Lógica para Computação Lógica de Primeira Ordem - Propriedades Semânticas

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- Satisfatibilidade
- Validade
- 4 Consequência Lógica
- Equivalência Lógica

Tópicos

- Introdução
- 2 Satisfatibilidade
- Walidade
- 4 Consequência Lógica
- Equivalência Lógica

Introdução

 Como podemos definir a satisfatibilidade para Lógica de Primeira Ordem?

Introdução

- Como podemos definir a satisfatibilidade para Lógica de Primeira Ordem?
- Na Lógica Proposicional era necessário verificar todas as valorações

Introdução

- Como podemos definir a satisfatibilidade para Lógica de Primeira Ordem?
- Na Lógica Proposicional era necessário verificar todas as valorações
- Na Lógica de Primeira Ordem temos as interpretações

Tópicos

- Introdução
- Satisfatibilidade
- Walidade
- 4 Consequência Lógica
- Equivalência Lógica

Satisfatibilidade

Definição

Seja ψ uma fórmula na Lógica de Primeira Ordem.

 ψ é satisfatível se e somente se existe interpretação $\mathcal I$ tal que $\mathcal I \models \psi.$

Satisfatibilidade

Definição

Seja ψ uma fórmula na Lógica de Primeira Ordem. ψ é satisfatível se e somente se existe interpretação \mathcal{I} tal que $\mathcal{I} \models \psi$.

• Uma fórmula ϕ é insatisfatível se e somente se para toda interpretação \mathcal{I} , $\mathcal{I} \not\models \phi$.

ullet Verifique se orall xorall y(Q(x,y)
ightarrow Q(y,x)) é satisfatível

• Verifique se $\exists x (P(x) \land \neg P(x))$ é satisfatível.

Tópicos

- Introdução
- 2 Satisfatibilidade
- Validade
- 4 Consequência Lógica
- Equivalência Lógica

Validade

Definição

Seja ψ uma fórmula na Lógica de Primeira Ordem.

 ψ é válida se e somente se para toda interpretação \mathcal{I} , $\mathcal{I} \models \psi$.

Validade

Definição

Seja ψ uma fórmula na Lógica de Primeira Ordem. ψ é válida se e somente se para toda interpretação \mathcal{I} , $\mathcal{I} \models \psi$.

• Quando uma fórmula ϕ é válida, usamos a notação $\models \phi$

Validade

Definição

Seja ψ uma fórmula na Lógica de Primeira Ordem. ψ é válida se e somente se para toda interpretação \mathcal{I} , $\mathcal{I} \models \psi$.

- Quando uma fórmula ϕ é válida, usamos a notação $\models \phi$
- Uma fórmula ϕ não é válida se e somente se existe uma interpretação $\mathcal I$ tal que $\mathcal I\not\models\phi$

• Verifique se $\forall x (P(x) \lor \neg P(x))$ é válida

ullet Verifique se orall xorall y(Q(x,y)
ightarrow Q(y,x)) é válida

Teorema

Teorema

Seja ϕ uma fórmula da Lógica de Primeira Ordem.

 ϕ é satisfatível se e somente se $\neg \phi$ não é válida.

Teorema

Teorema

Seja ϕ uma fórmula da Lógica de Primeira Ordem.

 ϕ é satisfatível se e somente se $\neg \phi$ não é válida.

Prova

- \Rightarrow Suponha que ϕ é satisfatível. Então existe uma interpretação ${\mathcal I}$ tal que
- $\mathcal{I} \models \mathit{phi}$. Logo, $\mathcal{I} \not\models \neg \phi$. Dessa forma, $\neg \phi$ não é válida.
- \Leftarrow Suponha que $\neg \phi$ não é válida. Logo, existe interpretação $\mathcal I$ tal que
- $\mathcal{I} \not\models \neg \phi$. Logo, $\mathcal{I} \models \phi$. Dessa forma, ϕ é satisfatível.

• Verifique se $\neg \forall x P(x, y)$ é válida

Tópicos

- Introdução
- 2 Satisfatibilidade
- Walidade
- 4 Consequência Lógica
- Equivalência Lógica

Seja as seguintes premissas:

- Todo cientista da computação é inteligente.
- Nenhum político é inteligente

Será que podemos concluir a afirmação abaixo?

• Nenhum político é cientista da computação

•
$$\forall x (C(x) \rightarrow I(x)), \neg \exists x (P(x) \land I(x)) \models \neg \exists x (P(x) \land C(x))$$

Definição

Seja Γ um conjunto de fórmulas na Lógica de Primeira Ordem e ψ uma fórmula na Lógica de Primeira Ordem.

 $\Gamma \models \psi$ se e somente se para toda interpretação \mathcal{I} , se $\mathcal{I} \models \phi$ para todo $\phi \in \Gamma$ então $\mathcal{I} \models \psi$.

Definição

Seja Γ um conjunto de fórmulas na Lógica de Primeira Ordem e ψ uma fórmula na Lógica de Primeira Ordem.

 $\Gamma \models \psi$ se e somente se para toda interpretação \mathcal{I} , se $\mathcal{I} \models \phi$ para todo $\phi \in \Gamma$ então $\mathcal{I} \models \psi$.

• Ou seja, se uma interpretação satisfaz todos os elementos de Γ então ela também deve satisfazer ψ

Definição

Seja Γ um conjunto de fórmulas na Lógica de Primeira Ordem e ψ uma fórmula na Lógica de Primeira Ordem.

 $\Gamma \models \psi$ se e somente se para toda interpretação \mathcal{I} , se $\mathcal{I} \models \phi$ para todo $\phi \in \Gamma$ então $\mathcal{I} \models \psi$.

- Ou seja, se uma interpretação satisfaz todos os elementos de Γ então ela também deve satisfazer ψ
- Em geral, escrevemos $\phi_1,...,\phi_k \models \psi$ no lugar de $\{\phi_1,...,\phi_k\} \models \psi$

• Verifique se $\forall x (P(x) \rightarrow Q(x)) \models \forall x P(x) \rightarrow \forall x Q(x)$

•
$$\forall x P(x) \rightarrow \forall x Q(x) \models \forall x (P(x) \rightarrow Q(x))$$
?

•
$$\exists x (P(x) \lor Q(x)) \models \exists x P(x) \lor \exists x Q(x)$$
?

Teorema

Teorema

Seja Γ um conjunto de fórmulas na Lógica de Primeira Ordem, φ e ψ fórmulas na Lógica de Primeira Ordem.

 $\Gamma \cup \{\varphi\} \models \psi$ se e somente se $\Gamma \models \varphi \rightarrow \psi$.

•
$$\forall x \exists y R(x, y) \models \exists y \forall x R(x, y)$$
?

Teorema

Teorema

Seja α e β fórmulas da Lógica de Primeira Ordem.

 $\alpha \models \beta$ se e somente se $\alpha \land \neg \beta$ não é satisfatível.

Teorema

Teorema

Seja α e β fórmulas da Lógica de Primeira Ordem. $\alpha \models \beta$ se e somente se $\alpha \land \neg \beta$ não é satisfatível.

Prova

 \Rightarrow Suponha que $\alpha \models \beta$. Logo, para toda interpretação \mathcal{I} , se $\mathcal{I} \models \alpha$ então $\mathcal{I} \models \beta$. Suponha que existe uma interpretação \mathcal{I}_1 tal que $\mathcal{I}_1 \models \alpha \land \neg \phi$. Logo, $\mathcal{I}_1 \models \alpha$ e $\mathcal{I}_1 \models \phi$. Se $\mathcal{I}_1 \models \alpha$ então $\mathcal{I}_1 \models \beta$. Absurdo! \Leftarrow Suponha que $\alpha \land \neg \beta$ não é satisfatível. Suponha que $\alpha \not\models \beta$. Logo, existe interpretação \mathcal{I}_1 tal que $\mathcal{I}_1 \models \alpha$ e $\mathcal{I}_1 \not\models \beta$. Ou seja, $\mathcal{I}_1 \models \alpha$ e $\mathcal{I}_1 \models \neg \beta$. Logo, $\alpha \land \neg \beta$ é satisfatível. Absurdo!

• $\exists y \forall x R(x, y) \models \forall x \exists y R(x, y)$?

Tópicos

- Introdução
- 2 Satisfatibilidade
- Walidade
- 4 Consequência Lógica
- Equivalência Lógica

Equivalência Lógica

Definição

Seja φ e ψ fórmulas da Lógica de Primeira Ordem.

 $\varphi \equiv \psi$ quando para toda interpretação \mathcal{I} , $\mathcal{I} \models \varphi$ se e somente se $\mathcal{I} \models \psi$.

• Vamos mostrar que $\neg \forall x P(x) \equiv \exists x \neg P(x)$

•
$$\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists Q(x)$$
?

•
$$\forall x (P(x) \vee \exists x Q(x)) \equiv \forall x P(x) \vee \exists x Q(x)$$
?

Equivalências Importantes

- $\neg \forall x \varphi \equiv \exists x \neg \varphi$
- $\neg \exists x \varphi \equiv \forall x \neg \varphi$
- $\forall x \varphi \equiv \neg \exists x \neg \varphi$
- $\exists x \varphi \equiv \neg \forall x \neg \varphi$
- $\bullet \ \forall x \forall y \varphi \equiv \forall y \forall x \varphi$
- $\exists x \exists y \varphi \equiv \exists y \exists x \varphi$
- $\forall x (\varphi \wedge \psi) \equiv \forall x \varphi \wedge \forall x \psi$
- $\exists x (\varphi \lor \psi) \equiv \exists x \varphi \lor \exists x \psi$
- $\forall x (\varphi \lor \psi) \equiv \forall x \varphi \lor \psi$, se $x \notin free(\psi)$
- $\exists x (\varphi \land \psi) \equiv \exists x \varphi \land \psi$, se $x \notin free(\psi)$