

Ciência dos Materiais A

Ana Rita C. Duarte aduarte@fct.unl.pt

- 1 Teste – 12 de Dezembro – 3ª feira 8.00 – 9.30

- Trabalhos práticos

- Lab 1

- Lab 2

Avaliação

60% parte teórica

40% parte prática

- 30% Relatórios dos trabalhos práticos
- 10% Trabalho polímeros do dia a dia

- Trabalhos práticos:

- Lab 1 Identificação de polímeros através de testes fisico-químicos (relatório entregue no final da aula prática)
- Lab 2 Avaliação das propriedades térmicas de várias amostras (relatório entregue no **moodle** até dia **14 de Dezembro**

- Entrega do trabalho polímeros do dia a dia **27 Novembro** (**moodle**)

- 1. Fred W. Billmeyer, Jr., Textbook of Polymer Science, Wiley Interscience, 3ª Ed., 1984
- 2. F. Rodriguez, Principles of Polymer Systems, McGraw-Hill, 3ª Ed., 1983
- 3. Paul J. Flory, Principles of Polymer Chemistry, Cornell University Press, 10^a Ed., 1978
- 4. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials, Intertex Books, 2ª Ed., 1993
- 5. I. M. Campbell, Introduction to Synthetic Polymers, Oxford Science Publications, 3º Ed., 1997
- 6. S. R. Sandler, W. Karo, J. Bonesteel, E.M. Pearce, Polymer Synthesis and Characterization, A Laboratorial Manual, Academic Press, 1998
- 7. Brandrup, Immergut, Polymer Handbook, John Wiley & Sons, 4ª Ed., 1999

O que é um polímero?

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Polímero ou não...

Sal
Cabelo
Açúcar
Nylon
Bicarbonato de sódio
Vidro
Madeira

Esferovite
Unhas de gel
Papel
Vinagre
Seda
Lã
Ouro

DNA Ferro Neon Músculos Slime Polietileno Prata

2023/2024 Ciência dos Materiais A

TED TALK:

From DNA to Silly Putty, the diverse world of polymers

Jan Mattingly

https://ed.ted.com/lessons/from-dna-to-silly-putty-the-diverse-world-of-polymers-jan-mattingly

Silk wearing (XIV century)

- **Polímeros naturais**, isto é, não produzidos pelo homem são usados há vários séculos. São exemplos a seda e a lã.
- Serviram como base de várias indústrias e para trocas comerciais entre civilizações, das quais e tão bem conhecida a rota da seda.

Kneaded rubber and common eraser

- **Borracha**, era usada pelos povos da América do Sul para produzir capas impermeabilizantes.
- 1770 foi criada a primeira aplicação comercial da borracha, para apagar lápis

1830 – a era das aplicações industriais dos polímeros inicia-se

Charles Goodyear – descobre o processo de vulcanização da borracha – reticulação das cadeias poliméricas de borracha natural com enxofre

Charles Macintosh – desenvolveu os casacos impermeáveis, revestindo os tecidos com borracha, a partir da dissolução da borracha em nafta.

1863 – Agostinho Vicente Lourenço - Um português na história dos polímeros

Médico, nascido em Goa. Defende a sua tese de doutoramento em Química Orgânica e é reportado o primeiro exemplo de uma reação de polimerização por condensação.

INVESTIGAÇÕES

ÁCERCA DA

SYNTHESE DOS ALCOOLS MONOATOMICOS

MEMORIA APRESENTADA

Á ACADEMIA REAL DAS SCIENCIAS DE LISBOA

EM SESSÃO DE 6 DE MAIO DE 1866

POR

A. V. Lourenço e A. A. d'Aguiar

Antonio Romas dos Cassos

--€XXX©---

Breve cronologia de ciência de polímeros

SCIEN

1900-1929

manufactured in Germany

1909

Casein plastics, derived from milk, developed by Erinoid

1915

1919

cellulose

acetate

powder

moulding

Eichengrun

produce first

Queen Mary sees casein products at the British Industries Fair and orders several pieces of jewellery made from it

