HW11

106022113

5/4/2021

Question 1: Answer Questions by simulating the four scenarios below

a. What regression is doing to compute model fit

```
pts <- data.frame(x = c(-3.719323, 3.516220, 10.942172, 4.277856, 11.894217, 20.272214, 7.705219, 19.510578, 10.942172, 27.317348, 21.414669, 18.558533, 30.935120, 29.031030, 18.368124, 39.884344, 26.365303, 36.837800), y = <math>c(1.905846, -3.646499, -2.636982, 12.001020, 8.467709, 2.410605, 22.600952, 13.262916, 30.424711, 21.086676, 30.172332, 39.257988, 32.948504, 39.257988, 46.576988, 41.024643, 49.857920, 47.838885)) regr <- lm(y ~ x, data=pts) summary(regr)
```

```
##
## lm(formula = y \sim x, data = pts)
##
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
##
  -23.460 -10.867 2.341
                            8.669 22.735
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 4.270
                            5.969
                                    0.715 0.48462
## x
                 1.065
                            0.273
                                    3.903 0.00126 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.39 on 16 degrees of freedom
## Multiple R-squared: 0.4878, Adjusted R-squared: 0.4558
## F-statistic: 15.24 on 1 and 16 DF, p-value: 0.001264
```

```
y_hat <- regr$fitted.values
plot(pts,main = "Regression Fitted Line",pch = 19)
abline(regr, col = 'blue')
segments(pts$x, pts$y, pts$x, y_hat, col="red", lty="dotted")</pre>
```

Regression Fitted Line


```
regression_fit <- function(pts){
  regr <- lm(y~x, data = pts)
  y_hat <- regr$fitted.values
  SSE <- sum((pts$y-y_hat)^2)
  SSR <- sum((mean(pts$y)-y_hat)^2)
  SST <- sum((pts$y-mean(pts$y))^2)
  Rsq <- SSR/SST
  return(data.frame(SSE = SSE, SSR = SSR, SST= SST, Rsq = Rsq))
}
regression_fit(pts)</pre>
```

```
## SSE SSR SST Rsq
## 1 2868.667 2731.911 5600.578 0.4877909
```

b. Compare Scenario 1, 2 which to expect to have stronger R square

ANSWER: Since scenario 1 is obviously more closer to a fitted line because it's more dense, which also indicates it obtains a more stronger linear characteristic. Hence, we should expect Scenario 1 obtain higher R sqaure than Scenario 2

c. Compare Scenario 3, 4 for larger R sqaure

ANSWER: Since scenario 3 is more denser and obtain more linear characteristic, it will have higher r square compared to the more widespread distribution of scenario 4.

d. Comparing scenarios 1 and 2, which do we expect has bigger/smaller SSE, SSR, and SST?

ANSWER: SST and SSE of scenario 1 will be smaller than scenario 2, while SSR(depends on slope) for scenario 2 will be smaller than scenario 1. Because scenario 1 has a better fit than scenario 2.

e. Comparing scenarios 3 and 4, which do we expect has bigger/smaller SSE, SSR, and SST?

ANSWER: SST and SSE of scenario 3 will be smaller than scenario 4, while SSR(depends on slope) for scenario 4 will be smaller than scenario 3. Because scenario 3 has a better fit than scenario 2.

Question 2.

a. Explore Data

i. Visualize

```
library(ggplot2)
ggplot(auto, aes(x=horsepower, y=mpg)) + geom_point()
```

```
## Warning: Removed 6 rows containing missing values (geom_point).
```


This is a plot indicating that with bigger horsepower, the cars cannot achieve good fuel efficiency. Hence, there is a negative correlation here between horsepower and mpg.

ii. Correlation table

```
cor_table <- cor(auto[,1:8], use = "pairwise.complete.obs")
cor_table</pre>
```

```
##
                      mpg cylinders displacement horsepower
                                                                weight
## mpg
                1.0000000 - 0.7753963
                                       -0.8042028 -0.7784268 -0.8317409
## cylinders
               -0.7753963 1.0000000
                                        0.9507214 0.8429834 0.8960168
## displacement -0.8042028 0.9507214
                                        1.0000000 0.8972570 0.9328241
                                        0.8972570 1.0000000 0.8645377
## horsepower
               -0.7784268 0.8429834
## weight
               -0.8317409 0.8960168
                                        0.9328241 0.8645377 1.0000000
## acceleration 0.4202889 -0.5054195
                                       -0.5436841 -0.6891955 -0.4174573
## model year
               0.5792671 -0.3487458
                                       -0.3701642 -0.4163615 -0.3065643
## origin
               0.5634504 -0.5625433
                                       -0.6094094 - 0.4551715 - 0.5810239
##
               acceleration model year
                                           origin
                  0.4202889 0.5792671 0.5634504
## mpg
                 -0.5054195 -0.3487458 -0.5625433
## cylinders
## displacement -0.5436841 -0.3701642 -0.6094094
                 -0.6891955 -0.4163615 -0.4551715
## horsepower
## weight
                 -0.4174573 -0.3065643 -0.5810239
## acceleration
                 1.0000000 0.2881370 0.2058730
## model year
                  0.2881370 1.0000000 0.1806622
## origin
                  0.2058730 0.1806622 1.0000000
```

iii. Which variables seems to related to mpg

ANSWER: According to the table above, seems like *cylinders, displacement, horsepower,weight,model_year* are negetively correlated to mpg. The other factors doesn't have a very strong positive correlation to mpg.

iv. Which relations might not be linear?

ggpairs(auto[1:8])

```
library(GGally)

## Registered S3 method overwritten by 'GGally':
    ## method from
    ## +.gg ggplot2
```


From the plot above, relationships between *model_year*, *origin*, *cylinders* doesn't seem to show linear characteristics.

v. Are there any pairs of independent variables that are highly correlated

```
library(reshape2)
diag(cor_table) <- 0
cor_melt <- melt(cor_table)
new_cor <- cor_melt[abs(cor_melt$value)>0.7,]
new_cor[!duplicated(new_cor[1:2]),]
```

```
##
               Var1
                             Var2
                                         value
## 2
          cylinders
                              mpg = 0.7753963
##
      displacement
                              mpg - 0.8042028
   3
##
   4
        horsepower
                              mpg - 0.7784268
##
   5
             weight
                              mpg - 0.8317409
##
   9
                        cylinders -0.7753963
                mpg
##
   11
      displacement
                        cylinders
                                    0.9507214
##
   12
        horsepower
                        cylinders
                                    0.8429834
##
   13
             weight
                        cylinders
                                    0.8960168
   17
                mpg displacement -0.8042028
##
##
   18
         cylinders displacement
                                    0.9507214
   20
        horsepower displacement
                                    0.8972570
##
##
   21
             weight displacement
                                    0.9328241
   25
                       horsepower -0.7784268
##
                mpg
##
   26
          cylinders
                                    0.8429834
                       horsepower
      displacement
##
   27
                       horsepower
                                    0.8972570
   29
             weight
                       horsepower
                                    0.8645377
                           weight -0.8317409
##
   33
                mpq
##
   34
          cylinders
                           weight
                                    0.8960168
##
   35
      displacement
                           weight
                                    0.9328241
## 36
        horsepower
                           weight
                                    0.8645377
```

`### b. Create a linear regression model where mpg is dependent upon all other suitable variables

```
##
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight +
      acceleration + model year + factor(origin), data = auto)
##
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
  -9.0095 -2.0785 -0.0982 1.9856 13.3608
##
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                  -1.795e+01 4.677e+00 -3.839 0.000145 ***
## (Intercept)
                  -4.897e-01 3.212e-01 -1.524 0.128215
## cylinders
## displacement
                   2.398e-02 7.653e-03 3.133 0.001863 **
                  -1.818e-02 1.371e-02 -1.326 0.185488
## horsepower
## weight
                  -6.710e-03 6.551e-04 -10.243 < 2e-16 ***
## acceleration
                  7.910e-02 9.822e-02 0.805 0.421101
                   7.770e-01 5.178e-02 15.005 < 2e-16 ***
## model year
## factor(origin)2 2.630e+00 5.664e-01 4.643 4.72e-06 ***
## factor(origin)3 2.853e+00 5.527e-01 5.162 3.93e-07 ***
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.307 on 383 degrees of freedom
     (6 observations deleted due to missingness)
## Multiple R-squared: 0.8242, Adjusted R-squared: 0.8205
## F-statistic: 224.5 on 8 and 383 DF, p-value: < 2.2e-16
```

i. which factors have significant on mpg at 1% significance?

ANSWER: By the summary upon, the *intercept, displacement, weight, model_year, and origin have significant on mpg at 1% significance.

ii. Is it possible to determine which independent variables are most effective at increasing mpg?

ANSWER: Not possible, since the variables aren't standardized, the scales for the factors are different. Hence we can not merely observe the coefficients and give out answers for this question.

###. c. Create standardized regression results

```
sd_data <- cbind(scale(auto[1:7]),auto$origin)
colnames(sd_data) <- colnames(auto[1:8])
sd_df <- as.data.frame(sd_data)
new_regr <- lm(mpg~ cylinders+displacement+horsepower+weight+acceleration+model_year+factor(origin),data = sd_df)
summary(new_regr)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight +
##
      acceleration + model year + factor(origin), data = sd df)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                        Max
## -1.15270 -0.26593 -0.01257 0.25404 1.70942
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                ## (Intercept)
## cylinders
                 -0.10658
                            0.06991 - 1.524 0.12821
                 0.31989 0.10210 3.133 0.00186 **
## displacement
                 -0.08955 0.06751 -1.326 0.18549
## horsepower
## weight
                -0.72705 0.07098 -10.243 < 2e-16 ***
                 0.02791
                           0.03465 0.805 0.42110
## acceleration
## model year
                 0.36760 0.02450 15.005 < 2e-16 ***
## factor(origin)2 0.33649
                            0.07247 4.643 4.72e-06 ***
                            0.07072 5.162 3.93e-07 ***
## factor(origin)3 0.36505
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.423 on 383 degrees of freedom
    (6 observations deleted due to missingness)
## Multiple R-squared: 0.8242, Adjusted R-squared: 0.8205
## F-statistic: 224.5 on 8 and 383 DF, p-value: < 2.2e-16
```

i. Are these figures easier to interpret?

Yes, it will be easier to interpret since we can see that weight is most effective at increasing mpg. Which is quite reasonable.

ii. Regress mpg over each nonsignificant independent variable. Which one will become significant over mpg?

```
fit1 <- lm(mpg~cylinders,data = sd_df)
fit2 <- lm(mpg~displacement,data = sd_df)
fit3 <- lm(mpg~horsepower,data = sd_df)
fit4 <- lm(mpg~weight,data = sd_df)
fit5 <- lm(mpg~acceleration,data = sd_df)
fit6 <- lm(mpg~model_year,data = sd_df)
fit7 <- lm(mpg~origin,data = sd_df)
signifi<- function(fit){
    return (signif(summary(fit)$coef[2,4],2))
}
paste('cylinders:',signifi(fit1))</pre>
```

```
## [1] "cylinders: 4.5e-81"

paste('displacement:', signifi(fit2))
```

```
## [1] "displacement: 1.7e-91"

paste('horsepower:',signifi(fit3))
```

```
## [1] "horsepower: 7e-81"

paste('weight:',signifi(fit4))

## [1] "weight: 3e-103"

paste('accerleration:',signifi(fit5))

## [1] "accerleration: 1.8e-18"

paste('mdoel_year:',signifi(fit6))

## [1] "mdoel_year: 4.8e-37"

paste('origin:',signifi(fit7))

## [1] "origin: le-34"
```

ANSWER: After fitted with every independent variable, they are all significant since the p-values are very low.

iii. Plot the density of the residuals, are they normally distributed and centered around zero?

```
library(ggplot2)
regr_plt <- fortify(new_regr)
ggplot(new_regr,aes(.resid))+ geom_density()</pre>
```


It's near a normal distribution with mean near 0. Can be verified by QQ plot.