

AD-A166 546

ELECTRO-OPTICAL DEVELOPMENT SYSTEM(U) SCIENCE
APPLICATIONS INTERNATIONAL CORP TUCSON AZ D G CROWE

1/1

27 SEP 85 DAAM70-84-C-0034

UNCLASSIFIED

F/6 20/6

NL

END
DATE
TIME
5-86

AD-A166546

(2)

AD-A166 546

Science Applications International Corporation

ELECTRO-OPTICAL DEVELOPMENT SYSTEM
FINAL REPORT

DTIC
ELECTE
APR 10 1986

Contract DAAL70-84-C-0034
Period of Performance: 04/16/84 through 09/30/85

Submitted to: Night Vision and Electro-Optical Laboratory
Attention: William Johnson
SPU-SPE-DEBET-50
REEDLEY
P.O. Box 5000, VA 22360

Prepared by: Dennis B. Dunn
Science Applications International Corp.
1000 North M St., Suite 1000
Washington, DC 20004

TABLE OF CONTENTS

<u>PARAGRAPH</u>	<u>TITLE</u>	<u>PAGE</u>
1.0	INTRODUCTION	1
2.0	LLLTV WIDE-FIELD SMALL-APERTURE SYSTEM.	1
3.0	INTERFACES FOR PORTAL APERTURE IMAGE REFOCUSING (PAIR)	1
4.0	FAST TELEPHOTO LENS	2
5.0	ALTITUDE-AZIMUTH MOUNTS	2
6.0	IMAGING SYSTEM AND HUMAN EYE PERFORMANCE MODELING	10
7.0	DISCUSSION.	10
 APPENDICES		
A	MODELING OF SURVEILLANCE SENSORS AND MODELING OF THE HUMAN EYE FOR COVERT NEAR-INFRARED IMAGING.	A1
A.1	SUMMARY	A1
A.2	RADIOMETRIC MODEL	A1
A.3	DATA.	A6
A.4	MODELING RESULTS.	A9
A.5	DISCUSSION.	A15
	REFERENCES.	A16
B	ALTITUDE-AZIMUTH MOUNT DRAWINGS	B1

0003-85-111/v

11

Approved for	
Distribution	
SAC/DR	
SAC/TB	
Recommended	
Distribution	
By	
Distribution	
Availability Codes	
Avail and/or	
Dist	Special
A	

QUALITY
INSPECTED
3

LIST OF FIGURES

<u>FIGURE</u>	<u>TITLE</u>	<u>PAGE</u>
1	Fast Telephoto Lens Configurations.	3
2	Prototype Alt.-Azimuth Mount.	4
3	Prototype Proportional Joystick Control	5
4	Prototype Mount With Cover Removed.	6
5	Internal Prototype Mount Electronics.	7
6	Small Operational Mount	8
7	Control Box For Small Mount	9

APPENDICES

A1	Problem Geometry.	A2
A2	Xenon Lamp Spectral Intensity [4].	A7
A3	Schott Glass Filter Transmission [5].	A7
A4	Spectral Response Of The XYBION Camera (ICID-R) Compared To Other Conventional Photocathodes	A8
A5	Spectral Sensitivity Of The Human Eye [1].	A8
A6	Intensified CCD TV Signal-To-Noise Ratio As A Function Of TV Sensor Range And Illuminator Range	A10
A7	Signal-To-Eye-Threshold vs. Range To Illuminator.	A11
A8	TV SNR Excess At The Sensor Over Eye Signal-To-Threshold At The Target For A Sensor Of 75 cm ² Area (3½ inch aperture with central obstruction).	A12
A9	TV SNR Excess At The Sensor Over Eye Signal-To-Threshold At The Target For A Sensor of 300 cm ² Area (7 inch aperture with central obstruction).	A13
A10	TV SNR Excess At The Sensor Over Eye Signal-To-Threshold At The Target For A Sensor Of 675 cm ² Area (11 inch aperture with central obstruction).	A14

1.0 INTRODUCTION

This final report describes the successful delivery of all required items under the contract, as well as additional work not originally anticipated at the time the proposal was written. The relatively long time delay of approximately ten months in contract award meant that customer requirements had evolved since the proposal was prepared. Science Applications International Corporation (SAIC) provided flexible response in order to satisfy evolving requirements, as SAIC has done during previous contracts.

All requested tasks were completed, but not without technical challenges. The sections which follow describe each of these tasks.

2.0 LLLTV WIDE-FIELD SMALL-APERTURE SYSTEM

The original statement of work called for the development of an integrated system utilizing micro-channel plate (MCP) image intensification of a solid-state detector array with C-mount interface to a small diameter cystoscope. This system was delivered utilizing GFE customer components, since the customer had acquired these components during the contracting process. This GFE mode of satisfying the requirement was suggested by the customer in order to free contract resources for other tasks.

3.0 INTERFACES FOR PORTAL APERTURE IMAGE REFOCUSING (PAIR)

Five complete PAIR units were built and delivered. This task required devising a sophisticated optical design utilizing nine optical elements, in addition to a unique mechanical housing and coupling mechanism. The entire task was completed within three months due to a pressing customer application. The design details of this device are not included here at customer request.

4.0 FAST TELEPHOTO LENS

The requirement for a low focal ratio telephoto lens to be used with a low light level television (LLLTV) camera was first addressed by designing a Wright camera configuration (Figure 1A). The fabrication of the corrector plate and mirror was attempted by a private local optical shop specializing in aspheres. The company was unsuccessful in their attempt to fabricate the elements for a fast ($F = 2$) Wright, however, due to the need to manufacture optical elements differing from a spherical surface by about 300 fringes. A different configuration proved necessary.

A successful $F = 1.5$ telephoto lens was fabricated using the Schmidt camera configuration of Figure 1B. This fast focal ratio results in a 78% brightness increase over the Wright design, and an even larger advantage when compared to commercially available optics in the 300 millimeter or longer focal lengths. The one disadvantage of the system is the long tube length which is twice the focal length. Design studies have indicated that good performance would be available over the desired field of view from a shortened Schmidt configuration with total physical length comparable to the focal length, but it was not possible to try this under the present contract.

