Lecture 13: Logistic Regression

STAT GR5206 Statistical Computing & Introduction to Data Science

Linxi Liu Columbia University

December 7, 2018

Lecture Notes

Topics:

- Supervised vs. Unsupervised Learning
- Supervised Learning
- Simple Logistic Regression (Parametric Model)

Section I

Supervised & Unsupervised Learning

Supervised vs. Unsupervised Learning

Supervised Learning

- Have access to a set of p predictors $X_1, X_2, ..., X_p$ and a response Y both measured on the same p observations.
- The goal is to predict Y using $X_1, X_2, ..., X_p$ (usually by learning β parameters of a model).

Unsupervised Learning

- Only have access to a set of p predictors $X_1, X_2, ..., X_p$ measured on n observations.
- We are not interested in prediction, because we do not have an associated response variable *Y*.
- The goal is to discover interesting patterns about the measurements on the predictors $X_1, X_2, ..., X_p$.

Supervised vs. Unsupervised Learning

The questions fall into two categories: **supervised learning** and *unsupervised learning*.

Supervised learning:

- Predicting an output
- Understanding the relationship between an input and an output

Unsupervised learning:

- Summarizing the data
- Understanding underlying (hidden) factors

Note: Principle Component Analysis (PCA) is unsupervised learning.

Section II

Supervised Learning

Supervised Learning: Regression and Classification

Regression:

Y has continuous values

$$X = (X_1, X_2, \dots, X_p)$$
 inputs
 Y output
 $Y = f(X) + \epsilon$ relationship
 $Y = E[Y|X = x] + \epsilon$

Classification:

• Y has categorical values

$$X = (X_1, X_2, \dots, X_p)$$
 inputs
 Y output
 $p_k = P(Y = y_k | X = x)$ relationship

Prediction and Inference

Why estimate f and p?

- Prediction
- Inference

Prediction:

- We have a new product with a set advertising budget (TV, radio and newspaper). What will its sales be?
- Alice has 16 years of education and 0 years of seniority. What will her income be?

Goal:

Accurately estimate output for new inputs.

Inference

Inference

We want to learn about relationships between inputs and outputs:

- How will increasing one input affect the output?
- Is a specific combination of inputs associated with an increase in the output?

Inference vs. Prediction

- Can you think of some inference questions?
- Prediction questions?
- What is the difference between the two?

Fitting f and p

How do I find \hat{f} and \hat{p} using $(x_1, y_1), \ldots, (x_n, y_n)$?

- 1. select a statistical model
- 2. select the model parameters using the data

What types of statistical models are there?

• Parametric: described by a finite number of parameters, say

$$\beta_1, \beta_2, \ldots, \beta_d$$

Non-parametric: not described by a finite number of parameters

Parametric Models

Parametric Models

A **parametric model** is a statistical model described by a finite number of parameters. Examples include:

- a Gaussian distribution $(N(\mu, \sigma^2))$
- a Bernoulli distribution (Bern(p))
- a linear model

$$Y = \beta_0 + \beta_1 X_d + \cdots + \beta_d X_d + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

a logistic model (this will be discussed today)

Parameters

- What are the parameters of the Gaussian?
- What are the parameters of a linear model?
- What are the parameters of a logistic model?

Parametric Regression Model

income $pprox eta_0 + eta_1 imes ext{years of education} + eta_2 imes ext{seniority}$

Is this model good for prediction? What can it tell us for inference?

Nonparametric Models

Nonparametric Models:

- Nonparametric models are not described by a finite number of parameters.
- So, what does that mean?
- Nonparametric models assume less about the population.
- In the model

$$Y = f(X) + \epsilon$$
,

we let the data decide what the function f looks like.

Nonparametric Model

 $income \approx f(years of education, seniority)$

Is this model good for prediction? What can it tell us for inference?

Problem Types (Generally)

	Continuous	Categorical
Supervised	Regression	Classification
	Parametric	Parametric
	Linear reg,	Logistic,
	Nonparametric	Nonparametric
	kNN,	kNN,
Unsupervised	Dimension Reduction	Clustering
	PCA,	k-means,

Parametric Classification Logistic Regression

Logistic Regression

Question:

How do we define a simple (one covariate) regression model that allows for a categorical (binary) response variable?

