Chapitre 9

Suites numériques

maire			0.4
I		es réelles, généralités	
	1)	Définitions	84
	2)	Vocabulaire	85
	3)	Opérations sur les suites	86
II	Suites convergentes		86
	1)	Définition	86
	2)	Premières propriétés	87
	3)	Convergence et opérations	87
	4)	Convergence et relation d'ordre	88
	5)	Caractérisations séquentielles	88
III	Suites ayant une limite infinie		88
	1)	Définition	88
	2)	Limite infinie et ordre	89
	3)	Limite infinie et opérations	89
IV	Théorèmes d'existence d'une limite		90
	1)	Suites monotones	90
	2)	Suites adjacentes	90
	3)	Le théorème de BOLZANO - WEIERSTRASS	91
V	Comparaison des suites		91
	1)	Définitions	91
	2)	Les exemples classiques	92
	3)	Propriétés	92
VI	Extension aux suites complexes		93
••	1)	Définitions	93
	2)	Convergence	93
	3)	Propriétés	

I SUITES RÉELLES, GÉNÉRALITÉS

1) Définitions

Définition 9.1

Une suite numérique u est une application de A vers $\mathbb{R}: u: A \to \mathbb{R}$, où A est une partie de \mathbb{N} . Par convention le réel u(n) est noté u_n , et la suite u est parfois notée $(u_n)_{n\in A}$. Si la partie A est finie, on dit que la suite u est une suite finie. L'ensemble des suites réelles définies sur A est donc l'ensemble des applications de A vers \mathbb{R} , c'est à dire $\mathscr{F}(A,\mathbb{R})$.

Remarque 9.1 – On prendra garde à ne pas confondre u_n qui est un réel (terme de rang n) avec $(u_n)_{n\in A}$ qui désigne la suite u. Les suites finies présentant peu d'intérêt, on étudiera seulement le cas où A est une partie infinie de $\mathbb N$. On peut alors montrer qu'il est toujours possible de se ramener au cas où $A = \mathbb N$, si bien que dans la suite de ce chapitre on étudiera $\mathscr F(\mathbb N,\mathbb R)$ l'ensemble des suites réelles définies sur $\mathbb N$.

Exemples:

- Une suite u est **arithmétique** si et seulement si il existe un réel r (appelé **raison**), tel que $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + r$. On a alors les formules suivantes : $\forall n, p \in \mathbb{N}$, $u_n = u_p + (n-p)r$. La somme de n termes consécutifs est $S = \frac{n(p+d)}{2}$ où p désigne le premier terme, et d le dernier.
- Une suite u est **géométrique** si et seulement si il existe $q \in \mathbb{R}$ (appelé **raison**), tel que $\forall n \in \mathbb{N}$, $u_{n+1} = qu_n$. On a alors les formules suivantes : $\forall n, p \in \mathbb{N}$, $u_n = u_p q^{n-p}$. La somme de n termes consécutifs est

$$S = \begin{cases} np \text{ si } q = 1\\ \frac{p - qd}{1 - q} \text{ si } q \neq 1 \end{cases}, \text{ où } p \text{ désigne le premier terme, } d \text{ le dernier et } q \text{ la raison.}$$

- Suites récurrentes à un pas : ce sont les suites u définies par : $u_0 \in \mathbb{R}$, et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, où $f: I \to \mathbb{R}$ est une fonction donnée. Par exemple : $u_0 = \frac{1}{2}$ et $u_{n+1} = u_n^2$. Dans le plan, à l'aide de la courbe représentative de f et de la première bissectrice, on peut construire géométriquement les termes de la suite sur l'axe des abscisses.

- Suites récurrentes à deux pas : par exemple la suite de *Fibonacci* 1 qui est définie par : $u_0 = u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n$.

2) Vocabulaire

- Sens de variation : soit u une suite réelle et p un entier, on dit que la suite u est :
 - croissante à partir du rang p lorsque : $\forall n \ge p, u_n \le u_{n+1}$.
 - strictement croissante à partir du rang p lorsque : $\forall n \ge p, u_n < u_{n+1}$.
 - décroissante à partir du rang p lorsque : $\forall n \ge p, u_{n+1} \le u_n$.
 - strictement décroissante à partir du rang p lorsque : $\forall n \ge p, u_{n+1} < u_n$.
 - constante (ou stationnaire) à partir du rang p lorsque : $\forall n \ge p, u_{n+1} = u_n$.
 - monotone lorsque *u* est croissante ou bien décroissante.
 - strictement monotone lorsque u est strictement croissante ou bien strictement décroissante.

Remarque 9.2 – Étudier le sens de variation de u peut se faire en étudiant le signe de $u_{n+1} - u_n$, ou encore le signe de $f(u_{n+1}) - f(u_n)$ où f désigne une fonction monotone.

- Suite bornée : on dit qu'une suite réelle *u* est :
 - majorée lorsque : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
 - minorée lorsque : $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, m \leq u_n$.
 - bornée lorsque : $\exists m, M \in \mathbb{R}, \forall n \in \mathbb{N}, m \leqslant u_n \leqslant M \ (i.e. \ minorée \ et \ majorée).$

Remarque 9.3 – *Une suite u est bornée si et seulement si il existe un réel* M *positif tel que* $\forall n \in \mathbb{N}, |u_n| \leq M$.

Par exemple, la suite $(u_n = \sin(n))$ est bornée, la suite $(v_n = n^2)$ est minorée mais non majorée, la suite $(w_n = (-2)^n)$ est ni minorée ni majorée.

^{1.} FIBONACCI Leonardo (1180 – 1250 (environ)) : mathématicien italien (de son vrai nom Leonardo da Pisa) qui œuvra pour l'introduction de nombres arabes en Occident.

