线性代数 (理工)

常寅山

第四章 向量空间

- 1 向量空间
 - 欧几里得向量空间
 - 线性表出
 - 向量空间
- 2 子空间
- ③ 向量的线性相关性
- 4 向量组的极大线性无关组和秩
- 5 基和维数

平面上的向量全体:

$$\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$$

对向量
$$\alpha = (x_1, y_1), \beta = (x_2, y_2),$$
 有加法

$$\alpha + \beta = (x_1 + x_2, y_1 + y_2),$$

数乘 $k\alpha = (kx_1, ky_1)$.

三维欧氏空间:

$$\mathbb{R}^3 = \{(x, y, z) | x, y, z \in \mathbb{R}\}$$

对向量
$$\alpha = (x_1, y_1, z_1), \beta = (x_2, y_2, z_2),$$
有加法

$$\alpha + \beta = (x_1 + x_2, y_1 + y_2, z_1 + z_2),$$

数乘 $k\alpha = (kx_1, ky_1, kz_1)$.

定义 1 (n 维向量)

n 元有序数组 $\alpha = (a_1, a_2, \cdots, a_n)$ 称为 n 维行向量; 若写为

$$\alpha = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
, 则称为 n 维列向量. 称数 a_i 为 α 的第 i 个分量.

n 维行向量和 n 维列向量都称为 n 维向量.

两个 n 维向量 $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n),$ 数 k,

- 向量相等: $\alpha = \beta$ 当且仅当 $a_i = b_i (i = 1, 2, \dots, n)$.
- 加法: $\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n).$
- 数乘: $k\alpha = (ka_1, ka_2, \cdots, ka_n)$.
- 加法和数乘统称线性运算.

向量线性运算的性质

- **①** 加法交换律: $\alpha + \beta = \beta + \alpha$.
- ② 加法结合律: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- **③** 加法零元 0: $\alpha + 0 = \alpha$.
- ① 加法负元: $\alpha + (-\alpha) = 0$.
- **⑤** 数乘单位元 1: $1\alpha = \alpha$.
- **③** 数乘的结合律: $k(\ell\alpha) = (k\ell)\alpha$.
- 对向量加法的分配律: $k(\alpha + \beta) = k\alpha + k\beta$.
- **◎** 对数的加法的分配律: $(k+\ell)\alpha = k\alpha + \ell\alpha$.

定义 2 (n 维向量空间)

全体 n 维实行向量构成的集合 $\mathbb{R}^{1\times n}$, 对向量的加法, 实数与向量的数乘运算, 构成 n 维实行向量空间.

类似的,全体 n 维实列向量构成的集合 $\mathbb{R}^{n\times 1}$,对向量的加法,实数与向量的数乘运算,构成 n 维实列向量空间.

用 \mathbb{R}^n 表示 $\mathbb{R}^{1\times n}$ 或 $\mathbb{R}^{n\times 1}$, 称为 n 维实向量空间.

例 1 (P85 例 4.1.1)

已知
$$\alpha_1 = (1, -1, 2), \ \alpha_2 = (1, 2, 0), \ \alpha_3 = (1, 0, -3),$$
 $\alpha = \alpha_1 - 2\alpha_2 + 12\alpha_3$. 则 $\alpha = (11, -5, -34)$.

定义3

给定 \mathbb{R}^n 中的向量 $\alpha_1, \alpha_2, \dots, \alpha_p$, 实数 k_1, k_2, \dots, k_p , 经线性运算

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_p\alpha_p = \sum_{i=1}^p k_i\alpha_i = \beta$$

得到的向量 β 称为向量组 $\alpha_1, \alpha_2, \dots, \alpha_p$ 的一个线性组合,称 β 可以由 $\alpha_1, \alpha_2, \dots, \alpha_p$ 线性表出.

例 2 (P85 例 4.1.2)

 $\sqrt{3}\alpha_1 + \alpha_2$, $\frac{1}{2}\alpha_1 = \frac{1}{2}\alpha_1 + 0\alpha_2$, $0 = 0\alpha_1 + 0\alpha_2$ 均为 α_1 , α_2 的 线性组合.

例 3 (P85 例 4.1.3)

 \mathbb{R}^n 中零向量可以由任意向量组 $\alpha_1, \alpha_2, \dots, \alpha_p$ 线性表出.

$$0 = 0\alpha_1 + 0\alpha_2 + \dots + 0\alpha_p.$$

例 4 (P85 例 4.1.4)

任意 n 维向量 $\alpha = (a_1, a_2, \dots, a_n)$ 均为向量组 $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ 的线性组合:

$$\alpha = a_1 e_1 + a_2 e_2 + \dots + a_n e_n.$$

线性表出与线性方程组的解

例 5

线性方程组:
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn} = b_m, \end{cases}$$

若将每个未知量 x_i 的系数记为 α_i , 常数项列记为 β , 即

$$\alpha_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, j = 1, 2, \cdots, n, \quad \beta = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix},$$

则线性方程组可表示为 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \beta$. 方程组有解当且仅当 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出.

线性表出与线性方程组的解

例 6 (P85 例 4.1.5)

已知
$$\alpha_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, $\beta = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. 则 β 能否写成 α_1 与 α_2 的线性组合?

解

问题等价于方程 $x_1\alpha_1 + x_2\alpha_2 = \beta$ 是否有解, 即

$$\begin{cases} x_1 +2x_2 = 7 \\ -2x_1 +5x_2 = 4 \\ -5x_1 +6x_3 = -3 \end{cases}$$

解方程得 $x_1 = 3$, $x_2 = 2$. 故 $\beta = 3\alpha_1 + 2\alpha_2$.

注 1

一般的, 判断 β 是否可由 $\alpha_1, \dots, \alpha_p$ 线性表出, 即判断方程

$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_p\alpha_p = \beta$$

是否有解.

当 $\alpha_1, \dots, \alpha_p$ 为列向量时, 方程对应的增广矩阵为 $[\alpha_1, \alpha_2, \dots, \alpha_p, \beta]$.

定义 4 (向量空间)

令 V 为一定义了加法和数乘运算的集合, 即:

- i) 任意 $x, y \in V$, 存在唯一 $x + y \in V$;
- ii) 任意 $x \in V$ 与数 k, 存在唯一 $ka \in V$.

如果 V 及其上的加法及数乘运算满足如下八条公理,则称其为向量空间.

- **①** 加法交换律: $\alpha + \beta = \beta + \alpha$.
- ② 加法结合律: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- **③** 存在加法零元 0: $\alpha + 0 = \alpha$.
- 对任意 $\alpha \in V$, 存在加法负元 $-\alpha$ 满足: $\alpha + (-\alpha) = 0$.

定义4(向量空间)续

- **⑤** 数乘单位元 1: $1\alpha = \alpha$.
- **⑤** 数乘的结合律: $k(\ell\alpha) = (k\ell)\alpha$.
- 对向量加法的分配律: $k(\alpha + \beta) = k\alpha + k\beta$.
- **③** 对数的加法的分配律: $(k+\ell)\alpha = k\alpha + \ell\alpha$.

注 2

此定义包含了向量空间对加法和数乘运算的封闭性.

例 7

- $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$, 在其上按照通常的方法定义向量的加法和数乘运算, 构成向量空间;
- $W' = \{(x, y, 1) : x, y \in \mathbb{R}\}$, 在其上按照通常的方法定义向量的加法和数乘运算, 不构成向量空间.

例 8

考虑所有 $m \times n$ 矩阵的集合 $M_{m \times n}$, 在其上定义的矩阵加法, 实数与矩阵的数乘, 构成向量空间.

例 9

考虑所有的多项式构成的集合 P.

- $\forall p(x), q(x) \in P, \; \exists \chi \; (p+q)(x) = p(x) + q(x);$
- $\forall p(x) \in P, k \in \mathbb{R}, \not \equiv \not \subseteq (kp)(x) = kp(x).$

则我们得到一个向量空间.

例 10

考虑闭区间 [0,1] 上的所有连续函数构成的集合 C[0,1],

- 对两个函数 $f, g \in C[0, 1]$, 定义 (f + g)(x) = f(x) + g(x),
- $\forall f \in C[0,1], k \in \mathbb{R}, \not \equiv \not \subseteq (kf)(x) = kf(x).$

则我们得到一个向量空间.

第四章 向量空间

- 1 向量空间
- 2 子空间
 - 子空间
 - 向量集合张成的子空间
 - 值域空间
 - 零空间
- ③ 向量的线性相关性
- 向量组的极大线性无关组和秩
- 5 基和维数

例 11

考察 \mathbb{R}^3 中过原点的平面 P, 以及向量加法和数乘运算, 则仍构成一个向量空间. 另一方面, 它是向量空间 \mathbb{R}^3 的一部分, 故可称其为 \mathbb{R}^3 的子空间.

问题

哪些性质保证向量空间 V 的子集 H 仍然构成向量空间?

定义 5 (子空间)

向量空间 V 的一个非空子集 H 如果满足:

- i) 对任意 $\alpha, \beta \in H$, 则 $\alpha + \beta \in H$,
- ii) 对任意数 k, 任意向量 $\alpha \in H$, 有 $k\alpha \in H$.

则称 $H \in V$ 的一个子空间.

注 3 (理解"子空间":)

- 抽象: H是 V的子集, 它对 V中加法与数乘封闭, 且仍 然满足向量空间的 8 条公理, 是向量空间.
- 几何直观: 平面上过原点的直线, 空间中过原点的平面, 空间中过原点的直线.

注 4

- (1) 设 $H \in \mathbb{R}^n$ 的一个子空间, 则 $0 \in H$.
- (2) {零向量} (称为零子空间) 和全空间 \mathbb{R}^n 都是 \mathbb{R}^n 的子空间, 称为 \mathbb{R}^n 的平凡子空间.

例 12 (P94 例 4.4.2)

在欧氏空间中, 过原点的直线为子空间; 不过原点的直线不 是子空间.

例 13 (P94 例 4.4.3)

在欧氏空间 №3 中,设

$$W_1 = \{(x, y, 0)^T | x, y \in \mathbb{R}\},\$$

$$W_2 = \{(x, 0, z)^T | x, z \in \mathbb{R}\},\$$

$$W_3 = \{(0, y, z)^T | y, z \in \mathbb{R}\}.$$

即 W_1 是 XY 平面, W_2 是 XZ 平面, W_3 是 YZ 平面, 他们均为 \mathbb{R}^3 的子空间.

例 14 (P93 例 4.4.1)

若 $\alpha_1, \alpha_2 \in \mathbb{R}^n$, 则 $H = \{k_1\alpha_1 + k_2\alpha_2 | k_1, k_2 \in \mathbb{R}\}$ 是 \mathbb{R}^n 的子 空间.

证明 H 对加法和数乘封闭即可.

证明.

• $\mathfrak{L}\mathfrak{P} = s_1\alpha_1 + s_2\alpha_2, \ \gamma = t_1\alpha_1 + t_2\alpha_2, \ \mathfrak{P}$

$$\beta + \gamma = (s_1 + t_1)\alpha_1 + (s_2 + t_2)\alpha_2 \in H.$$

• $\mathfrak{L}\mathfrak{P} = s_1\alpha_1 + s_2\alpha_2, k \in \mathbb{R},$

$$k\beta = (ks_1)\alpha_1 + (ks_2)\alpha_2 \in H.$$

故 $H \neq \mathbb{R}^n$ 的子空间.

向量集合张成的子空间

命题 1

给定向量空间 V,则 $\alpha_1,\ldots,\alpha_p\in V$ 的所有可能的线性组合构成的集合

$$\operatorname{span}\{\alpha_1, \cdots, \alpha_p\} = \{k_1\alpha_1 + \cdots + k_p\alpha_p | k_1, k_2, \cdots, k_p \in \mathbb{R}\}$$
是 V 的子空间.

证明 $span\{\alpha_1, \dots, \alpha_p\}$ 对加法和数乘封闭即可.

证明.

- 任取 $\beta = k_1\alpha_1 + \dots + k_p\alpha_p, \ \gamma = s_1\alpha_1 + \dots + s_p\alpha_p, \ \bigcup$ $\beta + \gamma = (k_1 + s_1)\alpha_1 + \dots + (k_p + s_p)\alpha_p \in \operatorname{span}\{\alpha_1, \dots, \alpha_p\}$
- 任取 $\beta = k_1 \alpha_1 + \dots + k_p \alpha_p, \lambda \in \mathbb{R},$ 则 $\lambda \beta = (\lambda k_1) \alpha_1 + \dots + (\lambda k_p) \alpha_p \in \text{span}\{\alpha_1, \dots, \alpha_p\}.$

故 span $\{\alpha_1, \dots, \alpha_p\}$ 为 V 的子空间.

向量集合张成的子空间

定义 6

给定向量空间 V, 则 $\alpha_1, \ldots, \alpha_p \in V$ 的所有可能的线性组合构成的集合

$$\operatorname{span}\{\alpha_1,\cdots,\alpha_p\}=\{k_1\alpha_1+\cdots+k_p\alpha_p|k_1,k_2,\cdots,k_p\in\mathbb{R}\}$$

称为由 $\alpha_1, \alpha_2 \dots, \alpha_p$ 生成 (或张成) 的子空间, 称 $\{\alpha_1, \alpha_2 \dots, \alpha_p\}$ 为该子空间的一个生成集 (或张集).

几何上看, 若 $\alpha \in \mathbb{R}^n$ 为非零向量, 则 span $\{\alpha\}$ 为向量 α 确定的直线; 若两个非零向量 $\alpha, \beta \in \mathbb{R}^n$ 不共线, 则 span $\{\alpha, \beta\}$ 为 α 和 β 确定的平面,

向量集合张成的子空间

例 15

下列哪些向量组可以张成 №3?

1) $\{e_1, e_2, e_3\},\$

是是

2) $\{e_1, e_2, e_3, (1, 2, 3)^T\},$ 3) $\{(1, 1, 1)^T, (1, 1, 0)^T, (1, 0, 0)^T\},$

是

4) $\{(1,0,1)^T, (0,1,0)^T\},\$

否

5) $\{(1,2,4)^T, (2,1,3)^T, (4,-1,1)^T\}.$

否

$$span\{(1,0,1)^T, (0,1,0)^T\} = \{(a,b,a)|a,b \in \mathbb{R}\}
span\{(1,2,4)^T, (2,1,3)^T, (4,-1,1)^T\}
= \{(a,b,c)|3c-5b-2a=0\} \subset \mathbb{R}^3.$$

值域空间

定义7

设 A 为 $m \times n$ 矩阵, 记 $A = [\alpha_1, \alpha_2, \dots, \alpha_n]$. A 的列向量张成的空间

$$Col A = span\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$$
$$= \{Ax | x \in \mathbb{R}^n\}$$

称为 A 的列空间或值域空间

注 5

 $A_{m \times n}$ 的值域空间是 \mathbb{R}^m 的子空间.