5.0 ALTITUDE-AZIMUTH MOUNTS

Two complete alt.-azimuth mounts were designed, fabricated, and delivered. The first was a prototype which exceeded customer requirements in that it had proportional joystick control with finer motion resolution than needed (Figures 2, 3, 4 and 5). The second version for field use was developed using customer feedback from experience with the prototype. The operational mount (Figures 6 and 7) weighs only about 4.5 pounds compared to 27 pounds for the prototype. This small mount uses a 4 pound control box with simple direction and motion rate controls. Preliminary drawings

A. WRIGHT CAMERA

B. SCHMIDT CAMERA

G-823-85

Figure 1. Fast Telephoto Lens Configurations

Figure 2. Prototype Alt.-Azimuth Mount

000-38-5jj1/v

Figure 3. Prototype Proportional Joystick Control

Figure 4. Prototype Mount With Cover Removed

Figure 5. Internal Prototype Mount Electronics

Figure 6. Small Operational Mount

0003-85-jj1/v

Figure 7. Control Box For Small Mount

for the small mount are provided in Appendix B.

6.0 IMAGING SYSTEM AND HUMAN EYE PERFORMANCE MODELING

Appendix A details modeling in support of a customer requirement for covert near-infrared imaging.

7.0 DISCUSSION

Responsive support of diverse and evolving customer requirements has been provided including the design, development, and delivery of several new systems. Some of these systems, such as PAIR and the small alt.-azimuth mount are nearly fully developed, while the fast telephoto lens should be refined to reduce its size and decrease scattered light from off-axis sources.

APPENDIX A

MODELING OF SURVEILLANCE SENSORS AND MODELING OF THE HUMAN EYE FOR COVERT NEAR-INFRARED IMAGING

A.1 SUMMARY

It is desired to determine the feasibility of designing an active illuminator/near infrared imager combination which will allow the covert surveillance of humans. The infrared response of the eye extends somewhat further into the red than is often assumed. This eye response to about 1 micrometer wavelength [1] requires more attention to detail in solving the problem than might at first be supposed. An operational illumination system [2] in use for this purpose is in fact easily detected by the eye even though a filter which blocks essentially all of the light shortward of about 800 nanometers is used.

A radiometric model is constructed and exercised to determine if relatively simple modifications to existing equipment can be made which will solve the problem. It has been found that the use of a longer wavelength optical filter only increases the intensified television surveillance system advantage over the eye by about 3dB. The best solution available with the present illuminators is to increase the TV optical aperture area to 675 cm^2 (the equivalent of about an 11-inch clear aperture optic with central obstruction). This aperture will allow operation to a range of about 200 meters without exceeding the illuminator intensity which is detectable by the eye.

A.2 RADIOMETRIC MODEL

Part of the difficulty in achieving covert illumination arises due to the direct illumination of the human in Figure A1. The eye is looking directly down the collimated searchlight beam, whereas the low light level television (L^3TV) must use diffusely reflected indirect illumination. The monochromatic power incident on the eye is:

G-262-85

Figure A1. Problem Geometry

$$\Phi_{\text{eye}}(\lambda) = \frac{L_s(\lambda)\tau_f(\lambda)A_s A_{\text{eye}}}{R_{\text{st}}^2} , \quad (1)$$

where: $L_s(\lambda)$ is the radiance of the searchlight source,
 $\tau_f(\lambda)$ is the transmissivity of the IR searchlight filter,
 A_s is the source area,
 A_{eye} is the eye aperture area, and
 R_{st} is the searchlight to eye distance.

The power incident on a pixel sized region of the L³TV photocathode can be decomposed to clarify the nature of the indirect illumination:

$$\begin{aligned} \Phi_{\text{pc}}(\lambda) &= (\text{power incident on a target pixel}) \\ &\times \frac{(\text{target pixel reflectivity})}{(\text{reflectance solid angle})} \\ &\times (\text{solid angle of L}^3\text{TV optics at the target}) . \quad (2) \end{aligned}$$

In calculating the power incident on a target pixel, some concern may arise over the highly collimated nature of the searchlight beam. This collimation might be thought to invalidate the apparent R^{-2} dependence which arises in radiative transfer relations similar to Equation (1). It is less likely to include an error in the radiometric model if an expression such as (1) is thought of in terms of geometrical partitioning of the radiant power:

$$\begin{aligned} \Phi_{\text{eye}}(\lambda) &= (\text{power emitted by the searchlight}) \\ &\times (\text{fraction of power intercepted by the eye}) \\ &= \Phi_s(\lambda) \left(\frac{\Omega_{\text{eye}}}{\Omega_s} \right) = \left(\frac{\Phi_s(\lambda)}{\Omega_s} \right) \left(\Omega_{\text{eye}} \right) . \\ &= \left(L_s(\lambda)\tau_f(\lambda)A_s \right) \left(\frac{A_{\text{eye}}}{R_{\text{st}}^2} \right) , \quad (3) \end{aligned}$$

where: Ω_{eye} is the solid angle subtended by the eye at the search-light, and

Ω_s is the solid angle into which the searchlight emits.

It is assumed here that the searchlight emits uniformly throughout Ω_s to eliminate the necessity of integrating over angular dependence. It is then apparent that as long as

$$\frac{\Omega_{\text{eye}}}{\Omega_s} \leq 1 , \quad (4)$$

the R^{-2} dependence of Equation (3) which arises from the calculation of Ω_{eye} holds. Similarly, Equation (2) may be expressed:

$$\Phi_{\text{pc}}(\lambda) = \left(\frac{L_s(\lambda) \tau_f(\lambda) A_s A_t}{R_{\text{st}}^2} \right) \left(\frac{\rho_t(\lambda)}{\pi} \right) \left(\frac{A_0}{R_{\text{to}}^2} \right) , \quad (5)$$

where: A_t is the target pixel area,

$\rho_t(\lambda)$ is the target pixel reflectivity,

A_0 is the area of the L³TV optics,

R_{to} is the target to L³TV distance,

and it is assumed that

$$\frac{\Omega_t}{\Omega_s} \leq 1 , \quad (6)$$

with uniform illumination throughout Ω_s .

The signal-to-noise ratio for the eye looking at the searchlight as well as for the L³TV detecting the target reflectance signal can now be calculated. The L³TV is assumed to be microchannel plate intensified and quantum noise limited in the sense that [3]:

$$\text{SNR}_{\text{L}^3\text{TV}} = \sqrt{n n_{\text{pc}} F_{\text{MCP}}} , \quad (7)$$

where: n is the number of photons incident on a pixel sized area

of the photocathode,

η_{pc} is the photocathode quantum efficiency, and
 F_{MCP} is the microchannel plate fill factor.

The number of photons is:

$$n = \frac{\lambda \Phi_{pc}(\lambda) \Delta t}{hc}, \quad (8)$$

where: Δt is the integration time,

h is Planck's constant (6.63×10^{-34} Jsec),

c is the speed of light, and

$\Phi_{pc}(\lambda)$ is given by Equation (5).

The final signal-to-noise expression integrated over the spectral response of the L³TV is:

$$SNR_{L^3TV} = \left[\Delta t \int_0^{\infty} \frac{\lambda L_s(\lambda) \tau_f(\lambda) A_s A_t A_{0p}(\lambda) \eta_{pc}(\lambda) F_{MCP}}{\pi h c R_{st}^2 R_{to}^2} d\lambda \right]^{1/2}. \quad (9)$$

The signal-to-noise for the eye is taken to be:

$$SNR_{eye} = \left[\int_0^{\infty} \frac{\Phi_{eye}(\lambda)}{T_{eye}(\lambda)} d\lambda \right]^{1/2}, \quad (10)$$

where: $T_{eye}(\lambda)$ is the eye threshold.

Therefore,

$$SNR_{eye} = \left[\int_0^{\infty} \frac{L_s(\lambda) \tau_f(\lambda) A_s A_{eye}}{T_{eye}(\lambda) R_{st}^2} d\lambda \right]^{1/2}. \quad (11)$$

While the eye is very much less sensitive than the L³TV at wavelengths longer than 700 nanometers, the geometric advantage most

clearly seen in the R^{-2} dependence of Equation (11) versus the R^{-4} dependence of Equation (9) indicates some of the difficulty in solving the problem.

A signal-to-noise ratio of little more than 1 may allow eye detection of the searchlight, while the $L^3 TV$ must provide a somewhat higher SNR if identification with a high level of confidence is required. It is reasonable to require that the $L^3 TV$ SNR exceed 6, or $20 \log (6) = 15.6$ dB.

A.3 DATA

The spectral intensity of the xenon searchlight source used in the present operational system will be estimated using Figure A2. The SB-100 searchlight draws 20 amperes at 12 volts, or 240 watts, and is collimated approximately 10x. The figure is measured from an uncollimated 5,000 watt xenon source. Therefore, a scaling factor of 24,000/5,000 will be applied to the vertical axis.

The search light filter is a Schott RG 830 shown in Figure A3. The RG 850 filter can also be modeled.

The photocathode can be modeled with the use of Figure A4 which illustrates the spectral response of the XYBION camera currently in use. A negative electron affinity photocathode device would have increased red response and be more useful for this particular application.

The spectral sensitivity threshold of the human eye is obtained by normalizing Figure A5 to 3×10^{-16} watts at 510 nanometers [1].

Choosing nominal values for the remaining unknowns in Equations (9) and (11):

$$\begin{aligned}\Delta_t &= 1/30 \text{ second (interlaced RS-170)} \\ A_t &= 1 \text{ cm}^2 \text{ (for facial identification)}\end{aligned}$$

Figure A2. Xenon Lamp Spectral Intensity [4]

Figure A3. Schott Glass Filter Transmission [5]

S-141-85

0003-85-jj1/v

A7

Figure A4. Spectral Response of the XYBION Camera (ICID-R) Compared to Other Conventional Photocathodes

Figure A5. Spectral Sensitivity of the Human Eye [1]

S-142-85

$$\begin{aligned}
 A_0 &= 75 \text{ cm}^2 \\
 \rho_t(\lambda) &= 0.1 \\
 F_{MCP} &= 0.8 \\
 A_{\text{eye}} &= 40 \text{ mm}^2 \text{ (dark adapted)}
 \end{aligned}$$

A.4 MODELING RESULTS

Figure A6 is an overview of the surveillance system operation to ranges of 200 meters. The fact that the camera dynamic range will not accommodate some of the high SNR's displayed has been ignored to illustrate the functional form of SNR with distance. Applying a fixed SNR ceiling would produce a flat plateau in the high SNR region. Examination of Figure A6 reveals an R^{-2} SNR dependence along the axes and an R^{-4} dependence along the diagonal from the origin to the (200,200) point.

The amount by which the searchlight brightness exceeds the dark-adapted eye threshold is shown as a function of eye to illuminator range in Figure A7. The light source is easily visible under favorable conditions at ranges in excess of 200 meters.

The quantity of interest is the TV SNR when the searchlight intensity is decreased to equal the eye threshold at the target distance. This can be obtained with the present model by taking the difference (in dB space) between the diagonal of Figures A6 and A7. Figure A8 illustrates that for a $3\frac{1}{2}$ inch aperture, the required 15.6 dB sensor advantage over the eye is achieved at a range of a little more than 40 meters for the present system (RG 830 filter). Figure A9 shows that this range approximately doubles for an aperture diameter doubling to 7 inches. This is expected since the ratio of TV SNR to eye SNR (Equations (9) through (11)) has an R^{-2} dependence and the aperture area has a D^2 dependence. Increasing the aperture to 11 inches generates tactically useful ranges as shown in Figure A10.

