КАРБОНОВЫЕ КИСЛОТЫ

Строение. Номенклатура

Карбоновыми кислотами называются производные углеводородов, молекулы которых содержат одну или несколько карбоксильных групп:

-с_о-н

Эта сложная группа состоит из двух простых групп: карбонильной = C = O и гидроксидной – OH. Водород карбоксильной группы обуславливает кислые свойства, а количество карбоксильных групп в молекуле кислоты определяет ее основность.

Предельные одноосновные кислоты – содержат одну группу – *СООН*. Они образуют гомологический ряд с общей формулой:

$$C_nH_{2n+1}COOH$$
.

Здесь карбоксил соединен с углеводородным радикалом. Простейшим представителем этого ряда является муравьиная кисло-

Для низших членов ряда карбоновых кислот употребляются тривиальные названия: муравьиная кислота, уксусная, масляная и т. д.

По рациональной номенклатуре пользуются названием, где сложная кислота рассматривается как производное уксусной или другой менее сложной кислоты.

По современным международным правилам название карбоновой кислоты составляется добавлением к названию углеводорода окончания **-ОВАЯ и слово «кислота»**. Углеродный атом карбоксильной группы определяет начало нумерации и входит в счет атомов главной углеродной цепи. В табл. приведены формулы и названия некоторых карбоновых кислот.

Названия некоторых карбоновых кислот

	Названия	
Формула	Тривиальные	По современной международной номенклатуре
H – COOH	Муравьиная	Метановая
CH ₃ – COOH	Уксусная	Этановая
CH ₃ – CH –COOH CH ₃	Изомасляная, диметилуксусная	2-Метилпропановая
CH ₃ – CH – CH ₂ – COOH CH ₃	Изовалериановая, изопропилуксусная	3-Метилбутановая
C ₆ H ₅ COOH	Бензойная	
C ₆ H ₅ CH ₂ COOH	Фенилуксусная	

Природные источники и способы получения

В природных условиях некоторые кислоты встречаются в свободном состоянии (муравьиная в муравьях) или, гораздо чаще в виде сложных эфиров.

1. Из сложных эфиров свободные кислоты получают путем омыления:

$$\begin{array}{c} \mathsf{R-C-O-R'} + \mathsf{HOH} \longrightarrow \mathsf{R-C-OH} + \mathsf{R'-OH} \\ \ddot{\mathsf{0}} \end{array}$$

Ароматические кислоты в свободном состоянии и в виде сложных эфиров входят в состав ряда смол: бензойной смолы, толуанского и перуанского бальзамов. Бензойную кислоту вначале получали путем возгонки бензойной смолы (в дальнейшем синтетические способы вытеснили этот способ.)

2. **Из альдегидов (и первичных спиртов)** кислоты получаются путем их окисления:

$$R - C \xrightarrow{H} \xrightarrow{O_2} R - C \xrightarrow{H} \xrightarrow{O_2} R - C \xrightarrow{OH}$$

$$CDUDT$$

$$ADDRETUR$$

$$KUCROTR$$

3. *Из моногалогенопроизводных углеводородов* кислоты можно получать различными путями. Например, при действии цианистым калием получают нитрил, или цианид:

Полученный нитрил омыляют:

$$R-C \not\ni N + 2H_2O \rightarrow NH_3 + R - COH$$

4. *Из трех галогенпроизводных углеводородов* (с галогенами стоящими у одного и того же атома углерода) кислоты получаются при их нагревании с растворами едких щелочей:

5. Ароматические кислоты легко получаются окислением боковых цепей ароматических углеводородов. Например, при кипячении толуола с раствором КМпО₄, особенно быстро в кислой среде, происходит окисление толуола в бензойную кислоту:

$$C_6H_5-C_-H+3O oup C_6H_5-C_-OH oup C_6H_5-$$

Физические свойства

Низшие представители класса алифатических кислот — легкоподвижные жидкости, далее, начиная с валериановой кислоты, идут кислоты, имеющие характер маслянистых жидкостей, высшие — твердые вещества.

