

Universidade Federal do Espírito Santo
Centro de Ciências Agrárias – CCENS UFES
Departamento de Computação

Máquina Linear

Redes Neurais Artificiais

Site: http://jeiks.net

E-mail: jacsonrcsilva@gmail.com

- Caso multi-classes: c classes ω₁, ..., ω_c.
 - Para cada classe ω_i,
 deve-se agrupar todos os padrões {φ^(k)}, 1 ≤ k ≤ n
 com φ^(k) ∉ ω_i em uma classe "não-ω_i" e
 gerar c-1 planos que separam ω_i de "não-ω_i", i=1, ..., c.
 - Problema:
 existirão regiões ambíguas, sem classes definidas ("?")

- A solução para isso é construir uma Máquina Linear.
- Suas características:
 - Não possui função de ativação;
 - Possui saída contínua, não sendo a saída de sinal.
 - Não tem ambiguidades, pois a maior saída corresponde a classe selecionada.
 - Ou seja, o neurônio com maior resultado representa a classe.

g é a função discriminativa

$$g_i(\underline{x}; \underline{w}_i, b_i) = \underline{w}_i \cdot \underline{x} + b_i, i=1, ..., c \in \mathbb{R}$$

- Se $g_i > g_j$, $i \in \{1, ..., c\}$, $j = \{1, ..., c\} \setminus i \Rightarrow \underline{x} \in \omega_i$.
- Cada classe ω_i tem vetor de peso próprio:

$$W_i = (W_{i0}, W_{i1}, ..., W_{id})^T$$
.

 Pode ser feito o agrupamento dos pesos w_i como colunas de uma matriz:

$$W_{(d+1)xc} = (\underline{w}_1 \ \underline{w}_2 \ \underline{w}_3 \ \dots \ \underline{w}_c) = \begin{pmatrix} w_{10} & w_{c0} \\ w_{11} & \dots & w_{c1} \\ \vdots & & \vdots \\ w_{1d} & w_{cd} \end{pmatrix}$$

Cálculo da Máquina Linear

$$g_{i}(\underline{x};\underline{w}_{i}) = \underline{w}_{i} \cdot \underline{x} = \underline{w}_{i}^{T} \underline{x} \in \mathbb{R}$$

$$g = \begin{pmatrix} g_{1} \\ \vdots \\ g_{c} \end{pmatrix} \qquad g(\underline{x}, W) = W^{T} \underline{x} \in \mathbb{R}^{c \times 1}$$

$$D = \{(\underline{x}^{(k)}, y^{(k)})\}_{k=1}^{x}$$

$$w_{1} \qquad w_{2}$$

$$\mathbf{x}^{(39)} \qquad \mathbf{x}^{(1)} \qquad w_{2}$$

$$\underline{x}^{(1)} = \begin{pmatrix} 1 \\ 4 \\ 0,5 \end{pmatrix} \quad \underline{y}^{(1)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\underline{\boldsymbol{x}}^{(39)} = \begin{pmatrix} 1 \\ -1 \\ 0, 9 \end{pmatrix} \quad \underline{\boldsymbol{y}}^{(39)} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Cálculo da Máquina Linear

Então, o resultado desejado é:

$$\mathbf{w}^{\mathsf{T}}\underline{\mathbf{x}}^{(1)} = \mathbf{y}^{(1)} \qquad \dots \qquad \mathbf{w}^{\mathsf{T}}\underline{\mathbf{x}}^{(\dots)} = \mathbf{y}^{(\dots)}$$

- Como obter os valores de W?
 - Para obter W, deve-se isolá-lo. Então:

$$X \cdot W = Y$$

. . .

Cálculo da Máquina Linear

Isolando W:

$$X.W = Y \mid X^{-1}.$$

 $\Rightarrow X^{-1}X.W = X^{-1}.Y \Leftrightarrow W = X^{-1}.Y$

- Porém, X não é uma matriz quadrada e por isso não possui matriz inversa.
- Deve-se então utilizar sua pseudoinversa:

$$X.W = Y \mid X^{T}.$$

 $X^{T}X.W = X^{T}.Y \mid (X^{T}X)^{-1}.$
 $(X^{T}X)^{-1}.(X^{T}X).W = (X^{T}X)^{-1}X^{T}.Y$
 $W = X^{+}.Y$
 $X^{+} = (X^{T}X)^{-1}X^{T}$

Exercício

Com as entradas:

$$X1 = (-1.0 \ 1.0);$$

 $X2 = (1.0 \ 3.0);$

• E as saídas:

```
Y1 = -1;
Y2 = 1;
```

- Calcule os coeficientes de regressão W através da pseudoinversa da matriz de entradas.
- Antes disso, adicione a coluna do bias nas entradas.