MATH 315 WEEK 2

JACOB TERKEL

2023

Problem 3, Chapter 14

Claim. For any field \mathbb{F} , e_* and e_{\diamond} are not equal

Proof. In any field, e_* and e_\diamond necessarily exist in \mathbb{F} . Furthermore, by the requirement that a field has at least two distinct elements there is some $a \in \mathbb{F}$ such that $a \neq e_*$. By Theorem 14.5 we have that $a \diamond e_* = e_*$, but this means that e_* is not e_\diamond as if it were then we would have that $a \diamond e_\diamond = a$, and so $e_* \neq e_\diamond$.

Claim. For the real numbers 1 and 0 we have 0 = 1.

According to part (a), this claim is false. Find the mistake(s) in the following argument.

Argument. Let a be an arbitrary real number. By axiom (+5), we must have a real number x such that a+x=0. Multiplying this equation by a yields $(a+x)\cdot a=0\cdot a$, or, after using distributivity, $a^2+x\cdot a=0\cdot a$ (denoting $a\cdot a$ by a^2). Axiom $(\cdot 5)$ guarantees an inverse to $a^2+x\cdot a$; that is, there exists a real number y for which $(a^2+x\cdot a)\cdot y=1$. Using this y to multiply our equation $a^2+x\cdot a=0\cdot a$, we get $(a^2+x\cdot a)\cdot y=(0\cdot a)\cdot y$. Now the left-hand side equals 1, so we have $1=(0\cdot a)\cdot y$. According to Corollary 14.7, 0 times any real number is 0, so $(0\cdot a)\cdot y=0\cdot y=0$. Therefore, we proved that 0=1.

Axiom (·5) only guarantees inverse to non-zero values, and as we see $a^2 + x \cdot a = 0$.

Problem 4, Chapter 14

(a) Find the mistake(s) in the following argument. Claim. We have $a * e_0 = e_0$.

Argument. At each step we refer to a particular property under Defini-

$$\begin{array}{ll} a*e_\diamond \stackrel{(\diamond 4)}{=} (a*e_\diamond) \diamond e_\diamond \\ \stackrel{(\diamond 5')}{=} (a*e_\diamond) \diamond [(a*e_\diamond) \diamond - (a*e_\diamond)] \end{array}$$

14 Working in the Fields (and Other Structures)

$$\stackrel{(\diamond 3)}{=} [(a * e_{\diamond}) \diamond (a * e_{\diamond})] \diamond -(a * e_{\diamond})$$

$$\stackrel{(*D\diamond)}{=} [a*(e_{\diamond} \diamond e_{\diamond})] \diamond - (a*e_{\diamond})$$

$$\stackrel{(\diamond 4)}{=} \; (a*e_\diamond) \diamond - (a*e_\diamond)$$

Distributive Property was done backward, it is \$\distributes over *, not vice versa.

Claim. For a field \mathbb{F} with $a \in \mathbb{F}$ if $a * e_{\diamond} = e_{\diamond}$ then $a = e_*$.

Proof. Let us assume that $a * e_{\diamond} = e_{\diamond}$. We can do the following.

$$a * e_{\diamond} = e_{\diamond}$$

$$a * e_{\diamond} * (-e_{\diamond}) = e_{\diamond} * (-e_{\diamond})$$

$$a*(e_{\diamond}*(-e_{\diamond}))=e_{*}$$

$$a = e_*$$

Jτ

Problem 7, Chapter 14

Claim.

$$(A\cup \overline{B}\cup C)\cap \overline{(A\cup C)}=\overline{A}\cap \overline{B}\cap \overline{C}.$$

Proof. We do the following

$$(A \cup \overline{B} \cup C) \cap \overline{(A \cup C)}$$

Commutativity:

$$=((A\cup C)\cup \overline{B})\cap \overline{(A\cup C)}$$

Distributive:

$$=((A\cup C)\cap \overline{(A\cup C)})\cup (\overline{B}\cap \overline{(A\cup C)})$$

Complementation:

$$=\emptyset\cup(\overline{B}\cap\overline{(A\cup C)})$$

Identity:

$$=(\overline{B}\cap\overline{(A\cup C)})$$

DeMorgan's Laws (Problem 6):

$$= \overline{B} \cap (\overline{A} \cap \overline{C})$$

Commutative & Associative:

$$= \overline{A} \cap \overline{B} \cap \overline{C}.$$

Jτ

Problem 10, Chapter 14

Claim (Part A). For all real a, we have that -(-a) = a.

Proof. Definition 13.4 states that the negative of a number, a, is the number, -a, such that a + (-a) = 0. So, the negative of -a is the number x such that (-a) + x = 0, however by the commutative property and the previous equation this gives us that x = a, and so -(-a) = a.

Lemma 1. For any non-zero real number a and any real number c there exists a real number a such that $a \cdot x = c$, namely a = a where a is the multiplicative inverse of a.

Proof. Let a be a non-zero real number. Now, because $a \neq 0$ there exists some real number b such that $a \cdot b = 1$. Thus, for any real number c we have that $a \cdot b \cdot c = 1 \cdot c$ which by identity gives us that $a \cdot (b \cdot c) = c$. Furthermore, by closure, $b \cdot c$ is real and our claim is proven

Claim (Part B). For all real a, we have that $(-1) \cdot a = -a$.

Proof. Let *a* be a real number. If a = 0 we can see that -a = 0, as 0 + 0 = 0. Furthermore, $(-1) \cdot 0 = 0$ by Theorem 14.5, and so we have that $(-1) \cdot 0 = 0 = -0$.

We know there is some -a such that -a + a = 0. By Distributivity, Identity, and Lemma 1 we have that there exists a real number b such that $b \cdot a = -a$ and

$$a(b+1) = 0.$$

However, by the non-zero product property and the fact that a is non-zero we can say that b + 1 = 0 which by the definition of negative gives us that b = -1, and by how b was defined we have that $a \cdot -1 = -a$.

Jτ

Claim (Part C). For all real a and b, we have that $(-a) \cdot b = -(a \cdot b)$.

Proof. Starting with the expression $(-a) \cdot b$, we can use Part B and the associative property to get that

$$(-a) \cdot b = (-1) \cdot a \cdot b = -(a \cdot b).$$

Jτ

Claim (Part D). For all real a and b, we have that $(-a) \cdot (-b) = a \cdot b$.

Proof. Starting with the expression $(-a) \cdot (-b)$, we can use Part B, the associative property, the commutative property, the identity as well as the fact that $-1 \cdot -1 = -(-1) = 1$ to get that

$$(-a) \cdot (-b) = (-1) \cdot a \cdot (-1) \cdot b = (-1 \cdot -1)(a \cdot b) = 1 \cdot (a \cdot b) = (a \cdot b).$$

Jτ

Lemma 2. For non-zero real x and y we have that $\frac{1}{x} \cdot \frac{1}{y} = \frac{1}{x \cdot y}$.

Proof. Consider the quantity $\frac{1}{x \cdot y}$ for x and y described in the claim. We have that

$$\frac{1}{x \cdot y} \cdot (x \cdot y) = 1.$$

Now, we can do the following

$$\frac{1}{x \cdot y} \cdot (x \cdot y) \cdot \frac{1}{x} \cdot \frac{1}{y} = 1 \cdot \frac{1}{x} \cdot \frac{1}{y}$$

which by commutativity, associativity, and identity we get that

$$\frac{1}{x \cdot y} \cdot \left(x \cdot \left(y \cdot \frac{1}{y} \right) \cdot \frac{1}{x} \right) = \frac{1}{x} \cdot \frac{1}{y}$$

which then becomes

$$\frac{1}{x \cdot y} = \frac{1}{x} \cdot \frac{1}{y}$$

by identity and the definition of the reciprocal of non-zero reals, proving our claim.

