Terakreditasi SINTA Peringkat 3

Surat Keputusan Direktur Jenderal Pendidikan Tinggi, Riset, dan Teknologi Nomor 225/E/KPT/2022 masa berlaku mulai Vol.7 No. 1 tahun 2022 s.d Vol. 11 No. 2 tahun 2026

Terbit online pada laman web jurnal: http://publishing-widyagama.ac.id/ejournal-v2/index.php/jointecs

JOINTECS

(Journal of Information Technology and Computer Science)

Vol. 8 No. 1 (2024) 11 - 20 e-ISSN:2541-6448

p-ISSN:2541-3619

Sistem Pendukung Keputusan Penerimaan Bantuan Non Tunai Menggunakan Metode AHP Dan WP

Nurhaba Djiha¹, Anik Vega Vitianingsih^{2*}, Mochammad Syaiful Riza³, Anastasia Lidya Maukar⁴, Seftin Fitri Ana Wati⁵

1,2,3 Program Studi Teknik Informatika, Universitas Dr. Soetomo, Surabaya, Indonesia ⁴Program Studi Teknik Industri, President University, Bekasi, Indonesia ⁵Program Studi Sistem Informasi, Universitas Pembangunan Nasional Veteran Jawa Timur, Surabaya, Indonesia ¹djihanurhaba@gmail.com, ^{2*}vega@unitomo.ac.id, ³syaiful.riza@unitomo.ac.id, ⁴almaukar@president.ac.id,
⁵seftin.fitri.si@upnjatim.ac.id

Abstract

Currently, the determination process for recipients of Non-Cash Food Assistance (BPNT) is still lacking in objectivity and has not been maximized, leading to dissatisfaction among villagers. The objective of this research is to use the Analytical Hierarchy Process (AHP) and Weighted Product (WP) methods to develop a decision support system for non-cash food assistance (BPNT) recipients. Criteria weights are determined using the AHP method, and the value of each alternative is calculated using the WP method. Parameters used include the number of meals per day, medical expenses, monthly income, source of lighting, cooking fuel, sanitation facilities, food consumption type, floor area, wall type, drinking water source, savings, floor type, clothing purchases, head of household education, and a total of 20 test data to be processed for ranking. An accuracy of 80% is achieved in the validation testing using confusion matrix and 20 sets of alternative data, indicating that the WP method can generate the most optimal alternative recommendations. The results of this research can assist village governments in determining eligible BPNT recipients based on the criteria used.

Keywords: Decision Support System; Recommendation System; AHP; WP; Non-Cash Food Assistance.

Abstrak

Saat ini proses penentuan penerima Bantuan Pangan Non Tunai (BPNT) masih kurang obyektif dan belum maksimal sehingga menimbulkan ketidakpuasan di kalangan warga desa. Tujuan dari penelitian ini adalah menggunakan metode AHP dan WP untuk mengembangkan sistem pendukung keputusan bagi penerima bantuan non tunai (BPNT). Bobot kriteria ditentukan dengan menggunakan metode AHP, dan nilai setiap alternatif dihitung dengan menggunakan metode WP. Parameter yang digunakan makan sebanyak dalam sehari, biaya pengobatan, pendapatan per bulan, sumber penerangan, bahan bakar memasak, fasilitas buang air besar, konsumsi jenis makanan, luas lantai, jenis dinding, sumber air minum, tabungan, jenis lantai, pembelian pakaian, pendidikan kepala rumah tangga dan sebanyak 20 data uji yang akan di olah dalam melakukan perangkingan. Akurasi sebesar 80% dicapai pada pengujian validasi dengan confusion matriks dan 20 kumpulan data alternatif, menunjukkan bahwa metode WP dapat menghasilkan rekomendasi alternatif yang paling optimal. Hasil penelitian ini dapat membantu pemerintah desa dalam menentukan penerima BPNT yang layak sesuai dengan kriteria yang digunakan.

Kata kunci: Sistem Pendukung Keputusan; Sistem Rekomendasi; AHP; WP; Bantuan Pangan Non Tunai.

1. Pendahuluan

Pangan merupakan kebutuhan dasar yang sangat vital bagi kehidupan manusia [1]. Namun, masih banyak masyarakat yang mengalami kesulitan dalam memenuhi kebutuhan pangan mereka. Pemerintah dan lembaga kemanusiaan memberikan bantuan pangan kepada kelompok masyarakat yang membutuhkan, terutama yang berada dalam kondisi ekonomi yang sulit [2]. Bantuan pangan non tunai disalurkan kepada Keluarga Penerima Manfaat (KPM) secara bulanan melalui rekening elektronik yang dikelola oleh mitra usaha yang bekerjasama dengan Bank Himbara. [3]. Pada e-warung, penyelenggaraannya **BPNT** melalui menyediakan bahan pokok seperti beras dan susu dengan harga sesuai bantuan.

Program BPNT telah diterapkan secara luas di berbagai kota di Indonesia sesuai dengan kriteria yang telah Terdapat beberapa proses dalam pembuatan sistem ditetapkan oleh pemerintah [4]. Kriteria tersebut menjadi dasar dalam menentukan penerima yang memenuhi syarat untuk menerima Bantuan Pangan Non Tunai (BPNT) [4]. Proses pengambilan keputusan untuk menentukan penerima BPNT di Desa Pipilogot, Kecamatan Bulagi Selatan, menyebabkan pemberian BPNT tidak tepat sasaran.

