Homework_1_mp3653

Matthew Perrotta
March 1, 2019

Load Packages

```
library(tidyverse)
library(ISLR)
library(glmnet)
library(caret)
library(corrplot)
library(plotmo)
library(plotmo)
```

Load Data

```
test = read.csv('./data/solubility_test.csv')
train = read.csv('./data/solubility_train.csv')

# Validation Control
ctrl1 <- trainControl(method = "repeatedcv", number = 10, repeats = 5)

# Train Predictor Matrix
trX = model.matrix(Solubility~., train)[, -1]
# Train Response
trY = train$Solubility

# Test Predictor Matrix
teX = model.matrix(Solubility~., test)[, -1]
# Test Response
teY = test$Solubility</pre>
```

Q1 Linear Model

MSE = 0.5558898

Q2 Ridge Regression Model

Q3 Lasso Regression Model

number of non-zero coefficients

```
lasso.coef = predict(lasso.fit$finalModel, s = best.lambda.lasso, type = 'coefficients')
length(lasso.coef[lasso.coef != 0])

## <sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient

The number of nonzero coefficients is 144
```

Q4 PCR Model

MSE = 0.5490447 value of M = 158

Q5 Discussion

The RMSE value is smallest when using lasso regression compared to the other 3 models, with ridge, per and lm having increasing RMSE values respectively. Ridge regression assumes that all predictors are necessary, while lasso assumes that some coefficients are equal to zero. Lasso, with the smallest RMSE value, demonstrates that some of the cofficients for the predictors are truly zero.