PATENT ABSTRACTS OF JAPAN

(11) Publication number:

56-120180

(43) Date of publication of application: 21.09.1981

(51)Int.Cl.

H01L 41/18 CO4B 35/00

(21)Application number : 56-019248

(71)Applicant : NEC CORP

(22)Date of filing: 12.02.1981

(72)Inventor: YONEZAWA MASATOMO

ONO TOMEJI

(54) PIEZOELECTRIC PORCELAIN

(57)Abstract:

PURPOSE: To obtain a piezoelectric porcelain having a high performance and a mass productivity by combining x, y and z in KxNayLizNbO3 (x+y+z=1) within a certain range, and ading $0.05 \sim 0.5$ mol% of MnO as a by-product component.

CONSTITUTION: After weighing and mixing powders of K2CO3, Na2CO3, Nb2O3, Li2CO3 and MnCO3 to a given amount those are sintered to form a solid solution of KNbO3-NaNbO3-LiNbO3. When this composition is shown by KxNayLizNbO3 (x+ y+z=1) defining a total value of x, y and z within the above range and further a certain amount of MnO is added therein as a subcomponent, the dielectric constant decreases more by keeping low the value of the mechanical quality constant as a vibrator, and a electric mechanical coupling factor increases in the diameter direction. thereby being able to obtain a piezoelectric porcelain having a low dispersion. Furthermore, the effect of MnO2 is low in case of less than 0.05mol%, while an uniform porcelain is not obtained in case of more than 0.5mol%.

x	y	L
0.0 5	0.93	0.0 2
0.4 9	0.4 9	0.0 2
0.4 0	0.40	0.20
0.0 4	0.76	.020

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

特 許 報 (B2) 公

昭57-6713

50 Int.Cl.3 H 01 L 41/18 識別記号 101

庁内整理番号

❷❸公告 昭和57年(1982) 2月6日

C 04 B 35/00 H 01 B 3/12 7131—5 F 6375—4 G 7216-5 E

発明の数 1

(全3項)

1

図圧電性磁器

②特 昭56-19248

22出 願 昭49(1974)11月15日

(前特許出願日援用)

(手続補正書提出の日)

開 昭56—120180

鐵昭56(1981) 9 月21日

⑫発 明者 米沢正智

電気株式会社内

72)発 明 者 大野留治

> 東京都港区芝五丁目33番1号日本 電気株式会社内

⑪出 願 人 日本電気株式会社

東京都港区芝五丁目33番1号

②代 理 人 弁理士 内原晋

切特許請求の範囲

で構成されこれをKxNayLizNbOsとし、x+y +z=1.00 と表わした時に x,y,z が、それぞれ

x	У	z
0.05	0.93	0.0 2
0.49	0.49	0.02
0.40	0.40	0.20
0.04	0. 7 6	0. 2 0

で表わされる組成範囲内にある配合比を持ち、副 成分として酸化マンガン (MnO)を主成分に対し た 0.0 5~ 0.5 モルダの範囲で含有する圧電性磁 30 めに温度に対する安定度が悪いという欠点があつ 器。

発明の詳細な説明

本発明は機械的品質係数を低い値に保持しなが ら電気機械結合係数を増大および誘電率を低下せ しめた圧電性磁器にかかり、その主目的とする所 35 は、超音波探傷器における探触子の振動子材料を 提供することにある。

本発明の圧電性磁器はニオブ酸カリウム (KNbO_s)ーニオブ酸ナトリウム(NaNbO_s)ー ニオブ酸リチウム (LiNbO3) 系固溶体に副成分 として酸化マンガン (MnO)を含有せしめた固溶 5 体で構成される。

2

本発明にかかる圧電性磁器の主たる応用目的で ある超音波探傷器では、探傷に用いる周波数は、 200 KHz~25 MHzの範囲内のものが大部分 であり、特に1~5 MHzの範囲のものが最もよ 東京都港区芝五丁目33番1号日本 10 く用いられている。すなわち、高い周波数領域で 使用されるために探傷器用振動子の誘電率は、で きるだけ小さいことが望まれる。

> そして、電気振動を超音波振動に変え、また、 超高波振動を電気振動に変える電気音響交換能率 15 は、電気機械結合係数の2乗に比例する。電気機 械結合係数が大きいほど感度がよくなる。

さらに、現在もつとも広く使用されている超音 波探傷器は、パルス式探傷器である。このパルス 式探傷器では、分解能を上げるために細いパルス 主成分組成が $KNbO_3-NaNbO_3-LiNbO_3$ 20 を送受する必要があり、このためには、振動子の 機械的品質係数 (Qm)が小さいことが望まれる。

> 従来、この振動子材料としては、水晶、チタン 酸バリウム系磁器、ジルコンチタン酸鉛系磁器、 または、KNbO₈ - Na NbO₈ 二成分系磁器が用 25 いられてきた。しかしながら、水晶では電気音響 変換能率がよくなく機械的品質係数(Qm)が大き いし、チタン酸パリウム系磁器やジルコンチタン

酸鉛系磁器では誘電率が高くなり、KNbO₈-NaNbOa系磁器では結晶型の変態温度が低いた た。そして、水晶などの機械的品質係数(Qm)の 高い振動子の場合は、振動子の温度の共振を押え てパルス幅の増大を防止し、分解能を高めるため ダンパーを用いる必要があつた。

そこで、本発明者達は先にKNbO₈-NaNbO₈ 一Li NbO。で構成される固溶体を合成し、焼結 性が容易で、誘電率や誘電損失の小さい、しかも、

径方向の電気機械結合係数の高い、そして、機械 結合係数の高い、そして、機械的品質係数の低い 特性を示すことを見出し、特願昭 4 8 - 38952 号として提案した。

ことで、有効な組成はKNbO₃−NaNbO₃− LiNbO₈ をKxNayLizNbO₈ と表現した時に、 x+y+z=1.00 でかつ、x,y,z が、それぞれ

x .	y	z
0.05	0.93	0.0 2
0.49	0.49	0.02
0.40	0.40	0. 2 0
0.04	0.76	0.20

なる範囲内にあることを明らかにした。

本発明は、上記組成範囲内の主成分組成物に副 ことにより、低い Qm 値を保持しながら誘電率を 更に低下せしめたり、電気機械結合係数を増大せ しめ、しかもそのばらつき(標準偏差)を小さく し超音波探傷器用振動子材料として量産性に富む 優れた特性を持つ材料に改善されている。

次に、本発明を実施例によつて、具体的に説明 する。

実施例

本発明の磁器を得る出発原料として炭酸カリウ ム(K₂CO₃)、炭酸ナトリウム(Na₂CO₃)、酸化 25 係を第1表に示す。

ニオブ(Nb₂O₅)、炭酸リチウム(Li₂CO₈)、炭 酸マンガン(MnCOs)の各粉末を用いた。

各粉末を所定量秤量し、無水エタノールを用い てポールミルで混合した。混合粉末を乾燥後700 5 Cないし1000cで予焼した。

粉砕後700 Kg/cm3 の圧力で成型し、1000 ・℃ないし、1280℃で空気中において焼結した。 得られた焼結磁器を1㎜に切断した後、銀電極 を焼き付けて、シリコンオイル中100℃で4な 10 いし 5 KV / mm の電界を 3 0 分印加して分極した。 以上のように圧電的に活性化した後、24時間放 置し、圧電性を評価するために、径方向振動におけ る電気機械結合係数(Kr)、機械的品質係数(Qm) を測定した。 Kr や Qm の測定は、I,R,E の標準 成分として酸化マンガン(MnO)を含有せしめる 15 回路の方法に従い、Kr の値の計算は共振および 反共振周波数から計算する方式のものを採用した。 また、誘電率は1KHzで測定した。

> なお、Kr の平均値および標準偏差は、 各組成 とも20枚の試料より計算したものである。

> KNbO₈-NaNbO₃-LiNbO₃ 固溶体をK_z Na_{v} Li, NbO_{3} (ttl, x+y+z=1.00) と表わした時のx,y,zと副成分である酸化マン ガン (MnO) の含有量の代表的な値と、Kr の平 均値、Kr の標準偏差Qm € および tan δ との関

