Monte Carlo Tree Search Immediate Reward Implementation Experiments and Results Conclusion

Immediate Versus Delayed Rewards for the Game of Go

Reinforcement Learning

Chia-Man Hung, Dexiong Chen

Master MVA

January 23, 2017

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- 3 Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- 3 Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

General Approach

General Approach

Algorithm 1: General MCTS approach.

```
1 <u>function</u> MCTSSearch (s_0)
2 create root node v_0 with state s_0
```

```
3 for i = 1, ..., itermax do
4 v_l \leftarrow \text{TreePolicy}(v_0)
```

5 $\Delta \leftarrow \text{DefaultPolicy}(s(v_l))$ BackPropagate (v_l, Δ)

6 | BackPropagate (v_l, Δ)

7 end

UCT Algorithm

Upper Confidence Bound applied for Trees (UCT) Tree policy:

$$v^* = \underset{v_c \in \mathsf{child}(v)}{\mathsf{arg}} \, \underset{N(v_c)}{\mathsf{W}(v_c)} + K \sqrt{\frac{\mathit{InN}(v)}{\mathit{N}(v_c)}} \tag{1}$$

where v_c is a child of v, W is the wins count, N is the visits count, and K is a exploration constant to tune.

Exploration vs. Exploitation

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

Problem Setting

- Goal: Control a territory
- Influence function:

The influence function of a white stone (respectively black) at position p over q

$$I_4^W(p,q) = (4 - d_4(p,q))_+, I_4^B(p,q) = -(4 - d_4(p,q))_+, (2)$$

The total influence of the stones on position q at step t

$$\mathcal{I}_{t}(q) = \sum_{p \in W_{t}} I_{4}^{W}(p, q) + \sum_{p \in B_{t}} I_{4}^{B}(p, q), \tag{3}$$

Boundary: Empty, Adversarial

Problem Setting

Reward function:

The final reward functions for the τ^{th} play of player white (respectively black)

$$r_{\tau}^{W}(p) = \sum_{q \in G} (\mathcal{I}_{2\tau}^{W}(q) - \mathcal{I}_{2\tau-1}^{W}(q))_{+} \mathbb{1} \{ \mathcal{I}_{2\tau-1}^{W}(q) < 0 \le \mathcal{I}_{2\tau}^{W}(q) \}$$

$$r_{\tau}^{B}(p) = \sum_{q \in G} (-\mathcal{I}_{2\tau+1}^{B}(q) + \mathcal{I}_{2\tau}^{B}(q))_{+} \mathbb{1} \{ \mathcal{I}_{2\tau}^{B}(q) > 0 \ge \mathcal{I}_{2\tau+1}^{B}(q) \}$$

$$(4)$$

Illustration of white's reward function

Left: white (1, 3), (0, 5), black (0, 0). Middle: white (0, 2), (0, 6), black (1, 7). Right: white (6, 6), (1, 7), black (8, 8).

Variants

- Pruning: Keep promising children
- Min-Max principle: Take into account the opponent's move

$$a^* = \max_{a \in A(s)} \min_{b \in A(s(a))} r(a, s) - r(b, s(a))$$
 (5)

 Back-propagated value: Immediate reward or the official game result (1 win, 0 draw, -1 lose)

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- 3 Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

Code Structure

Implementation - game_node

```
class GameNode(object):
    """A node in the game tree. Note wins is always from the viewpoint of player_just_moved.
    """

def __init__(self, move=None, parent=None, state=None):
    self.move = move # the move that got us to this node - "None" for the root node
    self.parent_node = parent # "None" for the root node
    self.child_nodes = []
    self.wins = 0
    self.visits = 0
    self.untried_moves = state.get_moves() # future child nodes
    self.player_just_moved = state.player_just_moved
```

Code Structure

Implementation - game_state

```
class GameState(object):
   """A state of the game board, needed in Monte Carlo Tree Search.
       By convention, the players are numbered 1 (Black, X) and 2 (White, O).
    ....
   def __init__(self, prune=False, zero_sum=False, epsilon=0., minmax=False, minmax_p=2, immediate=False):
        self.pv pachi board = env.state.board.clone()
        self.player just moved = CONST.WHITE()
        self.nbmoves = 0
        self.prune = prune
        self.accumulated_reward = [0.0, 0.0]
        self.zero_sum = zero_sum
        self.epsilon = epsilon
        self.minmax = minmax
        self.minmax p = minmax p
        self.IW = None
        self TR = None
        self.immediate = immediate
```

Code Structure

Implementation - UCT

```
def UCT(rootstate, itermax, verbose=False):
    """ Conduct a UCT search for itermax iterations starting from rootstate.
        Return the best move from the rootstate.
    rootnode = game node.GameNode(state=rootstate)
    for i in range(itermax):
        node = rootnode
        state = rootstate.clone()
        # Select
        while node.untried moves == [] and node.child nodes != []: # node is fully expanded and non-terminal
            node = node.UCT_select_child()
            state.do move(node.move)
        # Expand
        if node.untried_moves != []: # if we can expand (i.e. state/node is non-terminal)
            m = random.choice(node.untried moves)
            state.do move(m)
            node = node.add child(m. state) # add child and descend tree
```

Implementation - UCT

```
# Rollout
# OpenAI Go board has its maximum limit of moves as 4096
# state.get_moves() always contains -1
while not(state.py_pachi_board.is_terminal) and state.nbmoves < 4096 and len(state.get_all_moves()) > 1:
    state.do_move(random.choice(state.get_all_moves()), update=False)

# Backpropagate
while node is not None: # backpropagate from the expanded node and work back to the root node
    node.update(state.get_result(node.player_just_moved)) # state is terminal.
    node = node.parent_node
return sorted(rootnode.child nodes, key = lambda c: c.visits)[-11.move # return the move that was most visited
```

Code Structure

Optimization

In case of non-captures, the influence can be updated easily. This is done in <code>get_immediate_reward_aux</code> in <code>board.py</code>.

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

Which boundary to use? Empty or adversarial? Compared with the official game result on 1000 games and got similar performance.

 \Rightarrow We use the empty boundary in the following.

	Scenario 1
Player A	Random strategy
Player B	UCT strategy: 1000 iterations, without pruning, delayed reward
Wins A/B/draws	2/97/1

The default UCT strategy is better than the random strategy.

	Scenario 2
Player A	UCT strategy: 10 iterations, without pruning, delayed reward
Player B	UCT strategy: 10 iterations, without pruning, immediate reward
Wins A/B/draws	59/40/1

The delayed reward is slightly better than the immediate reward.

	Scenario 3	
Player A	UCT strategy: 100 iterations, without pruning, delayed reward	
Player B	UCT strategy: 100 iterations, with pruning, $\epsilon = 0$, delayed reward	
Wins A/B/draws	0/100/0	
Scenario 4		
Player A	UCT strategy: 100 iterations, without pruning, immediate reward	
Player B	UCT strategy: 100 iterations, with pruning, $\epsilon = 0$, immediate reward	
Wins A/B/draws	0/100/0	

Choosing the optimal action is better than without pruning.

	Scenario 5
Player A	UCT strategy: 100 iterations, with pruning, ϵ =0, delayed reward
Player B	UCT strategy: 100 iterations, with pruning, ϵ =0 and min-max, delayed reward
Wins A/B/draws	19/80/1

Considering the min-max principle really boosts the performance.

	Scenario 6
Player A	UCT strategy: 10 iterations, with pruning, ϵ =0, delayed reward
Player B	UCT strategy: 10 iterations, with pruning, ϵ =0.5, delayed reward
Wins A/B/draws	75/25/0
	Scenario 7
Player A	UCT strategy: 100 iterations, with pruning, $\epsilon = 0$, delayed reward
Player B	UCT strategy: 100 iterations, with pruning, ϵ =0.5 delayed reward
Wins A/B/draws	55/45/0
	Scenario 8
Player A	UCT strategy: 10 iterations, with pruning, ϵ =0, the delayed reward
Player B	UCT strategy: 10 iterations, with pruning, $\epsilon = 0.25$, delayed reward
Wins A/B/draws	64/36/0
	Scenario 9
Player A	UCT strategy: 100 iterations, with pruning, ϵ =0, delayed reward
Player B	UCT strategy: 100 iterations, with pruning, ϵ =0.125, delayed reward
Wins A/B/draws	49/51/0
	Scenario 10
Player A	UCT strategy: 10 iterations, with pruning, $\underline{\epsilon}=0$, delayed reward
Player B	UCT strategy: 10 iterations, with pruning, ϵ =0.125, delayed reward
Wins A/B/draws	63/37/0

Summary

- Monte Carlo Tree Search
 - General Approach
 - UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results
- Conclusion

Difficulties

- Simulate the game of Go in the OpenAl Gym.
- From understanding MCTS to actually implementing it.
 Data structure.
- Experiments are time-consuming, especially when the min-max principle is considered. (Impossible when min-max level > 2). Ideally, we'd like to have more iterations, otherwise hard to draw conclusion.

Conclusion

- Benefits of the immediate reward based on the pruning and the min-max principle.
- More iterations will be needed as ϵ grows.
- Future work: The number of iterations fixed

 Time budget fixed. (The min-max level can be studied under a fixed time budget.) Optimization with parallel computing. Try other variants combined with the immediate reward.