WHAT IS CLAIMED IS:

1

28

A compound having the formula: 1.

$$G \xrightarrow{A} B_p$$
-(CH₂)_q-D-E

2 3 or a pharmaceutically acceptable salt, ester, or prodrug thereof, 4 wherein A, at each occurrence, independently is carbon, carbonyl, or nitrogen, provided at least 5 6 one A is carbon; Z is carbon, nitrogen, oxygen, or sulfur; 7 B is selected from the group consisting of O, NR², S(O)_r, C=O, C=S, and C=NOR³, 8 p is 0 or 1; 9 q, at each occurrence, independently is 0 or 1; 10 r is 0, 1, or 2; 11 R², at each occurrence, independently is selected from the group consisting of: 12 a) hydrogen, b) S(O)_rR⁴, c) formyl, d) C₁₋₈ alkyl, e) C₂₋₈ alkenyl, f) C₂₋₈ alkynyl, 13 g) C₁₋₈ alkoxy, h) C₁₋₈ alkylthio, i) C₁₋₈ acyl, j) saturated, unsaturated, or aromatic 14 C₃₋₈ carbocycle, and k) saturated, unsaturated, or aromatic 5-10 membered 15 heterocycle containing one or more heteroatoms selected from the group 16 consisting of nitrogen, oxygen, and sulfur, 17 wherein any of d) – k) optionally is substituted with one or more moieties 18 selected from the group consisting of carbonyl, aryl, substituted aryl, 19 heteroaryl, substituted heteroaryl, F, Cl, Br, I, CN, NO2, -NR3R3, -OR3, 20 $-S(O)_rR^4$, $-S(O)_rNR^3R^3$, $-C(O)R^3$, $-C(O)OR^3$, $-OC(O)R^3$, $-C(O)NR^3R^3$, and 21 $-OC(O)NR^3R^3$; 22 alternatively, two R² groups, taken together with the atom to which they are bonded, form 23 24 i) 5-8 membered saturated or unsaturated carbocycle, or ii) 5-8 membered saturated or unsaturated heterocycle containing one or more atoms selected from the group consisting of 25 26 nitrogen, oxygen, and sulfur, wherein i) - ii) optionally is substituted with one or more moieties selected from 27 the group consisting of carbonyl, F, Cl, Br, I, CN, NO₂, -NR³R³, -OR³, -S(O)_rR⁴,

29	$-S(O)_rNR^3R^3$, $-C(O)R^3$, $-C(O)OR^3$, $-OC(O)R^3$, $-C(O)NR^3R^3$, $-OC(O)NR^3R^3$,
30	C_{1-6} acyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl;
31	R ³ , at each occurrence, independently is selected from the group consisting of:
32	a) hydrogen, b) C ₁₋₈ alkyl, c) C ₂₋₈ alkenyl, d) C ₂₋₈ alkynyl, e) C ₁₋₈ acyl,
33	f) saturated, unsaturated, or aromatic C ₃₋₈ carbocycle, and g) saturated,
34	unsaturated, or aromatic 5-10 membered heterocycle containing one or more
35	heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
36	wherein any of b) $-$ h) optionally is substituted with one or more moieties
37	selected from the group consisting of carbonyl, F, Cl, Br, I, CN, NO2,
38	$-NR^6R^6$, $-OR^6$, $-S(O)_rR^6$, $-S(O)_rNR^6R^6$, $-C(O)R^6$, $-C(O)OR^6$, $-OC(O)R^6$,
39	-C(O)NR ⁶ R ⁶ , -OC(O)NR ⁶ R ⁶ , C ₁₋₆ acyl, aryl, substituted aryl, heteroaryl,
40	and substituted heteroaryl;
41	alternatively, two R ³ groups, taken together with the atom to which they are bonded, form
42	i) a 5-7 membered saturated or unsaturated carbocycle, or ii) a 5-7 membered saturated or
43	unsaturated heterocyocle containing one or more atoms selected from the group consisting of
44	nitrogen, oxygen, and sulfur,
45	wherein i) - ii) optionally is substituted with one or more moieties selected from
46	the group consisting of carbonyl, F, Cl, Br, I, CN, NO ₂ , -NR ⁶ R ⁶ , -OR ⁶ , -S(O) _r R ⁶ ,
47	$-S(O)_{r}NR^{6}R^{6}$, $-C(O)R^{6}$, $-C(O)OR^{6}$, $-OC(O)R^{6}$, $-C(O)NR^{6}R^{6}$, $-OC(O)NR^{6}R^{6}$,
48	C ₁₋₆ acyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl;
49	R ⁴ is selected from the group consisting of:
50	a) hydrogen, b) $-NR^3R^3$, c) $-NR^3OR^3$, d) $-NR^3NR^3R^3$ e) $-NHC(O)R^3$,
51	f) -C(O)NR 3 R 3 , g) -N $_3$, h) C $_{1-8}$ alkyl, i) C $_{2-8}$ alkenyl, j) C $_{2-8}$ alkynyl, k) saturated,
52	unsaturated, or aromatic C ₃₋₈ carbocycle, and l) saturated, unsaturated, or aromatic
53	5-10 membered heterocycle containing one or more heteroatoms selected from the
54	group consisting of nitrogen, oxygen, and sulfur,
55	wherein any of h) – l) optionally is substituted with one or more moieties
56	selected from the group consisting of carbonyl, F, Cl, Br, I, CN, NO2,
57	$-NR^3R^3$, $-OR^3$, $-SR^3$, $-S(O)_rR^5$, $-S(O)_rNR^3R^3$, $-C(O)R^3$, $-C(O)OR^3$,
58	-OC(O) R^3 , -C(O) NR^3R^3 , -OC(O) NR^3R^3 , C_{1-6} alkyl, C_{1-6} alkenyl,

