



# BITS Pilani presentation

Tanmay Tulsidas Verlekar CSIS



# Applied Machine Learning SE ZG568 / SS ZG568 Lecture No.1



#### **Course content**

- The Fundamentals of Machine Learning Covers the machine learning landscape, what an end-to-end machine learning project looks like, and a variety of algorithms including classification methods, trees, and clustering
- Neural Networks and Deep Learning Introducing then training artificial neural networks, and then covering multiple types including CNNs, RNNs, GANs, and reinforcement learning

#### **Textbook**



Codes: <a href="https://github.com/ageron/handson-ml2">https://github.com/ageron/handson-ml2</a>



### **Evaluation Scheme**

Legend: EC = Evaluation Component; AN = After Noon Session; FN = Fore Noon Session

| No Name |                              | Type           | Duration  | Weight | Day, Date, Session, Time<br>September 1-10, 2024 |  |
|---------|------------------------------|----------------|-----------|--------|--------------------------------------------------|--|
| EC-1    | Quiz-I                       | Online         | - 5%      |        |                                                  |  |
|         | Programming<br>Assignment I  | Offline        | -         | 12%    | October 10-20, 2024                              |  |
|         | Programming<br>Assignment II | Offline        | -         | 13%    | November 1-10, 2024                              |  |
| EC-2    | Mid-Semester<br>Test         | Closed<br>Book | 1.5 hours | 30%    | Saturday, 21/09/2024 (AN)                        |  |
| EC-3    | Comprehensive<br>Exam        | Open<br>Book   | 2.5 hours | 40%    | Saturday, 30/11/2024 (AN)                        |  |



# What Is Machine Learning?

#### Here is a slightly more general definition:

[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

-Arthur Samuel, 1959

#### And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

-Tom Mitchell, 1997



# **Face recognition**

Owner of the phone



Friends







## The traditional approach





### **Accuracy**

|                |     | Predict | Predicted Class |  |
|----------------|-----|---------|-----------------|--|
| 8              |     | No      | Yes             |  |
| Observed Class | No  | TN      | FP              |  |
| Observed Class | Yes | FN      | TP              |  |

TN True Negative

FP False Positive

FN False Negative

TP True Positive

Accuracy = (TN+TP)/(TN+FP+FN+TP)

## Machine Learning approach



# Why Use Machine Learning?



- Training an algorithm with data can involve a shorter, easier to maintain program, and also be more accurate
- Can tackle super complex problems
- Easier to automate retraining for constantly changing environments
- May offer insights about the problems ML solves





One-Attack 5

# Types of Machine Learning Systems



- Supervised learning labeled data, e.g. classification and regression.
- Unsupervised learning unlabeled pattern recognition, such as clustering or some anomaly detection
- Semi-supervised learning solving supervised learning problems without labeling all of the data
- Reinforcement learning training an agent to choose actions to maximize its numeric reward metric
- Batch and Online Learning
- Instance-Based Versus Model-Based Learning

#### Classification



# innovate achieve lead

## Regression

#### Value



BITS Pilani, Pilani Campus

# Clustering





# **Dimensionality reduction**



# **Anomaly detection**





# **Association rule learning**

| ID  | Items bought |
|-----|--------------|
| 100 | A, B, E      |
| 200 | B, D         |
| 300 | B, C         |
| 400 | A, B, D      |
| 500 | A, C         |
| 600 | A, B, C      |
|     |              |

| Itemlist |
|----------|
| A, B     |
| A, C     |
| B, C     |
| B, D     |



## Semi-supervised learning

#### Semi-Supervised Learning





# Reinforcement learning





# Main Challenges of Machine Learning



- Insufficient Quantity of Training Data
- Nonrepresentative Training Data
- Poor-Quality Data cleaning data is important
- Irrelevant Features
- Overfitting the Training Data
- Underfitting the Training Data