In [45]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear\_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load\_digits
from sklearn.model\_selection import train\_test\_split

In [46]: a=pd.read\_csv(r"C:\Users\user\Downloads\C10\_air\csvs\_per\_year\csvs\_per\_year\madrid\_2017
a

## Out[46]:

|        | date                               | BEN | СН4 | со  | EBE | имнс | NO  | NO_2 | NOx | O_3  | PM10 | PM25 | SO_2 | тсн | TOL |   |
|--------|------------------------------------|-----|-----|-----|-----|------|-----|------|-----|------|------|------|------|-----|-----|---|
| 0      | 2017-<br>06-01<br>01:00:00         | NaN | NaN | 0.3 | NaN | NaN  | 4.0 | 38.0 | NaN | NaN  | NaN  | NaN  | 5.0  | NaN | NaN | 2 |
| 1      | 2017 <b>-</b><br>06-01<br>01:00:00 | 0.6 | NaN | 0.3 | 0.4 | 0.08 | 3.0 | 39.0 | NaN | 71.0 | 22.0 | 9.0  | 7.0  | 1.4 | 2.9 | 2 |
| 2      | 2017 <b>-</b><br>06-01<br>01:00:00 | 0.2 | NaN | NaN | 0.1 | NaN  | 1.0 | 14.0 | NaN | NaN  | NaN  | NaN  | NaN  | NaN | 0.9 | 2 |
| 3      | 2017 <b>-</b><br>06-01<br>01:00:00 | NaN | NaN | 0.2 | NaN | NaN  | 1.0 | 9.0  | NaN | 91.0 | NaN  | NaN  | NaN  | NaN | NaN | 2 |
| 4      | 2017 <b>-</b><br>06-01<br>01:00:00 | NaN | NaN | NaN | NaN | NaN  | 1.0 | 19.0 | NaN | 69.0 | NaN  | NaN  | 2.0  | NaN | NaN | 2 |
|        |                                    |     |     |     |     |      |     |      |     |      |      |      |      |     |     |   |
| 210115 | 2017-<br>08-01<br>00:00:00         | NaN | NaN | 0.2 | NaN | NaN  | 1.0 | 27.0 | NaN | 65.0 | NaN  | NaN  | NaN  | NaN | NaN | 2 |
| 210116 | 2017-<br>08-01<br>00:00:00         | NaN | NaN | 0.2 | NaN | NaN  | 1.0 | 14.0 | NaN | NaN  | 73.0 | NaN  | 7.0  | NaN | NaN | 2 |
| 210117 | 2017-<br>08-01<br>00:00:00         | NaN | NaN | NaN | NaN | NaN  | 1.0 | 4.0  | NaN | 83.0 | NaN  | NaN  | NaN  | NaN | NaN | 2 |
| 210118 | 2017-<br>08-01<br>00:00:00         | NaN | NaN | NaN | NaN | NaN  | 1.0 | 11.0 | NaN | 78.0 | NaN  | NaN  | NaN  | NaN | NaN | 2 |
| 210119 | 2017-<br>08-01<br>00:00:00         | NaN | NaN | NaN | NaN | NaN  | 1.0 | 14.0 | NaN | 77.0 | 60.0 | NaN  | NaN  | NaN | NaN | 2 |

210120 rows × 16 columns

# In [47]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210120 entries, 0 to 210119 Data columns (total 16 columns): Column Non-Null Count Dtype --------------0 date 210120 non-null object BEN float64 1 50201 non-null 2 CH4 6410 non-null float64 3 CO 87001 non-null float64 4 49973 non-null float64 EBE 5 NMHC 25472 non-null float64 6 NO 209065 non-null float64 7 209065 non-null float64 NO 2 8 NOx 52818 non-null float64 float64 9 0 3 121398 non-null PM10 104141 non-null float64 10 11 PM25 52023 non-null float64 12 SO 2 86803 non-null float64 13 TCH 25472 non-null float64 14 TOL 50117 non-null float64 station 210120 non-null int64 15 dtypes: float64(14), int64(1), object(1) memory usage: 25.6+ MB

```
In [48]: b=a.fillna(value=108)
b
```

Out[48]:

|        | date                       | BEN   | СН4   | со    | EBE   | NMHC   | NO  | NO_2 | NOx   | O_3   | PM10  | PM25  | SO_2  | тсн   |   |
|--------|----------------------------|-------|-------|-------|-------|--------|-----|------|-------|-------|-------|-------|-------|-------|---|
| 0      | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 4.0 | 38.0 | 108.0 | 108.0 | 108.0 | 108.0 | 5.0   | 108.0 | _ |
| 1      | 2017-<br>06-01<br>01:00:00 | 0.6   | 108.0 | 0.3   | 0.4   | 0.08   | 3.0 | 39.0 | 108.0 | 71.0  | 22.0  | 9.0   | 7.0   | 1.4   |   |
| 2      | 2017-<br>06-01<br>01:00:00 | 0.2   | 108.0 | 108.0 | 0.1   | 108.00 | 1.0 | 14.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 |   |
| 3      | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 9.0  | 108.0 | 91.0  | 108.0 | 108.0 | 108.0 | 108.0 | , |
| 4      | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 19.0 | 108.0 | 69.0  | 108.0 | 108.0 | 2.0   | 108.0 | , |
|        |                            |       |       |       |       |        |     |      |       |       |       |       |       |       |   |
| 210115 | 2017-<br>08-01<br>00:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 27.0 | 108.0 | 65.0  | 108.0 | 108.0 | 108.0 | 108.0 | , |
| 210116 | 2017-<br>08-01<br>00:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 14.0 | 108.0 | 108.0 | 73.0  | 108.0 | 7.0   | 108.0 | , |
| 210117 | 2017-<br>08-01<br>00:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 4.0  | 108.0 | 83.0  | 108.0 | 108.0 | 108.0 | 108.0 | , |
| 210118 | 2017-<br>08-01<br>00:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 11.0 | 108.0 | 78.0  | 108.0 | 108.0 | 108.0 | 108.0 | , |
| 210119 | 2017-<br>08-01<br>00:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 14.0 | 108.0 | 77.0  | 60.0  | 108.0 | 108.0 | 108.0 |   |

#### 210120 rows × 16 columns

In [49]: b.columns

In [50]: c=b.head(30)

Out[50]:

|    | date                       | BEN   | CH4   | со    | EBE   | NMHC   | NO  | NO_2 | NOx   | O_3   | PM10  | PM25  | SO_2  | тсн    | то   |
|----|----------------------------|-------|-------|-------|-------|--------|-----|------|-------|-------|-------|-------|-------|--------|------|
| 0  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 4.0 | 38.0 | 108.0 | 108.0 | 108.0 | 108.0 | 5.0   | 108.00 | 108. |
| 1  | 2017-<br>06-01<br>01:00:00 | 0.6   | 108.0 | 0.3   | 0.4   | 0.08   | 3.0 | 39.0 | 108.0 | 71.0  | 22.0  | 9.0   | 7.0   | 1.40   | 2.   |
| 2  | 2017-<br>06-01<br>01:00:00 | 0.2   | 108.0 | 108.0 | 0.1   | 108.00 | 1.0 | 14.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 0.   |
| 3  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 9.0  | 108.0 | 91.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 4  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 19.0 | 108.0 | 69.0  | 108.0 | 108.0 | 2.0   | 108.00 | 108. |
| 5  | 2017-<br>06-01<br>01:00:00 | 0.1   | 108.0 | 0.3   | 0.2   | 108.00 | 1.0 | 26.0 | 108.0 | 70.0  | 26.0  | 108.0 | 1.0   | 108.00 | 0.   |
| 6  | 2017-<br>06-01<br>01:00:00 | 0.3   | 108.0 | 0.2   | 0.1   | 0.17   | 1.0 | 19.0 | 108.0 | 79.0  | 23.0  | 9.0   | 3.0   | 0.86   | 1.   |
| 7  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 9.0  | 108.0 | 87.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 8  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 3.0 | 30.0 | 108.0 | 70.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 9  | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.1   | 108.0 | 108.00 | 1.0 | 15.0 | 108.0 | 108.0 | 22.0  | 108.0 | 10.0  | 108.00 | 108. |
| 10 | 2017-<br>06-01<br>01:00:00 | 0.7   | 108.0 | 108.0 | 1.0   | 108.00 | 1.0 | 25.0 | 108.0 | 108.0 | 21.0  | 10.0  | 2.0   | 108.00 | 3.   |
| 11 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 21.0 | 108.0 | 75.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 12 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 2.0 | 17.0 | 108.0 | 108.0 | 24.0  | 108.0 | 9.0   | 108.00 | 108. |
| 13 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 22.0 | 108.0 | 108.0 | 23.0  | 15.0  | 108.0 | 108.00 | 108. |
| 14 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 2.0 | 30.0 | 108.0 | 108.0 | 17.0  | 9.0   | 108.0 | 108.00 | 108. |
| 15 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 12.0 | 108.0 | 74.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 16 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 2.0 | 15.0 | 108.0 | 108.0 | 16.0  | 12.0  | 108.0 | 108.00 | 108. |
| 17 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 3.0 | 12.0 | 108.0 | 84.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |

|    | date                       | BEN   | CH4   | со    | EBE   | имнс   | NO  | NO_2 | NOx   | O_3   | PM10  | PM25  | SO_2  | тсн    | то   |
|----|----------------------------|-------|-------|-------|-------|--------|-----|------|-------|-------|-------|-------|-------|--------|------|
| 18 | 2017-<br>06-01<br>01:00:00 | 0.2   | 108.0 | 108.0 | 0.6   | 0.08   | 1.0 | 12.0 | 108.0 | 108.0 | 15.0  | 108.0 | 108.0 | 1.16   | 1.   |
| 19 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.1   | 108.0 | 108.00 | 9.0 | 47.0 | 108.0 | 59.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 20 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 1.0 | 17.0 | 108.0 | 108.0 | 48.0  | 108.0 | 3.0   | 108.00 | 108. |
| 21 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 10.0 | 108.0 | 66.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 22 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 6.0  | 108.0 | 91.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 23 | 2017-<br>06-01<br>01:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 26.0 | 108.0 | 79.0  | 86.0  | 108.0 | 108.0 | 108.00 | 108. |
| 24 | 2017-<br>06-01<br>02:00:00 | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 4.0 | 27.0 | 108.0 | 108.0 | 108.0 | 108.0 | 5.0   | 108.00 | 108. |
| 25 | 2017-<br>06-01<br>02:00:00 | 0.3   | 108.0 | 0.3   | 0.2   | 0.07   | 2.0 | 27.0 | 108.0 | 72.0  | 16.0  | 7.0   | 7.0   | 1.40   | 2.   |
| 26 | 2017-<br>06-01<br>02:00:00 | 0.1   | 108.0 | 108.0 | 0.1   | 108.00 | 1.0 | 13.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.   |
| 27 | 2017-<br>06-01<br>02:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 8.0  | 108.0 | 90.0  | 108.0 | 108.0 | 108.0 | 108.00 | 108. |
| 28 | 2017-<br>06-01<br>02:00:00 | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 10.0 | 108.0 | 77.0  | 108.0 | 108.0 | 2.0   | 108.00 | 108. |
| 29 | 2017-<br>06-01<br>02:00:00 | 0.1   | 108.0 | 0.3   | 0.5   | 108.00 | 2.0 | 12.0 | 108.0 | 84.0  | 23.0  | 108.0 | 1.0   | 108.00 | 0.   |

Out[51]:

|    | BEN   | СО    | EBE   | NMHC   | NO_2 | O_3   | PM10  | SO_2  | TCH    | TOL   | station  |
|----|-------|-------|-------|--------|------|-------|-------|-------|--------|-------|----------|
| 0  | 108.0 | 0.3   | 108.0 | 108.00 | 38.0 | 108.0 | 108.0 | 5.0   | 108.00 | 108.0 | 28079004 |
| 1  | 0.6   | 0.3   | 0.4   | 0.08   | 39.0 | 71.0  | 22.0  | 7.0   | 1.40   | 2.9   | 28079008 |
| 2  | 0.2   | 108.0 | 0.1   | 108.00 | 14.0 | 108.0 | 108.0 | 108.0 | 108.00 | 0.9   | 28079011 |
| 3  | 108.0 | 0.2   | 108.0 | 108.00 | 9.0  | 91.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079016 |
| 4  | 108.0 | 108.0 | 108.0 | 108.00 | 19.0 | 69.0  | 108.0 | 2.0   | 108.00 | 108.0 | 28079017 |
| 5  | 0.1   | 0.3   | 0.2   | 108.00 | 26.0 | 70.0  | 26.0  | 1.0   | 108.00 | 0.3   | 28079018 |
| 6  | 0.3   | 0.2   | 0.1   | 0.17   | 19.0 | 79.0  | 23.0  | 3.0   | 0.86   | 1.8   | 28079024 |
| 7  | 108.0 | 108.0 | 108.0 | 108.00 | 9.0  | 87.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079027 |
| 8  | 108.0 | 0.3   | 108.0 | 108.00 | 30.0 | 70.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079035 |
| 9  | 108.0 | 0.1   | 108.0 | 108.00 | 15.0 | 108.0 | 22.0  | 10.0  | 108.00 | 108.0 | 28079036 |
| 10 | 0.7   | 108.0 | 1.0   | 108.00 | 25.0 | 108.0 | 21.0  | 2.0   | 108.00 | 3.5   | 28079038 |
| 11 | 108.0 | 0.2   | 108.0 | 108.00 | 21.0 | 75.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079039 |
| 12 | 108.0 | 108.0 | 108.0 | 108.00 | 17.0 | 108.0 | 24.0  | 9.0   | 108.00 | 108.0 | 28079040 |
| 13 | 108.0 | 108.0 | 108.0 | 108.00 | 22.0 | 108.0 | 23.0  | 108.0 | 108.00 | 108.0 | 28079047 |
| 14 | 108.0 | 108.0 | 108.0 | 108.00 | 30.0 | 108.0 | 17.0  | 108.0 | 108.00 | 108.0 | 28079048 |
| 15 | 108.0 | 108.0 | 108.0 | 108.00 | 12.0 | 74.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079049 |
| 16 | 108.0 | 108.0 | 108.0 | 108.00 | 15.0 | 108.0 | 16.0  | 108.0 | 108.00 | 108.0 | 28079050 |
| 17 | 108.0 | 108.0 | 108.0 | 108.00 | 12.0 | 84.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079054 |
| 18 | 0.2   | 108.0 | 0.6   | 0.08   | 12.0 | 108.0 | 15.0  | 108.0 | 1.16   | 1.5   | 28079055 |
| 19 | 108.0 | 0.1   | 108.0 | 108.00 | 47.0 | 59.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079056 |
| 20 | 108.0 | 0.3   | 108.0 | 108.00 | 17.0 | 108.0 | 48.0  | 3.0   | 108.00 | 108.0 | 28079057 |
| 21 | 108.0 | 108.0 | 108.0 | 108.00 | 10.0 | 66.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079058 |
| 22 | 108.0 | 108.0 | 108.0 | 108.00 | 6.0  | 91.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079059 |
| 23 | 108.0 | 108.0 | 108.0 | 108.00 | 26.0 | 79.0  | 86.0  | 108.0 | 108.00 | 108.0 | 28079060 |
| 24 | 108.0 | 0.3   | 108.0 | 108.00 | 27.0 | 108.0 | 108.0 | 5.0   | 108.00 | 108.0 | 28079004 |
| 25 | 0.3   | 0.3   | 0.2   | 0.07   | 27.0 | 72.0  | 16.0  | 7.0   | 1.40   | 2.3   | 28079008 |
| 26 | 0.1   | 108.0 | 0.1   | 108.00 | 13.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.7   | 28079011 |
| 27 | 108.0 | 0.2   | 108.0 | 108.00 | 8.0  | 90.0  | 108.0 | 108.0 | 108.00 | 108.0 | 28079016 |
| 28 | 108.0 | 108.0 | 108.0 | 108.00 | 10.0 | 77.0  | 108.0 | 2.0   | 108.00 | 108.0 | 28079017 |
| 29 | 0.1   | 0.3   | 0.5   | 108.00 | 12.0 | 84.0  | 23.0  | 1.0   | 108.00 | 0.2   | 28079018 |

In [52]: sns.pairplot(d)

