```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.metrics import r2_score, mean_squared_error
    from math import sqrt
    import numpy
```

In [2]: df=pd.read_csv('C:/Users/user/Downloads/Advertising.csv')

In [3]: df

Out[3]:

	TV	Radio	Newspaper	Sales
	230.1	37.8	69.2	22.1
1	4 4.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	3 151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	7 177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [4]: | df.head()

Out[4]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

```
In [5]: df.tail()
```

Out[5]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

```
In [6]: fig, axes=plt.subplots(nrows=1,ncols=3,sharey=True)
    df.plot(kind='scatter',x='TV',y='Sales',ax=axes[0],figsize=(16,20))
    df.plot(kind='scatter',x='Radio',y='Sales',ax=axes[1],figsize=(16,8))
    df.plot(kind='scatter',x='Newspaper',y='Sales',ax=axes[2],figsize=(16,8))
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x2e0744b7fc8>


```
In [7]: x=df['TV']
    y=df.Sales
    x=numpy.array(x)
    y=numpy.array(y)
    x=x.reshape(-1,1)
```

```
In [8]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x,y)
```

Out[8]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fals
e)

```
In [9]:
         print(lr.intercept_)
          print(lr.coef_)
          6.974821488229891
          [0.05546477]
In [10]:
          dff=pd.DataFrame({'TV':[df.TV.min(),df.TV.max()]})
In [11]:
         pred=lr.predict(x)
          pred=numpy.reshape(pred,(-1,1))
          print(x.shape)
          print(pred.shape)
          (200, 1)
          (200, 1)
In [12]:
          df.plot(kind='scatter',x='TV',y='Sales')
          plt.plot(x,pred,c='red')
Out[12]: [<matplotlib.lines.Line2D at 0x2e07465da88>]
             25
             20
          <u>s</u> 15
            10
                        50
                              100
                                     150
                                            200
                                                   250
                                                           300
                                     TV
In [13]: r2_score(df.Sales,pred)
Out[13]: 0.8121757029987414
In [14]: mean_squared_error(df.Sales,pred)/15.130500
Out[14]: 0.34484940337696235
```

```
In [15]: | df.describe()
```

Out[15]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

In [16]: df

Out[16]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

```
In [17]: h=df['Sales'].quantile(.25)
j=df['Sales'].quantile(.75)
```

19.05 11.0

Out[18]: 11.0

```
In [19]: df[(df.Sales<j) & (df.Sales>h)].Sales.value_counts
Out[19]: <bound method IndexOpsMixin.value_counts of 2</pre>
                                                              12.0
                 16.5
          3
          4
                 17.9
          6
                 11.8
                 13.2
          7
          191
                 11.9
          194
                 17.3
          196
                 14.0
                 14.8
          197
                 18.4
          199
         Name: Sales, Length: 98, dtype: float64>
In [20]: df['asdf']=pd.cut(df.Sales, 4, labels=["best", "medium", "good", "bad"])
In [21]: df=df.drop(columns='asdf')
In [ ]:
```