FPGA Vendor Tools Installation Guide

Version 1.5

Revision History

Revision	Description of Change	Date
v1.1	Initial Release	3/2017
v1.2	Updated for Release 1.2	8/2017
v1.4	Updated for Release 1.4	9/2018
v1.5	Updated for Release 1.5	4/2019

Table of Contents

T	References						
2	Supported Vendor Tools and OpenCPI functionality						
3	Xilinx Toolset Installation and Configuration 3.1 Xilinx Vivado Installation in CentOS 6/7 3.1.1 Xilinx Vivado 2017.1 Installation in CentOS 6/7 3.1.2 OpenCPI Considerations 3.1.3 Xilinx Vivado 2013.4 SDK Only Installation in CentOS 6/7 3.2 Xilinx ISE 14.7 Installation in CentOS 6/7 3.2.1 OpenCPI Considerations 3.3 Xilinx LabTools 14.7 Installation in CentOS 6/7 3.3.1 OpenCPI Considerations 3.4 Xilinx Toolset Licensing 3.4.1 Generate and download a license file from Xilinx 3.4.2 Load license into Vivado 3.4.3 Load license into ISE 3.4.4 Note on node-locked licenses in CentOS 7 3.4.5 OpenCPI Considerations 3.5 Xilinx Cable Driver Installation in CentOS 6/7 3.5.1 Vivado 3.5.2 ISE 3.5.3 Testing Cable Driver Installation	6 8 11 14 15 17 18 18 19 19 19 20 20 20 20					
4	Intel Quartus Toolset Installation and Configuration 4.1 Intel Quartus Prime Standard Edition 17.1 Installation in CentOS 7 4.1.1 OpenCPI Considerations	22 22 23					
5	ModelSim Installation and Configuration 5.1 ModelSim DE 16.0e Installation in CentOS 7 5.1.1 OpenCPI Considerations 5.2 Compile Xilinx/Zynq simulation libraries for ModelSim 5.2.1 Compile Vivado's simulation libraries 5.2.2 Compile ISE's simulation libraries 5.2.3 Modify "modelsim.ini" to include path to built library	23 24 24 26					

1 References

This document assumes a basic understanding of the Linux command line (or "shell") environment. A working knowledge of OpenCPI is required for understanding what vendor tools are necessary to perform various operations. However, no OpenCPI knowledge is required to perform the toolset installation and configuration herein. The reference(s) in Table 1 can be used as an overview of OpenCPI and may prove useful.

Title	Link		
OpenCPI Overview	Overview.pdf		
Acronyms and Definitions	Acronyms_and_Definitions.pdf		
Getting Started	Getting_Started.pdf		
Installation Guide	RPM_Installation_Guide.pdf		

Table 1: References

2 Supported Vendor Tools and OpenCPI functionality

OpenCPI utilizes third party FPGA vendor tools to perform various operations, such as, building bitstreams or, for certain platforms, loading bitstreams into FPGAs. Table 2 describes the OpenCPI functionality that is provided by each supported vendor tool with regards to building bitstreams (hardware or simulation), loading of bitstreams, or running a simulation. Since licensing of vendor tool plays a critical role in build for certain target devices and usage of a given tool, its relationship is also listed.

Note that Quartus Standard and Quartus Pro are different tools. These two tools support different sets of devices and users should consult Intel's documentation for more information. Older versions of some FPGA tools have been supported by OpenCPI but are not actively regression tested, such as, Vivado 2015.4 and Quartus Standard Edition 15.1.

OpenCPI + {Tool}	Version/License	Supported simulators	Load bitstreams onto	Run applications on these platforms	Build bit- streams for	Build software for
OpenCPI ONLY (without vendor tools)			Zynq-7000	Zynq-7000 based ¹ , x86-only		x86
	2017.1 with WebPACK License	xsim			Zynq-7000 ²	
Xilinx Vivado	$2013.4 \text{ (SDK only)}^4$					Zynq-7000 ARM
	2017.1 and 2013.4 SDK with WebPACK License	xsim			Zynq-7000 ²	Zynq-7000 ARM
Xilinx LabTools 14.	Kilinx LabTools 14.7		ML605	x86/ML605		
Xilinx ISE 14.7	WebPACK License	isim	ML605	x86/ML605	Zynq-7000 ²	Zynq-7000 ARM
	Full License	isim	ML605	x86/ML605	Zynq-7000, ML605	Zynq-7000 ARM
Intel Quartus Standard 17.1 with License			ALST4	x86/ALST4	ALST4	
Intel Quartus Pro Edition 17.0.2 with License					$arria10soc^3$	
Mentor Graphics ModelSim DE 10.6e with License		modelsim			modelsim	

¹ "Zynq-7000 based" platform includes both a Zynq-7000's FPGA and ARM PS. The usage of "Zynq" or "Zynq-based" does not imply Zynq UltraScale+ devices.