值域空间

例 16 (P94 例 4.4.4)

设
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$$
. 判断 b 是否属于 $ColA$.

分析: 即判断是否存在 x 使得 Ax = b.

解

 $b \in \text{Col}A$ 当且仅当方程 Ax = b 有解. 对增广矩阵 [A, b] 作初等行变化得:

$$\begin{bmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

方程组相容, 故有解.

故 $b \in ColA$.

零空间

定义 8 (零空间)

设 A 为 $m \times n$ 矩阵, 则齐次线性方程组 Ax = 0 的所有解构成的集合 $NulA = \{x \in \mathbb{R}^n | Ax = 0\}$

称为 A 的零空间

零空间

注 6

NulA 是 \mathbb{R}^n 的子空间.

证明.

- 任取 $\alpha, \beta \in \text{Nul}A$, 则 $A(\alpha + \beta) = A\alpha + A\beta = 0$, 即 $\alpha + \beta \in \text{Nul}A$.
- 任取 $\alpha \in \text{Nul}A$, $k \in \mathbb{R}$, 则 $A(k\alpha) = kA\alpha = 0$, 即 $k\alpha \in \text{Nul}A$.

故 NulA 为 \mathbb{R}^n 的子空间.

零空间

例 17 (P95 例 4.4.5)

令
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & 7 \\ 1 & -2 & 2 & 3 & 1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$
, 求 Nul A 的一个生成集.

解

求解 Ax = 0. 对 A 进行初等行变换化为行最简形式:

水解
$$Ax = 0$$
. 対 A 进行初等行受换
$$A \to \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$
即
$$\begin{cases} x_1 - 2x_2 & -x_4 + 3x_5 & = 0 \\ x_3 + 2x_4 - 2x_5 & = 0 \end{cases}$$
通解为
$$\begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_3 = -2x_4 + 2x_5 \end{cases}$$

解续

也可写为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

记
$$\alpha = (2, 1, 0, 0, 0)^T$$
, $\beta = (1, 0, -2, 1, 0)^T$, $\gamma = (-3, 0, 2, 0, 1)^T$, 则 $\{\alpha, \beta, \gamma\}$ 为 NulA 的一个生成集.

第四章 向量空间

- 1 向量空间
- 2 子空间
- ③ 向量的线性相关性
 - 定义
 - 性质
- 向量组的极大线性无关组和秩
- 5 基和维数

线性相关性

引例

设 $S = \{\alpha_1, \alpha_2, \alpha_3\} \subset \mathbb{R}^3$,

$$\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

則 $\operatorname{span}\{\alpha_1, \alpha_2, \alpha_3\} = \operatorname{span}\{\alpha_1, \alpha_2\} = \{(x, y, 0)^T | x, y \in \mathbb{R}\}$

问题

考虑向量组张成的子空间,如何找子空间最简单的生成集?或者如何判断生成集元素是最少的?

线性相关性

问题

考虑向量组张成的子空间,如何找子空间最简单的生成集? 或者如何判断生成集元素是最少的?

- 如果某个向量可以由其他向量线性表出,则可以将它剔除.
- 给定 k 个向量 $\alpha_1, \dots, \alpha_k$,可以将其中一个向量表示为 其余 k-1 个向量的线性组合的充要条件为存在不全 为零的常数 c_1, c_2, \dots, c_k 使得

$$c_1\alpha_1 + \dots + c_k\alpha_k = 0$$

定义 9 (线性相关性)

已知 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 为 \mathbb{R}^n 中的一组向量,

- 如果方程 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_p\alpha_p = 0$ 仅有零解, 则称 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 线性无关;
- 如果存在不全为零的常数 k_1, k_2, \dots, k_p , 使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_p\alpha_p = 0$ 则称 $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ 线性相关.

注7

- 给定向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$, 它要么线性相关,要么线性无关.
- 向量组的线性相关性,与向量组的排列顺序无关.

例 18 (P86 例 4.2.1)

 \mathbb{R}^n 中的基本向量组 $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ 线性无关.

证明.

设
$$k_1e_1 + k_2e_2 + \dots + k_ne_n = 0$$
, 即 $[k_1, k_2, \dots, k_n]$ $\begin{vmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{vmatrix} = 0$.

即
$$[k_1, k_2, \dots, k_n]E = 0$$
,
故 $[k_1, k_2, \dots, k_n] = 0$.
向量组 e_1, e_2, \dots, e_n 线性无关.

例 19 (P87 例 4.2.2)

包含零向量的向量组线性相关.

证明.

设向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$, 且 $\alpha_i = 0$. 则取 k_1, k_2, \dots, k_n 使得 $k_i = 1, k_j = 0, j \neq i$. 则

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0.$$

向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关.

例 20 (P87 例 4.2.3)

已知
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- (1) 判断 $\alpha_1,\alpha_2,\alpha_3$ 的线性相关性;
- (2) 若线性相关, 求 $\alpha_1,\alpha_2,\alpha_3$ 之间的一个非平凡线性关系.

考虑方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = 0$ 是否有零解, 即:

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0.$$

解

考虑方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = 0$. 将系数矩阵 $[\alpha_1, \alpha_2, \alpha_3]$ 作初等行变换, 化为行最简形式

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

故方程有非零解, 即 $\alpha_1,\alpha_2,\alpha_3$ 的线性相关. 方程组等价于 $\begin{cases} x_1 & -2x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$ 其一个非零解为 (2,-1,1), 故 $2\alpha_1 - \alpha_2 + \alpha_3 = 0$.

例 21 (P88 例 4.2.4)

判断
$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 的列线性相关性与行的线性相关性.

列的线性相关性: $A = [\alpha_1, \alpha_2, \alpha_3]$, 需考虑 AX = 0 是否有 非零解.

行的线性相关性: $A=\left|egin{array}{c} eta_1 \\ eta_2 \\ eta_3 \end{array}\right|,\, x_1\beta_1+x_2\beta_2+x_3\beta_3=0$ 当且仅

当 $[x_1, x_2, x_3]A = 0$. 我们考虑 XA = 0 是否有零解.

注 8

方阵 A 的列线性无关 \Leftrightarrow det $A \neq 0 \Leftrightarrow A$ 的行线性无关.

例 22 (P88 例 4.2.5)

行阶梯形矩阵的非零行构成一个线性无关的行向量集合. 如

$$\begin{bmatrix} 1 & -2 & 3 & 4 & -6 \\ 0 & 2 & 0 & 6 & 1 \\ 0 & 0 & 5 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

例 23 (P88 例 4.2.6)

已知 α_1 , α_2 , α_3 为 \mathbb{R}^n 中三个线性无关的向量. 若

$$\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_1,$$

证明 β_1 , β_2 , β_3 线性无关.

思路: 证明方程 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = 0$ 只有零解.

证明.

