Quiz #6 (CSE 400.001)

Thursday, May 31, 2001

Name:		E-mail:
Dept:		ID No:
		*
proble	m:	Apply the classical Runge-Kutta method with $h=0.1$ to the initial value $y'=2-2y, y(0)=0.$ y_{n+1} in terms of x_n and y_n .
f(x,y)	=	2-2y
k_1	==	$0.1 * [2 - 2y_n] = 0.2 - 0.2y_n$
k_2	=	$0.1 * [2 - 2(y_n + 0.1 - 0.1y_n)]$ $0.2 - 0.2(0.9y_n + 0.1)$ $0.18 - 0.18y_n$
k_3	=	$0.1 * [2 - 2(y_n + 0.09 - 0.09y_n)]$ $0.2 - 0.2(0.91y_n + 0.09)$ $0.182 - 0.182y_n$
k_4	=	$0.1 * [2 - 2(y_n + 0.182 - 0.182y_n)]$ $0.2 - 0.2(0.818y_n + 0.182)$ $0.1636 - 0.1636y_n$
y_{n+1}	\approx	$y_n + \frac{1}{6} [0.2 + 0.36 + 0.364 + 0.1636 - 0.2y_n - 0.36y_n - 0.364y_n - 0.1636y_n]$ $y_n + [0.181267 - 0.181267y_n]$ $0.818733y_n + 0.181267$

20013 Midterm I

5. (20 points) Table 1 compares the results of applying the Euler, improved Euler, and Runge-Kutta methods to the following initial value problem with h=0.05:

$$y'=2xy, \quad y(1)=1.$$

Fill in the three blanks (A), (B), (C); and show your work for partial credit.

Faler Method:
$$(+4)$$

$$y_{n+1} = y_n + \Re f(x_n, y_n)$$

$$= y_n + 0.05 * 2 * x_n * y_n$$

B Improved Zuler Method

$$y_{n+1} = y_n + \frac{1}{2} \left[k_1 + k_2 \right]$$

lable

	Comparison of numerical methods with $n = 0.05$					
<i>X</i> _n	Euler	Improved Euler	Runge– Kutta	True value		
1.00	1.0000	1.0000	1.0000	1.0000		
1.05	1.1000	1.1077	1.1079	1.1079		
1.10	1.2155	1.2332	1.2337	1.2337		
1.15	1.3492	1.3798	1.3806	1.3806		
1.20	1.5044	1.5514	1.5527	1.5527		
1.25	1.6849	1.7531	1.7551	1.7551		
1.30	1.8955	1.9909	1.9937	1.9937		
1.35	2.1419	2.2721	2.2762	2.2762		
1.40	2.4311	2.6060	2.6117	2.6117		
1.45	2.7714	3.0038	3.0117	3.0117		
1.50	3.1733	3.4795	3.4903	3.4904		

2002 Midterm II

5. (15 points) Table 1 shows the result of applying the Improved Euler method to the following initial value problem with h=0.25:

$$y' = 1 + y/x$$
, for $1 \le x \le 2$, $y(1) = 2$.

x_i	y_i
1.25	2.7750000
1.50	3.60083
1.75	4.4688294
2.00	5.3728586

Table 1: Improved Euler Method

$$x_{1}=1,25, y_{1}=2.775$$

$$f_{1}=0.25, f_{2}(x_{1},y_{1})$$

$$f_{2}=0.25 * f_{2}(x_{1},y_{1})$$

$$f_{3}=0.25 * f_{3}(x_{2},y_{1}+k_{1})$$

$$f_{4}=0.25 * f_{4}(x_{2},y_{1}+k_{1})$$

$$f_{5}=0.25 * f_{5}(x_{2},y_{1}+k_{1})$$

$$f_{6}=0.25 * f_{6}(x_{2},y_{1}+k_{1})$$

$$f_{7}=0.25 * f_{7}(x_{2},y_{1}+k_{1})$$

$$f_{7}=0.25 * f_{7}(x_{2},y_{1}+$$

6. (20 points) Table 2 shows the result of applying the Runge-Kutta method to the following initial value problem with h = 0.2:

$$y' = y - x^2 + 1$$
, for $0 \le x \le 1$, $y(0) = 0.5$.

