

Collaborative and Reproducible HRI Research Through a Web-Based

Wizard-of-Oz Platform

Sean O'Connor and L. Felipe Perrone Bucknell University, Pennsylvania, U.S.A.



### The Wizard-of-Oz Experimental Method



# Challenges

- Environment set up (cameras and microphones) and operation
- Supporting the control of different kinds robots
- Organizing assets generated (consent forms, video and audio captured) keeping in data confidentiality in mind that is appropriate to each role
- Executing faithfully the experimental script that governs the interactions between human subject and robot
- Issuing the same sequence of commands to the robot through every trial of the experiment and recording any deviations in the script that the wizard may introduce

#### Technical infrastructure and architectures

- Polonius (Lu and Smart, 2011): graphical wizard interface to define FSM robot behaviors; ROS-based; integrated experimental logging system; accessible to non-programmers
- OpenWoZ (Hoffman, 2016): configurable; multi-client architecture; robot behaviors modifiable in experiment; allows for multiple collaborators

#### Interface design and user experience

- NottReal (Percheron, Fischer, and Valstar, 2020): careful interface design; wizard actions made easy; customization features; comprehensive logging
- WoZ4U (Rietz et al., 2021): GUI design to support non-programmers; tightly integrated with Pepper

#### Domain Specialization vs. Generalizability

- Ozlab (Peterson and Wik, 2020): systematic review showing that overspecialization leads to lifespan of 2-3 years
  - Aim for a general-purpose approach from the start
  - Build in a flexible wizard interface to adapt to experimental needs

#### Standardization Efforts and Methodological Approaches

- Porfirio et al., 2023: follow an interaction specification language to define and communicate robot behaviors across different platforms; aim for modularity
- Riek, 2012: aim for methodological transparency to enable reproducibility

## Design Goals

The most desirable WoZ support frameworks should:

- Remain usable over non-trivial periods of time
- Require minimal to no programming expertise so that they are usable by interdisciplinary teams in collaborative work
- Embody methodological standardization of experimental protocols
- Handle comprehensive data collection and organization
- Support the complete lifecycle of experiments from design, to execution, to asset management and documentation, and to data analysis to support reproduction by third parties

### HRIStudio



Study

A study is the highest level container in a hierarchical description. It contains one or more experiments.

Study

Example: investigate the most adequate morphology of a robot to act as server in an automated coffee shop.

#### Study

#### Experiment i

An experiment embodies one of the goals of the larger study (think of it as 'what answers a research question'). It contains various trials.

#### Study

#### Experiment i

Example: investigate customer trust in the service provided by a non-humanoid robot.

#### Experiment j

Example: investigate customer trust in the service provided by a humanoid robot without legs (like Pepper).

#### Experiment k

Example: investigate customer trust in the service provided by a humanoid robot with legs (like NAO).

#### Study

#### Experiment i

#### Trial x

A trial consists of one replication of the experimental script.

It contains one or more steps. All trials follow the same script.

#### Study

#### Experiment i

#### Trial subject x

Example: take order from subject, relay to barista, an bring order to subject.

#### Trial subject y

Example: take order from subject, relay to barista, an bring order to subject.

| | |

#### Study



#### Study

#### Experiment i

Trial subject x

Step a

A step is a behavior for either the robot or wizard to perform comprising one or more actions.

Example: the robot greets a newly arrived customer.

#### Study



Study



# Using the Platform Running a Sample Experiment

# A Sample Experiment



### Create an Account



#### Account info:

- Name
- Email
- Password

Accounts are needed to assign roles to users; PI, wizard, observer, designer, etc.

### View the Dashboard



Dashboard aggregates data about all studies. "Up Next view"

- Active studies
- Progression metrics
- Notifications

# Create a new Study



The Study details page allows for basic study data to be viewed and modified.

- Metadata
- Experiments
- Team members
- Activity

### Install Plugins



The plugin store allows for plugins to be installed.

- Plugins contain robot-specific actions
- Allows for selection of platform(s)
- Community contributions encouraged!

# Design a new Experiment



The Experiment designer is split up into three panes:

- Action pane
- Flow pane
- Properties pane

Validation ensures experiments are runnable before save.

## Register a new Participant



# Participant registration:

- Internal reference code (anonymization)
- Name
- Contact
- Optional additional studyspecific fields

### Run the Trial



#### Wizard Control:

- Progresses
   through
   experiments
   step-by-step
- Allows for manual intervention, records script deviations
- All events are logged for future analysis

### View the Trial Report



#### Trial Report:

- View trial events over a timeline
- Basic performance metrics calculated from wizard input
- See any manual interventions and problems that occurred
- Allows for further analysis

### Contribution

- Our approach was integrative (based on prior work in the literature) and our aim is to take a further step toward a system that guides non-experts to perform collaborative HRI research
- Our contribution: in the near term it is a software tool that consolidates design objectives into a proof of concept platform; in the long term, we left the community with the lessons we learned

### Future Work

- Complete implementation: We will finalize remaining platform features and conduct incremental testing throughout development
- Internal validation: We will conduct controlled case studies to evaluate platform effectiveness across diverse HRI research scenarios
- Open beta program: We will launch community testing and recruit HRI researchers to gather real-world feedback and refine the platform before general release

# Thank you! Any questions?

Link to paper:



Contact Information:
Sean O'Connor (sso005@bucknell.edu)
L. Felipe Perrone (perrone@bucknell.edu)