考虑方程 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = 0$, 则 $x_1(\alpha_1 + \alpha_2) + x_2(\alpha_2 + \alpha_3) + x_3(\alpha_3 + \alpha_1) = 0$, 整理得, $(x_1 + x_3)\alpha_1 + (x_1 + x_2)\alpha_2 + (x_2 + x_3)\alpha_3 = 0$. 因 α_1 , α_2 , α_3 线性无关, 故

$$\begin{cases} x_1 + x_3 = 0 \\ x_1 + x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

解得 $x_1 = x_2 = x_3 = 0$. 故 $\beta_1, \beta_2, \beta_3$ 线性无关.

另一个观点: 不妨设均为列向量.

小结

考虑向量组 α_1,\ldots,α_s 的线性相关性, 只需考虑方程

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_s\alpha_s = 0$$

是否有非零解.

特别的, 如果 $\alpha_1, \ldots, \alpha_s$ 为列向量, 记 $A = (\alpha_1, \alpha_2, \ldots, \alpha_s)$, 上述方程即为齐次线性方程组 AX = 0,

- $\alpha_1, \dots, \alpha_s$ 线性相关当且仅当 AX = 0 有非零解;
- $\alpha_1, \dots, \alpha_s$ 线性无关当且仅当 AX = 0 只有零解.

性质1

- 一个向量 α 线性相关当且仅当 $\alpha = 0$.
- 两个向量 α,β 线性相关,当且仅当其中一个是另一个的倍数.(几何上看,两个向量线性无关,当且仅当不共线.)
- 向量组 $\alpha_1, \alpha_2, \dots, \alpha_p, (p \ge 2)$ 线性相关当且仅当其中至少一个可由其余 p-1 个线性表出.

$p \ge 2$ 时的证明.

• 若 $\alpha_1, \alpha_2, \dots, \alpha_p$ 线性相关,则存在不全为 0 的数 k_1, \dots, k_p 使得 $k_1\alpha_1 + \dots + k_p\alpha_p = 0$. 不妨设 $k_i \neq 0$,则

$$\alpha_i = -\frac{k_1}{k_i}\alpha_1 - \dots - \frac{k_{i-1}}{k_i}\alpha_{i-1} - \frac{k_{i+1}}{k_i}\alpha_{i+1} - \dots - \frac{k_p}{k_i}\alpha_p$$

即 α_i 可由其余 p-1 个向量线性表出.

• 另一方面, 若 $\alpha_i = k_1 \alpha_1 + \dots + k_{i-1} \alpha_{i-1} + k_{i+1} \alpha_{i+1} + \dots + k_p \alpha_p$, 则 $k_1 \alpha_1 + \dots + k_{i-1} \alpha_{i-1} - \alpha_i + k_{i+1} \alpha_i + \dots + k_p \alpha_p = 0$, 故 $\alpha_1, \alpha_2, \dots, \alpha_p$ 线性相关.

例 24 (P89 例 4.2.7)

向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ (I) 线性无关, $\{\alpha_1, \alpha_2, \cdots, \alpha_p, \beta\}$ (II) 线性相关, 则 β 可由 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 线性表出.

证明.

因 (II) 线性相关, 故存在不全为零的数 k_1, \dots, k_p, k 使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_p\alpha_p + k\beta = 0.$$

若 k=0, 则 $k_1\alpha_1+k_2\alpha_2+\cdots+k_p\alpha_p=0$, 且 k_1,k_2,\cdots,k_p 不全为零, 与(I)线性相关矛盾. 故 $k\neq 0$.

$$\beta = -\frac{k_1}{k}\alpha_1 - \frac{k_2}{k}\alpha_2 - \dots - \frac{k_p}{k}\alpha_p.$$

性质 2

向量组 $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ 的一个部分线性相关,则 $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ 线性相关.

证明.

不妨设 $\alpha_1, \dots, \alpha_t (t \leq p)$ 线性相关. 则存在不全为零的数 k_1, \dots, k_t , 使得 $k_1\alpha_1 + \dots + k_t\alpha_t = 0$. 从而存在不全为零的数 $k_1, \dots, k_t, 0, \dots, 0$, 使得

$$k_1\alpha_1 + \dots + k_t\alpha_t + 0\alpha_{t+1} + \dots + 0\alpha_p = 0.$$

即 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 线性相关.

逆否命题: 若向量组 $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ 线性无关, 则其中的任意 $t \land (t \ge 1)$ 向量也线性无关.

- 给定一个线性无关向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$,
 - 从中剔除几个向量,剩下的向量仍然线性无关.
 - 往里添加几个向量, 新的向量组可能线性相关, 可能线性无关.
- 给定一个线性<mark>相关</mark>向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$,
 - 往里添加几个向量, 新的向量组仍然线性相关.
 - 从中剔除几个向量,剩下的向量可能线性相关,可能线性无关.

性质 3

向量组 $\alpha_j = (a_{1j}, a_{2j}, \dots, a_{sj})^T$, $j = 1, 2, \dots, p$ 线性无关, 分别在 α_j 的后面添加 $t \uparrow (t \geq 1)$ 分量得 $\beta_j = (a_{1j}, \dots, a_{sj}, a_{(s+1)j}, \dots, a_{(s+t)j})^T$, $j = 1, 2, \dots, p$. 则 β_1, \dots, β_p 线性无关.

证明.

考虑线性方程组
$$k_1\beta_1 + \cdots + k_p\beta_p = 0$$
, (1)
此方程组的前 s 个方程即 $k_1\alpha_1 + \cdots + k_p\alpha_p = 0$, (2)
由于 $\alpha_1, \cdots, \alpha_p$ 线性无关, 方程组 (2) 只有零解, 故方程组
(1) 也只有零解, 故 β_1, \cdots, β_p 线性无关.

性质 4

n
ightharpoonup n 维列向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关的充要条件是 n阶行列式 $\det(\alpha_1, \alpha_2, \cdots, \alpha_n) = 0.$

证明.

n 维列向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关当且仅当

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = 0$$

存在非零解, 即 $[\alpha_1, \alpha_2, \cdots, \alpha_n]X = 0$ 存在非零解. 而后者当且仅当 $\det(\alpha_1, \alpha_2, \cdots, \alpha_n) = 0$.

推论 1

 $n \wedge n$ 维列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关的充要条件是 n阶行列式 $\det(\alpha_1, \alpha_2, \cdots, \alpha_n) \neq 0$.

性质 5

如果向量组所含的向量个数比向量的分量数目更多,则向量组线性相关. 即: 若 m > n,则 \mathbb{R}^n 中的向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关.

证明.

考虑线性方程组

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_m\alpha_m = 0,$$

它有 n 个方程, m 个未知数, m > n, 故一定有非零解. 故 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关.

第四章 向量空间

- 1 向量空间
- 2 子空间
- 3 向量的线性相关性
- 4 向量组的极大线性无关组和秩
 - 线性表出
 - 极大线性无关组
 - 求列向量组的极大无关组
- 5 基和维数

向量组的极大线性无关组和秩

问题

给定一个向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$. 我们希望找到 $H = \text{span}\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 的较为简单的生成集. 我们已经 知道, 如果向量组线性相关, 则其中某个向量可由其他向量 线性表出, 剔除这个向量后, 剩下的向量仍然张成 H.

- 如果 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 线性无关, 它是否就是 H 的一个 最简单(向量个数最少)的生成集?
- H 可不可以由其他向量组生成?如果可以,这个向量组 $\{\beta_1, \dots, \beta_t\}$ 和 $\{\alpha_1, \dots, \alpha_p\}$ 有什么关系?

定义 10

如果向量组 $\alpha_1, \alpha_2, \dots, \alpha_p(I)$ 的每个向量都可以由向量组 $\beta_1, \beta_2, \dots, \beta_t$ (II) 线性表出,则称向量组 (I) 可由 (II)线性表出; 如果向量组 (I) 和 (II) 可以互相线性表出,则称 (I) 和 (II)等价,

注 9

- 向量组的部分可由全组线性表出;
- $\alpha_1, \alpha_2, \cdots, \alpha_p$ 线性相关, 当且仅当 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 可由某个部分组 $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_s}, s < p$, 线性表出.

命题 2

• $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\beta_1, \beta_2, \dots, \beta_t$ 线性表出当且仅当存在 $t \times s$ 矩阵 A 使得

$$(\alpha_1, \alpha_2, \dots, \alpha_s) = (\beta_1, \beta_2, \dots, \beta_t)A.$$

• \dot{a} $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表出, $\beta_1, \beta_2, \ldots, \beta_t$ 可由 $\gamma_1, \gamma_2, \ldots, \gamma_l$ 线性表出,则 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\gamma_1, \gamma_2, \ldots, \gamma_l$ 线性表出.

线性表示与矩阵乘法

证明

• $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\beta_1, \beta_2, \dots, \beta_t$ 线性表出当且仅当存在实数 a_{ij} $(i = 1, \dots, t; j = 1, \dots, s)$ 使得 $\alpha_1 = a_{11}\beta_1 + a_{21}\beta_2 + \dots + a_{t1}\beta_t,$... $\alpha_s = a_{1s}\beta_1 + a_{2s}\beta_2 + \dots + a_{ts}\beta_t.$

线性表示与矩阵乘法

证续.

写成矩阵乘法形式即为:

$$(\alpha_1, \alpha_2, \dots, \alpha_s) = (\beta_1, \beta_2, \dots, \beta_t) \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & & \vdots \\ a_{t1} & a_{t2} & \cdots & a_{ts} \end{bmatrix}$$

•
$$(\alpha_1, \alpha_2, \dots, \alpha_s) = (\beta_1, \beta_2, \dots, \beta_t) A_{ts}$$
,
 $(\beta_1, \beta_2, \dots, \beta_t) = (\gamma_1, \gamma_2, \dots, \gamma_l) B_{lt}$
故 $(\alpha_1, \alpha_2, \dots, \alpha_s) = (\gamma_1, \gamma_2, \dots, \gamma_l) B_{lt} A_{ts}$,
即 $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\gamma_1, \gamma_2, \dots, \gamma_l$ 线性表出.

定理 2

设 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 可由 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表出,且 p > t,则 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 线性相关.

证明.

设
$$[\alpha_1, \alpha_2, \cdots, \alpha_p] = [\beta_1, \beta_2, \cdots, \beta_t] A_{t \times p}$$
,
任取齐次线性方程组 $AX = 0$ 的非零解 $X = [k_1, k_2, \cdots, k_p]^T$, 则 $k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_p \alpha_p = [\alpha_1, \alpha_2, \cdots, \alpha_p] X$ $= [\beta_1, \beta_2, \cdots, \beta_t] AX = 0$,
故 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 线性相关.

例 25

任意 n+1 个 n 维向量线性相关, 因它可由向量组 $e_1 = (1,0,\cdots,0)^T,\cdots, e_n = (0,\cdots,0,1)^T$ 线性表出.

线性相关性与向量个数

推论3

若线性无关的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 可由 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表出,则 $p \leq t$.

定理 4

两个等价的线性无关向量组含有相同个数的向量.

证明.

设两个等价的线性无关向量组为 $(I):\alpha_1,\alpha_2,\ldots,\alpha_s$ $(II):\beta_1,\beta_2,\ldots,\beta_t$.

因为 (I) 可由 (II) 线性表出, (I) 线性无关, 所以, $s \le t$.

因为 (II) 可由 (I) 线性表出, (II) 线性无关, 所以, $t \le s$. 故 s = t

4回 → 4回 → 4 三 → 4 三 → 9 へ()

等价关系

定义 11 (等价关系)

- 一般的, 考虑非空集合中任意两个元素的二元关系, 如果它满足如下三条性质,
 - 自反性,
 - ② 对称性,
 - ◎ 传递性,

则称其为等价关系.

特别的,向量组等价满足如上三条性质.

极大线性无关组

定义 12 (极大线性无关组)

设 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ (II) 是向量 $\alpha_1, \alpha_2, \dots, \alpha_s$ (I) 的部分向量. 如果

- 1) $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}$ (II) 线性无关,
- 2) $\alpha_1, \alpha_2, \dots, \alpha_s(I)$ 可由 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ (II) 线性表出,则称 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ (II) 是 $\alpha_1, \alpha_2, \dots, \alpha_s(I)$ 的极大线性无关组.

极大线性无关组

注 10

"极大":由于原向量组可由它们线性表出,所以,任意再加入一个向量到这个组中,这个组都会变为线性相关.所以,极大线性无关组是原向量组中最大的那个线性无关组.

注 11

同时,极大线性无关组也是极小可线性表出组:它是可以线性表出原向量组 (I) 的子向量组在包含关系下的极小组.任何比极大线性无关组严格小的向量组都不能完全的线性表出 (I).

极大线性无关组

定理 5

向量组 (I): $\alpha_1,\alpha_2,\ldots,\alpha_s$ 的任意两个极大线性无关组的向量个数相等.

证明.

设 (II): $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}$ 和 (III): $\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_m}$ 是 (I) 的任 意两组极大线性无关组.

则 (II) 和 (III) 均为线性无关组, 且可以互相线性表出, 故 r = m.

注 12

极大线性无关组中向量的个数与无关组的选择无关,它是原向量组的本质属性. 我们称这个数为向量组的秩.

定义 13 (秩)

称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的一个极大线性无关组中向量的个数为原向量组的秩, 记为 $r\{\alpha_1, \alpha_2, \ldots, \alpha_s\}$ 或秩 $\{\alpha_1, \alpha_2, \ldots, \alpha_s\}$. 特别的, 对零向量组 $\{0\}$, 规定其秩为 0.

推论 6

设向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的秩为 r,

- 若 r < s, 则向量组线性相关;
- 若 r=s, 则向量组线性无关.

定理7

如果 $(I): \alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $(II): \beta_1, \beta_2, \dots, \beta_t$ 线性表出,则

$$r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$$

证明.

设 (III) $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}$ 和 (IV): $\beta_{j_1}, \beta_{j_2}, \ldots, \beta_{j_m}$ 是 (I) 和 (II) 的极大线性无关组.

所以, (III) 可由 (I) 线性表出, (I) 可由 (II) 线性表出, (II) 可由 (IV) 线性表出, 所以, (III) 可由 (IV) 线性表出. 又因为 (III) 线性无关, 所以, r < m.

推论 8

等价的向量组的秩相等.

注 13

秩相等的两个向量组不一定等价.

