What is claimed is:

1. In a method for synthesizing metal oxide nanoparticles having better magnetic characteristics, a method for synthesizing metal oxide nanoparticles, comprising:

forming a reverse micelle solution by adding distilled water, a surfacetant and a solvent to metallic salt not less than trivalent, precipitating and separating gel type amorphous metal oxide particles by adding proton scavenger to the reverse micelle solution;

adjusting a molar ratio of metal oxide to the surfactant by washing the gel type amorphous metal oxide particles with a polar solvent; and

crystallizing metal oxide nanoparticles by heating or reflux after dispersing the gel type amorphous metal oxide particles in a non-polar solvent having a high boiling point.

15

25

10

5

- 2. The method of claim 1, wherein a size of a finally obtained metal oxide particle is increased according to increase of a molar ratio of distilled water to metallic salt.
- 3. The method of claim 1, wherein the surfactant is one selected from RCOOH, RNH₂ or mixtures thereof, and R- is alkyl or alkenyl consisting of hydrocarbon chains not less than six.
 - 4. The method of claim 1, wherein the solvent for forming the reverse micelle solution is one selected from dibenzylether or diphenylether.

- 5. The method of claim 1, wherein the proton scavenger is one selected from etylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxypentane, 2,3-epoxypropylbenzene, trimethylene oxide, glycidol, epichlorohydrin, or epibromohydrin.
- 6. The method of claim 1, wherein the polar solvent for washing the gel type amorphous metal oxide particles is one selected from methanol, ethanol, propanol or acetone.
- 7. The method of claim 1, wherein shape anisotropy of crystallized metal oxide particles can be increased by increasing the number of the gel type amorphous metal oxide particles-washing times.
- 8. The method of claim 1, wherein a non-polar solvent for heating or refluxing the gel type amorphous metal oxide particles is tetralin.
 - 9. The method of claim 1, wherein magnetism of the metal oxide nanoparticle is increased according to increase of heating or reflux time.
 - The method of claim 1, wherein the metallic salt not less than trivalent includes metallic ions selected from Fe^{3+} , Ru^{3+} , Os^{3+} , Cr^{3+} , Al^{3+} , In^{3+} , Ga^{3+} , Sn^{4+} , Zr^{4+} , Hf^{4+} , Nb^{5+} , W^{6+} , Y^{3+} , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+} , Yb^{3+} , or Lu^{3+} .

5

10

15

20

The method of claim 1, wherein the trivalent metal salt is one selected from FeCl₃ or hydrate thereof (FeCl₃xH₂O), Fe(NO₃)₃ or hydrate thereof [Fe(NO₃)₃xH₂O], Fe₂(SO₄)₃ or hydrate thereof [Fe₂(SO₄)₃xH₂O], FePO₄ or hydrate thereof [FePO₄xH₂O], Fe(OOCCH₃)₃ or hydrate thereof [Fe(OOCCH₃)₃xH₂O], and the nano-sized metal oxide particles are maghemite (γ -Fe₂O₃) or hematite (α -Fe₂O₃) or maghemite and hematite-mixed particles.

The state of the s

12. The method of claim 11, wherein only maghemite phase is obtained by eliminating moisture from the gel type amorphous metal oxide particles through vacuum-drying and performing reflux at a temperature within 214 ~ 224°C, more preferable 215 ~ 219°C, in a nitrogen atmosphere.

10

15

20

25

- The method of claim 11, wherein only hematite phase is obtained by drying the gel type amorphous metal oxide particles only in the atmosphere and heating at a temperature within $150 \sim 168^{\circ}$ C, more preferable $165 \sim 168^{\circ}$ C, in a nitrogen atmosphere.
- 14. The method of claim 1, wherein maghemite and hematite-mixed phase is obtained by drying the gel type amorphous metal oxide particles only in the atmosphere and performing heating or refluxing at a temperature within 150 ~ 224°C, more preferable 168 ~ 219°C, in a nitrogen atmosphere.
- Rod-shaped maghemite (γ -Fe₂O₃) particles, wherein an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof exceeds 1 and is not greater than 10.

Rod-shaped maghemite (γ -Fe₂O₃) nanoparticles, wherein rod-shaped maghemite (γ -Fe₂O₃) nanoparticles are synthesized by the method of claim 1, an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof exceeds 1 and is not greater than 10.

17. Rod-shaped hematite (α -Fe₂O₃) nanoparticles, wherein an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof is not less than 1 and is not greater than 10.

10

18. Rod-shaped hematite (α -Fe₂O₃) nanoparticles, wherein rod-shaped hematite (α -Fe₂O₃) nanoparticles are fabricated by the method of claim 11, an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof is not less than 1 and is not greater than 10.

15

19. Rod-shaped maghemite (γ -Fe₂O₃) and hematite (α -Fe₂O₃)-mixed nanoparticles, wherein an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof exceeds 1 and is not greater than 10.

20

20. Rod-shaped maghemite (γ -Fe₂O₃) and hematite (α -Fe₂O₃)-mixed nanoparticles, wherein rod-shaped maghemite (γ -Fe₂O₃) and hematite (α -Fe₂O₃)-mixed particles are fabricated by the method of claim 11, an average diameter thereof is within 2 ~ 10 nm, and a ratio of length to diameter thereof exceeds 1 and is not greater than 10.