QUALIFY EXAMINATION ANSWERS - ALGEBRA

1. Sem2, 2000/2001

Question 1.1. Let G be a finite group with a unique maximal subgroup. Show that G is cyclic.

Proof. Let M be the maximal subgroup of G. For any $g \in G \setminus M$. $\langle g \rangle = G$. Since otherwise $\langle g \rangle$ should contained in the maximal subgroup M, a contradiction.

Question 1.2. Let A be a subgroup of index n of a finite group G and let

$$\{g_1A, g_2A, \cdots, g_nA\}$$

be a set of coset representatives of G/A. For each $g \in G$, define

$$f_q\colon G/A\to G/A$$

by $f_g(g_iA) = gg_iA$. Prove that f_g is a bijection. Define $\chi \colon G \to S_n$ by

$$\chi(g) = f_a$$

Prove that χ is a group homomorphism. Determine the kernel of χ .

Proof. Since $f_g \circ f_{g^{-1}} = \mathrm{id}_{G/A}$, $f_{g^{-1}} \circ f_g = \mathrm{id}_{G/A}$. f_g is bijective. It's easy to see that $\chi(gh)(g_iA) = f_{gh}(g_iA) = ghg_iA = f_g \circ f_h(g_iA) = (\chi(g)\chi(h))(g_iA)$. So χ is a group homomorphism.

 $\chi_g = 1$ iff $f_g = \mathrm{id}_{G/A}$ iff $gg_iA = g_iA$ for all g_i . g_i just representative element of g_iA . So it's equivalent to ghA = hA for all $h \in G$. So $\mathrm{Ker}\chi = \{ g \in G \mid h^{-1}gh \in A \forall h \in G \}$. \square

Question 1.3. Let R be a commutative ring with identity and let $\chi: R \to F$ be a nontrivial ring homomorphism, where F is an integral domain. Prove that kernel of χ is a prime ideal.

Proof. F is integral domain then $\text{Im}\chi$ is integral domain by the definition. So $\text{Ker}\chi$ is prime. (If $ab \in \text{Ker}\chi$, $\text{Ker}\chi = ab + \text{Ker}\chi = (a + \text{Ker}\chi)(b + \text{Ker}\chi)$. So $a + \text{Ker}\chi = \text{Ker}\chi$ or $b + \text{Ker}\chi = \text{Ker}\chi$ by definition of integral domain. So either a or b in $\text{Ker}\chi$.)

Question 1.4. Let V be a vector space of finite dimension over a field F. Suppose that V is a integral domain. Prove that V is a field.

Proof. Note that all right ideal of V is F vector subspace of V ($xf = x(1_V f) \in I$ for any right ideal I of V and $x \in I$, $f \in F$). Since V is finite dimension, V is right Artinian ring. So for any $0 \neq a \in V$, exists $k \in \mathbb{N}$, $b \in V$, s.t. $a^k = a^{k+1}b((a) \supset (a^2) \supset (a^3) \cdots$ terminate). Since V is integral domain, $ab = 1_V$. So V is a field.

Question 1.5. Let E/F be a field extension and let $a, b \in E$ be algebraic over F. Prove that every element in F(a,b) is algebraic over F.

Proof. For any $v \in F(a,b)$, $F(v) \subset F(a,b)$. So $[F(v):F] \leq [F(a,b):F] = [F(a)(b):F(a)][F(a),F] \leq [F(b):F][F(a):F] < \infty$. Hence v is algebraic over F.

2. Sem1, 2001/2002

- Question 2.1. (a) Show that if R is a commutative ring with identity, then every maximal ideal of R is a prime ideal.
- (b) Show that if R is a Principal Ideal Domain, then every Prime ideal of R is a maximal ideal.
- (c) Give an example of a ring R which has a prime ideal that is not maximal.
- *Proof.* (a) I maximal $\Leftrightarrow R/I$ is field, So R/I is integral domain $\Leftrightarrow I$ prime.
- (b) (i) I = (p) is prime iff p is prime (p nonunit and p|ab gives p|a or p|b). It's easy since $p|a \Leftrightarrow a \in (p)$.
 - (ii) p is prime the p is irreducible (r nonunit and r = ab gives a or b is unit). If p = ab, then p|ab. WLOG, suppose that p|a then a = ps. So p = psb, then 1 = sb since R is integral domian. So b is unit.
 - (iii) r is irreducible iff (r) is maximal in the set of all proper principle ideals. If r is irreducible, $(r) \subset (s)$. Then r = sb. If s is unit, (s) = R, if b is unit, $s = rb^{-1}$, i.e. $(s) \subset (r)$. So (r) is maximal in all proper principle ideals. If (r) is maximal in all proper principle ideals, r = ab, $(r) \subset (a)$. Then if (a) = R, a is unit. If (a) = (r), a = rs. So r = rsb, so sb = 1 i.e. b is unit.

In the PID, every ideal is principle, so if I is prime, I is maximal.

(c) See Question 6.1

Question 2.2. (a) Let G and H be finite groups with relatively prime orders. Let $\theta: G \to H$ be a group homomorphism. What can conclude about θ why?

- (b) Let H be a subgroup of a group G with index 2. Prive that $H \triangleleft G$.
- (c) Give an example to show that H may not be a normal subgroup of G if [G:H]=3.

Proof. (a) θ is trivial. $\operatorname{Im}(\theta)$ is a subgroup of H so |H| divided by $|\operatorname{Im}(\theta)|$. By $|\operatorname{Im}(\theta)| = \frac{|G|}{|\operatorname{Ker}(\theta)|}$, |G| divided by $|\operatorname{Im}(\theta)|$. Hence $\operatorname{Im}(\theta)$ is trivial, since |G|, |H| coprime.

- (b) Note that if $g \notin H$, $\{H, gH\}$ forms a partition of G. Also $\{H, Hg\}$ is a partition of G. So gH = Hg since H = H. (Then $gHg^{-1} = H$). So H is normal in G.
- (c) Consider S_3 which is a non-abelian order 6 group. It has a order 2 subgroup H and order 3 subgroup N. Then $H \cap N = 1$, $N \triangleleft G$. So H can not be normal in S_3 otherwise $S_3 = H \times N$ is abelian.

Question 2.3. If L is a field extension of K such that [L:K] = p where p is a prime number, show that L = K(a) for every $a \in L$ that is not in K.

Proof. Note that $[L:K]=[L:K(a)][K(a),K],\ [K(a),K]>1$ since $a\notin K$. So [L:K(a)] i.e. L=K(a).

3. Sem 2, 2001/2002

Question 3.1. Classify all groups of order n up to isomorphism.

- (a) n is the square of a prime integer.
- (b) n = pq where p, Q are primes with p > q and q does not divide p 1.

Proof. (a) Suppose that $|G| = p^2$. By Sylow's theorem G has a order p subgroup P. It's easy to see that $C_G(P)$

4. Sem1, 2002/2003

- Question 4.1. (a) Determine whether each of the following pairs of groups are isomorphic:
 - (i) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_8 ;
 - (ii) \mathbb{Z} , \mathbb{Q} ;
 - (iii) \mathbb{R}^* , \mathbb{C}^* ;
 - (iv) \mathbb{R}^* , \mathbb{Q}^* ;
 - $(v) \mathbb{Q}, \mathbb{Q} \times \mathbb{Q}.$
- (b) $\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \}$ is a Euclidean domain with respect to the Euclidean distance d, where

$$d(a+bi) = a^2 + b^2$$

(i) Find $\alpha, \beta \in \mathbb{Z}[i]$ such that

$$1 - 5i = (1 + 2i)\alpha + \beta,$$

where $|\beta| < 5$.

(ii) Decide, with reasons, which of the following elements are irreducible in $\mathbb{Z}[i]$:

$$1 + i, 2 + 3i, 1 + 3i$$
.

