

Методы оптимизации

Лекция 3. **Численные методы решения** задач одномерной безусловной оптимизации.

Селина Елена Георгиевна

Литература

- 1. Банди Б. Методы оптимизации. Вводный курс. М.: Радио и связь, 1988. 128 с.
- Банди Б. Основы линейного программирования. М.: Радио и связь, 1989. 176 с.
- 3. Лесин, В.В. Основы методов оптимизации.— СПб: Лань, 2016. 344 с.
- 4. Сухарев, А.Г. Курс методов оптимизации— Москва: Физматлит, 2011.— 384 с

Аналитические методы исследования функции на экстремум можно использовать в тех случаях, когда функция f (x) и ее производные имеют достаточно простой вид. Однако зачастую в практических задачах решение уравнения

$$f'(x) = 0$$

и даже просто вычисление производной f'(x)представляет большие трудности. Кроме того, в практических задачах часто неизвестно, является ли f(x) дифференцируемой функцией. Поэтому существенное значение приобретают численные методы минимизации, не требующие вычисления производной и основанные на исследовании поведения функции в некоторых специально подбираемых точках в соответствии с определенным алгоритмом. Такие методы называются прямыми методами минимизации.

Прямые методы минимизации

Определение. Функция f на действительном отрезке [a, b] называется унимодальной, если она имеет минимум $x^* \in [a, b]$ и если для любых α , $\beta \in [a, b]$ ($\alpha < \beta$) выполняются соотношения:

$$f(\alpha) > f(\beta)$$
 при $\beta \le x^*$, $f(\alpha) < f(\beta)$ при $\alpha \ge x^*$.

Численные методы минимизации, как правило, применяются к унимодальным на рассматриваемом отрезке функциям.

Определение. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации.

Метод деления отрезка пополам

Задаются *a, b* и погрешность ε.

- Берем две точки вблизи середины интервала [a, b]: $x1 = (a + b \varepsilon) / 2, x2 = (a + b + \varepsilon) / 2$.
- Вычисляем y1 = f(x1), y2 = f(x2).
- Если y1 > y2, тогда присваивается a=x1, иначе присваивается b=x2
- Если b-a>2є, тогда повторяем с п.1, иначе переходим к пункту 5.
- Вычисляем xm = (a + b) / 2, ym = f (xm).
- Конец.

Этот метод прост в реализации, позволяет находить минимум разрывной функции, однако требует большого числа вычислений функции для обеспечения заданной точности.

Метод золотого сечения

Метод золотого сечения основан на делении отрезка локализации «золотым сечением», т.е. таком делении, когда отношение большей части отрезка ко всему отрезку равно отношению меньшей части к большей.

$$\frac{AB}{AD} = \frac{AD}{DB} = \frac{1 + \sqrt{5}}{2}$$

Алгоритм метода схож с методом половинного деления, за исключением только способа расчета точек сравнивания x_1 , x_2 , которые теперь вычисляются в пропорции золотого сечения. В этом методе выбор нового интервала неопределенности происходит по результатам сравнения функции в двух точках. Но в отличии от метода половинного деления, на каждой итерации, кроме первой, вычислении функции производится только в одной точке.

На первом шаге (итерации) точки вычисляются по формулам: x_1 =a+0,382(b-a), x_2 =a+0,618(b-a)

Затем вычисляются значение функции в этих точках.

Возможны два случая:

Если $f(x_1) < f(x_2)$, то оставляем отрезок $[a,x_2]$. На второй итерации x_2 полагаем равным x_1 , а x_1 вычисляем по формуле $x_1 = a + 0,382(x_2 - a)$. Значение функции вычисляется только в точке x_1 , так как значение функции в x_2 уже было вычислено на предыдущем шаге.

Если $f(x_1) \ge f(x_2)$, то оставляем отрезок $[x_1,b]$. На второй итерации x1 полагаем равным x_2 , а x_2 вычисляем по формуле x_2 =a+0,618(b-x1). Значение функции вычисляется только в точке x_2 , так как значение функции в x_1 уже было вычислено на предыдущем шаге.

Вычисления продолжают до тех пор, пока длина интервала не станет меньше требуемой точности.

Метод Фибоначчи

Последовательность чисел Фибоначчи $\{F_n\}$, n=1,2,3,... подчиняется соотношению

$$F_{n+2} = F_n + F_{n+1}$$
 , где $F_1 = F_2 = 1$ и имеет вид

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,...

С помощью метода математической индукции можно показать, что *n*-е число Фибоначчи вычисляется по формуле Бинэ:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right],$$
 где n=1,2,3,...

В методе Фибоначчи выбор нового интервала неопределенности происходит по результатам сравнения функции в двух точках. Как и в методе золотого сечения, на каждой итерации, кроме первой, вычислении функции производится только в одной точке.

В отличие от других методов число итераций определяется сразу. Для достижения требуемой точности в число итераций п следует задавать исходя из соотношения

$$\frac{b-a}{F_n} \le \varepsilon$$

Условием окончания вычислений является выполнение заданного количества вычислений n. На первой итерации полагаем k=1 b вычисляем точки по формулам

$$x_1 = a + \frac{F_{n-k}}{F_{n+1-k}}(b-a) \tag{18}$$

$$x_2 = a + \frac{F_{n-1-k}}{F_{n+1-k}}(b-a) \tag{19}$$

Затем вычисляются значение функции в этих точках.

Возможны два случая:

 $f(x_1) < f(x_2)$ - выбираем отрезок [a,x₂]. На второй итерации полагаем a_1 =a, b_1 =x₁, x₂ равным x₁, a x₁ вычисляем по формуле (18). Значение функции вычисляется только в точке x₁, так как значение функции в ,x₂ уже было вычислено на предыдущем шаге. И переходят к следующей итерации.

 $f(x_1) \ge f(x_2)$ - выбираем отрезок $[x_1,b]$. На второй итерации полагаем $a_1 = x_1$, $b_1 = b$, x_1 равным x_2 , а x_2 вычисляем по формуле (19). Значение функции вычисляется только в точке x_1 , так как значение функции в , x_2 уже было вычислено на предыдущем шаге. И переходят к следующей итерации.

Вычисления продолжают пока не будут исчерпаны все n.

10

Методы, использующие информацию о производных целевой функции

Пусть теперь f(x) является дифференцируемой или дважды дифференцируемой выпуклой функцией и возможно вычисление производных f(x) в произвольно выбранных точках. В этом случае эффективность поиска точки минимума можно существенно повысить.
Рассмотрим три метода минимизации, в которых используются значения производных целевой функции:

- метод средней точки;
- метод хорд;
- метод Ньютона.

Из курса математического анализа известно, что для выпуклой дифференцируемой функции равенство f '(x)=0 является не только необходимым, но и достаточным условием глобального минимума. Поэтому, если известно, что является внутренней точкой отрезка, то приближенное равенство $f'(x) \approx 0$ или $|f'(x)| \leq \varepsilon$ может служить условием остановки вычислений в рассматриваемых трех методах.

Метод средней точки

Будем искать минимум функции f(x), непрерывно дифференцируемой и строго унимодальной на отрезке [a,b].

В этом случае единственной точкой $x^* \in [a,b]$ минимума будет стационарная точка, в которой $f'(x^*) = 0$. Отметим, что непрерывно дифференцируемая унимодальная на отрезке функция может иметь на нем более одной стационарной точки. На каждом шаге на отрезке определяются две точки ak, bk, в которых производные имеют разные знаки, $f'(a_{k}) f'(b_{k}) < 0$. Искомый минимум находится между ними. Делим интервал пополам, из двух интервалов оставляем тот, на концах которого производная имеет разные знаки.

Алгоритм метода средней точки

Шаг 1.Определим точность $\varepsilon > 0$, $a_1 = a$, $b_1 = b$, вычисляем $f'(a_1) < 0$, $f'(b_1) > 0$

Вычисляем
$$x_1 = \frac{a_1 + b_1}{2}$$
, $k = 1$

Шаг 2 Вычисляем $f'(x_k)$, если $f'(x_k) = 0$, или $f'(x_k) < \varepsilon$,

то
$$x_k = \frac{a_k + b_k}{2}$$
 — точка минимума, конец.

