熱力学

澤田大地

2018年10月31日

目次

1	熱平衡状態と温度	2
1.1	熱力学第 0 法則	2
1.2	温度の定義	2
1.3	熱の定義	2
1.4	状態方程式	2
1.5	示量変数と示強変数	2

1 熱平衡状態と温度

熱力学の基本的な考え方や、熱力学の対象となる系の基本的な性質についてまとめる

1.1 熱力学第0法則

『物体 A と物体 B、物体 B と物体 C がそれぞれ熱平衡状態にあるとき、物体 A と物体 C は熱平衡状態である』ことを熱力学第 0 法則という。(経験則)

1.2 温度の定義

水の凝固点を 0 \mathbb{C} 、沸点を 100 \mathbb{C} と定義するものを経験的温度といい、 $t[\mathbb{C}]$ とする。 気体の圧力が 0 になる時の経験的温度は全物質で等しく、この時の経験的温度 t=-273.15 \mathbb{C} を用い、

 $\theta [K] \equiv t[C] + 273.15$

と (経験的) 理想気体絶対温度 θ [K] を定義する。

1.3 熱の定義

熱量は状態量ではなく非状態量である。ここで、ある状態からある状態に至る際に、そこに至る 経緯が変わらないものを状態量、変わるものを非状態量という。(ex 等圧、等温、断熱変化によっ て系から取り出せる熱量や仕事はそれぞれ変化するためこの2つは非状態量である)

1.4 状態方程式

熱平衡状態において

1.5 示量変数と示強変数