Dodatni zadatci za vježbu - 1. knjižica

- 1. Napišite tablicu istinitosti za sljedeće formule algebre sudova:
 - (a) $(x \Rightarrow y) \lor \neg y$
 - (b) $(x \land (x \Rightarrow y)) \Rightarrow y$
- 2. Maksimalno pojednostavnite formulu algebre sudova $\neg(\neg A \land (B \lor \neg C))$.
- 3. Zadan je sud "Postoji naseljeni otok u državi Liliput čiji svi stanovnici govore engleski i francuski". Koji je od sljedećih sudova negacija zadanog suda:
 - (a) Na svakom naseljenom otoku države Liliput svaki stanovnik ne govori engleski ili ne govori francuski (ili oboje).
 - (b) Na svakom naseljenom otoku države Liliput postoji stanovnik koji ne govori engleski ili ne govori francuski (ili oboje).
 - (c) Postoji naseljeni otok države Liliput na kojem postoji stanovnik koji ne govori engleski ili ne govori francuski (ili oboje).
 - (d) Na svakom naseljenom otoku države Liliput postoji stanovnik koji ne govori ni engleski ni francuski.
 - (e) Postoji naseljeni otok države Liliput na kojem postoji stanovnik koji ne govori ni engleski ni govori francuski.
- 4. Zadani su sljedeći sudovi

$$A \equiv (\forall x \in \mathbf{R}^+)(\exists y \in \mathbf{R}^+)(y \ge x^2 \land y \le x^3)$$

$$B \equiv (\forall x \in \mathbf{R})(\forall y \in \mathbf{R})(x^2 = 2xy \Rightarrow x = 2y)$$

$$C \equiv (\forall x \in \mathbf{R})(\forall y \in \mathbf{R})(x < y \Rightarrow x^2 < y^2)$$

$$D \equiv (\forall x \in \mathbf{R})(\forall y \in \mathbf{R})(x^2 = y^2 \Rightarrow x = y).$$

Negirajte svaki od danih sudova i zapišite ga ne koristeći znak negacije. Koji je od sudova istinit: A ili $\neg A$, B ili $\neg B$, C ili $\neg C$, D ili $\neg D$?

- 5. Neka je A skup od m elemenata, a n skup od n elemenata, $m,n\in \mathbb{N},$ m>n.
 - (a) Postoji li injekcija iz A u B?
 - (b) Postoji li injekcija iz B u A?
 - (c) Postoji li surjekcija iz A u B?
 - (d) Postoji li surjekcija iz B u A?

Obrazložite odgovore!

- 6. Zadana je funkcija $f: \mathbf{R} \to (-\infty, 2010], f(x) = 2010 |x|.$
 - (a) Je li to surjekcija?
 - (b) Je li to injekcija?
- 7. Matematičkom indukcijom dokažite da je
 - (a) $\sum_{i=1}^{n} i \cdot i! = (n+1)! 1, \forall n \in \mathbf{N}.$
 - (b) $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}, \forall n \in \mathbf{N}.$
 - (c) $5^n + 2^{n-1}$ djeljivo s 3, $\forall n \in \mathbf{N}$.
 - (d) $3^n \cdot (n!)^2 < (2n)!, \forall n \in \mathbb{N}, n \ge 5.$
- 8. Skicirajte u Gaussovoj ravnini krivulje zadane uvjetom:
 - (a) |z 1 + i| = 2
 - (b) |z+1| + |z-1| = 3
 - (c) $arg(z^6) = \frac{3\pi}{2}$
- 9. Nađite sve kompleksne brojeve z koji zadovoljavaju oba sljedeća uvjeta:

$$|z| = 1$$

$$|z - i| = 1$$

- 10. Riješite jednadžbu u skupu C:
 - (a) $z^4 = (1 \sqrt{3}i)^8$
 - (b) $z^6 = (1 \sqrt{3}i)^5 \cdot (\sqrt{3} + i)^{13}$
 - (c) $z^3 = \frac{(1-i)^9}{(-\sqrt{3}+i)^6}$
 - (d) $z^5 = \overline{z}$
 - (e) $z^5 \cdot (1+i) = \overline{z}$
 - (f) $z^8 + 3z^4 + 2 = 0$
 - (g) $z^3 + z^{-3} = i$
 - (h) $z^8 + z^6 + 2z^4 + z^2 + 1 = 0$
- 11. Nađite sve $z \in \mathbf{C}$ koji zadovoljavaju jednadžbu

$$\left(z + \frac{3}{4}i\right)^3 = i$$

i ispitaj je li za neko od tih rješenja z vrijedi Imz>0.

