```
# Import data
polite_df <-
  read_csv('../hw7/HW7-politeness_data.csv') %>%
  as.tibble() %>% janitor::clean_names()
```

1. Exploratory Analysis

Provide boxplots to show the relation between gender/attitude and pitch.

```
# boxplots
polite_df %>%
ggplot(aes(x = gender, y = frequency, color = attitude)) +
    geom_boxplot() +
    theme_bw()
```


Males generally tend to have lower pitch than females. Within each gender, informal attitude (inf) tends to have higher pitch than formal attitude (pol).

2. Mixed Effects Model with Random Intercept

Fit a mixed effects model with random intercepts for different subjects (gender and attitude being the fixed effects).

```
lmm = lme(frequency ~ gender + attitude, random = ~1 | subject, method = "REML", data = polite_df)
VarCorr(lmm)
## subject = pdLogChol(1)
##
                Variance StdDev
## (Intercept) 598.1953 24.45803
## Residual
                847.7049 29.11537
\# var(Yi) = 598.1953 + 847.7049 = 1445.9
var = as.numeric(VarCorr(lmm)[[1]]) + as.numeric(VarCorr(lmm)[[2]]); var
## [1] 1445.9
\# cov(Yij,Yik) = 598.2
cov = as.numeric(VarCorr(lmm)[[1]]); cov
## [1] 598.1953
The covariance matrix for a subject Y_i follows a compound symmetry pattern with var(Y_{ij}) = 1445.9 and
cov(Y_{ij}, Y_{ik}) = 598.2. There are 14 measurements within each subject, so the covariance matrix is a 14*14
matrix with var(Y_{ij}) = 1445.9 as diagonal values and cov(Y_{ij}, Y_{ik}) = 598.2 as off-diagonal values.
           \begin{bmatrix} 1445.9 & 598.2 & \dots & 598.2 \end{bmatrix}
var(Y_i) =
          \begin{bmatrix} 598.2 & \dots & 1445.9 \end{bmatrix}_{14 \times 14}
# covariance matrix for the REML estimates of fixed effects
vcov(lmm)
##
                 (Intercept)
                                     genderM
                                                attitudepol
## (Intercept)
                   229.67362 -2.195819e+02 -2.018345e+01
                  -219.58189 4.391638e+02 6.451438e-15
## genderM
## attitudepol
                   -20.18345 6.451438e-15 4.036690e+01
The covariance matrix for the REML estimates of fixed effects is shown above.
# BLUPs for subject-specific intercepts
random.effects(lmm)
##
       (Intercept)
## F1
       -13.575831
## F2
         10.170522
## F3
          3.405309
         27.960288
## M3
          4.739325
## M4
## M7 -32.699613
The BLUPs for subject-specific intercepts are shown above.
resid_lmm = polite_df$frequency - fitted(lmm)
resid_lmm
##
             F1
                           F1
                                        F1
                                                      F1
                                                                    F1
                                                                                  F1
```

