1. Дана квадратная матрица А порядка М. Начиная с первого элемента первой строки, вывести ее элементы следующим образом:

все элементы первого столбца; элементы последней строки, кроме первого (уже выведенного) элемента; оставшиеся элементы второго столбца; оставшиеся элементы предпоследней строки;

ит.д.;

последний элемент первой строки.

- 2. Дана целочисленная матрица размера $M \times N$. Найти номер первой из ее строк, содержащих равное количество положительных и отрицательных элементов (нулевые элементы матрицы не учитываются). Если таких строк нет, то вывести 0.
- 3. Элемент матрицы называется ее локальным минимумом, если он меньше всех окружающих его элементов. Заменить все локальные минимумы данной матрицы на нули. При решении допускается использовать вспомогательную матрицу.
- 4. Дана квадратная матрица A порядка M. Найти сумму элементов каждой ее диагонали, параллельной побочной (начиная с одноэлементной диагонали A_{11}).
- 5. Дана строка символов. Подсчитать число символов в наиболее длинной группе цифр, встречающейся в строке.
- 6. Дана строка, содержащая, по крайней мере, один символ пробела. Вывести подстроку, расположенную между первым и вторым пробелом исходной строки. Если строка содержит только один пробел, то вывести пустую строку.
- 7. Определить структуру для хранения угла в градусной мере: {градусы, минуты, секунды}. Написать функцию Grd_to_Rd(угол в градусной мере), переводящую угол из градусов, минут, секунд в радианы и функцию Rd_to_Grd(угол в радианной мере), выполняющую обратное преобразование. Используя эти функции, сложить два угла, заданных в градусах, минутах, секундах, и результат вывести на экран в таком же формате.
- 8. Массив записей с именем NOTE, содержит сведения о знакомых: {Фамилия Имя; Номер телефона; День рождения (массив из трёх чисел)}. Написать программу, обеспечивающую ввод с клавиатуры данных в массив NOTE и вывод на экран информации о человеке, номер телефона которого введен с клавиатуры. Если такого нет, выдать на дисплей соответствующее сообщение.
- 9. Дан файл F, записи которого есть целые числа, не равные нулю. Переписать его в текстовый файл, упорядочив значения по возрастанию.

10. Для хранения данных о ноутбуках описать структуру вида (при необходимости дополнив ее):

```
struct NOTEBOOK{
 struct disp res{ // разрешающая способность дисплея
         int x;
                 // по горизонтали
         int y;
                  // по вертикали
        };
                  // частота регенерации
 int f;
                  // размер диагонали дисплея
 float d;
                  // цена
 int price;
 char model[21];
                  // наименование
}
```

Написать функцию, которая читает данные о ноутбуках из файла **note.txt** (см. ниже) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, объем HDD которых больше 1 Гбайт, отсортированных в порядке возрастания размера диагонали дисплея.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

В файле note.txt находится текстовая информация о ноутбуках. Каждая строка содержит данные об одной модели. Данные в строке размещаются в следующих полях:

- 1:20 наименование модели;
- 21:24 цена в долларах (целое число);
- 26: 28 масса ноутбука в кг (число с десятичной точкой из четырех символов);
- 30 : 43 габаритные размеры ноутбука в дюймах (ВЫСОТАхДЛИНАхШИРИНА три числа с десятичной точкой (4 символа, включая точку, разделенные 'x');
- 44: 47 частота процессора в МГц (целое число из трех символов);
- 49: 50 максимальный объем ОЗУ в мегабайтах (целое число из двух символов);
- 52:55 размер диагонали дисплея в дюймах (число с десятичной точкой из четырех символов, включая точку);
- 57 размер видеопамяти в мегабайтах целое число из одного символа;
- 59:67 разрешающая способность дисплея в пикселах (два целых числа, разделенные 'x');
- 69:70 частота регенерации дисплея в Гц (целое число из двух символов);
- 72:76 объем HDD в гигабайтах (число с десятичной точкой из пяти символов.

Пример файла note.txt: (см. сл. стр. Можно скопировать в Блокнот и сохранить как note.txt)

Acer Note Light ASW ND5123T										1024x0768 1024x0768		
ARMNote TS80CD	3699	7.2	02.	0x11.	5x08.8	133	64	11.3	1	1024x0768	75	1.300
AST Ascentia P50	4499	7.5	02.	3x11.	3x09.0	133	40	11.3	1	0800x0600	70	0.774
BSI NP8657D	2605	8.0	02.	3x11.	8x09.3	133	40	11.3	1	1024x0768	60	0.810
BSI NP5265A	3765	8.2	02.	5x12.	0x09.0	150	32	12.1	2	1024x0768	70	1.300
Dell Xpi PIOOSD	3459	6.0	02.	3x11.	0x08.8	100	40	10.3	1	1024x0768	60	0.773
Digital HiNote	4799	4.0	01.	3x11.	0x08.8	120	40	10.4	1	0800x0600	56	1.000
Gateway Solo S5	4499	5.6	02.	0x11.	9x08.8	133	40	11.3	2	1024x0768	60	0.686
Hertz Z-Optima NB	3995	8.0	02.	3x11.	9x09.0	150	40	11.2	2	1024x0768	75	1.000
HP Omni Book 5500										1024x0768		
IBM ThinkPad 560										1024x0768		
NEC Versa 4080H	4780	6.6	02.	3x11.	8x09.5	120	48	10.4	1	0800x0600	70	0.776
Polywell Poly 500	3300	7.9	02.	3x11.	9x09.0	120	40	10.4	1	1024x0768	72	1.000
Samsung SENS 810	3667	8.7	02.	3x11.	5x09.5	100	32	11.4	2	1024x0768	75	0.773
Twinhead Slimnote	2965	7.4	02.	0x11.	5x08.0	075	64	10.4	1	1024x0768	70	0.772