Klasszikus fizika laboratórium

8. mérés

Mikroszkóp vizsgálata

Bakó Bence Kedd délelőtti csoport Mérés dátuma: -.

Leadás dátuma: .

1. A mérés célja:

A mikroszkóp különböző tulajdonságainak megfigyelése, mérése, lecse görbületének meghatározása.

2. Mérőeszközök:

- Mikroszkóp
- Tubushosszabító
- Lencsék
- Penge
- Fényforrás
- Tolómérő
- Lyukblende

3. A mérés menete:

A mikroszkóp bállítása után a mérés 4 reészre oszlik. Először az objektívek nagyítását szeretnénk meghatározni, ezért mérjük a kép és tárgytávolságokat tubushosszabbító nélkül. A fókusztávolságok kiszámítása érdekében ugyanezt megismételjük tubushosszabbító használatával. Ezután egy átlátszó hasábra helyezünk egy pengét, beállítjuk ezzel a tárgytávolságot, majd a hasábot eltávolítva és az okulár helyére egy lyukblendét helyezve mérjük azt a távolságot, amennyivel el kell mozdítani a pengét, hogy megjelenjen a blendén keresztül nézve. Ebből meghatározható a numerikus apertúra. Végül a Newton-gyűrűk jobb- és baloldali végpontajinak értékét mérjük egy domború és egy homorú lencse esetében. Mindebből meghatározható a lencsék görbületi sugara.

4. A mérés elmélete:

4.1. Objektív nagyításának mérése

Az objektív nagyítása definíció szerint:

$$N_{ob} = \frac{K}{T} \tag{1}$$

Ahol a K és T a kép- illetve tárgyméret:

$$K = K_2 - K_1, \quad T = T_2 - T_1 \tag{2}$$

4.2. Objektív fókusztávolságának mérése

Az objektív fókusztávolsága kifejezhető a tubushossz megváltozásával:

$$f = \frac{L}{N_{ob2} - N_{ob1}} \tag{3}$$

Ahol L a tubushosszabbító hossza, N_{ob1} a tubushosszabbító nélküli, N_{ob2} pedig a tubushosszabbítóval vett nagyítás.

A legkisebb távolság, amit az adott objektív képes felbonatni:

$$d = \frac{\lambda}{n \sin u} \tag{4}$$

Ahol a λ a fény hullámhossza, a nevező pedig a törésmutató és a félnyílásszög szinuszának szorzata, másképp a numerikus apertúra:

$$A = n\sin u = n\sin\arctan\frac{a}{2h} \tag{5}$$

Ahol h a magasítólap magassága.

4.4. Görbületi sugár mérése

A Newton-gyűrűk okulár skálán lemért átmérőjének jobb- és baloldali végpontjaival megkapható az adott sorszámú gyűrű valódi sugarát:

$$r_k = \frac{1}{N_{obj}} \frac{x_{jobb} - x_{bal}}{2} \tag{6}$$

Ha az így kapott valódi sugár négyzetét ábrázoljuk a gyűrűk sorszámának függvényében, akkor megkapható a lencse görbületi sugara:

$$R = \frac{m}{\lambda} \tag{7}$$

Ahol m az illesztett egyenes meredeksége és λ a fény hullámhossza.

Egy domború és egy homorú lencséből álló lencserendszer esetében, ha ismert a domború lencse és a lencserendzser effektív görbületi sugara, akkor a homorú lencséhez tartozó kiszámítható a következőképpen:

$$R_h = \frac{R_{eff}R_d}{R_{eff} - R_d} \tag{8}$$

5. <u>Mérési adatok:</u>

5.1. Objektív nagyításának mérése

Kép- és tárgytávolságok tubushosszabbító nélkül mérve:

	K_1 $[mm]$	$T_1 [mm]$	$K_2 [mm]$	$T_2 [mm]$
kis objektív	2,41	5	6,37	6
nagy objektív	0,25	8	7,56	9
tükrös objektív	2,27	8	5,24	9
hiba	$\pm 0,005$	$\pm 0,01$	$\pm 0,005$	$\pm 0,01$

5.2. Objektív fókusztávolságának mérése

Kép- és tárgytávolságok $L=(70\pm0,05)~mm$ hosszúságú tubushosszabítóval mérve:

	K_1 $[mm]$	$T_1 [mm]$	K_2 $[mm]$	$T_2 [mm]$
kis objektív	1,07	5	6,25	6
nagy objektív	1,25	5	5,83	5,5
tükrös objektív	2,48	2	6,70	3
hiba	$\pm 0,005$	$\pm 0,01$	$\pm 0,005$	$\pm 0,01$

- átlátszó műanyag magasítólap magassága: h=12,3 mm, $\Delta h=0,0025~mm$
- fényhullámhossz $\lambda = 589 \ nm$
- levegő törésmutatója: n=1
- kis objektív esetén az a távolság: $a_{kicsi} = 71, 5 \ mm 69, 2 \ mm = 2, 3 \ mm$
- $\bullet\,$ nagy objektív esetén az a távolság: $a_{nagy}=72,0~mm-68,3~mm=3,7~mm$

5.4. Görbületi sugár mérése

4. domború lencse

gyűrű sorszáma	1	2	3	4	5	6	7	8	9	10
$x_{bal} [mm]$	4,55	4,18	3,87	3,65	3,47	3,29	3,11	2,94	2,80	2,66
$x_{jobb} [mm]$	5,76	6,15	6,46	6,64	6,89	7,02	7,17	7,33	7,45	7,52
$r_k [mm]$	0,204	0,332	0,436	0,503	0,576	0,628	0,684	0,739	0,783	0,818

4. domború és 5. homorú lencse

gyűrű sorszáma	1	2	3	4	5	6	7	8	9	10
$x_{bal} [mm]$	2,51	2,03	1,63	1,34	1,12	0,87	0,62	0,40	0,21	0,02
$x_{jobb} [mm]$	2,80	5,25	5,60	5,94	6,22	6,44	6,64	6,86	7,02	7,22
$r_k [mm]$	0,049	0,542	0,668	0,774	0,859	0,938	1,013	1,088	1,146	1,212

6. Kiértékelés:

6.1. Objektív nagyításának mérése

A kép- és tárgyméreteket a (2)-es összefüggések alapján számoltam és az (1)-es képlet felhasználásával minden esetben meghatároztam az adott objektív nagyítását:

	K [mm]	T [mm]	N_{ob1}
kis objektív	3,96	1	3,96
nagy objektív	7,31	1	7,31
tükrös objektív	2,97	1	2,97

6.2. Objektív fókusztávolságának mérése

A fókusztávolságok meghatározásához először kiszámoltam a nagyítást az előzőhöz hasonlóan a tubushosszabbítós esetre is. Ezután pedig a (3)-mas összefüggés alapján kiszámoltam a fókusztávolságokat:

	K [mm]	T [mm]	N_{ob2}	f [mm]
kis objektív	5,18	1	5,18	57,377
nagy objektív	4,58	0,5	9,16	37,838
tükrös objektív	4,22	1	4,22	56,000

Az (5)-ös összefüggés alapján kiszámoltam a numerikus apertúrát és ezt a (4)-es képletbe hellyttesítve megkaptam a legkisebb felbontható távolságot mindkét objektívre.

	kis objektív	nagy objektív
A	0,093	0,149
d [μm]	6,327	3,960

6.4. Görbületi sugár mérése

4. domború lencse

A méréshez a tükrös objektívet használtunk, amelynek korábban kiszámolt nagyítása: $N_{ob} = 2,97$. Így a (6)-os összefüggés alapján kiszámoltam a különböző sorszámú gyűrűk valódi sugarát és ezeket is a mérési adatok táblázatába vezettem. Ezután a valódi sugarak négyzetét ábrázoltam a gyűrűk sorszámának függvényében és egyenest illesztettem:

Az illesztett egyenes meredeksége $m=(7,0641\pm0,0640)\cdot10^{-2}~mm^2$ Innen a (7)-es képlet alapján a lencse görbületi sugara ($\lambda=589~nm$):

$$R = 119,93 \ mm$$

4. domború és 5. domború lencse

Itt is az előzőhöz hasonlóan jártunk el:

Az illesztett egyenes meredeksége $m=(15,4242\pm0,4789)\cdot10^{-2}~mm^2$ Ebből a (7)-es összefüggéssel megadható a lencserendszer effektív görbületi sugara:

$$R_{eff} = 261,87 \ mm$$

Innen a (8)-as képlet alapján a homorú lencse görbületi sugara:

$$R_h = 221, 26 \ mm$$

7. Hibaszámítás:

7.1. Objektív nagyításának mérése

A nagyítás bizonytalansága a hibaterjedés alapján:

$$\Delta N_{ob} = N_{ob} \left(\frac{\Delta K}{K} + \frac{\Delta T}{T} \right) = N_{ob} \left(\frac{\Delta K_1 + \Delta K_2}{K_2 - K_1} + \frac{\Delta T_2 + \Delta T_1}{T_2 - T_1} \right)$$

