UNIVERSIDADE FEDERAL DE SÃO CARLOS CAMPUS SOROCABA – CIÊNCIA DA COMPUTAÇÃO

RELATÓRIO TÉCNICO

Análise de Métodos Iterativos: Método de Newton-Raphson, Método da Bisseção e Método da Secante

Aluno: Ana Beatriz Juvencio

Professora: Graciele P. Silveira

Disciplina: Cálculo Numérico

Data: 27 de maio de 2025

SUMÁRIO

1. Introdução	3
2. Metodologia	3
4. Análise e comparação dos resultados	4
5. Referências	6
6. Anexos	6

1. Introdução

O propósito deste estudo reside na aplicação de diferentes técnicas numéricas para a localização de raízes de funções, sendo elas: os métodos da bisseção, do ponto fixo, de Newton-Raphson e da secante. Adicionalmente, busca-se realizar uma análise comparativa entre estes métodos, utilizando como critério o número de iterações demandadas. A investigação contemplará, ainda, a identificação de potenciais problemas que podem surgir durante as etapas iterativas. A análise será conduzida mediante a aplicação dos métodos a um conjunto de três funções diferentes. O desenvolvimento do algoritmo foi realizado em Python, utilizando exclusivamente funções matemáticas da biblioteca padrão.

2. Metodologia

No decorrer deste estudo, foram postos em prática, através de simulações computacionais, quatro abordagens distintas para encontrar soluções de equações não lineares: o método da Bissecção, o método do Ponto Fixo, o método de Newton-Raphson e o método da Secante. A fundamentação teórica para esses métodos foi extraída do livro "Cálculo Numérico - Aspectos Teóricos e Computacionais", em sua segunda edição. Cada um desses métodos foi empregado na análise de diversas funções, com o objetivo de examinar e explicitar suas características de desempenho, o nível de precisão alcançado e a rapidez com que convergem para uma solução.

O algoritmo do Método da Bisseção realiza divisões sucessivas do intervalo [a, b], reduzindo-o pela metade até que a largura do intervalo seja inferior à tolerância especificada. A condição $f(a) \cdot f(b) < 0$ é verificada inicialmente, conforme exigido pela teoria para garantir a existência de raiz no intervalo.

O Método do Ponto Fixo foi implementado com uma função g(x) reescrita a partir de f(x). A convergência do método foi analisada explicitamente utilizando a derivada de g(x), avaliada numericamente pela fórmula da diferença central: $g'(x_0) \approx (g(x_0 + h) - g(x_0 - h)) / (2h)$.

Se $|g'(x_0)| < 1$, o método é teoricamente convergente. O critério de parada considera dois tipos de tolerância: $|f(xk)| < \epsilon_1 e |xk - xk_{-1}| < \epsilon_2$.

No Método de Newton-Raphson, a fórmula iterativa utilizada foi: $xk_{+1} = xk - f(xk)/f'(xk)$.

Neste caso, implementou-se verificação para evitar divisão por valores próximos de zero, assegurando estabilidade numérica. O critério de parada é similar ao do ponto fixo.

O Método da Secante aproxima a derivada por diferenças finitas e não exige conhecimento prévio de f(x). A fórmula utilizada foi:

```
xk_{+1} = xk - f(xk) \cdot (xk - xk_{-1}) / (f(xk) - f(xk_{-1})).
```

Todos os métodos param a execução ao atingir os critérios de tolerância ou o número máximo de iterações. Apenas para o Método do Ponto Fixo a análise de convergência foi implementada explicitamente no código, para dar uma explicação de qual seria o erro relacionado ao exercício 2.

4. Análise e comparação dos resultados

Exemplo 1:

Saída:

```
--- Exemplo 1: f(x) = x^3 - 9x + 3 ---
```

Bisseção: raiz ≈ 0.33740234375 , iterações: 10, intervalo: [0, 1], tol = 1e-3 Ponto Fixo: raiz $\approx 0.33762324738031935$, iterações: 3, ϵ_1 =5e-4, ϵ_2 =5e-4

Newton-Raphson: raiz $\approx 0.33760683760683763$, iterações: 3, ϵ_1 =1e-4, ϵ_2 =1e-4

Secante: raiz $\approx 0.33763462072303707$, iterações: 3, ϵ_1 =5e-4, ϵ_2 =5e-4

Todas as abordagens foram bem-sucedidas em determinar uma raiz real com valor próximo a 0,3376. A estratégia da Bisseção, apesar de sua segurança e firmeza, necessitou de dez tentativas até atingir o nível de precisão definido, o que evidencia sua natureza cautelosa e progressão mais demorada. Por outro lado, as técnicas de Ponto Fixo, Newton-Raphson e Secante se mostraram muito mais eficazes, chegando ao resultado desejado com somente três tentativas. A rapidez incomum do método do Ponto Fixo neste caso indica uma escolha particularmente eficaz da função iterativa g(x)g(x)g(x), com derivada satisfazendo a condição |g'(x)| < 1|g'(x)| < 1|g'(x)| < 1 na vizinhança da raiz.

Exemplo 2:

Saída:

```
--- Exemplo 2: f(x) = 2x^3 - 20x - 13 ---
```

Bisseção: raiz ≈ 3.44775390625 , iterações: 10, intervalo: [3, 4], tol = 1e-3

Ponto Fixo: falhou após 7 iterações.

Atenção: $|g'(3.5)| = 3.6750 \ge 1 \Rightarrow pode não convergir.$

Newton-Raphson: raiz $\approx 3.4475230368985517$, iterações: 3, ϵ_1 =1e-3, ϵ_2 =1e-3

Secante: raiz ≈ 3.44751694957348 , iterações: 4, ϵ_1 =1e-3, ϵ_2 =1e-3

Neste segundo cenário, o método do Ponto Fixo demonstrou-se inadequado, não convergindo após 7 iterações. A análise do valor $|g'(3,5)|=3,6750|g'(3\{,\}5)|=3\{,\}6750|g'(3,5)|=3,6750$ revela a razão do insucesso: a derivada da função iterativa ultrapassa 1 em módulo, o que viola a condição necessária para a convergência do método. Dessa forma, o aviso prévio que o código tinha dado se confirmou totalmente verdadeiro e lógico. Em contrapartida, os jeitos de Newton-Raphson e da Secante se mostraram bons de novo, chegando à resposta em 3 e 4 tentativas, cada um. Já o método da Bisseção, mesmo sendo mais demorado, completou com sucesso, provando mais uma vez que dá para confiar nele.

Exemplo 3:

Saída:

```
--- Exemplo 3: f(x) = \cos(x) - x ---
Bisseção: raiz \approx 0.73876953125, iterações: 10, intervalo: [0, 1], tol = 1e-3
Ponto Fixo: raiz \approx 0.7350063090148431, iterações: 11, \epsilon_1=1e-3, \epsilon_2=1e-3
```

Newton-Raphson: raiz $\approx 0.7391416661498792$, iterações: 3, ϵ_1 =1e-3, ϵ_2 =1e-3

Secante: raiz $\approx 0.7391193619116293$, iterações: 3, $\epsilon_1 = 1e-3$, $\epsilon_2 = 1e-3$

No caso clássico da função $\cos(x)-x \cdot \cos(x)$ - $x\cos(x)-x$, todos os métodos testados apresentaram bom desempenho. O método do Ponto Fixo, apesar de ter apresentado convergência, precisou de 11 ciclos até alcançar a solução, um número superior aos demais métodos avaliados. Esse desempenho está alinhado com as características do método, que costuma convergir de forma mais vagarosa, mesmo quando as condições necessárias para a convergência estão presentes. Os métodos de Newton-Raphson e da Secante, por outro lado, exibiram a eficiência esperada, chegando à raiz com grande exatidão em somente 3 ciclos. Enquanto isso, a Bisseção, como esperado, demonstrou grande consistência, embora tenha demandado um número maior de ciclos para atingir o resultado.

Concluindo a análise dos três casos, é importante notar que a seleção da técnica mais apropriada não deve considerar somente a quantidade de repetições ou a rapidez com que os resultados são alcançados. Características como a dificuldade da função, a presença de dados teóricos, os meios de computação existentes e o grau de resistência necessária são igualmente cruciais.

5. Referências

RUGGIERO, Mário A.; LOPES, Vera Lucia. Cálculo Numérico: aspectos teóricos e computacionais. 2. ed. São Paulo: Pearson Prentice Hall, 2005.

6. Anexos

Link para o arquivo do código