Histogram matching - 1/28/2020 Review of homework "uniform distribution" not flat ble discretization Close together -> shorter } cause dist to Shorter apart -> taller be on aug Histogram matching: · we've done hist eq (where transformation is Cdf) 1 Map histogram onto uniform dist 1 What is map from Gaussin - surform? tourism inverse uniform of desired "in discrete work, this gets trucky but it's ok Done with point processes.

Noise - 1/28/2020

- always have noise
- "electronic noise" generally
- · ideally voltage at photons, but there is some noise

$$N(u, v) \sim N(0, \sigma_n^2)$$
 assuming gassian noise \sim Std deviation σ_n

(property of camera)

Why we can't just apply gain to

as well as the noise!

fix problems? Gain amplifies the signal

$$S(u,v) \propto illuminance * dt * $\pi(\frac{D}{2})^2$$$

	Shutter speed	aperature	
Light level	ΔΤ	D	noise
high T	-	_	low 1
· illuminance · S is high			
high relative to			
low 4	_	_	high 1
low ↓	↑ 0	r 🕇	aug —
	. bring Sixup	· bring Sigue	
	b improve SNR · limited ble long exp. blus	to improve 540 R Limited Physically	
high 1	1	↓	average —
	· desired fast	. say you have	
	shutter . Moving subject	small appartue	

Denoising problem

· We know I(u,u)

· WE don't know N(UID) or S(NID) but WE would like N(MD)

$$E(s) = \frac{1}{NN} \sum_{v,v} S(u,v)^2 \qquad E(N) = \frac{1}{NN} \sum_{v,v} N(u,v)^2$$

another way to think about noise:

RMSE(I,Î)=
$$\int \frac{1}{NM} \sum_{u,v} \left[I(u,v) - \hat{I}(u,v) \right]^{2}$$

good at describing how dose two images are

· compare:

image + abbed noise to image + added noise - density aly

RMSE(I,S) =
$$\int_{NM}^{\perp} \sum (I_{uv} - S_{uv})^2$$

= sart of energy of noise

· Noise of each pixel is independent & normally distributed

$$\mathbb{E}\left[\mathbb{E}(N)\right] = f_1(\sigma_n)$$

 $N \sim N(0, \sigma_n^2)$ E(E(N))= E((N-nm)2)+ E(N)2

$$\mathbb{E}(E(N)) = \mathbb{E}((N-N_{min})^2) + \mathbb{E}(N)^2$$

$$\frac{1}{1}$$

 $\mathbb{E}(\mathbb{E}(\mathbb{N})) = \sigma_{\mathbb{N}}^2$

$$\mathbb{E}[(X-X)^2] = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

$$\uparrow$$

$$RV$$

$$\forall \alpha (X)$$