²Building bitstreams with a WebPACK license is limited to certain Zynq parts. Refer to the vendor's documentation for further information.

³While there are currently no OpenCPI Board Support Packages developed for Quartus Pro, HDL workers can be built targeting the arria10soc device family.

⁴The relationship between the Vivado Design Edition and SDK is discussed in 3.1.

3 Xilinx Toolset Installation and Configuration

3.1 Xilinx Vivado Installation in CentOS 6/7

As described in Table 2, building for OpenCPI board support packages (BSPs) which are Xilinx FPGA-based requires various Xilinx FPGA tools to be installed.

In the case of Zynq-7000 based OpenCPI BSPs, the required tools are Vivado 2017.1 and Vivado 2013.4's SDK, where the 2013.4 SDK is necessary because OpenCPI's "xilinx13_3" and "xilinx13_4" software platforms require an SDK with matching glibc/glibc++ versions. An SDK meeting this requirement can be found explicitly in either ISE 14.7 or Vivado 2013.4 SDK. For more information on this requirement you can reference the README for the xilinx13_3 software platform. This is located in the core project (e.g.: <core-project>/rcc/platforms/xilinx13_3).

In the case of the ML605 development board (PCIe), only ISE v14.7 is required, because the host's gcc-compiler will be used.

3.1.1 Xilinx Vivado 2017.1 Installation in CentOS 6/7

1. A Xilinx account is required for this step. Download the Vivado 2017.1 installation files from Xilinx's download site: https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2017-1.html.

Figure 1: Xilinx Vivado 2017.1 Download

- 2. If installing Xilinx tools in a permission-restricted directory, you may need to change the umask temporarily:
 - % sudo su -
 - % umask 0002
- 3. Extract the tarball:

% tar -xf Xilinx_Vivado_SDK_2017.1_0415_1.tar.gz

- 4. Enter the resulting directory and run the installer:
 - % cd Xilinx_Vivado_SDK_2017.1_0415_1
 - % ./xsetup

5. Step through the installation process. Refer to the images below when applicable.

Figure 2: Xilinx Vivado Installer

We do not direct you to acquire a license, but if you do not already have one, you will need to select "Acquire or Manage a License Key" in the image below.

Figure 3: Xilinx Vivado Installation Choice

Take note of the installation directory chosen (e.g. /opt/Xilinx) as well as the Vivado version (e.g. 2017.1) for later use.

Figure 4: Xilinx Vivado Install Location

3.1.2 OpenCPI Considerations

- 1. Note that sourcing the "<Vivado-install-dir>/Vivado/<Vivado-version>/settings64.sh" script will interfere with OpenCPI's environment setup. Accordingly, it is *highly* recommended to always source these scripts and execute any follow-on commands in a *separate terminal*.
- 2. To use OpenCPI with any Xilinx Vivado installation, it is required to set the following environment variables before running OpenCPI commands. Note that each of the following export statements is only necessary under the following conditions:
 - When using a non-default installation location (i.e. anything other than /opt/Xilinx)
 - When Vivado and ISE are both being used and are installed in different locations
 - Or when multiple versions of Vivado are installed and you wish to use a version other than the newest.
 - % export OCPI_XILINX_VIVADO_DIR=<Vivado-install-dir>
 - % export OCPI_XILINX_VIVADO_VERSION=<Vivado-version>

If OpenCPI has been installed prior to the Vivado installation, and it is desired to make the aforementioned environment variables set automatically upon login for all users, the variables should be added in <code>/opt/opencpi/cdk/env.d/xilinx.sh</code>. Logging out and logging back into the user account will apply said variables.