- Suite périodique : on dit qu'une suite u est p-périodique (où $p \in \mathbb{N}^*$) à partir du rang n_0 lorsque : $\forall n \geqslant n_0, u_{n+p} = u_n$. Par exemple, la suite $(u_n) = (-1)^n$) est 2-périodique, la suite w définie par $w_0 = 1$, $w_1 = 1$ et pour tout n $w_{n+2} = -w_{n+1} - w_n$, est 3-périodique, mais la suite des décimales de π n'est pas périodique car π est irrationnel.
- Suite extraite : soit u une suite réelle et soit $\sigma \colon \mathbb{N} \to \mathbb{N}$ une **application strictement croissante**, alors la suite v définie par $v_n = u_{\sigma(n)}$ est appelée suite extraite de u (σ étant l'extraction). On remarquera que l'on a : $\forall n \in \mathbb{N}, n \leq \sigma(n)$. Par exemple, la suite (u_{2n}) est une suite extraite de u, c'est la suite des termes de rangs pairs, de même la suite (u_{2n+1}) est extraite de u, c'est la suite des termes de rangs impairs.

3) **Opérations sur les suites**

Soient u et v deux suites réelles et soit $\lambda \in \mathbb{R}$, on définit les suites :

- u + v: en posant pour tout $n \in \mathbb{N}$, $(u + v)_n = u_n + v_n$;
- $u \times v$: en posant $(u \times v)_n = u_n v_n$.
- $-\lambda v$: en posant $(\lambda v)_n = \lambda v_n$.
- $-\frac{1}{n}$: si ν ne s'annule pas à partir d'un certain rang n_0 , en posant : $(\frac{1}{n})_n = \frac{1}{n}$.

On vérifie alors que :

- $-(\mathscr{F}(\mathbb{N},\mathbb{R}),+)$ est un groupe commutatif. Son élément neutre est la suite nulle (notée 0) et l'opposé d'une suite u est la suite $(-u_n)_{n\in\mathbb{N}}$ (notée -u).
- La multiplication est associative, commutative, admet comme élément neutre la suite constante $(u_n = 1)_{n \in \mathbb{N}}$ (notée 1), et elle est distributive sur l'addition. Mais il y a des suites non nulles qui n'ont pas d'inverse, par exemple la suite u définie par $u_n = 1 + (-1)^n$. Seules les suites u qui ne s'annulent jamais ont un inverse, et cet inverse est la suite $\frac{1}{u}$.

L'ensemble $(\mathcal{F}(\mathbb{N},\mathbb{R}),+,\times)$ n'est donc pas un corps, mais seulement un **anneau commutatif**. Les deux suites u et v définies par $u_n = 1 + (-1)^n$ et $v_n = 1 - (-1)^n$ sont non nulles, mais leur produit est la suite nulle, ceci prouve que $(\mathcal{F}(\mathbb{N},\mathbb{R}),+,\times)$ est un anneau **non intègre**.

SUITES CONVERGENTES

1) **Définition**

🕊 Définition 9.2

Soit u une suite réelle et $\ell \in \mathbb{R}$, on dit que u admet comme limite ℓ lorsque u_n peut être aussi proche (ou voisin) que l'on veut de ℓ pourvu que n soit assez grand, c'est à dire :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon.$$

Notation : $\lim u = \ell$ *ou* $\lim u_n = \ell$ *ou* $u_n \to \ell$.

Remarque 9.4 -

- Comme $|u_n - \ell| = |(u_n - \ell) - 0| = ||u_n - \ell| - 0|$, on a:

$$\lim u_n = \ell \iff \lim u_n - \ell = 0 \iff \lim |u_n - \ell| = 0.$$

- Comme $||u_n| - |\ell|| \le |u_n - \ell|$, on a: $\lim |u_n| = \ell \implies \lim |u_n| = |\ell|$ (réciproque fausse).

🋂 Théorème 9.1

Si à partir d'un certain rang on a : $|u_n - \ell| \le v_n$, et si $v_n \to 0$, alors $\lim u_n = \ell$.

Preuve: Soit $\varepsilon >$, à partir d'un rang N_1 on a $|v_n| < \varepsilon$, et à partir d'un rang N_2 on a $|u_n - \ell| \le v_n$, donc à partir du rang $Max(N_1, N_2)$ on a $|u_n - \ell| < \varepsilon$.

Définition 9.3

Lorsque la suite u admet une limite finie, on dit que u est convergente, sinon on dit qu'elle est divergente.

Exemples:

Toute suite stationnaire (à partir d'un certain rang) est convergente.

- Soit $x \in \mathbb{R}$ et $v_n = \frac{\lfloor nx \rfloor}{n}$: on a $v_n \to x$. Soit $\varepsilon > 0$, $|v_n x| = \frac{nx \lfloor nx \rfloor}{n} < \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$, il suffit donc de prendre $N = 1 + \lfloor \frac{1}{\varepsilon} \rfloor$ pour avoir : $n \geqslant N \implies |v_n x| < \varepsilon$.
- $u_n = q^n$ avec q = 1: la suite est constante et $u_n \to 1$.
- $u_n = q^n$ avec |q| < 1 et $q \neq 0$: alors $q^n \to 0$. Soit ε > 0, comme $\frac{1}{|q|} > 1$, on a $\frac{1}{|q|} = 1 + p$ avec p > 0, on peut montrer alors que $\forall n \in \mathbb{N}$, $\frac{1}{|q|^n} \geqslant 1 + np$ (récurrence ou binôme de *Newton*), on a $\frac{1}{|q|^n} > \frac{1}{\epsilon}$ dès que $1 + np > \frac{1}{\epsilon}$ c'est à dire dès que $n \geqslant N = 1 + \left| \frac{1}{p\epsilon} \frac{1}{p} \right|$, donc $n \geqslant N \Longrightarrow |q^n| < \epsilon$.
- $-u_n=(-1)^n$ alors la suite est divergente (2-périodique). Supposons qu'elle ait une limite finie ℓ alors à partir d'un certain rang N on aura $|u_n-\ell|<\frac{1}{3}$ par conséquent les valeurs -1 et 1 sont dans l'intervalle $|\ell-\frac{1}{3};\ell+\frac{1}{3}[$ ce qui est absurde.

★Exercice 9.1 Montrer qu'une suite d'entiers convergente est stationnaire.

