Transition from Stagnation to Growth:

Unified Growth Theory (UGT)

What we have so far:
ln (Ct) + ln(M) + ln(ht)
2 version budget constraints. Co = 4- n+ (p + l+)
V .
Ct = $y_+(1-N_+(\phi+e_t))$ Change to change fraction of income to consume
Food constraint: F+G= Y+ (1-N+(\$+ex))
don't scale up I down.
[n [y+ (1-n+ (q+ 4)) -(F)] + ln(n+) + ln(h+)
I I make y+ in the first order condition.

The Production Side of the Model: Agriculture and Industry

- ► General version with different productivity levels and different productivity growth rates.
- ► The two technologies:

$$egin{aligned} Y_t^a &= (A_t^a X)^lpha (N_t^a)^{1-lpha}, \ Y_t^i &= A_t^i N_t^i. \end{aligned}$$

Laws of motion:

$$egin{aligned} A_{t+1}^{s} &= (1+g^{s})A_{t}^{s}, \ A_{t+1}^{i} &= (1+g^{i})A_{t}^{s}. \end{aligned}$$

► Labor used in the two sectors has to add up to total population size:

Special Role of Agriculture: The Food Consumption Constraint

- ► Every person has to eat at least *f* units of food, which can only be produced using agriculture.
- \triangleright Given population N_t , the food consumption constraint is:

$$fN_t \leq (A_t^a X)^{\alpha} (N_t^a)^{1-\alpha}$$
.

▶ If constraint cannot be met, immediate reduction in population size until constraint is met.

$$fN_{k}^{s} = (A_{k}^{\alpha} X)^{\alpha} (N_{k}^{s})^{l-\alpha}$$

Household Decisions: Tradeoff Between Child Quantity (i.e., Fertility) and Child Quality (i.e. Education)

- Every person has to eat f units of food.
 - \triangleright Preferences defined over consumption c_t over and above basic food consumption f, fertility n_t , and human capital h_t of
 - children.

Utility function is:
$$\log(c_t) + \log(n_t) + \log(h_t).$$

Budget constraint is:
$$c_t + f = (1 - (\phi + e_t)n_t) \hat{w}.$$

$$\text{Here } \phi \text{ is basic time cost of children, } e_t \text{ is chosen time to}$$

- \blacktriangleright Here ϕ is basic time cost of children, e_t is chosen time to
 - educate each child, w_t is the wage, and f is food consumption.
- Production function for human capital is:

$$h_t = e_t^{ heta_t}.$$
 $lacksquare$ NOTE: Food consumption f enters budget constraint, and $heta_t$

may vary over time.

Modeling the Return to Education

- Return to education θ_t (i.e., the elasticity of human capital with respect to education) is key parameter driving fertility choice.
- ► We assume that return to education is **higher** in industry than in agriculture.
- ► How can the model capture this parsimoniously? By making the return to education a function of the fraction of people working in industry:

$$\theta_t = \bar{\theta} \frac{N_t^i}{N_t}.$$

► Remark: In principle, should adjust labor input for human capital. We don't do this here to keep things simple.

Linking the Different Parts of the Model

▶ Population tomorrow depends on today's fertility decisions:

$$N_{t+1} = n_t N_t$$
.

▶ Wage (i.e., income per person) is given by income per capita:

$$w_t = y_t = \frac{(A_t^a X)^{\alpha} (N_t^a)^{1-\alpha} + A_t^i N_t^i}{N_t}.$$

Allocation of people across agriculture and industry to maximize income per capita subject to food production constraint.

Outline of Steps of Analysis

- ► Analyze household choice problem.
- ► Characterize Malthusian steady state.
- ▶ Put full model on computer.

