Index

A	Base implants, 75, 107	Blocking voltage, 400
Acceptors, 8–9, 50, 224–25	Base-over-isolation (BOI), 75, 133, 139	Body effect, 30, 132
Accumulation, 26, 207	Base pinch resistors, 162, 163, 165,	Bonding, 2–4, 66–68
Acronyms, 513–15	172–73 Page punchthrough 24 204	Bondpad circles, 470
Adjusted transistors, 383–84 Advanced-technology bipolar transistors,	Base punchthrough, 24, 296 Base resistors, 81, 99, 115, 170-71	Bondpads, 67, 186, 445, 464, 468-71
299–302	Base-side ballasting, 268	Boron, 8, 50–51 Boron suckup, 47
Aligners, 41–42	Bent-gate transistors, 417	Borophosphosilicate glass (BPSG), 61, 124
Alignment markers, 466–67	Berkeley k, 367	Breakdown diodes, 346n
Alloy-42, 67	Beta multiplication, 263	Breakdown mechanisms, 372–75
Aluminum, deposition and removal of,	BiCMOS processes. See Analog BiCMOS	Breakdown voltage, 346
59-60	Bipolar-CMOS (BiCMOS) processes. See	Buffered Zener clamps, 476-78
Aluminum fuses, 186	Analog BiCMOS	Built-in potential, 11-12, 13, 15, 201, 285,
Analog BiCMOS, 48, 51, 71, 104-15	Bipolar electron guard rings, 456-57	297, 320, 409, 459-60
bipolar transistors, 294-97	Bipolar hole guard rings, 457-58	Buried channel, 384
devices available, 111–15	Bipolar junction transistors (BJTs), 20-24,	Buried-channel lightly doped drain
diodes in, 356-58	260-304	(BCLDD), 403
fabrication sequence, 106-11	alternative small-signal, 293–302	Buried layer, 55, 57. See also N-buried layer
features of, 104-5	avalanche breakdown and, 262-64	P-buried layer
guard rings in, 458–60	beta, 22-23, 262	Buried Zeners, 131, 349-52
parasitic channels and, 137–39	I-V characteristics, 23–24	•
polysilicon-gate CMOS versus, 110–11	secondary breakdown and, 264-66	C
power transistor layout in, 317–18	thermal runaway and, 264–66	Cadmium sulfide, 9
Anisotropic dry etching, 45–46 Annealing, 54	topics in, 260–74	Capacitance, 194–200
Annular transistors, 391–93	Bipolar power switches, 409-10 Bipolar processes, 71, 72. See also Standard	Capacitors, 48, 64, 194–213 capacitance and, 194–200
Anode, 13, 16. 347	bipolar bipolar	cell area estimation, 489
Antenna effect, 118, 122-24	Bipolar small-signal transistors, 274–93, 306	comparison of available, 205–12
Antimony, 7. 50–51	construction of, 281–83	matching of resistors and, 214-59
Antiparallel diode clamps, 480	high-voltage, 291–93	rules for, 253–57
Areal fluctuations, 217–19	standard bipolar lateral PNP, 283-90	parasitics, 203–5
Arrayed-emitter transistors, 290	standard bipolar NPN, 72, 77-79, 274-79	polysilicon-gate CMOS and, 100
Arsenic, 7, 9, 50-51	standard bipolar substrate PNP, 279-83	standard bipolar and, 83
Asking, 42	Bipolar transistors, 20-24, 29, 260-304. See	variability of, 200–203
Asperities, 196	also Bipolar junction transistors;	Capillary, 67
Assembly, 64-69	Bipolar small-signal transistors; Power	Carbon, 3, 4
mounting and bonding, 66–68	bipolar transistors	Carriers, 5-6, 7-8
packaging, 69	advanced-technology, 299-302	diffusion of, 9–10
Assembly yield, 495	applications of, 305–42	lifetime of, 6
Asymmetric, 33, 402	in CMOS processes, 297–99	Carrier saturation velocity, 265
Asymmetric extended-drain NMOS	high-voltage, 291–93	Cathedral PNP, 282
transistors, 404, 430 Asymmetric extended-drain PMOS	matching, 322–39	Cathode, 13, 16, 347 CB-shorted diodes, 79
transistors, 405	emitter degeneration, 325–27 NBL shadow, 327–28	Cell area estimation, 489–91
Asymmetric LDD transistors, 402	random variations, 323–25	Centroidal symmetry principle, 230
Asymmetric MOS transistors, 26, 28, 103	rules for, 334–39	Centroids, 229–31, 433
Avalanche breakdown, 18, 24, 99, 262-64	stress gradients, 332-34	common layout, 231–35
Avalanche diodes. See Zener diodes	thermal gradients, 328-32	Chamfers, 292, 417
Avalanche multiplication, 17, 291	parasitics of, 272–74	Channel length modulation, 30, 33, 429
•	Bird's-beak, 48, 91	Channel routing, 501–3
B	BJT transistors, 20-24, 260-304	Channels, 25, 55
Backgate contacts, 393-96	alternative small-signal, 293-302	Channel stop implants, 90-91, 108, 135, 137
Backgate doping, 27, 92, 116, 368-69	avalanche breakdown and, 262-64	381–83
Backgate effect, 30	beta, 22-23, 262	Channel stops, 135-39, 381-83. See also
Backgates, 25-26, 28, 31-32	I-V characteristics, 23-24	Guard rings
Ball bonding, 67–68	secondary breakdown and, 264–66	Charged device model (CDM), 119-20, 475
Bamboo poly, 179	thermal runaway and, 264–66	Charge spreading, 151–39, 174, 245–46 effects of, 131–33
Bandgap energy, 4, 5 Base-emitter junction capacitors, 205-7	topics in, 260–74 Black's Law, 506	preventative measures, 133–39
Description junction capacitors, 205-7	Diden & Law, 500	Proteinmite measured 100 37

Current hogging, 267, 267n

CMOS and BiCMOS, 137-39 Current matching, 440 Direct-bandgap semiconductors, 6 standard bipolar, 133-37 Current proportional to absolute Direct-step-on-wafer (DSW), 65-66 Chemical bonding, 2-3 temperature (IPTAT), 330 Direct-write-on-wafer (DWW), 65n Chirality, 436, 436n Cutoff, 21, 32, 364 Distributed backgate contacts, 396 Choke points, 500 Czochralski process, 37-38 Distributed capacitance, 167-68 Christmas-tree devices, 315-16 DMOS transistors, 105, 399, 403, 417-21 Circular emitters, 323, 324 D lateral, 418-20 Clad gates, 371 Darlington pair, 450-52, 453 NPN, 420-21 Clad moats, 101, 359, 371, 472 DDD transistors, 400-403 Dogbone resistors, 160-61, 230 Clad poly, 62 Deep-N+ diffusions, 72, 74-75, 107. See also Donors, 7, 8-9 Cleavage planes, 38 Sinkers Dopant-enhanced oxidation, 47-48 CMOS latchup, 89, 144-45, 375-76, 394 Deglazing, 51 Doped semiconductors, 6-9 CMOS processes, 48, 51, 53n, 59, 88, 104, Depletion-mode NMOS transistors, 27-28 Doping profile, 52-53 260, 363-64. See also Polysilicon-gate Depletion-mode transistors, 367 Double-base transistors, 279 **CMOS** Depletion regions, 10-13, 12-13, 15-18, Double-diffused drain (DDD) transistors, bipolar transistors in, 297-99 400-403 diodes in, 356-58 Deposition, 50 Double-diffused JFETs, 426 guard rings in, 458-60 of aluminum, 59-60 Double-diffused MOS (DMOS) transistors. parasitic channels and, 137-39 Device matching. See Matching See DMOS transistors Coding layers, 378 Device noise, 504-6 Double-level metal (DLM), 278 Collector, 20-21 Device physics, 1-35 polysilicon-gate CMOS and, 100-101 Collector-base-emitter (CBE), 276 bipolar junction transistors (BJTs), 20-24 standard bipolar and, 84-85 Collector-diffused isolation (CDI), JFET transistors, 31-33 Drain implants, analog BiCMOS and, 105, 380 MOS transistors, 24-31 109-10 Collector efficiency, 270 PN junctions, 10-20 . Drains, 26 Collector-emitter-base (CEB), 276 semiconductors, 1-10 polysilicon-gate CMOS and, 93-94 Collector-emitter voltage, 23-24 Device transconductance, 365-67, 400, 408, Drawing layers, 378 Comb capacitors, 199 427, 433-35 Drawn length, 158-58, 160-61, 378 Common-centroid layouts, 231-35, 330-31, Diagonal MOS power devices, 413 Drawn width, 158-58, 160-61, 378 333, 435-39 Diamond, 3-4 Drift, 9-10 Common wells, 390, 453-54 Die area estimation, 491-94 long-term, 247 Complementary Metal-Oxide-Die assembly, 488-512 Drift currents, 10 Semiconductor. See CMOS processes floorplanning, 495-500 Drift region, 102, 275, 313n, 401-2, 417-19 Compound semiconductors, 9 planning for, 488-95 Drive, 50 Conductivity, 4, 6-7, 157 top-level interconnection, 500-510 Dry corrosion contamination, 124-25 Conductivity modulation, 166, 174-75, Dielectric, 194-96 effects of, 124-25 243-44 Dielectric breakdown, 366, 374, 472 preventative measures, 125 Constant-field scaling, 386 Dielectric capacitance, 197 Dry etching, 45-46 Constant-voltage scaling, 386 Dielectric constant, 195 Dry oxide, 43 Contact OR, 76, 111 Dielectric polarization, 126-27, 246-48 Dual-doped poly CMOS transistors, 385 Contact potential, 15, 240. See also Built-in Dielectric relaxation, 248-49 Dual-in-line packages (DIPs), 66-67 potential Dielectric strength, 196 Dumbbell resistors. See Dogbone resistors Contact resistance, 159, 161, 166-67 Differential pairs, 328-29 Dummy gate oxidation, 49, 91-92, 108 Contacts over active gate, 431-32 Differential trimming, 187-88 Dummy resistors, 223-24 Contact spiking, 60 Diffused resistors, 454 Dynamic antisaturation circuits, 320-21 Contamination, 124-28 Diffusion, 9-10, 49, 50-53 dry corrosion, 124-25 deep-N+, 72, 74-75, 107. See also Sinkers mobile ion, 125-28 emitter, 75-76 Conventional MOS power transistors, etch effects and, 430-33 Early effect, 24, 30, 78 410-17 limitations of, 52-53 Ebers-Moll equations, 261n Counterdoping, 8-9 near the channel, 432 Effective gate voltage, 364-65 Covalent bonds, 3-6 Diffusion capacitors, 199 Effective length, 378 Cross-coupled pairs, 234, 438-39 Diffusion currents, 9-10 Effective width, 378-79 Cross-coupled quads, 330 Diffusion interactions, 224-25 Electrically programmable read-only Crossing leads, 463-64 Diode clamps, antiparallel, 480 memory (EEPROM), 186 Cross-injection, 151-53 Diode-connected transistors, 79, 343-46 Electrical overstress (EOS), 118. See also Crosstalk, 500 Diodes, 13-18, 343-62 Antenna effect; Electromigration; Crossunders, 85, 171 in CMOS and BICMOS processes, 356-58 Electrostatic discharge Cruciform-emitter transistors, 316-17 matching, 359-62 Electrodes, 194-95 Crystal schematic symbols for, 18 Electromigration, 60, 118, 121-22, 506-8 manufacturing of, 37-38 Schottky, 15-17, 18, 101, 269, 343, 352-56 effects of, 121-22 Miller indices of, 516-18 matching, 361-62 preventative measures, 122 structure of 38-39 standard bipolar and, 85-86 Electrons, 4 Current-controlled devices, 261 in standard bipolar, 343-56 Electron vacancy, 4-5 Current crowding, 278-79 Zener, 17-18, 112, 131, 346-52, 454 Electrostatic discharge (ESD), 120. See also Current gain, 22-23 buried, 131, 349-52 **ESD** structures forward active, 260 matching, 360-61 effects of, 120