2) Premières propriétés

Soit *u* une suite réelle :

– Si *u* admet une limite $\ell \in \mathbb{R}$, alors celle-ci est unique.

Preuve: Supposons $u_n \to \ell$ et $u_n \to \ell'$ avec $\ell < \ell'$, Soit $\alpha \in]\ell; \ell'[$, $\varepsilon = \alpha - \ell$ et $\varepsilon' = \ell' - \alpha$, alors à partir d'un certain rang N on a $|u_n - \ell| < \varepsilon$, ce qui donne $u_n < \alpha$, et à partir d'un certain rang N' on a $|u_n - \ell'| < \varepsilon'$, ce qui donne $\alpha < u_n$, donc à partir de max(N, N') on a une contradiction, donc $\ell = \ell'$.

On a démontré au passage :

- Si u converge vers ℓ et si $\alpha < \ell$, alors à partir d'un certain rang $\alpha < u_n$. De même, si $\alpha > \ell$, alors à partir d'un certain rang on a $\alpha > u_n$.
- Si *u* est convergente, alors *u* est bornée (la réciproque est fausse).

Preuve: Si $u_n \to \ell \in \mathbb{R}$, il existe un entier N tel que $n \ge N \Longrightarrow |u_n - \ell| < 1$, ce qui entraîne $|u_n| < |\ell| + 1$. On a alors pour tout entier $n : |u_n| \le \max(|u_0|, \dots, |u_N|, 1 + |\ell|)$. Pour voir que la réciproque est fausse, on peut considérer la suite u définie par $u_n = (-1)^n$, elle est bornée mais non convergente.

Conséquence : la suite (q^n) avec |q| > 1 est divergente car non bornée, en effet : |q| = 1 + p avec p > 0 donc $|q^n| \ge 1 + np$ qui peut être aussi grand que l'on veut.

– Si u converge vers ℓ , alors toutes les suites extraites de u convergent vers ℓ .

Preuve: Soit $v_n = u_{\sigma(n)}$ une suite extraite de u et supposons $u_n \to \ell \in \mathbb{R}$. Soit W un voisinage de ℓ , il existe un entier N tel que $n \ge N \implies u_n \in W$. Mais σ étant strictement croissante, on a $\forall n \in \mathbb{N}$, $n \le \sigma(n)$, donc $n \ge N \implies \sigma(n) \ge N$, mais alors $u_{\sigma(n)} \in W$, c'est à dire $n \ge N \implies v_n \in W$ et donc $v_n \to \ell$.

Remarque 9.5 – Cette propriété est souvent utilisée pour montrer qu'une suite u n'a pas de limite. Soit en trouvant une suite extraite qui diverge, soit en trouvant deux suites extraites qui ne convergent pas vers la même limite. Par exemple : $u_n = \cos((n + \frac{1}{n})\pi)$.

- Si $\lim u_{2n}$ = $\lim u_{2n+1}$ = ℓ ∈ \mathbb{R} , alors $\lim u = \ell$.

Preuve : Soit $\varepsilon > 0$, il existe un entier N_1 tel que $k \ge N_1 \implies |u_{2k} - \ell| < \varepsilon$, de même il existe un entier N_2 tel que $k \ge N_2 \implies |u_{2k+1} - \ell| < \varepsilon$. Posons $N = \max(2N_1, 2N_2 + 1)$, si $n \ge N$ alors lorsque n = 2k on a $k \ge N_1$ et donc $|u_n - \ell| < \varepsilon$, lorsque n = 2k + 1 on a $k \ge N_2$ et donc $|u_n - \ell| < \varepsilon$, finalement dès que $n \ge N$ on a $|u_n - \ell| < \varepsilon$ et donc $|u_n - \ell| < \varepsilon$.

3) Convergence et opérations

Soient u et v deux suites qui convergent respectivement vers ℓ et ℓ' , et soit $\lambda \in \mathbb{R}$ alors :

- $(u_n + v_n)$ converge vers $\ell + \ell'$.
- (λu_n) converge vers $\lambda \ell$.

Preuve: Soit $\varepsilon > 0$, il existe un entier N à partir duquel on a $|u_n - \ell| < \varepsilon/2$ et $|v_n - \ell'| < \varepsilon/2$, mais alors on a $|u_n + v_n - (\ell + \ell')| \le |u_n - \ell| + |v_n - \ell'| < \varepsilon$, donc $u_n + v_n \to \ell + \ell'$.

Soit $\lambda \neq 0$, et soit $\varepsilon > 0$, à partir d'un certain rang on a $|u_n - \ell| < \frac{\varepsilon}{|\lambda|}$ d'où $|\lambda u_n - \lambda \ell| < \varepsilon$.

Théorème 9.3

 $Si(u_n)$ converge vers ℓ et (v_n) vers ℓ' alors :

- $(u_n v_n)$ converge vers $\ell \ell'$.
- Si $\ell \neq 0$, alors à partir d'un certain rang les termes u_n sont non nuls et la suite $(\frac{1}{u_n})$ converge vers $\frac{1}{\ell}$

Preuve: $|u_n v_n - \ell \ell'| = |(u_n - \ell)v_n + \ell(v_n - \ell')| \le |u_n - \ell||v_n| + |\ell||v_n - \ell'|$, mais la suite ν est bornée donc il existe un réel M strictement positif tel que $|v_n| \le M$ et donc $|u_n v_n - \ell \ell'| < |u_n - \ell| M + |\ell| |v_n - \ell'|$, mais d'après le théorème précédent la deuxième suite tend vers 0, donc $u_n v_n \rightarrow \ell \ell'$.

La suite $(|u_n|)$ converge vers $|\ell| > 0$ donc à partir d'un certain rang on a $|u_n| > \frac{|\ell|}{2} > 0$, donc $u_n \neq 0$ et alors : $|\frac{1}{u_n} - \frac{1}{\ell}| = \frac{|\ell - u_n|}{|\ell u_n|} < \frac{2|\ell - u_n|}{\ell^2}, \text{ or cette deuxième suite tend vers 0, donc } \frac{1}{u_n} \to \frac{1}{\ell}.$

Convergence et relation d'ordre

🔛 Théorème 9.4

Soient u, et v deux suites réelles. Si u converge vers ℓ , v converge vers ℓ' , et si à partir d'un certain rang on a $u_n \le v_n$, alors $\ell \le \ell'$ (c'est le théorème du **passage à la limite**).

Preuve: Supposons $\ell > \ell'$, alors il existe $\alpha \in \ell'$, alors il existe $\alpha \in \ell'$, ℓ' donc à partir d'un certain rang on doit avoir ℓ' avoir ℓ' ℓ' alors il existe ℓ' ce qui est contradictoire, donc $\ell \leq \ell'$.

Remarque 9.6 – Pour le passage à la limite on peut avoir $u_n < v_n$ et $\ell = \ell'$, par exemple en prenant $u_n = 1 - \frac{1}{n}$ et $v_n = 1 + \frac{1}{n}$, donc dans un passage à la limite les inégalités deviennent larges.

🔁 Théorème 9.5

Soient u, v et w trois suites réelles. Si u et v convergent vers ℓ et si à partir d'un certain rang on a $u_n \le w_n \le v_n$, alors w converge vers ℓ (c'est le théorème **des gendarmes ou de l'étau**).

Preuve: Soit $\varepsilon > 0$, il existe un entier N à partir duquel on a $u_n \le w_n \le v_n$ avec $u_n, v_n \in]\ell - \varepsilon; \ell + \varepsilon[$, donc $w_n \in]\ell - \varepsilon; \ell + \varepsilon[$ à partir du rang N, donc $w_n \to \ell$.

👺 Théorème 9.6

Soient u et v deux suites réelles. Si u converge vers 0 et si v est bornée, alors $\lim u \times v = 0$.

Preuve: Il existe un réel positif M tel que $|v_n| \le M$ pour tout n, d'où $|u_nv_n| \le M|u_n|$, c'est à dire $-M|u_n| \le u_nv_n \le M|u_n|$, on peut donc conclure que $u_n v_n \rightarrow 0$.

Déterminer la limite des suites (si elle existe) :

Exemples:

$$-a_n = \frac{\sin(n)}{n} \qquad k$$

$$-a_n = \frac{\sin(n)}{n} \qquad b_n = \frac{n}{2n + (-1)^n} \qquad c_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}} \qquad d_n = n - \sqrt{n}$$

$$-e_n = \frac{n^3 - 1}{n^2 + 1} \qquad f_n = \sqrt{n^2 + n + 1} - n \qquad g_n = \left(1 + \frac{1}{n}\right)^n$$

$$- e_n = \frac{n^3 - 1}{n^2 + 1}$$

$$f_n = \sqrt{n^2 + n + 1} - n$$

$$g_n = \left(1 + \frac{1}{n}\right)^n$$

5) Caractérisations séquentielles

📂 Théorème 9.7 (caractérisation séquentielle de la borne supérieure)

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$, on a :

M est la borne supérieure (inférieure) de A si et seulement si M majore (minore) A et il existe une suite d'éléments de A qui converge vers M.

Preuve: Si M = sup A, alors pour tout $n \in \mathbb{N}$, $\exists a_n \in A$ tel que M $-\frac{1}{n+1} < a_n$ car M $-\frac{1}{n+1}$ ne majore pas A, la suite (a_n) ainsi construite converge vers M car $M - \frac{1}{n+1} < a_n \le M$.

Si M majore A et qu'il existe une suite (a_n) de A qui converge vers M, alors pour tout $\varepsilon > 0$, à partir d'un certain rang N on a M $-\varepsilon < a_n$, donc M $-\varepsilon$ ne majore pas A, M est donc le plus petit majrant de A.

Théorème 9.8 (caractérisation séquentielle de la densité)

Soit A une partie non vide de \mathbb{R} , A est dense dans \mathbb{R} si et seulement si pour tout réel x il existe une suite d'éléments de A qui converge vers x.

Preuve : Celle-ci est simple et laissée en exercice.

SUITES AYANT UNE LIMITE INFINIE

1) **Définition**

Définition 9.4

Soit u une suite réelle :

- on dit que u admet comme limite +∞ lorsque u_n peut être aussi grand que l'on veut pourvu que n soit assez grand, c'est à dire : $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant N \implies u_n > A$.

Notation : $\lim u = +\infty$ *ou* $\lim u_n = +\infty$ *ou* $u_n \to +\infty$.

- on dit que u admet comme limite -∞ lorsque u_n peut être aussi petit que l'on veut pourvu que n soit assez grand, c'est à dire : $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant N \implies u_n < A$.

Notation : $\lim u = -\infty$ ou $\lim u_n = -\infty$ ou $u_n \to -\infty$.

Remarque 9.7 -

- Si u_n → + ∞ alors u n'est pas majorée (mais elle est minorée).
- $Si u_n \rightarrow -\infty$ alors u n'est pas minorée (mais elle est majorée).
- On a l'équivalence : $\lim u_n = -\infty \iff \lim -u_n = +\infty$.

Exemple: Si q > 1 alors $\lim q^n = +\infty$.

Comme pour les suites convergentes, on peut montrer :

- Si *u* admet une limite infinie, alors toutes les suites extraites de *u* ont la même limite que *u*.
- Si $u_{2n} \to +\infty$ et $u_{2n+1} \to +\infty$, alors $u_n \to +\infty$.

2) Limite infinie et ordre

Soient u et v deux suites réelles :

- Si lim u = +∞ et si à partir d'un certain rang on a $u_n \le v_n$, alors lim v = +∞.
- Si $\lim v = -\infty$ et si $u_n \le v_n$ à partir d'un certain rang, alors $\lim u = -\infty$.
- Si $\lim u = +\infty$ (respectivement $-\infty$) et si v est minorée (respectivement majorée), alors $\lim u + v = +\infty$ (respectivement $-\infty$).

Preuve: Pour le premier point : il existe un entier N_1 à partir duquel on a $u_n \le v_n$, soit A un réel, il existe un entier N_2 à partir duquel on a $A < u_n$, donc si $n \ge \max(N_1, N_2)$ alors $A < v_n$, donc $v_n \to +\infty$.

