Consider the two broadcasting techniques: minimum spanning tree, and the reverse path forwarding (RPF) techniques. Which of the following is correct?

- The number of edges in the RPF flooding tree is always guaranteed to be = (number of nodes in the network -1)
- Broadcasting using the minimum spanning tree causes more efficient use of bandwidth (fewer wasted packets) than does the RPF flooding tree
- Broadcasting using the RPF flooding tree causes more efficient use of bandwidth (fewer wasted packets) than does the minimum spanning tree

QUESTION 2

A router receives a packet with the destination address 197.7.21.84 the network address of the packet is

- 0 197.7.0.0
- 197.7.21.0
- 0 19.77.0.0
- 0.7.21.84

65534

254

O 256

The packets in the following applications are mostly transferred through virtual circuits. File Transfer Video Conference None of them Online Gaming QUESTION 5 Suppose you have two hosts (Source, Destination) connected by a sequence of three networks { Source-> NW1 -> NW2 -> NW3-> Destination}. The three networks have maximum transmission unit MTU of (4 bytes, 5 bytes, and 3bytes accordingly). The host Source sends a (12 bytes) Payload to Destination, and the header is one byte. If the networks use non-transparent fragmentation technique, the number of fragments moving in the last subnet { NW3-> Destination} is:

QUESTION 6

834

QUESTION 4

A router has the following CIDR entries in its routing table:

Address/mask	Next hop	
128.0.0.0/8	Interface 0	
128.7.0.0/16	Interface 1	
128.31.0.0/11	Interface 2	
others	Interface 3	

For	the incoming packet with destination IP addresses 128.15.33.2, the router will forward it to interface
0	Interface 3
0	Interface 1
•	Interface 2
0	Interface 0

Suppose you are to choose a multicasting protocol to be used in a network, where 95% of its nodes are joined in one multicast group. What is the best protocol to choose, considering the tree initialization overhead?

- Both of them are equivalents
- DVMRP
- PIM Sparse

QUESTION 8

A University is provided by network address 218.35.50.0, the university wants to provide 5 different subnetting is:

- 0 32
- 0 14
- 0 16
- 30

QUESTION 9

Consider a sub-net of five routers (A, B, C, D, and E) as shown above and Link state routing protocol is used. Suppose that Router E has a previous list of the most recent LSP's shown in the table

Source Router ID of LSP	Age	Seq	
A	60	18	
В	45	20	
с	40	15	
D	52	25	

Suppose the following link-state packet have just come into router E and it is not processed yet. Choose one answer from the following, that describe the best E's behavior about it.

LSP Number	Source Router ID of LSP	The Direct Sending Router	Age	Seq.
1	В	D	30	22

V-) (

Accepts 1 and Forwards to C only

O Accepts 1 and Forwards to C and D

A University is provided by network address 218.35.50.0, the university wants to provide 5 different subnets for its five colleges, using classful addressing subnetting, then the minimum Custom subnet mask length is:

- O 28
- 0 26
- 0 24
- 27

QUESTION 11

Consider a sub-net of five routers (A, B, C, D, and E) as shown above and Link state routing protocol is used. Suppose that Router E has a previous list of the most recent LSP's shown in the table

So
A
В

Source Router ID of LSP	Age	Seq	
4	60	18	
3	45	20	
90	40	15	١
)	52	25	

Suppose the following link-state packet have just come into router E and it is not processed yet. Choose one answer from the following, that describe the best E's behavior about it.

Number	Source Router ID of LSP	The Direct Sending Router	Age	Seg.
2		D	59	17 ,

O Accepts 2 and Forwards to D only

O Accepts 2 and Forwards to C and D

O Accepts 2 and Forwards to C only

Rejects 2

[- SN - []

Assume having enough resources, high quality of service is more challenging to be achieved in.....

- O Connection-Oriented
- Datagram Networks

QUESTION 13

In the following topology, the number of packets required to send a message from A to D using the pure flooding technique with setting the max hop count=2 is

- 7 packets
- O 2 packets
- O 6 packets
- O 8 packets

QUESTION 14

The process of subnetting refers to what?

- O Borrowing bits from the subnet mask in order to create more sub-networks.
- Borrowing bits from the network portion of the address to create more sub-networks.
- Borrowing bits from the host portion of the address to create more sub-networks.