x_i	y_i
0.2	0.8292933
0.4	1,21408
0.6	1.6489220
0.8	2.1272027
1.0	2.6408227

Table 2: Runge-Kutta Method

$$\chi_{1} = 0.2, \quad y_{1} = 0.8292933$$

$$R = 0.2, \quad f(x,y) = 1-x^{2}+y$$

$$k_{1} = 0.2 * f(x_{1},y_{1}) = 0.2 * (1-0.2^{2}+0.8292933)$$

$$k_{2} = 0.2 * f(x_{1}+0.1, y_{1}+0.5k_{1})$$

$$= 0.2 * (1-0.3^{2}+0.8292933+0.178930)$$

$$= 0.383645$$

$$k_{3} = 0.2 * f(0.3, y_{1}+0.5k_{2})$$

$$= 0.2 * (1-0.3^{2}+0.8292933+0.191823)$$

$$= 0.386223$$

$$k_{4} = 0.2 * f(x_{2}, y_{1}+k_{3}) = \frac{6.2 * (1-0.4^{2}+0.8292933+0.3862223)}{(1-0.4^{2}+0.8292933+0.3862223)}$$

$$k_{4} = 0.2 * (1-0.4^{2}+0.8292933+0.3862223)$$

$$k_{4} = 0.2 * (1-0.4^{2}+0.8292933+0.3862223)$$

$$k_{5} = 0.411103$$

$$k_{1} = 0.2 * (1-0.4^{2}+0.8292933+0.3862223)$$

$$k_{2} = y_{1} + \frac{1}{6}(k_{1}+2k_{2}+2k_{3}+k_{2}4) = 1.21408$$

2003 CZ Miderterm I

3. (15 points) Table 1 shows the result of applying the Runge-Kutta method to the following initial value problem with h=0.2:

$$y' = -(y+1)(y+3)$$
, for $0 \le x \le 1$, $y(0) = -2$.

x_i	y_i
0.2	-1.80263
0.4	
0.6	-1.46296
0.8	-1.33598
1.0	-1.23843

Table 1: Runge-Kutta Method

$$x_1 = 0.2$$
, $y_1 = -1.80263$
 $f_1 = 0.2$, $f(x,y) = -(y+1)1y+3$)

 $f_2 = 0.2 \times f(x_1, y_1) = 0.19221$
 $f_3 = 0.2 \times f(x_1+0.1, y_1+0.5f_2) = 0.18277$
 $f_4 = 0.2 \times f(x_1+0.1, y_1+0.5f_2) = 0.18332$
 $f_4 = 0.2 \times f(x_2, y_1+k_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1+k_3) = 0.17101$

20049 MidtermI

4. (10 points) Table 1 shows the result of applying the Improved Euler method to the following initial value problem with h=0.2:

$$y' = -(y+1)(y+3)$$
, for $0 \le x \le 1$, $y(0) = -2$.

x_i	y_i
0.2	-1.80400
0.4	-1,62292
0.6	-1.46724
0.8	-1.34132
1.0	-1.24429

Table 1: Improved Euler Method

$$x_1 = 0.2$$
, $y_1 = -1.60400$
 $f_1 = 0.2$, $f(x_1y_1) = -(y+1)(y+3)$ $+2$
 $f_2 = 0.2 * f(x_1, y_1) = 0.192317$ $+2$
 $f_3 = 0.2 * f(x_1+0.2, y_1+k_1) = 0.169f42$ $+3$
 $f_4 = 0.2 * f(x_1+k_2) = -1.62292$ $+2$