heteroaryl; R ⁵ is selected from the group consisting of: a) hydrogen, b) -NR ³ R ³ , c) -NR ³ OR ³ , d) -NR ³ NR ³ R ³ e) -NHC(O)R ³ , f) -C(O)NR ³ R ³ , g) -N ₃ , h) C ₁₋₈ alkyl, i) C ₂₋₈ alkenyl, j) C ₂₋₈ alkynyl, k) sa unsaturated, or aromatic C ₃₋₈ carbocycle, and l) saturated, unsaturated, or 5-10 membered heterocycle containing one or more heteroatoms selected group consisting of nitrogen, oxygen, and sulfur, wherein any of h) - l) optionally is substituted with one or more in selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) ₅ -, wherein s is 1, 2, 3, 4, or 5;	
a) hydrogen, b) -NR ³ R ³ , c) -NR ³ OR ³ , d) -NR ³ NR ³ R ³ e) -NHC(O)R ³ , f) -C(O)NR ³ R ³ , g) -N ₃ , h) C ₁₋₈ alkyl, i) C ₂₋₈ alkenyl, j) C ₂₋₈ alkynyl, k) sa unsaturated, or aromatic C ₃₋₈ carbocycle, and l) saturated, unsaturated, or 5-10 membered heterocycle containing one or more heteroatoms selected group consisting of nitrogen, oxygen, and sulfur, wherein any of h) - l) optionally is substituted with one or more n selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted ar heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) ₅ -, wherein s is 1, 2, 3, 4, or 5;	
f) -C(O)NR ³ R ³ , g) -N ₃ , h) C ₁₋₈ alkyl, i) C ₂₋₈ alkenyl, j) C ₂₋₈ alkynyl, k) saturated, or aromatic C ₃₋₈ carbocycle, and l) saturated, unsaturated, or 5-10 membered heterocycle containing one or more heteroatoms selected group consisting of nitrogen, oxygen, and sulfur, wherein any of h) - l) optionally is substituted with one or more not selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ . C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted and heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	
unsaturated, or aromatic C ₃₋₈ carbocycle, and l) saturated, unsaturated, or 5-10 membered heterocycle containing one or more heteroatoms selected group consisting of nitrogen, oxygen, and sulfur, wherein any of h) – l) optionally is substituted with one or more n selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted ar heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) ₈ -, wherein s is 1, 2, 3, 4, or 5;	
5-10 membered heterocycle containing one or more heteroatoms selected group consisting of nitrogen, oxygen, and sulfur, wherein any of h) - l) optionally is substituted with one or more in selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	turated,
group consisting of nitrogen, oxygen, and sulfur, wherein any of h) - l) optionally is substituted with one or more in selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	aromatic
wherein any of h) – l) optionally is substituted with one or more in selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	from the
selected from the group consisting of F, Cl, Br, I, CN, NO ₂ , -NR ³ . -SR ³ -C(O)R ³ , -C(O)OR ³ , -OC(O)R ³ , -C(O)NR ³ R ³ , -OC(O)NR ³ R ³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	
-SR³-C(O)R³, -C(O)OR³, -OC(O)R³, -C(O)NR³R³, -OC(O)NR³R³ C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	noieties
C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted are heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl; substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	R^3 , $-OR^3$,
heteroaryl, and substituted heteroaryl; R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	,
R ⁶ , at each occurrence, independently is selected from the group consisting of: hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	yl,
hydrogen, C ₁₋₆ alkyl, C ₁₋₆ alkenyl, C ₁₋₆ alkynyl, C ₁₋₆ acyl, aryl, substituted heteroaryl; substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	
hetreroaryl, substituted heteroaryl; alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	
alternatively, two R ⁶ groups taken together are -(CH ₂) _s -, wherein s is 1, 2, 3, 4, or 5;	l aryl,
76 wherein s is 1, 2, 3, 4, or 5;	
D. F. is calcated from the group consisting of:	
D-E is selected from the group consisting of:	
N E ON E ON S	E
78 , \sim , \sim , and \sim	;
79	
E is selected from the group consisting of:	
81 a)	
82 R ⁷ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	

