22/05/2025 Χαιδελβέογη, Γεομανία Αστέφιος Καλογήφου ΑΕΜ : 15473

Εισαγωγή

Οπως και στο προηγουμένο σετ ασκησέων ετσι και σε αυτο χρησιμοποιηθηκε η γλωσσα προγραμματισμου Julia και για την γραφη της εργασιας χρησιμοποιηθηκε ενα "custom template" του Typst το οποιο ειναι ενα καινουργιο εργαλείο ενναλακτικό της LaTeX. Ο κωδικάς της Julia οπως και του Typst βρισκονται στο λινκ: https://github.com/Askalogi/Fysikh-kai-Texnologia-Imiagwgwn.

1) $EP\Omega TH\Sigma H$:

• Για την πρωτη ερωτηση πρωτα υπολογιστηκαν τα $\ln(I)$ με τα δεδομενα που δινονται απο το excel. Με τα υπολογισμενα δεδομενα κατασκευαστηκε το εξης γραφημα :

Figure 2: ln(I) - V

- Εγω παρατηρησα καποιες γραμμικές περιοχές στο γραφημα συγκεκριμένα στις τασεις $0.18~V~\mu\epsilon~0.28~V~\gamma$ ια τις **χαμηλές** τασεις και $0.68~V~\mu\epsilon~0.78~V~\gamma$ ια τις **υψηλές** τασεις.
- Χρησιμοποησα την γραμμικη παλινδρομηση για αυτες τις τιμες και στις δυο περιοχες για τον υπολογισμο των Is και n.
- Για την περιοχη με τις μεγαλες τασεις περα απο την αρχικη προσεγγιση, χρησιμοποιησα και την "διορθωμενη" ταση $V_{\rm corr}=V-I*R_s$ με την επιδραση μια αντιστασης σε σειρα $R_s=1\Omega$ αρα υπαρχουν δυο προσεγγισεις για την περιοχη με τις υψηλες τασεις.
- Ο τυπος που χρησιμοποιηθηκε ειναι ο :

$$\mathbf{I} = \mathbf{I}_s * \exp\left(\frac{q*V}{n*k*T} - 1\right) \tag{1}$$

Φυσικα για την περιοχη με V>0.7V πηρα την προσεγγιση $\mathbf{I}=\mathbf{I}_s*\exp\left(\frac{q*V}{n*k*T}\right)$ τον οποιο λογαριθμησα και βρηκα $\ln(I)=\ln(I_s)+\frac{q*V}{n*k*T}$ ο οποιος έχει την μορφη $y=\alpha*x+\beta$ με κλιση :

$$\alpha = \frac{q}{n * k * T} \tag{2}$$

οπου
$$T=300[K]$$

$$k=1.38e-23\big[\frac{J}{K}\big]$$

$$q=1.6e-19[C]$$
 και \textbf{n} αγνωστος.

και τομη:

$$\beta = \ln(I_s) \tag{3}$$

με Ι_s φευμα κοφου αντιστφοφης πολωσης.

- Για περιοχή με τασεις 0.18V-0.28V υπολογισα $\alpha_l=15.806$ και $\beta_l=-20.34$ αρα χρησιμοποιωντας τους τυπους -> 2 και -> 3 υπολογιζουμε το n=2.44και το $I_s=1.45*10^{-9}[A]$ κανονικα επρεπε να εχουμε $n\sim 2$
- Για περιοχή με τασεις 0.68V-0.78V υπολογισα $\alpha_l=30.84$ και $\beta_l=-28.51$ αρα χρησιμοποιώντας τους τυπους -> 2 και -> 3 υπολογιζουμε το n=1.25 και το $I_s=4.14*10^{-13}[A]$ κανονικα επρεπ να εχουμε $n\sim1$

Figure 3: ln(I) - V me tic duo eu θ eiec

Το αποτελεσμα φαινεται αρκετα καλο!

• Αλλα έχουμε και την προσεγγιση με την διορθωμένη ταση με την υπαρξη μιας μικρης αντιστάσης R_s στο οποίο προκυπτεί αυτό το γραφημά :

Figure 4: ln(I) - V me eubeia dioqhamenhs tashs

2) $EP\Omega TH\Sigma H$:

α) ΥποΕοωτημα:

• Για τον υπολογισμο του φραγματος δυναμικου της διοδου χρησιμοποιουμε παλι γραμμικη παλινδρομηση με τα δεδομενα που μας δινονται στον πινακα. Συγκεκριμενα πρωτα υπολογιζουμε $\frac{1}{C^2}$ καθως γνωριζουμε τον τυπο :

$$\frac{1}{C^2} = \frac{2 * (V_{\text{bi}} - V_R)}{q * \varepsilon * A^2 * N} \tag{4}$$

οπου μποφουμε να το γραψουμε με την μορφη $y=\alpha*x+\beta$ σαν : $\frac{1}{C^2}=\alpha*V_R+\beta$ με $\alpha=\frac{2}{q*\varepsilon*A^2*N}$ και $\beta=\frac{2*V_{\rm bi}}{q*\varepsilon*A^2*N}$ για $V_R=0$ οπου $\varepsilon=\varepsilon_0*\kappa$ και κ = 12.

