

STMPS2141, STMPS2151 STMPS2161, STMPS2171

Enhanced single channel power switches

Features

- 90 mΩ high-side MOSFET switch
- 500/1000 mA continuous current
- Thermal and short-circuit protection with overcurrent logic output
- Operating range from 2.7 V to 5.5 V
- CMOS- and TTL-compatible enable inputs
- Undervoltage lockout (UVLO)
- 12 µA maximum standby supply current
- Ambient temperature range, -40°C to 85°C
- 8 kV ESD protection
- Reverse current protection
- Fault-blanking

Description

The STMPS2141, STMPS2151, STMPS2161, STMPS2171 power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices incorporate 90 $m\Omega$ N-channel MOSFET high-side power switches for power-distribution. These switches are controlled by a logic enable input.

When the output load exceeds the current-limit threshold or a short is present, the device limits the output current to a safe level by switching into a constant-current mode. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts the switch off to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until a valid input voltage is present.

Table 1. Device summary

	Order codes	Current limit	Frable		
SO-8	SOT23-5L	MSOP8 ⁽¹⁾	(mA)	Enable	
STMPS2141MTR	STMPS2141STR	STMPS2141TTR	500	Active low	
STMPS2151MTR	STMPS2151STR	STMPS2151TTR	500	Active high	
STMPS2161MTR	STMPS2161STR	STMPS2161TTR	1000	Active low	
STMPS2171MTR	STMPS2171STR	STMPS2171TTR	1000	Active high	

^{1.} MSOP8 package is also known as "TSSOP8"

Contents

1	Bloc	k diagr	am	7
2	Pin s	settings	·	8
	2.1	Pin co	nnections	8
	2.2	Pin de	scription	8
3	Fund	ctional	description	9
	3.1	Fault b	olanking	9
	3.2	Overc	urrent/over-temperature protection	9
	3.3	FAULT	conditions	9
	3.4	Revers	sed current blocking	10
	3.5	UVLO		10
4	Amb	ient ter	mperature	11
5	Maxi	mum ra	atings	12
	5.1	Absolu	ute maximum ratings	12
	5.2	Recon	nmended operating conditions	12
6	Elec	trical s _l	pecifications	13
7	Deta	il devic	e characteristics	16
	7.1	STMP	S2141, STMPS2151 additional electrical charts	16
		7.1.1	Turn on/off characteristics at VOUT = 5.0 V	16
		7.1.2	Turn on/off characteristics at VOUT = 3.0 V	17
		7.1.3	UVLO	17
		7.1.4	OC protection characteristics	18
		7.1.5	Other electrical characteristics	18
	7.2	STMP	S2161, STMPS2171 electrical charts	21
		7.2.1	Turn on/off characteristics at VOUT = 5.0 V	21
		7.2.2	Turn on/off characteristics at VOUT = 3.0 V	22
		7.2.3	UVLO	
		7.2.4	OC protection characteristics	
		7.2.5	Other electrical characteristics	24

STMPS	S2141, STMPS2151, STMPS2161, STMPS2171	Contents
8	Package mechanical data	
9	Revision history	

577

List of figures

Figure 1.	Block diagram	6
Figure 2.	SOT23-5L, SO-8 and MSOP8 pin connections	. 7
Figure 3.	Voltage output turn on delay time	. 15
Figure 4.	Voltage output turn off delay time	. 15
Figure 5.	Current output turn on delay time	. 15
Figure 6.	Current output turn off delay time	. 15
Figure 7.	Voltage output turn on delay time	
Figure 8.	Voltage output turn off delay time	
Figure 9.	Current output turn on delay time	
Figure 10.	Current output turn off delay time	
Figure 11.	UVLO rising	
Figure 12.	UVLO falling	
Figure 13.	OC protection at VOUT = 3.0 V	
Figure 14.	OC protection at VOUT = 3.0 V	
Figure 15.	OC protection at VOUT = 5.0 V	
Figure 16.	OC protection at VOUT = 5.0 V	
Figure 17.	ICC vs VIN (enabled)	
Figure 18.	ICC vs temperature (enabled)	
Figure 19.	ICC vs VIN (disabled)	
Figure 20.	ICC vs temperature (disabled)	
Figure 21.	RDS ON vs VIN	
Figure 22.	RDS ON vs temperature	
Figure 23.	ILIMIT vs temperature	
Figure 24.	Switch leakage vs temperature	
Figure 25.	Output rise time vs. VIN	
Figure 26.	Output fall time vs. VIN	
Figure 27.	UVLO vs temperature	
Figure 28.	Voltage output turn on delay time	
Figure 29.	Voltage output turn off delay time	
Figure 30.	Current output turn on delay time	
Figure 31.	Current output turn off delay time	
Figure 32.	Voltage output turn on delay time	
Figure 33.	Voltage output turn off delay time	
Figure 34.	Current output turn on delay time	
Figure 35.	Current output turn off delay time	
Figure 36.	UVLO rising	
Figure 37.	UVLO falling	
Figure 38.	OC protection at VOUT = 3.0 V	
Figure 39.	OC protection at VOUT = 3.0 V	
Figure 40.	OC protection at VOUT = 5.0 V	
Figure 41.	OC protection at VOUT = 5.0 V	
Figure 42.	ICC vs VIN (enabled)	
Figure 43.	ICC vs temperature (enabled)	
Figure 44.	ICC vs VIN (disabled)	
Figure 45.	ICC vs temperature (disabled)	
Figure 46.	RDS ON vs VIN	
Figure 47.	RDS ON vs temperature	
Figure 48	II IMIT vs temperature	24

Figure 49.	Switch leakage vs temperature	24
Figure 50.	Output rise time vs. VIN	24
Figure 51.	Output fall time vs. VIN	24
Figure 52.	UVLO vs temperature	24
	SOT23-5L package outline	
Figure 54.	SOT23-5L footprint recommendations	26
Figure 55.	SOT23-5L carrier tape	26
Figure 56.	SOT23-5L reel information	27
Figure 57.	SO-8 package outline	28
Figure 58.	MSOP8 package outline	29
Figure 59.	SO-8 carrier tape	30
Figure 60.	MSOP8 carrier tape	30
Figure 61.	Reel information	31

577

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	8
Table 3.	FAULT conditions	9
Table 4.	SOT23-5L (160 °C/W)	. 11
Table 5.	MSOP8 (220 °C/W)	. 11
Table 6.	SO-8 (160 °C/W)	. 11
Table 7.	Absolute maximum ratings	. 12
Table 8.	Recommended operating conditions	. 12
Table 9.	SOT-23-5L electrical characteristics	. 13
Table 10.	MSO8P/SO8 electrical characteristics	. 13
Table 11.	Current limit characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 14
Table 12.	Supply current characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 14
Table 13.	Thermal characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 15
Table 14.	UVLO characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 15
Table 15.	OC pin characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 15
Table 16.	EN pin characteristics	
	(VI = 5.5 V, IO = rated current, TJ = 25°C, unless otherwise specified)	. 15
Table 17.	SOT23-5L mechanical data	. 26
Table 18.	SOT23-5L footprint dimensions	. 27
Table 19.	SO-8 mechanical data	. 29
Table 20.	MSOP8 package mechanical data	. 30
Table 21.	Reel mechanical data	
Table 22.	Document revision history	. 33

1 Block diagram

Figure 1. Block diagram

2 Pin settings

2.1 Pin connections

Figure 2. SOT23-5L, SO-8 and MSOP8 pin connections

2.2 Pin description

Table 2. Pin description

	Pin number		Name Function	
SO8	MSOP8	SOT23-5L	Name	FullCtion
1	1	2	GND	Ground
2	2	5	IN	2.7 V - 5.5 V input
3	3	-	IN	2.7 V - 5.5 V input
4	4	4	EN	Enable for power switch
5	5	3	FAULT	Open drain FAULT indicator, active low
6	6	1	OUT	Output of power switch
7	7	-	OUT	Output of power switch
8	8	-	OUT	Output of power switch

3 Functional description

3.1 Fault blanking

The STMPS devices feature a 10 ms fault blanking. Fault blanking allows current-limit faults, including momentary short-circuit faults that occur when hot-swapping a capacitive load, and also ensures that no fault is issued during power-up. When a load transient causes the device to enter current limit, an internal counter starts. If the load fault persists beyond the 10 ms fault-blanking timeout, the FAULT output asserts "low". Load-transient faults less than 10 ms (typ.) do not cause a FAULT output assertion. Only current-limit faults are blanked. Die over-temperature faults and input voltage drops below the UVLO threshold cause an immediate fault output.

3.2 Overcurrent/over-temperature protection

In overcurrent or short-circuit condition, the switch limits the current at a value of about 120% of the rated current. If the temperature of the die goes above the limit value, the switch turns off.

3.3 FAULT conditions

In power switch applications, 4 types of FAULT conditions are common. These fault conditions and the response of the STMPS21x1 power switches are described in the following *Table 3*.

Table 3. FAULT conditions

Fault	Condition	STMPS21x1 action	
Short circuit	Output shorted to GND via resistance path of < 1 Ω causing a rapid current surge.	Reduces output voltage to reduce the current. Asserts FAULT pin after a blanking period	
Over-current	Output connected to a load that sinks current above threshold.	Reduces output voltage to reduce the current. Asserts FAULT pin after a blanking period.	
Overheating	Temperature of junction exceeds 135°C due to any reason.	Turn OFF output until temperature falls below 125°C. Asserts FAULT pin immediately.	
Undervoltage	Input voltage drops below the UVLO treshold.	Turn OFF output until input voltage rises above the UVLO treshold plus hysteresis. Asserts FAULT pin immediately.	

3.4 Reversed current blocking

When the switch is OFF (disabled through the EN pin), or when the STMPS device is unpowered (V_{CC} = 0 V) the switch behaves as an Hi-Z at the output pin, ensuring that no reverse current will flow into the device when $V_i < V_o$.

Note:

In the case where the switch is ON, and a voltage higher than V_{IN} is applied to the OUT pin, a reverse current occurs. This operating condition is not allowed.

3.5 UVLO

When the input voltage drops below critical values, the power switch turns off to prevent improper operation due to low voltage.

4 Ambient temperature

In Enable operating mode, an amount of power is dissipated as heat in the power switch due to the on-resistance. The power dissipation is: $P = I^2R$.

Table 4. SOT23-5L (160 °C/W)

Part number	Max current	Max R _{ON} at 5 V	Power dissipation	Temperature difference (junction and ambient)	Maximum ambient temperature (at junction temperature 125 °C)
STMPS2141	0.50 A	130 mΩ	32.5 mW	6.2	118.8
STMPS2151	0.50 A	130 11122	32.3 1110	0.2	110.0
STMPS2161	1.00 A	130 mΩ	130.0 mW	24.8	100.2
STMPS2171	1.00 A	130 11122	130.0 11100	24.0	100.2

Table 5. MSOP8 (220 °C/W)

Part number	Max current	Max R _{ON} at 5 V	Power dissipation	Temperature difference (junction and ambient)	Maximum ambient temperature (at junction temperature 125 °C)
STMPS2141	0.50 A	130 mΩ	32.5 mW	7.2	117.8
STMPS2151	0.50 A	130 11122	130 1112 32.3 11100	7.2	117.0
STMPS2161	1.00 A	130 mΩ	130.0 mW	28.6	96.4
STMPS2171	1.00 A	130 11122	130.0 11100	20.0	90.4

Table 6. SO-8 (160 °C/W)

Part number	Max current	Max R _{ON} at 5 V	Power dissipation	Temperature difference (junction and ambient)	Maximum ambient temperature (at junction temperature 125°C)
STMPS2141	0.50 A	130 mΩ	32.5 mΩ	5.2	124.8
STMPS2151	0.50 A	130 11152	JZ.J 111 <u>2</u> 2	5.2	124.0
STMPS2161	1.00 A	130 mΩ	130.0 mΩ	20.8	104.2
STMPS2171	1.00 A	130 11122	130.011122	20.0	104.2

5 Maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.1 Absolute maximum ratings

Table 7. Absolute maximum ratings

	7 to control maximum ruminge						
Symbol	Parameter	Value	Unit				
V _I	Input voltage range	-0.3 - 6.0	V				
V _O	Output voltage range	-0.3 - (Vi+0.3)	V				
V _{IENX}	EN Input voltage range	-0.3 – 6.0	V				
Io	Continuous output current	Internally limited	_				
ESD	ESD protection level	8	kV				
T _J	Junction operating temperature	-40 to 125	°C				
T _{STG}	Storage temperature	-55 to 150	°C				
T _R	Thermal resistance (MSOP8)	220	°C/W				
T _R	Thermal resistance (SOT23-5L)	191	°C/W				
T _R	Thermal resistance (SO-8)	160	°C/W				

5.2 Recommended operating conditions

Table 8. Recommended operating conditions

Cumbal	Parameter		Value	Unit	
Symbol	Parameter	Min	Тур	Max	Unit
V _I	Input voltage	2.7	5.0	5.5	V
V _O	Output voltage	0	5.0	5.5	V
I _O (STMPS2141 STMPS2151)	Continuous output current	0	-	500	mA
I _O (STMPS2161 STMPS2171)	Continuous output current	0	-	1000	mA

6 Electrical specifications

Table 9. SOT-23-5L electrical characteristics

Cumbal	Parameter	Test condition		Value		Unit
Symbol	Farameter	rest condition	Min	Тур	Max	Oill
	Static drain source	$V_I = 2.7 \text{ V} ; T_J = 25^{\circ}\text{C};$	_	120	160	mΩ
Rds on	ON state resistance SOT23-5L package load = 500 mA (STMPS2141/ STMPS2151) load = 1000 mA (STMPS2161/ STMPS2171)	V _I = 5.0 V ; T _J = 25°C;	1	90	110	mΩ
Rde on	Static drain source ON state resistance	V _I = 2.7 V ; - 40 < T _J < 125 °C	_	_	200	mΩ
Rds on		V _I = 5.0 V ; - 40 < T _J < 125 °C	ı	_	135	11122
Tr	Output rise time	V_I = 5.0 V R_L = 10 Ω C_L = 1 μF	0.05	_	2	mS

Table 10. MSO8P/SO8 electrical characteristics

Symbol	Parameter	Test condition		Value		Unit
Symbol	Faiailletei	rest condition	Min	Min Typ Max		
	Static drain source	VI = 2.7 V ; TJ = 25°C	_	130	170	mΩ
	ON state resistance SO-8 and MSO8 package					
Rds on	load = 500 mA (STMPS2141/ STMPS2151)	VI = 5.0 V ; TJ = 25°C	_	110	125	mΩ
	load = 1000 mA (STMPS2161/ STMPS2171)					
Rds on	Static drain source	V _I = 2.7 V -40 < T _J < 125 °C	-	1	200	mΩ
Has on	ON state resistance	V _I = 5.0 V -40 < T _J < 125 °C	_		140	=
Tr	Output rise time	$V_{l} = 5.0 \text{ V R}_{L} = 10 \Omega$ $C_{L} = 1 \mu\text{F}$	0.05		2	mS

Table 11. Current limit characteristics $(V_I = 5.5 \text{ V}, I_O = \text{rated current}, T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test condition		Value		Unit
	Parameter	rest condition	Min	Тур	Max	Offic
I _{OS} (STMPS2141 STMPS2151)	Overcurrent limiting threshold	V _I = 5 V V _{OUT} = 4.5 V	0.60	0.80	1.00	А
I _{OS} (STMPS2161 STMPS2171)	Overcurrent limiting threshold	V _{OUT} = 4.5 V	1.10	1.50	1.90	A
I _{OS} (2141,2151)	Short circuit output current	V _I = 5 V, OUT connected to GND,	_	-	0.9	Α
I _{OS} (2161,2171)	Short circuit output current	device enabled into short circuit	_	_	1.8	Α

Table 12. Supply current characteristics $(V_I = 5.5 \text{ V}, I_O = \text{rated current}, T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test condition		Value		l lmit
Symbol	Parameter	rest condition	Min	Тур	Max	Unit μΑ μΑ
		No load	_	6.0	12	
l _{off}	Switch turned off	No load; -40 < T _J < 125 °C	_	-	15	μΑ
		No load	_	40	60	
I _{on}	Switch turned on	No load; -40 < T _J < 125 °C	_	-	70	μΑ
	Output leakage current ⁽¹⁾	Output grounded, switch is OFF	_	_	2	
I _{leakage}		Output grounded, switch is OFF; -40 < T _J < 125°C	_	_	5	μΑ
	Reversed leakage	Switch is off, V _i < V _o , output connected to 5.5 V, 25 °C	_	0.5	2	пν
^I reverse	current	Switch is off, V _i < V _o , output connected to 5.5 V, 125 °C	_	0.5	3	μΑ

^{1.} $I_{leakage} = I_{off-ground} - I_{off}$, where $I_{off-ground} = current$ into Vin when switch is off and output is grounded

Table 13. Thermal characteristics

 $(V_I = 5.5 \text{ V}, I_O = \text{rated current}, T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test condition		Value		
	Parameter	rest condition	Min	Тур	Max	Unit
T1	Thermal shutdown threshold		_	_	145	°C
T2	Recovery from thermal shutdown		120	_	_	°C
Hysteresis	-		_	14	_	°C

Table 14. UVLO characteristics

 $(V_I = 5.5 \text{ V}, I_O = \text{rated current}, T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Symbol Parameter		Test condition		Value		Unit
Symbol	Parameter	rest condition	Min	Тур	Max	Offic
V _{UVLO}	Undervoltage lockout threshold		2.0	_	2.5	V
Hysteresis	-		40	75	110	mV

Table 15. OC pin characteristics

 $(V_1 = 5.5 \text{ V}, I_0 = \text{rated current}, T_J = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Cumbal	Dovometer	Toot condition	Value			Unit
Symbol	Parameter	Test condition	Min	Тур	Max	Unit
OC Blanking	OCx assertion and de- assertion		4	8	15	ms
V _O	Output low voltage	I _O = 5 mA	_	_	0.4	V
I _{OFF}	Off current	V _{OC} = 2.7 V, 5.5 V (No OC Condition)	_	_	1.0	μΑ

Table 16. EN pin characteristics

(V_I = 5.5 V, I_O = rated current, T_J = 25°C, unless otherwise specified)

0	Damana atau	To at a surdition	Test condition Min Typ Ma			11
Symbol	Parameter	lest condition			Max	Unit
V _{IH}	High level input voltage	VI = 2.7 V to 5.5 V	2.0	_	_	V
V	V I am land input valtage	VI = 4.5 V to 5.5 V	_	_	0.8	V
V_{IL}	Low level input voltage	VI = 2.7 V to 4.5 V	_	_	0.4	V
I _I	Input current	V _{IENX} = 0 V or V _I	-0.5	_	0.5	uA
t _{ON}	Turn-ON time ⁽¹⁾	$R_L = 10 \Omega$ $C_L = 100 \text{ mF}$	_	_	5	ms
t _{OFF}	Turn-OFF time (1)	$R_L = 10 \Omega$ $C_L = 100 \text{ mF}$	_	_	10	ms

^{1.} Not tested in production, specified by design

577

7 Detail device characteristics

7.1 STMPS2141, STMPS2151 additional electrical charts

The waveforms displayed in *Section 7.1* are captured with the STMPS2141 device. The STMPS2151 is expected to have the same characteristics with EN in the opposite polarity.

7.1.1 Turn on/off characteristics at $V_{OUT} = 5.0 \text{ V}$

Figure 3. Voltage output turn on delay time Figure 4. Voltage output turn off delay time

Figure 5. Current output turn on delay time

Figure 6. Current output turn off delay time

7.1.2 Turn on/off characteristics at $V_{OUT} = 3.0 \text{ V}$

Figure 7. Voltage output turn on delay time Figure 8. Voltage output turn off delay time

Figure 9. Current output turn on delay time Figure 10. Current output turn off delay time

7.1.3 UVLO

Figure 11. UVLO rising

Time Base = 1mS/DIV

Figure 12. UVLO falling

1V/DIV

7.1.4 OC protection characteristics

Figure 13. OC protection at $V_{OUT} = 3.0 \text{ V}$

Figure 14. OC protection at $V_{OUT} = 3.0 \text{ V}$

Figure 15. OC protection at $V_{OUT} = 5.0 \text{ V}$

Figure 16. OC protection at $V_{OUT} = 5.0 \text{ V}$

7.1.5 Other electrical characteristics

Figure 17. I_{CC} vs V_{IN} (enabled)

18/34

Figure 18. I_{CC} vs temperature (enabled)

Figure 19. I_{CC} vs V_{IN} (disabled)

Figure 20. I_{CC} vs temperature (disabled)

Figure 21. R_{DS} ON vs V_{IN}

Figure 22. R_{DS} ON vs temperature

Figure 23. ILIMIT vs temperature

Figure 24. Switch leakage vs temperature

Figure 25. Output rise time vs. $V_{\rm IN}$

Figure 26. Output fall time vs. VIN

Figure 27. UVLO vs temperature

20/34 Doc ID 13793 Rev 4

7.2 STMPS2161, STMPS2171 electrical charts

The waveforms displayed in *Section 7.2* are captured with the STMPS2161 device. The STMPS2171 is expected to have the same characteristics with EN in the opposite polarity.

7.2.1 Turn on/off characteristics at $V_{OUT} = 5.0 \text{ V}$

Figure 28. Voltage output turn on delay time Figure 29. Voltage output turn off delay time

Figure 30. Current output turn on delay time

Figure 31. Current output turn off delay time

7.2.2 Turn on/off characteristics at V_{OUT} = 3.0 V

Figure 32. Voltage output turn on delay time Figure 33. Voltage output turn off delay time

Figure 34. Current output turn on delay time Figure 35. Current output turn off delay time

7.2.3 UVLO

Figure 36. UVLO rising

7.2.4 OC protection characteristics

Figure 38. OC protection at $V_{OUT} = 3.0 \text{ V}$

Figure 39. OC protection at $V_{OUT} = 3.0 \text{ V}$

Figure 40. OC protection at $V_{OUT} = 5.0 \text{ V}$

Figure 41. OC protection at $V_{OUT} = 5.0 \text{ V}$

7.2.5 Other electrical characteristics

Figure 42. I_{CC} vs V_{IN} (enabled)

Figure 43. I_{CC} vs temperature (enabled)

Figure 44. I_{CC} vs V_{IN} (disabled)

Figure 45. I_{CC} vs temperature (disabled)

Figure 46. R_{DS} ON vs V_{IN}

Figure 47. R_{DS} ON vs temperature

Figure 48. ILIMIT vs temperature

Temperature (°C)

Figure 49. Switch leakage vs temperature

Figure 50. Output rise time vs. V_{IN}

Figure 51. Output fall time vs. VIN

Figure 52. UVLO vs temperature

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 17. SOT23-5L mechanical data

Cumbal		Millimeters			Inches	
Symbol.	Min	Тур	Max	Min	Тур	Max
Α	0.90	_	1.45	35.4	_	57.1
	_	_	_	_	_	_
A1	0.00	_	0.10	0.0	_	3.9
A2	0.90	_	1.30	35.4	_	51.2
b	0.35	_	0.50	13.7	_	19.7
С	0.09	_	0.20	3.5	_	7.8
D	2.80	_	3.00	110.2	_	118.1
E	1.50	_	1.75	59.0	_	68.8
е	_	0.95	_	_	37.4	_
Н	2.60	_	3.00	102.3	_	118.1
L	0.10	_	0.60	3.9	_	23.6

Figure 54. SOT23-5L footprint recommendations

Table 18. SOT23-5L footprint dimensions

Footprint data						
Symbol	Millimeters	Inches				
A	3.50	0.138				
В	1.10	0.043				
С	0.60	0.024				
D	0.95	0.037				
E	1.20	0.047				
F	2.30	0.090				

Figure 55. SOT23-5L carrier tape

28/34

Figure 56. SOT23-5L reel information

Doc ID 13793 Rev 4

SEATING PLANE

C

GAGE PLANE

O016023 C

Figure 57. SO-8 package outline

1. Drawing not to scale

Table 19. SO-8 mechanical data

Symbol		millimeters			inches	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	1.35	_	1.75	0.053	_	0.069
	_	_	_	_	_	_
A1	0.10	_	0.25	0.004	_	0.010
A2	1.10	_	1.65	0.043	_	0.065
В	0.33	_	0.51	0.013	_	0.020
С	0.19	_	0.25	0.007	_	0.010
D (1)	4.80	_	5.00	0.189	_	0.197
Е	3.80	_	4.00	0.15	_	0.157
е	_	1.27	_	_	0.050	_
Н	5.80	_	6.20	0.228	_	0.244
h	0.25	_	0.50	0.010	_	0.020
L	0.40	_	1.27	0.016	_	0.050
k			0° (min.), 8	B° (max.)		,
ddd	_	_	0.10	_	_	0.004

Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm (.006inch) in total (both sides).

577

Figure 58. MSOP8 package outline

1. Drawing not to scale.

Table 20. MSOP8 package mechanical data

Symbol	Millimeters			Inches		
	Min	Тур	Max	Min	Тур	Max
Α	_	_	1.10	_	_	0.043
A1	0.05	_	0.15	0.002	0.004	0.006
A2	0.75	0.85	0.95	0.031	0.034	0.037
b	0.25	_	0.40	0.010	0.013	0.016
С	0.13	_	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	4.65	4.90	5.15	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
е	_	0.65	_	_	0.026	_
L	0.40	0.55	0.70	0.016	0.022	0.028
L1	_	0.95	_	_	0.037	
K	0°	_	6°	0°	_	6°
ccc			0.10			0.004

Figure 59. SO-8 carrier tape

Figure 60. MSOP8 carrier tape

Figure 61. Reel information

Table 21. Reel mechanical data

Symbol	Millimeters				
Symbol	Min	Тур	Max		
А	_	_	330		
С	12.8	_	13.2		
D	20.2	_	_		
N	60	_	_		
Т	_	V	22.4		

9 Revision history

Table 22. Document revision history

Date	Revision	Changes	
01-Aug-2007	1	Initial release.	
18-Dec-2007	2	Minor text changes, updated <i>Figure 53 on page 26</i> , added <i>Section 7:</i> Detail device characteristics on page 16.	
24-Jan-2008	3	Footnote added in <i>Table 1 on page 1</i> , replaced <i>Figure 58 on page 3</i> and <i>Table 20 on page 30</i> , TSSOP8 package name replaced with MSOP8.	
17-Jul-2009	4	Updated <i>Chapter 3</i> , test conditions modified for I _{reverse} in <i>Table 12 on page 14</i> and <i>Chapter 7</i> . Added: <i>Figure 55</i> , <i>Figure 56</i> , <i>Figure 59</i> , <i>Figure 60</i> and <i>Figure 61</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

34/34 Doc ID 13793 Rev 4

