Algebraic Curve

Jun. 2025

1 Day I

Definition 1.1 (Polynomial). The collection of polynomials would denoted by $\mathbb{K}[x_1, \dots, x_n]$, whose elements are of the form

$$f = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n},$$

where $a_{i_1,\dots,i_n} \in \mathbb{K}$, and i_1,\dots,i_n are non-negative integers.

Definition 1.2 (Algebraic Closed Field). If

Remark 1.1. Finite field is not algebraic closed: Consider $f = (x - a_1) \cdots (x - a_n) + 1$ which has no zero point.

Definition 1.3 (Unique Factorization Domain (UFD)).

Proposition 1.1. (1) $\mathbb{K}[x_1, \dots, x_n]$ is a commutative ring with unity called the polynomial ring in n variables over \mathbb{K} .

(2) If R is UFD, then R[X] is a UFD, which means that every non-zero polynomial can be factored uniquely into irreducible polynomials, up to order and units.

From here on, we assume that \mathbb{K} is an algebraic closed field.

Definition 1.4 (Affine Variety). An affine variety is a subset of \mathbb{K}^n defined by the vanishing of a set of polynomials, i.e., it is the solution set of a system of polynomial equations.

Formally, given a set of polynomials $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$, the affine variety $V(f_1, \ldots, f_m)$ is defined as:

$$V(f_1,...,f_m) = \{(a_1,...,a_n) \in \mathbb{K}^n; f_i(a_1,...,a_n) = 0 \text{ for all } i = 1,...,m\}.$$

Proposition 1.2 (Zariski Topology). *Consider* $f, g \in \mathbb{K}[x, y]$

- (1) $V(fg) = V(f) \cup V(g)$,
- (2) $V(f,g) = V(f) \cap V(g)$, $V(f_{\lambda})_{{\lambda} \in {\Lambda}} = \bigcap_{{\lambda} \in {\Lambda}} V(f_{\lambda})$,
- (3) $V(0) = \mathbb{A}^2_{\mathbb{K}}$.

Definition 1.5 (Affine Curve). *Consider* $f \in \mathbb{K}[x,y]$, V(f) *denotes affine curve.*

- $(1) \deg V(f) = \deg f,$
 - (a) deg = 1: Line,
 - (b) deg = 2: conic curve (non-degenerate),
- (2) $F = F_1^{n_1} F_2^{n_2} \cdots F_m^{n_m}$, where F_i irreducible.

Example 1.1. $(x + y)^2$ is irreducible, xy is reducible.

Example 1.2. $y^2 - x^3 + x$ is irreducible (left as exercise).

Definition 1.6 (Field of Fractions). The field of fractions of a UFD R is the smallest field in which R can be embedded, denoted by K(R). It consists of elements of the form $\frac{a}{b}$ where $a,b\in R$ and $b\neq 0\in R$.

Formally, if R is a UFD, then the field of fractions K(R) is defined as:

$$Q_{\mathrm{uot}}(R) = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\},$$

which is indeed a field.

Lemma 1.3. Consider $f \in \mathbb{K}[x,y]$ and $\deg f > 0$, then

- (1) V(f) has infinitely many points,
- (2) $\mathbb{A}^2_{\mathbb{K}} V(f)$ has infinitely many points.

Theorem 1.4 (Simple Bezout Theorem). *If* $F,G \in \mathbb{K}[x,y] \subset \mathbb{K}(x)[y]$ *has no common component, then* V(F,G) *is a finite set* $\Leftrightarrow F=0$, G=0 *have finite solutions in* \mathbb{K}^2 .

Proof. (1) Assume there is an element α such that $F = \alpha F'$ and $G = \alpha G'$, where we consider the ring $\mathbb{K}(x)[y]$, then

$$\begin{cases} aF = HF' \\ bG = HG', \end{cases}$$

where $a \in \mathbb{K}[x]$ and $H \in \mathbb{K}[x, y]$.

(2) TBD

Theorem 1.5. Consider irreducible $F, G \in \mathbb{K}[x,y]$, $F|G \Leftrightarrow V(F) \subset V(G)$.

Proof. (1) If F|G, then G = FH for some $H \in \mathbb{K}[x,y]$, thus $V(F) \subset V(G)$.

(2) If $V(F) \subset V(G)$, by definition F|G.

2 Day II: Intersection Number (1)

Definition 2.1 (Localized Ring). *Consider* $\mathbb{K}[x,y]$ *and a prime ideal* $P \subset R$, *the localized ring* \mathcal{O}_P *is defined as:*

$$\mathcal{O}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0 \right\},$$

the maximal ideal \mathfrak{m}_P is defined as:

$$\mathfrak{m}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0, f(p) = 0 \right\}.$$

which satisfies

$$0 \to \mathfrak{m}_P \to \mathcal{O}_P \to \mathbb{K}$$
.