PART 1: Sizing Chart

1 DEVICE SIZING USING SA

Part 2: CD Amplifier

OP ANALYSIS

1 Create a new schematic for the CD amplifier

2 SIMULATE THE **OP** POINT. REPORT A SNAPSHOT CLEARLY SHOWING THE FOLLOWING PARAMETERS

3 CHECK THAT THE TRANSISTOR OPERATES IN SATURATION.

......

Cadence Hint: The "region" meaning is as follows: (0 cut-off, 1 triode, 2 sat, 3 subth, and 4 breakdown).

Region is 2, and vgs = vds so it is diode connected transistor.

AC ANALYSIS

PERFORM AC ANALYSIS (1Hz:10GHz, LOGARITHMIC,20POINTS/DECADE) TO INVESTIGATE THE FREQUENCY DOMAIN PEAKING.

2 REPORT THE BODE PLOT MAGNITUDE

3 Do you notice frequency domain peaking? How much is the peaking?

4 ANALYTICALLY CALCULATE THE QUALITY FACTOR (USE APPROXIMATE EXPRESSIONS). IS THE SYSTEM UNDERDAMPED OR OVERDAMPED?

Cl >> C (mos)

So we can use approximate expressions Q= $\sqrt{\frac{gm(cgs+cgd)Rsig}{cL}}$ = 2.56

But Rsig is so big so

$$Q = \frac{\sqrt{b2}}{b1}$$

$$\sqrt{b2} = \left(\sqrt{\frac{CL(Cgs + Cgd) + CgsCgd}{gm}}\right)$$
Rsig

b1=CgdRsig +
$$\frac{Cgs+Cl}{gm}$$

So, Q= 1.59

Q>0.5 SO IT IS underdamped system.

5 [OPTIONAL] PERFORM PARAMETRIC SWEEP: CL = 2P, 4P, 8P.

Parameters	: CL=2p				
1	LAB4_lab_1	dB20(VF("/VOUT	<u>~</u>		
1	LAB4_lab_1	phase(VF("/VOU	<u></u>		
1	LAB4_lab_1	ymax(dB20(VF("	4.329		
Parameters	: CL=4p				
2	LAB4_lab_1	dB20(VF("/VOUT	<u>~</u>		
2	LAB4_lab_1	phase(VF("/VOU	<u>~</u>		
2	LAB4_lab_1	ymax(dB20(VF("	3.354		
Parameters	: CL=8p				
3	LAB4_lab_1	dB20(VF("/VOUT	<u>L</u>		
3	LAB4_lab_1	phase(VF("/VOU	<u></u>		
3	LAB4_lab_1	ymax(dB20(VF("	1.892		

5.1 REPORT BODE PLOT MAGNITUDE OVERLAID ON SAME PLOT.

5.2 Report the peaking vs CL.

5.3 COMMENT

As we increasing Cl, Q decreases so the peaking decreases as ω out becomes more dominant and also ωo decreases (the frequency at which peaking happens is decreased).

6 [OPTIONAL] PERFORM PARAMETRIC SWEEP: RSIG = 20k, 200k, 2M.

6.1 REPORT BODE PLOT MAGNITUDE OVERLAID ON SAME PLOT

6.2 REPORT THE PEAKING VS RSIG

6.3 COMMENT

As increasing Rsig, Q increased so the peaking increased but the natural frequency decreased, so if we decreased Rsig we will see less peaking and higher ωo (flatter response).

Transient Analysis

USE A PULSE SOURCE AS YOUR TRANSIENT STIMULUS AND SET IT AS FOLLOWS: DELAY TIME = 2US, INITIAL (ZERO VALUE) = 0V, PERIOD = 8US, PULSE (ONE VALUE) = 100MV, FALL TIME = 1NS, RISE TIME = 1NS, PULSE WIDTH = 4US.

2 Run transient analysis for **10**us to investigate the time domain ringing

3 REPORT VIN AND VOUT OVERLAID VS TIME.

- 4 CALCULATE THE DC VOLTAGE DIFFERENCE (DC SHIFT) BETWEEN VIN AND VOUT.
- **4.1** What is the relation between the DC shift and VGS of the transistor? the DC shift = VGS of the transistor=605mv
- **4.2** How to shift the signal down instead of shifting it up? By using NMOS.
- 5 Do you notice time domain ringing? How much is the overshoot?

YES, $overshoot = e^{\frac{-\pi}{\sqrt{4*(Q)^2-1}}}$ = 35.3 (if we didn't use the approximated Q)

6 [OPTIONAL] PERFORM PARAMETRIC SWEEP: CL = 2P, 4P, 8P.