Простейшие кислоты смешиваются с водой в любых соотношениях, кислоты, начиная с валериановой, растворяются в воде в известных пределах; высшие представители в воде не растворяются. В спирте и в эфире все кислоты хорошо растворимы.

Химические свойства

Для удобства рассмотрения свойств и реакций карбоновых кислот их можно разделить на группы в соответствии с теми атомами и группами атомов, которые входят в их молекулы:

Карбонил

- 1. Свойства водорода в карбоксиле кислот
- А. Диссоциация кислот.

Все карбоновые кислоты, подобно неорганическим кислотам, обладают кислыми свойствами, окрашивая лакмус в красный цвет. Это явление обусловлено диссоциацией кислот, т. е расщеплением их на ионы.

$$R-C-OH \rightarrow R-C-O^{-} + H^{+}$$

В водном растворе существует равновесие:

Как правило, карбоновые кислоты значительно слабее, чем минеральные, т. е. степень диссоциации карбоновых кислот гораздо меньше. Из карбоновых кислот наиболее сильной является муравьиная.

Ароматические кислоты диссоциированы в большей степени, чем жирные. В этом проявляется влияние остатка бензола.

Б. Замещение водорода карбоксила кислоты металлом происходит при взаимодействии с некоторыми достаточно энергичными металлами (реакция с щелочными металлами протекает обычно бурно), окислами некоторых металлов и щелочами (нейтрализация) с образованием солей, например:

$$R - C + NaOH \rightarrow R - C + H_{2}O$$

Так как органические кислоты слабые, то соли их в водных растворах обычно сильно гидролизованы:

2. Свойства гидроксила карбонильной группы.

А. Замещение гидроксила в карбоксиле кислоты на галоген происходит при действии на кислоту соединений фосфора с галогенами (PCl_5 , PCl_3 , $POCl_3$):

Так как остаток кислоты называется *ацилом*, галогенангидриды кислот называют *галогенацилами*.

Галогенангидриды – непрочные соединения, они разлагаются водой (для первых представителей достаточно водяных паров из воздуха) на хлористый водород и соответствующую кислоту.

$$R-C$$
 + HOH \rightarrow HCI + $R-C$ OH

Галогенангидриды широко применяются в различных синтезах для введения в молекулу остатка кислоты. Дихлорангидридом угольной кислоты является фосген:

Он может быть получен путем непосредственного соединения CO и Cl_2 при каталитическом действии солнечного света:

$$CO + Cl_2 \xrightarrow{h\delta} Cl - C - Cl$$

Фосген – бесцветный газ с удушливым запахом прелого сена; очень ядовит, применялся в качестве отравляющего вещества в Первой мировой войне.

Б. Замещение гидроксила в карбоксиле остатком кислоты приводит к образованию ангидридов:

Ангидриды карбоновых кислот можно рассматривать как продукт, получающийся в результате отнятия одной молекулы воды от двух молекул кислоты:

В. Замещение гидроксила в карбоксиле остатком спирта приводит к образованию сложных эфиров:

Один из простейших способов перевода кислот в сложные эфиры - нагревание кислот со спиртами в присутствии водоотниэфиры – нагревание кисло. 30 мающих веществ (H_2 SO₄ , HCl и др.): $R - C + OH + HOR' \xrightarrow{-H_2O} R - C - O - R'$

Г. Замещение гидроксила в карбоксиле остатком аммиака – аминогруппой NH_2 – приводит к образованию *амидов кислот*:

$$R-C_{OH} \rightarrow R-C_{NH_2}$$

Практически амиды легко получить из галогенангидридов кислот, действуя аммиаком:

$$R - C$$
 $+ HNH_2 \rightarrow R - C$
 $+ HCI$
 $+ HCI$

3. Свойства карбонильной группы

Кислоты, подобно альдегидам и кетонам, содержат карбонильную группу. Однако в то время как карбонильная группа альдегидов (в меньше степени кетонов) обуславливает ряд реакций, карбонильная группа свободных кислот при обычных условиях такими свойствами не обладает. Например, реакция присоединения водорода, протекающая легко с альдегидами и кетонами и приводящая к восстановлению их в спирты, с кислотами в столь мягких условиях не протекает. Лишь при помощи особых каталитических методов с большим трудом удается перевести кислоты в альдегиды и спирты:

