مدارهای منطقی - دکتر مهدیانی

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۱

سوال ۱

واضح است که قسمت صحیح برابر $\left(0
ight)_{2}$ است. برای قسمت اعشاری داریم:

- $0.8542 \times 2 = 1.7084$ (1)
- $0.7084 \times 2 = 1.4168$ (1)
- $0.4168 \times 2 = 0.8336$ (0)
- $0.8336 \times 2 = 1.6672$ (1)
- $0.6672 \times 2 = 1.3344$ (1)

پس قسمت اعشاری با ۵ رقم اعشار برابر با $\left(0.11011\right)_{2}$ است. بنابراین جواب نهایی برابر با $\left(0.11011\right)_{2}$ است. است.

سوال a - ۲)

$$(65.47)_{16} = 6 \times 16^1 + 5 \times 16^0 + 4 \times 16^{-1} + 7 \times 16^{-2} = 101.27734375$$
 = 101.28 (تا دو رقم اعشار)

سوال b - ۲)

کافیست هر رقم را جداگانه به مبنای ۲ ببریم:

$$(65.47)_{16} = (01100101.01000111)_2$$

سوال ۳

برای تبدیل به BCD، هر رقم را جداگانه در ۴بیت نمایش میدهیم:

- a) 38 = 00111000 (BCD)
- b) 1952 = 0001100101010010

برای تبدیل به Gray، از جدول زیر استفاده میکنیم:

Gray	Decimal	Gray	Decimal
0000	0	1111	10
0001	1	1110	11
0011	2	1010	12
0010	3	1011	13
0110	4	1001	14
0111	5	1000	15
0101	6		
0100	7		
1100	8		
1101	9		

بنابراین:

$$3 = 0010$$
, $8 = 1100$, $1 = 0001$, $9 = 1101$, $5 = 0111$, $2 = 0011$ (Gray)

همچنین برای Gray excess-3، نمایش Gray هر عدد را ۳ واحد جلو می بریم: 3 = 0101, 8 = 1110, 1 = 0110, 9 = 1010, 5 = 1100, 2 = 0111 (Gray excess-3)