Hanomum emo que apopurnoso unosoospagnes V< k" unomecroo $T(V) := \{ f \in k[x_1, ..., x_n] : f(a_1, ..., a_n) = 0 \ \forall (a_1, ..., a_n) \in V \}$

всен много членов, данумеющиная на V, якляйся предлом в $k[x_1,...,x_n]$. Таким образом, имеется отобратения

{ appunure unoroospagus } -> { ugearn & k[x1,...,x4]},

 $(7.1) \qquad \qquad V \qquad \qquad \longrightarrow \qquad \underline{\mathbb{I}}(V)$

The ugears Ickles, ..., x. I un nomen onpegenure nogunomecibo $V(I):=\left\{(a_1,...,a_n)\in k^n:\ f(a_1,...,a_n)=0\ \forall f\in I\right\}$

в к, которы по теореме Гимберта о базысь авглега аффикимы миотообразием. Тем сампи, имеется и отобратения

{ugeans b $k[x_1,...,x_n]$ } \longrightarrow {appunner unoroobpaque}, (7.2) I

Отменили, что отобранение V(·) не авгается инъективным. Например, идеалам $\langle x \rangle$ и $\langle x^2 \rangle$ комца k[x] coombemotoget аффиное многообрази $V = \{0\} \subset k$. В случае алгебранчески незаимиутого поих возникает ещё больше проблем : ест I_1 =<1+ x^z >, I_5 =<1+ x^z + x^z > — идеаль в |R[x]| то

 $V(I_{\bullet}) = \overline{V}(I_{\bullet}) = \overline{V}(I_{\bullet}) = \emptyset.$

Iусть k - ангебрангоски занинутое поле, а $\overline{I} \subset k[x]$ - идеах, m.x. $\overline{V}(I) = \emptyset$. Поскольну k[z] - кольно главиях идеалов, идеал $I=\langle f \rangle$, где $f \in k[z]$. Так как А - алгебранчески замкнуже неге, то мовой многочлен положийськой emenerus useem roperes & k. Buarus ug NI)= & crepyem, onco f E k-103 n ngear $I = \langle 1 \rangle = k[z]$. To ease 8 nonsye k[z], ege k - accessponrecur zankuyter nose, $V(I) = \emptyset$ b may a massive man crytae, Korga $I = kl^2$.

Orazobaetal, emo smom que octacital bepuna a que la [si,..., In]. Теорема 7.1: (слабая теорема Гишберта о нумях)

Пуст А - алебраниями данкну тое поле [Ick[x1,..., x_n] - идеал. Тогда аффиннос многообразие $V(I) = \emptyset$, если и только если $I = k[x_1,...,x_n]$.

Donagazenerbo: Ecue $I = k[z_1, ..., z_n]$ mo $1 \in I$ u $V(z) = \emptyset$.

Для доказатемства обратного утверждения покажем, что $1 \in I$. Будем делать это по индукции. Боза индукции (n=1) ути доказана.

Пусть утверждение справод мво в кольце многоченов от (n-1) переменной, которое зашимем в виде $k[z_e,...,z_n]$. Рассмотрим идеам $I=\langle f_1,...,f_5\rangle$ в кольце $k[z_1,...,z_n]$ такой, что $V(I)=\phi$. Можно симать, что многочем f_1 не является постоямили. Итак, его общая степень N>1. Сделаем в f_1 мнейную замену переменных

 $x_{t} = \widetilde{x_{t}},$ $x_{t} = \widetilde{x_{t}} + a_{t}\widetilde{x_{t}},$ \vdots $x_{n} = \widetilde{x}_{n} + a_{n}\widetilde{x_{t}},$

ige $a_j \in k$ nogobpasion gosterom objects. A unemo, b unoversence $f_1(x_1,...,x_n) = f_1(\widetilde{x_1},\widetilde{x_1}+a_1\widetilde{x_1},...,\widetilde{x_n}+a_n\widetilde{x_1}) = c(a_{1,...,a_n})\widetilde{x_1}^N + \frac{charachae}{cmanaus} \widetilde{x_1} < N$ Kotopopunyueum $c(a_{2,...,a_n}) \neq 0$. Samuab unoversence f b buge cyanar