12. Nađi sve $z \in \mathbf{C}$ za koje vrijedi $arg(z^3) = \frac{3\pi}{2}$ i |z-2| = 1.

Rješenja dodatnih zadataka za vježbu - 1. knjižica

- 1. Obje formule su tautologije.
- 2. $\neg(\neg A \land (B \lor \neg C)) \equiv A \lor \neg(B \lor \neg C)) \equiv A \lor (\neg B \land C)$.
- 3. Sud b).

4.
$$\neg A \equiv (\exists x \in \mathbf{R}^+)(\forall y \in \mathbf{R}^+)(y < x^2 \lor y > x^3)$$
$$\neg B \equiv (\exists x \in \mathbf{R})(\exists y \in \mathbf{R})(x^2 = 2xy \land x \neq 2y)$$
$$\neg C \equiv (\exists x \in \mathbf{R})(\exists y \in \mathbf{R})(x < y \land x^2 \ge y^2)$$
$$\neg D \equiv (\exists x \in \mathbf{R})(\exists y \in \mathbf{R})(x^2 = y^2 \land x \neq y).$$

Istiniti su sudovi $\neg A$, $\neg B$, $\neg C$ i $\neg D$.

- 5. (a) Ne.
 - (b) Da.
 - (c) Da.
 - (d) Ne.
- 6. (a) Da.
 - (b) Ne.
- 7. (a) Tvrdnja vrijedi za n = 1.

Pretpostavimo sada da je $\sum_{i=1}^{n} i \cdot i! = (n+1)! - 1$ za neki $n \in \mathbb{N}$. Tada je, po toj pretpostavci, $\sum_{i=1}^{n+1} i \cdot i! = \sum_{i=1}^{n} i \cdot i! + (n+1) \cdot (n+1)! = (n+1)! - 1 + (n+1) \cdot (n+1)! = (n+1)! (1+n+1) - 1 = (n+2)! - 1$.

- (b)
- (c) Za n = 1 je $5 + 1 = 6 = 2 \cdot 3$.

Pretpostavimo sada da je $5^n + 2^{n-1}$ djeljivo s 3 za neki $n \in \mathbb{N}$. Tada je $5^{n+1} + 2^n = 5 \cdot 5^n + 2 \cdot 2^{n-1} = 3 \cdot 5^n + 2 \cdot (5^n + 2^{n-1})$, što je, po pretpostavci djeljivo s 3.

(d) Tvrdnja vrijedi za n=5.

Pretpostavimo sada da je $3^n \cdot (n!)^2 < (2n)!$ za neki $n \in \mathbb{N}, n \geq 5$. Tada je, po toj pretpostavci, $3^{n+1} \cdot ((n+1)!)^2 = 3 \cdot 3^n \cdot (n+1)^2 \cdot (n!)^2 < 3(n+1)^2 \cdot (2n)!$.

Pokažemo li da je $3(n+1)^2 \cdot (2n)! \le (2n+2)!$, tvrdnja će biti dokazana. Ta je nejednakost ekvivalentna s $3(n+1)^2 \le (2n+2)(2n+1)$, odnosno s $3n^2 + 6n + 3 \le 4n^2 + 6n + 2$, tj. s $n^2 \ge 1$, što je ispunjeno za svaki $n \in \mathbb{N}$.

- 8. (a) $(x-1)^2 + (y+1)^2 = 4$; to je kružnica sa središtem u točki (1,-1) i polumjerom 2.
 - (b) Stavimo li z=x+yi, dobivamo jednadžbu $\sqrt{(x+1)^2+y^2}+\sqrt{(x-1)^2+y^2}=3$

koja, nakon sređivanja, prelazi u $\frac{4x^2}{9} + \frac{4y^2}{5} = 1$; radi se o elipsi.

Primjedba: Prisjetite se definicije elipse i zadatak ćete riješiti brže.

- (c) $argz = \frac{\pi}{4} + \frac{k\pi}{3}$, k = 0, 1, 2, 3, 4, 5; radi se o šest polupravaca (koji, u ovom slučaju, tvore tri pravca); oprez $argz = \phi$, za dani ϕ jest polupravac, a ne pravac.
- 9. Iz sustava jednadžbi $x^2+y^2=1$ i $x^2+(y-1)^2=1$, lagano dobivamo $x=\pm\frac{\sqrt{3}}{2}$ i $y=\frac{1}{2}$, pa su rješenja $z_{1,2}=\pm\frac{\sqrt{3}}{2}+\frac{1}{2}i$,

Savjet: Geometrijski interpretirajte uvjete zadatka.

