

Full resolution photo on my Instagram @feenafoto

1

ECOR1043: Circuits

Passive Filters

Capacitor and Inductor Based Filters

First Order **RC** Filters (Lowpass & Highpass)

RC Low-pass Filter

- RC Low-pass filter
 - The Transfer function H

$$\mathbf{V}_o = \frac{\mathbf{Z}_c}{R + \mathbf{Z}_c} \times \mathbf{V}_i$$

(using simple voltage divider)

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_c}{R + \mathbf{Z}_c}$$

where
$$\mathbf{Z}_c = \frac{1}{j\omega C} = \frac{1}{j2\pi fC} = \frac{-j}{2\pi fC}$$

- Magnitude

$$H = \frac{X_c}{\sqrt{R^2 + X_c^2}}$$

 $f_C = \frac{1}{2\pi RC}$

• Example 1a: Find the transfer function (H= V_0/V_i) of the given RC LPF

1) Find Z_c

$$R = 5\Omega$$

$$\mathbf{Z}_c = \frac{1}{j\omega C}$$

$$\mathbf{Z}_c = \frac{1}{j\omega(5F)}$$

$$\mathbf{Z}_c = \frac{1}{j5\omega}$$

$$\mathbf{Z}_c = -\frac{j}{5\omega}$$

7

RC Low-pass Filter

• Example 1a: Find the transfer function (H= V_0/V_i) of the given RC LPF (cont.)

1) Find H =
$$\frac{V_0}{V_i}$$

$$Z_c = -\frac{j}{5\omega} \qquad R = 5\Omega$$

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_c}{R + \mathbf{Z}_c}$$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{-\frac{j}{5\omega}}{5 - \frac{j}{5\omega}}\right)$$

0

- Example 1b: Create the Bode plot for the **magnitude** of given transfer function. Use $\omega = 0.2$, 1, 10 rad/s
 - 3) Solve for the magnitude of $\omega = 0.2$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{-\frac{j}{5\omega}}{5 - \frac{j}{5\omega}}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1/5\omega}{\sqrt{5^2 + \left(\frac{1}{5\omega}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1/1}{\sqrt{5^2 + \left(\frac{1}{1}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{26}} = 0.2$$

9

9

RC Low-pass Filter

- Example 1b: Create the Bode plot for the magnitude of given transfer function. Use $\omega = 0.2$, 1, 10 rad/s
 - 3) Solve for the magnitude of $\omega = 1$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{-\frac{j}{5\omega}}{5 - \frac{j}{5\omega}}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1/5\omega}{\sqrt{5^2 + \left(\frac{1}{5\omega}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1/5}{\sqrt{5^2 + \left(\frac{1}{5}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{0.2}{\sqrt{25.04}} = 0.04$$

• Example 1b: Create the Bode plot for the magnitude of given transfer function. Use $\omega = 0.2$, 1, 10 rad/s

3) Solve for the magnitude of $\omega = 10$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{-\frac{j}{5\omega}}{5 - \frac{j}{5\omega}}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1/5\omega}{\sqrt{5^2 + \left(\frac{1}{5\omega}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1/50}{\sqrt{5^2 + \left(\frac{1}{50}\right)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{0.02}{\sqrt{25.0004}} = 0.004$$

 V_{i} V_{c} V_{c

11

RC Low-pass Filter

6) Convert values into dB

Frequency (rad/s)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
0.2	0.2	-14
1	0.04	-28
10	0.004	-48

12

12

0.01	Frequency (rad/s)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
1 0.04 -28 10 0.004 -48 Bode Plot: Vo/Vs dB Plot with log x-axis -10 -20 -40 -40 -40 -40 -40 -40 -40 -40 -40 -4	.001	1	0
Bode Plot: Vo/Vs dB Plot with log x-axis -10 -20 -30 -50 -60	0.2	0.2	-14
Bode Plot: Vo/Vs dB Plot with log x-axis 0	1	0.04	-28
-10 - -20 - -30 - -40 - -50 -	10	0.004	-48
-10	0:-	Bode Plot: Vo/Vs dB Plot with log x-axis	
-20 - -30 - -40 - -50 -			
-30 - -40 - -50 - -60 -	-10		
-60 -	-20		
-60 -	-30		
-60	-40		
	-50		
-70	-60		
	-70		

- RC High-pass filter
 - The Transfer function

$$\mathbf{V}_o = \frac{R}{R + \mathbf{Z}_c} \times \mathbf{V}_i$$

(using simple voltage divider)

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + \mathbf{Z}_c}$$

where
$$\mathbf{Z}_c = \frac{1}{j\omega C} = \frac{1}{j2\pi fC} = \frac{-j}{2\pi fC}$$

- And magnitude

$$H = \frac{R}{\sqrt{R^2 + X_c^2}}$$

where $X_c = \frac{1}{\omega C} = \frac{1}{2\pi f C}$

- Cut-off frequency $f_c = \frac{1}{2\pi RC}$

Bandwidth

 $BW = f_c to \infty \text{ (ideally)}$

15

First Order RL Filters (Lowpass & Highpass)

- RL High-pass filter
 - Transfer function

$$\mathbf{V}_o = \frac{\mathbf{Z}_L}{R + \mathbf{Z}_L} \times \mathbf{V}_i$$

(using simple voltage divider)

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_L}{R + \mathbf{Z}_L}$$

where $\mathbf{Z}_L = j\omega L = j2\pi f L$

- Magnitude

$$H = \frac{X_L}{\sqrt{R^2 + X_L^2}}$$

where $X_L = \omega L = 2\pi f L$

- Cut-off frequency $f_c = \frac{R}{2\pi L}$

$$f_c = \frac{R}{2\pi L}$$

- Bandwidth

$$BW = f_c \ to \infty \ (ideally)$$

Bandwidth Frequency

17

RL High-pass Filter

• Example 2a: Find the transfer function (V_0/V_i) of given RL HPF circuit

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_L}{R + \mathbf{Z}_L}$$

1) Find Z_L

 $R = 1\Omega$

$$Z_{L} = j\omega L$$

 $Z_{L} = j\omega(500 n) \Omega$

• Example 2a: Find the transfer function (V₀/V_i) of given RL HPF circuit (cont.)

