Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Wiktor Zuba

Nr albumu: 320501

Efektywne algorytmy generacji obiektów kombinatorycznych???

Praca magisterska na kierunku INFORMATYKA

Praca wykonana pod kierunkiem **prof. Wojciech Rytter** Instytut Informatyki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

	Streszczenie
???	
	Słowa kluczowe
???	
	Dziedzina pracy (kody wg programu Socrates-Erasmus)
???	
	Klasyfikacja tematyczna
???	

Tytuł pracy w języku angielskim

 $Effective \ algorithms \ of \ combinatorial \ objects \ generation \ref{eq:combinatorial}$

Spis treści

W	prow	zadzenie
1.	Wła	sności hiperkostki
	1.1.	Podstawowe definicje
		Podstawy kombinatoryczne
	1.3.	Własność ekspansji
2.	Pro	blemy na wadliwej hiperkostce
	2.1.	Graf z wadami
	2.2.	Spójność wadliwej hiperkostki
		2.2.1. Podejście ekspansywne
		2.2.2. Redukcja przy pomocy transformacji ścieżek
	2.3.	Długie ścieżki i cykle w grafie
		2.3.1. Definicje
		2.3.2. Długie ścieżki
		2.3.3. Długie cykle
		2.3.4. Długie pary ścieżek
	2.4.	Inne problemy
Bi	bliog	rafia

Wprowadzenie

Rozdział 1

Własności hiperkostki

1.1. Podstawowe definicje

Definicja 1.1.1. Dla $n \in \mathbb{N}$ $[n] = \{0, ..., n-1\}$ (zbiór pierwszych n liczb naturalnych).

Definicja 1.1.2. Hiperkostką wymiaru $n(Q_n)$ nazwiemy graf, w którym każdy wierzchołek odpowiada ciągowi binarnemu długości n, zaś krawędzią połączone są te wierzchołki, których ciągi binarne różnią się na dokładnie jednej pozycji.

$$V(Q_n) = \{(v_0, ..., v_{n-1}) : v_i \in \{0, 1\}\}, E(Q_n) = \{(u, v) : \sum_i |u_i - v_i| = 1\}$$

W przypadku pełnej hiperkostki bardzo łatwo jest określić długość najkrótszej ścieżki pomiedzy wierzchołkami – jest ona równa ilości pozycji na których różnią się ciągi tych wierzchołków.

Hiperkostka jest grafem dwudzielnym, w którym jedną składową jest zbiór wierzchołków o ciągach z parzystą liczbą jedynek, zaś drugą tych o ich nieparzystej liczbie.

Cowięcej przy badaniu hiperkostek często dzieli się je na n+1 warstw, gdzie dla $i \in [n+1]$ i-tą warstwę stanowią te wierzchołki, których ciągi binarne mają dokładnie i jedynek (warstwa zawiera zatem wierzchołki oddalone o i od wierzchołka zerowego $(\overline{0})$).

Definicja 1.1.3. Dla dwóch wierzchołków hiperkostki defininiujemy: $u\Delta v = \{i : u_i \neq v_i\}$, gdzie $(u_0, ...u_{n-1})$ i $(v_0, ..., v_{n-1})$ to ciagi binarne wierzchołków u i v odpowienio $(|u\Delta v|)$ wyznacza odległość wierzchołków w hiperkostce).

Definicja 1.1.4. Numerowaniem klasycznym (naturalnym) hiperkostki nazwiemy takie numerowanie $\varphi: V(Q_n) \to \{1, ..., |V(Q_n)|\}$ jej wierzchołków, że $\varphi(v) = 1 + \sum_i v_i \cdot 2^i$

Definicja 1.1.5. Numerowaniem warstwowym hiperkostki nazwiemy jej numerowanie w kolejności przeszukiwania grafu wszerz zaczynając od wierzchołka $\overline{0}$ z wybieraniem sąsiadów w kolejności leksykograficznej.

Uwaga 1. Jest to takie numerowanie $\varphi: V(Q_n) \to \{1, ..., |V(Q_n)|\}$ jej wierzchołków, że wierzchołki z i-tej warstwy otrzymują numery od $\sum_{j=0}^{i-1} \binom{n}{j} + 1$ do $\sum_{j=0}^{i} \binom{n}{j}$. W obrębie jednej warstwy numery przyznawane są przeciwnie do kolejności leksykograficznej na odwróconych słowach. $\varphi(v) > \varphi(u) \Leftrightarrow (\sum_{i=0}^{n} v_i > \sum_{i=0}^{n} u_i) \vee ((\sum_{i=0}^{n} v_i = \sum_{i=0}^{n} u_i) \wedge (\sum_{i=0}^{n} 2^{n-i}v_i < \sum_{i=0}^{n} 2^{n-i}u_i))$

Dowód. Indukcyjnie po warstwach.

Dla warstwy 0 oczywiste.

Zakładając, że *i*-ta warstwa jest ponumerowana w tym porządku weźmy dwa wierzchołki u, v z warstwy i+1: $u=(\overline{y_1},1,\overline{x}), v=(\overline{y_2},0,\overline{x}).$

Jeśli $\overline{y_1}$ zawiera same 0, to $\overline{y_2}$ zawiera dokładnie jedną 1, sąsiedzi tych wierzchołków z poprzedniej warstwy o namniejszych numerach to odpowiednio $(\overline{0},0,x),(\overline{0},0,x)$, tak więc zostaną ponumerowane jako sąsiedzi tego samego wierzchołka, jednak u otrzyma mniejszy numer jako sąsiad mniejszy leksykograficznie.

Jeśli $\overline{y_1}$ zawiera 1, to $\overline{y_2}$ też, więc sąsiedzi tych wierzchołków z poprzedniej warstwy o namniejszych numerach to odpowiednio $(\overline{y_1'}, 1, \overline{x}), (\overline{y_2'}, 0, \overline{x})$, gdzie $\overline{y_1'}$ i $\overline{y_2'}$, to odpowiednio $\overline{y_1}$ i $\overline{y_2}$ z pierwszymi 1 zamienionymi na 0. Z założenia indukcyjnego sąsiad u ma mniejszy numer niż sąsiad v, więc u ma mniejszy numer niż v.

Definicja 1.1.6. Dla grafu G oraz wierzchołka $v \in V(G)$ definiujemy sąsiedztwo wierzchołka jako zbiór wierzchołków połączonych z nim krawędzią: $N(v) = \{u \in V(G) : (u, v) \in E(G)\}.$

Definicja 1.1.7. Dla grafu G oraz zbioru wierzchołków $S \subseteq V(G)$ definiujemy sąsiedztwo zbioru wierzchołków jako zbiór tych sąsiadów wierzchołków ze zbioru, które same do tego zbioru nie należą: $N(S) = (\bigcup_{v \in S} N(v)) \setminus S$

Definicja 1.1.8. Dla grafu G oraz zbioru wierzchołków $S \subseteq V(G)$ definiujemy wnętrze zbioru wierzchołków jako zbiór tych wierzchołków z S, których wszyscy sąsiadzi również należą do tego zbioru: $In(S) = \{v \in S : N(v) \subseteq S\}$

Definicja 1.1.9. Dla danego $V \subseteq V(G)$ $G[V] = (V, \{uv \in E(G) : u, v \in V\})$ oznacza podgraf indukowany przez podzbiór wierzchołków V.

Definicja 1.1.10. Dla danego $V \subseteq V(G)$ $G-V = G[V(G) \setminus V]$ oznacza graf G z usuniętymi wierzchołkami V.

Definicja 1.1.11. Dla danego grafu G

 $G^2 = (V(G), E(G) \cup \{uv : \exists_{w \in V(G)} uw \in E(G) \cap wv \in E(G)\})$ oznacza kwadrat grafu, czyli graf z dodanymi krawędziami między wierzchołkami oddalonymi o co najwyżej 2.