b)

- d) 5-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R¹³ groups;
- e) C₅₋₁₀ saturated, unsaturated, or aromatic carbocycle, optionally substituted with one or more R¹³ groups;
- 92 f) C_{1-8} alkyl,
- g) C₂₋₈ alkenyl,
- 94 h) C₃₋₈ alkynyl,
- 95 i) C_{1-8} alkoxy,
- 96 j) C₁₋₈ aklylthio,
- 97 k) C_{1-8} acyl,
- 98 l) $S(O)_rR^5$; and
- 99 m) hydrogen,

102

103

104

105

106

- wherein any of f(x) k) optionally is substituted with
 - i) one or more R¹³ groups;
 - ii) 5-6 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R¹³ groups; or
 - iii) C_{5-10} saturated, unsaturated, or aromatic carbocycle, optionally substituted with one or more R^{13} groups;

108	R ⁷ is selected from the group consisting of:
109	a) hydrogen, b) carbonyl, c) formyl, d) F, e) Cl, f) Br, g) I, h) CN, i) NO2, j) OR3,
110	k) $-S(O)_{r}R^{5}$, l) $-S(O)_{i}N=R^{2}$, m) $-C(O)R^{2}$, n) $-C(O)OR^{3}$, o) $-OC(O)R^{2}$,
111	p) $-C(O)NR^2R^2$, q) $-OC(O)NR^2R^2$, r) $-C(=NR^{12})R^2$, s) $-C(R^2)(R^2)OR^3$,
112	t) $-C(R^2)(R^2)OC(O)R^2$, u) $-C(R^2)(OR^3)(CH_2)_rNR^2R^2$, v) $-NR^2R^2$, w) $-NR^2OR^3$,
113	x) $-N(R^2)C(O)R^2$, y) $-N(R^2)C(O)OR^3$, z) $-N(R^2)C(O)NR^2R^2$, aa) $-N(R^2)S(O)_rR^5$,
114	bb) $-C(OR^6)(OR^6)R^2$, cc) $-C(R^2)(R^3)NR^2R^2$, dd) $-C(R^2)(R^3)NR^2R^{12}$, ee) $=NR^{12}$,
115	ff) $-C(S)NR^2R^2$, gg) $-N(R^2)C(S)R^2$, hh) $-OC(S)NR^2R^2$, ii) $-N(R^2)C(S)OR^3$,
116	jj) $-N(R^2)C(S)NR^2R^2$, kk) $-SC(O)R^2$, ll) C_{1-8} alkyl, mm) C_{2-8} alkenyl,
117	nn) C_{2-8} alkynyl, oo) C_{1-8} alkoxy, pp) C_{1-8} alkylthio, qq) C_{1-8} acyl, rr) saturated,
118	unsaturated, or aromatic C ₅₋₁₀ carbocycle, and ss) saturated, unsaturated, or
119	aromatic 5-10 membered heterocycle containing one or more heteroatoms
120	selected from the group consisting of nitrogen, oxygen, and sulfur,
121	wherein any of ll) - ss) optionally is substituted with one or more moieties
122	selected from the group consisting of:
123	carbonyl; formyl; F; Cl; Br; I; CN; NO_2 ; OR^3 ; $-S(O)_rR^5$; $-S(O)_rN=R^2$,
124	$-C(O)R^2$; $-C(O)OR^3$; $-OC(O)R^2$; $-C(O)NR^2R^2$; $-OC(O)NR^2R^2$;
125	$-C(=NR^{10})R^2$; $-C(R^2)(R^2)OR^3$; $-C(R^2)(R^2)OC(O)R^2$;
126	$-C(R^2)(OR^3)(CH_2)_rNR^2R^2$; $-NR^2R^2$; $-NR^2OR^3$; $-NR^2C(O)R^2$;
127	$-NR^2C(O)OR^3$; $-NR^2C(O)NR^2R^2$; $-NR^2S(O)_tR^5$; $-C(OR^6)(OR^6)R^2$;
128	$-C(R^2)(R^3)NR^2R^2$; $-C(R^2)(R^3)NR^2R^{12}$; $=NR^{12}$; $-C(S)NR^2R^2$; $-NR^2C(S)R^2$;
129	$-OC(S)NR^2R^2$; $-NR^2C(S)OR^3$; $-NR^2C(S)NR^2R^2$; $-SC(O)R^2$; C_{2-5} alkenyl;
130	C_{2-5} alkynyl; C_{1-8} alkoxy; C_{1-8} alkylthio; C_{1-8} acyl; saturated, unsaturated,
131	or aromatic C_{5-10} carbocycle, optionally substituted with one or more R^8
132	groups; and saturated, unsaturated, or aromatic 5-10 membered
133	heterocycle containing one or more heteroatoms selected from the group
134	consisting of nitrogen, oxygen, and sulfur, and optionally substituted with
135	one or more R ⁸ groups;
136	R ⁸ is selected from the group consisting of:
137	hydrogen; F; Cl; Br; I; CN; NO ₂ ; OR ⁶ ; aryl; substituted aryl; heteroaryl;
138	substituted heteroaryl; and C ₁₋₆ alkyl, optionally substituted with one or more

