Содержание

1. Слабая сходимость в банаховом пространстве	
вательности.	
1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные мно ства.	же-
1.3. Замкнутый шар в Гильбертовом пространстве секвенциально компакт	
(теорема Банаха).	
2. Обратимый оператор. Обратимость	5
2.1. Обратимость линейного, ограниченного снизу, оператора	
2.2. Обратимость возмущённого оператора	6
2.3. Формулировка теормы Банаха об обратном операторе. Доказательство	ОВ
случае гильбертова пространства.	7
3. Сопряжённый оператор	7
3.1. Норма сопряжённого оператора (в ЛНП)	
3.2. Сопряжённые операторы в гильбертовом пространстве. Равенство H	
$[\operatorname{Im} A] \oplus \operatorname{Ker} A^*$	
4. Спектр. Резольвента	q
4.1. Операторозначные функции комплексного переменного. Аналитичность	
зольвенты. Спектральный радиус. Основная теорема о спектре	_
5. Самосопряжённые операторы	
5.1. Свойства квадратичной формы (Ax,x) и собственных значений самосоп жённого оператора A .	
женного оператора A . 5.2. Разложение гильбертова пространства $H=[\operatorname{Im} A_{\lambda}] \oplus \operatorname{Ker} A_{\lambda}$, где A — са	
5.2. Газложение гильоертова пространства $H = [\operatorname{Im} A_{\lambda}] \oplus \operatorname{Ker} A_{\lambda}$, где $A = \operatorname{Ca}$ сопряжённый оператор.	
5.3. Критерий принадлежности числа спектру самосопряжённого оператора.	
щественность спектра самосопряжённого оператора	
5.4. Теорема о спектре самосопряжённого оператора: $\sigma(A) \subseteq [m, m_+], r(A)$	
$\ A\ $	
6. Компактные операторы	
6.1. Свойства компактных операторов	
6.2. Свойства собственных значений компактного оператора	
6.4. Теорема Гильберта-Шмидта	
7. Элементы нелинейного анализа	
7.1. Производная Фреше, производная Гато. Формула конечных приращений	22
8. Производная Фурье и свёртка в пространствах $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$	
8.1. Определения и основные свойства. Формула умножения. Преобразован	
Фурье свёртки.	
8.2. Операторы Гильберта-Шмидта	. 27

Функциональный анализ 2.0.

Disclaymer: доверять этому конспекту или нет выбирайте сами Big thanks for клуб Теха Лекций и Максимову Даниилу в частности.

1. Слабая сходимость в банаховом пространстве

1.1. Изометричность вложения E в E^{**} . Критерий слабой сходимости последовательности.

Теорема 1.1.1 (Хана Банаха, напоминание): Пусть E - ЛНП. $M \subset E - ли$ нейное многообразие, f – линейный ограниченный функционал на M. Тогда $\exists \tilde{f} \in E^*$:

$$\begin{array}{ll} 1. & \tilde{f}|_{M} = f \\ 2. & \left\|\tilde{f}\right\| = \|f\| \end{array}$$

Следствие 1.1.1.1: Выполняются следующие утверждения:

• $\forall f \in E^* : f(x) = f(y) \Rightarrow x = y$

• $\forall f \in E^*$: $f(x) = 0 \Rightarrow x = 0$

Следствие 1.1.1.2: Если
$$x \in E$$
, то
$$\exists f \in E^*: \ \begin{cases} \|f\| = 1 \\ f(x) = \|x\| \end{cases}$$

Следствие 1.1.1.3:

$$\forall x \in E: \|x\| = \sup\nolimits_{f \in E^*, \|f\|_{E^*} = 1} |f(x)|$$

Теорема 1.1.2 (Об изометрии): E изометрично E^{**} , через отображение π : $E \to E^{**}$, где

$$\pi x = F_x \in E^{**}; \quad F_x(f) = f(x)$$

Доказательство: Нужно доказать, что отображение π не меняет норму.

В силу приведённого выше следствия из теоремы Хана-Банаха:

$$\|F_x\|=\sup_{\|f\|=1}|F_x(f)|=\sup_{\|f\|=1}|f(x)|=\|x\|$$

Определение 1.1.1: Пусть E – нормированное пространство. Говорим, что последовательность элементов $\{x_n\}_{n=1}^\infty$ слабо сходится к x: $x_n \stackrel{w}{\to} x \Leftrightarrow \forall f \in E^*: f(x_n) \to f(x)$

$$x_n \xrightarrow{w} x \Leftrightarrow \forall f \in E^* : f(x_n) \to f(x)$$

Теорема 1.1.3 (Критерий поточечной сходимости операторов. Напоминание из прошлого семестра):

Пусть E_1 – банахово, E_2 – ЛНП. Причём $\left\{A_n\right\}_{n=1}^\infty\subset\mathcal{L}(E_1,E_2), A\in$ $\mathcal{L}(E_1,E_2)$. Тогда $A_n \overset{\text{поточечно}}{\rightarrow} A \Leftrightarrow \begin{cases} \exists M \colon \forall n \colon \|A_n\| \leq M \\ \exists S \colon [\langle S \rangle] = E_1 \colon \forall s \in S \colon A_n s \rightarrow As \end{cases}$

Теорема 1.1.4 (Критерий слабой сходимости): Пусть E – ЛНП. Тогда по-

следовательность $\left\{x_n\right\}_{n=1}^{\infty}\subset E$: $x_n\overset{w}{\to}x\Leftrightarrow\begin{cases} \left\{\|x\|_n\right\}_{n=1}^{\infty}\text{ ограничена}\\ \exists S\colon [\langle S\rangle]=E^*\colon \forall f\in S\colon f(x_n)\to f(x)\end{cases}$

 Доказательство: Перейдём к рассмотрению операторов $F_{x_n}, F_x \in E^{**}$. Тогда слабая сходимость $x_n \to x$ по определению является поточечной сходимостью $F_{x_n}(f) \to F_x(f)$.

Из условия:

- $E^{**} = \mathcal{L}(E^*, \mathbb{K})$
- Пространство E^* всегда полно
- Нормы $\|F_{x_n}\|=\|x_n\|$ ограничены $\exists S:\ [\langle S \rangle]=E^*:\ \forall f\in S:\ F_{x_n}f\to F_xf$

Эти условия позволяют нам применить упомянутый выше критерий поточечной сходимости операторов из предыдущего семестра. А поточечная сходимость операторов во всём пространстве соответствует $x_n \stackrel{w}{\to} x$.

 ${f Sameranue\ 1.1.1}\colon {f B}$ случае рефлексивного банахова пространства E условие для слабой сходимости множно ослабить. Достаточно потребовать не сходимости $f(x_n) \to f(x)$, а существования предела $\lim_{n\to\infty} f(x_n)$ (тем самым, нам не нужно знать конкретный x).

1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные множества.

Теорема 1.2.1 (Слабая сходимость и ограниченные операторы): Пусть E_1, E_2 – ЛНП, $\left\{x_n\right\}_{n=1}^\infty \subset E_1, x \in E_1$, причём $x_n \overset{w}{\to} x$, а также $A \in \mathcal{L}(E_1, E_2)$. Тогда есть слабая сходимость образов: $Ax_n \overset{w}{\to} Ax$

$$Ax_n \stackrel{w}{\to} Ax$$

Доказательство: По определению слабой сходимости, выполняется

$$\forall f \in E_1^*: f(x_n) \underset{n \to \infty}{\longrightarrow} f(x)$$

В частности, можно рассмотреть функционал $f = g \circ A$ для любого $g \in$ E_2^* . Тогда

$$\forall g \in E_2^*: \ g(Ax_n) \underset{n \to \infty}{\to} g(Ax)$$

Это утверждение в точности совпадает с определением слабой сходимости $Ax_n \stackrel{w}{\rightarrow} Ax$.

Определение 1.2.1: Множество $S \subseteq E$ называется слабо ограниченным, если

 $\forall f \in E^*: \ f(S)$ - ограниченное множество в $\mathbb K$

Утверждение 1.2.1: Пусть $S \subseteq E$ – ограниченное множество. Тогда S слабо ограничено.

Доказательство: По определению, если $f \in E^*$, то это линейный ограниченный функционал.

Ограниченный функционал переводит ограниченные множества в ограниченные, по определению.

Поэтому слабая ограниченность S тривиальна.

Теорема 1.2.2 (Хана): Пусть $S \subseteq E$ – слабо ограниченное множество. Тогда S ограничено.

 $\exists \{x_n\}_{n=1}^{\infty} \subset S: \ \forall n \in \mathbb{N}: \ \|x_n\| \geq n^2$ Рассмотрим последовательность $y_n = \frac{x_n}{n}$. В силу слабой ограниченности, мы можем сделать следующую оценку на образ $f(y_n), f \in E^*$ (где K_f – кон-

$$\forall f \in E^*: |f(y_n)| = \frac{|f(x_n)|}{n} \le \frac{K_f}{n} \to 0$$

станта, ограничивающая образ f(S)): $\forall f \in E^*: \ |f(y_n)| = \frac{|f(x_n)|}{n} \leq \frac{K_f}{n} \underset{n \to \infty}{\to} 0$ Стало быть, $y_n \overset{w}{\to} 0$. В силу критерия слабой сходимости, $\|y_n\| \leq M$ – есть ограниченность норм. Отсюда

$$\forall n \in \mathbb{N}: \ M \geq \|y_n\| = rac{\|x_n\|}{n} \geq rac{n^2}{n} = n$$

Противоречие.

1.3. Замкнутый шар в Гильбертовом пространстве секвенциально компактен (теорема Банаха).

Определение 1.3.1: Множество $S \subseteq E$ называется **слабо секвенциально** компактным (или секвенциально слабо компактным), если из любой последовательности можно выделить слабо сходящуюся подпоследовательность:

$$\forall \left\{x_n\right\}_{n=1}^{\infty} \subseteq S: \ \exists \left\{n_k\right\}_{k=1}^{\infty} \subseteq \mathbb{N}: \ \exists x \in S: \ x_{n_k} \xrightarrow[]{w}_{k \to \infty} x$$

Теорема 1.3.1 (Банаха): Пусть H – гильбертово пространство. Тогда $\overline{B}(0,R)$ – слабо секвенциально компактное множество.