surface, 347-49

preventative measures, 120-21

and the second control of the second control

Electrostatic interactions, thermoelectrics NPN power transistors, 307-10 High-level injection, 23 and, 242-49 parasitics, 139-53 High-sheet implants, 86, 173, 174-75 Electrostatic shielding, 244-45, 246, 253, 505 summary of, 154 High-sheet resistance (HSR), 86, 173 Elongated-emitter lateral PNPs, 289 surface effects, 128-39 High-sheet resistors, 86, 173-75 Emitter ballasting, 308 Farad, 194, 194n High-voltage bipolar transistors, 291-93 Emitter crowding, 278–79 Faraday shielding. See Electrostatic Hole-blocking guard rings, 457-58 Emitter current focusing, 265 shielding Hole-collecting guard rings, 457-58 Emitter debiasing, 307-9 Field-effect transistors (FETs), 24-25, 363, Hot carrier injection, 31, 128-31 Emitter degeneration, 325-27 399. See also JFET transistors effects of, 128-30 Emitter diffusion, 75-76 Field oxides, 44, 48 preventative measures, 130-31 Emitter-in-iso Zeners, 349-50 Field plates, 287, 421 Hot carriers, 31, 128-29, 374-75 Emitter injection efficiency, 23 Field plating, 135-37 Hot-dog transistors, 289-90 Emitter oxides, 121, 121n Field regions, 90, 376 Hot hole degradation, 97 Emitter pilot, 76 Field relief guard rings, 354-55 Hot spots, 264-65, 309-10 Emitter punchthrough, 60, 61, 62, 300 Field-relief structure, 403-4 Human body model (HBM), 119, 471-72 Emitter push, 53, 225 Fillets, 198, 292, 417 Hydrofluoric acid (HF), 42, 45 Emitter resistors, 82, 171-72 Fingers, 279, 435, 439-40, 452-53 Emitters, 20-21 Fixed oxide charge, 369 Emitter saturation current, 261 Flanging, 135, 136, 137 III-V compound semiconductors, 9 Enhancement-mode NMOS transistors. Flawed device mergers, 446-50 II-VI compound semiconductors, 9 Floorplans, 495-500 Implant dose, 54 Epi-base transistors, 296-97 Force leads, 504 Implant energy, 54-55 Epi-FETs. See Epi pinch resistors Forming gas, 284 Indirect-bandgap semiconductors, 6-7 Epi pinch resistors, 175-76, 423-25 Forward active current gain, 260 Indium, 8 Epitaxy, 56-57 Forward-biased PN junctions, 13-14, 16 Indium antimonide, 9 analog BiCMOS and, 106 Forward-bias safe operating area (FBSOA), Ingots, 38 polysilicon-gate CMOS and, 89 265 Injection molding, 69 standard bipolar and, 74 Four-terminal NPNs, 272 Input ESD devices, 476 ESD structures, 471-83 Fringing, 197 Insulated-gate field effect transistors selecting, 483-85 Fuses, 185-89 (IGFETs), 28n Etch-and-regrowth, 406 Integrated bipolar logic, 71 Etch effects, 430-33 G Interdigitated arrays, 231-32 Etch guards, 223-24 Galena crystal detector, 36, 343 Interdigitated backgate contacts, 395-96 Evaporation, 59-60 Gallium arsenide, 9 Interdigitated-emitter transistors, 311-13 Excess minority carrier concentrations. Gallium phosphide, 9 Interdigitation pattern, 231-32 10-12 Gate area, 428 Interlevel nitride, 63-64 Extended-base NPN transistors, 295-96 Gate-coupled NMOS, 481-82 Interlevel oxide (ILO), 63-64, 94, 101 Extended drain, 403 Gate delay, 386-87 International System of Units (SI), 156-57. Extended-drain, high-voltage transistors, Gate dielectrics, 25, 364 156n, 194 103-4 Gate oxide capacitors, 197 Intrafinger debiasing, 308-9 Extended-drain NMOS transistors, 403-5, Gate oxide thickness, 428-29 Intrinsic collector current, 267 Gates, 25, 31-32 Intrinsic saturation voltage, 409-10 Extended-drain PMOS transistors, 405 Geometric effects, 427-30 Intrinsic semiconductors, 6-7 Extended-drain transistors, 403-5 Germanium, 3, 4, 6-7, 8 Inverse moat, 90, 108 Extended-voltage transistors, 399-406, Gilbert multiplier, 342 Inversion, 25 400-402 Gold preforms, 67, 227 Ionic bonding, 2-3 Extent into, 525-26 Gradients, 229-31, 433 Ion implantation, 49, 53-55 Extrinsic collectors, 275 Grains, 121 Isobaric contour plots, 229 Extrinsic drain, 401 Gross profit margin (GPM), 494-95 Isobars, 229 Extrinsic semiconductors, 6-9 Group-III elements, 8 Isolation diffusion, standard bipolar and, 72, terminology used, 8 Group-IV elements, 3-4. See also specific 74-75 elements Isothermal contour plots, 238 Group-V elements, 7 Isotherms, 238 Fabrication, 36-70 Grown-junction transistors, 49 Isotropic wet etching, 45-46 analog BiCMOS, 106-11 Guard rings, 394, 445, 455-60. See also I-V characteristics assembly, 64-69 Channel stops bipolar junction transistors, 23-24 diffusion, 49-53 bipolar electron, 456-57 MOS transistors, 29-31 ion implantation, 53-55 bipolar hole, 457–58 IV-IV compound semiconductors, 9 metallization, 58-64 in CMOS and BiCMOS designs, 458-60 oxide growth and removal, 42-49 field relief, 354-55 photolithography, 40-42 minority-carrier, 147-53, 375-76, 453-54 JFET transistors, 31-33, 363, 399, 422-26 polysilicon-gate CMOS, 89-95 Gummel number, 22 layout of, 423-26 silicon deposition, 55-58 modeling, 422-23 silicon manufacture, 36-39 Junction capacitors, 83, 197-203 standard bipolar, 73-77 Headers, 226, 227 base-emitter, 205-7 Failure mechanisms, 60, 118-55 Heat sinks, 237-38 Junction field-effect transistors (JFETs), See contamination, 124-28 Heavily doped substrates, 142 JFET transistors electrical overstress, 118-24 H-emitter transistors, 317n

