Лекции по дифференциальным уравнениям

1 Список литературы

- 1. Филиппов Лекции по обыкновенным ОДУ.
- 2. Филиппов Сборник задач по дифференциальным уравнениям
- 3. Петровский Лекции по ОДУ
- 4. Самойленко, Кривошея, Перестрюк. ДУ. Примеры и задачи.
- 5. Антидемидович

2 ДУ первого порядка

$$f(x, y(x), y'(x)) = 0.$$

- 1. х независимая переменная
- 2. y(x) неизвестная функция
- 3. y'(x) ее производная

Решить ДУ – найти y(x)

3 Примеры

- 1. y'(x) = y(x)
- 2. Найти $y(x) \ y'(x) = f(x)$

4 ДУ n-го порядка

$$f(x, y, y', \dots, y^{(n)}).$$

5 Ду разрешимое относительно производных

$$y' = f(x, y).$$

Будем заниматься только такими уравнениями

6 Модель экспонециального роста (эпидемий)

$$x(t)$$
 — число бактерий.
$$\dot{x}(t) \ x(t).$$

$$\dot{x} = kx.$$

$$x = Ce^{kt}, C \in \mathbb{R}.$$

Модель роста с учетом эффекта насыщения называется логистической моделью. Пусть N — максмимальное количество особей.

$$\dot{x} = kx(N - x).$$

 \dot{x} максимальная, при $x=\frac{N}{2}$.

7 Интегрируемые дифференциальные уравнения перво порядка

Знакомимся с уравнениями, которые можем решить в явном виде.

7.1 Общие определения

Определение 1. ДУ 1 порядка, разрешенным относительно производной называется уравнение вида

$$y' = f(x, y).$$

где x независимая переменная, y(x) искомая функция. Решить ДУ $1 \iff$ найти y(x). Будем считать $f: G \to \mathbb{R}, G \subset \mathbb{R}^2$, G - связное и открытое множество B этой глае f будет элементарной (школьной) функцией. Так же считается, что G область опредления уравненияю

Определение 2. Функция $y = \phi(x)$ называется решением ДУ 1 на промежутку < a, b >, если выполнены 3 условия

- $I. \ \phi \in C^1(< a,b>)$ дифференцируема один раз на < a,b>
- 2. $\Gamma pa\phi \phi := \{(x, (\phi(x)) \mid x \in \langle a, b \rangle\} \subset G$
- 3. $\phi'(x) \equiv f(x, \phi(x)) \text{ } \mu a < a, b > a$

Определение 3. График решения называют интегральной кривой $\mathcal{Д} Y(1)$.

7.1.1 Самый простой пример

$$y' = f(x).$$

$$y = \int_{x_0}^{x} f(s)ds + C, C \in \mathbb{R}.$$

Решений бесконечно много. Общее решение ДУ(1) имеет вид

$$y = \phi(x, C), C \in \mathbb{R}.$$

7.1.2 Задача Коши

Задано начальное значение решения.

Определение 4. Задача Коши – называется задача следущего вида

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{1}$$

где, $(x_0, y_0) \in G$ Надо найти решения, которые удовлетворяют данному условию. Начальное условие означает, что график решения проходит через (x_0, y_0)

Определение 5. Говорят, что задача Коши 4 имеет единственное решение или (x_0, y_0) есть точка единственности, если существует окрестность $(x_0, y_0) \in U$, такая что для любых двух интегральных кривых Γ_1, Γ_2 , проходящих через точку (x_0, y_0) выполняется $\Gamma_1 \cap U = \Gamma_2 \cap U$ (все интегральные кривые, проходящие (x_0, y_0) совпадают в окрестности U). На языке епсилон-дельта

$$\exists (x_0-\delta,x_0+\delta) \forall \phi_1,\phi_2$$
 Решения 4 $\phi_1\equiv\phi_2$ на $(x_1-\delta,x_0+\delta)$.

Если имеет не единственное решение то $\forall U$ открестности найдутся 2 интегральные кривые различаются в окрестности.

В дифференицальных уравнениях единственность понимаемся в локальном смысле.

7.1.3 Пример Пеано

$$\begin{cases} y' = 3y^{\frac{2}{3}} \\ y(0) = 0 \end{cases}.$$

Преверяем 2 решения

$$\phi_1(x) = 0.$$

$$\phi_2(x) = x^3.$$

В любой окрестности $\phi_1 \neq \phi_2$

7.2 Уравнения с разделяющимся переменными

Определение 6. $\mathit{VP\Pi}$ - уравнение вида y' = f(x)g(y). Всегда предполагаем, что

1.
$$f \in C < a, b >$$

2.
$$g \in C < \alpha, \beta >$$

$$G = \langle a, b \rangle \times \langle \alpha, \beta \rangle$$
.

Как это решать придумал Якоб Бернулли.

7.2.1 Неформальный рецепт

$$\frac{dy}{dx} = f(x)g(y).$$

$$\frac{dy}{g(y)} = f(x)dx.$$

$$\int \frac{dy}{g(y)} = \int f(x)dx + C.$$

7.2.2 Нормальное доказательство

Теорема 1.

$$f \in C(\langle a, b \rangle).$$

$$g \in C(\langle \alpha, \beta \rangle).$$

$$g(y) \neq 0 \forall y \in \langle \alpha, \beta \rangle.$$

- $1. \;\; H(y)$ первообразная $\frac{1}{g(y)}$
- 2. F(x) первообразная f(x)
- 1. Тогда формула из неформального рецепта задает общее решение и только его

2. $G = < a, b > \times < \alpha, \beta > -$ область существоавания и единственности, для любой точки $(x_0, y_0) \in G$ задача задача Коши имеет единственное решение. И это решение задается формулами.

$$H(x) = F(x) + H(y_0) - F(x_0).$$

Proof. Заметим, что $H'(y) = \frac{1}{g(y)} \neq 0 \implies \exists H^{-1}$ Тогда получаем

$$y = H^{-1}(F(x) + C).$$

Формула 2 задает функции вида y=y(x)

1. Пусть y=y(x) есть решение уравнения. Покажем, что оно вкладывается в формулу. $\exists C_0: H(y(x)) - F(x) + C_0$

$$\frac{d}{dx}(H(y(x)) - F(x)) \equiv 0.$$

$$H'(y(x))y'(x) - F'(x) = 0.$$

$$\frac{1}{g(y(x))} * f(x)g(y(x)) - f(x) \equiv 0.$$

2. Теперь обратно

$$H(y(x)) \equiv F(x) + C.$$

Продифференцировали

$$H'(y(x)) * y'(x) \equiv F'(x).$$

Берем произвольную точку из области $(x_0, y_0) \in G$

$$C \equiv H(y(x)) - F(x).$$

Подставим начальные условия из задачи коши

$$C = H(y(x_0)) - F(x_0) = H(y_0) - F(x_0).$$

Тоесть для любой точки из G можно определить единственным образом

Ответ писать, надо даже если обратная функция не выражается в элементарных вроде $H(y) = y + \arctan(y)$, эта хрень считается ответом

$$H(y) - F(x) = C.$$

$$U(x,y) = H(y) - F(x).$$

U – интеграл ДУ

Определение 7. U(x,y) называется интегралом ДУ, если выполняются следущие аксиомы (свойства)

- 1. $U \in C^1$
- 2. $U'_y \neq 0$ (производная по у не ноль)
- 3. U обращается в константу при подставлении решения ДУ.

Все свойства выполняются для U(x, y)

Определение 8 (Линия уровня).

$$U^{-1}(c) = \{(x, y) \mid U(x, y) = c\}.$$

Теперь рассмотрим случай, когда g(y)=0 Пусть $g(a)=0 \implies$ стационарное решение

$$a' \equiv f(x)(g(a)).$$

Теорема 2. Пусть $f \in C(< a, b>), g \in C^1(< \alpha, \beta>)$ Тогда все решения уравнения задаются совокупностью

$$H(y) = F(x) + c.$$

g(y)=0 совокупность всех стационарных решений.

Эту хрень не доказываем, так как будет следовать из теоремы Пикара.

1. Пример Пеано

$$y' = 3y^{\frac{2}{3}}.$$
$$y = 0.$$

решение

$$\int \frac{y'dy}{3y^{\frac{2}{3}}} = \frac{1}{3} * x^{1/3} * 3 + c = x^{\frac{1}{3}} + c.$$
$$y^{\frac{1}{3}} = x + c.$$
$$y = (x+c)^{3}.$$
$$\begin{cases} y = 0\\ y = (x+c)^{3} \end{cases}$$

В точках y=0 нарушается единственность, решения можно склеивать, получать новые, не из совокупности

$$y = \begin{cases} (x - c_1)^3, x < c_1 \\ 0, c_1 \le x \le c_2 \\ (x - c_2) < x > c_2 \end{cases}.$$

g(y) не дифф в 0, условия теоремы 2 не выполняются.

2.

$$y' = y$$
.

y = 0 решение

$$\int \frac{y'}{y} dy = \ln y + c.$$

$$\ln (|y|) = x + c.$$

$$|y| = e^{x+c}.$$

$$\begin{bmatrix} y = 0 \\ y = \pm c^x y e^c \\ c_1 = \pm e^c. \end{bmatrix}$$

$$\begin{bmatrix} y = 0 \\ y = C_1 e^x, \forall c_1 \neq 0 \end{bmatrix}$$

единственность не нарушена

8 Линейный уравнения (Неоднородное)

Определение 9 (Линейное уравнение (неоднородное)).

$$y' = p(x)y + q(x).$$

Определение 10 (Линейное однородное уравнение).

$$y' = p(x)y$$
.

Ввел эти уравнения И.Бернулли. Как решать Д.Бернулли. Рассмотрим вариант подстановки Бернулли, который в литературе называют метод вариации произвольной постоянной Лагранжа (метод Лагранжа).

8.1

Пусть $p,q\in C(< a,b>)$. Тогда правая часть 9 $f(x,y)=p(x)y+q(x)\in C(G)G=< a,b>\times \mathbb{R}$ G – область определения 9

Теорема 3. Пусть p,q непрерывны и есть только одно решение. Все решения линейного уравнения 9 задаются формулой

$$y = e^{\int_{x_0}^x p(t)dt} \left(C + \int_{x_0}^x q(s)e^{-\int_{x_0}^s p(t)dt} ds\right)$$
 (2)

 $\forall (x_0,y_0) \in G$ задача Коши имеет одно решение и оно задается формулой

$$y = e^{\int_{x_0}^x p(t)dt} \left(y_0 + \int_{x_0}^x q(s) e^{-\int_{x_0}^s p(t)dt} ds \right)$$
 (3)

8.1.1 Метод лагранжа

- 1. Берем однородное уравнение y' = p(x)y
- 2. Это уравнение с разделяющимися переменными. Умеем решать.

$$y = Ce^{\int_{x_0}^x p(t)dt}.$$

- 3. В уравнение 9 замену переменных $y=ze^{\int\limits_{0}^{x}p(t)dt}$
- 4. Делаем замену переменных

$$(ze^{x_0})' = p(x)(ze^{x_0}) + q(x)$$

$$z'e^{x_0} + z * e^{x_0} p(t)dt$$

Тупо найти первообразную.

$$z = \int_{x_0}^{x} q(s)e^{-\int_{x_0}^{s} p(t)dt} ds + C.$$

Proof. Сначала выводим формулу 2 Методом Лагранжа. Покажем, что G область существования и единственности. Берем $\forall (x_0,y_0) \in G$. Надо показать, что существует только одно решение график, которого проходит через эту точку. В 2 подставим (y_0,x_0)

$$y_0 = e^{x_0} \int_{x_0}^{x_0} p(t)dt \left(C + \int_{x_0}^{x_0} q(s)e^{-\int_{x_0}^{s} p(t)dt} \right).$$

$$e^0 = 0.$$

8.1.2 Какую замену переменных надо делать в ДУ

1. $G \subset \mathbb{R}^2$ поэтому замена $\mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \to (x,z).$$

- 2. Биективность.
- 3. Замена должна сохранять гладкость (дифференцируемость)

8.1.3 Пример

$$y' = \frac{y}{x} + x.$$
$$G = \mathbb{R} \setminus \{x = 0\}.$$

1.

$$y' = \frac{y}{x}.$$

y = 0 решение

$$\int \frac{dy}{y} = \int \frac{dx}{x}.$$

$$\ln |y| = \ln |x| + c = \ln C_1 |x|.$$

$$y = \pm C_1 x, c_2 = \pm c_1.$$

$$y = c_2 x.$$

2. Возвращаемся к ЛНУ

$$y = zx.$$

$$(zx)' = \frac{zx}{x} + x.$$

$$z'x + z = z + x.$$

$$z' = 1.$$

$$z = x + c.$$
$$y = (x + c)x.$$

8.2 Уравнения сводящиеся к уравнениям с разделяющимися переменными

8.2.1 Однородные уравнения

$$y' = f(x, y) \tag{5}$$

Такое уравнение называется однородным \iff если не меняется при замене $(x,y) \to (\lambda x, \lambda y)$

$$M(x,y)dx + N(x,y)dy = 0$$

$$\frac{dx}{dy} = \frac{1}{f(x,y)}.$$
(6)

6 объединяет оба уравния

8.2.2 Пример

$$(x^{2} - xy)dx + y^{2}dy = 0.$$
$$y' = \frac{x^{2} + xy}{y^{2}} = -(\frac{x}{y})^{2} + \frac{x}{y}.$$

Пытаемся эту хуиту свести к $y' = g(\frac{y}{x})$

$$(x,y) \to (x,z).$$

 $(zx)' = g(z).$
 $z' = \frac{g(z) - z}{x}.$

8.2.3 Ф. 101

$$(x+2y)dx - xdy = 0.$$

Попробуем замену $(x,y) \to (\lambda x, \lambda, y)$

$$\lambda^2(x+2y)dx - \lambda^2 x dy = 0.$$

На лямбду сократили, уравнение однородно

$$(x,y) \to (x,z), y = zx.$$

 $(x+2zx)dx0d(zx) = .$

$$(x+2zx)dx - x(zdx + xdz) = 0.$$

x=0 реш вертикальная прямая

$$(1+2z)dx - xdz - zdx = 0c.$$

$$(1+z)dx = xdz.$$

z=-1:y=-x да является решением, горизонтальная прямая

$$\ln|z+1| = \ln|x| + c.$$

$$\ln\left|\frac{y}{x} + 1\right| = \ln\left|x\right| + c.$$

$$x = 0.$$

$$y = -x$$
.

9 Уравнение в полных дифференцалах

$$M(x,y)dx + N(x,y)dy = 0 (7)$$

Это уравнение в полных дифференциалах

$$y' = f(x, y).$$

Такое уравнение можно переписать ввиде уравнения в полных диффереенциалох

$$dy - f(x, y)dx = 0.$$

В уравнении 2 x, y неравноправны

9.1 Пример

$$y' = \frac{1}{yx + y^2}.$$

$$\frac{dx}{dy} = yx + y^2.$$

уравнение линейное по x. Иногда полезно перевенуть уравнение

9.2 Смысл записи в полных дифференциалах

Для тех точек, где $N(x,y) \neq 0$ мы считаем что это уравнение тоже самое что

$$\frac{dy}{dx} = \frac{M(x,y)}{N(x,y)}.$$

Для тех точек, где $M(x,y) \neq 0$ пы считаем по определнию

$$\frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)}.$$

Уравнение в полных дифференциалах это объедение такие уравнений.

Если M=N=0 считаем что уравнение не определно и такие точки выкидыватся из области определения

Определение 11. (x_0, y_0) такие что $M(x_0, y_0) = N(x_0, y_0) - 0$. О

$$M(x,\phi(x))x + N(x,\phi)d\phi(x) = (M(x,\phi(x))) + \phi'(x)N(x,\phi(x))dx.$$

Лемма 4. Пусть $u \in C^1(D)$ $\exists U_x', U_y' \in C(G)$ хотя бы одна из частных производных не равняетчя 0, тогда U(x,y)=0 задает регулярную кривую *Proof.*

$$\forall (x_0, y_0) : U(x_0, y_0) = 0.$$

$$(x_0, y_0) \in U^{-1}(0) := \{(x, y) \mid U(x, y) = 0\}.$$

Пусть $U_y'(x_0, y_0) \neq 0$ по теореме о неявной функции тогда $\exists ! y = \phi(x) \ x \in (x_0 - \delta, x_0 + \delta), \phi \in C_1$

10 Уравнения, сводящиеся к однородным

10.1

$$y' = f(ax + by).$$

$$(x,y) \to (x,z), \ z = ax + by.$$

$$z' = a + by' = a + bf(ax + by) = a + bf(z).$$

10.1.1 Φ 65

$$y' = \sqrt{4x + 2y - 1}.$$

$$(x, y) \to (x, z), z = 4x + 2y - 1.$$

$$z' = 4 + 2y' = 4 + 2\sqrt{z}.$$

$$\frac{dz}{d} = 4 + 2\sqrt{z}.$$

$$\frac{dz}{2 + 1\sqrt{z}} = 2dx.$$

$$\int \frac{dz}{2 + \sqrt{z}}.$$

$$t = 2 + \sqrt{z}.$$

$$z = (t - 2)^{2}.$$

$$dz = 2(t - 2)dt.$$

$$\int \frac{2(t - 1)}{t}dt = t - 2\ln|t| = x + c.$$

$$2 + \sqrt{z} - 2\ln(2 + \sqrt{z}) = x + c.$$

$$2 + \sqrt{4x + 2y - 1} - 2\ln(2 + \sqrt{4x + 2y - 1}) = x + c.$$

10.2 Еще какаято ебанина

$$y' = f(\frac{a_1x + b_1y + c}{a_2x + b_2y + c_2}).$$

Если $c_1=c_2=0$ такое уравнение является однородным. Каждая хуйня из дроби задает уравнение прямой. (x_0,y_0) точка пересечения, нужен паралельный пернос, чтоб она стала (0,0)

$$(x,y) \to (u,v).$$

$$\begin{cases} u = x - x_0 \\ v = y - y_0 \end{cases}$$

$$du = dx.$$

$$dv = dy.$$

$$\frac{dv}{du} = f(\frac{a_1u + b_1v}{a_2u + b_2v}).$$

коээфициенты не меняются так как нормаль не меняется при параллельном переносе. Если прямые паралельны то

$$a_2 = ka_1.$$

$$b_2 = kb_1.$$

Задача сводитя к прошлой

10.2.1 Ф 118

$$y' = 2\left(\frac{y+2}{x+y-1}\right)^{2}.$$

$$\begin{cases} y = -2 \\ x = 3 \end{cases}$$

$$\begin{cases} u = x-3 \\ v = y+2 \end{cases}$$

$$\frac{dv}{du} = 2\left(\frac{v}{u+v}\right)^{2}.$$

$$(u,v) \to (u,z).$$

$$v = zu.$$

$$(zu)' = u + uz' = 2\left(\frac{zu}{u+zu}\right)^{2} = 2\left(\frac{z}{1+z}\right)^{2}.$$

10.3 ф 113

$$(2x - 4y + 6)dx + (x + y - 3)dy = 0.$$

$$\begin{pmatrix} 1 & 1 & | & 3 \\ 1 & -2 & | & -3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & | & 3 \\ 0 & -3 & | & -6 \end{pmatrix}.$$

$$(1, 2).$$

$$\begin{cases} u = x - 1 \\ v = u - 2 \end{cases}$$

$$(2u - 4v)du + (u + v)dv = 0.$$

$$(u, v) \to (u, z).$$

$$v = zu.$$

$$(2u - 4zu)du + (u + uz)d(uz) = 0.$$

$$(2u - 4zu)du + u^{2}(1+z)dz + u(z+z^{2})du = 0.$$

u=0 не реш

.

11

$$M(x,y)dx + N(x,y)dy = 0.$$

Эта хуйня тоже самое что

$$\frac{dy}{dx} = \frac{M(x,y)}{N(x,y)} \wedge \frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)}.$$

$$y = \phi(x).$$

$$x = \psi(y).$$

$$U(x,y) = 0.$$

$$|U'_x| + |U'_y| \neq 0.$$

Неявное решение задания решения

Определение 12. Пусть $M,N\in C(G),G\subset \mathbb{R}^2,|M|+|N|\neq 0$ в G Пусть $U\in C^1(G)$

1.

$$|U_x'| + |U_y'| \neq 0 (8)$$

2.

$$U_x'N - U_y'M \equiv 0 (9)$$

Тогда U(x,y) называется интегралом ДV

Теорема 5. Пусть U(x,y) интеграл дифференциального уравнения тогда

- 1. Формула U(x,y)=c задает множество всех решений
- 2. G область существования и единственности

 $Proof. \ \forall$ кривая задаваемая 1 удовлетворяет условиям леммы. Пусть γ регулярная кривая, задааваема U(x,y)=c , либо $U_x'\neq 0$, либо $U_y'\neq 0$

