Atividade Playground

Aluno: Erik Nathan

Email: enob@cesar.school

Especialização Tech Leader 2025.01

Análise de Simulação de Rede Neural para Classificação de Dados em Espiral

O objetivo deste estudo foi analisar o comportamento de uma rede neural na tarefa de classificação do dataset "espiral", disponível na plataforma TensorFlow Playground. Foram realizadas diversas simulações, ajustando hiperparâmetros como a função de ativação, a taxa de aprendizado (*learning rate*), a arquitetura da rede (número de camadas e neurônios) e a regularização.

Configuração de Referência

Após testes iniciais, a função de ativação **ReLU** mostrou-se a mais adequada para este tipo de dado. A simulação destacada na imagem, que serviu como referência de um bom resultado, utilizou a seguinte configuração:

• Taxa de Aprendizado: 0.03

Função de Ativação: ReLU

- Regularização: Nenhuma
- **Arquitetura:** 3 camadas ocultas com 6, 5 e 6 neurônios, respectivamente.

Com esta configuração, o modelo alcançou um **loss de teste de 0.046** e um loss de treino de 0.048 em **519 épocas**, demonstrando um excelente equilíbrio entre complexidade e eficiência.

Análise dos Hiperparâmetros

A partir da configuração de referência, foram realizadas variações para entender o impacto de cada hiperparâmetro.

1. Influência da Arquitetura da Rede (Camadas e Neurônios)

Fixando a ativação ReLU e a taxa de aprendizado em 0.03, foram testadas diferentes arquiteturas, levando às seguintes conclusões:

- **Complexidade vs. Performance:** Nem sempre adicionar mais camadas e neurônios resulta em uma perda menor com menos épocas. O excesso de parâmetros pode, inclusive, gerar instabilidade e *overfitting*.
- **Estabilidade:** O aumento moderado no número de camadas pareceu contribuir para uma maior estabilidade no treinamento.
- **Instabilidade tardia:** Observou-se que, em algumas configurações, após atingir um valor mínimo, a perda voltava a aumentar e a oscilar.

A tabela abaixo compara alguns dos resultados obtidos:

Camadas Ocultas	Neurônios por Camada	Loss Mínimo	Épocas	Observação
3	6, 5, 6	0.046	519	Modelo da imagem. Ótimo balanço.
4	6, 5, 5, 6	0.091	473	Pior resultado com mais complexidade.
4	6, 4, 4, 6	0.098	559	Pior resultado com mais complexidade.
4	8, 6, 6, 8	0.016	371	Menor perda obtida, porém com custo de maior complexidade (risco de overfitting).

2. Influência da Taxa de Aprendizado (Learning Rate)

 Taxas de aprendizado baixas resultaram em uma convergência mais lenta, exigindo um número maior de épocas para ajustar os pesos da rede. • Aumentar a taxa de aprendizado não garantiu melhora. Em testes com *learning rate* de 0.1, os resultados não superaram a configuração de referência. Por exemplo, para o mesmo modelo da imagem, foram necessárias 514 épocas para atingir uma perda de 0.052, um resultado inferior.

Por fim

A simulação evidenciou que encontrar uma boa configuração para uma rede neural é um processo empírico de busca por equilíbrio. A arquitetura de 3 camadas com 6, 5 e 6 neurônios, combinada a uma taxa de aprendizado de 0.03 e ativação ReLU, provou ser a mais eficiente para o problema, oferecendo a menor perda com a menor complexidade computacional.