Conjecturing and proving that the generating function of the Yang-Zagier numbers is algebraic¹ FELIM22

Sergey Yurkevich

Inria Saclay and University of Vienna

29th of March, 2022

¹Joint work with Alin Bostan and Jacques-Arthur Weil.

Introduction

•0000

$$(a_n)_{n\geq 0} = (1\,,\, -48300\,,\, 7981725900\,,\, -1469166887370000,\dots)$$

$$({\color{red}b_n})_{n\geq 0} = (1\,,\,-144900\,,\,88464128725\,,\,-62270073456990000,\dots)$$

Origin of a_n and b_n

Introduction

00000

■ In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$c_{n-3} + 20 \left(4500 n^2 - 18900 n + 19739\right) c_{n-2} + 80352000 n (5n-1) (5n-2) (5n-4) c_n + \\ 25 \left(2592000 n^4 - 16588800 n^3 + 39118320 n^2 - 39189168 n + 14092603\right) c_{n-1} = 0,$$
 with initial terms $c_0 = 1$, $c_1 = -161/(2^{10} \cdot 3^5)$ and $c_2 = 26605753/(2^{23} \cdot 3^{12} \cdot 5^2)$.

Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola et al., 2015].

Origin of a_n and b_n

■ In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$c_{n-3} + 20 \left(4500 n^2 - 18900 n + 19739\right) c_{n-2} + 80352000 n (5n-1)(5n-2)(5n-4)c_n + 25 \left(2592000 n^4 - 16588800 n^3 + 39118320 n^2 - 39189168 n + 14092603\right) c_{n-1} = 0,$$
 with initial terms $c_0 = 1$, $c_1 = -161/(2^{10} \cdot 3^5)$ and $c_2 = 26605753/(2^{23} \cdot 3^{12} \cdot 5^2)$.

 Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola et al., 2015].

Problem (Zagier, 2018)

Find
$$(u,v) \in \mathbb{Q}^* \times \mathbb{Q}^*$$
 such that $c_n \cdot (u)_n \cdot (v)_n \cdot w^n \in \mathbb{Z}$ for some $w \in \mathbb{Z}^*$. $(u)_n := u \cdot (u+1) \cdot \cdot \cdot (u+n-1)$.

- [Yang and Zagier]: $a_n = c_n \cdot (3/5)_n \cdot (4/5)_n \cdot (2^{10} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$.
- [Dubrovin and Yang]: $b_n = c_n \cdot (2/5)_n \cdot (9/10)_n \cdot (2^{12} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$.

Mystery of a_n and b_n

Introduction

00000

- "Yang and I found a formula showing that the numbers a_n are integers of exponential growth and hence can be expected to have a generating series that is a **period**, although we have not succeeded in finding it" [Zagier, 2018]
- "Dubrovin and Yang found that the numbers b_n are also integral and that in this case the generating function is not only of Picard-Fuchs type, but is actually algebraic!" [Zagier, 2018]
- "So this is a very mysterious example [...] of numbers defined by recursions with polynomial coefficients." [Zagier, 2018]
- "My presumed arithmetic intuition [...] was entirely broken" [Wadim Zudilin]

Mystery of a_n and b_n

Introduction

- "Yang and I found a formula showing that the numbers an are integers of exponential growth and hence can be expected to have a generating series that is a period, although we have not succeeded in finding it" - [Zagier, 2018]
- "Dubrovin and Yang found that the numbers b_n are also integral and that in this case the generating function is not only of Picard-Fuchs type, but is actually algebraic!" - [Zagier, 2018]
- "So this is a very mysterious example [...] of numbers defined by recursions with polynomial coefficients." - [Zagier, 2018]
- "My presumed arithmetic intuition [...] was entirely broken" [Wadim Zudilin]

Problem

Investigate the nature of $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$ and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ are algebraic.

Introduction

00000

Definitions and interactions

A sequence $(u_n)_{n\geq 0}$ is **P-recursive**, if it satisfies a linear recurrence with polynomial coefficients:

$$c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0.$$

$$u_n = \binom{2n}{n}$$
 satisfies

$$(n+1)u_{n+1}-(2+4n)u_n=0.$$

Definitions and interactions

Introduction

00000

A power series $f(x) \in \mathbb{Q}[\![x]\!]$ is **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

$$p_n(x)f^{(n)}(x) + \cdots + p_0(x)f(x) = 0.$$

This equation can be rewritten: $L \cdot f = 0$,

$$L = p_n(x)\partial^n + \cdots + p_0(x) \in \mathbb{Q}(x)[\partial],$$

where $\partial := \frac{\mathrm{d}}{\mathrm{d}x}$.

$$\sqrt{1-x} + \sqrt{1+x} \text{ satisfies}$$

$$4(x^2 - 1)f''(x) + 4xf'(x) - f(x).$$

$$L = 4(x^2 - 1)\partial^2 + 4x\partial - 1.$$

Definitions and interactions

Introduction

00000

A power series $f(x) \in \mathbb{Q}[x]$ is called a Period function if it is an integral of a rational function in x and t_1, \ldots, t_n over a semi-algebraic set.

