# LECTURES ON INVARIANT THEORY

IGOR V. DOLGACHEV

June 14, 2000

## **Preface**

This book is based on a one-semester graduate courses I gave at Michigan in 1994 and 1998, and at Harvard in 1999. A part of the book is borrowed from an earlier version of my lecture notes which were published by the Seoul National University. The main changes, besides correcting mistakes, consist of including several lectures on algebraic invariant theory, simplifying proofs and adding more examples from classical algebraic geometry. The last lecture of the earlier version which contains some applications to construction of moduli spaces has been omitted. The lectures literally mean to be a first course in the subject to motivate a beginner to study more. A new edition of D. Mumford's book "Geometric Invariant Theory" with appendices by J. Fogarty and F. Kirwan as well as a survey paper of V. Popov and E. Vinberg in Encycl. Math. Sci., vol. 55, published by Springer-Verlag will help the reader to navigate in this broad and old subject of mathematics. Most of the results and their proofs discussed in the book can be found elsewhere, we include some of the extensive bibliography in the subject (with no claim for completeness). The main purpose of this book to give a short and selfcontained exposition of the main ideas of the theory. The sole novelty is including many examples illustrating the dependence of the quotient on a linearization of the action as well as including some basic constructions in toric geometry as examples of torus actions on affine space. We also give many examples related to classical algebraic geometry. Each chapter ends with a set of exercises and bibliographical notes. We assume only minimal prerequisites for students: a basic knowledge of algebraic geometry covered in the first two chapters of Shafarevich's book and/or Hartshorne's book, a good knowledge of multilinear algebra and some rudiments of the theory of linear representations og groups. Although we often use some of the theory of affine algebraic groups, the knowledge of the group GL(n) is enough for our purpose.

iv PREFACE

I am grateful to some of my students for critical remarks and catching numerous mistakes in earlier versions of these lecture notes. Special thanks go to Mihnea Popa and Ana-Maria Castrave.

# Contents

| Preface |                                  |    |  |
|---------|----------------------------------|----|--|
| In      | troduction                       | ix |  |
| 1       | Symbolic method                  | 1  |  |
|         | 1.1 First examples               | 1  |  |
|         | 1.2 Polarization and restitution | 4  |  |
|         | 1.3 Bracket functions            | 9  |  |
|         | Bibliographical notes            | 13 |  |
|         | Exercises                        | 13 |  |
| 2       | The First Fundamental Theorem    | 17 |  |
|         | 2.1 The omega-operator           | 17 |  |
|         | 2.2 The proof                    | 20 |  |
|         | 2.3 Grassmann variety            | 21 |  |
|         | 2.4 The straightening law        | 23 |  |
|         | Bibliographical notes            |    |  |
|         | Exercises                        | 27 |  |
| 3       | Reductive algebraic groups       | 31 |  |
|         | 3.1 The Gordan-Hilbert theorem   | 31 |  |
|         | 3.2 The unitary trick            | 34 |  |
|         | 3.3 Affine algebraic groups      | 37 |  |
|         | 3.4 Nagata's Theorem             |    |  |
|         | Bibliographical notes            |    |  |
|         | Exercises                        | 43 |  |

vi *CONTENTS* 

| 4 | Hilbert's Fourteenth Problem                   | <b>45</b>  |
|---|------------------------------------------------|------------|
|   | 4.1 The problem                                | 45         |
|   | 4.2 The transfer principle                     | 47         |
|   | 4.3 Nagata's counterexample                    | 51         |
|   | Bibliographical Notes                          | 58         |
|   | Exercises                                      | 59         |
| 5 | Algebra of covariants                          | 61         |
|   | 5.1 Examples of covariants                     | 61         |
|   | 5.2 Covariants of an action                    | 65         |
|   | 5.3 Linear representations of reductive groups | 68         |
|   | 5.4 Dominant weights                           | 73         |
|   | 5.5 Cayley-Sylvester formula                   |            |
|   | 5.6 Standard tableaux again                    | 80         |
|   | Bibliographical notes                          |            |
|   | Exercises                                      |            |
| 6 | Quotients                                      | 87         |
|   | 6.1 Categorical and geometric quotients        | 87         |
|   | 6.2 Examples                                   |            |
|   | 6.3 Rational quotients                         |            |
|   | Bibliographical notes                          |            |
|   | Exercises                                      |            |
| 7 | Linearization of actions                       | L01        |
|   | 7.1 Linearized line bundles                    | 101        |
|   | 7.2 The existence of linearization             |            |
|   | 7.3 Linearization of an action                 |            |
|   | Bibliographical notes                          |            |
|   | Exercises                                      |            |
| 8 | Stability                                      | 13         |
| - | 8.1 Stable points                              |            |
|   | 8.2 The existence of a quotient                |            |
|   | 8.3 Examples                                   |            |
|   | Bibliographical notes                          |            |
|   | 9 -                                            | 124<br>195 |

| COMPRIME   |      |
|------------|------|
| CONTENTS   | V11  |
| COLLECTION | * 11 |

| 9  | Numerical criterion of stability        | 127 |
|----|-----------------------------------------|-----|
|    | 9.1 The function $\mu(x,\lambda)$       | 127 |
|    | 9.2 The numerical criterion             |     |
|    | 9.3 The proof                           |     |
|    | 9.4 The state polytope                  |     |
|    | 9.5 Kempf's stability                   |     |
|    | Bibliographical Notes                   |     |
|    | Exercises                               |     |
| 10 | Projective hypersurfaces                | 145 |
|    | 10.1 Nonsingular hypersurfaces          | 145 |
|    | 10.2 Binary forms                       |     |
|    | 10.3 Plane cubics                       | 153 |
|    | 10.4 Cubic surfaces                     | 163 |
|    | Bibliographical Notes                   | 163 |
|    | Exercises                               | 164 |
| 11 | Configurations of linear subspaces      | 167 |
|    | 11.1 Stable configurations              | 167 |
|    | 11.2 Points in $\mathbb{P}^n$           | 174 |
|    | 11.3 Lines in $\mathbb{P}^3$            | 184 |
|    | Bibliographical Notes                   |     |
|    | Exercises                               | 186 |
| 12 | Toric varieties                         | 189 |
|    | 12.1 Actions of a torus on affine space | 189 |
|    | 12.2 Fans                               | 192 |
|    | 12.3 Examples                           | 198 |
|    | Bibliographical Notes                   | 204 |
|    | Exercises                               | 205 |
| Bi | bliography                              | 205 |
|    |                                         |     |

viii *CONTENTS* 

# Introduction

Geometric invariant theory arises in an attempt to construct a quotient of an algebraic variety X by an algebraic action of a linear algebraic group G. In many applications X is the parametrizing space of certain geometric objects (algebraic curves, vector bundles, etc) and the equivalence relation on the objects is defined by a group action. The main problem here is that the quotient space X/G may not exist in the category of algebraic varieties. The reason is rather simple. Since one expects that the canonical projection  $f: X \to X/G$  is a regular map of algebraic varieties and so has closed fibres, all orbits must be closed subsets in the Zariski topology of X. This rarely happens when G is not a finite group. A possible solution to this problem is to restrict the action to an invariant open Zariski subset U, as large as possible, so that  $U \to U/G$  exits. The Geometric Invariant Theory suggests a method for choosing such a set so that the quotient is a quasiprojective algebraic variety. The idea goes back to D. Hilbert. Suppose X = V is a linear space and G is a linear algebraic group acting on V via its linear representation. The set of polynomial functions on V invariant with respect to this action is a commutative algebra A over the ground field. Hilbert proves that A is finitely generated if G = SL(n) or GL(n) and its generators  $f_1, \ldots, f_N$  define an invariant regular map from X to some affine algebraic variety Y contained in affine space  $\mathbb{A}^N$  whose ring of polynomial functions is isomorphic to A. By a theorem of Nagata the same is true for any reductive linear algebraic group. The map  $f: X \to Y$  has the universal property for G-invariant maps of X and is called the categorical quotient. The pre-image of the origin is the closed subvariety defined by all invariant homogeneous polynomials of positive degree. It is called the null-cone. Its points cannot be distinguished by invariant functions, they are called unstable points. The remaining points are called semi-stable points. When we pass to the projective space  $\mathbb{P}(V)$  associated to V, the images of semi-stable points form an invarix INTRODUCTION

ant open subset  $\mathbb{P}(V)^{ss}$  and the map f induces a regular map  $\bar{f}: \mathbb{P}(V)^{ss} \to \bar{Y}$ , where  $\bar{Y}$  (denoted by  $\mathbb{P}(V)^{ss}/\!/G$ ) is a projective algebraic variety with the projective coordinate algebra isomorphic to A. In applications considered by Hilbert,  $\mathbb{P}(V)$  parametrizes projective hypersurfaces of certain degree and dimension, and the projective algebraic variety  $\bar{Y}$  is the "moduli space" of these hypersurfaces. The hypersurfaces represented by unstable points are left out from the moduli space, they are "too degenerate". A nonsingular hypersurface is always represented by a semi-stable point. Since  $\bar{Y}$  is a projective variety, it is considered as a "compactification" of the moduli space of nonsingular hypersurfaces. The fibres of the map  $\mathbb{P}(V)^{ss} \to \mathbb{P}(V)^{ss}/\!/G$  are not orbits in general, however each fibre contains a unique closed orbit so that  $\mathbb{P}(V)^{ss}/\!/G$  parametrizes closed orbits in the set of semi-stable points.

Since the equations of the null-cone is hard to find without computing explicitly the ring of invariant polynomials, one uses another approach. It allows one to describe the set of semi-stable points by usings the so-called Hilbert-Mumford numerical criterion of stability. In many cases it allows one to determine the set  $\mathbb{P}(V)^{ss}$  very explicitly. It also allows one to distinguish stable points among semi-stable ones. These are the points whose orbits are closed in  $\mathbb{P}(V)^{ss}$  and the stabilizer subgroups are finite. The restriction of the map  $\mathbb{P}(V)^{ss} \to \mathbb{P}(V)^{ss}/\!/G$  to the set of stable points  $\mathbb{P}(V)^{s}$  is an orbit map  $\mathbb{P}(V)^{s} \to \mathbb{P}(V)^{s}/\!/G$ . It is called a geometric quotient.

More generally, if G is a reductive algebraic group acting on a projective algebraic variety X, the GIT approach to constructing the quotient consists of the following steps. First one chooses a linearization of the action, a G-equivariant embedding of X into a projective space  $\mathbb{P}(V)$  with a linear action of G as above. The choice of a linearization is a parameter of the construction, it is defined by a G-linearized ample line bundle on X. Then one sets  $X^{\mathrm{ss}} = X \cap \mathbb{P}(V)^{\mathrm{ss}}$  and defines the categorical quotient  $X^{\mathrm{ss}} \to X^{\mathrm{ss}} /\!/ G$  as the restriction of the categorical quotient  $\mathbb{P}(V)^{\mathrm{ss}} \to \mathbb{P}(V)^{\mathrm{ss}} /\!/ G$ . The image variety  $X^{\mathrm{ss}} /\!/ G$  is a closed subvariety of  $\mathbb{P}(V)^{\mathrm{ss}} /\!/ G$ .

Let us give a brief comment on the content of these lecture notes.

In Lectures 1 and 2 we consider the classical example of invariant theory in which the general linear group GL(V) of a vector space V of dimension n over a field k acts naturally on the space of homogeneneous polynomials  $Pol_d(V)$  of some degree d. We explain the classical symbolic method which allows one to identify an invariant polynomial function of degree m on this space with an element of the projective coordinate algebra  $k[Gr_{n,m}]$  on the Grassmann variety  $Gr_{n,m}$  of n-dimensional linear subspaces in  $k^m$  in its

Plücker embedding. This interpretation is based on the so-called the First Fundamental Theorem of Invariant Theory. The proof of this theorem is based on the use of a rather technical algebraic tool, the so-called Clebsch's omega-operator. We choose this less conceptual approach to show the flavor of the invariant theory of the nineteenth century. More detailed expositions of the classical invariant theory (see [55],[106]) give a conceptual explanation of this operator via the representation theory. The Second Fundamental Theorem of Invariant Theory is just a statement about the relations between the Plücker coordinates known in algebraic geometry as the Plücker equations. We use the available computations of invariants in later chapters to give an explicit description of some of the GIT-quotients arising in classical algebraic geometry.

In Lecture 3 we discuss the problem of finite generatedness of the algebra of invariant polynomial on the space of a linear rational representation of an algebraic group. We begin with the classical theorem of Gordan-Hilbert and explain the "unitary trick of Hermann Weyl" which allows one to prove the finite generatedness in the case of a semi-simple or, more generally, reductive complex algebraic group. Then we introduce the notion of a geometrically reductive algebraic group and prove Nagata's theorem on finite generatedness of the algebra of invariant polynomial on the space of a linear rational representation of a reductive algebraic group.

In Lecture 4 we discuss the case of a linear rational representation of a non-reductive algebraic group. We explain the so-called transfer principle which allows one to prove the finite generatedness for the restriction of a representation of a reductive algebraic group G to its subgroup H provided the algebra of regular functions on the homogeneous space G/H is finitely generated. A corollary of this result is a classical theorem of Weitzenböck about invariants of the additive group. The cental part of this lecture is Nagata's counterexample to Hilbert's 14th Problem which asks about the finite generatedness of the algebra of invariants for an arbitrary algebraic group of linear transformations. We follow the original construction of Nagata with some simplifications due to R. Steinberg.

Lecture 5 is devoted to covariants of an action. A covariant of an affine algebraic group G acting on an algebraic variety X is a G-equivariant regular map X to affine space on which the group acts via its linear representation. The covariants form an algebra of covariants and the main result of the theory is that this algebra is finitely generated if G is reductive. The proof depends heavily on the theory of linear representation of reductive algebraic

xii INTRODUCTION

groups which we review in this lecture. As an application of this theory we prove the classical Cayley-Sylvester formula for the dimension of the spaces of covariants and also the Hermite reciprocity.

In Lecture 6 we discuss categorical and geometric quotients of an algebraic variety under a regular action of an algebraic group. The material is fairly standard and follows Mumford's book.

Lecture 7 is devoted to linearizations of actions. The main result is that any algebraic action of a linear algebraic group on a normal and quasiprojective algebraic variety X is isomorphic to the restriction of a linear action on a projective space in which X is equivariantly embedded. The proof follow the exposition of the theory of linearizations from [2].

Lectures 8 is devoted to the concepts of stability of algebraic actions and the construction of categorical and geometric quotients. The material of these chapters is rather standard and can be found in Mumford's book as well as in many other books. We include many examples illustrating the dependence of the quotients on the linearization.

Lecture 9 contains the proof of Hilbert-Mumford's numerical criterion of stability. The only novelty here is that we also include Kempf's notion of stability and give an axample of its application to the theory of moduli of abelian varieties.

The remaining lectures 10-12 are devoted to some examples where the complete description of stable points is available. In Lecture 10 we discuss the case of hypersurfaces in projective space. We give explicit descriptions of the moduli spaces of binary forms of degree  $\leq 5$ , plane curves of degree 3 and cubic surfaces. In Lecture 11 we discuss moduli spaces of ordered collections of linear subspaces in projective space, in particular of points in  $\mathbb{P}^n$  or of lines in  $\mathbb{P}^3$ . The examples discussed in this lecture are related to some of the beautiful constructions from classical algebraic geometry. In Lecture 12 we introduce toric varieties as GIT-quotients of an open subset of affine space. Some of the constructions discussed in the previous lectures admit a nice interpretation in terms of the geometry of toric varieties. This approach to toric varieties is based on some recent work of D.  $\operatorname{Cox}[15]$  and M. Audin [3].

We will be working over an algebraically closed field k sometimes assumed to be of characteristic zero.

## Lecture 1

# Symbolic method

#### 1.1 First examples

The notion of an invariant is one of the most general concepts of mathematics. Whenever a group G acts on a set S we look for elements  $s \in S$  which do not change under the action, i.e. satisfy  $g \cdot s = s$  for any  $g \in G$ . For example, if S is a set of functions from a set X to a set Y, and G acts on S via its action on X and its action on Y by the formula:

$$(g \cdot f)(x) = g \cdot f(g^{-1} \cdot x),$$

then an equivariant function is a function  $f: X \to Y$  satisfying  $g \cdot f = f$ , i.e.

$$f(g \cdot x) = g \cdot f(x), \quad \forall g \in G, \forall x \in X.$$

In the case when G acts trivially on Y, an equivariant function is called an invariant function. It satisfies

$$f(g \cdot x) = f(x), \quad \forall g \in G, \forall x \in X.$$

Among all invariant functions there exists a universal function, the projection map  $p: X \to Y$  from the set X to the set of orbits X/G. It satisfies the property that for any invariant function  $f: X \to Y$  there exists a unique map  $\bar{f}: X/G \to Y$  such  $f = \bar{f} \circ p$ . So, if we know the set of orbits X/G, we know all invariant functions on X. We will be concerned with invariants arising in algebra and algebraic geometry. Our sets and our group G will be algebraic varieties over a field K and our invariant functions will be regular maps.

Let us start with some examples.

Example 1.1. Let A be a finitely generated algebra over a field k and G be a group of its automorphisms. The subset

$$A^{G} = \{ a \in A : g(a) = a, \forall g \in G \}$$
(1.1)

is a k-subalgebra of A. It is called the algebra of invariants. This definition fits the general setting if we let X = Spec(A) be the affine algebraic variety over k with coordinate ring equal to A, and  $Y = \mathbb{A}^1_k$  be the affine line over k. Then elements of A can be viewed as regular functions  $a: X \to \mathbb{A}^1_k$  between algebraic k-varieties. A more general invariant function is an invariant map  $f: X \to Y$  between algebraic k-varieties. If Y is affine with coordinate ring B, such a map is defined by a homomorphism of k-algebras  $f: B \to A$ satisfying g(f(b)) = f(b) for any  $g \in G, b \in B$ . It is clear that such a homomorphism is equal to the composition of a homomorphism  $B \to A^G$ and the natural inclusion map  $A^G \to A$ . Thus if take  $Z = \operatorname{Spec}(A^G)$  we obtain that the map  $X \to Z$  defined by the inclusion  $A^G \hookrightarrow A$  plays the role of the universal function. So, it is natural to assume that  $A^G$  is the coordinate ring of the orbit space X/G. However, we shall quickly convince ourselves that there must be some problems here. The first one is that the algebra  $A^G$  may not be finitely generated over k and so does not define an algebraic variety. This problem can be easily resolved by extending the category of algebraic varieties to the category of schemes. For any, not necessarily finitely generated, algebra A over k, we may still consider the subring of invariants  $A^G$  and view any homomorphism of rings  $B \to A$  as a morphism of affine schemes  $\operatorname{Spec}(A) \to \operatorname{Spec}(B)$ . Then the morphism  $\operatorname{Spec}(A) \to \operatorname{Spec}(A^G)$ is the universal invariant function. However, it is more preferrable to deal with algebraic varieties than with arbitrary schemes, and we will later show that  $A^G$  is always finitely generated if the group G is a reductive algebraic group which acts algebraically on Spec(A). The second problem is more serious. The affine algebraic variety  $\operatorname{Spec}(A^G)$  is rarely equal to the set of orbits (unless G is a finite group). For example, the standard action of the general linear group GL(n,k) on the space  $k^n$  has two orbits but no invariant non-constant functions. The following is a more interesting example.

Example 1.2. Let G = GL(n, k) act by automorphisms on the polynomial algebra  $A = k[X_{11}, \ldots, X_{nn}]$  in  $n^2$  variables  $X_{ij}, i, j = 1, \ldots, n$  as follows: For any  $g = (a_{ij}) \in G$  the polynomial  $g(X_{ij})$  is equal to the ij-th entry of the matrix

$$Y = g^{-1} \cdot X \cdot g, \tag{1.2}$$

where  $X = (X_{ij})$  is the matrix with the entries  $X_{ij}$ . Then, the affine variety  $\operatorname{Spec}(A)$  is the affine space  $\operatorname{Mat}_n$  of dimension  $n^2$ . Its k-points can be interpreted as  $n \times n$ -matrices with entries in k and we can view elements of A as polynomial functions on the space of matrices. We know from linear algebra that any such matrix can be reduced to its Jordan form by means of a transformation (1.2) for an appropriate g. Thus any invariant function is uniquely determined by its values on Jordan matrices. Let D be the subspace of diagonal matrices identified with linear space  $k^n$  and let  $k[\Lambda_1, \ldots, \Lambda_n]$  be the algebra of polynomial functions on D. Since the set of matrices with diagonal Jordan form is a Zariski dense subset in the set of all matrices, we see that an invariant function is uniquely determined by its values on diagonal matrices. Therefore the restriction homomorphism  $A^G \to k[\Lambda_1, \ldots, \Lambda_n]$ is injective. Since two diagonal matrices with permuted diagonal entries are equivalent, an invariant function must be a symmetric polynomial in  $\Lambda_i$ . By the fundamental theorem on symmetric functions, such a function can be written uniquely as a polynomial in elementary symmetric functions  $s_i$  in  $\Lambda_1, \ldots, \Lambda_n$ . Let  $c_i$  be the coefficients of the characteristic polynomial

$$\det(X - tI_n) = (-1)^n t^n + c_1(-t)^{n-1} + \ldots + c_n$$

considered as polynomials functions on  $\operatorname{Mat}_n$ , i.e. elements of the ring A. Clearly, the restriction of  $c_i$  to D is equal to the i-th elementary symmetric function  $s_i$ . So we see that the image of  $A^G$  in  $k[\Lambda_1, \ldots, \Lambda_n]$  coincides with the polynomial subalgebra  $k[s_1, \ldots, s_n]$ . This implies that  $A^G$  is freely generated by the functions  $c_i$ . So we can identify  $\operatorname{Spec}(A^G)$  with affine space  $k^n$ . Now consider the universal map  $\operatorname{Spec}(A) \to \operatorname{Spec}(A^G)$ . Its fibre over the point  $(0, \ldots, 0)$  defined by the maximal ideal  $(c_1, \ldots, c_n)$  is equal to the set of matrices M with characteristic polynomial  $\det(M - tI_n) = (-t)^n$ . Clearly, this set does not consist of one orbit, any Jordan matrix with zero diagonal values belongs to this set. Thus  $\operatorname{Spec}(A^G)$  is not the orbit set  $\operatorname{Spec}(A)/G$ .

We shall discuss later how to remedy the problem of the construction of the space of orbits in the category of algebraic varieties. This is the subject of geometric invariant theory (GIT) which we will be dealing with later. Now we shall discuss some examples where the algebra of invariants can be explicitly found.

Let W be a finite-dimensional vector space over a field k and

$$\rho: G \to \mathrm{GL}(W)$$

be a linear representation of a group G in W. We shall consider the associated action of G on the space  $\operatorname{Pol}_m(W)$  of polynomial functions on W which are homogeneous of degree m. It is obviously linear. The value of  $f \in \operatorname{Pol}_m(W)$  at a vector v is given in terms its coordinates  $(t_1, \ldots, t_r)$  with respect to some basis  $(\xi_1, \ldots, \xi_r)$  by the following expression:

$$f(t_1, \ldots, t_r) = \sum_{i_1, \ldots, i_r > 0, i_1 + \ldots + i_r = m} a_{i_1 \ldots i_r} t_1^{i_1} \ldots t_r^{i_r},$$

or in the vector notation,

$$f(\mathbf{t}) = \sum_{\mathbf{i} \in \mathbb{Z}_{>0}^r, |\mathbf{i}| = m} a_{\mathbf{i}} \mathbf{t}^{\mathbf{i}}.$$

The direct sum of the vector spaces  $\operatorname{Pol}_m(W)$  is equal to the graded algebra of polynomial functions  $\operatorname{Pol}(W)$ . Since k is infinite (we assumed it to be algebraically closed),  $\operatorname{Pol}(W)$  is isomorphic to the polynomial algebra  $k[T_1, \ldots, T_r]$ . In more sophisticated language,  $\operatorname{Pol}_m(W)$  is naturally isomorphic to the m-th symmetric product  $S^m(W^*)$  of the dual vector space  $W^*$ .

We will consider the case when  $W = \operatorname{Pol}_d(V)$  and  $G = \operatorname{SL}(V)$  with its linear action on W described above. Let  $A = \operatorname{Pol}(\operatorname{Pol}_d(V))$ . We can take for coordinates in the space  $\operatorname{Pol}_d(V)$  the functions  $A_i$  which assign to a homogeneous form its coefficient  $a_i$ . So any element from A is a polynomial in  $A_i$ 's. We are interested in describing the algebra  $A^G$ .

The problem of finding  $A^G$  is almost two centuries old. Many famous mathematicians of the nineteenth century made a contribution to this problem. Complete results were however obtained only in a few cases. The most complete results are known in the case dim V=2, the case of binary forms of degree d. We write a binary form as

$$p(t_0, t_1) = a_0 t_0^d + a_1 t_0^{d-1} t_1 + \ldots + a_d t_1^d.$$

In this case we have d+1 coefficients, and hence elements of A are polynomials  $P(A_0, \ldots, A_d)$  in d+1 variables.

#### 1.2 Polarization and restitution

To describe the ring  $\operatorname{Pol}(\operatorname{Pol}_d(V))^{\operatorname{SL}(V)}$  one uses the symbolic expression of a polynomial. Let us explain it. We shall assume that  $\operatorname{char}(k) = 0$ . First we

define the polarization map

$$\operatorname{pol}: \operatorname{Pol}_m(W) \to \operatorname{Sym}_m(W),$$

where  $\operatorname{Sym}_m(W)$  denotes the space of symmetric multilinear functions on  $W^m$  considered as a linear subspace of  $(W^*)^{\otimes m}$ . It is defined by the symmetrization formula

$$\operatorname{pol}(t_{i_1} \cdots t_{i_m}) = \frac{1}{m!} \sum_{\sigma \in S_m} t_{i_{\sigma(1)}} \otimes \ldots \otimes t_{i_{\sigma(m)}}.$$

$$(1.3)$$

Here we write any monomial as a product of the unknowns. The definition is obviously independent of the order in which we write the monomial in this way. In a basis-free approach the polarization map is a linear map

$$pol: S^m(W^*) \to S^m(W)^*,$$

defined by a symmetrization operator, where  $\operatorname{Sym}_m(W)$  is naturally identified with the space  $S^m(W)^*$  and also with the space of symmetric tensors in  $W^{*\otimes m}$ .

The reason for the insertion of the factor  $\frac{1}{m!}$  is that the restitution map  $\operatorname{Sym}_m(W) \to \operatorname{Pol}_m(W)$  defined by

$$res(f)(v) = f(v, \dots, v)$$

satisfies

$$res(pol(P)) = P$$
,  $pol(res(f)) = f$ 

and hence can be used to invert the polarization map.

We shall drop the tensor notation in the formula (1.3) by writing each tensor  $t_{i_1} \otimes \ldots \otimes t_{i_m}$  in the form

$$t_{i_1} \otimes \ldots \otimes t_{i_m} = t_{i_1}^{(1)} \cdots t_{i_m}^{(m)}.$$

Here we denote by  $t_j^{(i)}$  a coordinate function in the i-th copy of W. For example,

$$pol(at_1^2 + bt_1t_2 + ct_2^2) = at_1^{(1)}t_1^{(2)} + \frac{1}{2}b(t_1^{(1)}t_2^{(2)} + t_2^{(1)}t_1^{(2)}) + ct_2^{(1)}t_2^{(2)}.$$

So the result is the expression for the polar bilinear form of the quadratic form  $at_1^2 + bt_1t_2 + ct_2^2$ .

We refer to exercises for another equivalent definition of the polarization map.

Next, we identify  $\operatorname{Sym}_m(W)$  with  $\operatorname{Pol}_m(W^*)^*$ . We consider an element of a basis  $(\xi_1, \ldots, \xi_r)$  of W as a coordinate function on  $W^*$ . Thus each element of  $\operatorname{Pol}_m(W^*)$  is a linear combination of monomials in  $\xi_i$ 's. For any  $f \in \operatorname{Sym}_m(W)$  we set

$$f(\xi_{i_1} \dots \xi_{i_m}) = f(\xi_{i_1}, \dots, \xi_{i_m}).$$

Again, it is clear that this definition does not depend on the way we write a monomial as a product of the unknowns. Since f is determined uniquely by all its values at such monomials, we see that the map  $\operatorname{Sym}_m(W) \to \operatorname{Pol}_m(W^*)^*$  which we have just constructed is injective. Now it is easy to check the following formula

$$\binom{m}{\mathbf{i}} \operatorname{pol}(\mathbf{t}^{\mathbf{i}})(\boldsymbol{\xi}^{\mathbf{j}}) = \delta_{\mathbf{i},\mathbf{j}} := \begin{cases} 1 & \text{if } \mathbf{i} = \mathbf{j}; \\ 0 & \text{otherwise.} \end{cases}$$
 (1.4)

Here

$$\binom{m}{\mathbf{i}} = \frac{m!}{i_1! \dots i_r!}.$$

This formula shows that the elements  $\binom{m}{\mathbf{i}}\operatorname{pol}(\mathbf{t}^{\mathbf{i}})$  from  $\operatorname{Sym}_m(W)$  form the dual basis in  $\operatorname{Pol}(W^*)^*$ .

There is another way to see it. To any polynomial  $P(\xi_1, \ldots, \xi_r)$  in variables  $\xi_i$  we assign the differential operator  $\Omega_P$  on the space of polynomials  $k[t_1, \ldots, t_r]$ . It is equal to  $P(\frac{\partial}{\partial t_1}, \ldots, \frac{\partial}{\partial t_r})$ , i.e. it is obtained by replacing the unknown  $\xi_i$  with the operator  $\frac{\partial}{\partial t_i}$ . It is immediately verified that for any monomial  $\boldsymbol{\xi}^{\mathbf{j}}$  we have

$$\Omega_{\xi^{\mathbf{j}}}(\mathbf{t}^{\mathbf{i}}) = \mathbf{i}! \delta_{\mathbf{i},\mathbf{j}},$$

where  $\mathbf{i}! = i_1! \dots i_r!$ . Consider the pairing

$$\operatorname{Pol}_m(W) \times \operatorname{Pol}_m(W^*) \to k$$
 (1.5)

defined by the formula

$$\langle P(t_1,\ldots,t_r),Q(\xi_1,\ldots,\xi_r)\rangle = pol(P)(Q) = \frac{1}{m!}\Omega_Q(P).$$

It is obviously bilinear, and establishes a duality between the spaces  $\operatorname{Pol}_m(W)$  and  $\operatorname{Pol}_m(W^*)$ . The monomial bases  $\binom{m}{\mathbf{i}}\mathbf{t}^{\mathbf{i}}$  and  $(\boldsymbol{\xi}^{\mathbf{j}})$  are the dual bases.

If we write a polynomial  $F \in \operatorname{Pol}_m(\widetilde{W})$  in the form

$$P = \sum_{\mathbf{i}} {m \choose \mathbf{i}} a_{\mathbf{i}} \mathbf{t}^{i}, \tag{1.6}$$

then the function  $A_{\mathbf{i}}: P \to a_{\mathbf{i}}$  is a linear function on the space  $\operatorname{Pol}_m(W)$  which satisfies

$$A_{\mathbf{i}}(\binom{m}{\mathbf{i}}\mathbf{t}^{j}) = \delta_{\mathbf{i},\mathbf{j}}.$$

Thus we can identify this function with the monomial  $\boldsymbol{\xi}^{\mathbf{i}}$ . So, viewing the expression  $\sum_{\mathbf{i}} {m \choose \mathbf{i}} A_{\mathbf{i}} \mathbf{t}^{\mathbf{i}}$  as a "general" polynomial of degree m, we get a funny formula

$$\sum_{\mathbf{i}} {m \choose \mathbf{i}} A_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} = \sum_{\mathbf{i}} {m \choose \mathbf{i}} \boldsymbol{\xi}^{\mathbf{i}} \mathbf{t}^{i} = (\xi_{1} t_{1} + \ldots + \xi_{r} t_{r})^{m}.$$

So, when a classic book on invariant theory writes a homogeneous form as a power of a linear form it means the above expression for a general form.

Let us consider the case when  $W = Pol_d(V)$ , where dim V = n + 1.

First recall that a multi-homogeneous function of multi-degree  $(d_1, \ldots, d_m)$  on V is a function on  $V^{\oplus m}$  which is a homogeneous polynomial function of degree  $d_i$  in the i-th variable. When each  $d_i = 1$ , we get the usual definition of a multi-linear function. We denote the linear space of such functions by  $\operatorname{Pol}_{d_1,\ldots,d_m}(V)$ . The symmetric group  $S_m$  acts naturally on the space  $\operatorname{Pol}_{d,\ldots,d}(V)$  by permuting the variables. The subspace of invariant (symmetric) functions will be denoted by  $\operatorname{Pol}_{d,\ldots,d}(V)^{\operatorname{sym}}$ . In particular,

$$\operatorname{Pol}_{1,\dots,1}(V)^{\operatorname{sym}} = \operatorname{Sym}_m(V) = (V^{*\otimes m})^{\operatorname{sym}}.$$

More generally,

$$\operatorname{Pol}_{d,\dots,d}(V)^{\operatorname{sym}} = (\operatorname{Pol}_d(V)^{\otimes m})^{\operatorname{sym}}$$

Lemma 1.1. We have a natural isomorphism of linear spaces

$$Pol_m(Pol_d(V)) \cong Pol_{d,...,d}(V^*)^{sym}$$
.

*Proof.* We shall take  $W = \operatorname{Pol}_d(V)$  in the above discussion of polarization. The polarization map identifies  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))$  with  $\operatorname{Sym}_m(\operatorname{Pol}_d(V)) = (\operatorname{Pol}(V)^{*\otimes m})^{\operatorname{sym}}$ . Using the duality (1.5), we identify  $\operatorname{Pol}_d(V)^*$  with  $\operatorname{Pol}_d(V^*)$ . Thus we obtain a linear isomorphism

$$\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \cong (\operatorname{Pol}_d(V^*)^{\otimes m})^{\operatorname{sym}} = \operatorname{Pol}_{d,\dots,d}(V^*)^{\operatorname{sym}}.$$

Let us make it more explicit by using a basis  $(\xi_0, \ldots, \xi_n)$  in V and its dual basis  $(t_0, \ldots, t_n)$  in  $V^*$ . Let  $A_{\mathbf{i}}, |\mathbf{i}| = d$ , be the coordinate functions on  $\operatorname{Pol}_d(V)$ , where we write each  $P \in \operatorname{Pol}_d(V)$  as in (1.6) with m replaced by d, so that  $A_{\mathbf{i}}(P) = a_{\mathbf{i}}$ . Any  $F \in \operatorname{Pol}_m(\operatorname{Pol}_d(V))$  is a polynomial expression in  $A'_{\mathbf{i}}s$  of degree m. Let  $(A_{\mathbf{i}}^{(1)}), \ldots, (A_{\mathbf{i}}^{(m)})$  be the coordinate functions in each copy of  $\operatorname{Pol}_d(V)$ . The polarization  $\operatorname{pol}(F)$  is a multilinear expression in  $A_{\mathbf{i}}^{j}$ 's. Now, if we replace  $A_{\mathbf{i}}^{(j)}$  with the monomial  $\boldsymbol{\xi}^{(j)}$  in a basis  $(\xi_0^{(j)}, \ldots, \xi_n^{(j)})$  of the j-th copy of V, we obtain the symbolic expression of F

$$\operatorname{symb}(F)(\boldsymbol{\xi}^{(1)},\ldots,\boldsymbol{\xi}^{(m)}) \in \operatorname{Pol}_{d,\ldots,d}(V^*).$$

Since any element from  $\operatorname{Sym}_m(\operatorname{Pol}_d(V))$  is equal to  $\operatorname{pol}(F)$  for some F, we get that the map

$$\operatorname{symb}: \operatorname{Pol}_m(\operatorname{Pol}_d(V)) \to \operatorname{Pol}_{d,\dots,d}(V^*)$$

is bijective.

Example 1.3. Let n=1, d=2. In this case  $Pol_2(V)$  consists of quadratic forms in two variables  $P=a_0x_0^2+2a_1x_0x_1+a_2x_1^2$ . The discriminant function  $D=A_0A_2-A_1^2$  is an obvious invariant of SL(2,k). We have

$$pol(D) = \frac{1}{2}(A_0B_2 + A_2B_0 - 2A_1B_1),$$

$$symb(D) = \frac{1}{2}(\alpha_0^2 \beta_1^2 + \alpha_1^2 \beta_0^2 - 2\alpha_0 \alpha_1 \beta_0 \beta_1) = \frac{1}{2}(\alpha_0 \beta_1 - \alpha_1 \beta_0)^2 = \frac{1}{2}(\alpha, \beta)^2,$$

9

where

$$(\alpha, \beta) = \det \begin{pmatrix} \alpha_0 & \alpha_1 \\ \beta_0 & \beta_1 \end{pmatrix}.$$

Here, as always in the case of small m, we drop the upper indices and introduce different letters to distinguish different copies on the same space W.

Example 1.4. Let n = 1, d = 4. The determinant (called the Hankel determinant)

$$\det \begin{pmatrix} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \end{pmatrix}$$

in coefficients of a binary quartic

$$f = a_0 x_0^4 + 4a_1 x_0^3 x_1 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0 x_1^3 + a_4 x_1^2$$

defines a function  $C \in \operatorname{Pol}_3(\operatorname{Pol}_4(k^2))$  on the space of binary quartics. It is called the *catalecticant*. We leave as an exercise to verify that its symbolic expression is equal to

$$\operatorname{symb}(C) = \frac{1}{3!} (\alpha, \beta)^2 (\alpha, \gamma)^2 (\beta, \gamma)^2.$$

It is immediate to see that the group GL(2, k) acts on  $k[a_0, \ldots, a_4]$  via its action on  $\alpha, \beta, \gamma$  via

$$\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}, \dots$$
 (1.7)

This implies that the catalecticant is invariant with respect to the group SL(2, k).

#### 1.3 Bracket functions

It is convenient to organize the variables  $\xi_0^{(1)}, \ldots, \xi_n^{(1)}; \ldots; \xi_0^{(m)}, \ldots, \xi_n^{(m)}$  into a matrix of size  $(n+1) \times m$ 

$$A = \begin{pmatrix} \xi_0^{(1)} & \dots & \xi_0^{(m)} \\ \vdots & \vdots & \vdots \\ \xi_n^{(1)} & \dots & \xi_n^{(m)} \end{pmatrix}.$$

We shall identify the space  $\operatorname{Pol}_{d,\dots,d}(V^*)$  with the subspace of the polynomial algebra  $k[\xi_0^{(1)},\dots,\xi_n^{(1)};\dots;\xi_0^{(m)},\dots,\xi_n^{(m)}]$  which consists of polynomilas which are homogeneous of degree d in each set of variables  $\xi_0^{(j)},\dots,\xi_n^{(j)}$ . Next, we identify the algebra  $k[\xi_0^{(1)},\dots,\xi_n^{(1)};\dots;\xi_0^{(m)},\dots,\xi_n^{(m)}]$  with the algebra  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})$  of polynomial functions on the space of matrices  $\operatorname{Mat}_{n+1,m}$ . The value of a variable  $\xi_i^{(j)}$  at a matrix A is its (ij)-entry. The group  $(k^*)^m$  acts naturally on the space  $\operatorname{Mat}_{n+1,m}$  by

$$(\lambda_1,\ldots,\lambda_m)\cdot [C_1,\ldots,C_m]=[\lambda_1C_1,\ldots,\lambda_mC_m],$$

where we write a matrix A as a collection of its columns. In a similar way the group  $(k^*)^{n+1}$  acts on  $\operatorname{Mat}_{n+1,m}$  via row multiplication. We say that a polynomial  $P \in \operatorname{Pol}(\operatorname{Mat}_{n+1,m})$  is multi-homogeneous of multi-degree  $(d_1, \ldots, d_m)$  if for any  $\lambda \in k^*$ , and any  $A = [C_1, \ldots, C_m] \in \operatorname{Mat}_{n+1,m}$ ,

$$P([C_1, \ldots, C_{j-1}, \lambda C_j, C_{j+1}, \ldots, C_m]) = \lambda^{d_j} P([C_1, \ldots, C_j, \ldots, C_m]).$$

We say that P is multi-isobaric of multi-weight  $(w_1,\ldots,w_{n+1})$  if the polynomial function  $A\to P(A^t)$  on the space  $\mathrm{Mat}_{m,n+1}$  is  $\mathrm{multi}$ -homogeneous of  $\mathrm{multi}$ -degree  $(w_1,\ldots,w_{n+1})$ . So, for any  $P\in\mathrm{Pol}_m(\mathrm{Pol}_d(V))$  its symbolic expression is a polynomial function on the space of  $\mathrm{matrices}\ \mathrm{Mat}_{n+1,m}$  which is  $\mathrm{multi}$ -homogeneous of  $\mathrm{multi}$ -degree  $d^m=(d,\ldots,d)$  and  $\mathrm{multi}$ -weight  $w^{n+1}=(w,\ldots,w)$ . We let  $\mathrm{Pol}(\mathrm{Mat}_{n+1,m})_{d_1,\ldots,d_m;w_1,\ldots,w_{n+1}}$  denote the linear space of polynomial functions on  $\mathrm{Mat}_{n+1,m}$  which are  $\mathrm{multi}$ -homogeneous of  $\mathrm{multi}$ -degree  $(d_1,\ldots,d_m)$  and  $\mathrm{multi}$ -isobaric of  $\mathrm{multi}$ -weight  $(w_0,\ldots,w_n)$ . If  $d_1=\ldots=d_m=d$  we write  $d^m=(d_1,\ldots,d_m)$  and we use similar notation for the weights.

Let us see that the symbolic expression of any invariant polynomial from  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))$  belongs to  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m}|_{d^m:w^{n+1}})$ .

#### Proposition 1.1.

$$symb(Pol_m(Pol_d(V))^{SL(V)}) \subset Pol(Mat_{n+1,m})_{d^m;w^{n+1}},$$

where

$$(n+1)w = md.$$

*Proof.* We shall consider any  $F \in \operatorname{Pol}_m(\operatorname{Pol}_d(V))$  as a polynomial in coefficients  $A_i$  of the general polynomial  $\sum_{\mathbf{i}} \binom{d}{\mathbf{i}} A_{\mathbf{i}} \mathbf{t}^{\mathbf{i}}$  from  $\operatorname{Pol}_d(V)$ . For any  $g \in \operatorname{GL}(n+1,k)$  we can write

$$g^{n+1} = (\det g)\tilde{g},$$

where  $\tilde{g} \in \mathrm{SL}(n+1,k)$ . It is clear that a scalar matrix  $\lambda I_{n+1}$  acts on each element  $\xi_i$  of the basis of V by multiplying it by  $\lambda$ . Hence it acts on the coordinate function  $t_i$  by multiplying it by  $\lambda^{-1}$ . Thus it acts on  $\mathrm{Pol}_d(V)$  via multiplication by  $\lambda^{-d}$ . Hence it acts on  $\mathrm{Pol}_m(\mathrm{Pol}_d(V))$  by multiplication on  $\lambda^{md}$  (recall that  $(g \cdot F)(P) = F(g^{-1} \cdot P)$ ). Therefore we get

$$g^{n+1} \cdot F = (\det g)^{md} \tilde{g} \cdot F = (\det g)^{md} F.$$

Since any  $g' \in GL(n+1,k)$  can be written as a (n+1)-th power, we obtain that  $g \cdot F = \chi(g)F$  for some homomorphism  $\chi : GL(n+1,k) \to k^*$ . Notice that, when we fix F and  $P \in Pol_d(V)$ , the function  $g \to g \cdot F(P)$  is a polynomial function in entries of the matrix g which is homogeneous of degree md. Also, we know that  $\chi(g)^{n+1} = (\det g)^{md}$ . Since  $\det g$  is an irreducible polynomial of degree n+1 in entries of the matrix, we obtain that  $\chi(g) = (\det g)^t$  for some non-negative power, and comparing the degrees we get, for any  $g \in GL(n+1,k)$ ,

$$g \cdot F = (\det g)^w F.$$

Since the map symb :  $\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \to \operatorname{Pol}(\operatorname{Mat}_{n+1,m})$  is  $\operatorname{GL}(n+1,k)$ -equivariant, we see that

$$g \cdot \operatorname{symb}(F) = (\det g)^w F, \quad \forall g \in \operatorname{GL}(n+1,k), \forall A \in \operatorname{Mat}_{n+1,m}.$$

If we take g to be the diagonal matrix of the form  $\operatorname{diag}[1,\ldots,1,\lambda,1,\ldots,1]$  we immediately obtain that  $\operatorname{symb}(F)$  is isobaric of multi-weight  $w^{n+1}$ . Also, by definition of the symbolic expression,  $\operatorname{symb}(F)$  is homogeneous of multi-degree  $d^m$ . This proves the assertion.

Corollary 1.1. Assume  $n + 1 \nmid md$ . Then, for m > 0,

$$Pol_m(Pol_d(V))^{SL(V)} = \{0\}$$

An example of a function from  $\operatorname{Pol}(\operatorname{Mat}_{n+1,n+1})_{1^{n+1},1^{n+1}}$  is the determinant function  $\mathcal{D}_{n+1}: A \to \det A$ . More generally we define the *bracket function*  $\det_J$  on  $\operatorname{Mat}_{n+1,m}$  whose value on a matrix A is equal to the maximal minor formed by the columns from a subset J of  $[m] := \{1, \ldots, m\}$ . If  $J = \{j_0, \ldots, j_n\}$  we will often use its classical notation

$$\det_J = (j_0 \dots j_n).$$

It is isobaric of weight 1 but not multi-homogeneous if m > n+1. Using these functions one can construct functions from  $Pol(Mat_{n+1,m})_{d^m,w^{n+1}}$  whenever md = (n+1)w. It is done as follows.

**Definition.** A m-tableau of size n + 1 and of degree d and weight w is a matrix

$$\begin{bmatrix} \tau_{11} & \dots & \tau_{1n+1} \\ \vdots & \dots & \vdots \\ \tau_{w1} & \dots & \tau_{wn+1} \end{bmatrix}$$
 (1.8)

with entries in  $\{1, 2, ..., m\}$  satisfying the inequalities  $\tau_{ij} < \tau_{ij+1}$  and where each  $1 \le i \le m$  occurs exactly d times.

It is clear that md = w(n+1) in the above. An example of a 4-tableaux of size 2 and of degree 2 and weight 4 is

$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 1 & 4 \end{bmatrix}$$

For every tableau  $\tau$  as above we define the tableau function  $\mu_{\tau}$  on  $\mathrm{Mat}_{n+1,m}$  by

$$\mu_{\tau} = \prod_{i=1}^{w} \det_{\{\tau_{i1}, \dots, \tau_{in+1}\}}.$$

It is clear that  $\mu_{\tau} \in \operatorname{Pol}(\operatorname{Mat}_{n+1,m})_{d^m,w^{n+1}}$ . In the classical notation this function is expressed as follows

$$\mu_{\tau} = \prod_{i=1}^{w} (\tau_{i1} \dots \tau_{in+1}).$$

For example, the symbolic expression of the determinant of a binary quadratic form from Example 1.1 is equal to  $(12)^2$ . The symbolic expression of the catalecticant is  $(12)^2(23)^2(13)^2$  which corresponds to the function  $\mu_{\tau}$ , where

$$\tau = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 3 \\ 2 & 3 \\ 1 & 3 \\ 1 & 3 \end{bmatrix}.$$

So the symbolic notation for this function  $\mu_{\tau} = (12)^2 (23)^2 (13)^2$  agrees with the notation from Example 1.2.

Notice how a tableau function  $\mu_{\tau}$  changes when we apply a transformation  $g \in GL(n+1,k)$ . Each bracket function  $(i_0 \dots i_n)$  is multiplied by  $\det g$ . So for each m-tableaux  $\tau$  of degree d and weight w the function  $\mu_{\tau}$  is multiplied by  $\det(g)^w$ . In particular, each such function is an invariant for G = SL(n+1,k). Taking linear combinations of tableau functions that are invariant with respect to the permutation of columns, we get a lot of examples of elements from  $Pol(Pol_d(V))^{SL(V)}$ . In the next lecture we shall prove that any element from this ring is obtained in this way.

### Bibliographical notes

The symbolic method for expression of invariants goes back to the earlier days of theory of algebraic invariants which originates in the work of A. Cayley of 1846. It can be found in all classical books on invariant theory ([26],[35],[36],[43],[83]). A modern exposition of the symbolic method can be found in [16],[55]. The theory of polarization of homogeneous forms is a basis of many constructions of classical algebraic geometry, see for example [13],[36],[84],[85]. We refer to a modern treatment of some of geometric applications to [22],[45].

#### Exercises

**1.1** Show that  $Pol(Mat_{n+1,m})_{d_1,\ldots,d_m;w_1,\ldots,w_{n+1}} = \{0\}$  unless  $d_1 + \ldots + d_m = w_1 + \ldots + w_{n+1}$ .

- 14
- **1.2** Let  $W = \text{Pol}_2(V)$  be the space of quadratic forms on a vector space V of dimension n+1.
  - (i) Assume that  $\operatorname{char}(k) \neq 2$  or n is even. Show that  $\operatorname{Pol}(W)^{\operatorname{SL}(V)}$  is generated (as a k-algebra) by the *discriminant* function whose value at a quadratic form is equal to the determinant of the matrix defining its polar bilinear form.
  - (ii) Assume additionally that k is algebraically closed. Which level sets of the discriminant function are orbits of SL(V) in W?
- **1.3** Let  $F \in \operatorname{Pol}_d(V)$ . For any  $w \in V$  and  $t \in k^*$  consider the function on  $V \times k^*$  defined by  $(v,t) \to t^{-1}(F(v+tw)-F(v))$ . Show that this function extends to  $V \times k$  and let  $P_w(F)$  denote the restriction of the extended function to  $V \times \{0\}$ .
  - (i) Show that  $P_w(F) \in \operatorname{Pol}_{d-1}(V)$  and the pairing

$$V \times \operatorname{Pol}_d(V) \to \operatorname{Pol}_{d-1}(V), \quad (w, F) \to P_w(F)$$

is bilinear.

(ii) Assume  $d! \neq 0$  in k. Let  $P_w : \operatorname{Pol}_d(V) \to \operatorname{Pol}_{d-1}(V)$  be the linear map  $F \to P_w(F)$ . Show that the function  $V^{\oplus d} \to k$  defined by

$$(w_1,\ldots,w_m)\to \frac{1}{d!}(P_{w_1}\circ\ldots\circ P_{w_d})(F)$$

coincides with pol(F).

- (iii) If  $(a_1, \ldots, a_r)$  are the coordinates of w with respect to some basis  $(\xi_1, \ldots, \xi_r)$ , show that  $P_w(F) = \sum_{i=1}^r a_i \frac{\partial F}{\partial t_i}$ .
- **1.4** Let  $\mathbb{P}(V)$  be the projective space associated to a vector space V. We consider each nonzero  $v \in V$  as a point  $\bar{v}$  in  $\mathbb{P}(V)$ . The hypersurface  $P_{\bar{v}}: P_v(F) = 0$  in  $\mathbb{P}(V)$  is called the *polar hypersurface* of the hypersurface  $H_F: F = 0$  with respect to the point  $\bar{v}$ . Show that for any  $x \in H_F \cap P_{\bar{v}}$  the tangent hyperplane of  $H_F$  at x contains the point  $\bar{v}$ .
- **1.5** Consider the bilinear pairing between  $\operatorname{Pol}_m(V)$  and  $\operatorname{Pol}_m(V^*)$  defined as in (1.5). For any  $F \in \operatorname{Pol}_m(V)$ ,  $\Phi \in \operatorname{Pol}_r(V^*)$  denote the value of this pairing at  $(F, \Phi)$  by  $P_{\Phi}(F)$ . Show that

- 15
- (i) for fixed F the map  $\Phi \to P_{\Phi}(F)$  defines a linear map  $\operatorname{ap}_r : \operatorname{Pol}_r(V^*) \to \operatorname{Pol}_{m-r}(V)$ ;
- (ii) for any  $\Phi' \in \text{Pol}_{m-r}(V^*), P_{\Phi\Phi'}(F) = P_{\Phi}(P_{\Phi'}(F));$
- (iii)  $P_{\Phi}(F) = P_{v_r} \circ \ldots \circ P_{v_1}(F)$  if  $\Phi$  is the product of linear polynomials  $v_1 \ldots v_r \in V = (V^*)^*$ .
- **1.6** In the notation of the previous exercise,  $\Phi \in \operatorname{Pol}_n(V^*)$  is called *apolar* to the homogenous form  $F \in \operatorname{Pol}_m(V)$  if  $P_{\Phi}(F) = 0$ . Show that
  - (i)  $\Phi = (\sum_{i=0}^n a_i \xi_i)^m$  is a polar to F if and only if  $F(a_0, \ldots, a_n) = 0$ ;
  - (ii)  $(\sum_{i=1}^{n+1} a_i \xi_i)^{m-1}$  is apolar to F if and only if all partial derivatives of F vanish at  $a = (a_1, \ldots, a_{n+1})$ .
- 1.7 Consider the linear map  $\operatorname{ap}_r$  defined in Exercise 1.5. The matrix of this map with respect to the basis in  $\operatorname{Pol}_m(V)$  defined by the monomials  $\xi^{\mathbf{i}}$  and the basis in  $\operatorname{Pol}(V^*)$  defined by the monomials  $\mathbf{t}^{\mathbf{j}}$  is called the *catalecticant matrix*. Show that
  - (i) if m = 2r the determinant of the catalecticant matrix is an invariant on the space  $Pol_m(V)$  (it is called the *catalecticant invariant*);
  - (ii) if  $n + 1 = \dim V = 2$  and m = 4, the catalecticant invariant coincides with the one defined in Example 1.4;
- (iii) find the degree of the cataleticant invariant;
- (iv) show that the catalecticant invariant on the space of quadratic forms  $Pol_2(V)$  coincides with the discriminant invariant;
- (v) compute the catalecticant matrix in the case n=2, m=4, r=2.
- 1.8 Let  $F(\mathbf{t}) \in k[t_1, \ldots, t_r]_3$  be a homogeneous cubic polynomial. Show that  $3! \operatorname{pol}(F)(\mathbf{x}, \mathbf{y}, \mathbf{z}) = F(\mathbf{x} + \mathbf{y} + \mathbf{z}) F(\mathbf{x} + \mathbf{y}) F(\mathbf{x} + \mathbf{z}) F(\mathbf{y} + \mathbf{z}) + F(\mathbf{x}) + F(\mathbf{y}) + F(\mathbf{z})$ . Generalize this formula to polynomials of any degree.
- **1.9** Find the symbolic expression for the polynomial  $F = a_0 a_4 4a_1 a_3 + 3a_2^2$  on the space of binary quartics  $Pol_4(k^2)$ . Show that it is an invariant for the group SL(2, k).
- **1.10** Find the polarization of the determinant polynomial  $\mathcal{D}_{n+1}$ .

**1.11** Let  $\chi: \operatorname{GL}(n+1,k) \to k^*$  be a homomorphism of groups. Assume that  $\chi$  is given by a polynomial in the entries of g. Prove that there exists an integer s such that, for all  $g \in \operatorname{GL}(n+1,k)$ ,  $\chi(g) = (\det g)^s$ .

# Lecture 2

# The First Fundamental Theorem

#### 2.1 The omega-operator

We saw in the previous examples that the symbolic expressions of the discriminant of a binary quadratic form and of the catalecticant of a binary quartic are expressed via the bracket functions. The theorem from the title of this lecture shows that this is the general case for invariants of homogeneous forms of any degree and in any number of variables. In fact we shall show more: the bracket functions generate the algebra  $Pol(Mat_{n+1,m})^{SL(n+1,k)}$ . Recall that the group SL(n+1,k) acts on this ring via its action on matrices by left multiplication.

We shall start with some technical lemmas.

For any polynomial  $f(X_1, \ldots, X_N)$  let  $\Omega_f$  denote the (differential) operator in  $k[X_1, \ldots, X_N]$  obtained by replacing each unknown  $X_i$  with the partial derivative operator  $\frac{\partial}{\partial X_i}$ .

We shall need only a special operator of this sort. We take  $N = (n+1)^2$  with unknowns  $X_{ij}$ , i, j = 1, ..., n+1 and let f be the determinant function  $\mathcal{D}_{n+1}$  of the matrix with entries  $X_{ij}$ . We denote this operator by  $\Omega$ . It is called the *omega-operator*.

#### Lemma 2.1.

$$\Omega(\mathcal{D}_{n+1}^r) = r(r+1)\dots(r+n)\mathcal{D}_{n+1}^{r-1}.$$

*Proof.* First observe that for any permutation  $\sigma \in S_{n+1}$  we have

$$\frac{\partial^{n+1}}{\partial X_{1\sigma(1)} \dots \partial X_{n+1\sigma(n+1)}} (\mathcal{D}_{n+1}) = \epsilon(\sigma). \tag{2.1}$$

where  $\epsilon(\sigma)$  is the sign of the permutation  $\sigma$ . This immediately gives that  $\Omega(\mathcal{D}_{n+1}) = (n+1)!$ . For any subset  $J = \{j_1, \ldots, j_k\}$  of  $[n+1] := \{1, \ldots, n+1\}$  set

$$\Omega(J,\sigma) = \frac{\partial^k}{\partial X_{j_1\sigma(j_1)} \dots \partial X_{j_k\sigma(j_k)}},$$

$$\Delta(J,\sigma) = \Omega(J,\sigma)(\mathcal{D}_{n+1})$$

Similar to (2.1) we get

$$\Delta(J,\sigma)(\mathcal{D}_{n+1}) = \epsilon(J,\sigma)M_{J\overline{\sigma(J)}}$$
(2.2)

where for any two subsets K, L of [n+1] of the same cardinality we denote by  $M_{K,H}$  the minor of the matrix  $(X_{ij})$  formed by the rows corresponding to the set K and the columns corresponding to the set L. The bar denotes the complementary sets and

$$\epsilon(J, \sigma) = \operatorname{sign}\left(\prod_{a,b \in J, a < b} (\sigma(a) - \sigma(b))\right).$$

Now applying the chain rule we get

$$\Omega([n+1],\sigma)(\mathcal{D}_{n+1}^r) = \Omega([n],\sigma)\frac{\partial \mathcal{D}_{n+1}^r}{\partial X_{n+1\sigma(n+1)}} =$$

$$\Omega([n], \sigma)(r\mathcal{D}_{n+1}^{r-1}\Delta(\{n+1\}, \sigma)) = \Omega([n-1], \sigma)\frac{r\partial \mathcal{D}_{n+1}^{r-1}\Delta(\{n+1\}, \sigma)}{\partial X_{n\sigma(n)}} =$$

$$\Omega([n-1],\sigma)(r(r-1)\mathcal{D}_{n+1}^{r-2}\Delta(\{n+1\},\sigma)\Delta(\{n\},\sigma) + r\mathcal{D}_{n+1}^{r-1}\Delta(\{n,n+1\},\sigma))$$

$$= \sum_{k=1}^{n+1} r(r-1)(r-k+1) \mathcal{D}_{n+1}^{r-k} \left( \sum_{J_1 \coprod \ldots \coprod J_k = [n+1]} \Delta(J_1, \sigma) \ldots \Delta(J_k, \sigma) \right).$$

Now recall a well-known formula from multilinear algebra which relates the minors of a matrix A and the minors of its adjugate matrix  $\tilde{A} = \text{adj}(A)$  (see [7] Chapter 3,§11, exercise 10, use the new edition since the old one contains an error in the formula):

$$\tilde{M}_{H,K} = \det(A)^{|H|-1} M_{\tilde{H},\tilde{K}}.$$
 (2.3)

Applying (2.3) we obtain

$$\Delta(J_1,\sigma)\ldots\Delta(J_k,\sigma)=\mathcal{D}_{n+1}^{k-n-1}\prod_{i=1}^k\epsilon(J_i,\sigma)\tilde{M}_{J_i,\sigma(J_i)}.$$

Now recall the Laplace formula for the determinant of a square matrix A of size n + 1:

$$\det(A) = \epsilon(J_1, \dots, J_k) \sum_{I_1 \coprod \dots \coprod I_k = [n+1]} \epsilon(I_1, \dots, I_k) M_{J_1, I_1} \dots M_{J_k, I_k}, \quad (2.4)$$

where  $J_1 \coprod \ldots \coprod J_k = [n+1]$  is a fixed partition of the set of rows of A and  $\epsilon(I_1, \ldots, I_k)$  is equal to the sign of the permutation  $(I_1, \ldots, I_k)$  where we assume that the elements of each set  $I_s$  are listed in the increasing order. Applying this formula to  $\tilde{A}$  we find

$$\sum_{\sigma \in S_{n+1}} \epsilon(\sigma) \epsilon(J_1, \sigma) \dots \epsilon(J_k, \sigma) \tilde{M}_{J_1, \sigma(J_1)} \dots \tilde{M}_{J_k, \sigma(J_k)} = j_1! \dots j_k! \mathcal{D}_{n+1}^n,$$

where  $j_i = \#J_i$ , i = 1, ..., k. Thus, letting  $\sigma$  run through the set  $S_{n+1}$ , we sum up the expressions  $\epsilon(\sigma)\Omega([n+1], \sigma)(\mathcal{D}_{n+1}^r)$  to get

$$\Omega(\mathcal{D}_{n+1}^r) = \sum_{k=0}^n r(r-1)\dots(r-k)p(n,k)\mathcal{D}_{n+1}^{r-1} = c(n,r)\mathcal{D}_{n+1}^{r-1},$$

where

$$p(n,k) = \sum_{J_1 \sqcup \ldots \sqcup J_k = [n+1]} j_1! \ldots j_k!.$$

We leave to the reader as an exercise to verify that

$$c(n,r) = r(r+1)\dots(r+n).$$

The precise value of the constant c(n,r) is irrelevant for what follows.

**Lemma 2.2.** Let  $F = P_0 \dots P_n \in k[X_{11}, \dots, X_{n+1m}]$ , where each  $P_i$  is equal to the product of  $m_i$  linear forms  $L_i^{(j)} = \sum_{s=1}^{n+1} a_{is}^{(j)} X_{is}, j = 1, \dots, m_i$ . Then

$$\Omega(F) = \sum \det \begin{pmatrix} a_{11}^{(j_1)} & \dots & a_{1n+1}^{(j_{n+1})} \\ \vdots & \vdots & \vdots \\ a_{n+11}^{(j_1)} & \dots & a_{n+1n+1}^{(j_{n+1})} \end{pmatrix} (P_0/L_0^{(j_1)}) \dots (P_n/L_n^{(j_{n+1})}),$$

where the sum is taken over the set  $S = \{(j_1, \ldots, j_{n+1}) : 1 \leq j_i \leq m_i\}.$ 

*Proof.* By the chain rule

$$\frac{\partial^{n+1} F}{\partial X_{1i_1} \dots \partial X_{n+1i_{n+1}}} = \sum_{(j_1, \dots, j_{n+1}) \in S} a_{1i_1}^{(j_1)} \dots a_{n+1i_{n+1}}^{(j_{n+1})} (\frac{P_0}{L_0^{(j_1)}}) \dots \frac{P_n}{L_n^{(j_{n+1})}}).$$

After multiplying by the sign of the permutation  $(i_1, \ldots, i_{n+1})$  and summing up over the set of permutations, we get the formula from the assertion of the lemma.

#### 2.2 The proof

Now we are ready to prove the First Fundamental Theorem of Invariant Theory:

**Theorem 2.1.** The algebra of invariants  $Pol(Mat_{n+1,m})^{SL(n+1,k)}$  is generated by the bracket functions  $\det_{j_1,\ldots,j_{n+1}}$ .

*Proof.* Let  $Pol(Mat_{n+1,m})_w$  be the subspace of polynomials which are isobaric of multi-weight  $w^{n+1}$ . It is clear that

$$\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1,k)} = \bigoplus_{w \ge 0} \operatorname{Pol}(\operatorname{Mat}_{n+1,m})_w^{\operatorname{SL}(n+1,k)}$$

So we may assume that an invariant polynomial  $F \in \text{Pol}(\text{Mat}_{n+1,m})^{\text{SL}(n+1,k)}$  belongs to  $\text{Pol}(\text{Mat}_{n+1,m})_w$ . Fix a matrix  $A \in \text{Mat}_{n+1,m}$  and consider the function  $g \to F(g \cdot A)$  as a function on  $\text{Mat}_{n+1,n+1}$ . It follows from the proof of Proposition 1.1 that

$$F(g \cdot A) = \det(g)^w F(A)$$

Since F is isobaric, it is easy to see that  $F(g \cdot A)$  can be written as a sum of products of linear polynomials as in Lemma 2.2, with  $m_i = w$ . Applying the

omega-operator to the left-hand-side of the identity w times we will be able to get rid of the variables  $g_{ij}$  and get a polynomial in bracket functions. On the other hand, by Lemma 2.1 we get a scalar multiple of F. This proves the theorem.

Let  $\operatorname{Tab}_{n+1,m}(d)$  denote the subspace of  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})_{d^m,w^{n+1}}$  spanned by tableau functions of degree d and weight w. Recall that, it follows from the definition of tableaux that (n+1)w = md. The symmetric group  $S_m$  acts linearly on the space  $\operatorname{Tab}_{n+1,m}(d)$  via its action on tableaux by permuting the elements of the set [m]. We denote by  $\operatorname{Tab}_{n+1,m}(d)^{S_m}$  the subspace of invariant elements.

Corollary 2.1. Let  $w = \frac{md}{n+1}$ . We have

$$Pol(Mat_{n+1,m})_{d^m,w^{n+1}}^{SL(n+1)} = Tab_{n+1,m}(d).$$

By Proposition 1.1, the symbolic expression of any invariant polynomial F from  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))^{\operatorname{SL}(n+1,k)}$  belongs to  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1,k)}_{d^m,w^{n+1}}$ , and hence must be a linear combination of tableau functions from  $\operatorname{Tab}_{n+1,m}(d)$ . The group  $S_m$  acts naturally on  $\operatorname{Mat}_{n+1,m}$  by permuting the columns and hence acts naturally on  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})$  leaving the subspaces  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})_{d^m,w^{n+1}}$  invariant. Applying Lemma 1.1, we get

#### Corollary 2.2.

$$symb(Pol_{m}(Pol_{d}(V))^{SL(n+1,k)}) = Tab_{n+1,m}(d)^{S_{m}},$$

where (n+1)w = md.

#### 2.3 Grassmann variety

The ring  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1,k)}$  has a nice (and familiar) geometric interpretation. Let  $\operatorname{Gr}_{n+1,m}$  be the Grassmann variety of n+1-dimensional linear subspaces in  $k^m$  (or n-dimensional linear projective subspaces of  $\mathbb{P}^{m-1}$ ). Using the Plücker map  $L \to \Lambda^{n+1}(L)$ , we can embed  $\operatorname{Gr}_{n+1,m}$  in  $\mathbb{P}(\Lambda^{n+1}(k^m)) = \mathbb{P}^{\binom{m}{n+1}-1}$ . The projective coordinates in this projective space are the Plücker coordinates  $p_{i_1...i_{n+1}}, 1 \leq i_1 < ... < i_{n+1} \leq m$ . Consider the set  $\Lambda(n+1,m)$  of ordered (n+1)-tuples in [m]. Let  $k[\Lambda(n+1,m)]$  be the polynomial ring

whose variables are the Plücker coordinates  $p_J$  indexed by  $\Lambda(n+1,d)$ . We view it as the projective coordinate ring of  $\mathbb{P}(\Lambda^{n+1}(k^m))$ . We have a natural homomorphism

$$\phi: k[\Lambda(n+1,m)] \to \operatorname{Pol}(\operatorname{Mat}_{n+1,m})$$

which assigns to  $p_{i_1,...,i_{n+1}}$  the bracket polynomial  $\det_{i_1,...,i_{n+1}}$ . By Theorem 2.1, the image of this homomorphism is equal to the subring of invariants  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1,k)}$ . The next theorem describes the kernel of the map  $\phi$  and is called sometimes the Second Fundamental Theorem of Invariant Theory:

**Theorem 2.2.** The kernel  $I_{n+1,m}$  of  $\phi$  is equal to the homogeneous ideal of the Grassmannian  $Gr_{n+1,m}$  in its Plücker emedding.

