

Matemática 12ª Classe/2011

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

2ª Época 120 Minutos

Esta prova contém 40 perguntas com 4 alternativas de resposta para cada uma. Escolha a alternativa correcta e *RISQUE* a letra correspondente na sua folha de respostas. Responda a todas as primeiras 35 perguntas. As últimas 5 perguntas responda somente às da sua secção (Letras ou Ciências).

35 perguntas. A	s últimas 5 perguntas res	sponda somente às da sua secçã	o (Letras ou Ciências
_	isquer dois números natura ificação correcta?	is é sempre maior do que zero.	
$\mathbf{A} \ \exists x; y \in N : x + y > 0$		$\mathbf{C} \ \forall x; y \in N; x + y \ge 0$	
$\mathbf{B} \ \exists x; y \in N : x + y \ge 0$		$\mathbf{D} \ \forall x; y \in N; x + y > 0$	
2. Considere $p =$	> q, uma proposição falsa.		
Qual é o valor	lógico das proposições in	iciais?	
A Ambas são falsasB Ambas são verdadeiras		C p é verdadeira e q é falsaD p é falsa e q é verdadeira	
3. Qual é o domí	nio de existência da expro B <i>IR</i> \{1}	essão $\frac{x+2}{\sqrt[3]{x}-1}$?	
\mathbf{A} IR	$\mathbf{B} IR \setminus \{1\}$	C]0;+∞[$\mathbf{D} \]0;+\infty[\setminus\{1\}$
4. Considere $\begin{vmatrix} 1 \\ k \\ 1 \end{vmatrix}$	$\begin{vmatrix} 0 & 1 \\ -1 & 1 \\ 2 & -1 \end{vmatrix} = 6$. Qual é o valo	or de <i>k</i> ?	
A -1	B 0	C 1	D 3
5. Para quaisque	er x e y reais positivos, lgx	∵lgy é igual a	
$\mathbf{A} \ \lg \left(y^{\lg x} \right)$	$\mathbf{B} \ \lg(x \cdot y)$	$\mathbf{C} \ \lg(x+y)$	$\mathbf{D} \lg(x)^{y}$
6. Qual é a soluc	ão da equação $\sqrt[3]{2^{x+1}} = 4$?		

C 5

 $\mathbf{D} \quad 2^3$

7. Sabendo que A <i>IQ</i>	α é um ângulo do 1° quada B IIQ	rante, a que quadrante perten C IIIQ	ce o ângulo π - α? D IVQ
que forma con	n o solo, um ângulo de 30º		pa de 40m de comprimento,
Alcançado o A 20m	I and ar, a quantos metro $\mathbf{B} = 10\sqrt{3}m$	os do solo a Marília estará? C $20\sqrt{3}m$	D 80 <i>m</i>
11 20111	$\mathbf{D} = 10\sqrt{3}m$	C 20\(\gamma\) 3m	2 00.11
	ntre os pontos da recta nun reve simbolicamente esta	nérica cujas abcissas são x e -2 afirmação?	é igual a 4.
A $ x-4 =2$	B $ x+4 =2$	C $ x-2 = 4$	D $ x+2 =4$
10. Qual é o co	njunto solução da equaçã	o $ 3x-1 =5$?	
A $\{\frac{4}{3}; 2\}$	B $\{-2; \frac{4}{3}\}$	$C \left\{-\frac{4}{3};2\right\}$	D $\{-2; -\frac{4}{3}\}$
A 48	B 24 meros de três algarismos	do mesmo tipo fiquem lado a C 12 diferentes podem ser escritos	D 4
A 6	B 10	C 60	D 120
13. A Maria pre	tende ter filhos. Sabe-se qu	ne a probabilidade de NÃO eng	gravidar por mês é de 0,3.
Qual é a pro	babilidade de engravida	r por mês?	
A 1	B 0,7	C 0,5	D 0,3
	na vez, um dado equilibrad probabilidade de sair um	lo, de faces numeradas de 1 a 6 número ímpar?	
A $\frac{1}{6}$	B $\frac{1}{3}$	$C \frac{1}{2}$	$\mathbf{D} \frac{2}{3}$
O	3	2	3
15. Sejam 3p-4; Qual é o val	1 1 1	termos de uma progressão ariti	nética.
A - 2	B 1	C 2	D 4

2011/12^a Classe/Exame de Matemática/2^a Época

16. Considere uma progressão geométrica de razão igual a 2, cujo primeiro termo é 3.

Qual é a posição do termo 192?

A 6

B 7

C 8

- **D** 9
- 17. Quantos números pares de 3 algarismos, menores do que 200, existem?

A 150

B 100

 \mathbf{C} 50

- **D** 25
- 18. A soma dos três primeiros termos de uma progressão aritmética é 27 e o produto dos dois primeiros termos é 36. Qual é o primeiro termo da sucessão?

A 4

- **D** 27
- 19. Um automóvel percorreu no primeiro dia de viagem x km, no segundo dia percorreu o dobro de x e no terceiro dia percorreu o triplo de x, assim sucessivamente. Até ao fim de 10 dias, percorreu uma distância total de 1650km.

Quantos quilómetros o automóvel percorreu no primeiro dia de viagem?

- **A** 165 km
- **B** 60 km

 \mathbf{C} 30 km

- **D** 15 km
- 20. Qual é a classificação da função f(x) = cosx + 2 quanto à paridade?

A Par

B ímpar

- C Não par nem ímpar
- **D** Par e ímpar
- 21. Qual é a equação da assímptota horizontal do gráfico da função $f(x) = \frac{2}{x+1}$?
 - **A** x = -1
- $\mathbf{B} \quad \mathbf{v} = -1$

- 22. O gráfico de uma função do primeiro grau passa pelo ponto (4;0) e pelo vértice da parábola dada pela expressão $y = x^2 - 2x$. Qual é a expressão analítica dessa função do primeiro grau?
- **A** $y = \frac{1}{3}x \frac{4}{3}$ **B** $y = -\frac{1}{3}x \frac{4}{3}$ **C** $y = -\frac{1}{3}x + \frac{4}{3}$ **D** $y = \frac{1}{3}x + \frac{4}{3}$
- 23. Os gráficos das $f(x) = a^x e f(x) = x^2 1$ interceptam se num ponto de abcissa 3. **Qual é o valor de a?**
 - **A** 1

D 4

24. Qual dos gráficos representa uma função Injectiva?

A

B

 \mathbf{C}

D

2011/12ª Classe/Exame de Matemática/2ª Época

25. Qual é o valor de $\lim_{x\to +\infty} \left(\sqrt{x+1} + \sqrt{x}\right)$?

 $\mathbf{A} - 1$

C 1

 \mathbf{D} + ∞

26. Qual é o valor de $\lim_{x\to 1} \frac{\sqrt{x-1}}{x-1}$?

 $\mathbf{A} \ 0$

 $\mathbf{B} \ \frac{1}{4}$

 $\mathbf{C} \frac{1}{2}$

D 1

27. Qual é o valor de $\lim_{x\to 0} (1-x)^{\frac{2}{x}}$?

 $\mathbf{C} e^{-2}$

 $\mathbf{D} e^2$

28. Qual é o valor de $\lim_{x\to 2^{-}} \frac{2x-4}{|x-2|}$?

C 2

 $\mathbf{D} \propto$

29. Considere a função $f(x) = \frac{x-2}{x^2-5x+6}$.

Em que ponto a função tem um ponto de descontinuidade eliminável?

 \mathbf{A} -3

C 2

D 3

30. Qual é a 1ª derivada da função $f(x) = cos(x^2 + 1)$?

A $-2xsen(x^2+1)$

B $-2xsen(x^2-1)$ **C** $sen(x^2-1)$

D $2xsen(x^2+1)$

31. Qual é a 1ª derivada da função $f(x) = e^{\sqrt{2x}}$?

 $\mathbf{A} \quad \frac{e^{\sqrt{2x}} \cdot \sqrt{2x}}{\cdots}$

 $\mathbf{B} \ \frac{e^{\sqrt{2x}} \cdot \sqrt{2x}}{2x} \qquad \qquad \mathbf{C} \ \frac{e^{\sqrt{2x}} \cdot \sqrt{x}}{2x}$