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 t^2}{1 - t^2}} dt$$

$$= 4 \oiint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}} \text{ and}$$

$$((e - e^3)\partial^2 + (1 - e^2)\partial + e) \cdot p = 0,$$

$$p(e) = 2\pi - \frac{\pi}{2}e^2 - \frac{3\pi}{32}e^4 - \cdots$$

Back to a_n and b_n

■ $(a_n)_n$ and $(b_n)_n$ are P-recursive sequences \Rightarrow generating functions are D-finite.

$$\begin{split} \textit{L}_{\textit{a}} &= 1800x \left(7x - 62\right) \left(x^2 + 50x + 20\right) \partial^2 + 720 (42x^3 + 173x^2 - 14230x - 620) \partial \\ &\quad + 6048x^2 - 139453x - 249550 \in \mathbb{Q}(x)[\partial], \end{split}$$

$$L_b = 90000x^3 (2911x + 310) (x^2 + 50x + 20) \partial^4 + 18000x^2 (154283x^3 + 5185005x^2 + 1675710x + 142600) \partial^3 + 50x (147290778x^3 + 2740219655x^2 + 566777510x + 37497600) \partial^2 + 5 (919899288x^3 + 5629046605x^2 + 1348939210x + 10713600) \partial + 18 (13937868x^2 - 1076845x + 1247750) $\in \mathbb{Q}(x)[\partial].$$$

■ The generating functions of $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ solve $L_a \cdot y = 0$ and $L_b \cdot y = 0$.

Stanley's problem (1980)

Given a **D-finite** series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

■ Guess & Prove approach – **but** algebraicity degree can be arbitrarily high.

Stanley's problem (1980)

Given a **D-finite** series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

- Guess & Prove approach **but** algebraicity degree can be arbitrarily high.
- Algorithms for **rational solutions** of linear ODE [Liouville, 1833; Barkatou, 1998].

Stanley's problem (1980)

Given a **D-finite** series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

- Guess & Prove approach **but** algebraicity degree can be arbitrarily high.
- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].
- Solved in theory [Singer, 1979, 2014] but usually not applicable in practice.

Stanley's problem (1980)

Given a **D-finite** series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

- Guess & Prove approach **but** algebraicity degree can be arbitrarily high.
- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].
- Solved in theory [Singer, 1979, 2014] but usually not applicable in practice.
- New practical algorithm for **disproving algebraicity** [Bostan, Rivoal, Salvy, 2021].

Stanley's problem (1980)

Given a **D-finite** series, how to prove or disprove that it is algebraic?

Useful (sub-)question

Given a **D-finite** series, how to **conjecture** whether it is **algebraic**?

- Guess & Prove approach **but** algebraicity degree can be arbitrarily high.
- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].
- Solved in theory [Singer, 1979, 2014] but usually not applicable in practice.
- New practical algorithm for **disproving algebraicity** [Bostan, Rivoal, Salvy, 2021].
- Several tests for justifying algebraicity based on conjectures or numerics: work well in practice but do not provide proofs.
- Applied differential Galois theory sometimes efficient proving algebraicity.

The Grothendieck-Katz conjecture: "testing" algebraicity

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \mathbb{Q}(x)$.
- The p-curvature of this ODE is the matrix $A_p(x) \in \mathbb{Q}(x)$, where

$$A_0(x)=\operatorname{Id}_n, \quad ext{ and } \quad A_{\ell+1}(x)=A'_\ell(x)+A_\ell(x)A(x) \quad ext{ for } \quad \ell\geq 0.$$

It holds that $\partial^k Y = A_k Y$ for $k = 0, 1, \dots$

The Grothendieck-Katz conjecture: "testing" algebraicity

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \mathbb{Q}(x)$.
- The *p*-curvature of this ODE is the matrix $A_p(x) \in \mathbb{Q}(x)$, where

$$A_0(x) = \operatorname{Id}_n$$
, and $A_{\ell+1}(x) = A'_{\ell}(x) + A_{\ell}(x)A(x)$ for $\ell \geq 0$.