Доказательство:

- 1. Рассмотрим любую последовательность $\{x_n\}_{n=1}^{\infty}\subseteq \overline{B}(0,R)$. Хотим показать, что в ней выделяется слабо сходящаяся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$.
- 2. Рассмотрим $L = \left[\left\{ x_n \right\}_{n=1}^{\infty} \right]$. В силу гильбертовости пространства H, мы можем воспользоваться теоремой о проекции. Тогда $H = L \oplus L^{\perp}$.
- 3. Выделим такую подпоследовательность $\{y_k\}_{k=1}^{\infty}\subseteq \{x_n\}_{n=1}^{\infty}$, что есть сходимость для любого скалярного произведения с x_m :

$$\forall m \in \mathbb{N}: \ \exists \lim_{k \to \infty} (x_m, y_k)$$

Тогда, в силу критерия слабой сходимости (смотреть замечание после него), y_k будет слабо сходящейся последовательностью в L.

4. Заметим, что из имеющейся сходимости следует слабая сходимость и во всём пространстве H:

$$H=L\oplus L^\perp\Rightarrow \forall h=l+l^\perp:\ (y_k,h)=(y_k,l)+(y_k,l^\perp)=(y_k,l)$$
 А (y_k,l) сходится в силу результата предыдущего пункта.

Единственная вещь, требующая пояснения – пункт 3, выделение слабо сходящейся последовательности. Воспользуемся диагональным методом Кантора:

- 1. Зафиксируем x_m . Тогда $(x_m,x_n) \leq R^2$ и, получается, $\{(x_m,x_n)\}_{n=1}^\infty$ является ограниченной последовательностью чисел. По теореме Больцано-Вейерштрасса, из неё можно выделить сходящуюся подпоследовательность x_n .
- 2. Итерируемся по $m \in \mathbb{N}$ (с началом m=1 и последовательностью x_n) и выделяем новую подпоследовательность из той, что была получена на предыдущем шаге. Обозначаем их как $x_{m,n}$
- 3. Получили искомую последовательность $y_k = x_{k,k}$.

2. Обратимый оператор. Обратимость

2.1. Обратимость линейного, ограниченного снизу, оператора

Теорема 2.1.1: Пусть $A \in \mathcal{L}(E)$ – взаимно однозначный оператор $E \to \operatorname{Im} A$. Тогда обратный оператор A^{-1} будет ограничен тогда и только тогда, когда образы A оцениваются снизу:

$$\exists m: \ \forall x \in E: \ \|Ax\| \geq m\|x\|$$

Доказательство: ⇒ В силу ограниченности оператора A^{-1} , можно записать следующее:

$$\forall y = Ax: \ \|x\| = \|A^{-1}y\| \le \|A^{-1}\| \|y\| = \|A^{-1}\| \|Ax\|$$
 Отсюда имеем $\|Ax\| \ge \frac{1}{\|A^{-1}\|} \|x\|$.

 \Leftarrow Раз A – биекция, то и $\stackrel{\text{\tiny "}}{A}^{-1}$ тоже. Поэтому вместо x можно подставить соответствующий ему $A^{-1}y, y \in \text{Im } A$:

$$\forall y \in \text{Im } A: \ \|AA^{-1}y\| \ge m\|A^{-1}y\| \Leftrightarrow \|A^{-1}y\| \le \frac{1}{m}\|y\|$$
 A это в точности ограниченность оператора A^{-1} .

2.2. Обратимость возмущённого оператора

Теорема 2.2.1: Пусть E – банахово пространство, $A \in \mathcal{L}(E)$, причём ||A|| <1. Тогда оператор (I+A) обратим. Более того, справедлива формула $(I+A)^{-1} = \sum_{k=0}^{\infty} {(-1)}^k A^k$

Замечание 2.2.1: Выписанный ряд называется рядом Неймана.

Доказательство: Нужно доказать, что ряд справа действительно является обратным к оператору (I+A). Обозначим $S_n = \sum_{k=0}^n {(-1)}^k A^k$.

1. Покажем, что S_n сходится к некоторому $S \in \mathcal{L}(E)$. Во-первых, $S_n \in \mathcal{L}(E)$ тривиальным образом, а в силу банаховости E, достаточно проверить фундаментальность этой последовательности:

$$\|S_{n+p} - S_n\| = \|\sum_{k=n+1}^{n+p} (-1)^k A^k\| \le \sum_{k=n+1}^{n+p} \|A\|^k < \varepsilon$$

 $\|S_{n+p} - S_n\| = \|\sum_{k=n+1}^{n+p} (-1)^k A^k\| \le \sum_{k=n+1}^{n+p} \|A\|^k < \varepsilon$ Последнее неравенство выполняется, начиная с некоторого n, так как $||A||, ||A||^2, ...$ образуют геометрическую прогрессию со знаменателем < 1.

2. Так как многочлены от одного и того же оператора коммутируют, то если мы покажем, что предел

$$\lim_{n\to\infty} S_n(I+A) = I \Rightarrow S(I+A) = I = (I+A)S$$

и всё доказано.

Раскроем выражение под пределом:
$$S_n(I+A) = S_n + S_n A = \sum_{k=0}^n \left(-1\right)^k A^k + \sum_{k=1}^{n+1} \left(-1\right)^{k-1} A^k = A^0 + \left(-1\right)^n A^{n+1} = I + \left(-1\right)^n A^{n+1}$$

Оценим норму последнего слагаемого:
$$\|(-1)^n A^{n+1}\| \leq \|A\|^{n+1} \underset{n \to \infty}{\to} 0$$

Стало быть, $\lim_{n\to\infty} S_n(I+A) = I+0$, что и требовалось доказать.

Теорема 2.2.2: Пусть E – банахово пространство, $A \in \mathcal{L}(E)$ и $A^{-1} \in \mathcal{L}(E)$. Также пусть $\Delta A \in \mathcal{L}(E)$, причём $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Тогда $(A + \Delta A)^{-1} \in \mathcal{L}(E)$.

Доказательство: Сведём теорему к предыдущей:

$$A + \Delta A = A(I + A^{-1}\Delta A)$$

Проверим, что норма оператора из скобки удовлетворяет условию на норму:

$$\left\|A^{-1}\Delta A\right\| \leq \left\|A^{-1}\right\| \cdot \left\|\Delta A\right\| < 1$$

2.3. Формулировка теормы Банаха об обратном операторе. Доказательство в случае гильбертова пространства.

Теорема 2.3.1 (Банаха об обратном операторе): Пусть E_1, E_2 – банаховы пространства, $A \in \mathcal{L}(E_1, E_2)$ – биективный оператор. Тогда $A^{-1} \in \mathcal{L}(E_2, E_1)$.

Доказательство: Случай, когда $E_1=E_2=H$ – гильбертово пространство над полем $\mathbb C.$

Основная идея состоит в том, чтобы доказать утверждение теоремы не для A, а для A^* . Запишем 2 разложения пространства H (тема про сопряжённый оператор и разложение будет далее):

$$[\operatorname{Im} A] \oplus \operatorname{Ker} A^* = H$$
$$[\operatorname{Im} A^*] \oplus \operatorname{Ker} A = H$$

Так как A биективен, то $\operatorname{Ker} A = \{0\}$ и мы сразу получаем $[\operatorname{Im} A^*] = H$. С другой стороны, $[\operatorname{Im} A] = \operatorname{Im} A = H$, а потому $\operatorname{Ker} A^* = \{0\}$.

Далее вы узнаете, что сопряжённый оператор всегда ограничен снизу, а значит из его сюръективности автоматически следует ограниченность обратного. \Box

3. Сопряжённый оператор

3.1. Норма сопряжённого оператора (в ЛНП)

Определение 3.1.1: Пусть $A: E_1 \to E_2$. Тогда сопряжённым оператором $A^*: E_2^* \to E_1^*$ называется оператор, удовлетворяющий условию:

$$\forall g \in E_2^* : \forall x \in E_1 : \ (A^*g)x = g(Ax)$$

Теорема 3.1.1: Пусть $A \in \mathcal{L}(E_1, E_2)$. Тогда $A^* \in \mathcal{L}(E_2^*, E_1^*)$, причём $\|A^*\| = \|A\|$.

Доказательство: Покажем неравенства для норм в 2 стороны:

 \leq Верна следующая оценка:

$$\forall g \in E_2^*: \forall x \in E_1: \ |(A^*g)x| = |g(Ax)| \leq \|g\| \|Ax\| \leq \|g\| \|A\| \|x\|$$
 Из последнего имеем $\|A^*g\| \leq \|A\| \|g\|$, что означает $\|A^*\| \leq \|A\|$.

 \geq Так как $A^* \in \mathcal{L}(E_2^*, E_1^*)$, то можно воспользоваться следствием теоремы Хана-Банаха для нормы элемента Ax:

$$\forall x \in E_1: \ \|Ax\| = \sup_{\|g\|=1} |g(Ax)| = \sup_{\|g\|=1} |(A^*g)x|$$
 При этом $\|(A^*g)x\| \le \|A^*\| \cdot 1 \cdot \|x\|$, а значит $\|Ax\| \le \|A^*\| \|x\| \Rightarrow \|A\| \le \|A^*\|$.

3.2. Сопряжённые операторы в гильбертовом пространстве. Равенство $H = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$

Определение 3.2.1: Пусть $E_1=H_1, E_2=H_2$ – гильбертовы пространства, $A\in\mathcal{L}(H_1,H_2).$ Тогда эрмитово сопряжённым оператором $A^*:H_2\to H_1$ называется оператор, удовлетворяющий условию:

$$\forall x \in E_1 : \forall y \in E_2 : \ \left(Ax,y\right)_{H_2} = \left(x,A^*y\right)_{H_1}$$

Теорема 3.2.1: Пусть
$$H$$
 – гильбертово пространство, $A \in \mathcal{L}(H)$. Тогда $H = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$

Доказательство:

1. Покажем, что $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*$. Для этого рассмотрим произвольный элемент ортогонального дополнения:

$$\forall y \in (\operatorname{Im} A)^{\perp} : \forall x \in H : (Ax, y) = 0$$

Стало быть, для любых x, y выше будет $(x, A^*y) = 0$, а в силу гильбертовости пространства это означает, что $A^*y = 0$, что означает $y \in \text{Ker } A^*$.

2. Заметим, что $(\operatorname{Im} A)^{\perp} = [\operatorname{Im} A]^{\perp}$. Так как последнее является подпространством, то по теореме о проекции получаем требуемое разложение:

$$H = [\operatorname{Im} A] \oplus [\operatorname{Im} A]^{\perp} = [\operatorname{Im} A] \oplus \operatorname{Ker} A^*$$

Утверждение 3.2.1: Если $A \in \mathcal{L}(H)$, где H – гильбертово, то оператор A^* (эрмитово сопряжённый) ограничен снизу.

Доказательство: Заметим, что свойство ограниченности снизу имеет эквивалентный вариант (в силу линейности):

$$\exists m > 0: \forall x \in H: \|A^*x\| \ge m\|x\| \Leftrightarrow \exists m > 0: \forall x \in H: \|A^*x\| = 1: \|x\| \le \frac{1}{m}$$
 Обозначим рассматриваемое подмножество

$$S := \{ x \in H \mid ||A^*x|| = 1 \}$$

Таким образом, задача свелась к доказательству ограниченности S.

А как мы знаем, ограниченность эквивалентна слабой ограниченности. Более того, мы находимся в Гильбертовом пространстве H, а значит каждый функционал представляется в виде (y,\cdot) :

$$\forall y \in H: \exists K_y \in \mathbb{R}_+: \ \forall x \in S: |(y,x)| \leq K_y$$

Однако, A – сюръекция, а значит для любого $y \in H$ найдётся $z \in H$ такой, что Az = y. Отсюда:

$$\forall z \in H: \exists K_z \in \mathbb{R}_+: \ \forall x \in S: |(Az,x)| = |(z,A^*x)| \leq 1 \cdot \|z\| =: K_z$$

Утверждение 3.2.2: Пусть $B \in \mathcal{L}(H)$ и B ограничен снизу. Тогда [Im B] = $\operatorname{Im} B$.

 Доказательство: Пусть $\{y_n\}_{n=1}^{\infty}\subset {\rm Im}\ B$ и $\lim_{n\to\infty}y_n=y$. Докажем, что $y\in$ $\operatorname{Im} B$.

В силу сходимости есть и фундаментальность:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \ \forall n \geq N: \ \|y_{n+p} - y_n\| < \varepsilon$$

Коль скоро $y_n \in \text{Im } B$, то можно переписать норму разности следующим образом:

$$\left\|y_{n+p}-y_{n}\right\|=\left\|Bz_{n+p}-Bz_{n}\right\|>m\left\|z_{n+p}-z_{n}\right\|$$

 $\|y_{n+p}-y_n\|=\|Bz_{n+p}-Bz_n\|>m\|z_{n+p}-z_n\|$ Стало быть, $\left\{z_n\right\}_{n=1}^\infty$ фундаментальна, а в силу полноты H должен существовать предел $\lim_{n\to\infty} z_n = z$. Тогда

$$y = \lim_{n \to \infty} Bz_n = B(\lim_{n \to \infty} z_n) = Bz$$

4. Спектр. Резольвента.

4.1. Операторозначные функции комплексного переменного. Аналитичность резольвенты. Спектральный радиус. Основная теорема о спектре

Определение 4.1.1: **Резольвентным множеством** оператора A называется следующее множество:

$$\rho(A) = \left\{\lambda \in \mathbb{C} \mid \exists (A - \lambda I)^{-1} \in \mathcal{L}(E)\right\}$$

Все $\lambda \in \mathbb{C}$, попадающие в резольвентное множество, называются **регу**лярными значениями.

Определение 4.1.2: Спектром оператора A называется дополнение к резольвентному множеству:

$$\sigma(A) = \mathbb{C} \setminus \rho(A)$$

Определение 4.1.3: **Резольвентой** оператора A называется любое отображение следующего вида:

$$R_{\lambda}\coloneqq R(\lambda)\coloneqq (A-\lambda I)^{-1}, \lambda\in\rho(A)$$

Утверждение 4.1.1: $R(\lambda)$ является непрерывной функцией от λ .

Доказательство: Положим $B = A - \lambda_0 I$ и $\Delta B = -\Delta \lambda I$.

Как мы уже доказывали выше, мы можем рассмотреть $\Delta\lambda$ с ограничением $|\Delta \lambda| < \frac{1}{\|B^{-1}\|}$ и тогда $B + \Delta B$ будет обратим.

Для непрерывности, нам нужно оценить норму следующей разности при $\Delta\lambda \to 0$:

$$\begin{split} \|R(\lambda_0 + \Delta\lambda) - R(\lambda_0)\| &= \left\| (B + \Delta B)^{-1} - B^{-1} \right\| \\ \text{Распишем } (B + \Delta B)^{-1} \text{ через ряд Неймана следующим образом:} \\ (B + \Delta B)^{-1} &= \left(I + B^{-1}\Delta B \right)^{-1} B^{-1} = \sum_{k=0}^{\infty} \left(-1 \right)^k \left(B^{-1}\Delta B \right)^k B^{-1} = \\ &= B^{-1} + \sum_{k=1}^{\infty} \left(-1 \right)^k \left(B^{-1}\Delta B \right)^k B^{-1} \end{split}$$

Отсюда можно вернуться к оценке приращение и уже работать с рядом: $\left\|\left(B+\Delta B\right)^{-1}-B^{-1}\right\|=\left\|\sum_{k=1}^{\infty}\left(-1\right)^{k}\!\left(B^{-1}\Delta B\right)^{k}\!B^{-1}\right\|\leq$

$$\left\|B^{-1}\right\|\sum_{k=1}^{\infty}\left(\left\|B^{-1}\right\|\left\|\Delta B\right\|\right)^{k}=\left\|B^{-1}\right\|\cdot\frac{\|B^{-1}\|\left\|\Delta B\right\|}{1-\|B^{-1}\|\left\|\Delta B\right\|}\underset{\Delta B\rightarrow 0}{\longrightarrow}0$$

Замечание 4.1.1: Далее будет использоваться обозначение

$$A_{\lambda} := A - \lambda I$$

Утверждение 4.1.2: Пусть
$$\lambda_0,\lambda\in\rho(A)$$
. Тогда
$$R_\lambda-R_{\lambda_0}=(\lambda-\lambda_0)R_\lambda R_{\lambda_0}$$

Доказательство:

Рассмотрим следующую тривиальную цепочку равенств:
$$R_{\lambda}-R_{\lambda_0}=R_{\lambda}\underbrace{A_{\lambda_0}R_{\lambda_0}}_{I}-\underbrace{A_{\lambda}R_{\lambda}}_{I}R_{\lambda_0}=$$

$$R_{\lambda}\Big(A_{\lambda_0}-A_{\lambda}\Big)R_{\lambda_0}=R_{\lambda}(\lambda-\lambda_0)R_{\lambda_0}=(\lambda-\lambda_0)R_{\lambda}R_{\lambda_0}$$

Утверждение 4.1.3: $R(\lambda)$ дифференцируема на $\rho(A)$. Более того: $R'(\lambda_0) = R_{\lambda_0}^2$

 \mathcal{A} оказательство: Запишем дроби из предела производной: $\frac{R_{\lambda}-R_{\lambda_0}}{\lambda-\lambda_0}=\frac{(\lambda-\lambda_0)R_{\lambda}R_{\lambda_0}}{\lambda-\lambda_0}=R_{\lambda}R_{\lambda_0}\underset{\lambda\to\lambda_0}{\longrightarrow}R_{\lambda_0}^2$

$$\frac{R_{\lambda} - R_{\lambda_0}}{\lambda - \lambda_0} = \frac{(\lambda - \lambda_0) R_{\lambda} R_{\lambda_0}}{\lambda - \lambda_0} = R_{\lambda} R_{\lambda_0} \xrightarrow[\lambda \to \lambda_0]{} R_{\lambda_0}^2$$

Определение 4.1.4: Спектральным радиусом оператора A называется радиус окружности с центром в нуле, в которую попадают все элементы спектра:

$$r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|$$

Утверждение 4.1.4: Если $|\lambda| > ||A||$, то $\lambda \in \rho(A)$.

 $\mathcal{\underline{A}}\mathit{okasame.nbcmbo}\colon$ Перепишем A_{λ} следующим образом:

$$A_{\lambda} = -\lambda \left(I - \frac{1}{\lambda} A \right)$$

 $A_\lambda = -\lambda \big(I - \frac{1}{\lambda}A\big)$ Так как $\left\|\frac{A}{\lambda}\right\| = \frac{1}{|\lambda|}\|A\| < 1,$ то применима теорема об обратимости возмущённого оператора и, соответственно, этот оператор обратим. Значит $\lambda \in$ $\rho(A)$ по определению.

Следствие 3.2.1.1: Очевидно следует, что $r(A) \leq ||A||$.

Утверждение 4.1.5: Радиус сходимости ряда Неймана для $R(\lambda)$ равен спектральному радиусу r(A).

Доказательство: \leq Мы можем говорить о ряде Лорана. Если $|\lambda| > ||A||$, то тогда имеет место следующее представление резольвенты: $R(\lambda) = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \Big(I - \frac{A}{\lambda} \Big)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} A^k \lambda^{-k}$ При этом, ранее было установлено, что $R(\lambda)$ дифференцируема на $\rho(A)$.

$$R(\lambda) = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} A^k \lambda^{-k}$$

В частности, это происходит на круге $|\lambda| > r(A)$.

Так как представление функции в виде ряда Лорана в круге единственно, а мы уже его записали выше для некоторой окрестности бесконечности, то тот же самый вид должен быть и в этом круге.

Значит, радиус сходимости ряда Неймана не превосходит r(A).

 $\geq \Pi$ усть $|\lambda_0| < r(A)$. Тогда, предположим, что ряд сходится в этой точке. Это означает, что ряд будет сходится и при всех $|\lambda| > |\lambda_0|$.

Это также означает обратимость A_{λ} при всех таких λ , но коль скоро $|\lambda_0| < r(A)$, то должен существовать $|\lambda_0| < |\lambda_1| < r(A)$ такой, что $\lambda_1 \in \sigma(A)$ в силу определения спектрального радиуса, а это противоречит определению спектра.

Утверждение 4.1.6: Если $\lambda \in \sigma(A)$, то $\lambda^n \in \sigma(A^n)$.

Доказательство: Предположим противное, то есть $\lambda^n \in \rho(A^n)$ и $\lambda \in \sigma(A)$. Значит $(A^n - \lambda^n I)^{-1} \in \mathcal{L}(E)$. Заметим, что мы также можем записать обращаемый оператор в следующем виде:

$$A^n - \lambda^n I = (A - \lambda I) \underbrace{\left(A^{n-1} + \ldots + \lambda^{n-1} I\right)}_B \Rightarrow I = (A - \lambda I) B (A^n - \lambda^n I)^{-1}$$

Так как рассматриваемые операторы – многочлены от степеней A, то они коммутируют. С учётом этого имеем, что A_{λ} обратим, а стало быть $\lambda \in \rho(A)$, противоречие.

