\circ	1	т 1			1		• 1		unauthorized			11.	. 1
un my	nonor	I nave	nor given	$n \alpha r$	received	$n \alpha r$	WITHESSEA	ากห	iinaiir norized	accictance	α n	Thig	work
On m	, momor,	1 Have	mou given,	1101	iccorred.	1101	WIUIICBBCU	CULLY	unaumonzou	assistatice	OII	OILLO	WOIL.

Print name and sign:

Question:	1	2	3	4	5	Total
Points:	8	5	8	4	5	30
Score:						

- 1. Given the statement "If there is a hurricane, then it is raining" find the following:
 - (a) (2 points) Give the original statement in formal propositional notation (i.e. define p, q, and the appropriate logical connectives).

(b) (2 points) The inverse of the statement in propositional logic and English

1			

(c) (2 points) The converse of the statement in propositional logic and English

(d) (2 points) The contrapositive of the statement in propositional logic and English.

ractice Quiz - Sprint 1	MAT310	Spring 2020
2. (5 points) Show (via truth tables)) that $(p \leftrightarrow q) \rightarrow (p \rightarrow q)$ is a tautology.	
3. Let $A = \{w, x, y, z\}$ and $B = \{a, y\}$,ì	
(a) (1 point) Is $x \in A$?		
(b) (1 point) Is $\{a\} \in B$?		
(c) (1 point) Is $y \subseteq B$?		
(d) (1 point) Is $\{z\} \subseteq A$?		
(e) (2 points) Give the power se		
(f) (2 points) Show $A \times B$.		
4. Conversions:		
(a) (2 points) Convert 42 (base	10) to 8-bit binary (base 2).	
	, , ,	

- (b) (2 points) Convert 10011101 (8-bit binary, base 2) to hexadecimal (base 16)
- 5. Let $A = \{0, 2, 4, 6, 8, 10\}B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find:
 - (a) (2 points) $(A \cup B) \cap C$

(b) (3 points) Draw a Venn diagram representing the three sets.

Standard Sets:

- \mathbb{R} : set of real numbers
- \mathbb{Q} : set of rational numbers $\{a/b : a \in \mathbb{Z} \text{ and } b \in \mathbb{Z} \text{ and } b \neq 0\}$
- \mathbb{N} : set of natural numbers $\{0, 1, 2, 3\}$
- \mathbb{Z} : set of all integers $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{Z}+:$ set of positive integers $\{1, 2, 3, ...\}$

Set Symbols:

- \bullet \subseteq : "is a subset of"
- \bullet \subset : "is a proper subset of"
- \in : "is an element of"

Identity Laws:	$p \wedge T \equiv p$
	$p \vee F \equiv p$
Domination Laws:	$p \lor T \equiv T$
	$p \wedge F \equiv F$
Idempotent Laws:	$p \vee p \equiv p$
	$p \wedge p \equiv p$
Double negation Law:	$\neg(\neg p) \equiv p$
Commutative Laws:	$p \vee q \equiv q \vee p$
	$p \wedge q \equiv q \wedge p$
Associative Laws:	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
Distributive Laws:	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
DeMorgan's Laws:	$\neg (p \land q) \equiv \neg p \lor \neg q$
	$\neg (p \lor q) \equiv \neg p \land \neg q$
Absorption Laws:	$p \lor (p \land q) \equiv p$
	$p \land (p \lor q) \equiv p$
Negation Laws:	$p \vee \neg p \equiv T$
	$p \land \neg p \equiv F$