■ It holds that $\partial^k Y = A_k Y$ for k = 0, 1, ...

Conjecture (Grothendieck 1960's; Katz, 1972)

All solutions of Y' = A(x)Y are algebraic if and only if $A_p = 0$ mod p for almost all primes p.

The Grothendieck-Katz conjecture: "testing" algebraicity

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \mathbb{Q}(x)$.
- The p-curvature of this ODE is the matrix $A_p(x) \in \mathbb{Q}(x)$, where

$$A_0(x) = \operatorname{Id}_n$$
, and $A_{\ell+1}(x) = A'_{\ell}(x) + A_{\ell}(x)A(x)$ for $\ell \geq 0$.

It holds that $\partial^k Y = A_k Y$ for $k = 0, 1, \dots$

Conjecture (Grothendieck 1960's; Katz, 1972)

All solutions of Y' = A(x)Y are algebraic if and only if $A_p = 0$ mod p for almost all primes p.

- If $A_{p_i} = 0 \mod p_i$ for many primes p_1, p_2, \dots, p_N , we may expect that all solutions of Y' = A(x)Y are algebraic.
- A_p mod p can be efficiently computed [Bostan, Caruso, Schost, 2015].

Monodromy group: quantifying algebraicity

- $L \cdot y = 0$ for $L \in \mathbb{Q}(x)[\partial]$ has $n = \operatorname{ord}(L)$ linearly independent solutions.
- Assume f_1, \ldots, f_n are linearly independent solutions at 0. If we analytically continue them along a closed loop in \mathbb{C} , we find $\widetilde{f_1}, \ldots, \widetilde{f_n}$ possibly different.
- There exists $M_{\underline{f}} \in \mathsf{GL}(n,\mathbb{C})$ such that

$$\begin{pmatrix} \widetilde{f}_1 \\ \vdots \\ \widetilde{f}_n \end{pmatrix} = M_{\underline{f}} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}.$$

■ The matrices M_f define the so-called monodromy group M.

- $L \cdot y = 0$ for $L \in \mathbb{Q}(x)[\partial]$ has $n = \operatorname{ord}(L)$ linearly independent solutions.
- Assume f_1, \ldots, f_n are linearly independent solutions at 0. If we analytically continue them along a closed loop in \mathbb{C} , we find $\widetilde{f_1}, \ldots, \widetilde{f_n}$ possibly different.
- There exists $M_f \in GL(n, \mathbb{C})$ such that

$$\begin{pmatrix} \widetilde{f}_1 \\ \vdots \\ \widetilde{f}_n \end{pmatrix} = M_{\underline{f}} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}.$$

Theorem (Singer, Ulmer, 1993)

Let f be a solution of $L \cdot y = 0$. The algebraicity degree of f is equal to the cardinality of the orbit of f under the action of M.

 Analytic continuation of D-finite functions can be efficiently computed numerically [Chudnovsky², '87], [van der Hoeven, '99, '01], [Mezzarobba, '10].

Quantifying algebraicity for L_a and L_b

- Very efficient analytic continuation implemented by Mezzarobba in SageMath.
- \blacksquare \rightarrow SageMath.
- Numerical computations suggest: solutions of L_a and L_b have alg. degree 120.

Differential Galois theory: proving algebraicity

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.
- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$G \coloneqq \operatorname{Aut}_{\partial}(K/k) = \{ \sigma \in \operatorname{Aut}(K) \colon \sigma|_{k} \equiv \operatorname{id}_{k} \text{ and } \sigma \circ \partial \equiv \partial \circ \sigma \}.$$

• G is a linear algebraic subgroup of $GL_n(\overline{\mathbb{Q}})$.

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.
- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$G := \operatorname{Aut}_{\partial}(K/k) = \{ \sigma \in \operatorname{Aut}(K) \colon \sigma|_{k} \equiv \operatorname{id}_{k} \text{ and } \sigma \circ \partial \equiv \partial \circ \sigma \}.$$

- G is a linear algebraic subgroup of $GL_n(\overline{\mathbb{Q}})$.
- G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

 $L \cdot y = 0$ has a basis of algebraic solutions if and only if G is finite.

