Open Challenge for Correcting Errors of Speech Recognition Systems

 $\begin{array}{ccc} \mathsf{Marek} \ \mathsf{Kubis^1} & \mathsf{Zygmunt} \ \mathsf{Vetulani^1} & \mathsf{Mikołaj} \ \mathsf{Wypych^2} \\ & \mathsf{Tomasz} \ \mathsf{Ziętkiewicz^{1,2}} \end{array}$

¹Adam Mickiewicz University

²Samsung Poland R&D Institute

19 maja 2019

Outline

- Goal
- 2 Dataset

3 Evaluation

Goal

Investigate the methods of improving the performance of speech recognition systems on the basis of previously made errors.

Goal

Develop a method that improves the result of speech recognition process on the basis of the (erroneous) output of an existing ASR system and the correct human-made transcription of voice recordings without access to audio data.

ASR error correction

Error correction model training

In order to make the challenge approachable by participants from outside the speech recognition community we provide the dataset that consists solely of:

- Hypotheses textual outputs of the automatic speech recognition system
- References transcriptions of sentences being read to the automatic speech recognition system

Dataset

- 9142 sentences from Polish Wikinews
- Recorded in a studio
- Transcribed by human annotators
- Recognized by an Automatic Speech Recognition system
- 8142:1000 train/test split

Dataset normalization

- all words are UPPERCASED
- punctuation marks (except for hyphens) are removed
- numbers and special characters are replaced by their spoken forms

Datasets statistics

	Train set	Test set
Number of sentences	8142	1000
Average WER	3.94	4.01
Sentence Recognition Rate	0.74	0.75
Average utterance length (words)	15.40	15.10
Minimum utterance length (words)	2	3
Maximum utterance length (words)	100	48

Sentence length histogram

WER histogram

Example data

Example line from tsv file containing training dataset:

id	train-1
hypothesis	DWUDZIESTEGO CZWARTEGO KWIETNIA BIEŻĄCEGO ROKU ROZMAWIALI O WIKIPEDII IN-
	TERNECIE WSPÓŁPRACY KLASYFIKOWANIU WIEDZY KSIĄŻKACH I WŁASNOŚCI LEKTURA
	LNEJ
reference	DWUDZIESTEGO CZWARTEGO KWIETNIA BIEŻĄCEGO ROKU ROZMAWIALI O WIKIPEDII IN-
	TERNECIE WSPÓŁPRACY KLASYFIKOWANIU WIEDZY KSIĄŻKACH I WŁASNOŚCI INTELEK-
	TUALNEJ
source	https://pl.wikinews.org/w/index.php?curid=27343&actionaction=history
id	train-2
hypothesis	EUROPA POWINNA JĄ TEŻ ŻE SESJE PE W STRASBURGU SĄ DLA NICH UTRUDNIENIEM BO
	KOMISJA EUROPEJSKA I RADA UE Z KTÓRYMI PE CIĄGLE WSPÓŁPRACUJE MAJĄ SWOJE
	STAŁE SIEDZIBY W BRUKSELI
reference	EUROPOSŁOWIE PRZYPOMINAJĄ TEŻ ŻE SESJE PE W STRASBURGU SĄ DLA NICH UTRUD-
	NIENIEM BO KOMISJA EUROPEJSKA I RADA UE Z KTÓRYMI PE CIĄGLE WSPÓŁPRACUJE
	MAJĄ SWOJE STAŁE SIEDZIBY W BRUKSELI
source	https://pl.wikinews.org/w/index.php?curid=21290&actionaction=history
-	· · · · · · · · · · · · · · · · · · ·

Evaluation

- Evaluation performed on online competition platform Gonito
- http://gonito.net/challenge/asr-corrections
- Submissions made with git commits
- Results instantly visible to everyone after submission
- Multiple submissions possible

Evaluation metrics

- Word Error Rate
- Sentence Recognition Rate
- CharMatch

Word Error Rate

WER - Word Error Rate of hypothesis corrected by the proposed system, averaged over all tests sentences.

$$WER = \frac{S + D + I}{N = H + S + D}$$

where S = number of substitutions, D = number of deletions, I = number of insertions, H - number of hits, N - length of reference sentence.

Sentence Recognition Rate

SRR - Sentence Recognition Rate - sentence level accuracy of hypothesis corrected by the proposed system. SRR is computed as ratio of the number of sentences with WER = 0.0 (correctly recognized sentences) to the number of all sentences in the corpus.

CharMatch

Introduced in [JGO17].

 $F_0.5$ -measure defined in as follows:

$$F_{0.5} = (1 + 0.5^{2}) \times \frac{P \times R}{0.5^{2}P + R}$$

Where: P is precision and R is recall:

$$P = \frac{\sum_{i} T_{i}}{\sum_{i} d_{L}(h_{i}, s_{i})}, R = \frac{\sum_{i} T_{i}}{\sum_{i} d_{L}(h_{i}, r_{i})}$$

Where: r_i - i-th reference utterance, h_i - i-th ASR hypothesis, s_i - i-th system output, $d_L(a,b)$ - Levenshtein distance between sequences a and b, T_i - number of correct changes performed by the system

CharMatch

 T_i - number of correct changes performed by the system, calculated as:

$$T_i = \frac{d_L(h_i, r_i) + d_L(h_i, s_i) - d_L(s_i, r_i)}{2}$$

Where: r_i - i-th reference utterance, h_i - i-th ASR hypothesis, s_i - i-th system output, $d_L(a,b)$ - Levenshtein distance between sequences a and b, T_i - number of correct changes performed by the system

CharMatch

- penalizes the system for introducing new errors
- Prefers system that does not change anything over system that corrects one error and introduces another

Thank you

Thank you for your attention!

References I

Krzysztof Jassem, Filip Graliński, and Tomasz Obrębski, *Pros and cons of normalizing text with thrax*, Proceedings of the 8th Language & Technology Conference (Poznań, Poland) (Zygmunt Vetulani and Patrick Paroubek, eds.), Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu, 2017, pp. 230–235.