Using AlphaZero to Play Chinese Chess AlphaXiangqi (Final Presentation)

Yifeng Liu Jiahua You

- Go from white board. It works.
- 2. Many input features.
- 3. Heavy calculation. It is hard to run the program in MAC and CPU only. So we hope minimize the calculation.
- 4. If it runs in multiple GPU, how to assign the data to GPU and guarantee that each GPU has same amount of data.

Challenge

Design input feature

- 車 象 炮 馬 卒
- 世 車 御 砲 師 馬 長
- 7 piece, so we have 7 character-plane
- 2 players, we have 14 character-plane

Papers study apply to AlphaXiangqi

- Mastering the Game of Go without Human Knowledge
 - MCTS
 - Neural network
- Masting Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
 - generate chess manual
 - chess manual = input training neural network
 - neural network (finish training) will predict success rate

AlphaGo Zero(Xiangqi): learning from first principles

- No human data

- learns solely by self-play reinforcement learning, starting from random

- No human features

-only takes raw board as an input

- Single neural network

- Policy and value networks are combined into one neural network (resnet)

- Simple search

-MCTS, only use neural network to evaluate

b. Neural Network Training

- **a.** Each simulation traverses the tree by selecting the edge with maximum action-value Q, plus an upper confidence bound U that depends on a stored prior probability P and visit count N for that edge (which is incremented once traversed).
- **b.** The leaf node is expanded and the associated position s is evaluated by the neural network $(P(s, \cdot), V(s)) = f_{\theta}(s)$; the vector of P values is stored in the outgoing edges from s.
- **c.** Action-values Q are updated to track the mean of all evaluations V in the subtree below that action.

d. Play

d. Once the search is complete, search probabilities π are returned, proportional to N $^{1/\tau}$, where N is the visit count of each move from the root state and τ is a parameter controlling temperature.

The structure of Neural Network

Go		Chess		Shogi	
Feature	Planes	Feature	Planes	Feature	Planes
P1 stone	1	P1 piece	6	P1 piece	14
P2 stone	1	P2 piece	6	P2 piece	14
		Repetitions	2	Repetitions	3
				P1 prisoner count	7
				P2 prisoner count	7
Colour	1	Colour	1	Colour	1
		Total move count	1	Total move count	1
		P1 castling	2		
		P2 castling	2		
		No-progress count	1		
Total	17	Total	119	Total	362

Table S1: Input features used by AlphaZero in Go, Chess and Shogi respectively. The first set of features are repeated for each position in a T=8-step history. Counts are represented by a single real-valued input; other input features are represented by a one-hot encoding using the specified number of binary input planes. The current player is denoted by P1 and the opponent by P2.

Expand and evaluate (Figure 2b). The leaf node s_L is added to a queue for neural network evaluation, $(d_i(p), v) = f_{\theta}(d_i(s_L))$, where d_i is a dihedral reflection or rotation selected uniformly at random from $i \in [1..8]$.

Positions in the queue are evaluated by the neural network using a mini-batch size of 8; the search thread is locked until evaluation completes. The leaf node is expanded and each edge (s_L, a) is initialised to $\{N(s_L, a) = 0, W(s_L, a) = 0, Q(s_L, a) = 0, P(s_L, a) = p_a\}$; the value v is then backed up.

Backup (Figure 2c). The edge statistics are updated in a backward pass through each step $t \leq L$. The visit counts are incremented, $N(s_t, a_t) = N(s_t, a_t) + 1$, and the action-value is updated to the mean value, $W(s_t, a_t) = W(s_t, a_t) + v$, $Q(s_t, a_t) = \frac{W(s_t, a_t)}{N(s_t, a_t)}$. We use virtual loss to ensure each thread evaluates different nodes ⁶⁹.

A: root

$$U(s,a) = c_{puct}P(s,a) \frac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)}$$

B:leaf:expand

```
C:backup
```

```
def back_up_value(self, value):
self.N += 1
self.W += value
self.v = value
self.Q = self.W / self.N
self.U = c_PUCT * self.P * np.sqrt(self.parent.N) / ( 1 + self.N)
```