Proof. Let  $\operatorname{Mat}'_{n+1,m}$  be the dense open subset of the affine space  $\operatorname{Mat}_{n+1,m}$  formed by matrices of maximal rank n+1. Consider the map  $f:\operatorname{Mat}'_{n+1,m}\to \mathbb{A}^{\binom{m}{n+1}}=\operatorname{Spec}(k[\Lambda(n+1,m)])$  given by the assigning to  $A\in\operatorname{Mat}'_{n+1,m}$  the values of the bracket functions  $\det_{i_1,\dots,i_{n+1}}$  on A. Clearly, the corresponding map  $f^*$  on the ring of regular functions coincides with  $\phi$ . Also it is clear that the image Z of f is contained in the affine cone  $\operatorname{Gr}_{n+1,m}$  over  $\operatorname{Gr}_{n+1,m}$ . The composition of f and the canonical projection  $\operatorname{Gr}_{n+1,m}\setminus\{0\}\to\operatorname{Gr}_{n+1,m}$  is surjective. Let F be a homogeneous polynomial from  $\operatorname{Ker}(\phi)$ . Then its restriction to Z is zero, and hence, since it is homogeneous, its restriction to the whole  $\operatorname{Gr}_{n+1,m}$  is zero. Thus F belongs to  $I_{n+1,m}$ . Conversely, if F belongs to  $I_{n+1,m}$ , its restriction to Z is zero, and hence  $f^*(F)=0$  because  $f:\operatorname{Mat}'_{n+1,m}\to Z$  is surjective. Since  $\operatorname{Gr}_{n+1,m}$  is a projective subvariety,  $I_{n+1,m}$  is a homogeneous ideal (i.e. generated by homogeneous polynomials). Thus it was enough to assume that F is homogeneous.

Recall (see any text-book which discusses Grassmann varieties, e.g. [37]) that the homogeneous ideal of  $Gr_{n+1,m}$  is generated by quadratic polynomials

$$\sum_{s=1}^{n+2} (-1)^s p_{i_1,\dots,i_n,j_s} p_{j_1,\dots,j_{s-1},j_{s+1},\dots,j_{n+2}}, \tag{2.5}$$

where  $\{i_1, \ldots, i_n\}$  and  $\{j_1, \ldots, j_{n+2}\}$  are any two strictly increasing sequences of numbers from the set  $[m] = \{1, \ldots, m\}$ . Here  $p_{i_1, \ldots, i_n, j_s} = 0$  if two indices coincide and we reorder the indices otherwise using that p is skew-symmetric in its indices. This gives us a set of generators of  $I_{n+1,m}$ :

23

$$\sum_{s=1}^{n+2} (-1)^s (i_1, \dots, i_n, j_s) (j_1, \dots, j_{s-1}, j_{s+1}, \dots, j_{n+2})$$
 (2.6)

#### Corollary 2.3.

$$Pol(Mat_{n+1,m})^{SL(n+1,k)} \cong k[Gr_{n+1,m}].$$

The symmetric group  $S_m$  acts naturally on  $Gr_{n+1,m}$  by permuting the coordinates in the space  $k^m$ . This corresponds to the action of  $S_m$  on the columns of matrices from  $Mat_{n+1,m}$ . Let  $k[Gr_{n+1,m}]_w$  be the subspace generated by the cosets of homogeneous polynomials of degree w. Applying Corollary 2.2, we obtain

Corollary 2.4. Let (n+1)w = md. Then

$$Pol_m(Pol_d(k^{n+1}))^{SL(n+1,k)} \cong k[Gr_{n+1,m}]_w^{S_m}.$$

### 2.4 The straightening law

We shall now describe a simple algorithm which allows us to construct a basis in the space  $Tab_{n+1,m}(d)$ .

**Definition.** A tableau

$$\tau = \begin{bmatrix} \tau_{11} & \dots & \tau_{1n+1} \\ \vdots & \dots & \vdots \\ \tau_{w1} & \dots & \tau_{wn+1} \end{bmatrix}$$

is called *standard* if  $\tau_{ij} \leq \tau_{i+1j}$  for every i and j.

For example,

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

is standard but

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

is not.

**Theorem 2.3.** The tableau functions  $\mu_{\tau}$  corresponding to standard tableaux form a basis in the space  $Tab_{n+1,m}(d)$ .

*Proof.* We will describe an algorithm based on the *straightening law* due to A. Young. It is an algorithm which allows us to write any tableau function as a linear combination of tableau functions corresponding to standard tableaux. We leave to the reader to check that the latter functions (*standard tableau functions*) are linearly independent.

Suppose a tableau function  $\mu_{\tau}$  is not standard. By permuting the rows of  $\tau$  we can assume that  $\tau_{i1} \leq \tau_{i+11}$  for all i. Let j be the smallest index such that  $\tau_{ij} > \tau_{i+1j}$  for some i. Fix such j and let i be the smallest with this property. We call the pair (ij) with this property the mark of  $\tau$ . Consider the Plücker equation corresponding to the sequences

$$(i_1, \ldots, i_n) = (\tau_{i+11}, \ldots, \tau_{i+1j-1}, \tau_{i+1j+1}, \ldots, \tau_{i+1n+1}),$$
  
 $(j_1, \ldots, j_{n+2}) = (\tau_{i1}, \ldots, \tau_{ij}, \ldots, \tau_{in+1}, \tau_{i+1,j}).$ 

Here we assume that the second sequence is put in the increasing order. It allows us to express  $(\tau_{i1} \dots \tau_{in+1})(\tau_{i+11} \dots \tau_{i+1n+1})$  as a sum of products

$$(\tau_{i1}\ldots,\hat{\tau}_{ij},\ldots,\tau_{in+1},\tau_{i+1,s})(\tau_{i+11}\ldots,\hat{\tau}_{i+1s},\ldots,\tau_{i+1n+1}).$$

Substituting this in the product  $\mu_{\tau}$  of the bracket functions corresponding to the rows of  $\tau$ , we shall express  $\mu_{\tau}$  as a sum of  $\mu_{\tau'}$ 's such that the mark of each  $\tau'$  is greater than the mark of  $\tau$  (with respect to the lexigraphic order). Contunuing in this way we will be able to write  $\mu_{\tau}$  as a sum of standard tableau functions.

Now we are in business and finally can compute something. We shall start with the case n = 1. Let us write any standard tableau in the form

$$\tau = \begin{bmatrix} a_1^1 & a_2^2 \\ a_2^1 & a_3^2 \\ \vdots & \vdots \\ a_{m-1}^1 & a_m^2 \end{bmatrix},$$

where  $a_i^j$  denotes a column vector with coordinates equal to i. Let  $|a_i^j|$  be the length of this vector. It is clear that

$$|a_1^1| = |a_m^2| = d, \quad |a_i^1| + |a_i^2| = d, \quad 1 < i < m,$$

#### 2.4. THE STRAIGHTENING LAW

25

$$\sum_{i=2}^{m-1} |a_i^1| = \sum_{i=2}^{m-1} |a_i^2| = w - d = (m-2)d/2.$$

So, if we set  $|a_i^1| = \alpha_{i-1}$ ,  $i = 2, \ldots, m-1$ , then a standard tableau is determined by an integer point inside of the convex polytope  $\Pi(1, w, m)$  in  $\mathbb{R}^{m-2}$  defined by the inequalities:

$$0 \le \alpha_i \le d, \quad \sum_{i=1}^{m-2} \alpha_i = w - d.$$

Example 2.1. Let d = 3. We have

$$\Pi(1,3,m) = \{(\alpha_1,\ldots,\alpha_{m-2}) \in \mathbb{R}^{m-2} : 1 \le \alpha_i \le 3, \sum_{i=1}^{m-2} \alpha_i = 3(m-2)/2\}.$$

The first non-trivial case is m = 2. We have the unique solution (0,0) for which the corresponding standard tableau is

$$\tau = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

The only non-trivial permutation of two letters changes  $\mu_{\tau}$  to  $-\mu_{\tau}$ . Thus

$$Pol_2(Pol_3(k^2))^{SL(2,k)} = \{0\}.$$

Next case is when m=4. We have the following solutions

$$(\alpha_1, \alpha_2) = (0, 3), (3, 0), (1, 2), (2, 1).$$

The corresponding standard tableaux are

$$\tau_{1} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 3 & 4 \\ 3 & 4 \end{bmatrix}, \quad \tau_{2} = \begin{bmatrix} 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 2 & 4 \\ 2 & 4 \end{bmatrix}, \quad \tau_{3} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 3 \\ 2 & 4 \\ 3 & 4 \end{bmatrix}, \quad \tau_{4} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 3 \\ 2 & 4 \\ 2 & 4 \\ 3 & 4 \end{bmatrix}.$$

Let us see how the group  $S_4$  acts on the space  $Tab_{2,4}(1)$ . The group  $S_4$  is generated by the transpositions (23), (12), (14). We have

$$(23)\mu_{\tau_1} = \mu_{\tau_2}, \quad (23)\mu_{\tau_3} = \mu_{\tau_4} \tag{2.7}$$

By the straightening algorithm,

$$(23)(14) = (13)(24) - (12)(34)$$

so that

$$(12)\mu_{\tau_1} = -\mu_{\tau_1},$$

$$(12)\mu_{\tau_2} = [(13)(24) - (12)(34)]^3 = \mu_{\tau_2} - \mu_{\tau_1} - 3\mu_{\tau_4} + 3\mu_{\tau_3}$$

$$(12)\mu_{\tau_3} = (12)^2(23)(14)(34)^2 = (12)^3(13)(24)(34)^2 - (12)^3(34)^3 = \mu_{\tau_3} - \mu_{\tau_1}$$

$$(12)\mu_{\tau_4} = -(12)(23)^2(14)^2(34) =$$

$$-(12)(34)(13)^2(24)^2 + 2(12)(34)(13)(24)(12)(34) - (12)(34)(12)^2(34)^2 =$$

$$-\mu_{\tau_4} + 2\mu_{\tau_3} - \mu_{\tau_1}$$
.

Next we get

$$(13)\mu_{\tau_1} = -(23)^3(14))^3 = -((13)(24) - (12)(34))^3 = -\mu_{\tau_2} + 3\mu_{\tau_4} - 3\mu_{\tau_3} + \mu_{\tau_1}.$$

$$(13)\mu_{\tau_2} = -\mu_{\tau_2}$$

$$(13)\mu_{\tau_3} = -(13)(24)(14)^2(23)^2 = -(13)(24)((13)(24) - (12)(34))^2 =$$

$$-(13)^3(24)^3 + 2(13)^2(24)^2(12)(34) - (13)(24)(12)^2(34)^2 = -\mu_{\tau_2} + 2\mu_{\tau_4} - \mu_{\tau_3}.$$

This implies that any  $S_4$ -invariant combination of the standard tableau functions must be equal to  $F = a\mu_{\tau_1} + b\mu_{\tau_2} + c\mu_{\tau_3} + d\mu_{\tau_4}$ , where

$$a = b$$
,  $c = d$ ,  $2c + 3a = 0$ .

This gives that  $Tab(1)_{2,4}(1)^{S_4}$  is spanned by

$$F = -2\mu_{\tau_1} - 2\mu_{\tau_2} + 3\mu_{\tau_3} + 3\mu_{\tau_4} =$$

$$= -2(12)^3(34)^3 - 2(13)^3(24)^3 + 3(12)^2(13)(24)(34)^2 + 3(12)(13)^2(24)^2(34).$$

We leave to the reader to verify that this expression is equal to 4!symb(D), where

$$D = 6a_0a_1a_2a_3 + 3a_1^2a_2^2 - 4a_1^3a_3 - 4a_0a_2^3 - a_0^2a_3^2.$$
 (2.8)

This is the discriminant of the cubic polynomial

$$f = a_0 x_0^3 + 3a_1 x_0^2 x_1 + 3a_2 x_0 x_1^2 + a_3 x_1^3.$$

## Bibliographical notes

Our proof of the First Fundamental Theorem based on the use of the omegaoperator (the Cayley  $\Omega$ -process) is borrowed from [95]. The  $\Omega$ -process is also discussed in [100]. A proof based on the Cappelli-identity (see the exercises below) can be found in [55],[106]. Another proof using the theory of representations of the group GL(V) can be found in [16] and [55]. Our Theorem 2.1 concerns invariant polynomial functions on m-vectors in a vector space V with respect to the natural representation of SL(V) in  $V^{\oplus m}$ . One can generalize it by considering polynomials functions in m vectors in V and m'covectors, i.e. vectors in the dual space  $V^*$ . The First Fundamental Theorem asserts that the algebra of SL(V)-invariant polynomials on  $V^{\oplus m} \oplus (V^*)^{\oplus m'}$  is generated by the bracket functions on the space  $V^{\oplus m}$ , bracket functions on the space  $(V^*)^{\oplus m'}$  and the functions  $[i|j], 1 \le i \le m, 1 \le j \le m'$  whose value at  $(v_1, \ldots, v_m; \phi_1, \ldots, \phi_{m'}) \in V^{\oplus m} \oplus (V^*)^{\oplus m'}$  is equal to  $\phi_j(v_i)$ . The proof can be found in [16],[55],[106]. There is also a generalization of Theorem 2.1 to invariants with respect to other subgroups of GL(n, k) (see loc. cit.).

### **Exercises**

- **2.1** Prove that  $\Omega_f \circ \Omega_g = \Omega_{fg}$  for any two polynomials  $f, g \in k[X_1, \ldots, X_N]$ .
- **2.2** Let  $\Omega$  be the omega-operator in the polynomial ring  $k[Mat_{n+1,n+1}]$ . Prove

- (i)  $\Omega(\mathcal{D}_{n+1}^r) = r(r+1)\dots(r+n)\mathcal{D}_{n+1}^{r-1}$  for negative integers r;
- (ii)  $\Omega((1-\mathcal{D}_{n+1})^{-1}) = (n+1)!(1-\mathcal{D}_{n+1})^{-n-2};$
- (iii) the function  $f = \sum_{i=0}^{\infty} \frac{\mathcal{D}_{n+1}^i}{1 \cdot 2! \dots (i+1)!}$  is a solution of the differential equation  $\Omega f = f$  in the ring of formal power series  $k[[(X_{ij})]]$ .
- **2.3** For each  $i, j \in [m]$  define the operator  $D_{ij}$  acting in  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})$  by the formula  $D_{ij}f = \sum_{s=1}^{n+1} X_{is} \frac{\partial f}{\partial X_{js}}$ . Prove the Cappelli identity

$$\det\begin{pmatrix} D_{mm} + (m-1)id & D_{mm-1} & \dots & D_{m1} \\ D_{m-1m} & D_{m-1m-1} + (m-2)id & \dots & D_{m-11} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ D_{2m} & \dots & D_{22} + id & D_{21} \\ D_{1m} & \dots & D_{12} & D_{11} \end{pmatrix} f =$$

$$= \begin{cases} 0 & \text{if } m > n+1, \\ \mathcal{D}_{n+1}\Omega f & \text{if } m = n+1. \end{cases}$$

- **2.4** Using the Capelli identity show that the operator  $\tilde{\Omega}$ :  $\operatorname{Pol}_{n+1}(\operatorname{Pol}_d(V)) \to \operatorname{Pol}_{n+1}(\operatorname{Pol}_{d-1}(V))$  defined by  $\Omega F = F'$ , where  $\operatorname{symb}(F') = \Omega(\operatorname{symb}(F))$  is well-defined and transforms an  $\operatorname{SL}(V)$ -invariant to an  $\operatorname{SL}(V)$ -invariant.
- **2.5** Show that  $Pol_3(Pol_4(k^2))^{SL(2,k)}$  is spanned by the catalecticant invariant from Example 1.4 in Lecture 1.
- **2.6** Show that  $Pol(Pol_3(k^2))^{SL(2,k)}$  is generated (as a k-algebra) by the discriminant invariant from Example 2.1
- **2.7** Show that  $\operatorname{Pol}(\operatorname{Pol}_2(V))^{\operatorname{SL}(V)}$  is equal to k[D], where  $D: \operatorname{Pol}_2(V) \to k$  is the discriminant of quadratic form. Find  $\operatorname{symb}(D)$ .
- **2.8** Let G = O(n+1,k) be the orthogonal group of the vector space  $k^{n+1}$  equipped with the standard inner product. Consider the action of G on  $\operatorname{Mat}_{n+1,m}$  by left multiplication. Show that  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{O(n+1,k)}$  is generated by the functions [ij] whose value on a matrix A is equal to the dot-product of the i-th and j-th columns.
- **2.9** With the notation from the previous exercise let  $O^+(n+1,k) = O(n+1,k) \cap SL(n+1,k)$ . Show that  $Pol(Mat_{n+1,m})^{O^+(n+1,k)}$  is generated by the functions [ij] and the bracket functions.

**2.10** Show that the field of fractions of the ring  $Pol(Mat_{n+1,m})^{SL(n+1,k)}$  is a purely transcendental extension of k of transcendence degree (n+1)(m-n-1)+1.

## Lecture 3

# Reductive algebraic groups

### 3.1 The Gordan-Hilbert theorem

In this lecture we shall consider a class of linear group actions on a vector space W for which the algebra of invariant polynomials  $Pol(W)^G$  is finitely generated. We shall start with the case of finite group actions.

**Theorem 3.1.** Let G be a finite group of automorphisms of a finitely generated k-algebra A. Then the subalgebra  $A^G$  is finitely generated over k.

Proof. This follows easily from standard facts from commutative algebra. First we observe that A is integral over  $B = A^G$ . Let  $x_1, \ldots, x_n$  be generators of A. Let B' be the the subalgebra of A generated by the coefficients of the monic polynomials in  $p_i(t) \in B[t]$  such that  $p_i(x_i) = 0$ . Then  $A = B'[x_1, \ldots, x_n]$  is a finite B'-module. Since B' is noetherian, B is also a finite B'-module. Since B' is finitely generated over k.

Let us give another proof of this theorem in a special case when the order d of G is prime to the characteristic of k and G acts on A = Pol(W) via its linear action on W. In this case G leaves invariant the subspace of homogeneous polynomials of degree m so that

$$\operatorname{Pol}(W)^G = \bigoplus_{m=0}^{\infty} \operatorname{Pol}(W)_m^G.$$

Let I be the ideal in A generated by invariant polynomials vanishing at 0 (or, equivalently, by invariant homogeneous polynomials of positive degree). By

Hilbert's Basis Theorem, I is finitely generated by a finite set of polynomials  $F_1, \ldots, F_n$  in  $A^G$ . We may assume that each  $F_i$  is homogeneous of degree  $m_i > 0$ . Then for any homogeneous  $F \in A^G$  of degree m we can write

$$F = P_1 F_1 + \ldots + P_n F_n \tag{3.1}$$

for some homogeneous polynomials  $P_i$  of degree  $m - m_i$ . Now consider the operator av :  $A \to A$  defined by the formula

$$\operatorname{av}(P) = \frac{1}{d} \sum_{g \in G} g(P).$$

Clearly,

$$\operatorname{av}|A^G = \operatorname{id}, \quad \operatorname{av}(A) = A^G.$$

Applying the operator av to both sides of (3.1) we get

$$F = \operatorname{av}(P_1)F_1 + \ldots + \operatorname{av}(P_n)F_n.$$

By induction we can assume that each invariant homogeneous polynomial of degree < m can be expressed as a polynomial in  $F_i$ 's. Since  $av(P_i)$  is homogeneous of degree < m, we are done.

Let us give another application of Hilbert's Basis Theorem (it was proven by Hilbert exactly for this purpose):

**Theorem 3.2.** (Gordan-Hilbert) The algebra of invariants  $Pol(Pol_d(V))^{SL(V)}$  is finitely generated over k.

*Proof.* Let  $W = \operatorname{Pol}_d(V)$ . The proof uses the same idea as the one used in the second proof of Theorem 3.1. Instead of the averaging operator av we shall use the omega-operator  $\Omega$ . Let  $F \in \operatorname{Pol}_m(W)^{\operatorname{SL}(n,k)}$ . Write

$$F = P_1 F_1 + \ldots + P_n F_n$$

for some  $P_i \in \operatorname{Pol}(W)_{m-m_i}$  and  $F_i \in \operatorname{Pol}_{m_i}(W)^{\operatorname{SL}(n,k)}$ . By the proof of Proposition 1.1 there exists an integer e such that, for any  $w \in W$ ,

$$F(g \cdot w) = (\det g)^e F(w).$$

Now, for a general matrix g we have the identity of functions on GL(n, k):

$$F(g \cdot w) = (\det g)^e F(w) = \sum_{i=1}^n (\det g)^{e_i} P_i(g \cdot w) F_i(w).$$

Now let us apply the omega-operator  $\Omega$  to the both sides e times. We get

$$cF(w) = \sum_{i=1}^{n} F_i(Q)\Omega^e((\det g)^{e_i}(P_i(g \cdot w)),$$

where c is a nonzero constant. Now the assertion follows by showing that  $\Omega^w((\det g)^{e_i}P_i(g\cdot w))$  are invariant and using induction on the degree of the polynomial.

**Lemma 3.1.** For any  $P \in Pol(W)$  let

$$F(g, w) = \Omega^r((\det g)^q P(g \cdot w))$$

Then F(0, w) is either zero or an invariant of weight r - q.

*Proof.* It is basically the change of variables in differentiation. Let t be a general square matrix of size N. We have

$$F(g,t\cdot w) = \Omega^r((\det g)^q P(gt\cdot w)) = (\det t)^{-q} \Omega^r(\det(gt)^q P(gt\cdot w)) =$$

$$(\det t)^{-q} \det(t)^r \Omega^r_{\det(gt)}(\det(gt)^q P(gt \cdot w)) = (\det t)^{r-q} F(gt, w). \tag{3.2}$$

Here  $\Omega_{\det(gt)}$  denotes the omega-operator in the ring  $k[\ldots X_{ij}, \ldots, Y_{ij}, \ldots]$  corresponding to the determinant of the matrix  $(Z_{ij})$  where  $Z_{ij} = \sum_s X_{is} Y_{sj}$ . We use the formula

$$\Omega(\Phi(Z)) = \det(Y_{ij})\Omega_{\det(gt)}(\Phi(Z))$$
(3.3)

for any polynomial  $\Phi(Z)$  in the variables  $Z_{ij}$ . This easily follows from the differentiation rules and we leave its proof to the reader. Now plugging in g = 0 in (3.2) (although it is not in GL(V) the left-hand-side extends to the whole polynomial ring in the matrix entries) we obtain

$$F(0, t \cdot w) = (\det t)^{r-q} F(0, w).$$

This proves the assertion.

Taking  $W = \operatorname{Pol}_d(V)$  with natural action of  $\operatorname{GL}(V)$  on W, we obtain **Corollary 3.1.** The algebra of invariants  $\operatorname{Pol}(\operatorname{Pol}_d(V))^{\operatorname{SL}(V)}$  is finitely generated.

Remark 3.1. In fact, the same proof applies to a more general situation when  $\operatorname{GL}(n,k)$  acts on a vector space W by means of rational linear representation (see the definition of a rational representation in the next section). We have to use that in this case  $g \cdot F = \det(g)^e F$  for any  $g \in \operatorname{GL}(n,k)$  and  $F \in \operatorname{Pol}(W)^{\operatorname{SL}(n,k)}$ .

Remark 3.2. The proof shows that the algebra of invariants  $Pol(W)^{SL(n,k)}$ is generated by a finite generating set  $F_1, \ldots, F_n$  of the ideal I generated by invariant homogeneous polynomials of positive degree. Let  $Z = V(I) \subset$ W be the subset of common zeroes of  $F_1, \ldots, F_n$ . Let J be the ideal in  $Pol(W)^{SL(n,k)}$  of all polynomials vanishing on Z. By Hilbert's Nullstellensatz Theorem, for each i = 1, ..., n, there exists a positive integer  $\rho_i$  such that  $F_i^{\rho_i} \in J$ . Let  $G_1, \ldots, G_N$  be generators of J. They could be chosen to be homogeneous. Let d be the largest of the degrees of  $F_i$ 's and r be the largest of the numbers  $\rho_i$ 's. Then, it is easy to see that any homogeneous invariant polynomial of degree  $\geq drn$  can be expressed as a polynomial in  $G_1, \ldots, G_N$ . This implies that the ring  $Pol(W)^{SL(n,k)}$  is integral over the subring  $k[G_1,\ldots,G_N]$  generated by  $G_1,\ldots,G_N$ . In fact, it can be shown that it coincides with the integral closure of  $k[G_1, \ldots, G_N]$  in the field of fractions of Pol(W) (see, for example, [100], Corollary 4.6.2). In Lecture 9 we shall learn how to describe the set Z (it will be identified with the null-cone) without explicitly computing the ring of invariants. This gives a constructive approach to finding the algebra of invariants.

### 3.2 The unitary trick

Let us give another proof of the Gordan-Hilbert theorem using the "unitary trick" of Hermann Weyl. It is another device replacing the averaging operator av. We shall assume that  $k = \mathbb{C}$ .

Let  $G = \mathrm{SL}(N,\mathbb{C})$  and  $K = \mathrm{SU}(N)$  be its subgroup of unitary matrices. Let G act on  $\mathrm{Pol}(W)$  via its linear representation  $\rho: G \to GL(W)$ .

Lemma 3.2.

$$Pol(W)^G = Pol(W)^K$$

*Proof.* Let  $F \in Pol(W)$ . For any  $M \in Mat_N$  consider the function on  $\mathbb{R} \times W$  defined by

$$\phi(t; v) = F(e^{tM} \cdot w).$$

Let  $\langle M, F \rangle$  be a function on W defined by

$$\langle M, F \rangle(w) = \frac{d\phi(t; w)}{dt}(0).$$

Since  $\phi(t+a;w)=\phi(t;e^{aM}\cdot w)$  we see that  $\langle M,F\rangle(w)=0$  for all  $w\in W$  if and only if  $\frac{d\phi(t;w)}{dt}(a)$  for all  $a\in\mathbb{R}$  and all  $w\in W$ . The latter is equivalent to that  $F(e^{tM}\cdot w)=F(w)$  for all  $t\in\mathbb{R}$  and all  $w\in W$ . Let  $\mathfrak{sl}(N)$  denote the space of complex matrices of size N with zero trace. Since every  $g\in\mathrm{SL}(N,\mathbb{C})$  can be written as  $g=e^M$  for some  $M\in\mathfrak{sl}(N)$ , we see that the condition

$$\langle M, F \rangle = 0, \forall M \in \mathfrak{sl}(N)$$
 (3.4)

is equivalent to F being invariant. Next we easily convince ourselves (by using the chain rule) that the map  $M \to \langle M, F \rangle$  is linear, so that it is enough to check (3.4) for the set of M's which span  $\mathfrak{sl}(N)$ . Consider a basis of this space formed by the matrices

$$E_{ij} - E_{ji}$$
,  $\sqrt{-1}(E_{ij} + E_{ji})$ ,  $\sqrt{-1}(E_{ii} - E_{jj})$ ,

where  $1 \leq i < j \leq N$ . Observe that the same matrices form a basis over  $\mathbb{R}$  of the subspace  $\mathfrak{su}(N)$  of  $\mathfrak{sl}(N)$  formed by skew-hermitian matrices M (satisfying  ${}^tA = -\bar{A}$ ). Now we repeat the argument replacing G by  $K = \mathrm{SU}(N)$ . We use that any  $g \in K$  can be written in the form  $e^M$  for some  $M \in \mathfrak{su}(N)$ . We find that  $F \in \mathrm{Pol}(W)^K$  if and only if  $\langle M, F \rangle = 0$  for all  $M \in \mathfrak{su}(N)$  and  $\langle M, F \rangle = 0$  for all  $M \in \mathfrak{su}(N)$  are equivalent we are done.

The group  $K = \mathrm{SU}(N)$  is a compact smooth manifold. If  $G = (g_{ij}) \in K$  and  $g_{ij} = g'_{ij} + \sqrt{-1}g''_{ij}$ , where  $g'_{ij}, g''_{ij}$  are real, then K is a closed and a bounded submanifold of  $\mathbb{R}^{2n^2}$  defined by the equations

$$\sum_{j=1}^{N} g_{aj} \bar{g}_{bj} = \delta_{ab}, 1 \le a \le b \le N, \quad \det(g_{ij}) = 1,$$

where  $\delta_{ab}$  is the Kronecker symbol. This allows one to integrate over it. We consider any polynomial complex valued function on K as a restriction of a polynomial function on  $GL(N,\mathbb{C})$ . For each such function  $\phi(g)$  set

$$\operatorname{av}(\phi) = \frac{\int_K \phi(g) dg}{\int_K dg},$$

where  $dg = \prod_{1 \le i,j \le N} dg'_{ij} dg''_{ij}$ .

**Lemma 3.3.** For any  $F \in Pol(W)$  the function  $\tilde{F}$  defined by

$$\tilde{F}(w) = av(F(g \cdot w))$$

is K-invariant.

*Proof.* For any matrix  $g = (g_{ij}) \in K$  let  $g' = (g'_{ij})$  and  $g'' = (g''_{ij})$ . For any  $s, g, u \in K$  with  $u = g \cdot s$  we have

$$(u'\ u'') = (g'\ g'') \cdot \begin{pmatrix} s' & -s'' \\ s'' & s' \end{pmatrix}.$$

Here we use a block-expression of a matrix. It is easy to see that

$$S = \begin{pmatrix} s' & -s'' \\ s'' & s' \end{pmatrix}$$

is an orthogonal real matrix of size 2N. Thus the jacobian of the variable change  $g \to u = g \cdot s$  is equal to  $\det S = \pm 1$ . Since K is known to be a connected manifold, the function  $s \to \det S$  is constant and takes the value 1 at  $s = I_n$ . Thus  $\det S \equiv 1$ . Applying the formula for the variable change in the integration we get

$$\int_{K} F(gs \cdot v)dg = \int_{K} F(g \cdot (s \cdot v))d(gs) = \int_{K} F(u \cdot v)du,$$

hence

$$\tilde{F}(s \cdot v) = \operatorname{av}(F(g, s \cdot v)) = \frac{\int_K F(gs \cdot v)dg}{\int_K dg} =$$

$$\frac{\int_K F(u \cdot v) du}{\int_K dg} = \operatorname{av}(F(u \cdot v)) = \tilde{F}(v).$$

One can generalize the previous proof to a larger class of groups of complex matrices. What is important in the proof is that such a group G contains a compact subgroup K such that the complex Lie algebra of G is isomorphic to the complexification of the real Lie algebra of K. Here are examples of such groups, their compact subgroups, and their corresponding Lie algebras:

$$G = \operatorname{GL}(n,\mathbb{C}), \quad \operatorname{Lie}(G) = \mathfrak{gl}(n) = \operatorname{Mat}(n,\mathbb{C})$$
 
$$K = \operatorname{SU}(n), \quad \operatorname{Lie}(K) = \mathfrak{u}(n) \cap \mathfrak{sl}(n).$$
 
$$G = \operatorname{O}(n,\mathbb{C}), \quad \operatorname{Lie}(G) = \{A \in \mathfrak{gl}(n,\mathbb{C}) : {}^tA = -A\},$$
 
$$K = \operatorname{O}(n,\mathbb{R}), \quad \operatorname{Lie}(K) = \{A \in \mathfrak{gl}(n,\mathbb{R}) : {}^tA = -A\}$$

All these groups satisfy the following property:

(LR) Let  $\rho: G \to \operatorname{GL}(V)$  be a complex linear representation, and  $v \in V^G \setminus \{0\}$ . Then there exists an invariant subspace W such that  $V = \mathbb{C}v \oplus W$ . Or, in other words, there exists a G-invariant linear function f on V such that  $f(v) \neq 0$ .

One checks this property by replacing first G with its compact subgroup K as above. Taking any linear function f with f(v) > 0 we average it by integration over K to find a non-zero K-invariant function with the same property. Then we apply Lemma 3.3 to ensure that f is G-invariant.

### 3.3 Affine algebraic groups

Next we observe that property (LR) from the previous section can be stated over any field. First of all we will be dealing with affine algebraic groups G over a field k. These are affine algebraic varieties G such that for any k-algebra K the set of its K-points G(K) is a group and the correspondence  $K \to G(K)$  is a functor from the category of k-algebras to the category of groups. An example of such a group is the group  $GL_k(n) = \operatorname{Spec}(k[\ldots, X_{ij}, \ldots][\det((X_{ij}))^{-1}]$ . We have

$$GL_k(n)(K) = GL(n, K).$$

When n = 1 we denote this group by  $\mathbb{G}_{m,k}$  (or just  $\mathbb{G}_m$ ). It is called the multiplicative group over k. Its value at a k-algebra K is the multiplicative group  $K^*$  of K.

One can prove that each such group admits a regular map to the group  $\operatorname{GL}_k(n)$  such that it is a closed embedding and the induced map on points  $G(K) \to \operatorname{GL}(n,K)$  is an injective homomorphism of groups. In other words, G is isomorphic to a linear algebraic group, i.e. a closed subvariety of  $\operatorname{GL}_k(n)$  whose points over any K/k is a subgroup of  $\operatorname{GL}(n,K)$ . In the previous lectures when we wrote  $g \in G$  we assumed silently that  $g \in G(k)$ . We shall continue to do so.

From now on all our groups will be linear algebraic and all our maps will be morphisms of algebraic varieties. For example, an action of G on a variety X means a regular map  $\mu: G \times X \to X$  satisfying the usual axioms of an action (which can be stated as some natural commutative diagrams). We shall call such an action a rational action or better regular action. In particular, a linear representation  $\rho: G \to \operatorname{GL}(V) \cong \operatorname{GL}_k(n)$  will be assumed to be given by regular functions on the affine algebraic variety G. Such linear representations are called rational representations.

Suppose an affine algebraic group G acts on an affine variety  $X = \operatorname{Spec}(A)$ . This action can be rephrased in terms of the *co-action homomorphism* 

$$\mu^*: A \to \mathcal{O}(G) \otimes A$$
,

where  $\mathcal{O}(G)$  is the coordinate ring of G. It satisfies a bunch of axioms which are "dual" to the usual axioms of an action. We leave their statements to the reader. For any  $a \in A$  we have  $\mu^*(a) = \sum_i f_i \otimes a_i$ , where  $f_i \in \mathcal{O}(G), a_i \in A$ . An element  $g \in G(K)$  is a homomorphism  $\mathcal{O}(G) \to K$ ,  $f \to f(g)$ , and we set

$$g(a) := (g \otimes 1) \circ \mu^*(a) = \sum f_i(g)a_i.$$
 (3.5)

This defines a homomorphism  $\mu_K: G(K) \to Aut_K(A_K)$ , where

$$A_K = A \otimes_k K$$
.

In particular G(k) acts on A by k-automorphisms. We shall denote the subalgebra  $A^{G(k)}$  of invariant elements by  $A^G$ .

Conversely a rational action can be defined by such homomorphisms provided that the maps  $G(K) \times X(K) \to X(K), (g, a) \to a \circ \mu_K(g)$ , define a morphism of algebraic varieties  $\mu : G \times X \to X$ . Here, as usual, we consider  $a \in X(K)$  as a homomorphism of k-algebras  $A \to K$ .

An important property of a rational action is the following result:

**Lemma 3.4.** Let V be a vector K-subspace of  $A_K$  spanned by "translates"  $g(a), g \in G(K)$ . Then V is finite-dimensional.

*Proof.* This follows immediately from equation (3.5). The set of elements  $a_i$  is a spanning set.

**Definition.** A linear algebraic group G is called *linearly reductive* if for any rational representation  $\rho: G \to \operatorname{GL}(V)$  and a non-zero invariant vector v there exists a linear G-invariant function f on V such that  $f(v) \neq 0$ .

The unitary trick of Hermann Weyl shows that GL(n), SL(n), O(n) and their products are linearly reductive groups over  $\mathbb{C}$ . This is not true anymore for the same groups defined over a field of characteristic p > 0. In fact, even a finite group is not linearly reductive if its order is not coprime to the characteristic. However, it turns outs  $(Haboush's\ Theorem)$  [41] that all these groups are geometrically reductive in the following sense:

**Definition.** A linear algebraic group G is called geometrically reductive if for any rational representation  $\rho: G \to \operatorname{GL}(V)$  and a non-zero invariant vector v there exists a homogeneous G-invariant polynomial f on V such that  $f(v) \neq 0$ .

We are not going into the proof of Haboush's theorem. In fact one can define the notion of a reductive algebraic group over any field which will include the groups GL(n), SL(n), O(n) and their products and Haboush's theorem asserts that any reductive group is geometrically reductive.

Let us give the definition of a reductive affine algebraic group (over an algebraically closed field) without going into details.

A linear algebraic group T is called an algebraic torus (or simply a torus) if it is isomorphic to  $GL_{\bar{k}}(1)^n$ . An algebraic group is called solvable if it admits a composition series of closed normal subgroups whose succesive quotients are abelian groups. Each algebraic group G contains a maximal connected solvable normal subgroup. It is called the radical of G. A group G is called reductive if its radical is a torus. A group G is called semi-simple if its radical is trivial. Each semi-simple group is isomorphic to the direct product of simple algebraic groups. A simple algebraic group is characterized by the property that its connected component containing the identity does not contain proper closed normal subgroups of positive dimension.

There is a complete classification of semi-simple groups over an algebraically closed field k. Examples of simple groups are the classical groups

$$SL_k(n+1)$$
(type  $A_n$ ),  $O_k(2n+1)$ (type  $B_n$ ),

$$Sp_k(2n)$$
(type  $C_n$ ),  $O_k(2n)$ (type  $D_n$ ).

There are also some exceptional groups of type  $F_4, G_2, E_6, E_7, E_8$ . Every simple algebraic group is isogenous to one of these groups (i.e. there exists a surjective homomorphism from one to another with a finite kernel).

## 3.4 Nagata's Theorem

Our goal is to prove the following theorem of M. Nagata:

**Theorem 3.3.** Let G be a geometrically reductive group which acts rationally on affine variety Spec(A). Then  $A^G$  is a finitely generated k-algebra.

We shall start with the following:

**Lemma 3.5.** Let a geometrically reductive algebraic group G act rationally on a k-algebra A leaving an ideal I invariant. Consider  $A^G/I \cap A^G$  as a subalgebra of  $(A/I)^G$  by means of the injective homomorphism induced by the inclusion  $A^G \subset A$ . For any  $a \in (A/I)^G$  there exists d > 0 such that  $a^d \in A^G/I \cap A^G$ . If G is linearly reductive then d can be chosen to be 1.

Proof. Let  $\bar{a}$  be a non-zero element from  $(A/I)^G$ , a be its representative in A and  $\mu^*(a) = \sum_i \alpha_i \otimes a_i$ . Let V be a finite-dimensional G-invariant subspace of A spanned by the G-translates of a. It is contained in the subspace spanned by the  $a_i$ 's. Let  $v = g'(a) \in V$ . We have g(v) = g(g'(a)) = gg'(a) = a + w, where  $w \in W = I \cap V$ . This shows that any  $v \in V$  can be written in the form

$$v = \lambda a + w$$

for some  $\lambda \in k$  and  $w \in W$ . Let  $l: V \to k$  be the linear map  $v \to \lambda$ . We have

$$g(v) = g(l(v)a + w) = l(v)g(a) + g(w) = l(v)a + w' = l(g(v))a + w''$$

for some  $w, w', w'' \in W$ . This implies that l(g(v)) = l(v), w' = w'' and in particular the linear map  $l: V \to k$  is G-invariant. Consider it as an element of the dual space  $V^*$ . The group G acts linearly on  $V^*$  and l is a G-invariant element. Choose a basis  $(v_1, \ldots, v_n)$  of V with  $v_1 = a$ , and  $v_i \in W$  for  $i \geq 2$ . Then we can identify  $V^*$  with  $\mathbb{A}^n_k$ , by using the dual basis so that  $l = (1, 0, \ldots, 0)$ . By definition of geometrical reductiveness, we can find a G-invariant homogeneous polynomial  $F(Z_1, \ldots, Z_n)$  of degree d such that  $F(1, 0, \ldots, 0) \neq 0$ . We may assume that  $F = \mathbb{Z}^d_1 + \ldots$  Now we can identify  $v_i$  with the linear polynomial  $Z_i$ , hence  $(F - \mathbb{Z}^d_1)(v_1, \ldots, v_n) = F(v_1, \ldots, v_n) - a^d$  belongs to the ideal J of A generated by  $v_2, \ldots, v_n$ . Since each generator of J belongs to  $W \subset I$ , we see that  $a^d \equiv F(v_1, \ldots, v_n)$  modulo I. Since  $F(v_1, \ldots, v_n) \in A^G$  (because F is G-invariant), we are done.  $\square$ 

Now we are ready to prove Nagata's Theorem. First of all, by noetherian induction we may assume that, for any non-trivial G-invariant ideal I the algebra  $(A/I)^G$  is finitely generated.

Assume first that  $A = \sum_{n \geq 0} A_n$  is a geometrically graded k-algebra (i.e.  $A_0 = k$ ) and the action of G preserves the grading. For example, A is a polynomial algebra on which G acts linearly. The subalgebra  $A^G$  inherits the grading. Suppose  $A^G$  is an integral domain. Take a homogeneous element  $f \in A^G$  of positive degree. We have  $fA \cap A^G = fA^G$  since, for any  $x \in A$ , g(xf) - xf = x(g(x) - x) = 0 implies that  $x \in A^G$ . Since  $(A/fA)^G$  is finitely generated and integral over  $A^G/fA^G = A^G/fA \cap A^G$  (Lemma 3.4), we obtain that  $A^G/fA^G$  is finitely generated. Hence its maximal ideal  $(A^G/fA^G)_+$  generated by elements of positive degree is finitely generated. If we take the set of representatives of its generators and add f to this set, we obtain a set of generators of the ideal  $(A^G)_+$  in  $A^G$ . But now, using the same inductive (on degree) argument as in the second proof of Theorem 3.1, we obtain that  $A^G$  is a finitely generated algebra.

Now assume that  $A^G$  contains a zero-divisor f. Then fA and the annulator ideal  $R=(0:f):=\{a\in A:fa=0\}$  are non-zero G-invariant ideals. As above  $A^G/fA\cap A^G$  and  $A^G/R\cap A^G$  are finitely generated. Let B be the subring of  $A^G$  generated by representatives of generators of the both algebras. It is mapped surjectively to  $A^G/fA\cap A^G$  and  $A^G/R\cap A^G$ . Let  $c_1,\ldots,c_n$  be representatives in A of generators of  $(A/R)^G$  as a  $B/R\cap B$ -module. Since  $g(c_i)-c_i\in R$  for all  $g\in G(K)$ , we get  $f(g(c_i)-c_i)=0$ , i.e.,  $fc_i\in A^G$ . Let us show that  $A^G=B[fc_1,\ldots,fc_n]$ . Then we will be done. If  $a\in A^G$ , we can find  $b\in B$  such that  $a-b\in fA$  (since B is mapped surjectively to

 $A^G/fA \cap A^G$ ). Then a-b=fr is G-invariant implies that  $r \in (A/R)^G$ . Thus  $r \in \Sigma_i Bc_i$ . This implies  $a=b+fr=b+fc \in B[fc_1,\ldots,fc_n]$  as we wanted.

So we are done in the graded case.

Now let us consider the general case. First of all we may obviously assume that k is algebraically closed. Let  $t_1, \ldots, t_n$  be generators of A. Consider the vector k-space  $V \subset A$  spanned by G-translates of  $t_i$ 's. It follows from Lemma 3.4 that V is finite-dimensional. Without loss of generality we may assume now that  $t_1, \ldots, t_n$  is a basis of this space. Let  $\phi: S = k[T_1, \ldots, T_n] \to A$ be the surjective homomorphism defined by  $T_i \to t_i$ . The group G acts on S linearly by  $g(T_i) = \sum \alpha_{ij} T_j$ , where  $g(t_i) = \sum \alpha_{ij} t_j$ . Let I be the kernel of  $\phi$ . It is obviously G-invariant. We obtain that  $A^G = (S/I)^G$ . By Lemma 3.4,  $A^G$  is integral over  $S^G/I \cap S^G$ . Since, we have shown already that  $S^G$ is finitely generated, we are almost done (certainly done in the case when G is linearly reductive). By a previous case we may assume that  $A^G$  has no zero divisors. A result from commutative algebra (see, for example, [24] Corollary 13.3) implies that  $A^G$  is finitely generated if its field of fractions is finitely generated as a field. If A were a domain this is obvious (a subfield of a finitely generated field is finitely generated). In the general case we use the total ring of fractions of A, the localization  $A_T$  with respect to the set T of non-zero-divisors. For any maximal ideal  $\mathfrak{m}$  of  $A_T$  we have  $\mathfrak{m} \cap A^G = 0$  since  $A^G$  is a domain. This shows that the field of fractions of  $A^G$  is a subfield of  $A_T/\mathfrak{m}$ . But the latter is a finitely generated field equal to the field of fractions of  $A/\mathfrak{m} \cap A$ . The proof is now complete.

In the next lecture we shall give an example (due to M. Nagata) of a rational linear representation  $\rho: G \to \mathrm{GL}(V)$  of a linear algebraic group such that  $\mathrm{Pol}(V)^G$  is not finitely generated.

The algebra of invariants  $A^G$ , where G is a reductive algebraic group and A is a finitely generated algebra, inherits many algebraic properties of A. We shall not go into this interesting area of algebraic invariant theory, however we mention the following simple but important result.

**Proposition 3.1.** Let G be a reductive algebraic group acting algebraically on a normal finitely generated k-algebra A. Then  $A^G$  is a normal finitely generated algebra.

*Proof.* Recall that a normal ring is a domain integrally closed in its field of fractions. Let K be the field of fractions of A. It is clear that the field of

fractions L of  $A^G$  is contained in the field  $K^G$  of G-invariant elements of K. We have to check that the ring  $A^G$  is integrally closed in L. Suppose  $x \in L$  satisfies a monic equation

$$x^n + a_1 x^{n-1} + \ldots + a_0 = 0$$

with coefficients  $a_i$  from  $A^G$ . Since A is normal,  $x \in A \cap K^G = A^G$  and the assertion is verified.

## Bibliographical notes

The proof of Gordan-Hilbert's Theorem follows the original proof of Hilbert (see[43]). The proof using the unitary trick can be found in [54],[95],[106]. The original proof of Nagata's theorem can be found in [66]. Our proof is rather close to the original one. It can be found in [29],[60], [69],[96] as well. Haboush's theorem was a culmination of efforts of many people. There are other proofs of Haboush's theorem with more constraints on a group (see a survey of these results in [60], p. 191).

There are numerous text-books on Lie groups, Lie algebras and algebraic groups. A good introduction to Lie groups and Lie algebras can be found in [30] or [71] and [6],[97],[44] are excellent first courses in algebraic groups.

We refer to [75], §3.9 for a survey of results in spirit of Proposition 3.1. An intersting question is when the algebra  $\operatorname{Pol}(V)^G$ , where V is a rational linear representation of a reductive group G, is isomorphic to a polynomial algebra. When G is a finite group, a theorem of Chevalley [10] asserts that this happens if and only if the representation of G in V is equivalent to a unitary representation where G acts as a group generated by unitary reflections. The classification of such unitary representations is due to Shephard-Todd [92]. The classification of pairs (G, V) with this property when G is a connected linear algebraic group group is known when G is simple, or G is semi-simple and V is its irreducible representation. We refer to [75], §8.7 for the survey of the corresponding results.

#### Exercises

**3.1** For any abstract finite group G construct an affine algebraic k-group such that its group of K-points is equal to G for any K/k.

- **3.2**. Prove that any affine algebraic group is a nonsingular algebraic variety.
- **3.3**. Construct an affine algebraic group over a field k whose group of K-points is equal to the additive group of K. Prove that it is isomorphic to a linear algebraic group over k. This group is denoted by  $\mathbb{G}_{a,k}$  and is called the *additive group*.
- **3.4** Show that there are no non-trivial homomorphisms from  $\mathbb{G}_{m,k}$  to  $\mathbb{G}_{a,k}$  and in the other direction.
- **3.5** Let H be a closed subgroup of an affine algebraic group G. We say that H is normal if for any  $g \in G(K)$ ,  $gH(K)g^{-1} \subset H(K)$ . Prove that for any normal closed subgroup H there is an affine variety, denoted by G/H, such that (G/H)(K) = G(K)/H(K) for any K/k [Hint: Consider some linear representation of G].
- **3.6** Prove that a finite group G over a field characteristic p > 0 is linearly reductive if and only if its order is prime to p. Show that G is always geometrically reductive.
- **3.7** Give an example of a non-rational action of an affine algebraic group on an affine space.
- **3.8** Let  $\operatorname{GL}(n)$  act on  $\operatorname{Pol}(V)$  via its linear representation in V. A polynomial  $F \in \operatorname{Pol}(V)$  is called a *projective invariant* of weight  $w \geq 0$  if, for any  $g \in G$  and any  $v \in V$ ,  $F(g \cdot v) = (\det g)^w F(v)$ . Let  $\operatorname{Pol}(W)_w^G$  be the space of projective invariants of weight w. Show that the graded ring  $\bigoplus_{w \geq 0}^{\infty} \operatorname{Pol}(W)_w^G$  is finitely generated.

## Lecture 4

# Hilbert's Fourteenth Problem

## 4.1 The problem

The assertions about finite generatedness of algebras of invariants are all related to one of the Hilbert Problems. The precise statement of this problem (number 14 in Hilbert's list) is as follows.

**Problem 1.** Let k be a field and  $k(t_1, \ldots, t_n)$  be its purely transcendental extension, K/k a field extension contained in  $k(t_1, \ldots, t_n)$ . Is the k-algebra  $K \cap k[t_1, \ldots, t_n]$  finitely generated?

Hilbert himself gave a positive answer to this question in the situation when  $K = k(t_1, \ldots, t_n)^{\operatorname{SL}(n,k)}$  where  $\operatorname{SL}_k(n)$  acts linearly in  $k[t_1, \ldots, t_n]$ . (Theorem 3.2 from Lecture 3). The subalgebra  $K \cap k[t_1, \ldots, t_n]$  is of course the subalgebra of invariant polynomials  $k[t_1, \ldots, t_n]^{\operatorname{SL}(n,k)}$ . A special case of his problem asks whether the same is true for an arbitrary group G acting linearly on the ring of polynomials. A first counter-example was given by M. Nagata in 1959. We shall explain it in this lecture. Let us first give a geometric interpretation of Hilbert's Problem 14 due to O. Zariski.

For any subfield  $K \subset k(t_1, \ldots, t_n)$  we can find a normal irreducible algebraic variety X over k with the field of rational functions k(X) isomorphic to K. The inclusion of the fields gives rise to a rational map

$$f: \mathbb{P}^n \longrightarrow X.$$

Let  $Z \subset \mathbb{P}^n \times X$  be the closure of the graph of the regular map of some open subset of  $\mathbb{P}^n$  defined by f. Let H be the hyperplane at infinity in  $\mathbb{P}^n$  and

 $D' = \operatorname{pr}_2(\operatorname{pr}_1^{-1}(H))$ . This is a closed subset of X. By blowing up, if necessary, we may assume that D' is the union of codimension 1 irreducible subvarieties  $D_i$ . Let D be the Weil divisor on X equal to the sum of components  $D_i$  such that  $\operatorname{pr}_1(\operatorname{pr}_2^{-1}(D_i)) \subset H$ . Note that D could be the zero divisor. Thus for any rational function  $\phi \in k(X)$ ,  $f^*(\phi)$  is regular on  $\mathbb{P}^n \setminus H$  if and only if  $\phi$  has poles only along the irreducible components of D. Let L(mD) be the linear subspace of k(X) which consists of rational functions such that  $\operatorname{div}(f) + mD \geq 0$ . After identifying k(X) with K and  $\mathcal{O}(\mathbb{P}^n \setminus H)$  with  $k[t_1, \ldots, t_n]$  (by means of  $f^*$ ), we see that  $K \cap k[t_1, \ldots, t_n]$  is isomorphic to the subalgebra

$$R(D) = \sum_{m=0}^{\infty} L(mD)$$

of k(X). So the problem is reduced to the problem of finite generatedness of the algebras R(D) where D is any positive Weil divisor on a normal algebraic variety X.

Assume moreover that X is nonsingular. Then each Weil divisor is a Cartier divisor and hence can be given locally by an equation  $\phi_U = 0$  for some rational function  $\phi_U$  on X regular on some open subset  $U \subset X$ . These functions must satisfy  $\phi_U = g_{UV}\phi_V$  on  $U \cap V$  for some  $g_{UV} \in \mathcal{O}(U \cap V)^*$ . We can take them to be the transition functions of a line bundle  $L_D$ . Rational functions R with poles along D must satisfy  $a_U = R\phi_U^n \in \mathcal{O}(U)$  for some  $n \geq 0$ . This implies that the functions  $a_U$  satisfy  $a_U = g_{UV}^n a_V$  hence form a section of the line bundle  $L_D^{\otimes n}$ . This shows that the algebra R(D) is equal to the union of the linear subspaces  $\Gamma(X, L_D^{\otimes n})$  of the field k(X). Let

$$R^*(D) = \bigoplus_{n \ge 0} \Gamma(X, L_D^{\otimes n}).$$

Recall that we can view  $\Gamma(X, L_D^{\otimes n})$  as the space of regular functions on the line bundle  $L_D^{-1}$  whose restriction to fibres are homogeneous polynomials of degree n. This allows one to consider the algebra  $R^*(D)$  as the algebra  $\mathcal{O}(L_D^{-1})$ . Let P be the variety obtained from  $L_D^{-1}$  by adding the point at infinity in each fibre of  $L_D^{-1}$ . More precisely, let  $\mathcal{O}_X$  be the trivial line bundle. Then the variety P can be constructed as the quotient of the rank 2 vector bundle  $\mathbb{V}(L_D^{-1} \oplus \mathcal{O}_X) \setminus \{\text{zero section}\}$  by the group  $\mathbb{G}_m$  acting diagonally on fibres. Here the direct sum means that the transition functions of the vector bundle are chosen to be diagonal matrices

$$\begin{pmatrix} g_{UV} & 0 \\ 0 & 1 \end{pmatrix}.$$

Then we obtain that  $R^*(D)$  is equal to the ring R(S) where S is the divisor at infinity in P. In this way we come to

**Problem 2.** (Zariski). Let X be a nonsingular algebraic variety and D be a positive divisor on X. Is the algebra  $R^*(D)$  finitely generated?

It can be shown that Nagata's counter-example to the Hilbert problem is of the form  $R^*(D)$  (see Exercise 4.3). It turns out that the algebras  $R^*(D)$  are often non-finitely generated. However if we impose conditions on D (for example, that the complete linear system defined by  $L_D$  has no base points) then it is finitely generated. One of the fundamental questions in algebraic geometry is the question of finite generatedness of the ring  $R^*(D)$ , where D is the canonical divisor of X. This is closely related to the theory of minimal models of algebraic varieties (see [59]).

## 4.2 The transfer principle

Let us first discuss the case of algebras of invariants for not necessarily geometrically reductive groups. We shall give later an example of Nagata which shows that  $A^G$  is not finitely generated for some non-reductive group G. Notice that according to a result of V. Popov ([73]): if  $A^G$  is finitely generated for any finitely generated algebra A, then G is reductive. In fact, the proof of this result relies on Nagata's counterexample.

Since any affine algebraic group H is a closed subgroup of a reductive group G, we may ask how the rings  $A^G$  and  $A^H$  are related. First of all we have the following transfer principle (see [38],[75]):

**Lemma 4.1.** Let an algebraic group G act rationally on a k-algebra A. Then

$$A^H \cong (\mathcal{O}(G)^H \otimes A)^G.$$

Here H acts on G by left multiplications and G acts on itself by right multiplications.

Proof. We assume that A is finitely generated to simplify the notation. Let  $X = \operatorname{Spec}(A)$  be the affine algebraic variety corresponding to A. Let  $f(g, x) \in \mathcal{O}(G \times X) = \mathcal{O}(G) \otimes A$ . Assume  $f \in (\mathcal{O}(G)^H \otimes A)^G$ . This means that  $f(hgg'^{-1}, g'x) = f(g, x)$  for any  $g' \in G$ . Let  $\phi(x) = f(1, x)$ . Then

$$\phi(hx) = f(1, hx) = f(hh^{-1}, h \cdot x) = f(1, x) = \phi(x).$$

This shows that  $\phi \in A^H$ . Conversely, if  $\phi \in A^H$ , the function  $f(g, x) = \phi(g \cdot x)$  satisfies

$$f(hgg'^{-1}, g' \cdot x) = \phi(hg \cdot x) = \phi(h \cdot (g \cdot x)) = \phi(g \cdot x) = f(g, x).$$

Thus  $f \in (\mathcal{O}(G)^H \otimes A)^G$ . We leave to the reader to check that the maps

$$(\mathcal{O}(G)^H \otimes A)^G \to A^H, \quad f(g,x) \to f(1,x),$$

$$A^H \to (\mathcal{O}(G)^H \otimes A)^G, \quad \phi(x) \to \phi(g \cdot x)$$

are inverse to each other.

**Corollary 4.1.** Assume that a rational action of H on an affine variety X extends to an action of a geometrically reductive group G containing H and  $\mathcal{O}(G)^H$  is finitely generated. Then  $\mathcal{O}(X)^H$  is finitely generated.

The algebra  $\mathcal{O}(G)^H$  can be interpreted as the algebra of regular functions on the homogeneous space G/H (see Exercises). The algebraic variety G/H is a quasi-projective algebraic variety. It could be affine, for example when H is a reductive subgroup of a reductive group G. It also could be a projective variety (for example, when  $G = GL_k(n)$  and H contains the subgroup of upper-triangular matrices, or more generally, H is a parabolic subgroup of a reductive group G). A closed subgroup H of affine algebraic group H is called observable if H is quasi-affine (i.e. isomorphic to an open subvariety of an affine variety). An observable subgroup H is called a Grosshans subgroup if  $\mathcal{O}(G)^H$  is finitely generated.

**Theorem 4.1.** Let H be an observable subgroup of a connected affine algebraic group G. The following properties are equivalent:

- (i) G is a Grosshans subgroup;
- (ii) there exists a rational linear representation of G in a vector space V of finite dimension and a vector  $v \in V$  such that  $H = G_v$  and the orbit  $G \cdot v$  of v is of codimension  $\geq 2$  in its closure  $\overline{G \cdot v}$ .

*Proof.* (i)  $\Rightarrow$  (ii). Let  $A = \mathcal{O}(G)^H$  and  $X = \operatorname{Spec}(A)$ . It is an irreducible algebraic variety on which G acts (via the action of G on A). Consider the canonical morphism  $\phi : G/H \to X$  such that  $\phi^* : \mathcal{O}(X) \to \mathcal{O}(G/H) =$ 

 $\mathcal{O}(G)^H$  is the identity. Since G/H is isomorphic to an open subset of an affine variety Y, the restriction map  $\mathcal{O}(Y) \to \mathcal{O}(G/H) = \mathcal{O}(X)$  defines a morphism of affine varieties  $f: X \to Y$  such that the composition  $f \circ \phi$ :  $G/H \to X \to Y$  is the open embedding  $G/H \hookrightarrow Y$ . Since  $\phi$  is dominant, this easily implies that  $\phi$  is an open embedding. So, we may assume that G/H is an open subset of X and the restriction homomorphism  $\mathcal{O}(X) \to \mathcal{O}(G/H)$ is bijective. Let  $Z = X \setminus (G/H)$ . This is a closed subset of X. Since G is a nonsingular irreducible algebraic variety, X is a normal affine variety, i.e. the ring  $\mathcal{O}(G)$  is normal. By Proposition 3.1 the ring  $\mathcal{O}(G)^H$  has the same property and hence X is a normal affine variety. In particular, A is a Krull domain ([8], Chapter VII, §1) and we can apply the theory of divisors. It follows from the approximation theorem (loc. cit. Proposition 9) that one can find a rational function R on X such that it has a pole only at one irreducible component of Z of codimension 1. Thus the rational function R is regular on G/H but not regular on X. This contradiction shows that each irreducible component of Z is of codimension  $\geq 2$ . Now, by Lemma 3.5, we can embed X into affine space such that G acts on X via a linear representation. The closure of the G-orbit of  $\phi(eH)$  is a closed subset of X containing G/H, and hence the complement of the orbit in its closure is of codimension > 2.

 $(ii) \Rightarrow (i)$  Let X be the closure of the orbit  $O = G \cdot v$ . Replacing X by its normalization, we may assume that  $O \cong G/H$  is isomorphic to an open subset of a normal affine algebraic variety X with the complement of codimension  $\geq 2$ . It remains to use that for each such open subset U the restriction map  $\mathcal{O}(X) \to \mathcal{O}(U)$  is bijective (see [24]).

Example 4.1. Let  $G = \operatorname{SL}_k(2)$  and  $H \cong \mathbb{G}_{a,k}$  be the subgroup of uppertriangular matrices with diagonal entries equal to 1. In the natural representation of G in the affine plane  $\mathbb{A}^2_k$ , the orbit of G of the vector v = (1,0) is equal to  $\mathbb{A}^2_k \setminus \{0\}$  and the stabilizer subgroup  $G_v$  is equal to H. Thus H is a Grosshans subgroup of G. More generally, any maximal unipotent subgroup of an affine algebraic group G is a Grosshans subgroup (see [38], Thm. 5.6).

Let  $G = \mathbb{G}_{a,k}$ . We know that it is not geometrically reductive (Exercise 4.1). However, we have the following classical result:

**Theorem 4.2.** (Weitzenböck's Theorem). Assume char(k) = 0. Let  $\rho$ :  $\mathbb{G}_{a,k} \to GL_k(n)$  be a linear representation of the additive group. Then  $k[t_1,\ldots,t_n]^{\mathbb{G}_{a,k}}$  is finitely generated.

*Proof.* Replacing k by its algebraic closure we can assume that k is algebraically closed. To simplify the proof let us assume that  $k = \mathbb{C}$ . We shall also identify  $\mathbb{G}_{a,k}$  with a subgroup G of  $\mathrm{GL}(n,k)$  isomorphic to k. This can be done since k does not contain finite non-trivial subgroups in characteristic 0 so  $\rho$  is either trivial or is injective. Let  $g \in G$  be a nonzero element. Since there are no nontrivial rational homomorphisms from k to  $k^*$ , all eigenvalues of q must be equal to 1. Since G is commutative, there is a common eigenvector e for all  $g \in G$ . Consider the induced action of G on  $k^n/ke$ . Let f be a common eigenvector for all  $g \in G$  in this space. Then  $g(f) = f + a_q e$  for all  $g \in G$ . Continuing in this way, we find a basis in V such that each  $t \in k$  is represented by a unipotent matrix A(t). Consider the differential of the homomorphism  $\rho: G \to GL(n,k)$  at the origin. It is defined by  $a \to aB$ , where  $B = \frac{dA(t)}{dt}(0)$ . Clearly B is a nilpotent matrix. Since A(t+t')=A(t)A(t'), it is easy to see that A(t)'=BA(t) and hence  $A(t) = \exp(tB)$ . By changing a basis in V, we may assume that B is a Jordan matrix. Let  $V = V_1 \oplus \ldots \oplus V_r$ , where  $V_i$  corresponds to a Jordan block  $B_i$  of B of size  $n_i$ . It is easy to see that the representation  $t \to \exp(tB_i)$  of G in  $V_i$ is isomorphic to the representation of G in  $Pol_{n_i}(k^2)$  obtained by restriction of the natural representation of  $SL_{(2,k)}$  in  $Pol_{n_i}(k^2)$ . Here we consider G as a subgroup U of upper-triangular matrices in SL(2,k). Thus G acts in V by the restriction of the representation of SL(2, k) in the direct sum of linear representations in  $Pol_{n_i}(k^2)$ . Now we can apply Lemma 4.1. Observe that any  $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, k)$  can be reduced after multiplication by some

$$\begin{pmatrix} 0 & -c^{-1} \\ c & d \end{pmatrix}$$
  $(c \neq 0)$  or  $\begin{pmatrix} d^{-1} & 0 \\ 0 & d \end{pmatrix} (c = 0)$ .

Thus any *U*-invariant regular function on  $SL_k(2)$  is uniquely determined by its values on such matrices. Since the set of such matrices forms a subvariety of  $SL_k(2)$  isomorphic to  $\mathbb{A}^2_k \setminus \{0\}$ , the restriction of functions defines an isomorphism

$$\mathcal{O}(\mathrm{SL}_k(2))^U \cong \mathcal{O}(\mathbb{A}_k^2 \setminus \{0\}).$$

Since  $\mathcal{O}(\mathbb{A}_k^2 \setminus \{0\}) \cong \mathcal{O}(\mathbb{A}_k^2)$ , we conclude that  $\mathcal{O}(\mathrm{SL}_k(2))^U$  is finitely generated. So, we can apply the transfer principle to the pair  $(G, \mathrm{SL}_k(2))$  and the representation of  $\mathrm{SL}_k(2)$  on  $V = \bigoplus_{i=1}^r \mathrm{Pol}_{n_i}(k^2)$  to obtain the assertion of the theorem.

51

## 4.3 Nagata's counterexample

Now we are ready to present Nagata's counter-example to the 14th Hilbert Problem.

Let G' be the subgroup of  $\mathbb{G}_{a,k}^n$  with G'(K) equal to the set of solutions  $(t_1,\ldots,t_n)$  of a system of linear equations

$$\sum_{j=1}^{n} a_{ij} x_j = 0, \quad i = 1, 2, 3.$$
(4.1)

We shall specify the coefficients later. The group G' acts on the affine space  $\mathbb{A}^{2n}$  by the formula

$$(t_1,\ldots,t_n)\cdot(x_1,y_1,\ldots,x_n,y_n)=(x_1+t_1y_1,y_1,\ldots,x_n+t_ny_n,y_n).$$

Now let us consider the subgroup T of  $\mathbb{G}^n_{m,k}$  with  $T(K) = \{(c_1, \ldots, c_n) \in K^* : \prod_{i=1}^n c_i = 1\}$ . It acts on  $\mathbb{A}^{2n}$  by the formula

$$(c_1,\ldots,c_n)\cdot(x_1,y_1,\ldots,x_n,y_n)=(c_1x_1,c_1y_1,\ldots,c_nx_n,c_ny_n)$$

Both of these groups are identified naturally with subgroups of  $SL_k(2n)$  and we enlarge G' by considering the group  $G = G' \cdot T$ . It is contained in the subgroup of matrices of the form:

$$\begin{pmatrix} c_1 & \alpha_1 & 0 & \dots & \dots & \dots & 0 \\ 0 & c_1 & 0 & \dots & \dots & \dots & 0 \\ 0 & 0 & c_2 & \alpha_2 & 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & c_2 & 0 & \dots & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & \dots & \dots & 0 & c_n & \alpha_n \\ 0 & 0 & \dots & \dots & \dots & 0 & 0 & c_n \end{pmatrix}.$$

**Theorem 4.3.** For an appropriate choice of the system of linear equations 4.1 and the number n the algebra of invariants  $k[X_1, \ldots, X_n, Y_1, \ldots, Y_n]^G$  is not finitely generated.

We shall start the proof with the following

**Lemma 4.2.** Assume that the determinant of the matrix  $(a_{ij})_{1 \leq i,j \leq 3}$  is not equal to zero. Then

$$k(X_1,\ldots,X_n,Y_1,\ldots,Y_n)^G = k(T,Z_1,Z_2,Z_3),$$

where

$$T = Y_1 \dots Y_n, \ Z_i = \sum_{j=1}^n a_{ij} \left( \frac{X_j T}{Y_j} \right), \quad i = 1, 2, 3.$$

Moreover,  $Z_1, Z_2, Z_3, T$  are algebraically independent over k.

*Proof.* Under the action of g, defined by the matrix (4.2) from above, we have

$$g^*(\frac{X_j}{Y_i}) = \frac{X_j}{Y_i} + \alpha_j, \ g^*(T) = T$$

and, since  $\sum_{j=1}^{n} a_{ij}\alpha_{j} = 0$ , we obtain that  $g^{*}(Z_{i}) = Z_{i}$ , i = 1, 2, 3. This checks that the right-hand side is contained in the left-hand side. Using the assumption on the coefficients  $a_{ij}$ , we can express  $X_{i}T/Y_{i}$ , i = 1, 2, 3, linearly through  $Z_{1}, Z_{2}, Z_{3}$  to obtain

$$k(X_1, \dots, X_n, Y_1, \dots, Y_n) = k(Z_1, Z_2, Z_3, X_4, \dots, X_n, Y_1, \dots, Y_n) =$$

$$= k(T, Z_1, Z_2, Z_3, X_4, \dots, X_n, Y_1, \dots, Y_{n-1}).$$

The first equality shows that  $Z_1, Z_2, Z_3, Y_1, \ldots, Y_n$  are algebraically independent over k, hence  $Z_1, Z_2, Z_3, T$  are algebraically independent.

Let H be the subgroup of G defined by the conditions  $\alpha_5 = \ldots = \alpha_n = 0, c_i = 1, i = 1, \ldots, n$ . Obviously it is isomorphic to  $\mathbb{G}_{a,k}$ . We see that

$$k(X_1, \ldots, X_n, Y_1, \ldots, Y_n)^G \subset k(T, Z_1, Z_2, Z_3, X_4, \ldots, X_n, Y_1, \ldots, Y_{n-1})^H =$$

$$= k(T, Z_1, Z_2, Z_3, X_5, \dots, X_n, Y_1, \dots, Y_{n-1}).$$

Continuing in this way, we eliminate  $X_5, \ldots, X_n$  to obtain

$$k(X_1,\ldots,X_n,Y_1,\ldots,Y_n)^G \subset k(T,Z_1,Z_2,Z_3,Y_1,\ldots,Y_{n-1}).$$

Now we throw in the torus part T which acts on  $Y_i$  by multiplying it by  $c_i$ . It is clear that any T-invariant rational function in  $Y_1, \ldots, Y_{n-1}$  with coefficients from  $k(T, Z_1, Z_2, Z_3)$  must be a constant. This proves the lemma.  $\square$ 

Consider now each column  $(a_{1j}, a_{2j}, a_{3j})$  of the matrix  $(a_{ij})$  as the homogeneous coordinates of a point  $P_j$  in the projective plane  $\mathbb{P}^2_k$ . Let R(m) be the ideal in  $k[Z_1, Z_2, Z_3]$  generated by homogeneous polynomials F such that each  $P_j$  is a point of multiplicity  $\geq m$  on the curve F = 0.

#### Lemma 4.3.

$$k[X_1, Y_1, \dots, X_n, Y_n]^G = \{\sum_{m=0}^{\infty} F_m(Z_1, Z_2, Z_3)T^{-m} : F_m \in R(m)\}.$$

*Proof.* By the previous lemma,  $k[X,Y]^G = k[X,Y] \cap k(Z_1,Z_2,Z_3,T)$ . First notice that, since  $X_i = Z_i Y_i / T$  for i = 1, 2, 3, we have

$$k[X_1,\ldots,X_n,Y_1^{\pm 1},\ldots,Y_n^{\pm 1}]=k[Z_1,Z_2,Z_3,X_4,\ldots,X_n,Y_1^{\pm 1},\ldots,Y_n^{\pm 1}].$$

The intersection of the right-hand side with the field  $k(T, Z_1, Z_2, Z_3)$  is equal to  $k[T, T^{-1}, Z_1, Z_2, Z_3]$ . Thus

$$k[X,Y]^G = k[Z_1, Z_2, Z_3, T, T^{-1}].$$

Write any homogeneous polynomial  $F \in k[X,Y]_d^G$  as a sum of monomials  $Z_1^{i_1}Z_2^{i_2}Z_3^{i_r}T^{-m}$ , where  $i_1,i_2,i_3\geq 0$  and  $m\in\mathbb{Z}$ . Since each  $Z_i$  is homogeneous in X of degree 1 and in Y of degree n-1, and T is homogeneous of degree n in Y, we must have  $(i_1+i_2+i_3)+(n-1)(i_1+i_2+i_3)-mn=n(i_1+i_2+i_3)-mn=d$ . This implies that we can write F as a sum  $\sum_m F_m(Z_1,Z_2,Z_3)T^{-m}$ , where each  $F_m$  is homogeneous in  $Z_1,Z_2,Z_3$  of degree  $i_1+i_2+i_3=m+\frac{d}{n}$ . Now write F as a polynomial in X whose coefficients are polynomials in Y. Since the degree of F in X is equal to  $i_1+i_2+i_3$ , we obtain that each  $F_m(Z_1,Z_2,Z_3)T^{-m}$  is the X-homogeneous component of F, and hence  $F_m(Z_1,Z_2,Z_3)T^{-m}$  is a polynomial in X,Y.

It remains to show that  $F_m(Z_1, Z_2, Z_3)T^{-m} \in k[X, Y]$  if and only if each  $F_m \in R(m)$ . Consider the linear polynomials

$$z_j = a_{3j}Z_1 - a_{1j}Z_3, \quad z'_j = a_{3j}Z_2 - a_{2j}Z_3.$$

As is easy to see they are both divisible by  $Y_j$  in  $k[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$ . Since  $z_j$  and  $z'_j$  generate (after dehomogenization) the maximal ideal of the point  $P_j$ , we see that, for any polynomial  $F \in R(m)$ , we have

$$FT^{-m} \in k[X, Y] = k[X_1, \dots, X_n, Y_1, \dots, Y_n].$$

We skip the proof of the converse.

Next, we need a lemma from algebraic geometry.

Let C be an irreducible plane cubic curve in the projective plane  $\mathbb{P}^2$  over an algebraically closed field k. It is known that the set  $C^{\circ}$  of nonsingular points of C has a structure of a group, In the case when C is nonsingular this can be found for example in [89], Chapter 3,§3). If C is singular, this is easy to see. The normalization  $\bar{C}$  of C is isomorphic to  $\mathbb{P}^1$  and the projection map  $\bar{C} \to C$  is an isomorphism outside one point (a cuspidal cubic) or two points (a nodal cubic). The complement of one point in  $\mathbb{P}^1$  is isomorphic to the affine line, and hence has a structure of an algebraic group isomorphic to the additive group  $\mathbb{G}_a$ . The complement of two points is isomorphic to the multiplicative group  $\mathbb{G}_m$ . For example, if  $\operatorname{char}(k) \neq 3$ , any cuspidal cubic is isomorphic to the plane curve given by the equation

$$T_2^2 T_0 - T_1^3 = 0 (4.2)$$

(see Lecture 10). Its singular point is (1,0,0) and the set of nonsingular points is the subset of  $k^2$  defined by the equation  $X^3 - Y = 0$ . The group law is given by the formula

$$(x,y) + (x',y') = (x + x', (x + x')^3).$$

Each irreducible plane cubic (unless it is a cuspidal cubic in characteristic 3 not isomorphic to (4.2), see Lecture 10) has at least one nonsingular inflection point (a point where the tangent to the curve has multiplicity of intersection with the curve greater or equal than 3). Any of these points can be chosen as the zero point of the group law. In the example (4.2), the point (0,0,1) is the unique nonsingular inflection point.

**Lemma 4.4.** Let C be an irreducible plane cubic curve with a nonsingular inflection point o taken for the zero of the group law on the set  $C^{\circ}$  of nonsingular points of C. Let  $p_1, \ldots, p_9 \in C^{\circ}$ . Then the sum  $\sum_{i=1}^{9} p_i$  is a m-torsion element in  $C^{\circ}$  if and only if there exists a plane curve D of degree 3m which intersects C at the points  $p_i$  with multiplicity m.

*Proof.* We assume that C is nonsingular, however, everything we say is valid in the singular case too. We denote the sum of two points  $p, q \in C$  with the respect to the group law by  $p \oplus q$ . We use the following geometric interpretation of the group law. Given two nonsingular points p and q in

C the line joining them intersects the curve at the point equal to  $-(p \oplus q)$ . Also, for any point p its negative -p is the third point of intersection of the line joing p and o with the curve C. This immediately implies that the sum  $p \oplus q$  is the unique point r such that there exists a rational function on C such that its divisor is equal to p+q-r-o. By induction, this implies that  $p_1 \oplus \ldots \oplus p_n$  is the unique point r such that there exists a rational function f on C such that its divisor is equal to  $p_1 + \ldots + p_n - r - (n-1)o$ . Conversely, suppose such f exists. Let  $r' = p_1 \oplus \ldots \oplus p_n$ . By the above there exists a rational function g such that  $\operatorname{div}(g) = p_1 + \ldots + p_n - r' - (n-1)o$ . But then  $\operatorname{div}(f/g) = r' - r$ . This implies that r = r (otherwise the rational map from C to  $\mathbb{P}^1$  defined by the function f defines an isomorphism  $C \cong \mathbb{P}^1$ ).

In particular, we obtain that  $p_1 \oplus \ldots \oplus p_n$  is a m-torsion element if and only if  $m(p_1 + \ldots + p_n) - mno$  is the divisor of a rational function. Let us now take n = 9. Assume that there exists a curve D as in the statement of the lemma. Let  $G_{3m}=0$  be the equation of D. Let L=0 be the equation of the inflection tangent at the point o. Then the restriction of the rational function  $G_{3m}/L^{3m}$  on  $\mathbb{P}^2$  to the curve C defines a rational function f with  $\operatorname{div}(f) = m(p_1 + \ldots + p_9) - 9mo$ . Thus  $p_1 \oplus \ldots \oplus p_m$  is killed by m in the group law. Conversely, assume the latter occurs. By the above there exists a rational function f with  $\operatorname{div}(f) = m(p_1 + \ldots + p_9) - 9mo$ . Changing the projective coordinates, if necessary, we may assume that the equation of L is  $T_0 = 0$  and that none of the points  $p_i$  is the point with projective coordinates (1,0,0). Then the rational function f is regular on the affine curve  $C \setminus T_0 = 0$ . Hence it can be represented by a polynomial  $G'(T_1/T_0, T_2/T_0)$  with nonzero constant term. Homogenizing this polynomial, we obtain a homogeneous polynomial G which is not divisible by  $T_0$  such that G = 0 cuts out the divisor  $m(p_1 + \ldots + p_9)$ . By Bezout's theorem, the degree of G is equal to

Remark 4.1. Let  $G_{3m}=0$  be the equation of the curve D cutting out the divisor  $m(p_1+\ldots+p_9)$ . Let F=0 be the equation of C. For any  $\lambda, \mu \in k$ , the polynomial  $\lambda G_{3m} + \mu F^m$  defines a curve  $D(\lambda, \mu)$  which cuts out the same divisor  $m(p_1+\ldots+p_9)$  on C. When m is equal to the order of the point  $p_1 \oplus \ldots \oplus p_9$ , the "pencil" of curves  $D(\lambda, \mu)$  is called the Halphen pencil of index m (see [12], Chapter 5). One can show that its general member is an irreducible curve with m-multiple points at  $p_1, \ldots, p_9$ . The genus of its normalization is equal to 1.

**Lemma 4.5.** Let  $p_1, \ldots, p_9$  be distinct nine nonsingular points on an irreducible plane cubic C. Assume that their sum in the group law is not a torsion element. Then

- (i) A plane curve D of degree  $\leq 3m$  which has each point  $p_i$  as its point of multiplicity  $\geq m$  must be equal to C.
- (ii) The dimension of the space  $V_d$  of homogeneous polynomials of degree  $d \geq 3m$  which has multiplicity  $\geq m$  at each  $p_i$  is equal to  $\binom{d+2}{2} 9\binom{m+1}{2}$ .

Proof. Since C is irreducible, by Bezout's Theorem,  $\deg D \geq 3m$ . Now the first assertion follows immediately from Lemma 4.4. Let us prove the second one. We may assume that all the points  $p_i$  lie in the affine part  $T_0 \neq 0$ . Consider the linear functions  $\phi_i^j, i = 1, \ldots, 9, j = 1, \ldots, \binom{m+1}{2}$  on the space of homogeneous polynomials  $k[T_0, T_1, T_2]_d$  of degree d which assign to a polynomial P the partial derivatives of order  $\leq m$  of the dehomogenized polynomial  $P/T_0^d$  at the point  $p_i, i = 1, \ldots, 9$ . Obviously,  $V_d$  is the space of common zeroes of the functions  $\phi_i^j$ . To check assertion (ii) it suffices to show that the functions  $\phi_i^j$  are linearly independent. The subspace of common zeroes of the restriction of these functions to the space  $V'_d$  formed by the polynomials  $T_0^{d-3m}G$ , where  $G \in k[T_0, T_1, T_2]_{3m}$  is of dimension 1 (by (i) it consists of polynomials proportional to F, where F = 0 is the curve C). Since  $\binom{3m+2}{2} - 9\binom{m+1}{2} = 1$ , the restriction of the functions  $\phi_i^j$  to  $V'_d$  is a linearly independent set. Therefore the functions  $\phi_i^j$  are linearly independent.

Now we are ready to prove Theorem 4.3.

Proof. We take n=9 and in the equations (4.1) we take  $(a_{1i}, a_{2i}, a_{3i})$  to be the coordinates of the points  $p_i$  which lie in the nonsingular part of an irreducible plane cubic C and do not add up to a m-torsion point for any m>0. Also, to satisfy Lemma 4.2, we assume that the first three points do not lie on a line. This can be always arranged unless  $\operatorname{char}(k)>0$  and C is a cuspidal cubic. Assume that  $k[X,Y]^G$  is finitely generated. By Lemma 4.3, we can find a generating set of the form  $F_{n_j}/T^{m_j}$ ,  $j=1,\ldots,N$ , where  $F_{n_j}$  is a polynomial of some degree  $n_j$  which has multiplicity  $m_j$  at the points  $p_1,\ldots,p_9$ . By Lemma 4.5(i),  $n_j\geq 3m_j$ . Choose m larger than every  $m_j$  and prime to  $\operatorname{char}(k)$ . By Lemma 4.5(ii), there exists a polynomial of degree 3m+1 which has multiplicity  $\geq m$  at each  $p_i$  and does not vanish on the curve C. Let us show that  $F/T^m$  is not expressible as a polynomial in  $F_{n_j}/T^{m_j}$ .

Consider any monomial  $U_1^{d_1} \cdots U_N^{d_N}$ . After we replace  $U_j$  with  $F_{n_j}/T^{m_j}$ , its degree in  $Z_1, Z_2, Z_3$  is equal to  $\sum n_j d_j$  and its degree in T is equal to  $\sum m_j d_j$ . Here we use that  $Z_1, Z_2, Z_3, T$  are algebraically independent. Suppose our monomial enters into a polynomial expression of  $F/T^m$  in the generators  $F_{n_j}/T^{m_j}$ . Then  $3m+1=\sum n_j d_j, m=\sum m_j d_j$ . Thus

$$\sum_{j} (n_j - 3m_j)d_j = 1.$$

Since F does not vanish on C, we may assume that  $d_j = 0$  if  $n_j = 3m_j$  (in this case  $F_{n_j} = 0$  defines C). Thus  $n_j > 3m_j$  for all j with  $d_j \neq 0$ , and we get the only possible case  $d_j = 1$ ,  $n_j = 3m_j + 1$  for one j and all other  $d_j$ 's are equal to zero. Thus  $m = \sum m_j d_k = m_j$  for some j. This contradicts the choice of m.

Remark 4.2. If we take C to be the cuspidal cubic  $T_2^2T_0 - T_1^3 = 0$  over a field of zero characteristic, and the points  $p_i = (a_i^3, a_i, 1)$  with first three points not on a line, then, the conditions on  $p_i$  will be always satisfied unless  $\sum_{i=1}^9 a_i = 0$ . In fact, the group law on  $C^{\circ}$  has no non-zero torsion points.

Finally we sketch Nagata's original proof of Theorem 4.3 which leads to a very interesting conjecture on plane algebraic curves.

**Lemma 4.6.** For any homogeneous ideal  $I \subset k[Z_1, Z_2, Z_3]$  let  $\deg(I)$  denote the smallest positive integer d such that  $I \cap k[Z_1, Z_2, Z_3]_d \neq \{0\}$ . Assume that n is chosen to be such that  $\deg(R(m)) > m\sqrt{n}$  for all m > 0. Then for any natural number m there exists a natural number N such that  $R(m)^N \neq R(mN)$ .

Proof. Let  $R(m)_d = k[Z_1, Z_2, Z_3]_d \cap R(m)$  be the space of homogeneous polynomials of degree d from R(m). As we explained in the proof of Lemma 4.5, the dimension of this space is greater than or equal to (d+2)(d+1)/2 - n(m+1)m/2. Thus we see that  $\overline{\lim}_{m\to\infty} \deg(R(m))/m \leq \sqrt{n}$ . In view of our assumption we must have  $\overline{\lim}_{m\to\infty} \deg(R(m))/m = \sqrt{n}$ . Since again by assumption  $\deg(R(m))/m > \sqrt{n}$  we see that for sufficiently large N,

$$\deg R(mN) \le mN\sqrt{n} < N \deg(R(m)) = \deg R(m)^N.$$

This implies that R(mN) is strictly larger than  $R(m)^N$ .

**Lemma 4.7.** The assumptions of the previous lemma are satisfied when  $n = s^2$  where  $s \geq 4$  and the coordinates of the points  $P_i$  generate a field of sufficiently high transcendence degree over k.

We refer to the proof to [67]. It is rather hard.

Let us show now that these four lemmas imply the assertion. Assume the algebra  $k[X,Y]^G$  is generated by finitely many polynomials  $P_i(X,Y)$ . We can write them in the form  $P_i = \sum_m F_{i,m} T^{-m}$  as in Lemma 4.3. Let  $r = \max_{i,m} \{\deg F_{i,m}\}$ . By Lemma 4.6, we can find  $F \in R(rN)$  for sufficiently large N such that  $F \notin R(r)^N$ . Obviously  $P = FT^{-rN}$  can not be expressed as a polynomial in  $P_i$ 's. This contradiction proves the assertion.

The assumption that  $n = s^2$  was crucial in Lemma 4.7. The following conjecture of Nagata is still unsolved.

**Conjecture.** Let  $P_1, \ldots, P_n$  be n > 9 general points in projective plane. Let C be a plane curve of degree d which passes through each  $P_i$  with multiplicity  $m_i$ . Then

$$d\sqrt{n} \ge \sum_{i=1}^{n} m_i.$$

Here "n general points" means that the sets of points  $(P_1, \ldots, P_n)$  for which the assertion in the conjecture may be wrong form a proper closed subset in  $(\mathbb{P}^2)^n$ .

## **Bibliographical Notes**

The relationship between Hilbert's 14th Problem and the Zariski Problem is discussed in [61]. The material about Grosshans subgroups was taken from [38], see also [75]. The original proof of the Weitzenböck theorem can be found in [105]. The case  $\operatorname{char}(k) \neq 0$  is discussed in a paper of A. Fauntleroy [27]. The original example of Nagata can be found in [66] (see also [65]). We follow R. Steinberg [99] who was able to simplify essentially the geometric part of Nagata's proof. The group law on an irreducible singular plane cubic is discussed in [42], Examples 6.10.2, 6.11.4 and Exercises 6.6, 6.7. Using the Riemann-Roch theorem one can show that every projective algebraic curve with trivial canonical sheaf admits an algebraic group structure on its set of nonsingular points. For example, the set of nonsingular points of any plane cubic curve has a structure of an algebraic group.

An essentially new example of a linear action with not finitely generated algebra of invariants can be found in [1]. It is based on an example of P. Roberts[79]. Nagata's conjecture on plane algebraic curves has not yet been proved. It had inspired a lot of research in algebraic geometry (see some recent paper of Z. Ran [76]). It has also an interesting connection with the problem of symplectic sphere parkings (see [57]). It implies that the symplectic 4-ball of radius 1 and volume 1 contains n disjoint symplectically embedded 4-balls of total volume arbitrarily close to 1.

#### Exercises

- **4.1** Prove that the group  $G_{a,k}$  is not geometrically reductive.
- **4.2** Let  $D_1, \ldots, D_n$  be divisors on a nonsingular variety X. Show that the algebra  $R^*(D_1, \ldots, D_n) = \bigoplus_{k_1, \ldots, k_n \geq 0} \Gamma(X, L_{k_1D_1 + \ldots + k_nD_n})$  is isomorphic to the algebra  $R^*(D)$  for some divisor D on some projective bundle over X.
- **4.3** Show that the algebra constructed in Nagata's counterexample is isomorphic to the algebra  $R^*(l, -E)$  where l is the pre-image of a line under the blow-up of n points in projective plane and E is the exceptional divisor.
- **4.4** Prove that the algebra  $R^*(D)$  is finitely generated if there exists a positive number N such that the complete linear system defined by the line bundle  $L_D^{\otimes N}$  has no base points.
- **4.5** Give an example of a subalgebra of a polynomial algebra which is not finitely generated.
- **4.6** Let H be a closed subgroup of an affine algebraic group G. Construct an algebraic variety G/H such that for any extension K/k there is a functorial bijection between the set of K-points of G/H and the set of left cosets G(K)/H(K). [Hint: Consider the space K spanned by the K-translates of generators of the ideal K defining K and let K and K and show that K is the stabilizer of the point K of the Grassmannian in the natural action of K on K on K or K
- **4.7** Show that the algebra of regular functions on the homogeneous space G/H is isomorphic to the subalgebra  $\mathcal{O}(G)^H$  where H acts on G by left multiplication.
- **4.8** Let H be a closed reductive subgroup of an affine algebraic group G which acts on G by left translations. Show that the homogeneous space

- G/H is affine and hence  $\mathcal{O}(G)^H$  is finitely generated.
- **4.9** Write explicitly the group law on the set of nonsingular points of a nodal cubic over a field of characteristic different from 2.
- **4.10** Show that the conjecture of Nagata is not true without the assumption  $n \geq 9$ .

# Lecture 5

# Algebra of covariants

# 5.1 Examples of covariants

Let G = SL(n) act on an affine algebraic variety X = Spec(A). Let U be its subgroup of upper-triangular unipotent matrices. In this lecture we shall give a geometric interpretation of the algebra of invariants  $A^U$ . Its elements are called *semi-invariants*.

Suppose  $G = \mathrm{SL}(V)$  acts linearly on a vector space W. Fix a nonzero vector  $v_0$  in V and let H be the stabilizer of  $v_0$  in G. Let  $R(w) \in \mathrm{Pol}(W)^H$ . For any  $v \in V \setminus \{0\}$  there exists  $g \in \mathrm{SL}(V)$  such that  $g \cdot v = v_0$ . Define a function  $F_R$  on  $W \times V \setminus \{0\}$  by

$$F_R(w,v) = R(g \cdot w). \tag{5.1}$$

Since  $g^{-1} \cdot v_0 = g'^{-1} \cdot v_0$  implies  $g'g^{-1}(v_0) = v_0$  and hence g' = hg for some  $h \in H$ , we have

$$R(g' \cdot w) = R(hg \cdot w) = R(g \cdot w).$$

This shows that this definition does not depend on the choice of g and the function  $F_R$  is well-defined. Also, for any  $g' \in SL(V)$  we have  $(gg'^{-1})g' \cdot v = v_0$  and hence

$$F_R(g' \cdot w, g' \cdot v) = R(gg'^{-1} \cdot (g' \cdot w)) = R(g \cdot w) = F_R(w, v).$$

Therefore  $F_R$  is invariant under the natural (diagonal action) of G on  $W \times V$ :

$$g(w, v) = (g \cdot w, g \cdot v).$$

It is clear that  $F_R$  is a polynomial function in the first argument. Moreover, if R is homogeneous of degree m, then  $F_R$  is homogeneous of degree m in the first variable. Let us see that  $F_R$  is also polynomial in the second argument. Choose coordinates to assume that  $v_0 = (1, \ldots, 0)$ . Let  $v = (x_0, \ldots, x_n) \in V \setminus \{0\}$ . Assume  $x_0 \neq 0$ . Let

$$A = \begin{pmatrix} x_0 & 0 & \dots & \dots & 0 \\ x_1 & x_0^{-1} & 0 & \dots & 0 \\ x_2 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ x_n & 0 & \dots & 0 & 1 \end{pmatrix}$$

Clearly, A belongs to SL(V) and  $A \cdot v_0 = v$ . Thus  $A^{-1}v = v_0$  and  $F_R(w, v) = R(A^{-1} \cdot w)$  is a regular function on the open set  $x_0 \neq 0$ . Similarly we see that  $F_R$  is regular on the open set  $x_i \neq 0$ . Thus  $F_R$  is a rational function which is regular on  $V \setminus \{0\}$ . Hence it is regular on the whole V and so is a polynomial function.

Conversely, if F is a G-invariant polynomial function on  $W \times V$ , then  $w \to F(w, v_0)$  is an H-invariant polynomial function on W. It is easy to see that this establishes an isomorphism of vector spaces:

$$\operatorname{Pol}(W)^H \cong (\operatorname{Pol}(W) \otimes \operatorname{Pol}(V))^{\operatorname{SL}(V)}.$$

Note that the space  $Pol(W) \otimes Pol(V)$  has a natural bi-grading, so that

$$\operatorname{Pol}_m(W)^H \cong \bigoplus_{p=0}^{\infty} (\operatorname{Pol}_m(W) \otimes \operatorname{Pol}_p(V))^{\operatorname{SL}(V)}.$$

Let us specialize this construction by taking  $W = Pol_d(V)$ .

**Definition.** A covariant of degree m and order p on the space  $\operatorname{Pol}_d(V)$  is an element of the space  $(\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \otimes \operatorname{Pol}_p(V))^{\operatorname{SL}(V)}$ . We shall denote this space by  $\operatorname{Cov}(V)_{m,p}(d)$ .

The geometric meaning of a covariant  $F(a, v) \in \text{Cov}(V)_{m,p}(d)$  is very simple. It can be considered as a polynomial map of affine spaces

$$F: \operatorname{Pol}_d(V) \to \operatorname{Pol}_p(V)$$

given by homogeneous polynomials of degree m. This map is SL(V)-equivariant with respect to the natural actions of SL(V) on the domain and the target spaces.

In coordinates:

$$F(\sum_{|\mathbf{i}|=d} \binom{d}{\mathbf{i}} a_{\mathbf{i}} x^{\mathbf{i}}) = \sum_{|\mathbf{i}|=n} \binom{k}{\mathbf{j}} A_{\mathbf{j}} x^{\mathbf{j}},$$

where  $A_{\mathbf{j}}$  are homogeneous polynomials of degree m in the coefficients  $a_{\mathbf{i}}$ .

On can easily define the symbolic expression of covariants. By polarizing an element of  $\operatorname{Cov}_{m,p}(d) = (\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \otimes \operatorname{Pol}_p(V))^{\operatorname{SL}(V)}$  becomes an  $\operatorname{SL}(V)$ -invariant polynomial function on the space of matrices  $\operatorname{Mat}_{n+1,m+1}$  which is homogeneous of degree d in each column different from the last one, and is homogeneous of degree p in the last column. Observe that each of the first m columns corresponds to a basis  $(\xi_0^{(j)},\ldots,\xi_n^{(j)})$  in V. The last one consists of the coordinates  $(x_0,\ldots,x_n)$  with respect to this basis. There is an analog of the First Fundamental Theorem which says that one can write this function as a linear combination of the products of (n+1)-minors taken from the first m columns and the dot products of the last column with one of the first m columns. Each column, except the last one, appears d times, and the last column appears p times. This implies that the number of minors in the product must be equal to

$$w = \max\{\frac{md}{n+1} - p, 0\}.$$

This number is called the weight of a covariant. It has the property that

$$F(g \cdot a, g \cdot v) = (\det g)^w F(a, v), \quad \forall g \in GL(V).$$

The symbolic expression for the products is

$$\prod_{i=1}^{w} (\tau_{i1} \dots \tau_{in+1}) \prod_{j=1}^{p} \alpha_x^{(s_j)},$$

where  $\alpha_x^{(j)} = \sum_{i=0}^n \xi_i^{(j)} x_j$ . Here each  $\tau_{ij}, s_j \in [m]$  and each number from [m] occurs exactly d times among them.

Example 5.1. An invariant of degree m is a covariant of degree m and of order k = 0.

Example 5.2. The identity map  $\operatorname{Pol}_d(V) \to \operatorname{Pol}_d(V)$  is a covariant of degree 1 and order d. Its weight is equal to zero. Its symbolic expression is  $\alpha_x^d$ .

Example 5.3. Let  $F(x_0, \ldots, x_n) \in \operatorname{Pol}_d(k^{n+1}) = k[x_0, \ldots, x_n]_d$ . Let  $F_{ab} = \frac{\partial^2 F}{\partial x_a \partial x_b}, a, b = 0, \ldots, n$ . The Hessian of F is the determinant

$$\operatorname{Hess}(F) = \det \begin{pmatrix} F_{00} & F_{01} & \dots & F_{0n} \\ \vdots & \vdots & \vdots & \vdots \\ F_{n0} & F_{n1} & \dots & F_{nn} \end{pmatrix}.$$
 (5.2)

The map Hess :  $F \to \text{Hess}(F)$  is a covariant of degree n+1 and order (d-2)(n+1). Its symbolic expression is

$$\operatorname{Hess}(F) = (d(d-1))^{n+1} (12 \dots n+1)^2 (\alpha_x^{(1)} \dots \alpha_x^{(n+1)})^{d-2}.$$

We leave to the reader to check this.

More generally, let  $(x_{ij})$  be the square matrix with entry  $x_{ij}$  considered as a variable. Take F as above and consider the product  $\prod_{i=0}^{n} F(x_{i1}, \ldots, x_{in})$  as a polynomial function on  $\operatorname{Mat}_{n+1}(k)$ . Define the rth transvectant as

$$(F)^{(r)} = \Omega^r (\prod_{i=0}^n F(x_{i1}, \dots, x_{in}))|_{x_{ij} = x_j}$$

where  $\Omega$  is the omega-operator. The last subscript means that we have to replace each unknown  $x_{ij}$  with  $x_j$ . The map  $T^r: F \to (F)^{(r)}$  is a covariant of degree n+1 and order (n+1)(m-r). For example,

$$T^{0}(F) = F^{n+1}, \quad T^{1}(F) = 0, \quad T^{2}(F) = \text{Hess}(F).$$

Example 5.4. One can combine covariants and invariants to get an invariant. For example, consider the Hessian of a binary cubic. It is a binary quadric. Take its discriminant. The result must be an invariant of degree 4. Let us compute it. If  $F = a_0 x_0^3 + 3a_1 x_0^2 x_1 + 3a_2 x_0 x_1^2 + a_3 x_1^3$  we have

$$\operatorname{Hess}(F) = \det \begin{pmatrix} 6a_0x_0 + 6a_1x_1 & 6a_1x_0 + 6a_2x_1 \\ 6a_1x_0 + 6a_2x_1 & 6a_3x_1 + 6a_2x_0 \end{pmatrix},$$

$$Discr(Hess(F)) = 6^{2}Discr((a_{0}x_{0} + a_{1}x_{1})(a_{3}x_{1} + a_{2}x_{0}) - (a_{1}x_{0} + a_{2}x_{1})^{2}) =$$

$$36((a_0a_3 - a_1a_2)^2 - 4(a_0a_2 - a_1^2)(a_1a_3 - a_2^2)) =$$

$$36(-6a_0a_1a_2a_3 + a_0^2a_3^2 + 4a_1^3a_2 + 4a_0a_2^3 - 3a_1^2a_2^2).$$

This is (up to a constant factor) the discriminant of the binary cubic form from Lecture 2, Example 2.1.

Example 5.5. For any two binary forms  $F \in \operatorname{Pol}_d(k^2), G \in \operatorname{Pol}_{d'}(k^2)$  define its Jacobian

$$J(F,G) = \det \begin{pmatrix} \frac{\partial F}{\partial x_0} & \frac{\partial F}{\partial x_1} \\ \frac{\partial G}{\partial x_0} & \frac{\partial G}{\partial x_1} \end{pmatrix}.$$

Then  $F \to J(F, \operatorname{Hess}(F))$  is a covariant of degree 3 and order 3(d-2).

#### 5.2 Covariants of an action

The notion of a covariant of a homogeneous form is a special case of the notion of a covariant of an arbitrary rational action of an affine algebraic group G on an affine variety  $X = \operatorname{Spec}(A)$ . Let  $\rho: G \to GL(W)$  be a linear representation of G in a finite-dimensional vector space W. We call W a G-module. A covariant of an action with values in W is an equivariant regular map  $X \to W$ , where W is considered as affine space. Equivalently, it is a G-equivariant homomorphism of algebras  $\operatorname{Pol}(W) \to A$ . Since any such homomorphism is determined by the images of the unknowns, it is defined by a linear map  $f: W^* \to A$ . Let  $\operatorname{Hom}(W^*, A) = A \otimes W$  be the set of such maps. The group G acts by the formula

$$g \cdot (a \otimes w) = g^*(a) \otimes \rho(g)(w).$$

This corresponds to the action on morphisms  $X \to W$  by the formula

$$g \cdot f(x) = \rho(g)(f(g^{-1} \cdot x)).$$

A covariant is an invariant element of this space. In the previous section we considered the case  $G = \mathrm{SL}(V)$ ,  $X = \mathrm{Pol}_d(V) = \mathbb{A}^{\binom{n+d}{d}}$  and  $W = \mathrm{Pol}_k(V)$  with the natural representation of  $\mathrm{SL}(V)$ . If we take  $W = \mathrm{Pol}_k(V^*)$  with the natural action of G on the space of linear functions, we obtain the notion of a contravariant of order k on the space  $\mathrm{Pol}_d(V)$ . Another special case is when  $A = \mathrm{Pol}_{d_1}(V) \otimes \ldots \otimes \mathrm{Pol}_{d_s}(V)$  and  $W = \mathrm{Pol}_p(V)$ . In this case a covariant is called a concommitant of order p. A concommitant of order 0 is called a combinant. For example, the resultant  $R(F_1, \ldots, F_s)$  of s homogeneous polynomials is a combinant.

Let  $\operatorname{Hom}(W^*,A)^G=(W\otimes A)^G$  be the set of covariants with values in a G-module W. It has an obvious structure of  $A^G$ -module. It is called the

module of covariants with values in W. If  $\operatorname{char}(k) = 0$ , we can identify the spaces  $\operatorname{Pol}_m(W^*)$  and  $\operatorname{Pol}(W)^*$  so that the direct sum

$$\operatorname{Cov}(G; A, W) = \bigoplus_{m=0}^{\infty} \operatorname{Hom}(\operatorname{Pol}_m(W), A)^G = \bigoplus_{m=0}^{\infty} (\operatorname{Pol}_m(W^*) \otimes A)^G =$$

$$(\operatorname{Pol}(W^*) \otimes A)^G$$

has a natural structure of a k-algebra. It is called the *algebra of covariants*. Applying Nagata's theorem we obtain

**Theorem 5.1.** Assume G is a geometrically reductive group. Then the algebra of covariants Cov(G; A, W) is a finitely generated k-algebra.

**Corollary 5.1.** Suppose G is a geometrically reductive algebraic group acting rationally on X = Spec(A). Then the module of covariants  $Hom(W^*, A)^G$  is finitely generated.

Proof. The algebra  $\operatorname{Cov}(G;A,W)$  is a graded finitely generated k-algebra. We identify  $A^G$  with the subalgebra of covariants  $\operatorname{Cov}(G;A,k)$ , where k is the trivial G-module. Obviously  $\operatorname{Cov}(G;A,W)$  is a finitely generated  $A^G$ -algebra. We may assume that it is generated by a finite set of homogeneous elements  $F_1, \ldots, F_n$  of positive degrees  $q_1, \ldots, q_n$ . Thus there is a surjective homomorphism of graded  $A^G$ -algebras  $A^G[T_1, \ldots, T_n] \to \operatorname{Cov}(G;A,W)$ , where  $\operatorname{deg} T_i = q_i$ . Since each  $A^G[T_1, \ldots, T_n]_m$  is a finite free  $A^G$ -module, its image  $\operatorname{Cov}(G;A,W)_m$  is a finitely generated  $A^G$ -module. In particular,  $\operatorname{Hom}(W^*,A)^G = \operatorname{Cov}(G;A,W)_1$  is a finitely generated  $A^G$ -module.  $\square$ 

Here is another proof of this result in the case when G is linearly reductive, e.g. reductive over  $\mathbb{C}$ . Let  $M = W \otimes A$  and M' be the A-submodule of M generated by invariant elements. Since A is Noetherian and  $W \otimes A$  is a free A-module of finite rank, it is a finitely-generated A-module. Let  $m_1, \ldots, m_n \in M^G$  be its spanning set. For any  $m \in M^G$  we can write

$$m = a_1 m_1 + \ldots + a_n m_n \tag{5.3}$$

for some  $a_i \in A$ . Since G is linearly reductive the G-submodule  $A^G$  of A has a complementary invariant submodule, i.e.  $A = A^G \oplus N$ . Let

$$R:A\to A^G$$

be the projection operator (called the Reynolds operator). It has the property

$$R(ab) = bR(a), \quad \forall a \in A, \forall b \in A^G.$$

In the case  $k = \mathbb{C}$  we take for R the averaging operator over the compact form of G. Let  $\tilde{R}: M^G \otimes_{A^G} A \to M^G$  be the map defined by  $m \otimes a \to R(a)m$ . By (5.3),  $M^G$  is equal to the image under  $\tilde{R}$  of the finitely generated  $A^G$ -module  $\sum_{i=1}^n A^G m_i$  and hence it is finitely generated.

Let  $\rho: G \to \operatorname{GL}(W)$  be a finite-dimensional linear rational representation of a linearly reductive group. It can be decomposed into direct sum of irreducible representations  $W_i$ . An irreducible representation corresponds to a simple G-module, a G-module which does not have proper submodules. When G is finite, there are only finitely many irreducible representations (up to isomorphism). In general G has infinitely many irreducible representations. Let  $W = \bigoplus_{i=1}^n W_i$  be a decomposition of W into direct sum of irreducible representations. We have an isomorphism of G-modules:

$$W \cong \bigoplus_{\rho \in \operatorname{Irr}(G)} \operatorname{Hom}(W_{\rho}, W)^{G} \otimes W_{\rho}, \tag{5.4}$$

where  $\operatorname{Irr}(G)$  is the set of isomorphism classes of finite-dimensional irreducible G-modules,  $W_{\rho}$  is a representative of the class  $\rho$ , and G acts trivially on the space of linear maps  $\operatorname{Hom}(W_{\rho},W)^G$ . This isomorphism is defined by the map

$$\sum_{\rho} f_{\rho} \otimes w_{\rho} \to \sum_{\rho} f_{\rho}(w_{\rho}), \quad f_{\rho} \in \text{Hom}(W_{\rho}, W)^{G}, w_{\rho} \in W_{\rho}.$$

Note that, by Schur's Lemma, when  $W = W_{\rho}$  this gives  $\operatorname{Hom}(W_{\rho}, W_{\rho'})^G = k$  if  $\rho = \rho'$  or  $\{0\}$  otherwise. The dimension of the space  $\operatorname{Hom}(W_{\rho}, W)^G$  is called the *multiplicity* of  $W_{\rho}$  in W and is denoted by  $\operatorname{mult}_{\rho}(W)$ . It is equal to the number of direct irreducible summands (or factors) of W isomorphic to  $W_{\rho}$ .

Recall that, by Lemma 3.4, any element of A is contained in a finite-dimensional G-invariant subspace of A generated by its G-translates. This allows us to apply (5.4) to the G-module A. We have

$$A \cong \bigoplus_{\rho \in \operatorname{Irr}(G)} \operatorname{Hom}(W_{\rho}, A)^{G} \otimes W_{\rho}. \tag{5.5}$$

We consider both sides as  $A^G$ -modules. By Corollary 5.1 each summand is a finitely-generated  $A^G$ -module. Thus we see that any module of covariants for A is contained in A as a direct summand.

Example 5.6. Let G be a finite abelian group of order prime to  $\operatorname{char}(k)$ . Then any irreducible representation of G is one-dimensional, and hence is defined by a character  $\chi: G \to \mathbb{G}_m = \operatorname{GL}_k(1)$ . For each  $\chi$ , let

$$A_{\gamma} = \{ a \in A : g \cdot a = \chi(g)a, \ \forall g \in G \}.$$

Then (5.5) translates into the equality

$$A = \bigoplus_{\chi: G \to \mathbb{G}_m} A_{\chi}.$$

The subring of invariants  $A^G$  corresponds to the trivial character.

### 5.3 Linear representations of reductive groups

Let U be a maximal unipotent subgroup of a connected linearly reductive group G. The reader unfamiliar with the notion may assume that  $G = \operatorname{GL}_k(n+1)$  or  $\operatorname{SL}_k(n+1)$ , in which case U is a subgroup conjugate to the group of unipotent upper-triangular matrices. We have seen in section 5.1 that in the case  $G = \operatorname{SL}_k(2)$  the algebra  $\operatorname{Pol}(\operatorname{Pol}_d(k^2))^U$  is isomorphic to the algebra of covariants  $\operatorname{Cov}(G;\operatorname{Pol}_d(k^2),k^2)$ . In this section we shall give a similar interpretation of the algebra  $A^U$  where G acts rationally on a finitely generated k-algebra A.

For this we have to remind some basic facts about finite-dimensional linear rational representations of a reductive group G. We assume that  $\operatorname{char}(k)=0$ . Let  $\rho:G\to\operatorname{GL}(W)$  be such a representation. Choose a maximal torus T in G (when  $G=\operatorname{GL}_k(n+1)$  it is a subgroup of diagonal matrices or its conjugate subgroup). Restricting  $\rho$  to T we get a linear rational representation  $\bar{\rho}:T\to\operatorname{GL}(W)$ . Since T is commutative we can decompose W into the direct sum of eigensubspaces

$$W = \bigoplus_{\chi \in \mathcal{X}(T)} W_{\chi},$$

where  $\mathcal{X}(T)$  denotes the set of rational characters of T, i.e. homomorphisms of algebraic groups  $T \to \mathbb{G}_m$ , and

$$W_{\chi} = \{ w \in W : \bar{\rho}(t)(w) = \chi(t)w, \quad \forall t \in T \}.$$

Any rational character  $\chi: T \to \mathbb{G}_m$  is defined by a homomorphism of the algebras of regular functions

$$k[t, t^{-1}] \cong \mathcal{O}(\mathbb{G}_m^r) \to \mathcal{O}(\mathbb{G}_m) \cong k[t_1, t_1^{-1}, \dots, t_r, t_r^{-1}].$$

It is easy to see that it is given by a Laurent monomial  $t^a = t_1^{a_1} \dots t_r^{a_r}$ , where  $a = (a_1, \dots, a_r) \in \mathbb{Z}^r$ . The monomial is the image of t. The converse is also true. Also it is easy to see that the product of characters corresponds to the vector addition of the exponents a. This gives us an isomorphism of abelian groups

$$\mathcal{X}(T) \cong \mathbb{Z}^r$$
.

Let

$$Wt(\rho) = \{ \chi : W_{\chi} \neq \{0\} \}. \tag{5.6}$$

Since W is finite-dimensional,  $Wt(\rho)$  is a finite set. It is called the set of weights of  $\rho$ .

A rational character  $\alpha: T \to \mathbb{G}_m^*$  is called a *root* if there exists a non-trivial homomorphism of algebraic groups  $f_{\alpha}: \mathbb{G}_a \to G$  such that, for any  $t \in T$  and any  $x \in k$ ,

$$t \cdot f_{\alpha}(x) \cdot t^{-1} = f_{\alpha}(\alpha(t)x).$$

For example, there are n(n+1) roots for  $G = GL_k(n+1)$ . Each is defined by the homomorphism which sends  $x \in k$  to the matrix  $I_n + xE_{ij}$ , where  $1 \le i, j \le n, i \ne j$ .

Let R be the set of roots. There is the notion of positive roots. We fix a Borel subgroup B containing T (in the case  $G = \operatorname{GL}_k(n+1)$  this will be the group of upper-triangular matrices or its conjugate subgroup) and require that the image of  $f_{\alpha}$  is contained in B. Let  $R_+$  be the set of positive roots. Then  $R = R_+ \coprod R_-$ , where  $R_- = \{-\alpha, \alpha \in R_+\}$  is the set of negative roots. There is a finite set of roots  $\Delta = \{\alpha_1, \ldots, \alpha_r\}$  such that any root can be written as a linear combination of  $\alpha_i$ 's with nonnegative integer coefficients. They are called simple roots. The number r is called the rank of G. In the case  $\operatorname{SL}_k(n+1)$  these are the roots with  $f_{\alpha_i}(a) = I_{n+1} + aE_{ii+1}, i = 1, \ldots, n$ . Under the isomorphism  $\mathcal{X}(T) \cong \mathbb{Z}^n$  they correspond to the vectors  $e_i - e_{i+1}$ , where  $(e_1, \ldots, e_{n+1})$  is the standard basis of  $\mathbb{Z}^{n+1}$ .

Let  $U_{\alpha}$  denote the image of the homomorphism  $f_{\alpha}(\mathbb{G}_a)$  corresponding to a root  $\alpha$ . One can show that the subgroups

$$U^{+} = \prod_{\alpha \in R_{+}} U_{\alpha}, \quad U^{-} = \prod_{\alpha \in R_{-}} U_{\alpha}$$

are maximal unipotent subgroups of G. In the case  $G = \mathrm{SL}_k(n+1)$  the group  $U^+$  (resp.  $U^-$ ) is the subgroup of upper-triangular (resp. low-triangular) matrices.

We have the following

#### Lemma 5.1. Let

$$W = \bigoplus_{\chi \in Wt(\rho)} W_{\chi}.$$

For every root  $\alpha \in R$ , we have

$$\rho(U_{\alpha})(W_{\chi}) \subset \bigoplus_{i>0} W_{\chi+i\alpha}.$$

*Proof.* Let  $W \to k[T] \otimes W$  be the homomorphism defining the action of  $U_{\alpha}$  on W. For any  $w \in W_{\chi}$  its image is equal to  $\sum_{i \geq 0} T^i \otimes w_i$ . This means that for any  $x \in k$ ,

$$\rho(f_{\alpha}(x))(w) = \sum_{i>0} x^{i} w_{i}. \tag{5.7}$$

By definition of a root

$$\rho(f_{\alpha}(\alpha(t)x))(w) = \sum_{i} \alpha(t)^{i} x^{i} w_{i}$$

and

$$\rho(t)\rho(f_{\alpha}(x))(w) = \sum_{i} x^{i}\rho(t)(w_{i}) = \rho(f_{\alpha}(\alpha(t)x)\rho(t))(w) =$$

$$\rho(f_{\alpha}(\alpha(t)x))(\chi(t)w) = \chi(t) \sum_{i} \alpha(t)^{i} x^{i} w_{i}.$$

Comparing the coefficients at  $x^i$  we get  $w_i \in W_{\chi+i\alpha}$ . Thus equation (5.7) gives  $\rho(U_\alpha)(w) \subset \bigoplus_{i\geq 0} W_{\chi+i\alpha}$ .

The set  $R_+$  defines an order on the set of characters. We say that  $\chi \geq \chi'$  if  $\chi - \chi'$  is equal to a linear combination of positive roots with non-negative coefficients. Let  $\lambda \in \operatorname{Wt}(\rho)$  be a maximal element (not necessary unique) with respect to this order. Then for any  $\alpha \in R_+$  we have  $W_{\lambda+i\alpha} = \{0\}$  if i > 0. It follows from (5.7) that  $\rho(U_{\alpha})$  acts identically on  $W_{\lambda}$ . Thus the whole group  $U^+$  acts identically on  $W_{\lambda}$ . On the other hand, by Lemma 5.1, we get

$$\rho(U^-)(W_\lambda) \subset \bigoplus_{\chi \leq \lambda} W_{\chi}.$$

Since  $\rho(T)(W_{\lambda}) = W_{\lambda}$ , all elements  $g \in G$  of the form  $u^+ \cdot t \cdot u^-$ , where  $u^{\pm} \in U^{\pm}, t \in T$ , leave the subspace

$$W(\lambda) = \bigoplus_{\chi < \lambda} W_{\chi}$$

invariant. Since the subset  $U^+ \cdot T \cdot U^-$  is Zariski dense in G (check it for  $G = \operatorname{SL}_k(n+1)$  or  $\operatorname{GL}_k(n+1)$  where this set consists of matrices with non-zero pivots), all elements of G leave  $W(\lambda)$  invariant. Thus  $W(\lambda)$  is a G-submodule. Let  $v \in W_{\lambda} \setminus \{0\}$ . Consider the G-submodule  $W(\lambda)_v$  generated by v. Obviously it is contained in  $W(\lambda)$  and

$$W(\lambda)_v \cap W_{\lambda} = kv.$$

In fact,  $U^+$  does not change v, T multiplies it by a constant, and  $U^-$  sends v to the sum  $v + \sum_{\chi < \lambda} v_{\chi}$ , where  $v_{\chi} \in W_{\chi}$ . We consider a complementary subspace to  $W(\lambda)_v$  in  $W(\lambda)$  and choose again a nonzero vector v' in it to get a submodule  $W(\lambda)_{v'}$ . Continuing in this way we will decompose  $W(\lambda)$  as the direct sum of dim  $W_{\lambda}$  submodules. Each summand V has the following properties:

- (i) there exists a weight  $\lambda$  such that  $V = \bigoplus_{\chi < \lambda} V_{\chi}$ ;
- (ii) dim  $V_{\lambda} = 1$ , a nonzero vector in  $V_{\lambda}$  is called a highest vector;
- (iii)  $\rho(U^+)|V_{\lambda}$  is the identity representation.

Such a G-module is called a highest weight module. It is determined uniquely (up to isomorphism) by the character  $\lambda$  (highest weight) and is denoted by  $L(\lambda)$ . Thus we infer from the discussion above the following

**Theorem 5.2.** Every finite-dimensional rational representation of a connected linearly reductive group G is isomorphic to the direct sum of highest weight representations  $L(\lambda)$ .

Not every weight  $\chi$  occurs as a highest weight of some  $L(\lambda)$ . The ones which occur are called *dominant weights*. This set is preserved under taking the dual module, i.e.  $L(\lambda)^* = L(\lambda^*)$  for some dominant weight  $\lambda^*$ . We shall describe dominant weights in the next section.

Let us return to the situation when a reductive group G acts regularly on an affine algebraic variety  $X = \operatorname{Spec}(A)$ . For every dominant weight  $\lambda$  a homomorphism of G-modules  $L(\lambda) \to A$  is determined by the image of a fixed highest vector of  $L(\lambda)$ . The set of such images forms a  $A^G$ -submodule  $A^{(\lambda)}$  of A. We have

$$(L(\lambda) \otimes A)^G = \operatorname{Hom}_k(L(\lambda^*), A)^G = A^{(\lambda^*)}.$$

It is easy to see that, if v is a highest vector of  $L(\lambda)$  and v' is a highest vector of  $L(\lambda')$ , the vector  $v \otimes v'$  is a highest vector in an irreducible summand of the representation  $L(\lambda) \otimes L(\lambda')$  isomorphic to  $L(\lambda + \lambda')$ . This easily implies that the subalgebra of the  $A^G$ -algebra A generated by the images of highest vectors is isomorphic to the direct sum of the  $A^G$ -modules  $A^{(\lambda)}$ , where  $\lambda$  runs through the set of dominant weights. Since  $U^+$  acts identically on any highest weight we see that

$$\bigoplus_{\lambda} A^{(\lambda)} \subset A^{U^+}$$
.

Conversely, if  $a \in A^{U^+}$ , by (5.4) it can be written uniquely as a sum  $\sum_{\rho} a_{\rho}$ , where each  $a_{\rho}$  belongs to an irreducible G-submodule of A. This implies that each  $a_{\rho}$  is  $U^+$ -invariant and hence generates a submodule isomorphic to  $L(\lambda)$  for some dominant weight  $\lambda$ . This shows that

$$\bigoplus_{\lambda} A^{(\lambda)} \cong A^{U^+}. \tag{5.8}$$

Since every irreducible representation is isomorphic to some highest weight representation  $L(\lambda)$ , we can apply (5.4) to obtain an isomorphism of  $A^G$ -modules

$$A \cong \bigoplus_{\lambda} Hom_k(L(\lambda^*), A)^G \otimes L(\lambda^*).$$

Now we take the submodule of U-invariant elements, we get

$$A^{U^+} \cong \bigoplus_{\lambda} Hom_k(L(\lambda^*), A)^G \otimes L(\lambda^*)^{U^+}.$$

It follows from the definition of  $L(\lambda)$  that  $L(\lambda^*)^{U^+} = L(\lambda)_{\lambda}$  is one-dimensional (spanned by a highest vector). This gives

$$A^{U^+} \cong \bigoplus_{\lambda} A^{(\lambda)} \otimes_k k \cong \bigoplus_{\lambda} A^{(\lambda)}.$$

We shall see a little later that  $A^{U^+}$  is a finitely generated algebra.

# 5.4 Dominant weights

Let us now describe dominant weights. For every root  $\alpha$  there is the *dual* root  $\check{\alpha}$  which is a homomorphism  $\check{\alpha}: \mathbb{G}_m \to T$ . It is characterized by the property that, for any  $t \in \mathbb{G}_m$  and  $x \in \mathbb{G}_m$ ,

- (i)  $\check{\alpha}(t)f_{\alpha}(x)\check{\alpha}^{-1}(t) = f_{\alpha}(x);$
- (ii)  $\alpha \circ \check{\alpha}(t) = t^2$ .

For example when G = GL(n+1) and  $U_{\alpha}$  is the subgroup  $I_n + kE_{ij}$ , the dual root  $\check{\alpha}$  is equal to the homomorphism  $t \to (I_{n+1} + (t-1)E_{ii} + (t^{-1}-1)E_{jj})$ .

Note that the composition of a homomorphism  $f: \mathbb{G}_m \to T$  (called a one-parameter subgroup) and a character  $\chi: T \to \mathbb{G}_m$  can be identified with an integer. We denote it by  $(f, \chi)$ .

Let  $\mathcal{X}(T)^*$  be the set of one-parameter subgroups. An element of  $\mathcal{X}(T)^*$  is given by a homomorphism of algebras of functions

$$k[T_1^{\pm 1}, \dots, T_r^{\pm 1}] \cong \mathcal{O}(T) \to \mathcal{O}(\mathbb{G}_m) \cong k[t, t^{-1}]$$

It is defined by the images of  $T_i$ . Since it defines a homomorphism of groups it is easy to see that the image of  $T_i$  is a monomial  $t^m$  for some  $m \in \mathbb{Z}$ . Thus a one-parameter subgroup is given by a vector  $(m_1, \ldots, m_r) \in \mathbb{Z}^r$ . Since each one-parameter subgroup takes values in a commutative group, we can multiply them. This of course corresponds to the addition of vectors in  $\mathbb{Z}^r$ . The composition of a character and a one-parameter subgroup corresponds to the dot-product in  $\mathbb{Z}^r$ . So, it is natural to distinguish the group of characters  $\mathcal{X}(T)$  and the group  $\mathcal{X}(T)^*$  of one-parameter subgroups by identifying one of them, say  $\mathcal{X}(T)$  with  $\mathbb{Z}^r$  and the other one with the dual group  $\mathrm{Hom}(\mathbb{Z}^r,\mathbb{Z}) = (\mathbb{Z}^r)^*$ . Then the pairing  $(f,\chi)$  from above is equal to  $(f,\chi) = f(\chi)$ .

A character  $\lambda: T \to \mathbb{G}_m$  is called dominant weight if for any positive root  $\alpha$  one has  $(\check{\alpha}, \lambda) \geq 0$ .

Finally, one defines a fundamental weight as a dominant weight  $\omega_j$  with property  $(\check{\alpha}_i, \omega_j) = \delta_{ij}$  (the Kronecker symbol). Of course, one has to prove first that such vectors, which are obviously exist in  $\mathcal{X}(T) \otimes \mathbb{Q}$ , are really in  $\mathcal{X}(T)$ . In the case when R spans the group of characters of T (e.g.  $G = \mathrm{SL}(n+1)$  but not  $\mathrm{GL}(n+1)$ ), a fundamental weight is uniquely determined by this property. Let  $\mathcal{X}(T)_0$  be the subgroup of  $\mathcal{X}(T)$  which consists of characters  $\chi$  such that  $(\check{\alpha}, \chi) = 0$  for all roots  $\alpha \in R$ . Choose a basis

 $(\omega_0^{(1)}, \ldots, \omega_0^{(k)})$  of  $\mathcal{X}(T)_0$  and let  $\omega_1, \ldots, \omega_r$  be the set of fundamental roots no two of which are congruent modulo the subgroup  $\mathcal{X}(T)_0$ . Then any dominant weight can be written uniquely in the form

$$\lambda = n_1 \omega_1 + \ldots + n_r \omega_r + a_1 \omega_0^{(1)} + \ldots + a_s \omega_0^{(s)}, \tag{5.9}$$

where  $n_i \in \mathbb{Z}_{>0}, i = 1, ..., r, a_i \in \mathbb{Z}, i = 1, ..., s$ .

Any dominant weight  $\lambda_0$  from  $\mathcal{X}(T)_0$  defines a one-dimensional representation  $G \to \mathbb{G}_m$ . We have  $r = \operatorname{rank}(G)$  fundamental representations  $L(\omega_i)$  corresponding to fundamental weights  $\omega_i$ . If  $\lambda$  is as in (5.9), then  $L(\lambda)$  is isomorphic to an irreducible quotient of the tensor product  $\bigotimes_{i=1}^r V(\omega_i)^{\otimes n_i}$  tensored with the one-dimensional representation defined by the vector  $\sum_i a_i \omega_0^{(i)}$ .

The decomposition of any dominant weight as a sum of fundamental weights allows us to prove the result which we promised before:

**Theorem 5.3.** Let U be a maximal unipotent group of a reductive group G. Assume that G acts rationally on a finitely generated k-algebra A. Then the subalgebra  $A^U$  of U-invariant elements is finitely generated over k.

Proof. Since all maximal unipotent subgroups are conjugate, we may assume that  $U = U^+$ . We know that for each dominant weight  $\lambda$  the module of covariants  $(L(\lambda) \otimes A)^G$  is finitely generated over  $A^G$ . Let S be the union of the sets of generators of such modules for  $\lambda = \omega_i, i = 1, \ldots, r, \omega_0^{(j)}, -\omega_0^{(j)}, j = 1, \ldots, s$ . Using the equality (5.8) we see that S generates  $A^U$  as a  $A^G$ -module. Since  $A^G$  is finitely generated by Nagata's theorem,  $A^U$  must be finitely generated too.

### 5.5 Cayley-Sylvester formula

Next let us describe explicitly irreducible representations for the group GL(n+1). We choose the maximal torus T which consists of diagonal matrices  $diag(t_1, \ldots, t_{n+1})$ . The corresponding Borel subgroup is the group of upper-triangular matrices. We have, for any  $1 \le i, j \le n+1, i \ne j$ ,

$$\operatorname{diag}(t_1,\ldots,t_{n+1})(I_{n+1}+xE_{ij})\operatorname{diag}(t_1,\ldots,t_{n+1})^{-1}=I_{n+1}+(t_i/t_j)xE_{ij}.$$

This shows that the characters  $\alpha_{ij}$ : diag $[t_1, \ldots, t_{n+1}] \to t_i t_j^{-1}$  are roots. Under the isomorphism  $\mathcal{X}(T) \cong \mathbb{Z}^{n+1}$  each  $\alpha_{ij}$  corresponds to the vector  $e_i - e_j$ . So we have n(n+1) roots. Since  $I_{n+1} + xE_{ij} \in B$  if and only if i < j we see that  $R_+$  consists of roots  $\alpha_{ij}$  with i < j. Simple roots are

$$\alpha_i = \alpha_{ii+1}, i = 1, \dots, n+1.$$

The dual roots are the homomorphisms  $\alpha_{ij}: \mathbb{G}_m \to T$  defined by  $t \to I_{n+1} + (t-1)E_{ii} + (t-1)E_{jj}$ . Thus all dual roots can be identified with linear functions  $\mathbb{Z}^n \to \mathbb{Z}$  defined by  $e_i^* - e_j^*$  where  $e_1^*, \ldots, e_{n+1}^*$  is the dual basis to the standard basis  $e_1, \ldots, e_{n+1}$ . A dominant weight  $\lambda = (m_1, \ldots, m_{n+1})$  must satisfy

$$\lambda \cdot (e_i - e_{i+1}) \ge 0$$

which translates into the inequalities  $m_i \geq m_{i+1}$ . There are n fundamental weights

$$\omega_i = e_1 + \ldots + e_i, \quad i = 1, \ldots, n,$$

and  $\mathcal{X}(T)_0$  is generated by the weight

$$\omega_0 = e_1 + \ldots + e_{n+1}.$$

The irreducible representation corresponding to  $\omega_0$  is of course the natural representation

$$\det: \mathrm{GL}_k(n+1) \to \mathbb{G}_m$$
.

We have

$$L(d\omega_1) = S^d(k^{n+1}) = \text{Pol}_d((k^{n+1})^*)$$

Here the highest weight is the monomial  $\xi_1^d$ , where  $\xi_1, \ldots, \xi_{n+1}$  is the standard basis of  $k^{n+1}$ . All other weights are  $\mathbf{i} = (i_1, \ldots, i_{n+1})$  with  $i_1 + \ldots + i_{n+1} = d$ . The corresponding subspace  $L(d\omega_1)_{\mathbf{i}}$  is spanned by the monomial  $\xi^{\mathbf{i}}$ . We can write

$$\mathbf{i} = de_1 - \sum_{s=1}^{n} (d - i_1 - \dots - i_s)(e_s - e_{s+1}) =$$

$$= d\omega_1 - (d - i_1 - i_2)\alpha_1 - \ldots - (d - i_1 - \ldots - i_n)\alpha_n.$$

$$L(d\omega_i) = S^d(\Lambda^i k^{n+1}) = \operatorname{Pol}_d((\Lambda^i k^{n+1})^*), \quad i = 2, \dots, n.$$

Here the highest weight is  $(\xi_1 \wedge \ldots \wedge \xi_i)^d$ . When i = n we get  $(\Lambda^n(k^{n+1}))^* \cong (k^{n+1}) \otimes \det$  and hence

$$\operatorname{Pol}_d(k^{n+1}) = L(d\omega_n) \otimes \det^{-d}$$
.

The highest weight here is the monomial  $x_0^d$ .

Consider the case n=1. Let V be a 2-dimensional vector space. Since  $\Lambda^2 V$  is isomorphic to the representation det :  $GL(V) \to \mathbb{G}_m$ , we have an isomorphism of representations:

$$V \cong V^* \otimes \det$$
.

In particular,  $V \cong V^*$  as representations of SL(V). We have one fundamental weight  $\omega_1$  so that any irreducible representation with dominant weight  $\lambda = (m_1, m_2), m_1 \geq m_2$  is isomorphic to

$$S^{m_1-m_2}(V) \otimes \det^{m_2} \cong S^{m_1-m_2}(V^*) \otimes \det^{m_1} \cong \operatorname{Pol}_{m_1-m_2}(V) \otimes \det^{m_1}.$$

Let us consider the representation  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))$ . The space has a basis formed by monomials in coefficients of a general binary d-form

$$A_0 T_0^d + dA_1 t_0^{d-1} t_1 + \ldots + A_d t_1^d = (\xi_0 t_0 + \xi_1 t_1)^d.$$

So we can write any monomial of degree m in  $A_i$ 's as a monomial of degree md in the basis  $(\xi_1, \xi_2)$  of V:

$$A_{i_1} \cdots A_{i_m} = (\xi_1^{d-i_1} \xi_2^{i_1}) \cdots (\xi_1^{d-i_m} \xi_2^{i_m}) = \xi_1^{md-w} \xi_2^w,$$

where

$$w = i_1 + \ldots + i_m$$

is the weight of the monomial  $A_{i_1} \cdots A_{i_m}$ . This shows that  $A_{i_1} \cdots A_{i_m}$  belongs to the weight space with character (md - w, w). Let

$$\mathcal{P}(m, d, w) = \{(i_1, \dots, i_m) : 0 \le i_1 \le \dots \le i_m \le d, i_1 + \dots + i_m = w\}.$$

The cardinality  $p_w(m,d)$  of this set is equal to the number of monomials  $A_{i_1} \cdots A_{i_m}$  with weight w. Let  $\lambda = (m_1, m_2)$  be a dominant weight. Suppose  $V(\lambda)$  is a direct summand of  $\operatorname{Pol}_m(\operatorname{Pol}_m(V))$ . Then  $(m_1, m_2) = (md - w, w)$  for some w with  $md - 2w \geq 0$ . The weights of  $V(\lambda)$  are the vectors  $(md - w - i, w + i), i = 0, \ldots, md - w$ . This shows that  $\operatorname{Pol}_m(\operatorname{Pol}_m(V))$  contains

$$p_0(m,d) = 1$$
 summands  $V(md,0) \cong \operatorname{Pol}_{md}(V) \otimes \det^{md}$ 

$$p_1(m,d) - p(m,d)$$
 summands  $V(md-1,1) \cong \operatorname{Pol}_{md-2}(V) \otimes \det^{md-1}$ 

$$p_2(m,d) - p_1(m,d)$$
 summands  $V(md-2,2) \cong \operatorname{Pol}_{md-4}(V) \otimes \det^{md-2}$ 

and so on. It is known that the generating function for the numbers  $p_i(m, d)$  is equal to the Gaussian polynomial

$$\sum_{i=0} p_i(m,d)t^i = {m+d \brack d},$$

where

$$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{(1-x^a)(1-x^{a-1})\dots(1-x^{a-b+1})}{(1-x)(1-x^2)\dots(1-x^b)}.$$

(see [98]). This gives us

**Theorem 5.4.** (Plethysm decomposition) Let dim V = 2. There is an isomorphism of representations of GL(V):

$$Pol_m(Pol_d(V)) \cong \bigoplus_{w=0}^{[md/2]} (Pol_{md-2w}(V) \otimes det^{md-w})^{\oplus N(m,d,w)},$$

where

$$N(m,d,w) = coefficient \ at \ x^w \ in \ the \ polynomial \ (1-x) {m+d \brack d}.$$

Restricting the representation to the subgroup SL(V) we have an isomorphism of SL(V)-representations

$$\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \cong \bigoplus_{w=0}^{[md/2]} \operatorname{Pol}_{md-2w}(V)^{\oplus N(m,d,w)}.$$

As a corollary we obtain the *Cayley-Sylvester formula* for the dimension of the space of covariants:

#### Corollary 5.2.

$$\dim Cov_{m,p}(d) = N(m, d, (md - p)/2)$$

and it is zero if md - p is odd.

We also get the following

**Theorem 5.5.** (Hermite's Reciprocity) There is an isomorphism of SL(V)representations

$$Pol_m(Pol_d(V)) \cong Pol_d(Pol_m(V)).$$

*Proof.* This follows from the following symmetry property of the numbers  $p_w(m,d)$ :

$$p_w(m,d) = p_w(d,m).$$

This can be checked by defining the bijection between the sets  $\mathcal{P}(m, d, w)$  and  $\mathcal{P}(d, m, w)$  by sending the vector  $(i_1, \ldots, i_m) \in \mathcal{P}(m, d, w)$  to the vector  $(j_1, \ldots, j_d)$ , where

$$j_s = \#\{t : i_s \ge s\}, s = 1, \dots, d.$$

It follows also from the following property of the Gaussian polynomials

$${m+d \brack d} = {m+d \brack m}.$$

#### Corollary 5.3.

$$\dim Pol_m(Pol_d(V))^{SL(V)} = \dim Pol_d(Pol_m(V))^{SL(V)}.$$

Remark 5.1. The covariant

$$\operatorname{Pol}_m(\operatorname{Pol}_d(V)) \to \operatorname{Pol}_{md}(V)$$
 (5.10)

admits a simple interpretation in terms of the Veronese map. Let V be a linear space of dimension n+1. Recall that the Veronese map of degree d in dimension n is a regular map

$$v_d: \mathbb{P}(V) \to \mathbb{P}(\mathrm{Pol}_d(V)^*)$$

given by the complete linear system |dH|, where H is a hyperplane in  $\mathbb{P}(V)$ . It is given by homogeneous polynomials of degree d which form a basis in  $\operatorname{Pol}_d(V)$ . Assume  $d! \neq 0$  in k so that we can identify the spaces  $\operatorname{Pol}(V)^*$  and  $\operatorname{Pol}(V^*)$ . It is easy to see that this map is  $\operatorname{SL}(V)$ -equivariant, where  $\operatorname{SL}(V)$  acts on  $\mathbb{P}(V)$  via its natural action on V, and on  $\mathbb{P}(\operatorname{Pol}_d(V^*))$  via its linear representation on  $\operatorname{Pol}(V)$  and hence on  $\operatorname{Pol}(V^*)$ . By definition, the pre-image under  $v_d$  of a hypersurface of degree m in  $\mathbb{P}(\operatorname{Pol}_d(V^*))$  is a hypersurface of degree md in  $\mathbb{P}(V)$ . This gives an equivariant linear map

$$v_d(m)^* : \operatorname{Pol}_m(\operatorname{Pol}_d(V^*)) \to \operatorname{Pol}_{md}(V).$$

When n = 1,  $V^* \cong V$  as SL(V)-modules and the map is the covariant (5.10). Note that the image of the Veronese map is always defined by equations of degree 2 (see [89]). The number of linear independent equations is equal to

$$\dim \operatorname{Pol}_2(\operatorname{Pol}_d(V)^*) - \dim \operatorname{Pol}_{2d}(V) =$$

$$\frac{1}{2} \binom{d+n}{n} \left( \binom{d+n}{n} + 1 \right) - \frac{1}{2} \binom{2d+n}{n}.$$

Thus, if m=2 the kernel of the map (5.10) is a SL(V)-submodule of the dimension given by the above formula.