139	moieties selected from the group consisting of aryl, substituted aryl, neteroaryl,
140	substituted heteroaryl, F, Cl, Br, I, CN, NO ₂ , and OR ⁶ ;
141	alternatively, R ⁷ and R ⁸ taken together are -O(CH ₂) _r O-;
142	R ⁹ , at each occurrence, independently is selected from the group consisting of:
143	hydrogen, F, Cl, Br, I, CN, OR ³ , NO ₂ , -NR ² R ² , C ₁₋₆ alkyl, C ₁₋₆ acyl, and
144	C ₁₋₆ alkoxy;
145	R ¹⁰ is selected from the group consisting of:
146	a) saturated, unsaturated, or aromatic C ₅₋₁₀ carbocycle, b) saturated, unsaturated,
147	or aromatic 5-10 membered heterocycle containing one or more heteroatoms
148	selected from the group consisting of nitrogen, oxygen, and sulfur,
149	c) -X-C ₁₋₆ alkyl-saturated, unsaturated, or aromatic 5-10 membered heterocycle
150	containing one or more heteroatoms selected from the group consisting of
151	nitrogen, oxygen, and sulfur, d) saturated, unsaturated, or aromatic 10-membered
152	bicyclic ring system optionally containing one or more heteroatoms selected from
153	the group consisting of nitrogen, oxygen, and sulfur, e) saturated, unsaturated, or
154	aromatic 13-membered tricyclic ring system optionally containing one or more
155	heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
156	and f) R^9 ,
157	wherein
158	any of a) - e) optionally is substituted with one or more R ¹³ groups, and
159	X is O or NR ³ ;
160	alternatively, R ¹⁰ and one R ⁹ group, taken together with the atoms to which they are
161	bonded, form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with
162	one or more R ¹³ groups; or a 5-7 membered saturated or unsaturated heterocyocle containing one
163	or more atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally
164	substituted with one or more R ¹³ groups;
165	R ¹¹ at each occurrence, independently is selected from the group consisting of:
166	hydrogen; an electron-withdrawing group; aryl; substituted aryl; heteroaryl;
167	substituted heteroaryl; and C ₁₋₆ alkyl, optionally substituted with F, Cl, or Br;
168	alternatively, any R ¹¹ and R ⁸ , taken together with the atoms to which they are bonded,
169	form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with one or

```
more R<sup>13</sup> groups; or a 5-7 membered saturated or unsaturated heterocycle containing one or more
170
        atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally
171
       substituted with one or more R<sup>13</sup> groups:
172
                R<sup>12</sup> is selected from the group consisting of:
173
                        -NR^2R^2, -OR^3, -OC(O)R^2, -OC(O)OR^3, -NR^2C(O)R^2, -NR^2C(O)NR^2R^2,
174
                        -NR^2C(S)NR^2R^2, and -NR^2C(=NR^2)NR^2R^2;
175
                R<sup>13</sup>, at each occurrence, independently is selected from the group consisting of:
176
                        a) hydrogen, b) carbonyl, c) formyl d) F, e) Cl, f) Br, g) I, h) CN, i) NO2, j) OR3,
177
                        k) -S(O)_{1}R^{5}, 1) -S(O)_{2}N=R^{3}, m) -C(O)R^{2}, n) -C(O)OR^{3}, o) -OC(O)R^{2},
178
                        p) -C(O)NR^2R^2, q) -OC(O)NR^2R^2, r) -C(=NR^{12})R^2, s) -C(R^2)(R^2)OR^3,
179
                        t) -C(R^2)(R^2)OC(O)R^2, u) -C(R^2)(OR^3)(CH_2)NR^2R^2, v) -NR^2R^2, w) -NR^2OR^3,
180
                        x) -N(R^2)C(O)R^2, y) -N(R^2)C(O)OR^3, z) -N(R^2)C(O)NR^2R^2, aa) -N(R^2)S(O)_tR^5,
181
                        bb) -C(OR^6)(OR^6)R^2, cc) -C(R^2)(R^3)NR^2R^2, dd) -C(R^2)(R^3)NR^2R^{12}, ee) =NR^{12},
182
                        ff) -C(S)NR^2R^2, gg) -N(R^2)C(S)R^2, hh) -OC(S)NR^2R^2, ii) -N(R^2)C(S)OR^3,
183
                        ii) -N(R^2)C(S)NR^2R^2, kk) -SC(O)R^2, ll) C_{1-8} alkyl, mm) C_{2-8} alkenyl,
184
                        nn) C<sub>2-8</sub> alkynyl, oo) C<sub>1-8</sub> alkoxy, pp) C<sub>1-8</sub> alkylthio, qq) C<sub>1-8</sub> acyl, rr) saturated,
185
                        unsaturated, or aromatic C<sub>5-10</sub> carbocycle, ss) saturated, unsaturated, or aromatic
186
                        5-10 membered heterocycle containing one or more heteroatoms selected from the
187
                        group consisting of nitrogen, oxygen, and sulfur, tt) saturated, unsaturated, or
188
                        aromatic 10-membered bicyclic ring system optionally containing one or more
189
190
                        heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
                         and uu) saturated, unsaturated, or aromatic 13-membered tricyclic ring system
191
                         optionally containing one or more heteroatoms selected from the group consisting
192
193
                         of nitrogen, oxygen, and sulfur,
                                 wherein any of ll) - uu) optionally is substituted with one or more
194
                         moieties selected from the group consisting of:
195
                                         carbonyl; formyl; F; Cl; Br; I; CN; NO<sub>2</sub>; OR<sup>3</sup>; -S(O)<sub>r</sub>R<sup>5</sup>;
 196
                                         -S(O)_{1}N=R^{2}, -C(O)R^{2}; -C(O)OR^{3}; -OC(O)R^{2}; -C(O)NR^{2}R^{2};
 197
                                         -OC(O)NR^2R^2; -C(=NR^{12})R^2; -C(R^2)(R^2)OR^3;
 198
                                         -C(R^2)(R^2)OC(O)R^2: -C(R^2)(OR^3)(CH_2)NR^2R^2: -NR^2R^2:
 199
                                         -NR^2OR^3: -NR^2C(O)R^2: -NR^2C(O)OR^3: -NR^2C(O)NR^2R^2:
200
```

 $-NR^2S(O)_rR^5$; $-C(OR^6)(OR^6)R^2$; $-C(R^2)(R^3)NR^2R^2$; 201 $-C(R^2)(R^3)NR^2R^{12}$; $=NR^{12}$; $-C(S)NR^2R^2$; $-NR^2C(S)R^2$; 202 $-OC(S)NR^2R^2$; $-NR^2C(S)OR^3$; $-NR^2C(S)NR^2R^2$; $-SC(O)R^2$; 203 C₁₋₈ alkyl, C₂₋₈ alkenyl; C₂₋₈ alkynyl; C₁₋₈ alkoxy; C₁₋₈ alkylthio; 204 205 C_{1-8} acyl; saturated, unsaturated, or aromatic C_{3-10} carbocycle optionally substituted with one or more R⁷ groups; and saturated, 206 207 unsaturated, or aromatic 3-10 membered heterocycle containing 208 one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and substituted with one or more R⁷ 209 210 groups; 211 G is selected from the group consisting of: 212 a) C_{1-4} alkyl, b) C_{5-8} alkyl, c) C_{2-8} alkenyl, d) C_{2-8} alkynyl, e) C_{1-8} alkoxy, 213 f) C₁₋₈ alkylthio, g) C₁₋₈ acyl, h) saturated, unsaturated, or aromatic C₅₋₁₀ 214 carbocycle, i) saturated, unsaturated, or aromatic 5-10 membered heterocycle 215 containing one or more heteroatoms selected from the group consisting of 216 nitrogen, oxygen, and sulfur, 217 j) $-\frac{1}{2} \frac{\begin{pmatrix} O \\ \parallel \end{pmatrix}}{\begin{pmatrix} CH_2 \end{pmatrix}} \frac{\begin{pmatrix} O \\ \parallel \end{pmatrix}}{\begin{pmatrix} CH_2 \end{pmatrix}} \frac{\begin{pmatrix} O \\ \parallel \end{pmatrix}}{\begin{pmatrix} CH_2 \end{pmatrix}} \frac{\begin{pmatrix} O \\ \parallel \end{pmatrix}}{\langle CH_2 \rangle} OR^3$ 218 219 220 221 1) $\frac{\xi}{\xi}$ (CH₂) CH=CH ($\frac{\zeta}{\xi}$) 222 223 m) $\frac{\xi \left(\begin{array}{c} O \\ \end{array} \right)}{\xi \left(\begin{array}{c} CH_2 \end{array} \right)_t} CH = CH \frac{O}{1} NR^{14}R^{14}$ 224

