EXPERIMENT No-3

Aim: familiarizing with the syntax, data types, and operators of Verilog/VHDL

Do yourself.....

EXPERIMENT No-4

Aim:

To Design Logic Gates using VHDL.

Description:

A logic gate performs a logical operation on one or more logic inputs and produces a single logic output. The logic normally performed is Boolean logic and found in digital circuit. These gates are the AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below with the aid of truth tables.

AND Gate

	INPUT	OUTPUT
Δ	В	F
0	0	0
0	1	0
1	0	0
1	1	1

NOR Gate

IN	PUT	OUTPUT
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

11	NPUT	OUTPUT
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Exclusive OR Gate

IN	PUT	OUTPUT
Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

NAND Gate

	INPUT	ОИТРИТ
Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

EXCLUSIVE NOR Gate

IN	PUT	OUTPUT
Α	В	С
0	0	1
0	1	0
1	0	0
1	1	1

NOT Gate

INPUT	OUTPUT
A	F
0	1
1	0

Program:

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity all_gates is

Port (a : in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC;

c1 : out STD_LOGIC;

c2 : out STD_LOGIC;

```
c3: out STD_LOGIC;
c4 : out STD_LOGIC;
c5: out STD_LOGIC;
c6: out STD_LOGIC
);
end all_gates;
architecture Behavioral of all_gates is
begin
c \le a and b;
c1 \le a \text{ or } b;
c2 \le a \text{ nand } b;
c3 \le a \text{ nor } b;
c4 \le a \text{ xor } b;
c5 \le a \times b;
c6 \le not b;
end Behavioral;
```

Output: