(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年4 月19 日 (19.04.2001)

PCT

(10) 国際公開番号 WO 01/27086 A1

(51) 国際特許分類?:

C07D 221/16. 491/052, 491/048, A61K 31/473, 31/4355, 31/436, A61P 43/00, 5/26, 15/08, 15/10, 7/06, 19/10, 35/00

(21) 国際出願番号:

PCT/JP00/07007

(22) 国際出願日:

2000年10月6日(06.10.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11/292021

1999年10月14日(14.10.1999)

(71) 出願人 (米国を除く全ての指定国について): 科研製薬 株式会社 (KAKEN PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒113-8650 東京都文京区本駒込二丁目28番8 号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 花田敬吾 (HANADA, Keigo) [JP/JP]. 古屋和行 (FURUYA, Kazuyuki) [JP/JP]. 井口 潔 (INOGUCHI, Kiyoshi) [JP/JP]. 宮川基則 (MIYAKAWA, Motonori) [JP/JP]. 永 田尚也 (NAGATA, Naoya) [JP/JP]; 〒607-8042 京都府 京都市山科区四ノ宮南河原町14番地 科研製薬株式 会社 総合研究所内 Kyoto (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

/続葉有/

(54) Title: TETRAHYDROQUINOLINE DERIVATIVES

(54) 発明の名称: テトラヒドロキノリン誘導体

(57) Abstract: Tetrahydroquinoline derivatives of general formula (1) or salts thereof, having a specific and strong binding affinity for AR and exhibiting AR agonism or antagonism; and drug compositions containing the derivatives or the salts.

(57) 要約:、

特異的かつ強力なAR結合親和性を有し、ARアゴニストまたはアン

タゴニスト作用を示す、式:

$$\begin{array}{c|c}
R^1 & X & \\
\downarrow & & \\
N & Y-Z-R^3
\end{array}$$
(I)

で示されるテトラヒドロキノリン誘導体またはその塩、およびそれを含 有する医薬組成物。

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 1

明細書

テトラヒドロキノリン誘導体

技術分野

本発明は、特異的かつ強力なアンドロゲン受容体結合親和性を有し、 アンドロゲン受容体アゴニストまたはアンタゴニスト作用を示すテトラ ヒドロキノリン誘導体またはその塩およびそれらを含有する医薬に関す る。

背景技術

アンドロゲンは C19 ステロイドの総称であり、男性の正常な性分化と発育、思春期における男性化、睾丸における初期の造精機能の活性化及び男性機能の維持に重要な性ホルモンである。アンドロゲンはその約90%が精巣ライディッヒ細胞から、残り 10%は副腎から、主にテストステロンとして産生され、血中へ分泌される。テストステロンは標的細胞に取り込まれ、5 α-リダクターゼにより生物学的活性の強いジヒドロテストステロン (DHT) に変換され、テストステロンとともに男性の二次性徴発現(皮脂腺の増殖、ざ瘡、体毛の発生、声変り、顎鬚の発生)や外性器(陰茎、睾丸)、副性器(前立腺、精嚢腺)の発育、性的衝動と勃起の発現などに重要な役割を演じている。

一方、これらの主作用以外に、蛋白同化作用(骨格筋、骨量の増大など)、ゴナドトロピン分泌抑制作用、赤血球産生亢進作用などの生殖器系以外の作用を有し、アンドロゲン標的細胞は外・副性器組織に存在する他、脳、下垂体、筋組織、骨、腎臓など多岐に分布している(N Engl J Med 334, 707-714, 1996)。

これらの役割に加えて、アンドロゲンは抗炎症作用を示すことが報告され、炎症性細胞の増殖抑制や IL-6 等のサイトカイン産生を抑制することにより、関節炎や自己免疫疾患を緩和することが今日明らかにされつつある(Ann Rheum Dis 55, 811-815, 1996)。

全てのアンドロゲン作用は標的細胞の核内に存在する分子量約10万 のアンドロゲン受容体(Androgen Receptor、以下ARという)を介し て発現する。ARは1988年にChang 及びLubahn らによりその遺伝 子がクローニングされ、エストロゲン、プロゲステロン、ミネラルコル チコイド及びグルココルチコイド受容体と構造が類似し、一群の核内ス テロイド受容体ファミリーを形成することが明らかにされた(Science 240、324-326、327-330、1988)。 脂溶性に富むアンドロゲンは標的細 胞膜を受動拡散により通過し、ARのホルモン結合領域に特異的かつ高 親和性に結合して二量体を形成し、特定遺伝子の上流に存在するアンド ロゲン応答性 DNA 領域(Androgen Response Element: ARE)に結 合する。そして、標的遺伝子の転写が開始され、mRNA の発現が起こ り、アンドロゲン作用を司る機能蛋白質が産生されて作用が発現する (Trend in Endocrinology and Metabolism 9, 317-324, 1998) 。この 機構において、ARに結合し、天然リガンドであるテストステロン等と 同様の作用を発現させる化合物はアゴニストと定義づけられ、一方、作 用発現を抑制する化合物はアンタゴニストと呼ばれている。

ARアゴニストとしては体内投与後の持続性を高めたテストステロンエステルの注射薬(testosterone enanthate, testosterone propionate)や17α位にメチル基を導入し、17β位の水酸基の酸化による不活性化を保護し活性を高めた経口薬(methyltestosterone, fluoxymesterone)が古くから用いられている。これらのアンドロゲンステロイド製剤は対象となる疾患に対して比較的大量にそして長期間投与

することが多い。従って、肝機能障害、男性化作用、女性における声帯の変化(男性様の嗄声発現)、胃腸障害、多幸症、体躯部の多毛症、禿頭症などの副作用が観察される。特に、17 α位にメチル基をもつアンドロゲン剤は重篤な肝機能障害を起こすことが報告されている(N Engl J Med 334, 707-714、1996)。近年、このようなステロイドの持つ副作用を軽減し、標的組織に対してより選択性を持った非ステロイド性ARアゴニストの開発が進められているが、世界的に認知された化合物は未だ創製されていない。

ARアンタゴニストとしては、これまでゲスターゲン誘導体である酢酸クロルマジノン、酢酸シプロテロル等のステロイド性抗アンドロゲン剤が治療剤として用いられてきた。しかしながら、これらのステロイド製剤はそのプロゲステロン作用により、視床下部一下垂体のネガティブフィードバック機構を亢進させ、その結果、血中テストステロン値が低下し、性機能や性欲が減退してしまうことが指摘されてきた(Drugs Aging 5, 59-80, 1994)。

これを克服するため、非ステロイド性ARアンタゴニストとしてフルタミド、ビカルタミドが開発された。アシルアニリド誘導体であるフルタミド自体にはARアンタゴニスト作用はなく、代謝によって、カルボニル基に直結する α炭素原子に水酸基が置換してハイドロキシフルタミドとなって活性を発現することが知られている。この水酸基がアンタゴニスト作用に不可欠であると考えられている(J Med Chem 31,954-959,1988)。フルタミドは世界で初めて臨床使用が可能となった非ステロイド性ARアンタゴニストであるが、活性代謝物の血中半減期が短いため、1日3回の高用量の投与が必要で、服薬コンプライアンスが問題とされている(Clin Pharmacokinet 34,405-417,1998)。また、下痢や死亡に至る重篤な肝機能障害の副作用が報告され、臨床使用の障壁と

WO 01/27086

なっている (J Urol 57, 172-174, 1985; J Urol 155, 209-212, 1996)。

ピカルタミドも α 炭素原子に水酸基を持つアシルアニリド誘導体であるが、ハイドロキシフルタミドよりARへの結合親和性が高く、かつ投与後の血中半減期が約8日と長いことが特徴で、1日1回の投与が可能である。しかしながら、薬物の中枢への作用と考えられている乳房圧痛や腫脹が副作用として頻発する(J New Remedies & Clinics 48, 307-321, 1999)。

また、動物実験レベルで、フルタミド及びピカルタミドを投与した雄ラットと交配した正常雌ラットの受胎率が低下することが報告されている (The 80 Annual Meeting of The Endocrine Society, P3-126, June 24-27, New Orleans, Louisiana, 1998)。この他、非ステロイド性ARアンタゴニストの問題点として、長期使用によるアゴニスト作用の発現等があげられている (J Urol 153, 1070-1072, 1995)。特に、前立腺癌の治療においてはアンドロゲン作用を完全に遮断する必要があるため、アゴニスト作用の発現は治療上大きな問題となる。

近年、このような中枢・生殖器系への作用が少なく、ARアンタゴニスト活性の強い非ステロイド性ARアンタゴニストの開発が進められているが、世界的に認知された化合物は未だ創製されていない。

本発明は、このようなARを介する疾患の治療および治療研究を鑑みてなされたものであり、本発明の目的は、特異的かつ強力なAR結合親和性を有し、ARアゴニストまたはアンタゴニスト作用を示す非ステロイド性の新規化合物およびその塩を提供すること、さらにこれらを有効成分とする医薬を提供することにある。

発明の開示

本発明者らは、これらの課題を解決するため鋭意研究を行った結果、

テトラヒドロキノリン誘導体がARを介する生理作用を有し、ARを介する疾患に優れた治療効果を有することを見出し、本発明を完成するに至った。

すなわち、本発明は、式:

(式中、R¹およびR²はそれぞれ独立して水素原子、炭素数1~9のア ルキル基、炭素数1~9のアルコキシ基、ハロゲン原子、ニトロ基、N R4R5(式中、R4およびR5はそれぞれ独立して水素原子、炭素数1~ 9のアルキル基、炭素数3~7のシクロアルキル基、炭素数7~9のア ラルキル基、アリール基、炭素数2~5の脂肪族アシル基、炭素数2~ 5の脂肪族アシロキシ基、芳香族アシル基、炭素数1~4の脂肪族スル ホニル基、芳香族スルホニル基、炭素数2~5のアルコキシカルボニル 基、ヒドロキシオキサリル基または炭素数3~7のアルコキシオキサリ ル基を表す)、カルボキシル基、炭素数2~5のアルコキシカルボニル 基、アミド基、炭素数2~5のアルキルアミド基、炭素数1~4のアル キルチオ基、炭素数1~4の脂肪族スルフィニル基、炭素数1~4の脂 肪族スルホニル基、シアノ基、スルファモイル基、炭素数1~4の脂肪 族スルファモイル基、アミジノ基、トリフルオロメチル基、トリフルオ ロメトキシ基またはテトラフルオロエトキシ基を表し、XはCH、CH 。、O、SまたはNR⁶(式中、R⁶は独立して前記R⁴と同じ意味を表 す。)を表し、XがCHの場合には式中の破線は二重結合を表す。iは 0~2の整数を表し、Yは炭素数1~9のアルキル基、炭素数3~7の シクロアルキル基、水酸基、炭素数1~9のアルコキシ基またはNR? R® (式中、R7およびR®はそれぞれ独立して前記R4と同じ意味を表 す。)で置換されていてもよい炭素数1~9のアルキレン基を表し、2 は単結合、-O-、-OCO-、-OSO。-、-S-、-SCO-、 -SO-, $-SO_2-$, $-NR^9-$, $-NR^9CO-$, $-NR^9SO_9-$, -NR°CONH-、-NR°CSNH-、-NR°COO-または-NR° COCO-(式中、R⁹は水素原子、炭素数1~9のアルキル基、炭素 数3~7のシクロアルキル基、炭素数7~9のアラルキル基、炭素数2 ~5のアルコキシアルキル基、またはR10で置換されていてもよいアリ ール基 (式中、R¹⁰は炭素数1~9のアルキル基、炭素数1~9のアル コキシ基、ハロゲン原子、ニトロ基、アリール基、NR¹¹R¹²(式中、 R"およびR"はそれぞれ独立して前記R'と同じ意味を表す。)、カ ルボキシル基、炭素数2~5のアルコキシカルボニル基、アミド基、炭 素数2~5のアルキルアミド基、炭素数1~4のアルキルチオ基、炭素 数1~4の脂肪族スルフィニル基、炭素数1~4の脂肪族スルホニル基、 シアノ基、スルファモイル基、炭素数1~4の脂肪族スルファモイル基、 トリフルオロメチル基、トリフルオロメトキシ基またはテトラフルオロ エトキシ基を表す。) を表す。) を表し、R3は水素原子、炭素数1~ 9のアルキル基、炭素数3~7のシクロアルキル基、炭素数7~9のア ラルキル基、炭素数1~9のアルコキシ基、炭素数2~5のアルコキシ アルキル基、ハロゲン原子、置換シリル基、またはR13で置換されてい てもよいアリール基(式中、R13は独立して前記R10と同じ意味を表 す。) を表す。ただし、Zが単結合の場合にのみR³はハロゲン原子を 表す。)で示されるテトラヒドロキノリン誘導体またはその塩に関する。 また、本発明は、式(I)で示されるテトラヒドロキノリン誘導体また はその塩を有効成分として含有する医薬、ステロイド受容体調節剤、お

よびアンドロゲン受容体調節剤に関する。

発明を実施するための最良の形態

前記式(I)における置換基について説明する。

「炭素数1~9のアルキル基」の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-プチル基、イソプチル基、tert-プチル基、sec-プチル基、n-ペンチル基、tert-アミル基、3-メチルプチル基、ネオペンチル基、n-ヘキシル基、3、3-ジメチルプチル基、2-エチルプチル基、n-ヘプチル基、2-メチルヘキシル基、n-オクチル基、2-プロピルペンチル基およびn-ノニル基などの直鎖または分枝鎖状のアルキル基があげられる。

「炭素数 $1 \sim 9$ のアルコキシ基」の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、t e r t - プトキシ基、s e c - プトキシ基、n-ペンチルオキシ基、t e r t - アミルオキシ基、s - メチルプトキシ基、ネオペンチルオキシ基、n - ヘキシルオキシ基、s - スチルプトキシ基、s - ステルプトキシ基、s - ステルプトカーション・カーステルオキシを表している。

「ハロゲン原子」の具体例としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子などがあげられる。

「炭素数3~7のシクロアルキル基」の具体例としては、シクロプロ ピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基および シクロヘプチル基などがあげられる。

「炭素数7~9のアラルキル基」の具体例としては、ベンジル基、フ

ェネチル基、フェニルプロピル基などがあげられる。

「アリール基」の具体例としては、フェニル基、1-ナフチル基および2-ナフチル基などがあげられる。

「炭素数2~5の脂肪族アシル基」の具体例としては、アセチル基、 プロピオニル基、プチリル基、イソプチリル基、パレリル基、イソバレ リル基およびピバロイル基などの直鎖または分枝鎖状の脂肪族アシル基 があげられる。

「炭素数2~5の脂肪族アシロキシ基」の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキソ基およびピバロイルオキシ基などの直鎖または分枝鎖状の脂肪族アシロキシ基があげられる。

「芳香族アシル基」の具体例としてはベンゾイル基、トルオイル基などがあげられる。

「炭素数1~4の脂肪族スルホニル基」の具体例としては、メタンスルホニル基、エタンスルホニル基、n-プロピルスルホニル基、イソプロピルスルホニル基、n-プチルスルホニル基、イソブチルスルホニル基、tert-プチルスルホニル基およびsec-ブチルスルホニル基などの直鎖または分枝鎖状の脂肪族スルホニル基があげられる。

「芳香族スルホニル基」の具体例としてはベンゼンスルホニル基、トルエンスルホニル基などがあげられる。

「炭素数2~5のアルコキシカルボニル基」の具体例としては、メトキシカルボニル基、エトキシカルボニル基、nープロポキシカルボニル基、イソプロポキシカルボニル基、nープトキシカルボニル基、イソプトキシカルボニル基、tertープトキシカルボニル基およびsecープチトキシカルボニル基などの直鎖または分枝鎖状のアルコキシカルボニル基があげられる。

「炭素数3~7のアルコキシオキサリル基」の具体例としては、メトキシオキサリル基、エトキシオキサリル基、n-プロポキシオキサリル基、イソプロポキシオキサリル基、n-ブトキシオキサリル基、イソブトキシオキサリル基、tert-ブトキシオキサリル基、sec-ブトキシオキサリル基、n-ペンチルオキシオキサリル基、3-メチルプトキシオキサリル基、ネオペンチルオキシオキサリル基などの直鎖または分枝鎖状のアルコキシオキサリル基があげられる。

「炭素数2~5のアルキルアミド基」の具体例としては、メチルアミド基、エチルアミド基、n-プロピルアミド基、イソプロピルアミド基、n-ブチルアミド基、tert-ブチルアミド基、sec-ブチルアミド基、n-ペンチルアミド基およびtert-アミルアミド基などの直鎖または分枝鎖状のアルキルアミド基があげられる。

「炭素数1~4のアルキルチオ基」の具体例としては、メチルチオ基、 エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-プチル チオ基、イソプチルチオ基、tert-プチルチオ基およびsec-ブ チルチオ基などの直鎖または分枝鎖状のアルキルチオ基があげられる。

「炭素数 $1 \sim 4$ の脂肪族スルフィニル基」の具体例としてはメタンスルフィニル基、エタンスルフィニル基、n-プロピルスルフィニル基、イソプロピルスルフィニル基、n-プチルスルフィニル基、イソプチルスルフィニル基、n-プチルスルフィニル基など。n-プチルスルフィニル基および n- である。

「炭素数 1 ~ 4 の脂肪族スルホニル基」の具体例としては、メタンスルホニル基、エタンスルホニル基、n ープロピルスルホニル基、イソプロピルスルホニル基、イソプチルスルホニル基、tertープチルスルホニル基およびsecープチルスルホニル基

などの直鎖または分枝鎖状の脂肪族スルホニル基があげられる。

「炭素数 $1 \sim 4$ の脂肪族スルファモイル基」の具体例としては、メタンスルファモイル基、エタンスルファモイル基、n-プロピルスルファモイル基、n-プチルスルファモイル基、1-プチルスルファモイル基、1-プチルスルファモイル基 および1- ままなど。1-プチルスルファモイル基 および1- ままなどの直鎖または分枝鎖状の脂肪族スルファモイル基があげられる。

「炭素数1~9のアルキレン基」の具体例としては、メチレン基、エチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などがあげられる。

「炭素数 2~5のアルコキシアルキル基」の具体例としては、メトキシメチル基、エトキシメチル基、nープロポキシメチル基、イソプロポキシメチル基、nープトキシメチル基、イソプトキシメチル基、tertープトキシメチル基、secープトキシメチル基、メトキシエチル基、エトキシエチル基、nープロポキシエチル基、イソプロポキシエチル基、メトキシプロピル基、エトキシプロピル基およびメトキシブチル基などの直鎖または分枝鎖状のアルコキシ基があげられる。

「置換シリル基」の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、tertープチルジメチルシリル基、tertープチルジフェニルシリル基およびトリフェニルシリル基などがあげられる。

式(I)で表される本発明の化合物において不斉炭素が存在する場合には、そのラセミ体、ジアステレオ異性体および個々の光学異性体のいずれも本発明に包含されるものであり、また幾何異性体が存在する場合には(E)体、(Z)体およびその混合物のいずれも本発明に包含されるものである。

式(I)で表される本発明の化合物の塩としては、薬理学的に許容されるものであれば特に制限されず、例えば、フッ素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩などのハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩、炭酸塩などの無機酸塩、メタンスルホン酸塩、トリフロオロメタンスルホン酸塩、エタンスルホン酸塩などの低級アルキルスルホン酸塩、ペンゼンスルホン酸塩、pートルエンスルホン酸塩などのアリールスルホン酸塩、酢酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩などのカルボン酸塩、グリシン塩、アラニン塩、グルタミン酸塩、アスパラギン酸塩などのアミノ酸塩、ナトリウム塩、カリウム塩などのアルカリ金属塩などがあげられる。溶媒和物としてはアセトン、2ープタノール、2ープロパノール、エタノール、酢酸エチル、テトラヒドロフラン、ジエチルエーテルなどとの溶媒和物があげられる。

本発明のテトラヒドロキノリン誘導体は、以下に示す方法により製造することができる。

[製造法1]

$$R^{1}$$
 NH_{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 $R^{$

(式中、すべての記号は前記と同じである。ただし、 $-Z-R^3 MSH$ 、 SOR^3 、 SO_2R^3 および NH_2 の場合を除く。)

式(I)で示される本発明化合物は、式(a)、(b)および(c)で示される化合物を、酸存在下または非存在下不活性溶媒中反応させることにより製造することができる。

・式(a)、(b)および(c)で示される化合物は市販の試薬として

またはそれから通常の化学反応により容易に誘導することにより入手できる。

本反応を具体的に説明すると、酸は有機酸、無機酸いずれも好ましく、たとえば酢酸、トリフルオロ酢酸、pートルエンスルホン酸、塩酸、硫酸、四塩化スズ、四塩化チタン、三フッ化ホウ素ジエチルエーテル錯体、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリドなどが用いられる。酸は式(a)で示される化合物に対し触媒量~10当量用いるのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1,2一ジクロロエタン、ヘキサン、ペンゼン、トルエン、ジオキサン、テトラヒドロフラン、アセトニトリル、メタノール、エタノール、水またはこれらの混合溶媒などが好ましい。反応温度は一20~100℃が好ましく、反応時間は5分~48時間が好ましい。

[製造法2]

$$R^1$$
 X N Y OTBDPS R^2 H (Ia) R^1 X N Y OH R^2 H (Ib)

(式中、TBDPSはtertープチルジフェニルシリル基を表し、その他の記号は前記と同じである。)

本発明の化合物のうち、式(Ib)で示される化合物は、製造法1に示した方法以外に式(Ia)で示される化合物を酸または塩基存在下での加水分解、またはフッ化物処理による脱保護により製造することができる。

本反応を具体的に説明すると、酸は有機酸、無機酸いずれも好ましく、

たとえば酢酸、トリフルオロ酢酸、塩酸または硫酸などが用いられる。 塩基としては金属水酸化物、炭酸金属塩いずれも好ましく、たとえば水酸化ナトリウム、水酸化カリウム、水酸化パリウム、炭酸ナトリウムまたは炭酸カリウムなどが用いられる。フッ化物としてはたとえば、フッ化水素水またはテトラブチルアンモニウムフルオリドなどが用いられる。酸、塩基またはフッ化物は、式(Ia)で示される化合物に対して1~50当量用いるのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1、2ージクロロエタン、ヘキサン、ベンゼン、トルエン、ジオキサン、テトラヒドロフラン、アセトニトリル、メタノール、エタノール、水またはこれらの混合溶媒などが好ましい。反応温度は0~100℃が好ましく、反応時間は30分~24時間が好ましい。

[製造法3]

(式中、Dはクロロスルホニル基またはハロゲン化カルボニル基を表し、 Z^1 は-OCO-または $-OSO_2$ -を表し、その他の記号は前記と同じである。)

本発明の化合物のうち、式(Ic)で示される化合物は、式(Ib)で示される化合物と式(d)または(d')で示される化合物を、塩基存在下または非存在下無溶媒または不活性溶媒中で反応させることにより製造することができる。

「ハロゲン化カルボニル基」の具体例としては、クロロカルボニル基およびプロモカルボニル基などがあげられる。

本反応を具体的に説明すると、塩基は三級アミンが好ましく、たとえばトリエチルアミン、ピリジンなどがあげられる。式(d)または(d')で示される化合物は式(Ib)で示される化合物に対して1~10当量用いるのが好ましい。塩基は式(d)または(d')で示される化合物に対し1当量~大過剰量使用するのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1,2ージクロロエタン、1,1,2,2ーテトラクロロエタン、トルエン、ジメチルホルムアミド、テトラヒドロフランなどが好ましい。反応温度は0~80℃が好ましく、反応時間は30分~12時間が好ましい。

[製造法4]

(式中、Bocはtertープトキシカルボニル基を表し、その他の記号は前記と同じである。)

本発明の化合物のうち、式(If)で示される化合物は、式(Ie)で示される化合物を酸で処理して脱保護することにより製造することができる。

本反応を具体的に説明すると、酸は有機酸、無機酸いずれも好ましく、たとえば酢酸、トリフルオロ酢酸、pートルエンスルホン酸、塩酸、硫酸などがあげられる。酸は式(Ie)で示される化合物に対し1~50 当量用いるのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、 1, 2-ジクロロエタン、ヘキサン、ベンゼン、トルエン、ジオキサン、 テトラヒドロフラン、アセトニトリル、メタノール、エタノール、水ま たはこれらの混合溶媒などが好ましい。反応温度は0~100℃が好ま しく、反応時間は30分~24時間が好ましい。

[製造法5]

(式中、Eはクロロスルホニル基、Nロゲン化カルボニル基、1ソシアナト基またはチオイソシアナト基を表し、12 は10 に 11 に 12 に 13 に 13 に 13 に 14 に 15 に 15 に 16 に 17 に 17 に 19 に

本発明の化合物のうち、式(Ig)で示される化合物は、式(If)で示される化合物と式(e)または(d')で示される化合物を、塩基存在下または非存在下無溶媒または不活性溶媒中で反応させることにより製造することができる。

「ハロゲン化カルボニル基」の具体例としては、クロロカルボニル基およびプロモカルボニル基などがあげられる。

本反応を具体的に説明すると、塩基は三級アミンが好ましく、たとえばトリエチルアミン、ピリジンなどがあげられる。式(e)または(d')で示される化合物は式(If)で示される化合物に対して1~10当量用いるのが好ましい。塩基は式(e)または(d')で示される化合物に対し1当量~大過剰量使用するのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2、

2-テトラクロロエタン、トルエン、ジメチルホルムアミド、テトラヒドロフランなどが好ましい。反応温度は $0 \sim 80$ \mathbb{C} が好ましく、反応時間は30 $9 \sim 12$ 時間が好ましい。

[製造法6]

(式中、Z³は単結合を表し、R³'はハロゲン原子を表し、R³'はハロゲン原子以外のR³を表し、その他の記号は前記と同じである。)

本発明の化合物のうち、式(Im)で示される化合物は、式(Ik)で示される化合物と式(f)で示される化合物を、塩基存在下または非存在下無溶媒または不活性溶媒中で反応させることにより製造することができる。

本反応を具体的に説明すると、塩基としてはたとえば、トリエチルアミン、ピリジン、水素化ナトリウム、tertープトキシカリウムなどがあげられる。式(f)で示される化合物は式(Ik)で示される化合物に対して1~10当量用いるのが好ましい。塩基は式(f)で示される化合物に対し1当量~大過剰量使用するのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1、2ージクロロエタン、1、1、2、2ーテトラクロロエタン、トルエン、ジメチルホルムアミド、テトラヒドロフランなどが好ましい。反応温度は0~100℃が好ましく、反応時間は5分~24時間が好ましい。

[製造法7]

(式中、 Z^4 は-SO-または $-SO_2$ -を表し、その他の記号は前記と同じである。)

本発明の化合物のうち、式(In)で示される化合物は、式(Im)で示される化合物を、酸化剤存在下不活性溶媒中で酸化することにより 製造することができる。

本反応を具体的に説明すると、酸化剤としてはたとえば、過酢酸、メタクロロ安息香酸などがあげられる。酸化剤は式(I m)で示される化合物に対し1当量~大過剰量使用するのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1,2ージクロロエタン、1,1,2,2ーテトラクロロエタン、トルエン、ジメチルホルムアミド、テトラヒドロフランなどが好ましい。反応温度は-20~100℃が好ましく、反応時間は5分~24時間が好ましい。

[製造法8]

(式中、すべての記号は前記と同じである。)

本発明の化合物のうち、式(Ip)で示される化合物は、式(Io)

で示される化合物を、酸または塩基存在下、常法に従って加水分解することにより製造することができる。

本反応を具体的に説明すると、酸としては有機酸、無機酸いずれも好ましく、たとえば酢酸、トリフルオロ酢酸、塩酸または硫酸などがあげられる。また、塩基としては金属水酸化物、炭酸金属塩いずれも好ましく、たとえば水酸化ナトリウム、水酸化カリウム、水酸化バリウム、炭酸ナトリウムまたは炭酸カリウムなどがあげられる。酸または塩基は、式(Io)で示される化合物に対し1~50当量使用するのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、クロロホルム、1,2ージクロロエタンおよびその混合溶媒が好ましい。反応温度は0~100℃が好ましく、反応時間は30分~24時間が好ましい。

前述した製法で製造される本発明化合物は遊離化合物、その塩、その水和物もしくはエタノール和物などの各種溶媒和物または結晶多形の物質として単離精製される。本発明化合物の薬理学的に許容される塩は常法の造塩反応により製造することができる。単離精製は抽出分別、結晶化、各種分画クロマトグラフィーなどの化学操作を適用して行われる。また光学異性体は適当な原料化合物を選択することにより、またはラセミ化合物のラセミ分割法により立体化学的に純粋な異性体に導くことができる。

本発明のテトラヒドロキノリン誘導体またはその塩は、優れたステロイド受容体調節作用、AR調節作用を有しており、それらを有効成分として用いて医薬、ステロイド受容体調節剤またはAR調節剤とすることができ、種々のAR関連疾患の予防および治療に広く適用することができる。

AR関連疾患としては、以下のAまたはBのものがあげられる。

A. アンドロゲンの生理作用により治癒が期待できる疾患:たとえば、 男子性腺機能低下症、男子性機能障害(インポテンス、造精機能障害に よる男性不妊症)、性分化異常症(男性半陰陽)、男性思春期遅発症、 男性不妊、再生不良性貧血、溶血性貧血、鎌状赤血球性貧血、特発性血 小板減少性紫斑病、骨髄線維症、腎性貧血、消耗性疾患(手術後、悪性 腫瘍、外傷、慢性腎疾患、熱傷、AIDS 感染)、骨粗鬆症、末期女性性 器癌の疼痛緩和、手術不能の乳癌、乳腺症、子宮内膜症および女性性機 能障害などがあげられる。

B. アンドロゲンが増悪因子となる疾患:たとえば、前立腺癌、前立 腺肥大症、男性化症、ざ瘡、脂漏症、多毛症、禿頭症、男子思春期早発 症および多嚢胞性卵巣症候群などがあげられる。

上記Aの疾患に対しては、本発明のARアゴニスト作用を有する化合物を用いることができ、例えば、以下に示す実施例1、23、25、39、56、60、65、66、67 の化合物をあげることができる。

上記Bの疾患に対しては、本発明のARアンタゴニスト作用を有する 化合物を用いることができ、例えば、以下に示す実施例6、7、8、9、 13、19、20、21、29、35、40、53、62の化合物をあ げることができる。

本発明の医薬は、これらのAR関連疾患に対して広く適用することができ、また、ここに例示されていない疾患に対しても、ARの機能調節が現在または将来必要とされる場合であれば、本発明の医薬を適用することができる。

本発明の医薬は、経口または非経口により投与することができ、全身 投与型であっても局所投与型であってもよい。

また、剤型も特に制限されず、投与経路に応じて適宜選択することが

できる。例えば、錠剤、カプセル剤、糖衣錠、顆粒剤、細粒剤、吸入剤、 座剤、液剤、シロップ、ドライシロップ、懸濁剤、乳剤、ローション、 軟膏、貼付剤、スプレー剤、ゲル剤、点鼻剤、点眼剤、注射剤などがあ げられる。

これらの製剤は、有機または無機の固体または液体の賦形剤、補助物質、安定化剤、浸潤剤、乳化剤、緩衝剤、その他薬理学的に許容される 各種添加剤を配合し、製造することができる。

本発明の医薬のヒトへの投与量は、治療または予防の目的、患者の性別、体重、年齢、健康状態、疾患の種類や程度、剤型、投与経路、投与期間などの種々の条件により適宜決定する。本発明のテトラヒドロキノリン誘導体の1日当たりの投与量として概ね0.01~100mg/kgの範囲である。

なお、本発明の医薬は、家畜、愛玩動物、飼育下または野生動物など の温血動物におけるアンドロゲン受容体を介する疾患の治療に使用して も良い。この場合の剤型および投与量はヒトに対する剤型および投与量 を参考にして決定することができる。

以下に実施例をあげて本発明の化合物および製造法をさらに詳しく説明するが、本発明はこれらの記載によって限定的に解釈されるものではない。

なお、 1 H-NMRスペクトルは、テトラメチルシラン(TMS)を 内部標準とし、JNM-EX270型スペクトルメーター(270MH z、日本電子(株) 製)で測定し、 δ 値はppmで示した。

また、以下の構造式および表において、Meはメチル基、Etはエチル基、Prはプロピル基、Buはプチル基、Phはフェニル基、Bnはペンジル基、Acはアセチル基を表す。

[実施例1] 2-メチル-2-(8-二トロ-3a, 4, 5, 9b-テ

トラヒドロ-3H-シクロペンタ [c] キノリン-4-イル) -プロパン-1-オールの製造

4-二トロアニリン9.8g、シクロペンタジエン6.5mlおよびトリフルオロ酢酸5.5mlをアセトニトリル70mlに溶解し、ヒドロキシピバルアルデヒド10.0gを0℃で加えた。室温で30分間撹拌した後、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=1:1)で精製し、標題化合物4.8gを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值:7.85(s, 1H), 7.84(d, J = 8.9Hz, 1H), 6.47(d, J = 8.9Hz, 1H), 5.96(brs, 1H), 5.78(brs, 1H), 3.98(d, J = 9.9Hz, 1H), 3.64(d, J = 10.6Hz, 1H), 3.55(d, J = 10.6Hz, 1H), 3.54(d, J = 2.3Hz, 1H), 2.87(ddt, J = 2.3, 8.2, 9.9Hz, 1H), 2.48(dd, J = 9.9, 15.5Hz, 1H), 2.26(dd, J = 8.2, 15.5Hz, 1H), 1.11(s, 3H), 0.96(s, 3H).

以下、実施例1と同様にして実施例2~34に示す化合物を製造した。 えられた化合物の物性値を表1~4に示す。

表 1

-4-14-0-	,			
実施例 番号	R1	R²	R ⁸	'H-NMR δ:
2	3-NO ₂	Н	TBDPS	(CDCl ₂): 7.86(d, J = 2.6Hz, 1H), 7.78 (dd, J = 2.6, 8.9Hz, 1H), 7.48-7.30(m, 6H), 6.19(d, J = 8.9Hz, 1H), 5.95(d, J = 2.6Hz, 1H), 5.92(s, 1H), 5.77(brs, 1H), 3.97(d, J = 6.3Hz, 1H), 3.61(d, J = 9.9Hz, 1H), 3.55(d, J = 2.0Hz, 1H), 3.44(d, J = 9.9Hz, 1H), 2.83(dt, J = 10.2, 6.3Hz, 1H), 2.47(dd, J = 10.2, 13.5Hz, 1H), 2.22(ddd, J = 2.6, 6.3, 13.5Hz, 1H), 1.14(s, 9H), 1.11(s, 3H), 0.87(s, 3H).
3	3-CN	H	TBDPS	(CDCl ₂): 7.70-7.60(m, 4H), 7.48-7.34(m, 6H), 7.11(d, J = 8.3Hz, 1H), 6.27(d, J = 8.3Hz, 1H), 5.86(brs, 1H), 5.75(brs, 1H), 3.93(d, J = 7.3Hz, 1H), 3.59(d, J = 9.9Hz, 1H), 3.49(d, J = 1.7Hz, 1H), 3.41(d, J = 9.9Hz, 1H), 2.81(dt, J = 9.9, 7.3Hz, 1H), 2.49(dd, J = 9.9, 15.8Hz, 1H), 2.19(dd, J = 7.3, 15.8Hz, 1H), 1.12(s, 9H), 1.09(s, 3H), 0.85(s, 3H).
4	3-NO2	1-OH	TBDPS	(CDCl ₂): 7.64(d, J = 6.3Hz, 4H), 7.46-7.30(m, 7H), 6.52(d, J = 8.6Hz, 1H), 5.72-5.62(m, 2H), 4.77(d, J = 8.9Hz, 1H), 3.53-3.40(m, 4H), 3.02-2.91(m, 1H), 2.61-2.51(m, 1H), 2.23-2.12(m, 1H), 1.08(s, 9H), 1.06(s, 3H), 0.85(s, 3H).
5	2-NO2	1-OH	TBDPS	(CDCl ₃): 7.73-7.55(m, 5H), 7.46-7.31 (m, 7H), 5.95(brs, 1H), 5.75- 5.73(m, 1H), 5.69(brs, 1H), 3.97(d, J = 7.6Hz, 1H), 3.60(brs, 1H), 3.55(d, J = 10.2Hz, 1H), 3.46(d, J = 10.2Hz, 1H), 2.87(q, J = 8.6Hz, 1H), 2.52-2.43(m, 1H), 2.25-2.16(m, 1H), 1.09(s, 9H), 1.07(s, 3H), 0.93(s, 3H).

6	3-NO ₂	Н	CH₂OMe	(CDCl ₂): 7.86(s, 1H), 7.84(d, J=8.6Hz, 1H), 6.45(d, J=8.6Hz, 1H), 5.96(ddd, J=1.7, 2.3, 5.6Hz, 1H), 5.77(dd, J=1.0, 5.6Hz, 1H), 5.65(s, 1H), 4.68(d, J=6.6Hz, 1H), 4.63(d, J=6.6Hz, 1H), 3.99(d, J=8.3Hz, 1H), 3.52(d, J=2.0Hz, 1H), 3.49(d, J=2.0Hz, 1H), 3.36(s, 3H), 3.35(d, J=9.2Hz, 1H), 2.87(dt, J=10.2, 8.3Hz, 1H), 2.48(ddd, J=2.3, 10.2, 15.5Hz, 1H), 2.26(ddd, J
				= 1.7, 8.3, 15.5Hz, 1H), 1.11(s, 3H), 1.00(s, 3H).
7	4-NO ₂	Н	H	(CDCl ₂): 7.12(dd, $J = 1.3$, 8.3Hz, 1H), 7.00(t, $J = 8.3$ Hz, 1H), 6.74(dd, $J = 1.3$, 8.3Hz, 1H), 5.73(dd, $J = 1.3$, 4.3Hz, 1H), 5.62(ddd, $J = 1.7$, 2.3, 4.3Hz, 1H), 5.13(s, 3H), 4.65(d, $J = 7.3$ Hz, 1H), 3.59(d, $J = 10.9$ Hz, 1H), 3.54(d, $J = 10.9$ Hz, 1H), 3.41(d, $J = 2.3$ Hz, 1H), 2.95 (ddt, $J = 2.3$, 9.9, 7.3Hz, 1H), 2.59(ddd, $J = 2.3$, 9.9, 15.8Hz, 1H), 2.22(ddd, $J = 1.7$, 7.3, 15.8Hz, 1H), 1.08(s, 3H), 0.97(s, 3H).
8	4-CN	Н	H	(CDCl ₂): 6.98(d, J = 4.6Hz, 2H), 6.75 (t, J = 4.6Hz, 1H), 6.20(brs, 1H), 5.77 (brs, 1H), 4.24(d, J = 8.3Hz, 1H), 3.55(s, 2H), 3.30(s, 1H), 3.02(dq, J = 2.3, 8.3Hz, 1H), 2.65(dd, J = 8.3, 15.5Hz, 1H), 2.28(dd, J = 8.3, 15.5Hz, 1H), 1.09(s, 3H), 0.97(s, 3H).
9	3-NO ₂	H	Me	(CDCl ₃): 7.86-7.82(m, 2H), 6.44(d, J = 9.6Hz, 1H), 5.96(ddd, J = 1.7, 3.0, 5.9Hz, 1H), 3.97(d, J = 8.3Hz, 1H), 3.49(d, J = 1.7Hz, 1H), 3.38(s, 3H), 3.35(d, J = 9.2Hz, 1H), 3.18(d, J = 9.2Hz, 1H), 2.84(dt, J = 10.2, 8.3Hz, 1H), 2.47(ddd, J = 2.3, 10.2, 15.8Hz, 1H), 2.24(dd, J = 8.3, 15.8Hz, 1H), 1.09(s, 3H), 0.96(s, 3H).
10	3-CN	Н	Me	(CDCl ₂): 7.18-7.15(m, 2H), 6.47(d, J = 8.9Hz, 1H), 5.87(ddd, J = 1.7, 3.0, 5.6Hz, 1H), 5.75(dd, J = 1.3, 4.3Hz, 1H), 5.44(s, 1H), 3.92(d, J = 8.3Hz, 1H), 3.42(d, J = 2.3Hz, 1H), 3.36(s, 3H), 3.32(d, J = 8.9Hz, 1H), 3.17(d, J = 8.9Hz, 1H), 2.82(dt, J = 9.9, 8.3Hz, 1H), 2.49(ddd, J = 2.3, 9.9, 15.8Hz, 1H), 2.21(ddd, J = 1.3, 8.3, 15.8Hz, 1H), 1.07(s, 3H), 0.93(s, 3H).

11	3-NO ₂	Н	Et	(CDCl ₂): 7.86(e, 1H), 7.84(d, $J = 9.9$ Hz, 1H), 6.40(d, $J = 9.9$ Hz, 1H), 6.15(e, 1H), 5.96-5.95(m, 1H), 5.77(e, 1H), 3.97(d, $J = 7.9$ Hz, 1H), 3.54-3.44(m, 3H), 3.38(d, $J = 8.9$, 1H), 3.23(d, $J = 8.9$ Hz, 1H), 2.84(dt, $J = 10.2$, 7.9Hz, 1H), 2.47(ddd, $J = 2.3$, 10.2, 15.8Hz, 1H), 2.24(dd, $J = 7.9$, 15.8Hz, 1H), 1.26(t, $J = 6.9$ Hz, 3H), 1.10(e, 3H), 0.94(e, 3H).
12	3-CN	Н ,	Et	(CDCl _a): 7.18-7.15(m, 2H), 6.43(d, J = 8.9Hz, 1H), 5.86(t, J = 2.6Hz, 1H), 5.76-5.72(m, 2H), 3.92(d, J = 7.6Hz, 1H), 3.48(q, J = 6.9Hz, 2H), 3.40(d, J = 2.0Hz, 1H), 3.35(d, J = 8.9Hz, 1H), 3.20(d, J = 8.9Hz, 1H), 2.82(dt, J = 10.2, 7.6Hz, 1H), 2.50(ddd, J = 2.0, 10.2, 15.8Hz, 1H), 2.22(ddd, J = 1.0, 7.6, 15.8Hz, 1H), 1.24(t, J = 6.9Hz, 3H), 1.08(s, 3H), 0.92(s, 3H).
13	3-NO ₂	Н	Bn	(CDCl ₃): 7.84(8, 1H), 7.81(d, $J = 8.9$ Hz, 1H), 7.42-7.29(m, 5H), 6.23(d, $J = 8.9$ Hz, 1H), 5.97(8, 1H), 5.95(ddd, $J = 1.7$, 2.3, 5.6Ha, 1H), 5.75(d, $J = 5.6$ Hz, 1H), 4.52(8, 2H), 3.97(d, $J = 8.2$ Hz, 1H), 3.51(d, $J = 2.3$ Hz, 1H), 3.46(d, $J = 8.9$ Hz, 1H), 3.32(d, $J = 8.9$ Hz, 1H), 2.84(dt, $J = 9.9$, 8.2Hz, 1H), 2.46(ddd, $J = 2.3$, 9.9, 15.8Hz, 1H), 2.23(dd, $J = 8.2$, 15.8Hz, 1H), 1.12(8, 3H), 0.96(8, 3H).
14	3-CN	H	Bn	(CDCl ₉): 7.41-7.27(m, 5H), 7.17(s, 1H), 7.13(d, $J = 8.3$ Hz, 1H), 6.28(d, $J = 8.3$ Hz, 1H), 5.85(ddd, $J = 1.3$, 2.0, 5.6Ha, 1H), 5.74(d, $J = 5.6$ Hz, 1H), 5.55(s, 1H), 4.51(s, 2H), 3.92(d, $J = 8.3$ Hz, 1H), 3.52-3.49(m, 2H), 3.30(d, $J = 8.9$ Hz, 1H), 2.82(dt, $J = 9.9$, 8.3Hz, 1H), 2.48(ddd, $J = 2.0$, 9.9, 15.5Hz, 1H), 2.21(ddd, $J = 1.3$, 8.3, 15.5Hz, 1H), 1.10(s, 3H), 0.94(s, 3H).
15	з-соон	Н	H	(DMSO-d ₆): 11.97(s, 1H), 7.47(s, 1H), 7.41(d, $J = 8.3$ Hz, 1H), 6.67(d, $J = 8.3$ Hz, 1H), 5.91(brs, 1H), 5.66(brs, 1H), 4.93(brs, 1H), 3.90(d, $J = 78.3$ Hz, 1H), 3.36-3.26(m, 3H), 2.77(dd, $J = 8.3$, 17.5Hz, 1H), 2.63-2.27(m, 1H), 2.18(dd, $J = 8.3$, 14.4Hz, 1H), 0.94(s, 3H), 0.88(s, 3H).

16	3-SMe	н	н	(CDCl ₂): 7.01(s, 1H), 7.00-6.95(m, 1H), 6.53(d, J = 8.3Hz, 1H), 5.92-5.86(m, 1H), 5.76-5.72(m, 1H), 3.96-3.92(m, 1H), 3.58(d, J = 11.0Hz, 2H), 3.49(d, J = 11.0Hz, 1H), 3.35(d, J = 1.7Hz, 1H), 2.86(ddd, J = 2.3, 8.3, 18.0Hz, 1H), 2.65-2.52(m, 1H), 2.40(s, 3H), 2.31-2.21(m, 1H), 1.05(s, 3H), 1.00(s, 3H).
17	3-SOMe	Н	H	(CDCl ₂): 7.27-7.23(m, 1H), 7.16(dt, J = 1.7, 8.3Hz, 1H), 6.57(dd, J = 8.3, 12.0Hz, 1H), 5.90(brs, 1H), 5.74(brs, 1H), 3.99(d, J = 7.9Hz, 1H), 3.53(s, 1H), 3.52(s, 1H), 3.42(d, J = 4.0Hz, 1H), 2.92-2.81(m, 1H), 2.67(s, 3H), 2.60-2.49(m, 1H), 2.29-2.20(m, 1H), 1.08(s, 3H), 0.95(s, 3H).
18	3-SO ₂ Me	H	Н	(CDCl ₂): 7.45-7.39(m, 2H), 6.55(d, J = 8.6Hz, 1H), 5.92(brs, 1H), 5.76(brs, 1H), 3.99(brs, 1H), 3.57-3.47(m, 1H), 2.98(s, 3H), 2.98-2.85(m, 1H), 2.56-2.45(m, 1H), 2.29-2.19(m, 1H), 1.26(s, 3H), 1.09(s, 3H).

表 2

実施例 番号	R¹	Rª	'H-NMR (CDCl _a) δ:
19	NO ₂	Me	7.88-7.84(m, 2H), 6.54(d, J = 9.2Hz, 1H), 5.99-5.97(m, 1H), 5.78-5.76(m, 1H), 4.84(brs, 1H), 4.02(d, J = 8.3Hz, 1H), 3.63(d, J = 2.6Hz, 1H), 3.23(s, 3H), 2.81-2.75(m, 1H), 2.51-2.42(m, 1H), 2.22-2.16(m, 1H), 1.27(s, 3H), 1.22(s, 3H).
20	CN	Me	7.21(s, 1H), 7.19(d, J = 8.6 Hz, 1H), 6.55(d, J = 8.6 Hz, 1H), 5.91-5.89(m, 1H), 5.77-5.75(m, 1H), 4.53(brs, 1H), 3.96(d, J = 8.3 Hz, 1H), 3.57(d, J = 2.2 Hz, 1H), 3.22(s, 3H), 2.85-2.71(m, 1H), 2.52-2.43(m, 1H), 2.22-2.14(m, 1H), 1.25(s, 3H), 1.21(s, 3H).
21	NO ₂	Bn	7.88-7.82(m, 2H), 7.41-7.27(m, 5H), 6.47(d, J = 8.9Hz, 1H), 6.00(ddd, J = 1.7, 2.3, 5.5Hz, 1H), 5.78(d, J = 5.6Hz, 1H), 4.90(s, 1H), 4.51(d, J = 11.2Hz, 1H), 4.45(d, J = 11.2Hz, 1H), 4.04(d, J = 8.2Hz, 1H), 3.76(d, J = 2.3Hz, 1H), 2.85(dt, J = 10.2, 8.2Hz, 1H), 2.49(ddd, J = 2.3, 10.2, 15.8Hz, 1H), 2.23(ddd, J = 1.7, 8.2, 15.8Hz, 1H), 1.40(s, 3H), 1.33(s, 3H).
22	CN	Bn	7.65-7.16(m, 7H), 6.49(d, J = 8.3Hz, 1H), 5.91(ddd, J = 1.7, 2.3, 5.6Hz, 1H), 5.76(dd, J = 2.3, 5.6Hz, 1H), 4.60(s, 1H), 4.50(d, J = 11.2Hz, 1H), 4.44(d, J = 11.2Hz, 1H), 3.99(d, J = 8.3Hz, 1H), 3.70(d, J = 2.3Hz, 1H), 2.83(dt, J = 9.9, 8.3Hz, 1H), 2.50(ddd, J = 2.3, 9.9, 14.2Hz, 1H), 2.20(ddd, J = 1.7, 8.3, 14.2Hz, 1H), 1.39(s, 3H), 1.32(s, 3H).

表 3

実施例 番号	\mathbb{R}^1	R ¹⁴	R ¹⁵	Z	R³	¹H-NMR (CDCl ₂) δ:
23	NO ₂	Ме	Ме	oco	Me	(CDCl ₃): 7.88(s, 1H), 7.86(d, J = 9.2Hz, 1H), 6.49(d, J = 9.2Hz, 1H), 5.69(d, J = 5.5Hz, 1H), 5.77(d, J = 5.6Hz, 1H), 4.12(d, J = 11.2Hz, 1H), 4.00(d, J = 8.3Hz, 1H), 3.87(d, J = 11.2Hz, 1H), 3.50(d, J = 2.3Hz, 1H), 2.89(dt, J = 9.9, 8.3Hz, 1H), 2.47(dd, J = 9.9, 15.8Hz, 1H), 2.27(dd, J = 8.8, 15.8Hz, 1H), 2.01(s, 3H), 1.09(s, 3H), 1.08(s, 3H).
24	NO ₃	H	Н	NHCOO	Bu ^t	7.71-7.66(m, 2H), 6.35(d, J = 9.6Hz, 1H), 5.70-5.68(m, 1H), 5.56-5.54(m, 1H), 3.79(d, J = 7.3Hz, 1H), 3.49-3.34(m, 2H), 3.07-2.97(m, 1H), 2.68-2.59(m, 1H), 2.26-2.13(m, 1H), 1.58(s, 9H), 1.56-1.46(m, 2H).
25	NO ₂	Ме	Ме	NHCOO	Bu ^t	7.86-7.82(m, 2H), 6.58(d, J = 8.6Hz, 1H), 5.96-5.94(m, 1H), 5.77-5.74(m, 1H), 4.84(brs, 1H), 4.70(m, 1H), 3.98(d, J = 8.6Hz, 1H), 3.46-3.34(m, 2H), 2.92-2.84(m, 2H), 2.54-2.44(m, 1H), 2.31-2.23(m, 1H), 1.34(s, 9H), 1.03(s, 3H), 0.99(s, 3H).
26	CN	Ме	Ме	NHCOO .	Bu ^t	7.19(s, 1H), 7.17(d, J = 7.9Hz, 1H), 6.64(d, J = 7.9Hz, 1H), 5.88-5.85(m, 1H), 5.76-5.74(m, 1H), 4.69(brs, 1H), 3.98(d, J = 7.9Hz, 1H), 3.42-3.38(m, 1H), 3.27(brs, 1H), 2.92-2.81(m, 2H), 2.55-2.45(m, 1H), 2.30-2.21(m, 1H), 1.35(s, 9H), 1.01(s, 3H), 0.99(s, 3H).

27	NO ₂	Н	Н	S	Мө	7.90(s, 1H), 7.85(dd, J = 2.8, 8.9Hz, 1H), 6.64(d, J = 8.9Hz, 1H), 5.90(brs, 1H), 5.79(brs, 1H), 4.00(d, J = 8.6Hz, 1H), 2.86(ddd, J = 3.3, 6.6Hz, 1H), 2.86(ddd, J = 3.3, 8.6, 17.0Hz, 1H), 2.77-2.57 (m, 2H), 2.58-2.39(m, 1H), 2.28 (dd, J = 8.6, 17.0Hz, 1H), 2.17(s, 3H), 1.91-1.81(m, 2H).
28	NO ₂	Мө	Me	S	Ph	7.87-7.81(m, 3H), 7.39-7.85(m, 2H), 7.30-7.18(m, 2H), 6.42(d, J = 8.9Hz, 1H), 5.96(brs, 1H), 5.77(brs, 1H), 4.48(brs, 1H), 3.99(d, J = 8.9Hz, 1H), 3.63(brs, 1H), 3.10(d, J = 12.5Hz, 1H), 3.03(d, J = 12.5Hz, 1H), 3.01-2.91(m, 1H), 2.52-2.40(m, 1H), 2.30-2.20(m, 1H), 1.17(s, 6H).
29	NO ₂	Me	Ме	単結合	Cı	7.88-7.84(m, 2H), 6.54(d, J = 8.6Hz, 1H), 5.97(brs, 1H), 5.77(brs, 1H), 4.43(brs, 1H), 4.02 (d, J = 7.9Hz, 1H), 3.64(d, J = 2.3Hz, 1H), 3.56(d, J = 11.0Hz, 1H), 2.52(d, J = 11.0Hz, 1H), 2.93(q, J = 8.3Hz, 1H), 2.47(ddd, J = 2.3, 10.0, 15.0Hz, 1H), 2.25 (dd, J = 6.6, 8.3Hz, 1H), 1.18(s, 3H), 1.14(s, 3H).
30	NO ₂	Ме	Me	単結合	Br	7.88-7.85(m, 2H), 6.55(d, J = 8.9Hz, 1H), 5.97(brs, 1H), 5.77(brs, 1H), 4.33(brs, 1H), 4.03(d, J = 7.6Hz, 1H), 3.64(brs, 1H), 3.52-3.43(m, 2H), 2.95(dd, J = 7.9, 17.5Hz, 1H), 2.52-2.43(m, 1H), 2.26(dd, J = 4.9, 14.5Hz, 1H), 1.21(s, 3H), 1.18(s, 3H).