1910

1921 Beginning of rapid growth of phenolic mouldings especially for electrical insulation, with addition of phenolic laminates in 1930

1922

Staudinger published his work recognising that plastics are composed of long chain molecules leading to a Nobel prize in 1935

1916

Stockings made of viscose (CA) begin to be

1924 Rossiter at British Cyanide develops urea-thiourea formaldehyde resins, subsequently commercialised as the first water white transparent thermosetting moulding powder

Rolls Royce begins

formaldehyde in its

car interiors and

boasts about it

to use phenol

1926

Eckert and Ziegle patent first commercial modern plastics in ection moulding machine

1926

Harrods host first display of coloured thermosetting plastics tableware produced by Brookes and Adams, The Streetly Manufacturing Company and Thomas De La Rue and Co.

1929

Bakelite Ltd receives its largest ever order for phenolic moulding powder for the casing of the Siemens telephone

1930

'Scotch' tape, the first transparent sticky tape invented in US by 3M Company

1935

BPF founded on the 21st December 1933. First Chairman, Charles Waghorne of Insulators Limited

1932

Screw pre-

in injection

moulding

patented

plasticisation

1937

First Troester in Germany commercial produce first production of extruder polystyrene by IG Farben designed for thermoplastics Germany

1935

Carothers and DuPont patent nylon

1933

1930s

Crawford at ICI develops first commercial synthesis of poly(methyl thacrylate)

1936

First production of aircraft canopies made from 'Perspex'

1938

First toothbrush with nylon tufts manufactured

1937

Columbo and Pasquetti in Italy produce first twinscrew extruder machine

1938

Full scale production of nylon 6 fibre begins in United States

1939

first commercial production of polyethylene in UK by ICI

1938

Plunkett (DuPont) discovers PTFE

1939

outbreak of war - strategic stockpiles of materials

First production of PVC in UK

1940s

Polyethelene used as radar cable insulation

1940

DuPont introduces polyacrylonitrile (PAN), an early engineering product 1941

Whinfield and Dickson, of the Calico Printer's Association of Manchester, patent polyethylene terephthalate (PET); followed by the creation of the first polyester er called 'Tervi

1943

First pilot plant for polytetrafluoroethylene (PTFE); to be marketed under trade mark 'Teflon'

1942

'Super Glue' (methyl cvanoacrylate) first discovered by Dr Harry Coover, Eastman Kodak

1945

The production of the LDPE Sqezy bottle by Monsanto caused a rapid expansion of the industry with containers produced to replace glass bottles for shampoos and liquid soaps.

Introduction of 12" long PolyVinyl Chloride (PVC)

1948

George de Mestral invents Velcro. patented in 1955

1949

High impact polystyrene introduced as a commercial plastic

1949

First Airfix self-assembly model produced (Ferguson Tractor) initially made of cellulose acetate and later polystyrene

1948

Acrylonitrile-

butadiene-styrene

(ABS) produced

1949

Launch in US of Tupperware made from low density polyethylene

1949

'Lycra' based on polyurethane, invented by DuPont

1947

Formica melamine faced decorative laminates introduced into the UK

1948

playing records made from

1950s

1950

ICI opens new factory at Redcar to produce 'Tervlene'

1951

Festival of Britain

1954

Polystyrene foam introduced by Dow Chemical Co.

956

bag makes its first DuPont mes patents for first acetals (POM)

1950s

appearance

Reliant Regal 111. first commercially successful all glassreinforced-plastic bodied car goes on sale

The polyethylene

1950s

Introduction of acrylonitrilebutadiene-styrene (ABS) copolymers

1953

Commercialisation of polyester fibres introduces the concept of 'drip dry' and 'non-iron'

1955

First production of high density polyethylene in UK

1956

Eero Saarinen's 'Tulip Chair' launched, consisting of a seat made of glass-fibrereinforced plastic

1957

The hoop is reinvented as the 'Hula Hoop' by Knerr & Medlin, Wham-0 Toy Company

1957

First production of polypropylene by Montecatini using Ziegler-Natta catalysts

1958

First production of polycarbonates (Bayer and General Electric)

1959

Barbie Doll unveiled by Mattel at American International Toy Fair

NOVA S SCIENCE

1960s-70s

Early 1960s

introduction of waterbased acrylic paints

1960 Ethylenevinyl acetate co-polymers launched by

DuPont

1962 DuPont launches polyimide films and

1962

gel brea implant

1966

Blow moulded fuel tanks introduced

1970

First Yellow HDPE pressure pipes for gas introduced into UK by Wavin/British Gas

1967

Polyvinyl Chloride (PVC) 'Blow' chair designed by Scolaria, De Pas and Lomazzi, manufactured by Zanotta

1973

Polyethylene terephthalate beverage bottles introduced

1977

1965

'Kevlar' is

first developed by

QuPont and used in tyres

Neil Armstrong plants a

nylon flag on the moon

Polyaryletheretherketone First PVC-U double (PÉEK) was first prepared by ICI

1976

Plastics in its great variety of forms becomes the most used type of material in the world

1979

glazed windows installed in the UK

1980s-90s

1980

First production of linear low density polyethylene

1980

First Blue HDPE pressure pipes for potable water introduced into UK

1983

The slim plastics Swatch watch made of 51 components, mainly plastics

1988

Introduction of triangular recycling symbols relating to plastics

ICI and Bayer launch PEEK, PPS (polyphenyene sulphide), and PES (polyether sulphone)

1989

first light-emitting polymers (poly-ethyne) discovered in Cambridge

1982 First artificial heart made mainly of polyurethane, implanted in a human

1987

BASF in Germany produces a polyacetylene that has twice the electrical conductivity of copper

1989

The Gravimetric Batch Blender is invented by Steve Maguire revolutionising the industry and bringing affordable gravimetric blending to processors.

1990

ICI launches 'Biopol', the first commercially available biodegradable plastic

1991

Dyson's vacuum cleaner launched in Japan

1994

'Smart car' with lightweight flexible integrally coloured polycarbonate panels introduced

1998

Free standing Zanussi 'Oz' fridge, with insulation and outer skins made in one process from polyurethane foam, introduced

Ciência dos Materiais A

2000s

NO SCI

Nano-Technology applied to polymer and composite applications

2000-10

2001

up by Tony Fadell, an independent

inventor, developed

by Apple

iPod dreamed

First commercial metallocene catalysed polyolefins introduced

2005

Polycond project established to look at the potential of conductive polymers

NASA explores the advantages of a polyethylene based material RFX1, as the material, for the spaceship that will send man to Mars

2008

Airbus 380, comprising 22% carbon-fibre reinforced plastics, flies into Heathrow

2009

Boeing 787 (nicknamed Boeing's Plastic Dream') comes into service, its skin is made up of 100% Plastic composites with plastic making up 50% of all materials in the plane

2010

The Amazon Kindle is an e-reader made with a resilient plastic outer body case. Kindle is used to read e-books newspapers. magazines, blogs and other digital media

Plastics Blood

Developed by the University of Sheffield to mimic haemoglobin, for use in trauma situations where blood is needed quickly

Plastic Solar Cells

A polymer solar cell that can produce electricity from sunlight by the photovoltaic effect provides a lightweight, disposable and inexpensive alternative to traditional solar panels

Implantable Polymers

Medical grade and implantable biomaterials such as PEEK will be used in neurological applications to help control epilepsy, Parkinson's disease and brain trauma

Flexible

Plastic

flexible un

Screens

Organic light-emitting

diodes are placed on

lastic foil to create

electronic devices with

2010+

Bullet Proof Polymer

Scientists at Rice University, Texas have created a new super polymer material that can stop a 9mm bullet and seal the hole behind it

Solar Powered Flight

The Solar Impulse plane's structure, made from roughly 90% polymer-matrix-composite materials, achieved the first solar-powered intercontinental flight in 2012

Commercial Space Flights

Lightweight carbon composite materials will be crucial in the realisation of sub-orbital tourist spaceflights

3D Printed **Body Parts**

Using plastic materials such as PMMA car parts can be printed at home and doctors can produce replica livers or kidneys for transplant patients