例如: $\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,0)^T$ 和向量组

$$\beta_1 = (1, 0, 0)^T, \beta_2 = (0, 0, 1)^T.$$

例 26

证明: 设 $r(\alpha_1, \ldots, \alpha_s) = r$, 则其中任意 t > r 个向量 (I): $\alpha_{i_1}, \ldots, \alpha_{i_t}$ 线性相关.

证明.

设 (II): $\alpha_{k_1}, \alpha_{k_2}, \ldots, \alpha_{k_r}$ 是 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的极大线性无关组. 则 (I) 可由 (II) 线性表出, 故 $r(\alpha_{i_1}, \ldots, \alpha_{i_t}) \leq r$.

又因 $t > r \ge r(\alpha_{i_1}, \ldots, \alpha_{i_t})$, 所以 (I) 线性相关.

例 27

证明: 设 $r(\alpha_1,\ldots,\alpha_s)=r$, 且 (I): $\alpha_{i_1},\ldots,\alpha_{i_r}$ 线性无关, 则

(I) 是原向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的一个极大线性无关组.

思路: 需证明 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 (I) 线性表出.

证明.

可考虑反证法. 设 α_j 不能由 (I) 线性表出, 将 α_j 加入 (I) 中得到新的向量组 $\alpha_{i_1}, \ldots, \alpha_{i_r}, \alpha_j$, 此向量组线性无关, 故秩 = r+1.

但 $r(\alpha_{i_1}, \ldots, \alpha_{i_r}, \alpha_j) \leq r(\alpha_1, \ldots, \alpha_s) = r$, 矛盾. 故 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 (I) 线性表出, 从而则 (I) 是原向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的一个极大线性无关组.

定理 9

对 n 维列向量 $\alpha_1,\alpha_2,\ldots,\alpha_s$ 作相同的初等行变换, 其线性相关性不变. 即, 对任意可逆矩阵 P 有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0$ 当且仅当

$$k_1 P \alpha_1 + k_2 P \alpha_2 + \dots + k_s P \alpha_s = 0.$$

证明.

记 $A = [\alpha_1, \alpha_2, \dots, \alpha_s]$, P 为可逆矩阵, 则齐次线性方程 AX = 0 与 PAX = 0 同解.

注 14

初等行变换不改变矩阵的列之间的线性关系.

例 28 (P92 例 4.3.1)

求列向量组

$$\alpha_1 = (-1, 1, 0, 0)^T, \alpha_2 = (-1, 2, -1, 1)^T,$$

$$\alpha_3 = (0, -1, 1, -1)^T, \alpha_4 = (1, -3, 2, 3)^T,$$

$$\alpha_5 = (2, -6, 4, 1)^T$$

的秩与一个极大无关组. 并用该极大无关组表示向量组中的其余向量.

解

对 $A = [\alpha_1, \alpha_2, \cdots, \alpha_5]$ 作初等行变化变为行最简形式:

解续

$$C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5]$$

C 的列向量的线性无关组 $\gamma_1, \gamma_2, \gamma_4$, 满足 $\gamma_3 = \gamma_1 - \gamma_2$, $\gamma_5 = \gamma_1 - 2\gamma_2 + \gamma_4$. 对应着 A 的列向量的极大线性无关组, 故 $\alpha_1, \alpha_2, \alpha_4$ 为一个极大线性无关组. 对应的, $\alpha_3 = \alpha_1 - \alpha_2, \alpha_5 = \alpha_1 - 2\alpha_2 + \alpha_4$.

注. 主元列对应列向量的极大线性无关组, 化成阶梯型矩阵即可判断出.

思考

向量组 $(\alpha_1, \alpha_2, \cdots, \alpha_5)$ 是否还有其他极大无关组?

观察行最简形式:

$$C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5]$$

初等行变换不改变列向量的线性关系

练习(练习册 P54 第八题)

设向量组
$$\alpha_1 = (1,0,1)^T, \alpha_2 = (0,1,1)^T, \alpha_3 = (1,3,5)^T,$$

 $\beta_1 = (1,1,1)^T, \beta_2 = (1,2,3)^T, \beta_3 = (3,4,a)^T.$

- 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 不能由向量组 β_1,β_2,β_3 线性表出, 求 a.
- 将 β_1 , β_2 , β_3 用 α_1 , α_2 , α_3 线性表出.

第四章 向量空间

- 向量空间
- 2 子空间
- ③ 向量的线性相关性
- 4 向量组的极大线性无关组和秩
- 5 基和维数
 - 基
 - 维数
 - 基与坐标

问题

对于给定向量空间 V, 其最小的生成集 $\{\alpha_1, \dots, \alpha_k\}$ 应满足哪些性质?

- V 中向量均能由 $\{\alpha_1, \dots, \alpha_k\}$ 线性表出
- $\{\alpha_1, \dots, \alpha_k\}$ 线性无关.

定义 14 (基)

对向量空间 V 中的向量 $\alpha_1, \alpha_2, \ldots, \alpha_r$, 如果:

- 1) $\alpha_1, \alpha_2, \ldots, \alpha_r$ 线性无关.
- 2) V 中每一个向量都可由 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 线性表出那么称 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 是 V 的一组基.

注 15

当 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 是 V 的一组基时, 有

$$V = \operatorname{span}\{\alpha_1, \alpha_2, \dots, \alpha_r\}.$$

例 29

向量组 $e_1 = (1, 0, \dots, 0)^T$, $e_2 = (0, 1, 0, \dots, 0)^T$, ..., $e_n = (0, \dots, 0, 1)^T$ 是 \mathbb{R}^n 的一组基. (称为标准基.)

例 30 (P96 例 4.5.2)

可逆 n 阶方阵 A 的 n 个列向量, 构成 \mathbb{R}^n 的一组基.

证明.

- A 可逆, 故齐次线性方程组 AX = 0 只有零解, 故 A 的 n 个列向量线性无关.
- A 可逆, 则对任意 $\beta \in \mathbb{R}^n$, $AX = \beta$ 存在唯一解, 故任 意列向量 β 可写成 A 的 n 个列向量的线性组合, 故 A 的 n 个列向量张成 \mathbb{R}^n .

综上, A 的 n 个列向量, 构成 \mathbb{R}^n 的一组基.

向量组张成空间的基

定理 10

误 $S = \{\alpha_1, \dots, \alpha_p\} \subset \mathbb{R}^n, H = \operatorname{span}\{\alpha_1, \dots, \alpha_p\}.$

- i) 如果 S 中某个向量 α_k 是 S 中其余向量的线性组合,则 $S \setminus \{\alpha_k\}$ 仍是 H 的生成集.
- ii) 如果 $H \neq \{0\}$, 则 S 的某个子集是 H 的基.

证明

• 不妨设 $\alpha_p \neq \alpha_1, \cdots, \alpha_{p-1}$ 的线性组合, 即

$$\alpha_p = c_1 \alpha_1 + \dots + c_{p-1} \alpha_{p-1}$$

H 中任意向量 α 可以表示为

$$\alpha = k_1 \alpha_1 + \dots + k_{p-1} \alpha_{p-1} + k_p \alpha_p,$$

带入 α_p 可得, α 可表示为 $\alpha_1, \dots, \alpha_{p-1}$ 的线性组合.

向量组张成空间的基

证明续.

