

① Veröffentlichungsnummer: 0 421 933 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeidenummer: 90810742.8

2 Anmeldetag: 27.09.90

(1) Int. Cl.5: C08K 13/02, C08L 57/08, C08L 27/06, //(C08K13/02,3:00, 3:26,5:3435),(C08K13/02,3:26, 5:09,5:3435)

(3) Priorität: 06.10.89 CH 3653/89

43 Veröffentlichungstag der Anmeldung: 10.04.91 Patentblatt 91/15

Benannte Vertragsstaaten: BE DE FR GB IT NL

71) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)

② Erfinder: Sander, Hans Jürgen Magnolienstrasse 25 W-6143 Lorsch(DE) Erfinder: Hartmann, Olaf-René Dr. Hofgartenstrasse 21 W-6140 Bensheim 2(DE) Erfinder: Wirth, Hermann O., Dr.

Lessingstrasse 24 W-6140 Bensheim 3(DE)

Stabilisierte chlorhaltige Polymerzusammensetzungen.

3 Stabilisierte chlorhaltige Polymerzusammensetzungen, enthaltend ein chlorhaltiges Polymer und ein Stabilisatorgemisch, enthaltend:

a) mindestens ein cyclisches oder nicht cyclisches sterisch gehindertes Amin,

b) mindestens eine organische Zinkverbindung und/oder anorganische Zinkverbindung aus der Reihe der Carbonate, Chloride, Sulfate, Oxide, Hydroxide, der basischen Oxide und Mischoxide, und

c) mindestens ein Verbindung aus der Reihe der Hydrotalcite und gegebenenfalls

d) mindestens ein 1,3-Diketon und/oder

e) mindestens eine organische oder anorganische Calcium-Verbindung.

Bevorzugt werden solche Polymerzusammensetzungen für "slush mold"- und "crash-pad"-Anwendungen eingesetzt.

STABILISIERTE CHLORHALTIGE POLYMERZUSAMMENSETZUNGEN

Die Erfindung betrifft neue chlorhaltige Polymerzusammensetzungen und die Verwendung der Polymerzusammensetzungen.

Beispielsweise aus der JP-A-63/175 072 ist bekannt, Folien für Agrikulturzwecke aus weichgemachtem Polyvinylchlorid mit einem sterisch gehinderten Amin und einem Hydrotalcit gegen den Einfluss von Pestiziden zu stabilisieren.

Aus der JP-A 63/178 155 sind Hart-PVC-Mischungen bekannt, die mit einem metallhaltigen Stabilisator, einer Epoxyverbindung, die bei Normaltemperatur fest ist, und einer gehinderten Piperidinverbindung stabilisiert sind.

Aus der EP-A 0 237 485 sind stabilisierte Hart-PVC-Zusammensetzungen bekannt, die mindestens einen 2,2,6,6-Tetraalkylpiperidin-Lichtstabilisator und mindestens einen Organozinn-Stabilisator enthalten.

Aus der EP-A 0 063 180 ist eine Stabilisatorzusammensetzung für halogenhaltige Polymere bekannt, bestehend aus β-Diketonen und einem Hydrotalcit.

Die bekannten Stabilisatoren und Stabilisatorgemische können in den Polymeren nicht allen gestellten Anforderungen entsprechen.

Es wurde nun gefunden, dass die chlorhaltigen Polymerzusammensetzungen, stabilisiert nach vorliegender Erfindung, weiter verbesserte Eigenschaften bezüglich der Thermo- und Lichtstabilität aufweisen.

Erfindungsgemäss wird das mit einer Polymerzusammensetzung mit oder ohne Weichmacher erreicht, enthaltend ein chlorhaltiges Polymer und ein Stabilisatorgemisch, enthaltend:

a) mindestens ein cyclisches oder nicht cyclisches sterisch gehindertes Amin, wobei in weichmacher-20 haltigen Polymerzusammensetzungen die Verbindung der Formel

CH₂-COOR CH₃ CH₃ CH₃ CH₃ CH_{-COOR} , mit
$$R = -$$
 NH, ausgeschlossen ist, CH₂-COOR CH₃ CH₃

 b) mindestens eine organische Zinkverbindung und/oder anorganische Zinkverbindung der Reihe der Carbonate, Chloride, Sulfate, Oxide, Hydroxide, der basischen Oxide und Mischoxide, und

c) mindestens eine Verbindung aus der Reihe der Hydrotalcite.

Die erfindungsgemässen Polymerzusammensetzungen können weitere Komponenten enthalten.

So kann die Polymerzusammensetzung als weiteren Stabilisator

d) mindestens ein 1,3-Diketon enthalten.

Die Polymerzusammensetzung kann als weiteren Stabilisator

e) mindestens eine organische oder anorganische Calciumverbindung enthalten.

Im Umfange vorliegender Erfindung liegen demnach z.B. auch Polymerzusammensetzungen, wie vorbeschrieben, enthaltend im Stabilisatorgemisch eine oder beide der Komponenten d) und e). Demnach werden Polymerzusammensetzungen von vorliegender Erfindung umfasst, welche im Stabilisatorengemisch die Komponenten a), b) und c) oder beispielsweise a), b), c) und d) oder a), b), c) und e) oder a), b), c), d) und e) enthalten.

Zweckmässig sind Polymerzusammensetzungen, wie vorbeschrieben, enthaltend im Stabilisatorgemisch als a) mindestens ein cyclisches sterisch gehindertes Amin, insbesondere eine Verbindung aus der Reihe der Derivate von Polyalkylpiperidinen die mindestens eine Gruppe der Formel III

worin R Wasserstoff oder Methyl ist, enthalten; vorzugsweise sind die Polyalkylpiperidingruppen der Formel III in 4-Stellung mit einem oder zwei polaren Substituenten oder einen polaren Spiro-Ringsystem substituiert.

45

50

15

Zweckmässig sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend als b) mindestens eine organische Zinkverbindung aus der Reihe der aliphatischen gesättigten C_2 - C_{22} -Carboxylate, der aliphatischen olefinischen C_3 - C_{22} -Carboxylate, der aliphatischen C_2 - C_{22} -Carboxylate, die mit wenigstens einer OH-Gruppe substituiert sind, der cyclischen und bicyclischen Carboxylate mit 5-22 C-Atomen, der aromatischen C_7 - C_{22} -Carboxylate, der mit wenigstens einer OH-Gruppe substituierten aromatischen C_7 - C_{22} -Carboxylate, der C_7 - C_{22} -Carboxylate, der C_7

Zweckmässig sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend als c) mindestens eine Verbindung aus der Reihe der Hydrotalcite der allgemeinen Formel I,

$$M^{2+} \longrightarrow M^{3+} \longrightarrow (OH)_2 \cdot (A^{n+})_{\times n} \longrightarrow MH_2O$$
 (I)

wobei

15

25

M2⁺ = Mg, Ca, Sr, Ba, Zn, Cd, Pb, Sn und/oder Ni ist,

 M^{3^+} = Al, B oder Bi ist,

20 An èin Anion mit der Valenz n darstellt,

n eine Zahl von 1-4 ist,

x eine Zahl von 0-0,5 ist,

m eine Zahl von 0-2 ist und

 $A = OH^-, CI^-, Br^-, I^-, CIO_4^-, HCO_3^-, CH_3COO^-, C_6H_5COO^-, CO_3^{2-}, SO_4^{2-}, CO_3^{2-}, CO_3^{$

(CHOHCOO)₂²⁻, (CHOH)₄CH₂OHCOO⁻, C₂H₄(COO)₂²⁻, (CH₂COO)₂²⁻, CH₃CHOHCOO⁻, SiO₃²⁻, SiO₄⁴⁻, Fe(CN)₆³⁻, Fe(CN)₆⁴⁻ oder HPO₄²⁻ darstellt.

Andere Hydrotalcite, die zweckmässig in Polymerzusammensetzungen, wie oben beschrieben, eingesetzt werden können, sind Verbindungen mit der allgemeinen Formel la,

M_x²⁺ Al₂(OH)_{2x-6nz}(Aⁿ·)₂ *mH₂O (la) wobei in vorliegender Formel la M²⁺ wenigstens ein Metall aus der Reihe von Mg und Zn darstellt und Mg bevorzugt ist, Aⁿ- ein Anion, beispielsweise aus der Reihe von CO₃²⁻,

$$\left(\begin{array}{c} \cos \\ \cos \end{array}\right)^{2-}$$

 OH^- und S^{2-} darstellt, wobei n die Valenz des Anions ist, m eine positive Zahl, vorzugsweise von 0,5 bis 5, darstellt und x und z positive Zahlen darstellen, wobei x vorzugsweise 2 bis 6 ist und z kleiner als 2 ist.

Zweckmässig sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend als d) mindestens ein 1,3-Diketon der allgemeinen Formel II oder IIa,

$$R^a = C - CHR^b - C - R^c$$
 (II),

$$\begin{bmatrix} R^{b} & 0 \\ 0 & 1 \end{bmatrix} \times (IIa)$$

55

40

45

wobei

R^a Alkyl mit 1 bis 22 C-Atomen, C₅-C₁₀-Hydroxyalkyl, Alkenyl mit 2 bis 22 C-Atomen, Phenyl, mit 1 bis 3 Gruppen der Reihe -OH, C₁-C₄-Alkyl, C₁- bis C₄-Alkoxy oder Halogen substituiertes Phenyl, Phenyl-C₁-C₄-alkyl, eine Gruppe der Formel

10

Cycloalkyl mit 5 bis 12 Ring-C-Atomen, oder mit 1 bis 3 C₁-C₄-Alkylgruppen substituiertes Cycloalkyl mit 5 bis 12 Ring-C-Atomen bedeutet,

R^c Alkyl mit 1 bis 22 C-Atomen, C₅-C₁₀-Hydroxyalkyl, Alkenyl mit 2 bis 22 C-Atomen, Phenyl, mit 1 bis 3 Gruppen der Reihe -OH, C₁-C₄-Alkyl, C₁- bis C₄-Alkoxy oder Halogen substituiertes Phenyl oder Phenyl-C₁-C₄-alkyl, eine Gruppe der Formel

20

Cycloalkyl mit 5 bis 12 Ring-C-Atomen, oder mit 1 bis 3 C₁ bis C₄-Alkylgruppen substituiertes Cycloalkyl mit 5 bis 12 Ring-C-Atomen bedeutet,

R^b -H, Alkyl mit 1 bis 18 C-Atomen, Alkenyl mit 2 bis 12 C-Atomen, Phenyl, C₁-C₄-Alkyl substituiertes Phenyl, Phenyl-C₁-C₄-alkyl, oder eine Gruppe der Formel

30

bedeutet

wobei Rd -CH3, -C2H5 oder Phenyl darstellt, oder worin

R^a und R^b zusammen die Bedeutung eines Tetramethylenrestes oder eines Tetramethylenrestes, der mit einem Benzorest anelliert ist, aufweisen oder

 R^a und R^c zusammen die Bedeutung eines Trimethylenrestes oder eines mit 1 bis 3 C_1 - C_4 -Alkylgruppen substituierten Trimethylenrestes aufweisen, und X Alkylen mit 1-4 C-Atomen bedeutet.

Ra und Rc als Alkyl mit 1 bis 22 C-Atomen kann beispielsweise Methyl, Ethyl, Propyl, n-Butyl, tert.-Butyl, Pentyl, Hexyl, 2-Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Octadecyl oder Eicosyl sein, Rb als Alkyl mit 1 bis 18 C-Atomen kann beispielsweise obige Bedeutung ohne Eicosyl haben.

Beispiele von C_5 - C_{10} -Hydroxyalkyl für R^a und R^c sind 5-Hydroxypentyl, 6-Hydroxyethyl oder 7-Hydroxyheptyl.

Beispiele für R^a und R^c als Alkenyl mit 2 bis 22 C-Atomen sind Vinyl, Propenyl, Allyl, Butenyl, Methallyl, Hexenyl, Decenyl oder Heptadecenyl. Entsprechende Beispiele für R^b als Alkenyl mit 2 bis 12 C-Atomen lassen sich sinngemäss obiger Aufzählung entnehmen.

Bei den Phenylgruppen, die mit vorzugsweise ein bis drei Gruppen aus der Reihe -OH, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiert sind, wie für R^a und R^c erwähnt, kann es sich um 4-Hydroxyphenyl-, um 4-Hydroxy-3,5-di-C₁-C₄-alkylphenyl-, wobei C₁-C₄-Alkyl beispielsweise Methyl oder t-Butyl ist, um Methylphenyl, Dimethylphenyl, Ethylphenyl, n-Butylphenyl, tert.-Butylphenyl, Methyl-tert.-butylphenyl, ditert.-Butylphenyl, um Methoxy oder Ethoxyphenyl oder um Monochlorphenyl handeln.

Bedeutet R^b C₁-C₄-Alkyl substituiertes Phenyl so sind damit z.B. Methylphenyl, Ethylphenyl oder tert.-Butylphenyl umfasst.

Die Bedeutung von Phenyl-C₁-C₄-alkyl für R^a, R^b und R^c ist beispielsweise Benzyl oder Methylbenzyl.

Rª und Rc können auch Cycloalkyl mit 5 bis 12 Ring-C-Atomen oder mit 1 bis 3 C₁-C₄-Alkylgruppen substituietes Cycloalkyl mit 5 bis 12 Ring-C-Atomen bedeuten. Beispiele dafür sind Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclohenyl, Cyclohecyl, Cyclohecyl, Cyclohecyl, Cyclohecyl, Dimethylcyclohexyl, Trimethylcyclohexyl, tert.-Butylcyclohexyl.

Beispiele für 1,3-Diketone sind:

Dehydroacetsäure, Dehydropropionylacetsäure, Dehydrobenzoylacetsäure, Cyclohexan-1,3-dion, Dimedon, 2.2'-Methylenebiscyclohexan-1,3-dion, 2-Benzylcyclohexan-1,3-dion, Acetyltetralon, Palmitoyltetralon, Stearoyltetralon, Benzoyltetralon, 2-Acetylcyclohexanon, 2-Benzoylcyclohexanon, 2-Acetyl-cyclohexane-1,3-dion, Benzoyl-p-chlorobenzoylmethan, Bis-(4-methylbenzoyl)methan, Bis-(2-hydroxybenzoyl)methan, Benzoylaceton, Tribenzoylmethan, Diacetylbenzoylmethan, Stearoylbenzoylmethan, Palmitoylbenzoylmethan, Lauroylbenzoylmethan, Dibenzoylmethan, 4-Methoxybenzoylbenzoylmethan, Bis-(4-methoxybenzoyl)methan, Bis-(4-chlorobenzoyl)methan, Bis-(3,4-methylenedioxybenzoyl)methan, Benzoylacetylphenylmethan, Stearoyl-4-methoxy-benzoylmethan, Bis-(4-t-butylbenzoyl)methan, Butanoylaceton, Heptanoylaceton, Distearoylmethan, Acetylaceton, Stearoylaceton, Palmitoylaceton, Lauroylaceton, Benzoylformylmethan, Benzoylphenylacetylmethan, Bis-(cyclohexanoyl)methan oder Di-pivaloylmethan.

Als Costabilisatoren verwendbare 1,3-Diketoverbindungen sind insbesondere jene, die in der DE-B 2 600 516 und der EP-A 35 268 beschrieben sind, z.B. solche der im Patentanspruch der DE-B 2 600 516 angegebenen Formel. Bevorzugte 1,3-Diketoverbindungen sind Benzoylstearoyl-methan, 2-Benzoylacetessigsäurealkyl(z.B. ethyl)-ester und Triacylmethane.