1.2. Podstawy kombinatoryczne

$$\binom{2n}{n} = \frac{2^{2n}\Gamma(n+\frac{1}{2})}{\sqrt{\pi}\Gamma(n+1)}, \qquad \binom{2n+1}{n} = \binom{2n+1}{n+1} = \frac{2^{2n+1}\Gamma(n+\frac{3}{2})}{\sqrt{\pi}\Gamma(n+2)}$$

$$\Gamma(z) = \int\limits_{0}^{\infty} x^{z-1}e^{-x}dx \quad \text{dla } n \in \mathbb{N} \ \Gamma(n) = (n-1)!,$$
 ogólniej dla $x \in \mathbb{R}, x > 1$ $\frac{\Gamma(x+1)}{\Gamma(x)} = x, \qquad \frac{\Gamma(x+\frac{1}{2})}{\Gamma(x)} < \frac{\Gamma(x+1)}{\Gamma(x+\frac{1}{2})} \Rightarrow \sqrt{x-\frac{1}{2}} < \frac{\Gamma(x+\frac{1}{2})}{\Gamma(x)} < \sqrt{x}$ Daje to ograniczenia: $\frac{2^{2n}}{\sqrt{\pi(n+\frac{1}{2})}} < \binom{2n}{n} < \frac{2^{2n}}{\sqrt{\pi n}}, \qquad \frac{2^{2n+1}}{\sqrt{\pi(n+\frac{3}{2})}} < \binom{2n+1}{n} = \binom{2n+1}{n+1} < \frac{2^{2n+1}}{\sqrt{\pi(n+1)}}$ Lub równoważnie: $\frac{2^n}{\sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})}} < \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor} < \frac{2^n}{\sqrt{\pi \lceil \frac{n}{2} \rceil}}$

Lemat 2. Dla $k \leq \lfloor \frac{n+1}{2} \rfloor$ zachodzi ograniczenie $\sum_{i=0}^{k-1} \binom{n}{i} \leq 2^{n-1} \frac{\binom{n}{k}}{\binom{n}{k-1}}$

Dowód. (Uogólnienie dowodu z podobnego lematu dla n = 2m, k < m z [1]) Załóżmy najpierw, że $k < \lfloor \frac{n}{2} \rfloor$

Zdefiniujmy
$$c = \frac{\binom{n}{k}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} < 1, t = \lfloor \frac{n}{2} \rfloor - k, \ A = \sum_{i=0}^{k-1} \binom{n}{i}, B = \sum_{i=k}^{\lfloor \frac{n}{2} \rfloor - 1} \binom{n}{i}$$

$$\forall_{1 \leq i \leq k} \frac{\binom{n}{k-i}}{\binom{n}{\lfloor \frac{n}{2} \rfloor - i}} < \frac{\binom{n}{k-i+1}}{\binom{n}{\lfloor \frac{n}{2} \rfloor - i+1}} \Leftrightarrow \frac{k-c+1}{n-k+c} < \frac{\lfloor \frac{n}{2} \rfloor - c+1}{\lceil \frac{n}{2} \rceil + c},$$

co wynika z szeregu prostych nierówności $\frac{k-c+1}{n-k+c}\leqslant \frac{k-c+1}{k+c+1}<\frac{\left\lfloor\frac{n}{2}\right\rfloor-c+1}{\left\lfloor\frac{n}{2}\right\rfloor+c+1}\leqslant \frac{\left\lfloor\frac{n}{2}\right\rfloor-c+1}{\left\lceil\frac{n}{2}\right\rceil+c})$

Daje nam to ograniczenia $\forall_{1 \leq i \leq k} \frac{\binom{n}{k-i}}{\binom{n}{\lfloor \frac{n}{n} \rfloor - i}} < c.$

Suma ostatnich twyrazów szeregu \bar{A} jest majoryzowana przez $c\cdot B,$ wcześniejszych t przez c razy suma ostatnich t (a więc przez $c^2 \cdot B$). Daje nam to oszacowanie $A < (c + c^2 + c^3 + \dots + c^{\left \lfloor \frac{k}{t} \right \rfloor}) \cdot B < (c + c^2 + c^3 + \dots) \cdot B = \frac{c}{1-c} \cdot B$. Jednocześnie $A + B = \sum_{i=0}^{\left \lfloor \frac{n}{2} \right \rfloor - 1} \binom{n}{i} < 2^{n-1}$. Pozostaje udowodnić przeze dlici z likici.

Pozostaje udowodnić przypadki większych k:

Dla
$$n = 2m, k = m \sum_{i=0}^{m-1} {2m \choose i} = 2^{2m-1} - \frac{1}{2} {2m \choose m} < 2^{2m-1} = 2^{n-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$$

Dla
$$n = 2m + 1, k = m \sum_{i=0}^{m-1} {2m+1 \choose i} = 2^{2m} - {2m+1 \choose m} < 2^{2m} = 2^{m-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$$

Dla
$$n=2m+1, k=m+1$$
 $\sum_{i=0}^{m} {2m+1 \choose i} = 2^{2m} = 2^{n-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$ (jedyna nieostra nierówność)

1.3. Własność ekspansji

Definicja 1.3.1. *Graf G posiada własność* ε –ekspansji wierzchołkowej, *jeżeli dla każdego zbioru wierzchołków* $S \subseteq V(G)$ *takiego*, *że* $|S| \leqslant \frac{|V(G)|}{2}$ *zachodzi* $|N(S)| \geqslant \varepsilon \cdot |S|$

9

Lemat 3. Zbiór pierwszych l wierzchołków hiperkostki według numerowania warstwowego posiada maksymalne wnętrze wśród zbiorów wielkości l.

Jest to jeden z lematów dowodzonych w pracy [2].

Lemat 4. Dla hiperkostki do udowodnienia własności ε_n -ekspansji wierzcholkowej wystarczy $rozważyć\ zbiory\ S\ postaci\ S_k, k \leq 2^{n-1}.$

Dowód. Weżmy dowolne $S \subseteq V(G), l = |S| + |N(S)|$ z Lematu 1.3 wynika, że $\frac{|N(S)|}{|S|} = \frac{|N(S)| + |S|}{|S|} - 1 \geqslant \frac{|S_l|}{|In(S_l)|} - 1 = \frac{|S_l \setminus In(S_l)|}{|In(S_l)|} \geqslant \frac{|N(In(S_l))|}{|In(S_l)|}$. Z definicji S_l wynika, że $In(S_l) = S_k$ dla

Pozostaje udowodnić, że wystarczy rozważyć te S_k , że $k \leq 2^{n-1}$

Dla $l = |N(S)| + |S| \ge (\varepsilon_n + 1) \cdot 2^{n-1}$ mamy $|S| > 2^{n-1}$ lub $|N(S)| \ge \varepsilon_n |S|$, wystarczy więc

rozważyć przypadek $l < (\varepsilon_n + 1) \cdot 2^{n-1}$. Dla n = 2m + 1 weżmy $k = 2^{n-1} = \sum_{i=0}^{m} {2m+1 \choose i}$, wtedy $S_k = \text{pełne } m + 1$ pierwszych warstw i $N(S_k) = \text{warstwa } m + 1$. Przykład ten pokazuje, że $\varepsilon_n \leqslant \frac{{2m+1 \choose m+1}}{2^{2m}}$, więc $l < 2^{2m} + {2m+1 \choose m+1} \Rightarrow S_l$ mieści się w pierwszych m + 2 warstwach $\Rightarrow S_k = In(S_l)$ mieści się w pierwszych m + 1warstwach $\Rightarrow k \leqslant 2^{2m} = 2^{n-1}$.

Dla n=2m weżmy $k=2^{n-1}=\sum_{i=0}^{m-1}{2m\choose i}+\frac{1}{2}{2m\choose m}$, wtedy $S_k=$ pełne m pierwszych warstw + połowa środkowej. W środkowej warstwie pierwsze ${2m-1\choose m-1}=\frac{1}{2}{2m\choose m}$ wierzchołków to dokładnie te, których ciągi binarne kończą się na 1. Wtedy też $S_k\cup N(S_k)$ to dokłanie pełne m+1 pierwszych warstw plus te wierzchołki z warstwy m+2, które kończą się na $1 \Rightarrow |N(S_k)| = \binom{2m-1}{m} + \binom{2m-1}{m} = \binom{2m-1}{m-1} + \binom{2m-1}{m} = \binom{2m}{m}$. Przykład ten pokazuje, że $\varepsilon_n \leqslant \frac{\binom{2m}{m}}{2^{2m-1}}$, więc $l < 2^{2m-1} + \binom{2m}{m} \Rightarrow S_l$ mieści się w piewszych m+1 warstwach plus tych wierzchołkach z warstwy m+2, które kończą się na $1 \Rightarrow k \leqslant 2^{n-1}$.

Wniosek 5. Hiperkostka wymiaru n nie posiada własności $\frac{2\sqrt{2}}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej.

$$\begin{array}{l} Dow \acute{od}. \ \ Dla \ n = 2m+1 \\ \frac{|N(S_{2^{2m}})|}{|S_{2^{2m}}|} = \frac{\binom{2m+1}{m+1}}{2^{2m}} = \frac{2^{2m+1}}{2^{2m}\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi(\frac{n}{2}+\frac{1}{2})}} = \frac{2\sqrt{2}}{\sqrt{\pi(n+1)}} < \frac{2\sqrt{2}}{\sqrt{\pi n}}. \\ Dla \ n = 2m \ \frac{|N(S_{2^{2m-1}})|}{|S_{2^{2m-1}}|} = \frac{\binom{2m}{m}}{2^{2m-1}} < \frac{2^{2m}}{2^{2m-1}\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi m}} = \frac{2}{\sqrt{\pi \cdot \frac{n}{2}}} = \frac{2\sqrt{2}}{\sqrt{\pi n}}. \end{array}$$

Twierdzenie 6. Hiperkostka Q_n posiada własność $\frac{1}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej.

$$Dow \'od. \text{ Je\'sli } k = \sum_{i=0}^{r} \binom{n}{i} \text{ (pełne } r+1 \leqslant \lfloor \frac{n}{2} \rfloor + 1 \text{ warstw}), \text{ to } \frac{|N(S_k)|}{|S_k|} = \frac{\binom{n}{r+1}}{\sum_{i=0}^{r} \binom{n}{i}} > \frac{\binom{n}{r+1} \binom{n}{\frac{n}{2}} \rfloor}{2^{n-1} \binom{n}{r+1}} = \frac{\binom{n}{r+1} \binom{n}{\frac{n}{2}} \rfloor}{2^{n-1}} > \frac{2^n}{2^{n-1} \sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})}} = \frac{2}{\sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})}} \geqslant \frac{2\sqrt{2}}{\sqrt{\pi(n+\frac{3}{2})}} \geqslant \frac{2}{\sqrt{\pi n}} \text{ (dla } n \geqslant 2).$$

$$2^{n-1} \sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})} \sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})} \sqrt{\pi(n + \frac{3}{2})} \sqrt{\pi n}$$

$$(n = 2m + 1, r = m \text{ rozważone w } 4)$$

$$\text{Jeśli } k = \sum_{i=0}^{r} \binom{n}{i} + \binom{n-1}{r} \text{ (pełne } r + 1 \leq \lfloor \frac{n}{2} \rfloor + 1 \text{ warstw plus te wierzchołki z warstwy } r + 2,$$

$$\text{których ciągi binarne kończą się na 1). }$$

$$|N(S_k) \cup S_k| = \sum_{i=0}^{r+1} \binom{n}{i} + \binom{n-1}{r+1} \Rightarrow |N(S_k)| = 2 \cdot \binom{n-1}{r+1}$$

$$\frac{|N(S_k)|}{|S_k|} = \frac{2 \cdot \binom{n-1}{r+1}}{\sum_{i=0}^{r} \binom{n}{i} + \binom{n-1}{r}} > \frac{2 \cdot \binom{n-1}{r+1} \binom{n}{2}}{2^{n-1} \cdot \binom{n}{r+1} + \binom{n-1}{r-1} \cdot \binom{n}{2}}} = \frac{2 \cdot \binom{n-1}{r+1} \binom{n}{2}}{2^{n-1} \cdot \binom{n-1}{r} + \binom{n-1}{r-1} + \binom{n-1}{r-1} \cdot \binom{n}{2}}} > \frac{2 \cdot \binom{n-1}{r+1} \binom{n}{2}}{2^{n-1} \cdot \binom{n-1}{r+1} + \binom{n-1}{r-1} \cdot \binom{n}{r}}} > \binom{n-1}{2} > \binom{n-1}{2\sqrt{2}} + \frac{1}{2} - 1 = \frac{2\sqrt{2}}{\sqrt{\pi(n+\frac{3}{2})} + \sqrt{2}}} > \frac{2}{\sqrt{\pi n}} \text{ (dla } n \geq 7).$$

W pozostałych przypadkach można otrzymać ograniczenie choć dużo gorsze wiedząc, że dodanie wierzchołka do S zmniejszy N(S) o co najwyżej 1.

Weźmy teraz
$$\sum_{i=0}^{r} {n \choose i} < k < \sum_{i=0}^{r} {n \choose i} + {n-1 \choose r}$$

Weźmy teraz
$$\sum_{i=0}^{r} {n \choose i} < k < \sum_{i=0}^{r} {n \choose i} + {n-1 \choose r}$$
 $\frac{|N(S_k)|}{|S_k|} > \frac{{n \choose r+1} - {n-1 \choose r}}{\sum_{i=0}^{r} {n \choose i} + {n-1 \choose r}} = \frac{{n-1 \choose r+1}}{\sum_{i=0}^{r} {n \choose i} + {n-1 \choose r}} \ge \frac{\frac{1}{2} {n \choose r+1}}{\sum_{i=0}^{r} {n \choose i} + \frac{1}{2} {n \choose r+1}} \left(\frac{\sqrt{\pi(n+\frac{3}{2})}}{\sqrt{2}} + 1 \right)^{-1} > \frac{1}{\sqrt{\pi n}} \text{ (dla } n \ge 7).$

Analogicznie da
$$\sum_{i=0}^{r} {n \choose i} + {n-1 \choose r} < k < \sum_{i=0}^{r+1} {n \choose i}$$

$$\frac{|N(S_k)|}{|S_k|} > \frac{2\binom{n-1}{r+1} - \binom{n-1}{r+1}}{\sum_{i=0}^{r+1} \binom{n}{i}} = \frac{\binom{n-1}{r+1}}{\sum_{i=0}^{r+1} \binom{n}{i}} > \frac{\binom{n-1}{r+1}}{2^{n-1} \frac{\binom{n-1}{r+1}}{\binom{n}{2}} + \binom{n}{r+1}} \geqslant \frac{\binom{n}{r+1} \binom{n}{2} \binom{n}{2}}{(2^{n-1} + \binom{n}{2} \binom{n}{2}) \binom{n}{r+1}} = \frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{2^{n-1} + \binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{2}}{\binom{n}{2}} > \frac{\binom{n}{r+1}}{\binom{n}{2}} > \frac{\binom{n}{r+1}}{\binom{n}{r+1}} > \frac{\binom{n}{r$$

$$\left(\frac{\sqrt{\pi(n+\frac{3}{2})}}{\sqrt{2}}+1\right)^{-1} > \frac{1}{\sqrt{\pi n}} \text{ (dla } n \geqslant 7\text{)}.$$

 Dla przypadków $n\leqslant 6$ można ręcznie sprawdzić wszystkie 2^{n-1} przypadków, aby również otrzymać oszacowanie $\frac{1}{\sqrt{\pi n}}$.

