(19) 世界知的所有権機関 国際事務局

PCT

(10) 国際公開番号 WO 2006/004030 A1

(43) 国際公開日 2006 年1 月12 日 (12.01.2006)

(51) 国際特許分類⁷: A61K 45/00, 9/10, 31/18, 31/404, 31/423, 31/517, 31/5377, A61P 7/02, 9/00, 13/12, 35/00, 35/04, 43/00, C07D 239/70, 239/90, 239/91, 261/20, 401/04, 401/06, 401/12, 403/04, 403/06, 403/12, 409/04, 417/04, C07J 9/00

(21) 国際出願番号: PCT/JP2005/012185

(22) 国際出願日: 2005 年7 月1 日 (01.07.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-196468 2004 年7 月2 日 (02.07.2004) JP

- (71) 出願人 (米国を除く全ての指定国について): 三共 株式会社 (SANKYO COMPANY, LIMITED) [JP/JP]; 〒1038426 東京都中央区日本橋本町 3 丁目 5 番 1 号 Tokyo (JP).
- (72) 発明者: および
- (75) 発明者/出願人 (米国についてのみ): 寺坂 直生 (TERASAKA, Naoki) [JP/JP]; 〒1408710 東京都品川 区広町 1 丁目 2 番 5 8 号 三共株式会社内 Tokyo (JP). 廣島 綾乃 (HIROSHIMA, Ayano) [JP/JP]; 〒1408710 東京都品川区広町 1 丁目 2 番 5 8 号 三共株式会社内 Tokyo (JP).

- (74) 代理人: 特許業務法人特許事務所サイクス (SIKs & Co.); 〒1040031 東京都中央区京橋一丁目8番7号京橋日殖ビル8階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- ─ 国際調査報告書
- 電子形式により別個に公開された明細書の配列表部分、請求に基づき国際事務局から入手可能

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: TISSUE FACTOR PRODUCTION INHIBITOR

(54) 発明の名称: 組織因子産生抑制剤

(57) Abstract: A pharmaceutical having the potency of inhibiting the production of tissue factors, which pharmaceutical comprises an LXR ligand as an active ingredient. There is provided a pharmaceutical for the treatment and/or prevention of vascular re-stenosis encountered after angioplasty, endarterectomy, percutaneous coronary angioplasty (PTCA) or stent placement, or for the treatment and/or prevention of blood coagulation disorder, diseases induced by platelet aggregation including stable or unstable angina, disorders of cardiovascular and cerebrovascular systems including thromboembolism induced by diabetes, re-thrombosis encountered after thrombolysis, brain ischaemia seizure, infarction, apoplexy, dementia resulting from ischemia, peripheral arterial disease, thromboembolism encountered during the use of aortocoronary bypass, glomerulosclerosis, kidney embolism, tumor or cancer metastasis, which pharmaceutical comprises an LXR ligand as an active ingredient.

(57) 要約: 組織因子の産生抑制作用を有する医薬であって、LXRリガンドを有効成分として含む医薬、及び血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈ー冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞皮症、腫瘍、又は、癌転移の治療及び/又は予防のための医薬であって、LXRリガンドを有効成分として含む医療

明細書

組織因子產生抑制剤

技術分野

[0001] 本発明は、リバーXレセプターのリガンドを含有する組織因子の産生抑制剤に関する。

背景技術

- [0002] 食事の欧米化や人口の高齢化等に伴い、アテローム性動脈硬化症は増加の一途を辿っている。アテローム性動脈硬化症は、虚血性心疾患(心筋梗塞、不安定狭心症等)、虚血性脳疾患(脳梗塞、脳内出血等)、末梢循環不全症等の主因となる。また、アテローム性動脈硬化症をもたらす危険因子としては、高脂血症(特に、高コレステロール血症)のほか、高血圧症、インシュリン抵抗性に基づく糖代謝異常を挙げることができる。高脂血症は血管内皮細胞障害作用のみならず、血管壁に沈着するコレステロールを供給するという意味からも、その管理は重要である。
- [0003] 虚血性心疾患、特に急性冠症候群や不安定狭心症では、プラークにおいて血液 凝固のイニシエーターである組織因子が増加し、血栓形成性を高めていることが分 かっている。血栓性疾患は、直接死因に結びつくばかりではなく、患者の予後の悪さ 、生活に対する制限など個人的、社会的負担を多く強いることになる。従って、これら 血栓症に対する治療法として、抗凝固法は今後ますます重要性が増すと考えられる 。虚血性心疾患において閉塞又は狭窄した冠動脈の病変部を、カテーテル法を使っ て拡張する血管内手術、即ち経皮的冠動脈形成術(PTCA)が広く施術されている。 しかしながら、PTCA術後の再狭窄が予後の問題となっており、その効果的な治療又 は予防法の開発が求められている。組織因子の産生を抑制することができれば、血 栓形成性を低下させることができ、虚血性疾患の根治療法が可能になると期待され るが、従来、組織因子の産生を抑制する作用を有する医薬は提供されていない。
- [0004] 一方、ATP Binding Cassette Transporter—A1 (ABCA1)は、血管壁に沈着したコレステロールを除去する作用を持つことから、その増加は動脈硬化症の進展を防止、あるいは改善すると考えられている。リバーXレセプター(Liver X Receptor、本明細書

2

において「LXR」と略す)に対するアゴニストは、ABCA1の発現増加作用を有することから、新規抗動脈硬化剤として期待されている。しかしながら、LXRの組織因子の産生に対する作用は従来全く知られていない。

特許文献1:国際公開WO02/062302号

特許文献2:国際公開WO03/039480号

特許文献3:国際公開WO03/090746号

特許文献4:国際公開WO02/46141号

特許文献5:国際公開WO03/103651号

特許文献6:国際公開WO03/084544号

特許文献7:国際公開WO02/046181号

特許文献8:国際公開WO02/046172号

特許文献9:国際公開WO02/024632号

特許文献10:国際公開WO2004/009091号

特許文献11:国際公開WO03/031408号

特許文献12:国際公開WO03/045382号

特許文献13:国際公開WO03/053352号

特許文献14:国際公開WO2004/011448号

特許文献15:国際公開WO03/099769号

特許文献16:国際公開WO03/099775号

特許文献17:国際公開WO03/059874号

特許文献18:国際公開WO03/082192号

特許文献19:国際公開WO03/082802号

特許文献20:国際公開WO03/082205号

特許文献21:国際公開WO01/60818号

特許文献22:国際公開WO00/54759号

特許文献23:国際公開WO03/063796号

特許文献24:国際公開WO03/063576号

特許文献25:国際公開WO03/059884号

3

特許文献26:国際公開WO01/41704号

特許文献27:国際公開WO03/090869号

特許文献28:国際公開WO2004/024161号

特許文献29:国際公開WO2004/024162号

特許文献30:国際公開WO2004/026816号

特許文献31:国際公開WO03/090732号

特許文献32:国際公開WO2004/043939号

特許文献33:国際公開WO2004/072041号

特許文献34:国際公開WO2004/072042号

特許文献35:国際公開WO2004/072046号

特許文献36:国際公開WO2004/076418号

特許文献37:国際公開WO2004/103376号

特許文献38:国際公開WO2005/005416号

特許文献39:国際公開WO2005/005417号

特許文献40:国際公開WO2005/016277号

特許文献41:国際公開WO2005/023188号

特許文献42:国際公開WO2005/023196号

特許文献43:国際公開WO2005/023247号

特許文献44:米国公開US2004/0152681号

特許文献45:国際公開WO03/106435号

特許文献46:国際公開WO2005/023782号

発明の開示

発明が解決しようとする課題

[0005] 本発明の課題は、血栓形成性を低下させる作用を有し、血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来

の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、 糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防のために 有用な医薬を提供することにある。また、本発明は、その具体的手段として、組織因 子の産生抑制作用を有する医薬を提供することを課題としている。

課題を解決するための手段

- [0006] 本発明者らは、上記の課題を解決すべく鋭意研究を行なった結果、LXRに対するアゴニストやアンタゴニストなどのLXRリガンドが組織因子の産生を抑制する作用を有しており、温血動物の生体内で血栓形成性を低下させることができること、及び該LXRリガンドが血管形成術、血管内膜切除術、経皮的冠動脈形成術、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防のための医薬の有効成分として有用であることを見出した。本発明は上記の知見を基にして完成された。
- [0007] すなわち、本発明により、組織因子の産生抑制作用を有する医薬であって、LXRリガンドを有効成分として含む医薬が提供される。上記医薬は温血動物(ヒトを含む)の生体内において血栓形成性を低下させる作用を有している。また、本発明により、血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防のための医薬であって、LXRリガンドを有効成分として含む医薬が提供される。LXRリガンドとしては、例えば、LXRアゴニスト又はLXRアンタゴニストを用いることができ、好ましくはLXRアゴニストを用いることができる。

- [0008] 別の観点からは、本発明により、温血動物(ヒトを含む)の生体内において組織因子の産生を抑制する方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法;温血動物(ヒトを含む)の生体内において血栓形成性を低下させる方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法;血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄を治療及び/又は予防する方法、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移を治療及び/又は予防する方法であって、温血動物(ヒトを含む)の生体内において血栓形成性を低下させる方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法;並びに、上記医薬の製造のためのLXRリガンドの使用が提供される。発明の効果
- [0009] 本発明の医薬は組織因子の産生抑制作用を有しており、温血動物の生体内において血栓形成性を低下させる作用を有している。従って、本発明の医薬は、血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防のために有用である。

発明を実施するための最良の形態

[0010] 本明細書において、「LXRリガンド」という用語は、LXRにリガンドとして結合する性質を有する物質を意味している。この用語は、例えば、LXRアゴニスト又はLXRアンタゴニストを含めて最も広義に解釈すべきであり、いかなる意味においても限定的に解釈してはならない。LXRリガンドとしては任意の物質を用いることができ、例えば、有

機低分子化合物、有機高分子化合物、又は無機化合物のほか、蛋白質類、核酸類、脂質類、ステロイド類、若しくは糖類類などの生体関連物質であってもよい。好ましくは、有機低分子化合物を用いることができる。LXRは、例えば、国際公開WO 03/10 6435号等に記載された方法により精製蛋白質として当業者が容易に入手可能であり、LXRにリガンドとして結合可能であるか否かは、例えば、国際公開WO 03/106435号等に記載された方法又はそれに準じた方法により当業者が容易に確認できる。具体的には、本明細書の実施例中に述べるコトランスフェクションアッセイ(Co-transfection assay)を用いて化合物のLXRリガンドとしての活性を測定することもできる。LXRリガンドとしては、LXRアゴニスト又はLXRアンタゴニストが好ましく、LXRアゴニストが特に好ましい。LXRリガンドであれば構造にかかわらず組織因子産生抑制活性を有しているので、LXRリガンドであることが知られているか、あるいはLXRリガンドであることが証明できる物質であれば、いかなる物質も本発明の医薬の有効成分として用いることが可能である。

[0011] より具体的には、LXRリガンドとして、国際公開WO03/106435号に記載された下記 の化合物又はその薬理上許容される塩若しくはエステルを用いることができる。

[化1]

一般式(Ia)

$$Ra^{4}$$

$$Ra^{5}$$

$$Ra^{6}$$

$$Ra^{7}$$

[式中、Ra¹、Ra²及びRa³は、同一又は異なって、水素原子、水酸基、フッ素原子、塩素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、アセチルアミノ基、又は、Ra¹及びRa²が一緒となってメチレンジオキシ基を示し;

Ra⁴及びRa⁵は、同一又は異なって、水素原子、塩素原子、メチル基、又は、メトキシ 基を示し: Yaは、ベンジル基、置換されたベンジル基(当該置換基は、 C_1 - C_2 アルキル基、 C_1 - C_2 アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)、チエニルメチル基、置換されたチエニルメチル基(当該置換基は、 C_1 - C_2 アルキル基、 C_1 - C_2 アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)、ピリジルメチル基、又は、置換されたピリジルメチル基(当該置換基は、 C_1 - C_2 アルキル基、 C_1 - C_2 アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)を示し;

Aaは、フェニル基を示す。]

で表される化合物又はその薬理上許容される塩若しくはエステル。

- [0012] 一般式(Ia)の各置換基の定義における「C_-Cアルキル基」は、1乃至6個の炭素原子を有する直鎖又は分枝鎖アルキル基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sーブチル基、tーブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tーペンチル基、1ーメチルブチル基、ヘキシル基、1ーメチルペンチル基、2ーメチルペンチル基、3ーメチルペンチル基、1ーエチルブチル基、又は、2ーエチルブチル基であり得、好適には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sーブチル基、tーブチル基のようなC_-Cアルキル基であり、より好適には、メチル基、エチル基、プロピル基、又は、イソプロピル基であり、より好適には、メチル基、エチル基、プロピル基、又は、イソプロピル基であり、最も好適には、メチル基又はエチル基である。
- [0013] 一般式(Ia)の各置換基の定義における「C₁-C₂アルコキシ基」は、上記C₁-C₂アルキル基で置換された水酸基であり、例えば、メトキシ基、エトキシ基、1ープロポキシ基、2ープロポキシ基、1ープロポキシ基、2ープロポキシ基、1ープロポキシ基、2ーメチルー2ープロポキシ基、1ーペンチルオキシ基、2ーペンチルオキシ基、3ーペンチルオキシ基、2ーペンチルオキシ基、3ーペンチルオキシ基、2ープトキシ基、1ーへキシルオキシ基、2ーメチルー2ーブトキシ基、3ーペーン・フルオキシ基、2ーメチルー1ーペンチルオキシ基、2ーメチルー1ープトキシ基、2・スージメチルー1ーブトキシ基、2・スージメチルー1ーブトキシ基、2・スージメチルー1ーブトキシ基、2・スージメチルー1ーブトキシ基であり、より好適には、メトキシ基であり、最も好適には、メトキシ基であり、より好適には、メトキシ基であり、最も好適には、メトキシ基である。
- [0014] 一般式(Ia)の各置換基の定義における「ハロゲノ基」は、フルオロ基、クロロ基、ブロ

モ基、又は、ヨード基であり得、好適には、フルオロ基、クロロ基又はブロモ基であり、 より好適には、フルオロ基又はクロロ基であり、最も好適には、フルオロ基である。

一般式(Ia)で表される化合物は、国際公開WO2003/106435号に記載された方法で製造することができる。

[0015] また、LXRリガンドとして、国際公開WO2005/023782号で公開された下記の化合物 又はその薬理上許容される塩若しくはエステルを用いることができる。

一般式(Ib)

[化2]

$$Rb^{4}$$
 Rb^{5}
 Rb^{5}
 Rb^{6}
 Rb^{7}
 Rb^{1}
 Rb^{2}
 Rb^{3}
 Rb^{3}
 Rb^{4}
 Rb^{5}
 R

[式中、Abは、フェニル基を示し;

Rb¹は、5乃至7員へテロシクリル基、又は、式一〇一Rb^{1a}[式中、Rb^{1a}は、置換された C₋C₋アルキル基(当該置換基は、同一又は異なり、水酸基、ヒドロキシメトキシ基、ヒドロキシメトキシ基、アコキシエトキシ基、アミノ基、メチルアミノ基、エチルアミノ基から成る群より選択される1乃至2個の基である)で表される基を示し;

Rb²は、水素原子、メチル基、水酸基、メトキシ基、アミノ基、フルオロ基、又は、クロロ基を示し;

Rb³は、水素原子を示し;

Rb⁴及びRb⁵は、同一又は異なって、水素原子、メチル基、エチル基、メトキシ基、フルオロ基、又は、クロロ基を示し;

Ybは、ベンジル基、置換されたベンジル基(当該置換基は、 C_1 - C_1

基、又は、置換されたピリジルメチル基(当該置換基は、C₁-C₁アルキル基、C₁-C₂アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)を示す。]
で表される化合物又はその薬理上許容される塩若しくはエステル。

- [0016] 一般式(Ib)の各置換基の定義における「C₁-C₂アルキル基」は、1乃至6個の炭素原子を有する直鎖又は分枝鎖アルキル基であり、例えば、メチル基、エチル基、1ープロピル基、2ープロピル基、1ーブチル基、2ーブチル基、2ーメチルー1ープロピル基、2ーメチルー2ープロピル基、1ーペンチル基、2ーペンチル基、3ーペンチル基、2ーメチルー2ーブチル基、3ーペンチル基、1ーヘキシル基、2ーヘキシル基、2ースチルー1ープチル基、3ースチルー1ーペンチル基、2ーエチルー1ーブチル基、2,2ージメチルー1ーブチル基、又は、2,3ージメチルー1ーブチル基であり得、好適には、C₁-C₂アルキル基であり、より好適には、メチル基であり、最も好適には、メチル基である。
- [0017] 一般式(Ib)の各置換基の定義における「5乃至7員へテロシクリル基」は、窒素原子、酸素原子及び硫黄原子から成る群より選択される1乃至4個の原子を含む5乃至7員複素環基であり、例えば、フリル基、チエニル基、ピロリル基、ピラブリル基、イミダブリル基、オキサブリル基、イソキサブリル基、チアブリル基、イソチアブリル基、1,2,3ーオキサジアブリル基、1,2,3ーオキサジアブリル基、1,2,3ーオキサジアブリル基、1,2,3ーオキサジアブリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、アゼピニル基のような不飽和複素環基、又は、ピロリジニル基、ピロリニル基、イミダブリジニル基、イミダブリジニル基、イミダブリニル基、ゲーンジェル基、ピーンジニル基、モルホリニル基、チオモルホリニル基、パーヒドロアゼピニル基のような上記不飽和複素環基が部分的に若しくは完全に還元された基であり得、好適には、イミダブリル基、トリアブリル基、ピリジル基、又は、モルホリニル基である。
- [0018] 一般式(Ib)の各置換基の定義における「C-Cアルコキシ基」は、上記C-Cアルキル基で置換された水酸基であり、例えば、メトキシ基、エトキシ基、1ープロポキシ基、2ープロポキシ基、1ーブトキシ基、2ープトキシ基、2ーメチルー1ープロポキシ基、2ーメチルー2ープロポキシ基、1ーペンチルオキシ基、2ーペンチルオキシ基、3ーペンチルオキシ基、2ーメチルー2ーブトキシ基、1ーペキンチルオキシ基、2ーメチルー2ーブトキシ基、1ーペキ

シルオキシ基、2-ヘキシルオキシ基、3-ヘキシルオキシ基、2-メチル-1-ペン チルオキシ基、3-メチル-1-ペンチルオキシ基、2-エチル-1-ブトキシ基、2, 2-ジメチル-1-ブトキシ基、又は、2,3-ジメチル-1-ブトキシ基であり得、好適 には、 C_1 - C_1

- [0019] 一般式(Ib)の各置換基の定義における「ハロゲノ基」は、フルオロ基、クロロ基、ブロモ基、又は、ヨード基であり得、好適には、フルオロ基、クロロ基又はブロモ基であり、より好適には、フルオロ基又はクロロ基であり、最も好適には、フルオロ基である。 一般式(Ib)で表される化合物は、国際公開WO2005/023782号に記載された方法
- [0020] さらに、LXRリガンドとして、PCT/JP2005/009142明細書および特願2005-146390号 明細書に開示された下記の化合物又はその薬理上許容される塩若しくはエステルを 用いることもできる。

一般式(Ic)

で製造することができる。

[化3]

$$Rc^3$$
 Rc^4
 Rc^5
 Rc^7
 Rc^2
 Rc^6
 Rc^6

[式中、 Rc^1 、 Rc^2 、 Rc^3 、および、 Rc^4 は、同一または異なり、水素原子、 C_1 $-C_3$ アルキル基、フルオロメチル基、クロロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、フルオロメトキシ基、クロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、メタンスルホニル基、エタンスルホニル基、フルオロ基、クロロ基、または、ブロモ基を示し; Rc^5 は、水素原子を示し;

 Rc^6 は、式 $-CORc^8$ [式中、 Rc^8 は、 C_3 $-C_5$ アルコキシ基、または、ハロゲノ C_3 $-C_5$ アルコキシ基(当該ハロゲノ C_3 $-C_5$ アルコキシ基は、1乃至5個のフルオロもしくはクロ

ロ基で置換された C_3 $-C_5$ アルコキシ基を示す)を示す。]を有する基を示し; Rc^7 は、式 $-N(Rc^{10})ZcRc^{11}$ を有する基

[式中、Rc10は、メチル基、エチル基またはシクロプロピル基を示し、

 Rc^{11} は、 C_1 $-C_1$ アルキル基、置換 C_1 $-C_1$ アルキル基(当該置換基は、置換基群 α cより選択される1個の基である)、シクロプロピルー(C_1 $-C_2$ アルキル)基、 C_3 $-C_4$ シクロアルキル基、または、 C_3 $-C_4$ アルケニル基を示し、

 $Zcは、式-CO-、-CS-もしくは-SO_2-を有する基を示す。]を示し;$

Ycは、フェニル基、置換フェニル基(当該置換基は、置換基群 β cより選択される1個の基である)、ピリジル基、または、置換ピリジル基(当該置換基は、置換基群 β cより選択される1個の基である)を示し;

置換基群 α cは、ヒドロキシル基、メトキシ基、エトキシ基、フルオロメトキシ基、クロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、ベンジルオキシ基、フェニルオキシ基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジメチルアミノ基、ジェチルアミノカルボニル基、ジエチルアミノカルボニル基、フルオロ基、および、クロロ基からなる群を示し;

- [0021] 一般式(Ic)の各置換基の定義における「C₁-C₇ルキル基」は、1乃至3個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、又は、2-プロピル基であり得、好適には、メチル基またはエチル基である。
- [0022] 一般式(Ic)の各置換基の定義における「C₃-C₇ルコキシ基」は、C₃-C₇ルキル基で置換されたヒドロキシル基であり、例えば、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基、2-メチル-1-プロポキシ基、2-メチル-2-プロポキシ基、1-ペンチルオキシ基、2-ペンチルオキシ基、3-ペンチルオキシ基、

- 2-メチル-2-ブトキシ基、3-メチル-2-ブトキシ基、1-ヘキシルオキシ基、2 -ヘキシルオキシ基、3-ヘキシルオキシ基、2-メチル-1-ペンチルオキシ基、3 -メチル-1-ペンチルオキシ基、2-エチル-1-ブトキシ基、2,2-ジメチル-1 -ブトキシ基、または、2,3-ジメチル-1-ブトキシ基であり得、好適には、2-プロポキシ基または2-メチル-2-プロポキシ基である。
- [0023] 一般式(Ic)の各置換基の定義における「ハロゲノC $_3$ -C $_5$ アルコキシ基」は、1乃至5個のフルオロもしくはクロロ基で置換された C_3 -C $_5$ アルコキシ基であり、例えば、3-フルオロプロポキシ基、3-クロロプロポキシ基、4-フルオロブトキシ基、または、5-フルオロペンチルオキシ基であり得る。
- [0024] 一般式(Ic)の各置換基の定義における「C₁-C₇ルキル基」は、1乃至4個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-メチル-1-プロピル基、または、2-メチル-2-プロピル基であり得、好適には、メチル基またはエチル基であり、最も好適には、メチル基である。
 - 一般式(Ic)の各置換基の定義における「シクロプロピルー(C₁ C₂ アルキル)基」は、例えば、シクロプロピルメチル基またはシクロプロピルエチル基であり得、好適には、シクロプロピルメチル基である。
- [0025] 一般式(Ic)の各置換基の定義における「C₃-C₂シクロアルキル基」は、例えば、シクロプロピル基またはシクロブチル基であり得、好適には、シクロプロピル基である。
 一般式(Ic)の各置換基の定義における「C₂-C₂アルケニル基」は、1乃至2個の炭素一炭素二重結合および2乃至4個の炭素原子を有するアルケニル基であり、例えば、ビニル基、2-プロペニル基、2-ブテニル基、1,3-ブタジエン-1-イル基、または、2-メチル-2-プロペニル基であり得、好適には、ビニル基、2-プロペニル基をある。
- [0026] 一般式(Ic)の各置換基の定義における「ハロゲノC₁ C₂ アルキル基」は、1乃至5個のフルオロ、クロロもしくはブロモ基で置換された上記C₁ C₂ アルキル基であり、例えば、フルオロメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、トリフルオロメチル基、トリクロロメチル基、2-ブロモエチル基

- 、2-クロロエチル基、2-ヨードエチル基、2,2-ジフルオロエチル基、2,2,2ートリフルオロエチル基、トリクロロエチル基、ペンタフルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、または、4-フルオロブチル基であり得、好適には、フルオロメチル基、クロロメチル基、ジフルオロメチル基、トリフルオロメチル基、または、ペンタフルオロエチル基であり、最も好適には、トリフルオロメチル基である。
- [0027] 一般式(Ic)の各置換基の定義における「C₁-C₂アルコキシ基」は、上記C₁-C₂アルキル基で置換されたヒドロキシル基であり、例えば、メトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-プトキシ基、2-ブトキシ基、2-メチル-1-プロポキシ基、または、2-メチル-2-プロポキシ基であり得、好適には、メトキシ基またはエトキシ基であり、最も好適には、メトキシ基である。
- [0028] 一般式(Ic)の各置換基の定義における「(C₁-C₇ルコキシ)カルボニル基」は、上記C₁-C₇ルコキシ基で置換されたカルボニル基(-CO-)であり、例えば、メトキシカルボニル基、エトキシカルボニル基、1-プロポキシカルボニル基、2-プロポキシカルボニル基、1-ブトキシカルボニル基、2-ブトキシカルボニル基、2-メチルー1-プロポキシカルボニル基、または、2-メチルー2-プロポキシカルボニル基であり得、好適には、メトキシカルボニル基またはエトキシカルボニル基であり、最も好適には、メトキシカルボニル基である。
- [0029] 一般式(Ic)で表される化合物は、PCT/JP2005/009142明細書に記載された下記のAc法又はBc法に従って製造することができる。
- [0030] [化4]

[化5]

WO 2006/004030

Bc.
$$\frac{Rc^4}{Rc^3}$$
 $\frac{Rc^5}{Rc^2}$ $\frac{Bc-1}{Rc^5}$ $\frac{Rc^4}{Rc^5}$ $\frac{Rc^5}{Rc^4}$ $\frac{Rc^5}{Rc^6}$ $\frac{Rc^4}{Rc^5}$ $\frac{Rc^5}{Rc^6}$ $\frac{Rc^4}{Rc^5}$ $\frac{Rc^5}{Rc^6}$ $\frac{Rc^4}{Rc^5}$ $\frac{Rc^5}{Rc^6}$ $\frac{Rc^6}{(lc)}$ $\frac{Rc^6}{(lc)}$ $\frac{Rc^6}{(lc)}$

[0031] 上記Ac法又はBc法の化合物の構造式において、 Rc^1 、 Rc^2 、 Rc^3 、 Rc^4 、 Rc^5 、 Rc^6 、 Rc^7 、および、Ycは、上記のものと同意義を示し、 Rc^3 は、 C_1 C_1 C_2 C_3 C_4 C_4 C_5 C_4 C_5 C_5 C_5 C_6 C_5 C_6 C_6

下記Ac法又はBc法の反応において、反応基質となる化合物が、アミノ基、水酸基またはカルボキシル基等の目的の反応を阻害する基を有する場合、必要に応じて適宜、それらの基への保護基の導入を行ってもよく、また、必要に応じて適宜、導入した保護基の除去を行なってもよい(例えば、T. H. Greene, P. G. Wuts, Protective Groups in Organic Synthesis. Third Edition, 1999年, John Wiley & Sons, Inc.等)。

[0032] (Ac法)

Ac法は、化合物(Ic)を製造する方法である。

(Ac-1工程)

Ac-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(1c)を酸存在下にて亜硝酸塩と反応させて得られるジアゾニウム塩を、還元剤で還元して、化合物(2c)を製造する工程である。

使用される亜硝酸塩は、例えば、アルカリ金属亜硝酸塩であり得、好適には、亜硝酸ナトリウムである。

使用される酸は、例えば、無機酸であり得、好適には、塩酸である。

使用される還元剤は、例えば、金属塩化物であり得、好適には、塩化スズ(II)である。

使用される溶媒は、好適には、有機酸類、水またはそれらの混合物であり、より好適 には、水である。

反応温度は、好適には、一30乃至30℃である。

反応時間は、好適には、30分間乃至3時間である。

(Ac-2工程)

Ac-2工程は、

(Ac-2a工程)Ac-1工程で得られる化合物(2c)を、公知であるかまたは公知の化合物から容易に得られる化合物(3c)と反応させて、化合物(4c)を製造する工程である。

また、Ac-2工程は、

(Ac-2b工程):Ac-1工程で得られる化合物(2c)を公知であるかまたは公知の化合物から容易に得られる式 Rc^5 CH 2 COCOOHを有する化合物と反応させる工程;および、

(Ac-2c工程):引き続いて、Ac-2b工程で得られる化合物を酸存在下にて、式Rc ^eOHを有する化合物と反応させ、化合物(4c)を製造する工程によっても行うことができる。

Ac-2a工程およびAc-2b工程において、使用される溶媒は、好適には、芳香族

炭化水素類であり、より好適には、ベンゼンまたはトルエンである。

反応温度は、好適には、50乃至100℃である。

反応時間は、好適には、30分間乃至3時間である。

Ac-2c工程において、使用される酸は、例えば、無機酸であり得、好適には、塩酸または硫酸である。

使用される溶媒は、好適には、式RcOHを有するアルコールである。

反応温度は、好適には、50乃至100℃である。

反応時間は、好適には、30分間乃至3時間である。

(Ac-3工程)

Ac-3工程は、Ac-2工程で得られる化合物 (4c)を酸存在下にて反応させて、化合物 (5c)を製造する工程である。

使用される酸は、例えば、無機酸であり得、好適には、硫酸またはポリリン酸である

使用される溶媒は、好適には、脂肪族炭化水素類、芳香族炭化水素類またはこれらの混合物であり、より好適には、トルエンまたはキシレンである。

反応温度は、好適には、70乃至150℃である。

反応時間は、好適には、12時間乃至48時間である。

(Ac-4工程)

Ac-4工程は、Ac-3工程で得られる化合物 (5c)を塩基存在下にて、式(Rc^8CO_2)Oもしくは Rc^8CO Clを有する化合物と反応させて、化合物 (6c)を製造する工程である。

使用される塩基は、例えば、アルカリ金属水酸化物、有機アミンまたはこれらの混合物であり得、好適には、トリエチルアミン、4-(N,N-ジメチルアミノ)ピリジンまたはこれらの混合物である。

使用される溶媒は、好適には、ハロゲン化炭化水素類またはエーテル類であり、より好適には、メチレンクロリドである。

反応温度は、好適には、0乃至50℃である。

反応時間は、好適には、30分間乃至15時間である。

(Ac-5工程)

Ac-5工程は、Ac-4工程で得られる化合物 (6c)を還元して、化合物 (7c)を製造する工程である。

使用される還元剤は、例えば、水素化有機アルミニウム化合物であり得、好適には、 、ジ(イソブチル)アルミニウムヒドリドである。

使用される溶媒は、好適には、芳香族炭化水素類またはエーテル類であり、より好 適には、トルエン、ジエチルエーテルまたはテトラヒドロフランである。

反応温度は、好適には、一70乃至30℃である。

反応時間は、好適には、30分間乃至3時間である。

(Ac-6工程)

Ac-6工程は、Ac-5工程で得られる化合物(7c)をハロゲン化試薬と反応させて、化合物(8c)を製造する工程である。

使用されるハロゲン化試薬は、例えば、四塩化炭素もしくは四臭化炭素とトリフェニルホスフィンの組み合わせであり得、好適には、四臭化炭素とトリフェニルホスフィンの組み合わせである。

使用される溶媒は、好適には、エーテル類であり、より好適には、テトラヒドロフランである。

反応温度は、好適には、−20乃至40℃である。

反応時間は、好適には、10分間乃至3時間である。

(Ac-7工程)

Ac-7工程は、Ac-6工程で得られる化合物(8c)を塩基存在下にて、公知であるか、公知の化合物から容易に得られる化合物(9c)と反応させて、化合物(Ic)を製造する工程である。

使用される塩基は、例えば、アルカリ金属炭酸塩またはアルカリ金属炭酸水素塩であり得、好適には、炭酸ナトリウム、炭酸カリウムまたは炭酸セシウムである。

使用される溶媒は、好適には、アミド類であり、より好適には、ジメチルホルムアミド またはジメチルアセトアミドである。

反応温度は、好適には、20乃至60℃である。

反応時間は、好適には、30分間乃至15時間である。

[0033] (Bc法)

Bc法は、化合物(Ic)を製造する方法である。

(Bc-1工程)

Bc-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(10c)を触媒存在下にて水素添加反応に付し、化合物(11c)を製造する工程である。

使用される触媒は、好適には、パラジウムー炭素または水酸化パラジウムー炭素で ある。

本工程は、通常、常圧乃至10000hPa、好適には、常圧乃至5000hPaの水素雰囲気下で行われる。

使用される溶媒は、好適には、アルコール類であり、より好適には、メタノールまた はエタノールである。

反応温度は、好適には、20乃至50℃である。

反応時間は、好適には、30分間乃至3時間である。

(Bc-2工程)

Bc-2工程は、Bc-1工程で得られる化合物(11c)をアセチル化することにより、 化合物(12c)を製造する工程である。

使用されるアセチル化試薬は、例えば、無水酢酸またはアセチルクロリドであり得、 好適には、無水酢酸である。

本工程において、必要に応じて適宜、塩基を使用してもよい。使用される塩基は、 好適には、ピリジンである。

使用される溶媒は、好適には、アルコール類であり、より好適には、メタノールまた はアルコールである。

反応温度は、好適には、20乃至70℃である。

反応時間は、好適には、30分間乃至3時間である。

(Bc-3工程)

Bc-3工程は、Bc-2工程で得られる化合物 (12c)を金属試薬で処理することにより、化合物 (13c)を製造する工程である。

20

使用される金属試薬は、好適には、三塩化チタンと亜鉛の組み合わせ、または、四 塩化チタンと亜鉛の組み合わせである。

使用される溶媒は、好適には、エーテル類であり、より好適には、テトラヒドロフランである。

反応温度は、好適には、50乃至80℃である。

反応時間は、好適には、30分間乃至3時間である。

(Bc-4工程)

Bc-4工程は、Bc-3工程で得られる化合物 (13c) を用いて化合物 (14c) を製造する工程である。

Bc-4工程は、Ac-4工程と同様の方法に従って行うことができる。

(Bc-5工程)

Bc-5工程は、Bc-4工程で得られる化合物(14c)をハロゲン化試薬と反応させて、化合物(15c)を製造する工程である。

使用されるハロゲン化試薬は、例えば、N-ハロゲノスクシンイミドであり得、好適には、N-ブロモスクシンイミドである。

本工程において、必要に応じて適宜、有機過酸化物を使用してもよい。使用される 有機過酸化物は、好適には、過酸化ベンゾイルである。

本工程の反応は、好適には、遮光下にて行われる。

使用される溶媒は、好適には、ハロゲン化炭化水素類であり、より好適には、四塩 化炭素である。

反応温度は、好適には、20乃至90℃である。

反応時間は、好適には、30分間乃至3時間である。

(Bc-6工程)

Bc-6工程は、Bc-5工程で得られる化合物(15c)を塩基存在下にて、公知であるか、公知の化合物から容易に得られる化合物(9c)と反応させて、化合物(Ic)を製造する工程である。

Bc-6工程は、Ac-7工程と同様の方法に従って行うことができる。

「0034」 さらに、LXRリガンドとして、PCT/JP2005/011928明細書、特願2005-189264号明細

書に開示された下記の化合物又はその薬理上許容される塩若しくはエステルを用いることもできる。

一般式(Id)

[化6]

$$Rd^{3}$$

$$Rd^{5}$$

$$Rd^{2}$$

$$Rd^{1}$$

$$Rd^{6}$$

$$Rd^{7}$$

$$Rd^{8}$$

$$Rd^{8}$$

[式中、 Rd^1 は、式 $-CORd^9$ [式中、 Rd^9 は、 C_1 $-C_2$ アルコキシ基またはハロゲノ C_1 $-C_2$ アルコキシ基(当該ハロゲノ C_1 $-C_2$ アルコキシ基は、1乃至5個のハロゲノ基で置換された C_1 $-C_2$ アルコキシ基を示す)を示す。]を有する基を示し;

Rd²は、水素原子、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、フルオロ基、または、クロロ基を示し;

Rd⁴およびRd⁵は、水素原子を示し;

Rd⁶およびRd⁷は、水素原子を示し;

Rd⁸は、式-N(Rd¹⁰)ZdRd¹¹

[式中、 Rd^{10} は、メチル基、エチル基、1-プロピル基、または、2-プロピル基を示し、

 Rd^{11} は、 C_1 $-C_1$ アルキル基、置換 C_1 $-C_1$ アルキル基(当該置換基は、置換基群 α dより選択される1個の基である)、 $(C_3$ $-C_4$ シクロアルキル)メチル基、 C_3 $-C_4$ シクロアルキル基、または、ビニル基を示し、

Zdは、式-CO-、-CS-もしくは $-SO_2$ -を有する基を示す。]を有する基を示し;

Xd¹は、単結合を示し;

Ydは、フェニル基、置換フェニル基(当該置換基は、置換基群 β dより選択される1個の基である)、または、ピリジル基を示し;

置換基群 α dは、メトキシ基、メチルチオ基、メチルアミノ基、および、ジメチルアミノ 基からなる群を示し:

置換基群 β dは、メトキシ基、メチルアミノ基、ジメチルアミノ基、フルオロ基、および、クロロ基からなる群を示す。]

で表される化合物またはその薬理上許容される塩もしくはエステル。

- [0035] 一般式(Id)の各置換基の定義における「 $C_1 C_2$ アルコキシ基」は、上記と同様の C_1 C_2 アルキル基で置換されたヒドロキシル基であり、例えば、メトキシ基、エトキシ基、 $1 \mathcal{C}$ ロポキシ基、 $2 \mathcal{C}$ ロポキシ基、 $1 \mathcal{C}$ ロポキシ基、 $2 \mathcal{C}$ レイキシ基、 $2 \mathcal{C}$ ルオキシ基、 $2 \mathcal{C}$ ルカオキシ基、 $2 \mathcal{C}$ ルカオキシ基、 $2 \mathcal{C}$ アルカキシ基、 $2 \mathcal{C}$ アルカキシ基であり、より好適には、 $2 \mathcal{C}$ アルカキシ基であり、さらに好適には、 $2 \mathcal{C}$ アルカキシ基(特に、 $2 \mathcal{C}$ ロポキシ基、 $2 \mathcal{C}$ ルー $2 \mathcal{C}$ ロポキシ基または $2 \mathcal{C}$ アルカキシ基)であり、最も好適には、 $2 \mathcal{C}$ ルー $2 \mathcal{C}$ ロポキシ基である。

WO 2006/004030

ロー2ープトキシ基、2ートリフルオロメチルー1ープロポキシ基、または、2ートリフルオロメチルー2ープロポキシ基であり得、好適には、ハロゲノC $_3$ -C $_4$ アルコキシ基(当該ハロゲノC $_3$ -C $_4$ アルコキシ基は、1乃至5個のハロゲノ基で置換されたC $_3$ -C $_4$ コキシ基を示す)であり、より好適には、1,1,1ートリフルオロー2ープロポキシ基または2ートリフルオロメチルー2ープロポキシ基である。

- [0037] 一般式(Id)の各置換基の定義における「C₁-C₂アルキル基」は、1乃至4個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-メチル-1-プロピル基、または、2-メチル-2-プロピル基であり得、好適には、C₁-C₂アルキル基(特に、メチル基、エチル基またはプロピル基)であり、より好適には、メチル基またはエチル基であり、最も好適には、メチル基である。
- [0038] 一般式(Id)の各置換基の定義における「ハロゲノC₁ C₄アルキル基」は、1乃至5個の上記と同様のハロゲノ基で置換された上記C₁ C₄アルキル基であり、例えば、フルオロメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、トリフルオロメチル基、シークロロメチル基、2-フルオロエチル基、2-ブロモエチル基、2-クロロエチル基、2-ヨードエチル基、2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3-フルオロプロピル基、3-フルオロプロピル基、3-フルオロプロピル基、3-フルオロプロピル基、3-フルオロプロピル基、3-フルオロブチル基、または、4,4,4-トリフルオロブチル基であり得、好適には、ハロゲノC₁ C₂アルキル基(当該ハロゲノC₁ C₂アルキル基は、1乃至5個のフルオロ、クロロもしくはブロモ基で置換されたC₁ C₂アルキル基を示す)であり、より好適には、トリフルオロメチル基、2,2,2-トリフルオロエチル基、または、ペンタフルオロエチル基であり、最も好適には、トリフルオロメチル基である。
- [0039] 一般式(Id)の各置換基の定義における「 C_3 $-C_3$ > 2
 - 一般式(Id)の各置換基の定義における $\begin{bmatrix} C \\ -C \end{bmatrix}$ アルケニル基」は、1乃至2個の炭

素一炭素二重結合および2乃至4個の炭素原子を有するアルケニル基であり、例えば、ビニル基、2-プロペニル基、2-ブテニル基、1,3-ブタジエン-1-イル基、または、2-メチル-2-プロペニル基であり得、好適には、 C_2 - C_2 アルケニル基であり、最も好適には、ビニル基である。

[0040] 一般式(Id)の各置換基の定義における「 C_1 $-C_1$ $-C_1$

一般式(Id)の各置換基の定義における「 C_3 $-C_4$ シクロアルキル基」、ならびに、各置換基における C_3 $-C_4$ シクロアルキル部分は、3乃至4個の炭素原子を有する環状アルキル基であり、例えば、シクロプロピル基またはシクロブチル基であり得、最も好適には、シクロプロピル基である。

[0041] 一般式(Id)で表される化合物は、PCT/JP2005/011928明細書、特願2005-189264 号明細書に記載された下記のAd法又はBd法に従って製造することができる。 [化7]

$$Rd^3$$
 Rd^4 Rd^5 $Ad-1$ I Rd^4 Rd^5 Rd^6 Rd^8 Rd^8 Rd^8 Rd^8 Rd^8 Rd^8

[化8]

$$Rd^3$$
 Rd^4 Rd^5 Rd^8 Rd^8 Rd^8 Rd^4 Rd^8 Rd^4 Rd^5 Rd^4 Rd^5 Rd^4 Rd^8 Rd^4 Rd^6 Rd^8 Rd^9 Rd^9 Rd^9 Rd^8 Rd^8

上記Ad法またはBd法の化合物の構造式において、 Rd^1 、 Rd^2 、 Rd^3 、 Rd^4 、 Rd^5 、 Rd^6 、 Rd^7 、 Rd^8 、 Rd^9 、および、Ydは、上記のものと同意義を示し、 Rd^8 は、水素原子または C_1-C_2 アルキル基を示す。

「20042」 下記Ad法又はBd法の反応において、反応基質となる化合物が、アミノ基、水酸基またはカルボキシル基等の目的の反応を阻害する基を有する場合、必要に応じて適宜、それらの基への保護基の導入を行ってもよく、また、必要に応じて適宜、導入した保護基の除去を行なってもよい(例えば、T. H. Greene, P. G. Wuts, Protective Groups in Organic Synthesis. Third Edition, 1999年, John Wiley & Sons, Inc.等)。

[0043] (Ad法)

Ad法は、式(Id)において、 Rd^6 および Rd^7 が水素原子であり、 Xd^1 が単結合である化合物(Id-a)を製造する方法である。

(Ad-1工程)

Ad-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(1d) をハロゲン化剤でハロゲン化して、化合物(2d)を製造する工程である。

使用されるハロゲン化剤は、例えば、N-ハロゲノスクシンイミドであり、好適には、N-ブロモスクシンイミドである。Ad-1工程は、必要に応じて、アゾイソブチロニトリルのようなラジカル反応開始試薬(好適には、アゾイソブチロニトリル)の存在下にて行うことができる。

使用される溶媒は、好適には、芳香族炭化水素類またはハロゲン化炭化水素類であり、より好適には、ベンゼンまたは四塩化炭素である。

反応温度は、好適には、50乃至150℃である。

反応時間は、好適には、1時間乃至9時間である。

(Ad-2工程)

Ad-2工程は、Ad-1工程で得られる化合物(2d)を、塩基存在下にて化合物(3d)と反応させて、化合物(Id-a)を製造する工程である。化合物(3d)は、公知であるか、または、公知の化合物から容易に得られる。

使用される塩基は、例えば、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩または アルカリ金属水素化物であり、好適には、炭酸カリウムまたは炭酸セシウムである。 使用される溶媒は、好適には、アミド類であり、より好適には、ジメチルホルムアミド である。

反応温度は、好適には、0乃至50℃である。

反応時間は、好適には、1時間乃至24時間である。

[0044] (Bd法)

WO 2006/004030

Bd法は、式(Id)において、 Rd^1 が $-CORd^9$ であり、 Rd^6 および Rd^7 が水素原子であり、 Xd^1 が単結合である化合物(Id-b)を製造する方法である。

(Bd-1工程)

Bd-1工程は、Ad法等で得られる化合物 (4d) を酸で処理して、化合物 (5d) を製造する工程である。

使用される酸は、例えば、トリフルオロ酢酸または塩酸であり、好適には、トリフルオロ酢酸である。

使用される溶媒は、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メ チレンである。

反応温度は、好適には、20乃至60℃である。

反応時間は、好適には、3時間乃至24時間である。

(Bd-2工程)

Bd-2工程は、Bd-1工程で得られる化合物 (5d)を、縮合剤の存在下にて公知であるかまたは公知の化合物から容易に得られる化合物 (6d)と反応させて、化合物 (Id -b)を製造する工程である。

使用される縮合剤は、R. C. Larock, Comprehensive Organic Transformations. Sec ond Edition, 1999年, John Wiley & Sons, Inc.等に記載された縮合剤であり得る。使用される縮合剤は、例えば、

- (i) ジエチルホスホリルシアニド、ジフェニルホスホリルアジドのような燐酸エステル類と下記塩基の組合わせ:
- (ii) 1,3-ジシクロヘキシルカルボジイミド、1,3-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC) のようなカルボジイミド類; 上記カルボジイミド類と下記塩基の組合わせ; 上記カルボジイミド類とN-ヒドロ

WO 2006/004030

キシスクシンイミド、1ーヒドロキシベンゾトリアゾール、Nーヒドロキシー5ーノルボルネ ン-2,3-ジカルボキシイミドのようなNーヒドロキシ化合物の組合わせ;

- (iii) 2,2'ージピリジル ジスルフィド、2,2'ージベンゾチアゾリル ジスルフィドのような ジスルフィド類とトリフェニルホスフィン、トリブチルホスフィンのようなホスフィン類の組 合わせ:
- (iv)2-クロロー1-メチルピリジニウム ヨージド、2-ブロモー1-エチルピリジニウム クロリドのような2-ハロゲノー1-低級アルキルピリジニウム ハライド類と下記塩基の組合わせ;または、
- (v)1,1'ーオキザリルジイミダゾール、N,N'ーカルボニルジイミダゾールのようなイミダゾール類;または、
- (vi)pートルエンスルホニルクロリド、2,4,6ートリメチルスルホニルクロリド、2,4,6ートリイソプロピルスルホニルクロリドのようなスルホニルクロリド類と下記塩基の組合わせであり得、好適には、カルボジイミド類と塩基の組合わせ、2ーハロゲノー1ー低級アルキルピリジニウム ハライド類と塩基の組合わせ、または、スルホニルクロリド類と塩基の組合わせであり得、より好適には、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミドと塩基の組合わせ、2ークロロー1ーメチルピリジニウム ヨージドと塩基の組合わせ、または、2,4,6ートリイソプロピルスルホニルクロリドと塩基の組合わせである。
- [0045] 上記縮合剤と組合わせて使用される塩基は、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、または、これらの混合物であり、好適には、トリエチルアミン、4-(N,N-ジメチルアミノ)ピリジン、または、これらの混合物である。

使用される溶媒は、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メ チレンである。

反応温度は、好適には、20乃至60℃である。

反応時間は、好適には、3時間乃至24時間である。

またBd-2工程は、化合物(5d)を溶媒(塩化メチレン等)中で、オキサリルクロリド、 チオニルクロリド等により酸クロリドへ変換した後、塩基(例えば、トリエチルアミン等)

の存在下にて化合物(6d)もしくはアルカリ金属アルコキシドと反応させることによって 行うこともできる。

[0046] さらに、LXRリガンドとして、特願2005-110908号明細書に開示された下記の化合物 又はその薬理上許容される塩若しくはエステルを用いることもできる。

一般式(Ie)

[化9]

$$Re^{3}$$

$$Re^{2}$$

$$Re^{1}$$

$$Re^{6}$$

$$Re^{6}$$

$$Re^{1}$$

$$Re^{6}$$

$$Re^{7}$$

$$Re^{7}$$

$$Re^{7}$$

$$Re^{7}$$

[式中、 Re^1 、 Re^2 、 Re^3 、および、 Re^4 は、同一または異なり、水素原子、 $C_1 - C_2 T N$ キル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、メトキシ基、エトキシ基、フルオロ基、クロロ基、または、ブロモ基を示し;

Re⁵は、水素原子を示し;

 Re^6 は、式 $-CORe^8$ [式中、 Re^8 は、 C_1 - C_2 アルコキシ基、または、ハロゲノ C_1 - C_4 アルコキシ基(当該ハロゲノ C_1 - C_4 アルコキシ基は、1乃至5個のフルオロもしくはクロロ基で置換された C_1 - C_2 アルコキシ基を示す)を示す。]を有する基を示し;

Re⁷は、式-Xe²Re¹⁰

[式中、 Re^{10} は、式 $-CORe^{11}$ (式中、 Re^{11} は、ヒドロキシル基、メトキシ基、または、エトキシ基を示す)を有する基、または、

式-SO Re¹²(式中、Re¹²は、メチル基またはエチル基を示す)を有する基を示し、 Xe²は、単結合、メチレン基、または、置換メチレン基(当該置換基は、2個のフルオロ基であり、当該2個の置換基が一緒となってエチレン基を形成してもよい)を示す。] を有する基を示し:

Ye¹は、フェニル基を示し;

 Ye^2 は、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群 α eより選択される1乃至2個の基である)、チエニル基、チアゾリル基、ピリジル基、ま

たは、置換チエニル基、置換チアゾリル基もしくは置換ピリジル基(当該置換基は、同一または異なり、置換基群 α eより選択される1乃至2個の基である)を示し;

置換基群 α eは、 C_1 $-C_1$ $-C_4$ アルキル基、トリフルオロメチル基、 C_2 $-C_1$ アルオロエチル基、 C_2 $-C_4$ アルケニル基、 C_2 $-C_4$ アルキニル基、 C_3 $-C_4$ シクロアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、メタンスルホニル基、エタンスルホニル基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジメチルアミノ基、ジメチルアミノ基、ジスチルアミノ基、ジスチルアミノ基、ジスチルアミノ基、ジスチルアミノ基、ジスチルアミノ基、ジスチルアミノ基、ジスチルカルボニル基、ニトロ基、フルオロ基、および、クロロ基からなる群を示す。]

で表される化合物またはその薬理上許容される塩もしくはエステル。

- [0047] 一般式(Ie)の各置換基の定義における「C₁-C₂アルキル基」は、1乃至3個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、または、2-プロピル基であり得、好適には、メチル基またはエチル基であり、最も好適には、メチル基である。
- [0048] 一般式(Ie)の各置換基の定義における「 C_1 $-C_2$ $-C_3$ $-C_4$ $-C_4$ $-C_5$ $-C_5$
- [0049] 一般式(Ie)の各置換基の定義における「ハロゲノC₁ C₂ アルコキシ基」は、1乃至5個のフルオロもしくはクロロ基で置換された上記と同様のC₁ C₂ アルコキシ基であり、例えば、フルオロメトキシ基、ジフルオロメトキシ基、ジクロロメトキシ基、ジブロモメトキ

シ基、トリフルオロメトキシ基、トリクロロメトキシ基、2ーフルオロエトキシ基、2ーブロモエトキシ基、2ークロロエトキシ基、2ーヨードエトキシ基、2,2ージフルオロエトキシ基、2,2,2ートリクロロエトキシ基、ペンタフルオロエトキシ基 ま、3,3,3ートリフルオロー1ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、1,1,1ートリクロロー2ープロポキシ基、4,4,4ートリフルオロー1ーブトキシ基、4,4,4ートリフルオロー2ーブトキシ基、2ートリフルオロメチルー1ープロポキシ基、2ートリフルオロメチルー2ープロポキシ基であり得、好適には、2,2,2ートリクロロエトキシ基、1,1,1ートリフルオロー2ープロポキシ基または2ートリフルオロメチルー2ープロポキシ基をある。

- [0050] 一般式(Ie)の各置換基の定義における「C₁-C₂アルキル基」は、1乃至4個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-メチル-1-プロピル基、または、2-メチル-2-プロピル基であり得、好適には、C₁-C₂アルキル基であり、より好適には、メチル基またはエチル基であり、最も好適には、メチル基である。一般式(Ie)の各置換基の定義における「C₂-C₂アルケニル基」は、2乃至4個の炭素原子を有する直鎖または分枝鎖アルケニル基(1個以上の炭素 炭素二重結合を有していてもよい)であり、例えば、ビニル基、2-プロペニル基(アリル基)、または、2-ブテニル基であり得、好適には、ビニル基または2-プロペニル基である。
- [0051] 一般式(Ie)の各置換基の定義における「C₂-C₂アルキニル基」は、2乃至4個の炭素原子を有する直鎖または分枝鎖アルキニル基(1個以上の炭素-炭素三重結合を有していてもよい)であり、例えば、エチニル基、2-プロピニル基、または、2-ブチニル基であり得、好適には、エチニル基または2-プロピニル基である。
 - 一般式(Ie)の各置換基の定義における「C₃ C₂シクロアルキル基」は、3乃至4個の炭素原子を有する環状アルキル基であり、例えば、シクロプロピル基またはシクロブチル基であり得、最も好適には、シクロプロピル基である。
- [0052] 一般式(Ie)で表される化合物は、PCT/JP2005/009142明細書に記載された上記の Ac法又はBc法に従って製造することができる。ただし、Ac-7工程またはBc-6工程においては、化合物(9c)の代わりに式 $HO-Ye^1-Ye^2-Re^7$ を有する化合物(9e)

が使用される。

化合物(9e)は、下記Ae法等に従って製造することもできる。

[化10]

Ae法

上記Ae法の化合物の構造式において、 Re^7 、 Ye^1 、および、 Ye^2 は、上記のものと同意義を示し、 Re^a は、ヒドロキシル基の保護基を示し、好適には、 $C_1 - C_2 r$ ルキル基およびフェニル基からなる群より選択される3個の基で置換されたシリル基(特に、tert- プチルジメチルシリル基、tert- プチルジフェニルシリル基またはトリイロプロピルシリル基)、テトラヒドロフラニル基、テトラヒドロピラニル基、メトキシメチル基、または、アリル基であり、 Re^b は、水素原子または $C_1 - C_2 r$ ルキル基を示し、2個の Re^b が一緒となってエチレン基またはトリメチレン基(当該エチレン基またはトリメチレン基は、1乃至4個のメチル基で置換されてもよい)を形成してもよく、 Xe^a は、 $Dert = E_3 r$ プロモ基、 $Dert = E_3 r$ プロモ基、または、 $Dert = E_3 r$ プロアルオロメタンスルホニルオキシ基を示す。

[0053] (Ae法)

Ae法は、化合物(9e)を製造する方法である。

(Ae-1工程)

Ae-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(1e)を、パラジウム試薬および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(2e)と反応させて、化合物(3e)を製造する工程である。

使用されるパラジウム触媒は、好適には、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ージクロロメタン付加物である。また、必要に応じて適宜、トリフェニルホスフィン、トリーoートリルホスフィン、トリス[2-(ジフェニルホスフィノ)エチル]ホスフィン、または、1,2-ビス(ジフェニルホスフィノ)エタンのようなリン配位子を使用

することができる。

WO 2006/004030

使用される塩基は、例えば、酢酸アルカリ金属塩であり、好適には、酢酸カリウムである。

使用される溶媒は、好適には、エーテル類、スルホキシド類またはこれらの混合物であり、より好適には、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、または、これらの混合物であり、さらに好適には、ジメチルスルホキシドまたはジオキサンである。

反応温度は、好適には、50乃至150℃である。

反応時間は、好適には、2時間乃至12時間である。

(Ae-2工程)

Ae-2工程は、Ae-1工程で得られる化合物 (3e)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物 (4e)と反応させ、化合物 (5e)を製造する工程である。

使用されるパラジウム触媒は、好適には、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)またはトリス(ジベンジリデンアセトン)ジパラジウム(0)である。 Ae-2工程において、必要に応じて適宜、リン配位子を使用してもよい。使用されるリン配位子は、好適には、トリフェニルホスフィン、トリーoートリルホスフィン、または、1,3-ビス(ジフェニルホスフィノ)プロパンである。

使用される塩基は、好適には、アルカリ金属炭酸塩であり、より好適には、炭酸ナト リウムまたは炭酸カリウムである。

使用される溶媒は、好適には、炭化水素類、アルコール類、アミド類、水、または、これらの混合物であり、より好適には、トルエン、エタノール、ジメチルアセトアミド、水、または、これらの混合物であり、最も好適には、トルエンとエタノールの混合物、または、ジメチルアセトアミドと水の混合物である。

反応温度は、好適には、50乃至150℃である。

反応時間は、好適には、3時間乃至24時間である。

(Ae-3工程)

Ae-3工程は、Ae-2工程で得られる化合物(5e)において、 Re^{i} 基の除去を行い

、化合物(9e)を製造する工程である。

Ae-3工程は、Re^a基の種類に応じて常法(例えば、T. H. Greene, P. G. Wuts, Protective Groups in Organic Synthesis. Third Edition, 1999年, John Wiley & Sons, In c.等に記載された方法)に従い行うことができる。

[0054] さらに、LXRリガンドとして、特願2004-311821号明細書及び特願2005-187686号明 細書に開示された下記の化合物又はその薬理上許容される塩若しくはエステルを用いることもできる。

(1)一般式(If)

[化11]

$$Rf^{3}$$

$$Rf^{2}$$

$$Rf^{1}$$

$$Rf^{6}$$

$$Rf^{7}$$

$$Yf^{1}$$

$$Rf^{8}$$

$$Rf^{8}$$

$$Rf^{8}$$

[式中、Rfは、式-CORf^{θ}[式中、Rf^{θ}は、 C_1 - C_1 アルキル基、 C_1 - C_1 アルコキシ基は、1乃至7個基、 C_1 - C_1 0アルコキシ基は、 C_1 - C_1 0アルコキシ基は、 C_1 - C_1 0アルコキシ基は、 C_1 - C_1 0アルコキシ基を示す)、 C_1 - C_1 0アルコキシ基を示す)、 C_1 - C_1 0アルコキシ基、または、 E_1 - E_1 0アルキルアミノ基(当該アルキル基は、同一または異なり、 E_1 - E_1 0の当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される E_1 - E_1 0の原子を含有する E_1 5乃至7員飽和ヘテロシクリル基を形成してもよい)を示す]を有する基を示し;

 Rf^3 は、水素原子、 C_1 $-C_2$ アルキル基、ハロゲノ C_1 $-C_2$ アルキル基(当該ハロゲノ C_1 $-C_2$ アルキル基は、1乃至7個のハロゲノ基で置換された C_1 $-C_2$ アルキル基を示す)、 $(C_1$ $-C_2$ アルコキシ) $-(C_1$ $-C_2$ アルキル)基、 $(C_1$ $-C_2$ アルキルチオ) $-(C_1$ $-C_2$ アルキルチオ)

 Rf^4 および Rf^5 は、同一または異なり、水素原子、 C_1 $-C_4$ T N + N

 Rf^{6} および Rf^{7} は、同一または異なり、水素原子または C_{1} $-C_{3}$ $アルキル基を示し; <math>Rf^{8}$ は、式 $-Xf^{2}Rf^{10}$

[式中、 Rf^{10} は、式 $-CORf^{11}$ [式中、 Rf^{11} は、EFDキシル基、 $C_1 - C_2 - C_3 - C_3$

36

 $C_3 - C_8$ シクロアルキル) $-(C_1 - C_8$ アルキル)] $-N - (C_1 - C_8$ アルキル)アミノ基、 $N - (C_3 - C_8$ シクロアルキル) $-N - (C_1 - C_8$ アルキル)アミノ基、 $N - [(C_3 - C_8$ シクロアルキル) $-(C_1 - C_8$ アルキル)] $-N - (C_3 - C_8$ シクロアルキル)アミノ基、ヒドロキシルアミノ基、または、ヒドロキシル($C_1 - C_8$ アルキル)アミノ基を示す]を有する基、

式ー SO_2Rf^{12} [式中、 Rf^{12} は、 C_1 ー C_2 アルキル基、 C_3 ー C_3 シクロアルキル)ー(C_1 ー C_4 アルキル)基、 C_3 ー C_4 シクロアルキル基、アミノ基、 C_4 ー C_5 アルキル)を、 C_5 シクロアルキル)ー(C_4 ー C_5 アルキル)]アミノ基、 C_5 ー C_6 シクロアルキル)で(C_4 一 C_6 アルキル)]アミノ基、 C_5 ー C_6 シクロアルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、ジ[(C_3 ー C_4 シクロアルキル)ー(C_4 ー C_5 アルキル)]アミノ基、ジ(C_4 ー C_5 シクロアルキル)アミノ基、 C_5 Nー[(C_4 ー C_5 シクロアルキル)ー(C_4 ー C_5 アルキル)]ー Nー(C_4 ー C_5 アルキル)アミノ基、Nー(C_5 ー C_5 シクロアルキル)のー(C_4 ー C_5 アルキル))アミノ基、または、Nー[(C_4 ー C_5 シクロアルキル)]ーNー(C_4 ー C_5 シクロアルキル)]ーNー(C_5 ー C_5 シクロアルキル))アミノ基を示す]を有する基、

式 $-N(Rf^{13})CORf^{14}$ [式中、 Rf^{13} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_8$ シクロアルキル) $-(C_1 - C_6$ アルキル)基、または、 $C_3 - C_8$ シクロアルキル基を示し、 Rf^{14} は、水素原子、 $C_1 - C_6$ アルキル基、 $(C_3 - C_8$ シクロアルキル) $-(C_1 - C_6$ アルキル)基、または、 $C_3 - C_8$ シクロアルキル) $-(C_1 - C_6$ アルキル)基、または、 $C_3 - C_8$ シクロアルキル基を示す〕を有する基、

式 $-N(Rf^{13})SO_2Rf^{15}[$ 式中、 Rf^{13} は、上記と同意義を示し、 Rf^{15} は、 C_1-C_2 アルキル基、(C_3-C_3 シクロアルキル) $-(C_1-C_2$ アルキル)基、または、 C_3-C_3 シクロアルキル基を示す]を有する基、または、テトラゾール-5-イル基を示し、

 Xf^2 は、単結合、 C_1 $-C_4$ \mathcal{F} \mathcal

 Xf^l は、式-NH-、 $-NRf^{l6}-$ (式中、 Rf^{l6} は、 C_1-C_2 アルキル基を示す)、-O-、-S-、-SO-、または、 $-SO_9$ -を有する基を示し;

Yfは、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群 α fより選択される1乃至3個の基である)、5乃至6員芳香族へテロシクリル基、または、置換5乃至6員芳香族へテロシクリル基(当該置換基は、同一または異なり、置換基 群 α fより選択される1乃至3個の基である)を示し;

Yf は、6乃至10員アリール基、置換6乃至10員アリール基(当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、9乃至10員不飽和環状炭化水素基(ただし、Yf は、当該不飽和環状炭化水素基におけるベンゼン環部分に結合する)、置換9乃至10員不飽和環状炭化水素基(ただし、Yf は、当該不飽和環状炭化水素基(ただし、Yf は、当該不飽和環状炭化水素基におけるベンゼン環部分に結合し、当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、5乃至10員芳香族へテロシクリル基、または、置換5乃至10員芳香族へテロシクリル基(当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、9乃至10員不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基における芳香環部分に結合し、当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)を示し;

置換基群 α fは、 C_1 $-C_1$ $-C_1$ -

ルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当 該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる 群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成 してもよい)、ジ(C₃ - C₂シクロアルキル)アミノ基、N-(C₃ - C₂シクロアルキル)-N-($C_1 - C_1$ アルキル)アミノ基、ホルミルアミノ基、($C_1 - C_1$ アルキル)カルボニルアミノ基、($C_3 - C_5$ シクロアルキル)カルボニルアミノ基、 $N - [(C_1 - C_2)$ アルキル)カルボニル] $- N_5$ $-(C_1 - C_2 アルキル)アミノ基、N-[(C_3 - C_3 シクロアルキル)カルボニル]-N-(C_1 - C_3 - C_3)$ Cアルキル)アミノ基、C -Cアルキルスルホニルアミノ基、N-(C -Cアルキルス ルホニル) $-N-(C_1-C_7$ ルキル)アミノ基、 $N-(C_1-C_7$ ルキルスルホニル) $-N-C_1$ $(C_3 - C_8)$ クロアルキル)アミノ基、ホルミル基、 $(C_1 - C_8)$ アルキル)カルボニル基、カル ボキシル基、 $(C_1 - C_1 r)$ カルボニル基、カルバモイル基、 $(C_1 - C_1 r)$ キル アミノ)カルボニル基、 $(C_3 - C_5)$ クロアルキルアミノ)カルボニル基、ジ $(C_1 - C_7)$ アルキ ル)アミノカルボニル基(当該アルキル基は、同一または異なり、2つの当該アルキル 基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子 からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル 基を形成してもよい)、 $N-(C_3-C_8)$ クロアルキル) $-N-(C_1-C_7)$ アミノカ ルボニル基、シアノ基、ニトロ基、および、ハロゲノ基からなる群を示し;

 $-C_6$ アルコキシ基、 C_3 - C_8 シクロアルキルオキシ基、メルカプト基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_3 - C_8 シクロアルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_3 - C_8 シクロアルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、 C_3 - C_8 シクロアルキルスルホニル基、アミノ基、 C_1 - C_6 アルキルアミノ基、 C_3 - C_8 シクロアルキルアミノ基、ジ(C_1 - C_2 アルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、ジ(C_3 - C_8 シクロアルキル)アミノ基、N- $(C_3$ - C_8 シクロアルキル)アミノ基、N- $(C_3$ - C_8 シクロアルキル)・N- $(C_1$ - C_2 アルキル)・N- $(C_1$ - C_3 N- $(C_3$ -N- $(C_3$) N- $(C_3$ - $(C_3$ - $(C_3$) N-

[0055] 本発明の上記の(1)の一般式(If)で表される化合物において好適な化合物は、例 えば、

(2) Rfが、式-CORf^a[式中、Rf^aは、 C_1 - C_6 アルキル基、 C_1 - C_8 アルコキシ基、 Nロゲ $/C_1$ - C_6 アルコキシ基(当該/Nロゲ $/C_1$ - C_6 アルコキシ基は、1万至7個の/Nロゲ $/C_1$ - C_6 アルコキシ基を示す)、 C_1 - C_6 アルキルアミ/基、または、 $\mathcal{O}(C_1$ - C_6 アルキル)アミ/基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミ/基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1万至3個の原子を含有する5万至7員飽和ヘテロシクリル基を形成してもよい)を示す]を有する基であり;

Rf²が、水素原子、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、フルオロ基、または、クロロ基であり;

WO 2006/004030 PCT/JP2005/012185

40

基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、フルオロ基、クロロ基、または、ブロモ基であり;

Rf⁴およびRf⁵が、同一または異なり、水素原子、メチル基、エチル基、トリフルオロメ チル基、メトキシ基、フルオロ基、クロロ基、または、ブロモ基であり;

 Rf^{6} および Rf^{7} が、同一または異なり、水素原子またはメチル基であり; Rf^{8} が、式 $-Xf^{2a}Rf^{10a}$

[式中、 Rf^{10a} は、式 $-CORf^{11a}$ [式中、 Rf^{11a} は、EFDキシル基、 $C_1 - C_2 PN$ コキシ基、($C_3 - C_2 PN$ $E_3 - C_3 PDD$ $E_3 PDD$ $E_4 PDD$ $E_4 PDD$ $E_5 P$

式一 SO_2 Rf 12a [式中、Rf 12a は、 C_1 - C_4 アルキル基、 $(C_3$ - C_6 シクロアルキル)ー(C_1 - C_4 アルキル)基、 C_3 - C_6 シクロアルキル基、アミノ基、 C_1 - C_4 アルキル))(C_1 - C_4 アルキル))(C_1 - C_4 アルキル))「 C_1 - C_4 アルキル)「アミノ基、 C_3 - C_6 シクロアルキル)アミノ基、または、ジ(C_1 - C_4 アルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和へテロシクリル基を形成してもよい)を示す〕を有する基、

式 $-N(Rf^{13a})CORf^{14a}$ [式中、 Rf^{13a} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_3 > 0)$ ロアルキル) $-(C_1 - C_2$ アルキル)基、または、 $C_3 - C_5 > 0$ ロアルキル 基を示し、 Rf^{14a} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_3 > 0)$ ロアルキル) $-(C_1 - C_2$ アルキル)基、または、 $(C_3 - C_3 > 0)$ ロアルキル) $-(C_1 - C_2$ アルキル)基、または、 $(C_3 - C_3 > 0)$ ロアルキル基を示す〕を有する基、

式 $-N(Rf^{13a})SO_2Rf^{15a}[$ 式中、 Rf^{13a} は、上記と同意義を示し、 Rf^{15a} は、 C_1-C_2 アルキ

ル基、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_7)$ ルキル)基、または、 $C_3 - C_5$ シクロアルキル基を示す]を有する基、または、テトラゾール-5 - イル基を示し、

 Xf^{2a} は、単結合、 C_1 $-C_2$ \mathcal{F} \mathcal{F}

Xf¹が、式-NH-、-O-または-S-を有する基であり;

Yfが、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群 α f1より選択される1乃至2個の基である)、5乃至6員芳香族へテロシクリル基(当該 ヘテロシクリル基は、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリダジニル基を示す)、または、置換5乃至6 員芳香族へテロシクリル基(当該ヘテロシクリル基は、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリダジニル基を示し、当該置換基は、同一または異なり、置換基群 α f1より選択される1乃至2個の基である)であり:

ΥΓ[°]が、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群β flより選択される1乃至3個の基である)、インダニル基もしくはテトラヒドロナフチル基(ただし、ΥΓ[°]は、当該インダニル基もしくはテトラヒドロナフチル基におけるベンゼン環部分に結合する)、置換インダニル基もしくは置換テトラヒドロナフチル基(ただし、ΥΓ[°]は、当該インダニル基もしくはテトラヒドロナフチル基におけるベンゼン環部分に結合し、当該置換基は、同一または異なり、置換基群β flより選択される1乃至3個の基である)、5乃至6員芳香族ヘテロシクリル基(当該ヘテロシクリル基は、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリミジニル基を示す)、置換5乃至6員芳香族ヘテロシクリル基(当該ヘテロシクリル基は、ピロリル基、フリル基、ナエニル基、イミダゾリル基、オキサゾリル基、オキサゾリル基、チアゾリル基、ポキサゾリル基、チアゾリル基、ポキサゾリル基、オキサゾリル基、チアゾリル基、ピロリル基、フリル基、ポキャブリル基、ポキャブリル基、チアブリル基、ピロリル基、オーカーシのリル基は、同一または異なり、置換基群β flより選択される1乃至3個の基である)、9乃至10員不飽和ヘテロシクリル基(ただし、ΥΓ[°]は、当該不飽和ヘテロシクリル基における芳香環部分に結

合し、当該不飽和ヘテロシクリル基は、インドリニル基、ジヒドロベンゾフリル基、ジヒドロベングチエニル基、テトラヒドロキノリル基、または、クロマニル基を示す)、または、置換9乃至10員不飽和ヘテロシクリル基(ただし、Yf'は、当該不飽和ヘテロシクリル基における芳香環部分に結合し、当該不飽和ヘテロシクリル基は、インドリニル基、ジヒドロベングフリル基、ジヒドロベングチエニル基、テトラヒドロキノリル基、または、クロマニル基を示し、当該置換基は、同一または異なり、置換基群βflより選択される1乃至3個の基である)であり;

置換基群 α f1 は、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ 基、フルオロ基、および、クロロ基からなる群であり;

置換基群βflは、C -Cアルキル基、ヒドロキシ(C -Cアルキル)基、カルボキシ(C_1 $-C_1$ アルキル)基、 $(C_1$ $-C_2$ アルコキシ)カルボニル $-(C_1$ $-C_2$ アルキル)基、ハロゲ $JC_1 - C_1$ アルキル基(当該ハロゲ $JC_1 - C_1$ アルキル基は、1乃至5個のハロゲJ基で 置換された $C_1 - C_2$ アルキル基を示す)、 $(C_3 - C_6)$ シクロアルキル) $-(C_1 - C_2$ アルキル) 基、 C_2 $-C_5$ アルケニル基、 C_2 $-C_5$ アルキニル基、 C_3 $-C_6$ シクロアルキル基、ヒドロキ シル基、C₁-C₇ルコキシ基、ハロゲノC₁-C₇ルコキシ基(当該ハロゲノC₁-C₇ ルコキシ基は、1乃至5個のハロゲノ基で置換されたC₁-C₇ルコキシ基を示す)、C -Cアルキルチオ基、C -Cアルキルスルフィニル基、C -Cアルキルスルホニル 基、アミノ基、 $C_1 - C_2$ アルキルアミノ基、 $C_3 - C_6$ シクロアルキルアミノ基、 $\mathcal{S}(C_1 - C_2)$ ルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当 該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる 群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成 してもよい)、ホルミルアミノ基、(C -C アルキル)カルボニルアミノ基、(C -C シクロ アルキル)カルボニルアミノ基、 $N-[(C_1-C_2)$ アルキル)カルボニル] $-N-(C_1-C_2)$ ルキル)アミノ基、 $N-[(C_3-C_5)$ クロアルキル)カルボニル] $-N-(C_1-C_7)$ アルキル) アミノ基、 C_1 $-C_1$ アルキルスルホニルアミノ基、 $N-(C_1$ $-C_1$ アルキルスルホニル)-N-(C -C アルキル)アミノ基、ホルミル基、(C -C アルキル)カルボニル基、カルボキ シル基、(C₁-C₇ルコキシ)カルボニル基、カルバモイル基、(C₁-C₇ルキルアミノ) カルボニル基、ジ(C -C アルキル)アミノカルボニル基(当該アルキル基は、同一ま

たは異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、シアノ基、ニトロ基、フルオロ基、クロロ基、および、ブロモ基からなる群であり;

置換基群ッflは、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、メトキシエチル基、メチルチオメチル基、メチルチオエチル基、アミノメチル基、アミノエチル基、メチルアミノメチル基、エチルアミノメチル基、メチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノエチル基、ジメチルアミノエチル基、ジメチルアミノエチル基、ジメチルアミノエチル基、ジメチルアミノエチル基、ジンクロプロピルアミノメチル基、ジシクロプロピルアミノメチル基、ヒドロキシル基、メトキシ基、エトキシ基、シクロプロピルオキシ基、メチルチオ基、エチルチオ基、シクロプロピルチオ基、アミノ基、メチルアミノ基、エチルアミノ基、ジンクロプロピルアミノ基、ジンクロプロピルアミノ基、ジンチルアミノ基、ジンクロプロピルアミノ基、ジンチルアミノ基、ジンクロプロピルアミノ基、ジンクロプロピルアミノ基、ジンチルアミノ基、ジンクロプロピルアミノ基、フルオロ基、および、クロロ基からなる群である(1)に記載された化合物、

[0056] (3) Rf^1 が、式 $-CORf^9$ ⁶[式中、 Rf^9 ⁶は、 C_1 - C_2 アルコキシ基またはハロゲノ C_1 - C_4 アルコキシ基(当該ハロゲノ C_1 - C_4 アルコキシ基は、1乃至5個のハロゲノ基で置換された C_1 - C_2 アルコキシ基を示す)を示す]を有する基であり;

Rf²が、水素原子またはヒドロキシル基であり;

 Rf^3 が、水素原子、 C_1 $-C_2$ アルキル基、ハロゲノ C_1 $-C_2$ アルキル基(当該ハロゲノ C_1 $-C_4$ アルキル基は、1乃至5個のハロゲノ基で置換された C_1 $-C_4$ アルキル基を示す)、 C_3 $-C_5$ シクロアルキル基、 C_2 $-C_4$ アルケニル基、 C_1 $-C_4$ アルコキシ基、フルオロ基、または、クロロ基であり;

Rf⁴およびRf⁵が、同一または異なり、水素原子、メチル基、エチル基、トリフルオロメ チル基、メトキシ基、フルオロ基、クロロ基、または、ブロモ基であり;

 Rf^6 および Rf^7 が、同一または異なり、水素原子またはメチル基であり; Rf^8 が、式 $-Xf^{2b}Rf^{10b}$

[式中、 Rf^{10b} は、式 $-CORf^{11b}$ [式中、 Rf^{11b} は、ヒドロキシル基、 C_1 $-C_2$ アルコキシ基、(C_3 $-C_5$ シクロアルキル) $-(C_1$ $-C_2$ アルキル)オキシ基、 C_3 $-C_5$ シクロアルキルオキシ

基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、メ チルエチルアミノ基、または、ヒドロキシルアミノ基を示す]を有する基、

式 $-SO_2$ Rf^{12b}[式中、Rf^{12b}は、 C_1 - C_2 アルキル基、(C_3 - C_5 ンクロアルキル)ー(C_1 - C_1 - C_2 アルキル)基、または、 C_3 - C_5 ンクロアルキル基を示す]を有する基、または、テトラゾール-5-イル基を示し、

Xf²⁰は、単結合、メチレン基、エチレン基、または、置換メチレン基もしくは置換エチレン基(当該置換基は、同一または異なり、置換基群γf2より選択される1乃至2個の基であり、当該2個の置換基が一緒となってエチレン基もしくはトリメチレン基を形成してもよい)を示す]を有する基であり;

 Xf^{1} が、式-NH-、-O-または-S-を有する基であり;

Yfが、フェニル基(当該フェニル基に結合するXfおよびYfの置換位置は、1および3位、または、1および4位である)、置換フェニル基(当該置換基は、置換基群 α f 2より選択される1個の基であり、当該フェニル基に結合するXfおよびYfの置換位置は、1および3位、または、1および4位である)、チェニル基(当該チェニル基に結合するXfおよびYfの置換位置は、2および5位である)、置換チェニル基(当該置換基は、置換基群 α f2より選択される1個の基であり、当該チェニル基に結合するXfおよびYfの置換位置は、2および5位である)、ピリジル基(当該ピリジル基に結合するXfおよびYfの置換位置は、2および5位、または、3および6位である)、または、置換ピリジル基(当該置換基は、置換基群 α f2より選択される1個の基であり、当該ピリジル基に結合するXfおよびYfの置換位置は、2および5位、または、3および6位である)であり:

Yf²が、フェニル基(当該フェニル基に結合するYf²およびRf³の置換位置は、1および3位、または、1および4位である)、置換フェニル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該フェニル基に結合するYf²およびRf³の置換位置は、1および3位、または、1および4位である)、チエニル基(当該チエニル基に結合するYf³およびRf³の置換位置は、2および5位である)、置換チエニル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該チエニル基に結合するYf³およびRf³の置換位置は、2および5位

である)、チアゾリル基(当該チアゾリル基に結合するYf およびRf の置換位置は、2 および5位である)、置換チアゾリル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該チアゾリル基に結合するYf およびRf の置換位置は、2および5位である)、ピリジル基(当該ピリジル基に結合するYf およ びRf の置換位置は、2および5位である)、または、置換ピリジル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該ピリジル基 基に結合するYf およびRf の置換位置は、2および5位である)であり;

置換基群 α f2は、メチル基、フルオロ基、および、クロロ基からなる群であり:

置換基群 β f2は、 C_1 - C_2 アルキル基、ヒドロキシメチル基、1-ヒドロキシエチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、 C_2 - C_2 アルケニル基、 C_3 - C_4 アルケニル基、 C_3 - C_4 クロアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、メタンスルホニル基、エタンスルホニル基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ホルミル基、メチルカルボニル基、エチルカルボニル基、シアノ基、ニトロ基、フルオロ基、および、クロロ基からなる群であり;

置換基群ッf2は、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、アミノメチル基、メチルアミノメチル基、ジメチルアミノメチル基、(NーメチルーNーエチルアミノ)メチル基、メトキシ基、メチルアミノ基、ジメチルアミノ基、フルオロ基、および、クロロ基からなる群である(1)に記載された化合物、

[0057] (4)Rfが、式-CORf⁶(式中、Rf⁶は、 C_3 - C_5 アルコキシ基を示す)を有する基であり;

Rf²が、ヒドロキシル基であり;

Rfが、メチル基、エチル基、2ープロピル基、2ーメチルー2ープロピル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基、シクロプロピル基、または、ビニル基であり;

Rf⁴およびRf⁵が、水素原子であり;

Rf およびRf が、水素原子であり:

Rf⁸が、式ーXf^{2c}Rf^{10c}

WO 2006/004030

[式中、 Rf^{10} は、式 $-CORf^{1c}$ (式中、 Rf^{1c} は、ヒドロキシル基またはメトキシ基を示す)を有する基、または、

式 $-SO_{2}Rf^{12c}$ (式中、 Rf^{12c} は、メチル基を示す)を有する基を示し、

Xf²cは、単結合、メチレン基、または、置換メチレン基(当該置換基は、1個のヒドロキシメチル基であるか、または、2個の置換基が一緒となってエチレン基を形成する)を示す。]を有する基であり;

Xf¹が、式-O-を有する基であり;

Yf'が、フェニル基(当該フェニル基に結合するXf¹およびYf²の置換位置は、1および4位である)であり;

Yf²が、フェニル基(当該フェニル基に結合するYf²およびRf⁸の置換位置は、1および4位である)、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf²およびRf⁸の置換位置は、1および4位である)、または、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf²、Rf⁸および置換基群 β f3より選択される基の置換位置は、それぞれ、1、3および2位である)であり:

置換基群 β f3は、メチル基、エチル基、2-プロピル基、ヒドロキシメチル基、トリフルオロメチル基、シクロプロピル基、メトキシ基、メタンスルホニル基、アミノ基、メチルアミノ基、ジメチルアミノ基、メチルカルボニル基、エチルカルボニル基、シアノ基、ニトロ基、フルオロ基、および、クロロ基からなる群である(1)に記載された化合物、

[0058] (5)Rfが、式-CORf^{9d}(式中、Rf^{9d}は、2-メチル-2-プロポキシ基を示す)を有する基であり;

Rf²が、ヒドロキシル基であり;

Rf³が、トリフルオロメチル基であり:

Rf⁴およびRf⁵が、水素原子であり:

Rf およびRfが、水素原子であり;

Rf⁸が、式ーXf^{2d}Rf^{10d}

[式中、Rf^{10d}は、式-CORf^{11d}(式中、Rf^{11d}は、ヒドロキシル基を示す)を有する基を示し、

Xf^{2d}は、メチレン基、または、置換メチレン基(当該2個の置換基が一緒となってエチレン基を形成する)を示す。]を有する基であり:

Xf¹が、式-O-を有する基であり:

Yfが、フェニル基(当該フェニル基に結合するXfおよびYfの置換位置は、1および4位である)であり:

 Y^2 が、フェニル基(当該フェニル基に結合するYfおよびRfの置換位置は、1および4位である)、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYfおよびRfの置換位置は、1および4位である)、または、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf、Rf8および置換基群 β f3より選択される基の置換位置は、それぞれ、1、3および2位である)である(1)に記載された化合物、または、

[0059] (6) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメ チル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)酢酸、 1-(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチ ル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)シクロプロペンカルボン酸、 2-(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチ ル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)-3-ヒドロキシー4-(トリフルオロメチ ル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)-3-ヒドロキシプロペン酸、 (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-メチルー1, 1'-ビフェニルー3ーイル)酢酸、 (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-メチルー1, 1'-ビフェニルー4ーイル)酢酸、 (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-クロロー1, 1'-ビフェニルー4ーイル)酢酸、 (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-3-フルオロー1, 1'-ビフェニルー4ーイル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}$ -3-クロロ-1, 1'-ビフェニル-4-イル)酢酸、

ゾエート、

 $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-3-フルオロ-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-メトキシ-1, 1'-ビフェニル-4-イル) 酢酸、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2ートリフルオロメチル-1,1'-ビフェニル-4-イル)酢酸、 tert-ブチル 6-[({2'-エチル-4'-[(メトキシカルボニル)メチル]-1,1'-ビ フェニル-4-イル}オキシ)メチル]-2-ヒドロキシ-3-(トリフルオロメチル)ベン

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-エチル-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-ニトロ-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(2-アミノ-4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニル-4-イル)酢酸、$

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-ホルミル-1$, 1'-ビフェニル-4-イル) 酢酸、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-(ヒドロキシメチル)-1,1'-ビフェニル-4-イル)酢酸、および、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-シアノ-1, 1'-ビフェニル-4-イル) 酢酸からなる群より選択される(1) に記載された化合物である。

[0060] 一般式(If)のRf における「C₁-C₁アルキル基」は、1乃至10個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1ープロピル基、2ープロピル基、1ーブチル基、2ーブチル基、2ーメチルー1ープロピル基、2ーメチルー2ープロピル基、1ーペンチル基、2ーペンチル基、3ーペンチル基、2ーメチ

ルー2ーブチル基、3ーメチルー2ーブチル基、1,1ージメチルー1ープロピル基、1ーヘキシル基、2ーヘキシル基、3ーペンチル基、3ーペンチル基、2ーエチルー1ーブチル基、2,3ージメチルー1ーブチル基、3ーズチル基、4ーヘプチル基、4ーヘプチル基、4ーペンチル基、4ーオクチル基、4ーオクチル基、4ーオクチル基、4ーボシル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基、4ーズチル基であり得、好適には、4ーのアチルキル基であり、より好適には、4ーのアルキルをであり、さらに好適には、4ーのアルキルル基である。

- 一般式(If)の Rf^{9} における「 C_{10} アルコキシ基」は、上記 C_{10} ー C_{10} アルキル基で置 [0061]換されたヒドロキシル基であり、例えば、メトキシ基、エトキシ基、1-プロポキシ基、2 ープロポキシ基、1ーブトキシ基、2ーブトキシ基、2ーメチルー1ープロポキシ基、2ー メチルー2ープロポキシ基、1ーペンチルオキシ基、2ーペンチルオキシ基、3ーペン チルオキシ基、2-メチル-2-ブトキシ基、3-メチル-2-ブトキシ基、2-メチル -2-ブトキシ基、1-ヘキシルオキシ基、2-ヘキシルオキシ基、3-ヘキシルオキ シ基、2-メチル-1-ペンチルオキシ基、3-メチル-3-ペンチルオキシ基、2-エチルー1ーブトキシ基、2,3ージメチルー1ーブトキシ基、1ーヘプチルオキシ基、3 ーヘプチルオキシ基、4ーヘプチルオキシ基、3ーメチルー3ーヘキシルオキシ基、3 ーエチルー3ーペンチルオキシ基、3ーオクチルオキシ基、4ーオクチルオキシ基、3 ーエチルー3ーヘキシルオキシ基、4ーノニルオキシ基、5ーノニルオキシ基、4ーエ チルー4ーヘプチルオキシ基、4ーデシルオキシ基、5ーデシルオキシ基、または、4 -(1-プロピル)-4-ヘプチルオキシ基であり得、好適には、 C_1-C_2 アルコキシ基 であり、より好適には、 $C_1 - C_1$ アルコキシ基であり、さらに好適には、 $C_2 - C_1$ アルコキ シ基であり、さらにより好適には、 $C_3 - C_5$ アルコキシ基であり、特に好適には、 $C_3 - C_5$ アルコキシ基(特に、2-プロポキシ基、2-メチル-2-プロポキシ基または2-メチ ルー2ーブトキシ基)であり、最も好適には、2ーメチルー2ープロポキシ基である。
- [0062] 一般式(If)の R_{\bullet}^{f} 、 R_{\bullet}^{f} 、 R_{\bullet}^{f} 、および、置換基群 α f等における「 C_{1} $-C_{2}$ アルキル基」は、1万至4個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メ

チル基、エチル基、1ープロピル基、2ープロピル基、1ーブチル基、2ーブチル基、2ーメチルー1ープロピル基、または、2ーメチルー2ープロピル基であり得、好適には、C_Cアルキル基であり、より好適には、メチル基またはエチル基であり、最も好適には、メチル基である。

一般式(If)の Rf^0 における「ハロゲノ C_1 $-C_1$ アルコキシ基」は、1乃至7個の下記ハロ [0063] ゲノ基で置換された上記C₁₀アルコキシ基であり、例えば、フルオロメトキシ基、ジ フルオロメトキシ基、ジクロロメトキシ基、ジブロモメトキシ基、トリフルオロメトキシ基、ト リクロロメトキシ基、2-フルオロエトキシ基、2-ブロモエトキシ基、2-クロロエトキシ 基、2-ヨードエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ 基、2,2,2ートリクロロエトキシ基、ペンタフルオロエトキシ基、3,3,3ートリフルオロー1 ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、1,1,1ートリクロロー2ープ ロポキシ基、4,4,4ートリフルオロー1ーブトキシ基、4,4,4ートリフルオロー2ーブトキ シ基、2ートリフルオロメチルー1ープロポキシ基、2ートリフルオロメチルー2ープロポ キシ基、5,5,5ートリフルオロー1ーペンチルオキシ基、5,5,5ートリフルオロー2ーペ ンチルオキシ基、1,1,1-トリフルオロ-3-ペンチルオキシ基、4,4,4-トリフルオロ -2-メチル-2-ブトキシ基、4,4,4-トリフルオロ-3-メチル-2-ブトキシ基、4, 4,4ートリフルオロー2ーメチルー2ーブトキシ基、6,6,6ートリフルオロー1ーヘキシル オキシ基、6,6,6ートリフルオロー2ーヘキシルオキシ基、6,6,6ートリフルオロー3ー ヘキシルオキシ基、5,5,5ートリフルオロー2ーメチルー1ーペンチルオキシ基、1,1,1 ートリフルオロー3ーメチルー3ーペンチルオキシ基、6,6,6ートリフルオロー2ーエチ ルー1ーブトキシ基、6,6,6ートリフルオロー2,3ージメチルー1ーブトキシ基、7,7,7ー トリフルオロー1ーヘプチルオキシ基、7,7,7ートリフルオロー3ーヘプチルオキシ基、

1,1,1ートリフルオロー4ーへプチルオキシ基、6,6,6ートリフルオロー3ーメチルー3ーへキシルオキシ基、1,1,1ートリフルオロー3ーエチルー3ーペンチルオキシ基、8,8,8ートリフルオロー3ーオクチルオキシ基、8,8,8ートリフルオロー4ーオクチルオキシ基、8,8,8ートリフルオロー4ーオクチルオキシ基、9,9,9ートリフルオロー3ーエチルー3ーへキシルオキシ基、9,9,9ートリフルオロー4ーノニルオキシ基、9,9,9ートリフルオロー5ーノニルオキシ基、1,1,1ートリフルオロー4ーエチルー4ーヘプチルオキシ基、9,9,9ートリフルオロー4ーデシルオキシ基、9,9,9ートリフルオロー4ーデシルオキシ基、9,9,9ートリフルオロー4ーデシルオキシ基、9,9,9ートリフルオロー5ーデシルオキシ基、または、1,1,1ートリフルオロー4ー(1ープロピル)ー4ーヘプチルオキシ基であり得、好適には、ハロゲノCーCアルコキシ基(当該ハロゲノCーCアルコキシ基は、1乃至7個のハロゲノ基で置換されたCーCアルコキシ基を示す)であり、より好適には、ハロゲノCーCアルコキシ基(当該ハロゲノCーCアルコキシ基は、1乃至5個のハロゲノ基で置換されたCーCアルコキシ基を示す)であり、さらに好適には、ハロゲノC3ーCアルコキシ基(当該ハロゲノC3ーCアルコキシ基は、1乃至5個のハロゲノ基で置換されたC3ーCアルコキシ基を示す)であり、最も好適には、1,1,1ートリフルオロー2ープロポキシ基または2ートリフルオロメチルー2ープロポキシ基である。

[0064] 一般式(If)のRf における「フェニルー(C₁ーC₁₀アルコキシ)基」は、1個のフェニル基で置換された上記C₁ーC₁₀アルコキシ基であり、例えば、フェニルメトキシ基、フェニルエトキシ基、3ーフェニルー1ープロポキシ基、1ーフェニルー2ープロポキシ基、4ーフェニルー1ーブトキシ基、1ーフェニルー2ープトキシ基、3ーフェニルー2ーメチルー1ープロポキシ基、1ーフェニルー2ープロポキシ基、5ーフェニルー1ーペンチルオキシ基、5ーフェニルー2ーペンチルオキシ基、5ーフェニルー1ーペンチルオキシ基、4ーフェニルー2ーペンチルオキシ基、4ーフェニルー3ーペンチルオキシ基、4ーフェニルー3ーメチルー2ーブトキシ基、4ーフェニルー1ーペキシルオキシ基、6ーフェニルー1ーペキシルオキシ基、6ーフェニルー1ーペンチルオキシ基、1ーフェニルー3ーメチルオキシ基、5ーフェニルー2ーメチルー1ーペンチルオキシ基、1ーフェニルー3ーメチルオキシ基、1ーフェニルー3ーペキシルオキシ基、4ーフェニルー2ーズチルオキシ基、1ーフェニルー3ーペプチルオキシ基、7ーフェニルー3ーペプチルオキシ基、7ーフェニルー3ーペプチルオキシ基、6ーフェニ

ルー3ーメチルー3ーへキシルオキシ基、1-7ェニルー3-エチルー3-ペンチルオキシ基、8-フェニルー3-オクチルオキシ基、8-フェニルー4-オクチルオキシ基、6-フェニルー3-エチルー3-ヘキシルオキシ基、9-フェニルー4-ノニルオキシ基、1-フェニルー4-エチルー4-ヘプチルオキシ基、9-フェニルー4-アデシルオキシ基、1-フェニルー1-プロピル)1-4ーへプチルオキシ基であり得、好適には、1-7ェニルー1-6のより好適には、1-7・アルコキシ)基であり、より好適には、1-7・アルコキシ)基であり、より好適には、1-7・アルコキシ)基であり、大り好適には、1-1・アルコキシ)基であり、大り最近には、1-1・アルコキシ)基であり、大り最近には、1-1・アルコキシ)基であり、大り大きであり、最も好適には、1-1・アルコキシ)基であり、最も好適には、1-1・アルコキシ)基であり、最も好適には、1-1・アルコキシ)基であり、このにより、最も好適には、1-1・アルコキシ)基であり、最も好

一般式(If)のRf における「C_C_アルキルアミノ基」は、1個の上記C_C_アルキ [0065]ル基で置換されたアミノ基であり、例えば、メチルアミノ基、エチルアミノ基、1-プロピ ルアミノ基、2ープロピルアミノ基、1ーブチルアミノ基、2ーブチルアミノ基、2ーメチル -1-プロピルアミノ基、2-メチル-2-プロピルアミノ基、1-ペンチルアミノ基、2 ーペンチルアミノ基、3ーペンチルアミノ基、2ーメチルー2ーブチルアミノ基、3ーメチ ルー2ーブチルアミノ基、2ーメチルー2ーブチルアミノ基、1ーヘキシルアミノ基、2ー ヘキシルアミノ基、3-ヘキシルアミノ基、2-メチル-1-ペンチルアミノ基、3-メチ ルー3ーペンチルアミノ基、2-エチルー1-ブチルアミノ基、2,3-ジメチルー1-ブ チルアミノ基、1-ヘプチルアミノ基、3-ヘプチルアミノ基、4-ヘプチルアミノ基、3 ーメチルー3ーヘキシルアミノ基、3ーエチルー3ーペンチルアミノ基、3ーオクチルア ミノ基、4ーオクチルアミノ基、3ーエチルー3ーヘキシルアミノ基、4ーノニルアミノ基、 5-ノニルアミノ基、4-エチル-4-ヘプチルアミノ基、4-デシルアミノ基、5-デシ ルアミノ基、または、 $4-(1-\mathcal{L})-4-\mathcal{L}$ ルアミノ基であり得、好適には、 $C_1 - C_2$ アルキルアミノ基であり、より好適には、 $C_2 - C_2$ アルキルアミノ基であり、さらに 好適には、 $C_3 - C_6$ アルキルアミノ基であり、さらにより好適には、 $C_3 - C_6$ アルキルアミ ノ基(特に、2ープロピルアミノ基、2ーメチルー2ープロピルアミノ基または2ーメチル -2-ブチルアミノ基)であり、最も好適には、2-メチル-2-プロピルアミノ基である

[0066] 一般式(If)の Rf^{9} における「ジ($C_1 - C_1$ アルキル)アミノ基」は、同一または異なる2個

の上記C₁-C₁アルキル基で置換されたアミノ基であり、例えば、ジメチルアミノ基、メ チルエチルアミノ基、メチルプロピルアミノ基[例えば、N-(1-プロピル)-N-メチ ルアミノ基等]、メチルブチルアミノ基「例えば、N-(1-ブチル)-N-メチルアミノ基 、NーメチルーNー(2ーメチルー2ープロピル)アミノ基等]、NーメチルーNー(2ーメ チルー2ーブチル)アミノ基、NーメチルーNー(3ーメチルー3ーペンチル)アミノ基、N -メチル-N-(3-エチル-3-ペンチル)アミノ基、N-メチル-N-(3-エチル-3-ヘキシル)アミノ基、N-メチル-N-(4-エチル-4-ヘプチル)アミノ基、N-メ チル-N-[4-(1-プロピル)-4-ヘプチル]アミノ基、ジエチルアミノ基、エチル プロピルアミノ基「例えば、N-(1-プロピル)-N-エチルアミノ基等]、N-エチル -N-(2-メチル-2-プロピル)アミノ基、N-エチル-N-(2-メチル-2-ブチ ル)アミノ基、N-エチル-N-(3-メチル-3-ペンチル)アミノ基、N-エチル-N -(3-エチル-3-ペンチル)アミノ基、ジプロピルアミノ基「例えば、ジ(1-プロピル) アミノ基、ジ(2ープロピル)アミノ基等]、N-(1-プロピル)-N-(2-メチル-2-プ ロピル)アミノ基、ジブチルアミノ基「例えば、ジ(1-ブチル)アミノ基、ジ(2-ブチル)ア ミノ基等]、ジ(2-メチルー1ープロピル)アミノ基、ジ(2-メチルー2ープロピル)アミノ 基、N-(1-ブチル)-N-(2-メチル-2-プロピル)アミノ基、ジペンチルアミノ基[例えば、ジ(1-ペンチル)アミノ基、ジ(2-ペンチル)アミノ基、ジ(3-ペンチル)アミノ 基等]、ジ(2-メチル-1-ブチル)アミノ基、ジ(2-エチル-1-プロピル)アミノ基、 N-(1-ペンチル)-N-(2-メチル-2-プロピル)アミノ基、ジヘキシルアミノ基[例 えば、ジ(1-ヘキシル)アミノ基、ジ(2-ヘキシル)アミノ基、ジ(3-ヘキシル)アミノ基 等]、ジ(2-メチル-1-ペンチル)アミノ基、ジ(3-メチル-1-ペンチル)アミノ基、 ジ(4-メチル-1-ペンチル)アミノ基、ジ(2-メチル-2-ペンチル)アミノ基、ジ(3-メチルー2ーペンチル)アミノ基、ジ(4ーメチルー2ーペンチル)アミノ基、ジ(2,2ージメ チルー1ーブチル)アミノ基、ジ(3,3ージメチルー1ーブチル)アミノ基、ジ(2,3ージメチ ルー1ーブチル)アミノ基、ジ(2ーエチルー1ーブチル)アミノ基、Nー(1ーヘキシル)ー N-(2-メチル-2-プロピル)アミノ基、ジへプチルアミノ基[例えば、ジ(1-ヘプチ ル)アミノ基、ジ(2-ヘプチル)アミノ基等]、ジ(3-エチル-3-ペンチル)アミノ基、ジ オクチルアミノ基「例えば、ジ(1-オクチル)アミノ基、ジ(2-オクチル)アミノ基、ジ(4

ーオクチル)アミノ基等]、ジ(3-エチル-3-ヘキシル)アミノ基、ジノニルアミノ基[例 えば、ジ(5-ノニル)アミノ基等]、ジ(4-エチル-4-ヘプチル)アミノ基、ジデシルア ミノ基「例えば、ジ(5ーデシル)アミノ基等]、または、ジ[4-(1-プロピル)-4-ヘプ チル]アミノ基であり得、好適には、 $ジ(C_1 - C_1 r)$ アミノ基であり、より好適には、 $\mathcal{S}(C_2 - C_6 \mathcal{F}$ ルキル)アミノ基または $N - (C_1 - C_4 \mathcal{F}) \mathcal{F}$ ルキル) $-N - (C_2 - C_6 \mathcal{F}) \mathcal{F}$ ルキル)ア ミノ基であり、さらに好適には、ジ(C₃-C₇ルキル)アミノ基またはN-(C₁-C₇ルキ ν)-N-(C_3 - C_6 アルキル)アミノ基であり、さらにより好適には、ジ(C_3 - C_5 アルキル) アミノ基またはN-(C₁-C₇ルキル)-N-(C₃-C₅アルキル)アミノ基であり、最も好 適には、N-メチル-N-(2-メチル-2-プロピル)アミノ基、N-エチル-N-(2 -メチル-2-プロピル)アミノ基、N-(1-プロピル)-N-(2-メチル-2-プロピ ル)アミノ基、N-(1-ブチル)-N-(2-メチル-2-プロピル)アミノ基またはジ(2-メチルー2ープロピル)アミノ基である。また、「ジ(C₁-C₁₀アルキル)アミノ基」は、2つ の当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子 および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽 和ヘテロシクリル基を形成してもよく、この5乃至7員飽和ヘテロシクリル基は、例えば 、ピロリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、チオモルホリニル 基、または、パーヒドロアゼピニル基であり得、好適には、窒素原子、酸素原子および 硫黄原子からなる群より選択される1乃至2個の原子を含有する5乃至6員飽和ヘテ ロシクリル基であり、より好適には、ピロリジニル基、ピペリジル基、モルホリニル基、ま たは、チオモルホリニル基であり、さらに好適には、ピペリジル基またはモルホリニル 基である。

[0067] 一般式(If)のRf²、Rf⁴、Rf⁵、および、置換基群αfにおける「ハロゲノC₁-C₂アルキル基」は、1乃至5個の下記ハロゲノ基で置換された上記C₁-C₂アルキル基であり、例えば、フルオロメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、トリフルオロメチル基、トリクロロメチル基、2-ブロモエチル基、2-ブロモエチル基、2-ブロエチル基、2-ヨードエチル基、2,2-ジフルオロエチル基、2,2,2ートリフルオロエチル基、3-フルオロエチル基、3-フルオロプロピル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、4-フルオロブ

チル基、または、4,4,4ートリフルオロブチル基であり得、好適には、ハロゲノ C_1 ー C_2 アルキル基(当該ハロゲノ C_1 ー C_2 アルキル基は、1乃至5個のハロゲノ基で置換された C_1 ー C_2 アルキル基を示す)であり、より好適には、トリフルオロメチル基、2,2,2ートリフルオロエチル基、または、ペンタフルオロエチル基であり、最も好適には、トリフルオロメチル基である。

- [0068] 一般式(If)の Rf^2 における「 $C_1 C_2$ アルキルアミノ基」は、1個の上記 $C_1 C_2$ アルキル基で置換されたアミノ基であり、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基(例えば、 $1 \mathcal{C}$ ロピルアミノ基、 $2 \mathcal{C}$ ロピルアミノ基であり得、好適には、 $2 \mathcal{C}$ ロピルアミノ基であり、より好適には、メチルアミノ基であり、より好適には、メチルアミノ基であり、最も好適には、メチルアミノ基である。
- [0069] 一般式(If)の RR^{β} における「ジ(C_1 - C_4 アルキル)アミノ基」は、同一または異なる2個の上記 C_1 - C_2 アルキル基で置換されたアミノ基であり、例えば、ジメチルアミノ基、メチルエチルアミノ基、メチルプロピルアミノ基[例えば、N-(1- \mathcal{C} - \mathcal{C} -
- [0070] 一般式(If)の Rf^2 、 Rf^4 、 Rf^5 、置換基群 α f、置換基群 β f、および、置換基群 γ f における「ハロゲノ基」は、フルオロ基、クロロ基、ブロモ基、または、ヨード基であり得、好適には、フルオロ基、クロロ基またはブロモ基であり、より好適には、フルオロ基またはクロロ基であり、最も好適には、フルオロ基である。

- [0071] 一般式(If)のRf³、Rf¹³、Rf¹³、Rf¹⁴、Rf¹⁵、置換基群 β f、および、置換基群 γ fにおける「 C_1 C_6 Pルキル基」は、1 乃至6個の炭素原子を有する直鎖または分枝鎖Pルキル基であり、例えば、メチル基、エチル基、1 Pロピル基、2 Pロピル基、1 P ル基、P 2 P 2 P 2 P 3 P 3 P 4 P 3 P 4 P 4 P 4 P 4 P 4 P 4 P 5 P 6 P 7 P 6 P 6 P 7 P 6 P 7 P 7 P 9 P 1
- [0072] 至7個の上記ハロゲノ基で置換された上記C₁-C₆アルキル基であり、例えば、フルオ ロメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、トリフルオロメ チル基、トリクロロメチル基、2-フルオロエチル基、2-ブロモエチル基、2-クロロエ チル基、2-ヨードエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル 基、トリクロロエチル基、ペンタフルオロエチル基、3-フルオロプロピル基、3-クロロ プロピル基、3,3,3-トリフルオロプロピル基、4-フルオロブチル基、4,4,4-トリフル オロブチル基、5-フルオロペンチル基、5,5,5-トリフルオロペンチル基、6-フル オロヘキシル基、または、6,6,6ートリフルオロヘキシル基であり得、好適には、ハロゲ JC_{1} - C_{2} アルキル基(当該ハロゲ JC_{1} - C_{2} アルキル基は、1乃至5個のハロゲJ基で 置換された $C_1 - C_2$ アルキル基を示す)であり、より好適には、ハロゲノ $C_1 - C_2$ アルキ ル基(当該ハロゲノC - C アルキル基は、1乃至5個のフルオロ、クロロもしくはブロモ 基で置換されたC₁-C₇ルキル基を示す)であり、さらにより好適には、トリフルオロメ チル基、2,2,2-トリフルオロエチル基、または、ペンタフルオロエチル基であり、特に 好適には、トリフルオロメチル基または2,2,2ートリフルオロエチル基であり、最も好適 には、トリフルオロメチル基である。
- [0073] 一般式(If)の Rf^3 における「 $(C_1 C_2 T)$ ルコキシ)ー($C_1 C_2 T$ ルキル)基」は、1個の上

記 C_1 $-C_4$ $-C_4$

- [0074] 一般式(If)の Rf^3 における「 $(C_1 C_1 C_4 -$

には、メチルチオメチル基またはエチルチオメチル基であり、最も好適には、メチルチ オメチル基である。

- [0076] 一般式(If)の R^{β} における「 $(C_1 C_1 C_2 C_2 C_3 C_4 C_4$
- 一般式(If)の Rf^3 における「 $(C_1 C_1 r)$ ルキルスルフィニル)ー($C_1 C_1 r$ ルキル)基」 [0077] は、1個の上記C₁-C₇ルキルスルフィニル基で置換された上記C₁-C₇ルキル基 であり、例えば、メチルスルフィニルメチル基、エチルスルフィニルメチル基、(1-プロ ピルスルフィニル)メチル基、(2ープロピルスルフィニル)メチル基、(1ーブチルスルフ ィニル)メチル基、(2-ブチルスルフィニル)メチル基、(2-メチル-2-プロピルスル フィニル)メチル基、メチルスルフィニルエチル基、エチルスルフィニルエチル基、(1-プロピルスルフィニル)エチル基、(2-プロピルスルフィニル)エチル基、(1-ブチルス ルフィニル)エチル基、(2-ブチルスルフィニル)エチル基、(2-メチル-2-プロピル スルフィニル)エチル基、メチルスルフィニル(1-プロピル)基、エチルスルフィニル(1 ープロピル)基、(1ープロピルスルフィニル)ー(1ープロピル)基、(1ーブチルスルフィ ニル)ー(1ープロピル)基、メチルスルフィニル(1ーブチル)基、エチルスルフィニル(1 ーブチル)基、(1ープロピルスルフィニル)ー(1ーブチル)基、または、(1ーブチルスル フィニル)-(1-ブチル)基であり得、好適には、 (C_1-C_2) アルキルスルフィニル) $-(C_1)$ -Cァルキル)基であり、より好適には、メチルスルフィニルメチル基またはエチルス ルフィニルメチル基であり、最も好適には、メチルスルフィニルメチル基である。

プロパンスルホニル基、2ープロパンスルホニル基、1ーブタンスルホニル基、2ーブタンスルホニル基、または、2ーメチルー2ープロパンスルホニル基であり得、好適には、C₁ーC₇アルキルスルホニル基であり、より好適には、メタンスルホニル基またはエタンスルホニル基であり、最も好適には、メタンスルホニル基である。

- 一般式(If)の Rf^3 における「($C_1 C_2$ アルキルスルホニル)ー($C_1 C_2$ アルキル)基」は [0079] 、1個の上記C -C アルキルスルホニル基で置換された上記C -C アルキル基であ り、例えば、メタンスルホニルメチル基、エタンスルホニルメチル基、(1-プロパンスル ホニル)メチル基、(2-プロパンスルホニル)メチル基、(1-ブタンスルホニル)メチル 基、(2ーブタンスルホニル)メチル基、(2ーメチルー2ープロパンスルホニル)メチル基 、メタンスルホニルエチル基、エタンスルホニルエチル基、(1-プロパンスルホニル) エチル基、(2-プロパンスルホニル)エチル基、(1-ブタンスルホニル)エチル基、(2 ーブタンスルホニル)エチル基、(2-メチル-2-プロパンスルホニル)エチル基、メタ ンスルホニル(1ープロピル)基、エタンスルホニル(1ープロピル)基、(1ープロパンスル ホニル)ー(1ープロピル)基、(1ーブタンスルホニル)ー(1ープロピル)基、メタンスルホ ニル(1-ブチル)基、エタンスルホニル(1-ブチル)基、(1-プロパンスルホニル)-(1 ーブチル)基、または、(1-ブタンスルホニル)-(1-ブチル)基であり得、好適には、(C₋C_アルキルスルホニル)-(C₋C_アルキル)基であり、より好適には、メタンスル ホニルメチル基またはエタンスルホニルメチル基であり、最も好適には、メタンスルホ ニルメチル基である。
- [0080] 一般式(If)のRf における「(C₁-C₇ルキルアミノ)-(C₁-C₇ルキル)基」は、1個の上記C₁-C₇ルキルアミノ基で置換された上記C₁-C₇ルキル基であり、例えば、メチルアミノメチル基、エチルアミノメチル基、(1-プロピルアミノ)メチル基、(2-プロピルアミノ)メチル基、(2-プチルアミノ)メチル基、(2-プチルアミノ)メチル基、(2-プチルアミノ)メチル基、(2-プチルアミノ)メチル基、(2-プロピルアミノ)メチル基、(2-プロピルアミノ)メチル基、メチルアミノエチル基、エチルアミノエチル基、(1-プチルアミノ)エチル基、(2-プチルアミノ)エチル基、(2-プチルアミノ)エチル基、(1-プチルアミノ)エチルスミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プチル)基、エチルアミノ(1-プロピル)基、エチルアミノ(1-ブチル)基、エチルアミノ(1-ブナル)基(1-ブナル)

J(1-ブチル)基、(1-プロピルアミノ)-(1-ブチル)基、または、(1-ブチルアミノ)-(1-ブチル)基であり得、好適には、 $(C_1-C_2 アルキルアミノ)-(C_1-C_2 アルキル)$ 基であり、より好適には、メチルアミノメチル基またはエチルアミノメチル基であり、最も好適には、メチルアミノメチル基である。

一般式(If)の Rf^3 における「ジ($C_1 - C_2$ アルキルアミノ)ー($C_1 - C_2$ アルキル)基」は、同 [0081] ーまたは異なる2個の上記C - C アルキルアミノ基で置換された上記C - C アルキ ル基であり、例えば、ジメチルアミノメチル基、メチルエチルアミノメチル基、メチルプ ロピルアミノメチル基[例えば、[N-(1-プロピル)-N-メチルアミノ]メチル基等]、メ チルブチルアミノメチル基「例えば、「N-(1-ブチル)-N-メチルアミノ]メチル基等]、ジエチルアミノメチル基、エチルプロピルアミノメチル基[例えば、[N-(1-プロピ ル)-N-エチルアミノ]メチル基等]、ジプロピルアミノメチル基[例えば、ジ(1-プロ ピル)アミノメチル基、ジ(2-プロピル)アミノメチル基等]、ジブチルアミノメチル基「例 えば、ジ(1-ブチル)アミノメチル基、ジ(2-ブチル)アミノメチル基〕、ジ(2-メチル-1ープロピル)アミノメチル基、ジ(2ーメチルー2ープロピル)アミノメチル基、ジメチルア ミノエチル基[例えば、2-ジメチルアミノエチル基等]、メチルエチルアミノエチル基[例えば、2-(N-メチル-N-エチルアミノ)エチル基等]、メチルプロピルアミノエチ ル基[例えば、2-[N-メチル-N-(1-プロピル)アミノ]エチル基等]、メチルブチ ルアミノエチル基「例えば、2-「N-メチル-N-(1-ブチル)アミノ]エチル基等]、 ジエチルアミノエチル基(例えば、2-ジエチルアミノエチル基等)、エチルプロピルア ミノエチル基「例えば、2-「N-(1-プロピル)-N-エチルアミノ]エチル基等]、ジ プロピルアミノエチル基「例えば、2-「ジ(1-プロピル)アミノ]エチル基等]、ジブチル アミノエチル基「例えば、2-ジ(1-ブチル)アミノエチル基等]、ジ(2-メチル-1-プロピル)アミノエチル基[例えば、2-ジ(2-メチル-1-プロピル)アミノエチル基等]、ジ(2-メチル-2-プロピル)アミノエチル基[例えば、2-ジ(2-メチル-2-プロ ピル)アミノエチル基等]、ジメチルアミノプロピル基「例えば、3-ジメチルアミノ-1-プロピル基等]、メチルエチルアミノプロピル基[例えば、3-(N-メチル-N-エチ ルアミノ)-1-プロピル基等]、ジエチルアミノプロピル基[例えば、3-ジエチルアミ ノー1ープロピル基等]、ジプロピルアミノプロピル基「例えば、3ージ(1ープロピル)ア

WO 2006/004030 PCT/JP2005/012185

61

ミノー1ープロピル基等]、ジブチルアミノプロピル基[例えば、3ージ(1ーブチル)アミノー1ープロピル基等]、ジメチルアミノブチル基[例えば、4ージメチルアミノー1ーブチル基等]、メチルエチルアミノブチル基[例えば、4ー(NーメチルーNーエチルアミノブチル基[例えば、4ージエチルアミノー1ーブチル基等]、ジエチルアミノブチル基[例えば、4ージエチルアミノー1ーブチル基等]、ジプロピルアミノブチル基[例えば、4ージ(1-プロピル)アミノー1ーブチル基等]、または、ジブチルアミノブチル基[例えば、4-ジ(1-ブチル)アミノー1ーブチル基等]であり得、好適には、ジ(C_1 - C_2 アルキルアミノ)ー(C_1 - C_2 アルキル)基であり、より好適には、ジメチルアミノメチル基またはジエチルアミノメチル基であり、最も好適には、ジメチルアミノメチル基である。

- [0082] 一般式(If)の R^3 、 R^4 および R^5 における「 C_3 $-C_5$ クロアルキル基」は、3万至6個の炭素原子を有する環状アルキル基であり、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、または、シクロヘキシル基であり得、好適には、 C_3 $-C_5$ シクロアルキル基であり、より好適には、 C_3 $-C_5$ シクロプロピル基であり、より好適には、 C_3 $-C_5$ シクロプロピル基である。
- [0084] 一般式(If)のRf における「 C_2 $-C_2$ $-C_3$ $-C_4$ $-C_4$ $-C_5$ $-C_5$ -C
- [0085] 一般式(If)の Rf^3 、 Rf^{11} 、置換基群 β f、および、置換基群 γ fにおける「 C_1 $-C_2$ $-C_3$ アルコキシ基」は、1個の上記 C_1 $-C_3$ アルキル基で置換されたヒドロキシル基であり、例えば、メトキシ基、エトキシ基、1 プロポキシ基、2 プロポキシ基、1 ブトキシ基、2 プロポキシ基、2 プロポキシ基、3 ブトキシ基、4 ブロポキシ基、4 ブトキシ基、4 ブトキシ基、4 ブトキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブトキシ基、4 ブロポキシ基、4 ブトキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブトキシ基、4 ブトキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブトキシ基、4 ブロポキシ基、4 ブロポキシ基、4 ブレカ・4 ブロポキシ基、4 ブレカ・4 ブロポキシ基、4 ブレカ・4 ブレカ・4 ブレカ・4 ブレカ・4 ブレカ・4 ブレカ・4 ブロポキシ基、4 ブレカ・4 -

ブトキシ基、2-メチル-1-プロポキシ基、2-メチル-2-プロポキシ基、1-ペンチルオキシ基、2-ペンチルオキシ基、2-メチル-2-ブトキシ基、3-メチル-2-ブトキシ基、1-ヘキシルオキシ基、2-ヘキシルオキシ基、3-メチル-1-ペンチルオキシ基、3-メチル-1-ペンチルオキシ基、3-メチル-1-ブトキシ基、3-メチル-1-ブトキシ基、3-メチル-1-ブトキシ基、または、2,3-ジメチル-1-ブトキシ基であり得、好適には、 C_1-C_1 アルコキシ基であり、より好適には、 C_1-C_2 アルコキシ基(特に、メトキシ基、エトキシ基またはプロポキシ基)であり、さらに好適には、メトキシ基またはエトキシ基であり、最も好適には、メトキシ基である。

一般式(If)の Rf^3 および置換基群 β fにおける「ハロゲノC」 -C アルコキシ基」は、1 [0086]乃至7個の上記ハロゲノ基で置換された上記 $C_1 - C_6$ アルキル基であり、例えば、フル オロメトキシ基、ジフルオロメトキシ基、ジクロロメトキシ基、ジブロモメトキシ基、トリフル オロメトキシ基、トリクロロメトキシ基、2-フルオロエトキシ基、2-ブロモエトキシ基、2 ークロロエトキシ基、2-ヨードエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフ ルオロエトキシ基、2,2,2ートリクロロエトキシ基、ペンタフルオロエトキシ基、3,3,3ート リフルオロー1ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、1,1,1ートリ クロロー2ープロポキシ基、4,4,4ートリフルオロー1ーブトキシ基、4,4,4ートリフルオ ロー2ーブトキシ基、2ートリフルオロメチルー1ープロポキシ基、2ートリフルオロメチ ルー2ープロポキシ基、5,5,5ートリフルオロー1ーペンチルオキシ基、5,5,5ートリフ ルオロー2ーペンチルオキシ基、1,1,1ートリフルオロー3ーペンチルオキシ基、4,4, 4ートリフルオロー2ーメチルー2ーブトキシ基、4,4,4ートリフルオロー3ーメチルー2 ーブトキシ基、4,4,4ートリフルオロー2ーメチルー2ーブトキシ基、6,6,6ートリフルオ ロー1ーヘキシルオキシ基、6,6,6ートリフルオロー2ーヘキシルオキシ基、6,6,6ート リフルオロー3ーヘキシルオキシ基、5,5,5ートリフルオロー2ーメチルー1ーペンチル オキシ基、1,1,1ートリフルオロー3ーメチルー3ーペンチルオキシ基、6,6,6ートリフ ルオロー2-エチルー1-ブトキシ基、6,6,6-トリフルオロー2,3-ジメチルー1-ブ トキシ基であり得、好適には、ハロゲノC -C アルコキシ基(当該ハロゲノC -C アル コキシ基は、1乃至5個のハロゲノ基で置換されたC_-C_アルコキシ基を示す)であり

、より好適には、ハロゲノC₁ - C₂アルコキシ基(当該ハロゲノC₁ - C₂アルコキシ基は、1乃至5個のフルオロ、クロロもしくはブロモ基で置換されたC₁ - C₂アルコキシ基を示す)であり、さらにより好適には、トリフルオロメトキシ基、2,2,2ートリフルオロエトキシ基またはペンタフルオロエトキシ基であり、最も好適には、トリフルオロメトキシ基である。

- [0088] 一般式(If)のRf³、置換基群βf、および、置換基群γfにおける「C₁-C₂アルキルスルフィニル基」は、1個の上記C₁-C₂アルキル基で置換されたスルフィニル基(-SO-)であり、例えば、メチルスルフィニル基、エチルスルフィニル基、1-プロピルスルフィニル基、2-プロピルスルフィニル基、1ーブチルスルフィニル基、2-ブチルスルフィニル基、2-ブチルスルフィニル基、2-メチルー1-プロピルスルフィニル基、2-メチルー2-プロピルスルフィニル基、1-ペンチルスルフィニル基、3-ペンチルスルフィニル基、2-メチルー2-ブチルスルフィニル基、3-メチルー2-ブチルスルフィニル基、3-メチルー2-ブチルスルフィニル基、1-ヘキシルスルフィニル基、2-ヘキシルスルフィニル基、3-メチルー1ーペンチルスルフィニル基、3-メチルー1ーペンチルスルフィニル基、3-メチルー1ーペンチルスルフィニル基、2-エチルー1ーブチルスルフィニル基、2,2-ジメチルー1ーブチルスルフィニル基、2,2-ジメチルー1ーブチルスルフィニル基、2,2-ジメチルー1ーブチルスルフィニル基、2,2-ジメチルー1ーブチルスルフィニル基、2,2-ジメチルー1ーブチルスルフィニル基、2,3-ジメチルー1ーブチルスルフィニル基であり

得、好適には、C₁ - C₇ルキルスルフィニル基であり、より好適には、C₁ - C₇ルキルスルフィニル基(特に、メチルスルフィニル基、エチルスルフィニル基またはプロピルスルフィニル基)であり、さらに好適には、メチルスルフィニル基またはエチルスルフィニル基であり、最も好適には、メチルスルフィニル基である。

- [0090] 一般式(If)の Rf^3 、 Rf^{11} 、 Rf^{12} 、置換基群 β f、および、置換基群 γ fにおける「 $C_1 C_6$ アルキルアミノ基」は、1個の上記 $C_1 C_6$ アルキル基で置換されたアミノ基であり、例えば、メチルアミノ基、エチルアミノ基、 $1 \mathcal{I}$ ロピルアミノ基、 $2 \mathcal{I}$ ロピルアミノ基、 $2 \mathcal{I}$ ロピルアミノ基、 $1 \mathcal{I}$ ロピルアミノ基、 $2 \mathcal{I}$ ロピルアミノ基、 $2 \mathcal{I}$ ルアミノ基、 $2 \mathcal{I}$ ルアミノ基であり得、好適には、 $2 \mathcal{I}$ ルキルアミノ基であり、より好適には、 $2 \mathcal{I}$ ルキルアミノ基(

特に、メチルアミノ基、エチルアミノ基またはプロピルアミノ基)であり、さらに好適には、メチルアミノ基またはエチルアミノ基であり、最も好適には、メチルアミノ基である。

一般式(If)の Rf^3 、 Rf^{11} 、 Rf^{12} 、置換基群 β f、および、置換基群 γ fにおける「ジ(C_1 [0091] C アルキル)アミノ基」は、同一または異なる2個の上記C - C アルキル基で置換され たアミノ基であり、例えば、ジメチルアミノ基、メチルエチルアミノ基、メチルプロピルア ミノ基[例えば、N-(1-プロピル)-N-メチルアミノ基等]、メチルブチルアミノ基[例えば、N-(1-ブチル)-N-メチルアミノ基等]、ジエチルアミノ基、エチルプロピ ルアミノ基[例えば、N-(1-プロピル)-N-エチルアミノ基等]、ジプロピルアミノ基 [例えば、ジ(1ープロピル)アミノ基、ジ(2ープロピル)アミノ基等]、ジブチルアミノ基[例えば、ジ(1ーブチル)アミノ基、ジ(2ーブチル)アミノ基等]、ジ(2ーメチルー1ープロ ピル)アミノ基、ジペンチルアミノ基[例えば、ジ(1ーペンチル)アミノ基、ジ(2ーペンチ ル)アミノ基、ジ(3-ペンチル)アミノ基等]、または、ジヘキシルアミノ基「例えば、ジ(1 ーヘキシル)アミノ基、ジ(2ーヘキシル)アミノ基、ジ(3ーヘキシル)アミノ基等]であり得 、好適には、ジ(C₁-C₇ルキル)アミノ基であり、より好適には、ジ(C₁-C₇アルキル) アミノ基であり、さらに好適には、ジメチルアミノ基またはジエチルアミノ基であり、最も 好適には、ジメチルアミノ基である。また、「ジ($C_1 - C_2$ アルキル)アミノ基」は、2つの当 該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子およ び硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和へ テロシクリル基を形成してもよく、この5乃至7員飽和ヘテロシクリル基は、例えば、ピ ロリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、チオモルホリニル基、 または、パーヒドロアゼピニル基であり得、好適には、窒素原子、酸素原子および硫 黄原子からなる群より選択される1乃至2個の原子を含有する5乃至6員飽和ヘテロ シクリル基であり、より好適には、ピロリジニル基、ピペリジル基、モルホリニル基、また は、チオモルホリニル基であり、さらに好適には、ピペリジル基またはモルホリニル基 である。

[0092] 一般式(If)の Rf^3 および置換基群 β fにおける「 $(C_1 - C_2 r)$ ルコキシ)カルボニル基」は、1個の上記 $C_1 - C_2 r$ ルコキシ基で置換されたカルボニル基(-CO-)であり、例えば、メトキシカルボニル基、エトキシカルボニル基、 $1- \mathcal{T}$ ロポキシカルボニル基、2-

プロポキシカルボニル基、1ーブトキシカルボニル基、2ーブトキシカルボニル基、2ーメチルー1ープロポキシカルボニル基、2ーメチルー2ープロポキシカルボニル基、1ーペンチルオキシカルボニル基、2ーペンチルオキシカルボニル基、3ーペンチルオキシカルボニル基、3ーペンチルオキシカルボニル基、3ーメチルー2ーブトキシカルボニル基、3ーメチルー2ーブトキシカルボニル基、1ーへキシルオキシカルボニル基、2ーヘキシルオキシカルボニル基、3ーヘキシルオキシカルボニル基、3ーヘキシルオキシカルボニル基、2ーメチルー1ーペンチルオキシカルボニル基、3ーメチルー1ーペンチルオキシカルボニル基、2ーエチルー1ーブトキシカルボニル基、2,2ージメチルー1ーブトキシカルボニル基、または、2,3ージメチルー1ーブトキシカルボニル基であり、より好適には、メトキシカルボニル基であり、より好適には、メトキシカルボニル基であり、最も好適には、メトキシカルボニル基である。

- [0093] 一般式(If)のRf*およびRf*における「ハロゲノC₁ C₂アルコキシ基」は、1乃至5個の上記ハロゲノ基で置換された上記C₁ C₂アルコキシ基であり、例えば、フルオロメトキシ基、ジフルオロメトキシ基、ジクロロメトキシ基、ジブロモメトキシ基、トリフルオロメトキシ基、リフルオロメトキシ基、シフルオロメトキシ基、2-クロロエトキシ基、2-3ードエトキシ基、2-プロモエトキシ基、2-クロロエトキシ基、2-3ードエトキシ基、2-2ージフルオロエトキシ基、2-2ートリフルオロエトキシ基、3,3,3ートリフルオロエトキシ基、2,2,2ートリフルオロエトキシ基、3,3,3ートリフルオロー1ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、1,1,1ートリフルオロー2ープロポキシ基、4,4,4ートリフルオロー2ーブトキシ基、4,4,4ートリフルオロメチルー1ープロポキシ基、または、2ートリフルオロメチルー2ープロポキシ基であり得、好適には、ハロゲノC₁ C₂アルコキシ基(当該ハロゲノC₁ C₂アルコキシ基は、1乃至5個のハロゲノ基で置換されたC₁ C₂アルコキシ基を示す)であり、より好適には、トリフルオロメトキシ基、2,2,2ートリフルオロエトキシ基またはペンタフルオロエトキシ基であり、最も好適には、トリフルオロメトキシ基である。
- [0094] 一般式(If)の Rf^3 および Rf^3 における「 $C_1 C_2$ アルキル基」は、1万至3個の炭素原子を有する直鎖または分枝鎖アルキル基であり、例えば、メチル基、エチル基、1-プロピル基、または、2-プロピル基であり得、好適には、メチル基またはエチル基であり

、最も好適には、メチル基である。

- 一般式(If)の Rf^{11} における「($C_3 C_8$ シクロアルキル)ー($C_1 C_6$ アルキル)オキシ基」 [0095] は、1個の下記 C_3 - C_8 シクロアルキル基で置換された上記 C_1 - C_6 アルコキシ基であ り、例えば、シクロプロピルメトキシ基、シクロブチルメトキシ基、シクロペンチルメトキシ 基、シクロヘキシルメトキシ基、シクロヘキシルメトキシ基、1-シクロプロピルエトキシ 基、2ーシクロプロピルエトキシ基、2ーシクロブチルエトキシ基、2ーシクロペンチル エトキシ基、2-シクロヘキシルエトキシ基、2-シクロヘプチルエトキシ基、3-シクロ プロピルー1ープロポキシ基、2ーシクロプロピルー1ープロポキシ基、2ーシクロプロ ピルー2ープロポキシ基、3ーシクロブチルー1ープロポキシ基、3ーシクロペンチル -1-プロポキシ基、3-シクロヘキシル-1-プロポキシ基、4-シクロプロピル-1 ーブトキシ基、4ーシクロプロピルー2ーブトキシ基、3ーシクロプロピルー2ーメチル -1-プロポキシ基、3-シクロプロピル-2-メチル-2-プロポキシ基、4-シクロ ブチルー1ーブトキシ基、5ーシクロプロピルー1ーペンチルオキシ基、5ーシクロプロ ピルー2ーペンチルオキシ基、5-シクロプロピルー3-ペンチルオキシ基、4-シク ロプロピルー2ーメチルー2ーブトキシ基、4ーシクロプロピルー3ーメチルー2ーブト キシ基、6-シクロプロピル-1-ヘキシルオキシ基、6-シクロプロピル-2-ヘキシ ルオキシ基、6-シクロプロピル-3-ヘキシルオキシ基、5-シクロプロピル-2-メ チルー1ーペンチルオキシ基、5ーシクロプロピルー3ーメチルー1ーペンチルオキシ 基、4ーシクロプロピルー2ーエチルー1ーブトキシ基、4ーシクロプロピルー2,2ージ メチルー1ーブトキシ基、または、4ーシクロプロピルー2,3ージメチルー1ーブトキシ 基であり得、好適には、 $(C_3 - C_1 > D_1 > D_1 > D_1 > D_2 > D_1 > D_2 > D_2 > D_2 > D_3 > D_$ より好適には、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_7)$ アルキル)オキシ基であり、さらに好 適には、 $(C_3 - C_1)$ クロアルキル) $-(C_1 - C_2)$ アルキル)オキシ基であり、最も好適には 、シクロプロピルメチルオキシ基である。
- [0096] 一般式(If)のRf¹¹および置換基群γfにおける「C₃ C₈シクロアルキルオキシ基」は、1個の下記C₃ C₈シクロアルキル基で置換されたヒドロキシル基であり、例えば、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロへプチルオキシ基、または、シクロオクチルオキシ基であり得、

好適には、 C_3 $-C_6$ シクロアルキルオキシ基であり、より好適には、 C_3 $-C_6$ シクロアルキルオキシ基であり、最も好適には、シクロプロピルオキシ基である。

一般式(If)の Rf^{12} および Rf^{12} における「[($C_3 - C_8$ シクロアルキル)ー($C_1 - C_6$ アルキル [0097])]アミノ基」は、1個の下記 $C_3 - C_8$ シクロアルキル基で置換された上記 $C_1 - C_6$ アルキ ルアミノ基であり、例えば、シクロプロピルメチルアミノ基、シクロブチルメチルアミノ基 、シクロペンチルメチルアミノ基、シクロヘキシルメチルアミノ基、シクロヘキシルメチル アミノ基、1-シクロプロピルエチルアミノ基、2-シクロプロピルエチルアミノ基、2-シクロブチルエチルアミノ基、2-シクロペンチルエチルアミノ基、2-シクロヘキシル エチルアミノ基、2-シクロヘプチルエチルアミノ基、3-シクロプロピルー1-プロピ ルアミノ基、2-シクロプロピルー1-プロピルアミノ基、2-シクロプロピルー2-プロ ピルアミノ基、3-シクロブチルー1-プロピルアミノ基、3-シクロペンチルー1-プロ ピルアミノ基、3-シクロヘキシル-1-プロピルアミノ基、4-シクロプロピル-1-ブ チルアミノ基、4ーシクロプロピルー2ーブチルアミノ基、3ーシクロプロピルー2ーメチ ルー1ープロピルアミノ基、3ーシクロプロピルー2ーメチルー2ープロピルアミノ基、4 ーシクロブチルー1ーブチルアミノ基、5ーシクロプロピルー1ーペンチルアミノ基、5 ーシクロプロピルー2ーペンチルアミノ基、5ーシクロプロピルー3ーペンチルアミノ基 、4-シクロプロピルー2-メチルー2-ブチルアミノ基、4-シクロプロピルー3-メチ ルー2ーブチルアミノ基、6ーシクロプロピルー1ーヘキシルアミノ基、6ーシクロプロピ ルー2ーヘキシルアミノ基、6ーシクロプロピルー3ーヘキシルアミノ基、5ーシクロプロ ピルー2ーメチルー1ーペンチルアミノ基、5ーシクロプロピルー3ーメチルー1ーペン チルアミノ基、4ーシクロプロピルー2ーエチルー1ーブチルアミノ基、4ーシクロプロピ ルー2,2ージメチルー1ーブチルアミノ基、または、4ーシクロプロピルー2,3ージメチ $\nu-1-$ ブチルアミノ基であり得、好適には、 $\binom{C}{3}-\binom{C}{6}$ シクロアルキル $\binom{C}{1}-\binom{C}{4}$ アル キル)アミノ基であり、より好適には、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_7)$ アンキル)アミ ノ基であり、さらに好適には、(C₂-C₂シクロアルキル)-(C₁-C₂アルキル)アミノ基で あり、最も好適には、シクロプロピルメチルアミノ基である。

[0098] 一般式(If)の Rf^{11} 、 Rf^{12} 、置換基群 β f、および、置換基群 γ fにおける「 C_3 $-C_8$ シクロアルキルアミノ基」は、1個の下記 C_3 $-C_8$ シクロアルキル基で置換されたアミノ基であ

り、例えば、シクロプロピルアミノ基、シクロブチルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、シクロヘプチルアミノ基、または、シクロオクチルアミノ基であり、得、好適には、 $C_3 - C_6$ シクロアルキルアミノ基であり、より好適には、 $C_3 - C_6$ シクロアルキルアミノ基であり、より好適には、 $C_3 - C_6$ シクロアルキルアミノ基であり、最も好適には、シクロプロピルアミノ基である。

- 一般式(If)の Rf^{12} および Rf^{12} における「ジ[($C_3 C_8$ シクロアルキル)ー($C_1 C_6$ アルキ [0099] ル)]アミノ基」は、同一または異なる2個の下記($C_3 - C_8$ シクロアルキル)-($C_1 - C_8$ ア ルキル)基で置換されたアミノ基であり、例えば、ジ(シクロプロピルメチル)アミノ基、N ーシクロプロピルメチルーNーシクロブチルメチルアミノ基、Nーシクロプロピルメチル -N-シクロペンチルメチルアミノ基、N-シクロプロピルメチル-N-シクロヘキシ ルメチルアミノ基、NーシクロプロピルメチルーNーシクロへプチルメチルアミノ基、N ーシクロプロピルメチルーNーシクロオクチルメチルアミノ基、Nーシクロプロピルメチ ルーNーシクロプロピルエチルアミノ基、NーシクロプロピルメチルーN-(3-シクロ プロピルー1ープロピル)アミノ基、ジ(シクロブチルメチル)アミノ基、ジ(シクロペンチル メチル)アミノ基、ジ(シクロヘキシルメチル)アミノ基、ジ(シクロヘプチルメチル)アミノ基 、または、 $\mathcal{S}(\mathcal{S})$ であり得、好適には、 $\mathcal{S}[(C_3 - C_6)$ であり得、好適には、 $\mathcal{S}[(C_3 - C_6)]$ ルキル) $-(C_1-C_7$ ルキル)]アミノ基であり、より好適には、ジ $[(C_3-C_5)$ クロアルキ ν)-(C_1 - C_2 アルキル)]アミノ基であり、さらに好適には、ジ[(C_3 - C_4 シクロアルキル) -(C₁-C₂アルキル)]アミノ基であり、最も好適には、ジ(シクロプロピルメチル)アミノ基 である。
- [0100] 一般式(If)の Rf^{11} 、 Rf^{12} 、置換基群 β f、および、置換基群 γ fにおける「ジ(C_3 $-C_3$ > 2 β $-C_4$ > 2 β $-C_4$ > 3 β $-C_4$ > 4

WO 2006/004030 PCT/JP2005/012185

70

クロプロピルアミノ基である。

- 一般式(If)の Rf^{11} および Rf^{12} における「 $N-[(C_{3}-C_{5})$ クロアルキル) $-(C_{1}-C_{5})$ アル [0101] キル)] $-N-(C_1-C_7$ ルキル)アミノ基」は、1個の下記(C_3-C_8 シクロアルキル) $-(C_1-C_8)$ -Cアルキル)基、および、1個の上記 C_1 -Cアルキル基で置換されたアミノ基であり 、例えば、NーシクロプロピルメチルーNーメチルアミノ基、Nーシクロプロピルメチル -N-エチルアミノ基、N-シクロプロピルメチル-N-プロピルアミノ基、N-シクロ プロピルメチルーNーブチルアミノ基、NーシクロプロピルメチルーNーペンチルアミ ノ基、NーシクロプロピルメチルーNーヘキシルアミノ基、Nーシクロプロピルエチル -N-メチルアミノ基、N-(3-シクロプロピル-1-プロピル)-N-メチルアミノ基、 N-シクロブチルメチル-N-メチルアミノ基、N-シクロペンチルメチル-N-メチ ルアミノ基、NーシクロヘキシルメチルーNーメチルアミノ基、Nーシクロヘプチルメチ ルーNーメチルアミノ基、または、NーシクロオクチルメチルーNーメチルアミノ基であ り得、好適には、 $N-[(C_3-C_5)/20$ シクロアルキル) $-(C_1-C_4)$ アルキル)] $-N-(C_1-C_4)$ ルキル)アミノ基であり、より好適には、 $N-[(C_3-C_4) - C_1) - (C_1-C_2)$ アルキル)ー(C_1-C_2 アルキ ν)]-N-(C₁-C₂アルキル)アミノ基であり、さらに好適には、N-[(C₃-C₄シクロア ルキル)メチル]ーNーメチルアミノ基であり、最も好適には、Nーシクロプロピルメチル -N-メチルアミノ基である。
- [0102] 一般式(If)の Rf^{11} 、 Rf^{12} 、置換基群 β f、および、置換基群 γ fにおける「 $N-(C_3-C_8)$ シクロアルキル) $-N-(C_1-C_6)$ アルキル)アミノ基」は、1個の下記 C_3-C_8 シクロアルキル基、および、1個の上記 C_1-C_6 アルキル基で置換されたアミノ基であり、例えば、N-2 クロプロピル-N-3 チルアミノ基、N-2 クロプロピル-N-3 チルアミノ基、N-2 クロプロピル-N-3 アミノ基、N-2 クロプロピル-N-3 アミノ基、N-2 クロプロピル-N-3 アミノ基、N-2 クロプロピル-N-3 アミノ基、N-3 アミノ基、N-3 アミノ基、N-3 アミノ 基、N-3 アミノ ステル アミノ 基、N-3 アミノ ステル アミノ 基であり得、好適には、 $N-(C_3-C_4)$ アクロアルキル) $-N-(C_1-C_2)$ アルキル)アミノ 基であり、より好適には、 $N-(C_3-C_4)$ アルキル) $-N-(C_1-C_2)$ アルキル)アミノ 基であり、さらに好適には、 $N-(C_3-C_4)$ アフロアルキル) $-N-(C_1-C_2)$ アルキル)アミノ 基であり、さらに好適には、 $N-(C_3-C_4)$

C シクロアルキル)-N-メチルアミノ基であり、最も好適には、N-シクロプロピルーN-メチルアミノ基である。

- 一般式(If)の Rf^{12} および Rf^{12} における「 $N-[(C_{3}-C_{5})/(C_{1})/(C_{1}-C_{6})]$ アルキル)ー($C_{1}-C_{6}$ アル [0103] キル)] $-N-(C_3-C_3)$ クロアルキル)アミノ基」は、1個の下記(C_3-C_3)クロアルキル $)-(C_1-C_7)$ ルキル)基、および、1個の下記 C_3-C_8 シクロアルキル基で置換された アミノ基であり、例えば、NーシクロプロピルメチルーNーシクロプロピルアミノ基、Nー シクロブチルメチルーNーシクロプロピルアミノ基、NーシクロペンチルメチルーNー シクロプロピルアミノ基、NーシクロヘキシルメチルーNーシクロプロピルアミノ基、N ーシクロヘプチルメチルーNーシクロプロピルアミノ基、Nーシクロオクチルメチルー N-シクロプロピルアミノ基、N-シクロプロピルエチル-N-シクロプロピルアミノ基 、N-(3-シクロプロピル-1-プロピル)-N-シクロプロピルアミノ基、N-シクロプ ロピルメチルーNーシクロブチルアミノ基、または、NーシクロプロピルメチルーNーシ クロペンチルアミノ基であり得、好適には、 $N-[(C_3-C_5)/200]$ シクロアルキル) $-(C_1-C_2)$ ルキル)] $-N-(C_3-C_5)$ クロアルキル)アミノ基であり、より好適には、 $N-[(C_3-C_4)$ シクロアルキル) $-(C_1 - C_2 アルキル)]-N-(C_3 - C_3 シクロアルキル)アミノ基であり、$ さらに好適には、 $N-[(C_3-C_4) クロアルキル)メチル]-N-(C_3-C_5) クロアルキル)$ アミノ基であり、最も好適には、NーシクロプロピルメチルーNーシクロプロピルアミノ 基である。
- [0104] 一般式(If)のRf¹¹における「ヒドロキシル(C₁-C₆アルキル)アミノ基」は、1個の上記C₁-C₆アルキル基および1個のヒドロキシル基で置換されたアミノ基であり、例えば、ヒドロキシル(メチル)アミノ基、ヒドロキシル(エチル)アミノ基、ヒドロキシル(1ープロピル)アミノ基、ヒドロキシル(2ープロピル)アミノ基、ヒドロキシル(1ーブチル)アミノ基、ヒドロキシル(2ープチル)アミノ基、ヒドロキシル(2ーブチル)アミノ基、ヒドロキシル(2ーメチルー2ープロピル)アミノ基、ヒドロキシル(1ーペンチル)アミノ基、ヒドロキシル(2ーペンチル)アミノ基、ヒドロキシル(3ーペンチル)アミノ基、ヒドロキシル(2ーペンチル)アミノ基、ヒドロキシル(3ーペンチル)アミノ基、ヒドロキシル(2ーメチルー2ーブチル)アミノ基、ヒドロキシル(3ーメチルー2ーブチル)アミノ基、ヒドロキシル(2ーメチルー2ーブチル)アミノ基、ヒドロキシル(2ーメチルー2ーブチル)アミノ基、ヒドロキシル(3ーペキシル)アミノ基、ヒドロキシル(2ーメチルー2ーブチル)アミノ基、ヒドロキシル(2ーメチル

-1ーペンチル)アミノ基、ヒドロキシル(3ーメチルー3ーペンチル)アミノ基、ヒドロキシル(2ーエチルー1ーブチル)アミノ基、ヒドロキシル(2,3ージメチルー1ーブチル)アミノ基、ヒドロキシル(1ーヘプチル)アミノ基、ヒドロキシル(3ーヘプチル)アミノ基、ヒドロキシル(4ーヘプチル)アミノ基、ヒドロキシル(3ーメチルー3ーヘキシル)アミノ基、ヒドロキシル(3ーエチルー3ーペンチル)アミノ基、ヒドロキシル(3ーオクチル)アミノ基、ヒドロキシル(4ーオクチル)アミノ基、ヒドロキシル(3ーエチルー3ーヘキシル)アミノ基、ヒドロキシル(4ーオクチル)アミノ基、ヒドロキシル(5ーノニル)アミノ基、ヒドロキシル(4ーエチルー4ーペプチル)アミノ基、ヒドロキシル(4ーデシル)アミノ基、ヒドロキシル(5ーデシル)アミノ基、または、ヒドロキシル(4ーデシル)アミノ基、ヒドロキシル(5ーデシル)アミノ基であり、より好適には、ヒドロキシル(メチル)アミノ基であり、より好適には、ヒドロキシル(メチル)アミノ基またはヒドロキシル(エチル)アミノ基であり、最も好適には、ヒドロキシルメチルアミノ基である。

一般式(If)の Rf^{12} 、 Rf^{13} 、 Rf^{14} 、 Rf^{15} 、および置換基群 β fにおける「 $(C_3 - C_3)$ シクロア [0105] ルキル)-(C_-Cアルキル)基」は、1個の下記C₃-C₂シクロアルキル基で置換され た上記 $C_1 - C_2$ アルキル基であり、例えば、シクロプロピルメチル基、シクロブチルメチ ル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘプチルメチル基、 シクロオクチルメチル基、1-シクロプロピルエチル基、2-シクロプロピルエチル基、 2-シクロブチルエチル基、2-シクロペンチルエチル基、2-シクロヘキシルエチル 基、2-シクロヘプチルエチル基、3-シクロプロピル-1-プロピル基、2-シクロプ ロピルー1ープロピル基、2ーシクロプロピルー2ープロピル基、3ーシクロブチルー1 ープロピル基、3-シクロペンチル-1-プロピル基、3-シクロヘキシル-1-プロピ ル基、4-シクロプロピル-1-ブチル基、4-シクロプロピル-2-ブチル基、3-シ クロプロピルー2ーメチルー1ープロピル基、3ーシクロプロピルー2ーメチルー2ープ ロピル基、4ーシクロブチルー1ーブチル基、5ーシクロプロピルー1ーペンチル基、5 ーシクロプロピルー2ーペンチル基、5ーシクロプロピルー3ーペンチル基、4ーシクロ プロピルー2-メチルー2-ブチル基、4-シクロプロピルー3-メチルー2-ブチル 基、6ーシクロプロピルー1ーヘキシル基、6ーシクロプロピルー2ーヘキシル基、6ー シクロプロピルー3-ヘキシル基、5-シクロプロピルー2-メチルー1-ペンチル基

、5-シクロプロピルー3-メチルー1-ペンチル基、4-シクロプロピルー2-エチルー1-ブチル基、4-シクロプロピルー2,2-ジメチルー1-ブチル基、または、4-シクロプロピルー2,3-ジメチルー1-ブチル基であり得、好適には、 (C_3-C_5) クロアルキル) $-(C_1-C_2)$ クロアルキル) $-(C_1-C_3)$ が、より好適には、 (C_3-C_5) クロアルキル) $-(C_1-C_2)$ が、さらに好適には、 (C_3-C_5) クロアルキル) $-(C_1-C_2)$ が、さらにより好適には、 (C_3-C_5) クロアルキル) $-(C_1-C_2)$ が、まらにより好適には、シクロプロピルメチル基またはシクロプロピルエチル基であり、最も好適には、シクロプロピルメチル基である。

- [0107] 一般式(If)の Xf^2 における「 $C_1 C_2 C_3 C_4 C_4$
- [0108] 一般式(If)のYf における「5乃至6員芳香族へテロシクリル基」は、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至4個の原子を含有する5乃至6員芳香族複素環基であり、例えば、フリル基、チエニル基、ピロリル基、イミダブリル基、ピラブリル基、オキサブリル基、イソキサブリル基、チアブリル基、イソチアブリル基、トリアブリル基、テトラブリル基、オキサジアブリル基、チアジアブリル基、テトラブリル基、ピリニル基、ピリジル基、ピリジル基、ナキサジアブリル基、または、ピラジニル基であり得、好適には、ピロリル基、フリル基、チエニル基、イミダブリル基、オキサブリル基、チ

アゾリル基、または、ピリジル基であり、より好適には、チエニル基またはピリジル基であり、最も好適には、ピリジル基である。

- [0109] 一般式(If)のYf²における「6乃至10員アリール基」は、6乃至10員の芳香族炭化水素基であり、例えば、フェニル基またはナフチル基であり、好適には、フェニル基である。
 - 一般式(If)のYf における「9乃至10員不飽和環状炭化水素基」は、9乃至10員芳香族炭化水素基が部分的に還元された基であって、飽和炭化水素基ではなく、Y¹に結合する環状基がフェニル基である基を示す。9乃至10員不飽和環状炭化水素基は、例えば、インダニル基またはテトラヒドロナフチル基であり得、好適には、インダニル基である。
- [0110] 一般式(If)のYrcおける「5乃至10員芳香族へテロシクリル基」は、窒素原子、酸素原子及び硫黄原子からなる群より選択される1乃至4個の原子を含む5乃至10員芳香族複素環基であり、例えば、フリル基、チエニル基、ピロリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソキサゾリル基、チアブリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基、ピリジル基、ピリジル基、ピリジル基、ピリジル基、ピリジル基、ピリジール基、ピリジニル基、ピリジニル基、アゾニニル基、インドリル基、ベングフラニル基、ベングチエニル基、ベングイミダゾリル基、ベングイソキサゾリル基、ベングチアゾリル基、ベングイソチアゾリル基、キノリル基、インキノリル基、キノキサリニル基、または、キナゾリニル基であり得、好適には、5乃至6員芳香族へテロシクリル基であり、より好適には、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリミジニル基であり、さらに好適には、チエニル基、チアブリル基またはピリジル基であり、最も好適には、ピリジル基である。
- [0111] 一般式(If)のYf²における「9乃至10員不飽和ヘテロシクリル基」は、9乃至10員芳香族ヘテロシクリル基が部分的に還元された基であって、飽和ヘテロシクリル基ではなく、Yf²に結合する環状基が芳香環基である基を示す。9乃至10員不飽和ヘテロシクリル基は、例えば、インドリニル基、ジヒドロベングフリル基、ジヒドロベングチエニル基、テトラヒドロキノリル基、または、クロマニル基であり得、好適には、インドリニル基、

ジヒドロベンゾフリル基、または、ジヒドロベンゾチエニル基である。

- [0114] 一般式(If)の置換基群 β fにおける「 $(C_1 C_2 r)$ ルコキシ)カルボニルー $(C_1 C_3 r)$ ルキル)基」は、1個の下記 $(C_1 C_3 r)$ カルボニル基で置換された上記 $C_1 C_3 r$ C $C_4 r$ アルキル基であり、例えば、メトキシカルボニルメチル基、エトキシカルボニルメチル基、プロポキシカルボニルメチル基、ブトキシカルボニルメチル基、ペンチルオキシカルボニルメチル基、ヘキシルオキシカルボニルメチル基、メトキシカルボニルエチル基、メトキシカルボニルプロピル基、メトキシカルボニルブチル基、メトキシカルボニルアカルボニルブチル基、または、メトキシカルボニルへキシル基であり得、好適には、 $(C_1 C_4 r)$ ルコキシ)カルボニルー $(C_1 C_4 r)$ アルコキシ)カルボニルー $(C_1 C_4 r)$ をあり、より好適には、 $(C_1 C_4 r)$

WO 2006/004030

キシ)カルボニルー(C₁ - C₂ アルキル)基であり、さらに好適には、メトキシカルボニルメチル基またはメトキシカルボニルエチル基であり、最も好適には、メトキシカルボニルメチル基である。

- [0116] 一般式(If)の置換基群 β fにおける「 C_2 $-C_2$ $-C_3$ $-C_4$ $-C_4$ $-C_5$ $-C_4$ $-C_5$ $-C_4$ $-C_5$ $-C_5$
- [0117] 一般式(If)の置換基群 β fにおける「 $(C_1 C_1 C_2 C_1 C_3 C_4 C$
- [0118] 一般式(If)の置換基群 β fにおける「(C_3 $-C_3$ シクロアルキル)カルボニルアミノ基」は、カルボニルアミノ基(-CONH-)の炭素原子が1個の上記 C_3 $-C_3$ シクロアルキル

基で置換された基であり、例えば、シクロプロピルカルボニルアミノ基、シクロブチルカルボニルアミノ基、シクロペンチルカルボニルアミノ基、シクロペキシルカルボニルアミノ基、シクロペプチルカルボニルアミノ基、または、シクロオクチルカルボニルアミノ基であり、より好適には、 (C_3-C_5) クロアルキル)カルボニルアミノ基であり、さらに好適には、 (C_3-C_5) クロアルキル)カルボニルアミノ基であり、さらに好適には、 (C_3-C_5) クロアルキル)カルボニルアミノ基(シクロプロピルカルボニルアミノ基またはシクロブチルカルボニルアミノ基)であり、最も好適には、シクロプロピルカルボニルアミノ基である。

- [0120] 一般式(If)の置換基群 β fにおける「 $N-[(C_3-C_3)-D^2)$ アルキル)カルボニル]-N $-(C_1-C_2)$ アルキル)アミノ基」は、上記[(C_3-C_3) クロアルキル)カルボニルアミノ基の 窒素原子が1個の上記 C_1-C_2 アルキル基で置換された基であり、例えば、N-2 アロピルカルボニル-N-3 チルアミノ基、N-2 クロブチルカルボニル-N-3 チルアミノ基、N-2 フロプチルカルボニル-N-3 ルボニル-N-3 チルカルボニル-N-3 ルボニル-N-3 チルアミノ基、N-3 アミノ基、N-3 カルボニル-N-3 チルアミノ基、N-3 カルボニル-N-3 チルアミノ基

、N-シクロオクチルカルボニル-N-メチルアミノ基、N-シクロプロピルカルボニル-N-プロピルカルボニル-N-プロピルカルボニル-N-プロピルカルボニル-N-プロピルカルボニル-N-プロピルカルボニル-N-プロピルカルボニル-N-ペンチルアミノ基、または、N-シクロプロピルカルボニル-N-ペンチルアミノ基、または、N-シクロアルキル)カルボニル-N-(N-0、より好適には、N-1、N-1、N-1、N-1、N-1、N-1、N-1 、より好適には、N-1、N-1、N-1 、この「N-1、N-1 、この「N-1、N-1 、この「N-2 をあり、さらに好適には、N-1 、N-3 をいった。 ならに好適には、N-4 に、N-4 に、N-5 のロアルキル)カルボニル に、N-1 、N-1 をいった。 ならに好適には、N-1 、N-2 をいった。 ならに好適には、N-1 をいった。 ならに好適には、N-1 をいった。 ならに対応には、N-2 をいった。 ならに対応には、N-3 をいった。 ならに対応には、N-3 をいった。 ならに対応には、N-4 をいった。 ならに対応には、N-4 をいった。 ならに対応には、N-5 をいった。 ならには、N-5 をいった。 ならには

- [0121] 一般式(If)の置換基群βfにおける「C₁ C₂アルキルスルホニルアミノ基」は、1個の上記C₁ C₆アルキルスルホニル基で置換されたアミノ基であり、例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基、1-プロパンスルホニルアミノ基、2ープロパンスルホニルアミノ基、2ープロパンスルホニルアミノ基、2ープロパンスルホニルアミノ基、2ープタンスルホニルアミノ基、2ープタンスルホニルアミノ基、2ープタンスルホニルアミノ基、2ープタンスルホニルアミノ基、3ーペンタンスルホニルアミノ基、3ーペンタンスルホニルアミノ基、3ーペンタンスルホニルアミノ基、3ーメチルー2ーブタンスルホニルアミノ基、1ーペキサンスルホニルアミノ基、2ーヘキサンスルホニルアミノ基、3ーメチルー1ーペンタンスルホニルアミノ基、3ーメチルー1ーペンタンスルホニルアミノ基、3ーメチルー1ープタンスルホニルアミノ基、5ーエチルー1ーブタンスルホニルアミノ基、1ープタンスルホニルアミノ基、1ープタンスルホニルアミノ基、1ーズチルー1ーブタンスルホニルアミノ基、または、2,3ージメチルー1ーブタンスルホニルアミノ基であり、より好適には、メタンスルホニルアミノ基であり、より好適には、メタンスルホニルアミノ基であり、最も好適には、メタンスルホニルアミノ基であり、最も好適には、メタンスルホニルアミノ基である。

-Nーペンチルアミノ基、Nーメタンスルホニル-Nーへキシルアミノ基、Nーエタンスルホニル-Nーメチルアミノ基、Nープロペンスルホニル-Nーメチルアミノ基、Nーブタンスルホニル-Nーメチルアミノ基、Nーペンタンスルホニル-Nーメチルアミノ基、大力を表して、Nーへキサンスルホニル-Nーメチルアミノ基であり得、好適には、Nー(CーCアルキルスルホニル)ーNー(CーCアルキル)アミノ基であり、より好適には、Nー(CーCアルキルスルホニル)ーNー(CーCアルキル)アミノ基であり、さらに好適には、NーメタンスルホニルーNーメチルアミノ基またはNーエタンスルホニルーNーメチルアミノ基であり、最も好適には、NーメタンスルホニルーNーメチルアミノ基であり、最も好適には、NーメタンスルホニルーNーメチルアミノ基である。

- [0124] 一般式(If)の置換基群 β fにおける「 $(C_1 C_1 C_1 C_2 C_2 C_3 C_3 C_3 C_3 C_4 C_4 C_5 C_4 C_5 C_5 C_4 C_5 C$

- -ペンチル)カルボニル基、または、(1-ヘキシル)カルボニル基であり得、好適には、 (C_1-C_2) アルキル)カルボニル基であり、より好適には、 (C_1-C_3) アルキル)カルボニル基であり、さらに好適には、メチルカルボニル基またはエチルカルボニル基であり、最も好適には、メチルカルボニル基である。
- [0126] 一般式(If)の置換基群 β fにおける「 (C_3-C_3) クロアルキルアミノ)カルボニル基」は、1個の上記 C_3-C_3 シクロアルキルアミノ基で置換されたカルボニル基(-CO-)であり、例えば、シクロプロピルアミノカルボニル基、シクロブチルアミノカルボニル基、シクロペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、シクロヘプチルアミノカルボニル基、または、シクロオクチルアミノカルボニル基であり得、好適には、 C_3-C_3 シクロアルキルアミノカルボニル基であり、より好適には、 C_3-C_4 シクロアルギール基であり、最も好適には、 C_3 の よりカルボニル基であり、最も好適には、 C_3 の なりロプロピルアミノカルボニル基である。
- [0127] 一般式(If)の置換基群 β fにおける「ジ(C_1 $-C_1$ $-C_2$ $-C_3$ $-C_4$ $-C_4$ $-C_4$ $-C_5$ $-C_4$ $-C_5$ $-C_5$ -C

ルアミノ)カルボニル基、(NーメチルーNーへキシルアミノ)カルボニル基、ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基[例えば、ジ(1ープロピル)アミノカルボニル基、ジペンチルアミノカルボニル基、または、ジペキシルアミノカルボニル基であり得、好適には、ジ(CーCアルキル)アミノカルボニル基(当該アルキル基は、同一または異なる)であり、より好適には、ジ(CーCアルキル)アミノカルボニル基(当該アルキル基は、同一または異なる)であり、さらに好適には、ジメチルアミノカルボニル基である。また、ジ(CーCアルキル)アミノカルボニル基である。また、ジ(CーCアルキル)アミノカルボニル基である。また、ジ(CーCアルキル)アミノカルボニル基が当該アミノカルボニルを含まれる1万至3個の原子を含有する5万至7員飽和ヘテロシクリル基を形成してもよく、この場合、ジ(CーCアルキル)アミノカルボニル基は、例えば、ピロリジニルカルボニル基、ピペリジルカルボニル基、ピペラジニルカルボニル基、モルホリニルカルボニルカルボニル基、ヒペリジルカルボニルをある。サカルボニル基、または、チオモルホリニルカルボニル基であり得、好適には、ピロリジニルカルボニル基、または、チオモルホリニルカルボニル基、または、モルホリニルカルボニル基、ビペリジルカルボニル基、または、モルホリニルカルボニル基、ビペリジルカルボニル基、または、モルホリニルカルボニル基、ビペリジルカルボニル基、または、モルホリニルカルボニル基である

[0128] 一般式(If)の置換基群 β fにおける「N $-(C_3-C_8)$ クロアルキル)-N $-(C_1-C_8)$ ルキル)アミノカルボニル基」は、1個の上記N $-(C_3-C_8)$ クロアルキル)-N $-(C_1-C_8)$ C $_6$ アルキル)アミノ基で置換されたカルボニル基(-CO $_7$)であり、例えば、N-シクロプロピル-N-メチルアミノカルボニル基、N-シクロプロピル-N-エチルアミノカルボニル基、N-シクロプロピル-N-エチルアミノカルボニル基、N-シクロプロピル-N-ベンチルアミノカルボニル基、N-シクロプロピル-N-ベンチルアミノカルボニル基、N-シクロプロピル-N-ベンチルアミノカルボニル基、N-シクロプロピル-N-メチルアミノカルボニル基、N-シクロペンチル-N-メチルアミノカルボニル 基、N-シクロペンチル-N-メチルアミノカルボニル 基、N-シクロペキシル-N-メチルアミノカルボニル 基、または、N-シクロオクチル-N-メチルアミノカルボニル 基であり得、好適には、N-(C $_3$ - C $_6$ シクロアルキル)-N-(C $_1$ - C $_7$ アルキル)アミノカルボニル基であり、より好適には、N-(C $_3$ - C $_7$ シクロアルキル)-N-(C $_1$ - C $_7$ アルキル)-N-(C $_1$ - C $_7$ アルキル

ル)アミノカルボニル基であり、さらに好適には、 $N-(C_3-C_4)$ クロアルキル)-N-メチルアミノカルボニル基であり、最も好適には、N-シクロプロピル-N-メチルアミノカルボニル基である。

- [0129] 一般式(If)の置換基群 γ fにおける「 $(C_1 C_1 C_2 C_1 C_1 C_2 C_2 C_2 C_3 C$
- [0131] 一般式(If)の置換基群 γ fにおける「 $(C_1 C_1 C_2 C_1 C_1 C_2 C_2 C_3 C$

、メチルチオメチル基である。

- [0132] 一般式(If)の置換基群 γ fにおける「 $(C_1 C_1 C_2 C_2 C_3 C_4 C_4 C_5 C_5$
- [0134] 一般式(If)の置換基群 γ fにおける「アミノ(C_1 - C_2 アルキル)基」は、1個のアミノ基で置換された上記 C_1 - C_2 アルキル基であり、例えば、アミノメチル基、アミノエチル基、アミノ(1-プロピル)基、アミノ(2-プロピル)基、アミノ(1-ブチル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基、アミノ(2-ブロピル)基であり、より好適には、アミノ(2-C アルキル)基(特に、アミノメチル基のアミノが、アミノブチルを

、アミノエチル基またはアミノプロピル基)であり、さらに好適には、アミノメチル基またはアミノエチル基であり、最も好適には、アミノメチル基である。

- 一般式(If)の置換基群 γ fにおける「(C₁ C₂ アルキルアミノ) (C₁ C₆ アルキル)基 「0135**]** 」は、1個の上記C₁-C₂アルキルアミノ基で置換された上記C₁-C₆アルキル基であり 、例えば、メチルアミノメチル基、エチルアミノメチル基、(1-プロピルアミノ)メチル基、 (2-プロピルアミノ)メチル基、(1-ブチルアミノ)メチル基、(2-ブチルアミノ)メチル基 、(2-メチル-2-プロピルアミノ)メチル基、メチルアミノエチル基、エチルアミノエチ ル基、(1-プロピルアミノ)エチル基、(2-プロピルアミノ)エチル基、(1-ブチルアミノ)エチル基、(2-ブチルアミノ)エチル基、(2-メチル-2-プロピルアミノ)エチル基、 メチルアミノ(1-プロピル)基、エチルアミノ(1-プロピル)基、(1-プロピルアミノ)-(1 ープロピル)基、(1ーブチルアミノ)ー(1ープロピル)基、メチルアミノ(1ーブチル)基、エ チルアミノ(1-ブチル)基、(1-プロピルアミノ)-(1-ブチル)基、(1-ブチルアミノ) -(1-ブチル)基、メチルアミノ(1-ペンチル)基、または、メチルアミノ(1-ヘキシル) 基であり得、好適には、(C₁-C₂アルキルアミノ)-(C₁-C₂アルキル)基であり、より好 適には、 $(C_1 - C_2 アルキルアミノ) - (C_1 - C_2 アルキル)$ 基であり、さらに好適には、メチ ルアミノメチル基、エチルアミノメチル基、または、メチルアミノエチル基であり、最も好 適には、メチルアミノメチル基である。
- [0136] 一般式(If)の置換基群 γ fにおける「(C $_3$ -C $_8$ シクロアルキルアミノ)ー(C $_1$ -C $_6$ アルキル)基」は、1個の上記C $_3$ -C $_8$ シクロアルキルアミノ基で置換された1個の上記C $_1$ -C $_6$ アルキル基であり、例えば、シクロプロピルアミノメチル基、シクロブチルアミノメチル基、シクロペンチルアミノメチル基、シクロペンチルアミノメチル基、シクロペンチルアミノメチル基、シクロプロピルアミノメチル基、シクロプロピルアミノメチル基、シクロプロピルアミノエチル基、シクロプロピルアミノオチル基、シクロプロピルアミノアロピル基、シクロプロピルアミノブチル基、シクロプロピルアミノペンチル基、または、シクロプロピルアミノへキシル基であり得、好適には、(C $_3$ -C $_6$ シクロアルキルアミノ)ー(C $_1$ -C $_1$ -C $_2$ アルキル)基であり、より好適には、シクロプロピルアミノメチル基またはシクロプロピルアミノエチル基であり、さらに好適には、シクロプロピルアミノメチル基またはシクロプロピルアミノエチル基であり、最も好適には、シクロプロピルアミノメチル基である。

- [0137]一般式(If)の置換基群 γ fにおける「ジ(C -C γ ルキル)アミノ-(C -C γ ルキル) 基」は、1個の上記ジ(C_1 C_2 C_1 C_3 C_4 C_4 C_4 C_4 C_4 C_5 C_4 C_5 C_4 C_5 C_4 C_5 C_5 C_6 C_6 り、例えば、ジメチルアミノメチル基、(N-メチル-N-エチルアミノ)メチル基、(N-メ チルーNープロピルアミノ)メチル基、(NーメチルーNーブチルアミノ)メチル基、(Nー メチルーNーペンチルアミノ)メチル基、(N-メチル-N-ヘキシルアミノ)メチル基、 ジエチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチ ルアミノブチル基、ジメチルアミノペンチル基、または、ジメチルアミノヘキシル基であ り得、好適には、 $ジ(C_1 - C_1 r n + n)$ アミノー $(C_1 - C_1 r n + n)$ 基(当該r n + n基 は、同一または異なる)であり、より好適には、ジ(C₁-C₂アルキル)アミノー(C₁-C₂ア ルキル)基(当該アルキル基は、同一または異なる)であり、さらに好適には、ジメチル アミノメチル基、ジメチルアミノエチル基、または、(N-メチル-N-エチルアミノ)メチ ル基であり、さらにより好適には、ジメチルアミノメチル基または(N-メチル-N-エ チルアミノ)メチル基であり、最も好適には、ジメチルアミノメチル基である。また、ジ(C -C,アルキル)アミノ-(C,-C,アルキル)基において、ジ(C,-C,アルキル)アミノ部分 の2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素 原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7 員飽和ヘテロシクリル基を形成してもよく、この場合、ジ(C₁-C₂アルキル)アミノカル ボニル基は、例えば、ピロリジニルメチル基、ピペリジルメチル基、ピペラジニルメチル 基、モルホリニルメチル基、または、チオモルホリニルメチル基であり得、好適には、 ピロリジニルメチル基、ピペリジルメチル基、または、モルホリニルメチル基である。
- [0138] 一般式(If)の置換基群 γ fにおける「ジ(C₃ C₈シクロアルキル)アミノー(C₁ C₂アルキル)基」は、1個の上記ジ(C₃ C₈シクロアルキル)アミノ基で置換されたC₁ C₆アルキル基であり、例えば、ジシクロプロピルアミノメチル基、(NーシクロプロピルーNーシクロプロピルーNーシクロプロピルーNーシクロペンチルアミノ)メチル基、(NーシクロプロピルーNーシクロペンチルアミノ)メチル基、(NーシクロプロピルーNーシクロペンチルアミノ)メチル基、(NーシクロプロピルーNーシクロプロピルーNーシクロオクチルアミノ)メチル基、ジシクロペプチルアミノ)メチル基、ジシクロペンチルアミノメチル基、ジシクロペンチルアミノメチル基、ジシクロペンチルアミノメチル基、ジシクロペプチルアミノメチル

基、ジシクロプロピルアミノエチル基、ジシクロプロピルアミノプロピル基、ジシクロプロピルアミノブチル基、ジシクロプロピルアミノペンチル基、または、ジシクロプロピルアミノヘキシル基であり得、好適には、 $\mathcal{O}(C_3-C_3)$ クロアルキル)アミノー $\mathcal{O}(C_3-C_4)$ クロアルキル)アミノー $\mathcal{O}(C_3-C_4)$ クロアルキル)アミノー $\mathcal{O}(C_3-C_4)$ のより好適には、 $\mathcal{O}(C_3-C_4)$ クロアルキル)アミノー $\mathcal{O}(C_4-C_4)$ をあり、最も好適には、ジシクロプロピルアミノメチル基である。

- 一般式(If)の置換基群 γ fにおける「 $N-(C_3-C_5)$ クロアルキル)- $N-(C_1-C_5)$ [0139] ルキル)アミノ]ー(C_1 ー C_2 アルキル)基」は、1個の上記Nー(C_3 ー C_3 シクロアルキル)ー N-(C₁-C₂アルキル)アミノ基で置換されたC₁-C₂アルキル基であり、例えば、(N-シクロプロピルーNーメチルアミノ)メチル基、(NーシクロプロピルーNーエチルアミノ) メチル基、(N-シクロプロピル-N-プロピルアミノ)メチル基、(N-シクロプロピル-N-ブチルアミノ)メチル基、(N-シクロプロピル-N-ペンチルアミノ)メチル基、(N ーシクロプロピルーN-ヘキシルアミノ)メチル基、(N-シクロブチル-N-メチルアミ *ノ*)メチル基、(N-シクロペンチル-N-メチルアミノ)メチル基、(N-シクロヘキシル -N-メチルアミノ)メチル基、(N-シクロヘプチル-N-メチルアミノ)メチル基、(N ーシクロオクチル-N-メチルアミノ)メチル基、(N-シクロプロピル-N-メチルアミ ノ)エチル基、(N-シクロプロピル-N-メチルアミノ)プロピル基、(N-シクロプロピ ルーN-メチルアミノ)ブチル基、(N-シクロプロピル-N-メチルアミノ)ペンチル基 、または、(N-シクロプロピル-N-メチルアミノ)へキシル基であり得、好適には、[N $-(C_3 - C_5)$ クロアルキル) $-N-(C_1 - C_5)$ アルキル)アミノ] $-(C_1 - C_5)$ アルキル)基で あり、より好適には、 $[N-(C_3-C_3)/(C_1)-N-(C_1-C_2)/(C_3)$ アルキル)アミノ]-($C_1 - C_2$ アルキル)基であり、最も好適には、(NーシクロプロピルーNーメチルアミノ)メ チル基である。
- [0140] 一般式(If)の置換基群 γ fにおける「 C_3 $-C_2$ シクロアルキルチオ基」は、1個の上記 C_3 $-C_2$ シクロアルキル基で置換されたメルカプト基であり、例えば、シクロプロピルチ オ基、シクロブチルチオ基、シクロペンチルチオ基、シクロペキシルチオ基、シクロペンチルチオ基、シクロペナナルチオ基、シクロペンチルチオ基であり得、好適には、 C_3 $-C_2$ シクロアルキルチオ基であり、より好適には、 C_3 $-C_4$ シクロアルキルチオ基であり、さらに好適に は、 C_3 $-C_4$ シクロアルキルチオ基(シクロプロピルチオ基またはシクロブチルチオ基)

であり、最も好適には、シクロプロピルチオ基である。

- [0141] 一般式(If)の置換基群 γ fにおける「 C_3 $-C_3$ シクロアルキルスルフィニル基」は、1個の上記 C_3 $-C_3$ シクロアルキル基で置換されたスルフィニル基(-SO-)であり、例えば、シクロプロピルスルフィニル基、シクロブチルスルフィニル基、シクロペンチルスルフィニル基、シクロペンチルスルフィニル基、シクロペンチルスルフィニル基、シクロオクチルスルフィニル基であり得、好適には、 C_3 $-C_3$ シクロアルキルスルフィニル基であり、より好適には、 C_3 $-C_5$ シクロアルキルスルフィニル基であり、さらに好適には、 C_3 $-C_4$ シクロアルキルスルフィニル基(シクロプロピルスルフィニル基またはシクロブチルスルフィニル基)であり、最も好適には、シクロプロピルスルフィニル基である。
- [0143] 一般式(If)において、Xf¹は、好適には、式-NH-、-O-または-S-を有する 基であり、より好適には、式-O-を有する基である。

一般式(If)において、Yfがフェニル基または置換フェニル基であるとき、Yfに結合するXfおよびYfの置換位置は、好適には、1および3位(下記Yf¹*により示される)または1および4位(下記Yf¹*により示される)であり、より好適には、1および4位である。Yfがチエニル基または置換チエニル基であるとき、XfおよびYf²の置換位置は、好適には、2および4位または2および5位(下記Yf¹*により示される)であり、より好適には、2および5位である。Yf¹がピリジル基または置換ピリジル基であるとき、XfおよびYf²の置換位置は、好適には、2および5位であるとき、XfおよびYf²の置換位置は、好適には、2および4位、2および5位(下記Yf¹*により示される)、3および5位、または、3および6位(下記Yf¹*により示される)であり、より好適には、2

WO 2006/004030 PCT/JP2005/012185

88

および5位または3および6位である。

[0144] [化12]

一般式(If)において、Yf²がフェニル基または置換フェニル基であるとき、Yf゚に結合するYf¹およびRf³の置換位置は、好適には、1および3位(下記Yf²*により示される)または1および4位(下記Yf²*により示される)であり、より好適には、1および4位である。Yf²がチエニル基または置換チエニル基であるとき、Yf'およびRf³の置換位置は、好適には、2および4位(下記Yf²*により示される)、2および5位(下記Yf²*により示される)、または、3および5位(下記Yf²*により示される)であり、より好適には、2および5位である。Yf²がチアゾリル基または置換チアゾリル基であるとき、Yf'およびRf³の置換位置は、好適には、2および4位(下記Yf²*により示される)、2および5位(下記Yf²*により示される)、2および5位(下記Yf²*により示される)であり、より好適には、2および5位である。Yf'がピリジル基または置換ピリジル基であるとき、Yf'およびRf³の置換位置は、好適には、2および4位(下記Yf²*により示される)であり、より好適には、2および5位である。Yf'がピリジル基または置換ピリジル基であるとき、Yf'およびRf³の置換位置は、好適には、2および4位(下記Yf²*により示される)、2および5位(下記Yf²*により示される)であり、より好適には、2および5位である。

[化13]

一般式(If)において、Yf²が置換フェニル基である場合、Yf²の当該置換基は、好適には、置換基群 β f1より選択される基であり、より好適には、置換基群 β f2より選択される基であり、さらに好適には、置換基群 β f3より選択される基であり、最も好適には、メチル基、フルオロ基またはクロロ基である。また、Yf²が上記Yf^{2b}であるとき、Yf²の当該置換基の置換位置は、好適には、2位または3位であり、より好適には、3位である。Yf²の当該置換基は、特に好適には、2ーメチル基、3ーフルオロ基または3ークロロ基である。

[0145] また、一般式(If)において、以下の化合物は好適である;

(i) Rf⁸が、式ーXf^{2e}Rf^{10e}

[式中、Rf^{loe}は、式ーCORf^{loe}(式中、Rf^{loe}は、ヒドロキシル基またはメトキシ基を示す)を有する基を示し、Xf^{oe}は、メチレン基、または、置換メチレン基(当該置換基は、1個のヒドロキシメチル基であるか、または、2個の置換基が一緒となってエチレン基を形成する)を示す。]を有する基であり、

 Yf^2 が、上記 Yf^{2a} に示される置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合する Yf^1 、 Rf^8 および置換基群 β f3より選択される基の置換位置は、それぞれ、1、3および2位である)である化合物;または、(ii) Rf^8 が、式 $-SO_2$ Meを有する基であり、 Yf^2 が上記 Yf^{2a} に示されるフェニル基(当該

フェニル基に結合するYfおよびRfの置換位置は、1および3位である)である化合物。

[0146] 本発明の一般式(If)で表される化合物は、以下のAf法乃至Pf法に従って製造することができる。

[0147] [化14]

Af法

[0148] [化15]

Bfix

$$Rf^2$$
 Rf^5
 Rf^6
 Rf^6

[0149] [化16]

WO 2006/004030

Df法
$$Rf^{3} + Rf^{5}$$

$$Rf^{2} + Rf^{5}$$

$$Rf^{2} + Rf^{5}$$

$$Rf^{2} + Rf^{5}$$

$$Rf^{4} + Rf^{5}$$

$$Rf^{4} + Rf^{5}$$

$$Rf^{4} + Rf^{5}$$

$$Rf^{5} + Rf^{5}$$

$$Rf^{6} + Rf^{6}$$

$$Rf^{6$$

[0150] [化17]

[0151] [化18]

WO 2006/004030

F f 法
$$Rf^3$$
 Rf^6 Rf^6

[0152] [化19]

Gf
$$\pm$$

Rf $^{\circ}$

[0153] [化20]

[0154] [化21]

(41f)

[0155] [化22]

(38f)

[0156] [化23]

WO 2006/004030

[0157] [化24]

WO 2006/004030 PCT/JP2005/012185

100

Pf-2
$$\pm \frac{Rf^4}{HO}$$
 $\pm \frac{Rf^4}{OMe}$
 $\pm \frac{Rf^4}{OOO(t-Bu)}$
 $\pm \frac{Rf^4}{OO$

[0158] 上記Af法乃至Pf法の化合物の構造式において、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf'、Rf' 、Rf' Rf' 、Rf' Rf' 、Rf' 、Rf' 、Rf' 、Rf' 、Rf' 、 Rf' 、Rf' 、Rf' Rf' 、Rf' 、Rf' 、Rf' 、 Rf' 、Rf' 、Rf' Rf' Rf' Rf

または $C_1 - C_6$ アルキル基を示し、2個の Rf^b が一緒となってエチレン基またはトリメチレ ン基(当該エチレン基またはトリメチレン基は、1乃至4個のメチル基で置換されてもよ い)を形成してもよく、Rfは、テトラヒドロフラニル基、テトラヒドロピラニル基またはメト キシメチル基を示し、 Rf^d は、 $C_1 - C_2$ アルキル基またはアリル基を示し、 Rf^d は、 $C_1 - C_2$ アルキル基を示し、Rfは、Rf¹¹におけるC₁-C₂アルコキシ基、アミノ基、C₁-C₂アルキ ルアミノ基、または、 $ジ(C_1 - C_2 アルキル)$ アミノ基を示し、 Rf^b は、アリル基を示し、 Rf^b は 、C - C アルキル基およびフェニル基からなる群より選択される3個の基で置換され たシリル基(好適には、tertーブチルジメチルシリル基、tertーブチルジフェニルシリル 基またはトリイロプロピルシリル基)を示し、Rfは、ヒドロキシル基の保護基を示し、好 適には、C₁-C₂アルキル基およびフェニル基からなる群より選択される3個の基で置 換されたシリル基(特に、tert - ブチルジメチルシリル基、tert - ブチルジフェニルシリ ル基またはトリイロプロピルシリル基)、テトラヒドロフラニル基、テトラヒドロピラニル基、 メトキシメチル基、または、アリル基であり、RfiおよびRfiは、C_-Cアルキル基を示し 、一緒となってエチレン基またはトリメチレン基を形成してもよく、XfおよびXfは、クロ ロ基、ブロモ基またはヨード基を示し、Xfbは、式-NH-、-NRfd2-、-O-、また は、一S-を有する基を示し、Xfdは、クロロ基、ブロモ基、ヨード基、または、トリフルオ ロメタンスルホニルオキシ基を示し、Allylは、アリル基を示し、Bocは、tertーブトキシカ ルボニル基を示し、t-Buは、tert-ブチル基を示し、MOMは、メトキシメチル基を示す

[0159] 下記Af法乃至Pf法の各工程の反応において、反応基質となる化合物が、アミノ基、水酸基またはカルボキシル基等の目的の反応を阻害する基を有する場合、必要に応じて適宜、それらの基への保護基の導入を行ってもよく、また、必要に応じて適宜、導入した保護基の除去を行なってもよい。そのような保護基は、通常反応を進行させるために用いられる保護基であれば特に限定はなく、例えば、T. H. Greene, P. G. Wuts, Protective Groups in Organic Synthesis. Third Edition, 1999年, John Wiley & Sons, Inc.等に記載された保護基であり得る。それらの保護基の導入反応、および、当該保護基の除去反応は、上記文献に記載された方法のような常法に従って行うことができる。

- [0160] 下記Af法乃至Pf法の各工程の反応において使用される溶媒は、反応を阻害せず 、出発原料をある程度溶解するものであれば特に限定はなく、下記溶媒群より選択さ れる。溶媒群は、ヘキサン、ペンタン、石油エーテル、シクロヘキサンのような脂肪族 炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;塩化メチレン 、クロロホルム、四塩化炭素、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのよう なハロゲン化炭化水素類:ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフ ラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのような エーテル類:アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン のようなケトン類;酢酸エチル、酢酸プロピル、酢酸ブチルのようなエステル類;アセト ニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリルのようなニトリル類:酢酸 、プロピオン酸のようなカルボン酸類;メタノール、エタノール、1ープロパノール、2ー プロパノール、1ーブタノール、2ーブタノール、2ーメチルー1ープロパノール、2ーメ チルー2ープロパノールのようなアルコール類:ホルムアミド、ジメチルホルムアミド、ジ メチルアセトアミド、Nーメチルー2ーピロリドン、ヘキサメチルホスホロトリアミドのような アミド類;ジメチルスルホキシド、スルホランのようなスルホキシド類;水;および、これら の混合物からなる。
- [0161] 下記Af法乃至Pf法の各工程の反応において使用される酸は、反応を阻害しないものであれば特に限定はなく、下記酸群より選択される。酸群は、酢酸、プロピオン酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸のような有機酸、pートルエンスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸のような有機スルホン酸、および、塩酸、臭化水素酸、沃化水素酸、リン酸、硫酸、硝酸のような無機酸からなる。
- [0162] 下記Af法乃至Pf法の各工程の反応において使用される塩基は、反応を阻害しないものであれば特に限定はなく、下記塩基群より選択される。塩基群は、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムのようなアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸水素塩;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物;水酸化カルシウム、水酸化バリウムのようなアルカリ土類金属水酸化物;水素化リチウム、水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物;リチウムアミド、ナ

WO 2006/004030 PCT/JP2005/012185

トリウムアミド、カリウムアミドのようなアルカリ金属アミド;リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert ーブトキシド、カリウムtert ーブトキシドのようなアルカリ金属アルコキシド;リチウムジイソプロピルアミドのようなリチウムアルキルアミド;リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミドのようなリチウムシリルアミド;nーブチルリチウム、secーブチルリチウム、tertーブチルリチウムのようなアルキルリチウム;および、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、Nーメチルピペリジン、Nーメチルモルホリン、Nーエチルモルホリン、ピリジン、ピコリン、4ー(N,Nージメチルアミノ)ピリジン、4ーピロリジノピリジン、2,6ージ(tertーブチル)ー4ーメチルピリジン、キノリン、N,Nージメチルアニリン、N,Nージエチルアニリン、1,5ージアザビシクロ[4,3,0]ノナー5ーエン(DBN)、1,4ージアザビシクロ[2,2,2]オクタン(DABCO)、1,8ージアザビシクロ[5,4,0]ウンデカー7ーエン(DBU)のような有機アミンからなる。

[0163] 下記Af法乃至Pf法の各工程の反応において、反応温度は、溶媒、出発原料、試薬等により異なり、反応時間は、溶媒、出発原料、試薬、反応温度等により異なる。

下記Af法乃至Pf法の各工程の反応において、反応終了後、各工程の目的化合物は、常法に従って反応混合物から単離される。例えば、(i)必要に応じて触媒等の不溶物を濾去し、(ii)反応混合物に水および水と混和しない溶媒(例えば、塩化メチレン、ジエチルエーテル、酢酸エチル等)を加えて、目的化合物を抽出し、(iii)有機層を水洗して、無水硫酸マグネシウム等の乾燥剤を用いて乾燥させ、(iv)溶媒を留去することによって、目的化合物が得られる。得られた目的化合物は、必要に応じ、常法、例えば、再結晶、再沈澱、または、シリカゲルカラムクロマトグラフィー等により、更に精製することができる。また、各工程の目的化合物は精製することなくそのまま次の反応に使用することもできる。

[0164] (Af法)

Af法は、式(If)において、Rfが-CORfであり、RfがおよびRfが水素原子であり、XfがXfである化合物(If-a)を製造する方法である。

(Af-1工程)

Af-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(1f)

を、塩基の存在下または非存在下にて化合物(2f)と反応させて、化合物(3f)を製造する工程である。

使用される塩基は、上記塩基群より選択され、通常エステル化反応またはアミド化 反応反応に使用されるものであれば特に限定はなく、好適には、有機アミンであり、 より好適には、トリエチルアミンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、テトラヒドロフランである。

反応温度は、通常、-20乃至100℃であり、好適には、0乃至50℃である。

反応時間は、通常、10分間乃至6時間であり、好適には、30分間乃至3時間である。

Af-1工程は、化合物(1f)の代わりにカルボン酸化合物を使用して、Df-2工程と同様の方法に従い行うこともできる。

[0165] (Af-2工程)

Af-2工程は、Af-1工程で得られる化合物(3f)をハロゲン化剤でハロゲン化して 、化合物(4f)を製造する工程である。

使用されるハロゲン化剤は、通常ハロゲン化反応に使用されるものであれば特に限定はなく、例えば、Nークロロスクシンイミド、Nーブロモスクシンイミド、NーヨードスクシンイミドのようなNーハロゲノスクシンイミド、または、臭素、沃素のようなハロゲンであり得、好適には、Nーハロゲノスクシンイミドであり、より好適には、Nーブロモスクシンイミドである。Af-2工程は、必要に応じて、アゾイソブチロニトリルのようなラジカル反応開始試薬(好適には、アゾイソブチロニトリルまたは過酸化ベンゾイル)の存在下にて行うことができる。

使用される溶媒は、上記溶媒群より選択され、好適には、芳香族炭化水素類または ハロゲン化炭化水素類であり、より好適には、ベンゼンまたは四塩化炭素である。 反応温度は、通常、20乃至200℃であり、好適には、50乃至150℃である。 反応時間は、通常、30分間乃至12時間であり、好適には、30分間乃至6時間であ る。

[0166] (Af-3工程)

Af-3工程は、Af-2工程で得られる化合物(4f)を、塩基存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(5f)と反応させて、化合物(6f)を製造する工程である。

使用される塩基は、上記塩基群より選択され、通常フェノール類のアルキル化反応 に使用されるものであれば特に限定はなく、好適には、アルカリ金属炭酸塩、アルカ リ金属炭酸水素塩またはアルカリ金属水素化物であり、より好適には、炭酸カリウムま たは炭酸セシウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アミド類であり、より好適には、ジメチルホルムアミドである。

反応温度は、通常、−20乃至100℃であり、好適には、0乃至50℃である。

反応時間は、通常、30分間乃至48時間であり、好適には、1時間乃至24時間であ る。

[0167] (Af-4工程)

Af-4工程は、Af-3工程で得られる化合物(6f)を、パラジウム触媒および塩基の存在下にて、化合物(7f)と反応させ、化合物(If-a)を製造する工程である。化合物(7f)は、公知であるか、公知の化合物から容易に得られるか、または、If法により製造することができる。

使用されるパラジウム触媒は、通常炭素一炭素結合生成反応に使用されるものであれば特に限定はなく、J. Tsuji, Palladium Reagents and Catalysis: New Perspective s for the 21st Centuty, 2004年, John Wiley & Sons, Inc 等に記載されたパラジウム触媒であり得る。使用されるパラジウム触媒は、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス[1,2ービス(ジフェニルホスフィノ)エタン]パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(トリーtーブチルホスフィン)パラジウム(0)、ビス(トリシクロヘキシルホスフィン)パラジウム(0)、塩化パラジウム(II)、酢酸パラジウ

ム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス[メチレンビス(ジフェニルホスフィン)]ジパラジウムージクロロメタン付加物、[1,2ービス(ジフェニルホスフィノ)]ジパラジウム(II)、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ージクロロメタン付加物、パラジウム(II)アセチルアセトナート、ビス(ベンゾニトリル)パラジウム(II)クロリド、ビス(アセタート)ビス(トリフェニルホスフィン)パラジウム(II)、ビス(アセトニトリル)ジクロロパラジウム(II)、ビス(ベンゾニトリル)ジクロロパラジウム(II)、ドス(ベンゾニトリル)ジクロロパラジウム(II)、ボラジウム(II)、ホーベンジル(クロロ)ビス(トリフェニルホスフィン)パラジウム(II)、パラジウムー炭素、水酸化パラジウム、または、水酸化パラジウムー炭素であり得、好適には、テトラキス(トリフェニルホスフィン)パラジウム(O)、酢酸パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(O)、または、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ージクロロメタン付加物である。

[0168] Af-4工程において、必要に応じて適宜、上記パラジウム触媒に配位し得るリン配 位子を使用してもよい。使用されるリン配位子は、J. Tsuji, Palladium Reagents and C atalysis: New Perspectives for the 21st Centuty, 2004年, John Wiley & Sons, Inc 等 に記されたリン配位子であり得る。使用されるリン配位子は、例えば、トリフェニルホス フィン、トリーoートリルホスフィン、トリーmートリルホスフィン、トリーpートリルホスフィン 、トリス(2,6-ジメトキシフェニル)ホスフィン、トリス[2-(ジフェニルホスフィノ)エチル] ホスフィン、ビス(2ーメトキシフェニル)フェニルホスフィン、2ー(ジーtーブチルホスフィ ノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、2-(ジフェニルホスフィノ) -2'-(N, N-ジメチルアミノ)ビフェニル、トリーt-ブチルホスフィン、ビス(ジフェニ ルホスフィノ)メタン、1,2ービス(ジフェニルホスフィノ)エタン、1,2ービス(ジメチルホス フィノ)エタン、1,3ービス(ジフェニルホスフィノ)プロパン、1,4ービス(ジフェニルホスフ ィノ)ブタン、1,5ービス(ジフェニルホスフィノ)ペンタン、1,6ービス(ジフェニルホスフィ ノ)ヘキサン、1,2ービス(ジメチルホスフィノ)エタン、1,1'ービス(ジフェニルホスフィノ) フェロセン、ビス(2-ジフェニルホスフィノエチル)フェニルホスフィン、2-(ジシクロへ キシルホスフィノ-2',6'-5ジトキシ-1,1'-5フェニル(S-PHOS)、2-(5)シクロ へキシルホスフィノー2',4',6'ートリーiso-プロピルー1,1'ービフェニル(X-PHOS)、 または、ビス(2-ジフェニルホスフィノフェニル)エーテル (DPEphos) であり得、好適に

は、トリフェニルホスフィン、トリーoートリルホスフィン、1,3ービス(ジフェニルホスフィノ)プロパン、2ー(ジシクロヘキシルホスフィノー2',6'ージメトキシー1,1'ービフェニル、または、ビス(2ージフェニルホスフィノフェニル)エーテルである。

使用される塩基は、上記塩基群より選択される塩基またはアルカリ金属リン酸塩であり得、好適には、アルカリ金属炭酸塩またはアルカリ金属リン酸塩であり、より好適には、炭酸ナトリウム、炭酸カリウムまたはリン酸カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、炭化水素類、エーテル類、アルコール類、アミド類、水、または、これらの混合物であり、より好適には、トルエン、テトラヒドロフラン、エタノール、ジメチルアセトアミド、水、または、これらの混合物であり、最も好適には、トルエンとエタノールの混合物、テトラヒドロフランと水の混合物、または、ジメチルアセトアミドと水の混合物である。

反応温度は、通常、20乃至200℃であり、好適には、50乃至150℃である。 反応時間は、通常、1時間乃至48時間であり、好適には、3時間乃至24時間であ る。

[0169] (Bf法)

Bf法は、式(If)において、Rfが-CORfであり、RfおよびRf7が水素原子であり、Xf1がXf6である化合物(If-a)を製造する方法である。

(Bf-1工程)

Bf-1工程は、Af-3工程で得られる化合物(6f)を、パラジウム試薬および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(8f)と反応させて、化合物(9f)を製造する工程である。

使用されるパラジウム触媒は、Af-4工程で示されたものと同様であり得、好適には、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)-ジクロロメタン付加物である。また、Af-4工程と同様に、必要に応じて適宜リン配位子を使用することができる。

使用される塩基は、上記塩基群に示された塩基、または、酢酸ナトリウム、酢酸カリウムのような酢酸アルカリ金属塩であり、好適には、酢酸アルカリ金属塩であり、より好適には、酢酸カリウムである。

108

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、スルホキシド類またはこれらの混合物であり、より好適には、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、または、これらの混合物であり、さらに好適には、ジメチルスルホキシドまたはジオキサンである。

反応温度は、通常、20乃至200℃であり、好適には、50乃至150℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、2時間乃至12時間である。

(Bf-2工程)

Bf-2工程は、Bf-1工程で得られる化合物(9f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(10f)と反応させ、化合物(If-a)を製造する工程である。

Bf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

[0170] (Cf法)

Cf法は、式(If)において、Rf およびRf が水素原子であり、Xf がXf である化合物(If -b)を製造する方法である。

(Cf-1工程)

Cf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(11f)をハロゲン化剤でハロゲン化して、化合物(12f)を製造する工程である。

Cf-1工程は、Af-2工程と同様の方法に従い、行うことができる。

(Cf-2工程)

Cf-2工程は、Cf-1工程で得られる化合物(12f)を、塩基存在下にて化合物(13f)と反応させて、化合物(If-b)を製造する工程である。化合物(13f)は、公知であるか、公知の化合物から容易に得られるか、または、Jf法、Lf法もしくはMf法により得ることができる。

Cf-2工程は、Af-3工程と同様の方法に従い、行うことができる。

Cf-2工程で得られる化合物(If-b)においてXf[®]が式-S-を有する基である化合物(If-b-1)を、溶媒(好適には、塩化メチレン等)中、1または2モルのメタクロロ過安息香酸で酸化することにより、式(If)においてRf[®]およびRf[®]が水素原子であり、Xf[®]が

式-SO-または $-SO_2$ -を有する基である化合物 (If-b-2)を製造するができる。 [0171] (Df法)

Df法は、式(If)において、 Rf^I が $-CORf^I$ であり、 Rf^I および Rf^I が水素原子であり、 Xf^I が Xf^I である化合物(If-a)を製造する方法である。

(Df-1工程)

Df-1工程は、Af法、Bf法またはCf法で得られる化合物 (14f)を酸で処理して、化合物 (15f)を製造する工程である。

使用される酸は、上記酸群より選択され、tert – ブチル基の脱離反応に使用される ものであれば特に限定はなく、好適には、トリフルオロ酢酸または塩酸であり、より好 適には、トリフルオロ酢酸である。

使用される溶媒は、上記溶媒群より選択され、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メチレンである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、1時間乃至48時間であり、好適には、1時間乃至24時間である。

[0172] (Df-2工程)

Df-2工程は、Df-1工程で得られる化合物 (15f) を、縮合剤の存在下にて公知であるかまたは公知の化合物から容易に得られる化合物 (2f) と反応させて、化合物 (If-a) を製造する工程である。

使用される縮合剤は、通常カルボン酸およびアミン、または、カルボン酸およびアルコールの縮合反応に使用されるものであれば特に限定はなく、R. C. Larock, Comprehensive Organic Transformations. Second Edition, 1999年, John Wiley & Sons, Inc. 等に記載された縮合剤であり得る。使用される縮合剤は、例えば、

- (i) ジエチルホスホリルシアニド、ジフェニルホスホリルアジドのような燐酸エステル類と下記塩基の組合わせ:
- (ii) 1,3ージシクロヘキシルカルボジイミド、1,3ージイソプロピルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド(WSC) のようなカルボジイミド類: 上記カルボジイミド類と下記塩基の組合わせ: 上記カルボジイミド類とNーヒドロ

キシスクシンイミド、1ーヒドロキシベンゾトリアゾール、Nーヒドロキシー5ーノルボルネ ン-2,3-ジカルボキシイミドのようなNーヒドロキシ化合物の組合わせ;

- (iii) 2,2' ジピリジル ジスルフィド、2,2' ジベンゾチアゾリル ジスルフィドのようなジスルフィド類とトリフェニルホスフィン、トリブチルホスフィンのようなホスフィン類の組合わせ:
- (iv)2-クロロー1-メチルピリジニウム ヨージド、2-ブロモー1-エチルピリジニウム クロリドのような2-ハロゲノー1-低級アルキルピリジニウム ハライド類と下記塩基の組合わせ;または、
- (v)1,1'ーオキザリルジイミダゾール、N,N'ーカルボニルジイミダゾールのようなイミダゾール類;または、
- (vi) pートルエンスルホニルクロリド、2,4,6ートリメチルスルホニルクロリド、2,4,6ートリイソプロピルスルホニルクロリドのようなスルホニルクロリド類と下記塩基の組合わせであり得、好適には、カルボジイミド類と塩基の組合わせ、2ーハロゲノー1ー低級アルキルピリジニウム ハライド類と塩基の組合わせ、または、スルホニルクロリド類と塩基の組合わせであり得、より好適には、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミドと塩基の組合わせ、2ークロロー1ーメチルピリジニウム ヨージドと塩基の組合わせ、または、2,4,6ートリイソプロピルスルホニルクロリドと塩基の組合わせである。

上記縮合剤と組合わせて使用される塩基は、好適には、上記塩基群の有機アミンであり、より好適には、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、または、これらの混合物であり、最も好適には、トリエチルアミン、4-(N,N-ジメチルアミノ)ピリジン、または、これらの混合物である。Df-2工程において化合物(12f)がアミンである場合には、過剰量の化合物(12f)を塩基として用いることもできる。

使用される溶媒は、上記溶媒群より選択され、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メチレンである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。 反応時間は、通常、1時間乃至48時間であり、好適には、3時間乃至24時間であ る。

またDf-2工程は、化合物(15f)を溶媒(好適には、塩化メチレン等)中で、オキサリルクロリド、チオニルクロリド等により酸クロリドへ変換した後、塩基(好適には、トリエチルアミン等)の存在下にて化合物(2f)もしくは上記の化合物(2fa)と反応させることによって行うこともできる。

[0173] (Ef法)

Ef法は、式(If)において、Rf¹が一COO(t-Bu)であり、Rf²がヒドロキシル基であり、Rf⁶およびRf²が水素原子であり、Xf¹が式一Oーを有する基であり、Rf⁸が一Xf²COOHである化合物(If-c)を製造する方法である。

(Ef-1工程)

Ef-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(16f)を、アルキルリチウムおよび塩基の存在下にて、ジメチルホルムアミドと反応させ、化合物(17f)を製造する工程である。

使用されるアルキルリチウムは、上記塩基群に示されたアルキルリチウムより選択され、好適には、n-ブチルリチウムである。

使用される塩基は、リチウムイオンに配位する性質を有するものであり得、好適には、テトラメチルエチレンジアミンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、ジエチルエーテルである。

反応温度は、通常、-80乃至50℃であり、好適には、-50乃至20℃である。 反応時間は、通常、10分間乃至6時間であり、好適には、30分間乃至3時間であ る。

Ef-1工程において、化合物(16f)の種類に応じて、化合物(17f)においてヒドロキシル基が-ORfである化合物が得られる場合がある。この場合には、得られた化合物を酸(好適には、無機酸、より好適には、塩酸)で処理してRfの除去反応を行うことにより、化合物(17f)を得ることができる。

「0174」(Ef-2工程)

Ef-2工程は、

(Ef-2a工程):Ef-1工程で得られる化合物(17f)を、酸存在下にてオルトギ酸メチルと反応させる工程:および、

(Ef-2b工程):Ef-2a工程で得られる化合物を、塩基存在下にてクロロメチルメチルエーテルと反応させて、化合物(18f)を製造する工程からなる。

(Ef-2a工程)

使用される酸は、上記酸群より選択され、好適には、有機スルホン酸であり、より好 適には、カンファースルホン酸である。

使用される溶媒は、上記溶媒群より選択され、好適には、アルコール類であり、より 好適には、メタノールである。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。

反応時間は、通常、1時間乃至24時間であり、好適には、2時間乃至12時間である。

(Ef-2b工程)

使用される塩基は、上記塩基群より選択され、好適には、有機アミンであり、より好 適には、ジイソプロピルエチルアミンである。

使用される溶媒は、上記溶媒群より選択され、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メチレンである。

反応温度は、通常、-20乃至100℃であり、好適には、0乃至50℃である。

反応時間は、通常、1時間乃至48時間であり、好適には、3時間乃至24時間である。

[0175] (Ef-3工程)

Ef-3工程は、

(Ef-3a工程):Ef-2工程で得られる化合物(18f)を、アルキルリチウムおよび塩基の存在下にて、ジメチルホルムアミドと反応させる工程:および、

(Ef-3b工程):Ef-3a工程で得られる化合物を還元剤により還元して、化合物(19f)を製造する工程からなる。

(Ef-3a工程)

使用されるアルキルリチウムは、上記塩基群に示されたアルキルリチウムより選択さ

れ、好適には、nーブチルリチウムである。Ef-3a工程において、化合物(18f)およびnーブチルリチウムのモル数の比は、好適には、1:1乃至1:3であり、より好適には、1:1.5乃至1:2.5である。

使用される塩基は、リチウムイオンに配意する性質を有するものであり得、好適には、テトラメチルエチレンジアミンである。Ef-3a工程において、化合物(18f)およびテトラメチルエチレンジアミンのモル数の比は、好適には、1:1乃至1:3であり、より好適には、1:1乃至1:2.5である。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、ジエチルエーテルまたはテトラヒドロフランである。

反応温度は、通常、-80乃至60℃であり、好適には、-50乃至40℃である。 反応時間は、通常、30分間乃至10時間であり、好適には、30分間乃至6時間であ る。

(Ef-3b工程)

使用される還元剤は、通常ホルミル基の還元反応に使用されるものであれば特に限定はなく、例えば、水素化ホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化ホウ素リチウムのような水素化ホウ素アルカリ金属であり得、好適には、水素化ホウ素ナトリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、アルコール 類またはこれらの混合物であり、より好適には、テトラヒドロフラン、メタノールまたはこれらの混合物であり、最も好適には、テトラヒドロフランおよびメタノールの混合物である。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。 反応時間は、通常、10分間乃至6時間であり、好適には、30分間乃至3時間であ る。

[0176] (Ef-4工程)

Ef-4工程は、Ef-3工程で得られる化合物(19f)を、アゾジカルボキシレート試薬 およびホスフィン試薬の存在下にて化合物(20f)と反応させて、化合物(21f)を製造 する工程である。化合物(20f)は、公知であるか、公知の化合物から容易に得られる か、または、Jf法、Lf法もしくはMf法により得ることができる。

使用されるアゾジカルボキシレート試薬は、通常Mitsunobu反応に使用されるものであれば特に限定はなく、例えば、ジメチルアゾジカルボキシレート、ジエチルアゾジカルボキシレート、ジプロピルアゾジカルボキシレート、ジイソプロピルアゾジカルボキシレート、ジ(tertーブチル)アゾジカルボキシレートのようなジアルキルアゾジカルボキシレート;ビス(2,2,2ートリクロロエチル)アゾジカルボキシレート;ジフェニルアゾジカルボキシレート;ドス(2,2,2ートリクロロエチル)アゾジカルボキシレート;ジフェニルアゾジカルボキシレート;1,1'ー(アゾジカルボニル)ジピペリジン;N,N,N',N'ー(テトラメチルアゾジカルボキサミド);または、ジベンジルアゾジカルボキシレートであり得、好適には、ジアルキルアゾジカルボキシレートまたは1,1'ー(アゾジカルボニル)ジピペリジンであり、より好適には、ジエチルアゾジカルボキシレートまたは1,1'ー(アゾジカルボニル)ジピペリジンである。アゾジカルボキシレート試薬として、ポリスチレン等の高分子に固定化されたアゾジカルボキシレート試薬「好適には、エトキシカルボニルアゾカルボキシメチル ポリスチレン(ノババイオケム社、製品番号01ー64ー0371)のようなポリスチレンに固定化されたアゾジカルボキシレート試薬「を使用することもできる。

使用されるホスフィン試薬は、通常Mitsunobu反応に使用されるものであれば特に限定はなく、例えば、トリフェニルホスフィン、トリトリルホスフィン、トリス(メトキシフェニル)ホスフィン、トリス(クロロフェニル)ホスフィン、トリーnーブチルホスフィンまたは、2ー(ジーtーブチルホスフィノ)ビフェニルであり得、好適には、トリフェニルホスフィンまたはトリーnーブチルホスフィンである。ホスフィン試薬として、ポリスチレン等の高分子に固定化されたホスフィン試薬(好適には、トリフェニルホスフィン ポリスチレンのようなポリスチレンに固定化されたトリフェニルホスフィン)を使用することもできる。

使用される溶媒は、上記溶媒群より選択され、好適には、芳香族炭化水素類または エーテル類であり、より好適には、テトラヒドロフランである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、10分間乃至12時間であり、好適には、30分間乃至6時間である。

[0177] (Ef-5工程)

Ef-5工程は、

(Ef-5a工程):Ef-4工程で得られる化合物(21f)において、酸存在下にて、ジメトキシメチル基をホルミル基へ変換し、メトキシメチル基を除去する工程;

(Ef-5b工程):Ef-5a工程で得られる化合物のヒドロキシル基を、塩基存在下にてアリルブロミドと反応させる工程;

(Ef-5c工程): Ef-5b工程で得られる化合物を、リン酸二水素ナトリウムおよび2-メチルー2ーブテンの存在下にて、次亜塩素酸ナトリウム (NaClO₂) により酸化する工程; および、

(Ef-5d工程):Ef-5c工程で得られる化合物を、N,N-ジメチルホルムアミド ジte rt-ブチル アセタール $[Me_{2}NC[O(t-Bu)]_{2}]$ と反応させて化合物 (22f)を製造する工程からなる。

(Ef-5a工程)

使用される酸は、上記酸群より選択され、好適には、有機スルホン酸または無機酸であり、より好適には、pートルエンスルホン酸または塩酸である。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類またはケトン類であり、より好適には、テトラヒドロフランまたはアセトンである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、10分間乃至24時間であり、好適には、30分間乃至12時間である。

(Ef-5b工程)

使用される塩基は、上記塩基群より選択され、好適には、アルカリ金属炭酸塩であり、より好適には、炭酸カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アミド類であり、より好適には、ジメチルホルムアミドである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、10分間乃至24時間であり、好適には、30分間乃至12時間である。

(Ef-5c工程)

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、アルコール

類、水、または、これらの混合物であり、より好適には、1,4-ジオキサンと水の混合物、2-メチル-2-プロパノールと水の混合物、または、1,4-ジオキサン/2-メチル-2-プロパノール/水の混合物である。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、10分間乃至6時間であり、好適には、30分間乃至3時間である。

(Ef-5d工程)

使用される溶媒は、上記溶媒群より選択され、好適には、芳香族炭化水素類であり、より好適には、トルエンである。

反応温度は、通常、50乃至200℃であり、好適には、80乃至150℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、1時間乃至12時間であ る。

(Ef-6工程)

Ef-6工程は、

(Ef-6a工程):Ef-5工程で得られる化合物(22f)のアリルオキシ基において、パラジウム試薬存在下にて、アリル基を除去する工程;および、

(Ef-6b工程):Ef-6a工程で得られる化合物の塩基存在下における加水分解反応により化合物(If-c)を製造する工程からなる。

Ef-6工程において、化合物(22f)の Rf^d がアリル基である場合には、Ef-6a工程において Rf^d が同時に除去されるため、Ef-6b工程を行う必要はない。

(Ef-6a工程)

使用されるパラジウム試薬は、通常アリル基の脱離反応に使用されるものであれば特に限定はないが、例えば、Af-4工程で示されたものと同様であり得、好適には、テトラキス(トリフェニルホスフィン)パラジウム(0)である。

Ef-6a工程において、必要に応じて適宜、補足剤を使用することができる。使用される補足剤は、例えば、ピロリジン、ピペリジン、モルホリン、ジエチルアミン、ギ酸、酢酸、2-エチルヘキサン酸、2-メチルヘキサン酸ナトリウム塩、5,5-ジメチル-1,3-シクロヘキサンジオン、マロン酸ジメチル、または、トリブチルスズヒドリドであり得、

好適には、ピロリジンまたはモルホリンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、または、エーテル類および水の混合物であり、より好適には、ジオキサンおよび水の混合物である。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、10分間乃至12時間であり、好適には、30分間乃至6時間である。

(Ef-6b工程)

使用される塩基は、上記塩基群のアルカリ金属水酸化物であり得、好適には、水酸 化ナトリウムまたは水酸化カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、アルコール類またはこれらの混合物であり、より好適には、テトラヒドロフラン、メタノールまたはこれらの混合物である。Ef-6b工程において水は必ず使用され、溶媒として水のみを用いることもできる。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。 反応時間は、通常、1時間乃至36時間であり、好適には、2時間乃至24時間であ る。

[0178] (Ff法)

Ff法は、式(If) において、 Rf^{1} が-COO(t-Bu)であり、 Rf^{2} がヒドロキシル基であり、 Rf^{6} および Rf^{2} が水素原子であり、 Xf^{4} が式 $-O-を有する基であり、<math>Rf^{8}$ が $-Xf^{2}CORf^{4}$ である化合物(If-d)を製造する方法である。

(Ff-1工程)

Ff-1工程は、Ef-5工程で得られる化合物(23f)において、Rfの除去反応を行うことにより、化合物(24f)を製造する工程である。

Ff-1工程は、Ef-6b工程と同様の方法に従い、行うことができる。

(Ff-2工程)

Ff-2工程は、Ff-1工程で得られる化合物(24f)を、縮合剤の存在下にて公知であるかまたは公知の化合物から容易に得られる化合物(25f)と反応させて、化合物(

26f)を製造する工程である。

Ff-2工程は、Df-2工程と同様の方法に従い、行うことができる。

(Ff-3工程)

Ff-3工程は、Ff-2工程で得られる化合物(26f)のアリルオキシ基において、パラジウム試薬存在下にてアリル基を除去することにより、化合物(If-d)を製造する工程である。

Ff-3工程は、Ef-6a工程と同様の方法に従い、行うことができる。

[0179] (Gf法)

Gf法は、式(If)において、 Rf^I が $-CORf^I$ であり、 Rf^I が水素原子であり、 Xf^I が式-Oーを有する基であり、 Rf^I が $-Xf^I$ COOHまたは $-Xf^I$ CORf である化合物(If-e)または化合物(If-f)を製造する方法である。

(Gf-1工程)

Gf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(27f)を、アルキルリチウムおよび塩基の存在下にて、ジメチルホルムアミドと反応させて、化合物(28f)を製造する工程である。

Gf-1工程は、Ef-3a工程と同様の方法に従い、行うことができる。

(Gf-2工程)

Gf-2工程は、Gf-1工程で得られる化合物(28f)を、化合物(29f)と反応させて 化合物(30f)を製造する工程である。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、テトラヒドロフランである。

反応温度は、通常、0乃至100℃であり、好適には、20乃至60℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、1時間乃至12時間であ る。

Gf-2工程においては、化合物(29f)の代わりに化合物Rf⁶MgClを使用することもできる。

(Gf-3工程)

Gf-3工程は、Gf-2工程で得られる化合物(30f)を、アゾジカルボキシレート試薬

およびホスフィン試薬の存在下にて化合物(31f)と反応させて、化合物(32f)を製造する工程である。化合物(31f)は、公知であるか、公知の化合物から容易に得られるか、または、Jf法、Lf法もしくはMf法により得ることができる。

Gf-3工程は、Ef-4工程と同様の方法に従い、行うことができる。

(Gf-4工程)

Gf-4工程は、

(Gf-4a工程):Gf-3工程で得られる化合物(32f)において、酸存在下にて、ジメトキシメチル基をホルミル基へ変換する工程;

(Gf-4b工程):Gf-4a工程で得られる化合物を、リン酸二水素ナトリウムおよび2-メチルー2ーブテンの存在下にて、次亜塩素酸ナトリウム $(NaClO_2)$ により酸化する工程;

(Gf-4c工程):Gf-4b工程で得られる化合物を、縮合剤の存在下にて公知であるかまたは公知の化合物から容易に得られる上記の化合物(2f)と反応させる工程;および、

(Gf-4d工程):Gf-4c工程で得られる化合物の-COORが基において、パラジウム 試薬存在下にてRが基を除去して、化合物(If-e)を製造する工程からなる。

Gf-4a工程、Gf-4b工程、Gf-4c工程、および、Gf-4d工程は、それぞれEf-5a工程、Ef-5c工程、Df-2工程、および、Ef-6a工程と同様の方法に従い、行うことができる。

(Gf-5工程)

Gf-5工程は、Gf-4工程で得られる化合物 (If-e)を、縮合剤の存在下にて公知であるかまたは公知の化合物から容易に得られる化合物 (25f)と反応させて、化合物 (If-f)を製造する工程である。

Gf-5工程は、Df-2工程と同様の方法に従い、行うことができる。

[0180] (H(法)

Hf法は、式(If)において、Rf¹が一COO(t-Bu)であり、Rf²がヒドロキシル基であり、Rf⁶およびRf²が水素原子であり、Xf¹が式一Oーを有する基であり、Rf⁸が一Xf²COOHである化合物(If-c)を製造する方法である。

(Hf-1工程)

Hf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(33f)を、アルキルリチウムおよび塩基の存在下にて、二炭酸ジーtertーブチル[(t-BuOCO) O]と反応させ、化合物(34f)を製造する工程である。

使用されるアルキルリチウムは、上記塩基群に示されたアルキルリチウムより選択され、好適には、n-ブチルリチウムである。

使用される塩基は、リチウムイオンに配位する性質を有するものであり得、好適には、テトラメチルエチレンジアミンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、ジエチルエーテルである。

反応温度は、通常、-80乃至50℃であり、好適には、-50乃至20℃である。 反応時間は、通常、10分間乃至6時間であり、好適には、30分間乃至3時間であ る。

(Hf-2工程)

Hf-2工程は、Hf-1工程で得られる化合物(34f)において、シリル基(Rf^b)の除去 反応を行うことにより、化合物(35f)を製造する工程である。

使用される試薬は、通常シリル基の除去反応に使用されるものであれば特に限定はなく、例えば、上記酸群に示された酸、テトラーnーブチルアンモニウムフロリド、弗化カリウムのような弗化物イオン(F)を生成する試薬、または、これらの混合物であり得、好適には、酢酸、テトラーnーブチルアンモニウムフロリドまたはこれらの混合物であり、より好適には、酢酸およびテトラーnーブチルアンモニウムフロリドの混合物である。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好適には、テトラヒドロフランである。Hf-2工程に使用される試薬および溶媒の組合わせとして、酢酸、テトラヒドロフランおよび水の混合物も好適である。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。 反応時間は、通常、30分間乃至12時間であり、好適には、1時間乃至6時間であ

る。

(Hf-3工程)

Hf-3工程は、Hf-2工程で得られる化合物(35f)を、アゾジカルボキシレート試薬およびホスフィン試薬の存在下にて化合物(20f)と反応させて、化合物(36f)を製造する工程である。化合物(20f)は、公知であるか、公知の化合物から容易に得られるか、または、If法、Lf法もしくはMf法により得ることができる。

Hf-3工程は、Ef-4工程と同様の方法に従い、行うことができる。

(Hf-4工程)

Hf-4工程は、Hf-3工程で得られる化合物(36f)において、メトキシメチル基の除 去反応を行うことにより、化合物(37f)を製造する工程である。

使用される試薬は、通常メトキシメチル基の除去反応に使用されるものであり、-COO(t-Bu)基に影響を与えないものであれば特に限定はなく、例えば、トリメチルシリルクロリド、トリメチルシリルブロミドのようなシリルハライド類、および、テトラーn-ブチルアンモニウムクロリド、テトラーn-ブチルアンモニウムブロミドのようなアンモニウムハライド類の組合わせであり得、好適には、トリメチルシリルクロリドおよびテトラーn-ブチルアンモニウムブロミドの組合わせである。

使用される溶媒は、上記溶媒群より選択され、好適には、ハロゲン化炭化水素類であり、より好適には、塩化メチレンである。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、2時間乃至12時間である

(Hf-5工程)

Hf-5工程は、Hf-4工程で得られる化合物(37f)において、Rf 基の除去反応を行うことにより、化合物(If-c)を製造する工程である。

Hf-5工程は、Ef-6b工程と同様の方法に従い、行うことができる。また、化合物(37f)のRf^dがアリル基である場合には、Hf-5工程は、Ef-6a工程と同様の方法に従って行うこともできる。

[0181] (If法)

If法は、Af-4工程で使用される化合物(7f)を製造する方法である。

(If-1工程)

If-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(10f)を、パラジウム試薬および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(8f)と反応させて、化合物(7f)を製造する工程である。
If-1工程は、Bf-1工程と同様の方法に従い、行うことができる。

[0182] (Jf法)

Jf法は、Ef−4工程またはHf−3工程で使用される化合物(20f)を製造する方法である。

(Jf-1工程)

Jf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(38f)を、パラジウム試薬および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(8f)と反応させて、化合物(39f)を製造する工程である。
Jf-1工程は、Bf-1工程と同様の方法に従い、行うことができる。

(Jf-2工程)

Jf-2工程は、Jf-1工程で得られる化合物(39f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(40f)と反応させ、化合物(41f)を製造する工程である。

Jf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

(Jf-3工程)

Jf-3工程は、Jf-2工程で得られる化合物 (41f) において、Rf 基の除去を行い、化合物 (20f) を製造する工程である。

Jf-3工程は、Rf基の種類に応じて常法(例えば、T. H. Greene, P. G. Wuts, Prote ctive Groups in Organic Synthesis. Third Edition, 1999年, John Wiley & Sons, Inc. 等に記載された方法)に従い行うことができる。

「0183」(Kf法)

Kf法は、Jf-3工程で使用される化合物(41f)を製造する方法である。

(Kf-1工程)

Kf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(40f)

を、パラジウム試薬および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(8f)と反応させて、化合物(42f)を製造する工程である。

Kf-1工程は、Bf-1工程と同様の方法に従い、行うことができる。

(Kf-2工程)

Kf-2工程は、Kf-1工程で得られる化合物(42f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(38f)と反応させ、化合物(41f)を製造する工程である。

Kf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

「0184] (Lf法)

Lf法は、Ef-4工程またはHf-3工程で使用される化合物(20f)においてXf²がメチレン基である化合物(47f)を製造する方法である。

(Lf-1工程)

Lf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物(43f)をシアノ化試薬と反応させ、化合物(44f)を製造する工程である。

使用されるシアノ化試薬は、通常ハロゲン化アルキルのシアノ化反応に使用される ものであれば特に限定はなく、例えば、アルカリ金属シアン化物であり得、好適には、 シアン化ナトリウムまたはシアン化カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アルコール類、水またはこれらの混合物であり、より好適には、エタノール、水またはこれらの混合物であり、さらに好適には、エタノールおよび水の混合物である。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、2時間乃至12時間であ る。

(Lf-2工程)

Lf-2工程は、Lf-1工程で得られる化合物(44f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(45f)と反応させ、化合物(46f)を製造する工程である。

Lf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

(Lf-3工程)

Lf-3工程は、

(Lf-3a工程):Lf-2工程で得られる化合物(46f)を、酸存在下にて加水分解する工程;および、

(Lf-3b工程):Lf-3a工程で得られる化合物を、酸存在下にて化合物Rf OHと反応させ、化合物(47f)を製造する工程からなる。

(Lf-3a工程)

使用される酸は、上記酸群より選択される酸またはこれらの混合物であり、好適には、塩酸または塩酸および酢酸の混合物であり、より好適には、塩酸および酢酸の混合物である。

使用される溶媒は、上記溶媒群より選択され、好適には、酢酸、水またはこれらの 混合物であり、より好適には、水である。Lf-3a工程において水は必ず使用され、溶 媒として水のみを用いることもできる。

反応温度は、通常、20乃至180℃であり、好適には、50乃至150℃である。 反応時間は、通常、1時間乃至72時間であり、好適には、2時間乃至48時間であ る。

Lf-3a工程は、Mf-1a工程と同様の方法に従っても行うことができる。 (Lf-3b工程)

使用される酸は、上記酸群より選択され、好適には、塩酸または硫酸であり、より好 適には、硫酸である。

使用される溶媒は、上記溶媒群より選択され、好適には、アルコール類である。Lf -3b工程において、化合物RfOHを溶媒として用いることが好ましい。

反応温度は、通常、20乃至180℃であり、好適には、50乃至150℃である。

反応時間は、通常、1時間乃至36時間であり、好適には、2時間乃至24時間である。

Lf-3b工程は、Mf-1b工程と同様の方法に従っても行うことができる。

[0185] (Mf法)

Mf法は、Ef-4工程またはHf-3工程で使用される化合物(20f)において Xf^2 がメ

125

チレン基である化合物(47f)を製造する方法である。

(Mf-1工程)

Mf-1工程は、

(Mf-1a工程):Lf-1工程で得られる化合物(44f)を、塩基存在下にて加水分解する工程;および、

 $(Mf-1b工程): Mf-1a工程で得られる化合物を、塩基存在下にて化合物<math>R^dXf^d$ と反応させ、化合物(48f)を製造する工程からなる。

(Mf-1a工程)

使用される塩基は、上記塩基群のアルカリ金属水酸化物またはアルカリ土類金属 水酸化物であり得、好適には、水酸化ナトリウムまたは水酸化カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アルコール類、水またはこれらの混合物であり、より好適には、アルコール類および水の混合物であり、さらに好適には、エチレングリコールおよび水の混合物である。Mf-1a工程において水は必ず使用され、溶媒として水のみを用いることもできる。

反応温度は、通常、50乃至200℃であり、好適には、80乃至160℃である。 反応時間は、通常、1時間乃至72時間であり、好適には、2時間乃至48時間であ る。

Mf-1a工程は、Lf-3a工程と同様の方法に従っても行うことができる。 (Mf-1b工程)

使用される塩基は、上記塩基群より選択され、好適には、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩またはアルカリ金属水素化物であり、より好適には、アルカリ金属炭酸塩であり、さらに好適には、炭酸ナトリウムまたは炭酸カリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アミド類であり、より好適には、ジメチルホルムアミドである。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。 反応時間は、通常、1時間乃至24時間であり、好適には、2時間乃至12時間であ る。

Mf-1b工程は、Lf-3b工程と同様の方法に従っても行うことができる。

(Mf-2工程)

Mf-2工程は、Mf-1工程で得られる化合物(48f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(45f)と反応させ、化合物(47f)を製造する工程である。

Mf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

[0186] (Nf法)

Nf法は、Ef-4工程またはHf-3工程で使用される化合物 (20f) において、 Xf^2 が R^4 で置換されたメチレン基である化合物 (53f) を製造する方法である。 (Nf-1工程)

Nf-1工程は、公知であるかまたは公知の化合物から容易に得られる化合物 (49f) を、塩基存在下にて化合物 (50f) および化合物 (51f) と順次反応させ、化合物 (52f) を製造する工程である。Nf-1工程は、化合物 (50f) および化合物 (51f) の代わりに 化合物 Xf - Rf - Xf (式中、Rf + Xf +

使用される塩基は、上記塩基群より選択され、好適には、アルカリ金属水素化物であり、より好適には、水素化ナトリウムである。

使用される溶媒は、上記溶媒群より選択され、好適には、アミド類であり、より好適には、ジメチルホルムアミドである。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。 反応時間は、通常、30分間乃至12時間であり、好適には、1時間乃至6時間であ る。

(Nf-2工程)

Nf-2工程は、Nf-1工程で得られる化合物(52f)を、パラジウム触媒および塩基の存在下にて、公知であるかまたは公知の化合物から容易に得られる化合物(45f)と反応させ、化合物(53f)を製造する工程である。

Nf-2工程は、Af-4工程と同様の方法に従い、行うことができる。

[0187] (Of法)

Of法は、Af-4工程またはBf-1工程で使用される化合物(6f)において、Rfがt-

ブトキシ基であり、Rf²がヒドロキシル基であり、Xf²が式-O-を有する基である化合物(57f)を製造する方法である。

(Of-1工程)

WO 2006/004030

Of-1工程は、Ef-3工程で得られる化合物(19f)を、アゾジカルボキシレート試薬およびホスフィン試薬の存在下にて化合物(54f)と反応させて、化合物(55f)を製造する工程である。化合物(54f)は、公知であるか、または、公知の化合物から容易に得られる。

Of-1工程は、Ef-4工程と同様の方法に従い、行うことができる。

(Of-2工程)

Of-2工程は、

(Of-2a工程):Of-1工程で得られる化合物(55f)において、酸存在下にて、ジメトキシメチル基をホルミル基へ変換し、メトキシメチル基を除去する工程;および、

(Of-2b工程):Of-2a工程で得られる化合物を、リン酸二水素ナトリウムおよび2-メチル-2-ブテンの存在下にて、次亜塩素酸ナトリウム(NaClO2)により酸化する工程からなる。

Of-2a工程は、Ef-5a工程と同様の方法に従い、行うことができる。

Of-2b工程は、Ef-5c工程と同様の方法に従い、行うことができる。

(Of-3工程)

Of-3工程は、

(Of-3a工程):Of-2工程で得られる化合物(56f)を、塩基存在下にて、二炭酸ジー $tert-ブチル[(tBuOCO)_O]$ と反応させる工程;および、

(Of-3b工程):Of-3a工程で得られる化合物のヒドロキシル基上のBoc基を、塩基存在下にて除去する工程からなる。

(Of-3a工程)

使用される塩基は、上記塩基群より選択され、好適には、有機アミンであり、より好適には、4-(N,N-ジメチルアミノ)ピリジンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類、アルコール類、または、これらの混合物であり、より好適には、テトラヒドロフラン、2ーメチルー2

128

ープロパノール、または、これらの混合物である。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。

反応時間は、通常、30分間乃至24時間であり、好適には、1時間乃至12時間である。

(Of-3b工程)

使用される塩基は、好適には、ピロリジンまたはピペリジンであり、より好適には、ピロリジンである。

使用される溶媒は、上記溶媒群より選択され、好適には、エーテル類であり、より好 適には、テトラヒドロフランである。

反応温度は、通常、0乃至150℃であり、好適には、20乃至100℃である。

反応時間は、通常、10分間乃至12時間であり、好適には、30分間乃至6時間である。

[0188] (Pf法)

Pf法は、式(If)において、Rfが一COO(t-Bu)であり、Rfがヒドロキシル基であり、RfがよびRfが水素原子であり、Xfが式-O-を有する基であり、<math>Rfが一XfCOOHである化合物(If-c)を製造する方法である。

(Pf-1工程)

Pf-1工程は、Ef-2工程で得られる化合物(18f)を、アルキルリチウムおよび塩基の存在下にて、沃化メチルと反応させる工程である。

Pf-1工程は、Ef-3a工程と同様の方法に従い、行うことができる。

(Pf-2工程)

Pf-2工程は、

(Pf-2a工程):Pf-1工程で得られる化合物(58f)において、酸存在下にて、ジメトキシメチル基をホルミル基へ変換し、メトキシメチル基を除去する工程;および、

(Pf-2b工程):Pf-2a工程で得られる化合物を、リン酸二水素ナトリウムおよび2-メチル-2-ブテンの存在下にて、次亜塩素酸ナトリウム(NaClO2)により酸化する工程からなる。

Pf-2a工程は、Ef-5a工程と同様の方法に従い、行うことができる。

129

Pf-2b工程は、Ef-5c工程と同様の方法に従い、行うことができる。

(Pf-3工程)

Pf-3工程は、

(Pf-3a工程): Pf-2工程で得られる化合物 (59f) を、塩基存在下にて、二炭酸ジー $tert-ブチル[(tBuOCO)_O]$ と反応させる工程; および、

(Pf-3b工程):Pf-3a工程で得られる化合物をハロゲン化剤でハロゲン化して、化合物(60f)を製造する工程からなる。

Pf-3a工程は、Of-3a工程と同様の方法に従い、行うことができる。

Pf-3b工程は、Af-2工程と同様の方法に従い、行うことができる。

(Pf-4工程)

Pf-4工程は、Pf-3工程で得られる化合物(60f)を、塩基存在下にて化合物(20f)と反応させて、化合物(61f)を製造する工程である。化合物(20f)は、公知であるか、公知の化合物から容易に得られるか、または、Jf法、Lf法もしくはMf法により得ることができる。

Pf-4工程は、Af-3工程と同様の方法に従い、行うことができる。

(Pf-5工程)

Pf-5工程は、Pf-4工程で得られる化合物(61f)のヒドロキシル基上のBoc基を、 塩基存在下にて除去する工程である。

Pf-5工程は、Of-3b工程と同様の方法に従い、行うことができる。

(Pf-6工程)

Pf-6工程は、Pf-5工程で得られる化合物(62f)の塩基存在下における加水分解反応により、化合物(If-c)を製造する工程である。

Pf-5工程は、Ef-6b工程と同様の方法に従い、行うことができる。

- [0189] また、必要に応じて適宜、以下の反応条件下での置換基導入反応等を上記Af法 乃至Pf法に適用することができる:
 - (a) チオフェン環2位のブロモ化: N ブロモスクシンイミド、酢酸(Jackson, P. M., J. Chem. Soc., Perkin Trans.1, 1990年, 第11巻, p.2909-2918);
 - (b)ピラゾール環窒素上へのメトキシカルボニルメチル基の導入:ブロモ酢酸メチル、

炭酸カリウム:または、

- (c)ベンジル位へのヒドロキシメチル基の導入:パラホルムアルデヒド、炭酸水素ナトリウム。
- [0190] 本発明の一般式(Ia) 乃至(If) で表される化合物またはその薬理上許容されるエステルが、塩基性基を有する場合、酸と反応させて塩に変換することができ、本発明の一般式(Ia) 乃至(If) で表される化合物またはその薬理上許容されるエステルが、酸性基を有する場合、塩基と反応させて塩に変換することができる。これらの塩が疾病の治療に用いられる場合、これらは薬理上許容されるものでなければならない。
- [0191] 本発明の一般式(Ia) 乃至(If)で表される化合物の塩基性基と形成される塩は、好適には、例えば、塩酸塩、臭化水素酸塩、沃化水素酸塩等のハロゲン化水素酸塩;硝酸塩;過塩素酸塩;硫酸塩;もしくは燐酸塩のような無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の弗素原子で置換されてもよいC_-Cアルカンスルホン酸との塩;ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のC_-Cアルキルで置換されてもよいC_-C。アリールスルホン酸との塩;酢酸塩;りんご酸塩;フマール酸塩:コハク酸塩;クエン酸塩;酒石酸塩;蓚酸塩;もしくはマレイン酸塩のような有機酸塩;または、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩等のアミノ酸塩であり得、より好適には、ハロゲン化水素酸塩である。
- [0192] 本発明の一般式(Ia) 乃至(If)で表される化合物の酸性基と形成される塩は、好適には、例えば、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アルミニウム塩;鉄塩;亜鉛塩;銅塩;ニッケル塩;もしくはコバルト塩のような金属塩;アンモニウム塩等の無機アミン塩;もしくは、tーオクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、Nーメチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N'ージベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、Nーベンジルフェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩、コリン塩、トロメタミン塩「2ーアミノー2ー(ヒドロキシメチ

ル)プロパン-1,3-ジオール塩]等の有機アミン塩のようなアミン塩;または、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩等のアミノ酸塩であり得、より好適には、アルカリ金属塩である。

- [0193] 本発明の一般式(Ia) 乃至(If)で表される化合物またはその薬理上許容される塩も しくはエステルは、大気中に放置することにより、もしくは、再結晶時に水分を吸着し、 水和物を形成することがあるが、これらの水和物も本発明に含まれる。さらに、本発明 の化合物は他の溶媒を取り込んで溶媒和物を形成することがあるが、これらの溶媒 和物も本発明に含まれる。
- [0194] 本発明の化合物が1個以上の不斉中心を有する場合、光学異性体(ジアステレオマーを含む)が存在し得、これら異性体およびその混合物は、式(Ia)乃至(If)のような単一の式で記載される。本発明は、これらの各異性体および任意の割合のそれらの混合物(ラセミ体を含む)のいずれも包含する。
- [0195] 本発明は、一般式(Ia) 乃至(If) で表される化合物のエステルを包含する。これらのエステルは、一般式(Ia) 乃至(If) で表される化合物のヒドロキシル基またはカルボキシル基が、当該分野で周知の方法に従い、保護基の付加により修飾された化合物である(例えば「Protective Groups in Organic Synthesis, Second Editio」, Theodora W. Greene and Peter G.M. Wuts, 1991, John Wiley & Sons, Inc.)。

この保護基の性質には特に限定はない。ただし、このエステルが疾病の治療での使用に用いられる場合は、薬理上許容されるものでなければならず、例えば、この保護基は、当該化合物を哺乳動物の生体内に投与した際に代謝過程(例えば、加水分解)で脱離し、一般式(Ia)乃至(If)で表される化合物またはその塩を生成し得るものでなければならない。すなわち、薬理上許容されるエステルは、本発明の一般式(Ia)乃至(If)で表される化合物の「プロドラッグ」である。

[0196] 本発明の一般式(Ia) 乃至(If)で表される化合物のエステルが薬理上許容されるものであるかどうかは、容易に決定される。当該化合物をラットまたはマウスのような実験動物に静脈内投与し、動物の血液または体液を調べ、本発明の一般式(Ia) 乃至(If)で表される化合物またはその薬理上許容される塩が検出された場合、当該化合物は薬理上許容されるエステルであると判断される。

本発明の一般式(Ia) 乃至(If) で表される化合物はエステルに変換することができ、そのエステルは、例えば、当該化合物のヒドロキシル基がエステル化された化合物であり得る。エステル残基は、生体内の代謝過程(例えば、加水分解)で脱離し得る保護基であり得る。

- [0197] 生体内の代謝過程(例えば、加水分解)で脱離し得るエステル基は、哺乳動物の生体内に投与した際に代謝過程(例えば、加水分解)で脱離し、一般式(Ia)乃至(If)で表される化合物またはその塩を生成するエステル基である。このようなエステル残基としての保護基は、好適には、例えば、以下のものであり得る:
 - (i) $1-[(C_1-C_7 \nu + \nu) カルボニルオキシ]-(C_1-C_7 \nu + \nu) 基、 1-[(C_3-C_5 \nu C_1 \nu + \nu) カルボニルオキシ]-(C_1-C_7 \nu + \nu) 基、または、 1-[(C_1-C_7 \nu + \nu) 基、または、 1-[(C_1-C_7 \nu + \nu) + \nu) 基のような 1-(アシルオキシ)-(C_1-C_7 \nu + \nu) 基のような 1-(アシルオキシ)-(C_1-C_7 \nu + \nu) 基:$
 - (ii) $(C_1 C_6 T N 2 + 2)$ カルボニルオキシアルキル基、または、置換されてもよいオキソジオキソレニルメチル基(当該置換基は、 $C_1 C_6 T N$ キルもしくはハロゲノで置換されてもよいアリール基からなる群より選択される基である) のような置換カルボニルオキシアルキル基:
 - (iii)C₁-C₆アルキルまたはC₁-C₇アルコキシで置換されてもよいフタリジル基;
 - (iv)ヒドロキシル基の一般的保護基において示した脂肪族アシル基;
 - (v) ビドロキシル基の一般的な保護基において示した芳香族アシル基:
 - (vi)コハク酸のハーフエステル残基;
 - (vii)リン酸エステル残基;
 - (viii)グルタメート、アスパルテート等のアミノ酸のエステル形成残基;
 - (ix)1万至2個の C_1 - C_2 アルキル基で置換されてもよいカルバモイル基;または、
 - (x)1-(アシルオキシ)アルコキシカルボニル基(当該アシルオキシ基は、上記脂肪族アシルオキシ基もしくは上記芳香族アシルオキシ基を示す)。

ヒドロキシル基が修飾された一般式(Ia)乃至(If)で表される化合物を生成するために用いられる、生体内の代謝過程(例えば、加水分解)で脱離し得る上記保護基の中で、脂肪族アシル基(特に、C₁-C₂₅アルキルカルボニル基)および置換カルボニ

ルオキシアルキル基は、好適である。

- [0198] 上記の一般式(Ia)乃至(If)で表される化合物のほか、例えば、国際公開WO02/06 2302号、国際公開WO03/039480号、国際公開WO03/090746号、国際公開WO02/4 6141号、国際公開WO03/103651号、国際公開WO03/084544号、国際公開WO02/0 46181号、国際公開WO02/046172号、国際公開WO02/024632号、国際公開WO200 4/009091号、国際公開WO03/031408号、国際公開WO03/045382号、国際公開WO 03/053352号、国際公開WO2004/011448号、国際公開WO03/099769号、国際公開 WO03/099775号、国際公開WO03/059874号、国際公開WO03/082192号、国際公 開WO03/082802号、国際公開WO03/082205号、国際公開WO01/60818号、国際公 開WO00/54759号、国際公開WO03/063796号、国際公開WO03/063576号、国際公 開WO03/059884号、国際公開WO01/41704号、国際公開WO03/090869号、国際公 開WO2004/024161号、国際公開WO2004/024162号、国際公開WO2004/026816号 、国際公開WO03/090732号、国際公開WO2004/043939号、国際公開WO2004/072 041号、国際公開WO2004/072042号、国際公開WO2004/072046号、国際公開WO2 004/076418号、国際公開WO2004/103376号、国際公開WO2005/005416号、国際 公開WO2005/005417号、国際公開WO2005/016277号、国際公開WO2005/023188 号、国際公開WO2005/023196号、国際公開WO2005/023247号、及び米国公開US2 004/0152681号に記載された一般式に包含される化合物及びこれらの刊行物に具 体的に示された化合物もLXRリガンドであることが知られており、これらのLXRリガンド を本発明の医薬の有効成分として用いることもできる。上記の各刊行物、並びに国際 公開WO03/106435号、国際公開WO2005/023782号、PCT/JP2005/009142明細書 、特願2005-146390号明細書、PCT/JP2005/011928明細書、特願2005-189264号明 細書、特願2005-110908号明細書、特願2004-311821号明細書及び特願2005-1876 86号明細書の開示の全てを参照により本明細書の開示に含める。
- [0199] 本発明の医薬の有効成分としては、酸付加塩又は塩基付加塩などの塩の形態のL XRリガンドを用いてもよい。酸付加塩としては、例えば、塩酸塩、臭化水素酸塩、沃 化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、若しくは燐酸 塩のような無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスル

ホン酸塩等の弗素原子で置換されてもよいC₁-C₂アルカンスルホン酸との塩;ベン ゼンスルホン酸塩、pートルエンスルホン酸塩等のC₁-Cアルキルで置換されてもよ $NC_{6} - C_{10}$ アリールスルホン酸との塩;酢酸塩、りんご酸塩、フマール酸塩、コハク酸 塩、クエン酸塩、酒石酸塩、蓚酸塩、若しくはマレイン酸塩のような有機酸塩;又は、 グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸 塩等のアミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム 塩、カリウム塩、リチウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のア ルカリ土類金属塩:アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、若しくはコバ ルト塩のような金属塩;アンモニウム塩等の無機アミン塩;tーオクチルアミン塩、ジベ ンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩 、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリ エチルアミン塩、ジシクロヘキシルアミン塩、N,N'-ジベンジルエチレンジアミン塩、 クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジルフェネチルア ミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタ ン塩、コリン塩、トロメタミン塩[2ーアミノー2ー(ヒドロキシメチル)プロパンー1,3ージオ ール塩〕等の有機アミン塩;又は、グリシン塩、リジン塩、アルギニン塩、オルニチン塩 、グルタミン酸塩、アスパラギン酸塩等のアミノ酸塩などを挙げることができる。

- [0200] 本発明の医薬の有効成分としては、遊離形態又は塩の形態のLXRリガンドのほか、それらの水和物又はそれらの溶媒和物の形態のLXRリガンドを用いることもできる。LXRリガンドが1個以上の不斉中心を有する場合、該リガンドには光学異性体(ジアステレオマーを含む)が存在するが、これら異性体又はその任意の混合物、ラセミ体などを本発明の医薬の有効成分として用いてもよい。さらに、LXRリガンドが1個以上の二重結合又は環構造を含む物質であり、そ(れら)の二重結合又は環構造に基づく幾何異性体が存在する場合、各異性体及び任意の割合のそれらの混合物を本発明の医薬の有効成分として用いてもよい。
- [0201] 本発明の医薬の有効成分として好ましい化合物を以下に示すが、本発明の医薬の 有効成分は下記の化合物に限定されることはない。 N-(2, 2, 2-トリフルオロエチル)-N-{4-[2, 2, 2-トリフルオロ-1-ヒドロキ