Besonders bevorzugt sind 1,3-Diketone der Formel Ilb,

15

35

$$R_1-C-CH_2-C-R_2 \qquad (IIb)$$

worin R_1 C_1 - C_{10} -Alkyl, C_5 - C_{10} -Hydroxyalkyl, Phenyl, Hydroxyphenyl, C_7 - C_{10} -Phenylalkyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_{10} -Phenylalkyl ist und R_2 C_5 - C_{10} -Hydroxyalkyl, Hydroxyphenyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_{10} -Phenylalkyl darstellt, mit der Bedingung, dass R_2 verschieden von Hydroxyphenyl ist, wenn R_1 Phenyl oder Hydroxyphenyl bedeutet.

R₁ bedeutet als C₁-C₁₀-Alkyl zum Beispiel Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, tert-Butyl, n-Pentyl, n-Heptyl, n-Octyl oder n-Decyl, C₁-C₄-Alkyl, insbesondere Methyl und tert-Butyl, ist bevorzugt.

Beispiele für R_1 und R_2 als C_5 - C_1c -Hydroxyalkyl sind 5-Hydroxypentyl, 1,1-Dimethyl-3-hydroxypropyl, 6-Hydroxyhexyl, 8-Hydroxyoctyl und 10-Hydroxydecyl. 5-Hydroxypentyl, 6-Hydroxyhexyl und 7-Hydroxyhetyl sind bevorzugt. Vorzugsweise befindet sich die Hydroxyalkylgruppe nicht in α -Stellung. R_2 bedeutet insbesondere eine Gruppe der Formel -(CH_2) $_n$ -OH, worin n eine ganze Zahl von 5 bis 7 darstellt. Von besonderem Interesse ist R_2 als 5-Hydroxypentyl.

Bedeuten R₁ und R₂ Hydroxyphenyl, so kann sich die OH-Gruppe in ortho-, meta- oder para-Stellung befinden. o-Hydroxyphenyl ist bevorzugt.

Beispiele für R₁ als C₇-C₁₀-Phenylalkyl sind Benzyl und 2-Phenylethyl.

 R_1 und R_2 bedeuten als C_7 - C_{10} -Phenylalkyl, welches am Phenylring durch eine OH-Gruppe substituiert ist, z.B. (2-Hydroxyphenyl)methyl, (3-Hydroxyphenyl)methyl, (4-Hydroxyphenyl)methyl, 2-(2-Hydroxyphenyl)ethyl und 2-(4-Hydroxyphenyl)ethyl.

innerhalb dieser Stabilisatorgruppe sind Verbindungen bevorzugt mit der obigen Formel Ilb, worin R_1 C_1 - C_1 0-Alkyl, C_5 - C_1 0-Hydroxyalkyl, Phenyl, Hydroxyphenyl, C_7 - C_1 0-Phenylalkyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_1 0-Phenylalkyl ist und R_2 C_5 - C_1 0-Hydroxyalkyl, Hydroxyphenyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_1 0-Phenylalkyl darstellt, mit der Bedingung, dass R_2 verschieden von Hydroxyphenyl ist, wenn R_1 Phenyl oder Hydroxyphenyl bedeutet.

Besonders bevorzugt sind Verbindungen obiger Formel IIb worin R_1 C_1 - C_{10} -Alkyl, C_5 - C_{10} -Hydroxyalkyl oder Phenyl bedeutet und R_2 C_5 - C_{10} -Hydroxyalkyl oder Hydroxyphenyl ist, oder ganz besonders bevorzugt worin R_1 C_1 - C_4 -Alkyl oder Phenyl bedeutet und R_2 C_5 - C_7 -Hydroxyalkyl oder Hydroxyphenyl ist, ferner worin R_2 eine Gruppe -(CH_2)_n-OH bedeutet, wobei n eine ganze Zahl von 5 bis 7 darstellt.

Weitere Beispiele besonders bevorzugter Verbindungen obiger Formel IIb sind solche, worin R_1 Methyl, Butyl oder Phenyl ist und R_2 5-Hydroxypentyl, 6-Hydroxyhexyl, 7-Hydroxyheptyl oder ortho-Hydroxyphenyl darstellt.

Namentlich zu erwähnen sind die bevorzugten Verbindungen der Formel Ilb Stearoylbenzoylmethan,

Dibenzovlmethan,

1-Phenyl-8-hydroxyoctan-1,3-dion,

1-t-Butyl-8-hydroxyoctan-1,3-dion,

1-Methyl-8-hydroxyoctan-1,3-dion oder

1-(o-Hydroxyphenyl)butan-1,3-dion.

Besonders bevorzugt sind auch 1,3-Diketoverbindungen der Formel IIc.

$$R^{1}$$
'-C-CH-C-R²'-S-R³' (IIc)

worin $R^{1'}$ und $R^{3'}$ unabhängig voneinander C_1 - C_{12} -Alkyl, Phenyl, durch ein bis drei C_1 - C_{12} -Alkylgruppen substituiertes Phenyl, C_7 - C_{10} -Phenylalkyl oder durch ein bis drei C_1 - C_{12} -Alkylgruppen substituiertes C_7 - C_{10} -Phenylalkyl und $R^{1'}$ zusätzlich - $R^{2'}$ -S- $R^{3'}$ bedeutet, $R^{2'}$ C_1 - C_{10} -Alkylen darstellt und $R^{4'}$ Wasserstoff, C_2 - C_5 -Alkoxycarbonyl oder C_2 - C_5 -Alkanoyl ist. Weitere Ausführungen dazu, Beispiele und Bevorzugungen sind der EP 307 358 zu entnehmen.

Zweckmässig sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend als e) mindestens eine Ca-Seife der allgemeinen Formel Ca{OOCR^x)₂, wobei R^x eine Alkylgruppe mit 1 bis 22 C-Atomen, eine Alkenylgruppe mit 2 bis 22 C-Atomen, Phenyl, Phenyl-C₁-C₄-alkyl oder C₁-C₈-Alkylphenyl darstellt.

Bedeutet R^x beispielsweise eine Alkylgruppe mit 1 bis 22 C-Atomen, so sind Beispiele dafür Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Hepta decyl, Octadecyl, 2-Ethylbutyl, 1-Methylpentyl, 1,3-Dimethylbutyl, 1,1,3,3-Tetramethylbutyl, 1-Methylhexyl, Isoheptyl, 1-Methylhexyl, 1-Methylhexyl, Eicosyl, Henicosyl und Docosyl.

Die Bedeutung von R^x als Alkenyl mit 2 bis 22 C-Atomen kann beispielsweise Allyl, 2-Methallyl, 2-Butenyl, trans-2-Butenyl, 2-Hexenyl, trans-2,4-Hexadienyl, Decenyl, Undecenyl, Heptadecenyl, Oleyl, cis-9-Octadecenyl, trans-9-Octadecenyl, cis,cis-9,12-Octadecadienyl oder cis,cis,cis-9,12,15-Octadecatrienyl sein.

Bedeutet R^x Phenyl- C_1 - C_4 -alkyl, so sind Beispiele dafür Benzyl oder Methylbenzyl. Ist die Bedeutung von R^x C_1 - C_8 -Alkylphenyl, so sind Beispiele dafür Methylphenyl, Ethylphenyl, Propylphenyl, n-Butylphenyl, tert.-Butylphenyl, Octylphenyl, Dimethylphenyl, Methyl-tert.-butylphenyl und Di-tert.-butylphenyl.

Besonders zweckmässig sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend als Derivat von Polyalkylpiperidinen ein Derivat des 2,2,6,6-Tetramethylpiperidins.

Von Bedeutung sind insbesondere die folgenden Klassen von Polyalkylpiperidinen, die mindestens eine Gruppe der Formel III, wie oben angegeben, tragen:

(a) Verbindungen der Formel IV

5

20

30

35

$$\begin{bmatrix} RCH_2 & CH_3 & R \\ R^{11} - N & -O & -R^{12} \\ RCH_2 & CH_3 & -D & -R^{12} \end{bmatrix}$$
 (IV),

worin n eine Zahl von 1 bis 4, vorzugsweise 1 oder 2 bedeutet. R Wasserstoff oder Methyl bedeutet, R11 Wasserstoff, Oxyl, Hydroxyl, C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₇-C₁₂-Aralkyl, C₁-C₁₈-Alkoxy, C₅-C8-Cycloalkoxy, C7-C9-Phenylaikoxy, C1-C8-Alkanoyl, C3-C5-Alkenoyl, C1-C18-Alkanoyloxy, Benzyloxy, Glycidyl oder eine Gruppe -CH2CH(OH)-Z, worin Z Wasserstoff, Methyl oder Phenyl ist, bedeutet, wobei R11 vorzugsweise H, C1-C4-Alkyl, Allyl, Benzyl, Acetyl oder Acryloyl ist und R12, wenn n 1 ist, Wasserstoff, gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochenes C1-C18-Alkyl, Cyanethyl, Benzyl, Glycidyl, einen einwertigen Rest einer aliphatischen, cycloaliphatischen, araliphatischen, ungesättigten oder aromatischen Carbonsäure, Carbaminsäure oder Phosphor enthaltenden Säure oder einen einwertigen Silylrest, vorzugsweise einen Rest einer aliphatischen Carbonsäure mit 2 bis 18 C-Atomen, einer cycloaliphatischen Carbonsäure mit 7 bis 15 C-Atomen, einer α,β -ungesättigten Carbonsäure mit 3 bis 5 C-Atomen oder einer aromatischen Carbonsäure mit 7 bis 15 C-Atomen bedeutet, wenn n 2 ist, C1-C12-Alkylen, C4-C12-Alkenylen, Xylylen, einen zweiwertigen Rest einer aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Dicarbonsäure, Dicarbaminsäure oder Phosphor enthaltenden Säure oder einen zweiwertigen Silylrest, vorzugsweise einen Rest einer aliphatischen Dicarbonsäure mit 2 bis 36 C-Atomen, einer cycloaliphatischen oder aromatischen Dicarbonsäure mit 8 - 14 C-Atomen oder einer aliphatischen, cycloaliphatischen oder aromatischen Dicarbaminsäure mit 8 - 14 C-Atomen bedeutet, wenn n 3 ist, einen dreiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen Tricarbonsäure, einer aromatischen Tricarbaminsäure oder einer Phosphor enthaltenden Säure oder einen dreiwertigen Silylrest bedeutet und wenn n 4 ist, einen vierwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen

Tetracarbonsäure bedeutet, wobei

5

10

20

Von Interesse sind Verbindungen der Formel IV, mit der Massgabe, dass, wenn n = 2 ist, für R¹² Reste von aliphatischen Dicarbonsäuren der Formel -OOC-(CH₂)₈-COO- ausgeschlossen sind. Von Interesse sind auch Verbindungen der Formel IV, mit der Massgabe, dass, wenn n = 2 ist, für R¹², Reste von aliphatischen Dicarbonsäuren mit 8 bis 12 C-Atomen ausgeschlossen sind.

Bedeuten etwaige Substituenten C₁-C₁₂-Alkyl, so stellen sie z.B. Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethyl-hexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl dar.

In der Bedeutung von C₁-C₁₈-Alkyl kann R¹¹ oder R¹² z.B. die oben angeführten Gruppen und dazu noch beispielsweise n-Tridecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl darstellen.

Wenn R¹¹ C₃-C₈-Alkenyl bedeutet, so kann es sich z.B. um 1-Propenyl, Allyl, Methallyl, 2-Butenyl, 2-Pentenyl, 2-Hexenyl, 2-Octenyl, 4-tert.-Butyl-2-butenyl handeln.

R¹¹ ist als C₃-C₈-Alkinyl bevorzugt Propargyl.

Als C7-C12-Aralkyl ist R11 insbesondere Phenethyl und vor allem Benzyl.

R¹¹ ist als C₁-C₈-Alkanoyl beispielsweise Formyl, Propionyl, Butyryl, Octanoyl, aber bevorzugt Acetyl und als C₃-C₅-Alkenoyl insbesondere Acryloyl.

Bedeutet R¹² einen einwertigen Rest einer Carbonsäure, so stellt es beispielsweise einen Essigsäure-, Capronsäure-, Stearinsäure-, Acrylsäure-, Methacrylsäure-, Benzoe- oder β-(3,5-Di-tert.-butyl-4-hydroxyphe-nyl)-propionsäurerest dar.

Bedeutet R¹² einen zweiwertigen Rest einer Dicarbonsäure, so stellt es beispielsweise einen Malonsäure-, Bernsteinsäure-, Glutarsäure-, Adipinsäure-, Korksäure-, Sebacinsäure-, Maleinsäure-, Itaconsäure-, Phthalsäure-, Dibutylmalonsäure-, Dibenzylmalonsäure-, Butyl-(3,5-di-tert.-butyl-4-hydroxybenzyl)-malonsäure- oder Bicycloheptendicarbonsäurerest dar.

Stellt R¹² einen dreiwertigen Rest einer Tricarbonsäure dar, so bedeutet es z.B. einen Trimellitsäure-, Citronensäure- oder Nitrilotriessigsäurerest.

Stellt R¹² einen vierwertigen Rest einer Tetracarbonsäure dar, so bedeutet es z.B. den vierwertigen Rest von Butan-1.2,3,4-tetracarbonsäure oder von Pyromellitsäure.

Bedeutet R¹² einen zweiwertigen Rest einer Dicarbaminsäure, so stellt es beispielsweise einen Hexamethylendicarbaminsäure- oder einen 2,4-Toluylen-dicarbaminsäurerest dar.

Bevorzugt sind Verbindungen der Formel IV, worin R Wasserstoff ist, R¹¹ Wasserstoff oder Methyl ist, n 2 ist und R¹² der Diacylrest einer aliphatischen Dicarbonsäure mit 4-12 C-Atomen ist.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

- 0 1) 4-Hydroxy-2,2,6,6-tetramethylpiperidin
 - 2) 1-Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
 - 3) 1-Benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
 - 4) 1-(4-tert.-Butyl-2-butenyl)-4-hydroxy-2,2,6,6-tetramethylpiperidin
 - 5) 4-Stearoyloxy-2.2.6.6-tetramethylpiperidin
- 6) 1-Ethyl-4-salicyloyloxy-2,2,6,6-tetramethylpiperidin
 - 7) 4-Methacryloyloxy-1,2,2,6,6-pentamethylpiperidin
 - 8) 1,2,2,6,6-Pentamethylpiperidin-4-yl- β -(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionat
 - 9) Di-(1-benzyl-2,2,6,6-tetramethylpiperidin-4-yl)-maleinat
 - 10) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-succinat
- 11) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-glutarat
 - 12) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-adipat
 - 13) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 14) Di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-sebacat
 - 15) Di-(1,2,3,6-tetramethyl-2,6-diethyl-piperidin-4-yl)-sebacat
- 16) Di-(1-allyl-2,2,6,6-tetramethylpiperidin-4-yl)-phthalat
 - 17) 1-Hydroxy-4-\$-cyanoethyloxy-2.2,6,6-tetramethylpiperidin
 - 18) 1-Acetyl-2,2,6,6-tetramethylpiperidin-4-yl-acetat
 - 19) Trimellithsäure-tri-(2,2,6,6-tetramethylpiperidin-4-yl)-ester

- 20) 1-Acryloyl-4-benzyloxy-2,2,6,6-tetramethylpiperidin
- 21) Diethylmalonsäure-di(2,2,6,6-tetramethylpiperidin-4-yl)-ester
- 22) Dibutyl-malonsäure-di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-ester
- 23) Butyl-(3,5-di-tert.-butyl-4-hydroxybenzyl)-malonsäure-di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-ester
- 24) Di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 25) Di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 26) Hexan-1',6'-bis-(4-carbamoyloxy-1-n-butyl-2,2,6,6-tetramethylpiperidin)
 - 27) Toluol-2',4'-bis-(4-carbamoyloxy-1-n-propyl-2,2,6,6-tetramethylpiperidin)
 - 28) Dimethyl-bis-(2,2,6,6-tetramethylpiperidin-4-oxy)-silan
- 29) Phenyl-tris-(2,2,6,6-tetramethylpiperidin-4-oxy)-silan
 - 30) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl)-phosphit
 - 31) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl)phosphat
 - 32) Phenyl-[bis-(1,2,2,6,6-pentamethylpiperidin-4-yl)]-phosphonat
 - 33) 4-Hydroxy-1,2,2,6,6-pentamethylpiperidin
- 34) 4-Hydroxy-N-hydroxyethyl-2,2,6,6-tetramethylpiperidin
 - 35) 4-Hydroxy-N-(2-hydroxypropyl)-2,2,6,6-tetramethylpiperidin
 - 36) 1-Glycidyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
 - (b) Verbindungen der Formel (V)

