

Artificial Neural Networks

Lecture 13 – HCCDA-AI

Imran Nawar

Course Progress: Where We Are and What's Ahead

- Python
 - Python Fundamentals
- Exploratory Data Analysis
 - ✓ NumPy
 - Pandas
 - ✓ Data Visualization
 - **⊘** Matplotlib
 - ✓ Seaborn
- ✓ · Machine Learning
 - Artificial Neural Networks
 - Deep Learning
 - Convolutional Neural Networks (Deep Computer Vision)
 - Sequence Learning
 - Deep Generative AI
 - Large Language Models
 - · Huawei Cloud AI Services
 - ModelArts (AI Development Platform)
 - DAYU (Data Processing)
 - AI Gallery & Pre-trained Models
 - •

• Lecture 1:

- · Introduction to Programming, Installation and Setup
- Variables, Data Types $\rightarrow int$, float, str, bool, list, tuple, dict
- Conditional Statements \rightarrow *if, if-else, if-elif-else*
- Loops \Rightarrow while, for (range(), zip(), enumerate(), break, continue, pass)

• Lecture 2:

- Functions, Types of arguments $\rightarrow positional$, keyword, *args
- Programming Paradigms
- · Object Oriented Programming: Classes, Objects, Attributes, Methods
- Constructor \rightarrow __init__ Method

• Lecture 3:

• Advanced OOP \rightarrow (Inheritance, Polymorphism, Abstraction, Encapsulation)

• Lecture 4:

- Exception Handling, File Handling
- Exploratory Data Analysis, Python libraries overview for EDA
- NumPy Library \rightarrow numpy array, slicing, indexing etc.

Lecture 5:

- Exploratory Data Analysis, Python libraries overview for EDA
- Pandas Library → Series, DataFrame, indexing and selection
- Handling missing data $\rightarrow isnull()$, fillna(), dropna()
- Data Visualization with pandas, Lab \rightarrow *Titanic dataset analysis*

Lecture 6:

- Data Visualization \rightarrow Overview, Importance, what is data, sources of data
- Common Types of Plots \rightarrow Bar, line, scatter, histogram, pie chart
- Data Visualization Tools \rightarrow *Matplotlib*, *Seaborn*, *Plotly*
- Advanced Plotting Techniques → Subplots, 3D plots, Network Graphs, Choropleth Maps, Contour plots
- Time Series Data, Interactive Visualization, Forecasting Stock Prices with LSTM

• Lecture 7:

- Machine Learning → Traditional Programming vs. ML, Mathematics for ML
- Types of ML → Supervised, Unsupervised, Reinforcement Learning
- Key Concepts → Data and Features, Algorithms and Models, Training and Testing
- · Common Algorithms, Tools and Frameworks, Challenges and Limitations, Future Trends

• Lecture 8:

- · Simple Linear Regression
- Hypothesis $\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x$
- · Cost Function, Gradient Descent algorithm, Gradient of cost function
- Code \rightarrow Manual Implementation of Gradient Descent

• Lecture 9:

- Version Control \rightarrow Git, GitHub, What is Repository, Creating Repositories.
- · Updating repositories, .gitignore file, requirments.txt, Basic Git Flow
- Contributing to open source projects
- Multiple Linear Regression \Rightarrow Hypothesis, Cost Functions, Gradient Descent

Lecture 10:

- Normal Equation, Polynomial Regression, Code for Multiple Linear Regression
- Logistic Regression \Rightarrow Hypothesis, Sigmoid Function, Cost Function, Gradient Descent
- Code for Logistic Regression

• Lecture 11:

- Regularization \rightarrow *The problem of overfitting*
- · Practical Machine Learning with Scikit Learn

- Lecture 12:
 - Regression Project → House Price Prediction
 - Feature Descriptors and Face Detection $\rightarrow ORB$, SIFT, Hough Transform, Haar Cascade
 - Classification Project \rightarrow Image Classification
- Coming Up Next: Artificial Neural Networks

Artificial Neural Networks (ANNs)

- · Neural networks are a core technique in modern AI.
- Inspired by how the human brain processes information.
- It consists of interconnected nodes (artificial neurons) that transform input data through weighted connections and activation functions.
- ANNs are used for classification, prediction, and pattern recognition across various domains.

Housing Price Prediction

Given these input features, the job of the neural network will be to predict the price y.

Supervised Learning with Neural Networks

Input (x)	Output (y)	Application	
Home features	Price	Real Estate	Standard NN
Image	Objects (1,, 1000)	Photo tagging	CNN
Audio	Text Transcript	Speech recognition	RNN
English	Chinese	Machine translation	
Image, Radar Info	Position of other cars	Autonomous driving	Custom

Neural Network Examples

Type	Description	Application
Feedforward NN	Standard fully-connected ANN	Tabular data
CNN	Convolutional Neural Network	Image recognition
RNN	Recurrent Neural Network	Time series, text, speech

Evolution of Neural Networks

Origins:

- Inspired by the structure of the human brain.
- Early research dates back to 1943 (McCulloch & Pitts models).
- Gained popularity in the 1980s and early 1990s.
- Interest declined in the late 1990s due to computational limitations and the rise of simpler model like Support Vector Machines (SVMs).