- *Proof.* (a) (i) No. \mathbb{Z}_8 have order 8 element, but all element in $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ at most order 2.
 - (ii) No. \mathbb{Q} is divisible, say any $x \in \mathbb{Q}$, $n \in \mathbb{Z}$ exists $y \in bQ$ s.t. ny = x. But \mathbb{Z} is not divisible.
 - (iii) No. \mathbb{C}^* have any order n subgroup say $\langle e^{2\pi i/n} \rangle$. But the only finite subgroup in \mathbb{R}^* is $\{\pm 1\}$.
 - (iv) No. \mathbb{R}^* and \mathbb{Q}^* have different cardinal number.
 - (v) Consider \mathbb{Q} and $\mathbb{Q} \times \mathbb{Q}$ as \mathbb{Z} -module, If \mathbb{Q} isomorphism to $\mathbb{Q} \times \mathbb{Q}$ by homomorphism ϕ . We have exact sequence:

$$0 \to \mathbb{Q} \xrightarrow{\phi} \mathbb{Q} \times \mathbb{Q} \to 0.$$

localization by tensor product with \mathbb{Q} . It gives a \mathbb{Q} -module (\mathbb{Q} -vector space) exact sequence:

$$0 \to \mathbb{Q} \xrightarrow{\phi \otimes \mathrm{id}_{\mathbb{Q}}} \mathbb{Q} \times \mathbb{Q} \to 0.$$

Since \mathbb{Q} have IBN, \mathbb{Q} can not isomorphism to $\mathbb{Q} \times \mathbb{Q}$.

- (b) a
- **Question 4.2.** (a) If p is a prime number, show that the symmetric group S_p has exactly (p-2)! Sylow p-subgroups. Deduce that (p-1)! + 1 is divisible by p.
- (b) Prove that a ring wit a prime number of elements is either a field or a zero ring (i.e. a ring in which all products are zero).

Proof. (a) a

(b) b

- 5. Sem 2, 2002/2003
- 6. Sem 1, 2003/2004

Question 6.1. (a) Let G be the additive grou \mathbb{Q}/\mathbb{Z} . Show that any finite subgroup of G is cyclic.

- (b) For the ring $R = \mathbb{Z} \times \mathbb{Z}$, give an example for each of the following:
 - (i) a maximal ideal of R.
 - (ii) a prime ideal of R that is not maximal.
- **Question 6.2.** (a) Let G be a finite group, and H be a subgroup of index 2. Show that $x^2 \in H$ for any $x \in G$ and hence deduce that H contains all elements of G of odd order.
- (b) Let n > 3 be an integer, and let G be a subgroup of S_n . Assume that G has an odd permutation. Show that G has a normal subgroup of index 2.
- (c) Let A_4 be the subgroup of even permutations in S_4 . Show that A_4 has no subgroup of index 2.
- *Proof.* (a) Clearly H is normal in G. G/H is order 2. So $\pi(x^2) = \pi(x)^2 = e$ where π is the canonical map. Then $x^2 \in H$. Suppose that x have odd order, then x^2 is the generator of $\langle x \rangle$ (A result of cyclic group, $\langle x^r \rangle = \langle x \rangle$ for any (r, |x|) = 1). Since $x^2 \in H$, $\langle x \rangle \subset H$. So $x \in H$.
- (b) There is a natrual sign map form sgn: $S_n \to \{\pm 1\}$. restric on G. If G has odd permutation, $\operatorname{sgn}|_G$ is epimorphism. Then Kersgn_G is a normal subgroup of G with index 2.
- (c) Note that $\langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$ and $\langle (234) \rangle$ gives 4-distinct order 3 subgroup of A_4 . If A_4 have index 2 subgroup H. then |H| = 6. But there already have 8 odd order element. They should be in H, a contradiction.

7. Sem 2, 2003/2004

Question 7.1. Show that if a and b are elements in a group G, then ab and ba have the same order.

Proof. Suppose o(ba) is finite. Note that $(ab)^n = a(ba)^n a^{-1}$. If n = o(ab), $(ab)^n = 1$. So o(ab)|o(ba). In the same way o(ba)|o(ab). It's also easy to see that ab and ba should both have finite order.

Question 7.2. (a) Let H and K be subgroups of a group G with H normal in G. Show that

$$HK := \{ hk : h \in H, k \in K \}$$

is a subgroup of G and show that H is normal in HK.