- To answer this question, first recall the Bernoulli random variable.
- Any rv whose possible values are 0 and 1 is called a Bernoulli random variable.
- Also recall that the **expected value** (or true mean) of a Bernoulli random variable is its success probability. That is, if $Y \sim Bern(p)$, then

$$E[Y] = p$$

Answer:

Regress a sigmoidal function p = f(x) on covariate x.

• A sigmoidal function has an s shape and is bounded between 0 and 1 (0 < f(x) < 1).

Simple Logistic Regression

The Simple Logistic Regression Model

Let Y_1, Y_2, \ldots, Y_n be independently distributed Bernoulli random variables with respective success probabilities p_1, p_2, \ldots, p_n . Then the **logistic** regression model is:

$$E[Y_i] = p_i = F_L(\beta_0 + \beta_1 x_i) = \frac{e^{(\beta_0 + \beta_1 x_i)}}{1 + e^{(\beta_0 + \beta_1 x_i)}}, \quad i = 1, 2, \dots, n.$$

The Estimated Simple Logistic Model

$$\hat{p}_{i} = \frac{e^{(\hat{\beta}_{0} + \hat{\beta}_{1} \times_{i})}}{1 + e^{(\hat{\beta}_{0} + \hat{\beta}_{1} \times_{i})}}, \quad i = 1, 2, \dots, n.$$

- The quantities $\hat{\beta}_0$ and $\hat{\beta}_1$ are the estimated intercept and slope.
- Maximum likelihood estimation is used to estimate the logistic model parameters β_0 and β_1 .

Maximum Likelihood

- Usually we think of parameters, θ , as fixed and consider the probability of different outcomes $f(x, \theta)$ with θ constant and x changing.
- **Likelihood** of a parameter value is given by $L(\theta)$: what probability does θ give the data?
 - For continuous variables, use the probability density.
 - Calculate $f(x, \theta)$ letting θ change with data constant.
 - *Not* the probability of θ .
- Maximum likelihood is the guess that the parameter is whatever makes the data most likely.
- Most likely parameter value is the maximum likelihood estimate or the MLE.

Coding the Likelihood Function

• With independent data points x_1, x_2, \ldots, x_n the likelihood is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta).$$

Multiplying lots of small numbering is bad, so we usually take the log:

$$\ell(\theta) = \sum_{i=1}^{n} \log f(x_i, \theta).$$

 Note the maximizer is the same for both (though the maximum value will be different).

Maximum Likelihood Logistic

Recall the Bernoulli pmf

$$f(x|p) = P(X = x) = p^{x}(1-p)^{1-x}$$

Joint pmf

$$f(x_1, x_2, ..., x_n | p_1, p_2, ..., p_n) = \prod_{i=1}^n p_i^{x_i} (1 - p_i)^{1-x_i}$$

The objective function is:

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n Y_i(\beta_0 + \beta_1 x_i) - \sum_{i=1}^n \log(1 + \exp(\beta_0 + \beta_1 x_i)).$$

Log-odds and the Logit Link

Odds

$$\frac{p_i}{1-p_i}=e^{\beta_0+\beta_1x_i}, \quad i=1,2,\ldots,n.$$

• The equation above relates the *odds* of event $\{Y = 1\}$ occurring to a deterministic *exponential function*.

Logit-Link and Log-Odds

$$F_L^{-1}(p_i) = \log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_i, \quad i = 1, 2, ..., n.$$

• The link function "links" the mean (E[Y] = p) to a linear function.