Studi literatur pada penelitian sebelumnya hasil penelitian tentang BPNT di Cerme Kidul dengan menggunakan metode WP. Usia, pendidikan, pekerjaan, pendapatan bulanan, jumlah tanggungan, status rumahan, kendaraan, luas lahan, jenis lantai, jenis dinding, sumber penerangan, sumber air minum, dan fasilitas KMWC merupakan beberapa parameter yang digunakan dalam penelitian ini. Berdasarkan hasil perhitungan didapatkan 5 nama rekomndasi penerima BPNT [5]. Lalu penelitian lainnya tentang BPNT di Palangkaraya dengan menerapkan metode AHP dengan parameter sumber pendapatan utama, bangunan tempat tinggal, penerangan, bahan bakar untuk memasak, fasilitas buang air besar, jenis lantai, jenis dinding, aset rumah tangga yang paling mahal, dan terakhir, tempat penampungan tinja. Berdasarkan hasil perhitungan menggunakan metode AHP terdapat 2 rekomendasi calon penerima [6]. Sementara itu, penilitaian lainnya tentang BPNT di Makamhaji menggunakan metode AHP dan SAW. Penelitian tersebut menggunakan parameter pendapatan per bulan, jumlah tanggungan, pekerjaan, kepemilikan rumah, lantai rumah, fasilitas MCK, kepemilikan lahan dan pendidikan kepala keluarga [7]. Berdasrkan studi litratur tersebut dapat disimpulkan bahwa sudah banyak penelitian tentang BPNT akan tetapi belum ada penelitan yang menerapkan metode AHP dan WP.

Tujuan dari penelitan ini adalah membuat sistem pendukung keputusan penentuan BPNT menggunkan algorima Analytical Hierarchy Process (AHP) dan Weighted Product (WP). Parameter yang digunakan makan sebanyak dalam sehari, biaya pengobatan, pendapatan per bulan, sumber penerangan, bahan bakar memasak, fasilitas buang air besar, konsumsi jenis makanan, luas lantai, jenis dinding, sumber air minum, tabungan, jenis lantai, pembelian pakaian, pendidikan kepala rumah tangga [8]. AHP digunakan untuk penentuan bobot masing-masing kriteria[9]. digunakan untuk menetukan prioritas atau rangking dari setiap alternatif [10]. Sehingga menggunakan gabungan kedua metode diharapkan dapat meningkatkan akurasi sasaran pembagian BPNT.

2. Metode Penelitian

pendukung keputusan penerimaan bantuan pangan non tunai (BPNT). Flowchart direpresentasikan sebagai bentuk datar dengan koneksi berurutan yang dibuat oleh panah, masing-masing memiliki arti berbeda. Flowchart adalah serangkaian simbol yang menggambarkan aliran Kabupaten Banggai data dan urutan operasi suatu sistem [11]. Algoritma Kepulauan, masih bersifat subyektif dan kurang optimal, prosessistem pendukung keputusan penerimaan bantuan menyebabkan ketidak puasan di kalangan penduduk pangan non tunai (BPNT) dengan metode AHP desa. Salah satu masalah adalah kurangnya akses digunakan untuk menghitung nilai bobot pada kriteria informasi yang dapat memastikan kelayakan calon yang berbeda, sedangkan metode WP dimanfaatkan penerima berdasarkan kriteria keluarga miskin, untuk melakukan peringkat pada setiap alternatif yang ada. Gambar algoritma pada Gambar 1.

Gambar 1. Flowchat Algoritma

Pada Gambar 1 flowchat di awali setelah user melakukan login. User mengisi data alternatif dan melakukan pembobotan pada kriteria, selanjutnya user membuat metriks perbandingan berpasangan, setelah membuat matriks perbandingan berpasangan, user menormalisasikan matriks perbandingan berpasangan dan menghitung bobot kriteria. Langkah selanjutnya adalah mengevaluasi konsistensi setelah mendapatkan bobot kriteria. Anda akan diinstruksikan untuk melakukan pembobotan ulang jika CR lebih besar dari 0.1. CR dikatakan konsisten, perhitungan dikatakan benar, dan nilai preferensi alternatif (S) serta nilai relatif (V) masing-masing alternatif dapat dihitung apabila kurang dari atau sama dengan 0,1. Proses akhir yaitu sistem akan menampilkan hasil perangkingan penerimaan BPNT.

2.1. Data Set

Data set ini fokus pada penilaian penerima BPNT di Desa Pipilogot dengan 14 kriteria dari BPS. Informasi alternatif untuk mengevaluasi kelayakan penerimaan BPNT juga disajikan. Penelitian ini bertujuan memahami proses penentuan penerima BPNT dan dampaknya secara lokal.

2.1.1. Kriteria

Kriteria yang digunakan untuk menentukan penerima BPNT berjumlah 14 kriteria yang ditetapkan oleh BPS [8]. Informasi lebih lanjut mengenai kriteria ini dapat ditemukan dalam Tabel 1. Kriteria tersebut dirancang untuk mengidentifikasi warga miskin yang memenuhi syarat untuk menerima bantuan tersebut.

Tabel 1. Data Kriteria

Kode	Kriteria
C1	Makan sebanyak dalam sehari
C2	Biaya pengobatan
C3	Pendapatan per bulan
C4	Sumber penerangan
C5	Bahan bakar memasak
C6	Fasilitas buang air besar
C7	Konsumsi jenis makanan sekali seminggu
C8	Luas lantai
C9	Jenis dinding
C10	Sumber air minum
C11	Tabungan
C12	Jenis lantai
C13	Pembelian pakaian
C14	Pendidikan kepala rumah tangga

2.1.2. Alternatif

Alternatif yang digunakan untuk menentukan penerimaan BPNT di Desa Pipilogot tersaji dalam Tabel 2. Tabel tersebut memperlihatkan alternatif yang dipakai untuk menilai kelayakan penerimaan bantuan tersebut. Informasi ini membantu dalam penentuan penerima manfaat BPNT di tingkat desa, memastikan bahwa bantuan tersebut disalurkan kepada mereka yang benarbenar membutuhkan.

Tabel 2. Data Alternatif

Alternatif	Nik	Nama
A1	7207XXXXXXXXXXX01	SY
A2	7207XXXXXXXXXXX01	AN
A3	7207XXXXXXXXXXXX06	DS
A4	7207XXXXXXXXXXX01	MY
A5	7207XXXXXXXXXXX01	KS
A6	7207XXXXXXXXXXX01	BB
A7	7207XXXXXXXXXXX01	MT
A8	7207XXXXXXXXXXX01	WB
A9	7207XXXXXXXXXXX01	NM
A10	7207XXXXXXXXXXX01	UT
A11	7207XXXXXXXXXXX01	SY
A12	7207XXXXXXXXXXX01	SB
A13	7207XXXXXXXXXXX01	KL
A14	7207XXXXXXXXXXX01	RB
A15	7207XXXXXXXXXXX01	EB
A16	7207XXXXXXXXXXX01	YS
A17	7207XXXXXXXXXXX01	LS
A18	7207XXXXXXXXXXX01	AT
A19	7207XXXXXXXXXXX01	ON
A20	7207XXXXXXXXXXX01	YS

2.2. Analytical Hierarcy Process (AHP)

Menggunakan perbandingan berpasangan diskrit atau kontinu dalam struktur hierarki beberapa tingkat, metode AHP menciptakan skala rasio yang membantu pengambilan keputusan ketika memilih opsi terbaik berdasarkan kriteria tertentu [12]. Hierarki fungsional dengan masukan dari persepsi manusia merupakan inti dari AHP. Sesuatu yang kompleks dibagi menjadi kelompok-kelompok diskrit kemudian disusun menjadi suatu bentuk hierarki dengan menggunakan metode AHP [13]. Dalam metode AHP terdapat prinsip peting yang harus dipahimi yaitu sebagai berikut:

Decomposition pendekatan ini memecah masalah kompleks menjadi bagian komponennya dan menggunakan metode hierarki pengambilan keputusan di mana masing-masing komponen terkait dengan yang lain. Resolusi terhadap elemen dilakukan sampai resolusi lebih lanjut tidak mungkin, di mana titik tingkat tertentu dari kueri saat ini dicapai, jika hasil yang tepat diinginkan. Ketika setiap komponen dari hierarki berada pada satu, itu disebut lengkap. Hierarki keputusan yang tidak lengkap adalah sebaliknya dari hierarki keputusan lengkap, di mana satu tingkat terkait dengan setiap elemen pada tingkat berikutnya. Pada Gambar 2 merupakan gambaran dekomposis.

Gambar 2. dekomposisi

Perbandingan berpasangan adalah Prinsip menentukan betapa pentingnya dua hal dalam hubungan dengan total kolam yang bersangkutan untuk satu sama lain pada tingkat tertentu dan tingkat di mendapatkan eigen value atau λ. Menjumlahkan semua atasnya. Komponen penting dari metode AHP adalah λ untuk mendapatkan λ maks. Menghitung indek penilaian ini. Evaluasi dapat ditampilkan sebagai konsistensi menggunakan rumus 1 [12]. Menghuting matriks perbandingan berpasangan, yang merupakan rasio konsistensi menggunakan rumus 2 [12]. matriks. Skala preferensi, yang dimulai di level 1 dan Memeriksa rasio konsistensi apabila CR resultan kurang naik ke level 9, menampilkan tingkat terendah. Untuk dari atau sama dengan 0,1 maka hasil perhitungan dapat skala perbandingan berpasangan disajikan dalam Tabel dinyatakan akurat; jika CR resultan melebihi 0,1 maka 3 [12].

Tabel 3. Skala Perbandingan Berpasangan

Tingkat Kepentingan	Definisi
1	Sama penting (equal)
3	Cukup penting (moderat)
5	Lebih penting (strong)
7	Sangat lebih penting (demonstrated)
9	Mutlak lebih penting (extreme)
2, 4, 6, 8	Nilai tengah diantara nilai berdekatan (intermediate value)

Sintesis prioritas adalah menggunakan matriks perbandingan berpasangan sebagai titik awal. Prinsip ini mencari vektor prioritas lokal. Vektor prioritas lokal tersebut dapat digabungkan untuk mendapatkan prioritas global karena matriks perbandingan berpasangan ada di setiap tingkat, memungkinkan integrasi yang lebih luas.

Konsistensi logis merupakan kualitas yang paling penting. Menyerang vektor eigen lengkap yang diturunkan dari tingkat hierarki akan memungkinkan terciptanya vektor komposit berbobot menghasilkan serangkaian langkah pengambilan keputusan. Untuk daftar random indeks konsistensi disajikan dalam Tabel 4 [12].

Tabel 4. Daftar random indeks konsistensi

Ukuran Matriks	Nilai IR (Indeks Random)
1,2	0.00
3	0.58
4	0.90
5	1.12
6	1.24
7	1.32
8	1.41
9	1.45
10	1.49
11	1.51
12	1.48
13	1.56
14	1.57
15	1.59

Berikut langkah-langkah dalam metode AHP [14] yaitu Buatlah matriks perbandingan berpasangan. Jumlahkan peneliti dapat memperoleh pemahaman yang lebih nilai di setiap kolom. Untuk mencapai normalisasi matriks, bagikan nilai setiap kolom dengan jumlah total kolom yang terlibat. Menjumlahkan nilai dari setiap mana prediksi yang dilakukan sesuai dengan keadaan baris untuk mendapatkan vektor eigen normalisasi. Membagi vektor eigen normalisasi dengan jumlah model kedepannya.

ini elemen untuk mendapatkan bobot. Membagi bobot hasil komputasi perlu diperbaiki.

$$CI = \frac{\lambda \text{maks-n}}{n-1} \tag{1}$$

$$CR = \frac{cI}{IR} \tag{2}$$

2.3. Weighted Product (WP)

Teknik pengambilan keputusan multi-kriteria yang disebut weighted product digunakan untuk mengatasi situasi di mana data memiliki banyak atribut. Untuk menghubungkan rating atribut dengan metode WP, rating setiap atribut harus dipangkatkan terlebih dahulu dengan bobot atribut [15]. Karena dapat dengan cepat dan mudah menentukan solusi optimal dalam suatu sistem perangkingan tanpa memerlukan waktu yang lama dalam menghitungnya, metode WP digunakan dalam pengambilan keputusan [15].

Langkah-langkah yang dilakukan pada metode WP adalah sebagai berikut normalisasi bobot pada metode wp dengan menggunakan rumus 3 [15]. Untuk menentukan pangkat nilai awal, nilai bobot yang dinormalisasi akan dikalikan 1 jika kriterianya termasuk dalam kelompok benefit dan -1 jika kriterianya termasuk dalam kategori cost. Menghitung nilai preferensi untuk alternatif sebagai vektor menggunakan rumus 4 [15]. Menghitung nilai preferensi relatif sebagai vektor V menggunakan rumus 5 [15]. Mengurutkan nilai vektor V terbesar sampai terkecil.

$$\sum_{i=1}^{n} wj = 1 \tag{3}$$

$$Si = \prod_{j=1}^{n} Xij^{wj} \tag{4}$$

$$Vi = \frac{Si}{\prod_{i=1}^{n} Xij^{wj}}$$
 (5)

2.4. Perhitungan Akurasi

Dalam penelitian ini, confusion matrix digunakan sebagai alat untuk mengukur nilai F1-Score, akurasi, recall, dan presisi. Tujuan utamanya adalah untuk mengevaluasi penerapan logika dalam konteks tertentu. Proses perhitungan confusion matrix didasarkan pada data yang terdapat dalam Tabel 5, sesuai dengan referensi [16]. Dengan menggunakan confusion matrix, mendalam tentang kinerja sistem atau model yang dikembangkan, dan ini penting untuk mengukur sejauh sebenarnya. Hasil ini menjadi landasan bagi peningkatan

Tabel 5. Confusion Matriks

		Kelas P	rediksi
Confusion 1	Matrix	1	0
** 1	1	TP	FP
Kelas			
Sebenarnya	0	FN	TN

precision dengan rumus 7, dan recall dengan rumus 8, dilakukan. sedangkan F1-Score menggunakan rumus 9 berdasarkan referensi [16]. Metrik ini membantu dalam menilai kinerja model prediktif.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \times 100\%$$

$$Precission = \frac{TP}{TP+FP} \times 100\%$$

$$Recall = \frac{TP}{TP + FN} \times 100\%$$

$$F1 - Score = \frac{2 x (recall x precision)}{recall + precision}$$

Hasil dan Pembahasan

digunakan untuk menetapkan bobot kriteria, metode WP analisis lebih lanjut.

(Weighted Product) yang digunakan untuk melakukan perangkingan alternatif, dan metode confusion matrix yang digunakan untuk menguji validitas. Metode AHP memungkinkan penentuan bobot yang proporsional untuk setiap kriteria, sementara metode WP memberikan peringkat relatif terhadap alternatif berdasarkan bobot kriteria yang telah ditetapkan. Sementara itu, metode confusion matrix digunakan untuk menguji keakuratan dan kehandalan model yang dibangun. Kombinasi dari ketiga metode ini memberikan pendekatan yang Confusion matrix merupakan alat untuk menghitung komprehensif dalam pengambilan keputusan dan metrik evaluasi seperti accuracy, precision, recall, dan evaluasi hasil penelitian, memastikan hasil yang akurat F1-Score. Accuracy dihitung menggunakan rumus 6, dan bermakna dalam konteks analisis data yang

3.1. Penentuan bobot menggunakan metode AHP

Pada sub bab ini, pembahasan akan difokuskan pada penentuan bobot kriteria menggunakan metode AHP. Tahapan pertama dalam proses ini adalah pembuatan matriks perbandingan kriteria. Matriks perbandingan kriteria ini, sebagaimana yang ditunjukkan dalam Tabel 6, menjadi landasan awal dalam proses penilaian relatif antara satu kriteria dengan yang lainnya. Dalam matriks ini, setiap sel menggambarkan tingkat kepentingan relatif antara dua kriteria yang dibandingkan, yang kemudian akan digunakan untuk menghitung bobot kriteria secara sistematis. Tahap ini sangat penting Bab ini membahas tiga metode utama dalam analisis, karena menetapkan landasan yang kuat dalam vaitu metode AHP (Analytical Hierarchy Process) yang menentukan bobot kriteria yang akan digunakan dalam

Tabel 6. Matriks Perbandingan

Kode	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14
C1	1	2	2	3	3	3	4	5	5	5	5	7	7	7
C2	0,5	1	2	3	3	3	3	3	3	4	5	5	5	5
C3	0,5	0,5	1	3	3	3	3	3	4	4	4	5	5	5
C4	0,333	0,333	0,333	1	2	2	3	3	3	3	3	3	5	5
C5	0,333	0,333	0,333	0,5	1	2	2	2	3	3	3	3	4	5
C6	0,333	0,333	0,333	0,5	0,5	1	2	3	3	3	3	3	4	4
C7	0,25	0,333	0,333	0,333	0,5	0,5	1	3	3	3	3	3	3	4
C8	0,2	0,333	0,333	0,333	0,5	0,333	0,333	1	2	2	2	3	3	3
C9	0,2	0,333	0,25	0,333	0,333	0,333	0,333	0,5	1	2	2	3	3	3
C10	0,2	0,25	0,25	0,333	0,333	0,333	0,333	0,5	0,5	1	2	2	3	3
C11	0,2	0,2	0,25	0,333	0,333	0,333	0,333	0,5	0,5	0,5	1	2	2	2
C12	0,143	0,2	0,2	0,333	0,333	0,333	0,333	0,333	0,333	0,5	0,5	1	2	2
C13	0,143	0,2	0,2	0,2	0,25	0,25	0,333	0,333	0,333	0,333	0,5	0,5	1	2
C14	0,143	0,2	0,2	0,2	0,2	0,25	0,25	0,333	0,333	0,333	0,5	0,5	0,5	1
TOTAL	4,479	6,55	8,017	13,4	15,28	16,667	20,25	25,5	29	31,667	34,5	41	47,5	51

pengambilan keputusan dengan mengidentifikasi secara pada data yang akurat dan relevan.

Setelah membuat matriks perbandingan kriteria, langkah jelas prioritas antara kriteria yang dipertimbangkan. berikutnya dalam analisis AHP adalah mencari Sehingga normalisasi matriks perbandingan menjadi normalisasi matriks perbandingan. Suatu proses yang sangat penting dalam membantu analisis dan krusial karena dengan membagi nilai-nilai dalam baris pengambilan keputusan yang berbasis data, di mana matriks dengan total dari setiap kolomnya, kita tidak normalisasi dapat dilihat pada Tabel 7 yang memberikan hanya menjadikan perbandingan antar kriteria lebih gambaran visual tentang perbandingan kriteria yang akurat tetapi juga memastikan bahwa bobot kriteria yang telah dinormalisasi, menambahkan kedalaman pada dihasilkan secara efektif mencerminkan tingkat pemahaman kita akan pentingnya proses ini. Proses ini kepentingan relatif dari setiap kriteria, memudahkan memastikan bahwa keputusan yang diambil didasarkan

Tabel 7. Normalisasi Matriks Perbandingan

Kode	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14
C1	0,2233	0,305	0,249	0,224	0,196	0,18	0,198	0,196	0,172	0,1579	0,1449	0,1707	0,1474	0,1373
C2	0,1116	0,153	0,249	0,224	0,196	0,18	0,148	0,118	0,103	0,1263	0,1449	0,122	0,1053	0,098
C3	0,1116	0,076	0,125	0,224	0,196	0,18	0,148	0,118	0,138	0,1263	0,1159	0,122	0,1053	0,098
C5	0,0744	0,051	0,042	0,075	0,131	0,12	0,148	0,118	0,103	0,0947	0,087	0,0732	0,1053	0,098
C5	0,0744	0,051	0,042	0,037	0,065	0,12	0,099	0,078	0,103	0,0947	0,087	0,0732	0,0842	0,098
C6	0,0744	0,051	0,042	0,037	0,033	0,06	0,099	0,118	0,103	0,0947	0,087	0,0732	0,0842	0,0784
C7	0,0558	0,051	0,042	0,025	0,033	0,03	0,049	0,118	0,103	0,0947	0,087	0,0732	0,0632	0,0784
C8	0,0447	0,051	0,042	0,025	0,033	0,02	0,016	0,039	0,069	0,0632	0,058	0,0732	0,0632	0,0588
C9	0,0447	0,051	0,031	0,025	0,022	0,02	0,016	0,02	0,034	0,0632	0,058	0,0732	0,0632	0,0588
C10	0,0447	0,038	0,031	0,025	0,022	0,02	0,016	0,02	0,017	0,0316	0,058	0,0488	0,0632	0,0588
C11	0,0447	0,031	0,031	0,025	0,022	0,02	0,016	0,02	0,017	0,0158	0,029	0,0488	0,0421	0,0392
C12	0,0319	0,031	0,025	0,025	0,022	0,02	0,016	0,013	0,011	0,0158	0,0145	0,0244	0,0421	0,0392
C13	0,0319	0,031	0,025	0,015	0,016	0,015	0,016	0,013	0,011	0,0105	0,0145	0,0122	0,0211	0,0392
C14	0,0319	0,031	0,025	0,015	0,013	0,015	0,012	0,013	0,011	0,0105	0,0145	0,0122	0,0105	0,0196

Setelah melakukan normalisasi, langkah selanjutnya meggunakan metode AHP. Tabel penilaian alternatif vaitu mencari total kolom, bobot kriteria dan eigen dapat dilihat di Tabel 9. value. Untuk mencari bobot kriteria dengan membagi total kolom dengan banyaknya kiteria. Sedangkan mencari eigen value atau λ dengan cara menggalikan bobot dengan total baris martriks perbandingan. Sehingga dari proses tersebut menghasilkan nilai di Tabel 8.

Tabel 8. Bobot Kriteria dan Eigen Value

Kode	Total	Bobot	eigen value
C1	2,70248	0.19303446	0.86451863
C2	2,07971	0.14855057	0.97300624
C3	1,88413	0.13458066	1.07888829
C4	1,3198	0.09427124	1.26323469
C5	1,1074	0.07910015	1.20891409
C6	1,03429	0.07387819	1.23130320
C7	0,90281	0.06448674	1.30585655
C8	0,65564	0.04683156	1.19420488
C9	0,58025	0.04144651	1.20194882
C10	0,49432	0.03530842	1.11810010
C11	0,40125	0.02866063	0.98879192
C12	0,33109	0.02364904	0.96961090
C13	0,27217	0.01944092	0.92344385
C14	0,23465	0.01676085	0.85480372
Total		1	15.1766259

Berdasarkan Tabel 8, maka Consistency Index berdasarkan rumus 1, adalah sebesar 0.09050968. Setelah mendapatkan nilai Consistency Index, untuk memestikan bahwa perhitungan dapat dinyatakan konsisten maka tahap selanjutnya yaitu mencari Consistency Ratio menggunakan rumus 2, dimana hasil Consistency Ratio adalah 0.05764948. Oleh karena Consistency Ratio ≤ 0.1 ($0.05764948 \leq 0.1$) maka konsistens rasio terhadap perhitungan dapat diterima (konsisten).

