Wersja:	\mathbf{A}		0
9			

Numer indeksu:
000000

$Grupa^1$:		
8–10 s.104	8-10 s. 105	8–10 s.139
	10–12 s. 5	10–12 s.104
10-12 s.105	10–12 s.140	10–12 s.141

Logika dla informatyków

Sprawdzian nr 2, 9 grudnia 2016 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli dla dowolnego zbioru indeksów I oraz dowolnej indeksowanej rodziny zbiorów $\{A_{i,j} \mid \langle i,j \rangle \in I \times I\}$ zachodzi równość

$$\bigcup_{i,j\in I} A_{i,j} = \bigcup_{i\in I} A_{i,i}$$

to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontr-przykład.

$$I = \{1, 2\}, A_{1,2} = \{1\}, A_{1,1} = A_{2,2} = A_{2,1} = \emptyset$$

Zadanie 2 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup, \cap, \setminus i nawiasy, oraz W zawiera mniej symboli niż W'. Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $A \setminus (A \cap B \cap C)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

$$A \setminus (B \cap C)$$

Zadanie 3 (2 punkty). Rozważmy funkcję $F:\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ zadaną wzorem F(f,n)=f(n)+n. Jeśli funkcja F jest różnowartościowa to w prostokąt poniżej wpisz słowo "RÓŻNO-WARTOŚCIOWA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Niech $f_1(n) = 0$ dla $n \in \mathbb{N}$ oraz niech $f_2(n) = \begin{cases} 0, & \text{gdy } n < 42, \\ 1, & \text{wpp.} \end{cases}$ Wtedy $F(f_1, 1) = F(f_2, 1)$.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $\mathcal{Q}_1x_1\ldots\mathcal{Q}_nx_n\psi$, gdzie x_i są zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Przykładowo, formuła $\forall x>0$. $\exists y.\ x=y$ nie jest w preneksowej postaci normalnej ze względu na podformułę x>0 występującą przed kwantyfikatorem $\exists y$. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule

$$\forall o \in O. \exists b. Bywa(o, b) \land \forall s. Podaja(b, s) \Rightarrow Lubi(o, s),$$

to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\forall o. \exists b. \forall s. o \in O \Rightarrow (Bywa(o, b) \land (Podajq(b, s) \Rightarrow Lubi(o, s)))$$

Zadanie 5 (2 punkty). Jeśli istnieje relacja niezwrotna, nieantyzwrotna, słabo antysymetryczna i przechodnia, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje. Dla przypomnienia: relacja $R \subseteq A \times A$ jest antyzwrotna jeśli dla wszystkich $a \in A$ zachodzi $\langle a, a \rangle \notin R$.

$$R = \{ \langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m \ge n \ge 42 \}$$

Inny kontrprzykład: $A = \{1, 2\}, R = \{\langle 1, 1 \rangle\}$

Numer indeksu:

000000

 $Grupa^1$:

8–10 s.104	8–10 s.105	8–10 s.139
	10–12 s. 5	10–12 s.104
10-12 s. 105	10-12 s. 140	10–12 s.141

Zadanie 6 (5 punktów). Czy dla dowolnych zbiorów A i B zachodzi implikacja jeśli $A \setminus B = B \setminus A$ to A = B? Uzasadnij odpowiedź.

Rozwiązanie: Tak. Załózmy, że $A \setminus B = B \setminus A$. Do dowodu, że A = B wystarczy pokazać dwie inkluzje: $A \subseteq B$ oraz $B \subseteq A$. Pokażemy najpierw, że $A \subseteq B$. Weźmy więc dowolne $x \in A$ i rozważmy dwa przypadki:

1: $x \in B$. W tym przypadku od razu otrzymujemy $x \in B$.

2: $x \notin B$. W tym przypadku $x \in A \setminus B$, z równości $A \setminus B = B \setminus A$ otrzymujemy $x \in B \setminus A$, czyli $x \in B$ oraz $x \notin A$; w szczególności $x \in B$.

W obu przypadkach otrzymaliśmy $x \in B$, co kończy dowód inkluzji $A \subseteq B$.

Dowód inkluzji $B \subseteq A$ jest symetryczny—wystarczy w dowodzie inkluzji $A \subseteq B$ zamienić miejscami wszystkie wystapienia A i B.

Zadanie 7 (5 punktów). Mówimy, że relacja $R \subseteq A \times B$ jest funkcją częściową jeśli dla wszystkich $a \in A$ oraz wszystkich $b_1, b_2 \in B$ zachodzi implikacja $\langle a, b_1 \rangle \in R \wedge \langle a, b_2 \rangle \in R \Rightarrow b_1 = b_2$.

