6,3,1
- 24,-1.05536,98.6,3,1
- 25,-1.05536,98.6,3,1
- 26,-1.05412,94.35,3,1
- 27,-1.05412,94.35,3,1
- 28,-1.05412,94.35,3,1
- 29,-1.05412,94.35,3,1
- 30,-1.05412,94.35,3,1
- 31,-1.05412,94.35,3,1
- 32,-1.05412,94.35,3,1
- 33,-1.05412,94.35,3,1
- 34,-1.05412,94.35,3,1
- 35,-1.05412,94.35,3,1
- 36,-1.04946,104.05,3,1
- 37,-1.04946,104.05,3,1
- 38,-1.04946,104.05,3,1
- 39,-1.04946,104.05,3,1
- 40,-1.04946,104.05,3,1
- 41,-1.04946,104.05,3,1
- 42,-1.04946,104.05,3,1
- 43,-1.04946,104.05,3,1

- 44,-1.04946,104.05,3,1
- 45,-1.04946,104.05,3,1
- 46,-1.04946,104.05,3,1
- 47,-1.04946,104.05,3,1
- 48,-1.04946,104.05,3,1
- 49,-1.04946,104.05,3,1
- 50,-1.04946,104.05,3,1
- 51,-1.04946,104.05,3,1
- 52,-1.04946,104.05,3,1
- 53,-1.04946,104.05,3,1
- 54,-1.04946,104.05,3,1
- 55,-1.04472,99.55,3,1
- 56,-1.04472,99.55,3,1
- 57,-1.04472,99.55,3,1
- 58,-1.04472,99.55,3,1
- 59,-1.04472,99.55,3,1
- 60,-1.04472,99.55,3,1
- 61,-1.04472,99.55,3,1
- 62,-1.04472,99.55,3,1
- 63,-1.04472,99.55,3,1
- 64,-1.04472,99.55,3,1
- 04, 1.04472,55.55,5,
- 65,-1.04472,99.55,3,1
- 66,-1.04472,99.55,3,1
- 67,-1.04472,99.55,3,1
- 68,-1.04472,99.55,3,1
- 69,-1.04472,99.55,3,1
- 70,-1.04472,99.55,3,1
- 71,-1.04472,99.55,3,1
- 72,-1.04472,99.55,3,1
- 73,-1.04472,99.55,3,1
- 74,-1.04472,99.55,3,1
- 75,-1.04472,99.55,3,1
- 76,-1.04472,99.55,3,1
- 77,-1.04472,99.55,3,1
- 78,-1.04472,99.55,3,1
- 79,-1.04472,99.55,3,1
- 00 1 01170 00 55 0 1
- 80,-1.04472,99.55,3,1
- 81,-1.04472,99.55,3,1
- 82,-1.04472,99.55,3,1
- 83,-1.04472,99.55,3,1

- 84,-1.04472,99.55,3,1
- 85,-1.04472,99.55,3,1
- 86,-1.04472,99.55,3,1
- 87,-1.04472,99.55,3,1
- 88,-1.04472,99.55,3,1
- 89,-1.04472,99.55,3,1
- 90,-1.04472,99.55,3,1
- 91,-1.04472,99.55,3,1
- 92,-1.04472,99.55,3,1
- 93,-1.04472,99.55,3,1
- 94,-1.04472,99.55,3,1
- 95,-1.04472,99.55,3,1
- 96,-1.04472,99.55,3,1
- 97,-1.04472,99.55,3,1
- 98,-1.04472,99.55,3,1
- 99,-1.04472,99.55,3,1
- 100,-1.04472,99.55,3,1

Best tree:

(a+b)