Example 5.7. Take m = d = 2. We get  $p_0(2,2) = p_1(2,2) = 1, p_2(2,2) = 2$ . Thus we have the following isomorphism of SL(V)-representations:

$$\operatorname{Pol}_2(\operatorname{Pol}_2(V)) \cong \operatorname{Pol}_4(V) \oplus k.$$

Using the previor remark it has a simple geometric interpretation. In this case the Veronese variety is a conic, and the kernel of  $v_2(2)^*$  is one-dimensional. It is spanned by a quadratic polynomial whose zeros is the conic.

Example 5.8. Take m = 2, d = 3. Then we have an isomorphism of SL(V)modules  $Pol_2(Pol_3(V)) \cong Pol_3(Pol_2(V))$ . Thus quadrics in  $\mathbb{P}^3 \cong Pol_3(V)$ can be canonically identified with cubics in  $\mathbb{P}^2 \cong Pol_2(V)$ . The Veronese
curve  $v_3(\mathbb{P}^1)$  is a rational cubic space curve. It is defined by three linearly independent quadric equations. Thus the kernel of the projection  $Pol_2(Pol_3(V)) \to Pol_6(V)$  is equal to this space. Using the pletism decomposition

$$\operatorname{Pol}_2(\operatorname{Pol}_3(V)) \cong \operatorname{Pol}_6(V) \oplus \operatorname{Pol}_2(V).$$

we can identify this space, SL(V)-equivariantly, with the space of binary quadratic forms.

# 5.6 Standard tableaux again

Finally let us explain the tableau functions from the point of view of representation theory. Note that any of  $L(\omega_i)$  can be embedded (as representations) into the tensor product of some copies of  $V = k^{n+1}$ . So when we take their symmetric products and their tensor products we can embed it again into some  $V^{\otimes N}$ . So each irreducible representation is realized as an irreducible submodule of  $V^{\otimes N}$  for some N. Let us find them by decomposing  $V^{\otimes N}$  into a direct sum of irreducible representations.

Fix a basis  $\xi_1, \ldots, \xi_{n+1}$  of V. For any ordered subset  $I = (i_1, \ldots, i_N)$  of [n+1] let  $\xi_I$  denote the decomposable tensor  $\xi_{i_1} \otimes \ldots \otimes \xi_{i_N}$ . A diagonal matrix diag $[t_1, \ldots, t_{n+1}] \in T$  acts on  $e_I$  by multiplying it with the monomial  $t_I = t_{i_1} \ldots t_{i_N}$ . Writing any element of  $V^{\otimes N}$  as a sum of tensors  $\xi_I$  we easily see that the weights of our representation are the vectors  $e_I = e_{i_1} + \ldots + e_{i_N}$ . The weight subspace  $W_{e_I}$  is spanned by the tensors  $\xi_J$ , where J is obtained from I by a permutation of [N]. A vector  $e_I$  is a dominant weight if

$$e_I \cdot (e_i - e_{i+1}) \ge 0, \quad i = 1, \dots, n.$$

This means that

$$e_I = (m_1, \dots, m_{n+1}), \quad m_1 \ge m_2 \ge \dots \ge m_{n+1} \ge 0, m_1 + \dots + m_{n+1} = N.$$

Assume for the moment that N=1. Then the highest vector is  $\xi_1$ . Assume that N=2. Then  $\xi_1 \otimes \xi_2$  is sent by  $f_{\alpha_1}(1)=I_{n+1}+E_{12}$  to  $\xi_1 \otimes (\xi_2+\xi_1)=\xi_1 \otimes \xi_2+\xi_1 \otimes \xi_1$ . Similarly,  $\xi_2 \otimes \xi_1$  is sent to  $\xi_2 \otimes \xi_1+\xi_1 \otimes \xi_1$ . So, in order that  $t=\lambda \xi_1 \otimes \xi_2+\mu \xi_2 \otimes \xi_1$  be invariant under  $U^+$  we must have  $\lambda+\mu=0$ , i.e. t is proportional to  $\xi_1 \otimes \xi_2-\xi_2 \otimes \xi_1=\xi_1 \wedge \xi_2$ . If N=3 we must have

$$t = \xi_1 \otimes (\xi_1 \otimes \xi_2 - \xi_2 \otimes \xi_1) = \xi_1 \otimes \xi_1 \otimes \xi_2 - \xi_1 \otimes \xi_2 \otimes \xi_1$$

or

$$t = \xi_1 \otimes \xi_1 \otimes \xi_2 - \xi_2 \otimes \xi_1 \otimes \xi_1$$

or

$$t = \xi_1 \otimes \xi_2 \otimes \xi_1 - \xi_2 \otimes \xi_1 \otimes \xi_1.$$

Now in the case of arbitrary N we do as follows: consider a matrix

$$\mathbf{E} = \begin{pmatrix} \xi_1^{(1)} & \xi_1^{(2)} & \dots & \xi_1^{(N)} \\ \vdots & \vdots & \vdots & \vdots \\ \xi_{n+1}^{(1)} & \xi_{n+1}^{(2)} & \dots & \xi_{n+1}^{(N)} \end{pmatrix}$$

81

Each column represents a basis  $(\xi_1, \ldots, \xi_{n+1})$ . We will be taking

 $p_1 = m_1 - m_2$  minors of order 1 from the first row,

 $p_2 = m_2 - m_3$  minors of order 2 from the first 2 rows,

. . . . . . . . . . . . .

$$p_{n+1} = m_{n+1}$$
 minors of order n+1

in such a way that the minors do not have common columns. Of course we compute the minors using the tensor product operation. We first take the product of the minors in an arbitrary order but then reorganize the sum by permuting the vectors in each decomposable tensor in such a way that each summand has the upper indices in the increasing order. These will be our highest vectors.

It is convenient to describe such a vector by a Young diagram. We view a dominant vector  $\lambda = (m_1, \ldots, m_{n+1})$  as a partition of N. It is described by putting  $m_i$  boxes in the i-th row. It has  $p_j = m_j - m_{j-1}$  columns of length  $j = 1, \ldots, n+1$ . We fill each box with different numbers  $\tau_{ij} \in [N]$ . Each  $\tau_{ij}$  indicates which column enters into the minor of the matrix  $\mathbf{E}$  of the corresponding size. A filled Young diagram is called *standard* if each row and each column is in increasing order. Here is an example for a Young diagram for N = 9 and the partition (5, 3, 1):

It turns out that the multiplicity of each  $L(\lambda)$  in  $V^{\otimes N}$  is equal to the number of standard filled Young diagrams of the shape given by the vector  $\lambda$ . It is given by the *hook formula* 

$$\operatorname{mult}_{\lambda}(V^{\otimes N}) = \frac{N!}{\prod_{1 \leq i \leq n+1, 1 \leq j \leq m_i} (m_i + n - i - j)}$$

(see [56]).

Example 5.9. We used to describe invariants in  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))$  by embedding this space into  $V^{\otimes md}$  via the polarization map. Since our invariants are transformed in the representation  $\det^w$  of  $\operatorname{GL}(n+1)$  where w = md/(n+1), the

corresponding dominant vector is  $\lambda = (w, \dots, w) \in \mathbb{Z}^{n+1}$ . The representation  $L(\lambda)$  is of course one-dimensional. The Young diagram is of rectangular shape with n+1 rows and w = md/(n+1) columns.

The standard diagrams corresponding to our representation are filled in such a way that if we write the set [N] = [md] as the disjoint union of m subsets  $\{1, \ldots, d\}, \{d+1, \ldots, 2d\}, \ldots, \{(m-1)d, \ldots, md\}$ , then each column consists of n+1 numbers taken from different subsets of [md]. We leave to the reader to find a natural bijective correspondence between standard Young diagrams of this shape and our standard tableaux defined in Lecture 1. The number of such diagrams is equal to the multiplicity of  $L(\lambda)$  in the representation  $\operatorname{Pol}_m(\operatorname{Pol}_d(V))^{\operatorname{SL}(n+1)}$  which is of course equal to the dimension of the space. The general formula for the dimension is not known for n>1.

# Bibliographical notes

The notion of a covariant of a quantic (= a homogeneous form) goes back to A. Cayley. It is discussed in all classical books in invariant theory. The fact that a covariant of a binary form corresponds to a semi-invariant was first discovered by M. Roberts in 1861 [78]. It can be already found in Salmon's book [84]. The result that the algebra of covariants of a binary form is finitely generated was first proved by P. Gordan [35] (see also classical proofs in [26], [36]). A modern proof can be found in [100]. Theorem 5.3 applied to the action of G = SL(V) on the ring  $Pol(Pol_d(V))$  is a generalization of Gordan's theorem. The first proof of this theorem was given by M. Khadzhiev [52]. Our exposition of the modern theory of covariants follows [75]. The algebra of covarians of binary forms of degree d was computed by P. Gordan for  $d \leq 6$ [35] and by v. Gall for degree d=7,8 [32], [33] (the proof of completeness of the generating set for d=7 may not be correct). For ternary forms the computations are known only for forms of degree 3 [34], [39] and not completed computations for degree 4 [85],[17] (a thesis of Emmy Noether was devoted to such computations). Combinants of two binary forms of degrees  $(d_1, d_2)$  are known in the cases  $d_1, d_2 \leq 4$  [83] (see a modern account of the case  $d_1 = d_2 = 3$  in [?]. Also are known combinants of two ternary forms of degrees  $(d_1, d_2) = (2, 2), (2, 3)$  [26].

The theory of linear representations of reductive groups is a subject of many books (see, for example, [30],[44]). The Cayley-Sylvester formula was

first proven by Sylvester in 1878 (see historical notes in [96]). Other proofs of the Cayley-Sylvester formula can be found in [95] and [96], [100]. Hermite's reciprocity goes back to 1854. One can find more about plethysms for representations of GL(n) in [30]. The relationship between Young diagrams and standard tableaux is discussed in many books (see [55],[100],[106]).

#### Exercises

- **5.1** Let  $\Phi : \operatorname{Pol}_d(F) \to \operatorname{Pol}_p(V)$  be a covariant of degree m and order p and  $I \in \operatorname{Pol}_{m'}(\operatorname{Pol}_p(V)^{\operatorname{SL}(V)})$  be an invariant. Consider the composition and compute its degree and weight.
- **5.2** Let Hess:  $\operatorname{Pol}_3(k^3) \to \operatorname{Pol}_3(k^3)$  be the Hessian covariant. Show that it defines a rational map of degree 3 from the projective space of plane cubic curves to itself. [Hint: By a projective transformation reduce a plane cubic to a Hesse form  $x_0^3 + x_1^3 + x_2^3 + ax_0x_1x_2 = 0$  and evaluate the covariant.]
- **5.3** Using the symbolic expression of covariants describe all covariants of degree n+1 on the space  $Pol(k^{n+1})$ .
- **5.4** Find a covariant of degree 2 and order 2 on the space  $\operatorname{Pol}_4(k^2)$ . Describe the points of indeterminacy for the corresponding rational map  $\mathbb{P}^4 \to \mathbb{P}^2$ .
- **5.5** Find the symbolic expression for the transvectant  $T^r$ .
- **5.6** Find all covariants of degree 3 for binary forms.
- **5.7** Define the r-th transvectant  $(f_1, \ldots, f_{n+1})^{(r)}$  of n+1 homogeneous forms in n+1 variables generalizing the definition of the covariant  $T^r$ . Prove that it is a concommitant and find its multi-degree and order.
- **5.8** Consider the operation of taking the dual hypersurface in projective space. Show that it defines a contravariant on the space  $\operatorname{Pol}_d(V)$ . Find its order and degree for n < 2.
- **5.9** Let F = 0 be a plane curve of degree 4. Consider the set of lines which intersect it in four points which make an anharmonic (resp. harmonic) cross-ratio. Show the set of such lines forms a plane curve in the dual plane. Find its degree and show that this construction defines a contravariant on the space  $\text{Pol}_4(k^3)$ . Find its degree.
- **5.10** Let G be a finite group which acts on a finitely generated domain A. Assume that the action is faithful (i.e. only g = 1 acts identically). Show that for any irreducible representation  $W_{\rho}$  of G the rank of the module of

covariants  $\operatorname{Hom}(W_{\rho}^*, A)^G$  is equal to  $\dim W_{\rho}$ . [Hint: Use the fact that each irreducible representation is contained in the regular representation (realized in the group algebra k[G] of G) with multiplicity equal to its dimension].

- **5.11** Let M be a finitely generated abelian group and k[M] be its group algebra over a field k. Show that
  - (i)  $D(M) = \operatorname{Spec}(k[M])$  is an affine algebraic group.
  - (ii)  $D(M) \cong \mathbb{G}_m^r$  if and only if M is free.
  - (iii) The group of rational homomorphisms  $D(M) \to \mathbb{G}_m$  is naturally isomorphic to M, and the group of rational homomorphisms  $\mathbb{G}_m \to D(M)$  is isomorphic to  $M^* = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ .
  - (iv) Each closed subgroup of D(M) is isomorphic to D(M') where M' is a factor group of M.
  - (v) There is a bijective correspondence between closed subgroups H of D(M) and subgroups of M.
- **5.12** Find the roots, dual roots, dominant weights, fundamental weights for the group G = SL(n+1).
- **5.13** Let  $L(\lambda)$  be a representation of G with highest vector v.
  - (i) Let l = kv be the line spanned by v. Show that the stabilizer  $G_l = \{g \in G : g \cdot l = l\}$  is a parabolic subgroup P (i.e. a closed subgroup containing a Borel subgroup).
  - (ii) Show that the map  $g \to g \cdot v$  defines a projective embedding of the homogeneous space  $G/P \to \mathbb{P}(L(\lambda))$ .
- (iii) Consider the case G = GL(n+1) and  $\lambda = \omega_i$  is one of the fundamental weights. Show that G/P is isomorphic to the Grassmanian variety Gr(i, n+1) and the map defined in (ii) is the Plücker embedding.
- **5.14** In the notation of section 5.1 show that  $V = L(\omega_1)$  for the group  $G = \operatorname{SL}(V)$ . Show that there is an isomorphism of  $\operatorname{Pol}(W)^G$ -modules  $\operatorname{Pol}(W)^H \cong \bigoplus_{p=0}^{\infty} \operatorname{Pol}(W)^{(p\omega_n)}$ .
- **5.15** Let H be a subgroup of  $G = \mathrm{SL}_k(n)$  which contains the subgroup U of upper-triangular matrices.

- 85
- (i) Show that for any highest weight module  $L(\lambda)$  one has  $\dim_k L(\lambda)^H \leq 1$  and the equality takes place if and only if H is contained in the stabilizer of a highest weight vector.
- (ii) Let  $\Lambda(H)$  be the set of  $\lambda$  for which the equality takes place. Show that for any action of G on  $X = \operatorname{Spec}(A)$  there is an isomorphism of  $A^G$ -modules  $A^H \cong \bigoplus_{\lambda \in \Lambda(H)} A^{(\lambda)}$ .
- (iii) Consider the example of H from the previous problem and find  $\Lambda(H)$ .
- **5.16** Let dim V=2 and char(k)=0. Show that there is an isomorphism of  $\mathrm{SL}(V)$ -modules

$$\operatorname{Pol}_2(\operatorname{Pol}_d(V)) \cong \bigoplus_{i \geq 0} \operatorname{Pol}_{2n-4i}(V).$$

- **5.17** Let V be as in the previous exercise. Find the decomposition of the GL(V)-module  $Pol_n(V) \otimes Pol_m(V)$  into irreducible summands (the Clebsch-Gordan decomposition).
- **5.18** Find an irreducible representation of  $GL_k(3)$  with highest weight equal to  $\omega_1 + \omega_2$ .

# Lecture 6

# Quotients

# 6.1 Categorical and geometric quotients

Let G be an affine algebraic group acting (as always rationally) on an algebraic variety X over an algebraically closed field k. We would like to define the quotient variety X/G whose points are orbits. As we explained in Lecture 1 this is a hopeless task due to the existence of non-closed orbits. So, we need to modify the definition of X/G and for this let us look first on the categorical notion of a quotient object with respect to an equivalence relation.

Let (X,R) be a set together with an equivalence relation  $R \subset X \times X$ . The canonical map  $p: X \to X/R$  has the universal property with respect to all maps  $f: X \to Y$  such that  $R \subset X \times_Y X = (f \times f)^{-1}(\Delta_Y)$ . Also we have  $R = X \times_{X/R} X = (p \times p)^{-1}(\Delta_{X/R})$ . This equality expresses the property that the fibres of the map p are the equivalence classes. Let us try to say it in categorical language. Let  $\mathcal{C}$  be any category with fibred products, we define an equivalence relation on an object X as a subobject  $R \subset X \times X$  (or more generally just a morphism  $R \to X \times X$ ) satisfying the obvious axioms (expressed by means of commutative diagrams). Then we define a quotient X/R as an object in  $\mathcal{C}$  for which there is a morphism  $p: X \to X/R$  which has the universal property with respect to morphisms  $X \to Y$  such that  $R \to X \times X$  factors through a morphism  $R \to X \times_Y X$ . By definition there is a canonical morphism

$$R \to X \times_{X/R} X.$$
 (6.1)

There is no reason to expect that in general the morphism (6.1) will be an isomorphism or an epimorphism.

Let  $\sigma:G\times X\to X$  be an algebraic action. We shall say that the pair  $(X,\sigma)$  is a G-variety and often drop  $\sigma$  from the notation. Let  $\Psi:G\times X\to X\times X$  be the morphism  $(\sigma,\operatorname{pr}_2)$ . This morphism should be thought as an equivalence relation on X defined by the action. A G-equivariant morphism of G-varieties corresponds to a morphism of sets with an equivalence relation. The definition of a G-equivariant morphism  $f:X\to Y$  can be rephrased by saying that the map  $\Psi$  factors through the natural morphism  $X\times_Y X\to X\times X$ . This corresponds to the property  $(f,f)(R)\subset \Delta$ . This suggests the following definition:

**Definition.** A categorical quotient of a G-variety X is a G-invariant morphism  $p: X \to Y$  such that for any G-invariant morphism  $g: X \to Z$  there exists a unique morphism  $\bar{g}: Y \to Z$  satisfying  $\bar{g} \circ p = g$ . A categorical quotient is called a geometric quotient if the image of the morphism  $\Psi$  equals  $X \times_Y X$ . We shall denote the categorical quotient (resp. geometric quotient) by  $p: X \to X/\!/G$  (resp.  $p: X \to X/\!/G$ ). It is defined uniquely up to isomorphism.

A different approach to defining a geometric quotient is as follows. We know how to define a geometric quotient as a set. We next discuss topological spaces. We put the structure of a topological space on X/G so that the canonical projection  $p: X \to X/G$  is continuous. The weakest topology on X/G for which this should be true is the topology in which a subset  $U \subset X/R$  is open if and only if  $p^{-1}(U)$  is open. Then we examine ringed spaces, whose definition is given in terms of choosing a class of functions on X (e.g. regular functions, smooth functions, analytic functions). If  $\phi \in \mathcal{O}(U)$  is a function on U, then the composition  $p^*(\phi) = \phi \circ p$  must be a function on  $p^{-1}(U)$ . It is obviously a G-invariant function. Using this remark we can define the structure of a ringed space on X/R by setting  $\mathcal{O}(U) = \mathcal{O}(p^{-1}(U))^G$ . This makes  $p: X \to X/R$  a categorical quotient in the category of ringed spaces. Finally, we want that the fibres of p to be orbits. This is the condition that the morphism (6.1) is an isomorphism.

**Definition.** A good geometric quotient of a G-variety X is a G-invariant morphism  $p: X \to Y$  satisfying the following properties:

(i) p is surjective;

- (ii) for any open subset U of Y, the pre-image  $p^{-1}(U)$  is open if and only if U is open;
- (iii) for any open subset U of Y, the natural homomorphism  $p^* : \mathcal{O}(U) \to \mathcal{O}(p^{-1}(U))$  is an isomorphism onto the subring  $\mathcal{O}(p^{-1}(U))^G$  of G-invariant functions.
- (iv) the image of  $\Psi: G \times X \to X \times X$  is equal to  $X \times_Y X$ .

**Proposition 6.1.** A good geometric quotient is a categorical quotient.

Proof. Let  $q: X \to Z$  be a G-invariant morphism. Pick any open affine cover  $\{V_i\}_{i\in I}$  of Z. For any  $V_i$  the pre-image  $q^{-1}(V_i)$  will be an open G-invariant subset of X. Then we have the obvious inclusion  $q^{-1}(V_i) \subset p^{-1}(U_i)$ , where  $U_i = p(q^{-1}(V_i))$ . Comparing the fibres over points  $y \in Y$  and using property (iv) (saying that the fibres of p are orbits), we conclude that the equality takes place. By property (ii),  $U_i$  is open in Y. Since p is surjective we get an open cover  $\{U_i\}_{i\in I}$  of Y. The map  $q^{-1}(V_i) \to V_i$  is defined by a homomorphism

$$\alpha_i: \mathcal{O}(V_i) \to \mathcal{O}(q^{-1}(V_i)) = \mathcal{O}(p^{-1}(U_i)).$$

Since q is a G-invariant morphism, the image of  $\alpha_i$  is contained in the subring  $\mathcal{O}(p^{-1}(U_i))^G$  of  $\mathcal{O}(U_i)$ . This defines a unique homomorphism  $\mathcal{O}(V_i) \to \mathcal{O}(U_i)$  hence a unique morphism  $\bar{q}_i : U_i \to V_i$  (because  $V_i$  is affine). It is immediately checked that the maps  $\bar{p}_i$  agree on the intersections  $U_i \cap U_j$  hence define a unique morphism  $\bar{q}: Y \to Z$  satisfying  $q = \bar{q} \circ p$ .

**Proposition 6.2.** Let  $p: X \to Y$  be a G-equivariant morphism satisfying the following properties:

- (i) for any open subset U of Y, the natural homomorphism of rings  $p^*$ :  $\mathcal{O}(U) \to \mathcal{O}(p^{-1}(U))$  is an isomorphism onto the subring  $\mathcal{O}(p^{-1}(U))^G$  of G-invariant functions;
- (ii) if W is a closed G-invariant subset of X then p(W) is a closed subset of Y;
- (iii) if  $W_1, W_2$  are closed invariant subsets of X with  $W_1 \cap W_2 = \emptyset$ , then  $p(W_1) \cap p(W_2) = \emptyset$ .

Under these conditions p is a categorical quotient. It is a good geometric quotient if additionally

(iv) the image of  $\Psi: G \times X \to X \times X$  is equal to  $X \times_Y X$ .

Conversely a good geometric quotient satisfies properties (i)-(iv).

Proof. This is similar to the previous proof. With its notation, let  $W_i = X \setminus q^{-1}(V_i)$ . This is a closed G-invariant subset of X, hence, by (ii),  $U_i = Y \setminus p(W_i)$  is an open subset of Y. Clearly,  $p^{-1}(U_i) \subset q^{-1}(V_i)$ . Since  $\cap_i W_i = \emptyset$ , by (iii) we have  $\cap_i p(W_i) = \emptyset$ , hence  $Y = \cup_i U_i$ . Now composing the homomorphisms  $\alpha_i : \mathcal{O}(V_i) \to \mathcal{O}(q^{-1}(V_i))^G$  with the restriction homomorphism  $\mathcal{O}(q^{-1}(V_i))^G \to \mathcal{O}(p^{-1}(U_i))^G = \mathcal{O}(U_i)$  we get a homomorphism  $\mathcal{O}(V_i) \to \mathcal{O}(U_i)$ . Since  $V_i$  is affine this defines a morphism  $U_i \to V_i$  whose composition with  $p: p^{-1}(U_i) \to U_i$  is the map  $q: p^{-1}(U_i) \to V_i$ . Gluing together these morphisms we construct  $Y \to Z$  as in the proof of Proposition 6.1. This shows that Y is a categorical quotient.

Let us check that under condition (iv)  $p: X \to Y$  is a good geometric quotient. First we see that p is surjective. Indeed, (i) implies that p is dominant and (iii) implies that p(X) is closed. Also property (ii) implies property (ii) of the definition of a good geometric quotient. In fact, if  $p^{-1}(U)$  is open, then  $X \setminus p^{-1}(U)$  is closed and G-invariant. Since p is surjective, its image is equal to Y - U and is closed. Therefore U is open. This checks the definition.

Conversely, assume  $p: X \to Y$  is a good geometric quotient. Properties (i) and (iv) follow from the definition. Let us check properties (ii) and (iii). The set  $U = X \setminus W$  is open and invariant. Since the fibres of p are orbits,  $U = p^{-1}(p(U))$  and hence p(U) is open. For the same reason,  $W = p^{-1}(p(W))$  and hence  $p(W) = Y \setminus p(W)$  is closed. Furthermore,  $W_1 \cap W_2 = p^{-1}(p(W_1)) \cap p^{-1}(p(W_2)) = p^{-1}(p(W_1) \cap p(W_2))$ . This checks property (iii).

**Corollary 6.1.** Under the assumptions from the previous Proposition, the map  $p: X \to Y$  satisfies the following properties:

- (i) two points  $x, x' \in X$  have the same image in Y if and only if  $\overline{G \cdot x} \cap \overline{G \cdot x'} \neq \emptyset$ ;
- (ii) for each  $y \in Y$  the fibre  $p^{-1}(y)$  contains a unique closed orbit.

*Proof.* In fact, the closures of orbits are closed G-invariant subsets in X. So if  $\overline{G \cdot x} \cap \overline{G \cdot x'} = \emptyset$ ,  $p(\overline{G \cdot x}) \cap p(\overline{G \cdot x'}) = \emptyset$ . But both sets contain the point p(x) = p(x'). Conversely, if  $\overline{G \cdot x} \cap \overline{G \cdot x'} \neq \emptyset$  and  $p(x) \neq p(x')$ , we get that  $G \cdot x$  and  $G \cdot x'$  lie in different fibres. Since the fibres are closed subsets,  $\overline{G \cdot x}$ 

6.2. EXAMPLES 91

and  $\overline{G \cdot x'}$  lie in different fibres. Hence they are disjoint. This contradiction proves (i). To prove (ii) we notice that by (i) two closed orbits in the same fibre must have non-empty intersection. But this is absurd. Since each fibre contains at least one closed orbit, we are done.

**Definition.** A categorical quotient satisfying properties (i), (ii) and (iii) from Proposition 6.2 is called a *good categorical quotient*.

Remarks 6.1. 1. Note that condition (ii) in the definition of a good geometric quotient is satisfied if we require

- (ii)'for any closed G-invariant subset Z of X, the image p(Z) is closed. Also, together with condition (iii) this implies the surjectivity of the factor map p. In fact, condition (iii) ensures that the map p is dominant, i.e. its schemetheoretical image is dense in Y. But by (ii)', the image of p must be closed.
- 2. For any K/k we have a natural map  $\Psi_K : G(K) \times X(K) \to X(K) \times_{Y(K)} X(K)$  which is not surjective in general. For any  $x \in X(K)$

$$\Psi_K(G(K) \times \{x\}) = G(K) \cdot x \times \{x\} \subset p_K^{-1}(p_K(x)) \times \{x\}.$$

- 3. Suppose X is an irreducible normal G-variety over an algebraically closed field of characteristic 0, and  $p: X \to Y$  a surjective G-invariant morphism such that its fibres over any point  $y \in Y$  are orbits. Then  $p: X \to Y$  is a geometric quotient. The proof is rather technical and we omit it (see [60], Proposition 0.2).
- 4. The definition of a categorical and geometric quotients are obviously "local" in the following sense. If  $p: X \to Y$  is a G-equivariant morphism, and  $\{U_i\}$  is an open cover of Y with the property that each  $p_i: p^{-1}(U_i) \to U_i$  is a categorical (resp. geometric) quotient, then p is a categorical (resp. geometric) quotient.

# 6.2 Examples

Let us give some examples.

Example 6.1. Let G be a finite group considered as an algebraic group over a field k. Assume that X is quasiprojective. Then the geometric quotient X/G always exists. In fact, assume first that X is affine. By Theorem 3.1, the algebra  $\mathcal{O}(X)^G$  is finitely generated over k. Let Y be an affine algebraic

variety with  $\mathcal{O}(Y) = \mathcal{O}(X)^G$ . By the theorems on lifting of ideals in integral extensions, the map  $p: X \to Y = X/G$  satisfies properties (ii) and (iii) from Proposition 2. Also, the group G acts transitively on the set of prime ideals in  $\mathcal{O}(X)$  which lie over a fixed prime ideal of  $\mathcal{O}(Y)$  (see, for example, [8], Ch. V, §2, Theorem 2). This shows that  $\Psi: G \times X \to X \times_Y X$  is an isomorphism.

Now let  $X \subset \mathbb{P}^n$  be quasiprojective but not necessarily affine. Let  $\bar{X}$  be the closure of X. Let  $O \subset X$  be an orbit and let F be a homogeneous polynomial vanishing on  $\bar{X} \setminus X$  but not vanishing at any point of O. Thus O is contained in an affine subset  $U = \bar{X} \setminus V(F)$ . Recall that the complement to a hypersurface in a projective space is an open affine subset. This implies that U, being closed in an affine set, is affine. Let  $U(O) = \bigcap_{g \in G} (g \cdot U)$ . This is an open G-invariant affine subset of X containing O. By letting O vary, we get an open affine G-invariant covering  $\{U_i\}$  of X. We already know that each quotient  $p_i: U_i \to U_i/G = V_i$  exists. We shall glue the  $V_i$ 's together to obtain the geometric quotient  $p: X \to X/G$ . To do this we observe first that  $U_i \cap U_j$  is affine and  $U_i \cap U_j/G$  is open in  $V_i$  and  $V_j$ . This follows from the considering the affine case. Thus we can glue all  $V_i$ 's together along the open subset  $V_{ij} = U_i \cap U_j/G$ . The resulting algebraic variety Y is separated. In fact we use that in the affine situation

$$(X_1 \times X_2)/(G_1 \times G_2) \cong X_1/G_1 \times X_2/G_2,$$

where  $G_1 \times G_2$  acts on  $X_1 \times X_2$  by the Cartesian product of the actions. Thus the image of  $\Delta_X \cap (U_i \times U_j)$  in  $(U_i \times U_j)/(G \times G) \cong U_i/G \times U_j/G$  is closed, and, as is easy to see, coincides with  $\Delta_Y \cap (V_i \times V_j)$ . This checks that  $\Delta_Y$  is closed. It remains to prove that X/G is quasiprojective. We shall do this later. Note that, if X is not a quasiprojective algebraic variety, X/G may not exist in the category of algebraic varieties even in the simplest case when G is of order 2. The first example of such action was constructed by M. Nagata [64] in 1956 and later a simpler construction was given by H. Hironaka (unpublished). However, if we assume that each orbit is contained in a G-invariant open affine subset, the previous construction works and X/G exists.

Example 6.2. Let  $G = \mathbb{G}_m$  act on an affine algebraic variety  $X = \operatorname{Spec}(A)$ . Let  $\mu^* : A \to \mathcal{O}(G) \otimes A = k[t, t^{-1}] \otimes A$  be the corresponding coaction homomorphism. For any  $a \in A$  we can write

$$\mu^*(a) = \sum_{i \in \mathbb{Z}} t^i \otimes a_i.$$

6.2. EXAMPLES 93

It is easy to see, using the axioms of an action, that the maps  $p_i: A \to A, a \to a_i$  are the projection operators, i.e.  $p_i(a_i) = a_i$ , and denoting the image  $p_i(A)$  by  $A_i$  we have  $A_iA_j \subset A_{i+j}$  and

$$A = \bigoplus_{i \in \mathbb{Z}} A_i. \tag{6.2}$$

This defines a grading on A. Conversely, given a grading of A, we define  $\mu^*$  by  $\mu^*(a) = \sum_{i \in \mathbb{Z}} t^i \otimes a_i$ , where  $a_i$  is the *i*-th graded part of a. This gives a nice geometric interpretation of a grading of a commutative k-algebra.

Assume now that grading (6.2) on A satisfies  $A_i = \{0\}$  for i < 0 and  $A_0 = k$ . Such a grading is called a geometric grading and the corresponding action is called a good  $\mathbb{G}_m$ -action. Let us see that  $X \to \operatorname{Spec}(k)$  is the categorical quotient. In fact, the inclusion  $A_0 \hookrightarrow A$  induces an isomorphism  $A_0 \cong A^G$ . Obviously, condition (ii) of Proposition 6.2 is satisfied too.

Now let  $x_0$  be the point from X corresponding to the maximal ideal

$$\mathfrak{m} = \bigoplus_{i>0} A_i.$$

Obviously  $x_0$  is a closed G-invariant subset (closed G-invariant subsets correspond to homogeneous ideals). The subset  $X' = X \setminus \{x_0\}$  is an open G-invariant subset. Let us show that the geometric quotient  $X' \to X'/G$ exists. We shall assume first that A is generated by homogeneous elements of degree 1. We choose homogeneous generators  $f_0, \ldots, f_n \in A_1$  of the kalgebra A. The kernel of the canonical surjection  $k[T_0, \ldots, T_n] \to A, T_i \mapsto f_i$ is a homogeneous ideal in  $k[T_0,\ldots,T_n]$ . It defines a projective subvariety of  $\mathbb{P}^n$  which we take for Y = X'/G. The standard open cover of  $\mathbb{P}^n$  defines an open cover  $\{U_0,\ldots,U_n\}$  of Y. We have  $\mathcal{O}(U_i)=A_{(f_i)}=\{\frac{a}{f_i^d},a\in A_d\}$ . The open subsets  $D(f_i)$ , i = 1, ..., n, cover X', and  $\mathcal{O}(D(f_i)) = A_{f_i}$ . The subsets  $D(f_i)$  are G-invariant, and the induced grading of  $A_{f_i}$  is given by  $(A_{f_i})_m = \{\frac{a}{f^d}, a \in A_{m+d}\}$ . In particular we see that  $\mathcal{O}(U_i) = \mathcal{O}(D(f_i))^G$ . The map  $p: X' \to Y$  is given by the maps  $D(f_i) \to U_i$  which are defined by the homomorphisms  $\mathcal{O}(U_i) \to \mathcal{O}(D(f_i))$ . Thus condition (i) of Proposition 6.2 is satisfied. A closed G-invariant subset of X' is given by a homogeneous ideal in A. Its image in Y is closed, since its intersection with each  $U_i$  is given by the dehomogenization of this ideal with respect to the variable  $T_i$ . This checks condition (iii). Finally  $(A_{f_i})_d = f_i^d A_{(f_i)}$  which gives an isomorphism of  $A_{(f_i)}$ -algebras  $A_{f_i} \cong A_{(f_i)}[Z, Z^{-1}]$ . This implies that  $X \times_Y X$  is covered

by open sets  $V_i = D(f_i) \times_{U_i} D(f_i)$  with

$$\mathcal{O}(V_i) \cong A_{(f_i)}[Z, Z^{-1}] \otimes_{A_{(f_i)}} A_{f_i} \cong A_{f_i}[Z, Z^{-1}].$$

It is already clear from this that the fibres of  $D(f_i) \to U_i$  over any  $x \in X$  are isomorphic to  $\mathbb{G}_m$ . We leave to the reader to see that  $\Psi$  induces an isomorphism  $G \times D(f_i) \to D(f_i) \times_{U_i} D(f_i)$ .

Now if A is generated by homogeneous elements  $f_i$ , i = 0, ..., n, of arbitrary positive degrees  $d_i$ , we construct Y by gluing together the affine varieties  $U_i$  corresponding to the algebras  $A_{(f_i)}$ . We use that

$$A_{(f_i f_j)} \cong (A_{(f_i)})_{f_i^{d_i}/f_i^{d_j}} \cong (A_{(f_j)})_{f_i^{d_j}/f_i^{d_i}}.$$

to identify  $U_i \cap U_j$  with the quotients of  $D(f_i f_j) = D(f_i) \cap D(f_j)$ . This gives a categorical quotient variety denoted by Proj(A). In fact (see [8], Chap. III, §1), there exists a positive integer e such that the subalgebra

$$A^{(e)} = \bigoplus_i A_{ei}$$

is generated by elements of degree e. If we replace X by the variety  $\bar{X}$  with  $\mathcal{O}(\bar{X})\cong A^{(e)}$ , and define the action of  $\mathbb{G}_m$  on  $\bar{X}$  via the grading of  $\mathcal{O}(\bar{X})$  by setting  $\mathcal{O}(\bar{X})_i=A_{ie}$ , we will see that  $X'/G\cong \bar{X}'/G$  as algebraic varieties. This follows easily by using natural isomorphisms  $A_{(f^e)}^{(e)}\cong A_{(f)}$ , where f is any homogeneous element of A. Since  $\mathcal{O}(\bar{X})$  is generated by homogeneous elements of degree 1,  $\bar{X}'/G$  is a projective variety. So X'/G is a projective variety. Also observe that, if we consider the homomorphism of groups  $\alpha:\mathbb{G}_m\to\mathbb{G}_m$  given by the homomorphism of k-algebras  $Z\to Z^e$ , then we have a commutative diagram

$$\mathbb{G}_m \times X \longrightarrow X$$

$$\alpha \times \varphi \downarrow \qquad \qquad \varphi \downarrow$$

$$\mathbb{G}_m \times \bar{X} \longrightarrow \bar{X}.$$

Here  $\varphi: X \to \bar{X}$  is given by the inclusion of the rings  $A^{(e)} \hookrightarrow A$ . This shows that  $\Psi(G \times X')$  and  $X' \times_{X/G} X'$  are both mapped onto  $\Psi(G \times \bar{X}') = \bar{X}' \times_{\bar{X}'/G} \bar{X}'$  under the map  $\varphi \times \varphi$ . Using the fact that the map  $\varphi \times \varphi$  is a finite morphism, we obtain (by reducing to the case when X is irreducible)  $\Psi(G \times X') = X' \times_{X/G} X'$ . Hence  $X' \to X'/G$  is a geometric quotient.

Of course a special case of this example is the case when  $X = \mathbb{A}^n$  and the action of G is the standard one:  $t \cdot (z_1, \ldots, z_n) = (tz_1, \ldots, tz_n)$ . The geometric quotient X'/G is the projective space  $\mathbb{P}^{n-1}_k$ .

6.2. EXAMPLES 95

Example 6.3. Let H be a closed subgroup of an affine algebraic group G and G/H be the homogeneous space (see Exercise 4.5). The canonical projection  $G \to G/H$  is a good geometric quotient. We omit the proof, referring the reader to [44], IV,12, where all conditions of the definition are verified.

Let us show now that the categorical quotient of an affine variety always exists. We shall need the following lemma:

**Lemma 6.1.** Let X be an affine G-variety, and let  $Z_1$  and  $Z_2$  be two closed G-invariant subsets with  $Z_1 \cap Z_2 = \emptyset$ . Assume G is geometrically reductive. Then there exists a G-invariant function  $\phi \in \mathcal{O}(X)^G$  such that  $\phi(Z_1) = 0, \phi(Z_2) \neq 0$ .

Proof. First choose some  $\varphi \in \mathcal{O}(X)$ , not necessary G-invariant, such that  $\varphi(Z_1) = 0, \varphi(Z_2) = 1$ . This is easy. Since the sum of the ideals defining  $Z_1$  and  $Z_2$  is the unit ideal, we can find a function  $\alpha \in I(Z_1)$  and a function  $\beta \in I(Z_2)$  such that  $1 = \alpha + \beta$ . Then we take  $\varphi = \alpha$ . Let W be the linear subspace of  $\mathcal{O}(X)$  spanned by the translates  $g^*(\varphi), g \in G(K)$ . We know that it is finite-dimensional (see the proof of Theorem 3.3). Let  $\varphi_1, \ldots, \varphi_n$  be its basis. Consider a map  $f: X \to \mathbb{A}^n$  defined by these functions. Clearly,  $f(Z_1) = (0, \ldots, 0), f(Z_2) = (1, \ldots, 1)$ . The group G acts linearly on the affine space defining a linear representation. By definition of geometrically reductive groups, we can find a non-constant G-invariant homogeneous polynomial  $F \in k[Z_1, \ldots, Z_n]$  such that  $F(1, \ldots, 1) \neq 0$ . Then  $\phi = f^*(F) = F(\varphi_1, \ldots, \varphi_n)$  satisfies the assertion of the lemma.

Now we are ready to prove the following main result of this lecture:

**Theorem 6.1.** Let G be a geometrically reductive group acting on an affine variety X. Then the subalgebra  $\mathcal{O}(X)^G$  is finitely generated over k, and the canonical morphism  $p: X \to Y = Spec(\mathcal{O}(X))^G$  is a good categorical quotient.

Proof. The first statement is Nagata's Theorem proven in Lecture 3. To show that p is a good categorical quotient, we apply Proposition 6.2. First of all, property (i) easily follows from the fact that taking invariants commutes with localizations. More precisely, if  $f \in \mathcal{O}(X)^G$ , then  $(\mathcal{O}(X)_f)^G = (\mathcal{O}(X)^G)_f$ . This is easy and we skip the proof. Let Z be a closed G-invariant subset of X. Suppose p(Z) is not closed. Let  $y \in \overline{p(Z)} \setminus p(Z)$ . Then  $W_1 = Z$  and  $W_2 = p^{-1}(y)$  are two closed G-invariant subsets of X with empty

intersection. By the previous Lemma, there exists a function  $\phi \in \mathcal{O}(X)^G$  such that  $\phi(Z) = 0$ ,  $\phi(p^{-1}(y)) = 1$ . Since  $\phi = p^*(\varphi)$  for some  $\varphi \in \mathcal{O}(Y)$ , we obtain  $\varphi(p(Z)) = 0$ ,  $\varphi(y) = 1$ . But this is absurd since y belongs to the closure of p(Z). This verifies condition (ii). Now let  $Z_1$  and  $Z_2$  be two disjoint G-invariant closed subsets of X. As above we find a function  $\varphi \in \mathcal{O}(Y)$  with  $\varphi(p(W_1)) = 0$ ,  $\varphi(W_2) = 1$ . This obviously implies that  $p(Z_1) \cap p(Z_2) = \emptyset$ . This checks (iii).

Example 6.4. We have discussed this example already in Lecture 1. Let  $G = GL_k(N)$  act on itself by the adjoint action, i.e.  $g \cdot x = gxg^{-1}$ . For each matrix  $g \in GL(n, K)$  we consider the characteristic polynomial

$$det(g - tI_n) = (-t)^n + c_1(g)(-t)^{n-1} + \ldots + c_n(g).$$

Define the maps  $c : GL(n, K) \to \mathbb{A}^n$  by the formula  $c(g) = (c_1(g), \dots, c_n(g))$ . As is easy to see, these maps define a G-equivariant morphism

$$c: \mathrm{GL}_k(n) \to \mathbb{A}^n$$
.

We claim that this is a categorical quotient. To check this it is enough to verify that  $\mathcal{O}(G)^G = k[c_1, \ldots, c_n] \cong k[Z_1, \ldots, Z_n]$ . This is what we did in Lecture 1. It is clear that the fibre of c does not consist of one orbit. So the quotient is not a geometric quotient.

## 6.3 Rational quotients

We know that neither X/G nor  $X/\!/G$  exist in general. So a natural problem is to find all possible open subsets of X for which the categorical or geometric quotient exists. The Geometric Invariant Theory gives a solution of this problem when we additionally assume that the quotient is a quasiprojective algebraic variety.

Let us first show that any open subset U for which a geometric quotient U/G exists must be contained in a certain open subset  $X_{reg}$ .

For any point  $x \in X$  we have a regular map

$$\sigma_x: G \to X, \quad g \to \sigma(g, x) := g \cdot x.$$

Clearly the image of this map is the G-orbit of the point x. We denote it by  $G \cdot x$  or O(x). By Chevalley's Theorem (see [42],p.94), O(x) is a constructible

subset of X, i.e. a disjoint finite union of locally closed subsets. So, in general, it is not even a locally closed subset of X. However, when G is a connected algebraic group, G is an irreducible algebraic variety (this follows from Exercise 3.2) so the image of G under  $\sigma_x$  is an irreducible subset. This immediately implies that O(x) is open in its closure  $\overline{O(x)}$ . In particular, it is a locally closed subset of X.

We shall assume in the sequel that G is connected. Otherwise, we consider its connected component  $G^o$  containing the identity element. It is a normal closed subgroup of G and the quotient  $G/G^o$  is a finite group. It is easy to see (see Exercise 6.11) that we can do the quotients in two steps, first divide by  $G^o$ , and then divide the quotient by the finite group  $G/G^o$ .

The set-theoretical fibre of this map at a point x is denoted by  $G_x$  and is called the *isotropy subgroup* of x in the action  $\sigma$ . It is a closed subgroup of G, hence an affine algebraic group. If  $\operatorname{char}(k) = 0$ , the set-theoretical fibre of  $\sigma_x$  coincides with the scheme-theoretical fibre (or in other words, the latter is a reduced closed subscheme of G). We are not going to prove it. For this we have to go into the theory of group schemes and prove the fundamental result of the theory that every group scheme over a field of characteristic zero is reduced.

Since all fibres of  $\sigma_x$  over points in O(x) are isomorphic (they are conjugate subgroups of  $G_x$ ), the theorem on the dimension of fibres gives

$$\dim \mathcal{O}(x) = \dim G - \dim G_x \tag{6.3}$$

If  $\overline{\mathrm{O}(x)} \neq \mathrm{O}(x)$ , the complement  $\overline{\mathrm{O}(x)} \setminus \mathrm{O}(x)$  is a proper closed subset of  $\overline{\mathrm{O}(x)}$ , hence its dimension is strictly less than  $\dim \overline{\mathrm{O}(x)}$ . Take any  $y \in \overline{\mathrm{O}(x)} \setminus \mathrm{O}(x)$  and consider its orbit O(y). Since  $\dim \overline{\mathrm{O}(y)} < \dim \overline{\mathrm{O}(x)}$ , applying (6.3) to y we see that

$$\dim G_x < \dim G_y. \tag{6.4}$$

Let

$$I = \Phi^{-1}(\Delta_X) = \{(g, x) \in G \times X : \sigma(g, x) = x\}.$$

It is a closed subset of  $G \times X$ . Consider the second projection  $\operatorname{pr}_2: I \to X$ . Its fibre over a point  $x \in X$  is isomorphic to the isotropy subgroup  $G_x$ . By a theorem on the dimension of fibres of a regular map, there exists an open subset  $X_{\operatorname{reg}}$  of X such that  $\dim G_x = d$  for all  $x \in X_{\operatorname{reg}}$  and  $\dim G_x > d$  for all  $x \notin X_{\operatorname{reg}}$ .

Applying (6.4) we obtain that for any  $x \in X_{\text{reg}}$  the orbit O(x) is closed in  $X_{\text{reg}}$  and has dimension equal to  $\dim G - d$ . Also, any other orbit in X has dimension strictly less than  $\dim G - d$ . Let U be any G-invariant open subset of X for which a geometric quotient  $U \to U/G$  exists. We assume that X is irreducible. So  $p_U: U \cap X_{\text{reg}} \neq \emptyset$  and hence some of the orbits in U must be of dimension  $\dim G - d$ . By the theorem on dimension of fibres all fibres of  $p_U$  have dimension equal to  $\dim G - d$ . Therefore they are contained in  $X_{\text{reg}}$  and hence  $U \subset X_{\text{reg}}$ .

Thus we get a necessary condition for the existence of U/G: U must be an open subset of  $X_{\text{reg}}$ .

**Theorem 6.2.** (Rosenlicht) Assume X is irreducible. Then  $X_{reg}$  contains an open subset U such that a good geometric quotient  $U \to U/G$  exists with quasiprojective U/G. The field of rational functions on U/G is isomorphic to the subfield  $k(X)^G$  of G-invariant rational functions on X.

*Proof.* The proof is easy if we assume additionally that G is geometrically reductive and X is affine. Let Y be an algebraic variety with the field of rational functions isomorphic to  $k(X)^G$ . It always exists since  $k(X)^G$  is of finite transcendence degree over k. Consider a rational dominant map  $X_{\text{reg}} \rightarrow$ Y defined by the inclusion of the fields  $k(X)^G \subset k(X)$ . By deleting some subset from  $X_{\text{reg}}$  we find a G-invariant open subset  $U \subset X_{\text{reg}}$  and a regular map from  $f:U\to Y$ . Replacing Y by an open subset we may assume that f is surjective. This is condition (i) from the definition of a good geometric quotient. For any open subset  $V \subset U$  we have an inclusion  $\mathcal{O}(V) \subset k(Y) =$  $k(X)^G$ . Since  $f^*(\mathcal{O}(V)) \subset \mathcal{O}(f^{-1}(V))$  we see that  $f^*(\mathcal{O}(V)) \subset \mathcal{O}(f^{-1}(V))^G$ . Conversely  $\mathcal{O}(f^{-1}(V))^G \subset k(X)^G = k(Y)$  and hence  $\mathcal{O}(f^{-1}(V))^G \subset \mathcal{O}(V)$ . Thus we have checked condition (i) of Proposition 6.2. Since U is G-invariant, the fibres of f are unions of orbits. Since any orbit in  $X_{\text{reg}}$  is closed in  $X_{\text{reg}}$ , it is closed in U. By Lemma 6.1 we can separate closed invariant subsets by functions from  $\mathcal{O}(V)$ . This shows that the fibres of f are orbits. This checks condition (iv). The conditions (ii) and (iii) of Proposition 6.2 are checked by using the argument from the proof of Theorem 6.1.

Let us give an idea for the proof in the general case. We refer for the details to the original paper of Rosenlicht [80] or [75], 2.3. Since we don't assume that X is affine anymore, even if G is geometrically reductive, we cannot separate the closed orbits contained in the fibres of the map  $f: U \to Y$ . Consider the generic fibre of f as an algebraic variety  $U_{\eta}$  over the field  $K = k(Y) = k(X)^G$ . Let  $\bar{K}$  be the algebraic closure of K. The group  $G(\bar{K})$ 

acts on  $U_{\eta}(\bar{K})$  and the field of invariant raional functions is isomorphic to K. All orbits of G(K) have the same dimension. Suppose in general that a group G acts on an irreducible quasiprojective variety  $X \subset \mathbb{P}^N$  such that all orbits are of the same dimension and closed. We define a map from X to the Chow variety parametrizing closed subsets of  $\mathbb{P}^n$  of the same dimension d (see [60], Chapter 4, §6) by assigning to a point  $x \in X$  the closure of the orbit  $G \cdot x$ . If the image is of positive dimension, we can constrict a non-constant invariant function on X by taking the pre-image of a rational function on the image. Otherwise the image is one point, and we obtain that X consists of one orbit. Applying this argument to  $U_n(K)$  we see that it consists of one orbit. This implies that there is an open subset of Y such that all fibres consist of one orbit. Again deleting a closed subset from Y we may assume that Y is nonsingular. Since the dimension of all orbits is the same, the morphism f is open. This is called *Chevalley's criterion* (see [6], p.44). This checks condition (ii) of the definition (ii) of a good geometric quotient. The remaining conditions have been checked already.

Corollary 6.2. The transcendence degree of  $k(X)^G$  is equal to  $\dim X - \dim G + d$ , where  $d = \min_{x \in X} \{\dim G_x\}$ .

Any model of  $k(X)^G$  is called a rational quotient of X by G. We see that X contains an open subset such that a good geometric quotient U/G exists and coincides with a rational quotient.

### Bibliographical notes

The notions of a categorical and geometric quotients are originally due to Mumford ([60]). Many books discuss different versions of these notions (see [54],[69]). A lot of interesting results about the structure of fibres of the quotient maps have been omitted. We refer to [75] for a survey of the corresponding results.

#### Exercises

**6.1** Let  $\mathbb{G}_a$  act on  $\mathbb{A}^2$  by the formula  $t \cdot (z_1, z_2) = (z_1, z_2 + tz_1)$ . Consider the map  $\mathbb{A}^2 \to \mathbb{A}^1$ ,  $(z_1, z_2) \mapsto z_1$ . Is it a categorical quotient? If it is, is it a geometric quotient?

- **6.2** Let  $\mathbb{G}_m$  act on  $\mathbb{A}^n$  by the formula  $t \cdot (z_1, \ldots, z_n) = (t^{q_1} z_1, \ldots, t^{q_n} z_n)$  for some positive integers  $q_1, \ldots, q_n$  coprime to  $\operatorname{char}(k)$ . Show that the geometric quotient  $\mathbb{A}^n \setminus \{0\}/\mathbb{G}_m$  constructed in Example 6.2 is isomorphic to a quotient of  $\mathbb{P}^{n-1}$  by a finite group.
- **6.3** Let  $A = \bigoplus_{i \in \mathbb{Z}} A_i$  be a graded finitely generated k-algebra, and  $A^{(e)} = \bigoplus_{i \in \mathbb{Z}} A_{ei}$ . Show that, if e is coprime to  $\operatorname{char}(k)$ ,  $A^{(e)} = A^G$ , where G is a cyclic group of order e.
- **6.4** Construct a counter-example to Proposition 6.2 when  $G = \mathbb{G}_a$  is not geometrically reductive.
- **6.5** In the notation of Nagata's Theorem show that for any open subset U of Y, the restriction map  $p^{-1}(U) \to U$  is a categorical quotient with respect to the induced action of G.
- **6.6** Describe the orbits and the fibres of the categorical quotient from Example 6.4 when n=2.
- **6.7** Consider Exercise 1.4, and show that  $\mathbb{A}^n$  is the categorical quotient of  $\operatorname{Pol}(\operatorname{Pol}_3(k^2))$  by  $\operatorname{SL}(2)$ . Describe the orbits and the fibres of the categorical quotient.
- **6.8** Let G act on an irreducible affine variety X and let  $f: X \to Y$  be a G-invariant morphism to a normal affine variety. Assume that  $\operatorname{codim}(Y \setminus f(X), Y) \geq 2$  and there exists an open subset U of Y such that for all  $y \in U$  the fibre  $f^{-1}(y)$  contains a dense orbit. Show that  $Y \cong X//G$ .
- **6.9** Let G be a finite group of automorphisms of an irreducible algebraic variety. Prove that  $k(X/G) = k(X)^G$ .
- **6.10** Show by an example that in general the field of fractions  $Q(A^G)$  of the ring of invariants  $A^G$  is not equal to  $Q(A)^G$ . Prove that  $Q(A^G) = Q(A)^G$  if A is a UFD domain and any rational homomorphism  $G \to \mathbb{G}_m$  is trivial.
- **6.11** Let G be an algebraic group acting regularly on an algebraic variety X and let H be its closed invariant subgroup of finite index. Suppose a geometric quotient Y = X/G exists. Show that geometric quotients X/H and (X/H)/(G/H) exist and  $X/G \cong (X/H)/(G/H)$ . Is the same true without assuming that H is of finite index?

## Lecture 7

## Linearization of actions

#### 7.1 Linearized line bundles

We have seen already in the proof of Lemma 3.5 that a rational action of an affine algebraic group G on an affine variety X can be "linearized". This means that we can embed G-equivariantly X in affine space  $\mathbb{A}^n$  on which G acts via a linear representation. We proved it by considering the linear space spanned by the G-translates of generators of the algebra  $\mathcal{O}(X)$ . In this lecture we shall do the similar construction for a normal projective algebraic variety. This will be our main tool to construct quotients.

Recall that a regular map of a projective variety X to the projective space  $\mathbb{P}^n$  is defined by choosing a line bundle L (or if you prefer an invertible sheaf  $\mathcal{L}$  of  $\mathcal{O}_X$ -modules, or a Cartier divisor D) and a set of its sections  $s_0, \ldots, s_n$ . The map is defined by sending  $x \in X$  to the point  $(s_0(x), \ldots, s_n(x)) \in \mathbb{P}^n$ . This point is well-defined if for any  $x \in X$  there is a section  $s_i$  such that  $s_i(x) \neq 0$ . Often we will be taking for  $(s_0, \ldots, s_n)$  a basis of the space of sections  $\Gamma(X, L)$  of L. The condition above in this case says that for any  $x \in X$  there exists a section  $s \in \Gamma(X, L)$  such that  $s(x) \neq 0$ . We say in this case that L is base-point-free. Let  $\phi_L : X \to \mathbb{P}^n$  be a map defined by a base-point-free L. Of course, it depends on the choice of a basis; different choices define the maps which are the same up to composing with a projective transformation of  $\mathbb{P}^n$ . If  $\phi_L$  is a closed embedding, we say that L is very ample. If  $L^N := L^{\otimes N}$  is very ample for some N > 0 we say that L is ample.

We shall often identify L with its total space  $\mathbb{V}(L)$  which comes with a projection  $\pi: \mathbb{V}(L) \to X$  which is locally the product of X and the affine

102

line  $\mathbb{A}^1$ .

**Definition.** A G-linearization on L is an action  $\bar{\sigma}: G \times L \to L$  such that

(i) the diagram

$$G \times L \xrightarrow{\bar{\sigma}} L$$

$$id \times \pi \downarrow \qquad \qquad \pi \downarrow$$

$$G \times X \xrightarrow{\sigma} X$$

is commutative;

(ii) the zero section of L is G-invariant.

A G-linearized line bundle (or a G-bundle) over a G-variety X is a pair  $(L, \bar{\sigma})$  consisting of a line bundle L over X and its linearization. A morphism of G-linearized line bundles is a G-equivariant morphism of line bundles.

It follows from the definition that for any  $g \in G$  and any  $x \in X$  the induced map of the fibres:

$$\bar{\sigma}(g): L_x \to L_{g \cdot x}$$

is a linear isomorphism.

We can view the set of such isomorphims as an isomorphism of line bundles

$$\bar{\sigma}(g): L \to g^*(L),$$

where we consider  $g \in G$  as an automorphism  $x \to g \cdot x$  of X. The axioms of the actions translate into the following 1-cocycle condition:

$$\bar{\sigma}(gg') = \bar{\sigma}(g') \circ g'^*(\bar{\sigma}(g)) : L \to g'^*(L) \to g'^*(g^*(L)) = (gg')^*(L).$$
 (7.1)

The collection of the isomorphisms  $\bar{\sigma}(g)$  can be also viewed as an isomorphism of vector bundles

$$\Phi: \operatorname{pr}_2^*(L) \to \sigma^*(L).$$

The cocycle condition (7.1) is translated into a condition on  $\Phi$  which can be expressed by some commutative diagrams. I leave it to the reader.

Using the definition of linearization by means of an isomorphism  $\Phi$  it is easy to define a structure of an abelian group on the set of G-bundles. If  $\Phi: \operatorname{pr}_2^*(L) \to \sigma^*(L)$  and  $\Phi': \operatorname{pr}_2^*(L') \to \sigma^*(L')$  are two G-bundles, we define their tensor product as the bundle  $L \otimes L'$  with the G-linearization given by the isomorphism:

$$\Phi \otimes \Phi' : \operatorname{pr}_2^*(L \otimes L') = \operatorname{pr}_2^*(L) \otimes \operatorname{pr}_2^*(L') \to \sigma^*(L \otimes L) = \sigma^*(L) \otimes \sigma^*(L')).$$

Here we use the obvious property of the inverse image

$$f^*(L \otimes L') = f^*(L) \otimes f^*(L').$$

The zero element in this group is the trivial bundle  $X \times \mathbb{A}^1$  whose linearization is given by the product  $\sigma \times \operatorname{id}: G \times X \times \mathbb{A}^1 \to X \times \mathbb{A}^1$ . This is called the trivial linearization. The inverse  $(L, \Phi)$  is equal to  $(L^{-1}, \Phi')$  with  $\Phi'$  defined as the inverse of the transpose of  $\Phi$ . One checks that this again satisfies the cocycle condition. The structure of an abelian group which we have just defined induces an abelian group structure on the set of isomorphism classes of G-line bundles. We denote this group by  $\operatorname{Pic}^G(X)$ . It comes with the natural homomorphism

$$\alpha: \operatorname{Pic}^G(X) \to \operatorname{Pic}(X)$$

which is defined by forgetting the linearization.

Let us now describe the kernel of the homomorphism  $\alpha$ . Observe first that if  $f: L \to L'$  is an isomorphism of line bundles and  $\Phi: \operatorname{pr}_2^*(L) \to \sigma^*(L)$  is a G-linearization on L, then we can define a G-linearization on L' by setting  $\Phi' = \sigma^*(f)^{-1} \circ \Phi \circ \operatorname{pr}_2^*(f)$ . Thus if  $\alpha((L, \bar{\sigma}))$  is isomorphic to the trivial bundle, we can replace it by an isomorphic G-bundle to assume that L is trivial. This shows that  $\operatorname{Ker}(\alpha)$  consists of isomorphism classes of linearizations on the trivial line bundle  $L = X \times \mathbb{A}^1$ .

We denote a point of  $X \times \mathbb{A}^1$  by (x,t). For any  $g \in G$ 

$$\bar{\sigma}(g)(x,t) = (g \cdot x, \Psi(g,x)t),$$

where  $\Psi(g,x) \in k^*$ . The function  $\Psi: (g,x) \to \Psi(g,x)$  must be a regular function on  $X \times \mathbb{A}^1$  which is nowhere vanishing. In other words,  $\Psi \in \mathcal{O}(G \times X)^*$ . The axioms of the action give us that

$$\Psi(gg', x) = \Psi(g, g' \cdot x)\Psi(g', x). \tag{7.2}$$

Let us see when the two functions  $\Psi, \Psi'$  define isomorphic linearizations. Let  $a: X \times \mathbb{A}^1 \to X \times \mathbb{A}^1$  be an automorphism of the trivial bundle. It is defined by a formula  $(x,t) \to (x,\phi(x)t)$ , where  $\phi \in \mathcal{O}(X)^*$ . It commutes with the actions defined by  $\Psi$  and  $\Psi'$  if and only if

$$\phi(g \cdot x)\Psi(g, x) = \phi(x)\Psi'(g, x).$$

Or, equivalently, for any  $g \in G$ ,

$$\Psi'(g, x) = \Psi(g, x)\phi(g \cdot x)/\phi(x).$$

Let  $Z^1_{\text{alg}}(G, \mathcal{O}(X)^*)$  denote the group of functions  $\Psi$  satisfying (7.2) considered as a subgroup of the group  $\mathcal{O}(G \times X)^*$  and let  $B^1_{\text{alg}}(G, \mathcal{O}(X)^*)$  be its subgroup consisting of functions of the form  $g^*(\phi)/\phi$  for some  $\phi \in \mathcal{O}(X)^*$ . It follows from the definition of the group structure on  $\text{Pic}^G(X)$  that the product in  $Z^1_{\text{alg}}(G, \mathcal{O}(X)^*)$  corresponds to the tensor product of linearized line G-bundles. So, the above discussion proves the following:

**Theorem 7.1.** The kernel of the forgetful homomorphism  $\alpha: Pic^G(X) \to Pic(X)$  is isomorphic to the group

$$H^1_{alg}(G, \mathcal{O}(X)^*) := Z^1_{alg}(G, \mathcal{O}(X)^*) / B^1_{alg}(G, \mathcal{O}(X)^*).$$

Note the special case when for any integral k-algebra K

$$(\mathcal{O}(X) \otimes_k K)^* = K^* \otimes 1.$$

This happens, for example, when X is affine space, or when X is connected and proper over k. Then

$$\mathcal{O}(G \times X)^* = \operatorname{pr}_1^*(\mathcal{O}(G)^*)$$

and (7.2) says that

$$Z_{alg}^1(G, \mathcal{O}(X)^*) \cong \operatorname{Hom}_{alg}(G, \mathbb{G}_m) := \mathcal{X}(G),$$

the subscript indicates that we are considering rational homomorphisms of algebraic groups. The latter group is called the *group of rational characters* of G. We studied this group when G is a torus. Also we have  $g^*(\phi) = \phi$  and hence  $B^1_{alg}(G, \mathcal{O}(X)^*) = 0$ . Thus we obtain

Corollary 7.1. Assume  $\mathcal{O}(G \times X)^* = p_1^*(\mathcal{O}(G)^*)$ . Then

$$Ker(\alpha) \cong \mathcal{X}(G).$$

Remark 7.1. According to a theorem of Rosenlicht [80] for any two irreducible algebraic varieties X and Y over an algebraically closed field k, the natural homomorphism

$$\mathcal{O}(X)^* \otimes \mathcal{O}(Y)^* \to \mathcal{O}(X \times Y)^*$$

is surjective. Let us give a sketch of the proof. First we use that for any irreducible algebraic variety the group  $\mathcal{O}(X)^*/k^*$  is finitely generated. This is not difficult to prove by reducing to the case of a normal variety and then finding a complete normal variety  $\bar{X}$  containing X such that  $D = \bar{X} \setminus X$  is a divisor. Then for any  $f \in \mathcal{O}(X)^*$  the divisor of f is concentrated at the support of D and hence is equal to a linear combination of irreducible components of D. This defines an injective homomorphism from the group  $\mathcal{O}(X)^*/k^*$  to a finitely generated abelian group. Now assume we have an invertible function  $\phi(x,y)$  on  $X \times Y$ . For a fixed  $x \in X$  we have a function  $\phi_x(y) = \phi(x,y) \in \mathcal{O}(Y)^*$ . Since  $\mathcal{O}(Y)^*/k^*$  is a finitely generated group, the map  $X \to \mathcal{O}(Y)^*/k^*$ ,  $x \to \phi_x(y)$  modulo  $k^*$  must be constant. Of course to justify it we have to show that this map is given by an algebraic function. It can be done. So, assuming this, we obtain that  $\phi(x,y)$  is equal to a function  $\psi(y)$  up to a multiplicative factor c(x) depending on x. So,  $\phi(x,y) = c(x)\psi(y)$  as aserted.

### 7.2 The existence of linearization

To find the conditions for the existence of a G-linearization on a line bundle we have to study the image of the forgetful homomorphism  $\alpha$ . This consists of isomorphism classes of line bundles on X which admit some G-linearization. We start with the following lemma.

**Lemma 7.1.** Let G be a connected (or, equivalently, irreducible) affine algebraic group, X be an algebraic G-variety. A line bundle L over X admits a G-linearization if and only if there exists an isomorphism of line bundles  $\Phi: pr_2^*(L) \to \sigma^*(L)$ .

Proof. We already know that this condition is necessary, so we show that it is sufficient. Assume that such an isomorphism exists. The problem is that it may not satisfy the cocycle condition (7.1). Let us interpret  $\Phi$  as a collection of isomorphism  $\Phi_g: L \to g^*(L)$ . When g = e, the unity element, we get an automorphism  $\Phi_e: L \to L$ . It is given by a function  $\phi \in \mathcal{O}(X)^*$ . Composing all  $\Phi_g$  with  $\Phi_e^{-1}$ , we may assume that  $\Phi_e = \mathrm{id}_L$ . Now the isomorphims  $\Phi_{gg'}$  and  $g'^*(\Phi_g) \circ \Phi_{g'}$  differ by an automorphism of L. Denote it by F(g, g') so that we have

$$\Phi_{qq'} \circ F(g, g') = g'^*(\Phi_q) \circ \Phi_{q'}.$$

The cocycle condition means that  $F(g, g') \equiv \mathrm{id}_L$ . So far we have only that  $F(e,g) = F(g,e) = \mathrm{id}_L$  for any  $g \in G$ . Let us identify the automorphism F(g,g') with an invertible function on  $G \times G \times X$ . By Rosenlicht's theorem which we cited in Remark 7.1, we can write  $F(g,g')(x) = F_1(g)F_2(g')F_3(x)$ . Since  $F(e,g',x) \equiv 1$  and  $F(g,e,x) \equiv 1$  we must have  $F_2(g)F_3(x)$  and  $F_1(g)F_3(x)$  are nonzero constants. Thus  $F_3(x)$  is constant and hence  $F_1$  and  $F_2$  are constants. This implies that F is a constant equal to 1. This proves the assertion.