 $\mathbf{D} \ \frac{e^{\sqrt{2x}} \cdot \sqrt{2}}{x}$

32. Qual é a 2^a derivada da função f(x) = tgx?

 $\mathbf{A} - \frac{2tgx}{\cos^2 x}$

 $\mathbf{B} \; \frac{1}{\cos^4 x} \qquad \qquad \mathbf{C} \; \frac{tgx}{\cos^2 x}$

 $\mathbf{D} \; \frac{2tgx}{\cos^2 x}$

33. Seja y = (k-1)x + 2 a equação da recta tangente ao gráfico da função $y = x^3 + 1$ no ponto de abcissa x = 1. Qual é o valor de k?

A 4

B 3

C 2

D 1

34. Qual é a abcissa do extremo máximo do gráfico da função $f(x) = -x^2 + 1$?

 $\mathbf{A} - 2$

B - 1

 \mathbf{C} 0

D 1

35. Em que valor de x a função representada na figura não é derivável?

 \mathbf{A} -1

 $\mathbf{B} = 0$

C 1

D 2

Somente para a Secção de Letras

36. Considere os conjuntos $M = \{x \in IR : -2 < x \le 6\}$ e $N = \{x \in IR : x < 3\}$.

Qual é o conjunto $M \setminus N$?

C
$$]-\infty;-2]\cup[2;6]$$
 D $]-\infty;-2]\cup[2;6]$

D
$$]-\infty;-2]\cup]2;6]$$

37. Qual é a expressão equivalente à $\overline{N} \cap (\overline{M} \cup N)$?

 $\mathbf{A} \overline{M}$

 $C \overline{M \cap N}$

D $\overline{M \cup N}$

38. Uma prova tinha duas questões, 30 alunos acertaram somente uma questão, 24 acertaram a segunda questão, 10 acertaram as duas questões, 26 erraram a primeira questão.

Quantos alunos não acertaram nenhuma das questões?

A 12

B 24

C 26

D 56

39. Qual é o ângulo formado entre a recta de equação y = x - 2 e o sentido positivo do eixo das abcissas?

A 30°

B 45°

C 60°

D 90°

40. Considere as aplicações $Q:2x^2+2y=4$, $T:2x+2y^2=4$ P:2x+2y=4 e $M:2x+2y^2-2xy=4$ Quais destas aplicações correspondem a funções?

 $\mathbf{A} Q e P$

 $\mathbf{R} \ \mathcal{O} \ e \ T$

 $\mathbf{C} \quad T \quad e \quad M \qquad \qquad \mathbf{D} \quad P \quad e \quad M$

Somente para a Secção de Ciências

36. Qual é a equação reduzida da circunferência de centro C(2;3) e que passa pelo ponto

$$P(-1;5)$$
?

A
$$(x-2)^2 + (y-3)^2 = 26$$

C
$$x^2 + y^2 = 13$$

B
$$(x+2)^2 + (y+3)^2 = 13$$

D
$$(x-2)^2 + (y-3)^2 = 13$$

37. Usando a unidade imaginária *i*, **como pode ser escrito o número** $\frac{5}{6}$ - $\sqrt{-18}$?

A
$$\frac{5}{6} - 9i$$

B
$$\frac{5}{6} - 3\sqrt{2}i$$
 C $\frac{5}{6} - 3i$

$$C = \frac{5}{6} - 3i$$

D
$$\frac{5}{6} + 3\sqrt{2}i$$

38. Qual é a primitiva da função $f(x) = \frac{1}{x^2}$?

$$\mathbf{A} \ \frac{1}{x}$$

$$\mathbf{B} \ \frac{1}{x^2}$$

$$\mathbf{C} - \frac{1}{x}$$

D
$$-\frac{1}{x^2}$$

39. Dada a função h(x) = 4x + 2, qual é o valor de (hoh)(-1)?

40. Qual das figuras pode representar o gráfico de uma função invertível?

A

 \mathbf{C}

D

