

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO CURSO DE ENGENHARIA MECATRÔNICA

RELATÓRIO DA 06º EXPERIÊNCIA CONTROLE NO ESPAÇO DE ESTADOS: SEGUIDOR DE REFERÊNCIA

Turma B

Aluno 1 - Alexandre Luz Xavier da Costa - 2016007810

Aluno 2 - Anderson Henrique de Araújo Dias - 20160153697

Aluno 3 - Higo Bessa Magalhães - 20160153928

Aluno 4 - Jaime Cristalino Jales Dantas - 2016008362

CONTROLE NO ESPAÇO DE ESTADOS: SEGUIDOR DE REFERÊNCIA

Relatório final apresentado à disciplina Laboratorial de Sistemas de Controle, correspondente à avaliação da 3º unidade do semestre 2016.2 do 8º período dos cursos de Engenharia de Computação e Engenharia Mecatrônica da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN

LISTA DE ABREVIATURAS E SIGLAS

V Tensão

s Segundos

cm Centímetros

PV Variável de Processos

MV Variável Manipulada

MF Malha Fechada

SP Set-Point, Resposta Desejada

 K_p Constante Proporcional

e_{ss} Erro Atuante Estacionário

P Proporcional

Mn Máximo Sobre Sinal Percentual

Tp Tempo de Subida

Tp Tempo de Pico

Ts Tempo de Acomodação

Wn Frequência natural de oscilação

 ξ Coeficiente de amortecimento

EDO Equações Diferenciais Ordinais

LISTA DE FIGURAS

Figura 1 - Sistemas de tanques Quanser	6
Figura 2 - Sistema de Segunda Ordem	9
Figura 3 - Resposta ao Degrau.	10
Figura 4 - Diagrama de Bloco de Sistema de 2ª Ordem	12
Figura 5 - Diagrama de Blocos de um Sistema de 2ª Ordem com Controlador	12
Figura 6 - Representação gráfica de um sinal degrau	18
Figura 7 - Seleção do Seguidor de Referência para os Pólos	19
Figura 8 - Seleção do Seguidor de Referência para os Ganhos	19
Figura 9 - Interface de Leitura	20

SUMÁRIO

	<u>Pág.</u>
1 INTRODUÇÃO 2 REFERENCIAL TEÓRICO 2.1 Conceito	6 8 8
2.2 Sistemas Dinâmicos de 2ª Ordem	
2.3 Ações de Controle	
2.3.1. Controlador Proporcional (P)	13
2.4 Descrição por Variáveis de Estado	13
2.4.1. Estabilidade	13
2.4.2. Controlabilidade	14
2.4.3. Observabilidade	14
2.5 Sistema Discreto no Tempo	15
2.6 Seguidor de Referência para Entrada Degrau	15
3 METODOLOGIA 3.1 Software de Controle	18 18
3.1.1 Interface de Leitura	20
4 DESENVOLVIMENTO 5 CONCLUSÃO 6 REFERÊNCIAS	20 24 25

1 INTRODUÇÃO

O sistema de tanques da Quanser pode ser utilizado e controlado em até três configurações distintas. A configuração mais simplista foi usada na experiência I - Introdução ao Laboratório de Controle e na experiência II - Controle de Sistemas Dinâmicos: Sistema de Primeira Ordem.

Já para a segunda unidade da disciplina, a experiência III - Controle de Sistemas Dinâmicos: Sistema de Segunda Ordem e na experiência IV: Controle em Cascata, foi utilizada a configuração da Figura 1. Essa mesma configuração será utilizada na experiência final (Seguidor de Referência), onde o sistema terá o controle em malha fechada por meio do controlador do tipo P.

Figura 1 - Sistemas de tanques Quanser.

Fonte: Apostila da disciplina.

Um estudo de seguidores de referência pode ser feito didaticamente com o uso de tanques acoplados da Quanser que apresentam similaridades com aplicações reais, sendo possível aprender a desenvolver rotinas computacionais que se comuniquem com o sistema de tanques e seu simulador.

Um seguidor de referências é de grande relevância em processos industriais e em outros setores, uma vez que o sistema descrito por variáveis de estados tende a seguir uma determinada entrada, gerando erro zero.