Εφοσον εχουμε τα C και V υπολογιζουμε κλιση και τομη (α,β) με $\alpha=1.13*10^{21}$ και $\beta=8.31*10^{20}$ και τωρα υπολογιζοθμε το V_{bi} με τον τυπο :

$$V_{\rm bi} = -\frac{\beta}{\alpha} \tag{5}$$

και βρισκουμε V_{bi} = 0.73 eV που ειναι κοντα στην ενδεικτικη λυση.

Figure 5: Α ΥποΕρωτημα

β) ΥποΕοωτημα:

• Απο τον τυπο της γραμμικης παλινδρομησης συγκεκριμενα την κλιση α υπολογιζουμε το $N=4*10^{14} [cm^3]$ (ειναι μια ταξη μεγεθους κατω)

γ) ΥποΕοωτημα:

• Για τα δυο φορτια εφοσον εχουμε ιδιες προσμίξεις τα Q^+ και Q^- θα είναι ισα κατα μετρο και αντίθετα κατα προσημο. Υπολογίζονται απο την σχεση :

$$|Q^{+/-}| = C * (V_{bi} + V_{R}) \tag{6}$$

|Q|

Φορτια σε Coulomb
-2.5914e-11
-6.3300e-12
5.90920e-12
1.51233e-11
2.28748e-11
3.50889e-11
4.40613e-11
5.32975e-11

Figure 6: Γ ΥποΕρωτημα

δ) ΥποΕοωτημα:

- Για να υπολογισουμε το $E_{\rm max}$ πρεπει πρωτα να υπολογισουμε το W δηλαδη το πλατος περιοχης απογυμνωσης της διοδου.
- Χρηισμοποιουμε τον τυπο

$$W = \left(\varepsilon * \frac{\mathbf{A}}{C}\right) \tag{7}$$

• Εφοσον υπολογισουμε το W για καθε τιμη που μας δινεται τοτε χρησιμοποιωντας τον τυπο :

$$E_{\text{max}} = \frac{V_{\text{bi}} + V_R}{W} \tag{8}$$

 E_{max}

Μεγιστο Ηλεκτοικο Πεδιο [V/cm]
-15243.88
-3723.63
3476.07
8896.24
13456.05
20640.95
25918.93
31352.09

Figure 7: Δ_1 ΥποΕρωτημα

Figure 8: Δ_2 ΥποΕρωτημα

ε) ΥποΕοωτημα:

• Fia ton upologismo tou dunamikou sth metallouggikh epagh $V_{\text{x=0}}$ gia kabe V cohsimopoioume ton tupo :

$$V_{x=0} = \frac{q * N * W}{2 * \varepsilon} \tag{9}$$

και βρισκουμε:

Δυναμικό στη Μεταλλουργική Επαφή $V_{\text{x=0}}$

Δυναμικο στην μεταλλουργικη Επαφη για καθε ν_

Figure 9: Ε ΥποΕρωτημα

στ) ΓΡΑΦΗΜΑΤΑ?:

• Βρισκονται το καθενα στις σελιδες με το αντιστοιχο υποερωτημα.

3) $EP\Omega TH\Sigma H$:

α) ΥποΕοωτημα:

• Απο το γραφημα που μας δινεται του οποιου η κλιμακα της χωρητικοτητας ειναι κανονικοποιημενη γνωριζουμε πως $C_0=8*10^{-12}F$ και $C_5=3.2*10^{-12}F$ δηλαδη ειναι το 40% της μεγιστης τιμης για –5 V. Γνωριζοντας αυτες τις τιμες και εφαρμοζοντας τους τυπους -> 4 και -> 5 για τον υπολογισμο των α και β και επειτα του $V_{\rm bi}$ οπου το υπολογισα ισο με $V_{\rm bi}=0.95~{\rm eV}$

β) ΥποΕοωτημα:

• Για τον υπολογισμο του επιπεδου νοθευσης στην πλευρα χαμηλης νοθευσης N_L χρησιμοποιηθηκε ο τυπος :

$$N_L = \frac{2}{q * e_s * A^2 * |a|} \tag{10}$$

Και βρηκα ότι το $N_{\rm L}$ είναι ισο με $2.8*10^{15}$ cm^-3 το οποίο είναι μια ταξη μεγεθούς κατω.

γ) ΥποΕοωτημα:

- Για τον υπολογισμο του επιπεδου νοθευσης στην πλευρα υψηλης νοθευσης $N_{\rm H}$ χρησιμοποιηθηκε ο τυπος :
- $N_H = \left(\frac{n_i^2}{N_L}\right) * \exp\left(\frac{V_{\rm bi}*q}{k*T}\right)$

οπου χοησιμοποιησα σαν δεδομενο $n_i=1.5*10^{10}$ cm^-3 για διοδο πυριτιου (Si). Το αποτελεσμα που υπολογισα ειναι $N_H=7.76*10^{20}$ cm^-3 το οποιο βγαινει 5 ταξεις μεγεθους πανω απο την πλευρα με χαμηλη νοθευση κατι αναμενομενο.

ΣΥΜΠΕΡΑΣΜΑΤΑ:

Σχεδον ολα τα αποτελεσματα βγηκαν εντος των αναμενομενων κλιμακων εκτος της 3ης ερωτησης αλλα χωρις ΤΕΡΑΣΤΙΕΣ αποκλισεις αυτο ισως να προκυπτει απο τις προγραμματιστικές μου ικανοτητές καθως η julia είναι μια καινουργία γλωσσα που μαθαίνω.