Dynamic Space-Time Scheduling for GPU Inference

Paras Jain, Simon Mo, Ajay Jain[§], Harikaran Subbaraj, Rehan Durrani Alexey Tumanov, Joseph Gonzalez, Ion Stoica

Contact Paras Jain paras_jain@berkeley.edu

Background/Context:

• ML inference increasingly important for soft real-time latency-sensitive applications

Problem:

- Model complexity increases —> latency increases; too slow for soft-real time applications
- GPU —> more attractive for inference, suffers low utilization (under latency constraints)

Solution:

- State of the art: temporal multiplexing
- *Proposal*: multiplex GPUs across multiple models and time

Motivation: Online inference leads to low GPUs utilization

• Due to growing DNN model complexity, CPUs cannot meet online inference latency requirements

 Small batches common in inference leads to poor GPU utilization and low resource-efficiency

• We explore spatial and temporal multiplexing techniques to improve GPU utilization

Key requirements for GPU kernel multiplexing

- Runtime performance must be **predictable**
- Multiplexing should increase resource-efficiency
- Models on a single GPU should have inter-tenant isolation

Time-only multiplexing: poor resource-efficiency

- Time-multiplexing: on device scheduler enables interleaved execution of multiple CUDA contexts (no parallel execution)
- Pro: Guaranteed isolation between tenants and predictability
- Con: Sharply degraded throughput and increased latencies

Space-only multiplexing: poor predictability and isolation

- Spatial-multiplexing: NVIDIA Multi-Process Service to partition kernel launches across multiple CUDA Streams
- Pro: Kernels can execute in parallel
- Con: Unpredictable performance and lack of isolation

Proposed solution: Space-and-Time multiplexing

- Space-Time scheduling: Inter-model kernel batching via a software scheduler
- Preliminary benchmark of approach: batch multiple GEMMs
- cublasSgemmBatched provides high-throughput multiplexing of many matrix multiply kernels

Space-Time has 2.5-4.6x throughput speedups over prior art

			•	
	Number of Kernels	Matrix-vector RNN, 1024 hidden units M = 512, N = 1, K = 512	ResNet-18 conv2_2 M = 256, N = 128, K = 1152	Square SGEMM M = N = K = 256
	10	1.21x	1.68x	2.42x
	20	2.14x	2.88x	3.47x
	2 - 120 (geomean)	2.48x	3.23x	4.63x
	Speedup over?	Time-only	Space-only	Space-only
		AB	AB	AB

Conclusions: A large opportunity gap in performance

- There still exists a **5x performance gap** in utilization
- We show that space-time multiplexing can drive up to 2.5x 4.6x throughput speedups
- Utilization issues are much worse for NLP (TPU gets 3% util.)
- We believe inter-model kernel scheduling will be a key technique to leverage fast-growing DNN accelerators
- Our preliminary results show promise for a dynamic spacetime scheduler for efficiency, predictability and isolation.