Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE210

A.A. 2010-2011 - Docente: Prof. A. Verra Tutori: Simona Dimase e Annamaria Iezzi

> Tutorato 5 (19 Novembre 2010) Affinità e teorema spettrale

- 1. Sia f un'affinità di \mathbb{A} . Verificare che se f fissa due punti $P \in Q \in \mathbb{A}$ allora f fissa tutti i punti della retta r passante per $P \in Q$.
- 2. Sia $\mathbb{A} = \mathbb{A}^2(\mathbb{R})$ un piano affine con riferimento Oe_1e_2 .
 - (a) Determinare l'equazione di ogni affinità (f, φ) di \mathbb{A} che fissi i punti della retta r di equazione 3x = y + 1.
 - (b) Tra le affinità considerate in (a) si determinino quelle (eventuali) tali che $\varphi(e_1) = e_1 + e_2$.
 - (c) Tra le affinità considerate in (a) si determinino le eventuali traslazioni.
- 3. Sia fissato un riferimento cartesiano Oe_1e_2 di \mathbb{E}^2 . Siano ρ la riflessione di asse la retta r: x-2y=1 e σ la rotazione di centro $P_0=(1,2)$ e angolo $\vartheta=\frac{\pi}{2}$.
 - (a) Scrivere le equazioni di ρ e σ .
 - (b) Determinare le equazioni delle isometrie f e g tali che $f \circ \rho = \sigma$ e $\rho = g \circ \sigma$ e indicare di che tipo di isometrie si tratta.
- 4. Sia $\mathbb{A} = \mathbb{A}^3(\mathbb{R})$ uno spazio affine con riferimento $Oe_1e_2e_3$. Mostrare che una trasformazione affine di \mathbb{A} "manda rette in rette".
- 5. (Simmetria rispetto a un punto)

Sia $\mathbb A$ uno spazio affine su uno spazio vettoriale V (dimV=n). Fissiamo in $\mathbb A$ un punto C.

Determinare le equazioni dell'affinità $f: \mathbb{A} \to \mathbb{A}$ che associa ad ogni punto $P \in \mathbb{A}$ il punto simmetrico di P rispetto a C, cioè il punto f(P) che soddisfa l'identità vettoriale:

$$\overrightarrow{Cf(P)} = -\overrightarrow{CP}$$

- 6. Classificare le isometrie di una retta euclidea.
- 7. Siano $f=R_{0,\alpha}$ e $g=R_{0,\beta}$ le rotazioni di \mathbb{E}^2 di centro O=(0,0) ed angolo rispettivamente α e β .

Dimostrare che $f \circ g$ è una rotazione di centro O e angolo $\alpha + \beta$.

- 8. Siano r e s due rette incidenti di $A=\mathbb{A}^2(\mathbb{R})$ e siano ρ_r e ρ_s le riflessioni di assi rispettivamente la retta r e la retta s.
 - (a) Mostrare che la composizione $\rho_r \circ \rho_s$ è una rotazione di centro $P_0 = s \cap r$.
 - (b) Che relazione c'è tra $\rho_s \circ \rho_r$ e $\rho_r \circ \rho_s$?
 - (c) Se r è parallela ad s che tipo di affinità è $\rho_r \circ \rho_s$?

- 9. Sia T l'endomorfismo di \mathbb{R}^2 definito, rispetto a una base \mathbb{E} di \mathbb{R}^2 , della matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$. Verificare se esiste un prodotto scalare su \mathbb{R}^2 rispetto a cui:
 - (a) T è autoaggiunto.
 - (b) T è unitario.
- 10. Sia V un \mathbb{R} -spazio vettoriale euclideo e sia $T:V\to V$ un operatore autoaggiunto.
 - (a) Mostrare che $T^n = \underbrace{T \circ T \circ \cdots \circ T}_{n \text{ volte}}$ è autoaggiunto $\forall n \in \mathbb{N}.$
 - (b) Mostrare che se esistono $n \in \mathbb{N}$ e $\overrightarrow{v} \in V$ tali che $T^n(\overrightarrow{v}) = 0$ allora $\overrightarrow{v} \in \text{Ker}T$.
- 11. Sia $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ l'operatore lineare così definito:

$$\varphi(\overrightarrow{i}) = 2\overrightarrow{i} - \overrightarrow{j}, \qquad \varphi(\overrightarrow{j}) = -\overrightarrow{i} + 2\overrightarrow{j}, \qquad \varphi(\overrightarrow{k}) = 2\overrightarrow{k} - \overrightarrow{l}, \qquad \varphi(\overrightarrow{l}) = -\overrightarrow{k} + 2\overrightarrow{l},$$

dove $\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k},\overrightarrow{l}\}$ è una base ortonormale rispetto al prodotto scalare standard. Verificare che φ è un operatore simmetrico e determinare una base ortonormale di autovettori di φ .