Rozdział 2

Problemy na wadliwej hiperkostce

2.1. Graf z wadami

Definicja 2.1.1. W grafie G możemy wyróżnić niektóre wierzcholki (czasem również krawędzie) i oznaczyć jako wadliwe. Graf z niepustym takim wyróżnionym zbiorem wierzcholków wadliwych $F \subseteq V(G)$ nazywamy grafem z wadami (lub grafem wadliwym)

Wadliwe wierzchołki (i/lub krawędzie) najczęściej traktowane są jako usunięte z grafu – mówimy w tym przypadku o grafie G - F. Wyróżnianie wadliwych wierzchołków w grafie zamiast definiowania nowego grafu jest umotywowane głównie w przypadkach, gdy pełny graf łatwo zdefiniować i zapisać w pamięci małej względem jego rozmiaru (np. klika, hiperkostka, graf de Bruijna), a zbiór wadliwych wierzchołków jest również mały.

2.2. Spójność wadliwej hiperkostki

Ten podrozdział jest napisany w większości na podstawie [3].

Uwaga 7. Aby zbadać spójność grafu G - F dla spójnego grafu G wystarczy sprawdzić czy wciąż istnieje ścieżka pomiędzy dowolnymi dwoma wierzchołkami, które oryginalnym grafie sąsiadowały z jakimś spośród usuniętych wierzchołków (wszystkie takie wierzchołki należą do jedenj spójnej składowej).

Dowód. Aby udowodnić spójność trzeba pokazać, że istnieje ścieżka pomiędzy dowolnymi dwoma wierzchołkami, jednak skoro w oryginalnym grafie taka ścieżka istniała, to w nowym grafie jedyną przeszkodą jest to, że na tej ścieżce mogły występować wierzchołki, które zostały usunięte. Taką scieżkę można naprawić wstawiając w miejsca od pierwszego do ostatniego wystąpienia wierzchołka usuniętego ścieżkę pomiędzy odpowiednimi ich sąsiadami istniejącą w pomniejszonym grafie. □

2.2.1. Podejście ekspansywne

Twierdzenie 8. Niech graf G posiada własność ε -ekspansji wierzchołkowej z $\varepsilon > 0$ i maksymalny stopień wierzchołka Δ , oraz dana jest wyrocznia zwracająca dla danego wierzchołka listę jego sąsiadów. Wtedy istnieje algorytm, który otrzymuje na wejściu zbiór $F \subseteq V(G)$ oraz ε i testuje spójność G-F w czasie $O\left(\frac{|F|^2 \cdot \Delta^2 \cdot \log(|V(G)|)}{\varepsilon}\right)$

Lemat 9. Spójna składowa $S \subseteq V(G) \setminus F$ grafu G - F jest jednego z dwóch typów:

- $gl\acute{o}wna |S| > \frac{|V(G)|}{2}$
- $mala |S| \leqslant \frac{|F|}{\varepsilon}$

Uwaga 10. Co prawda dla dużego |F| i małego ε może być tak, że składowa jest jednocześnie główna i mała, jednak po pierwsze jest to przypadek mało interesujacy, gdyż wtedy zwykłe przeszukiwanie grafu spełnia tezę twierdzenia, a po drugie przypadek ten nie psuje w żaden sposób otrzymywanego algorytmu. W lemacie istotne jest to, że w grafie nie ma składowych średnich wielkości.

Fakt 11. Może być tylko jedna składowa główna.

Dowód. (Lematu)

Weźmy spójną składową S grafu G-F $(N_{G-F}(S)=0)$, jeżeli $S\leqslant \frac{|V(G)|}{2}$, to z własności ε -ekspansji wierzchołkowej grafu G $|N_G(S)|\geqslant \varepsilon\cdot |S|$ (gdzie S jest teraz traktowane jako podzbiór wierzchołków grafu G). Gdyby zachodziło $|S|>\frac{|F|}{\varepsilon}$, to mielibyśmy $|N_G(S)|>\frac{\varepsilon\cdot |F|}{\varepsilon}=|F|$, co daje sprzeczność ponieważ aby w grafie G-F to sąsiedztwo było puste z grafu G trzeba usunąć co najmniej $N_G(S)$ wierzchołków.

Dowód. (Twierdzenia)

Chcemy sprawdzić, czy wszyscy sąsiedzi wierzchołków usuniętych należą do tej samej spójnej składowej. Na podstawie lematu 9, jeśli składowa zawierająca taki wierzchołek jest większa niż $\frac{|F|}{\varepsilon}$, to jest to składowa główna. Jeżeli wszystkie takie wierzchołki spełniają ten warunek, to G-F jest spójny. Jeżeli natomiast, któraś z tych składowych okaże się mała, to G-F nie jest spójny.

Wystarczy więc uruchomić liniowe przeszukiwanie grafowe w każdym wierzchołku sąsiadującym z wierzchołkiem wadliwym i przerywać po przejrzeniu $\frac{|F|}{\varepsilon}$ wierzchołków. Algorytm liniowego przeszukiwania grafowego uruchamiany jest co najwyżej $|F| \cdot \Delta$ razy. Za

Algorytm liniowego przeszukiwania grafowego uruchamiany jest co najwyżej $|F| \cdot \Delta$ razy. Za każdym razem przeglądamy co najwyżej $\frac{|F|}{\varepsilon}$ wierzchołków. Dla każdego przeglądanego wierzchołka sprawdzamy co najwyżej Δ sąsiadów, a odpowiedź wyroczni zajmuje $O(\log(|V(G)|))$ czasu. Daje to złożoność z tezy twierdzenia.

Wniosek 12. Ponieważ zgodnie z twierdzeniem 6 hiperkostka Q_n posiada własność $\frac{1}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej, oraz można znaleźć wszystkich sąsiadów wierzchołka w czasie liniowym od ich ilości powyższy algorytm testuje spójność wadliwej hiperkostki w czasie $O(|F|^2 \cdot n^{3.5})$ (wyrażonego w ilości operacji arytmetycznych).

Uwaga 13. Ze względu na długość zapisu identyfikatora wierzchołka liniową od wymiaru hiperkostki nie da się przeprowadzać operacji na wierzchołkach w czasie szybszym niż n. To dolne ograniczenie jest osiągalne przy przechowywaniu przejrzanych wierzchołków w hashmapie (czas oczekiwany operacji O(n), złożoność pamięciowa całej struktury $O(n^{0.5}|F|)$), lub w drzewie prefiksowym (czas pesymistyczny operacji O(n), złożoność pamięciowa całej struktury $O(n^{1.5}|F|)$). Pozwala to w łatwy sposób uzyskać efektywną wyrocznię, a więc i algorytm o złożoności z wniosku.

pseudokod i uwagi

W algorytmie wykorzystywana jest sturktura T z operacjami

• Insert(v,T) wstawiajaca wierzchołek v do struktury T

• Retrieve(v,T) zwracająca binarną informacje o obecności wierzchołka v w strukturze T

które wymagają O(n) czasu na wykonanie (jak w uwadze 13). Przeszukiwanie grafowe odbywa się przy pomocy funkcji o pseudokodzie:

DFS(v){

counter + +;

 $\operatorname{return}(TRUE);$

}

```
Insert(v,T);
   if(counter \geqslant size) return(TRUE);
   for each (u \in N(v))
       if(Retrieve(u,T) == FALSE){
          if(DFS(u)) return(TRUE);
   return(FALSE);
}
   Spójność sprawdzana jest przy pomocy funkcji głównej o pseudokodzie:
Conectivity(n, F){
   T2 = empty\_structureT();
    counter = 0;
   foreach(f \in F)
       Insert(f, T2);
       counter + +;
   size = sqrt(\pi * n) * counter;
   for each (f \in F) {
       for each (v \in N(f)) {
          if(Retrieve(v, T2) == FALSE){
             counter = 0;
             T=T2:
             if(DFS(v) == FALSE) return(FALSE);
       }
```

Uwaga 14. Aby przeiterować po N(v) wystarczy przeiterować się po współrzędnych uzyskując sąsiada poprzez zanegowanie tej współrzędnej w zapisie binarnym v.

