Machine Learning

Lecture 2 Linear Models

Vincent Adam & Vicenç Gómez

2022-23

Content

- Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

Content

- Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

Supervised learning problem

A supervised learning problem consists of:

- A domain set $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^d$
- An unknown probability distribution \mathcal{D} on \mathcal{X}
- A target set Y
- An unknown labelling function $f: \mathcal{X} \to \mathcal{Y}$
- A training set $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$ sampled from \mathcal{D} and f

Supervised learning

Given a supervised learning problem, the learner chooses the following:

- lacksquare A hypothesis class ${\cal H}$ of candidate labelling functions
- A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- lacksquare An algorithm $\mathcal A$ that minimizes the empirical risk

Linear models

- Simplest way to separate data is a line (or a hyperplane in higher dimensions)
- Hypothesis class: linear combination of features

Content

- 1 Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

■ Algorithm for binary classification: $\mathcal{Y} = \{-1, +1\}$

- Algorithm for binary classification: $\mathcal{Y} = \{-1, +1\}$
- Assume inputs $\mathbf{x} = (x_1, \dots, x_d)$ on d numerical features

- Algorithm for binary classification: $\mathcal{Y} = \{-1, +1\}$
- Assume inputs $\mathbf{x} = (x_1, \dots, x_d)$ on d numerical features
- Compute a weighted score and output +1 or -1 as

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{d} w_i x_i > \theta \\ -1 & \text{otherwise} \end{cases}$$

- Sign function sign(x) outputs +1 if x > 0 and -1 otherwise
- Hypothesis h completely defined by weights $\mathbf{w} = w_0, \dots, w_d$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^d w_i x_i - \theta\right)$$

- Sign function sign(x) outputs +1 if x > 0 and -1 otherwise
- Hypothesis h completely defined by weights $\mathbf{w} = w_0, \dots, w_d$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^d w_i x_i - \theta\right) = \operatorname{sign}\left(\sum_{i=0}^d w_i x_i\right) = \operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

- Sign function sign(x) outputs +1 if x > 0 and -1 otherwise
- Hypothesis h completely defined by weights $\mathbf{w} = w_0, \dots, w_d$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^d w_i x_i - \theta\right) = \operatorname{sign}\left(\sum_{i=0}^d w_i x_i\right) = \operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

- Sign function sign(x) outputs +1 if x > 0 and -1 otherwise
- Hypothesis h completely defined by weights $\mathbf{w} = w_0, \dots, w_d$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} w_i x_i - \theta\right) = \operatorname{sign}\left(\sum_{i=0}^{d} w_i x_i\right) = \operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

where $x_0 = 1$ is a dummy feature and $w_0 = -\theta$ (a.k.a. bias weight)

- Sign function sign(x) outputs +1 if x > 0 and -1 otherwise
- Hypothesis h completely defined by weights $\mathbf{w} = w_0, \dots, w_d$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} w_i x_i - \theta\right) = \operatorname{sign}\left(\sum_{i=0}^{d} w_i x_i\right) = \operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

where $x_0 = 1$ is a dummy feature and $w_0 = -\theta$ (a.k.a. bias weight)

Classification loss:

$$\ell(h(\mathbf{x}_i), y_i) = \llbracket h(\mathbf{x}_i) \neq y_i \rrbracket$$
$$L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \llbracket h(\mathbf{x}_i) \neq y_i \rrbracket$$

Linearly separable data

Perceptron learning algorithm (PLA)

Builds a sequences of weights $\mathbf{w}^0, \mathbf{w}^1, \dots, \mathbf{w}^t$

Perceptron learning algorithm

- Initialize weight vector $\mathbf{w}^0 = 0$
- **2** Find a mistake (\mathbf{x}_i, y_i) such that $h(\mathbf{x}_i) = \operatorname{sign}(\mathbf{w}_0^{\top} \mathbf{x}_i) \neq y_i$
- 3 Update weights as $\mathbf{w}^1 \leftarrow \mathbf{w}^0 + y_i \mathbf{x}_i$
- A Repeat from 2. for weight vector \mathbf{w}^t , t = 1, 2, ...