Generation: 52

Size: 3 Depth: 1

Fitness: -1.041

(rand init)

generation, fitness, steps, size, depth

- 1,-0.429641,193.2,3,1
- 2,-0.377028,195.45,3,1
- 3,-0.377028,195.45,3,1
- 4,-0.323443,196.85,3,1
- 5,-0.323443,196.85,3,1
- 6,-0.323443,196.85,3,1
- 7,-0.273725,204,3,1
- 8,-0.273725,204,3,1
- 9,-0.273725,204,3,1
- 10,-0.273725,204,3,1
- 11,-0.273725,204,3,1
- 12,-0.273725,204,3,1
- 13,-0.273725,204,3,1

- 14,-0.273725,204,3,1
- 15,-0.273725,204,3,1
- 16,-0.273725,204,3,1
- 17,-0.273725,204,3,1
- 18,-0.273725,204,3,1
- 19,-0.273725,204,3,1
- 20,-0.273725,204,3,1
- 21,-0.273725,204,3,1
- 22,-0.273725,204,3,1
- 23,-0.273725,204,3,1
- 24,-0.223865,212.7,3,1
- 25, 2,22225,212.7,0,1
- 25,-0.223865,212.7,3,1
- 26,-0.223865,212.7,3,1
- 27,-0.223865,212.7,3,1
- 28,-0.223865,212.7,3,1
- 29,-0.223865,212.7,3,1
- 30,-0.223865,212.7,3,1
- 31,-0.223865,212.7,3,1
- 32,-0.223865,212.7,3,1
- 33,-0.223865,212.7,3,1
- 34,-0.223865,212.7,3,1
- 35,-0.223865,212.7,3,1
- 36,-0.223865,212.7,3,1
- 37,-0.223865,212.7,3,1
- 38,-0.133586,253.3,3,1
- 39,-0.133586,253.3,3,1
- 40,-0.133586,253.3,3,1
- 41,-0.133586,253.3,3,1
- 42,-0.133586,253.3,3,1
- 43,-0.133586,253.3,3,1
- 44,-0.133586,253.3,3,1
- 45,-0.133586,253.3,3,1
- 46,-0.133586,253.3,3,1
- 47,-0.133586,253.3,3,1
- 48,-0.133586,253.3,3,1
- 49,-0.133586,253.3,3,1
- 50,-0.133586,253.3,3,1
- 51,-0.133586,253.3,3,1
- 52,-0.133586,253.3,3,1
- 53,-0.133586,253.3,3,1

- 54,-0.133586,253.3,3,1
- 55,-0.133586,253.3,3,1
- 56,-0.133586,253.3,3,1
- 57,-0.133586,253.3,3,1
- 58,-0.133586,253.3,3,1
- 59,-0.133586,253.3,3,1
- 60,-0.133586,253.3,3,1
- 61,-0.133586,253.3,3,1
- 62,-0.133586,253.3,3,1
- 63,-0.133586,253.3,3,1
- 64,-0.133586,253.3,3,1
- 65,-0.133586,253.3,3,1
- 66,-0.133586,253.3,3,1
- 67,-0.133586,253.3,3,1
- 68,-0.133586,253.3,3,1
- 69,-0.133586,253.3,3,1
- 70,-0.133586,253.3,3,1
- 71,-0.133586,253.3,3,1
- 72,-0.133586,253.3,3,1
- 73,-0.133586,253.3,3,1
- 74,-0.133586,253.3,3,1
- 75,-0.133586,253.3,3,1
- 76,-0.133586,253.3,3,1
- 77,-0.133586,253.3,3,1
- 78,-0.133586,253.3,3,1
- 79,-0.133586,253.3,3,1
- 80,-0.133586,253.3,3,1
- 81,-0.133586,253.3,3,1
- 82,-0.133586,253.3,3,1
- 83,-0.133586,253.3,3,1
- 84,-0.133586,253.3,3,1
- 85,-0.133586,253.3,3,1
- 86,-0.133586,253.3,3,1
- 87,-0.133586,253.3,3,1
- 88,-0.133586,253.3,3,1
- 89,-0.133586,253.3,3,1
- 90,-0.133586,253.3,3,1
- 91,-0.133586,253.3,3,1
- 92,-0.133586,253.3,3,1
- 93,-0.133586,253.3,3,1

