Homework 4 ECE/CS 498 DS Spring 2019

Issued: 04/17/19 Due: 04/24/19

HMM Forward-Backward Algorithm

You will implement the forward-backward algorithm for HMMs.

Part 1

Files:

HMM.py

HMM_example.py

What to submit:

A modified HMM.py with your implementation.

You will need to fill in the missing code in HMM.py:

- *def forward_algorithm*: calculate $P(S_t|E_1, E_2, ..., E_t)$, the probability of the hidden state at time t given the observation(s) up to time t
- *def backward_algorithm*: calculate $P(E_{t+1},...,E_n|S_t)$, the probability of the future observation(s) given the hidden state at time t
- def forward_backward: calculate $P(S_t|E_1, E_2, ..., E_n)$, the probability of the hidden state at time t given all the observations

In HMM_example.py, we provide the security example you solved in ICA4. You can use it to test your implementation.

```
forward
```

```
def forward_algorithm(self, seq):
     :param seq: Observed sequence to calculate probabilities upon
:return: Alpha matrix with 1 row per time step
     \underline{\mathbf{T}} = len(seq)
      Alpha = np.zeros((T, self.n_states))
      # Your implementation here
     hidden_state_idx = seq[0]
Alpha[0] = self.pi0 * self.B[:, hidden_state_idx]
      Z = np.sum(Alpha[0])
      Alpha[0] = Alpha[0] / Z
      Achiatej - Achiatej / Z

for i in range(1, T):

   hidden_state_idx = seq[i]

   Alpha[i] = (Alpha[i - 1].dot(self.A)) * (self.B[:, hidden_state_idx])

   Z = np.sum(Alpha[i])
            Ālpha[i] = Alpha[i] / Z
      return Alpha
def backward_algorithm(self, seq):
     :param seq: Observed sequence to calculate probabilities upon
:return: Beta matrix with 1 row per timestep
     T = len(seq)
     Beta = np.zeros((T, self.n_states))
      # Your implementation here
     Beta = np.zeros((T, self.n_states))
Beta[T - 1] = [1] * self.n_states
for i in range(T - 2, -1, -1):
            hidden_state_idx = seq[i + 1]

temp = self.B[:, hidden_state_idx] * Beta[i + 1]

Beta[i] = self.A.dot(temp)
      return Beta
```

```
def forward_backward(self, seq):
     :param seq: Observed sequence to calculate probabilities upon
:return: Gamma matrix containing state probabilities for each timestamp
:raises: ValueError on bad sequence
     # Convert sequence to integers
if all(isinstance(i, str) for i in seq):
    seq = [self.emissions.index(i) for i in seq]
     # Infer time steps
     T = len(seq)
     Alpha = self.forward_algorithm(seq)
     # Initialize backward probabilities matrix Beta
     Beta = self.backward_algorithm(seq)
     Gamma = np.zeros((T, self.n_states))
           Gamma[i] = Alpha[i] * Beta[i]
           Z = np.sum(Gamma[i])
           Gamma[i] = Gamma[i] / Z
     return Alpha, Beta, Gamma
def hidden_state_predict(self, seq, Gamma):
     T = len(seq)
     hidden_state = []
     for i in range(T):
    idx = np.where(Gamma[i, :] == np.max(Gamma[i, :]))[0][0]
    hidden_state.append(self.states[idx])
     return hidden state
```

Homework 4	
ECE/CS 498 DS	Spring 2019
Issuad: 04/17/10	, ,

Name: ______ NetID: _____

Part 2

Due: 04/24/19

Based on the forward-backward algorithm you implemented in Part 1, provide the most likely sequence of the hidden states for the HMM given below. For partial credit, please also provide $P(S_t|E_1,E_2,...,E_t)$ (Alpha), $P(E_{t+1},...,E_n|S_t)$ (Beta), and $P(S_t|E_1,E_2,...,E_n)$ (Gamma).

