1. Consider two inverters on a chip connected to the same local power supply, V_{DD} . Perhaps due to a poor layout, the local power supply has an inductive connection to the external source that powers the chip, V_S . Use the SR model for the MOSFETs in this problem, ignoring C_{GS} , and assume that both FETs have the same $R_{ON} = 0.1R$. Part (b) is on the next page.

- a) Input *B* is held at 0V. Input *A* has 0V applied to it initially, and at $t = t_0$, a step of $+V_0$ is applied to input *A*. Assume that $V_0 > V_T$ and that $V_S > V_T$.
 - i. Draw the equivalent circuit for $t > t_0$ and write down the initial current through the inductor (just after $t = t_0$).
 - ii. Derive an expression for the voltages $v_{DD}(t)$ and $v_{C}(t)$ (the voltage at node C = the output of the second inverter). Plot $v_{DD}(t)$ and $v_{C}(t)$.

- b) Input B is now held at 5V. Input A has V_0 applied to it initially, and at $t = t_0$, a step of $-V_0$ is applied to input A so that its voltage goes to 0V. Again assume that $V_0 > V_T$ and that $V_S > V_T$.
 - i. Draw the equivalent circuit for $t > t_0$ and write down the initial current through the inductor (at $t = t_0$).
 - ii. Derive an expression for the voltages $v_{DD}(t)$ and $v_{C}(t)$ (the voltage at node C = the output of the second inverter). Plot $v_{DD}(t)$ and $v_{C}(t)$.

2. Two different integrators to measure capacitance... Consider the two circuits shown below with a step voltage input applied at t = 0. Assume that V_{step} is small enough that the op-amp stays in the active region, avoiding saturation.

- a) Find $v_O(t)$ for both circuits. The general form of the solution should be the same for both circuits. Note that while the op-amp circuit is different from the differentiator you used in lab, don't be scared, the analysis is pretty straightforward. (*Hint:* for the op-amp circuit, don't make the simplifying assumption that $v^+ \approx v^-$, instead use $v_O = A(v^+ v^-)$ and draw the equivalent circuit model).
- b) Compare the effective time constants for the circuits based on your answer to (a).
- c) Assume that we measure v_0 at a time, t_0 , that is much less than RC. Remember from class that this means we can simplify the expressions from part (a) using the expansion: $e^{-x} = 1 x + \frac{x^2}{2!}$ (neglect the x^2 term, why is this reasonable?) Compare the magnitude of the output voltages of the two circuits at $t = t_0$.
- d) Based on your answers to (b) and (c), why would the op-amp integrator be better for measuring capacitance?

3) Consider the common-source amplifier driving a capacitive load as shown below. Assume that the circuit is properly biased such that the MOSFET operates in saturation. A voltage pulse is applied at the input with amplitude v_{in} that is small enough that the circuit operates in the small-signal regime.

$$R_D = 2k\Omega$$
, $V_T = 1V$, $K = 2mA/V^2$, $V_{IN} = 2V$ and $V_{DD} = 5V$, $C = 0.5 \times 10^{-9}$ F, $v_{in} = 25 \text{mV}$

- a) Find the DC voltage at V_{OUT} and the DC drain current, I_D .
- b) Draw the small-signal model and find an expression for $v_{out}(t)$.
- c) If T = 5μ s, draw the corresponding vout(t) waveform (note this is the total variable = DC + small signal).
- d) If T = 1 μ s, what is the value of vout(T)?
- e) If a square wave is now applied to the input with amplitude $2v_{in}$ (still small enough to keep the circuit in small-signal operation), sketch the corresponding waveforms of $v_{OUT}(t)$ for square-wave frequencies of 100KHz, 500kHz, and 50MHz.

4) Assume the op-amps are all ideal in the circuit shown below.

$$R_1=20\mathrm{k}\Omega,\,R_f=50\mathrm{k}\Omega,\,R_2=R_3=10\mathrm{k}\Omega,\,C=2\mu\mathrm{F}$$

- a) Find the step response, $v_0(t)$, for t > 0. Sketch $v_0(t)$ with clear labels.
- b) After the circuit has been operating for 100ms, all power is completely cut off to the circuit: the op-amp power supplies go to zero volts as does v_i . Sketch $v_o(t)$ for t > 100ms with clear labels. Assume all op-amp terminals behave as open circuits.

5) Consider the circuit shown below. Perhaps due to a poor layout, the local power supply, vcc, for a common-emitter amplifier has an inductive connection to the external source that powers the chip, V_{SUPPLY} .

- (a) If the small-signal current ramp shown above is applied to the input of the circuit (a), find the response of the local supply $v_{cc}(t)$ and $v_o(t)$.
- (b) If $\beta = 100$, $R = 1 \text{k}\Omega$, $\Delta i_b = 10 \mu\text{A}$, $L = 1 \mu\text{H}$, and $T = 10^{-9} \text{s}$, sketch and clearly label the corresponding small-signal waveforms: $v_{cc}(t)$ and $v_o(t)$. Repeat for L = 0.
- (c) Now consider the case where another common-emitter amplifier shares the local power supply connection as shown in (b). Assuming that no small-signal input is present for the second amplifier Q2 (but that it is properly biased in Forward Active operation), sketch the waveform for $v_{02}(t)$ when the ramp input is applied to the original first amplifier as in parts (a) and (b). If L = 0 what would the $v_{02}(t)$ waveform look like?
- (d) Concisely explain the effect of the inductive power connection.