3.1.3 Xilinx Vivado 2013.4 SDK Only Installation in CentOS 6/7

Figure 5: Xilinx Vivado 2013.4 SDK Download

- 2. If installing Xilinx tools in a permission-restricted directory, you may need to change the umask temporarily:
 - % sudo su -
 - % umask 0002
- 3. Extract the tarball:
 - % tar -xf Xilinx_SDK_2013.4_1210_1.tar
- 4. Enter the resulting directory and run the installer:
 - % cd Xilinx_SDK_2013.4_1210_1
 - % ./xsetup

5. Step through the installation process. Refer to the images below when applicable.

Figure 6: Xilinx Vivado SDK Installer

Figure 7: Xilinx Vivado SDK Installation Choice

Take note of the installation directory chosen (e.g. /opt/Xilinx) as well as the Vivado version (e.g. 2013.4) for later use.

Figure 8: Xilinx Vivado SDK Install Location

3.2 Xilinx ISE 14.7 Installation in CentOS 6/7

1. A Xilinx account is required for this step. Download the ISE 14.7 installation files from Xilinx's download site: https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html.

Figure 9: Xilinx ISE Download

- 2. If installing Xilinx tools in a permission-restricted directory, you may need to change the umask temporarily:
 - % sudo su -
 - % umask 0002
- 3. Extract the tarball:
 - % tar -xf Xilinx_ISE_DS_14.7_1015_1.tar
- 4. Enter the resulting directory and run the installer:
 - % cd Xilinx_ISE_DS_14.7_1015_1
 - % ./xsetup

5. Run through the installation process. Refer to the images below when applicable. Note that the checkbox for cable drivers is left unchecked. Cable driver installation, if necessary, should be handled after this installation is complete. See section 3.5 for more information.

Figure 10: Xilinx ISE Installer

Figure 11: Xilinx ISE Installation Choice

Take note of the installation directory chosen (e.g. /opt/Xilinx) as well as the LabTools version (e.g. 14.7) for later use.

Figure 12: Xilinx ISE Install Location

3.2.1 OpenCPI Considerations

- 1. Note that sourcing the "<ISE-install-dir>/<version>/LabTools/settings64.sh" or "<ISE-install-dir>/<version>/LabTools/settings32.sh" scripts will interfere with OpenCPI's environment setup. Accordingly, it is *highly* recommended to always source these scripts and execute any follow-on commands in a *separate terminal*.
- 2. To use OpenCPI with any Xilinx ISE or LabTools installation, it is required to set the following environment variables before running OpenCPI commands. Note that each of the following export statements is only necessary under the following conditions:
 - When using a non-default installation location (i.e. anything other than /opt/Xilinx)
 - Non-default version (i.e. anything other than 14.7) of the tools were used.

If only one of Xilinx LabTools or ISE is installed,

- % export OCPI_XILINX_DIR=<ISE-or-LabTools-install-dir>
- % export OCPI_XILINX_VERSION=<ISE-or-LabTools-version>
- If Xilinx LabTools and ISE are the same version and installed in the same directory,
 - % export OCPI_XILINX_DIR=<ISE-and-LabTools-install-dir>
 - % export OCPI_XILINX_VERSION=<ISE-and-LabTools-version>
- If Xilinx LabTools and ISE are the same version and are installed in different directories,
 - % export OCPI_XILINX_DIR=<ISE-install-dir>
 - % export OCPI_XILINX_LAB_TOOLS_DIR=<LabTools-install-dir>
 - % export OCPI_XILINX_VERSION=<ISE-and-LabTools-version>
- If Xilinx LabTools and ISE are different versions (LabTools will be ignored),
 - % export OCPI_XILINX_DIR=<ISE-install-dir>
 - % export OCPI_XILINX_VERSION=<ISE-version>

If OpenCPI has been installed prior to the ISE installation, and it is desired to make the aforementioned environment variables set automatically upon login for all users, the variables should be added in <code>/opt/opencpi/cdk/env.d/xilinx.sh</code>. Logging out and logging back into the user account will apply said variables.

3.3 Xilinx LabTools 14.7 Installation in CentOS 6/7

1. A Xilinx account is required for this step. Download the LabTools 14.7 installation files from Xilinx's download site: https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html.