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.
- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$G \coloneqq \operatorname{Aut}_{\partial}(K/k) = \{ \sigma \in \operatorname{Aut}(K) \colon \sigma|_{k} \equiv \operatorname{id}_{k} \text{ and } \sigma \circ \partial \equiv \partial \circ \sigma \}.$$

- ullet G is a linear algebraic subgroup of $\mathrm{GL}_n(\overline{\mathbb{Q}})$.
- G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

 $L \cdot y = 0$ has a basis of algebraic solutions if and only if G is finite.

■ In practice G is very difficult to compute [Hrushovski, 2002], [Feng. 2015], [van der Hoeven, 2007], [Amzallag, Minchenko, Pogudin, 2018], [Sun, 2019].

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- *G* is the differential Galois group.

Differential Galois theory: proving algebraicity

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- G is the differential Galois group.
- Galois-Lie algebra $\mathfrak{g} := \operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- *G* is the differential Galois group.
- Galois-Lie algebra $\mathfrak{g} := \operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id .
- lacksquare g measures the transcendence of K over k:

Theorem (Kolchin, 1948)

If K is the Picard-Vessiot extension of Y' = A(x)Y and $\mathfrak{g} = \operatorname{Lie}(G)$, then

$$\dim_{\mathbb{C}}(G) = \dim_{\mathbb{C}}(\mathfrak{g}) = \operatorname{trdeg}(K/k).$$

- $L \cdot y = 0$ is equivalent to Y' = A(x)Y, where $A(x) \in M^{n \times n}(k)$ and $k = \overline{\mathbb{Q}}(x)$.
- G is the differential Galois group.
- Galois-Lie algebra $\mathfrak{g} := \operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.
- \blacksquare g measures the transcendence of K over k:

Theorem (Kolchin, 1948)

If K is the Picard-Vessiot extension of Y' = A(x)Y and $\mathfrak{g} = \text{Lie}(G)$, then

$$\dim_{\mathbb{C}}(G) = \dim_{\mathbb{C}}(\mathfrak{g}) = \operatorname{trdeg}(K/k).$$

- Theory and algorithm for computing g [Barkatou, Cluzeau, Di Vizio, Weil, 2020].
- Idea: Compute symmetric powers of L and find rational solutions of them. These solutions yield information for $\mathfrak g$ via solving a **linear** system.

■ The operator $L = (4x^2 - 4)\partial^2 + 4x\partial - 1$ has a basis of algebraic solutions:

$$\sqrt{1+x} + \sqrt{1-x}$$
 and $\sqrt{1+x} - \sqrt{1-x}$.

•
$$L \cdot y = 0$$
 is equivalent to $Y' = A(x)Y$ where $A(x) = \begin{pmatrix} 0 & 1 \\ \frac{1}{4x^2 - 4} & \frac{-4x}{4x^2 - 4} \end{pmatrix}$.

- The operator $L = (4x^2 4)\partial^2 + 4x\partial 1$
- $L \cdot y = 0$ is equivalent to Y' = A(x)Y where $A(x) = \begin{pmatrix} 0 & 1 \\ \frac{1}{A \cdot x^2 A} & \frac{-4x}{A \cdot x^2 A} \end{pmatrix}$.
- If $Y = (y_1, y_2)^t$ is a solution to Y' = A(x)Y then $Y = (y_1^2, 2y_1y_2, y_2^2)^t$ is a solution to the symmetric square system $Y' = A^{(2)}(x)Y$, where now

$$A^{(2)}(x) = \frac{1}{4(x^2 - 1)} \begin{pmatrix} 0 & 4x^2 - 4 & 0 \\ 2 & -4x & 8x^2 - 8 \\ 0 & 1 & -8x \end{pmatrix}.$$

- The operator $L = (4x^2 4)\partial^2 + 4x\partial 1$
- $L \cdot y = 0$ is equivalent to Y' = A(x)Y where $A(x) = \begin{pmatrix} 0 & 1 \\ \frac{1}{4x^2 4} & \frac{-4x}{4x^2 4} \end{pmatrix}$.
- If $Y = (y_1, y_2)^t$ is a solution to Y' = A(x)Y then $Y = (y_1^2, 2y_1y_2, y_2^2)^t$ is a solution to the symmetric square system $Y' = A^{(2)}(x)Y$, where now

$$A^{(2)}(x) = \frac{1}{4(x^2 - 1)} \begin{pmatrix} 0 & 4x^2 - 4 & 0 \\ 2 & -4x & 8x^2 - 8 \\ 0 & 1 & -8x \end{pmatrix}.$$