Uwaga 15. Można użyć dodatkowej struktury T w której przechowywane są wszystkie wierzchołki z poprzednich wywołań DFS(v) z funkcji głównej. Wtedy przy kolejnych użyciach DFS(v) można sprawdzać, czy wierzchołek nie był już wcześniej w jakiejś składowej (można wtedy od razu zwrócić TRUE). Teoretycznie może to zwiększyć słożoność dwukrotnie, jednak w praktyce będzie to dużo szybsze (już nawet z tego wzgledu, że albo inni sąsiedzi tego samego f są oddaleni o 2, albo na drodze staje inny wierzchołek z F), w szczególności przy użyciu bardziej wyszukanych kolejności przeszukiwania (np. próba dojścia do wierzchołka $\overline{0}$).

2.2.2. Redukcja przy pomocy transformacji ścieżek

Algorytm przedstawiony w poprzednim podrozdziale jest dowodem na to, że testowanie spójności wadliwej hiperkostki może być zrobione wielomianowo ze względu na ilość wad i wymiar hiperkostki. Algorytm ten wykorzystuje jednak bardzo płytko potencjał tak regularnego grafu. W tym podrozdziale przedstawię algorytm, który dzięki głębszemu wykorzystaniu własności hiperkostki otrzymuje lepsze rezultaty złożonościowe.

Definicja 2.2.1. Na potrzeby tego podrozdziału definiuję ze pracą [3] dla $F \subseteq V(Q_n)$ podgraf $G(F) = (A \cup B \cup F, E)$ grafu Q_n , gdzie A = N(F), $B = N(A) \setminus F$, $E = \{uv \in E(Q_n) : u \in A \cup F\}$ (podgraf zawierający wierzchołki w odległości ≤ 2 od wierzchołków wadliwych, plus krawędzie w których jeden z końców jest wadliwy lub z takim sąsiaduje).

Twierdzenie 16. Dla $F \subseteq V(Q_n)$ graf $Q_n - F$ jest spójny wtedy i tylko wtedy gdy dla każdej C – spójnej składowej $Q_n^2[F]$ spójny jest graf G(C) - C.

Transformacje ścieżek w hiperkostce

Definicja 2.2.2. Dla ścieżki $W = (v_0, v_1, ..., v_n)$ (z możliwymi powtórzeniami) w hiperkostce sekwencją tranzycji nazywamy ciąg $\tau = (d_1, d_2, ..., d_n)$, gdzie d_i jest współrzędną na której różnią się ciągi binarne wierzcholków v_{i-1} i v_i .

Fakt 17. τ jest sekwencją tranzycji pewnej uv-ścieżki w Q_n wtedy i tylko gdy $u\Delta v = \{i \in [n] : \#(\tau, i) \text{ nieparzyste}\},$ gdzie $\#(\tau, i)$ to ilość wystąpień i w sekwencji τ .

Dla τ – sekwencji tranzycji uv–ścieżki W definiujemy trzy operacje:

- $swap(\tau_1, i, j, \tau_2) = (\tau_1, j, i, \tau_2)$ dla $\tau = (\tau_1, i, j, \tau_2)$
- $insert_i(\tau_1, \tau_2) = (\tau_1, i, i, \tau_2)$ dla $\tau = (\tau_1, \tau_2), i \in [n]$
- $delete(\tau_1, i, i, \tau_2) = (\tau_1, \tau_2)$ dla $\tau = (\tau_1, i, i, \tau_2)$

Wszystkie te operacje nie zmieniają parzystości wystąpień współrzędnych, dlatego też dowolnie w ten sposób zmodyfikowana sekwencja wciąż jest sekwencją tranzycji pewnej uv–ścieżki w Q_n .

Definicja 2.2.3. Dwie ścieżki, których sekwencje tranzycji τ, ρ spełniają $\forall_{i \in [n]} \#(\tau, i) = \#(\rho, i)$ nazywamy równoważnymi.

Uwaga 18. Dla dowolnych dwóch uv-ścieżek w Q_n istnieje sekwencja operacji swap, insert, delete (w tej kolejności bez przeplotów), która przemiania sekwencję tranzycji pierwszej w sekwencję tranzycji drugiej.

Dowód. Jeśli dwie ścieżki są równoważne, to można jedną przekształcić w drugą przy pomocy samych operacji swap.

W przypadku gdy sekwencje mają różne liczności wystąpień współrzędnych, to można je doprowadzić do takich τ', ρ' , że $\forall_{i \in [n]} \# (\tau', i) = \# (\rho', i)$ przy pomocy samych operacji *insert* (używanych w dowolnie wybranych wierzchołkach).

Definicja 2.2.4. Na potrzeby dowodu twierdzenia 16 dla uv-ścieżki $W = (w_0, w_1, ..., w_k)$ (gdzie $w_0 = u, w_k = v$) wierzchołek w_i nazywamy portem, jeśli nie jest wierzchołkiem wadliwym, ale dokładnie jeden z jego sąsiadów w ścieżce należy do F (port musi więc należeć do A).

W przypadku tej definicji należy rozróżnić przeplatające się pojęcia wierzchołka grafu i jego wystąpienia na ścieżce – portem nazywane jest konkretne wystąpienie na ścieżce, inne jego wystąpienia nie muszą być portami.

Dla C spójnej składowej G(F)-F przez p(C,W) oznaczamy ilość portów w części W nalezącej do C.

Lemat 19. Operacja swap zachowuje parzystość p(C, W).

Dowód. Dowód stanowi rysunkowe rozpatrzenie wszystkich możliwych przypadków w których w wyniku operacji swap powstaje i/lub znika pewien port (przypadki przy końcach ścieżki można "dopełnić" zwykłymi wierzchołkami do przypadków ze środka ponieważ wierzchołki końcowe nie są wadliwe).

Wszystkie rozrysowane tu wierzchołki należą do G(F), a rozrysowane części niewadliwe tworzą podgraf spójny, dlatego też wszystkie te zmiany odbywają się w jednej spójnej składowej G(F) - F. Za każdym razem ilość portów zmienia się o 0 lub 2, a więc parzystość pozostaje bez zmian.

Dowód twierdzenia o lokalnej spójności

Lemat 20. Niech $F \subseteq V(Q_n)$ takie, że G(F) jest spójne. Jeśli $Q_n - F$ jest spójne, to G(F) - F również.

Dowód. Załóżmy przeciwnie – istnieją wierzchołki $u, v \in A \cup B = V(G(F) - F)$ dla których istnieje ścieżka $P \le Q_n - F$, ale nie ma takiej wG(F) - F. Skoro wG(F) - F nie ma takiej ścieżki, to wP musi występować wierzchołek x spoza $A \cup B$.

G(F) jest spójne, więc musi istnieć też druga ścieżka R łacząca u z v w tym właśnie grafie, na której występuje wierzchołek $y \in F$.

Podobnie jak w dowodzie lematu 18 ścieżki te mogą być napompowane w wierzchokach x i y odpowidnio sekwencjami operacji insert.

Ponieważ x jest oddalone od F dodane do ścieżki P wierzchołki nie uczynią z zadnego wystąpienia x portu i same również nie staną się portami. Ponieważ y należy do F dodane do ścieżki R wierzchołki będą miały dokładnie dwóch sąsiadów z F (tego samego dwukrotnie), a więc nie będą portami.

Oznacza to, że uzyskane ścieżki równoważne mają tyle samo portów we wszystkich spójnych składowych G(F)-F co odpowiadające im nieprzekształcone a na podstawie lematów 18 i 19 ich parzystości między sobą się zgadzają (czyli zgadzają się dla P i R). Na ścieżce P nie ma żadnych portów ponieważ nie występuje w niej żaden wierzchołek wadliwy, daje to sprzeczność ponieważ dla spójnych składowych G(F)-F w której występują u i v ścieżka R ma nieparzyste ilości portów (np. można dobrać taką ścieżkę, która wchodzi do/opuszcza składowe co najwyżej raz).