Junction isolation (JI), 72-75

Junction temperature, 237	Matching (matched devices), 214	Mobile ions, 125, 246-47
Junction-to-ambient thermal impedance,	bipolar transistors, 322-39	Mobile oxide charge, 369
237	capacitors and resistors, 214-59	Mock layouts, 461-62
Junction-to-case thermal impedance, 237	rules for, 249-53	Moderate matching, 249, 334, 439
	diodes, 359-62	Molding process, 69
K	minimal, 249, 334, 439	Monocrystalline silicon, 38, 55
Kelvin connections, 177, 500, 503-4	moderate, 249, 334, 439	MOS capacitors, 25-26, 196, 202, 203,
Kilby, J. S., 36	MOS transistors, 426–42	207-9
Kooi effect, 48-49, 91-92	rules for, 439–42	MOS power switches, 409–10
	NPN transistors, 335–37 precise, 249, 335, 439	MOS transistors, 24–31, 202–3, 207–8,
T	rules for, 249–57	363–98
L Lacor trime 195 100 01	Mathematical derivations, 527–31	applications of, 399–444 backgate contacts, 393–96
Laser trims, 185, 190–91 Latchup, 139–40, 145, 455–56	Maze routing, 501	cell area estimation, 490–91
CMOS, 89, 144–45, 375–76, 394	Meander resistors. See Serpentine resistors	channel stops and, 381–83
Lateral autodoping, 57, 106	Medium-risk merged devices, 453-54	coding, 377–79
Lateral DMOS transistors, 418–20	Merged devices, 445-55	common-centroid layout of, 435-39
Lateral PNP transistors, 80–81, 112–14,	devising new, 455	in common wells, 453-54
283–84, 293, 325–27, 345–46, 454	flawed, 446-50	I-V characteristics, 29-31
cell area estimation, 490	low-risk, 452-53	matching, 426-42
construction of, 285-90	successful, 450-52	rules for, 439–42
rules for matching, 337-39	Merged devices medium-risk, 453-54	modeling, 364–70
saturation in, 270–71	Metallic bonding, 2	parasitics of, 370-76
standard bipolar, 283–90	Metallization, 58-64	scaling, 386–88
Lateral resistance, 141, 141n	analog BiCMOS and, 110	special symbols for, 27-28
Lawrence-Warner curves, 198	deposition and removal of aluminum, 59-60	threshold adjust implants, 383-86
Layout	interlevel oxide, interlevel nitride, and	threshold voltage of, 27–28, 87–88,
common-centroid, 231–35, 330–31, 333,	protective overcoat, 63–64	367-70
435–39	polysilicon-gate CMOS and, 94 refractory barrier metal, 60-62	topics in, 364–76
editor software, 532	silicidation, 62–63	variant structures, 388-93
mock, 461-62	standard bipolar and, 76	Most significant bit (MSB), 187 Mounting, 66–68
samples, 519–23 syntax for, 523–26	Metallization-induced stresses, 434	Mount pads, 66–67, 496–97
LDD transistors, 101–3, 130, 400–403	Metallization resistance, 411, 412–14	Multilevel oxide (MLO), 63-64, 94
Leadframes, 66-67	Metallurgical-grade polysilicon, 36	Multiple gate oxides, 405–6
Leakage. See Reverse conductions	Metallurgical junction, 224-25	manipa Bare auraed top a
Least significant bit (LSB), 187	Metal-oxide-semiconductor field-effect	N
Light-emitting diodes (LEDs), 6	transistors (MOSFETs), 25, 26, 363. See	NAND gates, 390
Lightly doped drain (LDD) transistors,	also MOS transistors	Narrow-emitter transistors, 279
101-3, 130, 400-403	Metal-oxide-semiconductor transistors. See	Native transistors, 383-84
Lightly doped substrates, with heavily	MOS transistors	Natural PMOS transistors, 97–98
doped isolation, 143	Metal pitch, 502	Natural transistors, 383-84
Lightly doped substrates, with lightly doped	Metal resistors, 176–77	N-bars, 152–53, 338, 448, 454
isolation, 143	Metals, 1-4	NBL push, 53
Linear-mode applications, 311	Miller effect, 88	NBL shadow, 57, 73, 74, 220, 222, 253,
Linear region, 29, 32, 365	Miller indices, 39, 516–18	327–28, 336, 339, 442
Linear temperature coefficient of resistivity	Minimal matching, 249, 334, 439 Minority-carrier guard rings, 147–53,	N-buried layer (NBL), 73-74, 106. See also NBL shadow
(TCR), 163	375-76, 453-54. See also N-bars; P-bars	N-channel JFETs, 31–33
Line regulation, 330 Linewidth control, 162–63, 162n, 179	Minority-carrier injection, 140, 143–53	N-channel MOS (NMOS) transistors. See
Liquid-phase epitaxy, 56	effects of, 143–46	NMOS transistors
Lithium, 125n	preventative measures, 146-53	Negative resists, 41
Load regulation, 330	cross-injection, 151-53	Nichrome, 181, 190
LOCOS processing, 48–49	substrate injection, 146-50	NMoat, 178, 180, 375, 376, 377-78, 381, 388,
analog BiCMOS and, 108	Minority carriers, 8	458-59, 462, 474, 521-23
polysilicon-gate CMOS and, 91-92	Mismatches, 214–15	NMOS parasitic channels, 131-39
Logic gates, 387, 397	causes of, 217–49	NMOS transistors, 26-28, 31, 207
Long-term drift, 247	measuring, 214–16	depletion-mode, 27-28
Look-ahead trimming, 188	random, 216, 217	enhancement-mode, 27-28
Low pressure chemical vapor deposited	six-sigma, 216	extended-drain, 403-5
(LPCVD) epitaxy, 56-57	standard deviation of, 215–16	gate-coupled, 481-82
	systematic, 216	PMOS versus, 432–33
М	three-sigma, 216	polysilicon-gate CMOS and, 88, 89-90,
Machine model (MM), 119, 471–72	Moat regions 48 00 376	95–96,97 Nable efficience 252
Majority-carrier devices, 16	Moat regions, 48, 90, 376 Mobile ion contamination, 124, 125–28	Noble silicides, 353
Majority carriers, 7–8	effects of, 125–26	Noisy signals, 504-6 Nonlinearity, resistivity and, 163-66
Mask layers, 378	preventative measures, 126-28	Nonmetals, 1–4
• •	F	1 ************************************