Шаг 3 Если $f'(x_k) < 0$, то $a_{k+1} = x_k$, $b_{k+1} = b_k$,

иначе
$$a_{k+1} = a_k$$
, $b_{k+1} = x_k$

Шаг 4
$$x_k = \frac{a_k + b_k}{2}$$
 , переход на пункт 2.

Метод средней точки напоминает метод дихотомии, но сходится к искомому значению x^* быстрее.

Метод хорд

Как уже отмечалось, равенство f '(x)=0 является необходимым и достаточным условием глобального минимума выпуклой дифференцируемой функции f(x). Если на концах отрезка [a,b] производная f '(x) имеет разные знаки, т.е. $f'(a) \cdot f'(b) < 0$, и она непрерывна, то на интервале (a,b) найдется точка, в которой f '(x) обращается в нуль. В этом случае поиск точки минимума на отрезке эквивалентен решению уравнения

$$f'(x) = 0, x \in (a, b)$$
 (20)

Таким образом, при $f'(a) \cdot f'(b) < 0$, любой приближенный метод решения уравнения (20) можно рассматривать как метод минимизации выпуклой непрерывно дифференцируемой функции f(x) на отрезке [a,b].

Сущность приближенного решения уравнения F(x)=0 на отрезке [a,b] при $F(a) \cdot F(b) < 0$ методом хорд состоит в исключении отрезков путем определения \tilde{x} - точки пересечения с осью ОХ хорды графика функции F(x) на отрезке [a,b], представленного на рисунке.

Полагая F(x) = f'(x), запишем координату точки $\tilde{\mathbf{x}}$

$$\tilde{\mathbf{x}} = a - \frac{f'(a)}{f'(a) - f'(b)} (a - b)$$
 (21)

Отрезок дальнейшего поиска точки \tilde{x} ([a, \tilde{x}] или [\tilde{x} , b]) выбирается в зависимости от знака $f'(\tilde{x})$ так же, как в методе средней точки. На каждой итерации, кроме первой, необходимо вычислять только одно новое значение f'(x).

Алгоритм метода хорд

- Шаг 1. Находим \tilde{x} по формуле (21). Вычисляем $f'(\tilde{x})$ и переходим к шагу 2.
- Шаг 2. Проверка на окончание поиска: если $|f'(\tilde{x})| \leq \varepsilon$ то положить $x^* = \tilde{x}$,
- $f^* = f(\tilde{x})$, и завершить поиск, иначе перейти к шагу 3.
- Шаг 3. Переход к новому отрезку. Если $f'(\tilde{x}) > 0$, то положить $b = \tilde{x}$, $f'(b) = f'(\tilde{x})$, иначе положить $a = \tilde{x}$, $f'(a) = f'(\tilde{x})$. Перейти к шагу 1.

Метод Ньютона

Если выпуклая на отрезке [a,b] функция f(x) дважды непрерывно дифференцируема на этом отрезке, то точку $x \in [a,b]$ минимума этой функции можно найти, решая уравнение f'(x) = 0 методом Ньютона (другое название – метод касательных). Пусть $x_0 \in [a,b]$ – нулевое (начальное) приближение к искомой точке x^* . Заменим дугу графика функции F(x) = f'(x) в окрестности начальной точки касательной в точке $(x_0, f'(x_0))$.

$$F(x) \approx F(x_0) + F'(x_0)(x - x_0)$$
 (22)

Выберем в качестве следующего приближения к х* точку х₁ пересечения касательной с осью абсцисс.

Приравнивая к нулю правую часть в (22), получим первый элемент

$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)} \tag{23}$$

итерационной последовательности {x_k}, k=1,2,...

На (k+1)-м шаге по найденной на предыдущем шаге точке x_k можно найти точку

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
 (24)

Вычисления по формуле (24) производятся до тех пор, пока

не выполнится неравенство $|f'(x_k)| \le \varepsilon$, после чего полагают $x^* \approx x_k$, $f^* \approx f(x_k)$.