 $f = h_N + h_{N-1} + ... + h_0$

ognopoguna komovieum h; cmenenu j, rge 0 = j < N, zamerun, rmo

$$\begin{split} & h_{N}\left(\widetilde{\mathcal{X}}_{1},\widetilde{\mathcal{X}}_{2}+a_{2}\widetilde{\mathcal{X}}_{2},...,\widetilde{\mathcal{X}}_{n}+a_{n}\widetilde{\mathcal{X}}_{2}\right) = \sum d_{i_{1}...i_{n}} \ z_{r}^{i_{2}}z_{2}^{i_{2}}....z_{n}^{i_{n}} = \\ & = \sum d_{i_{1}...i_{n}} \ \widetilde{\mathcal{X}}_{r}^{i_{1}}\left(\widetilde{\mathcal{X}}_{2}+a_{2}\widetilde{\mathcal{X}}_{r}\right)^{i_{2}}...\left(\widetilde{\mathcal{X}}_{n}+a_{n}\widetilde{\mathcal{X}}_{r}\right)^{i_{n}} = \left[\sum d_{i_{1}...i_{n}} \ a_{2}^{i_{2}}....a_{n}\right)\widetilde{\mathcal{X}}_{r}^{N} + \underset{\text{emenents}}{\text{carradounce}}, z_{pa} = \\ & = h_{N}\left(1,a_{2},...,a_{n}\right)\widetilde{\mathcal{X}}_{r}^{N} + \underset{\text{emenents}}{\text{carradounce}}, z_{pa} = \\ & = h_{$$

mo ears $\ell(a_2,...,a_n) = h_N(1,a_2,...,a_n)$. Nochaisey $h_N \in k[x_1,...,x_n]$ — newyrebou ognopodnowi nemorozzen, nemorozzen $h_N(1,a_2,...,a_n) \in k[a_2,...,a_n]$ tore respective. Name Taxum of proper, geriotherene cyclestycom $a_2,...,a_n \in k$ manne, two $\ell(a_2,...,a_n) \neq 0$.

Указанное минейное преобразование индууируем гомомордизм каны $A[x_1,...,x_n] \to k[\widetilde{x}_1,...,\widetilde{x}_n]$

 $f \mapsto \widetilde{f} := f(\widetilde{x_1}, \widetilde{x_2} + a_1\widetilde{x_1}, ..., \widetilde{x_n} + a_n\widetilde{x_1}).$

Obpag $\tilde{I}=\{\tilde{q}: \tilde{q}\in I\}$ ugerna I can abssemal ugeanou of $k[\tilde{x}_1,...,\tilde{x}_n]$. No $V(I)=\emptyset$ bormeraem, amo appunuoe unoroobpazue $V(\tilde{I})=\emptyset$. Tax rax resuosuppuzu ocmabisem ra secure representation uz nous k, ug $1\in \tilde{I}$ exeggem, and $1\in I$. Paccuompusu ugeas uchnownus $\tilde{I}_i:=\tilde{I}_1k[\tilde{x}_n,...,\tilde{x}_n]$. Ogua uz obpazyonyuz ugeasa \tilde{I} ruseem bus

encem bug $\widetilde{f}_1 = C(a_{2,...,a_n}) \widetilde{z}_1^N + \frac{charachae}{charachae} \widetilde{x}_1 < N,$

где $C(a_{1},...,a_{n})\in k^{-\{0\}}$. Тогда по следствию из теоремя 5.2 о продагмении, которая остаётся справедливой и для произвольного алгебранческие заминутью паля k, $V(\tilde{I}_{1})=I_{1}(V(\tilde{I}))$, где I_{1} — проекция из I_{2} на аформичес подпространство I_{1}^{n-1} с коорушатами $I_{2},...,\tilde{I}_{n}$. Следовательно, $V(\tilde{I}_{1})=I_{1}(V(\tilde{I}))=I_{1}(0)=P_{1}$, откуда, т.к. $I_{1}\in k[I_{2},...,\tilde{I}_{n}]$ по предположению индукции $I\in I_{1}$, а значит к $I\in I$. Тем семпи, теорема доказана.

влабая теорема Гильберта о нуляя даёт практический способ розрешения вопроса о совместности системы помнашамных уравшений с коодерициамнами в алгебранчески заменутом пом

f1 = 0, ..., fs = 0, — нужно проверия, что 16< f1,...,f5> (мобо найти остаток от деления 1 на базис Грёбнера этого идеала, мобо найти редуцированиям базис Грёбнера этого идеала).

Как показывают примеры пдеалов <27 и < 227, переход к алгебранчески замктующу полю не делает отобратение (9.2) интективным. Следующая теорона изборит, в слугае алибрангиски замкрушьть поме, единетвеннах причина, по которой разрите идеам задают одно иногообрание — это по, что запуляния иногочная во всех точках V(1) винёт принадлетность некоторой степени этого иногочена годеалу .

Теорема 7.2: (Гильберта о нума») Пуеть k - алгебранческий замкнучие поле Ecce f, fr ..., fo & k[x,..., x,] m. r. f & I(V(fr,...,fo)), mo cycyacunbyem year m = 1, дые которого

fm6 < f1, ... f,> (Обратное утвертдение очевидно тоже является верням)

Доказатемство: (трык Рабиновика) Рассмотрим идеал

 $\widetilde{I} := \langle f_1, ..., f_s, 1-yf \rangle$

в кальце $k[x_1,...,x_n,y]$. Покамен, что ки одна точка $a=(a_1,...,a_n,a_{n+1})\in k^{n+1}$ не люжет remains b $V(\tilde{x})$. Ecui $(a_1,...,a_n) \in V(f_1,...,f_s)$, mo $f(a_1,...,a_n) = 0$ no yelobulo meoperior. Torga muoroccen $(1-yf)(a)=1-a_{n+1}f(a_1,...,a_n)=1\pm0$, m.e. makar rocka $a\in V(\widetilde{I})$. Ecus me rempt motra $(a_1,...,a_n) \in V(f_1,...,f_s)$ mo naigemax f_i , m.v. $f_i(a_1,...,a_n) \neq 0$, $g_i \in \{1,...,s\}$ Mockesony $f_i \in I \cap k[x_1,...,x_n]$, me was enement some $k[x_1,...,x_n,y]$ undersent $f_i(a_1,...,a_n,a_{n+1}) \neq 0$ Therein, a makes mother (as,..., an, and) we remain to $V(\hat{I})$. Legobernessed, $V(\hat{I}) = \emptyset$.

Torga no crasovi meopeur turbsepma o mysex $1 \in \widetilde{I}$, m.e. navigymax $p_4,...,p_s,q \in k[x_1,...,x_n,y]$, m.e. $1 = \sum_{i=0}^{n} p_i(x_{i_1,...,i_n}, y) f_i + q(x_{i_1,...,i_n}, y) (1-yf).$

Правую гасть указанного равенейва монно трактовай как многочлен из комуа $(k(x_1,...,x_n))[y]$. Burucueb ero guarenue b m, $1/f(x_1,...,x_n) \in k(x_1,...,x_n)$, un nouyum pabencuebo

 $1 = \sum_{i=1}^{n} p_i(x_1, ..., x_n, \frac{1}{n}) f_i$

b $k(x_1,...,x_n)$. Prebugno, uno generous ero na gormamorno barrenyo coneners f^m , nor inpuber k many, was & kousye k[x1,...,xn] $f^m = \sum_{i \in \mathcal{I}} \widetilde{\rho_i} \cdot f_i,$

rge $\tilde{p_i} \in k[x_1,...,x_n]$. Luegobamauno, $f^m \in \langle f_1,...,f_s \rangle$.

(1.3) Радикальные идеали

Onpegenenne 7.1: Ugear I nagnhaemax pagnikamenn, eans $f^m \in I$ hirrem $f \in I$. Janemus, rus que appurmoro unorospoque V_{i} ecus $f^{m} \in I(V)$, no u $f \in I(V)$. Taxum образаи, I(V) - радиканный идогл.

Onpegenenne 7.2: Π_{yor} $I \in k[x_1,...,x_n]$ - ugear. Ero paguxanen nazabarmar $\sqrt{I} := \{ f \in k[x_1,...,x_n] : f^m \in I \text{ gre necompose genero } m \ge 1 \}.$

Идеал I содержится в своём радикале \sqrt{I} . Очевидно, что I радикальный $\Leftrightarrow I = II$.

Узвертдение \overline{x} !: Пусть $\overline{I} \subset k[x_1,...,x_n]$ — идеаг. Тогда его радика: \sqrt{I} хвлянтая радиканни идеалы в $k[x_1,...,x_n]$

Doxazamers combo: Enepha govament romo \sqrt{I} - ugear. Myor $f,g\in I$, ruorga equyecomby nom yeune $m \neq 1$ u $l \neq 1$, $m \neq l$, $f',g' \in I$. Corracco apopuye amona Heromoria

 $(f+g)^{m+\ell-1} = \sum_{i+j=m\ell-1} C_{i+j}^i f^i g^j,$

где $f^{i} \in I$ при $i \ge m$, $g^{i} \in I$ при $j \ge l$, т.е. каторое систаемое летит b I а значи $(f+g) \in I$ Таким образом, $f+g \in I$. Наконец, если $f \in I$, то $f^m \in I$. Для мобого $h \in h[x_1,...,x_n]$ прощведении $h^m : f^m = (hf)^m \in I$, т.е. $hf \in I^T$. Следовательно, TI действаельно пдеах.

Докатем радикамность \sqrt{I} . Рассмотрим многогим $f \in k[x_1,...,x_n]$, m.v. $f^m \in \sqrt{I'}$ дие некоторьго услого $m z \cdot 1$. По определению радикам начідётая такое услог $\ell z \cdot 1$, $\ell z \cdot 1$ отненень $(f^m)^\ell = f^{m\ell} \in I$. Отнода помугаем, $\ell z \cdot 1$.

Теперь пореформулируем в нових терминах теорему Гинберта о нумак.

Теорема 7.5: (Гильберта о нумя») Пуеть k - алгебрансеемы замкнутье поме. Если $I < k!x_1, ..., x_n]$ - изеах, то $I(V(I)) = \sqrt{I'}.$

Dokazamerscombo: Dokamer, and $\sqrt{I} \subset I(V(I))$. East superories $f \in \sqrt{I}$, no ew necompose emercus $f^m \in I$. Torga f^m janyszemax na V(I), a znarum u f zanyszemax na V(I), no ecus $f \in I(V(I))$.

Nowamen objective $\mathbb{E}(V(I)) < \sqrt{I}$. Now $f \in \mathbb{E}(V(I))$, morga no meopene tundepta o nyarz $f^m \in I$ gar neromoporo yeroso m = 1, normony $f \in \sqrt{I}$.

Теоргиа 7.4: (о соответствии метод идеалами и многообразиями)

Nyemb k - repossible since nace. Torga.

(i) Drodopamenus {app.un.-zus} \xrightarrow{V} {ugeann} u {ugeann} \xrightarrow{V} {app.un.-zus} objamanom benotorenes, m.e., ecun ageam $I_1 \subseteq I_2$, mo $V(I_1) \supset V(I_2)$, a manne, ecun appunnae unoroobazus $V_1 \subseteq V_2$, mo $I(V_1) \supset I(V_2)$. bene more, gas besoon appunnae unoroobazus $V_2 \subseteq V_3$, m.e. I_3 sheemas 1:1 omoopameenus $I_4 \subseteq V_3$, m.e. I_3 sheemas 1:1 omoopameenus $I_4 \subseteq V_3$.

(ii) Ест к алгебрангески замкнуто, то отобратения {афф, ми-зия} → {радикамняе идеат}
 че {радикамняе подеат} → {афф, ми-зия} зължится ызамию- обратитми, обращиющими включения бискумеми.

Dokazamersconto: (i) Tycono $I_1 \circ I_2$, eaux morka $a \in V(I_2)$, mo ona jossystem beauxi многочен из I_2 , в частрости, она замушт и вачий многочен из I_4 т.е. $a \in V(I_1)$. Taxum oбpazon, V(I2) < V(I1).

Myems meners $V_1 \subset V_2$ ecal $f \in I(V_2)$ mo on savinzemal b kangoù morke microsopane V_2 mo on garyssames u b rangen more supreolipaque V_1 . Cregobameuro, $f \in I(V_1)$, u $I(V_2) \subseteq I(V_1)$.

Локатем, что V(I(V)) = V дле аффициого многообразия $V = V(f_1, ..., f_3) \subset k$. Включение $V \subset V(I(V))$ caegyer coasy us onpegeneus $I(\cdot)$ in $V(\cdot)$. Teneps squemus, the $f_1,...,f_s\in I(V)$ no onpegeremiso I(1), gramm < f1, ..., f5 > C I(V). Tax ran V obpayaem busocence no V(I(V)) < V(41,..., f5)=V. Taxim obpazion, V(I(V)) = V, in I alexander 1:1 omogramenten, man non y haro east rebot objaminos.

в радикамняй идеаг. Госкамку V(I(V))=V учег доказано то остагтах показат, что I(V(I)) = I, ease I page kasensie. Ho is measure Turbona o meser cuegyen, and I(V(I)) = I. а $I^{T=I}$, т. и I радинальнай. Следвателью отобрателия V и I взаимнообратьное и определяют бискуши между множествами радыкамите иделью и аффините многообразий.

 $^{(ii)}$ Ugeal I(V) paguxausurii norrowy omobyamenue I nepebogum agogunuce unoroocpazue

b paqueau ugeau $I = \langle f_1, ..., f_s \rangle \subset k[x_1, ..., x_n]$

Theomogenee 7.1: Tyer k - moustaine now I= <f1,...,f5> < k[z1,...,zn] - ugear Torga $16\sqrt{I}$ eem n manoro, eem $16\tilde{I} := \langle f_1, ..., f_s, 1-yf \rangle \subset k[x_1, ..., x_n, y]$.

Доказатемство: Из доказатемства теорем 7.2 аледует, что из $1 \in I$ вытекает $1 \in I$ для некоторого m, а значит и $f \in VI'$ Теперь предположили, что $f \in VI$. Некоторая гло comenent $f^m \in I = \tilde{I}$. Pockousky improved 1-yf $\in \tilde{I}$, mo $1 = y^{m}f^{m} + (1-y^{m}f^{m}) = y^{m}f^{m} + (1-yf)(1+yf + ... + y^{m-1}f^{m-1})$ 4

rencum b Î.

Для мого, чтоба впясник метий ми 1 в Л (1,..., 15), нутно найти редустрованиям базис Грёбнера идеала <11,...,15, 1-y7> $< k[x_1,...,x_n,y]$. Если он равен $\{1\}$, 70 $1 \in \sqrt{I}$. В противном engrae f & VI!