F1

16.2889265 -19.5086926

F1

43.4889265

F1

F1

-10.1086926 -38.9110735 61.6913074

F1

F1

##

```
27.3913074
                 33.3889265
                                8.4913074
                                              8.9889265 -42.2086926 -12.7110735
##
             F1
                          F1
                                                     F3
                                                                   F3
##
                                        F3
                                                                                F3
                                                                        -9.3922136
##
    -26.9110735
                  68.6086926
                               10.6898326
                                           -23.0922136
                                                          -3.5898326
                                                                                F3
##
             F3
                          F3
                                        F3
                                                     F3
                                                                   F3
##
    26.6101674
                   5.6077864
                               35.0101674
                                             46.4077864
                                                           7.7898326
                                                                        -7.8922136
##
             F3
                                        F3
                                                     F3
                                                                   M4
                          F3
                                                                                M4
##
   -13.8898326
                  18.4077864
                                4.0077864
                                            -54.8898326
                                                          22.2262298
                                                                       -29.3286108
##
             M4
                          M4
                                        M4
                                                     M4
                                                                   M4
                                                                                M4
##
    96.0737702
                -38.0286108
                              -20.7262298
                                             60.6713892
                                                          60.4737702
                                                                         9.9713892
##
             M4
                          M4
                                        M4
                                                     M4
                                                                   Μ4
                                                                                Μ4
##
    -31.1262298
                  26.0286108
                               22.9262298
                                           -16.7286108
                                                          -6.9286108
                                                                        -6.4262298
##
             M7
                          M7
                                        M7
                                                     M7
                                                                   M7
                                                                                Μ7
                                           -11.1896725
##
    -9.3872916
                -16.3896725
                              -13.2872916
                                                          -9.5872916
                                                                       -5.2896725
##
             M7
                          M7
                                        M7
                                                     M7
                                                                   M7
                                                                                M7
##
     1.6127084
                   4.5103275
                               -1.7872916
                                           -12.5896725
                                                          13.3127084
                                                                        -7.2896725
##
             M7
                          M7
                                        F2
                                                     F2
                                                                   F2
                                                                                F2
##
     8.9103275
                  12.1127084
                              -14.4550462
                                           -35.8574271
                                                          -0.8550462
                                                                        -7.4574271
##
             F2
                          F2
                                        F2
                                                     F2
                                                                   F2
                                                                                F2
##
    42.2449538
                  34.6425729
                               -3.9550462
                                             29.0425729
                                                          30.5449538
                                                                       27.0425729
##
             F2
                          F2
                                        F2
                                                     F2
                                                                   МЗ
                                                                                МЗ
##
   -39.1550462
                 41.2574271
                               13.8425729
                                           -19.9550462
                                                          -2.3471929
                                                                       12.6504261
##
             МЗ
                          МЗ
                                        МЗ
                                                     МЗ
                                                                   МЗ
                                                                                МЗ
##
   -13.7471929
                  23.5504261
                                4.0528071
                                                          51.3528071
                                                                       14.7504261
                                              9.9504261
##
             МЗ
                          МЗ
                                        МЗ
                                                     МЗ
                                                                   МЗ
                                                                                МЗ
##
     4.5528071 -19.6495739
                               -9.4471929 -18.1495739 -15.0495739
                                                                       -2.8471929
   attr(,"label")
   [1] "Fitted values"
```

Residuals are the deviations from subject-specific mean. The residuals are shown above.

3. Likelihood Ratio Test for the Interaction Term

Fit a mixed effects model with intercepts for different subjects (gender, attitude and their interaction being the fixed effects).

```
lmm_small = lme(frequency ~ gender + attitude, random = ~1 | subject, method = "ML", data = polite_df)
lmm_large = lme(frequency ~ gender * attitude, random = ~1 | subject, method = "ML", data = polite_df)
anova(lmm_small, lmm_large)
```

```
## Model df AIC BIC logLik Test L.Ratio p-value
## lmm_small 1 5 825.6363 837.7904 -407.8182
## lmm_large 2 6 826.2508 840.8357 -407.1254 1 vs 2 1.385523 0.2392
```

We use maximum likelihood method to fit the model. The p-value for Likelihood ratio test is 0.2392 > 0.05, so we fail to reject the null and conclude that the interaction term is not significantly associated with pitch, at the significance level of 0.05.

4. Mixed Effects Model with Random Intercept and Slope

Model: $Y_{ij} = \beta_1 + \beta_2 * I(gender = Female) + \beta_3 * t_{ij} + b_{1i} + b_{2i} * t_{ij} + \epsilon_{ij}$, where $t_{ij} = I(attitude_{ij} = pol)$, β_1 is the fixed intercept, β_2 and β_3 are slopes, and b_{1i} and b_{2i} are random intercept and random slope, respectively.

```
lmm2 = lme(frequency ~ gender + attitude, random = ~1 + attitude | subject, method = "REML", data = pol
VarCorr(lmm2)
## subject = pdLogChol(1 + attitude)
                        Variance
                                            StdDev
## (Intercept) 5.981953e+02 24.458032213 (Intr)
## attitudepol 1.079496e-05 0.003285569 0
## Residual
                        8.477049e+02 29.115372269
getVarCov(lmm2)
## Random effects variance covariance matrix
                        (Intercept) attitudepol
## (Intercept) 5.9820e+02 1.3002e-05
## attitudepol 1.3002e-05 1.0795e-05
        Standard Deviations: 24.458 0.0032856
We get g_{11} = 598.2, g_{22} = 1.079496 * 10^{-5}, g_{12} = 0, and \sigma^2 = 847.7.
Variance: var(Y_{ij}) = g_{11} + 2t_{ij}g_{12} + t_{ij}^2g_{22} + \sigma^2
    1. If t_{ij} = 1, var(Y_{ij}) = g_{11} + 2t_{ij}g_{12} + t_{ij}^2g_{22} + \sigma^2 = 598.2 + 2 * 0 + 1.079496 * 10^{-5} + 847.7 = 1445.9
    2. If t_{ij} = 0, var(Y_{ij}) = g_{11} + \sigma^2 = 598.2 + 847.7 = 1445.9
The general formula of covariance between Y_{ij} and Y_{ik} is
cov(Y_{ij}, Y_{ik}) = g_{11} + (t_{ij} + t_{ik})g_{12} + t_{ij}t_{ik}g_{22}.
    1. If t_{ij} = 0 and t_{ik} = 0, cov(Y_{ij}, Y_{ik}) = q_{11} = 598.2.
    2. If t_{ij} = 0 and t_{ik} = 1, cov(Y_{ij}, Y_{ik}) = g_{11} + g_{12} = 598.2 + 0 = 598.2.
    3. If t_{ij} = 1 and t_{ik} = 0, cov(Y_{ij}, Y_{ik}) = g_{11} + g_{12} = 598.2 + 1.079496 * 10^{-5} = 598.2.
    4. If t_{ij} = 1 and t_{ik} = 1, cov(Y_{ij}, Y_{ik}) = g_{11} + 2g_{12} + g_{22} = 598.2 + 2 * 0 + 1.079496 * 10^{-5} = 598.2.
So we get var(Y_{ij}) = 1445.9 and cov(Y_{ij}, Y_{ik}) = 598.2 for any different j and k. Matrix Notation:
Suppose there are 14 observations within an individual, and for observations 1-7 t_{ij} = 0, and for observations
8-14 t_{ij} = 1. The covariance matrix is as follows:
B = \begin{bmatrix} g_{11} + 2t_{ij}g_{12} + t_{ij}^2g_{22} + \sigma^2 & g_{11} + 2g_{12} + g_{22} & \dots & g_{11} + 2g_{12} + g_{22} \\ g_{11} + 2g_{12} + g_{22} & g_{11} + 2t_{ij}g_{12} + t_{ij}^2g_{22} + \sigma^2 & & \vdots \\ \vdots & & \ddots & g_{11} + 2g_{12} + g_{22} \\ g_{11} + 2g_{12} + g_{22} & \dots & g_{11} + 2t_{ij}g_{12} + t_{ij}^2g_{22} + \sigma^2 \end{bmatrix}_{7 \times 7},
C = \begin{bmatrix} g_{11} + g_{12} & g_{11} + g_{12} & \dots & g_{11} + g_{12} \\ g_{11} + g_{12} & g_{11} + g_{12} & & \vdots \\ \vdots & & \ddots & g_{11} + g_{12} \\ g_{11} + g_{12} & \dots & g_{11} + g_{12} & g_{11} + g_{12} \end{bmatrix}_{7 \times 7}
```

$$var(Y_i) = \begin{bmatrix} A & C \\ C & B \end{bmatrix}_{14 \times 14} = \begin{bmatrix} 1445.9 & 598.2 & \dots & 598.2 \\ 598.2 & 1445.9 & & & \\ \vdots & & \ddots & \vdots \\ 598.2 & & \dots & 1445.9 \end{bmatrix}_{14 \times 14}$$

The random slope has small variance, so it captures little variation in the data. So this model does not do a much better job than a random intercept model. The covariance structure for this model is thus numerically a compound symmetry structure as in Question 2.

```
fixed.effects(lmm2)
                   genderM attitudepol
## (Intercept)
                             -20.00238
     256.98691
               -108.79762
fixed_effect = 256.98691 + -20.00238; fixed_effect
## [1] 236.9845
random.effects(lmm2)
      (Intercept)
                    attitudepol
## F1
      -13.575831 -8.408891e-07
## F2
        10.170522 1.499413e-07
## F3
         3.405308 -2.981919e-07
        27.960288 1.009764e-06
## M3
         4.739325 7.794162e-07
## M4
       -32.699612 -8.000404e-07
random_effect = -13.575831 + -8.408891 * 10^(-07); random_effect
## [1] -13.57583
BLUP = fixed_effect + random_effect; BLUP
```

[1] 223.4087

The fixed effect for intercept is 256.98691, and for attitude being polite is -20.00238; so the fixed effects in total is 236.9845. The random effect for intercept is -13.575831 and for attitude being polite is $-8.408891 \times 10^{-07}$; so the random effects in total is -13.57583. The BLUP is the summation of fixed effects and random effects, 223.4087.

5. ?

library(lme4)

```
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
## expand
##
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
## lmList
```

```
lmm3 = lmer(frequency ~ gender + attitude + (1 | subject) + (1 | scenario), data = polite_df)
summary(1mm3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: frequency ~ gender + attitude + (1 | subject) + (1 | scenario)
##
     Data: polite_df
##
## REML criterion at convergence: 784.1
## Scaled residuals:
           1Q Median
##
      Min
                               3Q
                                      Max
## -2.2690 -0.6331 -0.0878 0.5204 3.5326
##
## Random effects:
##
  Groups
                        Variance Std.Dev.
           Name
## scenario (Intercept) 224.5
## subject (Intercept) 613.2
                                 24.76
                        637.8
                                 25.25
## Residual
## Number of obs: 84, groups: scenario, 7; subject, 6
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 256.987 16.101 15.961
## genderM
             -108.798
                           20.956 -5.192
## attitudepol -20.002
                           5.511 -3.630
## Correlation of Fixed Effects:
##
              (Intr) gendrM
## genderM
              -0.651
## attitudepol -0.171 0.000
# Variance of Y_ij
224.5 + 613.2 + 637.8
## [1] 1475.5
\# Covariance of Y_ij and Y_ik with same scenario
224.5 + 613.2
## [1] 837.7
# Covariance of Y_ij and Y_ik with different scenarios
613.2
```

[1] 613.2

Denote variance of subject specific intercept as σ_1^2 , variance of scenario specific intercept as σ_2^2 , and variance of residuals as σ^2 . We have $\sigma_1^2 = 613.2$, $\sigma_2^2 = 224.5$, and $\sigma^2 = 637.8$.

 $A = \begin{bmatrix} \sigma_1^2 + \sigma_2^2 + \sigma^2 & \sigma_1^2 + \sigma_2^2 \\ \sigma_1^2 + \sigma_2^2 & \sigma_1^2 + \sigma_2^2 + \sigma^2 \end{bmatrix} = \begin{bmatrix} 1475.5 & 837.7 \\ 837.7 & 1475.5 \end{bmatrix} \text{ is the variance-covariance matrix of 2 observations with the same scenario within an individual.}$

 $B = \begin{bmatrix} \sigma_1^2 & \sigma_1^2 \\ \sigma_1^2 & \sigma_1^2 \end{bmatrix} = \begin{bmatrix} 613.2 & 613.2 \\ 613.2 & 613.2 \end{bmatrix} \text{ is the covariance matrix of observations with different scenarios within an individual.}$

We get
$$var(Y_i) = \begin{bmatrix} A & B & \dots & B \\ B & A & & \vdots \\ \vdots & & \ddots & B \\ B & \dots & B & A \end{bmatrix}_{14 \times 14}$$

Interpretation:

The mean pitch will on avarage be 20.002 units lower for polite attitude than informal attitude over all observations, within the same gender.