الفيزياء

United Arab Emirates

12BB32

التعاون والعمل الجماعي

استخدام الأجهزة بطريقة تناسب العملية التعليمية

12GA22

عدم مقاطعة الحصة بأي شكل

الوحدة 3: التفاضل

1-3 المماسات والسرعة المتجهة

نواتج التعلم الطريقة المقترحة لتغطية الناتج ناتج التعلم تعليم الكتروني تعلم ذاتى تعليم مدرسي 1- الربط بين ميل القاطع وميل المماس وتفسيرهم

	V	V	\ 3 3.6
	V	V	2- كتابة معادلة المماس لمنحنى عند نقطة معطاة باستخدام النهايات
	1	V	إيجاد السرعة المتوسطة والسرعة اللحظية عند نقطة معطاة
			حل مسائل رياضية وحياتية باستخدام المشتقات

أيجاد معادلة المماس عادلة المماس عادلة المشتقات عطة الدرس خطة الدرس

تفسير معادلات التغيير

أيجاد السرعة المتجهة المتوسطة

وه اً/ محمد طه ﷺ

الإحترام

12BB32

 $m_{sec}=rac{f(a+h)-f(a)}{(a+h)-a}$ يعطي بالصيعة $rac{f(a+h)}{h}$ يعطي بالصيعة $rac{(a+h)-f(a)}{a}$ و $rac{a+h,f(a+h)}{a}$ يعطي بالصيعة أنهار بالنقطتين $rac{a+h,f(a+h)}{a}$

ig(a,f(a)ig) عندما h o 0 عندما القاطع من ميل القاطع عند

بالمواد: الفيزياء 12BC36 12GA22 12BB32 +971566151988/ القيمة الإحترام الكفاءة التعاون والعمل الجماعي

التعريف البيل

Saturday, October 5, 2024

تعريف 1.1

نواتج التعلم: الربط بين ميل القاطع وميل المماس وتفسيرهم

$$x=a$$
عيل المماس m_{tan} علي المنحني $y=f(x)$ عند المماس

$$m_{tan} = \lim_{h \to 0} rac{f(a+h) - f(a)}{h}$$
يعطي بالصيغة بشرط وجود نهاية

f'(n) - + (w)

معادلة المماس المار بالنقطة (a,f(a)) تعطى بالعلاقة:

$$\frac{(a)}{a}$$

$$y = m_{tan}(x - a) + f(a)$$
 9

وييو أ/ محمد طه ﷺ فا

الربط بالمواد: الفيزياء 12GA22 12BB32 +971566151988/ القيمة الإحترام الكفاءة: التعاون والعمل الجماعي

نواتج التعلم: كتابة معادلة المماس لمنحني عند نقطة معطاه باستخدام النهايات x=1 عند $y=x^2+1$ أوجد معادلة المماس لمنحنى الدالة

لاحظ ان النقطة التي تقابل x = 1 هي (1,2)و الخط ميله 2 عند

 $y = m_{tan}(x - a) + f(a)$

y = 2(x-1) + 2

النقطة (1,2) تحدده المعادلة

 $=\lim_{h\to 0}(2+h)=2$

 $m_{tan} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

 $= \lim_{h\to 0} \frac{\left[(1+h)^2 + 1 \right]^2 (1^2+1)}{L}$

 $= \lim_{h \to 0} \frac{2h + h^2}{h} = \frac{h(2+h)}{h}$

 $= \lim_{h \to 0} \frac{1 + 2h + h^2 + 1 - 2}{h^2 + 1}$

اد: الفيز ياء

y=2x

12BB32 الكفاءة: التعاون والعمل الجماعي

لقيمة الإحترام

تحقق من فهمك

نواتج التعلم: كتابة معادلة المماس لمنحنى عند نقطة معطاه باستخدام النهايات

الفيزياء 12GA22 12BB32 عدد الطلاب: 12BC36 +971566151988/ التعاون والعمل الجماعي

الإحترام

 $f(x) = \sqrt{x+3}$ أو جد معادلة المماس للدالة

Find the equation of the tangent line to the

function $f(x) = \sqrt{x+3}$ at x = -2x = -2 عند

(b) $y = \frac{1}{2}(x-2) + 1$

(a) $y = \frac{1}{4}(x-1) + 2$ © $y = \frac{1}{2}(x+2) + 1$ (d) y = 4(x+2) + 2 Find the equation of the tangent line to the

2022 - 2023

function $f(x) = \frac{2}{x+1}$ at x = 1

0

(a) $y = -\frac{1}{2}(x+1) + 1$

© $y = -\frac{1}{2}(x-1) + 1$

b y = -2(x-1) + 1(d) $y = \frac{1}{2}(x-1) - 1$

 $f(x) = \frac{2}{x+1}$ أوجد معادلة المماس للدالة

x = 1 عند

12GA22 12BB32 عدد الطلاب: 12BC36 الكفاءة: التعاون والعمل الجماعي الإحترام

 $y = -\frac{1}{2}(x-2)+1$

Saturday, October 5, 2024

مماس دالة نسبية

$$f(2+h) - f(2) - \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$m_{tan} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{2}{2+h} - 1}{h}$$

$$= \lim_{h \to 0} \frac{\left[\frac{2 - (2 + h)}{2 + h}\right]}{h} = \lim_{h \to 0} \frac{\left[\frac{2 - 2 - h}{2 + h}\right]}{h}$$

$$= \lim_{h \to 0} \frac{-h}{(2+h)h} = \lim_{h \to 0} \frac{-1}{2+h} = -\frac{1}{2}$$

القيمة الإحترام

(2,1) ان النقطة التي تقابلx=2هي

وبما أن f(2) = 1 تكون معادلة المماس هي

+971566151988/ الكفاءة التعاون والعمل الجماعي مماس دالة نسبية

نواتج التعلم: كتابة معادلة المماس لمنحني عند نقطة معطاه

12BC36

الإحترام

باستخدام النهايات

+971566151988/

الفيزياء

12GA22

00000 اً/ محمد طه مجاوراً المحمد طه المجاورات

12GA22

 $\mathbf{x} = \mathbf{0}$ عند $\mathbf{y} = \frac{x}{x-1}$ عند

نواتج التعلم: كتابة معادلة المماس لمنحنى عند نقطة معطاه

باستخدام النهايات

عدد الطلاب: 12BC36

القيمة الإحترام

12BB32

الكفاءة: التعاون والعمل الجماعي

Saturday, October 5, 2024

تحقق من

فهمك

+971566151988/

اد: الفيزياء

تقييم بنائي

ورقة تفاعلية

HLIVEWORKSHEETS

أ/ محمد طه

مالمواد: الفيزياء

السرعة المتجهة

 v_{avg}

+971566151988/

إيجاد السرعة المتوسطة والسرعة اللحظية عند نقطة معطاة

s(b)-s(a)

12GA22

12BC36

الإحترام

12BB32

التعاون والعمل الجماعي

نواتج التعلم:

ميل القاطع $f(x_2) - f(x_1) \underline{y_2 - y_1}$

Saturday, October 5, 2024

السرعة المتجهة المتوسطة $\mathbf{v}_{\text{avg}} = \frac{S(\mathbf{t}_2) - S(\mathbf{t}_1)}{\mathbf{t}_1}$

 $x_2 - x_1$

بط بالمواد: الفيزياء

متوسط معدل التغير $f(\mathbf{x}_2) - f(\mathbf{x}_1)$

 $v(a) = \lim_{h\to 0} \frac{s(a+h) - s(a)}{h}$

 $\lim_{h\to 0}\frac{f(a+h)-f(a)}{1}$

 $f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ 12BB32 12GA22

القيمة الإحترام الكفاءة: التعاون والعمل الجماعي

عدد الطلاب: 12BC36

نواتج التعلم: إيجاد السرعة المتوسطة والسرعة اللحظية

ميل المماس

السرعة المتجهة اللحظية

معدل التغير اللحظى

عند نقطة معطاة

f(a+h)-f(a)

إيجاد السرعة المتوسطة والسرعة اللحظية نواتج التعلم: عند نقطة معطاة

السرعة اللحظية

تعریف 2 .1

إذا كان s(t)يمثل موقع جُسيم ما بالنسبة إلى مكان ثابت في الزمن t عندما يتحرك الجسم في خط مستقيم، فإن السرعة اللحظية في الزمن a

(1.5)
$$v(a) = \lim_{h \to 0} \frac{s(a+h) - s(a)}{(a+h) - a} = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

12GA22

السرعة: هي القيمة المطلقة للسرعة المتجهة.

12BB32

عند نقطة معطاة ايجاد السرعة المتجهة المتوسطة واللحظية

إيجاد السرعة المتوسطة والسرعة اللحظية

تمثل الدالة موقع جسم ما بالقدم عند الزمن t ثانية أوجد السرعة المتجهة المتوسطة بين (c) t = 1.9, t = 2,

(b) t = 1, t = 2,e(e)قدر السرعة المتجهة اللحظية عندt=2

(d) t = 1.99, t = 2,

$$19. s(t) = 16t^2 + 10$$

(a) t = 0, t = 2,

السرعة اللحظية

+971566151988/

12GA22

12BB32

الكفاءة: التعاون والعمل الجماعي

12BC36

الإحترام

ا/ محمد طه

نواتج التعلم:

في التمارين 19-22

2022 - 2023

على فرض أن ارتفاع جسم يسقط بعد t ثانية من

Suppose that the height of a falling object t

second after being dropped from a height

64 ft is given by $s(t) = 64 - 16t^2$ ft Find the average velocity between

سقوطه من ارتفاع 64 ft ، تمثله المعادلة أوجد السرعة المتجهة $s(t) = 64 - 16t^2$ t=2 و t=1 المتوسطة بين الزمنين

t = 1 and t = 2

 \bigcirc -24 ft/s

 \odot -36 ft/s

 \bigcirc -6 ft/s

d -48 ft/s

ig

المماسات

تمثل الدالة $h(t) = 10t^2 - 24t$ ارتفاع جسم ما

t=1 السرعة المتجهة و التسارع عند الزمن

(b) v(1) = 4, a(1) = -20

0 v(1) = 4, a(1) = 20

+971566151988/

The function $h(t) = 10t^2 - 24t$ represents the height of an object, calculate velocity and

aceleration at t = 1

(a) v(1) = -4, a(1) = -20

© v(1) = -4, a(1) = 20

الفيز ياء

12GA22

12BB32

التعاون والعمل الجماعي

عدد الطلاب: 12BC36

الإحترام

ايجاد السرعة المتجهة المتوسطة واللحظية

(b) t = 1, t = 2,(e)قدر السرعة المتجهة اللحظية عندt=2

تمثل الدالة موقع جسم ما بالقدم عند الزمن t ثانية أوجد السرعة المتجهة المتوسطة بين

(c) t = 1.9, t = 2,

إيجاد السرعة المتوسطة والسرعة اللحظية

عند نقطة معطاة

نواتج التعلم:

في التمارين 19-22

ا/ محمد طه

12BC36 الإحترام

+971566151988/

السرعة اللحظية

(a) t = 0, t = 2,

 $20.s(t) = 3t^3 + t$

(d) t = 1.99, t = 2,

12GA22

Saturday, October 5, 2024 السرعة اللحظية

ايجاد السرعة المتجهة المتوسطة واللحظية

تمثل الدالة موقع جسم ما بالقدم عند الزمن t ثانية أوجد السرعة المتجهة المتوسطة بين

(a) t = 0, t = 2,(b) t = 1, t = 2,(d) t = 1.99, t = 2,

$$21.\,s(t)=\sqrt{t^2+8t}$$

+971566151988/

(e)عدر السرعة المتجهة اللحظية عند t=2

(c) t = 1.9, t = 2,

إيجاد السرعة المتوسطة والسرعة اللحظية

عند نقطة معطاة

في التمارين 19-22

نواتج التعلم:

ا/ محمد طه

لقيمة الإحترام

12BC36

الكفاءة: التعاون والعمل الجماعي

12BB32

12GA22

أ/ محمد طه

نواتج التعلم:

السرعة اللحظية

(a) t = 0, t = 2,

(d) t = 1.99, t = 2,

 $22.s(t) = 3\sin(t-2)$

+971566151988/

Saturday, October 5, 2024

إيجاد السرعة المتوسطة والسرعة اللحظية

عند نقطة معطاة

في التمارين 19-22

تمثل الدالة موقع جسم ما بالقدم عند الزمن t ثانية أوجد السرعة المتجهة المتوسطة بين

12BB32

التعاون والعمل الجماعي

12BC36

الإحترام

(e)قدر السرعة المتجهة اللحظية عند t=2

12GA22

(b) t = 1, t = 2, (c) t = 1.9, t = 2,

ايجاد السرعة المتجهة المتوسطة واللحظية

أ/ محمد طه

نواتج التعلم:

السرعة المتجهة (a)a = 1; (b)a = 2(a)a = 0; (b)a = 1

إيجاد السرعة المتوسطة والسرعة اللحظية

12BC36

الإحترام

12BB32

التعاون والعمل الجماعي

12GA22

$$(a)a = 0; (b)a = 2$$

$$(b)a=2$$

$$(\mathbf{h})\mathbf{a} = \mathbf{A}$$

$$2;(b)a=4$$

$$=2;(b)a=4$$

$$2;(b)a=4$$

$$a)a=2;(b)a=4$$

$$(a)a = 2; (b)a = 4$$

$$(a)a=2;(b)$$

17.
$$s(t) = \sqrt{t+16}$$
, $(a)a = 0$
18. $s(t) = 4/t$, $(a)a = 2$

17.
$$s(t) = \sqrt{t+16}$$
,

+971566151988/

 $15. s(t) = -4.9t^2 + 5 ,$

$$s(t) = 4t - 4.9t^{2},$$

$$s(t) = \sqrt{t + 16}$$

$$16. \ s(t) = 4t - 4.9t^2,$$

$$-4.9t^2,$$

$$t-4.9t^2,$$

$$9t^2$$
,

Saturday, October 5, 2024

1-3 المماسات والسرعة المتجهة

ay, October 5, 2024

تفسير معدلات التغيير

 \square واخيرا التعبير (c)يمثل معدل التغير اللحظي لتعداد لسكان في الزمن t=2اعتبارا من الاول من يناير \square 2002 . كان التعداد السكاني في المدينة ينمو بمعدل 0.3 مليون نسمة لكل عام عدد الطلاب: 12BB32 12BC36 الغياب: الربط بالموادز الفيزياء

0.31 مليون نسمة على اساس سنوي 2001 .

أ/ محمد طه عليه القيمة الإحترام الكفاءة التعاون والعمل الجماعي

+971566151988/

+971566151988/

علي فرض أن
$$f(t)$$
 تمثل الرصيد بالدرهم في حساب بنكي بعد t أعوام من الأول من يناير عام t فسر كل من الكميات الأتية بافتراض أنها تساوي الأعداد المعلومة.

$$\frac{(a)^{f(4)-f(2)}}{2} = 21,034$$

فسر كل من الكميات الأتية بافتراض أنها تساوي الأعداد المعلومة.
$$f(4+h) - f(4)$$

$$(b)2[f(4) - f(3.5)] = 25.036$$

12BC36

القيمة الإحترام

(c)
$$\lim_{h\to 0} \frac{f(4+h)-f(4)}{h} = 30.000$$

12GA22

الفيزياء

تقييم ختامي ورقة عمل تفاعلية

https://www.liveworksheets.com/li1197223tg

+971566151988/

12GA22

12BB32

12GA22

12BB32

نواتج التعلم: الربط بين ميل القاطع وميل المماس وتفسيرهم

1-3 المماسات والسرعة المتجهة

لتقريب الميل، تقوم بتقدير إحداثيات نقطة واحدة على المماس على ألا تكون (0,-1) في الشكل

(0.01, -0.9802)

x = 0 عند $y = \frac{x-1}{x+1}$ أوجد معادلة المماس للدالة

مثال 3 . 1

التقريب البياني

والعددي لميل المماس

ي موضح في الشكل 3.10a ترسم المماس عند النقطة (0,-1) كما في الشكل $y=\frac{x-1}{x+1}$ موضح في الشكل 3.10a ترسم المماس عند النقطة أفضل

$$m_{tan}pprox rac{1-(-1)}{1-0}$$
 يكون تقدير الميل إذا $m_{tan}pprox rac{1-(-1)}{1-0}=2$ لتقريب الميل عدديًا، نقوم باختيار عدة نقاط قريبة من (1-,0) يكون تقدير الميل إذا $m_{tan}pprox rac{1-(-1)}{1-0}$ بحسب ميول الخطوط القاطعة على سبيل المثال عند تقريب قيم ل y لأربع منازل عشرية تحصل على:

 $\frac{0-(-1)}{1-0}=1$ (-0.5, -3)(1,0) $\frac{-3 - (-1)}{-0.5 - 0} = 4.0$ $\frac{-1.2222 - (-1)}{-0.1 - 0} = 2.222$ (-0.1, -1.2222) $\frac{-0.8182-(-1)}{0.1-0}$ =1.818 (0.1, -0.8182)

