

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P_s =	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.91	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.400	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica and from the sames.

2.4 Seismic Loads

$S_S = S_{DS} = S_1 = S_1 = S_2 = S_3 = S$	1.67	$R = 1.25$ $C_S = 0.8$ $\rho = 1.3$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period. T.
$S_{D1} = T_a =$		$\Omega = 1.25$ $C_{d} = 1.25$	of 0.5 or less. Therefore, a S $_{\rm ds}$ of 1.0 was used to calculate C $_{\rm s}$.

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

1.2D + 1.6S + 0.8W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1091.14</u>	<u>5965.85</u>	k
Compressive Load =	4220.72	<u>4784.73</u>	k
Lateral Load =	321.34	2662.66	k
Moment (Weak Axis) =	<u>0.65</u>	0.35	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 166868.8 in-lbs Resisting Force Required = 2333.83 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3889.72 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 640.10 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1600.24 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 640.10 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width					
	<u>35 in</u>	<u>36 in</u>	37 in	38 in		
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs		

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W								
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1404 lbs	1404 lbs	1404 lbs	1404 lbs	1600 lbs	1600 lbs	1600 lbs	1600 lbs	2137 lbs	2137 lbs	2137 lbs	2137 lbs	-519 lbs	-519 lbs	-519 lbs	-519 lbs
F _B	1504 lbs	1504 lbs	1504 lbs	1504 lbs	1959 lbs	1959 lbs	1959 lbs	1959 lbs	2474 lbs	2474 lbs	2474 lbs	2474 lbs	-2863 lbs	-2863 lbs	-2863 lbs	-2863 lbs
F _V	142 lbs	142 lbs	142 lbs	142 lbs	1136 lbs	1136 lbs	1136 lbs	1136 lbs	948 lbs	948 lbs	948 lbs	948 lbs	-1280 lbs	-1280 lbs	-1280 lbs	-1280 lbs
P _{total}	10468 lbs	10684 lbs	10900 lbs	11116 lbs	11118 lbs	11334 lbs	11550 lbs	11766 lbs	12171 lbs	12387 lbs	12603 lbs	12819 lbs	1153 lbs	1283 lbs	1413 lbs	1542 lbs
M	3199 lbs-ft	3199 lbs-ft	3199 lbs-ft	3199 lbs-ft	4378 lbs-ft	4378 lbs-ft	4378 lbs-ft	4378 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft
е	0.31 ft	0.30 ft	0.29 ft	0.29 ft	0.39 ft	0.39 ft	0.38 ft	0.37 ft	0.45 ft	0.44 ft	0.43 ft	0.42 ft	3.31 ft	2.98 ft	2.70 ft	2.48 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft
f _{min}	254.8 psf	253.8 psf	252.8 psf	251.9 psf	256.5 psf	255.4 psf	254.4 psf	253.4 psf	271.7 psf	270.2 psf	268.8 psf	267.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	347.5 psf	343.9 psf	340.5 psf	337.2 psf	383.3 psf	378.7 psf	374.3 psf	370.2 psf	428.6 psf	422.8 psf	417.2 psf	412.0 psf	99.6 psf	95.6 psf	93.8 psf	93.2 psf

Maximum Bearing Pressure = 429 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2874.0 \text{ ft-lbs}$

Resisting Force Required = 1970.76 lbs S.F. = 1.67

Weight Required = 3284.60 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ΣE	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in			35 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	271 lbs	592 lbs	202 lbs	866 lbs	2386 lbs	812 lbs	104 lbs	173 lbs	35 lbs	
F _V	201 lbs	197 lbs	204 lbs	149 lbs	144 lbs	158 lbs	202 lbs	198 lbs	203 lbs	
P _{total}	9630 lbs	9951 lbs	9560 lbs	9775 lbs	11295 lbs	9721 lbs	2840 lbs	2910 lbs	2771 lbs	
М	811 lbs-ft	799 lbs-ft	819 lbs-ft	609 lbs-ft	606 lbs-ft	641 lbs-ft	808 lbs-ft	797 lbs-ft	812 lbs-ft	
е	0.08 ft	0.08 ft	0.09 ft	0.06 ft	0.05 ft	0.07 ft	0.28 ft	0.27 ft	0.29 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	229.1 psf	239.0 psf	226.6 psf	245.2 psf	289.1 psf	241.8 psf	33.9 psf	36.6 psf	31.7 psf	
f _{max}	325.1 psf	333.6 psf	323.5 psf	317.3 psf	360.9 psf	317.6 psf	129.6 psf	130.9 psf	127.8 psf	

Maximum Bearing Pressure = 361 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut			Rea	ar Strut	
Maximum Axial Load =	3.247 k		Maximum Axia	al Load =	4.105 k
M12 Bolt Capacity =	12.808 k		M12 Bolt Ca	apacity =	12.808 k
Strut Bearing Capacity =	7.421 k		Strut Bearing Ca	apacity =	7.421 k
Utilization =	<u>44%</u>		Util	ization =	<u>55%</u>
Diagonal Strut					
Maximum Axial Load =	2.041 k				

M12 Bolt Shear Capacity = 12.808 k
Strut Bearing Capacity = 7.421 k
Utilization = 28%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\label{eq:main_main} \begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 51.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.038 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.601 \text{ in} \\ \hline 0.601 \le 1.038, \text{OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 96 \text{ in}$$

$$J = 0.432$$

$$265.581$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 28.0 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

Weak Axis:

3.4.14

$$L_{b} = 96$$

$$J = 0.432$$

$$168.894$$

$$S1 = \left(\frac{Bc - \frac{\theta y}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 29.1$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

 $\phi F_L = 38.9 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ k &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

$$M_{\text{max}}St = 2.788 \text{ k-ft}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 23.1 \text{ ksi} \\ l y = & 446476 \text{ mm}^4 \\ & & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ S y = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.0 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.323 \text{ k-ft} \end{array}$$

$$\begin{split} \phi F_L W k &= & 33.3 \text{ ksi} \\ ly &= & 923544 \text{ mm}^4 \\ & & 2.219 \text{ in}^4 \\ x &= & 40 \text{ mm} \\ \text{Sy} &= & 1.409 \text{ in}^3 \\ M_{\text{max}} W k &= & 3.904 \text{ k-ft} \end{split}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 16.2 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\varphi F_L = \varphi c[Bt-Dt^* \sqrt{(Rb/t)}]$
 $\varphi F_L = 31.09 \text{ ksi}$
 $\varphi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

 $S2 = \left(\frac{C_c}{1.6}\right)^2$
 $S2 = 1701.56$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{1} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

31.4

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

 $\varphi F_L =$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t =
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1

$$S2 = C_t$$
S2 = 141.0

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

0.672 in⁴

0.621 in³

27.5 mm

 $lx = 279836 \text{ mm}^4$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

φF_LSt=

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 6.11 \text{ ksi}$
 $A = 663.99 \text{ mm}^2$
 1.03 in^2
 $P_{\text{max}} = 6.29 \text{ kips}$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

3.4.16
 3.4.16

 b/t = 24.5
 b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$

 S1 = 12.2
 S1 = 12.2

 $S2 = \frac{k_1 Bp}{1.6Dp}$
 $S2 = \frac{k_1 Bp}{1.6Dp}$

 S2 = 46.7
 $S2 = 46.7$
 $\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$
 $\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $φF_L$ = 1.17φyFcy $φF_L$ = 38.9 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

 $\phi F_L St = 28.2 \text{ ksi}$

 $M_{max}St = 1.460 \text{ k-ft}$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

1.460 k-ft

 $M_{max}Wk =$

Compression

y = Sx =

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.77788 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 13.6277 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-65.446	-65.446	0	0
2	M14	V	-65.446	-65.446	0	0
3	M15	ý	-102.844	-102.844	0	0
4	M16	٧	-102.844	-102.844	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	149.592	149.592	0	0
2	M14	V	114.687	114.687	0	0
3	M15	V	62.33	62.33	0	0
4	M16	У	62.33	62.33	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Z	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Y		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Y		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Y		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Y		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Y		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Y		1	.362					6	.875											Π	

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	539.487	2	1189.047	2	.732	1	.003	1	0	1	0	1
2		min	-678.21	3	-1456.531	3	-58.528	5	27	4	0	1	0	1
3	N7	max	.025	9	1167.962	1	566	12	001	12	0	1	0	1
4		min	201	2	-246.821	3	-247.184	4	501	4	0	1	0	1
5	N15	max	0	15	3246.706	1	0	10	0	2	0	1	0	1
6		min	-2.114	2	-839.336	3	-235.438	4	484	4	0	1	0	1
7	N16	max	1870.54	2	3680.56	1	0	3	0	3	0	1	0	1
8		min	-2048.2	3	-4589.116	3	-58.513	5	272	4	0	1	0	1
9	N23	max	.035	14	1167.962	1_	9.464	1	.019	1	0	1	0	1
10		min	201	2	-246.821	3	-240.671	4	491	4	0	1	0	1
11	N24	max	539.487	2	1189.047	2	061	12	0	12	0	1	0	1
12		min	-678.21	3	-1456.531	3	-59.141	5	272	4	0	1	0	1
13	Totals:	max	2946.999	2	11589.487	1	0	2						
14		min	-3405.439	3	-8835.155	3	-894.388	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	69.213	4	471.354	1	-6.758	12	0	15	.164	1	0	4
2			min	3.947	12	-703.019	3	-148.801	1	015	2	.011	12	0	3
3		2	max	58.854	1	328.489	1	-5.489	12	0	15	.093	4	.533	3
4			min	3.947	12	-495.497	3	-113.742	1	015	2	.002	10	355	1
5		3	max	58.854	1	185.625	1	-4.219	12	0	15	.055	5	.881	3
6			min	3.947	12	-287.975	3	-78.682	1	015	2	038	1	584	1
7		4	max	58.854	1	42.76	1	-2.95	12	0	15	.031	5	1.045	3
8			min	3.947	12	-80.452	3	-43.623	1	015	2	093	1	685	1
9		5	max	58.854	1	127.07	3	.029	10	0	15	.009	5	1.024	3
10			min	3.947	12	-100.105	1	-26.451	4	015	2	116	1	66	1
11		6	max	58.854	1	334.592	3	26.496	1	0	15	005	12	.819	3
12			min	2.556	15	-242.969	1	-22.075	5	015	2	108	1	508	1
13		7	max	58.854	1	542.114	3	61.556	1	0	15	005	12	.429	3
14			min	-6.541	5	-385.834	1	-20.144	5	015	2	069	1	228	1
15		8	max	58.854	1	749.637	3	96.615	1	0	15	.004	2	.178	1
16			min	-17.03	5	-528.698	1	-18.212	5	015	2	048	4	145	3
17		9	max	58.854	1	957.159	3	131.675	1	0	15	.103	1	.712	1
18			min	-27.52	5	-671.563	1	-16.28	5	015	2	063	5	904	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	JOPC MCIIIK														
	Member	Sec		Axial[lb]	_LC_	y Shear[lb]	LC				LC		LC	z-z Mome	LC
19		10	max	58.854	1	814.428	1	4.665	12	.004	14	.236	1	1.372	1
20			min	3.947	12	-1164.681	3	-166.734	1	015	2	.003	12	-1.847	3
21		11	max	58.854	1	671.563	1	-3.396	12	.015	2	.103	1	.712	1
22			min	3.947	12	-957.159	3	-131.675	1	0	15	002	3	904	3
23		12	max	58.854	1	528.698	1	-2.127	12	.015	2	.048	4	.178	1
24		12		3.947	12	-749.637	3	-96.615	1	0	15	005	3	145	3
		40	min												
25		13	max	58.854	1	385.834	1	858	12	.015	2	.023	5	.429	3
26			min	3.947	12	-542.114	3	-61.556	1	0	15	069	1_	228	1
27		14	max	58.854	1	242.969	1	.749	3	.015	2	0	15	.819	3
28			min	1.66	15	-334.592	3	-30.744	4	0	15	108	1	508	1
29		15	max	58.854	1	100.105	1	8.563	1	.015	2	004	12	1.024	3
30			min	-7.951	5	-127.07	3	-22.979	5	0	15	116	1	66	1
31		16	max	58.854	1	80.452	3	43.623	1	.015	2	002	12	1.045	3
32		10	min	-18.44	5	-42.76	1	-21.047	5	0	15	093	1	685	1
		47													
33		17	max	58.854	1	287.975	3	78.682	1	.015	2	.002	3	.881	3
34			min	-28.93	5	-185.625	1_	-19.116	5	0	15	068	4	584	1
35		18	max	58.854	1	495.497	3	113.742	1	.015	2	.047	1_	.533	3
36			min	-39.419	5	-328.489	1	-17.184	5	0	15	075	5	355	1
37		19	max	58.854	1	703.019	3	148.801	1	.015	2	.164	1	0	1
38			min	-49.908	5	-471.354	1	-15.252	5	0	15	09	5	0	3
39	M14	1	max	47.664	4	539.398	1	-7.012	12	.013	3	.209	4	0	1
40			min	2.092	12	-573.172	3	-155.124	1	016	1	.013	12	0	3
41		2		37.175	4	396.533	1	-5.743	12	.013	3	.143	4	.439	3
			max												
42			min	2.092	12	-415.292	3	-120.065	1	016	1	.005	10	416	1
43		3	max	36.801	1	253.669	1	-4.474	12	.013	3	.085	5	.738	3
44			min	2.092	12	-257.412	3	-85.005	1	016	1_	016	1_	705	1
45		4	max	36.801	1	110.804	1	-3.205	12	.013	3	.048	5	.897	3
46			min	2.092	12	-99.533	3	-52.108	4	016	1	076	1	867	1
47		5	max	36.801	1	58.347	3	551	10	.013	3	.013	5	.915	3
48			min	-1.951	5	-32.061	1	-42.931	4	016	1	105	1	902	1
49		6	max	36.801	1	216.226	3	20.173	1	.013	3	004	12	.793	3
50			min	-12.44	5	-174.925	1	-36.89	5	016	1	102	1	81	1
		7									_				_
51		7	max	36.801	1	374.106	3	55.233	1	.013	3	004	12	.531	3
52		_	min	-22.929	5	-317.79	1	-34.958	5	016	1	069	1_	591	1
53		8	max	36.801	1_	531.985	3	90.292	_1_	.013	3	.002	10	.128	3
54			min	-33.419	5	-460.655	1	-33.026	5	016	1	086	4	253	2
55		9	max	36.801	1	689.865	3	125.352	1	.013	3	.092	1	.228	1
56			min	-43.908	5	-603.519	1	-31.094	5	016	1	112	5	415	3
57		10	max	65.868	4	746.384	1	-4.411	12	.013	3	.219	1	.828	1
58			min	2.092	12	-847.745		-160.412	1	016	1	.002	12	-1.098	3
59		11		55.378	4	603.519	1	-3.141	12	.016	-	.143	4	.228	
			max	2.092					1		1				1
60		40	min		12	-689.865		-125.352		013	3	002	3	415	3
61		12	max	44.889	4	460.655	1	-1.872	12	.016	1	.083	4	.128	3
62			min	2.092	12	-531.985	3	-90.292	1_	013	3	005	3	253	2
63		13	max	36.801	1_	317.79	1_	603	12	.016	1	.045	5	.531	3
64			min	2.092	12	-374.106	3	-55.233	1	013	3	069	1	591	1
65		14	max	36.801	1	174.925	1	1.133	3	.016	1	.01	5	.793	3
66			min	2.092	12	-216.226	3	-43.899	4	013	3	102	1	81	1
67		15	max	36.801	1	32.061	1	14.886	1	.016	1	003	12	.915	3
68		10	min	2.092	12	-58.347	3	-37.095	5	013	3	105	1	902	1
69		16				99.533				.016		103 0	12		
		10	max	36.801	1		3	49.946	1		1			.897	3
70		4-	min	-4.853	5	-110.804	1	-35.163	5	013	3	076	1	867	1
71		17	max		1	257.412	3	85.005	1	.016	1	.004	3	.738	3
72			min	-15.342	5	-253.669	1	-33.232	5	013	3	092	4	705	1
73		18	max	36.801	1	415.292	3	120.065	1	.016	1	.075	1	.439	3
74			min	-25.831	5	-396.533	1	-31.3	5	013	3	115	5	416	1
75		19	max		1	573.172	3	155.124	1	.016	1	.198	1	0	1
					<u> </u>						<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
76			min	-36.321	5	-539.398	1	-29.368	5	013	3	142	5	0	3
77	M15	1	max	80.563	5	678.818	2	-6.895	12	.016	2	.274	4	0	2
78			min	-38.831	1	-322.724	3	-155.111	1	011	3	.012	12	0	3
79		2	max	70.074	5	494.63	2	-5.626	12	.016	2	.194	4	.25	3
80			min	-38.831	1	-239.308	3	-120.052	1_	011	3	.005	10	522	2
81		3	max	59.585	5	310.442	2	-4.357	12	.016	2	.122	5	.425	3
82		_	min	-38.831	1	-155.891	3	-84.992	1	011	3	016	1	879	2
83		4	max	49.095	5	126.254	2	-3.088	12	.016	2	.071	5	.527	3
84		_	min	-38.831	1	-72.475	3	-67.961	4	011	3	076	1	-1.073	2
85		5	max	38.606	<u>5</u>	10.941	2	607 -58.784	10 4	.016	3	.021	5	.554 -1.104	2
86 87		6	min	<u>-38.831</u> 28.117	5	-57.934 94.357	3	20.186	1	011 .016	2	105 004	12	.507	3
88		0	max	-38.831	1	-242.122	2	-52.725	5	011	3	102	1	97	2
89		7	max	17.627	5	177.774	3	55.246	1	.016	2	004	12	.387	3
90			min	-38.831	1	-426.31	2	-50.793	5	011	3	088	4	673	2
91		8	max	7.138	5	261.19	3	90.305	1	.016	2	.002	10	.191	3
92		Ŭ	min	-38.831	1	-610.499	2	-48.861	5	011	3	12	4	224	1
93		9	max	-2.189	15	344.606	3	125.365	1	.016	2	.092	1	.412	2
94			min	-38.831	1	-794.687	2	-46.929	5	011	3	159	5	078	3
95		10	max	-2.662	12	978.875	2	6.669	3	.016	2	.272	4	1.2	2
96			min	-38.831	1	-266.908	12	-160.424	1	011	3	.003	12	421	3
97		11	max	827	15	794.687	2	-3.259	12	.011	3	.19	4	.412	2
98			min	-38.831	1	-344.606	3	-125.365	1	016	2	001	3	078	3
99		12	max	-2.662	12	610.499	2	-1.989	12	.011	3	.117	4	.191	3
100			min	-38.831	1	-261.19	3	-90.305	1	016	2	005	3	224	1
101		13	max	-2.662	12	426.31	2	72	12	.011	3	.065	5	.387	3
102			min	-38.831	1	-177.774	3	-68.956	4	016	2	069	1	673	2
103		14	max	-2.662	12	242.122	2	.946	3	.011	3	.015	5	.507	3
104			min	-41.701	4	-94.357	3	-59.778	4	016	2	102	1	97	2
105		15	max	-2.662	12	57.934	2	14.873	1	.011	3	003	12	.554	3
106			min	<u>-52.19</u>	4	-10.941	3	-52.93	5	016	2	105	1	-1.104	2
107		16	max	-2.662	12	72.475	3	49.933	1	.011	3	001	12	.527	3
108		47	min	-62.679	4	-126.254	2	-50.998	5	016	2	096	4	-1.073	2
109		17	max	-2.662	12	155.891	3	84.992	1	.011	3	.004	3	.425	3
110		18	min	-73.169 -2.662	12	-310.442 239.308	3	-49.066 120.052	<u>5</u> 1	016 .011	3	128 .075	1	879 .25	3
112		10	max min	-83.658	4	-494.63	2	-47.134	5	016	2	166	5	522	2
113		19	max	-2.662	12	322.724	3	155.111	1	.011	3	.197	1	0	2
114		13	min	- <u>94.147</u>	4	-678.818	2	-45.203	5	016	2	207	5	0	5
115	M16	1	max	76.165	5	613.433	2	-6.389	12	.011	1	.192	4	0	2
116	IVIIO			-65.556	1	-271.422	3	-149.326	1	012	3	.01	12	0	3
117		2	max	65.676	5	429.245	2	-5.12	12	.011	1	.129	4	.204	3
118			min	-65.556	1	-188.005	3	-114.267	1	012	3	.003	10	463	2
119		3	max	55.186	5	245.057	2	-3.851	12	.011	1	.081	5	.334	3
120			min	-65.556	1	-104.589	3	-79.207	1	012	3	037	1	763	2
121		4	max	44.697	5	60.869	2	-2.581	12	.011	1	.048	5	.39	3
122			min	-65.556	1	-21.173	3	-46.917	4	012	3	092	1	899	2
123		5	max	34.208	5	62.243	3	21	10	.011	1	.016	5	.372	3
124			min	-65.556	1	-123.319	2	-37.74	4	012	3	115	1	871	2
125		6	max	23.718	5	145.66	3	25.972	1	.011	1	005	12	.279	3
126			min	-65.556	1	-307.507	2	-33.221	5	012	3	108	1	68	2
127		7	max	13.229	5	229.076	3	61.031	1	.011	1_	004	12	.113	3
128			min	-65.556	1	-491.695	2	-31.29	5	012	3	069	1	325	2
129		8	max	2.74	5	312.492	3	96.091	1	.011	1	.003	2	.194	2
130			min	-65.556	1	-675.883	2	-29.358	5	012	3	072	4	128	3
131		9	max	-3.882	12	395.909	3_	131.15	1	.011	1	.102	1	.877	2
132			min	-65.556	1	-860.072	2	-27.426	5	012	3	096	5	443	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
133		10	max	-3.882	12	1044.26	2	-5.034	12	.011	1_	.234	1	1.723	2
134			min	-65.556	1_	-479.325	3	-166.21	1	012	3	.004	12	832	3
135		11	max	.578	5	860.072	2	-3.765	12	.012	3	.129	4	.877	2
136			min	-65.556	1	-395.909	3	-131.15	1	011	1	0	3	443	3
137		12	max	-3.882	12	675.883	2	-2.495	12	.012	3	.072	4	.194	2
138			min	-65.556	1	-312.492	3	-96.091	1	011	1	004	3	128	3
139		13	max	-3.882	12	491.695	2	-1.226	12	.012	3	.036	5	.113	3
140			min	-65.556	1	-229.076	3	-61.031	1	011	1	069	1	325	2
141		14	max	-3.882	12	307.507	2	.158	3	.012	3	.003	5	.279	3
142			min	-65.556	1	-145.66	3	-41.862	4	011	1	108	1	68	2
143		15	max	-3.882	12	123.319	2	9.088	1	.012	3	004	12	.372	3
144			min	-65.556	1	-62.243	3	-34.103	5	011	1	115	1	871	2
145		16	max	-3.882	12	21.173	3	44.147	1	.012	3	002	12	.39	3
146			min	-66.384	4	-60.869	2	-32.171	5	011	1	092	1	899	2
147		17	max	-3.882	12	104.589	ധ	79.207	1	.012	3	.001	3	.334	3
148			min	-76.873	4	-245.057	2	-30.239	5	011	1	094	4	763	2
149		18	max	-3.882	12	188.005	3	114.267	1	.012	3	.049	1	.204	3
150			min	-87.363	4	-429.245	2	-28.307	5	011	1	111	5	463	2
151		19	max	-3.882	12	271.422	3	149.326	1	.012	3	.166	1	0	2
152			min	-97.852	4	-613.433	2	-26.376	5	011	1	136	5	0	5
153	M2	1		1108.012	1	2.214	4	.693	1	0	3	0	3	0	1
154				-1303.178	3	.545	15	-50.432	4	0	1	0	1	0	1
155		2		1108.428	1	2.205	4	.693	1	0	3	0	1	0	15
156				-1302.866	3	.543	15	-50.792	4	0	1	014	4	0	4
157		3		1108.843	1	2.197	4	.693	1	0	3	0	1	0	15
158				-1302.554	3	.541	15	-51.153	4	0	1	028	4	001	4
159		4		1109.259	1	2.188	4	.693	1	0	3	0	1	0	15
160				-1302.242	3	.538	15	-51.513	4	0	1	043	4	002	4
161		5		1109.675	1	2.179	4	.693	1	0	3	0	1	0	15
162				-1301.93	3	.536	15	-51.874	4	0	1	057	4	002	4
163		6		1110.091	1	2.171	4	.693	1	0	3	0	1	0	15
164				-1301.618	3	.534	15	-52.234	4	0	1	072	4	003	4
165		7		1110.507	1	2.162	4	.693	1	0	3	.001	1	0	15
166				-1301.306	3	.532	15	-52.595	4	0	1	087	4	004	4
167		8	_	1110.923	1	2.153	4	.693	1	0	3	.001	1	001	15
168				-1300.994	3	.53	15	-52.955	4	0	1	101	4	004	4
169		9		1111.339	1	2.144	4	.693	1	0	3	.002	1	001	15
170				-1300.682	3	.528	15	-53.316	4	0	1	116	4	005	4
171		10		1111.755	1	2.136	4	.693	1	0	3	.002	1	001	15
172		10		-1300.371	3	.526	15	-53.676	4	0	1	131	4	005	4
173		11		1112.17		2.127	4	.693	1	0	3	.002	1	001	15
174				-1300.059	3	.524	15	-54.037	4	0	1	146	4	006	4
175		12		1112.586	<u> </u>	2.118	4	.693	1	0	3	.002	1	002	15
176		14		-1299.747	3	.522	15	-54.397	4	0	1	162	4	002	4
177		13	_	1113.002	_ <u></u>	2.11	4	.693	1	0	3	.002	1	007	15
178		10		-1299.435	3	.52	15	-54.758	4	0	1	177	4	002	4
179		14		1113.418	1	2.101	4	.693	1	0	3	.003	1	002	15
180		14		-1299.123	3	.518	15	-55.118	4	0	1	192	4	002	4
181		15		1113.834	<u> </u>	2.092	4	.693	1	0	3	.003	1	008 002	15
182		13		-1298.811	3	.516	15	-55.479	4	0	1	208	4	002	4
183		16		1114.25	<u>ာ</u> 1	2.083	4	.693	1	0	3	.003	1	008 002	15
184		10		-1298.499	3	.514	15	-55.839	4	0	1	223	4	002 009	4
185		17		1114.666	<u>ა</u> 1	2.075	4	<u>-55.639</u> .693	1	0	3	.003	1	009 002	15
186		17		-1298.187	3	.512	15	-56.2	4	0	1	239	4		4
186		18		1115.082	<u> </u>	2.066	4	.693	1		3	.003	1	01	
188		10		-1297.875	3	.51	15	-56.56	4	0	1	255	4	003 01	15
189		10								0	3				15
109		19	шах	1115.497	1	2.057	4	.693	1	U	_ ა	.003	1	003	<u> 15</u>

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1297.563	3	.508	15	-56.92	4	0	1	271	4	011	4
191	M3	1	max	538.447	2	9.135	4	.167	1	0	3	0	1	.011	4
192			min	-676.527	3	2.162	15	-3.112	5	0	4	005	4	.003	15
193		2	max	538.277	2	8.26	4	.167	1	0	3	0	1_	.007	4
194			min	-676.655	3	1.956	15	-2.504	5	0	4	006	4	.001	12
195		3	max	538.106	2	7.386	4	.167	1	0	3	0	1	.003	2
196			min	-676.782	3	1.75	15	-1.895	5	0	4_	007	4	0	3
197		4	max	537.936	2	6.511	4	.167	1	0	3	0	1_	0	2
198		_	min	<u>-676.91</u>	3	1.545	15	-1.286	5	0	4	008	5	002	3
199		5	max	537.766	2	5.637	4	.167	1	0	3	0	1	0	15
200		_	min	-677.038	3	1.339	15	677	5	0	4	008	5	003	3
201		6	max	537.595 -677.166	3	4.763 1.134	<u>4</u> 15	.167 069	5	0	<u>3</u> 4	008	5	001 006	15
203		7	max	537.425	2	3.888	4	.598	4	0	3	0	1	002	15
204			min	-677.293	3	.928	15	.01	12	0	4	008	5	002	6
205		8	max	537.255	2	3.014	4	1.207	4	0	3	0	1	002	15
206			min	-677.421	3	.723	15	.01	12	0	4	008	5	009	6
207		9	max	537.084	2	2.139	4	1.815	4	0	3	0	1	002	15
208			min	-677.549	3	.517	15	.01	12	0	4	007	5	011	6
209		10	max	536.914	2	1.265	4	2.424	4	0	3	0	1	003	15
210			min	-677.677	3	.312	15	.01	12	Ö	4	006	5	011	6
211		11	max	536.744	2	.439	2	3.033	4	0	3	0	1	003	15
212			min	-677.804	3	015	3	.01	12	0	4	005	5	012	6
213		12	max	536.573	2	099	15	3.642	4	0	3	0	1	003	15
214			min	-677.932	3	526	3	.01	12	0	4	003	5	012	6
215		13	max	536.403	2	305	15	4.25	4	0	3	.001	1	003	15
216			min	-678.06	3	-1.36	6	.01	12	0	4	001	5	011	6
217		14	max	536.233	2	511	15	4.859	4	0	3	.001	1	002	15
218			min	-678.188	3	-2.234	6	.01	12	0	4	0	12	01	6
219		15	max	536.062	2	716	15	5.468	4	0	3	.003	4	002	15
220			min	-678.315	3	-3.109	6	.01	12	0	4	0	12	009	6
221		16	max	535.892	2	922	15	6.076	4	0	3	.006	4	002	15
222			min	-678.443	3	-3.983	6	.01	12	0	4	0	12	008	6
223		17	max	535.722	2	-1.127	15	6.685	4	0	3	.009	4	001	15
224		40		-678.571	3	-4.858	6	.01	12	0	4_	0	12	005	6
225		18	max	535.551	2	-1.333	15	7.294	4	0	3	.013	4	0	15
226		40	min	-678.699	3_	-5.732	6	.01	12	0	4_	0	12	003	6
227		19	max	535.381	2	-1.538	15	7.903	4	0	3	.016	4	0	1
228	N/A	1	min	-678.826 1164.896	<u>3</u> 1	-6.607	6 1	.01	12	0	<u>4</u> 1	0	12	0	1
229	<u>M4</u>	l		-249.12	3	0	1	563 -245.662	12 4	0	1	.01	12	0	1
231		2		1165.066	<u> </u>	0	1	563	12	0	1	0	12	0	1
232				-248.993	3	0	1	-245.81	4	0	1	019	4	0	1
233		3		1165.236	_ <u></u>	0	1	563	12	0	1	0	12	0	1
234				-248.865	3	0	1	-245.957	4	0	1	047	4	0	1
235		4		1165.407	1	0	1	563	12	0	1	0	12	0	1
236				-248.737	3	0	1	-246.105		0	1	075	4	0	1
237		5		1165.577	1	0	1	563	12	0	1	0	12	0	1
238				-248.609	3	0	1	-246.253	4	0	1	103	4	0	1
239		6		1165.747	1	0	1	563	12	0	1	0	12	0	1
240				-248.482	3	0	1	-246.4	4	0	1	132	4	Ō	1
241		7		1165.918	1	0	1	563	12	0	1	0	12	0	1
242				-248.354	3	0	1	-246.548	4	0	1	16	4	0	1
243		8		1166.088	1	0	1	563	12	0	1	0	12	0	1
244				-248.226	3	0	1	-246.696		0	1	188	4	0	1
245		9		1166.258	_1_	0	1	563	12	0	1	0	12	0	1
246			min	-248.098	3	0	1	-246.843	4	0	1	217	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

0.47	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
247		10		1166.429	1	0	1	563	12	0	1	0	12	0	1
248		4.4		-247.971	3	0	1_	-246.991	4	0	1_	245	4	0	1
249		11		1166.599	1	0	1	563	12	0	<u>1</u> 1	273	12	0	1
250		12		-247.843	3	0	1	-247.138	4 12	0	1	<u>273</u>	12	0	1
251 252		12		1166.769 -247.715	<u>1</u> 3	0	1	563 -247.286	4	0	1	302	4	0	1
		12					1		_	_	1	_	12	0	1
253 254		13	max		<u>1</u> 3	0	1	563 -247.434	12 4	0	1	33	4	0	1
255		14		-247.587	<u>ာ</u> 1	0	1		12	0	1	0	12	0	1
		14		1167.11	3	-	1	563		-	1	_	4	0	1
256 257		15	min	<u>-247.459</u>	<u>ာ</u> 1	0	1	-247.581	<u>4</u> 12	0	1	359 0	12	0	1
258		10	max min	1167.28 -247.332	3	0	1	563 -247.729	4	0	1	387	4	0	1
259		16		1167.451	<u> </u>	0	1	563	12	0	+	301	12	0	1
260		10		-247.204	3	0	1	-247.877	4	0	1	415	4	0	1
261		17		1167.621	_ <u></u>	0	1	563	12	0	1	415	12	0	1
262		17		-247.076	3	0	1	-248.024	4	0	1	444	4	0	1
263		18		1167.791		0	1	563	12	0	1	001	12	0	1
264		10		-246.948	3	0	1	-248.172	4	0	1	472	4	0	1
265		19		1167.962	_ <u></u>	0	1	563	12	0	+	472	12	0	1
266		19		-246.821	3	0	1	-248.32	4	0	1	501	4	0	1
267	M6	1		3402.266	<u> </u>	2.602	2	0	1	0	1	0	4	0	1
268	IVIO		min	-4105.44	3	.112	3	-50.959	4	0	1	0	1	0	1
269		2		3402.682	_ <u></u>	2.595	2	0	1	0	1	0	1	0	3
270				-4105.128	3	.107	3	-51.319	4	0	1	014	4	0	2
271		3		3403.098	_ <u></u>	2.588	2	0	1	0	1	0	1	0	3
272				-4104.816	3	.102	3	-51.679	4	0	1	029	4	001	2
273		4		3403.514		2.581	2	0	1	0	1	0	1	0	3
274		_		-4104.505	3	.097	3	-52.04	4	0	1	043	4	002	2
275		5		3403.93	_ <u></u>	2.575	2	0	1	0	1	0	1	0	3
276			min	-4104.193	3	.091	3	-52.4	4	0	1	058	4	003	2
277		6		3404.346	<u> </u>	2.568	2	0	1	0	1	0	1	0	3
278			min	-4103.881	3	.086	3	-52.761	4	0	1	073	4	004	2
279		7		3404.761	1	2.561	2	0	1	0	1	0	1	0	3
280				-4103.569	3	.081	3	-53.121	4	0	1	088	4	004	2
281		8		3405.177	1	2.554	2	0	1	0	1	0	1	0	3
282			min		3	.076	3	-53.482	4	0	1	102	4	005	2
283		9	_	3405.593	1	2.547	2	0	1	0	1	0	1	0	3
284				-4102.945	3	.071	3	-53.842	4	0	1	118	4	006	2
285		10		3406.009	1	2.541	2	0	1	0	-	0	1	0	3
286		10		-4102.633	3	.066	3	-54.203	4	0	1	133	4	006	2
287		11		3406.425	1	2.534	2	0	1	0	1	0	1	0	3
288			min		3	.061	3	-54.563	4	0	1	148	4	007	2
289		12		3406.841	1	2.527	2	0	1	0	1	0	1	0	3
290				-4102.009	3	.056	3	-54.924	4	0	1	163	4	008	2
291		13		3407.257	1	2.52	2	0	1	0	1	0	1	0	3
292				-4101.697	3	.051	3	-55.284	4	0	1	179	4	009	2
293		14		3407.673	1	2.514	2	0	1	0	1	0	1	0	3
294				-4101.385	3	.046	3	-55.645	4	0	1	194	4	009	2
295		15		3408.088	1	2.507	2	0	1	0	1	0	1	0	3
296				-4101.074	3	.041	3	-56.005	4	0	1	21	4	01	2
297		16		3408.504	1	2.5	2	0	1	Ö	1	0	1	0	3
298			min	-4100.762	3	.035	3	-56.366	4	0	1	226	4	011	2
299		17		3408.92	1	2.493	2	0	1	0	1	0	1	0	3
300				-4100.45	3	.03	3	-56.726	4	0	1	242	4	011	2
301		18		3409.336	1	2.486	2	0	1	0	1	0	1	0	3
302				-4100.138	3	.025	3	-57.087	4	0	1	257	4	012	2
303		19		3409.752	1	2.48	2	0	1	0	1	0	1	0	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-4099.826	3	.02	3	-57.447	4	0	1_	274	4	013	2
305	M7	1		1874.908	2	9.136	6	0	1	0	1	0	1	.013	2
306			min	-2038.599	3	2.144	15	-3.315	5	0	4	005	4	0	3
307		2		1874.737	2	8.261	6	0	1	0	1	0	1	.009	2
308			min	-2038.727	3	1.939	15	-2.706	5	0	4	006	4	002	3
309		3	max		2	7.387	6	0	1_	0	1	0	1	.006	2
310			min	-2038.855	3	1.733	15	-2.097	5	0	4	007	4	004	3
311		4		1874.397	2	6.512	6	0	1	0	1	0	1	.003	2
312			min	-2038.983	3_	1.527	15	-1.489	5	0	4	008	4	005	3
313		5		1874.226	2	5.638	6	0	1	0	1	0	1	0	2
314			min	-2039.11	3	1.322	15	88	5	0	4	009	4	007	3
315		6		1874.056	2	4.764	6	0	1_	0	1	0	1	001	2
316			min	-2039.238	3_	1.116	15	271	5	0	4	009	4	008	3
317		7		1873.886	2	3.889	6	.355	4	0	1	0	1	002	15
318			min	-2039.366	3	.911	15	0	1	0	4	009	4	008	3
319		8	max		2	3.015	6	.964	4	0	1	0	1	002	15
320			min	-2039.494	3	.705	15	0	1	0	4	008	4	009	4
321		9		1873.545	2	2.186	2	1.572	4	0	1	0	1	003	15
322			min	-2039.621	3_	.395	12	0	1	0	4	008	4	011	4
323		10	max		2	1.505	2	2.181	4	0	1	0	1	003	15
324			min	-2039.749	3	.039	3	0	1	0	4	007	4	011	4
325		11		1873.204	2	.823	2	2.79	4	0	1	0	1	003	15
326			min	-2039.877	3_	472	3	0	1	0	4	006	4	012	4
327		12		1873.034	2	.142	2	3.398	4	0	1	0	1	003	15
328			min	-2040.005	3_	983	3	0	1	0	4	004	5	012	4
329		13	max		2	323	15	4.007	4	0	1	0	1_	003	15
330			min	-2040.132	3_	-1.494	3	0	1	0	4	003	5	011	4
331		14	max		2	528	15	4.616	4	0	1	0	1	002	15
332			min	-2040.26	3	-2.232	4	0	1	0	4	0	5	01	4
333		15	max		2	734	15	5.224	4	0	1	.002	4	002	15
334			min	-2040.388	3_	-3.106	4_	0	1	0	4	0	1_	009	4
335		16		1872.353	2	939	15	5.833	4	0	1	.004	4	002	15
336			min	-2040.516	3_	-3.981	4_	0	1	0	4	0	1_	008	4
337		17		1872.182	2	-1.145	15	6.442	4	0	1	.007	4	001	15
338		4.0	min	-2040.644	3	-4.855	4_	0	1	0	4	0	1	005	4
339		18	max		2	-1.35	15	7.051	4	0	1	.011	4	0	15
340		4.0	min	-2040.771	3	-5.73	4	0	1	0	4	0	1	003	4
341		19	max		2	-1.556	15	7.659	4	0	1	.014	4	0	1
342	140		min	-2040.899	3_	-6.604	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1	max		1_	0	1	0	1_	0	1	.008	4	0	1
344				-841.636		0	1_	-237.074		0	1_	0	1_	0	1
345		2		3243.81	1_	0	1	0	1	0	1	0	1	0	1
346			min		3_	0	1_	-237.222		0	1_	019	4	0	1
347		3		3243.981	1_	0	1	0	1	0	1	0	1	0	1
348		-	min		3	0	1_	-237.37	4	0	1_	046	4	0	1
349		4		3244.151	1_	0	1	0	1	0	1	0	1	0	1
350		_		-841.253	3_	0	1	-237.517	4	0	1_	073	4	0	1
351		5_		3244.321	1_	0	1	0	1	0	1	0	1	0	1
352		_		-841.125	3	0	1	-237.665		0	1	101	4	0	1
353		6		3244.492	1_	0	1	0	1	0	1_	0	1	0	1
354		-		-840.997	3	0	1	-237.812		0	1_	128	4	0	1
355		7		3244.662	1_	0	1	0	1	0	1	0	1	0	1
356		_	min		3_	0	1_	-237.96	4	0	1_	155	4	0	1
357		8		3244.832	1	0	1	0	1	0	1	0	1	0	1
358		_		-840.742	3	0	1_	-238.108		0	1_	183	4	0	1
359		9		3245.003		0	1	0	1	0	1	0	1	0	1
360			min	-840.614	3	0	1	-238.255	4	0	1	21	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC		
361		10		3245.173	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-840.486	3	0	1_	-238.403	4	0	1_	237	4	0	1
363		11		3245.343	1	0	1	0	1_1	0	<u>1</u> 1	0	1	0	1
364		10		-840.358	3	0	1	-238.551	4	0	1	265	4	0	1
365		12		3245.514	1	0	1	0	<u>1</u> 4	0	1	0	4	0	1
366		12	min		3	0	1	-238.698	<u>4</u> 1	_	1	292	1	0	1
367		13		3245.684	<u>1</u> 3	0	1	0 -238.846	4	0	1	32	4	0	1
368		11		-840.103	<u>ა</u> 1	0	1	0	_ 4 _	0	1	3 <u>2</u> 0	1	0	1
369		14		3245.854			1	-238.994	4	-	1	_		0	1
370 371		15	min	-839.975 3246.025	<u>3</u> 1	0	1	0	<u>4</u> 1	0	1	347 0	1	0	1
372		10	min	-839.847	3	0	1	-239.141	4	0	1	374	4	0	1
373		16		3246.195	1	0	1	0	1	0	+	374	1	0	1
374		10		-839.719	3	0	1	-239.289	4	0	1	402	4	0	1
375		17		3246.365	<u> </u>	0	1	0	1	0	1	402	1	0	1
376		17		-839.592	3	0	1	-239.436	4	0	1	429	4	0	1
377		18		3246.536	1	0	1	0	1	0	1	0	1	0	1
378		10		-839.464	3	0	1	-239.584	4	0	1	457	4	0	1
379		19		3246.706	1	0	1	0	1	0	1	0	1	0	1
380		13		-839.336	3	0	1	-239.732	4	0	1	484	4	0	1
381	M10	1		1108.012	1	2.102	6	045	12	0	1	0	4	0	1
382	IVITO		min	-1303.178	3	.47	15	-50.801	4	0	3	0	3	0	1
383		2		1108.428	1	2.094	6	045	12	0	1	0	10	0	15
384				-1302.866	3	.468	15	-51.161	4	0	3	014	4	0	6
385		3		1108.843	1	2.085	6	045	12	0	1	0	10	0	15
386				-1302.554	3	.465	15	-51.522	4	0	3	029	4	001	6
387		4		1109.259	1	2.076	6	045	12	0	1	0	10	0	15
388		_		-1302.242	3	.463	15	-51.882	4	0	3	043	4	002	6
389		5		1109.675	1	2.068	6	045	12	0	1	0	10	0	15
390				-1301.93	3	.461	15	-52.243	4	0	3	058	4	002	6
391		6		1110.091	1	2.059	6	045	12	0	1	0	12	0	15
392			min	-1301.618	3	.459	15	-52.603	4	0	3	072	4	003	6
393		7		1110.507	1	2.05	6	045	12	0	1	0	12	0	15
394				-1301.306	3	.457	15	-52.963	4	0	3	087	4	003	6
395		8		1110.923	1	2.041	6	045	12	0	1	0	12	0	15
396			min		3	.455	15	-53.324	4	0	3	102	4	004	6
397		9		1111.339	1	2.033	6	045	12	0	1	0	12	001	15
398				-1300.682	3	.453	15	-53.684	4	0	3	117	4	005	6
399		10		1111.755	1	2.024	6	045	12	0	1	0	12	001	15
400				-1300.371	3	.451	15	-54.045	4	0	3	132	4	005	6
401		11		1112.17	1	2.015	6	045	12	0	1	0	12	001	15
402			min		3	.449	15	-54.405	4	0	3	147	4	006	6
403		12		1112.586	1	2.007	6	045	12	0	1	0	12	001	15
404				-1299.747	3	.447	15	-54.766	4	0	3	163	4	006	6
405		13	max	1113.002	1	1.998	6	045	12	0	1	0	12	002	15
406			min	-1299.435	3	.445	15	-55.126	4	0	3	178	4	007	6
407		14		1113.418	1_	1.989	6	045	12	0	1	0	12	002	15
408			min	-1299.123	3	.443	15	-55.487	4	0	3	194	4	007	6
409		15		1113.834	1	1.98	6	045	12	0	1	0	12	002	15
410			min	-1298.811	3	.441	15	-55.847	4	0	3	209	4	008	6
411		16	max	1114.25	_1_	1.972	6	045	12	0	1	0	12	002	15
412			min	-1298.499	3	.439	15	-56.208	4	0	3	225	4	009	6
413		17		1114.666	1	1.963	6	045	12	0	1	0	12	002	15
414			min	-1298.187	3	.437	15	-56.568	4	0	3	241	4	009	6
415		18		1115.082	1	1.954	6	045	12	0	1	0	12	002	15
416				-1297.875	3	.435	15	-56.929	4	0	3	257	4	01	6
417		19	max	1115.497	1_	1.946	6	045	12	0	1_	0	12	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

418 min -1297.563 3 .433 15 -57.289 4 0 3 273 419 M11 1 max 538.447 2 9.069 6 01 12 0 1 0 420 min -676.527 3 2.117 15 -3.142 4 0 4 005 421 2 max 538.277 2 8.194 6 01 12 0 1 0 422 min -676.655 3 1.912 15 -2.534 4 0 4 006 423 3 max 538.106 2 7.32 6 01 12 0 1 0 424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0	4	01	6
420 min -676.527 3 2.117 15 -3.142 4 0 4 005 421 2 max 538.277 2 8.194 6 01 12 0 1 0 422 min -676.655 3 1.912 15 -2.534 4 0 4 006 423 3 max 538.106 2 7.32 6 01 12 0 1 0 424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1	1 1')	.01	6
421 2 max 538.277 2 8.194 6 01 12 0 1 0 422 min -676.655 3 1.912 15 -2.534 4 0 4 006 423 3 max 538.106 2 7.32 6 01 12 0 1 0 424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	12	.002	15
422 min -676.655 3 1.912 15 -2.534 4 0 4 006 423 3 max 538.106 2 7.32 6 01 12 0 1 0 424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	12	.002	2
423 3 max 538.106 2 7.32 6 01 12 0 1 0 424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	4	.001	15
424 min -676.782 3 1.706 15 -1.925 4 0 4 007 425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	12	.003	2
425 4 max 537.936 2 6.445 6 01 12 0 1 0 426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	4	0	3
426 min -676.91 3 1.5 15 -1.316 4 0 4 008 427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	12	0	2
427 5 max 537.766 2 5.571 6 01 12 0 1 0 428 min -677.038 3 1.295 15 708 4 0 4 008	4	002	3
428 min -677.038 3 1.295 15708 4 0 4008	12	002	15
	4	004	4
	12	004	15
	4	002	4
	12	002	15
	12	008 002	15
	4	01	4
435 9 max 537.084 2 2.073 6 1.739 5 0 1 0	12	003	15
436 min -677.549 3 .473 15167 1 0 4007	4	011	4
437	12	003	15
438 min -677.677 3 .267 15167 1 0 4006	4	012	4
439	12	003	15
440 min -677.804 3015 3167 1 0 4005	4	012	4
441 12 max 536.573 2144 15 3.565 5 0 1 0	12	003	15
442 min -677.932 3552 4167 1 0 4004	4	012	4
443 13 max 536.403 2349 15 4.174 5 0 1 0	12	003	15
444 min -678.06 3 -1.426 4167 1 0 4002	4	012	4
445	5	003	15
446 min -678.188 3 -2.3 4167 1 0 4001	1	011	4
447 15 max 536.062 2761 15 5.392 5 0 1 .003	5_	002	15
448 min -678.315 3 -3.175 4167 1 0 4001	1	009	4
449 16 max 535.892 2966 15 6 5 0 1 .006	5	002	15
450 min -678.443 3 -4.049 4167 1 0 4001	1	008	4
451 17 max 535.722 2 -1.172 15 6.609 5 0 1 .009	5	001	15
452 min -678.571 3 -4.924 4167 1 0 4001	1	005	4
453 18 max 535.551 2 -1.377 15 7.218 5 0 1 .012	5	0	15
454 min -678.699 3 -5.798 4167 1 0 4001	1	003	4
455 19 max 535.381 2 -1.583 15 7.826 5 0 1 .016	5	0	1
456 min -678.826 3 -6.673 4167 1 0 4001	1	0	1
457 M12 1 max 1164.896 1 0 1 9.801 1 0 1 .009	5	0	1
458 min -249.12 3 0 1 -240.427 4 0 1 0	1	0	1
459 2 max 1165.066 1 0 1 9.801 1 0 1 0	1	0	1
460 min -248.993 3 0 1 -240.575 4 0 1018	4	0	1
461 3 max 1165.236 1 0 1 9.801 1 0 1 .001	1	0	1
462 min -248.865 3 0 1 -240.722 4 0 1046	4	0	1
463 4 max 1165.407 1 0 1 9.801 1 0 1 .003	1	0	1
464 min -248.737 3 0 1 -240.87 4 0 1074	4	0	1
465 5 max 1165.577 1 0 1 9.801 1 0 1 .004	1	0	1
466 min -248.609 3 0 1 -241.018 4 0 1101	4	0	1
467 6 max 1165.747 1 0 1 9.801 1 0 1 .005	1	0	1
468 min -248.482 3 0 1 -241.165 4 0 1129	4	0	1
469 7 max 1165.918 1 0 1 9.801 1 0 1 .006	1	0	1
470 min -248.354 3 0 1 -241.313 4 0 1157	4	0	1
471 8 max 1166.088 1 0 1 9.801 1 0 1 .007	1	0	1
472 min -248.226 3 0 1 -241.46 4 0 1185	4	0	1
473 9 max 1166.258 1 0 1 9.801 1 0 1 .008	1	0	1
474 min -248.098 3 0 1 -241.608 4 0 1212	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
475		10	max	1166.429	_1_	0	1	9.801	1	0	_1_	.009	_1_	0	1
476			min	-247.971	3	0	1	-241.756	4	0	1	24	4	0	1
477		11	max	1166.599	1	0	1	9.801	1	0	1	.01	1	0	1
478			min	-247.843	3	0	1	-241.903	4	0	1	268	4	0	1
479		12	max	1166.769	1	0	1	9.801	1	0	1	.012	1	0	1
480			min	-247.715	3	0	1	-242.051	4	0	1	296	4	0	1
481		13	max	1166.94	1	0	1	9.801	1	0	1	.013	1	0	1
482			min	-247.587	3	0	1	-242.199	4	0	1	323	4	0	1
483		14	max	1167.11	1	0	1	9.801	1	0	1	.014	1	0	1
484			min	-247.459	3	0	1	-242.346	4	0	1	351	4	0	1
485		15	max		1	0	1	9.801	1	0	1	.015	1	0	1
486			min	-247.332	3	0	1	-242.494	4	0	1	379	4	0	1
487		16		1167.451	1	0	1	9.801	1	0	1	.016	1	0	1
488		1	min	-247.204	3	0	1	-242.641	4	0	1	407	4	0	1
489		17		1167.621	1	0	1	9.801	1	0	1	.017	1	0	1
490			min	-247.076	3	0	1	-242.789	4	0	1	435	4	0	1
491		18		1167.791	1	0	1	9.801	1	0	1	.018	1	0	1
492		10	min	-246.948	3	0	1	-242.937	4	0	1	463	4	0	1
493		19		1167.962	1	0	1	9.801	1	0	1	.019	1	0	1
494		13	min	-246.821	3	0	1	-243.084	4	0	1	491	4	0	1
495	M1	1	max	148.806	1	702.97	3	49.874	5	0	1	.164	1	0	15
496	IVII		min	-15.252	5	-469.288	1	-58.773	1	0	3	09	5	015	2
497		2	max	149.382	1	701.782	3	51.334	5	0	1	.128	1	.278	1
498			min	-14.983	5	-470.871	1	-58.773	1	0	3	058	5	44	3
499		3	max	437.388	3	570.023	1	3.579	5	0	3	.091	1	.559	1
500		-3	min	-280.795	2	-534.974	3	-58.26	1	0	1	026	5	861	3
501		4	max	437.82	3	568.44	1	5.039	5	0	3	.055	1	.206	1
502		+	min	-280.219	2	-536.162	3	-58.26	1	0	1	024	5	529	3
503		5	max		3	566.856	1	6.499	5	0	3	.019	<u> </u>	005	15
504		1 3	min	-279.643	2	-537.349	3	-58.26	1	0	1	02	5	196	3
505		6	max	I I	3	565.273	1	7.96	5	0	3	001	12	.138	3
506		-	min	-279.066	2	-538.537	3	-58.26	1	0	1	019	4	509	2
507		7	max	439.117	3	563.69	1	9.42	5	0	3	003	12	.473	3
508		+ ′	min	-278.49	2	-539.724	3	-58.26	1	0	1	054	1	848	1
509		8	max	439.549	3	562.107	1	10.88	5	0	3	003	15	.808	3
510			min	-277.914	2	-540.911	3	-58.26	1	0	1	09	1	-1.197	1
511		9	max	450.633	3	45.104	2	48.537	5	0	9	.058	1	.942	3
512		1 3	min	-217.545	2	.475	15	-95.104	1	0	3	126	5	-1.362	1
513		10	max		3	43.521	2	49.997	5	0	9	0	10	.921	3
514		10	min	-216.968	2	007	5	-95.104	1	0	3	096	4	-1.377	2
515		11		451.497	3	41.937	2	51.458	5	0	9	004	12	.9	3
516			min		2	-1.995	4	-95.104	1	0	3	076	4	-1.404	2
517		12		462.395	3	358.921	3	137.965	5	0	2	.088	1	.788	3
518		14		-155.951	2	-636.22	2	-56.291	1	0	3	217	5	-1.245	2
519		13		462.827	3	357.734	3	139.425	5	0	2	.053	<u> </u>	.566	3
520		13		-155.375	2	-637.803	2	-56.291	1	0	3	131	5	85	1
521		14	max		3	356.547	3	140.885	5	0	2	.018	1	.344	3
522		14	min		2	-639.386	2	-56.291	1	0	3	044	5	469	1
523		15		463.692	3	355.359		142.345	5	0	2	.044	5	.123	3
524		15	min		2	-640.97	2	-56.291	1	0	3	017	1	088	1
525		16		464.124					5		2	.132	•	.342	
		10			3	354.172 -642.553	3	143.805 -56.291	1	0	3	052	<u>5</u> 1	097	3
526 527		17	min		2	352.985	2	145.266	5	0	2	.222	5	.742	2
528		17	max min		<u>3</u>	-644.136	2	-56.291	1	0	3	087	<u> </u>	316	3
529		10	max		5	615.747	2	-3.882	12	0	<u> </u>	.188	<u> </u>	.373	2
530		10	min		<u> </u>	-270.324	3	-99.33	4	0	2	126	<u> </u>	156	3
531		19			5	614.164	2	-3.882	12	0	5	.136	5	.012	3
JJI		19	max	20.373	J	1014.104		-0.002	12	U	<u> </u>	.130	<u> </u>	.012	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-149.322	1	-271.512	3	-97.87	4	0	2	166	1_	011	1
533	M5	1	max	333.459	1	2329.311	3	82.542	5	0	1	0	1_	.03	2
534			min	9.332	12	-1620.071	1	0	1	0	4	182	4	0	15
535		2	max	334.035	1	2328.124	3	84.002	5	0	1	0	1	1.033	1
536			min	9.62	12	-1621.655	1	0	1	0	4	131	4	-1.438	3
537		3	max	1353.395	3	1557.998	1	39.247	4	0	4	0	1	2.005	1
538			min	-908.06	2	-1584.215	3	0	1	0	1	079	4	-2.839	3
539		4	max	1353.827	3	1556.415	1	40.707	4	0	4	0	1	1.039	1
540			min	-907.484	2	-1585.402	3	0	1	0	1	054	4	-1.856	3
541		5	max	1354.26	3	1554.832	1	42.168	4	0	4	0	1	.073	1
542			min	-906.908	2	-1586.589	3	0	1	0	1	029	4	871	3
543		6	max	1354.692	3	1553.249	1	43.628	4	0	4	0	1	.114	3
544			min	-906.332	2	-1587.777	3	0	1	0	1	002	5	919	2
545		7	max	1355.124	3	1551.665	1	45.088	4	0	4	.025	4	1.099	3
546			min	-905.755	2	-1588.964	3	0	1	0	1	0	1	-1.855	1
547		8	max		3	1550.082	1	46.548	4	0	4	.054	4	2.086	3
548			min	-905.179	2	-1590.151	3	0	1	0	1	0	1	-2.817	1
549		9		1368.954	3	152.402	2	160.851	4	0	1	0	1	2,406	3
550			min	-775.751	2	.478	15	0	1	0	1	182	4	-3.202	1
551		10		1369.387	3	150.819	2	162.312	4	0	1	0	1	2.324	3
552		1.0	min	-775.175	2	0	15	0	1	0	1	082	5	-3.252	1
553		11		1369.819	3	149.236	2	163.772	4	0	1	.019	4	2.242	3
554			min	-774.598	2	-1.803	6	0	1	0	1	0	1	-3.344	2
555		12		1383.589	3	1019.334	3	187.361	4	0	1	0	1	1.962	3
556		12	min	-645.314	2	-1787.869	2	0	1	0	4	304	4	-2.987	2
557		13	max		3	1018.146	3	188.821	4	0	1	0	1	1.33	3
558		13	min	-644.738	2	-1789.452	2	0	1	0	4	188	4	-1.877	2
559		14			3	1016.959	3	190.281	4	0	1	0	1	.698	3
		14	max		2	-1791.035		0	1		4	07	4		1
560		15	min	-644.162			2		-	0			_	812	
561 562		15		1384.885	2	1015.771 -1792.618	2	191.741 0	4	0	4	.049	<u>4</u> 1	.346	15
		16	min	<u>-643.585</u>		1014.584		193.202				_	_	_	
563		16		1385.317	3	-1794.201	3		4	0	1_1	.168	4_	1.459	2
564		47	min	-643.009	2		2	0		0	4	0	1_	563	3
565		17		1385.749	3	1013.397	3	194.662	4	0	1	.288	4	2.573	2
566		40	min	-642.433	2	-1795.784	2	0	1	0	4	0	1_	-1.192	3
567		18	max		12	2093.016	2	0	1	0	4	.287	4	1.316	2
568		40	min	-333.003	1	-957.78	3	-30.826	5	0	1	0	1_	62	3
569		19	max	-10.067	12	2091.433	2	0	1	0	4	.269	4	.021	1
570	140		min	-332.427	1_	<u>-958.967</u>	3	-29.366	5	0	1	0	1_	025	3
571	M9	1	max		1	702.97	3	69.351	4	0	3	011	12	0	15
572			mın		12	-469.288		3.947	12	0	4	164	1_	015	2
573		2	max		1	701.782	3	70.811	4	0	3	009	12	.278	1
574			min	7.045	12	-470.871	1	3.947	12	0	4	128	1_	44	3
575		3	1	437.388	3	570.023	1	58.26	1	0	1	006	12	.559	1
576			min	-280.795	2	-534.974	3	3.898	12	0	3	091	1_	861	3
577		4	max		3	568.44	1	58.26	1	0	1	004	12	.206	1
578			min		2	-536.162	3	3.898	12	0	3	055	_1_	529	3
579		5		438.253	3	566.856	1	58.26	1	0	1	001	12	005	15
580				-279.643	2	-537.349	3	3.898	12	0	3	027	4	196	3
581		6	max		3	565.273	1	58.26	1_	0	1	.017	1_	.138	3
582			min		2	-538.537	3	3.898	12	0	3	014	5	509	2
583		7	max		3	563.69	1	58.26	1	0	1	.054	_1_	.473	3
584			min		2	-539.724	3	3.898	12	0	3	004	5	848	1
585		8	max	439.549	3	562.107	1	58.26	1	0	1	.09	1_	.808	3
586			min	-277.914	2	-540.911	3	3.898	12	0	3	.004	15	-1.197	1
587		9	max	450.633	3	45.104	2	95.104	1	0	3	004	12	.942	3
588			min	-217.545	2	.489	15	5.986	12	0	9	145	4	-1.362	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	451.065	3	43.521	2	95.104	1	0	3	0	1	.921	3
590			min	-216.968	2	.011	15	5.986	12	0	9	095	4	-1.377	2
591		11	max	451.497	3	41.937	2	95.104	1	0	3	.06	1	.9	3
592			min	-216.392	2	-1.883	6	5.986	12	0	9	057	5	-1.404	2
593		12	max	462.395	3	358.921	3	158.12	4	0	3	005	12	.788	3
594			min	-155.951	2	-636.22	2	3.328	12	0	2	248	4	-1.245	2
595		13	max	462.827	3	357.734	3	159.58	4	0	3	003	12	.566	3
596			min	-155.375	2	-637.803	2	3.328	12	0	2	15	4	85	1
597		14	max	463.26	3	356.547	3	161.04	4	0	3	001	12	.344	3
598			min	-154.798	2	-639.386	2	3.328	12	0	2	05	4	469	1
599		15	max	463.692	3	355.359	3	162.5	4	0	3	.05	4	.123	3
600			min	-154.222	2	-640.97	2	3.328	12	0	2	0	12	088	1
601		16	max	464.124	3	354.172	3	163.96	4	0	3	.151	4	.342	2
602			min	-153.646	2	-642.553	2	3.328	12	0	2	.003	12	097	3
603		17	max	464.556	3	352.985	3	165.42	4	0	3	.254	4	.742	2
604			min	-153.07	2	-644.136	2	3.328	12	0	2	.005	12	316	3
605		18	max	-6.678	12	615.747	2	65.634	1	0	2	.231	4	.373	2
606			min	-149.898	1	-270.324	3	-77.775	5	0	3	.007	12	156	3
607		19	max	-6.389	12	614.164	2	65.634	1	0	2	.192	4	.012	3
608			min	-149.322	1	-271.512	3	-76.315	5	0	3	.01	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.211	2	.009	3	1.43e-2	2	NC	1	NC	1
2			min	625	4	054	3	005	2	-3.449e-3	3	NC	1	NC	1
3		2	max	0	1	.13	2	.019	1	1.546e-2	2	NC	4	NC	2
4			min	625	4	.004	15	012	5	-3.148e-3	3	1096.985	3	9832.153	1
5		3	max	0	1	.263	3	.045	1	1.661e-2	2	NC	5	NC	2
6			min	625	4	.002	15	015	5	-2.848e-3	3	604.503	3	4233.635	1
7		4	max	0	1	.352	3	.067	1	1.777e-2	2	NC	5	NC	3
8			min	625	4	007	9	012	5	-2.547e-3	3	472.976	3	2878.751	1
9		5	max	0	1	.375	3	.077	1	1.892e-2	2	NC	5	NC	3
10			min	625	4	005	9	005	5	-2.247e-3	3	446.793	3	2502.836	1
11		6	max	0	1	.336	3	.072	1	2.008e-2	2	NC	5	NC	3
12			min	625	4	.002	15	0	10	-1.946e-3	3	491.949	3	2648.96	1
13		7	max	0	1	.246	3	.055	1	2.124e-2	2	NC	4	NC	2
14			min	625	4	.004	15	003	10	-1.646e-3	3	639	3	3490.619	1
15		8	max	0	1	.261	2	.029	1	2.239e-2	2	NC	4	NC	2
16			min	625	4	.006	15	007	10	-1.345e-3	3	1039.437	3	6572.367	1
17		9	max	0	1	.337	2	.026	3	2.355e-2	2	NC	4	NC	1
18			min	625	4	.008	15	013	2	-1.044e-3	3	1521.558	2	NC	1
19		10	max	0	1	.371	2	.026	3	2.471e-2	2	NC	5	NC	1
20			min	625	4	023	3	018	2	-7.439e-4	3	1201.829	2	NC	1
21		11	max	0	12	.337	2	.026	3	2.355e-2	2	NC	4	NC	1
22			min	625	4	.008	15	013	2	-1.044e-3	3	1521.558	2	NC	1
23		12	max	0	12	.261	2	.029	1	2.239e-2	2	NC	4	NC	2
24			min	625	4	.006	15	009	5	-1.345e-3	3	1039.437	3	6572.367	1
25		13	max	0	12	.246	3	.055	1	2.124e-2	2	NC	4	NC	2
26			min	625	4	.004	15	004	5	-1.646e-3	3	639	3	3490.619	1
27		14	max	0	12	.336	3	.072	1	2.008e-2	2	NC	5	NC	3
28			min	625	4	.002	15	0	10	-1.946e-3	3	491.949	3	2648.96	1
29		15	max	0	12	.375	3	.077	1	1.892e-2	2	NC	5	NC	3
30			min	625	4	005	9	0	10	-2.247e-3	3	446.793	3	2502.836	1
31		16	max	0	12	.352	3	.067	1	1.777e-2	2	NC	5	NC	3
32			min	625	4	007	9	0	10	-2.547e-3	3	472.976	3	2878.751	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
33		17	max	0	12	.263	3	.045	1	1.661e-2	2	NC	5_	NC 1000 005	2
34		40	min	<u>625</u>	4	.002	15	0	10	-2.848e-3	3	604.503	3	4233.635	1
35		18	max	0	12	.13	2	.019	4	1.546e-2	2	NC	4	NC 000000000	2
36		40	min	625	4	.003	15	002	10	-3.148e-3	3	1096.985	3	9366.349	4
37		19	max	0	12	.211	2	.009	3	1.43e-2	2	NC NC	1	NC NC	1
38	N44.4	4	min	625	4	054	3	005	2	-3.449e-3	3	NC NC	•	NC NC	1
39	M14	1	max	0	1	.39	3	.008	3	8.08e-3	1	NC NC	1_1	NC NC	1
40			min	479	4	623	2	004	2	-5.934e-3	3	NC NC	1_	NC NC	1_
41		2	max	<u> </u>	1	.61	3	.012	1	9.299e-3	1	NC 702.054	5	NC NC	1
42		3	min	<u>479</u>	4	867	1	018	5	-6.944e-3	3	783.054	1_	NC NC	1
43		3	max	0	1	.802	3	.034	1	1.052e-2	1	NC 412.93	5	NC FC47.00	2
44		1	min	479	4	-1.087	1	023	5	-7.955e-3	3		1_	5617.22	1
45		4	max	0	1	.949	3	.055	1	1.174e-2	1	NC	<u>15</u>	NC	2
46		-	min	479	4	-1.263	1	016	5	-8.965e-3	3	299.434	1_	3522.416	1
47		5	max	0	1	1.041	3	.066	1	1.296e-2	1	NC OF4 200	<u>15</u>	NC 2000 204	3
48			min	479	4	-1.386	1	004	5	-9.976e-3	3	251.389	1_	2926.394	1
49		6	max	0	1	1.076	3	.064	1	1.418e-2	1_	NC 004.04	15	NC	3
50		-	min	479	4	<u>-1.453</u>	1	0	10	-1.099e-2	3	231.21	1_	3006.784	1
51		7	max	0	1	1.062	3	.05	1	1.54e-2	1_	9953.375	<u>15</u>	NC	2
52			min	479	4	<u>-1.469</u>	1	003	10	-1.2e-2	3	226.695	1_	3875.526	1
53		8	max	0	1	1.015	3	.034	4	1.662e-2	1_	NC 000 405	<u>15</u>	NC FFF0 204	2
54			min	479	4	-1.449	1	006	10	-1.301e-2	3	232.135	1_	5552.334	4
55		9	max	0	1	.961	3	.023	4	1.783e-2	1	NC 040.054	<u>15</u>	NC 7004 004	1
56		40	min	479	4	<u>-1.415</u>	1	011	2	-1.402e-2	3	242.254	1_	7984.891	4
57		10	max	0	1	.934	3	.023	3	1.905e-2	1	NC 040,000	<u>15</u>	NC NC	1
58		44	min	479	4	-1.395	1	016	2	-1.503e-2	3	248.393	1_	NC NC	1
59		11	max	0	12	.961	3	.023	3	1.783e-2	1_	NC 040.054	<u>15</u>	NC	1
60		40	min	479	4	<u>-1.415</u>	1	019	5	-1.402e-2	3	242.254	1_	NC NC	1
61		12	max	0	12	1.015	3	.027	1	1.662e-2	1	NC 000 405	<u>15</u>	NC	2
62		40	min	479	4	<u>-1.449</u>	1	022	5	-1.301e-2	3	232.135	1_	7140.159	1
63		13	max	<u> </u>	12	1.062	3	.05	5	1.54e-2 -1.2e-2	1	9953.203	<u>15</u>	NC	1
64		1.1	min	<u>479</u>	12	<u>-1.469</u>	3	015			3	226.695	1_	3875.526 NC	3
65		14	max	<u> </u>		1.076	1	.064	5	1.418e-2	1	NC 231.21	<u>15</u> 1		1
66		4.5	min	<u>479</u>	4	<u>-1.453</u>	-	002		-1.099e-2	3		•	3006.784	
67		15	max	0 479	12	1.041 -1.386	3	.066	1	1.296e-2	1	NC 251.389	<u>15</u> 1	NC 2926.394	3
68		16	min		12		3	0	10	-9.976e-3	3	NC	15	NC	2
69		16	max	<u>0</u>		.949		.055	1	1.174e-2	<u>1</u>	299.434		3522.416	
70		17	min	<u>479</u>	12	<u>-1.263</u>	1	0	10 4	-8.965e-3 1.052e-2			1_		2
71 72		17	max	<u> </u>		.802	3	.035			1	NC 412.93	<u>5</u> 1	NC 5200 044	_
73		10	min max	479 0	12	<u>-1.087</u> .61	3	<u>0</u> .024	10 4	-7.955e-3 9.299e-3	3	NC	5	5288.841 NC	1
74		10	min	479	4	867	1	002	10	-6.944e-3		783.054	1	7825.715	
		10	max	479 0	12		3	.002	3	8.08e-3		NC	1	NC	1
75		19		479	4	.39	2	004	2	-5.934e-3	<u>1</u>	NC NC	1	NC NC	1
76 77	M15	1	min	479 0	12	<u>623</u> .4	3	.007	3	4.997e-3		NC NC	1	NC NC	1
78	IVITO	1	max min	394	4	622	2	004	2	-8.304e-3	2	NC NC	1	NC NC	1
79		2	max	_ 394 0	12	.56	3	.013	1	5.837e-3	3	NC	5	NC	1
80			min	394	4	901	2	027	5	-9.562e-3	2	688.76	2	7472.185	
		3		394 0	12	.706	3	.035	1			NC	5	NC	2
81 82		3	max min	394	4	-1.148	2	034	5	6.676e-3 -1.082e-2	2	365.242	2	5581.144	1
83		4		<u>394</u> 0	12	.825	3	0 <u>54</u> .055	1			NC	15	NC	3
84		4	max	394	4	-1.34	2	026	5	7.515e-3 -1.208e-2	<u>3</u>	267.291	2	3502.905	1
85		5	max	<u>394</u> 0	12	<u>-1.34</u> .911	3	.066	1	8.354e-3	3	NC	15	NC	3
86		J	min	394	4	-1.466	2	009	5	-1.334e-2	2	227.351	2	2910	1
87		6		<u>394</u> 0	12	.964	3		1	9.193e-3		NC	15	NC	3
88		0	max min	394	4	-1.524	2	<u>.065</u>		-1.459e-2	2	212.779	2	2987.116	1
89		7		<u>394</u> 0	12	.984	3	.05	1	1.003e-2	3	9976.556		NC	2
LOA		/	max	U	12	.504	_⊥ ວ	.00		1.0036-2	J	331 U.330	ıυ	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	394	4	-1.522	2	003	10 -1.585e-2	2	213.287	2	3840.067	
91		8	max	0	12	.981	3	.042	4 1.087e-2	3	NC	<u>15</u>	NC	2
92			min	394	4	<u>-1.479</u>	2	006	10 -1.711e-2	2	224.121	2	4417.26	4
93		9	max	0	12	.966	3	.03	4 1.171e-2	3	NC	15	NC	1
94		40	min	394	4	-1.423	2	<u>01</u>	2 -1.837e-2	2	239.793	2	6099.26	4
95		10	max	0	1	.957	3	.021	3 1.255e-2	3	NC	<u>15</u>	NC	1
96			min	394	4	<u>-1.394</u>	1	01 <u>5</u>	2 -1.963e-2	2	248.646	_1_	NC	1
97		11	max	0	1	.966	3	.021	3 1.171e-2	3	NC	<u>15</u>	NC	1
98		10	min	394	4	<u>-1.423</u>	2	026	5 -1.837e-2	2	239.793	2	7849.732	
99		12	max	0	1	.981	3	.028	1 1.087e-2	3	NC	<u>15</u>	NC 0550 504	2
100		40	min	394	4	<u>-1.479</u>	2	031	5 -1.711e-2	2	224.121	2	6558.584	
101		13	max	0	1	.984	3	.05	1 1.003e-2	3	9976.43	<u>15</u>	NC 22 40 227	2
102			min	394	4	-1.522	2	021	5 -1.585e-2	2	213.287	2	3840.067	1
103		14	max	0	1	.964	3	.065	1 9.193e-3	3	NC	<u>15</u>	NC	3
104		4.5	min	394	4	-1.524	2	003	5 -1.459e-2	2	212.779	2	2987.116	1
105		15	max	0	1	.911	3	.066	1 8.354e-3	3	NC	<u>15</u>	NC	3
106		40	min	394	4	<u>-1.466</u>	2	0	10 -1.334e-2	2	227.351	2	2910	1
107		16	max	0	1	.825	3	.055	1 7.515e-3	3	NC	15	NC 2500,005	3
108			min	394	4	<u>-1.34</u>	2	0	10 -1.208e-2	2	267.291	2	3502.905	
109		17	max	0	1	.706	3	.047	4 6.676e-3	3	NC	5_	NC	2
110		40	min	394	4	<u>-1.148</u>	2	0	10 -1.082e-2	2	365.242	2	3989.317	4
111		18	max	0	1	<u>.56</u>	3	.033	4 5.837e-3	3	NC	5	NC	1
112		40	min	394	4	<u>901</u>	2	002	10 -9.562e-3	2	688.76	2	5703.507	4
113		19	max	0	1	.4	3	.007	3 4.997e-3	3_	NC	_1_	NC NC	1
114	1440		min	394	4	622	2	004	2 -8.304e-3	2	NC NC	1_	NC NC	1
115	M16	1_	max	0	12	.197	1	.006	3 9.43e-3	3	NC	1_	NC NC	1
116			min	133	4	<u>141</u>	3	004	2 -1.282e-2	1_	NC	1_	NC	1
117		2	max	0	12	.08	1	.019	1 1.04e-2	3	NC TO	4	NC	2
118			min	133	4	096	3	019	5 -1.365e-2	1_	1458.58	2	9917.294	
119		3	max	0	12	.013	9	.045	1 1.137e-2	3_	NC 040.770	5_	NC 4040.55	2
120			min	133	4	063	3	024	5 -1.449e-2	1_	816.779	2	4242.55	1
121		4	max	0	12	.004	13	.067	1 1.234e-2	3	NC	5	NC	3
122		-	min	133	4	103	2	02	5 -1.532e-2	1_	658.631	2	2871.936	
123		5	max	0	12	.005	4	.077	1 1.331e-2	3_	NC	5_	NC	3
124			min	133	4	104	2	009	5 -1.615e-2	1_	656.541	2	2485.525	1
125		6	max	0	12	.021	9	.074	1 1.429e-2	3	NC 004.055	5_	NC 2010 000	3
126		-	min	133	4	097	3	.001	10 -1.699e-2	1_	801.355	2	2613.839	
127		7	max	0	12	.086	1	.057	1 1.526e-2	3	NC 1001010	3_	NC 0.400,000	2
128			min	133	4	149	3	001	10 -1.782e-2	1_	1324.349	2	3402.866	
129		8	max	0	12	.193	1	.031	1 1.623e-2	3	NC	1_	NC C400 005	2
130			min		4	208	3	004	10 -1.865e-2		2875.288			
131		9	max	0	12	.288	1	.019	4 1.72e-2	3	NC	4	NC	1
132		40	min	133	4	258	3	009	2 -1.949e-2	1_	1641.557	3_	9781.676	4
133		10	max	0	1	.33	1	.018	3 1.817e-2	3	NC	5	NC NC	1
134		4.4	min	133	4	28	3	014	2 -2.032e-2	1_	1381.211	3	NC NC	1
135		11	max	0	1	.288	1	.019	3 1.72e-2	3	NC	4	NC NC	1
136		40	min	133	4	258	3	014	5 -1.949e-2	1_	1641.557	3	NC NC	1
137		12	max	0	1	.193	1	.031	1 1.623e-2	3	NC	1_	NC C400 005	2
138		40	min	133	4	208	3	015	5 -1.865e-2	1	2875.288	3	6189.095	
139		13	max	0	1	.086	1	.057	1 1.526e-2	3	NC	3	NC 2402.0CC	2
140		4.4	min	133	4	149	3	007	5 -1.782e-2	1	1324.349	2	3402.866	
141		14	max	0	1	.021	9	.074	1 1.429e-2	3	NC 004.2FF	5	NC 2012 020	3
142		4.5	min	133	4	097	3	.001	10 -1.699e-2	1_	801.355	2	2613.839	
143		15	max	0	1	.005	6	.077	1 1.331e-2	3	NC CEO E 44	5_0	NC 0405 505	3
144		40	min	133	4	<u>104</u>	2	.002	10 -1.615e-2	1_	656.541	2	2485.525	
145		16	max	0	1	.004	13	.067	1 1.234e-2	3	NC CER COA	5	NC	3
146			min	133	4	103	2	.002	10 -1.532e-2	1	658.631	2	2871.936	1

Model Name

Schletter, Inc.HCV

нси

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.013	9	.045	1	1.137e-2	3	NC	_5_	NC	2
148			min	133	4	063	3	0	10	-1.449e-2	1_	816.779	2	4242.55	1
149		18	max	0	1	.08	1	.026	4	1.04e-2	3_	NC 4.450.50	4_	NC Track 055	2
150		40	min	133	4	096	3	001	10	-1.365e-2	1_	1458.58	2	7104.855	
151		19	max	0 133	1	.197	1	.006	3	9.43e-3	3	NC NC	1	NC NC	1
152	MO	1	min		4	141	3	004	2	-1.282e-2	1_	NC NC	1	NC NC	2
153	M2	1	max	.006	3	.007	3	.008	1 4	2.295e-3 -1.683e-4	5	8314.684	2		
154 155		2	min	008 .006	1	012 .006	2	589 .007	1	2.297e-3	<u>1</u> 5	NC	1	102.842 NC	2
156			max min	007	3	011	3	54	4	-1.577e-4	1	9618.018	2	112.069	4
157		3	max	.006	1	.005	2	.006	1	2.299e-3	5	NC	1	NC	2
158		-	min	007	3	011	3	492	4	-1.471e-4	1	NC	1	123.045	4
159		4	max	.005	1	.004	2	.006	1	2.301e-3	5	NC	1	NC	1
160		7	min	006	3	011	3	445	4	-1.365e-4	1	NC	1	136.228	4
161		5	max	.005	1	.003	2	.005	1	2.303e-3	5	NC	1	NC	1
162		Ť	min	006	3	01	3	398	4	-1.259e-4	1	NC	1	152.245	4
163		6	max	.005	1	.003	2	.005	1	2.305e-3	5	NC	1	NC	1
164			min	005	3	01	3	352	4	-1.152e-4	1	NC	1	171.966	4
165		7	max	.004	1	.002	2	.004	1	2.309e-3	4	NC	1	NC	1
166			min	005	3	009	3	308	4	-1.046e-4	1	NC	1	196.63	4
167		8	max	.004	1	0	2	.003	1	2.313e-3	4	NC	1	NC	1
168			min	005	3	009	3	266	4	-9.399e-5	1	NC	1	228.049	4
169		9	max	.004	1	0	2	.003	1	2.318e-3	4	NC	1	NC	1
170			min	004	3	008	3	225	4	-8.337e-5	1	NC	1	268.964	4
171		10	max	.003	1	0	2	.002	1	2.323e-3	4	NC	1	NC	1
172			min	004	3	008	3	187	4	-7.275e-5	1	NC	1	323.679	4
173		11	max	.003	1	0	15	.002	1	2.328e-3	4	NC	1_	NC	1
174			min	003	3	007	3	152	4	-6.213e-5	1_	NC	1_	399.276	4
175		12	max	.003	1	0	15	.002	1	2.332e-3	4	NC	_1_	NC	1
176			min	003	3	006	3	119	4	-5.15e-5	_1_	NC	_1_	508.097	4
177		13	max	.002	1	0	15	.001	1	2.337e-3	_4_	NC	_1_	NC	1
178			min	003	3	006	3	09	4	-4.088e-5	1_	NC	1_	673.262	4
179		14	max	.002	1	0	15	0	1	2.342e-3	4_	NC		NC	1
180		4.5	min	002	3	005	3	064	4	-3.026e-5	1_	NC NC	1_	942.383	4
181		15	max	.001	1	0	15	0	1	2.347e-3	4_	NC NC	1_	NC	1
182		4.0	min	002	3	004	3	042	4	-1.964e-5	1_	NC NC	1_	1427.077	4
183		16	max	.001	3	0	15	0	1	2.351e-3	4	NC NC	1	NC	1
184		17	min	<u>001</u>	1	003	3	025	1	-9.018e-6	1_	NC NC	1	2443.633	4
185 186		17	max min	<u> </u>	3	0 002	15	0 012	4	2.356e-3 -7.129e-7	3	NC NC	1	NC 5213.961	4
187		1Ω	max	0	1	002 0	15	<u>012</u> 0	1	2.361e-3		NC NC	1	NC	1
188		10	min	0	3	001	3	003	4	2.936e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>003</u> 0	1	2.366e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.03e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.517e-7	12	NC	1	NC	1
192	1010	<u>'</u>	min	0	1	0	1	0	1	-4.571e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.013	4	1.715e-4	4	NC	1	NC	1
194			min	0	2	002	6	0	12	8.816e-7	12	NC	1	NC	1
195		3	max	0	3	001	15	.026	4	8.001e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	12	2.115e-6	12	NC	1	NC	1
197		4	max	.001	3	002	15	.038	4	1.429e-3	4	NC	1	NC	1
198			min	0	2	008	6	0	12	3.348e-6	12	NC	1	NC	1
199		5	max	.001	3	002	15	.05	4	2.057e-3	4	NC	1	NC	1
200			min	001	2	011	6	0	12	4.582e-6		9481.517	6	NC	1
201		6	max	.002	3	003	15	.062	4	2.686e-3	4	NC	1	NC	1
202			min	001	2	013	6	0	12	5.815e-6	12	7593.352	6	NC	1
203		7	max	.002	3	003	15	.073	4	3.314e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	016	6	0	12	7.048e-6		6461.591	6	9847.687	5
205		8	max	.003	3	004	15	.083	4	3.943e-3	4_	NC	5_	NC	1
206			min	002	2	018	6	0	12	8.282e-6	12	5762.959	6	9695.606	5
207		9	max	.003	3	004	15	.093	4	4.572e-3	4	NC	5	NC	1
208			min	002	2	019	6	0	12	9.515e-6		5345.763	6	9959.087	5
209		10	max	.003	3	004	15	.103	4	5.2e-3	4_	NC	5_	NC	1
210			min	003	2	02	6	0	12	1.075e-5	12	5135.991	6	NC	1
211		11	max	.004	3	004	15	.112	4	5.829e-3	4	NC	5	NC	1
212			min	003	2	02	6	0	12	1.198e-5	12	5102.24	6	NC	1
213		12	max	.004	3	004	15	.121	4	6.457e-3	4	NC	5	NC	1
214			min	003	2	02	6	0	12	1.321e-5	12	5243.59	6	NC	1
215		13	max	.004	3	004	15	.13	4	7.086e-3	4	NC	5	NC	1
216			min	004	2	018	6	0	12	1.445e-5	12	5590.741	6	NC	1
217		14	max	.005	3	004	15	.139	4	7.715e-3	4	NC	5	NC	1
218			min	004	2	017	6	0	12	1.568e-5	12	6222.34	6	NC	1
219		15	max	.005	3	003	15	.148	4	8.343e-3	4	NC	2	NC	1
220			min	004	2	014	6	0	12	1.691e-5	12	7314.35	6	NC	1
221		16	max	.006	3	002	15	.157	4	8.972e-3	4	NC	1	NC	1
222			min	004	2	011	6	0	12	1.815e-5	12	9294.198	6	NC	1
223		17	max	.006	3	001	15	.167	4	9.6e-3	4	NC	1	NC	1
224			min	005	2	008	1	0	12	1.938e-5	12	NC	1	NC	1
225		18	max	.006	3	0	15	.177	4	1.023e-2	4	NC	1	NC	1
226			min	005	2	005	1	0	12	2.061e-5	12	NC	1	NC	1
227		19	max	.007	3	0	5	.187	4	1.086e-2	4	NC	1	NC	1
228			min	005	2	002	1	0	12	2.185e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.005	2	0	12	6.258e-5	1	NC	1	NC	3
230			min	0	3	007	3	187	4	-7.343e-4	5	NC	1	132.428	4
231		2	max	.003	1	.005	2	0	12	6.258e-5	1	NC	1	NC	2
232			min	0	3	006	3	172	4	-7.343e-4	5	NC	1	144.172	4
233		3	max	.002	1	.004	2	0	12	6.258e-5	1	NC	1	NC	2
234			min	0	3	006	3	157	4	-7.343e-4	5	NC	1	158.14	4
235		4	max	.002	1	.004	2	0	12	6.258e-5	1	NC	1	NC	2
236			min	0	3	006	3	142	4	-7.343e-4	5	NC	1	174.909	4
237		5	max	.002	1	.004	2	0	12	6.258e-5	1	NC	1	NC	2
238		J	min	0	3	005	3	127	4	-7.343e-4	5	NC	1	195.267	4
239		6	max	.002	1	.003	2	0	12	6.258e-5	1	NC	1	NC	2
240			min	0	3	005	3	113	4	-7.343e-4	5	NC	1	220.306	4
241		7	max	.002	1	.003	2	0	12	6.258e-5	1	NC	1	NC	2
242			min	0	3	004	3	099	4	-7.343e-4	5	NC	1	251.573	4
243		8	max	.002	1	.003	2	<u>.099</u>	12	6.258e-5	1	NC	1	NC	2
244			min	0	3	004	3	085	4	-7.343e-4	5	NC	1	291.329	4
245		9	1	.002	1	.003	2	<u>005</u> 0	12		1	NC	1	NC	2
246		3	max	0	3	004	3	072	4	-7.343e-4	5	NC	1	342.976	4
247		10		.001	1	.002	2	<u>072</u> 0	12	6.258e-5	<u> </u>	NC NC	1	NC	1
248		10	max	0	3	003	3	06	4	-7.343e-4	5	NC NC	1	411.832	4
249		11		.001	1	.002	2	<u>06</u> 0	12	6.258e-5	<u> </u>	NC NC	1	NC	1
			max		3										
250		40	min	0		003	3	<u>049</u>	4	-7.343e-4	5	NC NC	1_	506.599	4
251		12	max	.001	1	.002	2	0	12	6.258e-5		NC NC	1_	NC C40.00	1
252		40	min	0	3	003	3	039	4	-7.343e-4	5	NC NC	1_1	642.33	4
253		13	max	0	1	.002	2	0	12	6.258e-5	1_	NC NC	1_1	NC	1
254		4.4	min	0	3	002	3	029	4	-7.343e-4	5	NC NC	1_	846.973	4
255		14	max	0	1	.001	2	0	12	6.258e-5	_1_	NC	1	NC	1
256		1-	min	0	3	002	3	021	4	-7.343e-4	5_	NC NC	1_	1177.392	
257		15	max	0	1	.001	2	0	12	6.258e-5	_1_	NC	_1_	NC 4704 007	1
258		1.0	min	0	3	<u>001</u>	3	<u>014</u>	4	-7.343e-4	5_	NC	1_	1764.697	4
259		16	max	0	1	0	2	0	12	6.258e-5	1_	NC		NC NC	1
260			min	0	3	001	3	008	4	-7.343e-4	5	NC	1_	2971.422	4

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.258e-5	_1_	NC	1_	NC	1
262		10	min	0	3	0	3	004	4	-7.343e-4	5	NC	1_	6142.237	4
263		18	max	0	1	0	2	0	12	6.258e-5	_1_	NC	1_	NC	1
264		1.0	min	0	3	0	3	001	4	-7.343e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	6.258e-5	_1_	NC	1	NC	1
266			min	0	1	0	1	0	1	-7.343e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.02	1	.025	2	0	1	2.389e-3	_4_	NC	3	NC	1
268			min	024	3	036	3	595	4	0	_1_	2384.47	2	101.831	4
269		2	max	.019	1	.023	2	0	1_	2.388e-3	4	NC	3	NC	1
270			min	023	3	034	3	546	4	0	1_	2609.481	2	110.969	4
271		3	max	.018	1	.021	2	0	1_	2.387e-3	_4_	NC	3_	NC	1
272			min	021	3	032	3	497	4	0	1_	2879.38	2	121.837	4
273		4	max	.017	1	.019	2	0	1	2.386e-3	_4_	NC	3_	NC	1
274			min	02	3	03	3	449	4	0	1	3206.586	2	134.892	4
275		5	max	.015	1	.017	2	0	1	2.385e-3	4	NC	3	NC	1
276			min	019	3	028	3	402	4	0	1	3608.26	2	150.753	4
277		6	max	.014	1	.015	2	0	1	2.385e-3	4	NC	3	NC	1
278			min	017	3	026	3	356	4	0	1	4108.67	2	170.282	4
279		7	max	.013	1	.013	2	0	1	2.384e-3	4	NC	3	NC	1
280			min	016	3	024	3	311	4	0	1	4743.053	2	194.706	4
281		8	max	.012	1	.011	2	0	1	2.383e-3	4	NC	1	NC	1
282			min	015	3	022	3	268	4	0	1	5564.181	2	225.82	4
283		9	max	.011	1	.009	2	0	1	2.382e-3	4	NC	1	NC	1
284			min	013	3	02	3	227	4	0	1	6654.054	2	266.338	4
285		10	max	.01	1	.007	2	0	1	2.381e-3	4	NC	1	NC	1
286			min	012	3	018	3	189	4	0	1	8145.853	2	320.522	4
287		11	max	.009	1	.006	2	0	1	2.38e-3	4	NC	1	NC	1
288			min	011	3	016	3	153	4	0	1	NC	1	395.387	4
289		12	max	.008	1	.005	2	0	1	2.38e-3	4	NC	1	NC	1
290		1.2	min	009	3	014	3	12	4	0	1	NC	1	503.155	4
291		13	max	.007	1	.003	2	0	1	2.379e-3	4	NC	<u> </u>	NC	1
292		10	min	008	3	012	3	091	4	0	1	NC	1	666.723	4
293		14	max	.006	1	.002	2	0	1	2.378e-3	4	NC	1	NC	1
294		1 7	min	007	3	01	3	065	4	0	1	NC	1	933.249	4
295		15	max	.004	1	.001	2	<u>.000</u>	1	2.377e-3	4	NC	1	NC	1
296		13	min	005	3	008	3	043	4	0	7	NC	1	1413.277	4
297		16	max	.003	1	<u>000</u>	2	0	1	2.376e-3	4	NC	1	NC	1
298		10	min	004	3	006	3	025	4	0	1	NC	1	2420.081	4
299		17		.002	1	<u>000</u> 0	2	<u>025</u> 0	1	2.375e-3	4	NC	1	NC	1
300		17	max	003	3	004	3	012	4	0	1	NC NC	1	5163.982	4
		10				004 0			4				1		4
301		18		.001	1		2	0	1	2.374e-3	4	NC NC	1	NC NC	1
302		10	min	001	3	002	3	003	4	2 2740 2	1_1	NC NC	1	NC NC	1
303		19	max	0	1	0	1	0	1	2.374e-3	4	NC NC	1	NC NC	1
304	1.47	1	min	0		0		0	1	0	1	NC	•	NC NC	
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-4.579e-4	4	NC	1_	NC NC	1
307		2	max	.001	3	0	15	.013	4	1.538e-4	4_	NC	1_	NC	1
308			min	001	2	003	3	0	1	0	1_	NC	1_	NC	1
309		3	max	.002	3	001	15	.026	4	7.654e-4	4	NC	1_	NC	1
310			min	002	2	007	3	0	1	0	<u>1</u>	NC	_1_	NC	1
311		4	max	.003	3	002	15	.038	4	1.377e-3	4	NC	1_	NC	1
312			min	003	2	01	3	0	1	0	1	NC	1_	NC	1
313		5	max	.004	3	003	15	.05	4	1.989e-3	4	NC	_1_	NC	1
314			min	004	2	013	3	0	1	0	1	8548.098	3	NC	1
315		6	max	.006	3	003	15	.062	4	2.6e-3	4	NC	1_	NC	1
316			min	005	2	015	3	0	1	0	1	7183.938	3	9117.441	4
317		7	max	.007	3	004	15	.072	4	3.212e-3	4	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	006	2	017	3	0	1	0	1_	6363.011	3	8478.626	
319		8	max	.008	3	004	15	.083	4	3.824e-3	4	NC	2	NC	1
320			min	007	2	<u>019</u>	3	0	1	0	1_	5770.692		8243.699	
321		9	max	.009	3	005	15	.093	4	4.435e-3	4_	NC	2	NC	1
322		40	min	008	2	02	4	0	1	0	1_1	5352.437	4_	8337.641	4
323		10	max	.01	3	005 021	15	.102	4	5.047e-3	4	NC 5142.006	<u>5</u>	NC 8758.156	1
324 325		11	min	009 .011	3	021 005	15	<u> </u>	4	0 5 6500 2	<u>1</u> 4	5142.006 NC	_4 5	NC	1
326		+	max		2	005 021	4	0	1	5.659e-3	1	5107.884	4	9567.002	4
327		12	max	01 .012	3	021 005	15	.12	4	6.27e-3	4	NC	5	NC	1
328		12	min	011	2	005	4	0	1	0.276-3	1	5249.107	4	NC NC	1
329		13	max	.013	3	004	15	.129	4	6.882e-3	4	NC	2	NC	1
330		13	min	012	2	019	4	0	1	0.0026-3	1	5596.371	4	NC	1
331		14	max	.012	3	004	15	.137	4	7.493e-3	4	NC	2	NC	1
332		17	min	013	2	017	4	0	1	0	1	6228.373	4	NC	1
333		15	max	.016	3	003	15	.145	4	8.105e-3	4	NC	1	NC	1
334			min	014	2	015	4	0	1	0	1	7321.22	4	NC	1
335		16	max	.017	3	003	15	.154	4	8.717e-3	4	NC	1	NC	1
336			min	015	2	012	4	0	1	0	1	9302.705	4	NC	1
337		17	max	.018	3	002	15	.162	4	9.328e-3	4	NC	1	NC	1
338			min	016	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.019	3	001	15	.172	4	9.94e-3	4	NC	1	NC	1
340			min	017	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.02	3	0	15	.181	4	1.055e-2	4	NC	1	NC	1
342			min	018	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.017	2	0	1	0	1	NC	1_	NC	1
344			min	002	3	02	3	181	4	-8.383e-4	4	NC	1_	136.814	4
345		2	max	.007	1	.016	2	0	1	0	1	NC	1_	NC	1
346			min	002	3	019	3	167	4	-8.383e-4	4	NC	1_	148.96	4
347		3	max	.007	1	.015	2	0	1	0	1	NC	_1_	NC	1
348			min	002	3	018	3	152	4	-8.383e-4	4	NC	1_	163.403	4
349		4	max	.006	1	.014	2	0	1	0	1	NC	1_	NC NC	1
350		-	min	002	3	017	3	137	4	-8.383e-4	4_	NC NC	1_	180.743	4
351		5	max	.006	1	.013	2	0	1	0	1	NC	1_	NC	1
352			min	002	3	016	3	123	4	-8.383e-4	4_	NC NC	1_	201.793	4
353		6	max	.006	3	.012	3	0 109	4	0 -8.383e-4	1_1	NC NC	1	NC 227.683	4
354 355		7	min	001 .005	1	015 .011	2	<u>109</u> 0	1	0	<u>4</u> 1	NC NC	1	NC	1
356			max min	001	3	013	3	095	4	-8.383e-4	4	NC NC	1	260.012	4
357		8	max	.005	1	.013 .01	2	_ 095 _ 0	1	0	1	NC	1	NC	1
358		-	min		3	012	3	082		-8.383e-4		NC	1	301.119	
359		9	max	.004	1	.012	2	<u>.002</u>	1	0.5050 4	1	NC	1	NC	1
360		Ť	min	001	3	011	3	07	4	-8.383e-4	4	NC	1	354.521	4
361		10	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
362			min	001	3	01	3	058	4	-8.383e-4	4	NC	1	425.717	4
363		11	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
364			min	0	3	009	3	047	4	-8.383e-4	4	NC	1	523.704	4
365		12	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	008	3	037	4	-8.383e-4	4	NC	1	664.05	4
367		13	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	007	3	028	4	-8.383e-4	4	NC	1	875.654	4
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	02	4	-8.383e-4	4	NC	1	1217.318	4
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	014	4	-8.383e-4	4	NC	1	1824.625	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	003	3	008	4	-8.383e-4	4	NC	1	3072.481	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
375		17	max	0	1	.002	2	0	1	0	1	NC NC	1	NC	1
376		10	min	0	3	002	3	004	4	-8.383e-4	4_	NC	1_	6351.504	4
377		18	max	0	1	0	2	0	1	0		NC	1_	NC NC	1
378		1.0	min	0	3	001	3	001	4	-8.383e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
380			min	0	1	0	1	0	1	-8.383e-4	4_	NC	1_	NC	1
381	M10	1_	max	.006	1	.007	2	0	12	2.37e-3	4_	NC	1	NC	2
382		_	min	008	3	012	3	593	4	1.223e-5		8314.684	2	102.136	4
383		2	max	.006	1	.006	2	0	12	2.369e-3	4_	NC	1_	NC	2
384		_	min	007	3	011	3	544	4	1.15e-5	12	9618.018	2	111.301	4
385		3	max	.006	1	.005	2	0	12	2.368e-3	4_	NC	_1_	NC	2
386			min	007	3	011	3	496	4	1.076e-5	12	NC	1_	122.202	4
387		4	max	.005	1	.004	2	0	12	2.367e-3	4	NC	1	NC	1
388			min	006	3	011	3	448	4	1.002e-5	12	NC	1	135.295	4
389		5	max	.005	1	.003	2	0	12	2.366e-3	4	NC	1	NC	1
390			min	006	3	01	3	401	4	9.286e-6	12	NC	1_	151.204	4
391		6	max	.005	1	.003	2	0	12	2.365e-3	4	NC	1	NC	1
392			min	005	3	01	3	355	4	8.549e-6	12	NC	1_	170.791	4
393		7	max	.004	1	.002	2	0	12	2.364e-3	4_	NC	_1_	NC	1_
394			min	005	3	009	3	31	4	7.812e-6	12	NC	1_	195.288	4
395		8	max	.004	1	0	2	0	12	2.363e-3	4	NC	_1_	NC	1_
396			min	005	3	009	3	267	4	7.e-6	10	NC	1_	226.495	4
397		9	max	.004	1	0	2	0	12	2.362e-3	4	NC	_1_	NC	1
398			min	004	3	008	3	227	4	6.18e-6	10	NC	1_	267.134	4
399		10	max	.003	1	0	2	0	12	2.361e-3	4	NC	1_	NC	1_
400			min	004	3	008	3	188	4	5.361e-6	10	NC	1	321.48	4
401		11	max	.003	1	0	2	0	12	2.361e-3	4	NC	1_	NC	1
402			min	003	3	007	3	153	4	4.541e-6	10	NC	1	396.569	4
403		12	max	.003	1	001	2	0	12	2.36e-3	4	NC	1_	NC	1
404			min	003	3	006	3	12	4	3.722e-6	10	NC	1	504.66	4
405		13	max	.002	1	001	15	0	12	2.359e-3	4	NC	1_	NC	1
406			min	003	3	006	3	091	4	2.902e-6	10	NC	1	668.72	4
407		14	max	.002	1	001	15	0	12	2.358e-3	4	NC	1	NC	1
408			min	002	3	005	3	065	4	2.083e-6	10	NC	1	936.049	4
409		15	max	.001	1	001	15	0	12	2.357e-3	4	NC	1	NC	1
410			min	002	3	004	3	043	4	1.263e-6	10	NC	1	1417.53	4
411		16	max	.001	1	0	15	0	12	2.356e-3	4	NC	1	NC	1
412			min	001	3	003	4	025	4	4.435e-7	10	NC	1	2427.404	4
413		17	max	0	1	0	15	0	12	2.355e-3	4	NC	1	NC	1
414			min	0	3	002	4	012	4	-1.603e-6	1	NC	1	5179.784	4
415		18	max	0	1	0	15	0	12	2.354e-3	4	NC	1	NC	1
416			min	0	3	001	4	003	4	-1.222e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.353e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-2.285e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	7.045e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-4.533e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.013	4	1.635e-4	4	NC	1	NC	1
422			min	0	2	003	4	0	1	-1.491e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	.026	4	7.804e-4	4	NC	1	NC	1
424			min	0	2	006	4	0	1	-3.687e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.038	4	1.397e-3	4	NC	1	NC	1
426			min	0	2	009	4	0	1	-5.883e-5	1	NC	1	NC	1
427		5	max	.001	3	003	15	.05	4	2.014e-3	4	NC	1	NC	1
428			min	001	2	012	4	0	1	-8.079e-5	1	9033.107	4	NC	1
429		6	max	.002	3	004	15	.061	4	2.631e-3	4	NC	1	NC	1
430			min	001	2	014	4	0	1	-1.028e-4	1	7268.436	4	NC	1
431		7	max	.002	3	004	15	.072	4	3.248e-3	4	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	002	2	017	4	0	1	-1.247e-4	1_	6208.43	4	9448.407	_
433		8	max	.003	3	005	15	.082	4	3.865e-3	4_	NC	5	NC	1
434			min	002	2	<u>019</u>	4	001	1	-1.467e-4	_1_	5554.138	<u>4</u>	9273.767	4
435		9	max	.003	3	005	15	.092	4	4.481e-3	4_	NC 5405.004	5	NC 2400,400	1
436		40	min	002	2	02	4	<u>001</u>	1	-1.686e-4	1_	5165.064	4_	9488.439	4
437 438		10	max	.003 003	3	005 021	15 4	.102 002	1	5.098e-3	<u>4</u> 1	NC 4972.8	5_4	NC NC	1
439		11	min max	.003	3	021 005	15	002 .111	4	-1.906e-4 5.715e-3	4	NC	<u>4</u> 5	NC NC	1
440			min	003	2	005 021	4	002	1	-2.125e-4	1	4948.797	4	NC	1
441		12	max	.003	3	005	15	.12	4	6.332e-3	4	NC	5	NC	1
442		12	min	003	2	021	4	003	1	-2.345e-4	1	5093.384	4	NC	1
443		13	max	.004	3	005	15	.129	4	6.949e-3	4	NC	5	NC	1
444			min	004	2	02	4	003	1	-2.565e-4	1	5437.274	4	NC	1
445		14	max	.005	3	004	15	.137	4	7.566e-3	4	NC	5	NC	1
446			min	004	2	018	4	004	1	-2.784e-4	1	6057.704	4	NC	1
447		15	max	.005	3	004	15	.146	4	8.182e-3	4	NC	2	NC	1
448			min	004	2	015	4	004	1	-3.004e-4	1_	7126.722	4	NC	1
449		16	max	.006	3	003	15	.155	4	8.799e-3	4	NC	1_	NC	1
450			min	004	2	012	4	005	1	-3.223e-4	1_	9061.67	4	NC	1
451		17	max	.006	3	002	15	.164	4	9.416e-3	4	NC	1_	NC	1
452		4.0	min	005	2	009	4	005	1	-3.443e-4	1_	NC	1_	NC	1
453		18	max	.006	3	001	15	.173	4	1.003e-2	4	NC	1	NC NC	1
454		40	min	005	2	005	1	006	1	-3.663e-4	1_	NC NC	1_	NC NC	1
455		19	max	.007	3	0	10	.183	4	1.065e-2	4	NC NC	1	NC NC	1
456 457	M12	1	min max	005 .003	1	002 .005	2	007 .007	1	-3.882e-4 -4.068e-6	<u>1</u> 12	NC NC	1	NC NC	3
458	IVIIZ		min	0	3	007	3	183	4	-7.627e-4	4	NC NC	1	135.193	4
459		2	max	.003	1	.005	2	.007	1	-4.068e-6	12	NC	1	NC	2
460			min	0	3	006	3	169	4	-7.627e-4	4	NC	1	147.186	4
461		3	max	.002	1	.004	2	.006	1	-4.068e-6	12	NC	1	NC	2
462			min	0	3	006	3	154	4	-7.627e-4	4	NC	1	161.448	4
463		4	max	.002	1	.004	2	.005	1	-4.068e-6	12	NC	1	NC	2
464			min	0	3	006	3	139	4	-7.627e-4	4	NC	1	178.572	4
465		5	max	.002	1	.004	2	.005	1	-4.068e-6	12	NC	1	NC	2
466			min	0	3	005	3	124	4	-7.627e-4	4	NC	1	199.36	4
467		6	max	.002	1	.003	2	.004	1	-4.068e-6	12	NC	_1_	NC	2
468			min	0	3	005	3	11	4	-7.627e-4	4	NC	1_	224.926	4
469		7	max	.002	1	.003	2	.004	1	-4.068e-6	12	NC	1_	NC	2
470			min	0	3	004	3	097	4	-7.627e-4	4_	NC	_1_	256.854	4
471		8	max	.002	1	.003	2	.003	1	-4.068e-6	12	NC	1_	NC 007.440	2
472			min		3	004	3	083		-7.627e-4		NC NC	1_	297.449	4
473		9	max	.002	3	.003	2	.003	1	-4.068e-6 -7.627e-4		NC NC	1_1	NC 250.496	2
474 475		10	min	.001	1	004 .002	2	071 .002	1	-7.627e-4 -4.068e-6	4	NC NC	<u>1</u> 1	350.186 NC	1
476		10	max min	.001	3	003	3	059	4	-7.627e-4	4	NC NC	1	420.495	4
477		11	max	.001	1	.002	2	.002	1	-4.068e-6	12	NC	1	NC	1
478			min	0	3	003	3	048	4	-7.627e-4	4	NC	1	517.261	4
479		12	max	.001	1	.002	2	.001	1	-4.068e-6		NC	1	NC	1
480		<u> </u>	min	0	3	003	3	038	4	-7.627e-4	4	NC	1	655.857	4
481		13	max	0	1	.002	2	.001	1	-4.068e-6	12	NC	1	NC	1
482			min	0	3	002	3	029	4	-7.627e-4	4	NC	1	864.82	4
483		14	max	0	1	.001	2	0	1	-4.068e-6	12	NC	1	NC	1
484			min	0	3	002	3	021	4	-7.627e-4	4	NC	1	1202.216	4
485		15	max	0	1	.001	2	0	1	-4.068e-6	12	NC	1	NC	1
486			min	0	3	001	3	014	4	-7.627e-4	4	NC	1	1801.925	4
487		16	max	0	1	0	2	0	1	-4.068e-6		NC	1_	NC	1
488			min	0	3	001	3	008	4	-7.627e-4	4	NC	1_	3034.145	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

400	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
489		17	max	0	1	0	2	0	1	-4.068e-6	12	NC	1_	NC	1
490		10	min	0	3	0	3	004	4	-7.627e-4	4_	NC	1_	6271.984	4
491		18	max	0	1	0	2	0	1	-4.068e-6	12	NC	1_	NC	1
492		1.0	min	0	3	0	3	001	4	-7.627e-4	4_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-4.068e-6	12	NC	1_	NC	1
494			min	0	1	0	1	0	1	-7.627e-4	4_	NC	1_	NC	1
495	M1	1	max	.009	3	.211	2	.625	4	9.048e-3	_1_	NC	1_	NC	1
496			min	005	2	054	3	0	12	-1.702e-2	3	NC	1_	NC	1
497		2	max	.009	3	.104	2	.607	4	8.06e-3	4	NC	5	NC	1
498			min	005	2	027	3	005	1	-8.449e-3	3	1266.902	2	NC	1
499		3	max	.009	3	.012	3	.589	4	1.433e-2	4_	NC	5	NC	1
500			min	005	2	01	2	008	1	-1.556e-4	1_	613.171	2	6833.868	5
501		4	max	.008	3	.073	3	.569	4	1.242e-2	4_	NC	<u>15</u>	NC	1
502			min	005	2	137	2	007	1	-3.976e-3	3	389.855	2	4842.513	5
503		5	max	.008	3	.148	3	.55	4	1.05e-2	4	NC	15	NC	1
504			min	005	2	268	2	005	1	-7.859e-3	3	282.95	2	3824.96	5
505		6	max	.008	3	.229	3	.53	4	1.295e-2	1	8003.101	15	NC	1
506			min	005	2	394	2	002	1	-1.174e-2	3	223.8	2	3205.774	5
507		7	max	.008	3	.306	3	.509	4	1.733e-2	1	6763.747	15	NC	1
508			min	004	2	507	2	0	3	-1.562e-2	3	188.768	2	2779.473	4
509		8	max	.008	3	.37	3	.488	4	2.17e-2	1	6029.34	15	NC	1
510			min	004	2	596	2	0	12	-1.951e-2	3	168.001	2	2464.679	4
511		9	max	.008	3	.412	3	.466	4	2.384e-2	1	5644.617	15	NC	1
512			min	004	2	652	2	0	1	-1.999e-2	3	157.014	1	2258.137	4
513		10	max	.007	3	.428	3	.44	4	2.459e-2	2	5526.918	15	NC	1
514		1.0	min	004	2	671	2	0	10	-1.82e-2	3	153.711	1	2191.202	4
515		11	max	.007	3	.418	3	.412	4	2.592e-2	2	5644.388	15	NC	1
516			min	004	2	652	2	0	12	-1.641e-2	3	157.263	1	2228.669	
517		12	max	.007	3	.383	3	.381	4	2.475e-2	2	6028.791	15	NC	1
518		12	min	004	2	594	2	0	1	-1.42e-2	3	168.795	1	2375.282	4
519		13	max	.007	3	.326	3	.344	4	1.985e-2	2	6762.668	15	NC	1
520		13	min	004	2	502	1	0	1	-1.136e-2	3	190.99	1	2813.214	4
521		14	max	.007	3	.254	3	.305	4	1.495e-2	2	8001.119	15	NC	1
522		14	min	004	2	386	1	0	12	-8.525e-3	3	228.722	1	3801.775	
523		15		.006	3	.172	3	.264	4	1.004e-2	2	NC	15	NC	1
524		15	max	004	2	258	1	.204	12	-5.688e-3	3	293.117	1	6187.29	4
		16	min		3		3					NC	•		1
525		16	max	.006	2	.087		.224	4	8.948e-3 -2.851e-3	4		<u>15</u>	NC NC	1
526		47	min	004	_	127	1	0	12		3	411.011	<u>1</u>	NC NC	-
527		17	max	.006	3	.004	3	.188	4	1.008e-2	4_	NC 050.00	5_	NC NC	1
528		10	min	004	2	006	2	0	12	-1.391e-5	3	659.93	<u>1</u>	NC NC	1
529		18	max	.006	3	.101	1	.158	4	6.46e-3	2	NC 4004 004	5_	NC NC	1
530		10	min	004	2	071	3	0	12	-2.202e-3	3	1384.091	1_	NC NC	1
531		19	max	.006	3	.197	1	.133	4	1.288e-2	2	NC	1_	NC	1
532			min	004	2	141	3	0	1	-4.48e-3	3	NC	1_	NC	1
533	<u>M5</u>	1	max	.026	3	.371	2	.625	4	0	_1_	NC	_1_	NC	1
534			min	018	2	023	3	0	1	-8.777e-6	4_	NC	1_	NC	1
535		2	max	.026	3	.183	2	.612	4	7.329e-3	_4_	NC	5_	NC	1
536			min	018	2	014	3	0	1	0	1_	730.944	2	9622.033	4
537		3	max	.026	3	.036	3	.594	4	1.449e-2	4	NC	15	NC	1
538			min	018	2	03	2	0	1	0	1_	340.839	2	5589.864	4
539		4	max	.025	3	.157	3	.575	4	1.181e-2	4	8301.05	15	NC	1
540			min	018	2	29	2	0	1	0	1	206.451	2	4243.304	4
541		5	max	.025	3	.33	3	.553	4	9.123e-3	4	5766.53	15	NC	1
542			min	017	2	575	2	0	1	0	1	143.992	2	3566.312	4
543		6	max	.024	3	.526	3	.531	4	6.44e-3	4	4415.686	15	NC	1
544			min	017	2	861	2	0	1	0	1	110.538		3136.657	
545		7	max	.024	3	.72	3	.509	4	3.757e-3	4		15	NC	1
		•													

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	016	2	-1.121	2	0	1	0	1_	91.25	2	2802.801	
547		8	max	.023	3	.883	3	.487	4	1.073e-3	4		<u>15</u>	NC	1
548			min	016	2	<u>-1.331</u>	1	0	1	0	_1_	79.948	1_	2497.331	4
549		9	max	.023	3	.989	3	.466	4	3.533e-8			15	NC	1
550		40	min	016	2	<u>-1.464</u>	1	0	1	-4.636e-6	5	74.105	1_	2253.276	
551		10	max	.022	3	1.027	3	.44	1	1.683e-7	<u>14</u>	2891.694 72.373	<u>15</u>	NC 2211.941	4
552		11	min	016 .022	3	<u>-1.509</u>	3	0	4	-4.397e-6	5		1_	NC	1
553 554			max	015	2	1.002 -1.464	1	<u>.411</u> 0	1	3.013e-7 -4.157e-6	5	2961.073 74.239	<u>15</u> 1	2261.209	
555		12	max	.021	3	.914	3	.382	4	7.187e-4	4		15	NC	1
556		12	min	015	2	-1.327	1	<u></u> 0	1	0	1	80.396	1	2331.506	-
557		13	max	.02	3	.772	3	.346	4	2.516e-3	4		15	NC	1
558		13	min	015	2	-1.11	1	0	1	0	1	92.567	1	2737.247	4
559		14	max	.02	3	.594	3	.305	4	4.313e-3	4		15	NC	1
560		17	min	014	2	84	1	0	1	0	1	113.881	1	3843.036	
561		15	max	.019	3	.396	3	.261	4	6.111e-3	4		15	NC	1
562		10	min	014	2	548	1	0	1	0	1	151.701	1	7151.612	5
563		16	max	.019	3	.196	3	.219	4	7.908e-3	4		15	NC	1
564			min	014	2	263	1	0	1	0	1	224.485	1	NC	1
565		17	max	.018	3	.012	3	.182	4	9.705e-3	4	NC	15	NC	1
566			min	014	2	016	2	0	1	0	1	386.251	1	NC	1
567		18	max	.018	3	.175	1	.153	4	4.91e-3	4	NC	5	NC	1
568			min	014	2	143	3	0	1	0	1	855.974	1	NC	1
569		19	max	.018	3	.33	1	.133	4	0	1	NC	1	NC	1
570			min	014	2	28	3	0	1	-4.215e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.211	2	.625	4	1.702e-2	3	NC	1_	NC	1
572			min	005	2	054	3	0	1	-9.048e-3	1_	NC	1	NC	1
573		2	max	.009	3	.104	2	.61	4	8.449e-3	3	NC	5	NC	1
574			min	005	2	027	3	0	12	-4.367e-3	1	1266.902	2	NC	1
575		3	max	.009	3	.012	3	.593	4	1.443e-2	4_	NC	5_	NC	1
576			min	005	2	01	2	0	12	-2.093e-5	<u>10</u>	613.171	2	5993.457	4
577		4	max	.008	3	.073	3	.573	4	1.137e-2	5		<u>15</u>	NC	1
578			min	005	2	<u>137</u>	2	0	12	-4.215e-3	1_	389.855	2	4431.683	
579		5	max	.008	3	.148	3	.552	4	8.591e-3	_5_	NC 200.05	<u>15</u>	NC	1
580			min	005	2	268	2	0	12	-8.585e-3	1_	282.95	2	3635.504	
581		6	max	.008	3	.229	3	.531	4	1.174e-2	3		<u>15</u>	NC	1
582		7	min	005	3	<u>394</u>	3	<u> </u>	10	-1.295e-2	1	223.8	<u>2</u>	3138.463	
583		/	max	.008	2	.306	2	.509	1	1.562e-2	<u>3</u> 1	6739.316 188.768	<u>15</u>	NC 2777.389	1
584 585		8	min	004 .008	3	507 .37	3	<u> </u>	4	-1.733e-2 1.951e-2	3		<u>2</u> 15	NC	1
586		0	max min		2	596	2	400	1	-2.17e-2		168 001	<u>၂၁</u>	2479.716	
587		9	max	.008	3	.412	3	.466	4	1.999e-2	3		15	NC	1
588		3	min	004	2	652	2	0	12	-2.384e-2	1	157.014	1	2252.154	
589		10	max	.007	3	.428	3	.44	4	1.82e-2	3		15	NC	1
590		10	min	004	2	671	2	0	1	-2.459e-2	2	153.711	1	2192.005	4
591		11	max	.007	3	.418	3	.411	4	1.641e-2	3		15	NC	1
592			min	004	2	652	2	0	1	-2.592e-2	2	157.263	1	2235.7	4
593		12	max	.007	3	.383	3	.381	4	1.42e-2	3		15	NC	1
594			min	004	2	594	2	0	12	-2.475e-2	2	168.795	1	2361.023	
595		13	max	.007	3	.326	3	.345	4	1.136e-2	3		15	NC	1
596			min	004	2	502	1	0	10	-1.985e-2	2	190.99	1	2811.052	4
597		14	max	.007	3	.254	3	.304	4	8.525e-3	3		15	NC	1
598			min	004	2	386	1	002	1	-1.495e-2	2	228.722	1	3876.683	_
599		15	max	.006	3	.172	3	.261	4	5.84e-3	5	NC	15	NC	1
600			min	004	2	258	1	004	1	-1.004e-2	2	293.117	1	6626.801	5
601		16	max	.006	3	.087	3	.22	4	7.805e-3	5		15	NC	1
602			min	004	2	127	1	007	1	-5.142e-3	2	411.011	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.004	3	.184	4	9.83e-3	4	NC	5	NC	1
604			min	004	2	006	2	007	1	-4.939e-4	1	659.93	1	NC	1
605		18	max	.006	3	.101	1	.155	4	4.776e-3	5	NC	5	NC	1
606			min	004	2	071	3	005	1	-6.46e-3	2	1384.091	1	NC	1
607		19	max	.006	3	.197	1	.133	4	4.48e-3	3	NC	1	NC	1
608			min	004	2	141	3	0	12	-1.288e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.