

Mathematical Analysis (R)1

1. Let x = (1, 1, 0), $y = (0, 1, 1) \in \mathbb{R}^3$. Compute the distance $d(x, y) = \dots$ and $x \cdot y = 1.0 + 1.1 + 0.1 = 1$

2. Let
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x_1, x_2, x_3) = x_1 x_2 x_3 + x_3^2 x_2$. The partial derivatives of f are
$$\underbrace{\mathcal{F}(x_1, x_2, x_3)}_{\mathcal{F}(x_1, x_2, x_3)} = \underbrace{\mathcal{F}(x_1, x_2, x_3)}_{\mathcal{F}(x_1, x_2, x_3)} = \underbrace{\mathcal{F}(x$$

3. Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, $\Delta=\{a=x_0,x_1,\ldots,x_{n-1},x_n=b\}$ a division and $\xi = \left\{ \xi_1, \xi_2, \dots \xi_{n-1}, \xi_n \right\}$ with $\xi_i \in [x_{i-1}, x_i]$ a system of intermediate points. The Riemann sum associated to f, Δ, ξ is

σ(f, Δ, ξ) = ∑ f(ξk) (xk-xk-1)

4. The improper integral $\int_{-\infty}^{\infty} \frac{x^2}{x^2 + 1} dx$ (a) converges or (b) diverges? (mark the correct answer) $\frac{1}{2}$ $\frac{1}{2}$ (4-4)5. Let $D = [1, 2] \times [0, 1]$. Compute $\iint xy \, dx \, dy = \iint xy \, dx \, dy = \iint y \, dy = \iint y \, dy = \iint x \, dx = \frac{1}{2} y^2 \Big|_0^4 \cdot \frac{1}{2} x^2 \Big|_0^4$

6. According to the Theorem of Fermat for functions of several variables, if $f: B_r(x^*) \subset \mathbb{R}^n \to \mathbb{R}$ Fréchet differentiable in x^* and x^* is a local minimum (maximum) for f, then $(x^*, x^*) = 0_{\mathbb{R}^n}$

 Give an example of a quadratic function Q: R² → R. $Q(x_4, x_2) = X_1^2 + X_2^2$

8. The series $\sum_{n=0}^{\infty} q^n$, |q| < 1 (a) converges or (b) diverges? (mark the correct answer)

[Prove your claim, for +1 bonus point.]

So $\lim_{n \to \infty} \frac{1}{\sqrt{1-q}} = \underbrace{1-q^{het}}_{1-q}$ geom. propertion

9. Fill in the next term of the Taylor expansion $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + ... + \frac{f''(x_0)}{2!}(x - x_0)^2$

10. Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ for which $\nabla f(x_1^*, x_2^*) = (0, 0)$, at $(x_1^*, x_2^*) \in \mathbb{R}^2$, but (x_1^*, x_2^*) is neither a local minimum nor a local maximum (draw the graph of f if you prefer),

... $f(x_1, x_2) = x_1^2 - x_2^2$, f(0,0) = 0of $(x_1,x_2)=2x_1$, g(0,0)=0 While f(0,0)=0 while f(0,0)=0 The detailed solutions to the following exercises on the next pages.

Output

Decount $f(0,0)=0 \le f(X_1,0)=x_1^2 \ \forall x_1 \in \mathbb{R}$ while $f(0,0)=0 \le f(X_1,0)=x_1^2 \ \forall x_2 \in \mathbb{R}$

(0,0) neither loc. min nor max (100) = 0 7, f(gx) = -x2 +xel

11. Compute $\iint \frac{1}{\sqrt{x^2+y^2}} dx dy$, where $D = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$.

12. Using Lagrange's mean value Theorem and the chain rule, prove that if $f:\mathbb{R}^n \to \mathbb{R}$ differentiable and $a=(a_1,\ldots,a_n)$, $b=(b_1,\ldots,b_n)\in\mathbb{R}^n$, then there exists $c\in[a,b]\subset\mathbb{R}^n$ on the segment connecting a and b, such that $f(b) - f(a) = \nabla f(c) \cdot (b - a)$.

13. a) Prove that the series $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ converges for any $0 \le x < 1$.

b) Argue that $\frac{1}{1+x^2} = 1 - x^2 + x^4 - \ldots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ is a Taylor expansion.

^{17.02.2020}