Arquitetura e Organização de Computadores

Processador MK-IV

Hendrick Vitor Jordao

Conjunto de Instruções

TIPO R

Este formato aborda instruções baseadas em operações aritméticas Como add e sub, que utilizam 2 registradores

4 Bits	2 Bits	2 Bits
Opcode	Reg1	Reg 2

TIPO I

Este formato aborda instruções que utilizam o um valor gerado no próprio código (imediato). load e store por exemplo.

4 Bits 2 Bits 2 Bits
Opcode Reg1 Imediat
o

DATAPATH

O programa descrito representa o cálculo da seguência de Fibonacci. Os 4 registradores foram utilizados nesse programa, sendo que S0 foi utilizado para acessar os valores da RAM, S1 como auxiliar da soma, \$2 como contador e, finalmente, S3 para o número Fibonacci objetivado. Enquanto o programa avança, são armazenados na memória RAM o último número da sequência e seu anterior.

			Binário		
				Reg2	
Endereço	Instrução	Alto Nível	Opcod	Imedia	Reg1
			е	to	
				Endereço	
0	01111111	li S3, 3	0111	11	11
1	01001111	addi S3, 3	0100	11	11
2	00101111	add S3, S3	0010	11	11
3	01001100	addi S3, 0	0100	11	00
4	01001101	addi S3, 1	0100	11	01
5	01111001	li S2, 1	0111	10	01
6	01110000	li S0, 0	0111	00	00
7	00010000	sw S0, ram(00)	0001	00	00
8	01110001	li S0, 1	0111	00	01
9	00010001	sw S0, ram(01)	0001	00	01
10	00000000	lw S0, ram(00)	0000	00	00
11	01100100	move S1, S0	0110	01	00
12	00000001	lw S0, ram(01)	0000	00	01
13	00100100	add S1, S0	0010	01	00
14	00010000	sw S0, ram(00)	0001	00	00
15	00010101	sw s1, ram(01)	0001	01	01
16	01001001	addi s2, 1	0100	10	01
17	10101011	cmp S2, S3	1010	10	11
18	10011010	bne 1010	1001	10	10
19	01110000	li S0, 0	0111	00	00
20	01110100	li S1, 0	0111	01	00
21	01111000	li S2, 0	0111	10	00
22	01111100	li S3, 0	0111	11	00
					10-5

WAVEFORMS