$$R - C$$
 $OH + H_2$
 $R - C$
 $OH + H_2$
 $OH +$

Способность карбонильной группы кислот к присоединению значительно увеличивается, если предварительно превратить кислоту в сложный эфир:

$$R-C-OH \rightarrow R-C-R' \xrightarrow{+H_2} R-C-OH + HOR'$$

Присоединение воды

Продукты присоединения воды к карбонилу кислоты, носящие названия ортогидратных форм кислот или ортогидратов, еще менее прочны, чем гидраты альдегидов, и существуют лишь в водных растворах:

Их не удается выделить в свободном виде, вследствие их непрочности, но известны производные ортогидратов – эфиры, носящие названия ортоэфиров:

4. Свойства радикала карбоновых кислот

Атомы водорода в радикале кислот способны замещаться, например, при действиях галогенов. В этом случае получаются галогенокислоты, которые являются производными кислот, у которых один или несколько атомов водорода в радикале замещены галогенами. При действии хлора на уксусную кислоту получаются хлоруксусные кислоты:

СІзС-С реакция идет дальше. С замещением второго и третьего атома водорода, например трих-Трихлоруксусная кислота.

Галогенирование кислот ускоряется при действии солнечного света, а также катализаторов, например следов иода. Галоген в галогенокислотах в отличие от галогена в галогенангидридах связан довольно прочно. Галогенокислоты являются более сильными кислотами, чем исходные кислоты, не содержащие галогена, причем на константу диссоциации большое

влияние оказывает положение галогена в радикале: чем ближе стоит галоген к карбоксилу, тем сильнее кислота.

Галогенкислоты играют важную роль как промежуточные продукты при синтезе ряда соединений, так как атомы галогена можно легко заменить на различные группы атомов, например ОН (получается оксид кислоты), NH_2 (получаются аминокислоты) и т. д.

боксильной группы.

Атомы водорода в остатке бензола в ароматических кислотах могут замещаться так же, как в ароматических углеводородах, различными атомами и группами атомов. При замещении атомов водорода галогеном получаются галогенокислоты, например:

$$C_6H_5$$
COOH $\rightarrow C_6H_4$ CICOOH

В результате замещения атомов водорода нитрогруппой получаются нитробензойные кислоты:

$$C_6H_5COOH \rightarrow C_6H_4(NO_2)COOH$$

Замещение атомов водорода сульфогруппой приводит к образованию сульфоароматических кислот, например сульфобензойной кислоты:

$$C_6H_5COOH \rightarrow C_6H_4(SO_3H)COOH$$

В результате замещения атомов водорода в бензольном ядре ароматической кислоты на аминогруппу получают аминобензойные кислоты (или их производные):

$$C_6H_5COOH \rightarrow C_6H_4(NH_2)COOH$$

Отдельные представители (муравьиная кислота, уксусная кислота)

Муравьиная кислота, или метановая кислота, Н – С ОН ободном состоянии встречается в организме и едких выделениях муравьев, жгучей крапиве и в неболь-

ших количествах в моче и поте животных. Муравьиная кислота – едкое вещество: капли ее вызывают на коже пузыри.

Применяется при крашении тканей в составе закрепителей при омеднении выкрасок, полученных при крашении прямыми азокрасителями (НСОО)2Си.

В промышленности муравьиную кислоту получают нагреванием окиси углерода с порошкообразным едким натром с последующей обработкой образовавшегося формиата натрия разбавленной серной кислотой:

NaOH + CO
$$\xrightarrow{200\,^{\circ}\text{C. P=7krc/cm}^2}$$
 HCOONa $\xrightarrow{\text{H}_2\text{SO}_4}$ HCOOH

Технический продукт после перегонки представляет собой 85%-ю муравьиную кислоту.

