Exercise 1. Do the following:

- I) Give a simple description of the closed sets in \mathbb{A}^1 (with respect to the Zariski topology).
- II) Use your previous answer to prove that \mathbb{A}^1 is not Hausdorff.

Answer

I) If we consider \mathbb{A}^1 over an algebraically closed field k of characteristic zero then every closed set is of the form V(I) where $I \in \operatorname{Spec}(k[x])$. Since k[x] is a PID, then $I = \operatorname{gen}(p)$ for a polynomial $p \in k[x]$. Then V(I) would be the set of roots inside k of p. Since p is arbitrary, every closed set V(I) of \mathbb{A}^1 is a finite set.

This means that the open sets are the complement of the finite sets. In essence, the Zariski topology coincides with the cofinite topology over \mathbb{A}^1 .

II) The cofinite topology is not Hausdorff, so it follows that the Zariski topology isn't Hausdorff as well.

Exercise 2. Show that the Zariski topology on \mathbb{A}^2 is not the product topology on $\mathbb{A}^1 \times \mathbb{A}^1$. (Hint: Consider the diagonal.)

Exercise 3. Let $F: V \to W$ be a morphism of affine algebraic varieties. Prove that F is continuous in the Zariski topology.

Answer

Suppose \mathcal{Z} is the Zariski topology. Recall that

$$F$$
 is continuous $\iff \forall U \in \mathcal{Z}(F^{-1}[U \backslash W] \notin \mathcal{Z}).$

This means that F sends closed sets back to closed sets. Since a morphism is a vector of polynomials we can easily check this result.

Consider an arbitrary closed set $V_0 \subseteq W$. Then there exists an ideal $I \triangleleft k[\mathbf{x}]$ such that $V_0 = V(I)$.

Exercise 4. Show that the twisted cubic V of Figure 1.5 is isomorphic to the affine line by constructing an explicit isomorphism from \mathbb{A}^1 to V. (Hint: See Exercise 1.2.3)

Exercise 5. Show that if $F: X \to Y$ is a surjective morphism of affine algebraic varieties, then the dimension of X is at least as large as the dimension of Y.