1. Пусть $U'_y \neq 0 \implies$

$$y = \phi(x).$$

$$U(x, \phi(x)) \equiv c.$$

$$\frac{d}{dx}U(x, \phi(x)) \equiv 0.$$

$$U'_x(x, \phi(x)) + U'_y(x, \phi(x))\phi'(x) \equiv 0.$$

$$\phi'(x) \equiv -\frac{U'_x(x, \phi(x))}{U'_y(x, \phi(x))}.$$

Покажем, ч то $N(x, \phi(x)) \neq 0$. Предположим обратное

$$0 - U_y'M = 0.$$

значит M=0 получается полная фигня. Тогда

$$\frac{U_x'}{U_y'} \equiv \frac{M}{n}.$$

$$\phi'(x) = -\frac{M(x, \phi(x))}{N(x, \phi(x))}.$$

2. $U'_{x} \neq 0$

$$U(\psi(y), y) \equiv 0.$$

Взяли производную

$$U'_{x}(\psi(y), y)\psi'(y) + U'_{y}(\psi(y), y) \equiv 0.$$

$$\psi = -\frac{U_y'(\phi, y)}{U_x'(\phi, y)}.$$

$$M(\psi(y), y) \neq 0.$$

$$\psi'(y) \equiv -\frac{N(\phi(y), y)}{M(\psi, y)}.$$

Теперь доказываем второй пункт. Берем $\forall (x_0,y_0) \in G$ и $\exists !$ решение, проходяшее через (x_0,y_0)

$$U(x,y) = C.$$

Если это решение локально представимо в виде $y = \phi(x)$, то $y_0 = \phi(x_0)$

$$U(x, \phi(x)) \equiv c.$$

$$U(x,y) = U(x,0).$$

Перейдем к уравнениям в полных дифференциалах

12 УПД

Определение 13.

$$M(x,y)dx + N(x,y)dy = 0.$$

Называется уравнением в полных дифференциалилах, если существует $U \in C^1(G)$

$$M = U'_x$$
.

$$N = U_y'$$
.

Теорема 6. Пусть уравнение в полных дифференциалах, тогда U интеграл

Proof. 1. $|U_x'| + |U_y'| = |M| + |N| \neq 0$ если оба ноль, то мы такое не рассматриваем

2.
$$U'_xN - U'_yM = MN - NM = 0$$

Следствие 6.1. Формула U(x,y) = c все решения в обобщеном смысле

Следствие 6.2. G - облатсь существования и единственности

Теорема 7 (Критерий УПД). Пусть $M,N\in C(G)$, $\exists M_y',N_x'\in C(G)$, Тогда

- 1. уравнение УПД $\iff M_y' \equiv N_x'$ (необходимое условие упд)
- 2. Если G выпуклая прошлый пунк достаточное условие

13 Обобщенно однородные уравния

$$y' = f(x, y).$$

 $(x, y) \to (\lambda x, \lambda y).$

квазирастяжение

$$(x,y) \to (\lambda^{\alpha} x, \lambda^{\beta} y).$$

$$\begin{cases} x = \lambda^{\alpha} x_0 \\ y = \lambda^{\beta} x_0 \end{cases} \quad \lambda > 0.$$

перейдем к уравнению в явной форме

$$\lambda = (\frac{x}{x_0})^{\frac{1}{\alpha}}.$$

$$y = (\frac{x}{x_0})^{\frac{\beta}{\alpha}} y_0.$$

Пусть $c = \frac{y_0}{x_0^{\frac{\beta}{\alpha}}}$

Определение 14. Уравнение называется ООУ (Квази ОУ), если существует

$$2x^{4}yy' + y^{4} = 4x^{6}.$$

$$x \to \lambda^{\alpha}x.$$

$$y \to \lambda^{\beta}y.$$

$$\lambda^{4\beta} = \lambda^{4\alpha}.$$

надо делать замену $z=\frac{y^{\alpha}}{x}$

14 Теорема

Теорема 8.

$$Mdx + Ndy = 0.$$

$$M, N \in C(G).$$

$$\exists M'_{u}, N'_{x} \in C(G).$$

Тогда Уравнение упд $\implies M_y' \equiv N_x'$

Eсли G – выпуклая то прошлое еще и достаточное условие.

Proof. 1. Необходимость

Пусть уравнение упд значит

$$\begin{cases} M = U_x' \\ N = U_y' \end{cases}.$$

$$\begin{cases} M_y' = U_{xy}'' \\ N_x' = U_{yx}'' \end{cases}.$$

Значит $M_y' \equiv N_x'$

2. Достаточность

Ищем функцию U(x,y) в явном виде.

$$\begin{cases} U_x' = M \\ U_y' = N \end{cases}.$$

Первое уравнение интегрируем по x, тогда

$$U(x,y) = \int_{x_0}^x M(s,y)ds + c(y).$$

Подбираем
$$c(y)$$

$$(\int_{x_0}^x M(s,y)ds + c(y))' = N(x,y).$$

$$(\int_{x_0}^x M(s,x)ds)'_y + c'(y) = N(x,y).$$

$$\int_{x_0}^x M(s,y)sd = F(x,y).$$

$$F'(x,y)_y = \int_{x_0}^x M'_y(s,y)ds.$$

$$\int_{x_0}^x M'_y(s,y)ds + c'(y) = N(x,y).$$

$$\int_{x_0}^x N'_x(s,y)ds + c'(y) = N(x,y).$$

$$N(x,y) - N(x_0,y) + c'(y) = N(x,y).$$

$$c'(y) = N(x_0,y).$$

$$c(y) = \int_{x_0}^y N(x_0,t)dt.$$

Без константы, тк нам надо найти тоько одну такую функцию.

$$U(x,y) = \int_{x_0}^{x} M(s,y)ds + \int_{y_0}^{y} N(x_0,t)dt.$$

15 Общие теоремы для систем дифференциальных уравнений

15.1 Основные понятия

Определение 15. Системой дифференциальных уравнений, разрешенных относительностарших производных, называется следущая система

$$y_1^{(n_1)}(x)=f_1(x,y_1,y_1',y_1^{(n_1-1)},y_2,\ldots,y_2^{(n_2-1)},\ldots,y_m,\ldots,y_m^{n_m-1}).$$
 $y_2^{(n_2)}=f_2$ (тоже самое что и прошлом).

. . .

$$y_m^{(n_m)}=f_m$$
(тоже самое что и в прошлом).

где x независимая переменнная, $y_1(x), \ldots, y_m(x)$ неизвестные функции. Решить систему, найти эти функциии. n_1, \ldots, n_m порядки старших производных

$$n = n_1 + \cdots + n_m$$
 порядок сду.

Важные случаи

1.

$$m = 1, n_1 = n.$$

Это диффур п-го порядка

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$

2.

$$n_1 = \dots = n_m = 1, n = m.$$

Нормальная система

$$\begin{cases} y_1' = f_1(x_1, y_1, \dots, y_n) \\ y_2' = f_2(x_1, y_1, \dots, y_n) \\ \dots \\ y_n' = f_n(x_1, y_1, \dots, y_n) \end{cases}$$

Лемма 9. Любая система дифференциальных уравний может быть записана в виде эквивалентной нормальной системы

Proof. Начинаем с частного случая. Диффур n-го порядка записываем в виде нормально системы. ВВедем новые переменные z_1, \ldots, z_n

$$\begin{cases} z_1 = y \\ z_2 = y' \\ \dots \\ z_n = y^{(n-1)} \end{cases}$$

$$\begin{cases} z'_1 = y' = z_2 \\ z'_2 = y'' = z_3 \\ \dots \\ z'_n = y^{(n)} = f(x, z_1, z_2, \dots, z_n) \end{cases}$$

Убедимся в сущ биекции между решениями. Если $y=\phi(x)$ тогда

$$z_1 = \phi(x), z_2 = \phi'(x), \dots, z_n = \phi^{(n-1)}(x).$$

Обратно

$$z_1 = \phi_1(x), \dots, z_n = \phi_n(x).$$

To
$$y = \phi'(x)$$

$$\phi_{k+1}(x) = \phi_k'(x).$$

$$\phi'_n = \phi^{(n)}(x) = f(x, \phi_1, \dots, \phi_n) = f(x, \phi_1, \dots, \phi_1^{(n-1)}).$$

Теперь общий случай.

$$y_k, y_k', \dots, y_k^{(n_k-1)}.$$

берем в качестве новых переменнных

15.2 Векторная запись нормальной системы дифференциальных уравнений

$$y(x) = \begin{pmatrix} y_1(x) \\ \dots \\ y_{n(x)} \end{pmatrix}.$$

$$\langle a, b \rangle \to \mathbb{R}^n.$$

$$y(x) \in C(\langle a, b \rangle) := \forall y_k(x) \in C(\langle a, b \rangle), k = 1 \dots n.$$

$$y(x) \in C^1(\langle a, b \rangle) := \forall y_k \in C^1(\langle a, b \rangle).$$

$$y'(x) := \begin{pmatrix} y'(x) \\ \dots \\ y'_n(x) \end{pmatrix}.$$

$$y'_n(x) = \begin{pmatrix} \int_a^b y_1(x) dx \\ \dots \\ \int_a^b y_k(x) dx \end{pmatrix}.$$

$$f(x, y) := \begin{pmatrix} f_1(x_1, y_1, \dots, y_n) \\ \dots \\ f_n(x, y_1, \dots, y_n) \end{pmatrix}.$$

$$y(x)' = f(x, y).$$

векторная система нормальной системы

Вводим переобозначения

$$x \to t$$
.

 $y \to x$ – это набор координат.

$$y(x) \to x(t)$$
.

$$y' = \dot{x}$$
.

$$\dot{x} = f(t, x).$$

$$G \subset \mathbb{R}^{n=1}$$
.

$$f \in C(G)$$
.

Определение 16.

$$\phi(t) : \langle a, b \rangle \to \mathbb{R}^n$$
.

называется решением нормальным решением если

1.

$$\phi \in C^1(\langle a,b \rangle).$$

2.

$$\Gamma_{\phi} \subset G$$
.

3.

$$\dot{\phi(t)} \equiv f(t,\phi(t))$$
на $< a,b>$.

Задача Коши.

$$(t_0, x_0) \in F.$$

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}.$$

15.3 Единственность решения задачи коши

 $(t_0,x_0)\in G$ называется единсвтенной, если $\exists U(t_0,x_0)$ такая что любые две инетгральные кривые, проходящие через t_0,x_0 в этой окрестности U совпадают.

16 Поле направлений. Ломанные направлений. Теорем Пеано

Рассматриваем нормальную систему диффуров

$$\dot{x}=f(t,x).$$
 $f:G o\mathbb{R}^n.$ $G\subset\mathbb{R}^{n+1}$ область. $f\in C(G).$

16.1 Поле направлений

$$(t_0, x_0) \in G.$$

Пусть $\phi(x_0)=t_0$ решение системы. Само решение ϕ неизвестно, но мы легко можем написать уравнение касательной к ϕ в t_0

$$x = \phi(t_0) + \dot{\phi}(t_0)(t - t_0).$$

$$\dot{\phi}(t_0) = f(t_0, \phi(t_0)) = f(t_0, x_0).$$

$$x = x_0 + f(t_0, x_0)(t - t_0).$$

выписано в явном виде.

Определение 17 (Поле направлений). Полем направлений называется отображения, которое $\forall (t_0, x_0) \in G$ сопоставляет касательную прямую, проходящую через эту точку.

Ясно что ϕ будет решением \iff в каждой своей точки касается прямой из поля направлений. Интегральные кривые в каждой точку поля направний \implies позволяет примерно рисовать их кривые.

16.2 Ломанные Эйлера

Определение 18 (Ломанная Эйлера). Ломанной Эйлера называется любая ломанная, звенья которой, лежат на прямых из поля направлений. Апроксимация точной интегральной кривой.

16.3 Алгоритм построения ломанной Эйлера

$$(t_0, x_0) \in G$$
.

Строим лиоманную эйлера на $[t_0.T]$ в лево все аналогично. Пусть N - число звеньев ребер

$$\frac{T-t_0}{N}=h$$
 Шаг.

Пусть $t_k = t_0 + kh$ дробление отрезка $[t_0, T]$ $k = 0 \dots N$. Линия эйлера строится по реккурентному алгоритму по следущей схеме

$$l(t) = x_0 + f(t_0, x_0)(t - t_0), [t_0, t_1].$$

$$x_1 = l(t_1) = x_0 + f(t_0, x_0)h.$$

$$l(t) = x_1 + f(t_1, x_1)(t - t_1), [t_1, t_2].$$

$$x_2 = l(t_2).$$

Пусть Ломанная Эйлера построена на $[t_0,t_k],x_k=l(t_k)$

$$\begin{cases} t_{k_1}, t_{k+1} \end{bmatrix}, l(t) = x_k + f(t_k, x_k)(t - t_k). \\ \begin{cases} t_{k+1} = t_k + h \\ x_{k+1} = x_k + f(t_k, x_k)h \end{cases}.$$

16.4 Теорема Пеано

Теорема 10 (Пеано). Пусть $f \in C(G)$ тогда $\forall (t_0, x_0) \in G$ задача коши

$$\dot{x} = f(t, x)x(t_0) = 0.$$

имеет хотя бы одно решение (определенное на отрезке $[t_0-h,t_0+h]$)

Без доказательства

17 Интегральные уравнения

$$\dot{x} = f(t, x).$$

$$f: G \to \mathbb{R}^n, G \subset \mathbb{R}^{n+1}.$$

$$f \in C(G).$$

Рассмотрим следущее интегральное уравнение.

$$x(t) = x_0 + \int_{t_0}^{t} f(x, x(s))ds.$$

Решить это уравние означает найти x(t)

Определение 19. $\phi(t)$ называется решением интегральное уравнения на < a, b >

- $1. \ \phi \in C(\langle a, b \rangle)$
- 2. $\Gamma_{\phi} \subset G$
- 3. $\phi(t) \equiv x_0 + \int\limits_{t_0}^t f(s,\phi(s)) ds$ на < a,b>

Теорема 11 (Об эквивалентность задачи Коши и интегральных уравнений). $\phi(t)$ будет решением задачи коши на промежутке \iff она решение интегрального уравнения

Proof. 1. (a) $\phi \in C^1 \implies \phi \in C$

(b) Все понятно

(c)

$$\dot{\phi}(t) \equiv f(t, \phi(t)) \implies \int_{t_0}^t \dot{\phi}(s)dt = \int_{t_0}^t f(s, \phi(s))ds.$$

$$\phi(t) - \phi(t_0) = \int_{t_0}^t f(s, \phi(s))ds.$$

2.
$$\phi \in C \implies f(s,\phi(s)) \in C \implies \int_{t_0}^t f(s,\phi(s)) ds \in C^1$$

3. Понятно

4.

$$\phi(t) \equiv x_0 + \int_{t_0}^t f(s, \phi(s)) ds \implies \phi \in C^1.$$

5.

$$\phi(t) \equiv x_0 + \int_{t_0}^t f(s, \phi(s)) ds.$$
$$\dot{\phi}(x) \equiv 0 + f(t, \phi(t)).$$

Начальное условие $\phi(t_0) = x_0$

18 Условие Липщица

$$f:G\to\mathbb{R}^n$$
.

$$G \subset \mathbb{R}^{n+1}$$
.