Pour le deuxième point : on peut appliquer le précédent aux suites -u et -v.

Pour le troisième point : supposons $u_n \to +\infty$ et v minorée par un réel m, alors pour tout entier n on a $m+u_n \le u_n+v_n$, or la suite $(m+u_n)$ tend vers $+\infty$, on peut donc appliquer le premier point, *i.e.* $u_n+v_n \to +\infty$. Dans l'autre cas on peut raisonner sur les suites -u et -v.

3) Limite infinie et opérations

Théorème 9.10

Soient u et v deux suites de limites respectives ℓ et ℓ' dans $\overline{\mathbb{R}}$, et soit $\lambda \in \mathbb{R}$.

- $\lim u + v = \ell + \ell'$ sauf si $\ell = +\infty$ et $\ell' = -\infty$ (ou l'inverse).
- $\lim \lambda u = \lambda \ell$ (si $\lambda = 0$ alors la suite λu est nulle).
- $\lim u \times v = \ell \ell'$ sauf si $\ell = 0$ et $\ell' = \pm \infty$ (ou l'inverse).
- Si à partir d'un certain rang la suite u ne s'annule pas, alors la suite $\frac{1}{u}$:

```
tend \ vers \ \frac{1}{\ell} \qquad \qquad si \ \ell \in \mathbb{R}^* tend \ vers \ 0 \qquad \qquad si \ \ell = \pm \infty tend \ vers \ + \infty \qquad \qquad si \ \ell = 0 \ et \ u > 0 \quad . tend \ vers \ - \infty \qquad \qquad si \ \ell = 0 \ et \ u < 0 n'a \ pas \ de \ limite \ dans \ les \ autres \ cas
```

Preuve : Pour la somme : prenons par exemple le cas $\ell \in \mathbb{R}$ et $\ell' = +\infty$, la suite u_n est minorée par un certain réel m (car convergente) d'après le paragraphe précédent, $u_n + v_n \to +\infty$. Les autres cas non indéterminés se ramènent à celui-ci. Pour la forme indéterminée, on peut considérer les exemples suivants : (n + (-n + a)) qui converge, $(n + (-\frac{n}{2}))$ qui tend vers $+\infty$, (n + (-2n)) qui tend vers $-\infty$, et $(n + (-n + (-1)^n))$ qui n'a pas de limite.

Pour λu : il suffit de considérer le cas $\lambda > 0$ et $u_n \to +\infty$ (laissé en exercice). Les autres cas se ramènent à celui-ci. Pour le produit : prenons par exemple le cas où ℓ est un réel strictement positif et $\ell' = +\infty$, alors à partir d'un certain rang, on a $v_n > 0$ et $u_n > \frac{\ell}{2} > 0$, d'où $u_n v_n > v_n \frac{\ell}{2}$, or $v_n \frac{\ell}{2}$ tend vers $+\infty$, et donc $u_n v_n$ aussi. Les autres cas non

indéterminés se ramènent à celui-ci. Pour la forme indéterminée, on peut considérer les exemples suivants : $(\frac{a}{n} \times n)$ qui converge, $(n \times \frac{1}{\sqrt{n}})$ qui tend vers $+\infty$, $(-n \times \frac{1}{\sqrt{n}})$ qui tend vers $-\infty$, et $(n \times \frac{(-1)^n}{n})$ qui n'a pas de limite.

Pour l'inverse : supposons que $\ell=0$ et u>0, soit A un réel et $\varepsilon=\frac{1}{1+|A|}$, il existe un entier N à partir duquel on a $|u_n| < \varepsilon$, c'est à dire en fait, $0 < u_n < \varepsilon$ et donc $A < 1 + |A| = \frac{1}{\varepsilon} < \frac{1}{u_n}$, par conséquent $\frac{1}{u_n} \to +\infty$. Les autres cas non indéterminés se ramènent à celui-ci. Pour terminer prenons la suite $u_n = \frac{(-1)^n}{n}$, son inverse est la suite $((-1)^n n)$ et cette suite n'a pas de limite (distinguer les termes de rangs pairs et les termes de rangs impairs).

THÉORÈMES D'EXISTENCE D'UNE LIMITE

1) **Suites monotones**

🔛 Théorème 9.11

Si u est une suite croissante majorée (respectivement décroissante minorée), alors (u_n) converge vers $\sup u_n$ (respectivement vers $\inf u_n$).

Si u est une suite croissante non majorée (respectivement décroissante non minorée), alors (u_n) tend vers $+\infty$ (respectivement vers $-\infty$).

Preuve : Supposons u croissante majorée, soit $\ell = \sup_{n \in \mathbb{N}} u_n$, et soit $\epsilon > 0$, alors il existe un entier N tel que $u_N > \ell - \epsilon$ (car $\ell - \varepsilon$ ne majore pas la suite). Si $n \ge N$ alors, la suite étant croissante, $\ell - \varepsilon < u_N \le u_n \le \ell < \ell + \varepsilon$ et donc $|u_n - \ell| < \varepsilon$, ce qui prouve que $u_n \to \ell$.

Lorsque u est croissante non majorée : soit A un réel, alors il existe un entier N tel que $u_N > A$ (A ne majore pas la suite), si $n \ge N$ alors $A < u_N \le u_n$, donc $u_n \to +\infty$.

Conséquences:

- a) Si (u_n) est croissante majorée, alors $u_n \to \ell = \sup u_n \in \mathbb{R}$ et donc $\forall n \in \mathbb{N}, u_n \leqslant \ell$. En fait si u est strictement croissante, alors $\forall n \in \mathbb{N}, u_n < \ell$ (car s'il y avait l'égalité au rang N, alors la suite serait constante à partir de l'indice N).
- b) Si (u_n) est décroissante minorée, alors $u_n \to \ell = \inf u_n \in \mathbb{R}$ et donc $\forall n \in \mathbb{N}, u_n \geqslant \ell$. En fait si u est strictement décroissante, alors $\forall n \in \mathbb{N}, u_n > \ell$ (car s'il y avait l'égalité au rang N, alors la suite serait constante à partir de l'indice N).
- c) Une suite monotone est donc convergente si et seulement si elle est bornée.

