REIBURG

Kapitel 2 – Kodierung

- 1. Kodierung von Zeichen
- 2. Kodierung von Zahlen
- 3. Anwendung: ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Armin Biere

Institut für Informatik Sommersemester 2024

Motivation

- Ein Rechner speichert, verarbeitet und produziert Informationen.
- Alle Ergebnisse müssen als Funktion der Anfangswerte exakt reproduzierbar sein.
- → Informationsspeicherung und Verarbeitung müssen exakt sein.
 - Probleme: Noise, Crosstalk, Abschwächung
- → Es gibt keine exakte Datenübertragung oder Datenspeicherung.
- → Ziel: Quantisierung der Informationsspeicherung mit Signal groß gegenüber maximaler Störung
 - Binär-Codierung (nur zwei Zustände) ist die einfachste (und sicherste) Signal-Quantisierung.
 - BIT (0, 1) als grundlegende Informationseinheit

Motivation

- Ein Rechner kann üblicherweise
 - Zeichen verarbeiten (Textverarbeitung)
 - mit Zahlen rechnen
 - Bilder, Audio- und Videoinformationen verarbeiten und darstellen ...
- Ein Algorithmus kann zwar prinzipiell mit abstrakten Objekten verschiedener Art operieren, aber diese müssen im Rechner letztendlich als Folgen von Bits repräsentiert werden.
- → Kodierung!

Kapitel 2.1 - Kodierung von Zeichen

- Wie werden im Rechner Zeichen dargestellt?
- Codes fester Länge
- "Längenoptimale Kodierungen" von Zeichen: Häufigkeitscodes (Bsp.: Huffman-Code)

Alphabete und Wörter

Definition

Eine nichtleere Menge $A = \{a_1, ..., a_m\}$ heißt (endliches) Alphabet der Größe m.

 a_1, \ldots, a_m heißen Zeichen des Alphabets.

- $A^* = \{ w \mid w = b_1 \dots b_n \text{ mit } n \in \mathbb{N}, \forall i \text{ mit } 1 \leq i \leq n : b_i \in A \}$ ist die Menge aller endlichen Wörter über dem Alphabet A.
- $|b_1...b_n| := n$ heißt Länge des Wortes $b_1...b_n$.
- lacksquare Das Wort der Länge 0 wird mit ε bezeichnet.

Beispiel:

Sei $A = \{a, b, c, d\}$.

Dann ist bcada ein Wort der Länge 5 über A.

Code

Sei $A = \{a_1, \dots, a_m\}$ ein endliches Alphabet der Größe m.

- Eine Abbildung $c: A \to \mathbb{B}^*$ oder $c: A \to \mathbb{B}^n$ heißt Code, falls c injektiv ist.
- Die Menge $c(A) := \{ w \in \mathbb{B}^* \mid \exists a \in A : c(a) = w \}$ heißt Menge der Codewörter.
- Ein Code $c: A \to \mathbb{B}^n$ heißt Code fester Länge.
- Für einen Code $c: A \to \mathbb{B}^n$ fester Länge gilt: $n \ge \lceil \log_2 m \rceil$.
 - Ist $n = \lceil \log_2 m \rceil + r$ mit r > 0, so können die r zusätzlichen Bits zum Test auf Übertragungsfehler verwendet werden.

Codes fester Länge

- Die Kodierung eines jeden Zeichens besteht aus *n* Bits.
 - ASCII (American Standard Code for Information Interchange): 7 Bits (es gibt Erweiterungen mit 8 Bits)
 - EBCDIC (Extended Binary Coded Decimal Interchange Code): 8 Bits
 - Unicode UTF-16 mit 16 Bits (2 Bytes)
- Diese Kodierungen sind recht einfach zu behandeln. Unter Umständen wird für sie aber mehr Speicherplatz gebraucht als unbedingt nötig.

Beispiel: ASCII-Tabelle

			е	rste :	3 Bits	•			
		0	0	0	0	1	1	1	1
		0	0	1	1	0	0	1	1
		0	1	0	1	0	1	0	1
	0000	nul	dle		0	@	Р		р
	0001	soh	dc1	!	1	Α	Q	а	q
	0010	sfx	dc2		2	В	R	b	r
	0011	etx	dc3	#	3	С	S	С	s
S	0100	eot	dc4	\$	4	D	Т	d	t
∺	0101	enq	nak	%	5	E	U	е	u
Щ.	0110	ack	syn	&	6	F	V	f	v
4	0111	bel	etb	•	7	G	w	g	w
ž	1000	bs	can	(8	н	Х	h	x
letzte 4 Bits	1001	ht	em)	9	1	Υ	i	у
_	1010	If	sub	*	:	J	z	j	z
	1011	vt	esc	+	;	K	1	k	{
	1100	ff	fs	,	<	L	١	1	1
	1101	cr	qs	-	=	M	1	m	}
	1110	so	rs		>	N	^	n	*
	1111	si	us	1	?	0	_	0	del
			~			$\overline{}$			
	Steuerzeichen				Schriftzeichen				

Häufigkeitsabhängige Codes

- Ziel: Reduktion der Länge einer Nachricht durch Wahl verschieden langer Codewörter für die verschiedenen Zeichen eines Alphabets (also kein Code fester Länge!)
- Idee: Häufiges Zeichen \rightarrow kurzer Code Seltenes Zeichen \rightarrow langer Code
- Unicode UTF-8 (1 4 Bytes) is nun der Standard
- Voraussetzungen:
 - lacksquare Häufigkeitsverteilung bekannt ightarrow statische Kompression
 - wenn unbekannt → dynamische Kompression

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen abcde f

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Häufigkeit [%]

Zeichen

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Häufigkeit [%]

■ Beispiel: Zeichen

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code (statische Kompression)
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Erzeugte Huffman-Kodierung

Erzeugte Kodierung:

			d					i	j
00	10	110	1110	0100	0101	0110	0111	11110	11111

Huffman-Code: Dekodierung

Erzeugte Kodierung:

а	b	С	d	е	f	g	h		j
00	10	110	1110	0100	0101	0110	0111	11110	11111

- Lesen des Bitstromes bis Symbol erkannt wurde.
- Erkanntes Symbol ausgeben und weiter mit 1.

12 / 15

Präfixcodes

Definition

Sei A ein Alphabet der Größe m.

- $a_1 ... a_p \in A^*$ heißt Präfix von $b_1 ... b_l \in A^*$, falls $p \le l$ und $a_i = b_i \ \forall i, \ 1 \le i \le p$.
- Ein Code $c: A \to \mathbb{B}^*$ heißt Präfixcode, falls es kein Paar $i, j \in \{1, ..., m\}$ mit $i \neq j$ gibt, so dass $c(a_i)$ Präfix von $c(a_i)$.
 - Der Huffman-Code ist ein Präfixcode.
 - Bei Präfixcodes können Wörter über $\mathbb B$ eindeutig dekodiert werden (sie entsprechen Binärbäumen mit Codewörtern an den Blättern).
 - Huffman-Code ist ein bzgl. mittlerer Codelänge optimaler Präfixcode (unter Voraussetzung einer bekannten Häufigkeitsverteilung) - ohne Beweis.

Präfixcodes

Frage: Welche dieser Codes sind Präfixcodes

a.
$$c('A') = 01$$
, $c('B') = 110$, $c('C') = 011$

b.
$$c('A') = 01$$
, $c('B') = 110$, $c('C') = 111$

c.
$$c('1') = xz$$
, $c('2') = xy$, $c('3') = yz$ mit $x, y \in \mathbb{B}$

d. Keiner der Obigen.

Weitere Verfahren

- Es gibt zahlreiche Ansätze zur Datenkompression. (Beispiel: Lempel-Ziv-Welch.)
- In Programmtexten gibt es häufig viele Leerzeichen, gleiche Schlüsselwörter und so weiter.
- Kodiere Folgen von Leerzeichen bzw. Schlüsselwörter durch kurze Codes.
 - Das wird z.B. bei GIF und TIFF genutzt.
 - Das soll auch funktionieren, wenn man noch nicht weiß, welche Zeichenketten häufig vorkommen.

