Lecture 26: Reinforcement Learning Part 3

Gavin Kerrigan
Spring 2023

Some slides adapted from Padhraic Smyth, Alex Ihler

Announcements

- Final course eval
 - evaluations.eee.uci.edu
 - Due 6/11
 - 30/162 students have completed so far
- HW5 due in one week (Friday 6/9)
- Project due in ~1 week (Monday 6/12)
- Next week's "advanced topics" lectures:
 - Monday: Natural Language Processing
 - Weds: Generative Models
 - Friday: Final review

Review

Markov Decision Processes

Policy Evaluation and Improvement

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- ullet S is a finite set of states
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$
- \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$
- lacksquare γ is a discount factor, $\gamma \in [0,1]$

Reward can be stochastic or deterministic (here, we often consider deterministic)

R_s is the average reward we receive from being in state s

Returns

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - lacksquare γ close to 0 leads to "myopic" evaluation
 - ullet γ close to 1 leads to "far-sighted" evaluation

Value Functions

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

Review

Markov Decision Processes

Policy Evaluation and Improvement

Where We're Headed

Markov Decision Processes

A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

Markov Decision Processes

A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- ullet S is a finite set of states
- \blacksquare A is a finite set of actions
- \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{\mathsf{a}} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- lacksquare is a reward function, $\mathcal{R}_s^{a} = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- lacksquare γ is a discount factor $\gamma \in [0,1]$.

Policies

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

Policies

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent),

Student MDP

State-Value Functions

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

- Policy determines which states we will enter
- Hence value of a state depends on the policy

State-Value Functions

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

Questions?

Bellman Equations

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

Bellman Equations

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s\right]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

Backup Diagrams for V

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Backup Diagrams for Q

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \textit{v}_{\pi}(s')$$

Bellman Equations for V

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\pi}(s')
ight)$$

Bellman Equations for Q

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

Optimal Value Functions

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal Value Functions

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Optimal Value Functions

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is "solved" when we know the optimal value fn.

Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s, a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy

Student MDP: Optimal Policy

Bellman Optimality for V

The optimal value functions are recursively related by the Bellman optimality equations:

$$v_*(s) = \max_a q_*(s,a)$$

Bellman Optimality for V

$$v_*(s) = \max_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Non-Linear equation: can't be solved easily

Most of RL is focused on solving this problem!

Questions?

Review

Markov Decision Processes

Policy Evaluation and Improvement

An Overview of RL Problems

MDPs in general model states, transitions, actions rewards

Prediction: Given policy π : Estimate State/Action value functions

Control: Estimate optimal value functions, optimal policy

Is the MDP known?

- Yes: Agent is then "planning"; everything is known about environment
- No: "Model-Free RL"; agent observes as it goes

An Overview of RL Problems

Evaluate Policy, π (Prediction)

Find Best Policy, π^* (Control)

MDP Known

Policy Evaluation

Policy Iteration

MDP Unknown (Model-free)

Monte Carlo and Temporal Difference Learning

Q-Learning

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_{\pi}$

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s

Iterative Policy Evaluation

$$egin{aligned} \mathbf{v}_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{m{\pi}} + \gamma \mathcal{P}^{m{\pi}} \mathbf{v}^k \end{aligned}$$

Grid World

	_		
	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is −1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation: Grid World

 $v_{m{k}}$ for the Random Policy

Greedy Policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Iterative Policy Evaluation: Grid World

 v_k for the Random Policy

0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0

$$k = \infty$$

$$0.0 | -14. | -20. | -22.$$

$$-14. | -18. | -20. | -20.$$

$$-20. | -20. | -18. | -14.$$

$$-22. | -20. | -14. | 0.0$$

Greedy Policy w.r.t. v_k

k = 3

k = 10

Questions?

An Overview of RL Problems

Evaluate Policy, π (Prediction)

Find Best Policy, π^* (Control)

MDP Known

Policy Evaluation

Policy Iteration

MDP Unknown (Model-free)

Monte Carlo and Temporal Difference Learning

Q-Learning

Improving a Policy

- Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

■ Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

Improving a Policy

- Given a policy π
 - \blacksquare Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

■ Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Questions?

Wrapup

Reinforcement Learning is built on MDPs

• States, Actions, Rewards, Transitions, Discount

Is the underlying MDP known?

- Yes: Agent needs to find optimal policy ("planning")
- No: Agent must also discover the MDP ("model-free RL")

If the MDP is known: learn optimal policy iteratively

- Evaluate policy
- Improve policy by behaving greedily

RL is a huge field: we have barely covered the basics