Ingtitute To	analógica da Casta Dica				
	cnológico de Costa Rica				
Escuela de l	ngeniería Electrónica				
EL-2207 Ele	ementos Activos	Total de Puntos:	38		
Profesores:	Dr. Ing. Juan José Montero Rodríguez				
	Dr. Ing. Alfonso Chacón Rodríguez	Puntos obtenidos:			
M.Sc. Ing. Aníbal Ruiz Barquero Ing. Edgar Solera Bolaños		Porcentaje:			
		Nota:			
II Semestre	2019	Nota.			
Tercer Exa	amen Parcial				
21 de noviembre de 2019					
Nombre:		Carné:			

Instrucciones Generales:

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **totalmente apagado** durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.
- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 3 horas, a partir de su hora de inicio.

Firma:			

Problema 1	de 10
Problema 2	de 10
Problema 3	de 10
Problema 4	de 8

Problemas

Problema 1 Polarización

10 Pts

Para el circuito que se muestra en la figura 1.1, encuentre la relación de tamaño $(W/L)_1$ para que la corriente de drenador por M_1 (I_{D1}) sea igual a un I_1 determinado (la solución debe expresarse en literales). Suponga que $\lambda=0$ para M_1 , y que $V_{TH}=0.4$ V.

Figura 1.1: Solución de problema 1

Solución Problema 1

Figura 1.2: Solución de problema 1

Problema 2 Pequeña señal

10 Pts

El circuito mostrado en la Figura 2 se utiliza como amplificador de pequeña señal. Para la solución de este problema considere $\lambda \neq 0$, $\gamma = 0$.

Figura 2.1: Circuito para el problema 2.

2.1. Dibuje el circuito equivalente de pequeña señal.

- 4 Pts
- 2.2. Obtenga una expresión algebraica para la ganancia de tensión A_v .

- 3 Pts
- 2.3. Si se conoce que $g_{m1}=g_{m2}$, encuentre el valor numérico de A_v . Para este punto puede suponer que $r_o>>1/g_m$ y que R_L es muy alta en comparación con $1/g_m$.

Solución Problema 2

2.1. El circuito equivalente de pequeña señal:

Figura 2.2: Solución para el problema 2.

2.2. Resolviendo el modelo (LCK en el nodo de salida) se obtiene:

$$v_{out} = -g_{m1}v_{gs} \times (R_L \parallel r_{o1} \parallel r_{o2} \parallel \frac{1}{g_{m2}})$$

Con $v_{gs} = v_{in}$:

$$v_{out} = -g_{m1}v_{in} \times (R_L \parallel r_{o1} \parallel r_{o2} \parallel \frac{1}{g_{m2}})$$

$$A_v = -g_{m1} \times (R_L \parallel r_{o1} \parallel r_{o2} \parallel \frac{1}{g_{m2}})$$

2.3. Aproximando la ganancia tenemos:

$$A_v \approx -g_{m1} \times \left(\frac{1}{g_{m2}}\right)$$

$$A_v \approx -250 \ mS \times \left(\frac{1}{250 \ mS}\right)$$

$$A_v = -1$$

Considere el circuito mostrado en la figura 3.1. Es conocido que dicho circuito funciona como circuito digital inversor.

Figura 3.1: Circuito para el problema 3.

Considerando que:

• Las características del transistor N son:

$$C_{OX_1} = C_{OX_1}^{'}WL = 4.8 \ fF$$
 $R_{N_1} = R_{N_1}^{'} \frac{L}{W} = 12 \ k\Omega \frac{L}{W}$

- 3.1. Complete correctamente la expresión: "El transistor MOSFET de canal _____ es más eficiente transfiriendo un 1 lógico, mientras que el transistor de canal _____ es mas eficiente transfiriendo un 0 lógico".

 1 Pt
- 3.2. Complete correctamente la expresión: "La resistencia de un MOSFET de canal ______ es tres veces más pequeña que la de un MOSFET de canal _____".