225

n)

unsaturated, or aromatic 5-10 membered heterocycle containing 247 one or more heteroatoms selected from the group consisting of 248 nitrogen, oxygen, and sulfur, and optionally substituted with one or 249 more R¹³ groups; 250 t, at each occurrence, independently is 0, 1, 2, or 3; 251 v is 0, 1, 2, 3, 4, 5, or 6; 252 R¹⁴ is selected from the group consisting of: 253 a) hydrogen, b) C₁₋₆-alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) -C(O)-R³, 254 f) -C(O)-C₁₋₆ alkyl-R³, g) -C(O)-C₂₋₆ alkenyl-R³, h) -C(O)-C₂₋₆ alkynyl-R³, 255 i) $-C_{1-6}$ alkyl-J-R³, j) $-C_{2-6}$ alkenyl-J-R³; and k) $-C_{2-6}$ alkynyl-J-R³; 256 wherein 257 any of b) – d) optionally is substituted with one or more (i) 258 substituents selected from the group consisting of: 259 F, Cl, Br, I, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 260 $-OR^3$ $-O-C_{1.6}$ alkyl- R^2 , $-O-C_{2.6}$ alkenyl- R^2 , $-O-C_{2.6}$ alkynyl- R^2 , 261 and-NR²R²; and 262 J is selected from the group consisting of: (ii) 263 -OC(O)-, -OC(O)O-, $-OC(O)NR^2$ -, $-C(O)NR^2$ -, $-NR^2C(O)$ -, 264 $-NR^2C(O)O_{-}$, $-NR^2C(O)NR^2_{-}$, $-NR^2C(NH)NR^2_{-}$, and $S(O)_t$; and 265 R¹⁵ is selected from the group consisting of: 266 hydrogen; C₁₋₁₀ alkyl, optionally substituted with one or more R¹³ groups; 267 C₁₋₆ acyl, optionally substituted with one or more R¹³ groups; aryl; substituted 268 aryl; heteroaryl; substituted heteroaryl; arylalkyl; substituted arylalkyl; and a 269 macrolide. 270

2. The compound according to claim 1, having the formula:

3 wherein

1

- A, at each occurrence, independently is carbon or nitrogen, provided at least one
- 5 A is carbon, and
- p, q, B, D, E, and G are as defined in claim 1.
- 1 3. The compound according to claim 1, having the formula selected from the group
- 2 consisting of:

B_p-(CH₂)_q-D-E,
$$A$$

B_p-(CH₂)_q-D-E, A

B_p-(CH₂)_q-D-E, A

B_p-(CH₂)_q-D-E, A

B_p-(CH₂)_q-D-E, A

B_p-(CH₂)_q-D-E, A

5 wherein

2

- 6 Y is oxygen or sulfur,
- A, at each occurrence, independently is carbon or nitrogen, and
- p, q, B, D, E, and G are as defined in claim 1.
- 1 4. The compound according to claim 1, having the formula:

$$B_{p}$$
-(CH_{2})_q
 B_{p} -(CH_{2})_q
 B_{p} -(CH_{2})_q
 B_{p} -(CH_{2})_q

- wherein p, q, A, B, E, and G are as defined in claim 1.
- 1 5. The compound according to claim 4, having the formula:

- 3 wherein A, E, and G are as defined in claim 1.

2

2

4

2

1 6. The compound according to claim 4, having the formula:

- wherein A, E, and G are as defined in claim 1.
- 1 7. The compound according to claim 1, having the formula:

$$B_{p}$$
- $(CH_{2})_{q}$

or

 B_{p} - $(CH_{2})_{q}$

- wherein p, q, A, E, and G are as defined in claim 1.
- 1 8. The compound according to claim 7, having the formula:

wherein A, E, and G are as defined in claim 1.

