fMRI Reproducibility in R

Brian B. Avants

PENN Image Computing & Science Laboratory
Dept. of Radiology, University of Pennsylvania
Philadelphia, PA, 19104 ¹

November 4, 2013

¹for KRNS project

This presentation is copyrighted by The **ANTs software consortium**

distributed under the

Creative Commons by Attribution License 3.0

http:

//creativecommons.org/licenses/by/3.0

ANTsR group-wise fMRI processing

Reproducibility Datasets

Dataset 1 : Gorgolewski n=10 Dataset 2 : Duncan n > 35

```
run1 <- rnorm(100)
run2 <- rnorm(100)
cor.test(run1, run2)
##
##
    Pearson's product-moment correlation
##
## data: run1 and run2
## t = 0.6915, df = 98, p-value = 0.4909
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1285 0.2625
## sample estimates:
##
       cor
## 0.06968
```

Use \underline{R} to test processing strategies for fMRI

- Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- ▶ Template is BOLD and includes AAL neuroanatomical labels.

- Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- ► Template is BOLD and includes AAL neuroanatomical labels.

- ▶ Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- ► Template is BOLD and includes AAL neuroanatomical labels.

- Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- ▶ Template is BOLD and includes AAL neuroanatomical labels.

- Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- ▶ Template is BOLD and includes AAL neuroanatomical labels.

- Pre-processing minimal connectome strategies
- Univariate: GLM with CompCor and ANTs motion correction.
- Multivariate: fMRI application of SCCAN
- Multi/Univariate use same pre-processing and includes outlier detection based on global signal.
- Employ a group-wise fixed effects analysis requires mapping to a common template space.
- Template is BOLD and includes AAL neuroanatomical labels.

Validation Mechanisms

- ▶ Univar: Threshold statistical map consistently: top x% of β map \rightarrow threshold at constant β = 1.5, 2.0, 2.5 across two different runs.
- Multivar: Measure spatial coincidence of sparse multivariate predictors across runs.
- Measure signal overlap (Dice) between clusters in thresholded beta map.
- Minimum distance sum (MDS) between clusters in thresholded beta map between two runs

Prediction

Significance of training features in testing run—Need to refactor this ...

Validation Mechanisms

- ▶ Univar: Threshold statistical map consistently: top x% of β map \rightarrow threshold at constant β = 1.5, 2.0, 2.5 across two different runs.
- Multivar: Measure spatial coincidence of sparse multivariate predictors across runs.
- Measure signal overlap (Dice) between clusters in thresholded beta map.
- Minimum distance sum (MDS) between clusters in thresholded beta map between two runs

Prediction

Significance of training features in testing run—Need to refactor this ...

Validation Mechanisms

- ▶ Univar: Threshold statistical map consistently: top x% of β map \rightarrow threshold at constant β = 1.5, 2.0, 2.5 across two different runs.
- Multivar: Measure spatial coincidence of sparse multivariate predictors across runs.
- Measure signal overlap (Dice) between clusters in thresholded beta map.
- Minimum distance sum (MDS) between clusters in thresholded beta map between two runs

Significance of training features in to

Significance of training features in testing run—Need tcc refactor this ...

Validation Mechanisms

- ▶ Univar: Threshold statistical map consistently: top x% of β map \rightarrow threshold at constant β = 1.5, 2.0, 2.5 across two different runs.
- Multivar: Measure spatial coincidence of sparse multivariate predictors across runs.
- Measure signal overlap (Dice) between clusters in thresholded beta map.
- Minimum distance sum (MDS) between clusters in thresholded beta map between two runs

Prediction

Significance of training features in testing run—Need to refactor this ...

Validation Mechanisms

- ▶ Univar: Threshold statistical map consistently: top x% of β map \rightarrow threshold at constant β = 1.5, 2.0, 2.5 across two different runs.
- Multivar: Measure spatial coincidence of sparse multivariate predictors across runs.
- Measure signal overlap (Dice) between clusters in thresholded beta map.
- Minimum distance sum (MDS) between clusters in thresholded beta map between two runs

Prediction

Significance of training features in testing run—Need to refactor this ...

- High-level script <u>univar_multivar_fmri_consistency.sh</u> runs all data through to get reproducibility numbers.
- process_bold.R bold processing for one run ...
 outputs hrf, matrices and (thresholded) beta maps
- ants_2_template.sh maps average BOLD to template space.
- ▶ Models are of form: voxel \approx hrf + motion1 + motion2 + motion3 + compcor1 + compcor2 + compcor3 + <math>globalsignal + SubjectID
- Input data is the "stacked" matrix i.e. if we have n subjects, each with a $t \times p$ (time by space) matrix , then the input matrix for this study would be of size $nt \times p$.

- High-level script <u>univar_multivar_fmri_consistency.sh</u> runs all data through to get reproducibility numbers.
- process_bold.R bold processing for one run ...
 outputs hrf, matrices and (thresholded) beta maps
- ants_2_template.sh maps average BOLD to template space.
- ▶ Models are of form: voxel \approx hrf + motion1 + motion2 + motion3 + compcor1 + compcor2 + compcor3 + globalsignal + SubjectID
- Input data is the "stacked" matrix i.e. if we have n subjects, each with a $t \times p$ (time by space) matrix , then the input matrix for this study would be of size $nt \times p$.

- High-level script <u>univar_multivar_fmri_consistency.sh</u> runs all data through to get reproducibility numbers.
- process_bold.R bold processing for one run ...
 outputs hrf, matrices and (thresholded) beta maps
- ants_2_template.sh maps average BOLD to template space.
- ▶ Models are of form: voxel \approx hrf + motion1 + motion2 + motion3 + compcor1 + compcor2 + compcor3 + global signal + SubjectID
- Input data is the "stacked" matrix i.e. if we have n subjects, each with a $t \times p$ (time by space) matrix , then the input matrix for this study would be of size $nt \times p$.