Утверждение 4.1.7: Верна формула для спектрального радиуса:

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$$

Доказательство: Как мы уже знаем, радиус сходимости ряда Неймана для $R(\lambda)$ совпадает с r(A):

$$r(A) = r_{\mathrm{cx}} = \overline{\lim}_{n \to \infty} \sqrt[n]{\|A^n\|}$$

В силу последнего доказанного утверждения, мы можем связать r(A) и $r(A^n)$ следующим образом:

$$r(A^n) = \sup_{\mu \in \sigma(A^n)} |\mu| \ge \sup_{\lambda \in \sigma(A)} |\lambda^n| = r(A)^n$$

Стало быть, $r(A) \leq \sqrt[n]{r(A^n)}$. При этом, знаем, что $r(A^n) \leq ||A^n||$.

Получилось, что верхний предел не превосходит любого элемента последовательности $\sqrt[n]{\|A^n\|}$, а это означает, что он не превосходит их нижнего предела. Такое возможно только тогда, когда существует просто предел.

Теорема 4.1.1 (Основная теорема о спектре): Спектр оператора непуст: $\sigma(A) \neq \emptyset$

Доказательство: Предположим противное. Тогда $\rho(A) = \mathbb{C}$ и, следовательно, $R(\lambda)$ является целой функцией. Оценим норму этого оператора, пользуясь представлением обратного оператора в ряд Неймана:

$$||R(\lambda)|| \le \frac{1}{|\lambda|} \cdot \frac{1}{1 - \frac{1}{|\lambda|} ||A||} \underset{\lambda \to \infty}{\to} 0$$

Коль скоро есть предел $\lim_{\lambda\to\infty}\|R(\lambda)\|$, то норма $R(\lambda)$ ограничена. Стало быть, по теореме Лиувилля $R(\lambda)=\mathrm{const.}$ Более того, из-за найденного выше предела $R(\lambda)=0$. Это противоречит обратимости A_λ при каком-либо λ . \square

Определение 4.1.5: Рассмотрим оператор $A \in \mathcal{L}(E)$. Тогда

- $\sigma_p(A)\coloneqq \{\lambda\in\sigma(A)\mid {\rm Ker}\ A_\lambda\neq\{0\}\}$ точечный спектр. Причём $v\in {\rm Ker}\ A_\lambda$ называются собственными векторами для собственного значения $\lambda.$
- $\sigma_c(A)\coloneqq\{\lambda\in\sigma(A)\mid {\rm Ker}\ A_\lambda=\{0\}\wedge {\rm Im}\ A_\lambda\ne E\wedge [{\rm Im}\ A_\lambda]=E\}$ непрерывный спектр.
- $\sigma_r(A)\coloneqq \{\lambda\in\sigma(A)\mid {\rm Ker}\ A_\lambda=\{0\}\wedge [{\rm Im}\ A_\lambda]\neq E\}$ остаточный спектр.

5. Самосопряжённые операторы

5.1. Свойства квадратичной формы (Ax, x) и собственных значений самосопряжённого оператора A.

Определение 5.1.1: Пусть $E_1 = E_2 = H$ – гильбертово пространство. Тогда, если $A \in \mathcal{L}(H)$ и $A^* = A$, то оператор A называется **самосопряжённым**: $\forall x, y \in H: (Ax, y) = (x, Ay)$

Определение 5.1.2: **Квадратичной формой** оператора A называется функционал, определённый следующим образом:

$$K(x) = (Ax, x)$$

Утверждение 5.1.1: Пусть $A \in \mathcal{L}(H)$ – произвольный оператор. Если $\forall x \in \mathcal{L}(H)$ H: K(x) = 0, to $A \equiv 0$.

Доказательство: Рассмотрим произвольные $x, y \in H$. Тогда $x + y, x + iy \in H$ H.

Запишем по определению квадратичную форму для этих точек:

$$K(x + y) = (A(x + y), x + y) = \underbrace{K(x)}_{0} + \underbrace{K(y)}_{0} + (Ax, y) + (Ay, x)$$

$$K(x+y) = (A(x+y), x+y) = \underbrace{K(x)}_{0} + \underbrace{K(y)}_{0} + (Ax,y) + (Ay,x)$$

$$K(x+iy) = (A(x+iy), x+iy) = \underbrace{K(x)}_{0} - \underbrace{K(y)}_{0} - i(Ax,y) + i(Ay,x)$$

Отсюда $(Ax,y)=\frac{1}{2}(K(x+y)+iK(x+iy))\stackrel{\cdot}{=}0.$ Если варьировать y по всем возможным значениям, то следствие теоремы Хана-Банаха даст равенство $\forall x \in H : Ax = 0.$

Теорема 5.1.1:

- 1. Оператор A самосопряжён тогда и только тогда, когда $\forall x \in H: K(x) \in \mathbb{R}$.
- 2. Если λ собственное значение самосопряжённого A, то $\lambda \in \mathbb{R}$.
- 3. Если $\lambda_1 \neq \lambda_2$ собственные значения самосопряжённого $A, a e_1, e_2 \in H$ соотстветствующие собственные вектора, то $(e_1, e_2) = 0$.

Доказательство:

- 1. Проведём доказательство в обе стороны.
 - ⇒ Скалярное произведение эрмитово, поэтому воспользуемся свойством перестановки аргументов:

$$K(x) = (Ax, x) = (x, Ax) = \overline{(Ax, x)} \Rightarrow K(x) \in \mathbb{R}$$

← Аналогично первому пункту, имеем

$$K(x) = (Ax, x) = \overline{(Ax, x)} = (x, Ax)$$

В то же время, $(Ax, x) = (x, A^*x)$ по определению. Стало быть, квадратичная форма для $A - A^*$ нулевая.

По доказанному утверждению, это возможно лишь в том случае, когда $A-A^*\equiv 0$, что и требовалось.

2. Пусть $Av = \lambda v$. Тогда

$$K(v) = (Av, v) = \lambda(v, v) \in \mathbb{R} \Leftrightarrow \lambda \in \mathbb{R}$$

3. Заметим следующее соотношение:

$$\lambda_1(e_1,e_2)=(Ae_1,e_2)=(e_1,Ae_2)=\lambda_2(e_1,e_2)$$
 Так как $\lambda_1\neq\lambda_2$, то такое возможно только тогда, когда $(e_1,e_2)=0.$

5.2. Разложение гильбертова пространства $H=[{\rm Im}\ A_\lambda]\oplus {\rm Ker}\ A_\lambda,$ где A – самосопряжённый оператор.

Теорема 5.2.1: Для самосопряжённого A верно равенство

$$\forall \lambda \in \mathbb{C} : [\operatorname{Im} A_{\lambda}] \oplus \operatorname{Ker} A_{\lambda} = H$$

Доказательство: Воспользуемся обычной теоремой о разложении для сопряжённых операторов. Тогда

$$[\operatorname{Im} A_{\lambda}] \oplus \operatorname{Ker} A_{\lambda}^* = H$$
 При этом $A_{\lambda}^* = A^* - \overline{\lambda}I = A - \overline{\lambda}I$.

Если $\lambda \in \mathbb{R}$, то всё доказано. Иначе $\lambda \neq \mathbb{R}$, но это также значит, что $\lambda \notin \sigma_p(A)$, а это эквивалентно Ker $A_\lambda = \{0\}$. То же самое верно и для $\overline{\lambda}$, откуда тоже получаем тривиальное доказательство.

5.3. Критерий принадлежности числа спектру самосопряжённого оператора. Вещественность спектра самосопряжённого оператора.

Теорема 5.3.1 (Критерий принадлежности спектру самосопряжённого оператора):

- 1. $\lambda \in \rho(A) \Leftrightarrow A_{\lambda}$ ограниченный снизу, то есть $\exists m>0: \forall x \in H: \ \|A_{\lambda}x\| \geq m\|x\|$
- 2. $\lambda \in \sigma(A) \Leftrightarrow \exists \{x_n\}_{n=1}^{\infty} \subset H : \|x_n\| = 1 \land \lim_{n \to \infty} \|A_{\lambda}x_n\| = 0$

Доказательство: Второй пункт – отрицание обеих частей первого. Поэтому доказывать будем только первую эквивалентность.

- \Rightarrow Раз $\lambda \in \rho(A)$, то A_{λ} обратим, а значит биективен. По теоереме об ограниченности снизу обратимого оператора всё доказано.
- \Leftarrow По той же теореме, должны доказать, что A_{λ} биективен. Из ограниченности снизу следует $\operatorname{Ker} A_{\lambda} = \{0\}$ (иначе образом ненулевого элемента был бы ноль, что нарушило бы ограниченность), а в силу разложения пространство имеем следующее:

$$[\operatorname{Im}\, A_\lambda] \oplus \operatorname{Ker}\, A_\lambda = H = [\operatorname{Im}\, A_\lambda]$$

Также по лемме о замыкании образа ограниченного снизу оператора, имеем

$$\operatorname{Im}\, A_{\lambda} = [\operatorname{Im}\, A_{\lambda}] = H$$

Утверждение 5.3.1: Пусть A – самосопряжённый, а $\lambda = \mu + i\nu, \nu \neq 0$. Тогда $||A_{\lambda}x||^2 \ge ||\nu||^2 ||x||^2$

Доказательство: Заметим, что $A_{\lambda}=A-\lambda I=A-(\mu+i\nu)I=A_{\mu}-i\nu I.$

Так как речь идёт о квадрате нормы, то мы можем расписать её через скалярное произведение:

$$\left\|A_{\lambda}x\right\|^{2}=\left(A_{\lambda}x,A_{\lambda}x\right)=\left\|A_{\mu}x\right\|^{2}-i\nu\big(x,A_{\mu}x\big)+i\nu\big(A_{\mu}x,x\big)+\left\|\nu\right\|^{2}\left\|x\right\|^{2}$$

Так как $\mu \in \mathbb{R},$ то A_{μ} — самосопряжённый оператор. Стало быть, мы можем сократить слагаемые в середине. Тогда:

$$\|A_{\lambda}x\|^{2} = \|A_{\mu}x\|^{2} + \|\nu\|^{2}\|x\|^{2} \ge \|\nu\|^{2}\|x\|^{2}$$

По доказанной лемме, A_{λ} ограничен снизу. В силу критерия принадлежности спектру, такое возможно лишь в том случае, когда $\lambda \in \rho(A)$.