Remark 7.2. The existence of an isomorphism  $\Phi: \operatorname{pr}_2^*(L) \to \sigma^*(L)$  means that L is a G-invariant line bundle. So, the previous lemma asserts that any G-invariant line bundle admits a G-linearization provided that G is a connected algebraic group. The assertion is not true anymore if G is not connected. For example, assume that G is a finite group. The functions F(g,g') which we considered in the previous proof form a 2-cocycle of G with values in  $k^*$  (with trivial action of G in  $k^*$ ). The obstruction for the existence of a G-linearization lies in the cohomology group  $H^2(G,k^*)$ . The latter group is called the group of S-chur multipliers of G. It is computed for many groups G and, of course, it is not trivial in general. If we denote the subgroup of G-invariant line bundles by  $\operatorname{Pic}(X)^G$ , then one has an exact sequence of abelian groups

$$0 \to Hom(G, k^*) \to \operatorname{Pic}^G(X) \to \operatorname{Pic}(X)^G \to H^2(G, k^*).$$

**Lemma 7.2.** Assume that X is normal (for example, nonsingular) and G is an affine irreducible algebraic group. Let  $x_0 \in X$ . For any line bundle L on  $G \times X$  we have

$$L \cong pr_1^*(L|G \times x_0) \otimes pr_2^*(L|e \times X).$$

*Proof.* It is enough to show that  $L \cong \operatorname{pr}_1^*(L_1) \otimes \operatorname{pr}_2^*(L_2)$  for some  $L_1 \in \operatorname{Pic}(G)$ and  $L_2 \in \operatorname{Pic}(X)$ . Then it is immediately checked that  $L_1 \cong L|G \times x_0$  and  $L_2 \cong L|e \times X$ . Next we use the following fact about algebraic groups: G contains an open Zariski subset U isomorphic to  $(\mathbb{A}^1 \setminus \{0\})^N$ . For GL(n) this follows from the fact that any matrix with non-zero pivots can be reduced to triangular form by elementary row transformations. We also use the fact that the homomorphism  $\operatorname{pr}_2^*:\operatorname{Pic}(X)\to\operatorname{Pic}(\mathbb{A}^1\setminus\{0\}\times X)$  are isomorphisms (see [42], Chapter 2, Proposition 6.6). These two facts imply that  $L|U\times X\cong$  $\operatorname{pr}_2^*(L_2)$  for some line bundle  $L_2$  on X. Let D be a Cartier divisor on  $G \times X$ representing L (i.e.  $L \cong \mathcal{O}_{G \times X}(D)$ ). Then the previous isomorphism implies that there exists a Cartier divisor  $D_2$  on X such that  $D' = D - \operatorname{pr}_2^*(D_2)|U \times$ X=0. For every irreducible component  $D'_i$  of D' its image in G is contained in the closed subset  $Z = G \setminus U$ . By the theorem on the dimension of fibre of a regular map of algebraic varieties (see [89]), the fibres of  $\operatorname{pr}_1: D_i' \to Z$ must be of dimension equal to dim X. This easily implies that  $D'_i = \operatorname{pr}_1^*(D_i)$ , where  $D_i \subset Z$ . Thus  $D' = \operatorname{pr}_1^*(D_1)$  for some Weil (and hence Cartier because G is nonsingular) divisor on G. So, we have the equality of Cartier divisors  $D = \operatorname{pr}_1^*(D_1) + \operatorname{pr}_2^*(D_2)$ . This translates into an isomorphism of line bundles  $L \cong \operatorname{pr}_1^*(\mathcal{O}_G(D_1)) \otimes \operatorname{pr}_2(\mathcal{O}_X(D_2)).$ 

Define now a homomorphism  $\delta: \operatorname{Pic}(X) \to \operatorname{Pic}(G)$  by

$$\delta(L) = (\operatorname{pr}_2^*(L) \otimes \sigma^*(L^{-1}))|G \times x_0,$$

where  $x_0$  is a chosen point in X. Suppose  $\delta(L)$  is trivial. By the previous lemma applied to  $M = \operatorname{pr}_2^*(L) \otimes \sigma^*(L^{-1})$  we obtain that  $M = \operatorname{pr}_2^*(M|e \times X)$ . But the restriction of  $\sigma$  and  $\operatorname{pr}_2$  to  $e \times X$  are equal. This implies that M is trivial, hence there exists an isomorphism  $\Phi : \operatorname{pr}_2^*(L) \to \sigma^*(L)$ . By Lemma 7.1, L admits a G-linearization. This proves

**Theorem 7.2.** Let G be an irreducible affine algebraic group and X be a normal G-variety. Then the following sequence of groups is exact

$$0 \to Ker(\alpha) \to Pic^G(X) \xrightarrow{\alpha} Pic(X) \xrightarrow{\delta} Pic(G).$$

**Corollary 7.2.** Under the assumption of the theorem, the image of  $Pic^{G}(X)$  in Pic(X) is of finite index. In particular, for any line bundle L on X there exists a number n such that  $L^{\otimes n}$  admits a G-linearization.

*Proof.* Use the fact that for any affine algebraic k-group G the Picard group Pic(G) is finite (see [2], p.74).

Remark 7.3. The assertion that  $\operatorname{Pic}(G)$  is finite can be checked directly for many groups. For example, the group is trivial for  $G = \operatorname{GL}_k(n), \mathbb{G}_m^n, \mathbb{G}_a$  since these groups are open subsets of affine space. To compute  $\operatorname{Pic}(G)$  for  $G = \operatorname{PGL}_k(n), \operatorname{SL}_k(n)$ , we use the following facts. Let V be an irreducible hypersurface of degree d in  $\mathbb{P}^N$ . Then

$$\operatorname{Pic}(\mathbb{P}^n \setminus V) \cong \mathbb{Z}/d\mathbb{Z} \tag{7.3}$$

This isomorphism is defined by restricting a sheaf to an open subset. Another fact, which is not easy, is that

$$Pic(V) = \mathbb{Z}h,\tag{7.4}$$

where h is the class of a hyperplane section of V, provided  $N \geq 4$ . This is called the *Lefschetz theorem* on a hyperplane section (see [37], p.169).

Now notice that  $G = \operatorname{PGL}_k(n)$  is isomorphic to  $\mathbb{P}^{n^2-1} \setminus V$ , where V is given by the determinant equation  $\det(x_{ij}) = 0$ . This gives

$$\operatorname{Pic}(\operatorname{PGL}_k(n)) \cong \mathbb{Z}/n\mathbb{Z}.$$

On the other hand,  $SL_k(n)$  is isomorphic to the complement of a hyperplane section  $x_{00} = 0$  of the hypersurface

$$\det((x_{ij})_{1 \le i,j \le n}) - x_{00}^n = 0$$

in  $\mathbb{P}^{n^2}$ . So, when  $n \geq 2$  we can apply (7.4) to obtain

$$\operatorname{Pic}(\operatorname{SL}(n)) \cong 0.$$

There is a notion of a simply-connected algebraic group (which makes sense over an arbitrary algebraically closed field). For all such groups  $\operatorname{Pic}(G)$  is trivial. Any G is isomorphic to a quotient  $\tilde{G}/A$ , where  $\tilde{G}$  is simply-connected and A is a finite abelian group whose dual abelian group is isomorphic to  $\operatorname{Pic}(G)$ . For example,  $\tilde{G} = \operatorname{SL}(n)$  for  $G = \operatorname{PGL}_k(n)$ . For simple algebraic groups  $\operatorname{Pic}(G)$  is a subgroup of the abelian group  $A(\mathcal{D})$  defined by the Cartan matrix of the root system of the Lie algebra of G. Here is the value of  $A(\mathcal{D})$  for different types of simple Lie algebras:

$$A_n$$
  $B_n$   $C_n$   $D_{2k}$   $D_{2k+1}$   $F_4$   $G_2$   $E_6$   $E_7$   $E_8$   $\mathbb{Z}/(n+1)\mathbb{Z}$   $\mathbb{Z}/2\mathbb{Z}$   $\mathbb{Z}/2\mathbb{Z}$   $(\mathbb{Z}/2\mathbb{Z})^2$   $\mathbb{Z}/4\mathbb{Z}$  1 1  $\mathbb{Z}/3\mathbb{Z}$   $\mathbb{Z}/2\mathbb{Z}$  1

We refer to [72] for describing the Picard group of any homogeneous space G/H.

#### 7.3 Linearization of an action

Now we are ready to prove that any algebraic action on a normal quasiprojective variety can be linearized. Let L be a G-linearized line bundle and  $V = \Gamma(X, L)$  its space of sections, and let G be an affine algebraic group. The group G acts naturally and linearly on V by the formula

$$\rho(g)(s)(x) = \bar{\sigma}(g, s(\sigma(g^{-1}, x))),$$

or, in simplified notations,

$$(g \cdot s)(x) = g \cdot s(g^{-1} \cdot x). \tag{7.5}$$

We know that any finite-dimensional subspace W' of V is contained in an G-invariant finite-dimensional subspace W generated by the translates of a basis of W. Thus we obtain a linear representation

$$\rho: G \to \mathrm{GL}(W).$$

Assume that W is base-point-free (i.e. for any  $x \in X$  there exists  $s \in W$  such that  $s(x) \neq 0$ ). Then W defines a regular map  $\phi_W : X \to \mathbb{P}(W^*)$  by the formula

$$\phi_W(x) = \{ s \in W : s(x) = 0 \}.$$

Here we identify a point in  $\mathbb{P}(W^*)$  with a hyperplane in W. Note that although s(x) does not make sense since it depends on a trivialization of L, the equality s(x) = 0 is well-defined. The representation (7.5) in W defines a representation in  $W^*$  and the induced projective representation in  $\mathbb{P}(W^*)$ . It is defined by the formula

$$g \cdot H = g^{-1}(H),$$

where H is a hyperplane in W. Now

$$\phi_W(g \cdot x) = \{ s \in W : s(g \cdot x) = 0 \} = \{ s \in W : g^{-1}s(g \cdot x) = 0 \} =$$

$${s \in W : (g^{-1} \cdot s)(x) = 0} = g^{-1}(\phi_W(x)) = g \cdot \phi_W(x).$$

This shows that the map  $\phi_W$  is G-equivariant.

Choosing a basis  $(s_0, \ldots, s_n)$  in W we obtain a G-equivariant rational map

$$f: X \to \mathbb{P}^n, \ x \to (s_0(x), \dots, s_n(x)).$$

If the rational map defined by a basis of W' is an embedding, then this map is an embedding too. Now let  $i: X \hookrightarrow \mathbb{P}^N$  be an embedding of X as a locally closed subvariety of projective space. We take  $L = i^*(\mathcal{O}_{\mathbb{P}^N}(1))$ . When n is large enough,  $L^{\otimes n} = i^*(\mathcal{O}_{\mathbb{P}^N}(n))$  admits a G-linearization. Let  $W' \subset \Gamma(X, L^{\otimes n})$  be the image of  $\Gamma(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(n))$  under the canonical restriction map  $\Gamma(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(n)) \to \Gamma(X, L^{\otimes n})$ . Obviously, W' is a finite-dimensional linear system without base-points. It defines an embedding of X into projective space which is the composition of i and a Veronese map  $v_n: \mathbb{P}^N \to \mathbb{P}^{\binom{N+n}{n}} - 1$ . Replacing W' by a G-invariant linear system W as above, we obtained a linearization of our action of G on X.

**Theorem 7.3.** Let X be a quasiprojective normal algebraic variety, acted on by an irreducible algebraic group G. Then there exists a G-equivariant embedding  $X \hookrightarrow \mathbb{P}^n$ , where G acts on  $\mathbb{P}^n$  via its linear representation  $G \to GL_k(n+1)$ .

Example 7.1. Let  $G = \operatorname{PGL}_k(n+1)$  act on  $X = \mathbb{P}^n$  in the natural way. Let us see that the line bundle  $\mathcal{O}_{\mathbb{P}^n}(1)$  corresponding to a hyperplane is not G-linearizable but  $\mathcal{O}_{\mathbb{P}^n}(n+1) \cong \mathcal{O}_{\mathbb{P}^n}(1)^{\otimes n+1}$  is. We view G as an open subset of the projective space  $\mathbf{P}_k^N(N = n^2 + 2n = \dim G)$  whose complement is the determinant hypersurface  $\Delta$  given by the equation  $\det((T_{ij})) = 0$ . The action  $\sigma \colon G \times X \to X$  is the restriction to  $G \times X$  of the rational map  $\sigma' \colon \mathbb{P}^N \times \mathbb{P}^n - - \to \mathbb{P}^n$  given by the formula

$$\sigma'((a_{ij}), (x_0, \dots, x_n) = (\sum_{j=0}^n a_{1j}x_j, \dots, \sum_{j=0}^n a_{nj}x_j).$$

Note that this map is undefined at the closed set Z of points (A, x) such that  $\det(A) = 0$ ,  $A \cdot x = 0$ . The projection of this set to G is a birational map onto the determinant hypersurface (it is an isomorphism over the subset of matrices of corank equal to 1). Since Z is of codimension  $\geq 2$  in  $\mathbb{P}^N \times \mathbb{P}^n$  the line bundle  $\sigma^*(\mathcal{O}_{\mathbb{P}^n}(1))$  is the restriction of a line bundle on  $\mathbb{P}^N \times \mathbb{P}^n$ . The formula for the action shows that this bundle must be  $\operatorname{pr}_1^*(\mathcal{O}_{\mathbb{P}^N}(1)) \otimes \operatorname{pr}_2^*(\mathcal{O}_{\mathbb{P}^n}(1))$ . Thus  $\sigma^*(\mathcal{O}_{\mathbb{P}^n}(1))$  restricted to  $(\mathbb{P}^N \setminus \Delta) \times \{x_0\}$  is isomorphic

to the restriction of  $\mathcal{O}_{\mathbb{P}^N}(1)$  to  $\mathbb{P}^N \setminus Z$ . If  $\sigma^*(\mathcal{O}_{\mathbb{P}^n}(1)) \cong \operatorname{pr}_2^*(\mathcal{O}_{\mathbb{P}^n}(1))$  this bundle must be trivial. However, by (7.3), it is a generator of the group  $\operatorname{Pic}(\mathbb{P}^N \setminus \Delta) \cong \mathbb{Z}/(n+1)\mathbb{Z}$ .

### Bibliographical notes

The existence of a linearization on some power of a line bundle on a normal complete algebraic variety was first proven in [60] by using the theory of Picard varieties for complete normal varieties. Our proof which is borrowed from [2] does not use the theory of Picard varieties and applies to any normal quasiprojective varieties. One can also consider G-linearized vector bundles of arbitrary rank ( see for example [86]) however no generalization of Corollary 7.2 to this case is known to me.

#### Exercises

- **7.1** Let L be a line bundle on an algebraic group. Show that the complement  $L^*$  to the zero section of L has a structure of an algebraic group such that the projection map  $\pi: L^* \to G$  is a homomorphism of groups with kernel isomorphic to  $\mathbb{G}_m$ .
- **7.2** Assume G is irreducible. Show that  $H^1_{alg}(G, \mathcal{O}(X)^*)$  is a homomorphic image of the group  $\mathcal{X}(G)$ . In particular it is trivial if X is connected and complete.
- **7.3** Use Rosenlicht's Theorem from Remark 7.1 to show that any invertible regular function  $f \in \mathcal{O}(G)^*$  on an irreducible affine algebraic group G with value 1 at  $e \in G(k)$  defines a rational character of G.
- **7.4** Let X be a nonsingular algebraic variety and G its finite froup of automorphisms. Show that the group  $\operatorname{Pic}^G(X)$  is isomorphic to the group of G-invariant Weil divisors modulo linear equivalence defined by G-invariant rational functions. [Hint: Use Hilbert's Theorem 90 which asserts that  $H^1(G, k(X)^*) = 0$ .]
- **7.5** Let  $\mathbb{G}_m$  act on an affine algebraic variety X defining the corresponding grading of  $\mathcal{O}(X)$ . Let M be a projective module of rank 1 over  $\mathcal{O}(X)$  and L be the associated line bundle on X. Show that there is a natural bijective correspondence between G-linearizations on L and structures of a  $\mathcal{O}(X)$ -graded module on M.

- **7.6** Show that any line bundle on a normal irreducible variety X on which SL(n) acts admits a unique SL(n)-linearization.
- **7.7** Let  $f: X \to \mathbb{P}(V)$  be a G-equivariant map, where G acts on  $\mathbb{P}(V)$  via its linear representation. Show that  $L = f^*(\mathcal{O}_{\mathbb{P}(V)}(1))$  admits a G-linearization and the map f is the map given by the line bundle L.
- **7.8** Show that the total space of the line bundle  $L = \mathcal{O}_{\mathbb{P}^n}(1)$  is isomorphic to the complement of a point in  $\mathbb{P}^{n+1}$ . Describe the unique  $\mathrm{SL}(n+1)$ -linearization on  $\mathbb{P}^{n+1}$  in terms of an action of the group  $\mathrm{SL}(n+1)$  on the total space.

## Lecture 8

# Stability

### 8.1 Stable points

From now on we will assume that G is a reductive algebraic group acting on an irreducible algebraic variety X. In this lecture we shall explain a general construction of quotients due to D. Mumford. The idea is to cover X by open affine G-invariant sets  $U_i$  and then to construct the categorical quotient  $X/\!/G$  by gluing the quotients  $U_i/\!/G$ . The latter quotients are defined by Nagata's theorem. Unfortunately, such a cover does not exist in general. Instead we find such a cover of some open subset of X. So we can define only a "partial" quotient  $U/\!/G$ . The construction of U will depend on a parameter, a choice of a G-linearized line bundle L.

**Definition.** Let L be a G-linearized line bundle on X and  $x \in X$ .

- (i) x is called semi-stable (with respect to L) if there exists m > 0 and  $s \in \Gamma(X, L^m)^G$  such that  $X_s = \{y \in X : s(y) \neq 0\}$  is affine and contains x.
- (ii) x is called *stable* (with respect to L) if there exists s as in (i) and additionally  $G_x$  is finite and all orbits of G in  $X_s$  are closed.
- (iii) a point is called *unstable* (with respect to L) if it is not semi-stable.

We shall denote the set of semi-stable points (resp. stable, resp. unstable) by

$$X^{\mathrm{ss}}(L), \quad X^{\mathrm{s}}(L), \quad X^{\mathrm{us}}(L).$$

Remarks 8.1. 1. Obviously the subsets  $X^{ss}(L)$  and  $X^{s}(L)$  are open and G-invariant (but could be empty).

- 2. If L is ample and X is projective, the sets  $X_s$  are always affine, so this condition in the definition of semi-stable points can be dropped. In fact, for any n > 0,  $X_{s^n} = X_s$  so we may assume that L is very ample. Let  $f: X \to \mathbb{P}^N_k$  be a closed embedding defined by some complete linear system associated to L. Then  $X_s$  is equal to the pre-image of an affine open subset in  $\mathbb{P}^N_k$  which is the complement to some hyperplane. Since a closed subset of an affine set is affine we obtain the assertion.
- 3. The restriction of L to  $X^{ss}(L)$  is ample. This follows from the following criterion of ampleness: L is ample on a variety X if and only if there exists an affine open cover of X formed by the sets  $X_s$ , where s is a global section of some tensor power of L. We refer for the proof to [42], p.155.
- 4. The definition of the sets  $X^{ss}(L)$ ,  $X^{s}(L)$ ,  $X^{us}(L)$  does not change if we replace L by its positive tensor power (as G-linearized line bundle).
- 5. Assume L is ample. Let  $x \in X^{\mathrm{ss}}(L)$  be a point whose orbit  $G \cdot x$  is closed and the isotropy subgroup  $G_x$  is finite. I claim that  $x \in X^{\mathrm{s}}(L)$ . In fact let  $x \in X_s$  be as in the definition of semi-stable points. Then the set  $Z = \{y \in X_s : \dim G_y > 0\}$  is closed in  $X_s$  and does not intersect  $G \cdot x$ . Since G is reductive, there exists a function  $\phi \in \mathcal{O}(X_s)^G$  such that  $\phi(G \cdot x) \neq 0, \phi(Z) = 0$ . One can show that there exists some number r > 0 such that  $\phi s^{\otimes r}$  extends to a section s' of some tensor power of L (see [42], Chapter 2, 5.14). Since X is irreducible, this section must be G-invariant. Thus  $x \in X_{s'} \subset X_s$  and all points in  $X_{s'}$  have 0-dimensional stabilizer. This implies that the orbits of all points in  $X_{s'}$  are closed in  $X_{s'}$ . This checks that x is stable.
- 6. In [60] a stable point is called *properly stable* and in definition of stability the finiteness of  $G_x$  is omitted.

Let us explain the definition of stability in more down-to-earth terms. Assume that L is very ample, and embed X equivariantly in  $\mathbb{P}(V)$ . We have a G-equivariant isomorphism of vector spaces

$$\Gamma(X, L^m) \cong \operatorname{Pol}_m(V)/I_m,$$

where  $I_m$  is the subspace of  $Pol_m(V)$  which consists of polynomials vanishing on X. Passing to invariants, we obtain

$$\Gamma(X, L^m)^G \cong (\operatorname{Pol}_m(V)/I_m)^G,$$

Let  $x^*$  denote a point in V such that  $kx^* = x \in \mathbb{P}(V)$ . Every  $s \in \Gamma(X, L^m)^G$  can be represented by a polynomial  $F_s \in \operatorname{Pol}_m(V)$  which is G-invariant modulo  $I_m$ . In particular, F is constant on the orbit of  $x^*$  for any point  $x \in X$ . Clearly  $s(x) \neq 0$  if and only if  $F_s$  does not vanish on  $x^*$ . So the set of unstable points is equal to the image in  $\mathbb{P}(V)$  of the set

$$\mathcal{N}(G; V) = \{ v \in V : F(v) = 0, \forall F \in \bigoplus_{m>0} \operatorname{Pol}_m(V)^G \}.$$

This set is called the *nul-cone* of the linear action of G in V. It is an affine variety given by a system of homogeneous equations (an affine cone). Let  $v \in V$  and O(v) be its orbit in V. Suppose  $0 \in \overline{O(v)}$ . Then for any G-invariant polynomial F we have  $F(v) = F(\overline{O(v)}) = F(\overline{O(v)}) = F(0) = 0$ . Thus the corresponding point x = kv in X is unstable. Conversely, if x is unstable,  $0 \in \overline{O(v)}$ . In fact, otherwise we can apply Lemma 6.1 and find an invariant polynomial P such that  $P(v) \neq 0$  but P(0) = 0. If we write P as a sum of homogeneous polynomials  $P_m$  of positive degree, we find some  $P_m$  which does not vanish at v. Then x is semistable. This interpretation of stability goes back to the original work of D. Hilbert [43]

### 8.2 The existence of a quotient

Let us show that the open subset of semi-stable (resp. stable) points admit a categorical (resp. geometric) quotient.

**Theorem 8.1.** There exists a good categorical quotient

$$\pi: X^{ss}(L) \to X^{ss}(L)/\!/G.$$

There is an open subset U in  $X^{ss}(L)/\!/G$  such that  $X^s(L) = \pi^{-1}(U)$  and  $\pi|X^s(L): X^s(L) \to U$  is a geometric quotient of  $X^s(L)$  by G. Moreover there exists an ample line bundle M on  $X^{ss}(L)/\!/G$  such that  $\pi^*(M) = L^{\otimes n}$ , restricted to  $X^{ss}(L)$ , for some  $n \geq 0$ . In particular,  $X^{ss}(L)/\!/G$  is a quasiprojective variety.

Proof. Since any open subset of X is quasi-compact in the Zariski topology we can find a finite set  $\{s_1, \ldots, s_r\}$  of invariant sections of some tensor power of L such that  $X^{ss}(L)$  is covered by the sets  $X_{s_i}$ . Obviously we may assume that all  $s_i$ 's belong to  $\Gamma(X, L^{\otimes N})^G$  for some sufficiently large N. Let  $U_i = X_{s_i}$ ,  $i = 1, \ldots, r$ . For every  $U_i$ , we consider the ring  $\mathcal{O}(U_i)^G$  of G-invariant

regular functions and let  $\pi_i: U_i \to Y_i := U_i/\!/G$  with  $\mathcal{O}(Y_i) = \mathcal{O}(U_i)^G$  as constructed in Nagata's theorem. For each i, j we can consider  $s_i/s_j$  as a regular G-invariant function on  $U_j$ . Let  $\phi_{ij} \in \mathcal{O}(Y_j)$  be the corresponding regular function on the quotient. Consider the principal open subset  $D(\phi_{ij}) \subset Y_i$ . Obviously

$$\pi_i^{-1}(D(\phi_{ij})) = \pi_i^{-1}(D(\phi_{ji})) = U_i \cap U_j.$$

This easily implies that the both sets  $D(\phi_{ij})$  and  $D(\phi_{ji})$  are categorical quotients of  $U_i \cap U_j$ . By the uniqueness of categorical quotient there is an isomorphism  $\alpha_{ij}: D(\phi_{ij}) \to D(\phi_{ji})$ . It is easy to see that the set of isomorphisms  $\{\alpha_{ij}\}$  satisfies the conditions of gluing. So we can patch together the quotients  $Y_i$  and the maps  $\pi_i$  to obtain a morphism  $\pi: X^{\mathrm{ss}}(L) \to Y$ , where  $Y = X^{\mathrm{ss}}(L)//G$ . To show that Y is separated it is enough to observe that it admits an affine open cover by the sets  $Y_i$  which satisfies the following properties:  $Y_i \cap Y_j \cong U_i \cap U_j//G$  are affine and  $\mathcal{O}(Y_i \cap Y_j)$  is generated by restrictions of functions from  $\mathcal{O}(Y_i)$  and  $\mathcal{O}(Y_j)$ . The latter property follows from the fact that  $\mathcal{O}(U_i \cap U_j)$  is generated by restrictions of functions from  $\mathcal{O}(U_i)$  and  $\mathcal{O}(U_j)$ . In fact, the separatedness also follows from the assertion that Y is quasiprojective. So let us concentrate on proving the latter.

Note that the cover  $\{U_i\}_{i=1,\ldots,r}$  of  $X^{ss}(L)$  is a trivializing cover for the line bundle L' obtained by restriction of L to  $X^{ss}(L)$ . In fact, by Remark 3, L' is ample hence we may assume that some tensor power  $L^{\prime \otimes t}$  is very ample. This implies that  $L'^{\otimes t}$  is equal to the line bundle  $f^*(\mathcal{O}_{\mathbb{P}^n}(1))$  for some embedding  $f: X^{\mathrm{ss}}(L) \to \mathbb{P}^n$ . The section  $s_i^{\otimes t}$  of  $L'^{\otimes t}$  is equal to the section  $f^*(h)$  where h is a section of  $\mathcal{O}_{\mathbb{P}^n}(1)$ . Thus the open subset  $U_i$  is equal to  $f^{-1}(V_i)$  where  $V_i$  is an open subset of  $\mathbb{P}_k^n$  isomorphic to affine space. This shows that L' restricted to  $U_i$  is equal to  $(f|U_i)^*(\mathcal{O}_{\mathbb{P}^n}(1)|V_i)$ . However,  $\mathcal{O}_{\mathbb{P}^n}(1)|V$  is isomorphic to the trivial line bundle since any line bundle over affine space is isomorphic to the trivial bundle. By fixing some trivializing isomorphisms we can identify the functions  $(s_i/s_j)|U_i\cap U_j$  with the transition functions  $g_{ij}$  of L'. As we have shown before,  $s_i/s_j = \pi^*(\phi_{ij})$  for some functions  $\phi_{ij} \in \mathcal{O}(Y_j)$ . We use the transition functions  $h_{ij} = \phi_{ij} | Y_i \cap Y_j$  to define a line bundle M on Y. Obviously  $\pi^*(M) \cong L'$ . Let us show that M is ample. First we define its sections  $t_j$  by setting:  $t_j|Y_i=\phi_{ij}$  for a fixed j and variable i. Since for any  $i_1, i_2$ 

$$\phi_{i_2j} = \phi_{i_1j}\phi_{i_2i_1}$$

 $t_j|Y_{i_1}\cap Y_{i_2}$  differ by the transition function of M, hence  $t_j$  is in fact a section of M. Clearly  $\pi^*(t_j) = s_j$  and  $Y_{t_j} = Y_j$ . Again as above since all  $Y_j$  are affine,

we obtain that M is ample. Since  $\pi: X^{\mathrm{ss}}(L) \to Y$  is obtained by gluing together good categorical quotients, the morphism  $\pi$  is a good categorical quotient.

It remains to show that the restriction of  $\pi$  to  $X^{s}(L)$  is a geometric quotient. By definition  $X^{s}(L)$  is covered by affine open G-invariant sets where G acts with closed orbits. Since  $\pi$  is a good categorical quotient, for any  $x \in X^{s}(L)$  the fibre  $\pi^{-1}(\pi(x))$  consists of one orbit. Thus  $\pi|X^{s}(L)$  is a good geometric quotient.

In the case when L is ample and X is projective, the following construction of the categorical quotient  $X^{ss}(L)//G$  is equivalent to the previous one.

**Proposition 8.1.** Assume X is projective and L is ample. Let

$$R = \bigoplus_{n \ge 0} \Gamma(X, L^{\otimes n}).$$

Then

$$X^{ss}(L)//G \cong Proj(R^G).$$

In particular, the quotient  $X^{ss}(L)//G$  is a projective variety.

Proof. First of all we observe that, by Nagata's theorem the algebra  $R^G$  is finitely-generated. It has also the natural grading, induced by the grading of R. The reader should go back to Lecture 4 to recall the definition of  $\operatorname{Proj}(A)$  for any finitely generated graded k-algebra A. Replacing L by  $L^{\otimes d}$  we may assume that  $R^G$  is generated by elements  $s_0, \ldots, s_n$  of degree 1. Let  $Y = \operatorname{Proj}(R^G)$  be the projective subvariety of  $\mathbb{P}^n$  corresponding to the homogeneous ideal I equal to the kernel of some homogeneous surjection  $k[T_0, \ldots, T_n] \to R^G, T_i \mapsto s_i$ . The elements  $s_i$  generate the ideal  $\mathfrak{m} = R_+^G$  generated by homogeneous elements of positive degree. Thus the affine open sets  $U_i = X_{s_i}$  cover  $X^{\operatorname{ss}}(L)$ . On the other hand the open sets  $Y_i = Y \cap \{T_i \neq 0\}$  form an open cover of Y with the property that  $\mathcal{O}(Y_i) = \mathcal{O}(U_i)^G$ . The maps  $U_i \to Y_i$  define a morphism  $X^{\operatorname{ss}}(L) \to Y$  which coincides with the categorical quotient defined in the proof of the previous Theorem.

Remark 8.1. If we assume that L is very ample, and embeds X in the projective space  $\mathbb{P}(\Gamma(X,L)^*) = \mathbb{P}(V)$  then we can interpret the null cone as follows. The sections  $s_i$  from the proof of the previous proposition, define a G-equivariant rational map  $X \to \mathbb{P}^n, x \to (s_0(x), \ldots, s_n(x))$ . The closed

subset of X where this map is not defined is exactly the closed subvariety of X equal to  $X \cap \overline{\mathcal{N}}(G; V)$ , where the bar denotes the image of the nullcone  $\mathcal{N}(G; V)$  in  $\mathbb{P}(V)$ . So deleting the closed subset from X we obtain the set  $X^{\mathrm{ss}}(L)$  and the quotient map  $X^{\mathrm{ss}}(L) \to X^{\mathrm{ss}}(L)/\!/G$ .

Remark 8.2. Note that the morphism  $X^{\mathrm{ss}}(L) \to X^{\mathrm{ss}}(L)/\!/G$  is affine, i.e. preimage of an affine open set is affine. There is also the following converse of the previous theorem. Let U be a G-invariant open subset of X such that the geometric quotient  $\pi: U \to U/G$  exists and is an affine map. Assume U/G is quasiprojective. Then there exists a G-linearized line bundle L such that  $U \subseteq X^s(L)$ . We refer for the proof to [60], p. 41.

#### 8.3 Examples

Example 8.1. Let  $X = \mathbb{P}^n$  and  $G = \operatorname{SL}_k(n)$  acting on  $\mathbb{P}^n$  naturally via its linear representation. We know that  $L = \mathcal{O}_{\mathbb{P}^n}(1)$  admits a unique  $\operatorname{SL}(n+1)$  linearization (Exercise 7.7). We also know from Lecture 5 that  $\operatorname{Pol}_m(k^{n+1})$  is an irreducible representation for G. Therefore, for any m > 0,

$$\Gamma(X, \mathcal{O}_{\mathbb{P}^n}(m))^G = \operatorname{Pol}_m(k^{n+1})^G = \{0\}.$$

This shows that  $X^{ss}(L) = \emptyset$ .

Example 8.2. Let  $X = \mathbb{P}^n$ ,  $G = \mathbb{G}_m$  and the action is defined by the formula

$$t \cdot (x_0, \dots, x_n) = (t^{q_0} x_0, \dots, t^{q_n} x_n).$$

Here  $q_0, \ldots, q_n$  are some integers. We assume that  $q_0 \leq q_1 \leq \ldots \leq q_n$ . Since  $\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}\mathcal{O}_{\mathbb{P}^n}(1)$  and  $\mathcal{X}(\mathbb{G}_m) \cong \mathbb{Z}$  we have  $\operatorname{Pic}^G(\mathbb{P}^n) \cong \mathbb{Z}^2$ . A G-linearized bundle must be of the form  $\mathcal{O}_{\mathbb{P}^n}(m)$  and defines a G-equivariant Veronese  $embedding <math>\mathbb{P}^n \to \mathbb{P}^{N(m)}$ , where  $N(m) = \dim k[T_0, \ldots, T_n]_m - 1$ . The group  $\mathbb{G}_m$  acts on  $\mathbb{P}^{N(m)}$  by the formula

$$t: x_{i_1...i_m} \to t^{q_{i_1} + ... + q_{i_m}} x_{i_1...i_m}$$

where  $x_{i_1...i_m}$  is the coordinate in the Veronese space corresponding to the monomial  $x_{i_1}...x_{i_m}$ ,  $i_1 \leq ... \leq i_m$ . Now the linearization is given by a linear representation of  $\mathbb{G}_m$  in the space  $(k[T_0, ..., T_n]_m)^*$  which lifts the action in the corresponding projective space. Obviously it is defined by the formula

$$t: x_{i_1...i_m} \to t^{-a} t^{q_{i_1} + ... + q_{i_m}} x_{i_1...i_m},$$
 (8.1)

8.3. EXAMPLES 119

for some integer a. Thus our G-linearized bundles correspond to two parameters  $(m, a) \in \mathbb{Z}$ . Denote the corresponding line bundle by  $L_{m,a}$ . Raising  $L_{m,a}$  into r-th power as a G-linearized bundle corresponds to replacing (m, a) with (rm, ra).

We know that  $X^{ss}(L)$  does not change if we replace L by  $L^{\otimes r}$ . So we may assume that  $L = L_{1,a/m}$ , where by definition  $H^0(\mathbb{P}^n, L_{1,a/m}^{\otimes N})^G$  is defined only for N divisible by m and is equal to  $H^0(\mathbb{P}^n, L_{ms,as})^G$ . In other words we permit a to be a rational number in formula (8.1) and consider invariant polynomials of degree multiple of the denominator of a. Here the invariance means that for any  $t \in k^*$ ,

$$F(t^{-a+q_0}x_0,\ldots,t^{-a+q_n}x_n) = F(x_0,\ldots,x_n).$$

Assume now that  $q_0 \leq 0$ . It is obvious that  $\Gamma(\mathbb{P}^n, L_{1,a}^{\otimes N})^G = 0$  for all N > 0 if  $a \leq q_0$  or  $a \geq q_n$ . This implies that  $X^{\text{ss}}(L_{1,a}) = \emptyset$  if  $a \notin [q_0, q_n]$ . When  $a = q_0$ , we have

$$\bigoplus_{N=0}^{\infty} H^0(\mathbb{P}^n, L_{1,a}^{\otimes N})^G = k[T_0, \dots, T_m],$$

where  $q_0 = \ldots = q_m$ . Hence

$$X^{ss}(L_{1,a}) = \mathbb{P}^n \setminus \{x_0 = \ldots = x_m = 0\}$$

and

$$X^{\rm ss}(L_{1,a})//G = {\rm Proj}(k[T_0, \dots, T_m]) = \mathbb{P}^{m-1}.$$

In particular, if  $q_1 > q_0$ , the quotient is the point. Next, we increase the parameter a. If  $q_m < a \le q_{m+1}$ , we have more of invariant polynomials. For example, if a = s/d, the monomial  $T_0^{dq_{m+1}-s}T_{m+1}^{-s+dq_0}$  belongs to  $\bigoplus_{N=0}^{\infty} H^0(\mathbb{P}^n, L_{1,a}^{\otimes N})^G$ . So the set  $X^{\text{ss}}(L_{1,a})$  becomes larger and the categorical quotient changes. In fact one can show that the quotients do not change when a stays strictly between to different weights  $q_i$  and changes otherwise.

Example 8.3. Consider the special case of the previous example where  $q_0 = 0$  and  $q_1 = \ldots = q_n = 1$ . Clearly the restriction of this action to  $\mathbb{A}^n$  is given by the formula

$$t \cdot (z_1, \ldots, z_n) = (t \cdot z_1, \ldots, t \cdot z_n).$$

If we take  $L = L_{1,a}$  for a = 1/2 we get

$$\bigoplus_{m=0}^{\infty} \Gamma(\mathbb{P}^n, L_{1,a}^{\otimes 2m})^G = k[T_0 T_1, \dots, T_0 T_n].$$

This shows that  $X^{\mathrm{us}}(L) = V(T_0) \cup V(T_1, \ldots, T_n)$ . In other words, the set of semi-stable points is equal to the complement of the hyperplane at infinity  $T_0 = 0$  and the point  $(1, 0, \ldots, 0)$ . So it can be identified with  $\mathbb{A}^{n+1} \setminus \{0\}$ . The quotient is of course  $\mathbb{P}^n$ . Since the group G acts on this set with trivial stabilizers, we obtain that all orbits are closed and the quotient is a good geometric quotient.

Similar conclusion can be made for any rational  $a \in (0,1)$ . If a = 1, we have

$$\bigoplus_{m=0}^{\infty} \Gamma(\mathbb{P}^n, L_{1,1}^{\otimes m})^G = k[T_1, \dots, T_n].$$

Thus

$$X^{\mathrm{us}}(L) = \mathbb{P}^n \setminus V(T_1, \dots, T_n) = \mathbb{P}^{n+1} \setminus \{(1, 0, \dots, 0)\}.$$

The categorical quotient is the same  $\mathbb{P}^n$  but the set of semi-stable points is different.

Example 8.4. Let  $X = \mathbb{A}^n$  and  $G = \mathbb{G}_m$ . Every line bundle is isomorphic to the trivial bundle  $L = X \times \mathbb{A}^1$ . By Lecture 7, its G-linearization is defined by the formula:

$$t \cdot (z, v) = (t \cdot z, \chi(t)v),$$

where  $t \mapsto \chi(t)$  is a homomorphism  $\chi : \mathbb{G}_m \to \mathbb{G}_m$ . It is easy to see that any such homomorphism is given by a formula:  $t \to t^{\alpha}$  for some integer  $\alpha$ . In fact  $\chi^* : k[T, T^{-1}] \to k[T, T^{-1}]$  is defined by the image of T, and the condition that this map is a homomorphism implies that the image is a power of T. So let  $L_{\alpha}$  denote the G-linearized line bundle which is trivial as a bundle and the linearization is given by the formula:

$$t \cdot (z, v) = (t \cdot z, t^{\alpha}v).$$

A section  $s: X \to L_{\alpha}$  of  $L_{\alpha}$  is given by the formula

$$s(z) = (z, F(z))$$

8.3. EXAMPLES 121

for some polynomial  $F(Z) \in k[Z] = \mathcal{O}(\mathbb{A}^n)$ . The group G acts on the space of sections by the formula  $s \mapsto {}^t s$ , where

$$^t s(z) = (z, t^{\alpha} \cdot F(t^{-1} \cdot z)).$$

Thus  $s \in \Gamma(X, L_{\alpha}^{\otimes m})^G$  if and only if

$$F(t \cdot z) = t^{m\alpha} \cdot F(z)$$
 for all  $z \in k^n, t \in K^*$ .

When  $\alpha = 0$ , the constant polynomial 1 defines an invariant section of  $L^{\otimes m}$  for any m. Thus  $X^{\text{ss}}(L_0) = X$  and

$$X/\!/G = \operatorname{Spec}(\mathcal{O}(X)^G) = \operatorname{Spec}(k[Z_1, \dots, Z_n]^{\mathbb{G}_m}).$$

Recall that a  $\mathbb{G}_m$ -action on an affine variety is equivalent to a  $\mathbb{Z}$ -grading of its ring of regular functions. The ring of invariants is the subring of elements of degree 0. In our case  $\mathcal{O}(X) \cong k[Z_1, \ldots, Z_n]$  but the variables  $Z_i$  are not necessarily homogeneous. If we can make a linear change of variables such that they are homogeneous, then the action is given by a formula

$$t \cdot (z_1, \ldots, z_n) = (t^{\alpha_1} z_1, \ldots, t^{\alpha_n} z_n).$$

In this case we say that the action of  $\mathbb{G}_m$  on  $\mathbb{A}^n$  is linearizable. It is an open problem (a very difficult one) whether any action of  $\mathbb{G}_m$  on affine space is linearizable. It is known to be true for  $n \leq 3$ .

Assume now  $\alpha > 0$ . Since we know that the set of semi-stable points and the quotient does not change when we replace L by its tensor power, we may assume that  $\alpha = 1$ . Then

$$\bigoplus_{m=0}^{\infty} \Gamma(X, L_{\alpha}^{\otimes m})^{\mathbb{G}_m} = \bigoplus_{m=0}^{\infty} k[Z_1, \dots, Z_n]_m := k[Z_1, \dots, Z_n]_{\geq 0}.$$

The subring  $k[Z_1, \ldots, Z_n]_{\geq 0}$  is a finitely generated algebra over  $k[Z_1, \ldots, Z_n]_0$ . Thus

$$\bigoplus_{m>0}^{\infty} \Gamma(X, L_{\alpha}^{\otimes m})^{\mathbb{G}_m} = k[Z_1, \dots, Z_n]_{>0}$$

is a finitely generated ideal in  $k[Z_1, \ldots, Z_n]_{\geq 0}$ . Let  $f_1, \ldots, f_m$  be its homogeneous generators. Then

$$X^{\mathrm{ss}}(L_{\alpha}) = D(f_1) \cup \ldots \cup D(f_m),$$

$$X^{\mathrm{ss}}(L_{\alpha})//\mathbb{G}_m = D_+(f_1) \cup \ldots \cup D_+(f_m),$$

where  $D_{+}(f_{i})$  is the spectrum of the homogeneous localization  $k[Z_{1}, \ldots, Z_{n}]_{(f_{i})}$ . Similar conclusion can be made in the case  $\alpha < 0$ .

Example 8.5. A special case of the previous example, when  $\mathbb{G}_m$  acts on  $\mathbb{A}^n$  by the formula

$$t \cdot (z_1, \ldots, z_n) = (t^{q_1} z_1, \ldots, t^{q_n} z_n),$$

where  $q_i > 0$ . If  $\alpha = 0$ , we get  $k[Z_1, \ldots, Z_n]_0 = k$  so the quotient is one point. If  $\alpha < 0$ , we get  $k[Z_1, \ldots, Z_n]_{<0} = \{0\}$ , so the set of semi-stable points is empty. Finally, if  $\alpha > 0$ , we get

$$X^{ss} = D(Z_1) \cup \ldots \cup D(Z_n) = \mathbb{A}^n \setminus \{0\},$$

and the construction of the categorical quotient coincides with the construction of weighted projective space  $\mathbb{P}(q_1,\ldots,q_n) >$  (see Lecture 6). So we see two different ways to define  $\mathbb{P}^n$ : as a quotient of  $\mathbb{P}^{n+1}$  or as a quotient of  $\mathbb{A}^{n+1}$ .

Example 8.6. Let G be again  $\mathbb{G}_m$  and  $X = \mathbb{A}^4$  with the action given by the formula:

$$t \cdot (z_1, z_2, z_3, z_4) = (tz_1, tz_2, t^{-1}z_3, t^{-1}z_4).$$

As in in the previous example, each G-linearized line bundle is isomorphic to the trivial line bundle with the G-linearization defined by an integer  $\alpha$ . We have

$$\Gamma(X, L_{\alpha}^{\otimes r})^G = k[Z]_{r\alpha}.$$

However this time the grading in  $k[Z_1, \ldots, Z_4]$  is weighted with weights (1, 1, -1, -1).

Assume  $\alpha = 0$ . Then for any  $r > 0, 1 \in \Gamma(X, L_0^{\otimes r})^G = \Gamma(X, L_0)^G$ . Hence  $X = X^{\text{ss}}(L)$ , and

$$\mathcal{O}(X)^G = k[Z]_0 = k[Z_1Z_3, Z_1Z_4, Z_2Z_3, Z_2Z_4] \subset k[Z].$$

We have a canonical surjection

$$k[T_1, T_2, T_3, T_4] \to \mathcal{O}(X)^G, T_1 \to Z_1 Z_3, T_2 \mapsto Z_1 Z_4, T_3 \mapsto Z_2 Z_3, T_4 \mapsto Z_2 Z_4.$$

This shows that

$$\mathcal{O}(X)^G \cong k[T_1, T_2, T_3, T_4]/(T_1T_4 - T_2T_3).$$

8.3. EXAMPLES 123

Thus  $X^{ss}(L)//\mathbb{G}_m$  is isomorphic to the closed subvariety  $Y_0$  of  $\mathbb{A}^4$  given by the equation

$$T_1T_4 - T_2T_3 = 0.$$

This a quadric cone. It has one singular point at the origin.

Assume  $\alpha > 0$ . Again, without loss of generality we may take  $\alpha = 1$ . It is easy to see that

$$\bigoplus_{r>0} k[Z]_r = k[Z]_{>0} = Z_1 k[Z]_{\geq 0} + Z_2 k[Z]_{\geq 0}.$$

Thus

$$X^{\mathrm{ss}}(L_1) = \mathbb{A}^4 \setminus V(Z_1, Z_2).$$

This set is covered by  $U_1 = D(Z_1)$  and  $U_2 = D(Z_2)$ . We have

$$\mathcal{O}(U_1)^G = k[Z]_{(Z_1)} = k[Z]_0[Z_2/Z_1],$$

$$\mathcal{O}(U_2)^G = k[Z]_{(Z_2)} = k[Z]_0[Z_1/Z_2].$$

We claim that  $X^{ss}(L_1)/G$  is isomorphic to a closed subvariety Y' of  $\mathbb{A}^4 \times \mathbb{P}^1_k$  given by the equations

$$T_1Z_2 - T_3Z_1 = 0$$
,  $T_2Z_2 - T_4Z_1 = 0$ ,  $T_1T_4 - T_2T_3 = 0$ .

Here we use  $(Z_1, Z_2)$  for homogeneous coordinates in  $\mathbb{P}^1$ . In fact, this variety is covered by two affine open sets  $Y_i'$  given by  $Z_i \neq 0, i = 1, 2$ . It is easy to see that  $\mathcal{O}(Y_i') \cong \mathcal{O}(U_i)^G$ . We also verify that these two sets are glued together as they should be according to our construction of the categorical quotient. Thus we obtain an isomorphism  $Y' \cong Y_+ := X^{\text{ss}}(L_1)/\!/\mathbb{G}_m$ . In fact, we have  $X^{\text{ss}}(L_1) = X^s(L_1)$  so that  $Y_+$  is a geometric quotient. Note that we have a canonical morphism

$$f_+:Y_+\to Y_0$$

which is given by the inclusion of the rings  $k[Z]_0 \subset \mathcal{O}(U_i)^G$ . Geometrically it is induced by the projection  $\mathbb{A}^4 \times \mathbb{P}^1 \to \mathbb{A}^4$ . Over the open subset  $Y_0 \setminus \{0\}$  this morphism is an isomorphism. In fact,  $Y_0 \setminus \{0\}$  is covered by the open subsets

 $U_i = Y_0 \cap D(T_i), i = 1, \ldots, 4$ . The pre-image  $\bar{U}_1 = f_+^{-1}(U_1)$  is contained in the open subset where  $Z_1 \neq 0$ . Since  $Z_2/Z_1 = T_3/T_1$  we see that  $f_+$  induces an isomorphism  $\mathcal{O}(U_1) \to \mathcal{O}(\bar{U}_1)$ . Similarly we treat the other pieces  $U_i$ . Over the origin, the fibre of  $f_+$  is isomorphic to  $\mathbb{P}^1_k$ . Also, we immediately check that  $Y_+$  is a nonsingular variety. Thus  $f_+: Y_+ \to Y_0$  is a resolution of singularities of  $Y_0$ . It is called *small* because the exceptional set is of codimension > 1. The reader familiar with the notion of the blowing up, will recognize  $Y_+$  as the variety obtained by blowing up the closed subvariety of  $Y_0$  defined by the equations  $T_1 = T_3 = 0$ .

Assume  $\alpha < 0$ . Similar arguments show that  $Y_- = X^s(L_{-1})/\mathbb{G}_m$  is isomorphic to the closed subvariety of  $\mathbb{A}^4 \times \mathbb{P}^1_k$  given by the equation

$$T_1Z_4 - T_2Z_3 = 0, T_3Z_4 - T_4Z_3 = 0, T_1T_4 - T_2T_3 = 0.$$

We have a morphism

$$f_-:Y_-\to Y_0$$

which is an isomorphism over  $Y_0 \setminus \{0\}$  and the fibre over  $\{0\}$  is isomorphic to  $\mathbb{P}^1_k$ . The diagram

$$\begin{array}{cccc}
Y_{+} & & Y \\
f_{+} & \searrow & \swarrow & f_{-}
\end{array}$$

represents a type of birational transformations between algebraic varieties which is called nowadays a "flip". Note that  $Y_+$  is not isomorphic to  $Y_-$ , they are isomorphic outside the fibres  $f_{\pm}^{-1}(0) \cong \mathbb{P}^1$ .

### Bibliographical notes

The theory of stable points with respect to an algebraic action was developed in [60]. There is nothing original in our exposition. The examples given in the lecture show the dependence of the sets of stable points on the choice of linearization of the action. Although this fact was implicitly acknowledged in [60], the serious study of this dependence began only recently (see [21][102] and the references there). One of the main results of the theory developed in the loc. cite papers is the finiteness of the set of open subsets which can be realized as the set of semistable points for some linearization.

8.3. EXAMPLES 125

#### Exercises

**8.1** Let X be a homogeneous space with respect to an action of an affine algebraic group G. Assume X is not affine. Show that for any  $L \in \text{Pic}^G(X)$  the set  $X^{\text{ss}}(L)$  is empty.

- **8.2** A G-linearized line bundle is called G-effective if  $X^{ss}(L) \neq \emptyset$ . Show that  $L \otimes L'$  is G-effective if both L and L' are G-effective.
- **8.3** Let  $\mathbb{G}_m$  act on an affine algebraic variety X and  $\mathcal{O}(X) = \sum_{i \in \mathbb{Z}} \mathcal{O}(X)_i$  be the corresponding grading. Define  $A_0 = \mathcal{O}(X)_0, A_{\geq 0} = \bigoplus_{i \geq 0} \mathcal{O}(X)_i, A_{\leq 0} = \bigoplus_{i \geq 0} \mathcal{O}(X)_i, A_{\geq 0} = \bigoplus_{i \geq 0} \mathcal{O}(X)_i, A_{\geq 0} = \bigoplus_{i \geq 0} \mathcal{O}(X)_i$ . Let  $L \in \operatorname{Pic}^G$  which is trivial as a line bundle. Show that there are only three possibilities (up to isomorphism):  $X^{\operatorname{ss}}(L) = X, X \setminus V(I_+), X \setminus V(I_-)$ , where  $I_+$  (resp.  $I_-$ ) is the ideal in  $\mathcal{O}(X)$  generated by  $A_+$  (resp.  $A_-$ ). Show that in the first case  $X^{\operatorname{ss}}(L)//\mathbb{G}_m$  is isomorphic to  $\operatorname{Spec}(A_0)$ , in the second (resp. the third) case  $X^{\operatorname{ss}}(L)//\mathbb{G}_m$  is isomorphic to  $\operatorname{Proj}(A_{\geq 0})$  (resp.  $\operatorname{Proj}(A_{\leq 0})$ ).
- **8.4** In Example 6.2 show that the fibred product  $\tilde{Y} = Y_+ \times_{Y_0} Y_-$  is a nonsingular variety. Its projection to  $Y_0$  is an isomorphism outside the origin, and the pre-image E of the origin is isomorphic to  $\mathbb{P}^1 \times \mathbb{P}^1$ . Show that the restriction of the projections from  $\tilde{Y}$  to  $Y_{\pm}$  to E coincide with the two projection maps  $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ .
- **8.5** Let G be a finite group acting algebraically on X. Show that for any  $L \in \text{Pic}^G(X)$ ,  $X^{\text{ss}}(L) = X^{\text{s}}(L)$ . Also  $X^{\text{s}}(L) = X$  if L is ample. Show that the assumption of ampleness is essential (even for the trivial group!).
- **8.6** Let  $G = \operatorname{SL}_k(n)$  act on the affine space of  $(n \times n)$ -matrices  $M_{n,k}$  by conjugation. Consider the corresponding action of G in the projective space  $X = \mathbb{P}(M_{n,k})$ . Find the sets  $X^{\operatorname{ss}}(L), X^{\operatorname{s}}(L)$  where  $L \in \operatorname{Pic}^G(X)$ . Recall that  $\operatorname{Pic}(X) \cong \mathbb{Z}$ .
- **8.7** Let  $i: Y \hookrightarrow X$  be a closed G-invariant embedding, and  $L_Y = i^*(L)$  where L is a an ample G-linearized line bundle on X. Assume that X is projective and G is linearly reductive, e.g.  $\operatorname{char}(k) = 0$ . Then for any  $y \in Y$

$$y \in Y^{s}(i^{*}(L)) \Leftrightarrow i(y) \in X^{s}(L),$$

$$y \in Y^{s}(i^{*}(L))_{(0)} \Leftrightarrow i(y) \in X^{s}(L)_{(0)}.$$

**8.8** Consider Example 8.1 with n = 3 and  $q_0 = 0$ ,  $q_1 = 2$ ,  $q_2 = 2$ ,  $q_3 = 3$ . Find all possible categorical quotients.

## Lecture 9

# Numerical criterion of stability

In this lecture we prove a numerical criterion of stability due to David Hilbert and David Mumford. It is stated in terms of the restriction of the action to one-parameter subgroups of G.

### 9.1 The function $\mu(x,\lambda)$

The idea of the stability criterion is as follows. Suppose G acts on a projective variety  $X \subset \mathbb{P}^n$  via its linear representation  $\rho: G \to \operatorname{GL}(n+1)$ . This can be achieved by taking a very ample G-linearized line bundle L on X. As in Lecture 8, we denote by  $x^*$  a representative of a point  $x \in X$  in  $k^{n+1}$ . We know that  $x \in X^{\operatorname{us}}(L)$  if and only if  $0 \in \overline{G \cdot x^*}$ . If H is a subgroup of G, then  $\overline{H \cdot x^*} \subset \overline{G \cdot x^*}$ , so one may detect an unstable point by checking that  $0 \in \overline{H \cdot x^*}$  for appropriate subgroup H of G. Let us take for H the image of a one-parameter subgroup  $\lambda: \mathbb{G}_m \to G$ . In appropriate coordinates it acts by the formula

$$\lambda(t) \cdot x^* = (t^{m_0} x_0, \dots, t^{m_n} x_n).$$

Suppose all  $m_i$  for which  $x_i \neq 0$  are strictly positive. Then the map:

$$\lambda_{x^*}: \mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^{n+1}, t \to \lambda(t) \cdot x^*$$

can be extended to a regular map  $\bar{\lambda}_{x^*}: \mathbb{A}^1 \to \mathbb{A}^{n+1}$  by sending the origin of  $\mathbb{A}^1$  to the origin of  $\mathbb{A}^{n+1}$ . It is clear that the latter belongs to the closure of the orbit of  $x^*$ , hence our point x is unstable. Similarly, if all  $m_i$  are negative,

we change  $\lambda$  to  $\lambda^{-1}$  defined by the formula  $\lambda^{-1}(t) = \lambda(t^{-1})$  to get the same conclusion. Let us set

$$\mu(x,\lambda) := \min_{i} \{ m_i : x_i \neq 0 \}.$$

So we can restate the previous remark by saying that if there exists  $\lambda \in \mathcal{X}_*(G)$  such that  $\mu(x,\lambda) > 0$  or  $\mu(x,\lambda^{-1}) > 0$ , then x is unstable. In other words, we have a necessary condition for semi-stability:

if 
$$x \in X^{ss}(L)$$
, then for all  $\lambda \in \mathcal{X}^*(G)$ ,  $\mu(x,\lambda) \leq 0$ .

Assume the previous condition is satisfied and  $\mu(x,\lambda)=0$  for some  $\lambda$ . Let us show that x is not stable. Assume that it is stable. In the previous notation, let  $I=\{i: x_i\neq 0, m_i>0\}$ , and let  $y=(y_0,\ldots,y_n)$ , where  $y_i=x_i$  if  $i\notin I$ , and  $y_i=0$  if  $i\in I$ . Obviously, y belongs to the closure of the orbit of x under the action of the subgroup  $\lambda(\mathbb{G}_m)$ . By definition of stability, y must be in the orbit. However, obviously  $\lambda(\mathbb{G}_m)$  fixes y, so that y cannot be stable. Thus we obtain a necessary condition for stable points:

if 
$$x \in X^{s}(L)$$
, then for all  $\lambda \in \mathcal{X}^{*}(G)$ ,  $\mu(x, \lambda) < 0$ .

We have to show first that the numbers  $\mu(x,\lambda)$  are independent of a choice of coordinates in  $\mathbb{A}^{n+1}$ , and, more importantly, the previous condition is sufficient for semi-stability. Let us start with the first task. Let  $x^*$  be as above. Let  $C_X \subset V$  be the affine cone of X. Suppose x is unstable and let  $\lambda \in \mathcal{X}(G)^*$  be such that  $\mu(x,\lambda) > 0$ . A one-parameter subgroup  $\lambda$  as above defines a morphism

$$\bar{\lambda}_{x^*}: \mathbb{A}^1 \to C_X.$$

The scheme-theoretical pre-image of the origin is the positive divisor  $m(\lambda)0$  in  $\mathbb{A}^1$ .

#### Lemma 9.1.

$$m(\lambda) = \mu(x, \lambda).$$

Proof. Let  $\mathcal{O}(C_X) \to k[t]$  be the map of the coordinate rings corresponding to  $\bar{\lambda}$ . We may assume that  $\mathcal{O}(X) = k[T_0, \ldots, T_n]/I$ , where  $k[T_0, \ldots, T_n] = \operatorname{Pol}(V)$ . The composition  $k[T_0, \ldots, T_n] \to k[t]$  is given by the formula  $T_i \to t^{m_i}$ , where  $\bar{\lambda}(t) = (t^{m_0}a_0, \ldots, t^{m_n}a_n)$  and  $v = (a_0, \ldots, a_n)$ . It is clear that the ideal of the pre-image of  $0 \in \mathbb{A}^1$  is generated by the monomials  $t^{m_j}$  such that  $a_j \neq 0$ . Now the assertion follows from the definition of  $\mu(x, \lambda)$ .

129

There is another way to define  $\mu(x, \lambda)$  in a coordinate-free way. For any  $t \in k^*$  the corresponding point  $\lambda(t) \cdot x$  is equal to the point

$$(t^{m_0'}x_0,\ldots,t^{m_n'}x_n),$$

where  $m'_i = m_i - \mu(x, \lambda)$  if  $x_i \neq 0$  and anything otherwise. Thus when we let t go to 0, we obtain a point in X with coordinates  $y = (y_0, \ldots, y_n)$ , where  $y_i \neq 0$  if and only if  $x_i \neq 0$  and  $m_i = \mu(x, \lambda)$ . The precise meaning of "let t go to 0" is the following. For any one-parameter subgroup  $\lambda : \mathbb{G}_m \to G$  and a point  $x \in X$  we have a map

$$\lambda_x : \mathbb{A}^1 \setminus \{0\} \to X, \quad t \to \lambda(t) \cdot x.$$

Since X is projective this map can be extended to a unique regular map

$$\bar{\lambda}_x: \mathbb{P}^1 \to X$$
.

We set

$$\lim_{t \to 0} \lambda(t) \cdot x := \bar{\lambda}_x(0), \quad \lim_{t \to \infty} \lambda(t) \cdot x := \bar{\lambda}_x(\infty).$$

Obviously

$$\lim_{t \to \infty} \lambda(t) \cdot x = \lim_{t \to 0} \lambda(t)^{-1} \cdot x.$$

So our point y is equal to  $\lim_{t\to 0} \lambda(t) \cdot x$ . Now it is clear that for any  $t \in k$ 

$$\lambda(t) \cdot y = y$$

that is, y is a fixed point for the subgroup  $\lambda(\mathbb{G}_m)$  of G. Also the definition of y is independent of any coordinates. Furthermore, for any vector  $y^*$  over y,

$$\lambda(t) \cdot y^* = t^{\mu(x,\lambda)} y^* \tag{9.1}$$

This can be interpreted as follows. Restrict the action of G on X to the action of  $\mathbb{G}_m$  defined by  $\lambda$ . Then L has a natural  $\mathbb{G}_m$ -linearization and, since y is a fixed point,  $\mathbb{G}_m$  acts on its fibre  $L_y$  defining a linear representation  $\rho_y: \mathbb{G}_m \to \mathrm{GL}(1) = \mathbb{G}_m$ . We know the geometric interpretation of the total space  $\mathbb{V}(\mathcal{O}_{\mathbb{P}^n}(-1))$  of the line bundle  $\mathcal{O}_{\mathbb{P}^n}(-1)$ . It follows from this that the fibre of the canonical projection  $\mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$  over a point  $x \in X$  can be

identified with  $\mathbb{V}(\mathcal{O}_{\mathbb{P}^n}(-1))_x \setminus \{0\}$ . Thus from (9.1) we get that  $\mathbb{G}_m$  acts on the fibre  $L_y^{-1}$  by the character  $t \mapsto t^{\mu(x,\lambda)}$  hence it acts on the fibre  $L_y$  by the character  $t \mapsto t^{-\mu(x,\lambda)}$ . This gives us a coordinate-free definition of  $\mu(x,\lambda)$ . In fact, this allows one to define the number  $\mu^L(x,\lambda)$  for any G-linearized line bundle L as follows. Let  $y = \lim_{t\to 0} \lambda(t) \cdot x$ . Then  $\lambda(\mathbb{G}_m) \subset G_y$  and, as above, there is a representation of  $\mathbb{G}_m$  in the fibre  $L_y$ . It is given by an integer which is taken to be  $-\mu^L(x,\lambda)$ .

#### 9.2 The numerical criterion

Now we are ready to state the main result of this Lecture.

**Theorem 9.1.** Let G be a reductive group acting on a projective algebraic variety X. Let L be an ample G-linearized line bundle on X and  $x \in X$ . Then

$$x \in X^{ss}(L) \Leftrightarrow \mu^L(x,\lambda) \leq 0 \quad for \ all \quad \lambda \in \mathcal{X}^*(G),$$

$$x \in X^s(L) \Leftrightarrow \mu^L(x,\lambda) < 0 \quad \text{for all} \quad \lambda \in \mathcal{X}^*(G).$$

First of all, replacing L by a sufficiently high tensor power, we can place ourselves in the following situation. G acts on a projective space  $\mathbb{P}^n$  by means of a linear representation  $\rho: G \to \mathrm{GL}_k(n)$ , X is G-invariant closed subvariety of  $\mathbb{P}^n$ . We have to prove the following:

Let  $x \in X$  and  $x \notin X^{s}(L)$ . Then there exists  $\lambda \in \mathcal{X}^{*}(G)$  such that  $\mu^{L}(x,\lambda) \geq 0$ . Moreover, if  $x \in X^{us}(L)$  then there exists  $\lambda \in \mathcal{X}^{*}(G)$  such that  $\mu^{L}(x,\lambda) > 0$ .

We shall drop L from the notation  $\mu^{L}(x,\lambda)$  remembering that

$$L = i^*(\mathcal{O}_{\mathbb{P}^n}(n+1)).$$

Before starting the proof of the Theorem, let us remind the notion of the properness of a map between algebraic varieties. We refer for the details to [42]

**Definition.** A regular map  $f: X \to Y$  of algebraic varieties over an algebraically closed field k is called *proper* if for any variety Z over k the map  $f \times \mathrm{id}: X \times Z \to Y \times Z$  is closed (i.e. the image of a closed subset is closed). A variety X is proper over k if the constant map  $X \to \mathrm{Spec}(k)$  is proper.

We shall use the valuative criterion of properness. Let R be a discrete valuation algebra over k with the residue k-algebra isomorphic to k (e.g. R = k[[t]] is the algebra of formal power series over k) and K be its field of fractions. For any algebraic variety X over k we may consider the set X(A) of points with values in any k-algebra A. In particular we can define the sets X(R) and X(K). If X is affine,  $X(A) = \operatorname{Hom}_k(\mathcal{O}(X), A)$ . If X is glued together from affine varieties  $X_i$ , then X(K) is glued together from  $X_i(K)$ 's. The separatedness of the gluing is equivalent to the fact that the natural map  $X(R) \to X(K)$  is injective (the valuative criterion of separatednes). In particular, it is always injective for quasiprojective algebraic varieties which we are dealing with. A regular map  $f: X \to Y$  of varieties over k defines a map  $f_A: X(A) \to Y(A)$  of A-points. The residue homomorphism  $R \to k$  induces a map  $X(R) \to X(k)$ , which is called the residue map.

**Lemma 9.2.** A map  $f: X \to Y$  is proper if for any  $y \in Y(R) \subset Y(K)$ , the natural map  $(f_R)^{-1}(y) \to (f_K)^{-1}(y)$  is bijective.

Example 9.1. Any closed subvariety X of  $\mathbb{P}^n_k$  is proper over k. First of all  $\mathbb{P}^n_k$  is proper over k. Any K-point of  $\mathbb{P}^n_k$  comes from a unique R-point after multiplying its projective coordinates by some power of a generator t of the maximal ideal of R. Now, it follows immediately from the definition of properness that a closed subvariety of a proper variety is proper. On the other hand  $X = \mathbb{P}^n_k \setminus \{1, 0, \dots, 0\}$  is not complete. First notice that the point  $(t, \dots, t) \in \mathbb{A}^n_k(K) = K^n$  is a K-point of  $\mathbb{A}^n \setminus \{0\} = D(x_1) \cup \dots \cup D(x_n)$ . In fact, it belongs to any open subset  $D(x_i)$  since it corresponds to the homomorphism  $\phi_i : \mathcal{O}(D(x_i) = k[x_1, \dots, x_n]_{x_i} \to K$  defined by  $x_j \to t$ . However, this point does not come from any R-point of  $\mathbb{A}^n \setminus \{0\}$ . In fact  $\phi(x_i^{-1}) = t^{-1} \notin R$  for any  $i = 1, \dots, n$ . Now  $\mathbb{P}^n_k \setminus \{1, 0, \dots, 0\} \cong \mathbb{A}^n_k \setminus \{0\}$  and  $(1, t, \dots, t) \in X(K)$  but  $(1, t, \dots, t) \notin X(R)$ .

We shall need the following fact:

**Lemma 9.3.** (Cartan-Iwahori-Matsumoto). Let R = k[[T]] be the ring of formal power series with coefficients in k and K = k((T)) be its field of fractions. For any reductive algebraic group G, any element of the set of double cosets  $G(R)\backslash G(K)/G(R)$  can be represented by a one-parameter subgroup  $\lambda: \mathbb{G}_m \to G$  in the following sense. One considers  $\lambda$  as a k(T)-point of G and identifies k(T) with the subfield of k((T)) by considering the Laurent expansion of rational functions at the origin of  $\mathbb{A}^1$ .

