$\begin{array}{c} \textbf{CS2100 Tutorial 4} \\ \textbf{AY } 24/25 \ \text{Sem } 2-\text{github/omgeta} \end{array}$

Q1.

	Operand	Target Memory Address	Content
(a)	\$t1	Not applicable	15000
	\$t2	Not applicable	20000
(b)	\$s2	Not applicable	200
	100(\$zero)	100	1000
(c)	\$t4	Not applicable	30000
	40(\$s2)	240	2400
(d)	\$s3	Not applicable	240
	200(\$zero)	200	2000
(e)	\$t3	Not applicable	25000
	\$zero(\$t1)	15000	150
(f)	\$s1	Not applicable	160
	\$140(\$s1)	300	3000

Q2. (a.) Stack:

push @a1 @a2 push add pop @a0push @a0push @a2add pop @a1@a0push push @a1add pop @a2

(b.) Accumulator:

load @a1
add @a2
store @a0
add @a2
store @a1
add @a0
store @a2

(c.) Memory-Memory:

(d.) Register-Register:

Q3. (a.)

	Number of bits for longest instructions	Number of bytes
Stack	10	2
Accumulator	10	2
Memory-Memory	24	4
Register-Register	13	2

(b.) Stack: $12 \times 2 = 24$ bytes

Accumulator: $7 \times 2 = 14$ bytes Memory-Memory: $3 \times 4 = 12$ bytes Register-Register: $8 \times 2 = 16$ bytes

Therefore, Memory-Memory is the most efficient in terms of code-size

Q4. (a.) To find minimum, maximise opcode bits of B (smaller opcode space): $A+B=(1\cdot 2^5)+(2^6-1)=95$

(b.) To find maximum, minimise opcode bits of B (smaller opcode space): $A+B=((2^6-1)\cdot 2^5)+(1)=2017$