```
# Reinforcement learning training example
```bash
pip install -r requirements.txt
For REINFORCE:
python reinforce.py
For actor critic:
python actor_critic.py
torch
numpy
gym
import argparse
import gym
import numpy as np
from itertools import count
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
parser =
argparse.ArgumentParser(description='PyTorch
REINFORCE example')
parser.add_argument('--gamma', type=float,
default=0.99, metavar='G',
 help='discount factor (default:
0.99)'
parser.add_argument('--seed', type=int,
default=543, metavar='N',
 help='random seed (default:
543)')
parser.add argument('--render', action='store true',
 help='render the environment')
```

```
parser.add argument('--log-interval', type=int,
default=10, metavar='N',
 help='interval between training
status logs (default: 10)')
args = parser.parse args()
env = gym.make('CartPole-v1')
env.seed(args.seed)
torch.manual seed(args.seed)
class Policy(nn.Module):
 def init (self):
 super(Policy, self). init ()
 self.affine1 = nn.Linear(4, 128)
 self.dropout = nn.Dropout(p=0.6)
 self.affine2 = nn.Linear(128, 2)
 self.saved log probs = []
 self.rewards = []
 def forward(self, x):
 x = self.affinel(x)
 x = self.dropout(x)
 x = F.relu(x)
 action scores = self.affine2(x)
 return F.softmax(action scores, dim=1)
policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=1e-2)
eps = np.finfo(np.float32).eps.item()
def select_action(state):
 state =
```

```
torch.from numpy(state).float().unsqueeze(0)
 probs = policy(state)
 m = Categorical(probs)
 action = m.sample()
policy.saved log probs.append(m.log prob(action))
 return action.item()
def finish episode():
 R = 0
 policy loss = []
 returns = []
 for r in policy.rewards[::-1]:
 R = r + args.gamma * R
 returns.insert(0, R)
 returns = torch.tensor(returns)
 returns = (returns - returns.mean()) /
(returns.std() + eps)
 for log prob, R in zip(policy.saved log probs,
returns):
 policy loss.append(-log prob * R)
 optimizer.zero grad()
 policy_loss = Torch.cat(policy_loss).sum()
 policy_loss.backward()
 optimizer.step()
 del policy.rewards[:]
 del policy.saved log probs[:]
def main():
 running reward = 10
 for i episode in count(1):
 state, ep reward = env.reset(), 0
 for t in range(1, 10000): # Don't infinite
loop while learning
 action = select_action(state)
```

```
state, reward, done, =
env.step(action)
 if args.render:
 env.render()
 policy.rewards.append(reward)
 ep reward += reward
 if done:
 break
 running_reward = 0.05 * ep_reward + (1 -
0.05) * running reward
 finish episode()
 if i episode % args.log_interval == 0:
 print('Episode {}\tLast reward: {:.2f}
\tAverage reward: {:.2f}'.format(
 i episode, ep_reward,
running reward))
 if running reward >
env.spec.reward threshold:
 print("Solved! Running reward is now {}
and "
 "the last episode runs to {} time
steps!".format(running reward, t))
 break
if __name__ == '__main__':
 main()
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
```

```
import torch.optim as optim
from torch.distributions import Categorical
Cart Pole
parser =
argparse.ArgumentParser(description='PyTorch actor-
critic example')
parser.add argument('--gamma', type=float,
default=0.99, metavar='G',
 help='discount factor (default:
0.99)')
parser.add_argument('--seed', type=int,
default=543, metavar='N',
 help='random seed (default:
543)')
parser.add argument('--render', action='store true',
 help='render the environment')
parser.add_argument('--log-interval', type=int,
default=10, metavar='N',
 help='interval between training
status logs (default: 10)')
args = parser.parse args()
env = gym.make('CartPole-v0')
env.seed(args.seed)
torch.manual seed(args.seed)
SavedAction = namedtuple('SavedAction',
['log prob', 'value'])
class Policy(nn.Module):
 implements both actor and critic in one model
```

0.00

```
def init (self):
 super(Policy, self). init ()
 self.affine1 = nn.Linear(4, 128)
 # actor's layer
 self.action head = nn.Linear(128, 2)
 # critic's layer
 self.value head = nn.Linear(128, 1)
 # action & reward buffer
 self.saved actions = []
 self.rewards = []
 def forward(self, x):
 forward of both actor and critic
 x = F.relu(self.affine1(x))
 # actor: choses action to take from state
s t
 # by returning probability of each action
 action prob =
F.softmax(self.action head(x), dim=-1)
 # critic: evaluates being in the state s t
 state values = self.value head(x)
 # return values for both actor and critic
as a tupel of 2 values:
 # 1. a list with the probability of each
action over the action space
 # 2. the value from state s t
 return action prob, state values
```

```
model = Policy()
optimizer = optim.Adam(model.parameters(), lr=3e-2)
eps = np.finfo(np.float32).eps.item()
def select action(state):
 state = torch.from numpy(state).float()
 probs, state value = model(state)
 # create a categorical distribution over the
list of probabilities of actions
 m = Categorical(probs)
 # and sample an action using the distribution
 action = m.sample()
 # save to action buffer
model.saved_actions.append(SavedAction(m.log prob(action),
state value))
 # the action to take (left or right)
 return action.item()
def finish episode():
 Training code. Calcultes actor and critic loss
and performs backprop.
 R = 0
 saved actions = model.saved actions
 policy_losses = [] # list to save actor
(policy) loss
 value losses = [] # list to save critic (value)
loss
```

```
returns = [] # list to save the true values
 # calculate the true value using rewards
returned from the environment
 for r in model.rewards[::-1]:
 # calculate the discounted value
 R = r + args.gamma * R
 returns.insert(0, R)
 returns = torch.tensor(returns)
 returns = (returns - returns.mean()) /
(returns.std() + eps)
 for (log_prob, value), R in zip(saved_actions,
returns):
 advantage = R - value.item()
 # calculate actor (policy) loss
 policy_losses.append(-log_prob * advantage)
 # calculate critic (value) loss using L1
smooth loss
 value losses.append(F.smooth l1 loss(value,
torch.tensor([R])))
 # reset gradients
 optimizer.zero grad()
 # sum up all the values of policy losses and
value losses
 loss = torch.stack(policy losses).sum() +
torch.stack(value losses).sum()
 # perform backprop
 loss.backward()
 optimizer.step()
```

```
reset rewards and action buffer
 del model.rewards[:]
 del model.saved actions[:]
def main():
 running reward = 10
 # run inifinitely many episodes
 for i episode in count(1):
 # reset environment and episode reward
 state = env.reset()
 ep reward = 0
 # for each episode, only run 9999 steps so
that we don't
 # infinite loop while learning
 for t in range(1, 10000):
 # select action from policy
 action = select action(state)
 # take the action
 state, reward, done, =
env.step(action)
 if args.render:
 env.render()
 model.rewards.append(reward)
 ep reward += reward
 if done:
 break
 # update cumulative reward
 running reward = 0.05 * ep_reward + (1 -
```

```
0.05) * running reward
 # perform backprop
 finish episode()
 # log results
 if i_episode % args.log_interval == 0:
 print('Episode {}\tLast reward: {:.2f}
\tAverage reward: {:.2f}'.format(
 i_episode, ep_reward,
running reward))
 # check if we have "solved" the cart pole
problem
 if running reward >
env.spec.reward threshold:
 print("Solved! Running reward is now {}
and "
 "the last episode runs to {} time
steps!".format(running reward, t))
 break
if name == ' main ':
 main()
```