

p(one card) = 1/52

P(Red) = 26/52

P(picture) = 12/52

P(Red and picture) = P(Red \cap picture) = 6/52 P(Red or picture) = P(Red U picture) = 32/52

In presence of red color cards what is the prob of picture card = 6/26

When I apply condition instead of total and calculating some probability --> it is called conditional probability.

$$P(A \cap B)$$
 6/52
 $P(A / B) = ---- = 6/26$
 $P(B)$ 26/52

B = Red A= picture

$$P(A \cap B)$$
 6/52
 $P(B/A) = ---- = ---- = 6/12$
 $P(A)$ 12/52

P(A/B = ! P(B/A)

$$P(A /B). P(B) = P(A \cap B)$$

 $P(B/A). P(A) = P(A \cap B)$

P(A/B) ---> Posterior Probability P(B/A) ---> Likelihood probability P(A) ---> Prior probability P(B) ---> Marginal Probability

^	U		U	L		J			3	IX.	L
1 2 3 4 5 6 7	Outlook -	Temp	- Humidity -	Wind -	Decision -	•	-	_	-	_	
	Sunny	Hot	High	Weak	No			yes	no	total	
	Sunny	Hot	High	Strong	No		sunny	2	3	5	
	Overcast	Hot	High	Weak	Yes		overcast	4	0	4	
	Rain	Mild	High	Weak	Yes		rain	3	2	5	
	Rain	Cool	Normal	Weak	Yes		total	9	5	14	
	Rain	Cool	Normal	Strong	No						
	Overcast 0	Cool	Normal	Strong	Yes			yes	no		
	Sunny	Mild	High	Weak	No	sunny	hot	2			
	Sunny	Cool	Normal	Weak	Yes		mild				
10	Rain	Mild	Normal	Weak	Yes		cool				
11	Sunny	Mild	Normal	Strong	Yes	rain	hot				
12	Overcast	Mild	High	Strong	Yes		mild				
13	Overcast	Hot	Normal	Weak	Yes		cool				
14	Rain	Mild	High	Strong	No	overcast	hot				
							mild				

Screen clipping taken: 14-04-2022 12:11

When I want to apply naïve baye classifier I need to make sure my X variables should be independent to each other.

Naïve bayes will works better when we have X variables are categorical variables

To identify the relationship between the categorical variables we have something "Chi-square Test of independence"

Test of hypothesis

HO: There is No relationship between two categorical variables (they are independent)

If my test statistic value is greater than table value Ho is rejected, H1 is accepted If my test statistic value is <u>lesser than</u> table value H1 is rejected, H0 is accepted

If p-value is lesser than 0.05 Ho is rejected and H1 is accepted If p-value is greater than 0.05 H1 is rejected and H0 is accepted

Chi-Square Test Statistic

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

Expected Cell Value

$$E = \frac{row\ total\ imes\ column\ total}{n}$$

Degrees of Freedom: Chi-Square Test of Independence

 $df = (number\ of\ rows - 1)(number\ of\ columns - 1)$

Chi square: 16.2092

Pv alue 0.0395