Exemples:

- Soit u la suite définie par : $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Cette suite est croissante $(u_{n+1} u_n > 0)$, en remarquant que pour $k \geqslant 2$ on a $\frac{1}{k^2} < \frac{1}{k(k-1)} = \frac{1}{k} - \frac{1}{k-1}$, on voit que $u_n < 2$, la suite u est donc convergente (de limite $\frac{\pi^2}{6}$).
- Soit v la suite définie par $v_0 = 1$ et $\forall n \in \mathbb{N}$, $v_{n+1} = \sin(v_n)$. Il s'agit d'une suite récurrente, la représentation graphique des premiers termes suggère que la suite est décroissante minorée par 0, ce qui est facile à vérifier par récurrence. La suite ν est donc convergente de limite ℓ , la fonction sinus étant continue, on a $\sin(v_n) \to \sin(\ell)$, c'est à dire $v_{n+1} \to \sin(\ell)$, donc $\ell = \sin(\ell)$. L'étude de la fonction $x \mapsto \sin(x) - x$ montre que l'unique solution de $\sin(x) = x$ est 0, donc $\ell = 0$, *i.e.* $\nu_n \to 0$.

Suites adjacentes

Définition 9.5

Soient u et v deux suites, on dit qu'elles sont adjacentes lorsque l'une est croissante, l'autre décroissante et $\lim u_n - v_n = 0$.

Exemple: Soient u et v les suites définies par : $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \times n!}$, ces deux suites sont adjacentes.

🛀 Théorème 9.12

Deux suites adjacentes sont nécessairement convergentes et convergent vers la même limite.

Preuve: Supposons u croissante, v décroissante, et $\lim u_n - v_n = 0$. Soit $w_n = v_n - u_n$, alors $w_{n+1} - w_n = (v_{n+1} - v_n) - v_n = 0$. $(u_{n+1}-u_n) \le 0$, donc la suite w est décroissante, or $\lim w_n = 0$, donc $\forall n \in \mathbb{N}$, $w_n \ge 0$, i.e. $u_n \le v_n$. Mais alors u est majorée par v_0 et v est minorée par u_0 , donc u et v sont convergentes : $u_n \to \ell$ et $v_n \to \ell'$, par conséquent $w_n \to \ell' - \ell$, or $w_n \to 0$, donc $\ell = \ell'$.

Le théorème de BOLZANO - WEIERSTRASS

Théorème 9.13 (de Bolzano²- Weierstrass³.)

Si u est une suite réelle bornée, alors on peut en extraire une suite convergente.

Preuve : On applique le principe de dichotomie : il existe $a_0 < b_0$ deux réels tels que $\forall n \in \mathbb{N}, u_n \in [a_0; b_0]$. On pose $I_0 = [a_0; b_0]$ et $\sigma(0) = 0$. On coupe cet intervalle en deux, soit $I_0' = [a_0; \frac{a_0 + b_0}{2}]$ et $I_0'' = [\frac{a_0 + b_0}{2}; b_0]$, si $\{n \in \mathbb{N} \mid u_n \in I_0'\}$ est infini alors on pose $I_1 = I_0'$, sinon on pose $I_1 = I_0''$. On alors un nouveau segment $I_1 = [a_1; b_1]$ inclus dans I_0 avec $b_1 - a_1 = \frac{b-a}{2}$ et $\{n \in \mathbb{N} \mid u_n \in I_1\}$ infini. On peut donc choisir $n_1 > 0$ tel que $u_{n_1} \in I_1$, on pose $\sigma(1) = n_1$. On recommence de la même façon avec I₁ ...

On construit ainsi une suite de segments $I_n = [a_n; b_n]$, emboîtés $(I_{n+1} \subset I_n)$, tels que $b_n - a_n = \frac{b-a}{2^n}$, et une application $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante telles que pour tout n, et $u_{\sigma(n)} \in I_n$, c'est à dire $a_n \leq u_{\sigma(n)} \leq b_n$. Or les suites (a_n) et (b_n) sont adjacentes, elles convergent donc vers une même limite ℓ , et donc par le théorème des gendarmes, on a $u_{\sigma(n)} \to \ell$: on a donc construit une suite extraite convergente.

COMPARAISON DES SUITES

Définitions

Définition 9.6

Soient (u_n) , (v_n) et (ε_n) trois suites telles qu'à partir d'un certain rang $u_n = v_n \varepsilon_n$. On dit que :

- u_n est dominée par v_n lorsque la suite (ε_n) est **bornée**. Notation : $u_n = O(v_n)$.
- $-u_n$ est négligeable devant v_n lorsque $ε_n → 0$. Notation : $u_n = o(v_n)$.
- u_n est équivalente à v_n lorsque $\varepsilon_n \to 1$. Notation : $u_n \sim v_n$.

Théorème 9.14 (Caractérisations)

Lorsque la suite v ne s'annule pas à partir d'un certain rang :

- $u_n = O(v_n)$ si et seulement si la suite $\frac{u}{v}$ est bornée.
- $u_n = o(v_n)$ si et seulement si $\lim \frac{u_n}{v_n} = 0$.
- $-u_n \sim v_n$ si et seulement si $\lim \frac{u_n}{v_n} = 1$.

Preuve : Celle - ci est simple et laissée en exercice.

Exemple: $n = o(n^2)$; $\frac{n}{n^2 + 1} \sim \frac{1}{n}$; $n \sin(n) = O(n)$.