Properties

- If data is linearly separable, PLA guaranteed to converge to a hypothesis h_S (i.e. weight vector \mathbf{w}_S) such that $L_S(h_S) = 0$
- If data is not linearly separable, PLA never converges
- Variants:
 - Fix number of iterations T, stop when t > T
 - Pocket algorithm: only update weight vector w^t when total number of mistakes decreases

Content

- 1 Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

- Assumes regression problem ($\mathcal{Y} = \mathbb{R}$)
- Hypothesis $h(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^{\top} \mathbf{x}$
- Squared loss: $\ell(h(\mathbf{x}_i), y_i) = (h(\mathbf{x}_i) y_i)^2$
- $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) y_i)^2$ is the mean squared error (MSE)

- Hypothesis h defined by weight vector $\mathbf{w} = (w_0, \dots, w_d)$
- Find w that minimizes

$$L_S(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2 = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$$

L_S(**w**) is continuous, differentiable, and convex

$$\begin{cases} L_S(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i - y_i)^2 = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^\top \mathbf{x}_1 - y_1 \\ \vdots \\ \mathbf{w}^\top \mathbf{x}_m - y_m \end{pmatrix} \right\|^2 \end{cases}$$

$$\begin{cases}
L_{S}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1} - y_{1} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{m} - y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{i} - y_{i} \\ \mathbf{x}_{1}^{\top} - y_{i} \\ \vdots \\ \mathbf{x}_{m}^{\top} - y_{m} \end{pmatrix} \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} \right\|^{2}$$

$$\begin{cases} L_{S}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1} - y_{1} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{m} - y_{m} \end{pmatrix} \right\|^{2} \\ = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w} \mathbf{x}_{1}^{\top} & \cdots \\ \mathbf{x}_{2}^{\top} & \cdots \\ \vdots \\ \mathbf{x}_{m}^{\top} & \cdots \end{pmatrix} \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} \right\|^{2} \\ = \frac{1}{m} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|^{2} \end{cases}$$

$$\begin{cases}
L_{S}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1} - y_{1} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{m} - y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1}^{\top} & \cdots \\ \cdots & \mathbf{x}_{1}^{\top} & \cdots \\ \vdots \\ \cdots & \mathbf{x}_{m}^{\top} & \cdots \end{pmatrix} \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|^{2} = \frac{1}{m} \left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{y}^{\top} \mathbf{y} \right)
\end{cases}$$

$$\begin{cases}
L_{S}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1} - y_{1} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{m} - y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1}^{\top} & \cdots \\ \cdots & \mathbf{x}_{1}^{\top} & \cdots \\ \vdots \\ \cdots & \mathbf{x}_{m}^{\top} & \cdots \end{pmatrix} \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|^{2} = \frac{1}{m} \left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{y}^{\top} \mathbf{y} \right)
\end{cases}$$

$$\begin{cases}
L_{S}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} = \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{1} - y_{1} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{m} - y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_{i}^{\top} & \cdots \\ \mathbf{x}_{2}^{\top} & \cdots \\ \vdots \\ \mathbf{x}_{m}^{\top} & \cdots \end{pmatrix} \begin{pmatrix} w_{0} \\ \vdots \\ w_{d} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} \right\|^{2} \\
= \frac{1}{m} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|^{2} = \frac{1}{m} \left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{y}^{\top} \mathbf{y} \right)
\end{cases}$$

- **X**: $m \times (d+1)$ matrix of inputs
- **y**: $m \times 1$ vector of labels

■ Minimize $L_S(\mathbf{w}) \Leftrightarrow \text{set gradient } \nabla_{\mathbf{w}} L_S(\mathbf{w}) \text{ to } 0$

$$\nabla_{\mathbf{w}} L_{S}(\mathbf{w}) = \begin{pmatrix} \frac{\partial L_{S}(\mathbf{w})}{\partial w_{0}} \\ \vdots \\ \frac{\partial L_{S}(\mathbf{w})}{\partial w_{d}} \end{pmatrix}$$

■ Minimize $L_S(\mathbf{w}) \Leftrightarrow \text{set gradient } \nabla_{\mathbf{w}} L_S(\mathbf{w}) \text{ to } 0$

$$\nabla_{\mathbf{w}} L_{S}(\mathbf{w}) = \begin{pmatrix} \frac{\partial L_{S}(\mathbf{w})}{\partial w_{0}} \\ \vdots \\ \frac{\partial L_{S}(\mathbf{w})}{\partial w_{d}} \end{pmatrix}$$

■ Gradient of loss term $(\mathbf{w}^{\top}\mathbf{x}_i - y_i)^2$ w.r.t. scalar weight w_k :

$$\frac{\partial (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2}{\partial w_k} = 2(\mathbf{w}^{\top} \mathbf{x}_i - y_i) x_{i,k}$$

