Găujăneanu Nicoleta Monica, grupa 424D

Tranzistorul bipolar - simulări

Precum in lucrarea precedenta, programul de simulare utilizat este tot TINA-TI

1. CARACTERISTICILE DE INTRARE SI DE TRANSFER

Cu ajutorul programului TINA realizați următorul circuit:

Se realizează caracteristica de transfer in DC funcție de VBB. Completați tabelul de mai jos:

Tabelul 1 – 1p						
VBB (mV)	647	741	835	929	1023	1070
V _{BE} (mV)	630	677.36	702.1	717.38	728.2	732,59
$V_{CE}(V)$	13,93	13.48	12.48	11.15	9.67	8,91
$I_{B}(mA)$	0.0036	0.0135	0.0282	0.045	0.0627	0.0717
I _C (mA)	0.1489	1.1063	3.234	6.0638	9.2127	10.829
β_{F}	41.361	81.948	114.68	134.75	146.93	151.03

Curenții I_B si I_C se calculează cu relațiile următoare:

$$I_B = (VBB - V_{BE})/R2$$
 si $I_C = (VI - V_{CE})/R1$ iar $\beta_F = I_C / I_B$

T1-2p - Desenați curbele $I_C = f(V_{BE})$ si $I_B = f(V_{BE})$ pe același grafic, scara de curent fiind logaritmica.

2. CARACTERISTICILE DE IESIRE

Modificați circuitul ca in figura următoare (VCC = V1):

Se realizează caracteristica de transfer in DC funcție de VCC la cele trei valori fixe pentru VBB din Tabelul 2, evidențiate cu galben. Completați *Tabelul 2*.

Tabelul 2 – 5p						
$V_{CE}(V)$	0,1	0,5	1	5	8	12
V _{CC1} (V)	0,777	1.4	1.905	5,97	9.02	13.08
V_{BB1} (mV)	800	800	800	800	800	800
V _{BE1} (mV)	688	694.39	694.39	694	694.42	694
I _{B1} (μA)	23.829	22.47	22.47	22.553	22.463	22.553
Ic1 (mA)	1.44	1.914	1.925	2.063	2.17	2.297
Vcc ₂ (V)	1.915	3.169	3.695	7.89	11.03	15.22
V_{BB2} (mV)	<mark>950</mark>	<mark>950</mark>	<mark>950</mark>	<mark>950</mark>	<mark>950</mark>	<mark>950</mark>
$\frac{\mathbf{V_{BB2}} (\mathbf{mV})}{\mathbf{V_{BE2}} (\mathbf{mV})}$	950 711.42	950 719.91	950 719.92	950 719.99	950 720.04	950 720.1
V _{BE2} (mV)	711.42	719.91	719.92	719.99	720.04	720.1
V _{BE2} (mV) I _{B2} (μA)	711.42 50.761	719.91 48.955	719.92 48.953	719.99 48.938	720.04 48.927	720.1 48.914
$\begin{aligned} &V_{BE2}\left(mV\right)\\ &I_{B2}\left(\mu A\right)\\ &I_{C2}\left(mA\right) \end{aligned}$	711.42 50.761 3.861	719.91 48.955 5.678	719.92 48.953 5.734	719.99 48.938 6.148	720.04 48.927 6.446	720.1 48.914 6.851
V _{BE2} (mV) I _{B2} (μA) I _{C2} (mA) V _{CC3} (V)	711.42 50.761 3.861 2.902	719.91 48.955 5.678 4.917	719.92 48.953 5.734 5.46	719.99 48.938 6.148 9.78	720.04 48.927 6.446 13.02	720.1 48.914 6.851 17.33
$V_{BE2} (mV) \\ I_{B2} (\mu A) \\ I_{C2} (mA) \\ V_{CC3} (V) \\ V_{BB3} (mV)$	711.42 50.761 3.861 2.902 1070	719.91 48.955 5.678 4.917 1070	719.92 48.953 5.734 5.46 1070	719.99 48.938 6.148 9.78 1070	720.04 48.927 6.446 13.02 1070	720.1 48.914 6.851 17.33 1070

Cum schema de simulare este identica cu cea precedenta, relațiile de calcul pentru I_B si I_C , sunt identice cu cele folosite in determinările aferente *Tabelului 1*.

T2-3p - Desenați pe același axe de coordonate curbele $Ic_i = f(V_{CE})$, unde: i = 1, 2, 3; specificați pe grafic si valoarea corespunzătoare a lui V_{BB} .

