Notes et infos

29 avril 2019

1 Ce qui coule de source

1.1 Hypothèses

- L'extraction, la consommation et la circulation de l'eau s'effectue à débit constant.
- Le débit d'eau extrait aux sources est suffisant pour alimenter toutes les conduites.

1.2 Données

Le débit d'eau qui s'écoule dans une conduite est donné par l'expression

$$\alpha \theta_c \frac{R_c^2 \Delta h_c}{L_c}.$$

En plus des données fournies, on aura L_c la longueur de la conduite et Θ_c , un paramètre ajustable entre 0 et 1 représentant une valve.

Données fournies :

- Coordonnées en (x, y, z) des points d'approvisionnement et de consommation $(z \text{ vaut } \Delta h_c \text{ dans l'équation}).$
- Matrice d'incidence des conduites. Il semble que les points intermédiaires aient une somme de 0, les points d'approvisionnement aient une somme de -1 et les points de consommation aient une somme de 1.
- Rayon des conduites (R_c dans l'équation).
- Constante de proportionnalité (α dans l'équation).
- Débits maximaux extractibles aux points d'approvisionnement (notons le $D_{\ell}(c, max)$).
- Le coût des débits d'extraction.
- Les valeurs minimales et maximales du débit en chaque point de consommation.
- Le prix facturé aux différents points de consommation.

2 Réponses

- 1. L'expression A^Th représente les dénivelés entre les conduites. L'expression Af représente elle le débit total aux noeuds. Notons que Af a comme contrainte d'être plus petit ou égal à D(c, max).
- 2.