

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 2 Actividad: Método algebraico - Análisis de Sensibilidad

Trabajo de: ADRIAN A. GONZÁLEZ DOMÍNGUEZ [359834] Asesora: OLANDA PRIETO ORDAZ

Toyco utiliza tres operaciones para armar tres tipos de juguetes: trenes, camiones y carros. Los tiempos diarios disponibles para las tres operaciones son 430, 460 y 420 minutos, respectivamente, y los ingresos por unidad de tren, camión y carro de juguete son de \$3, \$2 y \$5, respectivamente. Los tiempos de ensamble por tren en las tres operaciones son de 1, 3 y 1 minutos, respectivamente. Los tiempos correspondientes por camiones y por auto son (2,0,4) y (1,2,0) minutos, (un tiempo cero significa que no se utiliza).

a)

Obtenga por el método Simplex el resultado óptimo (Recuerde incluir, tabla inicial, intermedias y tabla final).

Definición del problema

Definicion de variables

Producción Trenes $\rightarrow x_1$

Producción Camiones $\rightarrow x_2$

Producción Autos $\rightarrow x_3$

Función objetivo Z

$$\mathrm{Max}Z
ightarrow 3x_1 + 2x_2 + 5x_3$$

Restricciones

$$R_1 \rightarrow 1x_1 + 2x_2 + 1x_3 <= 430$$

$$R_2 o 3x_1 + 2x_3 <= 460$$

$$R_3 o 1x_1 + 4x_2 <= 420$$

$$R_4 o x_1, x_2, x_3 >= 0$$

Ecuaciones

$$Z - 3x_1 - 2x_2 - 5x_3 + 0s_1 + 0s_2 + 0s_3 = 0$$

$$R_1
ightarrow 1x_1 + 2x_2 + 1x_3 + s_1 = 430$$

$$R_2 o 3x_1 + 2x_3 + s_2 = 460$$

$$R_3 o 1x_1 + 4x_2 + s_3 = 420$$

Tabla inicial

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
Z	1	-3	-2	-5	0	0	0	0
s_1	0	1	2	1	1	0	0	430
s_2	0	3	0	2	0	1	0	460
s_3	0	1	4	0	0	0	1	420

Variable de entrada $\rightarrow V_E = x_3$

Primera iteración

Seleccionar variable pivote V_P

Variables básicas	$\begin{array}{c} \textbf{Columna} \\ V_E \end{array}$	Columna Solución	Relación mínima	Válida
s_1	1	430	$\frac{430}{1} = 430$	Sí
s_2	2	460	$\frac{460}{2} = 230$	Sí
s_3	0	420	$\frac{420}{0} = \infty$	No

 $\text{Variable pivote} \rightarrow V_P = s_2$

Actualizar la fila V_P con V_E

Interesección entre la columna V_E y la fila $V_P \to 2$

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
$s_2 ightarrow x_3$	0	$\frac{3}{2}$	0	$\frac{2}{2}$	0	$\frac{1}{2}$	0	$\frac{460}{2}$

V_B	Z	x_1	x_2	x_3	s_1		s_2	s_3	Solution
x_3	0	$\frac{3}{2}$	0	1	0		$\frac{1}{2}$	0	230
V_B	Z	x_1	x_2	x_3	s_1	s_2		g_3	Solucion
Z	1	-3	-2	-5	0	0	()	0
s_1	0	1	2	1	1	0	()	430
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	()	230
s_3	0	1	4	0	0	0]		420

Actualizar las demás filas respecto a la fila ${\it V}_{\it E}$

Actualizar Z

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
Z	1	-3	-2	-5	0	0	0	0
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
$-5x_3$	0	$\frac{-15}{2}$	0	-5	0	$\frac{-5}{2}$	0	-1150
$Z=Z-(-5x_3)$	1	$\frac{9}{2}$	-2	0	0	$\frac{5}{2}$	0	1150

Actualizar s_1

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
s_1	0	1	2	1	1	0	0	430
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
$1x_3$	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
$s_1=s_1-1x_3$	0	$\frac{-1}{2}$	2	0	1	$\frac{-1}{2}$	0	200

Actualizar s_3

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
s_3	0	1	4	0	0	0	1	420
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solucion
$0x_3$	0	0	0	0	0	0	0	0
$s_3 = s_3 - 0x_3$	0	1	4	0	0	0	1	420

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solucion
Z	1	$\frac{9}{2}$	-2	0	0	$\frac{5}{2}$	0	1150
s_1	0	$\frac{-1}{2}$	2	0	1	$\frac{-1}{2}$	0	200
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
s_3	0	1	4	0	0	0	1	420

 $\text{Variable de entrada} \rightarrow V_E = x_2$

Segunda iteración

Seleccionar variable pivote V_P

Variables básicas	Columna V_E	Columna Solución	Relación mínima	Válida
s_1	2	200	$\frac{200}{2} = 100$	Sí
x_3	0	230	$\frac{230}{0} = \infty$	No
s_3	4	420	$\frac{420}{4} = 105$	Sí

 $\text{Variable pivote} \rightarrow V_P = s_1$

Actualizar la fila V_P con V_E

Interesección entre la columna V_E y la fila $V_P \to 2$

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
$s_1 o x_2$	0	$\frac{\frac{-1}{2}}{2}$	$\frac{2}{2}$	0	$\frac{1}{2}$	$\frac{\frac{-1}{2}}{2}$	0	$\frac{200}{2}$
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
Z	1	$\frac{9}{2}$	-2	0	0	$\frac{5}{2}$	0	1150
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
s_3	0	1	4	0	0	0	1	420

Actualizar las demás filas respecto a la fila ${\it V}_{\it E}$

Actualizar Z

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solucion
Z	1	$\frac{9}{2}$	-2	0	0	$\frac{5}{2}$	0	1150
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
$-2x_2$	0	$\frac{1}{2}$	-2	0	-1	$\frac{1}{2}$	0	-200
$Z=Z-\left(-2x_{2} ight)$	1	4	0	0	1	2	0	1350

Actualizar x_3

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
$0x_2$	0	0	0\$	0	0	0	0	0
$x_3 = x_3 - 0x_2$	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230

Actualizar \boldsymbol{s}_3

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solucion
s_3	0	1	4	0	0	0	1	420
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
$4x_2$	0	-1	4	0	2	-1	0	400
$s_3=s_3-4x_2$	0	2	0	0	-2	1	1	20

Actualizar tabla con las filas actualizadas

V_B	Z	x_1	x_2	x_3	s_1	s_2	s_3	Solution
Z	1	4	0	0	1	2	0	1350
x_2	0	$\frac{-1}{4}$	1	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
x_3	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
s_3	0	2	0	0	-2	1	1	20

Dado que la ecuacion Z ya no tiene coeficientes negativos, esta es nuestra tabla final, la cual nos indica que el resultado óptimo es 1350, y se encuentra en el punto C(0,100,230)

Una manera de interpretar esto es que a la jugueteria le es más optimo no fabricar trenes.

b)

Obtenga el precio dual de los recursos y cuanto impacta a la función Z.

De la tabla de arriba, pasamos las holguras como precios duales.

V_B	Z	Solution	P. Dual R_1	P. Dual R_2	P. Dual R_3
Z	1	1350	1	2	0
x_2	0	100	$\frac{1}{2}$	$\frac{-1}{4}$	0
x_3	0	230	0	$\frac{1}{2}$	0
s_3	0	20	-2	1	1

$$Z = 1350 + D_1 + 2D_2$$

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 + 0D_3 \ge 0$$

$$x_3 = 230 + 0D_1 + rac{1}{2}D_2 + 0D_3 \geq 0$$

$$s_3 = 20 - 2D_1 + 1D_2 + 1D_3 \ge 0$$

Estos valores quieren decir que nuestra función Z se vera afectada solamente por la diferencia en la disponibilidad de tiempo de las operaciones 1 y 2.

Dado que fue mas óptimo no fabricar trenes, el cambio en las disponibilidades de operaciones no genera cambios en su producción, esta seguira siendo 0.

Asi mismo, aunque la holgura de la disponibilidad de la operación 3 no intervene para obtener el valor óptimo, esta actua como restriccion, ya que de ser menor a 0, cambiaría los precios duales y por ende impactaría en la función objetivo.

c)

Si la disponibilidad de las operaciones 1,2 y 3 se cambia a 438, 500 y 410 minutos, demuestre si la solución básica permanece factible y explique porque. Determine el cambio del ingreso en z mediante los precios duales.

$$D_1 = 438 - 430 = 8$$

$$D_2 = 500 - 460 = 40$$

Dado que aumentamos los valores de D_1 y D_2 no es requerido checar e mínimo de estos. No obstante, los límites de D_3 estan dados en terminos de D_1 y D_2 , por esto lo debemos calcular con los precios duales antes obtenidos.

Para $s_3 \geq 0$:

$$20 - 2D_1 + D_2 + D_3 \geq 0$$

$$D_3\geq -20+2D_1-D_2$$

$$D_3 \ge -20 + 2(8) - (40)$$

$$D_3 \geq -44$$

$$D_3 = 410 - 420 = -10$$

El cambio en D_3 fue mayor al mínimo requerido, por ende, la solución sigue siendo factible.

$$Z_B = 1350 + D_1 + 2D_2 = 1350 + (8) + 2(40) = 1438$$

El cambio en Z fue de (8) + 2(40) = 88

d)

Si la disponibilidad de las tres operaciones se cambia a 460, 440 y 380 minutos respectivamente,

aproveche las condiciones simultaneas para demostrar que la solución básica es no factible.

•
$$D_2 = 440 - 460 = -20$$

Para $x_3 \geq 0$:

$$230+rac{1}{2}D_2\geq 0$$

$$rac{1}{2}D_2 \geq -230$$

$$D_2 \geq -460$$

Lo minimo que puede valer D_2 es -460, por ende, si cumple esta condición.

•
$$D_1 = 460 - 430 = 30$$

Para $x_2 \geq 0$:

$$100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 \ge 0$$

$$\frac{1}{2}D_1 \ge -100 + \frac{1}{4}D_2$$

$$D_1 \geq -200 + rac{1}{2}D_2$$

$$D_1 \geq -200 + \frac{1}{2}(-20)$$

$$D_1 \geq -210$$

Lo minimo que puede valer D_1 es -210, por ende, si cumple esta condición.

•
$$D_3 = 380 - 420 = -40$$

Para $s_3 \geq 0$:

$$20 - 2D_1 + D_2 + D_3 \ge 0$$

$$D_3 \ge -20 + 2D_1 - D_2$$

$$D_3 \ge -20 + 2(30) - (-20)$$

$$D_3 \ge 60$$

Lo minimo que puede valer D_1 es 60, sin embargo, vale -40. Lo cual es errorneo.

Nota de estudio

No es necesario despejar los cambios en la disponibilidad de las restricciones D_i . Podríamos haber checado directamente en las ecuaciones. En este ejercicio, la tercer ecuacion se evaluaría en -100, incumpliendo el limite del precio dual.

$$x_2 = 100 + rac{1}{2}D_1 - rac{1}{4}D_2 + 0D_3 \geq 0$$

$$x_3 = 230 + 0D_1 + rac{1}{2}D_2 + 0D_3 \geq 0$$

$$s_3 = 20 - 2D_1 + 1D_2 + 1D_3 \geq 0$$