Granice funkcji Ciągłość funkcji

Pojęcia wstępne

Niech $x_0 \in \mathbb{R}$ i $r \in \mathbb{R}_+$

 \bullet sąsiedztwo punktu x_0 o promieniu r

$$S(x_0, r) = (x_0 - r, x_0) \cup (x_0, x_0 + r)$$

ullet otoczenie punktu x_0 o promieniu r

$$U(x_0, r) = (x_0 - r, x_0 + r)$$

Granica właściwa funkcji w punkcie wg Heinego

Liczbe q nazywamy **granicą właściwa** funkcji f w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) o wyrazach $x_n \in S(x_0, r)$ i zbieżnego do punktu x_0 odpowiadający mu ciąg wartości funkcji $(f(x_n))$ jest zbieżny do liczby q.

$$\lim_{x \to x_0} f(x) = g, \qquad f(x) \xrightarrow{x \to x_0} g$$

Granica właściwa funkcji w punkcie wg Cauchyego

Liczbe q nazywamy **granicą właściwa** funkcji f w punkcie x_0 wtedy i tylko wtedy, gdy dla dowolnej liczby $\varepsilon > 0$ istnieje taka liczba $\delta > 0$, że dla wszystkich $x \neq x_0$ spełniających nierówność $|x - x_0| < \delta$ zachodzi nierówność $|f(x)-q|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = g, \qquad f(x) \xrightarrow{x \to x_0} g$$

Granica niewłaściwa funkcji w punkcie wg Heinego

Funkcja f ma w punkcie x_0 granicę niewłaściwą ∞ (lub $-\infty$) wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) o wyrazach $x_n \in S((x_0, r),$ zbieżnego do $x_0,$ ciąg $(f(x_n))$ jest rozbieżny do ∞ $(-\infty)$.

$$\lim_{x \to x_0} f(x) = \infty \text{ (lub } -\infty), \qquad f(x) \xrightarrow{x \to x_0} \infty \text{ (lub } -\infty)$$

Granica niewłaściwa funkcji w punkcie wg Heinego

Funkcja f ma w punkcie x_0 granicę niewłaściwa ∞ (lub $-\infty$) wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) o wyrazach $x_n \in S((x_0, r), \text{ zbieżnego do } x_0, \text{ ciąg } (f(x_n)) \text{ jest rozbieżny do } \infty$ $(-\infty)$.

$$\lim_{x \to x_0} f(x) = \infty \text{ (lub } -\infty), \qquad f(x) \xrightarrow{x \to x_0} \infty \text{ (lub } -\infty)$$

Granica niewłaściwa funkcji w punkcie wg Cauchyego

Funkcja f ma w punkcie x_0 granicę niewłaściwa ∞ (lub $-\infty$) wtedy i tylko wtedy, gdy dla dowolnej liczby M>0 istnieje taka liczba $\delta > 0$, że dla wszystkich $x \neq x_0$ spełniających nierówność $|x-x_0| < \delta$ zachodzi nierówność f(x) > M (lub f(x) < -M).

4日 × 4周 × 4 至 × 4 至 × 至

Działania arytmetyczne na granicach funkcji

Jeżeli f(x) i g(x) mają granice właściwe w punkcie x_0 , to

- $\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$
- $\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$, gdzie $c \in \mathbb{R}$

Działania arytmetyczne na granicach funkcji

Jeżeli f(x) i g(x) mają granice właściwe w punkcie x_0 , to

- $\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$
- $\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$, gdzie $c \in \mathbb{R}$
- $\lim_{x \to x_0} (f(x)g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$

Działania arytmetyczne na granicach funkcji

Jeżeli f(x) i g(x) mają granice właściwe w punkcie x_0 , to

•
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

•
$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$
, gdzie $c \in \mathbb{R}$

•
$$\lim_{x \to x_0} (f(x)g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$$

$$\bullet \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \quad , \text{ o ile } \quad \lim_{x \to x_0} g(x) \neq 0$$

Działania arytmetyczne na granicach funkcji

Jeżeli f(x) i g(x) mają granice właściwe w punkcie x_0 , to

•
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

•
$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$
, gdzie $c \in \mathbb{R}$

•
$$\lim_{x \to x_0} (f(x)g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$$

$$\bullet \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \quad , \text{ o ile } \quad \lim_{x \to x_0} g(x) \neq 0$$

$$\bullet \lim_{x \to x_0} (f(x))^{g(x)} = \left(\lim_{x \to x_0} f(x)\right)^{\lim_{x \to x_0} g(x)}$$

Działania arytmetyczne na granicach funkcji

Jeżeli f(x) i g(x) mają granice właściwe w punkcie x_0 , to

•
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

•
$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$
, gdzie $c \in \mathbb{R}$

•
$$\lim_{x \to x_0} (f(x)g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$$

$$\bullet \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \quad , \text{ o ile } \quad \lim_{x \to x_0} g(x) \neq 0$$

$$\bullet \lim_{x \to x_0} (f(x))^{g(x)} = \left(\lim_{x \to x_0} f(x)\right)^{\lim_{x \to x_0} g(x)}$$

• Jeżeli
$$\lim_{x \to x_0} f(x) = y_0$$
 i $\lim_{y \to y_0} h(y) = q$ to $\lim_{x \to x_0} h(f(x)) = q$

• Skorzystaj z def. Heinego, czyli najpierw podstaw $x=x_0$ z nadzieją, że wyjdzie liczba (lub $\pm \infty$)

- Skorzystaj z def. Heinego, czyli najpierw podstaw $x=x_0$ z nadzieją, że wyjdzie liczba (lub $\pm \infty$)
- A co jeżeli wyjdzie symbol nieoznaczony?