 I_{C1} pentru V_{BB} =800mV, I_{C2} pentru V_{BB} =950mV, I_{C3} pentru V_{BB} =1070mV

മ

3. FACTORUL DE AMPLIFICARE IN CURENT

Folosind valorile obținute pentru $V_{CE} = 5 V \text{ din } Tabelul 2$, completați Tabelul 3 si calculați factorul β_F .

Tabelul 3 – 1p

Ι _Β (μΑ)	22.553	48.938	71.81
I _C (mA)	2.063	6.148	10.17
βг	91.473	125.628	141.623

$$\beta_F = I_C / I_B$$

T3-1p Desenați graficul $\beta_F = f(I_C)$.

4. AMPLIFICATORUL DE TENSIUNE

Desenați circuitul din figura următoare:

In continuare determin ce valoare are VS1 astfel încât V_{R10} sa ia valorile din Tabelul 4.1, cu ajutorul caracteristicii de transfer in DC (V_{R10} este tensiunea ce cade pe R1 in schema de mai sus). Se modifica apoi in schema VS1 cu valoarea corespunzătoare, apoi se determina mărimile de c.a. din tabel prin analiza *Table of AC results*, pentru $V_g=VG1=10mV$, f=1kHz si V1=VC=15V, completând restul mărimilor din tabel (V_o este tensiunea de ieșire măsurată in punctul VCE, iar V_{in} este tensiunea de intrare in baza lui Tr1 măsurată in punctul de joncțiune al lui C2 cu baza lui Tr1, ambele valori fiind in c.a).

	Tabelul 4.1 – 4	<mark>ք</mark> ք				
V _{R10} (V)	0,1	0,2	0,3	0,4	0,5	0,6
Ic (mA)	1	2	3	4	5	6
$V_{g}(mV)$	10	10	10	10	10	<mark>10</mark>
$V_{in}(mV)$	3,23	2,28	1.82	1.54	1.34	1,21
$V_0(mV)$	12,9	17.86	20.75	22.66	24	24,89
Av	<mark>4</mark> (3,99)	8(7.83)	11(11.4)	15(14.71)	18(17.91)	21(20.57)
g _m (mA/V)	30.959	877.192	1648.351	2597.402	3731.343	4958.677
βο	79.681	99.108	111.524	120.012	126.071	130.69
R _{in} (kΩ)	0.257	0.101	0.067	0.046	0.033	0.026

parametrii generator de semnal

VSI

Ultimele 4 mărimi se calculează cu următoarele formule:

- $A_{V} = V_0 / V_{in}$ (amplificare in tensiune in c.a)
- $g_m = I_c / V_{in}$ (panta tranzistorului sau conductanța de transfer)
- $\beta o = I_c / I_b$ (factorul de amplificare in c.a. in conexiune emitor comun)
- $Ri = V_{in} / I_b$ (rezistenta echivalenta la intrare, formula aproximativa, simplificata)

5. REZISTENTA DE IESIRE

Desenați circuitul din figura următoare:

Se modifica amplitudinea generatorului de semnal sinusoidal VG1=Vg=1V, f=1kHz.

In regimul de CC se pune problema la ce tensiune setez VS1 astfel încât la punctul de măsura VF1 (V_{CE} in tabelul 4.2) sa obțin valorile V_{CE} si I_{C} din Tabelul 4.2; acest lucru îl realizez cu analiza in CC prin comanda **DC Analysis** (menu Analysis).

Apoi se determina in CA tot in punctul de măsura VF1 mărimea V_0 , (menu Analysis \rightarrow AC Analysis \rightarrow Table of AC results) se notează in Tabelul 4.2.

Tabelul 4.2 – 2p					
V _{CE} (V)	13	2			
I _C (mA)	1	2			
$V_{o}(V)$	0,486	0.443			
$V_{g}(V)$	1	1			
$r_{ce}(k\Omega)$	0.486	0.2215			

Rezistența de ieșire a tranzistorului bipolar care lucrează în RAN prin definiție este: :

 $r_{ce} = V_0 / I_C (k\Omega),$

parametrii generator de semnal sinusoidal

T4 – 1p Calculați r_0 cu formula: $r_0 = r_{ce}/R2$.

$$r_{01} \! = \! \frac{\text{rc1}}{\text{R2}} \! = \! 0.486/11 \! = \! 0.044 \qquad \qquad r_{02} \! = \! \frac{\text{rc2}}{\text{R2}} \! = \! 0.2215/11 \! = \! 0.0201$$