Определение 20. f удовлетворяет условию липшица по переменной x в области G c константой L

$$\forall (t, x_1), (t, x_2) \in G.$$

$$||f(t, x_1) - f(t, x_2)|| \le L||x_1 - x_2||.$$

18.1 Комментарий

f растет не быстрее линейной функции

Лемма 12. для f выполняется условие липщица $\iff f \in C^0_x(G)$

Proof.

$$||f(t, x_1) - f(t, x_2)|| < \epsilon.$$

$$\delta = \frac{\epsilon}{L}.$$

 $||f(t, x_1) - f(t, x_2)|| \le L||x - x_2|| < \delta L.$

Определение 21 (Равномерная непрерывность).

$$\forall \epsilon > 0 \exists \delta = \delta(\epsilon), \forall (t, x_1), (t, x_2) \in G||x_1 - x_2|| < \delta.$$

Теорема 13. Пусть $\exists f_x' \in C(G) \iff \forall$ шара из G, для f выполняется условие липщица в B по x

19 Теорема Пикара

$$\dot{x} = f(x).$$

Нормальная система дифференциальных уравнений

$$G \to \mathbb{R}^n$$
.

G область в $R_{t,x}^{n+1}$

Теорема 14 (Пикара). Пусть $f \in C(G), f \in Lip_x(G)$, тогда

$$\forall (t_0, x_0) \in G.$$

Задача Коши

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases} .$$

имеет единственное решение, определенное на отрезке Пеано

$$I = [t_0 - h, t_0 + h].$$

Замечание 1.

$$C_x^1 \implies Lip_x.$$

В теореме Пикара можно писать

$$f \in C, f \in C_x^1(f_x' \in C).$$

менее общая формулировка, но она удобна на практике

19.1 Построение отрека Пеано

G - открытое множество $\implies (t_0,x_0)\in G$ вместе с открытым шаром шаром $B=R_r(t_0,x_0)$ Уменьшм r , $\overline{B}\subset G$ (замкнутый шар). В \overline{B} построим цилиндр

$$P := \{(t, x) \mid |t - t_0| \le a, ||x - x_0|| \le b\}.$$

Пусть a,b малы $P\subset \overline{B}$. P ограниченно и замкнуто. По теореме Вейштрасса (любая непрерывная функция на компакте достигает наибольшего значения).

$$\exists M = \max ||f(t, x)||.$$

$$h := \min a, \frac{b}{M}.$$

Считаем, что $M \neq 0$, если $M = 0 \implies f = 0$ все решается очень просто.

$$I := [t_0 - h, t_0 + h].$$

Отрезок Пеано определяется неоднозначно

Определение Пикаровских приближений 19.2

Заменим задачу коши на эквивалентное ей интегральное ураавнение

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s))ds.$$

Мы докажем, что именно интегральное уравние имеет единственное решение на отрезке Пеано I. Пикаровские приближения, $\phi_0(t), \phi_1(t), \dots, \phi_t(t)$

$$\phi_0(t) = x_0.$$

$$\phi_1(t) = x_0 + \int_{t_0}^t f(s, \phi(x_0)(s)) ds.$$

$$\phi_{k+1}(t) = x_0 + \int_{t_0}^t f(s, \phi_k(s)) ds.$$

19.3 Лемма

1. Все пикаровские приближения определены на $I, \phi_k \in C(I)$ Лемма 15.

2.
$$\Gamma_{\phi_k} \subset P$$

Proof. По индукци k=0

$$\phi_0(t) = x_0.$$

все очевидно.

Переход $\phi_k \in C(i)$ и $\Gamma_{\phi_k} \subset P$

$$\phi_{k+1} := x_0 + \int_{t_0}^t f(s, \phi_k(s)) ds.$$

$$t \in I \iff |t - t_0| \le h.$$

S между t, t_0 Определение

$$s \in I \implies$$
.

 $\phi_k(s)$ полн ogh.

$$(s, \phi_k(s)) \in P \forall s \in I.$$

$$f(s,\phi_k(s)).$$

определена при

$$\forall s \in I \implies \int_{t_0}^t f.$$

$$\forall t \in I \implies \phi_{k+1}(t)$$
опредлена $\forall t \in I$.

Пункт 1 доказан

$$(t, \phi_{k+1}) \in P \forall t \in I.$$

$$\begin{cases} |t - t_0| \le a \\ ||\phi_{k+1}(t) - x_0|| \le b \end{cases}.$$

Проверим каждое из условий

1.
$$t \in I \iff |t - t_0| \le h \le a$$

2.
$$||\phi_{k+1}(t) - x_0|| = ||\int_{t_0}^t f(s, \phi_k) ds|| \le \int_{t_0}^t ||f(s, \phi_k(s))|| ds \le |\int_{t_0}^t ||f(s, \phi_k(s))|| ds \le |\int_{t_0}^t ||f(s, \phi_k(s))|| ds \le ||f(s, \phi_k(s))|| ds \le$$

По условию $f \in Lip_x(G)$

$$\exists L \ge 0 \forall (t, x_1), (t, x_2) \in G.$$

$$||f(t,x_1) - f(t,x_2)|| \le L||x_1 - x_2||.$$

Лемма 16. Справедлива следущая оценка $||\phi_k(t)|| = |\phi_{k-1}(t)|| \le \frac{M}{L} \frac{L^k |t-t_0|^k}{k!} \forall k = 1, 2, \dots \forall t \in I$, I отрезок Π еано

Proof. По индукции

$$k = 1 ||\phi_1(t) - \phi_0(t)|| = ||\int_{t_0}^t f(s, x) ds|| \le |\int_{t_0}^t ||f(s, x_0)|| ds| \le M |\int_{t_0}^t ds| = M|t - t_0|$$

$$\frac{M}{L} \frac{L|t-t_0|}{1!}.$$

$$M = \max_{p} ||f||.$$

Переход $k \to k+1$

$$||\phi_{k+1}(t) - \phi_k(t)|| = ||(x_0 + \int_{t_0}^t f(s, \phi_k(s)ds) - (x_0 - \int_{t_0}^t f(s, \phi_{k-1}(s))ds)).$$

$$\left| \left| \int_{t_0}^t (f(s, \phi_k(s)) - f(s, \phi_{k-1}(s))) ds \right| \right| \le \left| \int_{t_0}^t \left| \left| (f(s, \phi_k(s)) - f(s, \phi_{k-1}(s))) \right| \right| ds \right|.$$