実施例 番号	i	Ra	'H-NMR (CDCL) δ:
31	0	Me	8.22(d, $J = 2.6Hz$, 1H), 7.90(dd, $J = 2.6$, 9.2Hz, 1H), 6.42(d, $J = 9.2Hz$, 1H), 5.99(brs, 1H), 5.13(d, $J = 7.3Hz$, 1H), 3.94·3.74(m, 2H), 3.60(d, $J = 2.3Hz$, 1H), 3.39(s, 3H), 3.36(d, $J = 9.2Hz$, 1H), 3.16(d, $J = 9.2Hz$, 1H), 2.16(q, $J = 9.6Hz$, 1H), 1.96·1.87(m, 2H), 1.11(s, 3H), 0.96(s, 3H).
32	0	Bn	8.21(d, J = 2.3Hz, 1H), 7.87(dd, J = 2.3, 8.9Hz, 1H), 7.43·7.30(m, 5H), 6.22(d, J = 8.9Hz, 1H), 6.10(brs, 1H), 5.11(d, J = 7.3Hz, 1H), 4.53(s, 2H), 3.88(q, J = 7.9Hz, 1H), 3.77(q, J = 6.9Hz, 1H), 3.61(d, J = 2.3Hz, 1H), 3.46(d, J = 8.9Hz, 1H), 3.33(d, J = 8.9Hz, 1H), 2.61(q, J = 7.3Hz, 1H), 1.95·1.86(m, 2H), 1.14(s, 3H), 0.97(s, 3H).
33	1	Me	8.23(d, J = 2.6Hz, 1H), 7.94(dd, J = 2.6, 8.9Hz, 1H), 6.43(d, J = 8.9Hz, 1H), 5.89(brs, 1H), 5.01(d, J = 5.6Hz, 1H), 3.66·3.60(m, 1H), 3.49·3.34(m, 1H), 3.37(s, 3H), 3.32(d, J = 8.9Hz, 1H), 3.17(d, J = 8.9Hz, 1H), 2.27·2.24(m, 1H), 1.84·1.49(m, 5H), 1.13(s, 3H), 0.98(s, 3H).
34	1	Bn	8.25-8.23(m, 1H), 7.90(dd, $J = 2.3$, 8.9Hz, 1H), 7.45-7.31(m, 5H), 6.20(d, $J = 8.9$ Hz, 1H), 5.01(d, $J = 5.3$ Hz, 1H), 4.90(d, $J = 5.3$ Hz, 1H), 4.59(d, $J = 11.9$ Hz, 1H), 4.51(s, 1H), 4.44(d, $J = 11.9$ Hz, 1H), 3.66-3.62(m, 1H), 3.49-3.30(m, 2H), 3.29-3.16(m, 2H), 2.28-2.05(m, 1H), 1.80-1.34(m, 3H), 1.16(s, 3H), 0.98(s, 3H).

[実施例35] 4-(2-ヒドロキシ-1, 1'-ジメチルーエチル) -3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ [c] キノリン-8-カルボニトリルの製造

実施例3の化合物6.75gをテトラヒドロフラン60mlに溶解し、

テトラプチルアンモニウムフルオリドの1Mテトラヒドロフラン溶液20mlを0℃で加えた。0℃で1時間撹拌した後、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=2:1)で精製し、標題化合物3.6gを得た。物性値を以下に示す。

 1 H-NMR(CDCl₂) δ 值: 7.19(s, 1H), 7.17(d, J = 7.9Hz, 1H), 6.50(d, J = 7.9Hz, 1H), 5.87(brs, 1H), 5.77(brs, 1H), 3.93(d, J = 8.2Hz, 1H), 3.60(d, J = 10.6Hz, 1H), 3.53(d, J = 10.6Hz, 1H), 3.47(brs, 1H), 2.86(dt, J = 9.9, 8.2Hz, 1H), 2.50(dd, J = 9.9, 15.8Hz, 1H), 2.25(dd, J = 8.2, 15.8Hz, 1H), 1.09(s, 3H), 0.96(s, 3H).

以下、実施例35と同様にして実施例36~39に示す化合物を製造 した。えられた化合物の物性値を表5、6に示す。

表 5

実施例 番号	Rı	¹H-NMR ð :
36	2·NO ₂	(CDCl ₃): 7.37(d, $J = 8.9$ Hz, 1H), 6.45(d, $J = 8.9$ Hz, 1H), 5.68(brs, 1H), 4.80(d, $J = 8.9$ Hz, 1H), 3.61(d, $J = 10.9$ Hz, 1H), 3.49(d, $J = 10.9$ Hz, 1H), 3.30(brs, 1H), 2.98(q, $J = 8.3$ Hz, 1H), 2.62·2.50(m, 1H), 2.25(dd, $J = 8.3$, 15.2Hz, 1H), 1.05(s, 3H), 1.03(s, 3H).
37	3-NO ₂	(DMSO-ds): 10.12(s, 1H), 7.45(s, 1H), 7.32(s, 1H), 6.45(s, 1H), 5.99(brs, 1H), 5.71(d, J = 5.3Hz, 1H), 5.25(t, J = 4.6Hz, 1H), 3.96(d, J = 7.9Hz, 1H), 3.44(s, 1H), 3.44-3.28(m, 2H), 2.81(q, J = 8.6Hz, 1H), 2.60-2.45(m, 1H), 2.39-2.19(m, 1H), 1.03(s, 3H), 0.89(s, 3H).

実施例 番号	i	'H-NMR (CDCl ₂) δ:
38	0	8.22(d, $J = 2.6$ Hz, 1H), 7.80(dd, $J = 2.3$, 8.9Hz, 1H), 6.45(d, $J = 8.9$ Hz, 1H), 6.02(brs, 1H), 5.13(d, $J = 7.3$ Hz, 1H), 3.90(q, $J = 8.3$ Hz, 1H), 3.79(q, $J = 7.3$ Hz, 1H), 3.65(d, $J = 10.3$ Hz, 1H), 3.64(d, $J = 2.3$ Hz, 1H), 3.56(d, $J = 10.3$ Hz, 1H), 2.64(q, $J = 9.6$ Hz, 1H), 2.17-1.90(m, 2H), 1.13(s, 3H), 0.97(s, 3H).
39	1	8.23(d, J = 2.6Hz, 1H), 7.93(dd, J = 2.6, 9.2Hz, 1H), 6.43(d, J = 9.2Hz, 1H), 5.92(brs, 1H), 5.02(d, J = 5.3Hz, 1H), 3.67-3.43(m, 3H), 2.30-2.26(m, 2H), 1.85-1.49(m, 5H), 1.15(s, 3H), 0.99(s, 3H).

[実施例40] 酢酸2-(8-シアノ-3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ [c] キノリン-4-イル) -2-メチループロピルエステルの製造

実施例35の化合物1.74gをピリジン20m1に溶解し、無水酢酸5m1を0℃で加えた。室温で12時間撹拌した後、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 へキサン:酢酸エチル=4:1)で精製し、標題化合物1.1gを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值:7.21(s, 1H), 7.20(d, J = 8.3Hz, 1H), 6.52(d, J = 8.3Hz, 1H), 5.87(brs, 1H), 5.77(brs, 1H), 4.38(s, 1H), 4.10(d, J = 11.2Hz, 1H), 3.95(d, J = 7.9Hz, 1H), 3.86(d, J = 11.2Hz, 1H), 3.43(brs,

1H), 2.87(d, J = 7.6Hz, 1H), 2.49(dd, J = 9.9, 15.2Hz, 1H), 2.25(dd, J = 7.6, 15.2Hz, 1H), 2.11(s, 3H), 1.07(s, 6H).

以下、実施例40と同様にして実施例41~48に示す化合物を製造 した。えられた化合物の物性値を表7に示す。

表 7

実施例	Z	R³	¹ H·NMR (CDCl ₂) δ:
番号			
41	oco	Et	7.88(s, 1H), 7.86(d, $J = 8.6$ Hz, 1H), 6.49(d, $J =$
ľ			8.6Hz, 1H), 5.96(brs, 1H), 5.78(brs, 1H), 4.73(s,
			1H), $4.14(d, J = 11.2Hz, 1H)$, $4.00(d, J = 7.9Hz$,
			1H), $3.87(d, J = 11.2Hz, 1H)$, $3.49(brs, 1H)$,
			2.89(q, J = 7.9Hz, 1H), 2.53-2.47(m, 1H), 2.41(q, 1H)
1			J = 7.6Hz, 1H), 2.28(dd, $J = 7.9$, 14.2Hz, 1H),
			1.18(t, J = 7.6Hz, 3H), 1.09(s, 6H).
42	oco	Pri	7.88(s, 1H), 7.87(d, $J = 7.9Hz$, 1H), 6.48(d, $J =$
			7.9Hz, 1H), 5.96(dd, $J = 3.0$, 4.3Hz, 1H), 5.77(d,
Ì	'		J = 4.3Hz, 1H), 4.75(s, 1H), 4.14(d, $J = 11.2Hz$,
			1H), $4.00(d, J = 8.3Hz, 1H)$, $3.86(d, J = 11.2Hz,$
İ			1H), $3.50(d, J = 1.7Hz, 1H)$, $2.89(q, J = 8.3Hz,$
ļ			1H), $2.62(q, J = 6.9Hz, 1H)$, $2.49(dd, J = 8.3, 1H)$
1			15.5Hz, 1H), 2.28 (dd, $J = 8.3$, 15.5 Hz, 1H),
1			1.22(d, J = 6.9Hz, 3H), 1.21(d, J = 6.9Hz, 3H),
			1.09(a, 6H).
43	oco	Bu ⁿ	7.88(a, 1H), 7.86(d, $J = 8.9$ Hz, 1H), 6.49(d, $J =$
1		1	8.9Hz, 1H), 5.95(brs, 1H), 5.78(brs, 1H), 4.73(s,
			1H), $4.14(d, J = 11.6Hz, 1H)$, $3.99(d, J = 9.6Hz, 1H)$
		1	1H), $3.86(d, J = 11.2Hz, 1H)$, $3.49(d, J = 2.3Hz, 1H)$
	İ		1H), $2.89(q, J = 9.6Hz, 1H)$, $2.47(dd, J = 9.6, 1H)$
l	İ	1	15.2Hz, $1H$), $2.37(t$, $J = 7.3Hz$, $1H$), $2.27(dd$, $J = 2.27(dd)$
	1	!	9.6, 15.2Hz, 2H), 1.69-1.60(m, 2H), 1.47-1.16(m,
	000		2H), 1.08(s, 6H), 0.92(t, J = 7.3Hz, 3H).
44	oco	But	7.88(s, 1H), 7.86(d, J = 9.2Hz, 1H), 6.49(d, J = 9.2
			9.2Hz, 1H), 5.95(brs, 1H), 5.77(brs, 1H), 4.67(s,
		}	1H), $4.13(d, J = 11.6Hz, 1H)$, $3.99(d, J = 8.6Hz, 1H)$
		1	1H), $3.84(d, J = 11.6Hz, 1H)$, $3.49(brs, 1H)$,
1	1		2.89(dt, J = 9.9, 8.6Hz, 1H), 2.47(dd, J = 9.9, 15.0Hz, 1H)
1			15.2Hz, 1H), 2.27(dd, J = 8.6, 15.2Hz, 1H),
L	<u> 1</u>	<u></u>	1.25(s, 9H), 1.09(s, 6H).

45	oco	Ph	8.02(d, J = 7.3Hz, 2H), 7.87(s, 1H), 7.84(dd, J = 2.6, 8.9Hz, 1H), 7.62(t, J = 7.3Hz, 2H), 7.59-7.45(m, 2H), 6.43(d, J = 8.9Hz, 1H), 5.96(d, J = 2.0Hz, 1H), 5.79(brs, 1H), 4.75(s, 1H), 4.36(d, J = 11.2Hz, 1H), 4.17(d, J = 11.2Hz, 1H), 4.01(d, J = 8.3Hz, 1H), 3.60(d, J = 2.3Hz, 1H), 2.95(q, J = 8.3Hz, 1H), 2.51(dd, J = 8.3, 15.2Hz, 1H), 2.31(dd, J = 8.3, 15.2Hz, 1H), 1.20(s, 3H), 1.18(s, 3H).
46	OCO	4-F-Ph	8.05(dd, J = 5.3, 8.6Hz, 2H), 7.87(s, 1H), 7.84(d, J = 8.9Hz, 1H), 7.16(t, J = 8.6Hz, 2H), 6.45(d, J = 8.9Hz, 1H), 5.96(brs, 1H), 5.79(brs, 1H), 4.63(s, 1H), 4.35(d, J = 11.2Hz, 1H), 4.16(d, J = 11.2Hz, 1H), 4.00(d, J = 8.6Hz, 1H), 3.58(d, J = 2.0Hz, 1H), 2.95(q, J = 8.6Hz, 1H), 2.51(dd, J = 8.6, 13.2Hz, 1H), 2.32(dd, J = 8.6, 13.2Hz, 1H), 1.19(s, 3H), 1.18(s, 3H).
47	OSO ₂	Et	7.89(a, 1H), 7.87(d, $J = 7.6Hz$, 1H), 6.54(d, $J = 7.6Hz$, 1H), 5.97(ddd, $J = 2.3$, 3.0. 5.6Hz, 1H), 5.78(brs, 1H), 4.55(s, 1H), 4.18(d, $J = 10.2Hz$, 1H), 4.07(d, $J = 10.2Hz$, 1H), 4.02(d, $J = 7.9Hz$, 1H), 3.56(d, $J = 2.3Hz$, 1H), 3.18(q, $J = 7.3Hz$, 1H), 2.91(dq, $J = 2.3$, 7.9Hz, 1H), 2.49(ddd, $J = 2.3$, 7.9, 13.9Hz, 1H), 2.27(ddd, $J = 3.0$, 7.9, 13.9Hz, 1H), 1.44(t, $J = 7.3Hz$, 3H), 1.16(s, 3H), 1.12(s, 3H).
48	OSO ₂	4-F-Ph	7.93(dd, J = 5.0, 8.9Hz, 2H), 7.89-7.85(m, 2H), 7.24(t, J = 8.9Hz, 2H), 6.49(d, J = 9.6Hz, 1H), 5.94(dt, J = 1.7, 2.6Hz, 1H), 5.73(d, J = 2.6Hz, 1H), 4.48(s, 1H), 3.96(d, J = 8.3Hz, 1H), 3.93(d, J = 9.9Hz, 1H), 3.89(d, J = 9.9Hz, 1H), 3.47(d, J = 2.0Hz, 1H), 2.80(dt, J = 10.9, 8.3Hz, 1H), 2.39(ddd, J = 2.6, 8.3, 15.5Hz, 1H), 2.17(ddd, J = 1.7, 10.9, 15.5Hz, 1H), 1.07(s, 3H), 1.05(s, 3H).

