Programa

CURSO:ÁLGEBRA LINEAL AVANZADA Y MODELAMIENTO TRADUCCIÓN:ADVANCED LINEAR ALGEBRA AND MODELING

SIGLA:IMT2230 CRÉDITOS:10

MÓDULOS:03(02 CÁTEDRAS Y 01 AYUDANTÍA)

CARÁCTER: MÍNIMO TIPO: CÁTEDRA

CALIFICACIÓN: ESTÁNDAR (CALIFICACIÓN DE 1.0 A 7.0)

PALABRAS CLAVE: CIENCIA DE DATOS, ÁLGEBRA LINEAL Y APLICACIONES

NIVEL FORMATIVO: PREGRADO

I.DESCRIPCIÓN DEL CURSO

En este curso los estudiantes profundizarán en el álgebra lineal y sus aplicaciones en problemas de análisis de datos, para ello los estudiantes analizarán diversas descomposiciones y factorizaciones de matrices basadas en métodos espectrales, además aplicarán estas herramientas a problemas como reducción de dimensionalidad, ranking y aprendizaje de diccionarios.

II.RESULTADOS DE APRENDIZAJE

- 1.Aplicar el concepto de valor y vector propio en teoría de operadores.
- 2.Aplicar descomposiciones y factorizaciones de matrices basadas en valores y vectores propios, a problemas de aprendizaje básicos.
- 3.Aplicar conceptos de álgebra lineal en el estudio de ecuaciones diferenciales.
- 4.Aplicar el teorema de Perron-Frobenius en problemas de procesamiento de datos.
- 5. Analizar el método de la potencia y su aplicabilidad para matrices de adyacencia.
- 6.Definir el número de condicionamiento de una matriz y su importancia.

III.CONTENIDOS

- 1. Valores y Vectores Propios en Espacios de Producto Interno
- 1.1.Adjunta de Operadores
- 1.2.Operadores autoadjuntos y normales
- 1.3. Teoremas espectrales
- 1.4.Transformada de Fourier Discreta y Transformada Rápida de Fourier
- 1.5.Isometrías
- 1.6.Descomposición polar y descomposición en valores singulares
- 1.7.Aplicación: eigenfaces
- 2.Descomposición de Jordan
- 2.1. Vectores propios generalizados
- 2.2.Operadores Nilpotentes
- 2.3.Matrices Diagonales por Bloques

- 2.4.Multiplicidad Algebraica y Geométrica
- 2.5.Forma canónica de Jordan
- 2.6.Aplicaciones: Cálculo de Potencias de un Operador, Teorema del Mapeo Espectral
- 2.7. Polinomio característico y el Teorema de Cayley-Hamilton
- 2.8.Aplicación: Recurrencias Lineales (opcional)
- 3. Ecuaciones Diferenciales Lineales
- 3.1.La matriz exponencial
- 3.2. Sistemas lineales de ecuaciones diferenciales
- 3.3. Estabilidad y comportamiento asintótico de soluciones
- 4. Matrices Estocásticas y Teorema de Perrón-Frobenius
- 4.1.Matrices de Adyacencia y Google Page-Rank
- 4.2.Matrices Estocásticas por Filas y Columnas
- 4.3.Teorema de Perron-Frobenius
- 4.4.Regularización para Matrices de Adyacencia y el Método de la Potencia
- 5.Métodos Numéricos para Sistemas Lineales y Valores Propios
- 5.1. Subespacios de Krylov y Método de Gradientes Conjugados
- 5.2. Número de Condicionamiento
- 5.3.Métodos numéricos para valores y vectores propios: Método QR y Método de Lanczos

IV. ESTRATEGIAS METODOLÓGICAS

- -Clases expositivas.
- -Ayudantías.
- -Talleres prácticos.

V.ESTRATEGIAS EVALUATIVAS

- -Interrogaciones: 40%
- -Tareas: 20%
- -Examen final escrito: 40%

VI.BIBLIOGRAFÍA

Mínima

Coding the Matrix: Linear Algebra through Computer Science Application. P. Klein. Newtonian Press, 2015

Linear Algebra Done Right. S. Axler. Springer, third edition 2016

Complementaria

Linear Algebra and Learning from Data. By Gilbert Strang. Wellesley-Cambridge Press, 2019

Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares. Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2019

Numerical Linear Algebra. Trefethen, Bau III. SIAM, 1997

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL / SEPTIEMBRE 2020