Report on the FCC and ISED Testing of the

Current Products Corp CP19HRCZ-01

In accordance with FCC 47 CFR Part 15.-247 & ISED Canada's Radio Standards Specifications RSS-247

Prepared for: Current Products Corp

1995 Hollywood Avenue Pensacola, FL 32505

COMMERCIAL-IN-CONFIDENCE

Document Number: BO72143533.101 | Issue: 02

	_		_	 _	_
91	GI	₹		 D	Е
-11	м	W A	м	 м	

Peter Walsh

 NAME
 JOB TITLE
 RESPONSIBLE FOR
 ISSUE DATE

 Pete Walsh
 Service Line Manager
 Authorized Signatory
 2019-Jan-31

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation

Designation Number US1063 Tampa, FL Test Laboratory

Innovation, Science, and Economic Development Canada

Accreditation

Main Site Number 2087A-2 Tampa, FL Test Laboratory
Satellite Site Number: 4175C Boca Raton, FL Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC Part 15.-247, ISED Canada's RSS-247

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.

ACCREDITATION

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America 5610 West Sligh Ave., Suite 100 Tampa, FL 33634 Phone: 813-284-2715 www.tuv-sud-america.com

TABLE OF CONTENTS

1	GENERAL	3
1.1	Purpose	3
1.2	Applicant Information	3
1.3	Product Description	3
1.4	Test Methodology and Considerations	3
2	TEST FACILITIES	5
2.1	Location	5
2.2	Laboratory Accreditations/Recognitions/Certifications	5
2.3 2.3.1 2.3.2	Radiated & Conducted Emissions Test Site Description Semi-Anechoic Chamber Test Site Conducted Emissions Test Site Description.	6
3	APPLICABLE STANDARD REFERENCES	8
4	LIST OF TEST EQUIPMENT	9
5	SUPPORT EQUIPMENT	.10
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	10
7	SUMMARY OF TESTS	.11
7.1	Antenna Requirement – FCC: Section 15.203	11
7.2 7.2.1 7.2.2	6 dB Bandwidth - FCC: Section 15.247(a)(2); ISED Canada: RSS-247 5.2(a); 99% Bandwidth ISC Canada: RSS-GEN 6.6	11 . 11
7.3 7.3.1 7.3.2	Peak Output Power – FCC: Section 15.247(b)(3); ISED Canada: RSS-247 5.4(d)	. 15
7.4 7.4.1 7.4.2 7.4.3	Band-Edge Compliance and Spurious Emissions	la: . 17 . 19
7.4.4	Sample Calculation:	
7.5 7.5.1 7.5.2	Power Spectral Density – FCC: Section 15.247(e); ISED Canada: RSS-247 5.2(b)	. 25
8	MEASUREMENT UNCERTAINTIES	27
9	CONCLUSION	28

Model(s): CP19HRCZ-01 FCC ID: 2AJXX100612 IC: 22151-CP19HDRCZ01

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.-247 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-247 for the tests documented herein.

1.2 Applicant Information

Current Products Corp 1995 Hollywood Avenue Pensacola, FL 32505

1.3 Product Description

The EUT is a 2.4 GHz Zigbee remote control.

Technical Details

Mode of Operation: IEEE 802.15.4

Frequency Range: 2405 MHz - 2480 MHz

Number of Channels: 16
Channel Separation: 5 MHz
Data Rate: 250 kbps
Modulations: O-QPSK

Antenna Type/Gain: PCB Trace Antenna, 3.3 dBi

Input Power: 3 VDC (CR2045 Lithium Coin Battery)

Model Number: CP19HRCZ-01

Test Sample Serial Number(s): BR-392343-1 Radiated Emissions, BR-392343-3 RF Conducted Emissions

Test Sample Condition: The test samples were in good operating condition without any physical damages.

1.4 Test Methodology and Considerations

The EUT is battery operated only without any provision for connection to the AC mains. The EUT is exempted from the power line conducted emission requirements.

The EUT was evaluated for radiated and RF conducted emissions. In order to allow continuous transmission during the entire duration of the evaluation, the EUT was powered using an external DC Power supply. The RF test power settings used for the evaluation are the following:

Channels 11 - 25: Power Setting 5 dBm Channel 26: Power Setting -2 dBm

The RF conducted measurements were performed on a test sample modified with an SMA connector at the antenna port in order to enable direct coupling to the input of a spectrum analyzer.

