## LABORATÓRIO DE CIRCUITOS DIGITAIS

7° Experimento: Unidade Lógico-Aritmética em SystemVerilog

UFERSA – Campus Pau dos Ferros – DETEC Prof.: Pedro Thiago Valério de Souza



OBJETIVO Anderson Carlos da Silva Marais Marilia Forsica anobicide

Descrever uma unidade lógico-aritmética em SystemVerilog.

## **COMPONENTES**

• FPGA Cyclone DE2-115.

## PROCEDIMENTO PRÁTICO

A Figura abaixo apresenta uma unidade lógico-aritmética elementar de apenas um 1 bit. Ela é composta por um somador completo, um multiplexador  $4\times1$  e um conjunto de portas lógicas adicionais.



1. Sabendo que as expressões lógicas de um somador completo são:

$$s = a \oplus b \oplus c_{in}$$

$$c_{out} = ab + ac_{in} + bc_{in}$$

sendo a e b os dois bits a serem somados,  $c_{in}$  a entrada de carry-in, s a saída de soma e  $c_{out}$  a saída de carry-out, implemente o bloco de somador completo em SystemVerilog.

2. Sabendo que a expressão lógica de saída de um multiplexador 4×1 é dada por:

$$x = \overline{s_1} \, \overline{s_0} i_0 + \overline{s_1} \, s_0 i_1 + s_1 \, \overline{s_0} i_2 + s_1 s_0 i_3$$

sendo  $s_1$  e  $s_0$  os *bits* de seleção e  $i_0$ ,  $i_1$ ,  $i_2$  e  $i_3$  as entradas de dados, implemente o bloco de multiplexador em SystemVerilog.

3. Implemente a unidade lógico-aritmética proposta em SystemVerilog, utilizando os blocos projetados nos itens (1) e (2), em conjunto com as portas lógicas necessárias. *Importante*: O nome do módulo deve ser alu1b.

4. Utilizando o ModelSim, realize a simulação utilizando o arquivo *testbench* entitulado tb\_alu1b.sv e anote os resultados encontrados na tabela abaixo.

|   | a | b | $a_{invert}$ | $b_{invert}$ | $c_{in}$ | $s_1$ | $s_0$ | x | $c_{out}$ |
|---|---|---|--------------|--------------|----------|-------|-------|---|-----------|
|   | 1 | 0 | 0            | 0            | 0        | 0     | 0     | 0 | 0         |
|   | 1 | 1 | 0            | 0            | 0        | 0     | 0     | 1 | 1         |
|   | 1 | 0 | 0            | 0            | 0        | 0     | 1     | 1 | 0         |
| * | 0 | 0 | 0            | 0            | 0        | 0     | 1     | 0 | 0         |
| • | 1 | 0 | 0            | 0            | 0        | 1     | 0     | 1 | 0         |
|   | 1 | 1 | 0            | 0            | 0        | 1     | 0     | 0 | 1         |
|   | 1 | 1 | 0            | 0            | 1        | 1     | 0     | 1 | 1         |
|   | 1 | 1 | 0            | 1            | 1        | 1     | 0     | 0 | 1         |
|   | 1 | 0 | 0            | 0            | 0        | 1     | 1     | 1 | 0         |
|   | 1 | 1 | 0            | 0            | 0        | 1     | 1     | 0 | 1         |

5. Implemente o projeto do item (3) na FPGA DE2-115 (referência: EP4CE115F29C7). Utilize, como *pin planner* as configurações apresentadas na tabela abaixo:

| Entrada/Saída             | Recurso na FPGA | No. Pino da FPGA |
|---------------------------|-----------------|------------------|
| <b>∨</b> a                | SW[0]           | PIN_AB28         |
| <b>✓</b> b                | SW[1]           | PIN_AC28         |
| $V$ $a_{invert}$          | SW[2]           | PIN_AC27         |
| $\checkmark b_{invert}$   | SW[3]           | PIN_AD27         |
| $\checkmark$ $s_0$        | SW[5]           | PIN_AC26         |
| $\boldsymbol{\vee}$ $s_1$ | SW[6]           | PIN_AD26         |
| $\checkmark$ $c_{in}$     | SW[7]           | PIN_AB26         |
| $\boldsymbol{V}$ x        | LEDG[0]         | PIN_E21          |
| <b>∨</b> c <sub>out</sub> | LEDG[1]         | PIN_E22          |

Aplique, como entradas, os mesmos valores apresentados na Tabela abaixo, anotando os valores de saída.

| a | b | $a_{invert}$ | $b_{invert}$ | $c_{in}$ | $s_1$ | $s_0$ | x | $c_{out}$ |
|---|---|--------------|--------------|----------|-------|-------|---|-----------|
| 1 | 0 | 0            | 0            | 0        | 0     | 0     | 0 | 0         |
| 1 | 1 | 0            | 0            | 0        | 0     | 0     | 7 | 10        |
| 1 | 0 | 0            | 0            | 0        | 0     | 1     | 7 | 00        |
| 0 | 0 | 0            | 0            | 0        | 0     | 1     | ٥ | 0 0       |
| 1 | 0 | 0            | 0            | 0        | 1     | 0     | 7 | 00        |
| 1 | 1 | 0            | 0            | 0        | 1     | 0     | 0 | V C       |
| 1 | 1 | 0            | 0            | 1        | 1     | 0     | 1 | 3         |
| 1 | 1 | 0            | 1            | 1        | 1     | 0     | 0 | 1         |
| 1 | 0 | 0            | 0            | 0        | 1     | 1     | 1 | 0 ~       |
| 1 | 1 | 0            | 0            | 0        | 1     | 1     | 0 | 1 6       |

