

CS817x20/CS817x22 Low-Power Dual-Channel Digital Isolators

1. Features

- Ultra Low Power
- 90μA per channel at DC with 3.3V operation
- 100μA per channel at 10kbps with 3.3V operation
- 160μA per channel at 200kbps with 3.3V operation
- Data Rate is up to 200kbps
- 2.375V to 5.5V Wide Operating Supply Voltage
- Robust Galvanic Isolation of Digital Signals
 - High lifetime: >40 years
 - Up to 3kV_{RMS} isolation rating
 - ±150 kV/μs typical CMTI
 - Schmitt trigger inputs for high noise immunity
 - High electromagnetic immunity
- No Start-up Initialization Required
- Wide operating temperature range: -40°C to 105°C
- Default Output High (CS817x2xHS) and Low (CS817x2xLS) Options
- RoHS-Compliant Package:
 - SOIC8(S) narrow body

2. Applications

- Li+ Battery Protection
- Home Appliances
- Industrial automation systems
- Motor control
- Medical electronics
- Isolated switch mode supplies
- Power inverters

3. General Description

The CS817x20/CS817x22 family of ultra-low-power digital isolators used Chipanalog's "Pulse-Coding" capacitive isolation technology, offering as low as 90μ A per channel low quiescent current. These isolated CMOS compatible digital I/Os feature up to $3kV_{RMS}$ isolation rating and ± 150 kV/ μ s typical CMTI, provide high electromagnetic immunity and low EMI. All device versions have Schmitt

trigger inputs for high noise immunity and each isolation channel has a logic input and output buffer separated by capacitive silicon dioxide (SiO₂) insulation barrier, only require two V_{DD} bypass capacitors to build a digital signal isolation solution.

The CS817x20/CS817x22 family of devices offers all possible unidirectional channel configurations to accommodate 2-channel design digital I/O applications. The CS817x20HS and CS817x20LS feature 2 channels transferring digital signals in one direction; The CS817x22HS and CS817x22LS devices have one forward and one reverse-direction channel. All devices of this family feature default outputs. When the input is either not powered or is open-circuit, the default output is low for devices with suffix LS and high for devices with suffix HS, see the *Ordering Information* for suffixes associated with each option.

This family of digital isolators is based on a simple isolation architecture that provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single channel of the CS817x20 and CS817x22 is shown in the figure below. The CS817x20/CS817x22 family of devices are specified over the -40°C to +105°C operating temperature range and are available in 8-pin SOIC narrow body package.

Device information

Part number	Package	Package size (NOM)
CS817x20HS		
CS817x20LS	COICO NID/C)	4.90 mm × 3.90 mm
CS817x22HS	SOIC8-NB(S)	4.90 mm × 3.90 mm
CS817x22LS		

Simplified Channel Structure

GND1 and GND2 are the isolated grounds for "1" side and "2" side respectively.

4. Ordering Information

Table. 4-1 Ordering Information

Part Number	Number of Inputs "1" Side	Number of Inputs "2" Side	Default Output	Isolation Rating (kV _{RMS})	Output Enable	Package
CS817x20LS	2	0	Low	3	N/A	SOIC8-NB
CS817x20HS	2	0	High	3	N/A	SOIC8-NB
CS817x22LS	1	1	Low	3	N/A	SOIC8-NB
CS817x22HS	1	1	High	3	N/A	SOIC8-NB

Table of Contents

1.	Feat	ures	1
2.	Appl	lications	1
3.	Gen	eral Description	1
4.	Orde	ering Information	2
5.	Revi	sion History	3
6.	Pin (Configuration and Description	4
7.		cifications	
	7.1.	Absolute Maximum Ratings ¹	
	7.2.	ESD Ratings	5
	7.3.	Recommended Operating Conditions	5
	7.4.	Thermal Information	5
	7.5.	Power Rating	5
	7.6.	Insulation Specifications	6
	7.7.	Safety-Related Certifications	7
	7.8.	Electrical Characteristics	7