Муравьиная кислота отличается рядом особенностей. Под влиянием водоотнимающих веществ муравьиная кислота разлагается. Эта реакция используется для получения чистой окиси углерода:

Уксусная кислота CH_3COOH широко распространена в природе: содержится в выделениях животных (моче, желчи), в растениях (в зеленых листьях), образуется при брожении, скисании вина, пива, содержится в кислом молоке и сыре. Безводная уксусная кислота имеет температуру плавления + 16,6 °C, кристаллы ее прозрачны, как лед, поэтому ее назвали «ледяной уксусной кислотой». Впервые была получена в таком виде в конце XVIII-го в. русским ученым Т. Е. Ловицем. Обычная техническая уксусная кислота имеет концентрацию 70–80 %. Широко применяется при крашении и ситцепечатании для создания $pH = 3 \div 5$ в красильных ваннах при использовании кислотных красителей. Большое количество уксусной кислоты используется при синтезе красителей.

В красильной промышленности используют способность уксусной кислоты гидролизоваться:

Уксусная кислота в промышленности производится окислением ацетальдегида кислородом воздуха в присутствии марганцевых катализаторов, уксуснокислым брожением жидкостей, содержащих этиловый спирт. Последний способ относится к биохимическим (микробиологическим) процессам. Под влиянием «уксусного грибка», зародыши которого всегда присутствуют в воздухе, содержащие спирт жидкости «скисают», образуя натуральный уксус.

1. Процесс сложен, но суммарно уравнение реакции можно записать так:

$$CH_3CH_2OH + O_2 \longrightarrow CH_3COOH + H_2O$$

Натуральный уксус содержит около 5 % уксусной кислоты. Из него путем фракционной перегонки приготавливают уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы.

- 2. Сухая перегонка древесины. Способ сейчас имеет значение лишь для утилизации отходов лесотехнической промышленности.
- 3. Из углеводородов нефти прямым окислением бутана (200 °C; 50 кгс/см²):

$$CH_3-CH_2-CH_2-CH_3 \longrightarrow 2CH_3-COOH$$

4. Из метилового спирта оксосинтезом в присутствии тетракарбонилникеля Ni(CO)₄:

$$CH_3OH + CO \xrightarrow{Ni(CO)_4, \text{ давление}} CH_3COOH$$

5. Из ацетилена по реакции Кучерова получают уксусный альдегид (ацетальдегид), который окисляют далее в уксусную кислоту.

$$HC \equiv CH \xrightarrow{H_2O} CH_3 - C \xrightarrow{H} + O \longrightarrow H_3C - C \xrightarrow{OH}$$

ВЫСШИЕ ЖИРНЫЕ КИСЛОТЫ

Особое место среди жирных кислот занимают высокомолекулярные кислоты:

$$CH_3(CH_2)_{14} COOH$$
 Пальмитиновая кислота

$${
m CH_3}({
m CH_2})_{16}{
m COOH}$$
 Стеариновая кислота

Глицериды этих кислот являются главной составной частью природных жиров и масел.

В настоящее время большие количества высших жирных кислот получают окислением парафина. Окисление проводят, продувая воздух через расплавленный парафин в присутствии окислов марганца при 100 °С. После промывки низкие кислоты $C_1 - C_4$ переходят в раствор, откуда их выделяют отгонкой. Высшие жирные кислоты $C_5 - C_{22}$ нейтрализуют, после чего выделяют действием серной кислоты и затем разгоняют. Из 1000 кг парафина получается 50–60 кг низших и 600–700 кг высших кислот.

Получаемые из нефти жирные кислоты используют в технике. Из них изготовляют мыла, смазочные материалы для защиты металлов, применяют в горно-рудной и металлообрабатывающей промышленности, при изготовлении резины, линолеума, лакокрасочных изделий.

Нафтеновые кислоты, кислоты нефти, открыты М. В. Марковниковым в 1892 г. Природная нефть содержит небольшое количество (до 1 %) этих кислот. Главным образом это алициклические кислоты с пятичленным циклом — циклопентанкарбоновая кислота и её гомологи, например:

При очистке нафтеновых продуктов щелочью образуются натриевые соли этих кислот, обладающие моющей способностью, так называемый *мылонафт*.

