Walmart eCommerce Search System Architecture: intro and evolution

Ning Cao

WalmartLabs Engineering Manager

CNUTCon 2017 全球运维技术大会

上海·光大会展中心大酒店 | 2017.9.10-11

智能时代的新运维

大数据运维

DevOps

安全

SRE

Kubernetes

Serverless

游戏运维

AlOps

智能化运维

基础架构

监控

互联网金融

实践驱动的IT教育

http://www.stuq.org

斯达克学院(StuQ), 极客邦旗下实践驱动的IT教育平台。通过线下和线上多种形式的综合学习解决方案,帮助IT从业者和研发团队提升技能水平。

10大职业技术领域课程

SPEAKER INTRODUCE

曹宁

WalmartLabs Engineering Manager

- Ning Cao is an engineering manager in search runtime team at WalmartLabs.
 Prior to that, he worked at Google, Huawei.
- Ning received his Ph.D. in Electrical and Computer Engineering at Worcester Polytechnic Institute. His publications have 4000+ citations.

TABLE OF

CONTENTS 大纲

- · Walmart eCommerce Search
- Search Architecture Evolution
- Experience & Lessons

Walmart eCommerce Search

- Search
- Browse
- Category Pages

Walmart eCommerce Search

- · Performance Challenges in Search Backend
 - Increasing index size
 - · ~8x in past 3 years
- Real time update

TABLE OF

CONTENTS 大纲

- Walmart eCommerce Search
- Search Architecture Evolution
 - Architecture Overview
 - Distributed Search Cloud
 - Re-rank Migration
 - Metadata Store
- Experience & Lessons

Search Runtime Architecture Overview

Search Runtime Architecture Overview

TABLE OF

CONTENTS 大纲

- Walmart eCommerce Search
- Search Architecture Evolution
 - Architecture Overview
 - Distributed Search Cloud
 - Re-rank Migration
 - Metadata Store
- Experience & Lessons

Distributed Search

Load-balanced Shard VIP

Distributed Search

- Problems with Load-balanced Shard VIP
 - Performance bottleneck
 - Hard to troubleshoot
 - Unnecessary re-routing
 - Increasing open connections between VIP and Solr shard

Why Not SolrCloud

- Problems with SolrCloud
 - Unable to utilize offline SolrCloud for index update
 - Inefficient indexing: # of shards
 - Must build two sets of SolrCloud to index all shards at same time

Distributed Search Cloud

Tuple-based Polaris Cloud

Distributed Search Cloud

- Tuple-based Polaris Cloud
 - Fallback
 - Last-known-state use
 - Cached sharding data from ZooKeeper
 - Sharding data from live update

TABLE OF

CONTENTS 大纲

- Walmart eCommerce Search
- Search Architecture Evolution
 - Architecture Overview
 - Distributed Search Cloud
 - Re-rank Migration
 - Metadata Store
- Experience & Lessons

· Re-rank plugin in Solr

- · Re-rank plugin in Solr
 - Implemented before Solr Re-rank
 - Need code change during Solr update
 - · Unable to evaluate/migrate to other search engines

Re-rank in Polaris

- Re-rank plugin in Polaris
 - Pros:
 - Solr update
 - Search engine migration
 - · Cons:
 - Network overload between Polaris and Solr
 - Serialization & Deserialization

TABLE OF

CONTENTS 大纲

- Walmart eCommerce Search
- Search Architecture Evolution
 - Architecture Overview
 - Distributed Search Cloud
 - Re-rank Migration
 - Metadata Store
- Experience & Lessons

- Backend challenges caused by large Solr index
 - Search performance
 - Full index generation time
 - Index replication overhead
 - Real time update throughput

- How to reduce Solr index size?
 - Move stored fields out of Solr

- · Design Goal: store fields for re-rank and response
 - Scalability: easy to scale
 - · Performance: fast data retrieval, high read and write throughput
 - Functionality: support structured queries

- Metadata Store Design
 - Primary data store: Couchbase
 - · Secondary data store: Elastic Search
 - Data format: Avro

Search with metadata store

Update with metadata service

- · Gains:
 - · Search latency: 10%
 - · Index size: 25%
 - Real time update
 - Larger re-rank size

TABLE OF

CONTENTS 大纲

- Walmart eCommerce Search
- Search Architecture Evolution
 - Architecture Overview
 - Distributed Search Cloud
 - Re-rank Migration
 - Metadata Store
- Experience & Lessons

Experience & Lessons

- How to utilize open source software
 - Adopt
 - Customize
 - Replace/Self-dev

Experience & Lessons

- Microservices
 - Different tech stacks
 - Operation overhead, Performance tuning
- Microservices framework
 - Rate control, perf monitor, config management, authentication, logging, etc.

THANKS

让创新技术推动社会进步

HELP TO BUILD A BETTER SOCIETY WITH INNOVATIVE TECHNOLOGIES

Geek Dang >. 极客邦技

专注中高端技术人员的技术媒体

高端技术人员学习型社交平台

实践驱动的IT教育平台

