Elastomeric Bearing Design AASHTO LRFD Method B Design ~ English Units

Based upon AASHTO LRFD 9th Edition (2020)

Spreadsheet applies to rectangular shaped bearings only. All boxed entities must be input by user. Shear strain due to rotation in secondary direction is based upon 0.010 radian out-of-plumb tolerance. Peak hydrostatic stresses must be checked for bearings with externally bonded steel plates.

in, kips, psi unless noted otherwise

Coordinates: x, L are perpendicular; y, W are parallel, to the primary rotation axis. Usually W>L.

INPUT DATA

Date:	4/28/11	Designer:	ABC
Date.	4/20/11	Designer.	ABC

Job Title: Name of Job

G _{min} (psi):	200	P_{DL}	(kips):	2
h _{ri} (in):	0.010	P_{LL}	(kips):	1
h cover (in):	0.250	$ heta_{s-st}$	(rads):	0.500
h s (in):	0.0005	$ heta_{s-cy}$	(rads):	0.500
F _γ (ksi):	2	Δ_{s-st}	(in):	0.8
ΔF_{TH} (ksi):	2	Trans. fixed x?	(y/n):	У
		Trans. fixed y?	(y/n):	У
L (in):	6.00			
W (in):	6.00	No. of int. layers	(-):	12

BEARING DESIGN

Calculated Shear Strains (primary direction)

(I-		- /	
$\gamma_{s\text{-st}}$	= 1.290		
$\gamma_{\text{s-cy}}$	= .000		
$\gamma_{a\text{-st}}$	= .027	< 3.00 OK	
γа-су	= .014		
$\gamma_{r\text{-st}}$	#######		
Vr 011	########		

Calculated Shear Strains (secondary direction)

$$\begin{array}{rcl} \gamma_{\text{s-st}} &= .000 \\ \gamma_{\text{s-cy}} &= .000 \\ \gamma_{\text{a-st}} &= .027 \\ \gamma_{\text{a-cy}} &= .014 \\ \gamma_{\text{r-st}} &- = 127.520 \\ \gamma_{\text{r-cy}} &= .000 \\ \hline \gamma_{\text{comb sum}} &- 127.469 \end{array} < \textbf{5.00 OK}$$

Stability Poquiroments

 $\gamma_{comb \ sum}$ ####### < 5.00 OK

Stability	Requirem	nents		Calculated	Stresses
σ _{TL} (psi)	< 2	298526	OK (x - dir.)	σ_{DL} = σ_{st}	= 56 psi
σ_{TL} (psi)	< 2	298526	OK (y - dir.)	$\sigma_{LL} = \sigma_{cy}$	= 28 psi
1370769.23	>1.00 F	RESTRAINT	SYSTEM REQD.	σ_{TL}	= 83 psi

[See LRFD Sect. 14.7.5.4]

Compressive Deformation			Steel Shi	m Requ	iirements	
Ē _c	≈	#########	h _s (service)	<	.001 in	NG
$\delta_{ extsf{DL-initial}}$	≈	.000 in	h _s (fatigue)	≥	.000 in	OK
δ_{LL}	≈	.000 in	h _s (minimum)	<	.063 in	NG

[δ_{DL} and δ_{LL} values are approximate and based upon Commentary Eqn. C14.7.5.3.6-1.]

		SUMMARY
L =	6.00 in	Approx. weight = 1.0 lbs
W =	6.00 in	Allowable shear displacement = .31 in
Unloaded height =	.63 in	Maximum shear force = 3.6 kips
Loaded (DL) height =	.63 in	(prog. by R. Dornsife; WSDOT; 2008-2020)