The Household Choice Problem

▶ After plugging the constraints into the utility function, the

household's utility maximization problem is:
$$\max_{\{t \in \mathcal{N}_t, | t \}} \{ \log((1-(\phi+e_t)n_t)y_t - f) + \log(n_t) + \theta_t \log(e_t) \} \,.$$

▶ The first-order conditions for n_t and e_t are:

$$\frac{(\phi+e_t)y_t}{(1-(\phi+e_t)n_t)y_t-f}=\frac{1}{n_t},$$

$$\frac{n_ty_t}{(1-(\phi+e_t)n_t)y_t-f}=\frac{\theta_t}{e_t}.$$

Ratio of the first-order conditions:
$$\frac{(\phi + e_t)y_t}{n_t y_t} = \frac{e_t}{\theta_t n_t}. \Rightarrow \frac{(\phi + e_t) \theta_t}{\theta_t n_t} = \frac{e_t}{(1 - \theta_t)}$$

Solving for Optimal Education

Canceling terms:

$$\phi + e_t = \frac{e_t}{\theta_t}.$$

▶ Solving for e_t :

$$\phi\theta_t + \theta_t e_t = e_t,$$

$$(1 - \theta)e_t = \phi\theta_t,$$

$$e_t = \frac{\phi\theta_t}{1 - \theta_t}.$$

- ▶ Result: Education is increasing in return to education θ_t .
- ▶ Given that θ_t is linked to industrialization, education will rise once industrialization takes place.

Solving for Optimal Fertility

 \triangleright Starting from the first-order condition for n_t :

$$\frac{(\phi + e_t)y_t}{(1 - (\phi + e_t)n_t)y_t - f} = \frac{1}{n_t},$$

$$(\phi + e_t)y_t n_t = (1 - (\phi + e_t)n_t)y_t - f,$$

$$2(\phi + e_t)y_t n_t = y_t - f,$$

$$n_t = \frac{1}{2(\phi + e_t)} \left(1 - \frac{f}{y_t}\right).$$

Fertility is decreasing in education e_t and increasing in income per capita y_t .

Optimal Fertility Choice in Malthusian Phase

Consider fertility choice in Malthusian phase. When all employment is in agriculture, we have $\theta_t = 0$, hence $e_t = 0$ and:

$$n_t = \frac{1}{2\phi} \left(1 - \frac{f}{v_t} \right).$$

- Fertility is increasing in income per capita:
 - ▶ When $y_t = f$, we have:

$$n_t = \frac{1}{2\phi} \left(1 - \frac{f}{f} \right) = 0.$$

▶ When $y_t \to \infty$, we have:

firstitity Therease
$$n_t = \frac{1}{2\phi}$$
. In mome is bounded. $+$ (4 70)

Optimal Fertility Choice

- As long as $\theta_t = 0$, positive relationship between income per capita and fertility gives rise to usual Malthusian dynamics.
- ▶ However, fertility is also decreasing in e_t : Once industrialization raises θ_t , there is a new downward force on fertility.
- ► Hence, model can account for both Malthusian population dynamics and the demographic transition.

The Malthusian Steady State

- ► Consider economy in which only agricultural technology is used.
- ► Economy displays negative Malthusian relationship between population size and income per capita.
- ► Economy converges to steady state in which income per capita is constant and in which population growth just offsets productivity growth.
- ► Steady-state condition is that population growth is equal to productivity growth in agriculture:

The Malthusian Steady State

▶ Solving for steady-state income per capita \bar{y} :

$$\bar{n} = 1 + g^{a},$$

$$\frac{1}{2\phi} \left(1 - \frac{f}{\bar{y}} \right) = 1 + g^{a},$$

$$1 - 2\phi(1 + g^{a}) = \frac{f}{\bar{y}},$$

$$\bar{y} = \frac{f}{1 - 2\phi(1 + g^{a})}.$$

$$f \uparrow \Rightarrow \bar{y} \uparrow$$

$$\text{resease in}$$

$$\uparrow \text{keep \bar{n} small}$$

Condition for Introduction of Industry

▶ The industrial sector will be introduced when the marginal product of labor in industry reaches the marginal product in agriculture:

$$A_t^i \geq rac{\partial Y_t^a}{\partial N_t^a} = (1 - lpha) \left(rac{A_t^a X}{N_t^a}
ight)^{lpha}.$$

- ▶ The marginal product of labor in agriculture is 1α times income per capita in agriculture.

