CSCI 5352 Network Analysis and Modeling Fall 2020 Prof. Daniel Larremore Problem Set 3

- 1. (20 pts) Consider the following simple and rather unrealistic model of a network: each of n vertices belongs to one of g groups. The mth group has n_m vertices and each vertex in that group is connected to others in the group with independent probability $p_m = A(n_m 1)^{-\beta}$, where A and β are constants, but not to any vertices in other groups. Thus, this network takes the form of a set of disjoint groups of communities.
 - (a) Calculate the expected degree $\langle k \rangle$ of a vertex in group m.
 - (b) Calculate the expected value $\langle C_m \rangle$ of the local clustering coefficient for vertices in group m.
 - (c) Hence show that $\langle C_m \rangle \propto \langle k \rangle^{-\beta/(1-\beta)}$. What value would β have to assume for the expected value of the local clustering coefficient to fall off as $\langle k \rangle^{-0.75}$, as has been conjectured by some researchers?
- 2. (20 pts) Consider the random graph G(n,p) with average degree c.
 - (a) Show that in the limit of large n the expected number of triangles in the network is $\frac{1}{6}c^3$. In other words, show that the number of triangles is constant, neither growing nor vanishing in the limit of large n.
 - (b) Show that the expected number of connected triples in the network, as in Eq. (7.28) in Networks [v1: 7.41], is $\frac{1}{2}nc^2$.
 - (c) Hence, calculate the clustering coefficient C, as defined in Eq. (7.28) in Networks [v1: 7.41], and confirm that it agrees for large n with the value given in Eq. (11.11) in Networks [v1: 12.11].