Figure A6. Intensified CCD TV Signal-to-Noise Ratio as a Function of TV Sensor Range and Illuminator Range

S-143-85

Figure A7. Signal-to-Eye-Threshold vs. Range to Illuminator

0003-85-jj1/v

A11

S-144-85

Figure A8. TV SNR Excess at the Sensor Over Eye Signal-to-Threshold at the Target for a Sensor of 75 cm² Area (3½ inch aperture with central obstruction)

S-145-85

0003-85-jj1/v

A12

Figure A9. TV SNR Excess at the Sensor Over Eye Signal-to-Threshold at the Target for a Sensor of 300 cm^2 Area (7 inch aperture with central obstruction)

0003-85-jj1/v

A13

S-146-85

Figure A10. TV SNR Excess at the Sensor Over Eye Signal-to-Threshold at the Target for a Sensor of 675 cm^2 Area (11 inch aperture with central obstruction)

S-147-85

A.5 DISCUSSION

The eye response to wavelengths beyond 800 nanometers is non-negligible when the R^2 advantage apparent from an examination of Equations (9) and (11) is considered. Varying the illuminator distance independently of the sensor distance has no effect on the problem, since the illuminator to target distance disappears in the ratio of Equations (9) to (10).

The XYBION camera has a decreasing quantum efficiency with wavelength because of the effort XYBION has made to obtain a flat response in the responsivity units of Figure A4. The quantum efficiency can be calculated from the responsivity:

$$\eta = \frac{R_i}{0.808\lambda} , \quad (12)$$

where R_i is in amperes per watt and λ is in micrometers. Photocathodes exist with η in excess of 0.1 at 800 nanometers, while the XYBION has $\eta < 0.05$ at this wavelength.

The only complete solution to the problem while using the current SB-100 illuminators is to increase the aperture area to at least 675 cm^2 while maintaining the minimum illuminator intensity necessary for an acceptable TV SNR.

The only solution which does not require illumination level adjustment is to use a different illuminator and sensor which operate outside the eye's spectral response. A $1.06 \mu\text{m}$ laser illuminator and an S-1 intensifier response is an example of such a system.

APPENDIX A
REFERENCES

1. Griffin, D. R., R. Hubbard and G. Wald, "The Sensitivity of the Human Eye to Infra-Red Radiation", JOSA, Vol. 37, No. 7, pp. 546-554 (July 1947).
2. SB-100 High Intensity Searchlight with Schott RG 830 IR Filter, sold by Fairington Technologies, Inc.
3. Dereniak, E. L. and D. G. Crowe, Optical Radiation Detectors, Chap. 5, Wiley (1984).
4. Handbook of Optics, Fig. 32, Chap. 32, McGraw-Hill (1978).
5. Ealing Optics Catalog, p. 183 (1984/85).
6. Laser Focus Buyer's Guide, p. 451 (1983).

APPENDIX B
ALTITUDE-AZIMUTH MOUNT DRAWINGS

PARTS LIST
Job #0005 UA Azimuth/Altitude Head

Part #	Qty.	Name	Supplier	P/N
0001	1	Shaft, Main Lower		
0002	1	Plate, Bottom		
0003	1	Shaft, Main Upper		
0004	1	Plate, Mount		
0005	1	Plate, Lockdown Cover		
0006	2	Hub, Lockdown		
0007	1	Gear, Azimuth	Browning P/N BWG24100-1	3/8bore
0008	1	Gear, Altitude	Browning P/N BWG24100-1	3/8bore
0009	2	Bearing, Main	17mm ID x 40mm OD x 12mm L	
0010	1	Housing, Main		
0011	2	Gear, Worm	Boston GLUH	12924
0012	1	Shaft, Mount Driver		
0013	1	Shaft, Mount Floating		
0014	2	Housing, Worm		
0015	2	Switch, Altitude Stop	Micro Switch	
0016	2	Bearing, Large	Berg P/N	B7-42
0017	4	Bearing, Worm		
0018	2	Shaft, Worm		
0019	2	Bearing, Small	Berg P/N	B7-41
0020	2	Plate, Motor Mount		
0021	1	Housing, Altitude		
0022	1	Plate, Altitude Housing Cover		
0023	2	Motor	Portascap P/N	B 216E
0024	2	Gearbox	Portascap P/N	B-24
0025	1	Support, Mount Plate		

REV

10V

10H

10M

REVISIONS

REV	DESCRIPTION

200 WOOD 938
2nd

187

37501-3798 DIA

1.250

1.250

325 x 8.75 x 1.250 mm
2pc

mm

PARTS LIST			
ITEM NUMBER	NAME/CLARIFICATION ON DESCRIPTION	APPROVAL	DATE
1	SHAFT, MOUNT DAIER	DRAFTER CHECKED	0005-001/2
2	303 STOCK	0005-001/2	SHEET 1/1
3	303 CRES		
4	DO NOT SCALE DRAWING		
5	APPROVAL		
6	NAME OR		
7	INITIALS		

三

卷之三

— 25 —

100

四

三

१८४ अष्टमी

DO NOT SCALE DRAWING

SCALE

55

REVISIONS
DESCRIPTION

3765

377

UNLESS OTHERWISE SPECIFIED CONTRACT NO.			
DIMENSIONS ARE IN INCHES TO FRANCIS ARE FUNCTIONS DETAILS ANGLES			
APPROVALS	DATE	DRAWN BY	
IN 2.00 + / - .002		DRAFTED BY	
MATERIAL		PICK STOCK	
FINISH		103	
TOLERANCE		TOLERANCE	
BASED ON		BASED ON	
ELEVATION		ELEVATION	
NOT SCALE DRAWING		NOT SCALE DRAWING	
S/F	CODE IDENT NO.	DRAWING NO.	
A		3765	
W/A/F		SHEET OF	
		1	

REVISONS

875

837

362 - 362

33.5

167

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES FRACTIONS DECIMALS ANGLES IN DEGREES	DRAWING NO.		APPROVALS	DATE
	A	B		
			DRAWN	6-6-55
			CHANGED	
			RECHECKED	
			MADE UP	
			APPROVED	
			RECORDED	
			SUPERVISED	
			INSTRUMENTS	
			FINISH	
			UNION	
			APPLICATION	
			UG NO. 1 SCALE DRAWING	
			REVISIONS	
			PRINTING NO.	
			000500000	
			1	
			000500000	
			1	

2

1

REVISIONS					
DATE	REV.	DESCRIPTION	BASE	APPROVED	

2

D
INSIDE PLAN VIEW

TG J1 (BACK PANEL)
AND CONTROL PANEL

C
POWER
ON
OFF

RATE
MIN MAX

AZ
+
-

BACK PANEL

J1 (CIRCUIT BOARD CONNECTION)

3

2

1

REVISIONS			
DATE	REV.	DESCRIPTION	DRAWN BY

TO SI (RACK PANEL)
AND CONTROL PANEL

VIEW

WIRE WRAP
CONTROL
BOARD

NO CONNECTOR

2

ITEM NO.		DESCRIPTION OR DESIGNATION		QUANTITY		PARTS LIST	
1	2	WIRE WRAP CONTROL BOARD	1	1	1		
2	3	CABINET	1	1	1		
3	4	DOOR	1	1	1		
4	5	DOOR HANDLE	1	1	1		
5	6	DOOR CATCH	1	1	1		
6	7	DOOR CATCH SPRING	1	1	1		
7	8	DOOR CATCH PLATE	1	1	1		
8	9	DOOR CATCH PIN	1	1	1		
9	10	DOOR CATCH PLATE	1	1	1		
10	11	DOOR CATCH PIN	1	1	1		
11	12	DOOR CATCH PLATE	1	1	1		
12	13	DOOR CATCH PIN	1	1	1		
13	14	DOOR CATCH PLATE	1	1	1		
14	15	DOOR CATCH PIN	1	1	1		
15	16	DOOR CATCH PLATE	1	1	1		
16	17	DOOR CATCH PIN	1	1	1		
17	18	DOOR CATCH PLATE	1	1	1		
18	19	DOOR CATCH PIN	1	1	1		
19	20	DOOR CATCH PLATE	1	1	1		
20	21	DOOR CATCH PIN	1	1	1		
21	22	DOOR CATCH PLATE	1	1	1		
22	23	DOOR CATCH PIN	1	1	1		
23	24	DOOR CATCH PLATE	1	1	1		
24	25	DOOR CATCH PIN	1	1	1		
25	26	DOOR CATCH PLATE	1	1	1		
26	27	DOOR CATCH PIN	1	1	1		
27	28	DOOR CATCH PLATE	1	1	1		
28	29	DOOR CATCH PIN	1	1	1		
29	30	DOOR CATCH PLATE	1	1	1		
30	31	DOOR CATCH PIN	1	1	1		
31	32	DOOR CATCH PLATE	1	1	1		
32	33	DOOR CATCH PIN	1	1	1		
33	34	DOOR CATCH PLATE	1	1	1		
34	35	DOOR CATCH PIN	1	1	1		
35	36	DOOR CATCH PLATE	1	1	1		
36	37	DOOR CATCH PIN	1	1	1		
37	38	DOOR CATCH PLATE	1	1	1		
38	39	DOOR CATCH PIN	1	1	1		
39	40	DOOR CATCH PLATE	1	1	1		
40	41	DOOR CATCH PIN	1	1	1		
41	42	DOOR CATCH PLATE	1	1	1		
42	43	DOOR CATCH PIN	1	1	1		
43	44	DOOR CATCH PLATE	1	1	1		
44	45	DOOR CATCH PIN	1	1	1		
45	46	DOOR CATCH PLATE	1	1	1		
46	47	DOOR CATCH PIN	1	1	1		
47	48	DOOR CATCH PLATE	1	1	1		
48	49	DOOR CATCH PIN	1	1	1		
49	50	DOOR CATCH PLATE	1	1	1		
50	51	DOOR CATCH PIN	1	1	1		
51	52	DOOR CATCH PLATE	1	1	1		
52	53	DOOR CATCH PIN	1	1	1		
53	54	DOOR CATCH PLATE	1	1	1		
54	55	DOOR CATCH PIN	1	1	1		
55	56	DOOR CATCH PLATE	1	1	1		
56	57	DOOR CATCH PIN	1	1	1		
57	58	DOOR CATCH PLATE	1	1	1		
58	59	DOOR CATCH PIN	1	1	1		
59	60	DOOR CATCH PLATE	1	1	1		
60	61	DOOR CATCH PIN	1	1	1		
61	62	DOOR CATCH PLATE	1	1	1		
62	63	DOOR CATCH PIN	1	1	1		
63	64	DOOR CATCH PLATE	1	1	1		
64	65	DOOR CATCH PIN	1	1	1		
65	66	DOOR CATCH PLATE	1	1	1		
66	67	DOOR CATCH PIN	1	1	1		
67	68	DOOR CATCH PLATE	1	1	1		
68	69	DOOR CATCH PIN	1	1	1		
69	70	DOOR CATCH PLATE	1	1	1		
70	71	DOOR CATCH PIN	1	1	1		
71	72	DOOR CATCH PLATE	1	1	1		
72	73	DOOR CATCH PIN	1	1	1		
73	74	DOOR CATCH PLATE	1	1	1		
74	75	DOOR CATCH PIN	1	1	1		
75	76	DOOR CATCH PLATE	1	1	1		
76	77	DOOR CATCH PIN	1	1	1		
77	78	DOOR CATCH PLATE	1	1	1		
78	79	DOOR CATCH PIN	1	1	1		
79	80	DOOR CATCH PLATE	1	1	1		
80	81	DOOR CATCH PIN	1	1	1		
81	82	DOOR CATCH PLATE	1	1	1		
82	83	DOOR CATCH PIN	1	1	1		
83	84	DOOR CATCH PLATE	1	1	1		
84	85	DOOR CATCH PIN	1	1	1		
85	86	DOOR CATCH PLATE	1	1	1		
86	87	DOOR CATCH PIN	1	1	1		
87	88	DOOR CATCH PLATE	1	1	1		
88	89	DOOR CATCH PIN	1	1	1		
89	90	DOOR CATCH PLATE	1	1	1		
90	91	DOOR CATCH PIN	1	1	1		
91	92	DOOR CATCH PLATE	1	1	1		
92	93	DOOR CATCH PIN	1	1	1		
93	94	DOOR CATCH PLATE	1	1	1		
94	95	DOOR CATCH PIN	1	1	1		
95	96	DOOR CATCH PLATE	1	1	1		
96	97	DOOR CATCH PIN	1	1	1		
97	98	DOOR CATCH PLATE	1	1	1		
98	99	DOOR CATCH PIN	1	1	1		
99	100	DOOR CATCH PLATE	1	1	1		
100	101	DOOR CATCH PIN	1	1	1		
101	102	DOOR CATCH PLATE	1	1	1		
102	103	DOOR CATCH PIN	1	1	1		
103	104	DOOR CATCH PLATE	1	1	1		
104	105	DOOR CATCH PIN	1	1	1		
105	106	DOOR CATCH PLATE	1	1	1		
106	107	DOOR CATCH PIN	1	1	1		
107	108	DOOR CATCH PLATE	1	1	1		
108	109	DOOR CATCH PIN	1	1	1		
109	110	DOOR CATCH PLATE	1	1	1		
110	111	DOOR CATCH PIN	1	1	1		
111	112	DOOR CATCH PLATE	1	1	1		
112	113	DOOR CATCH PIN	1	1	1		
113	114	DOOR CATCH PLATE	1	1	1		
114	115	DOOR CATCH PIN	1	1	1		
115	116	DOOR CATCH PLATE	1	1	1		
116	117	DOOR CATCH PIN	1	1	1		
117	118	DOOR CATCH PLATE	1	1	1		
118	119	DOOR CATCH PIN	1	1	1		
119	120	DOOR CATCH PLATE	1	1	1		
120	121	DOOR CATCH PIN	1	1	1		
121	122	DOOR CATCH PLATE	1	1	1		
122	123	DOOR CATCH PIN	1	1	1		
123	124	DOOR CATCH PLATE	1	1	1		
124	125	DOOR CATCH PIN	1	1	1		
125	126	DOOR CATCH PLATE	1	1	1		
126	127	DOOR CATCH PIN	1	1	1		
127	128	DOOR CATCH PLATE	1	1	1		
128	129	DOOR CATCH PIN	1	1	1		
129	130	DOOR CATCH PLATE	1	1	1		
130	131	DOOR CATCH PIN	1	1	1		
131	132	DOOR CATCH PLATE	1	1	1		
132	133	DOOR CATCH PIN	1	1	1		
133	134	DOOR CATCH PLATE	1	1	1		
134	135	DOOR CATCH PIN	1	1	1		
135	136	DOOR CATCH PLATE	1	1	1		
136	137	DOOR CATCH PIN	1	1	1		
137	138	DOOR CATCH PLATE	1	1	1		
138	139	DOOR CATCH PIN	1	1	1		
139	140	DOOR CATCH PLATE	1	1	1		
140	141	DOOR CATCH PIN	1	1	1		
141	142	DOOR CATCH PLATE	1	1	1		
142	143	DOOR CATCH PIN	1	1	1		
143	144	DOOR CATCH PLATE	1	1	1		
144	145	DOOR CATCH PIN	1	1	1		
145	146	DOOR CATCH PLATE	1	1	1		
146	147	DOOR CATCH PIN	1	1	1		
147	148	DOOR CATCH PLATE	1	1	1		
148	149	DOOR CATCH PIN	1	1	1		
149	150	DOOR CATCH PLATE	1	1	1		
150	151	DOOR CATCH PIN	1	1	1		
151	152	DOOR CATCH PLATE	1	1	1		
152	153	DOOR CATCH PIN	1	1	1		
153	154	DOOR CATCH PLATE	1	1	1		
154	155	DOOR CATCH PIN	1	1	1		
155	156	DOOR CATCH PLATE	1	1	1		
156	157	DOOR CATCH PIN	1	1	1		
157	158	DOOR CATCH PLATE	1	1	1		
158	159	DOOR CATCH PIN	1	1	1		
159	160	DOOR CATCH PLATE	1	1	1		
160	161	DOOR CATCH PIN	1	1	1		
161	162	DOOR CATCH PLATE	1	1	1		
162	163	DOOR CATCH PIN	1	1	1		
163	164	DOOR CATCH PLATE	1	1	1		
164	165	DOOR CATCH PIN	1	1	1		
165	166	DOOR CATCH PLATE	1	1	1		
166	167	DOOR CATCH PIN	1	1	1		
167	168	DOOR CATCH PLATE	1	1	1		
168	169	DOOR CATCH PIN	1	1	1		
169	170	DOOR CATCH PLATE	1	1	1		
170	171	DOOR CATCH PIN	1	1	1		
171	172	DOOR CATCH PLATE	1	1	1		
172	173	DOOR CATCH PIN	1	1	1		
173	174	DOOR CATCH PLATE	1	1	1		
174	175	DOOR CATCH PIN	1	1	1		
175	176	DOOR CATCH PLATE	1	1	1		
176	177	DOOR CATCH PIN	1	1	1		
177	178	DOOR CATCH PLATE	1	1	1		
178	179	DOOR CATCH PIN	1	1	1		
179	180	DOOR CATCH PLATE	1	1	1		
180	181	DOOR CATCH PIN</td					