3.2. Perhitungan alternatif menggunakan metode WP

Pada sub bab ini akan membahas tentang Metode WP alternatif. Setelah

Tabel 9. Penilaian Alternatif

	l'abel 9	. Penilalan A	iternatii	
Kode	Kriteria	Jenis	Sub Kriteria	Nilai
	Makan	Cost	≤ 1 kali sehari	1
C1	sebanyak dalam		≥ 1 kali sehari	2
	sehari			
C2	Biaya	Benefit	Rumah sakit	1
	pengobatan		Puskesmas	2
C3	Pendapatan per	Cost	≤ 600.000	1
	bulan		\geq 600.000	2
C4	Sumber	Benefit	Listrik	1
	penerangan		Non listrik	2
C5	Bahan bakar	Benefit	Gas LGP	1
	memasak		Minyak tanah	2
			Kayu bakar	3
C6	Fasilitas buang	Benefit	Sendiri	1
	air besar		Umum	2
			Tidak ada	3
C7	Konsumsi jenis	Benefit	Daging	1
	makanan sekali		Ayam	2
	seminggu		Ikan	3
C8	Luas lantai	Cost	≤ 8 meter	1
			\geq 8 meter	2
C9	Jenis dinding	Benefit	Tembok	1
			Tembok	2
			tanpa plester	
			Kayu	3
			Bambu	4
C10	Sumber air	Benefit	Isi ulang	1
	minum		Air Hujan	2
			Sumur	3
C11	Tabungan	Cost	≤ 500.000	1
			\geq 500.000	2
C12	Jenis lantai	Benefit	Kramik	1
			Semen	2
			Tanah	3
C13	Pembelian	Benefit	≥ 1 sete1	1
	pakaian		≤ 1 sete1	2
C14	Pendidikan	Benefit	≥ D1	1
	kepala rumah		SMA	2
	tangga		SMP	3
			SD	4
			Tidak sekolah	5

Setelah menyelesaikan tahap penelitian, langkah berikutnya adalah menyajikan data alternatif yang yang digunakan untuk melakukan perangkingan berhasil dikumpulkan dalam Tabel 10. Tabel tersebut mendaptkan bobot kriteria merangkum informasi penting mengenai berbagai

alternatif yang telah diteliti. Data tersebut dapat berupa lebih mudah menganalisis pola-pola, tren, dan hubungan penelitian yang sedang dilakukan. Dengan menyusun rekomendasi data ini secara terstruktur dalam tabel, peneliti dapat pengembangan selanjutnya.

hasil survei yang dilakukan, pengukuran yang telah antara variabel-variabel yang relevan. Ini membantu dicatat, atau informasi lain yang relevan dengan tujuan dalam memperoleh pemahaman yang lebih dalam terkait penelitian. Tabel ini merupakan fondasi utama bagi dengan subjek penelitian dan dapat menjadi landasan analisis dan evaluasi lebih lanjut dalam konteks untuk membuat kesimpulan yang kuat serta memberikan yang sesuai untuk

Tabel 10. Data Alternatif

Alternatif	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14
A1	2	2	2	1	2	1	3	2	1	2	2	1	1	4
A2	2	2	2	1	2	1	3	2	2	2	2	2	1	4
A3	2	2	1	2	3	1	3	2	3	3	1	2	1	5
A4	2	2	2	2	2	1	3	2	3	3	2	2	1	5
A5	2	2	2	1	2	1	3	2	3	2	2	2	1	4
A6	2	2	2	1	2	1	3	2	1	2	2	1	1	4
A7	2	2	2	1	2	1	3	2	2	3	2	2	1	4
A8	2	2	2	2	2	1	3	2	3	3	2	2	1	4
A9	2	2	1	2	3	2	3	2	3	3	1	2	1	5
A10	2	2	1	2	3	2	3	2	3	3	1	2	1	5
A11	2	2	2	1	2	1	3	2	1	2	2	1	1	4
A12	2	2	2	1	2	1	3	2	3	2	2	2	1	4
A13	2	2	2	1	2	1	3	2	2	1	2	2	1	5
A14	2	2	2	1	2	1	3	2	3	3	2	2	1	4
A15	2	2	1	2	3	2	3	2	3	3	1	3	1	5
A16	2	2	2	1	2	1	3	2	1	1	2	1	1	4
A17	2	2	2	1	2	1	3	2	2	2	2	2	1	5
A18	2	2	2	1	2	1	3	2	3	3	2	2	1	4
A19	2	2	1	2	3	2	3	2	3	3	1	3	1	5
A20	2	2	2	1	2	1	3	2	2	2	2	1	1	4

Tahapan awal dalam melakukan perangkingan menggunakan metode WP adalah normalisasi bobot dengan menggunakan rumus 3. Proses ini menghasilkan nilai yang terdokumentasikan dalam Tabel 11. Tahap ini penting untuk memastikan bobot yang digunakan dalam perangkingan telah disesuaikan secara proporsional.

Tabel 11. Normalisasi Bobot

Kode	Bobot	Normalisasi
C1	0.19303446	-0.19303446
C2	0.14855057	0.14855057
C3	0.13458066	-0.13458066
C4	0.09427124	0.09427124
C5	0.07910015	0.07910015
C6	0.07387819	0.07387819
C7	0.06448674	0.06448674
C8	0.04683156	-0.04683156
C9	0.04144651	0.04144651
C10	0.03530842	0.03530842
C11	0.02866063	-0.02866063
C12	0.02364904	0.02364904
C13	0.01944092	0.01944092
C14	0.01676085	0.01676085

Langkah selanjutnya adalah menggunakan rumus 4 untuk menghitung nilai preferensi terhadap alternatifalternatif sebagai vektor S setelah bobotnya dinormalisasi. Hasilnya disajikan dalam Tabel 12. Proses ini membantu dalam menetapkan preferensi terhadap setiap alternatif berdasarkan bobot yang telah dinormalisasi, memungkinkan analisis yang lebih terperinci terhadap pilihan terbaik dalam konteks yang demikian, pengambilan keputusan relevan dengan penelitian.