• 如果 S 线性无关,则为 H 的基. 否则, S 中的某个向量 α_k 是其余向量的线性组合. 由 i) 可知, $S \setminus \{\alpha_k\}$ 仍是 H 的生成集. 重复这一过程, 直到新的生成集 S' 线性无关. (因 $H \neq \{0\}$, S' 至少含有一个向量.)则 S' 为 H 的基.

注 16

由此可知, 已知向量空间 H 的生成集 S, 找出 S 的极大线性 无关组, 即为 H 的基.

零空间的基

例 31 (P97 例 4.5.3)

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$
,求 Nul A 的一组基.

想法: 先找生成集, 再确定其极大线性无关组.

解

利用初等行变换,将
$$A$$
 化为行最简形式:
$$A \to \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$
即
$$\begin{cases} x_1 - 2x_2 & -x_4 + 3x_5 = 0, \\ x_3 + 2x_4 - 2x_5 = 0, \end{cases}$$

零空间的基

解续

$$Ax = 0$$
 的通解为
$$\begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_3 = -2x_4 + 2x_5 \end{cases}$$
 也可写为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

记 $\alpha = (2, 1, 0, 0, 0)^T$, $\beta = (1, 0, -2, 1, 0)^T$, $\gamma = (-3, 0, 2, 0, 1)^T$, 则 $\{\alpha, \beta, \gamma\}$ 为 NulA 的一个生成集. 另一方面, α, β, γ 线性无关 (观察第 2,4,5 分量), 故 $\{\alpha, \beta, \gamma\}$ 为 NulA 的一组基.

列空间的基

例 32 (P98 例 4.5.4)

求行最简矩阵
$$B=\begin{bmatrix}1&0&-3&5&0\\0&1&2&-1&0\\0&0&0&0&1\\0&0&0&0&0\end{bmatrix}$$
, 求 $\operatorname{Col}B$ 的一组基.

解.

记
$$B = [\beta_1, \beta_2, \beta_3, \beta_4, \beta_5]$$
. 则 $\beta_1, \beta_2, \beta_5$ 为主元列,

$$\beta_3 = -3\beta_1 + 2\beta_2, \quad \beta_4 = 5\beta_1 - \beta_2,$$

是主元列的线性组合.

$$\operatorname{Col} B = \operatorname{span}\{\beta_1, \dots, \beta_5\} = \operatorname{span}\{\beta_1, \beta_2, \beta_5\}$$
,故 $\{\beta_1, \beta_2, \beta_5\}$ 为 $\operatorname{Col} B$ 的生成集. 另一方面, $\beta_1, \beta_2, \beta_5$ 线性无 关,故 $\{\beta_1, \beta_2, \beta_5\}$ 为 $\operatorname{Col} B$ 的一组基.

列空间的基

注 17

对于行最简形式矩阵 B, B 的主元列构成了 Col B 的一组基.

回忆

定理 11

矩阵的初等行变换,不改变矩阵列之间的线性关系.

证明.

对可逆矩阵 P, 线性方程组 Ax = 0 与 PAx = 0 同解.

定理 12

A 的主元列构成 ColA 的一组基.

列空间的基

例 33 (P98 例 4.5.5)

已知
$$A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5] = \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & 8 \end{bmatrix}$$

求 ColA 的一组基.

解.

将
$$A$$
 作初等行变换,化为行最简形式:
$$\begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

其主元列为第 1,2,5 列, 故 $\{\alpha_1,\alpha_2,\alpha_5\}$ 是 ColA 的一组 基.

课堂练习 (练习册 P57 第三题)

已知
$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$$
 求 $ColA$ 和 $NulA$ 的一组基.

问题

向量空间的基并不唯一. 讨论其不同的基, 所含向量个数.

我们将证明,向量空间的基,所含向量个数相同,并将其个数定义为向量空间的维数.

引理1

设 $S = \{\beta_1, \dots, \beta_p\}$ 是向量空间 H 的生成集. 设 m > p, 则 H 中任意 m 个向量 $\alpha_1, \dots, \alpha_m$ 线性相关.

证明.

记
$$(\alpha_1, \dots, \alpha_m) = (\beta_1, \dots, \beta_p) A_{p \times m},$$
 思 $m > n$ 继州主程组 $A_{x} = 0$ 有地

因 m > p, 线性方程组 Ax = 0 有非零解, 取一个非零解 (c_1, c_2, \dots, c_m) ,

则
$$c_1\alpha_1 + c_2\alpha_2 + \cdots + c_m\alpha_m = 0$$
.

故 $\alpha_1, \dots, \alpha_m$ 线性相关.

定理 13

H的一组基包含 p 个向量,则 H的任一组基都包含 p 个向量.

证明.

设 $B = \{\beta_1, \dots, \beta_p\}$ 是 H 的一组基, $S = \{\alpha_1, \dots, \alpha_k\}$ 是 H 的另一组基.

由于 $B \in H$ 的生成集, 则 H 中任意多于 p 个向量线性相关. 而 $S \in H$ 的基, $\alpha_1, \dots, \alpha_k$ 线性无关. 故 $k \leq p$.

类似可得, $p \le k$.

故
$$p=k$$
.

即 H 的基, 含向量个数相同.

定义 15

设 $H \in \mathbb{R}^n$ 的一个子空间且 $H \neq \{0\}$, 称 H 的一组基中向量的个数为 H 的维数, 记为 dim H. 规定子空间 $\{0\}$ 的维数为 0.

注 18

维数是空间的内在性质, 与基的选择无关.

例 34

 $e_1 = (1, 0, \dots, 0)^T, \dots, e_n = (0, \dots, 0, 1)^T \not\in \mathbb{R}^n$ 的一组基, $\dim \mathbb{R}^n = n$.

例 35 (P99 例 4.5.6)

将 ℝ3 的子空间按照维数分类:

- 0 维子空间: {0};
- 1 维子空间: 过原点的直线;
- 2 维子空间: 过原点的平面;
- 3 维子空间: ℝ³.

例 36 (P99 例 4.5.7)

对矩阵 A, NulA 的维数为 Ax = 0 中自由变量的个数, ColA 的维数等于 A 的主元列数,

基与维数

定理 14

若向量空间 H 的维数 $\dim H = p \ge 1$, 则

- 1) H 中任意 p 个线性无关的向量构成 H 的一组基;
- 2) 如果 H 中 p 个向量构成 H 的生成集,则这 p 个向量 也构成 H 的一组基.

定理 15

若向量空间 H 的维数为 $p \ge 1$, 则

- 1) 没有少于 p 个向量的集合能张成 H;
- 2) 任何少于 p 个的线性无关向量, 可以通过添加新的线性无关向量, 扩展为 H 的一组基;
- 3) 任何多于 p 个向量的张集, 可以通过删除其中的向量得到 H 的一组基.

张集, 基与维数

定理 16

设 $\alpha_1, \dots, \alpha_p$ 和 β_1, \dots, β_t 是向量空间 H 的两个向量组.则

- 1) $\operatorname{span}\{\alpha_1, \dots, \alpha_p\} = \operatorname{span}\{\beta_1, \dots, \beta_t\}$ 当且仅当 $\alpha_1, \dots, \alpha_p \in \beta_1, \dots, \beta_t$ 等价.
- 2) dim span $\{\alpha_1, \dots, \alpha_p\} = r\{\alpha_1, \dots, \alpha_p\}$, 且 $\alpha_1, \dots, \alpha_p$ 的极大线性无关组可作为 span $\{\alpha_1, \dots, \alpha_p\}$ 的一组基.