Wniosek 21. Dla $F \subseteq V(Q_n)$ takiego, że $Q_n^2[F]$ jest spójne ze spójności $Q_n - F$ wynika spójność G(F) - F.

Dowód. Jeśli dwa wierzchołki $Q_n^2[F]$ są połączone, to w oryginalnym grafie musiały być w odległości ≤ 2 , a więc w G(F) muszą być połączone albo bezpośrednio albo poprzez pojedynczy wierzchołek z A, a więc graf G(F) jest spójny co sprawia, że spełnione są założenia lematu.

Lemat 22. Niech $F \subseteq V(Q_n)$ taki, że G(C) - C jest spójne dla kazdej C spójnej składowej $Q_n^2[F]$. Wtedy $Q_n - F$ również jest spójny.

Dowód. Dla dowolnie wybranych dwóch wierzchołków $u,v\in V(Q_n-F)$ weźmy W – ścieżkę między nimi w pełnym Q_n . Jeśli W nie zawiera wadliwego wierzchołka, to jest poprawną ścieżką w Q_n-F . W przeciwnym przypadku znajdujemy na tej ścieżce pierwsze wystąpienie wierzchołka wadliwego. Poprzedni wierzchołek na ścieżce oraz pierwszy kolejny z poza zbioru F są dwoma niewadliwymi wierzchołkami należącymi do G(C), gdzie C jest spójną składową $Q_n^2[F]$ (oddalone o 1 od wadliwych wierzchołków, które są połączone ścieżką samych wadliwych wierzchołków). W G(C) nie ma wadliwych wierzchołków spoza C, ponieważ oznaczałoby to, że taki wierzchołek jest oddalony o ≤ 2 od pewnego wierzchołka z C, a więc byłby z nim połączony w Q_n^2 , dlatego też ścieżka ze spójnego z założenia G(C)-C nie zawiera wadliwego wierzchołka. Wystarczy więc wadliwą część ścieżki W zastąpić odpowiednią ścieżką z G(C)-C aby otrzymać poprawną ścieżkę w Q_n-F .

Dowód. (Twierdzenia 16)

Lemat 22 jest implikacją w jedną stronę. W drugą stronę dla spójnego $Q_n^2[F]$ jest dana wnioskiem 21. Wystarczy udowodnić, że nic nie psuje się w przypadku gdy $Q_n^2[F]$ ma więcej niż jedną spójną składową. Dla C – spójnej składowej $Q_n^2[F]$ jeśli $Q_n - F$ jest spójne, to jest takie również $Q_n - C$ (dla wierzchołków spoza $Q_n - F$ te same ścieżki są dobre, dla tych z $F \setminus C$ dowolny sąsiad nalezy do $Q_n - F$, więc również łatwo zbudować ścieżkę), a więc spójne jest również G(C) - C co kończy dowód.

Algorytm

Stosując powyższe twierdzenie można uzyskać wielomianowy algorytm uzywając jedynie przeszukiwania grafowego podobnie jak w podrozdziale 2.2.1. Można jednak uzyskać lepsze rezultaty używając dodatkowo struktury Find–Union i sprawdzając spójności już w trakcie budowania podgrafów G(C)-C.

W algorytmie używane są:

- \bullet struktura Find– $Union\ D$ z operacjami:
 - -Make(v,D) tworzącą singleton $\{v\}$
 - -Find(v,D) zwracającą wskaźnik na zbiór zawierający v
 - -Union(u, v, D) łączącą zbior zawierający u ze zbiorem zawierającym v

których zamortyzowany czas można ograniczyć przez O(logm) (a da się nawet uzyskać $O(log^*m)$), gdzie m jest ilością użyć operacji Make(v,D). Dodatkowo struktura zapewnia możliwość sprawdzenia, czy zawiera więcej niż jeden zbiór (wystarczy pojedynczy licznik inkrementowany przy Make(v,D) i dekrementowany przy Union(u,v,D)).

- strukturę T do przechowywania informacji o niektórych wierzchołkach jak binarne drzewo prefiksowe lub hashmapa, przechowywującą dla wierzchołka v_T informacje:
 - wskaźnik do wierzchołka v w strukturze D
 - informacje o wadliwości/braku wadliwości wierzchołka
 - binarną informacje o tym czy wierzchołek był odwiedzony i należy do $F \cup N(F)$

wspierającą operacje:

- Insert(v,T) wstawiającą wierzchołek v do struktury T i zwracającą wskaźnik na v_T
- Retrieve(v,T) zwracającą v_T lub NULL w przypadku gdy v nie ma w strukturze

które wymagają O(n) czasu na wykonanie.

Definiuję pomocniczą funkcję uzyskiwania wierzchołków ze struktury T i inicjalizowania w razie nieobecności:

```
\label{eq:retrieve2} \begin{split} Retrieve2(v,T) \{ \\ v_T &= Retrieve(v,T); \\ \text{if}(v_T == NULL) \{ \\ v_T &= Insert(v,T); \\ v_T.healthy &= TRUE; \\ v_T.visited &= FALSE; \\ Make(v,D); \\ \} \\ \text{return}(v_T); \\ \} \end{split}
```

Najistotniejszą częścią algorytmu jest procedura (czasami dla wielu wierzchołków z F) DFS(f) znajdująca spójne składowe G(C)-C, dla C spójnej składowej $Q_n^2[F]$ zawierającej wadliwy wierzchołek f, o następującym pseudokodzie:

```
DFS(f){
   for each (u \in N(f)) {
       u_T = Retrieve2(u, T);
       if(u_T.visited == FALSE){
          u_T.visited = TRUE;
          if(u_T.healthy){
              foreach(v \in N(u)){
                 v_T = Retrieve2(v, T);
                 if(v_T.healthy){
                    if(Find(u, D) \neq Find(v, D)) \setminus krawędź uv należy do G(C) - C
                 ext{less if}(v_T.visited == FALSE)
                    v_T.visited = TRUE;
                    DFS(v); \\ wadliwy wierzchołek należący do C
                 }
                DFS(u); \\ wadliwy wierzchołek należący do C
          }else
       }
    }
}
```

Powyższa prodedura uruchamiana jest z funkcji głównej:

```
Conectivity(n, F) \{ \\ T = empty\_structureT(); \\ for each(f \in F) \{ \\ f_T = Insert(f, T); \\ f_T.healthy = FALSE; \\ f_T.visited = FALSE; \\ \}
```

```
 \begin{aligned} & \text{foreach}(f \in F) \{ \\ & f_T = Retrieve(f,T); \\ & \text{if}(f_T.visited == FALSE) \{ \\ & f_T.visited = TRUE; \\ & D = empty\_structureD(); \\ & DFS(f); \\ & \text{if}(D.counter > 1) \quad return(FALSE); \\ & \} \\ & \} \\ & \text{return}(TRUE); \\ & \} \end{aligned}
```

Analiza złożoności

Wniosek 23. Algorytm ma pesymistyczną złożoność czasową i pamięciową $O(|F| \cdot n^3)$.

Dowód. Dla kazdego wierzchołka z F każdy sąsiad jest przeglądany po jeden raz, dla każdego wierzchołka nalezącego do N(F) również przeglądani są wszyscy sąsiedzi po razie. Przeglądnięcie jedengo wierzchołka (znalezienie odpowiedniego wierzchołka w T i D) zajmuje O(n), ustawienie właściwości w D zajmuje stały czas po posiadaniu dowiązania do odpowiedniego wierzchołka – daje to złożoność tej części $O(|F| \cdot n^3)$.