■ Minimize $L_S(\mathbf{w}) \Leftrightarrow \text{set gradient } \nabla_{\mathbf{w}} L_S(\mathbf{w}) \text{ to } 0$

$$\nabla_{\mathbf{w}} \mathcal{L}_{S}(\mathbf{w}) = \begin{pmatrix} \frac{\partial \mathcal{L}_{S}(\mathbf{w})}{\partial w_{0}} \\ \vdots \\ \frac{\partial \mathcal{L}_{S}(\mathbf{w})}{\partial w_{d}} \end{pmatrix}$$

■ Gradient of loss term $(\mathbf{w}^{\top}\mathbf{x}_i - y_i)^2$ w.r.t. scalar weight w_k :

$$\frac{\partial (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2}{\partial w_k} = 2(\mathbf{w}^{\top} \mathbf{x}_i - y_i) x_{i,k}$$

Gradient

$$abla_{\mathbf{w}} L_S(\mathbf{w}) = \frac{2}{m} (\mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{y})$$

$$lacksquare$$
 $\nabla_{\mathbf{w}} L_{S}(\mathbf{w}) = \mathbf{0} \Leftrightarrow \mathbf{X}^{\top} \mathbf{X} \mathbf{w} = \mathbf{X}^{\top} \mathbf{y}$

X
$$\mathbf{X}^{\mathsf{T}}\mathbf{X}$$
 is a $(d+1)\times(d+1)$ matrix

$$lackbox{} \nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w}) = 0 \;\; \Leftrightarrow \;\; \mathbf{X}^{\top} \mathbf{X} \mathbf{w} = \mathbf{X}^{\top} \mathbf{y}$$

X
$$\mathbf{X}^{\top}\mathbf{X}$$
 is a $(d+1)\times(d+1)$ matrix

- **X** X invertible: Analytic solution $w_{\text{lin}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\dagger}\mathbf{y}$
- $\mathbf{X}^{\dagger} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$: pseudo-inverse of \mathbf{X}
- In practice: use well-implemented † routine for computing X†

Hat matrix

■ Approximate labels on inputs $\mathbf{x}_1, \dots, \mathbf{x}_m$:

$$\hat{\mathbf{y}} = \mathbf{X} \mathbf{w}_{\mathrm{lin}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{H} \mathbf{y}$$

■ $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ is called the hat matrix since it puts the "hat" on \mathbf{y}

Is linear regression really "learning"?

- No, in the sense that w_{lin} has an analytical solution
- No algorithm necessary for iteratively improving the training loss
- Yes, in the sense that we achieve a small training loss $L_S(\mathbf{w})$
- Algorithm for computing the pseudo-inverse $\mathbf{X}^{\dagger} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$

Linear classification vs. linear regression

- Minimizing $L_S(h) = \frac{1}{m} \sum_{i=1}^m \llbracket h(\mathbf{x}_i) \neq y_i \rrbracket$ is NP-hard
- Minimizing $L_S(h) = \frac{1}{m} \sum_{i=1}^m (h(\mathbf{x}_i) y_i)^2$ has an efficient analytical solution
- Idea: $\{-1, +1\} \subset \mathbb{R} \Rightarrow$ use linear regression for classification!
- On input \mathbf{x} , predict label $\operatorname{sign}(\mathbf{w}_{\operatorname{lin}}^{\top}\mathbf{x})$

Relationship between loss functions

- For label +1, square loss upper bounds 0-1 loss! (same for -1)
- Sacrifice bound tightness for efficiency

A second look at the Perceptron

What is the loss implicitly optimized by the PLA?

$$\mathbf{w}^{t+1} \leftarrow \left\{ egin{array}{ll} \mathbf{w}^t + y_i \mathbf{x}_i & ext{if} \ \ y_i \mathbf{w}^t \mathbf{x}_i < 0 \ \ \mathbf{w}^t & ext{otherwise} \ \ \leftarrow \mathbf{w}^t -
abla_{\mathbf{w}} \max(0, -y_i \mathbf{w}^t \mathbf{x}_i) \end{array}
ight.$$

A second look at the Perceptron

What is the loss implicitly optimized by the PLA?

