Naive Lie Theory 2.6 Exercises

OblivionIsTheName

October 2025

Notes

This chapter is about the definition of (external) direct product of groups.

- 1. Technically, the definition given in this chapter is called external direct product. There is another different concept called internal direct product. If C is an internal product of two subgroups A and B, for any $c \in C$ can be uniquely expressed as ab = ba where $a \in A$ and $b \in B$. It is equivalent to say AB = C and $A \cap B = C$ make C an internal direct product of A and B.
- 2. Back to the external direct product, here is an important proposition: if $C = A \times B$, and A' and B' are normal in A and B, then $A' \times B'$ is normal in C. Take any $(a,b) \in C$ and $(a',b') \in A' \times B'$, we have $(a,b)(a',b')(a,b)^{-1} = (aa'a^{-1},bb'b^{-1}) = (a',b')$.
- 3. This is a useful method to prove or disprove simplicity of groups as an external direct product. To that end, the proposition can be weakened to that C is not simple if one of A and B is not simple. Say A' is a non-trivial normal subgroup in A, then $A' \times \{e_B\}$ is always normal in C.

2.6.1

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 & 0 \\
\sin\theta & \cos\theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

2.6.2

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\theta & -\sin\theta \\ 0 & 0 & \sin\theta & \cos\theta \end{pmatrix}$$

2.6.3

Say the groups of matrices from 2.6.1 and 2.6.2 are H_1 and H_2 , and we have $H_1 \cong H_2 \cong \mathbb{S}^1$. Consider the group $H = \{h_1h_2 | h_1 \in H_1, h_2 \in H_2\}$ (in fact, this is an internal direct product of H_1 and H_2). H is a subgroup of SO(4) by definition. Now we prove that $H \cong H_1 \times H_2$. $\varphi: h_1h_2 \mapsto (h_1, h_2)$ is obviously surjective. It's also injective because any matrix in H has a unique block-diagonal (upper left for H_1 the bottom right for H_2) structure that uniquely determines its H_1 and H_2 components. Putting it all together, we have $H \cong H_1 \times H_2 \cong \mathbb{S}^1 \times \mathbb{S}^1 = \mathbb{T}^2$, so \mathbb{T}^2 is isomorphic to H, which is a subgroup of SO(4).

2.6.4

 (x, r, θ) is uniquely represented by a point on an infinite cylinder's surface.

2.6.5

 \mathbb{S}^3 is not abelian but $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ is becasue each \mathbb{S}^1 is abelian.