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

- Skorzystaj z def. Heinego, czyli najpierw podstaw $x=x_0$ z nadzieją, że wyjdzie liczba (lub $\pm \infty$)
- 2 A co jeżeli wyjdzie symbol nieoznaczony?

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

• uprość wyrażenie

- Skorzystaj z def. Heinego, czyli najpierw podstaw $x=x_0$ z nadzieją, że wyjdzie liczba (lub $\pm \infty$)
- A co jeżeli wyjdzie symbol nieoznaczony?

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

- uprość wyrażenie
- wykorzystaj jedną ze znanych granic

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

- Skorzystaj z def. Heinego, czyli najpierw podstaw $x=x_0$ z nadzieją, że wyjdzie liczba (lub $\pm \infty$)
- A co jeżeli wyjdzie symbol nieoznaczony?

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

- uprość wyrażenie
- wykorzystaj jedną ze znanych granic

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

• użyj twierdzenia o trzech funkcjach

◆ロト ◆御 ト ◆恵 ト ◆恵 ・ 恵 ・ 夕久で

Twierdzenie o dwóch policjantach i pijaku

Jeżeli funkcje f, g i h są takie, że $f(x) \leq g(x) \leq h(x)$ dla $x \in S(x_0, r)$ oraz

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = g$$

to

$$\lim_{x \to x_0} g(x) = g$$

Twierdzenie o dwóch policjantach i pijaku

Jeżeli funkcje f, g i h są takie, że $f(x) \leq g(x) \leq h(x)$ dla $x \in S(x_0, r)$ oraz

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = g$$

to

$$\lim_{x \to x_0} g(x) = g$$

Granice w nieskończoności

Definicje w skrócie (reszta słów jest w książkach)

• granica właściwa – dla każdego ciągu $x_n \to \infty$ $(x_n \to -\infty)$, $f(x_n) \to L$

$$\lim_{x \to \infty} f(x) = L \quad \left(\lim_{x \to -\infty} f(x) = L\right)$$

Granice w nieskończoności

Definicje w skrócie (reszta słów jest w książkach)

• granica niewłaściwa – dla każdego ciągu $x_n \to \infty$ $(x_n \to -\infty)$, $f(x_n) \to \pm \infty$

$$\lim_{x \to \infty} f(x) = \pm \infty \quad \left(\lim_{x \to -\infty} f(x) = \pm \infty \right)$$

Obliczanie granic w nieskończoności

- Postępujemy tak jak przy obliczaniu granic ciągów
- Uwaga na granice w $-\infty$
- Korzystamy z tw. o trzech i dwóch ciągach

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

• Twierdzenie: Iloczyn ciągu zbieżnego do zera i ciągu ograniczonego jest ciągiem zbieżnym do zera.

Granice jednostronne funkcji

Granice jednostronne

Granice jednostronne

Definicje wg Heinego w skrócie

• granica lewostronna w pkcie x_0 – dla każdego ciągu $x_n \to x_0^-$ ciąg $f(x_n) \to g$ (lub ∞)

$$\lim_{x \to x_0^-} f(x) = g \,(\text{ lub } \infty)$$

• granica prawostronna w pkcie x_0 – dla każdego ciągu $x_n \to x_0^+$ ciąg $f(x_n) \to g$ (lub ∞)

$$\lim_{x \to x_0^+} f(x) = g \,(\text{ lub } \infty)$$

Związek pomiędzy granicami

Warunek konieczny i wystarczający istnienia granicy

$$\lim_{x \to x_0} f(x) = g \quad \Longleftrightarrow \quad \lim_{x \to x_0^+} f(x) = g \quad \mathrm{i} \quad \lim_{x \to x_0^-} f(x) = g$$

Związek pomiędzy granicami

Warunek konieczny i wystarczający istnienia granicy

$$\lim_{x\to x_0} f(x) = g \quad \Longleftrightarrow \quad \lim_{x\to x_0^+} f(x) = g \quad \mathrm{i} \quad \lim_{x\to x_0^-} f(x) = g$$

Przykład

$$\lim_{x \to 1^+} f(x) = 2$$

$$\lim_{x \to 1^+} f(x) = 2 \qquad \lim_{x \to 3^+} f(x) = 1$$

$$\lim_{x \to 1^{-}} f(x) = 2 \qquad \lim_{x \to 3^{-}} f(x) = 4$$

$$\lim_{x \to 1} f(x) = 2 \qquad \lim_{x \to 3} f(x) = 0$$

$$f(1) = 3 \qquad \qquad f(3) = 4$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Czy granica jednostronna zawsze istnieje?

$$\lim_{x \to 0^+} \cos \frac{1}{x} = ?$$

Czy granica jednostronna zawsze istnieje?

$$\lim_{x \to 0^+} \cos \frac{1}{x} = ?$$

Jeżeli granica jednostronna jest niewłaściwa ...