Driverless Cars

In the future all driverless vehicles will be almost entirely constructed from plastic parts due to the light weighting properties they provide

CONTROLUTIONS BY: PHS, Science Miseum, Sylvia Katz, Colin Williamson, Colin Richardson, Susan Mossman, John Russel, Raiph Kay,

BPF, PHS, Science Museum, Victoria and Albert Museum, Design Museum, Cornelius Collection of Toys, Biendtley Park, Bakelite

Ciencia dos Materiais A

World plastics production

Figure 2: World Plastics Production 1950-2011
Includes Thermoplastics, Polyurethanes, Thermosets, Elastomers, Adhesives,
Coatings and Sealants and PP-Fibers. Not included PET-, PA- and Polyacryl-Fibers
Source: Plastics Europe Market Research Group (PEMRG)

Nos últimos 10 anos produziuse mais plástico que nos 100 anos anteriores!

6 maiores tipos de plásticos em termos de volume de mercado:

- polietileno baixa densidade (PE-LD), ou alta densidade (PE-HD)
- polipropileno (PP)
- policloreto de vinilo (PVC)
- poliestireno sólido (PS), expandido (PS-E)
- polietileno tereftalato (PET)
- poliuretano (PUR)

Figure 6: European Plastics Demand* by Segment and Resin Type 2011 Source: Plastics Europe Market Research Group (PEMRG)

* EU-27+N/CH incl. Other Plastics (~5.7 Mtonne)

Accelerations, peaks, and troughs, crude petroleum, organic chemicals, and plastics products, 1978–2003

Supply shock	Acceleration	Peak	Trough
Crude petroleum			
Iranian Revolution/Iran-Iraq War	December 1978	January 1980	April 1982
OPEC production cut, 1986	September 1986	August 1987	October 1988
Gulf War	August 1990	October 1990	October 1991
OPEC production cut, 1999	March 1999	February 2000	November 2001
OPEC production cut, 2001	December 2001	February 2003	_
Organic chemicals			
Iranian Revolution/Iran-Iraq War	July 1978	January 1980	September 1982
OPEC production cut, 1986	September 1986	January 1989	April 1990
Gulf War	June 1990	November 1990	November 1991
OPEC production cut, 1999	April 1999	July 2000	February 2002
OPEC production cut, 2001	March 2002	February 2003	-
Plastics products			
Iranian Revolution/Iran-Iraq War	August 1978	January 1980	March 1983
OPEC production cut, 1986	March 1987	August 1988	April 1990
Gulf War	October 1990	February 1991	February 1992
OPEC production cut, 1999	April 1999	November 2000	March 2002
OPEC production cut, 2001	April 2002	April 2003	_

250

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Quais os factores que influenciam o preço de venda de um polímero?

O preço dos polímeros é um dos factores que influencia o preço final de um produto acabado. No entanto outros factores podem influenciar o preço final. Indica por ordem crescente de dependência do custo do polímero os seguintes itens:

- Caixote do lixo de polietileno
- Meias de nylon
- Pente de nylon
- Pneu de automóvel
- Óculos de sol de acetato de celulose

Quais os factores que influenciam o preço de venda de um polímero?

Outros factores incluem:

- Aditivos ou outros ingredientes
- Custo de mão de obra
- Design
- Embalagem
- Distribuição

- 3. Caixote do lixo de polietileno
- 4. Meias de nylon
- 5. Pente de nylon
- 2. Pneu de automóvel
- 1. Óculos de sol de acetato de celulose

Vivemos rodeados de polímeros, mas já paramos para pensar sobre como é feito por exemplo um copo de café, qual é o material mais indicado, quais são as propriedades que tem que ter para ser adequado à função que vai desempenhar?

https://www.youtube.com/watch?v=xoIbPGFjQmM

Qual é a diferença entre um polímero e um plástico?

