Αρ. Μητρώου:

Ονοματεπώνυμο:

Εξέταση στο Μεταπτυχιακό Μάθημα: Στατιστική Μοντελοποίηση/ΣΤΑΤΙΣΤΙΚΑ ΠΡΟΤΥΠΑ/GLMS (13/2/2024)

***** Διάρκεια Εξέτασης : 1.30 ώρες *****

ΖΗΤΗΜΑ 1 (Υποχρεωτικό. Επιλέξτε 1 από τα 3 ακόλουθα ερωτήματα) (Βαθμ. 1.5)

(1A) Έστω γενικό γραμμικό μοντέλο E(y)=Xβ. Δείξτε ότι η ελεγχοσυνάρτηση $F = \frac{SSR/k}{SSE/(n-k-1)}$ για την υπόθεση

 $\label{eq:h0} \begin{aligned} & \text{H_0: } \beta_1 = \beta_2 = ... = \beta_k = 0 \text{ me enallaktikh thn H_1: toulaktiston éna } \beta_j \neq 0 \text{ , nrahetai kai ws } F = \frac{R^2/k}{(1-R^2)/(n-k-1)} \text{, fotou } R^2 \text{ os suntelesths prosbiorismoù.} \end{aligned}$

- **(1B)** Έστω υπόλοιπα $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}} \sim N_n(\mathbf{0}, \sigma^2(\mathbf{I} \mathbf{H}))$ ενός γενικού γραμμικού μοντέλου. Δώστε τον ορισμό δύο περιπτώσεων τυποποιημένων υπολοίπων. Πώς μας χρησιμεύουν;
- **(1Γ)** Περιγράψτε σύντομα τους δείκτες R^2 , \overline{R}^2 , $R^2_{\pi\rho\delta\beta\lambda\epsilon\psi\eta}$, καθώς και τα κριτήρια Cp-Mallows και AlC. Πώς μπορούν να μας βοηθήσουν στην αξιολόγηση ενός γενικού γραμμικού μοντέλου $E(\mathbf{y})=\mathbf{X}\mathbf{\beta}$.

ΖΗΤΗΜΑ 2 (Υποχρεωτικό) (Βαθμ. 4.5)

Εξετάζεται η γραμμική παλινδρόμηση μιας μεταβλητής y, σε σχέση με 4 επεξηγηματικές μεταβλητές x_1, x_2, x_3, x_4 . Ακολουθούν τα βασικά σημεία της ανάλυσης.

Α΄ ανάλυση: περιλαμβάνει όλες τις επεξηγηματικές μεταβλητές. Συμπληρώστε τον παρακάτω πίνακα και σχολιάστε σύντομα τα αποτελέσματα της ανάλυσης αυτής.

Regression Analysis: y versus x1, x2, x3, x4

The regression equation is
$$y = 62.4 + 1.55 \times 1 + 0.510 \times 2 + 0.102 \times 3 - 0.144 \times 4$$

Predictor	Coef	SE Coef	т	P	VIF
Constant	62.41	70.07	0.89	0.399	
x 1	1.5511	0.7448	2.08	0.071	38.5
x 2	0.5102	0.7238			254.4
x 3	0.1019	0.7547	0.14	0.896	46.9
x4	-0.1441	0.7091			282.5
s = 2.4460	1 R-Sq	= 98.2%	R-Sq(a	dj) = 9	7.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	4	2667.90	666.97		
Residual Error	8	47.86	5.98		
Total	12	2715.76			

Β' ανάλυση:

Δίνονται αποτελέσματα προσαρμογών διαφόρων μοντέλων με επιλεγμένες μεταβλητές. Ο παρακάτω πίνακας παρουσιάζει μερικούς δείκτες για την προσαρμογή των μοντέλων αυτών.

(i) Επιλέξτε δύο εμφωλευμένα μοντέλα που με βάση τα κριτήρια θεωρείτε ότι είναι τα καλύτερα.