Example

Esophageal cancer is a serious and very aggressive disease. Scientists conducted a study of 31 patients with esophageal cancer in which they studied the relationship between the size of the tumor that a patient had and whether or not the cancer had spread (metastasized) to the lymph nodes of the patient. In this study the response variable is dichotomous: Y=1 if the cancer had spread to the lymph nodes and Y=0 if not. The predictor variable is the size (recorded as the maximum dimension, in cm) of the tumor found in the esophagus.

```
> cancer <- read.table("logistic.txt")</pre>
```

Data Table

Patient	Tumor	Lymph node
number	Size (cm), X	metastasis, Y
1	6.5	1
2	6.3	0
3	3.8	1
4	7.5	1
5	4.5	1
6	3.5	1
7	4.0	0
8	3.7	0
9	6.3	1
10	4.2	1
:	:	:
30	3	1
31	1.7	0

Raw Data & Estimated Logistic Model

Estimating the Logistic Model - Gradient Descent

Process

• Define log-likelihood by:

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n Y_i(\beta_0 + \beta_1 x_i) - \sum_{i=1}^n \log(1 + \exp(\beta_0 + \beta_1 x_i)).$$

Define negative-log-likelihood in R.

$$-\ell(\beta_0,\beta_1)$$

- Use dbinom() to set this up. Look up the argument prob. No need to define the neg-log-likelihood using the long expression from above.
- Use Newton's Method (Gradient Descent).
- Also try nlm().

Maximum Likelihood Logistic

Set up the neg-log-likelihood in R

```
> logistic.NLL <- function(beta,data=cancer) {</pre>
+
   beta_0 <- beta[1]
+
  beta_1 <- beta[2]
+ y <- data$y
+ x <- data$x
+ linear.component <- beta_0 + beta_1*x
   p.i <- exp(linear.component)/(1+exp(linear.component))</pre>
+
    return(-sum(dbinom(y,size=1,prob=p.i,log=TRUE)))
+
+ }
 logistic.NLL(beta=c(-1,.5),data=cancer)
```

[1] 21.72804

nlm()

```
> nlm(logistic.NLL,p=c(-1,.5),data=cancer)
$minimum
[1] 18.50095
$estimate
[1] -2.0857732 0.5116513
$gradient
[1] 3.936344e-06 1.677591e-05
$code
[1] 1
$iterations
```

Γ1 15

Interpretation of the slope parameter β_1

Consider a 1 unit increase in the covariate:

• The odds of event $\{Y=1\}$ occurring when the covariate is fixed at x is

$$odds_1 = \frac{p_1}{1 - p_1} = e^{\beta_0 + \beta_1(x)}$$

• The odds of event $\{Y = 1\}$ occurring when the covariate is fixed at x + 1 is

$$odds_2 = \frac{p_2}{1 - p_2} = e^{\beta_0 + \beta_1(x+1)}$$

Thus

$$\text{``odds ratio''} = \Theta = \frac{\textit{odds}_2}{\textit{odds}_1} = \frac{e^{\beta_0 + \beta_1(x+1)}}{e^{\beta_0 + \beta_1 x}} = e^{\beta_1}$$

• Equivalently $odds_2 = e^{\beta_1} \cdot (odds_1)$

"The odds of event $\{Y=1\}$ occurring are multiplied by $e^{\hat{\beta}_1}$ for every 1 unit increase in x."

Estimation in R

glm function in R

```
> cancer <- read.table("logistic.txt")</pre>
> model <- glm(y~x,data=cancer,family=binomial(link="logit")</pre>
> model
Call: glm(formula = y ~ x, family = binomial(link = "logit")
Coefficients:
(Intercept)
   -2.0858 0.5117
Degrees of Freedom: 30 Total (i.e. Null); 29 Residual
Null Deviance:
                       42.17
Residual Deviance: 37 AIC: 41
```

Estimation in R

Summary

Call:

```
> summary(model)
```

glm(formula = y ~ x, family = binomial(link = "logit"), data

```
Deviance Residuals:
```

```
Min 1Q Median 3Q Max -2.0657 -1.1288 0.5657 0.9844 1.4185
```

Coefficients:

Signif. codes:

The predict() function in R

The predict function always predicts the "linear" component

$$\hat{\beta}_0 + \hat{\beta}_1 x$$

R code

```
> x.test <- data.frame(x=7)</pre>
```

- > linear.pred <- predict(model,newdata = x.test)</pre>
- > linear.pred

1.495793

> exp(linear.pred)/(1+exp(linear.pred))

0.8169462