[実施例49] 2-メチルー2- (8-ニトロー3 a, 4, 5, 9 bーテトラヒドロー3 H-シクロペンタ [c] キノリンー4-イル) ープロピルアミンの製造

実施例25の化合物200mgを酢酸エチル5m1に溶解し、4N塩酸-酢酸エチル溶液1m1を加えた。室温で一晩撹拌した後、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 酢酸エチル:メタノール=2:1)で精製し、標題化合物123mgを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 値:8.01(brs, 1H), 7.81-7.77(m, 2H), 7.45(s, 1H), 6.90(d, J = 9.9Hz, 1H), 6.38(brs, 1H), 5.97-5.95(m, 1H), 5.74-5.72(m, 1H), 4.00(d, J = 8.6Hz, 1H), 3.52(brs, 1H), 3.47(dd, J = 7.3, 14.2Hz, 1H), 2.47-2.37(m, 1H), 2.27-2.22(m, 1H), 1.24(s, 3H), 1.17(s, 3H). [実施例 5 0] 2 - (8 - ニトロー3 a, 4, 5, 9 b - テトラヒドロー3 Hーシクロペンタ [c] キノリンー4ーイル)ープロピルアミンの製造

実施例24の化合物65mgを用い、実施例49と同様にして標題化合物32mgを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值:7.90-7.85(m, 2H), 6.54(d, J = 9.5Hz, 1H), 5.89-5.87(m, 1H), 5.75-5.73(m, 1H), 3.98(d, J = 7.9Hz, 1H), 3.68-3.53(m, 1H), 3.26-3.16(m, 1H), 2.87-2.78(m, 1H), 2.45-2.32(m, 2H), 1.75-1.65(m, 2H).

[実施例 5 1] N-[2-(8-二トロ-3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ[c] キノリン-4-イル) -エチル] - アセタミドの製造

実施例50の化合物40mgおよびトリエチルアミン0.04mlをジメチルホルムアミド2mlに溶解し、無水酢酸0.62mlを加えた。室温で2時間撹拌した後、水および酢酸エチルを加えた。酢酸エチル層を水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=1:1)で精製し、標題化合物36mgを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值:7.90(s, 1H), 7.86(d, J = 8.9Hz, 1H), 6.57(d, J = 8.9Hz, 1H), 5.92-5.89(m, 1H), 5.79-5.74(m, 1H), 5.29(brs, 1H), 3.95(d, J = 7.9Hz, 1H), 3.63-3.44(m, 2H), 3.35-3.23(m, 1H), 2.84-2.78(m, 1H), 2.46-2.28(m, 2H), 2.01(s, 3H).

以下、実施例51と同様にして実施例52~63に示す化合物を製造 した。えられた化合物の物性値を表8に示す。 表 8

実施例	Z	\mathbb{R}^3	'H-NMR (CDCL) δ:
番号			
52	NHCO	Me	7.85(a, 1H), 7.83(d, J = 9.9Hz, 1H), 6.63(d, J = 9.9Hz, 1H), 6.22(brs, 1H), 5.82-5.80(m, 1H), 5.78-5.75(m, 1H), 5.10(brs, 1H), 3.95(d, J = 8.3Hz, 1H), 3.62(dd, J = 7.9, 14.2Hz, 1H), 3.30(m, 1H), 2.93-2.81(m, 1H), 2.52-2.42(m, 1H), 2.31-2.28(m, 1H), 1.97(s, 3H), 1.06(s, 3H), 1.01(s, 3H).
53	NHCO	Pri	7.86(s, 1H), 7.83(d, J = 9.9Hz, 1H), 6.62(d, J = 9.9Hz, 1H), 5.96-5.94(m, 1H), 5.78-5.76(m, 1H), 5.65(brs, 1H), 4.97(brs, 1H), 3.96(d, J = 8.3Hz, 1H), 3.69(dd, J = 8.3, 14.5Hz, 1H), 3.24(d, J = 2.0Hz, 1H), 2.93-2.82(m, 3H), 2.54-2.44(m, 1H), 2.38-2.27(m, 1H), 1.10(d, J = 8.3Hz, 3H), 1.05(s, J = 8.3Hz, 3H), 1.02(s, 3H), 1.01(s, 3H).
54	NHCO	СН,СНМе,	7.86(s, 1H), 7.84(d, J = 9.6Hz, 1H), 6.63(d, J = 9.6Hz, 1H), 5.97-5.96(m, 1H), 5.95-5.94(m, 1H), 5.64(brs, 1H), 4.97(brs, 1H), 3.95(d, J = 8.3Hz, 1H), 3.69(dd, J = 8.3, 14.2Hz, 1H), 3.24(brs, 1H), 2.89(dd, J = 5.3, 14.5Hz, 2H), 2.53-2.44(m, 1H), 2.38-2.30(m, 1H), 1.12(s, 3H), 1.10(s, 3H), 1.05(d, J = 7.9Hz, 3H), 1.04(s, J = 7.9Hz, 3H).
55	NHCO	Buʻ	7.85(s, 1H), 7.83(d, $J = 9.9$ Hz, 1H), 6.65(d, $J = 9.9$ Hz, 1H), 6.10-6.06(m, 1H), 5.97-5.95(m, 1H), 5.77-5.75(m, 1H), 5.16(brs, 1H), 3.95(d, $J = 7.9$ Hz, 1H), 3.65(dd, $J = 8.25$, 14.5Hz, 1H), 3.22(d, $J = 2.3$ 1Hz, 1H), 2.96-2.82(m, 2H), 2.54-2.49(m, 2H), 2.36-2.28(m, 2H), 1.13(s, 3H), 1.07(s, 3H), 1.02(s, 3H).

56	NHCO	Ph	7.86-7.83(m, 2H), 7.75(d, $J = 8.3$ Hz, 2H), 7.51-7.38(m, 3H), 7.12(brs, 1H), 6.70(d, $J = 9.2$ Hz, 1H), 5.98-5.95(m, 1H), 5.79-5.77(m, 1H), 5.35(brs, 1H), 3.94(d, $J = 6.9$ Hz, 1H), 3.78(dd, $J = 7.9$, 14.2Hz, 1H), 3.89(s, 1H), 3.20(dd, $J = 5.6$, 14.2Hz, 1H), 2.51-2.43(m, 1H), 2.34-2.25(m, 1H), 1.15(s, 3H), 1.09(s, 3H).
57	NHCO	- ○ - ○	7.89-7.77(m, 4H), 7.65-7.57(m, 4H), 7.49-7.36(m, 3H), 6.68(d, J = 8.9Hz, 1H), 6.42-6.38(m, 1H), 5.97(brs, 1H), 5.79(brs, 1H), 5.06(m, 1H), 3.95(d, J = 7.6Hz, 1H), 3.87(dd, J = 8.3, 14.5Hz, 1H), 3.38(d, J = 2.3Hz, 1H), 3.19(dd, J = 5.6, 14.5Hz, 1H), 2.92-2.86(m, 1H), 2.56-2.48(m, 1H), 2.36-2.27(m, 1H), 1.16(s, 3H), 1.11(s, 3H).
58	NHCOCO	OEt	7.86(s, 1H), 7.84(d, $J = 6.9Hz$, 1H), 7.83(brs, 1H), 6.62(d, $J = 6.9Hz$, 1H), 6.00-5.98(m, 1H), 5.97-5.95(m, 1H), 4.64(brs, 1H), 4.39(q, $J = 7.3Hz$, 2H), 3.96(d, $J = 7.6Hz$, 1H), 3.60(dd, $J = 7.9$, 14.2Hz, 1H), 2.96-2.84(m, 1H), 2.52-2.43(m, 1H), 2.33-2.24(m, 1H), 1.38(t, $J = 7.3Hz$, 3H), 1.11 (s, 3H), 1.08(s, 3H).
59	NHSO ₂	Me	7.74(s, 1H), 7.70(d, $J = 8.9$ Hz, 1H), 6.45(d, $J = 8.9$ Hz, 1H), 5.58-5.67(m, 1H), 5.68-5.65(m, 1H), 4.76(t, $J = 6.9$ Hz, 1H), 4.57(brs, 1H), 8.88(d, $J = 7.9$ Hz, 1H), 3.42(d, $J = 1.7$ Hz, 1H), 3.09(dd, $J = 6.9$, 13.5Hz, 1H), 2.95(dd, $J = 7.3$, 13.5Hz, 1H), 2.87(s, 3H), 2.86-2.75(m, 1H), 2.41-2.36(m, 1H), 2.22-2.13(m, 1H), 1.00(s, 3H), 0.97(s, 3H).
60	NHSO ₂	Et	7.84(s, 1H), 7.80(d, J = 8.2Hz, 1H), 6.64(d, J = 8.2Hz, 1H), 6.62-6.52(m, 1H), 5.96(brs, 1H), 5.76(brs, 1H), 5.20(brs, 1H), 3.99-3.96(m, 1H), 3.55(brs, 1H), 3.51-2.87(m, 5H), 2.53-2.49(m, 1H), 2.28-2.18(m, 1H), 1.35(t, J = 7.3Hz, 3H), 1.06(s, 3H), 1.03(s, 3H).
61	NHSO ₂	4-F-Ph	7.89-7.83(m, 4H), 7.22-7.16(m, 2H), 6.67(d, J = 9.6Hz, 1H), 5.97-5.95(m, 1H), 5.75-5.73(m, 1H), 4.88(t, J = 7.6Hz, 1H), 4.60(brs, 1H), 3.96(d, J = 7.9Hz, 1H), 3.48(brs, 1H), 3.00-2.83(m, 2H), 2.44-2.34(m, 1H), 2.23-2.14(m, 1H), 1.06(s, 3H), 1.03(s, 3H).

62	NHSO ₂	4-Cl-Ph	7.87-7.80(m, 2H), 7.77(d, J = 8.6Hz, 2H), 7.48(d, J = 8.6Hz, 2H), 6.65(d, J = 9.6Hz, 1H), 5.97-5.95(m, 1H), 5.75-5.73(m, 1H), 4.80(t, J = 7.3Hz, 1H), 4.55(brs, 1H), 3.95(d, J = 7.9Hz, 1H), 3.47(d, J = 2.0Hz, 1H), 3.01-2.28(m, 3H), 2.24-2.35(m, 1H), 2.22-2.17(m, 1H), 1.06(s, 3H), 1.03(s, 3H).
63	NHSO ₂	4-AcNH-Ph	7.84-7.80(m, 2H), 7.75(d, $J = 8.6$ Hz, 2H), 7.58(d, $J = 8.6$ Hz, 2H), 6.52(d, $J = 9.6$ Hz, 1H), 5.93-5.91(m, 1H), 5.73-5.71(m, 1H), 5.00(t, $J = 7.3$ Hz, 1H), 4.63 (s, 1H), 3.91(d, $J = 7.9$ Hz, 1H), 3.43(s, 1H), 2.88-2.80(m, 2H), 2.43-2.34(m, 1H), 2.22-2.13(m, 1H), 2.05(s, 3H), 1.03(s, 3H), 1.01(s, 3H).

[実施例 64] 1-イソプロピルー3-[2-メチルー2-(8-二トロー3a, 4, 5, 9b-テトラヒドロー3<math>H-シクロペンタ [c] キノリンー4-イル) -プロピル] ウレアの製造

= 5.9Hz, 3H).

