ASTABLE UNIT-5

Astable multivibrator as a voltage to frequency converter:

We know for a stable , If $R_1 = R_2 = RandC_1 = C_2 = C$ then T = 1.386RC

The frequency of oscillations may be varied over the range from cycles to megacycles Per second by adjusting R or C. It is possible to change T, electrically by connecting R_1 and R_2 to an auxiliary voltage V (the collector supply remains V_{CC}) as shown in figure.

In this circuit diagram, capacitors(voltage at base terminals) will tries to charge towards

V instead of V_{CC}.

General expression for exponential signal is

$$v_O = v_f + (v_i - v_f)e^{\frac{-(t - t_x)}{\tau}}$$

Here
$$t_x = 0$$
, $v_f = V$, $v_i = V_{BE(sat)} - V_{CC} + V_{CE(sat)}$

$$\tau = RC$$
 and at $t = T_1, v_O = V_{\gamma}$

Then

$$V_{\gamma} = V + \left(V_{BE(sat)} + V_{CE(sat)} - V_{CC} - V\right)e^{-\frac{T_1}{RC}}$$

$$e^{-\frac{T_1}{RC}} = \frac{V_{\gamma} - V}{V_{BE(sat)} + V_{CE(sat)} - V_{CC} - V}$$

By taking natural logarithm,

$$-\frac{T_1}{RC} = \ln \left(\frac{V_{\gamma} - V}{V_{BE(sat)} + V_{CE(sat)} - V_{CC} - V} \right)$$

ASTABLE UNIT-5

$$T_1 = RC \ln \left(\frac{V_{BE(sat)} + V_{CE(sat)} - V_{CC} - V}{V_{\gamma} - V} \right)$$

But from the typical values , $V_{BE(sat)} + V_{CE(sat)} = 2V_{\gamma}$, by neglecting V_{γ}

So
$$T_1 = RC \ln \left(\frac{V_{CC} + V}{V} \right)$$

$$T_1 = RC \ln \left(1 + \frac{V_{CC}}{V} \right) = T_2$$

So
$$T = T_1 + T_2$$

$$T = 2RC \ln \left(1 + \frac{V_{CC}}{V} \right)$$

$$f = \frac{1}{2RC\ln\left(1 + \frac{V_{CC}}{V}\right)}$$

This shows that by varying V , the frequency f can be varied .