

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Li-Ying Yang

Confirmation No.: 1913

Filed: June 19, 2006

Group Art Unit: 1794

Application No: 10/565,465

Examiner: Sheeba Ahmed

For: SINGLE PLY THERMOPLASTIC POLYOLEFIN (TPO) ROOFING MEMBRANES
HAVING SUPERIOR HEAT SEAM PEEL STRENGTHS AND LOW
TEMPERATURE FLEXIBILITY

Mail Stop: AF
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

DECLARATION OF DR. LI-YING YANG

EDN-2794

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Li-Ying Yang) Group Art Unit 1773
Serial No. : 10/627,847) Examiner Monique R. Jackson
Filed : 07/25/2003)

For : SINGLE PLY THERMOPLASTIC POLYOLEFIN (TPO)
ROOFING MEMBRANES HAVING SUPERIOR HEAT SEAM
PEEL STRENGTHS AND LOW TEMPERATURE FLEXIBILITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

DECLARATION UNDER 37 CFR 1.132
OF DR. LI-YING YANG

1. I, DR. LI-YING YANG, hereby depose and say:
2. That I am a named inventor in the above-identified U.S. patent application.
3. That I received a Bachelor of Engineering in Chemical Engineering, June 1988, Tamkang University, Taipei, Taiwan, a Master of Science in Chemical Engineering, May 1991, University of Maryland at College Park, MD, Thesis Title: "Melting and Solidification Behavior of Blends of Poly(Butylene Terephthalate) and High Density Polyethylene" and a Ph.D. in Chemical Engineering, May 1994, University of Maryland at College Park, MD, Dissertation Title: "Morphological Development during Blending of Linear Low Density Polyethylene and Polystyrene".

SERIAL NO. 10/627,847

That I was a Research Scientist (July 1995-August 1999), at Armstrong World Industries, Innovation Center, Lancaster, Pennsylvania and Principal Scientist (August 1999-Present), GAF Materials Corporation, R&D, Wayne, New Jersey. Technical leader in a single-ply thermoplastic polyolefin products.

That I am a named inventor in 3 U.S. patents, 4 U.S. patent applications, and 6 technical publications, in the fields of polymer engineering, and roofing products.

4. That the invention claimed herein was reduced to practice before the effective date of March 12, 2002 of the Glogovsky U.S. Patent 6,743,843 reference which was the filing date of the provisional application.

5. That I prepared a single ply roofing membrane as shown in my notebook pages (copy attached) according to the claims of the application in which both cap and base layers were made of metallocene-catalyzed polyethylene and additives, and it had the peel strength and brittleness point of claim 1.

6. I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Li-Ying Yang

Date 10/28/04

Attachment – Notebook pages

Open aging
ASTM D-413

Sample	Date Produced	Date put in Control Cap	Date Tested	Aging Days	Clean Procedure	Welding Speed	% AVG.	S.D.	Avg.	S.D.	Hand Pulled	Comments
					(FPM)	FTB	Max. Load	Load @ 2" ext.	Load @ 2" ext.	Load @ 2" ext.	% FTB	
TP02+				0	Unclean	12	<10	7	3	7	0	
TP02+				1	Unclean	17	0	1	0	0	0	
TP02+				1	Unclean	16	0	12	3	6	3	50
TP02+				4	Unclean	12	0	2	1	1	0	
TP02+				4	Unclean	16	0	1	0	0	0	
TP02+				4	Unclean	16	0	1	0	0	0	
TP02+				7	Xylene	12	75	27	4	23	2	100
TP02+				7	Xylene	16	5	15	6	8	2	80
TP02+				7	Xylene	16	5	14	1	8	2	60
TP02+				7	Xylene	16	5	14	1	8	2	50

Open Aging (158F)

Sample	Date Produced	Date put in Control Cap	Date Tested	Aging Days	Clean Procedure	Welding Speed	% AVG.	S.D.	Avg.	S.D.	Hand Pulled	Comments
					(FPM)	FTB	Max. Load	Load @ 2" ext.	Load @ 2" ext.	Load @ 2" ext.	% FTB	
TP02+EX				0	Unclean	12	40	26	16	10	14	100
TP02+EX				1	Unclean	16	0	11	5	0	0	0
TP02+EX				1	Unclean	16	0	11	4	7	2	20
TP02+EX				4	Unclean	12	55	19	3	16	3	95
TP02+EX				4	Unclean	16	0	1	1	0	0	0
TP02+EX				4	Unclean	16	0	1	1	0	0	0
TP02+EX				7	Xylene	12	95	41	9	35	10	100
TP02+EX				7	Xylene	16	45	31	4	23	3	100
TP02+EX				7	Xylene	16	75	26	2	22	5	100

outdoor exposure
% seam

Sample	Date Produced	Date put in Control Cap	Date Tested	Aging Days	Clean Procedure	Welding Speed	% AVG.	S.D.	Avg.	S.D.	Hand Pulled	Comments
					(FPM)	FTB	Max. Load	Load @ 2" ext.	Load @ 2" ext.	Load @ 2" ext.	% FTB	
EX1				0	Unclean	12	100	62	5	32	3	100
EX1				0	Unclean	16	100	66	4	44	6	100
EX1				1	Unclean	12	100	63	4	44	6	100
EX1				1	Unclean	16	100	65	2	32	1	100
EX1				1	Unclean	16	100	65	6	35	3	100
EX1				1	Unclean	16	85	74	9	50	7	100
EX1				4	Unclean	12	67	27	2	64	4	100
EX1				4	Unclean	16	100	67	5	41	3	100
EX1				7	Unclean	12	100	63	7	51	12	100
EX1				7	Unclean	16	100	61	4	56	12	100
EX1				7	Unclean	16	100	69	5	57	10	100
EX1				7	Unclean	16	90	60	13	65	15	100

Formulations for test in Week of

Sample ID	TPO2+ Core	TPO2+EX Core	TPO2+ Cap
Formulation layer			
Raw Materials			
DFDB 1085	61	61	50
Exxon 3128 (M. I.=1.2)			
DMDA 8920	17		
CEFOR(PP)	17		
Exxon 3022 (M. I.=9)		(34)	
JSR EP02P			10
Polybond 3000	2.5	2.5	
Mg(OH)2, Kisuma 5A		25	
TIO2		5	
CaCO3		5	
Core Conc. (LR93534)	2.5	2.5	
Cap Concentrate		5	
Total	100	100	100

Tensile

Ex 2

Sample ID	BS-Core4	BS-Cap2	EX-Core1	EX-Cap1
Formulation layer				
Raw Materials				
Exxon 3128 ($M_1 = 12$)		76	29	
Exxon 3022 ($M_1 = 12$)		17.5	32.1	
KS358	76	29		
KS359	17.5	32.1		
TIO2	1.5	3	3	
Mg(OH)2	3	35	35	
FS301		0.12	0.12	
EB40-68FF		0.78		
Chemosorb119			0.47	
Tinuvin123			0.31	
Cap Conc.				
Core Conc.		2		
Total	100	100	100	100

BS-Core4+BS-Cap2=BS4
EX-Core1+EX-Cap1=EX1

B7850 ($M_1 = 0.5$)
B7820 ($M_1 = 5$)