НЕПРЕДЕЛЬНЫЕ ОДНООСНОВНЫЕ КИСЛОТЫ Номенклатура

В молекулах непредельных кислот в радикале, связанном с карбоксильной группой, имеются кратные связи. Ненасыщенные кислоты с одной двойной связью в молекуле имеют общую формулу $C_nH_{2n-1}COOH$.

Простейшей из них является акриловая кислота — $CH_2 = CH$ -COOH.

Способы получения

1. Из замещенных кислот путем образования в радикале двойной связи:

а) дегидрогалогенированием галогенозамещенных кислот:
$$CH_3-CH_2-CHCI-COOH$$
 \longrightarrow -Хлормасляная кислота $CH_3-CHCI-CH_2-COOH$ \longrightarrow -HCI $CH_3-CHCI-CH_2-COOH$ Кротоновая кислота \bot -Хлормасляная кислота

б) дегидратацией оксикислот:

$$HO$$
CH₂-CH₂-COOH \longrightarrow CH₂=CH-COOH Акриловая кислота

Особенно легко протекают реакции для соединений, содержащих отщепляемые группы в β-положении (Cl,OH и др.).

2. Из галогенсодержащих непредельных соединений синтезом через нитрилы:

$$CH_2$$
- CH - CH_2 CI \xrightarrow{KCN} CH_2 = CH - CH_2 - $CN \xrightarrow{H_2$ 0 (H^{\dagger}) CH_2 = CH - CH_2 - $COOH$

Отдельные представители (акриловая кислота, метакриловая кислота)

Акриловая (пропеновая) кислота представляет собой жидкость с резким запахом, $t_{\text{кип}} = 140$ °C, $t_{\text{пл.}} = +13$ °C, $\mathcal{P} = 1,06$ г/см³. С водой смешивается во всех отношениях.

В промышленности ее получают гидролизом акрилонитрила:

$$CH_2=CH-CN \xrightarrow{2H_2O} CH_2=CH-COOH + NH_3$$

или из ацетилена реакцией карбонирования (реакция Penne):

CH=CH + CO + H₂O
$$\xrightarrow{\text{Ni(CO)}_4, \text{ Cu}_2\text{Cl}_2}$$
 CH₂=CH-COOH

Сама кислота и ее производные (акрилонитрил, эфиры) легко полимеризуются и служат сырьем для получения разнообразных высокомолекулярных соединений.

Широко используется в промышленности метиловый эфир акриловой кислоты *метилометакрилат*, который легко полимеризуется с образованием прозрачных продуктов. Получают метилметакрилат из акрилонитрила и метилового спирта в присутствии серной кислоты:

Метакриловая кислота – жидкость $t_{\text{кип.}}$ = 160 °C, $t_{\text{пл.}}$ = + 15 °C, $\mathcal{P}=1{,}05\ \text{г/см}^3$. В промышленности получают из ацетона и синильной кислоты:

$$H_3C$$
 $C=0$ HCN H_3C CN CN

Ацетонциангидрин, 2-окси-2-метилпропаннитрил

Ацетонциангидрин при нагревании с серной кислотой подвергается дегидратации и омылению с образованием метакриловой кислоты:

$$H_3C$$
 OH H_2SO_4 ; H_2O CH $=$ C-COOH + (NH₄) $_2SO_4$

Этот эфир как и другие акрилаты при полимеризации образует стекловидные полимеры (органические стекла) с ценными техническими свойствами – плексиглас.

$$\begin{array}{c} \text{CH}_3 \\ \text{nH}_2\text{C} \stackrel{\longleftarrow}{\neq} \text{C} \\ \text{O=C-OCH}_3 \end{array} \longrightarrow \left(\begin{array}{c} \text{CH}_3 \\ -\text{H}_2\text{C-C-} \\ \text{O=C-OCH}_3 \end{array} \right)_n$$

Метиловый эфир метакриловой кислоты

полиметакриловой кислоты

Плексиглас широко применяется в медицинском приборостроении.

