

Pairwise Webpage Coreference Classification using Distant Supervision

S. Shivashankar, Timothy Baldwin, Julian Brooke, Trevor Cohn Computing and Information Systems, The University of Melbourne, Australia

Introduction

A person or other entity is often associated with multiple URL endpoints on the web

- ► Barack Obama ⇒ https://barackobama.com/ and https://en.wikipedia.org/wiki/Barack_Obama
- ► Donald Trump /→

https://twitter.com/realDonaldTrump and
https://www.instagram.com/ivankatrump

Motivates the task of webpage coreference classification for a given entity!

Problem Setup

- ▶ We assume access to web KBs based on automatic crawling
- > social networks (e.g. facebook.com/*), news aggregation endpoints (e.g.
 nytimes.com/topic/person/*) and organisation directories (e.g.
 www.gtlaw.com/People/*)
- ► Given a training dataset *D* with pairs of web URLs
 - ▶ Initially all the pairs are unlabeled $(D_u \leftarrow D, D_p, D_n = \phi)$
 - ▶ Learn a model $f(\phi(U_i, U_j)) \rightarrow y$, for URL pair U_i and U_j
 - ► Target $y \in \{0, 1\}$

Distant Supervision

To strike a balance between unsupervised and supervised methods that require annotated data

- ➤ We obtain positive examples using web-search-based distant supervision
- ► Search query George Clinton AND P-Funk fetches
 https://en.wikipedia.org/wiki/George_Clinton_(musician)
 - ► But not
- http://www.biography.com/people/george-clinton-537674
- ► We build a positive and unlabelled (PU) learning model

Proposed Approach

- ► We generate queries for URL pairs that share same entity name
- ► Employ a label propagation technique to expand the set of positive examples

► Any binary classifier can be trained on the expanded labeled set

Query Generation

We construct web search queries for distant supervision as follows:

- $\triangleright Q_i$: Using the target entity name and context information from U_i
- \triangleright Q_j : Similar to the above, we generate context information from U_j .

E.g., for URL pairs: www.imperial.ac.uk/people/f.allen and https://www.linkedin.com/in/franklin-allen-0557906 a query constructed is "Franklin Allen Brevan Howard Centre"

Initialize Labels

- ▶ For each query in Q_i , we check to see if U_i is present in the top-K search results S_{ii}
- ▶ Conversely if U_i is present in the top-K results, S_{ji} for each query in Q_j
- $\blacktriangleright \left[\exists q \in Q_i, \quad \exists S_{ji} \mid U_j \in S_{ji} \lor \exists q \in Q_j, \quad \exists S_{ij} \mid U_i \in S_{ij} \right] \implies \hat{y_{ij}} = 1$
- $ightharpoonup D_p \leftarrow D[\hat{y}_{ij}=1], \ D_u \leftarrow D_u \setminus D[\hat{y}_{ij}=1].$

Labelling Unlabelled Pairs

- ▶ Step 1: Randomly select N instances from D_p , and hold them out in S_p .
- ▶ Step 2: Train a binary classifier θ , taking $D'_p = D_p \setminus S_p$ as positive instances and D_u as negative instances.
- ► Step 3: $\mu_p = \frac{1}{|S_p|} \sum_{i:S_p} p(x_i = 1|\theta)$, (using Platt scaling)
 - $D_p^* = x_u \in D_u : p(x_u = 1) > \mu_p.$
 - $\triangleright D_p \leftarrow D_p \cup D_p^*, D_n \leftarrow D_u \setminus D_p^*$

Datasets

- ► SemEval-2007 WePS development set
- ► ALTA-2016 shared task

Feature Representation

- ► Structural features such as document length difference, URL path length difference
- ➤ Semantic features such as unigram cosine similarity, cosine similarity over an average word-level word2vec representation, machine translation scores (BLEU, METEOR, TER)

Experimental Results

- Baselines
 - ► Hierarchical Clustering (HC) Unsupervised Approach
 - ▶ Biased SVM (BSVM) with costs for positive and negative classes
 - Spy-SVM (B. Liu et. al., ICML 2002)
 - SPUL (C. Elkan et. al., KDD 2008)
- Proposed Approach
 - ▶ DP-SVM (Linear Kernel SVM built using propagated distant labels)

Dataset	BSVM	Spy-SVM	SPUL	HC	DP-SVM
WePS	0.472	0.630	0.516	0.408	0.653
ALTA	0.500	0.540	0.587	0.481	0.608

Conclusions

- ► Approach to determining whether two endpoint URLs refer to the same entity.
- ► Two key contributions:
 - ▶ use of distant supervision
- ▶ application of PU Learning to the task