20

25

35

50

$$\begin{bmatrix}
RCH_2 & CH_3 & R & R^{13} \\
R^{11} - N & -N & R^{14}
\end{bmatrix}$$

$$RCH_2 & CH_3 & R^{14}$$

$$RCH_2 & CH_3 & R^{14}$$

worin n die Zahl 1 oder 2 bedeutet, R und R¹¹ die unter (a) angegebene Bedeutung haben, R¹³ Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₅-Hydroxyalkyl, C₅-C₇-Cycloalkyl, C₇-C₈-Aralkyl, C₂-C₁₈-Alkanoyl, C₃-C₅-Alkenoyl, Benzoyl oder eine Gruppe der Formel

ist und R^{14} wenn n 1 ist, Wasserstoff, $C_1-C_{18}-Alkyl$, $C_3-C_8-Alkenyl$, $C_5-C_7-Cycloalkyl$, mit einer Hydroxy-Cyano-, Alkoxycarbonyl- oder Carbamidgruppe substituiertes $C_1-C_4-Alkyl$, Glycidyl, eine Gruppe der Formel -CH₂-CH(OH)-Z oder der Formel -CONH-Z ist, worin Z Wasserstoff, Methyl oder Phenyl bedeutet; wenn n 2 ist, $C_2-C_{12}-Alkyl$ en, $C_6-C_{12}-Aryl$ en, Xylylen, eine -CH₂-CH(OH)-CH₂-Gruppe oder eine Gruppe -CH₂-CH-(OH)-CH₂-O-D-O- bedeutet, worin D $C_2-C_{10}-Alkyl$ en, $C_6-C_{15}-Aryl$ en, $C_6-C_{12}-Cycloalkyl$ en ist, oder vorausgesetzt, dass R^{13} nicht Alkanoyl, Alkenoyl oder Benzoyl bedeutet, R^{14} auch einen zweiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen Dicarbonsäure oder Dicarbaminsäure oder auch die Gruppe -CO- bedeuten kann, oder R^{13} und R^{14} zusammen, wenn n 1 ist, den zweiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen 1,2- oder 1,3-Dicarbonsäure bedeuten können.

Stellen etwaige Substituenten C₁-C₁₂- oder C₁-C₁₈-Alkyl dar, so haben sie die bereits unter (a) angegebene Bedeutung.

Bedeuten etwaige Substituenten C5-C7-Cycloalkyl, so stellen sie insbesondere Cyclohexyl dar.

Als C_7 - C_8 -Aralkyl ist R^{13} insbesondere Phenylethyl oder vor allem Benzyl. Als C_2 - C_5 -Hydroxyalkyl ist R^{13} insbesondere 2-Hydroxyethyl oder 2-Hydroxypropyl.

R¹³ ist als C₂-C₁₈-Alkanoyl beispielsweise Propionyl, Butyryl, Octanoyl, Dodecanoyl, Hexadecanoyl, Octadecanoyl, aber bevorzugt Acetyl und als C₃-C₅-Alkenoyl insbesondere Acryloyl.

Bedeutet R^{14} C_2 - C_8 -Alkenyl, dann handelt es sich z.B. um Allyl, Methallyl, 2-Butenyl, 2-Pentenyl, 2-Hexenyl oder 2-Octenyl.

 R^{14} als mit einer Hydroxy-, Cyano-, Alkoxycarbonyl- oder Carbamidgruppe substituiertes C_1 - C_4 -Alkyl kann z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Cyanethyl, Methoxycarbonylmethyl, 2-Ethoxycarbonylethyl, 2-

Aminocarbonylpropyl oder 2-(Dimethylaminocarbonyl)-ethyl sein.

Stellen etwaige Substituenten C2-C12-Alkylen dar, so handelt es sich z.B. um Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen, Hexamethylen, Octamethylen, Decamethylen oder Dodecamethylen.

Bedeuten etwaige Substituenten C6-C15-Arylen, so stellen sie z.B. o-, m-oder p-Phenylen, 1,4-Naphthvlen oder 4,4 -Diphenylen dar.

Als C_6 - C_{12} -Cycloalkylen ist insbesondere Cyclohexylen zu nennen.

Bevorzugt sind Verbindungen der Formel V, worin n 1 oder 2 ist, R Wasserstoff ist, R¹¹ Wasserstoff oder Methyl ist, R13 Wasserstoff, C1-C12-Alkyl oder eine Gruppe der Formel

15

10

ist und R^{14} im Fall von n=1 Wasserstoff oder C_1-C_{12} -Alkyl ist, und im Fall von n=2 C_2-C_8 -Alkylen ist. Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

37) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylen-1,6-diamin

38) N,N -Bis-(2,2.6,6-tetramethylpiperidin-4-yl)-hexamethylen-1.6-diacetamid

39) Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-amin

40) 4-Benzoylamino-2,2,6,6-tetramethylpiperidin

41) N,N'-Bis-(2.2,6,6-tetramethylpiperidin-4-yl)-N,N'-dibutyl-adipamid

42) N,N -Bis-(2,2,6,6-tetramethylpiperidin4-yl)-N,N -dicyclohexyl-2-hydroxypropylen-1,3-diamin

43) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-p-xylylen-diamin

44) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-succindiamid

45) N-(2,2.6,6-Tetramethylpiperidin-4-yl)-β-aminodipropionsäure-di-(2,2,6,6-tetramethylpiperidin-4-yl)-ester

46) Die Verbindung der Formel

30 35 40

45

47) 4-(Bis-2-hydroxyethyl-amino)-1,2,2,6,6-pentamethylpiperidin

48) 4-(3-Methyl-4-hydroxy-5-tert.-butyl-benzoesäureamido)-2.2.6,6-tetramethylpiperidin

49) 4-Methacrylamido-1,2,2,6,6-pentamethylpiperidin

(c) Verbindungen der Formel (VI)

$$\begin{bmatrix}
RCH_2 & CH_3 & R & 0 \\
R^{11} - N & CH_3 & 0
\end{bmatrix}$$

$$RCH_2 & CH_3 & 0$$

$$RCH_2 & CH_3 & 0$$

$$R & CH_3 &$$

worin n die Zahl 1 oder 2 bedeutet, R und R¹¹ die unter (a) angegebene Bedeutung haben und R¹⁵, wenn n 1 ist, C₂-C₈-Alkylen oder -Hydroxyalkylen oder C₄-C₂₂-Acyloxyalkylen, wenn n 2 ist, die Gruppe (-CH₂)₂C-(CH₂-)₂ bedeutet.

Bedeutet R¹⁵ C₂-C₈-Alkylen oder -Hydroxyalkylen, so stellt es beispielsweise Ethylen, 1-Methyl-ethylen, Propylen, 2-Ethyl-propylen oder 2-Ethyl-2-hydroxymethylpropylen dar.

Als C4-C22-Acyloxyalkylen bedeutet R15 z.B. 2-Ethyl-2-acetoxymethylpropylen.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

50) 9-Aza-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecan

5

10

25

30

35

40

45

51) 9-Aza-8,8,10,10-tetramethyl-3-ethyl-1,5-dioxaspiro[5.5]undecan

52) 8-Aza-2,7,7,8,9,9-hexamethyl-1,4-dioxaspiro[4.5]decan

53) 9-Aza-3-hydroxymethyl-3-ethyl-8,8,9,10,10-pentamethyl-1,5-dioxaspiro[5.5]undecan

54) 9-Aza-3-ethyl-3-acetoxymethyl-9-acetyl-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecan

55) 2,2,6,6-Tetramethylpiperidin-4-spiro-2'-(1',3'-dioxan)-5'-spiro-5"-(1",3'-dioxan)-2"-spiro-4"-(2",2",6",6"-tetramethylpiperidin).

(d) Verbindungen der Formeln VIIA, VIIB und VIIC, wobei Verbindungen der Formeln VIIA bevorzugt sind,

$$\begin{bmatrix}
RCH_2 & CH_3 & R & R^{16} \\
R^{11}-N & CH_3 & CH_3
\end{bmatrix}$$

$$\begin{bmatrix}
RCH_2 & CH_3 & R & R^{16} \\
RCH_2 & CH_3 & CH_3
\end{bmatrix}$$
(VIIA)

$$\begin{bmatrix}
RCH_2 & CH_3 & R & T_1 \\
R^{11} - N & CH_3 & CH_3
\end{bmatrix}$$

$$\begin{bmatrix}
RCH_2 & CH_3 & R & T_1 \\
RCH_2 & CH_3 & CH_3
\end{bmatrix}$$
(VIIC)

worin n die Zahl 1 oder 2 bedeutet, R und R¹¹ die unter (a) angegebene Bedeutung haben, R¹⁶ Wasserstoff, C₁-C₁₂-Alkyl, Aliyl, Benzyl, Glycidyl oder C₂-C₆-Alkoxyalkyl ist und R¹⁷, wenn n 1 ist, Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₅-Alkenyl, C₇-C₈-Aralkyl, C₅-C₇ Cycloalkyl, C₂-C₄-Hydroxyalkyl, C₂-C₆-Alkoxyalkyl, C₆-C₁₀-Aryl, Glycidyl oder eine Gruppe der Formel -(CH₂)_p-COO-Q oder der Formel -(CH₂)_p-O-CO-Q ist, worin p 1 oder 2 und Q C₁-C₄ Alkyl oder Phenyl sind, wenn n 2 ist, C₂-C₁₂ Alkylen, C₄-C₁₂-Alkenylen, C₆-C₁₂ Arylen, eine Gruppe -CH₂-CH(OH)-CH₂-O-D-O-CH₂-CH(OH)-CH₂-, worin D C₂-C₁₀ Alkylen, C₆-C₁₅-Arylen, C₆-C₁₂ Cycloalkylen ist, oder eine Gruppe -CH₂CH(OZ)CH₂-(OCH₂-CH(OZ)CH₂)₂- bedeutet, worin Z Wasserstoff, C₁-C₁₈-Alkyl, Allyl, Benzyl, C₂-C₁₂-Alkanoyl oder Benzoyl ist, T₁ und T₂ unabhängig voneinander Wasserstoff, C₁-C₁₈-Alkyl oder gegebenenfalls durch Halogen oder C₁-C₄-Alkyl substituiertes C₆-C₁₀-Aryl oder C₇-

C₉-Aralkyl bedeuten oder T₁ und T₂ zusammen mit dem sie bindenden C-Atom einen C₅-C₁₂-Cycloalkanring bilden.

Bedeuten etwaige Substituenten C₁-C₁₂-Alkyl, so stellen sie z.B. Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethyl-hexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl dar.

Etwaige Substituenten in der Bedeutung von C₁-C₁₈-Alkyl können z.B. die oben angeführten Gruppen und dazu noch beispielsweise n-Tridecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl darstellen.

Bedeuten etwaige Substituenten C₂-C₆-Alkoxyalkyl, so stellen sie z.B. Methoxymethyl, Ethoxymethyl, Propoxymethyl, tert.-Butoxymethyl, Ethoxyethyl, Ethoxypropyl, n-Butoxyethyl, tert.-Butoxyethyl, Isopropoxyethyl oder Propoxypropyl dar.

Stellt R¹⁷ C₃-C₅-Alkenyl dar, so bedeutet es z.B. 1-Propenyl, Allyl, Methallyl, 2-Butenyl oder 2-Pentenyl. Als C₇-C₉-Aralkyl sind R¹⁷, T₁ und T₂ insbesondere Phenethyl oder vor allem Benzyl. Bilden T₁ und T₂ zusammen mit dem C-Atom einen Cycloalkanring, so kann dies z.B. ein Cyclopentan-, Cyclohexan-, Cyclooctan-oder Cyclododecanring sein.

Bedeutet R^{17} C_2 - C_4 -Hydroxyalkyl, so stellt es z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Hydroxybutyl oder 4-Hydroxybutyl dar.

Als C_6 - C_{10} -Aryl bedeuten R^{17} , T_1 und T_2 insbesondere Phenyl, α - oder β -Naphthyl, die gegebenenfalls mit Halogen oder C_1 - C_4 -Alkyl substituiert sind.

Stellt R¹⁷ C₂-C₁₂-Alkylen dar, so handelt es sich z.B. um Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen, Hexamethylen, Octamethylen, Decamethylen oder Dodecamethylen.

Als C₄-C₁₂-Alkenylen bedeutet R¹⁷ insbesondere 2-Butenylen, 2-Pentenylen oder 3-Hexenylen.

Bedeutet R¹⁷ C₆-C₁₂ Arylen, so stellt es beispielsweise o-, m- oder p-Phenylen, 1,4-Naphthylen oder 4.4 -Diphenylen dar.

Bedeutet Z´ C₂-C₁₂ Alkanoyl, so stellt es beispielsweise Propionyl, Butyryl, Octanoyl, Dodecanoyl, aber bevorzugt Acetyl dar.

D hat als C_2 - C_{10} Alkylen, C_6 - C_{15} Arylen oder C_6 - C_{12} Cycloalkylen die unter (b) angegebene Bedeutung.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

- 56) 3-Benzyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decan-2,4-dion
- 57) 3-n-Octyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decan-2,4-dion
- 58) 3-Allyl-1,3,8-triaza-1,7,7,9,9-pentamethylspiro[4.5]decan-2,4-dion
- 59) 3-Glycidyl-1,3,8-triaza-7,7,8,9,9-pentamethylspiro[4.5]decan-2,4-dion
- 60) 1,3,7,7,8,9,9-Heptamethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion
- 61) 2-Iso-propyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4.5]decan
- 62) 2,2-Dibutyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro-[4.5]decan
- 35 63) 2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosan
 - 64) 2-Butyl-7,7,9,9-tetramethyl-1-oxa-4,8-diaza-3-oxo-spiro-[4,5]decan und bevorzugt:
 - 65) 8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4,5]-decan-2,4-dion oder die Verbindungen der folgenden Formeln:

45

40

5

10

20

25

50

(e) Verbindungen der Formel VIII, die ihrerseits bevorzugt sind,

$$\begin{bmatrix} R^{18} \\ R^{19} \end{bmatrix} R^{20}$$
 (VIII),

worin n die Zahl 1 oder 2 ist und R¹⁸ eine Gruppe der Formel

bedeutet, worin R und R11 die unter (a) angegebene Bedeutung haben, E -O- oder -NR11- ist, A C2-C6-Alkylen oder -(CH₂)₃-O- und x die Zahlen O oder 1 bedeuten, R¹⁹ gleich R¹⁸ oder eine der Gruppen $-NR^{21}R^{22}$, $-OR^{23}$, $-NHCH_2OR^{23}$ oder $-N(CH_2OR^{23})_2$ ist, R^{20} , wenn n=1 ist, gleich R^{18} oder R^{19} , und wenn n=1= 2 ist, eine Gruppe -E-B-E- ist, worin B gegebenenfalls durch -N(R^{21})- unterbrochenes C_2 - C_6 -Alkylen bedeutet, R11 C1-C12-Alkyl, Cyclohexyl, Benzyl oder C1-C4-Hydroxyalkyl oder eine Gruppe der Formel

ist, R²² C₁-C₁₂ Alkyl, Cyclohexyl, Benzyl, C₁-C₄ Hydroxyalkyl und R²³ Wasserstoff, C₁-C₁₂ Alkyl oder Phenyl bedeuten oder R21 und R22 zusammen C4-C5-Alkylen oder -Oxaalkylen, beispielsweise

sind oder auch R21 und R22 jeweils eine Gruppe der Formel

Bedeuten etwaige Substituenten C1-C12-Alkyl, so stellen sie beispielsweise Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl

Bedeuten etwaige Substituenten C1-C4-Hydroxyalkyl, so stellen sie z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 2-Hydroxybutyl oder 4-Hydroxybutyl dar.