ДВУХОСНОВНЫЕ ПРЕДЕЛЬНЫЕ КИСЛОТЫ

Двухосновными или дикарбоновыми кислотами называются производные углеводородов, которые можно рассматривать как продукт замещения двух атомов водорода двумя карбоксилами.

Общая формула двухосновых кислот:

НО-С-R-С-ОН Ö Ö Ö Простейшей двухосновной кислотой является соединение, состоящее из двух карбоксильных групп – щавелевая кислота:

Номенклатура

Как и в случае одноосновных кислот, для обозначения многих двухосновных кислот часто пользуются эмпирическими названиями.

Иногда названия двухосновных кислот производят от названий углеводородов, радикалы которых содержатся в этих кислотах, прибавляя слова «дикарбоновая кислота». Так молоновую кислоту называют метандикарбоновой кислотой, янтарную — этандикарбоновой кислотой и. т. д.

По международной номенклатуре названия двухосновных кислот производят от названий углеводородов с тем же общим числом атомов углерода. Так щавелевая кислота называется этандиановая кислота, молоновая — пропандиновая кислота и янтарная — бутандионовая кислота.

 $_{\text{C}}$ Важнейший представитель двухосновных ароматических кислот — О-фенилендикарбоновая кислота, называемая **фталевой кислотой**.

Способы получения

Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот, например:

1. Окисление двупервичных гликолей:

2. Гидролиз (омыление) динитрилов:

Этилен Дихлорэтан Динитрил Янтарная кислота

Двухосновные ароматические кислоты можно легко получить окислением ароматических углеводородов, имеющих боковые цепи:

Физические и химические свойства

Все дикарбоновые кислоты представляют собой твердые кристаллические вещества, растворимые в воде.

Двухосновные карбоновые кислоты более сильные, чем одноосновные с тем же числом атомов углерода. Кислотность двухосновных кислот тем выше, чем короче цепь атомов углерода, связывающих карбоксильные группы. В соответствии с этим щавелевая кислота — самая сильная из двухосновных кислот.

Двухосновные кислоты вступают в те же реакции, которые свойственны и одноосновным кислотам. Обладая двумя карбоксильными группами, двухосновные кислоты дают два ряда производных, в образовании которых участвуют один карбоксил или два карбоксила.

Например:

Кроме того существуют реакции характерные только для двухосновных кислот.

1. Разложение с выделением из одного карбоксила ${\rm CO_2}$ и превращением в одноосновную кислоту. Для такого разложения достаточно нагревания выше t плавления.

$$HO-C-CH_2-C-OH$$
 \longrightarrow CO_2 + CH_3-C \bigcirc Уксусная кислота $t_{nn}=135,6$ $^{\circ}C$

2. Образование из дикарбоновых кислот их циклических производных.

При нагревании янтарной кислоты происходит выделение одной молекулы воды и образование ангидрида янтарной кислоты, имеющего строение пятичленного кольца (цикла):

При нагревании следующего гомолога янтарной кислоты – глутаровой кислоты – также образуется ангидрид циклического строения, кольцо ангидрида глутаровой кислоты имеет шесть атомов:

Аналогично двухосновная ароматическая фталевая кислота очень легко теряет воду и превращается в ангидрид фталевой кислоты или фталевый ангидрид:

Отдельные представители (щавелевая кислота, молоновая кислота, янтарная кислота, адипиновая кислота, фталевая кислота, терефталевая кислота)

НО-С-С-ОН *Щавелевая кислота* встречается в виде солей во многих растениях, например в щавеле и кислице. Она кристаллизуется из

воды в виде дигидрата (COOH)₂ $\cdot 2H_2O$ с $t_{\text{плав.}} = 101,5$ °C. Кристаллизационная вода удаляется медленной сушкой при 110–120 °C. Безводная кислота плавится при 189 °C.

Щавелевая кислота способна окисляться до CO₂ и воды:

$$(COOH)_2 \xrightarrow{[0]} 2CO_2 + H_2O$$

На этом основано ее применение в качестве восстановителя и для установления титра марганцовокалиевой соли.