	7.9.	Supply Current Characteristics	8
	7.10.	Timing Characteristics	9
8.	Para	ameter Measurement Information	10
9.	Deta	ailed Description	12
	9.1.	Overview	12
	9.2.	Functional Block Diagram	12
	9.3.	Refresh Rate	13
	9.4.	Device Operation Modes	13
10.		Application and Implementation	13
11.		Typical Waveforms and Curves	15
12.		Package Information	17
13.		Soldering Temperature (reflow) Profile	
14.		Tape and Reel Information	19
15		Important statement	

5. Revision History

Revision Number	Description	Page Changed
Version 1.00	N/A	N/A
Version 1.01	Removed "TTL logic compatible".	15
Version 1.02	Add max limit in the electrical table, as shown in chapter 7.9.	8,9
Version 1.02	Add "11 Typical Waveforms and Curve" chapter.	15
Version 1.03	Updated UL certification and land pattern information	7,17

6. Pin Configuration and Description

Figure 6-1 CS817x20HS/LS, CS817x22HS/LS pin configuration

Table 6-1 CS817x20/CS817x22 pin description

SOIC8 Pin #				
CS817x20LS CS817x20HS	CS817x22LS CS817x22HS	Pin Name	Туре	Description
1	1	VDD1	Power	Power supply for side "1".
2	7	INA	Logic I/O	Digital input A on side "1"/"2", corresponds to logic output A on side "2"/"1".
3	3	INB	Logic I/O	Digital input B on side "1", corresponds to logic output B on side "2".
4	4	GND1	GND	Ground reference for side "1".
5	5	GND2	GND	Ground reference for side "2".
6	6	OUTB	Logic I/O	Digital output B on side "2", OUTB is the logic output for the INB input on side "1".
7	2	OUTA	Logic I/O	Digital output A on side "2"/"1", OUTA is the logic output for the INA input on side "1"/"2".
8	8	VDD2	Power	Power supply for side "2".

7. Specifications

7.1. Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V _{DD1} , V _{DD2}	Power supply voltage ²	-0.5	6.0	V
V _{in}	Voltage at IN _X , OUT _X	-0.5	V _{DDI} +0.5 ³	V
I ₀	Output Current	-20	20	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.
- 3. V_{DDI} = Input-Side Supply V_{DD} , the maximum voltage must not be exceed 6 V.

7.2. ESD Ratings

		Value	Unit
V Floatrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±5000	V
V _{ESD} Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000	V
Notes:			

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V HBM allows safe manufacturing of standard ESD control process.

7.3. Recommended Operating Conditions

	PARAMETER		MIN	TYP	MAX	UNIT
V _{DD1} , V _{DD2}	Supply Voltage on Side "1" and '	'2"	2.375	3.3/5.0	5.5	V
	$V_{DDO}^{1} = 5V$			4		
Іон	High-level Output Current	$V_{DDO} = 3.3V$			2	mA
		$V_{DDO} = 2.5V$			1	
		V _{DDO} = 5V	-4			
I _{OL}	Low-level Output Current	V _{DDO} = 3.3V	-2			mA
		V _{DDO} = 2.5V	-1			
V _{IH}	High-level Input Voltage		0.7xV _{DDI} ¹			V
V _{IL}	Low-level Input Voltage				0.3xV _{DDI}	V
DR	Data Rate		0		200	kbps
T _A	Ambient Temperature		-40	25	125	°C
Note: 1. V _{DDI} = Input-S	side Supply V_{DD} : V_{DDO} = Output Side Supp	lv Vpp	•			•

7.4. Thermal Information

Thermal Metric	CS817x2x HS/LS	UNIT
Thermal Wethic	SOIC8-NB(S)	ONII
R _{BJA} Junction-to-ambient thermal resistance	110.1	°C/W

