Instituto Tecnológico de Costa Rica Escuela de Matemáticas Álgebra Lineal para Computación

 \mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 29 puntos \mathcal{A} bril de 2 008

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea $\mathbb{R}^* = \mathbb{R} \{0\}$. Si ":" representa la multiplicación usual de números reales:
 - (a) Demuestre que (\mathbb{R}^*, \cdot) es un grupo abeliano. (3 pts)
 - (b) Si $\mathcal{H} = \left\{ x \in \mathbb{R}^* \middle/ x \ge 1 \right\}$, determine si \mathcal{H} es subgrupo de \mathbb{R}^* o no lo es. (3 pts)
- 2. Sea e el elemento neutro del grupo $(\mathcal{G}, *)$. Demuestre que \mathcal{G} es abeliano si, y sólo si, $(x*y)^2 = x^2 * y^2, \forall x, y \in \mathcal{G}$. (4 pts)
- 3. Si $(A, +, \cdot)$ es un anillo y $x \in A$, se dice que x es idempotente si $x^2 = x$.

Para cada uno de los anillos que se enuncian a continuación, determine todos sus elementos idempotentes. (3 pts)

- (a) $(\mathbb{Z}_4, +, \cdot)$
- (b) $(\mathbb{Z}_5,+,\cdot)$
- 4. Considere el conjunto $\mathcal{A} = \{0, 2, 4, 6, 8\}$. Si se sabe que $(\mathcal{A}, +, \cdot)$ es un anillo módulo 10 ¿Es \mathcal{A} un anillo unitario o no lo es? Justifique. (3 pts)
- 5. Sea $(A, +, \cdot)$ un anillo conmutativo ¿Cuáles son las propiedades, adicionales a las de anillo, que se deben cumplir para que $(A, +, \cdot)$ sea campo? (2 pts)

- 6. Si $W = \{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0, \text{ con } a, b \text{ y } c \text{ números reales fijos} \}$, demuestre que W es un subespacio de \mathbb{R}^3 . (4 pts)
- 7. Considere el conjunto \mathcal{B} definido como $\mathcal{B} = \{1+x, 1-x, 1-x^2, x^3+x^2+x+1\}$. Determine si el polinomio $p(x) = x^3 + 2x^2 4x + 1$ se puede escribir como combinación lineal de los vectores de \mathcal{B} o no. (4 pts)
- 8. Determine si los vectores $u_1 = (2, -1, 0, -1)$, $u_2 = (1, 0, 1, -1)$ y $u_3 = (-1, 1, 1, 0)$ son linealmente dependientes o linealmente independientes. (3 pts)