以下、実施例64と同様にして実施例65~72に示す化合物を製造 した。えられた化合物の物性を表9に示す。

表 9

実施例 番号	Z	R\$	¹ H-NMR (CDCl ₂) δ:
65	NHCONH	3-Me-Ph	7.83-7.79(m, 2H), 7.23-7.17(m, 3H), 7.04-6.87(m, 2H), 6.57(d, J = 8.3Hz, 1H), 6.32(brs, 1H), 5.98-5.96(m, 1H), 5.80-5.78(m, 1H), 5.02-5.01(m, 2H), 3.95(d, J = 7.6Hz, 1H), 3.58(dd, J = 7.6, 14.2Hz, 1H), 3.37(d, J = 1.3Hz, 1H), 3.00(dd, J = 5.6, 14.5Hz, 1H), 2.89-2.82(m, 1H), 2.53-2.43 (m, 1H), 2.30-2.24(m, 1H), 2.30(s, 3H), 1.03(s, 3H), 1.01(s, 3H).
66	NHCONH	4-NO2-Ph	8.23(t, $J = 2.0$ Hz, 1H), 7.85-7.77(m, 2H), 7.71(d, $J = 2.3$ Hz, 1H), 7.62(dd, $J = 2.6$, 9.2Hz, 1H), 7.48-7.37(m, 2H), 6.46(d, $J = 8.9$ Hz, 1H), 5.94-5.92(m, 1H), 5.81-5.79 (m, 1H), 5.73(t, $J = 5.9$ Hz, 1H), 4.86(brs, 1H), 3.93(d, $J = 6.9$ Hz, 1H), 3.49-3.41(m, 2H), 3.27(dd, $J = 7.3$, 14.8Hz, 1H), 2.94-2.87(m, 1H), 2.55-2.47(m, 1H), 2.37-2.28(m, 1H), 1.12 (s, 3H), 1.06(s, 3H).
67	NHCSNH	Ме	7.86(s, 1H), 7.82(d, J = 9.6Hz, 1H), 6.63(d, J = 9.6Hz, 1H), 6.01-5.99(m, 1H), 5.79-5.77(m, 1H), 5.19(brs, 1H), 4.30(dd, J = 8.2, 14.2Hz, 1H), 3.94(d, J = 8.6Hz, 1H), 3.33(d, J = 2.3Hz, 1H), 3.22(dd, J = 4.6, 14.5Hz, 1H), 2.94(d, J = 5.3Hz, 3H), 1.13(s, 3H), 1.07(s, 3H).
68	NHCSNH	Et	7.86(s, 1H), 7.83(d, J = 9.6Hz, 1H), 6.63(d, J = 9.6Hz, 1H), 5.99(brs, 1H), 5.89(brs, 1H), 5.79-5.70(m, 2H), 5.21(brs, 1H), 4.34-4.26(m, 1H), 3.94(d, J = 7.6Hz, 1H), 3.32(q, J = 7.3Hz, 2H), 3.24(dd, J = 5.0, 14.5Hz, 1H), 2.88-2.82(m, 1H), 2.53-2.44 (m, 1H), 2.33-2.24(m, 1H), 1.22(t, J = 7.3Hz, 3H), 1.13(s, 3H), 1.06(s, 3H).

69	NHCSNH	Pri	7.83(s, 1H), 7.82(d, $J = 9.0$ Hz, 1H), 6.44(d, $J = 9.0$ Hz, 1H), 5.98-5.97(m, 3H), 5.25
		•	
		•	(brs, 1H), 4.28-4.08(m, 2H), 3.93(d, J =
1			835Hz, 1H), 3.34(brs, 1H), 3.23(dd, J =
ŀ			5.0, 14.5Hz, 1H), 2.88-2.81(m, 1H), 2.52-
			2.42(m, 1H), 2.33-2.27(m, 1H), 1.19(d, J =
1			6.6Hz, 3H), 1.17(d, J = 6.6Hz, 3H), 1.12(s,)
			3H), 1.06(s, 3H).
70	NHCSNH	\rightarrow	7.88-7.83(m, 2H), 6.64 (d, $J = 9.6$ Hz, 1H),
1			6.02-5.98(m, 1H), 5.79-5.77(m, 1H), 5.68-
1		•	5.63(m, 1H), 5.20(brs, 1H), 4.26(dd, J =
			8.3, 14.2Hz, 1H), 3.95(d, J = 9.6Hz, 1H),
			3.65-3.54(m, 1H), $3.32(d, J = 2.0Hz, 1H)$,
			3.21(dd, J = 4.6, 14.2Hz, 1H), 2.89-2.78
			(m, 1H), 2.53-2.43(m, 1H), 2.33-2.24(m,
			1H), 1.96-1.92(m, 2H), 1.76-1.68(m, 2H),
}	j		1.35·1.15(m, 6H), 1.12(s, 3H), 1.06(s, 3H).
71	NHCSNH	Ph	7.86-7.82(m, 2H), 7.74(brs, 1H), 7.48-
'-			7.43(m, 2H), $7.35(d, J = 7.6Hz, 1H)$,
1		i I	7.17(d, J = 7.6Hz, 2H), 6.68(d, J = 8.6Hz,
1			1H), 6.17(brs, 1H), 5.99(brs, 1H), 5.78
			(brs, 1H), 5.07 (brs, 1H), 4.29 (dd, $J = 8.6$,
	1		14.5Hz, 1H), 3.90 (d, $J = 7.3$ Hz, 1H), 3.27
ì	İ		(m, 1H), 3.23(dd, J = 4.6, 9.9Hz, 1H),
		·	2.84-2.80(m, 1H), 2.50-2.42(m, 1H),
1		ł	2.30-2.21(m, 1H), 1.03(s, 3H), 0.99(s, 3H).
72	NHCSNH	4-Br-Ph	8.01(brs, 1H), 7.86·7.82(m, 2H), 7.54(d, J
'-		l	= 8.6Hz, 2H), 7.10 (d, $J = 8.6$ Hz, 2H),
1	1		6.56(d, J = 9.6Hz, 1H), 6.35-6.30(m, 1H),
		ł	6.00-5.98(m, 1H), 5.79-5.77(m, 1H),
			5.00(brs, 1H), 4.25 (dd, $J = 7.9$, 14.2 Hz,
			1H), $3.50(d, J = 7.9Hz, 1H)$, $3.32-3.24(m, l)$
ł			2H), $2.84(q, J = 8.2Hz, 1H)$, $2.28-2.41(m, l)$
1		1	1H), 2.32-2.23(m, 1H), 1.04(s, 3H), 1.03(s,
1	ŀ		3H).
L		<u> </u>	

[実施例 7 3、 7 4] 4-(2-メタンスルフィニル―エチル) -8- ニトロ-3 a、 4、 5、 9 b-テトラヒドロ-3 H-シクロペンタ [c] キノリン(実施例 7 3)および 4-(2-メタンスルフォニル―エチル) <math>-8-ニトロ-3 a、 4、 5、 9 b-テトラヒドロ-3 H-シクロペンタ [c] キノリン(実施例 7 4)の製造

$$O_2N$$
 N
 S
 Me
 O_2N
 N
 S
 S
 Me
 O_2

実施例27の化合物70.5mgをジクロロメタン5m1に溶解し、メタクロロ過安息香酸217mgを0℃で加えた。室温で30分間撹拌した後、飽和炭酸水素ナトリウム水溶液および酢酸エチルを加えた。酢酸エチル層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=1:2~酢酸エチル~酢酸エチル:メタノール=9:1)で精製し、実施例73の化合物を13.8mg、実施例74の化合物を44mg得た。物性値を以下に示す。

実施例 7 3 : 1 H-NMR(CDCl₃) δ 值 : 8.07-7.80(m, 2H), 6.53(dd, J = 1.3, 8.9Hz, 1H), 5.89(brs, 1H), 5.74(brs, 1H), 4.00(d, J = 9.6Hz, 1H), 3.66-3.56(m, 1H), 2.99-2.80(m, 3H), 2.68(s, 3H×20/33), 2.64(s, 3H×13/33).

実施例 7 4: 1 H-NMR(CDCl₃) δ 值:7.91(s, 2H), 7.87(d, J = 8.6Hz, 1H), 6.43(d, J = 8.6Hz, 1H), 5.91(brs, 1H), 5.76(brs, 1H), 4.02(d, J = 9.2Hz, 1H), 3.80-3.71(m, 1H), 3.29-3.10(m, 2H), 3.00(s, 3H), 2.88(ddd, J = 2.6, 8.5, 16.2Hz, 1H), 2.53-2.43(m, 1H), 2.30(dd, J = 8.5, 16.2Hz, 1H), 2.17-2.09(m, 2H).

実施例28の化合物20mgを用い、実施例73と同様にして標題化合物16mgを得た。物性値を以下に示す。

一イル) 一プロピル] エステルの製造

実施例30の化合物100mgおよびトリエチルアミン40μlをジメチルホルムアミド5mlに溶解し、チオ酢酸カリウム98mgを加えた。室温で20分間、50℃で6時間30分撹拌した後、水および酢酸エチルを加えた。酢酸エチル層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラ

ムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル= $20:1\sim$ $10:1\sim9:1$)で精製し、標題化合物84mgを得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值:7.87(s, 1H), 7.86(d, J = 6.9Hz, 1H), 6.57(d, J = 6.9Hz, 1H), 5.99-5.94(m, 1H), 5.79-5.75(m, 1H), 4.47(brs, 1H), 3.97(d, J = 8.3Hz, 1H), 3.44(d, J = 2.0Hz, 1H), 3.24(d, J = 4.2Hz, 1H), 2.93-2.81(m, 1H), 2.84(d, J = 4.2Hz, 1H), 2.53-2.40(m, 1H), 2.34(s, 3H), 2.34-2.23(m, 1H), 1.10(s, 3H), 1.06(s, 3H).

[実施例 7 7] 2-メチル-2- (8-ニトロ-3 a, 4, 5, 9 b-テトラヒドロ-3 H-シクロペンタ [c] キノリン-4-イル) -プロパン-1-チオールの製造

実施例76の化合物134mgをメタノールとテトラヒドロフランの混合溶液15mlに溶解し、2mol/l水酸化ナトリウム水溶液15mlを加えた。50℃で一晩撹拌した後、溶媒を減圧下留去した。飽和塩化アンモニウム水溶液および2mol/l塩酸を加え酸性とし、酢酸エチルを加えた。酢酸エチル層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=4:1~ヘキサン:酢酸エチル=2:1~ヘキサン:酢酸エチル=1:1)で精製し、標題化合物34mgを得た。物性値を以下に示す。

¹H-NMR(CDCl₃) δ 值: 7.88 (s, 1H), 7.88-7.83 (m, 1H), 6.52 (d, J=8.6Hz, 1H), 5.96 (brs, 1H), 5.78(brs, 1H), 4.39 (brs, 1H), 4.00 (brd,

J=8.9Hz, 1H), 3.53 (d, J=1.7Hz, 1H), 3.03-2.86 (m, 3H), 2.52-2.42 (m, 1H), 2.29-2.20 (m, 1H), 1.14 (s, 3H), 1.07 (s, 3H).

次に、本発明化合物の有用性を下記の試験例により説明する。

[試験例1] ラットアンドロゲン受容体(ラットAR)に対する競合的 結合試験

ラットAR画分の調製:11週齢の雄性SDラットを精巣摘出後、3 日目に前立腺を摘出、氷冷したET緩衝液(10mM Tris,1mM EDTA,5mM DTT,10mM モリプデン酸ナトリウム,pH7.4)中に回収した。前立腺を細切し、ET緩衝液を加え、ホモジナイザーを用いてホモジナイズした。このホモジネートを100,000×g、60分、4℃で超遠心分離した上清をラットAR画分(以下ARFという)とした。

結合試験: ⁸H-テストステロン (以下 ⁸H-T という) を ET 緩衝液で希 釈調製し、ジヒドロテストステロン (DHT) は ⁸H-T (2.5nM) の最高 濃度の 400 倍濃度 (最終濃度 1 μ M) となるように調製した。 ⁸H-T 調製液を、DHT 添加、無添加および各濃度の試験化合物を添加した 1.5ml チューブに加え、さらに 200 μgA R F を加えて最終容量を 100 μl とした。 4℃で 2 時間インキュベート後、 0.05%デキストラン T70−1.0%活性炭素溶液 300 μl を加えて、氷中でさらに 15 分間インキュベートして未結合の ⁸H-T を吸着除去した。 4℃、 2,500rpm、 5 分間遠心分離後、その上清 275 μl を液体シンチレーションパイアルに採り、 クリアゾル 2ml を加え撹拌、静置後、液体シンチレーションカウンターで ⁸H 放射活性を測定した。

相対的結合阻害率の算出:以下の式から本発明化合物の結合阻害率 (%)を算出し、その濃度-結合阻害曲線のプロビット(probit)解析により50%阻害濃度(IC₅₀)を算出した。

結合阻害率 (%) = $100 \times [1 - (a - c) / (b - c)]$

a:本発明化合物添加サンプルの放射活性(*H-T+化合物)

b:本発明化合物無添加サンプルの放射活性(*H-Tのみ:総結合量)

c: DHT 添加サンプルの放射活性(*H-T+DHT: 非特異的結合量)

相対的結合阻害率(RBA:Relative Binding Affinity)は以下の式より求めた(Endocrinology 138, 863-870, 1997)。

RBA=100× (ハイドロキシフルタミドの IC_{50}) / (本発明化合物の IC_{50})

上記より求めた本発明化合物のRBAを表10に示す。

表10

	· · · · · · · · · · · · · · · · · · ·
試験化合物	RBA
実施例 1	4751
実施例 7	6 5
実施例 19	57
実施例 21	74
実施例 29	75
実施例 35	236
実施例 39	829
実施例 40	96
実施例 52	478
実施例 53	55
実施例 59	2288
実施例 60	814
実施例 61	169
実施例 63	580
実施例 64	298
実施例 68	491
実施例 69	244
実施例 76	131
ハイト、ロキシフルタミト・	100

ハイドロキシフルタミドの結合阻害率を 100 としたRBAを求めた 結果、本発明化合物は非常に強い結合阻害活性を示した。

[試験例2] 精巣摘出ラットでの前立腺の重量増加作用

8-12 週齢雄 SD ラットを精巣摘出後、5日後より本発明化合物 (3、

30mg/kg)を0.5%メチルセルロース溶液に懸濁し、1日1回1週間連続および週6日8週間連続、皮下投与した。最終投与日の翌日に、腹側前立腺の湿重量を測定し、本発明化合物のin vivoでのARアゴニスト作用を評価した。結果を表11、12に示す。

表11

試験化合物	前立腺重量 mg/体重(100g)
1週間投与 正常対照(sham)	100±11
対照例(Veh)	8±2
実施例 1 3mg/kg	18±4**
実施例 1 30mg/kg	26±3**

Nean \pm SD *p<0.05, **p<0.01 on Dunnett's *t*-test.