If the economy starts out in Malthusian steady state, condition for introduction of agriculture can therefore be expressed as:
$$A_t^i \geq (1-\alpha)\bar{y} = \frac{(1-\alpha)f}{1-2\phi(1+g^a)}$$
 As long as $g^i > 0$, this threshold will be reached for sure at

some point.

The Long-Run Evolution of the Economy after Industry is Introduced

- ▶ Once industry is introduced, alternative forces are at work:
 - Population growth might rise because of higher income per capita. This could lead to insufficient food supply and a development failure.
 - ▶ But on the other hand, education is going to rise, which puts downward pressure on fertility. If fertility falls, long-run growth might be possible.
- ▶ Put model on computer to see what determines whether the takeoff to growth succeeds or fails.

- Similar to Malthus-to-Solow model with food requirement, but have to add new features of education and quantity-quality fertility choice.
- Maximum population that can be sustained given current productivity:

$$fN_t^{\mathsf{max}} = (A_t^{\mathsf{a}}X)^{lpha}(N_t^{\mathsf{max}})^{1-lpha}, \ N_t^{\mathsf{max}} = f^{-rac{1}{lpha}}A_t^{\mathsf{a}}X.$$

► Surviving population N_t^s is given by:

$$N_t^s = \min\{N_t, N_t^{\max}\}.$$

▶ Interpretation: If maximum population N_t^{max} is smaller than the actual population N_t at the beginning of the period, there will be a famine, and $N_t - N_t^{\text{max}}$ people will die of starvation.

Number of agricultural workers required to produce sufficient amount of food:

$$egin{align} f \mathcal{N}_t^s &= (\mathcal{A}_t^a X)^{lpha} (\mathcal{N}_t^{a\, ext{min}})^{1-lpha}, \ \mathcal{N}_t^{a\, ext{min}} &= rac{(f \mathcal{N}_t^s)^{rac{1}{1-lpha}}}{(arDelta^a X)^{rac{lpha}{1-lpha}}}. \end{aligned}$$

► Labor that would be used in agriculture if marginal product of labor were equalized between agriculture and industry:

$$A_t^i = (1 - \alpha) \left(\frac{A_t^a X}{\tilde{N}_t^a} \right)^{\alpha},$$

$$\tilde{N}_t^a = \left(\frac{1 - \alpha}{A_t^i} \right)^{\frac{1}{\alpha}} A_t^a X.$$

Labor actually used in agriculture:

$$\mathcal{N}_t^{s} = \min \left\{ \mathcal{N}_t^{s}, \max \{ \mathcal{N}_t^{s \, ext{min}}, ilde{\mathcal{N}}_t^{s} \}
ight\}.$$

► Labor used in industry:

$$N_t^i = N_t^s - N_t^a$$

► Income per capita:

$$y_t = rac{(A_t^a X)^{lpha} (N_t^a)^{1-lpha} + A_t^i N_t^i}{N_t^s}.$$

▶ Return to education and education choice:

$$heta_t = ar{ heta} rac{ extsf{N}_t^i}{ extsf{N}^{arepsilon}}, \qquad extsf{e}_t = rac{\phi heta_t}{1- heta_t}.$$

► Fertility choice:

$$n_t = rac{1}{2(\phi + e_t)} \left(1 - rac{f}{V_t}
ight).$$

▶ Population at the beginning of the next period:

$$N_{t+1} = n_t N_t^s$$

- ▶ Initial conditions needed for X, A_0 , and N_0 .
- ► Assume that economy starts out in Malthusian steady state:

$$\bar{y} = \frac{f}{1 - 2\phi(1 + g^a)} = \left(\frac{A_0^a X}{N_0}\right)^{\alpha},$$

so that:

$$N_0 = \left(rac{1-2\phi(1+g^a)}{f}
ight)^{rac{1}{lpha}}A_0^aX.$$

Some Findings from the Computed Model

- Economy starts out in Malthusian steady state.
- ▶ Ultimately, industrial sector is introduced.
- ▶ Population growth can rise or fall during transition, depending on whether income effect or education effect dominates.
- Development may ultimately fail if the education effect is too weak.