NPN transistors, 20-21, 22-23. See also Parasitic transistors, 381 analog BiCMOS versus, 110-11 Power bipolar transistors Pattern distortion, 73, 221 devices available, 95-100 analog BiCMOS and, 112 Patterning, 42 fabrication sequence, 89-95 Pattern shift, 57, 220-22, 327 DMOS, 420-21 features of, 88 rules for matching, 335-37 Pattern washout, 221 process extensions, 100-104 saturation in, 266-70 P-bars, 151-53, 338, 448, 452, 454 sample layout rules, 521-23 standard bipolar, 72, 77-79, 274-79 P-buried layer (PBL), 84, 280 Polysilicon (poly) resistors, 98-99, 101, NSD implants 93-94 P-channel JFETs, 33, 426 164-65, 177-80 NSD resistors, 99, 180 P-channel MOS (PMOS) transistors. See variations in, 222-24 N-source/drain (NSD), 376 Ports, 390 PMOS transistors N-type gate poly (NPoly), 385-86 Pellicles, 42 Positive resists, 41 N-type silicon, 7-9, 10-11 Perimeter utilization factor, 494 Potassium, 125n N-type V, adjust (NVT), 385 Periodic table, 1-4 Power bipolar transistors, 306-22 N-well, 379-80 Peripheral fluctuations, 217-19 in analog BiCMOS, 317-18 N-well CMOS processes, 89-90, 379-81 Permittivity of free space, 366 failure mechanisms of, 307-10 N-well diffusion, 107 Phosphors, 6 layout of, 311-19 N-well JFETs, 424-26 Phosphorus, 7, 50-51 saturation detection and limiting, 319-22 N-well resistors, 180-81 Phosphorus-doped silicon, 7 selecting a layout, 318-19 Phosphorus pileup, 47 Power-delay product, 387 Power MOS transistors, 407-21 Phosphorus plow, 47 Phosphosilicate-doped glass (PSG), 61, 77 Octagonal emitters, 323, 324 conventional, 410-17 Photolithography, 40-42 DMOS transistors, 417-21 Offset voltage, 322 Ohmic contacts, 19-20, 60 patterning, 42 Power transistors, 407 Ohmic debiasing, 448-49 photomasks and reticles, 41-42 Precise matching, 249, 335, 439 Ohms, 156-57 photoresists, 40-41 Prels, 390 Ohms per square, 81 Photomasks, 41–42 Primary routing channels, 502-3 One-dimensional arrays, 234-35 Photons, 5, 6 Probe cards, 66, 67 (111) planes, 39 Photoresists, 40-41 Probes, 66 (100) planes, 39 Piezoresistivity, 226, 227-28 Probe vield, 495 ONO capacitors, 196 Pilling-Bedworth ratio, 46n Process biases, 219-20 Optical generation, 5 Pinched off, 29 Process control structures, 65 Optical shrinks, 387-88 Pinch-off, 29 Process extensions Outdiffusion, 52 Pinchoff voltage, 175-76, 422, 424-26 polysilicon-gate CMOS and, 100-104 Output ESD devices, 476 Pinch resistors, 82-83 standard bipolar and, 84-87 Overhang, 525 Pinholes, 196 Process transconductance, 365-66 Overlap, 524-25 Planar process, 49 Process variation Oxidation furnaces, 43 Plate capacitors, 199 capacitors and, 200-201 resistors and, 162-63, 178-79 Oxide, 42-43 PMoat, 96, 152, 178, 375-78, 381, 388, 462, growth and removal, 42-49 Proportional base drive, 410 521-23 Protective overcoat (PO), 59, 63-64, 110 Oxide capacitors, 196 PMOS parasitic channels, 131-39 polysilicon-gate CMOS and, 94-95 Oxide rupture. See Dielectric breakdown PMOS thick-field threshold, 131-32 standard bipolar and, 77 Oxide sidewall spacer, 102, 402 PMOS transistors, 26-28, 30, 73 extended-drain, 405 Proximity effect, 142, 456 Oxide steps, 46-47 NMOS versus, 432-33 PSD implants, 87, 93-94 Oxide thickness gradients, 433 PSD resistors, 99, 180 polysilicon-gate CMOS and, 87-88, 90, 92, Oxidization-enhanced diffusion, 53 97-98 P-source/drain (PSD), 377 P-type gate poly (PPoly), 385-86 PN junctions, 10-20 P-type silicon, 8-9, 10-11 Package shift, 226-36, 332-33 depletion regions, 10-13 Packaging, 69 diodes, 13-15, 16-17, 343 P-type V, adjust (PVT), 385 Packing factor, 493 matching, 359-60 Pulsed-mode transistors, 311 Pad oxide, 48, 89, 90 Ohmic contacts, 19-20 Punchthrough, 373-74 Padrings, 466-85, 491-92 Schottky diodes, 15-17 base, 24, 296 Paper dolls, 462 Zener diodes, 17-18 emitter, 60, 61, 62, 300 Punchthrough stops, 374 Parallel-plate capacitors, 194-95 PNP transistors, 20-23 Parasitic channels, 131-39 P-well, 379-80 analog BiCMOS and, 112-14 effects of, 131-33 standard bipolar, 72, 79-81, 279-90 P-well CMOS processes, 90, 379-81 preventative measures, 133-39 Polycrystalline silicon, 36, 37, 55 CMOS and BiCMOS, 137-39 Poly leads, 138-39 Poly-poly capacitors, 196, 209-11, 224 Quartz, 36 standard bipolar, 133-37 Polysilicon deposition and patterning, 58, 93, Parasitic components, 139, 167 Quasisaturation, 275, 295 Parasitic PNP, 267 Quatrefoils, 360-61 Parasitics, 139-53 Polysilicon emitter transistors, 300-301 of bipolar transistors, 272-74 Polysilicon etch rate variations, 222-24, of capacitors, 203-5 430-31 Random mismatches, 216, 217 Polysilicon fuses, 185-86, 188-89 Random statistical fluctuations, 217-19 minority-carrier injection, 143-53 Rapid transient overload, 408-9 of MOS transistors, 370-76 Polysilicon-gate CMOS, 71, 87-104. See also Rate-triggered clamps, 481