- シー1ー(トリフルオロメチル)エチル]フェニル}ベンゼンスルホンアミド、
- 3-クロロ-4-(3-(2-プロピル-3-トリフルオロメチル-6-ベンズ-[4,5]-イソオキサゾールオキシ)プロピルチオ)フェニル酢酸、
- $2-(3-\{3-[[2-クロロ-3-(トリフルオロメチル)ベンジル](2,2-ジフェニルエチル)アミノ]プロポキシ\}-フェニル)酢酸、$
- 2-ベンジル-6, 7-ジメトキシ-3-[4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、
- 2-ベンジル-6-(2-ヒドロキシエトキシ)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、
- 2-ベンジル-6-(2-ピリジル)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、
- 2-ベンジル-6-フルオロ-3-{3-メトキシ-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-7-(4-モルホリニル)-4(3H)-キナゾリノン、
- $3-\{2-$ メチル-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル $\}-2-(3-$ ピリジルメチル)-6-(1H-1, 2, 4-トリアゾール-1-イル)-4(3H)-キナゾリノン、
- N, N-ii $\forall x \in \mathbb{R}$ $\lambda \in \mathbb{R}$ $\lambda \in \mathbb{R}$ $\lambda \in \mathbb{R}$
- 6-クロロ-7-メトキシ-3-{2-メチル-5-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-2-(3-チエニルメチル)-4(3+1)-キナゾリノン、
- 2-(3-7)ルオロベンジル)-6, 7-3メトキシ $-3-\{2-3$ 4ル-5-[2, 2, 2-1]リフルオロ-1-12ドロキシ-1-(1)1フルオロメチル)1フェニル $\}-4(3H)$ 1ーキナゾリノン、
- tertーブチル 2-({4-「アセチル(メチル)アミノ]フェノキシ}メチル)-6-フルオ

ロー1H-インドールー1-カルボキシレート、

tert - ブチル $2-({4-[(シクロプロピルカルボノチオイル)(メチル)アミノ]フェノキシ}メチル) <math>-4$, 6-ジフルオロ-1H-インドール-1-カルボキシレート、

tert-ブチル 6-([4-[(シクロプロピルカルボニル)(メチル)アミノ]フェノキシ]メチル)-2-ヒドロキシ-3-(トリフルオロメチル)ベンゾエート、

tert - ブチル 2- ヒドロキシ-6-([4-[メチル(メチルスルホニル)アミノ]フェノキシ]メチル) <math>-3-(トリフルオロメチル) ベンゾエート、

 $tert-ブチル 6-({4-[アセチル(メチル)アミノ]フェノキシ}メチル)-3-エチル -2-ヒドロキシベンゾエート、$

tert – ブチル 6 – ([4 – [(シクロプロピルアセチル)(メチル)アミノ]フェノキシ]メチル) – 2 – ヒドロキシ – 3 – (トリフルオロメチル) ベンゾエート、

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-1,1'-ビフェニル-4-イル)$ 酢酸、

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-3-クロロ-1.1'-ビフェニル-4-イル) 酢酸、$

 $[5-(4-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2$ -イル] -4 -

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-2-クロロ-1,1'-ビフェニル-4-イル)$ 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ $ベンジル]オキシ<math>\}$ -3-クロロ-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-エチル-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メチル-1, 1'-ビフェニル-3-イル) 酢酸、

 $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチ$

- ル)ベンジル]オキシ}-3-フルオロ-1, 1'-ビフェニル-4-イル)シクロプロパン カルボン酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-イソプロピルベンジル]オキシ}-1,1'-ビフェニル-4-イル) 酢酸、$
- $(4'-\{[2-(tert-ブトキシカルボニル)-4-フルオロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル) 酢酸、$
- $(4'-\{[2-(tert-ブトキシカルボニル)-4-クロロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル) 酢酸、$
- $[5-(4-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}フェニル)-2-チエニル]酢酸、$
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-ニトロ-1, 1'-ビフェニル-4-イル) 酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-フルオロ-1, 1'-ビフェニル-4-イル)酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-$ メチル-1, 1'-ビフェニル-4-イル) 酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メトキシ-1, 1'-ビフェニル-4-イル)酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-トリフルオロメチル-1, 1'-ビフェニル-4-イル)酢酸、
- $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-1, 1'-ビフェニル-4-イル) シクロプロパンカルボン酸、$
- $(2-アミノ-4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフル オロメチル) ベンジル]オキシ}-1,1'-ビフェニル-4-イル) 酢酸、$

よび、

[4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル) ベンジル]オキシ}-2-(ジメチルアミノ)-1, 1'-ビフェニルー4ーイル]酢酸、2-(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)-3-ヒドロキシー4ー(トリフルオロメチル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーイル)-3-ヒドロキシー4ー(トリフルオロメチル)ベンジル]オキシ}-2-イソプロピルー1, 1'-ビフェニルー4ーイル)酢酸、4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-1, 1'-ビフェニルー4ーカルボン酸、(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-ホルミルー1, 1'-ビフェニルー4ーイル)酢酸、(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-ホルミルー1, 1'-ビフェニルー4ーイル)酢酸、(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-(ヒドロキシメチル)-1, 1'-ビフェニルー4ーイル)酢酸、お

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-シアノ-1$, 1'-ビフェニル-4-イル)酢酸

[0202] また、本発明の医薬の有効成分として以下の化合物が特に好ましい。

2-ベンジル-6, 7-ジメトキシ-3-[4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、2-ベンジル-6-(2-ヒドロキシエトキシ)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、3-{2-メチル-4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-2-(3-ピリジルメチル)-6-(1H-1,2,4-トリアゾール-1-イル)-4(3H)-キナゾリノン、

tert - ブチル $2-({4-[(シクロプロピルカルボノチオイル)(メチル)アミノ]フェノキシ}メチル)-4,6-ジフルオロ<math>-1$ H-インドール-1-カルボキシレート、

tert - ブチル 6-([4-[(シクロプロピルカルボニル)(メチル)アミノ]フェノキシ]メチル) <math>-2-ヒドロキシ-3-(トリフルオロメチル)ベンゾエート、

tertーブチル 2ーヒドロキシー6ー(「4ー「メチル(メチルスルホニル)アミノ〕フェノキシ

]メチル) -3-(トリフルオロメチル) ベンゾエート、

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-1,1'-ビフェニル-4-イル)$ 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-クロロ-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-エチル-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メチル-1, 1'-ビフェニル-3-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-フルオロ-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メトキシ-1, 1'-ビフェニル-4-イル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-クロロ-1, 1'-ビフェニル-4-イル) 酢酸、$

tert - \mathcal{I} \mathcal{I}

 $2-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニル-4-イル)-3-ヒドロキシプロパン酸、 (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-ホルミル-1,1'-ビフェニル-4-イル)酢酸、$

 $(4'-\{[2-(\text{tert}-ブトキシカルボニル})-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-(ヒドロキシメチル)-1$, 1'-ビフェニル-4-イル)酢酸、および、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-シアノ-1$, 1'-ビフェニル-4-イル)酢酸

- [0203] 本発明により提供される医薬は、組織因子の産生を抑制する作用を有しており、温血動物に生体内において血栓形成性を低下させる作用を有している。従って、本発明の医薬は、例えば、血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは血液凝固性疾患の治療及び/又は予防のために有用である。もっとも、本発明の医薬の適用対象は上記のものに限定されることはない。
- [0204] LXRリガンドを有効成分として含む医薬としては、LXRリガンドをそれ自体で投与することができ、あるいは、適宜の薬理学的に許容される賦形剤又は希釈剤等と混合し、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤等の剤形で経口的に、又は注射剤、坐剤、貼付剤若しくは外用剤等の剤形で非経口的に投与することができる。これらの製剤は、賦形剤、滑沢剤、結合剤、崩壊剤、乳化剤、安定剤、矯味矯臭剤、希釈剤等の添加剤を用いて、周知の方法で製造される。
- [0205] 賦形剤としては、例えば、有機系賦形剤又は無機系賦形剤などを挙げることができる。有機系賦形剤は、例えば、乳糖、白糖、葡萄糖、マンニトール、ソルビトールのような糖誘導体;トウモロコシデンプン、馬鈴薯デンプン、α化澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴム;デキストラン;又は、プルランなどを挙げることができる。無機系賦形剤は、例えば、軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩誘導体;燐酸水素カルシウムのような燐酸塩;炭酸カルシウムのような炭酸塩;又は、硫酸カルシウムのような硫酸塩などを挙げることができる。

滑沢剤としては、例えば、ステアリン酸;ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステアリン酸金属塩;タルク;コロイドシリカ;ビーズワックス、ゲイ蝋のようなワックス類;硼酸;アジピン酸;硫酸ナトリウムのような硫酸塩;グリコール;フマル酸;安息香酸ナトリウム;DLーロイシン;ラウリル硫酸ナトリウム、ラウリル硫酸マグネシウムのようなラウリル硫酸塩;無水珪酸、珪酸水和物のような珪酸類;又は、上記澱粉誘導体などを挙げることができる。

[0206] 結合剤としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリエチレングリコール、又は、上記賦形剤に記載さ

れた誘導体などを挙げることができる。

崩壊剤としては、例えば、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、内部架橋カルボキシメチルセルロースナトリウムのようなセルロース誘導体;カルボキシメチルスターチ、カルボキシメチルスターチナトリウムのような化学修飾されたデンプン・セルロース誘導体;又は、架橋ポリビニルピロリドンなどを挙げることができる。

乳化剤としては、例えば、ベントナイト、ビーガムのようなコロイド性粘土;水酸化マグネシウム、水酸化アルミニウムのような金属水酸化物;ラウリル硫酸ナトリウム、ステアリン酸カルシウムのような陰イオン界面活性剤;塩化ベンザルコニウムのような陽イオン界面活性剤;又は、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステルのような非イオン界面活性剤などを挙げることができる。

安定剤としては、例えば、メチルパラベン、プロピルパラベンのようなパラヒドロキシ 安息香酸エステル類;クロロブタノール、ベンジルアルコール、フェニルエチルアルコ ールのようなアルコール類;塩化ベンザルコニウム;フェノール、クレゾールのようなフ ェノール類;チメロサール;デヒドロ酢酸;又は、ソルビン酸などを挙げることができる。 矯味矯臭剤としては、例えば、通常使用される、甘味料、酸味料、香料等などを挙 げることができる。

[0207] 本発明の医薬は、温血動物(ヒトを含む)に投与することができ、特に好ましくはヒト に投与することができる。LXRリガンドの投与量は特に限定されないが、LXRリガンド の種類、疾患の種類、患者の体重若しくは年齢等に応じて適宜選択することが望ましい。LXRリガンドの投与量は、経口投与の場合には、1回当り下限0.01mg/kg(好 適には、0.05mg/kg)、上限500mg/kg(好 適には、100mg/kg)を、静脈内投与の 場合には、1回当り下限0.001mg/kg(好 適には、0.005mg/kg)、上限100mg/kg(好 適には、20mg/kg)を成人に対して、1日当り1乃至6回、疾患およびその症状に応 じて投与することが望ましい。

実施例

[0208] 以下において、実施例は、化合物の組織因子産生抑制作用の試験方法と結果を

WO 2006/004030

示す。試験例は、化合物のLXRリガンド(好適には、LXRアゴニスト)としての活性測定法の例を示す。参考例は、組織因子産生抑制作用試験を行った化合物の合成法を示す。製剤例は、本発明の医薬の製剤製造法の例を示す。

実施例1の表7及び実施例2の表8において、化合物A乃至Jは以下の化合物を示す。

[0209] 化合物A:N-(2, 2, 2-トリフルオロエチル)-N-{4-[2, 2, 2-トリフルオロー1-ヒドロキシー1-(トリフルオロメチル)エチル]フェニル}ベンゼンスルホンアミド(国際公開WO2000/054759の第55頁に記載された化合物12)
 [7比25]

[0210] 化合物B:3-クロロ-4-(3-(2-プロピル-3-トリフルオロメチル-6-ベンズー [4,5]-イソオキサゾールオキシ)プロピルチオ)フェニル酢酸(国際公開WO1997/0 28137の第70頁の実施例20に記載された化合物;LXRに対する作用については、E ndocrinology, 143, pp.2548-2558, 2002に記載されている)
 [化26]

[化27]

[0211] 化合物C:2-(3-{3-[[2-クロロ-3-(トリフルオロメチル)ベンジル](2,2-ジフェニルエチル)アミノ]プロポキシ}-フェニル)酢酸(国際公開WO2002/24632の第46頁の実施例16に記載された化合物)

WO 2006/004030

[0212] 化合物D:2-ベンジル-6, 7-ジメトキシ-3-[4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン(国際 公開WO2003/106435の第298頁の実施例54に記載された化合物):

化合物E:2-ベンジル-6-(2-ヒドロキシエトキシ)-3-[4-[2,2,2-トリフルオ ロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン(国際公開WO2005/023782の実施例1に記載された化合物);及び、

化合物F:2-ベンジル-6-(2-ピリジル)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン(国際公開WO2005/023782の実施例102に記載された化合物);

化合物G: $6-(1H-イミダゾール-1-イル)-2-(4-メチルベンジル)-3-{2$ -メチルー $4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル<math>}-4(3H)-キナゾリノン(国際公開WO2005/023782の実施例232に記載された化合物):$

化合物H:2ーベンジル-6ーフルオロ-3- $\{3$ -メトキシ-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル $\}$ -7-(4-モルホリニル)-4(3H)-キナゾリノン(国際公開WO2005/023782の実施例193に記載された化合物):

化合物I: $3-\{2-メチル-4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル\}-2-(3-ピリジルメチル)-6-(1H-1,2,4-トリアゾール-1-イル)-4(3H)-キナゾリノン(国際公開WO2005/023782の実施例233に記載された化合物):$

化合物J:N, N-ジメチル-3 β -ヒドロキシコレナミド(N,N-dimethyl-3 β -hydroxyc holenamide) (J. Med. Chem., 2001年, 第44巻, p.886-897に記載された化合物)。

WO 2006/004030 PCT/JP2005/012185

144

[化28]

[0213] 化合物D乃至Iは以下の構造式で示される化合物である。化合物Dは、上記一般式 (Ia)で表される化合物に含まれる。化合物E乃至Iは、上記一般式(Ib)で表される化 合物に含まれる。

[表1]

	Rª	R ^b	R°	Y a
化合物D	OMe	OMe	Н	pheny1
化合物E	$\mathrm{HO}\left(\mathrm{CH_{2}}\right){_{2}\mathrm{O}}$	Н	Н	phenyl
化合物F	2-pyridy 1	Н	Н	phenyl
化合物G	1H-imidazole-1-yl	H	2-Ме	4-methylphenyl
化合物H	F	4-morpholinyl	3-0Me	phenyl
化合物 I	1H-1, 2, 4-triazo1-1-y1	Н	2-Ме	3-pyridyl

参考例1および2に示す化合物は以下の構造式で示される化合物である。参考例1 [0214]および2に示す化合物は、上記一般式(Ia)で表される化合物に含まれる。 [表2]

参考例番号	R ª	R ^b	Y a
参考例1	C 1	OMe	3-thienyl
参考例 2	OMe	OMe	3-F-pheny1

WO 2006/004030 PCT/JP2005/012185

145

[0215] 参考例3乃至37に示す化合物は以下の構造式で示される化合物である。参考例3 および4に示す化合物は、上記一般式(Ic)で表される化合物に含まれる。参考例5 乃至8に示す化合物は、上記一般式(Id)で表される化合物に含まれる。参考例9乃 至12に示す化合物は、上記一般式(Ie)で表される化合物に含まれる。参考例13乃 至37に示す化合物は、上記一般式(If)で表される化合物に含まれる。以下の表3乃 至6における略号は、下記の基を示す;

cbx-cPr:1-カルボキシ-1-シクロプロピル

cPr:シクロプロピル

Et:エチル

iPr:2ープロピル

Me:メチル

t-Bu:2-メチル-2-プロピル。

[表3]

$$Rc^{4}$$
 Rc^{7}
 Rc^{6}

参考例番号	R c²	R c4	R c ⁶	R c 7
参考例3	F	Н	COO(t-Bu)	N (Me) $COCH_3$
参考例 4	F	F	C00(t-Bu)	N(Me)CScPr

[0216] [表4]

$$Rd^3$$
 HO
 Rd^1
 Rd^8

参考例番号	$R d^1$	$R d^3$	R d ⁸
参考例 5	COO(t-Bu)	CF_3	N(Me)COcPr
参考例 6	COO(t-Bu)	CF_3	$N(Me)SO_2Me$
参考例 7	COO(t-Bu)	Et	N(Me)COMe
参考例8	C00(t-Bu)	CF_3	N(Me)COCH ₂ cPr

[0217] [表5]

$$Re^{2}$$
 Re^{6}
 Re^{6}
 Re^{13}
 Re^{13}
 Re^{13}
 Re^{13}
 Re^{2b}

参考例番号	R e ²	$\mathrm{R}\mathrm{e}^6$	$Y e^2$	R e ⁷	R e ¹³
参考例 9	F	C00(t-Bu)	Ye^{2n}	$\mathrm{CH_{2}COOH}$	Н
参考例10	F	C00(t-Bu)	$Y \mathbf{e}^{2\mathtt{a}}$	$\mathrm{CH}_2\mathrm{COOH}$	3-C1
参考例11	F	C00(t-Bu)	$Y\mathrm{e}^{2b}$	CH₂COOH	
参考例12	F	C00 (t-Bu)	Ye^{2a}	CH ₂ COOH	2-C1

[0218] [表6]

$$Rf^3$$
 HO
 Q
 Qf^2
 Rf^{17}
 Qf^{2a}
 Qf^{2b}
 Qf^{2b}
 Qf^{2c}
 Qf^{2c}

, ,		,	` '		
参考例番号	$R f^1$	$R f^3$	$\mathrm{Y}\mathrm{f}^2$	R f ⁸	R f ¹⁷
参考例13	COO(t-Bu)	CF_3	Yf ^{2a}	CH ₂ COOH	Н
参考例14	COO(t-Bu)	CF_3	$\mathrm{Yf^{2a}}$	$\mathrm{CH_{2}COOH}$	3-C1
参考例15	COO(t-Bu)	CF_3	Yf^{2a}	$\mathrm{CH_{2}COOH}$	2-Et
参考例16	COO(t-Bu)	CF_3	$\mathrm{Yf}^{2\mathrm{b}}$	$\mathrm{CH_{2}COOH}$	2-Me
参考例17	COO(t-Bu)	CF_3	$\rm Yf^{2a}$	cbx-cPr	3-F
参考例18	COO(t-Bu)	iPr	${\tt Yf^{2a}}$	$\mathrm{CH_{2}COOH}$	Н
参考例19	COO(t-Bu)	C1	Yf^{2a}	$\mathrm{CH_{2}COOH}$	Н
参考例20	COO(t-Bu)	F	Yf^{2a}	$\mathrm{CH_{2}COOH}$	Н
参考例21	COO(t-Bu)	CF_3	Yf^{2c}	$\mathrm{CH_{2}COOH}$	
参考例22	COO(t-Bu)	CF_3	${\tt Yf^{2a}}$	$\mathrm{CH_{2}COOH}$	$2\mathrm{-NO}_2$
参考例23	COO(t-Bu)	CF_3	Yf^{2a}	$\mathrm{CH_{2}COOH}$	3-F
参考例24	COO(t-Bu)	CF_3	$Yf^{2\mathtt{a}}$	$\mathrm{CH_{2}COOH}$	2-Me
参考例25	COO(t-Bu)	CF_3	$\mathrm{Yf^{2a}}$	CH ₂ COOH	$2-{\rm MeO}$
参考例26	COO(t-Bu)	CF_3	${\tt Yf^{2a}}$	$\mathrm{CH_{2}COOH}$	2-C1
参考例27	COO(t-Bu)	CF_3	Yf^{2a}	СН ₂ СООН	$2\mathrm{-CF}_3$
参考例28	COO(t-Bu)	CF_3	$\rm Yf^{2a}$	cbx-cPr	H
参考例29	COO(t-Bu)	CF_3	${\tt Yf^{2b}}$	$\mathrm{SO}_{2}\mathrm{Me}$	H
参考例30	COO(t-Bu)	CF_3	Yf^{2a}	$\mathrm{CH_{2}COOH}$	$2-NH_2$
参考例31	COO(t-Bu)	CF_3	$\mathrm{Yf^{2a}}$	$\mathrm{CH_{2}COOH}$	$2\text{-}\mathrm{NMe}_2$
参考例32	COO(t-Bu)	CF_3	$Y\mathtt{f}^{2a}$	CH (CH $_2$ OH) COOH	Н
参考例33	COO(t-Bu)	CF_3	Yf^{2a}	CH ₂ COOH	2-iPr
参考例34	COO(t-Bu)	CF_3	Yf^{2a}	СООН	Н
参考例35	COO(t-Bu)	CF_3	Yf^{2a}	$\mathrm{CH_{2}COOH}$	2-СНО
参考例36	COO(t-Bu)	CF_3	Yf^{2a}	$\mathrm{CH_{2}COOH}$	$2-\mathrm{CH_2OH}$
参考例37	COO(t-Bu)	CF ₃	Yf ^{2a}	CH ₂ COOH	2-CN

[0219] (実施例1)マウス腹腔マクロファージ組織因子mRNAアッセイ

雄性C57BL/6Jマウス(チャールスリバー)にチオグリコレート(Sigma chemical) 3 mlを 腹腔内投与し、4日後に5 U/mlの濃度のヘパリン(菱山製薬)を含むPhosphate-Buffe red Saline (以下、「PBS」と呼ぶ)10 mlを腹腔内投与し、シリンジを用いて腹腔内マクロファージを回収した。回収したマクロファージを1000 rpm、4℃、5分間遠心した後、上清を除き、10%の濃度の正常ウシ胎児血清(以下、「FBS」と呼ぶ)を含むRPMI 1640 培地(Gibco Laboratories) 中に懸濁した。マクロファージを4×10⁶個/mlの濃度に調整し、12穴プレートに1 mlずつ播き、CO インキュベーターを用いて37℃で3時間培養した。その後、PBSで細胞を洗浄し、培地を5%の濃度のLipoproteinーdeficient seru m(以下、「LPDS」と呼ぶ)(Sigma chemical)を含むRPMI培地に置換した。ジメチルスルホキシド(以下、「DMSO」と呼ぶ)に溶かした1μMの濃度の試験化合物をDMSOの最終濃度が0.1%になるように添加し、37℃で18時間保温した後、リポポリサッカライド(以下、「LPS」と呼ぶ)(Sigma chemical)を100 ng/ml濃度になるように添加した。6時間後に細胞を回収し、RNeasy Mini Kit (QIAGEN)を用いてRNAを抽出し、FirstーStrand c DNA Synthesis Kit (Amersham Biosciences)を用いて逆転写反応を行った後、定量的RTーPCR (TaqMan、Applied Biosystems 7700 sequence detector)により組織因子m RNA及びシクロフィリンmRNAの発現量を測定した。

[0220] TF-1:5'-GGCCACCATCTTTATCATCC-3'

TF-2:5'-TGTTCTTCCCTTTCTGTCCC-3'

TF-P:5'-FAM-CCATATCTCTGTGCAAGCGCAGAAAGAACC-TAMRA-3'

Cyl-1:5'-CGATGACGAGCCCTTGG-3'

Cyl-2:5'-TCTGCTGTCTTTGGAACTTTGTC-3'

Cyl-P:5'-FAM-CGCGTCTCCTTTGAGCTGTTTGCA-TAMRA-3'

[0221] 組織因子の定量的RT-PCRは、上記TF-1及びTF-2をプライマーとして、TF-Pをプローブとして、また、シクロフィリンの定量的PCRは、上記Cyl-1及びCyl-2をプライマーとして、Cyl-Pをプローブとして、それぞれ50℃にて2分、次いで95℃にて10分で保温し、次いで95℃にて15秒、60℃にて1分からなる保温サイクルを40回返すことによりPCRを行った。組織因子mRNAの発現量は、シクロフィリンmRNAの発現量の相対値として算出した。1%の濃度のDMSO処理をした時の組織因子mRNAの発現量を100としたときの、1μMまたはの10μM濃度の試験化合物による組織因子mRNAの発現量を表7に示す。

WO 2006/004030 PCT/JP2005/012185

149

[0222] [表7]

試験化合物番号	組織因子 mRNA の発現量	濃度(μM)
化合物A	20.0	1
化合物 B	47.3	1
化合物C	68.8	1
化合物D	39.0	1
化合物E	37.7	1
化合物F	76.9	1
化合物G	44.7	1 0
化合物H	56.0	1 0
化合物 I	48.6	1
化合物 J	39.3	1 0
参考例1	41.1	1 0
参考例 2	45.2	1 0
参考例3	67.9	1
参考例 4	57.6	1
参考例 5	64.3	1
参考例 6	62.8	1
参考例 7	68.0	1
参考例8	51.8	1
参考例 9	66.0	1
参考例10	68.9	1
参考例11	6 1 . 1	1
参考例12	54.3	1
参考例13	65.4	1
参考例14	61.2	1
参考例15	55.5	1
参考例16	65.4	1
参考例17	57.2	1
参考例18	56.9	1
参考例19	51.6	1 0
参考例20	58.1	1 0
参考例 2 1	68.9	1
参考例 2 2	5 4 . 0	1
参考例23	5 1 . 6	1
参考例 2 4	61.8	1
参考例 2 5	64.0	1
参考例 2 6	42.3	1
参考例 2 7	63.5	1
参考例 2 8	41.7	1 0
参考例29	88.4	1 0
参考例30	65.6	1
参考例31	3 3 . 7	1 0
参考例32	48.5	1 0
参考例33	37.2	1 0
参考例34	39.0	1 0

WO 2006/004030 PCT/JP2005/012185

151

[0223] 以上の結果より、LXRリガンド(特にLXRアゴニスト)は優れた組織因子産生抑制作用を有しており、血管形成術、血管内膜切除術、経皮的冠動脈形成術、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定または不安定狭心症などを含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患のような心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈-冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍及び癌転移の治療及び/又は予防のための医薬として有用であることが示された。

[0224] (実施例2)LPS投与マウス組織因子mRNAアッセイ

プロピレングリコール(和光純薬)とTween80(花王)とを4:1の割合で混合した溶液(以下、「PG/Tween」と呼ぶ)に試験化合物を溶解し、雄性C57BL/6Jマウス(チャールスリバー)に1日1回夕方に10 mg/kg、7日間強制経口投与を行った。7回目の投与翌日の午前9:00にLPSを4 mg/kg、腹腔内投与し、その6時間後にエーテル麻酔下で開腹し、腎臓を摘出した。腎臓よりRNAをTrizol regent (Invitrogen)を用いて抽出した。得られたRNAより、First-Strand cDNA Synthesis Kitを用いて逆転写反応を行った後、上記と同様に定量的RT-PCRにより組織因子mRNA及びシクロフィリンmRNAの発現量を上記試験例1と同様に測定した。PG/Tweenのみを投与した際の組織因子mRN Aの発現量を100としたときの10 mg/kgの濃度で投与した際の試験化合物による組織因子mRNAの発現量を表8に示す。

[0225] [表8]

試験化合物	組織因子 mRNA の発現量
化合物 C 化合物 D	5 4. 1 6 3. 5

以上の結果より、LXRリガンド(特にLXRアゴニスト)は優れた組織因子産生抑制作用を有しており、血管形成術、血管内膜切除術、経皮的冠動脈形成術、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定または不安定狭心症などを含む血小板凝集によって誘発される疾患、糖尿病に伴う血

栓塞栓形成疾患のような心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈-冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍及び癌転移の治療及び/又は予防のための医薬として有用であることが示された。

[0226] (試験例1)コトランスフェクションアッセイ(Co-transfection assay) [LXR結合活性の試験法]

試験化合物によるLXRの転写活性の活性化作用または阻害作用は、細胞系アッセイであるコトランスフェクションアッセイにより測定できる。LXRは、RXRとのヘテロダイマーを形成して機能することが示されている。コトランスフェクションアッセイにおいては、まずLXRおよびRXRの発現プラスミドと、LXR-RXRへテロダイマー応答DNA配列の3コピーを含むルシフェラーゼレポーター発現プラスミドとを、哺乳類細胞に一過性トランスフェクションにより導入する。次にこのトランスフェクションされた細胞をLXRアゴニスト活性を有する試験化合物で処理すると、LXRの転写活性化作用が増強され、試験化合物のLXRアゴニスト活性が、ルシフェラーゼ活性の上昇として測定できる。同様に、試験化合物のLXRアンタゴニスト活性は、試験化合物が、LXRアゴニストによる転写活性化を競合的に阻害する強さを決定することにより測定できる。

[0227] [1]使用物質

- (1)CV-1アフリカミドリザル腎細胞(ATCC CCL-70)
- (2)コトランスフェクション発現プラスミド、pCDNA-hLXR α またはpCDNA-hLXR β 、レポーター (LXREx3-pTAL-Luc Vector)
 - (3) Lipofect AMINE、Plus Reagent (INVITROGEN) のトランスフェクション試薬
- (4)細胞溶解緩衝液[Paasive Lysis Buffer, 5×(PROMEGA CORPORATION)をD. W.で希釈]
 - (5) Luciferase Assay Reagent (PROMEGA CORPORATION)
- (6) 培地[Dulbecco's Modified Eagle Medium (GIBCO) 500ml, Gentamicin Reagent Solution(GIBCO) 2.5ml, 2mM L-Gluta Max I Suprement (GIBCO) 5.0ml, MEM Sodi um Pyruvate Solution (GIBCO) 5.0ml, Penicillin-Streptomycin (GIBCO) 5.0ml, Char coal/Dextran Treated FBS (HyClone) 50ml]

(7) OPTI-MEM I Reduced-Serum Medium (GIBCO)

[0228] [2] スクリーニング試薬の調整

上記CV-1細胞を96 Well Assay Plate (Costar 3610) に2×10⁴個/100 μ M/wellに なるようにまき、37℃で一晩インキュベートした。

DNAトランスフェクションは、トランスフェクション試薬に添付された説明書に従い以下のように行った。2本の50mlfューブに10 μ lのOPTI-MEM I Reduced-Serum Medium (GIBCO) および0.5 μ lのLipofect AMINE (INVITROGEN) を加え、その混合溶液を撹拌することにより溶液Aを得た。別のfューブにそれぞれ下記(1)の物質を加え、その混合溶液を撹拌して15分間静置することにより、溶液Bを得た。また、下記(2)の物質を用いて同様の操作を行うことにより溶液Cを得た;

- (1) 10μ lのOPTI-MEM I Reduced-Serum Medium、 1μ lのPlus Reagent (INVITRO GEN)、および 0.1μ gのDNA[PCMX-LXR α (33ng)およびLXRE (66ng)];
- (2) 10μ lのOPTI-MEM I Reduced-Serum Medium、 1μ lのPlus Reagent (INVITRO GEN)、および 0.1μ gのDNA[PCMX-LXR β (33ng)およびLXRE (66ng)]。

上記溶液Bのそれぞれに上記溶液Aの全量を加え、撹拌して15分間静置することにより、LXR α 液を得た。また上記溶液Cおよび溶液Aを用いて同様の操作を行うことにより、LXR β 液を得た。

上記でCV-1細胞をインキュベートした96 Well Assay Plateからデカンテーションにより培地を取り除き水分をよく除去した後、 $50\,\mu$ l/wellのOPTI-MEM I Reduced-Seru m Mediumを各wellに加えた。さらに、各wellに $20\,\mu$ l/wellの上記LXR α 液またはLXR β 液を加えて、37°Cで3時間インキュベートした。

[0229] [3]測定手順

WO 2006/004030

上記インキュベートの後、CV-1細胞を鏡検した。デカンテーションにより培地を取り除き水分をよく除去した後、各wellの底面に白色のシールを貼った。蒸留水で5倍に希釈したPassive Lysys Buffer (5×) (PROMEGA CORPORATION)を20 μ l/wellずつ各wellに加え、プレートシェーカーを用いて15分間かけてCV-1細胞を溶解した。100 μ l/well のLuciferase Assay Reagent (PROMEGA CORPORATION)を各wellに加え、Wallac ARVO HTS 1429 Multilabel Counter (登録商標; Perkin Elmer)またはAnalyst HT (登録商標; Bio Systems)を用いてルシフェラーゼ活性を測定した。

LXR/LXREコトランスフェクションアッセイにより、試験化合物の作用の強さを示す EC 値、および、試験化合物の%活性化能を表すエフィカシー(Efficacy)を決定する ことが出来る。エフィカシーは、LXRアゴニスト活性を有するコントロール化合物、また は、LXRアゴニスト活性を有しないコントロール(DMSO/溶媒)に対する相対的な活性化能で表される。本アッセイでは、LXRアゴニスト活性を有するコントロール化合物 として、N-(2,2,2ートリフルオロエチル)-N-[4-[2,2,2ートリフルオロー1ーヒドロキシー1-(トリフルオロメチル)エチル]フェニル]ベンゼンスルホンアミド(国際公開W O2000/054759の第55頁に記載された化合物12;上記化合物A)を用いた。

濃度 - 応答曲線は、(1/2)LOG単位、計8点の希釈系列の濃度での測定値から作成した。各濃度での測定値は、一つの濃度につき96wellプレートの4wellの値の平均値として算出した。本アッセイのデータを、次式にフィッティングさせて、EC₅₀値を算出することができる:

 $Y = Bottom + (Top - Bottom) / (1 + 10^{z})$

 $Z = (logEC_{50} - X)*HillSlope$

EC₅₀値は、試験化合物が最大応答(Top)とベースライン(Bottom)との間の中間値を与える濃度として定義される[「Fitting to Sigmoidal dose-response (variable slope)」 (Graph Pad PRISM version 3.02)参照]。コントロール化合物であるLXRアゴニストに対する相対エフィカシーまたは%コントロールの値は、コントロール化合物として用いた化合物Aが示す最大応答値との比較により決定した。

本アッセイで試験した場合、参考例1乃至37の化合物は、LXR α およびLXR β に対して、優れた結合活性または転写活性化作用を示す。

[0230] (参考例1)6-クロロー7-メトキシー3-{2-メチルー5-[2, 2, 2-トリフルオロー 1-ヒドロキシー1-(トリフルオロメチル)エチル]フェニル}-2-(3-チエニルメチル)-4(3H) -キナゾリノン

文献(国際公開W2003/106435の第271頁の実施例1)に記載された方法と同様にして、文献(US4287341の参考例I, ii)に記載された方法で合成した5ークロロー4ーメトキシアントラニル酸(201mg, 1. 0mmol)、フェニル酢酸(142mg, 1. 0mmol)、トリフェニルホスファイト(0. 29ml, 1. 1mmol)、および、文献[国際公開W2005/023782の第260頁の実施例147(1)]に記載された方法で合成した2ー(3ーアミノー4ーメチルフェニル)ー1, 1, 1, 3, 3, 3ーへキサフルオロー2ープロパノール(273mg, 1. 0mmol)から、無色固体の標記目的化合物(344mg, 収率61%)を得た。 1 H-NMR (500MHz, DMSO-d): δ 8.89 (1H, br), 8.06 (1H, s), 7.78 (1H, s), 7.70 (1H, d, J=8.0 Hz), 7.42 (1H, d, J=8.0 Hz), 7.34-7.41 (2H, m), 6.70 (1H, s), 6.59 (1H, d, J=5.0 Hz), 4.05 (3H, s), 3.81 (1H, d, J=15.0 Hz), 3.76 (1H, d, J=15.0 Hz), 1.63 (3H, s).

ESI(ES+)(m/z): 563 ([M+H][†]), ESI(ES-)(m/z): 561 ([M-H][†]).

[0231] (参考例2)2-(3-フルオロベンジル)-6,7-ジメトキシ-3-{2-メチル-5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-4(3H)-キナゾリノン

¹H-NMR (400MHz, DMSO-d₆): δ 8.85 (1H, s), 7.68-7.66 (2H, m), 7.41 (1H, s), 7. 37 (1H, d, J = 8.6 Hz), 7.23-7.17 (2H, m), 7.02-6.97 (1H, m), 6.64 (1H, d, J = 7.8 Hz), 6.46-6.42 (1H, m), 3.94 (3H, s), 3.86 (3H, s), 3.85-3.71 (2H, m), 1.60 (3H, s). FABMS(m/z): 571 ([M+H]⁺).

[0232] (参考例3) tert - ブチル 2 - ($\{4-[アセチル(メチル)アミノ]フェノキシ\}メチル) - 6-フルオロ-1H-インドール-1-カルボキシレート (3-1)$

水素化ナトリウム(55%油性, 5.96g, 38.7mmol)のテトラヒドロフラン(28ml)懸濁液に、氷冷下にて4ーフルオロー1ーメチルー2ーニトロベンゼン(10.6g, 68.3 mmol)のテトラヒドロフラン(28ml)溶液を加え、室温にて30分間撹拌した後、シュウ酸ジエチル(74.0ml, 546mmol)を加えて40℃にて1日間撹拌した。氷冷下にて反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒、および、余剰のシュウ酸ジエチルを留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=8/1-6/1)にて精製し、黄色油状のエチル 3-(4-フルオロ-2ーニトロフェニル)-2-オキソプロパノエート(5.51g, 収率32%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.92 (1H, dd, J = 8.3, 2.4 Hz), 7.39–7.31 (2H, m), 4 .52 (2H, s), 4.35 (2H, q, J = 7.3 Hz), 1.41 (3H, t, J = 7.3 Hz).

[0233] (3-2)

参考例(3-1)で得られたエチル 3-(4-フルオロ-2-ニトロフェニル)-2-オキソプロパノエート(5.51g, 21.6mmol)をエタノールー酢酸の混合溶媒(1:1, 84 ml)に溶解し、鉄粉末(10.9g, 144mmol)を加え、3.5時間加熱還流した。テトラヒドロフランで希釈した後、セライトで不溶物を濾過し、減圧下にて、濾液を濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:塩化メチレン/アセトン=15/1)にて精製し、エチル 6-フルオロ-1H-インドール-2-カルボキシレート(3.62g, 収率81%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 8.89 (1H, br. s), 7.61 (1H, dd, J = 8.8, 5.5 Hz), 7.20 (1H, m), 7.09 (1H, dd, J = 9.4, 2.0 Hz), 6.94 (1H, ddd, J = 9.4, 8.8, 2.0 Hz), 4.41 (2H, q, J = 7.0 Hz), 1.42 (3H, t, J = 7.0 Hz).

[0234] (3-3)

参考例(3-2)で得られたエチル 6-フルオロ-1H-インドール-2-カルボキシレート(1.70g, 8.19mmol)を塩化メチレン(82ml)に溶解し、トリエチルアミン(4

. 55ml, 32. 8mmol)、二炭酸ジーtertーブチル(3. 57g, 16. 4mmol)、および、N, Nージメチルアミノピリジン(100mg, 0. 819mmol)を室温にて加え、終夜撹拌した。反応液に水および飽和食塩水を加え、塩化メチレンで抽出した後、有機層を無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=9/1)にて精製し、黄色油状の1ーtertーブチル 2ーエチル 6ーフルオロー1Hーインドールー1, 2ージカルボキシレート(1. 94g, 収率95%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.77 (1H, dd, J = 10.2, 2.4 Hz), 7.51(1H, dd, J = 8.6 , 5.8 Hz), 7.05 (1H, s), 7.00 (1H, app. td, J = 9.0, 2.4 Hz), 4.36 (2H, q, J = 7.0 Hz) , 1.63 (9H, s), 1.30 (3H, t, J = 7.0 Hz).

[0235] (3-4)

参考例(3-3)で得られた1-tert-ブチル 2-エチル 6-フルオロ-1H-インドール-1, 2-ジカルボキシレート(19.0g, 57.9mmol)をトルエン(290ml)に溶解し、-78℃にて水素化ジイソブチルアルミニウムの1M-トルエン溶液(174ml, 174mmol)を加え、2.5時間かけて-78℃から-20℃まで昇温しながら撹拌した。硫酸ナトリウム10水和物(143g)を加え、室温にて10分間撹拌した後トルエンで希釈し、無水硫酸マグネシウム(50g)、および、セライト(30g)を加えて、10分間撹拌した。不溶物をセライトで濾過し、濾液を減圧下にて濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=3/2)にて精製し、淡黄色油状のtert-ブチル 6-フルオロ-2-(ヒドロキシメチル)-1H-インドールー1-カルボキシレート(9.20g, 収率60%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.70 (1H, dd, J = 10.6, 2.4 Hz), 7.42 (1H, dd, J = 8. 6, 5.9 Hz), 6.99 (1H, ddd, J = 9.4, 8.6, 2.4 Hz), 6.55 (1H, s), 4.79 (2H, d, J = 7.4 Hz), 3.64 (1H, t, J = 7.4 Hz), 1.73 (9H, s).

[0236] (3-5)

参考例(3-4)で得られたtert-ブチル 6-フルオロ-2-(ヒドロキシメチル)-1 H-インドール-1-カルボキシレート(172mg, 0.524mmol)、および、トリフェニルホスフィン(206mg, 0.786mmol)をテトラヒドロフラン(5ml)に溶解し、四臭化炭

WO 2006/004030

素(261mg, 0. 786mmol)を加え、20分間撹拌した。不溶物をセライトで濾過した後、濾液の溶媒を減圧下にて留去し、得られた反応混合物およびN-(4-ヒドロキシフェニル)-N-メチルアセトアミド(87mg, 0. 524mmol)をN, N-ジメチルホルムアミド(2ml)に溶解し、炭酸セシウム(222mg, 0. 681mol)を加えて室温にて終夜撹拌した。反応液を酢酸エチルで希釈し、水および飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧下にて溶媒を留去して得た残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:塩化メチレン/アセトン=3/1)にて精製し、淡褐色結晶の標記化合物(85mg, 収率39%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.88 (1H, dd, J = 11.0, 2.4 Hz), 7.44 (1H, dd, J = 8.8, 5.6 Hz), 7.12 (2H, d, J = 8.8 Hz), 7.00 (1H, m), 7.01 (2H, d, J = 8.8 Hz), 6.70 (1H, s), 5.39 (2H, s), 3.24 (3H, s), 1.86 (3H, s), 1.66 (9H, s).

MS (FAB) (m/z): 413 ([M+H][†]).

- [0237] (参考例4)tert-ブチル 2-({4-[(シクロプロピルカルボノチオイル)(メチル)アミノ]フェノキシ}メチル)-4,6-ジフルオロ-1H-インドール-1-カルボキシレート (4-1)
 - (3,5ージフルオロフェニル)ヒドラジン塩酸塩(1.13g,6.28mmol)をベンゼン(14ml)に懸濁し、氷冷下にてトリエチルアミン(0.917ml,6.59mmol)、および、ピルビン酸エチル(0.733ml,6.59mmol)を加えて1時間、室温にて更に1時間撹拌し、その後4時間加熱還流した。水を加え、酢酸エチルで抽出した有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下にて留去した。得られた黄色固体をトルエン(13ml)に溶解し、ポリリン酸(7.54g)に加え、終夜加熱還流した。水を加えた後、セライトで不溶物を濾過し、濾液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=6/1)にて精製し、黄色粉末のエチル 4,6ージフルオロー1Hーインドールー2ーカルボキシレート(873mg,収率62%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 8.97 (1H, br. s), 7.26 (1H, s), 6.91 (1H, br. d, J = 8. 8 Hz), 6.65 (1H, ddd, J = 10.3, 8.1, 2.2 Hz), 7.18 (1H, t, J = 1.5 Hz), 4.41 (2H, q, J

WO 2006/004030 PCT/JP2005/012185

159

= 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz).

[0238] (4-2)

参考例(4-1)で得られたエチル 4,6-ジフルオロ-1H-インドール-2-カル ボキシレート(9.25g, 41.1mmol)を酢酸エチル(150ml)に溶解し、トリエチルアミ ン(10.3ml, 73.9mmol)、二炭酸ジーtertーブチル(9.87g, 45.2mmol)、およ び、N, N-ジメチルアミノピリジン (251mg, 2.05mmol)を室温にて加え、3時間撹 拌した。反応液に水および飽和食塩水を加え、酢酸エチルで抽出した後、有機層を 0.1N-塩酸、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し た。減圧下にて溶媒を留去して得た残渣をトルエン(300ml)に溶解し、-78℃にて 水素化ジイソブチルアルミニウム-1. 0Mトルエン溶液(100ml, 100mmol)を加え 、2. 5時間かけて−78℃から0℃まで昇温しながら撹拌した。 硫酸ナトリウム10水和 物(50g)を加え、室温にて20分間撹拌した後トルエンで希釈し、無水硫酸マグネシ ウム(40g)、セライト(40g)を加えて、更に15分間撹拌した。 不溶物をセライトで濾過 し、濾液を減圧下にて濃縮し淡黄色固体を得た。n-ヘキサン-酢酸エチルを用い 再結晶することによりtert - ブチル 4,6-ジフルオロ-2-(ヒドロキシメチル)-1 H-インドール-1-カルボキシレート(4.52g, 収率39%)を無色結晶として得た。 ¹H-NMR (400MHz, CDCl₃): δ 7.53 (1H, dd, J = 9.8, 2.4 Hz), 6.74 (1H, td, J = 9.8, 2.4 Hz), 6.65 (1H, s), 4.79 (2H, d, J = 7.4 Hz), 3.49 (1H, t, J = 7.4 Hz), 1.73 (9H, s).

[0239] (4-3)

参考例(4-2)で得られたtertーブチル 4,6ージフルオロー2ー(ヒドロキシメチル)ー1Hーインドールー1ーカルボキシレート(590mg,2.08mmol)、および、トリフェニルホスフィン(819mg,3.12mmol)をテトラヒドロフラン(10ml)に溶解し、四臭化炭素(1.04g,3.12mmol)を加え、30分間撹拌した。不溶物をセライトで濾過した後、濾液の溶媒を減圧下にて留去し、得られた反応混合物およびアリル 4ーヒドロキシフェニル(メチル)カルバメート(431mg,2.08mmol)をN,Nージメチルホルムアミド(10ml)に溶解し、炭酸セシウム(1.02g,3.12mmol)を加えて室温にて終夜撹拌した。反応液を酢酸エチルで希釈し、水および飽和食塩水で洗浄した。有機

層を無水硫酸ナトリウムで乾燥し、減圧下にて溶媒を留去して得た残渣をシリカゲル 分取薄層クロマトグラフィー(展開溶媒:塩化メチレン/アセトン=9/1-6/1)にて 精製し、黄色油状のtertーブチル 2-[(4-{[(アリルオキシ)カルボニル](メチル)アミノ}フェノキシ)メチル]-4,6-ジフルオロ-1H-インドール-1-カルボキシ レート(759mg,収率77%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.71 (1H, dd, J = 10.2, 2.0 Hz), 7.18 (2H, m), 6.96 (2H, d, J = 8.6 Hz), 6.79 (1H, s), 6.74 (1H, td, J = 9.0, 2.0 Hz), 5.87 (1H, m), 5.34 (2H, s), 5.17 (2H, m), 4.60 (2H, m), 3.29 (3H, s), 1.65 (9H, s).

[0240] (4-4)

参考例(4-3)で得られたtertーブチル 2-[(4-{[(アリルオキシ)カルボニル] (メチル)アミノ}フェノキシ)メチル]-4,6-ジフルオロー1Hーインドールー1ーカルボキシレート(729mg,1.54mmol)を1,4-ジオキサン(15ml)に溶解し、水(0.75ml)、テトラキス(トリフェニルホスフィン)パラジウム(0)18mg,15 μ mol)、および、ピロリジン(154 μ l,1.85mmol)を室温にて加えた後、10分間撹拌した。反応液に1N-塩酸を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得た残渣にn-ヘキサンおよび酢酸エチルを加え、沈殿した粉末を濾取し、黄色固体のtertーブチル 4,6-ジフルオロー2-{[4-(メチルアミノ)フェノキシ]メチル}-1H-インドールー1ーカルボキシレート(439mg,収率73%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.71 (1H, dd, J = 10.2, 2.0 Hz), 6.89 (2H, d, J = 9. 0 Hz), 6.77 (1H, s), 6.75–6.70 (4H, m), 5.27 (2H, s), 2.84 (3H, s), 1.65 (9H, s).

[0241] (4-5)

ロピルカルボニル) (メチル) アミノ]フェノキシ} メチル) -4, 6 – ジフルオロ-1H -1ンドール-1 – カルボキシレート(34mg, 収率58%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.70 (1H, dd, J = 10.2, 2.0 Hz), 7.22 (2H, d, J = 8.8 Hz), 7.02 (2H, d, J = 8.8 Hz), 6.80 (1H, s), 6.75 (1H, td, J = 9.4, 2.0 Hz), 5.37 (2H, s), 3.27 (3H, s), 1.66 (9H, s), 1.39 (1H, m), 1.00 (2H, m), 0.61 (2H, m).

[0242] (4-6)

参考例(4-5)で得られたtertーブチル 2-({4-[(シクロプロピルカルボニル)(メチル)アミノ]フェノキシ}メチル)ー4、6ージフルオロー1Hーインドールー1ーカルボキシレート(1.00g, 2.19mmol)をテトラヒドロフラン(22ml)に溶解し、2、4ービス(4ーメトキシフェニル)ー1、3ージチアー2、4ージホスフェタンー2、4ージスルフィド(1.33g, 3.29mmol)を加えて、4時間加熱還流した。反応液を濃縮して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:n- ペキサン/酢酸エチル=9/1)にて精製し、無色粉末の標記化合物(966mg, 収率93%)を得た。 1 H-NMR (400MHz, CDCl₃): δ 7.69 (1H, dd, J=10.2, 2.0 Hz), 7.19 (2H, d, J=8.6 Hz), 7.05 (2H, d, J=8.6 Hz), 6.80 (1H, s), 6.75 (1H, td, J=9.8, 2.0 Hz), 5.39 (2H, s), 3.75 (3H, s), 1.74 (1H, m), 1.67 (9H, s), 1.32 (2H, m), 0.78 (2H, m). MS (FAB) (m/z): 473 $([M+H]^{\dagger})$.

文献 (Miller, J. A. et al., J. Org. Chem., 1993年, 第58巻, p. 2637–2639) に記載された方法に従って合成した2-[2-(トリフルオロメチル)フェノキシ]テトラヒドロ-2H -ピラン (21. 38g, 86. 8mmol)、および、N, N, N', N'-テトラメチルエチレンジアミン (15. 7ml, 104mmol) のジエチルエーテル (230ml) 溶液に、-20 でにおいてn-ブチルリチウム-1. 58Mテトラヒドロフラン溶液 (65. 9ml, 104mmol) を10分間かけて滴下した。反応液を-20 でにて30分間攪拌した後、室温にて更に40分間攪拌した。反応液を-30 でに冷却し、N, N-ジメチルホルムアミド (13. 5ml, 174mmol) を加えた後、室温にて更に1時間攪拌した。反応液を注意深く冷水に注ぎ

酢酸エチルで抽出(3回)した後、有機層を1N-塩酸、5%炭酸水素ナトリウム水溶液、水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=20/1-10/1)により精製した。得られた淡黄色油状の2-(テトラヒドロ-2H-ピラン-2-イルオキシ)-3-(トリフルオロメチル)ベンズアルデヒドを室温にて終夜放置することにより淡黄色固体2-ヒドロキシ-3-(トリフルオロメチル)ベンズアルデヒド(31.73g,収率96%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 11.70 (1H, s), 9.93 (1H, s), 7.80 (1H, d, J = 7.8 Hz), 7.75 (1H, d, J = 7.8 Hz), 7.10 (1H, t, J = 7.8 Hz).

以下に中間体2-(テトラヒドロ-2H-ピラン-2-イルオキシ)-3-(トリフルオロメチル)ベンズアルデヒドの¹H-NMRスペクトルを示す。

¹H-NMR (400MHz, CDCl₃): δ 10.33 (1H, s), 8.02 (1H, dd, J = 7.8, 1.5 Hz), 7.83 (1H, dd, J = 7.8, 1.5 Hz), 7.33 (1H, t, J = 7.8 Hz), 4.80 (1H, dd, J = 7.4, 2.7 Hz), 3. 99 (1H, m), 3.43 (1H, m), 2.07 (1H, m), 1.96 (1H, m), 1.86 (1H, m), 1.67–1.50 (3H, m).

[0244] (5-2)

参考例(5-1)で得られた2-ヒドロキシー3-(トリフルオロメチル)ベンズアルデヒド(31.7g,167mmol)のメタノール(50ml)溶液に、オルトぎ酸トリメチル(130ml,1.19mol)、および、カンファースルホン酸(1.55g,6.67mmol)を加えた後、50℃において6時間攪拌した。反応液を1%炭酸水素ナトリウム水溶液に注ぎ酢酸エチルで抽出(3回)した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。有機層を濃縮して得られる残渣を塩化メチレン(400ml)に溶解し、氷冷下にて、ジイソプロピルエチルアミン(50.9ml,292mmol)、および、クロロメチルメチルエーテル(15.4ml,203mmol)を加え終夜攪拌した。反応液を水に注ぎ酢酸エチルで抽出(2回)した後、有機層を0.5N-塩酸、5%炭酸水素ナトリウム水溶液、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=14/1-10/1)により精製し、淡黄色油状

の1-(ジメトキシメチル)-2-(メトキシメトキシ)-3-(トリフルオロメチル)ベンゼン(42.2g,収率93%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.77 (1H, dd, J = 7.8, 1.6 Hz), 7.59 (1H, dd, J = 7.8, 1.6 Hz), 7.24 (1H, t, J = 7.8 Hz), 5.67 (1H, s), 5.07 (2H, s), 3.65 (3H, s), 3.38 (6 H, s).

[0245] (5-3)

参考例(5-2)で得られた1-(ジメトキシメチル)-2-(メトキシメトキシ)-3-(トリフルオロメチル)ベンゼン(39.3g,140mmol)、および、N,N,N',N'-テトラメチルエチレンジアミン(46.9ml,311mmol)のジエチルエーテル(410ml)溶液に、-25℃においてn-ブチルリチウム-1.59Mテトラヒドロフラン溶液(196ml,312mmol)を20分間かけて滴下した。反応液を0℃において30分間攪拌した後、室温にて更に1.5時間攪拌した。反応液を-30℃に冷却し、N,N-ジメチルホルムアミド(41.9ml,541mmol)を加えた後、室温にて更に1時間攪拌した。反応液を注意深く冷0.1N-塩酸に注ぎ酢酸エチルで抽出(4回)した後、有機層を0.1N-塩酸、水(3回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより粗製の2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンズアルデヒドを得た。本化合物は、更に精製することなく、参考例(5-4)に用いた。

¹H-NMR (400MHz, CDCl₃): δ 10.71 (1H, s), 7.81 (1H, d, J = 8.2 Hz), 7.70 (1H, d, J = 8.2 Hz), 5.79 (1H, s), 5.07 (2H, s), 3.67 (3H, s), 3.50 (6H, s).

MS (FAB)(+0.1N Klaq.) (m/z): 347 ([M+K][†]).

[0246] (5-4)

参考例(5-3)で得られた粗製の2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンズアルデヒドのテトラヒドロフラン-メタノール(5:1,100 ml)混合溶液に、氷冷下にて、水素化ホウ素ナトリウム(5.11g,135mmol)を加え終夜攪拌した。反応液を水に注ぎ酢酸エチルで抽出(4回)した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:n-

ヘキサン/酢酸エチル=5/1-2/1)により精製し、橙色油状の[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メタノール<math>(22.6g)、収率52%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.59 (1H, d, J = 8.2 Hz), 7.31 (1H, d, J = 8.2 Hz), 5 .81 (1H, s), 5.01 (2H, s), 4.85 (2H, d, J = 7.0 Hz), 3.65 (3H, s), 3.50 (6H, s), 3.36 (1H, t, J = 7.0 Hz).

MS (FAB) (m/z): 309 $([M-H]^{+})$.

[0247] (5-5)

4ーメチルアミノフェノール硫酸塩(5.11g, 29.7mmol)、および、トリエチルアミン(12.3ml, 89.1mmol)の塩化メチレン溶液(100ml)にクロロぎ酸アリル(6.90ml, 65.3mmol)を加えて室温で2時間攪拌した。反応溶液に飽和炭酸水素ナトリウム水溶液を注ぎ酢酸エチルで抽出した後、有機層を1N-塩酸、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去し、得られた残渣をメタノール(50ml)に溶解させた後、炭酸カリウム(5.00g, 36.2mmol)を加え、室温にて5時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーペキサン/酢酸エチル=3/1-1/1)にて精製し、アリル 4ーヒドロキシフェニル(メチル)カーバメート(4.58g,収率74%)を得た.

¹H-NMR (400MHz, CDCl₃): δ 7.04 (2H, d, J = 8.6 Hz), 6.73 (2H, br. s), 5.90 (1H, br. s), 5.18 (2H, br. s), 4.61 (2H, br. s), 3.26 (3H, s).

[0248] (5-6)

参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル[]メタノール(1.42g,4.58mmol)、参考例(5-5)で得られたアリル 4-ヒドロキシフェニル(メチル)カーバメート(1.04g,5.04mmol)、および、トリフェニルホスフィン(1.44g,5.50mmol)のテトラヒドロフラン溶液(20ml)にアゾジカルボン酸ジエチル(1.32ml,5.50mmol)を加えて、室温で2時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を1N-水酸化ナトリウ

ム水溶液、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。 減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=10/1-1/1)にて精製し、アリル 4-[[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ]フェニル(メチル)カーバメート(1.45g,収率63%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.63-7.53 (2H, m), 7.12 (2H, d, J = 8.8 Hz), 6.99-6. 94 (2H, d, J = 8.8 Hz), 5.88 (1H, br. s), 5.75 (1H, s), 5.48 (2H, s), 5.18 (2H, br. s), 5.03 (2H, br. s), 4.59 (2H, br. s), 3.66 (3H, s), 3.47 (6H, s), 3.26 (3H, s).

[0249] (5-7)

参考例(5-6)で得られたアリル 4-[[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ]フェニル(メチル)カーバメート(3.86g,7.61mmol)の1,4-ジオキサン(80ml)、および、水(4ml)の混合溶液にピロリジン(1.90ml,22.8mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(0)(439mg,0.38mmol)を加え、室温にて3時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=4/1-1/1)にて精製し、N-(4-[[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ]フェニル)-N-メチルアミン(3.01g,収率95%)を得た。 1 H-NMR (400MHz, CDCl): δ 7.59-7.54 (2H, m), 6.85 (2H, d, J=9.0 Hz), 6.56 (2H, d, J=9.0 Hz), 5.73 (1H, s), 5.41 (2H, s), 5.03 (2H, s), 3.66 (3H, s), 3.45 (6H, s), 2.79 (3H, s).

[0250] (5-8)

参考例(5-7)で得られたN-(4-[[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ]フェニル)-N-メチルアミン(500mg, 1.20mmol)の塩化メチレン(8ml)溶液に、氷冷下にて、トリエチルアミン(0.420ml, 3.01mmol)、および、シクロプロパンカルボニルクロリド(0.162ml, 1.80mmol)を順次加えた後、室温にて終夜攪拌した。反応液を5%炭酸水素ナトリウム水溶液

WO 2006/004030 PCT/JP2005/012185

に注ぎ酢酸エチルで抽出(2回)した後、有機層を水、および、飽和食塩水で順次洗 浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより残渣を得 た。 得られた残渣のテトラヒドロフラン (13ml)溶液に、4N - 塩酸(2.5ml)を加えた 後、50℃にて5時間攪拌した。反応液を水に注ぎ酢酸エチルで抽出(2回)した後、 有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減 圧下にて溶媒を留去することにより残渣を得た。得られた残渣のtert – ブチルアルコ ール(12.5 ml)、1,4-ジオキサン(3.0 ml)、および、2-メチル-2-ブテン(3.5 ml)ml)混合溶液に亜塩素酸ナトリウム(650mg, 7.19mmol)、および、りん酸二水素 ナトリウム一水和物(650mg, 4.71mmol)の水溶液(5.0ml)を滴下した後、室温 にて30分間攪拌した。反応液に5%チオ硫酸ナトリウム水溶液を加えた後、0.5N-塩酸に注ぎ酢酸エチルで抽出(2回)した。有機層を水、および、飽和食塩水で順次 洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより残渣を 得た。得られた残渣をトルエン(9.0ml)、および、1,4-ジオキサン(6.0ml)に溶 解させた後、N,N-ジメチルホルムアミド ジtert-ブチル アセタール(1.15ml,4 . 80mmol)を加え、1. 5時間加熱還流した。反応液を0. 1N-塩酸に注ぎ酢酸エ チルで抽出(3回)した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無 水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲル 薄層クロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=2/1)により精製し 、無色粉末の標記化合物(245mg, 収率44%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.24 (1H, s), 7.71 (1H, d, J = 8.2 Hz), 7.26 (1H, d, J = 8.2 Hz), 7.22 (2H, d, J = 8.6 Hz), 6.95 (2H, d, J = 8.6 Hz), 5.35 (2H, s), 3.26 (3H, s), 1.65 (9H, s), 1.38 (1H, m), 1.00 (2H, m), 0.61 (2H, m).

HRMS (FAB) (m/z): calcd. for $C_{24}^{H} C_{27}^{O} NF_{3}$ ([M+H]⁺): 466.1841; found: 466.1839.

[0251] (参考例6)tert-ブチル 2-ヒドロキシー6-([4-[メチル(メチルスルホニル)アミノ]フェノキシ]メチル) -3-(トリフルオロメチル) ベンゾエート (6-1)

参考例(5-6)で得られたアリル 4-[[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ]フェニル<math>(メチル)カーバメート(4.00)

g, 8. 01mmol)のテトラヒドロフラン溶液(20ml)に4N-塩酸(5ml)を加えて、55℃ にて4時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を飽和 食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られ た残渣のN, N-ジメチルホルムアミド溶液(10ml)に、アリルブロミド(831 μ l, 9.6 1mmol)、および、炭酸カリウム(1.33g, 9.61mmol)を加えて、50℃にて3時間攪 拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和 食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得 られた残渣の1, 4-ジオキサン(20ml)、および、tert-ブタノール(75ml)の混合 溶液に、2-メチル-2-ブテン(20ml)を加えた。 反応液に亜塩素酸ナトリウム(4. 33g, 48. 1mmol)、および、リン酸二水素ナトリウム一水和物(4. 33g, 31. 4mmol)の水溶液(30ml)を滴下して、室温で2時間攪拌した。反応溶液に10%チオ硫酸 ナトリウム水溶液を注ぎ攪拌した後、1N-塩酸で酸性とし、さらに酢酸エチルで抽出 した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥 した。減圧下にて溶媒を留去して得られた残渣のトルエン溶液(50ml)にN, N-ジ メチルホルムアミド ジtert - ブチル アセタール (7.67ml, 32.0mmol)を加えて、 110℃で6時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を 水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて 溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=4/1-7/3)にて精製し、tert-ブチル 2-(アリルオキ(5) $(4-\{(7)$ (7) - (トリフルオロメチル)ベンゾエート(2.80g、収率67%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.64 (1H, d, J = 7.8 Hz), 7.37 (1H, d, J = 7.8 Hz), 7 .16 (2H, d, J = 9.0 Hz), 6.90 (2H, d, J = 9.0 Hz), 6.11–6.02 (1H, m), 5.89 (1H, br. s), 5.42 (1H, m), 5.27 (1H, m), 5.17 (2H, br. s), 5.11 (2H, br. s), 4.65–4.55 (4H, m), 3.27 (3H, s), 1.57 (9H, s).

[0252] (6-2)

参考例(6-1)で得られたで得られたtert-ブチル $2-(アリルオキシ)-6-[(4-{[(アリルオキシ)カルボニル](メチル)アミノ}-3-(トリフルオ$

WO 2006/004030

ロメチル)ベンゾエート(2.80g、5.37mmol)の1,4ージオキサン(20ml)、および、水(1.0ml)の混合溶液にピロリジン(1.34ml,16.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(186mg,0.16mmol)を加え、室温にて3時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=5/1-2/1)にて精製し、tertーブチル 2ーヒドロキシー6ー[[4ー(メチルアミノ)フェノキシ]メチル]-3ー(トリフルオロメチル)ベンゾエート(1.64g、収率77%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 12.23 (1H, br. s), 7.67 (1H, d, J = 8.3 Hz), 7.28 (1H, d, J = 8.3 Hz), 6.79 (2H, d, J = 8.8 Hz), 6.58 (2H, d, J = 8.8 Hz), 5.26 (2H, s), 2.8 0 (3H, s), 1.62 (9H, s).

[0253] (6-3)

参考例(6-2)で得られたtertーブチル 2-ヒドロキシー6-[[4-(メチルアミノ) フェノキシ]メチル]-3-(トリフルオロメチル)ベンゾエート(2.46g, 6.20mmol)の N, N-ジメチルホルムアミド溶液(20ml)にトリエチルアミン(3.44ml, 24.8mmol)を加えて、tertーブチルクロロジメチルシラン(2.79g, 18.6mmol)を加えて室温で12時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=4/1-1/1)にて精製し、tertーブチル 2-[[tertーブチル(ジメチル)シリル]オキシ]-6-[[4-(メチルアミノ)フェノキシ]メチル]-3-(トリフルオロメチル)ベンゾエート(2.38g, 収率97%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.56 (1H, d, J = 8.2 Hz), 7.27 (1H, d, J = 8.2 Hz), 6 .79 (2H, d, J = 9.0 Hz), 6.55 (2H, d, J = 9.0 Hz), 5.06 (2H, s), 2.79 (3H, s), 1.58 (9 H, s), 1.01 (9H, s), 0.20 (6H, s).

[0254] (6-4)

参考例(6-3)で得られたtert-ブチル 2-[[tert-ブチル(ジメチル)シリル]オ

キシ] $-6-[[4-(メチルアミノ)フェノキシ]メチル]-3-(トリフルオロメチル)ベンゾエート(98.0 mg, 0.192 mmol) の塩化メチレン溶液(4 ml)に、トリエチルアミン(53 <math>\mu$ l, 0.50 mmol)を加え、メタンスルホニルクロリド(22 μ l, 0.29 mmol)を加えて室温で終夜攪拌した。さらに、反応溶液に少量のメタノール、および、テトラーn-ブチルアンモニウムフロリドー1.0 Mテトラヒドロフラン溶液(1.9 ml, 1.9 mmol)を加え、室温で6時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲル薄層クロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=1/1)にて精製し、無色アモルファスの標記化合物(85.7 mg, 収率94%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.25 (1H, br. s), 7.68 (1H, d, J = 8.2 Hz), 7.31 (2H, d, J = 9.0 Hz), 7.24 (1H, d, J = 8.2 Hz), 6.91 (2H, d, J = 9.0 Hz), 5.34 (2H, s), 3.2 9 (3H, s), 2.84 (3H, s), 1.66 (9H, s).

MS (FAB) (m/z): 475 $([M]^{\dagger})$.

[0255] (参考例7)tert - ブチル 6-({4-[アセチル(メチル)アミノ]フェノキシ}メチル)-3 - エチル-2-ヒドロキシベンゾエート (7-1)

文献 (Winkle, M. R., et al., J. Org. Chem., 1982年, 第47巻, p. 2101-2108)の方法により合成した[4-ヨードー3-(メトキシメトキシ)フェニル]メタノールを用いて、文献 (Corey, E. J., et al., J. Am. Chem. Soc., 1972年, 第94巻, p. 6190-6191)に記載された反応により1-ブチル[[1-ヨードー1-(メトキシメトキシ)ベンジル]オキシ]ジメチルシランを得た。

得られたtertーブチル[[4-ヨードー3-(メトキシメトキシ)ベンジル]オキシ]ジメチルシラン(20.8g, 50.9mmol)のN, Nージメチルホルムアミド(50ml)溶液に、ジイソプロピルアミン(10ml)、沃化銅(I)(200mg, 1.1mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(720mg, 1.03mmol)、および、トリメチルシリルアセチレン(10.8ml, 76.4mmol)を順次加えた後、1.5時間加熱還流した。反応液を室温に戻し、水に注ぎ酢酸エチルで抽出した。有機層を水、および、飽和食塩水で順

次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して残渣を得た。 得られた残渣のメタノール(1.0ml)溶液に、炭酸カリウム(7.03g,50.9mmol)を加え室温にて1.5時間攪拌した。不溶物をセライトにより濾別し、濾液を減圧下にて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=70/1-30/1)に付し、tertーブチル[[4-エチニル-3-(メトキシメトキシ)ベンジル]オキシ]ジメチルシラン(10.9g)を得た。

得られたtertーブチル[[4-エチニル-3-(メトキシメトキシ)ベンジル]オキシ]ジメチルシランのメタノール(250ml)溶液に5%ロジウムーアルミナ(700mg)を加えた後、水素雰囲気下、室温にて8時間攪拌した。触媒をセライトにより濾別し、濾液を減圧下にて濃縮した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=40/0-40/1)により精製し、tertーブチル[[4-エチル-3-(メトキシメトキシ)ベンジル]オキシ]ジメチルシラン(9.30g)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.11 (1H, d, J = 7.8 Hz), 7.05 (1H, s), 6.90 (1H, d, J = 7.8 Hz), 5.19 (2H, s), 4.70 (2H, s), 3.48 (3H, s), 2.64 (2H, q, J = 7.8 Hz), 1.19 (3 H, t, J = 7.8 Hz), 0.94 (9H, s), 0.10 (6H, s).

[0256] (7-2)

参考例(7-1)で得られたtertーブチル[[4-エチルー3-(メトキシメトキシ)ベンジル]オキシ]ジメチルシラン(1.0g, 3.3mmol)、および、N, N, N', N'-テトラメチルエチレンジアミン(0.50ml, 4.2mmol)のジエチルエーテル溶液(10ml)に、-78℃でnーブチルリチウムー1.58Mへキサン溶液(2.7ml, 4.3mmol)を加え、氷冷下にて1時間攪拌した。さらに、-40℃に冷却した後、二炭酸ジーtertーブチル(930mg, 4.2mmol)を加えて室温まで徐々に昇温した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーへキサン/酢酸エチル=100/1)にて精製し、tertーブチル 6-([[tertーブチル(ジメチル)シリル]オキシ]メチル)-3-エチルー2-(メトキシメトキシ)ベンゾエート(443mg, 33%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.26 (1H, d, J = 8.2 Hz), 7.24 (1H, d, J = 8.2 Hz), 5

.01 (2H, s), 4.73 (2H, s), 3.57 (3H, s), 2.71 (2H, q, J = 7.8 Hz), 1.59 (9H, s), 1.22 (3H, t, J = 7.8 Hz), 0.93 (9H, s), 0.07 (6H, s).

[0257] (7-3)

WO 2006/004030

参考例 (7-2) で得られたtertーブチル 6-([[tert-ブチル(ジメチル)シリル] オキシ] メチル) -3 - エチルー2 -(メトキシメトキシ) ベンゾエート(443 mg, 1.08 mmol) のテトラヒドロフラン溶液 (10 ml) に、酢酸 $(63 \mu l, 1.1 mmol)$ 、および、テトラーn ブチルアンモニウムフロリドー1.0 mmol) を加え、室温で3時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、tert-ブチル 3-エチルー6-(ヒドロキシメチル)-2-(メトキシメトキシ) ベンゾエート<math>(320 mg, 99%) を得た。

¹H-NMR (500MHz, CDCl₃): δ 7.26 (1H, d, J = 7.8 Hz), 7.14 (1H, d, J = 7.8 Hz), 5 .02 (2H, s), 4.56 (2H, s), 3.58 (3H, s), 2.74 (2H, q, J = 7.8 Hz), 1.62 (9H, s), 1.23 (3H, t, J = 7.8 Hz).

[0258] (7-4)

参考例(7-3)で得られたtertーブチル 3-エチルー6-(ヒドロキシメチル)-2 - (メトキシメトキシ)ベンゾエート(320mg, 1.08mmol)、および、文献(Harvison, P. J. et al., J. Med. Chem., 1986年,第29巻, p. 1737-1743)に従って合成したN-(4ーヒドロキシフェニル)-N-メチルアセトアミド(165mg, 1.00mmol)のテトラヒドロフラン溶液(10ml)に、N, N, N'、N'ーテトラメチルアゾジカルボキサミド(220mg, 1.27mmol)、および、トリーnーブチルホスフィン(320mg, 1.28mmol)を加え、室温で終夜攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、残渣をシリカゲル薄層クロマトグラフィー(展開溶媒:nーヘキサン/酢酸エチル=2/1)にて精製し、tertーブチル 6-({4-[アセチル(メチル)アミノ]フェノキシ}メチル)-3-エチル-2-(メトキシメトキシ)ベンゾエート(205mg, 43%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.27 (1H, d, J = 7.8 Hz), 7.20 (1H, d, J = 7.8 Hz), 7

.08 (2H, d, J = 8.6 Hz), 6.95 (2H, d, J = 8.6 Hz), 5.07 (2H, s), 5.05 (2H, s), 3.60 (3 H, s), 3.22 (3H, s), 2.75 (2H, q, J = 7.8 Hz), 1.84 (3H, s), 1.54 (9H, s), 1.24 (3H, t, J = 7.8 Hz).

[0259] (7-5)

参考例(7-4)で得られたtertーブチル $6-(\{4-[アセチル(メチル)アミノ]フェノキシ\}メチル)-3-エチル-2-(メトキシメトキシ)ベンブエート<math>(147mg, 0.331mmol)$ の塩化メチレン溶液(3ml)に、トリメチルクロロシラン $(63\mu 1, 0.50mmol)$ 、および、テトラーnーブチルアンモニウムブロミド(160mg, 0.50mmol)を加え、5時間加熱還流した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、残渣をシリカゲル薄層クロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=2/1)にて精製し、無色粉末の標記化合物(107mg, 81%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 11.70 (1H, s), 7.29 (1H, d, J = 7.8 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.02 (1H, d, J = 7.8 Hz), 6.94 (2H, d, J = 8.8 Hz), 5.28 (2H, S), 3.23 (3H, s), 2.69 (2H, q, J = 7.4 Hz), 1.85 (3H, s), 1.57 (9H, s), 1.23 (3H, t, J = 7.4 Hz). MS (FAB) (m/z): 400 ([M+H][†]).

[0260] (参考例8)tert-ブチル 6-([4-[(シクロプロピルアセチル)(メチル)アミノ]フェノキシ]メチル) -2-ヒドロキシ-3-(トリフルオロメチル) ベンゾエート

参考例(6-3)で得られたtert-ブチル 2-[[tert-ブチル(ジメチル)シリル]オキシ]-6-[[4-(メチルアミノ)フェノキシ]メチル]-3-(トリフルオロメチル)ベンゾエート(486mg, 0. 950mmol)、および、シクロプロピル酢酸(142mg, 1. 42mmol)の塩化メチレン溶液(4ml)に、N, N-ジメチルアミノピリジン(20mg)、および、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(362mg, 1. 90mmol)を加えて、室温で終夜攪拌した。さらに、反応溶液に少量の水、および、テトラーn-ブチルアンモニウムフロリド-1. 0Mテトラヒドロフラン溶液(9. 5ml, 9. 5mmol)を加え、室温で6時間攪拌した。反応溶液に水を注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、得られた残渣をシリカゲル薄層クロマトグラフィー(展開溶媒

WO 2006/004030 PCT/JP2005/012185

:n-ヘキサン/酢酸エチル=2/1)にて精製し、無色油状の標記化合物(299mg , 収率66%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.19 (1H, s), 7.69 (1H, d, J = 8.2 Hz), 7.23 (1H, d, J = 8.2 Hz), 7.08 (2H, d, J = 8.8 Hz), 6.91 (2H, d, J = 8.8 Hz), 5.32 (2H, s), 3.24 (3H, s), 1.99 (2H, d, J = 7.0 Hz), 1.63 (9H, s), 1.06-0.95 (1H, m), 0.51-0.41 (2H, m), 0.00 - -0.05 (2H, m).

MS (FAB) (m/z): 480 $([M+H]^{+})$.

[0261] (参考例9)(4'-{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ}-1,1'-ビフェニル-4-イル)酢酸 (9-1)

(4ーブロモフェニル) 酢酸 (101g, 468mmol) のメタノール溶液 (1000ml) に氷冷下、濃硫酸 (30ml) を加え室温にて2時間攪拌した。反応液を濃縮し、残渣に酢酸エチルを加えた後、水、飽和炭酸水素ナトリウム水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒:n- ペキサン/酢酸エチル=5/1)にて精製し、メチル (4ーブロモフェニル)アセテート (107g, 収率100%)を得た。 1 H-NMR (400MHz, CDCl): δ 7.43 (2H, d, J = 8.6 Hz), 7.14 (2H, d, J = 8.6 Hz), 3 .69 (3H, s), 3.57 (2H, s).

[0262] (9-2)

参考例(9-1)で得られたメチル (4-ブロモフェニル)アセテート(116g, 506m mol)、および、4-メトキシフェニルほう酸(77.0g, 507mmol)のトルエンーエタノール(6:1, 1167ml)の混合溶液に、1M-炭酸ナトリウム水溶液(558ml)、および、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.34g, 2.03mmol)を加えた後、攪拌下、8時間加熱還流した。反応液を室温に戻した後、水に注ぎ酢酸エチルで3回抽出した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、淡黄色粉末のメチル (4'-メトキシー1, 1'-ビフェニルー4ーイル)アセテート(125g, 収率96%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.52 (4H, d, J = 8.4 Hz), 7.33 (2H, d, J = 8.4 Hz), 6

.97 (2H, d, J = 8.4 Hz), 3.85 (3H, s), 3.71 (3H, s), 3.66 (2H, s).

[0263] (9-3)

参考例 (9-2) で得られたメチル (4'-メトキシ-1,1'-ビフェニルー4ーイル) アセテート (2.71g,488mmol) に酢酸 (20ml)、および、臭化水素酸 (47%) (20ml) を加えた後、8時間加熱還流した。反応液を室温に戻した後、氷水に注ぎ、10分間攪拌した。生成した沈殿を濾取し、水で洗浄した後、減圧下にて乾燥し、淡黄色粉末の (4'-ヒドロキシ-1,1'-ビフェニルー4ーイル) 酢酸 (1.98g,収率82%) を得た。

¹H-NMR (400MHz, DMSO-d₆): δ 9.60 (1H, br s), 8.24 (1H, s), 7.49 (2H, d, J = 8.6 Hz), 7.45 (2H, d, J = 8.6 Hz), 7.27 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz). (2H peak was not detected by overlapping with solvent peak.)

MS (EI) (m/z): 228 ([M][†]).

[0264] (9-4)

参考例 (9-3) で得られた (4'-ヒドロキシ-1,1'-ビフェニルー4ーイル) 酢酸 (40.00) のののののでは、175 mmol) にメタノール $(240 \, \mathrm{ml})$ 、および、濃硫酸 $(2.4 \, \mathrm{ml})$ を加え、48時間加熱環流した。反応液を室温に戻し、不溶物を濾別した後、濾液を減圧下にて濃縮し淡茶色の固体を得た。得られた固体をn- へキサンー酢酸エチルにて再結晶し、淡黄色結晶のメチル (4'-ヒドロキシ-1,1'-ビフェニルー4ーイル) アセテート (32.30) 収率 (4'-ヒドロキシー1,1'-ビフェニルー4ーイル) アセテート (32.30) 、収率 (4'-ヒドロキシー1) 、2000 では、1000 では、1000

¹H-NMR (400MHz, CDCl₃): δ 7.45 (2H, d, J = 8.2 Hz), 7.40 (2H, d, J = 8.6 Hz), 7 .29 (2H, d, J = 8.2 Hz), 6.83 (2H, d, J = 8.6 Hz), 5.25 (1H, s), 3.71 (3H, s), 3.66 (2 H, s).

[0265] (9-5)

水素化ナトリウム (55%油性, 5.96g, 38.7mmol) のテトラヒドロフラン (28ml) 懸濁液に、氷冷下にて4-フルオロ-1-メチル-2-ニトロベンゼン (10.6g, 68.3 mmol) のテトラヒドロフラン (28ml) 溶液を加え、室温にて30分間撹拌した後、シュウ酸ジエチル (74.0ml, 546mmol) を加え、40 Cにて24時間撹拌した。氷冷下にて反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水

硫酸ナトリウムで乾燥した。減圧下にて溶媒、および、シュウ酸ジエチルを留去した。 得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=8/1-6/1)にて精製し、黄色油状のエチル 3-(4-フルオロ-2-ニトロフェニル)-2-オキソプロパノエート(5.51g,収率32%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.92 (1H, dd, J = 8.3, 2.4 Hz), 7.39–7.31 (2H, m), 4 .52 (2H, s), 4.35 (2H, q, J = 7.3 Hz), 1.41 (3H, t, J = 7.3 Hz).

[0266] (9-6)

WO 2006/004030

参考例 (9-5) で得られたエチル 3-(4-7)ルオロー2ーニトロフェニル) -2ーオキソプロパノエート (5.51g, 21.6 mmol) をエタノールー酢酸の混合溶媒 (1:1, 84 ml) に溶解し、鉄粉末 (10.9g, 144 mmol) を加え、3.5 時間加熱還流した。反応液を室温に戻し、テトラヒドロフランで希釈した。セライトを用いて不溶物を濾別し、減圧下にて、濾液を濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒:塩化メチレン/アセトン=15/1)にて精製し、黄色結晶のエチル <math>6ーフルオロー1Hーインドールー2ーカルボキシレート (3.62g, 収率81%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 8.89 (1H, br. s), 7.61 (1H, dd, J = 8.8, 5.5 Hz), 7.20 (1H, m), 7.09 (1H, dd, J = 9.4, 2.0 Hz), 6.94 (1H, ddd, J = 9.4, 8.8, 2.0 Hz), 4.41 (2H, q, J = 7.0 Hz), 1.42 (3H, t, J = 7.0 Hz).

[0267] (9-7)

参考例(9-6)で得られたエチル 6-フルオロ-1H-インドール-2-カルボキシレート(1.70g, 8.19mmol)の塩化メチレン(82ml)溶液に、トリエチルアミン(4.55ml, 32.8mmol)、二炭酸ジーtertーブチル(3.57g, 16.4mmol)、および、N, Nージメチルアミノピリジン(100mg, 0.819mmol)を室温にて加え、終夜撹拌した。反応液に水、および、飽和食塩水を加え、塩化メチレンで抽出した後、有機層を無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得た残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=9/1)にて精製し、黄色油状の1-tert-ブチル 2-エチル 6-フルオロ-1H-インドール-1, 2ージカルボキシレート(1.94g, 収率95%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.77 (1H, dd, J = 10.2, 2.4 Hz), 7.51(1H, dd, J = 8.6)

, 5.8 Hz), 7.05 (1H, s), 7.00 (1H, app td, J = 9.0, 2.4 Hz), 4.36 (2H, q, J = 7.0 Hz), 1.63 (9H, s), 1.30 (3H, t, J = 7.0 Hz).

[0268] (9-8)

参考例(9-7)で得られた1-tert-ブチル 2-エチル 6-フルオロ-1H-インドールー1, 2-ジカルボキシレート(19. 0g, 57. 9mmol)のトルエン(290ml)溶液に、-78℃にて水素化ジイソブチルアルミニウムー1. 0Mートルエン溶液(174ml, 174mmol)を加え、撹拌下にて-78℃から-20℃まで2. 5時間かけて昇温した。反応液に硫酸ナトリウム10水和物(143g)を加え、室温にて10分間撹拌した後、トルエン(300ml)、無水硫酸マグネシウム(50g)、および、セライト(30g)を加え、更に10分間撹拌した。セライトを用いて不溶物を濾別し、濾液を減圧下にて濃縮した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:n-0キサン/酢酸エチル=3/2)にて精製し、淡黄色油状のtert-ブチル 6-フルオロ-2-(ヒドロキシメチル)ー1H-インドールー1ーカルボキシレート(9. 20g, 収率60%)を得た。 1 H-NMR (400MHz, CDCl): δ 7.70 (1H, dd, J=10.6, 2.4 Hz), 7.42 (1H, dd, J=8.6, 5.9 Hz), 6.99 (1H, ddd, J=9.4, 8.6, 2.4 Hz), 6.55 (1H, s), 4.79 (2H, d, J=7.4 Hz), 3.64 (1H, t, J=7.4 Hz), 1.73 (9H, s).

[0269] (9-9)

参考例(9-8)で得られたtertーブチル 6-フルオロ-2-(ヒドロキシメチル)-1 Hーインドールー1ーカルボキシレート(4.50g, 17.0mmol)、および、参考例(9-4)で得られたメチル (4'ーヒドロキシー1, 1'ービフェニルー4ーイル)アセテート(4.11g, 17.0mmol)のテトラヒドロフラン溶液(57ml)に、N, N, N', N'ーテトラメチルアゾジカルボキサミド(東京化成工業社、製品番号A1458)(4.39g, 25.5mmol)、および、トリーローブチルホスフィン(5.92ml, 25.5mmol)を順次加え、室温で4時間攪拌した。反応液をセライトにより濾過した後、得られた濾液を水に注ぎ、酢酸エチルで3回抽出した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:ローヘキサン/酢酸エチル=5/1)にて精製し、白色粉末のtertーブチル 6-フルオロ-2-[({4'-[(メトキシカルボニル)メチル]-1,1'

ービフェニルー4ーイル}オキシ)メチル]ー1Hーインドールー1ーカルボキシレート(5.50g, 収率66%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.89 (1H, dd, J = 10.7, 2.0 Hz), 7.54–7.51 (4H, m), 7.43 (1H, dd, J = 8.3, 5.4 Hz), 7.33 (2H, d, J = 8.3 Hz), 7.05 (2H, d, J = 8.8 Hz), 6. 99 (1H, ddd, J = 8.8, 8.3, 2.0 Hz), 6.71 (1H, s), 5.41 (2H, s), 3.71 (3H, s), 3.67 (2H, s), 1.66 (9H, s).

[0270] (9-10)

参考例(9-9)で得られたtertーブチル 6-フルオロ-2-[({4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-1H-インドールー1-カルボキシレート(5.50g,11.2mmol)のテトラヒドロフラン(112ml)溶液に1N-水酸化ナトリウム水溶液(33.7ml,33.7mmol)を加え、室温にて終夜攪拌した。反応液を1N-塩酸に注ぎ、酢酸エチルで3回抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を酢酸エチルにて再結晶し、白色粉末の標記化合物(4.39g,収率82%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.90 (1H, dd, J = 11.0, 2.0 Hz), 7.53 (4H, d, J = 8.6 Hz), 7.43 (2H, dd, J = 8.6, 5.5 Hz), 7.35 (2H, d, J = 8.6 Hz), 7.05 (2H, d, J = 8.6 Hz), 6.99 (1H, ddd, J = 9.0, 8.6, 2.0 Hz), 6.71 (1H, s), 5.41 (2H, s), 3.71 (2H, s), 1.66 (9H, s).

[0271] (参考例10) (4'-{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インド -ル-2-イル]メトキシ}-3-クロロ-1,1'-ビフェニル-4-イル) 酢酸 (10-1)

4ーブロモー2ークロロ安息香酸(2.0g, 8.5mmol)のN, Nージメチルホルムアミドミド溶液(8ml)に炭酸カリウム(1.38g, 10mmol)および沃化メチル(0.623ml, 10mmol)を氷冷下にて加え、室温にて3時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた油状の残渣のトルエン溶液(30ml)に水素化ジイソブチルアルミニウムー1.0Mトルエン溶液(24ml, 24mmol)を

-78℃にて滴下した後、3時間かけて室温に昇温した。反応液に硫酸ナトリウム10水和物(12g)を加え30分間室温で攪拌した後、セライトおよび無水硫酸マグネシウムを加え室温で30分間攪拌し、不溶物を濾別した。得られた濾液から減圧下にて溶媒を留去し、固体の粗製の(4-ブロモ-2-クロロフェニル)メタノールを得た。

得られた粗製の(4ーブロモー2ークロロフェニル)メタノール(1.84g, 8.4mmol)のテトラヒドロフラン溶液(12ml)に、氷冷下にて、四臭化炭素(3.2g, 9.5mmol)、および、トリフェニルホスフィン(2.5g, 9.5mmol)を加えた後、室温にて1時間攪拌した。反応液にnーヘキサンを加え不溶物を濾別した。得られた濾液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=15/1-12/1)により、粗製の化合物を得た。

得られた粗製の化合物のエタノールー水 (3:1, 20ml)混合溶液に、シアン化カリウム (640mg, 9.8mmol)を加え60℃にて1.5時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー (溶出溶媒:n- ペキサン/酢酸エチル=10/1-4/1)にて精製し、淡黄色固体の (4- ブロモ-2- クロロフェニル)アセトニトリル (1.4g, 収率71%)を得た。 1H-NMR (100MHz, CDCl): 10 7.61 (11H, d, 11H, d, 12H, d, 13H, d, 14H, br d, 15H, d

[0272] (10-2)

参考例(10-1)で得られた(4-ブロモ-2-クロロフェニル)アセトニトリル(1.37g,5.9mmol)、および、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェノール(1.3g,5.9mmol)を出発原料に用い、参考例(23-2)、および、参考例(23-3)と同様の方法により、淡黄色固体のアリル (3-クロロ-4'-ヒドロキシ-1,1'-ビフェニル-4-イル)アセテート(698mg,2工程通算収率39%)を得た。

本工程では、参考例(23-2)に相当する反応を反応温度85℃にて行った。

¹H-NMR (400MHz, CDCl₃): δ 7.56 (1H, d, J = 1.6 Hz), 7.44 (2H, d, J = 8.8 Hz), 7 .39 (1H, app d, J = 8.0 Hz), 7.33 (1H, d, J = 8.0 Hz), 6.89 (2H, d, J = 8.8 Hz), 5.98 -5.90 (1H, m), 5.32 (1H, app d, J = 16.4 Hz), 5.24 (1H, app d, J = 10.8 Hz), 4.88 (1 H, br s), 4.65 (2H, app d, J = 6.0 Hz), 3.83 (2H, s).

[0273] (10-3)

MS (FAB) (m/z): 509 $([M]^{+})$.

[0274] (参考例11)[5-(4-{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ}フェニル)-2-チエニル]酢酸 (11-1)

4-(4, 4, 5, 5-テトラメチル-1, 3, 2-ジオキサボロラン-2-イル)フェノール (1. 40g, 6. 4mmol)、および、文献(Jackson, P. M. et al., J. Chem. Soc. Perkin T rans.1., 1990年,第11巻, p. 2909-2918)に記載された方法に従い、メチル 2-チェニルアセテートより合成したメチル (5-ブロモー2-チェニル)アセテート(2. 00g, 8. 5mmol)のトルエンーエタノール(5:1, 30ml)の混合溶液に、2N-炭酸ナトリウム水溶液(10ml)、トリーoートリルホスフィン(120mg, 0. 13mmol)および、トリス(ジベンジリデンアセトン)ジパラジウム(0)(80mg, 0. 26mmol)を加えた後、攪拌下にて、3時間加熱還流した。反応液を水に注ぎ、酢酸エチルで3回抽出した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-

ヘキサン/酢酸エチル=1/6-1/3)にて精製し、メチル [5-(4-)ビアロキシフェニル) -2-チエニル]アセテート(405mg, 収率26%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.43 (2H, d, J = 8.6 Hz), 7.01 (1H, d, J = 3.9 Hz), 6 .86 (1H, d, J = 3.9 Hz), 6.82 (2H, d, J = 8.6 Hz), 3.83 (2H, s), 3.75 (3H, s).

[0275] (11-2)

参考例 (9-9) と同様にして、参考例 (9-8) で得られたtert ーブチル 6 ーフルオロー2 ー (ヒドロキシメチル) ー1 H ー インドールー1 ーカルボキシレート (220mg, 0.83mmol)、および、参考例 (11-1) で得られたメチル [5-(4-) ヒドロキシフェニル) ー2 ーチエニル] アセテート (205mg, 0.83mmol) から、淡黄色結晶のtert ーブチル 6 ーフルオロー2 ー $[(4-\{5-[(メトキシカルボニル)メチル]-2-チェニル\}フェノキシ)メチル<math>]$ ー1 H ー インドールー1 ーカルボキシレート (83mg, 収率20%, n- へキサンー酢酸エチルより再結晶) を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.89 (1H, dd, J = 11.3, 2.0 Hz), 7.51 (2H, d, J = 8.6 Hz), 7.42 (1H, dd, J = 8.6z), 7.05 (1H, d, J = 3.9 Hz), 7.01–6.95 (1H, m), 6.98 (2H, d, J = 8.6 Hz), 6.88 (1H, d, J = 3.9 Hz), 6.69 (1H, s), 5.38 (2H, s), 3.83 (2H, s), 3. 75 (3H, s), 1.65 (9H, s).

[0276] (11-3)

参考例 (9-10) と同様にして、参考例 (11-2) で得られたtert ーブチル 6 ーフル d オローd ー d d ー

¹H-NMR (400MHz, CDCl₃): δ 7.89 (1H, dd, J = 10.9, 2.3 Hz), 7.50 (2H, d, J = 8.6 Hz), 7.42 (1H, dd, J = 8.6, 5.5 Hz), 7.06 (1H, d, J = 3.9 Hz), 7.01–6.95 (3H, m), 6. 91 (1H, br d, J = 3.9 Hz), 6.69 (1H, s), 5.38 (2H, s), 3.88 (2H, s), 1.65 (9H, s).

[0277] (参考例12)

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-2-クロロ-1,1'-ビフェニル-4-イル)酢酸$

(12-1)

3-クロロー4-ヒドロキシフェニル酢酸(3.7g、20mmol)のメタノール溶液に硫酸(1ml)を0℃で滴下した。反応液を室温にして4時間攪拌した。減圧下にて、溶媒を留去した後、水に注ぎ酢酸エチルで抽出した。有機層を水、飽和炭酸水素ナトリウム水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)にて精製し、粗製のメチル(3-クロロー4ーヒドロキシフェニル)アセテートを得た。得られた粗製のメチル(3-クロロー4ーヒドロキシフェニル)アセテートの塩化メチレン溶液(30ml)にピリジン(8.0ml、99mmol)、および、トリフルオロメタンスルホン酸無水物(3.4ml、20mmol)を氷冷下にて滴下し、1時間攪拌した。反応液を1N一水酸化ナトリウム水溶液に注ぎ塩化メチレンで抽出した。有機層を水、1N一塩酸、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=3/1)にて精製し、無色固体のメチル (3-クロロー4ー{[(トリフルオロメチル)スルホニル]オキシ}フェニル)アセテート(6.3g、収率95%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 7.48 (1H, d, J = 2.0 Hz), 7.31 (1H, d, J = 8.8 Hz), 7 .27 (1H, dd, J = 8.8, 2.0 Hz), 3.73 (3H, s), 3.64 (2H, s).

[0278] (12-2)

参考例(12-1)で得られたメチル (3-クロロー4-{[(トリフルオロメチル)スルホニル]オキシ}フェニル)アセテート(317mg, 1.0mmol)、および、4-メトキシフェニルほう酸(152mg, 1.0mmol)のトルエンーエタノール(5:1,9ml)の混合溶液に、2M-炭酸ナトリウム水溶液(1.5ml)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(23mg、0.025mmol)、および、ビス(2-ジフェニルホスフィノフェニル)エーテル(DPEphos)(28mg,0.052mmol)を加えた後、100℃にて5時間攪拌した。反応液を室温にした後、水に注ぎ酢酸エチルで3回抽出した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、固体のメチル (2-クロロー4'ーメトキシー1,1'ービフェニルー4ーイル)アセ

テート(192mg, 収率66%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.39-7.36 (3H, m), 7.30-7.28 (1H, m), 7.21 (1H, dd , J = 7.6, 1.6 Hz), 6.96 (2H, d, J = 8.4 Hz), 3.86 (3H, s), 3.73 (3H, s), 3.64 (2H, s). [0279] (12-3)

[0280] (12-4)

参考例(9-9)と同様にして、参考例(9-8)で得られたtert-ブチル 6-フルオロ-2-(ヒドロキシメチル)-1H-インドールー1-カルボキシレート(191mg, 0.72mmol)、および、参考例(12-3)で得られたメチル(2-クロロー4'ーヒドロキシー1,1'ービフェニルー4ーイル)アセテート(200mg, 0.72mmol)から、無色固体の2-[({2'-クロロー4'-[(メトキシカルボニル)メチル]-1,1'ービフェニルー4ーイル}オキシ)メチル]-6-フルオロー1H-インドールー1-カルボキシレート(349mg,収率92%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 7.90 (1H, dd, J = 11.0, 2.5 Hz), 7.43 (1H, dd, J = 9.0, 5.5 Hz), 7.40-7.38 (3H, m), 7.30 (1H, d, J = 7.5 Hz), 7.22 (1H, dd, J = 7.5, 2.0 Hz), 7.05 (2H, d, J = 8.5 Hz), 6.99 (1H, app td, J = 9.0, 2.5 Hz), 6.72 (1H, s), 5.42 (2H, s), 3.74 (3H, s), 3.64 (2H, s), 1.66 (9H, s).

[0281] (12-5)

参考例 (9-10) と同様にして、参考例 (12-4) で得られた $2-[({2'-クロロ-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル} オキシ)メチル]-6-フルオロー1H-インドールー1-カルボキシレート <math>(349 mg, 0.64 mmol)$ から、無色固体の標記化合物 (189 mg, 収率58%) を得た。

 1 H-NMR (400Hz, CDCl₃): δ 7.89 (1H, dd, J = 11.2, 2.4 Hz), 7.46-7.38 (4H, m), 7. 31 (1H, d, J = 8.0 Hz), 7.23 (1H, dd, J = 8.0, 2.0 Hz), 7.05 (2H, d, J = 8.4 Hz), 6.9 9 (1H, app td, J = 8.8, 2.4 Hz), 6.72 (1H, s), 5.42 (2H, s), 3.69 (2H, s), 1.66 (9H, s)

MS (FAB) (m/z): 509 ([M]⁺).

[0282] (参考例13)(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1, 1'-ビフェニル-4-イル)酢酸 (13-1)

参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メタノール(27.6g, 89.1mmol)、および、参考例(9-4)で得られたメチル (4'ーヒドロキシー1,1'ービフェニルー4ーイル)アセテート(19.6g, 81.0mmol)のテトラヒドロフラン溶液(300ml)に、1,1'ー(アゾジカルボニル)ジピペリジン(24.5g,97.2mmol)、および、トリーnーブチルホスフィン(22.9 ml,97.2mmol)を順次加え、室温で2時間攪拌した。生成した白色沈殿物を濾別した後、沈殿物を酢酸エチルにて洗浄した。濾液を水に注ぎ、酢酸エチルで抽出(3回)した後、有機層を3N-水酸化ナトリウム水溶液、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーへキサン/酢酸エチル=4/1)にて精製し、メチル (4'ー{[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ}ー1,1'ービフェニルー4ーイル)アセテート(36.0g,83%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.56-7.54 (2H, br s), 7.47 (2H, d, J = 7.8 Hz), 7.46 (2H, d, J = 9.0 Hz), 7.29 (2H, d, J = 7.8 Hz), 7.01 (2H, d, J = 9.0 Hz), 5.75 (1H, s),

5.51 (2H, s), 5.03 (2H, s), 3.70 (3H, s), 3.66 (3H, s), 3.64 (2H, s), 3.48 (6H, s) [0283] (13-2)

参考例(13-1)で得られたメチル (4'-{[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニルー4ーイル)アセテート(36.0g,67.4mmol)のアセトン(200ml)溶液に、pートルエンスルホン酸ー水和物(15.4g,80.9mmol)を加えた後、室温にて終夜攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより得られた残渣をN,Nージメチルホルムアミド(50ml)に溶解させた。炭酸カリウム(11.2g,80.9mmol)、および、アリルブロミド(7.00ml,80.9mmol)を順次加え、反応液を50℃にて2時間攪拌した。反応溶液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーへキサン/酢酸エチル=9/1-1/1)にて精製し、メチル (4'-{[3-(アリルオキシ)-2-ホルミルー4-(トリフルオロメチル)ベンジル]オキシ}-1,1'ービフェニルー4ーイル)アセテート(31.2g,収率96%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 10.52 (1H, br s), 7.86 (1H, d, J = 8.2 Hz), 7.76 (1H, d, J = 8.2 Hz), 7.51 (2H, d, J = 8.4 Hz), 7.49 (2H, d, J = 8.4 Hz), 7.31 (2H, d, J = 8.4 Hz), 7.04 (2H, d, J = 8.4 Hz), 6.16-6.04 (1H, m), 5.52-5.44 (3H, m), 5.39-5.34 (1H, m), 4.58 (2H, m), 3.70 (3H, s), 3.66 (2H, s).

[0284] (13-3)

参考例(13-2)で得られたメチル (4'-{[3-(アリルオキシ)-2-ホルミルー4-(トリフルオロメチル)ベンジル]オキシ]-1,1'-ビフェニルー4ーイル]アセテート (31.2g,64.4mmol)のtertーブチルアルコール(200ml)、1,4ージオキサン(45ml)、および、2ーメチルー2ーブテン(60ml)の混合溶液に亜塩素酸ナトリウム(23.2g,258mmol)、および、りん酸二水素ナトリウム一水和物(23.2g,169mmol)の水溶液(100ml)を滴下した後、室温にて4時間攪拌した。反応液に5%チオ硫酸ナトリウム水溶液を加えた後、0.5N-塩酸に注ぎ、酢酸エチルで抽出(2回)した。

[0285]

有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより残渣を得た。得られた残渣をトルエン(200ml)に溶解させた後、N,Nージメチルホルムアミドジtertーブチルアセタール(61.7ml,258mmol)を加え、6時間加熱還流した。反応液を水に注ぎ、酢酸エチルで抽出(3回)した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣の1,4ージオキサン(150 ml)、および、水(5ml)の混合溶液にピロリジン(8.07ml,96.6mmol)、および、テトラキス(トリフェニルホスフィン)パラジウム(743mg,0.64mmol)を加えて室温で3時間攪拌した。反応溶液に水を注ぎ、酢酸エチルで抽出した後、有機層を水、及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。シリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=20/1-1/1)により精製し、白色粉末のtertーブチル2ードロキシー6ー[({4'-[(メトキシカルボニル)メチル]-1,1'ービフェニルー4ーイル}オキシ)メチル]-3ー(トリフルオロメチル)ベンゾエート(18.6g,収率56%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.23 (1H, s), 7.68 (1H, d, J = 8.2 Hz), 7.50 (2H, d, J = 9.0 Hz), 7.48 (2H, d, J = 8.2 Hz), 7.30 (2H, d, J = 8.2 Hz), 7.25 (1H, d, J = 8.2 Hz), 6.95 (2H, d, J = 9.0 Hz), 5.35 (2H, s), 3.70 (3H, s), 3.65 (2H, s), 1.63 (9H, s). (13-4)

参考例(13-3)で得られたtert-ブチル 2-ヒドロキシー6-[({4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(18.6g,36.0mmol)のテトラヒドロフラン(200ml)溶液に3N-水酸化ナトリウム水溶液(28.8ml,86.4mmol)を加え、室温にて2時間攪拌した。反応液を1N-塩酸に注ぎ、酢酸エチルで抽出(3回)した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた沈殿を濾取することにより、白色粉末の標記化合物(12.9g,収率71%)を得た。

¹H-NMR (400MHz, acetone-d₆): δ 12.26 (1H, br), 7.82 (1H, d, J = 8.2 Hz), 7.61 (2H, d, J = 8.6 Hz), 7.56 (2H, d, J = 8.2 Hz), 7.41-7.33 (3H, m), 7.09 (2H, d, J = 8.

6 Hz), 5.52 (2H, s), 3.66 (2H, s), 1.71 (9H, s).

Anal. calcd. for $C_{27} + F_{30} + F_{30} = C$, 64.54; H, 5.01; F, 11.34; found: C, 64.58; H, 5.04; F, 11.40.

[0286] (参考例14)(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-3-クロロ-1,1'-ビフェニル-4-イル)酢酸 (14-1)

参考例(10-2)で得られたアリル(3-2)ロロー4'ーヒドロキシー1, 1'ービフェニルー4ーイル)アセテート(560mg, 1.85mmol)、および、参考例(5-4)で得られた[2-(5)ジトキシメチル)-3-(5)キシメトキシ)-4-(5)フルオロメチル)フェニル]メタノール(807mg, 2.6mmol)を出発原料に用い、参考例(13-1)、参考例(13-2)、参考例(21-3)、および、参考例(21-4)と同様の方法により、無色固体のtertーブチル (2-(7)リルオキシ)-6-[(4'-[(7)) ルオキシカルボニル) メチル]-3' ークロロー1, 1'ービフェニルー4ーイル] オキシ] メチル]-3-(5) アルオロメチル] ペングエート(622mg, 4工程通算収率54%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.65 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 1.6 Hz), 7 .49 (2H, d, J = 8.4 Hz), 7.42-7.38 (2H, m), 7.33 (1H, d, J = 8.4 Hz), 7.00 (2H, d, J = 8.4 Hz), 6.12-6.02 (1H, m), 5.98-5.88 (1H, m), 5.43 (1H, dd, J = 17.2, 1.6 Hz), 5 .34-5.27 (2H, m), 5.24 (1H, dd, J = 11.2, 1.2 Hz), 5.16 (2H, s), 4.64 (2H, app d, J = 6.0 Hz), 4.58 (2H, app d, J = 5.6 Hz), 3.83 (2H, s), 1.58 (9H, s).

[0287] (14-2)

参考例(6-2)と同様にして、参考例(14-1)で得られたtert-ブチル 2-(アリルオキシ)-6-[($\{4'-[(アリルオキシカルボニル)メチル]-3'-クロロー1, 1'- ピフェニルー4-イル\}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(622 mg, 1. 01mmol)から、無色粉末の標記化合物(337mg, 収率62%)を得た。
<math>^1$ H-NMR(500MHz, CDCl): δ 12.26, (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.60 (1H, d, 2.0 Hz), 7.51 (2H, d, J = 8.5 Hz), 7.43 (1H, dd, J = 8.0, 2.0 Hz), 7.35 (1H, d, J = 8.0 Hz), 7.28-7.26 (1H, m), 6.99 (2H, d, J = 8.5 Hz), 5.38 (2H, s), 3.86 (2H, s), 1.6 5 (9H, s).

MS (FAB) (m/z): 536 $([M]^{+})$.

Anal. calcd. for $C_{27}^{H}ClF_{30}^{C}$:C, 60.40; H, 4.51; F, 10.62; Cl, 6.60; found: C, 60.2 0; H, 4.39; F, 10.72; Cl, 6.69.

[0288] (参考例15) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-エチル-1, 1'-ビフェニル-4-イル)酢酸 (15-1)

3ーブロモー4ーメトキシベンジルシアニド(9. 0g, 40mmol)、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ージクロロメタン付加物(400mg, 0. 49mmol)、および、炭酸カリウム(24. 0g、174mmol)にN, Nージメチルホルムアミド(75ml)を室温で加えた。更にトリエチルボラン(1Mーnーへキサン溶液50ml, 50mmol)を滴下し、反応液を70℃で5時間攪拌した。反応液を室温に戻した後、水に注ぎ酢酸エチルで抽出した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーへキサン/酢酸エチル=8/1-5/1)にて精製し、油状の(3ーエチルー4ーメトキシフェニル)アセトニトリル(2. 6g, 収率38%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.11 (1H, d, J = 8.4 Hz), 7.08 (1H, s), 6.81 (1H, d, J = 8.4 Hz), 3.83 (3H, s), 3.67 (2H, s), 2.63 (2H, q, J = 7.6 Hz), 1.19 (3H, t, J = 7.6 Hz).

[0289] (15-2)

参考例(12-3)、および、参考例(25-5)と同様にして、参考例(15-1)で得られた(3-xチル-4-xトキシフェニル)アセトニトリル(6.10g, 34.8 mmol)から、油状の4-(シアノメチル)-2-xチルフェニル トリフルオロメタンスルホネート(8.1g, 2x程通算収率78%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 7.32 (1H, d, J = 2.0 Hz), 7.28-7.23 (2H, m), 3.77 (2 H, s), 2.76 (2H, q, J = 7.5 Hz), 1.28 (3H, t, J = 7.5 Hz).

[0290] (15-3)

参考例(15-2)で得られた4-(シアノメチル)-2-エチルフェニル トリフルオロ

メタンスルホネート(9. 7g, 33mmol)、4-メトキシフェニルほう酸(5. 3g, 35mmol)、および、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) -ジクロロメタン付加物(2. 7g, 3. 3mmol)、および、炭酸ナトリウム(10. 0g, 94mmol)にトルエン(150ml)、エタノール(30ml)、および、蒸留水(30ml)を加えた後、80℃で4時間攪拌した。反応液を室温に冷却した後、不溶物を濾別した。得られた濾液を水に注ぎ酢酸エチルで抽出した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=7/1-6/1)にて精製し、油状の(2-エチルー4'-メトキシー1、1'-ビフェニルー4-イル)アセトニトリル(5. 5g, 収率66%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.25-7.17 (5H, m), 6.95 (2H, d, J = 8.8 Hz), 3.86 (3 H, s), 3.77 (2H, s), 2.61 (2H, q, J = 7.6 Hz), 1.10 (3H, t, J = 7.6 Hz).

[0291] (15-4)

参考例(15-3)で得られた(2-エチルー4'-メトキシー1,1'-ビフェニルー4ーイル)アセトニトリル(5.5g,22mmol)に、酢酸(55ml)、および、臭化水素酸(55ml)を加え、100℃にて10時間攪拌した。反応液を室温に冷却した後、酢酸エチルを加え、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣にメタノール(150ml)を加えた後、氷冷下で硫酸(3ml)を加えた。室温で1時間攪拌後、減圧下にて溶媒を留去した。得られた残渣に酢酸エチルを加えた後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=5/1-2/1)にて精製し、無色固体のメチル(2-エチルー4'ーヒドロキシー1,1'ービフェニルー4ーイル)アセテート(5.0g,収率85%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.20-7.13 (5H, m), 6.86 (2H, d, J = 8.0 Hz), 4.76 (1 H, br s), 3.73 (3H, s), 3.65 (2H, s), 2.58 (2H, q, J = 7.2 Hz), 1.09 (3H, t, J = 7.2 Hz).

[0292] (15-5)

参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メタノール(5.09g, 16.4mmol)の酢酸エチル(50ml)溶液にトリエチルアミン(2.74ml, 19.7mmol)を加えた。氷冷下にて塩化メタンスルホニル(1.33ml, 17.2mmol)を滴下した後、反応液を同温度にて30分間攪拌した。反応液をセライトで濾過した。濾液を飽和炭酸水素ナトリウム水溶液、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣に、n-ヘキサンを加えた。析出した結晶を濾取し、淡黄色の2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジルメタンスルホネート(5.37g, 収率84%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.64 (1H, d, J = 8.2 Hz), 7.49 (1H, d, J = 8.2 Hz), 5 .72 (1H, s), 5.65 (2H, s), 5.01 (2H, s), 3.65 (3H, s), 3.45 (6H, s), 3.06 (3H, s).

[0293] (15-6)

参考例(16-4)、および、参考例(21-2)と同様にして、参考例(15-4)で得られた、メチル (2-エチルー4'-ヒドロキシー1, 1'-ビフェニルー4ーイル)アセテート(4.90g, 18.1mmol)、および、参考例(15-5)で得られた2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル メタンスルホネート(8.35g, 21.5mmol)から、無色固体のメチル (2-エチルー4'-{[2-ホルミルー3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}ー1, 1'-ビフェニルー4ーイル)アセテート(6.77g, 2工程通算収率79%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.66 (1H, s), 10.40 (1H, s), 7.83 (1H, d, J = 8.0 Hz), 7.26 (2H, d, J = 8.0 Hz), 7.21 (1H, s), 7.14 (2H, br s), 7.11 (1H, d, J = 8.0 Hz), 7.00 (2H, d, J = 8.0 Hz), 3.73 (3H, s), 3.66 (2H, s), 2.58 (2H, q, J = 7.6 Hz), 1.10 (3 H, t, J = 7.6 Hz).

[0294] (15-7)

 -エチル-4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(5.87g,3工程通算収率76%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.22 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.28 (1H, d, J = 8.4 Hz), 7.21 (2H, d, J = 8.4 Hz), 7.18 (1H, s), 7.12 (2H, br s), 6.92 (2H, d, J = 8.4 Hz), 5.36 (2H, s), 3.72 (3H, s), 3.64 (2H, s), 2.58 (2H, q, J = 7.6 Hz), 1.64 (9H, s), 1.09 (3H, t, J = 7.6 Hz).

ESI(ES-)(m/z): 543 ([M-H]⁺).

[0295] (15-8)

参考例 (9-10) と同様にして、参考例 (15-7) で得られたtert - ブチル 2- ビドロキシ-6- [$({2'-}$ エチル-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4- イル $\}$ オキシ)メチル]-3-(トリフルオロメチル) ベンゾエート (5.0g, 9.2mmol)から、無色固体の標記化合物 (4.79g, 収率97%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.27 (1H, s), 7.72 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 8.0 Hz), 7.26-7.22 (3H, m), 7.16 (2H, br s), 6.95 (2H, d, J = 8.0 Hz), 5.38 (2H, s), 3.70 (2H, s), 2.60 (2H, q, J = 7.6 Hz), 1.65 (9H, s), 1.10 (3H, t, J = 7.6 Hz). ESI(ES-)(m/z): 529 ([M-H]⁺).

Anal. calcd. for $C_{29}H_{29}F_{3}O_{6}$: C, 65.65; H, 5.51; F, 10.74; found: C, 65.63; H, 5.53; F, 10.78.

[0296] (参考例16)

 $(4'-\{[2-(\text{tert}-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ<math>\}$ -2-メチル-1, 1'-ビフェニル-3-イル) 酢酸 (16-1)

文献(Askam,V. et al., J. Chem. Soc. C; 1969年, p. 1935–1936.)に記載された方法に従い合成した(3-アミノー2-メチルフェニル)酢酸(1. 20g, 17. 2mmol)の10%硫酸溶液(72ml)に、亜硝酸ナトリウム(1. 92g, 11. 6mmol)水溶液(2ml)を氷冷下滴下した。室温にて1時間撹拌した後、反応液をヨウ化カリウム(3. 66g, 22. 0mmol)水溶液(11ml)に滴下した。反応液を90℃に加温し、2.5時間撹拌した。反

WO 2006/004030 PCT/JP2005/012185

応液を酢酸エチルで抽出し、有機層を10% 亜硫酸ナトリウム水溶液、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた反応混合物から、参考例(9-1)と同様にして、メチル (3-3-1) ルフェニル)アセテート(2.23g, 収率66%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.02 (1H, t, J = 7.8 Hz), 6.80 (1H, d, J = 7.8 Hz), 6. 70 (1H, d, J = 7.8 Hz), 3.70 (2H, s), 3.65 (3H, s), 2.19 (3H, s).

[0297] (16-2)

参考例(16-1)で得られたメチル (3-ヨード-2-メチルフェニル)アセテート(9 50mg, 3. 27mmol)、および、4ーメトキシフェニルほう酸(498mg, 3. 27mmol)の N, Nージメチルホルムアミド(8ml)溶液に、酢酸パラジウム(II) (37mg, 0. 16mmol)、トリーoートリルホスフィン(100mg, 0. 327mmol)、および、2N一炭酸ナトリウム 水溶液(2. 5ml)を加えた後、80℃にて5時間攪拌した。反応液を酢酸エチル、水で 希釈した後、不溶物をセライトにより濾別した。得られた濾液を酢酸エチルで抽出した後、有機層を水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。 減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=9/1)にて精製し、黄色粉末のメチル (4'ーメトキシー2ーメチルー1,1'ービフェニルー3ーイル)アセテート(59mg,収率7%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.23-7.12 (5H, m), 6.92 (2H, d, J = 8.6 Hz), 3.84 (3 H, s), 3.71 (2H, s), 3.70 (3H, s), 2.18 (3H, s).

[0298] (16-3)

参考例 (12-3) と同様にして、参考例 (16-2) で得られたメチル (4'-メトキシー2-メチル-1,1'-ビフェニル-3-イル) アセテート (59mg,0.22mmol) から、メチル (4'-ヒドロキシ-2-メチル-1,1'-ビフェニル-3-イル) アセテート (28mg, 収率50%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.45-7.39 (1H, m), 7.18-7.12 (4H, m), 6.84 (2H, d, J = 8.6 Hz), 4.90 (1H, s), 3.71 (5H, s), 2.18 (3H, s).

[0299] (16-4)

参考例(16-3)で得られたメチル (4'-ヒドロキシ-2-メチル-1, 1'-ビフェニル-3-イル)アセテート(28mg, 0.11mmol)、および、参考例(21-5)で得られたtertーブチル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフルオロメチル)ベンゾエート(50mg, 0.11mmol)のN, Nージメチルホルムアミド溶液(2ml)に炭酸セシウム(43mg, 0.13mmol)を加え、室温にて終夜攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。有機層を水(3回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下にて濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)にて精製し、無色油状のtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-[({3'-[(メトキシカルボニル)メチル]-2'-メチル-1, 1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(19mg,収率28%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.73 (1H, d, J = 8.6 Hz), 7.62 (1H, d, J = 8.6 Hz), 7 .22 (2H, d, J = 8.6 Hz), 7.24-7.12 (5H, m), 6.97 (2H, d, J = 8.6 Hz), 5.27 (2H, s), 3 .72 (2H, s), 3.71 (3H, s), 2.17 (3H, s), 1.58 (9H, s), 1.54 (9H, s).

[0300] (16-5)

参考例(16-4)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6- $[({3'-[(メトキシカルボニル)メチル]-2'-メチル-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(19mg, <math>30 \mu m$ ol)のテトラヒドロフラン溶液(1ml)にピロリジン($3 \mu l$, $36 \mu mol$)を加え、40 %にて1時間撹拌した。減圧下にて溶媒を留去して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒: $n- \wedge + + + \vee /$ 酢酸エチル=3/1)にて精製し、無色油状のtert-ブチル $2- \ell$ ドロキシー $6-[({3'-[(メトキシカルボニル)メチル]-2'- メチル-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(16mg,収率100%)を得た。$

¹H-NMR (400MHz, CDCl₃): δ 12.27 (1H, s), 7.72 (1H, d, J = 8.2 Hz), 7.31 (1H, d, J = 8.2 Hz), 7.24 (2H, d, J = 8.6 Hz), 7.25–7.13 (5H, m), 6.95 (2H, d, J = 8.6 Hz), 5.38 (2H, s), 3.72 (5H, s), 2.19 (3H, s), 1.65 (9H, s).

[0301] (16-6)

参考例(13-4)と同様にして、参考例(16-5)で得られたtert-ブチル 2-ヒドロキシ-6-[($\{3'-[(メトキシカルボニル)メチル]-2'-メチル-1,1'-ビフェニル-4-イル\}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(16mg, <math>30\mu$ mol)から、褐色粉末の標記化合物(12mg, 収率77%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 12.27 (1H, s), 7.72 (1H, d, J = 8.3 Hz), 7.31 (1H, d, J = 8.3 Hz), 7.24 (2H, d, J = 8.3 Hz), 7.25–7.15 (5H, m), 6.96 (2H, d, J = 8.3 Hz), 5.38 (2H, s), 3.76 (2H, s), 2.21 (3H, s), 1.65 (9H, s).

MS (FAB) (m/z): 516 $([M]^{\dagger})$.

[0302] (参考例17) $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-3-フルオロ-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸

(17-1)

参考例(23-1)、および、参考例(23-3)と同様にして、4-ブロモ-2-フルオロベンジル ブロミド(6.0g, 22mmol)から、メチル (4-ブロモ-2-フルオロフェニル)アセテート(3.41g, 3工程収率62%)を得た。

本工程では、参考例 (23-3) に相当する工程に含まれるエステル化反応において、アリルアルコールの代わりにメタノールを用い、また反応温度を50[°]Cにて行った。 1 H-NMR (400MHz, CDCl $_{3}$): δ 7.29-7.23 (2H, m), 7.15 (1H, app t, J = 8.2 Hz), 3.7 (2H, s), 3.64 (2H, s).

[0303] (17-2)

参考例(28-1)、参考例(23-2)、参考例(9-10)、および、参考例(9-1)と同様にして、参考例(17-1)で得られたメチル (4-7)ロモー(2-7)ルオロフェニル)アセテート(1.24g, 5.02mmol)から、白色粉末のアリル 1-(3-7)ルオロー(3-7)ルオロー(3-7)ルボーントにはいる。収率64%)を得た。

上記工程では、参考例(9-10)に相当する加水分解工程を反応温度60℃にて行った。また、参考例(9-1)に相当するエステル化工程において、メタノールの代わり

にアリルアルコールを用いた。

¹H-NMR (400MHz, CDCl₃): δ 7.39 (2H, d, J = 8.6 Hz), 7.29–7.15 (3H, m), 6.84 (2 H, d, J = 8.6 Hz), 5.88–5.76 (1H, m), 5.28 (1H, br s), 5.21–5.11 (2H, m), 4.58–4.55 (2H, m), 1.73–1.69 (2H, m), 1.26–1.22 (2H, m).

[0304] (17-3)

参考例(17-2)で得られたアリル 1-(3-7)ルオロー4'ーヒドロキシー1, 1'ービフェニルー4ーイル)シクロプロパンカルボキシレート(303mg, 0.97mmol)、および、参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メタノール(421mg, 1.36mmol)を出発原料に用い、参考例(13-1)、参考例(13-2)、参考例(21-3)、および、参考例(21-4)と同様の方法により、tertーブチル 2-(アリルオキシ $)-6-\{[(4'-\{1-[($ アリルオキシ)カルボニル]シクロプロピル $\}$ -3'ーフルオロー1, 1'ービフェニルー4ーイル)オキシ]メチル $\}$ -3-(トリフルオロメチル)ベンゾエート(219mg, 5工程通算収率36%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.62 (1H, d, J = 8.2 Hz), 7.48 (2H, d, J = 8.6 Hz), 7 .37 (1H, d, J = 8.2 Hz), 7.30-7.18 (3H, m), 6.98 (2H, d, J = 8.6 Hz), 6.10-6.00 (1H, m), 5.86-5.76 (1H, m), 5.45-5.38 (1H, m), 5.29-5.24 (1H, m), 5.19-5.10 (4H, m), 4.58-4.54 (4H, m), 1.72-1.68 (2H, m), 1.57 (9H, s), 1.26-1.21 (2H, m).

[0305] (17-4)

 ル混合溶媒より結晶化し、白色無定形固体(アモルファス)の標記化合物(121mg, 収率63%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 12.22 (1H, s), 7.69 (1H, d, J = 8.2 Hz), 7.49 (2H, d, J = 8.6 Hz), 7.32-7.18 (4H, m), 6.96 (2H, d, J = 8.6 Hz), 5.36 (2H, s), 1.77-1.72 (2H, m), 1.64 (9H, s), 1.31-1.26 (2H, m).

MS (ESI) (m/z): 545 $([M-H]^{+})$.

[0306] (参考例18) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-イソプロピルベンジル]オキシ}-1, 1'-ビフェニル-4-イル) 酢酸 (18-1)

文献(James, R. et al., J. Med. Chem., 1980年, 第23巻, p. 1350-1357.) に記載された方法に従い合成した3ーイソプロピルー2ー(メトキシメトキシ)ベンズアルデヒド(4. 06g, 19. 5mmol)のメタノール溶液(65ml)に、オルトギ酸トリメチル(2. 35ml, 21. 4mmol)、および、塩化アンモニウム(52mg, 0. 98mmol)を加え、加熱還流下1時間攪拌した。減圧下にて溶媒を留去し、残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=12/0-12/1)にて精製し、無色油状の1-(ジメトキシメチル)-3ーイソプロピルー2-(メトキシメトキシ)ベンゼン(4. 49g, 収率91%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.39 (1H, dd, J = 7.8, 1.5 Hz), 7.28 (1H, dd, J = 7.8, 1.5 Hz), 7.15 (1H, t, J = 7.8 Hz), 5.64 (1H, s), 4.99 (2H, s), 3.63 (3H, s), 3.40 (1 H, sp, J = 6.8 Hz), 3.37 (6H, s), 1.23 (6H, d, J = 6.8 Hz).

[0307] (18-2)

参考例(5-3)、参考例(5-4)、参考例(13-1)、参考例(13-2)、および、参考例(13-3)と同様にして、参考例(18-1)で得られた1-(ジメトキシメチル)-3 -イソプロピル-2-(メトキシメトキシ)ベンゼン<math>(4.49g,17.7mmol)から、黄色油状の $tert-ブチル 2-ヒドロキシ-3-イソプロピル-6-[({4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]ベンゾエート<math>(432mg)$

,5工程通算収率5%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 11.78 (1H, s), 7.52 (4H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.33 (2H, d, J = 8.2 Hz), 7.08 (1H, d, J = 8.2 Hz), 6.99 (2H, d, J = 8.2 Hz), 5.31 (2H, s), 3.71 (2H, s), 3.55 (3H, s), 3.38 (1H, sp, J = 7.0 Hz), 1.58 (9H, s), 1.24 (6H, d, J = 7.0 Hz).

[0308] (18-3)

参考例 (13-4) と同様にして、参考例 (18-2) で得られたtert - ブチル 2 - ヒドロキシ-3 - イソプロピル-6 - $[({4'}-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル<math>-4$ - イル] オキシ] メチル] ベンゾエート (432 mg, 0.880 mmol) から、白色粉末の標記化合物 (176 mg, 収率42%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 11.80 (1H, s), 7.54 (2H, d, J = 8.2 Hz), 7.52 (2H, d, J = 8.2 Hz), 7.36 (2H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.08 (1H, d, J = 8.2 Hz), 6.99 (2H, d, J = 8.2 Hz), 5.31 (2H, s), 3.71 (2H, s), 3.38 (1H, sp, J = 6.7 Hz), 1.58 (9H, s), 1.24 (6H, d, J = 6.7 Hz).

MS (FAB) (m/z): 476 $([M]^{\dagger})$.

[0309] (参考例19)(4'-{[2-(tert-ブトキシカルボニル)-4-フルオロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル)酢酸 (19-1)

2-フルオロ-5-メチルフェノール(4.19g, 33.3mmol)のアセトニトリル溶液(100ml)に、パラホルムアルデヒド(3.86g, 133mmol)、塩化マグネシウム(6.32g, 66.5mmol)、および、トリエチルアミン(11.6ml, 83.3mmol)を加えて、90℃にて10日間激しく攪拌した。反応液を1N-塩酸に注ぎ、酢酸エチルで抽出した。有機層を1N-塩酸、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下にて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=4/1)に付し、粗製の3-フルオロ-2-ヒドロキシー6-メチルベンズアルデヒドを得た。得られた粗製物から、参考例(21-3)、および、参考例(21-4)と同様にして、tertーブチル 2-[(tertーブトキシカルボニル)オキシ]-3-フルオロ-6-メチル安息香酸(624mg, 3工程通算収率6%)を得た

197

0

 1 H-NMR (500MHz, CDCl): δ 7.11-6.96 (2H, m), 2.33 (3H, s), 1.58 (9H, s) , 1.54 (9H, s).

[0310] (19-2)

参考例(21-5)、参考例(16-4)、参考例(16-5)、および、参考例(13-4)と同様にして、参考例(19-1)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-3-フルオロ-6-メチル安息香酸(624mg, 1.91mmol)から、無色粉末の標記化合物(93mg, 4工程通算収率34%)を得た。

上記参考例(16-4)に相当する工程では、フェノール誘導体として参考例(9-4)で得られたメチル (4'-ヒドロキシ-1, 1'-ビフェニル-4-イル)アセテートを用いた。

¹H-NMR (400MHz, CDCl₃): δ 7.59-7.46 (4H, m), 7.33 (2H, d, J = 7.8 Hz), 7.24-7. 19 (1H, app t J = 9.2 Hz), 7.08 (1H, dd, J = 8.4, 4.5 Hz), 6.98 (2H, d, J = 8.2 Hz), 5.28 (2H, s), 3.68 (2H, s), 1.60 (9H, s).

MS (ESI) (m/z): 451 $([M-H]^{+})$.

[0311] (参考例20) (4'-{[2-(tert-ブトキシカルボニル)-4-クロロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル) 酢酸 (20-1)

2-クロロ-5-メチルフェノール(5.80g, 40.8mmol)のアセトニトリル溶液(100 ml)に、パラホルムアルデヒド(4.73g, 163mmol)、塩化マグネシウム(7.76g, 81.7mmol)、および、トリエチルアミン(14.2ml, 102mmol)を加えて、90℃にて10時間激しく攪拌した。反応液を1N - 塩酸に注ぎ、酢酸エチルで抽出した。有機層を1N - 塩酸、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下にて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒: (21-4) と同様にして、(21-4) と同様にして、(21-3) に付し、(21-4) と同様にして、(21-4) と同様になり、(21-4) と同様になり、(21-4) と同様になり、(21-4) と同様になり、(21-4) と同様になり、(21-4) との、(21-4) との、

¹H-NMR (400MHz, CDCl₃): δ 7.34-7.31 (1H, m), 7.04-7.01 (1H, m), 2.35 (3H, s), 1.59 (9H, s), 1.56 (9H, s).

[0312] (20-2)

参考例(21-5)、参考例(16-4)、参考例(16-5)、および、参考例(13-4)と同様にして、参考例(20-1)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-3-クロロ-6-メチル安息香酸(1.82g, 5.32mmol)から、白色粉末の標記化合物(30mg, 4工程通算収率1%)を得た。

上記参考例(16-4)に相当する工程では、フェノール誘導体として参考例(9-4)で得られたメチル (4'-ヒドロキシ-1, 1'-ビフェニル-4-イル)アセテートを用いた。

¹H-NMR (400MHz, CDCl₃): δ 7.52-7.46 (5H, m), 7.33 (2H, d, J = 8.6 Hz), 7.10 (1 H, d, J = 8.6 Hz), 6.95 (2H, d, J = 8.6 Hz), 5.30 (2H, s), 3.68 (2H, s), 1.61 (9H, s). MS (ESI) (m/z): 467 ([M-H][†]).

[0313] (参考例21)

 $[5-(4-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}フェニル)-2-チエニル]酢酸 (21-1)$

参考例(5-2)で得られた1-(ジメトキシメチル)-2-(メトキシメトキシ)-3-(トリフルオロメチル)ベンゼン(12.0g, 42.9mmol)、および、N, N, N', N'-テトラメチルエチレンジアミン(9.70ml, 64.4mmol)のテトラヒドロフラン(100ml)溶液に、-40℃においてn-ブチルリチウム-1.59Mテトラヒドロフラン溶液(40.0ml, 64.4mmol)を5分間かけて滴下した。反応液を0℃において15分間攪拌した。反応液を-40℃に冷却した後、ヨウ化メチル(5.3ml, 85.85mmol)を加え、室温にて更に30分間攪拌した。反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=5/1)により精製し、油状の2-(ジメトキシメチル)-3-(メトキシメトキシ)-1-メチル-4-(トリフルオロメチル)ベ

ンゼン(7.19g, 収率57%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.44 (1H, d, J = 8.2 Hz), 7.04 (1H, d, J = 8.2 Hz), 5 .70 (1H, s), 4.99 (2H, s), 3.64 (3H, s), 3.43 (6H, s), 2.55 (3H, s).

[0314] (21-2)

参考例(21-1)で得られた2-(ジメトキシメチル)-3-(メトキシメトキシ)-1-メチルー4-(トリフルオロメチル)ベンゼン(7. 19g, 24. 4mmol)のアセトン(100ml)溶液に、pートルエンスルホン酸一水和物(5. 10g, 26. 9mmol)を加えた後、50℃にて1時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出(2回)した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより残渣を得た。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=5/1)にて精製し、2ーヒドロキシー6ーメチルー3-(トリフルオロメチル)ベンズアルデヒド(4. 65g, 収率93%)を得た。 1 H-NMR (400MHz, CDCl₃): δ 12.58 (1H, s), 10.32 (1H, s), 7.65 (1H, d, J = 7.8 Hz), 6.79 (1H, d, J = 7.8 Hz), 2.67 (3H, s).

[0315] (21-3)

参考例(21-2)で得られた2-ヒドロキシー6-メチルー3-(トリフルオロメチル)ベンズアルデヒド(4.65g, 22.8mmol)のtertーブチルアルコール(90ml)、1,4-ジオキサン(30ml)、および、2-メチルー2ーブテン(30ml)の混合溶液に亜塩素酸ナトリウム(6.0g,66.3mmol)、および、りん酸二水素ナトリウムー水和物(6.0g,43.5mmol)の水溶液(40ml)を滴下した後、室温にて1時間攪拌した。反応液を氷冷し、5%チオ硫酸ナトリウム水溶液を加えた後、0.5N-塩酸に注ぎ、酢酸エチルで抽出(2回)した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣を、酢酸エチル、および、nーヘキサンを用い結晶化し、無色の2-ヒドロキシー6-メチルー3-(トリフルオロメチル)安息香酸(4.21g,収率84%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 11.73 (1H, s), 7.63 (1H, d, J = 7.8 Hz), 6.84 (1H, d, J = 7.8 Hz), 2.67 (3H, s).

[0316] (21-4)

参考例(21-3)で得られた2ーヒドロキシー6ーメチルー3ー(トリフルオロメチル)安息香酸(4.21g, 19.1mmol)のtertーブチルアルコールーテトラヒドロフラン(2:1, 60ml)混合溶液に、N, Nージメチルアミノピリジン(0.7g, 5.7mmol)、および、二炭酸ジーtertーブチル[(tBuOCO) $_2$ O](16.7g, 76.5mmol)を加え、60℃にて3時間攪拌した。反応液を減圧下にて濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n- クキサン/酢酸エチル=9/1)により精製し、tertーブチル 2ー[(tertーブトキシカルボニル)オキシ]ー6ーメチルー3ー(トリフルオロメチル)ベンゾエート(6.27g, 収率87%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.53 (1H, d, J = 7.8 Hz), 7.17 (1H, d, J = 7.8 Hz), 2 .43 (3H, s), 1.59 (9H, s), 1.53 (9H, s).

[0317] (21-5)

参考例(21-4)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-メチル-3-(トリフルオロメチル)ベンゾエート(18. 6g, 49. 6mmol)の四塩化炭素(400ml)溶液に、N-ブロモスクシンイミド(9. 70g, 54. 5mmol)、および、過酸化ベンゾイル(0. 7g)を加え、5時間加熱還流した。反応液を室温に戻し、減圧下にて溶媒を留去した。得られた残渣にn-n+サンを加え濾過した後、濾液を減圧下にて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)により精製し、tert-ブチル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフルオロメチル)ベンゾエート(11. 66g, 収率52%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.64 (1H, d, J = 8.2 Hz), 7.40 (1H, d, J = 8.2 Hz), 4 .60 (2H, s), 1.63 (9H, s), 1.52 (9H, s).

[0318] (21-6)

4-(4, 4, 5, 5-テトラメチル-1, 3, 2-ジオキサボロラン-2-イル)フェノール (0. 8g, 3. 65mmol) および、文献 (Jackson, P. M. et al., J. Chem. Soc. Perkin Trans.1., 1990年, 第11巻, p. 2909-2918) に記載された方法に従って合成したエチル (5-ブロモー2ーチエニル)アセテート(1. 00g, 4. 01mmol)のトルエンーエタノール(5:1, 24ml) 混合溶液に、トリス(ジベンジリデンアセトン) ジパラジウム(0) (110m

g, 0. 12mmol)、トリーoートリルホスフィン(61mg, 0. 2mmol)、および、2N一炭酸ナトリウム水溶液(4ml)を加えた後、80℃にて3時間攪拌した。反応液に水を注ぎ、酢酸エチルで抽出後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=3/1)にて精製し、エチル[5-(4-ヒドロキシフェニル)-2-チエニル]アセテート(0. 73g, 収率77%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.41 (2H, d, J = 8.6 Hz), 7.00 (1H, d, J = 3.5 Hz), 6.85 (1H, d, J = 3.5 Hz), 6.80 (2H, d, J = 8.6 Hz), 4.89 (1H, s), 4.19 (2H, q, J = 7.0 Hz), 3.80 (2H, s), 1.29 (3H, t, J = 7.0 Hz).

[0319] (21-7)

参考例(16-4)、参考例(16-5)、および、参考例(9-10)と同様にして、参考例(21-5)で得られたtert-ブチル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフルオロメチル)ベンゾエート(366mg, 0. 8mmol)、および、参考例(21-6)で得られたエチル [5-(4-ヒドロキシフェニル)-2-チェニル]アセテート(211mg, 0. 8mmol)から無色粉末の標記化合物(56mg, 3工程通算収率14%)を得た。

上記参考例(16-4)に相当する工程では、塩基として炭酸セシウムの代わりに炭酸カリウムを用いた。

¹H-NMR (400MHz, DMSO-d₆): δ 12.58 (1H, s), 11.44 (1H, s), 7.82 (1H, d, J = 7.8 Hz), 7.56 (2H, d, J = 7.8 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.23 (1H, d, J = 3.5 Hz), 7.02 (2H, d, J = 7.8 Hz), 6.91 (1H, d, J = 3.5 Hz), 5.35 (2H, s), 3.81 (2H, s), 1.56 (9 H, s).

MS (ESI) (m/z): 507 $([M-H]^{+})$.

[0320] (参考例22) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-ニトロ-1, 1'-ビフェニル-4-イル)酢酸 (22-1)

参考例(9-2)、参考例(21-5)、参考例(23-1)、および、参考例(15-4)と同

様にして、4ーメトキシフェニルほう酸(17.0g, 112mmol)、および、4ーブロモー2ーニトロトルエン(22.1g, 102mmol)から、メチル (4'ーヒドロキシー2ーニトロー1, 1'ービフェニルー4ーイル)アセテート(3.53g, 4工程通算収率12%)を得た。 1 H-NMR(500MHz,CDCl)。 δ 7.73-7.69(<math>1H,m),7.52-7.47(<math>1H,m),7.41-7.36(<math>1H,m),7.18-7.10(<math>1H,m),1.8-1.9-

[0321] (22-2)

参考例(16-4)、参考例(16-5)、および、参考例(9-10)と同様にして、参考例(22-1)で得られたメチル (4'-ヒドロキシ-2-ニトロ-1,1'-ビフェニル-4-イル)アセテート(1.71g,3.76mmol)、および、参考例(21-5)で得られたtertーブチル (5-1)0年メチル(5-1)1年メチル(5-1)1年、一ブチル (5-1)1年、

 1 H-NMR (400MHz, CDCl₃): δ 7.75 (1H, d, J = 1.2 Hz), 7.69 (1H, d, J = 8.0 Hz), 7 .50 (1H, dd, J = 8.0, 1.2 Hz), 7.38 (1H, d, J = 8.0 Hz), 7.26-7.19 (3H, m), 6.94 (2H, d, J = 8.0 Hz), 5.35 (2H, s), 3.76 (2H, s), 1.63 (9H, s).

MS (FAB) (m/z): 547 $([M]^{\dagger})$.

[0322] (参考例23) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフル オロメチル)ベンジル]オキシ}-3-フルオロ-1, 1'-ビフェニル-4-イル)酢酸 (23-1)

4ーブロモー2ーフルオロベンジルブロミド(5.00g、18.7mmol)のエタノールー水(3:1,40ml)混合溶液に、シアン化カリウム(1.3g,20mmol)を加え、60℃にて2時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル)により精製し、無色固体の(4ーブロモー2ーフルオロフェニル)アセトニトリル(3.75g,収率94%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.35-7.26 (3H, m), 3.72 (2H, s).

[0323] (23-2)

参考例(23-1)で得られた(4ーブロモー2ーフルオロフェニル)アセトニトリル(3. 0g, 14mmol)、および、4ー(4, 4, 5, 5ーテトラメチルー1, 3, 2ージオキサボロランー2ーイル)フェノール(3. 45g, 14mmol)のN, Nージメチルアセトアミドー水(20: 1, 31. 5ml)の混合溶液に、テトラキス(トリフェニルホスフィン)パラジウム(0)(317mg, 0. 274mmol)、および、炭酸カリウム(4. 5g, 32. 6mmol)を加え、100℃にて2時間攪拌した。反応液を0. 2N塩酸に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n- キサン/酢酸エチル=2/1)にて精製し、無色固体の(3ーフルオロー4'ーヒドロキシー1, 1'ービフェニルー4ーイル)アセトニトリル(2. 9g, 収率91%)を得た。 1 H-NMR (400MHz, MeOH-d): δ 7.50-7.34 (5H, m), 6.87 (2H, d, J = 8.8 Hz), 3.9 2 (2H, s).

[0324] (23-3)

参考例(23-2)で得られた(3-フルオロー4'-ヒドロキシー1, 1'-ビフェニルー4ーイル)アセトニトリル(2.4g, 11mmol)に酢酸(10ml)、および、濃塩酸(10ml)を加えた後、110℃にて1時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて濃縮して得られた残渣にアリルアルコール(20ml)、および、濃硫酸(1.5ml)を順次加えた後、室温にて1時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出(3回)した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=5/1-2/1)により精製し、無色固体のアリル(3-フルオロー4'ーヒドロキシー1,1'ービフェニルー4ーイル)アセテート(2.0g,2工程通算収率66%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.42 (2H, d, J = 8.4 Hz), 7.31-7.21 (3H, m), 6.86 (2 H, d, J = 8.4 Hz), 5.97-5.88 (1H, m), 5.32 (1H, app d, J = 16.4 Hz), 5.24 (1H, app d, J = 10.4 Hz), 4.96 (1H, br s), 4.64 (2H, app d, J = 6.0 Hz), 3.73 (2H, s).

[0325] (23-4)

参考例(13-1)と同様にして、参考例(23-3)で得られたアリル (3-フルオロー4'-ヒドロキシー1, 1'-ビフェニルー4ーイル)アセテート(3. 10g, 10. 9mmol)、および、参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)ー4-(トリフルオロメチル)フェニル]メタノール(3. 70g, 12. 0mmol)から、淡黄色油状のアリル (4'-{[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ}ー3ーフルオロー1ー1'ービフェニルー4ーイル)アセテート(3. 89g, 収率61%)を得た。

 1 H-NMR (400MHz, CDCl): δ 7.57-7.56 (2H, m), 7.47 (2H, d, J = 8.4 Hz), 7.29-7. 22 (3H, m), 7.03 (2H, d, J = 8.4 Hz), 5.97-5.87 (1H, m), 5.77 (1H, s), 5.53 (2H, s), 5.30 (1H, app d, J = 17.2 Hz), 5.23 (1H, app d, J = 10.4 Hz), 5.04 (2H, s), 4.63 (2H, app d, J = 5.6 Hz), 3.72 (2H, s), 3.67 (3H, s), 3.49 (6H, s).

[0326] (23-5)

参考例(13-2)と同様にして、参考例(23-4)で得られたアリル (4'-{[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンジル]オキシ}ー 3-フルオロ-1-1'-ビフェニルー4ーイル)アセテート(3.89g, 6.7mmol)から、淡黄色固体のアリル (4'-{[3-(アリルオキシ)-2-ホルミルー4-(トリフルオロメチル)ベンジル]オキシ}ー3-フルオロー1、1'-ビフェニルー4ーイル)アセテート(2.52g, 収率71%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 10.55 (1H, s), 7.88 (1H, d, J = 8.5 Hz), 7.78 (1H, d, J = 8.5 Hz), 7.52 (2H, d, J = 8.5 Hz), 7.33–7.25 (3H, m), 7.06 (2H, d, J = 8.5 Hz), 6.16–6.08 (1H, m), 5.96–5.89 (1H, m), 5.52 (2H, s), 5.49 (1H, dd, J = 17.5, 1.5 Hz), 5.38 (1H, dd, J = 10.0, 1.0 Hz), 5.31 (1H, dd, J = 17.0, 1.5 Hz), 5.24 (1H, dd, J = 10.0, 1.0 Hz), 4.64 (2H, app d, J = 5.5 Hz), 4.60 (2H, app d, J = 5.5 Hz), 3.73 (2H, s).

[0327] (23-6)

参考例(23-5)で得られたアリル $(4'-\{[3-(アリルオキシ)-2-ホルミル-4-(トリフルオロメチル)ベンジル]オキシ<math>\}$ -3-フルオロ-1、1'-ビフェニル-4-イル)アセテート(2.52g, 4.8mmol)のtert-ブチルアルコール(51ml)、1,4-

ジオキサン(17ml)、および、2ーメチルー2ーブテン(17ml)混合溶液に亜塩素酸ナトリウム(2.6g, 29mmol)、および、りん酸二水素ナトリウム一水和物(2.6g, 19mmol)の水溶液(22ml)を滴下した後、室温にて90分間攪拌した。反応液に5%チオ硫酸ナトリウム水溶液を加えた後、1Nー塩酸に注ぎ、酢酸エチルで抽出(2回)した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより残渣を得た。得られた残渣に塩化メチレン(50ml)、2ーメチルー1ープロペン(150ml)、および、硫酸(1ml)を順次加え、室温で終夜攪拌した。反応液を5%炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで抽出(2回)した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=10/1-3/1)にて精製し、無色粉末のtertーブチル 2ー(アリルオキシ)ー6ー[({4'-[(アリルオキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(2.38g,収率83%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 7.64 (1H, d, J = 8.5 Hz), 7.50 (2H, d, J = 8.5 Hz), 7. 39 (1H, d, J = 8.5 Hz), 7.31–7.23 (3H, m), 7.00 (2H, d, J = 8.5 Hz), 6.11–6.03 (1H, m), 5.96–5.88 (1H, m), 5.43 (1H, dd, J = 17.5, 1.5 Hz), 5.31 (1H, app d, J = 17.0 Hz), 5.28 (1H, app d, J = 10.0 Hz), 5.24 (1H, app d, J = 10.0 Hz), 5.16 (2H, s), 4.6 4 (2H, app d, J = 6.0 Hz), 4.58 (2H, app d, J = 5.5 Hz), 3.73 (2H, s), 1.58 (9H, s).

[0328] (23-7)

参考例(23-6)で得られたtertーブチル 2-(アリルオキシ)-6-[({4'-[(アリルオキシカルボニル)メチル]-3'-フルオロ-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンブエート(790mg,1.32mmol)のテトラヒドロフラン(8ml)溶液にモルホリン(0.27ml,3.3mmol)、および、テトラキス(トリフェニルホスフィン)パラジウム(0)(57mg,0.049mmol)を順次加え、室温にて1時間攪拌した。反応溶液に水を注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢

酸エチル=3/1-0/1)にて精製した後、塩化メチレン-酢酸エチル混合溶媒より結晶化し、無色粉末の標記化合物(323mg,収率47%)を得た。

 1 H-NMR (500MHz, CDCl₃): δ 12.26 (1H, s), 7.71 (1H, d, J = 8.5 Hz), 7.52 (2H, d, J = 8.5 Hz), 7.32–7.26 (4H, m), 6.98 (2H, d, J = 8.5 Hz), 5.38 (2H, s), 3.76 (2H, s), 1.65 (9H, s).

MS (ESI) (m/z): 519 $([M-H]^{+})$.

[0329] (参考例24) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-メチル-1, 1'-ビフェニル-4-イル)酢酸 (24-1)

文献(Hanessian, S. et al., J. Org. Chem., 2003年, 第68巻, p. 7204-7218) に記載された方法に従って合成した1-プロモ-4-(プロモメチル)-2-メチルベンゼンを出発原料に用い、参考例(23-1)、および、参考例(23-2)と同様の方法により、淡黄色固体の(4'ーヒドロキシ-2-メチル-1, 1'ービフェニル-4-イル)アセトニトリル(969mg, 収率76%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.23-7.16 (5H, m), 6.89 (2H, d, J = 8.4 Hz), 4.86 (1 H, br s), 3.75 (2H, s), 2.28 (3H, s).

[0330] (24-2)

参考例 (23-3)と同様にして、参考例 (24-1)で得られた (4'-ヒドロキシ-2-メチル-1, 1'-ビフェニル-4-イル)アセトニトリル (969mg, 4.35mmol)から、淡黄色油状のアリル (4'-ヒドロキシ-2-メチル-1, 1'-ビフェニル-4-イル)アセテート (1.19g, 収率97%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.20-7.13 (5H, m), 6.86 (2H, d, J = 8.8 Hz), 5.98-5. 89 (1H, m), 5.32 (1H, app dd, J = 17.2, 1.6 Hz), 5.24 (1H, app dd, J = 10.4, 1.6 Hz), 4.84 (1H, br s), 4.63 (2H, app d, J = 5.6 Hz), 3.65 (2H, s), 2.25 (3H, s).

[0331] (24-3)

参考例(24-2)で得られたアリル(4'-ヒドロキシ-2-メチル-1, 1'-ビフェニル-4-イル)アセテート(1.20g, 4.3mmol)、および、参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メ

タノール (1.84g, 6.0mmol) を出発原料に用い、参考例 (13-1)、参考例 (13-2)、参考例 (21-3)、および、参考例 (21-4) と同様の方法により、無色油状の(21-4) と同様の方法により、(21-4) と同様の方法に

¹H-NMR (400MHz, CDCl₃): δ 7.66 (1H, d, J = 8.4 Hz), 7.42 (1H, d, J = 8.4 Hz), 7 .23 (2H, d, J = 8.4 Hz), 7.18-7.13 (3H, m), 6.97 (2H, d, J = 8.4 Hz), 6.12-6.02 (1H, m), 5.98-5.89 (1H, m), 5.43 (1H, dd, J = 16.8, 1.2 Hz), 5.34-5.23 (3H, m), 5.16 (2H, s), 4.63 (2H, app d, J = 5.6 Hz), 4.58 (2H, app d, J = 5.6 Hz), 3.65 (2H, s), 2.25 (3H, s), 1.58 (9H, s).

[0332] (24-4)

参考例(6-2)と同様にして、参考例(24-3)で得られたtert-ブチル 2-(アリルオキシ)-6-[($\{4'-[(アリルオキシカルボニル)メチル]-2'-メチル-1,1'$ ービフェニルー4ーイル $\}$ オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(1.26g, 2.1mmol)から、無色粉末の標記化合物(652mg,収率60%)を得た。 1 H-NMR(400MHz, CDCl $_{3}$): δ 12.27, (1H, s), 7.72 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 8.0 Hz), 7.26-7.23 (2H, m), 7.20-7.15 (3H, m), 6.95 (2H, d, J = 8.8 Hz), 5.38 (2H, s), 3.68 (2H, s), 2.27 (3H, s), 1.65 (9H, s). MS (FAB) (m/z): 516 $([M]^{\dagger})$.

[0333] (参考例25) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-メトキシ-1, 1'-ビフェニル-4-イル)酢酸 (25-1)

参考例 (13-1) と同様にして、参考例 (5-4) で得られた [2-(ジメトキシメチル) -3-(メトキシメトキシ) -4-(トリフルオロメチル) フェニル] メタノール (3.00g, 9.66mmol)、および、4- ブロモフェノール (2.00g, 11.6mmol) から、1-[(4- ブロモフェノキシ) メチル]] -2-(ジメトキシメチル) -3-(メトキシメトキシ) -4-(トリフルオロメチル) ベンゼン (3.46g, 収率77%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.56 (1H, d, J = 8.6 Hz), 7.49 (1H, d, J = 8.6 Hz), 7

.35 (2H, d, J = 9.0 Hz), 6.86 (2H, d, J = 9.0 Hz), 5.75 (1H, s), 5.46 (2H, s), 5.03 (2 H, s), 3.66 (3H, s), 3.47 (6H, s).

[0334] (25-2)

参考例(21-2)、および、参考例(21-3)と同様にして、参考例(25-1)で得られた1-[(4-7)ロモフェノキシ)メチル]-2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)ベンゼン<math>(17.6g,56.0mmol)から、6-[(4-7)ロモフェノキシ)メチル]-2-ヒドロキシル-3-(トリフルオロメチル)安息香酸(12.0g,2工程通算収率55%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.24 (1H, S), 7.77 (1H, d, J = 8.0 Hz), 7.40 (2H, d, J = 9.0 Hz), 7.29 (1H, d, J = 8.0 Hz), 6.80 (2H, d, J = 9.0 Hz), 5.38 (2H, s).

[0335] (25-3)

参考例(21-4)、および、参考例(16-5)と同様にして、参考例(25-2)で得られた6-[(4-ブロモフェノキシ)メチル]-2-ヒドロキシル<math>-3-(トリフルオロメチル)安息香酸(3.22g, 8.23mmol)から、 $tert-ブチル <math>6-[(4- \overline{
oldsymbol{1}} 6- \overline{
oldsymbol{1}} 4- \overline{
oldsymbol{1}} 7- \overline{
oldsymbol{2}} 1- \overline{$

 1 H-NMR (400MHz, CDCl₃): δ 12.24 (1H, s), 7.69 (1H, d, J = 8.2 Hz), 7.40 (2H, d, J = 9.0 Hz), 7.21 (1H, d, J = 8.2 Hz), 6.80 (2H, d, J = 9.0 Hz), 5.30 (2H, s), 1.62 (9H, s).

[0336] (25-4)

WO 2006/004030

乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=5/1-1/1)にて精製し、tert-ブチル 2-ヒドロキシー $\{[4-(4,4,5,5-$ テトラメチル-1,3,2-ジオキサボロランー2-イル)フェノキシ]メチル $\}-3-$ (トリフルオロメチル)ベンブエート(11.3g,収率99%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.27 (1H, s), 7.77 (2H, d, J = 8.8 Hz), 7.69 (1H, d, J = 8.4 Hz), 7.25 (1H, d, J = 8.4 Hz), 6.92 (2H, d, J = 8.8 Hz), 5.34 (2H, s), 1.33 (9H, s), 1.26 (12H, s).

[0337] (25-5)

メチル (4ーヒドロキシー3ーメトキシフェニル)アセテート(1.70g, 8.66mmol)の塩化メチレン溶液(20ml)に、ピリジン(2.10ml, 25.9mmol)、無水トリフルオロメタンスルホン酸(1.61ml, 9.53mmol)、および、4ージメチルアミノピリジン(30mg, 0.25mmol)を加え、氷冷下にて10分間攪拌した後、室温にて20分間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層を、水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=2/1)にて精製し、メチル(3ーメトキシー4ー{[(トリフルオロメチル)スルホニル]オキシ}フェニル)アセテート(2.84g,収率99%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.14 (1H, d, J = 8.2 Hz), 6.96 (1H, s), 6.86 (1H, d, J = 8.2 Hz), 3.90 (3H, s), 3.71 (3H, s), 3.62 (2H, s).

[0338] (25-6)

参考例(12-2)、および、参考例(9-10)と同様にして、参考例(25-4)で得られたtert-ブチル 2-ヒドロキシー $\{[4-(4,4,5,5-r)$ -アトラメチル-1,3,2-ジオキサボロラン-2-イル)フェノキシ]メチル $\}$ -3-(トリフルオロメチル)ベンブエート(100mg,0.20mmol)、および、参考例(25-5)で得られたメチル (3-メトキシー4- $\{[(トリフルオロメチル)スルホニル]オキシ\}フェニル)アセテート(79mg,0.24mmol)から、淡黄色粉末の標記化合物(43mg,収率40%)を得た。$

¹H-NMR (400MHz, DMSO-d₆): δ 8.78 (1H, s), 7.79 (1H, d, J = 8.4 Hz), 7.39 (2H,

d, J = 7.2 Hz), 7.27 (1H, d, J = 8.4 Hz), 7.17 (1H, d, J = 8.0 Hz), 6.99–6.96 (3H, m), 6.86 (1H, dd, J = 8.0, 1.2 Hz), 5.34 (2H, s), 3.72 (3H, s), 3.57 (2H, s), 1.55 (9H, s).

MS (ESI) (m/z): 531 $([M-H]^{+})$.

[0339] (参考例26) (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-クロロー1, 1'-ビフェニルー4ーイル)酢酸 参考例(16-4)、参考例(16-5)、および、参考例(9-10)と同様にして、参考例(12-3)で得られたメチル (2-クロロー4'-ヒドロキシー1, 1'-ビフェニルー4ーイル)アセテート(150mg, 0.54mmol)および、参考例(21-5)で得られたtertーブチル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフルオロメチル)ベンゾエート(455mg、1.0mmol)から、無色の標記化合物(46mg、3工程通算収率15%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.28 (1H, s), 7.72 (1H, d, J = 8.0 Hz), 7.42 (1H, d, J = 2.0 Hz), 7.39 (2H, d, J = 8.4 Hz), 7.32–7.28 (2H, m), 7.24 (1H, dd, J = 8.0, 2.0 Hz), 6.97 (2H, d, J = 8.4 Hz), 5.39 (2H, s), 3.69 (2H, s), 1.65 (9H, s).

MS (FAB) (m/z): 536 ([M]⁺).

[0340] (参考例27)(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2ートリフルオロメチルー1,1'ービフェニルー4ーイル)酢酸

(27-1)

[4-クロロ-3-(トリフルオロメチル)フェニル]メタノール(2.00g, 9.59mmol) のテトラヒドロフラン溶液(12ml)に、氷冷下にて、四臭化炭素(3.48g, 10.5mmol)、および、トリフェニルホスフィン(2.75g, 10.5mmol)を加えた後、室温にて1時間攪拌した。反応液にヘキサンを加え不溶物を濾別した。得られた濾液を水に注ぎ、酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=4/1-2/1)により精製して、4-(ブロモメチル)-1-クロロ-2-(トリフルオロメチル)ベンゼンを得た

。得られた4-(ブロモメチル)-1-クロロ-2-(トリフルオロメチル)ベンゼンのエタ ノールー水(3:1, 20ml)混合溶液に、シアン化カリウム(687mg, 10.5mmol)を加 え60℃にて2時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した後、有機層 を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して 得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エ チル=4/1-2/1)に付し、粗製の[4-2-3-(-3-(-3-4))]フェニル アセトニトリルを得た。 得られた粗製物に酢酸(6ml)、および、濃塩酸(6ml)を加え、 100℃で2時間攪拌した。反応液を室温に戻した後、水に注ぎ酢酸エチルで抽出し た。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した 。減圧下にて溶媒を留去し、粗製の[4-クロロ-3-(トリフルオロメチル)フェニル] 酢酸を得た。得られた粗製物にメタノール(12ml)、および、濃硫酸(1.0ml)を加え 50℃で1時間攪拌した。反応液を室温に戻し、減圧下で溶媒を留去した。酢酸エチ ルを加えた後、有機層を水、飽和炭酸水素ナトリウム水、および、飽和食塩水で順次 洗浄し、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去して得られた残渣をシ リカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=10/1)に て精製し、メチル[4-クロロ-3-(トリフルオロメチル)フェニル]アセテート(1.08g , 2工程通算収率45%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.58 (1H, d, J = 2.0 Hz), 7.45 (1H, d, J = 8.0 Hz), 7 .37 (1H, dd, J = 8.0, 2.0 Hz), 3.70 (3H, s), 3.64 (2H, s).

[0341] (27-2)

参考例(27-1)で得られたメチル[4-クロロ-3-(トリフルオロメチル)フェニル] アセテート(51mg, 0.20mmol)、および、参考例(25-4)で得られたtert-ブチル 2-ヒドロキシー{[4-(4, 4, 5, 5-テトラメチル-1, 3, 2-ジオキサボロラン-2-イル)フェノキシ]メチル}-3-(トリフルオロメチル)ベンゾエート(100mg, 0. 20mmol)のトルエン(2. 00ml)溶液に、リン酸三カリウム(127mg、0. 60mmol)、酢酸パラジウム(8. 00mg、 40μ mmol)、および、2-(ジシクロヘキシルホスフィノ)ー2'、6'-ジメトキシー1、1'-ビフェニル(S-PHOS)(16mg、 40μ mol)を加えた後、60°Cにて6時間攪拌した。反応液を室温に戻した後、水に注ぎ酢酸エチルで抽

出した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=4/1-2/1)に付し、粗製の(tertーブチル 2-ヒドロキシー6-[({4'-[(メトキシカルボニル)メチル]-2'-トリフルオロメチルー1,1'-ビフェニルー4ーイル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(85mg)を得た。

得られた粗製物(85mg)から参考例(9-10)と同様にして、淡黄色粉末の標記化合物(24mg, 2工程通算収率44%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.27 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.65 (1H, s) , 7.48 (1H, d, J = 7.6 Hz), 7.31–7.24 (4H, m), 6.94 (2H, d, J = 8.4 Hz), 5.36 (2H, s) , 3.75 (2H, s), 1.62 (9H, s).

MS (ESI) (m/z): 569 $([M-H]^{+})$.

[0342] (参考例28) $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸

(28-1)

参考例(9-1)で得られたメチル(4ーブロモフェニル)アセテート(5.73g, 25.0 mmol)のN, Nージメチルホルムアミド(50ml)溶液に、0 ℃において、水素化ナトリウム(55%油性)(2.40g, 55.0mmol)を加えた後、室温にて10分間攪拌した。反応液を0 ℃に冷却し、1,2ージブロモエタン(2.37ml,27.5mmol)を加えた後、室温にて更に15時間攪拌した。反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した後、有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n- へキサン/酢酸エチル=9/1)にて精製し、油状のメチル 1- (4ーブロモフェニル)シクロプロパンカルボキシレート(2.97g,収率47%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.43 (2H, d, J = 8.2 Hz), 7.22 (2H, d, J = 8.2 Hz), 3 .63 (3H, s), 1.63–1.59 (2H, m), 1.18–1.14 (2H, m).

[0343] (28-2)

参考例 (23-2) と同様にして、参考例 (28-1) で得られたメチル 1-(4-) ロモフェニル)シクロプロパンカルボキシレート (2.96g, 11.6mmol)、および、4-(4, 4, 5, 5-) テトラメチルー1、3、2- ジオキサボロランー2- イル)フェノール (2.55g, 11.6mmol) から、白色粉末のメチル 1-(4'-) ドロキシー1、1'- ビフェニルー4ーイル)シクロプロパンカルボキシレート (2.49g, 収率80%) を得た。 1 H-NMR (400MHz, CDCl) : δ 7.46 (2H, d, J=8.2 Hz), 7.44 (2H, d, J=8.6 Hz), 7.36 (2H, d, J=8.2 Hz), 6.86 (2H, d, J=8.6 Hz), 4.95 (1H, s), 3.64 (3H, s), 1.65-1.61 (2H, m), 1.24-1.20 (2H, m).

[0344] (28-3)

参考例(9-10)、および、参考例(34-1)と同様にして、参考例(28-2)で得られたメチル 1-(4'-ヒドロキシ-1,1'-ビフェニルー4ーイル)シクロプロパンカルボキシレート<math>(2.49g,9.28mmol)から、白色粉末のアリル 1-(4'-ヒドロキシー1,1'-ビフェニルー4ーイル)シクロプロパンカルボキシレート<math>(2.1g,2工程収率77%)を得た。

本工程では、参考例(9-10)に相当する加水分解工程を反応温度60℃にて行った。

¹H-NMR (400MHz, CDCl₃): δ 7.47-7.41 (4H, m), 7.37 (2H, d, J = 8.2 Hz), 6.85 (2 H, d, J = 8.6 Hz), 5.88-5.77 (1H, m), 5.20-5.12 (2H, m), 5.09 (1H, s), 4.57-4.54 (2 H, m), 1.67-1.63 (2H, m), 1.27-1.22 (2H, m).

[0345] (28-4)

参考例(28-3)で得られたアリル $1-(4'-ヒドロキシ-1,1'-ビフェニル-4- イル)シクロプロパンカルボキシレート(479mg,1.63mmol)、および、参考例(5-4)で得られた[2-(ジメトキシメチル)-3-(メトキシメトキシ)-4-(トリフルオロメチル)フェニル]メタノール(505mg,1.63mmolを出発原料に用い、参考例(13-1)、参考例(13-2)、および、参考例(21-3)と同様の方法により、<math>2-(アリルオキシ)-6-\{[(4'-\{1-[(アリルオキシ)カルボニル]シクロプロピル\}-1,1'-ビフェニル-4-イル)オキシ]メチル}-3-(トリフルオロメチル)安息香酸(175mg,4工程$

通算収率19%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.72 (1H, d, J = 8.2 Hz), 7.51–7.45 (3H, m), 7.43 (2 H, d, J = 8.2 Hz), 7.36 (2H, d, J = 8.2 Hz), 6.98 (2H, d, J = 8.6 Hz), 6.11–6.00 (1H, m), 5.87–5.76 (1H, m), 5.45–5.38 (1H, m), 5.30–5.23 (3H, m), 5.19–5.10 (2H, m), 4.61–4.58 (2H, m), 4.56–4.53 (2H, m), 1.66–1.62 (2H, m), 1.25–1.21 (2H, m).

[0346] (28-5)

参考例(28-4)で得られた2-(アリルオキシ)-6-{[(4'-{1-[(アリルオキシ) カルボニル]シクロプロピル}-1,1'-ビフェニルー4ーイル)オキシ]メチル}-3-(トリフルオロメチル)安息香酸(175mg,0.317mmol)、および、N,Nージメチルホルムアミドジtertーブチルアセタール(0.300ml,1.27mmol)をトルエン(2ml)に溶解し、2時間加熱還流した。反応液を減圧下にて濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n- キサン/酢酸エチル=3/1)により精製し、tertーブチル2-(アリルオキシ)-6-{[(4'-{1-[(アリルオキシ)カルボニル]シクロプロピル}-1,1'-ビフェニルー4ーイル)オキシ]メチル}-3-(トリフルオロメチル)ベンゾエート(122mg、収率63%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.62 (1H, d, J = 8.2 Hz), 7.50 (2H, d, J = 8.6 Hz), 7 .47 (2H, d, J = 8.6 Hz), 7.40-7.36 (3H, m), 6.97 (2H, d, J = 8.6 Hz), 6.11-6.00 (1H, m), 5.88-5.76 (1H, m), 5.45-5.38 (1H, m), 5.29-5.24 (1H, m), 5.19-5.11 (4H, m), 4.58-4.53 (4H, m), 1.67-1.63 (2H, m), 1.58 (9H, s), 1.26-1.21 (2H, m).

[0347] (28-6)

参考例 (17-4) と同様にして、参考例 (28-5) で得られたtert ーブチル 2-(アリルオキシ) $-6-{[(4'-{1-[(アリルオキシ)カルボニル]シクロプロピル}-1, 1'-ビフェニルー4ーイル)オキシ]メチル<math>}-3-($ トリフルオロメチル) ベンゾエート (122mg, 0.2mmol) から、淡黄色粉末の標記化合物 (63mg, 収率59%) を得た。 1 H-NMR (400MHz, CDCl): δ 12.23 (1H, s), 7.68 (1H, d, J=8.2 Hz), 7.50 (2H, d, J=8.6 Hz), 7.48 (2H, d, J=8.2 Hz), 7.39 (2H, d, J=8.2 Hz), 7.25 (1H, d, J=8.2 Hz), 6.95 (2H, d, J=8.6 Hz), 5.36 (2H, s), 1.72-1.68 (2H, m), 1.64 (9H, s), 1.33-1.28 (2H, m).

MS (ESI) (m/z): 527 $([M-H]^{+})$.

[0348] (参考例29) tert - ブチル 2ーヒドロキシー6ー({[3'ー(メチルスルホニル)ー1, 1 'ービフェニルー4ーイル]オキシ}メチル)ー3ー(トリフルオロメチル)ベンゾエート 3ーブロモフェニルメチルスルホン(235mg、1.0mmol)および、参考例(25ー4)で得られたtert - ブチル 2ーヒドロキシー{[4ー(4, 4, 5, 5ーテトラメチルー1, 3, 2ージオキサボロランー2ーイル)フェノキシ]メチル}ー3ー(トリフルオロメチル)ベンゾエート(494mg, 1.0mmol)のジオキサン(5.0ml)溶液に、2Mー炭酸ナトリウム水溶液(1.0ml)、および、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ージクロロメタン付加物(81mg, 0.1mmol)を加えた後、50℃にて2時間攪拌した。反応液を室温に戻した後、水に注ぎ酢酸エチルで抽出(3回)した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去することにより固体の標記化合物(80mg, 収率15%)を得た

¹H-NMR (400MHz, DMSO-d₆): δ 11.44 (1H, s), 8.12 (1H, s), 8.00 (1H, d, J = 8.0 Hz), 7.86 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 8.0 Hz), 7.76 (2H, d, J = 8.0 Hz), 7.71 (1H, t, J = 8.0 Hz), 7.31 (1H, d, J = 8.8 Hz), 7.13 (2H, d, J = 8.0 Hz), 5.39 (2H, s), 3.29 (3H, s), 1.56 (9H, s).

MS (ESI) (m/z): 521 $([M-H]^{\dagger})$.

[0349] (参考例30) (2-アミノー4'ー{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル) ベンジル]オキシ}ー1, 1'ービフェニルー4ーイル) 酢酸 参考例(22-2) で得られた、(4'ー{[2-(tert-ブトキシカルボニル)-3-ヒドロキシー4-(トリフルオロメチル) ベンジル]オキシ}ー2ーニトロー1, 1'ービフェニルー4ーイル) 酢酸(130mg, 0. 237mmol) のメタノール溶液(4ml) にロジウムーアルミナ(Rh5%)(100mg)を加え、水素雰囲気下にて、室温で2日間攪拌した。不溶物をセライトにより濾別し、濾液を濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:塩化メチレン/メタノール=20/1)にて精製し、黄色アモルファスの標記化合物(63mg, 収率51%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.69 (1H, d, J = 8.0 Hz), 7.35 (2H, d, J = 8.6 Hz), 7

.26 (1H, d, J = 8.0 Hz), 7.04 (1H, d, J = 8.0 Hz), 6.96 (2H, d, J = 8.6 Hz), 6.71 (1H, d, J = 8.0 Hz), 6.69 (1H, br s), 5.36 (2H, s), 3.58 (2H, s), 1.65 (9H, s).

MS (ESI) (m/z): 516 ([M-H]⁺).

[0350] (参考例31)[4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-(ジメチルアミノ)-1,1'-ビフェニル-4-イル]酢酸

参考例(30)で得られた、 $(2-アミノ-4'-\{[2-(tert-ブトキシカルボニル)-3-(1)]$ ーヒドロキシー4ー(トリフルオロメチル)ベンジル]オキシ $\}$ ー1、1' ービフェニルー4ーイル)酢酸(50mg、0.096mmol)のアセトニトリル溶液(4ml)に36%ホルマリン水溶液(0.5ml)、酢酸(100 μ l)、および、シアノ水素化ホウ素ナトリウム(36mg、0.59mmol)を順次加え、室温にて終夜攪拌した。反応液を水に注ぎ酢酸エチルで抽出した後、有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒:塩化メチレン/メタノール=20/1)にて精製し、黄色油状の標記化合物(48mg、収率92%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.68 (1H, d, J = 8.2 Hz), 7.48 (2H, d, J = 8.6 Hz), 7 .27 (1H, d, J = 8.2 Hz), 7.12 (1H, d, J = 8.2 Hz), 6.93–6.87 (4H, m), 5.34 (2H, s), 3 .63 (2H, s), 2.53 (6H, s), 1.63 (9H, s).

MS (ESI) (m/z): 544 $([M-H]^{\dagger})$.

[0351] (参考例32)2-(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1, 1'-ビフェニル-4-イル)-3-ヒドロキシプロパン酸

(32-1)

参考例(13-3)で得られたtertーブチル 2-tドロキシ $-6-[({4'-[(メトキシ カルボニル)メチル]-1, 1'-ビフェニル<math>-4$ -イル $}$ オキシ)メチル]-3-(トリフル オロメチル)ベンブエート(400mg, 0.77mmol)に、ジメチルスルホキシド(3ml)、パラホルムアルデヒド(純度90%, 300mg<math>)、および、炭酸水素ナトリウム(300mg, 3.57mmol)を加え、60%で3時間攪拌した。反応液を室温に冷却した後、酢酸エチ

WO 2006/004030

ルで希釈した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=4/1-1/3)にて精製し、無色固体のtert-ブチル 2-ヒドロキシ-6-[($\{4'-$ [2-ヒドロキシ-1-($\}$ トキシカルボニル)エチル]-1, 1'-ビフェニル-4-イル $\}$ オキシ)メチル]-3-(トリフルオロメチル)ベンブエート(246mg, 収率58%)を得た。

¹H-NMR (500MHz, CDCl₃): δ 12.26 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.53 (2H, d, J = 8.0 Hz), 7.52 (2H, d, J = 9.0 Hz), 7.32 (2H, d, J = 8.0 Hz), 7.28-7.26 (1H, m), 6.98 (2H, d, J = 9.0 Hz), 5.38 (2H, s), 4.18-4.14 (1H, m), 3.91-3.84 (2H, m), 3.74 (3H, s), 2.26-2.23 (1H, m), 1.65 (9H, s).

[0352] (32-2)

本工程では、テトラヒドロフランに代えて1, 4 — ジオキサンを反応溶媒として用いた。 1 H-NMR (400MHz, CDCl $_{3}$): δ 12.26 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.55 (2H, d, J = 8.0 Hz), 7.52 (2H, d, J = 8.8 Hz), 7.36 (2H, d, J = 8.0 Hz), 7.29-7.26 (1H, m), 6.98 (2H, d, J = 8.8 Hz), 5.38 (2H, s), 4.21-4.17 (1H, m), 3.97-3.91 (2H, m), 1.65 (9H, s).

 $ESI(ES-)(m/z): 531 ([M-H]^{+}).$

[0353] (参考例33)(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-2-イソプロピル-1,1'-ビフェニル-4-イル) 酢酸

(33-1)

臭化亜鉛(473mg, 2. 1mmol)のテトラヒドロフラン(2ml)溶液に、臭化イソプロピ

WO 2006/004030 PCT/JP2005/012185

ルマグネシウム-0.63Mテトラヒドロフラン溶液(3.2ml, 2.0mmol)を氷冷下で滴下した。15分間攪拌した後、反応液を-78℃に冷却した。3-ブロモ-4-メトキシベンジルシアニド(226mg, 1.0mmol)、および、[1,1'ービス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) -ジクロロメタン付加物(32mg, 0.04mmol)を-78℃で加えた後、反応液を室温に昇温し、更に5時間攪拌した。反応液に1N-塩酸を加え酢酸エチルで抽出した。有機層を水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=8/1-6/1)に付し、粗製の(3-イソプロピル-4-メトキシフェニル)アセトニトリル(158mg)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 7.12-7.11 (2H, m), 6.83 (1H, d, J = 9.2 Hz), 3.83 (3H, s), 3.69 (2H, s), 3.34-3.27 (1H, m), 1.21 (3H, d, J = 6.8 Hz), 1.20 (3H, d, J = 6.8 Hz).

[0354] (33-2)

参考例(15-4)と同様にして、参考例(33-1)で得られた(3-イソプロピル-4-メトキシフェニル)アセトニトリルの粗精製物(158mg)から、粗製のメチル (4-ヒドロキシ-3-イソプロピルフェニル)アセテート(163mg)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.08 (1H, s), 6.98 (1H, d, J = 8.0 Hz), 6.70 (1H, d, J = 8.0 Hz), 4.64 (1H, br s), 3.69 (3H, s), 3.55 (2H, s), 3.21–3.15 (1H, m), 1.25 (6H, d, J = 6.8 Hz).

[0355] (33-3)

参考例(25-5)、参考例(9-2)、および、参考例(15-4)と同様にして、参考例(33-2)で得られた粗製のメチル (4-ヒドロキシ-3-4ソプロピルフェニル)アセテート(163 mg)から、粗製のメチル (4'-ヒドロキシ-2-4ソプロピル-1, 1'-ビフェニル-4-4ル)アセテート(147 mg)を得た。

¹H-NMR (400MHz, CDCl₃): δ 7.26-7.12 (5H, m), 6.87-6.82 (2H, m), 3.74 (3H, s), 3.67(2H, s), 3.09-3.02 (1H, m), 1.15 (6H, d, J = 6.8 Hz).

[0356] (33-4)

参考例(16-4)、および、参考例(21-2)と同様にして、参考例(33-3)で得られたメチル (4'ーヒドロキシー2ーイソプロピルー1、1'ービフェニルー4ーイル)アセテートの粗精製物(147mg)、および、参考例(15-5)で得られた2ー(ジメトキシメチル)ー3ー(メトキシメトキシ)ー4ー(トリフルオロメチル)ベンジル メタンスルホネート(252mg、0.65mmol)から、粗製のメチル (4'ー{[2ーホルミルー3ーヒドロキシー4ー(トリフルオロメチル)ベンジル]オキシ}ー2ーイソプロピルー1ー1'ービフェニルー4ーイル)アセテート(169mg)を得た。

¹H-NMR (500MHz, CDCl₃): δ 12.66 (1H, s), 10.39 (1H, s), 7.83 (1H, d, J = 8.0 Hz), 7.26-7.23 (3H, m), 7.12-7.10 (3H, m), 7.00 (2H, d, J = 8.5 Hz), 5.37 (2H, s), 3.67 (2H, s), 3.05-3.02 (1H, m), 1.16 (6H, d, J = 6.5 Hz).

[0357] (33-5)

参考例(21-3)、参考例(21-4)、および、参考例(16-5)と同様にして、参考例(33-4)で得られたメチル (4'-{[2-ホルミル-3-ヒドロキシー4-(トリフルオロメチル)ベンジル]オキシ}-2-イソプロピルー1-1''-ビフェニルー4ーイル)アセテートの粗精製物(169mg)から、tertーブチル 2-ヒドロキシー6-[({2'-イソプロピルー4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニルー4ーイル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(91mg,0.16mmol)を得た。上記参考例(16-5)と同様の工程において、化合物の精製は、シリカゲルカラムクロマトグラフィーに引き続き、高速液体クロマトグラフィー(カラム:ジーエルサイエンス、イナートシルODS-3;溶離液:アセトニトリル:水=93/7-98/2)を用いて行った。

¹H-NMR (500MHz, CDCl₃): δ 12.26 (1H, s), 7.72 (1H, d, J = 8.0 Hz), 7.32–7.26 (2 H, m), 7.21 (2H, d, J = 8.5 Hz), 7.12 (2H, br s), 6.94 (2H, d, J = 8.5 Hz), 5.38 (2H, s), 3.73 (3H, s), 3.67 (2H, s), 3.09–3.04 (1H, m), 1.65 (9H, s), 1.15 (6H, d, J = 6.5 Hz).

[0358] (33-6)

参考例(9-10)と同様にして、参考例(33-5)で得られたtert-ブチル 2-ビドロキシ-6-[$({2'-}$ -イソプロピル-4'-[(メトキシカルボニル)メチル]-1, 1'-ビ

フェニルー4ーイル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(91mg, 0.16mmol)から、無色固体の標記化合物(84g,収率94%)を得た。

本工程では、テトラヒドロフランに代えて1, 4 — ジオキサンを反応溶媒として用いた。 1 H-NMR (400MHz, CDCl₃): δ 12.23 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.28 (1H, d, J = 8.4 Hz), 7.25-7.24 (1H, m), 7.19 (2H, d, J = 8.8 Hz), 7.12 (2H, br s), 6.92 (2H, d, J = 8.8 Hz), 5.36 (2H, s), 3.69 (2H, s), 3.07-3.04 (1H, m), 1.65 (9H, s), 1.15 (6H, d, J = 6.8 Hz).

ESI(ES-)(m/z): 543 ([M-H]⁺).

[0359] (参考例34)4'-{[2-(tert-ブトキシカルボニル)-3-ビドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニル-4-カルボン酸 (34-1)

4'-ヒドロキシー1,1'-ビフェニルー4ーカルボン酸(820mg,3.82mmol)のベンゼン(5ml)溶液に、アリルアルコール(10ml)、および、濃硫酸(5ml)を順次加えた後、70℃にて5時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。有機層を水(2回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:nーヘキサン/酢酸エチル=5/1-3/1)にて精製し、灰白色固体のアリル4'-ヒドロキシー1,1'-ビフェニルー4ーカルボキシレート(582mg,収率60%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 8.08 (2H, d, J = 8.6 Hz), 7.59 (2H, d, J = 8.6 Hz), 7 .50 (2H, d, J = 8.6 Hz), 6.91 (2H, d, J = 8.6 Hz), 6.10–5.99 (1H, m), 5.44–5.20 (1H, m), 5.31–5.26 (1H, m), 5.01 (1H, s), 4.83 (2H, d, J = 5.5 Hz).

[0360] (34-2)

参考例(34-1)で得られたアリル 4'ーヒドロキシ-1, 1'ービフェニル-4ーカル ボキシレート(190mg, 0.75mmol)、および、参考例(21-5)で得られたtertーブ チル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフル オロメチル)ベンブエート(400mg, 0.88mmol)から、参考例(16-4)、参考例(16-5)、および、参考例(6-2)と同様にして、無色粉末の標記化合物(293mg, 3工

221

程通算収率80%)を得た。

¹H-NMR (500MHz, DMSO-d₆): δ 12.9 (1H, br s), 11.4 (1H, br s), 7.98 (2H, d, J = 8.8 Hz), 7.82 (1H, d, J = 8.8 Hz), 7.76 (2H, d, J = 8.8 Hz), 7.72 (2H, d, J = 8.8 Hz), 7.30 (1H, d, J = 8.8 Hz), 7.11 (2H, d, J = 8.8 Hz), 5.39 (2H, s), 1.57 (9H, s). MS (FAB+) (m/z): 489 ([M+H][†]).

[0361] (参考例35)

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-ホルミル-1$, 1'-ビフェニル-4-イル) 酢酸 (35-1)

参考例(19-1)、参考例(25-5)、および、参考例(15-3)と同様にして、メチル 4-ヒドロキシフェニルアセテート(15.6g, 110mmol)から、メチル (2-ホルミル -4'-ヒドロキシ-1, 1'-ビフェニル-4-イル)アセテート(6.32g, 3工程通算収率21%)を得た。

本工程では、参考例(19-1)に相当する反応において、反応時間を12時間とした。また、参考例(15-3)に相当する反応において、ほう酸エステル試薬として4-(4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェノールを用いた。

¹H-NMR (500MHz, CDCl₃): δ 9.96 (1H, s), 7.88 (1H, s), 7.55 (1H, app d, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 7.20 (2H, d, J = 8.3 Hz), 6.92 (2H, d, J = 8.3 Hz), 3. 75–3.71 (5H, m).

[0362] (35-2)

参考例(21-5)で得られたtertーブチル 6-(ブロモメチル)-2-[(tert-ブトキシカルボニル)オキシ]-3-(トリフルオロメチル)ベンゾエート(3.60g, 8.56mm ol)、および、参考例(35-1)で得られたメチル (2-ホルミルー4'ーヒドロキシー1, 1'ービフェニルー4ーイル)アセテート(2.10g, 7.78mmol)のアセトン溶液(50ml)に、氷冷下にて、炭酸カリウム(1.61g, 11.7mmol)を加え、室温にて2時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。有機層を水(3回)、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下にて濃縮した。得ら

WO 2006/004030

れた残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒: n- へキサン/酢酸エチル = 95/5-70/30) にて精製し、無色油状のtert-ブチル 2-[(tert-ブトキシ カルボニル)オキシ] $-6-[({2'-$ ホルミル-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル $\}$ オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(3.06g, 収率61%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 9.93 (1H, s), 7.87 (1H, s), 7.71 (1H, d, J = 8.2 Hz), 7.58 (1H, d, J = 8.2 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.38 (1H, d, J = 7.8 Hz), 7.28 (2 H, d, J = 8.2 Hz), 7.01 (2H, d, J = 8.2 Hz), 5.27 (2H, s), 3.75–3.70 (5H, m), 1.58 (9H, s), 1.54 (9H, s).