Operacja Make(v, D) używana jest dla każdego wierzchołka z G(C)-C po razie dla kazdego C (moze być użyta więcej niż raz dla wierzchołków oddalonych o 2 od F i występujących w różnych G(C)). W przypadku Find(v, D) i Union(u, v, D) uruchamiane są one maksymalnie odpowiednio dwa i jeden raz dla kazdego z sąsiadów wierzchołków N(F) – daje to złożoność $O(|F| \cdot n^2 \log(n))$.

Preprocessing i Postprocessing (tworzenie i usuwanie struktur T i D) może być zrobione w czasie liniowym od ich wielkości (w przypadku D i hashmapy można trzymać dodatkowo nieuporządkowaną listę dowiązań do wszystkich elementów). W przypadku struktury T wielkość tą można ograniczyć przez $O(|F| \cdot n^3)$ przy użyciu drzewa prefiksowego (lub $O(|F| \cdot n^2)$ przy użyciu hashmapy, która nie pozwala jednak uzyskać odpowiedniej złożoności przy pesmistycznym scenariuszu), zaś w przypadku struktur D łącznie $O(|F| \cdot n^2)$.

2.3. Długie ścieżki i cykle w grafie

W poprzednim podrozdziale przedstawiony był przykład problemu na wadliwej hiperkostce, dla którego można było znaleźć rozwiązanie wielomianowe od n i |F|. W tym rozdzialę przedstawię kilka problemów, dla których samo przedstawienie wyników wymagało by wykładniczej pamięci, jednak samo rozstrzygnięcie czy rozwiązanie istnieje (sprawdzenie warunków twierdzenia) jest możliwe w czasie $O(|F| \cdot n)$ dla odpowiednio małych |F| (wartości podane w sformułowaniach twierdzeń). W przypadku podwójnych ścieżek twierdzenie daje jedynie warunek wystarczający, dlatego algorytm otrzymany dzięki niemu nawet dla tych małych |F| potrafi jedynie rozstrzygnąć pomiędzy "istnieją długie ścieżki" i "kryterium nie rozstrzyga".

2.3.1. Definicje

Definicja 2.3.1. Wolną od wad (nieprzechodzącą przez wierzchołki wadliwe) ścieżkę bez powtórzeń (drogę) w hiperkostce Q_n z wadami ze zbioru $F \subseteq V(Q_n)$ nazwiemy długą, jeśli ma długość co najmniej $2^n - 2|F| - 2$.

Definicja 2.3.2. Wolny od wad cykl bez powtórzeń w hiperkostce Q_n z wadami ze zbioru $F \subseteq V(Q_n)$ nazwiemy długim, jeśli ma długość co najmniej $2^n - 2|F|$.

Uwaga 24. Dla $F \cup \{u, v\}$ należącego do jednej dwudzielnej części Q_n nie da się skonstruować uv-ścieżki wolnej od wad o długości większej niż $2^n - 2|F| - 2$ (stąd długośc w definicji).

Dowód. Skoro Q_n jest dwudzielna, to każda ścieżka musi odwiedzić tyle samo wierzchołków w obu częściach (plus jeden koniec), ponieważ w części z u i v odwiedza co najwyżej $2^{n-1} - |F|$, to w drugiej co najwyżej $2^{n-1} - |F| - 1$ – daje to długość $2^n - 2|F| - 2$.

Definicja 2.3.3. Wierzchołek $v \in V(Q_n)$ jest otoczony przez $F \subseteq V(Q_n)$ gdy $N(v) \subseteq F$ (F zawiera wszystkich sąsiadów v).

Definicja 2.3.4. Dla $u, v \in V(Q_n), F \subseteq V(Q_n)$ trójka (u, v, F) jest zablokowana w Q_n gdy u jest otoczony przez $\{v\} \cup F$ lub v jest otoczony przez $\{u\} \cup F$.

2.3.2. Długie ścieżki

Twierdzenie 25. Dla Q_n i $F \subseteq V(Q_n)$, takich, że $2 \le n \ge 5$ i $|F| \le 2n-4$ dla $u, v \in V(Q_n) \setminus F$ takich, że trójka (u, v, F) nie jest zablokowana w Q_n długa uv-ścieżka bez wad nie istnieje tylko wtedy, gdy n=4 oraz istnieją takie $a,b \in V(Q_n)$, że d(a,b)=4 i $F \cup \{u,v,a,b\}$ jest dwudzielną częścią Q_n .

Dowód. Łatwo rozpatrzyć wszystkie przypadki.

Twierdzenie 26. Dla Q_n i $F \subseteq V(Q_n)$, takich że $n \geqslant 6$ i $|F| \leqslant 2n-4$ dla każdych $u, v \in V(Q_n) \backslash F$ jeśli (u, v, F) nie jest zablokowane w Q_n , to istnieje długa uv-ścieżka bez wad.

Dowód. (krótki szkic dowodu z pracy [4])

Dowód oparty jest na indukcji po wymiarze. Podstawę indukcji stanowi twierdzenie 25. Dla $n\geqslant 6,\ |F|\leqslant 2n-4$ można podzielić Q_n na dwie kostki Q_{n-1} wybierając jedną z n współrzędnych i definiując podkostki Q_{n-1}^0 i Q_{n-1}^1 jako rozpięte przez wierzchołki mające na tej współrzędnej odpowiednio 0 i 1. Dla $|F|\leqslant 2n-5$ łatwo jest dobrać współrzędną tak, żeby każda z podkostek miała co najwyżyżej 2n-6=2(n-1)-4 wadliwych wierzchołków (wystarczy wybrać dowolne $f_1, f_2\in F$ i podzielić według jednej ze współrzędnych różniących ich ciągi binarne). Dla |F|=2n-4 można rozpatrzyć macierz $|F|\times n$, w której w wierszach wypisane są ciągi binarne wszystkich wierzchołków wadliwych. Trzeba wybrać taką kolumnę, w której zarówno 0 jak i 1 jest co najmmniej po 2. Gdyby nie dało się dokonać takiego wyboru oznaczało by to, że w każdej kolumnie jest albo co najwyżej jedno 0 albo co najwyżej jedna 1, przez proste zanegowanie jednej współrzędnej w całej kostce (ta operacja nie zmienia nic poza numerowaniem) można uzyskać przypadek, że w każdej kolumnie jest co najwyżej jedna 1. Ponieważ kolumn jest tylko n, zaś każda zawiera conajwyżej jedną 1, to oznaczało by to, że może mieć tylko n+1 różnych wierszy $\Rightarrow 2n-4=|F|\leqslant n+1 \Rightarrow n\leqslant 5$ (a więc ponieważ $n\geqslant 6$, to zawsze istnieje wybór współrzędnej).

Dalej przy użyciu lematów:

- Dla $|F| \leq 2n-3$ co najwyżej jeden z wierzchołków jest otoczony przez F.
- Dla $|F| \leq 2n-4$ i ustalonego nieotoczonego wierzchołka u istnieje co najwyżej jeden wierzchołke v taki, że (u, v, F) jest zablokowana.

• Dla $|F| \leq 2n-5$ tylko jedna trójka (u,v,F) moze być zablokowana, i to taka, że $uv \in E(Q_n-F)$.

i wykorzystując fakt, że w podkostkach poza kilkoma przypadkami istnieją odpowiednie długie kostki rozważa się dużą liczbę przypadków (rozbicie ze względu na należenie u i v do tej samej/różnej podkostki, bycia otoczonym/zablokowanym/wolnym w podkostce). Dla kazdego z tych przypadków da się pokazać metodę łączenia długich ścieżek z podkostek.

Uwaga 27. Dla Q_n , $F \subseteq V(Q_n)$, |F| = 2n - 3 teza twierdzenia 26 przestaje być prawdziwa.