10. (a) $z_{1,2,3,4} = 4\operatorname{cis}(\frac{\pi}{3} + \frac{k\pi}{2}), k = 0, 1, 2, 3.$

Napomena: $\operatorname{cis}\phi$ označava $\operatorname{cos}\phi+i\sin\phi$.

Oprez: Pogrešno bi bilo kratiti potencije; kompleksni korijen je višeznačan; jednadžba $z^n = w$, gdje je w zadani kompleksan broj ima n rješenja.

Savjet: Skicirajte rješenja u Gaussovoj ravnini i geometrijski ih interpretirajte.

- (b) $z_{1,2,3,4,5,6}=8\mathrm{cis}(\frac{\pi}{12}+\frac{k\pi}{3}),\ k=0,1,2,3,4,5.$ Savjet: Skicirajte rješenja u Gaussovoj ravnini i geometrijski ih interpretirajte.
- (c) Zadatak je sličan prethodnima.
- (d) Vrijedi $arg(z^5) = arg(\overline{z}) + 2k\pi$ i $|z^5| = |\overline{z}|$. Tako imamo $5argz = -argz + 2k\pi$, tj. $6argz = 2k\pi$, odakle imamo

$$argz = \frac{k\pi}{3}, \qquad k = 0, 1, 2, 3, 4, 5.$$

Iz drugog uvjeta slijedi |z|=1 ili |z|=0.

Tako ukupno imamo sedam rješenja:

$$z_{1,2,3,4,5,6} = \operatorname{cis}(\frac{k\pi}{3}), k = 0, 1, 2, 3, 4, 5.$$

 $z_7 = 0.$

Savjet: Napišite prvih šest rješenja bez korištenja funkcija sinus i kosinus.

Primjedba: Zadatak se može riješiti i na drugi način, tako da se polazna jednadžba najprije pomnoži sa z, čime se dobiva $z^6 = |z|^2$. Odatle odmah slijedi |z| = 0 ili |z| = 1. Prvi slučaj vodi na rješenje z = 0, a drugi na $z^6 = 1$, što daje preostalih šest rješenja.

- (e) Zadatak je sličan prethodnome. Na početku imamo $arg(z^5(1+i)) = arg(\overline{z}) + 2k\pi$ i $|z^5 \cdot (1+i)| = |\overline{z}|$. Tada je $5argz + arg(1+i) = -argz + 2k\pi$ i $|z|^5 \cdot |1+i| = |z|$, itd.
- (f) $z^8 + 3z^4 + 2 = (z^4 + 1)(z^4 + 2) = 0$. Rješenja su četvrti korijeni iz -1 i četvrti korijeni iz -2.

Primjedba: Kako se radi o algebarskoj jednadžbi osmog stupnja, odmah znamo da ona ima osam kompleksnih rješenja brojeći njihovu kratnost (u ovom slučaju, sva su rješenja kratnosti 1).

- (g) Zadatak je sličan prethodnome. Iz $z^3+z^{-3}=i$ dobivamo $z^6-iz^3+1=0$; rješavamo najprije kvadratnu jednadžbu u varijabli z^3 , a potom vadimo treće korijene $z_{1,2,3}=\sqrt[3]{\frac{\sqrt{5}-1}{2}\mathrm{cis}\frac{\pi}{2}}$ i $z_{4,5,6}=\sqrt[3]{\frac{\sqrt{5}-1}{2}\mathrm{cis}\frac{3\pi}{2}}$. Dovršite sami.
- (h) $z^8 + z^6 + 2z^4 + z^2 + 1 = z^8 + z^6 + z^4 + z^4 + z^2 + 1 = z^4(z^4 + z^2 + 1) + z^4 + z^2 + 1 = (z^4 + 1)(z^4 + z^2 + 1) = 0$, itd.
- 11. $z + \frac{3}{4}i = \sqrt[3]{i}$, itd.
- 12. $argz=\frac{\pi}{2}+\frac{2k\pi}{3},\ k=0,1,2$. Interpretirajte li geometrijski ovaj uvjet (z leži na nekom od tri polupravca, te interpretirate li geometrijski drugi uvjet |z-2|=1 (z leži na kružnici sa središtem u točki (2,0) i polumjerom 1), odmah se vidi da se rješenje može dobiti jedino eventualno za slučaj $argz=\frac{11\pi}{6}$. Uvrstavanjem u drugi uvjet lako se dobije rješenje $z=\frac{3}{2}-\frac{\sqrt{3}}{2}i$.