6.1 REPORT VOUT VS TIME OVERLAID ON SAME PLOT.

6.2 REPORT THE OVERSHOOT VS CL.

Parameters:	CL=2p				
1	LAB4_lab_1	VT("/VOUT")	<u>~</u>		
1	LAB4_lab_1	VT("/VIN")	<u>L</u>		
1	LAB4_lab_1	VT("/VSIG")	<u>L</u>		
1	LAB4_lab_1	overshoot(VT("/	35.15		
Parameters:	CL=4p				
2	LAB4_lab_1	VT("/VOUT")	<u>L</u>		
2	LAB4_lab_1	VT("/VIN")	<u>L</u>		
2	LAB4_lab_1	VT("/VSIG")	<u>L</u>		
2	LAB4_lab_1	overshoot(VT("/	29.58		
Parameters: CL=8p					
3	LAB4_lab_1	VT("/VOUT")	<u>L</u>		
3	LAB4_lab_1	VT("/VIN")	<u>L</u>		
3	LAB4_lab_1	VT("/VSIG")	<u>L</u>		
3	LAB4_lab_1	overshoot(VT("/	20.29		

6.3 COMMENT

AS CL increases, the overshot decreases

7 [OPTIONAL] PERFORM PARAMETRIC SWEEP: RSIG = 20K, 200K, 2M

7.1 REPORT VOUT VS TIME OVERLAID ON SAME PLOT.

7.2 REPORT THE OVERSHOOT VS RSIG

Point	Test	Output	Nominal	Spec	Weight	Pass/Fail
Filter	Filter	Filter	Filter	Filter	Filter	Filter
Parameters:	RSIG=20K					
1	LAB4_lab_1	VT("/VOUT")	<u>~</u>			
1	LAB4_lab_1	VT("/VIN")	<u>L</u>			
1	LAB4_lab_1	VT("/VSIG")	<u>L</u>			
1	LAB4_lab_1	overshoot(VT("/	106.2m			
Parameters:	RSIG=200K					
2	LAB4_lab_1	VT("/VOUT")	<u>~</u>			
2	LAB4_lab_1	VT("/VIN")	<u>L</u>			
2	LAB4_lab_1	VT("/VSIG")	<u>L</u>			
2	LAB4_lab_1	overshoot(VT("/	6.235			
Parameters: RSIG=2M						
3	LAB4_lab_1	VT("/VOUT")	<u>~</u>			
3	LAB4_lab_1	VT("/VIN")	<u>~</u>			
3	LAB4_lab_1	VT("/VSIG")	<u>~</u>			
3	LAB4_lab_1	overshoot(VT("/	35.15			

7.3 COMMENT

AS Rsig increases, the overshot increases and at low impedance we can see there is almost no overshoot.

Zout (Inductive Rise)

1 WE WANT TO SIMULATE THE CD AMPLIFIER OUTPUT IMPEDANCE.
REPLACE CL WITH AN AC CURRENT SOURCE WITH MAGNITUDE = 1.
REMOVE THE AC INPUT SIGNAL.

2 PERFORM AC ANALYSIS (1Hz:10GHz, LOGARITHMIC, 10POINTS/DECADE). THE VOLTAGE ACROSS THE AC CURRENT SOURCE IS ITSELF THE OUTPUT IMPEDANCE.

3 PLOT THE OUTPUT IMPEDANCE (MAGNITUDE AND PHASE) VS FREQUENCY. DO YOU NOTICE AN INDUCTIVE RISE? WHY?

Yes, as $\omega z < \omega p$, because 1/gm < Rsig, so the zero causes a 20dB/dec rise like inductor (with increasing frequency the impedance increases).

4 Does **Zout** fall at high frequency? Why?

Yes, AS at high frequency a pole with Cgs appears after the pole with cgd and because of these two poles after the zero we have a fall with -20 db/dec at high frequency.

5 ANALYTICALLY CALCULATE THE ZEROS, POLES, AND MAGNITUDE AT LOW/HIGH FREQUENCY FOR **Zout**. COMPARE WITH SIMULATION RESULTS IN A TABLE.

ī		Poles (Hz)		
	Real		Imaginary	Qfactor
	1 -1.34828e+0 2 -1.15850e+0		0.00000e+00 0.00000e+00	5.00000e-01 5.00000e-01
		Zeros (Hz) at V(<u>VOUT</u> ,0)/I12	
	Real		Imaginary	Qfactor
	1 -1.17422e+0	6	0.00000e+00	5.00000e-01

	Analytical	Sim
Zero	1.34 MHZ	1.17 MHZ
Pole1	13.8 MHZ	13.48 MHZ
Pole2	103.7 MHZ	115.85 MHZ
Zout LF	79.8 DB	79.8 DB
Zout Hf	117.54 DB	100.07 DB