Savoir-faire 1

Comment déterminer si deux quotients sont égaux

Énonce Déterminer, dans chaque cas, si les deux quotients sont ou ne sont pas égaux.

a.
$$\frac{-3.7}{48.1}$$
 et $\frac{1.2}{-15.6}$.

b.
$$\frac{12,2}{7,6}$$
 et $\frac{5,4}{3,17}$.

Solution

a.
$$-3.7 \times (-15.6) = 57.72$$
; $48.1 \times 1.2 = 57.72$.

On calcule les produits en croix
$$-3.7 \times (-15.6)$$
 et 48.1×1.2 .

$$D'où: -3.7 \times (-15.6) = 48.1 \times 1.2.$$

On constate que les produits en croix sont égaux.

Les produits en croix sont égaux, donc les quotients $\frac{-3.7}{48.1}$ et $\frac{1.2}{-15.6}$ sont égaux.

On conclut.

b.
$$12,2 \times 3,17 = 38,674$$
; $7,6 \times 5,4 = 41,04$.

On calcule les produits en croix
$$12.2 \times 3.17$$
 et 7.6×5.4 .

D'où: $12.2 \times 3.17 \neq 7.6 \times 5.4$.

On constate que les produits en croix ne sont pas égaux.

Les produits en croix ne sont pas égaux, donc les quotients $\frac{12,2}{7.6}$ et $\frac{5,4}{3.17}$ ne sont pas égaux.

On conclut.

Savoir-faire 2 Comment additionner ou soustraire deux nombres relatifs en écriture fractionnaire

Enonce Calculer: $A = \frac{2}{3} - \frac{4}{5}$ et $B = \frac{-5}{16} + \frac{7}{12}$.

Solution

• $\frac{2}{3}$ et $\frac{4}{5}$ n'ont pas le même dénominateur ; pour soustraire $\frac{4}{5}$ de $\frac{2}{3}$, il faut réduire ces deux fractions au même dénominateur.

Le produit 3×5 étant le plus petit multiple non nul commun à 3 et 5, on le choisit comme dénominateur commun.

$$A = \frac{2}{3} - \frac{4}{5}$$

$$A = \frac{2 \times 5}{3 \times 5} - \frac{4 \times 3}{5 \times 3}$$

On applique la propriété des quotients égaux pour que les deux écritures fractionnaires aient le même dénominateur 15.

$$A = \frac{10}{15} - \frac{12}{15}$$

On effectue les produits.

$$A = \frac{10 - 12}{15}$$

On applique la règle : $\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}$

$$A = \frac{-2}{15}$$

$$A = -\frac{2}{15}$$

On applique la règle des signes d'un quotient.

• $\frac{-5}{16}$ et $\frac{7}{12}$ n'ont pas le même dénominateur ; pour les additionner, il faut trouver un dénominateur commun qui soit un multiple non nul de 12 et de 16.

On pourrait choisir 192 ($12 \times 16 = 192$), mais il est préférable de choisir un multiple de 12 et de 16 qui soit **le plus petit possible**.

Pour cela, on repère le plus grand dénominateur, 16, et on écrit ses multiples non nuls successifs jusqu'à obtenir un multiple de 12.

Multiples non nuls de 16	16	32	48
Ce multiple de 16 est-il aussi multiple de 12 ?	non	non	oui 48 = 12×4

48 est donc le dénominateur commun.

$$B = \frac{-5}{16} + \frac{7}{12}$$

$$B = \frac{-5 \times 3}{16 \times 3} + \frac{7 \times 4}{12 \times 4}$$

$$B = \frac{-15}{48} + \frac{28}{48}$$

$$B = \frac{-15 + 28}{48}$$

$$B = \frac{13}{48}.$$

On réduit au même dénominateur 48.

On effectue les produits.

On applique la règle :
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
.

Savoir-faire 3 Comment multiplier deux nombres relatifs

en écriture fractionnaire

Enonce Calculer: $A = \frac{-10}{21} \times \frac{-49}{15}$.

Solution

$$A = \frac{-10}{21} \times \frac{-49}{15}$$

$$A = \frac{10}{21} \times \frac{49}{15}$$

$$A = \frac{10 \times 49}{21 \times 15}$$

$$A = \frac{5 \times 2 \times 7 \times 7}{3 \times 7 \times 5 \times 3}$$

$$A = \frac{2 \times 7}{3 \times 3}$$

$$A = \frac{14}{9}.$$

On applique la règle des signes d'un produit.

On applique la règle : $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$.

On décompose les facteurs.

On simplifie l'écriture fractionnaire en utilisant la propriété des quotients égaux.

Enoncé Calculer :
$$A = \frac{4}{3} : \frac{-7}{5}$$

Solution

$$A = \frac{4}{3} : \frac{-7}{5}$$

$$A = \frac{4}{3} \times \frac{5}{-7}$$

Diviser par
$$\frac{-7}{5}$$
 revient à multiplier par son inverse $\frac{5}{-7}$.

$$A = -\frac{4}{3} \times \frac{5}{7}$$

$$A = -\frac{4 \times 5}{3 \times 7}$$

On applique la règle :
$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

$$A = -\frac{20}{21}$$

Comment calculer une expression Savoir-faire 5

Enonce Calculer l'expression : $A = \frac{-7}{15} + \frac{5}{3} \times \left(\frac{1}{2} - \frac{1}{3}\right)$.

Solution

$$A = \frac{-7}{15} + \frac{5}{3} \times \left(\frac{1}{2} - \frac{1}{3}\right)$$

$$A = \frac{-7}{15} + \frac{5}{3} \times \left(\frac{3}{6} - \frac{2}{6}\right)$$

$$A = \frac{-7}{15} + \frac{5}{3} \times \frac{1}{6}$$

On applique la règle :
$$\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$$
.

$$A = \frac{-7}{15} + \frac{5}{18}$$

La multiplication a priorité sur l'addition. On calcule donc le produit
$$\frac{5}{3} \times \frac{1}{6}$$
.

$$A = \frac{-7 \times 6}{15 \times 6} + \frac{5 \times 5}{18 \times 5}$$

On réduit les deux nombres au même dénominateur 90, car :
$$90 = 15 \times 6 = 18 \times 5$$
.

$$A = \frac{-42}{90} + \frac{25}{90}$$

$$A = \frac{-42 + 25}{90}$$

On applique la règle
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$A = \frac{-17}{90}$$

$$A = -\frac{17}{90}$$