Bedeutet A C2-C6 Alkylen, so stellt es beispielsweise Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen oder Hexamethylen dar.

Stellen R21 und R22 zusammen C4-C5-Alkylen oder Oxaalkylen dar, so bedeutet dies z.B. Tetramethylen, Pentamethylen oder 3-Oxapentamethylen.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind die Verbindungen der folgenden Formeln:

55

5

15

25

30

35

71)
$$C_2H_5$$
 C_2H_3 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3 C_3 C_3 C_3 C_3 C_4

• . .

73) CH₃

75)
$$R-NH-(CH_2)_3-N-(CH_2)_2-N-(CH_2)_3-NH-R$$

5 mit $R = \begin{array}{c} CH_3 & CH_3 \\ CH_4 & CH_4 \\ CH_5 & CH_5 \\ CH_5 &$

76)
$$R-NH-(CH_2)_3-N-(CH_2)_2-N-(CH_2)_3-NH-R$$

mit R =
$$\begin{array}{c} CH_3 \\ C_4H_9 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$$

77)
$$R-N-(CH_2)_3-N-(CH_2)_2-N-(CH_2)_3-N-R$$

mit R =
$$\begin{array}{c} CH_3 \\ C_4H_9 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$$

CH₂CH₂OH

CH₃

(f) Oligomere oder polymere Verbindungen, deren wiederkehrende Struktureinheit einen 2,2,6,6-Tetraalkylpiperidinrest der Formel III enthält, insbesondere Polyester, Polyäther, Polyamide, Polyamine, Polyurethane, Polyharnstoffe, Polyaminotriazine, Poly(meth)acrylate, Poly(meth)acrylamide und deren Copolymere, die solche Reste enthalten.

Beispiele für 2,2,6,6-Polyalkylpiperidin-Lichtschutzmittel dieser Klasse sind die Verbindungen der folgenden Formeln, wobei m eine Zahl von 2 bis etwa 200 bedeutet.

55

45

81)
$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array}$$

(g) Verbindungen der Formel IX

25

40

45

50

$$RCH_{2} \xrightarrow{CH_{3}} R$$

$$R^{1} \stackrel{1}{-} N \xrightarrow{CH_{3}} = 0$$

$$RCH_{2} \xrightarrow{CH_{3}} R$$

$$(IX)$$

worin R und R¹¹ die unter (a) angegebene Bedeutung haben.

Bevorzugt sind Verbindungen der Formel IX, worin R Wasserstoff oder Methyl ist und R¹¹ Wasserstoff oder Methyl ist.

Beispiele für solche Verbindungen sind:

- 95) 2,2,6,6-Tetramethyl-4-piperidon (Triacetonamin)
- 96) 1,2,2,6,6-Pentamethyl-4-piperidon
- 97) 2,2,6,6-Tetramethyl-4-piperidon-1-oxyl
- 98) 2,3,6-Trimethyl-2,6-diethyl-4-piperidon

Besonders zweckmässig werden in den erfindungsgemässen Zusammensetzungen als Komponente a) cyclische sterisch gehinderte Amine eingesetzt, die keine Estergruppen enthalten und bevorzugt solche, die im Molekül mindestens einen Triazinring enthalten. Solche Amine enthalten vorzugsweise mindestens eine

Gruppe der Formel III und gehören besonders bevorzugt einer der vorstehend geschilderten Typen (a) bis

(g) an.

Bevorzugt sind Polymerzusammensetzungen, wie beschrieben, enthaltend als b) eine organische
Zinkverbindung, wobei die Zinkverbindung ein Salz einer Carbonsäure mit 7 bis 20 C-Atomen oder ein C7C20-Alkylphenolat darstellt.

Bei den Zinkverbindungen aus der Reihe der Carboxylate handelt es sich bevorzugt um Salze von Carbonsäuren mit 7 bis 20 C-Atomen, beispielsweise Benzoate, Alkenoate oder Alkanoate, bevorzugt Stearate, Oleate, Laurate, Palmitate, Hydroxystearate oder 2-Ethylhexanoate. Besonders bevorzugt sind Stearate, Oleate und p-tert-Butylbenzoate.

10

50

Namentlich zu erwähnen sind, als Beispiele, die Zinksalze der monovalenten Carbonsäuren, wie Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Enanthsäure, Caprylsäure, Neodecansäure, 2-Ethylhexansäure, Pelargonsäure, Caprinsäure, Undecansäure, Laurinsäure, Tridecansäure, Myristylsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, 12-Hydroxystearinsäure, Behensäure, Montansäure, Benzoesäure, Monochlorbenzoesäure, p-tert-Butylbenzoesäure, Dimethylhydroxybenzoesäure, 3,5-Di-tert-butyl-4-hydroxybenzoesäure, Tolylsäure, Dimethylbenzoesäure, Ethylbenzoesäure, Cuminsäure, n-Propylbenzoesäure, Aminobenzoesäure, N,N-Dimethylbenzoesäure, Acetoxybenzoesäure, Salicylsäure, p-tert-Octylsalicylsäure, Oleinsäure, Elaidinsäure, Sorbinsäure, Linolsäure, Linolensäure, Thioglykolsäure, Mercaptopropionsäure und Octylmercaptopropionsäure; Zinksalze der Monoester und Monoamide der divalenten Carbonsäuren, wie Oxalsäure, Malonsäure, Bernsteinsäure, Glutaminsäure, Adipinsäure, Pimelinsäure, Suberinsäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure, Hydroxyphthalsäure, Chlorphthalsäure, Aminophthalsäure, Maleinsäure, Fumarsäure, Citraconsäure, Mesaconsäure, Haconsäure, Aconitrinsäure und Thiodipropionsäure; und der Di- oder Triester der tri-oder tetravalenten Carbonsäuren, wie Hemimellitsäure, Trimellitsäure, Mellophansäure, Pyromellitsäure und Mellitsäure.

Als Chelate von 1,3-Diketonen und β -Ketocarbonsäureestern sind beispielsweise Verbindungen der Formel

$$Zn(R-C-CR'R''-C-R''')_2$$
 zu nennen,

wobei R, R, R, und R, unabhängig voneinander Alkyl mit 1 bis 18 C-Atomen, Alkenyl mit 2 bis 18 C-Atomen, Cycloalkyl mit 5 bis 12 Ring-C-Atomen, mit 1 bis 3 C₁-C₄-Alkyl substituiertes Cycloalkyl mit 5 bis 12 C-Atomen, Alkyl mit 1 bis 18 C-Atomen, das mit Cycloalkyl mit 5-12 Ring-C-Atomen substituiert ist, Phenyl-C₁-C₁₈-alkyl, C₁-C₁₈-Alkylphenyl, Phenyl, Halogenalkyl, Halogenphenyl, Alkoxyalkyl oder Alkylendioxyalkyl oder -phenyl darstellen.

Beispiele für R, R, R, und R, sind Methyl, Ethyl, Propyl, Isopropyl, Isobutyl, n-Butyl, sec.-Butyl, tert.-Butyl, 1-Pentyl, 3-Pentyl, 1-Hexyl, 1-Heptyl, 3-Heptyl, 1-Octyl, 2,4,4-Trimethylphenyl, tert-Octyl, Nonyl, Decyl, Tridecyl, Pentadecyl, Heptadec-8-en-1-yl, n-Octadecyl, Allyl, Methallyl, 2-Hexenyl, 1-Methylcyclopentyl, Cyclohexyl, Cyclohexanpropyl, Phenyl, m-Tolyl, p-Ethylphenyl, tert.Butylphenyl, Benzyl, Phenylpropyl und Nonylbenzyl.

Beispiele für Halogenalkyl oder Halogenphenyl sind Dichlormethyl, Heptafluoropropyl, p-Bromphenyl und 3,4-Dichlorobenzyl. Alkoxyalkyl kann Ethoxymethyl, n-Butoxymethyl, 2-Methoxyethyl, 2-Methoxyphenyl und 4-n-Octoxyphenylbenzyl bedeuten. Alkylendioxyalkyl oder -phenyl kann beispielsweise 3-(Ethylendioxypropyl) oder 3,4-Methylendioxyphenyl sein.

Sinngemäss lassen sich auch alle mit obiger Aufstellung nicht umfassten bereits genannten 1,3-Diketone in Form ihrer Zink-Chelat-Form als organische Zinkverbindungen einsetzen.

Bevorzugt sind Polymerzusammensetzungen wie oben beschrieben, enthaltend als c) mindestens eine Verbindung aus der Reihe der Hydrotalcite der allgemeinen Formel I,

$$M^{2+}_{1-x} \cdot Al_{x} \cdot (OH)_{2} \cdot (A^{n-})_{x/2} \cdot mH_{2}O,$$
 (I)

wobei ${\rm M^2}^{\star}$ die Bedeutung von Mg oder einer festen Lösung von Mg und Zn hat, Ank $^{\rm n}$ für ${\rm CO_3}^{\rm 2-}$ steht, x eine Zahl von 0 bis 0,5 ist und m eine Zahl von 0 bis 2 ist.

Bevorzugt sind Polymerzusammensetzungen, wie oben beschrieben, enthaltend mindestens eine der Verbindungen der Formeln $4MgO^*Al_2O_3^*CO_2^*9H_2O$,

4MgO * Al₂O₃ * CO₂ * 6H₂O, ZnO * 3MgO * Al₂O₃ * CO₂ * 8-9H₂O oder ZnO * 3MgO * Al₂O₃ * CO₂ * 5-6H₂O.

Die Polymerzusammensetzungen können auch weitere organische oder anorganische Ca- und darüberhinaus Ba-, Hg- und Pb-Verbindungen enthalten. Bevorzugt sind Calcium-Verbindungen. Zweckmässig wird mindestens eine organische oder anorganische Ca-, Ba-, Mg und/oder Pb-Verbindung aus der Reihe der aliphatischen C₁-C₂₂-Carboxylate, der olefinischen C₂-C₂₂-Carboxylate, der aliphatischen C₂-C₂₂-Carboxylate, der mit wenigstens einer OH-Gruppe substituiert sind, der cyclischen und bicyclischen Carboxylate mit 5-22 C-Atomen, der aromatischen C₆-C₂₂-Carboxylate, der mit wenigstens einer OH-substituierten aromatischen C₆-C₂₂-Carboxylate, der C₁-C₁₆-alkylsubstituierten Phenylcarboxylate, der Phenyl-C₁-C₁₆-alkylcarboxylate, der C₆-C₁₈-Phenolate, der C₅-C₂₆-Chelate von 1,3-Diketonen oder β-Ketocarbonsäureestern, der Dehydracetsäure und deren Derivaten, der Carbonate, Sulfate, Oxide, Hydroxide, basischen Oxide und Misch-Oxide, der Mercaptide auf der Basis von Marcaptocarbonsäureestern, der Glycinate, Phosphate, Phosphonite, Phosphonate, der Partiälester von Phosphonaten, der Sulfonate und Sulfinate, wobei die Carbonate, Sulfate und Phosphite auch in überbasischen Formen angewendet werden können, angewendet.

Beispiele und Bevorzugungen für die organischen und anorganischen Ca-, und darüber hinaus Ba-, Mgund Pb-Verbindungen sind sinngemäss aus den Beispielen und Bevorzugungen, die zu den Zinkverbindungen angegeben sind, abzuleiten. Dabei soll jeweils anstelle des Zinks eines der Metalle der Reihe Calcium, Barium, Magnesium oder Blei gelesen werden.

Als chlorhaltige Polymere können beispielsweise aufgezählt werden: Polymere des Vinylchlorides, Vinylharze, enthaltend Vinylchlorideinheiten in deren Struktur, wie Copolymere des Vinylchlorids und Vinylester von aliphatischen Säuren, insbesondere Vinylacetat, Copolymere des Vinylchlorids mit Estern der Acryl- und Methycrylsäure und mit Acrylnitril, Copolymere des Vinylchlorids mit Dienverbindungen und ungesättigten Dicarbonsäuren oder deren Anhydride, wie Copolymere des Vinylchlorids mit Diethylmaleat, Diethylfumarat oder Maleinsäureanhydrid, nachchlorierte Polymere und Copolymere des Vinylchlorids, Copolymere des Vinylchlorids und Vinylidenechlorids mit ungesättigten Aldehyden, Ketonen und anderen, wie Acrolein, Crotonaldehyd, Vinylmethylketon, Vinylmethylether, Vinylisobutylether und ähnliche; Polymere des Vinylidenchlorids und Copolymere desselben mit Vinylchlorid und anderen polymerisierbaren Verbindungen; Polymere des Vinylchloracetates und Dichlordivinylethers; chlorierte Polymere des Vinylacetates, chlorierte polymerische Ester der Acrylsäure und der alpha-substituierten Acrylsäure; Polymere von chlorierten Styrolen, zum Beispiel Dichlorstyrol; chlorierte Gummis; chlorierte Polymere des Ethylens; Polymere und nachchlorierte Polymere von Chlorbutadiens und deren Copolymere mit Vinylchlorid, Gummi-Hydrochlorid und chloriertes Gummi-Hydrochlorid; sowie Mischungen der genannten Polymere unter sich oder mit anderen polymerisierbaren Verbindungen.

Ferner sind umfasst die Pfropfpolymerisate von PVC mit EVA, ABS und MBS. Bevorzugte Substrate sind auch Mischungen der vorstehend genannten Homo-und Copolymerisate, insbesondere Vinylchlorid-Homopolymerisate, mit anderen thermoplastischen oder/und elastomeren Polymeren, insbesondere Blends mit ABS, MBS, NBR, SAN, EVA, CFE, MBAS, PMA, PMMA, EPDM und Polylactonen.

Weiterhin bevorzugt sind Suspensions- und Massepolymere, sowie Emulsionspolymere.

Als chlorhaltiges Polymerisat ist Polyvinylchlorid besonders bevorzugt, insbesondere Suspensionspolymerisat und Massepolymerisat.

Zweckmässig sind Polymerzusammensetzungen, wie vorstehend beschrieben, enthaltend, bezogen auf 100 Gew.-Teile Zusammensetzung,

- a) 0,01 bis 1,5 Gew.-Teile an cyclischen oder nicht-cyclischen sterisch gehinderten Aminen,
- b) 0,01 bis 2 Gew.-Teile an organischen oder anorganischen Zinkverbindungen und
- c) 0,1 bis 3 Gew.-Teile an Verbindungen aus der Reihe der Hydrotalcite.

45

Bevorzugte Mengenbereiche für die sterisch gehinderten Amine in der Polymerzusammensetzung sind 0,05 bis 1,0 Gew.-Teile, bezogen auf 100 Gew.-Teile Zusammensetzung. Besonders bevorzugt sind 0,1 bis 0,5 Gew.-Teile.

Bevorzugte Mengenbereiche für die Zinkverbindungen in der Polymerzusammensetzung sind 0,05 bis 1 Gew.-Teile, bezogen auf 100 Gew.-Teile Zusammensetzung.

Bevorzugte Mengenbereiche für die Hydrotalcite in der Polymerzusammensetzung sind 0,3 bis 2 Gew.-Teile, bezogen auf 100 Gew.-Teile Zusammensetzung. Besonders bevorzugt sind 0,4 bis 1 Gew.-Teil.

Das chlorhaltige Polymer kann einen Weichmacher enthalten, wobei chlorhaltige Polymere, die keinen Weichmacher enthalten, bevorzugt sind.

Als organische Weichmacher kommen beispielsweise solche aus den folgenden Gruppen in Betracht:

- A) Phthalate (Phthalsäureester)
- Beispiele für solche Weichmacher sind Dimethyl-, Diethyl-, Dibutyl-, Dihexyl-, Di-2-ethylhexyl-, Di-noctyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl-, Dicyclohexyl-, Di-methylcyclohexyl-, Dimethylglycol-, Dibutylglycol-, Benzylbutyl- und Diphenyl-phthalat sowie Mischungen von Phthalaten wie C_7 - C_9 und C_9 - C_{11} -Alkylphthalate aus überwiegend linearen Alkoholen, C_6 - C_{10} -n-Alkylphthalate und C_8 - C_{10} -n-Alkylphthalate. Bevorzugt sind davon Dibutyl-, Di-2-ethylhexyl-, Di-n-octyl-, Di-iso-octyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl- und Benzylbutyl-phthalat sowie die genannten Mischungen von Alkylphthalaten. Besonders bevorzugt ist Di-2-ethylhexylphthalat (DOP).
- B) Ester aliphatischer Dicarbonsäuren, insbesondere Ester von Adipin-, Azelain- und Sebazinsäure

 Beispiele für solche Weichmacher sind Di-2-ethylhexyladipat, Di-iso-octyladipat (Gemisch), Di-iso-nonyladipat (Gemisch), Di-iso-decyladipat (Gemisch), Benzylbutyladipat, Benzyloctyladipat, Di-2-ethylhexylazelat, Di-2-ethylhexylsebacat und Di-iso-decylsebacat (Gemisch). Bevorzugt sind Di-2-ethylhexyladipat und Di-iso-octyladipat.
 - C) Trimellithsäureester,

5

25

30

35

- beispielsweise Tri-2-ethylhexyltrimellithat, Tri-iso-decyltrimellithat (Gemisch), Tri-iso-tridecyltrimellithat, Tri-iso-octyltrimellithat (Gemisch) sowie Tri-C₆-C₈-alkyl, Tri-C₆-C₁₀-alkyl-, Tri-C₇-C₉-alkyl-und Tri-C₉-C₁₁-alkyl-trimellithate. Die letztgenannten Trimellithate entstehen durch Veresterung der Trimellithsäure mit den entsprechenden Alkanolgemischen. Bevorzugte Trimellithate sind Tri-2-ethylhexyltrimellithat und die genannten Trimellithate aus Alkanolgemischen.
- 20 D) Polymerweichmacher
 - Eine Definition dieser Weichmacher und Beispiele für solche sind im "Plastics Additives Handbook", Herausgeber H. Gächter und H. Müller, Hanser Publishers, 1985, Seite 284, Kapitel 5.7.10 sowie in "PVC Technology". Herausgeber W.V. Titow, 4th. Ed., Elsevier Publ., 1984, Seiten 165-170 angegeben. Die gebrauchlichsten Ausgangsmaterialien für die Herstellung der Polyesterweichmacher sind: Dicarbonsäuren wie Adipin-. Phthal-, Azelain- und Sebacinsäure; Diole wie 1,2-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,6-Hexandiol, Neopentylglycol und Diethylenglykol; Monocarbonsäuren wie Essig-, Capron-, Capryl-. Laurin-, Myristin-, Palmitin-, Stearin-, Pelargon-und Benzoesäure; monofunktionelle Alkohole wie Isooctanol. 2-Ethylhexanol, Isodecanol sowie C₇-C₉-Alkanol- und C₉-C₁₁-Alkanolgemische. Besonders vorteilhaft sind Polyesterweichmacher aus den genannten Dicarbonsäuren und monofunktionellen Alkoholen.
 - E) Phosphorsäureester
 - Eine Definition dieser Ester ist im vorstehend genannten "Plastics Additives Handbook" auf Seite 271, Kapitol 5.7.2 zu finden. Beispiele für solche Phosphorsäureester sind Tributylphosphat, Tri-2-ethylbutylphosphat, Tri-2-ethylhexylphosphat, Trichlorethylphosphat, 2-Ethyl hexyl-di-phenylphosphat, Kresyldiphenylphosphat, Triphenylphosphat, Trikresylphosphat und Trixylenylphosphat. Bevorzugt ist Tri-2-ethylhexyl-phosphat.
 - F) Chlorierte Kohlenwasserstoffe (Paraffine)
 - G: Kohlenwasserstoffe
 - H) Monoester, z.B. Butyloleat, Phenoxyethyloleat, Tetrahydrofurfuryloleat und Alkylsulfonsäureester.
- 40 I) Glyco-ester, z.B. Diglykolbenzoate.
 - Definitionen und Beispiele für Weichmacher der Gruppen F) bis I) sind den folgenden Handbüchern zu entreturer:
 - "Plastics Additives Handbook", Herausgeber H. Gächter und H. Müller, Hanser Publishers, 1985, Seite 284, Kapitel 5.7.11 (Gruppe F)), und Kapitel 5.7.13 (Gruppe G)).
- "PVC Technology". Herausgeber W.V. Titow, 4th. Ed., Elsevier Publishers, 1984, Seiten 171-173, Kapitel 6.10.2 (Gruppe F)), Seite 174, Kapitel 6.10.5 (Gruppe G)), Seite 173, Kapitel 6.10.3 (Gruppe H)) und Seiten 173-174, Kapitel 6.10.4 (Gruppe I)).

Besonders bevorzugt sind Weichmacher aus den Gruppen A) bis E), insbesondere A) bis C), vor allem die in diesen Gruppen als bevorzugt herausgestellten Weichmacher. Besonders günstig ist Di-2-ethylhex-vionthalat (DOP)

Die Weichmacher können in einer Menge von beispielsweise 15 bis 70, zweckmässig 15 bis 60 und insbesondere 20 bis 50 Gew.-Teilen, bezogen auf 100 Gew.-Teile Polymerzusammensetzung, angewendet werden.

Die Polymerzusammensetzungen nach vorliegender Erfindung können auch weitere Stabilisatoren enthalten, so die vorstehend genannte Komponente d) 1,3-Diketone, die zweckmässig in Mengen von 0,05 bis 5, vorzugsweise in Mengen von 0,10 bis 1 Gew.-Teil und insbesondere in Mengen von 0,5 bis 1 Gew.-Teil, jeweils bezogen auf 100 Gew.-Teile Zusammensetzung, angewendet werden kann.

Ein anderer Stabilisator, der ebenfalls Anwendung finden kann, ist die vorstehend beschriebene

Komponente e) - die organischen oder anorganischen Calciumverbindungen -, die zweckmässig in Mengen von 0,05 bis 5 Gew.-Teilen, vorzugsweise in Mengen von 0,1 bis 1 Gew.-Teil und insbesondere in Mengen von 0,5 bis 1 Gew.-Teil, jeweils bezogen auf 100 Gew.-Teile Zusammensetzung, angewendet werden können.

Finden weitere Stabilisatoren aus der Reihe der organischen oder anorganischen Ca-, Ba-, Mg- oder Pb-Verbindungen, wie oben erwähnt, Anwendung, so können beispielsweise 0 bis 5 Gew.-Teile, bezogen auf die Zusammensetzung, eingesetzt werden. Zweckmässig sind 0,05 bis 5 Gew.-Teile, bevorzugt 0,1 bis 1 Gew.-Teile.

Die erfindungsgemässen Zusammensetzungen können auch weitere, für chlorhaltige Thermoplasten übliche Stabilisatoren enthalten. So enthalten sie beispielsweise 0-3 Teile, bezogen auf die Zusammensetzung, insbesondere 0-1,5, vor allem 0-1 Teile eines oder mehrerer Phosphite. Solche Phosphite können etwa in einer Menge von 0,01-3, insbesondere 0,01-1,5, z.B. 0,01-1, bevorzugt 0,1-0,6, z.B. 0,2-0,5 Teilen enthalten sein. Beispiele für derartige Phosphite sind etwa solche der Formeln

worin R^{1"}, R^{2"} und R^{3"} gleich oder verschieden sind und C₆-C₁₈-Alkyl, C₆-C₁₆-Alkenyl, einen substituierten oder unsubstituierten Phenylrest oder C₅-C₇-Cycloalkyl bedeuten.

Bedeuten $R^{1''}$, $R^{2''}$ und $R^{3''}$ C_6 - C_{18} -Alkyl, so handelt es sich dabei z.B. um n-Hexyl, n-Octyl, n-Nonyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl oder Octadecyl. Bevorzugt sind Alkylgruppen mit 8 bis 18 C-Atomen.

Als substituiertes Phenyl bedeuten R¹, R² und R³ beispielsweise Tolyl, Ethylphenyl, Xylyl, Cumyl, Cymyl, Kresyl, 4-Methoxyphenyl, 2,4-Dimethoxyphenyl, Ethoxyphenyl, Butoxyphenyl, p-n-Octylphenyl, p-n-Nonylphenyl oder p-n-Dodecylphenyl.

Besonders geeignete Phosphite sind Trioctyl-, Tridecyl-, Tridodecyl-, Tritetradecyl, Tristearyl-, Trioleyl-, Triphenyl-, Trikresyl-, Tris-p-nonylphenyl- oder Tricyclohexylphosphit und besonders bevorzugt sind die Aryl-Dialkyl- sowie die Alkyl-Diaryl-Phosphite, wie z.B. Phenyldidecyl-, (2,4-Di-tert.-butylphenyl)-di-dodecylphosphit, (2,6-Di-tert.-butylphenyl)-di-dodecylphosphit und die Dialkyl-und Diaryl-pentaerythrit-diphosphite, wie Distearylpentaerythrit-diphosphit.

Bevorzugte organische Phosphite sind Distearyl-pentaerythrit-diphosphit, Trisnonylphenylphosphit und Phenyl-didecyl-phosphit.

Ferner können in den erfindungsgemässen Zusammensetzungen weitere bekannte Costabilisatoren enthalten sein, beispielsweise 0-2, insbesondere 0-1,5 Teile, bezogen auf die Zusammensetzung. Sie sind dann vorzugsweise in einer Menge von 0,01-2, insbesondere 0,05-1,5, z.B. 0,1-1, vor allem 0,1-0,5 Teilen vorhanden. Als derartige Costabilisatoren seien Aminocrotonsäureester, Dehydracetsäure, 2,4-Dihydroxy-benzophenon, 2,4-Dihydroxy-4 -tert.-butylbenzophenon Dihydropyridin-Derivate und Pyrrolderivate genannt.

Als Aminocrotonsäureester kommen insbesondere die Ester mit einwertigen geradkettigen C_8 - C_{20} -, insbesondere C_{12} - C_{18} -Alkoholen und/oder mit 1,3- bzw. 1,4-Butandiol und/oder 1,2-Dipropylenglykol und/oder Thiodiethylenglykol in Betracht.

Als Pyrrol-Costabilisatoren sind jene besonders zu erwähnen, die in der EP-A 22 087 und der GB-A 2 078 761 beschrieben sind, z.B. der dort angegebenen Formel I, vorzugsweise jene Pyrrolderivate, die in den Ansprüchen 2-9 der EP-A 22 087 definiert sind. Als Beispiel sei 2-Methyl-3-cyclohexyloxycarbonyl-4-phenyl-1H-pyrrol genannt.

Ferner können die erfindungsgemässen Zusammensetzungen neben den vorstehend genannten fakultativen Costabilisatoren oder an deren Stelle noch weitere fakultative Bestandteile enthalten, z.B. organische Antimonverbindungen, wie Antimon-tris-[isooctyl-thioglykolat] (Isooctyl = 2-Ethylhexyl).

Andere Stabilisatoren, die in den erfindungsgemässen Zusammensetzungen angewendet werden können, sind Polyole. Die anzuwendenden Mengen sind beispielsweise bis zu 3 Gew.-Teile, bezogen auf 100 Gew.-Teile Zusammensetzung, zweckmässig bis zu 2 Gew.-Teilen und vorzugsweise 0,01 bis 1 Gew.-Teil. Typische Beispiele von Polyolen sind Pentaerythrit, Dipentaerythrit, Trimethylolpropan, Ditrimethylolpropan, Tris-(2-hydroxyethyl)isocyanurat (THEIC), wobei letzteres bevorzugt ist, Sorbit, Mannit und Inosit.

Ferner können die erfindungsgemässen Zusammensetzungen übliche Antioxidantien, Lichtstabilisatoren und UV-Adsorber enthalten. Beispiele dafür sind:

1. Antioxidantien

15

- 1.1. Alkylierte Monophenole , z.B. 2,6-Di-tert.butyl-4-methylphenol, 2-Tert.butyl-4,6-dimethylphenol, 2.6-Di-tert.butyl-4-ethylphenol, 2.6-Di-tert.butyl-4-n-butylphenol, 2.6-Di-tert.butyl-4-i-butylphenol, 2.6-Di-tert.butyl-4-methylphenol, 2.6-Di-tert.butyl-4-methylphenol, 2.6-Di-tert.butyl-4-methylphenol, 2.6-Di-tert.butyl-4-methylphenol, 2.6-Di-tert.butyl-4-methylphenol, 2.6-Di-nonyl-4-methylphenol.
- 1.2. Alkylierte Hydrochinone , z.B. 2,6-Di-tert.butyl-4-methoxyphenol, 2,5-Di-tert.butyl-hydrochinon, 2,5-Di-tert.amyl-hydrochinon, 2,6-Diphenyl-4-octadecyloxyphenol.
- 1.3. Hydroxylierte Thiodiphenylether, z.B. 2,2 -Thio-bis-(6-tert.-butyl-4-methylphenol), 2,2 -Thio-bis-(4-octylphenol), 4,4 -Thio-bis-(6-tert.butyl-3-methylphenol).
- 1.4. Alkyliden-Bisphenole , z.B. 2,2 -Methylen-bis-(6-tert.butyl-4-methylphenol), 2,2 -Methylen-bis-(6-tert.butyl-4-ethylphenol), 2,2 -Methylen-bis-[4-methyl-6-(α -methylcyclohexyl)-phenol], 2,2 -Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2 -Methylen-bis-(6-nonyl-4-methylphenol), 2,2 -Methylen-bis-(4.6-di-tert.butylphenol), 2,2 -Methylen-bis-(6-tert.butyl-4-isobutylphenol), 2,2 -Methylen-bis-[6-(α -methylbenzyl)-4-nonylphenol], 2,2 -Methylen-bis-[6-(α -di-tert.butyl-4-nonylphenol], 2,2 -Methylen-bis-[6-(α -di-tert.butyl-4-nonylphenol], 4,4 -Methylen-bis-(2,6-di-tert.butylphenol), 4,4 -Methylen-bis-(6-tert.butyl-2-methylphenol), 1,1-Bis-(5-tert.butyl-4-hydroxy-2-methylphenol)-butan, 2,6-Bis-(3-tert.butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-Tris-(5-tert.butyl-4-hydroxy-2-methylphenyl)-butan, 1,1-Bis-(5-tert.butyl-4-hydroxy-2-methylphenyl)-bis-[3,3-bis-(3-tert.butyl-4-hydroxy-5-methylphenyl)-dicyclopentadien, Bis-[2-(3'-tert.butyl-2'-hydroxy-5'-methylbenzyl)-6-tert.butyl-4-methyl-phenyl]-terephthalat.
- 1.5 Benzylverbindungen , z.B. 1,3,5-Tris-(3,5-di-tert.butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, Bis-(3,5-di-tert.butyl-4-hydroxybenzyl)-sulfid, 3,5-Di-tert.butyl-4-hydroxybenzyl-mercaptoessigsäure-isooctylester, Bis-(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl)dithiol-terephthalat, 1,3,5-Tris-(3,5-di-tert.butyl-4-hydroxybenzyl)-isocyanurat, 1,3,5-Tris-(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 3,5-Di-tert.butyl-4-hydroxybenzyl-phosphonsäure-dioctadecylester, Ca-Salz des 3,5-Di-tert.butyl-4-hydroxybenzyl-phosphonsäure-monoethylester, 1,3,5-Tris-(3,5-dicyclohexyl-4-hydroxybenzyl)-isocyanurat.
- 1.6. Acylaminophenole , z.B. 4-Hydroxy-laurinsäureanilid, 4-Hydroxystearinsäureanilid, 2,4-Bis-(octylmercapto)-6-(3,5-di-tert.butyl-4-hydroxyanilino)-s-triazin, N-(3,5-di-tert.butyl-4-hydroxyphenyl)-carbaminsäureoctylester.
- 1.7. Ester der β-(3,5-Di-tert.butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Octadecanol, 1,6-Hexandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxyethyl)-isocyanurat, N,N -Bis-(hydroxyethyl)-oxal-säurediamid.
- 1.8. Ester der β-(5-tert.Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Octadecanol, 1,6-Hexandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N -Bis-(hydroxyethyl)-oxalsäurediamid.
 - 1.9. Ester der β-(3,5-Dicyclohexyl-4-hydroxyphenyl)-propionsäure mit ein-oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Octadecanol, 1,6-Hexandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N -Bis-(hydroxyethyl)-oxalsäurediamid.
 - 1.10. Amide der β -(3,5-Di-tert.butyl-4-hydroxyphenyl)-propionsäure , wie z.B. N,N´-Bis-(3,5-di-tert.butyl-4-hydroxyphenyl)-hexamethylendiamin, N,N´-Bis-(3,5-di-tert.butyl-4-hydroxyphenyl-propionyl)-trimethylendiamin, N,N´-Bis-(3,5-di-tert.butyl-4-hydroxyphenyl-propionyl)-hydrazin.
- 2. UV-Absorber und Lichtschutzmittel