Asymptota pionowa

Mówimy, że prosta $x=x_0$ jest **asymptotą pionową** funkcji jeżeli

$$\lim_{x\to x_0} f(x) = \pm \infty \quad \text{lub} \quad \lim_{x\to x_0^+} f(x) = \pm \infty \quad \text{lub} \quad \lim_{x\to x_0^-} f(x) = \pm \infty$$

→□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣らで

Ciągłość funkcji

Ciągłość funkcji w punkcie

Definicja

Niech funkcja f będzie określona w otoczeniu $U(x_0, r)$. Funkcja jest **ciągła w punkcie** x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Inaczej mówimy, że funkcja jest **nieciągła** w punkcie x_0 .

Ciągłość funkcji w punkcie

Definicja

Niech funkcja f będzie określona w otoczeniu $U(x_0, r)$. Funkcja jest **ciągła w punkcie** x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Inaczej mówimy, że funkcja jest **nieciągła** w punkcie x_0 .

Jeżeli funkcja jest określona tylko w lewostronnym (lub prawostronnym) otoczeniu $U_{-}(x_0, r)$ (lub $U_{+}(x_0, r)$), wówczas mówimy o **ciągłości lewo– i prawostronnej**.

•
$$x = 2$$
:

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
:

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

• x = 5:

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

•
$$x = 5$$
: $\lim_{x \to 5} f(x) = \infty$

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

•
$$x = 5$$
: $\lim_{x \to 5} f(x) = \infty$

Rodzaje punktów nieciągłości

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

•
$$x = 5$$
: $\lim_{x \to 5} f(x) = \infty$

Rodzaje punktów nieciągłości

$$x = 2, x = 3$$
: pierwszego rodzaju,

•
$$x = 2$$
: $f(2) = 3 \neq \lim_{x \to 2} f(x) = 1$

•
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = 2 \neq \lim_{x \to 3^{+}} f(x) = 1$

•
$$x = 5$$
: $\lim_{x \to 5} f(x) = \infty$

Rodzaje punktów nieciągłości

$$x=2, x=3$$
: pierwszego rodzaju, $x=5$: drugiego rodzaju

→ □ ト ← □ ト ← 重 ト → 重 → りへ○

Jeżeli f i g są ciągłe w punkcie x_0 , to następujące funkcje są ciągłe w x_0 .

- $f \pm g$
- \bullet $c \cdot f$
- \bullet $f \cdot g$

- $\frac{f}{g}$, o ile $g(x_0) \neq 0$
- $f^{n/m}$, $f(x_0) \ge 0$ dla m parzyst.

Jeżeli f i g są ciągłe w punkcie x_0 , to następujące funkcje są ciągłe w x_0 .

- $f \pm g$
- \bullet $c \cdot f$
- $\bullet f \cdot q$

- $\frac{f}{g}$, o ile $g(x_0) \neq 0$
- $f^{n/m}$, $f(x_0) \ge 0$ dla m parzyst.
- Jeżeli g is jest ciągła w x_0 i f jest ciągła w $g(x_0)$, to funkcja złożona $(f \circ q)(x) = f(q(x))$ jest ciagła w x_0 .

Funkcja jest **ciągła w przedziale** jeżeli jest ciągła w każdym punkcie tego przedziału.

Funkcja jest **ciągła w przedziale** jeżeli jest ciągła w każdym punkcie tego przedziału.

Funkcja jest **ciągła w dziedzinie** jeżeli jest ciągła w każdym punkcie dziedziny.

Funkcja jest **ciągła w przedziale** jeżeli jest ciągła w każdym punkcie tego przedziału.

Funkcja jest **ciągła w dziedzinie** jeżeli jest ciągła w każdym punkcie dziedziny.

Funkcje ciągłe w swoich dziedzinach

wielomiany, funkcje wymierne, potęgowe, pierwiastkowe, trygonometryczne, cyklometryczne, wykładnicze, logarytmiczne

Funkcja jest **ciągła w przedziale** jeżeli jest ciągła w każdym punkcie tego przedziału.

Funkcja jest **ciągła w dziedzinie** jeżeli jest ciągła w każdym punkcie dziedziny.

Funkcje ciągłe w swoich dziedzinach

wielomiany, funkcje wymierne, potęgowe, pierwiastkowe, trygonometryczne, cyklometryczne, wykładnicze, logarytmiczne

Ciągłość funkcji odwrotnej

Jeżeli f jest ciągła i rosnąca (lub malejąca) w przedziale $A \subset \mathbb{R}$ to funkcja odwrotna $f^{-1}(A)$ jest ciągła i rosnąca (lub malejąca) w przedziale f(A).