0.) Import and Clean data

```
import pandas as pd
In [20]:
          import matplotlib.pyplot as plt
          import numpy as np
          from sklearn.preprocessing import StandardScaler
          from sklearn.cluster import KMeans
          df = pd.read_csv(r"C:\Users\antek\Downloads\Country-data.csv", sep = ",")
In [21]:
In [22]:
          df.head()
Out[22]:
                         child_mort exports health imports income inflation life_expec total_fer
                                                                                                    qdpp
          0 Afghanistan
                               90.2
                                        10.0
                                                7.58
                                                        44.9
                                                                1610
                                                                          9.44
                                                                                     56.2
                                                                                              5.82
                                                                                                      553
          1
                 Albania
                               16.6
                                        28.0
                                               6.55
                                                        48.6
                                                                9930
                                                                          4.49
                                                                                     76.3
                                                                                              1.65
                                                                                                    4090
          2
                 Algeria
                               27.3
                                        38.4
                                               4.17
                                                        31.4
                                                               12900
                                                                         16.10
                                                                                     76.5
                                                                                              2.89
                                                                                                     4460
          3
                 Angola
                              119.0
                                        62.3
                                               2.85
                                                        42.9
                                                                5900
                                                                         22.40
                                                                                     60.1
                                                                                              6.16
                                                                                                    3530
                 Antiqua
                                        45.5
                                               6.03
                                                        58.9
                                                                                     76.8
                                                                                              2.13 12200
                               10.3
                                                               19100
                                                                          1.44
                    and
                 Barbuda
In [23]:
          names = df['country'].copy
          X=df.drop(['country'],axis = 1)
In [24]:
          scaler = StandardScaler().fit(X)
          X_scaled = scaler.transform(X)
```

1.) Fit a kmeans Model with any Number of Clusters

```
In [26]: kmeans = KMeans(n_clusters = 5)
kmeans.fit(X_scaled)

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarn
ing: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the valu
e of `n_init` explicitly to suppress the warning
    warnings.warn(
    C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarni
    ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch
    unks than available threads. You can avoid it by setting the environment variable OMP
    _NUM_THREADS=1.
    warnings.warn(
```

```
Out[26]: 

KMeans (n_clusters=5)
```

2.) Pick two features to visualize across

```
X.columns
In [27]:
          Index(['child_mort', 'exports', 'health', 'imports', 'income', 'inflation',
Out[27]:
                 'life_expec', 'total_fer', 'gdpp'],
                dtype='object')
In [30]:
          import matplotlib.pyplot as plt
          x1 index = 2
          x2 index = 4
          scatter = plt.scatter(X_scaled[:, x1_index], X_scaled[:, x2_index], c=kmeans.labels_,
          centers = plt.scatter(kmeans.cluster_centers_[:, x1_index], kmeans.cluster_centers_[:,
          plt.xlabel(X.columns[x1_index])
          plt.ylabel(X.columns[x2_index])
          plt.title('Scatter Plot of Customers')
          # Generate Legend
          plt.legend()
          plt.grid()
          plt.show()
```

3/8/24, 1:01 PM Sec 1 Homework 9

Scatter Plot of Customers

3.) Check a range of k-clusters and visualize to find the elbow. Test 30 different random starting places for the centroid means

```
In [32]: wCSSs = []
Ks = range(1,15)
for k in Ks:
    kmeans = KMeans(n_clusters = k,n_init = 30).fit(X_scaled)
    wCSSs.append(kmeans.inertia_)
```

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

3/8/24, 1:01 PM Sec 1 Homework 9

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni
ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch
unks than available threads. You can avoid it by setting the environment variable OMP
_NUM_THREADS=1.
 warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

4.) Use the above work and economic critical thinking to choose a number of clusters. Explain why you chose the number of clusters and fit a model accordingly.

```
In [36]: plt.plot(Ks,wCSSs)
    plt.xlabel('num clusters')
    plt.ylabel('WCSS')
```

Out[36]: Text(0, 0.5, 'WCSS')

In []: #divisions between countries will likely be very difficult to group by in clusters of

6.) Do the same for a silhoutte plot

```
In [37]: from sklearn.metrics import silhouette_score

In [40]: SSs = []
   Ks = range(2,15)
   for k in Ks:
        kmeans = KMeans(n_clusters = k,n_init = 30).fit(X_scaled)
        sil = silhouette_score(X_scaled,kmeans.labels_)
        SSs.append(sil)
```

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

3/8/24, 1:01 PM Sec 1 Homework 9

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

```
In [43]: plt.plot(Ks,SSs)
    plt.xlabel('num clusters')
    plt.ylabel('SS')
```

Out[43]: Text(0, 0.5, 'SS')

7.) Create a list of the countries that are in each cluster. Write interesting things you notice.

```
In [44]: kmeans = KMeans(n_clusters = 2,n_init = 30).fit(X_scaled)

C:\Users\antek\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarni
    ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch
    unks than available threads. You can avoid it by setting the environment variable OMP
    _NUM_THREADS=1.
    warnings.warn(

In [46]: preds = pd.DataFrame(kmeans.labels_)

In [47]: output = pd.concat((preds,df),axis = 1)
```

In [48]:	outp	out										
Out[48]:		0	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gc
	0	0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	
	1	1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	4
	2	1	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	4
	3	0	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	3
	4	1	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	12
	•••											
	162	0	Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	2:
	163	1	Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	13
	164	1	Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	1.
	165	0	Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	1:
	166	0	Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	1,

167 rows × 11 columns

```
In [50]: print('Cluster 1:' )
    list(output.loc[output[0] == 0,'country'] )
```

Cluster 1:

```
['Afghanistan',
Out[50]:
           'Angola',
           'Bangladesh',
           'Benin',
           'Bolivia',
           'Botswana',
           'Burkina Faso',
           'Burundi',
           'Cambodia',
           'Cameroon',
           'Central African Republic',
           'Chad',
           'Comoros',
           'Congo, Dem. Rep.',
           'Congo, Rep.',
           "Cote d'Ivoire",
           'Egypt',
           'Equatorial Guinea',
           'Eritrea',
           'Gabon',
           'Gambia',
           'Ghana',
           'Guatemala',
           'Guinea',
           'Guinea-Bissau',
           'Guyana',
           'Haiti',
           'India',
           'Indonesia',
           'Iraq',
           'Kenya',
           'Kiribati',
           'Kyrgyz Republic',
           'Lao',
           'Lesotho',
           'Liberia',
           'Madagascar',
           'Malawi',
           'Mali',
           'Mauritania',
           'Micronesia, Fed. Sts.',
           'Mongolia',
           'Mozambique',
           'Myanmar',
           'Namibia',
           'Nepal',
           'Niger',
           'Nigeria',
           'Pakistan',
           'Philippines',
           'Rwanda',
           'Samoa',
           'Senegal',
           'Sierra Leone',
           'Solomon Islands',
           'South Africa',
           'Sudan',
           'Tajikistan',
           'Tanzania',
           'Timor-Leste',
```

```
'Togo',
'Tonga',
'Turkmenistan',
'Uganda',
'Uzbekistan',
'Vanuatu',
'Yemen',
'Zambia']

In [51]: print('Cluster 2:' )
list(output.loc[output[0] == 1,'country'] )
Cluster 2:
```

```
['Albania',
Out[51]:
           'Algeria',
           'Antigua and Barbuda',
           'Argentina',
           'Armenia',
           'Australia',
           'Austria',
           'Azerbaijan',
           'Bahamas',
           'Bahrain',
           'Barbados',
           'Belarus',
           'Belgium',
           'Belize',
           'Bhutan',
           'Bosnia and Herzegovina',
           'Brazil',
           'Brunei',
           'Bulgaria',
           'Canada',
           'Cape Verde',
           'Chile',
           'China',
           'Colombia',
           'Costa Rica',
           'Croatia',
           'Cyprus',
           'Czech Republic',
           'Denmark',
           'Dominican Republic',
           'Ecuador',
           'El Salvador',
           'Estonia',
           'Fiji',
           'Finland',
           'France',
           'Georgia',
           'Germany',
           'Greece',
           'Grenada',
           'Hungary',
           'Iceland',
           'Iran',
           'Ireland',
           'Israel',
           'Italy',
           'Jamaica',
           'Japan',
           'Jordan',
           'Kazakhstan',
           'Kuwait',
           'Latvia',
           'Lebanon',
           'Libya',
           'Lithuania',
           'Luxembourg',
           'Macedonia, FYR',
           'Malaysia',
           'Maldives',
           'Malta',
```

```
'Mauritius',
          'Moldova',
          'Montenegro',
          'Morocco',
          'Netherlands',
          'New Zealand',
          'Norway',
          'Oman',
          'Panama'
          'Paraguay',
          'Peru',
          'Poland',
          'Portugal',
          'Qatar',
          'Romania',
          'Russia',
          'Saudi Arabia',
          'Serbia',
          'Seychelles',
          'Singapore',
          'Slovak Republic',
          'Slovenia',
          'South Korea',
          'Spain',
          'Sri Lanka',
          'St. Vincent and the Grenadines',
          'Suriname',
          'Sweden',
          'Switzerland',
          'Thailand',
          'Tunisia',
          'Turkey',
          'Ukraine',
          'United Arab Emirates',
          'United Kingdom',
          'United States',
          'Uruguay',
          'Venezuela',
          'Vietnam']
In [3]:
         #Cluster 2 possess more developed economics however there are some suprising entries i
         #Cluster 1 posses mongolia whiles paraquay is in cluster 2 despite having nearly a 2x
```

8.) Create a table of Descriptive Statistics. Rows being the Cluster number and columns being all the features. Values being the mean of the centroid. Use the nonscaled X values for interprotation

```
In [58]: output.drop(columns = output[['country']],axis = 1).groupby(0).mean()
```

3/8/24, 1:01 PM Sec_1_Homework_9

Out[58]:		${\bf child_mort}$	exports	health	imports	income	inflation	life_expec	total_fer	g
	0									
	0	76.280882	30.198515	6.090147	43.642146	4227.397059	11.098750	61.910294	4.413824	1981.23
	1	12.161616	48.603030	7.314040	49.121212	26017.171717	5.503545	76.493939	1.941111	20507.979
4										•
In [59]:	ou	tput.drop(columns =	output['country']],axis = 1)	.groupby(0).std()		
Out[59]:		child_mort	exports	health	imports	income	inflation	life_expec	total_fer	g
Out[59]:	0	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	g
Out[59]:	0	child_mort 38.076068	exports 18.201742		imports 19.323451	income 4890.581414	inflation 13.682630	life_expec 6.897418	total_fer 1.285590	g 2528.50!
Out[59]:			•	2.645319					1.285590	
Out[59]:	0	38.076068	18.201742	2.645319	19.323451	4890.581414	13.682630	6.897418	1.285590	2528.50

9.) Write an observation about the descriptive statistics.

In [3]: #it appears cluster 2 is higher in positive metrics and lower in all negative metrics