

Formal Language Driven Data Analysis Research Group Report

Semyon Grigorev

Saint Petersburg State University

September 14, 2022

Applications

- Code analysis
- Code querying
- Code parsing

Applications

- Code analysis
- Code querying
- Code parsing

Research directions

- Graph algorithms
 - Dynamic graphs
 - ► Linear algebra
 - Path querying
- Formal languages
 - Languages classes and properties
 - Parsing algorithms
 - Formal language constrained path querying

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge graphs for analysis

- Millions of vertices
- Complex structure
- Dynamic

Huge software projects

- Millions LOC
- Complex structure
- Dynamic (IDE-level analysis)

Huge graphs for analysis

- Millions of vertices
- Complex structure
- Dynamic

Graph storage

- Graph representation
- Query languages
- Query evaluation engines

Huge software projects Huge graphs for analysis Millions LOC Millions of vertices Complex structure Complex structure Dynamic (IDE-level) Dynamic analysis) Graph analysis algorithms Performance

Graph storage

- Graph representation
- Query languages
- Query evaluation engines

 Nontrivial techniques (esp. for dynamic graphs)

Huge software projects Huge graphs for analysis Graph storage Millions LOC Millions of vertices Graph representation Complex structure Complex structure Query languages Dynamic (IDE-level) Query evaluation engines Dynamic analysis) Graph analysis algorithms Linear algebra (GraphBLAS) Performance Parallel (multicore CPU. GPGPU) Nontrivial techniques (esp. for dynamic graphs) Flexible, expressive

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Language description

- Modern syntax support (ambiguity, formatting-sensitivity)
- Human-friendly

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Parsing for IDE

- Frequent code updates
- Partially correct code
- Multiple languages support
- Performance-critical

Language description

- Modern syntax support (ambiguity, formatting-sensitivity)
- Human-friendly

Parsing technique

- Error recovery
- Reparsing
- Performance
- Flexibility

Advanced parsing algorithms

- New formal classes of languages
 - Error recovery
 - Incrementalization
- Performance

Results

Graph analysis for symbolic execu- Research prototype tion engine

- Graph extraction and update mechanism
- Constrained shortest paths for dynamic graph

Results

Graph analysis for symbolic execution engine	Research prototype	 Graph extraction and update mechanism Constrained shortest paths for dynamic graph
Graph querying algorithms	Research prototype	New algorithmsComplexity analysisPerformance analysis

Results

Graph analysis for symbolic execution engine	Research prototype	 Graph extraction and update mechanism Constrained shortest paths for dynamic graph
Graph querying algorithms	Research prototype	New algorithmsComplexity analysisPerformance analysis
Sparse linear algebra library on GPGPU	Research prototype	Operations implementationOptimizationsPerformance analysis

The Plan

Code querying for declarative code analysis

- Code querying and graph querying languages
 - CodeQL
 - Datalog
 - GQL
 - **.** . . .
- Query evaluation engines
 - Performance
 - Flexibility
- Graph analysis algorithms
 - Performance
 - Scalability
 - Incrementalization

The Plan

Code querying for declarative code analysis

- Code querying and graph querying languages
 - CodeQL
 - Datalog
 - GQL
 - **.** . . .
- Query evaluation engines
 - Performance
 - Flexibility
- Graph analysis algorithms
 - Performance
 - Scalability
 - Incrementalization

Parsing techniques and algorithms

- Language specification formalisms
- Error recovery techniques
- Reparsing techniques

Scholarships request (2022–2023 academic year, 9 months)

- Egor Orachyov
- Alexandra Istomina
- Kirill Garbar
- Denis Porsev
- 2-3 new students