Quando é realizado o projeto por alocação de polos todos os estados devem ser disponibilizados (medidos) para realizar o controle. Porém é possível que alguns estados não sejam acessíveis, ou seja, é inviável utilizar sensores para medir todos os estados.

Para esse experimento foi atualizado o software que vem sendo desenvolvido que faz um seguidor de referência de dois tanques acoplados da planta Quanser podendo esse

seguidor ser realizado no tanque 1 e no tanque 2, com a alimentação do sistema ocorrendo pelo tanque 1.

2 REFERENCIAL TEÓRICO

2.1 Conceito

Quando se trata de sistemas de controle de 2ª ordem, a definição de estabilidade requer atenção, uma vez que indica como um sistema irá agir de acordo com um sinal de entrada. Um sistema de controle de qualidade deve garantir que o processo tenderá a um valor estável e finito, dessa forma o sistema estará prevenido de uma saída que possa causar danos ou que nunca chega a um de SP.

Diz-se que um sistema é estável quando sua saída é prevista para toda e qualquer entrada limitada. Outro ponto importante é o erro atuante estacionário, isto é, dada uma entrada do tipo degrau o erro atuante estacionário é a diferença entre o SP e o sinal realimentado. Muitas vezes o sinal realimentado é o próprio valor de saída, devido a sensores que possuem função de transferência de valor unitário.

$$e_{ss} = \frac{1}{1 + G(0) * H(0)}$$

Onde G(0)*H(0) determina o valor do erro atuante estacionário. Portanto, para uma entrada do tipo degrau, haverá um valor de erro que diminuirá a medida que o valor de G(0)*H(0) aumenta, isso pode ser realizado aplicando um ganho constante na entrada do sistema. Quanto maior o valor do ganho, menor o valor do e_{ss} .

2.2 Sistemas Dinâmicos de 2ª Ordem

A análise de sistemas de controle é dada pelas de equações que descrevam o comportamento dinâmico desses sistemas ao longo do tempo. Em casos de sistemas lineares invariantes no tempo, é conveniente utilizar a função de transferência do sistema, onde esta é uma relação entre a função resposta e função excitação, com condições iniciais iguais a zero.

A ordem de um sistema dinâmico é definida pela potência do denominador, ou seja, se a maior potência de s no denominador for 1, o sistema é de primeira ordem. Se a 8 potência de s for n, o sistema será de n-ésima ordem. Além disso, a função de transferência é uma propriedade independente da entrada ou função de excitação e não guarda qualquer característica física do sistema, o que dá certa flexibilidade ao mesmo, fazendo com que possa ser utilizada em diversos sistemas.

Considere a seguinte equação diferencial de segunda ordem:

$$ac(t) + bc(t) + dc(t) = er(t)$$

Definido:

$$\frac{a}{b} = b\xi w_n$$
 ; $\frac{d}{a} = w_n^2$; $\frac{e}{a} = k$

Aplicando Laplace com condições iniciais nulas:

$$\frac{C(s)}{R(s)} = \frac{k}{s^2 + 2\xi w_n + w_n^2}$$

Admitindo $k = w_n^2$

Figura 2 - Sistema de Segunda Ordem

Fonte: OGATA, 2003.

Observa-se que a função de transferência de malha fechada de um sistema de controle de segunda ordem tem a forma:

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2\xi w_n + w_n^2}$$

Tem-se os polos $s^2 + 2\xi w_n + w_n^2 = 0$

Isolando *S* tem-se que as raízes da equação característica, ou polos da relação de controle são:

$$S_{1,2} = -\xi w_n \pm w_n \sqrt{\xi^2 - 1}$$

Onde ξ é o fator de amortecimento, W_n é a frequência natural (frequência de oscilação do sistema sem amortecimento) e K é o ganho do sistema, tem-se:

$$C(\ddot{t}) + 2W_n\xi c(\dot{t}) + W_nd(t) = kr(t)$$

Os parâmetros de ξ e W_n são muito importantes na caracterização da resposta de um sistema de segunda ordem.

Sabendo que ωd é a frequência do sistema e é dado por:

$$W_d = W_n \sqrt{1 - \xi^2}$$

Algumas observações podem ser feitas a respeito de ξ

Quando $\xi=\mathbf{0}$ não há amortecimento. Nesse caso $W_d=W_n$ e a resposta oscila com frequência natural W_n .

Quando $\mathbf{0} < \xi < 1$ a oscilação vai sendo gradativamente amortecida, caracterizando assim o SOBREAMORTECIMENTO.

Quando $\xi = \mathbf{1}$ ocorre a transição para o desaparecimento da oscilação e tem-se assim o AMORTECIMENTO CRITICO.

Quando $\xi > 1$ não ocorre oscilação na resposta, caracterizando o SUPERAMORTECIMENTO.

A fim de analisar a resposta transitória para um sistema de controle de 2ª ordem com entrada degrau ilustrada, tem-se as observações:

Figura 3 - Resposta ao Degrau.

Fonte: OGATA, 2003.

Onde:

 M_p- SOBRE-SINAL PERCENTUAL, é o máximo valor de pico da curva de resposta, medido a partir do valor unitário. Influenciado apenas por ξ .

$$M_p(\%) = 100e^{-\frac{\xi \pi}{\sqrt{1-\xi^2}}}$$

 t_r – TEMPO DE SUBIDA, é o tempo para a resposta passar de 0% a 100% do seu valor final.

$$t_r = \frac{\pi - \beta}{W_d}$$

Onde
$$\beta = tg^{-1} \, {\sqrt{1-\xi^2} \over \xi}$$

 t_p – TEMPO DE PICO, é instante de tempo em que a resposta atinge o primeiro pico do sobre-sinal.

$$t_p = \frac{\pi}{W_d}$$

 t_s – TEMPO DE ACOMODAÇÃO, é o tempo necessário para a curva de resposta alcançar e permanecer dentro de uma faixa em torno do valor final. Faixa de acomodação de $\pm 2\%$ e $\pm 5\%$ são os valores usuais para o tempo de acomodação, nesse experimento além desses valores, será abordado também $\pm 7\%$ e $\pm 10\%$.

$$t_S=rac{4}{W_n\xi}$$
, para o critério de 2%. $t_S=rac{3}{W_n\xi}$, para o critério de 5%.

2.3 Ações de Controle

Quando em sistema realimentado, ações de controles são implementadas em controladores, fazendo com que a saída do processo seja mais próxima do valor desejado SP que é previamente definido.

Ao comparar a saída com o SP obtêm-se um erro que pode ser utilizado em várias ações de controle, onde cabe ao engenheiro escolher a melhor para cada aplicação.

As ações de controle mais implementadas em controladores industriais são: proporcional, integral, derivativa e combinações destas três. Para o melhor entendimento destas ações, será utilizado um sistema de 2ª ordem, esquematizado de acordo com a figura abaixo:

Figura 4 - Diagrama de Bloco de Sistema de 2ª Ordem

Fonte: OGATA, 2003.

Onde:

$$E(s) = SP - Y(s)$$

$$Y(s) = G(s) * E(s)$$

Aplicar o sinal de erro à entrada do sistema implica que foi imposta uma ação de controle ao sistema do tipo proporcional com ganho $k_p=1$, o que implica:

Figura 5 - Diagrama de Blocos de um Sistema de 2ª Ordem com Controlador

Fonte: OGATA, 2003.

2.3.1. Controlador Proporcional (P)

Para um controlador proporcional, a relação entre sinal de saída M(s) e erro que atua E(s) é dada por:

$$M(s) = K_p * E(s)$$

O controle proporcional pode ser visto como uma relação proporcional entre K_p e o ganho ajustável, isso é, com o aumento do valor do K_p o erro enviado ao sistema é amplificado, consequentemente o erro de regime diminui. Entretanto, diminuir o erro de regime não significa que será eliminado. Para que isso ocorra, o valor do K_p deve ser muito alto, o que pode levar o sistema se fragilizar no que diz respeito à estabilidade.

2.4 Descrição por Variáveis de Estado

A descrição de um sistema por variáveis de estado é aplicável a sistemas de múltiplas entradas e múltiplas saídas, que podem ser lineares ou não-lineares, variantes ou invariantes no tempo e com condições iniciais não-nulas.

