This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTÉRNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 6:
 C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

A1 (11) III

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or

international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

construction of a synthetic human antibody library based on conscisus Database of human Ig gene segments Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families germline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structures consensus sequences Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
Bj	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Suden
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CR	Switzerland	KZ	Kazakhstan	SI	Slovenia
Œ	Côte d'Ivoire	ш	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	8Z	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
KE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
P1	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzhekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

M.

Protein/(Poly)peptide Librari s

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that, the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detail d D scription of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a dafabase of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions, in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: Vk1, Vk2, Vk3, Vk4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Ck, Cλ, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is a inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sub-libraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-B, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes; whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 V κ , 3 V λ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: $S_{65}T$ Vk1: $N_{34}A_{1}$

VK3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_K , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-V _K 1	Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vk2	Vκ2-6	Vκ2-6
HuCAL-Vk3	Vκ3-1,-4	Vĸ3-4
HuCAL-Vĸ4	Vκ4-1	Vĸ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-V).3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, VK or VI genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S42G

Vκ3: E,D, I₅₈V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGG. The two oligonucleotides encoding this linker TGGCGGTGGTGCTCCGATATCGGTCCACGTACG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCGCCAGGAACCAGCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the $H3\kappa2$ scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekās et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI)6GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI)10(TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) trinucleotide mixtures encodina the amino phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3k2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μI of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10′ and 2.3x10′ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 ($1x10^{10}$ cfu/well of the 10-mer and $5x10^8$ cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100~\mu g/ml$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris·Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC. PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pI of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3κ2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to ß-estradiol, testosterone, LeY, LT-ß, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-ß-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, ß-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-Ipp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindlII site and a four base overhang at the 3'-end compatible with an Aatil site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with Aatil and HindlII, isolating the 2174 base pair fragment containing the bla gene and the ColE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL-VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal β-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type β-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the B-lactamase cloning cassette via Bbsl/MscI, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3 κ 2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 $\mu \mathrm{g/ml}$). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α -FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = $40 \mu g/ml$).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37° C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37° C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10^8 for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS 89, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA 92, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family	Germline genes•
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012 ; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	122
Vk1-23	2	1	123
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	Li3
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	/·/3
Vk2-9	1	2	/ 23

Table 1A: (continued)

Used Name'	Reference ²	Family	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg "
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	` 11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Referenc	e' Family	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name'	Reference ²	Family ³	Germline genes ⁴
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	• 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	. 1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11		1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13		1	1-92
VH1-13-14		1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16		1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HC3
VH1-13-18		1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-Sb
VH2-31-1	2	2	Vil2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	V02S12-10
VH2-31-5	14	2	VC-26; DP26; 2-26
VH2-31-6	15	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

49

SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2 .	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	. 3	v65 -2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	21-2B; DP35; V3-11
VH3-13-5	19	3	DF 59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DE46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	Va26
VH3-13-9	5	3	vh26c
VH3-13-10 VH3-13-11	19	3	DP47; VH26; 3-23
VH3-13-11 VH3-13-12	3	3	1-91
VH3-13-12 VH3-13-13	19	3	DP58
VH3-13-14	3 24	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14 VH3-13-15	24 27	. 3	301989; DP50; 3-33; 3d277
VH3-13-16	19	3	CU53
VH3-13-17	16	3 3	D.151
VH3-13-18	19		F132-005 0 0 0 0 0 0
VH3-13-19	19		E. (3); COS 6; 3-74; DA-8
VH3-13-20	14		[
VH3-13-21	14		\`
VH3-13-22	14		
VH3-13-23	14		Viri43; DP33 Viri433
	• •	J	v. au

50

Table 1C: (continued)

Used Name'	Reference?	Fam	ily ² Germline genes ⁴
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	CCPD C
VH3-1X-1	1	3	LSG3.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM2151GVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSC2.1
VH3-1X-6	1	3	LSC6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2 VH4-11-3	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-4	23	4	4.44
VH4-11-5	23	4	4.44.3
VH4-11-6	23	4	4.5.3
VH4-11-7	23 18	4	4.37
VH4-11-8	17	4	IV: 4.35; V4-4
VH4-11-9	20	4	Viid.11; 3d197d; DP71; 58p2
VH4-11-10	20	4 4	N7
VH4-11-11	20	4	HC HC
VH4-11-12	17	4	V: 1.16
VH4-11-13	23	4	4
VH4-11-14	17	4	V. 4.15
VH4-11-15	11	4	£
VH4-11-16	10	4	7 :- 1; V4-59
VH4-21-1		4	11
VH4-21-2		4	V::4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3			VV4.19; 79; V4-4b
			51

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9H; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv400 5; 3d24d
VH4-21-9	: 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	D794; 3d216d
VH4-31-4	19	4	DPC5; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75 d
VH4-31-6	20	4	HID
VH4-31-7	20	4	· H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.53
VH4-31-10	20	4	3 d27 7d
VH4-31-11	20	4	3d01 6d
VH4-31-12	20	4	3dCT9d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; D P79
VH4-31-16	23	4	4.0 J
VH4-31-17 VH4-31-18	17	4	V. 3.12
VH4-31-19	10 23	4	7 :- 7; DP66
VH4-31-20	8	4	4.13 Vec.11
VH5-12-1	9	4 5	
	J		Validati; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VIVIAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	Views
VH5-12-3	3	5	1- of DP80; 5-78
VH5-12-4	9	5	Vi -2; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VENUE VHG; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VENUE VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
III-3R	108	1	O8	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	03	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	C3	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	03	2	2,3%	122
CLL PATIENT 15	88	1	08	2 -	2,3%	122
GM4672	108	1	03	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	. 1	08	12	12,6%	48
HIV-b13	106	1	C3	9	9,7%	8
MAL-NaCl	108	1	O8	13	13,7%	102
STRAb SA-1A	108	1	C2	0	0,0%	120
HuVHCAMP	108	1	03	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am 107	108	1	0.3	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
II-2R	109	1	C CA	0	0,0%	70
FOG1-A4	107	1	OSA	4	4,2%	41
HK137	95	1	Lī	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
/a'	9 5	1	1,4	0	0,0%	90
TR1.21	108	1	C2	4	4,2%	92
UAH	108	1	C2	6	6,3%	123
HK102	95	1	L10(1)	0	0.0%	9
H20C3K	108	1	L11/(2)	3	3,2%	125
CHEB	108	ĺ	(:2	7	7,4%	5
HK134	95	1	L1=(2)	0	0,0%	10
TEL9	108	1	(2	9	9,5%	73

53

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	
3D6	105	1	L12(2)	2	2,1%	126 34
- 2a	108	1	L8	8	8,4%	70
RF-KL1	9 7 ·	1	L8	4	4,2%	121
NF-E7	108	1	A30	9	9,5%	41
R1.22	108	1	02	7	7,4%	92
IIV-B35	106	1	02	2	2,2%	8
IIV-b22	106	1	02	2	2,2%	8
IIV-b27	106	1	02	2	2,2%	8
IIV-B8	107	1	02	10	10,8%	8
IIV-b8	1 07	1	02	10	10,8%	8
F-SJ5	9 5	1 .	A20	5	5,3%	113
iAL(I)	1 03	1	A 30	6	6,3%	64
3.5H5G	1 03	1	C2	6	6,3%	70 ·
IV-b14	106	1	A 20	2	2,2%	8
NF-E1	105	1	· L 5	8	8,4%	41
/ea	103	1	A30	8	8,4%	37
U .	103	1	L12(2)	5	5,3%	40
DG1-G8	103	1	13	11	11,6%	41
K7RG1	103	1	L1	8	8,4%	
LI	103	1	L3	3	3,2%	70 72
JE	103	1	L12(2)		11,6%	72 22
JNm01	103	1	L12(2)		10,5%	32
IV-b1	103	1	Λ20		4,3%	6
V-s4	1 03	1	C2		4,3% 2,2%	8
				-	-16 70	8

5+

Table 2A: (continued)

Name ¹	a a²	Computed	Germline	Diff. to	% diff. to	Reference ⁷
		family ³	gene⁴	germline ⁵	germline ⁶	
CAR	107	1	L12(2)	11	11,7%	79
BR.	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	9 5	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	27	1	02	0	0,0%	122
CLL PATIENT 9	83	1	012	1	1,1%	122
HIV-B2	106	1 .	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	83	1	A20	1	1,1%	···· 122
CLL PATIENT 1	83	1	13	2	2,3%	122
CLL PATIENT 2	83	1	13	0	0,0%	122
CLL PATIENT 7	63	1	L5	0	0,0%	122
CLL PATIENT 8	8 3	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	E 7	1	L8	1	1,1%	122
CLL PATIENT 4	83	1	L9	0	0,0%	122
CLL PATIENT 18	73	1	19	6	7,1%	122
CLL PATIENT 17	£ 3	1	L13(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	1: 3	1 '	L17(2)	20 .	21,1%	68
1B11	1, 3	1	L12(2)	20	21,1%	68
1H1	113	1	L12(2)	21	22,1%	68
2A12	1 3	1	L10(2)	21	22,1%	68
CUR	1 3	3	A27	0	0.0%	66
GLO	1: 3	3	£27	0	0,0%	16
RF-TS1	£.;	3	F 2.7	0	0.0%	121
GAR'	. 1. 3	3	<i>F</i> .17	0	0,0%	67
FLO	1 }	3	A" 7	0	0,0%	66
PIE	11.3	3	A.77	0	0,0%	91
HAH 14.1	1- 3	3	127	1 .	1,0%	51
HAH 14.2	1 }	3	7.37	1	1,0%	51

: 5

Table 2A: (continued)

Name ¹	a a²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HAH 16.1	105	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	1 10	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	103	3	A 27	0	0.0%	51
SON	110	3	A27	1	1,0%	67 .
PAY	103	3	A27	1	1,0%	66
GOT	103	3	A27	1	1,0%	67
mAbA6H4C5	1 00	3	A27	1	1,0%	12
BOR'	1 (**)	3	A27	2	2,1%	84
RF-SJ3	99	3	A27	2 _	2,1%	121
SIE .	16.3	3	A27	2	2,1%	15
ESC	10:3	3	A27	2	2,1%	98
HEW'	111	3	A27	2	2,1%	98
YES8c	100	3	A27	3	3,1%	33
Ti	10.3	3	A27	3	3,1%	114
mAb113	103	3	A27	3	3,1%	71
HEW	100	3	A27	0	0,0%	94
BRO	16.5	3	-A27	0	0,0%	94
ROB	10)	3 .	A.^7	0	0,0%	94
NG9	9:	3	A27	4 .	4,2%	11
NEU	16.3	3 .	A07	4	4,2%	66
WOL	1 6.4	3	A ⁿ 7	4	4,2%	2
15G6	1: 3	3	A.::7	4	4,2%	59
RF-SJ4	16.3	3	ATT	0	0,0%	88
CAS	1: 1	3	<i>F</i> 7	4	4,2%	84
BRA	17.1	3	17	1	1,1%	94
IAH	1000	3	A"7	1	1,1%	94
IIC	1: ;	3	£::7	0	0,0%	94
S-2	1	. 3	<i>F</i> ^7	6	6,3%	87
H'	1	3	A*7	6	6,3%	38
V1-15	1 :	3	A27	6.	6,3%	83
CA	1 :	3	A''7	6	6,3%	
			:5	•	0,070	65

TUBSTITUTE STITET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference
		family ³	ge ne⁴	germline ^s	germline ⁶	211
mAb112	10 9	3	A27	6	6,3%	71
SIC .	10 3	3	A 27	3	3,3%	94
SA-4A	10 9	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	10 9	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	8 9	3	A27	1	1,1%	122
HIV-b24	10?	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	· 9 9	3	A27	1	1,1%	52
CA3D1	108	3	15	0	0.0%	85
19.E7	107	3	LG	0	0.0%	126
sv6L	109	3	A27	12	12,5%	7
aykv320	9 ff	3	A27	1	1,2%	, 52
/h	9:;	3	L10(2) -	0	0,0%	89
S8	10 3	3	L6 .	1	1,1%	109
S1	103	3	L5	1	1,1%	109
S2S3-3	105	3	LS	2 ·	2,1%	99
S2	· 103	3	16	1.	1,1%	109
S7	103	3	15	1	1,1%	109
S2S3-4d	10	3	16	2	2,1%	99
S2S3-4a	107	3	15	2	2,1%	. 99
S4	103	3	16	1	1,1%	109
S6	1(-3	3	ts	1	1,1%	109
S2S3-10a	10.2	3	16	2	2,1%	99
S2S3-8c	10.7	3	13	2	2,1%	99
S5	103	3	16	1	1,1%	109
S2S3-5	11.7	3	LS	3	3,2%	99
UNm03	1-1	3	A27	13	13,5%	6
ARC/BL41	1/ :	3	A27	13	13,7%	55
kv22	Ĉ.	3	A°7	3	3,5%	13
OP	11.3	3	16	4	4,2%	111

5,2

Table 2A: (continued)

Name ¹	a a'	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	3,2% 11,7%	99
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	163	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9		8
YSE	107	3	L2/L16	1	9,9%	8
POM	1 09	3	L2/L16	9	1,1%	72
Humkv328	9 5,	3	L2/L16	1	9,4% 1,1%	53
CLL	109	3	L2/L16	3	•	19
LES	90	3	L2/L16	3	3,2%	47
HIV-s5	16.4	3	A27	11	3,2%	38
HIV-s7	104	3	A27	11	12,1%	8
slkv1	бa	3	A27	7	12,1%	8
Humka31es	95	3	L2/116	4	8,1%	13
slkv12	1 C1	3	A27	8	4,2%	18
RF-TS2	9 5	3	L2/L16	3 .	9,2%	13
ll-1	100	3	L2/L16	4	3,2%	121
HIV-s3	1/ 1	3	A07	13	4,2%	70
RF-TMC1	ĉ.	3 .	13	10	14,3%	8
GER	1:, 1	3	L2/116	7	10,5%	121
GF4/1.1	1: }	3	L2/116	•	7,4%	75
nAb114	1 3		L2'.16	8 .	8,4%	36
IIV-loop13	103		L2 1.16	6	6,3%	71
kv16	8 .	3	[]	7	7,4%	8
LL PATIENT 29	£ .	3	1.5	1	1,2%	13
kv9	Ç.,	3	13	1	1,2%	122
kv17	ç	3	13	3	3,5%	13
kv14	<u>c</u>	3	13	1	1,2%	13
kv16	1: :	3	1)	1	1,2%	13
kv33	1:	3	L3		2,3%	13
kv15	ć	3			4,7%	13
(v 6	1/, 1	3	13	_	2,3%	13
	•. •	J	1.5	3	3,5%	13

Table 2A: (continued)

Name ¹	a a	^z Compu	ted Game				
		family	·		f. to iline ^s	% diff. to germline	Reference ³
R6B8K	108		9010			germine	•
AL 700	107	•	L2/L16	• •	2	12,6%	125
slkv11		J	L2/L16	9		9,5%	117
slkv4	100	Ü	L2/L16	3		3,5%	13
CLL PATIENT 26	97	3	L6	4		4.8%	13
AL Se124	87	3	L2/L16	1		1,1%	122
slkv13	103	3	L2/L16	9		9,5%	117
bkv7	100	3	L2/L16	6		7,0%	
bkv22	100	3	L2/L16	5		5,8%	13
CLL PATIENT 27	100	3	L2/L16	6		7,0%	13
bkv35	84	3	L2/L16	0		0,0%	13
CLL PATIENT 25	100	3	16	8		9,3%	122
slkv3	87	3	L2/L16	4		4,6%	13
slkv7	86	3	12/115	7		8,1%	122
HuFd79	9 9	1	G 3 .	7		8,1%	13
RAD	111	3	12/1.16	24		24,2%	13
CLL PATIENT 28	9 9	3	A27	9		0,3%	21
REE	83	3	L2/1.16	4		0,3% 1,8%	78
FR4	104	3	L2/L16	25		7,2%	122
MD3.3	99	3	A27	8		,2% ,2%	95
MD3.1	. 9 2	3	LG	1		.3%	77
GA3.6	9	3	10	0		0%	54
M3.5N	97	3	LG	2		6%	54
VE!	9 0	3 .	10	3		3%	54
1D3.4	8 :	3	A27	0	0,0		54
1D3.2	9 2	3	L2/016	1			65
ER	9 :	3	()	3	1,3 3,8		54
LL PATIENT 30	9?	3	A27	19			54
3.1N	73	3	15	. 3	22,4	.,	20
D3.6	92	3	L2 16	1	3,80		22
D3.8	9 !		L3 ' 16	0	1,30		54
N3.4	9 :		2116	0	0,09		54
3.6N	97	3	: ~	7	0,0%		54
93.10	Ö.,	3	/ · 7	0	9,0%	J	4
/J.1U	5 (<i>F</i> 17	0	0,0%	J	
•				•	0,0%	54	4

Table 2A: (continued)

Name ¹	.88	2 June	uted	Germi					
		fam		Germlin gene ⁴			% diff. t germline	o Refere	ice'
MD3.13	91						acomme	T	
MD3.7	93	Ū		A27	0		0,0%	54	
MD3.9		•		A27	. 0		0,0%	54	
GA3.1	93	•		A27	0		0,0%	54	
bkv32	93	3		A27	6		7,6%	54	
GA3.5	101 9 3	•		A27	5		5,7%	13	
GA3.7		3		A27	5		6,3%	54	
MD3.12	92	3		A27	_7		8,9%	54 54	
M3.2N	9 2	3		£27	2		2,5%	54	
MD3.5	9 0	3		LS	6		7,8%	54 54	
M3.4N	92	3		A27	1		1,3%	54 54	
M3.8N	91	3	1	L2/L16	8		10,3%	54 54	
M3.7N	91	3	t	2/16	7		9,0%	54 54	
GA3.2	9 2	3		£ 17	3		3,8%	54 54	
GA3.8	9 2	3		A^7	9		1,4%	54	
GA3.3	93	3		£"7	4		5,1%	54 54	
M3.3N	9 2	3		F "7	8		0,1%		
B6	9 2	3	/	r 7	5		5,3%	54	
E29.1 KAPPA	8 3	3	1	1.7	8		1,3%	54 70	
SCW	7 8	3	12	16	0		.0%	78 22	
REI-based CAMPATH-9	108	1		· · · · · · · · · · · · · · · · · · ·	12		.6%	22	
RZ		1	(. 3	14		,7%	31 30	
Ві	107	1		3	14		,7%	39 50	
AND	103 103	1	Č	3	14		7%	50	
2A4	107 160	1	(2	13		7%	14 -	
A	109	1	(2	12	12,		69	
MEV	103	1	ť	3	19	20,0		23	
EE	109	1	C:	2	14	14,7		107	
U(IOC)	106	1	C_{2}	2	13	14,0		29	
uRSV19VK	109	1	(3	!	18	18,9	•	76	
P2	111	1	(-)		21	21,0		60	
- 26	10	1	(2		17	17,90		115	
	90	1 -	(-3		21	24,19		93	
MA 0210511011-	1!3	1	1.3			24,20		1	
30 IOCOCIAS	100	1	f1		•			06	
				•	· -	22,3%	0 1	05	

WO 97/08320

Table 2A: (continued)

	·			4		
Name ¹	a a	omputed		Diff. (germlir	,	o Reference'
CLL PATIENT 6	~.		gene*	gernini	ne" germline	, b
BJ19	71	1	A20	0	0,0%	100
GM 607	8 5	1	C3	16	21,9%	122
R5A3K	113	2	A3	0	0.0%	1
R1C8K	114	2	A3	1	1,0%	58
VK2.R149	114	2	A 3	1	1,0%	125
TR1.6	113	2	7.3	2	2,0%	125
TR1.37	109	2	7.3	4		118
FS-1	10:	2	/3	5	4,0%	92
TR1.8	11%	2	43	6	5,0%	92
NIM	11 :	2	A3	6	6,0%	87
Inc	117	2	٧.3	8	6,0%	92
TEW	117	2	/3		8,0%	28
	10 1	2	/3	11	11,0%	35
CUM	11:	2	(1	6	6,4%	96
HRF1	7 ·	2	/3	7	6,9%	44
CLL PATIENT 19	8 .	2	73	4	5,6%	124
CLL PATIENT 20	8.	2		0	0,0%	122
MIL	13.5	2	/3	0	0,0%	122
FR	11.	2	#3	16	16,2%	26
MAL-Urine	8	_	/3	20	20,0%	101
Taykv306	7	_	(3	6	8,6%	102
Taykv312	7	,	7	1	1,6%	52
HIV-b29	ē		7	1	1.6%	52
1-185-37	153	•	7	14	17,5%	8
1-187-29	133 °	_	7	0	0,0%	119
T117	11.	_	7	0	0,0%	119
IIV-loop8	11.1	_	.:7	9	9,4%	63
sv23L	1:	_		16	16,8%	8
IIV-b7	17 3 17 3	3	7		16,8%	
IV-b11	10.0	3 /			4,9%	7
IV-LC1		3	•		C 001	8
IV-LC7	_	3	_	_ •	0.50.	8
V-LC22		3 / 1		_	1 20.	8
V-LC13		3 / 1			2.00.	8
- 2013	1' '	3 , 117			` ^ `	8
		(٠,	. 22	2,3% {	3

Table 2A: (continued)

Name ¹		a a"	Compu		Germlir	ne	Diff	. to	% diff.		
440.6			famil	y³	gene4		germ		germli	. to ne ⁶	Reference
HIV-LC3	1	07	3		A27					-	
HIV-LC5	1	0 7	3				21		22,3%)	8
HIV-LC28	1	0 7	3		A27		21		22,3%)	. 8
HIV-b4	10) 7	3		A27		21		22,3%		8
CLL PATIENT 31	8		3		A27		22		23,4%		8
HIV-loop2	10		3		A?7		15		17,2%		122
HIV-loop35	10		3		L2, _16		17		17,9%		8
HIV-LC11	10			•	L2/116		17		17,9%		8
HIV-LC24	10:		3		<i>1</i> .17		23		24,5%		8
HIV-b12	10		3		A.77		23		24,5%		
HIV-LC25	107		3		F77		24		25,5%		8
HIV-b21	107 107		3		An7		24		25,5%		8
HIV-LC26	107 107		3		A07		24		25,5%		8
G3D10K	10°		3	,	<i>f</i> 17		26		-3,3% !7,7%		8
TT125	10°		1	L	1. (5).		12		2.6%		8
HIV-s2			1		! 5		8		2.0% 3,4%		125
265-695	107		3	£	7		28		1,1%		63
2-115-19	10°		1	!	5		7		4%		8
rsv13L	10°		1	£.	~ <u></u> ე	2					3
HIV-b18	107		1	(2.	20			1%		19
RF-KL5	104 2		1	(?	14			1%	7	
ZM1-1	94	;	3	1	;	36			1%	8	
HIV-s8	113	2	2	<i>j</i> .	7	7	•	36,		97	•
K- EV15	100	1		(}	;	16		7,0		3	
RF-TS3	9 5	5		÷ 2		0		17,8		8	•
HF-21/28	10%	2		/ 3		0		0,0		112	
RPMI6410	11:	2		£:7				0,09		121	
w.6410 C11	117	2		1 7		1		1,0%		17	
-81	11.	2		<i>i</i> 7		1		1,0%		42	
•	11:	2		. , / 7		1		1,0%)	49	
K-001	110	4		: 3		5		5,0%		45	
D5+.28	1C: .	4.		: 3		0		0,0%		81	
N 、	11:	4				1		1,0%		27	
-	11:	4		13	1	1		1.0%		104	
5+.5	101	4		! 3	1			1.0%		11	
		,		: 3	1			.0%		27	

Table 2A: (continued)

Name¹	a a²	Computed	Germiine	Diff. to	% diff. to	Reference
		family ³	g e ne⁴	germline ⁵	germline ⁶	nererence
CD5+.26	101	4	B 3	1	1,0%	27
CD5+.12	101	4	B 3	2	2.0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	
VJI	113	4	В3	3	3,0%	27 50
LOC	1 13	4	£3	3	3,0%	56
MAL	113	4	E 3	3	3,0%	72
CD5+.6	101	4	B3	3	3,0%	72
H2F	113	. 4	B 3	3	3,0%	27
PB17IV	114	4	В3	4	3,0% 4,0%	70
CD5+.27	101	4	B3	4	4,0% 4,0%	74
CD5+.9	101	4	E3	4		27
CD528	101	4	Γ3	5	4,0%	27
CD526	10!	4	E3	6	5,0%	27
CD5+.24	101	4	E3	6	5,9%	27
D5+.10	101	4	E3	6	5,9% 5,0%	27
D519	101	4	B3	6	5,9% 5,0%	27
D518	101	4	E3	7	5,9%	27
D516	101	4	13	8	6,9%	27
D524	104	4	1.3	8	7,9%	27
D517	100	4	[3	10	7,9%	27
/D4.i	9:	4	`E3	0	9,9%	27
1D4.4	9	4	£.3	0	0,0%	54
1D4.5	92	4 .	E3	0	0,0%	54
1D4.6	9	4	F3	0	0.0%	54
D4.7	9?	4	E3	0	0,0% 0,0%	54
ID4.2	9 :	4	£3	1		54
ID4.3	ĉ	4	f 3	5	1,3%	54
LL PATIENT 22	8 =	2	<i>f</i> 7	2	6,3%	54
LL PATIENT 23	8 -	2	r / F17		2,3%	122
	 -	<u> </u>	· ·	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	iom	outed Ger	mline	Diff. to	0/2 -1:05	
	_	fam		ne ⁴	germline ⁵	% diff. to germline	Reference
WAH	110	1					
1B9/F2	112	1	O1		7	7%	68
DIA	112		Ur		7	7%	9
mAb67	89	1	DP		7	7%	36
HiH2	110	1	DP!		0	0%	29
NIG-77	112	1	DPL		12	11%	3
OKA	112	1	DFL		9	9%	72
KOL		1	DPL:	2	7	7%	
T2:C5	112	1	DP1,2	2	12	11%	84
T2:C14	111	1	DP1.5		0	0%	40
PR-TS1	110	. 1	DPL5		0	0%	6
4G12	110	1	Dr. 2	٠	0	0%	6
KIM46L	111	1	DPU5		1	1%	55
Fog-B	112	1	HUM1141	17	0	0%	35
9F2L	111	1	DP! 5		3	3%	8
mAb111	111	1	DP15		•		31
PHOX15	110	1	Dr.15		•	3% 3%	79
BL2	111	1	D7 5			3%	48
NIG-64	111	1	D 5		_	1%	49
RF-SJ2	111	1	D 5			10%	74
	100	1	DITS	4	`	%	72
AL EZI	112	1	DI 5	9	Ū	%	78
ZIM	112	1	HUA:::\/117	7	•	%	41
RF-SJ1	100	1.	D' - 5	•	,-		18
IGLV1.1	9 8	1	[4	9	90	6	78
VEW	115	1		0	0%	ь	1
CB-201	8 7	1		11	109	%	42
1EM	10.5	1	-	1	1%		62
1210		2	D 2	6	6%		50
10V		2	D5 70	4	4%		5
El			D⊍r.0	8	8%	2	
LMC		2	DUTT0	8	8%		
ES			DI 11	6	6%	2	
)G1-A3	112 2		D. 11	8 .	8%	28	
NOV	2		£ .1	9	9%	84	
	11" 2		1: 1	7	7%	27	
					/ Y()	28	

Table 2B: (continued)

Name ¹	aa	Imputed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HMST-1	111-1	2		·		
HBW4-1			DPL11	4	4%	82
•	10:1	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	11/1	2	DPL12	8	8%	3
NIG-84	1:	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	101	2	DPL11	15	15%	76
mAb216	8	2	DPL12	1	1%	7
BSA3	10.3	3 .	DPL16	0	0%	49
THY-29	1 '-1	3	DPL16	0 ~	- 0%	27
PR-TS2	1′ 3	3	DPL16	0	0%	55
E29.1 LAMBDA	10.7	3	DPL16	1	1%	13
mAb63	1 09	3	DPL16	2	2%	29
TEL14	1.)	. 3	DPL16	6	6%	49
6H-3C4	1000	3	DPL16	7	7%	39
SH	1: 1	3	DPL16	7	7%	70
AL GIL	1	3	DPL16	8	8%	23
H6-3C4	1 ;	3	DPL16	8	8%	83
V-lambda-2.DS	1:1	2	DPL11	3	3%	15
8.12 ID	1,0	2	DPL11	3	3%	81
OSC	111	2	DPL11	3	3%	56
PV11	1.0	2	DPL11	1	1%	56
33.H11	1)	2	DPL11	4	4%	81
AS17	1 1	2	DPL11	7	7%	56
SD6	1)	2	DPL11	7	7%	56
KS3	1 3	2	DPL11	9	9%	56
₹√6	1:0	2	DPL12	5	5%	
VGD9	1:0	2	DPL11		7%	56 56
MUC1-1	11	2	DPL11	11		56
430c	1.1	2	DPL10	6	10%	27
(S6	1)	2	DPL10		6% 6%	56
EL13	1 1	2		6	6%	56
	1 1		OPL11 ≤5	11	10%	49

SUTTITUTE CHEET (RULE 26)

Table 2B: (continued)

Name ¹	93 ²	Computed family ³	d Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
AS7	1:0	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
ВОН	112	2	DPL12	11	10%	37
TOG	1:1	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	פיו	2	DPL10	14	13%	52
ВО	1:2	2	DPL12	18	17%	
WIN	1 ' 2	2	DPL12	17	16%	80
BUR	1.14	2	DPL12	15	. 15%	11 46
NIG-58	0، ۱	2	DPL12	20	19%	46 69
WEIR	1 2	2	DPUI	26	25%	21
THY-32	131	1	DDL8	8	8%	27
TNF-H9G1	1.1	1	DDF8	9	9%	27 27
mAb61	1.1	1	[DL 3	1	1%	29
LV1L1	5.3	1	DF1 2	0	0%	54
HA	1:3	1	JEPL3	14	13%	63
A1L1	1 1	1	[::PL2	3	3%	54
RHE	; 2	1	[71]	17	16%	22
(1B12L	; 3	1 .	i 18	17	16%	79
.OC	; 3	1	1.312	15	14%	84
NG-51	1 2	1	1 1.2	12	11%	67 ·
IEWM	1 4	1	1 1.8	23	22%	10
/D3-4	1 5	3	Γ 2 3	14	13%	4
COX	! 2	1	: 12	13	12%	84
liH10	1-6	3	[~ 2 3	13	12%	3
'OR	1 2	1	: :2	16	15%	3 16
L POL	1 3	1	1 .2	16	15%	57
D4-74	1 1	1	: 12	19	18%	27
MYLOID MOL	1 2	3	f 23	15	15%	30
ST577	1 3	3	H: "318		10%	4
IG-48	1 3	1	3		40%	4 66
ARR	: 3	3	· ?3		17%	
			5.		. 7 70	19

TUBSTITUTE S! TT (RULE 26)

			1
			4
			i
			4
			i
			1
			i i
			*
			÷
			±- 1 :
			4
			<u>.</u>
			•
			÷
			‡ •
			•
			:
			•
			ł
			:
			į
			;
			·
			į
			;
			1
			1
			į
			į
			4
			*
			†
			i i
			:
			1
			í
			•
			i
			1
			 -
			•
			-
			<u>†</u> :
			:
			:
			The second secon
			The second secon
			The second secon
			The second secon
	•		The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon
			The second secon

Table 2B: (continued)

Name ¹	a a '	Computed family ³	Germane gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	10ರ	3	DPL13	14	13%	29
NIG-68	9 9	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	D P! 13	18	17%	85
CLE .	9 4	3	DIT. 3	17	17%	19
VL8	9 8	8	DALTI	0	0%	81
MOT	110	3	Humi 118	23	22%	38
GAR	103	3	DP! 13	26	25%	33
32.B9	. 9 8	8	DPI: 1	5	5%	81
PUG	103	3	Humb 318	24	23%	19
T1	115	8	HUNT TOT	52	50%	6
RF-TS7	9 .	7	\mathbb{C}^{+}	4	4%	6 0
YM-1	113	8	HU: 301	51	49%	75
K6H6	113	8	HUND TOT	20	19%	44
K5C7	111	8	HUNG 01	20	19%	44
K5B8	1:2	8	HU11 301	20	19%	44
K5G5	1'!	8	HUM 301	20	19%	44
K4B8	102	8	HU: 1301	19	18%	44
K6F5	112	8	HU 301	17	16%	44
HIL	1: }	3	[}	22	21%	47
KIR	103	3	1	20	19%	19
CAP	11.3	3	[;	19	18%	84
1B8	1.)	3	D.1 . 3	22	21%	· 43
SHO	11.3	3	$\Gamma : = 3$	19	18%	19
HAN	1:3	3	[] [3	20	19%	19
cML23	ć	3	r - 3	3	3%	12
PR-SJ1	ć	3	1 3	7	7%	55
BAU	1 "	3	: 3	9	9%	5
TEX	Ç	3	[3	8	8%	19
X(PET)	1 '	3	1 .3	9	9%	51
DOY	1 3	3	[?3	9	9%	19
СОТ	1 3	3	13	13	12%	19
Pag-1	1 1	3	Hc 318	5	5%	31

CUBSTITUTES ET (RULE 26)

Table 2B: (continued)

Name ¹	â	Computed family ³	Germli ne gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
DIS	1	3	Humlv318	2	2%.	19
WIT	10.9	3	Humlv318	. 7	7%	19
I.RH	103	3	Humlv318	12	11%	19
S1-1	103	3	Humiv318	12	11%	52
DEL	1173	3	Humlv318	14	13%	17
TYR .	1 3	3	Humi/318	11	10%	19
J.RH	1: }	3	Humlv318	13	12%	19
TH0	1	2	DC:13	38	36%	26
LBV	1	1	DUI3	38	36%	2
WLT	1	1	DPL3	33	31%	14
SUT	1 :	2	DPU12	37	35%	65

Table 2C: rearranged human heavy chain sequences

					<u> </u>	
Name ¹	ā÷	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
21/28	1):	1	VH1-13 -12	0	0,0%	31
8E10	100	1	VH1-13-12	0	0,0%	31
MUC1-1	11"	1	VH1-13-6	4	4,1%	42
gF1	Ċ	1	VH1-13-12	10	10,2%	75
VHGL 1.2	.	1	VH1-13-6	2	2,0%	26
HV1L1	ţ	1	VIII-13-6	0	0,0%	- 81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	1	1	VH1-12-15	1	1.0%	26
HA1L1	1	1	VIII3 -6	7	7.1%	81
UC	1	1	VH1-13-6	5	5,1%	115
WIL2	1	1	VIII-13 -6	6	6,1%	55
R3.5H5G	1	1	VIII-13-6	10	10,2%	7 0
N89P2	1	1	VH1-13-16	11	11,2%	77
mAb113	1	1	Viii5-6	10	10,2%	71
LS2S3-3	1	1	V HT-12 -7	5	5,1%	98
LS2S3-12a	1	1	VIII - 7-7	5	5,1%	98
LS2S3-5	1	1	VI: 3-7	5	5,1%	98
LS2S3-12e	1	1	V::: :-7	5	5,1%	98
LS2S3-4	1	1	Vi - 2-7	5	5,1%	98
LS2S3-10	. 1	1	Villia 2-7	5	5,1%	98
LS2S3-12d	1	1	VIII - 12-7	6	6,1%	98
LS2S3-8	1	1	V 7	5	5,1%	98
LS2	1	1	VI. 1-7	6	6,1%	113
LS4	1	1	VIII.	6	6,1%	113
LS5	1	1	V -7	6	6,1%	113
LS1	1	1	V7	6	6,1%	113
LS6	1	1	V7	6	6,1%	113
LS8	1	1	V 2-7	7	7.1%	113
THY-29	1	1	\7	0	0,0%	42
1B9/F2	•	1	V 7	10	10,2%	21
51P1	.1	1	V., [-1]	0	0.0%	105
NEI	1	.1	V '-1	0	0.0%	55
AND	1	1	\ '-1	0	0,0%	55
L7	!	1	V 1-1	0	0,0%	54
L22	1	1	1 -1	0	0,0%	54
L24	:	1	\ -1	0	0.0%	54

FORTATUTE ((RULE 26)

Table 2C: (continued)

Name ¹		-Cemp uted fam ily 3	Germl ine gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
L26	; ;	1	VH1-12-1	0	0,0%	54
L33	1.3	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	* * *	1	VH1-12-1	0	0,0%	54
L39	• •	1	VH1-12-1	0	0,0%	54
L41 .	٠ ,	1	V:11-10-1	0	0,0%	54
L42	; 5	1	VH: - 10-1	0	0,0%	54
VHGL 1.8	1 1	1	V*** - 12-1	0	0,0%	26
783c	; ?	1	V::::-:2-1	0	0,0%	22
X17115	7	1	Vi:1-12-1	0	0,0%	37
L25	1 1	1	Viii - 12-1	0	0.0%	54
L17	: 1	1.	VIII-12-1	1	1,0%	54
L30		1	V::::-::	1	1,0%	54
L37	1)	1	V:1	. 1	1,0%	54
TNF-E7	1 3	1	V:1	2	2,0%	42
mAb111	. 2	1	V. 1- 2-1	7 ·	7,1%	71
III-2R	: 2	1	Vi - 2-9	3	3,1%	70
KAS	1 :	1	V. 1- 2-1	7	7,1%	79
YES8c	1)	1	Vi -12-1	8	8,2%	34
RF-TS1	1 1	1	Vi - 7-1	8	8,2%	82
BOR'	:	1	V 1-8	7	7,1%	79
VHGL 1.9		1 .	V1	8	8,2%	26
mAb410.30F305	7	1	\ -9	5	5,1%	52
EV1-15	; 1	. 1	\ -8	10	10,2%	78
mAb112	1 1	1	√: '-1	11	11,2%	71
EU	* *	1	V., -1	11	11,2%	28
H210	;	1	V -1	12	12,2%	66
TRANSGENE	,	1	V:1	0	0,0%	111
CLL2-1		1	V1	0	0,0%	30
CLL10 13-3		1	V: 11	0	0,0%	29
LS7		1	V7	4	4,1%	113
ALL7-1		1 .	\ -7	0	0,0%	30
CLL3-1	:	1	*7	1	1,0%	30
ALL56-1	: :	1	\ -8	0	0.0%	30
ALL1-1	•	1	V -6	1	1,0%	30
ALL4-1	:.	1	V8	0	0,0%	30

Table 2C: (continued)

Name¹	a s i	aputed amily³	Gern Je gerni	Diff. to germline ^s	% diff. to germline ⁶	Reference
ALL56 15-4	8	1	V H1-10-3	5	5,1%	29
CLL4-1	8	1	VH1-13-1	1	1,0%	. 30
Au92.1	9 -	1	VH1-12-5	0	0,0%	49
RF-TS3	10	1	VH1-12-5	1	1,0%	82
Au4.1	9	1	VH1-12-5	1	1,0%	49
HP1	11	1	VIII-1 3	13	13,3%	110
BLI	12	1	VH1-1 5	5	5,1%	72
No.13	17	1	VH1-11-2	19	19,4%	76
TR1.23	11.	1	V H1-1 - 2	23	23,5%	88
S1-1	17	ì	VH1-1 -2	18	18,4%	76
TR1.10	11	1	VH1-10-12	14	14,3%	88
E55 1.A2	1:	1 .	VH1-10-15	3	3,1%	26
SP2	1	1	VIII-11 3	. 15	15,3%	89
TNF-H9G1	1	1	Vi:1-1 13	2	2,0%	42
G3D10H	1	;	VH:-1. 5	19	19,4%	127
TR1.9	1	1	VII -1 2	14	14,3%	88
TR1.8	1	1	VI. I-1 1	24	24,5%	88
LUNm01	1	1	Vi :-: 3	22	22,4%	9
K1B12H	1	1	V'-1, 7	23	23,5%	127
L3B2	Ç	1	V. 1-1-5	. 2	2.0%	46
ss2	1	1	V: '+ 3	2	2,0%	46
No.86	1	1	V' 1- 1	20	20,4%	76
TR1.6	1	1	V., 1-1 - 1	19	19,4%	88
ss7	(. 1	V 1- 7	3	3,1%	46
s5B7	1	1	V. 11	0	0,0%	46
s6A3	Ċ	1	V - 1	0	0,0%	46
ss6	٤	1	V 11	0	0.0%	46
L2H7	1	1	Vi1 2	0	0,0%	46
s6BG8		1	V: 2	0	0,0%	46
s6C9	1	1	V 2	0	0,0%	46
HIV-b4	1	1	V. 1-1 12	21	21,4%	12
HIV-b12	1	1	V 2	21	21,4%	12
L3G5		1	\' - 3	1	1,0%	46
22	1	1	\ '- 5	11	11,2%	118
L2A12		1	V 5	3	3,1%	46
PHOX15	:	1	\ - 7	20	20,4%	73

Table 2C: (continued)

Name'	;	inputed	Garmline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
LUNm03	1	1	Vii1-1X-1	18	18,4%	9
CEA4-8A	1	1	VH1-12-7	1	1,0%	42
M60	1.	2 .	VH2-31-3	3	3,0%	103
HiH10	•	2	VH2-31-5	· 9	9,0%	4
COR	7	2	VH2-31-2	11	11,0%	91
2-115-19	1	2 .	Vi -11	8	8,1%	124
OU	. 1	2	VHT-11-14	20	25,6%	92
HE	1	2	Viin-11-13	19	19,0%	27
CLL33 40-1		2	V::7-11-5	2	2.0%	29
E55 3.9	;	3	V. 3-11-5	7	7,2%	26
MTFC3	1	3	V. ~-14-4	21	21,0%	131
MTFC11	•	3	V14-4	21	21,0%	131
MTFJ1	;	3	V11-4	21	21,0%	131
MTFJ2	;	3	\3-4	21	21.0%	131
MTFUJ4	1	3	V' -4	21	21,0%	131
MTFUJ5	1	3	V. '-4	21	21,0%	131
MTFUJ2	:	3	V4	22	22,0%	131
MTFC8	1	3	V ~ ~ ~4	23	23,0%	131
TD e Vq	1	3	V4	0	0,0%	16
rMTF	. 1	3	\4	5	5,0%	131
MTFUJ6	1	3	\ -4	10	10,0%	131
RF-KES	•	3 .	-1 -4	. 9	9,0%	85
N51P8	1	3	\1	9	9,0%	77
TEI	1	3	/ 8	21	21,4%	20
33.H11	1	3	V19	10	10,2%	129
SB1/D8	1	3	/3	14	14,0%	2
38P1	!	3	/ -3	0	0,0%	104
BRO'IGM	1	3	/ -3	13	13,4%	19
NIE	;	3	\ -7	15	15,3%	87
3D6	}	3	V ~6	5	5,1%	35
ZM 1-1	1	3	/3	8	8,2%	5
E55 3.15	;		V	0	0,0%	26
gF9	;	3	7 3.	15	15,3%	75
THY-32	1		V 6	3	3,1%	42
RF-KL5	•		V 6.	5 .	5,1%	96
OST577		3	/, :3	6	6.1%	5

Table 2C: (continued)

Name ¹	¿ ·	puted mily ³	1 ine	Diff. to germline ^s	% diff. to germline ⁶	Reference
ВО	. }	3	Vi -17-19	15	15,3%	10
Π125	1	3	VIII~10-10	15	15,3%	64
2-115-58	1.	3	V: 13-10	11	11,2%	124
KOL	•	3	V:12-14	16	16,3%	102
mAb60	•	3	V ⁽¹⁾ -17-17	14	14,3%	45
RF-AN	•	3	V 25	8	8,2%	85
BUT	;	3	\·6	13	13,4%	119
KOL-based CAMPA	ATH-					
9	?	3	V!!!!-!!!-13	16	16,3%	41
B1	•	3	V17-19	13	13,3%	53
N98P1	•	3	V - 3-1	13	13,3%	77
П117	*	3	V1 -10	12	12,2%	64
WEA	*	3	V12	15	15,3%	40
HIL .	•	3	√ -14	14	14,3%	23
s5A10		3	V14	0	0,0%	46
s5D11		3	\ - 2-7	0 .	0,0%	46
s6C8	j 3	3	\ :-7	0	0,0%	46
s6H12		3	\ '-7	0	0,0%	46
VH10.7	1	3	V14	16	16,3%	128
HIV-loop2	:	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16	16,3%	12
HIV-loop35		3	`7	16	16,3%	12
TRO		3	\ -1	13	13,3%	61
SA-4B	•	3	3-1	15	15,3%	125
L2B5		3	√° ,	0	0,0%	46
s6E11		3	\ -!3	0	0,0%	46
s6H7	•	3	\ -13	0	0.0%	46
ss1	•	3	1 13	0	0,0%	46
ss8		3	\ '-13	0	0.0%	46
DOB	4	3	\6	21	21,4%	116
THY-33	;	3	\ \ \ \-\}5	20	20,4%	42
NOV	•	3	`-19	14	14,3%	38
rsv13H		3	\ 3-24	20	20,4%	11
L3G11		3	7 3-20	2	2.0%	· 46
L2E8		3	1 19	0	0.0%	46
L2D10	•	3	V 10	1	1,0%	46
L2E7		3	\ - i0	1	1,0%	46

Table 2C: (continued) ...

Name'	а	nputed (mily)	€ #mline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	1	3	V: 3-13-24	0	0,0%	46
L2 E5	Ĉ.	3	VH3-13-2	1	1,0%	46
BUR	1:	3	VH3-1 3-7	21	21,4%	67
s4D5	1, .	3	VII3-11-3	1	1,0%	46
19	1	3	Viin-13-16	4	4,1%	118
s5D4	٤	3	\ -13-1	0	0,0%	46
s6A8	1:	3	V 3-1	0	0,0%	46
HIV-loop13	11	3	V** - 13-12	17	17,3%	12
TR1.32	1 .	3	\11-8	18	18,6%	88
L2B10	Ĉ.	3	V -11-3	1	1,0%	46
TR1.5	1	3	V -11-8	21	21,6%	88
s6H9	1	3	Vi -13 -25	0	0,0%	46
8 .	1	3	\\`-:3-1	6	6,1%	118
23	1	3	\ 3-1	6	6,1%	118
7	1	3	\ 3-1	4	4,1%	118
TR1.3	1	3	\ 1-8	20	20,6%	88
18/2	1	3	V 3-10	0	0,0%	32
18/9	1.	3	V. 3-10	0	0,0%	31
30P1	1	3	V 3-10	0	0,0%	106
HF2-1/17	1	3	V 3-10	0	0,0%	8
A77	1	3	۰-10	0	0,0%	44
B19.7	1	3 .	\ :-10	0	0,0%	44
M43	1	3	V -10	0	0,0%	103
1/17	1	3	V -10	0	0,0%	31
18/17	1	3	V -:0	0	0,0%	3 1.
E54 3.4	1	3	\ -10	0	0,0%	26
LAMBDA-VH26	ć	3	\. '-10	1	1,0%	95
E54 3.8	1	3	V -10	1	1,0%	26
GL16	1	3	C1- 1	1	1,0%	44
4G12	11	3	٠-10	1	1,0%	56
A73	1	3	\ -10	2	2,0%	44
AL1.3	1	3	C:- /	3	3,1%	117
3.A290	1	3	\ -10	2	2,0%	108
Ab18	1	3	· -3	2	2,0%	100
E54 3.3	1	3	\ -10	3	3,1%	26
35G6	1	3	۱۱٦	3	3,1%	57

TUTE (T'RULE 26)

Table 2C: (continued)

Name ¹	a a [?]	puted mily ³	(: C:	ine 4	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VHD	-10	5	5,1%	44
Ab25	128	3	VH3	-13-10	5	5,1%	100
N87	12 6	3	VH?	-13-10	4	4,1%	77
ED8.4	9 9	3	VH C	-13-10	6	6,1%	2
RF-KL1	12 ?	3	VH^	- 10	6	6,1%	82
AL1.1	111	3	VI:	-10	2	2,0%	117
AL3.11	102	3	VH	-10	1	1,0%	117
32.B9	127	3	V!	⁷ -8	6	6,1%	129—
TK1	10 ·	3	V E	-10	2	2,0%	117
POP	121	3	VI:	-10	8	8,2%	115
9F2H	12	3	V !	-10	9	9,2%	127
VD	111	3	VI:	10	9	9,2%	10
Vh38Cl.10	121	3	V!	-10	8	8,2%	74 ·
Vh38Cl.9	12:1	3	V;	-10	8	8,2%	74
Vh38Cl.8	121	3	Vi	-10	8	8,2%	74
63P1	1.7	3	\mathbf{V}_{i}^{i}	-9	0	0,0%	104
60P2	11	3	V.	-8	0	0.0%	104
AL3.5	Ç.	3	V:	-10	` 2	2,0%	117
GF4/1.1	11	3	\mathbf{y}^{\cdot}	-10	10	10,2%	39
Ab21	10	3	$V_{\rm i}$	-10	12	12,2%	100
TD d Vp	1	3	VI.	-17	2	2,0%	16
Vh38Cl.4	1 1 4	3	V	10	8	8,2%	74
Vh38Cl.5	1.1	3	V:	-10	8	8,2%	74
AL3.4	1′	3	V i	: 0	1	1,0%	117
FOG1-A3	1	3	V	· :9	2	2,0%	42.
HA3D1	1.7	3	V	-31	1	1,0%	81
E54 3.2	1	3	V	-24	0	0,0%	26
mAb52	1 5	3	∇	-12	2	2,0%	51
mAb53	117	3	\mathbf{V}	-:2	2	2,0%	5 1
mAb56	1.18	3	\	12	2	2,0%	51
mAb57	108	3	\mathbf{V}	12	2	2,0%	51
mAb58	113	3	\mathbf{V}^{-}	- 12	2	2.0%	51
mAb59	128	3	١	2	2	2.0%	51
mAb105	128	3	\mathbf{V}	-12	2	2,0%	51
mAb107	128	3	۸.	.:2	2	2,0%	51
E55 3.14	110	3	٧.	-19	0	0,0%	26

S'TTUTE (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 2C: ___ (continued)

Name ¹	aa²	p uted mily ³	C. line	Diff. to germline ^s	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13 -19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	V!="7-13 -1	3	3,1%	85
N42P5	124	3	V -2	7	7,1%	77
FOG1-H6	110	3	VE -16	7	7,1%	42
0-81	115	3	V ¹¹ 1-19	11 -	11,2%	47
HIV-s8	122	3	V12	11	11,2%	. 12
mAb114	125	3	VI I-19	12	12,2%	71
33.F12	116	3	V - 3 -2	4	4,1%	129
484	119	3	V == <-3	0	0,0%	101
M26	123	3	V '-3	0	0,0%	103
VHGL 3.1	100	3	\	0 .	0.0%	26 ·
E55 3.13	1 13	3	\ (-3	1	1,0%	26
SB5/D6	101	3	\ [-6	3	3,0%	2
RAY4	1.1	3	7 (-6	3	3,0%	2
82-D V-D	1.6	3	/ <-3	· 5	5,0%	112
MAL	11. 3	3	\ (-3	5	5,0%	72
LOC	1: 3	3	۱ (-6	5	5,0%	72
LSF2	11.1	3	\ '-5	11	11,0%	2
HIB RC3	1.3	3	6	11	11,0%	1 .
56P1	1.)	3	\ -7	0	0.0%	104
M72	1' 2	3	\ -7	0	0.0%	103
M74	1 i	3	\	0	0,0%	103
E54 3.5	1 5	3	N. 1-7	0	0,0%	26
2E7	1	3	\ '-7	0	0,0%	63
2P1	1	. 3	١7	0	0,0%	104
RF-SJ2	1.	3	٠-7	1	1,0%	83
PR-TS1	1 .	3	٠-7	1	1,0%	85
KIM46H	1'	3	V -13	0	0.0%	18
E55 3.6	. 1 .	3	7	2	2,0%	26
E55 3.10	1: '	3	V -13	1	1,0%	26
3.B6	1::	3	٠- '3	1	1,0%	108
E54 3.6	1.	3	/ 3	1	1,0%	26
FL2-2	1:	3	V -13	1	1.0%	80 .

Ī

Table 2C: (continued)

Name ¹	aa²	uted Hy³	C.	ine e ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
RF-SJ3	112	ز	VI.	3-7	2	2,0%	85
E55 3.5	105	3	VH2-	13-14	1	1,0%	26
BSA3	121	3	VH:	· 3-13	1	1,0%	73
HMST-1	119	3	VH	- 13 -7	3 .	3,1%	130
RF-TS2	120	3	V H"-	·n-13	4	4,1%	82
E55 3.12	10	3	VI:	-15	0	0,0%	26
19.E7	120	3	VH	-14	3	3,1%	129
11-50	119	3	V H	1-13	6	6,1%	130
E29.1	12	3	V E	-15	2	2,0%	25
E55 3.16	1 0 .	3	V:	!-7	6	6,1%	26
TNF-E1	117	3	V_{\cdot}	3-7	7	7,1%	42
RF-SJ1	127	3	VE	-13	6	6,1%	83
FOG1-A4	1	3	V.	¹ -7	8	8,2%	42
TNF-A1	1:	3	Vi.	-15	4	4,1%	42
PR-SJ2	10	3	Vì	-14	8	8,2%	85
HN.14	1.	3	V!	-13	10	10,2%	33
CAM'	1	3	V	-7	12	12,2%	65
HIV-B8	. 1.	3	V	-7	9	9,2%	12
HIV-b27	1	3	V	7	9	9,2%	12
HIV-b8	1	3	V	-7	9	9,2%	12
HIV-s4	1.	3	$ \nabla_{t} _{\mathbb{R}}$	-7	9	9,2%	12
HIV-B26	1	3	\	-7	9	9,2%	12
HIV-B35	1	3	\	`-7	10	10,2%	12
HIV-b18	1	3	\	-7	10	10,2%	12
HIV-b22	1	3	7	-7	11	11,2%	.12
HIV-b13	1	3	\	7	12	12,2%	12
333	1.	3	\	-4	24	24,0%	24
1H1	1	3	∇	4	24	24,0%	24
1B11	1	3	١	- 4	2 3 .	23,0%	24
CLL30 2-3	ţ.	3	V	-19	1	1,0%	29
GA	1:	3	V,	2-7	19	19,4%	36
JeB	:	3	ν.	-14	3	3,1%	7
GAL	1.	3	\mathbf{V}	. 9	10	10,2%	126
K6H6	1:	3	Ż	- ŝ	18	18,0%	60
K4B8	1 .	3	\	۶ .	18	18,0%	60
K5B8	1:	3	Ţ	6	18	18.0%	60

TUTE T(RULT 26)

Table 2C: (continued)

Name'	3.	iputed imily ³		line re ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
K5C7	1:	3	Vi :-	:X-6	19	19,0%	60
K5G5	11	3	Vide-	:X-6	19	19,0%	60
K6F5	11'	3	VH3-	1X-6	19	19,0%	6 0
AL3.16	Ĉ.	3	VHD-	3-10	1	1,0%	117
N86P2	č	3	Virg-	3-10	3	3,1%	7 7
N54P6	č.	3	V.	-16	. 7	7,1%	7 7
LAMBDA HT112-1	1:	4	$\mathbf{V}_{\!\!\scriptscriptstyle{1}}^{\!\scriptscriptstyle{1}}$:-2	0	0,0%	3
HY18	1"	4	V ⁿ	1-2	0	0,0%	43—
mAb63	1	4	1	: - 2	0	0,0%	45
FS-3	11	4	V -	: - 2	0	0,0%	86
FS-5	1:	4	V	:-2	0	0,0%	86
FS-7	12	4	\	1-2	0	0,0%	86
FS-8	1.	4	$\chi \to$	1-2	0	0,0%	86
PR-TS2	1	4	\	- 2	0	0,0%	8 5
RF-TMC	1.	4	χ	2	0	0,0%	85
mAb216	1	4	\	-2	1	1,0%	15
mAb410.7.F91	1	4	1	.2	1	1,0%	52
mAbA6H4C5	11	4	1	-3	1	1,0%	15
Ab44	1	4 .	1.	2	2	2,1%	100
6H-3C4	11	4	\mathbf{X}_{i}	2	3	3,1%	59
FS-6	1 .	4	١.	2	6	6,2%	86
FS-2	1 .	4 .	1	- 2	5	6,2%	84
HIG1	113	4	1	- 2	7	7,2%	62
FS-4	1	4	1.	2	8	8,2%	86
SA-4A	1	4	1.	3	9	9,3%	125
LES-C	1 .	4	\	3	10	10,3%	99
DI .	7	4	\)	16	16,5%	58
Ab26	1	4	1	- 4	8	8,1%	100
TS2	1	4	V	2	15	15, 2%	110
265-695	1	4	١	7	15	16,5%	5
WAH	11	-1	V	. 3	19	19, 2%	93
268- D	1	4	١.	3	22	22,7%	6
58 P2	1	4	1	. 3	. 0	0,0%	104
mAb67	1	4	∇	;	1	1,0%	45
4.L39	1	4	1	3	2	2,1%	108
mF7	1.	4	V.	3	3	3,0%	75

Table 2C: (continued)

Name ¹	a a '	nuteo Ely ³	f C	16	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	12.	4	VH	-5	7	7,1%	129
Pag-1	12 a	4	VH ·	-16	5	5,2%	50
B3	123	4	$V^{\mathrm{L}_{2}}$:	[`-3	8	8,2%	53
IC4	12 ^m	4	VH:-	. , -8	6	6,2%	70
C6B2	127	4	VH.	-12	4	4,0%	48
N78	11	.1	\mathbf{V}_{\cdot}^{i}	;	11	11,3%	77
82	10.	-1	V!	3	12	12,4%	53
WRD2	12.	:	VH	٠2	6	6,2%	90
mAb426.4.2F20	12	1	V.	3	2	2,1%	52
E54 4.58	1 1	-1	V :	. 3	1	1,0%	26
WRD6	12	4	V!	. 2	10	10,3%	90
mAb426.12.3F1.4	10	.1	V.)	·4	4,1%	52
E54 4.2	10	4	V	G	2	2.0%	26
WIL	1:	.4	V:	3	0	0,0%	90
COF	12	;	Vi	: 3	0	0,0%	90
LAR	10	4	V:	. 3	2	2,0%	90
WAT	12	4	V	. 3	4	4,0%	90
mAb61	1:	-1	V : .	3	5	5,1%	45
WAG	11	4	١		0	0.0%	90
RF-SJ4	1′	4	\mathbf{V}_{i}^{\cdot} .	. 2	2	2,0%	85
E54 4.4	1	1	١		Ú	0.0%	26
E55 4.A1	11	1	\ .	7	9	0.0%	26
PR-SJ1	1	.‡	٧.	,	1	1,0%	85
E54 4.23	1	÷	\	7	1	1.0%	26
CLL7 7-2	<u>C</u> .	1	V'	. 2	0	0,0%	29
37P1	ξ	-1	V.	.2	0	0,0%	104
ALL52 30-2	ć	4	V	2	4	4.0%	29
EBV-21	Ç	5	٧.,		0	0,0%	13
CB-4	Ç	5	١	;	0	0,0%	13
CLL-12	5	5	V	1	0	C.)%	13
. L3-4	ć	j	1	:	0	0,0%	13
CLL11	Ç	5	Ĭ.	1	0	0,0%	17
CORD3	(5	,	1	0	0,0%	17
CORD4	Ĉ.	5	١	. }	0	0,0%	17
CORD8	Ç	5	١.	;	0	0,0%	17
CORD9	Ç	5	V.	-1	0 ·	0.0%	17

Table 2C: (continued)

Name ¹	a a²	puted mily ³	Grandine grane ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD+1	9 8	5 .	VH5-12-1	0	0,0%	17
CD+3	9 8	5	VH: -12-1	0	0,0%	- 17
CD+4	9 8	5	VH5-12-1	0	0,0%	17
CD-1	Ű	5	VH5-12-1	0	0,0%	17
CD-5	9 8	5	VHE-12-1	0	0,0%	17
VERG14	9 8	5	V" - 9-1	0	0,0%	17
PBL1	98	5	VII :-1	Э	0,0%	17
PBL10	9 8	5	V(1) 7-1	0	0,0%	17
STRAb SA-1A	12 7	5 .	V (*1	0	0,0%	125
DOB'	12^	5	V-17 - 3-1	0	0,0%	97
VERG5	91	5	Viii - 1:-1	0	0,0%	17
PBL2	Ĉ:	5	V.17 - 2-1	1	1,0%	17
Tu16	11.	5	Vir. 1951	1	1,0%	49
PBL12	9 8	5	١ -1	1	1.0%	17
CD+2	9 8	5	V -1	1	1,0%	17
CORD10	9 8	5	V ~1	1	1.0%	17
PBL9	90	5	V1	1	1,0%	17
CORD2	9	5	\ -1	2	2,0%	17
PBL6	ć	5	1 -1	2	2,0%	17
CORD5		5	V -1	2	2,0%	17
CD-2	S	5	1	. 2	2,0 %	17
CORD1	9	5	7 -1	3	2.0%	17
CD-3	9.	<u>.</u> ت	V -1	3	3,1%	17
VERG4	9	ົາ	· 1	. 3	3,1%	17 .
PBL13	9	5	\ -1	3	3,1%	-17 .
PBL7	Ĝ	5	\ .1	3	3,1%	⁻ 17
HAN	1	5	· 1	3	3.1%	97
VERG3	Ĉ ·	5	1 -1	3	3,1%	17
PBL3	. Ç .	5	7 -1	3 ·	3,1%	17
VERG7	Ĉ.	5	7 -1	3	3.1%	17
PBL5	9	5	\ -1	9	C, 2%	17
CD-4	Ĝ	5	7 -1	4	4,1%	17
CLL10	ć	5	V -1	4	4, 1%	17
PBL11	Ĉ.	5	۱. ۱	4	4.:%	17
CORD6		5	\ .1	. 4	4,:%	17
VERG2	;		-1	5	E,:0/o	17

Table 2C: (continued)

Name ¹	a a	:uted	Chinline ⊊n e⁴	DUE to gerraline ⁵	% diff. to germline ⁶	Reference'
83P2	11	5	VIII - 12-1	:)	0,0%	103
VERG9	90	5	VHE-12-1	6	6,1%	17
CLL'6	9 8	5	VH5-12-1	6	6,1%	17
PBL8	9 8	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	V!!=12-1	3	3,1%	100
CAV	17	5	V 12-4	ņ	C. 0%	97
HOW.	12	5	V: 12-4	()	0,0%	97
PET	12"	5	V!12-4	_ n	0.0%	97
ANG	12	5	V" -12-4	0	0,0%	97
KER	12	5	V12-4	0	0,0%	97
5.M13	11	5	V. T-12-4	0	0,0%	107
Au2.1	11	5	V" [-12-4	1	1,0%	49
WS1	11	5	V .(12-1	ġ.	9,2%	110
TD Vn	\$	5	V .2-4.	1	1.7%	16
TEL13	1:	5	V 12-1	9	9,1.%	73
E55 5.237	1:	5	V 2-4	2	2, ~%	26
VERG1	Ç ,	5	\ 2-1	:)	10,2%	17
CD4-74	1.	5	1 : 12-1	:)	1 C 2 %	42
257- D	1:	5	N = 12-1	11	11,2%	6
CLL4	Ç.	5	V 12-1	11	11.2%	17
CLL8	ć.	5	1 2-1	11	11.2%	17
Ab2	1.	5	1 2-1	: 2	17.3%	120
Vh383ex	Ç.	5	V 2-1	7.2	10.3%	120
CLL3	£.	5	1 2-2	:1	1 : : %	17
Au59.1	11	5	V 12-1	: 2	1. %	49
TEL16	1	5	N 12-1	: 3	1:::2%	73
M61	1	5	$I^* = \{ \downarrow \}$.)	C, %	103
Tu0	ć	5 .	V 1	5	5 1%	49
P2-51	1	5	V . 1	.3	1: 10%	121
P2-54	1.	.5	1	. 1	1 : :9/0	121
P1-56	1	ē	7 1	3	9/0	121
P2- 53	1	5	1)	1 %	121
P1-51	12	5	1	. }	1 %	121
P1-54	1?"	5	$\Lambda = 1.1$	3	3 %	121
P3-69	1	5	7 ;	.	4 %	121
P3-9	1	5	V. i	4	4 %	121

Table 2C: (continued)

Name ¹	aa²	puted mily ³	Germline gene ⁴	Eaff. to gramlines	% diff. to germline ⁶	Reference ⁷
1-185-37	125	5 .	\'H5-12-4	0 .	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	\/H5-12-4	10	10,2%	121
P2-57	113	5	VH5-12-4	3	3,1%	121
P2-55	13	5	VH5-12-1	. 5	5,1%	121
P2-56	1 3	5	V 15-12-1	୭୦	20,4%	121
P2-52	122	5	VII5-12-1	11	11,2%	121
P3-60	1?2	5	\"'5 -12-1	3	8,2%	121
P1-57	11.3	5	\ :5-12-1	4	4,1%	121
P1-55	11.2	5	V (5-12- 1	14	14,3%	121
MD3-4	1 3	5	V (5-12 -4	12	12,2%	5 .
P1-52	1 .	5	\.i5 -12 -1	11	11,2%	121
CLL5	ţ	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13	13,3%	17
CLL7	Ç	5	\ 1 5-1 2-1	· 4	14,3%	17
L2F10	11.3	5	V [5-12-1	1	1,0%	46
L3B6	<u>C</u>	5	\5 -1 2-1	1	1,0%	46
VH6.A12	1 :	6	\	13	12,9%	122
s5A9	1 .	6	√ 6 -3 5-1	1	1,0%	46
s6G4	Ç	6	\ .6 -3 1-1	1	1,0%	46
ss3	į	6	16 -3 5-1	1	1,0%	46
6-1G1	1 .	6	16-35-1	9	C.0%	14
F19L16	1 `	6 .	\	9	€0%	68
L16	1	6	\ 6-31	0	0 .0 %	69
M71	1	6	\ 6 - 3 -1	0	0.0%	103
ML1	1	6	\ 6-3	•)	0 0 %	69
F19ML1	1	6	' 6-3 1)	0.0%	68
15P1	1	6	\1.6 -3 -1	С	0 J%	104
VH6.N1	1 .	6	\ i6-3	Э.	()%	122
VH6.N11	1	6	16-01-1	')	() %	122
VH6.N12	1	6	1 6-0 -:	С	()%	122
VH6.N2	1	5	1 16-3 -1)	0.1%	122
VH6.N5	1	6	1 6-7 5)	0 ,0%	122
VH6.N6	1	5	`6 - ."	:)	0,.)%	122
VH6.N7	1	6	' ·6	O	0,0%	122
VH6.N8	1	6	` 16-C	·)	0 3%	122
VH6.N9	1	6	\ .6 - .	C	0.0%	122

Table 2C: (continued)

Name ¹	aa²	uted ily³	Cermline gene ⁴	1	% diff. to germline ⁶	Reference ⁷
VH6.N10	12 3	3	VH6-35-1	0	0,0%	122
VH6.A3	12 3	3	VH6-35-1	0	0,0%	122
VH6.A1	124	5	VH6-35-1	0	0,0%	122
VH6.A4	12 0	S	VH6-35-1	0	0,0%	122
E55 6.16	116	S	VH6-35-1	0	0,0%	26
E55 6.17	12 9	3	V: 16-01-1	÷1	0,0%	26
E55 6.6	120	9	V III6-2 -1	ij	0,0%	26
VHGL 6.3	10?	3	VI19-27-1	0	0,0%	26
CB-201	117	3	V. 6-1 -1	0	0,0%	109
VH6.N4	12 2	3	V 6-31	0	0 ,0%	122
E54 6.4	10 9	3	V ₁ -5-3 -1	1	1,0%	26
VH6.A6	12 0	6	V1.5 - 31-1	1	1.0%	122
E55 6.14	12 0	6	V1 6-3 -1	1	1,0%	26
E54 6.6	10.	3,	V.,6-1 -1	1	1,0%	26
E55 6.10	111	3	V 6-1 1	1	1,0%	26
E54 6.1	10%	3	V 2-0 .	2	2,∩%	26
E55 6.13	17	5	V 6-1	2	2,(~%	26
E55 6.3	1.	3	V 0-3 1	2	2,0%	26
E55 6.7	1:	3	V 3-2	2	2,0%	26
E55 6.2	11	3	V 3-0 :	2	2,⊖%	26
E55 6.X	1	5	V %-1 -1	2	2,1%	26
E55 6.11	1.	3	V1.0 1	3	3.^%	26
VH6.A11_	1	3	V .C :	3	3, %	122
A10	1	3	V 0-1	3	2 º⁄o	68
E55 6.1	1	3	\ G-1 :	4	4. %	26
FK-001	1	3	\ 5-3 ;	4	4, ⁹ /o	65
VH6.A5	1	3	V 9-3 :	.4	4.1%	122
VH6.A7	1	6	V ~-:	4	4,19%	122
HBp2	1 ·	3	V ~-: ·	:	4, %	4
Au46.2	1.	S	1 36-1	5	5 %	49
A431	1	3	1 101	5	5 %	68
VH6.A2	1	3	V 10 1	5	€. %	122
VH6. A9	1	3	1 16-1 -1	. 3	7 %	122
VH6.A8	1	5	V [6-3 :	.0	ç‰	122
VH6-FF3	1	5	V 3-2	2	2 %	123
VH6.A10	;	ŝ	1 3-1	: 2	1 1%	122

. -

Table 2C: (continued)

Name ¹	a a.	puted mily ³	Germli: gene⁴	f. to genlines	% diff. to germline ⁶	Reference'
VH6-EB10	117	6	VH6-35-	:}	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	G	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	117	G	VH6-35	G	5,9%	123
VH6-FG9	121	S	VH6-35-1	4	7,9%	123
VH6-E5	110	5	VH6-35-1	j	8,9%	123
VH6-EC8	12	6	VH6-35-1	3	8,9%	123
VH6-E10	12	6	VH6-35		9,9%	123
VH6-FF11	12.:	6	VH6-35-1	:1	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	8 ti	6	VH6-35-1	4	4,0%	29
VH6-BB11	9.:	6	VH6-30	.1	4,0%	123
VH6-B41	93	5	Vi16-35-7	7	6,9%	123
JU17	1011	S	VH6-35	3	3,0%	114
VH6-BD9	9	S	VH6-35	. 1	10,9%	123
VH6-BB9	9	ŝ	V:16-3:	2	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Re		ed²	Sum
1	Vki-i				
1	Vk1-2				
I	Vk1-3				
ŧ	Vk1-4		٠.		
1	Vk1-5		• •		•
i	Vk1-6				
1	Vk1-7				
1	Vk1-8				
l	Vk1-9				
1	Vk1-10				
1	Vk1-11				
1	Vk1-12				
1	Vk1-13		:		
1	Vk1-14				
1	Vk1-15		-		
1	Vk1-16		-		
1	Vk1-17				
1	Vk1-18				
I	Vk1-19		- 1		
. 1	Vk1-20				
1	Vk1-21		:		
I	Vk1-22		••		
1	Vk1-23			I	19 entries
2	Vk2-1				
2	Vk2-2				
2	Vk2-3				
2	Vk2-4				
2	Vk2-5				
2	Vk2-6		.13		
2	Vk2-7	٠			
2	Vk2-8				
2	Vk2-9				
2	Vk2-10				
2	Vk2-11		٠		
2	Vk2-12				25 entries
3	Vk3-1				
3	Vk3-2				

Table 3A: (continued)

Family 1	Name	Re	ged²	Sum
3	Vk3-3			
3	Vk3-4		. 5	
3	Vk3-5			
. 3	Vk3-6		ì	
. 3	Vk3-7		1 2	
3	Vk3-8		·)	192 entries
4	Vk4-1			33 : :
5	· Vk5-1			$\overline{I} = \overline{I}$
6	Vk6-1			
6	Vk6-2			0 entries
7	Vk7-1			0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Ecarranged ²	Strin
1	DPL1	1	
1	DPL2	14	•
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2 /	DPL10	5	
2	VLAM3DA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	
2	DPL14	0	4? entries
3	DPL16	10	.,
3	DPL23	19	
3	Humlv318	9	3º Entries
7	Di L18	1	
7	DPL19	0	1 autolos
8	D/L21	2	
8	HUMIV801	6	P = - • • * = q
9	D ?2	J	
unassigned	D: 24	0	- <u></u>
10	gV L - 4.4	O C	-
			- -

WO 97/08320 PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	rranged	
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	. VH1-12-5	3	
1	VH1-12-6	b	
1	VH1-12-7	73	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13- 3	0	
1	VH1-1 3-4	0	
1	VH1-1 3-5	0	
1	VH1- 13-0	17	
1	VH1-12-7	Э	
1	VH1-1 3-8	3	
1	VH1-1 3-9	0	
1	VH1-1 3-10	. 0	
1	VH1-1 3-11	0	
1	VH1-13-12	10	
1	VH1-1^- \\	:)	
1	VH1-13-1-	0	
1	VH1-1 3-1.	4	
1	VH1-10-	2	
1	VH1-10-11	0	
1	VH1~1.7~1	1	
1	VH1-1'-	0	
1	VH1-1 -:	1	110 entries
2	V H2=:	1	
2	VH2-0 -)	
2	VH2-0	. 1	
2	VH2-0	1	
2	VH2-3	;)	
2	VH2-01-	2	
2	VH2-3 - VH2-3 - 7	0	
2			

Table 3C: (continued)

Family ¹	Name	F.	:ranged²	:m
2	VH2-31-14		1	
2	VH2-31- 8		0	
2	VH2-31- 9		0	
2	VH2-31 -10		0	
2	VH2-31-11		1	
2	VH2-3 1-12		0	
2	VH2-31-11		1	7 entries
3	VH3-11-)	
3	VH3-11-)	
3	VH3-11		5	
3	VH3-11-4		0	
3	VH3-11-5		1	
3	VH3-11 7		1	
3 .	Vii:3-1		ŋ	
3	V i:!3-11		5	
3	V1/3-1		3	
3	VH3-1 ·		3	
3	V∺3-1 - :		0	
3	V1.3-1		О	
3	V1:3-1 3		0	
3	Va3-1 3		0	
3	V.13-1		<u>^2</u>	
3	V. 3-1		4	
3	V 3-* :)	
3	V : :-1 5		₫ 6	
3	V : !-1 1		Ð	
3	V: 7-1		11	
3	Vinati		7	
3	V1 1-1		3	
3	V: '-1' :		‡	
3	\ ' -1		3	
3	V. '-:		2	
3	Villa		1	
3	V 3-1		13	
3	V := ·		1	
3	V		1	
3	1		O	

Table 3C: (continued)

Family ¹	Name	ranged ²	Sum
3	VH3-13-20	J	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-20	6	•
3	V!!3-14-1	1	
3	VH3-14-4	15	
3	. VH3-14-2	3	
3	V ¹¹ 3-14-7	.)	
3	Vii3-1X-)	•
3	Vi(3-1X-)	•
3	Vii3-1X-1	6	
3 3	V::13-1X:	Э	
3	Va.3-1%-5	Э	
3	V: 3-1Y-1	` 1	
, 3	Va.3-1.1-1	Ð	
3	V''3-1''	1	4
3	V:-3-1.1-	o 2	212 entries
4	\ 1- 1)	
4	V:14-11-	. 0	
4	V 4-11- /)	•
4	V 4-1 · ·)	•
4	V = 1-1)	
4	V .4-1 ··)	
4	1-1	5	
4	\ :- \	7	
4	V 4-1	3	
4	V. (-1))	•
4	V -1 -)	
4	V: -1 ·	1	
4	V -1 -)	
4	V1	.)	
4	V1 -)	
4 .	V -1	1	
4	No Garage)	
4	Mr. 147 .).	
4	Λ	1	
4	V - 1-	1	

Table 3C: (continued)

Family ¹	Name	:anged²	£ :m
4	VH4-21-L		
4	VH4-21-0	1	
4	VH4-21-7	Э	
4	VH4-21-8	o .	
4	V04-21-9	ŋ	
4	V114-31-1	С	
4	V).1-11-2	Э	
4	VII4-21-3	<u>.</u>	
4	V.:4-31-4	2	
4	V 14-21-1	0	
4	V (4-31-6)	
4	V: 4-0(-))	
4	\	9	
4 .	V' · · -;)	
4	V :)	
4	Value)	
4	VII -0 -5.	4	
4	V 1.0	. 7	
4	\mathbf{V}_{i} $\sim 10^{-3}$)	
4	\mathbf{V}).	
4 .	y)	
4	\)	
4	V)	
4	V)	
4	$\mathbf{V} = \mathbf{V}$.)	57 entries
5	1	2	
5	V.	1	
5	V ' '-)	
5	<u>\</u> .	. 4	97 entries
6		4	7 4 - :::::::::::::::::::::::::::::::::::

Table 4A: Analysis of V kappa n higroup 1

· •		•	_	. ——							Fra	mewo	ork I		
amino acid'	-) <u>4</u>		9	7	r		10	Ξ	12	13	14	15	16
А								:				102	2	1	1
В					1			:	:						
С															
D	۲.														
E	1		4											1	
F									6				1		
G]														105
Н]														
			:						*********					4	
Κ	ŀ		· .			<u> </u>				<u></u>	<u>.</u>	<u>.</u>			
L			:		<u></u>	<u></u>				96		1		<u>.</u>	
М						<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u></u>
N	: :			!	<u></u>	<u></u>				<u>.</u>	<u> </u>	ļ	<u> </u>	<u>.</u>	
Р			···		<u> </u>	<u></u>			1	<u> </u>	2	<u> </u>		1	
Q					8 8		-	ē		1	ļ				<u> </u>
R			:		·						ļ		•••••••••••		
·S									30		103		103	•••••	
T	į.			88					. მ	••••••					
<u> </u>	!		**							8		2	***********	98	
W															
_ X	•														
Y	•								-						

unknown									<u>!</u>						
not sequent				_	<u>16</u>										
sum of se					8 9							105		•	
	•				8 8							102	•	•••••••••••••••••••••••••••••••••••••••	105
mcaa'					Q	•				L	S	Α	S	V	G
rel. oomc				100%	99%	٠				91%	98%	92%	%86	93%	100%
pos occui	**				2				1	3		3	3	5	

٧٠.											
amino acid'	(. T"		21	22		. i	27	∢	8	U	۵
А				1							
В					;		1		<u>.</u>		
. c		*			 						
D .	1	į			ē			<u> </u>	<u> </u>		
Е	i						2		<u>.</u>		
F			2								
G	<u> </u>								<u> </u>		
Н		:					1				
l cum			101	1		·		<u>:</u>		<u></u>	
К							1				
L		. į.						***************************************			
M		:									
N · į	•	:,				1	••••••			**********************	
P							********				
Q :	: <u>:</u>	,		********			10 0		·		
R : [91 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
S						2		- 	************		
T		٤.		10		. 1		•••••••	*********		
V			2					•••••••	••••••••		
W		:,		•••••				•••••••	*******		
X	<u>:</u>			*******				***********	*********		
Y							-				
				*******				105	105	105	105
unknown (?)		· ·,		*******							
not sequenced						_					
sum of seq ²		•	105	10		5	105	105	105	105	105
oomcaa, i		<u>i</u> .	101	10		٦ 	100	105	105	105	105
mcaa*		:	1	Ţ			Q		-	-	-
rel. oomcaas			%96	y)oo o			95%	100%	100%	100%	100%
pos o ccupied ^c		!	3			1	•	1	1	1	1

	Cil 3:	•••			_								
amino acid'	ய	:	30		<u>.</u>			35	36	37	38	39	6
Α				1	· .								
В										1	1		
. C													
D				1	ŗ					1			
E		:							ļ	2		<u>.</u>	
F				1	.,	,			6			<u></u>	
G				7					ļ	<u> </u>	<u> </u>	ļ	
Н				<u> </u>		•••				2			
1		:		1	:	••••		************		ļ	<u> </u>	<u></u>	
K						'			ļ		<u> </u>	95	
L	· 			2							<u></u>	<u> </u>	
<u>M</u>	i : :			<u>.</u>					<u> </u>	ļ		<u> </u>	
N			16	3					<u></u>	ļ	ļ		
P										<u> </u>	<u>.</u>	<u> </u>	102
Q				ļ			٠.			98	103	2	
R		•	16) 						<u></u>		3	1
S			57										1
T				<u>.</u>	· · .			: :				1	
<u> </u>				<u> </u>									
W				ļ				104					
X										······································			
Y	÷			<u> </u>					98				
•								:			•••••••••••••••••••••••••••••••••••••••		
unknown (?)	,										•••••••	3	********
not sequence:				_	-			1					==
sum of s ety			105	;					104		*******************	•••••••••••••••••••••••••••••••••••••••	
oomcaa³	••		57					104	************	:	103		
mcaa*			5					W	Υ	<u> </u>	Q	K	Р
rel. oomcaas	:	غ: :	54%					100%	94%	94%	%66	91%	98%
pos occupied			12	<u>.</u>	-			1	2	5		:	3

		• •	_								CDR	l	
amino acid'	. 	;	ŕ	4 0	46	•		20	51	52	53	54	55
A	raniu i mar P	 .'						50	95			·	
В					********				**********				
. C					*********				***********				
D		•••				··· !		21	1	1	1	; ; ;	
E				1	•••••			1		1	**********		3
F		:	\$. 							1			
G						,		. 9	2	************	**********	? ************	<u></u>
Н		,	****	•••••	*******						*********		
		• .	.,		-				***********		1	***********	
Κ		 }		86	*******			16			2	************	
L	•				٤				**********		**********	101	
M		:			*****		•••		••••••		**********		
N				10	••••			2	•••••••••••••••••••••••••••••••••••••••	1	25	••••	
P	••				•••••	•	•	1	***********	***********			
Q				1		•	***				**********	******************************	6
R				3							1	1	
S			.	1	******		•	1	1	99	41	2	
Ţ	•		-	1	•••••		•	1	4	1	31	***********	
V					•••••		•		1		1	*********	
W			••••		•••••						••••	•	
X		•		1	•••••						1		
Υ								1			••••••	***********	
-													
unkaswn (,					••••							*************	
not sequenc				1				2	1	1	1	1	_
su m of set,			1	04	i			,3	104	104	104	104	10
oomcaa ^a			:	8 6				- J	······		***********	101	
mcaa*			· · · · · · · · · · · · · · · · · · ·	K				``		S			

rel. comerr				83%				0, C	ن 10%	95%	39%	97%	3
pos occupi				8	:			. 0					

TITUT - ')

Table 4A: Analysis of V kappa subment 1

														8.,
amino acid'	52	C		09	61	23	63		د .	99	29	89	69	70
А	3							i		2	1		1 1	
В														
. С														
Ú	1													67
E							:						1	30
F						11					3	<u> </u>		<u></u>
ù										101	: :	102	2	<u>.</u>
id		•				ļ				*******		ļ		3
		•					3			********				<u> </u>
			••		1					••••••		<u>.</u>		1
L	****						1			•••••		ļ		ļ
<u>M</u>						į	:					ļ	1	<u>.</u>
11							·							
***************************************		• •		2						••••••	*************	ļ	ļ	
4					10		1			1			2	
`.			٠.	103	•••••	! 	9				100	••••••		
1			-			·						•••••	101	
: !														1
	. :				••••••					•••••		*********		
***************************************	****				••••••					1		1		2
***************************************									-		1			1
-												•••••	•••••	
unkii vii)		••••••									
not ser trence:						· —	=		=	<u> </u>	-			
Sum ∫SEN?				105			11.				:		105	:
0 0: :58³				103									101	•••••••••••••••••••••••••••••••••••••••
n: a*				5	F.	F	<u>S</u>			G	S	G	Ţ	D
rel. o hears				98%	Č.		0/00 ر			%ນນ <i>ິ</i> ບ	5.5%	97%	%96	64%
pos c			:	2		· 					4			7

amino aci.		75	92	``		_	81	62	83	84	85
Α			1			2				10	1 1
В	:	1					2				
						 	**********	<u> </u>			
	: "		1			 	16	101			
***************************************				:			83	:			
F							••••••••		73	3	
G	٠						1	***********		2	
Н							••••••••	•			
		9 9	٠ (:					17		
;									•		
				:	101				1		
Î.									}		1
lv :					****						1
P											1
Q			••••••								
F				-							
•			£.	9 .					1		
)									****	97
***************************************		4							11	••••	1
			•••••								
)	:						1	2			
***************************************				· 	_		-				

<u>unkan</u>					********						
not se	1	1		=-		=		2	2	2	3
sum	: !	104		:			<u>100 i</u>	`3	103	103	102
001	~: 	9 9					£2.	1	73	101	97
m ²		1	<u></u>				Ε	5	F	Α	Ţ
rel. o	÷ ;	92%	į		į		<u>چ</u>	6/.'.	%	%	%
	***		<u>:</u>				71%	:- -	71%	98%	95%
pos c	3	3	····				:	2	5	2	6

TUB"

1

pos c

7.6)

Table 3C: (continued)

Family ¹	Name	8. arranged ²	Sum
3	· VH3-13-23	9	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	С	
3	• VH 3-1 X-2	0	•
3	VH3-1X-3	6	
3 3	VH 3-1 X-4	0	
3	V∺ 3-1 X-5	0	
3	V H 3-1 X-6	11	
3	VH3-1X-7	0	
. 3	V⊞3-1X-ଞ	1	
3	V H 3-1 X-9	0	212 entries
4	Vi(4-11-)	J	
4	VH4-11-2	₽0	
4	V∺4 -1 1-3	Э	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	Э	
4	V114-11-7	5	
4	V=4-13-8	7	
4	V: 4-11-9	3	
4	Vi 4-11-19	С	
4	VF. 2-11-11	0	
4	VH4-11-72	4	
4	VF4-13-13	0	
4	VH=-11-14	. 0	
4	Vi:4-11-15	ົງ	
4 .	V: 1-1"-"	1	
4	\ 4-[1-1	0	
4	V**4-21-1) .	
4	V .4-01-1	1	
4 .	VH4-21-1	1	

Table 3C: (continued)

Family ¹	Name	Terranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	О	
4	VH4-31-7	0	
4	V1.4-31-8	0	
4 .	VH4-30-9	0	
4	V H4-30-10	С	
4	V H4-31-11	\mathbf{G}	
4	V H4-31-12	4	
4	V (4-3)-)7	· 7	
4	V: 4-31-14	Э	
4	VI 10-21-13) ·	
4 .	V 1.3-3.513	Э	
4	V: 3-27-17	. 0	
4	V ER-30-60	0	
4	VF.4-5 -13	Э	
4	V: 4-3 -243 ·	0	57 entries
5	∇_{U} we disc	32	
5	V:-5-12-0	1	
5	V 4-15-8	Э	
5	<u>V</u> (<u>+</u>) (-)	: 4	97 entries
6	V ·	4	74 entries

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•												Fran	newo	rk I		
amino acid'	-	Ç.	د.	7	S	9	7	ω	C :>	20	=	12	13	14	15	16
Α	·	. :		,					1				102		1	
В			1			1					<u> </u>	ļ	<u> </u>	<u> </u>	ļ	
С												ļ	<u> </u>	1	ļ	
- D	64											<u> </u>		<u>.</u>	<u> </u>	
E	8		4	••••								ļ		<u> </u>	1	
F				••••						6		<u> </u>		1	ļ	
G							•••••		:			<u> </u>			<u>.</u>	105
Н]							<u>.</u>				
				••••				! :			• • • • • • • • • • • • • • • • • • • •		***************************************		4	
K						•••••										
L	·										96		1			
M							••••••									
N .	· · · · · ·			•••							•••••••					
Р						******	·····	-	:	1	*******	2			1	
Q			-			8 8					1					
R	i						······	·						***********		
·S							S .			90		103		103		
T	. .				88				:	18	********					
V	: 		: :					: : : :			. 8		2	**********	98	
W			. :					: ;				·				
X	!:		:													
Y	. :2									-						
	i.,		:													
unknown (4		··									
not sequenced					17			:		- 400	400	4.5.				
sum of see 1.	:					89						105	<u>:</u>			•••••••••••••••••••••••••••••••••••••••
oomcaa ³					:	88				03		103		·		
mcaa'	- :		•			Q	·•			S	L	S	Α	5	V	G
rel. oomcass					100%	%66				8,57	91%	986	97%	%86	930%	100%
b os occupil c	:				1						3	2		3	5	

WO 97/08320

Table 4A: Analysis of V kappa See

0.1

amino acid¹ .	17	55			21	22	* · · · · · · · · · · · · · · · · · · ·		· 	26	27	⋖	ω	ပ	۵
Α						1									
В				*******					i		1				
. C							;		:		********	-41 200 00 00 00		•	
D	101					*******			<u></u> .						
E	2						,	•••			2		···········	.,	
F					2	**********						,,,,,		************	
G							·			1					
Н											1	**********	***********		
1					101	1									
K					:	**********			.,		1				
L						**********							*********		
M			•												
N ·	<u> </u>				:		:			1					
Р	-			,		••••••									
Q	į		-			••••••		?:*			100				
R :		33.2	-			•••••••••			:						
S					:	•••••				102					
T	<u> </u>	! !				100				1					
V					2	•••••									
W						********	:								
X	,														
Υ	-			,			:		,	V					
***************************************		: 										105	105	105	105
unknown (?)	3				:										
not sequenced]] 	:					•			Lanter an					
sum of seq ²		: -			105						***************************************		•••••••••••••••••••••••••••••••••••••••	105	
oomcaa,		· 			101	1 .0:	•		.r :	2		105	105	105	105
mcaa'	<u></u>	i .			1	Ţ					Q	-	-	-	-
rel. oomcaas		i.			%96	ົ້ ທິດຕິບ	:			8/3	95%	100%	100%	100%	100%
pos occupied	·				3	:				4				:	

WO 97/08320 .

Table 4A: Analysis of V kappa starting
--

	•	C DRI														
amino	acid¹	m	u.		3	30	۲.	<u>ر</u> ز.	۲ (· ;	35	36	37	38	39	6
<i>F</i>	\					1		··		2		<u>.</u>				
E	3											ļ	1	1		
. (•••••		1					<u></u>			
[)			:		1	5	7				<u></u>	1	ļ		
													2	ļ		
1	-				1	1		: :	:	:		6	ļ	ļ		
(3			;		7			.,	· .				<u></u>		
ł	1	<u> </u>				1			ļ.,,,,,,,		-1		2	<u> </u>		
			<u>.</u>	:	.19	1			: : :				: : :			
	(: 	: :						95	
		نىلىلىلىنىد. -	1	,		2	:	:	<u>.</u>	·			····			
	Λ	Catalog Catalog						: :	: !		_					
ı	1	9				16	A	:	i	j. o						
) 	*							i							102
(2	ř.		:									98	103	2	
1	3	<u>.</u>				16	j		:						3	1
	5					57	3.	·	: :	:						1
	Ţ	<u> </u>		:									*******		1	
,	<i>J</i>					1			i					*********		
\\	N						.				104					
	Χ							:		:						
	Y		i. Sant			1				•		98				
	-	To the second														
un kno	wn (?)										1				3	
not sec	iuencec'										1	1	1	1	1	1
sum (of seq?				. :	105	1			. :	104	104	104	104	104	104
0 0n	ıcaa³	3		:		57	•				104	98	98	103	95	102
mo	raa'					S	1	`		· !	W	Y	Q	Q	К	Р
rel. o	omcaas	6 (3, 3)+	:	3	2	54%		:	:	**	100%	94%	94%	%66	91%	98%
pos oc	cup ied ^e					12	:				1					

Table 4A: Analysis of V kappa set 1 in 1

4A. Analysis of	Frai	ne											DR I		
amino acid'	-	C7.			45	46	•	¢.		20	21	25	53	54	55
A			:	-			• •== • •			50	95			·	
В	F	•••••	 :												
. C	e e	••••						:	:						
D	, ; ;	•	•.						:	21	1	1	1		
E	· · · · · · · · · · · · · · · · · · ·				1				,	1		1			33
F	Í											1			
G		:								9	2				
Н															1
	;					1	:	. 10					1		
К		-			86			i		16			2		5
L						8.	: :::		:					101	
M										į					
N	Mark.				10					2		1	25		
Р										1			<u></u>		1
Q					1			:							62
R		:			3								1	1	2
S			•		1					1	1	99	41	2	
Т					1					1	4	1	31		
V		: .:					,.				1		1		
W		:													
Х		:			1								1		
Y				=				. 		1					
_															
unknown (?)					<u></u>										
not sequence	- 24				1		•	·z		2	1	1	1	1	1
sum of seq?	}.:	ļ. ·			104	1		;	•	- 0 3	104	104	104	104	104
oomcaa3	÷			. 1	8 6			. 1		50	9 5	99	41	101	62
mcaa*		:			Κ	!	·			А	Α	S	S	L	Q
rel. oomcaa'					83%			:		رن ن+ئ ^ي /0	91%	95%	39%	97%	9009
pos occupie	•			1		3				10					:

				A.,											
amino acid¹	56	72		;* 	09	61	29	63		3	99	29	89	69	20
Α	3		:	,.,					<u>.</u>		2	1	1	1	
В				1									<u>.</u>	<u>.</u>	
. C			<u>.</u>		**********						ļ				
D	1		:			<u></u>	<u></u>						<u></u>	ļ	67
<u> </u>				,					<i>:</i>	:	<u></u>		1	ļ	30
F						ļ	1 05					3	<u></u>	ļ	<u> </u>
G					••••	<u> </u>				4	10 1		102		<u></u>
Н			: :			ļ	ļ						ļ	ļ	3
	3						1	3					<u> </u>	<u></u>	<u></u>
К	1					1				: :				<u></u>	1
L		: :						1		· ·			<u></u>	ļ	
М									· : .,					1	
N	ſ.,												<u>.</u>		
P					2					: . .	**********				
Q		•••••								1	-4700000040				
A						103		1		1	1			2	
5					103			99			•••••••	100			
T		_		•		1								101	
V			;		*******										1
W					***********										
X											1		1		2
Y	YAR.											1			1
-		*****				*********									
unknown (?)								: :							
not s equenced	ug, e gage														
sum of seq ²					105	10	-1(10		-	105	105	105	105	105
oon:caa3								9 6			101	100	102	101	67
mcna*					S	R	F	S			G	S	G	T	D
rel. onmeas ^s					ę	رق	''	ç			9	Q.	ی	ص	ی
CL OF HECAS	:				98%	, , , ,	700	0/0c u		` !	% 36	95%	97%	%96	64%
pos ochupie 3°	•				2					į.	ľ,	4	4	4	7

THUTE HE T (

Table 4A: Analysis of V kappa subarrup 1

•		. 1974													
amino acid'		5 * 3 1			75	92	77	7.8		;	8	82	83	84	82
Α	i.		:			1				2				101	1
В	5				1						2				
. C															
Ĺ						1					16	101			
Е	·	:	*4	·							83				
F	. Y					••••			: : :				73		
G	Ř 		:	,			4			,	1			2	
Н	·		ļ	.,											
<u> </u>	:		<u></u>		9 9	. 5							17		
<u></u> K			i								••••••				
<u> </u>		İ		·			. 	10 3					1		
M								••••••							1
N						7									1
Р										7	••••••				1
Q	÷	: 	: .						:						
R			•			î.	1								
<u>C</u>				1		-38	94						1		
				2			1	·		-					97
V	.,,			<u> </u>	4			·				.	11		1
I \'		:				••••									1
X		: !	. •					· 			1	2			
ΥΥ	3 - - -			: :=				_							
			. , ,	:											i•
unknown (.)		ļ.,.	ė	.;					:						
not sequence:		:		<u> </u>			.==	-			2			_	3
' sum of seq?					104	:	10		•	-	:	103			
oo midaa ^a	٠.	i i		?	99			11			8 3			101	
mona*					1	5		L	-		Ε	D	F	Α	T
rel. on lagar				?)	95%	č		ر د د		:	710%	98%	71%	98%	95%
pos onet pe				3	3	:				7	5	2	5	2	

THUTE IT IN

PCT/EP96/03647

Table 4A: Analysis of V kappa subgroup 1

		····								CDR	III					
amino aciti	.53	÷.	88	83	90	<u>.0</u>		63		95	A	8	U	۵	m	LL
P.		=-			1	7	;		5		1			Ī		
В	3			2	3											
·. C			102						:							
9							23	į	1							
E			:								1					
F			:						3							
G	:		:	***********					2	1		1	<u>.</u>		<u></u>	
14		*****		4	6					<u></u>		<u>.</u>	<u></u>	<u> </u>	ļ	
1										1		<u></u>	<u> </u>	<u> </u>	ļ	
K	1				7						<u> </u>	ļ	ļ	<u> </u>		
				7		6 İ				2	<u> </u>		<u>.</u>		<u>.</u>	
N1						·····	<u>.</u> :				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
<i>K</i>		:					:		. 1		<u> </u>			<u> </u>	<u> </u>	
Р								··•••		82	6			ļ		
······				90	86	······································		•••••		••••••	<u> </u>					
<u> </u>		<u>.</u>					· · · · · ·			• •••••••	<u> </u>					
		. :				?	:	<u>c</u>		10	<u> </u>				<u>-</u> -	
1		:													··	
V	:	:				. 		••••		••••••						
W								·-•···								
<u> </u>				•••••						•						
· · · · · · · · · · · · · · · · · · ·			-			= .	··· .	=	-	-					_	_
							:	· • • • • • • • • • • • • • • • • • • •		3	8 2	88	89	89	89	89
unkne						······ : :			,							
not segger to			3		2	 -	.:				16	-	-	;		
Sum + " ⊕ _1"	į.		02	:	:					101		:	<u>-</u>		•	
00: . "c			02								8 2	:		••••••••••••••••••••••••••		89
n:			С	C	Ĵ	:			<u>.</u>		-					-
rel. e			100%	77%	83%			•••		81%	92%	9/566	100%	100%	100%	100%
pos oc			1	4	Ç	•			Ĭ		3			:	•	•

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•							Fra	me	worl	cIV					
amino acid'	96	97	98	66	100	101	102	103	104	105	106	A	107	108	sum
Α	1														627
В					1		•••••	••••••		1	•••••				19
·C															209
D	1	*******								15					459
E		******		•••••	2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
1	5								1		72				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
M		1									5				77
N	1										1		2		232
Р	6				7									1	620
a	1				48					1					865
R	6							6	•••••				2	70	413
S	2	2													1636
T	2	82					87	3					2		1021
V	2			•••••				1	63		3				440
W	15														141
Х							•••••		····						14
Υ	16														564
	4	1										85		_1	1250
unknown (?)							•••••								7
not sequenced	16	16	18	18	18	18	18	18	19	19	20	20	20	31	589
sum of seq ²	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa ³	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa'	L	Ţ	F	G	G	G	T	K	٧	Е		-	K	R	
rel. oomcaas	20%	95%	%66	100%	55%	100%	100%	%68	73%	76%	85%	100%	93%	95%	
pos occupied ⁶		•	:	:	:	1	1	4	3	5	6	1	4	4	

Table 4B: Analysis of V kappa subgroup 2

C 45. 711017313 01				<u> </u>						۸.	Fra	mev	vorl	۱ ا							
amino acid'	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21
Α																			2	2	
В																					<u>.</u>
. C					<u> </u>	<u></u>	<u>.</u>	<u>.</u>		<u>.</u>			<u>.</u>						<u> </u>		
D	14	<u></u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>					<u> </u>		<u>.</u>	<u>.</u>		<u>.</u>	<u>.</u>		
E	3		<u></u>	<u></u>	ļ	<u> </u>	<u></u>	<u> </u>	<u></u>	<u>.</u>	ļ		<u>.</u>		<u></u>		15		<u> </u>	ļ	
F				<u> </u>	<u> </u>		<u></u>	<u> </u>	1	1						<u></u>			<u> </u>	<u>.</u>	
G						<u></u>	<u></u>	<u> </u>		<u></u>					<u>.</u>	22		<u> </u>	<u> </u>		
Н			<u></u>		<u></u>			<u>.</u>			<u>.</u>	<u></u>	<u>.</u>	ļ. 		<u></u>	<u>.</u>				
		8										<u></u>						<u> </u>	<u></u>		22
K									<u></u>		<u></u>	<u></u>				<u></u>	<u></u>	<u></u>	<u></u>	<u>.</u>	
L		3		1				<u></u>	17		18			ļ	6		<u></u>	<u> </u>	<u></u>		
M				15				<u></u>		<u> </u>	<u></u>		<u>.</u>	<u> </u>	<u></u>	<u></u>			<u> </u>		
N						•••••		<u></u>	<u></u>	<u> </u>			<u> </u>	<u></u>	<u> </u>	<u> </u>					<u> </u>
Р								18				18		ļ	15			22			
Q		••••••				18							<u></u>	ļ			7			<u> </u>	ļ
R		••••											<u>.</u>								
S							18			17			ļ							22	
T	ļ		•••••		17									21							
V		6	17	1									18								
<u>W</u>																					
X																					
Y																					
-																					
unknown (?)					1				•••••												
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1			_			
	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
	•••••••••••••••••••••••••••••••••••••••					•••••••			*******		18	•••••••		••••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	····			•••••
mcaa*	D	1	V	М	Ţ	Q	S	Ρ	L	S	L	Р	٧	T	Р	G	E	Р	Α	S	1
rel. oomcaa ^s	82%	47%	100%	988%	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	68%	100%	100%	00001	100%
pos occupied ^a	2	3	1	3	1	1	1	1	2	2	1	1	1	1	2	1	2	1	1	1	1

Table 4B: Analysis of V kappa subgroup 2

			å.								CDF	₹1								I	
amino acid'	22	23	24	25	26	27	`∢	В	U	۵	ш	щ	28	29	30	31	32	33	34	35	36
Α																					
В																					
· C		22	<u></u>		<u> </u>		<u>.</u>	<u> </u>													
D										1			9		1	1			11		
E	Ľ.																				
F.															2						7
G											1			22							
Н										16							1		1		
1																					
K			1								·					1					
L						1		22	13									22			
М									1												
N													10		7	12			9		
Р																					
Q	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												
W										1										22	
X													1		1				1		
Y										4			1		11		21				15
-												22									
unknown (?)																					
not sequenced																					
sum of seq ⁷	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa'	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaas	95%	100%	95%	100%	100%	95%	100%	100%	29%	73%	96%	100%	45%	100%	20%	55%	95%	100%	20%	100%	%89
pos occupied														•••••	••••	:	:	:	:	•	

Table 4B: Analysis of V kappa subgroup 2

11C 40. Allaiy313 01					Fran		ork	11						Τ			CDF	R 11			
amino acid,	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	99	57
А																			14	1	
В																					
· C																					
D								<u></u>											7		
Е			ļ	<u></u>	ļ	<u></u>	<u></u>		1											<u></u>	
F					<u></u>		<u> </u>	<u> </u>		<u> </u>	<u></u>		<u> </u>	<u> </u>					<u> </u>	<u></u>	
G		<u></u>		<u></u>	22			<u></u>		<u> </u>					12				1		22
Н			<u>.</u>		<u>.</u>			<u></u>													
										1		22									
K			15		<u></u>				<u></u>	<u> </u>				5							
L	16									14	21	<u></u>		14	1						
M												<u> </u>	<u> </u>								
N						.,							<u> </u>	<u></u>		<u></u>	18		<u></u>		
Р				22				21											.		
Q	6	22				22			12				<u> </u>	1							
R			7						8	7				1				22			
S							21								2	22	2			22	
T															•••••		1				
V											1				6						
W		,							••••••												
X		·																			
Y													21				1				
unknown (?)																					
not sequenced							1	1	1				1	_1	1						_
sum of seq'	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	22
mcaa⁴	L	Q	Κ	Р	G	Q	S	Р	0	L	L	١	Υ	L	G	S	N	R	Α	S	G
rel. oomcaa ^s	73%	100%	68%	100%	,000 100%	100%	100%	100%	57%	64%	95%	100%	100%	67%	57%	100%	82%	100%	64%	100%	100%
pos occupied"	: :	: :	: :	:	:	:	:									••••••••••••••••••	•••••			1	1

102

Table 4B: Analysis of V kappa subgroup 2

4 .														Fr	amı	ewo	rķ II	1			
amino acid'	28	29	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75	76	77	78
А																					
В	.	<u> </u>					<u>.</u>														
· C	.	<u> </u>	<u></u>																		
D	.	<u> </u>	22				1				1		22								
E																					
F					21									22							
G							21		22		21						ŀ				
Н																					
1																	1	21			
K																	19				<u> </u>
L														-		21	1				
М																······					
N																					
Р		22																			
Q															•••••		•••••				
R				20				1							•••••				••••	20	
S				1		22		21		22					••••••		•		20	1	
T				1								22			21				1		
V	22				1																21
W																					
X																					
Υ																	********		••••		
-																					
unknown (?)															1						
not sequenced																1	1	1	1	1	1
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	21
oomcaa,	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	21
mcaa'	٧	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	K	1	S	R	٧
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	92%	100%	%O6	%OO1	95%	95%	%00 ₁
pos occupied ^a			: :	:	:			: :	:	-		•				•••••					

Table 4B: Analysis of V kappa subgroup 2

	<u>-</u>										Τ							CDF	R III		
amino acid'	79	80	.81	82	83	84	85	98	87	88	89	06	91	6	63	0 0	, g	} ∢	. a	ء د	
A		20											14	1			1				T
В																1					
· C								•		21											
D			1	21									1			- 			1	•	
Е	19		20													<u> </u>					
F .																					
G	1					21							6				1	2	2		
Н													1		7	,					
ı							1									1					
K																					
L							1							12			2				
M											21										
N					<u> </u>	<u></u>		<u> </u>	<u></u>												
Р	.	1		ļ						<u></u>		<u> </u>				2	16	1			
Q	1			<u></u>	<u></u>					<u> </u>		20			13						
R														1							
S	ļ															3	2				
T														8		7					
V	ļ				21		19		ļ												
W											•••••					6			•••••		
X			•••••																		
Y								21	21												
	ļ										•••••					••••		14	17	17	17
unknown (?)																			*******		
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq'	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa ₃	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa ⁴	·	Α						******				· · · · · · · · · · · · ·	••••••		·····-			-	-	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	%08	82%	100%	100%	100%
pos occupied ⁿ																					

104

Table 4B: Analysis of V kappa subgroup 2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									Fr	ame	wor	k IV	,]
amino acid'	ш	щ	96	97	86	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α																	71
В						• · · · • · · · · · · · · · · · · · · ·						1		•	-		3
С								Î									43
D								<u> </u>						<u> </u>			112
E												13					71
F			1		17												72
G						17	2	16				1					233
Н	ļ									<u></u>	<u> </u>	ļ	ļ	<u>.</u>			26
l	 .		3								<u></u>	ļ	14	<u> </u>			94
K	ļ									12	<u></u>			<u></u>	13	·	66
L			2								11						219
M																	37
N																	56
Р			1														159
Q			1				14										159
R										4						12	126
S																	32 5
Ţ				17					16								140
V											5						146
W			2				•••••										31
X X																	3
Y			7					_							-	4	123
-	17	17												13			134
unknown (?)																	2
not sequenced	-	5			5				-		6			9	-	10	211
						••••••••	•••••••	•••••		•••••			•••••••••••••••••••••••••••••••••••••••	13			
	17	17	7	17	17		••••••••	••••••	16		11	13	14	13	••••••		
mcaa*	-	-	Υ	Ţ	F	G	Q	G	Ţ	K	L	E		-	K	R	
rel. oomcaa ^s	100%	100%	41%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105
SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

, . .											Fr	amev	vork	ı		
amino acid'	_	2	3	4	2	9	7	8	6	01	-	12	13	14	15	16
Α		5						2	27	7						1
В	1															
. c													2			
D	2								14	1						
E	76		27													
F.		1													1	
G	1								82	2						152
Н										1						
1		75														
K	3															
L		4	1	104			1				150		129		1	
·M	5			13												
N														5		
Р		-						124		<u> </u>	<u> </u>	<u> </u>	•	<u> </u>	147	
Q						123							*****			
R					1											
· S							119		3	1		150	1	141		
Ţ		2			117					147				5	1	
V		1	89	1			1				1		22		1	
W																
X														•		
Υ																
-																
unknown (?)								-								
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa'	Ε	1	٧	L	T	Q	S	Р	G	Ţ	L	S	L	S	Р	G
rel. oomcaas	%98	85%	76%	98%	%66	100%	97%	100%	65%	99%	99%	%66	85%	93%	92%	%00 ₁
pos occupied ⁶	6	6	:		:		:	:	:	:	•		:	4		1

Table 4C: Analysis of V kappa subgroup 3

		7700		<u>_</u>												
								<u></u>								CDF
amino acid'	1	18	19	20	21	22	23	24	25	26	27	∢	ω	ں	۵	ш
А			178	2					166	3 1						
В		<u> </u>	<u> </u>	<u> </u>			<u>.</u>	<u>.</u>								
C			<u> </u>	<u> </u>		<u> </u>	181			1						
D	6	<u></u>	<u> </u>	<u> </u>			<u> </u>									
E	146	1	<u>:</u>		<u>.</u>	<u> </u>	<u> </u>				1					
F		<u> </u>	<u>.</u>	<u> </u>	7	1	<u> </u>									
G	1	1		<u> </u>		<u>.</u>			-1	1		1				
Н				<u> </u>		<u>.</u>					17					
i		1		5	2			<u> </u>								
K		1		<u> </u>		<u>.</u>	<u>.</u>	5	<u> </u>							
L					173						1	1				
M							<u> </u>									
N							<u></u>					9				
Р								<u>.</u>								
Q											159					
R		175					<u> </u>	176		1	1	10				
S						180			7	175		87	<u></u>	<u></u>	<u>.</u>	
T		1		174					7	2		1		<u> </u>		
V		1	4	1					1	·		1		<u></u>		
W						····		1						<u> </u>		
X																
Y						1					1					
-												72	182	182	182	182
unknown (?)											1		•••••			
not sequenced																
sum of seq ²	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa'	Ε	R	Α	T	Ļ	S	С	R	Α	S	Ω	S	-	-	-	-
rel. oomcaa ^s	95%	97%	%86	%96	95%	%66	100%	92%	91%	97%	88%	48%	100%	100%	100%	100%
pos occupied ^a	3	7	2	4		3	ر ا	:	:	6	6	8	1	1	1	1

7 م

_
~~`
v
~
=
continu
•
_
$\overline{}$
\circ
$\overline{}$
۳.
\sim
_
u
edu
=
ۍ
U
S
•
Ē
0.7
~
٠.
gene seque
2
(2)
72)
VA2) (
(JA2)
(M2)
2 (VA2) g
3 2 (VA2) g
la 2 (V. 2) o
da 2 (VA2) g
bda 2 (VA2) g
1bda 2 (V.).
1bda 2 (V.).
1bda 2 (V.).
lambda 2 (VA2) g
1bda 2 (V.).
√ lambda 2 (VA2)
48: V lambda 2 (VA2)
48: V lambda 2 (VA2)
48: V lambda 2 (VA2)
48: V lambda 2 (VA2)
48: V lambda 2 (VA2)
48: V lambda 2 (VA2)
iure 48: V lambda 2 (VA2)

Q A E BbsI	CAAGCGGAAG GTTCGCCTTC	P V F	GCCTGTGTTT CGGACACAAA		
SGI	TAGCGGCCTG ATCGCCGGAC	T T	ATACCACCCC TATGGTGGGG		
N T A S L T I	GCCTGACCAT CGGACTGGTA	уус оону тр	CAGCAGCATT GTCGTCGTAA	V L G MscI	CGTTCTTGGC GCAAGAACCG
N F S	AACACCGCGA TTGTGGCGCT	. Y Y	TTATTATTGC AATAATAACG	X	CGAAGTTAAC GCTTCAATTG
K S G BamHI	CAAAAGCGGC GTTTTCGCCG	D E A D BbsI	ACGAAGCGGA TGCTTCGCCT	0 0	GGCGGCGGCA

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG	
GATCGTTTTA CTAGCAAAAT	о П С	GGGCCTGCAA CCCGGACGTT	CCACCCCGCC GGTGGGGCGG	
AGGCGTGCCG TCCGCACGGC	T T T	TTGCGATTAC AACGCTAATG	Q H Y T T P P CAGCATTATA CCACCCGGC GTCGTAATAT GGTGGGGGGG	L G MscI ~~~ TCTTGGC AGAACCG
AGCGTCCCTC TCGCAGGGAG	S A S L	AGCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	L T V HpaI ~~~~~~ AGTTAACCGT TCAATTGGCA
GATAACAACC CTATTGTTGG	S S	AAGCGGCACC	E A D Y AAGCGGATTA TTCGCCTAAT	G G T K GGCGGCACGA CCGCCGTGCT

ACTOGACOAT GGTCGTCAAC GGGCCCTGCC GCGGCTTTGA CGACTAAATA GCTGATTTAT ACACTGGTAG AGCACATCGC CGTCGTCGTC GTTGTAACCG TCGTTGATAC TGTGACCATC TCGTGTAGCG GCAGCAGCAG CAACATTGGC AGCAACTATG GTCTCGCACG ACTGGGTCGG CGGAAGTCAC TCACCGCGTG GTCCAGTCGC CAGAGCGTGC TGACCCAGCC GCCTTCAGTG AGTGGCGCAC CAGGTCAGCG ø Oⁱ O CCCGGGACGG CGCCGAAACT SexAI ρι O Ø Н BbeI U Z ഗ P G T Ŋ ഗ > XmaI ഗ Bsn36I Ŋ ഗ TGAGCTGGTA CCAGCAGTTG μ U 7 ひ み Д 区 Figure 4A: V lambda 1 (VX1) gene sequence Ø X M Z Z Ω >

Figure 3D: V kappa 4 (Vx4) gene sequence (continued)

S S I L	GACC ATTTCGTCCC CTGG TAAAGCAGGG	о н у т т		AGCA TTATACCACC TCGT AATATGGTGG	I K R T Bsiwi	GAAATTAAAC GTACG CTTTAATTTG CATGC
T L T	TACCCTGACC ATGGGACTGG	O)		GCCAGCAGCA	н	GAAATT
G T D F	GCACTGATTT CGTGACTAAA	луу У У С		GтGтАт⊓татт САСАТААТАА	T K V	TACGAAAGTT ATGCTTTCAA
FSGSGS BamHI	TTTTAGCGGC TCTGGATCCG	L Q A E D V A Eco57I	BbsI	TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC	P P T F G Q G MscI	CCGCCGACCT TTGGCCAGGG GGCGGCTGGA AACCGGTCCC

sednence
gene
(2 K4
4
-
kappa
V kappa
3D: V kappa

团	GA		CA	Д	ρ Ω Ω	民	ָט <u>ט</u>
J O	GCCTGGGCGA CGGACCCGCT	Ŋ	TATAGCAGCA ATATCGTCGT	а а о	AGAAACCAGG TCAGCCGCCG	Ω	GAAAGCGGGG TCCCGGATCG
H	CTG	S	rag atc	Q	AGC ICG	D d	10 C
70	900	≯	TAZ	•	TCZ AG	, iDi	TCC TCC
W	GA	니	TG	G AI	ACCAGG IGGTCC	G V SanDI	~~~~~~~~ 366 TCCC
L A V	CTGGCGGTGA GACCGCCACT	S V L	GAGCGTGCTG CTCGCACGAC	K P G SexAI	AGAAACCAGG TCTTTGGTCC		GAAAGCGGGG CTTTCGCCCC
Ø	Ω Ω Ω Ω	,	9 0 0 0 0	×	_ AAA TT:	W	AAG(
Ţ	CTC	01	GAC		AG2 TC1	闰	GA2 CTJ
ß	ည္သ	Q	CA	O O	ည ပို့	rk	GT
P D S	CCCGGATAGC	W	~ GAAGCAGCCA CTTCGTCGGT		TGGTACCAGC ACCATGGTCG	E1	ATCCACCCGT TAGGTGGGCA
Дı	~ GGG GCC	Ŵ.	AGC TCG	W Y KpnI	3GTACC CCATGG	S	CCA 3GT
S Banii	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~	í.č GA. CTr	M	TG(AC(AT(TA(
S Bai	SAG CC	t T	CTGCA G	A	, 190 190 190	K	ပ္ပပ္ပ
Q	TGACCCAGAG ACTGGGTCTC		ATTAACTGCA TAATTGACGT	Y L A	CTATCTGGCG GATAGACCGC	Y W A	TTTATTGGGC AAATAACCCG
H	ACC TGG	Z	TAA ATT	5 4	ATC IAG	≯	rat Ata
Σ	TG	H	AT. TA	·	CT. GA	H	TT
	GA	E	220	Z	AA		AA
> >	~ CGT GCA	Ø	CGA	×	AAA TTT		ATT TAA
D I EcoRV	GATATCGTGA CTATAGCACT	K.	ACGTGCGACC TGCACGCTGG	z	ACAACAAAAA TGTTGTTTTT	H	AAACTATTAA TTTGATAATT
ОЩ	GA' CT	-,	AC(TG(Z	AC, TG	×	AA
	•						

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

BACC	O J	→ · · · · · · · · · · · · · · · · · · ·	CCTGAAGACT GGACTTCTGA	MSCI	GACCTTTGGC CTGGAAACCG		
3GA(P E E E CO57I	BbsI	SAA(CTT(ᄺ	CTT		
CGCCGAGACC	F C C	; }	CCTGAAGACT GGACTTCTGA	₽	GACCTTTGGC CTGGAAACCG		
λΑΤ	면 ·		SAA	Дı	950 066		
SAAZ	ī		CTGC	Д))))))		
3CG(S		TGACCATTAG CAGCCTGGAA ACTGGTAATC GTCGGACCTT	H	CCACCCGCC		
Ö			CZ [G]	H			
099	ഗ		TAG	≻	АТА ТАТ	R T Bsiwi	ACG TGC
CAG	H		CAT	н	ATT FAA	R Bs	CGT
C C C C	H		TGACCATTAG ACTGGTAATC	O.	CAGCATTATA GTCGTAATAT	×	TAAACGTACG ATTTGCATGC
, A	H					Н	
3TT(E	•	ACC(O	CCAC		AAA: ITTI
ACG	لتا		TT	Ö	TGC	전	TGZ
CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT	Q		ATCCGGCACG GATTTTACCC TAGGCCGTGC CTAAAATGGG	X	TTATTGCCAG	>	CAGGGTACGA AAGTTGAAAT GTCCCATGCT TTCAACTTTA
GI	E		ATCCGGCACG TAGGCCGTGC	>-	TTGCGGTGTA AACGCCACAT	×	CAGGGTACGA GTCCCATGCT
CTC	Ŋ		GCA	>	TTGCGGTGTA AACGCCACAT	G	TAC
909	ഗ	BamHI	099 900	Ø)))	CI)
CC	-	BamH	AT	[II	TT AA	Q MscI ~~	CA

S O E	CTCCGGGCGA GAGGCCCGCT	S S	AGCAGCTATC TCGTCGATAG	L I Y ASPT	~~~~~~ ATTAATTTAT TAATTAA	G S G	BamhI ~~ CGGCTCTCTC
kappa 3 (Vk3) gene sequence V L T Q S P A T L S L BanII	GATATCGTGC TGACCCAGAG CCCGGCGACC CTGAGCCTGT	RATLSCRASQSVS PstI	ACGTGCGACC CTGAGCTGCA GAGCGAGCCA GAGCGTGAGC TGCACGCTGG GACTCGACGT CTCGCTCGGT CTCGCACTCG	Q A P R L	TGGCGTGGTA CCAGCAGAAA CCAGGTCAAG CACCGCGTCT AACCGCACCAT GGTCGTCTT GGTCCAGTTC GTGGCGCAGA T	GASSRATGVPARFS	GGCGCGAGCA GCCGTGCAAC TGGGGTCCCG GCGCGTTTTA GCGGCTCTT

(continued
gene sequence
$\overline{\mathcal{O}}$
٤
<u>\$</u>
/ kappa 2 (Vx
< k
: 3B: V kappa 2 (Vx

G S G T D F T L K I S R V BamHI	GGATCCGGCA CCGATTTTAC CCTGAAAATT AGCCGTGTGG CCTAGGCCGT GGCTAAATG GGACTTTTAA TCGGCACACC	G V Y Y С Q Q Н Y Т Т Р		CGTGGGCGTG TATTATTGCC AGCAGCATTA TACCACCCCG GCACCCGCAC ATAATAACGG TCGTCGTAAT ATGGTGGGGC	QGTKVEIKRT Bsiwi	GCCAGGGTAC GAAAGTTGAA ATTAAACGTA CG CGGTCCCATG CTTTCAACTT TAATTTGCAT GC
G S BamHI	GGATCC CCTAGG	> .	į	CGTG	ο H	TG GCCA AC CGGT
ა ე ა	TAGCGGCTCT	E A E D Eco57I	BbsI	AAGCTGAAGA TTCGACTTCT	P T F G MscI	CCGACCTTTG

Figure 3B: V kappa 2 (Vk2) gene sequence

臼	GA)	500	Q	A D	Ĺτι	TT AA
ტ	999	Z	CAA	Д	000 900	民	CGT GCA
വ	CTCCGGGCGA GAGGCCCGCT	Ω	CATAGCAACG GTATCGTTGC	Ŋ	AAGCCCGCAG TTCGGGCGTC	Д	.~ CGGATCGTTT GCCTAGCAAA
E	CT	田	CA		AA(TT(, ΩΩΩ ΩΩΩ
	rga ACT	H	TG	Q	CA	, P	AGTGGGGTCC CGGATCGTTT TCACCCCAGG GCCTAGCAAA
Ъ	CTGCCAGTGA GACGGTCACT	H	AAGCCTGCTG TTCGGACGAC	P G exAI	~~~~~~~ AACCAGGTCA TTGGTCCAGT	V SanDI	AGTGGGGTCC TCACCCCAGG
L	992	S	9 9 9 9 9	P G SexAI	CCA SGT	U	ragă ACC
Ħ	CT		AA(TT(AA(TT(Ø	AG1 TC2
Ø	AGC CG	Q	CA	L Q K	AA TT	Ø	C C C C C C
ı	TGZ SACT	Q	AGC	٠ -	TCA AGI	R A	GTG
Δ,	TGACCCAGAG CCCACTGAGC ACTGGGTCTC GGGTGACTCG	വ	~ GAAGCAGCCA CTTCGTCGGT	H	TACCTTCAAR ATGGAAGTTT	Z	CAACCGTGCC GTTGGCACGG
S BanII		~	•	Y KpnI	3G TACC	•	CA
S Baj	SAG CCC	H	~~~~~~ TGCA G ACGT C	ĭ Kj		W	AG
O/	CAC	s Pst	CTC	Д	ATT TA?	Q	000
H	TGACCCAGAG ACTGGGTCTC	ы.	ATTAGCTGCA TAATCGACGT	ъ	TCTGGATTGG AGACCTAACC	H.	ATCTGGGCAG TAGACCCGTC
Σ	-	H 	AT TA		TC	>	AT TA(
\triangleright	GATATCGTGA CTATAGCACT	W	GCCTGCGAGC CGGACGCTCG	≯	CTA		TT
	rcg.	Ą	GCCTGCGAGC CGGACGCTCG	Z	GCTATAACTA CGATATTGAT	L I AseI	СТАТТААТТТ GATAATTAAA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TAI	Д	CTC	×	TAT ATA	L L Asel	ATT TAA
Д <u>й</u> ;	GA		90	Ŋ	90	Ъ	CT
					•		

	1) gene sequence (cor ACGTTTCGC	igure 3A: V kappa 1 (Vk1) ger CGGTCGTCGA AC	ure 3A: V kappa 1 (Vk1) gene sequence (continued)	ACGITICGCC CC
ر	טטדמממטר	ne sequence (continued) JGTTTCGCC CCAGGCAGG GCAAAATCC		て REST RUKUT し

	rigure 3A: v kappa i lvk CGGTCGTCGA G T D	TCG.		GA D	rigure 3A: V kappa I (Vk.I) gene sequence (continued) CGGTCGTCGA ACGTTTCGCC CC G T D F T L T	rquenc LTT(T	e (conti	inued) C CC	AGG	GCA(S	0.000	Opene sequence (continued) ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG F T L T I S S L O P F D F	AATC O	D D	CGAG	SACCT?	TAG
							,					1	¥.	r Ecc	Eco57I)	- 1
	RamHT	H												?	~~~~~	,	
		1													BbsI	Η̈́	
	Č	6	(~ ~ ~ ~ ~ ~	?	
0 : 15 5 5 5	GCCGTGACTA GCCGTGACTA	CAC GTG	JAC.		TTTACCCTGA AAATGGGACT	4CC(CTGP	000 T	ATT. TAA:	AGCA ICG1	7G (TTTACCCTGA CCATTAGCAG CCTGCAACCT AAATGGGACT GGTAATCGTC GGACGTTGGA	AAC	CT GA	GAAGACTTTG CTTCTGAAAC	SACT	TTG
		F	>	;	(•	,										
	T T	-	Х Х	×	ပ	O ¹	Q	工	≻	[-	⊱	соонутт вет	ርተ	₽	ᡅ	F G Q	Ø
																MscI	H
	より	۲ ۲	יידי ע' נ			ر د د	(! !	1					₹	~~~~	?
		1 (C) (C)	7 Z T		I I GCCAGCAG	J. E. C.			I'I'A']	rACC	(A)	CATTACCA CCCCGCCGAC CTTTGGCCAG	CCG	AC	CTTT	GGC	CAG
))	;)	7 7 7		ソンピロ	ノ T り) つ り		GTAATATGGT	Y.I.GC) L	GGGGGGCTG GAAACCGGTC	GGC	IG	GAAA	SCCG	GTC

GGTACGAAAG TTGAAATTAA CCATGCTTTC AACTTTAATT

R T BsiWI

公

口

>

又

⊱

G

Ω	GA		0 0 0	Ø	CA TE	တ	H ~ (
ပ	GCGTGGGTGA CGCACCCACT	니	AGCTATCTGG TCGATAGACC		ATG(O	BamHI ~~~~~
>	STG	×	CTAS	>	TT? AAT	လ	ц , С
S		ഗ	AGO	H	~~~~~~~ ATT AATTTATGCA TAA TTAAATACGT	r b	TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTCTAGG
Æ	CGA GCT	S	4GC PCG	L AseI	ATT	ro Co	<u>ن</u> ن
S	900 000	н	ATTZ	H	CTP GAT	တ	TAG
IJ	CTGAGCGCGA GACTCGCGCT	ပ	GGGCATTAGC CCCGTAATCG	×	CGAAACTATT GCTTTGATAA	됴	${ m TTT}$
, 	_			Д		24	CG
တ	AGC	OI	CCA	Ø	CAC GTG	S	ICC
တ	TC1	ω	GAG CTC	.	AAG ITC	д _	.~ CCG
д II	TGACCCAGAG CCCGTCTAGC ACTGGGTCTC GGGCAGATCG	A	ATTACCTGCA. GAGCGAGCCA TAATGGACGT CTCGCTCGGT		GCAGAAACCA GGTAAAGCAC CGTCTTTGGT CCATTTCGTG	V SanDI	~~~~~~~~ G GGTCCC
S BanII	GAG CCC	t I	TGCA. G ACGT C)	r Si	9 6
	TGACCCAGAG ACTGGGTCTC	C PstI	~~~ TGC ACG	K P SexA	ACC.		SCGC
: sedne	999 000	E	ACC TGG	Y ,	SAAZ	S	AAG
ı) gene	TGA ACT	Н	~~~~~ ATTACCTGCA. TAATGGACGT	Q	GCAGAAACCA CGTCTTTGGT	O .	GCA
] { M		F		Ø		H	
/ kарра О V	~ CCA GGT	V T	rga(act(W Y KpnI	ACC	S	AGC
Figure 3A: V kappa 1 (Vk1) gene sequence . D I Q M T Q ECORV	~~~~~~ GATATCCAGA CTATAGGTCT	M N	TCGTGTGACC AGCACACTGG	W Kr	CGTGGTACCA GCACCATGGT	ഗ	AGC
ロ. ロ.	°∼ GA' CT'		TCC	A	CGTGGTACCA GCACCATGGT	K	GCCAGCAGCT

luences
nsus sedr
in consens
eavy cha
e 2C: V h
Figure

Framework 100		,								_		<u>,</u>	 -						
CDRII CDRII CDRII CDRII CDRII CDRII CDRII CDRII Framework 3 S8		98	ш	ш	>	ш	⋖	S	ш			113	10	V) () U	7 U	7 U	7 V
CDRII		78	5	S	م	\forall	\forall	\forall	۵.		4	115	10	V	ע נ	ט מ	7 U	つ <i>U</i>) V
A		83	8	\propto		\propto	—	\prec	—		논	111	>	· >	> >	> >	> >	> >	> >
CDRII CDRII CDRII N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A D S V K G R F T I S R D N S K N T L Y L Q N N Y N P S L K S R V T I S A D K S L S L A Y M E L N Y N P S L K S R V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N Y N P S L K S R V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L Q D L R N Y S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L S L A M D Y W G Q G T T N A M D Y W G		Э,	-		\geq		>		>		N	011	-	· -			- -	- H	- }
CDRII CDRII CDRII N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A D S V K G R F T I S R D N S K N T L Y L Q N N Y N P S L K S R V T I S A D K S L S L A Y M E L N Y N P S L K S R V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N Y N P S L K S R V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L Q D L R N Y S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L S L A M D Y W G Q G T T N A M D Y W G		8	5	S	Z	S	S	S	S		ne	60 L	>	· >	• >	> >	> >	> >	> >
CDRII CDRII CDRII N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A Q K F Q G R V T M T R D T S T A Y M E L N Y A D S V K G R F T I S R D N S K N T L Y L Q N N Y N P S L K S R V T I S A D K S L S L A Y M E L N Y N P S L K S R V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R Y S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S A D K S L S L A Y L Q N R N Y N P S L K S R V T I S A D K S L S L A Y L Q N R N S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L Q D L R N Y S P S F Q G Q V T I S K N Q F S L C Q L R N S P S F Q G Q V T I S K N Q F S L S L A M D Y W G Q G T T N A M D Y W G		A	2	S		Z	S	S	Z		rai	801		ــــا	ı	· _	<u> </u>	. _	ب د
CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR CDR		85	-		\geq	≥		≥			-		 	-	-	· -			
CDR CDR CDR CDR CDR CDR CDR CDR		18	ш	ш	-	O	\prec	O	Q			901	9	5	<u> </u>	(C	<u>ن</u>) (9
CDRII CDRII N Y A Q K F Q G R V T M T R D T S L S K N G G D G F Y T L S K N T N Y N P S L K S R V T L S K N T N Y N P S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L S L K S R N S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S R S R S L S R N S R S R S R S R S R S R S R S R S		08	≥	Σ				_				901	0	0	0			, 0	9 0
CDRII CDRII N Y A Q K F Q G R V T M T R D T S L S K N G G D G F Y T L S K N T N Y N P S L K S R V T L S K N T N Y N P S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L S L K S R N S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S R S R S L S R N S R S R S R S R S R S R S R S R S	or	64	>	>	>	>	S	>	S			104	ပြ	9	9	<u>ن</u>	ر د) ල) (D
CDRII CDRII N Y A Q K F Q G R V T M T R D T S L S K N G G D G F Y T L S K N T N Y N P S L K S R V T L S K N T N Y N P S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L S L K S R N S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S R S R S L S R N S R S R S R S R S R S R S R S R S	ě	87	A	A	>	1	ட	A	ட			103	≥	≥	\geq	` ≥	∶≥	: ≥	: ≥
CDRII CDRII N Y A Q K F Q G R V T M T R D T S L S K N G G D G F Y T L S K N T N Y N P S L K S R V T L S K N T N Y N P S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S K N S R S L K S R V T L S K N S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L K S R N S R S L S L K S R N S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S L S R N S R S R S R S R S L S R N S R S R S R S R S R S R S R S R S	an	LL	├ ─	—	O		0	-	0			102	 >-	>	>	>-	· >-	· >-	· >
CDRII See GG GG GG GG GG GG GG GG GG GG GG GG G	4	94	S	S	Z	Z	Z	S	Z			101							Ω
CDRII CDRII		94	⊢	_	\checkmark	\times	\checkmark		\checkmark		≡	Э	≥	Σ	\geq	Σ	Σ	Σ	Σ
CDRII CDRII		74	S	S	S	S	S	S	S		RI RI	8	×	\forall	A	\forall	Ø	\forall	Ø
CDRIII S		73	ب		⊢	Z	—	\checkmark	-		ပ	Α	>-	>	>-	>	>	>	>
CDRIII S		72	0									100	4	ب	ட	щ	ц.	щ	ட
CDRII N Y A Q K F Q G R V T M N Y A D S V K G R F T — N Y A D S V K G R F T — N Y N P S L K S R V T M N Y N P S L K S R V T — N Y N P S L K S R V T — N Y N P S L K S R V T — N Y N P S L K S R V T — N Y N P S L K S R V T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y N P S L K G R F T — N Y Y C A R W G G G G G G G G G G G G G G G G G G	Ì	17	A	\propto	\checkmark	\propto	>	A	. هـ			66	9	9	9	9	9	9	9
CDRII S	İ	٥۷	—	⊢	S	S	S	S	Z			86					Ω		
CDRII CDRII CDRII R Y A D K F D G R V S D Y A D S V K G R F R Y S T S L K T R L R Y S P S F D G D V S D Y A V Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W S D T A V Y Y C A R W		69	—	≥				_				۷6	9	9	9	9	9	9	9
CDRII R Y A Q K F Q G R Y Y S T S L K T R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N Y N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N P S L K G R N N N N N P S L K G R N N N N N P S L K G R N N N N N N N C A R N N N N N N N C A R N N N N N N N N C A R N N N N N N N N N C A R N N N N N N N N N N N N N N N N N N		89	-	—	_	—	<u> </u>	_	_			96	9	G		9	Ö	9	9
CDRII CD	1	۷9	>	>		LL.	>	>				96	3	≥	3	≥	≥	≥	3
CDRII CD	İ	99	8	\propto	\propto	æ	\propto	O	~			_	8	8	\propto	\propto	8	\propto	8
CDRII CDRII CDRII R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y Y Y S T S L R Y S T S T S L R Y S T S T S L R Y S T S T S T S L R Y S T S T S T S T S T S T S T S T S T S	ļ										3		l						- 1
86	_		O	O	\prec	$\boldsymbol{\prec}$	\prec	O	ㅗ		X			ں	ں	S	C	ں	0
86	종			ш		>		ட	>		N N		 >-	>	>-	>	>	>	>
86	ᄓ		Y	~	S	S					me		\	>	>	>	>	>	>
85 Z Z > > Z Z Q	ĺ			_	—						fra		>	>	—	>	-		>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	1	A	⋖	S	⋖	Z	S	4				A	∢	⋖	⋖	\forall	⋖	4
A B C E T C C A B C E T C C	ľ	i	\forall	>-	>	>-	>	>	1		İ			—		—	—	-	
		85		<u>z</u>	<u>></u> _	<u>></u>	Z	$\frac{\omega}{\omega}$		Į		98		<u> </u>	<u> </u>	$\frac{\triangle}{}$	_	<u> </u>	
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				_	7	က	4	2	9				1A		2	က	4	2	9
7 / 204			XH N	Z H	ΛH	X	X X	Y.	¥.	(7 1 7	F 0115		X.	_	X	X	×Η	YH_	X
								51	ופמו	11U1 7	/ 204	EI(RU	LE 26)					

Figure 2C: V heavy chain consensus sequences

											75	i∣⊲	< ⊢	- >	< h	- +	_	—	Z
	. ·	_			-				,		99	i ⊢	- رب	ם כ) C	Λ (Λ		>
	30	S	}	S	S	S	<u> </u>	S			99		ט ני	ם כ	ح ر	י כ	פ	S	3
	56	4	Щ	نـــ	ш		I.L.	>			79	ļu	. <i>U</i>	ר כ	ם ני	י כ	7		\vee
	28	-		S	—	S	S	S		N N	53	-	- Z	? }	> U	ר >	- (9	S
	77	9	>	سا	ட	9	>			CDR	0	1	1	1	1	ı	1	1	ı
	97	9	9	9	9	9	9	G			8	'	ı	ı	! 1	i	1	ı	\propto
	52	2	S	S	S	S	S	S			A	ام	. Δ.	- 1	C)	1 (<u> </u>	>
	74	A	A	4	A	>	9	_			25	-	Z	: _	\) >	- >	>	>-
	23	l					\prec				LS	-		-					-
	77	0	ں	ں	ပ	ပ	ں	ပ		٠.	20	9	` ≥	: .—	۱ ۵	: >			\propto
	12	S	S	—	S	-	S	_			6t	9	9	\ \	·	י ני) (פ	9
	50	>	>		 _						84	≥	Σ	_	' >	• -	- 2	≥	
	6 l	×	\checkmark	₩	X	S	\checkmark	S			74		3	3	∶≥	∶≥	? ?	>	≥
	81	>	>					_		2	97	ш	ш	ш	سا	I LL	ו נ	ا لا	ய
논	11			—			S			¥	94	-			· —	_	<i>,</i> –		
	0,	ľ					ш			mework	77	9	9	⋖	9	٣) ני) (9
framework	٩l	i					9			me	43	Q			\sim				- 1
fra	71	ط					Δ_			frar	45	i			ග				J
	13		_	_			×				17	l			۵.				l
	15		×				×				07				4				
	11	>	>								38		0		O			9 (_
	01						ш	ŀ			38	R	X	œ	×	<u>~</u>	. <u>~</u>	: c	x
	6						A	ì	ŀ		37	<i>></i>	<i>></i>	- >	<i>></i>	_ >	<i>></i>		_
	8	ļ					S G	j			36	S	> H		> >				- 1
	7	7	~ ~				o				35				∑				- 1
	9) /	>	$\overline{}$		_ _	_			≂	33	4	<u>~</u>		< <	<i>></i>	3	_	> {
	7	1	_		_		_			COR	35	/	<u></u>	>	>	`	<i>></i>	. <	. 1
	3	Ö	\overline{C}	O	a	d	d	a			8	1	1	(7)	,	,	_ 1	U	
	7	>	>	>	>	>	>	>			A	ı	ı	S	ı	1	. 1	z	- 1
		O	Ö	d	_ u	d	-	1			18	S	S	—	S	S	S		
لــا	٠ (A	m						L		ا ~ -	A	В					-	
		VH1A	VH1	VH2	VH3	VH4	VH5	9H,				H	/H1	VH2	VH3	VH4	VH5	ZH/	<u> </u>
		>	>	>	>	>	SUE	>	JTE S	SHEE	T (RU	> LE 2		>	>	>	>	>	>
									6 /	204	•		•						

Figure 28: VL lambda consensus sequences

framework 3	28 28 28 28 28 28 28 28 28 28 28 28 28 2	SKSGTSASLAITGLOSEDEADY	SKSGNTASLTISGLQAEDEAD	SNSGNTATLTISGTQAEDEA		framework 4	96 96 96 96 96 100 100 100 100 100 100 100 100 100 10	1 V L	PPVFGGGTKLTVLG	PPVFGGGTKLTVLG
	89		g	g			86	1		1
								i	>	1
				Z				۵	٥	م ا
	1	(2)		S				٦.	<u>م</u>	ما
	79 83	5 G	S G	S G			76		}	
	79	ц.	<u>.</u>	ц.		CDRIII	65 65	_	-	
	19	R	\propto	~			16	ΥН	Υ	
	09		Z	ш			06	O	O	0
	65	٩	S	ما			68	O	O	0 0 H
	89		>	_	•		88	\mathcal{O}	CO	ر ا
·		<u>> ا</u>	W2	W3			•	3	W2	W3

Figure 2B: VL lambda consensus sequences

	ح م [-	7	Γ-	۔. ٦	. [
	82	1	<i>></i>			ļ.	75	ı		(D)
	3	Z					99	1	S	S
8	a	S	Š	1			99	ı	٩	Д
CDRI	72	S	Ś	\forall		=	79	1	\propto	\propto
	56	S	—			CDR	23		Z	
	52	9	G	9			162		S	S
	74	S	<u> </u>	S			19	1	>	
	23	C	ر د .	<u>ں</u>			09	1		Δ.
	22	S	S	S			67	>	>	>-
	12			~			87	-	_	
	50			A R]	74		Σ	<i>></i>
	61	R <	S				97		_	7 /
	18	0	0	ď		7	97	\\ \times \ \ti	~	_
	91	9	9	9	1	framework 2	77	A P	A P	A
	SI	<u>Б</u>	<u>Б</u>	Ь (0	43		×	0 /
-	bl	A	S	A		me	10	9	9	9
X	13	9	Ð	· >	•	frai	07	۵	Ь (<u> </u>
framework 1	15	S	S	S			38		エ	\mathbf{x}
la l	11	>	>	>			38	a	O	0
fra	10	ι	ı				32	O	O	0
	6	S	S	S			36	>	>	>
	8	٩	4	ط			32	>	≥	≥
	L	Ь	ط	مـ			34	S	S	ν
	9	0	T 0	T 0			33	>	>	\triangleleft
	S	—	⊢	⊢		=	32	>-	>	>
	234567					CDRI	29 33 33 33 33	ı	Z	1
	3	>	A	ш			15	Z	>	$\times \mid$
	7	S	S	>			30	S	9	
	L	0	0	S] 58	9	9	9
		W1 Q S V L T Q	W2 Q S A L	VA3 S Y E L				M1 G S N	W2 6 6 Y N Y V	W3 G D K - Y A S

S
ence
٦
Š
9
ಜ
Ŋ
S
~
Ş
Ë
2
$\stackrel{\smile}{=}$
В
Q.
ô
一,
5
• •
2A:
- •
a E
₽.
ш.

Figure 2A: VL kappa consensus sequences

		_	·										
)	'		ı ı				\psi \psi !	S [-	. A	<u> </u>	2
		8	'	_	1	>		=	= 89	SV	Z	· \	⊢
	₩	A		S	\sim	S		ChR	5 29			S	S
	CDRI	72	3	O	O			اح	1 1:	ŀ	9	4	A
		97		S					09	- 1		9	≥
		97	1	S	A	S			6t		>	>	>
	<u> </u>	12	8	<u>α</u>	∝ ~	<u>α</u>			8t	1			_
		23	C	S S	S	S			Lt				
		77			S	Z			9t	i i	 		
		20				_	İ		St		Q	X	×
		61	>	⋖	«	A		۲ 2	100	ł	م	مه	٩
		81	R	Δ.	8	R		0 M	24	1	d	0 A	O P
		<u> </u>		ليا	ш	ш		me	17	1	9	9	9
		91	5	9	9	G		framework	07	<u>Б</u>	<u>Б</u>	٥	4
		SI	>	۵	م	_			36	×		×	\mathbf{x}
		tl	S	—	S	S	İ		38	o	O	O	0
	framework	13	⋖	>	_	>			128	O		O	0
	eW	15	S	ص	S	4			36	 >	>	>	>
	am	11	_	لـــ		_ :			32	≥	≥	≥	≥
	4	10	S	S	-	S			34	⋖		A	∢
		6	S		A				33				
	ı	8	٥	<u>α</u>	Ф	ط			35	>	>	>	>
		7	2	S	S	S		_	31	S		S	Z Y
	1	9	O	٦ Q	O	0		CDRI	30	S		S	_
		2 d 6 7 8 8 8 9 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9	_	_	1 /				57	-		S	z z
l		C	7	Σ >	>	∑ >			28	٠	Z	> ;	2
		7	_	_	_				3 H	i		i (2 5
		i		Ω	۵		i		ا ت	1	I		<u>></u>
L		- L	VK1 DIOMTO	7	VK3	VK4 D	!		ן ט		7		4
			⋠	Vk2	₹	¥				/k1	VK2	VK3	/k4

Figure 1: construction of a synthetic human antibody library based on consensus sequences

WO 97/08320 PCT/EP96/03647

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51.

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - do not form compatible sites with respect to any single sub-sequence,
 and
 - (d) are common to all homologous sub-sequences.

WO 97/08320 PCT/EP96/03647

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- **52.** A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51.
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

WO 97/08320 PCT/EP96/03647

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- **45**. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42.** A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- **39**. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (i) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

Claims

- 1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:
 - (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
 - (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
 - (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
 - (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
 - (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- 21 Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur J. Immunol., 23, 832-839.
- 22 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson,
 D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193–203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter, G. (1992) J.Mol.Biol. 227, 776-798.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505–1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur J. Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur. J. Immunol. 22, 1023.
- 5 Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand-J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981) Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526-1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
 - 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
 - Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
 - Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
 - 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
 - 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
 - Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 33 Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

59 Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Σ.Physiol.Chem., 349, 867-871; (1971) Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)
 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- 69 Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol. Chem. Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228–1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3. 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) BiochemJ., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871–1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 40 Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc.Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
 - 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
 - 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149–155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901–906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., lii (1988) Biochem.J., 256, 973-980.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L, Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids Res., 17, 3975.

94 Pratt, L.F., Rassenti, L., Carrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78. Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur. J. Immunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L, Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- 41 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207;
 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids
 Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249–5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., ladarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.lmmunol., 150, 3561–3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

Table 6G: Analysis of V heavy chain subgroup 6

		Γ				F	ram	ewo	rk I\	/				7
	amino acid'	102	103	104	105	106	107	108	109	110		1.	112	2 sum
	Α								2		·			494
	В													
	С					1							<u> </u>	147
	D				Ī					1				403
	E				Ī	-								186
	F	2	2					- 					2	150
	G			49		50)							571
	Н	2											-	18
	·	9					3	}	1					304
	K				1			1						293
	L	5			<u> </u>			26						632
	M							8			-	-		31
	N			<u></u>	<u>.</u>	ļ								436
	Р	4			6	ļ	<u> </u>						1	387
	Q	ļ			40			<u></u>				ļ	<u>.</u>	539
	R			ļ	2		<u></u>	<u> </u>	ļ				<u> </u>	495
	<u>S</u>	4		1			1	<u></u>	<u></u>			43	46	1271
	T						45	4	<u></u>	45	<u></u>		<u> </u>	640
	<u>V</u>	21						2	46	<u> </u>	48	<u> </u>		647
	W		65					5				<u></u>		398
	X					••••••								
	Υ.	19												518
ŀ	Z													
	•	2									••••••			585
	unknown (?)										•••••			13
	not sequenced				24		_					=	=	580
	ī				49	••••••	••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	*********	•••••••••		
	Ĭ.				40	······································	••••••••	•••••••••••••••••••••••••••••••••••••••	*******		••••••		•••••••	
	mcaa'		W		Q	G	T	L	V	T	٧	S	S	
	rel. oomcaa ⁵	31%	%00 l	98%	82%	%00 	12%	54%	%9	%00	%00	%96	%86	
	pos occupied	9		:	4		········· <u>·</u>	<u>5</u> 7	<u>ი</u> 3	1	1	ი 2	<u>ი</u> 2	

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

										CD	R III							<u> </u>		
amino acid'	93	94	95	96	97	86	66	100	4	8	ပ	۵	ш	Ľ	g	I	_	_	¥	101
Α	69		11	1	3	12	4	3	2	5		8	3					10) 1	
В																		<u> </u>		
· C				<u> </u>	1		1			1		1	1				<u> </u>	<u> </u>		
D			19	4	3	7	4	3	1	6	1	1	1						<u> </u>	62
E			10	4	2	1	2	2	1	2							1	-		
F .	1		1	1	1		1	2	3		2			1			-	1	38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
1			<u>.</u>	1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
M				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
Т			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
X																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z		-																		
				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa,					15	15	14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'	Α	R	D	Р	G	G	-]	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	96%
pos occupied ^a	: :		:	•	•	•					:		:	:			•			•

Table 6G: Analysis of V heavy chain subgroup 6

					Fran	new	ork	Ш												
amino acid'	9/	77	78	79	80	81	82	⋖	8	U	83	84	85	86	87	88	83	06	16	92
Α													1			74	1			
В																				
- C																				73
D								3						73	}					
E													73							
F		<u></u>	71	<u></u>	<u></u>		ļ		1										3	
G		ļ	<u> </u>	<u></u>	ļ			<u></u>			<u></u>			1						
Н			<u>.</u>	<u>.</u>	<u>.</u>	2		1	į	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>							
1			1	<u>.</u>	<u></u>				<u> </u>	<u>.</u>	<u> </u>		<u>.</u>		<u></u>	<u>.</u>	2	<u> </u>	<u> </u>	
K				<u> </u>	<u></u>			4	<u></u>	<u></u>		<u> </u>				<u> </u>		<u> </u>	<u>.</u>	<u> </u>
<u> </u>		1		<u> </u>	74		72	<u></u>	<u></u>		ļ	<u> </u>					<u></u>	<u></u>		
M				<u> </u>			1	<u> </u>	<u></u>	1	<u></u>	<u> </u>	<u></u>		<u></u>	<u></u>	2			
N	74			<u> </u>				63	ļ	<u> </u>			<u></u>		<u></u>		<u></u>	<u></u>	1	
Р				ļ								70			<u></u>	<u>.</u>	······	<u></u>	<u></u>	
Q		72		<u>.</u>		71			ļ 	<u> </u>			ļ			ļ				
R		1				1		1	ļ	ļ			ļ		ļ	ļ				1
S				74				1	73	<u></u>	1	3								
T							••••••	1			73				74			1		
V			2		•••••		1			73				••••			70			
W						•••••••		••••												
X					•	•••••					*******			•••••••				**********		
Y									•••••			••••			•••••			73	70	
<u>Z</u>																				
-								****	••••••											
unknown (?)	ļ																			
not sequenced							_					1	-				_			_
sum of seq ²				•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••			*******		•••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	74	··	·····÷		
oomcaa,	•	***********							• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · ·						74	•••••••	•••••••	•••••••	
mcaa'	N	Q	F	S	L	•••••••••••••••••••••••••••••••••••••••		N	S	٧	T	Р	Ε	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	100%	92%	%96	100%	100%	%96	97%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66
pos occupied ⁶	1		3		•	1		:	i	2	•	•	2			:	<u>-</u>	2	<u>-</u>	2

Table 6G: Analysis of V heavy chain subgroup 6

	***		DR	II									Τ								
	amino acid'	99	57	28	59	99	61	62	63	64	65	99	67	89	69	70	7.1	72	73	74	75
	А					73	1							2			6		1	T	
	В				<u> </u>					<u></u>			<u> </u>					<u> </u>	-	İ	
	· C				1		••••				<u> </u>					<u> </u>					
İ	D		••••	68	<u> </u>		1				<u></u>					2	-	73	 	<u> </u>	
	E	1		3			7			1			<u> </u>								2
	F .	7																			
	G			1				1			8							•••••			
	Н	1																1			
							1						65	2	71				1		
	K		1							67		*****				1		٠			70
ļ	L	1					5		2				4						1		
	М			•••••									1								
	N	2	65	1				••••		1						69					
	Р					1	1								********		66				
	Q							•••••••		2		· 1			•••••	*********					
	R		1					******		3		73			•••••						
	S	2	2	1	1			73			66			1	,	2	1			73	
Ì	T		4											69	1				71	1	2
	<u>V</u>						58		72				4		2		1				
	W																				
	Χ																				
	Υ	60	-1		72																
	Z							_					_								_
	-																				
	unknown (?)																				
Į	not sequenced				_			_	-										_	 	_
		7	•••••	••••••	•	•••••••••••••••••••••••••••••••••••••••			····· ·	• • • • • • • • • • • • • • • • • • • •		•••••••		•••••••••••••		*******	74	••••••	·····÷		
	oomcaa,				• • • • • • • • • • • • • • • • • • • •		*******	••••••		•••••••	** * * * * * * *		********	********	** ** *** * * *	********	66				
	mcaa'	Ţ	IN .	U	T	А	٧	2	٧	K	>	К		1		N	Р	υ		5	K
	rel. oomcaas	81%	9/088	92%	92%	%66	78%	%66	92%	91%	%68	%66	%88	93%	%96	93%	%68	%66	%96	99%	95%
	pos occupied ⁶	7																			

Table 6G: Analysis of V heavy chain subgroup 6

	_			F	rame	wo	rk II													
amino acid'	33	4	41	42	43	44	45	46	47	48	64	50	7.	: :	γ. <	(0	o (} ر	2 2	¥ 7.
.A				1										1					1	
В																				
. С				-						<u> </u>								-		
D		Ī	-							<u> </u>	<u>†</u>	<u> </u>						<u> </u>		
E		1	Ī	Ī	·			74	1	<u> </u>	******	<u> </u>						<u> </u>	-	
F .		1		•	1					1			·		2	1		<u> </u>	1	
G		}		·		74				•	74	1		-			<u> </u>	•	 -	1
Н		**************************************	†		•						†	<u> </u>				1				
	.		•	<u> </u>	<u> </u>		ļ .	·····	·		·	·						-		
К	1	ļ		<u> </u>	1				<u> </u>	Ť	·			<u> </u>	<u> </u>		1		6	6
L	1					••••••	74		 	74	. 		<u> </u>		<u> </u>		`	- 		<u>-</u>
М		<u> </u>	<u> </u>	<u> </u>		*******				<u>†</u>	<u> </u>		<u> </u>	<u> </u>	·	<u> </u>	<u> </u>	1		1
N		••••••••••••••••••••••••••••••••••••••	<u> </u>	<u> </u>		•••••				<u> </u>	<u> </u>	<u> </u>	<u> </u>	-				<u> </u>		1
Р			73	<u> </u>		•••••				-	İ	<u> </u>		-	<u> </u>	<u> </u>	<u> </u>	·	·	
Q	72					•••••	••••••		······	İ	İ				-	·	<u> </u>	†	<u> </u>	
R					73	******	••••••		 	 !		73				72	·	·•••••	1	1
S		74	1	73		*******	*******			• !						1	†	72	·÷	<u> </u>
Т						•••••	••••••			······			73	ļ			<u> </u>		•	; ;
V							********											 -		<u> </u>
W							********	*******	74			•••••				 	 	İ		73
X							************		•••••								†	<u> </u>	†	
Y							•	*********	•	*********		*******		72	72		<u></u>	<u> </u>		
Z												••••	*********		••••••					
-			·														74			
unknown (?)												**********		••••••	******			!	<u> </u>	
not sequenced														*******		******				
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
	72	•	•	•	•		:	:	:	:			•			**********	********		·	•
mcaa*	Q	S	Р	S	R	G	L	Ε	W	L	G	R	T	Υ	•	***********		S		
rel. oomcaas	97%	100%	%66	%66	%66	100%	100%	100%	100%	,000 ₁	%001	%60	%66	37%	97%	9/2/	%00	92%	9068	%66
pos occupied ^a																		ა 3		2

Table 6G: Analysis of V heavy chain subgroup 6

														CI	DRI					
amino acid¹	21	22	23	24	25	56	27	28	29	30	31	A	8	32	33	34	35	36	37	38
Α	1		67											66	67			<u></u>		
В																				
С		68																		
. D							68				1						1	<u></u>		
E																				
F.										2				1	1				1	
G			1			69							3	1	2					
Н													,				1			-
l				64								2					1		70	
K												3								
L																				•••••
M																				
N							1				2	66					70	••••		•••••
Р																				
Q																				
R					••••						2	1								74
S	1			1	69			69		68	66		67		3		1			
T	67										2	1	4		1					 .
V			1	4					70					6					2	
W	<u> </u>	1														74		74		
X																********				••••••
ΥΥ	.											1							1	
Z																				
-	.	<u></u>	<u></u>																	
unknown (?)	ļ	<u></u>	ļ								1									
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	·	÷	÷		•••••	••••••						74	••••••	•••••••••••••••••••••••••••••••••••••••			····· ·		*******	••••••
oomcaa,		÷	÷			•••••						66	• • • • • • • • • • • • • • • • • • • •	******		************				
mcaa*	T	С	Α	1	S	G	D	S	٧	S	S	N	S	Α	Α	W	N	W	1	R -
rel. oomcaa ^s	92%	%66	926	93%	100%	100%	99%	100%	100%	97%	9008	%68	91%	%68	91%	100%	95%	100%	95%	100%
pos occupied	3	<u> </u>	·										3		5		5	:	4	1

Table 6G: Analysis of V heavy chain subgroup 6

*														1	ran	ewo	ork I			
amino acid'	_	7	က	. 4	S	9	7	8	6	10	-	12	13	14	5	9	17		19	20
Α													1		T					
В		<u> </u>																		
· C																				
D				Ī							<u> </u>	<u> </u>					<u> </u>	<u> </u>	-	
E									1				-			<u> </u>	<u> </u>	<u> </u>		1
F																-		1	<u> </u>	<u> </u>
G						-		52	2	67			1		-				-	•
· H									·				-				•	-		•
		<u> </u>				·					1	1			·	-	<u> </u>	†	<u> </u>	<u> </u>
K		Ī	<u> </u>	<u> </u>				<u> </u>		-		Ť	68					<u> </u>		-
L			<u> </u>	52							68	1				<u> </u>	1	67	1	68
М			<u> </u>						1	<u> </u>	<u> </u>	<u> </u>			<u> </u>			 -	-	
N		 !	<u> </u>							<u> </u>								<u> </u>		
Р			<u> </u>						68				<u> </u>	67			 	<u> </u>	1	
Q	52		52		51	52	ļ						······			68	<u> </u>			
R					1	ļ 				1	•					!	 !			
S				••••••	4.0000	! !	52		<u></u>			<u> </u>		1	68	<u></u>		ļ	66	
Т												<u> </u>				••••••	68		·	
V		52			*******						•••••	66		••••••		*******		1	-	
W		********			••••••									••••••	···········	•••••			•••••	
X							••••••				•••••								•••••	
Υ					*******	••••••	********			•••••	•••••		********	*******		********				
Z											•••••		••••••	********	••••	••••••		•••••	******	
-					,															
unknown (?)								•••••						•••••		******				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa³		:		:						*******	*********	•••••••••••••••••••••••••••••••••••••••			68	••••••••		•••••	••••••	
mcaa'	Q		Q	L	Q		S		••••••	G	••••••••••••	٧		Р	S		•••••••••	L	S	ī
rel. oomcaa ^s	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	92%	100%	%66	100%	100%	100%	%66	%26	100%
pos occupied ⁶	1		•	- 1	•			:	:	:	:	:	· ·		1					1

Table 6F: Analysis of V heavy chain subgroup 5

		Ψ.			Fr	ame	wor	k IV					1
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
A												1	611
В													
С				<u></u>									205
D	1			···········		<u> </u>					<u> </u>		458
E				1									404
F	2										1		256
G			41		41								1065
Н								<u> </u>					44
l	9								2				588
K				3									650
L	2						25	1					549
M							8						303
N													64
Р	2					1					1		414
Q				34									612
R				3									351
S	2										40	39	1545
T	1					40	8		39				604
V	11							40		41			594
W		43								11000000			432
X													
Υ	13			********	••••••								738
Z													
_	2												635
unknown (?)													4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq²	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa	13	43	41	34	41	40	25	40	39	41	40	39	
mcaa¹	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	29%	100%	100%	83%	100%	98%	61%	%86	95%	100%	%86	%86	
pos occupied ⁶	10	1	1	4		2 25	3	2	2	1	2	2	

Table 6F: Analysis of V heavy chain subgroup 5

				- -							CD	RII					*				
	amino acid'	93	94	92	96	97	86	66	100	⋖	8	ပ	۵	ш	u	9	I			×	101
	A	92		1	1	2		3	4	3	2		1				1		4	4	2
	В										Ī										
	. C						1	1	1			2		1							
	D				3	3	3	3	1	2	1	1	2		2	! 1	1	1	2		37
	E			1	1	1	2			1	1				1			1			
	F.					1		3			3				:					26	
	G			1	9	11	12	12	5	2	4	3	10	2	1				5	5	
	Н			10	1		2			1	1		1								
	l				3		2	2	1	1	4	1	1		1	1					
	K		1	1	1		1	3	1								2				
	L			11	2	3	1	1	2	5		1		1		1		-			
	M					2	1	1		1	1	1	1				<u> </u>		<u> </u>	10	
	N				1		2		1	1	2			1	*******			<u> </u>	2	Ţ	
	P ·			5	1	4	3	1	2				1			:······	:				
	Q		1	3	2		1	1	4	2	1	2									3
	R		92	7	9	2	2		2	1		:									
	S		1	1	3	2	6	4	4	5	3	- 5	3	2	2			1		1	
	T	1		1	3	2	1	2	6	3	3	6	1		1						
	V	2	•	2	4	4		1		1	2			1				•••••			
	W			1		2	1					1		2		1		1	1		
	Х		*******																		
	Υ				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
	Z																				
							1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
	unknown (?)													1			1	1	1		
ľ	ot sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
	sum of seq'	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
	oomcaa,	92	92	11	9	11	12	12	9	8	10	16	23	30	30	31	32	30	22	26	37
	mcaa⁴	Α	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
	rel. oomcaa ^s	97%	92%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	67%	67%	%69	71%	67%	49%	59%	82%
ı	oos occupied [*]	:								:	:		11	:	:	8	4	6	6	4	5

WO 97/08320 PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

Mathematical Mat						ram	ewe	ork l	11							-					
A I 91 I	. مستحم معاطا	9								<u>~</u>	د ع	۳.	4	2	9	_	&	6			92
B I		_	:	-		- ∞	∞	8				:	:	-	<u> </u>	<u> </u>	-	; 	_ 	<u>ი</u>	<u>.</u>
C I	Α		1	91					ļ		<u></u>	1	96	ļ	ļ	ļ	93	<u> </u>	<u>.</u>	<u> </u>	ļ
D I	***************************************			!					<u> </u>		<u></u>	<u> </u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
E I	. C			<u> </u>				1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		<u></u>	<u></u>	<u> </u>	<u> </u>	ļ	9
F I	D				1							<u></u>			96	<u></u>	<u></u>	<u></u>	<u>.</u>	<u></u>	
G I	<u> </u>						1					1				<u> </u>		<u>.</u>	<u> </u>	<u> </u>	ļ
H H I I I I I I I I I I I I I I I I I I	F .				1										<u></u>		<u></u>	<u>.</u>	2	6	<u> </u>
N	G								3	1					<u></u>		4		<u> </u>	<u> </u>	<u>.</u>
K I	Н						3											<u> </u>	<u> </u>		
L I I 96 I I 97 I I I 2 I I 2 I																2	<u></u>	9			
M N 7 0 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1	K							,,				91			*****			1			
N 7 I	L					96					97							2			
P I	M														•••••••	*********		84			
Q I I I 93 I	N	7			•			•••••	2	2					•	2		•••••			
R 1 L L L I 1 1 3 3 L	Р		•••••	1		•		********						********	••••••	*******					•••••
S 87 2 1 1 u u 90 91 u u 96 u 5 u <td>Q</td> <td></td> <td>•••••</td> <td></td> <td></td> <td>•••••</td> <td>93</td> <td>********</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>••••••</td> <td>•</td> <td>•••••</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Q		•••••			•••••	93	********						••••••	•	•••••					
T 2 94 2 0 1 0 1 1 0 1 1 1 1 88 1 1 0 0 0 0 0 0	R	1						1	1	3		3		••••••							******
V I	S	87	2	1	1				90	91				96		5					
W I I I I 95 I	T	2	94	2	••••				1			1	1	1		88	•••	1			
X	٧		*****	2		1									1						•••••
Y I I 94 I	W							95													••••••
Z	Χ																		•••••		••••••
Z I	Υ		•••••	••••••	94			••••••	••••••	********				*******	•••••				94	89	
sum of seq? 97	Z														••••••			•			
sum of seq? 97	-																				
not sequenced Image: sum of seq of seq of seq of meases 97	unknown (?)		••••	•••••																	
sum of seq² 97 </td <td>******************************</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>••••••</td> <td>•••••</td> <td></td> <td></td> <td><u>i</u></td> <td>1</td> <td>2</td> <td>2</td>	******************************		•											••••••	•••••			<u>i</u>	1	2	2
oomcaa¹ 87 94 91 94 96 93 95 90 91 97 91 96 96 96 88 93 84 94 89 mcaa⁴ S T A Y L Q W S S L K A S D T A M Y Y		97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96		_
mcaa* S T A Y L Q W S S L K A S D T A M Y Y			*******		********	*********	********			•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••			·····÷		····÷	•••••
\				• • • • • • • • • • • • • • • • • • • •							•••••••	•••••••		••••••••	••••••••	•••••••••••••••••••••••••••••••••••••••	.				C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		% 0	20%	40%	70%	%6	%9	8%	3%	4%	%00	40%	%6	. %6	%6	1%	9,09	7%	%8	4%	100%
pos occupied ⁶ 4 3 5 4 2 3 3 5 4 1 5 2 2 2 4 2 5 2 2		•								:			:	•	:	:	:	:	:	:	

183

Table 6F: Analysis of V heavy chain subgroup 5

		CDR	11																	
amino acid'	26	57	28	29	9	61	62	63	64	65	99	67	89	69	70	, ,	7	7.	74	- L
Α		6						ı							Ī	8	8			
В																				
. С					1					1		Ī					İ	İ	-	İ
D	77									2		<u> </u>	<u> </u>				9	7	-	
E	3								2			Ī					1		2	
F.				2				91				1		3	}			1	-	
G	1									94			-							
Н											15		-			-		1		•
[4	1					1			<u> </u>	3		88				•		9
K			2															93	3	-
L						1		4							2	2	1		Ī	
М												:		3						Ī
N	2		14	2													Ī	-	Ī	
Р						95	1		1				!····					1	1	
Q									91		81							1		
R			78						3		1			1			1	1		
5	2	2			95	1	95	1					1		95			<u></u>	96	
T		85	2		1								96				<u></u>			-
V				1								93		2		9				
W													*******		*******					<u> </u>
X							· ·						• •• •• • • • • • • • • • • • • • • • •		••••••					
Y	12			92											*******		•••••		••••	
Z															********		••••••			
																-				
unknown (?)																				
ot sequenced																				
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa ¹	77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	91
mcaa'	D	Ţ	R	Υ	S _.	Р	S	F	Q	G	Q	٧	Ţ	ı	S	Α	D	K	S	
rel. oomcaa³	79%	988%	%08	95%	%86	%86	%86	94%	94%	97%	84%	%96	%66	91%	%86	91%	100%	%96	99%	94%
oos occupied"	:		•	•	•	•	- 1	•		•	•	:			:	••••••	-		2	

Table 6F: Analysis of V heavy chain subgroup 5

."				Fr	ame	wor	k II						T							
amino acid'	39	40	41	42	43	44	45	46	47	48	49	50	51	52	⋖	8	U	53	54	55
Α			1			1										1	T		2 1	1
В		<u> </u>																		
· C														1					1	
D										Ī				14	٠ <u>٠</u>			{	3 93	
Е					3			97			-	<u> </u>			·		-	<u> </u>	2	
F										-		1		2	2		1	1		
G				97		96	••••••		······		95		-					69) 1	
Н						•	•••••			•	•			3	1					
1										1	<u>.</u>	75	92			-		-	•	
К		1			94						········		<u> </u>				<u> </u>	1	<u> </u>	
L						•	94		<u> </u>	2		2	1			<u> </u>	<u> </u>	<u> </u>		
М		92					*******			89		<u> </u>	1					<u> </u>		
N						******	*****					<u> </u>								
Р			96			••••••••••	2						ļ	1	93				<u> </u>	1
Q	97				•	••••••	1			•••••	••••••	·······	<u> </u>				ļ	†	•	
R		1			•••••	••••••	********			•••••	1	14		••••••				1		
\$						*********		•••••				1		••••••	1	········		16		96
Т		1		į	•	•••••					•	3	1		1			<u></u>		
V		2				******		•••••		5	1	1	2							
W									94		••••			•••••	******					
X							•	••••••			••••				•••••	•••••	•••••		••••	
Y							••••••		3		•		•••••	76					•••••	
Z								******			**********	*******		••••••	•••••	••••••	•••••			
-																97	97			_
unknown (?)											***********		*******	******	********					
not sequenced														•••••	•••••					
sum of seq' .	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa¹	:	:		97	•					··········	····· ·	••••••		• • • • • • • • • • •	************	*******	**********			
mcaa'			Р		:	G	L			М		•••••••	1	• • • • • • • • • • •	····-:	-	-	G		S
rel. oomcaa ^s	100%	95%	%66	100%	97%	%66	97%	100%	97%	95%	%86	77%	92%	78%	%96	100%	100%	71%	%9£	%66
pos occupied"				1																2

Table 6F: Analysis of V heavy chain subgroup 5

															CDR	:1	•				
amino acid'	21	22	23	24	25	26	77	28	29	3 6	3 2	; <	(0	, ,	7 . 6	3 5	t 1	ર્ડ	36	37	38
Α					3 2						4				Ī			8		1	
В																		···-	•		<u> </u>
· C		96	3						1		-	1					-	- -	-		
D			Ī						2	İ		2						1			
E						2	2			··	- †	1						-			
F .					3		(6	9:	7		<u> </u>			2				İ		•••••
G				92		93			1			1					7	2			••••••
H											1	 I			4						1
·I			Ī						-	4	}					9	3				
K			89				<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>	İ	-	*******			<u> </u>				••••••
L		<u> </u>	<u> </u>		Ī						<u> </u>	<u> </u>		<u> </u>		1	<u>-</u>			2	•••••
M			1							İ		<u> </u>	<u> </u>				- 	 		1	
N			1			•		2	1	4	14		"	2	?	<u> </u>	†·····	İ		-	
Р					1	•••••••					-				-		<u> </u>				1
Q			4			••••••										<u> </u>	·	<u> </u>	•		
R			1			1		2							1			•			95
S	94			1	90			84		10	61			2	2	2	15	5			
Ţ	2					*******	********	5	·····	75	16					2	÷				
V						••••••	••••••			<u> </u>		<u> </u>				1	<u> </u>	1	g	3	
W											<u> </u>				93	-		9	·	Ť	
X														•				Ť	***		
Υ							90							87				Ì	-		
Z																		-			
												97	97								
unknown (?)													******		••••••		********		-		
not sequenced	1	1	1	1	1	1	1					**********		•••••	•••••••		*******	<u> </u>			
sum of seq²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	9	7 9	- 37
			89																		
mcaa*	S			G	S	G	Υ	•		••••••	S	-	•••••••	Υ	•••••••		G	÷	V	···•	
rel. oomcaa'	98%	100%	93%	%96	94%	92%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	96%	2 2	98%
pos occupied ⁶															-	4			·†·····	:	3

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														Fr	ame	wor	kΙ			
amino acid'	_	7	က	4	2	9	7	8	٥ و	10	11	12	13	14	15	16	17	18	19	20
. A					1			1	89		1			1						
В						•••••														
· C							1													
D										2										
E	88	1			2				4	93						92				
F																	1			
G	1							92							94					
Н																				
l																				9
K												94	94						77	
L		1		91		2												95		
M											3								1	
N																				
Р				1					1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
5							92										94			
T						••••	•••••													
<u>V</u>		90			89				1		91									
W																				
Χ																				
Υ																				
Z	<u></u>																			
	<u> </u>																			
unknown (?)	 																			
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq ²	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa,	·····	••••••	÷		·····		······	·····			91	·····		•••••••••••••••••••••••••••••••••••••••	•••••••	•••••••••••••••••••••••••••••••••••••••	······•			
mcaa'	Ε	V	0	L	V	Q	S	G	Α	Ε	٧	K	K	Р	G	E	S	L	K	l
rel. oomcaas	%96	%86	100%	%66	%96	97%	%66	%66	94%	%86	%96	966	%66	%66	%66	97%	%66	100%	80%	1000
pos occupied					•	:					:	:	i	•	:	•			4	

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	me	wor	k IV				·]
amino acid¹	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α						1			1				332
В													
С						<u> </u>	<u></u>						113
D													210
E		-											176
. F													135
G			41		40	1							674
Н	1								1				45
I	9					1							282
К				3									278
Ĺ	4						19						540
М							9						43
N						1							204
Р	3			2								2	281
Q				29									334
R	1			4			1						250
S	1			1							36	33	986
Ţ				1		33	8		34				532
V	12							36		36	•••••		488
W		46							••••				267
X				••••									
Y	16											·	455
Z													1
_													466
unknown (?)													4
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	426
sum of seq²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa,	16					33	19	36	34	36	36	33	
mcaa'	Y	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	
pos occupied ^a	8	1	1	6	1	5	4	1	3	1	1	2	

170

Table 6E: Analysis of V heavy chain subgroup 4

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	V	8	ပ	۵	ш	Ħ.	9	I		_	ᅩ	101
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																<u> </u>	<u> </u>			
. С					1				1											
D			- 6		5	5	5	4	3	2	4	3	1		1	2	1			41
Е			- 6	1	1	2	1			1	3	1	2	1						
F.				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9	.	
Н			1				1						1	•		1				2
1				1		2	4	1	3	2	3		1						1	
К			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
M				1	4		3	1		2	1		-						9	
N				3					2	1	1	5	1	1			2			
Р				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
5		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
T		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
w			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq?	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa,	····		***************************************	• • • • • • • • • • • • • • • • • • • •	*********	********	*******	***************************************	••••••	9	11	16	23	27	29	34	31	14	31	41
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	%86	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	9029	%68
pos occupied										:	:		••••••	••••••	:			÷	••••••	

Table 6E: Analysis of V heavy chain subgroup 4

					Fran	new	ork l	11												•
amino acid'	9/	77	78	79	80	8	82	4	8	ပ	83	84	85	98	87	88	68	06	9 1	92
Α		<u>!</u>										55	57	7		5	7			
В																				
С																				57
D					1				<u> </u>					57	,			1		-
E						1				<u> </u>								-		
F.			54						1							-	<u> </u>			
G								1												
Н																				-
1			1					1			3									
K	3					46		2										<u> </u>		
Ĺ		3	1		55		53			2							1			
M						1	1			1							1			
N	54					3		3	1											
Р																		7 ·······		
Q		54			1	1														
R						2		2				1								
S			1	57		2	1	44	55		1				2				1	
Ţ						1		4			53		•••••		55					
V							2			54		1					55			
W																				
Χ														•••••••		·				
Υ																		57	56	
Z ·																				
unknown (?)																				
not sequenced																				
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa,	54	54	54	57	55	46	53	44	55	54	53	55	57	57	55	57	55	57	56	57
mcaa'	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	92%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	2	2	4	1	3	8	4	7	3	3	:	:	:	1	2	1	3	•		1

Table 6E: Analysis of V heavy chain subgroup 4

•	C	DR	II																	
amino acid'	99	57	58	59	09	61	62	63	64	65	99	29	89	69	20	7.1	72	73	74	75
Α		1									1		1			1				1
В																<u></u>	<u></u>	<u></u>		
. C																				
D			2									1					55			
E																	1			••••
F.				3														1		•••••
G	1						,			1										
Н			2																	•••••
<u> </u>	1	1										1	1	48		3				
К					1				53									1		51
L						1		55				1		••••		3				1
М														7				2		••••
N	2		40		53								2							1
Р						54		1						•••••						
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
V	1	1				•••••						53		2		50				1
W																				
X							••••••		•••••											······································
Y			11	54																
Z																				
_														••••••						
unknown (?)																				
not sequenced	<u> </u>				1	1	1	1				1	1							
sum of seq ²		:	:											***************************************			57			
oomcaa3		.	÷					*********			••••••		51	48			55	•••••••		• • • • • • • • • • • • • • • • • • • •
mcaa*	ļ		N				S		K			٧		1	S	٧	D	T	S	K
rel. oomcaas	96%	95%	70%	95%	95%	%96	100%	98%	93%	98%	%86	95%	91%	84%	%86	98%	%96	91%	100%	%68
pos occupied ⁶	•	•	•	:	•	:	:		:	: :	: :	:		: :	: :	:	: :	:	1	6

Table 6E: Analysis of V heavy chain subgroup 4

				Fr	ame	wor	k II						Τ						-	
amino acid'	39	40	41	42	43	44	45	46	47	48	49	50	5.	22	A	. ~	، د		54	55
А			8	1							T	1	T	T				Ī		Ī
В																				
· C											-						<u> </u>	Ī		1
D					<u> </u>										1		1		1	-
E				1				56	3	-		22	2		-		·· ·	<u> </u>	<u> </u>	
F .								<u> </u>	1		-	1						<u> </u>		1
G		······	•	55		55	!······			<u> </u>	56	1			-					57
Н		2		•			······			<u> </u>	•	·				<u> </u>	·	24	,	
										54	-	1	54			1			<u> </u>	
К					54	••••••	******		<u> </u>	†		<u> </u>	-			<u> </u>	<u> </u>	<u> </u>	1	
L		1					55		<u> </u>	2		<u> </u>	 -	<u> </u>				-	<u> </u>	<u> </u>
М		<u></u>					•••••	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 			<u> </u>	<u> </u>	<u> </u>	
N						••••	******	<u> </u>			<u></u>			21		-	-	-	İ	
Р		50	49		•••••		2	·····										<u> </u>	<u> </u>	
Q	56				•••••	•••••		1	†	†	•	1				·			•	
R					3	2	*******		 	*	• !	9		1				i		
S		3				*******	*******			 !	 !	7		1	····			·····	52	
T	1	1						••••							ļ	. ,	<u> </u>	8	<u> </u>	<u> </u>
V							*******	•••••		1	•••••		3	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
W									56											
X					***************************************		••••••	*******												
Υ								••••••	1		•	15		32	•••••••	•		23	•••••	
Z						••••••		********				••••	••••••	•••••	**********	•••••	•••••			
-															57	57	57			
unknown (?)				·								•••••	********	•••••			•••••			
not sequenced																*******	••••	*******		
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
		50																		
mcaa¹		Р				G	L	Ε					١	;	-	-	-	•••••••	S	
rel. oomcaa³	%86	98%	%98	%96	95%	%96	%96	%86	98%	95%	%86	39%	95%	26%	100%	100%	100%	42%	91%	100%
pos occupied [«]															~~~~~					

Table 6E: Analysis of V heavy chain subgroup 4

	<u> </u>													CI	DRI					
amino acid'	21	22	23	24	25	56	27	28	29	90	31	∢	8	32	33	34	35	36	37	38
Α			22											1						
В																		<u></u>		
. С		53													1					
D			1								4	1	1	1			1			
Ε																				
F					1				22			**********		1	1				1	
G						53	53				21	3	4				8			
Н							1						••••	2						
			1					1	32										51	•••••
K																				
L																			1	
M																				
N										1	1		2	2			1			
Р								3												
Q											1									
R						1				3	2		1							5
S			2		35		*****	51	1	52	25	5	9	1			44		1	
T	53		29								2	1					3			
V				55		1			1										3	
W							•					1			2	56		57		
Χ																				
Y					19		1							48	52					
Z																				
-												45	39							
unknown (?)							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1				
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa'	T	С	T	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W	1	F
rel. oomcaas	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	80%	%O.Z	%98	93%	100%	77%	100%	%68	1000
pos occupied		<u> </u>	;	:	:	:	3	:	;	: :	7				4		5		5	

Table 6E: Analysis of V heavy chain subgroup 4

•														ا	ran	iew	ork I			
amino acid'	-	2	ო	4	Ŋ	9	7	œ	6	10	_	12	. 5	14	r.	3 2	17	2	5 5	20
Α									19)					1			1		1
В									<u> </u>	<u>.</u>	<u> </u>						<u> </u>	<u> </u>	•	-
· C			-						· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>				·	i		-	<u> </u>	- I
D				<u> </u>					·	1	<u> </u>	Ī		******		<u> </u>		· ·	<u> </u>	
E		Ī				32			1	1						4	1	<u> </u>	· † ····	<u>† </u>
F							<u> </u>				1	-	·••····					· •	•	1
G								54	1	53		-					2	<u> </u>	•	-
Н			4		2					<u></u>					-	-	·		<u> </u>	
e-i		Ĭ									-								<u> </u>	1
K				<u> </u>	••••••••••••••••••••••••••••••••••••••				<u> </u>	Ī	<u> </u>	1	54			·	<u> </u>		1	<u> </u>
L		7		54					-		53	19	1	1	-		<u> </u>	53	· †	50
M			Ī	<u> </u>					Ī	ļ	<u> </u>	<u> </u>	<u> </u>				<u> </u>	 	†	
N									<u></u>	<u> </u>	<u> </u>						<u> </u>			
Р									33	<u></u>				51	1			<u> </u>		2
Q	52		50		51	20										7	<u> </u>	<u> </u>		
R	1																	<u></u>	<u></u>	
S							3 3								52				52	
T									1		-						52			
V		47				1						34								1
W							20				·									
X									·									•••••		
Υ																				
Z	1																	_	•	
-																				
unknown (?)																				
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa¹	52	47	50	54	51	32	33	54	33	53	53	34	54	51	52	44	52	53	52	50
mcaa'	Q	٧	Q	L	Q	Ε	S	G	Р	G	L	٧	K	Р	S	E	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	%86	100%	%96	94%
pos occupied ⁶																			3	3

Table 6D: Analysis of V heavy chain subgroup 3

	··· -				Fr	amev	vork l	V				
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113
Α	1		1			2						
В				1								
С												
D	2											
E					1						••••	
F	2											
G			140		130		1				•••••	
Н	4											
<u> </u>	15								1	1		
K				13								
L	10			1			91					2
M							6					
N	1					1						
Р	17					1	1					
Q				111								
R				8								
S	7	1									118	110
Τ.						123	27		122			1
V	34		1			1		125		119		
W		158										
Χ												
Υ	82			•								
Z												
	9	2	2	2	2	2	2	2	2	2	1	1
unknown (?)												
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97
sum of seq'		161				•••••					••••••••	
oomcaa	·····	158						125			***********	
mcaa*	Υ	W	G	Q	G	T	L	V	T	V	S	S
rel. oomcaas	45%	%86	92%	82%	%86	95%	71%	98%	%86	%86	99%	%96
pos occupied	12	3	4	6	3	6	6	2	3	3	2	4

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•					רחו	R III									
amino acid'	86	66	100	4	<u>ش</u>	U	۵	ш	ш	g	I	_		×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В				•••••	••••										
· C	13	5		1	2	11	3	••••	2	······································				1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	•••••			1		***********			•				1
F .	3	5	4	5	5	6	3	5	7	2	••••••	1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32	} ************************************	6
Н	3	4	3	2	9	2	***********	1	3	1	2	8	1		
1	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1	**********				***********	• • • • • • • • • • • • • • • • • • •			
L	26	13	4	12	8	2	6	3	10	3	•••••	: :		2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1	**********	3		9	
Q	4		1	1	1	1	1				•••••	1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4	***********			1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
***************************************	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq'	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa ₃	34	28	35	54	73	87	102	110	126	135	134	120	91	71	146
wcaa,	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20	19	20			······································	12	12			8	11

Table 6D: Analysis of V heavy chain subgroup 3

		<u></u>													
amino acid'	83	84	85	98	87	88	83	90	91	92	93	94	95	96	26
Α		149	1		1	207					173	3 2	15	9) 11
В															
· C									1	21Ó		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	3 5
Н		1					<u> </u>		1					3	11
		8			<u></u>		2			: : : : :			4	15	10
К	30						<u>.</u>	<u></u>				60	4	3	5
L			****				18					1	6	11	7
М			*******		2		1		<u>.</u>					6	1
N		1		1		••••••					*******	2	20	4	3
Р		9		,						••••	1	3	4	29	10
Q		••••••		1							**********	5	3	9	2
R	177			********							**********	103	9	30	19
S		1			1							3	9	8	11
T	3	28			207		1				25	15	7	6	20
V		9				*********	187				10	1	7	7	15
W							*********			1	••••••••		3	4	3
Х				1		*********		* 0000000 004 0							
Υ								211	194				12	9	8
Z															
								**********					1	3	4
unknown (?)															
not sequenced					1	1	1	1	1	1	1	1	7	12	13
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	199
oomcaa,		149	:	209		207	187	211	194	210	173	103	54	30	35
mcaa'	R	Α	E	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaa ^s	83%	20%	%06	%66	%86	%86	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ^a	5	10	4	4	4	2	7	1	4	2	5	:	18	20	21

16g

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

										Fra	mewo	ork III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	∢	ω	ပ
Α				57			1	8	3					1	
В											2	2			
C															
D		199	38		2	2			1				10)	
E		6			4						5				
F									13						
G													1	4	
Н						1			1		2		2		
l l			1				2	2				3	1	1	
K					186	6							3		
L		<u> </u>						188		209		3	1		212
М	1				2		10	3		2	`	205			
N		5	170		2	188					3		181	10	
Р							1								
Q			*********		7						199				
R	211				1	1					*********		2	8	********
5 .				153	8	10	56		3				6	186	
Ţ							142				1		4	2	
V				1				11		1		1	•••••••		
W												********	**********		
X		. 2	2			4	••••••	•••••				*********	1		
Υ						••••••			194						
Z															
-															
unknown (?)	·····							• • • • • • • • • • • • • • • • • • • •							
not sequenced			1	1											
sum of seq'	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	***************************************	199		•		•••••	142	188	194	209	199	205	181	186	212
mcaa*	R	D	N.	5	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa'	100%	94%	81%	73%	88%	89%	67%	9%68	92%	%66	94%	92%	85%	88%	100%
pos occupied ^a	2	4	4	3	8			5		3	6	4	11	7	1

Table 6D: Analysis of V heavy chain subgroup 3

	(CDR I	1												
amino acid'	26	57	28	59	09	61	. 62	63	64	65	99	29	89	69	70
А	9	1	2		174	33							1		
В	1	2													
· c															
D	11		17			160									
E	8	3	2			1			2						
F	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
1	3	37	2					8					14	208	
K	1	61							199		8				
L	1	1	1		1		•					1		1	
М	8	•••••	2		1	*******	******		•••••						
N	51		4			2	*********	*********	. 2	*******	4		*************************		
Р	1	1			6	8	18		1		*****				
Q	3	2							2		2	*********			
R	5	4			5				6		201	***********			
S	48		11		4		193					2	7		211
T	42	97	5		7						••••••		189		1
V		2			10	2		204				1		3	
W			2				•••••								
X	4		1			1									
Y	9		151	210			1					1	1		
Z		`													
-															
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oowcaa,	51	***********		210					•••••••••••••••••••••••••••••••••••••••	••••••	······			208	•••••••••••••••••••••••••••••••••••••••
mcaa'	N	Ţ	Υ	Υ	Α	D	S	V	K	G	R	F	T	1	S
rel. oomcaa ^s	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	%86	89%	%86	100%
pos occupied"	19	12	15	2	9	8				1					2

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	work	11									<u></u>				
amino acid'	44	45	46	47	48	49	20	51	52	∢	ထ	U	53	54	55
Α	1					77	42	2		1 2	2	14	1	7	
В			3							1					
. C									1				1		
D			1							7			94		3
E			198						3	3 2	1		2		1
F							7	1	2	2 1				1	8
G	207					33	11		10) 46			4	163	85
Н		<u></u>			<u>.</u>	<u> </u>	6			1					
					3	<u></u>	3	191		1					1
K		<u></u>			<u></u>	<u></u>	<u></u>	1	37	2	30		3	1	
L		211	<u></u>	<u>.</u>	5	<u></u>	12	1	<u>.</u>	<u></u>					
M		<u></u>					1	1	<u></u>						
N							13		7	9	2		13	11	1
Р		1	ļ		<u></u>	ļ	<u></u>		<u></u>	1]		1		
Q			7				7			10		<u></u>			
R	1						24	1	17	5	1	<u></u>	2		16
S	3			1		102	11	9	118	43		1	74	17	82
T							3	5	4	2	<u>.</u>	13	12	3	3
V		<u></u>	3		204		49	2		1		6		00 PB00 P 0 P 0	
W				210			1	•••••	8	6	***********				
X									·		••••••		4		3
Υ				1			22	*********	5	58	**********				8
Z															
-					••••••			•••••		14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq'	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	207	******	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa'	G	L	E	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	100%	93%	99%	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ^a	4	2	5	3	3	3	15 . ∠.		11	19	5	5	12	9	12

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

				CD	RI									F	ram
amino acid'	31	∢	മ	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F				5				·							
G	13				31		1					2		209	
Н				4			88	•							
1	1			1		15			12						
K	7										1				202
L	3					3	•••••		2	3	1	2	1		
М						193									
N	35	**********		8	3		34		••••		***************************************				********
Р		•••••••		1		•••••	1				***************************************	4	191		********
Q		***********	**********			•••••		************	*********		209		1		1
R	7	•••••								207		7	******		{
S	103			17	8		72					3	14		
T	9				15		10					4	5		
٧	2				7	1			197			2			
W					30			212							
Χ	1													·	
Υ	1			154	19		3								
Z															
_		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa¹	103	210	210	154	80	193	88	212	197	207	209	187	191	209	202
mcaa'	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	98%	%66	9/088	%06	99%	95%
pos occupied ⁶	:	1	•					1				:			

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	work	ı									•				
amino acid'			18	19	20	21	22	23	24	25	56	27	28	29	30
Α								183	192		1	T			
В										-		†			
. С					ļ	1	209						<u> </u>	-	
D		•••••													7
E	8			: :				8			3		1		
F		1	1			1						201		201	
G	134								2		207				3
Н															1
								2				3	17	1	
K				15											4
L			205		201							6	<u></u>	3	
М			1					: :	: ····································				1		
N													10		10
Р								1					2		
Q		*******	1												
R	62	**********		191					*******						11
5		206				207		4	2	209		**********	15		174
Ţ	4	1		2				4	4			1	163	,	
V					8			7	9			•••••••	1	6	
W					•••••	**********									
X												********			
Υ								•••••		*******		*********			
Z															
-										******		•••••••			
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	2
sum of seq ²	***********	••••••			••••••	*******************	••••••	•			**********	•••••••••••••••••••••••••••••••••••••••	210	······································	• • • • • • • • • • • • • • • • • • • •
oomcaa,	***************************************	:	***********	••••••••••••	•••••	***********							163	201	174
mcaa'	G	S	L	R	L	S	С	Α	Α	S _.	G	F	T	F	S
rel. oomcaas	64%	%66	%6G	92%	%96	%66	100%	%88	92%	100%	%86	95%	78%	95%	83%
pos occupied ^a	4	3	4	3	2	3	1	7	5	1	3	4	8	4	7

Table 6D: Analysis of V heavy chain subgroup 3

														l	Fram
amino acid'	_	2	3	4	S	9	7	8	6	10	=	12	13	14	15
А					1		1			12		-1	<u></u>	3	•
В			1			1							1		
. С												<u></u>			
D	1					1				16					
Ε	110		9		15	166			9		•••••••		8		2
F ·											4				
G						••••••	••••	181	193	174		1			202
. Н			5										4		
ı												9			
K		5	3										26		
L		1	5	176	43						140			1	
М		12		1				•			••••••••			·	
N						•				1					
Р													1	194	
Q	41		138	1	3	12							162	-	
R			6										4		
S .							178			2				8	
Ţ							1								
V	5	147		1	118						62	195			
W					٠										1
Χ															
Υ															
Z	8														
-															
unknown (?)															
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	6
sum of seq ²	165	165	167	179	180	180	180	181	202	205	206	206	206	206	206
oomcaa ³	110	147	138	176	118	166	178	181	193	174	140	195	162	194	202
mcaa'	Ε	٧	Q	L	٧	Ε	S	G	G	G	L	٧	Q	Р	G
rel. oomcaas	67%	89%	83%	98%	%99	92%	%66	100%	%96	85%	9%89	95%	79%	94%	%86
pos occupied ^a	5									•••••••••••••••••••••••••••••••••••••••		:			

Table 6C: Analysis of V heavy chain subgroup 2

					Fra	me	worl	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	11	112	113	sum
Α									1				35
В													
С				••••									16
D													43
E				•••••••		•••••			 !				21
F				********					•				18
G			6	•••••	6		•••••						55
Н				•••••									6
				********				- 11111111					29
K				1			1				<u> </u>		42
L	1						3						78
М								••••					20
N							•		•••••				23
Р	1			•••		•	1						41
Q				3									23
R				2									41
S											6	3	82
Т						6	1		5				102
V	3							6		6			68
W		6											29
Χ													4
Y	1												35
Z													3
-													56
unknown (?)													
not sequenced	1	1	1	1	1	1	1	1	1	1	1	4	54
sum of seq'	6	6	6	6	6	6	6	6	6	6	6	3	
oomcaa ₃	3	6	6	3	6	6	3	6	5	6	6	3	
mcaa'	٧	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied ⁶	4	1	1	3	1	1	4	1	2	1	1	1	

Table 6C: Analysis of V heavy chain subgroup 2

										CD	R III									
amino acid¹	93	94	98	96	26	86	66	100	۷	8	U	۵	ш	ш	9	I	_	_	×	101
Α	5							1	2	1										
В														<u> </u>				<u> </u>	<u> </u>	
C																				
D																			<u> </u>	6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
l			3			2														
К							1													
L								1		1									1	
M.								1											2	
N				1	2												1			
Р				1	1		1		1											
Q			1																	
R		6	1			1			1											
S				1		1	1													
T				1			1		1	<u></u>				********						
V	2		1	1	1		1	1	<u> </u>		1									
W						1.									1			1		
X																				
Υ					2						1	2	1	1	1			2		
Z																				_
										2	2	3	4	4	4	6	5	3		
unknown (?)								<u></u>												
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_1
sum of seq'	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	5		3		2			2	.	2	2	3	4	4	4	6	5	3	3	6
mcaa*	Α	R	١	Н	N	١	G	E	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	9029	%29	100%	83%	20%	20%	100%
pos occupied ^a	2	2	4	6	4	5	6	5	5 16		5	3	3	3	3	1	2	3	3	1

WO 97/08320 PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

						Fran	ew	ork l	11												
_	amino acid¹	92	77	78	79	80	81	82	۷	80	Ü	83	84	85	98	87	88	83	90	91	92
	Α													1			5				
	В																				
	· C																	 			7
	D											6			7			······································			
į	Ε																				
	F					1															
l	G																2				
	Н																				
	1				•		2		. 1												
	K																				
	Ĺ					6															
	М							7			5										
	N	5								6.		1									
	Р			<u></u>			••••						7								
	Q		7	<u></u>														·			
	R			<u> </u>	<u> </u>											<u></u>					
	S	2	<u>.</u>	<u> </u>																	
	T			<u> </u>			5		5							7		7			
	V		<u>.</u>	7	7						1			6	•						
	W			<u>.</u>																	
	Χ																				
	ΥΥ																		7	7	
	Z																				
	-								1	1	1										
	unknown (?)																<u></u>				
	not sequenced																				
	sum of seq'	7	7	7	7	7	7	7	7	7	7	7	· 7	7	7	7	7	7	7	7	7
	oomcaa³	5		•	7	6		•••••••••••••••••••••••••••••••••••••••	5	6	5	6	7	6	7	7	5	7	7	7	7
	mcaa'	N	Q	٧	٧	L	T	М	T	N	М	D	Р	٧	D	T	Α	T	Υ	Υ	С
	rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	96%	100%	%98	100%	100%	71%	000	100%	100%	100%
	pos occupied ^a	:			1	2	2	1	•				1	2	1	1	2	1	1	1	1
	·									60							**********		********		

Table 6C: Analysis of V heavy chain subgroup 2

		DR	11																	
amino acid'	26	22	28	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α																				
В																				
. С																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
Н				1																
ı														6						
K	1	6							4							6				6
L								7				7								
М.																				
N																	1			
. P						2									••••					
Q																				
R			2			1			2		7				********	1				1
S			2		6		7			4			1		5				7	
T						4				3			6		2			6		
V														1			<u></u>	<u></u>		
w				1			,											<u></u>		
X					1															
Y			3	4																
Z																				

unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa,	5			••••••		••••••	•••••••••••••••••••••••••••••••••••••••	7	····÷	4	7	7	6	6	•••••••		6	6	7	6
mcaa'	D	K	Y	Υ	S	T	S	L	K	S	R	L	T	1	S	K	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ⁶	:								3	:	:	:		•		:		2	1	2

Table 6C: Analysis of V heavy chain subgroup 2

	_												\top							
				Fr	ame	10W	k II						\perp							
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	5	52	۵	_ <u>~</u>	، د	<u>ن</u> ر	5 2	55
A						6					7	,								T
В																				
. С																		Ī		
D											Ī			2	!				3	3 (
Ε								7										<u> </u>		
F														2					Ī	
G		1		7		1														
Н												2								1
1 .													6							-
K					6															-
L		<u> </u>	<u> </u>				7			7		2	1	1						
M		<u>.</u>	<u>.</u>																	
N		<u>.</u>			*****														3	
Р		5	7																	
Q	6																			
R	1				1							2								
S		1					*******											2		
T															*******			<u> </u>		
<u> </u>							•••••								•••••••		<u> </u>	<u> </u>		
W							••••••		7			1						4		
X														1			: : :	1	1	
Y								•••••						1	1					
<u>Z</u>																				
-															6	7	7	<u>.</u>		
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	6		••••••••	······································	6	6	7	••••••	7	7	7	2	6	2	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	0001	100%	100%	29%	%98	29%	86%	100%	100%	27%	43%	%98
pos occúpied ^a					:	:	:	:	:	:	•	•	•			:	:	:	3	:

Table 6C: Analysis of V heavy chain subgroup 2

														CD	RI					
amino acid'	21	22	23	24	25	56	27	78	29	9	3	۷	ω	32	33	34	35	36	37	38
Α								1				1			1					
В			<u> </u>													.,				
C		7													2					
D												1								
E																				
F				3			6		1											
G						7							4		3		3			
Н							*******													
1 .													1						7	
K																				
L				2			1		6											
M														5						
N											2									
P																				
Q																				
R					·								2		1					
S			1		6			6	.,	6	2	4					4			
T	6		6							1	3	1								
V				2										2		7				
W																		7		
Χ																				
Y					1															
Z																				_
			<u> </u>									<u>.</u>								ļ
unknown (?)				<u></u>	<u> </u>			<u></u>	<u> </u>	<u> </u>	<u></u>									-
not sequenced	1 1	<u> </u>									<u> </u>									_
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa,	E	7	6	3	6	7	6	6	6	6	3	4	4	5	3	7	4	7	7	<u></u>
mcaa*	T	С	Ţ	F	S	G	F	S	L	S	T	S	G	М	G	·V	S	W	١	-
rel. oomcaas	100%	100%	%98	43%	%98	100%	%98	%98	%98	86%	43%	57%	57%	71%	43%	100%	57%	100%	100%	
pos occupied	6	•••••	• • • • • • • • • • • • • • • • • • • •	•		:	2	•	:	:	:	•				1	2	1	1	

Table 6C: Analysis of V heavy chain subgroup 2

														F	ram	ewo	rk I			
amino acid	-	7	3	4	2	9	7	æ	6	10	=	12	13	14	5	16	17	18	19	20
Α										3										
В			<u> </u>																	
· c																				
D																				
E	1					6										2				
F																				
G								6												
Н																				
		1																		
Κ					3								6		1					
L				6							6							6		6
М																				
N							1													
Р							1		6					6			1			
Q	2														*******	4				
R					2															
S							4													
Ţ			6		1					2		<u>i</u>			5		5		6	
V		5								1		6		<u></u>						
W																				
X																				
Υ																				
Z	3																			_
unknown (?)																				
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa³	3	5	6	6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa'	Z	٧	T	L	K	Е	S	G	Р	Α	L	٧	K	Ρ	T	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	9029	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ^a	3	2	1	;	•	:	;	1	1	3	1	1	1	1	2	2	2	1	1	1

Table 6B: Analysis of V heavy chain subgroup 1B

					_		vork						i
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	S
Α													:
В		Ī											
С													
D	2	Ī											
E				1									
F	1												
G			27	*******	26					1			4
Н	1												
	7				ŕ				3				
K				2									
L							12			1			
М							2						
N	1												
Р	1			1									
Q				23									:
R							1						2
S	3								1		18	18	,
Ţ						21	6		16		1		:
V	6							21		18			:
W		29		,									
X											******		
Υ	11												;
Z													
	3												;
unknown (?)													
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	، ا
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa3	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	%08	%06	95%	100%	
pos occupied		: ·······	1	4	1	1	4	1	3	3	2	1	

Table 6B: Analysis of V heavy chain subgroup 1B

										CD	R III	-								
amino acid'	93	94	95	96	97	98	66	100	٨	80	ပ	۵	ш	ᄔ	g	I	_	_	×	101
Α	37	1	6		1	1		2	3	1	3		1						5	
В		<u> </u>																		
· C		1				3		<u> </u>	Ī	2	1						Ī		-	
D			7		5	2	3	1	5	4	-	1		2	2	1	2		-	27
Ε			2		1			1	1		2		1		1			<u> </u>		
· F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
		1		1	1	3	1	1	1	1	1	1					Ì	<u> </u>	1	
К		1	<u></u>	<u> </u>	1	•••••	••••		1	1		1		1			1	<u></u>	<u> </u>	
L			2	4	4	4	3			1	2	1	1	2		1		 !	2	
M				2		1	1								1	<u> </u>	<u></u>	<u> </u>	4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q			•••••		1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
Т		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
***************************************				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)		·								<u></u>									3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq?	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa³	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
· mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	999	64%	%69	%69	%69	64%	20%	42%	75%
pos occupied ⁶	:		:	:	:	:			12	•	14				:	:		8	5	5

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II	l												
amino acid'	9/	77	78	79	80	81	82	⋖	മ	ں	83	84	82	98	87	88	68	90	6	92
Α			35									1	2			40				
В											<u></u>									
· c																				37
D	1					4							19	40			1			
E		į				35							19							
F			1									2							2	1
G						1		1	2											
Н																				
1		1															1			
K											1									
L					2		39			39							2			1
М					37		1						-	-			2			
N	7							1	2										<u> </u>	
Р												1							1	
Q																				
R	4							2	16		37									
5	27			1				35	20		1	36						1	1	
Т	1	39						1			1				40					
V			4		1					1							33			
W																				
X																				
Υ				39	.,,,,,,,		ļ									*******		38	35	
Z							<u> </u>													
_		<u>.</u>	<u></u>	<u></u>			<u></u>						<u>.</u> .							
unknown (?)		<u>.</u>	<u> </u>					<u></u>												
not sequenced																	1	1	1	1
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	39
oomcaa,	27	39	35	39	37	35	39	····	÷	39	•••••	36					• • • • • • • • • • • • • • • • • • • •			
mcaa ⁴	S		Α	‡	М	Ε	L	S	S	L	R	S		D	T	Α	٧		Y	С
rel. oomcaa ^s	%89	98%	9/088	98%	93%	%88	98%	98%	20%	%86	93%	%06	48%	100%	100%	100%	85%	92%	%06 900	%56
pos occupied ⁶	•	:	:	•	:	:	:	:	4	:	:	4		•	1	:	5	: :		3

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

	(CDR	II									Τ								
amino acid'	99	57	58	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75
Α	1	2			27	2				1		1				2	2			12
В		<u> </u>	<u> </u>																	
C																				
D	1									4							35			
E	2		2			1				1						1				
F .	<u> </u>			4				39						3						
G	15		6		1					34									Ì	
Н			1	1													1			_
1		1	1									1	1	13						22
K	2	2	8				36		1	<u> </u>	<u></u>					1				
L						1		1	<u> </u>			<u> </u>	<u></u>	1						
M														23			<u> </u>	1		1
N	17		18				1										4			
Р																			3	
Q						36			37											
R			2				1		2		37					34		1		
5	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
Χ																				
Υ				3 3																
Z													·							
_																				
unknown (?)																				
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	I
rel. oomcaas	43%	%88	45%	83%	%89	%06	%06	%86	93%	85%	93%	92%	%86	28%	100%	85%	98%	95%	93%	55%
pos occupied ^a	•	:	:	:	:	•	1						:	:	:		••••••	······································	2	

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	me	worl	c II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	∢	8	U	53	54	ŭ
Α		39				1					1				7			1		
В																				
. С																				
D														1					1	
E				1				39										1	1	
F .							. 2						1	********				1		
G				39		28					39	1			1			9	1	
Н																		2		
l										3			34							
K					1														1	
L			1				37						1							
М										37		2	4							
N														35				20	12	
Р		1	34				1	·							31					
Q	39				39			1												
R	1					10						4						3	1	
S			1			1								2				1	20	
Ţ			4											1					3	
V								`						1	1					
W							٠		40			33								_
X																				
Y																		2		
Z																				
			į													40	40			
unknown (?)		<u> </u>	<u> </u>				<u></u>	ļ												
not sequence	1				<u> </u>															_
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
oomcaa,	39	39	34	39	39	28	*******	*******	******	*******		33	********	********	******	40	40	20	20	
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	W	1	N	Р	-	-	N	S	
rel. oomcaas	%86	%86	85%	%86	%86	70%	93%	986/	100%	93%	98%	83%	85%	88%	78%	100%	100%	20%	20%	
pos occupied	:	:	7	;	:	:		:	i						: :			9		:

Table 6B: Analysis of V heavy chain subgroup 1B

														С	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	٧	В	32	33	34	35	36	37	38
Α				30							2				6					Ī
В			<u> </u>	<u></u>			<u></u>										<u> </u>			Ī
. C		35	<u> </u>							<u></u>							1	<u> </u>		
D		<u> </u>	<u></u>	<u> </u>							1				5		1	Ī		1
Ε		Ī	3								1									
F							2		39					2	2	:				
G				1		40			•••••	1	14				1		 !			1
Ĥ						!					••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	 !	3	1		34			
- 1		<u> </u>	••••••••••••••••••••••••••••••••••••••			······		1		1						9		<u> </u>		
K		<u></u>	28	 !		·		ļ						 		<u> </u>		<u> </u>	<u> </u>	
L							•••••		1		1					5		<u> </u>	2	
M _.												•••••				23			<u></u>	
N							1	************		1	3				••••	1	3			
Р					•••••	********						••••••	••••		1		•••••			
Q			2							•••••	1	******	•••••	••••	1		1	•		1
R			2		·		********	2			••••		••••••	1	•••••				L	37
S	35				40			5		2	15		••••••	2	1					
T				3				32		34					1			******		
V				1	•		1			1	1				2	2			38	
W																		40		
Х													•••••							
Y							36				1	•		32	19		1	*******	••••••	
Z																		*******	*******	
-												40	·40							
unknown (?)																		•••••		
not sequenced	5	5	5	5																
sum of seq?	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa³	35	35	28	30	40	40	36	32	39	34	15	40	40	32	19	23	34	40	38	37
mcaa'	S	С	K	Α	S	G	Υ	T	F	T	S	-	-	Υ	Υ	М	Н	W	٧	R
rel. oomcaa ^s	100%	100%	%08	96%	100%	100%	%06	%08	%86	85%	38%	100%	100%	%08	48%	28%	35%	00%	92%	93%
pos occupied"			:	1	•	:		:	2		······································		•••••••		••••••		••••••	1		4

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

			<u> </u>											Fr	ame	wor	kΙ			
amino acid		7	ო	4	2	9	7	∞	6	0	Ξ	12	13	4	15	16	17	18	19	20
A									32							34				
В																				
C																	<u>.</u>			
D																				
<u>E-</u>		1			5	1				35				•••••						
F .								******						*******	••••••	•••••				
G								27							35					
Н			1			•••••							*******	1						
<u> </u>																				
K		3	1									34	33						33	
L			3	26	1	••••														
<u> </u>				1	1	••••														
N																				
Р	ļ					*******			1					3 3			1			
Q	21	•••••	20			26														
R	1					•••••						1	2							
<u>S</u>			•••••				27									1	34			
Ţ									1					1					2	••••
<u>V</u>	3	21			20						∙35							35		3
W							·													
X																				
Y		······			******															
2	<u> </u>																			
-			<u></u>																	
unknown (?)			<u> </u>																	
not sequenced		:	-				_													=
·		-	÷·····	:		·····			:			35		********						•••••
oomcaa3	·	·	·	·		·····		• • • • • • • • • • • • • • • • • • • •		********	*******	34 v	• • • • • • • • • • • • • • • • • • • •	********	*******	*******	*******	*******	********	*****
mcaa'	u	<u> </u>	!			ļ					· · · · · · · · · · · · · · · · · · ·	K		•••••	••••••					٠
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	č
pos occupied ^a		:	:	:	:	:	:	:	:			2								

SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

						Fra	ame	wor	k IV					
	amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
	Α													670
	В													
	С						<u></u>				•			165
	D		1	1						<u> </u>	Ī			308
İ	E	1	1								-			297
	F	2												226
	G			58		59	1	1						928
	Н				1									14
	1	3								4				286
	К				3		1							325
	<u> </u>	3			1			40	1		<u>.</u>			386
	M	1						3	ļ		<u> </u>	<u> </u>		189
	N				1						ļ			176
	Р	5											1	238
	Q				52						<u></u>			494
	R				1									351
	<u>S</u>											53	51	972
	T						54	11	1	51		1		736
	<u> </u>	15		1				1	54		54		1	699
	W		59	•••••	1									243
	X											••••••		
	Υ	34		1	•••••									542
	<u>Z</u>													3
	**	1		•••••										578
	unknown (?)	· ·												8
Į.	not sequenced										16		بـــــ	406
	sum of seq ²		•		*******		•••••••		•••••••••••••••••••••••••••••••••••••••		•			
	oomcaa ³		•••••••••••••••••••••••••••••••••••••••		•••••••••		·····÷		<u>†</u>		54		••••••	
	mcaa'	Υ	W			G	T	L	V	T	٧	S	S	
	rel. oomcaa ^s	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	
	pos occupied ⁶	9	3	4	7	1	3	5	3	2	1	2	3	

148

Table 6A: Analysis of V heavy chain subgroup 1A

										CDI	R []]									
amino acid'	93	94	92	96	97	98	66	100	∢.	8	ပ	a	ш	ட	ŋ	I	-	_	×	101
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
· C	į				1	1	16	2		1	1	7	2	1						
D		į	16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				••••••
F					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1						
1				2	5	2	2		2	2	1	1			1					
К		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
· P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		5 5	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
Ţ	1	3	3	5	4	1	3	4	2	5	2		1			1	1			.,,
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	⁻ 5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
-		<u>.</u>		1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)	ļ	<u>.</u>											1		1	1		2	3	.,
not sequenced	L		2	2	2	4	4	4	4	5	5	_ 5	5	5	5	5	5	5	5	5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa,	· · · · · · · · · · · · · · · · · · ·	55	-	····	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	·••	÷	15	16	23	26	26	31	34	46	39		
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶		1	:	:	:	•	•	:	:	;	÷	:								6

14 % SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

•		-		F	ram	ewo	rk I	II.												
amino acid'	92	77	78	79	80	81	82	⋖	ω	U	83	84	85	98	87	88	89	90	16	92
Α			64			1						3			1	70				
В							-													
· C																		<u></u>		70
D						2							26	70						
E						64							44							
F																	1	1	2	
G									1			_								
Н				1				1												
1		1					3	1	1								2			
К											3									
L					3		63			70							2			
М					67										1		1			
N	4							. 1	16									·		
Р																				
Q				1		3														
R	3							23	1		62				*******					
S	62		1					41	49			67			1					
T	.1	69	2					3	2		4				67					
V			3				4				1						64			
W																				
X																				
Υ				68														69	68	
Z																				
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	62	69	64	68	67	64	63	41	49	70	62	67	44	70	67	70	64	69	68	70
mcaa'	S	Ţ	Α	Υ	М	Ε	L	S	S	L	R	S	Ε	D	T	Α	٧	·Y	Υ	С
rel. oomcaas	89%	%66	91%	97%	%96	91%	%06	29%	70%	100%	9/068	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied ^a													:	•		•		:	2	1

Table 6A: Analysis of V heavy chain subgroup 1A

* **		DR	1																	
amino acid'		57	28	- 65	9	9	62	63	64	65	 99	<u> </u>		69	20	7.1	72	73	74	75
A		34		<u>-,</u>	69											43				
В														•••••						·••••
· C															•••••					******
D	15		1							2			•••••	••••••			70			******
E									1					•••••	•••••			33		******
F				1			•••••	48				3		4						********
G	1						3		•••••••••••••••••••••••••••••••••••••••	67				••••	••••					
Н			1		*****															*******
	4	•••••				••••							1	44	•••••	••••••		1		*******
K	1		2	1			47		1		1				**********			8		
L	1	1				•••••	*******	22				2		1		3				
М						-								21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S		1	2		1										5				70	
T	34	26	4						3				66		65	24		27		67
V										1		65	3							3
W.																				
X								••••												
Y			1	68		. 														· • • • • • • • • • • • • • • • • • • •
Z	<u> </u>																	-		<u> </u>
		<u></u>																		
unknown (?)	ļ	<u> </u>	<u></u>				•••••													
not sequenced	~																			
sum of seq ²	·	.	†·				······					70	•••••••••••••••••••••••••••••••••••••••	••••••	*********					
oomcaa,		÷	÷				······	••••••		*********		65		••••••				•••••••		
mcaa'	I	!	 					<u>:</u>				V		••••••			D			T
rel. oomcaas	49%	49%	84%	97%	%66	100%	67%	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	%96
pos occupied	·		7	3	2	1	4	2	5	3	2	3	3	4	2	3	1	5	1	2

Table 6A: Analysis of V heavy chain subgroup 1A

•																				
				Fr	ame	wor	k il													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	52	<	60	Ü	53	54	55
Α		70									1					5				
В																				
· c																				-
D								1	<u></u>	Ī	-							1		
E								69		<u> </u>	<u> </u>								-	
F .											•		2					3	39	
G			1	68		69			1		69	39			1					68
Н			1																-	
1													65	38	3			34		
K																	·			
L				1			68		<u> </u>	1		1					<u> </u>	2	4	
М										67	<u></u>			2			<u> </u>	4	<u> </u>	
N														4			-	3	22	
Р			68				1								44					
Q	69		••••••		69													1	1	1
R	1			1		1	•••••••					4						1		
S	ļ				1		**-**	<u>.</u>	1	1				22					1	1
T	ļ												1	2	4			1	3	
V										1			2	2	16			1		
W							1		67			26								
X														******						
Y									1					••••				20		
Z																				
-																70	70			
unknown (?)																				
not sequenced			_																	
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaaı	69	70	68	68	69	69	68	69	67	67	69	39	65	38	44	70	70	34	39	68
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	1	1	Р	-]	-	ı	F	G
rel. oomcaa ^s	%66	100%	97%	97%	%66	%66	92%	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	%95	92%
pos occupied ^a						2	3	:	4	4	2	4	4	6	5	1	1	10		3

Table 6A: Analysis of V heavy chain subgroup 1A

			<u>.</u>											CE	RI					
amino acid¹	21	22	23	24	25	26	27	28	29	30	31	∢	80	32	33	34	35	36	37	38
Α				62				1		·					41					•••••
В							·													
· C		63																		••••
D							1													
E														•••••						••••••
F.									69					3		3				
G				1		69	41		1		_				23					 .
Н										1				1			1			•••••
1								1								61	1		1	
К			63							1	1									
L															1	2				
М																4				
N]									2	5						4			••••••
P															1					
Q									******											
R	<u> </u>	1	1							.1	1			*******						70
S	63				68		1			40	60			2			60			
T	1			2				68		25	3				3		4			
V	.	<u> </u>													1				69	
W	.	<u> </u>												•••••				70		
X														••••••						
Y	<u></u>	ļ			<u></u>		27							64						
Z	<u></u>	<u>!</u>																		
-	<u> </u>	<u> </u>	<u>.</u>	<u></u>					ļ			70	70	•••••						
unknown (?)	. 	<u> </u>	<u></u>	<u> </u>	<u> </u>			ļ	<u></u>	<u>.</u>				••••••••						
not sequenced	-	6	;	===						_										_
sum of seq	······	64	÷	÷	••••••	••••••	:	······	······	:										
oomcaa3	į.,	63	÷	÷	•	*******	:	á	÷	÷	÷			*********		*********	********	**********	*****	:
mcaa'	S	С	K	Α	S	G	G	T	F	S	5	-	-	Υ	Α	1	S	W	V 	R
rel. oomcaas	%86	%86	%86	95%	100%	100%	59%	92%	%66	57%	%98	100%	100%	91%	29%	87%	%98	100%	%66	100%
pos occupied		·:	÷	:		:			7	:	;									:

Table 6A: Analysis of V heavy chain subgroup 1A

														F	ram	ewo	rk l			
amino acid'		7	က	4	2	9	7	œ	თ	0	=	12	13	14	15	16	17	18	19	20
Α					1	14			60							24	1			
В																				
· C																				
D																				
E	1				2	1		2		64										
F .																				
G								58	1						64					
Н			2																	
]		2									<u> </u>							-		
K		2		••••••••••••••••••••••••••••••••••••••								57	64				-	:	60	
L			2	59			•••••				3						<u> </u>	İ	<u> </u>	
М		1					••••••			•••••		••••••••••••••••••••••••••••••••••••••					<u> </u>	<u> </u>	†	
· N						•				•••••		6								
Р														63	! !					
Q ·	53		56		2	45														
R												1							3	
S							60		3					1		40	63			
Ţ											·								1	
V	2	55		1	55						61							64		64
W																				
Х																				
Υ																				
Z	3																			
-																				
unknown (?)																				
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	64
oomcaa³	53	55	56	59	55	45	60	58	60	64	61	57	64	63	64	40	63	64	60	64
mcaa•	Q	٧	Q	L	٧	۵	S	G	Α	Ε	٧	K	K	Р	G	S	S	٧	Κ	٧
rel. oomcaas	%06	92%	93%	98%	92%	75%	100%	97%	94%	100%	95%	%68	100%	%86	100%	63%	%86	100%	34%	100%
pos occupied ⁶	. ;	:	:			:	:	:	:		:	•	•				<u>-</u>	:	<u>-</u> -	1

Table 5C: Analysis of V lambda subgroup 3

			·	Fran	iewo	ork I	V					
amino acid'	66	100	101	102	.103	104	105	106	⋖	107	108	sum
Α												265
В		••••••		********				<u> </u>	<u> </u>		<u></u>	
С		••••						<u></u>	<u> </u>	1		82
D									<u> </u>			225
E		•		•••••	2		••••••		<u> </u>			145
F				*******						[90
G	35	31	35	********	•		•••••	••••••••••••••••••••••••••••••••••••••		24		461
Н												32
<u> </u>		*******		••••	••••		••••••					160
K		•••••		*****	30	•	******					110
L						28	••••	•	33			233
М							••••••					17
N				•			••••					126
Р									1			249
Q											7	275
R	·				2					·		154
S										2		501
Ţ		4		35			35					347
V			·			7		35				308
W												62
Χ				*********			*********					
Υ					•		•••••					211
Z												
							********					603
unknown (?)	·											1
not sequenced	3	3	3	3	4	3	3	3	4	11	28	. 89
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa,	35	31	35	35	30	28	35	35	33	24	7	
mcaa'	G	G	G	T	K	L	Ţ	٧	L	G	Q	
rel. oomcaa'	100%	%68	100%	100%	88%	80%	100%	100%	97%	%68	100%	
pos occupied ^a	1	2	1	1	3	2	1	1	2	3	1	

141

Table 5C: Analysis of V lambda subgroup 3

										CI	OR II	ı						Τ	
amino acid'	98	87	88	83	90	91	92	93	94	95	⋖	ω	U	0	, ц	ш	96	97	ç
А					13	3	2				:	2						4	T
В				-				Ī			<u> </u>					<u> </u>			
· C			38								<u> </u>		<u> </u>				Ī		
D							32	1	1		(3	<u> </u>	•			- <u> </u>		Ī
E				1							Ī	2	2		-			2	
F .		2					********	2			1						-		3
G									3	14	3	3		1	1			1	-
Н							********				•	12	1			-			
1				<u> </u>							•	_					<u> </u>	4	
K				<u> </u>			******				1	-	<u> </u>	†****			·		<u> </u>
L				1			••••••	1		1		1	1			·	4	2	<u>†</u>
М									1		<u> </u>						1	1	-
N				10			2	1	2		10	1			<u> </u>	<u> </u>	†	-	-
Р									1				3		1		1		
Q				25						1	1				•	-			<u> </u>
R			<u> </u>			10		1	2			2							
S				1	14	1		28	26	13		1				1			
T						1		3		7	2				<u> </u>	!	<u> </u>		
V					11											<u> </u>	18	28	
W					:	23	·								<u> </u>		1		
X															: :				
Υ	38	36					1		1		1	3	1				3		******
Z																			1444444
					,						10	15	31	36	37	36		1	
unknown (?)																			******
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaa,	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	35
mcaa'	Υ		С		S		:	:	S		N	-	-	-	-	-	·····	٧	•••••
rel. oomcaa ^s	100%	95%	100%	%99	37%	61%	%98	0/9/	20%	38%	28%	41%	84%	97%	%00 ₁	92%	49%	76%	100%
pos occupied	1		:	:	3	•	:		:		9	·····	5	2	1	:	9	6	1

Table 5C: Analysis of V lambda subgroup 3

																			
				Fra	amev	vork	: 111												
amino acid'	67	89	69	20	71	72	73	74	75	9/	77	78	79	8	81	82	83	8.	.85
Α				1	36	1		1				11	1	34				38	
В								<u>.</u>	<u> </u>	<u></u>								<u> </u>	
. C																			
D																38			37
E													10		14		38		1
F .																			
G		37									28				10				
H ⁻			1																
<u> </u>						1		1	37	1					1				
K			1																
L							38								2				
М															10				
N			28							1				<u> </u>					
Р																			
<u> </u>		1											25						
· R					٠					1	10		1						
S	37		2			11				23				1					
T	1		6	37		25		36		12	<u></u>	13		2		<u> </u>	<u></u>		
V					2				1			14	1	1	1				
W																			
X										<u> </u>									
Υ										j									
Z																			
-										<u>į</u>									
unknown (?)																			
not sequenced																			_
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ₃	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa'	S	G	N	Ţ	Α	Ţ	L	T	1	S	G	٧	٥	Α	Ε	D	Ε	Α	D
rel. oomcaa ^s	97%	97%	74%	97%	95%	%99	100%	95%	97%	61%	74%	37%	%99	%68	37%	100%	100%	100%	97%
pos occupied ⁶					2				:	5	:		:	4		1	1	1	2

Table 5C: Analysis of V lambda subgroup 3

	C	DR II					-	T											
amino acid'	_	56		ω	U	_	<u> </u>	57 -	28	59	9	2 5	. 6	- 5	3 3	+ u	5 9	8 4	C 00
Α	T		1	Ī		T			Ī						T			T	
В					-	<u> </u>		<u> </u>	1	-					-	-		-	-
C			<u> </u>			· •		<u> </u>		<u> </u>			1		··· ·			-	***
D				1				<u> </u>	T	<u> </u>		9	 		 			-	
E				Ī		1				-	2		<u> </u>	-	-				-
F				1		<u> </u>							31	3					
G	1							38) }	†	·			-	3	 R			•
Н	1					·		•			·	-	-			<u> </u>			<u> </u>
·			<u> </u>						37		<u> </u>						- !		<u> </u>
К		<u> </u>	<u> </u>	<u> </u>	†	†		<u> </u>	†	<u> </u>	·		<u> </u>	·	-	<u> </u>		<u> </u>	
L		<u> </u>		<u> </u>				1	<u> </u>		†·····		<u> </u>	<u> </u>	-	· •		·	
M										 	†	†	1		·		<u> </u>	<u> </u>	*********
N						-		-			ļ	<u> </u>		<u> </u>		1	21		-
Р	37	1				<u> </u>		<u> </u>	ļ	36	ļ		†		†	·		<u> </u>	+
Q						†		1	<u> </u>				<u> </u>	-	· •	·	·		
R							ļ	•	!	********	ļ	38	·	ļ		 		<u> </u>	
S	1	36						<u> </u>	••••••	1			<u> </u>	38	<u> </u>	38	12	1	· <u></u>
T								<u> </u>	••••••	*******			†	 	<u> </u>		5	÷	
V												*******	 		-	<u> </u>		<u> </u>	
W											•••••	*******		********		†		<u></u>	
X																		†·	
Υ			••••											•••••	<u> </u>		••••	!	
Z												*****		********					
************************			38	38	38	38	38											38	38
unknown (?)											1					••••••	••••••		
not sequenced									1	1	1								
sum of seq ⁷	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	38
oomcaa³	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	38
mcaa'	Р		-	-	-	-	-	G	:	:	Ε	R	F	:	G		******	-	
rel. oomcaas	92%	95%	100%	100%	100%	100%	100%	100%	100%	37%	73%	,000 ,000	%00 ₁	*******	•••••••••••••••••••••••••••••••••••••••	‰00 1		00%	%00
pos occupied ⁶		••••••	1	1				1	•	•									

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						Fran	iewo	rk II											
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
Α								23							<u> </u>	1	<u></u>	1	
В		<u> </u>							••••					<u></u>	<u></u>				•••••
С			,												<u> </u>				
D															9	22	2	8	••••••
E			1						•••••						5	3		3	
F	3													2			1		
G						36			*******						9	2			
Н							1							1	3			1	
										1	ا ـ ا		28				1		•••••
K				32											2	6	1	13	•••••
L			2							6	33	1							•••••
М											1		1						
N																1	19	9	····
Р					36		1		38										********
Q		37	35	1			36								9			1	
R		1		4		2									1	1		1	38
S				1	2			14									10	1	
T																2	4		
V								1		31	4	37	9						
W																			••••
X							••••												
Υ	35								•••••					35					
Z							_										•		
_																			
unknown (?)																			
not sequenced	—																		
sum of seq ⁷	····	•		**********												***********	:		
oomcaa	35	37	35	*********		••••••			******						***********	22			*******
mcaa*	Υ	Q	Q	K	Ρ	G	Q	Α	Р	٧	L	٧	1	Υ	D	D	N	K	*******
rel. oomcaas	92%	97%	92%	84%	95%	95%	95%	61%	100%	82%	87%	92%	74%	92%	24%	28%	20%	34%	100%
pos occupied ⁶	•		1		:	:		: :						3				9	1

SUBSTITUTE SHEET (RULE 26)

Table 5C: Analysis of V lambda subgroup 3

					T							DRI							Τ
amino acid'	20	21	22	23	24	25	26	27	۵	ш		29	30	31	⋖	32	33	34	35
А			1					5			T		1	1			21	3	3
В																-	İ		
· c				38				<u>.</u>		-					<u> </u>			5	
D				<u> </u>			30	1					10			3	1	1	<u> </u>
E				<u> </u>			2	2				1	3	6					
F		-									-		<u></u>	1	•	2		-	
G					9	38		1	•••••			23	4		•				
Н							1		********					*********	-	2		9	
1		38							•••••		9			1	<u> </u>				
K							••••••	7	••••	<u> </u>			2	13					
L									•••••		28			•••••			<u> </u>		
M	1		,											1					
N			2				4	9			1		2	*********		1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1	••••			1		
S	9		1		19			10					11	2		8		14	
Ţ	3		33					1				1	4						
V																1	15		
W		,																	38
X																			
Υ							1							8		20	1	4	
Z																			
					į				38	38					37				
unknown (?)																			
not sequenced															1	1			
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa,	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R	1	T	С	S	G	D	S	-	-	L	G	S	Κ	-	Υ	Α	5	W
rel. oomcaa ^s	%99	100%	87%	100%	50%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied"	4	1		1	•	1	5	9	1	1	3	•	9	9	1	7	4	7	1

Table 5C: Analysis of V lambda subgroup 3

										,	Fra	mew	ork	1					4.
amino acid'		2	က	4	ß	9	7	8	თ	9	=	12	13	4	15	16	17	18	5
Α					1		1	2	7					20	1				2
В																			
. С											<u> </u>								
D			5				10												
E			20										1			1			
F.	1	1										1			1				
G			1							•••••	•				•	37			
Н																			
						•••••			•••••						•				
K		•••••				*******											2		
L				37		•			***************************************		4		1		9	••••	••••••		•••••
М																			
N							•		•••••		••••••		•						•••••
Р		•••••	•••••			•••••	26	35	1						27				• ••••
Q	4		4			38							•••••••				36		• • • • • • • • • • • • • • • • • • • •
R						••••					•••••								
S	13	14		•••••	1		1		28		••••	37		18					•••••
T					36	•		1	••••••							••••••		38	• ••• ••
V			8	1					2		34		36			******			1
W		•••••		•••••		********		••••••	*******										••••
Χ						•••••													
Υ		23				********			·····										•
Z			•			********								•				•••••	•
	20								Ī	38									
unknown (?)			•••••														••••••		
not sequenced						•••••••	••••••	*******			********								•••••
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3
oomcaa¹		23	*********		••••••				••••••••			•••••		20	•••••••••••••••••••••••••••••••••••••••	÷		······	*****
mcaa'	_	Υ	********	***************************************	Т	**********	Ρ		S	•••••••	٧	*******	•••••	•••••••	Р	G	••••••	······	Α
rel. oomcaas	53%	61%	53%	97%	95%	100%	%89	92%	74%	100%	%68	97%	95%	53%		92%	95%	100%	7 10%
pos occupied ⁶			5	: :			:					.		···- -		<u>-</u> <u>+</u>	≃′÷		

Table 5B: Analysis of V lambda subgroup 2

				Fra	mew	ork	IV					7
amino acid'	66	5	101	102	103	104	105	106	A	107	108	sum
А		1	ı									280
В											<u> </u>	
С											<u> </u>	99
D												188
E												107
F	<u> </u>	<u>.</u>		<u>.</u>								113
G	42	33	42		<u>.</u>	<u>.</u>				19		567
Н .	<u> </u>	<u>.</u>		ļ		<u> </u>	<u></u>	.i	<u>.</u>		<u> </u>	48
1			<u>.</u>	ļ	<u>.</u>		1	<u>.</u>	<u>.</u>	<u>.</u>		184
K	ļ	<u></u>	<u> </u>	<u> </u>	36			<u>.</u>	ļ	<u>.</u>	<u> </u>	189
LL			<u>.</u>	ļ	<u> </u>	28	<u> </u>	<u>.</u>	40	<u> </u>	<u> </u>	264
M	ļ		ļ	ļ	<u>.</u>	<u> </u>	<u> </u>	ļ	ļ	ļ	<u></u>	29
<u>N</u>	ļ			<u> </u>	1		ļ			<u> </u>	<u> </u>	146
Р	ļ	ļ			ļ		ļ		ļ	ļ		238
Q	ļ	<u></u>	ļ		1	<u>.</u>			ļ	ļ	14	250
R		1	ļ		2	<u></u>		<u> </u>	ļ	4		121
S					<u> </u>		1	÷	<u> </u>	2		831
V		7		41	<u> </u>		40	-				398
W				•		14		42	1			327
X				•••••								48
Y		••••••			1	•••••						205
Z						••••••						285 16
											=	555
unknown (?)												8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
					41			=	_	25	14	,
oomcaa ³	······	33	····· ·	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	*******	•••••••			14	
mcaa'	G	G	G	T	K	L	T	٧	L	G	Q	
rel. oomcaas	%00 ₁	9067	%00 1	%00	88%	67%	95%	%00	98%	,6%	%00	
pos occupied ⁶	1	4	1	1	5	2	······	1	2	3	1	

134

Table 5B: Analysis of V lambda subgroup 2

•										CD	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	∢	ထ	J	۵	w	u.	96	6	86
А				2	1		21		1								1	1	
В															<u> </u>	<u>.</u>	<u>.</u>		
· C			43	11											<u> </u>				
D								3	1	2					<u>.</u>		1		
Е							1	1							<u>.</u>				
F		3				3				1		1					5		42
G							1	21	3	4		****					1		••••
Н						1					.,								
							1	1		1	2						1	7	
K										3									.
<u> </u>												1	1				6	5	•••••
M														••••••			1	1	
N									.5	7	5						1		
Р								1				4							
Q										1	2								
R							2		3			1					5		
<u>S</u>		1		30	41			12	23	14	9						1		
T							16	4	4	3	21								
V							1										11	28	•••••
W																	5		
X																			
Y	43	39				39			1	6							4		····
Z																			
-										1	3	36	42	43	43	43			
unknown (?)									2									·	••••
not sequenced					1						1							1	1
sum of seq ⁷	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	42
oomcaa,	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	42
mcaa'	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	-	-	-	-	٧	٧	F
rel. oomcaas	100%	91%	100%	70%	98%	91%	49%	49%	53%	33%	50%	84%	98%	100%	100%	100%	26%	67%	100%
pos occupied	1	:		3						11				1	1	1	13	•••••	1

Table 5B: Analysis of V lambda subgroup 2

				Fr	ame	wor	k III												
amino acid'	29	89	69	. 20	71	72	73	74	75	9/	11	78	79	80	8	82	83	84	85
Α		3		1	43									36	3			43	
В	<u> </u>		<u> </u>																
· C	l																1		
D		1	2								<u> </u>				3	42	!		39
Е											1				38		43	1	
F .																			
G		39									42				1				
Н																			2
									35										
K		<u></u>	1															Ī	
L							43	<u></u>		<u></u>		43							
M			••••					<u></u>		<u>.</u>									
N			38					<u>.</u>							1	1			1
Р							·							2					
Q			••••					<u></u>	<u></u>				41						
R								<u></u>	<u></u>				2						
S	42			1		43		<u>.</u>		42									
T			1	41				43		1				2					
V				······					8					3					
W						••••••													<u></u>
X						••••••	•••••												
Y								•••••											<u></u>
Z																			
_														<u></u>					
unknown (?)			1																1
not sequenced	1																		
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa ³	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Ţ	Α	S	L	Ţ		S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	91%	%88	95%	100%	100%	100%	100%	81%	%86	98%	100%	92%	84%	%88	%86	100%	100%	91%
pos occupied ^a	1	3	:		:	•	:		:		:	:	•	4	:	······································	1	1	

Table 5B: Analysis of V lambda subgroup 2

	CD	R II																	
amino acid'	55	26	∢	8	ပ	۵	ш	22	28	29	09	61	62	63	64	65	99	۷	6 0
Α															2				
В			<u> </u>		<u> </u>														
. C																1			
D											17								
E																			
F													42						
G								43	1		- .				41				
Н											2					******			
1									3										
K												<u></u>					42		
Ĺ											1	<u></u>	1						
М																			
N											19							,	
Р	43									15									
Q																			
R												43					1		
S		43								28	2			43		42			
T																			
V									39										
W												<u> </u>							
X																			
Y											2								
Z																			
•			43	43	43	43	43											43	4:
unknown (?)																			
not sequenced																			
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa,	43	43	43	43	43	43	43	43	39	28	19	43	42	43	41	42	42	43	4
mcaa'	·	S	-	-	-	-	-		٧			********	F	S	G	S	K	-	-
rel. oomcaa'	100%	100%	100%	100%	100%	100%	100%	100%	91%	55%	44%	100%	%86	,000 100%	95%	%86	98%	100%	100%
pos occupied ⁶	1	•	1	:	:	;				2		:					:	·····	

Table 5B: Analysis of V lambda subgroup 2

						Fran	new	ork I											
amino acid'	36	37	38	33	40	41	45	43	44	45	46	47	48	49	20	51	52	53	54
А					1	4		40											
В		<u></u>	<u></u>	<u>.</u>	<u></u>	<u></u>				<u> </u>	<u> </u>	<u></u>	<u></u>			<u> </u>	<u> </u>	<u></u>	<u> </u>
С				<u> </u>	<u> </u>	<u>:</u> : : :				<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u>.</u>	<u>.</u>
D				1	<u></u>	2				<u>.</u>	<u> </u>				20	1	2	1	<u></u>
E			ļ	<u> </u>	<u></u>					<u></u>	<u></u>		<u> </u>		20			2	<u></u>
F .	2			<u></u>	<u></u>		*******			<u></u>	<u> </u>			7		1		ļ	ļ
G	ļ		<u> </u>	<u></u>	<u></u>	36				<u></u>	<u></u>	<u> </u>		<u></u>	2	2	<u>.</u>	1	<u>.</u>
Н			2	34	<u></u>					<u>.</u>	<u>.</u>	<u> </u>		<u></u>	<u> </u>	<u></u>	<u>į</u>	1	
			<u></u>	<u></u>			1		••••••		1	9	43		<u> </u>	<u></u>	1		
K				<u> </u>			40			41	<u></u>			<u></u>	<u>.</u>		1	21	
L ·			1	1							38	6		<u></u>	<u>:</u>				
<u>M</u>							·····					26		<u> </u>			1		
N				2					••••••						1		8	12	
Р					41				43				· • • • • • • • • • • • • • • • • • • •						
Q		41			···				•••••	2			•••••						
R		1					1						.,.,				2		43
S					1									2			21		•••••
T							1	•••••••••••••••••••••••••••••••••••••••					•••••				7		••••
V						1		3			4	2	•••••			39			
W																			
X																			••••••
Υ -	41			5										34				2	••••••
Z																			
- (2)														<u> </u>					
unknown (?)		1	1	· · ·															
not sequenced		42	42	42	42	42	42	42	42	43	43	42	43		40		-		
sum of seq ²		<u>-</u>			<u>-</u>		•••••••••••••••••••••••••••••••••••••••	*******	•••••••••••••••••••••••••••••••••••••••	••••••	••••••••	·····		····÷	•••••••	 	••••••••	·····÷	
oomcaa¹	•••••••••••••••••••••••••••••••••••••••	41	••••••	34	·····÷		•••••	40			••••••	••••••		•••••		••••••	•••••••••••••••••••••••••••••••••••••••		•••••
mcaa'	1	Q		Н	Р	G	K					М	<u> </u>	Υ	D	V	S	K	R
rel. oomcaas	95%	92%	91%	79%	95%	84%	93%	93%	100%	95%	%88	₀ 09	100%	79%	47%	91%	49%	49%	100%
pos occupied	2	2		•			4	2	1	2	3	4	1	3	4	4	8	8	1

Table 5B: Analysis of V lambda subgroup 2

		4.,									CI	DRI							
amino acid'	70	21	22	23	24	25	26	27	۵	ш	28	29	30	31	٧	32	33	34	35
Α					3		1						1			1			
В																	<u> </u>		<u>.</u>
. C				42					1					1					
D										39		1	4		5				
E															1				
F.		1											1			4			
G						43		1				39	26						
Н								1							1	1			
1		41			1						6								
K															4				
L		1														4			
М											s.								
N								1	3	4		1	4	3	28				
Р								1											
Q																			
R									1				2						
S			42		3		3	35	38				5	1	2	4	1	42	
Т	43				36		39	3				1		1					
V											37			<u> </u>			41		
W																<u></u>			43
X								•								į			
Y								1				1		37		29			
Z																			
-	,														1				
unknown (?)				·											1				
not sequenced			1	1												•	1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	43
oomcaa ¹	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
mcaa'	Ţ	ı	S	С	T	G	T	S	S	D	٧	G	G	Υ	N	Υ	٧	S	W
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	98%	91%	%98	91%	%09	. %98	65%	67%	%86	100%	100%
pos occupied				1			3							5		:		••••••	1

Table 5B: Analysis of V lambda subgroup 2

•	L										Fı	rame	wor	k I					
amino acid'		7	<u> </u>	- 4	٠ ن ـ	, c	, ,	. α		ν <u>ξ</u>	2 ;	= 2	2 C	5 2	<u> </u>	5 4	5 [2 2	2 (
Α			3	5				3	0			6		1	1				
В																			
· c											<u> </u>		•		Ī			····	
D										****	<u> </u>				••••		1		-
Е												*********	1						
F													1		•	-			
G													4	2		4:	2		
Н	2														•		-	1	-
		<u>.</u>	1								i				-	·			2
<u>K</u>		<u> </u>	<u> </u>																
L		<u>.</u>	<u> </u>	40)											3			
M		<u></u>											Ī		Ī	1			Ţ
N			<u>.</u>										Ī		-			1	1
Р	<u> </u>						42	6	5				-		40)			-
Q	22	ļ	4			41											42		
R	<u> </u>	<u></u>		<u></u>				6		1									
S	<u> </u>	41	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	4()		42		42				43	
T		<u></u>	<u> </u>	<u>.</u>	42					١						<u> </u>		<u> </u>	
<u>V</u>		1	2								36	3			-	<u> </u>		<u></u>	14
W			<u> </u>												Ī				ļ
X																	•		
Υ																	•••••••		
Z	16																••••••		
-				••••						42									
unknown (?)						1				<u></u>									
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq?	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa ³	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa'	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1.
rel. oomcaas	55%	%86	83%	0001	100%	98%	100%	71%	95%	100%	86%	100%	%86	98%	93%	%86	%86	100%	65%
pos occupied ^s	:	·····			1		•	:				1	:	:	•	2	2		

Table 5A: Analysis of V lambda subgroup 1

				Fran	iewo	ork l'	V]
amino acid'	66	100	101	102	103	104	105	106	A	107	108	sum
А								-				285
В												
С												84
D		•		•••••	•••••			<u></u>	: :	<u> </u>		224
Е		1							• • • • • • • • • • • • • • • • • • •			81
F			•									87
· G	36	31	36							26		559
Н												25
												188
К					30							141
L						25			34			344
М												5
N					1							176
Р											1	296
Q					3				1		18	251
R					1					2		156
S		1								2		720
Т		3		36	1		36					359
V						11		36	1			282
W										1		92
X												
Y												202
Z												16
-												524
unknown (?)	·											
not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
oowcaa,	36	31	36	36	30	25	36	36	34	26	18	
mcaa*	G	G	G	Ţ	K	L	Ţ	٧	L	G	0	
rel. oomcaa ^s	0001	96%	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	4	1	1	5	2	1	1	3	4	2	

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

										CD	R III								
amino acid¹	98	87	88	83	90	91	92	93	94	92	۷	8	J	۵	ш	ட	96	-697	86
Α				22	15			1				16					4	1	
В															<u> </u>	<u></u>			
С			42																
D							39	17			7								
E												1					1		
F		2								1					<u> </u>				36
G				14				1				.17	1		<u></u>		5	1	
Н		1											1			.,			
l											1							1	
K					<u></u>						1								
L				1					,	37			1					1	****
М									******									1	
N			*****				2	2			9	1							*****
Р									••••	1							6		·····
Q				3															
R									5	1	2						2		
S					4			17	35		18		1				1		••••••
T					22			1	1		1								
V				1				1	**********	1		2						34	·····
W						38											7		
X											••••••								
Y	42	39				3		1									3		
Z																		_	
											2	4	35	39	38	38	1		, ,,,,,,,, ,,
unknown (?)																			
not sequenced				1	-			_		1	_				_3				4
sum of seq ²	····	********			••••••••••	********		***************************************							.,				
oomcaa,	42	39	42	22				**********	********	*********		:	35	39	38	38		34	*******
mcaa*	Υ	Υ	С	Α	T	W	D	D	S	Ĺ	S	G	-	-	-	-	٧	٧	F
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	100%
pos occupied ^a	1	3	1			2		8			: :	6	:	1	1	1	10	6	1

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

				Fra	ame	work	: 111												
amino acid'	29	89	69	70	71	72	73	74	75	9/	11	78	79	80	8	82	83	84	85
Α		1	3		41			24						2				38	1
В																			
· C																			
D		1													1	41			37
E													1		24	}	42		1
F .									•••••						<u></u>				
G		40						17	•••••	1	42				15				
н													1						2
									41										1
K																			
L							42					41							
М																			
N																1			
Р				·										2					
Q													31						
R													8						
S	42		1	42		24				20				20				1	
T			38			18				21				17				3	
V					1			1	1			1		1					
W			********										1		2				
X																			
Y												<u> </u>							
Z						·													
_																			
unknown (?)		******								<u>_</u>									
not sequenced																			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa³	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa'	S	G	Ţ	S	Α	S	L	Α	1	Ţ	G	L	Q	S	E	D	E	Α	D
rel. oomcaas	100%	92%	%06	100%	%86	57%	100%	57%	98%	50%	100%	98%	74%	48%	57%	%86	100%	%06	988%
pos occupied ^e	: :	: :	: :					:		3	:	:	:	:		2	1	3	5

Table 5A: Analysis of V lambda subgroup 1

								Т						 -					
•)R II						<u></u>											
amino acid'	55	56	٧	8	ပ	٥	ш	57	58	59	9	61	62	63	64	65	99	∢	α
Α	1															5			
В																			
. С																			
D											38								
E																		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F .													38			-			
G						Ī		41			2		-		36		<u> </u>		
Н											1		<u> </u>					Ī	
l			è						17		<u> </u>	<u> </u>	3		Ī				
K										<u> </u>			<u></u>		 !		38		
L		1								1	<u></u>				<u> </u>				
M																			
N						***********					•		•			}			
Р	38									38				••••••			 !		
Q																			
R			<u> </u>									42					4		
S	2	40		<u></u>	<u></u>	<u> </u>	<u></u>			2				42		42			
Ţ				<u></u>		<u> </u>									1				
V			<u></u>						24				1						
W			ļ			<u> </u>													
X						<u> </u>													
Υ					<u></u>														
Z																			
-			41	41	41	41	42											42	42
unknown (?)										<u></u>		<u> </u>							
not sequenced	1	1						1	1	1	1								
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa*	Р	S	-	-	-	-		G	٧	Р	D	R	F	S	G	S	Κ	-	_
rel. oomcaa ^s	93%	%86	100%	100%	100%	100%	100%	100%	29%	93%	93%	100%	%0£	%Ö01	36 %	0001	%O(%00 00%	100%
pos occupied ^c								:			3	•					*********	******	

Table 5A: Analysis of V lambda subgroup 1

-						Fram	iewo	rk II					· · ·						
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
А							4	40									1		
В																			
С																			
D						1									13	10	8		
E										2					5			1	
F	1			4										1					••••••
G						39								•••••	1				
Н	1	1	6	1										1				1	*******
1												· -	40	*******	1				
К							1			35					1	1		18	
L			1	31							41	40			••••••			1	1
М							1						1					1	•••••••
N										1					3	28	30	2	
P					42	1			42										
Q ·		39	34															15	
R		2		1		1				4					7			2	40
S								1							9	2	3	1	
T							36	1							1				
V			1	5							1	2	1	•••••					
W																			1
X																			· • • • • • • • • • • • • • • • • • • •
Y	40													40	1	1			·
Z																			
-									••••										·····
unknown (?)																			·····
not sequenced																			
·	•	42		••••							•••••	••••••		•••••••••••••••••••••••••••••••••••••••	*********	•••••••••••••••••••••••••••••••••••••••		·····	••••••
oomcaa,		39		••••								••••••	••••••	*******		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	•••••
mcaa¹	Υ	Ω	Q	L	Р			••			L	L	1	Υ	D	N	N	K	R
rel. oomcaas	95%	93%	81%	74%	100%	93%	9/098	95%	100%	83%	%86	95%	95%	95%	31%	%29	71%	43%	95%
pos occupied"	3	3	4	5	1	4							:		10	5	4	9	3

123

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

									-		CI	ORI						<u> </u>	
amino acid'	20	21	22	23	24	25	56	27	۵	ш	28	29	30	31	4	32	33	34	35
Α	2							1				2	2			1			
В																	<u> </u>		
С				42															<u>.</u>
D										3			3	1		3		1	<u>.</u>
E													1					<u>.</u>	<u>.</u>
F					1				1						1	1			<u> </u>
G						42	3	1			2	39	4	2					
Н														2		2		2	
ı	1	41								1	37							1	
K										1			1						
L		1					. 20,000 1 1				1								
М		•••									1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q												<u></u> į				1			
R							1	1					5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	2			1		1		7		2	
V											1					2	40		
W																			42
X																			
Y														4	1	20		7	
Z																			
										· [36				
unknown (?)																			
not sequenced														·	1	_1	1	1	
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	42
oomcaa,	38	41	42	42	38	42	34	34	38	37	·····i	39	13	31	36	20	40	19	42
mcaa'	T	1	S	С	S	G	S	S	S	N	1	G	N	N	-	Υ	٧	S	W
rel. oomcaas	%06	%86	100%	100%	%06	100%	81%	81%	%06	88%	%88	93%	31%	74%	988%	49%	%86	46%	100%
pos occupied ^a				1	3		ì			4	•		8	7		10	2	7	1

122

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

	<u> </u>										Fran	new	ork l						
amino acid	-	7	က	4	2	9	7		6	2	Ξ	12	13	7	15	16	17	18	Ç
А											19		18	20					
В						<u> </u>				<u>.</u>						<u></u>		<u></u>	
. С									<u></u>	<u></u>									
D																			
E																		1	
F .												••••••			•••••				
G												*******	22		•••••••	42			
Н	2											*********		<u></u>	*****	•••••			
l			1								1								
K												••••••			•			14	
L			1	41							1								
М														i				•	
N												•		•			•		
Р					`		41	41						1	41				
Q	22		1			41			•								42		
R															••••••			25	
5		39							41			41			1			1	
T					41									19		•		1	••••
٧		1	38								20		1	1					4
W							•	••••				••••••				•		•••••	
Χ																······			••••
Y									***************************************										••••
Z	16											<u> </u>		Ī					
-										41									
unknown (?)														•		<u> </u>	•••••		••••
ot sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	4
oowcaa,	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	4
mcaa*	Q	S	٧	L	T	Q	Р	Р	S	-	٧	S	G	Α	Р	G	Q	R	١
rel. oomcaas	55%	%86	93%	%00 ₁	%001	100%	%00 l	%00 l	%00 ₁	0000	49%	0001	54%	49%	%86	%00I	%00 ₁	20%	
pos occupied"		:							•	•••••••••••••••••••••••••••••••••••••••	4	1	••••••	4	2	 1	1	و 5	••••

Table 4D: Analysis of V kappa subgroup 4

	Framework IV P													
amino acid'	97	98	66	100	101	102	103	104	105	106	} ∢	107	20	sum
А														183
В											•			•••
С						-								68
D	1			<u> </u>			<u> </u>	İ	İ		- 			154
E	1			<u></u>					14	4				105
F		15		<u> </u>		1					·÷·····			 82
G			15	4	15								· † · · · ·	228
Н											······	-	<u> </u>	6
l										14	1			135
K							14				Ī	13	3	158
L								4						258
M	1													27
N	ļ					<u> </u>			<u></u>			1		136
Р	ļ			•••••		1	<u></u>							195
Q				11		<u> </u>	<u></u>	1	<u></u>	<u></u>	<u> </u>			264
R				•••••		<u> </u>	1		1			1	11	116
S	2	••••		•••••••	••••					1	<u></u>	<u></u>		499
Т.	12					14	<u></u>	<u> </u>		<u></u>	<u> </u>	<u> </u>		236
V								9	<u>.</u>	<u></u>	<u> </u>			196
W							-	1			<u></u>		<u></u>	69
X						••••					<u> </u>			
Y			_											254
											15			106
unknown (?)														
not sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22	518
sum of seq'	15	15	15	15	15	15	15	15	15	15	15	15	11	
oomcaa,	12	15	15	11	15	14	14	9	14	14	15	13	11	
mcaa'	T	F	G	Q	G	Ţ	K	٧	Ε	1	-	Κ	R	
rel. oomcaaʻ	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occupied"	3	1	1	2	1	2 20	2	4	2	2	1	······································	1	

Table 4D: Analysis of V kappa subgroup 4

											(DR	111					
amino acid'	85	98	87	88	68	90	91	92	93	94	95	A	8	. ن	0	w	ш	96
А										1								
В																		
· C				33														
D								1	1									
Е																		
F ·			1					1										
G									2	-								
. Н			1		3													
1										2					.,			
К																		
L		•••••				1		2		1	3							1
· M																		
N		•••••							4	4								
Р		•••••				•••••				1	29	1		•••••				4
Q					30	32					1							1
R									1			1						2
S							2		23	2								1
Т									2	22								
V	33	•••••																
W																		2
. X		•••••																
Y		33	31				31	29										_1
-												13	15	15	15	15	15	3
unknown (?)	ļ	••••••																
not sequenced												18	18	18	18	18	18	18
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	15
oomcaa,	33	33	31	33					:	22	29	13	15	15	15	15	15	4
mcaa⁴	٧	• • • • • • • • • • • • • • • • • • • •	Y			Q	Y	Y	S	Ţ	Р	-	-	-	-	- !	-	Р
rel. oomcaas	100%	100%	94%	100%	91%	92%	94%	%88	70%	67%	988%	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	1	1	3	1		2				•	•	:	1	1	1	1	1	8

Table 4D: Analysis of V kappa subgroup 4

						rame	wor	k III										• ፣
amino acid'	67	89	69	70	71	72	73	74	75	9/	77	78	79	2	3	5 6	70	84
Α														3	3			32
В																		
. c																		
D				32												3	3	
E															3	3		
F.					32									<u> </u>				
G		33		1														1
Н												<u> </u>		<u> </u>		<u> </u>		
I									33									<u> </u>
K												<u> </u>				-		
L							33					32						
. M	<u> </u>											1						
N										2	1							
Р																		
Q													32			•		
R	<u> </u>												1] 				
S	33	<u> </u>								30	32							
T		<u> </u>	33			33		33		1								
V	ļ				1												33	
W																		
X													•••••	******	••••••	<u></u>		
Y												******		•••••	*********			
_																		
unknown (?)		•••••												H				
not sequenced														***************************************	*******			
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaaı	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
mcaa'	S	:	Ţ	D	F	Ţ	L	T	ı	S	:		Q			•••••		Α
rel. oomcaa ^s	100%	100%	100%	97%	92%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	92%
pos occupied ⁶	1	1	1	2	:	1	:	1	:	•••••	2	•		1	1	1		

Table 4D: Analysis of V kappa subgroup 4

** *					CDR	11												
amino acid'	49	50	51	52	53	54	55	56	57	58	59	09	61	62	63	64	65	99
А			30															T
В																		***********
· c																		
D												33	3	<u> </u>		<u> </u>		<u> </u>
E							32			†								
F ·										-		<u> </u>		33	3	İ		-
G									33						1	33	}	33
Н																		
1					1													
K																		-
L		<u></u>																
М																		
N					2													
Р				1							33		1	Ī		<u> </u>		
Q						•••••												
R	.					3 3	••••••						32					
S	ļ		1	31	1			33							32		33	
Ţ			2	1	29													
V	ļ						1			33								
W		33										••••						
X													*********					
Y	33																	
-																		
unknown (?)																		
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	33
mcaa*	Υ	W	Α	S	T	R	Ε	S	G	٧	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	%88	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	100%
pos occupied ⁶	1	1	_ :	1		1			1	1	1	1	2	1		1	1	1

リア

Table 4D: Analysis of V kappa subgroup 4

TO. Allalysis of V					Į v						Fra	mev	vork	II				
amino acid'	31	32	33	34	35	36	37	38	39	5	4	42	43	4	45	46	47	48
А				32						2	2							
В	<u></u>																	
· C					<u> </u>		<u> </u>		<u>!</u>									
D																		
E											1							
F				<u> </u>		<u> </u>	<u>!</u>											
G		<u></u>		<u>.</u>			<u> </u>				32							
Н	ļ	<u></u>	· ·	<u>.</u>	<u>.</u>	2	<u> </u>											
	.	<u>.</u>		<u>.</u>			<u> </u>	<u>.</u>	<u> </u>									32
К	ļ	<u></u>				<u></u>	<u> </u>		33	<u></u>	<u>.</u>		<u></u>		32	<u> </u>	<u></u>	<u></u>
L	<u> </u>		33							<u>.</u>	<u> </u>				<u></u>	29	33	
· M	ļ								<u>.</u>	<u> </u>								1
N	33							<u></u>	<u> </u>	<u></u>	<u></u>	<u>.</u>		<u> </u>				
Р	.									31	<u></u>		31	33				
Q							32	33	<u></u>			32						
R							1	ļ	<u> </u>			1		<u>.</u>	1			
S													2				,	
T		*********		1														
V	ļ	••••			••••											4		
W		••••••			33		•••••											
X												•••••						
ΥΥ		3 3				31												
· _								••••										
unknown (?)																		
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	32
mcaa*	N	Υ	L	Α	W	Υ	Q	۵	Κ	Р	G	Q	Р	Р	K	L	L	1
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	92%	94%	100%	97%	88%	100%	97%
pos occupied ^a	1	1	1	2	1	2	2	;	:	2					······································	•••••••	1	

Table 4D: Analysis of V kappa subgroup 4

			3		<u> </u>									CDF	RI			
amino acid'	19	20	21	22	23	24	25	26	27	A	В	ပ	٥	ш	ш	28	29	30
Α	26						1				1							
В																		
· C					33													
D											1		1			1		
E																		
F.																		
G																		
Н																		
1			26								1							
K						33										2		30
L											2	_31		••••••••••••••••••••••••••••••••••••••				
· M														 !				
N		•••		26												30	31	1
Р				••••••			1								1			
Q									32									1
R									1				*******				1	1
<u> </u>							31	33		33			****	32	32		1	•
Ţ		26											********	1				
V											28	2						
W															•••••			
X					••••										••••••			
Y													32					
-																		
unknown (?)																		
not sequenced	7	7	7	7														
sum of seq ²	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3 3
oomcaa,	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	30
mcaa'	Α	T	1	N	С	K	S	S	0	S	٧	L	Υ	S	S	N	N	K
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	92%	97%	97%	91%	94%	91%
pos occupied ⁶	1	1	1	1	1	1	3	1			5	;	:					4

Table 4D: Analysis of V kappa subgroup 4

									· V		Fra	me	worl	(I				
amino acid'	-	2	က	4	S	9	7	∞	6	10	=	12	: ~	. 1	15	. t	2 7	18
А												2	4					1
В																		
· с										1							1	
D	25								26									
E																	2	5
F		<u> </u>			<u> </u>		<u>.</u>											
G	<u> </u>	<u> </u>	<u></u>		ļ					<u>.</u>	<u>.</u>	1				24	4	
Н	.	<u></u>	<u></u>		<u></u>													
<u> </u>		26	<u></u>	<u>.</u>	<u> </u>		<u> </u>		<u> </u>									
K	.	ļ	<u></u>	ļ	<u></u>	1		<u> </u>	<u></u>			<u></u>						
L	 	ļ	ļ	1							26	ļ	<u>.</u>	<u>.</u>	26	3		
. M		<u> </u>	ļ	24	<u></u>	<u></u>	<u></u>		<u> </u>		<u> </u>	<u></u>	<u></u>	<u>.</u>				<u>.</u>
N	1	<u> </u>		<u></u>	<u> </u>		ļ				<u></u>	<u></u>		<u>.</u>		<u>.</u>		
Р	ļ							26			· 	1	ļ	ļ			<u> </u>	
Q			1	<u> </u>		25	<u> </u>	ļ		********			<u></u>	ļ		ļ	<u> </u>	
R							<u> </u>	<u></u>				•••••	ļ	ļ		<u> </u>		26
S	 						26	ļ		25		*******	ļ	26	<u></u>	1		
T	ļ				26									<u> </u>				
V			25	1									26	<u></u>	ļ	<u> </u>	<u></u>	
<u> </u>			*******		••••••	••••••						*******		ļ		<u></u>	<u> </u>	ļ
X	ļ					•••••						••••••						<u> </u>
Υ									_									
							••••••					•••••		••••••				
unknown (?)													**********					
not sequenced	7	_						-										7
sum of seq?	: :	:	:	:	:	:			26							• • • • • • • • • • • • • • • • • • • •		
oomcaa ¹		:		•			:	:	26	:				***************************************	26		••••••	
mcaa'	D	·····÷	V		••••••	••••••••	•••••••••••••••••••••••••••••••••••••••		D	S	L	Α	V	S	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ^a	:		2	3	1	2	1	1	1	2	1	3	1	1	•	•	2	1

Table 4C: Analysis of V kappa subgroup 3

			F	rame	work	c IV					7
	amino acid'	101	102	103	104	105	106	∢	107	108	_ı. sum
	Α		Ī	Ī						T	1345
	В		· · · · · · · · · · · · · · · · · · ·							***************************************	2
	С		İ				·	•		-	375
	D		<u> </u>	<u> </u>	<u> </u>	23	†	†·····			564
	E			3	ļ	141	· • ······			+	759
	F		<u> </u>	·		·	6	; 			765
	G	166	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	·	1	1
	Н					1		÷	·	<u> </u>	64
			<u> </u>		<u> </u>		143		<u> </u>		803
	К		<u> </u>	152	<u> </u>			†	157	İ	489
	L		<u> </u>		54	<u> </u>	1	<u> </u>	·	2	
	М		 !		 !	•	3				36
	N		1			<u></u>		<u></u>	3		255
	Р		1		1		<u> </u>				1147
	Q			1		1					1314
	R			9			2		4	134	1326
	S		2						<u> </u>		2629
	T		162	1					1		1593
	V				111		11				646
	W										287
	X										
	Y			1					·		1014
	-	1	1	1	1	1	1	166	1	1	2151
İ	unknown (?)										4
	not sequenced	16	16	15	16	16	16	17	17	45	337
	sum of seq'	167	167	168	167	167	167	166	166	138	
	oomcaa'	166	162	152	111	141	143	166	157	134	
	mcaa ⁴	G	T	К	٧	Ε	1	-	K	R	
	rel. oomcaa'	% <u>6</u> 6	97%	%06	%99	84%	86%	100%	95%	92%	
	pos occupied ^a	2	5		4	5	7	1	5	4	
					11	2					

Table 4C: Analysis of V kappa subgroup 3

						CDR	Ш									
amino acid'	91	92	93	94	95	A	80	U	۵	ш	ш	96	97	86	66	100
Α		1	8	3	3											1
В																
· C	2			1									2			
D		8	5											١		
E		2											1			
F .	5	<u>.</u>	2			<u> </u>						7	,	166	3	
G	1	104	15		1	1	2					1			166	41
Н	4	1	<u></u>	<u>.</u>			<u> </u>					2	2			
·		<u></u>	1	<u> </u>	<u> </u>	1	<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>	4	ł i			
К			2	<u></u>	<u> </u>	1	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	1	<u>.</u>		<u>.</u>	1
L			<u></u>	2	7	5						42				
·M		1	<u></u>	<u></u>	1	2	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
N		28	71	<u>.</u>	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>		1	<u>.</u>	<u></u>	<u> </u>	
Ρ				1	139	24		<u>.</u>	<u></u>			7	2			9
Q	1		1		3	1	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	3	<u> </u>	<u> </u>	ļ	114
R	34	2	3		2	2	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	19	<u> </u>			
S	2	33	58	102	15	2	ļ	<u> </u>	ļ		<u></u>	1	8			
T		2	13	1	1	-2	<u> </u>	<u> </u>	ļ	ļ		1	154			
V					3	· 1	<u></u>	<u> </u>	<u> </u>	<u> </u>		2				
W	-			69				<u></u>	<u></u>	<u>.</u>		24				
X																
Y	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)							••••••									
not sequenced			•											16		===
sum of seq'	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa,	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa'	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	%92	75%	%66	100%	100%	100%	100%	25%	93%	%66	%66	9/089
pos occupied ^a	8	11	13	8		:	2	1	1	1	1	18	5	2	2	6

Table 4C: Analysis of V kappa subgroup 3

										٨.,						
amino acid'	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	89	06
А							3			174						
В					1											
· C									2					182	2	
D			1				3	182								
E					149		175							į		
F		1							178		2	1	4	l i		
G		<u> </u>	3					1		2						
Н		<u> </u>	<u></u>								1				1	
<u> </u>	178	<u> </u>	<u> </u>				<u> </u>	1	1	<u> </u>	9					
K		<u> </u>	<u> </u>	<u> </u>	<u></u>		1									
L				178		1			1		7		1			1
М		<u> </u>					<u> </u>			1	5					
N	1	5		<u> </u>	<u>.</u>	. ba b be										
Р						149										
Q				<u> </u>	34									1	181	155
R		1	111	<u> </u>						3			<u> </u>			1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159		<u>.</u>			7
W																
Χ								<u> </u>								
Υ	1										1	183	176		1	2
-																
unknown (?)																
not sequenced																
sum of seq ²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa,	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa'	ı	S	R	L	Ε	Р	Ε	D	F	Α	٧	Υ	Υ	С	Q	Q
rel. oomcaas	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	%98	%66	%96	%66	%66	85%
						:		•	:					••••••	•••••	

Table 4C: Analysis of V kappa subgroup 3

														Fram	ewor	cIII
amino acid'	29	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74
Α		68						3	3	,	5 ;	3	1		3	
В																
. C																
D		112				1						152	2			
E								1	<u> </u>	1	l	30)			
F				183									183	}	2	
G		<u>.</u>				184	3	178	_	177	· .					
Н	 	1	<u> </u>		<u> </u>											
1		<u></u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u>.</u>	<u>.</u>		1		3
K		<u></u>	1	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u>			<u>.</u>	<u></u>			<u></u>
L		<u></u>	ļ	1				<u> </u>	<u> </u>						182	
. M		<u>:</u> :	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u></u>	<u></u>	<u> </u>		<u>.</u>			<u></u>
N		1	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>		<u> </u>	<u></u>	<u></u>	<u> </u>		1		
Р	177				<u> </u>		<u></u>		<u></u>	<u> </u>		<u></u>		<u> </u>		
Q	ļ		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>			<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	
R	ļ		182	<u></u>	2		1			<u></u>	2	<u> </u>	<u> </u>	<u> </u>	ļ	
5	7				180		179		185		3	<u></u>	ļ	7		2
T	1		2		3		2	••••••			177	<u> </u>	<u></u>	172		179
V		3				·		1		1	<u> </u>	<u> </u>				
W		•								1	ļ					
X										•••••						
Υ													1			
unknown (?)						•		1				••••••				
not sequenced																
3	185			. :				:					•••••••	··-÷		
	177					184	179	178	185	177	177	152	183	172	182	179
mcaa*	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	Ţ
rel. oomcaas	%96	61%	%86	%66	%26	%66	926	96%	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied [*]	3	5	3	3	3	2	:	5	1	5	4	4	2	5	2	3

Table 4C: Analysis of V kappa subgroup 3

	rk II										CDR	[]				
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58
Α	176							4	147				176	1		
В																
. c									1							
D								43					2		4	
E															Ī	
F.				1		1	4									
G								125					2	10	179	
Н							9		1							
						178								1		168
K			1								7	1				
L		1		179	174	1										
M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
Q							1					•				
R			182					1			4	180				
S							3	6	4	179	74	1		5		
T	3					•			11	2	44			164		2
V				3	9			3	19				3			15
W							1					1				
X														<u></u>		
Y							165								2	
-																
unknown (?)			1													
not sequenced																
sum of seq ²	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147		74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Τ.	G	1
rel. oomcaa'	%96	%66	%86	%86	95%	970/6	%06	68%	80%	%86	40%	98%	95%	9%68	97%	91%
pos occupied ^a	3	2	3	3	2	4			6	;	:	:	:	7	3	

Table 4C: Analysis of V kappa subgroup 3

															Fra	mew
amino acid'	ш.	28	29	3	.31	32	33	34	35	36	37	38	39	9	- 5	42
А				1	1			18	1							
В		<u> </u>		<u> </u>		<u>:</u>										
С	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>.</u>									
D			1	1	2	1										<u> </u>
E	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	1	<u>.</u>	<u>.</u>	<u> </u>					1		1
F	<u></u>	1	<u> </u>	<u> </u>	<u> </u>	7	<u> </u>	<u>.</u>	<u> </u>	1		<u>.</u>				<u> </u>
G	.	<u> </u>	2	7	3	1	<u>.</u>	2	2	<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>	1	184	
Н		ļ	1	<u> </u>	<u></u>	2		<u> </u>	<u></u>	1		12	2 1	1		
1		24	4	1	1	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		<u>.</u>			
K	.	<u> </u>	<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	<u>.</u>	153		<u>.</u>	<u>.</u>
· L		8	1	ļ	ļ	1	176					3		<u>.</u>	<u> </u>	2
·M		<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
N	.	<u>.</u>	3	12	25	32	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Р	ļ		ļ		1		<u> </u>	<u> </u>	<u></u>	<u> </u>		<u></u>	<u> </u>	170		
Q			<u> </u>	<u></u>	1	1	<u> </u>	<u> </u>	<u></u>	<u>.</u>	183	167	-1	<u> </u>	<u> </u>	181
R			10	3	18	16	<u></u>	1	<u> </u>	<u> </u>	1	<u> </u>	27	5	ļ	
S		72	86	151	118		······	<u> </u>	ļ	<u> </u>	ļ	ļ	ļ	5		
T		1			8	1	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u>	1			
<u> </u>		76	68	•••••	1		7	<u> </u>	<u> </u>	<u></u>		3	<u> </u>	2		
<u>W</u>			5						185	<u> </u>						
<u>X</u>										<u></u>						
Υ				1	1	115				183						
	182						•••••••	····						•••••		
unknown (?)						•••••	•			••••••	1					
not sequenced	-					100										_
	:	-			:	:				:				184	····÷	
oomcaa¹	182			:	:					:	··········	•	• • • • • • • • • • • • • • • • • • • •	170	•	
mcaa'	-	V	S	S	S	Υ	L		W	Υ	Q	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%	100%	%86
pos occupied ^a	1	6	11	10	13	12	2	3	1	3	2	4	6	6	1	3

108

Figure 4C: V lambda 3 (VA3) gene sequence

S V A P G Q T SexAI	AGCGTTGCAC CAGGTCAGAC TCGCAACGTG GTCCAGTCTG	G D K Y A S	GGGCGATAAA TACGCGAGCT CCCGCTATTT ATGCGCTCGA	Q A P V L V I Y D D Bber	TTCTGGTGAT TTATGATGAT
P S V	GCCTTCAGTG CGGAAGTCAC Eco57I	D A L	GCGATGCGCT CGCTACGCGA	A P BbeI	CAGGCGCCAG GTCCGCGGTC
		S S		;	•
T Q F	TGACCCAGCC ACTGGGTCGG	S C S BssSI	TCGTGTAGCG AGCACATCGC	K P G XmaI	GAAACCCGGG
E L	•	H **	-	O ,	00
S	AGCTATGAAC TCGATACTTG	A	CGCGCGTATC GCGCGCATAG	W Y W KpnI	GGTACCAGCA CCATGGTCGT

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

ა ა	CCAACAGCGG GGTTGTCGCC	Æ	~~~~ GACGAAGCGG CTGCTTCGCC	G G G TGGGGGGGC ACCGCCGCG		
S N	CCAAC GGTTC	E O E	~~~~~~~ 3AA GACGA TT CTGCT	G G TGGCGGC ACCGCCC		
G S BamHI	CGGAT CC	A E BbsI	GGAA GCCTT	V F GTGTT CACAA		
ក ល	TTTAGCGGAT	Ø	TCAGGCGGAA AGTCCGCCTT	P P V F CGCCTGTGTT GCGGACACAA		
S G I P E R Bsu36I	CCTCAGGCAT CCCGGAACGC	T L T I S G T	ACCCTGACCA TTAGCGGCAC TCAGGCGGAA TGGGACTGGT AATCGCCGTG AGTCCGCCTT	Q Q H Y T T P P V F CCAGCAGCAT TATACCACCC CGCCTGTGTT GGTCGTCGTA ATATGGTGGG GCGGACACAA	V L G MscI	CCGTTCTTGG C GGCAAGAACC G
S D R P	TCTGACCGTC AGACTGGCAG	N T A	CAACACCGCG /	D Y Y C ATTATTATTG C TAATAATAAC C	T K L T HpaI	ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G

	Ŋ	AG	A	GA	Ŋ	0 0 0 0	ス い い い い	
	Ø	AGC	Ą	IGC ACG	ტ	900 000	9 9 9 9 9	H
	O	3GC.	Ħ	TA		900	A AG(TC(问
		CGGGCAGCAG GCCCGTCGTC	ഗ	AGCTATGCGA TCGATACGCT	X	GATGGGCGGC CTACCCGCCG	Q G R TTCAGGGCCG AAGTCCCGGC	Σ
	വ		70		3		ſщ	
,	X	AA. TTT	W	TAG	ыÄ	AGT TCA	K AAG I'TC	×
	×	aaa ptt	ഥ	l'TT \AA	L. E XhoI	~~~~~~ CTCGAG GAGCTC	Q JAG	Ø
	>	GTGAAAAAAC CACTTTTTTG	E	CACTTTTAGC GTGAAAATCG	нА	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT	۲
			O		O			70
	田	SGA		AGG	Q	AG	Y TAC	Ŋ
	Ø	900	S G BspEI	TCCGGA AGGCCT	_ග	~ GGC CCG	N AAC TTG	H
	ტ	TGGCGCGGAA ACCGCGCCTT	NM	CCTCCGGAGG GGAGGCCTCC	<u>с</u> ,	CAAGCC CCTGGGCAGG GGTTCGG GGACCCGTCC	A N Y GGCGAACTAC CCGCTTGATG	Ŋ
	**		Ø		XI	≀		闰
	W	TGGTTCAGTC ACCAAGTCAG	K A	AGCTGCAAAG TCGACGTTTC	A BstXI	GCGCCAAGCC CGCGGTTCGG	FGT TTTTGGCAC AAAAACCGTG	Ω
sedne	O ₁	CA(CAZ	α	AAC	0 0 0 0 0 0 0 0	A I
) gene	>	GTT CAA	O	CTG	~	300 300 300	F LTT AAA	Ø
VH1A	디브	TG		AG		S S S S S		H
in 1A	E G		>	TG	\triangleright	GT CA	GA CT	H
vy cha	(GCA		AAG TTC	3	rgg Acc	PCC.	
V hea	>	CAGGTGCAAT GTCCACGTTA	V K	CGTGAAAGTG GCACTTTCAC	S	1007 1062	I TAT	EI3
Figure 5A: V heavy chain 1A (VH1A) gene sequence	O'	CAGGTGCAAT GTCCACGTTA	₽	CGTGAAAGTG GCACTTTCAC	Н	TTAGCTGGGT AATCGACCCA	I I P ATTATTCCGA TAATAAGGCT	V T BstEII
Figt								• •

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

} ? ?			
GGTGACCATT CCACTGGTAA	ACCGCGGATG TGGCGCCTAC	AAAGCACCAG TTTCGTGGTC	CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT
. (
SSLR	S E E	T A V Y	Y C A R W G
		EagI	BssHII
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
GCAGCCTGCG	TAGCGAAGAT	ACGGCCGTGT	ATTATTGCGC GCGTTGGGGC
) りつせりりつ Tりつ	AICGCITICIA	TGCCGGCACA	TECCEGCACA TAATAACGCG CGCAACCCCG
С О О	F Y A M	M Y Q	T A I I A J
GGCGATGGCT	TTTATGCGAT	GGATTATTGG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CCGCTACCGA	AAATACGCTA	CCTAATAACC	CCGGTTCCGT GGGACCACTG
or.			
Bl			
· ~ ~ ~ ~ ~			
GGTTAGCTCA	Ŋ	. •	
CCAATCGAGT	S		

Figure 5B: V heavy chain 1B (VH1B) gene sequence

S	ອຸ ວ		ă H	_	ט ט	α α
Ø	CGGGCGCGAG GCCCGCGCTC	×	AGCTATTATA TCGATAATAT	3	GATGGGCTGG CTACCCGACC	F Q G R TTCAGGGCCG AAGTCCCGGC
ڻ ن	GG(≯	AT. TA2	Ŋ	990	0 0 0 0 0 0 0
<u>O</u>	9 0 0 0	∀	CT	Σ	TG	O CA(GT(
Д	000	S	AG		GA	TT
V K K P	AC TG	[- 4	CC	M	TG AC	E E E
×	GTGAAAAAC CACTTTTTG	T	TACCTTTACC ATGGAAATGG	ыH	GTCTCGAGTG CAGAGCTCAC	A Q K I GCGCAGAAGT CGCGTCTTCA
×	AA? I'T'I	Į۲۰	CTI	L E XhoI	TCGA	A SAG
>	TG	H	AC(TG(H ^	TC1	A CGC GCC
		K.	•	Ŋ		
田	CGGCGCGGAA GCCGCGCCTT	×	CCTCCGGATA GGAGGCCTAT	_ე	CCTGGGCAGG	T N Y CACGAACTAC GTGCTTGATG
G B	ပ္ပ်ပ္ပ	S G Bspei	CCGGA		3C7	N ACT
כט	0 0 0 0 0 0		FCC PGG	G	rGG ACC	GA CT
J	ည်		CC7 GG2	дн	CC1	T CAC GTG
ß	AG FC	C K A	AG C	A BstXI	≀	
δ δ Λ	TGGTTCAGAG	×	AGCTGCAAAG TCGACGTTTC	Q A Bs.	CCGCCAAGCC	S G G ATAGCGGCGG TATCGCCGCC
_	TC	U	16C	Ö	CA	9 0
	3GT	ഗ	GCI	K	1 0 0 0 1 0 0 0	S FAG ATC
дн. І			•			Z
Mfe I	AAT FTA	>	3TG	>	GGT	CGA
	GC7	×	AA(TT(Z	TGC	Р ССС 666
>	GGT	7 K	GA CT	H	AC	N NAA!
Q	CAGGTGCAAT GTCCACGTTA	>	CGTGAAAGTG GCACTTTCAC	Σ	TGCACTGGGT ACGTGACCCA	I N P ATTAACCCGA TAATTGGGCT
•	_		-	· •	- •	

	Y M E L		STAT ATGGAACTGA CATA TACCTTGACT	C A R W G BSSHII	GCGC GCGTTGGGGC	G FJ	GCA CCCTGGTGAC	
	T A		CACCGCGTAT GTGGCGCATA	Y Y E	ATTATTGCGC TAATAACGCG	ර ර ර	Styl ~~~~~~ GGCCAAGGCA CCGGTTCCGT	
(p:	SH		CCAGCATTAG GGTCGTAATC	. A V) EagI	ACGGCCGTGT TGCCGGCACA	M X	GGATTATTGG CCTAATAACC	
Figure 58: V heavy chain 18 (VH1B) gene sequence (continued)	T R D T		ACCCGTGATA CCA TGGGCACTAT GG1	S E D T	TAGCGAAGAT ACG ATCGCTTCTA TGC	Y A M D	TTTATGCGAT GGA AAATACGCTA CCT	י. רח רו
Figure 58: V heavy chain 1B	V T M Bsteii	11111	GGTGACCATG CCACTGGTAC	S S L R	GCAGCCTGCG	G D G	GGCGATGGCT CCGCTACCGA	CT

MluI CAGCCGCCTG GGAAAGCCCT CGAGTGGCTG CCTTTCGGGA GCTCACCGAC ACGTCTGGCG TGCAGACCGC GCTGGGTTTG CGACCCAAAC 딘 Н 又 C O 3 ഗ 口 Н 团 XhoI \vdash ഗ ATCGGACAGG TAGCCTGTCC Д GACCACTTTG CTGGTGAAAC S E X Ø ᆸ ഗ > 又 ഗ \succ 口 G GACCTAAGCG GTCGGCGGAC TGGACATGGA AAAGGCCTAA TTTCCGGATT CAGGTGCAAT TGAAAGAAAG CGGCCCGGCC 9900999009 ਸ਼ੀ \succ K Ы BstXI S G BspEI U 又 ш Д Ω O G TIGGCGIGGG CIGGAIICGC Ω Ы ACCTGTACCT GICCACGITA ACTITCITIC ഗ K Figure 5C: V heavy chain 2 (VH2) gene sequence Н Ω 口 Н C 3 又 3 딢. Ω AACCGCACCC П MfeI CCTGACCCTG GGACTGGGAC G 口 Н O > Н 口 > G Н Ø >

CGGACTTTTG GCCTGAAAAC TATAGCACCA ATATCGTGGT ACTATTCATA TGATAAGTAT GCTCTGATTG ATTGGGATGA TAACCCTACT CGAGACTAAC

(VH2) gene sequence (continued) I S K D T	ATTAGCAAAG ATACTTCGAA AAATCAGGTG GTGCTGACTA TAATCGTTTC TATGAAGCTT TTTAGTCCAC CACGACTGAT	DPVDTATYYCA BSSHII	GGACCCGGTG GATACGGCCA CCTATTATTG CGCGCGTTGG CCTGGGCCAC CTATGCCGGT GGATAATAAC GCGCGCAACC	G F Y A M D Y W G Q G T L V StyI	GCTTTTATGC GATGGATTAT TGGGGCCAAG GCACCCTGGT CGAAAATACG CTACCTAATA ACCCCGGTTC CGTGGGACCA	BlpI	TCAG AGTC
2 (VH2) gene sequen I S K	ATTAGCAAA TAATCGTTI		GGACCCGG	Įτι	GCTTTTAT(CGAAAATA(s d.	TCAG
Figure SC: V heavy chain 2 R L T MluI	GCGTCTGACC	M N T M	TGACCAACAT	0 0 0	GGCGGCGATG	T V S B1	GACGGTTAGC CTGCCAATCG

Figure 5D: V heavy chain 3 (VH3) gene sequence

တ	CAG	~	CGA	Æ	90 00 00 00 00	20 B
L V Q P G G	CGGCGGCAG	X A	AGCTATGCGA TCGATACGCT	S A	GGTGAGCGCG CCACTCGCGC	K G R TGAAAGGCCG ACTTTCCGGC
O	999	×	СТА GAT	>	TGA	K AAA TTT
0.	, 0,0,0	W	AG	·	φ Ω Ω	V TG
щ	AC	ß	ည္သင္သ	M	TG	, and a
Q	CTGGTGCAAC GACCACGTTG	E4 E4	TACCTTTAGC ATGGAAATCG	되 H O	GTCTCGAGTG CAGAGCTCAC	A D S V GCGGATAGCG CGCCTATCGC
>	GGT(Eu	CCT		crcga gagcr	D D CT
니	CTC	ניי	TA(AT(GTC	8 9 9 9
	90 00	[Fr	TT	B M	99	Y AT TA
_ອ	ອວວອວວອວວອ ວອອວອອວອວວອ	S G BSPEI	CCTCCGGATT GGAGGCCTAA	X	CCTGGGAAGG	T Y Y CACCTATTAT GTGGATAATA
		S Bs]) (GG(Ŋ	900	CTZ
0	000		CCI	дн	CCI	T CAC GTG
ß	AG TC	S C A A	99 CC	A P G BstxI) () ()	S AG
⊡	SAA	Ø	0 0 0 0 0 0	i	AAG FTC	0 0 0 0 0 0
>	TGC	Ö	TG	R Q	3CC7	ဗ ၁၁၁ ၁၁၁
1	TGGTGGAAAG ACCACCTTTC	.	AGCTGCGCGG TCGACGCGCC	124	GCGCCAAGCC	S G G S GCGGCGGCAG CGCCGCCGTC
Q L MfeI ~~~~		ы		>		01
OE	SCA	æ	GAG	M	IGG ACC	9 9 9 9 9 9 9 9
>	GAAGTGCAAT CTTCACGTTA		CCTGCGTCTG GGACGCAGAC	ഗ	TGAGCTGGGT ACTCGACCCA	I S G ATTAGCGGTA TAATCGCCAT
ចា	GAAGTGCAAT CTTCACGTTA	니	CCT	Σ	TG? AC1	I ATT TAA

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

Y	CTGCAAATGA GACGTTTACT	Ŋ	GCGTTGGGGC	H	AC		
Σ	AA) TT?	M	999	>	CCCTGGTGAC GGGACCACTG		
Q	SCA	R	TT	H	TG		
니	CTC		~~ 000 000		3 3 3 6 6		
~		C A BssHII	90 9090 09 0909	Ħ			
≯	CACCCTGTAT GTGGGACATA	C Bss	ATTATTGCGC TAATAACGCG	n G	GGCCAAGGCA CCGGTTCCGT		
H	CCT	≽ı	ATT	Q StyI	CCAAGG		
E	ACC		TT? AA1	ය ග	300 000	•	
177		≯ ⊦		_			
Z	AAA TTT	>	TG1 AC2	×	TGG ACC		
N K	ATTCGAAAAA TAAGCTTTTT	H	ACGGCCGTGT TGCCGGCACA	₩	GGATTATTGG CCTAATAACC		
S NspV	TCGAA	T A Eagi	999	Д	ATT FAP		
i	AT	EH Ì			900		
Z	TA AT	Ω	TGCGGAAGAT ACGCCȚTCTA	Σ	AT TA		
Д	CACGTGATA		AAG	æ	TTATGCGAT AATACGCTA		
S R PmlI	CG1	时	GG2	≯	ATG TAC		
က်မြ	TCACGTGATA	A	16C	·	TTTATGCGAT AAATACGCTA		
		R.	ნ ე	Įτι		H 1	A H
Η	AT:		rgc Acg	ტ	200	S S BlpI	TC
H	ACC	H	CC1	Q	ATG	S III	AGC
ഥ	TTTTACCATT AAAATGGTAA	W	ACAGCCTGCG TGTCGGACGC		GGCGATGGCT CCGCTACCGA	>	GGTTAGCTCA CCAATCGAGT
	TT	Z	AC	Ŋ	900		900

R V BstEII

ഗ

×

Н

ഗ

Д

Z

 \triangleright

Z

Н

S

G

ഗ

×

Figure 5E: V heavy chain 4 (VH4) gene sequence

E	AAC	N.	\TT PAA	X	ATA
QESGPGLVKPSET	CGAGCGAAAC GCTCGCTTTG	S I S X Y	AGCTATTATT TCGATAATAA	R Q P P G K G L E W I G Y BstXI xhoI	GATTGGCTAT CTAACCGATA
ß	AGC TCG	≯	CTA	Н	TTG
0.	0 0 0 0	S	AG		GA
	AC	ß	ည်	3	TG
X	GAA	н	TTA	国 FI O	GAG
>	CTGGTGAAAC GACCACTTTG	ro	CAGCATTAGC GTCGTAATCG	L E XhoI	GTCTCGAGTG CAGAGCTCAC
H	CT(GA(01	CAC		GTC
ප	90 00	Ŋ	0 0 0 0	G	35 35
O٠	TGGTCCGGGC	S G BSPEI	TTTCCGGAGG	×	SAA
.	TC(S BSPET)))))))))	ט	16G(
U	TGGTCCGGGC		TTTCCGGAGG	дн	CC1 GG2
w		T C T		Q P P G BstXI	TCGCCAGCCG CCTGGGAAGG
E	GCAAGAAAG CGTTCTTTC	H	ACCTGCACCG TGGACGTGGC	i m	AGC
Q	AA(TT(Ü	TG(~	3CC/
1	HA	E + .	ACC	щ	TCC
MfeI	AT TA	Ъ	TG AC	Н	AT
OZ	SCA	တ	990 990	3	TGG ACC
>	CAGGTGCAAT GTCCACGTTA		CCTGAGCCTG GGACTCGGAC	ഗ	GGAGCTGGAT CCTCGACCTA
Q	CAG	H	CC1 GG7	3	GG1 CC1

CCGAGCCTGA AAAGCCGGGT GGCTCGGACT TTTCGGCCCA CAACTATAAT GTTGATATTA GCGCCAGCAC ATTTATTATA TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

	•					
တ	AAACTGAGCA TTTGACTCGT	ტ	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	>	GGT	·
н	CTGA	Ŋ	TTGGGGGGGC AACCCCGCCG	7 T	FGAC	
×	AAA) TTT	M	TTG		TGGTGACGGT ACCACTGCCA	
7	CTG	II.	300 000 000	T L	200 366	
တ	4GC.	C A BssHI	505050 505050		CAC	
۲ų	GTTTAGCCTG		ATTGCGCGCG TAACGCGCGCGC	Q G StyI	CAAGGCACCC GTTCCGTGGG	·
Q	CA GT	₩	TT		≀	
Z	AAC rtg	₩	STA		3666	
×	AAA TTT	>	GTC	Ā	TTG	
S NspV	GTTGATACTT CGAAAAACCA CAACTATGAA GCTTTTTGGT	EagI	GCCGTGTATT	X	TTATTGGGGC AATAACCCCG	
N S	~~~ TT AA	H ED	0 0 0 0	Ω	GA	
H	rac atg	Q	GGGGATACG	Σ	ATG	
Q	GA:		.GG2	Ø	CG2	· .
>	GTT	A	999		ATGCGATGGA TACGCTACCT	
ß	0 0 0 0	A	90 00	≯		
нн	rta Aat	E	ACG IGC	Ľι	CTT	SO H CA A G
	CA	>	TG;	Q) (CCC	S S BlpI ~~~~~ GCTCA CGAGT
T BstEI	GACCATTAGC	ß	GCGTGACGGC CGCACTGCCG	Ω	GATGGCTTTT CTACCGAAAA	S S BlpI ~~~~ TAGCTCAG ATCGAGTC

			<i>(</i>		
(J		AA(I'T(
1	되		GAZ		
(V Q S G A E V K K P G E S		GTGAAAAAC CGGGCGAAAG CACTTTTTG GCCCGCTTTC		
ı	വ		U U		
!	×		AAA TTT		
	×	•	AAA		
	>		GTG		
	ା		SGAA		
	Ø		200		
	ტ		CGGCGCGGAA		
ence	ഗ		AG		
ne sední	Q		CAG		
Figure 5F: V heavy chain 5 (VH5) gene sequence	>	?	TGGTTCAGAG ACCAAGTCTC		
hain	Q L MfeI		T. A.		
reavy ch	Q Mf	? ? ? ?	GAAGTGCAAT CTTCACGTTA		
5F: V	>		GTC		
Figure	田		GAA		

AGCTATTGGA TCGATAACCT AAGGAAATGC TTCCTTTACG CAAGGCCTAT GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

3

ഗ

Н

لتا

ഗ

≻

G

ഗ

G

×

Ö

က .

Н

 \simeq

ᆸ

BSPEI

᠐ Σ 3 口 XhoI G \simeq ᠐ Д BstXI Σ Ø α > 3 G Н

CTACCCGTAA GATGGGCATT GTCTCGAGTG CAGAGCTCAC CGCGGTCTAC GGACCCTTCC CCTGGGAAGG GCGCCAGATG AACCGACCCA TTGGCTGGGT

TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT ഗ ഥ ഗ വ ഗ ATGGGCAATA TACCCGTTAT ۲ ATTTATCCGG GCGATAGCGA TAAATAGGCC CGCTATCGCT ഗ Ω ഗ Д

		GA CT	G	9 CG	E	AC TG
	S A D K S I S T A Y L Q W	CTTCAATGGA GAAGTTACCT	K A S D T A M Y Y C A R W G BSSHII	ACGGCCATGT ATTATTGCGC GCGTTGGGGC TGCCGGTACA TAATAACGCG CGCAACCCCG	F Y A M D Y W G Q G T L V T Styl	CCCTGGTGAC GGGACCACTG
	CI	AA' I'T,	Z	IG AC	•	393
		FC.	œ.	GT.	H	CT(
	Ţ	CT) (9 (9) () () ()
		F A	Ø H →	\mathcal{O}	E	
	\succ	AAAGCATTAG CACCGCGTAT TTTCGTAATC GTGGCGCATA	C A BssHII ~~~~~~~~	\mathcal{O}	נים א	GGCCAAGGCA CCGGTTCCGT
	~	2G.	ပဣိ≀	IG(Ŭ H,≷	λG(
	7	200	~	AT.	O G StyI	ST
	E .	\C(LT.7 \A\.	(D) {	33
		ซีซี	~	A7 T7	O	6 5
	ω .	4G [C		TS	'>	ğ Ω
		ľT7 VA	Σ	۱۲(۲۸(5	rt VA
	,,	2A7 3T <i>2</i>	~·	, , , , , , , , , , , , , , , , , , ,	\succ	GGATTATTGG CCTAATAACC
(g	Ω.	4G(7	360	\circ	AT.
tinu		AA/ LT.	E-I	₹C(<u>—</u>	36. 77.
(con	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			5	
ence	0	AGCGCGGATA TCGCGCCTAT	Ω	3A.	2	3A.
edu	ш	. 367 	ro	300	A	300
ene s	A	333	0,1	SA(~	AT(FA(
15) g	ro	300	Ø	200		rt2 AAC
5 (7	0,	A(T(•	A(T(لتبا	T A
nain	Н	IT AA	又	AA IT		CT
رح دخ		CA:	ے	IG.	Ŋ	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
hea	E H	AÇ. IĞ.	•	200	\circ	AT(IA(
SF: V	/ EE.	√~; I'G2 AC:	ഗ	4G(IC(<u>о</u>	3C.
Figure 5F: V heavy chain 5 (VH5) gene sequence (continued)	V T BstEII	GGTGACCATT AGCGCGGATA AAAGCATTAG CCACTGGTAA TCGCGCCTAT TTTCGTAATC	S	GCAGCCTGAA AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC CGTCGGACTT TCGCTCGCTA TGCCGGTACA TAATAACGCG CGCAACCCCG	Ŋ	GGCGATGGCT TTTATGCGAT GGATTATTGG CCGCTACCGA AAATACGCTA CCTAATAACC
Ę			J,	00		0 0

Figure 5G: V heavy chain 6 (VH6) gene sequence

E-I	
Ø	
ഗ	
ы	
×	
>	
ij	
ტ	
Д	
ტ	
တ	
Q	
Ø	
енг	~ ~ ~ ~ ~
M M F	~ ~ ~ ~ ~ ~
>	
Ø	

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACGTTGTCAG ACCAGGCCCG TGCAACAGTC GTCCACGTTA CAGGTGCAAT

ഗ \boldsymbol{z} ഗ ഗ > S BSPEI G ഗ Н Ø O ٠ إ Н ഗ 口

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG TTTCCGGAGA AAAGGCCTCT TGGACACGCT ACCTGTGCGA CCTGAGCCTG GGACTCGGAC

 \geq 口 XhoI G K G <u>а</u> BstXI ഗ Ø α 3 Z 3 K ď

Н

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC CAGTCTCCTG GTCAGAGGAC GACCTAAGCG CGGCGTGGAA CTGGATTCGC GCCGCACCTT

TIGCTAATAC GCCACTCGCA CGGTGAGCGT ഗ > AACGATTATG **>**-Ω z CAAATGGTAT GTTTACCATA 3 又 GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC S 2 ĸ ග

L V T V S S
BlpI

CCTGGTGACG GTTAGCTCAG
GGACCACTGC CAATCGAGTC

	ഗ		CAGTTTAGCC GTCAAATCGG	C A BssHII	TTATTGCGCG AATAACGCGC	EH U	GCCAAGGCAC
	D Fi	Ī	AGTTI ICAA <i>P</i>	Bs	rattc Ataac	Q StyI	CCAAGG
	P D T S K N Q F S			S V T P E D T A V Y Y C A EagI BssHI	TGTA T	G. D G F Y A M D Y W G Q G T Styl	
	Ω X	NspV	~~~~~~ TTCGAAAAAC AAGCTTTTTG	r A EagI	CGGCCGTGTA GCCGGCACAT	Z Q	GATTATTGGG
	E O		ACCCGGATAC TGGGCCTATG	Ω Γ	CCGGAAGATA GGCCTTCTAT	A M	TTATGCGATG AATACGCTAC
(continued)				Сd	CCGG7	>	TTATG
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued)	I T I	BsaBI	ATTACCATCA TAATGGTAGT	₽ P	CAGCGTGACC GTCGCACTGG	Ω Eri	GCGATGGCTT TTATGCGATG
ıaın 6 (VH6) ç	Н	Bs	∤	•	A CAGC I GICG	Ω	
G: V heavy ch	S		GAAAAGCCGG CTTTTCGGCC	Z Z	TGCAACTGAA ACGTTGACTT	Ŋ	CGTTGGGGCG
Figure 5	×		GAA? CTTI	J.	TGC! ACG1	R W BssHII ~	CGT1

WO 97/08320 PCT/EP96/03647

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- O1K3 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **01K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- O1K6 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- O2K4 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- O2K5 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6:

- O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- O2L1 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- O2L2 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- O2L3 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- O2L4 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- O2L5 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- O2L6 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-GCCTTCAGTGAGCG -3' CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-
- 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-TCAGGGTC -3' O1246H1
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-GTGCAATTG -3' TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-SUBSTITUTE SHEET (RULE 26) TTTG -3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- O1AH45'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- O1AH5 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **01BH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

- O2H5 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2**. 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

WO 97/08320 PCT/EP96/03647

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTT C -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG-3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 '- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
 SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG - 3 '
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3 '
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTGCTCGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

O	l	CA GT	TC AG	0 0 0 0	S L	AG FIC
EI		GAA	Y TTA AAT	8 6 6 6 6 7	Y FAT	K FAA ATT
Q		GCGATGAACA CGCTACTTGT	F CTT GAA	Q S G GCAAAGCGGC CGTTTCGCCG	ACC!	K H K AAACATAAAG TTTGTATTTC
ß					S	
Д		TTTCCGCCGA AAAGGCGGCT	L L N CCTGCTGAAC GGACGACTTG	ACAACGCGCT TGTTGCGCGA	S K D S T Y S AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG	D Y E GGATTATGAA CCTAATACTT
Д		2000	L L N TGCTGAA ACGACTT	N ACGC	K AAAG ITTC	D Y ATTAT
ഥ		TTT AAA	CCT GGA	D ACA TGT	S AGC TCG	GGAZ
н		ATT FAA	CAC	V D FAG ATC	D SAT CTA	AGC FCG
Ŀι		TTT	V GGT(CCA(K V BAAGTAG	O CAGG GTCC	K CAAAG GTTTC
APSVFIFPPSDEO		CGTGTTTATT GCACAAATAA	G T A S V V C GGCACGCGA GCGTGGTG CCGTGCCGCT CGCACACA	W K V D N A L TGGAAAGTAG ACAACGCGCT ACCTTTCATC TGTTGCGCGA	E Q D CGAACAGGAT GCTTGTCCTA	T L T L S K A ACCCTGACCC TGAGCAAAGC TGGGACTGGG ACTCGTTTCG
ß			S GA (CT (1 CC 1
д		000 000	6600 0000	V TTC	CGTG.	T GÀC(CTG(
Ø		CTGCTCCGAG GACGAGGCTC	T SCAC SGTG	K V Q GAAAGTTCAG CTTTCAAGTC	N S Q E S V T AACAGCCAGG AAAGCGTGAC TTGTCGGTCC TTTCGCACTG	T CCCTGA GGGACT
A					E S AA	T AC
V A		CGTACGGTGG GCATGCCACC	L K S ACTGAAAAGC TGACTTTTCG	P R E A CGCGTGAAGC GCGCACTTCG	N S Q AACAGCCAGG TTGTCGGTCC	L S S TCTGAGCAGC AGACTCGTCG
•	BsiwI	ACG	, K GAA CTT	R GTG	S AGC TCG	GAG
	BS	CGT	L ACT TGA	P CGC GCG	N AAC TTG	L TCT AGA

٠.

Figure 7A: sequence of the synthetic Ck gene segment (continued)

	Ø	H
X	AA	TT
V T K	ACT	TGA
	GGTGACTAAA	CCACTGATTT
S S P	CC	S S
ഗ	AGC	TCG
	TGAGCAGCCC	ACTCGTCGGG
Н		
н о с г	CATCAAGGTC	GTAGTTCCAG
Ø	CAA	GTT
H	CAT	GTA
EH	ACC	$^{\mathrm{TGG}}$
>	GTG	CAC
E V T	CGAAGTGACC	GCTTCACTGG
ပ	۲ħ	۲)
Ø	GCGTC	ACGC
×	\mathtt{TAT}	ATA
>	TG	AC

SFNRGEA* StuI SphI TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 7B: sequence of the synthetic CH1 gene segment

S ഗ Д Ø Ц Д لتا > ഗ Д G X ₽ Sal ഗ Ø

GGTTCGCACA AAGGCGACCG AGGCTCGTCG TCCGAGCAGC TTCCGCTGGC CCAAGCGTGT CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

~~~~~~

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT > C G GCGCCGCAC GCCTGCCCTG CCGACGGGAC A L Ø CGCCGCCGTG ָט ט ഗ TTTTCGTGGT AAAAGCACCA ഗ

CTGACCAGCG GACTGGTCGC GTCGCCCGC CAGCGGGCG <u>ෆ</u> ഗ GGTCAGTGGC ACTCGACCTT CCAGTCACCG TGAGCTGGAA 3 ഗ > E > Д TTTCCCGGAA AAAGGGCCTT 口 Д

GTATAGCCTG CATATCGGAC  $\succ$ GCAGCGGCCT CGTCGCCGGA G ഗ ഗ GTGCTGCAAA CACGACGTTT Ø ᆸ > CTTTCCGGCG GAAAGGCCGC Ø אם GCGTGCATAC CGCACGTATG 二 >

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø G CTCGTCGTCG GAGCAGCAGC ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG H ഗ S

>

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

| K K<br>AAAAAA(<br>TTTTTT                                                                                                                   |                     |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|
| K V D<br>CAAAGTGGAT<br>GTTTCACCTA                                                                                                          |                     | ·                                              |
| C N V N H K P S N T K V D K K<br>TTGCAACGTG AACCATAAAC CGAGCAACAC CAAAGTGGAT AAAAAAA<br>AACGTTGCAC TTGGTATTTG GCTCGTTGTG GTTTCACCTA TTTTTT | E F * HindIII       | CGAATTCTGA TAAGCTT<br>GCTTAAGACT ATTCGAA       |
| C N V N<br>TTGCAACGTG AA<br>AACGTTGCAC TT                                                                                                  | 田<br>中<br>文<br>S    | AACCGAAAAG CGAATTCTGA<br>TTGGCTTTTC GCTTAAGACT |
| C N V N H<br>TTGCAACGTG AACCA<br>AACGTTGCAC TTGGT                                                                                          | E P K S E F * ECORI | AACCGAAAAG CGAAT                               |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



47 / 204

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

|      | T.                                             | н≀оо                                                             |        | Æ H                                            | FIA                      | d L                      |  |
|------|------------------------------------------------|------------------------------------------------------------------|--------|------------------------------------------------|--------------------------|--------------------------|--|
|      | CCCCGCCTGT                                     | DrallI<br>~~~<br>AAAGCCGCAC<br>TTTCGGCGTG                        |        | GGCGAACAAA<br>CCGCTTGTTT                       | CCGTGACAGT<br>GGCACTGTCA | GAGACCACCA               |  |
|      | TTGCCAGCAG CATTATACCA<br>AACGGTCGTC GTAATATGGT | MscI<br>~~~~~~<br>TGGCCAGCCG /                                   |        |                                                | TATCCGGGAG CATAGGCCTC    | GGCGGGAGTG C             |  |
|      |                                                | HpaI<br>~~~~~~<br>GGCACGAAGT TAACCGTTCT<br>CCGTGCTTCA ATTGGCAAGA |        | CCGAGCAGCG AAGAATTGCA<br>GGCTCGTCGC TTCTTAACGT | TAGCGACTTT               | GCCCCGTCAA               |  |
|      | CGGATTATTA<br>GCCTAATAAT                       | H <sub>E</sub><br>GGCACGAAGT<br>CCGTGCTTCA                       |        | GCTGTTTCCG<br>CGACAAAGGC                       | TGTGCCTGAT<br>ACACGGACTA | GCAGATAGCA<br>CGTCTATCGT |  |
| BbsI | GAAGACGAAG                                     | GTTTGGCGGC                                                       | Dralll | CGAGTGTGAC<br>GCTCACACTG                       | GCGACCCTGG<br>CGCTGGGACC | GGCCTGGAAG<br>CCGGACCTTC |  |
|      | H                                              | . 21                                                             |        | 101                                            | 151                      | 201                      |  |
|      |                                                |                                                                  |        |                                                |                          |                          |  |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GCCGGTCGTC GATAGACTCG CGGCCAGCAG CTATCTGAGC AACAAGTACG TTGTTCATGC CACCCTCCAA ACAAAGCAAC TGTTTCGTTG GTGGGAGGTT 251

RleAI

~ ~ ~ ~ ~ ~

CGGTCCAGTG GCCAGGTCAC TCGATGTCGA AGCTACAGCT GTCCCACAGA CAGGGTGTCT CTGACGCCTG AGCAGTGGAA TCGTCACCTT GACTGCGGAC

301

StuI

CTCCGGACTA GAGGCCTGAT TGCGCCGACT ACGCGGCTGA TTTTTGGCA AAAAAACCGT GCATGAGGG AGCACCGTGG TCGTGGCACC CGTACTCCCC

SphI

~ ~ ~ ~ ~

AAGCATGC

401

TTCGTACG

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCATTATACCACCCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

Е Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 ہتا Sapi Н Н Д Н Н Ø Н Ø Н H S Ø ×

TCTTCACCCC AGAAGTGGGG AATGGCAACG TTACCGTTGC TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC TACTTTGTT ATGAAACAAA

C S 回  $\gt$ 111111 Q L MfeI > 回 Ω ×  $\succ$ Ω K × EH >

GAAAGCGGCG CTTTCGCCGC CGTTAACCAC GCAATTGGTG TTCTACTTCA AAGATGAAGT GCCGACTACA CGGCTGATGT ACAATGGTTT TGTTACCAAA

CGCGGCCTCC BSPEI Ø Ø GTCTGAGCTG  $\mathcal{O}$ S Н 区 GGCAGCCTGC Н S C GCAACCGGGC Ç Д Q GCGCCTGGT > 口 G

GCGCCGGAGG

CAGACTCGAC

CCGTCGGACG

CGTTGGCCCG

CGCCGGACCA

G

Д BstXI Ø O K  $\gt$ 3 S Σ K  $\succ$ ഗ S H E BspEI G

TGGGTGCGCC AAGCCCCTGG TGCGATGAGC TTAGCAGCTA GGATTTACCT

TTCGGGGACC ACCCACGCGG ACGCTACTCG CCTAAATGGA AATCGTCGAT

G

Figure 8: scquence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) K G L E W V S A I S G S G G S T XhoI

CCGTCGTGGA GGCAGCACCT GCCATCGCCG CGGTAGCGGC CGCGCTAATC GCGCGATTAG CTCACCCACT GAGTGGGTGA CTTCCCAGAG GAAGGGTCTC

NspVവ Z Д PmlI K ഗ Н H ہتا 只 Ç × > ß Ø ×

×

TGATAATTCG ACTATTAAGC CCATTTCACG GGTAAAGTGC GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT TAATACGCCT ATTATGCGGA

N T L Y L Q M N S L R A

Ø

H

Д

闰

EagI

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC TTACTTGTCG AATGAACAGC TGTATCTGCA ACATAGACGT TTTTTGTGGG AAAAACACCC

Ω Σ Ø × 屲 G Ω G C Z  $\alpha$ BSSHII K

EagI

GCGATGGATT GGGGGGGA TGGCTTTTAT TGCGCGCGTT CGTGTATTAT

NspV

CAACGGCTAT GTTGCCGATA

TGCTGCATAG

AGCCAAAGCC TCGGTTTCGG

CTGCAGAAGC

CGAGCATTAG GCTCGTAATC

ACGACGTATC

C

Z

ഗ

耳

口

Н

S

. . O

ഗ

S

 $\alpha$ 

Ö

ഗ

Н

S

d

PstI

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GGCGAGCCTG CCGCTCGGAC GTTCCGATAT CAAGGCTATA ACCGCCAAGA ECORV CGCTACCTAA TGGCGGTTCT ഗ Д Ω C 团 ß U C U CGAGTCGCCC CCGCCACCAC AGTGACTCCG TCACTGAGGC CCCCGCCGCT ACCGAAATA GCTCAGCGGG GGCGGTGGTG U д G Ø E O BlpI ഗ > U ഗ ACTCGGACGG GCCACCAAGA TGAGCCTGCC CACTGCCAAT CGGTGGTTCT GTGACGGTTA Д S 口 O S U > Н CCTCGCCACC GCACATAATA ACGCGCGCAA TCCGTGGGAC GGAGCGGTGG CAGAGCCCAC GTCTCGGGTG ATTGGGGCCA AGGCACCCTG Ü BanII U ഗ വ U Ø StyI G CCGCCGCCAC GCACTACTGG TAACCCCGGT GGCGGCGGTG CGTGATGACC Н U G Σ C ECORV > Ç

| L L gg                                                                                                                                                           | HA                       |                 | ပ္ ပ္                    | a            | HA                       | EH          | O G                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|--------------------------|--------------|--------------------------|-------------|--------------------------------------------------------------------|
| continued<br>L L<br>ASEI                                                                                                                                         | TATT<br>ATAA             | လ               | AGO                      | K.           | AGC<br>ICG               | വ           | CGA                                                                |
| 13-Vk2 (e<br>Q                                                                                                                                                   | AGC.                     | দ               | TT                       | 时            | GA                       |             | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |
| VH3-                                                                                                                                                             | CGCAGCTATT<br>GCGTCGATAA | ĸ               | CGTTTTAGCG<br>GCAAAATCGC | >            | TGTGGAAGCT<br>ACACCTTCGA | ਼ 4         | CCCCGCCGAC                                                         |
| gment<br>P                                                                                                                                                       |                          |                 |                          | pt,          |                          | E           |                                                                    |
| ain fra<br>S                                                                                                                                                     | ည်သ                      | Ω               | GA                       | ω<br>Γ       |                          | Ę·          | (CC2                                                               |
| single-chain frag<br>Q S                                                                                                                                         | GGTCAAAGCC<br>CCAGTTTCGG | Д               | GGTCCCGGAT               |              | AAATTAGCCG<br>TTTAATCGGC |             | CATTATACCA<br>GTAATATGGT                                           |
| nsus sing                                                                                                                                                        | GAG                      | V<br>V          | STC                      | Н            | AAT'                     | Н У         | ATT.                                                               |
| onsens<br>C<br>A I                                                                                                                                               |                          | G V<br>Ecool091 | l                        | ×            |                          | <b>6</b> 14 |                                                                    |
| the consen<br>P<br>SexAI                                                                                                                                         | TCAAAAACCA<br>AGTTTTTGGT | Þ               | GTGCCAGTGG               | H<br>H       | TTTACCCTGA<br>AAATGGGACT | OI .        | TTGCCAGCAG<br>AACGGTCGTC                                           |
| coding<br>K                                                                                                                                                      | AAA                      | S<br>S          | CAG                      |              | 0<br>0<br>0<br>0         | O           | CAG                                                                |
| ine en<br>Q                                                                                                                                                      | AA                       | Ø               |                          |              | TAC                      | α<br>υ      | ၁၅၁၂                                                               |
| letic gene<br>Q                                                                                                                                                  |                          | ĸ               |                          | ਮਿ           |                          |             | ·                                                                  |
| synth<br>L<br>L                                                                                                                                                  | ATTGGTACCT               | Z<br>Z          | GGCAGCAACC<br>CCGTCGTTGG | Q            | CGGCACCGAT<br>GCCGTGGCTA | ¥           | GCGTGTATTA<br>CGCACATAAT                                           |
| op of the sylvery                                                                                                                                                | TAC                      |                 | CAZ                      | EH           | )<br>)<br>)<br>)<br>)    | ×           | TA                                                                 |
| map<br>W<br>K                                                                                                                                                    | TGG                      | ω ·             | CAG                      | ტ            | GCA                      | >           | GTG                                                                |
| estrictio<br>D                                                                                                                                                   | AT                       | <b>ტ</b>        | 99                       | į            |                          | ניז         | $\mathcal{O}\mathcal{O}$                                           |
| e and res<br>L I                                                                                                                                                 | 997                      | 긔               | TG                       | G S<br>BamHI | ATC                      | ტ           | 16G                                                                |
| I Jeúce                                                                                                                                                          | AACTATCTGG<br>TTGATAGACC | <b>&gt;</b> 1   | AATTTATCTG<br>TTAAATAGAC | വ പ്         | (b) (c)                  | •           | GAAGACGTGG<br>CTTCTGCACC                                           |
| 3: sequ                                                                                                                                                          | CTA                      | I Y<br>eI       | rtt<br>Aaa               | ß            | rct<br>AGA               |             | ~~~~<br>AAGA<br>TTCT                                               |
| Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued)  NYLDWYLLO CKPGQSPPOLLL  KpnI ASEI | AA(<br>TT(               | I<br>AseI       | AAT<br>TTA               | Ŋ            | 200                      | шΩ          | GA.                                                                |
| <b></b> .                                                                                                                                                        |                          |                 |                          |              |                          |             |                                                                    |

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vx2 (continued) Ö 
 O
 ſτι

回 > × H G

MscI

X

ĸ

E ECORI BsiWI

TTC ~~~~~~~~~

ACGTACGGAA

TGCATGCCTT TTGAAATTAA

AACTTTAATT

GGTACGAAAG CCATGCTTTC CTTTGGCCAG



SUBSTITUTE SHEET (RULE 26) 56 / 204

| εοι        | <u>×</u>        | > | >         | >         | >            | ≥          | ≥         | ≥         | ≷         | ≥            | ≥            | ≥         | ≥        |
|------------|-----------------|---|-----------|-----------|--------------|------------|-----------|-----------|-----------|--------------|--------------|-----------|----------|
| Z0 l       | >               | > | >         | >         | >-           | >          | >         | >         | >-        | >-           | >            | >         | >        |
| 101        |                 |   |           |           |              |            |           |           |           |              |              |           |          |
| 100E       | ·Σ              | 1 | 1         | 1         |              | •          | i         | ı         | i         | 1            | 1            | ı         | 1        |
| 100D       | 1               | 1 | ı         | ı         | ı            | ı          | ı         | t         | ı         | 1            | .1           | į         | i        |
| J001       | •               | ı | i         | ı         | ı            | ı          | ŧ         | 1         | 1         | 1            | ı            | ı         | t        |
| 1008       | $\triangleleft$ | ı | t         | ı         | ı            | 1          | ı         | 1         | ı         | ı            | i            | 1         | ı        |
| A001       | >               | ı | 1         | 1         | ı            | 1          | t         | ı         | 1         | 1            | ı            | 1         | t        |
| 001        | LL.             | > | エ         | エ         | ~            | >          | م         | ,         | S         | $\checkmark$ | ⋖            |           | Σ        |
| 66         | 9               | Z | ≥         | >         | ⋖            | 9          | 0         | $\propto$ | Z         | S            | ⋖            | >-        | ≥        |
| 86         |                 | Σ | ш         |           | $\checkmark$ | H          | ⋖         | H         | $\propto$ |              | щ            | 0         | ш        |
| <i>26</i>  | G               | ¥ | <b>—</b>  | ш         | 1            | <b>—</b> ' | ш         |           | Z         | G            | $\vdash$     | م         | S        |
| 96         | 9               | 9 | $\propto$ | $\propto$ | ட            | Z          | Z         | 4         | >-        | >            | $\checkmark$ | ⋖         | 0'       |
| <i>S6</i>  | ≥               | ш | I         | >         | $\checkmark$ | ≥          | _         | <b>—</b>  | ≥         | S            | Ś            | >         | Σ        |
| <i>b</i> 6 | $\propto$       | 8 | ~         | $\propto$ | $\propto$    | $\propto$  | $\propto$ | $\propto$ | $\propto$ | 8            | ~            | $\propto$ | <u>~</u> |
| 86         | <u> </u>        | 4 | 4         | ⋖         | ⋖            | 4          | ⋖         | ⋖         | ⋖         | ⋖            | 4            | ۷         | ⋖        |
| <i>76</i>  | C               | S | ပ         | C         | ပ            | ပ          | ပ         | C         | ပ         | C            | ပ            | C         | C        |
| ⋖          |                 | 8 |           |           |              |            |           |           |           |              |              |           |          |

Figure 10: Sequence analysis of initial libraries

C

3333333333  $\Sigma \Sigma \Pi \Sigma \Sigma \Pi \Pi \Sigma \Sigma \Sigma \Sigma$ > - ス > で - エ ト > - で  $\Sigma \succ \kappa \times \Sigma \circ \neg \circ \circ \neg \circ \circ$  $F \times A Q = S \times D F Z Q$  $\succ$  O I Q L I Z K H P X **」SFENE>NLYK**  $\Box A > \geqslant Q Q Z J \Box D \vdash$  $IXZ\Gamma XQ \geqslant Z \Pi Z \vdash$  $> 100 \times 000 \times 000$  $\bot$   $\forall$  Z Q  $\Diamond$  D Z Y D  $\geqslant$   $\forall$  $\succ$   $\Sigma$   $\prec$   $\vdash$   $\succ$   $\star$   $\leftarrow$   $\Sigma$   $\prec$   $\sim$   $\succ$ xxxxxxxxxxxx4 4 4 4 4 4 4 4 4 4 0000000000000

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

 $0001 \times \times \times \times \times \times \times - 0 \times \times$ 0001 LRIKZO4> YOZLYX48001 R  $\Sigma$  R R R R F R F  $\Gamma$  F  $\Sigma$  E R R R R R001 Z K I K K G L  $\rangle$  V K G L G  $\rangle$  K  $\rangle$  $89 \ge Q \times R - > \Sigma I \ge Q R \times I - X \times$ 76 Z X Q Z X M V L L K V X > I F J **46 KKKKKKKKKKKKKK** 

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning





Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



Frequency 103 33333333333 701 101  $\mathsf{T} \geq \mathsf{T} \cdot \mathsf{T} \leq \mathsf{S} \geq \mathsf{T} = \mathsf{T}$ 100E  $0 \times \pi \pi \pm \Sigma$ -  $\times$  > + + + =  $\times$ 1000 ス ス ス ≻ ≥ ス ı ス ≻ ス ス ス J001 M R C X I X X E B R R 100B FZ-OSH | LOLKZ A001 A X T T T K T  $\geqslant$  N K N K 00 i  $Q \sqcap S \bowtie Q \neg G \sqcap S \boxtimes \neg S$ 66 86  $\sigma \geqslant \geqslant \neg \geqslant \neg \times \vdash \sigma \circ \neg \times$ **Z6** 96  $\vdash Z \times \succ > Z - \propto$   $\leq Z Z Z Z$ 96 xxxxxxxxxxxxx*t*6 4444444444 63 

Figure 21: Sequence analysis of testosterone binders

| quency     | 4             | 3 | 2            | <del>-</del> | <del></del>  | <del>-</del>  |
|------------|---------------|---|--------------|--------------|--------------|---------------|
| 103        | ≥             | ≯ | >            | 3            | 3            | 3             |
|            |               |   |              |              | <u>_</u>     | <u>_</u><br>> |
| 105        | >             | > | ·>-          | >            |              |               |
| 101        |               |   |              |              |              |               |
| 100E       | ட             | ட | ш.           | ட            | ட            | ட             |
| J001       | Ø             | O | O            | Σ            | ≥            | O             |
| J001       |               | Σ | Σ            | <b>—</b>     | $\checkmark$ | Σ             |
| 1008       | ¥             | ¥ | $\checkmark$ | $\checkmark$ | Σ            | O             |
| A001       | $\propto$     | O | Z            | ≥            | _            | $\propto$     |
| 100        | $\checkmark$  | ≥ | œ            | ≥            | ∝.           | S             |
| 66         | Þ             | ⋖ | 4            | Þ            | $\propto$    | ⋖             |
| 86         | O             | 工 | >            | 9            | _            | <u>~</u>      |
|            | $\checkmark$  | ~ | $\checkmark$ | ~            | ٥            | $\checkmark$  |
| 96         |               | Z | >            | ¥            | <b>Y</b>     | œ             |
| <i>9</i> 6 | >             | > | >            | >            | <u>.</u> œ   | >-            |
| <b>†</b> 6 | 8             | œ | œ            | œ            | $\propto$    | $\propto$     |
| 63         | Ø             | A | Ø            | 4            | Ø            | ⋖             |
| <i>7</i> 6 | $\frac{1}{2}$ | ပ | C            | ں            | ر<br>ر       | ၂             |

Figure 22: Sequence analysis of lymphotoxin-B binders

| Frequency  | 16           |          | _  | <u></u>      | ·<br>•    | <del></del> | <b></b>   | <b></b>      |
|------------|--------------|----------|----|--------------|-----------|-------------|-----------|--------------|
| 103        | 3            | ≷        | ≥  | ≷            | ≥         | ≯           | 3         | ≥            |
| 105        | >            | >-       | >- | >            | >         | >           | >         | >-           |
| 101        |              |          |    |              |           |             |           |              |
| 100E       | ட            | Σ        | ட  | Σ            | ≥         | ட           | Σ         | ᄔ            |
| 100D       | エ            | م        | O  | ≥            | >         | S           | ≥         | ≥            |
| J001       | 9            | ۵        | >  | 工            | エ         | O           | ш         | >            |
| 1008       | $\checkmark$ | >        | ≥  | 工            |           | -           | z         | ≥            |
| A001       | _            | S        | >- | م            | $\propto$ | ட           | ш         | ᄔ            |
| 001        | $\checkmark$ | z        | z  | $\checkmark$ | V         | O           | -         |              |
| 66         | S            | ட        |    | <b></b> !    | O         | S           | O         |              |
| 86         | ~            | 0        |    | >-           | ш         | z           | ட         | <b>—</b>     |
| <b>Z</b> 6 | >            | <u>~</u> |    | Ø            |           | 工           | エ         | ۵            |
| 96         | œ            | ≥        | Ø  | O            |           | ≥           | Ω         | ≥            |
| <i>9</i> 6 | O            | I        | Σ  | _            | $\propto$ | S           | >         | ۵            |
| <b>7</b> 6 | <u>~</u>     | œ        | æ  | œ            | œ         | $\propto$   | $\propto$ | 8            |
| 93         | ⋖            | Ø        | Ø  | 4            | Ø         | A           | A         | 4            |
| 7.6        | ر            | ں        | U  | ں            | ں         | ں           | ပ         | <del>ن</del> |

```
103
    33333333333
 Z01
    101
    100E
      \bot \sqcap \Sigma \Sigma \Sigma \Sigma \sqcap \sqcap \Sigma \sqcap
000 L
     · K Q - Q D X X K F
100Ca
          1 22 1 1
     · K K K K L L K K Z K
J001
1008
     1 > \Omega - \sigma - > R \cup A
     · T X A S Z S F I R · O
A001
    日SSGSDRKVKFK
 001
    LOSY K > LSY L H L
  66
    86
    ら D k D F E S k T R - E
  Z6
        」OエΖトヸス多とヸ
  96
    50-9290
  96
    x
  t6
    4444444444
  63
    0000000000000
  76
```

| Frequency   | 2        |          | <del></del> | <b>-</b>     | _           | <del></del> |
|-------------|----------|----------|-------------|--------------|-------------|-------------|
| 103         | ≥        | ≥        | ≥           | ≥            | ≥           | 3           |
| 105         | >-       | >        | >           | >            | >-          | >           |
| 101         | ۵        | ۵        |             |              |             |             |
| 100E        | Σ        | щ        | ≥           | ≥            | Σ           | ட           |
| 100D        | >        | <u>ح</u> | œ           | O            | >           | ய           |
| J001        | >        | ட        | >           | S            | ≥           | エ           |
| 100B        | ۵        | >-       | >           | ≥            | Z           | <b>-</b>    |
| A001        | _        | Z        | w           | S            | مـ          | _           |
| 100         | Ø        | >-       | Σ           | _            | Ø           | م           |
| 66          | >        | Σ        | O           | œ            | ≥           | ¥           |
| 86          | ட        | >-       | ш           | >-           | ~           | ட           |
| <b>∠</b> 6  | 9        | <b>—</b> | ட           | ய            | S           | O           |
| 96          | O        | ட        | ட           | $\checkmark$ | م           | O           |
| <i>96</i>   |          | >        | >           | ىب           | <b>&gt;</b> | Ω           |
| <b>\$</b> 6 | $\alpha$ | œ        | <u>~</u>    | œ            | œ           | $\propto$   |
| £6          | A        | Ø        | ⋖           | ⋖            | A           | ⋖           |
| <i>7</i> 6  | ن        | U        | ပ           | U            | ں           | J           |
|             |          |          |             |              |             |             |

lox' site

BgIII a lox site ompA Xbal lox site ColEI Ext2 origin p15A module Aat cat Jac p/o phoA pCAL system Nhel fl ori Fsel BsrGII gIII ss Eco Ri Pack | Pack | Ipp-Terminator-(His, myc) Hind||7  $bla_{a}$ tails domains module assóc. IMP-Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

are 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| . Lian sites US                              | ed in or suitable 10.                                   |
|----------------------------------------------|---------------------------------------------------------|
| are 25a: List of unique restriction sites us | Isoschizomers                                           |
| site I                                       | Isoscilizor                                             |
| unique restriction site                      | TI Dc+981                                               |
| unique -                                     | Bfrl, BspTl, Bst981                                     |
| Aatll                                        |                                                         |
| AfIII                                        | Vspl, Asnl, PshBl                                       |
| Ascl                                         | - BSU                                                   |
| Asel                                         | Ehel, Kasl, Narl                                        |
| BamHI                                        | BpuAl, Bpil                                             |
| Bbel                                         | Bpuni, or                                               |
| Bbsl                                         | Call Blol                                               |
| BgIII                                        | Bpu1102I,CellI, BlpI  Maml, Bsh1365I, BsrBRI  Spil Sunl |
|                                              |                                                         |
| Blpl                                         | Mami, BSi 1300, Suni Pfl23II, Spli, Suni No. 1301, Mrol |
| BsaBI                                        | AL REIVII. NOTICE                                       |
| BsiWI                                        | Accili, BseAl, D3llvii<br>Bsp1407l, SspBl               |
| BspEl                                        |                                                         |
| BsrGl                                        | BstPl, Eco91l, EcoO651                                  |
| BssHII                                       |                                                         |
| BstEII                                       | Aocl, Cvnl, Eco811                                      |
| BstXI                                        | Aoci, evi                                               |
| Bsu36l                                       |                                                         |
| Dralll                                       | BstZI, EclXI, Eco52I, XmallI                            |
| DsmAl                                        | BstZI, ECIXI, ECO                                       |
| Eagl                                         | Drall                                                   |
| Fc0571                                       | Dian                                                    |
| Eco01091                                     | Eco321                                                  |
| EcoRI                                        | ECOSZ                                                   |
| EcoRV                                        |                                                         |
| Fsel                                         |                                                         |
| HindIII                                      | 1 0507181                                               |
| Hpal                                         | Acc651, Asp7181                                         |
| : Kpnl                                       | - Adv.NI                                                |
| MIUI                                         | Ball, MluNl                                             |
| . Mscl                                       |                                                         |
| IVISCI                                       | SUBSTITUTE SHEET (RULE 26)                              |
|                                              | 2009 Maria                                              |

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                      |
|-------------------------|------------------------------------|
| Munl                    | Mfel                               |
| Nhel                    | /                                  |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp1191, BstBl, Csp451, Lsp1, Sful |
| Pacl                    |                                    |
| Pmel                    | 1                                  |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    |                                    |
| RsrII                   | (Rsril), Cpol, Cspl                |
| SanDI                   | 1                                  |
| Sapl                    |                                    |
| SexAl                   | 1                                  |
| Spel                    | 1                                  |
| Sfil                    | 1                                  |
| Sphl                    | Bbul, Pael,Nspl                    |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130l, EcoT14l                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr9I, PspAl           |

Figure 26: list of pCAL vector modules

|                                       | WO 97/08320                                  |                                                      |                                                        |                             | PCT/EP96/0364                                                                                                                                            |
|---------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | reference                                    | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287-2300 | see M2                      | Ge et al., (1994)<br>Expressing<br>antibodies in E.<br>coli. In: Antibody<br>engineering: A<br>practical approach.<br>IRL Press, New<br>York, pp 229-266 |
|                                       | template                                     | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                 | vector<br>plG10                                                                                                                                          |
|                                       | sites to be<br>inserted                      | Aatli                                                | lox, BgIII                                             | lox', Sphl                  | none                                                                                                                                                     |
|                                       | sites to be<br>removed                       | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                        | Sphl,<br>BamHl                                                                                                                                           |
|                                       | functional element                           | lac<br>promotor/operator                             | Cre/lox<br>recombination site                          | Cre/lox' recombination site | glllp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                                              |
| rigurezo: iist oi pual vector mounica | module/flan-<br>king<br>restriction<br>sites | AatII-lacp/o-<br>Xbal                                | BgIII-lox-<br>Aatli                                    | Xbal-lox'-<br>Sphl          | EcoRI-<br>gIlllong-<br>HindIII                                                                                                                           |
| rigurez                               | o<br>S                                       | M                                                    | M2                                                     | M3                          | M7-1                                                                                                                                                     |

WO 97/08320

Figure 26: list of pCAL vector modules

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VO 97/08320                                                                   |                                                                          |                               |                      | <del></del>                  | ,                                         | EP90/0304                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------------|------------------------------|-------------------------------------------|-------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | see M7-1                                                                      | see M7-1                                                                 | see M3                        | see M1               | see M1                       | see M1                                    | see M1                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vector<br>plG10                                                               | vector<br>plG10                                                          | (synthetic)                   | (synthetic)          | pASK30                       | pASK30                                    | pASK30                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | •                                                                        | xol                           | Pacl, Fsel           | Pacl, Fsel,<br>BsrGl         | BsrGl, Nhel                               | BsrGl, Nhel                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sphl                                                                          | Sphl, Bbsl                                                               | none                          | none                 | Vspl,<br>Eco571,<br>BssSI    | Dralll<br>(Banll not<br>removed)          | DrallI,<br>BanlI                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | truncated gillp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox<br>recombination site | lpp-terminator       | beta-lactamase/bla<br>(ampR) | origin of single-<br>stranded replication | origin of single–<br>stranded replication |
| ואמורבט. ווא סי ליים ווא סי ליים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סיים ווא סי | EcoRI-gIIIss-<br>HindIII                                                      | M7-III EcoRI-gIIIss-<br>HindIII                                          | SphI-lox-<br>HindIII          | HindIII-Ipp-<br>Pacl | PacI/Fsel-bla-<br>BsrGl      | BsrGI-f1 ori-<br>Nhel                     | BsrGI-f1 ori-<br>Nhel                     |
| וואמורב                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M7-11                                                                         | M7-III                                                                   | M8                            | M9-II                | M10-                         | M11-                                      | M11-                                      |

PCT/EP96/03647

Figure 26: list of pCAL vector modules

| ,                                                  |                               | ·                                         | <del>,                                      </del>               | <del>,</del>                        | T C L / E L /                                               |
|----------------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                        | Yanisch-Peron, C. (1985) Gene 33,103-1194 | Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293 | see M1                              | Knappik, A & Blückthun, A. (1994) BioTechniques 17, 3       |
| pACYC184                                           | (synthetic)                   | pUC19                                     | pACYC184                                                         | (synthetic)                         | (synthetic)                                                 |
| Nhel, BgIII                                        | BgIII, lox,<br>Xmnl           | BgIII, Nhel                               |                                                                  |                                     | ·                                                           |
| BssSI, VspI,<br>NspV                               | none                          | Eco57l<br>(BssSl not<br>removed)          | BspEI, MscI,<br>Styl/Ncol                                        | (synthetic)                         | (synthetic)                                                 |
| origin of double-<br>stranded replication          | Cre/lox<br>recombination site | origin of double-<br>stranded replication | chloramphenicol-<br>acetyltransferase/<br>cat (camR)             | signal sequence of<br>phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag |
| Nhel-p15A-<br>BgIII                                | BgIII-lox-<br>BgIII           | BgIII-ColEI-<br>Nhel                      | Aatll-cat-<br>Bglll                                              | Xbal-phoA-<br>EcoRI                 | Xbal-phoA-<br>FLAG-EcoRI                                    |
| M12                                                | M13                           | M14-<br>Ext2                              | M17                                                              | M19                                 | M20                                                         |

|                                        | WO 97/08320                                                  | )                                                                |                                                                                         |
|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                        | Lee et al. (1983)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al.,<br>(1992) Methods: a<br>companion to<br>methods in<br>enzymology 4, 41- |
|                                        | (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                             |
|                                        |                                                              |                                                                  |                                                                                         |
|                                        | (synthetic)                                                  | BstXI,<br>Mlul,Bbsl,<br>Banll,<br>BstEll,<br>Hpal, Bbel,<br>Vspl | (synthetic)                                                                             |
| · modules                              | heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                                     |
| Figure 26: list of pCAL vector modules | Xbal-stll-<br>Sapl                                           | Afill-laci-<br>Nhel                                              | EcoRI-Histail-<br>HindIII                                                               |
| Figure 2                               | M21                                                          | M41                                                              | M42                                                                                     |





Figure 27: functional map and sequence of MCS module (continued)

| ושמור גי | ישלמור ביי בייסיים יישור ביים ביים ביים |               |                                         |                                         |
|----------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|
|          | HindIII                                 | II            | PacI                                    | BsrGI                                   |
|          | ~ ~ ~ ~                                 | \<br>\<br>\   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   |
| Н        | ACATGTAAGC                              | TTCCCCCCC     | CCTTAATTAA                              | CCCCCCCC TGTACACCCC                     |
|          | TGTACATTCG                              | AAGGGGGGG     | GGAATTAATT                              | GGGGGGGG ACATGTGGGG                     |
|          | TodN                                    |               | Baltt                                   | TATT XPAT                               |
|          | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ~ ~           | 1 2 2 2 2 2 2                           | }                                       |
| 51       | CCCCCGCTA                               | ၁၁၁၁၁၁၁၁      | CCAGATCTCC                              | CCAGATCTCC CCCCCCGA CGTCCCCCT           |
|          | GGGGGGCGAT                              | 555555555     | GGTCTAGAGG                              | GGGGGGCT GCAGGGGGGA                     |
| ٠        |                                         |               |                                         |                                         |
|          | XbaI                                    | SphI          |                                         | EcoRI AatII                             |
|          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | 1 1 1 1 1 1 1 |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 101      | CTAGACCCCC                              | CCCCCGCATG    | CCCCCCCATG CCCCCCCCC                    | CGAATTCGAC GTC                          |
|          | GATCTGGGGG                              | GGGGCGTAC     | GGGGGGTAC GGGGGGGGG                     | GCTTAAGCTG CAG                          |

Figure 28: functional map and sequence of pMCS cloning vector



| ntinued)                   |
|----------------------------|
| <u>§</u>                   |
| vector                     |
| S cloning vector (continue |
| Ŭ                          |
| οfρ                        |
| nal map and sequence of pM |
| and                        |
| map                        |
| e 28: functional           |
| 28: 1                      |
| Figure                     |

| •   | $\leftarrow$ | CAGGTGGCAC<br>GTCCACCGTG | TTTTCGGGGA<br>AAAAGCCCCT                       | AATGTGCGCG<br>TTACACGCGC | GAACCCCTAT TTGTTTATTT<br>CTTGGGGATA AACAAATAAA | TTGTTTATTT<br>AACAAATAAA |
|-----|--------------|--------------------------|------------------------------------------------|--------------------------|------------------------------------------------|--------------------------|
|     | 51           | TTCTAAATAC<br>AAGATTTATG | ATTCAAATAT GTATCCGCTC<br>TAAGTTTATA CATAGGCGAG |                          | ATGAGACAAT AACCCTGATA<br>TACTCTGTTA TTGGGACTAT | AACCCTGATA<br>TTGGGACTAT |
| (—) | 101          | AATGCTTCAA               | TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC    | AAAGGAAGAG               | TATGAGTATT                                     | CAACATTTCC               |

| TGTTTTTGCT                     | ACAAAAACGA        |
|--------------------------------|-------------------|
| ATTCCCTTT TTTGCGCAT TTTGCCTTCC | AAACGGAAGG ACAAAA |
| TTTGCGGCAT                     | AAACGCCGTA        |
| TATTCCCTTT                     | ATAAGGGAAA AAA    |
| GTGTCGCCCT                     | CACAGCGGGA        |
| 151                            |                   |

GTTGTAAAGG

ATACTCATAA

TTTCCTTCTC

ATTATAACTT

TTACGAAGTT

|        |           | AGTTGGGTGC<br>TCAACCCACG<br>BSSSI              |
|--------|-----------|------------------------------------------------|
| Eco57I | 1 1 1 1 1 | AGTAAAAGAT GCTGAAGATC<br>TCATTTTCTA CGACTTCTAG |
|        |           | AGTAAAAGAT<br>TCATTTTCTA                       |
|        |           | CGCTGGTGAA<br>GCGACCACTT                       |
|        |           | CACCCAGAAA<br>GTGGGTCTTT                       |
|        |           | 201                                            |

| TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA | ATGTAGCTTG ACCTAGAGTT GTCGCCATTC TAGGAACTCT |
|---------------------------------------------|---------------------------------------------|
| CAGCGGTAAG                                  | GTCGCCATTC                                  |
| TGGATCTCAA                                  | ACCTAGAGTT                                  |
| TACATCGAAC                                  | ATGTAGCTTG                                  |
| ACGAGTGGGT                                  | TGCTCACCCA<br>BSSSI<br>~~~~~                |
| 251                                         |                                             |

GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA CGTTGCGCAA

651

Figure 28: functional map and sequence of pMCS cloning vector (continued)

## XmnI

|         |                          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <b>?</b>                 |                          |                          |
|---------|--------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|
| 301     | GTTTTCGCCC<br>CAAAAGCGGG | CGAAGAACGT                              | TTTCCAATGA               | TGAGCACTTT<br>ACTCGTGAAA | TAAAGTTCTG<br>ATTTCAAGAC |
| 351     | CTATGTGGCG<br>GATACACCGC | CGGTATTATC<br>GCCATAATAG                | CCGTATTGAC<br>GGCATAACTG | GCCGGGCAAG<br>CGGCCCGTTC | AGCAACTCGG<br>TCGTTGAGCC |
| <br>401 | TCGCCGCATA               | CACTATTCTC<br>GTGATAAGAG                | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
| <br>451 | CAGAAAAGCA<br>GTCTTTTCGT | TCTTACGGAT<br>AGAATGCCTA                | GGCATGACAG<br>CCGTACTGTC | TAAGAGAATT<br>ATTCTCTTAA | ATGCAGTGCT<br>TACGTCACGA |
| <br>501 | GCCATAACCA<br>CGGTATTGGT | TGAGTGATAA<br>ACTCACTATT                | CACTGCGGCC<br>GTGACGCCGG | AACTTACTTC<br>TTGAATGAAG | TGACAACGAT<br>ACTGTTGCTA |
| 551     | CGGAGGACCG               | AAGGAGCTAA<br>TTCCTCGATT                | CCGCTTTTTT<br>GGCGAAAAAA | GCACAACATG<br>CGTGTTGTAC | GGGGATCATG<br>CCCCTAGTAC |
| 601     | TAACTCGCCT<br>ATTGAGCGGA | TGATCGTTGG<br>ACTAGCAACC                | GAACCGGAGC<br>CTTGGCCTCG | TGAATGAAGC<br>ACTTACTTCG | CATACCAAAC<br>GTATGGTTTG |

CATTTTAAT GTAAAAATTA

TTTAAAACTT

TTTAGATTGA

TCATATATAC

CCAAGTTTAC GGTTCAAATG

1001

AGTATATAG

AAATCTAACT

AAATTTTGAA

TTGACAGTCT

TTCGTAACCA

GAGTGACTAA

TCTATCCACG

GTCTAGCGAC

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| GCAACGCGTT |
|------------|
| TACCGTTGTT |
| CGGACATCGT |
| TGTGGTGCTA |
| CTGCTCGCAC |

| CACTTCTGCG               | GTGAAGACGC               | GGAGCCGGTG<br>CCTCGGCCAC | 9992<br>3000             | TGA                      | GT         |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| TTCCCGGCAA<br>AAGGGCCGTT | 0 0                      | GGAG                     | TGGTAAGCCC<br>ACCATTCGGG | CTATGGATGA<br>GATACCTACT | AAGCATTGGT |
| TTACTCTAGC<br>AATGAGATCG | GTTGCAGGAC<br>CAACGTCCTG | TGATAAATCT<br>ACTATTTAGA | TGGGGCCAGA<br>ACCCCGGTCT | AGTCAGGCAA<br>TCAGTCCGTT | CTCACTGATT |
| GGCGAACTAC<br>CCGCTTGATG | GGCGGATAAA<br>CCGCCTATTT | GGTTTATTGC<br>CCAAATAACG | ATTGCAGCAC<br>TAACGTCGTG | CACGACGGGG<br>GTGCTGCCCC | AGATAGGTGC |
| ACTATTAACT<br>TGATAATTGA | ACTGGATGGA<br>TGACCTACCT | CCGGCTGGCT               | TCGCGGTATC               | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG |
| 701                      | 751                      | 801                      | 851                      | 901                      | 951        |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| 1051 TTA<br>AAT          | 1101 CCT'<br>GGA         | 1151 CAA<br>GTT          | 1201 AAA<br>TTT          | 1251 CTA<br>GAT                        | 1301 AAA'                | 1351 CTG                 |
|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------|--------------------------|--------------------------|
| TTAAAAGGAT<br>AATTTTCCTA | CCTTAACGTG<br>GGAATTGCAC | CAAAGGATCT<br>GTTTCCTAGA | AAACAAAAAA<br>TTTGTTTTT  | CTACCAACTC<br>GATGGTTGAG<br>-          | AAATACTGTC<br>TTTATGACAG | CTGTAGCACC<br>GACATCGTGG |
| CTAGGTGAAG<br>GATCCACTTC | AGTTTTCGTT<br>TCAAAAGCAA | TCTTGAGATC<br>AGAACTCTAG | ACCACCGCTA<br>TGGTGGCGAT | TTTTTCCGAA<br>AAAAAGGCTT               | CTTCTAGTGT<br>GAAGATCACA | GCCTACATAC<br>CGGATGTATG |
| ATCCTTTTTG<br>TAGGAAAAAC | CCACTGAGCG<br>GGTGACTCGC | CTTTTTTTCT<br>GAAAAAAAGA | CCAGCGGTGG<br>GGTCGCCACC | GGTAACTGGC<br>CCATTGACCG<br>Eo         | AGCCGTAGTT<br>TĆGGCATCAA | CTCGCTCTGC<br>GAGCGAGACG |
| ATAATCTCAT<br>TATTAGAGTA | TCAGACCCCG               | GCGCGTAATC<br>CGCGCATTAG | TTTGTTTGCC<br>AAACAAACGG | C TTCAGCAGAG<br>G AAGTCGTCTC<br>Eco57I | AGGCCACCAC<br>TCCGGTGGTG | TAATCCTGTT<br>ATTAGGACAA |
| GACCAAAATC<br>CTGGTTTTAG | TAGAAAAGAT<br>ATCTTTTCTA | TGCTGCTTGC<br>ACGACGAACG | GGATCAAGAG<br>CCTAGTTCTC | CGCAGATACC<br>GCGTCTATGG               | TTCAAGAACT<br>AAGTTCTTGA | ACCAGTGGCT               |

| GGGTTGGACT CAAGACGATA                                                   | AACGGGGGT TCGTGCACAC     | HACTGAGATA CCTACAGCGT    | GGGAGAAAGG CGGACAGGTA    | GCGCACGAGG GAGCTTCCAG<br>CGCGTGCTCC CTCGAAGGTC<br>BSSSI | TCGGGTTTCG CCACCTCTGA    | A GGGGGGGGA GCCTATGGAA   | CCTGGCCTTT TGCTGGCCTT |
|-------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------------------|--------------------------|--------------------------|-----------------------|
| (continued)<br>GTGTCTTACC<br>CACAGAATGG                                 | GGTCGGGCTG               | ACCTACACCG<br>TGGATGTGGC | GCTTCCCGAA<br>CGAAGGGCTT | GAACAGGAGA<br>CTTGTCCTCT                                | TATAGTCCTG<br>ATATCAGGAC | ATGCTCGTCA               | TTTTACGGTT            |
| ce of pMCS cloning vector (continued) GCGATAAGTC GTGTC CGCTATTCAG CACAC | AAGGCGCAGC<br>TTCCGCGTCG | GGAGCGAACG<br>CCTCGCTTGC | AAAGCGCCAC<br>TTTCGCGGTG | GGCAGGGTCG<br>CCGTCCCAGC                                | CTGGTATCTT<br>GACCATAGAA | GATTTTTGTG<br>CTAAAAACAC | AACGCGGCCT            |
| Figure 28: functional map and sequence 1401 GCTGCCAGTG CGACGGTCAC       | GTTACCGGAT               | AGCCCAGCTT<br>TCGGGTCGAA | GAGCTATGAG<br>CTCGATACTC | TCCGGTAAGC<br>AGGCCATTCG                                | GGGGAAACGC<br>CCCCTTTGCG | CTTGAGCGTC<br>GAACTCGCAG | AAACGCCAGC            |
| Figure 28: fur<br>1401                                                  | 1451                     | 1501                     | 1551                     | 1601                                                    | 1651                     | 1701                     | 1751                  |





| TGTGAGTTAG CTCACTCATT AGGCACCCCA GGCTTTACAG  TGTGAGTTAG CTCACTCATT TCCGTGGGGT CCGAAATGTG  ACACTCAATC GAGTGAGTAA TCCGTGAGCG GATAACAATT  CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG CTATTGTTAA  CGGCTCGAGCATA CAACACCTTA CGAATTTCTA GA  SGCGAGCATA CGAATTTA CGAATTTCTA GA  TAACACTTA GAATTTCTA GA  TAACACTTAACAGATTA CGAATTTCTA GA  TAACATGATTA CGAATTTCTTA GA | AACAGCTAL TGGTACTAAT CCT       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| sequence of pCAL m<br>TTAA TGTO<br>PAATT ACA(<br>BATT ACA(<br>CGAAG GCC                                                                                                                                                                                                                                                                            | TCACACAGGA AA<br>AGTGTGTCCT TT |
| e 29: functional map and sequence of pcal module M1  AatII  GACGTCTTAA TGTGAGTT2  CTGCAGAATT ACACTCAA  51 TTTATGCTTC GCCGGGCZ  AAATACGAAG GCCGAGCZ                                                                                                                                                                                                 | 101 TCACI                      |





Figure 30: functional map and sequence of pCAL module M7-II (continued)

|       |                                       | GTGGTGGCTC<br>CACCACCGÁG                       |
|-------|---------------------------------------|------------------------------------------------|
|       |                                       | GATCTGTAGG<br>CTAGACATCC                       |
|       |                                       | AGAAGCTGAT CTCTGAGGAG<br>TCTTCGACTA GAGACTCCTC |
|       |                                       | AGAAGCTGAT<br>TCTTCGACTA                       |
| EcoRI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GAATTCGAGC<br>CTTAAGCTCG                       |
|       |                                       | Н                                              |

| AATAAGGGGG                                 | TTATTCCCCC            | CGCTAAAGGC                                  |
|--------------------------------------------|-----------------------|---------------------------------------------|
| GATTTTGATT ATGAAAGAT GGCAAACGCT AATAAGGGGG | CCGTTTGCGA TTATTCCCCC | AAATGCCGAT GAAAACGCGC TACAGTCTGA CGCTAAAGGC |
| ATGAAAAGAT                                 | CTAAAACTAA TACTTTTCTA | GAAAACGCGC                                  |
| GATTTTGATT                                 | CTAAAACTAA            | AAATGCCGAT                                  |
| TGGTTCCGGT                                 | ACCAAGGCCA            | CTATGACCGA                                  |
| 51                                         |                       | 101                                         |

| <b>A.</b> | 101 | CTATGACCGA<br>GATACTGGCT | AAATGCCGAT GAAAACGCGC<br>TTTACGGCTA CTTTTGCGCG | GAAAACGCGC TACAGTCTGA<br>CTTTTGCGCG ATGTCAGACT | TACAGTCTGA<br>ATGTCAGACT                                          | CGCTAAAGGC               |
|-----------|-----|--------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--------------------------|
|           | 151 | AAACTTGATT<br>TTTGAACTAA | CTGTCGCTAC<br>GACAGCGATG                       | TGATTACGGT<br>ACTAATGCCA                       | TGATTACGGT GCTGCTATCG ATGGTTTCAT ACTAATGCCA CGACGATAGC TACCAAAGTA | ATGGTTTCAT<br>TACCAAAGTA |

|    | GGTGATTTTG                                    | CCACTAAAAC                                    |
|----|-----------------------------------------------|-----------------------------------------------|
|    | T TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG | A AGGCCGGAAC GATTACCATT ACCACGATGA CCACTAAAAC |
|    | CTAATGGTAA                                    | GATTACCATT                                    |
|    | TCCGGCCTTG                                    | AGGCCGGAAC                                    |
|    | TGGTGACGTT                                    | ACCACTGCAA                                    |
|    | 201                                           |                                               |
| Υī | 161                                           | # F                                           |

| TAATTCACCT                                  | ATTAAGTGGA                                  |
|---------------------------------------------|---------------------------------------------|
| TICCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT | AAGGGTTTAC CGAGTTCAGC CACTGCCACT ATTAAGTGGA |
| GCTCAAGTCG                                  | CGAGTTCAGC                                  |
| TTCCCAAATG GCTCAA                           | AAGGGTTTAC                                  |
| CTGGCTCTAA                                  | GACCGAGATT                                  |
| 251                                         |                                             |

## XmnI

AATCGGTTGA TTAGCCAACT TCCCTCCCTC ATATTTACCT TATAAATGGA ATTTCCGTCA TAAAGGCAGT TTAATGAATA AATTACTTAT 301

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

| ACCATATGAA TTTTCTATTG<br>TGGTATACTT AAAAGATAAC                       | TCTTTGCGTT TCTTTTATAT<br>AGAAACGCAA AGAAAATATA | TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA<br>AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT |         |                          |
|----------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|---------|--------------------------|
| TTTGTCTTTG GCGCTGGTAA ACCATATGAA<br>AAACAGAAAC CGCGACCATT TGGTATACTT | TTCCGTGGTG<br>AAGGCACCAC                       | ATTTTCTACG 1<br>TAAAAGATGC 1                                                               |         |                          |
| TTTGTCTTTG                                                           |                                                | TTATGTATGT<br>AATACATACA                                                                   | HindIII | TGATAAGCTT<br>ACTATTCGAA |
| ATGTCGCCCT                                                           | ATTGTGACAA                                     |                                                                                            |         | TAAGGAGTCT               |
| 351                                                                  | 401                                            | 451                                                                                        |         | 501                      |

SUBSTITUTE SHEET (RULE 28) 93 / 204



SUBSTITUTE SHEET (RULE 26)

Figure 31: functional map and sequence of pCAL module M9-II (continued)

| 1 | - | 4 |
|---|---|---|
| • |   | • |
| ١ | - | 4 |
|   |   |   |
| 1 | ۲ | 4 |
| ŧ | _ | 3 |
| • |   |   |
|   | • | J |
|   |   |   |
|   | ç |   |
|   | ζ | 7 |
|   |   | 7 |
|   | ζ | 7 |

AGATTGTGCG TCTAACACGC AAAATGGCGC TTTTACCGCG TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC 5555555555 CCCCCCCCC

FseI PacI

GCCGGCCTGG CGGCCGGACC 9999999999 CCCCCCCCCC TTAATTAAAG AATTAATTTC TGTCTGCCGT ACAGACGGCA TGTAAAAAA ACATTTTTT 51

BsrGI

GGGGGGTGT ACAGGGGGG TGTCCCCCC CCCCCCACA

SUBSTITUTE SHEET (RULE 26)

101





SUBSTITUTE SHEET (RULE 26) 96 / 204

TATTCTTTTG ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA

351

Figure 32: functional map and sequence of pCAL module M11-III (continued)

| NheI | 1 GCTAGCACGC<br>CGATCGTGCG | 51 ACGCGCAGCG<br>TGCGCGTCGC | 101 CGCTTTCTTC<br>GCGAAAGAAG | 151 CTCTAAATCG<br>GAGATTTAGC | 201 CTCGACCCCA<br>GAGCTGGGGT | 251 GCCCTGATAG<br>CGGGACTATC | 301 ATAGTGGACT<br>TATCACCTGA |
|------|----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|      | GCCCTGTAGC                 | TGACCGCTAC                  | CCTTCCTTTC                   | GGGCATCCCT                   | AAAAACTTGA<br>TTTTTGAACT     | ACGGTTTTTC<br>TGCCAAAAAG     | CTTGTTCCAA<br>GAACAAGGTT     |
|      | GGCGCATTAA<br>CCGCGTAATT   | ACTTGCCAGC<br>TGAACGGTCG    | TCGCCACGTT<br>AGCGGTGCAA     | TTAGGGTTCC<br>AATCCCAAGG     | TTAGGGTGAT<br>AATCCCACTA     | GCCCTTTGAC<br>CGGGAAACTG     | ACTGGAACAA<br>TGACCTTGTT     |
|      | 2229229292                 | GCCCTAGCGC<br>CGGGATCGCG    | CGCCGGCTTT<br>GCGGCCGAAA     | GATTTAGTGC<br>CTAAATCACG     | GGTTCTCGTA<br>CCAAGAGCAT     | GTTGGAGTCC<br>CAACCTCAGG     | CACTCAACCC<br>GTGAGTTGGG     |
|      | TGTGGTGGTT<br>ACACCACCAA   | CCGCTCCTTT                  | CCCCGTCAAG<br>GGGCCAGTTC     | TTTACGGCAC<br>AAATGCCGTG     | GTGGGCCATC<br>CACCCGGTAG     | ACGTTCTTTA<br>TGCAAGAAAT     | TATCTCGGTC<br>ATAGAGCCAG     |

| (continued)              |
|--------------------------|
| <u>일</u><br>==           |
| le M11-III (c            |
| 3                        |
| se of pCAL mod           |
| duence of                |
| ctional map and sequence |
| l maj                    |
| ξ                        |
| Figure 32: fi            |
|                          |

| AACCAATTT                                   | АААТАТТАА<br>ГТТАТААТТ                                                                  |
|---------------------------------------------|-----------------------------------------------------------------------------------------|
| TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT | ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATTTAAA TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT |
| CTAAAACGGC                                  | AATTTAACGC<br>TTAAATTGCG                                                                |
| TAAATATTCC                                  | ATTTAACAAA<br>TAAATTGTTT                                                                |
| ATAAGAAAAC                                  | AAATGAGCTG<br>TTTACTCGAC                                                                |
|                                             | 401                                                                                     |

BsrGI

TTCATGTACA AAGTACATGT 451

CGTTTACAAT

Figure 33; functional map and sequence of pCAL module M14-Ext2



Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

| ۰                | 1 |
|------------------|---|
| -                | 1 |
| _                | 4 |
| t                | • |
| $\check{\alpha}$ |   |
| _                | 1 |

| GGGCTGAACG               | CGCAGCGGTC               | CCGGATAAGG               | ACGATAGTTA               | TGGACTCAAG               | 351          |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| CTTACCGGGT               | TAAGTCGTGT               | CCAGTGGCGA               | GTGGCTGCTG               | CCTGTTACCA               | 301          |
| GAATGGCCCA               | ATTCAGCACA               | GGTCACCGCT               | CACCGACGAC               | GGACAATGGT               |              |
| CTCTGCTAAT               | ACATACCTCG               | AGCACCGCCT               | AGAACTCTGT               | CACCACTTCA               | 251          |
| GAGACGATTA               | TGTATGGAGC               | TCGTGGCGGA               | TCTTGAGACA               | GTGGTGAAGT               |              |
| GTAGTTAGGC               | TAGTGTAGCC               | ACTGTTCTTC               | GATACCAAAT               | GCAGAGCGCA               | 201          |
| CATCAATCCG               | ATCACATCGG               | TGACAAGAAG               | CTATGGTTTA               | CGTCTCGCGT               |              |
| ACTGGCTACA               | TCCGAAGGTA               | CAACTCTTTT               | CAAGAGCTAC               | TTTGCCGGAT               | 151          |
| TGACCGATGT               | AGGCTTCCAT               | GTTGAGAAAA               | GTTCTCGATG               | AAACGGCCTA               |              |
| CGGTGGTTTG               | CCGCTACCAG               | AAAAAAACCA               | GCTTGCAAAC               | GTAATCTGCT               | 101          |
| GCCACCAAAAC              | GGCGATGGTC               | TTTTTTGGT                | CGAACGTTTG               | CATTAGACGA               |              |
| TTTTCTGCGC               | GAGATCCTTT<br>CTCTAGGAAA | GGATCTTCTT<br>CCTAGAAGAA | AAAGATCAAA<br>TTTCTAGTTT | ACCCCGTAGA<br>TGGGGCATCT | 51           |
| TGAGCGTCAG<br>ACTCGCAGTC | TTCGTTCCAC               | AACGTGAGTT<br>TTGCACTCAA | AAAATCCCTT<br>TTTTAGGGAA | AGATCTGACC<br>TCTAGACTGG | $\leftarrow$ |

| CCCGACTTGC                                              | ACACCGAACT<br>TGTGGCTTGA | CCCGAAGGGA<br>GGGCTTCCCT | AGGAGAGCGC<br>TCCTCTCGCG<br>BSSSI | GTCCTGTCGG<br>CAGGACAGCC         | TCGTCAGGGG<br>AGCAGTCCCC   | ACGGTTCCTG<br>TGCCAAGGAC |
|---------------------------------------------------------|--------------------------|--------------------------|-----------------------------------|----------------------------------|----------------------------|--------------------------|
| GCGTCGCCAG                                              | CGAACGACCT<br>GCTTGCTGGA | CGCCACGCTT<br>GCGGTGCGAA | GGGTCGGAAC<br>CCCAGCCTTG          | TATCTTTATA<br>ATAGAAATAT         | TTTGTGATGC<br>AAACACTACG   | CGGCCTTTTT<br>GCCGGAAAAA |
| xt2 (continued) GGCCTATTCC                              | CAGCTTGGAG<br>GTCGAACCTC | TATGAGAAAG<br>ATACTCTTTC | GTAAGCGGCA<br>CATTCGCCGT          | AAACGCCTGG<br>TTTGCGGACC         | AGCGTCGATT .<br>TCGCAGCTAA | GCCAGCAACG<br>CGGTCGTTGC |
| e of pCAL module M14-Ext2 (continued) TGCTATCAAT GGCCTA | GCACACAGCC<br>CGTGTGTCGG | CAGCGTGAGC<br>GTCGCACTCG | CAGGTATCCG<br>GTCCATAGGC          | TTCCAGGGGG                       | CTCTGACTTG<br>GAGACTGAAC   | ATGGAAAAAC<br>TACCTTTTTG |
| Figure 33: functional map and sequenc<br>ACCTGAGTTC     | GGGGGTTCGT<br>CCCCCAAGCA | GAGATACCTA<br>CTCTATGGAT | GAAAGGCGGA<br>CTTTCCGCCT          | ACGAGGGAGC<br>TGCTCCTCG<br>BssSI | GTTTCGCCAC<br>CAAAGCGGTG   | GGCGGAGCCT<br>CCGCCTCGGA |
| Figure 33: fu                                           | 401                      | 451                      | 501                               | 551                              | 601                        | 651                      |

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701



Figure 34: functional map and sequence of pCAL module M17. (continued)

AatII

|               | <b>ATAATGA</b>                            |
|---------------|-------------------------------------------|
|               | GGGACGTCGG GTGAGGTTCC AACTTTCACC ATAATGAA |
|               | GTGAGGTTCC                                |
| 1 1 1 1 1 1 1 | GGGACGTCGG                                |
|               | ٦                                         |

| AGCAAACTGA               | GTTTTCCATG               | TTGTTACACC               | GTGTTCACCC               | ATATGGGATA | 351 |
|--------------------------|--------------------------|--------------------------|--------------------------|------------|-----|
| TGAGCTGGTG               | TGAAAGACGG               | CGTATGGCAA               | CCCGGAGTTC               | TGAATGCTCA | 301 |
| ACTCGACCAC               | ACTTTCTGCC               | GCATACCGTT               | GGGCCTCAAG               | ACTTACGAGT |     |
| GCCCGCCTGA               | TCACATTCTT               | CGGCCTTTAT               | AAGTTTTATC               | AAATAAGCAC | 251 |
| CGGGCGGACT               | AGTGTAAGAA               | GCCGGAAATA               | TTCAAAATAG               | TTTATTCGTG |     |
| CCGTAAAGAA               | TTTTTAAAGA               | TATTACGGCC               | TTCAGCTGGA               | AACCAGACCG | 201 |
| GGCATTTCTT               | AAAAATTTCT               | ATAATGCCGG               | AAGTCGACCT               | TTGGTCTGGC |     |
| ATGTACCTAT               | CAGTTGCTCA               | GCATTTCAGT               | ACATTTTGAG               | ATCGTAAAGA | 151 |
| TACATGGATA               | GTCAACGAGT               | CGTAAAGTCA               | TGTAAAACTC               | TAGCATTTCT |     |
| TCCCAATGGC               | CGTTGATATA               | GATATACCAC               | AAAATCACTG               | AATGGAGAAA | 101 |
| AGGGTTACCG               | GCAACTATAT               | CTATATGGTG               | TTTTAGTGAC               | TTACCTCTTT |     |
| AGGAAGCTAA<br>TCCTTCGATT | TCAGGAGCTA<br>AGTCCTCGAT | ATCGAGATTT<br>TAGCTCTAAA | TTTTTGAGTT<br>AAAAACTCAA | CCGGGCGTAT | 51  |
| AAGATCACTA               | ATAATGAAAT               | AACTTTCACC               | GTGAGGTTCC               | GGGACGTCGG | H   |
| TTCTAGTGAT               | TATTACTTTA               | TTGAAAGTGG               | CACTCCAAGG               | CCCTGCAGCC |     |

| (continued)                               |
|-------------------------------------------|
| 7                                         |
| ₹                                         |
| ٥,                                        |
| al map and sequence of pCAL module M17 (c |
| ğ                                         |
| 5                                         |
| _                                         |
| ₹                                         |
| ပ္က                                       |
| <u></u>                                   |
| 0                                         |
| ည                                         |
| Ĕ                                         |
| ร                                         |
| ģ                                         |
| $\sim$                                    |
| Þ                                         |
| 7                                         |
| =                                         |
| Ĕ                                         |
| =                                         |
| ctiona                                    |
| .0                                        |
| บ                                         |
|                                           |
| <u>5</u>                                  |
| 4                                         |
| <b>:</b>                                  |
| Figure 34                                 |
| 줐                                         |
| :Ξ.                                       |

| TAT | татассстат               | CACAAGTGGG               | AACAATGTGG               | CAAAAGGTAC               | TCGTTTGACT               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 401 | AACGTTTTCA               | TCGCTCTGGA<br>AGCGAGACCT | GTGAATACCA<br>CACTTATGGT | CGACGATTTC<br>GCTGCTAAAG | CGGCAGTTTC<br>GCCGTCAAAG |
| 451 | TACACATATA<br>ATGTGTATAT | TTCGCAAGAT<br>AAGCGTTCTA | GTGGCGTGTT<br>CACCGCACAA | ACGGTGAAAA<br>TGCCACTTTT | CCTGGCCTAT<br>GGACCGGATA |
| 501 | TTCCCTAAAG<br>AAGGGATTTC | GGTTTATTGA<br>CCAAATAACT | GAATATGTTT<br>CTTATACAAA | TTCGTCTCAG<br>AAGCAGAGTC | CCAATCCCTG<br>GGTTAGGGAC |
| 551 | GGTGAGTTTC               | ACCAGTTTTG<br>TGGTCAAAAC | ATTTAAACGT<br>TAAATTTGCA | AGCCAATATG<br>TCGGTTATAC | GACAACTTCT<br>CTGTTGAAGA |
| 601 | TCGCCCCCGT               | TTTCACTATG<br>AAAGTGATAC | GGCAAATATT<br>CCGTTTATAA | ATACGCAAGG<br>TATGCGTTCC | CGACAAGGTG<br>GCTGTTCCAC |
| 651 | CTGATGCCGC<br>GACTACGGCG | TGGCGATTCA<br>ACCGCTAAGT | GGTTCATCAT<br>CCAAGTAGTA | GCCGTTTGTG<br>CGGCAAACAC | ATGGCTTCCA               |
| 701 | TGTCGGCAGA<br>ACAGCCGTCT | ATGCTTAATG<br>TACGAATTAC | AATTACAACA<br>TTAATGTTGT | GTACTGCGAT<br>CATGACGCTA | GAGTGGCAGG<br>CTCACCGTCC |
| 751 | GCGGGGCGTA               | ATTTTTTAA                | GGCAGTTATT               | GGGTGCCCTT               | AAACGCCTGG               |

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

801 TGCTAGATCT TCC

ACGATCTAGA AGG

functional ssori Bsr61 (612) Hind 111 (515) Fsel (599) glil supershort Pac! (579) GenII-Nick **8 Kmnl** (310) Ban II (919) Nhel (1076) replication start **Eco**RI (1) 2755 bp pCAL4 Sph1 (2749) **BSSSI (1254)** Figure 35: functional map and sequence of modular vector pCAL4 Colel Ext2 origin **Kbal** (2739) Hatll (2608) lac p/o Bg111 (1803) cat

SUBSTITUTE SHEET (NULE 28)

ATCGGTTGAA TAGCCAACTT

CCCTCCCTCA

TATTTACCTT ATAAATGGAA

TTTCCGTCAA AAAGGCAGTT

TAATGAATAA ATTACTTATT

301

XmnI

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| ••    |                          |                          |                          |                          | - 5                      | r. A                     |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|       | TGGTGGCTCT<br>ACCACCGAGA | ATAAGGGGGC<br>TATTCCCCCG | GCTAAAGGCA<br>CGATTTCCGT | TGGTTTCATT<br>ACCAAAGTAA | GTGATTTTGC<br>CACTAAAACG | AATTCACCTT<br>TTAAGTGGAA |
|       | ATCTGTAGGG<br>TAGACATCCC | GCAAACGCTA<br>CGTTTGCGAT | ACAGTCTGAC<br>TGTCAGACTG | CTGCTATCGA<br>GACGATAGCT | GGTGCTACTG<br>CCACGATGAC | TGACGGTGAT<br>ACTGCCACTA |
|       | TCTGAGGAGG               | TGAAAAGATG<br>ACTTTTCTAC | AAAACGCGCT<br>TTTTGCGCGA | GATTACGGTG<br>CTAATGCCAC | TAATGGTAAT<br>ATTACCATTA | CTCAAGTCGG<br>GAGTTCAGCC |
|       | SAAGCTGATC CTTCGACTAG    | ATTTGATTA<br>TAAAACTAAT  | AATGCCGATG<br>TTACGGCTAC | TGTCGCTACT<br>ACAGCGATGA | CCGGCCTTGC<br>GGCCGGAACG | TCCCAAATGG<br>AGGGTTTACC |
| EcoRI | AATTCGAGCA (TTAAGCTCGT)  | GGTTCCGGTG<br>CCAAGGCCAC | TATGACCGAA<br>ATACTGGCTT | AACTTGATTC<br>TTGAACTAAG | GGTGACGTTT<br>CCACTGCAAA | TGGCTCTAAT<br>ACCGAGATTA |
|       | ۲                        |                          | 101                      | 151                      | 201                      | 251                      |
|       |                          |                          | <b>C</b> 11              | POTITITE C               | HEFT (RULE               | 26)                      |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 351 | TGTCGCCCTT<br>ACAGCGGGAA<br>TTGTGACAAA<br>AACACTGTTT | TTGTCTTTGG<br>AACAGAAACC<br>ATAAACTTAT<br>TATTTGAATA | CGCTGGTAAA<br>GCGACCATTT<br>TCCGTGGTGT<br>AGGCACCACA | CCATATGAAT<br>GGTATACTTA<br>CTTTGCGTTT<br>GAAACGCAAA | TTTCTATTGA<br>AAAGATAACT<br>CTTTTATATG<br>GAAAATATAC |
|-----|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 451 | TTGCCACCTT<br>AACGGTGGAA                             | TATGTATGTA<br>ATACATACAT                             | TTTTCTACGT<br>AAAAGATGCA                             | TTGCTAACAT<br>AACGATTGTA                             | ACTGCGTAAT<br>TGACGCATTA                             |
| 501 | AAGGAGTCTT<br>TTCCTCAGAA                             | HindIII<br>~~~~~<br>GATAAGCTTG<br>CTATTCGAAC         | ACCTGTGAAG<br>TGGACACTTC                             | TGAAAAATGG<br>ACTTTTTACC                             | CGCAGATTGT<br>GCGTCTAACA                             |
| 551 | GCGACATTTT<br>CGCTGTAAAA                             | TTTTGTCTGC                                           | PacI<br>~~~~~~~<br>CGTTTAATTA<br>GCAAATTAAT          | AAGGGGGGG                                            | FseI                                                 |
| 601 | TGGGGGGGG                                            | BsrGI<br>~~~~~<br>TGTACATGAA<br>ACATGTACTT           | ATTGTAAACG<br>TAACATTTGC                             | TTAATATTT<br>AATTATAAAA                              | GTTAAAATTC<br>CAATTTTAAG                             |

. I .... di and a. - i

|                                                                            | GIAGCGGICA CGCIGCGCGI AACCACCACA CCCGCCGCGC | A CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG |
|----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|
|                                                                            | AACCACCACA                                  | TTGGTGGTGT                                    |
| -4 (continued)                                                             | CGCTGCGCGT                                  | GCGACGCGCA                                    |
| e of modular vector pCAI                                                   | GTAGCGGTCA                                  | CATCGCCAGT                                    |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) | GCTGGCAAGT                                  | CGACCGTTCA                                    |
| Figure 35: fu                                                              | 1001                                        | <br>                                          |

| Н |
|---|
| Ψ |
| Ż |
| Z |
|   |
|   |
|   |

| 1051 TTAATGCGCC<br>AATTACGCGG                                        | 1101 AAAAGGCCAG                                | 1151 CTCCGCCCCC                                                      | E 1201 GCGAAACCCG                              |
|----------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|
| SC GCTACAGGGC<br>GG CGATGTCCCG                                       |                                                |                                                                      | CG ACAGGACTAT<br>GC TGTCCTGATA                 |
|                                                                      |                                                | CTGACGAGCA TCACAAAAAT CGACGCTCAA<br>GACTGCTCGT AGTGTTTTTA GCTGCGAGTT |                                                |
| GCGTGCTAGC CATGTGAGCA AAAGGCCAGC<br>CGCACGATCG GTACACTCGT TTTCCGGTCG | AAGGCCGCGT TGCTGGCGTT<br>TTCCGGCGCA ACGACCGCAA | CGACGCTCAA<br>GCTGCGAGTT                                             | AAAGATACCA GGCGTTTCCC<br>TTTCTATGGT CCGCAAAGGG |
| AAAGGCCAGC<br>TTTCCGGTCG                                             | TTTCCATAGG<br>AAAGGTATCC                       | GTCAGAGGTG<br>CAGTCTCCAC                                             | CCTGGAAGCT<br>GGACCTTCGA                       |

## BssSI

CACGCTGTAG GTGCGACATC ATACCTGTCC TATGGACAGG TCTCATAGCT CGCTTACCGG AGAGTATCGA GCGAATGGCC CCGACCCTGC GGCTGGGACG CGTGGCGCTT GCACCGCGAA CTCTCCTGTT CTTCGGGAAG GAAGCCCTTC GAGAGGACAA CGGAAAGAGG GGGAGCACGC CCCTCGTGCG GCCTTTCTCC 1 1 1 1 1 1 1 1301 1251

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 13  | 1351 | GTATCTCAGT<br>CATAGAGTCA | TCGGTGTAGG<br>AGCCACATCC | TCGTTCGCTC<br>AGCAAGCGAG | CAAGCTGGGC<br>GTTCGACCCG | TGTGTGCACG<br>ACACACGTGC |
|-----|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 14  | 1401 | AACCCCCCGT<br>TTGGGGGGCA | TCAGCCCGAC<br>AGTCGGGCTG | CGCTGCGCCT<br>GCGACGCGGA | TATCCGGTAA<br>ATAGGCCATT | CTATCGTCTT<br>GATAGCAGAA |
| 14  | 1451 | GAGTCCAACC<br>CTCAGGTTGG | CGGTAAGACA<br>GCCATTCTGT | CGACTTATCG<br>GCTGAATAGC | CCACTGGCAG<br>GGTGACCGTC | CAGCCACTGG               |
|     | 1501 | TAACAGGATT<br>ATTGTCCTAA | AGCAGAGCGA<br>TCGTCTCGCT | GGTATGTAGG<br>CCATACATCC | CGGTGCTACA<br>GCCACGATGT | GAGTTCTTGA<br>CTCAAGAACT |
|     | 1551 | AGTGGTGGCC<br>TCACCACCGG | TAACTACGGC<br>ATTGATGCCG | TACACTAGAA<br>ATGTGATCTT | GAACAGTATT<br>CTTGTCATAA | TGGTATCTGC<br>ACCATAGACG |
| 160 | 1601 | GCTCTGCTGT<br>CGAGACGACA | AGCCAGTTAC<br>TCGGTCAATG | CTTCGGAAAA<br>GAAGCCTTTT | AGAGTTGGTA<br>TCTCAACCAT | GCTCTTGATC               |
| 16  | 1651 | CGGCAAACAA<br>GCCGTTTGTT | ACCACCGCTG<br>TGGTGGCGAC | GTAGCGGTGG               | TTTTTTTGTT<br>AAAAAACAA  | TGCAAGCAGC               |
| 17  | 1701 | AGATTACGCG<br>TCTAATGCGC | CAGAAAAAAA<br>GTCTTTTTT  | GGATCTCAAG               | AAGATCCTTT<br>TTCTAGGAAA | GATCTTTTCT               |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

|                          |                                             |            |             | 4          | •                        |                          |
|--------------------------|---------------------------------------------|------------|-------------|------------|--------------------------|--------------------------|
| GGATTTTGGT               | ТТААААААТ                                   | CATTAAGCAT | TGAATCGCCA  | CATAGTGAAA | CAAAACTGGT               | TCAATAAACC               |
| CCTAAAAACCA              | ААТТТТТТВ                                   | GTAATTCGTA | ACTTAGCGGT  | GTATCACTTT | GTTTTGACCA               | AGTTATTTGG               |
| TCACGTTAAG               | AATAACTGCC                                  | TGTTGTAATT | ATGATGAACC  | AATATTTGCC | ACGTTTAAAT               | AAACATATTC               |
| AGTGCAATTC               | TTATTGACGG                                  | ACAACATTAA | TACTACTTGG  | TTATAAACGG | TGCAAATTTA               | TTTGTATAAG               |
| GAACGAAAAC               | TAAGGGCACC                                  | ATCGCAGTAC | CACAAACGGC  | CCTTGCGTAT | CATATTGGCT               | CTGAGACGAA               |
| CTTGCTTTTG               |                                             | TAGCGTCATG | GTGTTTGCCG  | GGAACGCATA | GTATAACCGA               | GACTCTGCTT               |
| ACGCTCAGTG               | ACCAGGCGTT                                  | CCTGCCACTC | TGGAAGCCAT  | CACCTTGTCG | AGAAGTTGTC               | CAGGGATTGG               |
| TGCGAGTCAC               | TGGTCCGCAA                                  |            | ACCTTCGGTA  | GTGGAACAGC | TCTTCAACAG               | GTCCCTAACC               |
| ACGGGGTCTG<br>TGCCCCAGAC | BglII<br>~~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC | TCTGCCGACA  | GCGGCATCAG | ACGGGGGCGA<br>TGCCCCCGCT | GAAACTCACC<br>CTTTGAGTGG |
| 1751                     | 1801                                        | 1851       | 1901        | 1951       | 2001                     | 2051                     |
|                          |                                             | SUBSTITE   | JTE SHEET ( | (RULE 26)  |                          |                          |

| AACACGCCAC ATCTTGCGAA<br>TTGTGCGGTG TAGAACGCTT                                                                                           | TGGTATTCAC TCCAGAGCGA<br>ACCATAAGTG AGGTCTCGCT | GGTGTAACAA GGGTGAACAC<br>CCACATTGTT CCCACTTGTG | TTGCCATACG GAACTCCGGG<br>AACGGTATGC CTTGAGGCCC | ATAAAGGCCG GATAAAACTT<br>TATTTCCGGC CTATTTTGAA | GGCCGTAATA TCCAGCTGAA<br>CCGGCATTAT AGGTCGACTT | ACTGAAATGC CTCAAAATGT<br>TGACTTTACG GAGTTTTACA | GTGGTATATC CAGTGATTTT<br>CACCATATAG GTCACTAAAA |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                                                                                                                          | _                                              | •                                              | _                                              |                                                |                                                | • -                                            | _                                              |
| l (continued)<br>TTTTCACCGT<br>AAAAGTGGCA                                                                                                | GAAATCGTCG<br>CTTTAGCAGC                       | CATGGAAAAC<br>GTACCTTTTG                       | CCGTCTTTCA<br>GGCAGAAAGT                       | AAGAATGTGA<br>TTCTTACACT                       | TCTTTAAAAA<br>AGAAATTTTT                       | TGAGCAACTG<br>ACTCGTTGAC                       | TATATCAACG<br>ATATAGTTGC                       |
| of modular vector pCAL <sup>2</sup><br>ATAGGCCAGG<br>TATCCGGTCC                                                                          | GAAACTGCCG<br>CTTTGACGGC                       | TCAGTTTGCT<br>AGTCAAACGA                       | CACCAGCTCA<br>GTGGTCGAGT                       | TCAGGCGGGC<br>AGTCCGCCCG                       | TTCTTTACGG<br>AAGAAATGCC                       | ATAGGTACAT<br>TATCCATGTA                       | GCCATTGGGA<br>CGGTAACCCT                       |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTC? GAAATCCCTT TATCCGGTCC AAAAG | TATATGTGTA<br>ATATACACAT                       | TGAAAACGTT<br>ACTTTTGCAA                       | TATCCCATAT                                     | TGAGCATTCA                                     | GTGCŤTATTT<br>CACGAATAAA                       | CGGTCTGGTT                                     | TCTTTACGAT<br>AGAAATGCTA                       |
| Figure 35: fu<br>2101                                                                                                                    | 2151                                           | 2201                                           | 2251                                           | 2301                                           | 2351                                           | 2401                                           | 2451                                           |
|                                                                                                                                          |                                                |                                                | SUBSTITI                                       | UTE SHEET (                                    | RULE 26)                                       |                                                |                                                |

|                     | Figure 35: 1 | Figure 35: functional map and sequence of modular vector pCAL4 (continued) | ce of modular vector pCAL | .4 (continued)           |                          |                          |
|---------------------|--------------|----------------------------------------------------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
|                     | 2501         | TTTCTCCATT<br>AAAGAGGTAA                                                   | TTAGCTTCCT<br>AATCGAAGGA  | TAGCTCCTGA<br>ATCGAGGACT | AAATCTCGAT<br>TTTAGAGCTA | AACTCAAAAA<br>TTGAGTTTTT |
|                     | 2551         | ATACGCCCGG<br>TATGCGGGCC                                                   | TAGTGATCTT<br>ATCACTAGAA  | ATTTCATTAT<br>TAAAGTAATA | GGTGAAAGTT<br>CCACTTTCAA | GGAACCTCAC<br>CCTTGGAGTG |
| •                   |              | AatlI                                                                      |                           |                          |                          |                          |
| A1150               | 2601         | CCGACGTCTA                                                                 | ATGTGAGTTA<br>TACACTCAAT  | GCTCACTCAT<br>CGAGTGAGTA | TAGGCACCCC               | AGGCTTTACA<br>TCCGAAATGT |
|                     | 2651         | CTTTATGCTT<br>GAAATACGAA                                                   | CCGGCTCGTA<br>GGCCGAGCAT  | TGTTGTGTGG<br>ACAACACACC | AATTGTGAGC<br>TTAACACTCG | GGATAACAAT<br>CCTATTGTTA |
| <del>د</del> (۱۵۱۱) |              |                                                                            |                           |                          | XbaI                     | I Sphi                   |
| = 00)               | 2701         | TTCACACAGG                                                                 | AAACAGCTAT<br>TTTGTCGATA  | GACCATGATT<br>CTGGTACTAA | ACGAATTTCT<br>TGCTTAAAGA | TCT AGAGCATGCG           |
|                     |              | EcoRI                                                                      |                           |                          |                          |                          |
|                     | 2751         | 22222<br>22222                                                             |                           |                          |                          |                          |
|                     |              |                                                                            |                           |                          |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. 7 Σ AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

~~~~~

SphI

ACG TGC AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ო Σ BglII

TGACGTC ACTGCAG TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-I (long):

ECORI

| | H | GAATTCGGTG
CTTAAGCCAC | GTGGTGGATC
CACCACCTAG | TGCGTGCGCT
ACGCACGCGA | GAAACGGTTG
CTTTGCCAAC | AAAGTTGTTT
TTTCAACAAA |
|-------------|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | 51 | AGCAAAATCC
TCGTTTTAGG | CATACAGAAA
GTATGTCTTT | ATTCATTTAC
TAAGTAAATG | TAACGTCTGG
ATTGCAGACC | AAAGACGACA
TTTCTGCTGT |
| CHOCTITI | 101 | AAACTTTAGA
TTTGAAATCT | TCGTTACGCT
AGCAATGCGA | AACTATGAGG
TTGATACTCC | GCTGTCTGTG
CGACAGACAC | GAATGCTACA
CTTACGATGT |
| E OUEET (C) | 151 | GGCGTTGTAG | TTTGTACTGG
AAACATGACC | TGACGAAACT
ACTGCTTTGA | CAGTGTTACG
GTCACAATGC | GTACATGGGT
CATGTACCCA |
| U E 00' | 201 | TCCTATTGGG
AGGATAACCC | CTTGCTATCC
GAACGATAGG | CTGAAAATGA
GACTTTTACT | GGGTGGTGGC
CCCACCACCG | TCTGAGGGTG
AGACTCCCAC |
| | 251 | GCGGTTCTGA
CGCCAAGACT | GGGTGGCGGT | TCTGAGGGTG
AGACTCCCAC | GCGGTACTAA
CGCCATGATT | ACCTCCTGAG
TGGAGGACTC |
| | 301 | TACGGTGATA
ATGCCACTAT | CACCTATTCC
GTGGATAAGG | GGGCTATACT
CCCGATATGA | TATATCAACC
ATATAGTTGG | CTCTCGACGG |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 351 | CACTTATCCG | CCTGGTACTG | AGCAAAACCC | CGCTAATCCT | AATCCTTCTC |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GTGAATAGGC | GGACCATGAC | TCGTTTTGGG | GCGATTAGGA | TTAGGAAGAG |
| 401 | TTGAGGAGTC | TCAGCCTCTT | AATACTTTCA | TGTTTCAGAA | TAATAGGTTC |
| | AACTCCTCAG | AGTCGGAGAA | TTATGAAAGT | ACAAAGTCTT | ATTATCCAAG |
| 451 | CGAAATAGGC | AGGGGGCATT | AACTGTTTAT | ACGGGCACTG | TTACTCAAGG |
| | GCTTTATCCG | TCCCCCGTAA | TTGACAAATA | TGCCCGTGAC | AATGAGTTCC |
| 501 | CACTGACCCC | GTTAAAACTT
CAATTTTGAA | ATTACCAGTA
TAATGGTCAT | CACTCCTGTA
GTGAGGACAT | TCATCAAAAG
AGTAGTTTTC |
| 21 | CCATGTATGA | CGCTTACTGG | AACGGTAAAT | TCAGAGACTG | CGCTTTCCAT |
| | GGTACATACT | GCGAATGACC | TTGCCATTTA | AGTCTCTGAC | GCGAAAGGTA |
| 601 | TCTGGCTTTA
AGACCGAAAT | ATGAGGATTT
TACTCCTAAA | ATTTGTTTGT
TAAACAAACA | GAATATCAAG | GCCAATCGTC |
| 651 | TGACCTGCCT | CAACCTCCTG
GTTGGAGGAC | TCAATGCTGG
AGTTACGACC | CGGCGGCTCT | GGTGGTGGTT
CCACCACCAA |
| 01 | CTGGTGGCGG
GACCACCGCC | CTCTGAGGGT
GAGACTCCCA | GGTGGCTCTG
CCACCGAGAC | AGGGTGGCGG | TTCTGAGGGT |

122 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGGT TTCATTGGTG
TACCA AAGTAACCAC | GTGA TTTTGCTGGC
CACT AAAACGACCG | | ITT CACCTTTAAT
AA GTGGAAATTA | CG GTTGAATGTC |
|--------------------------------------|------------------------------------|---|--|--|
| ATGGT
TACCA | GTGA
CACT | [| TT. | ည်
၁၅ |
| TATCG | CTACTG
GATGAC | (
(| GGTGATAA | CCCTCAATCG
GGGAGTTAGC |
| ACGGTGCTGC | GGTAATGGTG
CCATTACCAC | | AGTCGGTGAA
TCAGCCACTT | TACCTTCCAT
ATGGAAGGTA |
| CGATGACTAA | CCTTGCTAAT
GGAACGATTA | 6
0
0
0
6
6 | AAATGGCTCA
TTTACCGAGT | CGTCAATATT
GCAGTTATAA |
| ν
Ο
Ι | 951 | ,
, | 1001 | 1051 |
| | CGATGACTAA TGCCACGACG | GATGACTAA TGCCACGACG GGATGACTAAT GGTAATGGTG GGAACGATTA CCATTACCAC | GATGACTAA TGCCACGACG 951 CCTTGCTAAT GGTAATGGTG GGAACGATTA CCATTACCAC | CGATGACTAA
CCTTGCTAAT
GGAACGATTA
AAATGGCTCA
TTTACCGAGT |

| ভ |
|---|
| ร |
| .5 |
| Ξ |
| ဥ |
| S |
| 0 |
| ぎ |
| L ve |
| یَ |
| ⋖ |
| iles and pCAL ve |
| ₽ |
| ä |
| S |
| ₹ |
| ġ |
| Ĕ |
| tor modules and |
| 2 |
| Š |
| ار دور
ا |
| ⋖ |
| ದ |
| ╦. |
| Ë. |
| .≌ ` |
| additie |
| æ |
| <u>پ</u> |
| S |
| 9 |
| enc |
| <u>5</u> |
| 9 |
| and sequen |
| Ĕ |
| ED . |
| ğ |
| Ë |
| Ξ |
| ĕ |
| ctional maps and sequences of additional pC |
| ું |
| Ę |
| ure 35a: Functional |
| 29 |
| ñ |
| 5 |
| ď |
| Figure |
| |

| • | | | ₩. |
|--------------------------|--------------------------|--|---------------------------------|
| GACAAAATAA
CTGTTTTATT | CACCTTTATG
GTGGAAATAC | HindIII
~
AGTCTTGATA
TCAGAACTAT | |
| TATTGATTGT
ATAACTAACA | TATATGTTGC
ATATACAACG | CGTAATAAGG
GCATTATTCC | |
| ATGAATTTTC
TACTTAAAAG | GCGTTTCTTT
CGCAAAGAAA | TAACATACTG | |
| GGTAAACCCT
CCATTTGGGA | TGGTGTCTTT
ACCACAGAAA | CTACGTTTGC
GATGCAAACG | |
| CTTTGGCGCT | ACTTATTCCG
TGAATAAGGC | TATGTATTTT
ATACATAAAA | HindI
~~~~
AGCTT
TCGAA |
| 1101 | 1151 | 1201 | STITUTE SHEET (RULE 26) |

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (SS-TAG)

ECORI

| GTGATTTTGA | CACTAAAACT |
|----------------------------------|----------------|
| SAGGCGGTTC CGGTGGTGGC TCTGGTTCCG | AGACCAAGGC (|
| CGGTGGTGGC | GCCACCACCG AGA |
| GAGGCGGTTC | CTCCCCCAAG |
| CGGGAATTCG | GCCCTTAAGC |
| - | |

| GGCTATGACC GAAAATGCCG | CTTTTACGGC | |
|-----------------------|-----------------------|--|
| GGCTATGACC | GATTATTCCC CCGATACTGG | |
| ATGGCAAACG CTAATAAGGG | GATTATTCCC | |
| ATGGCAAACG | TACCGTTTGC | |
| TTATGAAAAG | AATACTTŤTC | |
| 51 | | |

| _ | |
|----------------|------------------------------------|
| TTCTGTCGCT | AAGACAGCGA |
| GCAAACTTGA | CGTTTGAACT |
| GACGCTAAAG GCA | A CTGCGATTTC CGTTTGAACT AAGACAGCGA |
| CTACAGTCT | CGATGTCAGA |
| ATGAAAACGC | TACTTTTGCG |
| 101 | |
| !BSTi | דעד |

| ACG TTTCCGGCCT
TGC AAAGGCCGGA | |
|---|--|
| TGGTTTC ATTGGTGACG | |
| T CGATGGTTTC
A GCTACCAAAG | |
| GIGCIGCIAI CGAIGGITIC ATIGGIGACG TITCCGGCCT CACGACGAIA GCIACCAAAG TAACCACIGC AAAGGCCGGA | |
| ACTGATTACG
TGACTAATGC | |
| 12 T | |

AATTCCCAAA TTAAGGGTTT CTGGTGATTT TGCTGGCTCT ACGACCGAGA GACCACTAAA AATGGTGCTA TTACCACGAT TGCTAATGGT ACGATTACCA 201

TAATTTCCGT ATTAAAGGCA ~~~~~~~~~~ CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26)

| | Č |
|---|-----------------------------|
| | Č |
| | Č |
| | E |
| | C |
| _ | E |
| ਯੂ | < |
| 2 | ^ |
| = | CUCHUHARA BECUUBAACE UUULUU |
| ဥ | _ |
| Š | Ē |
| ğ | È |
| ย | Ì |
| > | ٢ |
| ₹ | |
| 2 | ٥ |
| ğ | ۴ |
| چ | 6 |
| S | |
| 킂 | 2 |
| ĕ | r |
| = | ì |
| ₫ | ì |
| မွ | ì |
| _ | ì |
| 8 | i |
| ā | į |
| <u> </u> | 1 |
| .₫ | Ì |
| ₹ | |
| ာစ္ထ | |
| <u> </u> | |
| Š | |
| ပ္ည | |
| 5 | |
| Ş | • |
| S | |
| g | |
| Ö | |
| Q. | Ė |
| Ë | |
| 7 | ; |
| 5 | 5 |
| ·Ξ | |
| | |
| ű | - |
| 9 | ė |
| 252. Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | 2 |
| ģ | _ |
| ā | 2 |
| نا | |
| • | |

| CTTTTGTCTT
GAAAACAGAA | AAAATAAACT
TTTTATTTGA | CTTTATGTAT
GAAATACATA | HindIII | CTTGATAAGC
GAACTATTCG | |
|--|--------------------------|--------------------------|---------|--------------------------|--|
| GAATGTCGCC CTTTTGTCTT
CTTACAGCGG GAAAACAGAA | TGATTGTGAC
ACTAACACTG | ATGTTGCCAC
TACAACGGTG | | AATAAGGAGT
TTATTCCTCA | |
| TCAATCGGTT
AGTTAGCCAA | ААТТТТСТАТ
ТТААААGАТА | TTTCTTTTAT
AAAGAAAATA | | CATACTGCGT
GTATGACGCA | |
| CTTCCCTCCC
GAAGGGAGGG | AAACCATATG
TTTGGTATAC | TGTCTTTGCG
ACAGAAACGC | | CGTTTGCTAA
GCAAACGATT | |
| CAATATTTAC
GTTATAAATG | TGGCGCTGGT | TATTCCGTGG | | GTATTTTCTA
CATAAAAGAT | |
| 301 | 351 | 401 | | 451 | |

501

| | Section II security and |
|---|-------------------------|
| | |
| | |
| | ; |
| | 1 |
| | |
| | |
| | |
| æ | <u>.</u>
! |
| | |
| | |
| | }
4
: |
| | 1 |
| | **** |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

| rc atgagacaat aaccetgata | TTGGGACTAT |
|--------------------------|---------------------|
| ATGAGACAAT | TACTCTGTTA |
| ATAT GTATCCGCTC | AGTTTATA CATAGGCGAG |
| ATTCAAATAT | TAAGTTTATA |
| GGGGGTGTAC | CCCCCACATG |
| - | |

| CAACATTTCC | GTTGTAAAGG |
|------------|------------|
| TATGAGTATT | ATACTCATAA |
| AAAGGAAGAG | TTTCCTTCTC |
| TAÅTATTGAA | ATTATAACTT |
| AATGCTTCAA | TTACGAAGTT |
| 51 | Si |

| | TGTTTTGCT | AA AAACGCCGTA AAACGGAAGG ACAAAAACGA |
|-----|---------------------------|-------------------------------------|
| | TTTGCCTTCC | AAACGGAAGG |
| | I TITGCGGCAT TITGCCITCC I | AAACGCCGTA |
| | TATTCCCTTT | ATAAGGGAAA |
| | GTGTCGCCCT | CACAGCGGGA |
| , | 101 | |
| IB! | STIT | UTE |

| • | <i>5</i>) | ۲ħ |
|-------|-------------------------|---|
| | AGTTGGGTG | TCAACCCAC |
| | T GCTGAGGATC AGTTGGGTGC | CGACTCCTAG |
| | CGCTGGTGAA AGTAAAAGAT | GCGACCACTT TCATTTTCTA CGACTCCTAG TCAACCCACG |
| | CGCTGGTGAA | GCGACCACTT |
| | CCAGA | TGGG |
| | 151 | |
| - 011 | . جيوح | /n ! !! |

XmnI

| GT TTTCCAATGA TGAGCACTTT TAAAGTTCTG | SE GULLICITICA AAAGGITACT ACTCGIGAAA ATTICAAGAC |
|-------------------------------------|---|
| TGAGCACTTT | ACTCGTGAAA |
| TTTCCAATGA | AAAGGTTACT |
| CGAAGAACGT | GCTTCTTGCA |
| | 5 |
| 251 | |

| | | | - de de des de des des des de des de des des |
|-------|--|----------|--|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | ·
- |
| ž vos | | - | : |
| | | e | |
| A | | | |
| A.vva | | | |

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

:. ∞ × SphI

11111

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT

137 / 204

| 137 | | | | Figu |
|--|--|--|---|--|
| S ETUTITS BUS | | i | | e 35a |
| 451 | 401 | 351 | 301 | : Functiona |
| CGTTTACAAT
GCAAATGTTA | AAATGAGCTG
TTTACTCGAC | TATTCTTTTG
ATAAGAAAAC | ATAGTGGACT
TATCACCTGA | Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) |
| BsrgI
~~~~~
CGTTTACAAT TTCATGTACA
GCAAATGTTA AAGTACATGT | ATTTAACAAA AATTTAACGC
TAAATTGTTT TTAAATTGCG | ATTTATAAGG GATTTTGCCGTAAAATATTCC CTAAAAACGGC | ATAGTGGACT CTTGTTCCAA ACTGGAACAA TATCACCTGA GAACAAGGTT TGACCTTGTT | dditional pCAL vector mor |
| | AATTTAACGC
TTAAATTGCG | GATTTTGCCG
CTAAAACGGC | ACTGGAACAA
TGACCTTGTT | dules and pCAL vectors (co |
| . • | GAATTTTAAC
CTTAAAATTG | ATTTCGGCCT
TAAAGCCGGA | CACTCAACCC
GTGAGTTGGG | ontinued) |
| | GAATTTTAAC AAAATATTAA
CTTAAAATTG TTTTATAATT | ATTGGTTAAA
TAACCAATTT | CACTCAACCC TATCTCGGTC
GTGAGTTGGG ATAGAGCCAG | |

HindIII ~~~~

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. & W Sphi

TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT

TAAGCTT

SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

| ATTCAAATAT GTATCCGCTC ATGAGACAAT AACCCTGATA | AG TACTCTGTTA TTGGGACTAT |
|---|--------------------------|
| ATGAGACAAT | TACTCTGTTA |
| GTATCCGCTC | CATAGGCGAG |
| ATTCAAATAT | TAAGTTTATA |
| GGGGGTGTAC | CCCCCACATG |
| | |

| CAACATTTCC | GTTGTAAAGG |
|------------|------------|
| TATGAGTATT | ATACTCATAA |
| AAAGGAAGAG | TITCCITCIC |
| TAATATTGAA | ATTATAACTT |
| AATGCTTCAA | TTACGAAGTT |
| 51 | 6 ' |
| | SU |

| TGTTTTGCT | ACAAAAACGA |
|------------|-----------------|
| TTTGCCTTCC | AAACGGAAGG ACAA |
| TTTGCGGCAT | AAACGCCGTA |
| TATTCCCTTT | ATAAGGGAAA |
| GTGTCGCCCT | CACAGCGGGA |
| 101 | |

| AGTIGGGIGC | T GCGACCACTT TCATTTTCTA CGACTCCTAG TCAACCCACG |
|----------------------------|---|
| GCTGAGGATC | CGACTCCTAG |
| AA AGTAAAAGAT GCTGAGGATC A | TCATTTTCTA |
| CGCTGGTGAA | GCGACCACTT |
| CACCCAGAAA | GTGGGTCTTT |
| 151 | |

XmnI

| | CA AAAGGTTACT ACTCGTGAAA ATTTCAAGAC |
|--|-------------------------------------|
| CC CGAAGAACGT TTTCCAATGA TGAGCACTTT TA | ACTCGTGAAA |
| TTTCCAATGA | AAAGGTTACT |
| CGAAGAACGT | GCTTCTTGCA |
| GTTTTCGCCC | CAAAAGCGGG |
| 251 | |

| ⊊ |
|-----------------------|
| ě |
| .⊑ |
| Ĕ |
| <u>8</u> |
| 5 |
| 2 |
| ູ |
| |
| Z |
| ď |
| modules and |
| Ö |
| <u></u> |
| ą |
| 5 |
| _ |
| ವಿ |
| ě |
| یَـ |
| S |
| <u> </u> |
| na
L |
| .9 |
| ē |
| þe |
| nces of addition |
| S |
| ĕ |
| Š |
| ğ |
| Š |
| al maps and sequences |
| δ. |
| de |
| Έ |
| la
L |
| .₫ |
| 5 |
| Ē |
| |
| 35; |
| به |
| ĭ |
| Ę, |
| |

| 5 | 301 | 301 CTATGTGGCG | CGGTATTATC | | CCGTATTGAC |
|-----|-----|--------------------------|--------------------------|--------------------------|------------------------|
| | | GATACACCGC | GCCATAATAG | GGCATAACTG | TC |
| (7) | 351 | TCGCCGCATA | CACTATTCTC
GTGATAAGAG | AGAATGACTT
TCTTACTGAA | LT
AA |
| | 401 | CAGAAAAGCA
GTCTTTTCGT | TCTTACGGAT
AGAATGCCTA | GGCATGACAG
CCGTACTGTC | ပ္ခဲ့ပ |
| | 451 | GCCATAACCA
CGGTATTGGT | TGAGTGATAA
ACTCACTATT | CACTGCGGCC | טט |
| | 501 | CGGAGGACCG | AAGGAGCTAA
TTCCTCGATT | CCGCTTTTTT
GGCGAAAAAA | $\vdash \triangleleft$ |
| | 551 | TAACTCGCCT
ATTGAGCGGA | TGATCGTTGG
ACTAGCAACC | GAACCGGAGC | ပ္ ပ္ |
| | 601 | GACGAGCGTG
CTGCTCGCAC | ACACCACGAT
TGTGGTGCTA | GCCTGTAGCA
CGGACATCGT | A H |
| | 651 | ACTATTAACT
TGATAATTGA | GGCGAACTAC
CCGCTTGATG | TTACTCTAGC
AATGAGATCG | ပဗ |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 0 |
|---|
| ਦ |
| ⊇ |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued |
| = |
| Ξ |
| 2 |
| \simeq |
| S |
| ≍ |
| _ສ |
| U |
| ب |
| > |
| پ |
| ⋖ |
| J |
| ₽ |
| 77 |
| ĕ |
| <u></u> |
| ĸ |
| نة |
| ≒ |
| ∺ |
| ŏ |
| Ĕ |
| |
| ≒ |
| 2 |
| Ū |
| ب |
| > |
| یـ |
| ⋖ |
| ب |
| Q |
| = |
| 20 |
| ≍ |
| .≃ |
| := |
| $\boldsymbol{\sigma}$ |
| $\boldsymbol{\sigma}$ |
| æ |
| <u>ب</u> |
| 0 |
| Ś |
| بو |
| \succeq |
| 2 |
| 5 |
| ō |
| يه |
| 5 |
| ō |
| ⊆ |
| t o |
| Š |
| ğ |
| 50 |
| ⊏ |
| = |
| 70 |
| Ξ |
| .≌ |
| צ |
| ĕ |
| 3 |
| ű, |
| • • |
| Ğ. |
| 25 |
| (-) |
| ىۋ |
| = |
| ᇊ |
| :≃ |
| |

| | | | | FseI | Pacl |
|------|---|------------|------------|---|-----------|
| | | | | 1 | 1 |
| 1101 | TCAAAGGATC | TTCTTGAGAT | CCTTTTTGAT | AATGGCCGGC | CCCCCCCTT |
| | AGTTTCCTAG | AAGAACTCTA | GGAAAAACTA | TTACCGGCCG | GGGGGGGAA |
| | | | | | |
| | PacI | | | | |
| | 1 | | | | |
| 1151 | AATTAAGGGG | 999 | | | |
| | TTAATTCCCC | 222 | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)
135 /-204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

| TGTGGTGGTT | ACACCACCAA
CCGCTCCTTT | GGCGAGGAAA | GGGCAGTTC | TTTACGGCAC
AAATGCCGTG | GTGGGCCATC
CACCCGGTAG | ACGTTCTTTA
TGCAAGAAAT |
|------------------------------|--------------------------|--------------------------|---------------------|------------------------------|--------------------------|--------------------------|
| | CGCGCCGCCC A | | GCGGCCGAAA | GATTTAGTGC 1
CTAAATCACG P | GGTTCTCGTA C | GTTGGAGTCC A |
| | CCGCGTAATT | TGAACGGTCG
TCGCCACGTT | AGCGGTGCAA | TTAGGGTTCC
AATCCCAAGG | TTAGGGTGAT | GCCCTTTGAC
CGGGAAACTG |
| GCCCTGTAGC | CGGGACATCG
TGACCGCTAC | ACTGGCGATG | GGAAGGAAAG
BanII | GGGCTCCCT | AAAAACTTGA
TTTTTGAACT | ACGGTTTTTC
TGCCAAAAAG |
| NheI
~~~~~~
GCTAGCACGC | CGATCGTGCG
ACGCGCAGCG | TGCGCGTCGC | GCGAAAGAAG | CTCTAAATCG
GAGATTTAGC | CTCGACCCCA | GCCCTGATAG
CGGGACTATC |
| H | 51 | 101 | | 151 | 201 | 251 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)
138 / 204

TCGCCAGCCT GACTTGCCCC CCAAGCACGT ATGTCAGGTC GAACCTCGCT AGCGGTCGGA CTGAACGGGG GGTTCGTGCA TACAGTCCAG CTTGGAGCGA TGCATGTCTT TCCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGCGC TCTGATTGAG GAGATTTAGT TAATGGTCAC CGACGACGGT CACCACGAAA AGACTAACTC CTCTAAATCA ATTACCAGTG GCTGCTGCCA GTGGTGCTTT CAGTGATTTT GAACAGGAAA GTCAAATCGG AATTGGCCGC GTACTGAAGT GTCACTAAAA CTTGTCCTTT CAGTTTAGCC TTAACCGGCG CATGACTTCA GAGACTCGAT GGTTGAGAAA CTTGGCTCCA TTGACCGAAC CTCCTCGCT CTCTGAGCTA CCAACTCTTT GAACCGAGGT AACTGGCTTG GAGGAGCGA GAACGAGACT TTTGCTTTTT TGGCGGAACG TCCCGCCAAA AAGCATCCAA CTTGCTCTGA AAACGAAAA ACCGCCTTGC AGGGCGGTTT TTCGTAGGTT TCTAGATTAT TCTACTAGAA GAACTCTAGC AAAACCAGAC GCGCATTAGA AGATCTAATA AGATGATCTT CTTGAGATCG TTTTGGTCTG CGCGTAATCT ACGTACAGAA AGGCCCAACC TGAGTTCTGC TATCAATGGC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 301 251 201 151 101 51

SUBSTIT

| | CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAACGCGGCC
GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTTGCGCCGG | |
|--|--|------|
| vectors (continued) | GGAATGAGAC
CCTTACTCTG | |
| vector modules and pCAL | TGTCAGGCGT
ACAGTCCGCA | |
| ences of additional pCAL | CGGAACTGAG
GCCTTGACTC | AgeI |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | ACTGCCTACC
TGACGGATGG | |
| Figure 35a: | 351 | |

| | AGGAGAGCGC
TCCTCTCGCG | GTCCTGTCGG
CAGGACAGCC | TTGTCAGGGG
AACAGTCCCC | ACTTCCCTGT
TGAAGGGACA | TTCGTÄAGCC
AAGCATTCGG | CAGTGAGCGA
GTCACTCGCT | | | |
|------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|--|
| | AGGCAGGAAC
TCCGTCCTTG | TATCTTTATA
ATAGAAATAT | TTCGTGATGC
AAGCACTACG | CGGCCCTCTC
GCCGGGAGAG | CTCCGCCCCG | CGTAGCGAGT
GCATCGCTCA | | | |
| | GTAAACCGAA
CATTTGGCTT | AAACGCCTGG
TTTGCGGACC | AGCGTCAGAT
TCGCAGTCTA | GGCTTTGCCG
CCGAAACGGC | TCCAGGAAAT
AGGTCCTTTA | AACGACCGAG
TTGCTGGCTC | | | |
| AgeI | AATGACACCG
TTACTGTGGC | CGCCAGGGGG | CACTGATTTG
GTGACTAAAC | ATGGAAAAAC
TACCTTTTTG | CCTGGCATCT
GGACCGTAGA | GCCGCAGTCG
CGGCGTCAGC | | | |
| | ATAACAGCGG
TATTGTCGCC | AGGAGGGAGC
TCCTCCCTCG | GTTTCGCCAC
CAAAGCGGTG | GGCGGAGCCT | TAAGTATCTT
ATTCATAGAA | ATTTCCGCTC
TAAAGGCGAG | | | |
| | 401 | 451 | 501 | 551 | 601 | 651 | | | |
| | SUBSTITUTE SUEET (BULE 26) | | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

1.

| AgeI | CTGCTGACGC ACCGGTGCAG
GACGACTGCG TGGCCACGTC | · | | ACTGACACCC TCATCAGTGC
TGACTGTGGG AGTAGTCACG | | | |
|------|--|------|-------------|--|------|---|--------------------------------|
| | CTGCT | | (
(
(| ACTGA | | ? | 00
00
00 |
| | TATATCCTGT ATCACATATT CTGCTGACGC
ATATAGGACA TAGTGTATAA GACGACTGCG | XmnI | | GGACGGTGTA CTTCGTGAAG TGACTGTGGG | NheI | ? | CACTCCGCTA GC
GTGAGGCGAT CG |
| | TATATCCTGT ATCACATATT
ATATAGGACA TAGTGTATAA | | | GGACGGTGTA CTTCGTGAAG | | | AGCCAGTATA
TCGGTCATAT |
| | GGAAGCGGAA
CCTTCGCCTT | | | GGAAAAAAGA | | | CAACATAGTA
GTTGTATCAT |
| | 701 | | 7 11 1 | T C / | | | 801 |

BglII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

XmnI 111111 BgliI

TTCAGATCT AAGTCTAGA ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

19: Σ SphI XbaI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT AGATCTCGTA TCTAGAGCAT

GAATTC 11111 TACCAAAGCC TCACCCCTGT CCGTTGCTCT

Sapi

ECORI

CTTAAG ATGGTTTCGG AGTGGGGACA GGCAACGAGA GGCACTCTTA CCGTGAGAAT

SUBSTITUTE SHEET (RULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

Sapi

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA GGCACTCTTA CCGTGAGAAT

51

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21: Σ XbaI

11111

AAGAAGAACG TICTICITGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTC CTCCACTAAA GAGGTGATTT TCTAGAGGTT AGATCTCCAA

Nsil

ECORI

1111

GAATTC TGCATACGCT

> GTTTTTTCTA CAAAAAAGAT

ATCTATGTTC TAGATACAAG

51

CTTAAG ACGTATGCGA AACGATGTTT TTGCTACAAA

SUBSTITUTE SHEET (PULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

41: Σ NheI

| GATAGCGCCC | ACGTTATACG | CCGCGTGGTG | TGGAAGCGGC | CAACTGGCGG | GGCCCTGCAC | ATCAACTGGG |
|------------|------------|------------|------------|------------|------------|------------|
| CTATCGCGGG | TGCAATATGC | GGCGCACCAC | ACCTTCGCCG | GTTGACCGCC | | TAGTTGACCC |
| GGTATGGCAT | GAAACCAGTA | AGACCGTTTC | CGGGAAAAAG | CGTGGCACAA | CCTCCAGTCT | TCTCGCGCCG |
| CCATACCGTA | CTTTGGTCAT | TCTGGCAAAG | GCCCTTTTTC | GCACCGTGTT | GGAGGTCAGA | |
| AACCTTTCGC | TGGTGAATGT | GTCTCTTATC | TGCGAAAACG | TTCCTAACCG | GGCGTTGCCA | GGCGATTAAA |
| TTGGAAAGCG | ACCACTTACA | CAGAGAATAG | ACGCTTTTGC | AAGGATTGGC | | CCGCTAATTT |
| AATGGCGCAA | CAATTCAGGG | GTATGCCGGT | GCCACGTTTC | CTGAATTACA | GTTGCTGATT | AAATTGTCGC |
| TTACCGCGTT | GTTAAGTCCC | CATACGGCCA | CGGTGCAAAG | GACTTAATGT | CAACGACTAA | TTTAACAGCG |
| GCTAGCATCG | GGAAGAGAGT | ATGTCGCAGA | AACCAGGCCA | GATGGCGGAG | GCAAACAGTC | GCGCCGTCGC |
| CGATCGTAGC | CCTTCTCTCA | TACAGCGTCT | TTGGTCCGGT | CTACCGCCTC | CGTTTGTCAG | CGCGGCAGCG |
| 1 | 51 | 101 | 151 | 201 | 251 | 301 |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| • | 351 | TGCCAGCGTG
ACGGTCGCAC | GTCGTGTCGA
CAGCACAGCT | TGGTAGAACG
ACCATCTTGC | AAGCGGCGTC
TTCGCCGCAG | GAAGCCTGTA
CTTCGGACAT |
|--------------|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| - | 401 | AAGCGGCGGT
TTCGCCGCCA | GCACAATCTT
CGTGTTAGAA | CTCGCGCAAC
GAGCGCGTTG | GTGTCAGTGG | GCTGATTATT
CGACTAATAA |
| | 451 | AACTATCCGC
TTGATAGGCG | TGGATGACCA
ACCTACTGGT | GGATGCTATT
CCTACGATAA | GCTGTGGAAG
CGACACCTTC | CTGCCTGCAC
GACGGACGTG |
| | 501 | TAATGTTCCG
ATTACAAGGC | GCGTTATTTC
CGCAATAAAG | TTGATGTCTC
AACTACAGAG | TGACCAGACA
ACTGGTCTGT | CCCATCAACA
GGGTAGTTGT |
| - 4.155- /51 | 551 | GTATTATTTT
CATAATAAAA | CTCCCATGAG
GAGGGTACTC | GACGGTACGC
CTGCCATGCG | GACTGGGCGT
CTGACCCGCA | GGAGCATCTG
CCTCGTAGAC |
| | 601 | GTCGCATTGG
CAGCGTAACC | GCCACCAGCA
CGGTGGTCGT | AATCGCGCTG
TTAGCGCGAC | TTAGCTGGCC
AATCGACCGG | CATTAAGTTC
GTAATTCAAG |
| | 651 | TGTCTCGGCG | CGTCTGCGTC
GCAGACGCAG | TGGCTGGCTG
ACCGACCGAC | GCATAAATAT
CGTATTTATA | CTCACTCGCA
GAGTGAGCGT |
| | 701 | ATCAAATTCA
TAGTTTAAGT | GCCGATAGCG
CGGCTATCGC | GAACGGGAAG
CTTGCCCTTC | GCGACTGGAG
CGCTGACCTC | TGCCATGTCC
ACGGTACAGG |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTCCCACTGC
AAGGGTGACG | CGTGCCATTA
GCACGGTAAT | GGGATACGAC
CCCTATGCTG | CCATCAAACA
GGTAGTTTGT | CTGCAACTCT
GACGTTGAGA | CTCACTGGTG
GAGTGACCAC | CTCCCGCGC
GAGGGGCGCG | CGACTGGAAA
GCTGACCTTT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTCCCACTG
AAGGGTGAC | CGTGC | GGGAI | CCATO | CTGCA | CTCAC | CTCCC | CGACT |
| GAGGGCATCG
CTCCCGTAGC | GGGCGCAATG
CCCGCGTTAC | TCTCGGTAGT
AGAGCCATCA | CCGCTGACCA
GGCGACTGGT | GGACCGCTTG
CCTGGCGAAC | TGTTGCCCGT
ACAACGGGCA | CAAACCGCCT | ACAGGTTTCC
TGTCCAAAGG |
| AATGCTGAAT
TTACGACTTA | AGATGGCGCT
TCTACCGCGA | GGTGCGGACA
CCACGCCTGT | TTATATCCCG
AATATAGGGC | AAACCAGCGT
TTTGGTCGCA | GGCAATCAGC
CCGTTAGTCG | TCCCAATACG | AGCTGGCACG
TCGACCGTGC |
| AAACCATGCA
TTTGGTACGT | GCCAACGATC
CGGTTGCTAG | GCTGCGCGTT
CGACGCGCAA | ACAGCTCATG
TGTCGAGTAC | CTGCTGGGGC | GGCGGTGAAG
CCGCCACTTC | CCACCCTGGC | TCACTGATGC
AGTGACTACG |
| GGTTTTCAAC | GATGCTGGTT
CTACGACCAA | CCGAGTCCGG | GATACCGAGG
CTATGGCTCC | GGATTTTCGC
CCTAAAAGCG | CTCAGGGCCA | AAAAGAAAAA
TTTTCTTTTT | GTTGGCCGAT
CAACCGGCTA |
| 751 | 801 | 851 | 901 | 951 | 1001 | 1051 | 1101 |
| | | | SUBSTITUT | E SHEET (R | ULE 26) | | |

SUBSTITUTE SHEET (RULE 26 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCTCCGGCAA GGAGGCCGTT CTTCCTGACA TATTTTCGCC ATAAAAGCGG AGGCTACCCG TCCGATGGGC CGCCCGTCAC GCGGCCAGTG 1151

Aflii

GCCCACTTAA TTGTTTTGCA 1201

<u>က</u> ပ CGGGTGAATT

> SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| rigure 354.1 directional maps and sequences of additional provestor measure and | | |
|---|----------|-------|
| רוקטור אספי ו מוול מסרומו ווומף אמים אי | pCAL0-1: | Bglii |

| ААААААТТА | TTAAGCATTC | AATCGCCAGC |
|--|---|---|
| ТТТТТТААТ | AATTCGTAAG | TTAGCGGTCG |
| CAGGCGTTTA AGGGCACCAA TAACTGCCTT AAAAAATTA | TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTC | GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC |
| GTCCGCAAAT TCCCGTGGTT ATTGACGGAA TTTTTTAAT | ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG | CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG |
| AGGGCACCAA | CGCAGTACTG | GAAGCCATCA CAAACGGCAT GATGAACCTG |
| TCCCGTGGTT | GCGTCATGAC | CTTCGGTAGT GTTTGCCGTA CTACTTGGAC |
| CAGGCGTTTA | TGCCACTCAT | GAAGCCATCA |
| GTCCGCAAAT | ACGGTGAGTA | CTTCGGTAGT |
| GATCTAGCAC
CTAGATCGTG | 999299999
2229222292 | TGCCGACATG |
| Н | 51 | 101 |
| | | SUBSTITUT |

| AATUGULAGU | TAGTGAAAAC
ATCACTTTTG | AAACTGGTGA |
|---|--|--|
| CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG | CCTTGTCGCC TTGCGTATAA TATTTGCCCA TAGTGAAAAC
GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG | AAGTTGTCCA TATTGGCTAC GTTTAAATCA AAACTGGTGA
TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT |
| GTTTGCCGTA | TTGCGTATAA
AACGCATATT | TATTGGCTAC
ATAACCGATG |
| CTTCGGTAGT | CCTTGTCGCC
GGAACAGCGG | AAGTTGTCCA
TTCAACAGGT |
| ACGCCTGTAC | GGCATCAGCA
CCGTAGTCGT | GGGGGCGAAG |
| T 0 T | 151 | 201 |
| JBSTITU | TE SHEET (F | RULE 26) |

| AATAAACCCT | CTTGCGAATA |
|-----------------------|----------------------------------|
| TTATTTGGGA | GAACGCTTAT |
| GAGACGAAAA ACATATTCTC | AGGCCAGGTT TTCACCGTAA CACGCCACAT |
| CTCTGCTTTT TGTATAAGAG | TCCGGTCCAA AAGTGGCATT GTGCGGTGTA |
| GAGACGAAAA | TTCACCGTAA |
| CTCTGCTTTT | AAGTGGCATT |
| GGGATTGGCT | AGGCCAGGTT |
| CCCTAACCGA | TCCGGTCCAA |
| AACTCACCCA | TTAGGGAAAT |
| TTGAGTGGGT | AATCCCTTTA |
| 251 | 301 |

SUBSTITUTE SHEET (RULE 25)

I seem afrons of the constant of the seems of

GTTTTACAAG

ACTTTACGGA

TCGTTGACTG AGCAACTGAC

AGGTACATTG

TCCATGTAAC

CAGACCAATA

GTCTGGTTAT

601

TGAAATGCCT

CAAAATGTTC

| CAGAGCGATG | GTGAACACTA | ACTCCGGGTG | TAAAACTTGT | CAGCTGAACG |
|--|--------------------------|------------|--------------------------|--------------------------|
| GTCTCGCTAC | CACTTGTGAT | TGAGGCCCAC | ATTTTGAACA | GTCGACTTGC |
| FTCACTC | TGTAACAAGG | GCCATACGGA | AAAGGCCGGA | CCGTAATATC |
| | ACATTGTTCC | CGGTATGCCT | TTTCCGGCCT | GGCATTATAG |
| ules and pCAL vectors (continued) AATCGTCGTG GTATTCACTC TTAGCAGCAC CATAAGTGAG | TGGAAAACGG | GTCTTTCATT | GAATGTGAAT | TTTAAAAAGG |
| | ACCTTTTGCC | CAGAAAGTAA | CTTACACTTA | AAATTTTTCC |
| litional pCAL vector modu
AACTGCCGGA
TTGACGGCCT | AGTTTGCTCA
TCAAACGAGT | CCAGCTCACC | AGGCGGGCAA
TCCGCCCGTT | CTTTACGGTC
GAAATGCCAG |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 351 TATGTGTAGA AACTGCCGGA AATCGTCGTG GTAE ATACACATCT TTGACGCCCT TTAGCAGCAC CATE | AAAACGTTTC | TCCCATATCA | AGCATTCATC | GCTTATTTT |
| | TTTTGCAAAG | AGGGTATAGT | TCGTAAGTAG | CGAATAAAAA |
| isa: Functional
351 | 401 | 451 | 501 | 551 |
| Figure 3 | | | Saus | 157 / 204 |

CTCAAAAAAT GAGTTTTTTA CACTAAAAAA GTGATTTTT ATCTCGATAA TAGAGCTATT GGTATATCCA CCATATAGGT CGAGGACTTT GCTCCTGAAA ATAGTTGCCA CATTGGGATA TATCAACGGT AGCTTCCTTA TCGAAGGAAT GTAACCCTAT AGAGGTAAAA TCTCCATTTT AAATGCTACG TTTACGATGC 701 651

SHEET (RULE 26)

| (continued) |
|-------------|
| vectors |
| d pCAL |
| modules an |
| . vector |
| PCA! |
| additional |
| s of |
| sednence |
| s and |
| шар |
| ınctional |
| 5a: Fı |
| ıre 3 |
| Figi |

| | | v | • ' | | |
|--------------------------|---|--------------------------|---|---|--------------------------|
| AACCTCACCC
TTGGAGTGGG | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCC
TGGGGGGGG | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | TTTGTCTGCC |
| TGAAAGTTGG
ACTTTCAACC | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG | Xbal.
~~~~~~
GAATTTCTAG A
CTTAAAGATC T | ATACGAAGTT
TATGCTTCAA | CGACATTTTT
GCTGTAAAAA |
| TTCATTATGG
AAGTAATACC | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT
TTACATGCGA | GCAGATTGTG
CGTCTAACAC |
| GTGATCTTAT
CACTAGAATA | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA | GAAAAATGGC
CTTTTTACCG |
| ACGCCCGGTA | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi
~~~~~~
CGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA |
| 751 | 801 | 851 | 901 | 951 | 1001 |
| , | | SUBS | TITUTE SHEET (RU! | .E 23) | |

SUBSTITUTE SHEET (RULE 23)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| BsrGI | GTACATGAAA
CATGTACTTT | TTGTTAAATC
AACAATTTAG | CTTATAAATC
GAATATTTAG | TGGAACAAGA
ACCTTGTTCT | AAAAACCGTC
TTTTGGCAG | CAAGTTTTT
GTTCAAAAAA | BanII
~~~~~~
GGGAGCCCCC
CCCTCGGGGG |
|-------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|---|
| | GGGGGGGGGT | CGTTAAATTT
GCAATTTAAA | GGCAAAATCC
CCGTTTTAGG | TGTTCCAGTT
ACAAGGTCAA | TCAAAGGGCG
AGTTTCCCGC | TCACCCTAAT
AGTGGGATTA | GAACCCTAAA
CTTGGGATTT |
| | GGGCCGGCCT | TTAAAATTCG
AATTTTAAGC | GGCCGAAATC
CCGGCTTTTAG | GGTTGAGTGT
CCAACTCACA | GACTCCAACG
CTGAGGTTGC | ACGAGAACCA
TGCTCTTGGT | CACTAAATCG
GTGATTTAGC |
| | AGGGGGGGGG | TAATATTTTG
ATTATAAAAC | TTAACCAATA
AATTGGTTAT | ACCGAGATAG
TGGCTCTATC | AAAGAACGTG
TTTCTTGCAC | ATGGCCCACT
TACCGGGTGA | TGCCGTAAAG |
| PacI | GTTTAATTAA
CAAATTAATT | TTGTAAACGT
AACATTTGCA | AGCTCATTTT
TCGAGTAAAA | AAAAGAATAG
TTTTCTTATC | GTCCACTATT
CAGGTGATAA | TATCAGGGCG
ATAGTCCCGC | GGGGTCGAGG |
| | 1051 | 1101 | 1151 | 1201 | 1251
1251 | 1301 | 1351 |
| _ | | | 3003 | THE ILE OF IE | an William St | '/ | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG
TTTCCTTCCC | TAGCGGTCAC
ATCGCCAGTG | CTACAGGGCG
GATGTCCCGC | GATGAGGGTG | AgeI | ccegrecerc
geccacecae | CACTGACTCG
GTGACTGAGC | ACGAACGGGG |
|--------------------------|--------------------------|---------------------------|---|-------------------|--------------------------|--------------------------|------------|
| ACGTGGCGAG A | CTGGCAAGTG G | TAATGCGCCG (ATTACGCGCCCC) | TGTTGGCACT O | | AAAGGCTGCA
TTTCCGACGT | CTTCCTCGCT | GAAATGGCTT |
| AAGCCGGCGA
TTCGGCCGCT | CGCTAGGGCG
GCGATCCCGC | CCGCCGCGCT | TGGCTTACTA | · | GCAGGAGAAA | ATATATTCCG
TATATAAGGC | GCGGCGAGCG |
| TTGACGGGGA
AACTGCCCCT | AAGGAGCGGG
TTCCTCGCCC | ACCACCACAC
TGGTGGTGTG | GAGTGTATAC
CTCACATATG | ·
 | GCTTCATGTG | GTGATACAGG
CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC
CTAAATCTCG | AAGAAAGCGA
TTCTTTCGCT | GCTGCGCGTA
CGACGCGCAT | NheI
~~~~~
CGTGCTAGCG
GCACGATCGC | Xmx | TCAGTGAAGT
AGTCACTTCA | AGCAGAATAT
TCGTCTTATA | CTACGCTCGG |
| 1401 | 1451 | 1501 | 1551 | | 1601 | 1651 | 1701 |
| · | | 5 | OUBSTITUTE SHEET | (RULE 2 | 6) | | |

| rectors (continued)_
TCGC_CTTTACCGAA_TGCTTGCCCC | AGAT ACTTAACAGG GAAGTGAGAG
TCTA TGAATTGTCC CTTCACTCTC | GGCT CCGCCCCCT GACAAGCATC
CCGA GGCGGGGGA CTGTTCGTAG | TGGC GAAACCCGAC AGGACTATAA
ACCG CTTTGGGCTG TCCTGATATT | CTCC CTCCTGCGCT CTCCTGTTCC | CGCT GTTATGGCCG CGTTTGTCTC | GTAG GCAGTTCGCT CCAAGCTGGA | CCGA CCGCTGCGCC TTATCCGGTA |
|--|--|--|--|--|--|--|----------------------------|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) GATGCGAGCC AGCAAGCTGA CGCCGCTCGC CTT' | CTGGAAGATG CCAGGAAGAT
GACCTTCTAC GGTCCTTCTA | AAGCCGTTTT TCCATAGGCT
TTCGGCAAAA AGGTATCCGA | ACGCTCAAAT CAGTGGTGGC
TGCGAGTTTA GTCACCACCG | CGTTTCCCCC TGGCGGCTCC
GCAAAGGGGG ACCGCCGAGG | Agel
~~~~~~
TTTACCGGTG TCATTCCGCT
AAATGGCCAC AGTAAGGCGA | TGACACTCAG TTCCGGGTAG
ACTGTGAGTC AAGGCCCATC | GAACCCCCCG TTCAGTCCGA |
| al maps and sequences of addi | CGGAGATTTC C
GCCTCTAAAG | GGCCGCGGCA A | ACGAAATCTG Z | AGATACCAGG (TCTATGGTCC | TGCCTTTCGG | ATTCCACGCC
TAAGGTGCGG | CTGTATGCAC |
| Figure 35a: Functiona | 1751 | 1801 | 1851 | 100
138 STITUTE SH | EET (RULE 20)
04 | 2001 | 2051 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 2101 | ACTATCGTCT
TGATAGCAGA | TGAGTCCAAC
ACTCAGGTTG | CCGGAAAGAC
GGCCTTTCTG | ATGCAAAAGC
TACGTTTTCG | ACCACTGGCA |
|------|--------------------------|--------------------------|---|--------------------------|------------|
| 2151 | GCAGCCACTG
CGTCGGTGAC | GTAATTGATT
CATTAACTAA | TAGAGGAGTT | AGTCTTGAAG
TCAGAACTTC | TCATGCGCCG |
| 2201 | GTTAAGGCTA | AACTGAAAGG | ACAAGTTTTA | GTGACTGCGC | TCCTCCAAGC |
| | CAATTCCGAT | TTGACTTTCC | TGTTCAAAAT | CACTGACGCG | AGGAGGTTCG |
| 2251 | CAGTTACCTC | GGTTCAAAGA | GTTGGTAGCT | CAGAGAACCT | ACGAAAAACC |
| | GTCAATGGAG | CCAAGTTTCT | CAACCATCGA | GTCTCTTGGA | TGCTTTTTGG |
| 2301 | GCCCTGCAAG | GCGGTTTTTT | CGTTTTCAGA | GCAAGAGATT | ACGCGCAGAC |
| | CGGGACGTTC | CGCCAAAAAA | GCAAAAGTCT | CGTTCTCTAA | TGCGCGTCTG |
| 2351 | CAAAACGATC
GTTTTGCTAG | TCAAGAAGAT
AGTTCTTCTA | Bglli
TCAAGAAGAT CATCTTATTA
AGTTCTTCTA GTAGAATAAT | | |

SUBSTITUTE SHEET (BULE 26) 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2: BsrGI CGTTAAATTT GCAATTTAAA TTAAAATTCG AATTTTAAGC TAATATTTTG ATTATAAAAC TTGTAAACGT AACATTTGCA GTACATGAAA CATGTACTTT \vdash

CCGTTTTAGG GGCAAAATCC GGCCGAAATC CCGGCTTTAG TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA GGTTGAGTGT TGTTCCAGTT CCAACTCACA ACCGAGATAG TGGCTCTATC AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

TCAAAGGGCG AGTTTCCCGC GACTCCAACG CTGAGGTTGC AAAGAACGTG TTTCTTGCAC CAGGTGATAA GTCCACTATT TGGAACAAGA ACCTTGTTCT 151

AGTGGGATTA ATGGCCCACT ACGAGAACCA TCACCCTAAT TGCTCTTGGT TACCGGGTGA TATCAGGGCG ATAGTCCCGC TTTTTGGCAG AAAAACCGTC 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTT GTTCAAAAAA 251

BanII

~ ~ ~ ~ ~ ~ ~ ~

TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC GATTTAGAGC 301

| ltinued)
TTCGGCCGCT TGCACCGCTC | CGCTAGGGCG CTGGCAAGTG
GCGATCCCGC GACCGTTCAC | CCGCCGCGCT TAATGCGCCG
GGCGCGCGA ATTACGCGGC | TGGCTTACTA TGTTGGCACT
ACCGAATGAT ACAACCGTGA | AgeI | GCAGGAGAAA AAAGGCTGCA
CGTCCTCTTT TTTCCGACGT | | ATATATICCG CTTCCTCGCT
TATATAAGGC GAAGGAGCGA | GCGGCGAGCG GAAATGGCTT |
|---|--|--|--|-------------------|--|------|--|--------------------------|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTC | AAGAAAGCGA AAGGAGCGGG CG
TTCTTTCGCT TTCCTCGCCC GC | GCTGCGCGTA ACCACCACAC CC
CGACGCGCAT TGGTGGTGTG GG | Nhel
~~~~~~
CGTGCTAGCG GAGTGTATAC TG
GCACGATCGC CTCACATATG AC | XmnI | GCTTCATGTG | | AGCAGAATAT GTGATACAGG AJ
TCGTCTTATA CACTATGTCC TA | CTACGCTCGG TCGTTCGACT GO |
| maps and sequences of additional pC/CCTCGGGGG CTAAA | AAAGGAAGGG AAGAA | TAGCGGTCAC GCTGC
ATCGCCAGTG CGACC | CTACAGGGCG CGTGC | | GATGAGGGTG TCAG'
CTACTCCCAC AGTC | AgeI | CCGGTGCGTC AGCA | CACTGACTCG CTAC |
| Figure 35a: Functional | 351 | 401 | SUBSTITUTE SUBS | SHEET (7
/ 204 | 201
2015 26) | | 551 | 601 |

| | CECT |
|---|------|
| continued) | |
| L vectors (| |
| es and pCA | |
| ctor modul | |
| ial pCAL ve | |
| of addition | |
| seduences | |
| I maps and | |
| : Functiona | |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continu | |

| č. | a: runcuonal | GTGACTGAGC | GTGACTGAGC GATGCGAGCC AGCAAG | AGCAAGCTGA | CGCCGCTCGC | CTTTACCGAA |
|----------------|--------------|--------------------------|------------------------------|--|--------------------------|--------------------------|
| | 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC |
| | 701 | GAAGTGAGAG | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| CHDC | 751 | GACAAGCATC | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| הנוס מדו ודודי | 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT
GAGGACGCGA |
| ET (OHE OS) | 851 | CTCCTGTTCC | TGCCTTTCGG | Agel
~~~~~~
TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG |
| | 901 | CGTTTGTCTC
GCAAACAGAG | ATTCCACGCC
TAAGGTGCGG | TGACACTCAG
ACTGTGAGTC | TTCCGGGTAG | GCAGTTCGCT |
| | 951 | CCAAGCTGGA
GGTTCGACCT | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTCAGGCT | CCGCTGCGCC |

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TGAGTCCAAC CCGGAAAGAC ATGCAAAAGC
ACTCAGGTTG GGCCTTTCTG TACGTTTTCG | GTAATTGATT TAGAGGAGTT AGTCTTGAAG
CATTAACTAA ATCTCCTCAA TCAGAACTTC | AACTGAAAGG ACAAGTTTTA GTGACTGCGC
TTGACTTTCC TGTTCAAAAT CACTGACGCG | GGTTCAAAGA GTTGGTAGCT CAGAGAACCT
CCAAGTTTCT CAACCATCGA GTCTCTTGGA | GCGGTTTTTT CGTTTTCAGA GCAAGAGATT
CGCCAAAAAA GCAAAAGTCT CGTTCTCTAA | Bglii | TCAAGAAGAT CATCTTATTA GATCTAGCAC
AGTTCTTCTA GTAGAATAAT CTAGATCGTG | TAACTGCCTT AAAAAATTA CGCCCCGCCC |
|--|--|--|--|--|-------|--|---------------------------------|
| ACTATCGTCT TGAG
TGATAGCAGA ACTC | GCAGCCACTG GTAA
CGTCGGTGAC CATT | GTTAAGGCTA AACT
CAATTCCGAT TTGA | CAGTTACCTC GGTT
GTCAATGGAG CCAA | GCCCTGCAAG GCGG
CGGGACGTTC CGCC | ٠ | CAAAACGATC TCAA
GTTTTGCTAG AGTT | AGGCACCAA TAAC |
| TTATCCGGTA AATAGGCCAT | ACCACTGGCA (TGGTGACCGT) | TCATGCGCCG AGTACGCGGC | TCCTCCAAGC AGGAGG | ACGAAAAACC
TGCTTTTTGG | | ACGCGCAGAC TGCGCGTCTG | CAGGCGTTTA / |
| 1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |

SUBSTITUTE SHEET (RULE 26)

| | į |
|-----------------------|---|
| ntinued) | |
| ম
১ | 1 |
| vecto | 1 |
| CAL vecto | |
| odules and pC | |
| lules a | |
| - | |
| ector | |
| nal pCAL vector m | |
| nal p | |
| dditio | |
| s of a | |
| maps and sequences of | |
| sequ | |
| os and | |
| l ma | |
| tiona | |
| : Func | |
| 35a: | |
| Figure | |
| | |

GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC

2101

| AGCATTCATC
TCGTAAGTAG | GCTTATTTT
CGAATAAAAA | GTCTGGTTAT
CAGACCAATA | TTTACGATGC
AAATGCTACG | TCTCCATTTT
AGAGGTAAAA | ACGCCCGGTA
TGCGGGCCAT | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA |
|---|------------------------------|--------------------------|------------------------------|----------------------------|-----------------------------|---|
| CCGGGTG | TAAAACTTGT G
ATTTTGAACA C | CAGCTGAACG GGTCGACTTGC C | CAAAATGTTC 1
GTTTTACAAG 2 | GTGATTTTTT 1
CACTAAAAAA | CTCAAAAAT A
GAGTTTTTTA 1 | AACCTCACCC G
TTGGAGTGGG |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACT(GGTCGAGTGG CAGAAAGTAA CGGTATGCCT TGA(| AAAGGCCGGA
TTTCCGGCCT | CCGTAATATC
GGCATTATAG | TGAAATGCCT
ACTTTACGGA | GGTATATCCA
CCATATAGGT | ATCTCGATAA
TAGAGCTATT | TGAAAGTTGG
ACTTTCAACC |
| ditional pCAL vector modi
GTCTTTCATT
CAGAAAGTAA | GAATGTGAAT
CTTACACTTA | TTTAAAAAGG
AAATTTTTCC | AGCAACTGAC
TCGTTGACTG | TATCAACGGT
ATAGTTGCCA | GCTCCTGAAA
CGAGGACTTT | TTCATTATGG |
| maps and sequences of add | AGGCGGGCAA
TCCGCCCGTT | CTTTACGGTC
GAAATGCCAG | AGGTACATTG
TCCATGTAAC | CATTGGGATA
GTAACCCTAT | AGCTTCCTTA
TCGAAGGAAT | GTGATCTTAT
CACTAGAATA |
| : 35a: Functional
1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |
| Figure | | | | ITE SHEET (1
169 / 204 | HULE 26) | |

| Ď | A.A.
T.T | AT
FA | GA
CA | AA
TT | IC
AG |
|---|--------------------------|---|---|---|--------------------------------|
| AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi
~~~~~
CGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA | PacI
~~~~~~~
GTTTAATTAA
CAAATTAATT | TCCTTTGATC
AGGAAACTAG |
| AAT | CAC | S]
CGC, | CCT | GTT
CAA | TCC |
| ontinued)
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCCC | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | TTTGTCTGCC
AAACAGACGG | CTCAAGAAGA
GAGTTCTTCT |
| ules and pCAL vectors (co
CCGTGGGGGTC | TTGTGAGCGG
AACACTCGCC | Xbal
CAATTTCTAG | ATACGAAGTT
TATGCTTCAA | CGACATTTTT
GCTGTAAAAA | CAAAAAGGAT
GTTTTCCTA |
| ditional pCAL vector mod
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT
TTACATGCGA | GCAGATTGTG
CGTCTAACAC | eI
cggccartar
gccggraara |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGA | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA | GAAAAATGGC
CTTTTTACCG | Es
CCCCGGGGGGGC
Est |
| a: Functional | 2151 | 2201 | 2251 | 2301 | 2351 |
| ure 35 | | S | UBSTITUTE SHEET (F | RULE 26) | |
| Fig | | | 170 / 204 | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTA | ATT | TCT | GTC | ACG | AGA | GAA | TCT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|--------------------------|------------|
| GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC | TACCGCGAGA | CCAGCCGGAA
GGTCGGCCTT | CATCCAGTCT |
| GAAACTCAC | CACCTAGATC | TATATGAGTA | ACCTATCTCA | CCGTCGTGTA | GCTGCAATGA | AATAAACCAG | TATCCGCCTC |
| CTTTTGAGTG | GTGGATCTAG | ATATACTCAT | TGGATAGAGT | GGCAGCACAT | CGACGTTACT | TTATTTGGTC | ATAGGCGGAG |
| TCAGTGGAAC | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC | GCCTGACTCC | TGGCCCCCAGT | ATTTATCAGC | CCTGCAACTT |
| AGTCACCTTG | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG | CGGACTGAGG | | TAAATAGTCG | GGACGTTGAA |
| CCAGACTGCG | AGATTATCAA | TTTTAAATCA | CAATGCTTAA | ATCCATAGTT | GCTTACCATC | CCGGCTCCAG | CAGAAGTGGT |
| | TCTAATAGTT | AAAATTTAGT | GTTACGAATT | TAGGTATCAA | CGAATGGTAG | GGCCGAGGTC | GTCTTCACCA |
| TTTTCTACGG | TTTGGTCATG | AAAAATGAAG | GACAGTTACC | TATTTCGTTC | ATACGGGAGG | CCCACGCTCA | GGGCCGAGCG |
| AAAAGATGCC | AAACCAGTAC | TTTTTACTTC | CTGTCAATGG | ATAAAGCAAG | TATGCCCTCC | GGGTGCGAGT | CCCGGCTCGC |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 | 2701 | 2751 |
| | | Si | JBSTITUTE : | SKEET (RULI | E 26) | • | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATCTCATTCA TCAAGCGGTC CTACAGGCAT CGTGGTGTCA GATGTCCGTA GCACCACAGT TCCGGTTCCC AACGATCAAG AAAAGCGGTT AGCTCCTTCG TTTTCGCCAA TCGAGGAAGC CCGCAGTGTT ATCACTCATG GGCGTCACAA TAGTGAGTAC GTCATGCCAT CCGTAAGATG GACTACGGTA GAATAGTGTA CAGTACGGGA GAATACCGCG GTCATACGGGA TAATACCGCG GTTATGCCTT ATTATCACAT | TCAAA | GTCGT | TTACA
AATGT | CCGAT | GGCAG
CCGTC | CTGTG | CGACC
GCTGG | TAGCA
ATCGT |
|---|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TAATTGACAA CGGCCCTTCG ATCTCATTCA GCGCAACGTT GTTGCCATTG CTACAGGCAT CGCGTTGCAA CAACGGTAAC GATGTCCGTA TTGGTATGCC TTCATTCAGC TCCGGTTCCC AACCATACCG AAGTAAGTCG AGGCCAAGGG TGATCCCCCA TGTTGTGCAA AAAAGCGGTT ACTAGGGGGT ACAACACGTT TTTTCGCCAA CGTTGTCAGA AGTAAGTTGG CCGCAGTGTT GCAACAGTCT TCATTCAACC GCCGTCACAA CACTGCTATA TTCTCTTACT GTCATGCCAT GTGACGTATT AAGAGAATGA CAGTACGGTA ACTGGTGAGT ACTCAACCAA GTCATTCTGA TGACCACTCT TGCCCGGCGT CAATACGGGA CTCAACGAGA ACGGGCCGCA GTTATGCCCT | AATTATCAAA | CGCTC | GCGAG | GTCCT | GTTAT | CTTTT
GAAAA | TGCGG | CCACATAGCA
GGTGTATCGT |
| TAATTGACAA CGGCCCTTCG GCGCAACGTT GTTGCCATTG CGCGTTGCAA CAACGGTAAC TTGGTATGCC TTCATTCAGC AACCATACG AAGTAAGTCG AACCATACGAA ACTAGGGGGT ACAACACGTT CGTTGTCAGA AGTAAGTTGG GCAACAGTCT TCATTCAACC CACTGCATAA TTCTCTTTACT GTGACGTATT AAGAGAATGA ACTGGTGAGT ACTCCAACCAA TGACCACTCA TGAGTTGGTT CACTGGTGAGT ACTCCAACCAA TGACCACTCT TGCCCGGCGT CTCAACGAGA ACGGGCCGCA | TCAAGCGGTC | CGTGGTGTCA
GCACCACAGT | AACGATCAAG
TTGCTAGTTC | AGCTCCTTCG
TCGAGGAAGC | ATCACTCATG
TAGTGAGTAC | CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC |
| TAATTGACAA GCGCAACGTT CGCGTTGCAA TTGGTATGCC AACCATACCG AACCATACCG ACTAGGGGGT CGTTGTCAGA GCAACAGTCT CACTGCATAA GTGACGTGAGT TGACCACTCT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACACT CACTGCACCACT CACTGCACCACT CCACCACTCA | ATCTCATTCA | CTACAGGCAT
GATGTCCGTA | TCCGGTTCCC
AGGCCAAGGG | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT
GGCGTCACAA | GTCATGCCAT | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT |
| | CGGCCCTTCG | GTTGCCATTG
CAACGGTAAC | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA |
| 2851
2901
2951
3001
3101
3151 | TAATTGACAA | GCGCAACGTT | TTGGTATGGC | TGATCCCCCA
ACTAGGGGGT | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA |
| | 7007 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |

SUBSTITUTE SHEET (RULE 20)

GCGGATACAT ATTTGAAT CGCCTATGTA TAAACTTA

TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT

3451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

| AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC
TCACGAGTAG TAACCTTTTG CAAGAAGCCC CGCTTTTGAG | TACCGCTGTT GAGATCCAGT TCGATGTAAC CCACTCGCGC ATGGCGACAA CTCTAGGTCA AGCTACATTG GGTGAGCGCG | TCCTCAGCAT CTTTTACTTT CACCAGCGTT TCTGGGTGAG
AGGAGTCGTA GAAAATGAAA GTGGTCGCAA AGACCCACTC | AAGGCAAAAT GCCGCAAAAA AGGGAATAAG GGCGACACGG
TTCCGTTTTA CGGCGTTTTT TCCCTTATTC CCGCTGTGCC | TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA
ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT | Bargi |
|--|---|--|--|--|-------|
| AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT
ATGAGTATGA | |
| GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA | ACCCAACTGA 'TGGGTTGACT | CAAAAACAGG | AAATGTTGAA
TTTACAACTT | |
| 3201 | 3251 | 3301 | 3351 | 3401 | |
| | | SUBSTITUT | re sheet (s | ULE 28) | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (FULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | AatII | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi
~~~~~~
CGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA |
|----------|-------|--------------------------|---------------------------|--------------------------|--|---|
| | | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCC
TGGGGGGGG | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT |
| | | TGTATGCTAT
ACATACGATA | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG
AACACTCGCC | XbaI
~~~~~~
GAATTTCTAG A
CTTAAAGATC T | ATACGAAGTT
TATGCTTCAA |
| | | CTTCGTATAA
GAAGCATATT | TCACTCATTA | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT |
| pCAL0-3: | BglII | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA |
| pCAL(| | ⊣ | 51 | 101 | 151 | 201 |
| | | | SUF | STITI ITE SE | SEET (RUI E OC) | |

SUBSTITUTE SHEET (RULE 26)

| | | | | and the second |
|--|------|--|---|--|
| | | | | - etable. |
| | | | | |
| | | · | | 1 |
| | | | • | 1 |
| | | | | |
| | | | | |
| | | | | - separate and |
| | | | | - |
| | | | | and a grade and |
| | | | | ion' be obtained and cour |
| | | • | | and the second second second |
| | | | | |
| | | | | |
| | | | | |
| | | | | - |
| | ~~~) | | · | the said to be a |
| | | the state of the s | | April 1 - modern bron 1960 |
| | | | | an a manage of the last |
| | | | | *** |
| | | | | * |
| | | | | The state of the s |
| | | | | :
:
: |
| | | | | e de la company |
| | | | | į |
| | | | | i |

GATAACTACG

CCGTCGTGTA GGCAGCACAT

GCCTGACTCC

ATCCATAGTT TAGGTATCAA

TATTTCGTTC

551

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | ٨. | | | | | |
|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GТТТААТТАА
САААТТААТТ | | TCCTTTGATC
AGGAAACTAG | GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG |
| TTTGTCTGCC | | CTCAAGAAGA
GAGTTCTTCT | GAAAACTCAC
CTTTTGAGTG | CACCTAGATC
GTGGATCTAG | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT |
| CGACATTTTT
GCTGTAAAAA | | CAAAAAGGAT
GTTTTTCCTA | TCAGTGGAAC
AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC
AGTCACTCCG |
| GCAGATTGTG
CGTCTAACAC | FSeI | CGGCCATTAT
GCCGGTAATA | GGTCTGACGC
CCAGACTGCG | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT |
| GAAAAATGGC
CTTTTTAÇCG | FSeI | 100
100
100 | TTTTCTACGG
AAAAGATGCC | TTTGGTCATG | AAAAATGAAG
TTTTTACTTC | GACAGTTACC |
| 251 | | 301 | 351 | 401 | 451 | 501 |
| · | | | SUBSTIT | UTE SHEET | (RULE 26) | |
| | | | | _ | | |

| _ | (|
|---|---|
| itional pCAL vector modules and pCAL vectors (continued) | 1 |
| 2 | 1 |
| 듣 | |
| ē | |
| <u>ت</u> | ļ |
| 0 | |
| さ | |
| 2 | - |
| 4 | 1 |
| ပ္က | |
| þ | |
| ä | |
| Š. | |
| ਤੁੱ | |
| ğ | |
| Ĕ | |
| 5 | |
| ਝ | |
| Ķ | |
| ب | |
| ට | |
| <u>a</u> | |
| 뎔 | |
| .ō | |
| ₹ | |
| ğ | |
| <u></u> | |
| S | |
| g | |
| ä | |
| 킃 | |
| ĕ | |
| ÷ | |
| ä | |
| S | |
| e | |
| Ε | |
| آع | |
| ŏ | |
| 5 | |
| 듬 | |
| <u> </u> | |
| Figure 35a: Functional maps and sequences of additional pCAL vector module: | |
| 3, | |
| و | |
| 'n | |
| iΞ | |
| | |

| AG CCAGCCGGAA
TC GGTCGGCCTT | TC CATCCAGTCT
AG GTAGGTCAGA | AG TTAATAGTTT
TC AATTATCAAA | CA CGCTCGTCGT | | CG GTCCTCCGAT | TG GTTATGGCAG |
|--------------------------------|---|---|---|--|---|--|
| AATAAACC
TTATTTGG | TATCCGCC | AGTTCGCC
TCAAGCGG | CGTGGTGT
GCACCACA | AACGATCA
TTGCTAGT | AGCTCCTT
TCGAGGAA | ATCACTCATG |
| ATTTATCAGC
TAAATAGTCG | CCTGCAACTT
GGACGTTGAA | TAGAGTAAGT
ATCTCATTCA | CTACAGGCAT
GATGTCCGTA | TCCGGTTCCC | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT |
| CCGGCTCCAG
GGCCGAGGTC | CAGAAGTGGT
GTCTTCACCA | GCCGGGAAGC
CGGCCCTTCG | GTTGCCATTG
CAACGGTAAC | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG |
| CCCACGCTCA
GGGTGCGAGT | GGGCCGAGCG
CCCGGCTCGC | ATTAACTGTT
TAATTGACAA | GCGCAACGTT
CGCGTTGCAA | TTGGTATGGC
AACCATACCG | TGATCCCCCA | CGTTGTCAGA |
| 651 | 701 | 751 | 8 0 1 | 80 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 901 | 951 |
| | CCCACGCTCA CCGGCTCCAG ATTTATCAGC AATAAACCAG GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC | CCCACGCTCA CCGGCTCCAG ATTTATCAGC AATAAACCAG GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC GGGCCGAGGTC CCTGCAACTT TATCCGCCTC CCCGGCTCGC GTCTTCACCA GGACGTTGAA ATAGGCGGAG | 651 CCCACGCTCA CCGGCTCCAG ATTTATCAGC AATAAACCAG GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC 701 GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TATCCGCCTC CCCGGCTCGC GTCTTCACCA GGACGTTGAA ATAGGCGGAG 751 ATTAACTGTT GCCGGGAAGC TAGAGTAAGT AGTTCGCCAG TAATTGACAA CGGCCCTTCG ATCTCATTCA TCAAGCGGTC | 651 CCCACGCTCA CCGGCTCCAG ATTATCAGC AATAAACCAG GGGTGCGAGTC TAATTATCAGC TTATTTGGTC TTATTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTTGGTC TTATTTGGTC TTATTTGACAA GTCTTTCACCA GGACGTTGAA ATAGGCGGAG TAATTTGACAA CGGCCCTTTCG ATCTCATTTCA TCAAGCGGTC TAGAGTTACT TCAAGCGGTCA TCAAGCGGTCA TCCACGTCA TCAAGCGGTCA CGCCTTTCAA CGGCCCTTTCG ATCTCATTTCA TCAAGCGGTCA CGCGTTACAA CAACGGTAAC GATGTCCGTA GCACCACAGT | CCCACGCTCA CCGGCTCCAG ATTATCAGC AATAAACCAG GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TATCCGCCTC CCCGGCTCGC GTCTTCACCA GGACGTTGAA ATAGGCGGAG ATTAACTGTT GCCGGGAAGC TAGAGTAAGT AGTTCGCCAG TAATTGACAA CGGCCCTTCG ATCTCATTCA TCAAGCGGTC GCGCAACGTT GTTGCCATTG CTACAGGCAT CGTGGTGTCA CGCGTTGCAA CAACGGTAAC GATGTCCGTA GCACCACAGT TTGGTATGGC TTCATTCAGC TCCGGTTCC AACGATCAAG AACCATACG AAGTAAGTCG AGGCCAAGG TTGCTAGTTC | 651 CCCACGCTCA CCGGCTCCAG ATTATCAGC AATAAACCAG GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC CCCGGCTCCAG GGCCGAGCTC TAAATAGTCG TTATTTGGTC CCCGGCTCCAG GGACGTTGAA ATAGGCGGAG GTATTGACAA CGCCCTTCG ATCTCATTCA TCAAGCGGAG TAATTGACAA CGCCCTTCG ATCTCATTCA TCAAGCGGTC TAATTGACAA CACGGTAAC GATGTCCGTA GCACGTGTCA CGCGTTGCAA CACGGTAAC GATGTCCGTA GCACCACAGT GTTGCCATTG CTACAGGCAT GCACGATCAAG AACCATACCG AAGTAAGTCG AGGCCCAAGG TTGCTAGTTC AACCATACCG AAGTAAGTCG AGGCCCAAGG TTGCTAGTTC AACCATACCG AAGTAAGTCG AAGACCGTT AGCTCCTTCG ACTAGGGGGT ACAACACGTT TTTTCGCCAA TCGAGGAAGC |

| | , |
|----------------------------------|--|
| ntinued) | THE COUNTY AND A C |
| r modules and pCAL vectors (co | 8 000 |
| pCAL vector modules and pCAL vec | |
| rector modu | 1 |
| nal pCAL v | |
| s of addition | |
| s and sequences | |
| I maps and | |
| Functiona | |
| Figure 35a: | |

| ā., | | | | | | | | |
|--|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| CTTTTCTGTG
GAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT | | GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA |
| CCGTAAGATG | GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC | | GTTCTTCGGG | TCGATGTAAC
AGCTACATTG | CACCAGCGTT
GTGGTCGCAA | AGGGAATAAG
TCCCTTATTC | CAATATTATT |
| GTCATGCCAT | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT | IrmX | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT |
| TTCTCTTACT AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA | e. | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT |
| ure 35a: Functional maps and sequences of adminorial post vector includes and post to the control of the contro | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA | | GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA | ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA |
| ire 35a: Functional
1001 | 1051 | 11.01 | SUE | 1151
1151 | 1201
1201 | 1251 | 1301 | 1351 |
| _ | | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT

BsrGI

| 1401 | TCAGGGTTAT | TGTCTCATGA | GCGGATACAT | ATTTGAATGT ACATGAAATT | ACATGAAATT |
|------|--------------------------|--------------------------|--------------------------|-----------------------|--------------------------|
| | AGTCCCAATA | ACAGAGTACT | CGCCTATGTA | TAAACTTACA TGTACTTTAA | TGTACTTTAA |
| 1451 | GTAAACGTTA
CATTTGCAAT | ATATTTTGTT
TATAAAACAA | AAAATTCGCG
TTTTAAGCGC | TTAAATTTTT GTTAAATCAG | GTTAAATCAG
CAATTTAGTC |

| TATAAATCAA | 'AGGGA ATATTTAGTT |
|------------------|-------------------|
| CAAAA | 3TTTT |
| ATCGG | GGCTTTAGCC |
| AACCAATAGG CCGAA | TTGGTTATCC |
| CTCATTTTT | GAGTAAAAAA |
| 1501 | |

| なしましませきません | | JACACACTOAA | しししよるようようさ | | |
|------------|-----------------------|--------------------|------------|------------|------|
| GAACAAGAGT | TTCCAGTTTG GAACAAGAGT | TTGAGTGTTG | CGAGATAGGG | AAGAATAGAC | 1551 |
| | | | | | |

| AAACCGTCTA | TTTGGCAGAT |
|----------------------------------|---|
| CTCCAACGTC AAAGGGCGAA AAACCGTCTA | TCTTGCACCT GAGGTTGCAG TTTCCCGCTT TTTGGCAGAT |
| CTCCAACGTC | GAGGTTGCAG |
| AGAACGTGGA C | TCTTGCACCT |
| CCACTATTAA | GGTGATAATT |
| 1601 | |
| E 26) |) |

| | TGG | 200 |
|---|--|--|
| | AGTTTTT | TCAAAAA |
| | ACCCTAATCA | TGGGATTAGT |
| • | I GGCCCACTAC GAGAACCATC ACCCTAATCA AGTTTTTGG | CCGGGTGATG CTCTTGGTAG TGGGATTAGT TCAAAAACC |
| | GGCCCACTAC | CCGGGTGATG |
| | TCAGGGCGAT | AGTCCCGCTA |
| | 1651 | |

BanII

SUBSTITUTE SHEET (RULE 26) 179 / 204

CTGACTCGCT

TCCTCGCTCA

ATATTCCGCT TATAAGGCGA

GATACAGGAT

CAGAATATGT GTCTTATACA

2001

| GAGCCCCCGA
CTCGGGGGGCT | AGGAAGGGAA
TCCTTCCCTT | GCGGTCACGC
CGCCAGTGCG | ACAGGGCGCG
TGTCCCGCGC | TGAGGGTGTC
ACTCCCACAG | | CC GGTGCGTCAG
GG CCACGCAGTC |
|--|--------------------------|--------------------------|--------------------------|--|------|--------------------------------|
| ntinued)
ACCCTAAAGG
TGGGATTTCC | GTGGCGAGAA
CACCGCTCTT | GGCAAGTGTA
CCGTTCACAT | GCCGCCTTA ATGCCCCCCT | TTGGCACTGA | AgeI | AGGCTGCA
TCCGACGT |
| ules and pCAL vectors (col
CTAAATCGGA
GATTTAGCCT | GCCGGCGAAC
CGGCCGCTTG | CTAGGGCGCT
GATCCCGCGA | GCCGCGCTTA
CGGCGCGAAT | GCTTACTATG
CGAATGATAC | | AGGAGAAAAA
TCCTCTTTTT |
| ditional pCAL vector mod
CCGTAAAAGCA
GGCATTTCGT | GACGGGGAAA
CTGCCCCTTT | GGAGCGGGCG
CCTCGCCCGC | CACCACACCC
GTGGTGTGGG | GTGTATACTG | | TTCATGTGGC
AAGTACACCG |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1701 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACC(CCAGCTCCAC GGCATTTCGT GATTTAGCCT TGG | TTTAGAGCTT
AAATCTCGAA | GAAAGCGAAA
CTTTCGCTTT | TGCGCGTAAC
ACGCGCATTG | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | IrmX | AGTGAAGTGC
TCACTTCACG |
| Figure 35a: Functional
1701 | 1751 | 1801 | 1851
1851 | TE SHEET (RULE 26)
180 / 204 |) | 1951 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | | | | | ٨., |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|---------------------------|--------------------------|
| GAACGGGGGG
CTTGCCCCGC | AGTGAGAGGG
TCACTCTCCC | CAAGCATCAC
GTTCGTAGTG | GACTATAAAG
CTGATATTTC | CCTGTTCCTG
GGACAAGGAC | | TTTGTCTCAT
AAACAGAGTA | AAGCTGGACT |
| AATGGCTTAC
TTACCGAATG | TTAACAGGGA
AATTGTCCCT | GCCCCCCTGA
CGGGGGGACT | AACCCGACAG
TTGGGCTGTC | CCTGCGCTCT
GGACGCGAGA | | TATGGCCGCG
ATACCGGCGC | AGTTCGCTCC
TCAAGCGAGG |
| GGCGAGCGGA
CCGCTCGCCT | AGGAAGATAC
TCCTTCTATG | CATAGGCTCC
GTATCCGAGG | GTGGTGGCGA
CACCACCGCT | GCGGCTCCCT
CGCCGAGGGA | | ATTCCGCTGT.
TAAGGCGACA | CCGGGTAGGC
GGCCCATCCG |
| GTTCGACTGC
CAAGCTGACG | GGAAGATGCC
CCTTCTACGG | GCCGTTTTTC
CGGCAAAAAG | GCTCAAATCA | TTTCCCCCTG | AgeI | TACCGGTGTC
ATGGCCACAG | ACACTCAGTT
TGTGAGTCAA |
| ACGCTCGGTC
TGCGAGCCAG | GAGATTTCCT
CTCTAAAGGA | CCGCGGCAAA
GGCGCCGTTT | GAAATCTGAC
CTTTAGACTG | ATACCAGGCG
TATGGTCCGC | | CCTTTCGGTT
GGAAAGCCAA | TCCACGCCTG |
| 2051 | 2101 | 2151 | 2201 | 2251 | | 2301 | 2351 |
| | | . 8 | SUBSTITUTE | SHEET (RUL | E 26) | | |

| Ŧ |
|-----------------|
| ž |
| ₽. |
| Ţ |
| 8 |
| Š. |
| ō |
| ਹ |
| ۶ |
| 뒫 |
| ರ್ಷ |
| _ |
| Ē |
| Š |
| 半 |
| ğ |
| 5 |
| Ξ |
| 유 |
| ĕ |
| AL vecto |
| 8 |
| ď |
| ᆵ |
| ō |
| ☱ |
| 용 |
| of additio |
| 0 |
| Š |
| 2 |
| ř |
| P. |
| Š |
| 12 |
| naps and sequen |
| de |
| Ë |
| Ŧ |
| 'n |
| ij |
| Ĕ |
| £ |
| 5a: Fun |
| e 35a |
| نو |
| Figure |
| Ē |

| ATCCGGTAAC
AGGCCATTG | RACTGGCAGC |
|---|----------------------------------|
| ACCCCCCGTT CAGTCCGACC GCTGCGCCTT ATCCGGTAAC | GGAAAGACAT GCAAAAGCAC CACTGGCAGC |
| TGGGGGGCAA GTCAGGCTGG CGACGCGGAA TAGGCCATTG | CCTTTCTGTA CGTTTTCGTG GTGACCGTCG |
| CAGTCCGACC | GGAAAGACAT |
| GTCAGGCTGG | CCTTTCTGTA |
| ACCCCCCGGTT | AGTCCAACCC |
| TGGGGGGCAA | TCAGGTTGGG |
| GTATGCACGA | TATCGTCTTG |
| CATACGTGCT | ATAGCAGAAC |
| 2401 | 2451 |

| A GAGGAGTTAG TCTTGAAGTC ATGCGCCGGT | CICCICAAIC AGAACTICAG TACGCGGCCA |
|------------------------------------|----------------------------------|
| GAGGAGTTAG | CTCCTCAATC |
| AATTGATTTA | TTAACTAAAT |
| AGCCACTGGT | TCGGTGACCA |
| 2501 | |

| CCAAGCCA | AGGTTCGGT | |
|---|---|---|
| CTGAAAGGAC AAGTTTTAGT GACTGCGCTC CTCCAAGCCA | GACTITCCTG TTCAAAATCA CTGACGCGAG GAGGTTCGGT | |
| AAGTTTTAGT | TTCAAAATCA | |
| CTGAAAGGAC | GACTTTCCTG | |
| TAAGGCTAAA | ATTCCGATTT | |
| 2551 | | 0 |
| SUBSTITUTE | | |

| GAAAAACCGC
CTTTTTGGCG | GCGCAGACCA
CGCGTCTGGT | | | |
|--|---|--|--|--|
| | | | | |
| TGGTAGCTCA GAGAACCTAC
ACCATCGAGT CTCTTGGATG | TTTTCAGAGC AAGAGATTAC AAAAGTCTCG TTCTCTAATG | | | |
| TTCAAAGAGT
AAGTTTCTCA | GGTTTTTTCG
CCAAAAAAGC | | | |
| GTTACCTCGG
CAATGGAGCC | CCTGCAAGGC
GGACGTTCCG | | | |
| 2601 | 2651 | | | |
| E SHEET (MULE 26) | | | | |

BglII

2701 AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

SUBSTITUTE SHEET (RULE 28 182 / 204 WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (RULE 25)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued) *

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (BULE 28)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

| Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss HII (1376) | Bbs I (1386)
Bsp EI (1397)
Bsr GI (1403) | | |
|---|--|---|--------------------|
| Bam H I (192) Pst I (1356)
Kpn I (202) Bss SI (1346)
Fse I (210) Eag I (1340)
-35 (bla)
-10 (bla) | bla-term | | bla MCS
1289 bp |
| Pml I (189)
Bsa BI (182)
Nsp V (173)
Bsi WI (166)
Eco O109I (161) | Sty 1 (157)
Msc 1 (156)
Bst XI (152) | Bst Ell (140)
Bsu 36l (136)
Hpa I (132) | Mlu I (126) |

SUBSTITUTE SHEET (RULE 28)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| | | | BsiWI NspV | C GTACGTTCGA
G CATGCAAGCT | | · | TCAAAAAGGA
AGTTTTTCCT | CTCAGTGGAA
GAGTCACCTT | AAAAGGATCT
TTTTCCTAGA |
|------|--------|----------|------------|----------------------------------|----------------|-----------|--------------------------------------|--------------------------|--------------------------|
| StyI | Psp5II | Eco01091 | | AGGTCCC .
TCCAGGG | | Fsel | CATTA | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| | | BstXI | T WscI | AAGCCCCTGG CCA
TTCGGGGACC GGT | | | GGATC CGGTACCAGG
CCTAG GCCATGGTCC | CTTTTCTACG
GAAAAGATGC | TTTTGGTCAT
AAAACCAGTA |
| | | u36I | Bsteil | TCAGGTGACC
AGTCCACTGG | PmlI
~~~~~~ | | CACGTGGATC GTGCACCTAG | ATCCTTTGAT
TAGGAAACTA | CGTTAAGGGA
GCAATTCCCT |
| | | MluI Bsu |
HpaI | CGCGTTAACC
GCGCAATTGG | | NspVBsaBI | AGATTACCAT
TCTAATGGTA | TCTCAAGAAG
AGAGTTCTTC | CGAAAACTCA
GCTTTTGAGT |
| | | | | 126 | | | 176 | 226 | 276 |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

SUBSTITUTE SHEET (RULE 26)

190 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| GAATAGTGTA TGCGGCCCCTTATCACAT ACGCCGCTAATACCGCG CCACATAATACGCGC GGTGTATA | GTTATGGCAG | GTCCTCCGAT CGTTGTCAGA
CAGGAGGCTA GCAACAGTCT | CAAG GCGAGTTACA TGATCCCCCA TGTTGTGCAA
STTC CGCTCAATGT ACTAGGGGGGT ACAACACGTT | CGTGGTGTCA CGCTCGTCGT TTGGTATGGC TTCATTCAGC
GCACCACAGT GCGAGCAGCA AACCATACCG AAGTAAGTCG |
|--|---|--|---|--|
| GTTCTTCGGG GCGAAAACTC | CTTTTCTGTG GAAAAGACAC TGCGGCGACC ACGCCGCTGG CCACATAGCA GGTGTATCGT | | GTCCTCCGAT CAGGAGGCTA GTTATGGCAG CAATACCGTC CTTTTCTGTG GAAAAGACAC TGCGGCGACC ACGCCGCTGG | GCGAGTTACA TGATCCCCCA
CGCTCAATGT ACTAGGGGGT
CAGGAGGCTA GCAACAGTCT
CAATACCGTC GTGACGTATT
CAATACCGTC GTGACGTATT
GAAAAGACAC TGACCACTCA
TGCGGCGACC GAGTTGCTCT
ACGCCGCTGG CTCAACGAGA
CCACATAGCA GAACTTTAAA
GGTGTATCGT CTTGAAATTT |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

| ,
A. | | | | | | | |
|------------------------------------|--------------------------|--------------------------|--------------------------|---------|-----------|--------------------------|-------------|
| CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT
GAAGGAAAAA | GCGGATACAT
CGCCTATGTA | XhoI | | ATGGCTCGAG
TACCGAGCTC | |
| TCTTCAGCAT
AGAAGTCGTA
Eco57I | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT
ATGAGTATGA | TGTCTCATGA
ACAGAGTACT | } | Bbel Asel | GGCGCCATTA
CCGCGGTAAT | |
| ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA
TTTACAACTT | TCAGGGTTAT
AGTCCCAATA | PstI | | ACGAGCTGCA
TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC
GGTGAGCACG
BSSSI | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA
CTTCGTAAAT | | EagI | ACTCGGCCGC | |
| TCGATGTAAC
AGCTACATTG | CACCAGCGTT
GTGGTCGCAA | AGGGAATAAG
TCCCTTATTC | CAATATTATT
GTTATAATAA | | | ATTTGAATGT
TAAACTTACA | BssHII |
| 1126 | 1176 | 1226 | 1276 | | | 1326 | |
| | | SUBSTITU | ITE SHEET (| RULE 26 |) | | |

192 / 204

CATGAAATT TCCGGATGTA AGGCCTACAT Figure 36: functional map and sequence of B-lactamase-MCS module (continued) CGCTTTGTCT GCGAAACAGA CGCGCTTCAG GCGCGAAGTC Eco57I ~ ~ ~ ~ ~ ~ ~ 1376

SUBSTITUTE SHEET (RULE 26)

Figure 37: Oligo and primer design for Vk CDR3 libraries

Vk4

5'- G C C C T G C A A G C G G A A G A C

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

-3' 30 S

F A TW Y Y C Q
T T T G C G A C T T A T T A T T G C C A

V G V Y Y C
G T G G G C G T G T A T T A T T G C C A

V A V Y Y C
G T G G C G G G T G T A T T A T T G C C A

C D E G Н CATM N P CAG Q R S T ٧ W .80% Q

SUBSTITUTE SHEET (RULE 26) 195 / 204 G

Figure 37: Oligo and primer design for Vk CDR3 libraries

9 3'- G G A A C C T G A C C T G A C C T

| | | | | | | | | | | | | | | | | • | |
|-----|----------|--------|-------------|--------------|------|----------|--------|---|-------|---|---|----|-------|---|---|---|-----|
| G | С | T | ******** | ********* | | ******** | | | G | С | T | | | | G | С | T |
| | ******** | | ******** | ****** | | | | | | | | | | | | | |
| G | Α | T | G | Α | T | G | Α | Τ | G | Α | T | | | | G | Α | T |
| G | Α | G | *********** | ****** | | | ••••• | | | A | | | | | G | Α | G |
| T | T | Τ | | ******** | | ••••• | •••••• | | T | T | T | | | | T | T | · T |
| G | G | Τ | G | G | T | G | G | T | G | G | T | | | | G | G | T |
| С | A | Τ | ••••• | 4 | | | | | С | Α | T | | | | С | Α | T |
| Α | T | Τ | | ******** | | | | | Α | T | T | | | | Α | T | T |
| Α | Α | G | | ********** | **** | | | | Α | Α | G | | | | Α | Α | G |
| C | T | T | ********* | ************ | | | ••••• | | С | T | T | | | | С | T | T |
| • - | T | | • | | | | | | , , | | | | | | Α | T | G |
| Α | Α | T | Α | Α | T | Α | Α | T | | | | | | | | Α | |
| | | •••••• | | | | | | | С | С | T | C | С | T | С | | : |
| C | Α | G | | ••••• | | | | | | Α | | | | | | Α | |
| | G | | | | | | | | _ | | | | | | С | _ | |
| T | С | T | T | C | T | Τ | С | T | | | | Τ | C | T | | | |
| Α | С | T | | | | | | | | С | | | ····· | | | С | Τ |
| G | T | T | ······· | | | | | | | | Τ | | | | G | | T |
| T | G | G | | | | | | | :
 | | G | | | | | G | |
| T | Α | T | T | Α | T | | | | T | Α | T | | | | | Α | T |
| 5 | 0% | ·Υ | | | | | | | | | | 80 |)% | P | | | |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204 WO 97/08320 PCT/EP96/03647

Figure 38: Oligo and primer design for VA CDR3 libraries

| 30 | . 40 | | 50 |
|------------|--------------------|-----|----------------------------|
| Y Y C | Q S | D | |
| -ATTATTGCC | AGAGC | GAC | |
| | A | | GCTGCT- |
| | D | - | GATGAT |
| | E
F | | G A G G A G |
| | G | | GGTGGT |
| | H | | CATCAT |
| · | . K | | A A G A A G
C T T C T T |
| | M | | ATGATG |
| | N
P | • | A A T A A T
C C T C C T |
| | Q
R C G T | | CAGCAG
CGTCGT |
| | S | | TCTTCT |
| | V | | A C T A C T
G T T G T T |
| | W T G G
Y T A T | · | TATTAT |
| | Y T A T
3 | 1 | 18 18 |
| | 3 | 1 | 18 18 |
| | 3 | . 1 | 18 18 |

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

| 09 | | | 70 | | | 80 | |
|---|----------|-----------|-----------|---------|---------|--------|---|
| | | G | G | G | - | K L | ٨ |
| *************************************** | G | GCG | GCC | i G C / | A C G / | AAGTTA | 4 |
| gap gap | | | | | | | |
| - G C T G C T G C T | GCT | | | | | | |
| | CAT | | | | | | |
| GATGATGAT | | | | | | | |
| GAGGAGGAG | | | | | | | |
| GGTGGTGGT | | | | | | | |
| CATCATCAT | | | | | | | |
| ATTATTATT | : | | | | | | |
| AAGAAGAAG | ! | | | | | | |
| CITCITCIT | | | | | | | |
| ATGATGATG | | | | | | | |
| AATAATAAT | i i | | | | | | |
| CCTCCTCCT | i i | | | | | | |
| CAGCAGCAG | | | | | | | |
| CGTCGTCGT | ! | | | • | | • | |
| TCTTCTTCT | : | | • | | | | |
| ACTACTACT | <u>l</u> | | | | | | |
| GITGITGIT | | | | | | | |
| | TGG | | | | | | |
| TATTATTAT | 1 1 | Varia | bility | | | | |
| 18 | 19 | 3.32 | E+05 | | | | • |
| 18 18 | 19 | 5.98 | E+06 | | | | |
| 18 18 18 | 19 | 1.08 | E+08 . | | | | |
| | SUBST | TITUTE SH | EET (RULÉ | E 26) | | | |

200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 39: functional map of expression vector series pBS13

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| % soluble | 7 | K2 | చ | к 4 | λ1 | λ2 | λ3 |
|-----------|-----|-------|-------|------------|-----|-----|-----|
| H1A | 61% | 58% | 52% | 42% | %06 | 61% | %09 |
| H1B | 39% | 48% | %99 | 48% | 47% | 39% | 36% |
| H2 | 47% | 57% | 46% | 49% | 37% | 36% | 45% |
| H3 | 85% | 9/0/9 | 0/09/ | 61% | 80% | 71% | 83% |
| H4 | %69 | 52% | 51% | 44% | 45% | 33% | 42% |
| H5 | 49% | 49% | 46% | 9/0/9 | 54% | 46% | 47% |
| 9H | %06 | 28% | 54% | 47% | 45% | 20% | 51% |

| Total amount | | | | | | | |
|------------------|------|------|--------|------|------|------|-----|
| compared to H3K2 | κ | Z | Ω
Ω | K4 | 7 | 75 | 73 |
| H1A | 289% | 94% | 166% | 272% | 20% | 150% | |
| H1B | 219% | 122% | %68 | 139% | 117% | 158% | • |
| H2 | 186% | 223% | 208% | 182% | 126% | %09 | |
| H3 | 20% | - | 71% | 54% | 29% | 130% | 47% |
| H4 | 37% | 55% | %09 | 77% | 195% | 107% | • • |
| H5 | %86 | 201% | 167% | 83% | 93% | 128% | |
| 9H | 65% | 117% | %68 | 109% | 299% | 215% | |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount | , | , | ,
(, | 7 | 7.1 | 73 | 7.2 |
|------------------|----------|------|---------|------|-------|------|------|
| compared to H3K2 | Z | 2 | 2 | 4 | ₹ ; | 7 | Ş |
| H1A | 191% | 880% | 121% | 122% | 26% | 211% | 76% |
| H1B | 124% | 95% | 83% | 107% | 79% | 142% | 29% |
| H2 | 126% | 204% | 139% | 130% | 0/099 | 50% | 70% |
| H3 | 63% | i | 81% | 49% | %69 | 143% | 61% |
| H4 | 40% | 47% | 49% | 54% | 95% | 55% | 125% |
| H2 | %69 | 158% | 116% | 80% | 72% | 84% | 84% |
| 9H | 85% | 122% | 87% | 17% | 162% | 162% | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | %69 | | | | | | |
| | | | | | | | |

SUBSTITUTE SHEET (RULE 26)
204 / 204

onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C12N15/10 C12N15/62 C12N15/70 C12N1/21 C07K1/04 G01N33/53 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N CO7K GO1N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ' EP 0 368 684 A (MEDICAL RES COUNCIL) 16 A 1-55 May 1990 cited in the application see the whole document 1-55 A EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1 02 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

Ir itonal Application No PCT/EP 96/03647

| | | PCT/EP 96/03647 |
|------------|--|-----------------------|
| | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| A | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET TA ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document | 1-55 |
| A | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document | 1-55 |
| A . | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document | 1-55 |
| A | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55 |

1

Int sonal Application No PCT/EP 96/03647

| | adon) DOCUMENTS CONSIDERED TO BE RELEVANT | PC1/EP 96/0364/ |
|-----------|---|-----------------------|
| ategory * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| A | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document | 1-55 |
| A | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document | 1-55 |
| A | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4 | 1-55 |
| | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994, | 1-55 |
| | | |

Information on patent family members

Int onal Application No PCT/EP 96/93647

| Patent document cited in search report | Publication
date | Patent family member(s) | | Publication date |
|--|---------------------|-------------------------|----------|------------------|
| EP-A-0368684 | 16-05-90 | AU-B- | 634186 | 18-02-93 |
| | | AU-A- | 4520189 | 28-05-90 |
| | | CA-A- | 2002868 | 11-05-90 |
| | | DE-D- | 68913658 | 14-04-94 |
| | | DE-T- | 68913658 | 08-09-94 |
| | | ES-T- | 2052027 | 01-07-94 |
| • | • | WO-A- | 9005144 | 17-05-90 |
| | | JP-T- | 3502801 | 27-06-91 |
| WO-A-9511998 | 04-05-95 | AU-A- | 8091694 | 22-05-95 |
| | | EP-A- | 0725838 | 14-08-96 |