SECETION-A

- 1. If the sum of zeroes of the polynomial $p(x) = 2x^2 k\sqrt{2}x + 1$ is $\sqrt{2}$, then value of k is:
- (a) $\sqrt{2}$
- (b) 2
- (c) $2\sqrt{2}$
- (d) $\frac{1}{2}$
- 2. If the probability of a player winning a game is 0.79, then the probability of his losing the same game is:
- (a) 1.79
- (b) 0.31
- (c) 0.21%
- (d) 0.21
- 3. If the roots of the equation $ax^2 + bx + c = 0$, $a \ne 0$ are real and equal, then which of the following relations is true?
- (a) $a = \frac{b^2}{c}$
- (b) $b^2 = ac$
- (c) $ac = \frac{b^2}{4}$
- (d) $c = \frac{b^2}{a}$
- 4. In an A.P., if the first term a = 7, nth term $a_n = 84$, and the sum of the first n terms $s_n = \frac{2093}{2}$, then n is equal to:
- (a) 22
- (b) 24

(c)	23
(d)	26
5.	If two positive integers p and q can be expressed as $p = 18a^2b^4$ and $q = 20a^3b^2$ where a and b are prime numbers, then LCM (p,q) is:
(a)	$2a^2b^2$
(b)	$180a^2b^2$
(c)	$12a^2b^2$
(d)	$180a^3b^4$
6.	AD is a median of $\triangle ABC$ with vertices $A(5, -6)$, $B(6, 4)$, and $C(0, 0)$. The length of AD is equal to:
(a)	$\sqrt{68}$ units
(b)	$2\sqrt{15}$ units
(c)	$\sqrt{101}$ units
(d)	10 units
7.	If $\sec \theta - \tan \theta = m$, then the value of $\sec \theta + \tan \theta$ is:
(a)	$1-\frac{1}{m}$
(b)	$m^2 - 1$
(c)	$\frac{1}{m}$
(d)	-m
8.	From the data 1, 4, 7, 9, 16, 21, 25, if all the even numbers are removed, then the probability of getting at random a prime number from the remaining is:
(a)	$\frac{2}{5}$
(b)	$\frac{1}{5}$
(c)	$\frac{1}{7}$

(d)	$\frac{2}{7}$

- 9. For some data x_1, x_2, \ldots, x_n with respective frequencies f_1, f_2, \ldots, f_n , the value of $\sum_{i=1}^{n} (f_i x_i \overline{x})$ is equal to:
- (a) $n\bar{x}$
- (b) 1
- (c) Σf_i
- (d) 0
- 10. The zeroes of a polynomial $x^2 + px + q$ are twice the zeroes of the polynomial $4x^2 5x 6$. The value of p is:
- (a) $-\frac{5}{2}$
- (b) $\frac{5}{2}$
- (c) -5
- (d) 10
- 11. If the distance between the points (3, -5) and (x, -5) is 15 units, then the values of x are:
- (a) 12, -18
- (b) -12, 18
- (c) 18, 5
- (d) -9, -12
- 12. If $\cos(\alpha + \beta) = 0$ then the value of $\cos(\frac{\alpha + \beta}{2})$ is equal to:
- (a) $\frac{1}{\sqrt{2}}$
- (b) $\frac{1}{2}$
- (c) 0
- (d) $\sqrt{2}$

13. A solid sphere is cut into two hemispheres. The ratio of the surface areas of the sphere to that of the two hemispheres taken together is:
(a) 1:1
(b) 1:4
(c) 2:3
(d) 3:2
14. The middle-most observation of every data arranged in order is called:
(a) mode
(b) median
(c) mean
(d) deviation
15. The volume of the largest right circular cone that can be carved out from a solid cube of edge 2 cm is:
(a) $\frac{4\pi}{3}$ cu cm
(b) $\frac{5\pi}{3}$ cu cm
(c) $\frac{8\pi}{3}$ cu cm
(d) $\frac{2\pi}{3}$ cu cm
16. Two dice are rolled together. The probability of getting a sum of numbers on the two dice as 2, 3, or 5 is:
(a) $\frac{7}{36}$
(b) $\frac{11}{36}$
(c) $\frac{5}{36}$
(d) $\frac{4}{9}$
17. The center of a circle is at (2,0). If one end of a diameter is at (6,0), then the other end is at:

- (a) (0,0)
- (b) (4,0)
- (c) (-2,0)
- (d) (-6,0)
- 18. In the given figure, graphs of two linear equations are shown. The pair of these linear equations is:

- (a) consistent with a unique solution.
- (b) consistent with infinitely many solutions.
- (c) inconsistent.
- (d) inconsistent but can be made consistent.

Directions:

In Q. No. 19, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.

- (a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation for Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- 19. **Assertion (A):** The tangents drawn at the end points of a diameter of a circle are parallel.

Reason (**R**): The diameter of a circle is the longest chord.