The EUT is marketed with two back enclosure variations. For the radiated emissions evaluation, preliminary measurements were performed on the EUT with the two enclosure variations as well as for the EUT with the flat back cover while set in three orthogonal orientations. The EUT with the flat back cover was determined to lead to the highest emissions. The EUT set vertically on the tabletop was the worst case configuration for the radiated spurious emissions while the EUT flat on the tabletop led to the highest emissions at the band-edges. The test results are reported accordingly.

The EUT was also evaluated for compliance to the unintentional emission requirements. The results are documented in a supplier's declaration of conformity (SDOC) test report.

Model(s): CP19HRCZ-01 FCC ID: 2AJXX100612 IC: 22151-CP19HDRCZ01

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

TÜV SÜD America, Inc. 3998 FAU Blvd, Suite 310 Boca Raton, Florida 33431 Phone: (561) 961-5585 Fax: (561) 961-5587

http://www.tuv-sud-america.com

Innovation, Science and Economic Development Canada Lab Code: 4175C

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America, Inc. is accredited to ISO/IEC 17025 by American Association for Laboratory Accreditation (A2LA) and has been issued certificate number 2955.15 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

Main Site Information:

TÜV SÜD America, Inc. 5610 West Sligh Ave., Suite 100 Tampa, FL 33634 Phone: 813-284-2715 www.tuv-sud-america.com

Report: BO72143533.101

FCC Designation Number US1063 FCC Test Firm Registration #: 160606 Innovation, Science, and Economic Development Canada Lab Code: 2087A-2

2.3 Radiated & Conducted Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

Model(s): CP19HRCZ-01

The EMC radiated test facility consists of an RF-shielded enclosure. The interior dimensions of the indoor semi-anechoic chamber are approximately 48 feet (14.6 m) long by 36 feet (10.8 m) wide by 24 feet (7.3 m) high and consist of rigid, 1/8 inch (0.32 cm) steel-clad, wood core modular panels with steel framing. In the shielded enclosure, the faces of the panels are galvanized, and the chamber is self-supporting. 8-foot RF absorbing cones are installed on 4 walls and the ceiling. The steel-clad ground plane is covered with vinyl flooring.

The turntable is driven by pneumatic motor, which can support a 2000 lb. load. The turntable is flush with the chamber floor which it is connected to, around its circumference, with a continuous metallic loaded spring. An EMCO Model 1060 Multi-device controller controls the turntable position.

A pneumatic motor is used to control antenna polarizations and height relative to the ground. The height information is displayed on the control unit EMCO Model 1050.

The control room is an RF shielded enclosure attached to the semi-anechoic chamber with two bulkhead panels for connecting RF, and control cables. The dimension of the room is 7.3 m x 4.9 m x 3 m high and the entrance doors of both control and conducted rooms are 3 feet (0.91 m) by 7 feet (2.13 m).

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3.1-1 below:

Figure 2.3.1-1: Semi-Anechoic Chamber Test Site

2.3.2 Conducted Emissions Test Site Description

Model(s): CP19HRCZ-01

Report: BO72143533.101

The dimensions of the shielded conducted room are 7.3 x 4.9 x 3 m³. The power line conducted emission site includes two LISNs: a Solar Model 8028-50 50 Ω /50 μ H and an EMCO Model 3825/2R, which are installed as shown in the figure below. For evaluations requiring 230 V, 50 Hz AC input, a Polarad LISN (S/N 879341/048) is used in conjunction with a California Instruments signal generator Model 2001RP-OP1.

