POSCO 청년 Al Big Data Academy 25기

영업시간:

오후2시~오후5시

주문/배달문의:

054 - 279 - 5613

생성형 AI 카트를 활용한 무인 점포 시스템

C반 2조

김병우 김예원 김준혁 배빛나리 신지우 심정욱

목차

1. 추진배경

4. 차별점

2. 사전조사

5. 사용자 UI 구현

3. 프로젝트 요약

6. 기대효과

1. 추진배경

오프라인 매장 혁신 필요

E-커머스 시장의 확대로 대형마트의 매출액이 감소함에 따라, 오프라인 매장의 새로운 고객유치방안 필요

국내 스마트 카트 도입 부진

이마트에서 자율주행 카트 '일라이'의 도입을 시도했지만 실패

자율주행 카트의 실패요인 분석

- ♥ 고객과의 충돌로 인한 안전 사고 발생
- ♥ 카트 도난 위험성 존재
- ♥ 높은 비용 대비 소비 유도 미흡

기존 스마트 카트 단점 개선

높은 비용과 안전문제가 있는 자율주행을 제외하고 AI와 위치 기반 추천 시스템 도입을 통한 매출 극대화

D

С

B

상품 위치 : (🔘)

생성형 AI와 위치 기반 추천 알고리즘을 통해 매출 상승을 유도할 수 있는 스마트 카트를 제작한다.

2. 사전조사 - 전기수 사례

User Tracking AI Cart (16 A2)

- Google API 활용한 카트 AI 챗봇
- YOLOv5를 이용한 이미지 데이터 학습 및 상품 인식
- label data 추출을 이용한 가격 계산
- 거리 계산 알고리즘을 통한 사용자 트래킹

Smart Shopping Cart (18 C1)

- DeepSort Algorithm 을 통한 사용자 이동좌표 기반 트래킹
- 모션 인식 기반 구동 명령
- 웹캠을 통해 상품 인식 후 구매내역 출력

자율주행 쇼핑카트 (19 A4)

- 골격 정보를 활용한 사람 인식 및 추적
- Slam 및 최단 경로 알고리즘을 활용

자율주행 기술의 고비용과 안전문제로

마트 입장에서 실질적인 매출증대로 이어지기 어렵다는 한계가 존재한다.

2. 사전조사 - 기업사례

이마트 : Eli

- 자율주행, 장애물 회피 및 사용자 트래킹, 위치 정보 파악 등의 기술을 통합한 카트이다.
- 그러나 사업성 문제로 인해 사용화에 실패하였으며, 이는 기술적 한계, 고비용 구조 등의 한계점이 존재한다.

Amazon: Dash Cart

- 상품 인식을 위해 무게 센서와 바코드 스캐 너를 결합하고, QR 코드를 통한 신속한 회 원 인증으로 효율적인 쇼핑을 가능케 했다.
- 고객 만족도는 98%에 달한다.

Kroger: Caper Cart

- 상품 인식을 위해 무게 센서와 카메라 비전 기술을 활용하고, 실시간 추천 기능을 활용 해 사용자에게 맞춤 서비스를 제공한다.
- 이용 고객들은 이 기술로 평균 10% 더 많은 소비를 한다.

자율주행 기술의 기술적 및 비용적 제약을 감안할 때, 고객의 구매를 촉진하는 기술에 초점을 맞춘 접근이 보다 실용적이다.

3. 프로젝트 요약

목표 : 기존 카트를 활용하면서 고객의 매출을 극대화할 수 있는 카트 시스템을 구현한다

4. 차별점

매장 정보가 학습된 대화형 AI를 통해 사용자는 실시간으로 원하는 정보를 제공받는다.

제품 자동 인식 + 무게 감지

[Yolov7을 활용한 객체 탐지]

무게 센서와 연동하여 바코드를 찍지 않더라도 카트 안에 담긴 제품을 자동으로 인식한다.

다중 접속자 처리 통신

[서버와 어플리케이션 구현 예시]

Nvidia Triton Server를 활용하여 기존 소켓통신 대비 속도 개선 및 다중접속자 처리가 가능하다.

4-1. 실시간 AI 소통 (1)

Speech to Text

음성 데이터를 인식하여 텍스트로 바꾸는 기술 장보기 AI 도우미 "포리" 호출로 챗봇에 음성 질문 전달 Open Al Assistant

Text to Speech

호출어 인식 ~!(@(\$* **포리야** #((\$*^@ 네. 부르셨나요? ▼ 호출 정확도를 위한 유의어 목록 "노리", "노리야", "노리아", "로리", "로리야", "로리아", 챗봇 알고리즘 실행

첫봇 음성 인식 "포카칩 얼마야?" 포카칩 얼마야 나 텍스트 형태로 질문 전달 포카칩은 3,040원입니다.

소음 구분

→ 소음이 많은 마트의 특성을 고려하여 음성 인식 시 소음 보정 실행

4-1. 실시간 AI 소통 (2)

Speech to Text

Open Al Assistant

GPT-4 모델을 기반으로 사용자의 질문에 자연스럽고 정확하게 대응하여 정보를 제공하는 OpenAl 의 서비스

Text to Speech

학습 데이터

- 웹크롤링 통해 데이터베이스 구축
- ▼ 매장정보 : 이마트 상품 웹크롤링

categor -	product	brand 🔻	item 🔻	price 🔻
가공	머거본알땅콩	머거본	견과류	2,700
가공	허니버터아몬드	바프	견과류	7,900
신선	국산콩두부 부침용	풀무원	두부	5,480
신선	국산콩두부 찌개용	풀무원	두부	5,480
신선	행복한콩 부침두부	CJ	두부	1,380
신선	행복한콩 찌개두부	CJ	두부	1,580
즉석	너구리	농심	라면	4,500
즉석	삼양라면	삼양	라면	4,060

▼ 레시피정보 : 만개의 레시피 웹크롤링

Few-shot 프롬프팅

• 소수의 예시를 모델에 제공해 답변의 일관성 개선

"소고기 어디에 있어?"

