PTFE/CHEM/MSE/CHBE 6752/4141 Polymer Characterization Fall 2015

Week	Date	Topic	Comment
1	8/18	Intro & Data Analysis	
	8/19	Survival Skills	
	8/20	[η] isn't η	Last day to drop w/o "W"
2	8/25	Dimensions, Mass Fractals	
	8/26	SLS data gathering exercise	
	8/27	Excluded Volume	
3	9/1	Self-Avoiding Walk, Persistence Lengths	
	9/2	DIY SAW Program	
	9/3	3 Non-idealities	
4	9/8	Van't Hoff Law	
	9/9	NaPSS tube osmometer	
	9/10	Beginning GPC	
5	9/15	Alphabet Soup: GPC/MALS, AF4/MALS	
	9/16	DIY GPC	
	9/17	DLS	
6	9/22	PT, DFM, Microviscosity	
	9/23	DLS data gathering exercise	
	9/24	Inverse Space (Scattering Basics) SALS to SANS	
7	9/29	SALS	
	9/30	Rheometry – Fundamentals & rotational rheometry	
	10/1	Rheometry – Capillary & extensional rheometry	
8	10/6	Review	
	10/7	Part 1 Exam	
	10/8	Analysis of Exam	
9	10/13	Fall Recess: End Module 1; Begin Module 2	
	10/14	Introduction in Part 2 and lab overview	
	10/15	Property predictions	
10	10/20	Mechanical properties – Fundamentals & sample prep,	
		static testing & impact, fatigue, friction	
	10/21	Mechanical properties homework	
	10/22	Mechanical properties – viscoelastic behavior	Last Day to Withdraw, 10/25
11	10/27	UV, IR and Raman spectroscopies and microscopies	
	10/28	Spectroscopy demo and data collection	
	10/29	UV, IR and Raman spectroscopies and microscopies	
12	11/3	Thermal Analysis: DSC, TGA, TMA, DMA, and SThM	
	11/4	Thermal analysis homework	
	11/5	Thermal Analysis: DSC, TGA, TMA, DMA, and SThM	
13	11/10	Scanning Probe Microscopy (SPM): general principles	
	11/11	SPM homework	
	11/12	SPM: main modes and critical results	
14	11/17	SPM imaging modes: STM, AFM, FFM, NSOM	
	11/18	SPM demo and data collection	
	11/19	SPM probing modes: SFS, CFS, CFM, EFM and others	
15	11/24	Electron microscopies: TEM, STEM, SEM, ESEM, EDS	
	11/25		Official Class Break
	11/26		Thanksgiving holiday
16	12/1	Electron microscopies: TEM, STEM, SEM, ESEM, EDS	
	12/2	SEM demo and data collection	
	12/3	Surface-sensitive methods: XPS, ellipsometry, contact	
17		angle, Part 2 review	
17		Thursday 12/10, 8-11 Part 2 Exam	

PTFE/CHEM/MSE/CHBE 6752/4141 Polymer Characterization Fall 2015

Syllabus

Professors: Prof. Vladimir Tsukruk **Office:** MoSE 4100K

Prof. Paul Russo Office: MRDC Rm 3508

<u>paul.russo@mse.gatech.edu</u> **Office Hours:** Wednesdays ~5 pm or by appointment

Description:

This course is an advanced sequence of topics dealing with polymer characterization, and in particular practical aspects of data collection and analysis. Topics to be covered include property predictions, as well as techniques for bulk and molecular characterization of polymer properties.

Class Time: Lectures T/Th 09:30-11:00 hrs Instructional Center 217

Labs W 15:00-18:00 hrs Bunger Henry 357 and/or Love 299

Electronic Delivery: Tsquare

Optional Russo Notes (Lecture Notes/Thoughts/Musings)

https://onedrive.live.com/redir?page=view&resid=E3F40C58146332A!2962&authkey=!APSecegP7PfH5R8

Textbook: There is no standard text book (yet) which covers all the topics in this course. Therefore, notes will be

provided as well as suggested bibliography as appropriate for the various topics.

Grading: 20% quizzes, 30% Labs & Assignments, 25% Part 1 Exam, 25% Part 2 Exam

Course Expectations:

- Short quizzes will be given in class. These will be generally closed book unless otherwise indicated.
- Midterm and final exams will be closed book, relevant equations will be supplied. Any changes will be indicated.
- In some cases physical labs cannot be accommodated due to limitations of equipment availability and class numbers: assignments will be provided instead. All assignments need to be completed in the time stated. Any late submissions (except where proper reasons are given) will be marked but score 0.

Course Outcomes:

At the end of the course you will be able to:

- 1. Make predictions about critical polymer properties, often without calculator or internet access.
- 2. Identify which properties are to be analyzed to evaluate the polymer.
- 3. Determine which techniques are) most appropriate to determine the property of interest.
- 4. Understand how to prepare the sample and collect the data.
- 5. Understand the fundamental basis of the measurement technique.
- 6. Analyze the experimental data and determine/calculate the relevant properties.