5

10

15

20

25

30

35

40

45

50

- 2.1. 2-(2 -Hydroxyphenyl)-benztriazole, wie z.B. das 5 -Methyl-, 3 ,5 -Di-tert.butyl-, 5 -tert.Butyl-, 5 (1,1,3,3-Tetramethylbutyl)-, 5-Chlor-3 ,5 -di-tert.butyl-, 5-Chlor-3 -tert.butyl-5 -methyl-, 3 -sec.Butyl-5 tert.butyl, 4 -Octoxy-, 3 ,5 -Di-tert.amyl-, 3 ,5 -Bis-(α,α-dimethylbenzyl)-Derivat.
- 2.2. 2-Hydroxybenzophenone , wie z.B. das 4-Hydroxy-, 4-Methoxy-, 4-Octoxy-, 4-Decyloxy-, 4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4'-Trihydroxy-, 2'-Hydroxy-4,4'-dimethoxy-Derivat.
 - 2.3. Ester von gegebenenfalls substituierten Benzoesäuren , wie z.B. 4-tert.Butyl-phenylsalicylat, Phenylsalicylat, Octylphenyl-salicylat, Dibenzoylresorcin, Bis-(4-tert.butylbenzoyl)-resorcin, Benzoylresorcin, 3,5-Di-tert.butyl-4-hydroxybenzoesäure-2, 4-di-tert.butylphenylester, 3,5-Di-tert.butyl-4-hydroxybenzoesäurehexadecylester.
 - 2.4. Acrylate, wie z.B. α -Cyan- β , β -diphenylacrylsäure-ethylester bzw. -isooctylester, α -Carbomethoxy-zimtsäuremethylester, α -Cyano- β -methyl-p-methoxy-zimtsäuremethylester bzw. -butylester, α -Carbomethoxy-p-methoxy-zimtsäure-methylester, N-(β -Carbomethoxy- β -cyanovinyl)-2-methyl-indolin.

- 2.5. Nickelverbindungen , wie z.B. Nickelkomplexe des 2,2´-Thio-bis-[4-(1,1,3,3-tetramethylbutyl)-phenols], wie der 1:1- oder der 1:2-Komplex, gegebenenfalls mit zusätzlichen Liganden, wie n-Butylamin, Triethanolamin oder N-Cyclohexyl-diethanolamin, Nickeldibutyldithiocarbamat, Nickelsalze von 4-Hydroxy-3,5-di-tert.butylbenzylphosphonsäure-monoalkylestern, wie vom Methyl- oder Ethylester, Nickelkomplexe von Ketoximen, wie von 2-Hydroxy-4-methyl-phenyl-undecylketoxim, Nickelkomplexe des 1-Phenyl-4-lauroyl-5-hydroxy-pyrazols, gegebenenfalls mit zusätzlichen Liganden.
- 2.6. Oxalsäurediamide, wie z.B. 4,4'-Di-octyloxy-oxanilid, 2,2'-Di-octyloxy-5,5'-di-tert.butyl-oxanilid, 2,2'-Di-dodecyloxy-5,5' di-tert.butyloxanilid, 2-Ethoxy-2'-ethyl-oxanilid, N,N'-Bis-(3-dimethylaminopropyl)-oxalamid, 2-Ethoxy-5-tert.butyl-2'-ethyloxanilid und dessen Gemisch mit 2-Ethoxy-2'-ethyl-5,4'-ditert.butyl-oxanilid, Gemische von o-und p-Methoxy- sowie von o- und p-Ethoxy-di-substituierten Oxaniliden.
- 2.7. 2-(2-Hydroxyphenyl)-1,3,5-triazine, wie z.B. 2,4.6-Tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin.

Je nach Verwendungszweck können in die erfindungsgemässen Zusammensetzungen ausserdem noch weitere übliche Zusätze eingearbeitet werden, wie z.B.

- 3. Phosphite und Phosphonite, wie z.B. Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris-(nonylphenyl)-phosphit, Trilaurylphosphit, Trioctadecylphosphit, Distearyl-pentaerythritdiphosphit, Tris-(2,4-di-tert.butylphenyl)-phosphit, Discodecylpentaerythrit-diphosphit, Bis-(2,4-di-tert.butylphenyl)-pentaerythritdiphosphit, Tristearyl-sorbit-triphosphit, Tetrakis-(2,4-di-tert.butylphenyl)-4. -biphenylen-diphosphonit, 3,9-Bis-(2,4-di-tert.butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]-undecan.
- 4 Peroxidzerstörende Verbindungen , wie z.B. Ester der β-Thio-dipropionsäure, beispielsweise der Lauryl- Stearyl-, Myristyl- oder Tridecylester, Mercaptobenzimidazol, das Zinksalz des 2-Mercaptobenzimidazols. Zink-dibutyl-dithiocarbamat, Dioctadecyldisulfid, Pentaerythrit-tetrakis-(β-dodecylmercapto)-propionat.
- 5. Basische Co-Stabilisatoren, wie z.B. Harnstoff-Derivate, Thioharnstoff-Derivate, Alkali- und Erdalkalisalze höherer Fettsäuren, beispielsweise Mg-Stearat, Na-Ricinoleat, K-Palmitat, Trishydroxyethylisocyanurat.
 - 6 Füllstoffe und Verstärkungsmittel, wie z.B. Calciumcarbonat, Silikate, Glasfasern, Asbest, Talk, Kaolin, Glimmer, Bariumsulfat, Metalloxide und -hydroxide, Russ, Graphit.
 - 7. Sonstige Zusätze, wie z.B. Weichmacher, Gleitmittel, Emulgatoren, Pigmente, Optische Aufheller, Flammschutzmittel, Antistatika, Treibmittel.

Beispiele weiterer besonders wertvoller Costabilisatoren, die einzeln oder zu mehreren - neben den oder an Stelle der - vorstehend genannten fakultativen Costabilisatoren angewendet werden können, wobei die Einsatzmenge beispielsweise für jeden Costabilisator 0 bis 2,0 Gew.-Teile, zweckmässig 0,05-1,0 Gew.-Teile und insbesondere 0,1 bis 0,5 Gew.-Teile, jeweils bezogen auf 100 Gew.-Teile Zusammensetzung, beträgt, sind nachfolgend beispielhaft aufgezählt.

Stabilisatorgemische aus einem Salz einer organischen Säure und einem Polyol, wobei das Polyol ein synerg:stisches Gemisch aus Ditrimethylolpropan in Kombination mit einem unterschiedlichen Polyol mit 5 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen und einem Schmelzpunkt von nicht unter 100° C darstellt. Eine umfassende Darstellung, Beispiele und Bevorzugungen sind der Europäischen Patentschrift 0 058 447 zu entnehmen.

Stabilisatorgemische im wesentlichen bestehend aus Stickstoff-freien Ketosäuren mit mindestens 8-C-Atomen und einem Metallsalz einer organischen Stickstoff-freien Monocarboxylsäure mit 6 bis 24 C-Atomen oder den Salzen der Ketoessigsäure mit 4 bis 33 C-Atomen und einem mit einem Kohlenwasserstoff substituierten Phenol. Eine ausführliche Beschreibung derartiger Stabilisatorgemische, Beispiele und Bevorzugungen sind der GB 1 099 731 zu entnehmen.

Verbindungen der Formel

5

10

15

20

25

worin R₁ C₁-C₁₈-Alkyl, C₃-C₁₈-Alkenyl, Phenyl, C₇-C₁₂-Phenylalkyl oder am Phenylring durch C₁-C₄-Alkyl und/oder Chlor substituiertes C₇-C₁₂-Phenylalkyl ist und R₂ C₁-C₁₈-Alkyl, durch Hydroxy substituiertes C₂-C₂₂-Alkyl oder durch Hydroxy und eine Gruppe -XR₃ substituiertes C₂-C₂₂-Alkyl ist, wobei X Sauerstoff oder Schwefel ist und R₃ C₁-C₁₈-Alkyl, Phenyl oder C₇-C₁₂-Phenylalkyl darstellt, oder R₂ ferner C₃-C₁₈-Alkenyl, C₇-C₁₂-Phenylalkyl oder am Phenylring durch C₁-C₄-Alkyl und/oder Chlor substituiertes C₇-C₁₂-Phenylalkyl bedeutet.

Stabilisatorgemische enthaltend

5

35

45

0,7-2 Teile Thiodiethylenglykol-bis-acetoacetat der Formel (H₃CCOCH₂COOCH₂CH₂)₂S, 0-0,5 Teile mindestens eines Ca-, Ba- oder/und Mg-Salzes einer aliphatischen C₈-C₂₄-Monocarbonsäure

0-0,5 Teile mindestens eines Ca-, ba- oder/und Mg-Salzes einer allphatischen Og Ogg-Mondeanschlader oder -Hydroxymonocarbonsäure oder der Benzoesäure oder tert.-Butylbenzoesäure

0.01-0.2 Teile mindestens eines Zn-Salzes einer aliphatischen $C_8-C_2\iota$ -Monocarbonsäure oder - Hydroxymonocarbonsäure oder der Benzoesäure oder tert.-Butylbenzoesäure, die ferner mit

3-10 Teile von epoxidierten ungesättigten Fettsäureestern und 10-70 Teile mindestens eines organischen Weichmachers gemischt sind. Eine ausführliche Beschreibung, Beispiele und Bevorzugungen sind der GB 2 212 808 zu entnehmen.

Stabilisatorgemische enthaltend

0,7-2 Teile Thiodiethylenglykol-bis-acetoacetat der Formel (H₃CCOCH₂COOCH₂CH₂)₂S,

0-0,5 Teile eines Ca-, Ba- oder/und Mg-Salzes einer aliphatischen C₈-C₂₄-Monocarbonsäure oder - Hydroxymonocarbonsäure oder der Benzoesäure oder tert.-Butylbenzoesäure

0,01-0,2 Teile eines Zn-Salzes einer aliphatischen C₈-C₂₄-Monocarbonsäure oder - Hydroxymonocarbonsäure oder der Benzoesäure oder tert.-Butylbenzoesäure, und darüberhinaus 3-10 Teile von epoxidierten ungesättigten Fettsäureestern. Weitere Erläuterungen, Beispiele und Bevorzugungen sind der GB 2 192 004 zu entnehmen.

Verbindungen der Formel a und b

$$R^{2}$$
 H (a), $R^{1}-0-C0-0$ $C=C$ $CO-R^{3}$ R^{2} $CO-R^{3}$

worin R¹ C₁-C₂₂-Alkyl, Phenyl, durch ein oder zwei C₁-C₃-Alkyl substituiertes Phenyl, C₅-C₂-Cycloalkyl oder eine Gruppe der Formeln A oder B ist

oder R1 eine Gruppe der Formeln ca oder cb ist

$$R^{2}$$
 H (ca), $-R^{4}$ -0-C0-0-C CO- R^{3}

$$\begin{array}{c} R^2 \\ -R^4 - 0 - CO - 0 - C \end{array}$$

 R^2 und R^3 unabhängig voneinander C_1 - C_{20} -Alkyl, Phenyl, durch ein oder zwei C_1 - C_9 -Alkyl substituiertes Phenyl oder C_5 - C_7 -Cycloalkyl sind und R^4 C_2 - C_{12} -Alkylen ist. Weiterführende Erläuterungen, Beispiele und Bevorzugungen sind der EP 224 438 zu entnehmen.

Verbindungen der Formel

5

10

in welcher

m weicher

m eine Zahl 0, 1 oder 2,
n eine Zahl 0, 2 oder 3 und
p eine Zahl 1 oder 2 sind
Hal für -F, -Cl, -Br oder -I steht,
X -NH₂, -NHCH₃ und/oder -OCH₃ oder OC₂H₅,

9 Y -CO- oder -SO2- und

R -H, -OH, -NH₂, unsubstituiertes oder beispielsweise durch eine bis drei HO- und/oder C₁-C₄-Alkoxy- oder Phenoxygruppen substituiertes C₁-C₁₈-Alkyl, Phenyl, Benzyl oder Phenäthyl, oder R ferner eine Gruppe der Formel

25

30

darstellt, wobei X, Y, m, n und Hal die oben angegebene Bedeutung haben. Detaillierte Beschreibungen, Beispiele und Bevorzugungen sind der EP 122 228 und der EP 174 412 zu entnehmen.

Stabilisatorengemische erhältlich durch Mischen mindestens einer Verbindung der Formel

[ROOC-CnH2nS-]3 PX,

in der X O oder S, n eine ganze Zahl von 1 bis 5 und R geradkettiges oder verzweigtes C₁-C₁₈-Alkyl oder substituiertes oder unsubstituiertes Cyclohexyl bedeuten, und mindestens eines PVC-Stabilisators vom Typ Me(II)-Carboxylat und/oder Me(II)-Phenolat, wobei Me(II) ein oder mehrere Metalle aus der Reihe Ba, Sr, Ca, Mg, Zn und Cd bedeutet, und wobei, bezogen auf das PVC, 0,01 - 2 Gew.-% der Verbindung der Formel I und 0,1-4 Gew.-% des Me(II)-Carboxylates und/oder Me(II)-Phenolates eingesetzt werden.

Solche Stabilisatorgemische sind weiterführend in der EP 90 770 beschrieben, woraus auch Beispiele und Bevorzugungen ersichtlich sind.

2-Thio-6-amino-uracile der Formel

45

$$R^3-NH$$
 $N-R^1$
 R^2-NH

50

worin

R¹ und R² unabhängig voneinander ein Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen ist, der durch -OH, -COOR⁴, -O(C=O)R⁴, -(C=O)R⁴, Halogen oder Amino substituiert sein kann, und R³ H, Acyl mit 2 bis 24 Kohlenstoffatomen oder -(C=O)NHR⁴ ist, wobei R⁴ ein Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen ist.

Weitere Ausführungsformen, Beispiele und Bevorzugungen sind aus der EP 41 479 erhältlich.