7.5. Power Rating

	PARAMETER	Test conditions	MIN	TYP	MAX	UNIT
CS817x	k20HS/LS					
P _D	Maximum Power Dissipation	$V_{DD1} = V_{DD2} = 5.5 \text{ V, } C_L = 15 \text{ pF,}$			5	mW
P _{D1}	Maximum Power Dissipation on Side"1"	T _J = 150°C, with 100kHz 50% duty			1	mW
P _{D2}	Maximum Power Dissipation on Side"2"	cycle square wave input.			4	mW
CS817x	k22HS/LS	•				
P _D	Maximum Power Dissipation	$V_{DD1} = V_{DD2} = 5.5 \text{ V, } C_L = 15 \text{ pF,}$			5	mW
P _{D1}	Maximum Power Dissipation on Side"1"	T _J = 150°C, with 100kHz 50% duty			2.5	mW
P _{D2}	Maximum Power Dissipation on Side"2"	cycle square wave input.			2.5	mW

7.6. Insulation Specifications

	Parameters	Test conditions	Value S	UNIT
CLR	External Clearance ¹	Shortest terminal-to-terminal distance through air	>4	mm
CPG	External Creepage ¹	Shortest terminal-to-terminal distance across the package surface	>4	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	>15	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	Material group	Per IEC 60664-1	II	
	,	Rated mains voltage ≤ 300 V _{RMS}	I-IV	
0	vervoltage category per IEC 60664-1	Rated mains voltage ≤ 400 V _{RMS}	I-IV	
	5 5 7.	Rated mains voltage ≤ 600 V _{RMS}	1-111	
DIN V \	/DE V 0884-11:2017-01			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	V _{PK}
		AC voltage; time-dependent dielectric breakdown		
V _{IOWM}	Maximum operating isolation voltage	(TDDB) test	400	V _{RMS}
	, ,	DC voltage	566	V _{DC}
V _{IOTM}		$V_{TEST} = V_{IOTM}$,		
	Mantana a harantan kita laktan walkana	t=60 s (certified);		
	Maximum transient isolation voltage	$V_{TEST} = 1.2 \times V_{IOTM}$	4242	V_{PK}
		t=1 s (100% product test)		
		Test method per IEC 60065, 1.2/50 μs waveform,	1000	.,
V _{IOSM}	Maximum surge isolation voltage ²	$V_{TEST} = 1.6 \times V_{IOSM}$ (production test)	4000	V _{PK}
		Method a, after input/output safety test of the subgroup		
		2/3,	~ F	
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤5	
		$V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10 \text{ s}$		
		Method a, after environmental test of the subgroup 1,		
pd	Apparent charge ³	$V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s;	≤5	рС
		$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 s$		
		Method b, at routine test (100% production test) and		
		preconditioning (type test)	≤5	
		$V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s;	23	
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$		
Cio	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 100kHz$	~0.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	
R _{IO}	Isolation resistance ⁴	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>1011	Ω
		$V_{10} = 500 \text{ V at } T_S = 150 ^{\circ} \text{C}$	>109	
	Pollution degree		2	
UL 157	7			
\/	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification)	3000	\/
V_{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3000	V _{RMS}

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

7.7. Safety-Related Certifications

Shanghai Chipanalog Microelectronics Co., Ltd.

VDE(Pending)	UL	CQC(Pending)
Certified according to DIN VDE V 0884-	Certified according to UL 1577 Component	Certified according to GB 4943.1-2011.
11:2017-01.	Recognition Program.	
	Certification number: E511334-20200117	

7.8. Electrical Characteristics

 $V_{DD1} = V_{DD2} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 105^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See <i>错误!未找到引用源。</i>	V _{DDO} ¹ -0.4	4.7		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See 错误!未找到引用源。		0.3	0.4	V
V _{IT+(IN)}	Rising input switching threshold				0.7xV _{DDI} ¹	V
V _{IT-(IN)}	Falling input switching threshold		0.3xV _{DDI}			V
V _{I(HYS)}	Input Threshold Hysteresis		0.1xV _{DDI}			V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDI} at INx			1	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-1			μΑ
CMTI	Common-mode Transient Immunity	V _i = V _{DDI} ¹ or 0 V, V _{CM} = 1500 V; 错误!未找到引用源。	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 100 \text{kHz}$, $V_{DD} = 5 \text{ V}$		2		pF

Notes:

- V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} . 1.
- Measured from pin to Ground.