При нагревании выше температуры плавления, в присутствии концентрированной H_2SO_4 происходит разложение щавелевой кислоты:

$${\rm (COOH)_2} \, \longrightarrow \, {\rm CO} \, + {\rm CO_2} \, + \, {\rm H_2O}$$

В технике щавелевую кислоту получают:

- 1) окислением древесных опилок кислородом воздуха при нагревании их с расплавленным едким калием или смесью едких калия и натрия;
- 2) при быстром нагревании до 400 °C калиевой или натриевой соли муравьиной ислоты:

$$H_1$$
—С ONa t° H_2 t° H_2 t° H_3 t° H_4 t° t°

Диэтиловый эфир молоновой кислоты, называемый обычно молоновым эфиром обладает высокой химической активностью и способен к ряду интересных химических превращений. Молоновый эфир представляет собой жидкость с приятным фруктовым запахом. Он применяется при ряде синтезов лекарственных веществ, например при получении барбитала.

$$\overset{\mathsf{HO}}{\circ}\mathsf{C}-\mathsf{CH_2}-\mathsf{CH_2}-\mathsf{C}\overset{\mathsf{OH}}{\circ}$$

НО С-СН₂-СН₂-СН Янтарная кислота или бутандионовая кислота содержится в янтаре, в буром угле,

во многих растениях, особенно много ее в недозрелых фруктах.

Янтарная кислота — твердое кристаллическое вещество с $t_{\text{пл}} = 182,8$ °C. В технике получается гидрированием малеиновой кислоты и из природной смолы — янтаря путем сухой перегонки.

Янтарную кислоту можно применять в реакциях поликонденсации с гликолями; некоторые эфиры янтарной кислоты служат пластификаторами.

Адипиновую кислоту — белое кристалическое вещество с $t_{\text{пл}} = 153$ °C в больших количествах приготовляют окислением азо-

тной кислотой циклогексанола. Используют для производства волокон – капрона и найлона.

$$H_2$$
С CH_2 CH_2

Фталевые кислоты

При окислении ароматических углеводородов, содержащих в молекуле две боковые цепи, в зависимости от расположения боковых цепей могут быть получены три изомерные дикарбоновые кислоты, называемые фталевыми:

Фтилевая кислота – кристаллическое вещество, $t_{\text{пл}} = 206$ –208 °C (с разложением), растворима в горячей воде. Ее получают окислением нафталина. Практически сразу получается фталевый ангидрид.

Широкое применение в качестве пластификаторов для пластических масс нашел диэфир фталевой кислоты *дибутилфталат*, его получают:

$$COOC_4H_9$$
 $COOC_4H_9$ COO

При взаимодействии с аммиаком фталевый ангидрид образует имид фталевой кислоты – *фталимид*:

Фталимид – твердое вещество, служит исходным веществом для технического синтеза ценного красителя индиго и ряда других соединений. При конденсации фталевого ангидрида с бензолом в присустствии хлористого алюминия получается *антирахинон*, широко применяемый в производстве красителей (промышленный способ).

Фтилеины — продукты конденсации фталевого ангидрида с фенолами. Важным представителем группы фталеинов является **фенолфтилеин** — индикатор широко применяемый в аналитической химии:

$$\Phi$$
талевый ангидрид Φ енол Φ енолфталеин

Фенолфталеин – белое кристаллическое вещество, хорошо растворимое в спирте. Под действием щелочей фенолфталеин переходит в соль ярко-малинового цвета:

Терефталевая, или п-фенилкарбоновая, кислота (изомер фталевой кислоты) применяется в большом количестве для синтеза ценного волокна — **лавсан (терилен)**. Лавсан — полиэфир, получаемый конденсацией терефталевой кислоты и этиленгликоля:

ДВУХОСНОВНЫЕ НЕПРЕДЕЛЬНЫЕ КИСЛОТЫ

Наиболее простые ненасыщенные двухосновные кислоты — фумаровая и малеиновая имеют одну и ту же структурную формулу, но разную пространственную конфигурацию. Фумаровая (I) — mpahc-, а малеиновая (II) — quc-изомер:

Лавсан

Обе кислоты получаются при нагревании яблочной кислоты:

Яблочная кислота

Фумаровая, малеиновая кислота