1. Фильтр Калмана для ХҮ

Основное назначение — применение фильтра Калмана (ФК) для фильтрации координат, которые выдаются после блока Трилатерации в BLE Navigator.

<u>Важно!</u> Перед подачей координат пользователя с блока Трилатерации необходимо сделать их коррекцию по Карте. Это позволит ФК отрабатывать гораздо лучше.

В результате применения фильтра ожидаются гораздо меньшие скачки маркера положения пользователя по карте помещения.

2. Основные уравнения

Под реализацией фильтра Калмана будем понимать формирование всех матриц, необходимых для его использования (рисунок ниже).

Рисунок 1 – Общая схема работы фильтра Калмана

Фильтрация осуществляется в несколько этапов:

1) *Предсказание* ("Predict" на рис. выше). Этап заключается: **a)** в предсказании значений координат $(x_k^-; y_k^-)$ для текущего момента времени k (вектор X_k^-) по модели фильтра с использованием значений $(x_{k-1}; y_{k-1})$ за предыдущий момент времени k-1 (вектор X_{k-1}); **б)** в предсказании значения матрицы ковариации ошибок модели (P_k^-) с использованием значения матрицы за предыдущий момент времени k-1 (P_{k-1}) и матрицы шума модели фильтра (Q).

- 2) Коррекция ("Correct" на рис. выше). Этап заключается:
- а) в вычислении коэффициента Калмана K_k (по сути, он показывает, в какой пропорции доверять предсказанным значениям $(x_k^-; y_k^-)$ по модели (X_k^-) и посчитанным значениям координат (с учетом Коррекции по карте) $(x_k^z; y_k^z)$ (вектор Z_k));
- **б)** в вычислении значений координат $(x_k; y_k)$ для текущего момента времени $k(X_k)$ с учетом предсказанных значений по модели фильтра (X_k^-) , посчитанных значений (Z_k) и коэффициента Калмана K_k (другими словами, в коррекции предсказанных значений (X_k^-) по измеренным (Z_k) , где степень коррекции определяется коэффициентом Калмана (K_k));
- в) в вычислении значения матрицы ковариации ошибок модели для текущего момента времени (P_k) по ее предсказанному значению (P_k^-) и коэффициенту Калмана K_k (другими словами, в коррекции предсказанных значений (P_k^-) , где степень коррекции определяется коэффициентом Калмана (K_k)).

3. Основные уравнения

Уравнение 1:

$$X_k^- = A_k \cdot X_{k-1} + B \cdot U_k,$$

где

$$X_{k-1} = \begin{bmatrix} x_{k-1} \\ y_{k-1} \end{bmatrix};$$

$$\mathbf{A}_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\mathbf{B}=\mathbf{U}_{K}=\mathbf{0};$$

Уравнение 2:

$$P_k^- = A_k \cdot P_{k-1} \cdot A_k^T + Q,$$

где $P_k = \begin{bmatrix} p_{11}(k) & p_{12}(k) \\ p_{21}(k) & p_{22}(k) \end{bmatrix}$ — ковариационная матрица, пересчитывается на каждой итерации; для инициализации используются следующие ее значения $P_0 = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, которые определили экспериментально.

 $Q = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$ — матрица шума модели процесса; показывает, насколько точна наша модель; считаем, что модель достаточно точна;

"-" – операция матричного умножения.

Уравнение 3:

$$K_k = P_k^- \cdot H_k^T \cdot (H_k \cdot P_k^- \cdot H_k^T + R)^{-1},$$

 $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ — матрица шума измерения расстояний до маячков (см. ниже);

$$H_k = \begin{bmatrix} \dfrac{ds_A}{dx} & \dfrac{ds_A}{dy} \\ \dfrac{ds_B}{dx} & \dfrac{ds_B}{dy} \\ \dfrac{ds_C}{dx} & \dfrac{ds_C}{dy} \end{bmatrix}$$
 — матрица соответствия (идентичности), где:

 $s_A = \sqrt{(x_k^z - x_A)^2 + (y_k^z - y_A)^2}$ — расстояние до первого маяка от текущего положения пользователя, определенного методом Трилатерации;

 $s_B = \sqrt{(x_k^z - x_B)^2 + (y_k^z - y_B)^2}$ — расстояние до второго маяка от текущего положения пользователя, определенного методом Трилатерации;

 $s_C = \sqrt{(x_k^z - x_C)^2 + (y_k^z - y_C)^2}$ — расстояние до третьего маяка от текущего положения пользователя, определенного методом Трилатерации;

$$\frac{ds_A}{dx} = \frac{(x_k^z - x_A)}{\sqrt{(x_k^z - x_A)^2 + (y_k^z - y_A)^2}}, \quad \frac{ds_A}{dy} = \frac{(y_k^z - y_A)}{\sqrt{(x_k^z - x_A)^2 + (y_k^z - y_A)^2}} -$$
частные производные по

координатам Х и У от расстояния до каждого маяка.

Уравнение 4:

$$X_k = X_k^- + K_k \cdot (H_k \cdot Z_k^T - H_k \cdot X_k^-),$$

где $Z_k = [x_k^z; y_k^z]$ — текущие координаты, полученные на выходе блока Трилатерации (с учетом Коррекции по Карте).

Уравнение 5:

$$P_k = (I - K_k \cdot H_k) \cdot P_k^-,$$

где
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 — единичная матрица.

4. Особенности начала работы ФК

По умолчанию вектор **X** и матрица **P** инициализированы <u>нулями</u>. Когда приходят первые координаты $(\mathbf{x}_1^{\mathbf{z}}; \mathbf{y}_1^{\mathbf{z}})$, то выходное значение фильтра X_k без его (фильтра) запуска приравнивается к $X_k = [\mathbf{x}_1^{\mathbf{z}}; \mathbf{y}_1^{\mathbf{z}}]^{\mathsf{T}}$, а значения матрицы P_k приравниваются значениям P_0 .

На следующем шаге, k+1, фильтр работает так, как это описано пятью выражениями выше.

Блок-схемы смысла рисовать не вижу, так как основная из них будет подобна схеме из ФК для RSSI.