Implementación de un UAV con arquitectura de Quadcopter

Primer Hito

Manuel López, Santiago Paternain, Rodrigo Rosa, Matías Tailanián

19 de Setiembre de 2011

PANORAMA GLOBAL

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseñará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del manejo manual

PANORAMA GLOBAL

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

■ Generador de rutas

- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseñará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del manejo manual

Panorama Global

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseñará ni la mecánica ni la electrónica del sistema. Se integrarán los componentes. Se conservará la posibilidad del maneio manual

Panorama Global

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseñará ni la mecánica ni la electrónica del sistema. Se integrarán los componentes. Se conservará la posibilidad del manejo manual

Panorama Global

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseñará ni la mecánica ni la electrónica del sistema. Se integrarán los componentes. Se conservará la posibilidad del manejo manual

PLANIFICACIÓN ORIGINAL

- Elección del *Hardware* necesario para el desarrollo del proyecto: elección del *Quadcopter*, Microprocesador, Instrumentación, Comunicación
- Adelanto del modelado fisico.
- Caracterización de los motores
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

PLANIFICACIÓN ORIGINAL

- Elección del *Hardware* necesario para el desarrollo del proyecto: elección del *Quadcopter*, Microprocesador, Instrumentación, Comunicación
- Adelanto del modelado físico.
- Caracterización de los motores
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Elección del *Hardware* necesario para el desarrollo del proyecto: elección del *Quadcopter*, Microprocesador, Instrumentación, Comunicación
- Adelanto del modelado físico.
- Caracterización de los motores
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wife
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Elección del *Hardware* necesario para el desarrollo del proyecto: elección del *Quadcopter*, Microprocesador, Instrumentación, Comunicación
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wif
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Elección del *Hardware* necesario para el desarrollo del proyecto: elección del *Quadcopter*, Microprocesador, Instrumentación, Comunicación
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wife
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Elección del Hardware necesario para el desarrollo del proyecto: elección del Quadcopter, Microprocesador, Instrumentación, Comunicación.
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

PLANIFICACIÓN ORIGINAL

- Elección del Hardware necesario para el desarrollo del proyecto: elección del Quadcopter, Microprocesador, Instrumentación, Comunicación.
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Elección del Hardware necesario para el desarrollo del proyecto: elección del Quadcopter, Microprocesador, Instrumentación, Comunicación.
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

PLANIFICACIÓN ORIGINAL

- Elección del Hardware necesario para el desarrollo del proyecto: elección del Quadcopter, Microprocesador, Instrumentación, Comunicación.
- Adelanto del modelado físico.
- Caracterización de los motores.
- Diseño de los algoritmos de control de los motores.
- Programación del microprocesador para comunicarse con PC.
 - Comunicación serial
 - Comunicación ethernet
 - Comunicación Wifi
- Programación del microprocesador para comunicarse con la instrumentación.
 - Programa en python para leer datos en PC
 - Portar dicho programa a C

- Falta de información acerca de los componentes.
- Daño accidental de algunos componentes.
- Insuficiencia de la gestión de costos.

- Falta de información acerca de los componentes.
- Daño accidental de algunos componentes.
- Insuficiencia de la gestión de costos.

- Falta de información acerca de los componentes.
- Daño accidental de algunos componentes.
- Insuficiencia de la gestión de costos.

- Falta de información acerca de los componentes.
- Daño accidental de algunos componentes.
- Insuficiencia de la gestión de costos.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas.

Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo
- Simulador.
- Generador de Rutas.
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas
- Comenzar el desarrollo de los algoritmos de control.

Entre el 1^{er} Hito y el 3 de Octubre no hay tareas planificadas. Dicho tiempo se utilizará para terminar las actividades pendientes.

Plan de contingencia

- Adquirir repuestos
- Reparar componentes dañados

- Modelado físico del *Quadcopter*
- Resultados del estudio del vuelo.
- Simulador.
- Generador de Rutas.
- Comenzar el desarrollo de los algoritmos de control.

¿Preguntas?