4

3

D

C

B

4625

REAR 625 THRU

2312

2.850

1375 — 6375
11000 — 1000

ONTINA 1000

2708

2.083

2

1

REVISIONS				
ZONE	REV	DESCRIPTION	DATE	APPROVED

~~DRILL # 32 THRU 2
S EURE 187° & 116 FT. 40L~~

250

4,625

2312

2708

卷之三

625

2003

2708

250

425

DATA 0005-12

SEARCHED	INDEXED	SERIALIZED	FILED
APR 12 1968			
FBI - MEMPHIS			
SEARCHED INDEXED SERIALIZED FILED APR 12 1968 FBI - MEMPHIS			

1.575 DIA

1.575

1.575 DIA

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

1.575

3

2

1

REVISIONS

REV.	DATE	DESCRIPTION	DATE	APPROVED

NAME	GRADE	SIZE	DESCRIPTION	REMARKS
John Smith	Silver	100	House, Metal	0000-0010
John Smith	Gold	100		0000-1001

REVISIONS

DATE APPROVED

ITEM NO.	FIGURE NO.	PART NO. ASSEMBLY NO.	DESCRIPTION OR SPECIFICATION
ALL FIGURES ARE IN INCHES UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ARE AS PER DRAWINGS PRINTED ON 11 X 17			

TOP: 60 MM X 30 MM

.125 .125

.500

.125

.362 .362

.250

BORE/REAM THRU.
375 NEAR WALL
312 FOR WALL

DWG. NO. 10W REV.

