UMass Boston Physics 182

Capacitor Series and Parallel Quick Sheet

Print	rint Last Name Section Date_		Print First Name		
Section			TA		
Lab I	Partner				
(1)	Measured values of R_1 , C_1 and C_2 . C_1 is already connected to R_1 . Use the $1\mu F$ range on the multimeter when measuring capacitance.				
	$R_1 = _{__}$		$R_g = \underline{\hspace{1cm}}$	$R = R_1 + R_g =$	=
	$C_1 = $		$C_2 = $	(Three numbers	s after the decimal point.)
(2)	Using the slope from Excel and equation 9, calculate the capacitance of the first capacitor C_1 . Calculate the % error, where the accepted value of C_1 is $0.10\mu F$.				
	Slope = Enter your result to 4 numbers after the decimal point.				
	$C_1 = \underline{\hspace{1cm}} \mu F$ (4 numbers after the decimal point.)				
	% error	=	(2	numbers after the	decimal point.)
(3)	Enter your value of the half time (2 numbers after the decimal point) for the parallel and the series capacitor connects, and use these values to calculate C _{paralle} and C _{series} . Enter your results <u>for capacitors</u> to <u>3</u> numbers after the decimal point, and <u>show your calculations on the back of this page</u> .				
	$t_{parallel} =$		msec	$t_{\text{series}} = $	msec
	C _{parallel} =	=	μF	$C_{\text{series}} = \underline{\hspace{1cm}}$	μF
(4)	Can the resistance of the function generator be ignored in this experiment? Use 5% as a limit for this problem.				
	Here, % error = $(R - R_1 / R_1)*100\%$ or, % error = $(R_g / R_1)*100\%$				
	% error	=	(2 number	rs after the decimal	point.)
	Circle	Yes or N	0		
(5)	Use your experimental values of C_1 and C_{series} to calculate C_2 . Enter your result to 3 numbers after the decimal point, and <u>show your calculations</u> .				
	$C_2 = $		μF (3 1	numbers after the d	ecimal point.)