94,-0.133586,253.3,3,1 95,-0.133586,253.3,3,1 96,-0.133586,253.3,3,1 97,-0.133586,253.3,3,1 98,-0.133586,253.3,3,1 99,-0.133586,253.3,3,1

Best tree: (b / a)

Generation: 37

Size: 3 Depth: 1

Fitness: -0.133586

(rand init + mutation):

generation,fitness,steps,size,depth

	0.4006.44	400.0	_	,
1	-0.429641	193.2	3	1
2	-0.429641	193.2	3	1
3	-0.429641	193.2	3	1
4	-0.429641	193.2	3	1
5	-0.429641	193.2	3	1
6	-0.310328	314.05	78	10
7	-0.310328	314.05	78	10
8	-0.27571	319.3	80	10
9	-0.225962	266.95	72	10
10	-0.196013	333.4	72	10
11	-0.196013	333.4	72	10
12	-0.193175	371.8	94	10
13	-0.0936968	176.7	80	10
14	-0.0936968	176.7	80	10
15	-0.0936968	176.7	80	10
16	-0.0792566	148.95	63	10

17	-0.0792566	148.95	63	10
18	-0.0792566	148.95	63	10
19	-0.0792566	148.95	63	10
20	-0.0792566	148.95	63	10
21	-0.0792566	148.95	63	10
22	-0.0792566	148.95	63	10
23	-0.0792566	148.95	63	10
24	-0.0792566	148.95	63	10
25	-0.0792566	148.95	63	10
26	-0.0792566	148.95	63	10
27	-0.0792566	148.95	63	10
28	-0.0754843	141.8	63	10
29	-0.0754843	141.8	63	10
30	-0.0749317	144.8	190	10
31	-0.0749317	144.8	190	10
32	-0.0749317	144.8	190	10
33	-0.0749317	144.8	190	10
34	-0.0619772	120.25	62	10
35	-0.0619772	120.25	62	10
36	-0.0619772	120.25	62	10
37	-0.0606127	117.3	62	10
38	-0.0472813	91	61	10
39	-0.0472813	91	61	10
40	-0.0472813	91	61	10
41	-0.0472813	91	61	10
42	-0.0472813	91	61	10
43	-0.0472813	91	61	10
44	-0.0472813	91	61	10
45	-0.0472813	91	61	10
46	-0.0472813	91	61	10
47	-0.0472813	91	61	10
48	-0.0472813	91	61	10
49	-0.0472813	91	61	10
50	-0.0472813	91	61	10
51	-0.0452555	87	61	10

52	-0.0452555	87	61	10
53	-0.0452555	87	61	10
54	-0.0452555	87	61	10
55	-0.0452555	87	61	10
56	-0.0452555	87	61	10
57	-0.0452555	87	61	10
58	-0.0452555	87	61	10
59	-0.0452555	87	61	10
60	-0.0452555	87	61	10
61	-0.0452555	87	61	10
62	-0.0452555	87	61	10
63	-0.0452555	87	61	10
64	-0.0452555	87	61	10
65	-0.0452555	87	61	10
66	-0.0452555	87	61	10
67	-0.0452555	87	61	10
68	-0.0452555	87	61	10
69	-0.0452555	87	61	10
70	-0.0452555	87	61	10
71	-0.0452555	87	61	10
72	-0.0452555	87	61	10
73	-0.0452555	87	61	10
74	-0.0452555	87	61	10
75	-0.0452555	87	61	10
76	-0.0452555	87	61	10
77	-0.0452555	87	61	10
78	-0.0452555	87	61	10
79	-0.0452555	87	61	10
80	-0.0452555	87	61	10
81	-0.0452555	87	61	10
82	-0.0452555	87	61	10
83	-0.0452555	87	61	10
84	-0.0452555	87	61	10
85	-0.0452555	87	61	10
86	-0.0452555	87	61	10

