4.000000

46.795612

18.365520

11100.000000

In [148]: import pandas as pd In [149]: import warnings warnings.filterwarnings('ignore') In [150]: data=pd.read csv("/home/placement/Downloads/fiat500.csv") In [151]: data.describe() Out[151]: age_in_days ID engine power km previous owners lat lon price count 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 769.500000 51.904421 1650.980494 53396.011704 1.123537 43.541361 11.563428 8576.003901 mean 444.126671 3.988023 1289.522278 40046.830723 0.416423 2.133518 2.328190 1939.958641 std 1.000000 51.000000 366.000000 1.000000 36.855839 7.245400 min 1232.000000 2500.000000 25% 385.250000 51.000000 670.000000 20006.250000 1.000000 41.802990 9.505090 7122.500000 50% 769.500000 51.000000 1035.000000 1.000000 44.394096 11.869260 9000.000000 39031.000000 75% 1153.750000 51.000000 2616.000000 79667.750000 1.000000 45.467960 12.769040 10000.000000

4658.000000 235000.000000

max 1538.000000

77.000000

```
In [152]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1538 entries, 0 to 1537
          Data columns (total 9 columns):
               Column
                                Non-Null Count Dtype
               _ _ _ _ _
                                1538 non-null
           0
               ID
                                                 int64
               model
                                1538 non-null
                                                 object
           1
               engine power
                                1538 non-null
                                                 int64
               age in days
                                1538 non-null
                                                 int64
           4
                                1538 non-null
                                                int64
               km
           5
               previous owners 1538 non-null
                                                int64
               lat
                                1538 non-null
                                                float64
           7
                                1538 non-null
                                                float64
               lon
               price
                                1538 non-null
                                                 int64
          dtypes: float64(2), int64(6), object(1)
          memory usage: 108.3+ KB
In [153]: data1=data.drop(['ID','lat','lon'],axis=1)
```

localhost:8888/notebooks/lr_rr_er.ipynb

```
In [154]: data1
Out[154]:
                  model engine_power age_in_days
                                                     km previous_owners price
               0 lounge
                                  51
                                             882
                                                   25000
                                                                      1 8900
                                                                         8800
                                  51
                                             1186
                                                   32500
                    pop
                   sport
                                  74
                                            4658 142228
                                                                      1 4200
               2
               3
                  lounge
                                  51
                                            2739
                                                  160000
                                                                      1 6000
                                  73
                                            3074 106880
                                                                      1 5700
                    pop
                                   ...
             1533
                                  51
                                            3712 115280
                                                                         5200
                   sport
             1534
                  lounge
                                  74
                                            3835
                                                  112000
                                                                         4600
             1535
                    pop
                                  51
                                            2223
                                                   60457
                                                                      1 7500
             1536
                                                                         5990
                  lounge
                                  51
                                             2557
                                                   80750
             1537
                                  51
                                            1766
                                                   54276
                                                                      1 7900
                    pop
            1538 rows × 6 columns
In [155]: data2=data.loc[(data.model=='lounge')]
```

localhost:8888/notebooks/lr_rr_er.ipynb

In [156]: data2

Out[156]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
11	12	lounge	51	366	17500	1	45.069679	7.704920	10990
1528	1529	lounge	51	2861	126000	1	43.841980	10.515310	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.361120	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.994500	10800
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990

1094 rows × 9 columns

In [157]: data1=pd.get_dummies(data)

