Análisis Matemático II - Lic. en Computación

Primer Parcial – 28/09/16 – Comisión 2

Apellido:						Nombre	Nombre:		
	1	2	3	4	5	AutoEval	Total	Nota]

1) Resolver las siguientes integrales:

a)
$$\int \frac{x+4}{x^2+1} dx$$
 b) $\int_0^2 \frac{1}{(1+e^{-x}) \ln(1+e^x)} dx$

2) Determinar si las siguientes integrales impropias son convergentes o no. Justificar.

a)
$$\int_{2}^{\infty} \frac{1}{x^{2}(2+\cos x)} dx$$
 b) $\int_{1}^{2} \frac{x+2}{\sqrt{(x-1)}} dx$

3) Determinar si las siguientes sucesiones son o no convergentes y calcular el límite cuando sea posible. Justificar.

a)
$$a_n = \frac{(-1)^n}{2^n + n}$$
 b) $b_n = \frac{\sqrt{n}}{\ln(n)}$

4) Determinar si las siguientes afirmaciones son verdaderas o falsas y justificar.

i) Si $\{a_n\}$ es una sucesión creciente y positiva, entonces $\lim_{n\to\infty} a_n = \infty$.

ii) Si $\{a_n\}$ es decreciente y $\lim_{n\to\infty} a_n = 0$ entonces $\sum_{n=1}^{\infty} a_n$ es convergente.

iii) Si la serie de potencias $\sum_{n=1}^{\infty} a_n x^n$ converge en x=-2 entonces $\sum_{n=1}^{\infty} a_n$ converge.

5) Determinar si las siguientes series son convergentes o no. Justificar.

a)
$$\sum_{n=1}^{\infty} \frac{n+4}{n^2+3n}$$
 b) $\sum_{n=1}^{\infty} \frac{\text{sen}(e^n) \cos n}{n^3}$.