АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ Замкнутые экспоненциальные CeMO с однородным потоком заявок

Основные предположения:

- замкнутая СеМО (3СеМО) произвольной топологии содержит *n* узлов;
- после завершения обслуживания в каком-либо узле передача заявки в другой узел происходит мгновенно;
- все узлы замкнутой СеМО одноканальные;
- в СеМО циркулирует постоянное число заявок;
- длительности обслуживания заявок во всех узлах сети представляют собой случайные величины, распределенные по экспоненциальному закону;
- ёмкость накопителя в каждом узле CeMO достаточна для хранения всех заявок, циркулирующих в сети, что означает отсутствие отказов поступающим заявкам при их постановке в очередь любого узла (в частности, можно считать, что ёмкость накопителя в каждом узле равна числу заявок, циркулирующих в сети);
- обслуживающий прибор любого узла не простаивает, если в его накопителе имеется хотя бы одна заявка, причем после завершения обслуживания очередной заявки мгновенно из накопителя выбирается следующая заявка;
- в каждом узле сети заявки из накопителя выбираются в соответствии с бесприоритетной дисциплиной обслуживания в порядке поступления (ОПП) по правилу «первым пришел первым обслужен» (FIFO First In First Out).

Для описания линейных замкнутых однородных экспоненциальных СеМО необходимо задать следующую совокупность параметров:

- число узлов в сети: *n*;
- число обслуживающих приборов в узлах сети: $K_1, ..., K_n$;
- матрицу вероятностей передач: $\mathbf{P} = [p_{ij} \mid i, j = 0, 1, ..., n]$, где вероятности передач p_{ij} должны удовлетворять условию: сумма элементов каждой строки должна быть равна 1;
- число заявок М, циркулирующих в 3СеМО;
- средние длительности обслуживания заявок в узлах сети: $b_1,...,b_n$.

На основе перечисленных параметров могут быть рассчитаны узловые и сетевые характеристики, описывающие эффективность функционирования соответственно узлов и РСеМО в целом. Расчёт характеристик функционирования линейных замкнутых однородных экспоненциальных СеМО с одноканальными узлами базируется на так называемой «теореме о прибытии» и проводится с использованием метода средних значений в два этапа:

- расчет коэффициентов передач в узлах замкнутой СеМО;
- расчет характеристик ЗСеМО.

Расчет коэффициентов передач в узлах ЗСеМО

Интенсивности потоков заявок в узлах 3CeMO не могут быть рассчитаны, как в PCeMO, поскольку для 3CeMO изначально неизвестна интенсивность λ_0 , которая является не параметром, задаваемым в составе исходных данных, а характеристикой, представляющей собой производительность 3CeMO и определяемой в процессе анализа эффективности функционирования 3CeMO.

Для расчёта коэффициентов передач α_{l} ,..., α_{n} можно воспользоваться системой линейных алгебраических уравнений:

 $\lambda_j = \sum_{i=0}^n p_{ij} \lambda_i \quad (i = 0, 1, ..., n)$

В левой и правой части выражения представим интенсивности в виде $\lambda_j = \alpha_j \lambda_0$ и разделим их на λ_0 . Тогда

$$\alpha_j = \sum_{i=0}^n p_{ij} \alpha_i \quad (i = 0, 1, \dots, n).$$

Полагая $\alpha_0 = 1$, можно найти корни системы уравнений, численно определяющие значения α_i .

Расчет характеристик ЗСеМО

Характеристики ЗСеМО могут быть рассчитаны с использованием марковских процессов, поскольку количество состояний марковского процесса, в отличие от РСеМО, не бесконечно. Основная трудность определение вероятностей состояний сети в случае большой ее размерности (n > 5; M > 5), когда число состояний оказывается значительным. От указанного недостатка свободен метод средних значений, позволяющий вычислять средние характеристики функционирования экспоненциальных СеМО на основе сравнительно простых рекуррентных соотношений.