"소고기는 등심과 불고기를 팝니다. 가격은 ~이고 C구역에서 판매하며 1+1 행사 중입니다."

"미역국 어떻게 만들어?"

"미역국을 만들기 위해 필요한 재료는 미역, 다진마늘, 간장, 소금입니다. 구매하시고 싶은 상품이 있으시면 말씀해주세요"

조건부 프롬프팅

• 특정 상황에 대한 지시사항을 구체 적으로 제시해 답변의 정확도 개선

Instructions(사전 지시사항): 할인, 1+1 행사 진행 여부를 먼저 검색하고 해당 상품에 대한 정보를 출력해.

▼ 상황 예시 : 할인 상품 질문

"할인하는 맥주 뭐 있어?"

"현재 매장에서 할인하는 맥주는 카스입니다. 가격은 2,190원이며, 10%할인 행사 진행 중입니다. 상품은 E3구역에 있습니다."

4-1. 실시간 AI 소통 (3)

Speech to Text

Open Al **Assistant**

Text to Speech

텍스트를 음성으로 바꾸는 기술 챗봇의 답변을 음성으로 변환하여 사용자에게 제공

음성답변

▼ 답변 가능한 경우

포카칩은 3,040원입니다.

" 포카칩은 3,040원입니다. "

Google Text-to-Speech

▼ 답변 불가능한 경우

"죄송합니다. 해당 정보를 찾을 수 없습니다. "

최종 모델 테스트

라즈베리파이 OS 환경 내 장보기 AI 시스템 탑재

4-2. 제품 자동 인식 (1)

데이터 수집 및 학습

다양한 환경과 각도에서 상품 사진을 촬영 및 증강기법을 적용하여 약 11,000장의 학습 데이터셋 구축 후 YOLO v7 모델로 학습

데이터 증강

Train Set	Valid Set	Augmentation	정확도
10,532장	709장	좌우, 상하반전	95.8%

Augmentation 기법을 통해 모델의 강인함(Robustness) 증가

4-2. 제품 자동 인식 (2)

카트 내 상품 변화 감지

무게센서 설치

카트 밑면 로드셀 센서 부착

무게센서 연결 및 결과 예시

Current Weight : -0.0477 투입 Current Weight : -0.2406

투입 후 Current Weight : -0.2860

Current Weight : 439.5121

Current Weight : 433.7362 Current Weight : 430.9356

카트 내 상품 변화 인지

4-2. 제품 자동 인식 (3)

웹 페이지 실시간 연동

카트에 담아지거나 빠지는 상품의 변화를 사용자 웹의 장바구니에 반영한다.

무게 변화 측정

상품 객체 인식

웹 장바구니 실시간 반영

로드셀 센서를 통한 무게 변화 인식

웹캠을 통한 상품 식별

웹 장바구니 스마트 카트와 실시간 연동

0.0613 -0.0999 0.0704 Current Weight : -0.0045 Current Weight : 0.1543 Current Weight : 0.1906 Current Weight : 0.3041 Current Weight : 0.1997 Current Weight : 0.2224 Current Weight : 0.4925 Current Weight : 0.4040 Current Weight : 50.0357 Current Weight : 49.7589

4-3. 다중접속자 처리 통신

통신 구조도

Nvidia Triton Server 로 소켓통신 대비 속도를 개선하고,
Single GPU, Multiple Model 의 원리로 다중 접속자의 요청을 동시에 처리할 수 있는 시스템 구축

5. 사용자 UI 구현 (1) 어플리케이션

위시리스트 기능구현

[메인 화면]

[위시리스트 화면]

[메모 인식 화면]

[카트로 전송되는 QR]

5. 사용자 UI 구현 (2) 웹페이지

장바구니 기능 구현

웹캠을 통해 추론된 상품이 자동으로 웹페이지 장바구니에 추가

사용자가 검색기능을 통해 수동으로 장바구니에 추가 기능

5. 사용자 UI 구현 (3) 웹페이지

지도 기능 구현

찾고자 하는 상품의 위치를 위와 같이 표시

카트의 현위치를 아이콘으로 위와 같이 표시

6. 기대효과

고객 입장

편리성 증대

긴 결제 줄을 기다릴 필요없이 카트에 결제 시스템을 장착함으로써

구매과정을 간편화하고 시간을 절약할 수 있음

맞춤형 추천

고객의 선호도와 마트 내 위치기반

맞춤형 상품을 추천함으로써 고객만족도 향상

매출 증대

고객에게 맞춤형 상품을 추천함으로써

고객의 추가 구매를 유도해 평균 매출액 증가시킴

비용 절감

고비용 자율주행 카트로 교체하는 게 아니라, 현재 마트에서 사용되는 쇼핑 카트에

손쉽게 장착 가능한 시스템의 도입을 통해 비용을 절감할 수 있음

고객 경험 개선

스마트 카트를 도입함으로써 고객에게 혁신적인 쇼핑 경험을 제공하고,

고객 충성도를 높일 수 있음

마트 입장

7. 시연영상

감사합니다:)

POX마트 체험해보기 (http://poxmart.duckdns.org:8501/)