1 9. The compound according to claim 1, wherein E has the formula:

- 2 R⁹ R⁹
 3 wherein R⁹ and R¹⁰, at each occurrence, are as defined in claim 1.
- 1 10. The compound according to claim 1, wherein E has the formula:

- 3 wherein R¹⁰ is as defined in claim 1.
- 1 11. The compound according to claim 9, wherein R¹⁰ has the formula:

3 wherein

2

- 4 K is selected from the group consisting of O, NR², and S(O)_r, and
- 5 x is 0, 1, 2, or 3.
- 1 12. The compound according to claim 11, wherein K is oxygen.
- 1 13. The compound according to claim 11, wherein t is 1.
- 1 14. The compound according to claim 9, wherein R¹⁰ is -C(O)CH₃.
- 1 15. The compound according to claim 9, wherein R¹⁰ has the formula:

- wherein R² and R⁷ are as defined in claim 1.
- 1 16. The compound according to claim 15, wherein R² is -C(O)-CH₂-OH.
- 1 17. The compound according to claim 15, wherein R⁷ is hydrogen.
- 1 18. The compound according to claim 1, wherein G has the formula:

$$\frac{\xi \left(\begin{array}{c} O \\ \end{array} \right)}{\xi \left(\begin{array}{c} CH_2 \end{array} \right)} \left(\begin{array}{c} O \\ \end{array} \right) \left(\begin{array}{c} CH_2 \end{array} \right) \left(\begin{array}{c} R^{14} \\ \end{array} \right) \left(\begin{array}{c} R^{13} \\ \end{array} \right) \left(\begin{array}{c} CH_2 \end{array}$$

- and R¹⁵ is a macrolide.
- 1 19. The compound according to claim 1, wherein G has the formula:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array} \end{array} \end{array} \hspace{-1cm} \left(\begin{array}{c} \\ \\ \end{array} \right) \hspace{-1cm} \left(\begin{array}{c} \\ \\ \end{array} \right)$$

- 2 and R¹⁵ is a macrolide.
- 1 20. The compound according to claim 1, wherein R¹⁵ is selected from the group consisting
- 2 of:

$$R^{20}$$
 R^{19}
 R

- 4 and pharmaceutically acceptable salts, esters and prodrugs thereof, wherein
- 5 R¹⁷ is selected from the group consisting of:

```
hydrogen, hydroxy protecting group, R<sup>3</sup>, and -V-W-R<sup>13</sup>,
 6
                                  wherein
 7
                                           V is -C(O), -C(O)O-, -C(O)NR^2-, or absent, and
 8
                                           W is C<sub>1-6</sub> alkyl, or absent;
 9
                alternatively R<sup>17</sup> and R<sup>14</sup>, taken together with the atoms to which they are bonded, form:
10
                                                   11
                O is selected from the group consisting of:
12
                         -NR^2CH_{2-}, -CH_2-NR^2, -C(O)-, -C(=NR^2)-, -C(=NOR^3)-, -C(=N-NR^2R^2)-,
13
                         -CH(OR^3)-, and -CH(NR^2R^2)-;
14
                R<sup>18</sup> is selected from the group consisting of:
15
                          i) C<sub>1-6</sub> alkyl, ii) C<sub>2-6</sub> alkenyl, and iii) C<sub>2-6</sub> alkynyl;
16
                                  wherein any of i) - iii) optionally is substituted with one or more moieties
17
                                  selected from the group consisting of -OR<sup>3</sup>, aryl, substituted aryl,
18
                                  heteroaryl, and substituted heteroaryl;
19
                R<sup>19</sup> is selected from the group consisting of:
20
                          a) -OR^{17}, b) C_{1-6} alkyl, c) C_{2-6} alkenyl, d) C_{2-6} alkynyl, e) -NR^2R^2, f) -C(O)R^3,
21
                          g) -C(O)-C<sub>1-6</sub> alkyl-R<sup>13</sup>, h) -C(O)-C<sub>2-6</sub> alkenyl-R<sup>13</sup>, and i) -C(O)-C<sub>2-6</sub> alkynyl-R<sup>13</sup>,
22
                                   wherein any of b) - d) optionally is substituted with one or more R<sup>13</sup>
23
 24
                                   groups;
                 alternatively, R<sup>14</sup> and R<sup>19</sup>, taken together with the atoms to which they are bonded, form:
 25
 26
                          wherein
 27
                                   L is CH or N, and
 28
                                   R^{23} is -OR^3, or R^3;
 29
```

```
R^{20} is -OR^{17}:
30
               alternatively, R<sup>19</sup> and R<sup>20</sup>, taken together with the atoms to which they are bonded, form a
31
       5-membered ring by attachment to each other through a linker selected from the group consisting
32
33
       of:
               -OC(R^2)(R^2)O, -OC(O)O, -OC(O)NR^2, -NR^2C(O)O, -OC(O)NOR^3,
34
               -N(OR3)C(O)O-, -OC(O)N-NR2R2-, -N(NR2R2)C(O)O-, -OC(O)CHR2-, -CHR2C(O)O-,
35
               -OC(S)O-, -OC(S)NR^2-, -NR^2C(S)O-, -OC(S)NOR^3-, -N(OR^3)C(S)O-,
36
               -OC(S)N-NR^2R^2-. -N(NR^2R^2)C(S)O-. -OC(S)CHR^2-. and -CHR^2C(S)O-:
37
               alternatively, O, R<sup>19</sup>, and R<sup>20</sup>, taken together with the atoms to which they are bonded,
38
39
       form:
40
                        wherein
41
                                 M is O or NR^2;
42
                R<sup>21</sup> is selected from the group consisting of:
43
                        hydrogen, F, Cl, Br, and C<sub>1-6</sub> alkyl;
44
               R<sup>22</sup>, at each occurrence, independently is selected from the group consisting of:
45
                                 hydrogen, -OR<sup>3</sup>, -O-hydroxy protecting group, -O-C<sub>1-6</sub> alkyl-J-R<sup>13</sup>,
46
                                 -O-C_{2-6} alkenyl-J-R<sup>13</sup>, -O-C_{1-6} alkynyl-J-R<sup>13</sup>, and -NR^2R^2;
47
                alternatively, two R<sup>22</sup> groups taken together are =O, =N-OR<sup>3</sup>, or =N-NR<sup>2</sup>R<sup>2</sup>; and
48
                R<sup>2</sup>, R<sup>3</sup>, R<sup>13</sup>, R<sup>14</sup>, and J are as described in claim 1.
49
```