По условию липшица

$$\leq |\int\limits_{t_0}^t L||\phi_k(s) - \phi_{k-1}(s)||ds| \leq L|\int\limits_{t_0}^t \frac{M}{L} \frac{L^k|s - t_0|^k}{k!} ds| = \frac{M}{L} \frac{L^{k+1}}{k!} |\int\limits_{t_0}^t |s - t_0|^k ds| = \frac{|t - t_0|^k}{k!} |\int\limits_{t_0}^t |s -$$

1. если $t \geq t_0 \iff s \geq t_0$ все моули сняли с +

$$\int_{t_0}^{t} (s - t_0)^k ds = \frac{(s - t_0)^{k+1}}{k+1} = \frac{(t - t_0)^{k_1}}{k+1} - 0.$$

2. дальше самостоятельно

Таким образом

$$||\phi_{k_1}(t) - \phi_k(t)|| \le \frac{M}{L} \frac{L^{k+1}|t - t_0|^{k+1}}{k_1!(k+1)}.$$

19.4 Равномерная сходимость пикаровских приближений

19.4.1 Напоминание

$$\phi_k(t) \to \phi(t), k \to \infty.$$

Сходится поточечно,

$$\forall t \in I \iff \forall t \in I \forall \epsilon > 0 \exists N = N(\epsilon, t) : \forall k \geq N : ||\phi_k(t) - \phi(t)|| < \epsilon.$$

Если $N=N(\epsilon)$, то такая сходимость называется равномерной

$$\forall \epsilon > 0 \exists N = N(\epsilon) \forall k \geq nt \in I ||\phi_k(t) - \phi(t)|| < \epsilon.$$

Альтернативный вариант

$$\forall \epsilon > 0 \exists N = N(\epsilon) : \forall \ge 0 \sup_{t \in I} ||\phi_k(t) - \phi(t)|| < \epsilon.$$
$$\phi_k(t) \Longrightarrow \phi(t), t \in I, k \to \infty.$$

19.4.2 **ΦΑΚΤ**

Пусть
$$\phi_k(t) \in C(I), \phi_k \Longrightarrow \phi, k \to \infty \implies \phi(t) \in C(I)$$

19.4.3 ФАКТ

Пусть
$$\phi_k \Longrightarrow \phi(t), I = [a, b], k \to \infty \iff$$

$$\int_{a}^{b} \phi_{k}(t)dt \to \int_{a}^{b} \phi(t)dt.$$

Лемма 17. $\{\phi_k\}$ равномерно сходится на I

$$S = \phi_0 + (\phi_1 - \phi_0) + \dots$$

$$S_n T = \sum_{k=0}^n \Delta_k(t) = \phi_n(t).$$

 $\{\phi_k\}$ Равномерно сходится $\iff S_k(t)$ равномерно схоится $\iff S$ равномерно сходи Существует критерий Вейрштрасса схоимости функционального ряда

$$\sum_{k=0}^{\infty} s_k(t).$$

мажориуется сходимым положительным числовым рядом $\sum_{k=0}^{\infty} a_k$, то ряд сходится равномерно

Лемма 18. lemma Пусть $\phi(t) = \lim_{k \to \infty} \phi_k(t)$ $\phi(t)$ есть решение интегрального уравнения 2

Proof. 1. $\phi \in C(I)$ реально

2.
$$\Gamma_{\phi} \subset\subset G$$

$$(t, \phi_k(t)) \in P \forall t \in I.$$

$$(t, \phi_k(t)) \to (t, \phi(t)) \iff (t, \phi(t)) \in P.$$

3.
$$\phi(t) \equiv x + \int_{t}^{t} f(s, \phi(s)) ds$$

$$\phi_{k+1}(t) \Longrightarrow \phi(t).$$

Покажем, что

$$\int_{t_0}^t f(s,\phi_k(s))ds \Rightarrow \int_{t_0}^t f(s,\phi(s))ds.$$

$$\sup_{t \in I} ||\int_{t_0}^t f(s,\phi_k(s))ds - \int_{t_0}^t f(s,\phi(s))ds|| \to 0???????.$$

$$||\int_{t_0}^t f(s,\phi_k(s))ds - \int_{t_0}^t f(s,\phi(s))ds|| \le |\int_{t_0}^t ||f(s,\phi_k) - d(s,\phi)||ds| \le L|\int_{t_0}^t ||\phi_k(s) - \phi(s)||ds| \le L \int_{t_0}^t ||\phi_k(s) - \phi(s)||ds \le L \sup_{I} ||\phi_k(s) - \phi(s)|| \le L \sup_{I} ||\phi_k(s) - \phi(s)||.$$

Лемма 19 (Неравенство Грондолла). *Пусть* $u(t) : < a, b > \to \mathbb{R}$, $u(t) \ge 0, \ u(t) \in C(< a, b >)$

$$\exists \alpha, \beta \ge 0 : 0 \le u(t) \le \alpha + \beta | \int_{t_0}^t u(s) ds |.$$

$$\implies .$$

$$0 \le u(t) \le \alpha e^{\beta|t-t_0|} \,\forall t \in \langle a, b \rangle.$$

 ${\it Proof.}\,$ Мы рассмотрим только случай только $t \geq t_0$

$$0 \le u(t) \le \alpha + \beta \int_{t_0}^t u(s)ds.$$

$$v(t)\alpha + \beta \int_{t_0}^t u(s)ds.$$

v интегрируема и дифференицруема

$$\dot{v}(t) = \beta u(t) \leq \beta v(t).$$

$$v(t_0) = \alpha_0.$$

$$\begin{cases} \dot{v} = \beta v \\ v(t_0) = \alpha \end{cases}$$

$$v(t) = \alpha e^{\beta(t-t_0)}.$$

$$v(t) \leq \alpha e^{\beta(t-t_0)}???.$$

$$\frac{d}{dt}(v(t)e^{-\beta(t-t_0)}) \leq 0?????.$$

$$\frac{d}{dt}(v(t)e^{-\beta(t-t_0)}) = \dot{v}(t)e^{-\beta(t-t_0)} + v(t)(-\beta)e^{-\beta(t-t_0)} \leq v(t)e^{-\beta(t-t_0)} \mid_{t=t_0} = v(t)e^0 = \alpha.$$

Следствие 19.1. $E c \pi u \ \alpha = 0$

$$0 \le u(t) < \beta | \int_{t_0}^t u(s) ds | \iff u = 0.$$

Лемма 20. Пусть 2 решения задачи коши, определенные на общем про мещщутку, тогда $\phi_1 = \phi_2$ на < a, b >

Proof.

$$||f(t,x_1) - f(t,x_2)|| \le L||x_1 - x_2||.$$

$$||\phi_1(t) - \phi_2(t)|| = ||x_0 + \int_{t_1}^t f(s,\phi_1(s))ds - -(x_0 + \int_{t_1}^t f(s,\phi_2(s))ds)|| = .$$

$$u(t) = ||\phi_1(t) - \phi_2(t)||.$$

$$u(t) \le L|\int_{t_0}^t u(s)ds|.$$

$$\alpha = 0, \beta = L$$

$$u(t) = 0, t \in \langle a, b \rangle \iff \phi_1 = \phi_2.$$

19.5 Переформулировка

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$

Т Пикара для ДУ n-го порядка. Пусть f непрерывна в область $G, f \in LIP_{y_1,\dots,y_n}$ G облать существование и единственноть

$$(x_0,y_1^0,\dots,y_n^0)\in G.$$
 $\begin{cases} y^{(n)}=f(x,y,y',\dots,y^{(n-1)})\ y(x_0)=y_1^0\ y'(x_0)=y_1^0\ \dots\ y^{(n-1)}(x_0)=y_n^0 \end{cases}$.

