Билет 20. Бинарная куча

Основная идея: Эффективная структура данных для очереди с приоритетом. Все операции за O(log n), а построение за O(n)!

АТД Очередь с приоритетом

Абстрактный тип данных - интерфейс, набор операций над объектом. **Очередь с приоритетом** поддерживает:

- Insert вставить элемент
- ExtractMax извлечь максимум

Бинарная куча (пирамида)

Определение: Подвешенное бинарное дерево со свойствами:

- Свойство кучи: Значение в вершине значений в потомках
- Полнота: Все ярусы, кроме последнего, полностью заполнены
- Упорядоченность: Последний слой заполнен слева направо

Хранение в массиве

Используем 0-индексацию:

- Левый ребенок: 2i + 1
- Правый ребенок: 2i + 2
- Родитель: |(i-1)/2|
- **Листья:** индексы от $\lceil n/2 \rceil$ до n-1

Основные операции

SiftUp (просеивание вверх)

```
while (i > 0 and arr[i] > arr[parent(i)]):
    swap(arr[i], arr[parent(i)])
    i = parent(i)
```

SiftDown (просеивание вниз)

Вставка - $O(\log n)$

- 1. Добавляем элемент в конец массива
- 2. Выполняем **SiftUp**

Извлечение максимума - O(log n)

- 1. Запоминаем корень (максимум)
- 2. Ставим последний элемент в корень
- 3. Выполняем **SiftDown**

Изменение ключа - O(log n)

- 1. Меняем значение элемента
- 2. Если увеличили **SiftUp**
- 3. Если уменьшили **SiftDown**

Алгоритм построения кучи за O(n)

Шаги алгоритма:

- 1. Начинаем с конца: Берём первый нелистовой элемент
- 2. Идём справа налево: От индекса $\lfloor n/2 \rfloor 1$ до 0
- 3. Для каждого: Выполняем SiftDown
- 4. Результат: Весь массив становится корректной кучей

Графическая визуализация процесса

Исходный массив: [3, 1, 4, 1, 5, 9, 2, 6]

Обозначения:

- - листья (уже корректные кучи)
- - следующий элемент для обработки
- - текущий обрабатываемый элемент

Шаг 1: Обрабатываем индекс 3 (значение 1)

 ${f SiftDown(1):}\ 1< 6
ightarrow$ меняем местами

Шаг 2: Обрабатываем индекс 2 (значение 4)

 ${f SiftDown(4):}\ 4<9
ightarrow$ меняем местами

Шаг 3: Обрабатываем индекс 1 (значение 1)

SiftDown(1): $1 < \max(6,5) \to \text{меняем с } 6$

Шаг 4: Обрабатываем индекс 0 (значение 3)

SiftDown(3): $3 < \max(6,9) \rightarrow$ меняем с 9

SiftDown(3): $3 < \max(4,2) \to$ меняем с 4

Финальная куча:

Массив: [9, 6, 4, 1, 5, 3, 2, 1]