Out[52]: <seaborn.axisgrid.PairGrid at 0x1d51f696b80>



```
In [53]: sns.distplot(a['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[53]: <AxesSubplot:xlabel='NO\_2', ylabel='Density'>



In [54]: sns.heatmap(d.corr())

### Out[54]: <AxesSubplot:>



```
In [55]: x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

```
In [56]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [57]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[57]: LinearRegression()

```
In [58]: print(lr.intercept_)
          1.1687473095814198
In [59]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[59]:
                 Co-efficient
            BEN
                   -0.832336
             CO
                   0.000011
            EBE
                   0.834073
          NMHC
                   0.986916
           NO_2
                   0.002979
In [60]: prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[60]: <matplotlib.collections.PathCollection at 0x1d53c9688e0>
                                                          0
           100
            80
            60
            40
            20
             0
                       20
                                      60
                                              80
                                                      100
In [61]: print(lr.score(x_test,y_test))
          0.9999652404027495
In [62]: from sklearn.linear_model import Ridge,Lasso
In [63]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[63]: Ridge(alpha=10)
In [64]: rr.score(x_test,y_test)
```

Out[64]: 0.9999973930952113

```
In [65]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[65]: Lasso(alpha=10)

```
In [66]: la.score(x_test,y_test)
```

Out[66]: 0.9999448413207095

```
In [67]: a1=b.head(7000) a1
```

Out[67]:

|      | date                               | BEN   | СН4   | со    | EBE   | NMHC   | NO  | NO_2 | NOx   | O_3   | PM10  | PM25  | SO_2  | тсн   | T(  |
|------|------------------------------------|-------|-------|-------|-------|--------|-----|------|-------|-------|-------|-------|-------|-------|-----|
| 0    | 2017-<br>06-01<br>01:00:00         | 108.0 | 108.0 | 0.3   | 108.0 | 108.00 | 4.0 | 38.0 | 108.0 | 108.0 | 108.0 | 108.0 | 5.0   | 108.0 | 108 |
| 1    | 2017-<br>06-01<br>01:00:00         | 0.6   | 108.0 | 0.3   | 0.4   | 0.08   | 3.0 | 39.0 | 108.0 | 71.0  | 22.0  | 9.0   | 7.0   | 1.4   | 2   |
| 2    | 2017-<br>06-01<br>01:00:00         | 0.2   | 108.0 | 108.0 | 0.1   | 108.00 | 1.0 | 14.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | (   |
| 3    | 2017 <b>-</b><br>06-01<br>01:00:00 | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 9.0  | 108.0 | 91.0  | 108.0 | 108.0 | 108.0 | 108.0 | 108 |
| 4    | 2017-<br>06-01<br>01:00:00         | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 19.0 | 108.0 | 69.0  | 108.0 | 108.0 | 2.0   | 108.0 | 108 |
|      |                                    |       |       |       |       |        |     |      |       |       |       |       |       |       |     |
| 6995 | 2017-<br>06-13<br>06:00:00         | 108.0 | 108.0 | 0.2   | 108.0 | 108.00 | 1.0 | 9.0  | 108.0 | 84.0  | 108.0 | 108.0 | 108.0 | 108.0 | 108 |
| 6996 | 2017-<br>06-13<br>06:00:00         | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 13.0 | 108.0 | 108.0 | 7.0   | 108.0 | 9.0   | 108.0 | 108 |
| 6997 | 2017-<br>06-13<br>06:00:00         | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 11.0 | 108.0 | 108.0 | 20.0  | 17.0  | 108.0 | 108.0 | 108 |
| 6998 | 2017-<br>06-13<br>06:00:00         | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 2.0  | 108.0 | 108.0 | 8.0   | 4.0   | 108.0 | 108.0 | 108 |
| 6999 | 2017-<br>06-13<br>06:00:00         | 108.0 | 108.0 | 108.0 | 108.0 | 108.00 | 1.0 | 3.0  | 108.0 | 76.0  | 108.0 | 108.0 | 108.0 | 108.0 | 108 |