[0363] (35-3)

参考例(16-5)、および、参考例(9-10)と同様にして、参考例(35-2)で得られたtertーブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-[($\{2'$ -ホルミル-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(88mg, 0. 14mmol)から、白色粉末の標記化合物(28mg、2工程通算収率38%)を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.23 (1H, s), 9.94 (1H, s), 7.89 (1H, d, J = 2.0 Hz), 7.70 (1H, d, J = 8.2 Hz), 7.55 (1H, dd, J = 7.8, 2.0 Hz), 7.40 (1H, d, J = 7.8 Hz), 7.29 (2H, d, J = 8.6 Hz), 7.26 (1H, d, J = 8.2 Hz), 7.00 (2H, d, J = 8.6 Hz), 5.38 (2 H, s), 3.76 (2H, s), 1.65 (9H, s).

ESI(ES-)(m/z): 529 ([M-H]⁺).

[0364] (参考例36)

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-(ヒドロキシメチル)-1,1'-ビフェニルー4ーイル)酢酸 参考例(5-4)、参考例(16-5)、および、参考例(9-10)と同様にして、参考例(35-2)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-[({2'-ホルミルー4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニルー4ーイル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(200mg,0.371mmol)から、白色粉末の標記化合物(62mg、3工程通算収率31%)を得た。

 1 H-NMR (400MHz, CDCl₃): δ 12.22 (1H, s), 7.68 (1H, d, J = 8.2 Hz), 7.44 (1H, s), 7.30–7.18 (5H, m), 6.93 (2H, d, J = 8.2 Hz), 5.35 (2H, s), 4.59 (2H, s), 3.70 (2H, s), 1.64 (9H, s),

 $ESI(ES-)(m/z): 531 ([M-H]^{+}).$

[0365] (参考例37)

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-シアノ-1$, 1'-ビフェニル-4-イル) 酢酸 (37-1)

参考例(35-2)で得られたtert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-[($\{2'$ -ホルミル-4'-[(\forall トキシカルボニル)メチル]-1, 1'-ビフェニル-4- ℓ -イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(198mg, 0. 30 7mmol)のエタノール溶液(ℓ -4mmol)を加えて、室温で ℓ -4時間攪拌した。反応液を酢酸エチルにて希釈し、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒: ℓ -1のキサン/酢酸エチル=2/1)に付し、粗製の ℓ -インチル2-[(ℓ -1の+シカルボニル)オキシ]-6-[(ℓ -1の+シイミノ)メチル]-4'-[(ℓ -1の+シカルボニル)メチル]-1, ℓ -ビフェニル- ℓ -イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(170mg)を得た。

得られた粗製のtertーブチル $2-[(tert-ブトキシカルボニル)オキシ]-6-[({2'-[(ヒドロキシイミノ)メチル]-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(170mg)のジクロロメタン溶液(4ml)にトリエチルアミン(71<math>\mu$ l, 0. 51mmol)、および、メタンスルホニルクロリド(23 μ l, 0. 31mmol)を加え、室温で1時間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液、水、および、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧下にて溶媒を留去した。得られた残渣のエタノール溶液(4ml)にトリエチルアミン(71 μ l, 0. 51mmol)を加え、14時間加熱還流した。減圧下にて溶媒を留去し、得られた残渣をシリカゲル分取薄層クロマ

トグラフィー (展開溶媒:n-ヘキサン/酢酸エチル=2/1)に付し、粗製のtert-ブチル $2-[(tert-ブトキシカルボニル)オキシ]-6-[({2'-シアノ-4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(<math>125mg$)を得た。

得られた粗製の $tert-ブチル 2-[(tert-ブトキシカルボニル)オキシ]-6-[({2'-シアノ-4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-3-(トリフルオロメチル)ベンゾエート(125mg)の1,4-ジオキサン溶液(4ml)にピロリジン(33<math>\mu$ l,0.39mmol)を加え、50Cで2時間攪拌した。減圧下にて溶媒を留去して得られた残渣をシリカゲル分取薄層クロマトグラフィー(展開溶媒: $n- \sim$ キサン/酢酸エチル=5/1)により精製し、 $tert- ブチル 6-[({2'-シアノ-4'-[(メトキシカルボニル)メチル]-1,1'-ビフェニル-4-イル}オキシ)メチル]-2-ヒドロキシ-3-(トリフルオロメチル)ベンゾエート(100mg,60%)を得た。$

¹H-NMR (400MHz, CDCl₃): δ 12.30 (1H, s), 7.71 (1H, d, J = 8.6 Hz), 7.67 (1H, d, J = 1.8 Hz), 7.55 (1H, dd, J = 8.6, 1.8 Hz), 7.51 (2H, d, J = 8.6 Hz), 7.46 (1H, d, J = 8.6 Hz), 7.27 (1H, d, J = 8.6 Hz), 7.03 (2H, d, J = 8.6 Hz), 5.40 (2H, s), 3.74 (3 H, s), 3.70 (2H, s), 1.65 (9H, s).

[0366] (37-2)

参考例 (9-10) と同様にして、参考例 (37-1) で得られたtert 一ブチル $6-[({2'-シアノ-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル} オキシ)メチル] <math>-3-($ トリフルオロメチル) ベンゾエート (100mg, 0.184mmol) から、白色アモルファスの標記化合物 (80mg, 82%) を得た。

¹H-NMR (400MHz, CDCl₃): δ 12.29 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.68 (1H, d, J = 1.6 Hz), 7.55 (1H, dd, J = 8.0, 1.6 Hz), 7.51 (2H, d, J = 8.6 Hz), 7.47 (1H, d, J = 8.0 Hz), 7.27 (1H, d, J = 8.0 Hz), 7.02 (2H, d, J = 8.6 Hz), 5.40 (2H, s), 3.74 (2 H, s), 1.65 (9H, s).

MS (FAB) (m/z): 528 $([M+H]^{\dagger})$.

[0367] (製剤例1)ハードカプセル剤

標準二分式ハードゼラチンカプセルに、粉末状の参考例1の化合物(100mg)、ラクトース(150mg)、セルロース(50mg)およびステアリン酸マグネシウム(6mg)を充填して、ハードカプセルを製造し、洗浄後、乾燥する。

(製剤例2)ソフトカプセル剤

大豆油、オリーブ油のような消化性油状物、および、参考例2の化合物の混合物を、100mgの活性成分を含有するように、ゼラチン中に注入して、ソフトカプセルを製造し、洗浄後、乾燥する。

[0368] (製剤例3)錠剤

参考例3の化合物(100mg)、コロイド性二酸化珪素(0.2mg)、ステアリン酸マグネシウム(5mg)、微結晶性セルロース(275mg)、デンプン(11mg)およびラクトース(98.8mg)を用いて、常法に従って、錠剤を製造する。得られた錠剤には、必要に応じて、コーティングを施すことができる。

(製剤例4)懸濁剤

懸濁剤5ml中に、微粉化した参考例4の化合物(100mg)、カルボキシメチルセルロースナトリウム(100mg)、安息香酸ナトリウム(5mg)、ソルビトール溶液(日本薬局方、1.0g)、およびバニリン(0.025ml)を含有するように、懸濁剤を製造する。

(製剤例5)クリーム

ホワイトペトロラトム(40重量%)、微結晶性ワックス(3重量%)、ラノリン(10重量%)、 ソルビタンモノラウレート(5重量%)、0.3%ポリオキシエチレン(20)ソルビタンモノラウレート(0.3重量%)、および水(41.7重量%)からなる5gのクリーム中に、微粉化した参 考例5の化合物(100mg)を混入することにより、クリームを製造する。

産業上の利用可能性

[0369] 本発明の医薬は組織因子の産生抑制作用を有しており、温血動物の生体内において血栓形成性を低下させる作用を有している。従って、本発明の医薬は、血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、又はステント留置後の血管再狭窄の治療及び/又は予防、あるいは、血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞

WO 2006/004030 PCT/JP2005/012185

226

、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈 – 冠動脈バイパス使用の間の血 栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/ 又は予防のために有用である。

請求の範囲

- [1] 組織因子の産生抑制作用を有する医薬であって、LXRリガンドを有効成分として含む医薬。
- [2] 血栓形成性の低下作用を有する請求項1に記載の医薬。
- [3] 血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、及びステント留置後の血管再狭窄からなる群から選ばれる疾患の治療及び/又は予防のための医薬であって、LXRリガンドを有効成分として含む医薬。
- [4] 血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防のための医薬であって、LXRリガンドを有効成分として含む医薬。
- [5] 血液凝固性疾患の治療及び/又は予防のための医薬であって、LXRリガンドを有効 成分として含む医薬。
- [6] LXRリガンドが、LXRアゴニスト又はLXRアンタゴニストである請求項1から5のいずれ か1項に記載の医薬。
- [7] LXRリガンドがLXRアゴニストである請求項1から5のいずれか1項に記載の医薬。
- [8] LXRリガンドが、一般式(Ia)

[化1]

$$Ra^{4}$$

$$Ra^{5}$$

$$Ra^{1}$$

$$Ra^{2}$$

$$Aa$$

$$N$$

$$Ya$$

$$Ra^{3}$$

$$Ra^{4}$$

$$Ra^{5}$$

$$Ra^{5}$$

$$Ra^{5}$$

$$Ra^{7}$$

$$Ra^{7$$

[式中、Ra¹、Ra²及びRa³は、同一又は異なって、水素原子、水酸基、フッ素原子、塩素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、アセチ

ルアミノ基、又は、Ra¹及びRa²が一緒となってメチレンジオキシ基を示し;

Ra⁴及びRa⁵は、同一又は異なって、水素原子、塩素原子、メチル基、又は、メトキシ基を示し:

Yaは、ベンジル基、置換されたベンジル基(当該置換基は、 C_1 - C_1 アルキル基、 C_1 - C_1 アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)、チェニルメチル基、置換されたチェニルメチル基(当該置換基は、 C_1 - C_1 - C_2 アルキル基及びハロゲノ基からなる群より選択される1個の基である)、ピリジルメチル基、又は、置換されたピリジルメチル基(当該置換基は、 C_1 - C_1 - C_2 アルキル基、 C_1 - C_2 アルキル基及びハロゲノ基からなる群より選択される1個の基である)を示し;

Aaは、フェニル基を示す。]

で表される化合物又はその薬理上許容される塩若しくはエステルである請求項1乃至7のいずれか1項に記載の医薬。

[9] LXRリガンドが、一般式(Ib)

[化2]

[式中、Abは、フェニル基を示し;

 Rb^1 は、5乃至7員へテロシクリル基、又は、式 $-O-Rb^{1a}$ [式中、 Rb^{1a} は、置換された C_1-C_2 アルキル基(当該置換基は、同一又は異なり、水酸基、ヒドロキシメトキシ基、ヒドロキシメトキシ基、アミノ基、メチルアミノ基、エチルアミノ基から成る群より選択される1乃至2個の基である)で表される基を示し:

Rb²は、水素原子、メチル基、水酸基、メトキシ基、アミノ基、フルオロ基、又は、クロロ基を示し;

Rb³は、水素原子を示し;

Rb⁴及びRb⁵は、同一又は異なって、水素原子、メチル基、エチル基、メトキシ基、フルオロ基、又は、クロロ基を示し;

Ybは、ベンジル基、置換されたベンジル基(当該置換基は、C₁-C₂アルキル基、C₁-C₂アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)、チエニルメチル基、置換されたチエニルメチル基(当該置換基は、C₁-C₂アルキル基、C₁-C₂アルキル基、C₁-C₂アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)、ピリジルメチル基、又は、置換されたピリジルメチル基(当該置換基は、C₁-C₂アルキル基、C₁-C₂アルコキシ基及びハロゲノ基からなる群より選択される1個の基である)を示す。]で表される化合物又はその薬理上許容される塩若しくはエステルである請求項1乃至7のいずれか1項に記載の医薬。

[10] LXRリガンドが、一般式(Ic)

[化3]

$$Rc^3$$
 Rc^4
 Rc^5
 Rc^7
 Rc^2
 Rc^6
 Rc^6

[式中、 Rc^1 、 Rc^2 、 Rc^3 、および、 Rc^4 は、同一または異なり、水素原子、 C_1 $-C_3$ アルキル基、フルオロメチル基、クロロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、エトキシ基、フルオロメトキシ基、クロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、メタンスルホニル基、エタンスルホニル基、フルオロ基、カロロ基、または、ブロモ基を示し; Rc^5 は、水素原子を示し;

 Rc^6 は、式 $-CORc^8$ [式中、 Rc^8 は、 C_3-C_7 ルコキシ基、または、ハロゲノ C_3-C_5 アルコキシ基(当該ハロゲノ C_3-C_5 アルコキシ基は、1乃至5個のフルオロもしくはクロロ基で置換された C_3-C_7 アルコキシ基を示す)を示す。]を有する基を示し;

Rc⁷は、式-N(Rc¹⁰)ZcRc¹¹を有する基

[式中、Rc10は、メチル基、エチル基またはシクロプロピル基を示し、

 Rc^{11} は、 C_1 $-C_1$ アルキル基、置換 C_1 $-C_1$ アルキル基(当該置換基は、置換基群 α cより選択される1個の基である)、シクロプロピルー(C_1 $-C_2$ アルキル)基、 C_3 $-C_4$ シクロアルキル基、または、 C_2 $-C_4$ アルケニル基を示し、

Zcは、式-CO-、-CS-もしくは $-SO_2-$ を有する基を示す。]を示し;

Ycは、フェニル基、置換フェニル基(当該置換基は、置換基群 β cより選択される1個の基である)、ピリジル基、または、置換ピリジル基(当該置換基は、置換基群 β cより選択される1個の基である)を示し;

置換基群 α cは、ヒドロキシル基、メトキシ基、エトキシ基、フルオロメトキシ基、クロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、ベンジルオキシ基、フェニルオキシ基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、フルオロ基、および、クロロ基からなる群を示し;

[11] LXRリガンドが、一般式(Id)

[化4]

$$Rd^{3}$$

$$Rd^{2}$$

$$Rd^{1}$$

$$Rd^{6}$$

$$Rd^{7}$$

$$Rd^{8}$$

$$Rd^{8}$$

$$Rd^{8}$$

[式中、 Rd^1 は、式 $-CORd^9$ [式中、 Rd^9 は、 C_1 $-C_2$ アルコキシ基またはハロゲノ C_1 $-C_2$ アルコキシ基(当該ハロゲノ C_1 $-C_2$ アルコキシ基は、1乃至5個のハロゲノ基で置換された C_1 $-C_2$ アルコキシ基を示す)を示す。]を有する基を示し;

Rd²は、水素原子、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、フルオロ基、または、クロロ基を示し;

 Rd^3 は、 C_1 $-C_4$ アルキル基、ハロゲノ C_1 $-C_4$ アルキル基(当該ハロゲノ C_1 $-C_4$ アルキル基は、1乃至5個のハロゲノ基で置換された C_1 $-C_4$ アルキル基を示す)、 C_3 $-C_4$ シクロアルキル基、 C_2 $-C_4$ アルケニル基、 C_1 $-C_4$ アルコキシ基、フルオロ基、または、クロロ基を示し;

Rd⁴およびRd⁵は、水素原子を示し;

Rd⁶およびRd⁷は、水素原子を示し;

Rd⁸は、式ーN(Rd¹⁰)ZdRd¹¹

[式中、 Rd^{10} は、メチル基、エチル基、1-プロピル基、または、2-プロピル基を示し、

 Rd^{11} は、 C_1 $-C_4$ アルキル基、置換 C_1 $-C_4$ アルキル基(当該置換基は、置換基群 α dより選択される1個の基である)、 $(C_3$ $-C_4$ シクロアルキル)メチル基、 C_3 $-C_4$ シクロアルキル基、または、ビニル基を示し、

Zdは、式-CO-、-CS-もしくは $-SO_2$ -を有する基を示す。]を有する基を示し;

Xd¹は、単結合を示し;

Ydは、フェニル基、置換フェニル基(当該置換基は、置換基群 β dより選択される1個の基である)、または、ピリジル基を示し;

置換基群 α dは、メトキシ基、メチルチオ基、メチルアミノ基、および、ジメチルアミノ 基からなる群を示し:

置換基群 β dは、メトキシ基、メチルアミノ基、ジメチルアミノ基、フルオロ基、および、クロロ基からなる群を示す。]

で表される化合物又はその薬理上許容される塩若しくはエステルである請求項1乃至7のいずれか1項に記載の医薬。

[12] LXRリガンドが、一般式(Ie)

[425]

$$Re^{3}$$

$$Re^{2}$$

$$Re^{1}$$

$$Re^{6}$$

$$Re^{6}$$

$$Re^{1}$$

$$Re^{6}$$

$$Re^{6}$$

$$Re^{7}$$

$$Re^{7}$$

$$Re^{7}$$

[式中、 Re^1 、 Re^2 、 Re^3 、および、 Re^4 は、同一または異なり、水素原子、 $C_1 - C_2$ アルキル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、メトキシ基、エトキシ基、フルオロ基、クロロ基、または、ブロモ基を示し:

Re⁵は、水素原子を示し;

 Re^6 は、式 $-CORe^8$ [式中、 Re^8 は、 C_1 $-C_2$ アルコキシ基、または、ハロゲノ C_1 $-C_4$ アルコキシ基(当該ハロゲノ C_1 $-C_4$ アルコキシ基は、1乃至5個のフルオロもしくはクロロ基で置換された C_1 $-C_2$ アルコキシ基を示す)を示す。]を有する基を示し;

Re⁷は、式-Xe²Re¹⁰

[式中、 Re^{10} は、式 $-CORe^{11}$ (式中、 Re^{11} は、ヒドロキシル基、メトキシ基、または、エトキシ基を示す)を有する基、または、

式-SO₂Re¹²(式中、Re¹²は、メチル基またはエチル基を示す)を有する基を示し、 Xe²は、単結合、メチレン基、または、置換メチレン基(当該置換基は、2個のフルオロ基であり、当該2個の置換基が一緒となってエチレン基を形成してもよい)を示す。] を有する基を示し:

Ye¹は、フェニル基を示し;

Ye²は、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群 α eより選択される1乃至2個の基である)、チエニル基、チアゾリル基、ピリジル基、または、置換チエニル基、置換チアゾリル基もしくは置換ピリジル基(当該置換基は、同一または異なり、置換基群 α eより選択される1乃至2個の基である)を示し;

置換基群 α eは、 C_1 $-C_4$ アルキル基、トリフルオロメチル基、2,2,2 - トリフルオロエチル基、 C_2 - C_4 アルケニル基、 C_2 - C_4 アルキニル基、 C_3 - C_4 シクロアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、メタンスルホニル基、

エタンスルホニル基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジ エチルアミノ基、ホルミル基、メチルカルボニル基、エチルカルボニル基、ニトロ基、フ ルオロ基、および、クロロ基からなる群を示す。]

で表される化合物又はその薬理上許容される塩若しくはエステルである請求項1乃至7のいずれか1項に記載の医薬。

[13] LXRリガンドが、一般式(If)

[化6]

$$Rf^{3}$$

$$Rf^{5}$$

$$Rf^{2}$$

$$Rf^{1}$$

$$Rf^{6}$$

$$Rf^{7}$$

$$Yf^{1}$$

$$Yf^{2}$$

$$Rf^{8}$$

$$Rf^{8}$$

[式中、Rf¹は、式-CORf²[式中、Rf²は、 $C_1 - C_1 T$ ルキル基、 $C_1 - C_1 T$ ルコキシ基は、1乃至7個基、NDF/ $C_1 - C_1 T$ ルコキシ基は、1乃至7個のハロゲノ基で置換された $C_1 - C_1 T$ ルコキシ基を示す)、 $D_1 - D_1 T$ 大シ)基、 $D_1 - D_1 T$ 大シ)基、 $D_2 - D_1 T$ 大シ)を示す)を表示し、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)を示す]を有する基を示し:

Rf³は、水素原子、C₁ -C₂ rルキル基、ハロゲノC₁ -C₂ rルキル基(当該ハロゲノC₁ -C₂ rルキル基は、1乃至7個のハロゲノ基で置換されたC₁ -C₂ rルキル基を示す)、(C₁ -C₂ rルコキシ)-(C₁ -C₂ rルキル)基、(C₁ -C₂ rルキルノフィニル)-(C₁ -C₂ rルキルスルフィニル)-(C₁ -C₂ rルキル)基、(C₁ -C₂ rルキル)基、[

 $egin{align*} egin{align*} egin{align*$

 Rf^4 および Rf^5 は、同一または異なり、水素原子、 C_1 $-C_2$ $-C_4$ アルキル基(当該ハロゲノ C_1 $-C_4$ アルキル基は、1乃至5個のハロゲノ基で置換された C_1 $-C_4$ アルキル基を示す)、 C_3 $-C_6$ シクロアルキル基、ヒドロキシル基、 C_1 $-C_4$ ルコキシ基、ハロゲノ C_1 $-C_4$ アルコキシ基(当該ハロゲノ C_1 $-C_4$ アルコキシ基は、1乃至5個のハロゲノ基で置換された C_1 $-C_4$ アルコキシ基を示す)、または、ハロゲノ基を示し;

RfおよびRfは、同一または異なり、水素原子または $C_1 - C_3$ アルキル基を示し; Rf8は、式-Xf2Rf10

[式中、 Rf^{10} は、式 $-CORf^{11}$ [式中、 Rf^{11} は、EFDキシル基、 $C_1 - C_6$ アルコキシ基、 $(C_3 - C_8)$ クロアルキル) $-(C_1 - C_6)$ アルキル)オキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $(C_3 - C_8)$ クロアルキルアミノ基、 $(C_1 - C_6)$ クロアルキル) $-(C_1 - C_6)$ が、 $(C_1 - C_6)$ が、(C

 ν) $-(C_1-C_7\nu+\nu)]-N-(C_3-C_5\nu$ クロアルキル)アミノ基、ヒドロキシルアミノ基、または、ヒドロキシル($C_1-C_7\nu+\nu$)アミノ基を示す]を有する基、

式 - SO $_2$ Rf 12 [式中、Rf 12 は、 $_1$ - C $_2$ アルキル基、 $_3$ - C $_3$ - C $_4$ - C $_4$ - C $_5$ C -

式 $-N(Rf^{13})CORf^{14}$ [式中、 Rf^{13} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_3$ シクロアルキル) $-(C_1 - C_6$ アルキル)基、または、 $C_3 - C_8$ シクロアルキル基を示し、 Rf^{14} は、水素原子、 $C_1 - C_6$ アルキル基、 $(C_3 - C_8$ シクロアルキル) $-(C_1 - C_6$ アルキル)基、または、 $C_3 - C_8$ シクロアルキル)を有する基、

式 $-N(Rf^{13})SO_2Rf^{15}[$ 式中、 Rf^{13} は、上記と同意義を示し、 Rf^{15} は、 C_1-C_2 アルキル基、(C_3-C_8 シクロアルキル) $-(C_1-C_2$ アルキル)基、または、 C_3-C_8 シクロアルキル基を示す]を有する基、または、テトラゾール-5-イル基を示し、

Xf²は、単結合、C₁ - C₂アルキレン基、または、置換C₁ - C₂アルキレン基(当該置換基は、同一または異なり、置換基群 γ fより選択される1乃至2個の基であり、当該2個の置換基が一緒となってエチレン基もしくはトリメチレン基を形成してもよい)を示す]を有する基を示し:

Xfは、式-NH-、 $-NRf^{16}-$ (式中、 Rf^{16} は、 C_1-C_4 アルキル基を示す)、-O-、、-S-、-SO-、または、 $-SO_2$ ーを有する基を示し;

Yfは、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群 α fより選択される1乃至3個の基である)、5乃至6員芳香族へテロシクリル基、または

、置換5乃至6員芳香族ヘテロシクリル基(当該置換基は、同一または異なり、置換基群 α fより選択される1乃至3個の基である)を示し;

Yf は、6乃至10員アリール基、置換6乃至10員アリール基(当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、9乃至10員不飽和環状炭化水素基(ただし、Yf は、当該不飽和環状炭化水素基におけるベンゼン環部分に結合する)、置換9乃至10員不飽和環状炭化水素基(ただし、Yf は、当該不飽和環状炭化水素基におけるベンゼン環部分に結合し、当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、5乃至10員芳香族ヘテロシクリル基、または、置換5乃至10員芳香族ヘテロシクリル基(当該置換基は、同一または異なり、置換基群 β はり選択される1乃至3個の基である)、9乃至10員不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基(ただし、Yf は、当該不飽和ヘテロシクリル基における芳香環部分に結合する)、または、置換9乃至10員不飽和ヘテロシクリル基における芳香環部分に結合する)、または、置換9万至10員不飽和ヘテロシクリル基における芳香環部分に結合し、当該置換基は、同一または異なり、置換基群 β f より選択される1乃至3個の基である)を示し;

群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、 $ジ(C_3-C_8)$ クロアルキル)アミノ基、 $N-(C_3-C_8)$ クロアルキル)の $N-(C_1-C_8)$ クロアルキル)アミノ基、ホルミルアミノ基、 $N-(C_1-C_8)$ クロアルキル)カルボニルアミノ基、 $N-(C_1-C_8)$ クロアルキル)カルボニルアミノ基、 $N-(C_1-C_8)$ クロアルキル)カルボニルアミノ基、 $N-(C_1-C_8)$ クロアルキル)カルボニル] $-N-(C_1-C_8)$ クロアルキル)アミノ基、 $N-(C_1-C_8)$ クロアルキル)カルボニル] $-N-(C_1-C_8)$ 0 ハホニル)アミノ基、 $N-(C_1-C_8)$ 0 ハホニル) $-N-(C_1-C_8)$ 0 ハホニル) $-N-(C_1-C_8)$ 0 カルボニル)アミノ基、 $-N-(C_1-C_8)$ 0 カルボニル基、カルボニル基、カルボニル基、 $-N-(C_1-C_8)$ 0 カルボニル基、 $-N-(C_1-C_8)$ 0 カルボニル基、 $-N-(C_1-C_8)$ 0 カルボニル基、 $-N-(C_1-C_8)$ 0 カルボニル基、 $-N-(C_1-C_8)$ 0 の当該アルキルアミノ)カルボニル基、 $-N-(C_1-C_8)$ 0 の当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、 $-N-(C_1-C_8)$ 0 ロアルキル) $-N-(C_1-C_8)$ 0 アルキル)アミノカルボニル基、シアノ基、ニトロ基、および、ハロゲノ基からなる群を示し;

ロアルキルスルフィニル基、 $C_1 - C_2$ アルキルスルホニル基、 $C_3 - C_3$ シクロアルキルスルホニル基、アミノ基、 $C_1 - C_6$ アルキルアミノ基、 $C_3 - C_8$ シクロアルキルアミノ基、ジ($C_1 - C_6$ アルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、ジ($C_3 - C_8$ シクロアルキル)アミノ基、 $N - (C_3 - C_8$ シクロアルキル)ーNー($C_1 - C_1$ アルキル)アミノ基、および、ハロゲノ基からなる群を示す。]で表される化合物又はその薬理上許容される塩若しくはエステルである請求項1乃至7のいずれか1項に記載の医薬。

[14] 一般式(If)において、

WO 2006/004030

Rfが、式-CORf^{9a}[式中、Rf^{9a}は、 C_1 - C_2 アルキル基、 C_1 - C_2 アルコキシ基、ハロゲノ C_1 - C_2 アルコキシ基(当該ハロゲノ C_1 - C_4 アルコキシ基は、1乃至7個のハロゲノ基で置換された C_1 - C_4 アルコキシ基を示す)、 C_1 - C_4 アルキルアミノ基、または、ジ(C_1 - C_4 アルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)を示す〕を有する基であり:

Rf²が、水素原子、トリフルオロメチル基、2,2,2ートリフルオロエチル基、ペンタフルオロエチル基、ヒドロキシル基、フルオロ基、または、クロロ基であり;

原子を含有する5乃至7員飽和ヘテロシクリル基を形成してもよい)、フルオロ基、クロロ基、または、ブロモ基であり;

Rf⁴およびRf⁵が、同一または異なり、水素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、フルオロ基、クロロ基、または、ブロモ基であり:

 Rf^{6} および Rf^{7} が、同一または異なり、水素原子またはメチル基であり; Rf^{8} が、式 $-Xf^{2a}Rf^{10a}$

[式中、 Rf^{10a} は、式 $-CORf^{11a}$ [式中、 Rf^{11a} は、 $EFDキシル基、C_1-C_2PN$ コキシ基、(C_3-C_2DDPN キル) $-(C_1-C_2PN$ キル)オキシ基、 C_3-C_2DDPN キルオキシ基、 E_3-E_3DDPN を基、 E_3-E_3 を基、アミノ基、 E_3-E_3 を力ロアルキルアミノ基、 E_3-E_3 を力ロアルキル) E_3-E_3 を表に、 E_3-E_3 の当該アルキルアミノ基、 E_3-E_3 を表に、 $E_$

式 $-SO_2$ Rf 12a [式中、Rf 12a は、 C_1 - C_2 アルキル基、 $(C_3$ - C_3 - C_4 シクロアルキル) $-(C_1$ - C_4 アルキル)基、 $(C_3$ - C_4 - C_4 アルキル)基、 $(C_3$ - C_4 -

式 $-N(Rf^{13a})CORf^{14a}$ [式中、 Rf^{13a} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_2$ アルキル)基、または、 $C_3 - C_5$ シクロアルキル基を示し、 Rf^{14a} は、水素原子、 $C_1 - C_2$ アルキル基、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_2)$ アルキル)基、または、 $(C_3 - C_5)$ クロアルキル) $-(C_1 - C_2)$ アルキル)基、または、 $(C_3 - C_5)$ クロアルキル基を示す〕を有する基、

式 $-N(Rf^{13a})SO_2Rf^{15a}$ [式中、 Rf^{13a} は、上記と同意義を示し、 Rf^{15a} は、 C_1-C_2 アルキル基、 (C_3-C_5) クロアルキル) $-(C_1-C_2$ アルキル)基、または、 C_3-C_5 シクロアルキル基を示す]を有する基、または、テトラゾール-5-イル基を示し、

 Xf^{2a} は、単結合、 C_1 $-C_2$ アルキレン基、または、置換 C_1 $-C_2$ アルキレン基(当該置換基は、同一または異なり、置換基群 γ f1より選択される1乃至2個の基であり、当該2個の置換基が一緒となってエチレン基もしくはトリメチレン基を形成してもよい)を示す。]を有する基であり;

 Xf^{1} が、式-NH-、-O-または-S-を有する基であり:

Yfが、フェニル基、置換フェニル基(当該置換基は、同一または異なり、置換基群αf1より選択される1乃至2個の基である)、5乃至6員芳香族へテロシクリル基(当該ヘテロシクリル基は、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリダジニル基を示す)、または、置換5乃至6員芳香族へテロシクリル基(当該ヘテロシクリル基は、ピロリル基、フリル基、チエニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基、または、ピリダジニル基を示し、当該置換基は、同一または異なり、置換基群αf1より選択される1乃至2個の基である)であり;

置換9乃至10員不飽和ヘテロシクリル基(ただし、Yfは、当該不飽和ヘテロシクリル 基における芳香環部分に結合し、当該不飽和ヘテロシクリル基は、インドリニル基、 ジヒドロベンゾフリル基、ジヒドロベンゾチエニル基、テトラヒドロキノリル基、または、ク ロマニル基を示し、当該置換基は、同一または異なり、置換基群βflより選択される1 乃至3個の基である)であり;

置換基群 α f1 は、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、フルオロ基、および、クロロ基からなる群であり;

置換基群 β f1は、 C_1 $-C_2$ アルキル基、ヒドロキシ(C_1 $-C_2$ アルキル)基、カルボキシ(C_1 - C_2 アルキル)基、 $(C_1$ - C_2 アルコキシ)カルボニルー $(C_1$ - C_2 アルキル)基、ハロゲ ノC -C アルキル基(当該ハロゲノC -C アルキル基は、1乃至5個のハロゲノ基で 置換された $C_1 - C_2$ アルキル基を示す)、 $(C_3 - C_6)$ シクロアルキル) $-(C_1 - C_2$ アルキル) 基、 C_2 $-C_5$ アルケニル基、 C_2 $-C_5$ アルキニル基、 C_3 $-C_6$ シクロアルキル基、ヒドロキ シル基、C₁-C₇ルコキシ基、ハロゲノC₁-C₇ルコキシ基(当該ハロゲノC₁-C₇ ルコキシ基は、1乃至5個のハロゲノ基で置換されたC₁-C₂アルコキシ基を示す)、C -Cアルキルチオ基、C -Cアルキルスルフィニル基、C -Cアルキルスルホニル 基、アミノ基、 $C_1 - C_2$ アルキルアミノ基、 $C_3 - C_6$ シクロアルキルアミノ基、ジ($C_1 - C_2$ ア ルキル)アミノ基(当該アルキル基は、同一または異なり、2つの当該アルキル基が当 該アミノ基の窒素原子と一緒となって、窒素原子、酸素原子および硫黄原子からなる 群より選択される1乃至3個の原子を含有する5乃至7員飽和ヘテロシクリル基を形成 してもよい)、ホルミルアミノ基、 $(C_1 - C_1 P N + N)$ カルボニルアミノ基、 $(C_3 - C_1 P P N + N)$ カルボニルアミノ基、 $(C_3 - C_1 P P N + N)$ アルキル)カルボニルアミノ基、 $N-[(C_1-C_2)$ アルキル)カルボニル] $-N-(C_1-C_2)$ ルキル)アミノ基、 $N-[(C_3-C_5) - C_7)$ シクロアルキル)カルボニル] $-N-(C_1-C_7)$ アルキル) アミノ基、C -C アルキルスルホニルアミノ基、N-(C -C アルキルスルホニル)-N -(C -C アルキル)アミノ基、ホルミル基、(C -C アルキル)カルボニル基、カルボキ シル基、 $(C_1 - C_1 r)$ カルボニル基、カルバモイル基、 $(C_1 - C_1 r)$ カルボニル基、カルバモイル基、 $(C_1 - C_1 r)$ カルボニル カルボニル基、ジ(C -C アルキル)アミノカルボニル基(当該アルキル基は、同一ま たは異なり、2つの当該アルキル基が当該アミノ基の窒素原子と一緒となって、窒素 原子、酸素原子および硫黄原子からなる群より選択される1乃至3個の原子を含有す WO 2006/004030 PCT/JP2005/012185

242

る5乃至7員飽和ヘテロシクリル基を形成してもよい)、シアノ基、ニトロ基、フルオロ基 、クロロ基、および、ブロモ基からなる群であり;

置換基群ッflは、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、メトキシエチル基、メチルチオメチル基、メチルテオエチル基、アミノメチル基、アミノメチル基、アミノメチル基、メチルアミノメチル基、エチルアミノメチル基、ジャチルアミノエチル基、ジクロプロピルアミノメチル基、ジッチルアミノエチル基、ジッチルアミノエチル基、ジッチルアミノエチル基、バトーメチルトルートーエチルアミノンチル基、ジックロプロピルアミノメチル基、ヒドロキシル基、メトキシ基、エトキシ基、シクロプロピルオキシ基、メチルチオ基、エチルチオ基、シクロプロピルチオ基、アミノ基、メチルアミノ基、エチルアミノ基、ジックロプロピルアミノ基、ジッチルアミノ基、ジエチルアミノ基、ジックロプロピルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュチルアミノ基、ジュナルアミノ基、ジュカロスロピルアミノ基、フルオロ基、および、クロロ基からなる群である]

である請求項13に記載の医薬。

[15] 一般式(If)において、

 Rf^{l} が、式 $-CORf^{lb}$ [式中、 Rf^{lb} は、 $C_{1}-C_{6}$ アルコキシ基またはハロゲノ $C_{1}-C_{4}$ アルコキシ基(当該ハロゲノ $C_{1}-C_{4}$ アルコキシ基は、1乃至5個のハロゲノ基で置換された $C_{1}-C_{4}$ アルコキシ基を示す)を示す]を有する基であり;

Rf²が、水素原子またはヒドロキシル基であり;

 Rf^3 が、水素原子、 C_1 $-C_2$ アルキル基、ハロゲノ C_1 $-C_4$ アルキル基(当該ハロゲノ C_1 $-C_4$ アルキル基は、1乃至5個のハロゲノ基で置換された C_1 $-C_4$ アルキル基を示す)、 C_3 $-C_5$ シクロアルキル基、 C_2 $-C_4$ アルケニル基、 C_1 $-C_4$ アルコキシ基、フルオロ基、または、クロロ基であり;

Rf⁴およびRf⁵が、同一または異なり、水素原子、メチル基、エチル基、トリフルオロメ チル基、メトキシ基、フルオロ基、クロロ基、または、ブロモ基であり;

 Rf^{8} および Rf^{7} が、同一または異なり、水素原子またはメチル基であり; Rf^{8} が、式 $-Xf^{2b}Rf^{10b}$

[式中、 Rf^{l0b} は、式 $-CORf^{l1b}$ [式中、 Rf^{l1b} は、ヒドロキシル基、 C_1 $-C_2$ アルコキシ基、(C_3 $-C_5$ シクロアルキル) $-(C_1$ $-C_2$ アルキル)オキシ基、 C_3 $-C_5$ シクロアルキルオキシ

基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジェチルアミノ基、メ チルエチルアミノ基、または、ヒドロキシルアミノ基を示す]を有する基、

式 $-SO_2$ Rf^{12b}[式中、Rf^{12b}は、 C_1 - C_2 アルキル基、(C_3 - C_5 シクロアルキル)ー(C_1 - C_2 アルキル)基、または、 C_3 - C_5 シクロアルキル基を示す]を有する基、または、テトラゾール-5-イル基を示し、

Xf²⁶は、単結合、メチレン基、エチレン基、または、置換メチレン基もしくは置換エチレン基(当該置換基は、同一または異なり、置換基群 γ f2より選択される1乃至2個の基であり、当該2個の置換基が一緒となってエチレン基もしくはトリメチレン基を形成してもよい)を示す]を有する基であり;

 Xf^{1} が、式-NH-、-O-または-S-を有する基であり;

Yfが、フェニル基(当該フェニル基に結合するXfおよびYfの置換位置は、1および3位、または、1および4位である)、置換フェニル基(当該置換基は、置換基群 α f 2より選択される1個の基であり、当該フェニル基に結合するXfおよびYfの置換位置は、1および3位、または、1および4位である)、チェニル基(当該チェニル基に結合するXfおよびYfの置換位置は、2および5位である)、置換チェニル基(当該置換基は、置換基群 α f2より選択される1個の基であり、当該チェニル基に結合するXfおよびYfの置換位置は、2および5位である)、ピリジル基(当該ピリジル基に結合するXfおよびYfの置換位置は、2および5位、または、3および6位である)、または、置換ピリジル基(当該置換基は、置換基群 α f2より選択される1個の基であり、当該ピリジル基に結合するXfおよびYfの置換位置は、2および5位、または、3および6位である)であり:

Yf'が、フェニル基(当該フェニル基に結合するYf'およびRf'の置換位置は、1および3位、または、1および4位である)、置換フェニル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該フェニル基に結合するYf'およびRf'の置換位置は、1および3位、または、1および4位である)、チェニル基(当該チェニル基に結合するYf'およびRf'の置換位置は、2および5位である)、置換チェニル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該チェニル基に結合するYf'およびRf'の置換位置は、2および5位

である)、チアゾリル基(当該チアゾリル基に結合するYf およびRf の置換位置は、2 および5位である)、置換チアゾリル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該チアゾリル基に結合するYf およびRf の置換位置は、2および5位である)、ピリジル基(当該ピリジル基に結合するYf およ びRf の置換位置は、2および5位である)、または、置換ピリジル基(当該置換基は、同一または異なり、置換基群 β f2より選択される1乃至2個の基であり、当該ピリジル基(結合するYf およびRf の置換位置は、2および5位である)であり:

置換基群 α f2は、メチル基、フルオロ基、および、クロロ基からなる群であり;

置換基群 β f2は、C - C アルキル基、ヒドロキシメチル基、1 - ヒドロキシエチル基、トリフルオロメチル基、2,2,2 - トリフルオロエチル基、ペンタフルオロエチル基、C - C アルケニル基、C - C アルケニル基、C - C アルキニル基、C - C シクロアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、メタンスルホニル基、エタンスルホニル基、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ホルミル基、メチルカルボニル基、エチルカルボニル基、シアノ基、ニトロ基、フルオロ基、および、クロロ基からなる群であり:

置換基群ッf2は、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、アミノメチル基、メチルアミノメチル基、ジメチルアミノメチル基、(NーメチルーNーエチルアミノ)メチル基、メトキシ基、メチルアミノ基、ジメチルアミノ基、フルオロ基、および、クロロ基からなる群である]

である請求項13に記載の医薬。

[16] 一般式(If)において、

 Rf^{l} が、式 $-CORf^{sc}$ (式中、 Rf^{sc} は、 $C_{3}-C_{5}$ アルコキシ基を示す)を有する基であり; Rf^{2} が、ヒドロキシル基であり;

Rfが、メチル基、エチル基、2ープロピル基、2ーメチルー2ープロピル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基、シクロプロピル基、または、ビニル基であり:

Rf⁴およびRf⁵が、水素原子であり;

Rf⁶およびRf⁷が、水素原子であり:

Rf⁸が、式-Xf^{2c}Rf^{10c}

[式中、 Rf^{10c} は、式 $-CORf^{1c}$ (式中、 Rf^{1c} は、ヒドロキシル基またはメトキシ基を示す)を有する基、または、

式 $-SO_{2}Rf^{12c}$ (式中、 Rf^{12c} は、メチル基を示す)を有する基を示し、

Xf^{2c}は、単結合、メチレン基、または、置換メチレン基(当該置換基は、1個のヒドロキシメチル基であるか、または、2個の置換基が一緒となってエチレン基を形成する)を示す。]を有する基であり;

Xf¹が、式-O-を有する基であり:

Yf'が、フェニル基(当該フェニル基に結合するXf'およびYf²の置換位置は、1および4位である)であり;

Yf²が、フェニル基(当該フェニル基に結合するYf²およびRf⁸の置換位置は、1および4位である)、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf²およびRf⁸の置換位置は、1および4位である)、または、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf²、Rf⁸および置換基群 β f3より選択される基の置換位置は、それぞれ、1、3および2位である)であり;

置換基群 β f3は、メチル基、エチル基、2-プロピル基、ヒドロキシメチル基、トリフルオロメチル基、シクロプロピル基、メトキシ基、メタンスルホニル基、アミノ基、メチルアミノ基、ジメチルアミノ基、メチルカルボニル基、エチルカルボニル基、シアノ基、ニトロ基、フルオロ基、および、クロロ基からなる群である]

である請求項13に記載の医薬。

[17] 一般式(If)において、

 Rf^{l} が、式 $-CORf^{9d}$ (式中、 Rf^{9d} は、2-メチル-2-プロポキシ基を示す)を有する基であり;

Rf²が、ヒドロキシル基であり:

Rf³が、トリフルオロメチル基であり:

Rf⁴およびRf⁵が、水素原子であり:

Rf⁶およびRf⁷が、水素原子であり:

Rf⁸が、式-Xf^{2d}Rf^{10d}

[式中、Rf^{10d}は、式-CORf^{11d}(式中、Rf^{11d}は、ヒドロキシル基を示す)を有する基を示し、

Xf^{2d}は、メチレン基、または、置換メチレン基(当該2個の置換基が一緒となってエチレン基を形成する)を示す。]を有する基であり:

Xfが、式-O-を有する基であり;

Yf'が、フェニル基(当該フェニル基に結合するXf¹およびYf²の置換位置は、1および4位である)であり;

 Y^2 が、フェニル基(当該フェニル基に結合するYfおよびRf8の置換位置は、1および4位である)、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf4およびRf8の置換位置は、1および4位である)、または、置換フェニル基(当該置換基は、置換基群 β f3より選択される1個の基であり、当該フェニル基に結合するYf4、Rf8および置換基群 β f3より選択される基の置換位置は、それぞれ、1、3および2位である)である

である請求項13に記載の医薬。

[18] LXRリガンドが、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-1$, 1'-ビフェニル-4-イル) 酢酸、

 $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニル-4-イル)シクロプロパンカルボン酸、 <math>2-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}-1,1'-ビフェニル-4-イル)-3-ヒドロキシプロパン酸、 <math>(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-メチル-1,1'-ビフェニル-3-イル) 酢酸、$

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-クロロ-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-クロロ-1, 1'-ビフェニル-4-イル)酢酸、

 $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-3-フルオロ-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-メトキシ-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(\text{tert}-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-トリフルオロメチル-1, 1'-ビフェニル-4-イル)酢酸、 tert-ブチル $6-[(\{2'-エチル-4'-[(メトキシカルボニル)メチル]-1, 1'-ビフェニル-4-イル}$ オキシ)メチル]-2-ヒドロキシ-3-(トリフルオロメチル)ベン ゾエート、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ $ベンジル]オキシ<math>\}$ -2-エチル-1, 1'-ビフェニル-4-イル) 酢酸、

 $(2-アミノ-4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフル オロメチル) ベンジル] オキシ<math>\}-1$, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-ホルミル-1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(\text{tert}-ブトキシカルボニル})-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-(ヒドロキシメチル)-1,1'-ビフェニル-4-イル)$ 酢酸、および、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-シアノ-1, 1'-ビフェニル-4-イル)酢酸からなる群より選択される化合物又はその薬理上許容される塩若しくはエステルであ

る請求項13に記載の医薬。

[19] LXRリガンドが、

WO 2006/004030

N-(2, 2, 2-)リフルオロエチル) $-N-\{4-[2, 2, 2-)$ リフルオロ-1-ヒドロキシ-1-()リフルオロメチル)エチル]フェニル}ベンゼンスルホンアミド、

3-クロロ-4-(3-(2-プロピル-3-トリフルオロメチル-6-ベンズ-[4,5]-イソオキサゾールオキシ)プロピルチオ)フェニル酢酸、

2-(3-{3-[[2-クロロ-3-(トリフルオロメチル)ベンジル](2, 2-ジフェニルエチル)アミノ]プロポキシ}-フェニル)酢酸、

2-ベンジル-6, 7-ジメトキシ-3-[4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、

2-ベンジル-6-(2-ヒドロキシエトキシ)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、

2-ベンジル-6-(2-ピリジル)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシー1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、

 $6-(1H-イミダゾール-1-イル)-2-(4-メチルベンジル)-3-{2-メチル-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-4(3H)-キナゾリノン、$

2-ベンジル-6-フルオロ-3-{3-メトキシ-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-7-(4-モルホリニル)-4(3H)-キナゾリノン、

 $3-\{2-$ メチル-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル $\}-2-(3-$ ピリジルメチル)-6-(1H-1, 2, 4-トリアゾール-1-イル)-4(3H)-キナゾリノン、

 $N, N-ジメチル-3\beta$ ーヒドロキシコレナミド、

6-クロロ-7-メトキシ-3-{2-メチル-5-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-2-(3-チエニルメチル)-4(3+1)-キナゾリノン、

2-(3-7)ルオロベンジル) -6, 7-3メトキシ $-3-\{2-3$ チル-5-[2, 2, 2-1]

リフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル}-4(3H)-キナゾリノン、

tert - ブチル $2-({4-[(シクロプロピルカルボノチオイル)(メチル)アミノ]フェノキシ}メチル) <math>-4$, 6-ジフルオロ-1H-インドール-1-カルボキシレート、

tert - ブチル 6-([4-[(シクロプロピルカルボニル)(メチル)アミノ]フェノキシ]メチル) <math>-2- ヒドロキシ-3-(トリフルオロメチル)ベンゾエート、

tert - ブチル 2- ヒドロキシ-6- ([4-[メチル(メチルスルホニル)アミノ]フェノキシ]メチル)-3- (トリフルオロメチル)ベンゾエート、

tert – ブチル $6 - ({4 - [アセチル(メチル)アミノ]フェノキシ}メチル) - 3 - エチル <math>-2 - \text{ヒドロキシベンゾエー}$ 、

tert – ブチル 6 – ([4 – [(シクロプロピルアセチル)(メチル)アミノ]フェノキシ]メチル) – 2 – ヒドロキシ – 3 – (トリフルオロメチル) ベンゾエート、

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-1,1'-ビフェニル-4-イル)$ 酢酸、

 $[5-(4-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2- - イル] メトキシ \} フェニル) - 2-チェニル] 酢酸、$

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イル]メトキシ\}-2-クロロ-1,1'-ビフェニル-4-イル)$ 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -1, 1'-ビフェニル-4-イル) 酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-クロロ-1、1'-ビフェニル-4-イル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ $ベンジル]オキシ<math>\}$ -2-エチル-1, 1'-ビフェニル-4-イル) 酢酸、

- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メチル-1, 1'-ビフェニル-3-イル) 酢酸、
- $1-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-3-フルオロ-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-イソプロピルベンジル]オキシ<math>\}$ -1, 1'-ビフェニル-4-イル) 酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-4-フルオロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル) 酢酸、$
- $(4'-\{[2-(tert-ブトキシカルボニル)-4-クロロ-3-ヒドロキシベンジル]オキシ}-1, 1'-ビフェニル-4-イル)$ 酢酸、
- $[5-(4-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ}フェニル)-2-チエニル]酢酸、$
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-ニトロ-1$, 1'-ビフェニル-4-イル) 酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -3-フルオロ-1, 1'-ビフェニル-4-イル) 酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-メトキシ-1, 1'-ビフェニル-4-イル) 酢酸、
- (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-クロロ-1, 1'-ビフェニル-4-イル)酢酸、
- $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-トリフルオロメチル-1, 1'-ビフェニル-4-イル)酢酸、
- $1-(4'-\{[2-(\text{tert}-ブトキシカルボニル})-3-ヒドロキシ-4-(トリフルオロメチル)ベンジル]オキシ<math>\}-1$, 1'-ビフェニル-4-イル)シクロプロパンカルボン酸、1'-ビフェニル 1'-ビフェニル 1'-ビフェニル 1'-ビフェニル

-4-イル]オキシ}メチル)-3-(トリフルオロメチル)ベンゾエート、

 $(2-アミノ-4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフル オロメチル) ベンジル] オキシ<math>\}-1$, 1'-ビフェニル-4-イル) 酢酸、

 $[4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}-2-(ジメチルアミノ)-1$, 1'-ビフェニル-4-イル]酢酸、

 $2-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル] オキシ <math>\}-1$, 1'-ビフェニル-4-イル) -3-ヒドロキシプロパン酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ}ー2ーイソプロピルー1,1'ービフェニルー4ーイル)酢酸、

 $4'-\{[2-(\text{tert}-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル] オキシ <math>\}-1$, 1'-ビフェニル-4-カルボン酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$ ベンジル]オキシ $\}$ -2-ホルミル-1, 1'-ビフェニル-4-イル) 酢酸、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-(ヒドロキシメチル)-1,1'-ビフェニル-4-イル)酢酸、又は、

(4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-シアノ-1, 1'-ビフェニル-4-イル)酢酸 である請求項1乃至7のいずれか1項に記載の医薬。

[20] LXRリガンドが、

2ーベンジルー6, 7ージメトキシー3ー[4ー[2, 2, 2ートリフルオロー1ーヒドロキシー1ー(トリフルオロメチル)エチル]フェニル]ー4(3H)ーキナゾリノン、

2-ベンジル-6-(2-ヒドロキシエトキシ)-3-[4-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル]-4(3H)-キナゾリノン、

 $3-\{2-$ メチル-4-[2, 2, 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]フェニル $\}-2-(3-$ ピリジルメチル)-6-(1H-1, 2, 4-トリアゾール-1-イル)-4(3H)-キナゾリノン、

tert – ブチル 2 – ({4 – [(シクロプロピルカルボノチオイル)(メチル)アミノ]フェノキ

 $\{ \{ \} \}$ メチル $\} -4$, $\{ \{ \{ \} \} \}$ ンフルオロ $\{ \{ \} \} \}$

tert-ブチル 6-([4-[(シクロプロピルカルボニル)(メチル)アミノ]フェノキシ]メチ

ル) -2-ヒドロキシ-3-(トリフルオロメチル)ベンゾエート、

tert - ブチル 2 - ヒドロキシ - 6 - ([4 - [メチル(メチルスルホニル)アミノ]フェノキシ

]メチル) -3-(トリフルオロメチル) ベンゾエート、

 $(4'-\{[1-(tert-ブトキシカルボニル)-6-フルオロ-1H-インドール-2-イ$

ル]メトキシ}ー1,1'ービフェニルー4ーイル)酢酸、

 $(4'-\{[2-(tert-)++)+)-3-(tert-)++)$

ベンジル]オキシ}ー1,1'ービフェニルー4ーイル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ}-3-クロロー1,1'-ビフェニルー4ーイル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}$ -2-エチル-1, 1'-ビフェニル-4-イル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}-2-$ メチル-1, 1'-ビフェニル-3-イル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}$ -3-フルオロ-1, 1'-ビフェニル-4-イル)酢酸、

ベンジル]オキシ}-2-メトキシ-1,1'-ビフェニル-4-イル)酢酸、

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}$ -2-クロロ-1, 1'-ビフェニル-4-イル)酢酸、

tert-ブチル 2-ビドロキシー6-({[3'-(メチルスルホニル)-1, 1'-ビフェニル

-4-イル]オキシ}メチル)-3-(トリフルオロメチル)ベンゾエート、

 $2-(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチ$

 $(4'-\{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル)$

ベンジル]オキシ $\}$ -2-ホルミル-1, 1'-ビフェニル-4-イル)酢酸、

 $(4' - \{[2 - (tert - \vec{y}) + \hat{y} + \hat{y} + \hat{y} + (\hat{y} + \hat{y}) - (\hat{y} + \hat{y} + \hat{y} + \hat{y} + \hat{y} + \hat{y} + (\hat{y} + \hat{y} + \hat{y$

WO 2006/004030

- ベンジル]オキシ}-2-(ヒドロキシメチル)-1,1'-ビフェニル-4-イル)酢酸、又は、
- (4'-{[2-(tert-ブトキシカルボニル)-3-ヒドロキシ-4-(トリフルオロメチル) ベンジル]オキシ}-2-シアノ-1, 1'-ビフェニル-4-イル)酢酸である請求項1乃至7のいずれか1項に記載の医薬。
- [21] 組織因子の産生を抑制する方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法。
- [22] 血栓形成性の低下作用を有する請求項21に記載の方法。
- [23] 血管形成術、血管内膜切除術、経皮的冠動脈形成術(PTCA)、及びステント留置後の血管再狭窄からなる群から選ばれる疾患の治療及び/又は予防方法であって、L XRリガンドの有効量を温血動物に投与する工程を含む方法。
- [24] 血液凝固性疾患、安定若しくは不安定狭心症を含む血小板凝集によって誘発される疾患、糖尿病に伴う血栓塞栓形成疾患を含む心臓血管および脳血管系の疾患、血栓崩壊後の再血栓症、脳虚血発作、梗塞、卒中、虚血由来の痴呆、末梢動脈疾患、大動脈一冠動脈バイパス使用の間の血栓塞栓形成疾患、糸球体硬化症、腎臓塞栓症、腫瘍、又は、癌転移の治療及び/又は予防方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法。
- [25] 血液凝固性疾患の治療及び/又は予防方法であって、LXRリガンドの有効量を温血動物に投与する工程を含む方法。
- [26] LXRリガンドが、LXRアゴニスト又はLXRアンタゴニストである請求項21から25のいずれか1項に記載の方法。
- [27] LXRリガンドがLXRアゴニストである請求項21から25のいずれか1項に記載の方法。
- [28] LXRリガンドが、請求項8に記載の一般式(Ia)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [29] LXRリガンドが、請求項9に記載の一般式(Ib)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [30] LXRリガンドが、請求項10に記載の一般式(Ic)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。

WO 2006/004030 PCT/JP2005/012185

- [31] LXRリガンドが、請求項11に記載の一般式(Id)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [32] LXRリガンドが、請求項12に記載の一般式(Ie)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [33] LXRリガンドが、請求項13に記載の一般式(If)で表される化合物又はその薬理上許 容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [34] LXRリガンドが、請求項14に記載の一般式(If)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [35] LXRリガンドが、請求項15に記載の一般式(If)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [36] LXRリガンドが、請求項16に記載の一般式(If)で表される化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [37] LXRリガンドが、請求項17に記載の一般式(If)で表される化合物又はその薬理上許 容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [38] LXRリガンドが、請求項18に記載の化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [39] LXRリガンドが、請求項19に記載の化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [40] LXRリガンドが、請求項20に記載の化合物又はその薬理上許容される塩若しくはエステルである請求項21から27のいずれか1項に記載の方法。
- [41] 温血動物が比である請求項21から40のいずれか1項に記載の方法。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2005/012185

Α.	CLASSII	FICATION	OF SUB	JECT N	MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS(STN), CAplus(STN), EMBASE(STN), MEDLINE(STN), JICST(JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	WO 2003/106435 A1 (SANKYO CO., LTD.), 24 December, 2003 (24.12.03). Particularly, Abstract; Claims & AU 2003238157 A1	1-9,19,20 10-18
Y A	ELISAF, M., Effects of fibrates on serum metabolic parameters, Curr.Med.Res.Opin., 2002, Vol.18, No.5, pp.269-76, particularly, Abstract	1-9,19,20 10-18
P,X	TERASAKA, N. et al., Liver X receptor agonists inhibit tissue factor expression in macrophages, FEBS J, 2005, Vol.272, No.6, pp.1546-56	1-20

* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E" "L" "O" "P"	earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"X" "Y"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family	
	of the actual completion of the international search 25 July, 2005 (25.07.05)	Date	e of mailing of the international search report 09 August, 2005 (09.08.05)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

See patent family annex.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/012185

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

(International Patent Classification (IPC))

Int.Cl⁷ 409/04, 417/04, C07J9/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ 409/04, 417/04, C07J9/00

Minimum documentation searched (classification system followed by classification symbols)

Form PCT/ISA/210 (extra sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/012185

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: 21-41 because they relate to subject matter not required to be searched by this Authority, namely: Claims 21 to 41 pertain to [methods for treatment of the human body by therapy] and thus relate to a subject matter which this International Searching Authority is not required, under the provisions of the PCT Rule 39.1(iv), to search. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of
any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

発明の属する分野の分類(国際特許分類(IPC))

A61K45/00, 9/10, 31/18, 31/404, 31/423, 31/517, 31/5377, A61P7/02, 9/00, 13/12, 35/00, 35/04, 43/00, C07D239/70, 239/90, 239/91, 261/20, 401/04, 401/06, 401/12, 403/04, 403/06, 403/12, 409/04, 417/04, C07J9/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

A61K45/00, 9/10, 31/18, 31/404, 31/423, 31/517, 31/5377, A61P7/02, 9/00, 13/12, 35/00, 35/04, 43/00, C07D239/70, 239/90, 239/91, 261/20, 401/04, 401/06, 401/12, 403/04, 403/06, 403/12, 409/04, 417/04, C07J9/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

BIOSIS (STN), CAplus (STN), EMBASE (STN), MEDLINE (STN), JICST (JOIS)

関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO 2003/106435 A1 (SANKYO COMPANY, LIMITED)	1-9, 19, 20
A	2003.12.24, 特に、Abstract, Claims & AU 2003238157 A1	10-18
Y A	ELISAF,M., Effects of fibrates on serum metabolic parameters, Curr Med Res Opin, 2002, Vol.18, No.5, pp.269-76 特に、Abstract	1-9, 19, 20 10-18

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

	- CO_ 1-1	
国際調査を完了した日 25.07.2005	国際調査報告の発送日 09.8.2	2005
国際調査機関の名称及びあて先	特許庁審査官(権限のある職員)	4C 9284
日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	瀬下 浩一 電話番号 03-3581-1101 内	線 3452

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
PΧ	TERASAKA,N. et al, Liver X receptor agonists inhibit tissue factor expression in macrophages, FEBS J, 2005, Vol.272, No.6, pp.1546-56.	1-20

第Ⅱ	欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
		第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作 いった。
1.	V	請求の範囲 <u>21-41</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
		請求の範囲21-41は[治療による人体の処置方法に関するもの]であって、PCT規則39.1(iv)の規定により、国際調査をすることを要しない対象に係るものである。
2.	Γ	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.	/	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ	欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次	に述	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.		出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	***************************************	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	r	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
,		
4.	7	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- **厂** 追加調査手数料の納付と共に出願人から異議申立てがあった。
- □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。