BAŞKENT ÜNİVERSİTESİ Mühendislik Fakültesi - Elektrik-Elektronik Mühendisliği Bölümü EEM 312 – Sayısal Elektronik Yazılım Laboratuarı

Deney No: 9

Deney Adı: Halka osilatörü ve tersleyicinin rejeneratif özelliği

Amaç:

• Halka osilatörünün incelenmesi

• Tersleyicinin rejeneratif özelliğinin incelenmesi

Laboratuar Çalışması:

1. Tablo 1'de verilen model tanımlamalarını kullanarak Şekil 1'de verilen devrenin ağ listesini oluşturun. Ağ listesini alt devre biçiminde Tablo 2'de verilen örnekte tanımlandığı şekilde oluşturun. PMOS için 1.2u/5.4u (L/W), NMOS için 1.2u/1.8u (L/W) değerlerini kullanın. Besleme gerilimini 3.2V alın.

Şekil 1 – CMOS Tersleyici dinamik modeli

Tablo 1 - Model parametreleri

.MODEL MOSN NMOS LEVEL=2 LD=0.15U TOX=200.0E-10

- + NSUB=5.36726E+15 VTO=0.743469 KP=8.00059E-05 GAMMA=0.543
- + PHI=0.6 U0=655.881 UEXP=0.157282 UCRIT=31443.8
- + DELTA=2.39824 VMAX=55260.9 XJ=0.25U LAMBDA=0.0367072
- + NFS=1E+12 NEFF=1.001 NSS=1E+11 TPG=1.0 RSH=70.00
- + CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.6585
- + CJSW=8.0E-10 MJSW=0.2402 PB=0.58

.MODEL MOSP PMOS LEVEL=2 LD=0.15U TOX=200.0E-10

- + NSUB=4.3318E+15 VTO=-0.738861 KP=2.70E-05 GAMMA=0.58
- + PHI=0.6 U0=261.977 UEXP=0.323932 UCRIT=65719.8
- + DELTA=1.79192 VMAX=25694 XJ=0.25U LAMBDA=0.0612279
- + NFS=1E+12 NEFF=1.001 NSS=1E+11 TPG=-1.0 RSH=120.6
- + CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0005 MJ=0.5052
- + CJSW=1.349E-10 MJSW=0.2417 PB=0.64

Tablo 2 – Örnek alt devre

.subckt inverter 1 2

- * 1=giriş 2=çıkış
- * Alt devre tanımlaması

vdd 3 0 3.2V

•••

.ends

2. Laboratuar çalışması birinci maddede yazmış olduğunuz alt devreyi kullanarak Şekil 2'de verilmiş olan devreyi Tablo 2'de verilen parametreler ve alt devre kullanım örneğini inceleyerek kurun ve devrenizin doğru çalışıp çalışmadığını istenilen analizleri benzetimcide gerçekleştirerek kontrol edin.

Tablo 3 – Devre parametreleri

Parametre	Değer/Uygulama	
Vin	Pulse (0 3.2 0 1n 1n 100n 200n)	
Inverter	Tanımlanan alt devre	
C_L	0.1p	
Analiz tipi	Geçici durum analizi	
Elde edilecek grafikler	Vo(t) ve Vin(t)	
Ölçülecek değerler	tp _{HL} tp _{LH} ve td	
Alt devre kullanım örneği:		
.subckt alt_devre 3 9 12 5		
.ends		
x1 2 1 3 4 alt_devre		
x2 5 4 1 0 alt_devre		

Şekil 2 – Kontrol Devresi

3. Laboratuar çalışması birinci maddede yazmış olduğunuz alt devreyi kullanarak Şekil 3-4'de verilmiş olan devrenin ağ listesini oluşturun ve Tablo 4'te verilen benzetim yöntemlerini gerçekleştirerek istenilen sonuçları elde edin.

Devre	Analiz Yöntemi	Grafikler ve Parametreler	Sorular
Şekil 3	DC Analizi	Vin – A,B,C,Vo grafiği (VTC)	 Grafiklerde Vin – A, Vin – B, Vin – C, Vin – Vo karşılaştırıldığında ne değişmektedir? Neden açıklayınız. Devre rejeneratif (regenerative) midir? Açıklayınız
Şekil 3	Geçici durum analizi	Vin(t), A(t), B(t), C(t), D(t), Vo(t) grafiği Vin(t)=Pulse (0 3.2 0 1n 1n 100n 200n) alın.	A, B, C ve Vo için geçikme sürelerini ölçün.
		Vin(t), A(t), B(t), C(t), D(t), Vo(t) grafiği Vin(t)= SIN(VO VA FREQ TD THETA) = SIN(1.6 1 5e6 0 0) alın.	A, B, C ve Vo grafiklerini inceleyerek devrenin işlevi ile ilgili açıklma yapın.

Şekil 4 – Halka osilatörü

Değerlendirme:

Değerlendirme ile ilgili bilgileri ilgili web sayfasında bulabilirsiniz. Raporlarınızı laboratuar web sayfasına teslim süresinden önce yüklemeniz gerekmektedir. Yükleme ile ilgili detaylar web sayfasında yer almaktadır

http://www.baskent.edu.tr/~engcif