You must justify your answers to receive full credit.

- 1. Let V be a vector space over \mathbb{F} and $\sigma \in L(V, V)$. Let $\alpha \in V$ be an eigenvector of σ with eigenvalue λ .
 - a) Show that α is an eigenvector of σ^n with eigenvalue λ^n (for $n=1,2,\ldots$).

Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, for some $a_i \in \mathbb{F}$.

- b) Show that α is an eigenvector of $f(\sigma)$ with eigenvalue $f(\lambda)$.
- c) Show that, if $f(\sigma) = 0$ (zero function), then $f(\lambda) = 0$ (zero number).
- 2. Let $C^0(\mathbb{R})$ denote the vector space of continuous functions on \mathbb{R} . Consider $\sigma: C^0(\mathbb{R}) \to C^0(\mathbb{R})$ given by

$$\sigma(f)(x) = f''(x) + f(x) + f(0).$$

- a) Show that, for each n, the function $f(x) = \sin(nx)$ is an eigenvector of σ , and find its corresponding eigenvalue.
- b) Let $W = P_{<3}(\mathbb{R})$ be the subspace of polynomials with degree less than 3. Find three linearly independent eigenvectors of the restriction $\sigma|_W$. (Click here for a hint)
- 3. to be released later
- 4. to be released later

MATH 3407: Advanced Linear Algebra Page: 2 of 2 Homework 3, due 12:00 Wednesday, 20 March 2019 to Dr. Pang's mailbox

- 5. to be released later
- 6. Find, with explanation, all the possible Jordan forms of the following matrices:
 - a) The characteristic polynomial of A is $-(x-2)^3(x+7)^2$, and the minimal polynomial of A has degree 3.
 - b) The characteristic polynomial of B is $-(x-3)^5$, and $\ker(B-3I)$ is 3-dimensional.
 - c) The characteristic polynomial of C is $(x+2)^4(x-1)^2$, and $\ker(C+2I)^2$ is 3-dimensional.
- 7. to be released later
- 8. to be released later

Optional question If you attempted seriously all the above questions, then your scores for the following question may replace any lower scores for one of the above questions.

- 9. to be released later
- 10. to be released later

— END —