Многомерный Анализ, интегралы и ряды

Григорян Сергей

18 марта 2025 г.

Содержание

§5. Метрические пространства	3
5. 1. Метрики и нормы	3

§5. Метрические пространства

5. 1. Метрики и нормы

Обобщим понятие расстояния:

Определение. Пусть $X \neq \emptyset$. Функция $\rho: X \times X \to \mathbb{R}$ называется метрикой (на X), если $\forall x, y, z \in X$:

- 1. $\rho(x,y) \ge 0$
- 2. $\rho(x,y) = 0 \iff x = y$
- 3. $\rho(x,y) = \rho(y,x)$
- 4. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (Неравенство треугольника)

Пара (X, ρ) называется метрическим пространством (МП)

Пример.

$$X \neq \emptyset, \rho(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Henocpedcmвенная проверка показывает, что $(X, \rho) - M\Pi$.

Обобщим понятие длины вектора:

Определение. Пусть V — линейное пространство (над $\mathbb R$ или $\mathbb C$). Функция $||\cdot||\colon V\to \mathbb R$ называется **нормой** (на V), если $\forall x,y\in V, \forall \alpha$:

- 1. $||x|| \ge 0, ||x|| = 0 \iff x = 0$
- 2. $||\alpha x|| = |\alpha| \, ||x||$
- 3. $||x+y|| \le ||x|| + ||y||$ (Неравенство треугольника)

Пара $(V, ||\cdot||)$ называется **нормированным пространством** (НП).

<u>Лемма</u> **1.** Всякое нормированное np-во является метрическим npocmpan-ством относительно $\rho(x,y) = ||x-y||$

Доказательство. Проверим неравенство треугльника:

$$\rho(x,z) = ||x - z||$$

$$\rho(z,y) = ||z - y||$$

Тогда, действительно:

$$\rho(x,y) \le \rho(x,z) + \rho(z,y)$$

Пример.

 $X = \mathbb{R}^n, x = (x_1, \dots, x_n)^T, \forall i, x_i \in \mathbb{R}$ $y = (y_1, \dots, y_n)^T$

1. $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$ (евклидова норма), $\rho_2(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2}$

2.
$$||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}, \rho_p(x,y) = (\sum_{k=1}^n |x_k - y_k|^p)^{\frac{1}{p}}, p > 1$$

3.
$$||x||_{\infty} = \max_{1 \le k \le n} |x_k|, \rho_{\infty}(x, y) = \max_{1 \le k \le n} |x_k - y_k|$$

Доказательство. Докажем, что $||\cdot||_p$ удовлетворяет нер-ву треугольника. Действительно, вспомним неравенство Минковского:

$$(a_1,\ldots,a_n),(b_1,\ldots,b_n),p>1\Rightarrow$$

$$\Rightarrow \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}$$

при $a_k = |x_k|, b_k = |y_k|$:

$$||x+y||_k \le ||x||_k + ||y||_k$$

Для $||\cdot||_p$ непосредственная проверка свойств очевидна.

Определение. Пусть $(X, \rho) - M\Pi, a \in X, r > 0$:

$$B_r(a) = \{ x \in X \colon \rho(x, a) \le r \}$$

называется **открытым шаром** с центром в a и радиусом r.

$$\overline{B}_r(a) = \{ x \in X : \rho(x, a) \le r \}$$

называется **замкнутым шаром** с центром в a и радиусом r.

Определение. Множество $E\subset X$ называется ограниченным, если:

$$\exists a \in X, r > 0(E \subset B_r(a))$$

Пример.

$$X = \mathbb{R}^2, (x, y), B_1(0, 0)$$

При норме $||\cdot||_1(||x||=|x|)$, это ромб с точками (-1,0),(0,1),(1,0),(0,-1) При норме $||\cdot||_p$, форма фигуры приближается к кругу. При $||\cdot||_{\infty}$ — это квадрат.