- It has rational solutions! $F_1 = (4x, 4, x/(x^2 1))^t$, $F_2 = (-4, 0, 1/(x^2 1))^t$.
- If $M \in \mathfrak{g}^{(2)}$ then MF = 0 and M comes from a symmetric square. I.e. M satisfies

$$egin{pmatrix} 2m_{1,1} & m_{1,2} & 0 \ 2m_{2,1} & m_{1,1}+m_{2,2} & 2m_{1,2} \ 0 & m_{2,1} & 2m_{2,2} \end{pmatrix} \cdot F_\ell = egin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix}, \quad m_{i,j} \in \mathbb{Q}(x), \ell = 1, 2.$$

- The operator $L = (4x^2 4)\partial^2 + 4x\partial 1$
- $L \cdot y = 0$ is equivalent to Y' = A(x)Y where $A(x) = \begin{pmatrix} 0 & 1 \\ \frac{1}{4 \cdot 2 \cdot 4} & \frac{-4x}{4 \cdot 2 \cdot 4} \end{pmatrix}$.
- If $Y = (y_1, y_2)^t$ is a solution to Y' = A(x)Y then $Y = (y_1^2, 2y_1y_2, y_2^2)^t$ is a solution to the symmetric square system $Y' = A^{(2)}(x)Y$, where now

$$A^{(2)}(x) = \frac{1}{4(x^2 - 1)} \begin{pmatrix} 0 & 4x^2 - 4 & 0 \\ 2 & -4x & 8x^2 - 8 \\ 0 & 1 & -8x \end{pmatrix}.$$

- It has rational solutions! $F_1 = (4x, 4, x/(x^2 1))^t$, $F_2 = (-4, 0, 1/(x^2 1))^t$.
- If $M \in \mathfrak{q}^{(2)}$ then MF = 0 and M comes from a symmetric square. I.e. M satisfies

$$egin{pmatrix} 2m_{1,1} & m_{1,2} & 0 \ 2m_{2,1} & m_{1,1}+m_{2,2} & 2m_{1,2} \ 0 & m_{2,1} & 2m_{2,2} \end{pmatrix} \cdot F_\ell = egin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix}, \quad m_{i,j} \in \mathbb{Q}(x), \ell = 1, 2.$$

■ The only solution is $m_{i,i} = 0$. Hence $\mathfrak{g}^{(2)} = \mathfrak{g} = 0$. All solutions of \mathcal{L} are algebraic.

The generating sequence of $(b_n)_n$ is algebraic (known to Dubrovin & Yang)

- For L_b same method as in the toy example works.
- $L_b \cdot y = 0$ equivalent to Y' = A(x)Y for $A(x) \in M^{4\times 4}(\mathbb{Q}(x))$.
- The fifth symmetric power $Y' = A^{(5)}(x)Y$ has rational solutions.
- $A^{(5)}(x) \in M^{N \times N}(\mathbb{Q}(x)), \text{ where } N = \binom{4+5-1}{4-1} = 56.$
- Finding the rational solutions takes \approx 2 min on a regular PC.
- The corresponding system in $m_{i,i}$ has no non-zero solutions in $\mathbb{Q}(x)$ (\approx 15 sec).
- \Rightarrow $\mathfrak{g}_b = 0$, therefore \mathcal{L}_b has only algebraic solutions.

The generating sequence of $(a_n)_n$ is algebraic (new)

- For the generating function of $(a_n)_{n\geq 0}$ same method as for $(b_n)_{n\geq 0}$ works.
- The 20th symmetric power has rational solutions (\approx 4 sec).
- $A^{(20)} \in M^{N \times N}(\mathbb{Q}(x))$, where $N = \binom{2+20-1}{2-1} = 21$.
- The corresponding system in $m_{i,j}$ has no non-zero solutions in $\mathbb{Q}(x)$ (\approx 0.4 sec).
- \Rightarrow $\mathfrak{g}_a = 0$, therefore \mathcal{L}_a has only algebraic solutions.

The generating sequence of $(a_n)_n$ is algebraic (new)

- For the generating function of $(a_n)_{n\geq 0}$ same method as for $(b_n)_{n\geq 0}$ works.
- The 20th symmetric power has rational solutions (\approx 4 sec).
- $A^{(20)} \in M^{N \times N}(\mathbb{Q}(x))$, where $N = \binom{2+20-1}{2-1} = 21$.
- The corresponding system in $m_{i,j}$ has no non-zero solutions in $\mathbb{Q}(x)$ (\approx 0.4 sec).
- \Rightarrow $g_a = 0$, therefore L_a has only algebraic solutions.

