ICS 271

Fall 2016

Student ID: 26642334 Student Name: Yu Guo Instructor: Kalev Kask Homework Assignment 4 Due Tuesday, 11/3

1.  $X = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ 

 $D = \{D_1, D_2, D_3, D_4, D_5, D_6\}$ 

- $D_1 = \{ \text{desk, easy, dove, else, help, kind, soon, this} \}$
- $D_2 = \{\text{eta, hat, her, him, one}\}$
- $D_3 = \{ at, be, he, it, on \}$
- $D_4 = \{\text{dance, usage, first, loses, fuels, haste, given, sense, sound, think}\}$
- $D_5 = \{\text{dance, usage, first, loses, fuels, haste, given, sense, sound, think}\}$
- $D_6 = \{ \text{desk, easy, dove, else, help, kind, soon, this} \}$

 $C_1 = \{v_2(1) = v_1(2), v_2(2) = v_3(2), v_2(3) = v_4(3), v_5(1) = v_4(4), v_5(3) = v_6(3)\}, v_i(j)$  means the *j*-th letter in word *i*.

$$C_2 = \{v_1 \neq v_6, v_4 \neq v_5\}$$

Cost function: the number of constraints unsatisified. (Range from 0 to 5)

Start:  $v_1$ =this,  $v_2$ =eta,  $v_3$ =at,  $v_4$ =dance,  $v_5$ =haste,  $v_6$ =dove, cost=4

Iter1:  $v_1$ =help,  $v_2$ =eta,  $v_3$ =at,  $v_4$ =dance,  $v_5$ =haste,  $v_6$ =dove, cost=3

Iter2:  $v_1$ =help,  $v_2$ =eta,  $v_3$ =at,  $v_4$ =usage,  $v_5$ =haste,  $v_6$ =dove, cost=2

Iter3:  $v_1$ =help,  $v_2$ =eta,  $v_3$ =at,  $v_4$ =usage,  $v_5$ =given,  $v_6$ =dove, cost=0

2. Assume there's a classes(subjects) list S, the number of elements in S is NoS,  $s_i$  is i-th subject in S, i = 1, 2, ..., NoS. We have,

$$S = \{s_i, i = 1, 2, \dots, NoS\}$$

Same as professors(P), classesrooms(C) and timeslots(T). That we have,

$$P = \{p_{\alpha}, \alpha = 1, 2, \dots, NoP\}$$

$$C = \{c_{\beta}, \beta = 1, 2, \dots, NoC\}$$

$$T = \{t_{\gamma}, \gamma = 1, 2, \dots, NoT\}$$

 $X = \{(s_i, p_\alpha, c_\beta, t_\gamma), i = 1, 2, \dots, NoS\}$ , it means that subject  $s_i$  is taught by professor  $p_\alpha$  at classroom  $c_\beta$  on timeslot  $t_\gamma$ .

 $D_j = \{(s_i, p_\alpha, c_\beta, t_\gamma) | i, \alpha, \beta, \gamma \text{ could be any valid value}\}$ 

C: - Each  $s_i$  should only appear once.

- For any two subjects  $(s_{i1}, p_{\alpha 1}, c_{\beta 1}, t_{\gamma 1})$  and  $(s_{i2}, p_{\alpha 2}, c_{\beta 2}, t_{\gamma 2})$ ,

if  $p_{\alpha 1}=p_{\alpha 2}$ , then  $t_{\gamma 1}\neq t_{\gamma 2}$ , it means a professor could not have two classes at same time;

if  $c_{\beta 1} = c_{\beta 2}$ , then  $t_{\gamma 1} \neq t_{\gamma 2}$ , it means one classroom could no have two classes at same time.

3. Assume big rectangle locate in a 2-D coordinate system, range from  $[0, X] \times [0, Y]$ .

 $X = \{(x_i, y_i, dX_i, dY_i) | i = 1, 2, \dots, n\}, \text{ each } X_i \text{ represents a small rectangle with it's position(bottom)}$ 

left corner)  $(x_i, y_i)$  and size  $(dX_i, dY_i)$ .

$$D_i = \{(x, y, dX, dY) | dX \leqslant X, dY \leqslant Y\}$$

 $C_1$ : For each small rectangle  $(x_i, y_i, dX_i, dY_i)$ , we have,

$$x_i \geqslant 0$$
 and  $x_i + dX \leqslant X$  and  $y_i \geqslant 0$  and  $y_i + dY \leqslant Y$ 

 $C_2$ : For any of two small rectangles  $(x_i, y_i, dX_i, dY_i)$  and  $(x_j, y_j, dX_j, dY_j)$ , we have,

$$x_i + dX_i \leqslant x_j$$
 or  $x_j + dX_j \leqslant x_i$  or  $y_i + dY_i \leqslant y_j$  or  $y_j + dY_j \leqslant y_i$ 

4. (a) For any neighboring pair of squares i and j such that  $i \neq j$ ,

Relation: 
$$|X_i - X_j| \ge 2$$
  
Domain:  $(1,3)$ ,  $(1,4)$ ,  $(1,5)$ ,  $(1,6)$ ,  $(1,7)$ ,  $(1,8)$ ,  $(1,9)$ ,  $(2,4)$ ,  $(2,5)$ ,  $(2,6)$ ,  $(2,7)$ ,  $(2,8)$ ,  $(2,9)$ ,  $(3,1)$ ,  $(3,5)$ ,  $(3,6)$ ,  $(3,7)$ ,  $(3,8)$ ,  $(3,9)$ ,  $(4,1)$ ,  $(4,2)$ ,  $(4,6)$ ,  $(4,7)$ ,  $(4,8)$ ,  $(4,9)$ ,  $(5,1)$ ,  $(5,2)$ ,  $(5,3)$ ,  $(5,7)$ ,  $(5,8)$ ,  $(5,9)$ ,  $(6,1)$ ,  $(6,2)$ ,  $(6,3)$ ,  $(6,4)$ ,  $(6,8)$ ,  $(3,9)$ ,  $(7,1)$ ,  $(7,2)$ ,  $(7,3)$ ,  $(7,4)$ ,  $(7,5)$ ,  $(7,9)$ ,

$$(7,1), (7,2), (7,3), (7,4), (7,5), (7,9),$$

$$(9,1), (9,2), (9,3), (9,4), (9,5), (9,6), (9,7)$$



Figure 1:

- (b) Yes, it's arc-consistent.
- (c) Yes, it's consistent. One solution is,

5. (a) Yes, it's arc-consistent.



(b) Yes, it's consistent. One solution is,

$$X_1 = 8$$
  $X_2 = 6$   $X_3 = 6$   
 $X_4 = 4$   $X_5 = 4$   $X_6 = 4$   $X_7 = 4$   
 $X_8 = 2$   $X_9 = 2$   $X_{10} = 2$   $X_{11} = 2$   
 $X_{12} = 2$   $X_{13} = 2$   $X_{14} = 2$   $X_{15} = 2$ 

- (c) Do an in-order traversal: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- (d) Since this is a tree the complexity is  $O(nd^2)$  when n is the number of variables and d is the domain size.
- 6. Solve problem:

Constraints:

$$O + O = R + 10X_1$$
  
 $W + W + X_1 = U + 10X_2$   
 $T + T + X_2 = O + 10X_3$   
 $X_3 = F$ 

Domain:

$$D_F, D_{X_3} = \{1\}$$

$$D_{X_1}, D_{X_2} = \{0, 1\}$$

$$D_T = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$D_W, D_O, D_U, D_R = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

A trace to a solution:

A solution:

- 7.  $a_1$ : arc consistency with domain splitting  $a_2$ : variable elimination  $a_3$ : stochastic local search  $a_4$ : genetic algorithms
  - (a)  $a_1$  can determine that there is no solution, if the problem is inconsistent.
  - (b)  $a_2, a_3$  can find a solution if one exists.
  - (c)  $a_4$  can guarantee to find all solutions.