

Regelungstechnik

Prof. Dr. B. Wagner

Kap. 6 Stabilitätskriterien Teil 2: Übungen zum Nyquist-Kriterium

Ein größeres Beispiel: P-Regler mit IT₂-Strecke (1)

$$G_{R}(j\omega) = \sqrt{2}$$
 $G_{S}(j\omega) = \frac{1}{\frac{j\omega}{10} \left(1 + \frac{j\omega}{10}\right) \left(1 + \frac{j\omega}{100}\right)}$

- Zeichnen Sie das Bode-Diagramm des geöffneten Regelkreises G_o(jω)!
- ⇒ Knick-Kreisfrequenzen?
- ⇒ Verlauf vor dem 1. Knick?

$$\frac{\sqrt{2} \cdot 10}{j\omega}$$
 I-Verhalten: -20dB/dek.; -90°

 \Rightarrow Betragswert bei ω_{min} = .1... ?

+23 dB

- ⇒ Konstruktion der Asymptoten
- ⇒ Skizze des wahren Verlaufs mit Hilfspunkten

Ein größeres Beispiel: P-Regler mit IT₂-Strecke (2)

1. Ermitteln Sie die Amplituden- und die Phasenreserve. Ist der Regelkreis stabil?

$$a_R = 0 \text{ dB} - (-18 \text{ dB}) = 18 \text{ dB}$$
 $phi_R = 180^{\circ} - 140^{\circ} = 40^{\circ}$

--> stabil, da a_R und phi_R positiv

 $a_R = .18 \text{ dB}$ $\phi_R = .40^{\circ}$.

2. Bestimmen Sie die kritische Reglerverstärkung V_{Rkrit}

Bei welcher kritischen Kreisfrequenz ω_{krit} schwingt der Regelkreis am Stabilitätsrand?

```
Achtung! Bode-Diagramm ist gezeichnet für V_R = sqrt(2) = +3 dB
```

--> wenn V_R um +18dB vergrößert wird, ist Stabilitätsrand erreicht.

Ein größeres Beispiel: P-Regler mit IT₂-Strecke (3)

4. Wie ist V_R einzustellen, um eine Phasenreserve von 70° zu erhalten?

--> V_R muss um 12 dB abgesetzt werden!

$$--> V_R = +3dB - 12 dB = -9 dB$$

Regelungstechnik 6b © Prof. Dr. B. Wagner Seite 4

Ein größeres Beispiel: P-Regler mit IT₂-Strecke (4)

5. Bestimme die Amplitudenreserve für V_R =5

für
$$V_R = sqrt(2) = +3dB$$
: $a_R = +18 dB$

für
$$V_R = 1 = 0dB$$
: $a_R = +21 dB$

für
$$V_R = 5 = 14 dB$$
: $a_R = +7 dB$

6. Ermitteln Sie die Phasenreserve für V_R =5

selbst probieren!

Lösung:

Ein größeres Beispiel: PDT₁-Regler mit IT₂-Strecke (1)

Alternativ zum bisher betrachteten Regler soll nun ein PDT₁-Regler für die selbe Strecke betrachtet werden

$$G_{R}(j\omega) = \frac{10\sqrt{2} \cdot \left(1 + \frac{j\omega}{10}\right)}{\left(1 + \frac{j\omega}{1000}\right)} \qquad G_{S}(j\omega) = \frac{1}{\frac{j\omega}{10}\left(1 + \frac{j\omega}{10}\right)\left(1 + \frac{j\omega}{100}\right)}$$

- 1. Stelle $G_o(j\omega)$ auf
- 2. Zeichne das Bode-Diagramm von G_o(jω)
 - => Kontrollieren Sie Ihr Bode-Diagramm mit LISA!
- 3. Lese die Amplituden- und Phasenreserve ab
 - => Im Skript Kapitel 6.3 finden Sie:
 Zwischenergebnisse
 Weitere Teilaufgaben (mit Endergebnissen)
 - => Selber lösen !!!

Ein größeres Beispiel: PDT₁-Regler mit IT₂-Strecke (2)

Vergleich der P-Regelung mit der PDT₁-Regelung:

$$G_R(j\omega) = \sqrt{2}$$

$$G_R(j\omega) = \frac{10\sqrt{2} \cdot \left(1 + \frac{j\omega}{10}\right)}{\left(1 + \frac{j\omega}{1000}\right)}$$

1. Beide Regelungen haben identische Amplitudenund Phasenreserve:

$$a_R \cong +18 \text{ dB}$$
 $\phi_R \cong 40^{\circ}$

- => identische Überschwingweite im Führungsverhalten
- 2. Mit PDT₁-Regler: 10-fache Durchtrittsfrequenz
 - => Das Führungsverhalten der PDT₁-Regelung ist 10-mal so schnell wie P-Regelung
- 3. Mit PDT₁-Regler: 10-fache Reglerverstärkung bei identischen Werten von $a_R \cong +18$ dB und $\phi_R \cong 40^\circ$

--- Führungssprungantwort --- Störsprungantwort ----

- => bessere Störunterdrückung:
- => bleibende Regelabweichung im Störverhalten mit PDT₁-Regler ist nur 10% so groß wie mit P-Regler

Ein kleineres Beispiel: P-Regler mit IT₂-Strecke in der Ortskurve

Das Bild rechts zeigt die Ortskurve eines anderen G_o(jω)

$$G_s(s) = \frac{1}{1000s^3 + 200s^2 + 10s}; \ V_R = 0.7$$

- Ist der dazugehörige geschlossene Regelkreis stabil?
 ja, da Ortskurve rechts von kritischem Punkt
- 2. Lesen Sie die Amplitudenreserve ab

$$A_R = 1 - 0.35 = 0.65$$

3. Lesen Sie die Phasenreserve ab

4. Bestimmen Sie die kritische Reglerverstärkung V_{Rkrit}