Īτ

Claim (Part E). For real a, b, c, and d with non-zero b and d we have that

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}.$$

Proof. First, see that

$$\frac{a}{b} \cdot \frac{c}{d} = a \cdot \frac{1}{b} \cdot c \cdot \frac{1}{d},$$

and by the commutative property we have that this can become

$$(a \cdot c) \cdot \left(\frac{1}{b} \cdot \frac{1}{d}\right),$$

and by Lemma 2 we have that this is equal to

$$(a \cdot b) \cdot \left(\frac{1}{c \cdot d}\right)$$

which by the definition of the quotient is equal to $\frac{a \cdot c}{b \cdot d}$, proving our claim.

Jτ

Lemma 3. For any real a, b, and c where $c \neq 0$ we have that $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$.

Proof. By the distributive property and the definition of a quotient we have that

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} = \frac{1}{c}(a+b) = \frac{a+b}{c}.$$

Jτ

Claim (Part F). For real a, b, c, and d with non-zero b and d we have that

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}.$$

Proof. We start with the quantity $\frac{a}{b} + \frac{c}{d}$. It is clear that $\frac{b}{b} = \frac{d}{d} = 1$ and thus we have that

$$\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{d} + \frac{c}{d} \cdot \frac{b}{b} = \frac{a \cdot d}{b \cdot d} + \frac{b \cdot c}{b \cdot d}.$$

Finally, by Lemma 3 we have that

$$\frac{a \cdot d}{b \cdot d} + \frac{b \cdot c}{b \cdot d} = \frac{a \cdot d + b \cdot c}{b \cdot d},$$

and with this our claim is proven.

Jτ

Problem 11, Chapter 14

Problem 9a, Chapter 13

Definition 1. The negative elements of a ring, R, with positive elements P is defined to be $N = \{-x \mid x \in P\}$.

Alternatively, $N = R \setminus (P \cup \{0\})$.

Problem 9b, Chapter 13

Claim. For a pair of elements a and b in an ordered ring R with positive set P and negative set N we define the following order relations.

- (\geq) $a \geq b$ if $a b \in P \cup \{0\}$.
- $(\leq) \ a \leq b \ if \ a b \in N \cup \{0\} \ .$
- (>) $a > b \text{ if } a b \in P$.
- (<) a < b if $a b \in N$

Claim (Part A). For every real a and b we have that exactly one of a = b, a < b, and b > a holds.

Proof. First see that is claim is equivalent to P, N, and $\{0\}$ are pairwise disjoint but their union equals R as a=b is equivalent to a-b=0. This easily is seen to follow from the definitions as $N=R\setminus\{P\cup\{0\}\}$, and P does not contain 0.

Claim (Part B). For every real a, b, and c for which a > b and b > c we have that a > c.

Proof. We have that $a - b \in P$ and $b - c \in P$, and by O + this means that $(a - b) + (b - c) = a - c \in P$, proving our claim as this is equivalent to a > c by our definition.

Claim (Part C). For every real a, b for which a > b we have that a + c > b + c for all real c.

Proof. We have that $a - b \in P$. Note that (a + c) - (b + c), and thus $(a + c) - (b + c) \in P$, which by our definition from Problem 13.9b gives us that a + c > b + c, our claim.

Claim (Part D). For every real a, b for which a > b we have that ac > bc for all real c > 0.

Proof. We have that $a - b \in P$. If c > 0, that gives us that $c \in P$, and by axiom $(O \cdot)$ this means that $c(a - b) = ca - cb \in P$ which then gives us that ac > bc.

Claim (Part E). For every real a, b for which a > b we have that ac < bc for all real c < 0.

Proof. By Part D, we have that -ca > -cb, and thus $-ca - (-cb) = -c(a-b) \in P$. However, by axiom O, this means that $c(a-b) \notin P$, and from the fact that $a \ne b$ and $c \ne 0$ we know

that $c(a-b) \neq 0$ and thus by Part A we must have that $c(a-b) \in N$ and thus ac < bc by definition.