Следствие 5.3.1.1: Для самосопряжённого оператора A верно:

$$\sigma(A) \subseteq \mathbb{R}$$

5.4. Теорема о спектре самосопряжённого оператора: $\sigma(A) \subseteq$ $[m_-, m_+], r(A) = ||A||$

Теорема 5.4.1: Обозначим для самосопряжённого $A: m_- \coloneqq \inf_{\|x\|=1} (Ax, x)$ и $m_+ \coloneqq \sup_{\|x\|=1} (Ax, x)$. Тогда:

1.
$$\sigma(A)\subseteq [m_-,m_+],$$
причём $m_-,m_+\in \sigma(A)$

2.
$$||A|| = r(A) = \max(|m_-|, |m_+|)$$

Доказательство:

1. Покажем, что если $\lambda > m_+$, то $\lambda \in \rho(A)$. Будем снова ограничивать $||A_{\lambda}x||$ снизу. С одной стороны, по КБШ:

$$|(A_{\lambda}x,x)| \leq \|A_{\lambda}x\| \|x\| \Rightarrow \|A_{\lambda}x\| \geq \tfrac{1}{\|x\|} |(A_{\lambda}x,x)|$$

С другой стороны, распишем скалярное произведение:

$$|(A_{\lambda}x,x)| = |(Ax,x) - \lambda(x,x)| = \lambda ||x||^2 - (Ax,x) \ge (\lambda - m_+) ||x||^2$$

Последний переход верен, так как
$$m_+ = \sup_{\|x\|=1} (Ax, x) = \sup_{x} \frac{Ax, x}{\|x\|^2} \Rightarrow (Ax, x) \leq m_+ \|x\|^2 < \lambda \|x\|^2$$

Отсюда сразу $\lambda \in \rho(A)$. Теперь докажем, что $m_+ \in \sigma(A)$. Для этого воспользуемся критерием принадлежности спектру. В силу определения m_+ :

$$\exists \{x_n\}_{n=1}^{\infty} \subseteq H: \|x_n\| = 1 \wedge \lim_{n \to \infty} (Ax_n, x_n) = m_+$$

 $\exists \{x_n\}_{n=1}^{\infty} \subseteq H: \|x_n\|=1 \wedge \lim_{n\to\infty} (Ax_n,x_n)=m_+$ Надо показать, что предел $\lim_{n\to\infty} \left\|A_{m_+}x_n\right\|=0$. Так как норма векторов единична, то текущий предел можно переписать в следующем виде:

$$\lim_{n\to\infty}(Ax_n,x_n)-m_+=0=\lim_{n\to\infty}(Ax_n,x_n)-m_+(x_n,x_n)=\lim_{n\to\infty}\left(A_{m_+}x_n,x_n\right)=0$$

Также из определения m_+ следует, что A_{m_+} – отрицательно полуопределённый оператор.

Так как неравенство КБШ справедливо для скалярных произведений, порождённый положительными полуопределёнными операторами, то перейдём к $B = -A_{m_{\perp}}$. Чтобы получить требуемое, нам достаточно показать, что $\lim_{n\to\infty} Bx_n = 0$.

Запишем четвёртую! степень нормы следующим образом:
$$\left\|Bx_n\right\|^4 = \left|\left(x_n, Bx_n\right)_B^2\right| \leq \left|\left(x_n, x_n\right)_B\right| \left|\left(Bx_n, Bx_n\right)_B\right| = \left|\left(Bx_n, x_n\right)\right| \left|\left(B^2x_n, Bx_n\right)\right|$$

Первый множитель стремится к нулю, а второй ограничен:

$$|(B^2x_n, Bx_n)| \le ||B^2x_n|| ||Bx_n|| \le ||B||^3 ||x_n||^2 = ||B||^3$$

Требуемый предел установлен. Доказательство для m_{-} аналогично.

2. Из формулы спектрального радиуса

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$$

Докажем, что для $n = 2^k$ верно равенство $||A^n|| = ||A||^n$.

Достаточно доказать, что $||A^2|| = ||A||^2$.

≤ Воспользуемся неравенством для ограничених операторов:

$$||A^2x|| = ||A(Ax)|| \le ||A|||Ax|| \le ||A||^2 ||x|| \Rightarrow ||A^2|| \le ||A||^2$$
 \ge Распишем квадрат нормы $||Ax||^2$:

$$||Ax||^2 = (Ax, Ax) = (x, A^2x) \le ||x|| ||A^2|| ||x||$$

Осталось взять супремум от обеих частей неравенства:

$$||A||^2 = \sup_{||x||=1} ||Ax||^2 \le \sup_{||x||=1} ||A^2|| ||x||^2 = ||A^2||$$

Так как предел в формуле спектрального радиуса существует, то достаточно найти любой частичный предел. Будем брать предел по индексам-степеням двойки.

6. Компактные операторы

6.1. Свойства компактных операторов

Определение 6.1.1: Оператор A называется **компактным**, если

$$\forall M\subseteq E_1$$
 - ограниченное $\Rightarrow A(M)\subseteq$

 E_2 - предкомпакт (вполне ограниченное)

Множество компактных операторов обозначается как $\mathcal{K}(E_1, E_2)$.

Утверждение 6.1.1: Имеют место следующие утверждения:

- 1. $\dim E_1 < \infty \Rightarrow \mathcal{L}(E_1, E_2) = \mathcal{K}(E_1, E_2)$
- 2. $\dim E_2 < \infty \Rightarrow \mathcal{L}(E_1, E_2) = \mathcal{K}(E_1, E_2)$

Доказательство: Достаточно понимать, что в конечномерном пространстве любое ограниченное множество вполне ограниченно.

- 1. Коль скоро $\dim \operatorname{Im} A \leq \dim E_1 < \infty$, то образ любого ограниченного множества оказывается ограниченным множеством в подпространстве $\operatorname{Im} A$ конечной размерности.
- 2. Сразу следует из исходного заявления в доказательстве.

Замечание 6.1.1: Пусть R — кольцо, I — подгруппа (R,+). Тогда I называется левосторонним идеалом, если I обладает свойством поглощения слева:

$$\forall r \in R : \forall a \in I : ra \in I$$

Аналогично определяется **правосторонний идеал**. Ну и **двухсторонний идеал**, если он является и левосторонним, и правосторонним.

Утверждение 6.1.2: Пусть $E_1=E_2=E$. Тогда $\mathcal{K}(E)\subseteq\mathcal{L}(E)$ – двухсторонний идеал.

Доказательство:

1. $\mathcal{K}(E)$ является подгруппой по сложению. Пусть $A, B \in \mathcal{K}(E)$. Тогда $A + B \in \mathcal{K}(E) \Leftrightarrow (A+B)(B(0,1))$ – предкомпакт.

Это эквивалентно тому, что из любой ограниченной последовательности в этом множество можно выделить сходящуюся подпоследовательность. Действительно, рассмотрим ограниченную последовательность $\{y_n\}_{n=1}^\infty\subseteq (A+B)(B(0,1)).$ В силу определения, её элементы распишутся так:

$$\forall n \in \mathbb{N}: y_n = Ax_n + Bx_n; \ x_n \in B(0,1)$$

Так как $A \in \mathcal{K}(E)$, то из Ax_n можно выделить сходящуюся подпоследовательность Ax_n .

Аналогично, уже из Bx_{n_k} можно выделить сходящуюся подподпоследовательность Bx_{n_k} , причём предыдущая сходимость никуда не денется.

2. $\mathcal{K}(E)$ поглощает элементы $\mathcal{L}(E)$. Пусть $A \in \mathcal{K}(E)$ и $B \in \mathcal{L}(E)$. Тогда $AB \in \mathcal{K}(E)$ – ибо B(B(0,1)) тоже ограниченной множество.

Для BA сложнее, но мы можем воспользоваться приёмом предыдущего пункта. Рассмотрим ограниченную последовательность $\{y_n\}_{n=1}^\infty\subseteq BA(B(0,1))$. Тогда $y_n=BAx_n, x_n\in B(0,1)$. В силу компактности оператора A, можно из Ax_n выделить сходящуюся подпоследовательность Ax_{n_k} . Так как оператор B непрерывен, сходимость в образе сохранится, а значит нужная подпоследовательность $y_{n_k}=BAx_{n_k}$ найдена.

Утверждение 6.1.3: Если dim $E=\infty$, то тождественный оператор $I \notin$ $\mathcal{K}(E)$.

Доказательство: Действительно, по теореме Рисса мы знаем, что замкнутый единичный шар в таком пространстве не компактен, а значит B(0,1) =I(B(0,1)) не может быть предкомпактом. П

Следствие 5.4.1.1: Если dim $E = \infty, A \in \mathcal{K}(E)$, то $A^{-1} \notin \mathcal{L}(E)$.

Доказательство: Предположим противное. Тогда $I = AA^{-1} \in \mathcal{K}(E)$, чего не может быть.

Утверждение 6.1.4: Если $A \in \mathcal{K}(E_1, E_2)$ и $x_n \stackrel{w}{\to} x_0 \in E_1$, то $Ax_n \stackrel{w}{\to} Ax_0$.

 Доказательство: Пусть $x_n \overset{w}{\to} x_0$. Тогда $\left\{x_n\right\}_{n=1}^{\infty}$ — ограниченная, а значит $\left\{Ax_n
ight\}_{n=1}^{\infty}$ – предкомпакт. Более того, из слабой сходимости аргументов и непрерывности A следует слабая сходимость $Ax_n \stackrel{w}{\to} Ax_0$.

Теорема 6.1.1: Пусть E_2 – банахово пространство, $A_n \in \mathcal{K}(E_1,E_2), A \in$ $\mathcal{L}(E_1,E_2)$, причём $\lim_{n o\infty}A_n=A$. Тогда $A\in\mathcal{K}(E_1,E_2)$.

ot Доказательство: В силу банаховости E_2 для компактности оператора Aдостаточно проверить, что A(B(0,1)) является вполне ограниченным множеством.

Идея состоит в том, чтобы взять достаточно близкий оператор A_n , взять соответствующую ему ε -сеть и заявить, что она подойдёт к A:

- $\begin{array}{ll} \bullet & \forall \varepsilon > 0: \exists n_0 \in \mathbb{N}: \ \left\|A A_{n_0}\right\| < \varepsilon \\ \bullet & \forall \varepsilon > 0: \exists \left\{y_t\right\}_{t=1}^T \subseteq E: \forall x \in B(0,1): \exists s: \ \left\|A_{n_0}x y_s\right\| < \varepsilon \end{array}$

Зафиксиоуем $\varepsilon > 0, n_0 \in \mathbb{N}$ и $\left\{y_t\right\}_{t=1}^T \subseteq E$ согласно утверждениям выше. Тогда:

 $\forall x \in B(0,1): \exists y_s: \ \|Ax-y_s\| \leq \left\|Ax-A_{n_0}x\right\| + \left\|A_{n_0}x-y_s\right\| < 2\varepsilon$ Стало быть, $\left\{y_t\right\}_{t=1}^T$ – это конечная 2ε -сеть для A(B(0,1)), то есть образ

6.2. Свойства собственных значений компактного оператора.