In [158]: data1

\sim	١		гэ	_	\sim	т.
		ΙТ.		'	×	
·	u	ıı	LJ	LJ	u	
						-

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [159]: data1.shape
Out[159]: (1538, 11)
In [160]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [161]: y
Out[161]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
                   . . .
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
```

In [162]: x

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	0	1	0
		•••						•••		
1533	1534	51	3712	115280	1	45.069679	7.704920	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	0	1	0

1538 rows × 10 columns

localhost:8888/notebooks/lr_rr_er.ipynb

1 45.538689

9.928310

0

1

0

In [163]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [164]: x_test.head()

Out[164]:		ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
	481	482	51	3197	120000	2	40.174702	18.167629	0	1	0
	76	77	62	2101	103000	1	45.797859	8.644440	0	1	0
	1502	1503	51	670	32473	1	41.107880	14.208810	1	0	0
	669	670	51	913	29000	1	45.778591	8.946250	1	0	0

18800

762

In [165]: y_test.head()

1409 1410

 Out[165]:
 481
 7900

 76
 7900

 1502
 9400

 669
 8500

 1409
 9700

Name: price, dtype: int64

51

In [166]: x_train.head()

Out[166]: ID engine_power age_in_days km previous_owners lon model_lounge model_pop model_sport lat 51 13111 **527** 528 1 45.022388 7.58602 1 0 0 425 **129** 130 51 1127 21400 1 44.332531 7.54592 1 0 0 **602** 603 51 2039 57039 1 40.748241 14.52835 0 1 0 **331** 332 1155 40700 1 42.143860 12.54016 0 51 1 41.903221 12.49565 1 0 **323** 324 51 425 16783

```
In [167]: y train.head()
Out[167]: 527
                   9990
                   9500
           129
           602
                   7590
           331
                   8750
           323
                   9100
           Name: price, dtype: int64
In [169]: from sklearn.linear_model import LinearRegression
           reg=LinearRegression()
           reg.fit(x_train,y_train)
Out[169]: LinearRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [170]: ypred=reg.predict(x_test)
```

```
In [171]: | ypred
Out[171]: array([ 5819.19308764,
                                  7248.82914161,
                                                   9741.8936974 ,
                                                                   9798.98033074,
                 10055.00624601.
                                   9551.4955679 .
                                                   9758.01743879. 10122.9778365.
                                   9251.1403257 , 10478.09512253 , 7807.3005255 ,
                  9654.9661814 ,
                  7705.15873781,
                                   6295.63244894,
                                                   9545.40486313, 10422.92177704,
                  9616.90811615,
                                  7756.9171161 ,
                                                   4893.88454414, 10581.46142719,
                 10465.24078346. 10443.29318231.
                                                   7518.43696046. 10028.21911459.
                  6990.73118896,
                                  8989.86900819,
                                                   4823.51364349,
                                                                   6989.03118684,
                  7822.83203734,
                                   9683.17944083,
                                                   7344.21343132,
                                                                   5341.43860798,
                                  5092.38401339,
                                                                   5702.81242412,
                  5420.78405336,
                                                   8971.44357515,
                  9920.16285466,
                                  8334.58448277,
                                                   6220.93323723,
                                                                   8389.23958511,
                  9695.84208061,
                                  6859.59630725,
                                                   9101.22635456, 10063.22592995,
                  8621.83915759, 10175.06753933,
                                                   9063.21918346,
                                                                   8867.24865352,
                  7094.44228184,
                                  9058.37693565,
                                                   9474.82390731, 10406.09102832,
                 10112.65006224,
                                  6820.90463865,
                                                   9700.36507783,
                                                                   9382.18149429,
                  9632.57617775, 10553.81356008,
                                                   9847.21129432,
                                                                   7247.16814789,
                  9990.23331336, 7084.23300123,
                                                   9977.34233656,
                                                                   7245.01115798,
                                  9737.86785115,
                                                                   8568.7125607 ,
                  6490.89305576,
                                                   9853.54349825,
                                                                   6870.28308427,
                  8506.81438703,
                                  6484.69051659,
                                                   7883.1895563 ,
                                                                    8637.85174602.
                  8263.36833348, 10551.03496347,
                                                   7434.71134313.
In [172]: from sklearn.metrics import r2 score
          r2 score (y test, ypred)
Out[172]: 0.8428319728488683
In [173]: from sklearn.metrics import mean squared error
          mean squared error(ypred,y test)
Out[173]: 577189.6736608233
In [174]: | import math
          a=577189.6736608233
          print(math.sqrt(a))
          759.7300005007195
```

localhost:8888/notebooks/lr rr er.ipynb

In [175]: Results=pd.DataFrame(columns=['price', 'predicted'])
 Results['price']=y_test
 Results['predicted']=ypred
 Results=Results.reset_index()
 Results['Id']=Results.index
 Results.head(15)

Out[175]:

	index	price	predicted	ld
0	481	7900	5819.193088	0
1	76	7900	7248.829142	1
2	1502	9400	9741.893697	2
3	669	8500	9798.980331	3
4	1409	9700	10055.006246	4
5	1414	9900	9551.495568	5
6	1089	9900	9758.017439	6
7	1507	9950	10122.977837	7
8	970	10700	9654.966181	8
9	1198	8999	9251.140326	9
10	1088	9890	10478.095123	10
11	576	7990	7807.300526	11
12	965	7380	7705.158738	12
13	1488	6800	6295.632449	13
14	1432	8900	9545.404863	14

