Semaine du 07 Octobore - Planche nº 1

Exercice no 1:

(Question de cours) : Formule de binôme de Newton.

Exercice nº 2:

(Applications et dérivabilité) : Soit f une application de $\mathbb R$ dans $\mathbb R$ dérivable à l'envie.

- 1. Si f est paire, que peut-on dire de la parité de $f^{(n)}$ pour $n \in \mathbb{N}$?
- 2. Si f est impaire, que peut-on dire de la parité de $f^{(n)}$ pour $n \in \mathbb{N}$?
- 3. Si f est périodique, que peut-on dire de la périodicité de $f^{(n)}$ pour $n \in \mathbb{N}$?

Exercice no 3:

(Étude de fonctions) : On définit la fonction $f: x \in [0, \pi] \mapsto \sin^2(x) \sin(2x) \in \mathbb{R}$.

- 1. Déterminer le maximum de f sur $[0, \pi]$
- 2. Peut-on étendre cette fonction sur \mathbb{R} ? que se passe-t-il concernant le maximum?
- 3. En déduire que pour $x \in \mathbb{R}$ et $n \in \mathbb{N} \ge 1$,

$$\left| \prod_{k=0}^{n} \sin(2^{k} x) \right| \le \left(\frac{\sqrt{3}}{2} \right)^{n}$$

Semaine du 07 Octobre - Planche nº 2

Exercice no 1:

(Question de cours) : Formules d'addition pour cosinus, sinus et tangente. (Propriétés 23 et 24 chapitre 4)

Exercice nº 2:

(Application directe) : Montrer que la fonction définie par $f: x \in \mathbb{R} \mapsto 2xe^x$ induit une bijection de [0,1] sur un ensemble à déterminer.

Exercice no 3:

(Étude de fonctions) : Dans tout cet exercice, on cherche à étudier la fonction f définie par $f(x) = \frac{e^x}{(1+e^x)^2}$.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier la parité de f.
- 3. Calculer les limites de f aux bornes de son domaine de définition.
- 4. Dresser le tableau de variation de f.
- 5. Calculer l'équation de la tangente à la courbe représentative de f en son point d'abscisse $\ln 2$.
- 6. Démontrer que pour tout $x \in [0, +\infty[, -\frac{1}{3} \le f'(x) \le 0.$
- 7. En déduire que pour tout $x \in [0, +\infty[, -\frac{1}{3}x + \frac{1}{4} \le f(x)]$
- 8. Tracer dans un même repère la droite d'équation $y = -\frac{1}{3}x + \frac{1}{4}$ et la courbe représentative de la fonction f.

Semaine du 07 Octobore - Planche nº 3

Exercice no 1:

(Question de cours) : Propriétés de la bijection réciproque (Propriétés 20 et 21 chapitre 5)

Exercice nº 2:

(Application directe): Montrer que l'équation $x \ln x = 1$ admet une unique solution sur \mathbb{R}_+^* .

Exercice no 3:

(Étude de fonction): On pose pour cet exercice $f(x) = x \ln(x) + (1-x) \ln(1-x)$. On notera C_f la courbe représentative de la fonction f.

- 1. Donner le domaine de définition de la fonction f. Calculer ses limites aux bornes de ce domaine.
- 2. Que vaut f(1-x) pour $x \in \mathcal{D}_f$? Qu'est-ce que cette égalité traduit en terme de symétrie de \mathcal{C}_f ?
- 3. Étudier les variations de la fonction f.
- 4. Calculer $\lim_{x\to 0} f'(x)$ et $\lim_{x\to 1} f'(x)$. Que peut-on en déduire sur \mathcal{C}_f ?
- 5. Tracer une allure de C_f tenant compte de tous les calculs effectués jusqu'ici.
- 6. Déduire des questions précédentes la valeur minimale prise par l'expression $x^x(1-x)^{1-x}$ lorsque $x \in]0,1[$.