Теорема 6.2.1: Пусть $\lambda \in \mathbb{C} \setminus \{0\}$. Тогда dim Ker $A_{\lambda} < \infty$. Где A – компактный, а λ – его СЗ.

Доказательство: Утверждение теоремы эквивалентно тому, что единичная сфера в пространстве $\operatorname{Ker} A_{\lambda}$ компактна.

Это будет доказано, если мы покажем, как выделить из любой последовательности сходящуюся подпоследовательность. Пусть $\{x_n\}_{n=1}^\infty \subseteq S(0,1) \subseteq \mathrm{Ker}\ A_\lambda$. Отсюда $\|x_n\|=1$ и $Ax_n=\lambda x_n$. Более того, $\{x_n\}_{n=1}^\infty$ — ограниченное множество, а значит $\{Ax_n\}_{n=1}^\infty$ — предкомпакт.

Стало быть, существует сходящаяся подпоследовательность $\lim_{k\to\infty} Ax_{n_k}=y$. В силу того, что мы можем раскрыть образ через x_{n_k} , получим следующее:

$$\lim_{k\to\infty} \lambda x_{n_k} = y \Leftrightarrow \lim_{k\to\infty} x_{n_k} = \frac{y}{\lambda}$$

Однако, это ещё не все. Нам также нужно показать, что $y \in \operatorname{Ker} A_{\lambda}$ – принадлежит рассматриваемому подпространству. Для этого мы применим оператор A к обеим частям предела:

$$\lim_{k\to\infty}Ax_{n_k}=y=\frac{1}{\lambda}Ay\Leftrightarrow Ay=\lambda y\Leftrightarrow y\in \mathrm{Ker}\ A_\lambda$$

Теорема 6.2.2: Для любого $\delta > 0$ вне любого круга $\{|\lambda| \le \delta\}$ может лежать лишь конечное число собственных значений компактного оператора A.

Доказательство: Проведём доказательство в частном случае E=H – гильбертово пространство, и A – компактный самосопряжённый оператор.

Предположим противное. Тогда, должна существовать $\delta_0>0$ и хотя бы счётное число $\left\{\lambda_n\right\}_{n=1}^\infty$ собственных значений вне этого круга.

Пусть e_n – нормированный собственный вектор для значения λ_n . Тогда $\left\{e_n\right\}_{n=1}^{\infty}$ – ограниченное множество, а значит $\left\{Ae_n\right\}_{n=1}^{\infty}$ – предкомпакт.

Однако, в то же время верно неравенство (здесь мы используем ортогональность собственных векторов для теоремы Пифагора, это свойство самосопряжённого оператора):

$$\forall n\neq m: \|Ae_n-Ae_m\|^2=\|\lambda_ne_n-\lambda_me_m\|^2=\lambda_n^2+\lambda_m^2>2\delta_0^2$$
 Получили явное противоречие с вполне ограниченностью. $\hfill\Box$

Утверждение 6.2.1: Если $\lambda \in \sigma(A) \setminus \{0\}$, то $\lambda \in \sigma_p(A)$.

Доказательство: По критерию принадлежности спектру, существует нормированная последовательность $\left\{x_n\right\}_{n=1}^{\infty},$ для которой есть предел $\lim_{n \to \infty} A_{\lambda} x_n = 0.$

Так как $\{x_n\}_{n=1}^{\infty}$ — ограниченное множество, то в силу компактности A можно выделить сходящуюся последовательность $\lim_{k\to\infty}Ax_{n_k}=y$. Тогда, мы в то же время имеем равенство

$$\lim\nolimits_{k\to\infty}Ax_{n_k}=\lim\nolimits_{k\to\infty}\lambda x_{n_k}=y$$

В силу непрерывности оператора A, его можно применить к последнему равенсту:

$$\lim_{k\to\infty}\lambda Ax_{n_k}=\lambda y=Ay\Leftrightarrow y\in {\rm Ker}\ A_\lambda$$

Важно отметить, что $y \neq 0$. Это следует из упомянутого предела $\lim \lambda x_{n_k} = y$. Стало быть, $\lambda \in \sigma_{p(A)}$.

6.3. Теорема Фредгольма для компактных самосопряжённых операторов

Утверждение 6.3.1 (Лемма об инвариантности): Пусть $M \subseteq H$ – подпространство, инвариантное относительно самосопряжённого оператора A (то есть $AM \subseteq M$). Тогда M^{\perp} тоже инвариантно относительно A.

Доказательство: Пусть $x \in M$. В силу условия, $Ax \in M$. Вопрос состоит в том, чтобы из $y \in M^{\perp}$ показать верность $Ay \in M^{\perp}$. Проверим это явно:

$$\forall x \in M: (x,Ay) = (Ax,y) = 0 \Rightarrow Ay \in M^{\perp}$$

Утверждение 6.3.2: Для компактного самосопряжённого оператора верно: $[{\rm Im}\ A_{\lambda}] = {\rm Im}\ A_{\lambda}$

Иначе говоря, образ A_{λ} замкнут.

Доказательство: Применим лемму об инвариантности. Заметим, что $M={\rm Ker}\ A_\lambda$ инвариантен относительно A и A_λ , а значит и $M^\perp=[{\rm Im}\ A_\lambda]$ инвариантен относительно тех же операторов.

Если мы докажем, что $A_{\lambda}\mid_{[\operatorname{Im}A_{\lambda}]}$ является сюръективным оператором, то всё будет доказано.

Действительно, получим тогда [Im A_{λ}] = $A_{\lambda([\operatorname{Im} A_{\lambda}])} \subseteq \operatorname{Im} A_{\lambda}$.

Обозначим $\tilde{A}:=A|_{[\operatorname{Im} A_{\lambda}]}.$ Это тоже компактный самосопряжённый оператор, действующий из $[\operatorname{Im} A_{\lambda}]$ в само себя. Заметим, как связаны собственные значения \tilde{A} с исходными:

$$\tilde{A}_{\lambda} = \tilde{A} - \lambda I = A|_{[\operatorname{Im} A_{\lambda}]} - \lambda I|_{[\operatorname{Im} A_{\lambda}]} = (A - \lambda I)|_{[\operatorname{Im} A_{\lambda}]} = \widetilde{A_{\lambda}}$$

А как мы знаем из теоремы Фредгольма для самосопряжённых операторов, все собственные вектора лежат в другой части прямого разложения.

Раз так, то $\lambda \notin \{0\} \cup \sigma_p(\tilde{A})$. А по одному из свойств СЗ компактного оператора, может быть верно $\lambda \in \rho(\tilde{A})$. Значит, оператор $\tilde{A}_{\lambda} = \widetilde{A}_{\lambda}$ биективен, что включает в себя его сюръективность.

Теорема 6.3.1: Пусть H – гильбертово пространство над \mathbb{C}, A – компактный самосопряжённый оператор и $\lambda \in \mathbb{C} \setminus \{0\}$. Тогда

$$H = \operatorname{Im} A_{\lambda} \oplus \operatorname{Ker} A_{\lambda}$$

Доказательство: Очевидно из комбинации теоремы Фредгольма для самосопряжённых операторов и утверждения о замкнутости образа компактного самосопряжённого оператора. □

6.4. Теорема Гильберта-Шмидта

Утверждение 6.4.1: Если $A \neq 0$, то у этого оператора существует собственное значение $\lambda \neq 0$.

Доказательство: Коль скоро $A \neq 0$ и мы рассматриваем компактный оператор, то $||A|| \neq 0$. Коль скоро A – самосопряжённый оператор, то можно воспользоваться теоремой о норме, по ней $||A|| = \max(|m_-|, |m_+|)$.

Так как $m_-, m_+ \in \sigma(A)$, то хотя бы одно из этих чисел ненулевое и является собственным значением, что и требовалось.

Теорема 6.4.1 (Гильберта - Шмидта): Пусть H — сепарабельное гильбертово пространство над полем $\mathbb{C},\ A$ — компактный самосопряжённый оператор. Тогда в H найдётся ортонормированный базис, состоящий из собственных векторов оператора A.

Доказательство: Построим нужный базис явным образом. Для этого упорядочим все собственные значения оператора A по модулю, причём включим в этот ряд копии этих значений столько раз, сколько соответствует размерности их собственного подпространства (в силу теоремы о конечности размерности собственных подпространств, это возможно). Получим ряд:

$$|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$$

Пусть v_n – нормированный собственный вектор, соответствующий λ_n (для равных СЗ берём ортонормированные вектора базиса подпространства).

Образуем ортонормированную систему $\{e_n\}_{n=1}^{\infty}$, полученную перенумерованием вектором v_n и добавлением собственных векторов, соответствующих $\lambda=0$ (конечно, если оно является СЗ).

Так как мы находимся в сепарабельном пространстве, то для того, чтобы эта система была базисом, достаточно доказать её полноту. Обозначим $M = \left[\langle \left\{e_n\right\}_{n=1}^{\infty} \rangle\right]$. Коль скоро это подпространство, можно применить теорему о проекции:

$$M \oplus M^\perp = H$$

Стало быть, $M=H\Leftrightarrow M^\perp=\{0\}$. Покажем, что M^\perp инвариантно относительно A.

В силу самосопряжённости A, достаточно это доказать для просто M (лемма об инвариантности).

Введём дополнительное обозначение $L\coloneqq \langle \{e_n\}_{n=1}^\infty \rangle$. Тогда $AL\subseteq L$ тривиальным образом. При этом оператор A компактен, а значит непрерывен, то есть

$$AM = A([L]) \subseteq [AL] \subseteq [L] = M$$

Исследуем $\tilde{A} \coloneqq A|_{M^{\perp}}$. Возможно 2 случая:

• $\tilde{A} = 0$. Этот факт можно записать следующим образом:

$$\forall x \in M^{\perp}: \ \tilde{A}x = 0 \Rightarrow x \in \operatorname{Ker} \ \tilde{A}$$

Стало быть, $M^{\perp} \subseteq \text{Ker } \tilde{A}$. Но так как мы рассмотрели сужение на M^{\perp} , то по определению M мы оставили $\text{Ker } A \setminus \{0\}$ за бортом, то есть $\text{Ker } \tilde{A} = \{0\} = M^{\perp}$.