$V_{DD1} = V_{DD2} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 105^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See 错误!未找到引用源。	V _{DDO} 1-0.4	3.0		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See 错误!未找到引用源。		0.3	0.4	V
V _{IT+(IN)}	Rising input switching threshold				0.7xV _{DDI}	V
V _{IT-(IN)}	Falling input switching threshold		0.3xV _{DDI}			V
V _{I(HYS)}	Input Threshold Hysteresis		0.1xV _{DDI}			V
I _{IH}	High-Level Input Leakage Current	$V_{IH} = V_{DDI}$ at INx			1	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-1			μΑ
CMTI	Common-mode Transient Immunity	V _i = V _{DDI} ¹ or 0 V, V _{CM} = 1500 V; 错误!未找到引用 源。	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 100 \text{kHz}, V_{DD} = 3.3 \text{V}$		2		pF
Ninton.						

Notes:

- V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} . 1.
- Measured from pin to Ground.

$V_{DD1} = V_{DD2} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 105^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See 错误!未找到引用源。	V _{DDO} ¹ -0.5	2.2		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See 错误!未找到引用源。		0.2	0.4	V
V _{IT+(IN)}	Rising input switching threshold				$0.7xV_{DDI}$	V
V _{IT-(IN)}	Falling input switching threshold		0.3xV _{DDI}			V
V _{I(HYS)}	Input Threshold Hysteresis		0.1xV _{DDI}			V
I _{IH}	High-Level Input Leakage Current	$V_{IH} = V_{DDI}$ at INx			1	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-1			μΑ
CMTI	Common-mode Transient Immunity	V _I = V _{DDI} ¹ or 0 V, V _{CM} = 1500 V; 错误!未找到引用 源。	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 100 \text{kHz}, V_{DD} = 2.5 \text{V}$		2		pF
B1 - 4						

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. Measured from pin to Ground.

7.9. Supply Current Characteristics

 $V_{DD1} = V_{DD2} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 105^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified).

Parameters	Test conditions		Supply Current	MIN	ТҮР	MAX	UNIT
S817x20HS/LS							
		I _{DD1}		30	60		
Supply Current - DC Signal	$V_{IN} = V_{DDI}^{1} (CS817x20HS)$		I_{DD2}		170	340	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x20LS);		I _{DD1}		40	80	
	$V_{IN} = OV(CS817x20HS)$		I _{DD2}		170	340]
	All Channels switching with 50%	10kbps	I_{DD1}		45	90	μΑ
Supply Current – AC Signal	duty cycle square wave and input	(5kHz)	I_{DD2}		180	360	
	with 5.0V amplitude; $C_L = 15$ pF for	200kbps	I_{DD1}		180	360	
	each channel.	(100kHz)	I_{DD2}		300	600	
S817x22HS/LS							
	V _{IN} = 0V (CS817x22LS);		I_{DD1}		100	200	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x22HS)	I_{DD2}		105	210		
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x22LS);	_	I_{DD1}		100	200	
	V _{IN} = 0V(CS817x22HS)		I_{DD2}		105	210	μΑ
	All Channels switching with 50%	10kbps	I _{DD1}		105	210	μΑ
Supply Current – AC Signal	duty cycle square wave and input	(5kHz)	I _{DD2}		110	220	
	with 5.0V amplitude; $C_L = 15$ pF for	200kbps	I _{DD1}		215	430	
each channel.		(100kHz)	I_{DD2}		220	440	

 $V_{DD1} = V_{DD2} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 105^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified).

Parameters	Test conditions		Supply Current	MIN	ТҮР	MAX	UNIT
CS817x20HS/LS			•				•
	V _{IN} = 0V (CS817x20LS);		I _{DD1}		25	50	
Complex Company DC Cinnal	$V_{IN} = V_{DDI}^{1} (CS817x20HS)$		I _{DD2}		155	310	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x20LS);		I _{DD1}		30	60	
Supply Current – AC Signal	V _{IN} = 0V(CS817x20HS)		I _{DD2}		160	320	
	All Channels switching with 50%	10kbps	I _{DD1}		35	70	μΑ
	duty cycle square wave and input	(5kHz)	I _{DD2}		165	330	
	with 3.3V amplitude; $C_L = 15$ pF for	200kbps	I _{DD1}		115	230	
	each channel.	(100kHz)	I _{DD2}		235	470	
CS817x22HS/LS							
	V _{IN} = 0V (CS817x22LS);		I _{DD1}		90	180	
Supply Current – DC Signal	$V_{IN} = V_{DDI} (CS817x22HS)$		I _{DD2}		95	190	
Supply current – De Signal	$V_{IN} = V_{DDI}$ (CS817x22LS);		I _{DD1}		90	180	
	$V_{IN} = OV(CS817x22HS)$		I _{DD2}		95	190	
	All Channels switching with 50%	10kbps	I _{DD1}		95	190	μΑ
Supply Current – AC Signal	duty cycle square wave and input	(5kHz)	I _{DD2}		100	200	
	with 3.3V amplitude; $C_L = 15$ pF for	200kbps	I _{DD1}		160	320	
	each channel.	(100kHz)	I _{DD2}		165	330	
Note: 1. V _{DDI} = Input-side supply	$V_DD.$						

V_{DD1} = V_{DD2} = 2.5 V ± 10%, TA = -40 to 105°C (over recommended operating conditions, unless otherwise specified).

Parameters	Test conditions		Supply Current	MIN	ТҮР	MAX	UNI
S817x20HS/LS							
	V _{IN} = 0V (CS817x20LS);		I _{DD1}		25	50	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1}$ (CS817x20HS)		I _{DD2}		150	300	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x20LS);		I _{DD1}		35	70	
	$V_{IN} = 0V(CS817x20HS)$		I _{DD2}		155	310	Ī
	All Channels switching with 50%	10kbps	I _{DD1}		30	60	μΑ
Supply Current – AC Signal	duty cycle square wave and input	(5kHz)	I _{DD2}		155	310	
	with 2.5V amplitude; $C_L = 15$ pF for	200kbps	I _{DD1}		40	80	
	each channel.	(100kHz)	I _{DD2}		180	360	
S817x22HS/LS							
	V _{IN} = 0V (CS817x22LS);		I _{DD1}		90	180	
Supply Current DC Signal	$V_{IN} = V_{DDI} (CS817x22HS)$		I _{DD2}		95	190	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CS817x22LS);		I _{DD1}		90	180	
	$V_{IN} = 0V(CS817x22HS)$		I _{DD2}		95	190	Ī.,
	All Channels switching with 50%	10kbps	I _{DD1}		90	180	μΔ
Supply Current – AC Signal	duty cycle square wave and input	(5kHz)	I _{DD2}		95	190	
	with 2.5V amplitude; $C_L = 15$ pF for	200kbps	I _{DD1}		145	290	
each channel.		(100kHz)	I _{DD2}		150	300	1

^{1.} $V_{DDI} = Input\text{-side supply } V_{DD}$.

