CVC4 IEEE-754 implementation

Current status and benchmarks

Florian Schanda July 28, 2017

1.

CVC4 Progress

FP progress in CVC4 Solved

21,000	07:27
0.	<i>Q</i> .
7.5%	67.4%
6.4%	17.3%
.8%	69.1%
.0%	71.3%
.0%	96.3%
9.8%	99.8%
3.9%	97.4%
.0%	79.0%
.0%	86.2%
5.0%	99.9%
	6.4% .8% 1.0% 1.0% 19.8% 13.9% 1.0%

	07.04	07.27
Benchmark	0,	0,
Schanda	86	2
Griggio	✓	✓
Heizmann	195	2
Industrial_1	268	3
Industrial_1_qf	268	✓
NyxBrain	40	4
PyMPF	13920	45
SPARK 2014	2468	15
SPARK QF	2468	52
Wintersteiger	5668	✓

FP progress in CVC4 Unsound

Benchmark	07.04	07:27
Schanda	8	1
Heizmann	✓	✓
NyxBrain	✓	✓
PyMPF	818	1427
SPARK 2014	✓	✓
Wintersteiger	351	28

Solved over time (average of averages)

VCs solved on Industrial_1

VCs solved on Industrial_1_qf

Timeout over time (average of averages)

Error over time (average of averages)

Unsound over time (average of averages)

Critical Success Factors for CVC4

Critical Success Factors for CVC4

Critical Success Factors for CVC4

2.

Comparisons

With status 'solved'

	٥					COL
	AILEIGO 1?	Colibri	CACA	MathSal	waits at the	r 13
Benchmark Schanda		78.1%	67.4%	72.5%*	28.7%*	84.3%
Griggio		63.6%	17.3%	39.7%	22.9%	30.4%
Heizmann		12.1%	69.1%	58.5%	26.6%	31.9%
Industrial_1	66.0%*		71.3%			74.3%
Industrial_1_qf	26.9%*	95.1%	96.3%	86.9%	75.4%	97.0%
NyxBrain		99.2%	99.8%	95.4%	95.0%	99.9%
PyMPF		83.5%	97.4%	30.9%	26.4%	98.9%
SPARK 2014	54.3%*		79.0%		0.0%	82.5%*
SPARK QF		95.1%	86.2%	79.7%	70.2%	90.3%
Wintersteiger		✓	99.9%	85.8%	85.8%	✓
Summary	49%	78%	78%	69%	48%	79%

With status 'timeout'

		2				COL
	ANT.EIGO 1	Cojibri	c _{AC} v	WattsA	Matisal	d.
Benchmark	Alt	CO.	۵,	Ma	Wes	13
Schanda		21	55	23*	51*	23
Griggio		77	177	129	165	149
Heizmann		0	14	0	2	141
Industrial_1	91*		73			69
Industrial_1_qf	0*	7	10	0	28	8
NyxBrain		0	96	20	128	56
PyMPF		0	6	0	0	0
SPARK 2014	1127*		314		1	357*
SPARK QF		65	289	48	306	202
Wintersteiger		0	0	0	0	0
Summary	27%	7%	18%	9%	14%	20%

With status 'error'

		•				-COL)
	AN EIGO	Colibri	c ^{yC} A	MathSAT	wattsA	œ.
Benchmark	All:	Cor.	c _{AC}	Mac	No	13
Schanda		10	2	18*	42*	✓
Griggio		1	✓	✓	✓	√
Heizmann		182	2	86	150	✓
Industrial_1	√ *		3			√
Industrial_1_qf	√ *	5	✓	35	38	√
NyxBrain		388	4	64	120	4
PyMPF		8758	45	38671	38671	√
SPARK 2014	√ *		15		2467	*
SPARK QF		47	52	452	429	√
Wintersteiger		✓	✓	5668	5668	✓
Summary	0%	14%	1%	21%	34%	0%

With status 'unsound'

	, জ				nest newstate and 13		
Benchmark	AN-EIGO	Colibri	cyc.A	MathSAT	Mathsal	13	
Schanda		4	1	8*	34*	4	
Heizmann		✓	✓	✓	✓	✓	
NyxBrain		6	✓	2318	2366	12	
PyMPF		658	1427	866	3408	553	
SPARK 2014	√ *		✓		✓	√ *	
Wintersteiger		✓	28	✓	1	✓	
Summary	0%	0%	0%	1%	3%	0%	

3.

Cactus plots

Schanda

Griggio

Heizmann

Industrial_1

Industrial_1_qf

SPARK 2014