• $\tilde{A} \neq 0$. Предположим противное: $M^{\perp} \neq \{0\}$.

По доказанной выше лемме, у \tilde{A} существует ненулевое СЗ λ . Обозначим за e – соответствующий нормированный собственный вектор, то есть $\tilde{A}e=\lambda e$, но ведь тогда и $Ae=\lambda e$. Получили противоречие с определением M.

7. Элементы нелинейного анализа

7.1. Производная Фреше, производная Гато. Формула конечных приращений

Определение 7.1.1: Пусть $D\subseteq E_1$ – открытое подмножество, $F:D\to E_2$. Тогда говорят, что F дифференцируема по Фреше в точке $x_0\in D$, если существует оператор $A\in\mathcal{L}(E_1,E_2)$ такой, что приращение можно представить в следующем виде:

$$\Delta F = F(x_0+h) - F(x_0) = Ah + o(\|h\|), h \rightarrow 0$$

Определение 7.1.2: Пусть $F:D\to E_2$ дифференцируема по Фреше в точке $x_0\in D$. Тогда соответствующий оператор $A\in\mathcal{L}(E_1,E_2)$ называется **производной (Фреше)** F в точке $x_0\in D$:

$$F'(x_0)\coloneqq A$$

Определение 7.1.3: Пусть $F: D \to E_2$ дифференцируема по Фреше в точке $x_0 \in D$. Тогда значение Ah называется **дифференциалом** F в точке x_0 по приращению h:

$$\mathrm{d}F(x_0,h)\coloneqq Ah=F'(x_0)h=F'(x_0)[h]$$

Утверждение 7.1.1: Пусть
$$F \in \mathcal{L}(E_1, E_2)$$
. Тогда $\forall x \in E_1: \ F'(x) = F$

Доказательство: Действительно,

$$\forall x_0 \in E_1: \ F[x_0+h] - F[x_0] = F[h] + 0$$
 To есть $A = F$ и $0 = o(\|h\|)$

Утверждение 7.1.2: Если *F* дифференцируема по Фреше, то она непрерывна.

Доказательство: Действительно, предел правой части из определения равен нулю при стремлении $h \to 0$, что в точности означает непрерывность.

Теорема 7.1.1 (Дифференцирование сложной функции): Пусть $F: E_1 \to$ $E_2,\;G:E_2 o E_3$ дифференцируемые по Фреше операторы. Тогда $H=G\circ F$ также дифференцируема по Фреше, причём

$$H'(x_0)=G'(F(x_0))\circ F'(x_0)$$

Доказательство: Распишем дифференцируемость F в точке $x_0 \in E_1$:

$$F(x_0+h) - F(x_0) = \Delta F = F'(x_0)\Delta x + \varepsilon_1(\Delta x) \|\Delta x\|, \quad \lim_{\Delta x \to 0} \varepsilon_1(\Delta x) = 0$$

Аналогично распишем для G:

$$G(y_0+t)-G(y_0)=\Delta G=G'(y_0)\Delta y+\varepsilon_2(\Delta y)\|\Delta y\|,\ \lim_{\Delta y\to 0}\varepsilon_2(\Delta y)=0$$

В силу непрерывности, мы можем рассмотреть $t = F(x_0 + h) - F(x_0)$. Тогда $t \to 0$. Более того, мы можем подставить первую формулу во вторую: $\Delta G = G'(y_0)[F'(x_0)\Delta x + \varepsilon_1(\Delta x)\|\Delta x\|] + \varepsilon_2(\Delta y)\|\Delta y\|, \Delta x \to 0$ Если мы покажем, что $G'(y_0)\varepsilon_1(\Delta x)\|\Delta x\| + \varepsilon_2(\Delta y)\|\Delta y\| = o(\|\Delta x\|)$, то всё

$$\Delta G = G'(y_0)[F'(x_0)\Delta x + \varepsilon_1(\Delta x)\|\Delta x\|] + \varepsilon_2(\Delta y)\|\Delta y\|, \Delta x \to 0$$

будет доказано.

Для первого слагаемого утверждаем, что оператор $G'(y_0)$ линеен и даже непрерывен, а значит

$$\varepsilon_1(\Delta x)\underset{\Delta x\to 0}{\to}0\Rightarrow G'(y_0)[\varepsilon_1(\Delta x)]\underset{\Delta x\to 0}{\to}0$$
 Для второого – распишем $\|\Delta y\|$:

$$\|\Delta y\| = \|F'(x_0)[\Delta x] + \varepsilon_1(\Delta x)\|\Delta x\|\| \leq (\|F'(x_0)\| + \|\varepsilon_1(\Delta x)\|)\|\Delta x\|$$

Получили, что $\|\Delta y\| = O(\|\Delta x\|), \Delta x \to 0$. А так как $\varepsilon_2(\Delta y) \underset{\Delta x \to 0}{\to} 0$, то получили произведение бесконечно малой на ограниченную и всё доказали. 🛚

Определение 7.1.4: Дифференциалом по Гато функции F в точке $x_0 \in$ D по приращению h называется следующее значение:

$$DF(x_0, h) := \frac{\mathrm{d}}{\mathrm{d}t} F(x_0 + th)|_{t=0}$$

Определение 7.1.5: Если для дифференциала по Гато функции F в точке x_0 существует оператор $A \in \mathcal{L}(E_1, E_2)$ такой, что

$$DF(x_0, h) = Ah$$

то он называется производной по Гато.

Теорема 7.1.2 (о среднем): Пусть $D \subseteq E_1$ – выпуклое открытое множество, F – дифференцируема по Фреше на D. Тогда верно неравенство:

$$\forall x_0,x_1\in D:\ \|F(x_1)-F(x_0)\|\leq \sup_{y\in s(x_0,x_1)} \|F'(y)\|\|x_1-x_0\|$$
 где $s(x_0,x_1)$ – интервал от x_0 до $x_1.$

Доказательство: Вся идея в том, чтобы построить сквозное отображение

$$\varphi:[0,1]\to E_1\to E_2\to\mathbb{R}$$

и применить к нему теорему Лагранжа.

Итак, $x(t) = x_0 + t(x_1 - x_0)$, а $f \in E_2^*$ – произвольный функционал. Определим φ следующим образом:

$$\varphi(t) = (f \circ F \circ x)(t)$$

Каждая часть композиции является дифференцируемой по Фреше функцией. Стало быть, и их комбинация дифферецнируема:

$$\varphi'(t) = f'(F(x(t))) \circ F'(x(t)) \circ x'(t) = f[F'(x(t))[x'(t)]] = f[F'(x(t))[x_1 - x_0]]$$
 Теперь применим теорему Лагранжа для всего отрезка $[0, 1]$:

$$|\varphi(1) - \varphi(0)| = |\varphi'(\xi)|(1-0)$$

Разберёмся с левой частью. Она переписывается следующим образом: $|\varphi(1) - \varphi(0)| = |f[F(x_1)] - f[F(x_0)]| =$

$$|f[F(x_1) - F(x_0)]| \le \|f\| \|F(x_1) - F(x_0)\|$$

В этот момент нужно вспомнить теорему Хана-Банаха. Одним из её следствий было то, что для произвольного ненулевого элемента можно подобрать функционал с единичной нормой, который на этом элементе принимает значение – норму этого элемента.

Воспользуемся этим следствием, чтобы найти f по точке $F(x_1) - F(x_0)$. Тогда неравенство выше превращается в равенство:

$$\exists f \in E_2^*: \ |\varphi(1) - \varphi(0)| = |f[F(x_1) - F(x_0)]| = \|F(x_1) - F(x_0)\|$$

Итак, соберём всё вместе:
$$|\varphi(1)-\varphi(0)|=\|F(x_1)-F(x_0)\|=|f(F'(x(\xi)))[x_1-x_0]|\leq \|f\|\|F'(x(\xi))\|\|x-x_0\|\leq \sup_{\|F\|\|F'(x(\xi))\|\|x-x_0\|}\|F'(x(\xi))\|\|x-x_0\|\leq \sup_{\|F\|\|F'(x(\xi))\|\|x-x_0\|}\|F'(x(\xi))\|\|x-x_0\|$$

 $\|f\|\|F'(x(\xi))\|\|x_1-x_0\|\leq \sup_{y\in s(x_0,x_1)} \|F'(y)\|\|x_1-x_0\|$

8. Производная Фурье и свёртка в пространствах $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$

8.1. Определения и основные свойства. Формула умножения. Преобразование Фурье свёртки.

Определение 8.1.1: Пусть $f \in L_1(\mathbb{R})$. Тогда преобразованием Фурье функции f называется функция, заданная следующим образом:

$$\hat{f}(y) = F[f](y) \coloneqq \int_{\mathbb{R}} f(x)e^{-ixy} \,\mathrm{d}\mu(x)$$

Утверждение 8.1.1: Преобразование Фурье отображает функции из $L_1(\mathbb{R})$ в $B(\mathbb{R})$ – множество ограниченных функций.

Доказательство:

$$|F[f](y)| \leq \int_{\mathbb{R}} |f(x)| \cdot 1 \operatorname{d}\!\mu(x) = \left\|f\right\|_{L_1} \Rightarrow \left\|F[f]\right\|_{L_\infty} \leq \left\|f\right\|_{L_1}$$

Утверждение 8.1.2: Преобразование Фурье отображает функции из $L_1(\mathbb{R})$ в $C_0(\mathbb{R})$ – множество непрерывных функций, стремящеся к нулю на бесконечности.

Доказательство: Рассмотрим преобразование Фурье индикатора отрезка: $\widehat{\mathbb{I}_{[a,b]}}(y) = \frac{e^{-iay} - e^{-iby}}{iy} \in C_0(\mathbb{R})$ А как мы знаем, любая функция из $L_1(\mathbb{R})$ приближается ступенчатыми.

А как мы знаем, любая функция из $L_1(\mathbb{R})$ приближается ступенчатыми. Значит преобразование Фурье любой ступенчатой функции лежит в $C_0(\mathbb{R})$. Более того, F – непрерывный оператор, и поэтому образы будут равеномерно сходится.

Утверждение 8.1.3 (Формула умножения): Пусть
$$f,g\in L_1(\mathbb{R})$$
. Тогда $\int_{\mathbb{R}} f(y)\hat{g}(y)\,\mathrm{d}\mu(y)=\int_{\mathbb{R}} \hat{f}(y)g(y)\,\mathrm{d}\mu(y)$

Замечание 8.1.1: Для применения теоремы Фубини (о перестановке интегралов), мы должны доказать, что хотя бы один из повторных интегралов конечен.

