1. Случайные процессы: определения

Упражнение 1.1. Пусть случайные величины $U \sim Bernoulli(1/3)$ и $V \in \mathcal{U}[0,1]$ независимы, а случайный процесс задаётся как $X_t = Ue^t + V$.

- 1. Нарисуйте траектории процесса X.
- 2. Опишите семейство конечномерных распределений процесса X.
- 3. Найдите матожидание и ковариационную функцию процесса X.

Упражнение 1.2. Пусть $(\varepsilon_t)_{t\in\mathbb{Z}}$ – процесс гауссовского белого шума с дисперсией 1 и заданы числа $\alpha, \beta \in \mathbb{R}$. Процесс $(X_t)_{t\in T}$ определим как

$$X_{t+1} = \alpha \varepsilon_t + \beta \varepsilon_{t-1} + \varepsilon_{t+1}.$$

Найдите матожидание и ковариационную функцию процесса X. Проверьте, является ли процесс стационарным в широком смысле.

Упражнение 1.3. Докажите, что в случае гауссовского процесса из стационарности в широком смысле следует стационарность в узком смысле.

Упражнение 1.4. Пусть $T \in \mathbb{R}$, $(X_t)_{t \in T}$ – гауссовский процесс с m(t) = 0. Проверьте, будет ли процесс стационарным (в широком смысле), если ковариационная функция

- 1. квадратичная $K(t,s)=(ts)^2$;
- 2. функция Орнштейна-Уленбека $K(t,s)=e^{-\frac{|t-s|}{2l}}$ с параметром $l\in\mathbb{R}.$

Упражнение 1.5. (2.5 балла) Пусть $T \in \mathbb{R}$, $(X_t)_{t \in T}$ – гауссовский процесс c m(t) = 0 u K(t,s) = ts. Докажите, что траектории процесса – это прямые, исходящие из 0.

Упражнение 1.6. (2.5 балла) Пусть $T \in \mathbb{R}$, $(X_t)_{t \in T}$ – гауссовский процесс c m(t) = 0 и K(t,s) = f(t)f(s) для некоторой s. Объясните (и докажите), какой вид имеют траектории процесса.