(-0.01, -1.0202)

+971566151988/

 $\frac{-1.0202-(-1)}{-0.01-0}$ =2.02

 $\frac{-0.9802-(-1)}{0.01-0}$ =1.98

Finding Average and Instantaneous Velocity

Example: 1.5 Page: 138

The height of a falling object t seconds after being dropped from height of 64ft is:

 $s(t) = 64 - 16t^2$ 1. Average velocity between: a. t=1 and t=2 b.t=1.5 and t=2 c.t=1.9 and t=2Find:

Solution:
$$v_{avg} = \frac{s(b) - s(a)}{b - a}$$

$$b-a$$

a. Average velocity between
$$t = 1$$
 and $t = 2$

. Average velocity between
$$t=1$$
 and $t=2$
$$v_{ava} = \frac{s(2) - s(1)}{2}$$

$$v_{avg} = \frac{s(2) - s(1)}{2 - 1}$$

$$v_{avg} = \frac{1}{2 - 1}$$

$$(64 - 16(2)^{2}) - (64 - 16(1)^{2})$$

b. Average velocity between t = 15 and t = 2

$$= \frac{\left(64 - 16(2)^{2}\right) - \left(64 - 16(1)^{2}\right)}{2}$$

$$= \frac{\left(64 - 16(2)^2\right) - \left(64 - 16(1)^2\right)}{2 - 1}$$

$$\frac{(2)^2) - (64 - 16(1)^2)}{2 - 1}$$

$$\frac{2)^2 - (64 - 16(1)^2)}{2 - 1}$$

المواد: الفيزياء

$$-s(1.9)$$

c. Average velocity between
$$t=1.9$$
 and $t=2$

$$= \frac{\left(64 - 16(2)^2\right) - \left(64 - 16(1.9)^2\right)}{2 - 1.9} = -62.4 ft/s$$

2. Instantaneous velocity at t=2

$=\frac{\left(64-16(2)^2\right)-\left(64-16(1.5)^2\right)}{2-1.5}=-56ft/s$

$$v_{avg} = \frac{s(2) - s(1.9)}{2 - 1.9}$$

$$64-16(2)^2$$

$$\frac{(2)^2)-(}{2-1}$$

$$s(2) - s(1.5)$$

+9749566154988/

=-48ft/s

Finding Average and Instantaneous Velocity

Example: 1.5 Page: 138

The height of a falling object t seconds after being dropped from height of 64ft is:

$$s(t) = 64 - 16t^2$$

2. Instantaneous velocity at t=2Find:

Solution:
$$v(a) = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

$$v(2) = \lim_{h \to 0} \frac{s(2+h) - s(2)}{h}$$

$$v(2) = \lim_{h \to 0} \frac{1}{h}$$

$$-\lim_{h \to 0} \frac{\left[64 - 16(2 + h)^2\right] - \left[64 - 16(4 + h)^2\right]}{h}$$

$$= \lim_{h \to 0} \frac{h}{h}$$
... $64 - 16(4 + 4h + h^2) - 0$

$$= \lim_{h \to 0} \frac{64 - 16(4 + 4h + h^2) - 0}{h}$$

$$= \lim_{h \to 0} \frac{64 - 64 - 64h - 16h^2}{h}$$

$$= \lim_{h \to 0} \frac{64 - 64 - 64h - 16h^2}{h}$$

$$= \lim_{h \to 0} \frac{-64h - 16h^2}{h}$$

$$h \to 0$$
 h +971566151988/

 $= \lim_{h \to 0} (-64 - 16h)$

v(2) = -64 - 16(0)v(2) = -64ft/s

الكفاءة: التعاون والعمل الجماعي الإحترام

80

60

40 -

20 -

-60 -

Tangent line at t = 2

Instantaneous Velocity rday, October 5, 2024 Example: Q15 Page: 141 Use the position function s(t) (in meters) to find the velocity at the given time in seconds $s(t) = -4.9t^2 + 5$ at t = 1 $v(1) = -9.8 - 4.9(0) = -9.8 \, m/s$ Solution: Instantaneous Velocity at t=a $v(a)=\lim_{h\to 0}rac{s(a+h)-s(a)}{h}$ Speed = 9.8 m/s $v(1) = \lim_{h \to 0} \frac{s(1+h) - s(1)}{h}$ -ve sign of the velocity: indicates that the object is moving in the negative $= \lim_{h \to 0} \frac{\left[-4.9(1+h)^2 + 5 \right] - \left[-4.9(1)^2 + 5 \right]}{h}$ direction (or downward) $-4.9(1+2h+h^2)+5-0.1$ $=\lim_{h\to 0}$ $= \lim_{h \to 0} \frac{-4.9 - 9.8h - 4.9h^2 + 5 - 0.1}{1}$

+971566151988/

h(-9.8 - 4.9h)

التعاون والعمل الجماعي

(1, 0.1)

Solution:

Instantaneous Velocity at
$$t=a$$
 $v(a)=\lim_{h\to 0}rac{s(a+h)-s(a)}{h}$ $s(0+h)-s(0)$

$$v(0) = \lim_{h \to 0} \frac{s(0+h) - s(0)}{h}$$

$$=\lim_{h\to 0}\frac{\sqrt{h+16}-\sqrt{0+16}}{h}$$

$$\frac{n}{5-4}$$
 \sqrt{h}

$$\frac{\sqrt{h+16}}{}$$

$$\cdot \frac{\sqrt{h+16+4}}{\sqrt{h+16+4}}$$

$$\sqrt{h+16}+4$$

$$\frac{-4}{\sqrt{h+16}+4}$$

$$= \lim_{h \to 0} \frac{\sqrt{h+16}-4}{h} \qquad \frac{\sqrt{h+16}+4}{\sqrt{h+16}+4}$$

$$\cdot \frac{\sqrt{h+16+4}}{\sqrt{h+16}+4}$$

$$\frac{+4}{+4}$$

$$\frac{+4}{+4}$$

Speed = $\frac{1}{9}m/s$

+ve sign of the velocity:

 $v(0) = \frac{1}{\sqrt{0+16}+4} = \frac{1}{4+4} = \frac{1}{8}m/s$

indicates that the object is moving in the postive direction

 $s(t) = \sqrt{t + 16}$

+971566151988/

Graph with No Tangent Line at a 3, 2024 Exercise: Q23 Page: 141

Determine whether there is a tangent line to y = |x - 1| at x = 1

Solution:
$$|x-1| = \begin{cases} x-1, & x \ge 1 \\ 1-x, & x < 1 \end{cases}$$

$$\lim \frac{f(1+h)-f(1)}{h}$$

$$\lim_{h\to 0^+}\frac{f(1+h)-f(1)}{h}$$

$$\lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0^+} \frac{|1+h-1| - 0}{h} = \lim_{h \to 0^+} \frac{|h|}{h}$$

$$h \rightarrow 0^-$$

For
$$h > 0$$
, $|h| = h$
= $\lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$

$$\lim_{h \to 0^{+}} 1 = 1 = \lim_{h \to 0^{+}} 1 = h$$

$$= \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$= \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h} \neq \lim_{h \to 0^-} \frac{f(1+h) - f(1)}{h}$$

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{|1+h-1| - 0}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h}$$

$$= \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Slope= -1

f(x) = |x - 1|

Slope=1

12GA22 12BB32 عدد الطلاب: 12BC36 القيمة الإحترام الكفاءة: التعاون والعمل الجماعي

A Graph with No Tangent Line at a 3, 2024 Example

 $f(x) = \begin{cases} x^2 - 2, & x < 0 \\ 3x - 2, & x \ge 0 \end{cases} \text{ at } x = 0$ Determine whether there is a tangent line to

Solution: The function changes its formula about
$$x = 0$$

$$f(0) = 3(0) - 2 = -2$$

$$\lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h}$$

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h}$$

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h}$$

$$\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h}$$
For $h > 0$, $f(h) = 3h$ For $h < 0$, $f(h) = h^2 - 2$

For
$$h > 0$$
, $f(h) = 3h$ 2
$$= \lim_{h \to 0^+} \frac{3(h) - 2 - (-2)}{h} = \lim_{h \to 0^-} \frac{(h)^2 - 2 - (-2)}{h}$$

$$= \lim_{h \to 0^+} \frac{3h}{h} = \lim_{h \to 0^+} 3 = 3 \qquad \qquad = \lim_{h \to 0^-} \frac{h^2 - 2 + 2}{h}$$

$$f(0+h) - f(0) \qquad f(0+h) - f(0)$$