```
In [176]: from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge
alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
ridge = Ridge()
parameters = {'alpha': alpha}
ridge_regressor = GridSearchCV(ridge, parameters)
ridge_regressor.fit(x_train, y_train)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [177]: ridge_regressor.best_params_
Out[177]: {'alpha': 30}
In [178]: ypred=ridge_regressor.predict(x_test)
```

```
In [179]:
          ypred
Out[179]: array([ 5819.29853963,
                                   7264.57491791,
                                                   9738.88270579,
                                                                   9794.47839507.
                 10050.35072397.
                                   9548.82126342.
                                                   9750.20283681. 10118.76944676.
                                  9247.20526971, 10474.46954
                                                                   7800.22901654,
                  9656.2363147 ,
                                  6317.72759712,
                                                   9542.31591964, 10420.56401819,
                  7695.77817109,
                                  7746.00639631,
                  9641.41151189,
                                                   4909.8836403 , 10575.9590411 ,
                 10447.28811339. 10440.93292264.
                                                   7492.38838409. 10023.77691534.
                  6993.68728961,
                                   9012.08291864,
                                                   4822.19326199,
                                                                   6980.28023648,
                  7816.98010837,
                                   9677.40953383,
                                                   7336.83285116,
                                                                   5328.48898357,
                                  5073.55505956,
                                                   8936.61797371,
                                                                   5693.27871402,
                  5430.56724837,
                  9939.05168141,
                                  8309.31737942,
                                                   6213.4861627 ,
                                                                    8409.23567191,
                  9693.0168448 ,
                                   6873.88260945,
                                                   9125.50501592, 10086.14831587,
                  8615.86224143, 10176.53613302,
                                                   9084.51866352,
                                                                   8863.55539547,
                  7082.99237491,
                                  9054.89062122,
                                                   9472.31391242, 10401.71056408,
                 10110.24411314,
                                  6837.93965878,
                                                   9697.35103307,
                                                                    9405.38998926,
                  9653.58056603, 10549.50117936,
                                                   9840.96037592,
                                                                   7263.00085407,
                  9985.59074909, 7075.08499779.
                                                   9973.28948478,
                                                                   7235.14597592,
                  6479.76739925,
                                                   9849.24462578,
                                  9738.88533685,
                                                                   8587.72121603,
                  8500.85578807,
                                  6473.43468594,
                                                   7872.26497993,
                                                                    6871.81868177,
                  8258.28361541. 10545.55397382.
                                                   7426.43055818.
                                                                    8629.44613409.
In [180]: ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
          y pred ridge=ridge.predict(x test)
In [181]: from sklearn.metrics import mean squared error
          Ridge Error=mean squared error(y_pred_ridge,y_test)
          Ridge Error
Out[181]: 574728.5696156605
In [182]: from sklearn.metrics import r2 score
          r2 score (y test, y pred ridge)
Out[182]: 0.8435021284061197
```

localhost:8888/notebooks/lr rr er.ipynb

In [184]: Results=pd.DataFrame(columns=['Actual','predicted'])
 Results['Actual']=y_test
 Results['Predicted']=ypred
 Results=Results.reset_index()
 Results['Id']=Results.index
 Results.head(15)

Out[184]:

		index	Actual	predicted	Predicted	ld
,	0	481	7900	NaN	5819.298540	0
	1	76	7900	NaN	7264.574918	1
	2	1502	9400	NaN	9738.882706	2
	3	669	8500	NaN	9794.478395	3
	4	1409	9700	NaN	10050.350724	4
	5	1414	9900	NaN	9548.821263	5
	6	1089	9900	NaN	9750.202837	6
	7	1507	9950	NaN	10118.769447	7
	8	970	10700	NaN	9656.236315	8
	9	1198	8999	NaN	9247.205270	9
