Esame del 14.02.2024

Algoritmi e Laboratorio

Parte B

Esercizio 1. Si consideri l'equazione di ricorrenza

$$T(n) = 3T\left(\frac{n}{b}\right) + \Theta(n\log(n)). \tag{1}$$

- **A**. Si risolva l'equazione (1) al variare del parametro reale b > 1, utilizzando il metodo Master.
- **B**. Si stabilisca per quali valori di b la soluzione T(n) all'equazione (1) soddisfa le seguenti condizioni

(i.)
$$T(n) = \mathcal{O}\left(n\log^2(n)\right)$$
 (ii.) $T(n) = \Theta(n)$ (iii.) $T(n) = \omega\left(n\log(n)\right)$.

C. Si disegni uno sketch dell'albero di ricorrenza associato all'equazione (1) per b=3, indicando l'altezza dell'albero e il numero di foglie.

Esercizio 2. Si consideri il seguente problema computazionale.

ACTIVITY SELECTION PROBLEM

INPUT: un insieme $S = \{a_1, \ldots, a_n\}$ di attività, ognuna con uno *starting-time* e un *finish-time*, ovvero $a_i = [s_i, f_i)$ con $0 \le s_i < f_i < +\infty$ per ogni $1 \le n$.

GOAL: selezionare un sottoinsieme di attività $A \subseteq S$ tale che

- le attività in A siano compatibili, cioè, per ogni $a_i, a_j \in A$ distinti si abbia $[s_i, f_i) \cap [s_i, f_i) = \emptyset$;
- A abbia cardinalità massima.

Il problema può essere risolto con un approccio greedy, scegliendo ad ogni iterazione l'attività a_m di S_i con il più piccolo finish-time (ovvero, l'attività che termina prima) e risolvendo il problema per S_{i+1} , che è ottenuto da S_i eliminando a_m e tutte le attività non compatibili con a_m .

Si dimostri che Activity Selection Problem ha la proprietà di scelta greedy.

Soluzioni

Esercizio 1. A. La funzione driving e la funzione watershed sono $f(n) = \Theta(n \log(n))$ e $w(n) = n^{\log_b 3}$, rispettivamente.

<u>Caso 1 < b < 3:</u> $\log_b 3 > 1$ e quindi per $0 < \varepsilon < \log_b 3 - 1$ si ha che $f(n) = \mathcal{O}\left(n^{\log_b 3 - \varepsilon}\right)$. Allora, per il Teorema Master, $T(n) = \Theta(n^{\log_b 3})$.

<u>Caso b = 3:</u> $\log_b 3 = 1$ e quindi per k = 1 si ha che $f(n) = \Theta(n \log n) = \Theta(n^{\log_b 3} \log^k n)$. Allora, per il Teorema Master, $T(n) = \Theta(n \log^2 n)$.

<u>Caso b > 3:</u> $\log_b 3 < 1$ e quindi per $0 < \varepsilon < 1 - \log_b 3$ si ha che $f(n) = \Omega\left(n^{\log_4 a + \varepsilon}\right)$. Inoltre, è soddisfatta la condizione di regolarità; infatti, per $\frac{3}{b} \le c < 1$ si ha $3\frac{n}{b}\log\frac{n}{b} \le c \cdot n\log n$, e per mostrare che un tale c esiste basta osservare che $\frac{3}{b} < 1$ essendo b > 3. Allora, per il Teorema Master, $T(n) = \Theta(n\log n)$.

- **B**. (i) $T(n) = \mathcal{O}(n \log^2 n)$ si verifica per $b \geq 3$. Per 1 < b < 3 si ha invece che $T(n) = \Theta(n^{\log_b 3})$, il quale è di ordine superiore a $\mathcal{O}(n \log n)$ essendo $\log_b 3 > 1$.
 - (ii) Per 1 < b < 3 si ha $T(n) = \Theta(n^{\log_b 3})$, con $\log_b 3 > 1$, che è quindi di ordine superiore a $\Theta(n)$. Per b = 3 e per b > 3, si ha che le relative soluzioni $T(n) = \Theta(n \log^2 n)$ e $T(n) = \Theta(n \log n)$ sono entrambe di ordine superiore a $\Theta(n)$. Quindi, $T(n) = \Theta(n)$ non si verifica per alcun valore di b > 1.
 - (iii) $T(n) = \omega(n \log^2 n)$ per $1 < b \le 3$; infatti, per 1 < b < 3, si ha $\lim_{n \to \infty} \frac{n^{\log_b 3}}{n \log n} = \lim_{n \to \infty} \frac{n^{\log_b 3}}{\log n} = \lim_{n \to \infty} \frac{n \log_b 3}{n \log n} = \infty$. Invece, per b > 3, $\lim_{n \to \infty} \frac{n \log n}{n \log n} = 1$.
- C. La radice ha costo $\Theta(n \log n)$. Ogni nodo ha 3 figli. All'*i*-esimo livello dell'albero ci sono 3^i nodi, ciascuno di costo $\Theta(\frac{n}{3^i} \log \frac{n}{3^i})$. L'altezza dell'albero è $h = \log_3 n$ e ci sono $3^h = 3^{\log_3 n} = n$ foglie.

Esercizio 2. Sia S_k un sottoproblema non vuoto, e sia a_m l'attività di S_k con il minimo finish-time. Per provare che ACTIVITY SELECTION ha la proprietà di scelta greedy, dobbiamo mostrare che esiste una soluzione ottima a S_k che contiene a_m .

Sia A_k una soluzione ottima ad S_k . Supponiamo che a_j sia l'attività con il minimo finish-time in S_k . Se $a_j = a_m$, allora la tesi è vera. Altrimenti, se $a_j \neq a_m$, sappiamo che $f_m \leq f_j$, allora $A'_k = (A_k \setminus \{a_j\}) \cup \{a_m\}$ è una soluzione ottima a S_k . Infatti, $|A'_k| = |A_k|$, e le attività in A'_k sono compatibili perchè le attività in $(A_k \setminus \{a_j\})$ sono compatibili dato che A_k è una soluzione e a_m non si sovrappone a nessuna attività in $(A_k \setminus \{a_j\})$ perchè finisce prima di a_j , che è compatibile con le attività in $(A_k \setminus \{a_j\})$.