Метод средних значений

Пусть замкнутая однородная СеМО содержит *п* одноканальных узлов, длительности обслуживания заявок в которых распределены по экспоненциальному закону со средними значениями $b_1,...,b_n$ соответственно. Пусть для каждого узла i сети известно среднее число попаданий заявки в данный узел за время ее нахождения в сети, то есть коэффициент передачи α_i , который, если конфигурация сети задана матрицей вероятностей передач, определяется в результате решения системы линейных алгебраических уравнений:

$$\alpha_j = \sum_{i=0}^n p_{ij} \alpha_i \quad (i = 0, 1, ..., n).$$

 $\alpha_j = \sum_{i=0}^n p_{ij} \alpha_i$ (i = 0,1,...,n). u_i - среднее время пребывания заявки в узле i за время пребывания в сети;

 m_{i} - среднее число заявок в узле i;

 λ_0 - производительность замкнутой сети.

Эти величины зависят от числа заявок M, циркулирующих в замкнутой сети, то есть $u_i = u_i(M)$, $m_i = m_i(M)$, $\lambda_0 = m_i(M)$ $\lambda_0(M)$.

Можно показать, что имеют место следующие соотношения:

$$u_i(M) = b_i[1 + m_i(M - 1)];$$

$$U(M) = \sum_{i=1}^n \alpha_i u_i(M);$$

$$\lambda_0(M) = \frac{M}{U(M)};$$

$$m_i(M) = \alpha_i \lambda_0(M) u_i(M),$$

где U(M) – среднее время пребывания заявок в сети при условии нахождения в ней M заявок; $m_i(0)=0$.

Первое выражение получено на основе так называемой *теоремы о прибытии*, утверждающей, что в замкнутой экспоненциальной сети с одноканальными узлами, в которой циркулируют M заявок, стационарная вероятность состояния любого узла в момент поступления в него новой заявки совпадает со стационарной вероятностью того же состояния рассматриваемого узла в сети, в которой циркулирует на одну заявку меньше, то есть (M-1) заявок. Это означает, что в сети с M заявками среднее число заявок $m_i(M)$, находящихся в узле i в момент поступления в этот узел новой заявки, равно $m_i(M-1)$. Тогда среднее время пребывания в узле i поступившей заявки будет складываться из среднего времени обслуживания всех $m_i(M-1)$ ранее поступивших и находящихся в узле i заявок и средней длительности обслуживания рассматриваемой заявки: $u_i(M) = b_i m_i (M-1) + b_i = b_i [1 + m_i (M-1)]$.

При выводе учтено, что среднее время дообслуживания заявки, находящейся в приборе на момент поступления рассматриваемой заявки, равно средней длительности обслуживания b_i в силу свойства отсутствия последействия, присущего экспоненциальному закону.

Приведенный метод расчета является *точным* для замкнутых экспоненциальных СеМО с одноканальными узлами.

Пример 1. Рассчитать характеристики замкнутой однородной экспоненциальной СеМО, полученной путём преобразования разомкнутой СеМО (см. пример пред. лекция) в замкнутую.

3CeMO содержит n = 4 одноканальных узла, связи между которыми описываются той же матрицей вероятностей передач:

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0,1 & 0 & 0,2 & 0,7 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Коэффициенты передач для всех узлов будут иметь те же самые значения: $\alpha_1 = 10$, $\alpha_2 = 2$, $\alpha_3 = 7$, $\alpha_4 = 9$.

В ЗСеМО циркулирует М заявок, средние длительности обслуживания которых в узлах равны: $b_1 = 0.8 \text{ c}$; $b_2 = 2 \text{ c}$; $b_3 = 0.4 \text{ c}$; $b_4 = 0.3 \text{ c}$.

В таблице представлены значения времени пребывания $u_i(M)$ и числа заявок $m_i(M)$ в узлах сети, а также среднего времени пребывания U(M) заявок в сети и производительности $\lambda_0(M)$, рассчитанные по формулам

$$u_i(M) = b_i[1 + m_i(M - 1)];$$

$$U(M) = \sum_{i=1}^n \alpha_i u_i(M);$$

$$\lambda_0(M) = \frac{M}{U(M)};$$

$$m_i(M) = \alpha_i \lambda_0(M) u_i(M),$$

для числа циркулирующих в сети заявок M = 1, 2, ..., 6.

