WINTER-2014

UNIT 1

Q.1 a) Solve:
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = e^x \cosh 2x$$
. (6)

b) Solve:
$$(2x+3)^2 \frac{d^2y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x$$
. (7)

Q.2 a) Solve:
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = x^3 \cdot \log x$$
. (6)

b) Apply the method of variation of parameters to solve:

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + y = \cos \operatorname{ec} x.$$
 (7)

UNIT 2

Q.3 a) Find the Laplace transform of:

$$\int_{0}^{\infty} te^{-2t} \sin t \, dt \,. \tag{4}$$

b) Find the inverse Laplace transform of
$$\log \frac{s+1}{s-1}$$
. (4)

c) Use convolution theorem to find:
$$L^{-1} \left[\frac{1}{s(s^2 + 4)} \right]$$
. (4)

Q.4 a) Find the inverse Laplace transform of:

$$\frac{21s-33}{(s+1)(s-2)^3}.$$
 (7)

b) Use Laplace transform method to solve the equation:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt}5x = e^{-t} \sin t, \text{ when } x(0) = 0 \text{ and } x'(0) = 1.$$
 (7)

UNIT 3

Q.5 a) Solve:

i.
$$y_{n+2} - 3y_{n+1} + 2y_n = 5^n$$
, **ii.** $u_{n+2} - 2u_{n+1} + u_n = n^2 \cdot 2^n$. (8)

b) Find the z-transform of $\sin (5k + 3)$. (5)

Q.6 a) Solve:
$$y_{x+3} - 3y_{x+2} - 4y_{x+1} + 12y_x = 4 - x$$
. (4)

b) Find the inverse z-transform of:
$$\frac{4z}{z-2}$$
 if $|z| > |2|$. (4)

c) Solve the difference equation:

$$6y_{k+2} - y_{k+1} + y_k = 0$$
, $y(0) = 0$, $y(1) = 1$ by z-transform.(5)

UNIT 4

Q.7 a) Solve the following equations:

i.
$$\frac{y^2z}{x}p + xzq = y^2$$
. ii. $z^2(p^2 + q^2 + 1) = a^2$. (8)

i.
$$\frac{y^2z}{x}p + xzq = y^2$$
. **ii.** $z^2(p^2 + q^2 + 1) = a^2$. (8)
b) Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$. (5)

Q.8 a) Solve the following equations:

i.
$$z = px + qy + sin(p + q)$$
, ii. $z^2(p^2 + q^2) = x^2 + y^2$. (8)

b) Find the Fourier transform of:

$$f(x) = \begin{cases} 1 - x^2 & \text{if} \quad |x| \le |x| \\ 0 & \text{if} \quad |x| > |x| \end{cases}.$$
 (5)

UNIT 5

- **Q.9 a)** Show that the function u(x, y) = 4xy 3x + 2 is harmonic. Construct the corresponding analytic function f(z) = u(x, y) + i v(x, y). Express f(z) in terms of complex variable z. (6)
- **b)** Expand the following function in Laurent's series:

$$f(z) = \frac{1}{z^2 - 4z + 3}$$
, for $1 < |z| < 3$. (7)

Q.10 a) Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = 1, 0, -i. Hence find the image of |z| < 1.

b) Determine the analytic function:

$$w = u + iv$$
, if $v = log(x^2 + y^2) + x - 2y$. (7)

UNIT 6

Q.11 a) Find the divergence and curl of:

b) Show that the vector:

$$\overline{A} = (x + 3y)\hat{i} + (y - 3z)\hat{j} + (x - 2z)\hat{k} \text{ is solenoidal.}$$
 (3)

c) Evaluate $\iint \overline{F} \circ \hat{n} ds$, where s is the surface of the plane 2x + y + 2z = 6 in the first octant and $F = (x + y)^2 \hat{i} - 2x\hat{j} + 2yz\hat{k}$.

(7)

Q.12 a) Evaluate the line integral:

$$\int_{C} \left[(x^{2} + xy) dx + (x^{2} + y^{2}) dy \right], \text{ where } C \text{ is the square}$$

formed by the lines
$$y = \pm 1$$
 and $x = \pm 1$. (7)

b) Find the directional derivative of $\Phi = 4e^{2x-y+z}$ at the point (1, 1, -1) in the direction towards the point (-3, 5, 6).