Udowodnij, że $R \subseteq A \times B$ jest funkcją częściową wtedy i tylko wtedy gdy R^{-1} ; $R \subseteq I_B$. Tutaj $I_B = \{\langle b, b \rangle \mid b \in B\}$ jest relacją identycznościową na zbiorze B.

Rozwiązanie: Najpierw pokażemy implikację \Rightarrow . Załóżmy, że $R \subseteq A \times B$ jest funkcją częściową i pokażemy, że R^{-1} ; $R \subseteq I_B$. Weźmy więc dowolny element e zbioru R^{-1} ; R. Ponieważ R^{-1} ; R jest relacją zawartą w $B \times B$, dla pewnych $b_1, b_2 \in B$ mamy $e = \langle b_1, b_2 \rangle$. Z definicji złożenia relacji wiemy, że istnieje takie $a \in A$, że $\langle b_1, a \rangle \in R^{-1}$ oraz $\langle a, b_2 \rangle \in R$. Z definicji relacji odwrotnej otrzymujemy $\langle a, b_1 \rangle \in R$ oraz $\langle a, b_2 \rangle \in R$. Ponieważ R jest funkcją częściową, $b_1 = b_2$, a zatem $e = \langle b_1, b_1 \rangle$ i $e \in I_B$.

Teraz pokażemy implikację \Leftarrow . Załóżmy, że R^{-1} ; $R \subseteq I_B$ i pokażemy, że R jest funkcją częściową. Weźmy więc dowolne $a \in A$ oraz $b_1, b_2 \in B$ i załózmy, że $\langle a, b_1 \rangle \in R$ oraz $\langle a, b_2 \rangle \in R$. Z definicji relacji odwrotnej mamy $\langle b_1, a \rangle \in R^{-1}$ i dalej z definicji złożenia relacji otrzymujemy $\langle b_1, b_2 \rangle \in R^{-1}$; R. Ponieważ R^{-1} ; $R \subseteq I_B$, więc $b_1 = b_2$, co kończy dowód faktu, że R jest funkcją częściową.

Zadanie 8 (5 punktów). Dla relacji binarnej $S \subseteq A \times A$ definiujemy $S^1 = S$ oraz $S^{n+1} = S$; S^n dla wszystkich $n \ge 1$. Niech $R = \{\langle m+3, m \rangle \mid m \in \mathbb{N}\}$. Udowodnij, że dla wszystkich liczb naturalnych $n \ge 1$ relacja R^n jest zawarta w relacji $\{\langle i, j \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N}. i-j=3k\}$. **Bozwiazanie:** Oznaczmy relacje $\{\langle i, j \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N}. i-j=3k\}$ przez \overline{R} Naszym

Rozwiązanie: Oznaczmy relację $\{\langle i,j\rangle\in\mathbb{N}\times\mathbb{N}\mid\exists k\in\mathbb{N}.\ i-j=3k\}$ przez \overline{R} . Naszym celem jest zatem pokazanie, że dla wszystkich $n\geq 1$ zachodzi inkluzja $R^n\subseteq\overline{R}$. Przeprowadzimy dowód indukcyjny względem n.

Podstawa indukcji. Dla n=1 mamy $R^1=R$. Ponadto dowolny element relacji R jest postaci $\langle m+3,m\rangle$ i biorąc k=1 widzimy, że $\langle m+3,m\rangle\in\overline{R}$.

Krok indukcyjny. Załóżmy, że $R^n\subseteq \overline{R}$, pokażemy że $R^{n+1}\subseteq \overline{R}$. Weźmy dowolny element $\langle x,y\rangle\in R^{n+1}$. Z definicji R^{n+1} mamy $\langle x,y\rangle\in R; R^n$ a z definicji złożenia relacji wiemy, że istnieje takie z, że $\langle x,z\rangle\in R$ oraz $\langle z,y\rangle\in R^n$. Weźmy takie z. Ponieważ $\langle x,z\rangle\in R$, więc x-z=3. Z kolei z założenia indukcyjnego wiemy, że $R^n\subseteq \overline{R}$, czyli dla pewnego k mamy równość z-y=3k. Wtedy x-y=3k+3, czyli dla k'=k+1 mamy x-y=3k' co oznacza, że $\langle x,y\rangle\in \overline{R}$ i kończy dowód.

