DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion

(PLDI 2021) Wei Niu¹, Jiexiong Guan¹, Yanzhi Wang², Gagan Agrawal³, Bin Ren¹

¹William & Mary, ²Northeastern University, ³Augusta University

Presenter: Taehee Jeong

Optimizing Deep Neural Networks

Deep networks need high memory and computation requirements

 Operator fusion is a key optimization technique in many frameworks (TF, TVM, MNN)

Existing approaches adapt **too restrictive fusion strategies** (i.e. few hand-coded pattern matching rules)

- Not able to cover diversity of operators and layer connections
- Polyhedral-based loop fusion techniques: focused on affine-loop optimizations, won't be able to capture some operation combinations

Contributions

- Graph rewriting based on mathematical property of operations
- Operator fusion plan generation from high-level operator abstractions (with mapping types and mathematical properties)
- Optimized code generation for fused blocks

⇒ Up to **8.8x** more loop fusions and **9.3x** speedup compared to existing frameworks

Deeper models have lesser throughput

Model	#Total layer	IR size	#FLOPS	Speed (FLOPs/S)
VGG-16 [62]	51	161M	31.0B	320G
YOLO-V4 [7]	398	329M	34.6B	135G
DistilBERT [60]	457	540M	35.3B	78G
MobileBERT [65]	2,387	744M	17.6B	44G
GPT-2 [55]	2,533	1,389M	69.1B	62G

- More layer: more intermediate results
 - o Memory/cache pressure ↑
 - ex) reshape, squeeze in TFLite are just memcpy!
- Insufficient amount of computations per layer
 - Utilization ↓ (esp. for GPU)
- ⇒ Operator fusion can pack more computations per (fused) layer

Mathematical property based graph rewriting

- Mathematical properties: associative, distributive, commutative
- Identifies set of rewrite rules with operator fusion in mind
 - Results in fewer layers in the final fused graph
- Focus on 1-to-1 mappings and reduction operators (many-to-many)
- Optimizes based on FLOPS (and memory footprint for tie)

Mathematical property based graph rewriting

- Rewrite candidate search: pattern matching
 - NP-complete problem
- Partition graph on the points where ops don't have mathematical properties
 - Each partition would (hopefully?) have tractable search space
 - o All cases are considered, and one with least FLOPS is chosen.

- Isn't compiler already doing it after codegen?
 - o Operation on the tensors might not be easily optimized as scalars

Mapping type	Representative
One-to-One	Add, Relu
One-to-Many	Expand
Many-to-Many & N-to-1 (e.g. reduce)	Conv, GEMM
Reorganize	Reshape
Shuffle	Transpose

Second op First op	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle
One-to-One	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle
One-to-Many	One-to-Many	One-to-Many	×	One-to-Many	One-to-Many
Many-to-Many	Many-to-Many	Many-to-Many	×	Many-to-Many	Many-to-Many
Reorganize	Reorganize	One-to-Many	Many-to-Many	Reorganize	Reorganize ?
Shuffle	Shuffle	One-to-Many	Many-to-Many	Reorganize	Shuffle

ECG (Extended computational Fusion opportunity graph) IR will have mapping class annotation for each operator

Green: fusion is profitable

Yellow(orange?): further profiling is required (from empirical results)

Red: Unprofitable

Second op First op	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle
One-to-One	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle

One-to-one: follows the class of the other fused op

 As the values are directly mapped, fused kernel is not likely to require extra overhead, and only need limited number of registers.

ex) GEMM(Add(x, y), W) will be fused to GEMM(x + y, W) in codegen step.

Second op First op	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle
Reorganize	Reorganize	One-to-Many	Many-to-Many	Reorganize	Reorganize
Shuffle	Shuffle	One-to-Many	Many-to-Many	Reorganize	Shuffle

Reorder / Shuffle: can be considered as one-to-one with special mapping one-to-many / many-to-many fusion should be handled with care

possible data copying, data access order, redundant computations
 ex) Transpose(Expand(x)) would break continuous memory access pattern when fused

Second op First op	One-to-Many	Many-to-Many
One-to-Many	One-to-Many	×
Many-to-Many	Many-to-Many	×

- 1-to-N & N-to-M (conv(Expand(x))): conv requires **continuous** memory access *vs* expand would need **distributed** access -> **unprofitable**
- N-to-M & M-to-K (conv(conv(x))): too complicated. unprofitable
- N-to-M & 1-to-K (Expand(Conv(x))): won't affect conv's memory access pattern when expanding one dimension -> **might be OK**
 - Reshape(Conv(x)): interfere with memory access pattern -> unprofitable

Fusion plan generation

- Choose 1-to-1 operator with minimal result as seed
- By traversing predecessors and successors, greedily group the operators that can be fused
- 3. Repeat until there's no more fusion candidates

Other Fusion-related Optimizations

- **Intra**-block optimizations
 - Replace shuffle/reorganize operations with index transform (changed data index)
- **Inter**-block optimizations
 - (Heuristic) Choose one memory layout that would benefit the most compute-heavy op in the fusion block

Codegen

- Generates code for each fused block with data-flow tree (DFT)
- 23 codegen rules, for each mapping class combination
- redundant computation checks from DFT
- Paper says other optimizations were introduced in *PatDNN* (former paper), but not much information
- Seems to have combined all techniques from other frameworks

Figure 4. Code generation.

Table 1. DNN acceleration frameworks on mobile devices.

DNNs	Optimization Knobs	TFLite	TVM	MNN	Ours
Dense	Parameters auto-tuning	N	Y	N	Y
	CPU/GPU support	Y	Y	Y	Y
	Half-floating support	Y	Y	Y	Y
	Computation graph optimization	Y!	Y [*]	Y!	Y**
	Tensor optimization	Y!	Y [†]	Y!	Y ^{††}

(PatDNN, ASPLOS 2020)

Putting it all together

Figure 1. DNNFusion overview.

Results - fusion

Table 5. Fusion rate evaluation: computation layer count and intermediate result size for all evaluated DNNs. CIL (Compute-Intensive Layer): each input is used more than once, e.g. MatMul, CONV. MIL (Memory-Intensive Layer): each input is used only once, e.g. Activation. IRS: intermediate results. '-' means this framework does not support this model.

Model	Tymo	Task	Laye	r coun	ts and IRS size	es before opt.	L	ayer co	unts a	nd IRS siz	zes after	r opt.
Model	Type	Task	#CIL	#MIL	#Total layer	IRS size	MNN	TVM	TFLite	Pytorch	DNNF	IRS size
EfficientNet-B0	2D CNN	Image classification	82	227	309	108MB	199	195	201	210	97	26MB
VGG-16	2D CNN	Image classification	16	35	51	161MB	22	22	22	22	17	52MB
MobileNetV1-SSD	2D CNN	Object detection	16	48	202	110MB	138	124	138	148	71	37MB
YOLO-V4	2D CNN	Object detection	106	292	398	329MB	198	192	198	232	135	205MB
C3D	3D CNN	Action recognition	11	16	27	195MB	27	27	-	27	16	90MB
S3D	3D CNN	Action recognition	77	195	272	996MB	-	-	-	272	98	356MB
U-Net	2D CNN	Image segmentation	44	248	292	312MB	241	232	234	-	82	158MB
Faster R-CNN	R-CNN	Image segmentation	177	3,463	3,640	914MB	-	-	-	-	942	374MB
Mask R-CNN	R-CNN	Image segmentation	187	3,812	3,999	1,524MB	-	-	_	-	981	543MB
TinyBERT	Transformer	NLP	37	329	366	183MB	-	304^{\dagger}	322	-	74	55MB
DistilBERT	Transformer	NLP	55	402	457	540MB	-	416^{\dagger}	431	-	109	197MB
ALBERT	Transformer	NLP	98	838	936	1,260MB	-	746^{\dagger}	855	-	225	320MB
$BERT_{BASE}$	Transformer	NLP	109	867	976	915MB	-	760^{\dagger}	873	_	216	196MB
MobileBERT	Transformer	NLP	434	1,953	2,387	744MB	-	1,678 [†]	2,128	-	510	255MB
GPT-2	Transformer	NLP	84	2,449	2,533	1,389MB	-	$2,047^{\dagger}$	2,223	-	254	356MB

[†] TVM does not support this model on mobile. This layer count number is collected on a laptop platform for reference.

Results - fusion

Model	Туре	Task	Laye	r coun	its and IRS size	es before opt.	L	Layer counts and IRS sizes after opt.						
Wiodel	Турс	Task	#CIL	#MIL	#Total layer	IRS size	MNN	TVM	TFLite	Pytorch	DNNF	IRS size		
EfficientNet-B0	2D CNN	Image classification	82	227	309	108MB	199	195	201	210	97	26MB		
VGG-16	2D CNN	Image classification	16	35	51	161MB	22	22	22	22	17	52MB		
MobileNetV1-SSD	2D CNN	Object detection	16	48	202	110MB	138	124	138	148	71	37MB		

Overall impressive, few notes:

- VGG has 22 layers (w/o activation): 13 conv, 5 pooling, 3 dense, 1 softmax
 - 17 seems 13 conv + 3 dense + 1 softmax. poolings are seems to be fused, although considered many-to-many?
- MobileNetV1-SSD in TFLite can have 64 layers, with predefined fusion of NMS to custom op TFLite_Detection_PostProcess.
 - Also shows faster performance than the evaluation result (87ms vs 29ms)
 - Note: 29ms was on Pixel 4, both S20 and Pixel 4 runs on SD865 SoC
 - Hand-crafted fusion kernels still works better for some cases.

Results - latency improvement

Table 6. Inference latency comparison: DNNFusion, MNN, TVM, TFlite, and PyTorch on mobile CPU and GPU. #FLOPS denotes the number of floating point operations. OurB is our baseline implementation by turning off all fusion optimizations and OurB+ is OurB with a fixed-pattern fusion as TVM. DNNF is short for DNNFusion, i.e., our optimized version. '-' denotes this framework does not support this execution.

Model	#Params	#FLOPS	MNN	(ms)	TVM	(ms)	TFLite	e (ms)	Pytoro	ch (ms)	OurE	3 (ms)	OurB-	+ (ms)	DNNI	F (ms)
Model	#Farailis	#I'LOI'S	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU
EfficientNet-B0	5.3M	0.8B	41	26	56	27	52	30	76	-	54	35	38	24	16	10
VGG-16	138M	31.0B	242	109	260	127	245	102	273	-	251	121	231	97	171	65
MobileNetV1-SSD	9.5M	3.0B	67	43	74	52	87	68	92	_	79	56	61	39	33	17
YOLO-V4	64M	34.6B	501	290	549	350	560	288	872	-	633	390	426	257	235	117
C3D	78M	77.0B	867	-	1,487	-	-	-	2,541	-	880	551	802	488	582	301
S3D	8.0M	79.6B	-		-	-		-	6,612	-	1,409	972	1,279	705	710	324
U-Net	2.1M	15.0B	181	106	210	120	302	117	271	_	227	142	168	92	99	52
Faster R-CNN	41M	47.0B	-	-	-	-	-	-	-	-1	2,325	3,054	1,462	1,974	862	531
Mask R-CNN	44M	184B	-	-	-	-	-	-	-	-	5,539	6,483	3,907	4,768	2,471	1,680
TinyBERT	15M	4.1B	-	-	-	-	97	-	-	-	114	89	92	65	51	30
DistilBERT	66M	35.5B	-	-	-	-	510	-	-	-	573	504	467	457	224	148
ALBERT	83M	65.7B	-	-	-	-	974	-	-		1,033	1,178	923	973	386	312
$BERT_{Base}$	108M	67.3B	-	-	-	-	985	-	-	-	1,086	1,204	948	1,012	394	293
MobileBERT	25M	17.6B	-		-	-	342	-	-		448	563	326	397	170	102
GPT-2	125M	69.1B	-	-	-	-	1,102	-	-	-	1,350	1,467	990	1,106	394	292

Results - latency improvement

Table 6. Inference latency comparison: DNNFusion, MNN, TVM, TFlite, and PyTorch on mobile CPU and GPU. #FLOPS denotes the number of floating point operations. OurB is our baseline implementation by turning off all fusion optimizations and OurB+ is OurB with a fixed-pattern fusion as TVM. DNNF is short for DNNFusion, i.e., our optimized version. '-' denotes this framework does not support this execution.

Model	#Params	#FLOPS	MNN	(ms)	TVM	(ms)	TFLite	e (ms)	Pytoro	ch (ms)	OurE	3 (ms)	OurB-	+ (ms)	DNNI	F (ms)
Model	#Farailis	#I'LOI'S	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU
EfficientNet-B0	5.3M	0.8B	41	26	56	27	52	30	76	-	54	35	38	24	16	10
VGG-16	138M	31.0B	242	109	260	127	245	102	273	-	251	121	231	97	171	65
MobileNetV1-SSD	9.5M	3.0B	67	43	74	52	87	68	92	_	79	56	61	39	33	17
YOLO-V4	64M	34.6B	501	290	549	350	560	288	872	-	633	390	426	257	235	117
C3D	78M	77.0B	867	-	1,487	-	-	-	2,541	-	880	551	802	488	582	301
S3D	8.0M	79.6B	-		-	-		-	6,612	-	1,409	972	1,279	705	710	324
U-Net	2.1M	15.0B	181	106	210	120	302	117	271	_	227	142	168	92	99	52
Faster R-CNN	41M	47.0B	-	-	-	-	-	-	-	-1	2,325	3,054	1,462	1,974	862	531
Mask R-CNN	44M	184B	-	-	-	-	-	-	-	-	5,539	6,483	3,907	4,768	2,471	1,680
TinyBERT	15M	4.1B	-	-	-	-	97	-	-	-	114	89	92	65	51	30
DistilBERT	66M	35.5B	-	-	-	-	510	-	-	-	573	504	467	457	224	148
ALBERT	83M	65.7B	-	-	-	-	974	-	-		1,033	1,178	923	973	386	312
$BERT_{Base}$	108M	67.3B	-	-	-	-	985	-	-	-	1,086	1,204	948	1,012	394	293
MobileBERT	25M	17.6B	-		-	-	342	-	-		448	563	326	397	170	102
GPT-2	125M	69.1B	-	-	-	-	1,102	-	-	-	1,350	1,467	990	1,106	394	292

Results - latency improvement

Figure 7. Optimization breakdown on y-axis: speedup over OurB, i.e. a version w/o fusion opt. GR, Fuse, and Other denote graph rewriting, fusion, and other fusion-related optimizations, respectively.

Results - others

- vs TASO w/ TFLite: 1.4x~2.6x speedup
 - Possibly due to fusion and codegen
- Memory access and cache misses: improved from all frameworks
- G/GPU Utilization: better, > 90%
- Compilation time (vs TVM): best when profiling result can be looked up

Results - others

- vs TASO w/ TFLite: 1.4x~2.6x speedup
 - Possibly due to fusion and codegen
- Memory access and cache misses: improved from all frameworks
- G/GPU Utilization: better, > 90%
- Compilation time (vs TVM): best when profiling result can be looked up
- Can be applied to other targets

Takeaways

- Results and related work sections also serve as great reference points
- Simple greedy algorithm for finding fusion candidates works surprisingly well
- Unlocked mobile inference for various models that were not possible for prior frameworks

- Accuracy is not reported might be needed to mention correctness/exactness analysis result after aggressive fusion
- Some details are questionable fused pooling in VGG, details for codegen