Корректность выполненных расчетов подтверждается тем, что для всех $M=1,\,2,\ldots,\,6$ выполняется проверочное условие:

$$\sum_{i=1}^4 m_i(M) = M.$$

M	i	$u_i(M)$	U(M)	$\lambda_0(M)$	$m_i(M)$
1	1	0,8			0,46
	2	2,0			0,23
	3	0,4			0,16
	4	0,3	17,5	0,057	0,15
2	1	1,17			1,02
	2	2,46			0,43
	3	0,46			0,28
	4	0,35	22,94	0,087	0,27
3	1	1,61			1,68
	2	2,86			0,59
	3	0,51			0,37
	4	0,38	28,87	0,104	0,36
4	1	2,14			2,43
	2	3,19			0,72
	3	0,55			0,44
	4	0,41	35,29	0,113	0,42
5	1	2,74			3,25
	2	3,45			0,82
	3	0,57			0,48
	4	0,42	42,14	0,119	0,45
6	1	3,40			4,14
	2	3,63			0,88
	3	0,59			0,50
	4	0,44	49,35	0,122	0,48

Все характеристики ЗСеМО, включая производительность λ_0 , растут с увеличением M.

Производительность сети асимптотически приближается к максимально возможной производительности (пропускной способности 3CeMO), совпадающей с предельно допустимой интенсивностью поступления заявок в аналогичной разомкнутой CeMO, при которой в сети отсутствуют перегрузки, и равна λ_0 =0,125 c⁻¹.

Среднее время пребывания заявок в ЗСеМО растёт неограниченно с увеличением количества заявок в сети.

1. Точка M_{θ} характеризует некоторое граничное значение числа заявок в ЗСеМО. Когда число заявок в ЗСеМО достигает значения M_{θ} , загрузка одного из узлов становится близкой к 1, при этом практически

прекращается рост производительности, которая при $M \to \infty$ достигает своего предельного значения — пропускной способности. Такой узел представляет собой «узкое место» сети, а значение пропускной способности определяется пропускной способностью узкого места из условия, что загрузка узла равна 1:

$$\rho_y = \frac{\alpha_y \lambda_0 b_y}{K_y} = 1.$$

Отсюда пропускная способность замкнутой СеМО:

$$\hat{\lambda}_0 = \frac{K_y}{\alpha_y b_y}$$

- 3. Для увеличения производительности 3CeMO, как и в PCeMO, необходимо разгрузить узкое место, что при одной и той же производительности может быть достигнуто:
- уменьшением длительности обслуживания заявок;
- увеличением числа обслуживающих приборов в узле;
- уменьшением коэффициента передачи или, что то же самое, вероятности передачи заявок к узлу, являющемуся узким местом.
- 2. СеМО, в которой загрузки всех узлов равны, называется *сбалансированной*. Сбалансированная СеМО обладает наилучшими характеристиками по сравнению с несбалансированной.

Разгрузка «узкого места»

Пример 2: Замкнутая экспоненциальная СеМО

- 1. Описание замкнутой СеМО
- Сеть массового обслуживания (CeMO) замкнутая двухузловая.
- Поток заявок однородный.
- Количество приборов в узлах: узел 1 одноканальный, узел 2 двухканальный.
- В СеМО постоянно циркулируют M = 3 заявки.
- 2. Предположения и допущения.
- Длительности обслуживания заявок в узлах 1 и 2 распределены по экспоненциальному закону с интенсивностями $\mu_1 = 1/b_1$ и $\mu_2 = 1/b_2$ соответственно.
- Приборы в двухканальном узле 2 идентичны и любая заявка может обслуживаться в любом приборе.
- Заявка после обслуживания в узле 1 с вероятностью p_{12} переходит в узел 2 и с вероятностью $p_{10} = 1 p_{12}$ возвращается в этот же узел 1.
- Дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к CeMO, и на ней выбирается нулевая точка «0».

В замкнутой СеМО всегда существует стационарный режим, так как число заявок в сети ограничено и не может быть бесконечных очередей. Случайный процесс, протекающий в замкнутой экспоненциальной сети, является марковским.

Под состоянием марковского процесса будем понимать распределение заявок по узлам СеМО.

 S_0 : (3,0) – все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе и две заявки ожидают в накопителе;

 S_1 : (2, 1) – две заявки находятся в узле 1 (одна на обслуживании в приборе и одна в накопителе) и одна – на обслуживании в одном из приборов узла 2;

 S_2 : (1, 2) – одна заявка находится на обслуживании в узле 1 и две – в узле 2 (на обслуживании в обоих приборах);

 S_3 : (0, 3) – все три заявки находятся в узле 2, причем две заявки находятся на обслуживании в обоих приборах узла 2 и одна заявка ожидает в накопителе.

$$\begin{cases} p_{12}\mu_1 p_0 = \mu_2 p_1 \\ (p_{12}\mu_1 + \mu_2) p_1 = p_{12}\mu_1 p_0 + 2\mu_2 p_2 \\ (p_{12}\mu_1 + 2\mu_2) p_2 = p_{12}\mu_1 p_1 + 2\mu_2 p_3 \\ 2\mu_2 p_3 = p_{12}\mu_1 p_2 \\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$

Расчет характеристик ЗСеМО

1) загрузка узлов:

$$\rho_1 = p_0 + p_1 + p_2; \quad \rho_2 = 0.5 p_1 + p_2 + p_3;$$

2) коэффициенты простоя узлов:

$$\eta_1 = 1 - \rho_1; \quad \eta_2 = 1 - \rho_2;$$

3) средние длины очередей заявок в узлах:

$$l_1 = 2p_0 + p_1; \quad l_2 = p_3;$$

4) среднее число заявок в узлах:

$$m_1 = 3p_0 + 2p_1 + p_2;$$
 $m_2 = p_1 + 2p_2 + 3p_3;$

5) производительность замкнутой СеМО:

$$\lambda_0 = \frac{\rho_1}{\alpha_1 b_1} = \frac{\rho_2}{\alpha_2 b_2};$$

6) среднее время ожидания заявок в узлах СеМС

$$w_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad w_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

7) среднее время пребывания заявок в узлах СеМО:

$$u_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad u_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

8) нагрузка в узлах сети:

$$y_1 = \alpha_1 \lambda_0 b_1; \quad y_2 = \alpha_2 \lambda_0 b_2;$$

9) среднее число параллельно работающих *узлов* сети, определяемое как суммарная *загрузка* всех узлов CeMO:

$$R = \rho_1 + \rho_2;$$

10) среднее число параллельно работающих *приборов* во всех узлах сети, определяемое как суммарная *нагрузка* всех узлов CeMO:

$$Y = y_1 + y_2;$$

11) суммарное число заявок во всех очередях СеМО:

$$L = l_1 + l_2;$$

12) суммарное (полное) время ожидания заявок в СеМО:

$$W = \alpha_1 w_1 + \alpha_2 w_2;$$

13) время пребывания заявок в СеМО:

$$U = \alpha_1 u_1 + \alpha_2 u_2;$$

Суммарное число заявок, циркулирующих в 3CeMO должно совпадать с заданным числом заявок M = 3. Временные характеристики обслуживания заявок в узлах CeMO и в сети могут быть рассчитаны только после определения производительности замкнутой CeMO, вычисляемой через найденные значения загрузок узлов.

Пример 3: Замкнутая СеМО с эрланговским обслуживанием

- 1. Описание замкнутой СеМО
- Сеть массового обслуживания (CeMO) замкнутая двухузловая.
- Поток заявок однородный.
- Количество приборов в узлах: узлы 1 и 2 одноканальные.
- В СеМО постоянно циркулируют M = 3 заявки.
- 2. Предположения и допущения.
- Длительность обслуживания заявок в узле 1 распределена по закону Эрланга 2-го порядка с параметром $\mu_1 = 1/b_1$ а в узле 2 по экспоненциальному закону со средним временем $b_2 = 1/\mu_2$.
- Заявка после обслуживания в узле 1 с вероятностью p_{12} переходит в узел 2 и с вероятностью $p_{10}=1-p_{12}$ возвращается в этот же узел 1.
- Дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к CeMO, и на ней выбирается нулевая точка «0».

Случайный процесс, протекающий в замкнутой неэкспоненциальной сети, не является марковским.

Обслуживание заявки в СеМО можно представить как двухфазное обслуживание в первом узле и однофазное – во втором узле. Длительности обслуживания в фазах $\Phi 1$ и $\Phi 2$ первого узла ЗСеМО распределены по экспоненциальному закону с одним и тем же параметром $\mu_1^{'}=2/b_1$ и с параметром $\mu_2=1/b_2$ – в единственной фазе второго узла. Моменты завершения обслуживания в каждой из фаз образуют цепь Маркова, так как времена нахождения в них распределены по экспоненциальному закону.

$$\begin{cases} \mu'_{1}p_{1} = \mu_{2}p_{3} \\ p_{12}\mu'_{1}p_{2} = \mu'_{1}p_{1} + \mu_{2}p_{4} \\ (\mu'_{1} + \mu_{2})p_{3} = p_{12}\mu'_{1}p_{2} + \mu_{2}p_{5} \\ (p_{12}\mu'_{1} + \mu_{2})p_{4} = \mu'_{1}p_{3} + \mu_{2}p_{6} \\ (\mu'_{1} + \mu_{2})p_{5} = p_{12}\mu'_{1}p_{4} + \mu_{2}p_{7} \\ (p_{12}\mu'_{1} + \mu_{2})p_{6} = \mu'_{1}p_{5} \\ \mu_{2}p_{7} = p_{12}\mu'_{1}p_{6} \\ p_{1} + p_{2} + p_{3} + p_{4} + p_{5} + p_{6} + p_{7} = 1 \end{cases}$$

 S_1 : $(3_1,0)$ – все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе на первой фазе, и две заявки ожидают в накопителе;

 S_2 : $(3_2,0)$ – все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе на второй фазе, и две заявки ожидают в накопителе;

 S_3 : $(2_1,1)$ – две заявки находятся в узле 1 (одна на обслуживании в приборе на первой фазе и одна в накопителе) и одна – на обслуживании в узле 2;

 S_4 : $(2_2,1)$ — две заявки находятся в узле 1 (одна на обслуживании в приборе на второй фазе и одна в накопителе) и одна — на обслуживании в узле 2;

 S_5 : $(1_1,2)$ — одна заявка находится в узле 1 на обслуживании в приборе на первой фазе и две заявки находятся в узле 2, причем одна из них находится на обслуживании в приборе, а вторая заявка ожидает в накопителе;

 S_6 : $(1_2,2)$ — одна заявка находится в узле 1 на обслуживании в приборе на второй фазе и две заявки находится в узле 2, причем одна из них находится на обслуживании в приборе, а вторая заявка ожидает в накопителе;

 S_7 : (0,3) – все три заявки находятся в узле 2, причем одна заявка находится на обслуживании в приборе, а две другие – ожидают в накопителе.

Расчет характеристик ЗСеМО

1) загрузка и коэффициенты простоя узлов:

$$\rho_1 = p_1 + p_2 + p_3 + p_4 + p_5 + p_6; \quad \rho_2 = p_3 + p_4 + p_5 + p_6 + p_7;
\eta_1 = 1 - \rho_1; \quad \eta_2 = 1 - \rho_2;$$

2) среднее число параллельно работающих узлов сети, или суммарная загрузка всех узлов СеМО:

$$R = \rho_1 + \rho_2;$$

3) среднее число заявок в очередях и в узлах СеМО:

$$l_1 = 2(p_1 + p_2) + p_3 + p_4;$$
 $l_2 = p_5 + p_6 + 2p_7;$
 $m_1 = 3(p_1 + p_2) + 2(p_3 + p_4) + p_5 + p_6;$ $m_2 = p_3 + p_4 + 2(p_5 + p_6) + 3p_7$

4) суммарное число заявок во всех очередях СеМО:

$$L = l_1 + l_2;$$

5) производительность замкнутой СеМО:

$$\lambda_0 = \frac{\rho_1}{\alpha_1 b_1} = \frac{\rho_2}{\alpha_2 b_2};$$

6) средние времена ожидания и пребывания заявок в узлах СеМО: l_1 l_2

$$w_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad w_2 = \frac{l_2}{\alpha_2 \lambda_0};$$
$$u_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad u_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

7) суммарное (полное) время ожидания и время пребывания заявок в СеМО:

$$W = \alpha_1 w_1 + \alpha_2 w_2;$$

$$U = \alpha_1 u_1 + \alpha_2 u_2;$$

8) нагрузка в узлах сети:

$$y_1 = \alpha_1 \lambda_0 b_1; \quad y_2 = \alpha_2 \lambda_0 b_2;$$

9) среднее число параллельно работающих приборов во всех узлах сети, определяемое как суммарная нагрузка всех узлов CeMO:

$$Y = y_1 + y_2$$
;

Суммарное число заявок, циркулирующих в СеМО должно совпадать с заданным числом заявок в замкнутой сети: M=3.

Пример 4: Замкнутая СеМО с гиперэкспоненциальным обслуживанием

- 1. Описание замкнутой СеМО
- Сеть массового обслуживания (CeMO) замкнутая двухузловая.
- Поток заявок однородный.
- Количество приборов в узлах: узлы 1 и 2 одноканальные.
- В СеМО постоянно циркулируют M = 3 заявки.
- 2. Предположения и допущения.
- Длительность обслуживания заявок в узле 1 распределена по гиперэкспоненциальному закону со средней длительностью обслуживания $b_1 = 1/\mu_1$, и коэффициентом вариации $v_{bl} = 2$, а в узле 2 по экспоненциальному закону со средним временем $b_2 = 1/\mu_2$.
- Заявка после обслуживания в узле 1 с вероятностью p_{12} переходит в узел 2 и с вероятностью $p_{10}=1-p_{12}$ возвращается в этот же узел 1. Дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к CeMO, и на ней выбирается нулевая точка «0».

В замкнутой СеМО всегда существует стационарный режим. Случайный процесс, протекающий в замкнутой неэкспоненциальной сети, не является марковским.

Закон распределения случайной величины T называется $\mathit{гиперэкспоненциальным}$, если ее плотность имеет вид

$$f(t) = \sum_{i=1}^{n} q_i \lambda_i e^{-\lambda_i t}$$
 (при $t > 0$). причем $q_1 + \ldots + q_n = 1$. $F(t) = 1 - \sum_{i=1}^{n} q_i e^{-\lambda_i t}$

Гиперэкспоненциальное распределение может использоваться в тех случаях, когда некоторое реальное распределение непрерывной случайной величины, принимающей неотрицательные значения, имеет коэффициент вариации больше единицы. Гиперэкспоненциальное распределение содержит (2n-1) параметров.

В простейшем варианте случайные величины с гиперэкспоненциальным распределением могут быть получены с использованием только двух экспоненциальных распределений: n=2. Тогда функция и плотность гиперэкспоненциального распределения будут иметь вид:

$$F(t) = q (1 - e^{-\lambda_1 t}) + (1 - q)(1 - e^{-\lambda_2 t})$$

$$f(t) = q \lambda_1 e^{-\lambda_1 t} + (1 - q) \lambda_2 e^{-\lambda_2 t}.$$

Пример.

• $\lambda_I = 0.183$; $\lambda_2 = 1.506$ для распределения с $\nu[\bar{T}] = 2$ • $\lambda_I = 0.091$; $\lambda_2 = 4.022$ для распределения с $\nu[\bar{T}] = 4$ q = 0.07; MT = 1

Случайная величина, распределенная по гиперэкспоненциальному закону, может быть представлена в виде композиции двух экспоненциально распределенных случайных величин, каждая из которых появляется с вероятностями q и (1-q) соответственно. В первом узле 3CeMO такое представление реализуется в виде двух параллельных экспоненциальных фаз, обслуживающих заявки по следующей схеме:

- •заявка с вероятностью q = 0,1 попадает на обслуживание в первую фазу, длительность обслуживания в которой распределена по экспоненциальному закону со средним значением b_1 , после чего покидает узел;
- •заявка с вероятностью (1-q) = 0.9 попадает на обслуживание во вторую фазу, длительность обслуживания в которой распределена по экспоненциальному закону со средним значением $b_1^{''}$, после чего покидает первый узел. Значения длительностей обслуживания в этих двух фазах таковы, что выполняется условие: $qb_1^{'} + (1-q)b_1^{"} = b_1$.

 $S1: (3_1, 0)$ - все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе на первой фазе, и две заявки ожидают в накопителе;

 $S2: (3_2, 0)$ - все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе на второй фазе, и две заявки ожидают в накопителе;

S3: $(2_1, 1)$ - две заявки находятся в узле 1 (одна на обслуживании в приборе на первой фазе и одна в накопителе) и одна - на обслуживании в узле 2;

S4: $(2_2, 1)$ - две заявки находятся в узле 1 (одна на обслуживании в приборе на второй фазе и одна в накопителе) и одна - на обслуживании в узле 2;

S5: $(1_1, 2)$ - одна заявка находится в узле 1 на обслуживании в приборе на первой фазе и две заявки находятся в узле 2, причем одна из них находится на обслуживании в приборе, а вторая заявка ожидает в накопителе; S6: $(1_2, 2)$ - одна заявка находится в узле 1 на обслуживании в приборе на второй фазе и две заявки находятся в узле 2, причем одна из них находится на обслуживании в приборе, а вторая заявка ожидает в накопителе; S7: (0, 3) - три заявки находятся в узле 2, причем одна заявка — на обслуживании в приборе, а две другие - ожидают в накопителе.

Состояние S1

Если случайный процесс находится в состоянии S1, то по завершению обслуживания заявки случайный процесс может перейти в одно из трёх состояний: S2, S3 и S4 или остаться в том же состоянии. Если случайный процесс остаётся в том же состоянии, то это никак не отображается на графе переходов.

Случайный процесс перейдёт из состояния S1 в состояние S2 при выполнении следующих условий:

- •завершится обслуживание заявки, находящейся на обслуживании в фазе Φ 1; интенсивность этого события $\mu_1 = 1/b_1$;
- заявка, завершившая обслуживание в узле 1, вернётся в этот же узел и встанет в конец очереди; вероятность этого события равна $p_{10} = 1 p_{12}$;
- •в узле 1 очередная заявка, которая поступит на обслуживание из очереди в прибор $\Pi 1$, попадёт на обслуживание в фазу $\Phi 2$; вероятность этого события равна (1-q).

Таким образом, интенсивность перехода из состояния S1 в состояние S2 будет равна $g_1 = (1-q)(1-p_{12})\mu_1$.

Случайный процесс перейдёт из состояния S1 в состояние S3 при выполнении следующих условий:

- •завершится обслуживание заявки, находящейся на обслуживании в фазе Φ 1; интенсивность этого события $\mu_1 = 1/b_1$;
- \bullet заявка, завершившая обслуживание в узле 1, перейдёт в узел 2; вероятность этого события равна p_{12} ;
- •в узле 1 новая заявка, которая поступит на обслуживание из очереди в прибор $\Pi 1$, попадёт на обслуживание в фазу $\Phi 1$; вероятность этого события q .

Таким образом, интенсивность перехода из состояния S1 в состояние S3 будет равна $qp_{12}\mu_1$.

Случайный процесс перейдёт из состояния S1 в состояние S4 при выполнении следующих условий:

- •завершится обслуживание заявки, находящейся на обслуживании в фазе Φ 1; интенсивность этого события $\mu_1 = 1/b_1$;
- •заявка, завершившая обслуживание в узле 1, перейдёт в узел 2; вероятность этого события равна p_{12} ;
- •в узле 1 новая заявка, которая поступит на обслуживание из очереди в прибор $\Pi 1$, попадёт на обслуживание в фазу $\Phi 2$; вероятность этого события -(1-q).

Таким образом, интенсивность перехода из состояния S1 в состояние S4 будет равна $g_2 = (1-q)p_{12}\mu_1$.

Состояние S2

Случайный процесс из состояния S2 по завершению обслуживания заявки также может перейти в одно из трёх состояний: S1, S3 и S4 или остаться в том же состоянии.

Случайный процесс перейдёт из состояния S2 в состояние S1 при выполнении следующих условий:

- •с интенсивностью $\mu_1'' = 1/b_1''$ завершится обслуживание заявки в фазе $\Phi 2$;
- •с вероятностью $p_{10} = 1 p_{12}$ заявка, завершившая обслуживание в узле 1, вернётся в этот же узел и встанет в конец очереди;
- •с вероятностью q в узле 1 очередная заявка, которая поступит из очереди в прибор $\Pi 1$, попадёт на обслуживание в фазу $\Phi 1$.

Таким образом, интенсивность перехода из состояния S2 в состояние S1 будет равна $g_3 = q(1-p_{12})\mu_1^{"}$.

Случайный процесс перейдёт из состояния S2 в состояние S3 при выполнении следующих условий:

- •с интенсивностью $\mu_1^{"} = 1/b_1^{"}$ завершится обслуживание заявки в фазе $\Phi 2$;
- •с вероятностью р₁₂ заявка, завершившая обслуживание в узле 1, перейдёт в узел 2;
- •с вероятностью q в узле 1 очередная заявка, которая поступит из очереди в прибор Π 1, попадёт на обслуживание в фазу Φ 1.

Таким образом, интенсивность перехода из S2 в S3 будет равна $g_4 = q p_{12} \mu_1^2$.