Wersja:

 \mathbf{A}

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	\mathbf{D}	

Numer	indeksu:	
	000000	

$Grupa^1$:	
8–10 s.104	

8–10 s.104	8–10 s.105	8–10 s.139
	10–12 s. 5	10–12 s.104
10-12 s. 105	10-12 s. 140	10–12 s.141

Logika dla informatyków

Sprawdzian nr 2, 9 grudnia 2016 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \setminus i nawiasy, oraz W zawiera mniej symboli niż W'. Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $(A \setminus B) \cup (A \cap B \cap C)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

$$A \setminus (B \setminus C)$$

Zadanie 2 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $\mathcal{Q}_1x_1\ldots\mathcal{Q}_nx_n\psi$, gdzie x_i są zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Przykładowo, formuła $\forall x>0$. $\exists y. x=y$ nie jest w preneksowej postaci normalnej ze względu na podformułę x>0 występującą przed kwantyfikatorem $\exists y$. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule

$$\forall \epsilon > 0. \ \exists \delta > 0. \ \forall x. \ \Big((|x - x_0| < \delta) \Rightarrow |f(x) - g| < \epsilon \Big),$$

to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\forall \epsilon. \ \exists \delta. \ \forall x. \ \left(\epsilon > 0 \Rightarrow (\delta > 0 \land ((|x - x_0| < \delta) \Rightarrow |f(x) - g| < \epsilon))\right)$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli dla dowolnego zbioru indeksów I oraz dowolnej indeksowanej rodziny zbiorów $\{X_{i,j} \mid \langle i,j \rangle \in I \times I\}$ zachodzi równość

$$\bigcap_{i,j\in I} X_{i,j} = \bigcap_{i\in I} X_{i,i}$$

to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontr-przykład.

$$I = \{1, 2\}, X_{1,2} = \emptyset, X_{1,1} = X_{2,2} = X_{2,1} = \{1\}$$

Zadanie 4 (2 punkty). Jeśli istnieje relacja niezwrotna, nieantyzwrotna, symetryczna i przechodnia, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje. Dla przypomnienia: relacja $R \subseteq A \times A$ jest antyzwrotna jeśli dla wszystkich $a \in A$ zachodzi $\langle a, a \rangle \notin R$.

$$R = \{ \langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m \ge 42 \land n \ge 42 \}$$

Inny kontr
przykład: $A = \{1, 2\}, R = \{\langle 1, 1 \rangle\}$

Zadanie 5 (2 punkty). Rozważmy funkcję $F: \mathcal{P}(\mathbb{N}) \times \mathbb{N} \to \mathbb{N}$ zadaną wzorem

$$F(X,n) = \begin{cases} n, & \text{gdy } n \in X, \\ 0, & \text{wpp.} \end{cases}$$

Jeśli funkcja F jest różnowartościowa to w prostokąt poniżej wpisz słowo "RÓŻNOWARTOŚCIOWA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Dla
$$X_1 = \emptyset, n_1 = 0$$
 oraz $X_2 = \{1\}, n_2 = 0$ mamy $F(X_1, n_1) = F(X_2, n_2)$

Wersja:

Numer indeksu:
000000

Grupa ¹ :		
8–10 s.104	8-10 s. 105	8–10 s.139
	10–12 s. 5	10–12 s.104
10–12 s.105	10-12 s.140	10–12 s.141

Zadanie 6 (5 punktów). Mówimy, że relacja $R \subseteq A \times B$ jest *lewostronnie całkowita* jeśli dla wszystkich $a \in A$ istnieje takie $b \in B$, że $\langle a, b \rangle \in R$.

Udowodnij, że $R \subseteq A \times B$ jest lewostronnie całkowita wtedy i tylko wtedy gdy $I_A \subseteq R$; R^{-1} . Tutaj $I_A = \{\langle a, a \rangle \mid a \in A\}$ jest relacją identycznościową na zbiorze A.

Rozwiązanie: Najpierw pokażemy implikację \Rightarrow . Załóżmy, że $R \subseteq A \times B$ jest lewostronnie całkowita i pokażemy, że $I_A \subseteq R$; R^{-1} Weźmy więc dowolny element e zbioru I_A . Wtedy dla pewnego $a \in A$ mamy $e = \langle a, a \rangle$. Ponieważ R jest lewostronnie całkowita, w zbiorze B istnieje takie b, że $\langle a, b \rangle \in R$. Z definicji relacji odwrotnej mamy $\langle b, a \rangle \in R^{-1}$ i dalej z definicji złożenia relacji otrzymujemy $\langle a, a \rangle \in R$; R^{-1} . Zatem $e \in R$; R^{-1} , co kończy dowód inkluzji $I_A \subseteq R$; R^{-1} .