87	-0.0452555	87	61	10
88	-0.0452555	87	61	10
89	-0.0452555	87	61	10
90	-0.0452555	87	61	10
91	-0.0452555	87	61	10
92	-0.0452555	87	61	10
93	-0.0452555	87	61	10
94	-0.0452555	87	61	10
95	-0.0452555	87	61	10
96	-0.0452555	87	61	10
97	-0.0452555	87	61	10
98	-0.0452555	87	61	10
99	-0.0452555	87	61	10
100	-0.0452555	87	61	10

Best tree:

b))))))) + ((b > a) - ((((a - (a / a)) - a) * b) - b))) + (b - (a * a)))) - (a - a))

Generation: 50

Size: 61 Depth: 10

Fitness: -0.0452555

Part 2:

Output for part 2 when change the MAX_DEPTH be 10 and keep all others the same.

generation, fitness, steps, size, depth

1	-0.434326	193.8	3	1
2	-0.434326	193.8	3	1
3	-0.429641	193.2	3	1
4	-0.276466	475.1	74	10
5	-0.276466	475.1	74	10
6	-0.282344	478	72	10
7	-0.282344	478	72	10
8	-0.282344	478	72	10
9	-0.277344	477	56	10
10	-0.284855	500	55	10

11	-0.284855	500	55	10
12	-0.285944	500	55	10
13	-0.284855	500	55	10
14	-0.277344	477	56	10
15	-0.287612	475.75	51	10
16	-0.135575	257.35	95	10
17	-0.135575	257.35	95	10
18	-0.140998	267.95	93	10
19	-0.140998	267.95	93	10
20	-0.128275	242.65	87	10
21	-0.107547	201.85	93	10
22	-0.107547	201.85	93	10
23	-0.104516	196	62	10
24	-0.104516	196	62	10
25	-0.104516	196	62	10
26	-0.104516	196	62	10
27	-0.104516	196	62	10
28	-0.104516	196	62	10
29	-0.104516	196	62	10
30	-0.104516	196	62	10
31	-0.105853	198.3	62	10
32	-0.109931	206.05	58	10
33	-0.109931	206.05	58	10
34	-0.106619	199.6	56	10
35	-0.106619	199.6	56	10
36	-0.107679	201.6	43	10
37	-0.107679	201.6	43	10
38	-0.107679	201.6	43	10
39	-0.107679	201.6	43	10
40	-0.107679	201.6	43	10
41	-0.107679	201.6	43	10
42	-0.107679	201.6	43	10
43	-0.107679	201.6	43	10
44	-0.117541	218.7	41	10
45	-0.107679	201.6	43	10

46	-0.107679	201.6	43	10
47	-0.105932	197.95	56	10
48	-0.11382	213.65	40	10
49	-0.107679	201.6	43	10
50	-0.103374	193.25	38	10
51	-0.103374	193.25	38	10
52	-0.103374	193.25	38	10
53	-0.103374	193.25	38	10
54	-0.11128	208.7	33	10
55	-0.103374	193.25	38	10
56	-0.103374	193.25	38	10
57	-0.11128	208.7	33	10
58	-0.0996917	186.6	58	10
59	-0.11128	208.7	33	10
60	-0.107679	201.6	43	10
61	-0.11128	208.7	33	10
62	-0.103374	193.25	38	10
63	-0.0973127	182.1	41	10
64	-0.103374	193.25	38	10
65	-0.0996917	186.6	58	10
66	-0.11128	208.7	33	10
67	-0.103374	193.25	38	10
68	-0.11128	208.7	33	10
69	-0.11128	208.7	33	10
70	-0.106753	200.5	26	6
71	-0.106753	200.5	26	6
72	-0.106753	200.5	26	6
73	-0.106753	200.5	26	6
74	-0.106753	200.5	26	6
75	-0.106753	200.5	26	6
76	-0.106753	200.5	26	6
77	-0.106753	200.5	26	6
78	-0.106753	200.5	26	6
79	-0.1132	212.5	18	4
80	-0.0986276	186.75	32	10