Tabel 12. Vektor S

Alternatif	Vektor S
A1	0.9969427708385
A2	1.0429558913127
A3	1.3330730508032
A4	1.1528812579822
A5	1.0606309836045
A6	0.9969427708385
A7	1.0579945870874
A8	1.1485774482325
A9	1.4031157515464
A10	1.4031157515464
A11	0.9969427708385
A12	1.0606309836045
A13	1.0215540320979
A14	1.0759245418695
A15	1.4166347451252
A16	0.9728398116466
A17	1.0468639288077
A18	1.0759245418695
A19	1.4166347451252
A20	1.0259988434612
Total	22.7061792082381

Setelah mendapatkan nilai vektor S, langkah selanjutnya adalah menghitung nilai preferensi relatif sebagai vektor menggunakan rumus 5. Hasil dari perhitungan ini kemudian dapat ditemukan dalam Tabel 13. Proses ini memungkinkan untuk mengevaluasi preferensi relatif dari setiap alternatif, yang dapat menjadi panduan penting dalam pengambilan keputusan strategis. Dengan dapat terinformasi dan efektif.

Tabel 13. Vektor

Alternatif	Vektor
A1	0.043906231942219
A2	0.045932690028904
A3	0.058709703582344
A4	0.052168343481524
A5	0.046711116558954
A6	0.043906231942219
A7	0.04659500734952
A8	0.050584355813406
A9	0.061794445409704
A10	0.061794445409704
A11	0.043906231942219
A12	0.046711116558954
A13	0.04499013342268
A14	0.047384658246646
A15	0.06238983371589
A16	0.042844716529571
A17	0.046104803419675
A18	0.047384658246646
A19	0.06238983371589
A20	0.045185886804282

Setelah mendapatkan nilai vektor, langkah selanjutnya adalah mengurutkan nilai-nilai vektor tersebut dari yang terbesar hingga yang terkecil, sesuai dengan urutan yang terdokumentasikan dalamTabel 14. Proses pengurutan ini merupakan tahap krusial dalam perangkingan, karena memungkinkan identifikasi entitas dengan prioritas tertinggi. Dengan demikian, pengurutan ini mempermudah pengambilan dalam keputusan berdasarkan prioritas yang telah ditetapkan.

Tabel 14. Hasil Perangkingan

Rangking	Alternatif
1	A15
2	A19
3	A9
4	A10
5	A3
6	A4
7	A8
8	A18
9	A14
10	A12
11	A5
12	A7
13	A17
14	A2
15	A20
16	A13
17	A11
18	A6
19	A1
20	A16

3.3. Pengujian Validasi

Dalam pengujian ini, metode evaluasi yang digunakan

akurasi. Proses pengujian melibatkan perbandingan antara hasil penerimaan aktual dengan prediksi sistem, dengan tujuan untuk menentukan sejauh mana kesesuaian keduanya. Kesesuaian dianggap tercapai apabila rekomendasi yang dihasilkan oleh sistem dan evaluasi manual menghasilkan hasil yang sama. Sebanyak 20 data uji digunakan dalam pengujian ini. Data uji dapat di lihat pada Tabel 15 berikut ini.

Tabel 15. Data Uji Alternatif

No	Alternatif	Aktual	Sistem	Nilai
1	A1	False	False	TN
2	A2	True	True	TP
3	A3	False	True	FP
4	A4	True	True	TP
5	A5	True	True	TP
6	A6	True	False	FN
7	A7	False	True	FP
8	A8	True	True	TP
9	A9	True	True	TP
10	A10	True	True	TP
11	A11	False	False	TN
12	A12	True	True	TP
13	A13	True	True	TP
14	A14	True	True	TP
15	A15	True	True	TP
16	A16	True	False	FN
17	A17	True	True	TP
18	A18	True	True	TP
19	A19	True	True	TP
20	A20	True	True	TP

Setelah perbandingan hasil, dilakukan pengujian menggunakan confusion matrix untuk menghasilkan nilai keakuratan. Proses perhitungan akurasi, presisi, recall dan F1-Score. Tahapan uji validasi dijelaskan pada Tabel 16 berikut.

Tabel 16. Confuxion Matriks Hasil

		Kelas Prediksi	
		Positif (P)	Negatif (N)
Kelas Sebenarnya	Positif (P)	14	2
	Negative (N)	2	2

Dari hasil evaluasi yang tercantum dalam Tabel 15 di atas, dilakukan perhitungan untuk mendapatkan nilai recall, precision, dan accuracy menggunakan rumus 6, 7, 8 dan 9. Berdasarkan hasil perhitungan uji validasi menggunakan confusion matrix, dapat disimpulkan bahwa Aplikasi SPK Penentuan BPNT mampu mencapai nilai akurasi sebesar 80%, presisi 87,5%, 87,5% dan F1-score 93,3%. recall adalah confusion matrix untuk mengukur tingkat membandingkan hasilnya, kita dapat menentukan bahwa sistem berfungsi secara efektif dan metode serta

[7]

algoritma yang digunakan dapat menghasilkan saran alternatif terbaik.

Perbandingan antara penelitian sebelumnya dan hasil yang diusulkan oleh penulis dapat ditemukan dalam Tabel 17. Tabel ini memberikan gambaran yang jelas tentang perbedaan dan kesamaan antara temuan yang dihasilkan dalam penelitian sebelumnya dengan hasil yang diajukan oleh penulis. Analisis dalam tabel tersebut memungkinkan pembaca untuk memahami kontribusi baru yang ditawarkan oleh penelitian ini, serta bagaimana hal itu memperkaya pemahaman dalam domain yang bersangkutan. [5]

Tabel 17. Tabel Perbandingan

Peneliti	Metode	Hasil	_
[5]	WP	alternatif 3 mendapatkan nilai	
		tertinggi sebesar 0,1028	
[6]	AHP	alternatif 2 mendapatkan nilai	[6]
		tertinggi sebesar 0.441322	[0]
[7]	AHP-	alternatif 3 mendapatkan nilai	
	SAW	tertinggi sebesar 0,964017272	
Penulis	AHP-WP	alternatif 3 mendapatkan nilai	
		tertinggi sebesar	
		1.4166347451252	

4. Kesimpulan

Penelitian ini menghasilkan aplikasi sistem pendukung keputusan penerimaan bantuan pangan non tunai (BPNT) dengan menggunakan metode AHP yang digunakan untuk menetukan bobot kriteria dan metode [8] WP yang digunakan untuk menentukan perangkingan setiap alternatif. Aplikasi ini dapat membantu pemerintah desa dalam menentukan warga yang layak menerima BPNT dengan menggunakan parameter [9] makan sebanyak dalam sehari, biaya pengobatan, pendapatan per bulan, sumber penerangan, bahan bakar memasak, fasilitas buang air besar, konsumsi jenis makanan, luas lantai, jenis dinding, sumber air minum, [10] tabungan, jenis lantai, pembelian pakaian, pendidikan kepala rumah tangga. Aplikasi yang telah dikembangkan memiliki fungsi untuk menghasilkan serta menampilkan rekomendasi penerima BPNT berdasarkan urutan nilai, mulai dari yang tertinggi hingga yang terendah. Pengujian akurasi menggunakan confusion matrix didapatkan hasil akurasi sebesar 80%, presisi 87,5%, recall 87,5% dan F1-score 93,3%. Menunjukkan bahwa [11] rekomendasi alternatif terbaik dapat dihasilkan oleh metode dan algoritma yang digunakan.

Daftar Pusataka

- [1] A. S. Wahongan, Y. Simbala, and V. Y. Gosal, "Strategi Mewujudkan Keamanan Pangan Dalam Upaya Perlindungan Konsumen," vol. IX, no. 3, pp. 41–66, 2021.
- [2] R. Firdaus and Burhanuddin, "Evaluasi Program Kebijakan Bantuan Sosial Di Desa Cimpu Kecamatan Suli Kabupaten Luwu," vol. 5, 2022.
- [3] E. Yulianti and M. Farina, "Sistem Pendukung Keputusan Penerima Bantuan Pangan Non

Tunai (BPNT) Untuk Keluarga Miskin Menggunakan Metode Simple Multi Attribute Rating Technique (SMART)," vol. 8, no. 1, pp. 7–13, 2020, doi: 10.21063/JTIF.2020.V8.1.

A. Hanipah, Djamaludin, and S. Syam, "Sistem Pendukung Keputusan Pengolahan Data Penerima Bantuan Pangan Non Tunai (BPNT) Warga Miskin Menggunakan Metode Weighted Product (WP) Pada Kelurahan Batusari Kota Tangerang," vol. 1, no. November, pp. 238–246, 2020.

A. A. Tyas, U. Chotijah, and H. D. Bhakti, "Decision Support System Rekomendasi Penerima Program Pemerintah Bantuan Pangan Non Tunai (BPNT) Dengan Menggunakan Metode Weighted Product (WP)," vol. 3, no. 2, pp. 55–69, 2021.

J. Parhusip, "Penerapan Metode Analytical Hierarchy Process (AHP) Pada Desain Sistem Pendukung Keputusan Pemilihan Calon Penerima Bantuan Pangan Non Tunai (BPNT) Di Kota Palangka Raya," vol. 13, no. 2, pp. 18–29, 2019.

S. R. Arianto, S. Siswanti, W. Laksito, and Y. Saptomo, "Sistem Pendukung Keputusan Penerima Bantuan Pangan Non Tunai Dengan Metode Hybrid AHP- SAW," vol. 17, no. 2, pp. 200–208, 2020.

M. F. Mustofa and T. Utomo, "Standar Kemiskinan Badan Pusat Statistik (BPS) Perspektif Dr. Wahbah Zuhaili," vol. 5, pp. 1–17, 2023.

A. Sudiarjo and M. Hikmatyar, "Kombinasi Metode Analytic Hierarchy Process Dan Weighted Product Pada Rekomendasi Pemilihan Tempat Kost," vol. 9, no. 1, pp. 453–467, 2022. G. Surya, P. Gede, and S. Cipta, "Komparasi Metode AHP-SAW dan AHP-WP pada SPK Penentuan E-Commerce Terbaik di Indonesia Comparison of AHP-SAW and AHP-WP Methods on DSS to Determine the Best E-Commerce in Indonesia," vol. 08, no. 4, pp. 346–356, 2020, doi: 10.26418/justin.v8i4.42611.

I. Budiman, S. Saori, R. N. Anwar, Fitriani, and M. Y. Pangestu, "Analisis Pengendalian Mutu Di Bidang Industri Makanan (Studi Kasus: UMKM Mochi Kaswari Lampion Kota Sukabumi)," *J. Inov. Penelit.*, vol. 1, no. 0.1101/2021.02.25.432866, pp. 1–15, 2021.

J. E. S. Casym and D. N. Oktiara, "Aplikasi Analytical Hierarchy Process dalam Mengidentifikasi Preferensi Laptop Bagi Mahasiswa," pp. 636–640, 2020.

M. F. Rozi, E. Santoso, and M. T. Furqon, "Sistem Pendukung Keputusan Penerimaan Pegawai Baru Menggunakan Metode AHP dan TOPSIS," vol. 3, no. 9, pp. 8361–8366, 2019. F. Agustina, A. T. Sumpala, and

(JOINTECS) Journal of Information Technology and Computer Science Vol. 8 No. 1 (2024) 11 – 20

Γ14**1**

711, 2021.

- Arysespajayadi, "Sistem Pendukung Keputusan Pemilihan Jurusan Siswa Baru Menggunakan [16] Metode AHP dan MOORA Pada SMKN 1 Kolaka," vol. 7, pp. 87–96, 2021, doi: 10.34128/jsi.v7i1.292.
- [15] K. Eliyen and F. S. Efendi, "Implementasi Metode Weighted Product untuk Penentuan
- Mustahiq Zakat," vol. 1, 2019. D. Normawati and S. A. Prayogi, "Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter," vol. 5, no. November 2019, pp. 697–