Spiral Down Effect, Elasticity

Tan Hong Ming

National University of Singapore

2019

1/15

Tan, H. M. (NUS) Spiralastic 2019

Static Airline model

At passe Pi

- C seats in total
- 2 classes Business (D_1, p_1) , Leisure (D_2, p_2)
- Assumption: leisure passengers arrive before business passengers
- If you know D₁ and D₂ exactly, what would you do?

Reserve De seals forst, Then sell De

Question

- In reality, D_1 and D_2 are random
- How many Business class seats to reserve?
- Equivalently, how many seats to sell at price p₂?

Model

- decide how many seats K to sell at price p_2 , given capacity C and price p_1 , p_2
- Pricing policy: Set price to p₂ at beginning, change to p₁ after selling K seats
- What is the trade-off?

Tan, H. M. (NUS) Spiralastic 2019 4/15

Solution

Experistion homess

Expected revenue

$$r(K) = p_2 E[\min(D_2, K)] + p_1 E[\min(D_1, C - \min(D_2, K))]$$

select K to maximize r(K)

•
$$K = C \left(-F_1^{-1} \left(1 - \frac{p_2}{p_1} \right) \right)$$

P D. C K => D27

• $F_1^{-1}\left(1-\frac{p_2}{p_1}\right) = C - K = \text{number of seats to protect}$

Littlewood's model

bureness a

5/15

Assumptions

- Low WTP passengers arrive before high WTP passengers
- Independent demands
- No group bookings

Assumptions

- Low WTP passengers arrive before high WTP passengers
- Independent demands
- No group bookings

All models are wrong, but some are useful - George Box

- Repeated flight at times k = 1, 2, 3, ...
- Capacity C = 10, with two fare classes $p_1 = 500$, $p_2 = 200$
- 8 customers in each period
- Demand function: buy the cheapest fare available
- Demand update: $F_1^k(x) = \frac{1}{k} \sum_{i=1}^k I_{\{\text{demand of fare 1 at period } j \leq x\}}$

• Recall:
$$F_1^{-1} \left(1 - \frac{p_2}{p_1} \right) = F_1^{-1} \left(\frac{3}{5} \right) = \min \{ x | F(x) \ge \frac{3}{5} \}$$

• Intial protection level: $L^0 = 10$ sing this point 7/15

Tan. H. M. (NUS

k	Protection level L^{k-1}	Class 1 sales	Class 2 sales	Revenue			
1	10	8	0	4000			
1 10 8 0 4000 $F_1^1(x) = \frac{1}{1} \sum_{j=1}^{1} \int_{\text{demand of fare 1 at period } j \le x}^{\text{demand of fare 1 at period } j \le x}$							
$= I_{\{\text{demand of fare 1 at period } j \leq x\}}$							
$= \begin{cases} 0 & \text{if } x < 8 \\ 1 & \text{if } 8 \le x \end{cases} \implies CM \xrightarrow{1} \xrightarrow{1}$							

k	Protection	Class	Class	Revenue
	level L^{k-1}	1 sales	2 sales	
2	8	6	2	3400

Tan, H. M. (NUS) Spiralastic 2019 8/15

k	Protection level L^{k-1}		Class 2 sales	Revenue
1	10	8	0	4000
2	8	6	2	3400
3	8	6	2	3400

$$F_1^3(x) = \frac{1}{3} \sum_{j=1}^3 I_{\{\text{demand of fare 1 at period } j \le x\}}$$

$$= \begin{cases} 0 & \text{if } x < 6 \\ \frac{1}{3}(0+1+1) = \frac{2}{3} & \text{if } 6 \le x < 8 \Rightarrow \text{eg. for } | \le (7) \end{cases}$$

$$\frac{1}{3}(1+1+1) = 1 & \text{if } 8 \le x$$

	Protection	Class	Class	Revenue
	level L^{k-1}	1 sales	2 sales	
4	6	4	4	2800

◆ロト ◆部 ▶ ◆注 > ◆注 > ・注 ・ からぐ

Tan, H. M. (NUS) Spiralastic 2019 9/15

Table 1. Spiral down with c = 10, d = 8, $f_1 = 500$, $f_2 = 200$, and $L^0 = 10$.

k	Protection level L^{k-1}	Obs. atv. Vk	Class-1	Class-2	Payanua (\$)
K	level L	Obs. qty. X^k	sales	sales	Revenue (\$)
1	10	8	8	0	4,000
2	8	6	6	2	3,400
3	8	6	6	2	3,400
4	6	4	4	4	2,800
:	:	:	:	:	:
8	6	4	4	4	2,800
9	4	2	2	6	2,200
:	:	:	:	:	:
20	4	2	2	6	2,200
21	2	0	0	8	1,600
:	:	:	:	:	:
50	2	0	0	8	1,600
51	0	0	0	8	1,600

Tan, H. M. (NUS) Spiralastic 2019 10/15

Result

- Over the long run the estimate will be that there is no class 1 passenger
- revenue manager implements protection level 0
 will never see a class 1 passenger again
 What is the remedy?
- What is the remedy?

go for I vand oxogenous a

Tan. H. M. (NUS) 2019 11/15

Lunch

- Budget \$50 for lunch per week
- Consume at least 25 units of protein
- 2 types of food: chicken breast and hamburger
- 1 protein/serving
- Chicken breast: \$1/serving, Hamburger: \$3/serving
- 1 happiness/serving of chicken, 4 happiness/serving of hamburger

How to maximize happiness given the budget and protein constraints?

Tan, H. M. (NUS) Spiralastic 2019 12/15

Model

$$\max 4h + c$$

s.t. $c + h \ge 25$
 $c + 3h \le 50$
 $c \ge 0, h \ge 0$
 $OPT = (12.5, 12.5)$

Tan, H. M. (NUS) Spiralastic 2019 13/15

Price increase of chicken

Chicken is more expensive: \$2

$$\max 4h + c$$
s.t. $c + h \ge 25$

$$2c + 3h \le 50$$

$$c \ge 0, h \ge 0$$

$$OPT = (0, 25)$$

Tan, H. M. (NUS) Spiralastic 2019 14/15

Price Elasticity of Demand (PED)

$$\epsilon_D = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\frac{25 - 12.15}{12.5}}{\frac{2 - 1}{1}} = 1$$

- PED > 0
- Effect is coming from the constraints
- Income effect bigger than substitution effect

Tan, H. M. (NUS)

Spiralastic