表12

試験化合物	前立腺重量 mg/体重(100g)
8週間投与	
正常対照(sham)	104±22
対照例(Veh)	8±1
実施例 1 3mg/kg	52±8**
実施例 1 30mg/kg	97±14**

Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test.

実施例1の化合物は、連続投与することにより1週間で対照例に対して有意な重量増加を示した。さらに8週間まで延ばすことで正常対照のレベルまで萎縮した前立腺を回復し、有意なARアゴニスト作用を示した。

[試験例3] 精巣摘出(ORX)ラットでの前立腺の重量増加作用

8週齢雄SDラットに精巣摘出術を施した。術後5日目より本発明化合物(実施例60、30mg/kg)を5%ジメチルスルホキシド含有オリーブ油溶液に溶解して、1日1回8日間、皮下投与した。最終投与の翌日に、腹側前立腺の湿重量を測定し、本発明化合物のARアゴニス

ト作用を評価した。結果を表13に示す。

表13

		前立腺重量 mg/体重100g
正常交	f照(Sham)	103 ± 12
ORX	対照例(Vehicle)	10 ± 1 [↔]
<u> </u>	実施例60 30mg/kg	21 ± 2**

Mean±SD ^{***}p<0.01 on dunnett's t-test(vs Vehicle)

^{***}p<0.01 on unpaired t-test(vs Sham)

実施例60の化合物は、8日間連続投与することにより対照例に対して減少した前立腺重量を有意に増加し、優れたARアゴニスト作用を示した。

[試験例4]精巣摘出(ORX)ラットでの前立腺の重量増加作用および骨密度増加作用

12週齢雄SDラットに精巣摘出術を施した。術後翌日より陽性対照化合物ジヒドロテストステロン(DHT、10mg/kg)および本発明化合物(実施例60、60mg/kg)を5%ジメチルスルホキシド含有オリーブ油溶液に溶解して、1日1回週5日4週間、皮下投与した。最終投与の翌日に、腹側前立腺の湿重量を測定し、本発明化合物のARアゴニスト作用を評価した。また、最終投与の翌日に右大腿骨を摘出し10%中性緩衝ホルマリン溶液で一晩固定した後、骨幹部から近位端における骨密度を二重X線吸収法により、骨塩量測定装置(Aloka社、DCS-600)で測定し、本発明化合物の骨密度増加作用を評価した。結果を表14に示す。

表14

	前立腺重量 mg/体重100g	骨密度 mg/cm²
正常対照(Sham)	104 ± 18	132 ± 5
ORX 対照例(Vehicle)	9 ± 2**	124 ± 5 ^{**}
DHT 10mg/kg	150 ± 14**	131 ± 7
実施例60 60mg/kg	56 ± 13**	132 ± 7*

Mean±SD *p<0.05, **p<0.01 on dunnett's t-test(vs Vehicle)

**p<0.01 on unpaired t-test(vs Sham)

実施例60の化合物は、4週間投与することにより対照に対して有意な前立腺重量増加を示した。また、対照に対して減少した骨密度を有意に増加し、優れたARアゴニスト作用を示した。

[試験例 5] 精巣摘出ラットでのテストステロン誘導前立腺重量増加に 対する抑制作用

8週齢雄SDラットを精巣摘出後、5日後よりプロピオン酸テストステロン(以下TPという)1mg/kg および本発明化合物 30mg/kg を同時に1日1回1週間連続投与した。本発明化合物は0.5%メチルセルロース溶液に懸濁し、TPは5%エタノールを含む綿実油に溶解し、それぞれ皮下投与した。最終投与日の翌日に、腹側前立腺の湿重量を測定し、TPによる前立腺の重量増加に対する本発明化合物のARアンタゴニスト作用を評価した。結果を表15に示す。

表15

試験化合物	前立腺重量 mg/体重100g
対照例(Veh) TP投与群	15.7 ± 18 80.4 ± 13.7
実施例 9	60.5 ± 10.7*
実施例 19	58.2 ± 17.7**
実施例 40	$55.9 \pm 6.3^{**}$

Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test

実施例9、19、40の化合物はTPの作用を有意に抑制し、優れた ARアンタゴニスト作用を示した。

以下に本発明化合物の製剤例を示すが、処方はこれらに限定されるも

のではない。

[製剤例1] 錠剤

下記の処方にしたがって、1錠あたり有効成分2mgを含有する錠剤 を調製した。

実施例1の化合物	2 m g
澱粉	48mg
乳糖	30 m g
結晶セルロース	15mg
メチルセルロース	3 mg
ステアリン酸マグネシウム	2 m g
全量	100mg

[製剤例2] カプセル剤

下記の処方にしたがって、1錠あたり有効成分2mgを含有する10 0mgの混合成分をカプセルに充填してカプセル剤を調製した。

実施例1の化合物	$2 \mathrm{m} \mathrm{g}$
澱粉	38mg
乳糖	50mg
結晶セルロース	8 m g
ステアリン酸マグネシウム	2 m g
全量	100mg

産業上の利用可能性

本発明のテトラヒドロキノリン誘導体およびそれを有効成分とする医薬は、特異的かつ強力なAR結合親和性を有しARアゴニストまたはアンタゴニスト作用を有しているので、ARの機能を特異的に調節することができ種々のARを介した疾患の予防および治療を行うことができる。

請求の範囲

1. 式:

$$R^1$$
 X
 $Y-Z-R^3$
 (1)

(式中、R¹およびR²はそれぞれ独立して水素原子、炭素数1~9のア ルキル基、炭素数1~9のアルコキシ基、ハロゲン原子、ニトロ基、N R⁴R⁵(式中、R⁴およびR⁵はそれぞれ独立して水素原子、炭素数1~ 9のアルキル基、炭素数3~7のシクロアルキル基、炭素数7~9のア ラルキル基、アリール基、炭素数2~5の脂肪族アシル基、炭素数2~ 5の脂肪族アシロキシ基、芳香族アシル基、炭素数1~4の脂肪族スル ホニル基、芳香族スルホニル基、炭素数2~5のアルコキシカルボニル 基、ヒドロキシオキサリル基または炭素数3~7のアルコキシオキサリ ル基を表す)、カルボキシル基、炭素数2~5のアルコキシカルボニル 基、アミド基、炭素数2~5のアルキルアミド基、炭素数1~4のアル キルチオ基、炭素数1~4の脂肪族スルフィニル基、炭素数1~4の脂 肪族スルホニル基、シアノ基、スルファモイル基、炭素数1~4の脂肪 族スルファモイル基、アミジノ基、トリフルオロメチル基、トリフルオ ロメトキシ基またはテトラフルオロエトキシ基を表し、XはCH、CH "、O、SまたはNR⁶(式中、R⁶は独立して前記R⁴と同じ意味を表 す。)を表し、XがCHの場合には式中の破線は二重結合を表す。 i は 0~2の整数を表し、Yは炭素数1~9のアルキル基、炭素数3~7の シクロアルキル基、水酸基、炭素数1~9のアルコキシ基またはNR7

R® (式中、R¹およびR⁸はそれぞれ独立して前記R⁴と同じ意味を表 す。) で置換されていてもよい炭素数1~9のアルキレン基を表し、2 は単結合、一〇一、一〇〇〇一、一〇S〇2一、一S一、一SCO一、 -SO-, $-SO_2-$, $-NR^9-$, $-NR^9CO-$, $-NR^9SO_2-$, -NR°CONH-.-NR°CSNH-.-NR°COO-stck-NR° COCO-(式中、R⁹は水素原子、炭素数1~9のアルキル基、炭素 数3~7のシクロアルキル基、炭素数7~9のアラルキル基、炭素数2 ~5のアルコキシアルキル基、またはR™で置換されていてもよいアリ ール基(式中、R¹⁰は炭素数1~9のアルキル基、炭素数1~9のアル コキシ基、ハロゲン原子、ニトロ基、アリール基、NR¹¹R¹²(式中、 R¹¹およびR¹²はそれぞれ独立して前記R⁴と同じ意味を表す。)、カ ルポキシル基、炭素数2~5のアルコキシカルポニル基、アミド基、炭 **素数 2~ 5 のアルキルアミド基、炭素数 1~ 4 のアルキルチオ基、炭素** 数1~4の脂肪族スルフィニル基、炭素数1~4の脂肪族スルホニル基、 シアノ基、スルファモイル基、炭素数1~4の脂肪族スルファモイル基、 トリフルオロメチル基、トリフルオロメトキシ基またはテトラフルオロ エトキシ基を表す。)を表す。)を表し、R3は水素原子、炭素数1~ 9のアルキル基、炭素数3~7のシクロアルキル基、炭素数7~9のア ラルキル基、炭素数1~9のアルコキシ基、炭素数2~5のアルコキシ アルキル基、ハロゲン原子、置換シリル基、またはRISで置換されてい てもよいアリール基(式中、R13は独立して前記R10と同じ意味を表 す。) を表す。ただし、Zが単結合の場合にのみR3はハロゲン原子を 表す。)で示されるテトラヒドロキノリン誘導体またはその塩。

- 2. 請求の範囲第1項記載のテトラヒドロキノリン誘導体またはその 塩を含有する医薬組成物。
- 3. 請求の範囲第1項記載のテトラヒドロキノリン誘導体またはその

塩を含有するステロイド受容体調節剤。

- 4. 請求の範囲第1項記載のテトラヒドロキノリン誘導体またはその 塩を含有するアンドロゲン受容体調節剤。
- 5. アンドロゲン受容体調節剤がアンドロゲン受容体アゴニストである請求の範囲第4項記載のアンドロゲン受容体調節剤。
- 6. アンドロゲン受容体調節剤がアンドロゲン受容体アンタゴニスト である請求の範囲第4項記載のアンドロゲン受容体調節剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/07007

A.	. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D221/16, 491/052, 491/048, A61K31/473, 31/4355, 31/436,					
	_	A61P43/00, 5/26, 15/08, 15	/10, 7/06, 19/10, 35/00			
		International Patent Classification (IPC) or to both nat	ional classification and IPC			
		SEARCHED currentation searched (classification system followed b	ov classification symbols)			
14500		Cl ⁷ C07D221/16, 491/052, 491/0	48,			
		A61K31/473, 31/4355, 31/43 A61P43/00, 5/26, 15/08, 15	6, /10 7/06 19/10 35/00			
חיים		•		in the fields searched		
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1992 Toroku Jitsuyo Shinan Koho 1994-1996 Kokai Jitsuyo Shinan Koho 1971-1992 Jitsuyo Shinan Toroku Koho 1996-2000					
Ele		ata base consulted during the international search (name TN), REGISTRY (STN)	e of data base and, where practicable, sea	rch terms used)		
	C42 (C	IN, ABGIGIAL (CIA)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Ca	tegory*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
	Х	WO, 98/34111, A1 (TREGA BIOSCIE	NCES, INC.),	1,2		
	A	06 August, 1998 (06.08.98), EXAMPLE		3-6		
		& US, 5925527, A				
	A	EP, 59146, Al (ROUSSEL-UCLAF),		3-6		
		01 September, 1982 (01.09.82),				
	Full text & US, 4607054, A & JP, 2-243646, A					
			·			
			:			
		·		is a second of the second of t		
l						
	Further documents are listed in the continuation of Box C. See patent family annex.					
1:		categories of cited documents:	"T" later document published after the inte			
"A" document defining the general state of the art which is not considered to be of particular relevance understand the principle or theory underlying the inv				erlying the invention		
date			"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive			
"L	cited t	ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	step when the document is taken alone document of particular relevance; the	claimed invention cannot be		
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other			considered to involve an inventive step when the document is combined with one or more other such documents, such			
means			combination being obvious to a person skilled in the art "&" document member of the same patent family			
L	than the priority date claimed					
Date of the actual completion of the international search 22 December, 2000 (22.12.00) Date of mailing of the international search report 16 January, 2001 (16.01.01)						
Name and mailing address of the ISA/ Japanese Patent Office			Authorized officer			
Faccimile No.		Jo	Telephone No.			

国際出願番号 PCT/JP00/07007 国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl⁷ C07D221/16, 491/052, 491/048, A61K31/473, 31/4355, 31/436, A61P43/00, 5/26, 15/08, 15/10, 7/06, 19/10, 35/00 調査を行った分野 В. 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl'C07D221/16, 491/052, 491/048, A61K31/473, 31/4355, 31/436, A61P43/00, 5/26, 15/08, 15/10, 7/06, 19/10, 35/00 **最小限資料以外の資料で調査を行った分野に含まれるもの** 日本国実用新案公報 1926-1992 日本国公開実用新案公報 1971-1992 日本国登録実用新案公報 1994-1996 日本国実用新案登録公報 1996-2000 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* WO. 98/34111, A1 (TREGA BIOSCIENCES, INC.) 1, 2 X 6.8月.1998(06.08.98) **EXAMPLE** 3 - 6Α & US, 5925527, A 3 - 6EP, 59146, A1 (ROUSSEL-UCLAF) Α 1. 9月. 1982 (01. 09. 82) 全文 & US, 4607054, A & JP, 2-243646, A □ C欄の続きにも文献が列挙されている。 │ │ パテントファミリーに関する別紙を参照。 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「丁」国際出願日乂は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 16.01.01 国際調査を完了した日 国際調査報告の発送日 22.12.00 特許庁審査官(権限のある職員) 4 C 9841 国際調査機関の名称及びあて先 ED: 日本国特許庁(ISA/JP) 田村 聖子 郵便番号100-8915

電話番号 03-3581-1101 内線 6247

東京都千代田区館が関三丁目4番3号