REVISIONS

REV.	DESCRIPTION	DATE	APPROVED

.312

DRILL #32 THRU
+ C RAKE FOR #4 CAP SCREW
FOR SIDE 4PL.

.125
2PL.

1.06

2.00

QTY. ITEM	DESCR. ITEM	PART OR IDENTIFICATION	DESCRIPTION OF PART	MANUFACTURER	MANUFACTURE DATE
1	10W	10W	10W	10W	10W
PARTS LIST					
1	10W	10W	10W	10W	10W
2	10W	10W	10W	10W	10W
3	10W	10W	10W	10W	10W
4	10W	10W	10W	10W	10W
5	10W	10W	10W	10W	10W
6	10W	10W	10W	10W	10W
7	10W	10W	10W	10W	10W
8	10W	10W	10W	10W	10W
9	10W	10W	10W	10W	10W
10	10W	10W	10W	10W	10W
11	10W	10W	10W	10W	10W
12	10W	10W	10W	10W	10W
13	10W	10W	10W	10W	10W
14	10W	10W	10W	10W	10W
15	10W	10W	10W	10W	10W
16	10W	10W	10W	10W	10W
17	10W	10W	10W	10W	10W
18	10W	10W	10W	10W	10W
19	10W	10W	10W	10W	10W
20	10W	10W	10W	10W	10W
21	10W	10W	10W	10W	10W
22	10W	10W	10W	10W	10W
23	10W	10W	10W	10W	10W
24	10W	10W	10W	10W	10W
25	10W	10W	10W	10W	10W
26	10W	10W	10W	10W	10W
27	10W	10W	10W	10W	10W
28	10W	10W	10W	10W	10W
29	10W	10W	10W	10W	10W
30	10W	10W	10W	10W	10W
31	10W	10W	10W	10W	10W
32	10W	10W	10W	10W	10W
33	10W	10W	10W	10W	10W
34	10W	10W	10W	10W	10W
35	10W	10W	10W	10W	10W
36	10W	10W	10W	10W	10W
37	10W	10W	10W	10W	10W
38	10W	10W	10W	10W	10W
39	10W	10W	10W	10W	10W
40	10W	10W	10W	10W	10W
41	10W	10W	10W	10W	10W
42	10W	10W	10W	10W	10W
43	10W	10W	10W	10W	10W
44	10W	10W	10W	10W	10W
45	10W	10W	10W	10W	10W
46	10W	10W	10W	10W	10W
47	10W	10W	10W	10W	10W
48	10W	10W	10W	10W	10W
49	10W	10W	10W	10W	10W
50	10W	10W	10W	10W	10W
51	10W	10W	10W	10W	10W
52	10W	10W	10W	10W	10W
53	10W	10W	10W	10W	10W
54	10W	10W	10W	10W	10W
55	10W	10W	10W	10W	10W
56	10W	10W	10W	10W	10W
57	10W	10W	10W	10W	10W
58	10W	10W	10W	10W	10W
59	10W	10W	10W	10W	10W
60	10W	10W	10W	10W	10W
61	10W	10W	10W	10W	10W
62	10W	10W	10W	10W	10W
63	10W	10W	10W	10W	10W
64	10W	10W	10W	10W	10W
65	10W	10W	10W	10W	10W
66	10W	10W	10W	10W	10W
67	10W	10W	10W	10W	10W
68	10W	10W	10W	10W	10W
69	10W	10W	10W	10W	10W
70	10W	10W	10W	10W	10W
71	10W	10W	10W	10W	10W
72	10W	10W	10W	10W	10W
73	10W	10W	10W	10W	10W
74	10W	10W	10W	10W	10W
75	10W	10W	10W	10W	10W
76	10W	10W	10W	10W	10W
77	10W	10W	10W	10W	10W
78	10W	10W	10W	10W	10W
79	10W	10W	10W	10W	10W
80	10W	10W	10W	10W	10W
81	10W	10W	10W	10W	10W
82	10W	10W	10W	10W	10W
83	10W	10W	10W	10W	10W
84	10W	10W	10W	10W	10W
85	10W	10W	10W	10W	10W
86	10W	10W	10W	10W	10W
87	10W	10W	10W	10W	10W
88	10W	10W	10W	10W	10W
89	10W	10W	10W	10W	10W
90	10W	10W	10W	10W	10W
91	10W	10W	10W	10W	10W
92	10W	10W	10W	10W	10W
93	10W	10W	10W	10W	10W
94	10W	10W	10W	10W	10W
95	10W	10W	10W	10W	10W
96	10W	10W	10W	10W	10W
97	10W	10W	10W	10W	10W
98	10W	10W	10W	10W	10W
99	10W	10W	10W	10W	10W
100	10W	10W	10W	10W	10W
101	10W	10W	10W	10W	10W
102	10W	10W	10W	10W	10W
103	10W	10W	10W	10W	10W
104	10W	10W	10W	10W	10W
105	10W	10W	10W	10W	10W
106	10W	10W	10W	10W	10W
107	10W	10W	10W	10W	10W
108	10W	10W	10W	10W	10W
109	10W	10W	10W	10W	10W
110	10W	10W	10W	10W	10W
111	10W	10W	10W	10W	10W
112	10W	10W	10W	10W	10W
113	10W	10W	10W	10W	10W
114	10W	10W	10W	10W	10W
115	10W	10W	10W	10W	10W
116	10W	10W	10W	10W	10W
117	10W	10W	10W	10W	10W
118	10W	10W	10W	10W	10W
119	10W	10W	10W	10W	10W
120	10W	10W	10W	10W	10W
121	10W	10W	10W	10W	10W
122	10W	10W	10W	10W	10W
123	10W	10W	10W	10W	10W
124	10W	10W	10W	10W	10W
125	10W	10W	10W	10W	10W
126	10W	10W	10W	10W	10W
127	10W	10W	10W	10W	10W
128	10W	10W	10W	10W	10W
129	10W	10W	10W	10W	10W
130	10W	10W	10W	10W	10W
131	10W	10W	10W	10W	10W
132	10W	10W	10W	10W	10W
133	10W	10W	10W	10W	10W
134	10W	10W	10W	10W	10W
135	10W	10W	10W	10W	10W
136	10W	10W	10W	10W	10W
137	10W	10W	10W	10W	10W
138	10W	10W	10W	10W	10W
139	10W	10W	10W	10W	10W
140	10W	10W	10W	10W	10W
141	10W	10W	10W	10W	10W
142	10W	10W	10W	10W	10W
143	10W	10W	10W	10W	10W
144	10W	10W	10W	10W	10W
145	10W	10W	10W	10W	10W
146	10W	10W	10W	10W	10W
147	10W	10W	10W	10W	10W
148	10W	10W	10W	10W	10W
149	10W	10W	10W	10W	10W
150	10W	10W	10W	10W	10W
151	10W	10W	10W	10W	10W
152	10W	10W	10W	10W	10W
153	10W	10W	10W	10W	10W
154	10W	10W	10W	10W	10W
155	10W	10W	10W	10W	10W
156	10W	10W	10W	10W	10W
157	10W	10W	10W	10W	10W
158	10W	10W	10W	10W	10W
159	10W	10W	10W	10W	10W
160	10W	10W	10W	10W	10W
161	10W	10W	10W	10W	10W
162	10W	10W	10W	10W	10W
163	10W	10W	10W	10W	10W
164	10W	10W	10W	10W	10W
165	10W	10W	10W	10W	10W
166	10W	10W	10W	10W	10W
167	10W	10W	10W	10W	10W
168	10W	10W	10W	10W	10W
169	10W	10W	10W	10W	10W
170	10W	10W	10W	10W	10W
171	10W	10W	10W	10W	10W
172	10W	10W	10W	10W	10W
173	10W	10W	10W	10W	10W
174	10W	10W	10W	10W	10W
175	10W	10W	10W	10W	10W
176	10W	10W	10W	10W	10W
177	10W	10W	10W	10W	10W
178	10W	10W	10W	10W	10W
179	10W	10W	10W	10W	10W
180	10W	10W	10W	10W	10W
181	10W	10W	10W	10W	10W
182	10W	10W	10W	10W	10W
183	10W	10W	10W	10W	10W
184	10W	10W	10W	10W	10W
185	10W	10W	10W	10W	10W
186	10W	10W	10W	10W	10W
187	10W	10W	10W	10W	10W
188	10W	10W	10W	10W	10W
189	10W	10W	10W	10W	10W
190	10W	10W	10W	10W	10W
191	10W	10W	10W	10W	10W
192	10W	10W	10W	10W	10W
193	10W	10W	10W	10W	10W
194	10W	10W	10W	10W	10W
195	10W	10W	10W	10W	10W
196	10W	10W	10W	10W	10W
197	10W	10W	10W	10W	10W
198	10W	10W	10W	10W	10W
199	10W	10W	10W	10W	10W
200	10W	10W	10W	10W	10W
201	10W	10W	10W	10W	10W
202	10W	10W	10W	10W	10W
203	10W	10W	10W	10W	

