Please Enter Integer >= 3: 2

Error: Please enter a value greater than 3. Program ends here

Please Enter Integer >= 3: 7

ERROR: Not Enough Numbers In File: file1.txt

Please Enter Integer >= 3: 5

Please Enter Integer >= 3: 5						
 The	content	of the fir	st matrix	is:		
	1	2	3	4	5	
	6	7	8	9	10	
	11	12	13	14	15	
	16	17	18	19	20	
	21	22	23	24	25	
The	content	of the sec	 ond matri>	is:		
	10	200	30	40	50	
	60	70	80	90	100	
	110	120	130	140	150	
	160	170	180	190	200	
	210	22	230	240	250	
The	product	of the two	 matrices	is:		
	2150.0	1490.0	2450.0	2600.0	2750.0	
	1900.0	4400.0	5700.0	6100.0		
		7310.0				
		10220.0				
	3150.0			16600.0		

The dot-pr	oduct of the	two matrices	is:	
10.0	400.0	90.0	160.0	250.0
360.0	490.0	640.0	810.0	1000.0
1210.0	1440.0	1690.0	1960.0	2250.0
2560.0	2890.0	3240.0	3610.0	4000.0
4410.0	484.0	5290.0	5760.0	6250.0

The result of matrix1 divided by matrix2 is:

	0.1 0.1 0.1 0.1 0.1	0.01 0.1 0.1 0.1 1.0	0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1
The		_	first matrix		
	1	6	11	16	21
	2	7	12	17	22
	3 4	8 9	13 14	18	23
	5	10	15	19 20	24 25
The			second matrix		24.0
	10	60 70	110	160	
	200 30	70 80	120 130	170 180	
	40	90		190	
	50	100	150	200	250
		f the tr		ne two mat	
	3230.0 3560.0 3890.0 4220.0	f the tr 4900.0 5300.0 5700.0 6100.0	anspose of th 7650.0 8300.0 8950.0	ne two mat 10400.0 11300.0 12200.0 13100.0	11962.0 12914.0 13866.0 14818.0
	3230.0 3560.0 3890.0 4220.0 4550.0 dot produc	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0	anspose of th 7650.0 8300.0 8950.0 9600.0 10250.0	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0	11962.0 12914.0 13866.0 14818.0 15770.0
	3230.0 3560.0 3890.0 4220.0 4550.0	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0	anspose of th 7650.0 8300.0 8950.0 9600.0 10250.0 	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0
	3230.0 3560.0 3890.0 4220.0 4550.0 dot produc 10.0 400.0	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 484.0
	3230.0 3560.0 3890.0 4220.0 4550.0 	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 5290.0 5760.0
	3230.0 3560.0 3890.0 4220.0 4550.0 dot product 10.0 400.0 90.0 160.0	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0	ne two mate 10400.0 11300.0 12200.0 13100.0 14000.0 	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 484.0 5290.0 5760.0
The	3230.0 3560.0 3890.0 4220.0 4550.0 	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0 1210.0 1440.0 1690.0 2250.0	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 of the two 2560.0 2890.0 3240.0 3610.0 4000.0	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 5290.0 5760.0 6250.0
The	3230.0 3560.0 3890.0 4220.0 4550.0 	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 ct of th 360.0 490.0 640.0 810.0 1000.0	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0 1210.0 1440.0 1690.0 2250.0 divided by mo.1	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 of the two 2560.0 2890.0 3240.0 3610.0 4000.0	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 5290.0 5760.0 6250.0
The	3230.0 3560.0 3890.0 4220.0 4550.0 	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0 1210.0 1440.0 1690.0 2250.0 divided by mo.1	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 of the two 2560.0 2890.0 3240.0 3610.0 4000.0	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 484.0 5290.0 5760.0
The	3230.0 3560.0 3890.0 4220.0 4550.0 4550.0 dot product 10.0 400.0 90.0 160.0 250.0	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0 1210.0 1440.0 1690.0 2250.0 divided by molinoid oil oil 0.1 0.1	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 	11962.0 12914.0 13866.0 14818.0 15770.0
 The	3230.0 3560.0 3890.0 4220.0 4550.0 dot product 10.0 400.0 90.0 160.0 250.0 result of 0.1 0.01	f the tr 4900.0 5300.0 5700.0 6100.0 6500.0 	anspose of the 7650.0 8300.0 8950.0 9600.0 10250.0 1210.0 1440.0 1690.0 2250.0 divided by month of the first	ne two mat 10400.0 11300.0 12200.0 13100.0 14000.0 	11962.0 12914.0 13866.0 14818.0 15770.0 matrices 4410.0 5290.0 5760.0 6250.0

			-End Program)	
		SECOND	RUN		
The	content	of the firs	st matrix is		
	1	2	3	4	
	5	6	7	8	
	9	10	11	12	
	13	14	15	16	
 The	 	of the seco	ond matrix i		
	10	200	30	40	
	50	60	70	80	
	90	100	110	120	
	130	140	150	160	
 The	nroduct	of the two	matrices is	·	
		1180.0			
		3180.0			
	3140.0	5180.0	3980.0	4400.0	
	4260.0	7180.0		6000.0	
 The		 duct of the	two matrice	 	
			90.0		
	250.0		490.0		
	810.0	1000.0	1210.0	1440.0	
	1690.0	1960.0	2250.0	2560.0	
 Гhe	result (of matrix1 o	divided by m	natrix2 is:	
	0.1	0.01	0.1	0.1	
	0.1	0.1	0.1	0.1	
	0.1	0.1	0.1	0.1	
	0.1	0.1	0.1	0.1	
 The		se of the fi			
	1	5	9	13	
	2 3	6	10	14	
		7	11	15	

4	8	12	16	
The transpo	 se of the	second matı	 	
10	50	90	130	
200	60	100		
30	70	_		
40	80	120	160	
The product	of the tr	anspose of	the two mat	 rices is:
		3140.0		
2080.0	2280.0	3560.0	4840.0	
2360.0	2540.0	3980.0	5420.0	
2640.0	2800.0	4400.0	6000.0	
The dot pro	 duct of th	e transpose	 e of the two	matrices is:
		810.0		
400.0	360.0	1000.0	1960.0	
90.0		1210.0		
160.0	640.0	1440.0	2560.0	
The result	 of matrix1	divided by	 / matrix2 is	 :
0.1	0.1	0.1	0.1	
0.01		0.1	0.1	
0.1	0.1	0.1	0.1	
0.1	0.1	0.1	0.1	

-----End Program-----