	10	1088	9890	NaN	10474.469540	10
	11	576	7990	NaN	7800.229017	11
	12	965	7380	NaN	7695.778171	12
	13	1488	6800	NaN	6317.727597	13
	14	1432	8900	NaN	9542.315920	14

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [186]: elastic_regressor.best_params_
Out[186]: {'alpha': 0.01}
In [188]: elastic=ElasticNet(alpha=.01)
    elastic.fit(x_train,y_train)
    y_pred_elastic=elastic.predict(x_test)
```

```
In [189]:
          y pred elastic
Out[189]: array([ 5818.88155606,
                                   7251.60740134,
                                                   9741.37548309.
                                                                    9798.17563202.
                 10054.18656906.
                                   9551.03709384.
                                                   9756.60308305. 10122.24386003.
                  9655.23079132,
                                                                    7805.98706383,
                                   9250.43675403, 10477.46946422,
                                                   9544.86952947, 10422.52128897,
                  7703.41076005,
                                   6299.65982145,
                  9622.08375661,
                                   7754.80253699,
                                                   4897.38480628, 10580.47637966,
                 10461.71330862. 10442.89200323.
                                                   7512.81872938, 10027.42619282,
                                                   4822.9274055 ,
                  6990.9795985 ,
                                   8993.93966292,
                                                                    6987.38971162,
                  7821.74361059,
                                   9682.14401582,
                                                   7342.84571741,
                                                                    5338.98378321,
                                                                    5701.00133273,
                  5422.36411921,
                                   5088.69094616,
                                                   8964.54155191,
                  9923.63970799,
                                   8329.65576797,
                                                   6219.5421374 ,
                                                                    8392.88958456,
                  9695.35125166,
                                   6862.17433129,
                                                   9106.3590491 , 10067.46187307,
                  8620.73186465, 10175.36762819,
                                                   9067.11601592,
                                                                    8866.57789002,
                  7092.28977184,
                                   9057.74520111,
                                                   9474.38711846, 10405.31440756,
                  10112.23689137,
                                   6823.98653466,
                                                   9699.84010068,
                                                                    9386.45543089,
                  9637.09234337, 10553.05108845,
                                                   9846.08937468,
                                                                    7250.04609281,
                  9989.41187642,
                                   7082.51579887,
                                                   9976.61490792,
                                                                    7243.17422389,
                                   9738.09464099,
                                                   9852.77779753,
                                                                    8572.18811531,
                  6488.79520193,
                  8505.72502159,
                                   6482.56240442,
                                                   7881.15444662,
                                                                    6870.90829793,
                  8262.43238047, 10550.05609925,
                                                                    8636.30752919,
                                                   7433.16232868.
In [190]: from sklearn.metrics import r2 score
          r2 score(y test,y pred elastic)
Out[190]: 0.8429739684420192
In [191]: from sklearn.metrics import mean squared error
          elastic Error=mean squared error(y pred elastic,y test)
          elastic Error
Out[191]: 576668.2037947337
```

localhost:8888/notebooks/lr rr er.ipynb

In [192]: Results=pd.DataFrame(columns=['Actual','predicted'])
 Results['Actual']=y_test
 Results['Predicted']=y_pred_elastic
 Results=Results.reset_index()
 Results['Id']=Results.index
 Results

Out[192]:

	index	Actual	predicted	Predicted	Id
0	481	7900	NaN	5818.881556	0
1	76	7900	NaN	7251.607401	1
2	1502	9400	NaN	9741.375483	2
3	669	8500	NaN	9798.175632	3
4	1409	9700	NaN	10054.186569	4
503	291	10900	NaN	10120.713199	503
504	596	5699	NaN	6291.601668	504
505	1489	9500	NaN	10020.222896	505
506	1436	6990	NaN	8247.810365	506
507	575	10900	NaN	10337.015702	507

508 rows × 5 columns

In []: