Lista 1

Grupo MV:

Marcos Gabriel Leão Muñoz - 11611BCC026 Vitor Martins Basso - 11611BCC034

122

A)

No arquivo 122a.c

B)

No arquivo 122b.c tem o código usado para montar a tabela a seguir

Traffic Intensity	0.6	0.7	0.8	0.9	1.0	1.1	1.2
L barra	1.56	2.37	3.76	8.33	26.38	69.99	106.45
Q barra	0.96	1.67	2.96	7.43	25.39	69.00	105.46
X barra	0.6	0.7	0.8	0.89	0.990995	0.994805	0.995954

C)

I, q e x são relacionados diretamente com a intensidade do tráfego, de forma que se este cresce, as outras métricas crescem também, em proporções diferentes. O crescimento não é proporcional, visto que quanto mais perto de 1 x se aproxima, maior o crescimento das outras métricas. Na tabela apresentada anteriormente, por exemplo, enquanto x cresce em 0.001149 (0.12%), Q barra cresce em 36.46 (52.84%).

D) 1.18 - 18%

123

A)

Codigo c no arquivo 123a.c

B)

O delay maximo experimentado foi de 118.761 segundos

C)

O numero de trabalhos em t = 400 no node é de 7. A relação se encontra no fato de que quando o arrival de um job é menor que o valor de t e o departure é maior, implica que o job ainda está no node. Fez-se isso com um IF no código, traduzindo essa prova de teorema para código c contando quantos trabalhos se encaixavam nessa situação.

D)723 trabalhos sofreram delay, ou seja, 72,3% dos trabalhos. Isso se relaciona com a

utilização do servidor no sentido de que quando se tem pelo menos um trabalho na fila (ou seja, sofrendo delay), o servidor está ocupado, considerando que esse é um modelo em que se há trabalho para ser executado o servidor não está idle. Dessa forma, pode-se dizer que quanto mais trabalhos sofrem delay, menor o tempo idle do servidor.

126

A)

O tempo médio de serviço é de 3.03 segundos, a utilização do servidor é de 0.7395 e a intensidade de tráfico é de 0.743145.

B)

O tempo de serviço de um trabalho pode se relacionar com os tempos anteriores

128

A)

No arquivo 128a.c

B)

Traffic Intensity	0.6	0.7	0.8	0.9	1.0	1.1	1.2
L barra	1.06	1.50	2.24	4.24	12.55	51.12	87.65
Q barra	0.46	0.80	1.44	3.35	11.57	50.12	86.65
X barra	0.59964	0.69951	0.797298	0.893753	0.979353	0.997094	0.998248

C)

A métrica de intensidade de tráfego representa uma relação entre os trabalhos que estão entrando no node e seu tempo de serviço de forma a indicar uma propriedade de "trafego" no nodo. Dessa forma, ela se relaciona com as medidas de I, q no sentido que estas dependem justamente da entrada e do tempo de serviço dos trabalhos, enquanto que a medida x depende das duas outras métricas para averiguar o tempo de serviço do servidor.

131

A)

Resolvido em 131a.c

132

A)

Resolvido em 132a.c

B)

Os números no programa em C foram calculados e representados usando variáveis em ponto flutuante, enquanto os do livro provavelmente foram calculados com inteiros. Os valores são próximos o suficiente para parecer que foram arredondados.

D) ${\hbox{Com S = 80, o ponto mínimo \'e extremamente bem definido, com o custo subindo imediatamente antes e depois de s = 22}$

A)

Para S = 100

B)

A tendência demonstrada pelos gráficos é que quanto maior S, maior as despesas totais. Em relação a s, quanto menor S, maior o valor de s para o custo mínimo.