Class 14: RNASeq Mini Project

Sawyer Randles PID: A69034741

Import Data

We need two things "Counts" and "MetaData" (what DESeq calls colData - as it describes the columns in Counts).

```
counts <- read.csv('GSE37704_featurecounts.csv', row.names = 1)
metadata <- read.csv('GSE37704_metadata.csv')</pre>
```

Data CleanUp

Start with a wee peak:

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

head(metadata)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

We want the columns in the counts to match the rows in the metadata.

colnames(counts)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

metadata\$id

```
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

We can get rid of the first column in counts to make these match

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(colnames(countData) == metadata$id)
```

[1] TRUE

Filter out zero counts

It is standard practice to remove any genes/transcripts that we have no data for - i.e. zero counts in all columns.

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData [to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESeup

```
library(DESeq2)
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates</pre>
```

```
mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

```
res <- results(dds)</pre>
```

Inspect Results

head(res)

```
\log 2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

```
baseMean log2FoldChange
                                            lfcSE
                                                         stat
                                                                  pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                  29.9136
                               0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
                               0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                      padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Data Viz

```
plot(x = res$log2FoldChange, y = -log(res$padj))
```


Annotation of genes

First I need to translate my Ensemble IDs in my res object to Entrez and gene symbol formats.

For this I will use the AnnotationDbi package and it's mapIds() function.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
โวคไ	יידואדספרוווויי				

Let's map to "SYMBOL", "ENTREZID" "GENENAME" from "ENSEMBL" ids.

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                          lfcSE
                                                     stat
                                                              pvalue
               <numeric>
                             <numeric> <numeric> <numeric>
                                                            <numeric>
ENSG00000279457
                29.9136
                             0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                             0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                            -0.6927205 0.0548465 -12.630158 1.43990e-36
                             0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187961 209.6379
ENSG00000187583 47.2551
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642 11.9798
                             0.5428105 0.5215598 1.040744 2.97994e-01
                                                    symbol
                     padj
                                       genename
                                                               entrez
                                    <character> <character> <character>
                <numeric>
ENSG00000279457 6.86555e-01
                                             NA
                                                        NA
                                                                   NA
ENSG00000187634 5.15718e-03 sterile alpha motif .. SAMD11 148398
```

```
ENSG00000188976 1.76549e-35 NOC2 like nucleolar .. NOC2L 26155 ENSG00000187961 1.13413e-07 kelch like family me.. KLHL17 339451 ENSG00000187583 9.19031e-01 pleckstrin homology .. PLEKHN1 84069 ENSG00000187642 4.03379e-01 PPARGC1 and ESRR ind.. PERM1 84808
```

Before going any further lets focus in on a subset of "top" hits.

We can use as a starting point $\log 2FC$ of +2/-2 and an adjusted P-value of 0.05.

```
# when there is no chance of passing, the program does not even test p-vlaues that are alread
# you can go ahead and make these false in your selection criteria so they are excluded
top.inds <- (abs(res$log2FoldChange) > 2) & (abs(res$padj) > 0.05)
top.inds[is.na(top.inds)] <- FALSE</pre>
```

Let's save our "top genes" to a CSV file...

```
top.genes <- res[top.inds,]
write.csv(top.genes, file="top.geneset.csv")</pre>
```

Pathway Analysis

Now we can do some pathway analysis

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

```
data(kegg.sets.hs)
#data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
#kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
#head(kegg.sets.hs, 3)
```

The \mathbf{gage} function wants a vector of importance as input withh gene names as labels - KEGG speaks ENTREZ

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

Run gage with these values

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                               8.995727e-06 -4.378644
hsa03030 DNA replication
                                               9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                               1.246882e-03 -3.059466
hsa03440 Homologous recombination
                                               3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                               3.784520e-03 -2.698128
                                                      p.val
                                                                   q.val
hsa04110 Cell cycle
                                               8.995727e-06 0.001889103
```

```
9.424076e-05 0.009841047
hsa03030 DNA replication
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                               1.246882e-03 0.065461279
hsa03440 Homologous recombination
                                               3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                               3.784520e-03 0.132458191
                                               set.size
                                                                exp1
hsa04110 Cell cycle
                                                    121 8.995727e-06
hsa03030 DNA replication
                                                     36 9.424076e-05
hsa05130 Pathogenic Escherichia coli infection
                                                    53 1.405864e-04
hsa03013 RNA transport
                                                    144 1.246882e-03
hsa03440 Homologous recombination
                                                     28 3.066756e-03
hsa04114 Oocyte meiosis
                                                    102 3.784520e-03
```

```
pathview(foldchanges, pathway.id = "hsa04110")
```

Info: Working in directory /Users/sawyerrandles/Documents/BGGN213 Bioinformatics F24/BGGN213

Info: Writing image file hsa04110.pathview.png

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val
G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05
G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04
G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04
G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
G0:0035295 tube development 5.953254e-04 3.253665 5.953254e-04
q.val set.size exp1
```

^{&#}x27;select()' returned 1:1 mapping between keys and columns

```
GO:0007156 homophilic cell adhesion
                                         0.1951953
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                         0.1951953
                                                        424 1.432451e-04
GO:0007610 behavior
                                         0.1967577
                                                        426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                        257 5.932837e-04
GO:0035295 tube development
                                                        391 5.953254e-04
                                         0.3565320
```

\$less

	p.geomean	stat.mean p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910 1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217 4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496 1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340 2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966 1.729553e-10
	q.val	set.size exp1
GO:0048285 organelle fission	q.val 5.841698e-12	•
GO:0048285 organelle fission GO:0000280 nuclear division	•	376 1.536227e-15
3	5.841698e-12	376 1.536227e-15 352 4.286961e-15
GO:0000280 nuclear division	5.841698e-12 5.841698e-12 5.841698e-12	376 1.536227e-15 352 4.286961e-15 352 4.286961e-15
GO:0000280 nuclear division GO:0007067 mitosis	5.841698e-12 5.841698e-12 5.841698e-12	376 1.536227e-15 352 4.286961e-15 352 4.286961e-15 362 1.169934e-14

\$stats

		stat.mean	exp1
GO:0007156 homophilic ce	ll adhesion	3.824205	3.824205
GO:0002009 morphogenesis	of an epithelium	3.653886	3.653886
GO:0048729 tissue morphog	genesis	3.643242	3.643242
GO:0007610 behavior		3.565432	3.565432
GO:0060562 epithelial tul	be morphogenesis	3.261376	3.261376
GO:0035295 tube developme	ent	3.253665	3.253665

head(gobpres\$less)

	p.geomean	stat.mean	p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910	1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217	4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217	4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
	q.val	set.size	exp1

```
GO:0048285 organelle fission
                                        5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
```

To run reactome online we need to make a little text file with a gene id per line.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
#sig_genes
```

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote


```
#all() checks to see if all conditions are true
x <- all(c(T,T,F,T))

{if (all(x)) {
   cat("me happy")
} else {}
   cat("me no happy")
}</pre>
```

me no happy

c(T,T,F,T) & c(F,T,T,T)

[1] FALSE TRUE FALSE TRUE