Chapter 8: Subnetting IP networks

Introduction to Networks v5.1

Section 8.1: Subnetting an IPv4 Network

Upon completion of this section, you should be able to:

- Explain how subnetting segments a network to enable better communication.
- Explain how to calculate IPv4 subnets for a /24 prefix.
- Explain how to calculate IPv4 subnets for a /16 and /8 prefix.
- Given a set of requirements for subnetting, implement an IPv4 addressing scheme.
- Explain how to create a flexible addressing scheme using variable length subnet masking (VLSM).

Topic 8.1.1: Network Segmentation

Broadcast Domains

Each router interface connects a *broadcast domain* and broadcasts are only propagated within its specific broadcast domain.

Problems with Large Broadcast Domains

 Slow network operations due to the significant amount of broadcast traffic.

Slow device operations because a device must accept and

process each broadcast packet.

Problems with Large Broadcast Domains (cont.)

- Solution -reduce the size of the network to create smaller broadcast domains in a process called subnetting.
- These smaller network spaces are called subnets.

Reasons for Subnetting

Network administrators can group devices and services into subnets that are determined by: Location

Reasons for Subnetting (cont.)

Network administrators can group devices and services into subnets that are determined by: Organizational unit.

Reasons for Subnetting (cont.)

Network administrators can group devices and services into subnets that are determined by: Device type.

Octet Boundaries

Subnetting Networks on the Octet Boundary

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts		
/8	255.0.0.0	nnnnnnn . hhhhhhhh . hhhhhhhh . hhhhhhhh	16,777,214		
/16	255.255.0.0	nnnnnnn . nnnnnnnn . hhhhhhhh . hhhhhhhh	65,534		
/24	255.255.255.0	nnnnnnn . nnnnnnnn . nnnnnnnn . hhhhhhh 1111111 . 11111111 . 11111111 . 00000000	254		

Subnetting on the Octet Boundary

Subnetting 10.x.0.0/16

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
<u>10.0</u> .0.0/16	<u>10.0</u> .0.1 - <u>10.0</u> .255.254	<u>10.0</u> .255.255
<u>10.2</u> .0.0/16	<u>10.2</u> .0.1 - <u>10.2</u> .255.254	<u>10.2</u> .255.255
<u>10.3</u> .0.0/16	<u>10.3</u> .0.1 - <u>10.3</u> .255.254	<u>10.3</u> .255.255
<u>10.4</u> .0.0/16	<u>10.4</u> .0.1 - <u>10.4</u> .255.254	<u>10.4</u> .255.255
<u>10.5</u> .0.0/16	<u>10.5</u> .0.1 - <u>10.5</u> .255.254	<u>10.5</u> .255.255
<u>10.6</u> .0.0/16	<u>10.6</u> .0.1 - <u>10.6</u> .255.254	<u>10.6</u> .255.255
<u>10.7</u> .0.0/16	<u>10.7</u> .0.1 - <u>10.7</u> .255.254	<u>10.7</u> .255.255
<u>10.255</u> .0.0/16	<u>10.255</u> .0.1 - <u>10.255</u> .255.254	<u>10.255</u> .255.255

Subnetting 10.x.x.0/24

Subnet Address (65,536 Possible Subnets)	Host Range (254 possible hosts per subnet)	Broadcast
<u>10.0.0</u> .0/24	<u>10.0.0</u> .1 - <u>10.0.0</u> .254	<u>10.0.0</u> .255
<u>10.0.1</u> .0/24	<u>10.0.1</u> .1 - <u>10.0.1</u> .254	<u>10.0.1</u> .255
<u>10.0.2</u> .0/24	<u>10.0.2</u> .1 - <u>10.0.2</u> .254	<u>10.0.1</u> .255
10.0.255.0/24	<u>10.0.255</u> .1 - <u>10.0.255</u> .254	<u>10.0.255</u> .255
<u>10.1.0</u> .0/24	<u>10.1.0</u> .1 - <u>10.1.0</u> .254	<u>10.1.0</u> .255
<u>10.1.1</u> .0/24	<u>10.1.1</u> .1 - <u>10.1.1</u> .254	<u>1.1.1.0</u> .255
<u>10.1.2</u> .0/24	<u>10.1.2</u> .1 - <u>10.1.2</u> .254	<u>10.1.2.0</u> .255
<u>10.100.0</u> .0/24	<u>10.100.0</u> .1 - <u>10.100.0</u> .254	<u>10.100.0</u> .255
10.255.255.0/24	<u>10.255.255</u> .1 - <u>10.255.255</u> .254	<u>10.255.255</u> .255

