회귀분서 개요

대표적인 상태를 토대로 미래의 어떤 결과를 예측하는 분석

#01. 회귀분석(Regression Analysis)의 이해

1. 회귀분석의 의미

하나나 그 이상의 독립변수들이 종속변수에 미치는 영향을 추정할 수 있는 통계기법

규명된 함수식을 이용해 설명 변수들의 변화로부터 종속변수의 변화를 예측하는 분석

독립변수 X(설명변수)에 대하여 종속변수 Y(반응변수)들 사이의 관계를 수학적 모형을 이용해 규명하는 것.

y=f(x)\$ 일 때, 함수 f\$를 규명하여 독립적인 값 x\$에 따라 y\$가 어떻게 변화하는지를 예측하는 것

변수들 사이의 인과 관계를 밝히고 모형을 적합하여 관심있는 변수를 예측하거나 추론하기 위한 분석방법.

2. 회귀분석의 변수

영향을 받는 변수 (y)

반응변수, 종속변수, 결과 변수

영향을 주는 변수 (x)

설명변수, 독립변수, 예측변수

#02. 회귀분석 예시

키에 따른 몸무게

X-axis: Height (inches)

\$Weight = a + b\times Heights\$

변수	내용	
Wiehgt	Height에 따라 결정되므로 종속변수	
Height	Weight를 결정하는 요인이 되므로 독립변수	
b	기울기(선의 경사도). 기울기 크기가 클 수록 선이 더 경사지고 변화율이 더 커진다	
а	절편 (선과 y축이 교차하는 위치)	

#03. 회귀분석의 조건

조건	설명	
선형성	입력변수와 출력변수의 관계가 선형이다. (선형회귀 분석에서 가장 중요한 가정)	
등분산성	오차의 분산이 입력 변수와 무관하게 일정하다.	
정규성	오차의 분포가 정규분포를 따른다. Q-Q Plot, Kolmogolov-Smirnov 검정, Shapiro-Wilk 검정 등을 활용해 정규성을 확인	
독립성	입력 변수와 오차는 관련이 없다. 자기상관 (독립성을 알아보기 위해 Durbin-Watson 통계량을 사용)	

#04. 회귀분석 종류

종류		모형
단순회귀	$Y = \beta_0 + \beta_1 X + \varepsilon$	독립변수가 1개이며 종속변수와의 관계가 직선
다중회귀	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_k X_k + \varepsilon$	독립변수가 k개이며 종속변수와의 관계가 선형 (1차 함수)
로지스틱 회귀	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_k X_k + \varepsilon$	종속변수가 범주형(2진변수)인 경우에 적용되며, 단순 로지스틱 회귀 및 다중, 다항 로지스틱 회귀로 확장할 수 있음
다항회귀	K=2이고 2차 함수인 경우 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 + \varepsilon$	독립변수와 종속변수와의 관계가 1차 함수 이상인 관계(단 k=1이면 2차 함수 이상)
곡선회귀	2차 곡선인 경우 $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$ 3차 곡선인 경우 $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$	독립변수가 1개이며 종속변수와의 관계가 곡선
비선형회귀	$Y = \alpha e^{-\beta X} + \varepsilon$	회귀식의 모양이 미지의 모수들의 선형관계로 이뤄져 있지 않은 모형

#05. 회귀분석의 검정

- 1. 예측변수(회귀계수)들이 유의미한가?
- 각 독립변수(\$x\$)의 회귀계수(\$b\$)가 유의한가?
- t-검정을 사용
- 해당 계수의 t 통계량의 p=값이 0.05보다 작으면 해당 회귀계수가 통계적으로 유의하다고 볼 수 있다.
- 2. 모형이 얼마나 설명력을 갖느가?
- 만들어진 회귀모형(예측모형)이 유의한가?
- 주어진 모든 변수들이 함께 어느 정도 예측변수의 변랴을 설명(예측)하는가?
- 결정계수(\$R^2\$)를 확인한다. 결정계수는 0~1 값을 가지며, 높은 값을 가질수록 추정된 회귀식의 설명력이 높다.
- 3. 모형이 데이터를 잘 적합하고 있는가?
- 잔차를 그래프로 그리고 회귀진단을 한다.