Dowód. Dla każdego $n \ge 4$ istnieje po kilka przypadków w których |F| = 2n - 3, (u, v, F) nie jest zablokowane, ale nie ma długiej uv-ścieżki bez wad. 3 przykłady :

2.3.3. Długie cykle

Definicja 2.3.5. Dla zbioru $D \subseteq [n], d = |D|$ oraz $u \in \{0,1\}^{n-d}$ definiujemy kostkę $Q_D(u)$ jako d wymiarową podkostkę Q_n , której współrzędne spoza D są ustalone przez wektor u. Definiujemy również $V_D(u) = \{(u,v)_D : v \in \{0,1\}^d\}$ (wierzchołki z oryginalnej kostki wzięte do $Q_D(u)$), oraz $F_D(u) = F \cap V_D(u)$.

Lemat 28. Niech $F \subseteq V(Q_n)$ takie, $\dot{z}e \ |F| \geqslant 2n$ i niech $d = \lceil \frac{n^2}{2|F|-n-2} \rceil$. Wtedy istnieje zbiór $D \subseteq [n], |D| = d$, taki $\dot{z}e \ |F_D(u)| \leqslant d+1$ dla kazdego $u \in \{0,1\}^{n-d}$

Lemat pochodzi z pracy [5] i został zmodyfikowany do tej postaci w pracy [4] aby lepiej pasować do dowodu poniższego twierdzenia.

Twierdzenie 29. Dla $n \ge 15$ i $F \subseteq V(Q_n)$, takiego $\dot{z}e |F| \le \frac{n^2}{10} + \frac{n}{2} + 1$ istnieje długi cykl bez wad.

Dowód. (krótki szkic dowodu z pracy [4])

Na podstawie lematu 28 znajdujemy zbiór $D\subseteq [n]$, taki że $|F_D(u)|\leqslant 2d-4$ dla każdego $u\in\{0,1\}^{n-d}$. Dla dowolnego cyklu Hamiltona $(u_0,u_1,...,u_{2^{n-d}}=u_0)$ w Q_{n-d} dobieramy w kostce Q_Du_i dwa nie wadliwe wierzchołki a_i oraz b_i , takie że $a_ib_{i+1}\in E(Q_n)$ dla kazdego $i\in[2^{n-d}]$ (modulo 2^{n-d}), oraz $(a_i,b_i,F_D(u^i))$ nie zablokowane (choć jest to nietrywialne to da sie takie dobrać). Na podstawie twierdzenia 26 wierzchołki a_i i b_i są łączone długimi ścieżkami dając cykl długości $\geqslant 2^n-2|F|$. Ograniczenie $|F|\leqslant \frac{n^2}{10}+\frac{n}{2}+1$ potrzebne jest po to, aby $\lceil \frac{n^2}{2|F|-n-2} \rceil \geqslant 5$ omijając złe przypadki z twierdzenia 25.

2.3.4. Długie pary ścieżek

Lemat 30. Dla $n \ge 2$, $F \subseteq V(Q_n)$, $|F| \le n-2$ dla każdych dwóch $u, v \in V(Q_n - F)$ istnieje dluga uv-ścieżka bez wad.

Dowód.Bezpośrednio z 26, gdzie ze względu na rozmiar Ftrójka (u,v,F)nie może być zablokowana. $\hfill\Box$

Twierdzenie 31. Dla $F \subseteq V(Q_n)$, $F \leqslant n-3$ niech A i B będą różnymi dwuelementowymi pozdbiorami $V(Q_n) - F$, takimi że $A \cup B$ nie należy do jednej części dwudzielnej kostki. Wtedy istnieje para wierzchołkowo rozłącznych ścieżek o łącznej długości $\geqslant 2^n - 2|F| - 3$ zaczynających się w wierzchołku z A i kończących na wierzchołku z B.

Dowód. (krótki szkic dowodu z pracy [6])

Dowód podobnie jak inne przebiega indukcyjnie – małe przypadki $(n \leq 5)$ można sprawdzić ręcznie (tutaj trochę więcej sprawdzania niż w poprzednich dowodach), dla większych łatwo jest podzielić Q_n na dwie Q_{n-1} tak, zeby każda z nich miała nie więcej niż n-4 wierzchołków wadliwych. Dalej rozpatrywane jest dużo przypadków w zależności od podziału wierzchołków z A i B na dwie podkostki i w każdym z możliwych przypadków łączy się podwójne i pojedyncze ścieżki istniejące na mocy indukcji i twierdzenia 26.

Uwaga 32. Jeśli $A = \{u, w\}, B = \{v, w\},$ to jedna ze ścieżek musi mieć długość 0 i być zaczepiona w wierzchołku w. Twierdzenie 31 daje wtedy uv-ścieżkę wolną od wad długości $2^n - 2|F| - 3 = 2^n - 2|F \cup \{w\}| - 1$, a więc o jeden dłuższą niż w twierdzeniu 26 (możliwe jest to tylko dłatego, że u i v nie należą do jednej części dwudzielnej Q_n).

2.4. Inne problemy

Twierdzenie 33. Dla $F \subseteq V(Q_n)$ można rozstrzygnąć, czy w $Q_n - F$ jest cykl Eulera w czasie $O(|F| \cdot n^3)$

Dowód. Kryterium istnienia cyklu Eulera jest to, że po pierwsze graf jest spójny, a po drugie z każdego wierzchołka wychodzi parzyście wiele krawędzi. Spójność można sprawdzić w czasie $O(|F| \cdot n^3)$ przy pomocy algorytmu z podrozdziału 2.2.2. Wierzchołek nie mający wadliwego sąsiada ma stopień n, wystarczy więc policzyć tylko parzystość dla tych którzy takiego sąsiada mają. W czasie i pamięci $O(|F| \cdot n^2)$ można wstawić wszystkich niewadliwych sąsiadów wierzchołków wadliwych do drzewa prefiksowego zapamiętując w liściach krotność. Po wszystkim wystarczy dla $^2|n$ sprawdzić czy wszystkie wstawione wierzchołki mają krotność parzystą, zaś dla $^2 \nmid n$ trzeba po pierwsze sprawdzić, że wszystkie wstawione wierzchołki mają krotność nieparzystą, a po drugie że jest ich dokładnie $2^n - |F|$. □

Bibliografia

- [1] L. Lovasz, J. Pelikan and K. Vesztergombi. "Discrete Mathematics, Elementary and Beyond." *Undergraduate Texts in Mathematics. New York: Springer, first edition, 2003*
- [2] L. H. HARPER, "Optimal Numberings and Isoperimetric Problems on Graphs" JOUR-NAL OF COMBINATORIAL THEORY 1, 385-393 (1966)
- [3] Tomas Dvorak, Jiri Fink, Petr Gregor, Vaclav Koubek and Tomasz Radzik, "Efficient connectivity testing of hypercubic networks with faults"
- [4] Jiri Fink and Petr Gregor, "Long paths and cycles in hypercubes with faulty vertices"
- [5] G. Wiener, "Edge multiplicity and other trace functions." In Proceedings of European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2007), volume 29 of Electronic Notes in Discrete Mathematics, pages 491–495, 2007.
- [6] Jiri Fink and Petr Gregor, "Long pairs of paths in faulty hypercubes"
- [7] Frank Harary, John P. Hayes and Horng–Jyh Wu, "A survey of theory of hypercube graphs" Comput. Math. Applic. Vol. 15, No 4, pp. 277-289, 1988
- [8] Frank Harary, Marilynn Livingston, "Independent domination in hypercubes" Appl. Math. Lett. Vol. 6, No 3, pp. 27-28, 1993
- [9] Wojciech Rytter & Bartosz Szreder, "Wprowadzenie do kombinatoryki algorytmicznej"
- [10] DONALD E. KNUTH, "Generating All Tuples and Permutations" THE ART OF COM-PUTER PROGRAMMING VOLUME 4, FASCICLE 2
- [11] FRANK RUSKEY, "Combinatorial Generation" Working Version, October 1, 2003
- [12] Tibor Szabo, Emo Weltz, "Unique Sink Orientations of Cubes"
- [13] Chi Him Wong, "Novel universal cycle constructions for a variety of combinatorial objects" Guelph, Ontario, Canada, April, 2015