$$\mathbf{w}^{t+1} \leftarrow \left\{ egin{array}{ll} \mathbf{w}^t + y_i \mathbf{x}_i & ext{if} \ \ y_i \mathbf{w}^t \mathbf{x}_i < 0 \ \ \mathbf{w}^t & ext{otherwise} \ \ \leftarrow \mathbf{w}^t -
abla_{\mathbf{w}} \max(\mathbf{0}, -y_i \mathbf{w}^t \mathbf{x}_i) \end{array}
ight.$$

PLA follows the gradient of the local hinge loss

$$\ell_i(\mathbf{w}) = max(0, -y_i\mathbf{w}\mathbf{x}_i)$$

Content

- 1 Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

Logistic regression

- Soft classification: estimate probability of belonging to class
- Hypothesis $h(\mathbf{x}) = \theta(\sum_{i=0}^{d} w_i x_i) = \theta(\mathbf{w}^{\top} \mathbf{x})$
- Logistic function

$$\theta(s) = \frac{1}{1 + e^{-s}}$$

Logistic regression

- Assume that there are two classes $\{-1, +1\}$
- Ideally, data would be on the form $((\mathbf{x}_1, 0.8), \dots, (\mathbf{x}_m, 0.1))$, i.e. the probability of belonging to class +1
- However, data is usually on the form $((\mathbf{x}_1, +1), \dots, (\mathbf{x}_m, -1))$
- We can view labels as hard probabilities, i.e. 0 or 1

Find w that minimizes

$$L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}_i), y_i)$$

- Cross-entropy loss $\ell(h(\mathbf{x}_i), y_i) = \ln(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i))$
- $L_S(\mathbf{w})$ is continuous, differentiable, and convex

Likelihood of a biased coin flip

$$p(y|\mathbf{x},\mathbf{w}) = \theta(y\mathbf{w}^{\top}\mathbf{x})$$

Likelihood of a biased coin flip

$$p(y|\mathbf{x},\mathbf{w}) = \theta(y\mathbf{w}^{\top}\mathbf{x})$$

Logistic loss as logarithm of likelihood

$$\log p(y|\mathbf{x}, \mathbf{w}) = \log \theta(y\mathbf{w}^{\top}\mathbf{x})$$
$$= \log \left(\frac{1}{1 + e^{-y\mathbf{w}^{\top}\mathbf{x}}}\right)$$
$$= -\log(1 + e^{-y\mathbf{w}^{\top}\mathbf{x}})$$

Likelihood of a biased coin flip

$$p(y|\mathbf{x},\mathbf{w}) = \theta(y\mathbf{w}^{\top}\mathbf{x})$$

Logistic loss as logarithm of likelihood

$$\log p(y|\mathbf{x}, \mathbf{w}) = \log \theta(y\mathbf{w}^{\top}\mathbf{x})$$
$$= \log \left(\frac{1}{1 + e^{-y\mathbf{w}^{\top}\mathbf{x}}}\right)$$
$$= -\log(1 + e^{-y\mathbf{w}^{\top}\mathbf{x}})$$

 $lue{}$ Probabilistic interpretation of losses ightarrow Bayesian formalism

- Minimize $L_S(\mathbf{w}) \Leftrightarrow \text{Find } w \text{ such that } \nabla_{\mathbf{w}} L_S(\mathbf{w}) = 0$
- Gradient

$$\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \theta(-y_i \mathbf{w}^{\top} \mathbf{x}_i) (-y_i \mathbf{x}_i)$$

■ Unfortunately, no analytic solution to $\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w}) = 0$ descent)

Multiclass classification

- \blacksquare So far we have mainly talked about binary classification, i.e. $|\mathcal{Y}|=2$
- What if there are more than two classes, i.e. $2 < |\mathcal{Y}| = k$?
- Two main approaches:
 - 1 One-versus-all (OVA): binary classification of one class vs. rest
 - One-versus-one (OVO): binary classification of pairs of classes
- In both cases, perform soft binary classification (i.e. logistic regression) and return most probable class

One-versus-all

Multiclass classification

Properties of one-versus-all (OVA):

- Linear number of classifiers
- Imbalanced data!

Properties of one-versus-one (OVO):

- Quadratic number of classifiers
- More balanced data

Content

- 1 Supervised learning
- 2 Perceptror
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

Non-linear data

- Often data is not linearly separable at all
- Idea: derive circular perceptron, circular regression, etc.
- It would be better to take advantage of linear models!