6	26	200.5	-0.106753	81
10	42	135.25	-0.07262	82
10	42	135.25	-0.07262	83
10	42	135.25	-0.07262	84
10	42	135.25	-0.07262	85
10	42	135.25	-0.07262	86
5	18	136.35	-0.0733778	87
5	18	136.35	-0.0733778	88
5	18	136.35	-0.0733778	89
5	18	136.35	-0.0733778	90
5	18	136.35	-0.0733778	91
5	18	136.35	-0.0733778	92
5	18	136.35	-0.0733778	93
5	18	136.35	-0.0733778	94
5	18	136.35	-0.0733778	95
5	18	136.35	-0.0733778	96
5	18	136.35	-0.0733778	97
5	18	136.35	-0.0733778	98
5	18	136.35	-0.0733778	99
5	18	136.35	-0.0733778	100

Best tree:

((abs(b) > (abs(b) / abs(a))) - ((b * (b + (a + a))) * b))

Generation: 86

Size: 18 Depth: 5

Fitness: -0.0733778

Part 3:

Note: the mean value of the best fitness of part 1 is -0.0866 and for part 3 is -0.0638.

```
generation, fitness, steps, size, depth
```

- 1,-0.429641,193.2,3,1
- 2,-0.119453,225.05,126,10
- 3,-0.119453,225.05,126,10
- 4,-0.119453,225.05,126,10
- 5,-0.119453,225.05,126,10
- 6,-0.119453,225.05,126,10
- 7,-0.116371,218.95,126,10
- 8,-0.109205,204.6,122,10
- 9,-0.102615,191.45,125,10
- 10,-0.0915579,169.7,109,10
- 11,-0.0915579,169.7,109,10
- 12,-0.0915579,169.7,109,10
- 13,-0.0915579,169.7,109,10

- 14,-0.0915579,169.7,109,10
- 15,-0.0915579,169.7,109,10
- 16,-0.0915579,169.7,109,10
- 17,-0.0915579,169.7,109,10
- 18,-0.0884486,167.7,143,10
- 19,-0.0884486,167.7,143,10
- 20,-0.0884486,167.7,143,10
- 21,-0.0884486,167.7,143,10
- 22,-0.0884486,167.7,143,10
- 23,-0.0853477,161.65,145,10
- 24,-0.0853477,161.65,145,10
- 25,-0.0853477,161.65,145,10
- 26,-0.0853477,161.65,145,10
- 20, 0.0000477,101.00,140,10
- 27,-0.0842998,158.95,145,10
- 28,-0.0842998,158.95,145,10
- 29,-0.0842998,158.95,145,10
- 30,-0.0595669,114.5,147,10
- 31,-0.055045,105.85,141,10
- 32,-0.055045,105.85,141,10
- 33,-0.055045,105.85,141,10
- 34,-0.055045,105.85,141,10
- 35,-0.0507385,97.15,146,10
- 36,-0.0507385,97.15,146,10
- 37,-0.0507385,97.15,146,10
- 38,-0.0507385,97.15,146,10
- 39,-0.0507385,97.15,146,10
- 40,-0.0491118,94,116,10
- 41,-0.0491118,94,116,10
- 42,-0.0464037,89.3,140,10
- 43,-0.0464037,89.3,140,10
- 44,-0.0464037,89.3,140,10
- 45,-0.0464037,89.3,140,10
- 46,-0.0464037,89.3,140,10
- 47,-0.0464037,89.3,140,10
- 48,-0.046392,88.4,161,10
- 49,-0.046392,88.4,161,10
- 50,-0.0456123,87.15,140,10
- 51,-0.0456123,87.15,140,10
- 52,-0.0456123,87.15,140,10
- 53,-0.0456123,87.15,140,10