20

	主 E	成 分 組 y	I 成	MnOの 含有量 (も1/%)	Krの 平均値 (%)	Krの標準偏差	Qш	ε	tanδ (%)
1 * 2 3 * 4 5 * 6 7 * 8 9	0.05 " 0.05 " 0.04 " 0.10 "	0. 9 3 " 0. 8 5 " 0. 7 6 " 0. 8 4 "	0. 0 2 " 0. 1 0 " 0. 2 0 " 0. 0 6 "	0 0.05 0 0.2 0 0.3 0 0.05	1 7. 5 1 9.2 1 8.8 2 2.5 1 7. 0 1 9. 5 2 2. 4 2 4. 0 2 9. 6	0. 5 5 0. 3 8 0. 5 0 0. 3 3 0. 6 1 0. 3 7 0. 5 8 0. 4 5 0. 3 2	5 3 0 5 8 0 4 6 0 4 9 5 4 9 0 4 6 3 2 9 0 3 1 0 2 7 5	1 2 0 1 1 2 1 2 0 1 0 7 1 2 8 1 1 5 1 4 0 1 3 2 1 2 0	2. 5 2. 2 4. 0 2. 8 4. 5 3. 0 2. 8 2. 7 2. 5
1 0 1 1 * 1 2 1 3 *	0.09 "	0.83 " 0.81	0.08 " 0.10	0. 5 0 0. 2 0	2 4.4 2 7.3 3 1.4 2 8.5	0. 4 3 0. 5 5 0. 3 5 0. 5 7	2 5 2 2 2 0 3 2 0 3 4 0	1 1 5 1 2 2 1 1 2 1 0 6	2. 6 2. 1 2. 0 2. 0

	主 	文 分 組 y	l 成	MnOの 含有量 (モル%)	Krの 平均値 (%)	Kr の標 準 偏 差 (%)	Qm	ε	tanδ (%)
1 4 1 5 * 1 6 1 7 * 1 8 1 9 * 2 0 2 1 * 2 2 2 3 *	0. 0 9 0. 0 9 " 0. 0 9 " 0. 1 9 " 0. 2 7 "	0.8 1 0.7 8 " 0.7 5 " 0.7 6 " 0.6 3 " 0.4 9	0. 1 0 0. 1 3 " 0. 1 6 " 0. 0 5 " 0. 1 0 "	0. 2 0 0. 2 0 0. 2 0 0. 2 0 0. 3	3 0.9 2 9.7 3 1.2 2 7.4 2 8.9 2 8.8 3 0.3 3 2.4 3 5.2 3 4.5	0.3 9 0.5 8 0.3 4 0.5 5 0.3 6 0.6 2 0.3 8 0.6 9 0.4 3 0.7 7	4 1 0 3 7 0 3 5 0 4 9 0 4 5 0 4 0 0 3 0 0 2 1 6 2 3 5 1 5 0	9 6 1 0 0 9 2 9 1 8 6 1 6 0 1 5 0 2 3 2 2 0 5 4 0 0	2.0 2.2 1.5 2.0 1.8 1.9 1.6 2.8 2.2 3.5
2 4 2 5 * 2 6	0.40 "	0.40 "	0.20 "	0. 2 0 0. 4	3 7.0 3 4.0 3 6.5	0. 4 8 0. 7 3 0. 4 1	1 8 0 2 3 0 2 1 0	3 7 5 4 5 0 4 1 0	3. 0 3. 8 3. 0

注) ルに*印を付したものは本発明に含まれない組成物である。

第1表の%7と%8ないし%10を比較すれば 20磁器に改善されている。

明らかなように、KNbO3-NaNbO3-Li NbO3 の三成分固溶体に副成分として酸化マンガン (MnO)を含有せしめれば低いQnの値を保持し ながら電気機械結合係数(Kr)を増大させ、しか、 も、そのばらつき、 (標準偏差)を小さくしてい、25 したがつて、MnOの含有量は0.05~0.5モル る。さらに、誘電率 ε を低下せしめて超音波探傷 器用振動子材料として量産性に富む優れた圧電性

なお、MnOが0.0 5モル%未満では、特性改善 の効果は小さく副成分であるMnOの含有は有効で ない。MnOが0.5モル%を越えると均一な磁器を 得ることが困難になり、krが低下する。

%に限定される。