- High-level script <u>univar_multivar_fmri_consistency.sh</u>
 runs all data through to get reproducibility numbers.
- process_bold.R bold processing for one run ...
 outputs hrf, matrices and (thresholded) beta maps
- ants_2_template.sh maps average BOLD to template space.
- ▶ Models are of form: voxel \approx hrf + motion1 + motion2 + motion3 + compcor1 + compcor2 + compcor3 + <math>globalsignal + SubjectID
- Input data is the "stacked" matrix i.e. if we have n subjects, each with a $t \times p$ (time by space) matrix , then the input matrix for this study would be of size $nt \times p$.

- High-level script <u>univar_multivar_fmri_consistency.sh</u> runs all data through to get reproducibility numbers.
- process_bold.R bold processing for one run ...
 outputs hrf, matrices and (thresholded) beta maps
- ants_2_template.sh maps average BOLD to template space.
- ▶ Models are of form: voxel \approx hrf + motion1 + motion2 + motion3 + compcor1 + compcor2 + compcor3 + <math>globalsignal + SubjectID
- Input data is the "stacked" matrix i.e. if we have n subjects, each with a $t \times p$ (time by space) matrix , then the input matrix for this study would be of size $nt \times p$.

- Analyzed covert verb generation and finger tapping.
- ▶ Do β maps overlap? Depends on threshold and task.
- Finger tapping overlap: Max pprox 0.4 at threshold Y.
- Covert verb: Less sensitive to threshold. Max ≈ 0.7 at threshold 2.

- Analyzed covert verb generation and finger tapping.
- ▶ Do β maps overlap? Depends on threshold and task.
- Finger tapping overlap: Max pprox 0.4 at threshold Y.
- Covert verb: Less sensitive to threshold. Max ≈ 0.7 at threshold 2.

- Analyzed covert verb generation and finger tapping.
- ▶ Do β maps overlap? Depends on threshold and task.
- Finger tapping overlap: Max ≈ 0.4 at threshold Y.
- Covert verb: Less sensitive to threshold. Max ≈ 0.7 at threshold 2.

- Analyzed covert verb generation and finger tapping.
- ▶ Do β maps overlap? Depends on threshold and task.
- Finger tapping overlap: Max ≈ 0.4 at threshold Y.
- ▶ Covert verb: Less sensitive to threshold. Max ≈ 0.7 at threshold 2.

Univariate Overlap: Covert Verb

Univariate Overlap: Finger Tapping

- Analyzed covert verb generation and finger tapping.
- Do sparse-components overlap? Depends on threshold and task.
- A sparse component, u, maximizes PearsonCorrelation $(uX, \mathsf{HRF}v) - \omega ||u||_1$ where we ℓ_1 penalize non-zero components of uand X is the BOLD matrix.
- Finger tapping overlap: "focal network," max ≈ 0.7 at threshold 2% of brain.
- ► Covert verb: "bigger network," max ≈ 0.8 at threshold 12% of brain.

- Analyzed covert verb generation and finger tapping.
- Do sparse-components overlap? Depends on threshold and task.
- A sparse component, u, maximizes PearsonCorrelation $(uX, \mathsf{HRF}v) \omega \|u\|_1$ where we ℓ_1 penalize non-zero components of u and X is the BOLD matrix.
- Finger tapping overlap: "focal network," max ≈ 0.7 at threshold 2% of brain.
- ► Covert verb: "bigger network," max ≈ 0.8 at threshold 12% of brain.

- Analyzed covert verb generation and finger tapping.
- Do sparse-components overlap? Depends on threshold and task.
- A sparse component, u, maximizes PearsonCorrelation $(uX, \mathsf{HRF}v) \omega \|u\|_1$ where we ℓ_1 penalize non-zero components of u and X is the BOLD matrix.
- Finger tapping overlap: "focal network," max ≈ 0.7 at threshold 2% of brain.
- ► Covert verb: "bigger network," max ≈ 0.8 at threshold 12% of brain.

- Analyzed covert verb generation and finger tapping.
- Do sparse-components overlap? Depends on threshold and task.
- A sparse component, u, maximizes PearsonCorrelation $(uX, \mathsf{HRF}v) \omega \|u\|_1$ where we ℓ_1 penalize non-zero components of u and X is the BOLD matrix.
- Finger tapping overlap: "focal network," max ≈ 0.7 at threshold 2% of brain.
- ► Covert verb: "bigger network," max ≈ 0.8 at threshold 12% of brain.

- Analyzed covert verb generation and finger tapping.
- Do sparse-components overlap? Depends on threshold and task.
- A sparse component, u, maximizes PearsonCorrelation $(uX, \mathsf{HRF}v) \omega \|u\|_1$ where we ℓ_1 penalize non-zero components of u and X is the BOLD matrix.
- Finger tapping overlap: "focal network," max ≈ 0.7 at threshold 2% of brain.
- ► Covert verb: "bigger network," max ≈ 0.8 at threshold 12% of brain.

Multivariate Overlap: Covert Verb

Multivariate Overlap: Finger Tapping

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- ► Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- ► Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- ► Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- ► Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.

- Study impact of pre-processing for both univariate and multivariate approaches.
- Random effects in univariate? Optimized smoothing in univariate?
- Test decoding of 3 simple tasks with both univariate and multivariate feature selection.
- Given results of above, process Haxby data.