Tutorial 7

Formal Language and Automata Theory

March 2, 2023

Show that a regular language cannot be inherently ambiguous.

HINT 1: Try to prove that any ambiguous grammar for a regular language can be transformed into an unambiguous

HINT 1: Try to prove that any ambiguous grammar for a regular language can be transformed into an unambiguous

HINT 2: Use DFA

Question 1 Solution

Let L be a regular language, and suppose there exists an ambiguous grammar G that generates L.

We can construct a DFA (deterministic finite automaton) M that recognizes L.

Using the DFA M, we can construct a right-regular grammar G^{\prime} that generates L.

Since every right-regular grammar is unambiguous, G' is unambiguous. Therefore, G can be transformed into G' by converting it into a DFA and then into a right-regular grammar, without losing any strings that G generates.

Hence, L cannot be inherently ambiguous.

Question 2a

Show that following languages are not context-free using pumping lemma (a) $L = \{a^n b^j c^k : k > n, k > j\}$

Question 2a

(a)
$$L = \{a^n b^j c^k : k > n, k > j\}$$

HINT 1: Consider an example string $s \in L$, and represent the indices with the pumping length

Question 2a

(a)
$$L = \{a^n b^j c^k : k > n, k > j\}$$

HINT 1: Consider an example string $s \in L$, and represent the indices with the pumping length

HINT 2: Try to apply the pumping lemma: write s as s = uvwxy such that $|vwx| \le p$, and for all $i \ge 0$, $uv^i wx^i y \in L$. Show the contradiction

Question 2a Solution

(a)
$$L = \{a^n b^j c^k : k > n, k > j\}$$

Solution:

We assume that L is context-free. Then, let p be the pumping length given by the pumping lemma for L.

Consider the string $s = a^p b^{p+1} c^{p+2}$, which is in L.

By the pumping lemma, we can write s as s = uvwxy such that $|vwx| \le p$, and for all $i \ge 0$, $uv^i wx^i y \in L$.

Let vwx does not have any c, (e.g., $a^4b^5c^6$) then the string uv^3wx^3y will have atleast p+2 a's or b's.

Therefore, uv^3wx^3y is not in L, which contradicts the pumping lemma assumption that for all $i \ge 0$, $uv^iwx^iy \in L$.

Question 2b

Show that following languages are not context-free using pumping lemma (b) $L = \{a^{n!} : n \ge 0\}$

Question 2b

(b)
$$L = \{a^{n!} : n \ge 0\}$$

HINT 1: Consider an example string $s \in L$, and represent the indices with the pumping length

Question 2b

(b)
$$L = \{a^{n!} : n \ge 0\}$$

HINT 1: Consider an example string $s \in L$, and represent the indices with the pumping length

HINT 2: Try to apply the pumping lemma: write s as s = uvwxy such that $|vwx| \le p$, and for all $i \ge 0$, $uv^i wx^i y \in L$. Show the contradiction (Think, when i = 0)

Question 2b Solution

(b)
$$L = \{a^{n!} : n \ge 0\}$$

Solution:

let m be the pumping length given by the pumping lemma for L we pick $a^{m!} (= uvwxy)$. Obviously, whatever the decomposition is, it must be of the form $v = a^k, x = a^l$.

Then w0 = uwy (pump down) has length m! - (k + l).

This string is in L only if m! - (k + l) = j! for some j. But this is impossible, since with $k + l \le m$, m! - (k + l) > (m - 1)!.

Prove that the following language is ambiguous and also provide its unambiguous counterpart.

 $S \rightarrow if A then S else S | if A then S | print A$

 $A \rightarrow \mathit{true}|\mathit{false}$

Solution

Hint 1:

Construct the derivation tree. If a string has more than one derivation tree, then the grammar is ambiguous.

Hint 2:

Consider the input string and try to construct the derivation tree. *if false then if false then print true else print false*

Since two different derivation trees exist for the same input string, the grammar is ambiguous.

The respective unambiguous counterpart is- $S \to S' | if \ A \ then \ S| print \ A$ $S' \to if \ A \ then \ S' \ else \ S| print \ A$ $A \to true | false$

Question 4a

Convert the following grammar into Chomsky Normal Form.

$$S \rightarrow AACD$$

$$A
ightarrow aAb|\epsilon$$

$$C \rightarrow aC|a$$

$$D
ightarrow aDa|bDb|\epsilon$$

Solution

Hint 1:

In this case, P' becomes:

$$S \rightarrow AACD|ACD|AAC|CD|AC|aC|a$$

$$A
ightarrow aAb|ab|\epsilon$$

$$C \rightarrow aC|a$$

$$D
ightarrow aDa|bDb|aa|bb|\epsilon$$

Hint 2: Eliminate ϵ productions. The nullable variables are A and D. So remove those productions.

 $S \rightarrow AACD|ACD|AAC|CD|AC|C$ $A \rightarrow aAb|ab$

 $A \rightarrow aAb|ab$

C
ightarrow aC|a

D o aDa|bDb|aa|bb

Hint 3:

Eliminate unit-production. We remove the unit production $S \to C$ replacing it by $S \to aC|a$

S o AACD|ACD|AAC|CD|AC|aC|a A o aAb|ab C o aC|aD o aDa|bDb|aa|bb

Hint 4:

Restrict the right side of production to single terminals or strings of two or more variables.

$$S o AACD|ACD|AAC|CD|AC|X_aC|a$$

 $A o X_aAX_b|X_aX_b$
 $C o X_aC|a$
 $D o X_aDX_a|X_bDX_b|X_aX_a|X_bX_b$
 $X_a o a$
 $X_b o b$

Final Step to CNF: There are six productions whose right sides are too long.

long.
$$S o AT_1|AU_1|AV_1|CD|AC|X_aC|a$$
 $T_1 o AT_2$ $T_2 o CD$ $U_1 o CD$ $V_1 o AC$ $A o X_aW_1|X_aX_b$ $W_1 o AX_b$ $C o X_aC|a$ $D o X_aY_1|X_bZ_1|X_aX_a|X_bX_b$ $Y_1 o DX_a$ $Z_1 o DX_b$ $X_2 o a$

 $X_b \rightarrow b$

Question 4b

Convert the following grammar into CNF:

$$S \rightarrow aXbX$$

$$X o aY|bY|\epsilon$$

$$Y \rightarrow X | c$$

Solution

Step1:

$$S \rightarrow aXbX|abX|aXb|ab$$

 $X \rightarrow aY|bY|a|b|\epsilon$
 $Y \rightarrow X|c$

Step2:

$$S \rightarrow aXbX|abX|aXb|ab$$

 $X \rightarrow aY|bY|a|b$
 $Y \rightarrow X|c$

Step3:

 $S \rightarrow aXbX|abX|aXb|ab$ $X \rightarrow aY|bY|a|b$ $Y \rightarrow aY|bY|a|b|c$

Final Step:

 $S \rightarrow EF|AF|EB|AB$

 $X \rightarrow AY|BY|a|b$

 $Y \rightarrow AX|BY|a|b|c$

 $E \rightarrow AX$

 $F \rightarrow BX$

 $A \rightarrow a$

 $B \rightarrow b$

 $C \rightarrow c$