<u>La puissance movenne est</u>: $\frac{P}{m} = \frac{E}{T}$ \Rightarrow

Avec $cos(\phi)$ représente le facteur de puissance de puissance.

Remarque: La puissance moyenne se dissipe au niveau du circuit par effet joule: $P_m = \dots \dots \dots$

Série d'exercices : Oscillations forcées dans un circuit RLC sérié

Exercice 1 On monte en série le conducteur ohmique(D), la bobine (B) et le condensateur (C). On applique entre les bornes du dipôle obtenu une tension sinusoïdale

 $u(t) = 20\sqrt{2} (2\pi Nt)$ en Volt. On garde la tension efficace de la tension u(t) constante et on fait varier la fréquence N. On mesure l'intensité efficace I du courant pour chaque valeur de N. On visualise à l'aide d'un dispositif approprié l'évolution de l'intensité I en fonction de N, on obtient ;alors les deux courbes (a) et (b) représentées dans la figure (3) pour deux valeurs R_1 et R_2 de la résistance R; $(R_2 > R_1)$

A partir du graphe de la **figure** (1).

- **3.1-** Déterminer la valeur de la résistance R₁
- **3.2-** Calculer le coefficient de qualité Q du circuit dans le cas où $R = R_2$

Exercice 2 On monte en série, avec le condensateur précédent et la bobine précédente, un conducteur ohmique (D) de

résistance R réglable et un générateur de basse fréquence GBF. Le générateur applique une tension alternative sinusoïdale de valeur efficace *U* variable et de fréquence N variable également (**figure 1**),

La courbe (a), sur la **figure 2**, représente la variation de l'intensité efficace I du courant parcouru dans le circuit en fonction de la fréquence N quand la tension efficace du générateur est réglée sur la valeur $U_1 = 10V$, et la courbe (b) sur la **figure 5** représente les variations de I en fonction de N et ce, quand on change la valeur de l'une des deux grandeurs R ou U.

- **1-** Calculer la valeur de la résistance R du conducteur ohmique (D) correspondante à la courbe (a).
- **2-** Trouver l'expression de l'impédance Z du dipôle RLC en fonction de R quand la valeur de l'intensité efficace du courant vaut $I = \frac{10}{\sqrt{2}}$ avec I_0

l'intensité efficace du courant à la résonance.

Figure 2

- 3- Calculer le facteur de qualité du circuit pour chacune des deux courbes.
- 4- Indiquer parmi les deux grandeurs R et U, celui qui a été modifié pour obtenir la courbe (b). Justifier la réponse.

Exercice 3

On réalise le montage schématisé sur la figure 3 comportant :

- -un générateur de basse fréquence (GBF),
- -une bobine d'inductance L₀ et de résistance r₀,
- -le conducteur ohmique de résistance $R_0 = 30\Omega$,
- -le condensateur de capacité C=2,5 μF.

Le générateur délivre une tension alternative sinusoïdale $u(t)=U_m\cos(2\pi Nt)$ de fréquence N réglable. Un courant d'intensité $i(t)=I_m\cos(2\pi Nt+\phi)$ circule alors dans le circuit.

On fait varier la fréquence N de la tension u(t) en gardant sa tension maximale U_m constante. L'étude expérimentale a permis de tracer les deux courbes représentées sur les figures 1 et 2 où Z est l'impédance du circuit et I_m est l'intensité maximale du courant.

- 1-Choisir l'affirmation juste parmi les propositions suivantes :
- a-Le générateur (GBF) joue le rôle du résonateur.
- b-Les oscillations du circuit sont libres.
- c-φ représente le coefficient de puissance.
- **d**-L'expression du coefficient de qualité est $Q = \frac{N_0}{\Delta N}$
- 2-Déterminer la valeur de Um, de Lo et celle de ro.
- 3- Déterminer la valeur de la puissance électrique moyenne consommée dans le circuit à la résonance.

,
,
•••••
••••••••••••
•••••
•••••
,
•••••

•••••	