PolarMask: Single Shot Instance Segmentation with Polar Representation (CVPR2020)

Enze Xie^{1,2}*, Peize Sun³*, Xiaoge Song⁴*, Wenhai Wang⁴, Ding Liang², Chunhua Shen⁵, Ping Luo¹

1The University of Hong Kong

2Sensetime Group Ltd

3Xi'an Jiaotong University

4Nanjing University 5The University of Adelaide

动机

- 在instance segmentation领域,主流的是以
 Makrcnn为代表的两阶段算法,且主流的改进主要集中在对检测核心的改进
 - 检测目标框→分割目标
- Instance segmentation需要给出point-to-point 的输出,这个是不经济的
- 可以将分割看做边缘的标定,如果边缘点足够多;利用polar representation可以更好表示边缘

Figure 1 – Instance segmentation with different mask representations. (a) is the original image. (b) is the pixel-wise mask representation. (c) and (d) represent a mask by its contour, in the Cartesian and Polar coordinates, respectively.

方案思路

- 边缘表示:
 - 首先定义物体中心作为原点
 - 一段边缘可以定义为(角度, 距离)
 - 极坐标表达(角度,距离)更自然
- Instance segmentation=center detection + contour regression
- 设计了一种即插即用的模块,可以接入任一检测网络,将其改成instance segmentation网络
- 和检测网络相比,几乎不增加网络的负担就实现了分割
- 提出PolarIOU loss来训练这一网络模块

Figure 1 – Instance segmentation with different mask representations. (a) is the original image. (b) is the pixel-wise mask representation. (c) and (d) represent a mask by its contour, in the Cartesian and Polar coordinates, respectively.

边缘的极坐标表示

- **定义**: 首先对任一实体,采样得到一个重心(xc, yc)和在边缘上的等夹角间距的点(xi, yi), i = 1, 2, ..., N, 其中 $\Delta\theta$ (e.g., n = 36, $\Delta\theta$ = 10°)是夹角间距,计算出每一个点对(xc, yc) (xi, yi)之间的距离{d1, d2, ..., dn}
- 重心的合理性: Here we verify the upper bound of box center and mass-center and conclude that mass-center is more advantageous.
- 采样原则: 距离重心1.5× strides 的范围内是正样本,否则是负样本
- 采样是为了增加样本多样性;同时重心并不总是最优选择
- 极坐标的特别情况:
 - 如果射线有多个交点 > 直接取maximum
 - 如果部分角度没有交点→用10-6赋值给这些d
- 作者认为: 这些特别情况制约了极坐标法的性能, 但是极坐标法仍然优于非参数的点对点分类
- 问题难点: 作者认为其创新不只是提出了这种极坐标, 解决极坐标下的回归问题也不容易
 - Loss平衡: 因为n个点的回归需要稠密的预测,这和分类问题相比有更大的loss
 - 相对性: n个点不应该是孤立回归的,比方说经过一定的扰动,使点和点没有很好对应,但分割结果仍然是正确的

Mask 重组和极坐标Centerness

$$x_i = \cos \theta_i \times d_i + x_c$$
$$y_i = \sin \theta_i \times d_i + y_c.$$

Polar Centerness =
$$\sqrt{\frac{\min(\{d_1, d_2, \dots, d_n\})}{\max(\{d_1, d_2, \dots, d_n\})}}$$

- 重组: Given a center sample (xc, yc) and n ray's length {d1, d2, . . . , dn}, 容易计算出对应的直角坐标
- NMS: 在重组输出的分割后, 计算了输出分割的包围框, 然后用NMS 进行归并
- Centerness: suppress these low-quality detected objects without introducing any hyper- parameters
 - the closer dmin and dmax are, higher weight the point is assigned
- 改进网络:加入了一个平行的输出,用来预测Polar Centerness of a location
 - 输出的Centerness分数会乘到预测分数上
 - Centerness improves accuracy especially under stricter localization metrics, such as AP75

网络结构和Polar IOU loss

Figure 5 – **Mask IoU in Polar Representation**. Mask IoU (interaction area over union area) in the polar coordinate can be calculated by integrating the differential IoU area in terms of differential angles.

- 网络结构: 在基础的检测网络上,增加分类head、centerness head、mask head
- 损失函数: 一般的分割网络都采用I1 loss 或者iou loss
 - 定义的Polar iou loss: 极坐标下用积分定义,量化后得到 $IoU = \lim_{N \to \infty} \frac{\sum_{i=1}^{N} \frac{1}{2} d_{\min}^2 \Delta \theta_i}{\sum_{i=1}^{N} \frac{1}{2} d_{\max}^2 \Delta \theta_i}$
 - 继续量化 $\Delta\theta = 2\pi/N$ 则有 Polar IoU = $\frac{\sum_{i=1}^{n} d_{\min}}{\sum_{i=1}^{n} d_{\max}}$
 - $\sum_{i=1}^{n} a_{\max}$ B 为gt的iou是1,所以可以进行类似于cross entropy的处理 Polar IoU Loss = $\log \frac{\sum_{i=1}^{n} d_{\max}}{\sum_{i=1}^{n} d_{\min}}$
- Advantageous properties: differentiable, predicts the regression targets as a whole, keep the balance between classification loss and regression loss

Experiments on COCO benchmark

rays	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
18	26.2	48.7	25.4	11.8	28.2	38.0
24	27.3	49.5	26.9	12.4	29.5	40.1
36	27.7	49.6	27.4	12.6	30.2	39.7
72	27.6	49.7	27.2	12.9	AP _M 28.2 29.5 30.2 30.0	39.7

(a) Number of Rays: More rays bring a large gain, while too many rays saturate since it already depicts the mask ground-truth well.

centerness						
Original	27.7	49.6	27.4	12.6	30.2	39.7
Original Polar	29.1	49.5	29.7	12.6	31.8	42.3

(c) Polar Centerness vs. Centerness: Polar Centerness bring a large gain, especially high IoU AP_{75} and large instance AP_L .

			AP_{75}			
ResNet-50	29.1	49.5	29.7	12.6	31.8	42.3
ResNet-101	30.4	51.1	31.2	13.5	33.5	43.9
ResNeXt-101	32.6	54.4	33.7	15.0	36.0	47.1

(e) Backbone Architecture: All models are based on FPN. Better backbones bring expected gains: deeper networks do better, and ResNeXt improves on ResNet.

loss	α	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
	0.05	24.7	47.1	23.7	11.3	26.7	36.8
Smooth- l_1	0.30	25.1	46.4	24.5	10.6	27.3	37.3
Smooth- l_1	1.00	20.2	37.9	19.6	8.6	20.6	31.1
Polar IoU	1.00	27.7	49.6	27.4	12.6	30.2	39.7

(b) Polar IoU Loss vs. Smooth-L1 Loss: Polar IoU Loss outperforms Smooth- l_1 loss, even the best variants of balancing regression loss and classification loss.

box branch						
w	27.7	49.6	27.4	12.6	30.2	39.7
w/o	27.5	49.8	27.0	13.0	30.0	40.0

(d) **Box Branch**: Box branch makes no difference to performance of mask prediction.

scale	AP	$AP_{50} \\$	AP_{75}	AP_S	AP_M	AP_L	FPS
			23.2				
600	27.6	47.5	28.3	9.8	30.1	43.1	21.7
800	29.1	49.5	29.7	12.6	31.8	42.3	17.2

(f) Accuracy/speed trade-off on ResNet-50: PolarMask performance with different image scales. The FPS is reported on one V100 GPU.

结果展示

Figure 6 – Visualization of PolarMask with Smooth- l_1 loss and Polar IoU loss. Polar IoU Loss achieves to regress more accurate contour of instance while Smooth- l_1 Loss exhibits systematic artifacts.

讨论

- 射线越多, 应该性能越好才对?
- 大物体的边缘容易描述不清,如何解决?
- 3D条件下拓展是否合适?

PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows (ICCV2019)

Guandao Yang^{1,2*}, Xun Huang^{1,2*}, Zekun Hao^{1,2}, Ming-Yu Liu³, Serge Belongie^{1,2}, Bharath Hariharan¹

Cornell University ²Cornell Tech ³NVIDIA

任务: 三维点云生成, 凭空产生符合要求的点云, https://github.com/stevenygd/PointFlow.

应用: 拓充点云数据集, autoencoder编码已有的数据, 但本文没有尝试从一张图片生成点云的工作

PointFlow: 一个在分布上生成分布的的两级生成器; 第一级生成一个形状, 第二级生成形状的每一个

点

相关工作:

- 点云深度学习:目前分类、分割、关键点提取任务都已有方案,但多数都规定了点云结构是N*3。N 不可变是一个问题,此外目前的方案没有考虑点云微扰下的形状不变形,引入不必要的损失值
- 生成模型: 主流方案有GAN、VAE、auto-regressive models、flow-based models; 后两者能够计算似然函数,且flow-based models计算代价小,在图像、视频生成中已经有应用

PointFlow方案

- Our generative model should be able to both **sample shapes** and **sample an arbitrary number of points** from a shape.
- 训练: 训练编码器Q, 和解码器G, F
- 测试:采样w和y,获得z和x

Continuous normalizing flow

- 如果f1,...,fn是一系列可逆的变换,并且有x = fn 。 fn 1 。 · · · · 。 f1(y),x是y经过这些变换得到的
- 概率描述则有这样的关系: $\log P(x) = \log P(y) \sum_{k=1}^{n} \log |\det \frac{\delta f_k}{\delta y_{k-1}}|$, 这里的 $|\det \frac{\delta f_k}{\delta y_{k-1}}|$ 部分可以用深度网络建模,方便地输出
- 根据CNF模型, $x = y(t0) + \int_{t0}^{t1} f(y(t), t) dt, y(t0) \sim P(y)$
- 可以推出 $\log P(x) = \log P(y(t0)) \int_{t0}^{t1} Tr\left(\frac{\delta f}{\delta y(t)}\right) dt$
- 这部分可以采用ordinary differential equation (ODE)工具计算得到结果(NIPS2018)

Variational auto-encoder

• 我们的目标是最大化 $\log P\theta(X)$,但直接对其处理比较困难,所以 我们最大化它的下界——evidence lower bound (ELBO)

$$\log P_{\theta}(X) \ge \log P_{\theta}(X) - D_{KL}(Q_{\phi}(z|X)||P_{\theta}(z|X))$$

$$= \mathbb{E}_{Q_{\phi}(z|x)} \left[\log P_{\theta}(X|z) \right] - D_{KL} \left(Q_{\phi}(z|X)||P_{\psi}(z) \right)$$

$$\triangleq \mathcal{L}(X; \phi, \psi, \theta), \tag{3}$$

- 假设我们z是x的一个先验,那么原式的ELBO就等价于z条件下出现这个X的概率,减去X映射出z的分割和z的先验分布的KL距离
- 第一项可以用采样z的方式得到概率值,第二项可以用z的参数和先验计算kl 距离
- Q是编码器,输入X得到对应的先验z的分布参数(均值、方差)

Flow-based **point generation** from shape representations

- 之前已经推出 $\log P(x) = \log P(y(t0)) \int_{t0}^{t1} Tr\left(\frac{\delta f}{\delta y(t)}\right) dt$
- 设G是一个形变器,它从初始点y映射到x,这里y(t1) = x

$$x = G_{\theta}(y(t_0); z) \triangleq y(t_0) + \int_{t_0}^{t_1} g_{\theta}(y(t), t, z) dt, y(t_0) \sim P(y),$$

• 因此可以有 $\log P_{\theta}(x|z) = \log P(G_{\theta}^{-1}(x;z)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial g_{\theta}}{\partial y(t)}\right) dt$. (5)

$$\log P_{\theta}(X) \ge \log P_{\theta}(X) - D_{KL}(Q_{\phi}(z|X)||P_{\theta}(z|X))$$

$$= \mathbb{E}_{Q_{\phi}(z|x)} \left[\log P_{\theta}(X|z)\right] - D_{KL} \left(Q_{\phi}(z|X)||P_{\psi}(z)\right)$$

$$\triangleq \mathcal{L}(X; \phi, \psi, \theta), \tag{3}$$

Flow-based prior over shapes

$$\log P_{\theta}(X) \ge \log P_{\theta}(X) - D_{KL}(Q_{\phi}(z|X)||P_{\theta}(z|X))$$

$$= \mathbb{E}_{Q_{\phi}(z|x)} \left[\log P_{\theta}(X|z)\right] - D_{KL}\left(Q_{\phi}(z|X)||P_{\psi}(z)\right)$$

$$\triangleq \mathcal{L}(X;\phi,\psi,\theta), \tag{3}$$

- $D_{KL}(Q\varphi(z|x)||P\psi(z)) = -E_{Q\varphi(z|x)}[\log P\psi(z)] H[Q\varphi(z|X)]$
- 这里H是熵, $P\psi(z)$ 是标准正态先验,继续用CNF定义z

$$z = F_{\psi}(w(t_0)) \triangleq w(t_0) + \int_{t_0}^{t_1} f_{\psi}(w(t), t) dt, w(t_0) \sim P(w),$$

- 也可以得到 $\log P_{\psi}(z) = \log P\left(F_{\psi}^{-1}(z)\right) \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f_{\psi}}{\partial w(t)}\right) dt$.
- 从而解决这里的第一项 $-E_{Q\varphi(Z|X)}[\log P\psi(z)]$

$$\mathcal{L}(X; \phi, \psi, \theta) = \mathbb{E}_{Q_{\phi}(z|x)} \left[\log P_{\psi}(z) + \log P_{\theta}(X|z) \right] + H[Q_{\phi}(z|X)]$$

$$= \mathbb{E}_{Q_{\phi}(z|X)} \left[\log P\left(F_{\psi}^{-1}(z)\right) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f_{\psi}}{\partial w(t)}\right) dt \right]$$

$$+ \sum_{x \in X} \left(\log P(G_{\theta}^{-1}(x;z)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial g_{\theta}}{\partial y(t)}\right) dt \right) \right]$$

$$+ H[Q_{\phi}(z|X)]. \tag{8}$$

Experiments

Table 1: Generation results. \uparrow : the higher the better, \downarrow : the lower the better. The best scores are highlighted in bold. Scores of the real shapes that are worse than some of the generated shapes are marked in gray. MMD-CD scores are multiplied by 10^3 ; MMD-EMD scores are multiplied by 10^2 ; JSDs are multiplied by 10^2 .

		# Parame	eters (M)	JSD (↓)	MM	D (\dagger)	COV	$(\%,\uparrow)$	1-NNA	(%, ↓)
Category	Model	Full	Gen	υ ΣΣ (ψ)	CD	EMD	CD	EMD	CD	EMD
	r-GAN	7.22	6.91	7.44	0.261	5.47	42.72	18.02	93.58	99.51
	1-GAN (CD)	1.97	1.71	4.62	0.239	4.27	43.21	21.23	86.30	97.28
Aimlono	l-GAN (EMD)	1.97	1.71	3.61	0.269	3.29	47.90	50.62	87.65	85.68
Airplane	PC-GAN	9.14	1.52	4.63	0.287	3.57	36.46	40.94	94.35	92.32
	PointFlow (ours)	1.61	1.06	4.92	0.217	3.24	46.91	48.40	75.68	75.06
	Training set	-	-	6.61	0.226	3.08	42.72	49.14	70.62	67.53
	r-GAN	7.22	6.91	11.5	2.57	12.8	33.99	9.97	71.75	99.47
	1-GAN (CD)	1.97	1.71	4.59	2.46	8.91	41.39	25.68	64.43	85.27
Chair	l-GAN (EMD)	1.97	1.71	2.27	2.61	7.85	40.79	41.69	64.73	65.56
Chair	PC-GAN	9.14	1.52	3.90	2.75	8.20	36.50	38.98	76.03	78.37
	PointFlow (ours)	1.61	1.06	1.74	2.42	7.87	46.83	46.98	60.88	59.89
	Training set	-	-	1.50	1.92	7.38	57.25	55.44	59.67	58.46
	r-GAN	7.22	6.91	12.8	1.27	8.74	15.06	9.38	97.87	99.86
	1-GAN (CD)	1.97	1.71	4.43	1.55	6.25	38.64	18.47	63.07	88.07
Car	l-GAN (EMD)	1.97	1.71	2.21	1.48	5.43	39.20	39.77	69.74	68.32
Car	PC-GAN	9.14	1.52	5.85	1.12	5.83	23.56	30.29	92.19	90.87
	PointFlow (ours)	1.61	1.06	0.87	0.91	5.22	44.03	46.59	60.65	62.36
	Training set	-	-	0.86	1.03	5.33	48.30	51.42	57.39	53.27

CD: 参考和输出分别计算最近 匹配点距离, 然后加合

EMD: 只计算输出点双射距离

Jensen-Shannon Divergence (JSD): 将参考集和输出集平均值 量化后计算KL距离

$$COV(S_g, S_r) = \frac{|\{\arg\min_{Y \in S_r} D(X, Y) | X \in S_g\}|}{|S_r|}$$

$$MMD(S_g, S_r) = \frac{1}{|S_r|} \sum_{Y \in S_r} \min_{X \in S_g} D(X, Y)$$

$$\begin{split} &1\text{-NNA}(S_g, S_r) \\ &= \frac{\sum_{X \in S_g} \mathbb{I}[N_X \in S_g] + \sum_{Y \in S_r} \mathbb{I}[N_Y \in S_r]}{|S_g| + |S_r|} \end{split}$$

讨论

- 是否可以用此方案进行点云生成?
- 是否可以将先验改成一副图像