Solutions for Assignment #3: Mathematical Statistics

Beomjo Park & Daeyoung Lim

Dept. of Statistics, Korea University

Problem 1

Let X_r have a t-distribution with $r(\geq 3)$ degrees of freedom: $X_r \sim t(r)$. Compute $E(X_r^2)$.

Note that

$$X_r \equiv \frac{Z}{\sqrt{W/r}}, \quad Z \sim N(0, 1) \perp \!\!\! \perp W \sim \chi^2(r)$$

Then,

$$\begin{split} E(X_r^2) &= E\left(\frac{Z^2}{W/r}\right) = r \times E\left(Z^2\right) E\left(\frac{1}{W}\right) & \left(\because Z^2 \perp\!\!\!\perp 1/W\right) \\ &= r \times E\left(\frac{1}{W}\right) = \frac{r}{r-2} & \left(\because Z^2 \sim \chi^2(1)\right) \end{split}$$

From the fact that

$$\begin{split} E\left(\frac{1}{W}\right) &= \int_{0}^{\infty} \frac{1}{w} \frac{1}{2^{r/2} \Gamma(r/2)} w^{r/2-1} e^{-w/2} dw = \frac{1}{2 \cdot (r/2-1)} \underbrace{\int_{0}^{\infty} \frac{1}{2^{(r-2)/2} \Gamma((r-2)/2)} w^{(r-2)/2-1} e^{-w/2} dw}_{=1} \\ &= \frac{1}{r-2} \end{split}$$

Problem 2

Suppose that W_1 and W_2 are independent χ^2 distributed random variables with ν_1 and ν_2 degrees of freedom, respectively. According to Definition 7.3,

$$F = \frac{W_1/\nu_1}{W_2/\nu_2}$$

has an F distribution with ν_1 and ν_2 numerator and denominator degrees of freedom, respectively. Use the preceding structure of F, the independence of W_1 and W_2 , and the result summarized in Exercise 7.30(b) to show (a) $E(F) = \nu_2/(\nu_2 - 2)$, if $\nu_2 > 2$.

(b)
$$V(F) = [2\nu_2^2(\nu_1 + \nu_2 - 2)]/[\nu_1(\nu_2 - 2)^2(\nu_2 - 4)],$$
 if $\nu_2 > 4.$

Problem 3

Suppose that Z has a standard normal distribution, $Z \sim N(0,1)$, Y has an exponential distribution with mean 2, $Y \sim \text{Exp}(2)$, and that Z and Y are independent. Let $T = Z/\sqrt{Y/2}$. Find the p.d.f (probability density function) of T.

Problem 4

Let X_1, \ldots, X_n be a random sample from a $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_m be a random sample from a $N(\mu_2, \sigma^2)$, independent with X_1, \ldots, X_n .

(a) Define

$$W = \frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\sum_{i=1}^{m} (Y_i - \overline{Y}_m)^2}$$

Compute the expected value of W, E(W).

(b) Let $\overline{X}_{n-1} = \frac{1}{n-1}\sum_{i=1}^{n-1}X_i$, $\overline{Y}_m = \frac{1}{m}\sum_{i=1}^mY_i$ and $T_m = \left[\frac{1}{n}\sum_{i=1}^m(Y_i-\overline{Y}_m)^2\right]^{1/2}$. Determine the value of a constant k such that the random variable $k(X_n-\overline{X}_{n-1})/T_m$ will have a t distribution with an appropriate degree of freedom.

Problem 5

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ with $-\infty < \mu < \infty$ and $\sigma^2 > 0$ unknown. Define $Y = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$. Compute the expected value of Y^2 , $E(Y^2)$.