Cvičení 6

Pojmy potřebné pro zvládnutí tohoto cvičení:

formální kontext, Galoisova konexe, operátory \uparrow a \downarrow , formální koncept (pojem) - rozsah (extent), obsah (intent), uspořádání konceptů, supremum a infimum v konceptuálním svazu, částečné uspořádání v konceptuálním svazu (pojmy - koncepty), transakční data, množina položek (itemset $K \subseteq I$), asociační pravidlo, podpora (support), μ -frequent itemset (μ FIS), μ = minimální podpora, spolehlivost (confidence), c = minimální spolehlivost.

Příklad 1: Pro daný kontext (X,Y,I) a dané podmnožiny $(A_i \subseteq X, B_i \subseteq Y)$:

- nalezněte A_i^{\uparrow} (intent množiny A_i) a B_i^{\downarrow} (extent množiny B_i),
- určete, v jakých množinových relacích jsou zadané množiny a jaké množinové relace platí pro získané intenty a extenty,
- ullet ověřte, které ze zadaných podmnožin jsou uzavřené (tj. $A_i=(A_i^\uparrow)^\downarrow,\ B_i=(B_i^\downarrow)^\uparrow).$
- a) Pro podmnožiny $A_1 = \{x_4\}, \ A_2 = \{x_3, x_4\}, \ A_3 = \{x_3, x_4, x_5\}$ určete A_i^{\uparrow} a pro podmnožiny $B_1 = \{y_6\}, \ B_2 = \{y_3, y_6\}, \ B_3 = \{y_2, y_3, y_6\}$ určete B_i^{\downarrow} .

	y ₁	y 2	y_3	y_4	y_5	y 6
χ_1		1		1		1
x_2		1			1	
χ_3			1		1	1
χ_4	1	1	1			1
χ_5				1		1

b) Pro podmnožiny $A_1 = \{T_4, T_6\}$, $A_2 = \{T_1, T_2, T_6\}$ určete A_i^{\uparrow} a pro podmnožiny $B_1 = \{a,c\}$, $B_2 = \{b,e\}$ určete B_i^{\downarrow} .

	a	b	\mathbf{c}	d	e
T ₁		1		1	
T_2		1			1
T_3			1		
T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇	1	1	1		
T_5				1	
T_6		1	1		
T ₇					1

c) Pro podmnožiny $A_1 = \{x_1, x_3\}, A_2 = \{x_3, x_5\}$ určete A_i^{\uparrow} a pro podmnožiny $B_1 = A_1^{\uparrow}, B_2 = A_2^{\uparrow}$ určete B_i^{\downarrow} .

	y 1	y_2	y 3	y_4	y_5	y 6
$\overline{x_1}$	1	0	1	1	0	1
x_2	0	1	1	0	1	1
χ_3	1	0	1	1	0	0
χ_4	0	0	0	1	1	1
χ_5	1	0 1 0 0 0	1	1	0	0

Příklad 2: Pro kontexty z příkladu 1 určete množiny všech konceptů a vytvořte konceptuální svazy - pomocí jedinečných průniků. Pro vytvořené konceptuální svazy určete, zda

jsou distributivní, modulární, komplementární či dokonce booleovské.

- a) jeden konceptuální svaz na daném kontextu,
- b) a druhý konceptuální svaz na nějakých T_{ckach},
- c) a další konceptuální svaz na daném kontextu.

Příklad 3: Pro níže uvedená data v podobě tabulky transakcí v lékárně:

- a) napište 0/1 reprezentaci,
- b) vytvořte konceptuální svaz,
- c) nakreslete příslušný Rymon tree (ve vztahu k algoritmu Appriori),
- d) vypište frekventované množiny položek (frequent itemsets) z Rymon tree, pro které platí $\mu \geq 0.1$,
- e) vytvořte všechna asociační pravidla nad FIS (frequent item sets),
- f) určete jejich spolehlivost,
- g) najděte množiny položek, které nelze rozšířit beze změny podpory (tj. closed itemset) - co jim odpovídá ve formálním

konceptu?

h) najděte menší množinu položek se stejnou podporou, jako má větší množina položek (tj. generator) - co jim odpovídá ve formálním konceptu?

Transaction	Content
T1	Paralen, Vitamín C
T2	Paralen, Stodal
T3	Fastum gel
T4	Paralen, Vitamín C, Stodal
T5	Fastum gel, Ibalgin
T6	Paralen, Ibalgin
$\mathrm{T7}$	Paralen, Vitamín C

Příklad 4:

Mějme množinu položek $I = \{1, 2, 3, 4, 5\}$ a k ní příslušných m transakcí. Určete:

- a) Co platí pro podpory podmnožin položek (itemsets) $K, K' \subseteq I$, jestliže $K' \subseteq K$? [sup(K') ... sup(K)]
- b) Co platí pro spolehlivost pravidel $A \Rightarrow K$ a $A \Rightarrow K'$, kde $A, K, K' \subseteq I$, pokud $A \cap K' = \emptyset = A \cap K$ a $K' \subseteq K$? [conf($A \Rightarrow K'$)...conf($A \Rightarrow K$)]
- c) Co platí pro spolehlivost pravidel $A \Rightarrow K$ a $A' \Rightarrow K$, kde $A, A', K \subseteq I$, pokud $A \cap K = \emptyset = A' \cap K$ a $A' \subseteq A$? [conf($A' \Rightarrow K$) . . . conf($A \Rightarrow K$)]

Můžeme vybrat následující podmnožiny množiny položek: $A' = \{1\}$, $A = \{1,2\}$, $K' = \{3,4\}$, $K = \{3,4,5\}$.

Příklad 5: Je slovně popsána binární heterogenní relace $I \subseteq L \times A$:

- Adam hraje šachy a ragby.
- o Béd'a hraje na ukulele a šachy.
- o Cyril hraje ragby, vodní polo a tenis.

- o Dan hraje na ukulele a vodní polo a tenis.
- o Ernesto hraje na ukulele a tenis.
- o Filip hraje šachy a tenis.
- a) Danou relaci zapište jako formální kontext (Lidi, Aktivity, I).
- b) Pomocí algoritmu jedinečných průniků nalezněte všechny koncepty.
- c) Pomocí uspořádání konceptů nakreslete výsledný konceptuální svaz.
- d) Určete vlastnosti vytvořeného svazu (úplnost, ohraničenost tj. existenci svazové nuly a svazové jednotky, distributivnost, modularitu, komplementaritu, zda je Booleovský).
- e) Uvažujte danou binární heterogenní relaci jako transakční data a vytvořte Rymon tree.
- f) Nalezněte všechna asociační pravidla s podporou $\mu \ge 0.3$ a se spolehlivostí $c \ge 0.5$.
- g) Zamyslete se nad vztahem mezi nalezenými koncepty a možinami dostatečně podporovaných položek.
- h) Lze využít nalezený konceptuální svaz pro detekci asociačních pravidel?

Příklad 6: Pro níže uvedená data v podobě homogenního neorientovaného grafu bez smyček G = (V, E) určete všechny koncepty nad formálním kontextem (V, V, I + A(G)), kde A(G) je matice sousednosti grafu G a matice I je jednotková. Uveď te, co jednotlivé koncepty reprezentují a co reprezentují koncepty ve tvaru $ext_k = int_k$.

```
a) V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 6), (4, 5), (5, 6)\}
```

b)
$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}, E = \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 6), (4, 5), (4, 7), (5, 6), (5, 7), (6, 8), (7, 8)\}$$