Exercise Set 3

- 1. Let (M_1, d_1) be a compact metric space, (M_2, d_2) and (M_3, d_3) arbitrary metric spaces. Suppose that the mapping $f: (M_1, d_1) \to (M_2, d_2)$ is onto and continuous. Furthermore, assume that $g: (M_2, d_2) \to (M_3, d_3)$ is such that $g \circ f: (M_1, d_1) \to (M_3, d_3)$ is continuous. Prove that $g: (M_2, d_2) \to (M_3, d_3)$ is also continuous.
- 2. Show that (Σ_N, d_F) is a compact metric space.
- 3. Prove that (Σ_N, d_F) is metrically equivalent to a totally disconnected Cantor subset of [0, 1].
- 4. Show that the code space (Σ_N, d_F) is the closure of the set of periodic codes.
- 5. Suppose that \mathfrak{A} is the fractal set generated by the IFS (X, \mathcal{F}) , where $\mathcal{F} := \{f_1, \ldots, f_N\}$. A point $\mathfrak{a} \in \mathfrak{A}$ is called a *periodic point* of the IFS (X, \mathcal{F}) , if there exists a $p \in \mathbb{N}$ and a code σ of length p such that

$$\mathfrak{a} = f_{\sigma(p)}(\mathfrak{a}).$$

Conclude from Problem 4 above, that the fractal set generated by an IFS is the closure of its periodic points.