Remarque 9.8 -

- $u_n = O(1)$ signifie que la suite (u_n) est bornée [donc $O(v_n) = v_n \times O(1)$].
- $u_n = o(1)$ signifie que $u_n \to 0$ [donc $o(v_n) = v_n \times o(1)$].
- $Si u_n = o(v_n) alors u_n = O(v_n)$.
- $Si u_n \sim v_n \ alors \ u_n = O(v_n)$.
- $Si u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$ (transitivité).
- $Si u_n = O(v_n)$ et $v_n = O(w_n)$, alors $u_n = O(w_n)$ (transitivité).
- $-u_n \sim v_n \iff u_n v_n = o(v_n).$

MThéorème 9.15

La relation « ... est équivalente à ... » est une relation d'équivalence dans $\mathscr{F}(\mathbb{N},\mathbb{R})$, c'est à dire qu'elle est réflexive, symétrique et transitive. De plus :

- Si ℓ ∈ \mathbb{R} et si $u_n \sim \ell$ alors $u_n \to \ell$ (réciproque vraie lorsque $\ell \in \mathbb{R}^*$).
- Si u_n = $o(v_n)$ alors $\forall \lambda \in \mathbb{R}$, $\lambda u_n + v_n \sim v_n$.

Preuve : Celle-ci est simple et laissée en exercice.

- 3. BOLZANO Bernhard (1781 1848) : mathématicien et philosophe tchèque.
- 3. WEIERSTRASS Karl (1815 1897) : mathématicien allemand parfois surnommé le père de l'analyse moderne

Les exemples classiques

🛂 Théorème 9.16 (des croissances comparées)

Soient $\alpha, \beta \in]0; +\infty[$:

- $Si \alpha < \beta \ alors \ n^{\alpha} = o(n^{\beta}) \ et \ \frac{1}{n^{\beta}} = o(\frac{1}{n^{\alpha}}).$

- $[\ln(n)]^{\alpha} = o(n^{\beta}).$ $n^{\alpha} = o(e^{n\beta})$ et $n^{\alpha} = o(e^{n\beta}).$ $\forall a \in \mathbb{R}, a^n = o(n!)$ et $donc \ n^{\alpha} = o(n!).$
 - $-n! = o(n^n)$

Preuve: Pour l'avant dernier point avec $a \neq 0$: on pose $u_n = \frac{|a|^n}{n!}$, alors $\frac{u_{n+1}}{u_n} = \frac{|a|}{n+1} \leqslant \frac{1}{2}$ à partir d'un certain rang N, d'où pour $n \geqslant N$, $0 \leqslant u_n \leqslant u_N \frac{1}{2^{n-N}}$ et donc $u_n \to 0$.

Pour le dernier point : Soit $u_n = \frac{n!}{n^n}$ alors $0 \le u_n \le \frac{1}{n}$ (en écrivant que $\frac{k}{n} \le 1$ pour k > 1).

Théorème 9.17 (les équivalents usuels)

Soit (u_n) une suite de **limite nulle**, alors;

- Si $f:]-a; a[\to \mathbb{R} \ (où \ a > 0) \ est \ dérivable en 0, et si <math>f'(0) \neq 0$, alors pour toute suite (u_n) de limite nulle, on a $f(u_n) - f(0) \sim f'(0)u_n$.
- $\sin(u_n) \sim u_n$; $e^{u_n} 1 \sim u_n$; $\ln(1 + u_n) \sim u_n$; $\tan(u_n) \sim u_n$; $(1 + u_n)^{\alpha} 1 \sim \alpha u_n$;
- $1 \cos(u_n) \sim \frac{1}{2}u_n^2$.
- Soit $P(x) = \sum_{k=0}^{p} a_k x^k$ une fonction polynomiale avec $a_p \neq 0$, alors $P(n) \sim a_p n^p$ (équivalence avec le terme de plus haut degré).
- Soit $Q(x) = \frac{P(x)}{R(x)}$ une fraction rationnelle avec $a_p x^p$ le terme de plus haut degré de $P(a_p \neq 0)$ et $b_r x^r$ celui de R $(b_r \neq 0)$, alors $Q(n) \sim \frac{a_p}{b_r} n^{p-r}$ (équivalence avec le rapport des termes de plus haut degré).

Preuve: Si f est une fonction dérivable en 0, alors il existe une fonction ε de limite nulle en 0 telle que : f(x) - f(0) = $xf'(0) + x\varepsilon(x)$, si $f'(0) \neq 0$ alors pour n assez grand on aura $f(u_n) - f(0) = u_n f'(0)[1 + \frac{\varepsilon(u_n)}{f'(0)}]$, ce qui entraı̂ne que

 $f(u_n) - f(0) \sim u_n f'(0) \left| \operatorname{car} u_n \to 0. \right|$

3) Propriétés

🔛 Théorème 9.18

Soient u et v deux suites,

- Si u_n ~ v_n et si lim v_n = ℓ ∈ $\overline{\mathbb{R}}$, alors lim u_n = ℓ .
- Si $u_n \sim v_n$ et si $a_n \sim b_n$, alors $u_n a_n \sim v_n b_n$ (compatibilité avec la multiplication).
- Si $u_n \sim v_n$ et si v ne s'annule pas à partir d'un certain rang, alors $\frac{1}{u_n} \sim \frac{1}{v_n}$ (compatibilité avec le passage à l'inverse).
- Si $u_n \sim v_n$ et si $v_n > 0$ ne s'annule pas à partir d'un certain rang, alors $u_n^{\alpha} \sim v_n^{\alpha}$ pour tout réel α (compatibilité avec les puissances constantes).

Preuve : Celle - ci découle directement de la définition.

Attention!

Il n'y a pas compatibilité avec l'addition en général, par exemple : $n + \frac{1}{n} \sim n$ et $-n \sim 1 - n$, mais $\frac{1}{n}$ n'est pas équivalent

Ces propriétés sont utiles pour les calculs de limites qui ne peuvent pas être faits directement : on essaie de se ramener à un équivalent plus simple (s'il y en a ...) dont on sait calculer la limite.

Exemples:

- Soit $u_n = \sqrt{n^2 n} n$, alors $u_n = n[(1 1/n)^{1/2} 1] \sim n[\frac{-1}{2n}] = -1/2$, donc $u_n \to -1/2$.
- Soit $u_n = \frac{n^2 e^n}{n! + n^4}$, on a $n^2 = o(e^n)$ donc $n^2 e^n \sim -e^n$, d'autre part $n^4 = o(n!)$ donc $n! + e^n \sim n!$, d'où $u_n \sim -\frac{e^n}{n!}$, mais $e^n = o(n!)$, donc $u_n \to 0$.

