Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Prove that each of the following relations is an equivalence relation. Then describe the corresponding equivalence classes, e.g. by giving a geometric description.

(The relation R defined on \mathbb{R}^2 by $((a,b),(c,d)) \in R$ if |a|+|b|=|c|+|d|.)

(The relation S defined on the set of positive rational numbers $\mathbb{Q}_{>0}$ by $(a,b) \in S$ if $\frac{a}{b} = 2^n$ for some $n \in \mathbb{Z}$.)

2: Let R and S be equivalence relations on a set A. Prove or disprove the following statements.

(The relation $R \cup S$ is an equivalence relation on A.)

(The relation $R \cap S$ is an equivalence relation on A.)

3: The set of integers modulo n, where n > 1 is a natural number, is denoted $\mathbb{Z}/n\mathbb{Z}$ and is defined as the set of equivalence classes under the equivalence relation on \mathbb{Z} of being congruent modulo n. Prove that is it possible to define addition and multiplication operations on $\mathbb{Z}/n\mathbb{Z}$ via the formulas [a] + [b] = [a + b] and $[a] \cdot [b] = [a \cdot b]$, respectively.