7000 rows × 16 columns

```
In [69]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [70]: h=StandardScaler().fit transform(f)
In [71]: logr=LogisticRegression(max iter=10000)
         logr.fit(h,g)
Out[71]: LogisticRegression(max iter=10000)
In [72]: | from sklearn.model_selection import train_test_split
         h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [73]: i=[[10,20,30,40,50,60,15,26,37,47,58]]
In [74]: | prediction=logr.predict(i)
         print(prediction)
         [28079059]
In [75]: logr.classes_
Out[75]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                 28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
In [76]: logr.predict_proba(i)[0][0]
Out[76]: 0.0
In [77]: logr.predict_proba(i)[0][1]
Out[77]: 0.0
In [78]: logr.score(h_test,g_test)
Out[78]: 0.9376190476190476
In [79]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[79]: ElasticNet()
In [80]: print(en.coef_)
         [0.00000000e+00 9.79297475e-06 4.03498376e-04 9.88618444e-01
          0.0000000e+00]
In [81]: |print(en.intercept )
         1.179084449674619
```

```
In [82]: prediction=en.predict(x test)
                       print(en.score(x test,y test))
                       0.9999982880826986
In [83]: | from sklearn.ensemble import RandomForestClassifier
                       rfc=RandomForestClassifier()
                       rfc.fit(h_train,g_train)
Out[83]: RandomForestClassifier()
In [84]: parameters={'max_depth':[1,2,3,4,5],
                          'min_samples_leaf':[5,10,15,20,25],
                          'n estimators':[10,20,30,40,50]
In [85]: | from sklearn.model selection import GridSearchCV
                       grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring=<mark>"accuracy"</mark>)
                       grid_search.fit(h_train,g_train)
Out[85]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                     'min samples leaf': [5, 10, 15, 20, 25],
                                                                                     'n estimators': [10, 20, 30, 40, 50]},
                                                       scoring='accuracy')
In [86]: grid_search.best_score_
Out[86]: 0.9824489795918367
In [87]: rfc_best=grid_search.best_estimator_
In [88]: | from sklearn.tree import plot_tree
                       plt.figure(figsize=(80,50))
                       plot tree(rfc best.estimators [2],filled=True)
                       0, 0, 0]'),
                         Text(2232.0, 679.5, X[9] <= -1.819 \setminus 1.00 = 0.122 \setminus 1.00 = 0.122
                       0, 0, 0, 157, 11, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                         Text(2008.8, 226.5, 'gini = 0.349\nsamples = 27\nvalue = [0, 0, 0, 0, 0, 31, 9, 0,
                       0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                         Text(2455.2, 226.5, 'gini = 0.031\nsamples = 84\nvalue = [0, 0, 0, 0, 0, 126, 2,
                       0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                         Text(3124.79999999997, 679.5, 'X[6] <= -0.203\ngini = 0.835\nsamples = 763\nvalu
                       e = [0, 0, 0, 224, 0, 14, 0, 0, 180, 220, 0, 212, 0\n0, 0, 0, 0, 0, 0, 186, 177, 0,
                       0, 0]'),
                         Text(2901.6, 226.5, 'gini = 0.521\nsamples = 264\nvalue = [0, 0, 0, 0, 0, 11, 0,
                       0, 0, 219, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 177, 0, 0, 0]'),
                         Text(3348.0, 226.5, 'gini = 0.75\nsamples = 499\nvalue = [0, 0, 0, 224, 0, 3, 0, 224]
                       0, 180, 1, 0, 212, 0 \setminus n0, 0, 0, 0, 0, 186, 0, 0, 0, 0]'),
                         Text(3794.399999999999, 1132.5, X[4] <= -0.923 \ngini = 0.925 \nsamples = 1691 \nva
                       lue = [0, 0, 203, 0, 208, 0, 19, 211, 1, 0, 219, 0\n175, 185, 191, 234, 173, 227,
                       2, 23, 0, 216, 207\n214]'),
                         Text(3571.2, 679.5, 'gini = 0.814\nsamples = 175\nvalue = [0, 0, 11, 0, 0, 0, 0, 3
                       0, 0, 0, 3, 0, 1, 8\n20, 43, 3, 7, 0, 0, 0, 74, 80, 7]'),
```

# Conclusion: from this data set i observed that the ELASTIC NET has the highest accuracy of 0.9999982880826986

| In [ ]: |  |
|---------|--|
| TH [ ]. |  |