Classless Subnetting

- /25 Borrowing 1 bit from the fourth octet creates 2 subnets supporting 126 hosts each.
- /26 Borrowing 2 bits creates 4 subnets supporting 62 hosts each.
- /27— Borrowing 3 bits creates 8 subnets supporting 30 hosts each.
- /28 Borrowing 4 bits creates 16 subnets supporting 14 hosts each.
- /29 Borrowing 5 bits creates 32 subnets supporting 6 hosts each.
- /30– Borrowing 6 bits creates 64 subnets supporting 2 hosts each.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.11111111.10000000	2	126
/26	255.255.255.192	4	62	
/27	255.255.255.224	8	30	
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn.nnnhhhh 11111111.11111111.11111111.11110000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn.nnnnhhh 11111111.11111111.11111111.11111000	32	6
/30	255.255.255.252	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnnnnhh 11111111 . 11111111 . 11111111 . 11111100	64	2

Classless Subnetting Example

192.168.1.0/25 Network

Borrow 1 bit from the host portion of the address.

The borrowed bit value is 0 for the Net 0 address.

The new subnets have the **SAME** subnet mask.

Mask 255. 255. 255. 1 000 0000

13

Classless Subnetting Example (cont.)

Dotted Decimal Addresses

Borrow 1 bit from the host portion of the address.

14

Cisco Public

Creating 2 Subnets

/25 Subnetting Topology

Creating 2 Subnets (cont.)

Address Range for 192.168.1.0/25 Subnet

Address Range for 192.168.1.128/25 Subnet

ivetwo	rk Address	5				Netwo	rk Addres	S			
192.	168.	1.	0	000 0000	= 192.168.1.0	192.	168.	1.	1	000 0000	= 192.168.1.128
First Ho	ost Addres	SS				First H	ost Addre	SS			
192.	168.	1.	0	000 0001	= 192.168.1.1	192.	168.	1.	1	000 0001	= 192.168.1.129
Last Ho	Last Host Address					Last Host Address					
192.	168.	1.	0	111 1110	= 192.168.1.126	192.	168.	1.	1	111 1110	= 192.168.1.254
Broado	ast Addre	ss			_	Broado	cast Addre	ess			
192.	168.	1.	0	111 1111	= 192.168.1.127	192.	168.	1.	1	111 1111	= 192.168.1.255

Creating 2 Subnets (cont.)

Configure R1 Gigabit Interfaces


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.1.1 255.255.255.128
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ip address 192.168.1.129 255.255.255.128
```

Creating 2 Subnets (cont.)

Assign a Valid Host IP Address

Subnetting Formulas

To calculate the number of subnets.

2[^]n

n= bits borrowed

192 . 168 . 1 . 0

nnnnnnn.nnnnnn.nnnnnn.hhhhhhhh

Borrowing 1 bit: 2^1 = 2 Borrowing 2 bits: 2^2 = 4 Borrowing 3 bits: 2^3 = 8 Borrowing 4 bits: 2^4 = 16 Borrowing 5 bits: 2^5 = 32 Borrowing 6 bits: 2^6 = 64

Subnetting Formulas (cont.)

To calculate the number of hosts.

2ⁿ-2

n= the number of bits remaining in the host field

2^7 = 128 hosts per subnet 2^7 - 2 = 126 valid hosts per subnet