Nombres complexes

Partie réelle, partie imaginaire

QCOP CPLX.1

- \blacksquare Soit $z \in \mathbb{C}$.
 - (a) Définir $\mathfrak{Re}(z)$ et $\mathfrak{Im}(z)$.
 - (b) Exprimer ces quantités en fonction de z et \overline{z} .
- **S** Soit $z \in \mathbb{C}$. Compléter et démontrer les équivalences suivantes :

$$\begin{array}{lll} z+\overline{z}=0 &\iff z\in\cdots,\\ z-\overline{z}=0 &\iff z\in\cdots. \end{array}$$

On admet que

$$orall a,b\in\mathbb{R}, \quad egin{dcases} \mathrm{e}^{\mathrm{i}a}+\mathrm{e}^{\mathrm{i}b}=2\cosigg(rac{a-b}{2}igg)\mathrm{e}^{\mathrm{i}rac{a+b}{2}}\ \mathrm{e}^{\mathrm{i}a}-\mathrm{e}^{\mathrm{i}b}=2\mathrm{i}\sinigg(rac{a-b}{2}igg)\mathrm{e}^{\mathrm{i}rac{a+b}{2}}. \end{cases}$$

- (a) Déterminer $\left\{(a,b)\in\mathbb{R}^2 \mid e^{\mathsf{i} a}+e^{\mathsf{i} b}\in\mathbb{R}\right\}$.
- **(b)** Déterminer $\{(a,b) \in \mathbb{R}^2 \mid e^{ia} e^{ib} \in i\mathbb{R}\}$.

Racines *n*-ièmes

QCOP CPLX.2

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

- \blacksquare Définir l'ensemble \mathbb{U}_n .
- Montrer que

$$\mathbb{U}_n = \left\{ \mathrm{e}^{rac{2\mathrm{i}k\pi}{n}} \quad ; \quad k \in \llbracket 0, n-1
rbracket
ight\}.$$

% Calculer

$$\sum_{\omega\in\mathbb{U}_n}\omega\quad\text{et}\quad\prod_{\omega\in\mathbb{U}_n}\omega.$$

QCOP CPLX.3

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

- \blacksquare Définir l'ensemble \mathbb{U}_n et en donner une description.
- Soit $Z \in \mathbb{C}$ que l'on écrit $Z = Re^{i\theta}$ avec R > 0 et $\theta \in \mathbb{R}$. Décrire

$$A := \{ z \in \mathbb{C} \mid z^n = Z \}.$$

% Calculer

$$\sum_{\omega \in A} \omega \quad \text{et} \quad \prod_{\omega \in A} \omega.$$

Inégalité triangulaire

QCOP CPLX.4

Soient $z, z' \in \mathbb{C}$.

Montrer que

$$\begin{cases} \mathfrak{Re}(z) \leqslant |z| \\ \mathfrak{Im}(z) \leqslant |z|. \end{cases}$$

Montrer que

$$|z + z'|^2 = |z|^2 + 2\Re(zz') + |z'|^2$$
.

% Montrer que

$$|z+z'| \leqslant |z| + |z'|.$$

% Montrer que

$$||z|-|z'||\leqslant |z-z'|.$$

Exponentielle complexe

QCOP CPLX.5

- \blacksquare Définir, pour $z \in \mathbb{C}$, le nombre e^z .
- Soit $z \in \mathbb{C}$. Déterminer le module et un argument de e^z .
- \mathbf{X} Soit $z \in \mathbb{C}$. Montrer que $\overline{e^z} = e^{\overline{z}}$.

QCOP CPLX.6

- Soit $Z \in \mathbb{C}$, de module $R \in \mathbb{R}_+$ et d'argument principal $\theta \in \mathbb{R}$. Écrire Z sous forme trigonométrique.
- $ightharpoonup Soit <math>Z \in \mathbb{C}$. Déterminer

$$\{z\in\mathbb{C} \mid e^z=Z\}.$$

Résoudre

$$e^z = 1 + i$$
.