## Bildverarbeitung mit OpenCL

Johannes Hackel und Falco Prescher

23. Mai 2013

# Bildverarbeitung mit OpenCL

- OpenCL
  - Allgemeines zu OpenCL
  - Kernelverteilung unter Devices und Command Queue
  - Workgroups und Compute Units und Device Model
  - Events in OpenCL
- Vergleich von OpenCL mit CUDA
  - Unterstütze Plattformen
  - Performance
  - API/Modell
  - Entwicklungsaufwand
  - Fazit.
- Bildverarbeitung
  - Allgemeines zu Bildverarbeitung mit OpenCL
  - Kantenerkennung in Bildern
  - Kantenerkennung in Bildern mit Open Johannes Hackel und Falco Prescher Bildverarbeitung mit OpenCL

Allgemeines zu OpenCL

Kernelverteilung unter Devices und Command Queue Norkgroups und Compute Units und Device Model Events in OpenCL

# Allgemeines zu OpenCL

Test



# Kernelverteilung unter Devices



<sup>&</sup>lt;sup>1</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 8

## Command Queue



<sup>&</sup>lt;sup>2</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 39

# Workgroups und Compute Units



<sup>&</sup>lt;sup>3</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 66

## Device Model



<sup>4</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 87

## Wait Lists



<sup>&</sup>lt;sup>5</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 146

## Wait Command

# Command

queue



Host

<sup>&</sup>lt;sup>6</sup>Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012, S. 150

Unterstütze Plattformen Performance API/Modell Entwicklungsaufwand Fazit

## Unterstütze Plattformen

#### CUDA:

NVIDIA-GPUs

### OpenCL:

- alle Recheneinheiten die OpenCL unterstützt
- CPUs, GPUs

Unterstütze Plattforme Performance API/Modell Entwicklungsaufwand Fazit

## Performance

#### CUDA:

- Hardware und Technologie vom gleichen Hersteller
- gute Implementation
- gute Leistung

#### OpenCL:

- von Plattform abhängig
- Faktoren: Leistung, Implementation

Unterstütze Plattformen Performance API/Modell Entwicklungsaufwand Fazit



Unterstütze Plattformer Performance API/Modell Entwicklungsaufwand Fazit

## API/Modell

- Modelle ähneln sich
- Begriffsunterschiede
- weitere Unterschiede in der Syntax

Unterstütze Plattforme Performance API/Modell Entwicklungsaufwand Fazit

| Erklärung          | CUDA                               | OpenCL                         | Eigenschaft                                                                                              |
|--------------------|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|
| Gerät, Grafikkarte | CUDA GPU                           | Device                         |                                                                                                          |
| Funtkionstypen     | _device_<br>_global_<br>_host_     | _kernel<br>_kernel<br>_kernel  | keine Differenzierung bei OpenCL<br>keine Differenzierung bei OpenCL<br>keine Differenzierung bei OpenCL |
| Variablentypen     | _device_<br>_constant_<br>_shared_ | _global<br>_local<br>_constant | im globalen Speicher<br>im konstanten Speicher<br>im gemeinsamen Speicher                                |
| Ausführung         | Thread<br>Block                    | Work-Item                      | kleinste Zerlegegung                                                                                     |
|                    | Grid                               | Work-Group                     | Arbeitsgruppe                                                                                            |

<sup>8</sup>Quelle: [2]

Unterstütze Plattformei Performance API/Modell Entwicklungsaufwand Fazit

# API abstraction levels compared

#### Computation kernel programming





#### Host programming



9

9 Quelle: [3]

Unterstütze Plattforme Performance API/Modell Entwicklungsaufwand Fazit

# Entwicklungsaufwand

#### OpenCL:

- API mit geringer Abstraktion
- verschiedene Debugging-Möglichkeiten je Plattform
- guter Debugger(cross-plattform): gDEBugger
- verschieden Geräte: unterschiedliche Implementation

#### CUDA:

- geringe und hohe Abstraktion
- viele Bibliotheken
- guter Debugger durch CUDA-SDK



Unterstütze Plattforme Performance API/Modell Entwicklungsaufwand Fazit

## **Fazit**

- $\rightarrow$  für High-Performance-Cluster mit gleicher Hardware und speziell angefertigter Software
- ⇒ CUDA zu bevorzugen
- ightarrow im Consumerbereich bei Verwendung von verschiedener Hardware
- ⇒ OpenCL bevorzugt

# Allgemeines zu Bildverarbeitung mit OpenCL

- spezielle Datentypen (image2d\_t, image3d\_t) und Funktionen im OpenCL C
- Image2D und Image3D Klassen in der C++ API
- Verschiedene Datentypen für Channels
- Verschiedene Reihenfolge der Channels
- maximale Größe eines Images je Plattform festgelegt

# Kantenerkennung in Bildern

#### Ablauf:

- Graubild erstellen und entrauschen
- Anwendung des Sobeloperators je Pixel in X-Richtung und Y-Richtung mit den Nachbarwerten
- Sombination beider Ergebnisse ergibt Kantenwert des Pixels

# Kantenerkennung in Bildern mit OpenCL

Verwendeter einfacher Algorithmus:

- Differenzen der gegenüberliegenden Pixel
- der höchste Wert wird der Kantenwert des Pixels

## Quellen

- Scarpino Matthew: OpenCL In Action, Manning Publications Co., 2012
- ② ftp://ftp.informatik.uni-stuttgart.de/pub/ library/medoc.ustuttgart\_fi/DIP-3178/DIP-3178.pdf
- https:
  //wiki.aalto.fi/download/attachments/40025977/
  Cuda+and+OpenCL+API+comparison\_presented.pdf