Exercise 1

Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3\}$. For each of the relations R from A to B listed below list all pairs $(a, b) \in \mathbb{R}$ and write the corresponding $\{0, 1\}$ -indicator-matrix.

a.
$$a = b : (0, 0), (1, 1), (2, 2), (3, 3)$$

b. a + b = 4 : (1, 3), (2, 2), (3, 1), (4, 0)

c. a > b : (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)

d. a divides b: (1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1, 2), (2, 2), (1, 3)

Exercise 2

For each of these relations on the set {1, 2, 3, 4} decide whether or not it is reflexive, symmetric, antisymmetric, and transitive.

- a. $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- b. $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- c. $\{(2, 4), (4, 2)\}$
- d. $\{(1, 2), (2, 3), (3, 4)\}$
- e. $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- f. $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$

Relation	R	S	A	T
a	0	0	0	1
b	1	1	0	1
c	0	1	0	1
d	0	0	1	0
e	1	1	1	1
f	0	0	0	1

Exercise 3

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$ on the set $A = \{1, 2, 3, 4\}$

- a. Find $R \cup S$
- b. Find $R \cap S$
- c. Find R o S

Exercise 4

Let R be the relation $\{(1,2), (1,3), (2,3), (2,4), (3,1)\}$ on the set $A = \{1, 2, 3, 4\}$.

- a. Find the reflexive closure of R.
- b. Find the symmetric closure of R.
- c. Find the transitive closure of R.

Exercise 5

Prove the following:

- a. A relation R is reflexive iff R^{-1} is reflexive (where R^{-1} is the inverse relation that just reverses the order).
- b. A relation R is symmetric iff $R = R^{-1}$.
- c. A relation R is anti-symmetric iff $R \cap R^{-1} \subset \Delta : \Delta = \{(a, a) : a \in A\}$

Exercise 6

Let R be the relation represented by the matrix $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find the matrices for the relations:

- a. \mathbb{R}^2
- b. \mathbb{R}^3
- c. \mathbb{R}^4