## Homework: Integration exam problems

 ${f 1a.}\ {
m Let}\ f(x)=6-\ln(x^2+2)$  , for  $x\in\mathbb{R}$  . The graph of f passes through the point  $(p,\ 4)$  , where p>0 .

**1b.** The following diagram shows part of the graph of f.



The region enclosed by the graph of f, the x-axis and the lines x=-p and x=p is rotated  $360^\circ$  about the x-axis. Find the volume of the solid formed. [3 marks]

2a. Find 
$$\int x e^{x^2-1} dx$$
. [4 marks]

**2b.** Find 
$$f(x)$$
, given that  $f'(x) = xe^{x^2-1}$  and  $f(-1) = 3$ .

$$f'(x)=rac{3x^2}{\left(x^3+1
ight)^5}$$
 . Given that  $f(0)=1$  , find  $f(x)$  . [6 marks]

4. Let 
$$f'(x)=\sin^3(2x)\cos(2x)$$
 . Find  $f(x)$  , given that  $f\left(\frac{\pi}{4}\right)=1$  . [7 marks]

$$_{\mathsf{5a.\,Let}}\,f(x) = x\mathrm{e}^{-x}\,_{\mathsf{and}}\,g(x) = -3f(x) + 1$$

The graphs of f and g intersect at x = p and x = q, where p < q.

Find the value of P and of Q. [3 marks]

**5b.** Hence, find the area of the region enclosed by the graphs of f and g. [3 marks]

**6a.** A particle P moves along a straight line. Its velocity  $v_{\rm P} \, {
m m \, s}^{-1}$  after t seconds is given by  $v_{\rm P} = \sqrt{t} \sin \left( \frac{\pi}{2} t \right)$ , for  $0 \leqslant t \leqslant 8$ . The following diagram shows the graph of  $v_{\rm P}$ .



Write down the first value of  $\boldsymbol{t}$  at which P changes direction.

[1 mark]

**6b.** Find the **total** distance travelled by P, for  $0\leqslant t\leqslant 8$ .

[2 marks]

**6c.** A second particle Q also moves along a straight line. Its velocity,  $v_{\rm Q} \, {
m m \, s^{-1}}$  after t seconds is given by  $v_{\rm Q} = \sqrt{t}_{\rm \ for} \, 0 \leqslant t \leqslant 8$ . After k seconds Q has travelled the same total distance as P.

Find k. [4 marks]

## 7a. All lengths in this question are in metres.

Let  $f(x)=-0.8x^2+0.5$ , for  $-0.5\leqslant x\leqslant 0.5$ . Mark uses f(x) as a model to create a barrel. The region enclosed by the graph of f, the x-axis, the line x=-0.5 and the line x=0.5 is rotated 360° about the x-axis. This is shown in the following diagram.



Use the model to find the volume of the barrel.

[3 marks]

**7b.** The empty barrel is being filled with water. The volume V  ${
m m}^3$  of water in the barrel after t minutes is given by  $V=0.8(1-{
m e}^{-0.1t})$ . How long will it take for the barrel to be half-full? [3 marks]

**8a.** A particle P starts from a point A and moves along a horizontal straight line. Its velocity  $v~{
m cm}~{
m s}^{-1}$  after t seconds is given by

$$v(t) = egin{cases} -2t+2, & ext{for } 0\leqslant t\leqslant 1 \ 3\sqrt{t}+rac{4}{t^2}-7, & ext{for } 1\leqslant t\leqslant 12 \end{cases}$$

The following diagram shows the graph of v.



Find the initial velocity of P.

[2 marks]

**8b.** P is at rest when t=1 and t=p.

Find the value of p. [2 marks]

**8c.** When t=q, the acceleration of P is zero.

(i) Find the value of  $\boldsymbol{q}$ .

(ii) Hence, find the **speed** of P when t=q.

[4 marks]

**8d.** (i) Find the total distance travelled by P between t=1 and t=p.

(ii) Hence or otherwise, find the displacement of P from A when t=p.

[6 marks]

**9a.** The following diagram shows the graph of  $f(x)=2x\sqrt{a^2-x^2}$  , for  $-1\leqslant x\leqslant a$  , where a>1 .



The line L is the tangent to the graph of f at the origin, O. The point  $\mathbf{P}(a,\ b)$  lies on L.

- (i) Given that  $f'(x) = rac{2a^2 4x^2}{\sqrt{a^2 x^2}}$  , for  $-1 \leqslant x < a$  , find the equation of L .
- (ii) Hence or otherwise, find an expression for  $\emph{b}$  in terms of  $\emph{a}$ .

[6 marks]

**9b.** The point  $Q(a,\ 0)$  lies on the graph of f. Let R be the region enclosed by the graph of f and the x-axis. This information is shown in the following diagram. [6 marks]



Let  $A_R$  be the area of the region R.

Show that  $A_R=rac{2}{3}a^3$  .

**9c.** Let  $A_T$  be the area of the triangle OPQ. Given that  $A_T = kA_R$ , find the value of k. [4 marks]