O estado de um sistema no instante t_0 é a quantidade de informação naquele instante que, junto à entrada u(t) em $t \ge t_0$, determina o comportamento do sistema para todo $t \ge t_0$. O sistema pode ser descrito da seguinte forma:

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$
 (equação de estado)
 $y(t) = \mathbf{C}x(t) + \mathbf{D}u(t)$ (equação de saída)

2.4.1. Estabilidade

Teorema: Um sistema é estável se quando u(t)=0, para todo x(0), temos que $\lim_{n\to\infty}x(t)=0$.

Outra forma de verificar a estabilidade é conferindo se todos os autovalores da matriz **A** apresentam parte real negativa.

Corolário: Um sistema é estável se todos os autovalores da matriz **A** apresentam parte real negativa.

Para o caso de um sistema discreto, considerando:

$$x(K+1) = ax(K)$$
$$x(K) = a^k x(0)$$

O sistema discreto, é estável se todos os autovalores de G estão dentro do círculo unitário.

2.4.2. Controlabilidade

Para o sistema (**A**, **B**, **C**, **D**), pode-se definir que este sistema será controlável se sempre existe um sinal de controle u(t) que leve o sistema de um estado inicial x(0) para qualquer outro estado desejado, x(t).

Definindo a matriz de Controlabilidade W_c para um sistema discreto com (**G**, **H**, **C**, **D**):

$$W_c = [\mathbf{H} \quad \mathbf{G}\mathbf{H} \quad \mathbf{G}^2\mathbf{H} \quad \cdots \quad \mathbf{G}^{n-1}\mathbf{H}]$$

É possível determinar a controlabilidade do sistema ao se examinar o posto(Rank) da matriz, sendo o posto o número de linhas (ou de colunas) linearmente independentes desta matriz. Para uma matriz quadrada, pode-se inferir a controlabilidade do sistema apenas examinando o determinante da matriz, caso ele seja diferente de zero o sistema é dito controlável.

2.4.3. Observabilidade

Definição: O sistema (**A**, **B**, **C**, **D**) é observável se para todo x(0), o conhecimento da entrada u(t)e da saída y(t) em um tempo finito é suficiente para determinar x(t).

Teorema: O sistema (**A**, **B**, **C**, **D**) é observável se e somente se o posto da matriz de observabilidade $V = [C CA CA^2 ... CA^{n-1}]$ igual a n.

Para o caso de um sistema discreto com matrizes (\mathbf{G} , \mathbf{H} , \mathbf{C} , \mathbf{D}), é observável se o posto (Rank) da matriz de observabilidade W_0 for igual a n.

$$W_0 = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{G} \\ \vdots \\ \mathbf{C}^{n-1} \end{bmatrix}$$

2.5 Sistema Discreto no Tempo

Considere um sistema discreto linear e invariante no tempo descrito em variáveis de estado:

$$X(k+1) = GX(k) + Hu(k)$$

$$Y(k) = \mathbf{C}X(k) + \mathbf{D}u(k)$$

A representação no domínio discreto pode ser obtida a partir da representação contínua. Fazendo-se

$$G(T) = e^{AT}$$

$$\boldsymbol{H}(T) = \int_0^T e^{At} \boldsymbol{B} dt = \left(\int_0^T e^{At} dt \right) * \boldsymbol{B}$$

2.6 Seguidor de Referência para Entrada Degrau

O projeto de Seguidores de referência tem como base o princípio do Modelo Interno. Este princípio diz que a saída do sistema deve seguir com perfeição uma entrada, que pode variar de diferentes formas. Para isso, o sistema deverá ser capaz de gerar internamente a entrada aplicada.

