

Introduction to Machine Learning

Clustering

Bernd Bischl, Christoph Molnar, Daniel Schalk, Fabian Scheipl

Department of Statistics - LMU Munich

Hierarchical Clustering

MOTIVATION FOR CLUSTERING

Consider multivariate data with *N* observations (e.g. customers) and *P* features (e.g. characteristics of customers).

Task: divide data into groups (clusters), such that

- the observations in each cluster are as "similar" as possible (homogeneity within each cluster), and
- the clusters are as "far away" as possible from other clusters (heterogeneity between different clusters).

CLUSTERING VS. CLASSIFICATION

- In classification, the groups are known and we try to learn what differentiates these groups (i.e., learn a classification function) to properly classify future data.
- In clustering, we look at data, where groups are unknown and try to find similar groups.

Why do we need clustering?

- Discovery: looking for new insights in the data (e.g. finding groups of customers that buy a similar product).
- Derive a reduced representation of the full data set.

HIERARCHICAL CLUSTERING

Hierarchical clustering is a recursive process that builds a hierarchy of clusters. We distinguish between:

- Agglomerative (or bottom-up) clustering:
 - Start: Each observations is an individual cluster.
 - Repeat: Merge the two closest clusters.
 - Stop when there is only one cluster left.
- ② Divisive (or top-down) clustering:
 - Start: All observations are within one cluster.
 - Repeat: Divide the cluster that results in two clusters with biggest distance.
 - Stop when each observation is an individual cluster.

HIERARCHICAL CLUSTERING

-FIX THE TABLE-

Let $X_1, ..., X_N$ be observations with P features (dimensions), where $X_i = (x_{i1}, ..., x_{iP})^{\top}$. A data set is a $(N \times P)$ -matrix of the form:

feature 1 ... feature P $X_1 \quad x_{11} \quad \dots \quad x_{1P}$ $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$ $X_N \quad x_{N1} \quad \dots \quad x_{NP}$

HIERARCHICAL CLUSTERING

For hierarchical clustering, we need a definition for

- distances $d(X_i, X_j)$ between two observations X_i and X_j :
 - manhattan distance:

$$d(X_i, X_j) = ||X_i - X_j||_1 = \sum_{k=1}^{P} |x_{ik} - x_{jk}|$$

euclidean distance:

$$d(X_i, X_j) = ||X_i - X_j||_2 = \sqrt{\sum_{k=1}^{P} (x_{ik} - x_{jk})^2}$$

• distances between two clusters (called linkage).

DISTANCES BETWEEN OBSERVATIONS

- manhattan: sum up the absolute distances in each dimension. In R: "dist(data, method = "manhattan")"
- euclidean: remember Pythagoras theorem from school? In R: "dist(data, method = "euclidean")"
- gower: can be used for mixed variables (categorical and numeric). In R: "gower_dist()" from the "gower" package
- see "?dist" for other distances.

GOWER DISTANCE I

- The Gower's metric calculates the distance between observations X_i and X_j for each feature separately and based on its data type (i.e., categorical or numeric).
- For a categorical feature X_k, the distance between the i-th and the j-th observation X_{ik} and X_{jk} is defined by

$$s_{ijk} = \begin{cases} 0 \text{ if } X_{ik} = X_{jk} \\ 1 \text{ if } X_{ik} \neq X_{jk}. \end{cases}$$

• For a numerical feature X_k , the distance between the *i*-th and the *j*-th observation X_{ik} and X_{jk} is defined by

$$s_{ijk} = \frac{|X_{ik} - X_{jk}|}{\max(X_k) - \min(X_k)}, \text{ so that } 0 \le s_{ijk} \le 1.$$

GOWER DISTANCE II

The Gower's metric S combines all individual distances of each feature by

$$S_{ij} = \frac{\sum_{k=1}^{P} w_k s_{ijk}}{\sum_{k=1}^{P} w_k},$$

where

- P: number of features.
- w_k : weight for feature k (typically $w_k = 1$).
- s_{ijk} : the difference (distance) between X_{ik} and X_{jk} , i.e. the *i*-th and *j*-th observation of feature k.

GOWER DISTANCE III - EXAMPLE

DISTANCES BETWEEN OBSERVATIONS

It is often a good idea to *normalize* the data before computing distances, especially when the scale of features is different, e.g.:

On the right plot, the distance is dominated by 'shoe size'.

DISTANCES BETWEEN OBSERVATIONS

The normalized feature $\tilde{X}_{\text{height}}$ is computed using X_{height} by <!-Normalization of the height feature means: ->

$$ilde{X}_{ ext{height}} = rac{X_{ ext{height}} - ext{mean}(X_{ ext{height}})}{ ext{sd}(X_{ ext{height}})}.$$

Distances based on normalized data are better comparable and robust in terms of linear transformations (e.g. unit conversion).

DISTANCES BETWEEN CLUSTERS (LINKAGE)

- Assume that all observations X_1, \ldots, X_N belong to K < N different clusters.
- The linkage of two clusters C_r and C_s is a "score" describing their distance.

The most popular and simplest linkages are

- Single Linkage
- Complete Linkage
- Average Linkage
- Centroid Linkage

SINGLE LINKAGE

Single linkage defines the distance of the *closest point pairs* from different clusters as the distance between two clusters:

$$d_{\mathsf{single}}(C_r, C_s) = \min_{i \in C_r, j \in C_s} d(X_i, X_j)$$

COMPLETE LINKAGE

Complete linkage defines the distance of the *furthest point pairs* of different clusters as the distance between two clusters:

$$d_{\text{complete}}(C_r, C_s) = \max_{i \in C_r, j \in C_s} d(X_i, X_j)$$

AVERAGE LINKAGE

(Note: Plot only shows distances between all green points and one red point)

In average linkage, the distance between two clusters is defined as the average distance across *all* pairs of two different clusters.