基与坐标

定理 17

若 $\{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ 是向量空间 H 的一组基,则 H 中任一向量可以表示成 $\alpha_1, \alpha_2, \cdots, \alpha_p$ 的线性组合,且表示方法是唯一的.

证明.

因 $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ 是向量空间 H 的一组基, 故任意 $\alpha \in H$ 可以表示成 $\alpha_1, \alpha_2, \dots, \alpha_p$ 的线性组合. 设 $\alpha = k_1\alpha_1 + k_2\alpha_2 + \dots + k_p\alpha_p = t_1\alpha_1 + t_2\alpha_2 + \dots + t_p\alpha_p$, 则 $(k_1 - t_1)\alpha_1 + (k_2 - t_2)\alpha_2 + \dots + (k_p - t_p)\alpha_p = 0$. 又因为 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是基, 故线性无关, 所以

$$k_1 - t_1 = 0, k_2 - t_2 = 0, \dots, k_p - t_p = 0$$

表示方法唯一.

定义 16

设 $\beta_1, \beta_2, \dots, \beta_s$ 是向量空间 H 的一组基. 则对任意 $\alpha \in H$, 有唯一的表示 $\alpha = k_1\beta_1 + k_2\beta_2 + \dots + k_s\beta_s$. 则称 $(k_1, k_2, \dots, k_s)^T$ 为 α 在基 $\{\beta_1, \beta_2, \dots, \beta_s\}$ 下的坐标.

习惯上, 我们将坐标写成列向量的形式.

例 37 (P100 例 4.5.8)

$$eta_1 = egin{bmatrix} 1 \\ 0 \end{bmatrix}, \, eta_2 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 是 \mathbb{R}^2 的一组基, $lpha \in \mathbb{R}^2$ 相对与 eta_1, eta_2 的坐标为 $egin{bmatrix} -2 \\ 3 \end{bmatrix}$. 求 $lpha$.

解.

$$\alpha = (\beta_1, \beta_2) \begin{bmatrix} -2 \\ 3 \end{bmatrix} = -2\beta_1 + 3\beta_2 = -2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 6 \end{bmatrix}.$$

坐标

例 38 (P100 例 4.5.9)

 \mathbb{R}^n 中向量 $\alpha = (x_1, x_2, \dots, x_n)^T$ 在标准基 e_1, e_2, \dots, e_n 下的坐标表示即为 $\alpha = (x_1, x_2, \dots, x_n)^T$.

坐标

例 39 (P100 例 4.5.10)

求在 \mathbb{R}^3 中,向量 $\alpha = (1,7,3)^T$ 在基 $\beta_1 = (2,0,-1)^T$, $\beta_2 = (1,3,2)^T$, $\beta_3 = (2,1,1)^T$ 下的坐标.

解.

设 α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $(x_1, x_2, x_2)^T$, 则

$$\alpha = (\beta_1, \beta_2, \beta_3) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbb{RP} \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$$

此方程组的解 $(1,3,-2)^T$ 即为 α 在基 β_1,β_2,β_3 下的坐 标.

一般的, 对 p 维向量空间 H, 通过对给定一组基 $\beta_1, \beta_2, \cdots, \beta_p$, 建立坐标系统后, 我们有 H 到 \mathbb{R}^p 的一一映 射:

$$H \rightarrow \mathbb{R}^p$$

 $\alpha \mapsto \alpha$ 关于基 β_1, \dots, β_p 的坐标

在这个意义下, H 和 \mathbb{R}^p 具有类似的结构.

课堂练习

求向量 $\alpha = (1,2,3)^T \in \mathbb{R}^3$

- 1) 在基 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,1,1)^T$ 下的坐标.
- 2) 在基 $\beta_1 = (0,0,1)^T$, $\beta_2 = (0,1,0)^T$, $\beta_3 = (1,0,1)^T$ 下的 坐标.

过渡矩阵

定义 17

设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ (I) 与 $\eta_1, \eta_2, \dots, \eta_n$ (II) 是向量空间 H 中的 两组基. 则基 (II) 可由基 (I) 线性表出, 即存在 $n \times n$ 矩阵 $A = (a_{ij})$, 使得

$$(\eta_1, \eta_2, \dots, \eta_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) A$$

我们称以上矩阵 $A = (a_{ij})$ 是由基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵.

注 19

- 1) 请分清是哪一组基到哪一组基的过渡矩阵.
- 2) 过渡矩阵 A 的列向量是对应向量在该组基下的坐标.

定理 18

设 $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ (I) 与 $\eta_1, \eta_2, \ldots, \eta_n$ (II) 是向量空间 H 中的两组基, 且

$$(\eta_1, \eta_2, \dots, \eta_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) A.$$

若 $\alpha \in H$ 在基 (I) 和 (II) 下的坐标分别是 X 和 Y,则

1) A 可逆, 且

$$(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\eta_1, \eta_2, \dots, \eta_n) A^{-1}.$$

2) X = AY, $Y = A^{-1}X$.

证明.

1) $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ (I) 与 $\eta_1, \eta_2, \dots, \eta_n$ (II) 均为基, 故存在方 阵 B 使得

$$(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\eta_1, \eta_2, \dots, \eta_n)B.$$

故

$$(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\eta_1, \eta_2, \dots, \eta_n)B = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)AB,$$

由坐标的唯一性, $AB = E$. A 可逆, 且 $B = A^{-1}$.

2) $\alpha \in H$ 在基(I)和(II)下的坐标分别是 X 和 Y,则 $\alpha = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)X = (\eta_1, \eta_2, \dots, \eta_n)Y$ $= (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)AY$. 由坐标的唯一性,X = AY. 从而 $Y = A^{-1}X$.

例 40 (P102 例 4.5.11)

考虑 №2 中的两组基

$$(\mathrm{I}) : \varepsilon_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \varepsilon_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \quad (\mathrm{II}) : \eta_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}, \eta_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

求基(I)到基(II)的过渡矩阵.

解.

记基(I)到基(II)的过渡矩阵为 A,则 $(\eta_1, \eta_2) = (\varepsilon_1, \varepsilon_2)A$,即 $\begin{bmatrix} 1 & 3 \\ -4 & -5 \end{bmatrix} A = \begin{bmatrix} -9 & -5 \\ 1 & -1 \end{bmatrix}$.

解方程得
$$A = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$
.

例 41 (P102 例 4.5.12)

在
$$\mathbb{R}^3$$
 中,由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \beta_2 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$,

$$\beta_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
 的过渡矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$.

- 求基 $\alpha_1, \alpha_2, \alpha_3$.
- 已知向量 α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $\begin{bmatrix} 1\\3\\-2 \end{bmatrix}$, 求 α 在 基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

解.

• 日知
$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)A$$
, 故
 $(\alpha_1, \alpha_2, \alpha_3) = (\beta_1, \beta_2, \beta_3)A^{-1}$

$$= \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 1 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -3 & 8 \\ 0 & 3 & -11 \\ -1 & 4 & -12 \end{bmatrix}$$
故 $\alpha_1 = (2, 0, -1)^T$, $\alpha_2 = (-3, 3, 4)^T$, $\alpha_3 = (8, -11, -12)^T$.

• α 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为

$$X = A \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 2 \end{bmatrix}$$

