Examen - 14 de diciembre de 2016 Duración: 3 horas y media

Ejercicio 1.

a. Halle el menor entero positivo x tal que $\begin{cases} 5x - 3 \equiv 4 \pmod{7} \\ 4x + 2 \equiv 6 \pmod{9} \end{cases}$

Solución: La primera ecuación es equivalente a $5 x \equiv 0 \pmod{7}$, que tiene solución única módulo 7 pues mcd(5,7) = 1. Es claro que $x \equiv 0 \pmod{7}$ es solución.

La segunda ecuación es equivalente a $4x \equiv 4 \pmod{9}$, que tiene solución única módulo 9 pues mcd(4,9) = 1. Es claro que $x \equiv 1 \pmod{9}$ es solución.

Como mcd(7,9) = 1, el sistema tiene solución única módulo $7 \cdot 9$. Se obtiene por el procedimiento estándar y es fácil verificar que $x \equiv 28 \pmod{63}$ satisface ambas ecuaciones.

El menor entero positivo es entonces x = 28.

b. Halle todas las parejas de enteros (a,b) tales que $a^2+b^2=637$ y $mcd(a,b)=\frac{x}{4}$ (x hallado en el ítem anterior).

Solución: Como mcd(a,b)=7, escribimos $a=7\,a_0$ y $b=7\,b_0$. Sustituyendo en la primera ecuación resulta $a_0^2+b_0^2=\frac{637}{49}=13$.

Calculando $13 - i^2$ para i = 0, ..., 3 se determina que el único par de cuadrados que suman 13 es 4 + 9. Considerando orden y signos encontramos ocho soluciones para (a_0, b_0) , a saber: $\{(\pm 2, \pm 3), (\pm 3, \pm 2)\}$.

Multiplicando por 7 obtenemos las parejas pedidas:

$$(14,21), (14,-21), (-14,21), (-14,-21), (21,14), (21,-14), (-21,14), (-21,-14)$$

Ejercicio 2.

a. Calcular todas las raíces primitivas de U(31). ¿Cuántas son?

Solución: Como 31 es primo, U(31) tiene 30 elementos y $\varphi(30) = 8$ raíces primitivas.

Como $2^5 \equiv 1 \pmod{31}$ sabemos que 2 no es raíz primitiva. Verificamos que $3^{30/2} \equiv 30 \not\equiv 1 \pmod{31}$, $3^{30/3} \equiv 25 \not\equiv 1 \pmod{31}$, $3^{30/5} \equiv 16 \not\equiv 1 \pmod{31}$, luego g = 3 es una raíz primitiva.

Sabemos que todas las raíces primitivas serán de la forma g^i donde mcd(i,30)=1, es decir $g,\,g^7,\,g^{11},\,g^{13},\,g^{17},\,g^{19},\,g^{23},\,g^{29}$.

Calculamos estas potencias módulo 31 obteniendo 3, 17, 13, 24, 22, 12, 11, 21.

b. Ordenar en forma creciente las raíces primitivas halladas en el ítem anterior: $r_1 < r_2 < r_3 < r_4 < \dots$ Luego escribir la secuencia:

$$(r_1+r_4), (r_6-r_1), (r_5-r_4), (r_3), (r_2-r_1), (r_8-r_3+r_1), (r_7-r_1), (r_8+r_1), (r_5+r_1), (r_5+r_1), (r_5+r_3-r_1), (r_8-r_6-r_1).$$

Solución: $r_1 = 3$, $r_2 = 11$, $r_3 = 12$, $r_4 = 13$, $r_5 = 17$, $r_6 = 21$, $r_7 = 22$, $r_8 = 24$, y la secuencia es 16, 18, 4, 12, 8, 15, 19, 27, 20, 8, 26, 0.

c. Traducir la expresión anterior usando:

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	Ñ	0	P	Q	R	S	T	U	V	W	X	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Solución: PREMIOS_TIZA

d. Utilizando el método de Vigenère decodificar el texto siguiente, usando la expresión clave hallada en el ítem anterior:

$VLMWSCLHFIYTJQPMLF_MT$

Solución: El texto cifrado corresponde a la secuencia

Repetimos la expresión clave como la secuencia hallada en la parte b

y restamos módulo 28 para obtener

$$6, 21, 8, 11, 11, 15, 20, 8, 13, 0, 27, 20, 21, 17, 12, 0, 3, 18, 8, 13, 0.$$

Traduciendo se obtiene el mensaje en claro

GUILLOTINA_TU_MADRINA

Ejercicio 3.

a. Enunciar y demostrar el Teorema de Lagrange para grupos finitos.

Solución: Ver Teorema 3.8.1 en la página 55 de las notas del curso.

b. Probar que todo grupo de orden p primo es cíclico.

Solución: Sea G un grupo de orden p primo, y sea $g \in G$ un elemento con $g \neq e$ (que siempre existe pues $p \geq 2$). El grupo $\langle g \rangle$ generado por g es un subgrupo de G no trivial (porque $g \neq e$).

Por el Teorema de Lagrange, el orden de $\langle g \rangle$ divide a p; como no es 1 debe ser p. Entonces $\langle g \rangle = G$ y g es un generador de G.

En las notas esto aparece como parte 3 del Corolario 3.8.2.

c. Sea G un grupo y sean G_1 y G_2 dos subgrupos distintos de orden p primo. ¿Qué puede decir sobre $G_1 \cap G_2$?

Solución: Como G_1 tiene orden primo y $G_1 \cap G_2$ es un subgrupo de G_1 , con el mismo razonamiento que en la parte anterior se deduce que el orden de $G_1 \cap G_2$ es 1 o p. Si el orden de $G_1 \cap G_2$ fuera p debería ser igual a G_1 , pero también debería ser igual a G_2 , lo que contradice $G_1 \neq G_2$.

Entonces $G_1 \cap G_2$ es trivial.