(ii) Γράψτε την ελεγχοσυνάρτηση **F** για τη σύγκριση **δύο** εμφωλευμένων μοντέλων. Στη συνέχεια αξιοποιώντας **τον** έλεγχο **F**, καθώς και το **δείκτη** $\overline{\mathbb{R}}^2$ να βρεθεί το βέλτιστο μοντέλο από τα παραπάνω δύο. $S = \left(\frac{SSE}{(n-k-1)}\right)^{1/2}$

Μοντέλο	Μεταβλητές	Υ με	R ² (x100%)	$R_{\pi ho \acute{o}eta \lambda \epsilon \psi \eta}^{2}$	C_p	S	AIC
				(x100%)			
1	1	x4	67.5	56.0	138.7	8.9639	97.744
2	1	x2	66.6	55.7	142.5	9.0771	98.070
3	1	x1	53.4	37.4	202.5	10.7270	102.412
4	2	x1 x2	97.9	96.5	2.7	2.4063	64.312
5	2	x1 x4	97.2	95.5	5.5	2.7343	67.634
6	2	x3 x4	93.5	89.2	22.4	4.1921	78.745
7	3	x1 x2 x4	98.2	96.9	3.0	2.3087	63.866
8	3	x1 x2 x3	98.2	96.7	3.0	2.3121	63.904
9	3	x1 x3 x4	98.1	96.5	3.5	2.3766	64.620
10	4	x1 x2 x3 x4	98.2	95.9	5.0	2.4460	65.837

(iii) Σχολιάστε σύντομα τις παρακάτω γραφικές παραστάσεις των τυποποιημένων υπολοίπων, των h_{ii} , των μερικών υπολοίπων για τη μεταβλητή X_2 και τα υπόλοιπα σε σχέση με τη X_2 του **τελικού μοντέλου**.

Επιλέξτε ΕΝΑ από τα επόμενα 3 Ζητήματα (Βαθμ. 4.0)

ZHTHMA 3

Εξετάζεται ο βαθμός επίδοσης (Y), n=34 υπαλλήλων εταιρείας, ένα μήνα μετά την πρόσληψή τους, σε σχέση με ένα αρχικό τεστ ικανότητας (X_1). Ορίζεται η δείκτρια μεταβλητή $X_2=0$, αν τριτοβάθμια εκπαίδευση και $X_2=1$, αν

δευτεροβάθμια. Εξηγήστε σύντομα πώς μέσω του μοντέλου $\mathrm{E}(y_x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$, μπορούμε να ελέγξουμε αν χρειάζεται να προσαρμοστούν (I) δύο διαφορετικές ευθείες, (II) δύο παράλληλες ευθείες, ή (III) μια κοινή ευθεία για τα δύο επίπεδα εκπαίδευσης, όπου $x_3 = x_1 x_2$, η μεταβλητή που εκφράζει την αλληλεπίδραση μεταξύ των μεταβλητών x_1 και x_2 .

Συμπληρώσετε τα κενά στα ακόλουθα αποτελέσματα και κατασκευάστε ένα 95% διάστημα εμπιστοσύνης για το συντελεστή β_1 της x_1 του **τελικού μοντέλου.** Να δοθούν ερμηνείες για το τελικό μοντέλο (βλ. και σχετικό διάγραμμα πιο κάτω).

Regression Analysis: y versus x1, x2, x3

The regression equation is

 $y = 0.917 + 2.95 \times 1 + 1.11 \times 2 - 1.36 \times 3$

Predictor	Coef	SE Coef	T	P
Constant	0.9174	0.6442	1.42	0.165
x1	2.9452	0.4008	7.35	<0.001
x 2		1.054		
x 3	-1.3625	0.6373		

 $R-Sq = \frac{}{}$ R-Sq(adj) = 66.8% R-Sq(pred) = 60.67%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression					
Residual Error	30	27.279	0.909		
Total	33	90.400			

Regression Analysis: y versus x1, x2

The regression equation is $y = 1.73 + 2.41 \times 1 - 1.03 \times 2$

Predictor	Coef	SE Coef	T	P	
Constant	1.7260	0.5507	3.13	0.004	
x 1	2.4062	0.3291	7.31	<0.001	
x 2		0.347			

$$S = 1.00701$$
 R-Sq = 65.2% R-Sq(adj) =

Analysis of Variance

Regression Analysis: y versus x1

The regression equation is

$$y = 1.38 + 2.30 x1$$

Predictor Coef SE Coef T P
Constant 1.3802 0.6001 2.30 0.028
x1 2.2976

$$s = 1.12283$$
 $S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = 9.48235$

R-Sq = 55.4% R-Sq(adj) = 54.0% R-Sq(pred) = 49.88%

Analysis of Variance

Source	DF	ss	MS	F	P
Regression	1	50.056	50.056		
Residual Error					

ZHTHMA 4

Έστω μοντέλο παλινδρόμησης Poisson $f(y)=\frac{\exp(-\mu_x)\;\mu_x^{\,y}}{y!},\;\;y=0,1,2,\ldots$, με συνάρτηση σύνδεσης $g(\mu_x)=\ln\mu_x=\beta'x$ και ελεχγοσυνάρτηση Deviance $D_M(\hat{\pmb{\beta}})=-2\left(\hat{\ell}_M-\hat{\ell}_{\kappa o \rho}\right)$, όπου $\hat{\ell}_M$ η μεγιστοποιημένη λογαριθμοποιημένη συνάρτηση πιθανοφάνειας του μοντέλου Μ που μας ενδιαφέρει και $\hat{\ell}_{\kappa o \rho}$ η αντίστοιχη του κορεσμένου μοντέλου και κριτήριο $AIC=-2\hat{\ell}_M+2d$, όπου d ο συνολικός αριθμός παραμέτρων στο μοντέλο.

Σε n=42 ομάδες ασθενών με κοινά χαρακτηριστικά εξετάζεται αν ο αριθμός (Y) ασθενών με θετική ανταπόκριση θεραπείας/ομάδα εξαρτάται από τη δοσολογία συγκεκριμένου φαρμάκου (X_1) και από το φύλο (X_2 =1 αν γυναίκα, και X_2 =0 αν άντρας).

- (i) Να συμπληρωθούν τα κενά στους παρακάτω πίνακες. (Τα $\exp(\hat{\beta}_i)$ υπολογίζονται μόνο για το $\frac{\textbf{τελικό μοντέλο}}{\textbf{γ}}$
- (ii) Με βάση τον έλεγχο Wald, τη διαφορά των ελεγχοσυναρτήσεων Deviance, και λαμβάνοντας υπόψη το δείκτη Ψευδο- $R_{\rm D}^2$ Deviance (βλ. πινακάκι πιο κάτω), καθώς και το κριτήριο AIC, επιλέξτε το καλύτερο από τα τρία μοντέλα **M0, M1, M2**. Γράψτε το προσαρμοσμένο <u>τελικό μοντέλο</u>.
- (iii) Κατασκευάστε 0.95-διαστήματα εμπιστοσύνης για τα $\exp(\beta_j)$ και με βάση αυτών ερμηνεύστε τις εκτιμημένες ποσότητες $\exp(\hat{\beta}_i)$ του **τελικού μοντέλου**.
- **(iv)** Σχολιάστε σύντομα το γραφικό έλεγχο των υπολοίπων Deviance και τη γραφική παράσταση (index plot) της απόστασης Cook του <u>τελικού μοντέλου.</u>

ΜΟΝΤΕΛΟ: Μ2	$\hat{\beta}_{i}$	$se(\hat{\beta}_i)$	z	ρ-τιμή	Διαστήματα			
Μεταβλητές	Pj	$\left(\rho_{j} \right)$,		 εμπιστοσύνης			
Σταθερά	0.383749	0.1003	3.826	0.00013	XXXXXX			
X_1	-0.129716	0.0087	-14.835					
X_2	-0.013193	0.0629						
	AIC ₂ =245.78							
ΜΟΝΤΕΛΟ: Μ1	$\hat{\beta}_{i}$	$se(\hat{\beta}_i)$	z	ρ-τιμή				
Μεταβλητές	, ,	(1)	,					
Σταθερά	0.37677	0.09462	3.982	<0.001	XXXXXX			
X_1	-0.12962	0.00873						
$\hat{\ell}_1 = \underline{\hspace{1cm}}$								
και η τιμή του κριτηρίου ΑΙC ₁=								
ΜΟΝΤΕΛΟ: Μ0 Για το μοντέλο χωρίς συμμεταβλητές (Null model) $\hat{\ell}_0$ =-222.219 και η τιμή του κριτηρίου AIC ₀ =								
	V			- -				

Μοντέλο	Deviance β.ε.	Deviance	Διαφορά στους β.ε.	Διαφορά Deviance	Pr(>Chi)	Deviance Ψευδο- R_D^2 R_D^2 =1- $\frac{D(\hat{\beta})}{D_0}$ (×100%)
MO	41	272.305				
M1	40	67.695				
M2	39	67.652	1	0.043		75.16 %