Théorème 9.19 (équivalent de Stirling)

On a $n! \sim n^n e^{-n} \sqrt{2\pi n}$.

EXTENSION AUX SUITES COMPLEXES

1) **Définitions**

On adopte la même définition et les mêmes notations que pour les suites réelles, une suite complexe est donc une application $u: \mathbb{N} \to \mathbb{C}$, l'ensemble des suites complexes est $\mathscr{F}(\mathbb{N}, \mathbb{C})$.

- Si u est une suite complexe, on pose pour tout entier n, $a_n = \text{Re}(u_n)$ et $b_n = \text{Im}(u_n)$, alors les suites a et b sont des **suites réelles**, avec $u_n = a_n + ib_n$. La suite a est appelée **partie réelle** de u et notée a = Re(u), la suite b est appelée **partie imaginaire** de u et notée Im(u). Par exemple, si $\theta \in \mathbb{R}$, la partie réelle que la suite $(e^{in\theta})$ est la suite $(\cos(n\theta))$, et sa partie imaginaire est la suite $(\sin(n\theta))$.
- La suite **conjuguée** de u est notée \overline{u} et définie par $\overline{u}_n = a_n ib_n$.
- La suite **module** de u est notée |u| est définie par $|u|_n = |u_n| = \sqrt{a_n^2 + b_n^2}$.
- Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strictement croissante, la suite $(\dot{u}_{\sigma(n)})$ est appelée **suite extraite** de u et on a $u_{\sigma(n)} = a_{\sigma(n)} + i b_{\sigma(n)}$.
- On dit que la suite complexe u est bornée lorsque sa partie réelle a et sa partie imaginaire b sont des suites réelles bornées. Ceci revient à dire que la suite |u| est majorée.
- On définit dans $\mathscr{F}(\mathbb{N},\mathbb{C})$ les mêmes opérations que pour les suites réelles : addition, multiplication et produit par un complexe. On trouve de même que $(\mathscr{F}(\mathbb{N},\mathbb{C}),+,\times)$ est un anneau commutatif non intègre.

2) Convergence

Définition 9.7

Soit u une suite complexe, et soit ℓ un complexe. On dira que la suite u converge vers ℓ lorsque la suite $(|u_n - \ell|)_{n \in \mathbb{N}}$ tend vers 0, c'est à dire :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant N \implies |u_n - \ell| < \varepsilon.$$

Exemple: Soit $u_n = \frac{e^{in\theta}}{n}$, alors $|u_n| = \frac{1}{n} \to 0$ donc u converge vers 0.

Propriétés 3)

👺 Théorème 9.20

Soit u une suite complexe et ℓ un complexe, alors la suite u converge vers ℓ si et seulement si la suite $(\text{Re}(u_n))$ converge vers $\text{Re}(\ell)$ **et** la suite $(\text{Im}(u_n))$ converge vers $\text{Im}(\ell)$.

Preuve: Notons $u_n = a_n + ib_n$ et $\ell = \alpha + i\beta$, (formes algébriques). Supposons que $a_n \to \alpha$ et $b_n \to \beta$, alors $|u_n - \ell| = \alpha + i\beta$, (formes algébriques). $\sqrt{(a_n-\alpha)^2+(b_n-\beta)^2}$ qui tend donc vers 0, donc u converge vers ℓ .

Réciproquement, si u converge vers ℓ , on a $|a_n - \alpha| \le |u_n - \ell|$ et $|b_n - \beta| \le |u_n - \ell|$, or $|u_n - \ell|$ tend vers 0, par conséquent $a_n \to \alpha$ et $b_n \to \beta$.

Connaissant les propriétés de suites réelles convergentes, on peut en déduire celles des suites complexes convergentes en raisonnant sur les parties réelles et imaginaires :

- Toute suite convergente est bornée.
- Si u converge vers $\ell \in \mathbb{C}$, alors toute suite extraite de u converge vers ℓ .
- Si u converge vers $\ell \in \mathbb{C}$ et v converge vers $\ell' \in \mathbb{C}$, alors $u + v \to \ell + \ell'$, $uv \to \ell\ell'$ et $\forall \lambda \in \mathbb{C}$, $\lambda u \to \lambda \ell$.
- Si $u \to \ell \in \mathbb{C}^*$, alors à partir d'un certain rang $u_n \neq 0$ et $\frac{1}{u} \to \frac{1}{\ell}$.
- Si *u* converge vers ℓ ∈ \mathbb{C} , alors la suite \overline{u} converge vers $\overline{\ell}$ et la suite |u| converge vers $|\ell|$.
- Si u est bornée alors on peut en extraire une suite convergente (Bolzano Weierstrass).

Remarque 9.9 – $Si \ u_n \to \ell \ dans \ \mathbb{C}$, et $si \ u \ est \ \grave{a} \ valeurs \ r\'eelles$, alors la suite (b_n) est la suite nulle, or $b_n \to \operatorname{Im}(\ell)$, $donc \operatorname{Im}(\ell) = 0$, c'est à dire $\ell \in \mathbb{R}$.

\bigstarExercice 9.2 Étude de la suite $(u_n = e^{in\theta})$.

VII SOLUTION DES EXERCICES

Solution 9.1 C'est une suite géométrique de raison $e^{i\theta}$. Si $\theta = 0$ (2π) , alors la suite est constante égale à 1, donc $u_n \to 1$. Si $\theta \neq 0$ (2π) , supposons que $u_n \to \ell \in \mathbb{C}$, alors $|u_n| \to |\ell|$, or $|u_n| = 1$, donc $|\ell| = 1$. D'autre part, $u_{n+1} = e^{i\theta}u_n$, par passage à la limite, on a $\ell = \ell e^{i\theta}$, or $\ell \neq 0$ (car $|\ell| = 1$), donc $e^{i\theta} = 1$ ce qui est absurde, par conséquent si $\theta \neq 0$ (2π) , la suite (u_n) est divergente.