Non-linear transforms

- Circular hypothesis: $h(\mathbf{x}) = \text{sign}(0.6 x_1^2 x_2^2)$
- Linear in quadratic terms x_1^2 and x_2^2 !
- Non-linear transform: introduce additional non-linear terms
- Quadratic transform: $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$

Non-linear transforms

- Transform each data point (\mathbf{x}_i, y_i) to $(z_i = \Phi(\mathbf{x}_i), y_i)$
- \blacksquare Apply linear algorithm in transformed space to find $\tilde{\boldsymbol{w}}$
- Hypothesis on input **x** proportional to $\tilde{\mathbf{w}}^{\top}\Phi(\mathbf{x})$

Price of non-linear transforms

- Let \mathcal{H}_q be the hypothesis class of q-th order polynomials
- Then $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_q$
- However, number of features increases!
- The q-th order polynomial has $O(d^q)$ dimensions
- Increases memory requirements, running time of algorithms, etc.

Content

- 1 Supervised learning
- 2 Perceptron
- 3 Linear regression
- 4 Logistic regression
- 5 Non-linear transforms
- 6 Exercises

Multiclass classification

- Assume that a binary classification algorithm \mathcal{A} runs in time N^3 on data of size N
- For a 10 class classification problem ($|\mathcal{Y}| = 10$), assume that there are exactly N/10 data points for each class
- What is the running time of OVA and OVO multiclass classification using algorithm A?

■ We have to build 10 classifiers in total

- We have to build 10 classifiers in total
- Each classifier uses all data, i.e. N data points

- We have to build 10 classifiers in total
- Each classifier uses all data, i.e. N data points
- For each classifier, the running time of algorithm A is N^3

- We have to build 10 classifiers in total
- Each classifier uses all data, i.e. N data points
- For each classifier, the running time of algorithm A is N^3
- Hence the total running time is 10N³

■ We have to build
$$\begin{pmatrix} 10 \\ 2 \end{pmatrix} = \frac{10.9}{2} = 45$$
 classifiers in total

- We have to build $\begin{pmatrix} 10 \\ 2 \end{pmatrix} = \frac{10.9}{2} = 45$ classifiers in total
- Each classifier uses only data points of 2 classes, i.e. 2N/10

- We have to build $\begin{pmatrix} 10 \\ 2 \end{pmatrix} = \frac{10.9}{2} = 45$ classifiers in total
- Each classifier uses only data points of 2 classes, i.e. 2N/10
- For each classifier, the running time of algorithm \mathcal{A} is $8N^3/1000$

- We have to build $\binom{10}{2} = \frac{10.9}{2} = 45$ classifiers in total
- Each classifier uses only data points of 2 classes, i.e. 2N/10
- For each classifier, the running time of algorithm A is $8N^3/1000$
- Hence the total running time is $45 \cdot 8N^3/1000 = \frac{9}{25}N^3$

Show that the hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ has the following properties (where I is the identity matrix):

- **I H** is symmetric, i.e. $\mathbf{H}^{\top} = \mathbf{H}$
- $H^2 = H$
- $(I H)^2 = (I H)$

Note that
$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$
 and that $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$

$$\begin{cases} \mathbf{H}^{\top} = (\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top})^{\top} \\ \end{cases}$$

Note that
$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$
 and that $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$

$$\begin{cases}
\mathbf{H}^{\top} = (\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top})^{\top} \\
= \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1})^{\top}\mathbf{X}^{\top}
\end{cases}$$

Note that
$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$
 and that $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$

$$\begin{cases}
\mathbf{H}^{\top} = (\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top})^{\top} \\
= \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1})^{\top}\mathbf{X}^{\top} \\
= \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{\top})^{-1}\mathbf{X}^{\top}
\end{cases}$$

Note that
$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$
 and that $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$

$$\begin{cases}
\mathbf{H}^{\top} = (\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top})^{\top} \\
= \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1})^{\top}\mathbf{X}^{\top} \\
= \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{\top})^{-1}\mathbf{X}^{\top} \\
= \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} = \mathbf{H}
\end{cases}$$

Note that
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
 and $\mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$
$$\begin{cases} \mathbf{H}^2 = \mathbf{H} \cdot \mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \end{cases}$$

Note that
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
 and $\mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$

$$\begin{cases} \mathbf{H}^2 = \mathbf{H} \cdot \mathbf{H} = \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \\ = \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} (\mathbf{X}^\top \mathbf{X}) (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \end{cases}$$

Note that
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
 and $\mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$
$$\begin{cases} \mathbf{H}^2 = \mathbf{H} \cdot \mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \\ = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{X})(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \\ = \mathbf{X}\mathbf{I}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \end{cases}$$

Hat matrix

Note that
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
 and $\mathbf{A}\mathbf{I} = \mathbf{I}\mathbf{A} = \mathbf{A}$
$$\begin{cases} \mathbf{H}^2 = \mathbf{H} \cdot \mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \\ = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{X})(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \\ = \mathbf{X}\mathbf{I}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} = \mathbf{H} \end{cases}$$

Hat matrix

$$\left\{ (\textbf{I} - \textbf{H})^2 = \textbf{I}^2 - 2\textbf{I}\textbf{H} + \textbf{H}^2 \right.$$

Hat matrix

$$\begin{cases} (\textbf{I}-\textbf{H})^2 = \textbf{I}^2 - 2\textbf{I}\textbf{H} + \textbf{H}^2 \\ = \textbf{I} - 2\textbf{H} + \textbf{H} = \textbf{I} - \textbf{H} \end{cases}$$

Perceptron learning algorithm

- Initialize weight vector $\mathbf{w}^0 = 0$
- **2** Find a mistake (\mathbf{x}_i, y_i) such that $h(\mathbf{x}_i) \neq y_i$
- 3 Update weights as $w_1 \leftarrow \mathbf{w}^0 + y_i \mathbf{x}_i$
- A Repeat from 2. for weight vector \mathbf{w}^t , t = 1, 2, ...

Letting $R^2 = \max_i ||\mathbf{x}_i||^2$, show that after t iterations, $||\mathbf{w}^t||^2 \le tR^2$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \end{cases}$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \\ = \|\mathbf{w}^t\|^2 + 2y_i \mathbf{w}^{t\top} \mathbf{x}_i + \frac{\mathbf{y}_i^2}{2} \|\mathbf{x}_i\|^2 \end{cases}$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \\ = \|\mathbf{w}^t\|^2 + 2y_i \mathbf{w}^{t \top} \mathbf{x}_i + \frac{\mathbf{y}_i^2}{2} \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + \mathbf{0} + \|\mathbf{x}_i\|^2 \end{cases}$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \\ = \|\mathbf{w}^t\|^2 + 2y_i \mathbf{w}^{t\top} \mathbf{x}_i + \frac{\mathbf{y}_i^2}{\mathbf{y}_i^2} \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + \mathbf{0} + \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + R^2 \end{cases}$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \\ = \|\mathbf{w}^t\|^2 + 2y_i \mathbf{w}^{t\top} \mathbf{x}_i + \frac{\mathbf{y}_i^2}{\mathbf{y}_i^2} \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + \mathbf{0} + \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + R^2 \end{cases}$$

An update happens when prediction are wrong

$$sign(\mathbf{w}^{\top}\mathbf{x}_i) \neq y_i \equiv y_i \mathbf{w}^{\top}\mathbf{x}_i \leq 0$$

Consider a single step of PLA:

$$\begin{cases} \|\mathbf{w}^{t+1}\|^2 = \|\mathbf{w}^t + y_i \mathbf{x}_i\|^2 \\ = \|\mathbf{w}^t\|^2 + 2y_i \mathbf{w}^{t\top} \mathbf{x}_i + \frac{\mathbf{y}_i^2}{\mathbf{y}_i^2} \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + \mathbf{0} + \|\mathbf{x}_i\|^2 \\ \leq \|\mathbf{w}^t\|^2 + R^2 \end{cases}$$

Hence after t iterations, $\|\mathbf{w}^t\|^2 \le \|\mathbf{w}^0\|^2 + tR^2 = 0 + tR^2 = tR^2$

Data linearly separable \Rightarrow exists w_* such that $y_i \mathbf{w}_*^{\top} \mathbf{x}_i > 0, \ \forall i \in [m]$

Perceptron learning algorithm

- Initialize weight vector $\mathbf{w}^0 = 0$
- **2** Find a mistake (\mathbf{x}_i, y_i) such that $h(\mathbf{x}_i) \neq y_i$
- **3** Update weights as $\mathbf{w}^1 \leftarrow \mathbf{w}^0 + y_i \mathbf{x}_i$
- 4 Repeat from 2. for weight vector \mathbf{w}^t , t = 1, 2, ...