Figure 13: Xilinx LabTools Download

- 2. If installing Xilinx tools in a permission-restricted directory, you may need to change the umask temporarily:
 - % sudo su -
 - % umask 0002
- 3. Extract the tarball:
 - % tar -xf Xilinx_LabTools_14.7_1015_1.tar
- 4. Enter the resulting directory and run the installer:
 - % cd Xilinx_LabTools_14.7_1015_1
 - % ./xsetup

5. Step through the installation process. Refer to the images below when applicable. Note that the checkbox for cable drivers is left unchecked. Cable driver installation, if necessary, should be handled after this installation is complete. See section 3.5 for more information.

Figure 14: Xilinx LabTools Installer

Figure 15: Xilinx LabTools Installation Choice

Take note of the installation directory chosen (e.g. /opt/Xilinx) as well as the LabTools version (e.g. 14.7) for later use.

Figure 16: Xilinx LabTools Install Location

3.3.1 OpenCPI Considerations

- 1. Note that sourcing the "<LabTools-install-dir>/<version>/LabTools/settings64.sh" or "<LabTools-install-dir>/<version>/LabTools/settings32.sh" scripts will interfere with OpenCPI's environment setup. Accordingly, it is *highly* recommended to always source these scripts and execute any follow-on commands in a *separate terminal*.
- 2. To use OpenCPI with any Xilinx ISE or LabTools installation, it is required to set the environment variables according to Section 3.2.1 before running OpenCPI commands.

3.4 Xilinx Toolset Licensing

A license, either WebPACK or non-WebPACK, is required for Xilinx Vivado and Xilinx ISE, however the Xilinx LabTools does not require a license.

3.4.1 Generate and download a license file from Xilinx

1. The following screenshots show is an example of Xilinx's license website with a ISE WebPACK license selected. Refer to 2 to determine which license is necessary. To generate a license, navigate to http://www.xilinx.com/getlicense and login (or create an account). Generate a license file:

Certificate Based Licenses

Figure 17: Generate Xilinx license file

2. Download the file and move it to the intended location:

Figure 18: Download Xilinx license file

3.4.2 Load license into Vivado

- 1. In a terminal, run "source <Vivado-install-dir>/Vivado/<version>/settings64.sh".
- 2. Open up the license manager and load the downloaded license. The license manager can be launched either from the Vivado GUI, or from the command line by running: sudo <Vivado-install-dir>/Vivado/<version>/bin/vlm

Here, you can either navigate to "Load License" and load a copy of the license file, or you can enter the license search paths via "Manage License Search Paths".

Figure 19: Load Xilinx Vivado license file

3.4.3 Load license into ISE

- 1. In a terminal, run "source <ISE-install-dir>/<version>/ISE_DS/settings64.sh" (or settings32.sh if the system has a 32-bit architecture).
- 2. Open up the license manager and load the downloaded license. The license manager can either be launched from the ISE GUI, or launched from the command line by running:

 sudo <ISE-or-LabTools-install-dir>/<version>/ISE_DS/common/bin/lin[64]/xlcm

Figure 20: Load Xilinx ISE license file

3.4.4 Note on node-locked licenses in CentOS 7

If using a Xilinx node-locked license under CentOS 7, see the Red Hat Networking Guide to revert to the ethN naming convention.

3.4.5 OpenCPI Considerations

Note that sourcing the "settings64.sh" or "settings32.sh" scripts will interfere with OpenCPI's environment setup. Accordingly, it is *highly* recommended to always source these scripts and execute any follow-on commands in a *separate terminal*.

To enable a license for use by OpenCPI, the OpenCPI environment variable which supports locating the Xilinx

license listing (file or server) must be configured. Edit the /opt/opencpi/cdk/env.d/xilinx.sh to support either a license file or server:

- license file: export OCPI_XILINX_LICENSE_FILE=<PATH_TO_LIC>
- license server: export OCPI_XILINX_LICENSE_FILE=<port>@<server.ip.addr>

Alternatively, if using a floating license server, it is possible to set to the license server and Xilinx's environment variable, which will allow use of a local license, e.g. a local WebPACK license, by default and the served floating license when WebPACK license is not sufficient.¹

license server and local license:
 export OCPI_XILINX_LICENSE_FILE=<port>@<server.ip.addr>
 export XILINXD_LICENSE_FILE=<PATH_TO_LOCAL_LIC>

3.5 Xilinx Cable Driver Installation in CentOS 6/7

This section is a collection of notes or links that have been gathered for the installation or verification of Xilinx cable drivers for Vivado and ISE. However, it is not intended to an exhaustive list of instructions.

3.5.1 Vivado

The steps herein are a slightly modified subset of those outlined in https://www.xilinx.com/support/answers/66440.html.

- 1. Run the following command: ls -al /etc/udev/rules.d
- 2. Check if the following two files are present: 52-digilent-usb.rules 52-xilinx-pcusb.rules
- 3. If the files above are not present, run the installer (it is important to have the JTAG cable unplugged while you perform the installation):

cd <YOUR_XILINX_INSTALL>/data/xicom/cable_drivers/<lin64 or lin32>/install_script/install_drivers;
./install_drivers;

3.5.2 ISE

Verifying udev rules

- 1. Run the following command: ls -al /etc/udev/rules.d
- 2. Check if the following file is present: xusbdfwu.rules
- 3. If the file is present, go to step 5. If the files above are not present, open the setup_pcusb script and change line 26 from TP_USE_UDEV="0" to TP_USE_UDEV="1"
- 4. Rerun the setup_pcusb installation script
- 5. xusbdfwu.rules should now be present in ls -al /etc/udev/rules.d. Open the file and change (if necessary) SYSFS to ATTRS BUS to SUBSYSTEM \$TEMPNODE to \$tempnode
- 6. Reload the udev rules by typing udevadm control --reload-rules

¹See Xilinx "AR# 42507: What are the search order and locations..." and "AR# 44024: If a feature is licensed in multiple locations..."

3.5.3 Testing Cable Driver Installation

Vivado

After installing the cable driver as previously discussed, the Xilinx JTAG pod's LED may still not illumniate (Amber or Green). It has been observed that by attempting to establish a connection to the pod using the Vivado tools, only then will the pod be discovered and correctly illuminate it's LED. If after the cable driver has been load and the JTAG pod's LED is off (while connected to the host), perform the following steps to force pod discovery:

```
$ cd /opt/Xilinx/Vivado/2017.1
```

\$. ./settings64.sh

Once the environment has been configured, launch the Vivado IDE and use the Hardware Manager to scan for JTAG pod. The expected result is for the pod to be recognized by the tools and its LED to illuminate Amber if its JTAG connector is not powered, or Green if the JTAG connect is powered.

(While this has not been confirmed, it is believed that some host system environments prevent non-interactive driver accesses.)

ISE

To verify successful cable driver installation, you can run the following:

```
$ cd /opt/Xilinx/14.7/ISE_DS
```

\$. ./settings64.sh

\$ cd

\$ echo listusbcables | impact -batch

If the cable driver is successfully installed, "Using libusb." will be included in the text printed to the screen.

4 Intel Quartus Toolset Installation and Configuration

4.1 Intel Quartus Prime Standard Edition 17.1 Installation in CentOS 7

- Download the Quartus Prime Standard Edition 17.1 installation files from Altera's download site: https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html. Choose Standard Edition 17.1 and either choose the "Complete Download", or the "Multiple File Download" (for this option, make sure to download the device packages of interest). An Intel Customer account will be required.
- 2. If installing Quartus tools in a permission-restricted directory, you may need to change the umask temporarily:

% sudo su -

% umask 0002

3. Extract the tarball:

% tar xvf Quartus-17.1.0*.tar

4. Run the installer:

% ./setup.sh

5. Run through the installation process and choose your installation directory. Note that OpenCPI will search for Quartus Standard in /opt/altera or ~/intelFPGA without any additional user settings.

4.1.1 OpenCPI Considerations

It may required to set the following environment variables before running OpenCPI commands. Note that <quartus-version> should be replaced with the appropriate Quartus version (e.g. 17.1), and <quartus-install-dir> should be replaced with the installation directory (e.g. ~/intelFPGA). Note also that each of the following export statements are only necessary when the non-default installation location (e.g. anything other than ~/intelFPGA, /opt/intelFPGA, ~/altera or /opt/Altera), or non-default version (e.g. anything other than the newest version) of the tools were used.

% export OCPI_ALTERA_DIR=<quartus-install-dir>

% export OCPI_ALTERA_VERSION=<quartus-version>

% export OCPI_ALTERA_LICENSE_FILE=<path_to_license_file>

These variables can be set automatically upon login for all users if added in /opt/opencpi/cdk/env.d/altera.sh. Logging out and logging back into the user account will apply said variables.

4.2 Intel Quartus Prime Pro Edition 17.0.2 Installation in CentOS 7

NOTE: Do not install Quartus Pro in the same directory as Quartus Standard because OpenCPI cannot differentiate between the two.

NOTE: Quartus Pro and Quartus Standard are different tools. The devices supported by each are different, and users should consult Intel documentation before choosing a tool edition.

- 1. Download the Quartus Prime Pro Edition 17.0 installation files from Altera's download site: https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html. Choose Pro Edition 17.0 and either choose the "Complete Download", or the "Multiple File Download" (for this option, make sure to download the device packages of interest). An Intel Customer account will be required.
- 2. If installing Quartus tools in a permission-restricted directory, you may need to change the umask temporarily:

% sudo su -

% umask 0002

3. Extract the tarball:

% tar xvf Quartus-pro-17.0.0*.tar

4. Run the installer:

% ./setup.sh

- 5. Run through the installation process and choose your installation directory. Note that OpenCPI will search for Quartus Pro in ~/intelFPGA_pro or /opt/intelFPGA_pro without any additional user settings.
- 6. Download the 17.0.2 patch by navigating to the Updates tab and downloading "Quartus Prime Software v17.0 Update 2".
- 7. Run the installer:
 - % ./QuartusProSetup-17.0.2*.run

4.2.1 OpenCPI Considerations

It may be required to set the following environment variables before running OpenCPI commands. Note that <quartus-version> should be replaced with the appropriate Quartus version (e.g. 17.0 not 17.0.2), and <quartus-install-dir> should be replaced with the installation directory (e.g. ~/intelFPGA_pro). Note also that each of the following export statements are only necessary when the non-default installation location (e.g. anything other than ~/intelFPGA_pro, /opt/intelFPGA_pro, ~/altera or /opt/Altera), or non-default version (e.g. anything other than the newest version) of the tools were used.

% export OCPI_ALTERA_PRO_DIR=<quartus-install-dir>

% export OCPI_ALTERA_PRO_VERSION=<quartus-version>

% export OCPI_ALTERA_PRO_LICENSE_FILE=<path_to_license_file>

These variables can be set automatically upon login for all users if added in /opt/opencpi/cdk/env.d/altera.sh. Logging out and logging back into the user account will apply said variables.

4.3 Licensing Notes

If the user runs the Quartus software in its native GUI mode outside of OpenCPI, a license file configuration *might* be stored in the variable LICENSE_FILE within ~user/.altera.quartus/quartus2.ini; this setting overrides the OCPI_ALTERA_LICENSE_FILE noted above and may cause confusion.

5 ModelSim Installation and Configuration

5.1 ModelSim DE 16.0e Installation in CentOS 7

- 1. Download the ModelSim installation files for version 10.6e.
- 2. If installing ModelSim tools in a permission-restricted directory, you may need to change the umask temporarily:

% sudo su -

% umask 0002

- 3. Run the installer:
 - % ./install.linux64
- 4. Run through the installation process and choose your installation directory. Note that OpenCPI has no default search paths for ModelSim installations.

5.1.1 OpenCPI Considerations

Users will need to set the following environment variables to use ModelSim with OpenCPI. Note that <modelsim-version> should be replaced with the appropriate ModelSim version (e.g. 10.6), and <modelsim-install-dir> should be replaced with the installation directory (e.g. ~/modelsim_dlx). The version variable need only be set if multiple ModelSim versions exist in this directory and the user wishes to use a version other than the most recent.

% export OCPI_MODELSIM_DIR=<modelsim-install-dir>

% export OCPI_MODELSIM_VERSION=<modelsim-version>

% export OCPI_MODELSIM_LICENSE_FILE=<path_to_license_file>

These variables can be set automatically upon login for all users if added in

/opt/opencpi/cdk/env.d/modelsim.sh. Logging out and logging back into the user account will apply said variables.

5.2 Compile Xilinx/Zynq simulation libraries for ModelSim

This section describes how to compile Xilinx simulation libraries of a device(s) for a particular 3rd party simulator, such as ModelSim.

- 1. Compile Xilinx libraries for ModelSim
- 2. Modify modelsim.ini to include path of compiled Xilinx libraries

5.2.1 Compile Vivado's simulation libraries

This section provides the steps necessary to compile Xilinx Vivado's simulation libraries of the Zynq device, for ModelSim. If using ModelSim 10.4c, note that Vivado 2017.1 does not support compilation of simulation libraries for ModelSim versions earlier than 10.5c. Therefore, if using a ModelSim 10.4c, you will need to use an earlier version of Vivado (e.g 2015.4) to compile the simulation libraries. For this example, we use Vivado 2017.1 with ModelSim DE 10.6e.

- 1. Open a terminal window and switch the user to root:
 - > sudo su -
- 2. Configure the terminal for Xilinx Vivado by sourcing the setup script (for bash):
 - > source /opt/Xilinx/Vivado/<version>/settings64.sh
- 3. Launch Vivado:
 - > vivado
- 4. Select Tools \rightarrow Compile Simulation Libraries...
- 5. Select the following:

Simulator: ModelSim Simulator

Language: VHDL

Library: All

Family: Zynq-7000

Compiled library location: /opt/Xilinx/Vivado/<version>/vhdl/modelsim/<version>/lin64

Simulator executable path: /opt/Modelsim/modelsim_dlx/linuxpe

Compile 32-bit libraries: Yes

- 6. Click "Compile"
- 7. Note that 2017.1 Vivado will result in errors for ModelSim versions earlier than 10.5c. Here, we show the results for Vivado 2017.1 with ModelSim DE 10.6e, and Vivado 2015.4 with ModelSim DE 10.4c.

Figure 21: Vivado 2017.1 Compilation Output with ModelSim DE 10.6e

Figure 22: Vivado 2015.4 Compilation Output with ModelSim DE 10.4c

5.2.2 Compile ISE's simulation libraries

This section provides the steps necessary to compile Xilinx ISE's simulation libraries of the Zynq-7000 device, for ModelSim.

- 1. Open a terminal window and switch the user to root:
 - > sudo su -
- 2. Configure the terminal window for Xilinx ISE by sourcing the setup script (for bash):
 - > cd /opt/Xilinx/14.7/ISE_DS/
 - > source settings64.sh
- 3. Launch the Xilinx CompXLib GUI:
 - > cd /opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64
 - > ./compxlib

Figure 23: Compilation Wizard - Select Simulator

- 4. Select ModelSim DE.
- 5. Set Simulator Executable Location.
- 6. Click "Next".

Figure 24: Compilation Wizard - HDLs to support simulator

- 7. Select "VHDL".
- 8. Click "Next".

Figure 25: Compilation Wizard - Select Device Families

- 9. Uncheck "All FPGA Device Families".
- 10. Uncheck "All CPLD Device Families".
- 11. Check "Zynq".
- 12. Click "Next".

Figure 26: Compilation Wizard - Select Simulation Libraries

- 13. No change.
- 14. Click "Next".

Figure 27: Compilation Wizard - Select Output directory

- 15. Select defaults.
- 16. Click "Launch Compile Process".

Note: This step will take approximately 20 mins.

Figure 28: Compilation Wizard - Start Compilation

17. Click "Next".

Figure 29: Compilation Wizard - Compilation Summary

18. Click "Finish".

5.2.3 Modify "modelsim.ini" to include path to built library

This section details the steps to modify the "modelsim.ini" file.

- 1. Browse to the install directory of ModelSim
 - > cd /opt/Modelsim/modelsim_dlx
- 2. Open the modelsim.ini file as the root user
 - > vi modelsim.ini
- 3. Locate the bottom of the "[Library]" section and add the following for Vivado: unifast = /opt/Xilinx/Vivado/2017.1/vhdl/modelsim/10.6e/lin64/unifast unisim = /opt/Xilinx/Vivado/2017.1/vhdl/modelsim/10.6e/lin64/unisim
- 4. Or, add the following for ISE: xilinxcorelib = /opt/Xilinx/14.7/ISE_DS/ISE/vhdl/mti_de/10.4c/lin64/xilinxcorelib unisim = /opt/Xilinx/14.7/ISE_DS/ISE/vhdl/mti_de/10.4c/lin64/unisim