

INSTITUTO FEDERAL DE MINAS GERAIS Campus Formiga Curso Ciência da Computação Estrutura de Dados I

TRABALHO DE ESTRUTURA DE DADOS I

Listas, Pilhas e Filas – Simulação

Este documento apresenta a especificação do trabalho prático da disciplina de Estrutura de Dados I, no valor de 30 pontos. O trabalho deverá ser realizado individualmente, consiste na modelagem e implementação computacional sobre uma situação fictícia vivenciada em um porto.

1 Contexto

O trabalho consiste na implementação computacional de um modelo de simulação conceitual que aborda operações portuárias de um porto fictício inspirado no Terminal de *Puerto Nuevo* (Buenos Aires - Argentina). Este tópico apresenta em alto nível o processo de carregamento de contêineres do porto, descrevendo brevemente o processo, equipamentos e recursos envolvidos. Mais adiante cenários serão considerados para a modelagem e implementação.

As Figuras 1 e 2 apresentam uma visão em perspectiva e em planta do Terminal, respectivamente.

Figura 1: Visão em perspectiva do Puerto Nuevo

Figura 2: Visão em planta do Puerto Nuevo

2 Processos

A principal operação considerada neste trabalho será a movimentação dos navios e dos contêineres em um terminal de contêineres. De forma bem objetiva serão apresentados os principais elementos envolvidos em uma operação portuária.

Um terminal de contêineres é definido como uma área aberta em um ancoradouro onde navios chegam e ancoram em filas para permitir que contêineres sejam carregados (empilhados) e/ou descarregados (desempilhados) e transportados para um pátio de armazenamento. Um terminal de contêineres geralmente concentra eventos que envolvem a troca de contêineres entre um navio porta-contentores e diferentes modos de transporte em terra. Um navio porta-contentores descarrega contêineres de importação, contêineres vazios ou contêineres cheios no porto, e no retorno transporta contêineres de exportação cheios de produtos de fabricantes locais para outros destinos. Existem diversas atividades que ocorrem em um terminal de contêineres. O processo geral de carga e descarga de contêineres pode ser dividido em vários subprocessos, a saber: chegada do navio ao porto, carregamento e descarregamento do navio, transporte de contêineres, empilhamento no pátio, transporte em terminal intermodal ou outras modalidades de transporte (como transporte rodoviário ou ferroviário).

INSTITUTO FEDERAL DE MINAS GERAIS Campus Formiga Curso Ciência da Computação Estrutura de Dados I

Quando um navio chega ao porto, gruas de cais içam os contêineres do convés e da escotilha do navio. Em seguida os contêineres são transferidos das gruas para veículos que viajam entre o navio e as pilhas de contêineres. Tais pilhas consistem de um número de travessas, onde os contêineres permanecem por um dado período. Equipamentos como gruas (*yard cranes*) e veículos *straddle carries* servem às travessas. Um *straddle carrier* é um tipo de veículo que pode tanto transportar contêineres, quanto armazená-los nas pilhas. Também é possível utilizar equipamentos dedicados para transportar os contêineres. Se um veículo chega na pilha ou ele descarrega sua carga, ou uma grua iça o contêiner do veículo e o armazena na pilha. Depois de algum tempo os contêineres são retomados da pilha por gruas e transportado por veículos para modais de transporte tais como barcaças, outros navios, caminhões rodoviários e trens. Para carregar contêineres de exportação no navio o mesmo processo ocorre, porém na ordem inversa.

3 Descrição do trabalho

Suponha um pequeno porto que possui 4 (quatro) áreas de atracamento para navios, numeradas 1, 2, 3 e 4, em que os navios aguardam em filas (quatro) para que possam descarregar os contêiners que serão içados por gruas. Cada navio tem a capacidade máxima de carregar até 16 contêiners, que podem ser distribuídos em até 4 pilhas. Assim que um navio entra em uma das filas para o atracamento, ele recebe um número de identificação ID, um outro número inteiro que indica o número de unidades de tempo que o navio permaneceu na fila e a quantidade de contêiners que deverá descarregar.

Para cada área de atracamento existe uma grua que içará os contêiners dos navios e deverá empilhálos em uma das 5 (cinco) travessas disponíveis com capacidade de até 5 contêiners empilhados.

Quando uma travessa atinge sua capacidade máxima um veículo de transporte deverá retirar a travessa, que contém a pilha de contêiners, e levá-la para um pátio de armazenamento. Há um veículo de transporte para cada área de atracamento e ele gasta duas unidades de tempo para descarregar cada travessa.

A Simulação

Todo o processo deverá ser controlado por unidade de tempo. A cada unidade de tempo, de 0 a 3 navios podem chegar em uma das 4 (quatro) filas para atracamento, que deverão manter uma uniformidade de tamanho e uma quantidade de contêiners (de 4 a 16) deve ser gerada para cada navio. Tente projetar um algoritmo que não permita o crescimento excessivo das filas. Coloque os navios sempre no final das filas, que não devem ser reordenadas, pois não há necessidade de prioridade.

Quando o navio é atracado em uma das áreas cada grua deverá içar os contêiners (um a um - gasta-se 1 unidade de tempo para descarregar cada contêiner) e depositá-los nas travessas controlando o seu tamanho. O seu controle não deverá permitir que as travessas fiquem cheias por mais de uma unidade de tempo pois assim os navios ficarão esperando muito tempo na fila de espera para o atracamento.

A saída do programa deverá indicar o que ocorre a cada unidade de tempo. Periodicamente imprima:

- a) o ID dos navios que estão na fila;
- b) o tempo médio de espera para cada área de atracamento;
- c) a situação das áreas de atracamento (quantidade de contêiners em cada travessa); e

INSTITUTO FEDERAL DE MINAS GERAIS Campus Formiga Curso Ciência da Computação Estrutura de Dados I

d) a movimentação dos veículos que transportaram as travessas para o pátio de armazenamento, ou seja, quantas vezes eles executaram o transporte das travessas do atracamento para o pátio..

A saída do programa deve ser autoexplicativa e fácil de entender.

A entrada poderia ser criada manualmente, mas o melhor é utilizar um gerador de números aleatórios. Para cada unidade de tempo, a entrada deve ter as seguintes informações:

- a) número de navios (0-3) chegando nas filas;
- b) número de contêiners (4-16) em cada navio que irá atracar.

Data de entrega – Parte 01: 12 de maio de 2023

Apresentações ocorrerão conforme cronograma que será disponibilizado.

O que deve ser apresentado:

- a) Descrição do funcionamento do porto (utilize desenhos para uma melhor explicação), das estruturas de dados utilizadas (TAD's) e as decisões tomadas relativas aos casos e detalhes de especificação que porventura estejam omissos no enunciado;
 - b) Código dos programas (C, C++ ou Java) devidamente comentado.