CONVERSION FROM NFA TO DFA

In NFA, when a specific input is given to the current state, the machine goes to multiple states. It can have zero, one or more than one move on a given input symbol. On the other hand, in DFA, when a specific input is given to the current state, the machine goes to only one state. DFA has only one move on a given input symbol.

Let, $M = (Q, \Sigma, \delta, q0, F)$ is an NFA which accepts the language L(M). There should be equivalent DFA denoted by $M' = (Q', \Sigma', q0', \delta', F')$ such that L(M) = L(M').

Steps for converting NFA to DFA:

Step 1: Initially $Q' = \phi$

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state.

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q', then add it to Q'.

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA)

Example 1:

Convert the given NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State 0

→q0	q0	q1
q1	{q1, q2}	q1
*q2	q2	{q1, q2}

Now we will obtain δ ' transition for state q0.

- 1. $\delta'([q0], 0) = [q0]$
- 2. $\delta'([q0], 1) = [q1]$

The δ' transition for state q1 is obtained as:

- 1. $\delta'([q1], 0) = [q1, q2]$ (**new** state generated)
- 2. $\delta'([q1], 1) = [q1]$

The δ' transition for state q2 is obtained as:

- 1. $\delta'([q2], 0) = [q2]$
- 2. $\delta'([q2], 1) = [q1, q2]$

Now we will obtain δ' transition on [q1, q2].

- 1. $\delta'([q1, q2], 0) = \delta(q1, 0) \cup \delta(q2, 0)$
- 2. $= \{q1, q2\} \cup \{q2\}$
- 3. = [q1, q2]
- 4. $\delta'([q1, q2], 1) = \delta(q1, 1) \cup \delta(q2, 1)$
- 5. $= \{q1\} \cup \{q1, q2\}$
- 6. $= \{q1, q2\}$
- 7. = [q1, q2]

The state [q1, q2] is the final state as well because it contains a final state q2. The transition table for the constructed DFA will be:

State 0 1

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

→[q0]	[q0]	[q1]
[q1]	[q1, q2]	[q1]
*[q2]	[q2]	[q1, q2]
*[q1, q2]	[q1, q2]	[q1, q2]

The Transition diagram will be:

The state q2 can be eliminated because q2 is an unreachable state.

Example 2:

Convert the given NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State	0	1
→q0	{q0, q1}	{q1}
*q1	Φ	{q0, q1}

Now we will obtain δ' transition for state q0.

- 1. $\delta'([q0], 0) = \{q0, q1\}$
- 2. = [q0, q1] (new state generated)
- 3. $\delta'([q0], 1) = \{q1\} = [q1]$

The δ' transition for state q1 is obtained as:

- 1. $\delta'([q1], 0) = \phi$
- 2. $\delta'([q1], 1) = [q0, q1]$

Now we will obtain δ' transition on [q0, q1].

- 1. $\delta'([q0, q1], 0) = \delta(q0, 0) \cup \delta(q1, 0)$
- $= \{q0, q1\} \cup \phi$
- 3. $= \{q0, q1\}$
- 4. = [q0, q1]

Similarly,

1.
$$\delta'([q0, q1], 1) = \delta(q0, 1) \cup \delta(q1, 1)$$

- 2. $= \{q1\} \cup \{q0, q1\}$
- 3. $= \{q0, q1\}$
- 4. = [q0, q1]

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore set of final states $F = \{[q1], [q0, q1]\}$.

The transition table for the constructed DFA will be:

State	0	1
→[q0]	[q0, q1]	[q1]
*[q1]	ф	[q0, q1]
*[q0, q1]	[q0, q1]	[q0, q1]

The Transition diagram will be:

Even we can change the name of the states of DFA.

Suppose

- 1. A = [q0]
- 2. B = [q1]
- 3. C = [q0, q1]

With these new names the DFA will be as follows:

