Image-based pattern recognition principles

Outline

- Introduction
- 2D Matched Filter
- Image Registration
- Bayes Statistical Classifier
- Neural Networks
- Syntactic Recognition
- Face Recognition

Introduction

Fig.1 Basic components of a pattern recognition system[8]

Introduction

- Data acquisition and sensing
- Pre-processing
 - Removal of noise in data.
 - Isolation of patterns of interest from the background.
- Feature extraction
 - Finding a new representation in terms of features.
 - (Better for further processing)

Introduction

Model learning and estimation

Learning a mapping between features and pattern groups.

Classification

 Using learned models to assign a pattern to a predefined category

Post-processing

- Evaluation of confidence in decisions.
- Exploitation of context to improve performances.

2D Matched Filter

Functionality

- Degrading the noise effect.
- Computing the similarity of two objects.
 (Template matching for images)

Functional block

Template image H*(-m,-n)

Algorithm description

Templates

0123456789

(a)

(b)

Template used for pattern matching: (a) 10 prototypes for the Korean plate numbers and (b) 30 prototypes for the Korean plate characters.

$$NCC_{ct} = \frac{\sum_{x=0}^{m-1} \sum_{y=0}^{n-1} (c - \overline{c}) (t - \overline{t})}{\sqrt{\sum_{x=0}^{m-1} \sum_{y=0}^{n-1} (c - \overline{c})^2 (t - \overline{t})^2}}$$
(5.1)

where NCC_{ct} is the correlation coefficient. The candidate plate character recognition process is based on the value of the correlation coefficient. If the value of the correlation coefficient execeeds a threshold set by the user, then the similarity measure is large enough and the input character can be assumed to present. Finally, a box on the target character

Processing example

Illustration of LP segmentation and alphanumeric characters recognition: (*a*) an LP image, (*b*) extracted candidate region, (*c*) equal-sized candidate alphanumeric characters and (*d*) candidate alphanumeric characters measuring the similarity by NCC.

Processing example

Illustration of LP segmentation and alphanumeric characters recognition: (*a*) an LP image, (*b*) extracted candidate region, (*c*) equal-sized candidate alphanumeric characters and (*d*) candidate alphanumeric characters measuring the similarity by NCC.

LI

Processing example

Illustration of LP segmentation and alphanumeric characters recognition: (a) an LP image, (b) extracted candidate region, (c) equal-sized candidate alphanumeric characters and (d) candidate alphanumeric characters measuring the similarity by NCC.

CHAIN CODE

Freeman Chain Code

- → Two processes include in this phase:
 - Boundary extraction: For image segmentation is performed by finding boundaries between objects
 - Steps are:
 - Mark potential edge points by finding discontinuities in features
 - Threshold the results
 - Merge edge segments into boundaries via edge linking

Character segmentation

Fig. 4. Boundary image and segmented character regions

Chain code derivation

- → The algorithm for extracting chain codes for 8-connected boundaries is as follows:
 - → Find the pixel in the object that has the leftmost value in the topmost row
 - → Define a variable dir = 7

Fig. 5. Direction numbers for (a) 4-directional and (b) 8-directional chain code

Cont.

- Traverse the 3x3 neighborhood of the current pixel in a counterclockwise direction
 - \rightarrow **Even**(0,2,4,6): dir + 7 % 8
 - → **Odd** (1,3,5,7): dir + 6 % 8

dir	0	1	2	3	4	5	6	7
$dir + 7 \pmod{8}$	7	0	1	2	3	4	5	6
$dir + 6 \pmod{8}$	6	7	0	1	2	3	4	5

First foreground pixel will be new boundary element. Stop when the current boundary element P_n is equal to the second element P_1 and the previous boundary pixel P_{n-1} is equal to first boundary element P_0

Fig. 7. The initial location and the direction to derive chain codes. And Fig. 8. the chain code extracted from the boundary image of character "C"

Cont.

Recognition

Character recognition has been done by using

- The list of chain codes derived for each character
- → Calculating the total number of each code direction contained in the list of chain code (how many orders coordinates observe is important part in the rate of recognition)
- → Total number of each code direction is used as a guide to recognize the characters

Eight-direction code vector

Fig. 6. Formation of closed region by eight-direction code vector : (a) eight-direction code vector , (b) pattern formation of closed region, and (c) no existed code vector

Image Registration

- What is Image Registration?
 - Aligning images correctly to make systems have
 - better performance.
- Misregistration between images
 - Translational differences
 - Scale differences
 - Rotational differences

Image Registration : Detecting Translational Parameter

- Spatial domain approach
 - -Normalized 2D matched filter
 - The highest output value is the best translational position.
- Frequency domain approach
 - -Phase correlation method

Image Registration : Detecting Translational Parameter

Phase correlation method

• $F_2(x, y) = F_1(x-x0, y-y0)$ F.T. $F_2(w_x, w_y) = F_1(w_x, w_y) \exp\{-i(w_xx0 + w_yy0)\}$

Cross-power spectrum

Image Registration: Detecting Scale and Rotational Parameter

Detecting rotational parameter

2 Representing in polar form

Image Registration: Detecting Scale and Rotational Parameter

Detecting scale parameter

$$F_2(x, y) = F_1(ax, by)$$
F.T.

Bayes Statistical Classifiers

- Consideration
 - Randomness of patterns
- Decision criterion

Pattern x is labeled as class w_i if

 L_{ij} : Misclassification loss function $p(\mathbf{x}/w_i)$: P.d.f. of a particular pattern x comes from class w_i $P(w_i)$: Probability of occurrence of class w_i

Bayes Statistical Classifiers

- Decision criterion :
 - Given L_{ii} is symmetrical function
 - Posterior probability decision rule

 $d_i(\mathbf{x})$: decision functions

Pattern x classifies to class j if $d_j(x)$ yields the largest value

Bayes Statistical Classifiers

Advantages

Optimization in minimizing the total avarage loss

in miscalssification.

Disadvantages

 $igoplus Both P(w_j)$ and $p(\mathbf{x}/w_j)$ must be known in advance.

Estimation is required.

Performance highly depends on the assumption of

Neural Networks

- What is Neural Networks?
 - Ideas stem from the operation of human neural
 - networks.
 - Networks of interconnected nonlinear computing
 - elements called nurons.

Neural Networks

Perceptron : two classes model

Fig.2 Structure of perceptron

Neural Networks : Multilayer Feedforward Neural Networks

Basic structure

Fig.3 Structure of multilayer feedforward neural networks

Neural Networks : Multilayer Feedforward Neural Networks

- Training algorithm: back propagation
 - Sigmoid activation function

Fig.4 Blowup of a neuron[1]

Neural Networks : Multilayer Feedforward Neural Networks

1. Initialization

Assigning an arbitrary set of weights throughout the network (not equally).

2. Iterative step

- **a.** Computing O_j for each node by using training vector, then generating the error terms for output δ_a , where
 - , r_{α} is the desired response.

32

b. Backward passing appropriate error signal is passed to each node and the corresponding weight changes are made.

Neural Networks

Decision surface complexity

Table2: Decision surface complexity of multilayer feedforward neural networks[1]

Network structure	Type of decision region	Solution to exclusive-OR problem	Classes with meshed regions	Most general decision surface shapes
Single layer	Single hyperplane	(ω_1) (ω_2) (ω_1)	ω_2 ω_1	
Two layers	Open or closed convex regions	(ω_1) (ω_2) (ω_1)	ω_2 ω_1	
Three layers	Arbitrary (complexity limited by the number of nodes)	(ω_1) (ω_2) (ω_2) (ω_1)	ω_2 ω_1	

Syntactic Recognition

- Concerning the structural relation.
- Patterns represent in combinations of primitives.

Fig.5 Conceptual diagram of syntactic recognition

Syntactic Recognition: String Case

- Input to the automata are unknown sentences
 - generated by the corresponding grammars
 - respectively.
 - The grammar G = (N, Σ, P, S)
 N is a finite set of variables called nonterminals,

C in N is collect the starting symbol

Σ is a finite set of constants called *terminals*, P is a set of rewriting rules called *productions*, and

Syntactic Recognition: String Case

An example

$$N=\{A,B,S\},\Sigma=\{a,b,c\}$$

$$P=\{S \rightarrow aA, A \rightarrow bA, A \rightarrow bB, B \rightarrow C\}$$

S→ aA→ abA→ abbA→ →abbbbbc

 $L(G)=\{ab^nc|n\geq 1\}$

Fig.6 An example of string language[1]

The finite automata $A_f = (Q, \Sigma, \delta, q_0, F)$ Q is a finite, nonempty set of states, Σ is a finite input alphabet, δ is a *mapping* from $Q \times \Sigma$ into the collection of all subsets of Q, q_0 is the starting state, and F is a set of final states.

A simple automaton

Fig.7 State machine of the automaton[1]

Invalid input string: bababbb Valid input string: aaabbbb

$$\begin{split} A_f &= (Q, \Sigma, \delta, q_0, F) \\ Q &= \{q_0, q_1, q_2\} \\ \Sigma &= \{a, b\} \\ F &= q_0 \\ \delta(q_0, a) &= \{q_2\} \\ \delta(q_0, b) &= \{q_1\} \\ \delta(q_1, a) &= \{q_2\} \\ \delta(q_1, b) &= \{q_0\} \\ \delta(q_2, a) &= \{q_0\} \\ \delta(q_2, b) &= \{q_1\} \end{split}$$

 Conversion between regular grammar and

corresponding automaton states.

$$G = (N, \Sigma, P, S)$$
 $Af = (Q, \Sigma, \delta, q_0, F)$ $X_0 \equiv S$ $Q = \{q_0, q_1, \dots, q_n, q_{n+1}\}$ $N = \{X_0 \sim X_n\}$

The mappings in δ are obtained by using the following two rules, for a in Σ , and each i and j, with $0 \le i \le n$, $0 \le j \le n$,

- 1.If $X_i \rightarrow aX_j$ is in P, then $\delta(q_i, a)$ contains q_j .
- 2.If $X_i \rightarrow a$ is in P, then $\delta(q_i, a)$ contains q_{n+1} .

- Grammars are not known in advance, we need
 - to learn the automata from sample patterns.
- An unknown grammar G and a finite sets of samples R+

```
h(z, R^+, k) = \{w \mid zw \text{ in } R^+, |w| \leq k\} \quad , z \text{ belongs to } \Sigma^* Q = \{q \mid q = h(z, R^+, k) \text{ for } z \text{ in } \Sigma^*\} \delta(q, a) = \{q' \text{ in } Q \mid q' = h(za, R^+, k), \text{ with } q = h(z, R^+, k)\} q_0 = h(\lambda, R^+, k) F = \{q \mid q \text{ in } Q, \lambda \text{ in } q\}
```

 An example of learning automaton structure

from a given sample set

$$R^{+} = \{a, ab, ab, b\} \{ (|k = 1, k), |w| \le 1 \}$$

$$= \{a\}$$

$$= q_{0}$$

$$z = a \qquad h(a, R^{+}, 1) = \{w \mid aw \text{ in } R^{+}, |w| \le 1 \}$$

$$= \{\lambda, b\}$$

$$= q_{1}$$

$$z = ab \qquad h(ab, R^{+}, 1) = \{w \mid abw \text{ in } R^{+}, |w| \le 1 \}$$

$$= \{\lambda, b\}$$

$$= q_{1}$$

$$z = abb \qquad h(abb, R^{+}, 1) = \{w \mid abbw \text{ in } R^{+}, |w| \le 1 \}$$

$$= \{\lambda\}$$

 λ is a empty string set

2 Obtaining mapping function

$$Q = \{q_0, q_1, q_2, q_3\}$$
, q3 denotes empty set state

$$h(\lambda,R+,1) = q0$$
, $z=\lambda$
 $\delta(q_0,a) = h(\lambda a,R^+,1) = h(a,R^+,1) = q_1$
 $\delta(q_0,b) = h(\lambda b,R^+,1) = h(b,R^+,1) = q_3$

$$h(a,R^+,1) = h(ab,R^+,1) = q_1$$

 $\delta(q_1,a) = h(aa,R^+,1) = h(aba,R^+,1) = q_3$

$$\delta(q_1,b) \supseteq h(ab,R^+,1) = q_1 \quad \delta(q_1,b) \supseteq h(abb,R^+,1) = q_2$$

 $\delta(q_1,b) = \{q_1,q_2\}$

$$\delta(q_2,a) = \delta(q_2,b) = \delta(q_3,a) = \delta(q_3,b) = q_3$$

3 Obtaining final state F

$$q1 = {\lambda, b}$$
 $q2 = {\lambda}$
F={q1, q2}

State diagram for the finite automaton

Fig.8 Graphic relation between k and $L[A_{t}(R^{+}, k + 1)]$

Face Recognition

- User-friendly pattern recognition application
- Weakness of face recognition
 - Illumination problems

Fig.9 Examples of illumination problems[9]

Face Recognition : Eigenspace-Based Approach

- Eigenspace-based approach
 - A holistic approach
 - Reducing the high dimensionality problem, and large computational complexity.

A face image of size 200x180

Face Recognition: Standard Eigenspace-Based Approach

- Standard Eigenspace-based approach
 - Given a set of training face images, computing

the eigenvectors of the distribution of face images within the entire image

space .(PCA

method)

Size of N²xM

Length of N²

 Γ_n : face vectors

Ψ : Mean vector

C : Covariance matrix of training set

M: Number of training face images

Face Recognition: Standard Eigenspace-Based Approach

C is too big! We can reduce the eigenvlue value problems from order of N²×N² to M×M

using the following analysis.

 v_i : eigenvectors of A^TA

 μ_i : eigenvalues of A^TA and C

Av_i: eigenvectors of C

Face Recognition: Standard Eigenspace-Based Approach

Fig.11 Mean face

Fig.10 Training set

Face Recognition: FLD Eigenspace-Based Approach

- Mathematical Expression
 - Selecting projection unitary vector \boldsymbol{u} s.t. $\Upsilon(\boldsymbol{u})$ to be maximized

 S_b : Measuring the separation between the individual class means respect to the global mean face

S_w: Measuring the separation between vectors of each class respect to their own class mean

Using Lagrange multiplier and set $\mathbf{u}^T S_w \mathbf{u} = 1$ be the constraint condition

: Generalized eigenvalue problem