Kacper Garus, 29.10.2023, ćwiczenie nr.1 Implementacja podstawowych predykatów geometrycznych

Dane techniczne:

Język - python, translator - Visual Studio Code, procesor - Intel(R) Core(TM) i5-10400F CPU @ 2.90GHz, system operacyjny - Windows 10 Home 64bit

Realizacja ćwiczenia:

Na początku stworzyłem funkcje do generowania losowych punktów na płaszczyźnie, dokładnie: funkcja która generuje n losowych punktów z zakresu, funkcja która generuje n losowych punktów leżących na okręgu o środku w O=(x,y) i promieniu R oraz funkcja generująca 1 losowych punktów leżących na prostej przechodzącej przez dwa dane punkty. Do wszystkich funkcji generujących użyłem funkcji uniform z biblioteki random. Następnie stworzyłem 4 funkcje do obliczania wyznaczników macierzy, po dwie funkcje, jedna zaimplementowana samodzielnie, druga z użyciem funkcji bibliotecznych, dla macierzy 2x2 i 3x3, funkcja biblioteczna użyta to np.lilnalg.det(). Następnie zaimplementowana została funkcja która określa po której stronie od prostej znajduje się dany punkt, parametr eps określa jak blisko zera musi być wyznacznik aby określić punkt jako leżący na prostej. Posiadając wszystkie narzędzia zacząłem dla wygenerowanych zbiorów sprawdzać rozkład ich punktów względem prostej ab (a = [-1.0, 0.0], b = [1.0, 0.1]). Aby sprawdzić czy są jakieś różnice w wynikach, jeśli używam innych funkcji do obliczania macierzy, dla tego samego zbioru punktów przy paru różnych wartościach eps, sprawdziłem czy są jakieś różnice w wynikach. Dla każdego punktu dla różnych wartości eps(takich przy których można było coś zaobserwować) sprawdzałem ich rozkłady względem prostej ab, analizę powtórzyłem dla tych samych zbiorów ale o mniejszej precyzji(float64 na float32)

Wyniki i analiza:

10⁵ punktów generowanych z zakresu [-1000,1000]

		eps	2x2	2x2 lib	3x3	3x3 lib
liczba punktów	lewo		50112	50112	50112	50112
	środek	0	0	0	0	0
	prawo		49888	49888	49888	49888
liczba punktów	lewo		50112	50112	50112	50112
	środek	10^(-4)	0	0	0	0
	prawo		49888	49888	49888	49888
liczba punktów	lewo		50108	50108	50108	50108
	środek	10^(-1)	6	6	6	6
	prawo		49886	49886	49886	49886
	lewo		50088	50088	50088	50088
liczba punktów	środek	10^(0)	57	57	57	57
	prawo		49855	49855	49855	49855

Jak można zauważyć wszystkie funkcje do liczenia macierzy dają nam takie same wyniki, jedyne różnice jakie są pomiędzy nimi to czas wykonywania polecenia, tutaj najlepiej sprawdza się funkcja mat 2x2.

10^5 punktów generowanych z zakresu [-10^14,10^14]

liczba punktów	
49739	lewo
0	środek
50261	prawo
49739	lewo
0	środek
50261	prawo
49739	lewo
0	środek
50261	prawo
49737	lewo
5	środek
50258	prawo
	49739 0 50261 49739 0 50261 49739 0 50261 49737

10^5 punktów leżących na okręgu o środku O=(0,0) i promieniu R=100

200 punktów leżących na prostej ab, dla x z zakresu [-1000,1000]

eps	liczba punktów		
	24	lewo	
0	145	środek	
	31	prawo	
	23	lewo	
10^(-13)	151	środek	
	26	prawo	
	18	lewo	
10^(-12)	161	środek	
	21	prawo	
	0	lewo	
10^(-11)	200	środek	
	0	prawo	

Znaczne różnice przy mniejszej precyzji obliczeń zaobserwowano tylko dla punktów generowanych na prostej:

eps	liczba punktów	liczba punktów (mniejsza precyzja)	
0	24	95	lewo
	145	25	środek
	31	80	prawo
10^(-12)	18	95	lewo
	161	27	środek
	21	80	prawo
10^(-11)	0	94	lewo
	200	29	środek
	0	77	prawo
10^(-6)	0	59	lewo
	200	92	środek
	0	49	prawo

Wizualizacja punktów z precyzją float32 i eps=0:

Wizualizacja punktów z precyzją float64 i eps=0:

Wnioski:

Na podstawie wyników można zaobserwować, że rozkład punktów względem prostej ab w zależności od eps zmienia się w zależności od zbiorów punktów i precyzji obliczeń, dla dużych zakresów zbiorów np. [-10^14,10^14] różnice w rozkładzie względem zmiennej eps pojawiają dopiero przy eps = 10^5, dla mniejszych zakresów zbiorów zmienna wyniki zmieniają się już dla eps = 10^(-13), zmiana precyzji obliczeń z float64 na float32 ma większy wpływ tylko na analizę rozkładu punktów generowanych na prostej.