Имеет ! решение, определенное на отрезке Пеано $[x_0-h,x_0+h]$

Следствие 20.1.

$$f \in C^1_{y_1,\dots,y_n} \implies f \in LIP_{y_1,\dots,y_n}.$$

19.6 228

$$(x+1)y'' = y + \sqrt{y}$$
$$y'' = \frac{y + \sqrt{y}}{x+1}.$$
$$y(x_0) = y_1^0.$$
$$y'(x_0) = y_2^0.$$

$$G_{\exists!} = \{(x, y, y') \mid x \neq -1, y > 0, y' \in \mathbb{R}\}.$$

 $y > 0, \sqrt{y} \notin C^1.$

20 Понятие о продолжимости

20.1 Пример

Рассмотри задачу Коши

$$\begin{cases} \dot{x} = x \\ x(0) = 1 \end{cases}$$

$$x = e^t.$$

Определение 22. Решение $\phi(t)$ определенное на < a, b > продолжимо вправо из a, b если \exists решение ψ , опр на $< a, b_1 >$, b и $\phi = \psi$ на < a, b >, ψ продолжение решения ϕ

В теореме пикара меется максимально продолжанное решение. Договоренность, в дальнейшем под решением понимается только максимально продолженное решение

21 Линейный системы и уравнения

21.1 Теорема существования и единственности

Определение 23 (Линейная система дифференциальных уравнений). *ЛСДУ – следущая нормальна система*

$$\dot{x} = A(t)x + f(t).$$

$$x \in \mathbb{R}^{n}.$$

$$A \in M_{n \times n}.$$

$$f(t) - (n \times 1).$$

 $\mathit{Ecлu}\ f(t) \equiv 0$ то линейная система называется однородной, иначе неоднородная

$$f(t):(a,b)\to\mathbb{R}^n.$$

 $f(t) \in C(a;b) \iff$ каждая скалярная компонента непрерывная функция.

$$A(t):(a,b)\to M^{n\times n}.$$

 $A(t) \in C(a,b) \iff$ каждая скалярная компонента непрерывная функция.

Правая часть F(t,x) = A(t)x + f(t)

$$F:G\to R^n$$
.

 $G = (a,b) \times \mathbb{R}^n$ Область определения системы.

Ясно , что $F \in C(G)$

Теорема 21 (Существование и единственность). Пусть $A(t) \in C(a,b), f(t) \in C(a,b)$, тогда G область существования и единственности задача Коши

$$\begin{cases} \dot{x} = A(t)x + f(t) \\ x(t_0) = x_0 \end{cases}$$

имеет единственное решение, при этом максимальный промежуток существования любого решения есть (a,b)

Proof. Про максимальный промежуток принимаем на веру. Из т. Пикара F(t,x)x непрерывно диффереенцируема по x, тк $F_x' = A(t)$ непрерывна. По т сязи дифф и липшица. F удовлетворяет условию Липщица

21.2 Линейные уравния п-го порядка

Определение 24 (ЛДУ п-го порядка).

$$\sum_{i=0}^{n} a_i x^{(i)} = f(t).$$

$$a_k \in C(a,b)$$
.

x(t) Неизвестная функция.

$$f(t) \in C(a,b)$$
.

Если $f \equiv 0$ однородное, иначе неоднородное

Теорема 22 (существование и единственность). *Пусть* $a_k(t) \in C(a,b)$

21.3 Линейные однородные системы

$$\dot{x} = A(t)x, A(t) \in C(a, b), G = (a, b) \times \mathbb{R}^n.$$

 M^0 множество всех решений системы

Теорема 23 (о множестве всех решений системы). 1. Пусть $\phi_1(t)$, $\phi_2(t)$ - 2 решения тогда их линейная комбинация есть есть решение

 $2. \, \, M^0 \,$ линейное пространство

Proof.

$$\dot{\phi}_{1,2} = A * \phi_{1,2}.$$

$$(c_1\phi_1 + c_2\phi_2)' = c_1\dot{\phi}_1 + c_2\dot{\phi}_2.$$

$$c_1A\phi_1 + c_2A\phi_2 = A(c_1\phi_1 + c_2\phi_2).$$

Множество всех дифференцируемых функций. решения же подпространсство

Лемма 24 (Критерий линейной независимости). Пусть $\phi_1(t), \ldots, \phi_m(t)$ линейно независимы как функции тогда и только тогда гда $(\phi(t_0), \ldots, \phi_m(t_0))$ линейно независимы как вектора в R^n

Proof. мы будем доказывать, что зависимы как функции, когда их значения линейно зависимы как вектора.

Берем произвольную точку $t_0 \in (a,b) \; \phi_1(t), \ldots, \phi_n(t)$ л.з

$$\sum_{i=1}^{n} c_i \phi_i = 0.$$

 t_0 подставили все круто.

В обрратную сторону

$$\sum_{i=1}^{n} c_i \phi_i(t_0) = 0.$$

Рассмотрим

$$\psi(t) := \sum_{i=1}^{n} c_i \phi_i(t).$$

это решение. Посмотрим какую задачу коши решает эта функция в t_0

$$\psi(t_0)=0.$$

$$\begin{cases} \dot{x} = A(t)x \\ x(t_0) = 0 \end{cases}.$$

Но у такой задачи есть тривиальное решене x=0

$$\sum_{i=1}^{n} c_i \phi_i(t) = 0.$$

Теорема 25 (Теорема о Базисе, о ФСР). Любые n лнз решения образуют ΦCP n порядок системы

Proof. Пусть $\{\phi_1, \dots, \phi_n\}$ лнз решения. Проверяем, что любое решение представляется в виде

$$\phi(t) = \sum_{i=1}^{n} c_i \phi_k(t).$$

Следствие 25.1. $\dim M^0 = n$

Следствие 25.2. ΦCP (базис) сущестует всегда, тоесть для ΠOC модно указать n $\Pi H3$ решений

$$e_k = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} k, k = 1, \dots, n.$$

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_1(t) + \dots + a_1(t) + \dots + a_0(t)(x) = 0.$$

Теорема 26. Любая линейная комбинация решений ЛОУ есть решение ЛОУ

Лемма 27. Пусть $\phi_1(t),\ldots,\phi_m(t)$ — решения ЛОУ. Тогда ϕ_n,\ldots,ϕ_m Лнз как функции \iff

$$\begin{pmatrix} \phi(t_0) \\ \dot{\phi(t_0)} \\ \dots \phi_1^{(n-1)}(t_0) \end{pmatrix}, \dots \begin{pmatrix} \phi_n(t_0) \\ \dot{\phi_n}(t_0) \\ \dots \\ \phi^{(n-1)}(t_0) \end{pmatrix}.$$

 $еxtit{ЛH3}$ как векторы в \mathbb{R}^n

Теорема 28 (Лиувиля-Остроградского).

$$W(t) = W(t_0)e^{\int_0^t a_{n-1}(s)ds}$$
.

Теорема 29. Любые n лнз решеня образуют базис в M^0