Knowledge Representation & Modeling

Hai Wan

School of Data and Computer Science
SUN YAT-SEN UNIVERSITY

Knowledge Representation

Knowledge representation is a description of knowledge, or a set of conventions for knowledge, a data structure acceptable to computers for describing knowledge.

- The importance of knowledge representation
 - computer gets & uses knowledge
 - require the knowledge model that computer can handle
 - List、Table、Tree、Map、Set、etc.

Knowledge Representation

- Knowledge Carrier
 - language character picture
 - □ video \ voice \ model

- Early knowledge representation
 - First-Order Logic \ Production Rule
 - Framework Semantic Network etc.

First-Order Logic

- Horn Logic
 - Atom

$$p(t_1, t_2, ..., t_n)$$

- has_child(A, B) => A has_child B
- Rules

$$H:-B_1,B_2,...,B_n$$

- H, Bi are all atoms
- H: head atom A: body atom
- H can be obtained by B_1, B_2, \dots, B_n
- for example: has_child(A, B) :- has_son(A,B)

First-Order Logic

- Description Logic
 - concept
 - describe a field
 - student、teacher、professor、human、flower、etc.

```
\{x \mid Student(x)\}
```

- relationship
 - binary relation in the field
 - x and y are friends

```
\{\langle x, y \rangle | Friend(x, y)\}
```

- individual
 - a entity in a field

First-Order Logic

- Description Logic
 - TBOX & ABOX
 - TBOX
 - the name of concepts and relationships
 - Student Teacher has student has teacher
 - declaration axioms inclusive relations
 - has_student(A, B) => has_teacher(B, A)
 - ABOX
 - concept assertion
 - Student(Tom)
 - Teacher(Jack)
 - relationship assertion
 - has_student(Jack, Tom)

Knowledge Representation Framework based on Semantic Network

RDF: Resource Description Framework

- A triple model
 - (subject, predicate, object)

- A graph model
- Resources and properties are identified by URIs
 - http://www.demo.com/people#3214
- Value of properties can be URI resources or literals
 - literal value can be typed with XML datatype
 - ^xsd:string
 - ^xsd:integer

RDF

Blank Nodes

- a resource without URI to identificate
- use _:x \ _:a to identificate

Serialization methods

RDF/XML、N-Triples、Turtle、RDFa、JSON-LD、etc.

RDFS: RDF Schema

similar to the design of table and field in database

Class, subClassOf, type, Property, subPropertyOf, Domain, Range, etc.

RDFS: RDF Schema

In RDFS, we can do some reasoning

OWL: Web Ontology Language

- Defect of RDF(S)
 - rdfs:range is global, cannot define special range for some class
 - cannot define equivalence or inequivalence of classes properties individuals
 - cannot define disjoint of classes
 - cannot define the range constraint for property value
 - A person has and has only one ID number.
- OWL extends RDF(S)
 - OWL Lite
 - OWL DL
 - OWL Full

OWL

- Equivalence
 - □ exp:广州 owl:sameIndividualAs exp:羊城
 - □ ep:广州 owl:sameIndividualAs exp:羊城
- Transitive
 - exp:contain rdf:type owl:TransitiveProperty
 - if (A contain B) & (B contain C) => (A contain C)
- Inverse
 - exp:contain owl:inverseOf exp:belongTo
- Symmetric
 - exp:friend rdf:type owl:SymmetricProperty
- functional、allValuesFrom、someValuesFrom、 cardinality、intersection、etc.card

OWL2 (new version)

- OWL2 subclass:
 - OWL2 RL
 - OWL2 QL
 - more for individual
 - design for ontology query
 - □ OWL2 EL
 - more for concept

SPARQL

The query language for RDF

we want to know the student's name email address, who studies CS909

Protege

Stanford 本体编辑工具

https://protege.stanford.edu/

参考资料: http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf