

MATERIAŁY DO WYKŁADU Z NAPĘDU ELEKTRYCZNEGO WYKŁAD II – MASZYNY ROBOCZE

PROWADZĄCY DR HAB. INŻ. GRZEGORZ IWAŃSKI

IWANSKIG@ISEP.PW.EDU.PL

CHARAKTERYSTYKI MECHANICZNE MASZYN ROBOCZYCH

Staly moment

Moment liniowy w funkcji predkości

Moment w funkcji kwadratu prędkości

CHARAKTERYSTYKA MECHANICZNA NAWIJARKI

Kolejna nawinięta warstwa zwiększa promień nawijania.

Utrzymanie tej samej prędkości nawijania wymaga mniejszej prędkości obrotowej.

Utrzymanie tej samej siły naprężenia nawijanej liny (kabla, włókna tekstylnego, taśmy, itp.) wymaga większego momentu napędowego.

CHARAKTERYSTYKA MECHANICZNA NAWIJARKI

Układ napędowy jest projektowany na maksymalną wartość prądu i maksymalną wartość napięcia, które mogą występować w różnych punktach pracy.

W układzie nawijarki maksymalny prąd maszyny jest osiągany przy niskich prędkościach (duży moment na końcu procesu nawijania – duży promień), a maksymalne napięcie przy dużych prędkościach (początek nawijania – mały promień).

 $P_{\text{max}} = T_{\text{max}} \omega_{\text{max}}$

Moc maksymalna maszyny i przekształtnika jest większa od mocy chwilowej na wale!

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

rodzaj napędu	zużycie energii [%]
Pompy	30
Wentylatory	18
Kompresory	14
Obrabiarki	10
Transport	8
Pozostałe	20

Około 60% energii pobierana jest przez napędy elektryczne pomp, dmuchaw, sprężarek, wentylatorów.

Politechnika Warszawska Wydział Elektryczny - ISEP ZAKŁAD NAPĘDU ELEKTRYCZNEGO

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Zastosowania napędów w energetyce W elektrowni większość napędów potrzeb własnych to pompy i wentylatory (m.in. pompy wody zasilającej, wentylatory spalin)

Największy odbiornik energii elektrycznej to elektrownia.

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Charakterystyki rodziny pomp

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

W zależności od oporów instalacji i wymaganego ciśnienia na końcu instalacji układ pompowy pracuje w innych punktach pracy B i B'.

Moc pompy

$$P = \frac{\rho g H_p Q_p}{3600} [W]$$

ho- gęstość cieczy [kg/m³] g- przyspieszenie ziemskie [m/s²] H_p- ciśnienie (wysokość słupa cieczy) [m] Q_p- przepływ [m³/h] 1h=3600s

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Zmiana punktu pracy przez dławienie przepływu – sztuczne zwiększenie oporów instalacji

Moc pompy dla obniżonego przepływu (przykładowe wyliczenie) $P_{B'}=1,15x0,7P_{B}=0,8P_{B}$

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Zmiana punktu pracy przez regulację prędkości – obniżenie charakterystyki pompy

Moc pompy dla układu z regulacją prędkości P_B ,=0,8x0,7 P_B =0,56 P_B

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Moment jest funkcją kwadratu prędkości Moc jest funkcją sześcianu prędkości

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Praca wentylatora z tłumieniem przepływu - silnik zasilany z sieci, prędkość nominalna

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Praca wentylatora z łopatami o zmiennym kącie - silnik zasilany z sieci, prędkość nominalna

CHARAKTERYSTYKI MECHANICZNE POMP I WENTYLATORÓW

Praca wentylatora z regulacją prędkości – przemiennik

- silnik zasilany z przemiennika
- zmienna prędkość i oszczędności energii

WIRÓWKI CUKROWNICZE

WIRÓWKI CUKROWNICZE

WIRÓWKI CUKROWNICZE

MATERIAŁY DO WYKŁADU Z NAPĘDU ELEKTRYCZNEGO WYKŁAD II – MASZYNY ROBOCZE

PROWADZĄCY DR HAB. INŻ. GRZEGORZ IWAŃSKI

IWANSKIG@ISEP.PW.EDU.PL