Recent Resurgence of Neural Networks

Why Now?

- Around **2005**, interest in neural networks surged again due to:
 - Improved hardware (GPUs, TPUs for parallel processing).
 - Large datasets (Big Data, Internet-scale data availability).
 - **Algorithmic advancements** (better activation functions, optimization techniques like Adam).

Why Neural Networks Matter?

- Neural networks power state-of-the-art applications in:
 - Speech Recognition (e.g., Siri, Google Assistant)
 - Computer Vision (e.g., Face Recognition, Object Detection)
 - Natural Language Processing (NLP) (e.g., ChatGPT, Google Translate)
- With enough data and computational power, they often outperform traditional machine learning.

Neural Networks - How They Work

- Neural networks learn patterns by adjusting weights of connections between neurons.
- Learning is done through backpropagation, which minimizes prediction errors using gradient descent.
- Deep networks, known as Deep Neural Networks (DNNs), consist of multiple hidden layers for hierarchical feature learning.

Neural Networks: Representation

Neurons and the brain

Biological Inspiration: The Human Brain

Biological Neurons:

- · Humans have ~86 billion neurons.
- Neurons communicate via electrical and chemical signals.
- Each neuron may connect to thousands of others.
- Information processing occurs through complex networks.

From Biology to Computation:

- Artificial neurons are simplified mathematical models.
- They capture the essence of biological neural communication:
 - Receive inputs (dendrites)
 - Process signals (cell body)
 - Transmit output (axon)
- · Neurons receive, process, and send signals
- Artificial neurons mimic this behavior using simple mathematical functions
- While vastly simplified, this model has proven remarkably effective

https://articles.adxy.in

Fig: Biological Neuron

Fig: Artificial Neuron

Neuron in the brain

Neurons in the brain

The "one learning algorithm" hypothesis

- This hypothesis suggests that the human brain does not operate with thousands of specialized algorithms.
- Instead, it relies on a single general learning mechanism to perform different tasks.
- Artificial neural networks aim to replicate this capability in a computational model.

[Roe et al., 1992]

The "one learning algorithm" hypothesis

[Metin & Frost, 1989]

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

Neural Networks: Representation

Model Representation I

Neural Network Architecture: Layers and Connections

- A neuron in an artificial neural network is a simplified model compared to biological neurons.
- A neural network consists of:
 - Input Layer: Takes raw data (features) as input.
 - **Hidden Layers**: Apply transformations to learn representations.
 - Output Layer: Produces final predictions (classification, regression, etc.).
- Fully connected networks (Dense Networks):
 - Each neuron in a layer connects to all neurons in the next layer.

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

Activation Functions

 Activation functions introduce non-linearity into the neural network, enabling it to learn and model complex patterns beyond linear relationships.

Common activation functions:

- · Sigmoid:
 - Output range: (0, 1)
 - · Good for probability based outputs (e.g., binary classification)
 - · Can suffer from vanishing gradients, especially in deep networks

• Tanh (Hyperbolic Tangent):

- Output range: (-1, 1)
- · Centered around zero → better for optimization than sigmoid
- · Still prone to vanishing gradient issues.

• ReLU: (Rectified Linear Unit):

- Output: max(0, x)
- Most widely used due to computational efficiency
- Helps reduce vanishing gradient problem
- · Can lead to "dead neurons" (zero gradients) if inputs are always negative.

Activation Functions

ReLU $\max(0,x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

Neural Network

Multiple Hidden Layers

- Every layer in a neural network applies a transformation to its inputs.
- Deeper networks extract **hierarchical features**, enabling:
 - Early layers to learn **simple features** (edges, textures).
 - Deeper layers to capture **complex patterns** (objects, faces, words).
- The final output layer predicts the **desired outcome**.

Neural Network

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

Computational Steps:

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$.

Neural Networks: Representation

Model Representation II

Forward propagation: Vectorized implementation

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$a^{(2)} = g(z^{(2)})$$
Add $a_0^{(2)} = 1$.
$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

 $z^{(2)} = \Theta^{(1)} r$

Neural Network learning its own features

Neural Network Architecture

How Neural Networks Learn

- Neural networks adjust weights and biases using labeled training data.
- 1. Forward Propagation: Compute predictions
- 2. Loss Function: Measure error
- 3. Backpropagation: Compute gradients
- 4. **Optimization:** Update weights using gradient descent

Multi-Class Classification with ANNs

Pedestrian

Car

Motorcycle

Truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Our neural network output a vector of four numbers

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Handwritten digit classification

Summary

Neural Networks:

- Are inspired by the human brain
- Learn patterns from data through weights and updates.
- Work well on complex tasks like image and speech recognition
- Benefit from deeper architectures (DNNs)
- Require understanding of activation functions, layers, and the learning process.

Understanding Neural Networks

Learning Process

The method by which neural networks acquire knowledge from data.

Structure

Composed of layers of neurons connected by weights.

Resurgence Factors

Advancements in hardware, data availability, and algorithms driving renewed interest.

Applications

Powerful learning capabilities in vision, speech, and text.

Thank You