EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING

CONFIGURING THE LEARNING PROCESS

Date	07 November 2022	
Team ID	PNT2022TMID08407	
Project Name	Emerging Methods for Early Detection of ForestFires	

Importing The ImageDataGenerator Library

import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/train_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/test_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential

from keras.models import Sequential

#To add layers import Dense

from keras.layers import Dense

#To create Convolution kernel import Convolution2D

from keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

#import flatten layer

from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

Initializing the model

model=Sequential()

Add CNN Layer

model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))#add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2)))#add flatten layer model.add(Flatten())

Add Dense Layer

#add hidden layer model.add(Dense(150,activation='relu')) #add output layer model.add(Dense(1,activation='sigmoid'))

Configure the learning process

model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])