Transition probability matrix *A*:

+				
	l A	В	С	D +
A	0.1	0.3	0.3	0.3
B	0.7	0.1	0.1	0.1
C	0.25	0.25	0.25	0.25
D	0.1	0.4	0.4	0.1
T	T			r+

Observation matrix *B*:

+	-+-	+	+			+
1	1	e0	e1	e2	e3	e4 -====+
A	Ī	0.6	0.1	0.1	0.1	0.1
B	Ī	0.1	0.6	0.1	0.1	0.1
C	Ī	0.2	0.2	0.2	0.2	0.2
D	Ī	0	0	0	0.5	0.5
+	-+-	+	+		+	+

The initial distribution of hidden states π :

+-		+-		+-		+-		+
	A		В		С		D	
+=		+=		+=		+=		=+
	0.25		0.25		0.25		0.25	
+-		+-		+-		+-		-+

Observations:

t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	-++ t=9 =+=====+
e4	e3	e2	e2	l e0	e1	e0	e0	e4

Alpha:

Alpha:				
 	A	В	C	D
t=1	0.111111	0.111111	0.222222	0.555556
t=2	0.102857	0.165714 	0.331429 	0.4
t=3	0.222449	0.259184 	0.518367 	 0
t=4	0.333265	0.222245	0.44449	0
t=5	0.72002	0.0933268	0.186654	0
t=6	0.0779633	0.691528	0.230509	0
t=7	0.879783	0.0400722	0.0801443	0
t=8	0.485852	0.171383	0.342765	
t=9	0.113354	0.110831	0.221662 	0.554154

Beta.

Beta:	·			
	A			
	2.4352e-06			
t=2	8.12546e-06	9.14392e-06	8.38007e-06	1.05122e-05
	9.65315e-05	6.25828e-05		0.000127188
t=4	0.000456084	0.00158771		0.000536328
	0.0035892	0.0017604	0.003132	0.0047574
	0.00846	0.01602		
	0.033	0.111	0.0525	
	0.25			
t=9	1	1	1	1

Gamma:

```
0.149094 | 0.0828634 | 0.265073 | 0.502969 |
       0.0895461
                    0.162352 | 0.297579 | 0.450523 |
        0.257681
                     0.194646 |
                                0.547673 |
                                                  0 |
                                                  0 |
        0.182397
                     0.423433 |
                                 0.39417 |
                                                  0 |
        0.775323
                    0.0492899 |
                                                  0 |
       0.0466998
                      0.78438 |
                                0.168921 |
                                                  0 |
        0.770338
                     0.118021 |
        0.541538
                     0.114615 |
                                0.343846 |
                                                  0 |
                     0.110831 | 0.221662 | 0.554154 |
['D', 'D', 'C', 'B', 'A', 'B', 'A', 'A', 'D']
```

hidden-state:

Issued: 04/17/19 Due: 04/24/19

Factor Graphs & Belief Propagation

Problem 1. Consider the following factor graph.

Factor Graph (1)

Factor function values for f_A , f_B , and f_C are:

X	Y	f_A
0	0	0.3
0	1	0.1
1	0	0.4
1	1	0.2

X	f_B
0	0.4
1	0.6

X	f_C
0	0.3
1	0.7

1. Write the expression for P(Y) in terms of $m_{X\to f_A}(x)$ and f_A .

$$P(Y) = \begin{cases} M_{X} \rightarrow f_{A}(X) & f_{A}(X|Y) \end{cases}$$

2. First, calculate the message $m_{X \to f_A}(x)$ based on the tables provided, then calculate the value of P(Y). Show all steps of your work.

$$m_{X \to f_A}(x) = \begin{cases} x \\ 0 \\ 1 \end{cases} \quad 0 \text{ and } x = 0.12$$

$$P(Y) = 0 \text{ and } x = 0.12$$

$$P(Y>0) = \sum_{x} Mx + f_{A}(x) f_{A}(x, Y)$$

= $0.12 \times 0.3 + 0.42 \times 0.4 = 0.20 4$

$$P(Y=0) = 0.204/a3 = 0.68$$

$$P(Y=1) = 0.896/0.3 = 0.32$$

Homework 4 ECE/CS 498 DS Spring 2019

Issued: 04/17/19 Due: 04/24/19

Problem 2. Given a function that can be factorized as follows.

$$f(X_1, X_2, X_3, X_4, X_5, X_6) = f_1(X_1, X_4) f_2(X_1, X_3, X_6) f_3(X_2, X_4, X_5) f_4(X_1)$$

1. Draw the corresponding FG.

2. Assume that X_1 is the hidden state that we are interested in. Write the formula for computing the marginal of X_1 .

Homework 4 ECE/CS 498 DS Spring 2019

Issued: 04/17/19 Due: 04/24/19

Name:					
NetID:					

Problem 3. For the Factor Graph given below, which of the following conditional independence relations is true? Justify your answer.

a) F II G | C

No. Gard Fare Not conditional independent Since they are STM connected.

b) A II G | C
Yes. The part from A to 4 has note a which is
observed.

c) EILF | B, A, D
Yes. The path is F-B-A-C-F. Shee B is observed.
Then its conditionally independ.