Claim (Part F). For every non-zero real a we have that $a^2 > 0$.

Proof. The case for positive a follows easily from axiom O. If a < 0 then part D implies that $a \cdot a > 0 \cdot a$ which is equivalent to $a^2 > 0$, proving our claim as every non-zero a is either positive or negative.

Claim (Part G). For positive real a and b with a > b we have that $a^2 > b^2$.

Proof. From Part D we have that $a^2 > ab$ and $ab > b^2$, which from Part B gives us $a^2 > b^2$, proving our claim.

Lemma 4. Let z be a positive real number. For real x and y that are solutions to xy = z we have that either $x, y \in P$ or $x, y \in N$.

Proof. First, note that neither of x or y are zero by the non-zero product property and so we need only show that we cannot have exactly one of x and y in P, and the other in N.

Let us assume, without loss of generality that $x \in P$ and $y \in N$. If this is this case we have that x > 0 and y < 0, which by part E would give us that $x \cdot y < 0 \cdot y = 0$, a contradiction as $x \cdot y = z$, which is positive and thus greater than 0. This contradicts the assumption that we need to prove our claim, and so it is proven.

Jτ

Lemma 5. For every pair of real numbers, a and b, $a^2 + ab + b^2$ must be positive with the sole exception of a = b = 0, in which case the expression equals zero.

Proof. First, we examine when $a^2 + ab + b^2 = 0$. Note that if one of a or b are zero, then the other must be zero, this can be seen as if a = 0 then the equation becomes $b^2 = 0$ which implies that b = 0 by the non-zero product property.

From now on, we will assume that $a, b \neq 0$ in attempt to determine the existence of any remaining cases. The original equation can be rearranged to $a^2 = -(b^2 + ab)$ which would then imply that $-(b^2 + ab)$ is positive as a is non-zero, making a^2 positive.

With this, we have that $b^2 + ab$ is negative, which axiom O+ means that ab must be negative, but this would give that $(a^2+2ab+b^2)$ is negative, which is equivalent to $(a+b)^2 < 0$.

However, this cannot be as if $a+b \neq 0$ then $(a+b)^2 > 0$ by Part F and if a+b = 0 then $(a+b)^2 = 0$ by the zero-product property. Either way, $(a+b)^2 < 0$ is not satisfied and we have reached a contradiction to our assumption that there are non-zero solutions to $a^2 + ab + b^2 = 0$.

Let us assume the contrary, that $(a^2+ab+b^2) \in N$. This would mean that $a^2+ab+b^2 < 0$, however note that a^2 and b^2 are positive and so by Part F and O+ we must have that ab < 0. However, this would then imply that $a^2+2ab+b^2 < a^2+ab+b^2$ by Part C, and so we have that $a^2+2ab+b^2 < 0$ by Part A, but this gives us that $(a+b)^2 < 0$ which results in a contradiction identically to the above.

Claim (Part H). For real a and b we have that a > b if and only if $a^3 > b^3$.

Proof. First, see that for either of a > b or $a^3 > b^3$ to be true true, we cannot have a = b, so for this proof assume that $a \neq b$

We know that $a^3 > b^3$ if and only if $a^3 - b^3 \in P$, however this is equivalent to $(a - b)(a^2 + ab + b^2) \in P$. By Lemma 4 this is equivalent to one of $(a - b), (a^2 + ab + b^2) \in P$ or $(a - b), (a^2 + ab + b^2) \in N$ being true. By Lemma 5 we must have that $a^2 + ab + b^2$ is positive as it can only be non-positive if a = b = 0, and $a \ne b$, so we have that $(a - b), (a^2 + ab + b^2) \in N$ is never true, and $(a^2 + ab + b^2) \in P$ is always true meaning $(a - b)(a^2 + ab + b^2) \in P$ is equivalent to $a - b \in P$, and our claim is proven.