

Slot: B2

School of Computer Science Engineering and Information Systems

Winter Semester 2024-2025

Continuous Assessment Test - II

Programme Name & Branch: MCA Course Name & code: PMCA507L Class Number (s): 3327 and 3331

Faculty Name (s): Dr. Parimala M & Dr. Anitha A

Exam Duration: 90 Min. Maximum Marks: 50

General instruction(s): Answer All Questions

CO - Course Outcome; BL - Blooms Taxonomy Level (1 - Remember, 2 - Understand, 3 -

Apply, 4 – Analyze, 5 – Evaluate, 6 – Create)

Course Outcomes:

CO2: Provide solutions for classification, regression, and clustering approaches in real world

applications

CO3: Gain knowledge to combine machine learning models to achieve better results

Q.N	Question					Max	CO	В
0.						Mar		L
						ks		
1.	Predict the weight of student for the dataset with five samples as					10	CO	В
	given below	given below using kNN Algorithm where the value of k is 5.					2	L
		Age	Height	Weight				
				(target class)				
		25	160	80				
		32	145	70				
		24	160	75				
		44	165	60				
		21	152	62				
		20	155	??				
			•	•	_			

03 20	2 145 4 160. 3 1 165 6 182. 6: 182. 6: Weight	$\sqrt{\frac{1}{2}}$ $\sqrt{\frac{32-2}{2}}$ $\sqrt{\frac{24-26}{2}}$	$\frac{(168-155)^{2}}{(145-155)^{2}} + \frac{(168-155)^{2}}{(168-155)^{2}} + \frac{(168-155)^{2}}{(152-155)^{2}}$ $= 52 , we$	= 6.40 3 = 26. 5 = 3.16. 1 aght = 2?	10	60	T
·	ining data is	given in tal	ble below.		10	CO	ŀ
A set of tra						2]
A set of tra	Married	Income (K)	Salary (lakhs)	Response		2]
A set of tra			1	Response No		2	
A set of tra	Married	(K)	(lakhs)	_		2	
A set of tra	Married Yes	(K) low	(lakhs) >=2	No		2	
A set of tra	Married Yes No	(K) low low	(lakhs) >=2 >=2	No Yes		2	

4	Positive	High	High	Up
5	Negative	Low	High	Down
6	Positive	Low	Low	Down
7	Negative	High	High	Down
8	Negative	Low	High	Down
9	Positive	Low	Low	Down
10	Positive	High	High	Up

Build 2 Decision trees using the Gini index and classify the features using random forest algorithm. Use appropriate ensemble technique to derive the final output for the input features "Past trend= positive, Open interest=High, Trading volume=low, Return=??"

Bootstrap sample 1:{1,2,3,4,5}

Bootstrap sample 2:
$$\{6,7,8,9,10\}$$

(3)

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

(17,13,1,5) = 1

Ration Front - 1 Ration Front - 2 (PT) (D) (D) (D) (D) (D) (D) (D) (
Apply the bagging technique using kNN classifier model to the bootstrap samples and identify the class label for the input feature "Married=Yes, Income=low, Salary=>=2". Consider the dataset given in Q.No.2 Bootstrap sample1: {1,2,3} Bootstrap sample 2: {3,4,5}	10	CO 3	B L