 \blacksquare \rightarrow Maple (for L_a) and Maple (for L_b)

0000

Problem

Find $(u, v) \in \mathbb{Q}^* \times \mathbb{Q}^*$ such that $c_n \cdot (u)_n \cdot (v)_n \cdot w^n \in \mathbb{Z}$ for some $w \in \mathbb{Z}^*$. $(u)_n := u \cdot (u+1) \cdot \cdot \cdot (u+n-1).$

Experimental mathematics: more similar examples

Problem

Find
$$(u,v) \in \mathbb{Q}^* \times \mathbb{Q}^*$$
 such that $c_n \cdot (u)_n \cdot (v)_n \cdot w^n \in \mathbb{Z}$ for some $w \in \mathbb{Z}^*$. $(u)_n := u \cdot (u+1) \cdot \cdot \cdot (u+n-1)$.

#	и	V	ODE order	degree	#	и	V	ODE order	degree
an	3/5	4/5	2	120	f_n	19/60	49/60	4	155520
b_n	2/5	9/10	4	120	gn	19/60	59/60	4	46080
Cn	1/5	4/5	2	120	h_n	29/60	49/60	4	46080
d_n	7/30	9/10	4	155520	in	29/60	59/60	4	155520
e_n	9/10	17/30	4	155520					

- "Test": 0 p-curvatures for primes $< 100 \rightarrow$ expect algebraic generating functions.
- Quantify: Guesses for degrees based on numerics.
- Proof: Done: a_n, b_n, c_n . In progress: $d_n, e_n, f_n, g_n, h_n, i_n$.

- Both sequences $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ have algebraic generating functions, hence they are particular periods.
- Guess & Prove approach often provides useful insight but is sometimes infeasible.
- The Grothendieck-Katz conjecture allows efficient "testing" whether a D-finite series is algebraic.
- Numerical monodromy group calculations allow efficient quantifying algebraicity of D-finite series.
- Differential Galois theory allows efficient proving that D-finite series is algebraic.

Bonus: explicit solution for $\sum_{n>0} a_n x^n$

We saw that $\sum_{n\geq 0} a_n x^n$ is a solution of

$$q_2(x)y''(x) + q_1(x)y'(x) + q_0(x)y(x) = 0$$
, where (1)
 $q_2(x) = 5x(302400x - 31)(373248000x^2 + 216000x + 1)$,
 $q_1(x) = 1354442342400000x^3 + 64571904000x^2 - 61473600x - 31$,
 $q_0(x) = 300(902961561600x^2 - 240974784x - 4991)$.

Maple's dsolve(deq) shows that every solution of (1) is a linear combination of

$$u_1(x) \cdot {}_2F_1\left[{-1/60\ 11/60 \over 2/3}; {p_1(x) \over p_2(x)}
ight] \quad {\rm and} \quad u_2(x) \cdot {}_2F_1\left[{19/60\ 31/60 \over 4/3}; {p_1(x) \over p_2(x)}
ight],$$

where ${}_{2}F_{1}\left| \begin{smallmatrix} a & b \\ c \end{smallmatrix} \right|$; x is the Gaussian hypergeometric function

$$_{2}F_{1}\begin{bmatrix} a & b \\ c \end{bmatrix} := \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}, \quad (u)_{j} := u(u+1) \cdots (u+j-1).$$

■ For a simple Lie-algebra $(\mathfrak{g}, [\cdot, \cdot])$ [Bertola, Dubrovin, Yang, 2015] define the so-called *topological ordinary differential equation*

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}M=[M,\Lambda],$$

where $M = M(\lambda)$ and $\Lambda = I_+ + \lambda E_{-\theta}$, for a principal nilpotent element $I_+ = \sum_{i=1}^n E_i$ and (normalized) $E_{-\theta} \in \mathfrak{g}_{-\theta}$.

■ For $\mathfrak{g} = \mathrm{sl}_{n+1}(\mathbb{C})$ one finds

$$\Lambda = \begin{pmatrix} 0 & I_n \\ \lambda & 0 \end{pmatrix}, \quad I_n \text{ is the } n \times n \text{ identity matrix.}$$

and the (normalized) (dominant) ODE reads

$$64800000x^{3}(x+155)y^{(iv)}(x) + (x^{2} - 1220x + 623875)y(x) + 7200(10x^{2} + 3209x + 133920)y'(x) + 18000x(5x^{2} + 6091x + 1874880)y''(x) + 12960000x^{2}(18x + 3565)y'''(x) = 0$$

■ Then $\sum_{n>0} c_n x^n$ is the unique power series solution.