Linear Forms

Diptasri Ghosh

EE21MTECH14004

Abstract - This document contains solution of plotting graphs for the given equations.

Problem

Linear Forms, Example 2.3, Question No. b, e

Question 2.3. Draw the graphs of the following equations

1.
$$(1 -1)\mathbf{x} = 2$$

1.
$$(1 -1)\mathbf{x} = 2$$

2. $(1 -1)\mathbf{x} = 0$

Solution:

1. Given,

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 2 \tag{1}$$

Let us consider,

$$\mathbf{x} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{2}$$

Substituting \mathbf{x} in (1),

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} = 2 \tag{3}$$

Solving (3) we get,

$$a = 2 \tag{4}$$

Similarly consider,

$$\mathbf{x} = \begin{pmatrix} 0 \\ b \end{pmatrix} \tag{5}$$

Substituting \mathbf{x} in (1),

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ b \end{pmatrix} = 2 \tag{6}$$

Solving (3) we get,

$$b = -2 \tag{7}$$

So, the intercepts on the x and y-axis can be obtained as,

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \tag{8}$$

Figure 1: Plot-1

2. Given,

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 0 \tag{9}$$

Let us consider,

$$\mathbf{x} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{10}$$

Substituting \mathbf{x} in (9),

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} = 0 \tag{11}$$

Solving (11) we get,

$$a = 0 \tag{12}$$

Similarly consider,

$$\mathbf{x} = \begin{pmatrix} 0 \\ b \end{pmatrix} \tag{13}$$

Substituting \mathbf{x} in (9),

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ b \end{pmatrix} = 0 \tag{14}$$

Solving (14) we get,

$$b = 0 \tag{15}$$

Let us consider,

$$\mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{16}$$

Substituting \mathbf{x} in (9),

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0
\tag{17}$$

If a=2, we will get b=2. Hence, The intercepts on the x and y-axis can be obtained as,

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \tag{18}$$

Figure 2: Plot-2