Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Size-based Priority

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

@(§)(€)(CC BY-NC-ND 4.0)

1

```
Analytical models
Not penalties if T_Q \le 0.45;
                                                                                          priority scheduling
gain revenue if T_Q < 0.4
             E(S) = 0.4 \text{ s}, exponential
             Low load medium load high load
             \rho = 0.4
                                               0.8
                              0.6
             \lambda = 1
                              1.5
                                               2 job/s
                                                            without priority classes
        E(T_Q) = 0.26
                              0.6
                                               1.6 job/s
                              2 priority class
        medium load
    \rho_I=0.3
                     \rho_2 = 0.3
                                         \rho_I = 0.18
                                                         \rho_2 = 0.42
                                                                             \rho_I = 0.42
                                                                                             \rho_2 = 0.18
 E(T_{QI}) 50\%
                  E(T_{Q2}) 50\%
                                     E(T_{QI}) 30\%
                                                        E(T_{Q2}) 70\%
                                                                          E(T_{QI}) 70\%
                                                                                            E(T_{Q2}) 30\%
0.342857
                 0.85714
                                     0.2926829
                                                       0.731707317
                                                                          0.413793
                                                                                           1.03448
       high load
    \rho_{l}=0.4
                     \rho_2 = 0.4
                                         \rho_I = 0.24
                                                         \rho_2 = 0.56
                                                                            \rho_I = 0.56
                                                                                             \rho_2 = 0.24
                                                                          E(T_{QI}) 70\%
                                                                                           E(T_{Q2}) 30\%
 E(T_{QI}) 50\%
                  E(T_{Q2}) 50\%
                                     E(T_{QI}) 30%
                                                       E(T_{Q2}) 70\%
                                     0.4910526
                                                      2.105263
0.5333333
                 2.6666666
                                                                         0.727272
                                                                                           3.636363
                                              V. de Nitto Personè
```


Size based vs abstract priority (without preemption) Waiting times

Analytical models size-based priority

$$E(T_{Q_k})^{SB-NP} \le E(T_{Q_k})^{abstract-NP}$$

$$E(T_O)$$
 (job/s)

0.26 0.6 abstract 1.6 0.22278 0.44261 1.00289 size-based

$$E(T_Q)^{SB-NP} \le E(T_Q)^{abstract-NP}$$

V. de Nitto Personè

9

Size based vs abstract priority (without preemption) Response times

Analytical models size-based priority

medium	load	

а	bstract

$E(T_{SI})$ 50%	$E(T_{S2})$ 50%	$E(T_{SI})$ 30%	$E(T_{S2}) 70\%$	$E(T_{SI}) 70\%$	$E(T_{S2}) 30\%$
0.742857	1.25714	0.6926829	1.131707317	0.813793	1.43448

high load

$E(T_{SI})$ 50%	$E(T_{S2})$ 50%	$E(T_{SI})$ 30%	E(T _{S2}) 70%	$E(T_{SI}) 70\%$	$E(T_{S2}) 30\%$
0.9333333	1.0666666	0.8910526	2.505263	1.127272	4.036363

medium load

10

high load

 $E(T_{SI})$ 63% $E(T_{S2}) 37\%$ size-based

 $E(T_{SI})$ 63% $E(T_{S2}) 37\%$ 0.45242 1.51305 0.57298 2.82889

 $E\big(T_{S_k}\big)^{SB_NP} \ {\red}{\red} \ E\big(T_{S_k}\big)^{abstract_NP}$

V. de Nitto Personè

Size based vs abstract priority (without preemption) Response times
$$E\left(T_{S_k}\right)^{SB-NP} \supseteq E\left(T_{S_k}\right)^{abstract-NP}$$
 medium load
$$E\left(T_{S_1}\right)^{SB-NP} = 0.28522 + 0.1672 = 0.45242$$

$$E\left(T_{S_2}\right)^{SB-NP} = 0.71305 + 0.8 = 1.51305$$
 abstract: $30-70\%$
$$E\left(T_{S_1}\right)^{abstract-NP} = 0.2927 + 0.4 = 0.6927$$

$$E\left(T_{S_2}\right)^{abstract-NP} = 0.7317 + 0.4 = 1.1317$$

$$E\left(T_{S_2}\right)^{abstract-NP} = 0.7317 + 0.4 = 1.1317$$

Analytical models size-based priority

Exercises

- 1. Extend all the exercises and the comparison to the case with preemption
- 2. Evaluate the SJF discipline for the same parameters as the case study for medium and high loads and compare with the SB-P case
- 3. Evaluate the SRPT discipline for a given size (e.g. $x_1=E(S_1)$ and $x_2=E(S_2)$
- 4. Evaluate the slowdown for all cases above.

V. de Nitto Personè 12