

Hochschule der Medien Fakultät für Druck und Medien Computer Science and Media

Generative Data Augmentation

Multi-Agent Diverse Generative Adversarial Networks for Generative Data Augmentation

Dissertation submitted for the degree of Master of Science

Topic: Generative Data Aufmentation

Author: Nicolas Reinhart - nr063@hdm-stuttgart.de

MatNr. 44100

Version of Date: March 21, 2025

Advisor: Prof. Dr.-Ing. Johannes Maucher
Advisor: Prof. Dr.-Ing. Oliver Kretzschmar

Abstract

asdf

Contents

Lis	List of Figures		
List of Tables			
List of Abbreviations			
1	Introduction and Motivation	5	
2	Related Work	6	
3	Preliminary Remarks	7	
4	Theoretical Background	8	
5	Theoretical Background	9	
6	Experiments Results	10	
7	Outlook	11	
8	Conclusion	12	
List of References		13	
Αŗ	Appendix		
Declaration of Oath			

List of Figures

List of Tables

List of Abbrevations

CNN	Convolutional Neural Network
CNNs	Convolutional Neural Networks
DNN	Deep Neural Network
FFN	Feed Forward Netzwerk
GAN	Generative Adversarial Network
GANs	Generative Adversarial Networks
GANsa	Generative Adversarial Networksaaaaaaaaaaaaaaaa
GDA	Generative Data Augmentation
MLP	Multi Layer Perceptron
NN	Neural Netzwerk
SLP	Single Layer Perceptron

1 Introduction and Motivation

Generative Adverserial Networks (GANs) [GPAM⁺14] and their variants revolutionized the field of computer vision in the year of 2014, enabling advacements in multiple areas of generating data. From Text to Image Synthesis [RAY⁺16], Image Translation [IZZE18], Super Resolution [LTH⁺17], Image Inpainting [PKD⁺16], Style Transfer [WWR⁺23] to Data Augmentation [SK19], GANs have been used in a variety of applications.

The idea of using GANs for Generative Data Augmentation (GDA) has already been applied successfully, e.g.: in computer vision [JLR25], [BNI+23] or for creating music [JLY20]. Especially the former survey A Comprehensive Survey of Image Generation Models Based on Deep Learning has, along Variational Auto Encoders (VAEs), a dedicated focus on GANs. Despite of the mentioned achievements, in praxis GANs suffer from multiple problems, complicating the training and inference process:

- Mode Collapse
- Loss of inter-class Diversity
- Failure to Converge
- Vanishing Gradiants
- Unstable Gradiants
- Imbalance between Generator- and Discriminator Model

This thesis investigates the potential of using GANs - specifically Multi-Agent Diverse Generative Adversarial Networks (MADGANs) [GKN+18] - for Generative Data Augmentation. MADGANs aim to aid the first two of the afore mentioned in particular: Mode Collapse and Loss of inter-class Diversity. They, along other modifications, "propose to modify the objective function of the discriminator, in which, along with finding the real and the fake samples, the discriminator also has to correctly predict the generator that generated the given fake sample." [GKN+18]. The goal of this adjustment of the discriminator is, that the discriminator has to push the generators towards distinct identifiable modes. In their paper, they experimentally show, that their architectural adjustment of GANs is generally capable of giving providing assistance for first two of the mentioned problems.

The experiments in this work...

Aim of the Thesis The aim of the thesis is to investigate the potential use....

