Das Bewertungsspektrum eines Ringes

Seminar zu Bewertungstheorie

Sei (Γ, \leq) eine total geordnete (multiplikativ geschriebene) abelsche Gruppe, A ein Ring.

Wiederholung

Eine Bewertung $|\cdot|:A\to\Gamma\cup\{0\}$ ist eine Abbildung mit

- (i) $|a+b| \leq \max\{|a|,|b|\}$ für alle $a,b \in A$
- (ii) |ab| = |a||b| für alle $a, b \in A$
- (iii) |0| = 0 und |1| = 1

die Menge $|\cdot|^{-1}(\{0\}) =: \sup(|\cdot|)$ heißt der *Träger* von $|\cdot|$ und die Untergruppe in Γ, die von $\operatorname{im}(|\cdot|) \setminus \{0\}$ erzeugt wird, heißt Wertegruppe von $|\cdot|$ und wird mit $\Gamma_{|\cdot|}$ bezeichnet.

Zwei Bewertungen $|\cdot|_1, |\cdot|_2$ heißen äquivalent, wenn eine der äquivalenten Bedingungen erfüllt ist

- (i) Es gibt einen Isomorphismus total georndeter Monoide $f: \Gamma_{|\cdot|_1} \cup \{0\} \to \Gamma_{|\cdot|_2} \cup \{0\}$ mit $f \circ |\cdot|_1 = |\cdot|_2$
- (ii) $supp(|\cdot|_1) = supp(|\cdot|_2)$ und $A(|\cdot|_1) = A(|\cdot|_2)$
- (iii) Es gilt $|a|_1 \le |b|_1 \Leftrightarrow |a|_2 \le |b|_2$ für alle $a, b \in A$.

Das Bewertungsspektrum eines Ringes

Definition 1. Das Bewertungsspektrum von A ist die Menge aller Äquivalenzklassen von Bewertungen auf A und wird mit Spv(A) bezeichnet. Man betrachte für $f_1, \ldots, f_n, g \in A$

$$U(\frac{f_1, \dots, f_n}{g}) = \{ |\cdot| \in \text{Spv}(A) : |f_i| \le |g| \ne 0, \ \forall i = 1, \dots, n \}$$

dann gilt für $f, f', g, g' \in A$, dass

$$U(\frac{f}{q}) \cap U(\frac{f'}{q'}) = U(\frac{fg', f'g}{qq'})$$

Grund: Es ist |gg'| = |g||g'| und daher $|gg'| \neq 0$ äquivalent zu $|g|, |g'| \neq 0$. $|fg'| \leq |gg'|$ und $|f'g| \leq |gg'|$ sind wegen $|g|, |g'| \neq 0$ äquivalent zu $|f| \leq |g|$ und $|f'| \leq |g'|$.

Daher erzeugen die Mengen $U((f_1, \ldots, f_n)/g)$ mit $f_1, \ldots, f_n, g \in A$ eine Topologie auf Spv(A).

Man hat eine Bijektion

$$\{X := (\mathfrak{p}, R) \mid \mathfrak{p} \in \operatorname{Spec}(A), R \text{ Bur von } \operatorname{Frac}(A/\mathfrak{p})\} \longleftrightarrow \operatorname{Spv}(A)$$

Sei $(\mathfrak{p}, R) \in X$ auf $\kappa(\mathfrak{p}) = \operatorname{Frac}(A/\mathfrak{p})$ haben wir die Bewertung

$$\kappa(\mathfrak{p}) \to \kappa(\mathfrak{p})^{\times}/R^{\times} \cup \{0\}, \ x \mapsto \begin{cases} xR^{\times} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

und kanonische Homomorphismen $\varphi^{\mathfrak{p}}: A \to A/\mathfrak{p} \to \kappa(\mathfrak{p})$ dadurch erhalten wir dann eine Bewertung auf A. Diese sieht dann konkret aus

$$|\cdot|_{\mathfrak{p}}^{R}:A\rightarrow\kappa(\mathfrak{p})^{\times}/R^{\times}\cup\{0\},x\mapsto\begin{cases}\frac{x+\mathfrak{p}}{1+\mathfrak{p}}R^{\times},&x\notin\mathfrak{p}\\0,&x\in\mathfrak{p}\end{cases}$$

Ist andererseits $|\cdot| \in \text{Spv}(A)$, dann ist $\mathfrak{p} := \text{supp}(|\cdot|) \in \text{Spec}(A)$ und $|\cdot|$ definiert eine Bewertung auf A/\mathfrak{p} , denn seien $x, x' \in A$ mit $x - x' \in \mathfrak{p}$, dann gilt $|x| \leq \max\{|x - x'|, |x'|\} = |x'|$ und umgekehrt. Diese Bewertung auf A/\mathfrak{p} setzt sich dann auf $\text{Frac}(A/\mathfrak{p})$ fort.

Lemma 1 (Beschreibung der Fasern als RZ-Räume). Sei A ein Ring, dann gilt

- (i) Ist A ein Körper, so gilt $Spv(A) \cong_{\mathsf{Top}} RZ(A)$
- (ii) Die kanonische Abbildung supp : $\operatorname{Spv}(A) \to \operatorname{Spec}(A)$, $|\cdot| \mapsto \operatorname{supp}(|\cdot|)$ ist stetig (bzgl. der Zariski-Topologie auf $\operatorname{Spec}(A)$) und surjektiv. Für jedes $\mathfrak{p} \in \operatorname{Spec}(A)$ ist dessen Faser unter supp als topologischer Raum zu $\operatorname{RZ}(\operatorname{Frac}(A/\mathfrak{p}))$ isomorph.