Teraz pokażemy implikację \Leftarrow . Załóżmy, że $I_A \subseteq R; R^{-1}$ i pokażemy, że R jest lewostronnie całkowita. Weźmy więc dowolne $a \in A$. Ponieważ $\langle a,a \rangle \in I_A$ oraz $I_A \subseteq R; R^{-1}$, więc $\langle a,a \rangle \in R; R^{-1}$. Z definicji złożenia relacji wiemy, że istnieje takie $b \in B$, że $\langle a,b \rangle \in R$ oraz $\langle b,a \rangle \in R^{-1}$. W szczególności istnieje takie $b \in B$, że $\langle a,b \rangle \in R$, a to kończy dowód faktu, że R jest lewostronnie całkowita.

Zadanie 7 (5 punktów). Czy dla dowolnych zbiorów A, B i C zachodzi implikacja jeśli $A \cap B = A \cap C$ oraz $A \cup B = A \cup C$ to B = C? Uzasadnij odpowiedź.

Rozwiązanie: Tak. Załózmy, że $A \cap B = A \cap C$ oraz $A \cup B = A \cup C$. Do dowodu, że B = C wystarczy pokazać dwie inkluzje: $B \subseteq C$ oraz $C \subseteq B$. Pokażemy najpierw, że $B \subseteq C$. Weźmy więc dowolne $x \in B$ i rozważmy dwa przypadki:

- 1: $x \in A$. W tym przypadku $x \in A \cap B$, z równości $A \cap B = A \cap C$ otrzymujemy $x \in A \cap C$, a stąd $x \in C$.
- **2:** $x \notin A$. W tym przypadku $x \in A \cup B$, z równości $A \cup B = A \cup C$ otrzymujemy $x \in A \cup C$ i z faktu, że $x \notin A$ wnioskujemy, że $x \in C$.

W obu przypadkach otrzymaliśmy $x \in C$, co kończy dowód inkluzji $B \subseteq C$.

Dowód inkluzji $C\subseteq B$ jest symetryczny—wystarczy w dowodzie inkluzji $B\subseteq C$ zamienić miejscami wszystkie wystąpienia B i C.

Zadanie 8 (5 punktów). Dla relacji binarnej $S \subseteq A \times A$ definiujemy $S^1 = S$ oraz $S^{n+1} = S$; S^n dla wszystkich $n \geq 1$. Niech $R = \{\langle m, 2m \rangle \mid m \in \mathbb{N}\}$. Udowodnij, że dla wszystkich liczb naturalnych $n \geq 1$ relacja R^n jest zawarta w relacji $\{\langle i, j \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N}. \ j = i2^k\}$.

Rozwiązanie: Oznaczmy relację $\{\langle i,j\rangle\in\mathbb{N}\times\mathbb{N}\mid\exists k\in\mathbb{N}.\ j=i2^k\}$ przez \overline{R} . Naszym celem jest zatem pokazanie, że dla wszystkich $n\geq 1$ zachodzi inkluzja $R^n\subseteq\overline{R}$. Przeprowadzimy dowód indukcyjny względem n.

Podstawa indukcji. Dla n=1 mamy $R^1=R$. Ponadto dowolny element relacji R jest postaci $\langle m,2m\rangle$ i biorąc k=1 widzimy, że $\langle m,2m\rangle\in\overline{R}$.

Krok indukcyjny. Załóżmy, że $R^n\subseteq \overline{R}$, pokażemy że $R^{n+1}\subseteq \overline{R}$. Weźmy dowolny element $\langle x,y\rangle\in R^{n+1}$. Z definicji R^{n+1} mamy $\langle x,y\rangle\in R; R^n$ a z definicji złożenia relacji wiemy, że istnieje takie z, że $\langle x,z\rangle\in R$ oraz $\langle z,y\rangle\in R^n$. Weźmy takie z. Ponieważ $\langle x,z\rangle\in R$, więc z=2x. Z kolei z założenia indukcyjnego wiemy, że $R^n\subseteq \overline{R}$, czyli dla pewnego k mamy równość $y=z2^k$. Wtedy $y=x2^{k+1}$, czyli dla k'=k+1 mamy $y=x2^{k'}$ co oznacza, że $\langle x,y\rangle\in \overline{R}$ i kończy dowód.

¹Proszę zakreślić właściwą grupę ćwiczeniową.