EPPS 6313: Recitation Session #8

Problem 1

Independent variable(X) is the number of cigarette the patients smoke a day, and dependent variable(Y) is Lung capacity.

Calculate variances for X and Y, and covariance.

Cigarettes(X)	Lung Capacity(Y)		
0	45		
5	42		
10	33		
15	31		
20	29		

Problem 2

From the table in the Problem 1, calculate the bivariate correlation between two variables. And construct correct the null hypothesis, and test it.

Page 1 of 2

EPPS 6316: Recitation Session #8

Problem 1

reg Y X Z						
Source	SS	df	MS		Number of obs	= 10
+-					F(2, 7)	= 26.30
Model	20.5428031	2 10	.2714015		Prob > F	= 0.0006
Residual	2.73382203	7 .3	90546004		R-squared	= 0.8826
+-					Adj R-squared	= 0.8490
Total	23.2766251	9 2.	58629168		Root MSE	= .62494
Y			. t		[95% Conf.	Interval]
Х	1.023942	.6671332	1.53	0.169	5535776	2.601461
ΖI	.5038424	.6671332	0.76	0.475	-1.073677	2.081362
					1220098	
. reg X Z						
	SS				Number of obs	= 10
+-					F(1, 8)	= 74.05
Model	8.1225	1	8.1225		Prob > F	= 0.0000
Residual	.8775	8	.1096875		R-squared	= 0.9025
·					Adj R-squared	= 0.8903
Total	9	9	1		Root MSE	= .33119
X			. t		[95% Conf.	Interval]
z I	.95	.110397	8.61	0.000	.695424	1.204576
•						
_cons	-2.83e-17	.1047318	-0.00	1.000	241512	.241512

⁽¹⁾ From above the result, what do we need to worry about? and why?

Problem 2

Choose all correct statements for multicorrinearity in the below list.

- 1. Perfect multicollinearity should only occur in error.
- 2. The OLS estimates (coefficients) remain unbiased.
- 3. High multicollinearity means little information to use making OLS estimates.
- 4. One of the solutions for multicollinearity is doing nothing if the interest variables are significant.

⁽²⁾ Compute VIF.