Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 11

Tutoriumsaufgabe 11.1

Das Makespan-Scheduling Problem ist das folgende Optimierungsproblem:

Makespan-Scheduling

Eingabe: m Maschinen, n Jobs mit Laufzeiten p_1, \ldots, p_n .

zulässige Lösungen: Jede Zuteilung $s \colon \{1, \dots, n\} \to \{1, \dots, m\}$ der Jobs auf die Maschinen.

Zielfunktion: Minimiere den Makespan, d.h. minimiere $\max_{1 \le i \le m} \sum_{j: s(j) = i} p_j$.

- (a) Definieren Sie die Entscheidungsvariante des Makespan-Scheduling Problems.
- (b) Beschreiben Sie eine polynomielle Reduktion von Subset-Sum auf die Entscheidungsvariante von Makespan-Scheduling und beweisen Sie ihre Korrektheit.

Tutoriumsaufgabe 11.2

Wir betrachten den folgenden Spezialfall von VertexCover.

EVENDEGREEVERTEXCOVER

Eingabe: Ein Graph G = (V, E), sodass jeder Knoten in G geraden Grad hat, und eine Zahl $k \in \mathbb{N}$.

Ausgabe: Ja genau dann, wenn es eine Knotenmenge $C \subseteq V$ mit $|C| \leq k$ gibt, so dass jede Kante durch C abgedeckt wird.

Zeigen Sie, dass das EvenDegreeVertexCover-Problem NP-vollständig ist.

Hausaufgabe 11.1 (5 Punkte)

PARTITION-INTO-THREE-SETS ist das folgende Entscheidungsproblem:

PARTITION-INTO-THREE-SETS

Eingabe: Zahlen $a_1, \ldots, a_n \in \mathbb{N}$.

Ausgabe: Ja genau dann, wenn es paarweise disjunkte Mengen $I, J, K \subseteq \{1, ..., n\}$ mit $I \cup J \cup K = \{1, ..., n\}$ gibt, so dass

$$\sum_{i \in I} a_i = \sum_{j \in J} a_j = \sum_{k \in K} a_k .$$

Zeigen Sie, dass Partition-Into-Three-Sets NP-vollständig ist.

Hausaufgabe 11.2 (5 Punkte)

Wir betrachten das folgende Entscheidungsproblem.

DOMINATINGSET

Eingabe: Ein Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$.

Ausgabe: Ja genau dann, wenn es eine Knotenmenge $D \subseteq V$ mit $|D| \leq k$ gibt, so dass für jeden Knoten $v \in V \setminus D$ ein Knoten $w \in D$ mit $(v, w) \in E$ existiert.

Zeigen Sie, dass das DOMINATINGSET-Problem NP-schwer ist.

Hinweis: Zeigen Sie, dass 3-SAT \leq_p DOMINATINGSET.

Hausaufgabe 11.3 (5 Punkte)

Wir betrachten das folgende Entscheidungsproblem.

HAMILTON PATH

Eingabe: Ein Graph G = (V, E) und zwei Knoten s, t.

Ausgabe: Ja, gdw. es einen Pfad und s nach t gibt, der jeden Knoten in V genau einmal besucht.

Zeigen Sie folgende Aussage: Wenn HAMILTONPATH in P liegt, dann liegt auch HC in P (und damit P = NP).

(Man kann auch zeigen, dass HAMILTONPATH NP-vollständig ist. Dies ist allerdings schwieriger. Wie kann das sein?)