EX1. QUANTUM CIRCUIT

 Consider the following quantum circuit defined on 3 qubits. Compute the probability of measuring each possible state at the end of the circuit.

The S gate is as follows:

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

= Cz, q, q, 1 (510>@ 210>@ 510> @ 510> @ 211> @ 511> - 511> @ 211> @ 510> - 511> @ 210> @ 511>)

Important: Motivate your answer by showing all stages of the computation.

$$|\psi_0\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle$$

 $|\psi_1\rangle = |\zeta_{x,q_1q_2}|(\zeta_{x,q_1q_2}|(H\otimes I\otimes H))|\psi_0\rangle$

$$= C_{x, q_3 q_2} C_{x, q_4 q_2} \left(\frac{(0 > -1 + 2)}{\sqrt{2}} \right) \otimes (0 > 0 + 2)$$

$$= C_{x, q_3 q_1} \frac{1}{\sqrt{2}} \left((0 > 0 | 0 > 0 | + 2 - 1 + 2) \otimes (1 > 0 | + 2) \right)$$

$$= C_{x,4342} \stackrel{\mathcal{I}}{=} (10 > 0 | 0 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 >))))))))$$

$$= \frac{1}{2} (|000\rangle + |011\rangle - |410\rangle - |401\rangle)$$

$$|\psi_2\rangle = C_{2,q,q} C_{1,q,q} (5 \otimes 2 \otimes 5) |\psi_4\rangle$$

$$= C_{2}, q_{1}q_{1} C_{1}, q_{2}q_{3} \frac{1}{2} (1000 > + |0> 0 - |1> 0 : |1> + i|1> 0 |1> 0 |0> -i|1> 0 |0> 0 : |1>)$$

$$= C_{2}, q_{1}q_{1} \frac{1}{2} (1000 > - i|01> 0 |1> + i|11> 0 |10> + |101>)$$

$$= C_{Z,4;4,\frac{1}{2}} \left(|000\rangle - |010\rangle - |111\rangle + |101\rangle \right)$$

$$= \frac{1}{2} \left(|000\rangle - |20\rangle + |10\rangle - |21\rangle + |101\rangle + |101\rangle \right)$$

$$= \frac{1}{2\sqrt{2}} \left(|090\rangle + |010\rangle - |090\rangle + |010\rangle - i |101\rangle + i |149\rangle - i |101\rangle - i |141\rangle \right)$$

$$- \frac{1}{2} \left(|010\rangle - |010\rangle - |010\rangle - i |101\rangle - i |101\rangle - i |111\rangle - i |11$$

$$= \frac{1}{2\sqrt{2}} \left(2|010\rangle - 2i|101\rangle \right)$$
$$= \frac{1}{\sqrt{2}} \left(|010\rangle - i|101\rangle \right)$$

$$|P(q_1=0, q_2=1, q_3=0) = |\frac{1}{\sqrt{2}}|^2 = 0,5 \qquad |P(q_1=1, q_2=0, q_3=1) = |-\frac{i}{\sqrt{2}}|^2 = 0,5 \qquad |P(\text{combinations}) = 0$$

EX?	. TH	EORY																						
	Qu																							
					• Com	pute +1	е ОПР	O form	nulation	of the	follow	ring SAT	probl-	m. Sh.	ow ite	oefficie	nt mate	ix in b	inary v	ariable	s			
												niltonian	and us											
												Ŷ	$_1 \lor x_2$											
												Cut pro												
								2500			(2	-4)										
												3	2											
												1)	5)										
					Impor	rtant:	Motivat	te your	answer	by she	owing a	all stage	s of the	compu	itation.									
• SA	7 ^	ROBLE	м																					
		E(x):		_×	×-																			
0	[[]	1 -1	7,	٠,0		ζ.	1	-1	-1	7	~ n	25												
Ţ	L		1,				4 [0	1],	,													
						L	= (_	2,25	0,25)			J12:	F-0	25										
								,	/			12												
<u> </u>	DIAG	O7 (1)) =	(1	11	-1)		D/A	5/0	900	") <u>-</u>	(1,-	11	1)										
		$\sigma_z^{(2)}$							z	O _z		۲ ', "		ソ										
\perp																								
DIAG (Hon)= -	0,25	(1.	1, -1.	-1) +	0,25	(1,-	1,1	1) -	0,25	11	1,-1	1)										
	ricol	i .	-0,25	1						Ĺ	Ĺ													
	L									L	L	L												
OPTIE	TAL	501.1	TION		0,25						L	L												
		IN D																						
		вітя				11				L	L	L												
) = -0																						
	L									L	L	L												
	L									L	L	L												
Ţ	L									L	L	L												
\perp	L									L	L													

	MAX-	- cυ ⁻	r P	ROBLE	M																				
	min					<₃)- (X ₂ + X	3-2×	, ×,) -	(X2+)	(4-2X	×4)-	(x;+x	,-2×,	Xs) - (X ₄ +X ₁	- 2×	(X5)							L
	min					(3 – X ₂																			L
4	min	Ε	(x) =	-×	1 - 22	×2 - 3	X3 -	2 ×4	- 2 ×,	÷ + 25	CeX3 t	2×2>	s + 2	X2 X4 1	2 ×3 2	< ₅ + 2	X4 X5								L
+		Γ	102	0	07				Γο	0 1	0 0	7													F
+	Q=	= 6	0-22	2 2 2 3 0 -2 0 -	0 2 2		ã= s	S = \frac{7}{2}	000	0 0	10														F
		L	9 00	0 -	2				Lo	00	00	<u></u>													
t																					0 /0 \	,			l
	91	—и —и																			Rx(\$1) Rx(\$1)	ľ			
	93		Ш	R ₂ (0,	584)	<u> </u>		R2 (0,5	81)	×										'	F×(β4)				Ĺ
	94	-#			_					1]—[R×10	,584)	×						1	"	P*(P4)				L
٤	95	— <u>H</u>	-									_	<u> </u>	 	z(0,58.	<u>]</u>	 	R2(0,5	84) ×	+l	Px(B1))			F
+																									F
ŀ																									t
																									L
																									L
ŀ																									F
-																									H
																									H
																									H
																									Ĺ
-																									L
																									F
																									F
ŀ																									H
																									H
																									İ