MAT0501 E MAT5734 - ANEIS E MÓDULOS

Prof: Juan Carlos Gutiérrez Fernández Lista 3 (2018)

- 1. Seja K corpo e $A = M_n(K)$. Provar que para cada t, t = 1, ..., n os subconjuntos de A dados por
 - $S_t = \{(a_{ij}) \in A : a_{ij} = 0 \text{ se } j \neq t\}$ são submodulos de ${}_AA$. Provar que S_t é um submódulo simples de ${}_AA$ e $A = S_1 \oplus S_2 \oplus \cdots \oplus S_n$.
- 2. Seja $\{M_i\}_{i\in I}$ uma família de A-módulos e para cada $i\in I$ seja N_i um submódulo de M_i . Mostre

$$\frac{\bigoplus_{i \in I} M_i}{\bigoplus_{i \in I} N_i} \cong \bigoplus_{i \in I} \frac{M_i}{N_i}.$$

Determinar quais das seguintes somas em $\mathbb{Z} \oplus \mathbb{Z}$ são diretas

a)
$$\mathbb{Z}(3,5) + \mathbb{Z}(-3,5)$$
, b) $\mathbb{Z}(1,2) + \mathbb{Z}(5,10)$.

3. Prove que $\mathbb{Z}(1,1)$ é somando direto de $\mathbb{Z} \oplus \mathbb{Z}$ e determine o quociente

$$\frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z}(1,1)}$$
.

- 4. Prove que $\mathbb{Z}(a,b)$ é somando direto de $\mathbb{Z} \oplus Z$ se, e somente se a e b são primos entre si.
- 5. Dê um exemplo de módulo livre com um submódulo que é somando direto e não é livre.
- 6. O produto direto de módulos livres é sempre livre?
- 7. Todo submódulo de um A-módulo cíclico também é cíclico?
- 8. Dar um exemplo de anel A e um A-módulo M tal que $\mathrm{T}(M)$ não é um submódulo de M.
- 9. Seja A um domínio de integridade e sejam $a, b \in A$. Prove que

$$\frac{Aa}{A(ab)} \cong \frac{A}{Ab}.$$

Prove que se mdc(a, b) = 1, então

$$\frac{A}{A(ab)} \cong \frac{A}{Aa} \oplus \frac{A}{Ab}.$$

- 10. Seja M o ideal de $\mathbb{Z}[x]$ gerado por 2 e x. Provar que M não é soma direta de $\mathbb{Z}[x]$ -módulos cíclicos.
- 11. Seja D um D.I.P. e M um D-módulo cíclico, ann (M) = (a). Provar:
 - (a) Se $b \in D$ e mdc(a, b) = 1, então bM = M;
 - (b) Se b divide a, $(a = bc \text{ com } c \in D)$, então $bM \cong D/(c)$ e $M/bM \cong D/(b)$.
- 12. Seja D um D.I.P. e M um D-módulo cíclico com ann (M) = (a). Então:
 - (a) Cada submódulo de M é cíclico de período um divisor de a;

- (b) Para cada ideal $(b) \supseteq (a)$ de D, M possui exatamente um submódulo que é cíclico com anulador (b).
- 13. Seja D um D.I.P. Provar que um módulo de torção M sobre D é irredutível ou simples no sentido que $M \neq 0$ e os únicos submodulos são 0 e M, se e somente se M = Dz e ann (z) = (p) com p primo. Provar que se M é finitamente gerado, então é indecomponível no sentido que não é soma direta de dois submódulos não zero, se e somente se M = Dz com ann $(z) = (p^n)$ e p é primo.
- 14. Seja G um grupo abeliano de ordem n e seja m tal que m|n. Prove que G possui um subgrupo de ordem m.