Self-aligned poly-gate CMOS

transistors

Ratioed pairs, 329

of resistors, 167-70

substrate debiasing, 140-43

San Land

Seebeck coefficient, 240 -

Ratioed quads, 328, 330-32 Seebeck effect, 240. See also Thermoelectric Sodium line, 77 Reactive ion etching (RIE), 45-46 Solid-state devices Reactive ions, 45 Self-aligned poly-gate CMOS transistors, defined, 1 Recombination, 4-6 Rectangular MOS power device, 411-13 backgate contacts, 393-96 physics of, 1-33 Rectifiers, 13 channel stops, 381-83 Reflow, 61 coding the MOS transistor, 377-79 Refractory barrier metal, 60-62 N-well and P-well processes, 379-81 Spacing, 524 Refractory silicides, 353 scaling the transistor, 386-88 Relative permittivity, 195 threshold adjust implants, 383-86 Remote sensing, 504 variant structures, 388-93 Spin-on glasses, 51 Representative processes, 71-117 Semiconductors, 1-10 analog BiCMOS, 104-15 diffusion and drift, 9-10 polysilicon-gate CMOS, 87-104 extrinsic, 6-9 standard bipolar, 72-87 fabrication. See Fabrication Sputtering, 61-62 Resistivity, sheet resistance and, 156-58 generation and recombination, 4-6 Resistors, 156-93 Semisimple figure, 286n SSA transistors, 301-2 adjusting values, 182-91 Sense leads, 504 Stacked capacitor, 208 analog BiCMOS and, 115 Sensitive signals, 504-6 Staged oxidation, 406 cell area estimation, 489 Serpentine resistors, 160, 161, 184, 241 comparison of available, 170-82 Serpentine transistors, 391 layout of, 158-61 Shadow effect, 146-47 diodes in, 343-56 matching of capacitors and, 214-59 Sheet resistance, 81 extensions to, 293-94 rules for, 249-53 resistivity and, 156-58 parasitics of, 167-70 Shells, 2-4 features of, 72-73 polysilicon-gate CMOS and, 98-99, 100 Shichman-Hodges equations, 365, 409, 427, resistivity and sheet resistance, 156-58 528, 530, 531 standard bipolar and, 81-83 Sichrome, 181, 190 trimming, 182, 185-91 Silica. See Oxide; Silicon dioxide tweaking, 182-85 Silicidation, 62-63, 85 456-57 variability of, 162-67 polysilicon-gate CMOS and, 101 RESURF (reduced surface field), 420n Silicide block mask, 101, 179, 180, 298 Reticles, 41-42 Silicides, 17 283-90 Retrograde well, 374 Silicon, 3-4, 6-9, 36-37 Retrograde-well NPN transistors, 299 crystal structure of, 38-39 274-79 Reverse-biased PN junctions, 13-13, 16 manufacturing, 36-39 Reverse breakdown, 17-18 crystal growth, 37-38 Reverse conduction, 14-15 wafers, 38 Reverse recovery time, 266 Miller indices of cubic crystal, 516-18 Ring collectors, 320 Silicon-controlled rectifier (SCR), 145, Routing factor, 493 482-83 Rule of coincidence, 233 Silicon deposition, 55-58 Starting material Rule of compactness, 234 epitaxy, 56-57 analog BiCMOS, 106 Rule of dispersion, 234 polysilicon deposition, 58 Rule of symmetry, 233-34 Silicon