(b) Show that $(H \cap K)$ is normal in K and that

$$K/(H \cap K) \cong HK/H$$

(c) Show that if H is a normal subgroup of G such that

$$gcd(|H|, [G:H]) = 1$$

then H is the unique subgroup of G of order |H|.

Proof. (a),(b) are trivial. If K is a order |H| subgroup of G. Let $n=|K/(H\cap K)|$, then n divides |H|. We have $K/(H\cap K)\cong HK/H$. So $n=\frac{|G/H|}{[G/H:HK/H]}$. So n divides |G:H|. Hence n=1. $H\cap K=K$ i.e. K=H by |K|=|H|.

Question 7.3. (a) Show that if R is a finite integral domain with a unit element, then R is a field.

(b) Show that if R is a finite commutative ring with a unit element, then every prime ideal of R is a maximal ideal

Proof. (a) R is finite, so R is right Artinian ring. right Artinian integral domain is field. It's the same as Question 1.4.

(b) g

Question 7.4. Let R is a ring with a unit element, 1_R , in which

$$(ab)^2 = a^2b^2$$

for all $a, b \in R$. Prove that R must be commutative.

Proof. (From sci.math.) $((a+1)b)^2 = (a+1)^2b^2$ gives $(ab)^2 + ab^2 + bab + b^2 = a^2b^2 + 2ab^2 + b^2$. So $bab = ab^2$. Then $(b+1)a(b+1) = a(b+1)^2$ gives $bab + ba + ab + a = ab^2 + 2ab + a$. Hence ba = ab. So R commutative.

- 8. Sem 1, 2004/2005
- 9. Sem 2, 2004/2005

Question 9.1. Prove that every integral domain can be imbedded in a field.

- 10. Sem 1, 2005/2006
- 11. Sem 2, 2005/2006

Question 11.1. (a) Prove that a group of order 12 either has a normal subgroup of order 3, or is isomorphic to A_4 , the alternating group on 4 letters.

- (b) Show that any simple group acting on a set of n elements is isomorphic to a subgroup of A_n , the alternating group on n letters.
- Proof. (a) If |G| = 12 and has no order 3 normal subgroup. Then the number of it's Sylow-3 subgroups is 4. Let G act on the set of Sylow-3 subgroups S by conjugation. It gives a homomorphism $\phi \colon G \to S_4$. The same as Question 6.2 (c) G has no order 6 subgroup. So $\text{Im}\phi \subset A_4$. Since G act on S transitively. $|\text{Im}\phi| \geq |S| = 4$. So $|\text{Ker}\phi| \leq 3$. Since G have no order 3 subgroup, $|\text{Ker}\phi| \neq 3$. Since A_4 have no order 6 subgroup, $|\text{Ker}\phi| \neq 2$. So ϕ is monomorphism, then isomorphisom from G to A_4 .
- (b) See Question 14.1

Question 11.2. Let R be a ring, not necessarily commutative and not necessarily containing the multiplicative identity. Prove that if R[X] is a principal ideal domain, then R is a field.

Proof. First we can embed R in R[X]. Since R[X] is integral domain (commutative, no zero divisor), R is integral domain. Consider the evaluation $\phi \colon R[X] \to R$ by $f \mapsto f(0)$. ϕ is surjective. Since R is integral domain, $\operatorname{Ker} \phi$ is prime ideal in R[X], then it is maximal ideal by Question 2.1 (b). So R is a field.

12. Sem 1, 2007/2008

Question 12.1. Prove that a simple group of order 60 is isomorphic to A_5 .

Proof. Note that, if there is a action of G on set S with |S| = n, then there is a injective from G to A_n . (See Question 11.1 (b)) Since |G| = 60, $|A_n| \ge |G|$ i.e. $n \ge 5$. 60 = 3 × 4 × 5. Consider 2-Sylow group. There is two approachs.

