IT19tb WIN7 S4 Aufgabe 3

Leo Rudin & Stefan Teodoropol

a)

Fläche des Kreissegments: $\frac{1}{2}r^2(\varphi-\sin\varphi)$ Fläche der ungefüllten Fläche: $\frac{1}{4}r^2\pi$

Gleichung:

$$\begin{split} &\frac{1}{2}r^2(\varphi-\sin\varphi)=\frac{1}{4}r^2\pi\\ &\frac{1}{2}(\varphi-\sin\varphi)=\frac{1}{4}\pi\\ &\varphi-\sin\varphi=\frac{1}{2}\pi\\ &\sin\varphi-\varphi=-0.5\pi \end{split}$$

b)

Gleichung umgeformt in Fixpunktiterationsgleichung:

$$\varphi_{n+1} = 0.5\pi + \sin(\varphi_n)$$

Laut der Skizze auf dem Aufgabenblatt sehen wir, dass der Winkel grösser sein muss als $\frac{\pi}{2}$ und kleiner als π - wir wählen den Mittelwert $\frac{3\pi}{4}$.

Wir machen die Fixpunktiteration mit $x_0 = \frac{3\pi}{4}$:

$$x_1 = 0.5\pi + \sin(x_0) = 2.277903107981444$$

$$x_2 = 0.5\pi + \sin(x_1) = 2.277903107981444$$

Es konvergiert also gegen: 2.277903107981444

In Bogenmass:

$$\frac{2.28*360}{2\pi}\approx 130~\mathrm{Grad}$$

c)

Wir rechnen die Höhe der Ankatethe des inneren Dreiecks mit Winkel $\frac{\varphi}{2}$ aus. Dann addieren wir den Radius zur Höhe hinzu, um die Gesamthöhe zu kriegen.

Füllhöhe:
$$h(\varphi) = r + (\cos(\frac{\varphi}{2}) * r)$$