

Bachelor Thesis

Optimum reject options for multiclass classification

Johannes Kummert

1. Reviewer Prof. Dr. Barbara Hammer

Theoretical Computer Science

Bielefeld University

2. Reviewer Benjamin Paaçen

Theoretical Computer Science

Bielefeld University

Supervisors Prof. Dr. Barbara Hammer and Benjamin Paaçen

October 19, 2015

Johannes Kummert

Optimum reject options for multiclass classification Bachelor Thesis, October 19, 2015

Reviewers: Prof. Dr. Barbara Hammer and Benjamin Paaçen Supervisors: Prof. Dr. Barbara Hammer and Benjamin Paaçen

Abstract

Contents

1	Intro	oductio	ın	1
2	Reje	ect Opt	ions	3
	2.1	Two C	Classes	3
		2.1.1	Strategy	3
		2.1.2	Optimal Θ	3
	2.2	Multic	class Classification	3
		2.2.1	Global Reject	3
		2.2.2	Local Reject	3
		2.2.3	Optimal local Reject	3
		2.2.4	Computation by Dynamic Programming	3
		2.2.5	Greedy Computation	3
		2.2.6	Evaluation	3
3	Арр	lication	n for SVM	5
4	Con	clusion	S	7

Introduction

Reject Options

2.1 Two Classes

To make our way towards optimal rejects for multiclass classification, we start of small by looking at a general two class classifier f that divides the space via a decision plane (hyperplane?).

$$f: \mathbb{R}^n \to \{1, 2\}$$

Let r_1 and r_2 be measures of confidence that a point is part of the respective class. If $r_i(\bar{x})$ is large it means that \bar{x} is likely in class i.

- 2.1.1 Strategy
- 2.1.2 **Optimal** Θ
 - 2.2 Multiclass Classification
- 2.2.1 Global Reject
- 2.2.2 Local Reject
- 2.2.3 Optimal local Reject
- 2.2.4 Computation by Dynamic Programming
- 2.2.5 Greedy Computation
- 2.2.6 Evaluation

Application for SVM

Conclusions

List of Figures

List of Tables