A diagram of the room is shown below in figure 2.3.2-1:

Figure 2.3.2-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2018.
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2018
- ❖ FCC KDB 558074 D01 DTS Meas Guidance v05 Guidance for Performing Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.257 of the FCC Rules, August 24, 2018.
- Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-247
 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017.
- ❖ Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-GEN General Requirements for Compliance of Radio Apparatus, Issue 4, Amendment 1, March 2018.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment List

		Tubic	4-1. Test Equip	Jilielle Else	Calibratian	Calibuation
					Calibration	Calibration
AssetID	Manufacturer	Model #	Equipment Type	Serial #	Performed Date	Due Date
BEMC00078	EMCO	6502	Active Loop Antenna	9104-2608	5/9/2018	5/9/2020
BEMC00282	Microwave Circuits	H3G020G4	2-20GHz Band Pass Filter	74541	5/17/2018	5/17/2019
BEMC00283	Rohde & Schwarz	FSP40	Spectrum Analyzer	1000033	11/28/2017	11/28/2019
BEMC00523	Agilent	E7405A	9kHz-26.5GHz EMC analyzer/HYZ	MY45103293	11/27/2018	11/27/2020
BEMC00653	Suhner	SF-102A	Cable (40GHz)	0944/2A	10/9/2018	10/9/2019
BEMC02002	EMCO	3108	30 MHz to 200 MHz Biconical Antenna	2147	11/28/2017	11/30/2019
BEMC02004	EMCO	3146	200 MHz to 1 GHz Log Periodic Antenna	1385	12/27/2017	12/27/2019
BEMC02006	EMCO	3115	Linear Polarized Horn antenna, 1-18 GHz	2573	4/7/2017	4/7/2019
BEMC02008	COM-power	AH-826	Horn Antenna (18 GHz to 26.5 GHz)	81009	NCR	NCR
BEMC02011	Hewlett-Packard	HP 8447D	100 kHz to 1.3 GHz low- noise, high gain amplifier	2443A03952	10/18/2018	10/18/2019
BEMC02086	Merrimac	FAN-6-10K	10dB Attenuator	23148-83-1	10/17/2018	10/17/2019
BEMC02095	ETS Lindgren	TILE4! - Version 4.2.A	Tile Automation Software	85242	NCR	NCR
BEMC02111	Aeroflex Inmet	40AH2W-20	Attenuator 20dB, 2.9 mm-M/F, DC-40GHz 2 W	2111	8/5/2018	8/5/2019
BEMC02112	Teledyne Storm Products	921-0101-036	Duratest High Frequency Cable Max. frequency 26.5GHz	12-06-698	10/16/2018	10/16/2019
BEMC02121	Teledyne Storm Products	A81-0303	Radiated Cable Set	2121	7/26/2018	7/26/2019
BEMC02138	Hewlett Packard	8449B	Pre-Amplifier	3008A00320	11/26/2018	11/26/2019
TEMC00171	MegaPhase, LLC	1GVT4	4A & 4B Test Cables	NC12-K1K1-59, 394	5/30/2018	5/30/2020

Notes:

• NCR=No Calibration Required

Report: BO72143533.101

• The assets were only used during the active period of the calibration cycle.

5 SUPPORT EQUIPMENT

Table 5-1: EUT and Support Equipment Description – Radiated Emissions

Item #	Type Device	Manufacturer	Model/Part #	Serial #
1	EUT	Current Products Corp	CP19HRCZ-01	BR-392343-1
2	Power Supply	MPJA	HY5003	3700278

Table 5-2: Cable Description – Radiated Emissions

Cable #	Cable Type	Length	Shield	Termination
Α	Power Leads	2 m	No	EUT to DC Power Supply
В	Power Cord	2.3 m	No	DC Power Supply to AC Mains

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

Figure 6-1: EUT and Support Equipment Block Diagram

Model(s): CP19HRCZ-01 FCC ID: 2AJXX100612 IC: 22151-CP19HDRCZ01

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

Test Begin Date: December 17, 2018
Test End Date: December 20, 2018

Table 7-1: Summary of Tests

Requirements	FCC Rule Part	ISED Canada	Test Results				
Antenna Requirement	FCC: Section 15.203		Pass				
6 dB Bandwidth	FCC: Section 15.247(a)(2)	ISED Canada: RSS-247 5.2(a)	Pass				
99% Bandwidth		ISED Canada: RSS-GEN 6.6	Pass				
Peak Output Power	FCC: Section 15.247(b)(3)	ISED Canada: RSS-247 5.4(d)	Pass				
Band-Edge Compliance of RF Conducted Emissions	FCC: Section 15.247(d)	ISED Canada: RSS-247 5.5	Pass				
RF Conducted Spurious Emissions	FCC: Section 15.247(d)	ISED Canada: RSS-247 5.5	Pass				
Radiated Spurious Emissions into Restricted Frequency Bands	FCC: Sections 15.205, 15.209	ISED Canada: RSS-Gen 8.9, 8.10	Pass				
Power Spectral Density	FCC: Section 15.247(e)	ISED Canada: RSS-247 5.2(b)	Pass				
Power Line Conducted Emissions	FCC: Section 15.207	ISED Canada: RSS-Gen 8.8	N/A				

7.1 Antenna Requirement – FCC: Section 15.203

The EUT uses a 3.3 dBi trace antenna which is integral to the PCB of the device. Consequently, the device meets the requirements of FCC Section 15.203.