*Proof.* We shall do it only for the case G = GL(n), referring to the original paper of Iwahori and Matsumoto for the case char(k) = 0 (see *Publ. Math. de l' IHES*, vol. 25 (1965), 5-41)). One could also consult [Tits], same journal, vol. 41. 1972). In the case of positive characteristic one has to modify the lemma (see Appendix to Chapter 1 of [60] by J. Fogarty).

A K-point of G is a matrix A with entries in K. We can write it as a matrix  $T^r\bar{A}$ , where  $\bar{A} \in \mathrm{GL}(n,R)$ . Since R is a PID, we can reduce the matrix  $\bar{A}$  to the diagonal form to be able to write

$$A = \bar{C}_1 \bar{D} \bar{C}_2,$$

where  $\bar{C}_i \in G(R)$ , and  $\bar{D}$  is a diagonal matrix diag $[T^{r_1}, \ldots, T^{r_n}]$ . Now we can define a one-parameter subgroup of G by

$$\lambda(t) = \operatorname{diag}[t^{r_1}, \dots, t^{r_n}].$$

Then  $\lambda$  represents the double coset of the point  $A \in G(K)$  as asserted.  $\square$ 

### 9.3 The proof

Let us prove Theorem 9.1. We have already proved the necessity of the conditions. Assume  $\mu(x,\lambda) < 0$  for all  $\mathcal{X}^*(G)$ . We have to show that  $x \in X^s$ . Suppose  $x \notin X^s$ . Choose a point  $x^*$  over x. Then the map  $a: G \to V =$  $\mathbb{A}^{n+1}, g \mapsto g \cdot x^*$ , is not proper. In fact, if it is proper,  $G \cdot x^*$  is closed and the fibre of a over  $x^*$  is proper over k (Exercise 9.3). Since the fibre is a closed subvariety of an affine variety, it must consist of finitely many points (Exercise 9.4). This easily implies that  $G_x$  is finite and  $G \cdot x$  is closed, so that x is a stable point contradicting the assumption. By Lemma 9.2, there exists an R-point of V such that, viewed as a K-point of V, it has a preimage under  $a_K: G(K) \to V(K)$  but it does not arise from any R-point of G. In other words, there exists an element  $g \in G(K) \setminus G(R)$  such that  $g \cdot x^* \in V(R) = R^{n+1}$ . By Lemma 9.3 we can write  $g = g_1[\lambda]g_2$ , where  $g_1, g_2 \in$ G(R), and  $[\lambda] \in G(K)$  which arise from a one-parameter subgroup  $\lambda$ . Let  $\bar{g}_2$  be the image of  $g_2$  under the "reduction" homomorphism  $G(R) \to G(k)$ corresponding to the natural homomorphism  $R \to k, \sum_i a_i T^i \to a_0$ . We can write:

$$\bar{g}_2^{-1}g_1^{-1}g = (\bar{g}_2^{-1}[\lambda]\bar{g}_2)\bar{g}_2^{-1}g_2.$$

The expression in the bracket is a K-point of G defined by a one-parameter subgroup  $\lambda' = \bar{g}_2^{-1}\lambda\bar{g}_2$  of G. Choose a basis  $(e_0,\ldots,e_n)$  in  $k^{n+1}$  such that the action of  $\lambda'(\mathbb{G}_m)$  is diagonalized. That is, we may assume that

$$\lambda'(t) \cdot e_i = t^{r_i} e_i, i = 0, \dots, n.$$

This is equivalent to

$$[\lambda'] \cdot e_i = T^{r_i} e_i, i = 0, \dots, n.$$

Thus, if we write  $x^* = x_0^* e_0 + \ldots + x_n^* e_n$ , we obtain

$$(\bar{g}_2^{-1}g_1^{-1}g \cdot x^*)_i = ([\lambda'] \cdot (\bar{g}_2^{-1}g_2 \cdot x^*))_i = T^{r_i}(\bar{g}_2^{-1}g_2 \cdot x^*)_i.$$

Since  $g \cdot x^* \in \mathbb{R}^{n+1}$ , this tells us that

$$(\bar{g}_2^{-1}g_2 \cdot x^*)_i = T^{-r_i}(\bar{g}_2^{-1}g_1^{-1}g \cdot x^*)_i \in T^{-r_i}R. \tag{9.2}$$

This implies that  $r_i \geq 0$  if  $x_i^* \neq 0$ . In fact, the element  $\bar{g}_2^{-1}g_2$  is reduced to the identity modulo (T), hence  $(\bar{g}_2^{-1}g_2 \cdot x^*)_i$  modulo (T) are constants equal to  $x_i^*$ . On the other hand they are equal to  $T^{-r_i}a_i$  modulo (T) for some  $a_i \in R$ . This of course implies that  $r_i \geq 0$  if  $x_i^* \neq 0$ .

Recalling our definition of  $\mu(x, \lambda')$  we see that  $\mu(x, \lambda') \geq 0$ . This contradiction shows that  $x \in X^s$  if  $\mu(x, \lambda) < 0$  for all  $\lambda$ .

Assume now that  $\mu(x,\lambda) \leq 0$  for all  $\lambda$ . We have to show that  $x \in X^{ss}$ . If x is unstable,  $0 \in \overline{G \cdot x^*}$  and hence we can choose  $g \in G(K) \setminus G(R)$  such that  $g \cdot x^* \in R^{n+1}$  is reduced to zero modulo (T) (this follows immediately from the proof of the valuative criterion of properness). Therefore the left-hand-side of (9.2) belongs to  $T^{-r_i+1}R$  and hence we get  $r_i > 0$  if  $x_i^* \neq 0$ . Thus  $\mu(x,\lambda') > 0$ . This contradiction proves the theorem.

# 9.4 The state polytope

Recall from Lecture 5 that a linear representation of a torus  $T = \mathbb{G}_m^r$  in a vector space V splits into the sum of eigensubspaces

$$V = \bigoplus_{\chi \in \mathcal{X}(T)} V_{\chi},$$

where

$$V_{\chi} = \{ v \in V : t \cdot v = \chi(t)v \}.$$

Recall from Lecture 5 that there is a natural identification between the sets  $\mathcal{X}(T)$  and  $\mathbb{Z}^r$ . It also preserves the natural structures of abelian groups on both sets. We define the *state set* of the representation space V by setting

$$state(V) = \{ \chi \in \mathcal{X}(T) : V_{\chi} \neq \{0\} \}.$$

This is a finite subset of  $\mathbb{Z}^r$ . Its convex hull in  $\mathbb{R}^r$  is called the *state polytope* of the representation and is denotes by  $\overline{\operatorname{st}(V)}$ . Let us choose a basis of V which is the sum of the bases of the subspaces  $V_{\chi}, \chi \in \operatorname{st}(V)$ . In this basis our representation is defined by a homomorphism  $\rho: T \to \operatorname{GL}(n)$  given by a formula

$$\rho((t_1,\ldots,t_r)) = \begin{pmatrix} \mathbf{t}^{\mathbf{m}_1} & 0 & \cdots & \cdots & 0 \\ 0 & \mathbf{t}^{\mathbf{m}_2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \mathbf{t}^{\mathbf{m}_n} \end{pmatrix}, \tag{9.3}$$

where we use the vector notation for a monomial  $\mathbf{t}^{\mathbf{m}} = t_1^{m_1} \cdots t_r^{m_r}$ .

Now let  $\lambda: \mathbb{G}_m \to T$  be a one-parameter subgroup of T. It is given by a formula  $t \to (t^{a_1}, \ldots, t^{a_r})$  for some  $\mathbf{a} = (a_1, \ldots, a_r) \in \mathbb{Z}^r$ . Composing the representation  $\rho$  with  $\lambda$  we have a representation  $\rho \circ \lambda: \mathbb{G}_m \to \mathrm{GL}(n)$  given by the formula

$$t \mapsto \begin{pmatrix} t^{\mathbf{a} \cdot \mathbf{m}_1} & 0 & \dots & \dots & 0 \\ 0 & t^{\mathbf{a} \cdot \mathbf{m}_2} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & t^{\mathbf{a} \cdot \mathbf{m}_n} \end{pmatrix}. \tag{9.4}$$

Let  $x \in \mathbb{P}(V)$  with  $x^* = \sum_{\chi} v_{\chi}, v_{\chi} \in V_{\chi}$ . We define the *state set* of x by setting:

$$\operatorname{state}(x) = \{ \chi \in \mathcal{X}(G) : v_{\chi} \neq 0 \}. \tag{9.5}$$

and the state polytope of x

$$\overline{st(x)} = \text{convex hull of state(x) in } \mathcal{X}(G) \otimes \mathbb{R} \cong \mathbb{R}^n.$$
 (9.6)

If we choose coordinates in V as in (9.3) and write  $x^* = (\alpha_1, \dots, \alpha_n)$  then

$$state(x) = {\mathbf{m}_i : \alpha_i \neq 0}.$$

Since

$$\lambda(t) \cdot x^* = (t^{\mathbf{a} \cdot \mathbf{m}_1} \alpha_1, \dots, t^{\mathbf{a} \cdot \mathbf{m}_2} \alpha_n),$$

we obtain that

$$\mu^{L}(x,\lambda) = \min\{\mathbf{a} \cdot \mathbf{m}_{i} : \alpha_{i} \neq 0\} = \min_{\chi \in \operatorname{st}(x)} \langle \lambda, \chi \rangle.$$

Recall that the natural bilinear pairing  $(\lambda, \chi) \to \langle \lambda, \chi \rangle$  between  $\mathcal{X}^*(T)$  and  $\mathcal{X}(T)$  is defined by the composition  $\chi \circ \lambda \in \mathcal{X}(\mathbb{G}_m) = \mathbb{Z}$ . When we identify  $\mathcal{X}^*(T)$  and  $\mathcal{X}(T)$  with  $\mathbb{Z}^r$ , it corresponds to the usual dot-product.

Example 9.2. Let T be the subgroup of diagonal matrices in GL(n). Consider its natural representation in  $V = k^n$ . Then  $state(V) = \{e_1, \ldots, e_n\}$ , where  $e_i$  are the unit basis vectors. Each  $e_i$  corresponds to the character  $\chi_i$ :  $diag[t_1, \ldots, t_n] \to t_i$ . The eigensubspace  $V_{\chi_i}$  is the coordinate axis  $ke_i$ . The state polytope of V is the standard simplex

$$\Delta_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : 0 \le x_i \le 1, \sum_{i=1}^n x_i = 1\}.$$

The state set of a point  $x \in \mathbb{P}^{n-1}$  with projective coordinates  $(a_1, \ldots, a_n)$  is the set  $\{e_i : a_i \neq 0\}$ . Its state polytope is the subsimplex  $\{x \in \Delta_n : x_i \neq 0\}$ . If  $\lambda$  is given by  $\mathbf{m} = (m_1, \ldots, m_n) \in \mathbb{Z}^n$  corresponding to  $t \to \text{diag}[t^{m_1}, \ldots, t^{m_n}]$ , then

$$\mu^{\mathcal{O}_{\mathbb{P}^{n-1}}(1)}(x,\lambda) = \min\{m_i : \alpha_i \neq 0\}.$$

Clearly, one can always find **m** such that this number is positive. So, all points are unstable.

In the case when G=T is a torus we can restate Theorem 9.1 in the following way:

**Theorem 9.2.** Let G be a torus and L be an ample G-linearized line bundle on a projective G-variety X. Then

$$x \in X^{ss}(L) \Leftrightarrow 0 \in \overline{state(x)},$$

$$x \in X^s(L) \Leftrightarrow 0 \in interior\{\overline{state(x)}\}.$$

Proof. We use a well-known fact (the supporting hyperplane lemma) from the theory of convex sets. Let be a closed convex subset of  $\mathbb{R}^n$ . For any point  $a \in \mathbb{R}^n \setminus \text{interior}(\Delta)$  (resp.  $a \in \mathbb{R}^n \setminus \Delta$ ) there exists an affine function  $\phi : \mathbb{R}^n \to \mathbb{R}$  such that  $\phi(a) \leq 0$  (resp.  $\phi(a) < 0$ ), and  $\phi(\Delta) \subset \mathbb{R}_{\geq 0}$ . Moreover, the proof of this fact shows that one can choose  $\phi$  with integral coefficients if  $\Delta$  is the convex hull of a set of points with integral coordinates. We refer for the proofs to any text-book on convex sets (see for example [70]). The result follows.

Now let G be any reductive group acting linearly on a projective variety  $X \subset \mathbb{P}^n$ , L be some positive tensor power of  $\mathcal{O}_{\mathbb{P}^n}(1)$ . We know that any one-parameter subgroup of G has its image in a maximal torus T of G, hence can be considered as a one-parameter subgroup of T. Thus if we restrict the action of G to T, we obtain from the numerical criterion that any  $x \in X^{\mathrm{ss}}(L)$  must belong to all subsets  $X_T^{\mathrm{ss}}(L_T)$ , where T runs over the set of all maximal tori, and the subscript T indicates the restriction of the action (and the linearization) to T. Now, applying Theorem 9.1, we obtain

$$X^{\rm ss}(L) = \bigcap_{\text{maximal tori } T} X_T^{\rm ss}(L_T),$$

$$X^{s}(L) = \bigcap_{\text{maximal tori } T} X_{T}^{s}(L_{T}).$$

Let us fix one maximal torus T. Then for any other maximal torus T', we can find  $g \in G$  such that  $gT'g^{-1} = T$ . From the previous lecture we know that x is semi-stable (resp. stable) with respect to  $\lambda(\mathbb{G}_m)$  if and only if  $0 \notin \overline{\lambda(\mathbb{G}_m) \cdot x^*}$  (resp.  $\lambda(\mathbb{G}_m) \cdot x^*$  is closed and the stabilizer of  $x^*$  in  $\lambda(\mathbb{G}_m)$  is finite). From this it immediately follows that this property is satisfied if and only if  $g \cdot x$  is semi-stable (resp. stable) with respect to  $g\lambda g^{-1}(\mathbb{G}_m)$ . This implies

$$x \in X_{T'}^{ss}(L_{T'}) \Leftrightarrow g \cdot x \in X_T^{ss}(L_T),$$

and the similar assertion for stable points. Putting these together we obtain

**Theorem 9.3.** Let T be a maximal torus in G. Then

$$x \in X^{ss}(L) \Leftrightarrow \forall g \in G, g \cdot x \in X_T^{ss}(L_T),$$

$$x \in X^s(L) \Leftrightarrow \forall g \in G, g \cdot x \in X_T^s(L_T).$$

# 9.5 Kempf's stability

Finally in this lecure we shall give a very nice necessary condition for a point to be unstable in terms of its isotropy subgroup. This is a result of G. Kempf which is very important in applications to construction of moduli spaces. Let  $X \subset \mathbb{P}(V)$ , where G acts on X via its linear representation in V. Suppose  $x \in X$  is unstable. Let v be its representative in V. We know that there is a one-parameter subgroup  $\lambda: \mathbb{G}_m \to G$  such that  $\lim_{t\to 0} \lambda(t) \cdot v = 0$ . We call it a destabilizing one-parameter subgroup of x. Among all destabilizing one-parameter subgroups of x we want to consider those for which  $\mu(x,\lambda)$ is maximal. Unfortunately, the maximum does not exist since, replacing  $\lambda$ by  $\lambda^d$  we see that  $\mu(x,\lambda^d)=d\mu(x,\lambda)$ . However, if we normalize the number  $\mu(x,\lambda)$  by dividing  $\mu(x,\lambda)$  by  $||\lambda||$  we may hope that the maximum will be defined. Here  $\|\lambda\|$  means the Euclidean norm in  $\mathbb{R}^n$  if we choose to identify  $\mathcal{X}^*(T)$  with  $\mathbb{Z}^r$ . Of course, the image of  $\lambda$  could belong to different maximal tori so we have to proceed more carefully. First we can fix one maximal torus T. For any  $\lambda \in \mathcal{X}^*(G)$  we can find  $g \in G$  such that  $\lambda' = g^{-1} \cdot \lambda \cdot g$  belongs to  $\mathcal{X}^*(T)$ . Then we can set  $\|\lambda\| = \|\lambda'\|$ . However, we have to check that this definition does not depend on the choice of g as above. Equivalently we have to check that  $\|\lambda\| = \|\lambda'\|$  if  $g^{-1} \cdot T \cdot g = T$  (i.e. g belongs to the normalizer  $N_G(T)$  of T in G). The quotient group  $N_G(T)/T$  is called the Weyl group of G. It is a finite group which acts on  $\mathcal{X}(T)^*$  linearly. If  $G = \mathrm{GL}(n)$  and T is the subgroup of diagonal matrices, we easily check that  $W = N_G(T)/T$ can be represented by the matrices  $f_{\alpha_{ij}}(1) = I_n + E_{ij}$ , where  $\alpha_{ij}$  is a root. By conjugation W acts on T by permutation of rows and hence it acts on  $\mathcal{X}(T)^* = \mathbb{Z}^n$  by permutation of the coordinates. In particular,  $\|\lambda\|$  is Winvariant. In general we choose a norm  $\|\lambda\|$  on  $\mathcal{X}(T)^*$  which is W-invariant. This is always possible since W is finite. This solves our problem of defining  $\|\lambda\|$  for any  $\lambda \in \mathcal{X}(G)^*$ . So, set

$$\nu_x(\lambda) = \frac{\mu(x,\lambda)}{\parallel \lambda \parallel}.$$

For any  $\lambda \in \mathcal{X}(G)^*$  define

$$P(\lambda) = \{ g \in G : \lim_{t \to 0} \lambda(t) \cdot g \cdot \lambda(t)^{-1} \text{ exists in } G \}$$

**Lemma 9.4.**  $P(\lambda)$  is a subgroup of G which contains a Borel subgroup. Moreover, for any  $g \in P(\lambda)$ ,

$$\lim_{t \to 0} \lambda(t) g \lambda(t)^{-1} \in Z_G(\lambda) := \{ h \in G : h \lambda(t) h^{-1} = \lambda(t), \forall t \in \mathbb{G}_m \}.$$

*Proof.* Again we check it for G = GL(n) only. Without loss of generality we may assume that  $\lambda$  is a one-parameter subgroup of the group of diagonal matrices and is given by  $\lambda(t) = \operatorname{diag}[t^{m_1}, \ldots, t^{m_n}]$ . By further change of a basis we may also assume that  $m_1 \leq \ldots \leq m_n$ . Let  $g = (a_{ij})$ . We have

$$\lambda(t)g\lambda(t)^{-1} = (t^{m_i - m_j}a_{ij}).$$

The limit exists if and only if  $a_{ij} = 0$  when  $m_i < m_j$ . Thus  $g \in P(\lambda)$  if and only if  $a_{ij} = 0$  if i > j and  $m_i \neq m_j$ . It is easy to see that it is a subgroup. It contains the group B of upper-triangular matrices and is equal to this group if  $m_1 < \ldots < m_n$ . Now the limits  $\lim_{t\to 0} \lambda(t) \cdot g \cdot \lambda(t)^{-1}$ ,  $g \in P(\lambda)$ , form a set of matrices  $(a_{ij}) \in P(\lambda)$  such that  $a_{ij} = 0$  if  $m_i > m_j$ . It is immediately checked that it is the subgroup  $Z_G(\lambda)$ .

**Lemma 9.5.** For any  $g \in P(\lambda)$ ,

$$\mu(x, g^{-1}\lambda g) = \mu(x, \lambda).$$

*Proof.* We have, for any  $g \in P(\lambda)$ ,

$$\lim_{t\to 0} (g^{-1}\lambda(t)g) \cdot x = \lim_{t\to 0} (g^{-1}\lambda(t)g\lambda(t)^{-1}) \cdot \lambda(t) \cdot x =$$

$$\lim_{t \to 0} (g^{-1}(\lambda(t)g\lambda(t)^{-1})(\lambda(t) \cdot x) = g^{-1} \lim_{t \to 0} (\lambda(t)g\lambda(t)^{-1}) \cdot y,$$

where  $y = \lim_{t\to 0} \lambda(t) \cdot x$ . It is easy to see that  $\mu(x,\lambda) = \mu(\lim_{t\to 0} \lambda(t) \cdot x; \lambda)$  (see Exercise 9.2(iv)). Therefore, putting  $h = \lim_{t\to 0} (\lambda(t)g\lambda(t)^{-1})$ , we obtain

$$\mu(x, g^{-1}\lambda g) = \mu(g^{-1}h \cdot y, g^{-1}\lambda g).$$

Now

$$\mu(g^{-1}h \cdot y, g^{-1}\lambda g) = \mu(h \cdot y, \lambda) = \mu(y, h^{-1}\lambda h) = \mu(y, \lambda) = \mu(x, \lambda).$$

Here we use that h centralizes  $\lambda$  and the property  $\mu(x, g^{-1}\lambda g) = \mu(g \cdot x, \lambda)$  (see Exercise 9.2 (i)). This checks the assertion.

**Definition.** The flag complex of G is the set  $\Delta(G)$  of one-parameter subgroups of G modulo the following equivalence relation:

$$\lambda_1 \sim \lambda_2 \iff \exists n_1, n_2 \in \mathbb{Z}_{>0}, g \in P(\lambda_1) \text{ such that } \lambda_2^{n_1} = g^{-1} \lambda_2^{n_2} g.$$

139

It follows from Lemma 9.4 that the function  $\nu_x(\lambda)$  is well-defined as a function on  $\Delta(G)$ . Also the function  $\lambda \to P(\lambda)$  is well-defined on  $\Delta(G)$ . Now the idea is to find a maximum of  $\nu_x : \Delta(G) \to \mathbb{R}$ . It is achieved at a point  $[\lambda]$  representing the one-parameter subgroup which is "most responsible" for the unstability of x. The existence of such a point  $\lambda$  was conjectured by J. Tits and was proven by G. Kempf [50] and G. Rousseau [82]. The idea is to show that  $\nu_x$  is strictly convex on the set of points in  $\Delta(G)$  representing destabilizing subgroups of x and achieves a maximum on this set.

**Theorem 9.4.** There exists a one-parameter subgroup  $\lambda_x \in \mathcal{X}(G)$  such that

$$\nu_x(\lambda_x) = \max\{\nu_x(\lambda) : \lambda \in \mathcal{X}(G)\}.$$

All such subgroups represent the same point in  $\Delta(G)$ .

**Definition.** A one-parameter subgroup  $\lambda \in \mathcal{X}(G)$  is called *adapted* for a point  $x \in X^{\mathrm{us}}(L)$  if it satisfies the assertion of the previous theorem.

Let  $\Lambda(x)$  be the set of adapted one-parameter subgroups of x. It is an equivalence class representing one point  $\delta(x) \in \Delta(G)$ . We can assign to it the unique parabolic subgroup  $P(\delta)$  which we denote by P(x). Of course we have to remember that all these objects depend on the linearization of the action.

Corollary 9.1. Assume x is unstable. Then

$$G_x \subset P(x)$$
.

*Proof.* For any  $g \in G_x$  and  $\lambda \in \Lambda(x)$  we have  $g^{-1}\lambda g \in \Lambda(x)$ . Indeed

$$\mu(x, \lambda) = \mu(g \cdot x, \lambda) = \mu(x, g^{-1}\lambda g).$$

By Theorem 9.4, we must have  $P(g^{-1}\lambda g) = P(\lambda)$ . It follows from the definition that  $P(g^{-1}\lambda g) = g^{-1}P(\lambda)g$ . However, it is known that the normalizer of a parabolic subgroup is equal to the subgroup.

Corollary 9.2. Assume G is semi-simple (e.g. G = SL(n)) and  $G_x$  is not contained in any proper parabolic subgroup of G. Then x is semi-stable with respect to any linearization.

*Proof.* We use that  $P(x) \neq G$  if G is semi-simple. Otherwise there is an adapted one-parameter subgroup which belongs to the center of G.

In fact, one can strengthen the previous corollary by showing that  $G \cdot x^*$  is closed in V if  $G_x$  is not contained in any proper parabolic subgroup of G. This is due to Kempf [50]. To prove it he considers a closed orbit  $G \cdot y^*$  in  $O(x^*)$  and proves the existence of a one-parameter subgroup  $\lambda$  with  $\lim_{t\to 0} \lambda(t) \cdot x^* \in G \cdot y^*$ . Next he defines the set of adapted subgroups with this property for which the limit is reached the fastest. These subgroups define a unique proper parabolic subgroup and  $G_x$  is contained in this subgroup.

**Definition.**  $x \in X \subset \mathbb{P}(V)$  is called *Kempf-stable* if  $G \cdot x^*$  is closed in V.

This definition is obviously independent of the choice of  $x^* \in V$  representing x. Note that

 $stability \implies Kempf-stability \implies semi-stability$ 

Indeed, if  $G \cdot x$  is closed in  $X^{\mathrm{ss}}$  then  $G \cdot x^*$  is obviously closed in  $V \setminus \mathcal{N}(G; V)$  (otherwise the image in  $\mathbb{P}(V)$  of a point in the closure belongs to the closure of  $G \cdot x$  in  $X^{\mathrm{ss}}$ ). Also  $G \cdot x^*$  is closed in V since otherwise a point in its closure belongs to the null-cone and hence any invariant polynomial will vanish at  $x^*$ . Now if x is Kempf-stable, the point  $x^*$  cannot belong to the null-cone. If does, we can find a one-parameter subgroup  $\lambda$  such that  $\lim_{t\to 0} \lambda(t) \cdot x^* = 0$ . But then 0 must belong to  $G \cdot x^*$  which is absurd since  $\{0\}$  is an orbit.

So, we can generalize Corollary 9.2 to obtain:

Corollary 9.3. Assume G is semi-simple and  $G_x$  is not contained in any proper parabolic subgroup of G. Then x is Kempf-stable.

Example 9.3. This is intended for the reader with some knowledge of the theory of abelian varieties (see [62]). Let A be an abelian variety of dimension g over an algebraically closed field k and L be an ample divisor on A. One defines the subgroup K(L) of A which consists of all points  $a \in A$  such that  $t_a^*(L) \cong L$ . Here  $t_a$  denotes the translation map  $x \to x + a$ . Although L is obviously K(L)-invariant, it does not admit a K(L)-linearization. However one defines a certain extension group  $\mathcal{G}(L) \to K(L)$  with kernel isomorphic to  $\mathbb{G}_m$  with respect to which L admits a linearization. Of course, the subgroup  $\mathbb{G}_m$  of  $\mathcal{G}(L)$  acts trivially on A. The group  $\mathcal{G}(L)$  is called the theta group of L. The linear representation of  $\mathcal{G}(L)$  in  $H^0(A, L)$  is irreducible. As an abstract group K(L) is isomorphic to  $K(D) = \mathbb{Z}^g/D\mathbb{Z}^g \oplus \mathbb{Z}^g/D\mathbb{Z}^g$ , where  $D = \operatorname{diag}[d_1, \ldots, d_g], d_1 | \ldots | d_g$ , is the type of the polarization of L. For example, when  $L = M^{\otimes n}$ , where M is a principal polarization, we have  $K(L) = A_n$ , the

group of n-torsion points, and  $K(L) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$ . The vector space  $H^0(A, L)$ is isomorphic to the vector space  $k[\mathbb{Z}^g/D\mathbb{Z}^g]$  of k-valued functions on the finite abelian group  $\mathbb{Z}^g/D\mathbb{Z}^g$ , and the representation of  $\mathcal{G}(L)$  on this space is called the Schrödinger representation. If we assume that  $d_1 \geq 3$ , then L is very ample and can be used to define a  $\mathcal{G}(L)$ -equivariant embedding of A in  $\mathbb{P}(H^0(A,L)^*)$ . Let us now consider an abelian variety with polarization of type D and level structure as a triple  $(A, L, \phi)$ , where A and L are as above, and  $\phi: K(L) \cong K(D)$  is an isomorphism of abelian groups. Each such triple defines a point  $h_{(A,L,\phi)}$  in the Hilbert scheme of closed subschemes in  $\mathbb{P}_D = \mathbb{P}(k[\mathbb{Z}^g/D\mathbb{Z}^g]^*)$ . We say that two triples  $(A, L, \phi)$  and  $(A', L', \phi')$  are isomorphic if there exists an isomorphism of abelian varieties  $f:A\to A'$ such that  $f^*(L') = L$  and  $\phi \circ f = \phi'$ . It is easy to see from this definition that  $(A, L, \phi) \cong (A', L', \phi')$  if and only if  $h_{(A, L, \phi)} = g \cdot h_{(A', L', \phi')}$  for some projective transformation of  $\mathbb{P}_D$ . One can show that there is an irreducible component X of the Hilbert scheme which contains the points  $h_{(A,L,\phi)}$ . Since the space  $\mathbb{P}_D$  corresponds to an irreducible representation  $V_D = k[\mathbb{Z}^g/D\mathbb{Z}^g]^*$ of the group K(D), the isotropy subgroup of  $h_{(A,L,\phi)}$  (equal to K(D)) is not contained in any proper parabolic subgroup of  $GL(V_D)$  (see Exercise 9.10). Thus  $h_{(A,L,\phi)}$  is a Kempf-stable point in X. It is also a stable point since its isotropy subgroup is finite. The set of points in X corresponding to smooth schemes is an open subset U of X, it is also a  $GL(V_D)$ -invariant subset and is contained in  $X^{s}$ . Thus we can consider the geometric quotient  $U/\mathrm{GL}(V_{D})$ which is a fine moduli scheme for abelian varieties with polarization of type D and a level structure.

# Bibliographical Notes

Most of the material of this lecture is taken from [60]. Our function  $\mu^L(x,\lambda)$  differs from the one studied in Mumford's book in the sign. The numerical criterion of stability goes back to D. Hilbert [43] who introduced it for the description of the null-cone for the action of SL(n) on the space of homogeneous polynomials.

One can give a criterion of stability in terms of the moment map  $m: \mathbb{P}(V) \to \operatorname{Lie}(K)$ , where K is a maximal compact subgroup of G (SU(n) if  $G = \operatorname{SL}(n,\mathbb{C})$ ). It is defined by the formula  $m(v) = \frac{1}{\|v\|^2} dp_v(1)$ , where, for any  $g \in K$ ,  $p_v(g) = \|g \cdot v\|^2$ . Here we fixed a K-invariant hermitian norm  $\|\|$ in V. The criterion states that x is semistable if and only if 0 belongs to

the closure of the moment map image  $m(G \cdot x)$  of the orbit of x (see [51]). For more about the relationship between GIT and the theory of moment maps we refer to [53] and Chapter 8 of the new edition of Mumford's book.

One can consider  $\mu^L(x,\lambda)$  as a function in L. One can also get rid of the dependence on  $\lambda$  by showing that the function  $M^L(x) = \sup_{\lambda \in \mathcal{X}(G)^*} \frac{\mu^L(x,\lambda)}{\|\lambda\|}$  is well-defined and can be extended to a function  $l \to M^l(x)$  on the vector space  $l \in Pic^G(X) \otimes \mathbb{R}$ . These functions are used in [21] to define walls and chambers in the vector space  $Pic^G(X) \otimes \mathbb{R}$  which play the important role in the theory of variation of GIT quotients.

#### Exercises

- **9.1** An algebraic group G is called *diagonalizable* if  $\mathcal{O}(G)$  is generated as k-algebra by the characters  $\phi: G \to \mathbb{G}_m$  considered as regular functions on G. Prove that a torus is a diagonalizable group and every connected diagonalizable group is isomorphic to a torus. Give examples of non-connected diagonalizable groups.
- **9.2** Check the following properties of the function  $\mu^L(x,\lambda)$ :
  - (i)  $\mu(g \cdot x, \lambda) = \mu(x, g^{-1}\lambda g)$  for any  $g \in G, \lambda \in \mathcal{X}(G)^*$ ;
  - (ii) for any  $x \in X, \lambda \in \mathcal{X}(G)^*$ , the map  $\operatorname{Pic}^G(X) \to \mathbb{Z}$  defined by the formula  $L \mapsto \mu^L(x, \lambda)$  is a homomorphism of groups;
- (iii) if  $f: X \to Y$  is a G-equivariant morphism of G-varieties, and  $L \in \operatorname{Pic}^G(Y)$ , then  $\mu^{f^*(L)}(x,\lambda) = \mu^L(f(x),\lambda)$ ;
- (iv)  $\mu^L(x,\lambda) = \mu^L(\lim_{t\to 0} \lambda(t) \cdot x, \lambda).$
- **9.3** Prove that an affine variety over a field k is proper if and only if it is a finite set of points.
- **9.4** Prove that a fibre of a proper map is a proper variety. Give an example of a non-proper map such that all its fibres are proper varieties.
- **9.5** Prove that G acts properly on  $X^{s}(L)$  (i.e., the map  $\Psi: G \times X^{s}(L) \to X^{s}(L) \times X^{s}(L)$  is proper).
- **9.6** Prove Lemma 9.3 for  $G = \mathrm{SL}_k(n)$  and  $G = \mathbb{G}_m^n$ .

- **9.7** Let T be an r-dimensional torus acting linearly in a projective space  $\mathbb{P}^n$ . Show that  $\operatorname{Pic}^T(\mathbb{P}^n) \cong \mathbb{Z}^{r+1}$  and the set of  $L \in \operatorname{Pic}^T(\mathbb{P}^n)$  such that  $(\mathbb{P}^n)^{\operatorname{ss}}(L) \neq \emptyset$  is a finitely generated semigroup of  $\mathbb{Z}^{r+1}$ .
- **9.8** In the notation of Problem 6 from Lecture 6, find the sets  $X^{ss}(L)$  and  $X^{s}(L)$  by using the numerical criterion of stability.
- **9.9** Suppose x is Kempf-stable. Show that its isotropy group  $G_x$  is a reductive subgroup of G [Hint: Use, or prove, the following fact: if H is a closed subgroup of G with G/H affine then H is reductive.]
- **9.10** Let H be a subgroup of GL(V) such that V is irreducible for the natural action of H in V. Show that H is not contained in any proper parabolic subgroup of G.
- **9.11** Let  $X = \mathbb{P}(M_n)$  be the projective space associated to the space of square matrices of size n. Consider the action of the group  $\mathrm{SL}_k(n)$  on X defined by conjugation of matrices. Using the numerical criterion of stability find the sets of unstable and stable points.
- **9.12** Let  $X \subset \mathbb{P}(V)$  and G acts on X via its linear representation. Consider the flag complex  $\Delta(G)$ . For any point  $x \in X$  let  $C(x) = \{\delta \in \Delta(G) : \nu_x(\delta) > 0\}$ . Show that this set is convex.

# Lecture 10

# Projective hypersurfaces

# 10.1 Nonsingular hypersurfaces

Let  $G = \operatorname{SL}(n+1)$  act linearly in  $\mathbb{A}^{n+1}$  in the natural way (as a subgroup of  $\operatorname{GL}(n+1)$ ). This action defines an action of G in the subspace  $k[Z_0,\ldots,Z_n]_d\subset \mathcal{O}(\mathbb{A}^{n+1})$  of homogeneous polynomials of degree d>0. We view the latter as the affine space  $\mathbb{A}^N$ , where  $N=\binom{n+d}{d}$ . The k-points of the corresponding projective space  $\mathbb{P}^{N-1}$  can be interpreted as hypersurfaces of degree d in  $\mathbb{P}^n$ . For this reason we shall denote this projective space by  $\operatorname{Hyp}_d(n)$ . In this lecture we shall try to describe the sets of semi-stable and stable points for this action. Note that there is no choice for a non-trivial linearization  $\operatorname{Pic}(\mathbb{P}^{N-1}) \cong \mathbb{Z}$  and  $\mathcal{X}(G) = \{1\}$ ; we take  $L = \mathcal{O}_{\mathbb{P}^{N-1}}(1)$ .

Let

$$C_d(n) = \text{Hyp}_d(n) // \text{SL}(n+1).$$

This is a normal unirational variety. It is known that for a general hypersurface of degree  $d \geq 3$  its group of projective automorphisms is finite. This implies that SL(n+1) acts on an open nonempty subset with finite stabilizer groups. By Corollary 6.2,

$$\dim C_d(n) = \dim \operatorname{Hyp}_d(n) - \dim \operatorname{SL}(n+1) = \binom{n+d}{d} - (n+1)^2.$$
 (10.1)

Let n be arbitrary. Recall that a hypersurface  $V(F) \in \text{Hyp}_d(n)$  is a nonsingular variety if and only if the equations

$$F = 0, \quad \frac{\partial F}{\partial T_i} = 0, \quad i = 0, \dots, n$$

have no common zeroes. Note that, by the Euler formula,

$$dF = \sum_{i=0}^{n} T_i \frac{\partial F}{\partial T_i}.$$

If char(k) does not divide d, the first equation can be eliminated. Let D be the resultant of the polynomials  $\partial F/\partial T_i$ . It is a homogeneous polynomial of degree  $(n+1)(d-1)^n$  in the coefficients of the form F. It is called the discriminant of F. Its value at F is equal to zero if and only if  $\partial F/\partial T_i$  has a common zero in  $\mathbb{P}^n$ . Since the latter property is independent of a choice of coordinates, the hypersurface  $V(D) \subset \operatorname{Hyp}_d(n)$  is invariant with respect to the action of  $G = \operatorname{SL}(n+1)$ . This means that for any  $g \in G$  we have  $g^*(D) = \phi(g)D$  for some  $\phi(g) \in k^*$ . One immediately verifies that the function  $g \mapsto \phi(g)$  is a character of  $\operatorname{SL}(n+1)$ . Since the latter is a simple group, its group of characters is trivial. This implies that  $\phi(g) = 1$  for all g, hence D is an invariant polynomial. Since D does not vanish on the set of nonsingular hypersurfaces of degree d prime to the characteristic, we obtain

**Theorem 10.1.** Assume char(k) is prime to d. Any nonsingular hypersurface is a semi-stable point of  $Hyp_d(n)$ .

If d > 2, one can replace "semi-stable" with "stable". This follows from the already observed fact that, under these assumptions, the group of projective automorphisms of a nonsingular hypersurface is finite.

Example 10.1. Assume d=2 and  $\operatorname{char}(k)\neq 2$ . Then  $\operatorname{Hyp}_2(n)$  is the space of quadrics. The space  $k[T_0,\ldots,T_n]_2$  is the space of quadratic forms

$$F = \sum_{i,j=0}^{n} a_{ij} T_i T_j$$

or, equivalently, the space of symmetric matrices

$$B = (b_{ij})_{i,j=0,\dots,n}, \quad b_{ii} = 2a_{ii}, b_{ij} = b_{ji} = a_{ij}, i \neq j.$$

A quadric V(F) is nonsingular if and only if the rank of the corresponding matrix is equal to n+1. The determinant function on  $k[T_0, \ldots, T_n]_2$  is the resultant R from above. Thus all nonsingular quadrics are semi-stable. We know that by a linear change of variables every quadratic form can be reduced to the sum of squares  $X_0^2 + \ldots + X_r^2$ , where the number r is equal to

the rank of the matrix B from above. In our situation we are allowed to use only linear transformations with determinant 1 but since we are considering homogeneous forms only up to a multiplicative factor, the result is the same. We have exactly n orbits for the action of SL(n+1) on  $Hyp_2(n)$ . In fact any invariant homogeneous polynomial vanishes on an invariant subvariety of codimension 1 in  $Hyp_2(d)$ . It must consist of all orbits except the unique open one representing non-degenerate quadratic forms. By Hilbert's Null-stellensatz, this invariant polynomial must be a power of the discriminant of the quadratic form. The stabilizer of the quadratic form  $T_0^n + \ldots + T_n^2$  is the special orthogonal group  $SO_k(n+1)$ . Since it is of positive dimension (if n > 0), there are no properly stable points.

# 10.2 Binary forms

Let us consider the case n=1. The elements of the space  $k[Z_0, Z_1]_d$  are binary forms of degree d. The corresponding hypersurfaces can be viewed as finite subsets of points in  $\mathbb{P}^1$  taken with some multiplicities (or, equivalently, as effective divisors  $D = \sum n_x x$  on  $\mathbb{P}^1$  or closed subschemes of  $\mathbb{P}^1$ ). Each  $H \in \text{Hyp}_d(1)$  is equal to the closed subscheme of zeroes V(F) of some

$$F = \sum_{i=0}^{d} a_i Z_0^{d-i} Z_1^i \in K[Z_0, Z_1]_d,$$

Let T be the maximal torus of G which consists of diagonal matrices and is equal to the image of the one-parameter group

$$\lambda(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}.$$

Let us first investigate the stability with respect to T. For this we shall follow the last section of the previous Lecture. We have to compute the state set of the point  $H \in \operatorname{Hyp}_1(d)$ . We have

$$\lambda(t) \cdot (a_0, \dots, a_d) = (a_0 t^d, a_1 t^{d-2}, \dots, a_d t^{-d}).$$

Let

$$S = \{-d, -d+2, \dots, d-2, d\} \subset \mathbb{Z} = \mathcal{X}(T).$$

For any point  $H = V(F) \in \text{Hyp}_d(1)$ , its state set state(H) (with respect to the action of T) is a subset of S. Let  $\alpha_{min}$  (resp.  $\alpha_{max}$ ) be the smallest (resp. largest) element of this set.

Obviously,  $\alpha_{min} = -d + 2i$ , where  $Z_0^i$  is the maximum power of  $Z_0$  which divides F. Similarly,  $\alpha_{max} = d - 2i$ , where  $Z_1^i$  is the maximum power of  $Z_1$  which divides F.

By Theorem 9.4 from Lecture 9, we know that H is semi-stable (resp. properly stable) with respect to T if and only if

$$\alpha_{min} \le 0 \le \alpha_{max} \quad \text{(resp. } \alpha_{min} < 0 < \alpha_{max}\text{)}.$$
 (10.2)

This can be interpreted as follows:

H is semi-stable (resp. properly stable) with respect to T if and only if the points (0,1) and (1,0) are zeroes of H of multiplicity  $\leq d/2$  (resp. < d/2).

From this we easily deduce

**Theorem 10.2.**  $Hyp_d(1)^{ss}$  (resp.  $Hyp_d(1)^s$ ) is equal to the set of hypersurfaces with no roots of multiplicity > d/2 (resp.  $\ge d/2$ ).

Proof. Suppose H is semi-stable and has a root  $(z_0, z_1) \in \mathbb{P}^1$  of multiplicity > d/2. Let  $g \in G(k)$  take this point to the point (1,0). Then  $H' = g \cdot H$  has the point (1,0) as a root of multiplicity > d/2. This shows that H' is unstable with respect to T. Hence H is unstable with respect to G contradicting the assumption. Conversely, assume H has no roots of multiplicity > d/2 and is unstable. Then there exists a maximal torus T' with respect to which H is unstable. Let  $gT'g^{-1} = T$  for some  $g \in G$ . Then  $g \cdot H$  is unstable with respect to T. But then it has one of the points (1,0) or (0,1) as a root of multiplicity > d/2. Thus H has  $g^{-1} \cdot (1,0)$  or  $g^{-1} \cdot (0,1)$  as a root of multiplicity < d/2. A similar argument proves the assertion about stability.  $\square$ 

Corollary 10.1. Assume d is odd. Then

$$Hyp_d(1)^{ss} = Hyp_d(1)^s$$
.

Assume d is even and let  $H \in \operatorname{Hyp}_d(1)^{\operatorname{ss}} \setminus \operatorname{Hyp}_d(1)^s$ . This means that H has a root of multiplicity d/2 but no roots of multiplicity greater than d/2. Consider the fibre of the projection  $\operatorname{Hyp}_d(1)^{\operatorname{ss}} \to \operatorname{Hyp}_d(1)^{\operatorname{ss}} /\!/ G$  containing H. Since our categorical quotient is good, the fibre contains a unique closed orbit. H belongs to this orbit if and only if its stabilizer is of positive dimension.

Any group element stabilizing H stabilizes its set of roots. It is easy to see that any subset of  $\mathbb{P}^1(k)$  consisting of more than 2 points has a finite stabilizer. Thus, H must have only two roots. Since one of these roots is of multiplicity d/2, the other one is also of multiplicity d/2. Since any two-point sets on  $\mathbb{P}^1$  are projectively equivalent, this tells us that

$$\mathrm{Hyp}_d(1)^{\mathrm{ss}} \setminus \mathrm{Hyp}_d(1)^{\mathrm{s}} = G \cdot H_0,$$

where  $H_0$  is given by the equation  $(Z_0Z_1)^{d/2}=0$ . In particular,

$$\text{Hyp}_d(1)^{ss} // G \setminus \text{Hyp}_d(1)^s / G = \{x_0\},\$$

where the single point  $x_0$  represents the orbit of  $H_0$ .

The variety  $C_d(1) := \text{Hyp}_d(1)^{\text{ss}} /\!/ G$  is an irreducible normal projective variety of dimension d-3. By construction of categorical quotient,

$$C_d(1) = \operatorname{Proj}(\operatorname{Pol}_d(k^2))^{\operatorname{SL}(2)})$$

So it can be explicitly computed if we know the algebra of invariant polynomials on the space of binary forms of degree d.

Let us consider some special cases with small d.

If d = 1 we have  $\operatorname{Hyp}_1(1)^{\operatorname{ss}} = \emptyset$ . If d = 2 we have  $\operatorname{Hyp}_1(2)^{\operatorname{s}} = \emptyset$  and  $\operatorname{Hyp}_2(1)^{\operatorname{ss}}$  consists of subsets of two distinct points in  $\mathbb{P}^1$ . There is only one orbit of such subsets.

The set  $\text{Hyp}_3(1)^{\text{ss}}$  consists of three distinct points in  $\mathbb{P}^1$ . By a projective transformation they can be reduced to the points  $\{0, 1, \infty\}$ . So the variety  $C_d(1)$  is again the point variety Spec(k). This also agrees with the fact that  $\text{Pol}(\text{Pol}_3(k^2))^{\text{SL}(2)} = k[D]$ , where D is the discriminant invariant (see Exercise 2.6).

The set  $\operatorname{Hyp}_4(1)^s$  consists of subsets of four distinct points in  $\mathbb{P}^1$  and the set  $\operatorname{Hyp}_4(1)^{ss}$  consists of closed subsets sets V(F) where F has at most double roots. Since  $\operatorname{Hyp}_4(1)^s$  is an open Zariski subset of the projective space  $\mathbb{P}^4$  (see Exercise 10.1), and the fibres of the projection  $\operatorname{Hyp}_4(1)^s \to \operatorname{Hyp}_4(1)^s/G$  are of dimension 3, we obtain that  $C_4(1)$  is a normal, hence nonsingular, curve. Since it is obviously unirational, it must be isomorphic to  $\mathbb{P}^1$ . The image of the set of semi-stable but not properly stable points is one point. If we consider the map

$$\pi: \mathrm{Hyp}_4(1)^{\mathrm{ss}} \to C_4(1) \cong \mathbb{P}^1$$

as a rational function on  $\operatorname{Hyp}_4(1)^s$  then we can find its explicit expression as a rational function  $R(a_0,\ldots,a_4)$  in the coordinates of a binary form. To do this we have to find first the algebra of invariants  $\operatorname{Pol}(\operatorname{Pol}_4(k^2))^{\operatorname{SL}(2)}$ . We know already one invariant, the catalecticant

$$T = a_0 a_2 a_4 - a_0 a_3^2 + 2a_1 a_2 a_3 - a_1^2 a_4 - a_2^3$$

(see Example 1.4 in Lecture 1). Its bracket expression is  $(12)^2(13)^2(23)^2$ . Another invariant is of degree 2

$$S = a_0 a_4 - 4a_1 a_3 + 3a_2^2$$
.

Its bracket expression is  $(12)^4$ . One can show that any other invariant must be a polynomial in S and T. We shall explain it in the next lecture. This agrees with the fact that  $C_1^4 = \mathbb{P}^1$ . The discrimiant D of a quartic polynomial is an invariant whose bracket expression is equal to  $(12)^2(13)^2(14)^2(23)^2(24)^2(34)^2$ . It is a polynomial of degree 6 in the coefficients  $a_i$ 

$$D = S^3 - 27T^2.$$

Thus the rational function

$$R(a_0, \dots, a_4) = \frac{S^3}{S^3 - 27T^2}$$

is invariant with respect to SL(2) and defines a regular map from  $Hyp_4(1)^s$  to  $\mathbb{A}^1$ . This is the geometric quotient map. The map  $Hyp_4(1)^{ss} \to \mathbb{P}^1$  defined by  $(a_0, \ldots, a_4) \to (S^3 - 27T^2, S^3)$  is the categorical quotient map. Its fibre over  $(0,1) = \infty$  is equal to the union of orbits of binary forms of degree 4 with a double root (up to a non-zero scalar factor). The only closed orbit in this fibre is represented by the binary form  $Z_0^2 Z_1^2$ .

Consider the special case when  $F = T_0(T_1^3 + aT_0^2T_1 + bT_0^3)$ . If char $(k) \neq 3$  then each orbit contains a representative of such form. Then

$$j = \frac{a^3}{4a^3 + 27b^2}.$$

The expression in the denominator is the discriminant of the cubic polynomial  $x^3 + ax + b$ . The reader familiar with the theory of elliptic curves will immediately recognize this function. It is equal to the absolute invariant j of the elliptic curve given in the Weierstrass form:

$$y^2 = x^3 + ax + b.$$

This coincidence is not accidental. The equation above describes an elliptic curve as a double cover of  $\mathbb{P}^1$  branched over four points which are the infinity point and the three roots of the equation  $x^3 + ax + b = 0$ . In other words they are the zeroes of the binary form  $T_0(T_1^3 + aT_0^2T_1 + bT_0^3)$ . Two elliptic curves are isomorphic if and only if the corresponding sets of four points on  $\mathbb{P}^1$  are in the same orbit with respect to our action of SL(2).

Let d = 5. In this case one can compute explicitly the algebra of invariants  $A = \text{Pol}(\text{Pol}_5(k^2))^{\text{SL}(2)}$  (see [26]). Let us write a general binary quintic in the form  $(\text{char}(k) \neq 5)$ :

$$f = at_0^5 + 5bt_0^4t_1 + 10ct_0^3t_1^2 + 10dt_0^2t_1^3 + 5et_0t_1^4 + ft_1^5.$$

Then A is generated by the following invariants

$$I_{4} = (ae - 4bd + 3c^{2})(bf - 4ce + 3d^{2}) - (af - 3be + 2cd)^{2},$$

$$I_{8} = a^{2}b^{2}e^{2}f^{2} - 2a^{3}e^{5} - 2b^{5}f^{3} + 27b^{4}e^{4},$$

$$I_{12} = b^{2}e^{2}(a^{2}b^{2}e^{2}f^{2} - 4a^{3}e^{5} - 4b^{5}f^{3} + 18ab^{3}e^{3}f - 27b^{4}e^{4}),$$

$$I_{18} = (a^{3}e^{5} - b^{5}f^{3})[(af - 5be)(a^{3}e^{5} + b^{5}f^{3}) - 10a^{2}b^{3}e^{3}f^{2} + 90ab^{4}e^{3}f^{2} - 216b^{5}e^{5}].$$

There is also one basic relation between these invariants which expresses  $I_{18}^2$  as a polynomial  $F(I_4, I_8, I_{12})$  in invariants  $I_4, I_8$ , and  $I_{12}$ . We shall consider A as a graded algebra, the grading is defined by the natural grading of  $Pol(Pol_5(k^2))$  with the degree divided by two. It follows that there is an isomorphism of graded algebras

$$A \cong k[T_0, T_1, T_2, T_3]/(T_3^2 - F(T_0, T_1, T_2)),$$

where  $k[T_0, T_1, T_2, T_3]$  is graded by the condition

$$\deg T_0 = 2, \deg T_1 = 4, \deg T_2 = 6, \deg T_3 = 9$$

and F is a weighted homogeneous polynomial. Let  $A^{(2)}$  be the subalgebra of A generated by elements of even degree. Then  $A^{(2)}$  is generated by homogeneous elements of even degree  $T_0, T_1, T_2$ . Since  $T_3^2$  can be expressed as a polynomial in  $T_0, T_1, T_2$  we see that  $A^{(2)}$  is isomorphic to the graded polynomial algebra  $k[T_0, T_1, T_2]$ . This implies that

$$C_5(1) \cong \text{Proj}(k[T_0, T_1, T_2]) \cong \mathbb{P}(2, 4, 6) \cong \mathbb{P}(1, 2, 3).$$

In particular  $C_5(1)$  is a rational variety.

Note that the discriminant  $\Delta$  of a binary quintic can be expressed via the basic invariants as follows:

$$\Delta = I_4^8 - 128I_8.$$

This shows that the locus of orbits of binary quintics with a double root is equal to  $V(T_0^2 - 128T_1) \subset \mathbb{P}(1,2,3)$  and hence is isomorphic to  $\mathbb{P}(1,3) \cong \mathbb{P}^1$ .

Let d = 6. We shall use the explicit description of the algebra of invariants  $A = \text{Pol}(\text{Pol}_6(k^2))^{\text{SL}(2)}$  due to A. Clebsch [11]. For a modern treatment see [46]. It is generated by invariants  $I_2, I_4, I_6, I_{10}, I_{15}$ , where the subscript denotes the degree. The only relation between the basic invariants is

$$I_{15}^2 = F(I_2, I_4, I_6, I_{10}),$$

for some polynomial F. We shall consider A as a graded algebra, the grading is defined by the natural grading of  $\operatorname{Pol}(\operatorname{Pol}_6(k^2))$ . It follows that there is an isomorphism of graded algebras

$$A \cong k[T_0, T_1, T_2, T_3, T_4]/(T_4^2 - F(T_0, T_1, T_2, T_3)),$$

where  $k[T_0, T_1, T_2, T_3, T_4]$  is graded by the condition

$$\deg T_0 = 2, \deg T_1 = 4, \deg T_2 = 6, \deg T_3 = 10, \deg T_4 = 15,$$

and F is a weighted homogeneous polynomial. Arguing as in the previous example, we see that

$$C_6(1) \cong \text{Proj}(k[T_0, T_1, T_2, T_3]) \cong \mathbb{P}(1, 2, 3, 5).$$

In particular  $C_6(1)$  is a rational variety.

Note that the invariant  $I_{10}$  is the discriminant of a binary sextic. So its vanishes on the locus of binary sextics with a double root. The complement of this locus in  $C_6(1)$  represents reduced divisors of degree 6 in  $\mathbb{P}^1$ . It is isomorphic to the moduli space  $\mathcal{M}_2$  of genus 2 curves. The isomorphism is defined similarly to the isomorphism between  $\mathcal{M}_1$  and an open subset of  $C_4(1)$  by assigning to a genus 2 curve the six branch points of its canonical degree 2 map to  $\mathbb{P}^1$ . So, we obtain that  $\mathcal{M}_2$  is isomorphic to the open subset  $D(T_4)$  of  $\mathbb{P}(1,2,3,5)$  where the last coordinate  $T_4$  is not equal to zero. Since

each point in this subset is represented by a point  $(t_0, t_1, t_2, t_3, t_4)$  in  $\mathbb{A}^4$  with  $t_4 = 1$ , it follows from the definition of weighted projective space that

$$\mathcal{M}_2 \cong \mathbb{A}^3/(\mathbb{Z}/5),$$

where a generator of the cyclic group  $\mathbb{Z}/5$  acts on  $\mathbb{A}^3$  by the formula

$$(t_0, t_1, t_2) \to (\eta t_0, \eta^2 t_1, \eta^3 t_2), \quad \eta = \exp(2\pi i/5).$$

The image of the origin is the unique singular point of  $\mathcal{M}_2$ . It represents the isomorphism class of genus 2 curve corresponding to the binary quintic  $t_0(t_0^5 + t_1^5)$ . It admits an automorphism of order 5.

Finally observe that the locus  $V(T_4)$  of binary sextics with a multiple root and  $C_5(1)$  are both isomorphic to  $\mathbb{P}(1,2,3)$ .

#### 10.3 Plane cubics

Let n = 2 and d = 3. Every homogeneous form of degree 3 in three variables (a  $ternary\ cubic$ ) can be written in the form:

$$F = a_1 T_0^3 + a_2 T_0^2 T_1 + a_3 T_0^2 T_2 + a_4 T_0 T_1^2 + a_5 T_0 T_1 T_2 +$$

$$a_6T_0T_2^2 + a_7T_1^3 + a_8T_1^2T_2 + a_9T_1T_2^2 + a_{10}T_2^3$$
.

Now let us recall the classification of plane cubic curves. First of all it is easy to list all reducible curves. They are of the following type:

- (1) the union of an irreducible conic and a line intersecting it at two distict points;
- (2) the union of an irreducible conic and its tangent line;
- (3) the union of three non-concurrent lines;
- (4) the union of three concurrent lines;
- (5) the union of two lines, one of them is double;
- (6) one triple line.

Since all non-singular conics are projectively equivalent to the conic C:  $T_0T_2+T_1^2=0$  and the group of projective automorphisms of the conic C acts transitively on the set of tangents to C or on the set of lines intersecting C transversally, we obtain that any curve of type (1) (resp. (2)) is projectively equivalent to the curve

- (1)  $(T_0T_2 + T_1^2)T_1 = 0$ ;
- (2)  $(T_0T_2 + T_1^2)T_0 = 0$ .

Since the group of projective transformation of  $\mathbb{P}^2$  acts transitively on the set of k lines with  $k \leq 4$ , we obtain that any curve of type (3-6) is projectively equivalent to the curve given by the equation

- (3)  $T_0T_1T_3 = 0$ ;
- (4)  $T_0^2T_1 + T_0T_1^2 = 0$ ;
- (5)  $T_0^3 + T_0^2 T_1 = 0;$
- (6)  $T_0^3 = 0$ .

Now let us assume that F is irreducible. First let us assume that C is nonsingular. Choose a system of coordinates such that the point (0,0,1) is an inflection point and  $T_0 = 0$  is the equation of the tangent line at this point. It is known that any nonsingular curve contains at least one inflection point (see, for example, [42], Chapter 4, Exercise 2.2 (a)). Then we can write the equation as

$$T_2^2 T_0 + T_2 L_2(T_0, T_1) + L_3(T_0, T_1) = 0,$$

where  $L_2$  is a form of degree 2 and  $L_3$  is a form of degree 3. Since the line  $T_0 = 0$  intersect the curve at one point, we easily see that the coefficient of  $L_2$  at  $T_1^2$  is equal to zero. Thus in affine coordinates  $X = T_1/T_0$ ,  $Y = T_2/T_0$ , the equation takes the form

$$Y^{2} + aYX + bY + dX^{3} + eX^{2} + fX + g = 0.$$
 (10.3)

Obviously  $d \neq 0$ , so, after scaling we may assume d = 1.

Assume char(k)  $\neq$  2. Replacing Y with Y + aX + b, we may assume that a = b = 0. If char(k)  $\neq$  3, by a change of variables  $X \to X + \frac{e}{3}$ ,

we may assume that e = 0. Thus, we obtain the Weierstrass equation of a nonsingular plane cubic:

$$Y^{2} + X^{3} + fX + g = 0$$
,  $\operatorname{char}(k) \neq 2, 3$ ;  
 $Y^{2} + aYX + bY + X^{3} + fX + g = 0$ ,  $\operatorname{char}(k) = 2$ ;  
 $Y^{2} + X^{3} + eX^{2} + fX + g = 0$ ,  $\operatorname{char}(k) = 3$ .

The condition that the curve is nonsingular is expressed in terms of the discriminant:

$$\Delta = 4f^{3} + 27g^{2} \neq 0, \quad \operatorname{char}(k) \neq 2, 3;$$
 
$$\Delta = a^{3}b^{3} + b^{4} + a^{4}(abf + f^{3} + a^{2}g) \neq 0, \quad \operatorname{char}(k) = 2;$$
 
$$\Delta = f^{3} + (f^{2} + eg)e^{2} \neq 0, \quad \operatorname{char}(k) = 3.$$

Two curves are isomorphic if and only if their absolute invariants are equal

$$j = g^3/\Delta$$
,  $\operatorname{char}(k) \neq 2, 3$ ;  
 $j = f^2/\Delta$ ,  $\operatorname{char}(k) = 2$ ;  
 $j = c^4/\Delta$ ,  $\operatorname{char}(k) = 3$ .

Suppose C is singular. We may choose (0,0,1) to be the singular point. Then the equation is of the form

$$T_2L_2(T_0, T_1) + L_3(T_0, T_1) = 0.$$
 (10.4)

By a linear transformation of variables  $T_0, T_1$  we reduce  $L_2$  to one of two forms:  $L_2 = T_0^2$  or  $L_2 = T_0 T_1$ . Consider the first case. The singular point is a cusp. The equation is

$$T_2 T_0^2 + a T_0^3 + b T_0^2 T_1 + c T_0 T_1^2 + d T_1^3 = 0.$$

Replacing  $T_2$  with  $T_2 + aT_0 + bT_1$ , we may assume that  $a = b = 0, d \neq 0$ . Computing the Hessian of the equation we find that it is equal to  $H = 4(T_0^2(2cT_0 + 3dT_1))$ .

If char(k) = 3. We see that there are two orbits of cuspidal curves represented by

$$T_2T_0^2 + T_1^3 = 0$$
 and  $T_2T_0^2 + T_1^2 + T_1^3 = 0$ .

The curves from the first orbit have a unique nonsingular inflection point. The curves from the second orbit have none.

If char(k) = 2 we cannot use the Hessian to determine inflection points. If  $c \neq 0$ , by scaling we may assume that c = d = 1. Considering the intersection of the curve with an arbitrary line  $AT_0 + BT_1 + CT_2 = 0$ , we see that there is one nonsingular inflection point (0, 1, 0) with the tangent line  $T_0 + T_1 = 0$  for the first curve and (0, 1, 1) with the tangent line  $T_0 + T_1 + T_2 = 0$  for the second one.

If  $\operatorname{char}(k) \neq 2, 3$ , then the unique inflection point has the tangent line  $2cT_0 + 3dT_1 = 0$ . Now, if  $\operatorname{char}(k) \neq 3$ , we choose a new coordinate system such that (0,1,0) is the unique nonsingular inflection point, the line  $T_2 = 0$  is the tangent line at this point and the singular point is (0,0,1). Then, the equation reduces to the form

$$T_2 T_0^2 + T_1^3 = 0.$$

Now we consider the case of nodal curves when the quadratic form  $L_2$  in (10.4) is equal to  $T_0T_1$  so that the equation is

$$T_2 T_0 T_1 + a T_0^3 + b T_0^2 T_1 + c T_0 T_1^2 + d T_1^3 = 0.$$

Changing  $T_2$  to  $T_2 + bT_0 + cT_1$  we reduce the equation to the form

$$T_2 T_0 T_1 + a T_0^3 + d T_1^3 = 0.$$

clearly,  $a, d \neq 0$ , so by scaling, we reduce the equation to the form

$$T_2 T_0 T_1 + T_0^3 + T_1^3 = 0.$$

We leave to the reader to find a projective isomorphism between this curve and the curve

$$T_2^2 T_0 + T_1^2 (T_1 + T_0) = 0,$$

157

if  $char(k) \neq 2$ .

Summarizing, we get the following list of equations of irreducible plane curves (up to projective transformation):

 $char(k) \neq 2, 3$ :

(7) nonsingular cubic:

$$T_2^2 T_0 + T_1^3 + a T_1 T_0^2 + b T_0^3 = 0, \quad 4a^3 + 27b^2 \neq 0$$

(8) nodal cubic

$$T_2^2 T_0 + T_1^2 (T_1 + T_0) = 0,$$

(9) cuspidal cubic:

$$T_2^2 T_0 + T_1^3 = 0.$$

char(k) = 3:

(7) nonsingular cubic:

$$T_2^2 T_0 + T_1^3 + a T_1^2 T_0 + b T_1^2 T_0 + c T_0^3 = 0, \quad b^3 + (b^2 + ac)a^2 \neq 0;$$

$$T_2^2 T_0 + T_1^2 T_2 + T_1^3 + a T_0^2 T_1 = 0, \quad a \neq 0.$$

(8) nodal cubic:

$$T_0 T_1 T_2 + T_0^3 + T_1^3 = 0$$

(9) cuspidal cubic:

$$T_2^2 T_0 + T_1^3 = 0$$
, or  $T_2^2 T_0 + T_1^2 (T_1 + T_2) = 0$ ,

char(k) = 2:

(7) nonsingular cubic:

$$T_2^2 T_0 + a T_1 T_2 T_0 + b T_2 T_0^2 + T_1^3 + c T_1 T_0 + d T_0^3 = 0,$$

where  $a^3b^3 + b^4 + a^4(abd + c^3 + a^2d) \neq 0$ ;

(8) nodal cubic:

$$T_0 T_1 T_2 + T_0^3 + T_1^3 = 0$$

(9) cuspidal cubic:

$$T_2^2 T_0 + T_1^3 = 0.$$

Let T be the diagonal maximal torus in SL(3). It consists of matrices of the form

$$t = \begin{pmatrix} t_1 & 0 & 0 \\ 0 & t_2 & 0 \\ 0 & 0 & t_1^{-1} t_2^{-1} \end{pmatrix}.$$

The standard torus  $\mathbb{G}_m^2$  acts on  $V = \operatorname{Pol}_3(k^3)$  via its natural homomorphism  $\mathbb{G}_m^2 \to \operatorname{SL}(3), (t_1, t_2) \to \operatorname{diag}(t_1, t_2, (t_1 t_2)^{-1})$ . For each monomial  $T_0^a T_1^b T_2^c, a + b + c = 3$  we have

$$(t_1, t_2) \cdot T_0^a T_1^b T_2^c = t_1^{a-c} t_2^{b-c} T_0^a T_1^b T_2^c.$$

Thus each monomial  $T_0^a T_1^b T_2^c$  belongs to the eigensubspace  $V_{\chi_{a,b}}$ , where  $\chi_{a,b}$  is the character of  $\mathbb{G}_m^2$  defined by the vector (a-c,b-c)=(2a+b-3,2b+a-3). It is easy to see that  $V_{\chi_{a,b}}$  is one-dimensional and is spanned by the monomial  $T_0^a T_1^b T_2^c$ . Thus state(F) is equal to the set of points in  $\mathbb{R}^2$  with coordinates  $(2a+b-3,2b+a-3),a,b\geq 0,a+b\leq 3$  where the coefficient of F at  $T_0^a T_1^b T_2^c$  is not equal to zero. It is a subset of the set of 10 lattice points in  $\mathbb{R}^2$ 

159



Suppose V(F) is unstable with respect to T. Then the origin lies outside of the convex hull of  $\operatorname{state}(F)$ . It is easy to see that this is possible only if  $\operatorname{state}(F)$  consists of lattice points on one edge of the triangle plus one point nearest to the edge but not the interior point. After permuting the coordinates we may assume that

$$F = a_1 T_0^3 + a_2 T_0^2 T_1 + a_3 T_0^2 T_2 + a_4 T_0 T_1^2 + a_7 T_1^3.$$

It is clear that (0,0,1) is a singular point of V(F). In affine coordinates  $X = T_0/T_2, Y = T_1/T_2$ , the equation looks like

$$F = a_1 X^3 + a_2 X^2 Y + a_3 X^2 + a_4 X Y^2 + a_7 Y^3.$$

From this we see that the singular point is not an ordinary double point.

It follows from the above classification of plane cubic curves that the following curves are unstable

- (us1) irreducible cuspidal curve (two orbits if char(k) = 3);
- (us2) the union of an irreducible conic and its tangent line;
- (us3) the union of three concurrent lines;
- (us4) the union of two lines, one of them double;
- (us5) one triple line.

By looking at the equations of the remaining curves and drawing their state set we see that any nonsingular cubic is stable and any singular curve not from the above list is semi-stable. Note that it is enough to check the numerical criterion only for one fixed torus. In fact, the property to be nonsingular or to have at most ordinary double points is independent of the chosen coordinates. Thus we have the following list of semi-stable points:

- (ss1) nonsingular cubic (stable point)
- (ss2) irreducible nodal curve;
- (ss3) the union of an irreducible conic and a line intersecting it at two distinct points;
- (ss4) the union of three non-concurrent lines.

Consider the quotient map

$$\pi: \mathrm{Hyp}_3(2)^{\mathrm{ss}} \to \mathrm{Hyp}_3(2)^{\mathrm{ss}} /\!\!/ \mathrm{SL}(3).$$

The dimension of its fibres containing stable curves is equal to  $8 = \dim SL(3)$ . Note that in the process of the previous analysis, we have found that curves of type (ssi), i = 1,2,3, each form a single orbit represented by the curves

$$T_0T_1T_2 + T_0^3 + T_1^3 = 0, T_0T_1T_2 + T_1^3 = 0, T_0T_1T_2 = 0,$$

respectively. Moreover the curves of type (ss2) and (ss3) have the stabilizer of positive dimension. In fact the torus  $\lambda(\mathbb{G}_m)$ , where  $\lambda(t) = (t, 1, t^{-1})$  stabilizes the second curve, and the maximal diagonal torus stabilizes the third curve. This shows that the orbits of curves of type (ss2) and (ss3) are of dimension  $\leq 7$ . Thus they lie in the closure of some orbit of dimension 8. It cannot be a stable orbit, hence the only possible case is that it is the orbit of curves of type (ss1). Hence this orbit is nether closed nor stable.