- 54,-0.0456123,87.15,140,10
- 55,-0.0456123,87.15,140,10
- 56,-0.0442817,84.65,116,10
- 57,-0.0442817,84.65,118,10
- 58,-0.0442817,84.65,118,10
- 59,-0.0442817,84.65,118,10
- 60,-0.0442817,84.65,118,10
- 61,-0.0442817,84.65,118,10
- 62,-0.0442817,84.65,118,10
- 63,-0.0442817,84.65,118,10
- 64,-0.0442817,84.65,118,10
- 65,-0.0442817,84.65,118,10
- 66,-0.0442817,84.65,118,10
- 67,-0.0442817,84.65,118,10
- 68,-0.0442817,84.65,118,10
- 69,-0.0442817,84.65,118,10
- 70,-0.0442817,84.65,118,10
- 71,-0.0442817,84.65,118,10
- 72,-0.0442817,84.65,118,10
- 72,-0.0442017,04.03,110,10
- 73,-0.0442817,84.65,118,10
- 74,-0.0442817,84.65,118,10
- 75,-0.0442817,84.65,118,10
- 76,-0.0442817,84.65,118,10
- 77,-0.0442817,84.65,118,10
- 78,-0.0442817,84.65,118,10
- 79,-0.0442817,84.65,118,10
- 80,-0.0442817,84.65,118,10
- 81,-0.0442817,84.65,118,10
- 01, 0.0442017,04.00,110,10
- 82,-0.0442817,84.65,118,10
- 83,-0.0442817,84.65,118,10 84,-0.0442817,84.65,118,10
- 85,-0.0442817,84.65,118,10
- 86,-0.0442817,84.65,118,10
- 87,-0.0442817,84.65,118,10
- 88,-0.0442817,84.65,118,10
- 89,-0.0442817,84.65,118,10
- 90,-0.0442817,84.65,118,10
- 91,-0.0442817,84.65,118,10
- 92,-0.0442817,84.65,118,10
- 93,-0.0442817,84.65,118,10

94,-0.0442817,84.65,118,10 95,-0.0442817,84.65,118,10 96,-0.0442817,84.65,118,10 97,-0.0410304,77.6,135,10 98,-0.0410304,77.6,135,10 99,-0.0410304,77.6,135,10 100,-0.0410304,77.6,135,10

Best tree:

 $(b > (((abs((a + (abs(a) / b))) * ((((abs(abs(a)) > b) > ((b > (a / a)) - (b / b))) / a) > a)) + b) \\ > (((((((a + (a / a)) * ((a * b) / b)) - ((a - b) > ((b + b) > b))) * ((a * abs(abs(a))) + ((abs(b) * (a / b)) > b))) + ((a / ((a > b) > ((b / a) * (b * b)))) / a)) * a) / (((abs((a - a)) > ((abs(a) + ((a - a) * (a - b))) * (a + ((b * a) - abs(a))))) + abs(abs((abs((b / a)) / abs(a))))) + ((b + ((b > a) + ((a + (a / a)) + ((abs(a) +$

Generation: 96

Size: 135 Depth: 10

Fitness: -0.0410304

Part 4:

generation, fitness, steps, size, depth

- 1,-0.582481,500,3,1
- 2,-0.582481,500,3,1
- 3,-0.582481,500,3,1
- 4,-0.558863,500,18,10
- 5,-0.558863,500,18,10
- 6,-0.501942,475.3,18,6
- 7,-0.501942,475.3,18,6
- 8,-0.501942,475.3,18,6
- 9,-0.501942,475.3,18,6
- 10,-0.501942,475.3,25,10
- 11,-0.501942,475.3,25,10
- 12,-0.501942,475.3,25,10
- 13,-0.501942,475.3,25,10
- 14,-0.501942,475.3,25,10
- 15,-0.501942,475.3,25,10

