

Models we learned so far

Parametric vs. Non-parametric **Linear Regression**

Logistic Regression

kNN

Parameters vs. Hyperparameters

Decision Tree

What is Decision Tree?

Caesar's mushroom

Death Cap

Decision Tree Nodes

How models "Learn" to make a Decision

Linear Regression Minimize MSE

Logistic Regression Minimize Cross Entropy

kNN No optimization, but uses distance

Decision Tree Split to minimize MSE for Regression task

and minimize

Cross Entropy or Gini for Classification task

The goal is to find boxes R1 ~ RJ such that

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i + \hat{y}_{R_j})^2 \quad \text{is minimized}$$
 the mean of the data in the box

X1

Faculty Salary Dataset

Faculty Salary Dataset

Faculty Salary Dataset

Faculty Salary Dataset