Letting $\rho = \min_i y_i \frac{\mathbf{w}_*^\top}{\|\mathbf{w}_*\|} \mathbf{x}_i > 0$, show that after t iterations, $\frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\|} \ge t \rho$

$$\begin{cases} \frac{\mathbf{w}_*^{\top} \mathbf{w}^{t+1}}{\|\mathbf{w}_*\|} = \frac{\mathbf{w}_*^{\top} w^t}{\|\mathbf{w}_*\|} + y_i \frac{\mathbf{w}_*^{\top}}{\|\mathbf{w}_*\|} \mathbf{x}_i \end{cases}$$

$$\begin{cases} \frac{\mathbf{w}_{*}^{\top}\mathbf{w}^{t+1}}{\|\mathbf{w}_{*}\|} = \frac{\mathbf{w}_{*}^{\top}w^{t}}{\|\mathbf{w}_{*}\|} + y_{i}\frac{\mathbf{w}_{*}^{\top}}{\|\mathbf{w}_{*}\|}\mathbf{x}_{i} \\ \geq \frac{\mathbf{w}_{*}^{\top}w^{t}}{\|\mathbf{w}_{*}\|} + \rho \end{cases}$$

$$\begin{cases} \frac{\mathbf{w}_{*}^{\top}\mathbf{w}^{t+1}}{\|\mathbf{w}_{*}\|} = \frac{\mathbf{w}_{*}^{\top}w^{t}}{\|\mathbf{w}_{*}\|} + y_{i}\frac{\mathbf{w}_{*}^{\top}}{\|\mathbf{w}_{*}\|}\mathbf{x}_{i} \\ \geq \frac{\mathbf{w}_{*}^{\top}w^{t}}{\|\mathbf{w}_{*}\|} + \rho \end{cases}$$

Consider a single step of PLA:

$$\begin{cases} \frac{\mathbf{w}_{*}^{\top}\mathbf{w}^{t+1}}{\|\mathbf{w}_{*}\|} = \frac{\mathbf{w}_{*}^{\top}\mathbf{w}^{t}}{\|\mathbf{w}_{*}\|} + y_{i}\frac{\mathbf{w}_{*}^{\top}}{\|\mathbf{w}_{*}\|}\mathbf{x}_{i} \\ \geq \frac{\mathbf{w}_{*}^{\top}\mathbf{w}^{t}}{\|\mathbf{w}_{*}\|} + \rho \end{cases}$$

Hence after t iterations, $\frac{\mathbf{w}_{+}^{\top}\mathbf{w}^{t}}{\|\mathbf{w}_{0}\|} \geq \frac{\mathbf{w}_{+}^{\top}\mathbf{w}_{0}}{\|\mathbf{w}_{0}\|} + t\rho = 0 + t\rho = t\rho$

Putting the two results together, we get

$$\frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \ge \frac{t\rho}{\sqrt{t}R} = \sqrt{t} \frac{\rho}{R}$$

Putting the two results together, we get

$$\frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \ge \frac{t\rho}{\sqrt{t}R} = \sqrt{t} \frac{\rho}{R}$$

The scalar product of two unit vectors is upper bounded by 1:

$$1 \ge \frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \ge \sqrt{t} \frac{\rho}{R}$$

Putting the two results together, we get

$$\frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \ge \frac{t\rho}{\sqrt{t}R} = \sqrt{t}\frac{\rho}{R}$$

The scalar product of two unit vectors is upper bounded by 1:

$$1 \geq \frac{\mathbf{w}_*^{\top} \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \geq \sqrt{t} \frac{\rho}{R}$$

It follows that

$$\sqrt{t} \le \frac{R}{\rho} \iff t \le \frac{R^2}{\rho^2}$$

Putting the two results together, we get

$$\frac{\mathbf{w}_*^\top \mathbf{w}^t}{\|\mathbf{w}_*\|\|\mathbf{w}^t\|} \ge \frac{t\rho}{\sqrt{t}R} = \sqrt{t}\frac{\rho}{R}$$

The scalar product of two unit vectors is upper bounded by 1:

$$1 \ge \frac{\mathbf{w}_*^{\top} \mathbf{w}^t}{\|\mathbf{w}_*\| \|\mathbf{w}^t\|} \ge \sqrt{t} \frac{\rho}{R}$$

It follows that

$$\sqrt{t} \le \frac{R}{\rho} \iff t \le \frac{R^2}{\rho^2}$$

■ Hence PLA converges after at most R^2/ρ^2 iterations!