Случайный процесс перейдёт из состояния S2 в состояние S4 при выполнении следующих условий:

- •с интенсивностью $\mu_1^* = 1/b_1^*$ завершится обслуживание заявки в фазе $\Phi 2$;
- •с вероятностью p_{12} заявка, завершившая обслуживание в узле 1, перейдёт в узел 2;
- •с вероятностью (1-q) в узле 1 очередная заявка, которая поступит из очереди в прибор $\Pi 1$, попадёт на обслуживание в фазу $\Phi 2$.

Таким образом, интенсивность перехода из S2 в S4 будет равна $(1-q)p_{12}\mu_1$.

Состояния S3 и S4

Если случайный процесс находится в состоянии S3 или S4, то кроме аналогичных переходов, связанных с завершением обслуживания заявки в узле 1, имеется ещё один переход в состояния S1 и S2 соответственно, связанный с завершением обслуживания заявки в узле 2. Интенсивность перехода из S3 в S1 и из S4 в S2 равна интенсивности обслуживания μ_2 в узле 2. Переходы из S3 в S2 и из S4 в S1 отсутствуют, так как заявка, находящаяся на обслуживании в первом узле, остаётся в той же фазе обслуживания, которая была в момент завершения обслуживания заявки в узле 2.

Состояния S5 и S6

Переходы из состояний S5 и S6 аналогичны переходам из S3 и S4 за исключением переходов в состояние S7. Интенсивности переходов из S5 и S6 в S7 определяются как произведение интенсивности обслуживания в соответствующей фазе узла 1 на вероятность того, что заявка, завершившая обслуживание в узле 1, перейдёт в узел 2: $p_{12}\mu_1$ и $p_{12}\mu_1$.

Состояние S7

Переходы из состояния S7 связаны с завершением обслуживания с интенсивностью μ_2 заявки в узле 2, которая переходит в узел 1 и с вероятностью q попадает на обслуживание в фазу Φ 1 или с вероятностью (1-q) – в фазу Φ 2. Соответственно интенсивности переходов будут равны $q\mu_2$ и $(1-q)\mu_2$

Расчет характеристик ЗСеМО

1) загрузка и коэффициенты простоя узлов:

$$\rho_1 = p_1 + p_2 + p_3 + p_4 + p_5 + p_6;$$
 $\rho_2 = p_3 + p_4 + p_5 + p_6 + p_7;$
 $\eta_1 = 1 - \rho_1;$
 $\eta_2 = 1 - \rho_2;$

2) среднее число параллельно работающих узлов сети, определяемое как суммарная загрузка всех узлов CeMO:

$$R = \rho_1 + \rho_2$$
;

3) среднее число заявок в очередях и в узлах СеМО:

$$l_1 = 2(p_1 + p_2) + p_3 + p_4;$$
 $l_2 = p_5 + p_6 + 2p_7;$
 $m_1 = 3(p_1 + p_2) + 2(p_3 + p_4) + p_5 + p_6;$

$$m_2 = p_3 + p_4 + 2(p_5 + p_6) + 3p_7;$$

4) суммарное число заявок во всех очередях СеМО:

$$L = l_1 + l_2;$$

5) производительность замкнутой СеМО:

$$\lambda_0 = \frac{\rho_1}{\alpha_1 b_1} = \frac{\rho_2}{\alpha_2 b_2};$$

где α_1 и α_2 - коэффициенты передачи соответственно узла 1 и узла 2;

6) средние времена ожидания и пребывания заявок в узлах СеМО:

$$w_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad w_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

$$u_1 - \frac{l_1}{\alpha_1 \lambda_0}; \quad u_2 - \frac{l_2}{\alpha_2 \lambda_0};$$

7) суммарное (полное) время ожидания и время пребывания заявок в CeMO:

$$W = \alpha_1 w_1 + \alpha_2 w_2;$$

$$U = \alpha_1 u_1 + \alpha_2 u_2;$$

8) нагрузка в узлах сети:

$$y_1 = \alpha_1 \lambda_0 b_1; \quad y_2 = \alpha_2 \lambda_0 b_2;$$

9) среднее число параллельно работающих *приборов* во всех узлах сети, определяемое как суммарная *нагрузка* всех узлов CeMO:

$$Y = y_1 + y_2.$$

Суммарное число заявок, циркулирующих в СеМО, рассчитываемое как $M=m_1+m_2$, должно совпадать с заданным числом заявок в замкнутой сети: M=3.