 1 Pt
- 3.3. Dibuje el circuito equivalente del inversor de la figura 3.1, considerando el modelo digital del transistor MOSFET. 3 Pts
- 3.4. Determine los tiempos de retraso de propagación en la salida del inversor t_{PLH} y t_{PHL} Considerando un $C_{OX_1} = C_{OX_2}$, $W_1 = 3\mu m$ y $L_1 = 2\mu m$.
- 3.5. Dibuje el gráfico Tensión vs Tiempo, donde superponga las señales de entrada (V_{IN}) y salida (V_{OUT}) por al menos 5 ns. Considere un cambio en la entrada de 0V a VDD en t=1 ns. Dicha entrada perdura en el valor de VDD durante un lapso de 0.5 ns. Señale correctamente los tiempos t_{PLH} y t_{PHL} en la gráfica resultante. Rotule de forma adecuada tanto las señales, como los ejes.
- 3.6. Suponga que se conecta un condensador de carga y se triplica el W_2 . Determine los tiempos de retraso de propagación en la salida del inversor t_{PLH} y t_{PHL} . Considerando que ahora $C_{OX_2} = C_{OX_1} * 3 = 14.4 fF$, $W_2 = 3 * W_1 = 9 \mu m$ y $L_1 = 2 \mu m$ y una capacitancia de carga $C_L = 100 fF$ (Extra).

Solución Problema 3

3.1. Complete correctamente la expresión: El transistor MOSFET de canal _____ P es más eficiente transfiriendo un 1 lógico, mientras que el transistor de canal _____ N es mas eficiente transfiriendo un 0 lógico. _____ 1 Pt

- 3.3. Dibuje el circuito equivalente del inversor de la figura 3.1, considerando el modelo digital del Mosfet.

 3.4. A Pts

Figura 3.2: Respues problema 33

3.4. Determine los tiempos de retraso de propagación en la salida del inversor t_{PLH} y t_{PHL} Considerando un $C_{OX_1} = C_{OX_2}$, $W_1 = 3\mu m$ y $L_1 = 2\mu m$.

$$t_{PLH} = 0.7 * R_{p2} * Cout = R_{p2} * (Coutn + Coutp) = 0.7 * 24k\Omega * 2 * (4.8fF) = 161ps$$

 $t_{PHL} = 0.7 * R_{n1} * Cout = R_{n1} * (Coutn + Coutp) = 0.7 * 8k\Omega * 2 * (4.8fF) = 53.76ps$

3.5. Dibuje el gráfico Tensión vs Tiempo, donde superponga las señales de entrada y salida por al menos 5 ns. Considere un cambio en la entrada de 0V a VDD en t=1 ns. Dicha entrada perdura en el valor de VDD durante un lapso de 0.5 ns. Señale correctamente los tiempos t_{PLH} y t_{PHL} en la gráfica resultante.

Figura 3.3: Respues problema 35

3.6. Suponga que se conecta un condensador de carga y se triplica el W_2 . Determine los tiempos de retraso de propagación en la salida del inversor t_{PLH} y t_{PHL} . Considerando que ahora $C_{OX_2} = C_{OX_1} * 3 = 14.4 fF$, $W_2 = 3 * W_1 = 9 \mu m$ y $L_1 = 2 \mu m$ y una capacitancia de carga $C_L = 100 fF$ (Extra).

$$t_{PLH} = 0.7 * R_{p2} * Ctot = R_{p2} * (Coutn + Coutp + Ccarga)$$

$$t_{PLH} = 0.7 * 8k\Omega * (4.8fF + 14.4fF + 100fF) = 0.7 * 8k\Omega * (119.4fF) = 667.1ps$$

Como:

$$R_{n1} = 8k\Omega$$

y

$$R_{p2} = 24k\Omega/3 = 8k\Omega$$

Entonces:

$$t_{PLH} = t_{PHL}$$

Usando el circuito mostrado en la figura 4.1, rellene la tabla 4.1 con los valores esperados para Y.

Figura 4.1: Solución de problema 4

Tabla 4.1: Tabla de Verdad de la compuerta

Α	В	С	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Solución Problema 4 0.5pts por linea

Tabla 4.2: Tabla de Verdad de la compuerta

tabia de verdad de			uc i	
A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0