Discussion Document

Edward L. Boone Virginia Pasour Colin Grudzien Shirley Han Lea Jenkins

November 3, 2014

Abstract

Discussion on Data Assimilation

Keywords: Data Assimilation

1 Introduction

2 Kot Model

Here is the Kot (1992) Model used in Figure 1.

$$\frac{dS}{dt} = D\left[S_i\left(1 + \epsilon \sin\frac{2\pi}{T}t\right) - S\right] - \frac{\mu_1}{Y_1}\frac{SH}{K_1 + S}$$

$$\frac{dH}{dt} = \mu_1 \frac{SH}{K_1 + S} - DH - \frac{\mu_2}{Y_2}\frac{HP}{K_2 + H}$$

$$\frac{dP}{dt} = \mu_2 \frac{HP}{K_2 + H} - DP$$

3 Competition Model

Here is my stab at putting together a competion model with predators.

$$\begin{array}{lcl} \frac{dx_1}{dt} & = & r_1x_1 - r_1x_1 \left(\frac{x_1 + \alpha_{12}x_2 + \alpha_{13}x_3}{K_1}\right) \\ \frac{dx_2}{dt} & = & r_2x_2 - r_2x_2 \left(\frac{x_2 + \alpha_{21}x_1 + \alpha_{23}x_3}{K_2}\right) - \beta_{24}x_2x_4 \\ \frac{dx_3}{dt} & = & r_3x_3 - r_3x_3 \left(\frac{x_3 + \alpha_{31}x_1 + \alpha_{32}x_2}{K_3}\right) - \beta_{35}x_3x_5 \\ \frac{dx_4}{dt} & = & \beta_{24}x_2x_4 - c_4x_4 \\ \frac{dx_5}{dt} & = & \beta_{35}x_3x_5 - c_5x_5 \end{array}$$

- x_1 is coral (Coral), x_2 is tall algae (Macroalgae), x_3 is short algae (Turf), x_4 is fish that eat tall algae (Browser) and x_5 is the fish that eat short algae (Grazer/detritivore).
- r_1 , r_2 and r_3 are the recruitment parameters for coral, tall algae and short algae, respectively.
- K_1 (up to 65%), K_2 (up to 100%) and K_3 (up to 60%) are the carrying capacity parameters for coral, tall algae and short algae, respectively.
- α_{ij} is the competition of x_j on x_i .
- β_{ij} is the predation success of x_i on x_i .
- c_i is the mortality rate for species x_i .

Acknowledgements

We thank the opportunities provided by SAMSI.

References

Berntsen, J., Espelid, T.O., and Genz, A. (1991) An Adaptive Algorithm for the Approximate Calculation of Multiple Integrals, ACM Transactions on Mathematical Software, 17, 437–451.

Kot, M., Sayler, G.S. and Schultz, T.W. (1992) Complex Dynamics in a Model Microbial System, *Bulletin of Mathematical Biology*, **54**, 619–648.

Figure 1: Data for (a) x1, (b) x2, (c) data with fitted model for x1, (d) data with fitted model for x2, (e) additional data and updated fitted model for x1 and (f) additional data and updated fitted model for x2.