Definições e nomenclatura

Polímero – conjunto de unidades moleculares ligadas covalentemente entre si

Monómero – unidade repetitiva da cadeia macromolecular

Copolímero de blocos

Copolímero ramificado ou exertado

Copolímero – polímero formado por unidades repetitivas diferentes ligadas entre si covalentemente

Produção de copolímeros – surge da necessidade de produzir polímeros com propriedades específicas não conseguidas com a mistura física dos dois homopolímeros A e B

Propriedades

************	Homopolímero	
************	Copolímero aleatório	Propriedades intermédias entre os homopolímeros A e B
\/*\	Copolímero alternado	Propriedades ± intermédias entre os homopolímeros A e B
	Copolímero de blocos	Propriedades intermédias entre os homopolímeros A e B, dependendo do tamanho das sequências/blocos de A e B
	Copolímero ramificado ou exertado	Modificação das propriedades do homopolímero A

- 1. O que são homopolímeros e copolímeros?
- 2. Quais as diferenças entre copolímero aleatório e copolímero alternado.
- 3. Qual a motivação para a produção de copolímeros em substituição aos correspondentes homopolímeros?

4. Polímeros formados por mais de um tipo de unidade monomérica são chamados copolímeros. Um exemplo é o Nylon-66, no qual as unidades repetitivas são formadas por 1,6-diaminohexano (H2N(CH2)6NH2) e por ácido adípico (HOOC(CH2)4COOH).

Identifique nas figuras de 1 a 4 os tipos de copolímeros formados pelos monómeros A e B.

- A) 1 ramificado, 2 bloco, 3 alternado e 4 aleatório.
- B) 1 bloco, 2 ramificado, 3 aleatório e 4 alternado.
- C) 1 bloco, 2 alternado, 3 aleatório e 4 ramificado.
- D) 1 aleatório, 2 bloco, 3 ramificado e 4 alternado.
- E) 1 alternado, 2 ramificado, 3 bloco e 4 aleatório.

Etileno

Homopolimeros

Nomenclatura IUPAC

Poli (designação IUPAC da unidade repetitiva com a estrutura exacta) Poly (designação IUPAC da unidade repetitiva com a estrutura exacta)

Ex: Poly (oxyspiro[3.5]nona-2,5-dien-7,1-ylene-4-cyclohexen-1,3-ylene)

Nomenclatura geral

Poli (nome do monómero) Poli (nome do monómero sem parêntesis)

Ex: Poli(propileno), Polipropileno, Polietileno

Abreviatura: PP PE

PVC - polyvinylchloride, policloreto de vinilo

PMMA – polymethylmethacrylate, polimetacrilato de metilo, poli(metacrilato de metilo)

Nomes comerciais

NYLON – poliamida TEFLON- politetrafluoretileno TERYLENE – poliéster PLEXIGLÁS – polimetacrilato de metilo

KEVLAR - poliaramida

5. Desenha uma secção de três unidades repetitivas dos seguintes polímeros:

Poliestireno

Policloreto de vinilo

6. Considere as fórmulas destes dois polímeros.

Os monómeros correspondentes aos polímeros I e II são, respectivamente,

- A) propano e cloroetano.
- B) propano e cloroeteno.
- C) propeno e cloroetano.
- D) propeno e cloroeteno.

7. Na tabela, são apresentadas algumas características de quatro importantes polímeros.

Polímero	Estrutura Química	
Х	-(-CH ₂ CH ₂ -) _n	
Υ	CH2CH	
Z	CH ₂ —CH—	
W		

Aplicações

Copos, sacos de plástico, embalagens de garrafas

Fibras, cordas, assentos de cadeiras

Embalagens descartáveis de alimentos, pratos

Tubos, filmes para embalagens

7.1. Polipropileno, poliestireno e polietileno são, respectivamente, os polímeros:

- a) X, Y e Z.
- b) X, Z e W.
- c) Y, W e Z.
- d) Y, Z e X.
- e) Z, Y e X

7.2. Identifica o polímero W

Polímero ou não...

Sal
Cabelo
Açúcar
Nylon
Bicarbonato de sódio
Vidro
Madeira

Esferovite
Unhas de gel
Papel
Vinagre
Seda
Lã
Ouro

Prata

Ferro

Neon

Músculos

Slime

Polietileno