MATH0033 Numerical Methods

Self-study problem sheet Week 1

These problems are non-assessed and are intended to help you test your understanding of the course material. Solutions are provided, but I strongly recommend you try the problems yourself first.

1. Show the equivalence of norms

$$\|oldsymbol{x}\|_{\infty} \leq \|oldsymbol{x}\|_p \leq n^{rac{1}{p}} \|oldsymbol{x}\|_{\infty} \quad orall oldsymbol{x} \in \mathbb{R}^n$$

2. Use the equivalence of norms above to show that

$$\lim_{p o\infty} \lVert oldsymbol{x}
Vert_p = \lVert oldsymbol{x}
Vert_\infty \quad orall oldsymbol{x} \in \mathbb{R}^n$$

- 3. Suppose that $V = \mathbb{R}^n$ with $n \geq 2$. Show that $\|\boldsymbol{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ does not define a norm when p < 1.
- 4. Let C([0,1]) denote the space of continuous functions on the closed bounded interval [0,1]. Define, for all $f \in C([0,1])$,

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|, \qquad ||f||_* = \max_{x \in [0,1]} |xf(x)|$$

Show that $\|\cdot\|_*$ defines a norm on C([0,1]). Is $\|\cdot\|_*$ equivalent to $\|\cdot\|_{\infty}$ on C([0,1])? If not, why not?

5. **Linear convergence.** Suppose that $x_n \to x$ as $n \to \infty$ and that the rate of convergence is linear with $||x - x_{n+1}|| \le C||x - x_n||$ for all $n \ge N$, and $C \in (0, 1)$. Show that for all n sufficiently large

$$\|\boldsymbol{x} - \boldsymbol{x}_n\| \le C_0 C^n,$$

for some constant C_0 that you should determine.

SOLUTIONS

1. Recall that $\|\boldsymbol{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ and $\|\boldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$. Clearly we then have $\|\boldsymbol{x}\|_{\infty}^p \leq \sum_{i=1}^n |x_i|^p$ since the sum must include the term with maximum absolute value. Taking p-roots on both sides implies that $\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_p$. For the other inequality, we bound every term in the sum inside $\sum_{i=1}^n |x_i|^p$ by $\|\boldsymbol{x}\|_{\infty}^p$ to obtain

$$\sum_{i=1}^{n} |x_i|^p \le n \|\boldsymbol{x}\|_{\infty}^p \implies \|\boldsymbol{x}\|_p \le n^{\frac{1}{p}} \|\boldsymbol{x}\|_{\infty}.$$

2. The limit $\lim_{p\to\infty} \|\boldsymbol{x}\|_p = \|\boldsymbol{x}\|_{\infty}$ holds trivially for $\boldsymbol{x}=0$, so we need only consider the case $\boldsymbol{x}\neq 0$. Taking the equivalence of norms above and dividing by $\|\boldsymbol{x}\|_{\infty}$ (which is nonzero for $\boldsymbol{x}\neq 0$), we get

$$1 \le \frac{\|\boldsymbol{x}\|_p}{\|\boldsymbol{x}\|_{\infty}} \le n^{\frac{1}{p}}$$

Since $n^{1/p} \to 1$ as $p \to \infty$, we conclude that $\frac{\|\boldsymbol{x}\|_p}{\|\boldsymbol{x}\|_{\infty}} \to 1$, and thus we have the limit $\|\boldsymbol{x}\|_p \to \|\boldsymbol{x}\|_{\infty}$ as $p \to \infty$.

3. Suppose that p < 1, and let e_1 and e_2 denote the first two unit vectors. Then

$$\|e_1 + e_2\|_p = (1+1)^{\frac{1}{p}} = 2^{\frac{1}{p}} > 2$$

where the last inequality follows from the fact that 1/p > 1. On the other hand, $\|e_1\|_p + \|e_2\|_p = 1 + 1 = 2$. Therefore for p < 1 the triangle inequality does not hold since

$$\|e_1 + e_2\|_p \not \le \|e_1\|_p + \|e_2\|_p$$

So $\|\cdot\|_p$ does not define a norm when p < 1.

4. To check that $\|\cdot\|_*$ is a norm on C([0,1]) we must check all the conditions of the norm. The only condition that is not immediately obvious is the positive definiteness condition $\|f\|_* = 0 \implies f = 0$ (recall here f = 0 means that f(x) = 0 for all $x \in [0,1]$). Suppose that $\|f\|_* = 0$, then we have |xf(x)| = 0 for all $x \in [0,1]$. This allows us to conclude that |f(x)| = 0 for all $x \in (0,1]$, i.e. excluding x = 0. Therefore f(x) = 0 for all $x \in (0,1]$. But since f is continuous on [0,1] we also deduce by continuity then that f(0) = 0 also, and thus f = 0.

The norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{*}$ are not equivalent on C([0,1]). To show this, let $f_k(x)$, $k \in \mathbb{N}$, be defined by

$$f_k(x) = \begin{cases} 1 - kx & \text{for } x \in [0, 1/k] \\ 0 & \text{for } x \in (1/k, 1] \end{cases}$$

It follows that $f_k \in C([0,1])$ for all $k \in \mathbb{N}$. However

$$||f_k||_{\infty} = 1 \quad \forall k \in \mathbb{N},$$

whereas

$$||f_k||_* = \max_{x \in [0,1]} |x f_k(x)| = \max_{x \in [0,1/k]} |x - kx^2| = \frac{1}{2k} - \frac{k}{4k^2} = \frac{1}{4k} \to 0 \text{ as } k \to \infty.$$

Therefore, there is no constant C > 0 such that

$$||f||_{\infty} \le C||f||_{*} \quad \forall f \in C([0,1]),$$

which shows that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{*}$ are not equivalent.

5. By induction, we have for all $n \geq N$

$$\|x - x_n\| \le C\|x - x_{n-1}\| \le C^2\|x - x_{n-2}\| \le \ldots \le C^{n-N}\|x - x_N\|$$

Therefore, we get the required bound by setting $C_0 = C^{-N} || \boldsymbol{x} - \boldsymbol{x}_N ||$.