Name, Vorname	Testat

Aufgabe 1: Messpotentiometer

Ein Potentiometer kann zur Messung von Winkeln benutzt werden. **Fig.1.a** zeigt den internen Aufbau eines üblichen Drehpotentiometers. Die Widerstandsbahn bestehe aus einem Material mit dem spezifischen Widerstand $\rho=10^6\Omega \text{mm}^2/\text{m}$ und habe einen Querschnitt $A=4\text{mm}^2$ und einen Radius r=10mm. Der Widerstand des Schleifers und der Kontaktbahn sei vernachlässigbar klein. Das Potentiometer werde wie in **Fig.1.b** an eine Spannungsquelle mit Leerlaufspannung $U_0=10\text{V}$ und Innenwiderstand $R_i=100\Omega$ angeschlossen. Zusätzlich wird ein Widerstand $R_V=1\text{k}\Omega$ verwendet.

Fig.1: a) Geometrie des Potentiometers b) Beschaltung des Potentiometers

- a) Berechnen Sie die Spannung zwischen den Klemmen A und B, $U_{AB}(\alpha)$, und die zwischen den Klemmen A und B umgesetzte Leistung $P_{AB}(\alpha)$ (α in Bogenmass); stellen Sie die Winkelabhängigkeit der Spannung in einer Skizze grafisch dar;
- **b)** Wie gross sind $U_{AB}(\alpha)$ und $P_{AB}(\alpha)$ für $\alpha = \pi$?
- **c)** Wie gross wird $U_{AB}(\alpha)$ für $\alpha = \pi$, wenn eine Last von $R_L = 5$ kΩ zwischen den Klemmen A und B angeschlossen wird?

Aufgabe 2: Nutzleistung und Wirkungsgrad

Für die in **Fig.2** abgebildete Schaltung, in der die Spannung U_0 und die beiden Widerstände R gegeben sind, sollen die Nutzleistung P_n und der Wirkungsgrad η berechnet werden. Der Wirkungsgrad ist das Verhältnis der Nutzleistung P_n zur Gesamtleistung P_a :

$$\eta = \frac{P_n}{P_q}$$

Hierbei ist die Gesamtleistung P_g die Leistung, die in allen drei Widerständen der Schaltung verbraucht wird, also die gesamte von der Spannungsquelle abgegebene Leistung.

Fig.2: Schaltbild zur Bestimmung von Nutzleistung und Wirkungsgrad.

- a) Berechnen Sie die Nutzleistung P_n für die angegebene Schaltung.
- b) Bei welchem Wert R_{nl} des Widerstandes R_n erreicht die Nutzleistung P_n ihr Maximum $P_{n \max}$? Wie gross ist dieses Maximum?
- c) Berechnen Sie den Wirkungsgrad η der Schaltung.
- **d)** Welchen Wert R_{n2} muss der Widerstand R_n annehmen, damit der Wirkungsgrad η sein Maximum η_{\max} erreicht? Wie gross ist der maximale Wirkungsgrad η_{\max} ?
- e) Wie gross ist der Wirkungsgrad η_1 bei maximaler Nutzleistung?
- f) Zeichnen Sie den Wirkungsgrad η und die Nutzleistung P_n als Funktion von R_n . Verwenden Sie dafür $U_0 = 5$ V und $R = 10\Omega$.

Aufgabe 3: Einhalten der Maximalleistung

Gegeben sind drei Widerstände und ihre höchstzulässigen Verlustleistungen:

$R_1 = 3.6 \mathrm{k}\Omega$	$P_{1zul} = 0.25 W$
$R_2 = 20 \mathrm{k}\Omega$	$P_{2zul} = 0.5W$
$R_3 = 160 \text{k}\Omega$	$P_{3zul} = 0.25W$

Die drei Widerstände sind geschaltet wie in **Fig.3** gezeigt. Wie gross darf die Speisespannung U höchstens werden, damit kein Widerstand über seine zulässige Leistung hinaus belastet wird?

Fig.3: Schaltung mit drei Widerständen.

Aufgabe 4: Widerstandsnetz (NICHT TESTATPFLICHTIG)

Es ist ein elektrisches Widerstandsnetzwerk gegeben, dessen Zweige die Kanten und dessen Knoten die Ecken eines Würfels bilden (siehe **Fig.4**). Alle Zweige weisen den gleichen ohmschen Widerstand *R* auf.

Fig.4: Würfel mit Widerständen in den Kanten.

- a) Berechnen Sie den Widerstand R_{AB} zwischen den Klemmen A und B;
- **b)** Berechnen Sie den Widerstand R_{AC} zwischen den Klemmen A und C;
- c) Berechnen Sie den Widerstand R_{AD} zwischen den Klemmen A und D.

Beachten Sie dabei, dass sich wegen der Symmetrien der Anordnung für die drei Teilaufgaben vereinfachte Ersatzschaltungen finden lassen.