Aminouracile der Formel

R¹ HN R³

10

20

5

worin R^1 C_1 - C_8 -Alkyl, C_5 - C_8 -Cycloalkyl, Phenyl, Benzyl, C_1 - C_4 -Hydroxy alkyl, Hydroxyphenyl, C_2 - C_8 -Alkoxyalkyl, C_2 - C_8 -Alkylthioalkyl, C_6 - C_{10} -Cycloalkoxyalkyl, C_6 - C_{10} -Cycloalkylthioalkyl, C_8 - C_{14} -Aralkoxyalkyl, C_8 - C_{14} -Aralkylthioalkyl, C_7 - C_{14} -Aryloxyalkyl, C_7 - C_{14} -Arylthioalkyl, C_7 - C_7 -Alkylcarbonylacetyl oder eine Gruppe -(C_7 - C_7 -Alkyl ist, worin X Sauerstoff oder Schwefel und C_7 - C_7 -Aralkyl bedeutet, C_7 - C_7 -Aralkyl bedeuten, wobei einer der beiden Reste C_7 - C_7 -Aralkyl Wasserstoff sein kann, und, wenn C_7 - C_7 -Aralkyl oder Alkylcarbonylacetyl ist, C_7 - C_7 -Aralkyl bedeuten können.

Diese Stabilisatoren werden in der EP 65 934 weiterführend beschrieben und Beispiele und Bevorzugungen stehen aus gleicher Literaturstelle zur Verfügung.

Weitere Stabilisatoren sind Triazole der Formel

oder der Formel

R₃ N R₄

worin R₁ Wasserstoff, Hydroxy, C₁-C₆-Alkoxy, Carboxy, C₂-C₆-Alkoxycarbonyl, Merkapto, C₁-C₆-Alkylthio oder eine Gruppe -S-CH₂-COOH oder -S-CH₂-COO-Alkyl(C₁-C₆) bedeutet, X Thio, Methylen oder die Gruppe -COO- oder -S-CH₂-COO-, jeweils durch das Estersauerstoffatom an das Alkyl gebunden, ist, m eine ganze Zahl von 1 bis 20 ist, n 1 oder 2 ist, R₂, falls einwertig, Wasserstoff, Hydroxy oder Merkapto bedeutet und, falls zweiwertig eine direkte Bindung, Imino, C₁-C₆-Alkylimino, Oxy, Thio oder Methylen ist, R₃ Wasserstoff, Amino, Merkapto oder C₁-C₁₂-Alkylthio ist und, falls R₃ Wasserstoff bedeutet, R₄ Wasserstoff, -COOR₅, worin R₅ Wasserstoff, C₁-C₈-Alkyl oder -CH₂-COO-Alkyl(C₁-C₈) ist, oder -S-R₆, wobei R₆ Wasserstoff, C₁-C₁₂-Alkyl, -CH₂-COO-Alkyl(C₁-C₈) oder C₁-C₁₂-Alkylthio ist oder

40

worin X' für die Gruppe -CO-NH-Alkylen-NH-CO-, -CO-Alkylen-S-Alkylen-CO mit jeweils 1-12 C-Atomen in der Alkylenkette oder für (C₁-C₁₂)-Alkylen steht, falls R₃ NH₂ ist, R₄ C₁-C₄-Alkyl, Merkapto, C₁-C₄-Alkylthio oder

50

mit 1-12 C-Atomen in der Alkylenkette bedeutet, falls R₃ Merkapto ist, R₄ gegebenenfalls substituiertes Phenyl bedeutet, und falls R₃ C₁-C₁₂-Alkylthio ist, R₄ für C₁-C₄-Alkyl, C₁-C₁₂-Alkylthio oder für gegebenenfalls substituiertes Phenyl steht.

Solche Stabilisatoren, weitere Ausführungsformen , Beispiele und Bevorzugungen sind aus der DE 30 48 659 ersichtlich.

Stabilisatorgemische bestehend aus einem Thioäther der Formel

$$\left(\begin{array}{ccc} R_1 & X \\ R-CO-CH-CO-O-Y-CH- \end{array}\right)_2 \qquad -S(-Z-S)\frac{X}{n}$$

worin

n die Zahlen Null oder 1 bedeutet,

R C_1 - C_1 8-Alkyl, C_5 - C_8 -Cycloalkyl, gegebenenfalls mit C_1 - C_4 -Alkyl substituiertes C_6 - C_{10} -Aryl und R Wasserstoff oder C1-C4-Alkyl sind,

X1 als wiederholt vorkommendes Symbol gleich oder verschieden Wasserstoff oder eine Gruppe der Formel

15

bedeutet,

Y als wiederholt vorkommendes Symbol gleich oder verschieden C1-C6-Alkylen oder eine Gruppe der

20

$$\frac{\left(CH_2\right)_m}{OR_2}CH \frac{\left(CH_2\right)_p}{OR_2}$$

ist, wobei die (CH2)m Gruppe an das Sauerstoffatom gebunden ist und worin R2 Wasserstoff oder eine Gruppe der Formel

30

bedeutet, n die Zahlen 1 bis 4 und p die Zahlen Null bis 3 sein können, Z C₁-C₅-Alkylen oder eine Gruppe der Formel

35

ist, und 40

b) einem ein Metall aus der Gruppe Zink, Calcium, Cadmium, Barium Magnesium oder Antimon oder ferner auch Zink kombiniert mit mindestens einem der vorgenannten Metalle enthaltenden Stabilisator.

Weitere Ausführungen dazu, Beispiele und Bevorzugungen sind der EP 19 576 zu entnehmen.

Verbindungen der Formel

45

A
$$-(X-0-C) - C - C - C - C - C - R)_n$$

worin n die Zahlen 1 bis 3, R C₁-C₁₂-Alkyl oder Phenyl, R¹ und R² unabhängig voneinander Wasserstoff oder R und X gegebenenfalls durch -O-unterbrochenes C1-C6-Alkylen bedeuten und, wenn n 1 ist. A eine der Gruppen der Formein

$$R^{3} = C - N$$

$$R^{5}$$

$$R^{5$$

bedeutet, worin p Null oder 1 und m die Zahlen 1 bis 250 bedeuten, Z¹ gegebenenfalls mit C¹-C²₄-Alkyl oder Alkoxy, C²-C²₄-Alkenyl, Phenyl, C²-C²₄-Carbalkoxy, Carbophenoxy, C²-C²₄-Alkanoyloxy, Benzoyloxy, Halogen oder Cyano substituiertes Aethylen, R³ C¹-C²₄-Alkyl, R⁴ Wasserstoff, C¹-C²₄-Alkyl, eine Gruppe -X-OH oder -X-OCO-CH²-CO-R und R⁵ Wasserstoff, -OH, -OR³, -SR³, -R³, -NHR³ oder -X-OH sind, Q eine Gruppe Z-CO- ist, wobei die Carbonylgruppe an den Stickstoff der Formel II gebunden ist und Z Aethylen ist, das gegebenenfalls an ein 1,3-Homo- oder (Oxa-, Aza-) Heterodien addiert ist, welches seinerseits gegebenenfalls partiell, Bestandteil eine Homo- oder (Oxa-, Aza-) Heterocyclus mit 5 bis 40 Ringgliedern und 1 bis 10 Ringen sein kann oder ferner Z Vinylen, gegebenenfalls durch eine Gruppe -CON(R⁶)R², -COOR³ oder -COSR³ substituiertes o-Phenylen oder die Gruppe -CH²-S-CH²- bedeutet, R⁶ und R² gleich oder verschieden Wasserstoff oder C¹-C¹²-Alkyl sind und R³ C¹-C¹²-Alkyl oder eine Gruppe -CH²-COOR³, worin R³ C¹-C¹²-Alkyl ist, bedeutet oder Q eine ringschliessende Gruppe, die zu einem 5-10 gliedrigen Heterocyclus mit mindestens 2 Heteroatomen führt, und, wenn n 2 ist, A eine der Gruppen der Formeln

bedeutet, worin B C1-C6-Alkylen, p-Phenylen oder eine der Gruppen

$$-\{(CH_2)_q - O\}_r + (CH_2)_q \text{ oder } -\{(CH_2)_q - S\}_r + (CH_2)_q$$

ist, worin q die Zahlen 1 bis 4 und r die Zahlen 1 bis 3 bedeuten, und B¹ eine direkte Bindung, B, C₁₀-C₁₄-Arylen oder C₅-C₈-Cycloalkylen bedeutet, und ferner, wenn n 3 ist, A eine Gruppe der Formel

ist, worin R⁴ die oben angegebene Bedeutung hat.

10

Weitere Ausführungen, Beispiele und Bevorzugungen stehen aus der EP 22 749 zur Verfügung.

Neben den genannten Stabilisatoren und Costabilisatoren nach dieser Erfindung können auch Epoxyverbindungen, wie 1,2-Epoxide und Oxirane, in Mengen von beispielsweise bis zu 10 Gew.-Teilen, bezogen auf 100 Gew.-Teile Zusammensetzung, zweckmässig bis zu 5 Gew.-Teilen und vorzugsweise von 0,01 bis zu 2 Gew.-Teilen, angewendet werden. Beispiele dafür sind epoxidiertes Polybutadien, epoxidiertes Sojablumenöl, epoxidiertes Leinsamenöl, epoxidiertes Fischöl, epoxidierter Talg, Methylbutyl- oder 2-Ethylhexylepoxystearat, Tris(epoxypropyl)isocyanurat, epoxidiertes Ricinusöl, epoxidiertes Sonnenblumenöl, 3-(2-Xenoxy)-1,2-epoxypropan, Bisphenol-A-polyglycidylether, Vinylcyclohexendiepoxyd, Dicyclopentadiendiepoxyd und 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexancarboxylat.

Die erfindungsgemässen Zusammensetzungen können auf an sich bekannte Weise hergestellt werden. In der Regel wird das Stabilisatorsystem in das Polymer eingearbeitet, wozu sich an sich bekannte Vorrichtungen, wie Kalander, Mischer, Kneter und dergleichen, anbieten.

Die nach vorliegender Erfindung stabilisierten Zusammensetzungen können auf bekannte Weisen in die gewünschte Form gebracht werden. Solche Verfahren sind beispielsweise Mahlen, Kalandrieren, Extrudieren, Spritzgiessen, Sintern oder Spinnen, ferner Extrusions-Blasen oder eine Verarbeitung nach dem Plastisol-Verfahren. Die Zusammensetzungen können auch zu Schaumstoffen verarbeitet werden.

Bevorzugte stabilisierte chlorhaltige Polymerzusammensetzungen sind nicht weichgemachte, resp. weichmacherfreie oder im wesentlichen weichmacherfreie Zusammensetzungen.

Die erfindungsgemässen Zusammensetzungen eignen sich insbesondere, in Form von Hart-Rezepturen, für Hohlkörper (Flaschen), Verpackungsfolien (Tiefziehfolien), Blasfolien, Crash pad-Folien (Automobile), Rohre, Schaumstoffe, Schwerprofile (Fensterrahmen), Lichtwandprofile, Bauprofile, Sidings, Fittings, Bürofolien und Apparatur-Gehäuse (Computer, Haushalteräte).

Andere Zusammensetzungen, in Form von Weich-Rezepturen sind für Drahtummantelungen, Kabelisolierungen, Dekorationsfolien, Dachfolien, Schaumstoffe, Agrarfolien, Schläuche, Dichtungsprofile, Bürofolien und Folien für Traglufthallen geeignet.

Beispiele für die Anwendung der erfindungsgemässen Zusammensetzungen als Plastisole sind Kunstleder, Fussböden, Textilbeschichtungen, Tapeten, Coil-Coatings und Unterbodenschutz für Kraftfahrzeuge.

Beispiele für Sinter-PVC-Anwendungen der erfindungsgemässen Zusammensetzungen sind Slush, Slush Mould und Coil-Coatings.

Bevorzugt wird die Verwendung der oben beschriebenen Polymerzusammensetzungen als Hartprofile für Aussenanwendungen und als Hartfolien. Weitere bevorzugte Verwendungen der oben beschriebenen Polymerzusammensetzungen sind "slush mold" oder "crash pads".

Die nachfolgenden Beispiele erläutern die Erfindung näher. Alle Angaben in Teilen und Prozenten beziehen sich auf das Gewicht, sofern nicht anders angegeben.

Beispiele 1-6: Verschiedene PVC-Zusammensetzungen werden durch Vermischen der einzelnen Komponenten gemäss nachfolgender Tabelle hergestellt (Mengenangaben in Gew.-Teilen).

Es handelt sich um Rezepturen für Hart-PVC-Profile für Aussenanwendungen. Die Zusammensetzungen 1-6 werden einem Hitzetest ausgesetzt, um die Stabilisatorwirkung im PVC zu prüfen.

Der Hitzetest wird derart ausgeführt, dass die PVC-Zusammensetzung bei 190°C auf einem Mischwalzwerk während 5 Minuten gewalzt wird. Vom gebildeten 0,3 mm dicken Walzfell werden Folienmuster in einem Testofen (@Mathis Thermotakter Typ LTF-ST) bei 190°C thermisch belastet. Nach den in nachfolgender Tabelle angegebenen Zeitintervallen wird jeweils an einem Prüfmuster der Yellowness-Index (YI)

nach ASTM D 1925-70 bestimmt (hohe YI-Werte bedeuten starke Verfärbung und damit geringe Stabilität).

5	Rezeptur Beispiel	1	2	3	4	. 5	6
	acrylatmodifiziertes S-PVC, K-Wert 67	100	100	100	100	100	100
	Titandioxid Pigment	4	4	4	4	4	4
10	Kreide	6	6	6	6	6	6
	polymethylmetacrylathaltige Verarbeitungshilfe	1	1	1	1	1	1
15	Distearylphthalat (inneres Gleitmittel)	0,5	0,5	0,5	0,5	0,5	0,5
	l2-Hydroxystearinsäure (äusseres Gleitmittel)	0,2	0,2	0,2	0,2	0,2	0,2
20	Bisphenol A	0,2	0,2	0,2	0,2	0,2	0,2
20	Ca-stearat	0,8	0,8	0,8	0,8	0,8	0,8
	Zn-stearat	1,0	1,0	1,0	1,0	1,0	1,0
25	Hydrotalcit $(2n0.3Mg0.Al_20_3.CO_2.8-9H_20)$	1,0	1,0	1,0	1,0	1,0	1,0
	Dibenzoylmethan	-	0,5	-	0,5	-	0,5
	sterisch gehindertes Amin 1 *	0,3	0,3	_	-	-	-
20	sterisch gehindertes Amin 2*	-	-	0,3	0,3	-	-
30	sterisch gehindertes Amin 3*	-	-	-	-	0,3	0,3

Marhis-Thermotakter-Test	hoi	190°C+	٧٢
- Marnis-Inermorakter-lest	Det	170 0.	11

40	Bei- Min.spiel	1	2	3	4	5	6
-0	0	23,4	7,5	- 21,7	6,9	21,6	6,8
	. 5	43,3	20,2	44,9	18,2	37,0	10,3
	15	45,3	24,1	47,8	23,9	39,8	11,8
45	25	48,5	30,3	55,9	35,6	42,4	14,6
	35	57,2	44,9	36,9	51,9	46,6	19,5
	45	54,6	57,3	50,8	55,0	55,2	28,5
50	55	50,2	57,3	52,3	49,7	54,6	45,4
	65	52,1	54,0	54,3	53,2	50,1	56,1
	75	55,7	54,5		55,8	52,3	53,0
	8.5	_	57,0	-	-	56,3	53,1
55	95	_	-	-	-	_	10,3 11,8 14,6 19,5 28,5 45,4 56,1 53,0

Beispiele 7-9: PVC-Zusammensetzungen werden durch Vermischen der einzelnen Komponenten nach untenstehender Tabelle hergestellt (Mengenangaben in Gew.-Teilen). Es handelt sich um Rezepturen für Hart-PVC-Folien. Die Mischungen nach Beispielen 7 bis 9 werden auf einem Mischwalzwerk 5 Minuten bei 180°C gewalzt. Vom gebildeten 0,3 mm dicken Walzfell werden Folienmuster in einem Testofen (@Mathis Thermotakter Typ LTF-ST) bei 190°C thermisch belastet. Nach den in nachfolgender Tabelle angegebenen Zeitintervallen wird jeweils an einem Prüfmuster der Yellowness-Index (YI) nach ASTM D 1925-70 bestimmt (hohe YI-Werte bedeuten starke Verfärbung und damit geringe Stabilität).

10	Beispiel Rezeptur	7	8	9
	S-PVC, K-Wert 57	100	100	100
15	"impact modifier" auf Basis von Methylbutadienstyrol	2,5	2,5	2,5
	polymetylmetacrylathaltige Verarbeitungshilfe	1,5	1,5	1,5
	Glycerylhydroxystearat	0,5	0,5	0,5
20	Ca-stearat	,75	,75	,75
	2n-stearat	,75 ,75	,75	
	Stearoylbenzoylmethan	0,3	00 100 ,5 2,5 ,5 1,5 0,5 0,5 ,75 ,75 ,75 ,75 0,3 0,3 0,6 0,6	0,3
25	Hydrotalcit (ZnO·3MgO·Al ₂ O ₃ ·CO ₂ ·8-9 H ₂ O)		0,6	0,6
	sterisch gehindertes Amin (1)*	0,3	-	-
	sterisch gehindertes Amin (2) *	-	0,3	-
30	sterisch gehindertes Amin 3*	-	-	0,3

Mathis-Thermotakter-Test bei 190°C: YI

Beispiel 7 8 10,4 10,8 0 35,0 24,1 5 27,7 12.5 38,2 26,3 68,0 20,0 71,9 38,4 77,3 27,5 90,8 117 35,0 98,2 125 42,5 115

55

50

35

40

^{*)} Die in den Beispielen 1 bis 9 erwähnten sterisch gehinderten Amine haben, entsprechend der jeweiligen Bezugsnunummer, die nachfolgende Bedeutung:

(1)

15 2

5

10

$$R - NH - (CH_2)_3 - N - (CH_2)_2 - N - (CH_2)_3 - NH - R$$

30 3

Die sterisch gehinderten Amine mit den Formeln (1) bis (3) stellen gleichzeitig auch bevorzugte Verbindungen dar.

Ansprüche

- Stabilisierte chlorhaltige Polymerzusammensetzung, enthaltend ein chlorhaltiges Polymer und ein Stabilisatorgemisch, enthaltend:
 - a) mindestens ein cyclisches oder nicht cyclisches sterisch gehindertes Amin, wobei in weichmacherhaltigen Polymerzusammensetzungen die Verbindung der Formel

- b) mindestens eine organische Zinkverbindung und/oder anorganische Zinkverbindung der Reihe der Carbonate, Chloride, Sulfate, Oxide, Hydroxide, der basischen Oxide und Mischoxide, und
- c) mindestens ein Verbindung aus der Reihe der Hydrotalcite.
- 2. Polymerzusammensetzung nach Anspruch 1, enthaltend
- d) mindestens ein 1,3-Diketon.

5

10

20

- 3. Polymerzusammensetzung nach Anspruch 1, enthaltend
- e) mindestens eine organische oder anorganische Calcium-Verbindung.
- Polymerzusammensetzung nach Anspruch 1, enthaltend als a) mindestens ein cyclisches sterisch gehindertes Amin, insbesondere eine Verbindung aus der Reihe der Derivate von Polyalkylpiperidinen, die mindestens eine Gruppe der Formel III,

worin R Wasserstoff oder Methyl ist, enthält.

5. Polymerzusammensetzung nach Anspruch 4, worin der Polyalkylpiperidinrest der Formel III in 4-Stellung mit einem oder 2 polaren Substituenten oder einem polaren Spiro-Ringsystem substituiert ist.

6. Polymerzusammensetzung nach Anspruch 1, enthaltend als b) mindestens eine organische Zinkverbindung aus der Reihe der aliphatischen gesättigten C_2 - C_{22} -Carboxylate, der aliphatischen olefinischen C_3 - C_{22} -Carboxylate, der aliphatischen C_2 - C_{22} -Carboxylate, die mit wenigstens einer OH-Gruppe substituiert sind, der cyclischen und bicyclischen Carboxylate mit 5-22 C-Atomen, der aromatischen C_7 - C_{22} -Carboxylate, der mit wenigstens einer OH-Gruppe substituierten aromatischen C_7 - C_{22} -Carboxylate, der C_1 - C_1 -calkylsubstituierten Phenylcarboxylate, der Phenyl- C_1 - C_1 -calkylcarboxylate, der C_5 - C_2 -Chelate von 1,3-Diketonen oder β -Ketocarbonsäureestern oder Dehydracetsäurederivaten sowie der Mercaptide auf der Basis von Mercaptocarbonsäureestern und der Glycinate.

7. Polymerzusammensetzung nach Anspruch 1, enthaltend als c) mindestens eine Verbindung aus der Reie der Hydrotalcite der allgemeinen Formel I

$$M^{2+}$$
 $1-x \cdot M^{3+}$ $x \cdot (OH)_2 \cdot (A^{n-})_{x/n} \cdot mH_2O$ (I),

wobei

40

M2⁺ = Mg, Ca, Sr. Ba, Zn, Cd, Pb, Sn und/oder Ni ist,

 $M^{3^{+}}$ = Al, B oder Bi ist,

An ein Anion mit der Valenz n darstellt,

n eine Zahl von 1-4 ist,

x eine Zahl von 0-0,5 ist,

m eine Zahl von 0-2 ist und

 $A = OH^-, CI^-, Br^-, I^-, CIO_4^-, HCO_3^-, CH_3COO^-, C_6H_5COO^-, CO_3^2^-, SO_4^2^-$

55

 $(CHOHCOO)_2^{2-}$, $(CHOH)_4CH_2OHCOO^-$, $C_2H_4(COO)_2^{2-}$, $(CH_2COO)_2^{2-}$, $CH_3CHOHCOO^-$, SiO_3^{2-} , SiO_4^{4-} ,

Fe(CN)₆3-, Fe(CN)₆4- oder HPO₄2- darștellt.

8. Polymerzusammensetzung gemäss Anspruch 2, enthaltend als

d) mindestens ein 1,3-Diketon der allgemeinen Formel II oder IIa,

$$R^a - C - CHR^b - C - R^c$$
 (II)

10 (IIa)

wobei

Rª Alkyl mit 1 bis 22 C-Atomen, C₅-C₁₀-Hydroxyalkyl, Alkenyl mit 2 bis 22 C-Atomen, Phenyl, mit -OH, C₁-C4-Alkyl, C1- bis C4-Alkoxy oder Halogen substituiertes Phenyl, Phenyl-C1-C4-alkyl, eine Gruppe der Formel

25

15

5

Cycloalkyl mit 5 bis 12 Ring-C-Atomen, oder mit 1 bis 3 C1-C4-Alkylgruppen substituiertes Cycloalkyl mit 5 bis 12 Ring-C-Atomen bedeutet,

R° Alkyl mit 1 bis 22 C-Atomen, C5-C10-Hydroxyalkyl, Alkenyl mit 2 bis 22 C-Atomen, Phenyl, mit -OH, C1-C4-Alkyl, C1- bis C4-Alkoxy oder Halogen, substituiertes Phenyl oder Phenyl-C1-C4-alkyl, eine Gruppe der Formel

45

Cycloalkyl mit 5 bis 12 Ring-C-Atomen, oder mit 1 bis 3 C₁ bis C₄-Alkylgruppen substituiertes Cycloalkyl mit 5 bis 12 Ring-C-Atomen bedeutet,

Rb -H, Alkyl mit 1 bis 18 C-Atomen, Alkenyl mit 2 bis 12 C-Atomen, Phenyl, C1-C4-Alkyl substituiertes Phenyl, Phenyl-C1-C4-alkyl, oder eine Gruppe der Formel

$$-c-R^d$$

bedeutet.

wobei R^d -CH₃, -C₂H₅ oder Phenyl darstellt oder worin

Ra und Rb zusammen die Bedeutung eines Tetramethylenrestes oder eines Tetramethylenrestes, der mit einem Benzorest anelliert ist, aufweisen,

und X Alkylen mit 1 bis 4 C-Atomen bedeutet.

9. Polymerzusammensetzung gemäss Anspruch 2, enthaltend als

d) mindestens ein 1,3-Diketon der allgemeinen Formel Ilb

$$R_1 - C - CH_2 - C - R_2$$
 (IIb)

worin R_1 C_1 - C_{10} -Alkyl, C_5 - C_{10} -Hydroxyalkyl, Phenyl, Hydroxyphenyl, C_7 - C_{10} -Phenylalkyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_{10} -Phenylalkyl ist und R_2 C_5 - C_{10} -Hydroxyalkyl, Hydroxyphenyl oder am Phenylring durch eine OH-Gruppe substituiertes C_7 - C_{10} -Phenylalkyl darstellt, mit der Bedingung, dass R_2 verschieden von Hydroxyphenyl ist, wenn R_1 Phenyl oder Hydroxyphenyl bedeutet.

- 10. Polymerzusammensetzung nach Anspruch 3, enthaltend als e) mindestens eine Ca-Seife der allgemeinen Formel Ca(OOCR*)₂, wobei R* eine Alkylgruppe mit 1 bis 22 C-Atomen oder eine Alkenylgruppe mit 2 bis 22 C-Atomen, Phenyl, Phenyl-C₁-C₄-alkyl oder C₁-C₈-Alkylphenyl darstellt.
- 11. Polymerzusammensetzung nach Anspruch 4, enthaltend als Derivat von Polyalkylpiperidinen eine Verbindung der Formel VIII

 $\begin{bmatrix} R^{18} \\ R^{19} \end{bmatrix} R^{20}$ (VIII),

worin n die Zahl 1 oder 2 ist und R¹⁸ eine Gruppe der Formel

bedeutet, worin R Wasserstoff oder Methyl bedeutet und R¹¹ Wasserstoff, Oxyl, Hydroxyl, C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₇-C₁₂-Aralkyl, C₁-C₁₈-Alkoxy, C₅-C₈-Cycloalkoxy, C₇-C₉-Phenylalkoxy, C₃-C₈-Alkanoyl, C₃-C₅-Alkenoyl, C₁-C₁₈-Alkanoyloxy, Benzyloxy, Glycidyl oder eine Gruppe -CH₂CH(OH)-Z, worin Z Wasserstoff, Methyl oder Phenyl ist, bedeutet, E -O- oder -NR¹¹- ist, A C₂-C₆-Alkylen oder -(CH₂)₃-O- und x die Zahlen O oder 1 bedeuten, R¹⁹ gleich R¹⁸ oder eine der Gruppen -NR²¹R²², -OR²³, -NHCH₂OR²³ oder -N(CH₂OR²³)₂ ist, R²⁰, wenn n = 1 ist, gleich R¹⁸ oder R¹⁹, und wenn n = 2 ist, eine Gruppe -E-B-E- ist, worin B gegebenenfalls durch -N(R²¹)- unterbrochenes C₂-C₆-Alkylen bedeutet, R¹¹ C₁-C₁₂-Alkyl, Cyclohexyl, Benzyl oder C₁-C₄-Hydroxyalkyl oder eine Gruppe der Formel

ist. R²² C₁-C₁₂ Alkyl. Cyclohexyl, Benzyl, C₁-C₄ Hydroxyalkyl und R²³ Wasserstoff, C₁-C₁₂ Alkyl oder Phenyl bedeuten oder R²¹ und R²² zusammen C₄-C₅-Alkylen oder -Oxaalkylen, beispielsweise

-CH₂CH₂ O, oder eine Gruppe der Formel -CH₂CH₂
$$N-R^{1.1}$$
 -CH₂CH₂

sind oder auch R21 und R22 jeweils eine Gruppe der Formel

55

50

10

15

20

25

bedeuten.

12. Polymerzusammensetzung nach Anspruch 11, enthaltend eine der Verbindungen der Formel

$$R-NH-(CH_{2})_{3}-N-(CH_{2})_{2}-N-(CH_{2})_{3}-NH-R$$

$$CH_{3} CH_{3}$$

$$C_{4}H_{9}-N$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

oder

$$R - NH - (CH_2)_3 - N - (CH_2)_2 - N - (CH_2)_3 - NH - R$$

mit R =
$$\begin{array}{c} CH_3 \\ C_4H_9 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\$$

13. Polymerzusammensetzung nach Anspruch 4, enthaltend eine Verbindung der Formel

wobei m eine Zahl von 2 bis 200 bedeutet.

14. Polymerzusammensetzung nach Anspruch 6, enthaltend als b) eine organische Zinkverbindung, wobei die organische Zinkverbindung ein Salz einer Carbonsäure mit 7 bis 20 C-Atomen oder ein C₇-C₂₀-Alkylphenolat darstellt.

15. Polymerzusammensetzung nach Anspruch 7, enthaltend als c) mindestens eine Verbindung aus der Reihe der Hydrotalcite der allgemeinen Formel I

$$M^{2+}_{1-x} \cdot Al_{x} \cdot (OH)_{2} \cdot (A^{n-})_{x/_{2}} \cdot mH_{2}O,$$
 (I),

wobei ${\rm M2}^{\scriptsize +}$ die Bedeutung von Mg oder einer festen Lösung von Mg und Zn hat,

An-für CO₃2- steht, x eine Zahl von 0 bis 0,5 ist und m eine Zahl von 0 bis 2 ist.

16. Polymerzusammensetzung nach Anspruch 15, enthaltend mindestens eine der Verbindungen der Formeln

4MgO * Al₂O₃ * CO₂ * 9H₂O,

4MgO*Al₂O₃*CO₂*6H₂O,

30 ZnO*3MgO*Al₂O₃*CO₂*8-9H₂O oder

 $ZnO^*3MgO^*Al_2O_3^*CO_2^*5-6H_2O.$

- 17. Polymerzusammensetzung nach Anspruch 1, enthaltend, bezogen auf die Zusammensetzung,
 - a) 0,01 bis 1,5 Gew.-Teile an cyclischen oder nicht cyclischen sterisch gehinderten Aminen,
 - b) 0,01 bis 2 Gew.-Teile an organischer oder anorganischer Zinkverbindung,

35 und

10

20

- c) 0.1 bis 3 Gew.-Teile an Verbindungen aus der Reihe der Hydrotalcite.
- 18. Polymerzusammensetzung nach Anspruch 1, enthaltend
- d) 0,05 5 Gew.-Teile eines 1,3-Diketons.
- 19. Polymerzusammensetzung nach Anspruch 1, enthaltend
- e) 0,05 5 Gew.-Teile einer organischen oder anorganischen Calcium-Verbindung.
 - 20. Polymerzusammensetzung nach Anspruch 1, worin das Polymer Polyvinylchlorid ist oder dieses enthält.

50

EUROPÄISCHER RECHERCHENBERICHT

EP. 90 81 0742

		E DOKUMENTE		
Kategorie	Kennzeichnung des Dekume der maßgeblic	nts mit Angahe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
מ,x	JP-A-63175072 (MIKADO H * das ganze Dokument *	AKO KK)	1-20	C08K13/D2 C08L57/08 C08L27/06
X,P	spiele 10-12*	RPORATION) 7-19 und Vergleichsbei-	1-20	//(C08K13/02,3 :00,3:26,5:343 5),(C08K13/02,
×	& WO-A-8903855 			3:26,5:09,5:34 35)
	•			
	•			
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5
				COBK
		•		0000
		•		
Der v	orliegende Recherchenbericht wurd	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlufidstum der Recherche	1	Profer
	DEN HAAG	16 JANUAR 1991	HOF	FMANN K.W.
Y : vo	KATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindun deren Veröffentlichung derseiben Kate	E: älteres Patentid tet nach dem Anno g mit einer D: in der Anmeldu	okument, das jede eldedatum veröffe ing angeführtes D	intlicht worden ist Jokument
O:nt	hnologischer Hintergrund chischriftliche Offenbarung rischenliteratur			Ille, übereinstimmendes