dioxide, 25, 28, 36, 42-43. See also standard bipolar, 73 Oxide growth and removal, 42-49 Steppers, 42 Sacrificial gate oxide, 92 Simple figure, 286n Stepping, 42 Sandwich capacitor, 208 Single-diffused drain (SDD) transistors, 102, Stick diagrams, 461-62 Saturation, 29, 32, 266-71 402-3 Stitch bonds, 68 detection and limiting, 319-22 Single-level interconnection, 58-59, 460-66 Straggle, 54 Saturation current, 422-23 crossing leads, techniques for, 463-64 Saturation regions, 29, 365 mock layouts and stick diagrams, 461-62 Stress effects, 433–35 Saturation voltage, 273, 313 tunnels and, 464-66 minimizing, 508-10 Scaling laws, 386-88 Single-level-metal (SLM), 58-59, 84-85 Schottky barriers, 15-16, 19, 352 Single-well processes, 379-80 Schottky-clamped NPNs, 269 Sinkers, 72, 74-75, 105, 112, 148-49, 225, 245, Schottky clamps, 453 275, 277, 287, 295, 313, 318, 347-48 Stress triangles, 508-9 Schottky diodes, 15-17, 18, 101, 269, 343, Sintering, 60 352-56 Six-sigma mismatch, 216 matching, 361-62 Sliding contacts, 183 Strike voltage, 478-79 standard bipolar and, 85-86 Sliding heads, 183, 184 Strong inversion, 207 Scribe seals, 127-28, 466-67 SLM interconnection system, 58-59 Scribe streets, 466-67 Small-signal transistors, 274. See also effects of, 140-42 SDD transistors, 102, 402-3 Bipolar small-signal transistors Secondary breakdown, 264-66, 309-10, 408 Snapback, 263-64, 374, 478, 479, 481 Secondary breakdown voltage, 310 Soakage, 211, 248-49 Secondary collectors, 320-21

Sodium, 2-3, 125-26, 125n, 369n

en en un passione de la compa

Sodium chloride, 3, 124-25

manufacturing process of, 36-70 Sources, 26, 93-94, 109-10 Space charge layers, 12 SPICE (Simulation Program with Integrated Circuit Emphasis), 156n Split-collector lateral PNP transistors, 287, Split field plates, 166, 247-48 Square emitters, 323, 324 Standard bipolar, 72-87 devices available, 77-83 fabrication sequence, 73-77 parasitic channels and, 133-37 process extensions, 84-87 sample layout rules, 519-21 Standard bipolar electron guard rings, Standard bipolar hole guard rings, 457-58 Standard bipolar lateral PNP transistors, Standard bipolar NPN transistors, 72, 77-79, construction of, 276-79 Standard bipolar substrate PNP transistors, Standard deviation of the mismatches, Star nodes. See Kelvin connections polysilicon-gate CMOS, 89 Stepped working plates, 42 Stress distribution, 229, 235-36, 251, 256 Stress gradients, 229, 433-34 matching bipolar transistors, 332-34 package shifts and, 226-36 Stretched-base transistors, 278 Stretched-collector transistors, 277-78 Substrate debiasing, 79, 140-43 preventative measures, 142-43 Substrate injection, 146-50 Substrate PNP transistors, 79-80, 81, 98, 112-13, 279-83, 345 construction of, 281-83

