1. 系统抽象

2. 功能点分析

使用IFPUG方法进行功能点估算。

ILF, EIF分析

系统的内部逻辑文件(ILF)、外部逻辑文件(EIF)及其字段如下表:

key-value数据 存储	一致性哈希环	分布式节点 信息	系统统计数据	主从节点信 息
DataStorage 1. 数据key 2. 数据entry类 型 3. 原始数据内容 KeysManager 1. 数据key	Hash Ring 1. Peer名称 2. Peer http通讯地 址 3. Peer socket通讯 地址 4. Replicas数量	Nodes 1. Node名称 2. Node地址 3. Node连通 性	Stats 1. 系统启动时间 2. 系统内存使用量 3. 系统存储key数量 4. 系统操作执行数	Master- Slave 1. Master 名称 2. Master 地址 3. Slave名 称 4. Slave地 址

使用ILF/EIF复杂度矩阵如下:

	1~19个DET	20~50个DET	超过51个DET
1个RET	低	低	中等
2~5个RET	低	中等	高
6个以上RET	中等	盲	高

使用的ILF、EIF等价功能点取值标准:

复杂度	1~19个DET	20~50个DET	高
ILF数	7	10	15
EIF数	5	7	10

识别出的ILF和EIF功能点个数如下:

ILF内部逻辑文件	RET	DET	复杂度	未调整的FP个数
Key-values数据存储	2	4	低	7
一致性哈希环	1	4	低	7
分布式节点信息	1	3	低	7
系统统计数据	1	4	低	7
主从节点信息	1	4	低	7
EIF外部逻辑文件	RET	DET	复杂度	
无	0	0		0

由此,数据功能点个数 DFP=ILF+EIF=35。

EI, EO, EQ分析

EI分析

使用的EI复杂度计算矩阵:

	1~4个DET	4~15个DET	超过15个DET
0~1个FTR	低	低	中等
2个FTR	低	中等	高
3个以上FTR	中等	高	高同

EI等价功能点取值标准:

EI复杂度	低	中等	高
功能点数	3	4	6

识别出的EI个数如下表所示:

EI	FTR	DET个数	复杂度	未调整的FP个数
存储字符串类型数据	3	6	高	6
存储列表类型数据	3	6	高	6
存储集合类型数据	3	6	高	6
存储哈希表类型数据	3	6	高	6
追加列表类型数据	3	6	高	6
追加集合类型数据	3	6	高	6
追加哈希表类型数据	3	6	高	6
删除字符串类型数据	3	6	高	6
删除列表类型数据	3	6	高	6
删除集合类型数据	3	6	高	6
删除哈希表类型数据	3	6	高	6
增加分布式节点	3	9	高	6
删除分布式节点	3	9	高	6
增加从属节点	1	4	低	3
删除从属节点	1	4	低	3
设置一致性哈希环重复系数	1	3	低	3

EO分析

使用的EO复杂度计算矩阵:

	1~5个DET	6~19个DET	超过19个DET
0~1个FTR	低	低	中等
2~3个FTR	低	中等	高
4个以上FTR	中等	高	高

EI等价功能点取值标准:

EI复杂度	低	中等	高
功能点数	4	5	7

识别出的EO个数如下表所示:

EO	FTR	DET个数	复杂度	未调整的FP个数
查询列表长度	2	5	低	4
查询指定范围列表内容	2	5	低	4
查询字符串长度	2	5	低	4
查询集合大小	2	5	低	4
查询哈希表大小	2	5	低	4
求集合交集	2	5	低	4
求集合并集	2	5	低	4

EQ分析

使用的EQ复杂度计算矩阵:

	1~5个DET	6~19个DET	超过19个DET
0~1个FTR	低	低	中等
2~3个FTR	低	中等	高
4个以上FTR	中等	高	高

EI等价功能点取值标准:

EI复杂度	低	中等	高
功能点数	4	5	7

识别出的EQ个数如下表所示:

EQ	FTR	DET个数	复杂度	未调整的FP个数
查询key是否存在	2	3	低	4
查询字符串数据内容	2	5	低	4
查询列表数据内容	2	5	低	4
查询集合数据内容	2	5	低	4
查询哈希表数据内容	2	5	低	4
查询某数据数据内容	2	5	低	4
查询某数据是否存在列表中	2	5	低	4
查询某数据是否存在集合中	2	5	低	4
查询某数据是否存在哈希表中	2	5	低	4
查询统计数据摘要	2	6	中	5
查询分布式节点信息	2	6	中	5
查询主从节点信息	2	4	低	4

由此,事务功能点个数 TFP = EI + EO + EQ = 87 + 28 + 50 = 165 个。

所以,未调整的功能点 UFP=DFP+TFP=35+165=198个。

进一步考虑,本系统的系统特性及影响程度如下:

系统特性	分数
数据通讯	5
分布式数据处理	4
性能	5
大业务量配置	5
事务处理率	4
在线数据输入	5
最终用户效率	4
在线更新	4
复杂处理	4
可复用性	5
易安装性	0
易操作性	4
多场地	3
支持变更	2
合计:54	
调整因子:0.65+0.01*54=1.19	

由此,调整后的功能点 AFP=UFP1.19=235.62

根据日本IPA SEC 组织(<u>http://sec.ipa.go.jp/</u>)所提供的工作量估算共识: Effort=e^0.542FP^1.154= 939.55 人/天 假设日标准工作时间为8小时,工作量估计为 7516.4人/小时。