

Stochastic Processes

PRNGs (contd.), Filtrations, Stopping Time

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

25 February 2025

Pseudo-Random Number Generators (PRNGs)

Binary PRNGs

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1001	1
1100	0
0110	0
1011	1
0101	1
1010	0
1101	1
1110	0

Output (one period): 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

Output (one period):

1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

 Number of zeros in one period ≈ number of ones in one period (desirable of uniform binary random number generator)

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Possible Workaround for Periodicity in Output

Increase the number of stages *N*.

Figure: N-Stage, binary linear feedback shift register.

Figure: *N*-Stage, binary linear feedback shift register.

•
$$g_0 = g_N = 1$$

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)
- E.g., for N=4, set

$$(g_0, g_1, g_2, g_3, g_4) = (1, 0, 0, 1, 1) = (23)_8.$$

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)
- E.g., for N=4, set

$$(g_0, g_1, g_2, g_3, g_4) = (1, 0, 0, 1, 1) = (23)_8.$$

• Maximal period sequences are called *m*-sequences

Commonly Used Feedback Connections

SR Length, N	Feedback Connections (in Octal Format)
2	7
3	13
4	23
5	45, 67, 75
6	103, 147, 155
7	203, 211, 217, 235, 277, 313, 325, 345, 367
8	435, 453, 537, 543, 545, 551, 703, 747

Figure: Non-exhaustive list of feedback connections to obtain m-sequences.

• Are periodic with period = $2^N - 1$

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process
 - Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(0.5)$

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process
 - Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(0.5)$
 - Then,

$$M_X(t) = 0.5, R_X(s,t) =$$

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process
 - Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(0.5)$
 - Then,

$$M_X(t) = 0.5, R_X(s,t) =$$

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process
 - Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(0.5)$
 - Then,

$$M_X(t) = 0.5,$$
 $R_X(s,t) = \mathbb{E}[X_s X_t] = \begin{cases} \frac{1}{2}, & s = t, \\ \frac{1}{4}, & s \neq t. \end{cases}$

— Given a discrete-time signal $\{x[n]\}_{n=0}^{\infty}$ with period N, its autocorrelation is given by

$$R_X[k] = \frac{1}{N} \sum_{n=1}^{N-1} x[n] x[n+k], \qquad k \in \{0, 1, 2, \ldots\}.$$

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process
 - Suppose $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(0.5)$
 - Then.

$$M_X(t)=0.5, \qquad \qquad R_X(s,t)=\mathbb{E}[X_sX_t]=egin{cases} rac{1}{2}, & s=t,\ rac{1}{4}, & s
eq t. \end{cases}$$

— Given a discrete-time signal $\{x[n]\}_{n=0}^{\infty}$ with period N, its autocorrelation is given by

$$R_X[k] = \frac{1}{N} \sum_{n=1}^{N-1} x[n] x[n+k], \qquad k \in \{0, 1, 2, \ldots\}.$$

- Considering the single period output 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, we have

$$R_X[k] = egin{cases} rac{8}{15}, & k = 0, \ rac{4}{15}, & 1 \leq k \leq 14, \end{cases}$$
 $R_X[k+15] = R_X[k]$

• How do we generate non-binary *m*-sequences?

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} - 1 = 2147483647$)

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor
- Due to $(\operatorname{mod} p)$ operation, $x_n \in \{1, \dots, p-1\}$ for all n

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor
- Due to $(\operatorname{mod} p)$ operation, $x_n \in \{1, \dots, p-1\}$ for all n
- The choice of (a, p) is crucial to obtain an m-sequence

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

$$(1,4,2,1,4,2,\cdots)$$

• If (a, p) = (3, 7), then output sequence (with $x_0 = 1$) is

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

$$(1,4,2,1,4,2,\cdots)$$

• If (a, p) = (3, 7), then output sequence (with $x_0 = 1$) is

$$(1,3,2,6,4,5,1,3,2,6,4,5,\cdots)$$

• In most programming languages:

$$-a=7^5, p=2^{31}-1.$$

— Output normalised to take values in $\left\{\frac{1}{p}, \frac{2}{p}, \dots, \frac{p-1}{p}\right\}$

Stopping Times

σ -Algebra Generated by a Random Variable

Fix a measurable space (Ω, \mathscr{F}) .

Let $X : \Omega \to \mathbb{R}$ be a random variable w.r.t. \mathscr{F} .

Definition (σ -Algebra Generated by a Random Variable)

The σ -algebra generated by X, denoted $\sigma(X)$, is defined as

$$\sigma(X) \coloneqq \left\{ A \in \mathscr{F} : A = X^{-1}(B) \text{ for some } B \in \mathscr{B}(\mathbb{R}) \right\}.$$

σ -Algebra Generated by a Random Variable

Fix a measurable space (Ω, \mathscr{F}) .

Let $X : \Omega \to \mathbb{R}$ be a random variable w.r.t. \mathscr{F} .

Definition (σ -Algebra Generated by a Random Variable)

The σ -algebra generated by X, denoted $\sigma(X)$, is defined as

$$\sigma(X) \coloneqq \left\{ A \in \mathscr{F} : A = X^{-1}(B) \text{ for some } B \in \mathscr{B}(\mathbb{R})
ight\}.$$

Remark: $\sigma(X)$ is the smallest σ -algebra w.r.t. which X is a RV.

σ -Algebra Generated by a Random Vector

Fix a measurable space (Ω, \mathscr{F}) .

Let $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ be a random vector w.r.t. \mathscr{F} .

Definition (σ -Algebra Generated by a Random Vector)

The σ -algebra generated by (X_1, \ldots, X_n) , denoted $\sigma(X_1, \ldots, X_n)$, is defined as

$$\sigma(X_1,\ldots,X_n) \coloneqq \left\{A \in \mathscr{F}: A = (X_1,\ldots,X_n)^{-1}(B) \text{ for some } B \in \mathscr{B}(\mathbb{R}^n) \right\}.$$

Filtrations

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{T} be an ordered index set.

Filtrations

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Definition (Filtration)

Consider a collection of σ -algebras $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}$ such that $\mathscr{G}_t \subseteq \mathscr{F}$ for all t.

The above collection is called a filtration if

$$\mathscr{G}_s \subseteq \mathscr{G}_t \qquad \forall s \leq t.$$

Filtrations

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Definition (Filtration)

Consider a collection of σ -algebras $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}$ such that $\mathscr{G}_t \subseteq \mathscr{F}$ for all t. The above collection is called a filtration if

$$\mathscr{G}_s \subseteq \mathscr{G}_t \qquad \forall s \leq t.$$

Example:

Let $\{X_t : t \in \mathcal{T}\}$ be a stochastic process defined w.r.t. \mathscr{F} . Then,

$$\mathscr{G}_t = \sigma(X_s : s \leq t)$$

is called the natural filtration associated with the process $\{X_t : t \in \mathcal{T}\}$.

Stopping Time

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let \mathcal{T} be an ordered index set.

Fix a filtration $\mathscr{G}_{\bullet} = \{\mathscr{G}_t : t \in \mathcal{T}\}.$

Definition (Stopping Time)

A random variable $\tau:\Omega\to\mathbb{R}\cup\{\pm\infty\}$ is called a stopping time w.r.t. the filtration \mathscr{G}_{\bullet} if:

- $\mathbb{P}(\tau < +\infty) = 1$.
- For each $t \in \mathcal{T}$.

$$\{\tau \leq t\} \in \mathcal{G}_t$$
.

That is, the answer to the question "is $\tau \leq t$?" can be decided by simply looking at the process up to (including) time t.