BITS-Pilani Dubai Campus I Sem 2021-22

Digital Design Laboratory / ECE/INSTR/CS F215

Submission Report

Experiment No.- 8 (Finite State Machines)

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

Hardware runs

Run 1:

Diagram

Q. Complete the state table by observing the outputs on LED panel.

State Table

Present state			Next state		Output
Q1(t)	Q0(t)	X	Q1(t+1)	Q0(t+1)	Z
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	0

Name: V N Suchir Vangaveeti

ID Number: 2020A7PS0018U

Q. Draw the State diagram from above state table?

Q. Which types of Machine it is?

Ans. Mealy Machine. The output Z is dependent on Q1(present state) and X(input).

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

Software runs

Run 2: Mealy Machine: Zero detector after series of 1

Q: Paste the Image of your **Simvision** window where you get the waveforms for the above code.

Q. Complete the state table below from the waveform observed.

State Table

Present st	tate	Next state	Output
state [1:0]	t_x_in	next_state [1:0]	t_y_out
S0	0	S0	0
S0	1	S1	0
S1	0	S0	1
S1	1	S3	0
S2	0	S0	1
S2	1	S2	0
S3	0	S0	1
S3	1	S2	0

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

Run 3: Moore Machine: Zero detector after series of 1

Q: Paste the Image of your **Simvision** window where you get the waveforms for the above code.

A:

Q. Complete the state table below from the waveform observed.

State Table

Present state		Next state	Output
state [1:0]	x_in	next_state [1:0]	y_out [1:0]
S0	0	S1	00
S0	1	S 1	00
S1	0	S2	01
S1	1	S2	01
S2	0	S 3	10
S2	1	S 3	10
S 3	0	S0	11
S3	1	S0	11

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

<u>Assignment</u> All assignments are to be submitted strictly before start of next lab session through online only. Late assignments will not be entertained and will be awarded '0' marks.

1. Write a Verilog model of the Mealy FSM described by below the state diagram. Develop a test bench and demonstrate that the machine state transitions and output correspond to its state diagram.

Ans: Link1: https://edaplayground.com/x/XahG

2. Draw the state diagram of the machine described by the Verilog model given below.

```
module Prob_1 ( output reg y_out, input x_in, clk, reset);
parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1:0] state, next state;
always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else
state <= next state;
always @(state, x_in) begin
y out = 0;
next_state = s0;
case (state)
s0: if x in = 1 begin y out = 0; if (x in) next state = s1; else next state = s0; end
s1: if x in = 1 begin y out = 0; if (x in) next state = s2; else next state = s1; end
s2: if x_in = 1 begin y_out = 1; if (x_in) next_state = s3; else next_state = s2; end
s3: if x in = 1 begin y out = 1; if (x in) next state = s0; else next state = s3; end
default: next_state = s0;
endcase
end
```

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

endmodule

Ans: Link2: https://www.edaplayground.com/x/AXLD

State Diagram:

Name: V N Suchir Vangaveeti ID Number: 2020A7PS0018U

Self-Practice and self-evaluation

1. Write a Verilog model of the Moore FSM described by the below state diagram. Develop a test bench and demonstrate that the machine's state transitions and output correspond to its state diagram.

2. Draw the state diagram of the machine described by the Verilog model given below.

```
module Prob_2 (output reg y_out, input x_in, clk, reset);
parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1:0] state, next state;
always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else
state <= next_state;</pre>
always @(state, x_in) begin
y_out = 0;
next_state = s0;
case (state)
s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
s1: if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end
s2: if x_in = 1 if (x_in) begin next_state = s3; y_out = 0; else begin next_state = s2; y_out = 1; end
s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
default: next_state = s0;
endcase
end
endmodule
```