7.10. Timing Characteristics

 $V_{DD1} = V_{DD2} = 2.5V^{\circ}5.5V$, $T_A = -40$ to 105°C (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
DR	Data Rate			0	200	kbps
PW_{min}	Minimum Pulse Width		5			μs
t _{PLH} , t _{PHL}	Propagation Delay Time	See 错误!未找到		1.1	2	μs
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	引用源。			100	ns
t _{sk(o)}	Channel-to-Channel Output Skew Time ¹	Same-direction channels.			100	ns
t _{sk(pp)}	Part-to-Part Output Skew Time ²				300	ns
t _r	Output Signal Rise Time	See 错误!未找到 引用源。		2.8	5.0	ns
t _f	Output Signal Fall Time	See 错误!未找到 引用源。		2.8	5.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See 错误!未找到 引用源。		400	600	μs
t _{SU}	Start-up Time			50		μs
F _R	Refresh Rate			20		kbps

- 1. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- 2. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

8. Parameter Measurement Information

Notes:

- 1. A square wave generator provide V_{IN} input signal with the following characteristics: frequency \leq 100kHz, 50% duty cycle, tr \leq 3ns, t_f \leq 3ns, Zout = 50 Ω . At the input, 50 Ω resistor is required to terminate input generator signal. It is not needed in actual application.
- 2. C_L = 15pF, it includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure. 8-1 Switching Characteristics Test Circuit and Voltage Waveforms

- 1. Power Supply Ramp Rate = 10 mV/ns. V_{DDI} should ramp over 2.375V, and less than 5.5V.
- 2. C_L = 15pF, it includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure. 8-2 Default Output Delay Time Test Circuit and Voltage Waveforms

- 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude, rise time <10ns and fall time <10ns, to reach common-mode transient noise with > $150kV/\mu s$ slew rate.
- 2. C_L = 15pF, it includes external circuit (instrumentation and fixture etc.) capacitance.
- 3. Pass-fail criteria: the output must remain stable.
- 4. C_{BP} 1uF is bypass capacitance.

Figure. 8-3 Common-Mode Transient Immunity Test Circuit

9. Detailed Description

9.1. Overview

The CS817x20HS/LS and CS817x22HS/LS family of devices is available in a 8-pin SOIC package with 4mm creepage and clearance, with an isolation rating of 3kV_{RMS}. These digital isolators offer low-power operation, high electromagnetic interference (EMI) immunity, and stable temperature performance through Chipanalog's proprietary Pulse-Coding technology. The devices feature up to 200kbps data rate and can be used to isolate different ground domains and block high-voltage/high-current transients from sensitive or human interface circuitry. The CS817x20HS/LS feature all two channels transmitting digital signals in one direction and CS817x22HS/LS provide one channel transmitting digital signal in one direction and one channel transmitting in the opposite direction, which are suitable in applications such as isolated digital I/O. Both CS817x20 and CS817x22 have V_{DD1}/V_{DD2} two supply inputs that independently set the logic levels on either side of the insulation barrier. V_{DD1} and V_{DD2} are referenced to GND1 and GND2 respectively. The wide supply voltage range of V_{DD1} and V_{DD2} allows the devices to be used for level translation in addition to isolation.

The CS817x20/CS817x22 dual-channel digital galvanic isolators using full differential capacitive isolation technology build a robust data transmission path between different power domains without any special start-up initialization requirements. Also, with the advanced full differential techniques, these devices maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching, to provide best-in-class noise immunity. All devices also feature a refresh circuit to ensure output accuracy when an input remains in the same state indefinitely. The CS817x20HS/CS817x22HS feature default-high outputs. The CS817x20LS/CS817z2LS feature default-low outputs. The output assumes the default state when the input is not powered or if the input is open-circuit.

9.2. Functional Block Diagram

The CS817x20/CS817x22 digital isolation used edge based capacitive architecture, with very sensitive receiver, it can detect the edge of very small pulse. Then the receiver modulates the signal and transfer the signal across the barrier, and get back the square wave at driver output. Compared with inductive isolation, these digital isolator devices based on capacitive isolation can get low power at high frequency operation, reduces propagation delay and jitter, and provide good immunity to magnetic fields. See *Figure 9-1* the function block diagram for a single channel of the CS817x20/ CS817x22 for more details.