Γραφικός έλεγχος των υπολοίπων Deviance και γράφημα δείκτη (index plot) της απόστασης Cook για το <u>τελικό</u> μοντέλο

ZHTHMA 5

- **(5A)** Έστω Υ τ.μ. της κατανομής Bernoulli $f(y)=p^y(1-p)^{1-y}$, y=0, 1 με παράμετρο p. Γράψτε το μοντέλο της λογιστικής παλινδρόμησης για 2 συμμεταβλητές .
- (5B) Σε μελέτη η ασθενών, ερευνητής θέλει να εξετάσει αν Υ (αγγειοσυστολή ναι=1, όχι=0), σχετίζεται με τον εισπνεόμενο όγκο αέρα X_1 , και με τον παρατηρούμενο ρυθμό εισπνοής X_2 . Με βάση τη λογιστική παλινδρόμηση, εξετάζεται η επίδραση των συμμεταβλητών αυτών στη σχετική πιθανότητα επιτυχίας (odds) $\frac{p_x}{1-p_x}$.
- (i) Να συμπληρωθεί ο παρακάτω πίνακας (τα $\exp(\hat{\beta}_j)$ υπολογίζονται μόνο για το $\frac{\textbf{τελικό μοντέλο}}{\textbf{του κριτηρίου AIC}}$). Κάνοντας χρήση του ελέγχου Wald, των ελέγχων deviance και του κριτηρίου AIC, επιλέξτε το καλύτερο μοντέλο.
- (ii) Να κατασκευαστεί ένα 95% διάστημα εμπιστοσύνης για την ποσότητα του e^{β_1} του <u>τελικού μοντέλου</u>.
- (iii) Υπολογίστε τις εκτιμημένες ποσότητες $\exp(\hat{\beta}_i)$ του **τελικού μοντέλου.**

Με τη βοήθεια της ποσότητας $e^{\hat{\beta}_1}$ (odds ratio), εκφράστε κατά πόσο αύξηση στον εισπνεόμενο όγκο αέρα επιδρά στη σχετική πιθανότητα εμφάνισης αγγειοσυστολής $\frac{p_x}{1-p_x}$ για το $\frac{\mathbf{re}\lambda \mathbf{rk} \hat{\mathbf{o}} \ \mu \mathbf{ovt} \hat{\mathbf{e}} \lambda \mathbf{o}}{1-p_x}$.

MONTEΛΟ: M0 Για το μοντέλο χωρίς συμμεταβλητές (Null model)								
Ελεγχοσυνάρτηση deviance δίνεται ως \mathbf{D}_0 = 54.04 με αντίστοιχη τιμή $\hat{\ell}_0$ = -27.01992 και τιμή του κριτηρίου \mathbf{AIC}_0 =								
ΜΟΝΤΕΛΟ: Μ1 Μεταβλητές	${}$							
Σταθερά				<0.001	XXXX			
X_1	1.33568	0.61621						
	Ελεγχοσυνάρτηση deviance δίνεται ως $\mathbf{D_{1}}$ = 46.989 με αντίστοιχη τιμή $\hat{\ell}_1 = -23.49469$ και η τιμή του κριτηρίου $\mathbf{AIC_{1}}$ = McFadden ψευδο- \mathbf{R}^2 =0.1305							
<u>ΜΟΝΤΕΛΟ: Μ2</u> Μεταβλητές	$\hat{oldsymbol{eta}}_{j}$	$\operatorname{se}(\hat{\beta}_{j})$	Z _j	ρ-τιμή	$\exp\left(\hat{\beta}_{j}\right)$			
Σταθερά	-9.5296	3.2332	-2.947	0.00320	XXXX			
X_1	3.8822	1.4286						
X_2	2.6491	0.9142						
$\hat{\ell}_2$ = και η τιμή του κριτηρίου AIC₂= 35.772 McFadden ψευδο- R² =0.4491								

(iv) Ενισχύστε τα συμπεράσματά σας με τις ακόλουθες γραφικές παραστάσεις των υπολοίπων deviance και τις καμπύλες ROC για τα Μοντέλα 1 και 2 αντίστοιχα

AUC =Area under the curve

0.6

Specificity

0.4

0.2

0.0

ΜΟΝΤΕΛΟ 2 AUC=0.9011

1.0