2 Related Work 6

2 Related Work

3 Preliminary Remarks

4 Theoretical Background

5 Theoretical Background

6 Experiments Results

Motivation

7 Outlook 11

7 Outlook

repair networks [TFNL22]

8 Conclusion 12

8 Conclusion

List of References 13

List of References

[BNI+23] BISWAS, Angona; NASIM, MD Abdullah A.; IMRAN, Al; SEJUTY, Anika T.; FAIROOZ, Fabliha; PUPPALA, Sai; TALUKDER, Sajedul: Generative Adversarial Networks for Data Augmentation. https://arxiv.org/abs/2306.02019. Version: 2023

- [GKN⁺18] GHOSH, Arnab ; KULHARIA, Viveka ; NAMBOODIRI, Vinay ; TORR, Philip H. S. ; DOKANIA, Puneet K.: *Multi-Agent Diverse Generative Adversarial Networks*. https://arxiv.org/abs/1704.02906. Version: 2018
- [GPAM+14] GOODFELLOW, Ian J.; POUGET-ABADIE, Jean; MIRZA, Mehdi; Xu, Bing; WARDE-FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron; BENGIO, Yoshua: Generative Adversarial Networks. https://arxiv.org/abs/1406.2661. Version: 2014
 - [IZZE18] ISOLA, Phillip; ZHU, Jun-Yan; ZHOU, Tinghui; EFROS, Alexei A.: Image-to-Image Translation with Conditional Adversarial Networks. https://arxiv.org/abs/1611.07004. Version: 2018
 - [JLR25] Jun Li, Wei Z. Chenyang Zhang Z. Chenyang Zhang; Ren, Yawei: A Comprehensive Survey of Image Generation Models Based on Deep Learning. In: Annals of Data Science 12 (2025), February, 141–170. http://dx.doi.org/10.1007/s40745-024-00544-1. DOI 10.1007/s40745-024-00544-1
 - [JLY20] JI, Shulei; Luo, Jing; Yang, Xinyu: A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. https://arxiv.org/abs/2011.06801. Version: 2020
 - [LTH⁺17] Ledig, Christian; Theis, Lucas; Huszar, Ferenc; Caballero, Jose; Cunningham, Andrew; Acosta, Alejandro; Aitken, Andrew; Te-Jani, Alykhan; Totz, Johannes; Wang, Zehan; Shi, Wenzhe: *Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network*. https://arxiv.org/abs/1609.04802. Version: 2017
 - [PKD⁺16] PATHAK, Deepak; KRAHENBUHL, Philipp; DONAHUE, Jeff; DARRELL, Trevor; EFROS, Alexei A.: Context Encoders: Feature Learning by Inpainting. https://arxiv.org/abs/1604.07379. Version: 2016
 - [RAY+16] REED, Scott; AKATA, Zeynep; YAN, Xinchen; LOGESWARAN, Lajanugen; Schiele, Bernt; Lee, Honglak: Generative Adversarial Text to Image Synthesis. https://arxiv.org/abs/1605.05396. Version: 2016
 - [SK19] SHORTEN, Connor; KHOSHGOFTAAR, Taghi M.: A survey on Image Data Augmentation for Deep Learning. In: *Journal of Big Data* 6 (2019), July, Nr. 1, 60. http://dx.doi.org/10.1186/s40537-019-0197-0. DOI 10.1186/s40537-019-0197-0. ISSN 2196-1115
 - [TFNL22] TANNO, Ryutaro; F.Pradier, Melanie; Nori, Aditya; Li, Yingzhen: Repairing Neural Networks by Leaving the Right Past Behind

List of References 14

[WWR⁺23] Wang, Hanyu ; Wu, Pengxiang ; Rosa, Kevin D. ; Wang, Chen ; Shrivastava, Abhinav: *Multimodality-guided Image Style Transfer using Cross-modal GAN Inversion*. https://arxiv.org/abs/2312.01671. Version: 2023

Appendix 1

Appendix

Declaration of Academic Integrity

Generative Data Augmentation

Multi-Agent Diverse Generative Adversarial Networks for Generative Data Augmentation.

I hereby declare that I have written this thesis independently. I have properly cited all passages that are taken verbatim or in essence from published or unpublished works of others. All sources and aids used in the preparation of this thesis have been fully acknowledged. Furthermore, this thesis has not been submitted, in whole or in substantial part, to any other examination authority for academic credit.

Signiture: Place, Date: