3.7. EL ESPACIO VECTORIAL DUAL

Todo werpo lk (= IR, C) es un e.v. sobre lk de dimonnoin 1. Podemos considerar L(V, lk), el españo de las aplicaciones lineales $A: V \to lk$, un V. españo vectorial.

Def Si V es un e.v. sobre lk, L(V, 1k) se llama españo dual de V y se denotara por V*

NOTA; Otros autores usen V'para el españo dual.

En la sección 3.6 hemos probado que $V^*=\mathcal{L}(V_s|K)$ es un esp. rectoscial sobre IK y que dim $(V^*)=\dim(Ik)\cdot\dim(V)=$ = $\dim(V)$ mando V treve dimensión finita. Adensés, dada $\mathcal{B}=\{\overline{e}_1,...,\overline{e}_n\}$ bex de V, la prop. 6.1 has da una forma de encentran una bax $\mathcal{B}^*=\{\overline{e}_1^*,...,\overline{e}_n^*\}$ de V^* .

Recordemos: para
$$(-1,2,-n)$$
.
 $E_i^*(\vec{e}_j) = \{0 \times (+j)\} = J_{ij}^*$

\$ se llama bax dual de \$

NOTA: Otros autores escubon los elementos de \$" con letras minusculas con astoristo, e. d. et.

De manera similar se worduye

 $\xi = \{ \vec{\mathcal{U}}_1 = (1,1,0), \vec{\mathcal{U}}_2 = (0,1,1), \vec{\mathcal{U}}_3 = (1,0,1) \}$ una base de \mathbb{R}^3 (Comprise ba que es base). Describe la base du el $\beta^* = \{ \vec{\mathcal{U}}_1^*, \vec{\mathcal{U}}_2^*, \vec{\mathcal{U}}_3^* \}$ de $(\mathbb{R}^3)^*$

S/ Par definition

$$U_{1}^{*}(\vec{u}_{1}) = 1$$
, $U_{1}^{*}(\vec{u}_{2}) = 0$, $U_{1}^{*}(\vec{u}_{3}) = 0$

Es deur, \vec{k} $\xi = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ es la bax canónica de \mathbb{R}^3 , $U_1^*(\vec{e_1} + \vec{e_2}) = 1$, $U_1^*(\vec{e_2} + \vec{e_3}) = 0$, $U_1^*(\vec{e_1} + \vec{e_3}) = 0$

Como U1 es lineal

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} \end{pmatrix}$$

$$U_{1}^{+}(x_{1}, x_{2}, x_{3}) = \frac{1}{2}x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} \iff U_{1}^{+}\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

Para hallar U_2 hay que resolver un SEL con la misma matrit que el anterver y con termino independiente $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Para U_3 hay que ponor el termino independiente $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Se puede, por tanto hace un callado conjunto,

$$U_{2}^{+}(x_{1}, x_{2}, x_{3}) = -\frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} \iff U_{2}^{+}\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$U_{3}^{+}(x_{1}, x_{2}, x_{3}) = \frac{1}{2}x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} \iff U_{3}^{+}\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2})\begin{pmatrix} x_{2} \\ x_{2} \\ x_{3} \end{pmatrix}$$

NOTA. Observa que les coordonas de Uj en la bax canónica le de IR3 es la columna j de la matriz A-1, donde A es la matriz que se dotore poniondo por files les coordonados de los elementos de B en la base cenónica E.

NOTA: Algunos autores elaman formas o 1-formas $(V_3|V)$.

Proposition 7.1. Sea $\beta = \{\vec{n}_1, ..., \vec{n}_n\}$ base de V y $\beta = \{\vec{v}_1, ..., \vec{v}_n\}$ so base dual. Les wavedonades de $A \in V^*$ on la bax β^* son $(A(\vec{v}_1), ..., A(\vec{v}_n))$.

D/ Como $\beta^* = \{U_1^*, ..., U_n^*\}$ es bax de V^* , se puede esocibor $A = \int_{J=1}^{n} a_J U_J^*$ con $a_J \in IK$. Tenemos que proben que $a_J = A(\overline{U}_J)$.

Para K = 1, ..., N: $A(\overline{u}_{K}) = (\sum_{J=1}^{n} a_J U_J^*)(\overline{u}_J) = \sum_{J=1}^{n} a_J U_J^*(\overline{u}_{K}) = \sum_{J=1}^{n} a_J U_J^*(\overline{u}_{K}) = \sum_{J=1}^{n} a_J U_J^*(\overline{u}_{K}) = a_K$

NOTA; $A = \sum_{j=1}^{n} A(\vec{y}_{j}) U_{j}^{\dagger}$ les le que duce la Prop 7.1)