Züchtungslehre - Übung 2

Peter von Rohr

September 29, 2015

Aufgabe 1 (6)

In einer Ernährungsempfehlung sollen der tägliche Bedarf an Calcium und an Vitamin A über den Konsum von Milch und Orangensaft abgedeckt werden.

Ein Liter Milch enthält 1.285 g Calcium und 1.894 mg Vitamin A. Ein Liter Orangensaft enthält 0.169 g Calcium und 2.029 mg Vitamin A.

Wie hoch soll der tägliche Konsum an Milch und Orangensaft sein, falls pro Tag 0.550 g an Calcium und 1.2 mg an Vitamin A aufgenommen werden sollen.

Hier nochmals die Werte in einer Tabelle zusammengefasst.

	Milch	Orangensaft	Totaler Konsum
	(mg/l)	(mg/l)	(mg/Tag)
Calcium	1285	169	550
Vitamin A	1.89	2.03	1.2

Stellen Sie zwei Gleichungen mit den zwei Unbekannten x (konsumierte Milchmenge in l/Tag) und y (konsumierte Menge an Orangensaft in l/Tag) und lösen sie diese Gleichungen nach den beiden Unbekannten auf.

Aufgabe 2 (10)

Am Ende der ersten Vorlesung hatten wir gesehen, wie wir Daten aus einer csv-Datei in R einlesen. Wir hatten dazu die Funktion read.csv2() verwendet. Der gleiche Datensatz wurde jetzt noch um die Variable "Stockmass" ergänzt. Die folgende Tabelle gibt eine Übersicht über den neuen Datensatz.

Brustumfang	Stockmass	Gewicht
176	158	471
177	163	463
178	164	481
179	158	470
179	163	496
180	166	491
181	168	518
182	168	511
183	171	510
184	171	541

Der Datensatz br_st_gew.csv kann als csv-Datei von der Vorlesungswebseite (http://charlotte-ngs.github.io/LivestockBreedingAndGenomics/w3/br_st_gew.csv) heruntergeladen werden. Sie können entweder die csv-Datei zuerst auf Ihren Rechner herunterladen und dann mit read.csv2() in R einlesen, oder Sie können direkt die Adresse des Links als Argument für read.csv2() verwenden. Das sieht dann wie folgt aus:

- > dfBrStGew <- read.csv2(file =
- + "http://charlotte-ngs.github.io/LivestockBreedingAndGenomics/w3/br_st_gew.csv")
- > dim(dfBrStGew)

Mit dem Befehl dim () können Sie die Anzahl Zeilen und die Anzahl Kolonnen des eingelesenen Datensatzes überprüfen.

- 1. Legen Sie eine Regressionsgerade zwischen den Variablen "Gewicht" (y-Variable) und der Variablen "Brustumfang" (x-Variable) analog zur ersten Vorlesung.
- 2. Legen Sie eine Regressionsgerade zwischen den Variablen "Gewicht" (y-Variable) und der Variablen "Stockmass" (x-Variable).
- 3. Die beiden x-Variablen "Brustumfang" und "Stockmass" sollen nun zu einer multiplen linearen Regression kombiniert werden.

Vergleichen Sie die Resultate der drei Regressionsmodelle.

Hinweise

• Für das Rechnen der Regressionen können Sie die Funktion 1m() verwenden.

- Die Funktion lm() hat im wesentlichen zwei Argumente. Das erste Argument definiert ein Modell und das zweite Argument spezifiziert den Datensatz.
- Die Ergebnisse der Regression können Sie mit der Funktion summary() anschauen.
- $\bullet\,$ Mehrere x-Variablen in einem Modell werden durch + verbunden
- Abhängigkeiten zwischen Variablen können mit der Funktion pairs() dargestellt werden.