JFET VHF/UHF Amplifiers

N-Channel — Depletion

2N5484 2N5486

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V_{DG}	25	Vdc
Reverse Gate – Source Voltage	V _{GSR}	25	Vdc
Drain Current	ID	30	mAdc
Forward Gate Current	I _{G(f)}	10	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage (IG = -1.0 μAdc, V _{DS} = 0)		V(BR)GSS	-25	_	_	Vdc
Gate Reverse Current (V _{GS} = -20 Vdc, V _{DS} = 0) (V _{GS} = -20 Vdc, V _{DS} = 0, T _A = 100°C)		l _{GSS}	<u> </u>	_ _	-1.0 -0.2	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	2N5484 2N5486	VGS(off)	-0.3 -2.0	_	-3.0 -6.0	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current (VDS = 15 Vdc, VGS = 0)	2N5484 2N5486	IDSS	1.0 8.0	_	5.0 20	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5484 2N5486	y _{fs}	3000 4000		6000 8000	μmhos
Input Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	2N5484 2N5486	Re(y _{is})	_	_	100 1000	μmhos
Output Admittance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	2N5484 2N5486	ly _{os} l		_	50 75	μmhos
Output Conductance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 100 MHz) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 400 MHz)	2N5484 2N5486	Re(y _{os})			75 100	μmhos
Forward Transconductance (VDS = 15 Vdc, VGS = 0, f = 100 MHz) (VDS = 15 Vdc, VGS = 0, f = 400 MHz)	2N5484 2N5486	Re(y _{fs})	2500 3500	_ _	_ _	μmhos

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHARACTERISTICS (continued)						
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{iss}	_	_	5.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{rss}	_	_	1.0	pF
Output Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)		C _{oss}	_	_	2.0	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{($V_{DS}=15$ Vdc, $V_{GS}=0$, $R_{G}=1.0$ Megohm, $f=1.0$ kHz)} \\ \text{($V_{DS}=15$ Vdc, $I_{D}=1.0$ mAdc, $R_{G}\approx1.0$ kΩ, $f=100$ MHz)} \\ \text{($V_{DS}=15$ Vdc, $I_{D}=1.0$ mAdc, $R_{G}\approx1.0$ kΩ, $f=200$ MHz)} \\ \text{($V_{DS}=15$ Vdc, $I_{D}=4.0$ mAdc, $R_{G}\approx1.0$ kΩ, $f=100$ MHz)} \\ \text{($V_{DS}=15$ Vdc, $I_{D}=4.0$ mAdc, $R_{G}\approx1.0$ kΩ, $f=400$ MHz)} \\ \end{array} $	2N5484 2N5484 2N5486 2N5486	NF		 4.0 	2.5 3.0 — 2.0 4.0	dB
	2N5484 2N5484 2N5486 2N5486	G _{ps}	16 — 18 10	 14 	25 — 30 20	dB

POWER GAIN

Figure 1. Effects of Drain Current

Adjust V_{GS} for $I_D = 50 \text{ mA}$ $V_{GS} < 0 \text{ Volts}$

NOTE: The noise source is a hot–cold body (AIL type 70 or equivalent) with a test receiver (AIL type 136 or equivalent).

VALUE				
100 MHz	400 MHz			
7.0 pF	1.8 pF			
1000 pF	17 pF			
3.0 pF	1.0 pF			
1–12 pF	0.8–8.0 pF			
1–12 pF	0.8–8.0 pF			
0.0015 μF	0.001 μF			
0.0015 μF	0.001 μF			
3.0 μΗ*	0.2 μΗ**			
0.15 μΗ*	0.03 μΗ**			
0.14 μΗ*	0.022 μΗ**			
	100 MHz 7.0 pF 1000 pF 3.0 pF 1-12 pF 1-12 pF 0.0015 μF 0.0015 μF 3.0 μH* 0.15 μH*			

- *L1 17 turns, (approx. depends upon circuit layout) AWG #28 enameled copper wire, close wound on 9/32" ceramic coil form. Tuning provided by a powdered iron slug.
- L2 4–1/2 turns, AWG #18 enameled copper wire, 5/16" long, 3/8" I.D. (AIR CORE).
- L3 3–1/2 turns, AWG #18 enameled copper wire, 1/4" long, 3/8" I.D. (AIR CORE).

- .1 6 turns, (approx. depends upon circuit layout) AWG #24 enameled copper wire, close wound on 7/32" ceramic coil form. Tuning provided by an aluminum slug.
- L2 1 turn, AWG #16 enameled copper wire, 3/8" I.D. (AIR CORE).
- L3 1/2 turn, AWG #16 enameled copper wire, 1/4" I.D. (AIR CORE).

Figure 2. 100 MHz and 400 MHz Neutralized Test Circuit

NOISE FIGURE

 $(T_{channel} = 25^{\circ}C)$

V_{DS} = 15 V 5.5 $V_{GS} = 0 V$ NF, NOISE FIGURE (dB) 4.5 f = 400 MHz3.5 2.5 100 MHz 1.5 2.0 4.0 6.0 8.0 14 ID, DRAIN CURRENT (mA)

Figure 3. Effects of Drain-Source Voltage

Figure 4. Effects of Drain Current

INTERMODULATION CHARACTERISTICS

Figure 5. Third Order Intermodulation Distortion

COMMON SOURCE CHARACTERISTICS ADMITTANCE PARAMETERS

 $(V_{DS} = 15 \text{ Vdc}, T_{channel} = 25^{\circ}C)$

Figure 6. Input Admittance (yis)

Figure 7. Reverse Transfer Admittance (yrs)

Figure 8. Forward Transadmittance (yfs)

Figure 9. Output Admittance (yos)

COMMON SOURCE CHARACTERISTICS S-PARAMETERS

 $(V_{DS} = 15 \text{ Vdc}, T_{channel} = 25^{\circ}C, Data Points in MHz)$

COMMON GATE CHARACTERISTICS ADMITTANCE PARAMETERS

 $(V_{DG} = 15 \text{ Vdc}, T_{channel} = 25^{\circ}C)$

Figure 14. Input Admittance (yig)

Figure 15. Reverse Transfer Admittance (yrg)

Figure 16. Forward Transfer Admittance (yfq)

Figure 17. Output Admittance (yoq)

COMMON GATE CHARACTERISTICS S-PARAMETERS

(V_{DS} = 15 Vdc, T_{channel} = 25°C, Data Points in MHz)

PACKAGE DIMENSIONS

SECTION X-X

CASE 029-04 (TO-226AA) **ISSUE AD**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
C	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
V	0.135		3 43		

STYLE 5:

PIN 1. DRAIN

2. SOURCE

GATE

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fee arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

Mfax is a trademark of Motorola. Inc.

 $\textbf{Mfax}^{\text{\tiny{TM}}}\text{: RMFAX0@email.sps.mot.com} - \text{TOUCHTONE } 602-244-6609$

 \Diamond

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

2N5484/D