Figure. 9-1 Functional Block Diagram of a Single Channel

9.3. Refresh Rate

The CS817x2xHS/LS series low-power digital isolators incorporate Chipanalog's "pulse coding" patented technology to transmit signals across isolation barriers. These devices include a data refresh circuit to ensure that the DC output signal is consistent with the DC input signal. The internal watchdog counter monitors the input for each channel, if there is no input signal within every 50µs, the data will be refreshed automatically to ensure that the input and output signals are the same.

9.4. Device Operation Modes

The CS817x20/CS817x22 devices behavior during start-up, normal operation is shown in *Table 9-1*. Also, refer to the following table to determine outputs when power supply (V_{DD}) is not present.

Table 9-1 Operation Mode 1

V_{DDI}	V_{DDO}	Input (INx) ²	Output (OUTx)	Operation Mode
		Н	Н	Normal operation mode:
		L	L	A channel output follows the logic state of its input.
PU	PU	Open	Default	Default output mode: When input INx is open, the corresponding channel output goes to its default logic state. Default is <i>High</i> for CS817x2_HS and Low for CS817x2_LS.
PD	PU	Х	Default	Default output mode: When V _{DDI} is unpowered, a channel output assumes the logic state based on its default option. Default is <i>High</i> for CS817x2_HS and Low for CS817x2_LS.
Χ	PD	Х	Undetermined	If the output side V _{DDO} is unpowered, a channel output is undetermined.

Notes:

- 1. V_{DDI} = Input-side supply V_{DD}; V_{DDO} = Output-side supply V_{DD}; PU = Powered up (V_{DD} ≥2.375V); PD = Powered down (V_{DD} < 2.375V); X = Irrelevant; H = High level; L = Low level; Z = High Impedance.
- 2. A strong driving input signal can weakly power the floating V_{DD} through the internal protection diode and cause undetermined output.

10. Application and Implementation

The CS817x20/CS817x22 isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, eliminating ground loops. In many applications, digital isolators are replacing optocouplers because they can reduce the power requirements and take up less board space while offering the same isolation capability. The CS817x20/CS817x22 devices are the high-performance, dual-channel digital isolators. Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the CS817x20/CS817x22 devices only require two external bypass capacitors to operate. *Figure 10-1 and Figure 10-2* show typical operating circuit for the CS817x22 and CS817x20, respectively.

To reduce ripple and the chance of introducing data errors, bypass V_{DD1} and V_{DD2} supplies with at least 1µF low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input pins as possible. Additionally, It is recommended to keep the input/output traces as short as possible, and keep the area underneath the isolators free from ground and signal planes. Any galvanic or metallic connection between the side "1" and side "2" will defeat the isolation. The PCB designer should follow these critical recommendations to get the best performance from the design.

Figure 10-1 CS817x22HS/LS typical operating circuit

Figure 10-2 CS817x20HS/LS typical operating circuit

11. Typical Waveforms and Curves

Version 1.03,2023/03/20

Shanghai Chipanalog Microelectronics Co., Ltd.

12. Package Information

SOIC8 Narrow Body SOIC Package Outline

RECOMMENDED LAND PATTERN

Note:

1. All dimensions are in millimeters, angles are in degrees.

13. Soldering Temperature (reflow) Profile

Figure 13-1 Soldering Temperature (reflow) Profile

Table 13-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate (217°C to Peak)	3°C/second max
Time of Preheat temperature (from 150°C to 200°C)	60-120 second
Time to be maintained above 217°C	60-150 second
Peak temperature	260 °C
Time within 5°Cof actual peak temp	30 second
Ramp-down rate	6°C/second max.
Time from 25°C to peak temp	8 minutes max

14. Tape and Reel Information

REEL DIMENSIONS

TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	KO (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CS817x20HS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CS817x20LS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CS817x22HS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CS817x22LS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1

15. Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com