BROACH $\frac{1}{16}$ KEY SLOT

.25

.312 R.
6PL

.50R 4PL

REAM .3750 THRU.

1.000

2.000

1.250

.125 2PL

.375 2PL

DWG NO

SM

REV

REVISIONS

REV	DESCRIPTION	DATE	APPROVED

500^{+.005} THRU
ZPL

IRU.

TAP #4-40 UNC

2

125

187.24

REV	DATE	APPROVED

PRINTED

PFAM FOR .093-OCWEL
SLIP-FIT X .25 DP.

A

4.4.25.9

• ٦٣

	CITY HEAD	PCD NO
UNLESS OTHERWISE STATED, DIMENSIONS ARE IN MM. TOLERANCES ARE: PRINCIPAL DIMENSIONS ±0.5 mm; OTHER DIMENSIONS ±0.2 mm.		
NOTES:		
1. TOLERANCES ARE AS PER ASME Y14.5M-1994.		
2. UNLESS OTHERWISE STATED, DIMENSIONS ARE IN MM.		

DWG. NO.

SEE
DP.

DRILL
#1 3/8" #2 H. THF.

.100

.875

.635

.3850"

100

.046

.125

.300

.625

SECTION A-A

QTY RECD	PSCN NO	PART OR IDENTIFYING NO.	MANUFACTURE OR DESCRIPTION	MATERIAL SPECIFICATION
-------------	------------	----------------------------	-------------------------------	---------------------------

PARTS LIST

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES
ALL DIMENSIONS INCHES
TOLERANCES .005

CONTRACT NO.

DRILL #18 THRU.
2pl.

.625R

- REAM .501 THRU.

SIGHT ADJST	VEED OR
APPLICATION	

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES
FRACTIONAL DIMENSIONS
SHOULD BE READ AS
EIGHTS
NOT
HALFS
G
D
NOT
APPLICABLE

DWG. NO.	SH	REV.	REVISIONS			
			REV.	DESCRIPTION	DATE	APPROVED

.312

2

QTY REQD	PCN NO	PART OR IDENTIFYING NO	NOMENCLATURE OR DESCRIPTION	MATERIAL SPECIFICATION
PARTS LIST				
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ARE FRACTIONS DECIMALS ANGLES		CONTRACT NO.		
$\frac{1}{64}$		EX 2.01	10	
.015		X12 .003		
MATERIAL		APPROVALS	DATE	
6061 ALUM.		W.S. 1st	5/20/85	SUPPORT, MOUNT PLATE
FINISH		CHECKED		
BLK ANOD.		ISSUED		
DO NOT SCALE DRAWINGS		SCALE	FULL	AMOUNT 1
		SIZE	PCN NO.	ENG. NO.
		B		0005-0025

**DATE
FILMED
5-8**