AB Geometrie & Topologie

Dr. Christian Lange Panagiotis Papadopoulos

Riemannian geometry

Problem set 1

1. Hyperboloid model of hyperbolic space. Let b be a nondegenerate symmetric bilinear form on \mathbb{R}^{n+1} of signature (n,1). The form b defines a so-called Lorentzian metric on \mathbb{R}^{n+1} . Recall that up to a base change b is given by

$$b(x,y) = -x_0 y_0 + \sum_{i=1}^{n} x_i y_i.$$

However, such a coordinate representation is not needed in the following.

(i) Show that

$$H = \{x \in \mathbb{R}^{n+1} \mid b(x, x) = -1\}$$

is a smooth submanifold of \mathbb{R}^{n+1} .

(ii) For any $x \in H$ consider T_xH as a linear subspace of \mathbb{R}^{n+1} . Show that

$$T_x H = (\mathbb{R}x)^{\perp_b} := \{ v \in \mathbb{R}^{n+1} \mid b(v, x) = 0 \}.$$

- (iii) For $x \in H$ and $v, w \in T_xH$ we set $h_x(v, w) = b(v, w)$. Show that h_x is an inner product on T_xH and that $h = \{h_x\}_{x \in H}$ defines a Riemannian metric on H.
- (iv) For $x \in H$ show that $H \cap T_x H = \emptyset$.
- (v) For some fixed $x_0 \in H$ show that

$$H_0 := \{ x \in \mathbb{R}^{n+1} \mid b(x, x_0) < 0 \}$$

is the connected component of H containing x_0 .

(vi) On the open unit ball $B = B_1^n(0) \subset T_{x_0}H$ we consider the Riemannian metric

$$g_p(v, w) = \frac{4}{(1 - b(p, p))^2} b(v, w),$$

where $p \in B$ and $v, w \in T_pB$. The Lorentzian stereographic projection

$$s: H_0 \to B$$

based at $-x_0$ is defined by mapping $x \in H_0$ to the intersection of the line in \mathbb{R}^{n+1} through x and $-x_0$ with $T_{x_0}H$. Show that s is a diffeomorphism and that $s^*g = h$, i.e. that s is an *isometry*. In particular, the pair (H_0, h) is another model for the *hyperbolic space* (note that in the lecture the "4" in the definition of g was missing).

- 2. Lie groups. A Lie group is a smooth manifold G with a group structure such that the group multiplication $G \times G \to G$ is a smooth map.
 - (i) Show that the inversion map $G \to G$, $a \mapsto a^{-1}$, of a Lie group G is smooth.
 - (ii) Show that $GL_n(\mathbb{R})$ (with its natural group structure and the manifold structure inherited from $Mat_{n\times n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$) is a Lie group.
 - (iii) For a nondegenerate quadratic form q on \mathbb{R}^n we consider

$$O(q) = \{ A \in GL(\mathbb{R}^n) \mid q(Av) = q(v) \text{ for all } v \in \mathbb{R}^n \},$$

which can equivalently be described in terms of the nondegenerate symmetric bilinear form b corresponding to the quadratic form q as

$$O(q) = \{ A \in GL(\mathbb{R}^n) \mid b(Av, Aw) = b(v, w) \text{ for all } v, w \in \mathbb{R}^n \}.$$

Show that

- (a) O(q) is a smooth submanifold of $GL(\mathbb{R}^n)$.
- (b) O(q) is a subgroup $GL(\mathbb{R}^n)$.
- (c) O(q) with the manifold structure from (a) and the group structure from (b) is a Lie group.

Hint: Apply exercise 4 on problem set 0.

- (iv) Show that O(q) is compact, if q is positive definite.
- (v) Show that any Lie group G admits a left invariant Riemannian metric, i.e. a Riemannian metric with respect to which all left translations L_a , $a \in G$, defined as

$$L_a: G \to G, \ b \mapsto ab,$$

are isometries.

- (vi) (optional in case you are interested) Show that any compact Lie group admits a bi-invariant Riemannian metric, i.e. a Riemannian metric with respect to which all left- and right translations are isometries, e.g. via the following approach:
- (a) Show that there exists a left invariant volume form on G, i.e. a volume form ω such that $L_a^*\omega = \omega$ for all $a \in G$.
- (b) Let g be a left invariant Riemannian metric on G and ω a left invariant volume form on G. Show that

$$\bar{g}_b(u,v) = \int_G g_{ba} \left((dR_a)_b u, (dR_a)_b v \right) \omega, \quad b \in G, \quad u, v \in T_b G$$

defines a bi-invariant Riemannian metric on G, where $R_a: G \to G$ denotes the a-right translation defined by $b \mapsto ba$.

You can submit your solutions until **Friday** 2.5.2025 at 6 p.m. in Moodle. Solutions will be discussed in the exercise class on Wednesday 7.5.2025.