CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Exam overview

To know a list of key concepts that will be covered in the exams

Selected exam problems

	book chapter	Topics	Exam problems
l	2	Propositional logic	2021-final, pb 1
	3	Predicate logic	2021-midterm1, pb3
İ	4	Proof	2021-final, pb4
İ	5	Sequences	2021-final, pb7
İ	6	Sets	2021-midterm2, pb2
İ	7	Functions	2021-final, pb9
İ	8	Relations	2021-final, pb11

We will proceed in 2 passes

- We first go over the problems to highlight the "key" concepts.
- We will then go over the solutions.
- No worry if you do not understand the details.

Key concepts

Propositional Logic Final 2021

Problem 1. [5 points]

Construct a truth table for the following statement form: $p \land (q \lor r) \leftrightarrow p \land (q \land r)$.

Key: Truth Table

Truth table for p ^ q

p	q	p ^ q
Т	T	T
Т	F	F
F	T	F
F	F	F

Predicate Logic — Midterm 1, 2021

Problem 3. [10 points]

Give negations of the following statements. Reasoning is not required.

- (f) [1 point] $\forall x, \forall y \text{ such that } p(x, y)$
- (g) [1 point] $\forall x, \exists y \text{ such that } p(x, y)$

Key: Negation & quantifiers

$$(\forall x, P(x)) \equiv \exists x, \sim P(x)$$

$$-(\exists x, P(x)) \equiv \forall x, \neg P(x)$$

Proof — Final 2021

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

Key: Prove propositions about integers using basic facts

Example of basic facts:

- an even integer can be written as 2*n;
- $-(x+y)^2 = x^2 + 2xy + y^2$

Sequences - Final 2021

Problem 7. [10 points]

Use mathematical induction to prove the following identities.

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

Key: Use Mathematical Induction to show facts about integers

Sets — Midterm 2, 2021

Problem 2. [5 points]

Mention whether the following statements are true or false without giving any reasons. Assume all sets are subsets of a universal set U.

(a) [1 point]
$$(A \cap B) \cap (A \cap C) = A \cap (B \cup C)$$

Key: Union and intersection on Sets

Functions — Final 2021

Problem 9. [5 points]

Write and fill the table with \checkmark or \checkmark . If a function is one-to-one or onto, then use \checkmark . On the other hand, if a function is not one-to-one or not onto, then use \checkmark .

Function	Domains	One-to-one function?	Onto function?
f(x) = 3x	$f: \mathbb{Z} \to \mathbb{Z}$		

Key: One-to-one and onto functions

Relations - Final 2021

Problem 11. [5 points]

Let A be the set of all people. Let R be the relation defined on A as follows: For persons p and q in A, we have p R $q \Leftrightarrow p$ has the same birthday as q.

Is R an equivalence relation? Prove your answer. If R is an equivalence relation, what are the distinct equivalence classes of the relation?

Key: Equivalence relations and Equivalence classes

Solution (for your reference)

Propositional Logic Final 2021

Problem 1. [5 points]

Construct a truth table for the following statement form: $p \land (q \lor r) \leftrightarrow p \land (q \land r)$.

p q r p AND (q OR r)	p AND (q AND r)	p AND (q OR r) <==> p AND (q AND r)
T	T T F F F	T T T F T T

Predicate Logic — Midterm 1, 2021

Problem 3. [10 points]

Give negations of the following statements. Reasoning is not required.

- (f) [1 point] $\forall x, \forall y \text{ such that } p(x, y)$
- (g) [1 point] $\forall x, \exists y \text{ such that } p(x, y)$

- There exists x, there exists y, $\sim p(x,y)$
- There exists x, for all y, ~p(x,y)

Proof — Final 2021

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

Proof.

- We need to show: for any integer n, (2n+1)^2 + (2n+3)^2 is even.
- That is to say, we need to show the following proposition holds:
- for any integer n, 8n^2 + 16n + 10 is even.
- The formula above can be rewritten as 2 (4n^2 + 8n + 5) which must be even.

QED.

Sequences - Final 2021

Problem 7. [10 points]

Use mathematical induction to prove the following identities.

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

- Proof.
 - Let P(n) be the predicate 1* 1! + 2 * 2! + ... n* n! = (n+1)! -1
 - Base step: We prove P(1).
 - Inductive step: We prove for any integer k>=1, P(k) -> P(k+1)
 - Let k be an arbitrary integer and k>=1.
 - Assume P(k) holds. That is 1* 1! + 2 * 2! + ... k* k! = (k+1)! -1
 - We need to prove P(k+1), namely, 1* 1! + 2 * 2! + ... (k+1) * (k+1)! = (k+2)! -1
 - Following assumption P(k), Left-hand-side above = (k+1)! -1 + (k+1) * (k+1)! which equals to Right-hand-side above.

Sets — Midterm 2, 2021

Problem 2. [5 points]

Mention whether the following statements are true or false without giving any reasons. Assume all sets are subsets of a universal set U.

(a) [1 point]
$$(A \cap B) \cap (A \cap C) = A \cap (B \cup C)$$

- The statement is false. As a counter example:
 - A={1}, B={2}, C={1,2}.
 - Left-hand-side becomes empty set
 - Right-hand-side becomes {1}

Functions — Final 2021

Problem 9. [5 points]

Write and fill the table with \checkmark or \checkmark . If a function is one-to-one or onto, then use \checkmark . On the other hand, if a function is not one-to-one or not onto, then use \checkmark .

Function	Domains	One-to-one function?	Onto function?
f(x) = 3x	$f: \mathbb{Z} \to \mathbb{Z}$		

- Yes: One to one function
- No: Onto function

Relations - Final 2021

Problem 11. [5 points]

Let A be the set of all people. Let R be the relation defined on A as follows: For persons p and q in A, we have p R $q \Leftrightarrow p$ has the same birthday as q.

Is R an equivalence relation? Prove your answer. If R is an equivalence relation, what are the distinct equivalence classes of the relation?

- R is an equivalence relation, as it is
 - reflective (p R p),
 - symmetric p R q <==> q R p
 - transitive p R q, q R r ==> p R r
- Equivalence classes is the set of the sets of people of A that have the same birthday.

Today's take-away

book chapter	Topics	Exam problems	Key
2 3 4 5 6 7 8	Propositional logic Predicate logic Proof Sequences Sets Functions Relations	2021-final, pb 1 2021-midterm1, pb3 2021-final, pb4 2021-final, pb7 2021-midterm2, pb2 2021-final, pb9 2021-final, pb11	truth table negation on quantifiers facts about integers math induction unions and intersections 1-1 and onto equiv. rel. and classes