CENTROID LINKAGE

Centroid linkage defines the distance between two clusters as the distance between the two cluster centroids. The centroid of a cluster C_s with N_s points is the mean value of each dimension:

$$\bar{X}_s = \frac{1}{N_s} \sum_{i \in C_s} X_i$$

Agglomerative hierarchical clustering starts with all points forming their own cluster and iteratively merges them until all points form a single cluster containing all points.

Example:

Step 1: $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}$

Agglomerative hierarchical clustering starts with all points forming their own cluster and iteratively merges them until all points form a single cluster containing all points.

Example:

Step 1: {1}, {2}, {3}, {4}, {5} Step 2: {1}, {2,3}, {4}, {5}

Agglomerative hierarchical clustering starts with all points forming their own cluster and iteratively merges them until all points form a single cluster containing all points.

Example:

```
Step 1: {1}, {2}, {3}, {4}, {5}
Step 2: {1}, {2,3}, {4}, {5}
Step 3: {1}, {2,3}, {4,5}
```


Agglomerative hierarchical clustering starts with all points forming their own cluster and iteratively merges them until all points form a single cluster containing all points.

Example:

```
Step 1: {1}, {2}, {3}, {4}, {5}
Step 2: {1}, {2,3}, {4}, {5}
Step 3: {1}, {2,3}, {4,5}
Step 4: {1,2,3}, {4,5}
```


Agglomerative hierarchical clustering starts with all points forming their own cluster and iteratively merges them until all points form a single cluster containing all points.

Example:

```
Step 1: {1}, {2}, {3}, {4}, {5}
Step 2: {1}, {2,3}, {4}, {5}
Step 3: {1}, {2,3}, {4,5}
Step 4: {1,2,3}, {4,5}
Step 5: {1,2,3,4,5}
```


DENDROGRAM

A Dendrogram is a tree showing which clusters / observations are merged after each step. The 'height' is proportional to the distance between the two merged clusters:

The data contains 150 leaf measurements for 3 flower species:

We now "forget" the real groups specified by the 'Species' variable and try to find clusters based on the leaf measurements.

We can extract the clustering assignments by cutting the dendrogram, e.g. using k=3 clusters:

PROPERTIES: SINGLE LINKAGE

Single linkage introduces the *chaining problem*:

- Only one pair of points needs to be close to merge clusters.
- A chain of points can expand a cluster over long distances.
- Points within a cluster can be too widely spread and not dense enough.

PROPERTIES: COMPLETE LINKAGE

Complete linkage avoids chaining, but suffers from crowding:

- Merging is based on the furthest distance of point pairs from different clusters.
- Points of two different clusters can thus be closer than points within a cluster.
- Clusters are dense, but too close to each other. <!- and sensitive to outliers. ->

PROPERTIES: AVERAGE LINKAGE

- Average linkage is based on the average distance between clusters and tries to avoid crowding and chaining.
- Produces clusters that are quite dense and rather far apart.

PROPERTIES: CENTROID LINKAGE

- Centroid linkage defines the distance based on artificial data points (the cluster centers), which produces dendrograms with inversions, i.e., the distance between the clusters to be merged can be smaller in the next step.
- In single, complete and average linkage, the distance between the clusters to be merged increases in each step. ⇒ always produces dendrograms without inversions.

SUMMARY

- Hierarchical agglomerative clustering methods iteratively merge observations/clusters until all observations are in one single cluster.
- Results in a hierarchy of clustering assignments which can be visualized in a *dendrogram*. Each node of the dendrogram represents a cluster and its 'height' is proportional to the distance of its child nodes.
- The most common linkage functions are single, complete, average and centroid linkage. There is no perfect linkage and each linkage has its own advantages and disadvantages.

Partitioning Clustering Methods

OPTIMAL PARTITIONING CLUSTERING

Hierarchical clustering:

Stepwise merging (agglomerative methods) or dividing (divisive methods) of clusters based on distances and linkages. The number of clusters are selected by splitting the dendrogram at a specific threshold for the "height" after visual inspection.

Partitioning clustering:

Partitions the *N* observations into a predefined number of *K* clusters by optimizing a numerical criterion. The most common partitioning methods are:

- K-means
- K-medians
- K-medoids (Partitioning Around Medoids (PAM))

K-MEANS

K-means partitions the N observations into K predefined clusters C_1, C_2, \ldots, C_K by minimizing the **compactness**, i.e. the **within-cluster variation** of all clusters using

$$\sum_{k=1}^K \sum_{i \in C_k} \|X_i - \bar{X}_k\|_2^2 o \min,$$

where $\bar{X}_k = \frac{1}{N_k} \sum_{i \in C_k} X_i$ is the centroid of cluster k and N_k is the number of observations in cluster k.

K-MEANS

Idea: Consider every possible partition of N observations into K clusters and select the one with the lowest **within-cluster variation**. Problem: Requires trying all possible assignments of N observations into K clusters, which in practice is nearly impossible (Hothorn et al., 2009, p.322):

Ν	K	Number of possible partitions
15	3	2.375.101
20	4	45.232.115.901
100	5	10 ⁶⁸

Hothorn, T., Everitt, B. S. (2009). A handbook of statistical analyses using R. Chapman and Hall/CRC.

K-MEANS

Use an approximation:

- Initialization: Choose *K* arbitrary observations to be the initial cluster centers.
- Assignment: Assign every observation to the cluster with the closest center.
- Update: Compute the new center of each cluster as the mean of its members.
- Repeat (2) and (3) until the centers do not move.