Arithmetic expression geometry with an application on learnable non-linearity

Mingli Yuan

May 24, 2023

Table of Contents

- 1 Arithmetic expression geometry: the first glimpse
- 2 On the efficiency of gradient learning
- 3 A learnable non-linearity
- 4 Arithmetic expression geometry: more topics
- 5 Perspectives, future work, and unsolved problems

Arithmetic expression geometry: the first glimpse

The beginning point

The famous example of word2vec

Figure: regulairty of word2vec

The case of numbers

$$(\alpha+1)\times 2\neq \alpha\times 2+1$$

Figure: contradiction of numbers in Euclidean space

One arrangement in hyperbolic space

Another arrangement in hyperbolic space

$$a=-\frac{y}{x}$$

Encoding threadlike expressions as paths

• black line $1 \times 8 - 5 = 3$

The flow equation

$$a_{\delta} = (a_0 + \mu \epsilon \cos \theta) e^{\lambda \epsilon \sin \theta}$$

$$a_{\delta} = a_0 e^{\lambda \epsilon \sin \theta} + \mu \epsilon \cos \theta$$

Both formula can be simplified to the same result:

$$a_{\delta} = a_0 + \epsilon (a_0 \lambda \sin \theta + \mu \cos \theta)$$

Then, we have the following equation:

$$\frac{1}{\delta}(a_{\delta}-a_{0})=\frac{\epsilon}{\delta}(\mu\cos\theta+x_{0}\lambda\sin\theta)$$

When both δ and ϵ are towards zero, we get da/dt, and hence

$$\frac{da}{dt} = u(\mu\cos\theta + a\lambda\sin\theta)$$

Or, we can change it to another form

$$\frac{da}{dc} = \mu \cos \theta + a\lambda \sin \theta \tag{1}$$

On the efficiency of gradient learning

Brachistochrone problem

The first experiment

An improvement

Trap

One way reachable

Experiment results

LSTM

A learnable non-linearity

Experiment results

	logistic map p = 3.5	logistic map p = 3.8	logistic map p = 3.9	spline	learnable non-linearity
task success	8			8	
parameter learnable	8	8	8	×	

Hebbian?

Arithmetic expression geometry: more topics

Eigenfunction of Laplacian

On the hyperbolic plane

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

the Laplacian is

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

Given

$$A = -\frac{x}{y} \tag{2}$$

We have

$$\Delta A = -y^2 \left(\frac{\partial^2}{\partial x^2} A + \frac{\partial^2}{\partial y^2} A \right) = y^2 \left(\frac{1}{\partial y} \left(\frac{1}{\partial y} \frac{x}{y} \right) \right) = 2A$$

A jigsaw by Riemann mapping

Tube structure