(a) If there are two 2-Sylow subgroup P,Q with non-trivial intersection. Clearly $H = P \cap Q$ is order 2. Choose $e \neq x \in H$. Then $P \cap Pq \subset C_G(x)$ (order 4 group are all abelian), where $q \in Q \setminus H$. So $|C_G(x)| \geq 8$. Cearly $C_G(x) \neq G$, if so C(G) is a non-trivial normal subgroup of G. So $|C_G(x)| \leq 12$, by looking the left action of G on $G/C_G(x)$ ($[G:C_G(x)] \geq 5$). Now $|C_G(x)|$ divides 60 and |P| divides $|C_G(x)| \leq C_G(x)$. So $|C_G(x)| = 12$. Hence it gives a isomorphism from G to $|C_G(x)| \leq 12$. By looking the left action of $|C_G(x)| = 12$.

If all 2-Sylow subgroup have no non-trivial intersection, fix a 2-Sylow subgroup P. Consider the normalizer $N_G(P)$. We will prove that $N_G(P) \neq P$. If so, the only possible is $|N_G(P)| = 12$, then $G \cong A_5$.

Suppose that $N_G(P) = P$, then $|N_G(P)| = 4$. So there is fifteen differen 2-Sylow subgroup of G since $N_G(P)$ is the stabilizer of the action of G on the set S of all 2-Sylow subgroups and G act on S transitively. Note that G is simple, so there is six different 5-Sylow subgroups of G. Clearly the interesection of different 5-Sylow subgroups is trivial. Also the interrsection of 5-Sylow subgroup and 2-Sylow subgroup is trivial since $\gcd(4,5) = 1$. Then there at least 1+(4-1)*15+(5-1)*6 = 70 > 60 difference element in G, a contradiction.

- (b) The number of Sylow-2 subgroup can be 3, 5, 15. Now consider G act on Sylow-2 by conjugation.
 - (i) 3 is impossible.
 - (ii) If it has 5 Sylow-2 subgroup, it gives a isomorphism G to A_5 since $|A_5| = 60$.
 - (iii) 15 is impossible in the proof of (a).

13. Sem 2, 2007/2008

14. Sem 1, 2008/2009

Question 14.1. (a) Let G be a finite simple group, and suppose that H is proper subgroup of G of index k. Show that there exists an injective group homomorphism from G to the alternating group A_k of degree k.

- (b) Show that a group of order 120 is not simple.
- Proof. (a) Consider G act on the set of left cosets $\{gH \mid g \in G\}$ by left multiplication, i.e. $x \cdot gH = (xg)H$. It gives a map ϕ from $G \to S_k$ since $\#\{gH \mid g \in H\} = k$. Clearly ϕ is nontrival since H is proper subgroup of G ($\exists g$ s.t. $gH \neq H$). So ϕ is monomorphism since G is simple (Ker ϕ is normal in G). Moreover $\text{Im}\phi \subset A_n$. If not $\text{sgn}\phi \colon G \to \{\pm 1\}$ is epimorphism. Then G have a nontrivial index 2 normal subgroup $\text{Ker sgn}\phi(|G| > 2)$.
- (b) If $|G| = 120 = 8 \times 5 \times 3$ and G is simple. By Sylow's theorem, |G| has a order 8 subgroup H, it's normalizer N(H) can not be G since G is simple. If the index of N(H) is 5 or 3 for any cases it's impossible since $60 = |A_5|, 6 = |A_3| < 120 = |G|$. But by (a) G can be embedded into A_5 or A_3 , a contradiction. If the index of N(H) is 15, then there is 15 different 2-Sylow subgroup of G.
- **Question 14.2.** (a) Let R and S be integral domains with $R \subseteq S$. Prove or disprove the following:
 - (i) If R is a Euclidean domain, then S is a unique factorisation domain.
 - (ii) If S is a Euclidean domain, then R is a unique factorisation domain.
- (b) Let $\phi: T \to U$ be a surjective ring homomorphism between two integral domains T and U. Prove or disprove the following:
 - (i) If T is a principal ideal domain, then U is a principal ideal domain.
 - (ii) If T is a unique factorisation domain, then U is a unique factorisation domain.

Proof. (a) a

(b) (i) For any ideal $I \subset U$, $\phi^{-1}(I)$ is a ideal in T. Then $\phi^{-1}(I) = (r)$ for some r. Then $I = (\phi(r))$.