Since  $Hyp_3(2)$  is of dimension 9, we obtain  $\dim Hyp_3(2)^{ss}/\!/SL(3) = 1$ . It is a normal projective unirational curve, hence we find that

$$\text{Hyp}_3(2)^{\text{ss}}/\!/\text{SL}(3) \cong \mathbb{P}^1.$$

Since there is only one closed semi-stable but not stable orbit, namely the set of three non-concurrent lines, we obtain

$$Hyp_3(2)^s/SL(3) = \cong \mathbb{A}^1.$$

This shows that projective isomorphism classes of nonsingular plane cubics are parametrized by the affine line. It is easy to see that the orbit of the curve  $T_0T_1T_2=0$  is of dimension 6. In the same fibre we find two other orbits: of nodal irreducible cubics (of dimension 8) and of curves of type (ss2) (of dimension 7). The second orbit lies in the closure of the first one, and the closed orbit lies in the closure of the second one.

If  $char(k) \neq 3$ , we have 5 unstable orbits: irreducible cuspidal cubics (of dimension 8), curves of type (us 2) (of dimension 6), of type (us3) (of dimension 5), of type (us4) (of dimension 4), and of type (us5) (of dimension 2). It is easy to see that the orbit of type (usi) lies in the closure of the orbit of type (usi - 1).

If char(k) = 3 we have two unstable orbits of type (us1), and four other unstable orbits lying in the closure of the previous two orbits.

Again as in 8.2, one may ask for the explicit formula for the quotient map. In characteristic  $\neq 2, 3$ , it can be given by the following rational function J in the coefficients  $a_{ijk}$  (see [85], p. 189-192):

$$J = \frac{16S^3}{T^2 + 64S^3},$$

where

$$S = abcm - (bca_2a_3 + cab_1b_3 + abc_1c_2) - m(ab_3c_2 + bc_1a_3 + ca_2b_1) -$$

$$-m^4 + 2m^2(b_1c_1 + c_2a_2 + a_3b_3) - 3m(a_2b_3c_1 + a_3b_1c_2) +$$

$$(ab_1c_2^2 + ac_1b_3^2 + ba_2c_1^2 + bc_2a_3^2 + cb_3a_2^2 + ca_3b_1^2) -$$

$$-(b_1^2c_1^2 + c_2^2a_2^2 + a_3^2b_3^2) + (c_2a_2a_3b_3 + a_3b_3b_1c_1 + b_1c_1c_2a_2),$$

$$T = a^2b^2c^2 - 6abc(ab_3c_2 + bc_1a_3 + ca_2b_1) + 12abcm(b_1c_1 + c_2a_2 + a_3b_3) +$$

$$36m^2(bca_2a_3 + cab_1b_3 + abc_1c_2) - 3(a^2b_3^2a_3^2 + b^2c_1^2a_3^2 + c^2a_2^2b_1^2) -$$

$$20abcm^3 + 4(a^2bc_2^3 + a^2cb_3^2 + a^2cb_3^3 + b^3ca_3^3 + b^2ac_1^3 + c^2ab_1^3 + c^2ba_2^3) -$$

$$24m(bcb_1a_3^2 + bcc_1a_2^2 + cac_2b_1^3 + caa_2b_3^2 + aba_3c_2^2 + abb_3c_1^2) + \\ 6abca_2b_2c_1 - 12(bcc_2a_3a_2^2 + bcb_3a_2a_3^2 + cac_1b_3b_1^2 + caa_3b_1b_3^2 + abb_1c_2c_1^2) + \\ 6abca_3b_1c_2 + 12m^2(ab_1c_2^2 + ac_1b_3^2 + ba_2c_1^2 + bc_2a_3^2 + cb_3a_2^2 + ca_3b_1^2) - \\ 12m^3(ab_3c_2 + bc_1a_3 + ca_2b_1) - 60m(ab_1b_3c_1c_2 + bc_1c_2a_2a_3 + ca_2a_3b_1b_3) + \\ 12m(aa_2b_3c_2^2 + aa_3c_2b_3^2 + bb_3c_1a_3^2 + bb_1a_3c_1^2 + cc_1a_2b_1^2 + cc_2b_1a_2^2) + \\ 6(ab_3c_2 + bc_1a_3 + ca_2b_1)(a_2b_3c_1 + a_3b_1c_2) - 6b_1c_1c_2a_2a_3b_3 + \\ 24(ab_1b_3^2c_1^2 + ac_1c_2^2b_1^2 + bc_2c_1^2a_2^2 + ba_2a_3^2c_2^2 + ca_3a_2^2b_3^2 + cb_3b_1^2a_3^2) - \\ 12(aa_2b_1c_3^3 + aa_3c_1b_3^3 + bb_3c_2a_3^3 + bb_1a_2c_1^3 + cc_1a_3b_1^3 + cc_2b_3a_2^3) - \\ 8m^6 + 24m^4(b_1c_1 + c_2a_2 + a_3b_3) - 36m^3(a_2b_3c_1 + a_3b_1c_2) + \\ 36m(a_2b_3c_1 + a_3b_1c_2)(b_1c_1 + c_2a_2 + a_3b_3) + 8(b_1^3c_1^3 + c_2^3a_2^3 + a_3^3b_3^3) - \\ 12(b_1^2c_1^2c_2a_2 + b_1^2c_1^2a_3b_3 + c_2^2a_2^2a_3b_3 + c_2^2a_2^2b_1c_1 + a_3^2b_3^2b_1c_1 + a_3^2b_3^2) - \\ 12m^2(b_1c_1c_2a_2 + c_2a_2a_3b_3 + a_3b_3b_1c_1) - 24m^2(b_1^2c_1^2 + c_2^2a_2^2 + a_3^2b_1^2c_2^2)).$$

Here we use the following dictionary between our notation of coefficients and Salmon's:

$$(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}) = (a, 3a_2, 3a_3, 3b_1, 6m, 3c_1, b, 3b_3, 3c_2, c).$$

In fact the algebra  $Pol(Pol_3((k^3))^{SL(3)})$  is freely generated by S and T. If one evaluates S (resp. T) on the curve given in the Weierstrass form from above, we obtain

$$S = \frac{a}{27}, \quad T = \frac{4b}{27}.$$

In this special case the value of the function J is equal to

$$J = \frac{a^3}{(4a^3 + 27b^2)}.$$

This is the absolute invariant of the elliptic curve. Note that we came to the same function by studying the orbits of binary quartics.

#### 10.4 Cubic surfaces

Consider the case d = 3, n = 3. It corresponds to cubic surfaces in  $\mathbb{P}^3$ . The algebra of invariants  $\operatorname{Pol}(\operatorname{Pol}_3(k^4))^{\operatorname{SL}(4)}$  was computed by G. Salmon and A. Clebsch [84]. It is generated by invariants  $I_8, I_{16}, I_{24}, I_{32}, I_{40}, I_{100}$ , where the index indicates the degree. The square of last invariant is expressed as a polynomial in the first five invariants. Similar to the case (d, n) = (6, 1), we find that

$$C_3(3) \cong \mathbb{P}(1,2,3,4,5).$$

In particular,  $C_3(3)$  is a rational variety. The invariant  $I_{32}$  corresponding to the variable  $T_3$  with weight 4 is the discriminant. Thus we obtain the following isomorphism for the moduli space  $\mathcal{M}_{\text{cubic}}$  of nonsingular cubic surface

$$\mathcal{M}_{\text{cubic}} \cong \mathbb{A}^4/(\mathbb{Z}/4),$$

where a generator of the cyclic group  $\mathbb{Z}/4$  acts on  $\mathbb{A}^4$  by the formula

$$(t_1, t_2, t_3, t_4) \rightarrow (\eta t_1, \eta^2 t_2, \eta^3 t_3, \eta t_4), \quad \eta = \exp(2\pi i/4).$$

The hyperplane  $T_3 = 0$  is isomorphic to  $\mathbb{P}(1, 2, 3, 5)$ . Recall that the latter is isomorphic to  $C_6(1)$ . It is not an accident. If a point of  $C_6(1)$  represents six distinct points in  $\mathbb{P}^1$ , we consider the Veronese map to identify them with 6 points on a nonsingular conic in  $\mathbb{P}^2$ . Then the linear system of cubics through these points defines a rational map from  $\mathbb{P}^2$  to  $\mathbb{P}^3$ . Its image is a singular cubic representing a point of  $C_3(3)$ . The singular point of this cubic is the image of the conic. Thus we see that the moduli space  $\mathcal{M}_2$  is isomorphic to an open subset of the hypersurface  $T_3 = 0$  in  $C_3(3)$ .

The following are the other values of (d, n), where the analysis of stability has been worked out:

- (d, n) = (2, 4), (2, 5), (3, 3) ([60]),
- (2,6) ( [90]),
- (3,4) ([91]).
- (3,5) (D. Allcock, work in progress).

# Bibliographical Notes

The examples of explicit computation of the quotient spaces  $C_d(n)$  given in this lecture have been known since the nineteenth century (see [28],[35],[83].

The other known cases are (n,d) = (1,7), (1,8) (see [32],[33] and also [94], [18]). A modern proof of the completeness of the Clebsch-Salmon's list of fundamental invariants of cubic surfaces was given by Beklemishev [4]. These are probably the only examples where one can compute the spaces  $C_d(n)$  explicitly. In fact, one can show that the number of generators of the algebra of invariants on the space of homogeneous polynomials of degree d grows very rapidly with d (see [74]).

It is conjectured that all the spaces  $C_d(n)$  are rational varieties. In the case of binary forms, this was proven by F. Bogomolov and P. Katsylo[5]. The spaces  $C_d(2)$  are known to be rational only in some cases (see , [48], Katsylo2,[93]) and also a survey of results on rationality in [19]).

#### Exercises

- **10.1** Show that  $\operatorname{Hyp}_d(1) \cong \mathbb{P}^d$ . Desribe the sets of semi-stable and stable points as subsets of  $\mathbb{P}^d$ .
- 10.2 Let  $(a_i, b_i)$ , i = 1, 2, 3, 4, be four distinct roots of a binary quartic F. Let [ij] denote the determinant of the matrix with columns  $(a_i, b_i)$ ,  $(a_j, b_j)$ . The expression r = [12][34]/[13][24] is called the *cross-ratio* of the four points. Prove that two binary quartics define the same orbit in  $Hyp_4(1)$  if and only if the corresponding cross-ratia coincide after we make some permutations of the roots.
- 10.3 Let X be the complement of the quartic V(D) in  $\mathbb{P}^3$ , where D is the discriminant of a binary cubic form. Show that X is isomorphic to a homogeneous space  $\mathrm{SL}(2)/H$ , where H is a subgroup of order 12.
- **10.4** Show that there are exactly two orbits in  $\text{Hyp}_4(1)^s$  with non-trivial stabilizer. Show that the closures of these orbits in  $\text{Hyp}_4(1)$  are given by the equations A=0 and B=0, where A,B are the polynomials of degree 2 and 3 defined in 8.3.
- **10.5** Show that  $\text{Hyp}_4(1)^{\text{us}}$  is isomorphic to a surface of degree 6 in  $\mathbb{P}^4$ . Its singular set is isomorphic to a Veronese curve of degree 4.
- 10.6 Construct a birational rational map from  $C_d(1)$  to  $C_{d+1}(1)$  whose image is equal to the locus of zeroes of the discriminant invariant. Describe the points of indeterminacy of this map and its inverse.
- **10.7** Find the orbits of binary quintics which correspond to singular points of  $C_1(5)$ .

- 10.8 Find the group of projective automorphisms of a nonsingular cubic curve (may assume that  $\operatorname{char}(k) \neq 2,3$ ).
- 10.9 Find all projective automorphisms of an irreducible cuspidal cubic.
- **10.10** Make the analysis of stability in the case (d, n) = (3, 3) and compare the result with the answer in Mumford's book.
- 10.11 Prove that nonsingular quadrics are semi-stable in all characteristics.
- **10.12** Show that a plane curve of degree d is unstable if it has a singular point of multiplicity > 2d/3.

# Lecture 11

# Configurations of linear subspaces

# 11.1 Stable configurations

Let  $Gr_{r,n}$  denote the Grassmann variety of (r+1)-dimensional linear subspaces in the linear space  $k^{n+1}$  (or, equivalently, of r-dimensional linear projective subspaces in  $\mathbb{P}^n$ ). The group G = SL(n+1) acts naturally on  $Gr_{r,n}$  via its linear representation in  $k^{n+1}$ . In this lecture we shall investigate the stability for the diagonal action of G on the variety

$$X_{\mathbf{r},n} = \prod_{i=1}^{m} \operatorname{Gr}_{r_i,n},$$

where  $\mathbf{r} = (r_1, \dots, r_m)$ . First we have to describe possible linearizations of this action.

#### Lemma 11.1.

$$Pic^{G}(Gr_{r,n}) \cong Pic(Gr_{r,n}) \cong \mathbb{Z}.$$

A generator of this group is the line bundle  $\mathcal{O}_{Gr_{r,n}}(1)$  where we consider the Plücker embedding of  $Gr_{r,n}$  in  $\mathbb{P}(\Lambda^{r+1}(k^{n+1})) = \mathbb{P}^N$ ,  $N = \binom{n+1}{r+1} - 1$ .

*Proof.* We shall represent a point  $W \in Gr_{r,n}$  as a matrix

$$A = \begin{pmatrix} a_{00} & a_{01} & \dots & a_{0n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{r0} & a_{r1} & \dots & a_{rn} \end{pmatrix}.$$

Its rows form a basis of W. The Plücker coordinates  $p_{i_0...i_r}$  of W are the maximal minors of this matrix formed by the columns  $A_{i_0}, \ldots, A_{i_r}$ . The open subset of  $Gr_{r,n}$  with  $p_{12...r+1} \neq 0$  is the affine space  $\mathbb{A}^{(r+1)(n-r)}$ . The restriction of any  $L \in \operatorname{Pic}(Gr_{r,n})$  to this open subset is trivial, so L is isomorphic to a line bundle associated to a divisor equal to a multiple of a hyperplane section. Since any line bundle admits a unique linearization with respect to  $\operatorname{SL}(n+1)$ , the assertion follows.

We shall use the notation  $Z_{i_0,...,i_r}$  to denote the projective coordinates in  $\mathbb{P}^N$  (we order them lexicographically). The value of this coordinate at any  $W \in \operatorname{Gr}_{r,n}$  is equal to the Plücker coordinate  $p_{i_0...i_r}$  of W. Since  $\operatorname{Gr}_{r,n}$  is not contained in a linear subspace of  $\mathbb{P}^N$ , the restriction map:

$$\Gamma(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(1)) \to \Gamma(\operatorname{Gr}_{r,n}, \mathcal{O}_{\operatorname{Gr}_{r,n}}(1))$$

is injective. One can also show that it is surjective.

For any vector  $\mathbf{k} = (k_1, \dots, k_m) \in \mathbb{Z}^m$  we define a line bundle on  $X_{\mathbf{r},n}$ 

$$L_{\mathbf{k}} = \bigotimes_{i=1}^{m} \operatorname{pr}_{i}^{*}(\mathcal{O}_{\operatorname{Gr}_{r_{i},n}}(1)^{\otimes k_{i}}),$$

where  $\operatorname{pr}_i:X_{\mathbf{r},n}\to\operatorname{Gr}_{r_i,n}$  is the *i*-th projection. It follows from Lemma 11.1 that any line bundle on X is isomorphic to  $L_{\mathbf{k}}$  for some  $\mathbf{k}$  (use [42], p.292). Since each  $\operatorname{pr}_i$  is an  $\operatorname{SL}(n+1)$ -equivariant morphism,  $L_{\mathbf{k}}$  admits a canonical  $\operatorname{SL}(n+1)$ -linearization. Thus

$$\operatorname{Pic}^{\operatorname{SL}(n+1)}(X_{\mathbf{r},n}) \cong \mathbb{Z}^m.$$

Also  $L_{\mathbf{k}}$  is ample if and only if all  $k_i$  are positive. In fact, if some tensor power of  $L_{\mathbf{k}}$  defines a closed embedding  $X_{\mathbf{r},n} \to \mathbb{P}^M$ , the restriction of  $L_{\mathbf{k}}$  to any subvariety isomorphic to a factor is an ample line bundle. But it is obvious that this restriction is isomorphic to  $\mathcal{O}_{\mathrm{Gr}_{r,n}}(1)^{\otimes k_i}$ . The latter is ample if and only if  $k_i > 0$ . Conversely, any  $L_{\mathbf{k}}$  with positive  $\mathbf{k}$  (meaning that all  $k_i$ 's are positive) is very ample. It defines a projective embedding of  $X_{\mathbf{r},n}$  which is equal to the composition

$$X_{\mathbf{r},n} \to (\mathbb{P}^N)^m \to \prod_{i=1}^m \mathbb{P}^{\binom{N+k_i}{N}-1} \to \mathbb{P}^{\prod_{i=1}^m \binom{N+k_i}{N}-1},$$

where the first map is the product of the Plücker embeddings, the second map is the product of the Veronese embeddings, and the last map is the Segre map.

Now we are ready to describe semi-stable and stable configurations of linear subspaces

$$\mathcal{W} = (W_1, \ldots, W_m) \in X_{\mathbf{r},n}$$
.

**Theorem 11.1.** Let  $\mathbf{k} = (k_1, \dots, k_m) \in \mathbb{Z}_+^m$ . Then  $\mathcal{W} \in X_{\mathbf{r},n}^{ss}(L_{\mathbf{k}})$  (resp.  $\in (X_{\mathbf{r},n})^s(L_{\mathbf{k}})$ ) if and only if for any proper linear subspace W of  $\mathbb{P}^n$ 

$$(n+1)\sum_{j=1}^{m} k_j[\dim(W_j \cap W) + 1] \le (\dim W + 1)\sum_{i=1}^{m} k_i(r_i + 1)$$

(resp. the strict inequality holds).

*Proof.* Let T be the maximal diagonal torus in SL(n+1). Each one-parameter subgroup of T is defined by  $\lambda(t) = \operatorname{diag}[t^{q_0}, \ldots, t^{q_n}]$ , where  $q_0 + \ldots + q_n = 0$ . By permuting coordinates we may assume that

$$q_0 > q_1 > \ldots > q_n. \tag{11.1}$$

Suppose  $W = (W_1, \ldots, W_m)$  is semi-stable. Let  $\bar{E}_s, s = 0, \ldots n$  be the linear space spanned by the unit vectors  $e_0, \ldots, e_s$  and  $E_s$  the corresponding projective subspace. For any  $W \in \operatorname{Gr}_{r_i,n}$  and any integer  $j, 0 \leq j \leq r_i$ , there is a unique integer  $\nu_j$  for which

$$\dim(W \cap E_{\nu_j}) = j, \quad \dim(W \cap E_{\nu_j-1}) = j-1.$$

To see this we list the numbers  $a_s = \dim(W \cap E_s)$ ,  $s = 0, \ldots, n$  and observe that  $0 \le a_s - a_{s-1} \le 1$ ,  $a_n = r$ , since each  $E_{s-1}$  is a hyperplane in  $E_s$  and  $E_n = \mathbb{P}^n$ . Then we see that each j occurs among these numbers and we define  $\nu_j$  to be the first s with  $a_s = j$ .

With this notation we can represent W by a matrix A of the form

$$A = \begin{pmatrix} a_{00} & \dots & a_{0\nu_0} & 0 & \dots & \dots & \dots & \dots & 0 \\ a_{10} & \dots & \dots & a_{1\nu_1} & 0 & \dots & \dots & \dots & 0 \\ \dots & \dots \\ \vdots & \dots \\ a_{r_i0} & \dots \\ a_{r_i\nu_{r_i}} & 0 & \dots & 0 \end{pmatrix},$$

where  $a_{j\nu_j} \neq 0$  for all j. It is clear from viewing the maximal minors of this matrix that  $p_{i_0...i_r}(W) = 0$  if  $i_j > \nu_j$  for any value of j and  $p_{\nu_0...\nu_{r_i}}(W) \neq 0$ .

Now we notice that the projective coordinates of  $W = (W_1, \ldots, W_m)$  in the embedding defined by the line bundle  $L_{\mathbf{k}}$  are equal to the product of m monomials of degree  $k_i$  in the Plücker coordinates of  $W_i$ . Since for each  $\lambda$  as in (11.1) we have

$$p_{i_0...i_r}(\lambda(t) \cdot W) = t^{q_{i_0} + ... + q_{i_{r_i}}} p_{i_0...i_r}(W),$$

it is easy to see that

$$\mu^{L_{\mathbf{k}}}(\mathcal{W},\lambda) = \sum_{i=1}^{m} k_i \left(\sum_{j=0}^{r} q_{\nu_j^{(i)}}\right).$$

Here  $\nu_j^{(i)}$  is defined for each space  $W_j$  similar to the definition of  $\nu_j$  for the space W above. Using that  $\dim(W_i \cap E_j) - \dim(W_i \cap E_{j-1}) = 0$  if  $j \neq \nu_j^{(i)}$ , we can rewrite the previous sum as follows

$$\mu^{L_{\mathbf{k}}}(\mathcal{W},\lambda) = \sum_{i=1}^{m} k_i \left(\sum_{j=0}^{n} q_j (\dim(W_i \cap E_j) - \dim(W_i \cap E_{j-1}))\right) =$$

$$= \sum_{i=1}^{m} k_i ((r_i + 1)q_n + \sum_{j=0}^{n-1} (\dim(W_i \cap E_j) + 1)(q_j - q_{j+1})) =$$

$$= q_n \sum_{i=1}^m k_i (r_i + 1) + \sum_{j=0}^{n-1} (\sum_{i=1}^m k_i (\dim(W_i \cap E_j) + 1) (q_j - q_{j+1})).$$

Since we want this number to be non-positive (resp. negative) for all  $\lambda$ , we can take special one-parameter subgroup  $\lambda_s$  given by

$$q_0 = \ldots = q_s = n - s, q_{s+1} = \ldots = q_n = -(s+1), 0 \le s \le n-1.$$

It is easy to see that any  $\lambda$  satisfying (11.1) is a positive linear combination of such one-parameter subgroups. Plugging in these values of  $q_j$ , we find

$$-\left(\sum_{i=1}^{m} k_i(r_i+1)(s+1) + (n+1)\left(\sum_{i=1}^{m} k_i(\dim(W_i \cap E_s) + 1)\right) \le 0 \quad (\text{resp.} < 0).$$
(11.2)

Since any s-dimensional linear subspace of  $\mathbb{P}^n$  is projectively equivalent to  $E_s$ , we obtain the necessary condition for semi-stability or stability from the Theorem. It is also sufficient. In fact, if it is satisfied but  $(W_1, \ldots, W_m)$  is not semi-stable, we can find some  $\lambda \in \mathcal{X}(\mathrm{SL}(n+1))^*$  such that  $\mu^{L_k}(\mathcal{W}, \lambda) > 0$ . By choosing appropriate coordinates, we may assume that  $\lambda \in \mathcal{X}(T)^*$  and satisfies (11.1). Then we write  $\lambda$  as a positive linear combination of  $\lambda_s$  to obtain that  $\mu^{L_k}(\mathcal{W}, \lambda_s) > 0$  for some s. Then the above computations show that (11.2) does not hold, contradicting our assumption.

**Corollary 11.1.** Assume that the numbers  $\sum_{i=1}^{m} k_i(r_i + 1)$  and n + 1 are coprime. Then

$$X_{\mathbf{r},n}^{ss}(L_{\mathbf{k}}) = X_{\mathbf{r},n}^{s}(L_{\mathbf{k}}).$$

Let us rewrite Theorem 11.1 in the case all  $r_i$  and all  $k_i$  are equal (in this case the linearization is called democratic. We set

$$X_{r^m,n}^{ss}(L_{k^m}) = X_{r^m,n}^{ss}, \quad X_{r^m,n}^{s}(L_{k^m}) = X_{r^m,n}^{s}$$
$$P_{r,n}^m := X_{r^m,n}^{ss} / / \mathrm{SL}(n+1).$$

#### Corollary 11.2.

$$W \in X_{r^m,n}^{ss} \Leftrightarrow \sum_{i=1}^m (\dim(W_j \cap W) + 1) \le (\dim W + 1) \frac{m(r+1)}{n+1},$$

for any proper subspace W of  $\mathbb{P}^n$  (resp.

$$\mathcal{W} \in X^{s}_{r^{m},n} \Leftrightarrow \sum_{i=1}^{m} (\dim(W_{j} \cap W) + 1) < (\dim W + 1) \frac{m(r+1)}{n+1}).$$

Let us consider some examples.

Example 11.1. Let  $n = 1, \mathbf{k} = 1^m$ . Taking W to be a point, we get that W can be equal to at most m/2 points among  $\mathcal{W} = (p_1, \dots, p_m) \in (\mathbb{P}^1)^m$  in order that  $\mathcal{W}$  were semi-stable with respect to  $L_{1^m}$ . This is similar to the stability criterion for a binary form of degree n. This is not surprizing since  $\text{Hyp}_m(1) = (\mathbb{P}^1)^m/S_m$  and  $L_{1^m}$  is equal to the inverse image of  $\mathcal{O}(1)$  under the projection  $(\mathbb{P}^1)^m \to \text{Hyp}_m(1)$ . Note that if we change  $L_{1^m}$  to  $L_{\mathbf{k}}$ , where  $k_1 + \ldots + k_{m-1} < k_m$ , we get that  $(p_1, \ldots, p_1, p_m)$  is semi-stable.

Example 11.2. Let us take  $n = 2, r_i = 0, \mathbf{k} = (1, ..., 1)$ . Then

 $(p_1,\ldots,p_m)$  is semistable  $\Leftrightarrow$  no point can be repeated more than

m/3 times and no more than 2m/3 points are on a line.

Semi-stability coincides with stability when 3 does not divide m.

For instance, let us take n=6. Then stable sixtuples of points are all distinct and have at most three collinear. On the other hand, semi-stable but not stable sixtuples have either two coinciding points or four collinear points among them. It is easy to see that minimal closed orbits of semi-stable but not stable points are represented by sixtuples  $(p_1, \ldots, p_6)$ , where  $p_i = p_j$  for some  $i \neq j$  with the remaining four points on a line. Among them there are special orbits  $O_{ij,kl,st}$  corresponding to the sixtuples with  $p_i = p_j, p_k = p_l, p_s = p_t$ , where  $\{1, \ldots, 6\} = \{i, j\} \coprod \{k, l\} \coprod \{s, t\}$ . So  $X_{1^6, 2}^{ss} /\!/ G$  is a 4-dimensional variety, and  $(X_{1^6, 2}^{ss} /\!/ G) \setminus (X_{1^6, 2}^s /\!/ G)$  is isomorphic to the union of 15 curves  $C_{ij}$  each isomorphic to  $X_{1^4, 1}^{ss} /\!/ SL(2) \cong \mathbb{P}^1$ . Each curve  $C_{ij}$  contains three points  $P_{ij,kl,mn}$  represented by the orbits  $O_{ij,kl,mn}$ . Each point  $P_{ij,kl,mn}$  lies on three curves  $C_{ij}$ ,  $C_{kl}$  and  $C_{mn}$ .

Let us consider the subset of  $X_{1^6,2}^s$  of sixtuples  $(p_1,\ldots,p_6)$  such that there exists an irreducible conic containing the points  $p_1,\ldots,p_6$ . Since all irreducible conics are projectively equivalent, the orbit space  $X_{1^6,2}^s/\mathrm{SL}(2)$  is isomorphic to the orbit space  $((\mathbb{P}^1)^6)^s/\mathrm{SL}(2)$  of sixtuples of 6 distinct points on  $\mathbb{P}^1$ . As we shall see later, its closure in  $P_{0,2}^6 = ((\mathbb{P}^2)^6)^{\mathrm{ss}}/\!/\mathrm{SL}(3)$  is not isomorphic to  $P_{0,1}^6 = ((\mathbb{P}^1)^6)^{\mathrm{ss}}/\!/\mathrm{SL}(2)$ .

Example 11.3. Let us take  $r = 1, n = 3, \mathbf{k} = (1, ..., 1)$ . Then we are dealing with sequences  $(l_1, ..., l_m)$  of lines in  $\mathbb{P}^3$ . Let us apply the criterion of semistabilty, first taking W to be a point, then a line, and finally a plane. In the first case we obtain

$$\#\{i: W \in W_i\} \le m/2,$$

that is, no more than m/2 lines intersect at one point.

Taking W to be a line, we obtain

$$2\#\{i: W = W_i\} + \#\{i: W_i \neq W, W \cap W_i \neq \emptyset\} \le m,$$

in particular, no more than m/2 lines coincide and no more than m-2t lines  $W_i$  intersect a line  $W_j$  which is repeated t times.

Finally, taking W to be a plane, we get

$$2\#\{i: W_i \subset W\} + \#\{i: W_i \not\subset W\} \le 3m/2,$$

that is, no more than m/2 lines are coplanar.

For example, there are no stable points if  $m \leq 4$ . This follows from the fact that for any four lines in  $\mathbb{P}^3$  there is a line intersecting them all. There are no semi-stable points for m=1. If m=2, a pair of lines is semi-stable if and only if they don't intersect. It is easy to see that by a projective transformation a pair of skew lines is reduced to the two lines given by the equations  $x_0 = x_1 = 0$  and  $x_2 = x_3 = 0$ . Thus we have one orbit. Similarly, if m=3 we get one semi-stable orbit represented by the lines  $x_0 = x_1 = 0$ ,  $x_2 = x_3 = 0$ , and  $x_0 + x_2 = x_1 + x_3 = 0$ . If m = 4, the formula for the dimension of the quotient space gives us that  $\dim X^{\mathrm{ss}}//G = 1 + \dim G_x$ , where  $G_x$  is the stabilizer of a generic point in  $X^{\mathrm{ss}}$ . In our case dim  $G_x>0$ since there are no stable orbits. It is easy to see that  $\dim G_x = 1$  (use that there is a unique quadric Q through the first three lines, the fourth line is determined by two points of intersection with the quadric; the subgroup of the automorphisms of the quadric which fix two points and three lines in one ruling is isomorphic to  $\mathbb{G}_m$ ). We shall show later, by explicit computation of invariants, that

$$P_{1,3}^4 = X_{1,3}^{ss} // SL(4) \cong \mathbb{P}^2.$$
 (11.3)

Let us give a geometric reason why it can be true. For any four skew lines in general position, there exist two lines which intersect them all (they are called transversals). This is a classical fact which can be proven as follows. Consider the unique quadric Q through the first lines  $l_1, l_2, l_3$ . They belong to one ruling of lines on Q. The fourth line  $l_4$  intersects Q at two points  $q_1, q_2$ . The two transversals are the lines from another ruling on Q which pass through  $q_1, q_2$ . If the fourth line happen to be tangent to Q, so that  $q_1 = q_2$ , we get only one transversal. Now let  $t_1, t_2$  be the two transversals. Then we have two ordered sets of four points on  $\mathbb{P}^1$ :

$$(p_1, p_2, p_3, p_4) = (l_1 \cap t_1, l_2 \cap t_1, l_3 \cap t_1, l_4 \cap t_1),$$

$$(p'_1, p'_2, p'_3, p'_4) = (l_1 \cap t_2, l_2 \cap t_2, l_3 \cap t_2, l_4 \cap t_2).$$

This defines a morphism from an open subset of  $P_{1,3}^4$  to  $(P_{0,1}^4 \times (P_{0,1}^4)/S_2 \cong (\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathbb{P}^2$ . The proof that this map extends to an isomorphism consists of the study how this construction can be extended to degenerate configurations.

## 11.2 Points in $\mathbb{P}^n$

Let us consider configurations of m points in  $\mathbb{P}^n$ . We have

**Theorem 11.2.** Let 
$$\mathcal{P} = (p_1, \ldots, p_m) \in (\mathbb{P}^n)^m$$
. Then

$$\mathcal{P} \in ((\mathbb{P}^n)^m)^{ss}(L_{\mathbf{k}}) \quad (resp. \in ((\mathbb{P}^n)^m)^s(L_{\mathbf{k}}))$$

if and only if for every proper linear subspace W of  $\mathbb{P}^n$ 

$$\sum_{i, p_i \in W} k_i \le \frac{\dim W + 1}{n+1} (\sum_{i=1}^m k_i)$$

(resp. the strict inequality holds).

In particular, if all  $k_i = 1$ , the last condition can be rewritten in the form

$$\#\{i: p_i \in W\} \le \frac{\dim W + 1}{n+1}m$$
 (resp. < ).

Corollary 11.3.

$$((\mathbb{P}^n)^m)^{ss}(L_{\mathbf{k}}) \neq \emptyset \Leftrightarrow \forall i = 1, \dots, m, \quad (n+1)k_i \leq \sum_{i=1}^m k_i.$$

$$((\mathbb{P}^n)^m)^s(L_{\mathbf{k}}) \neq \emptyset \Leftrightarrow \forall i = 1, \dots, m, \quad (n+1)k_i < \sum_{i=1}^m k_i.$$

Proof. Let

$$((\mathbb{P}^n)^m)^{\mathrm{gen}} := \{(p_1, \dots, p_m) : \text{ each subset of } n+1 \text{ points } p_i \text{ spans } \mathbb{P}^n\}.$$

This is an open non-empty subset of  $(\mathbb{P}^n)^m$ . We know that  $((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}})$  is an open subset. So if it is not empty it has non-empty intersection with  $((\mathbb{P}^n)^m)^{\mathrm{gen}}$ . If we take a point-set  $\mathcal{P} = (p_1, \ldots, p_m)$  in the intersection, we obtain, since no two points  $p_i$  coincide,  $(n+1)k_i \leq \sum_{i=1}^m k_i$  for each  $i=1,\ldots,m$ . Conversely, if this condition is satisfied then each point  $\mathcal{P} = (p_1, \ldots, p_m) \in$ 

 $((\mathbb{P}^n)^m)^{\text{gen}}$  is semi-stable with respect to  $L_{\mathbf{k}}$ . In fact, each subspace W of dimension s contains at most s+1 points  $p_i$ . Hence

$$\sum_{i,p_i \in W} k_i \le (\dim W + 1) \max\{k_i : i = 1, \dots, m\} \le \frac{\dim W + 1}{n+1} (\sum_{i=1}^m k_i).$$

This proves the assertion about the semi-stability. Similarly we prove the second assertion.  $\Box$ 

Let

$$\Delta_{n,m} = \{ x = (x_1, \dots, x_m) \in \mathbb{R}^m : \sum_{i=1}^m x_i = n+1, 0 \le x_i \le 1, i = 1, \dots, m \}.$$

This is called a (m-1)-dimensional hypersimplex of type n. One can restate the previous corollary in the following form. Consider the cone over  $\Delta_{n,m}$  in  $\mathbb{R}^{m+1}$ 

$$C\Delta_{n,m} = \{(x,\lambda) \in \mathbb{R}^m \times \mathbb{R}_+ : x \in \lambda \Delta_{n,m} \}.$$

We have the injective map

$$\operatorname{Pic}^{\operatorname{SL}(n+1)}((\mathbb{P}^n)^m) \to \mathbb{R}^{m+1}, L_{\mathbf{k}} \mapsto (k_1, \dots, k_m, (n+1)^{-1} \sum_{i=1}^m k_i)$$

which allows us to identify  $\operatorname{Pic}^{\operatorname{SL}(n+1)}((\mathbb{P}^n)^m)$  with a subset of  $\mathbb{R}^{m+1}$ . We have

$$\operatorname{Pic}^{\operatorname{SL}(n+1)}((\mathbb{P}^n)^m) \cap C\Delta_{n,m} = \{ L \in \operatorname{Pic}^{\operatorname{SL}(n+1)}((\mathbb{P}^n)^m) : ((\mathbb{P}^n)^m)^{\operatorname{ss}}(L) \neq \emptyset \}.$$

In fact, if the first m coordinates of a point  $x \in \mathbb{R}^{m+1}$  from the left-hand-side are all positive, this follows immediately from Corollary 11.3. Suppose some of the first coordinates of x are equal to zero, say the first t coordinates. Then  $L_{\mathbf{k}} = \operatorname{pr}^*(L'_{\mathbf{k}})$ , where  $\operatorname{pr}: (\mathbb{P}^n)^m \to (\mathbb{P}^n)^{m-t}$  is the projection to the last m-t factors, and  $\mathbf{k}' = (k_{t+1}, \ldots, k_m)$ . By applying Corollary 11.3 to  $L'_{\mathbf{k}}$ , we obtain that  $((\mathbb{P}^n)^{m-t})^{\operatorname{ss}}(L'_{\mathbf{k}}) \neq \emptyset$ . It is easy to see that

$$((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}}) = \mathrm{pr}^{-1}(((\mathbb{P}^n)^{m-t})^{\mathrm{ss}}(L_{\mathbf{k}}'))$$

and we have a commutative diagram

$$((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}}) \xrightarrow{\mathrm{pr}} ((\mathbb{P}^n)^{m-t})^{\mathrm{ss}}(L'_{\mathbf{k}})$$

$$\downarrow \qquad \qquad \downarrow$$

$$((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}})/\!/\mathrm{SL}(n+1) \xrightarrow{\overline{\mathrm{pr}}} ((\mathbb{P}^n)^{m-t})^{\mathrm{ss}}(L'_{\mathbf{k}})/\!/\mathrm{SL}(n+1)$$

where the vertical arrows are quotient maps and the map  $\overline{pr}$  is an isomorphism.

Note that the relative boundary of the convex cone  $C\Delta_{n,m}$  consists of either points with one of the first m coordinates equal to zero, or points  $(x,\lambda) \in \mathbb{R}^{m+1}$  satisfying  $(n+1)x_i = \lambda$  for some  $i, 0 \le i \le m$ . The intersection of the latter part of the boundary with  $\operatorname{Pic}^{\operatorname{SL}(n+1)}((\mathbb{P}^n)^m)$  consists of line bundles  $L_{\mathbf{k}}$  such that  $(n+1)k_i = \sum_{i=1}^m k_i$  for some i. This shows that all points from  $((\mathbb{P}^n)^m)^{\operatorname{gen}}$  are semi-stable but not stable (with respect to  $L_{\mathbf{k}}$ ). Since the set of stable points must be open, it must be empty.

Observe that  $\mathcal{P} \in ((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}}) \setminus ((\mathbb{P}^n)^m)^{\mathrm{s}}(L_{\mathbf{k}})$  if and only if there exists a subspace W of dimension  $d, 0 \leq d \leq n-1$ , such that

$$(n+1)\sum_{p_i \in W} k_i = (\dim W + 1)\sum_{i=1}^m k_i.$$

This is equivalent to that  $L_{\mathbf{k}}$  belongs to the hyperplane

$$H_{I,d} := \{(x_1, \dots, x_m, \lambda) \in \mathbb{R}^m : \sum_{i \in I} x_i = \lambda d\},\$$

where I is a non-empty subset of  $\{1, \ldots, m\}$ . Let C be a connected component of  $C\Delta_{n,m} \setminus \bigcup_{I,d} H_{I,d}$  (called a *chamber*). One can show that any two line bundles from the same chamber have the same set of semi-stable points. Also, if  $C_+$  and  $C_-$  are  $L_{\mathbf{k}}$  belongs to some  $H_{I,d}$  and lies on the boundary of both  $C_+$  and  $C_-$ , we have a commutative diagram

$$((\mathbb{P}^n)^m)^{\mathrm{s}}(C_+)/\mathrm{SL}(n+1) \qquad -- \rightarrow \qquad ((\mathbb{P}^n)^m)^{\mathrm{s}}(C_-)/\mathrm{SL}(n+1)$$

$$((\mathbb{P}^n)^m)^{\mathrm{ss}}(L_{\mathbf{k}})//\mathrm{SL}(n+1)$$

Here  $((\mathbb{P}^n)^m)^s(C_{\pm})$  means that we define the stability with respect to any  $L_{\mathbf{k}}$  from  $C_{\pm}$ . The corner maps are birational morphisms, the upper arrow is a birational map (a flip).

We refer the reader to [21] for more general and precise results on this subject.

The spaces

$$P_n^m := P_{0,n}^m = ((\mathbb{P}^n)^m)^{ss}(L_{1^m}) /\!/ \mathrm{SL}(n+1).$$

can be described explicitly in a few cases. It follows from the construction of the quotient that

$$P_n^m = \operatorname{Proj}(\bigoplus_{d \geq 0} H^0((\mathbb{P}^n)^m, L_{1m}^{\otimes d})^{\operatorname{SL}(n+1)}) = \operatorname{Proj}(\bigoplus_{d \geq 0} (\operatorname{Pol}_d(V^*)^{\otimes m})^{\operatorname{SL}(n+1)}),$$

where  $\mathbb{P}^n = \mathbb{P}(V)$ . Let us denote the graded algebra  $\bigoplus_{d \geq 0} (\operatorname{Pol}_d(V^*)^{\otimes m})^{\operatorname{SL}(n+1)}$  by  $R_n^m$ .

The First Fundamental Theorem tells us how to compute the generators of the graded algebra  $R_n^m$ . We have

$$(R_n^m)_d = \text{Pol}(\text{Mat}_{n+1,m})_{d^m,w^{n+1}}^{\text{SL}(n+1,k)}$$
 (11.4)

Thus the space is generated by standard tableau functions  $\mu_{\tau}$  of size n+1, degree d and weight w = md/(n+1).

Remark 11.1. Note that the symmetric group  $S_m$  acts naturally on  $P_n^m$ , via permuting the factors. It acts on the graded algebra  $R_n^m$  via its action on the columns of matrices of size  $(n+1) \times m$ . The quotient  $P_n^m/S_m$  is the moduli space of (unordered) sets of m-points in  $\mathbb{P}^n$ . In the special case n=1, an unordered set of m-points is the set of zeroes of a binary form of degree m. Recall that, by the First Fundamental Theorem, we have an isomorphism

$$\operatorname{Pol}_m(\operatorname{Pol}_d(V))^{\operatorname{SL}(V)} \cong \operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1,k)S_m}_{d^m,w^{n+1}}.$$

In view of (11.4) we obtain an isomorphism

$$(R_n^m)_d^{S_m} \cong \operatorname{Pol}_m(\operatorname{Pol}_d(V))^{\operatorname{SL}(V)}.$$

Now, if we use the Hermite reciprocity, we get an isomorphism

$$\phi_m : (R_n^m)_d^{S_m} \cong \operatorname{Pol}_d(\operatorname{Pol}_m(V))^{\operatorname{SL}(V)}. \tag{11.5}$$

It can be shown that the isomorphisms  $\phi_m$  define an isomorphism of graded algebras

$$\left(\bigoplus_{d=0}^{\infty} (R_n^m)_d\right)^{S_m} \cong \bigoplus_{d=0}^m \operatorname{Pol}_d(\operatorname{Pol}_m(V))^{\operatorname{SL}(V)}.$$

The projective spectrum of the left-hand side is the variety  $P_n^m/S_m$ . The projective spectrum of the right-hand side is the variety  $\text{Hyp}_m(1)//\text{SL}(2)$ . Thus

$$(P_1^m/S_m \cong C_m(1).$$

Example 11.4. Let us start with the case n = 1, m = 4. Then the piece of degree 1 of  $(R_1^4)$  is spanned by two functions [12][34] and [13][24]. The value of the ratio r = [12][34]/[13][24] on  $(p_1, p_2, p_3, p_4)$  defined by the coordinate matrix

$$A = \begin{pmatrix} a_0 & b_0 & c_0 & d_0 \\ a_1 & b_1 & c_1 & d_1 \end{pmatrix}$$

is equal to

$$r(p_1, p_2, p_3, p_4) = \frac{(b_1 a_0 - a_1 b_0)(c_0 d_1 - c_1 d_0)}{(a_0 c_1 - a_1 c_0)(b_0 d_1 - b_1 d_0)}.$$

This is called the *cross-ratio* of four ordered points. If we choose coordinates in the form  $(1, x_i), i = 1, \ldots, 4$ , assuming that none of the points is the infinity point, we obtain

$$r(p_1, p_2, p_3, p_4) = \frac{(x_2 - x_1)(x_4 - x_3)}{(x_3 - x_1)(x_4 - x_2)}.$$

If 
$$p = (0, 1, \infty, x) = ((1, 0), (1, 1), (0, 1), (1, x))$$
 we get

$$r(0, 1, \infty, x) = 1 - x$$
.

This implies that two distinct ordered fourtuples of points in  $\mathbb{P}^1$  are projectively equivalent if and only if they have the same cross-ratio.

Note that the cross-ratio of 4 distinct points never takes the values  $0, 1, \infty$ . The fourtuples  $(p_1, p_2, p_3, p_4)$  go to 0 if  $p_1 = p_2$  or  $p_3 = p_4$ . The only closed orbit in the fibre over 0 consists of configurations with  $p_1 = p_2, p_3 = p_4$ . Similarly, one describes the fibres over 1 and  $\infty$ . It is easy to see that the graded algebra  $R_1^4$  is equal to k[[12][34], [13][24]] and hence is isomorphic to the polynomial algebra k[x, y] (prove this by following the next example). The permutation group  $S_4$  acts on this algebra as follows:

$$(12) = (34): x \to -x, \quad y \to y - x,$$

$$(23): x \to y, \quad y \to x,$$

This easily implies that

$$Pol(Pol_4(k^2))^{SL(2)} \cong k[x, y]^{S_4} = k[A, B],$$

where

$$A = x^2 - xy + y^2$$
,  $B = -2x^3 + 3xy^2 - 2y^3 + 3x^2y$ .

Using (11.5) we can identify (up to a constant factor) these invariants with the invariants S and T from section 10.2 of Lecture 10.

Example 11.5. Let n=1, m=5. The computations here are more involved than in the case m=6 which we shall discuss in the next example. We only sketch a proof that the space  $P_1^5$  is isomorphic to a Del Pezzo surface  $\mathcal{D}_5$  of degree 5 isomorphic to the blow-up of  $\mathbb{P}^2$  with center at four points  $p_1, p_2, p_3, p_4$  no three of which are on a line. The linear system of conics defines a morphism  $f: \mathcal{D}_5 \to \mathbb{P}^1$ . Its fibres are conics through the four points  $p_i$ . There are three singular fibres corresponding to three reducible conics. There are four sections of f corresponding to the exceptional curves  $E_i$  blown-up from the points  $p_i$ . Let us construct a map from  $\Phi: \mathcal{D}_5 \to P_1^5$ . If  $x \in \mathcal{D}_5$  lies on a nonsingular fibre F, we consider the fibre as  $\mathbb{P}^1$  and assign to it the orbit  $\Phi(x)$  of five points  $(E_1 \cap F, \ldots, E_4 \cap F, x)$ . If x lies on a singular fibre, say on the proper transform l of the line  $l_{ij}$  passing through the points  $p_1, p_2$  we assign to it the orbit of  $(E_1 \cap l, E_2 \cap l, a, a, x)$ , where a is the pre-image of the point  $l_{12} \cap l_{34}$ . If x = a we assign to it the unique orbit of  $(0,0,1,1,\infty)$ . Note that under this assignment the fibration map f corresponds to the natural map  $P_1^5 \to P_1^4$  defined by the projection  $(x_1, x_2, x_3, x_4, x_5) \rightarrow (x_1, x_2, x_3, x_4)$ . The three points in  $\mathbb{P}^1$  over which the fibre is singular is the set of three special orbits of (a, a, b, b), (a, b, a, b) and (a, b, b, a). The section  $E_i$  corresponds to the set of orbit of  $(x_1, x_2, x_3, x_4, x_5)$ , where  $x_5 = x_i$ .

Example 11.6. Let n = 1, m = 6. A standard tableau of degree d and weight w = 3d is given by a table

$$\begin{bmatrix} a_1^1 & a_2^2 \\ a_2^1 & a_3^2 \\ a_3^1 & a_4^2 \\ a_4^1 & a_5^2 \\ a_5^1 & a_6^2 \end{bmatrix} , (11.6)$$

where we use the notation from Lecture 2, 2.4. We have

$$|a_1^1| = |a_2^6| = d, \quad |a_i^1| + |a_i^2| = d, \quad |a_2^1| + |a_3^1| + |a_4^1| + |a_5^1| = 2d.$$

Set  $l_2 = |a_2^1|, l_3 = |a_3^1|, l_4 = |a_4^1|$ . These numbers satisfy the following inequalities:

$$0 < l_2, l_3, l_4 < d, d < l_2 + l_3 + l_4 < 2d,$$

$$2l_2 + l_3 \ge d$$
,  $2l_2 + 2l_3 + l_4 \ge 2d$ .

The last two inequalities say that each row consists of two different numbers, so that  $d + |a_1^2| \ge |a_2^2| + |a_2^3|$  and  $d + |a_1^2| + |a_1^3| \ge |a_2^2| + |a_2^3| + |a_2^4|$ . Setting  $x = l_2, y = l_2 + l_3, z = l_2 + l_3 + l_4$ , we obtain that our tableau is completely determined by the vector (x, y, z) satisfying

$$0 \le x \le d, \quad 0 \le y - x \le d, \quad 0 \le z - y \le d,$$

$$x + y > d$$
,  $y + z > 2d$ ,  $d < z < 2d$ ,

When  $0 \le y \le d$  these inequalities are equivalent to

$$y > x > d - y$$
,  $2d - y < z < y + d$ .

This gives  $\sum_{y=d/2}^{d} (2y-d+1)^2$  solutions. When  $2d \geq y \geq d$  we have  $y \leq z \leq 2d$  which gives  $\sum_{y=d}^{2d} (2d-y+1)^2$  solutions. Summing up, we get

$$\dim(R_1^6)_d = \frac{1}{2}(d^3 + 3d^2 + 4d) + 1.$$

Thus the Hilbert function of the graded ring  $R_1^6$  is equal to

$$\sum_{d=0}^{\infty} \left(\frac{1}{2}(d^3 + 3d^2 + 4d) + 1\right)t^d = \frac{1 - t^3}{(1 - t)^5}.$$

This suggests that  $P_1^6$  is isomorphic to a cubic hypersurface in  $\mathbb{P}^4$ . This is true. First of all we have the following generators of  $R_1^6$ :

$$t_0 = [12][34][56], \quad t_1 = [13][24][56], \quad t_2 = [12][35][46],$$

$$t_3 = [13][25][46], \quad t_4 = [14][25][36].$$

For every  $(i, j) \neq (0, 3), (0, 4)$ , the product  $t_i t_j$  is a standard tableau function from  $(R_1^6)_2$ . Applying the straightening algorithm, we find

$$t_0 t_3 = -[12][13][23][45][46][56] + t_1 t_2,$$

$$t_0 t_4 = [12][14][24][35][36][56] - t_1 t_2 + t_0 t_1 + t_0 t_2 - t_0^2.$$

So the standard monomials

$$y_1 = [12][13][23][45][46][56], \quad y_2 = [12][14][24][35][36][56]$$

can be expressed as polynomials of degree 2 in the  $t_i$ 's. Counting the number of standard tableaux functions of weight 6, we find that  $(R_1^6)_2 = (R_1^6)^2$ . In fact, we have  $(R_1^6)_n = (R_1^6)^n$  for any n. If we take a tableau function  $\mu_{a,b,c,k}$  corresponding to tableau (11.4) with  $l_1 = a, l_2 = b, l_3 = c$ , we can write it as

$$\mu_{a,b,c,k} = t_0^{2k-2a-b-c} t_1^{k-c} t_2^c y_2^{a+b-k}$$
 if  $a+b \ge k$ ,

$$=t_0^{2k-2a-b-c}t_1^{2a+b-k}t_2^{2a+2b+c-2k}y_1^{k-b-a}\quad \text{if}\quad a+b\leq k,$$

whenever  $2a + b + c \le 2k$ , and similarly

$$\mu_{a,b,c,k} = t_1^{2k-2a-b-c} t_2^{k-a} t_3^{a+c-k} t_4^{a+b-k} \quad \text{if} \quad a+b \ge k, a+c \ge k$$

$$= t_1^{k-b} t_1^c t_3^{2a+b+c-2k} y_2^{k-c-a} \quad \text{if} \quad a+c \le k,$$

$$= t_1^{k-c} t_1^b t_3^{2a+b+c-2k} y_1^{k-b-a} \quad \text{if} \quad a+b \le k,$$

whenever  $2a + b + c \le 2k$ . It is easy to verify that

$$t_3y_2 = t_1t_2t_4$$

which gives us the cubic relation

$$t_1t_2t_3 - t_3t_0t_4 + t_3t_1t_2 + t_3t_0t_1 + t_3t_0t_2 - t_3t_0^2 = 0.$$

Let

$$F_3(T_0, T_1, T_2, T_3, T_4) = T_1 T_2 T_3 - T_3 T_0 T_4 + T_3 T_1 T_2 + T_3 T_0 T_1 + T_3 T_0 T_2 - T_3 T_0^2.$$

There is a surjective homomorphism of the graded algebras

$$k[T_0, T_1, T_2, T_3, T_4]/(F_3(T_0, T_1, T_2, T_3, T_4)) \rightarrow R_1^6$$

and comparing the Hilbert functions we see that it is bijective. Thus  $P_1^6 = \text{Proj}(R_1^6)$  is isomorphic to the cubic hypersurface  $F_3(T_0, T_1, T_2, T_3, T_4) = 0$ . If we change the variables

$$Z_0 = 2T_0 - T_1 - T_2 + T_3 + T_4, \quad Z_1 = T_1 - T_2 - T_3 + T_4,$$

$$Z_2 = -T_1 + T_2 - T_3 + T_4, \quad Z_3 = T_1 + T_2 - T_3 - T_4,$$

$$Z_4 = -T_1 - T_2 + T_3 - T_4$$
,  $Z_5 = -2T_0 + T_1 + T_2 + T_3 - T_4$ ,

we obtain that  $P_1^6$  can be given by the equations

$$\sum_{i=0}^{5} Z_i = 0, \quad \sum_{i=0}^{5} Z_i^3 = 0$$

in  $\mathbb{P}^5$  which manifest the  $S_6$ -symmetry. The cubic hypersurface defined by these equations is called the  $Segre\ cubic\ primal$ . It contains 10 nodes (maximal possible number for a cubic hypersurface in  $\mathbb{P}^4$ ) and 15 planes. The nodes correspond to the minimal closed orbits of semi-stable but not stable points. The singular points can be indexed by the subsets  $\{i,j,k\}$  of  $\{1,\ldots,6\}$ . For example.  $p_{123}=(1,1,1,-1,-1,-1)$ . The planes correspond to the orbits of sixtuples with 2 coinciding points. They have the equations of the form  $Z_i+Z_j=Z_k+Z_l=Z_m+Z_n=0$ , where  $\{i,j,k,l,m,n\}=\{1,\ldots,6\}$ . Each plane contains four singular points. Each point is contained in six planes. The blow up of the plane at the four points is naturally isomorphic to  $P_1^5$  (see Exercise 11.7).

Example 11.7. Let n=2 and m=6. Again we take  $\mathbf{k}=(1,\ldots,1)$  and try to compute the graded algebra  $R_2^6$  explicitly. We skip the computations ([23], p.17) and give only the results. First we compute the Hilbert function of the graded algebra  $R_2^6$ :

$$\sum_{k=0}^{\infty} \dim(R_2^6)_k t^k = \frac{1 - t^4}{(1 - t)^5 (1 - t^2)}.$$

183

It suggests that  $R_2^6$  is generated by 5 elements of degree 1 and one element of degree 2 with a relation of degree 4. We have

Generators:

degree 1:

$$t_0 = [123][456], t_1 = [124][356], t_2 = [125][346], t_3 = [134][256], t_4 = [135][246],$$
 degree 2:

$$t_5 = [123][145][246][356] - [124][135][236][456]$$

Relation:

$$t_5^2 + t_5(t_2t_3 + t_1t_4 + t_0t_1 + t_0t_4 + t_0t_2 + t_0t_3 + t_0^2) + t_0t_1t_4(t_0 + t_1 + t_2 + t_3 + t_4).$$

This shows that  $P_2^6$  is isomorphic to a hypersurface of degree 4 in the weighted projective space  $\mathbb{P}(1,1,1,1,1,2)$  given by the equation

$$F_4 = T_5^2 + T_5(-T_2T_3 + T_1T_4 + T_0T_1 + T_0T_4 - T_0T_2 - T_0T_3 - T_0^2) +$$

$$T_0T_1T_4(-T_0+T_1-T_2-T_3+T_4)=0.$$

If  $char(k) \neq 2$  this can be transformed into the equation

$$F_4 = T_5^2 + (-T_2T_3 + T_1T_4 + T_0T_1 + T_0T_4 - T_0T_2 - T_0T_3 - T_0^2)^2 +$$

$$4T_0T_1T_4(-T_0+T_1-T_2-T_3+T_4)=0.$$

The equation is again symmetric with respect to a linear representation of  $S_6$  in the variables  $T_0, \ldots, T_4$  but it is different from the standard permutation representation in  $k^5$ . The quartic hypersurface  $V_4$  in  $\mathbb{P}^4$  given by the equation

$$(-T_2T_3 + T_1T_4 + T_0T_1 + T_0T_4 - T_0T_2 - T_0T_3 - T_0^2)^2 +$$

$$4T_0T_1T_4(-T_0 + T_1 - T_2 - T_3 + T_4) = 0$$

is called the Segre quartic primal (or Igusa quartic). It corresponds to the relation

$$[123][145][246][356] - [124][135][236][456] = 0.$$

If we fix the points  $p_1, \ldots, p_5$  and vary  $p_6$  we see that it is of degree 2 in the coordinates of  $p_6$  and vanishes when  $p_6 = p_i$  for some  $i = 1, \ldots, 5$ . Thus it describes the conic through the points  $p_1, \ldots, p_5$  and expresses the condition that the six points are on a conic. Using the equation  $F_4 = 0$ , we can exhibit  $P_2^6$  as a double cover of  $\mathbb{P}^4$  branched along the Segre quartic hypersurface. In other words, there is an involution on  $P_2^6$  whose fixed points are the sixtuples lying on a conic. This is the self-association involution. We have a remarkable isomorphism, the association isomorphism:

$$a: P_n^m \cong P_{m-n-2}^m$$

It is defined by the isomorphism of the graded algebras  $R_n^m \to R_{m-n-2}^m$  defined on tableau functions by replacing each determinant  $[i_1 \dots i_{n+1}]$  with the determinant  $[j_1, \dots, j_{m-n-1}]$ , where  $\{j_1, \dots, j_{m-n-1}\} = \{1, \dots, m\} \setminus \{i_1 \dots i_{n+1}\}$ . In the case m = 2n + 2, we get an involutive automorphism of the algebra  $R_n^{2n+2}$  which defines the self-association involution of the variety  $P_n^{2n+2}$ . We refer to [23] and [25] for the details and for some geometric meanings of the association isomorphism.

## 11.3 Lines in $\mathbb{P}^3$

Let us give an algebraic proof of the existence of the isomorphism (11.3). Recall that  $Gr_{1,3}$  is isomorphic to a nonsingular quadric in  $\mathbb{P}^5$ . Its automorphism group is the complex projective orthogonal group  $PO(6) = O(6)/(\pm 1)$ . The natural action of SL(3) on  $Gr_{1,3}$  defines an injective homomorphism from PSL(4) to PO(5). Counting the dimensions we see that the image is a connected subgroup of the same dimension as the whole group PO(5). It must coincide with the subgroup  $PO(6)^+$  which is represented by orthogonal matrices with determinant 1. Now the analysis of stability for lines in  $\mathbb{P}^3$  shows that a semistable configuration of lines, considered as an ordered set of points in  $\mathbb{P}^5$  is semistable with respect to the action of SL(4) in  $\mathbb{P}^5$ . Thus  $P_{1,3}^m$  is the closed subset of the quotient  $((\mathbb{P}^5)^m)^{ss}/\!/O^+(6)$ . The latter can be computed using the first and the second fundamental theorems of invariant theory for

the orthogonal group. The symmetric bilinear form on the space  $\Lambda^2(k^4) \cong k^6$  defined by the Grassmanian quadric is the wedge product. If V is a vector space equipped with a nondegenerate symmetric bilinear form  $\langle v, w \rangle$ , then the algebra of polynomial invariants of O(V) in the space  $V^{\oplus m}$  is generated by the functions [ij] defined by  $[ij](v_1, \ldots, v_m) = \langle v_i, v_j \rangle$  (see Exercise 2.9, or [106]). This algebra is equal to the algebra of invariants for  $O(V)^+$  unless  $m \geq \dim V$ , where additional invariants are the basic invariants for SL(V), i.e. the bracket functions. For  $m < \dim V$ , there are no relations between the basic invariants. Now

$$(\mathbb{P}(V)^m)^{\mathrm{ss}}/\!\!/\mathrm{O}^+(6) \cong \bigoplus_{d=0}^{\infty} \Gamma(\mathbb{P}(V)^m, L_{1^m}^d)^{\mathrm{O}^+(V)} \cong \bigoplus_{d=0}^{\infty} (\mathrm{Pol}_d(V)^{\otimes m})^{\mathrm{O}^+(V)}.$$

As we saw in Lecture 2, elements of  $\operatorname{Pol}_d(V)^{\otimes m}$  are polynomial functions on  $V^{\oplus m}$  which are homogeneous of degree d in each factor. Thus the space  $(\operatorname{Pol}_d(V)^{\otimes m})^{O^+(V)}$  is spanned by monomials  $[i_1j_1]\dots[i_sj_s]$  in [ij] such that each index  $a=1,\dots,m$  appears among  $i_1,\dots,i_s,j_1,\dots,j_s$  exactly d times. In our case m=4 we have 10 basic invariants [ij]. For d=1 we have 3 monomials [ij][kl], where  $\{i,j,k,l\}=\{1,2,3,4\}$ . For d>2, we have products of these 3 monomials plus additionally the monomials which contain [ii] as its factor. Now observe that the restriction of the function [ii] to the subset of points in  $\mathbb{P}(V)$  lying in the quadric  $Q:\langle v,v\rangle=0$  is obviously zero. Thus, the restriction of the algebra  $\bigoplus_{d=0}^{\infty}\Gamma(\mathbb{P}(V)^4,L_{14}^d)^{O^+(V)}$  to  $Q^4$  is the polynomial algebra in [12][34],[13][24],[14][23]. Its projective spectrum is  $\mathbb{P}^2$ .

Note that a similar computation can be made in the case m=5 and m=6 (see [103]). In the case m=6, the algebra  $\bigoplus_{d=0}^{\infty} \Gamma((\operatorname{Gr}_{1,3})^6, L_{16}^d)^{O^+(6)}$  is generated by 15 functions  $p_{ij,kl,mn}=[ij][kl][mn]$ , where  $\{i,j,k,l,m,n\}=\{1,2,3,4,5,6\}$ , and the determinant function D=[123456]. The square of  $D^2$  is the determinant of the Gram matrix  $([ij]_{1\leq i,j\leq 6})$  and hence can be expressed as a polynomial in  $p_{ij,kl,mn}$ 's. The subalgebra generated by the functions  $p_{ij,kl,mn}$  is isomorphic to the projective coordinate algebra of a certain 9-dimensional toric variety Y (see the next Lecture), so that  $\mathbb{P}^6_{1,3}$  is isomorphic to a double cover of Y branched along a hypersurface defined by the equation D=0. The locus of 6-tuples of lines defined by this hypersurface coincides with the locus of self-polar sixtuples, i.e the sixtuples  $l_1,\ldots,l_6$ ) for which there exists a nondegenerate quadric in  $\mathbb{P}^3$  such that the set of the polar lines  $(l_1^\perp,\ldots,l_6^\perp)$  is projectively equivalent to  $(l_1,\ldots,l_6)$ .

Note the remarkable analogy with the structure of the variety  $P_2^6$ , where the analog of the polarity involution is the association involution.

# Bibliographical Notes

The stability criterion for configurations of linear spaces (with respect to the democratic linearization) was first given by Mumford [60], Chapter 3. He also proved that the quotient map for stable configurations of points in  $\mathbb{P}^n$  is a principal fibration of the group SL(n+1). The generalization of the criterion to the case of arbitrary linearization is straighforward. The cross-ratio invariant is as classical as it could be. The examples 11.6 and 11.7 are taken from [23]. They go back to Coble [14] who found a beautiful relationship between the moduli spaces of points in  $\mathbb{P}^n$  and classical geometry. The book [23] gives a modern exposition of some of the results of Coble. The invariants of lines in  $\mathbb{P}^3$  are discussed in the book of Sturmfels [100]. The explicit isomorphism between the moduli space of 4 lines in  $\mathbb{P}^3$  and the projective plane seems to be new but, of course, it is predictable and straightforward. One can also describe all orbits of 4 lines in  $\mathbb{P}^3$  (see [20]). The moduli spaces of 5 and 6 lines in  $\mathbb{P}^3$  are discussed in the thesis of D. Vazzana [103].

The rationality of the configuration spaces  $P_n^m$  of points is obvious. It is not known whether the spaces  $X_{\mathbf{r},n}^{\mathrm{ss}}/\!/\mathrm{SL}(n+1)$  are rational in general. This is known for lines in  $\mathbb{P}^3$  ([107]) and, more generally,in the case when  $\mathrm{g.c.d}(r_1+1,\ldots,r_m+1,n+1) \leq 3$  (see [87]).

### Exercises

- **11.1** Prove that the orbit of  $p = (p_1, \ldots, p_m)$  in  $((\mathbb{P}^n)^m)^{ss}(L_{\mathbf{k}})$  is closed but not stable if and only if there exists a partition of  $\{1, \ldots, m\}$  into subsets  $J_s, s = 1, \ldots, r$ , such that for any s one can find a proper subspace  $W_s$  of  $\mathbb{P}^n$  such that  $\sum_{i \in J_s, p_i \in W_s} k_i = \frac{\dim W + 1}{n+1} (\sum_{i=1}^m k_i)$ .
- **11.2** For which **k** the quotient  $((\mathbb{P}^1)^5)^{ss}(L_{\mathbf{k}})$  is isomorphic to  $\mathbb{P}^2$ ?
- **11.3** Draw a picture of the hypersimplex  $\Delta_{1,4}$  and describe the chambers of the cone  $C\Delta_{1,4}$ .

187

- 11.4 Consider the action of the permutation group  $\Sigma_4$  on  $P_1^4$  and show that the kernel of this action is isomorphic to the group  $(\mathbb{Z}/2\mathbb{Z})^2$ . Find the orbits whose stabilizer is of order strictly larger than 4. Compute the corresponding cross-ratio.
- 11.5 Prove that the algebra  $R_1^5$  can be generated by 6 elements of degree 5 satisfying 5 linearly independent quadric relations.
- **11.6** Show that each projection  $\pi: (\mathbb{P}^n)^m \to (\mathbb{P}^n)^{m-1}$  defines a rational map  $\bar{\pi}: P_n^m \to P_n^{m-1}$ .
  - (i) Find the points of indeterminacy of  $\bar{\pi}$ ;
  - (ii) Show that  $\bar{\pi}$  is a regular map if (n+1,m)=1.
- (iii) Construct m-1 rational sections  $P_n^{m-1} \to P_n^m$  of  $\bar{\pi}$ .
- 11.7 Find the equation (in terms of functions [ij]) of the closure of the locus of fourtuples of lines in  $\mathbb{P}^3$  which have only one transversal line.
- **11.8** Prove that  $P_n^m$  is isomorphic to a categorical quotient of the Grassmannian  $Gr_{1,3}$  with respect to the action of the torus  $\mathbb{G}_m^m$  via its standard action on  $\mathbb{A}^m$ .
- **11.9** Prove that the closure of the locus of  $(W_1, \ldots, W_5) \in \operatorname{Gr}_{1,3}^5$  which admit a common transversal line is of codimension 1. Find its equation in terms of functions [ij].
- **11.10** Show that  $Gr_{r,n}$  is a homogeneous space isomorphic to G/P, where G = SL(n+1) and P is its parabolic subgroup of matrices with entries  $a_{ij} = 0$  for  $r+1 < i \le n+1, 0 \le j \le r+1$ .
- **11.11** Consider the action of SL(2) in  $\mathbb{P}^3$  via its linear representation in  $k^4$  equal to the direct sum of the two standard two-dimensional representations of SL(2). Find stable and semi-stable points of the diagonal action of SL(2) on  $X = \mathbb{P}^3 \times \mathbb{P}^3$  with respect to the line bundle  $L_{1,1}$ . Using the Fundamental Theorem of Invariant Theory show that  $X^{ss}/SL(2) \cong \mathbb{P}^3$ .
- 11.12 Consider the action of SL(2) on  $\mathbb{P}^3$  as in the previous exercise. Let  $X = Gr_{1,3}$  on which SL(2) acts via its projective action on  $\mathbb{P}^3$ . Find  $X^{ss}, X^s$  and prove that  $X^{ss}/\!/SL(2) \cong \mathbb{P}^2$ . Show that the rational map  $\mathbb{P}^3 \times \mathbb{P}^3 \to Gr_{1,3}$  which assigns to two points in  $\mathbb{P}^3$  the line spanned by the points induces on the corresponding quotients by SL(2) a projection map  $\mathbb{P}^3 \to \mathbb{P}^2$ .

**11.13** Find stable and semi-stable points in  $X = (\mathbb{P}^3)^2 \times \operatorname{Gr}_{1,3}^3$  with respect to the group  $\operatorname{SL}(4)$  and linearization  $L_{1^5}$  (3 lines and two points in  $\mathbb{P}^3$ ). Using the previous problem show that  $X^{\operatorname{ss}}/\!\!/\operatorname{SL}(4) \cong \mathbb{P}^3$ .

### 11.14 Prove that

- (i) the Segre cubic primal  $V_3$  is isomorphic to the image of  $\mathbb{P}^3$  under the rational map to  $\mathbb{P}^4$  given by the linear system of quadrics through 5 points  $p_1, \ldots, p_5$  in general position;
- (ii) the nodes of  $V_3$  are the images of the lines  $\ell_{ij}$  joining two points  $p_i, p_j$ ;
- (iii) the planes of  $V_3$  are the images of the planes  $\pi_{ijk}$  through three points  $p_i, p_i, p_k$ ;
- (iv) the blowing up  $\widetilde{\mathbb{P}^3}$  at the points  $p_1, \ldots, p_5$  is a resolution of singularities of  $V_3$  with pre-images of the nodes isomorphic to  $\mathbb{P}^1$ .
- **11.16** Let  $V_4$  be the Segre quartic primal in  $\mathbb{P}^4$ . We use the notation from the previous exercise. Prove that
  - (i)  $V_4$  is isomorphic to the image of  $\mathbb{P}^3$  under the rational map  $\Phi: \mathbb{P}^3 \longrightarrow \mathbb{P}^4$  given by the linear system of quartics which pass through  $p_1, \ldots, p_5$  with multiplicity 2 and contain the 10 lines  $\ell_{ij}$ ;
  - (ii)  $V_4$  contains 15 double lines, each line is intersected by 3 other double lines (find the meaning of the double lines and the corresponding points of intersection in terms of the quotient  $((\mathbb{P}^2)^6)^{ss}//SL(3)$ );
  - (iii the double lines are the images of the planes  $\pi_{ijk}$  under the rational map  $\Phi$ ;
- (iv) the blowing up  $\widetilde{\mathbb{P}^3}$  at the points  $p_1, \ldots, p_5$  followed by the blowing up the proper transforms of the lines  $\ell_{ij}$  is a resolution of singularities of  $V_4$ ;
- (v)  $V_4$  is isomorphic to the dual hypersurface of the Segre cubic primal  $V_3$ .
- **11.17** Describe the orbits of SL(4) in its diagonal action on  $Gr_{1,3}^4$ . Match the minimal orbits of semistable points with points in  $\mathbb{P}^2$ .

# Lecture 12

# Toric varieties

## 12.1 Actions of a torus on affine space

In this lecture we shall consider an interesting class of algebraic varieties which arise as categorical quotients of some open subsets of affine space. These varieties are generalizations of the projective spaces and admit a very explicit description in terms of some combinatorial data of convex geometry. In algebraic geometry they are often used as natural ambient spaces for embeddings of algebraic varieties and for compactifying moduli spaces. In combinatorics of convex polyhedra they served as a powerful tool for proving some of the fundamental conjectures in the subject.

Let  $T = \mathbb{G}_m^r$  act linearly on  $\mathbb{A}^n$  by the formula

$$(t_1,\ldots,t_r)\cdot(z_1,\ldots,z_n)=(\mathbf{t}^{\mathbf{a}_1}z_1,\ldots,\mathbf{t}^{\mathbf{a}_n}z_n),$$

where

$$\mathbf{a}_{i} = (a_{1i}, \dots, a_{ri}) \in \mathbb{Z}^{r}, \ \mathbf{t}^{\mathbf{a}_{i}} = t_{1}^{a_{1i}} \cdots t_{r}^{a_{ri}}.$$

As always we shall identify the group  $\mathcal{X}(T)$  with  $\mathbb{Z}^r$  so that we consider the vectors  $\mathbf{a}_j$  as characters of T. Since  $\operatorname{Pic}(\mathbb{A}^n)$  is trivial and  $\mathcal{O}(\mathbb{A}^n)^* = k^*$ , we have a natural isomorphism (see Lecture 5)

$$\operatorname{Pic}^{T}(\mathbb{A}^{n}) \cong \mathcal{X}(T) \cong \mathbb{Z}^{r}.$$

Let us fix  $\mathbf{a} = (\alpha_1, \dots, \alpha_r) \in \mathbb{Z}^r$  and denote by  $L_{\mathbf{a}}$  the corresponding linearized line bundle. It is the trivial line bundle  $\mathbb{A}^n \times \mathbb{A}^1$  with the linearization

defined by the formula

$$t \cdot (z, w) = (t \cdot z, t^{\mathbf{a}}w).$$

We identify its sections with polynomials  $F \in k[Z_1, \ldots, Z_n]$ . A polynomial F defines an invariant section of some non-negative tensor power  $L_{\mathbf{a}}^{\otimes d}$  if

$$F(t^{\mathbf{a}_1}Z_1,\ldots,t^{\mathbf{a}_n}Z_n)=t^{d\mathbf{a}}F(Z_1,\ldots,Z_n).$$

Here  $t = (t_1, \ldots, t_r)$  are independent variables. It is clear that F belongs to  $H^0(\mathbb{A}^n, L_{\mathbf{a}}^{\otimes d})^T$  if and only if F is equal to a linear combination of monomials  $Z^{\mathbf{m}}$  such that  $m_1\mathbf{a}_1 + \ldots + m_n\mathbf{a}_n = d\mathbf{a}$ , or, equivalently,

$$A \bullet \mathbf{m} = d\mathbf{a}$$
.

Let S' be the set of non-negative integral solutions of the system

$$(A|-\mathbf{a}) \bullet \begin{pmatrix} \mathbf{m} \\ d \end{pmatrix} = 0, \tag{12.1}$$

where the matrix of coefficients is obtained from A by adding to it one more column formed by the vector  $-\mathbf{a}$ .

The set of real non-negative solutions of a linear system of equations forms a *convex polyhedral cone*. By definition, it is a subset of  $\mathbb{R}^n$  given by a system of linear inequalities

$$\mathbf{c}_1 \bullet \mathbf{x} \ge 0, \dots, \mathbf{c}_s \bullet \mathbf{x} \ge 0.$$
 (12.2)

Obviously any linear equation  $\mathbf{c} \bullet \mathbf{x} = 0$  can be considered as a pair of inequalities  $(-\mathbf{c}) \bullet \mathbf{x} \leq 0$ ,  $\mathbf{c} \bullet \mathbf{x} \leq 0$ . A convex polyhedral cone is called a rational convex polyhedral cone if the vectors  $\mathbf{c}_i$  can be chosen from  $\mathbb{Q}^n$  (or equivalently from  $\mathbb{Z}^n$ ). For every polyhedral cone  $\sigma$  one can define the dual cone:

$$\check{\sigma} = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{x} \bullet \mathbf{y} > 0, \forall \mathbf{x} \in \sigma \}.$$

It is equal to the convex hull of the rays  $\mathbb{R}_{\geq 0} \mathbf{c}_1, \ldots, \mathbb{R}_{\geq 0} \mathbf{c}_s$ . It can be shown that the dual of a rational convex polyhedral cone is a rational convex polyhedral cone. We have

$$\check{\check{\sigma}} = \sigma.$$

This shows that any rational polyhedral cone can be defined as a convex hull of a finite set of positive rays spanned by vectors in  $\mathbb{Z}^n$ .

So we see that the set of vectors  $(\mathbf{m}, d) \in \mathbb{Z}_{\geq 0}^{n+1}$  satisfying the system of linear equations (12.1) is equal to a set of the form  $\sigma \cap \mathbb{Z}^{n+1}$  for some rational convex polyhedral cone in  $\mathbb{R}^{n+1}$ . Now we use

**Lemma 12.1.** (P. Gordan). Let C be a rational convex polyhedral cone in  $\mathbb{R}^n$ . Then  $C \cap \mathbb{Z}^n$  is a finitely generated submonoid of  $\mathbb{Z}^n$ .

Proof. Let C be spanned by some vectors  $v_1, \ldots, v_k$ . The set  $K = \{\sum_i x_i v_i \in \mathbb{R}^n : 0 \le x_i \le 1\}$  is compact and hence its intersection with  $\mathbb{Z}^n$  is finite. Let  $\{w_1, \ldots, w_n\}$  be this intersection. This obviously includes the vectors  $v_i$ . We claim that this set generates the monoid  $\mathcal{M} = C \cap \mathbb{Z}^n$ . In fact we can write each  $m \in \mathcal{M}$  in the form  $m = \sum_i (x_i + m_i)v_i$ , where  $m_i$  is a non-negative integer and  $0 \le x_i \le 1$ . Thus  $m = (\sum_i x_i v_i) + \sum_i (m_i v_i)$  is the sum of some vector  $w_j$  and a positive linear combination of vectors  $v_i$ . This proves the assertion.

For any commutative monoid  $\mathcal{M}$  we denote by  $k[\mathcal{M}]$  its monoid algebra. It is a free abelian group generated by elements of  $\mathcal{M}$  with the multiplication law given on the generators by the monoid multiplication. If  $\mathcal{M} = \mathbb{Z}^n$  we can identify  $k[\mathcal{M}]$  with the algebra of Laurent polynomials  $k[Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}]$  by assigning to each  $\mathbf{m} = (m_1, \ldots, m_n)$  the monomial  $Z^{\mathbf{m}}$ . If  $\mathcal{M}$  is a submonoid of  $\mathbb{Z}^n$  we identify  $k[\mathcal{M}]$  with the subalgebra of  $k[Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}]$  which is generated by monomials  $Z^m, m \in \mathcal{M}$ .

Now we can easily construct a natural isomorphism of graded algebras

$$\bigoplus_{d\geq 0} \Gamma(\mathbb{A}^n, L_{\mathbf{a}}^{\otimes d})^T \cong k[S] = \bigoplus_{d\geq 0} k[S_d]t^d,$$

where S is the monoid of non-negative vectors  $\mathbf{m}$  which satisfy (12.1) for some  $d \geq 0$ , and  $k[S_d]$  is the linear span of the set  $S_d$  of monomials  $Z^{\mathbf{m}}$  with  $A \cdot \mathbf{m} = d\mathbf{a}$ . By Gordan's Lemma, k[S] is a finitely-generated graded algebra. Its homogeneous part of degree d is  $k[S_d]$ .

Let  $k[S]_{>0}$  be the ideal  $\bigoplus_{d>0} k[S]_d$ . This is a monomial ideal, i.e., it can be generated by monomials.

Let  $Z^{\mathbf{m}_1}, \ldots, Z^{\mathbf{m}_s}$  be a minimal set of monomial generators of the ideal  $k[S]_{>0}$ . For each  $\mathbf{m}_j = (m_{1j}, \ldots, m_{nj})$  let  $I_j := \{i : m_{ij} \neq 0\}$ . For each subset I of  $\{1, \ldots, N\}$  let  $Z_I = \prod_{i \in I} Z_i$ . Obviously, the open sets  $D(Z^{\mathbf{m}_j}) = \sum_{i \in I} Z_i$ 

 $\mathbb{A}^n \setminus \{Z^{\mathbf{m}_j}=0\}$  and  $D(Z_{I_j})=\mathbb{A}^n \setminus \{Z_{I_j}=0\}$  coincide. By definition of semi-stability

$$(\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}}) = \bigcup_{j=1}^s D(Z_{I_j}).$$

For any  $j = 1, \ldots, s$ , let

$$R_j = \mathcal{O}(D(Z_{I_j}))^T = \{ \frac{F(Z)}{(Z_{I_j})^p} : p \ge 0, F(Z) \in (Z_{I_j})^p k[M] \},$$

where

$$M = \{ \mathbf{m} \in \mathbb{Z}^n : A \cdot \mathbf{m} = 0 \}$$

We know that the categorical quotient is obtained by gluing together the affine algebraic varieties  $X_j$  with  $\mathcal{O}(X_j) \cong R_j$ . We shall now describe these rings and their gluing in terms of certain combinatorial structures.

### **12.2** Fans

Let  $\mathbb{Z}^n \to \mathbb{Z}^r$  be the map given by the matrix A and M be its kernel. It is a free abelian group. Let

$$(\mathbb{Z}^n)^* \to N := M^*$$

be the map given by the restriction of linear functions to M. Let  $e_1^*, \ldots, e_n^*$  be the dual basis of the standard basis of  $\mathbb{Z}^n$ , and let  $\bar{e}_1^*, \ldots, \bar{e}_n^*$  be the images of these vectors in  $M^*$ . For each  $I_j$  let  $\sigma_j$  be the convex cone in the linear space

$$N_{\mathbb{R}} := N \otimes \mathbb{R} \cong \mathbb{R}^n$$
.

spanned by the vectors  $\bar{e}_i^*, i \notin I_j$ .

More explicitly, let B be the matrix whose rows are formed by a basis  $(v_1, \ldots, v_s)$  of M. It consists of s = n - rk(A) rows of length n. If we choose to identify N with  $\mathbb{Z}^s$  by means of the dual basis  $(v_1^*, \ldots, v_n^*)$ , then  $\sigma_j$  is spanned in  $\mathbb{R}^s = N \otimes \mathbb{R}$  by the columns  $B_i$  of B with  $i \notin I_j$ .

12.2. FANS 193

#### Lemma 12.2.

$$R_i \cong k[\check{\sigma}_i \cap M].$$

*Proof.* Obviously  $R_j$  is isomorphic to  $k[\mathcal{M}]$ , where

$$\mathcal{M} = \{ m \in M : m + p \sum_{i \in I_j} e_i \in \mathbb{Z}_{\geq 0}^n \text{ for some } p \geq 0 \}.$$

Here, as usual, we denote by  $e_i$  the unit vectors in  $\mathbb{R}^n$ . For each  $i \in I_j$ ,

$$\bar{e}_i^*(m+p\sum_{i\in I_j}e_i)=\bar{e}_i^*(m)=m_i\geq 0 \Leftrightarrow m\in\mathcal{M}.$$

On the other hand

$$m \in \check{\sigma}_i \Leftrightarrow \bar{e}_i^*(m) \ge 0, \forall i \in I.$$

**Lemma 12.3.** Let  $\Sigma$  be the set of convex cones  $\sigma_j, j = 1, \ldots, s$ . For any  $\sigma, \sigma' \in \Sigma$ ,  $\sigma \cap \sigma'$  is a face in both  $\sigma$  and  $\sigma'$ .

Proof. Let  $I = I_a$ ,  $J = I_b$ . We want to show that  $\sigma_a \cap \sigma_b$  is a common face of  $\sigma_a$  and  $\sigma_b$ . Recall that a face of a convex set  $\sigma$  is the intersection of  $\sigma$  with a hyperplane such that  $\sigma$  lies in one of the two halfspaces defined by the hyperplane. We know that  $\mathcal{O}(D(Z_IZ_J))^T$  is equal to the localization  $\mathcal{O}(D(Z_I))^T_{Z^c}$ , where  $\mathbf{c} = (c_1, \ldots, c_n) \in M$  and  $c_i = 0$  for  $i \notin I \cup J$ . Considering  $\mathbf{c}$  as a linear function on  $M^*$  we have

$$\mathbf{c}(\bar{e}_i^*) = e_i^*(\mathbf{c}) = 0 \quad \text{for } i \notin I \cup J.$$

This shows that  $\mathbf{c}$  is identically zero on  $\sigma_a \cap \sigma_b$ . On the other hand, it follows from Lemma 12.2 that  $\mathbf{c}$  is non-negative on  $\sigma_a$  and on  $\sigma_b$ . This proves the assertion.

**Definition.** A finite collection  $\Sigma = {\{\sigma_i\}_{i \in I}}$  of rational convex polyhedral cones in  $\mathbb{R}^n$  such that  $\sigma_i \cap \sigma_j$  is a common face of  $\sigma_i$  and  $\sigma_j$  is called a fan.

In a coordinate-free approach one replaces the space  $\mathbb{R}^n$  by any real linear space V of finite dimension, then chooses a lattice N in V, i.e. a finitely

generated abelian subgroup of the additive group of V with  $N \otimes \mathbb{R} = V$ , and considers N-rational convex polyhedral cones, i.e., cones spanned by a finite subset of N. Then a N-fan  $\Sigma$  is a finite collection of M-rational polyhedral cones in V satisfying the property from the above definition. A version of this definition includes in the fan all faces of all cones  $\sigma \in \Sigma$ .

Let  $M=N^*$  be the dual lattice in the dual space  $V^*$ . By Gordan's Lemma, for each  $\sigma \in \Sigma$  the algebra  $A_{\sigma}=k[\check{\sigma} \cap M]$  is finitely generated. Let  $X_{\sigma}=\operatorname{Spec}(A_{\sigma})$  be the affine variety with  $\mathcal{O}(X_{\sigma})$  isomorphic to  $k[\check{\sigma} \cap M]$ . Since for any  $\sigma, \sigma' \in \Sigma, \sigma \cap \sigma'$  is a face in both cones, we obtain that  $k[(\sigma \cap \sigma')\check{\cap} M]$  is a localization of each algebra  $A_{\sigma}$  and  $A'_{\sigma}$ . This shows that  $\operatorname{Spec}(k[(\sigma \cap \sigma')\check{\cap} M])$  is isomorphic to an open subset of  $X_{\sigma}$  and  $X'_{\sigma}$ . This allows us to glue together the varieties  $X_{\sigma}$  to obtain a separated (abstract) algebraic variety. It is denoted by  $X_{\Sigma}$  and is called the *toric variety* associated to the fan  $\Sigma$ . It is not always a quasiprojective algebraic variety.

By definition  $X_{\Sigma}$  has a cover by open affine subsets  $U_{\sigma}$  isomorphic to  $X_{\sigma}$ . Since each algebra  $A_{\sigma}$  is a subalgebra of  $k[M] \cong k[Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}]$  we obtain a morphism  $T = (\mathbb{G}_m)^n \to X_{\Sigma}$ . It is easy to see that this morphism is T-equivariant if one considers the action of T on itself by left translations and on  $X_{\Sigma}$  by means of the  $\mathbb{Z}^r$ -grading of each algebra  $A_{\sigma}$ . If each cone  $\sigma \in \Sigma$  does not contain a linear subspace, the morphism  $T \to X_{\Sigma}$  is an isomorphism onto an open orbit. In general  $X_{\Sigma}$  always contains an open orbit isomorphic to a factor group of T. All toric varieties  $X_{\Sigma}$  are normal and, of course, rational.

Keeping our old notations we obtain

**Theorem 12.1.** Let  $(\mathbb{Z}^n)^* \to M^*$  be the transpose of the identity map  $M \to \mathbb{Z}^n$  and let N be its image. Let  $\Sigma$  be the N-fan formed by the cones  $\sigma_j, j = 1, \ldots, s$ . Then

$$(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})//T \cong X_{\Sigma}.$$

Recall that a cone in a linear space V is called simplicial if it is spanned by a part of a basis of V. A fan is called simplicial if each  $\sigma \in \Sigma$  is simplicial. The geometric significance of this property is given by the following result, the proof of which can be found in [31].

**Lemma 12.4.** A fan  $\Sigma$  is simplicial if and only if each affine open subset  $U_{\sigma}, \sigma \in \Sigma$ , is isomorphic to the product of a torus and the quotient of an affine space by a finite abelian group.

12.2. FANS 195

In our situation, we have

**Proposition 12.1.** Let  $X_{\Sigma}$  be the toric variety  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})/\!/T$ . Assume the kernel of the action homomorphism  $T \to Aut(\mathbb{A}^n)$  is finite. Then  $\Sigma$  is simplicial if and only if

$$(\mathbb{A}^n)^{ss}(L_{\mathbf{a}}) = (\mathbb{A}^n)^s(L_{\mathbf{a}}).$$

Proof. Assume some  $\sigma \in \Sigma$  is not simplicial. We have to show that there exists a semi-stable but not stable point. Let  $\bar{e}_i^*, i \notin I$ , be the spanning vectors of  $\sigma$ . Since  $\sigma$  is not simplicial,  $\sum_{i\notin I} n_i \bar{e}_i^* = 0$  for some integers  $n_i$  not all of which are zero. This implies that  $\sum_{i\notin I} n_i e_i^*$  belongs to the annihilator  $M^{\perp}$  of M in  $(\mathbb{Z}^n)^*$ . If we identify  $(\mathbb{Z}^n)^*$  with  $\mathbb{Z}^n$ , then  $M^{\perp}$  is isomorphic to the submodule spanned by the rows  $\bar{A}_i$  of the matrix A. Thus we can write

$$\sum_{i \notin I} n_i e_i = b_1 \bar{A}_1 + \ldots + b_r \bar{A}_r$$

for some  $\mathbf{b} = (b_1, \dots, b_r) \in \mathbb{Z}^r$ . This implies that the right-hand-side vector has coordinates corresponding to the subset I equal to zero. This implies that  $\mathbf{b} \bullet \mathbf{a}_j = 0$  for  $j \in I$ .

Let us consider a one-parameter subgroup  $\lambda_0 \in \mathcal{X}_*(T)$  defined by

$$\lambda_0(t) = (t^{b_1}, \dots, t^{b_r}).$$

For any  $t \in K^*$  and  $z \in \mathbb{A}^n(K)$  we have

$$\lambda_0(t) \cdot z = (t^{\mathbf{b} \bullet \mathbf{a}_1} z_1, \dots, t^{\mathbf{b} \bullet \mathbf{a}_n} z_n). \tag{12.3}$$

Take a point  $p = (z_1, \ldots, z_n)$ , where  $z_j = 1$  if  $j \in I$  and 0 otherwise. Since  $Z_I(p) \neq 0$ , we see that  $p \in (\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}})$ . On the other hand,  $\mu(\lambda_0, p) = 0$  and hence p is not stable.

Conversely, assume that there exists a semi-stable but not stable point. Arguing as above, we find a one-parameter subgroup  $\lambda_0$  such that  $\lambda_0 \cdot \mathbf{a}_j = 0$  for all  $j \in I$  where  $\sigma_I \in \Sigma$ . Then  $(b_1, \ldots, b_n) = \lambda_0 \cdot A$  has not all coordinates  $b_j$  equal to zero for  $j \notin I$  and  $b_j = 0$  for all  $j \in I$ . This gives  $\sum_{j \notin I} b_j \bar{e}_j^* = 0$ , hence  $\sigma_I$  is not simplicial.

Since every line bundle on an affine variety is ample, we obtain that the toric varieties  $X_{\Sigma} = (\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}})/\!/T$  are always quasiprojective. Let us find out when they are projective.

**Definition.** A fan  $\Sigma$  in a linear space V is called *complete* if

$$V = \bigcup_{\sigma \in \Sigma} \sigma.$$

For the proof of the following basic result we refer to [31].

**Lemma 12.5.** A fan  $\Sigma$  is complete if and only if the toric variety  $X_{\Sigma}$  is complete.

**Theorem 12.2.** Assume that  $L_{\mathbf{a}}$  is not the trivial linearized bundle (i.e.,  $\mathbf{a} \neq 0$ ) and  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}}) \neq \emptyset$ . The toric variety  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})//T$  is projective if and only if 0 is not contained in the convex hull of the character vectors  $\mathbf{a}_j, j = 1, \ldots, n$ .

*Proof.* It follows from the construction of  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})//T$  that it is equal to Proj(k[S]), where S is the monoid of solutions of the system (12.1). We have  $k[S]_0 = k[M \cap \mathbb{Z}_{>0}^n]$  and the inclusion  $k[S]_0 \subset k[S]$  defines a surjective map  $\operatorname{Proj}(k[S]) \to \operatorname{Spec}(k[S]_0)$ . It is easy to see that  $\operatorname{Proj}(k[S])$  is projective if and only if this map is constant, i.e.  $k[S]_0 = k$ . The latter is equivalent to that  $M \cap \mathbb{Q}^n_{\geq 0} = \{0\}$ , i.e. the only nonnegative rational combination of the columns of A which is equal to 0 must be the zero combination. If this is not true, then  $0 = m_1 \mathbf{a}_1 + \ldots + m_n \mathbf{a}_n$  for some non-negative integers  $m_i$ , and dividing both sides by  $\sum_i m_i$  we see that 0 is in the convex hull  $C = \text{c.h.}(\mathbf{a}_1, \dots, \mathbf{a}_n)$  of the vectors  $\mathbf{a}_j$ . Conversely assume that  $0 \in C$ . Without loss of generality we can assume that  $\mathbf{a}_1, \ldots, \mathbf{a}_n$  span  $\mathbb{R}^n$ . We can subdivide C into simplices to assume that 0 belongs to the convex hull of n+1 vectors  $\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_{n+1}}$  such that n among them are linearly independent. Then the space of solutions of the system of linear equations  $\sum_{j=1}^{n+1} \lambda_j \mathbf{a}_{i_j} = 0$ is one-dimensional and is generated by a vector  $v \in \mathbb{Z}^n$ . Since  $0 \in C$ , we can assume that v has non-negative coordinates, and hence  $k[S]_0 \neq k$ . This proves the assertion. 

Assume  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})//T$  is projective. Since 0 is not in the convex hull of the characters vectors  $\mathbf{a}_i$ , there exists a linear function  $f: \mathbb{R}^r \to \mathbb{R}$  such that  $f(\mathbf{a}_i) > 0, i = 1, \ldots, n$ . This is a well-known assertion from the theory of convex sets (called the Theorem on a Supporting Hyperplane). Obiously we can choose f to be rational, i.e. defined by  $f(x_1, \ldots, x_n) = b_1 x_1 + \ldots + b_n x_n$ 

12.2. FANS 197

for some  $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{Q}^n$ . Assume that  $k[S] \neq k$ , i.e. there exists a solution of  $A \cdot \mathbf{m} = d\mathbf{a}$  for some d > 0. Then  $q = \mathbf{a} \cdot \mathbf{b} > 0$ . Let

$$q_i = \mathbf{b} \cdot \mathbf{a}_i, \quad i = 1, \dots, n.$$

We can choose **b** such that  $(q_1, \ldots, q_n, q) \in \mathbb{Z}_+$ . For any  $\mathbf{m} \in S_d$  we have

$$m_1 \mathbf{a}_1 + \ldots + m_n \mathbf{a}_n = d\mathbf{a},\tag{12.4}$$

Taking the dot product of both sides with **b**, we obtain

$$m_1 q_1 + \ldots + m_n q_n = dq.$$
 (12.5)

Consider the action of T on the weighted projective space  $Y = \mathbb{P}(1, q_1, \dots, q_n)$  given by the formula

$$(t_1, \dots, t_r) \cdot (x_0, x_1, \dots, x_n) = (t^{-\mathbf{a}} x_0, t^{(q+1)\mathbf{a}_1 - q_1 \mathbf{a}} x_1, \dots, t^{(q+1)\mathbf{a}_n - q_n \mathbf{a}} x_n).$$
(12.6)

The restriction of this action to the open subset  $D(X_0) \cong \mathbb{A}^n$  of  $\mathbb{P}(1, q_1, \dots, q_n)$  coincides with the action

$$(t_1,\ldots,t_n)\cdot(x_1,\ldots,x_n)=(t^{(q+1)\mathbf{a}_1}x_1,\ldots,t^{(q+1)\mathbf{a}_n}x_n).$$

This action contains in its kernel the finite subgroup H of T equal to the group of points  $(t_1, \ldots, t_r)$  such that  $t_i^{q+1} = 1, i = 1, \ldots, r$ . The induced action of the torus T' = T/H is isomorphic to our old action. Clearly each  $F \in k[X_0, \ldots, X_n]_l^T$  is a linear combination of monomials  $X_0^{m_0} \cdots X_n^{m_n}$  such that

$$m_0 + m_1 q_1 + \ldots + m_n q_n = l$$
,

$$m_0(-\mathbf{a}) + m_1((q+1)\mathbf{a}_1 - q_1\mathbf{a}) + \ldots + m_n((q+1)\mathbf{a}_n - q_n\mathbf{a}) =$$

$$(q+1)\sum_{i=1}^{n} m_i \mathbf{a}_i - l\mathbf{a} = (d(q+1) - l)\mathbf{a} = 0.$$

Comparing this with equations (12.4) and (12.5) we find an isomorphism of vector spaces

$$k[S_d] \to H^0(Y, \mathcal{O}_Y(d(q+1)))^T, \quad Z_1^{m_1} \cdots Z_n^{m_n} \to X_0^d X_1^{m_1} \cdots X_n^{m_n},$$

and also an isomorphism of graded algebras

$$\bigoplus_{d=0}^{\infty} H^0(Y, \mathcal{O}_Y(d(q+1)))^T \cong k[S].$$

Thus we obtain

$$\mathbb{P}(1, q_1, \dots, q_n)^{\mathrm{ss}}(\mathcal{O}_{\mathbb{P}}(q+1)) / / T \cong (\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}}) / / T. \tag{12.7}$$

Obviously  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}}) = \mathbb{P}(1, q_1, \dots, q_n)^{ss}(\mathcal{O}(q+1))$  since each point in the weighted projective space  $\mathbb{P}(1, q_1, \dots, q_n)$  lying on the hyperplane  $X_0 = 0$  is unstable (because each  $F \in H^0(Y, \mathcal{O}_Y(d(q+1)))^T$  with d > 0 is divisible by  $T_0$ ). To summarize we obtain

**Proposition 12.2.** Let C be the convex hull of the vectors  $\mathbf{a}_1, \ldots, \mathbf{a}_n$ . Assume that  $0 \notin C$ . Then  $(\mathbb{A}^n)^{ss}(L_{\mathbf{a}})//T$  is projective and

$$(\mathbb{A}^n)^{ss}(L_{\mathbf{a}}) = \mathbb{P}(1, q_1, \dots, q_n)^{ss}(\mathcal{O}(q+1)),$$

where  $q = \mathbf{b} \cdot \mathbf{a} > 0, q_i = \mathbf{b} \cdot \mathbf{a}_i > 0$  for some  $\mathbf{b} \in \mathbb{Z}^r$  and T acts on  $\mathbb{P}(1, q_1, \dots, q_n)$  by the formula (12.6).

Applying the numerical criterion of stability we can find the set of unstable points in  $\mathbb{P}(1, q_1, \ldots, q_n)$ . It follows from Lecture 9 (up to some modifications using a weighted-homogeneous linearization, i.e. a G-equivariant embedding of a variety into a weighted projective space) that a point  $x = (x_0, \ldots, x_n)$  is unstable if and only if the set  $I = \{i_1, \ldots, i_k\}$  such that  $x_i \neq 0, i \in I$ , satisfies the property that 0 does not belong to the convex hull of the vectors  $-\mathbf{a}, (q+1)\mathbf{a}_1 - q_1\mathbf{a}, \ldots, (q+1)\mathbf{a}_n - q_n\mathbf{a}$ .

# 12.3 Examples

Let us give some examples

Example 12.1. Let  $\mathbb{G}_m$  act on  $\mathbb{A}^{n+1}$  by the formula:

$$t \cdot (z_0, \ldots, z_n) = (tz_0, \ldots, tz_n),$$

We have

$$A = \begin{pmatrix} 1 & \dots & 1 \end{pmatrix},$$

199

$$M = \{(m_0, \dots, m_n) \in \mathbb{Z}^{n+1} : \sum_{i=1}^n m_i = 0\}.$$

It is easy to see that the basis of M consists of vectors  $v_i = e_i - e_{i+1}, i = 1, \ldots, n$ . If we choose the dual basis  $(v_1^*, \ldots, v_n^*)$  of  $N = M^*$ , the vectors  $\bar{e}_i^*$  are equal to

$$\bar{e}_1^* = v_1^*, \bar{e}_2^* = -v_1^* + v_2^*, \dots, \bar{e}_n^* = -v_{n-1}^* + v_n^*, \bar{e}_{n+1}^* = -v_n^*.$$

We can take for a new basis of  $M^*$  the vectors  $\bar{e}_i^*, i = 2, \ldots, n+1$ . Then

$$\bar{e}_1^* = -(\bar{e}_2^* + \ldots + \bar{e}_{n+1}^*).$$

Let us linearize the action by taking the line bundle  $L_a$ , where a = 1. Then we have an isomorphism of graded rings

$$\bigoplus_{d\geq 0} \Gamma(\mathbb{A}^{n+1}, L_1^{\otimes d})^{\mathbb{G}_m} = k[Z_0, \dots, Z_n].$$

Obviously the minimal generators of the ideal  $k[S]_{>0}$  are the unknowns  $Z_i$ . Thus the cones of our fan  $\Sigma$  are

$$\sigma_j = \operatorname{span}\{\bar{e}_1^*, \dots, \bar{e}_{j-1}^*, \bar{e}_{j+1}^*, \dots, \bar{e}_{n+1}^*\}, j = 1, \dots, n+1.$$



Fig. 1

This is the fan defining the projective space  $\mathbb{P}^n$  (see [31]). Let us see the corresponding gluing. We can take for a basis of M the dual basis of  $(\bar{e}_2^*, \ldots, \bar{e}_{n+1}^*)$  which is the set of vectors

$$e_2 - e_1, \ldots, e_{n+1} - e_1.$$

We easily find

$$k[\check{\sigma}_1 \cap M] = k[\frac{Z_1}{Z_0}, \dots, \frac{Z_n}{Z_0}], \dots, k[\check{\sigma}_{n+1} \cap M] = k[\frac{Z_0}{Z_n}, \dots, \frac{Z_{n-1}}{Z_n}].$$

These are the coordinate rings of the standard open subsets of  $\mathbb{P}^n$ .

Example 12.2. Consider the action of  $\mathbb{G}_m$  on  $\mathbb{A}^4$  by the formula

$$t \cdot (z_1, z_2, z_3, z_4) = (tz_1, tz_2, t^{-1}z_3, t^{-1}z_4),$$

We have

$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \end{pmatrix},$$

$$M = \{ (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 : m_1 + m_2 - m_3 - m_4 = 0 \}.$$

Let us choose the following basis of M

$$v_1 = -e_1 + e_2, v_2 = e_1 + e_3, v_3 = e_1 + e_4.$$

We can express the vectors  $\bar{e}_i^*$  in terms of the dual basis  $(v_1^*, \ldots, v_n^*)$  of  $N = M^*$  as follows

$$\bar{e}_1^* = -v_1^* + v_2^* + v_3^*, \bar{e}_2^* = v_1^*, \bar{e}_3^* = v_2^*, \bar{e}_4^* = v_3^*.$$

Choose  $L = L_1$  and consider the monoid S of non-negative solutions of the equation

$$m_1 + m_2 - m_3 - m_4 - d = 0, m_i > 0, d > 0.$$

For any  $(\mathbf{m},d) \in S$  we have  $d \leq m_1 + m_2$ . If  $d \leq m_1$  or  $d \leq m_2$  we can subtract d(1,0,0,0,1) or d(0,1,0,0,1) from  $(\mathbf{m},d)$  to obtain a vector from  $S_0$ . If  $d \geq m_1$  we have  $d - m_1 \leq m_2$ , and we do the same by subtracting  $(d-m_1)(0,1,0,0,1) + m_1(1,0,0,0,1)$ . This shows that k[S] is generated over  $k[S_0]$  by  $Z_1$  and  $Z_2$ . This means that the unknowns  $Z_1, Z_2$  are the minimal generators of the ideal  $k[S]_{>0}$ . Thus the fan  $\Sigma$  consists of two cones

$$\sigma_1 = \operatorname{span}\{\bar{e}_2^*, \bar{e}_3^*, \bar{e}_4^*\}, \ \sigma_2 = \operatorname{span}\{\bar{e}_1^*, \bar{e}_3^*, \bar{e}_4^*\}.$$

The dual cones are

$$\check{\sigma}_1 = \operatorname{span}\{-e_1 + e_2, e_1 + e_3, e_1 + e_4\}, \ \check{\sigma}_2 = \operatorname{span}\{-e_2 + e_1, e_2 + e_3, e_2 + e_4\}.$$

12.3. EXAMPLES 201

The quotient  $X_{\Sigma}$  is obtained by gluing together two nonsingular algebraic varieties with the coordinate algebras

$$k[\check{\sigma_1} \cap M] \cong k[Z_1 Z_3, Z_1 Z_4][\frac{Z_2}{Z_1}],$$

$$k[\check{\sigma_2} \cap M] \cong k[Z_2 Z_3, Z_2 Z_4][\frac{Z_1}{Z_2}].$$

Similarly if we take  $L = L_{-1}$  we get that the fan  $\Sigma$  consists of two cones

$$\sigma_1 = \operatorname{span}\{\bar{e}_1^*, \bar{e}_2^*, \bar{e}_4^*\}, \ \sigma_2 = \operatorname{span}\{\bar{e}_1^*, \bar{e}_2^*, \bar{e}_3^*\}.$$

The quotient  $X_{\Sigma}$  is obtained by gluing together two nonsingular algebraic varieties with the coordinate algebras

$$k[\check{\sigma}_1 \cap M] \cong k[Z_1 Z_3, Z_2 Z_3][\frac{Z_4}{Z_3}], \quad k[\check{\sigma}_2 \cap M] \cong k[Z_1 Z_4, Z_2 Z_4][\frac{Z_3}{Z_4}].$$

If we now change the linearization by taking  $L = L_0$  we get  $L = L_0^{\otimes d} = L_0$  for all  $d \geq 0$ , hence  $k[S]_{>0}$  is generated by 1. Then we have only one cone spanned by the four vectors  $\bar{e}_i^*$ . The toric quotient is isomorphic to the affine variety with the coordinate algebra

$$k[\check{\sigma} \cap M] \cong k[Z_1Z_3, Z_1Z_4, Z_2Z_3, Z_2Z_4] \cong k[T_1, T_2, T_3, T_4]/(T_1T_4 - T_2T_3).$$

One should compare this with our previous computation of this quotient in Example 8.3 from Lecture 8. We see here a general phenomenon: two toric varieties  $X_{\Sigma}$  and  $X'_{\Sigma}$  whose fans have the same set of one-dimensional edges of its cones (called the 1-skeleton of a fan) differ by a special birational modification. We refer the interested reader for more details to [77].

Example 12.3. Let  $\Sigma$  consists of the following four cones in  $\mathbb{R}^2$ :

$$\sigma_1 = \operatorname{span}\{e_1, e_2\}, \sigma_2 = \operatorname{span}\{e_1, -e_2\},$$

$$\sigma_3 = \operatorname{span}\{-e_1, -e_2\}, \sigma_4 = \operatorname{span}\{-e_1, e_2\}.$$



Fig.2

We have

$$U = \mathbb{A}^4 \setminus \{ Z_3 Z_4 = Z_1 Z_2 = Z_2 Z_3 = Z_1 Z_4 = 0 \},$$

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix},$$

hence the action is given by

$$(t_1, t_2) \cdot (z_1, z_2, z_3, z_4) = (t_1 z_1, t_2 z_2, t_1 z_3, t_2 z_4).$$

The variety  $X_{\Sigma}$  is obtained by gluing four affine planes with coordinate rings

$$k[Z_1, Z_2], k[Z_1, Z_2^{-1}], k[Z_1^{-1}, Z_2^{-1}], k[Z_1^{-1}, Z_2].$$

It is easy to see that  $X_{\Sigma}$  is isomorphic to the product  $\mathbb{P}^1 \times \mathbb{P}^1$ . This also is seen from observing that

$$U/T = (\mathbb{A}^2 \setminus \{Z_1 = Z_3 = 0\})/\mathbb{G}_m \times (\mathbb{A}^2 \setminus \{Z_2 = Z_4 = 0\})/\mathbb{G}_m = \mathbb{P}^1 \times \mathbb{P}^1.$$

Example 12.4. Recall that the coordinate ring of the Grassmannian variety  $\operatorname{Gr}_{n,m-1}$  is isomorphic to  $\operatorname{Pol}(\operatorname{Mat}_{n+1,m})^{\operatorname{SL}(n+1)}$ . It is generated by the bracket functions  $p_I, I \subset \{1, \ldots, m\}$ . The group  $\mathbb{G}_m^m \subset \operatorname{GL}(m)$  acts naturally on  $k[\operatorname{Mat}_{r+1,m}]$  by multiplying a matrix on the right by a diagonal matrix. It is easy to see that each function  $p_I$  spans an eigensubspace corresponding to the character  $t \to t^{\mathbf{e}_I}$ , where  $\mathbf{e}_I = \sum_{j \in I} e_j$ . Consider the cone  $\tilde{\operatorname{Gr}}_{n,m-1}$  over

12.3. EXAMPLES

203

 $\operatorname{Gr}_{n,m-1}$  as a closed subvariety of  $X = \mathbb{A}^{\binom{m}{n+1}}$ . Then the torus  $T = \mathbb{G}_m^m$  acts on X by multiplying each coordinate function  $p_I$  by  $\mathbf{t}^{\mathbf{e}_I}$ . Thus the action is given by the matrix A with columns equal to  $\mathbf{e}_I$ . It is easy to see that

$$\Gamma(X, L_{\mathbf{a}}^{\otimes d})^T \cong k[S_d],$$

where  $S_d$  is the set of vectors  $p_{I_1} + \ldots + p_{I_w}$  where each  $j \in \{1, \ldots, m\}$  appears exactly d times in the sets  $I_1, \ldots, I_m$ . In other words,  $S_d$  is in a bijective correspondence with the set of tableaux of degree d and weight w = md/(n+1). Let  $\bar{L}_a$  be the restriction of  $L_a$  to  $\tilde{G}_{n,m-1}$ . Then

$$\Gamma(\tilde{\mathrm{Gr}}_{n,m-1},\bar{L}_{\mathbf{a}}^{\otimes d})^G \cong k[\mathrm{Mat}_{r+1,m}]_{d,\ldots,d}^{\mathrm{SL}(n+1)} \cong (\mathrm{Pol}_d(k^{n+1})^{\otimes m})^{\mathrm{SL}(n+1)}.$$

This shows that

$$\widetilde{\mathrm{Gr}}_{n,m-1}/\!/\mathbb{G}_m^m \cong P_n^m = ((\mathbb{P}^n)^m)^{\mathrm{ss}}/\mathrm{SL}(n+1).$$

Also, we see that there is a natural closed embedding

$$P_n^m \to (\mathbb{A}^{\binom{m}{n+1}})^{\mathrm{ss}}(L_{\mathbf{a}}))/\mathbb{G}_m^m.$$

The latter quotient is a toric variety  $X_{\Sigma}$  of dimension  $\binom{m}{n+1} - m$ , where  $\Sigma$  depends only on (n,m). Let us denote it by  $\Sigma(n,m)$ . For example, take n=1, m=4. We have

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

It is easy to see that the monoid  $S_n$  of non-negative integer solutions of the equation  $A \cdot \mathbf{m} = n(1, 1, 1, 1)$  consists of vectors  $(m_1, m_2, m_3, m_3, m_2, m_1)$  with  $m_1, m_2, m_3 \geq 0, m_1 + m_2 + m_3 = n$ . Thus  $k[S]_n \cong k[X_1, X_2, X_3]_n$  and  $k[S] \cong k[X_1, X_2, X_3]$ . Thus

$$X_{\Sigma(1,4)} \cong \mathbb{P}^2$$
.

The embedding  $P_1^4 \to \mathbb{P}^2$  is of course the Veronese embedding.

12.5. One can go in the opposite direction by identifying any toric variety  $X_{\Sigma}$  with a categorical quotient of some open subset of an affine space. We state without proof the following result of [15].

**Theorem 12.3.** Let  $X_{\Sigma}$  be a toric variety determined by a  $\mathbb{Z}^s$ -fan  $\Sigma$ . To each one-dimensional edge of the 1-skeleton of  $\Sigma$  assign a variable  $Z_i$  and consider the polynomial algebra  $k[Z_1,\ldots,Z_n]$  generated by these variables. For each cone  $\sigma \in \Sigma$  let  $Z_{I(\sigma)} \in k[Z_1,\ldots,Z_n]$ , where  $I(\sigma) \subset \{1,\ldots,N\}$  is the complementary set to the 1-skeleton of  $\sigma$ . Let  $U = \mathbb{A}^n \setminus V(\{Z_{I(\sigma)}\}_{\sigma \in \Sigma})$ . Let  $\bar{e}_i^*$  be the primitive vectors of the lattice  $\mathbb{Z}^n$  which span one-dimensional edges of the cones from  $\Sigma$ . Let B be the matrix whose columns are the vectors  $\bar{e}_i^*$ , and let A be a  $(r \times N)$ -matrix whose rows form a basis of the module  $\mathrm{Null}(B) \cap \mathbb{Z}^n$ . Assume that the vectors  $\bar{e}_i$  span  $\mathbb{Z}^k$ . Then

(i)

$$X_{\Sigma} \cong U//T$$
,

with the action of  $T = (\mathbb{G}_m)^r$  given by the formula

$$t \cdot (z_1, \ldots, z_n) = (t^{\mathbf{a}_1} z_1, \ldots, t^{\mathbf{a}_n} z_n),$$

where  $\mathbf{a}_i$  are the columns of A.

(ii)  $X_{\Sigma}$  is simplicial if and only if U//T = U/T.

Remark 12.1. Note that applying this construction to the toric varieties  $X_{\Sigma}$  obtained as the quotients  $(\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}})/\!/T$  we obtain  $U=(\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}})$  and the action is isomorphic to the one we started with. However, in general,  $U \neq (\mathbb{A}^n)^{\mathrm{ss}}(L_{\mathbf{a}})$  for any  $\mathbf{a} \in \mathbb{Z}^r$ . One reason for this is that our quotients are always quasiprojective and there are examples of non-quasiprojective toric varieties. Another reason is simpler. The fans we are getting from our quotient constructions are "full" in the following sense. One cannot extend them to larger fans with the same 1-skeleton.

The torus T which acts on U has a very nice interpretation. Its character group  $\mathcal{X}(T)$  is naturally isomorphic to the group  $\mathrm{Cl}(X_{\Sigma})$  of classes of Weil divisors on  $X_{\Sigma}$ .

Also, if the vectors  $\bar{e}_i$ 's do not span  $\mathbb{Z}^k$ , the assertion is true if we replace G by an extension of the torus T with help of some finite abelian group.

## Bibliographical Notes

The theory of toric varieties is a subject of many books and articles. We refer to [31] and [70] for the bibliography. The fact that any toric variety can

12.3. EXAMPLES 205

be obtained as a categorical quotient of an open subset of affine space was first observed by Audin[3] and Cox[15]. The relationship between solutions of systems of linear integral equations, Gröbner bases and toric varieties is a subject of the book [98]. The systematic study of quotients of toric varieties by a torus can be found in [47]. We refer to [44] and [9] for the theory of variation of a torus quotient with respect to the linearization.

## Exercises

**12.1** Consider the action  $t \cdot (z_1, z_2, z_3) = (tz_1, t^{-1}z_2, tz_3)$  and take  $L = L_1$ . Show that the quotient  $X_{\Sigma}$  is isomorphic to the blowing-up of  $\mathbb{A}^2$  at the origin. Draw the corresponding fan.

**12.2** Let  $T = (\mathbb{G}_m)^4$  act on  $\mathbb{A}^6$  by the formula

$$t \cdot z = (t_1 t_3^{-1} t_4 z_1, t_2 t_3 t_4^{-1} z_2, t_4 z_3, t_3 z_4, t_2 z_5, t_1 z_6).$$

Take  $L = L_{\mathbf{a}}$ , where  $\mathbf{a} = (1, 1, 1, 1, 1, 1)$ . Show that the quotient is isomorphic to the blowing-up of the projective plane at three points. Draw the picture of the fan.

- 12.3 Take a fan  $\Sigma$  in  $\mathbb{R}^3$  formed by three one-dimensional cones spanned by the unit vectors  $e_1, e_2, e_3$ . Using Cox's theorem represent the toric variety  $X_{\Sigma}$  as a geometric quotient.
- **12.4** A toric variety  $X_{\Sigma}$  is nonsingular if and only if each  $\sigma \in \Sigma$  is spanned by a part of a basis of the lattice N. Show that  $U/T = X_{\Sigma}$  is nonsingular if and only if stabilizer of each point of U is equal to the same subgroup of T.
- **12.5** Describe the fan  $\Sigma(1,5)$  and the corresponding toric variety  $X_{\Sigma(1,5)}$ .
- **12.6** Using Example 11.8 show that the moduli space of 6 lines in  $\mathbb{P}^3$  is isomorphic to a double cover of the toric variety  $X_{\Sigma(1,6)}$ .
- 12.7 Consider the isomorphism of the Grassmann varieties  $\operatorname{Gr}_{n,m} \cong \operatorname{Gr}_{m-n-1,m}$  defined by assigning to a linear subspace L of a linear space V its annulator  $L^{\perp}$  in the dual space  $V^*$ . Show that this isomorphism commutes with the action of the torus  $\mathbb{G}_m^m$ , and induces an isomorphism of the quotients  $P_n^m \cong P_{m-n-1}^m$ . Show that this isomorphism coincides with the association isomorphism defined in Lecture 11.

## **Bibliography**

- [1] A. A'Campo-Neuen, Note on a counterexample to Hilbert's fourteenth problem given by P. Roberts, Indag. Math. 5 (1994), 253-257.
- [2] Algebraic Transformation Groups, ed. by H. Kraft, P. Slodowy, T.A. Springer DMV Seminar, Bd. 13, Birkhäuser, 1989.
- [3] M. Audin, Topology of Torus Actions on Symplectic Manifolds, Progress in Math. vol. 93, Birkhäuser, 1991.
- [4] N. Beklemishev, *Invariants of cubic forms of four variables*, Vestnik Moskov. Univ. Ser. I, (1982), 42–49.
- [5] F. Bogomolov, P. Katsylo, Mat. Sbornik. 126 (1985), 584-589.
- [6] A. Borel, *Linear Algebraic Groups*, W.A. Benjamin Publ. 1969 and Springer-Verlag, 1991.
- [7] N. Bourbaki, Algebra, Springer-Verlag, 1989.
- [8] N. Bourbaki, Commutative Algebra, Springer-Verlag, 1989.
- [9] M. Brion, C. Procesi, Action d'un tore dans une variété projective, in "Operator Algebras, Unitary Representations, Envelopping Algebras, and Invariant Theory", Progress in Math. vol. 192, Birkhäuser, 1990, pp. 509-539.
- [10] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- [11] A. Clebsch, Theorie der Binaren Algebräischen Formen, Leipzig, 1872.
- [12] F. Cossec, I. Dolgachev, Enriques surfaces, Birkhäuser. 1985.

[13] J. Coolidge, A treatise on algebraic plane curves, reprinted by Dover Publ. New York, 1959.

- [14] A. Coble, Algebraic Geometry and Theta Functions, Colloquium Publ. v. 10, Amer. Math. Soc. Providence 19029 (new edition 199??).
- [15] D. Cox, The homogeneous coordinate ring of a toric variety, Journ. Algeb. Geom., 4 (1995), 17–50.
- [16] J. A. Dieudonné, J. B. Carrell, Invariant Theory, Old and New, Acad. Press, 1971.
- [17] J. Dixmier, On the projective invariants of quartic plane curves, Advances in Math. 64 (1987), 279-304.
- [18] J. Dixmier, D. Lazard, Minimal number of of fundamental invariants for the binary form of degree 7, J. Symb. Computation., 6 (1988), 113-115.
- [19] I. Dolgachev, *Rationality of fields of invariants*, "Algebraic Geometry, Bowdoin", Proc. Symp. Pure Math. vol. 46, 1987, pp. 3-16.
- [20] I. Dolgachev, Introduction to Geometric Invariant Theory, Lect. Notes Series, n. 25, Seoul Nat. Univ., Korea, 1994.
- [21] I. Dolgachev, Y. Hu, Variations of geometric invariant theory quotients, Publ. Math. de l'IHES, 87 (1998), 5-51.
- [22] I. Dolgachev, V. Kanev, *Polar covariants of plane cubics and quartics*, Adv. Math., 98 (1993), 216-301.
- [23] I. Dolgachev, D. Ortland, *Point Sets in Projective Space and Theta Functions*, Asterisque, vol. 165, 1989.
- [24] D. Eisenbud, Commutative Algebra, Springer-Verlag, 1995.
- [25] D. Eisenbud, S. Popescu, The projective geometry of the Gale transform, math.AG/9807127.
- [26] E. B. Elliot, An Introduction to the Algebra of Quantics, Oxford Univ. Press, 1895 (reprinted by Chelsea Pub. Co. New York, 1964).
- [27] A. Fauntleroy, On Weitzenbock's theorem in positive characteristic, Proc. Amer. Math. Soc., 64 (1977), 209-213.

- [28] Fià de Bruno, Théorie des Formes Binaire, Turin, 1876.
- [29] J. Fogarty, Invariant Theory, Benjamin Press, 1969,
- [30] W. Fulton, J. Harris, Representation theory, Springer-Verlag, 1991.
- [31] W. Fulton, Introduction to Toric Varieties, Princeton, 1993.
- [32] v. Gall, Das vollständig Formensystem der binären Form 7<sup>textrmter</sup> Ordnung, Math. Ann. 21 (1888), 318-336.
- [33] v. Gall, Das vollständig Formensystem der binären Form achter Ordnung, Math. Ann. 21 (1888), 318-336.
- [34] P. Gordan, Ueber ternäre Formen dritter Grades, Math. Ann., 1 (1869), 90-128.
- [35] P. Gordan, *Invariantentheorie*, Teubner, Leipzig, 1895-87 (reprinted by Chelsea Pub. Co., New York, 1987).
- [36] J. H. Grace, A. Young, *The Algebra of Invariants*, Cambridge Univ. Press, 1903 (reprinted by Chelsea Pub. Co. New York, 1965).
- [37] Ph. Griffiths, J. Harris, *Principles of Algebraic Geometry*, John Wiley and Sons, 1978.
- [38] F. G. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, Lect. Notes in Math., v. 1673, Springer-Verlag, 1997.
- [39] S. Gundelfinger, Math. Annalen 4 (1871), 144-163.
- [40] G. B. Gurevich, Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen 1964.
- [41] W. Haboush, Reductive groups are geometrically reductive, Annals of Math., 102 (1975),
- [42] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
- [43] D. Hilbert, Theory of Algebraic Invariants, Cambridge Univ. Press. 1993
- [44] J. Humphreys, Linear Algebraic Groups, Springer-Verlag, 1975.

[45] A. Iarrobino, V. Kanev, Power sums, Gorenstein Algebras and Determinantal Loci, Lect. Notes in Math. vol. 1721, Springer-Verlag, 1999.

- [46] J. Igusa, Arithmetic theory of moduli for genus two, Annals of Math., 72 (1979), 241-266.
- [47] M. Kapranov, B. Sturmfels, A. Zelevinsky, Quotients of toric varieties, Math. Ann. 290 (1991), 643-655.
- [48] P. Katsylo, Rationality of the moduli varieties of plane curves of degree 3k Mat. Sbornik, 136 (1988),377-384; Engl. Transl.:
- [49] P. Katsylo, Rationality of the moduli variety of curves of genus 3, Comment. Math. Helv., 71 (1996), 507-524.
- [50] G. Kempf, *Instability in invariant theory*, Annals of Math. 108 (1978), 299-316
- [51] G. Kempf, L. Ness, *The length of vectors in representation spaces*, in "Algebraic Geometry, Proceedings, Copenhagen 1978", Lect. Notes in Math. 732, Springer-Verlag, 1979, pp. 233-243.
- [52] D. Khadzhiev, Some questions in the theory of vector invariants, Mat. Sbornik, 72(1967),420-435 (English transl.: Math. USSR, Sbornik, 1 (1967), 383-396).
- [53] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press,
- [54] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, 1985
- [55] H. Kraft, C. Procesi, Classical Invariant Theory: A Primer, http://www.math.unibas.ch.
- [56] I. MacDonald, Symmetric Functions and Hall Polynomials, Oxford University, 1979.
- [57] D. McDuff, L. Polterovich, Symplectic parkings and algebraic geometry, Invent. Math. 115 (1994), 405-434.

[58] W. Fr. Meyer, Bericht über den gegenwärtigen Stand der Invarinatentheorie, Jahresbericht Deut.Math.Ver., vol. 1 (1892), 79-292.

- [59] S. Mori, Classification of higher-dimensional varities in "Algebraic geometry, Bowdoin", Proc. Symp. Pure Math. vol. 46, Part I, AMS, Providence, 1987, pp.269-333
- [60] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3d edition, Springer-Verlag, 1994.
- [61] D. Mumford, Hilbert's fourteenth problem the finite generation of subrings such as rings of invariants, Proc. Symp. in Pure Math., v. 28, 1976, 431–444.
- [62] D. Mumford, Abelian Varieties, Oxford Univ. Press, 1985.
- [63] D. Mumford, K. Suominen, *Introduction to the Theory of Moduli*, in "Algebraic Geometry, Oslo 1970" (Proc. of the 5-th Nordic Summer School in Math.), Wolters-Noordhoff, 1970, pp. 171-222.
- [64] M. Nagata, On the embedding problem of abstract varieties in projective varieties, Mem. Coll. Sci. Kyoto (A) 30 (1956), 71-82.
- [65] M. Nagata, On the 14th problem of Hilbert, Amer. J. Math., 81 (1959), 766-772.
- [66] M. Nagata, Invariants of a group in an affine ring J. Math. Kyoto Univ. 3, (1964), 369-377.
- [67] M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fund. Research, Bombay, 1965.
- [68] P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute for Fund. Research, Bombay, 1978.
- [69] P. E. Newstead, Invariants of pencils of binary cubics, Math. Proc. Cambridge Phil. Soc. 89 (1981), 201-209.
- [70] T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, 1988.
- [71] A. Onishchik, E. Vinberg, *Lie groups and Algebraic Groups*, Springer-Verlag, 1990.

[72] V. Popov, The Picard group of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Izv. Akad. Nauk SSSR, Ser. Math., 38 (1974), 292-322 (English trans.: Math. USSR Izv., 8 (1975), 301-327).

- [73] V. Popov, On Hilbert's theorem on invariants, Doklady Akad. Nauk SSSR, 249, (1979),551-555 (English transl.: Soviet Math. Doklady, 20 (1979), 1318-1322).
- [74] V. Popov, Groups, Generators and Syuzygies and Orbits in Invariant Theory, Transl. Math. Monographs, vol. 100, Amer. Math. Soc., Providence, 1992.
- [75] V. L. Popov, E. B. Vinberg, *Invariant Theory*, Encycl. Math. Sci., vol. 55, Algebraic Geometry IV, Springer Verlag, 1994.
- [76] Z. Ran, On the Nagata problem, math.AG/9809101.
- [77] M. Reid, *Decomposition of toric morphisms*, in "Arithmetical Geometry", vol. II, Birkhäuser. 1983, pp. 395-418.
- [78] M. Roberts, The covariants of a binary quantic of the n-th degree, Quarterly J. Math., 4 (1861), 168-178.
- [79] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourtheenth problem, J. Algebra, 132 (1990), 461-473.
- [80] M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc.,12 (1961), 984-988.
- [81] M. Rosenlicht, A remark on quotient spaces, Ann. Acad. Brazil, 35 (1963), 487-489.
- [82] G. Rousseau, immeubles sphéreiques et théorie des invariants, Comptes Rendus Acad. Sci., Paris, Ser. 1, 286 (1978), 247-250.
- [83] G. Salmon, Introductory Lessons on Modern Higher Algebra, Dublin. 1876 (reprinted by Chelsea Publ. Co., New York, 1964.)
- [84] G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions, Dublin. 1974 (reprinted by Chelsea Publ. Co., New York, 1956).

[85] G. Salmon, *Treatise on the Higher Plane Curves*, Dublin, 1952 (reprinted by Chelsea Publ. Co. New York, 1960).

- [86] G. Segal, Equivariant K-theory, Publ.Math. Inst, Hautes Scient., 34 (1968), 129-151.
- [87] A. Schofield, Birational classification of moduli spaces of representations of quivers, math. AG/9911014.
- [88] C. S. Seshadri, Theory of Moduli, Proc. Symp. in Pure Math., vol. XXIX, AMS, 1975, 263–304.
- [89] I. Shafarevich, Basic Algebraic Geometry
- [90] J. Shah, A complete moduli space for K3 surfaces of degree 2 Annals of Math., 112 (1980), 485-510.
- [91] , J. Shah, Degenerations of K3 surfaces of degree 4, Transactions of A.M.S., 263 (1981), 271-308.
- [92] G. Shephard, J. Todd, Finite unitary reflection groups, Canadian Journ. Math., 6 (1954), 274-304.
- [93] N. Shepherd-Barron, The rationality of some moduli spaces of plane curves, Compos. Math., 67 (1988), 51-88.
- [94] T. Shioda, On the graded ring of invariants of binary octavics, Amer. Math. J., 89 (1967), 1022-1046.
- [95] I. Schur, Vorlesungen über Invariantentheorie, Springer-Verlag, 1968.
- [96] T.A. Springer, *Invariant Theory*, Lect. Notes in Math., vol. 585, Springer Verlag, 1977.
- [97] T. Springer Linear Algebraic Groups, Birkh'user. 1998.
- [98] R. Stanley, *Enumerative Combinatorics*, vol. 1. Wadsworth and Brooks/Cole, Monterey, California. 1986.
- [99] R. Steinberg, *Nagata's example*, in "Algebraic groups and Lie Groups", Cambridge Univ. Press, 1997, pp. 375-384.

[100] B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Wien. 1993.

- [101] B. Sturmfels, *Gröbner Bases and Convex Polytopes*, University Lecture Seroes, vol. 8, Amer. Math. Proc., 1996.
- [102] M. Thaddeus, Geometric invariant theory and flips, Journal of Amer. Math. Soc.
- [103] D. Vazzana, Projections and invariants of lines in projective space, Univ. Michigan Ph. D. thesis, 1999.
- [104] R. Weitzenböck, Invariantentheorie, Groningen: Noordhoff, 1923.
- [105] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math., 58 (1932), 231-293.
- [106] H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Univ. Press, 1946.
- [107] D. Zaitsev, Configurations of linear subspaces and rational invariants, Michigan Math. Journal, 46 (1999), 187-202.

## Index

| G-bundle, 102               | association isomorphism, 184 |
|-----------------------------|------------------------------|
| G-effective, 125            | 1                            |
| ,                           | base-point-free, 101         |
| geometric quotient, 88      | binary form, 4               |
|                             | bracket function, 12         |
| 1-cocycle, 102              |                              |
| 1-skeleton, 201             | Cappelli identity, 28        |
| 1 1 / 1 / 185               | ${\rm catalecticant},9$      |
| absolute invariant, 155     | catalecticant invariant, 15  |
| action                      | catalecticant matrix, 15     |
| faithful, 83                | categorical quotient, 88     |
| linearizable, 121           | Cayley $\Omega$ -process, 27 |
| rational, 38                | Cayley-Sylvester formula, 77 |
| regular, 38                 | chamber, 176                 |
| additive group, 44          | Chevalley's criterion, 99    |
| affine algebraic groups, 37 | Chow variety, 99             |
| affine cone, 115            | co-action homomorphism, 38   |
| algebra of covariants, 66   | combinant, 65                |
| algebra of invariants, 2    | ${\rm concommitant},65$      |
| algebraic group             | constructible subset, 97     |
| diagonalizable, 142         | contravariant, 65            |
| geometrically reductive, 39 | convex polyhedral cone, 190  |
| linear, 38                  | covariant, 62                |
| linear reductive, 39        | covariant of an action, 65   |
| reductive, 39               | cross-ratio, 164, 178        |
| semi-simple, $39$           |                              |
| simple, 39                  | $\operatorname{degree}$      |
| algebraic torus, 39         | of contravariant, 65         |
| ample, 101                  | of covariant, 62             |
| very, 101                   | degree of a tableau, 12      |
| apolar, 15                  | diagonal action, 61          |

216 INDEX

| discriminant, 14, 64                                                                                                                                                                                              | isotropy subgroup, 97                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| equivalence relation, 87                                                                                                                                                                                          | Jacobian, 65                                                                                                                                                                                 |
| equivariant function, 1 exceptional, 40                                                                                                                                                                           | Kempf-stable, 140                                                                                                                                                                            |
| fan, 193<br>complete, 196<br>simplicial, 194<br>First Fundamental Theorem of In-<br>variant Theory, 20<br>flag complex, 138                                                                                       | Laurent monomial, 69 Lefschetz theorem, 108 linear algebraic groups, 38 linearization, 102 democratic, 171 trivial, 103                                                                      |
| flip, 176  G-variety, 88 general points, 58 geometric grading, 93 geometric quotient, 88 good $\mathbb{G}_m$ -action, 93 good categorical quotient, 91 Gordan-Hilbert theorem, 32 group scheme, 97                | m-tableau, 12 mark, 24 module of covariants, 66 moment map, 141 multi-degree, 7, 10 multi-homogeneous, 10 multi-homogeneous function, 7 multi-isobaric, 10 multi-weight, 10 multiplicity, 67 |
| Haboush's Theorem, 39 Halphen pencil, 55 Hankel determinant, 9 Hermite reciprocity, 78 Hesse form, 83 Hessian, 64                                                                                                 | Nagata theorem, 40<br>Nagata's conjecture, 58<br>Nagata's counter-example, 51<br>normal ring, 42<br>null-cone, 115                                                                           |
| highest vector, 71 highest weight, 71 highest weight module, 71 Hilbert's Problem 14, 45 hook formula, 81 hypersimplex, 175  Igusa quartic hypersurface, 184 invariant function, 1 irreducible representation, 67 | observable, 48 omega-operator, 17 one-parameter subgroup, 73 adapted, 139 destabilizing, 137 most responsible for unstability, 139 order of concommitant, 65 of covariant, 62                |
|                                                                                                                                                                                                                   |                                                                                                                                                                                              |

INDEX 217

| parabolic subgroup, 48 plethysm decomposition, 77 polar hypersurface, 14 polarization map, 5 projective invariant, 44 proper map, 130 quantic, 82                                                                                    | properly, 114 state polytope of a point, 134 of representation, 134 state set, 134 straightening law, 24 symbolic expression, 8                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| radical, 39 rank, 69 rational character, 68 rational characters group of, 104 rational convex polyhedral cone, 190 rational quotient, 99 rational representations, 38 reductive algebraic group, 39 restitution map, 5 resultant, 65 | tableau standard, 23 tableau function, 12 standard, 24 ternary cubic, 153 theta group, 140 Tits conjecture, 139 toric variety, 194 transvectant, 64 transversal, 173 unitary trick, 34 |
| Reynolds operator, 67 ring of invariants, 2 root, 69 dual, 73 negative, 69 positive, 69 simple, 69                                                                                                                                   | unstable, 113  valuative criterion of properness, 131 of separatednes, 131 Veronese mebedding, 118  Weierstrass equation, 155                                                          |
| Schrödinger representation, 141 Schur multipliers, 106 second fundamental theorem, 22 Segre cubic primal, 182 Segre quartic primal, 184 self-association involution, 184 semi-invariant, 61 semi-stable, 113                         | weight, 44 dominant, 72, 73 fundamental, 73 in a representation, 69 of covariant, 63 weight of a tableau, 12 Weitzenböck's Theorem, 49 Weyl group, 137                                 |
| small resolution, 124<br>solvable algebraic group, 39<br>stable, 113                                                                                                                                                                 | Young diagram, 81<br>Zariski's problem, 47                                                                                                                                             |