Tehát a nagyítások hibái:

	kis objektív	nagy objektív	tükrös objektív
Hiba	0,089	0,156	0,069

7.2. Objektív fókusztávolságának mérése

Az előzőhöz hasonlóan számoltam ki a nagyítások hibáit a tubushosszabbítós esetre is:

	kis objektív	nagy objektív	tükrös objektív
Hiba	0,114	0,386	0,094

Ennyi adattal már kiszámolható a fókusztávolság hibája:

$$\Delta f = f \left(\frac{\Delta L}{L} + \frac{\Delta N_{ob1} + \Delta N_{ob2}}{N_{ob2} - N_{ob1}} \right)$$

Ahol $\frac{\Delta L}{L}=7,1\cdot 10^{-4}$ a tubushosszabbító méretének relatív hibája. Tehát a fókusztávolságok hibái:

	kis objektív	nagy objektív	tükrös objektív
Δf [mm]	9,588	11,112	7,342

Jelöljük a $x = \frac{a}{2h}$. Ennek hibája a hibaterjedés szerint:

$$\Delta x = x \left(\frac{\Delta h}{h} + \frac{\Delta a}{a} \right)$$

Az a távolság hibájának 0,05 mm-t tekintek, mert 0,1 mm pontossággal mértük. Innen a félnyílásszög hibája:

$$\Delta u = \frac{d \arctan(x)}{dx} \Delta x = \frac{1}{1+x^2} \Delta x$$

Végül pedig a numerikus apertúra hibája:

$$\Delta A = \frac{dA}{du} \Delta u = n \cdot \cos u \cdot \Delta u$$

Ebből pedig egyszerűen megadható a d távolság hibája is:

$$\Delta d = d \cdot \frac{\Delta A}{A}$$

A kis objektívre:

- $\Delta x = 2,051 \cdot 10^{-3}$
- $\Delta u = 2,033 \cdot 10^{-3}$
- $\Delta A = 2,024 \cdot 10^{-3}$
- $\Delta d = 0,138 \ \mu m$

A nagy objektívre:

- $\Delta x = 2,062 \cdot 10^{-3}$
- $\Delta u = 2,016 \cdot 10^{-3}$
- $\Delta A = 1,994 \cdot 10^{-3}$
- $\Delta d = 0,053 \ \mu m$

7.4. Görbületi sugár mérése

A domború lencse görbületi sugarának hibája az egyenes illesztés hibájából származik:

$$\Delta R_d = R_d \frac{\Delta m_1}{m_1} = 1,09 \ mm$$

A lencserendszer effektív görbületi sugarának hibája is hasonlóan:

$$\Delta R_{eff} = R_{eff} \frac{\Delta m_2}{m_2} = 8,13 \ mm$$

Innen a homorú lencse görbületi sugarának hibája:

$$\Delta R_h = R_h \left(\frac{\Delta R_{eff}}{R_{eff}} + \frac{\Delta R_d}{R_d} + \frac{\Delta R_{eff} - \Delta R_d}{R_{eff} - R_d} \right)$$
$$\Delta R_h = 19,85 \ mm$$

8. <u>Diszkusszió:</u>

Az objektívek nagyítása, fókusztávolsága, numerikus apertúrája és felbontóképessége:

	N_{ob}	f [mm]	A	$d [\mu m]$
kis objektív	$3,96 \pm 0,09$	$57,377 \pm 0,114$	$0,093 \pm 0,002$	$6,327 \pm 0,138$
nagy objektív	$7,31 \pm 0,16$	$37,838 \pm 0,386$	$0,149 \pm 0,002$	$3,960 \pm 0,053$
tükrös objektív	$2,97 \pm 0,07$	$56,000 \pm 0,094$		

A lencsék görbületi sugara:

	4. domború lencse	5. homorú lencse
Görbületi sugár [mm]	$119,93 \pm 1,09$	$221, 26 \pm 19, 85$

Az utolsó eredményhez valószínűleg azért tartozik ilyen nagy hiba, mert a mért értékek közül az első nagyon kilógó volt, ezért az illesztésnek viszonylag nagy a bizonytalansága.

Hivatkozások

 Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.