# Practice of Answer Set Programming Choice Rules and Constraints



# **Objectives**



Objective

Compute stable models of programs containing choice rules and constraints by hand



Objective

Compute stable models of programs containing choice rules and constraints using clingo

Choice Rules

## **Choice Rule**

Stable models of 
$$p \lor \neg p$$
 $p$ 

Stable models of 
$$(p \lor \neg p) \land (q \lor \neg q) : \not p, \ \lambda p \lor, \ \lambda p \lor,$$

# Choice Rule, cont'd

Stable models of 
$$(p_1 \vee \neg p_1) \wedge (p_2 \vee \neg p_2) \wedge \cdots \wedge (p_n \vee \neg p_n)$$
 all subsets of  $P_1, P_2, \cdots, P_n$ 

We abbreviate the formula  $(p_1 \lor \neg p_1) \land (p_2 \lor \neg p_2) \land \cdots \land (p_n \lor \neg p_n)$  as  $\{p_1; ...; p_n\}$  and call it choice rule.

# **Choice Rules in Clingo**

#### Choice rule:

$${p(t_1,\ldots,t_k)}.$$

Its propositional image is the conjunction of all formulas of the form

$$p(v_1,\ldots,v_k) \vee \neg p(v_1,\ldots,v_k)$$

where  $v_i$  is a value of  $t_i$ 

```
{p(1)}.
    P(1) \ 7P(1)
  5P(1)}
  1,2.35
\{p(1..3)\}.
(P(DV7P(D)) / (P M) / TP(M)
            1 (p13) × 7p(3)
```

## Choice Rules, cont'd

```
{p(a);q(b)}.
stands for
          (p(a) \lor \neg p(a)) \land (q(b) \lor \neg q(b))
% clingo choice.lp 0
Answer: 1
Answer: 2 q(b)
Answer: 3 p(a)
Answer: 4 p(a) q(b)
```

## **Choice Rules with Intervals and Pools**

```
{p(1..3)}.
```

has the same meaning as

$${p(1);p(2);p(3)}.$$

has the same meaning as

For each of the given programs, what do you think is the number of its stable models?

(a) 
$$\{p(1..3)\}$$
.  $\{q(1..3)\}$ .

(b) 
$$\{p(1..3,1..3)\}$$
.  
 $\{p(1,1); p(1.3); p(1.3); p(2.2); p(2.3); p(3.3); p(3.$ 

# **Choice Rules with Cardinality Bounds**

```
1 \{p(1...3)\} 2.
```

describes the subsets of {1,2,3} that consists of 1 or 2 elements.

```
Answer: 1 p(2)

Answer: 2 p(3)

Answer: 3 p(2) p(3)

Answer: 4 p(1)

Answer: 5 p(1) p(3)
```

Answer: 6 p(1) p(2)

For each of the given programs, what do you think is the number of its stable models?

$$63 = 2^6 - 1$$

(b) 
$$3\{p(1..6)\}3$$
.

$$\binom{6}{3} = \frac{6\times5\times4}{3\times2} = 27$$

For each of the given rules, find a simpler rule that has the same meaning.

$$(c) \{p(a)\} 1.$$

## **Choice Rules with Variables**

```
1 \{p(X); q(X)\} 1 :- X=1..2.
```

```
Answer: 1
q(1) p(2)
Answer: 2
q(1) q(2)
Answer: 3
p(1) p(2)
Answer: 4
p(1) q(2)
```

```
13p(1); 8(1); 1
13p(2); 8(2); 1
```



## Local vs. Global Variables

```
{p(I): I=1...7}.
```

I is a local variable

A local variable is a variable such that all its occurrences in the rule are in between { ... }

Other variables are global variables

The rule expands into

```
\{p(1); p(2); p(3); p(4); p(5); p(6); p(7)\}.
```

Q: How many stable models are there?

- (a) 0 (b) 7 (c) 64 (d) 128

# Local vs. Global Variables, cont'd

```
\{p(I)\} := I=1..7.
```

I is a global variable because it has an occurrence outside { ... }

#### The rule expands into

```
{p(1)}.
```

$${p(2)}$$
.

$${p(3)}.$$

$$\{p(4)\}.$$

$${p(5)}$$
.

$${p(6)}.$$

$${p(7)}.$$

#### Q: How many stable models are there?

(a) 0

- (b) 7 (c) 64

# Local vs. Global Variables, cont'd

$$\{q(I,J): J=1...3\} :- I = 1...2.$$

#### Q: How many stable models are there?

- (a) 6 (b) 8 (c) 12



#### The rule expands into

$$3g(1,3): J=1..3$$
  
 $\Rightarrow 3g(1,1); g(1,2); g(1,3)$ 

$$38(2,1)$$
;  $3(2,2)$ ;  $8(2,3)$ 5

### **Constraints**

A constraint is a rule that has no head, e.g., :- p(1) which can be understood as  $\bot \leftarrow p(1)$ 

Constraints are often used with choice rules to weed out "undesirable" stable models, for which the constraint is "violated."

# Cardinality Bounds vs. Constraints

Cardinality bounds in a choice rule can be sometimes replaced by constraints.

```
{p(a);q(b)}1.
```

has the same meaning as the pair of rules

```
{p(a);q(b)}.
:- p(a), q(b).
```

**Exercise:** Find a similar transformation for the rule

```
1{p(a);q(b)}.

3p(a); g(b)}.

:- not p(a), not g(b).
```