Tutorial Sheet - 11

SPRING 2017

MATHEMATICS-II (MA10002)

January 4, 2017

- 1. (a) If \vec{a} , \vec{b} and \vec{c} are constant vectors, then show that $\vec{r} = \vec{a}t^2 + \vec{b}t + \vec{c}$ is the path of a particle moving with constant acceleration.
 - (b) Prove that a non-constant vector \vec{u} has a constant length if and only if $\vec{u} \cdot \frac{d\vec{u}}{dt} = 0$.
- 2. Evaluate the following limits
 - (a) $\lim_{t \to 1} \vec{r}(t)$, where $\vec{r}(t) = e^{t-1}\hat{i} + 4t\hat{j} + \frac{t-1}{t^2-1}\hat{k}$.
 - (b) $\lim_{t\to 2} \vec{r}(t)$, where $\vec{r}(t) = \frac{1 e^{t+2}}{t^2 + t + 2}\hat{i} + \hat{j} + (t^2 + 6t)\hat{k}$.
 - (c) $\lim_{t \to 1} \vec{r}(t)$, where $\vec{r}(t) = t^3 \hat{i} + \frac{\sin(3t-3)}{t-1} \hat{j} + e^{2t} \hat{k}$.
- 3. Determine the vector equation for the line segment that starts at the point $P = (x_1, y_1, z_1)$ and ends at the point $Q = (x_2, y_2, z_2)$.
- 4. Find the gradient and the unit normal vector to the following surfaces
 - (a) $x^2 + y z = 4$ at the point (2, 0, 0).
 - (b) $x^2 + 2y^2 + 3z^2 = 0$ at the point $(\sqrt{10}, 0, 0)$.
 - (c) $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 5. Find the directional derivatives of the following scalar valued functions
 - (a) $f(x,y) = e^x \cos y$ at the point $(0,\frac{\pi}{4})$ in the direction of $(\hat{i}+3\hat{j})/\sqrt{10}$.
 - (b) $f(x, y, z) = e^x + yz$ at the point (1, 1, 1) in the direction of $\hat{i} \hat{j} + \hat{k}$.
 - (c) $f(x,y,z) = \frac{1}{x^2+y^2+z^2}$ at the point (2,3,1) in the direction of $\hat{i}+\hat{j}-2\hat{k}$.
- 6. Find the directional derivative of the scalar valued function $f(x,y) = \frac{y}{x^2 + y^2}$ at the point (0,1) in the direction of a vector which makes an angle of 30° with the positive x-axis.
- 7. (a) In what direction from the point (1,3,2) the directional derivatives of $\phi = 2xz y^2$ is maximum? What is the magnitude of this maximum?
 - (b) Find the values of the constant a, b and c so that the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at the point (1, 2, -1) has maximum of magnitude 64 in the direction of the z-axis.
- 8. If $r = |\vec{r}|$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that

(a)
$$\nabla(\frac{1}{r}) = -\frac{\vec{r}}{r^3}$$
.

(b)
$$\nabla(\log(|\vec{r}|)) = \frac{\vec{r}}{r^2}$$
.

(c)
$$\nabla(r^n) = nr^{n-2}\vec{r}$$
.

- 9. Let $\vec{F} = 2xz^2\hat{i} + \hat{j} + xy^3z\hat{k}$ and $f = x^2y$. Then compute the following
 - (a) $curl(\vec{F})$
 - (b) $\vec{F} \times \nabla f$
 - (c) $\vec{f} \cdot (\nabla f)$
- 10. For any two vector fields \vec{F} and \vec{G} show that
 - (a) $\nabla \cdot (\nabla \times \vec{F}) = 0$
 - (b) $div(\vec{F} \times \vec{G}) = curl(\vec{F}) \cdot \vec{G} curl(\vec{G}) \cdot \vec{F}$
 - (c) $\nabla \times (\nabla \vec{F}) = \vec{0}$
- 11. For all smooth scalar field f and g, show that
 - (a) $\nabla(fg) = g\nabla f + f\nabla g$
 - (b) $\nabla(\frac{f}{g}) = \frac{1}{g^2}(g\nabla f f\nabla g)$
- 12. Check whether \vec{F} is a conservative vector field or not. If it is, then find the corresponding potential function, where
 - (a) $\vec{F} = (2xy, x^2 + 2yz, y^2)$
 - (b) $\vec{F} = (2xy + z^3, x^2, 3xz^2)$
- 13. (a) Find the values of the constant a, b and c so that the vector $\vec{w} = (x + 2y + az)\hat{i} + (bx 3y z)\hat{j} + (4x + cy + 2z)\hat{k}$ becomes irrotational.
 - (b) Determine the constant a so that the vector $\vec{v} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is solenoidal.
- 14. Let $\vec{F} = yz^2\hat{i} + xy\hat{j} + yz\hat{k}$ be a vector field. Then what is the value of $div(curl(\vec{F}))$?
- 15. Let $\phi(x, y, x) = x^2y xe^z$, $P_0 = (2, -1, \pi)$ and $\vec{u} = \frac{1}{\sqrt{6}}(\hat{i} 2\hat{j} + \hat{k})$. Then what is the rate of changes of $\phi(x, y, x)$ at the point P_0 in the direction of the vector \vec{u} ?
- 16. Consider the surface $\phi(x,y,z) = z \sqrt{x^2 + y^2} = 0$. Then find the normal vector and the tangent plane to the surface at the point $(1,1,\sqrt{2})$.