- 16,-0.501942,475.3,25,10
- 17,-0.492392,500,5,2
- 18,-0.492392,500,5,3
- 19,-0.492392,500,5,3
- 20,-0.492392,500,5,3
- 21,-0.475763,500,22,10
- 22,-0.475763,500,22,10
- 23,-0.475763,500,22,10
- 24,-0.475763,500,22,10
- 25,-0.475763,500,22,10
- 26,-0.475763,500,22,10
- 27,-0.475763,500,22,10
- 28,-0.475386,500,33,10
- 20, 0.47 5500,500,55,10
- 29,-0.475386,500,33,10
- 30,-0.475386,500,33,10
- 31,-0.475386,500,33,10
- 32,-0.475386,500,33,10
- 33,-0.475386,500,33,10
- 34,-0.475386,500,33,10
- 35,-0.475386,500,33,10
- 36,-0.475386,500,33,10
- 37,-0.475386,500,33,10
- 38,-0.475386,500,33,10
- -------
- 39,-0.475386,500,33,10
- 40,-0.475386,500,33,10
- 41,-0.475386,500,33,10
- 42,-0.475386,500,33,10
- 43,-0.475386,500,33,10
- 44,-0.475386,500,33,10
- 45,-0.475386,500,33,10
- 46,-0.475386,500,33,10
- 47,-0.475386,500,33,10
- 48,-0.475386,500,33,10
- 49,-0.475386,500,33,10
- 50,-0.463425,500,48,10
- 51,-0.463425,500,48,10
- 52,-0.463425,500,48,10
- 53,-0.463425,500,48,10
- 54,-0.463425,500,48,10
- 55,-0.463425,500,48,10

- 56,-0.463425,500,48,10
- 57,-0.452719,484.4,53,10
- 58,-0.452719,484.4,53,10
- 59,-0.452719,484.4,53,10
- 60,-0.452719,484.4,53,10
- 61,-0.452719,484.4,53,10
- 62,-0.452719,484.4,53,10
- 63,-0.452719,484.4,53,10
- 64,-0.452719,484.4,53,10
- 65,-0.452719,484.4,53,10
- 66,-0.452719,484.4,53,10
- 67,-0.452719,484.4,53,10
- 68,-0.452719,484.4,53,10
- 69,-0.452719,484.4,53,10
- 70,-0.452719,484.4,53,10
- 70,-0.4327 19,404.4,33,10
- 71,-0.452719,484.4,53,10
- 72,-0.452719,484.4,53,10
- 73,-0.452719,484.4,53,10
- 74,-0.452719,484.4,53,10
- 75,-0.452719,484.4,53,10
- 76,-0.452719,484.4,53,10
- 77,-0.452719,484.4,53,10
- 78,-0.452719,484.4,53,10
- 79,-0.452719,484.4,53,10
- 80,-0.452719,484.4,53,10
- 81,-0.452719,484.4,53,10
- 82,-0.452719,484.4,53,10
- 83,-0.452719,484.4,53,10
- 84,-0.332764,486.7,46,10
- 85,-0.332764,486.7,46,10
- 86,-0.332764,486.7,46,10
- 87,-0.332764,486.7,46,10
- 88,-0.332764,486.7,46,10
- 89,-0.332764,486.7,46,10
- 90,-0.332764,486.7,46,10
- 30, 0.332704,400.7,40,10
- 91,-0.332764,486.7,46,10
- 92,-0.332764,486.7,46,10
- 93,-0.326387,483.2,37,10
- 94,-0.316428,444.15,39,9
- 95,-0.316428,444.15,39,9

96,-0.316428,444.15,39,9 97,-0.316428,444.15,39,9 98,-0.316428,444.15,39,9 99,-0.312929,494.8,46,10 100,-0.312929,494.8,46,10

Best tree:

(b > (((((((a / (a > a)) - (read > (b - (a - b)))) - a) - a) - a) + read) / ((b * (a > ((a > ((abs(a) > (b - b)) > b)) * write(abs((b + a)))))) > b)))

Generation: 98

Size: 46 Depth: 10

Fitness: -0.312929