

SIC No		0.75				
0111			 Yeal?		"Jan	

Silicon Institute of Technology Silicon Hills, Bhubaneswar

Total No. of Pages:-01

| An Autonomous Institute |

4th Semester B.Tech. Mid Term Examination 2022-23

DESIGN & ANALYSIS OF ALGORITHMS(BTCS-T-PC-011)

BRANCH(S) - Computer Engineering, Computer Science and Technology, Computer Science & Engineering

Dur	ation: 01:30 hr	Full Marks: 25
1 4	nswer All	
a	Differentiate between Big-Oh notation and Little-Oh notation.	1
b	Justify your answer: Is $2^{2n} = O(2^n)$?	1
c	When a function is called polynomially bounded. Is the function ($\lfloor log(n) \rfloor$)! polynom bounded?	ially 1
d	What is the height of an n-element HEAP?	1
e	When a product of matrices is called fully parenthesized. In how many different ways chain of 4 matrices <a1, a2,="" a3,="" a4=""> can be fully parenthesized.</a1,>	a 1
f	What are the elements of Dynamic Programming?	1
2 A	nswer All	
a	Solve the following recurrence:	3
	$T(n) = T\left(\frac{9n}{10}\right) + n$	
b	Order the following functions by decreasing order of their asymptotic growth: 2^{lgn} , $lg(n!)$, 10^6 , $n!$, n^3 , n^{lgn} , 2^n , lg^2n	3
С	Show that any comparison based sorting algorithm requires $\Omega(n \lg n)$ comparisons in case to sort n elements.	worst 3
3 A.	nswer any One	
a	When Master's method fails to solve a recurrence relation of the form	5
	$T(n) = a T\left(\frac{n}{b}\right) + f(n)$, with $a \ge 1$ and $b > 1$. Justify your answer with the	
	recurrence relation: $T(n) = 2 T(\frac{n}{2}) + \frac{n}{\lg n}$, also solve it using other suitable methods	ıod.
b	Write the QUICKSORT algorithm along with the PARTITION procedure. Discuss who the QUICKSORT algorithm will attain worst-case running time. Write the recurrence a solve it to find the worst case running time of QUICKSORT.	
4 A	nswer any One	
a	Write the MAX-HEAPIFY(A, i) algorithm and show that the running time of MAX-HEAPIFY on a subtree of size n rooted at a given node i is $O(g_n)$	5
b	Define matrix chain multiplication problem. Write the algorithm for computing m and table. Find the m and s table computed by the algorithm for the following matrix dimensions: A1(25,35), A2(35,15), A3(15,5), A4(5, 40)	s 5