The compound according to claim 1, wherein G has the formula selected from the group

1

2

21.

consisting of:

3
$$\frac{5}{5} \stackrel{\text{(O)}}{\stackrel{\text{(CH}_2)}{\stackrel{\text{(CH}_$$

6 and R¹⁵ has the formula selected from the group consisting of:

1 22. The compound according to claim 1, wherein G has the formula:

3 wherein n = 1, 2, 3, or 4.

13

2

2

1 23. The compound according to claim 1, wherein G has the formula:

3 wherein n = 1, 2, 3, or 4.

1 24. The compound according to claim 1, wherein G has the formula:

- 2
- wherein n = 1, 2, 3, or 4.
- 1 25. The compound according to claim 1, wherein G has the formula:

- 2
- 3 wherein n = 1, 2, 3, or 4.
- 1 26. The compound according to claim 1, having the formula:

- 2
- 3 wherein G is as described in claim 1.
- 1 27. The compound according to claim 26, wherein G has the formula selected from the group
- 2 consisting of:

10 , and

1 28. A compound having the formula selected from the group consisting of:

- or a pharmaceutically acceptable salt, ester, or prodrug thereof.
- 1 29. A compound having the structure corresponding to any of the structures listed in Table 1,
- 2 or a pharmaceutically acceptable salt, ester, or prodrug thereof.
- 1 30. A compound having the structure corresponding to any of the structures listed in Table 2,
- 2 or a pharmaceutically acceptable salt, ester, or prodrug thereof.
- 1 31. A pharmaceutical composition comprising a compound according to any one of claims
- 2 1-30 and a pharmaceutically acceptable carrier.
- 1 32. A method of treating a microbial infection in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.
- 1 33. A method of treating a fungal infection in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.

- 1 34. A method of treating a parasitic disease in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.
- 1 35. A method of treating a proliferative disease in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.
- 1 36. A method of treating a viral infection in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.
- 1 37. A method of treating an inflammatory disease in a mammal comprising administering to
- 2 the mammal an effective amount of a compound according to any one of claims 1-30.
- 1 38. A method of treating a gastrointestinal motility disorder in a mammal comprising
- 2 administering to the mammal an effective amount of a compound according to any one of claims
- 3 1-30.
- 1 39. The method according to any one of claims 32-38 wherein the compound is administered
- 2 orally, parentally, or topically.
- 1 40. A method of synthesizing a compound according to any of claims 1-30.
- 1 41. A medical device containing a compound according to any one of claims 1-30.
- 1 42. The medical device according to claim 41, wherein the device is a stent.