Dado o sistema:
$$\begin{cases} x(k+1) = Gx(k) + Hu(k) \\ y(k) = Cx(k) \end{cases}$$

$$v(k) = v(k-1) + r(k) - y(k)$$

E um sinal do tipo: e(k) = r(k) - y(k)

Seja:
$$u(k) = -k_2 x(k) + k_1 v(k)$$

Tem-se:

$$\begin{split} u(k+1) = & -k_2 x(k+1) + k_1 v(k+1) \\ \Leftrightarrow \\ u(k+1) = & (k_2 - k_2 \textbf{G} - k_1 \textbf{C} \textbf{G}) x(k) + (1 - k_2 \textbf{H} - k_1 \textbf{C} \textbf{H}) u(k) + k_1 r(k+1) \end{split}$$

Logo:

$$\begin{bmatrix} x(k+1) \\ u(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{H} \\ k_2 - k_2 \mathbf{G}_2 - k_1 \mathbf{C} \mathbf{G} & 1 - k_2 \mathbf{H} - k_1 \mathbf{C} \mathbf{H} \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} + \begin{bmatrix} 0 \\ k_1 \end{bmatrix} r(k+1)$$

$$y(k) = \begin{bmatrix} \mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix}$$

Se os autovalores da matriz acima forem "estáveis":

$$v(k) = v(k+1)$$

Quando $k \rightarrow \infty$ e

$$v(\infty) = v(\infty) + r - y(\infty)$$

Considerando *r* degrau e definindo:

$$x_e(k) = x(k) - x(\infty)$$

$$u_e(k) = u(k) - u(\infty)$$

Tem-se:

$$\begin{bmatrix} x_e(k+1) \\ u_e(k+1) \end{bmatrix} = \begin{bmatrix} \boldsymbol{G} & \boldsymbol{H} \\ k_2 - k_2 \boldsymbol{G}_2 - k_1 \boldsymbol{C} \boldsymbol{G} & 1 - k_2 \boldsymbol{H} - k_1 \boldsymbol{C} \boldsymbol{H} \end{bmatrix} \begin{bmatrix} x_e(k) \\ u_e(k) \end{bmatrix}$$

Definindo:

$$w(k) = [k_2 - k_2 G_2 - k_1 CG \quad 1 - k_2 H - k_1 CH] \begin{bmatrix} x_e(k) \\ u_e(k) \end{bmatrix}$$

Tem-se:

$$\begin{bmatrix} x_e(k+1) \\ u_e(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{H} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_e(k) \\ u_e(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w(k)$$

$$\xi(k+1) = \widehat{\mathbf{G}}\xi(k) + \widehat{\mathbf{H}}w(k)$$

Usando realimentação de estados: $w(k) = -\hat{\mathbf{K}}\xi(k)$

Usando a Fórmula de Ackermmann: $\hat{\mathbf{K}} = [0 \quad \cdots \quad 1]W_c^{-1}q_c(\hat{\mathbf{G}})$

$$\begin{bmatrix} k_2 & k_1 \end{bmatrix} = \begin{bmatrix} \widehat{\mathbf{K}} + (0|1) \end{bmatrix} \begin{bmatrix} \mathbf{G} - \mathbf{I} & \mathbf{H} \\ \mathbf{C}\mathbf{G} & \mathbf{C}\mathbf{H} \end{bmatrix}^{-1}$$

2.3 Sistema de Tanques Acoplados Quanser

Com o uso de um computador e uma placa de aquisição de dados pode ocorrer o controle dos níveis dos tanques acoplados em laboratório, de modo que o computador enviasse sinais elétricos ao modulo de potência, que por sua vez multiplica a tensão por uma variável acionando a bomba.

Os componentes deste sistema de tanques são:

- I. 2 Tanques acoplados da Quanser
- II. 2 Sensores de nível
- III. 1 Bomba
- IV. 1 Reservatório
- V. Módulo de potência VoltPAQ-X1
- VI. Placa de aquisição de dados MultQ da Quanser
- VII. Computador

2.4 Sinais de Entrada na Planta

Dentre os sinais utilizados nos experimentos anteriores para o controle da planta temos: sinal senoidal, quadrado, degrau, tipo dente de serra e aleatório. Entretanto, para o experimento referente a este relatório utilizou-se apenas o sinal degrau como entrada. O motivo para se usar apenas esse sinal é que na prática se usa apenas o degrau como sinal de controle devido a sua estabilidade e melhor manipulação.

Os outros sinais utilizados anteriormente foram apenas de caráter ilustrativo, para mostrar o comportamento da planta com um sinal que mais se assemelhava as formas de ondas senoidais, quadradas, tipo dente de serra e aleatória.

Figura 6 - Representação gráfica de um sinal degrau.

Fonte: OGATA, 2003.

3 METODOLOGIA

Neste momento, o projeto se adaptou ao desenvolvimento do seguidor de referência. Em sua interface gráfica o usuário terá esta nova opção de "seguidor de referências" para utilizar, de forma que o software receba os parâmetros dos pólos desejados e plote em tempo real a resposta da planta.

As principais alterações para elaboração deste experimento foram:

- I. Nova seleção para seguidor de referência pelo usuário;
- II. Campo para o preenchimento dos pólos desejados e/ou ganhos no uso do seguidor de referência.

3.1 Software de Controle

São solicitados parâmetros ao usuário em busca de um funcionamento aprimorado, estas variáveis e suas alterações no sistema são plotados em gráficos no software:

Figura 7 - Seleção do Seguidor de Referência para os Pólos.

Fonte: Software Desenvolvido.

Figura 8 - Seleção do Seguidor de Referência para os Ganhos.

Fonte: Software Desenvolvido.

O relatório conta com os dados, gráficos e parâmetros inseridos que seguem em anexo neste relatório, podendo ser visto em detalhe os valores obtidos.

3.1.1 Interface de Leitura

O usuário acompanha os gráficos de níveis, como também a tensão gerada na bomba e o SP.

Figura 9 - Interface de Leitura

Fonte: Software Desenvolvido.

4 DESENVOLVIMENTO

Conhecendo-se as EDOs que descrevem as dinâmicas dos tanques 1 e 2:

$$\dot{L}_1 = -\frac{a_1}{A_1} * \sqrt{\frac{g}{2L_{10}}} * L_1 + \frac{K_m}{A_1} V_p$$

E

$$\dot{L}_2 = \frac{a_2}{A_2} * \sqrt{\frac{g}{2L_{20}}} * L_2 + \frac{a_1}{A_2} * \sqrt{\frac{g}{2L_{10}}} * L_1$$

Onde:

•
$$A_1 = A_2 = 15,5179;$$

•
$$L_{20} = 15$$
; $L_{10} = \frac{a_2^2}{a_1^2} * L_{20}$;

- $a_1 = 0,17813919765$;
- $a_2 = a_1$ (Orifico Médio);
- $g = 980 \ cm/s^2$;

Foi encontrada a seguinte representação em espaço de estados onde $L_1\ e\ L_2$:

$$\dot{X}(t) = AX(t) + Bu(t)$$

$$\begin{bmatrix} \dot{L_1} \\ \dot{L_2} \end{bmatrix} = \begin{bmatrix} \frac{a_1}{A_1} * \sqrt{\frac{g}{2L_{10}}} & 0 \\ \frac{a_1}{A_2} * \sqrt{\frac{g}{2L_{10}}} & -\frac{a_2}{A_1} * \sqrt{\frac{g}{2L_{20}}} \end{bmatrix} * \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} + \begin{bmatrix} \frac{K_m}{A_1} \\ 0 \end{bmatrix} * V_p$$

Onde

$$A = \begin{bmatrix} -0.0656 & 0\\ 0.0656 & -0.0656 \end{bmatrix}$$

$$\begin{bmatrix} \dot{L_1} \\ \dot{L_2} \end{bmatrix} = \begin{bmatrix} e^{-0.0656t} & 0 \\ (0.0656t)(-0.0656^t) & e^{-0.0656t} \end{bmatrix}$$

A representação no domínio discreto pode ser obtida a partir da representação contínua fazendo-se:

$$G(T) = e^{AT}$$

$$H(T) = \int_0^T e^{AT} B dt = \left(\int_0^T e^{AT} dt \right) B$$

Logo,

$$\mathbf{G}(T) = \begin{bmatrix} 0.9935 & 0\\ 0.0065 & 0.9935 \end{bmatrix}$$

$$\boldsymbol{H}(T) = \begin{bmatrix} 0.0295 \\ 0.0001 \end{bmatrix}$$

A partir dos polos $-0.5 \pm 0.5j$ pode-se calcular a matriz L da seguinte forma:

 $L = q_1(G)W_0^{-1}[0\ 0\ ...\ 1]^T$

$$\Delta(s) = (s + 0.5 + 0.5j)(s + 0.5 - 0.5j)$$

$$\Delta(s) = s^{2} + s + 0.5$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$q_{l}(\mathbf{G}) = \mathbf{G}^{2} + \mathbf{G} + 0.5\mathbf{I}$$

$$q_{l}(\mathbf{G}) = \begin{bmatrix} 2.4804 & 0 \\ 0.0195 & 2.4804 \end{bmatrix}$$

$$W_{0} = \begin{bmatrix} 0 & 1 \\ 0.0065 & 0.9935 \end{bmatrix}$$

$$W_{0}^{-1} = \begin{bmatrix} -152.3350 & 153.3382 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 380.3423 \\ 2.9869 \end{bmatrix}$$

Já para os polos solicitados $P_1=0.9048$; $P_2=0.9920$; $P_3=0.9980$ seguem os devidos cálculos

$$\mathbf{G} = \begin{bmatrix} 0.9935 & 0\\ 0.0065 & 0.9935 \end{bmatrix}$$

Para a matriz aumentada de G:

$$G_a = \begin{bmatrix} G & H \\ 0 & 0 \end{bmatrix}$$

Onde,

$$\mathbf{H} = \begin{bmatrix} 0.0295 \\ 0.0001 \end{bmatrix}$$

Logo,

$$\boldsymbol{G}_a = \begin{bmatrix} 0.9935 & 0 & 0.0295 \\ 0.0065 & 0.9935 & 0.0001 \\ 0 & 0 & 0 \end{bmatrix}$$

Tem-se que W_c é dado por:

$$W_c = \begin{bmatrix} \mathbf{H}_a & \mathbf{G}_a \mathbf{H}_a & \mathbf{G}_a^2 \mathbf{H}_a \end{bmatrix}$$

Onde,

$$H_a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Tem-se a seguinte matriz W_c :

$$W_c = \begin{bmatrix} 0 & 0.0295 & 0.0293 \\ 0 & 0.0001 & 0.0003 \\ 1 & 0 & 0 \end{bmatrix}$$

Dessa forma, o valor de W_c^{-1} é:

$$W_c^{-1} = 10^3 \begin{bmatrix} 0 & 0 & 0.0293 \\ 0.0509 & -5.1634 & 0.0003 \\ -0.0171 & 5.1974 & 0 \end{bmatrix}$$

Sabendo que $q(G_a)$ é dado por:

$$q(\mathbf{G}_a) = \mathbf{G}_a^3 - (P_1 + P_2 + P_3)\mathbf{G}_a^2 + (P_1P_2 + P_3P_1 + P_2P_3)\mathbf{G}_a - P_1P_2P_3I$$
Por fim,

$$K_a = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} W_c^{-1} q(\mathbf{G_a})$$
 $K_a = \begin{bmatrix} -0.0095 & -0.0031 & -0.9079 \end{bmatrix}$
 $\begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 3.1167 & 1.6642 & 0.0079 \end{bmatrix}$

5 CONCLUSÃO

Os testes em anexo foram realizados com o sinal de entrada Degrau para o sistema em malha fechada, sendo selecionada a opção em software de seguidor de referências. Com o uso dos parâmetros indicados pelo docente da disciplina P_1 , P_2 e P_3 nota-se o comportamento da malha em busca da referência locada, aproximando-se dos valores ideais aqui calculados.

Demonstrando, portanto, a correta empregabilidade do seguidor de referência junto ao software desenvolvido durante a disciplina e que seu uso pode ser de grande valia na indústria, tendo na referência o melhor funcionamento, segurança e desempenho do sistema.

6 REFERÊNCIAS

OGATA, K.: Engenharia de Controle Moderno { 4o Edição, 2003,

Prentice-Hall. (OGATA, 2003).

BAZANELLA, A.S. e SILVA JR, J.M.G. Sistemas de Controle: Princípios e Métodos de Projeto. Editora UFRGS, 2005.

APOSTILA DA DISCIPLINA DCA0206

http://www.dca.ufrn.br/~meneghet/FTP/Controle/scv20071.pdf

Capa De Anexos

Obs: Seguem aqui os relatórios gerados via software para todos os parâmetros inseridos pelo usuário.