Subsurface Zeners. See Buried Zeners Thin-film resistors, 181-82 V_{CBOP}, 291 Subthreshold conduction, 30, 370 Thin gate oxide, 376 V_{CEO}, 262-64, 265-66, 274-75, 291 Super-beta NPNs, 293 Three-sigma mismatch, 216 V_{CES} clamps, 478–80 Super-beta transistors, 24, 293 Three-terminal NPNs, 272 V_{EBO}, 262, 263, 272, 273-74, 344, 347 standard bipolar and, 86-87 Threshold adjust, 92-93, 109 Vertical DMOS transistors, 418 Super self-aligned (SSA) transistors, 301-2 Threshold adjust implant mask, 384 Vertical resistance, 141, 141n Surface effects, 128-39 Threshold adjust implants, 27, 383-86 Verti-lat PNP, 282-83 hot carrier injection, 128-31 Threshold voltage, 25-26, 27-28, 364, 367-70 Voltage matching, 440 parasitic channels and charge spreading, Tiling, 234 Voltage modulation, 242-45 131-39 Tilted implants, 436 resistivity and, 163-66 Surface state charge, 369-70 Tilted wafers, 437 temperature variation and, 201-3 Surface state charges, 43 Time-dependent dielectric breakdown Voltage proportional to absolute Surface states, 43 (TDDB), 366, 374, 472 temperature (VPTAT), 329-30 Surface Zener diodes, 347-49 Tombstone PNP, 282 Voltmeters, 11-12 Sustain voltage, 372-73, 478-79 Top-level interconnection, 500-510 Switched-mode applications, 311 Transconductance, 25, 87, 96, 97, 103-4, 305, Symmetric extended-drain NMOS Wafer boats, 43 transistors, 404 device, 365-67, 400, 408, 427, 433-35 Wafer probing, 66 Symmetric extended-drain PMOS process, 365-66 Wafers, 38, 40 transistors, 405 Trigger voltage, 372-73, 478-79 manufacturing, 38-39. See also Symmetric MOS transistors, 26 Trimmers, 182 Fabrication Systematic mismatch, 216 Trimming, 182, 185-91, 328-29 Wafer utilization factor, 494-95 Systäme Internationale (SI), 156-57, 156n. Trimpads, 186, 445, 468-71 Waffle transistors, 416-17 Triode region, 29, 365 Walled-emitter transistors, 301 Trombone slides, 184 Washed-emitter transistors, 299-300 Tubs, 72-73 Wedge bonding, 67-68 Tank modulation, 165-66, 172, 242, 252 Tunneling, 18 Well resistors, 99 Tanks, 72-73 Tunnels, 85, 171, 445, 460–61, 464 Wet etching, 45-46 Temperature variations types of, 464-66 Wet oxides, 44 resistivity and, 163 Turnoff time, 266 Whiskers, 506 thermoelectrics and, 236-41 Turnoff voltage, 33 Wide-emitter narrow-contact transistors, voltage modulation and, 201-3 Tweaking resistors, 182-85 313, 314-15 Test dice, 65-66 Tweaks, 182 Width, 524 Testpads, 67, 445, 468-71 Twin-well processes, 380 Width bias, of resistors, 159-60, 161 Tetraethoxysilane (TEOS), 64 Two-dimensional arrays, 234-35 Wiresweep, 469-70 Thermal effects, 433-35 Two-stage Zener clamps, 475-76 Thermal feedback, 329 Thermal gradients, 238-39, 434-35 U 7. matching bipolar transistors, 328-32 Unconnected dummies, 223-24 Zapping, 189 Thermal impedance, 237 Unit capacitors, 220, 254 Zener breakdown, 18 Thermal runaway, 264-66, 309-10, 407-8 Unit cells, 38-39, 516 Zener clamps, 473-78 Thermal voltage, 261 buffered, 476-78 Thermodynamics, 4 two-stage, 475-76 Thermoelectric effects, 19-20, 240-41 Valence electrons, 2, 4, 5 Zener diodes, 17-18, 112, 131, 346-52, 454 Thick emitter oxide, 76 Valence shells, 2-4 buried, 131, 349-52 Thick-field oxide, 376 Variability matching, 360-61 Thick-field thresholds, 73 of capacitors, 200-203 surface, 347-49 Thick-field transistors, 481 of resistors, 162-67 Zener walkout, 129-30, 129n, 131, 348 Thin emitter oxide, 76 Variant structures, 388-93 Thin-film capacitors, 197, 200, 201, 211-12 VBE, 261, 261n, 264, 267, 268

V_{CBO}, 262, 263, 272, 273-74

Thin-film interference, 44

Zener zaps, 185, 189-90 Zero bias, 13 Zero-bias capacitance, 197-98