7.2 6 dB Bandwidth - FCC: Section 15.247(a)(2); ISED Canada: RSS-247 5.2(a); 99% Bandwidth ISED Canada: RSS-GEN 6.6

7.2.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with ANSI C63.10 Subclause 11.8.1 Option 1. The RBW of the spectrum analyzer was set to 100 kHz and VBW 300 kHz. Span was set large enough to capture the emissions and >> RBW. A peak detector was used for the measurements.

The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission. The RBW was set to 1% to 5% of the approximated bandwidth. The occupied 99% bandwidth was measured by using 99% bandwidth equipment function of the spectrum analyzer using a peak detector.

7.2.2 Measurement Results

Performed by: Thierry Jean-Charles

Table 7.2.2-1: 6dB / 99% Bandwidth

Frequency (MHz)	6dB Bandwidth (kHz)	99% Bandwidth (kHz)		
2405	1606.250	2457.5		
2440	1578.750	2420.0		
2480	1591.875	2427.5		

Date: 20.DEC.2018 14:12:38

Figure 7.2.2-1: 6dB BW - Low Channel

Date: 20.DEC.2018 15:36:53

Figure 7.2.2-2: 6dB BW - Middle Channel

Date: 20.DEC.2018 16:15:19

Figure 7.2.2-3: 6dB BW - High Channel

Date: 20.DEC.2018 14:22:41

Figure 7.2.2-4: 99% OBW - Low Channel

Date: 20.DEC.2018 15:05:26

Figure 7.2.2-5: 99% OBW - Middle Channel

Date: 20.DEC.2018 16:10:17

Figure 7.2.2-6 99% OBW - High Channel

7.3 Peak Output Power – FCC: Section 15.247(b)(3); ISED Canada: RSS-247 5.4(d)

7.3.1 Measurement Procedure (Conducted Method)

The fundamental emission output power was measured in accordance with ANSI C63.10 Subclause 11.9.1.1 RBW ≥ DTS bandwidth. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer through suitable attenuation.

The Maximum Output Power allowed is 1 Watt (30 dBm)

7.3.2 Measurement Results

Model(s): CP19HRCZ-01

Performed by: Thierry Jean-Charles

Table 7.3.2-1: RF Output Power

Frequency (MHz)	Power (dBm)
2405	2.58
2440	2.55
2480	-4.34

Date: 20.DEC.2018 14:08:15

Figure 7.3.2-1: RF Output Power - Low Channel

Date: 20.DEC.2018 15:08:23

Model(s): CP19HRCZ-01

Figure 7.3.2-2: RF Output Power - Middle Channel

Date: 20.DEC.2018 16:51:32

Figure 7.3.2-3: RF Output Power - High Channel

7.4 Band-Edge Compliance and Spurious Emissions

7.4.1 Band-Edge Compliance of RF Conducted Emissions – FCC: Section 15.247(d); ISED Canada: RSS-247 5.5

7.4.1.1 Measurement Procedure

Model(s): CP19HRCZ-01

The RF Conducted Emissions at the Band-Edges were measured in accordance with Subclause 11.11 of ANSI C63.10. The RF output port of the EUT was connected to the input of the spectrum analyzer through suitable attenuation. The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, and the VBW was set to >= 300 kHz.

7.4.1.2 Measurement Results

Performed by: Thierry Jean-Charles

Figure 7.4.1.2-1: Lower Band-Edge

Date: 20.DEC.2018 14:42:21

Report: BO72143533.101 TÜV SÜD America, Inc. Page 17 of 28

Date: 20.DEC.2018 16:33:25

Figure 7.4.1.2-2: Upper Band-Edge

7.4.2 RF Conducted Spurious Emissions – FCC: Section 15.247(d); ISED Canada: RSS-247 5.5

7.4.2.1 Measurement Procedure

Model(s): CP19HRCZ-01

The RF Conducted Spurious Emissions were measured in accordance with Subclause 11.11 of ANSI C63.10. The RF output port of the equipment under test was directly connected to the input of the spectrum analyzer. The EUT was investigated for conducted spurious emissions from 30 MHz to 26 GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100 kHz and the VBW was set to 300 kHz. The peak Max Hold function of the analyzer was utilized.

7.4.2.2 Measurement Results

Performed by: Thierry Jean-Charles

Date: 20.DEC.2018 14:46:01

Figure 7.4.2.2-1: 30 MHz - 13.5 GHz - Low Channel

Date: 20.DEC.2018 14:55:33

Figure 7.4.2.2-2: 13.5 GHz - 26 GHz - Low Channel

Date: 20.DEC.2018 15:56:29

Figure 7.4.2.2-3: 30 MHz - 13.5 GHz - Middle Channel

Date: 20.DEC.2018 16:00:35

Figure 7.4.2.2-4: 13.5 GHz – 26 GHz – Middle Channel

Date: 20.DEC.2018 16:41:47

Figure 7.4.2.2-5: 30 MHz - 13.5 GHz - High Channel

Date: 20.DEC.2018 16:46:42

Figure 7.4.2.2-6: 13.5 GHz – 26 GHz – High Channel

7.4.3 Radiated Spurious Emissions into Restricted Frequency Bands – FCC: Sections 15.205, 15.209; ISED Canada: RSS-Gen 8.9, 8.10

7.4.3.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 9 kHz to 26 GHz, 10 times the highest fundamental frequency. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

For measurements below 30 MHz, the receive antenna height was set to 1 m and the EUT was rotated through 360 degrees. The resolution bandwidth was set to 200 Hz below 150 kHz and to 9 kHz above 150 kHz.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak measurements are made with RBW of 1 MHz and VBW of 3 MHz. Average measurements are performed in the linear scale using VBW of 30 Hz.

7.4.3.2 Duty Cycle Correction

The EUT was configured to transmit at 100% duty cycle during the evaluation. A Duty Cycle Correction of 66.10% corresponding to 20*log(66.10/100) = -3.6 dB was applied to the average measurements for the corrected average results.

The maximum duty cycle of the EUT is inherent to the IEEE 802.15.4 protocol and is not accessible to the end user. A detailed justification for the duty cycle corrections is provided below:

IEEE 802.15.4-2003 2.4 GHz PH	Y Constants	
Data Rate	250000	bits / sec
	31250	bytes / sec
Symbols/byte	2	sym / bytes
Symbol Timing	62500	sym / sec
	0.000016	sec / sym
Byte Timing	0.000032	sec / byte
PHY PSDU	6	bytes
Max Length	127	bytes
Total Packet Length	133	bytes
Maximum Time TX PKT	0.004256	sec
NOT Transmit time (RX or Idle)		
Wait for ACK (tack)	0.000192	sec
RX Time (ACK)	0.000352	sec
Backoff Time (tbo)	0.00112	sec
CPU Processing (tcpu)	0.0002	sec
CCA Assessment (tcca)	0.000128	sec
Turn Around Time (RX to TX)	0.000192	sec
Total Off Time	0.002184	sec

Duty Cycle = 0.004256/(0.004256+0.002184) = 66.09%

Model(s): CP19HRCZ-01 FCC ID: 2AJXX100612 IC: 22151-CP19HDRCZ01

7.4.3.3 Measurement Results

Performed by: Jean Rene, Thierry Jean-Charles

Radiated band-edge and spurious emissions found in the restricted frequency bands of 9 kHz to 26 GHz are reported in the tables below.

Table 7.4.3.3-1: Radiated Spurious Emissions Tabulated Data

Frequency (MHz)	_	evel BuV)	Antenna Polarity	Correction Factors	Corrected Lever		_	imit uV/m)		argin (dB)
(12)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
			Low	Channel 2405	MHz					
2390	51.90	38.70	Н	1.56	53.46	36.67	74.0	54.0	20.5	17.3
4810	43.66	34.97	Н	9.13	52.79	40.50	74.0	54.0	21.2	13.5
4810	46.77	39.26	V	9.13	55.90	44.79	74.0	54.0	18.1	9.2
	Middle Channel 2440 MHz									
4880	45.22	37.06	Н	9.49	54.71	42.95	74.0	54.0	19.3	11.1
4880	46.61	38.48	V	9.49	56.10	44.37	74.0	54.0	17.9	9.6
7320	42.21	30.80	Н	14.43	56.64	41.63	74.0	54.0	17.4	12.4
7320	43.50	33.08	V	14.43	57.93	43.91	74.0	54.0	16.1	10.1
	High Channel 2480 MHz									
2483.5	64.14	55.23	Н	1.84	65.98	53.47	74.0	54.0	8.0	0.5
2483.5	56.83	46.98	V	1.84	58.67	45.22	74.0	54.0	15.3	8.8
4960	43.05	34.36	Н	9.89	52.94	40.66	74.0	54.0	21.1	13.3
4960	43.40	35.26	V	9.89	53.29	41.56	74.0	54.0	20.7	12.4

Notes:

- All emissions above 7.32 GHz were attenuated below the limits and the noise floor of the measurement equipment.
- The average levels were further corrected using a duty cycle correction factor of 20*log(66.10/100) = -3.6 dB

7.4.4 Sample Calculation:

Rc = Ru + CFT

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading

Rc = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: $51.9 + 1.56 = 53.46 \text{ dB}\mu\text{V/m}$ Margin: $74 \text{ dB}\mu\text{V/m} - 53.46 \text{ dB}\mu\text{V/m} = 20.54 \text{ dB}$

Example Calculation: Average

Corrected Level: $38.7 + 1.56 - 3.6 = 36.66 \text{ dB}\mu\text{V/m}$ Margin: $54 \text{ dB}\mu\text{V/m} - 36.66 \text{ dB}\mu\text{V/m} = 17.34 \text{ dB}$

7.5 Power Spectral Density – FCC: Section 15.247(e); ISED Canada: RSS-247 5.2(b)

7.5.1 PSD Measurement Procedure (Conducted Method)

The power spectral density was measured in accordance with ANSI C63.10 Subclause 11.10.2 Method PKPSD (peak PSD). The RF output port of the EUT was directly connected to the input of the spectrum analyzer. Offset values were input for cable and external attenuation. The spectrum analyzer RBW was set to 3 kHz and VBW to 10 kHz. The Span was adjusted to 1.5 times the DTS bandwidth and the sweep time was set to auto. The measurements were performed using a Peak detector.

7.5.2 Measurement Results

Performed by: Thierry Jean-Charles

Results are shown below.

Model(s): CP19HRCZ-01

Table 7.5.2-1: Power Spectral Density

Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
2405	-12.55	8.0	20.55
2440	-12.99	8.0	20.99
2480	-18.54	8.0	26.54

Figure 7.5.2-1: Power Spectral Density - Low Channel

Report: BO72143533.101 TÜV SÜD America, Inc.

Date: 20.DEC.2018 14:17:50

Date: 20.DEC.2018 15:43:53

Figure 7.5.2-2: Power Spectral Density - Middle Channel

Date: 20.DEC.2018 16:30:09

Figure 7.5.2-3: Power Spectral Density – High Channel

8 MEASUREMENT UNCERTAINTIES

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Table 8-1: Measurement Uncertainties

Parameter	U _{lab}
Occupied Channel Bandwidth	± 0.009 %
RF Conducted Output Power	± 1.15 dB
Power Spectral Density	± 1.15 dB
Antenna Port Conducted Emissions	± 1.15 dB
Radiated Emissions ≤ 1GHz	± 5.86 dB
Radiated Emissions > 1GHz	± 4.65 dB
Temperature	± 0.860 °C
Radio Frequency	±2.832 x 10 ⁻⁸
AC Power Line Conducted Emissions	±3.72 dB

Model(s): CP19HRCZ-01 FCC ID: 2AJXX100612 IC: 22151-CP19HDRCZ01

9 CONCLUSION

In the opinion of TÜV SÜD America, Inc. the models CP19HRCZ-01, manufactured by Current Products Corp, meets the requirements of FCC Part 15.-247 and Industry Canada's Radio Standards Specification RSS-247 for the tests documented herein.

END REPORT