ELECTRICAL, CONTROLS, INSTRUMENTATION RICKY NGUYEN'S KNOWLEDGE BANK

EC&I Knowledge Encyclopedia

Changed by:	Date	Comment
Ricky N.	16/07/2022	

Contents

L	υQ	Subjects	3
	1.1	CSSE2002 - Java Language	3
	1.2	CSSE2010 - Embedded Programming	4
	1.3	CSSE2310 - C Language	5
	1.4	CSSE3010 - Advanced Embedded	6
	1.5	MATH1051 - Linear Calculus	7
	1.6	MATH2001 - Advanced Calculus	8
	1.7	MATH2010 - Partial Differential Equations	9
	1.8	STAT2202 - Advanced Statistics	10
	1.9	ELEC2003 - Electronics & Circuits Pt.1	11
	1.10	ELEC2004 - Electronics & Circuits Pt.2	12
		1.10.1 LEC01: Capacitors and Inductors, RL and RC Circuits	12
	1.11	ELEC3100 - Advanced Electrical Theory	13
	1.12	ELEC3300 - Motors & Electrical Energy	14
	1.13	ELEC3400 - Amplifiers & Electronics	15
	1.14	ELEC4300 - Power System Analysis	16
	1.15	ELEC4302 - Power System Protection	17
	1.16	ELEC4620 - Signal Processing	18
	1.17	ELEC4630 - Image Processing	19
	1.18	ENGG4800 - Project Management	20
	1 19	METR4201 - Control System Analysis	21

List of Figures

List of Tables

1 UQ Subjects

This chapter goes through the UQ courses that was undertaken from 2016-2019. The format will be as follows, for each section, where possible:

- 1. Lecture notes (Use "LEC##: TITLE HERE" for each heading)
- 2. Tutorial questions (Use "TUT##: TITLE HERE" for each heading)
- 3. Summary of all equations used (Use "EQU##: TITLE HERE" for each heading)
- 4. References & other helping material (Use "REF##: TITLE HERE" for each heading)
- 5. Australian Standards (Use "STD##: TITLE HERE" for each heading)

In terms of text colour and highlights, the format will be as follows where possible:

- 1. Black = normal text
- 2. Red = Important
- 3. Blue = Equation & Weblinks

1.1 CSSE2002 - Java Language

1.2 CSSE2010 - Embedded Programming

1.3 CSSE2310 - C Language

1.4 CSSE3010 - Advanced Embedded

1.5 MATH1051 - Linear Calculus

1.6 MATH2001 - Advanced Calculus

1.7 MATH2010 - Partial Differential Equations

$1.8 \quad {\rm STAT2202} \ \hbox{--} \ {\rm Advanced} \ {\rm Statistics}$

1.9 ELEC2003 - Electronics & Circuits Pt.1

1.10 ELEC2004 - Electronics & Circuits Pt.2

1.10.1 LEC01: Capacitors and Inductors, RL and RC Circuits

CAPACITORS

Capacitors and inductors are linear circuit elements that can store electrical energy. The ideal capacitor stores energy in the form of charge.

$$C = \frac{\epsilon A}{d} \tag{1}$$

Where:

- C = capacitance in Farads (F)
- A = conductor plates area (both top and bottom) (mm^2)
- ϵ = dielectric of permittivity (constant)
- d = plate separation distance (m)

$$Q = CV (2)$$

Where:

- Q = stored charge
- C = capacitance(F)
- V = applied voltage (V)

In DC, a capacitor is effectively an open circuit; when a steady voltage is applied. When the voltage changes, the stored charge changes also as per equation (2) by taking the derivative. Thus,

$$i(t) = \frac{dq(t)}{dt} = C\frac{dv(t)}{dt} \tag{3}$$

Energy storage in capacitors is calculated by integrating the instantaneous power P(t). Thus,

$$P(t) = v(t)i(t) = Cv(t)\frac{dv(t)}{dt}$$
(4)

Integrating the instanteous power:

$$W(t) = \frac{1}{2}Cv^2(t) \tag{5}$$

Capacitors can be combined in series and in parallel to yield a single equivalent capacitance. Note: the behaviour of equivalent capacitance is the opposite of resistors. Series:

$$C_{EQ} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_1} + \frac{1}{C_1} \dots} \tag{6}$$

Parallel:

$$C_{EQ} = C_1 + C_2 + C_3... (7)$$

$1.11\quad \textbf{ELEC3100 - Advanced Electrical Theory}$

 $1.12\quad {\tt ELEC3300 - Motors \& Electrical \ Energy}$

1.13 ELEC3400 - Amplifiers & Electronics

1.14 ELEC4300 - Power System Analysis

$1.15\quad {\bf ELEC4302 \text{ - Power System Protection}}$

1.16 ELEC4620 - Signal Processing

1.17 ELEC4630 - Image Processing

${\bf 1.18}\quad {\bf ENGG4800 \text{ - Project Management}}$

1.19 METR4201 - Control System Analysis