Calcul de Probabilités

Dans les différents domaines scientifiques (biologie, médecine, sociologie...), on s'intéresse à de nombreux phénomènes dans les quels apparait souvent l'effet du hasard.

Ces phénomènes sont caractérisés par le fait que les résultats varient d'une ecpérience à l'autre.

Une expérience est appelée aléatoire s'il est impossible de prévoir son résultat c'est-à-dire, elle peut donner des résultats différents même si on la répète dans des conditions identiques.

4.1 Définitions

Définition 4.1.1 "l'espace probabilisé" On appelle espace probabilisé le triplet (Ω, \mathcal{F}, P) où

 $\mathbf{i}/~\Omega$ est l'univers : l'ensemble des évenements élémentaires d'une expérience aléatoire.

ii/ \mathcal{F} est la tribu, elle est composée de tous les sous ensembles de Ω appelés les événements et vérifiant :

1/
$$\Omega \in \mathcal{F}$$
.

$$2/ \ \forall A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}.$$

3/
$$\forall A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}.$$

4/
$$\forall (A_n)_{n\in I} \in \mathcal{F}, \ I \subseteq \mathbb{N} \Rightarrow \underset{n\in I}{U} A_n \in \mathcal{F}.$$

4.1 Définitions 82

iii/P est une application définie par :

$$\begin{array}{ccc} P: & \mathcal{F} & \to & [0,1] \\ & A & \mapsto & P(A) \end{array}$$

telle que

1/ $\forall A \in \mathcal{F}/\ (A \neq \emptyset \ et \ A \neq \Omega), \ 0 < P(A) < 1.$

 $\mathbf{2}/P(\Omega) = 1$, l'événement Ω est dit certain.

3/ $P(\emptyset) = 0$, l'événement \emptyset (l'ensemble vide) est dit impossible.

4/ $\forall A \in \mathcal{F}, \ P(\bar{A}) = 1 - P(A)$ où \bar{A} est le complémentaire de A dans Ω vérifiant $A \cup \bar{A} = \Omega$ et $A \cap \bar{A} = \emptyset$.

5/ $\forall (A_i)_{1 \leq i \leq n} \in \mathcal{F}$ une suite d'événements disjoints deux à deux, on a

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

6/ $\forall A \in \mathcal{F}, \forall B \in \mathcal{F}, \ P(A \cup B) = P(A) + P(B) - P(A \cap B).$

7/ Deux événements A et B sont dits équiprobables si P(A) = P(B).

Remarque 4.1.1 Si l'ensemble Ω est fini ou dénombrable, on parle de probabilité discrète, le cas contraire est celui de probabilité continue.

Définition 4.1.2 Soient (Ω, \mathcal{F}, P) un espace probabilisé discret et $A \in \mathcal{F}$ un événement. La probabilité de A est :

$$P(A) = \frac{Card \ A}{Card \ \Omega}.$$

Exemple 4.1.1 Lorsqu'on lance une pièce de monnaie, on ne sait pas si c'est pile ou face qui sera visible et chacun des deux (pile, face) a une chance sur deux d'apparaitre $\Rightarrow \Omega = \{pile, face\}$ et la tribu $\mathcal{F} = \mathcal{P}(\Omega) = \{\emptyset, \{pile\}, \{face\}, \Omega\}$ et la probabilité P définie pour tout évènement A par :

$$P: \quad \mathcal{F} \quad \to \quad [0,1]$$

$$A \quad \mapsto \quad P(A)$$

vérifie :

1/ Si
$$A = \emptyset$$
: $P(A) = 0$.

2/ Si $A = \{pile\} : P(A) = \frac{1}{2}$.

3/ Si $A = \{face\} : P(A) = \frac{1}{2}$.

4/ Si $A = \Omega : P(A) = 1$.

Exemple 4.1.2 Le lancer d'un dé repose sur un principe similaire, les 6 faces du dé ont autant de chances d'apparaître $\frac{1}{6} \Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$ et $P\{1\} = P\{2\} = ... = P\{6\} = \frac{1}{6}$. On considère les évènements suivants :

- 1/ Si A: "avoir un nombre pair" $\rightarrow A = \{2, 4, 6\} \rightarrow P(A) = \frac{CardA}{Card\Omega} = \frac{3}{6} = \frac{1}{2}$.
- 2/ Si A: "avoir un nombre impair" $\rightarrow A = \{1, 3, 5\} \rightarrow P(A) = \frac{1}{2}$.
- 3/ Si A: "avoir un nombre supérieur à 5" $\rightarrow A = \{6\} \rightarrow P(A) = \frac{1}{6}$.

4.2 Probabilité conditionnelle

Soient (Ω, \mathcal{F}, P) un espace probabilisé et $A, B \in \mathcal{F}$ tel que P(B) > 0.

Définition 4.2.1 La probabilité conditionnelle de l'évènement A sachant l'évènement B est définie par :

$$P(A/B) = \frac{P(A \cap B)}{P(B)}.$$

Proposition 4.2.1 La probabilité conditionnelle vérifie les propriétés suivantes :

- **1**/ $P(\Omega/B) = 1$.
- **2**/ $P(A \cap B) = P(A/B) \times P(B)$.
- 3/ $P(\bar{A}/B) = 1 P(A/B)$.

Preuve. Les deux premières propriétés sont évidentes, il suffit de démontrer la troisième.

On a

$$A \cup \bar{A} = \Omega \quad \Rightarrow \quad (A \cup \bar{A}) \cap B = \Omega \cap B$$

 $\Rightarrow \quad (A \cap B) \cup (\bar{A} \cap B) = B$

d'où

$$P[(A \cap B) \cup (\bar{A} \cap B)] = P(B).$$

Comme $(A \cap B) \cap (\bar{A} \cap B) = \emptyset$, alors

$$P\left[\left(A\cap B\right)\cup\left(\bar{A}\cap B\right)\right]=P\left(A\cap B\right)+P\left(\bar{A}\cap B\right)=P(B)$$

en divisant par P(B), on obtient

$$\frac{P(A \cap B)}{P(B)} + \frac{P(\bar{A} \cap B)}{P(B)} = 1$$

ce qui implique

$$P\left(\bar{A}/B\right) = 1 - P\left(A/B\right).$$

Définition 4.2.2 On dit que A et B sont deux évènements indépendants si P(A/B) = P(B), c'est à dire $P(A \cap B) = P(A) \times P(B)$.

Exemple 4.2.1 On lance une pièce de monnaie 3 fois et on considère les évènements suivants :

A: "on obtient face en premier lancement".

B: "on obtient face en deuxième lancement".

 ${f C}$: "on obtient face en deux lancements successifs pas plus".

En calculant les probabilités des 3 évènements cités ci-dessus, on obtient

1/
$$P(A) = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$
.

2/
$$P(B) = 1 \times \frac{1}{2} \times 1 = \frac{1}{2}$$
.

3/
$$P(C) = \frac{1}{2} \times \frac{1}{2} \times 1 + 1 \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$
.

Comme $P(A \cap B) = \frac{1}{2} \times \frac{1}{2} \times 1 = \frac{1}{4} = P(A) \times P(B)$, alors les deux évènements A et B sont indépendants. De même on a $P(A \cap C) = \frac{1}{2} \times \frac{1}{2} \times 1 = \frac{1}{4} = P(A) \times P(C) \Rightarrow$ les deux évènements A et C sont indépendants et $P(B \cap C) = 1 \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = P(B) \times P(C) \Rightarrow$ les deux évènements B et C sont indépendants.