CODIFICADORES

CODIFICADORES

Los codificadores nos permiten "compactar" la información, generando un código de salida a partir de la información de entrada.

Circuitos combinacionales de mediana escala de integración (MSI) con "n" salidas y "2" entradas. Y cuya estructura es tal que al activarse una de sus entradas (ya sea con 0's o con 1's) en la salida aparece la combinación binaria (o su complementaria) correspondiente al número decimal asignado a dicha entrada.

E_3	E_2	E_1	E_0	C1	C2	Botón
0	0	0	1	0	0	CD
0	0	1	0	0	1	TAPE
0	1	0	0	1	0	RADIO
1	0	0	0	1	1	DISCO

La función habitual de un codificador es la de convertir cualquier información digitalizada que entra al sistema en su equivalente en binario natural o en su complementario.

Hay dos tipos de codificadores

- codificadores sin prioridad
- codificadores con prioridad.

Codificadores sin prioridad

Aquellos en los que no pueden activarse simultáneamente más de una entrada, puesto que si lo hacen aparecerían códigos erróneos en las salidas

/EN	l ₇	l ₆	l ₅	I ₄	l ₃	l ₂	I ₁	I _o	02	01	O ₀
1	X	X	X	X	Χ	Χ	Χ	X	0	0	0 no funciona
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	1	0	1
0	0	1	0	0	0	0	0	0	1	1	0
0	1	0	0	0	0	0	0	0	1	1	1

I1	12	I3	I4	15	I6	I7	18	19	A	В	C	D
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0_	0	0	0	1	0_	0	1

Codificadores con prioridad

Aquellos en los que se puede producir la activación simultánea de varias entradas, apareciendo en la salida el código correspondiente a la entrada de más peso significativo.

codificador de cuatro entradas y dos salidas, con prioridad

E ₃	E ₂	E ₁	E _o	A_1	A ₀	
0	0	0	0	0	0	
0	0	0	1	0	0	(0)
0	0	1	0	0	1	(1)
0	0	1	1	0	1	(1)
0	1	0	0	1	0	
0	1	0	1	1	0	(2)
0	1	1	0	1	0	(2)
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	1	1	
1	0	1	0	1	1	
1	0	1	1	1	1	(2)
1	1	0	0	1	1	(3)
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

Formas comerciales

74x147: codificador de prioridad **10** a **4**

74x148: codificador de prioridad 8 a 3

CD4532: CMOS 8-Bit Priority Encoder

EI	17	16	15	14	13	12	l1	10	A2	A1	Α0	GS	EO
1	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	0
	0	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	1
	1	0	Х	Х	Х	Х	Х	Х	0	0	1	0	1
	1	1	0	Х	Х	Х	Х	Х	0	1	0	0	1
0	1	1	1	0	Х	Х	Х	Х	0	1	1	0	1
	1	1	1	1	0	Х	Х	Х	1	0	0	0	1
	1	1	1	1	1	0	Х	Х	1	0	1	0	1
	1	1	1	1	1	1	0	Х	1	1	0	0	1
	1	1	1	1	1	1	1	0	1	1	1	0	1

codificador decimal con prioridad 74147

/I1	/I2	/I3	/I4	/15	/16	/17	/I8	/19	/A	/B	/C	/D
X	X	X	X	X	X	X	X	0	0	1	1	0
X	X	X	X	X	X	X	0	1	0	1	1	1
X	X	X	X	X	X	0	1	1	1	0	0	0
X	X	X	X	X	0	1	1	1	1	0	0	1
X	X	X	X	0	1	1	1	1	1	0	1	0
X	X	X	0	1	1	1	1	1	1	0	1	1
X	X	0	1	1	1	1	1	1	1	1	0	0
X	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0
1	1	1	_1	1	1	1	1	1	1	1	1	1

3. MULTIPLEXORES

3. MULTIPLEXORES

Circuitos combinacionales M.S.I. (mediana escala de integración) con n entradas de selección y 2ⁿ entradas de información, una entrada de habilitación (I) y una salida de información.

Un **multiplexor** es un circuito combinacional al que entran varios canales de datos, y sólo uno de ellos, el que hallamos seleccionado, es el que aparece por la salida. Es decir, es un circuito que nos permite *seleccionar* qué datos pasan a través de dicho componente

Para denominar a los multiplexores es habitual hacer referencia al número de entradas de datos y salidas, así un multiplexor de 8 entradas de información, 3 de selección y 1 salida es un multiplexor 8:1

Se denomina **multiplexor 2:1** a aquel que como su propio nombre indica, tiene **dos** entradas de datos $2^n = 2$ y una entrada de selección n = 1.

$S I_0 I_1$	F
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

SI_0I_1	F
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$$\mathbf{F} = \mathbf{S'I_0} + \mathbf{SI_1}$$

Multiplexor 4:1 tiene cuatro entradas de datos y dos entrada de selección. Es decir, 2n = 4 entradas de datos, siendo n = 2 entradas de selección.

$S_1 S_0$		$\left \mathbf{I_3} \mathbf{I_2} \mathbf{I_1} \mathbf{I_0} \right $	F
0 0	Input 0	XXX0	0
0 0	input o	X X X 1	1
01		XXOX	0
01	Input 1	X X 1 X	1
10	T	X O X X	0
10	Input 2	X 1 X X	1
11	Input 3	0 X X X	0
11		1 X X X	1

74157 Cuatro mux 2-1 con señal strobe

74158 Cuatro mux 2-1 con señal strobe salidas invertidas

74153 Dos mux 4-1 con strobe

74151 Un mux de 8 a 1 (salida invertida y sin invertir),

con strobe

74152 Un mux de 8 a 1 (salida invertida)

74150 Un mux de 16 a 1 con strobe

74151 Mux 8-1 (salida invertida y sin invertir)

Cuatro mux 2-1 salidas invertidas

74153 Dos mux 4-1

74157 Cuatro mux 2-1

74153 Dos mux 4-1

Multiplexor 74150

- Consta de 16 entradas de datos.
- Tiene una única salida invertida w (pin 10).
- Posee cuatro entradas selectoras de datos de A a D (pin 15 al 11).
- Tiene una entrada de habilitación denominada STROBE que se considera como un conmutador ON-OFF.

D	С	В	Α	Strobe	w
				30000	
Х	Х	Х	Х	Н	Н
L	L	L	L	L	<u>E0</u>
L	L	L	Н	L	<u>E1</u>
L	L	Н	L	L	<u>E2</u>
L	L	Н	Н	L	<u>E3</u>
L	Н	L	L	L	<u>E4</u>
L	Н	L	Н	L	<u>E5</u>
L	Н	Н	L	L	<u>E6</u>
L	Н	Н	Н	L	<u>E7</u>
Н	L	L	L	L	<u>E8</u>
Н	L	L	Н	L	<u>E9</u>
Н	L	Н	L	L	<u>E10</u>
Н	L	Н	Н	L	<u>E11</u>
Н	Н	L	L	L	<u>E12</u>
Н	Н	L	Н	L	<u>E13</u>
Н	Н	Н	L	L	<u>E14</u>
Н	Н	Н	Н	L	<u>E15</u>

REALIZACION DE FUNCIONES LOGICAS CON MULTIPLEXORES.-

Multiplexor con igual entradas de selección que el numero de variables de la función.

Ejemplo: $f(a, b, c) = \sum (0, 3, 6, 7)$

Multiplexor con una entrada de selección menor que el numero de variables de la función

 $F(a, b, c, d) = \sum (0, 3, 6, 9, 12, 14, 15).$

4. DEMULTIPLEXORES

Demultiplexores

El concepto de **demultiplexor** (DEMUX) es similar al de multiplexor, viendo las entradas de datos como salidas y la salida como entradas.

En los demultiplexores hay un único canal de entrada que sale por una de las múltiples salidas, y sólo una. Las **entradas de selección "n"** definen cual es la línea de salida por la que debe salir el dato de entrada. Por lo que el **número de salidas 2**ⁿ, depende de "n" que es el número de entradas de selección.

Canales de salida

Demultiplexor 1:2

Demultiplexor de dos salidas a aquel que tiene $2^n = 2$ líneas de salida, y por lo tanto n = 1 líneas de selección

SI	O_1	O_0
0 0	0	0
01	0	1
10	0	0
11	1	0

Demultiplexor 1:4

Demultiplexor 1:8