Доказательство: Распишем преобразование Фурье по определению:
$$\left| \int_{\mathbb{R}} f(y) \hat{g}(y) \, \mathrm{d}\mu(y) \right| \leq \iint_{\mathbb{R} \times \mathbb{R}} \left| f(y) g(x) e^{-ixy} \right| \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) = \\ \iint_{\mathbb{R} \times \mathbb{R}} \left| f(y) g(x) \right| \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \leq \left\| g \right\|_{L_1} \int_{\mathbb{R}} \left| f(y) \right| \mathrm{d}\mu(y) \leq \left\| f \right\|_{L_1} \left\| g \right\|_{L_1} < +\infty$$

Определение 8.1.2: Пусть $f,g\in L_1(\mathbb{R})$. Тогда свёрткой функций f и g называется функция:

$$(f*g)(x) = \int_{\mathbb{R}} f(y) f(x-y) \,\mathrm{d}\mu(y)$$

Утверждение 8.1.4: Свёртка функций $f, g \in L_1(\mathbb{R})$ тоже лежит в пространстве $L_1(\mathbb{R})$.

Доказательство: Докажем, что ограничен интеграл от модуля свёртки:
$$\iint_{\mathbb{R}\times\mathbb{R}} |f(y)g(x-y)| \,\mathrm{d}\mu(y) \,\mathrm{d}\mu(x) \stackrel{\Phi \text{убини}}{=} \iint_{\mathbb{R}\times\mathbb{R}} |f(y)g(x-y)| \,\mathrm{d}\mu(x) \,\mathrm{d}\mu(y) = \\ \int_{\mathbb{R}} |f(y)| \int_{\mathbb{R}} |g(x-y)| \,\mathrm{d}\mu(x) \,\mathrm{d}\mu(y) = \int_{\mathbb{R}} |f(y)| \int_{\mathbb{R}} |g(x-y)| \,\mathrm{d}\mu(x-y) \,\mathrm{d}\mu(y) = \\ \int_{\mathbb{R}} |f(y)| \,\mathrm{d}\mu(y) \int_{\mathbb{R}} |g(t)| \,\mathrm{d}\mu(t) = \|f\|_{L_1} \|g\|_{L_1} < +\infty$$

Утверждение 8.1.5 (Преобразование Фурье свёртки): Пусть $f,g\in L_1(\mathbb{R}).$ Тогда верна формула:

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}$$

Доказательство: Распишем преобразование Фурье от свёртки:

$$\widehat{f*g}(y)=\int_{\mathbb{R}}(f*g)(x)e^{-ixy}\,\mathrm{d}\mu(x)=\iint_{\mathbb{R}\times\mathbb{R}}f(\xi)g(x-\xi)e^{-ixy}\,\mathrm{d}\mu(\xi)\,\mathrm{d}\mu(x)$$

Выше мы уже доказали, что свёртка «хороших» функций лежит в $L_1(\mathbb{R})$, а значит мы можем применить теорему Фубини. Итак:

а значит мы можем применить теорему Фубини. Итак:
$$\widehat{f*g}(y) = \int_{\mathbb{R}} f(\xi) \int_{\mathbb{R}} g(x-\xi) e^{-ixy} \,\mathrm{d}\mu(x) \,\mathrm{d}\mu(\xi) \stackrel{1=e^{i\xi y}e^{-i\xi y}}{=} \int_{\mathbb{R}} f(\xi) e^{-i\xi y} \int_{\mathbb{R}} g(x-\xi) e^{-i(x-\xi)y} \,\mathrm{d}\mu(x-\xi) \,\mathrm{d}\mu(\xi) = \widehat{f}(y) \cdot \widehat{g}(y)$$

Определение 8.1.3: **Пространством Шварца** $S \subset L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ называется множество бесконечно дифференцируеых функций, которые вместе со всеми своими производными убывают на бесконечности быстрее любой степени:

$$S = \left\{ f \in C^{\infty(\mathbb{R})} \mid \forall n \in \mathbb{N} \cup \{0\}, m \in \mathbb{N} : \lim_{x \to \infty} x^m f^{(n)}(x) = 0 \right\}$$

Утверждение 8.1.6: Если $f \in L_1(\mathbb{R})$ и $\forall p \in \mathbb{N} : x^p f(x) \in L_1(\mathbb{R})$, то преобразование фурье g = F[f] дифференцируемо бесконечное число раз на \mathbb{R} .

Доказательство: Функции пространства Шварца можно описать эквивалентным образом:

$$\forall f \in S: \exists C_{n,m} \in \mathbb{R}_+: \ \forall x \in \mathbb{R}: \left|x^m f^{(n)}(x)\right| \leq C_{n,m}$$

Покажем, что из этого факта следует $x^p f(x) \in L_1(\mathbb{R})$ при любом $p \in \mathbb{N}$. Действительно, можно написать следующее:

$$\forall m \in \mathbb{N}: \exists C_{0,m+2} \in R_+: \ \forall x \in \mathbb{R}: |x^m f(x)| \leq \frac{C_{0,m+2}}{x^2}$$

Отсюда тривиальным образом получаем абсолютную интегрируемость. Стало быть, преобразование Фурье g = F[f] обладает всеми производными.

Чтобы доказать, что они тоже являются функциями из пространства Шварца, воспользуемся следующим равенством:

$$(iy)^q g^{(m)}(y) = (-i)^q F[(x^m f(x))^{(q)}](y)$$

Из непрерывности преобразования Фурье, требуемое установлено.

Утверждение 8.1.7: Преобразование Фурье на S обладает следующими свойствами:

- 1. $F: S \to S$ биекция
- 2. $F: S \to S$ изометрия
- 3. $F^4 = I$ (Более того, $F^2[f](x) = f(-x)$)

Доказательство:

1. Достаточно показать, что для любой $g \in S$ найдётся прообраз по преобразованию Фурье. Посмотрим на образ:

$$f^*(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) e^{-iyx} \, \mathrm{d}\mu(y)$$

Положим $f(x) = f^*(-x)$. Из уже доказанного, $f^* \in S$, а значит и $f \in S$. Осталось произвести замену переменной:

$$S$$
. Осталось произвести замену переменной:
$$g(y)=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f^*(x)e^{ixy}=\int_{\mathbb{R}}f(x)e^{-ixy}\,\mathrm{d}\mu(x)=F[f](y)$$

2. Распишем скалярное произведение с использованием формулы обращения (без доказательства):

$$(f,g) = \int_{\mathbb{R}} f(x) \overline{g(x)} \, \mathrm{d}\mu(x) = \int_{\mathbb{R}} f(x) \overline{\frac{1}{\sqrt{2\pi}}} \int_{\mathbb{R}} \widehat{g}(y) e^{ixy} \, \mathrm{d}\mu(y) \, \mathrm{d}\mu(x) = \frac{1}{\sqrt{2\pi}} \iint_{\mathbb{R} \times \mathbb{R}} f(x) \overline{\widehat{g}(y)} e^{-ixy} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) = \int_{\mathbb{R}} \overline{\widehat{g}(y)} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixy} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) = \left(\widehat{f}, \widehat{g}\right)$$

3. Заметим, что

$$F[f](y) = F^{-1}[f](-y)$$

Так как преобразование Фурье биективно, можно применить его к полученному равенству и получить требуемое.

Замечание 8.1.2: Замыкание S – это пространство $L_2(\mathbb{R})$.

Утверждение 8.1.8: Преобразование Фурье продолжается на $L_2(\mathbb{R})$. Более того, $F[L_2(\mathbb{R})] \subseteq L_2(\mathbb{R})$

Доказательство: Как известно из предыдущего семестра, линейный ограниченный оператор, определённый на линейном многообразии, продолжается на его замыкание с сохранением нормы. Именно это тут и происходит. □

8.2. Операторы Гильберта-Шмидта

Определение 8.2.1: Оператором Гильберта-Шмидта называется част-

ный случай оператора Фредгольма в $L_2[a,b]$: $(Af)(x)=\int_a^b K(x,t)f(t)\,\mathrm{d}\mu(t),\quad K\in L_2\big([a,b]^2\big)$

Утверждение 8.2.1: Оператор Гильберта-Шмидта отображает в $L_2[a,b]$

Доказательство: Раз $K \in L_2 \left(\left[a,b \right]^2 \right)$, то как функция по одному из своих

аргументов, она тоже будет из $L_2[a,b]$: $\left|(Af)(x)\right|^2 = \left|\int_a^b K(x,t)f(t)\,\mathrm{d}\mu(t)\right|^2 = \left|(K(k,t),f(t))\right|^2 \overset{\mathrm{KBIII}}{\leq} \left\|f\right\|_{L_2}^2 \left\|K(x,\cdot)\right\|_{L_2}^2 < \infty$

Теорема 8.2.1: Оператор Гильберта-Шмидта является компактным оператором на $L_2[a,b]$.

му в нём есть ортонормированный базис $\{\varphi_n\}_{n=1}^{\infty}$.

Идея состоит в том, чтобы найти последовательность компактных операторов $\{A_N\}_{N=1}^\infty$, которые сходятся по норме к A.

Итак, можно разложить ядро K по вышеупомянутому базису: $K(x,t) = \sum_{n,m=1}^\infty c_{n,m} \varphi_n(x) \varphi_m(t)$

$$K(x,t) = \sum_{n,m=1}^{\infty} c_{n,m} \varphi_n(x) \varphi_m(t)$$

$$K_{N(x,t)} = \sum_{n,m=1}^{N} c_{n,m} \varphi_n(x) \varphi_m(t)$$

Возьмём за отдельные ядра – «срезки» от ряда выше: $K_{N(x,t)} = \sum_{n,m=1}^N c_{n,m} \varphi_n(x) \varphi_m(t)$ Тогда, тривиальным образом, $A_N f(x) = \int_a^b K_{N(x,t)} f(t) \, \mathrm{d}\mu(t)$, который является компактным из-за конечномерности образа.

Осталось вспомнить, что норма оператора Фредгольма оценивается сверху 2-нормой ядра, а значит:

$$||A - A_n|| \le ||K - K_n|| \underset{N \to \infty}{\longrightarrow} 0$$

Определение 8.2.2: Пусть H – гильбертово пространство, $\left\{e_n\right\}_{n=1}^{\infty}$ – его базис. Классом операторов Гильберта-Шмидта называется следующее множество операторов $A\in\{L_n\}_{n=1}^\infty(H)$ таких, что $\sum_{n=1}^\infty \|Ae_n\|^2<+\infty$

$$\sum_{n=1}^{\infty} \|Ae_n\|^2 < +\infty$$