ii.	For the given pre-condition, illustrate the execution of following stack	5	3	1	1
	instructions: Pre – Condition: $R_1 = 0 \times 00000002$				
	$R_4 = 0 \times 00000003$				
	$SP = 0 \times 00080018$				
	Instruction 1: STMFD SP!, $\{R_1, R_4\}$				
	Instruction 2: STMED SP!, $\{R_1, R_4\}$				
	11881 400000 2 . 0.1 . (-4,4)				
	(OR)	10	2	1	1
b.	Explain the following concepts in cortex-m processor architecture. (i) Register set (ii) Stack operation	10	-		•
27. a.	Describe the registers used in timers and discuss the step sequence involved in programming timers of ARM processor.	10	2	2	1
	(OR)				
b.	Explain the various ADC registers of ARM LPC2148 and write an assembly language program to read the converted value from channel 1 and channel 2 of ADC.	10	3	2	1
28 0	Illustrate the concept of establishing communication between two threads	10	2	3	1
20. a.	in embedded hardware operating system with necessary example.				
	(OD)				-
b.	(OR) Explain the overview of thread switching and write an assembly language program to describe thread switching.	10	3	3	1
29 a i	Compare spin-lock and semaphore.	5	2	4	1
	Illustrate the various conditions for the deadlock occurrences in embedded operating system.	5	3	4	1
	(OR)				
b.i.	Explain the fundamental concept of deadlock using resource allocation graph.	5	2	4	1
ii.	Discuss the methods to prevent deadlock in embedded operating system.	5	2	4	1
		-	2	_	1
30. a.i.	Illustrate the process of integrating individual components into a microcontroller based data acquisition system with neat diagram.	5	2	5	1
ii.	Illustrate the performance metric attributes related to event detection in data acquisition system.	5	2	5	1
	(OR)				
b.	Explain the overview of application layer protocols for embedded systems.	10	3	5	1
	* * * *				

	1							_	Γ.
Reg. No.									

B.Tech. DEGREE EXAMINATION, MAY 2022 Sixth Semester

18ECC313J – EMBEDDED HARDWARE AND OPERATING SYSTEMS

			(For the candidates admitted from	om the ac	cademic year 2018-2019 to 201	9-2020)			
Note				1 4	idli Cont 40 minutes and OM	D alegat	1	14 6	hon	dod
(i)			A should be answered in OMR			K sneet	. snou	Id De	пап	aea
(ii	`	Port -	o hall invigilator at the end of 40 th B should be answered in answer	· hooklet	·-					
(11)	,	1 ait -	b should be answered in answer	DOORIGI	•					
Time	e: 2½	⁄2 Hour	S		<u>*</u>		Max	. Ma	rks:	75
								-		7.0
			$PART - A (25 \times 1)$	l=25 N	Marks)		Marks	BL	со	PO
			Answer ALL	-			11			
	1.		ddress system supported by A			٠.	1	1	1	1
			Little endian	` ,	Big endian	1.				
		(C) 2	X-endian	(D)	Both little endian and endian	big				
	2.	The a	additional duplicate register	used in	ARM machines are call	ed as	1	1	1	1
				(T)	D 1 1 1					
			Copied registers	` '	Banked registers					
		(C) 1	Extra registers	(D)	Extremital registers					
	3.	The i	nstructions which are used	to load	or store multiple operand	ls are	1	2	1	1
			Banked instructions	(B)	Coprocessor instructions					
			Block transfer instructions	. ,		ansfer				
	4	r. 14	1 14	IC in at	mustion for the given below		1	2	1	1
	4.		he result upon execution of B	ore misu	ruction for the given below					
3		-	ondition: 0b1111		,					
		•								
		$R_2 = 0$	0 <i>b</i> 1010			7.0				
		BIC I	R_0, R_1, R_2							
		Post-	condition: $R_0 = ?$							
		(A)	$R_0 = 0b0101$	(B)	$R_0 = 0b1010$				-	
		(C)	$R_0 = 0b1111$	(D)	$R_0 = 0b0000$					
							1	2	1	- ₁ -
	5.		egisters R_{13} , R_{14} and R_{15} are s				1	2	•	
		` '	PC, LR and SP	` /	LP, PC and SP					
		(C)	SP, LR and PC	. (D)	GP, LR and SP					
	6.		nicrocontroller uses	to :	find the entry inside the int	errupt	1	1	2	1
			r table.	(D)	ICD address					
		` '	IVT address	(B)	ISR address Interrupt number					
Page	1 of 4	(C)	Return address	(D)	micirupi numbu		25	MF61	8ECC	313J

Page 4 of 4

7.	debug menu finishes executing the current function and stops afterwards. (A) Step In (B) Step out (C) Step over (D) Stop	1-	1	2	1	19.	A very effective approach to deadlock is to timeouts to the wait function. (A) Add (B) Remove (C) Ignore (D) Subtract	1	2	4 1
8.		1	1	2	1	20.	The semaphore function will be called when it is appropriate for the blocked thread to continue. (A) OS-event (B) OS-signal (C) OS-continue (D) OS-run	1	1	4 1
9.	Thetimer is a core device on the cortex M architecture, which is commonly used as a periodic timer. (A) Systick (B) Local (C) Global (D) Event triggered	-1	2	2	1	21.	protocol is used for communicating with low-power sensors and devices. (A) TCP (B) HTTP	1	1	5 1
10.	In LPC2148 microcontroller, theregister is used to control the functions of the timer 0. (A) TOTCR (B) TOPR (C) TOPC (D) TOTC	1	1	2	1	22.	(C) MQTT (D) COAP Thelayer provides transmit and receive processing for Ethernet frames. (A) PHY (B) DLL	1	1	5 1
	(A) One (B) Two (C) Three (D) Four	1					(C) MAC (D) Application MQTT is a protocol. (A) Master-slave (B) Connection less (C) Request-response (D) Publish-subscribe	1	1	5 1
	An RTOS with aallows us to run multiple threads. (A) Thread dispatcher (B) Thread kernel (C) Thread scheduler (D) Thread swapper					24.	is the fraction of properly handled non-events. (A) Sensitivity (B) Specificity (C) Precision (D) Prevalence	1	1	5 1
13.	In RTOS, if the process is an isolated means	1	2	3 =	1	25.	Theregister contains the result to the most recent analog to digital conversion. (A) ADOGDR (B) ADOCR (C) ADGSR (D) ADOSTAT	1	2	5 1
14.	Theprogramming allows the computer to execute multiple threads, but only one at a time. (A) Serial (B) Parallel (C) Concurrent (D) Sequential	1	1	3	1_	26 0:	Allswei ALL Questions	arks 5		CO PO
15.	2	1	1	3	1	20. a.i.	For the given pre-condition, find the post-condition values after the execution of multiple-register store instructions for various addressing modes. Pre – condition: $R = 0 \times 0.0000000$	2		
16.	Theallows a thread to acquire it to simply wait in loop until lock is available. (A) Semlock (B) Spin lock (C) Mute lock (D) Wait lock	1	1	4	1	2	$R_0 = 0 \times 00000000$ $R_1 = 0 \times 00004000$ $R_2 = 0 \times 00005000$ $MEM32[0 \times 00004000] = 0 \times 00212121$			
17.	Another name of first-in-first-out queue isbuffer. (A) Serial (B) Parallel (C) Concurrent (D) Bounded	ř	1	1	1	9	$MEM32[0\times01112122]$ (i) Instruction 1: STM R_0 , $[R_1, R_2]!$ (ii) Instruction 2: STM R_0 , $[R_1, R_2]$			
18.	In the threads are blocked as they are waiting on each other. (A) Shared data problem (B) Semaphores (C) Deadlock (D) Context switching	1	2	4	1		(iii) Instruction 3: STM R_0 , $[R_1]$, R_2			

Page 2 of 4

25MF618ECC313J

Page 3 of 4