2) Find
$$\frac{V_0}{V_i}$$
 $Z_L = j\omega(500 n)$ $R = 1\Omega$

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_L}{R + \mathbf{Z}_L}$$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{j\omega(500n)}{1 + j\omega(500n)}\right)$$

$$\frac{V_0}{V_i} = \left(\frac{j2\pi f(500n)}{1 + j2\pi f(500n)}\right)$$

What if I tell you to find its magnitude?

19

RL High-pass Filter

- Example 2b: Find f_c of the RL high-pass filter
 - 3) Find f_c

$$f_c = \frac{R}{2\pi L}$$

$$f_c = \frac{1\Omega}{2\pi (500x10^{-9} \, H)}$$

$$f_c = = 318.3 \; kHz$$

• Example 2c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f = 100 Hz f_c , and 1 MHz

4) Solve for the magnitude at f = 100 Hz

$$\frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{j2\pi f(500n)}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{2\pi f (500n)}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{2\pi 100(500n)}{\sqrt{1^2 + (2 \times \pi \times 100 \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = 0.000314$$

21

21

RL High-pass Filter

• Example 2c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using $f = 100 \text{ Hz} (f_c)$, and 1 MHz

4) Solve for the magnitude at $f_c = 318.3 \text{ kHz}$

$$\frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{j2\pi f(500n)}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{2\pi f(500n)}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$

Magnitude $H = \frac{V_o}{V_s} = \frac{Z_L}{\sqrt{R^2 + X_L^2}}$ where $X_t = \omega L = 2\pi f L$

Magnitude
$$H = \frac{V_o}{V_s} = \frac{Z_L}{\sqrt{R^2 + X_L^2}}$$

where $X_L = \omega L = 2\pi f L$

$$H = \frac{V_0}{V_i} = \frac{2\pi \times 318.3k \times (500n)}{\sqrt{1^2 + (2 \times \pi \times 318.3k \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = 0.7071$$

22

 $500 \, \mathrm{nH} \gtrapprox V_c$

RL High-pass Filter

Magnitude $H = \frac{V_o}{V_s} = \frac{Z_L}{\sqrt{R^2 + X_L^2}}$ where $X_L = \omega L = 2\pi f L$

• Example 2c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f = 100 Hz, f_c , and 1 MHz

4) Solve for the magnitude at f = 1 MHz

$$\frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{j2\pi f(500n)}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{2\pi f (500n)}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{2\pi \times 1M \times (500n)}{\sqrt{1^2 + (2 \times \pi \times 1M \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = .953$$

23

23

RL High-pass Filter

• Example 2c: Plot the Bode plot for the following frequencies

$$\frac{V_0}{V_i} = \left(\frac{(2\pi f)(500 \, nH)}{1 \, \Omega + j(2\pi f)(500 \, nH)}\right)$$

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
100	0.000314	-70
318.3k	0.7071	-3.01
1M	0.953	-0.42

	Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
	100	0.000314	-70
	318.3k	0.7071	-3.01
	1M	0.953	-0.42
		Bode Plot: Vo/Vs dB Plot with log x-axis	
0	-		
10			
20	-		
-30			
40			
-50			
60			
70			
80			
90	-		
00 L	1 10 ²	10 ³ 10 ⁴	10 ⁵ 10 ⁶

Frequency

- RL Low-pass filter
 - Transfer function

$$\mathbf{V}_o = \frac{R}{R + \mathbf{Z}_L} \times \mathbf{V}_i$$

$$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + \mathbf{Z}_L}$$

where $\mathbf{Z}_L = j\omega L = j2\pi f L$

- Magnitude

$$H = \frac{R}{\sqrt{R^2 + X_L^2}}$$

where $X_L = \omega L = 2\pi f L$

- Cut-off frequency $f_c = \frac{R}{2\pi L}$ - The bandwidth

$$f_c = \frac{R}{2\pi L}$$

BW=0 Hz to f_c

Bandwidth

27

Alternative Low/High-pass Filters				
Filter Type	Typical Circuit	Transfer Function	Cut-off Frequency	Bandwidth
RC LPF	$V_i \bigcirc V_o \bigcirc V_o$	$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_c}{R + \mathbf{Z}_c}$	$f_c = \frac{1}{2\pi RC}$	$BW = 0 \text{ Hz to } f_c$
RC HPF	$V_i \bigcirc V_o$	$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + \mathbf{Z}_c}$	$f_c = \frac{1}{2\pi RC}$	$BW = f_c \text{ to } \infty$
RL LPF	V_i $R > V_o$	$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + \mathbf{Z}_L}$	$f_c = \frac{R}{2\pi L}$	$BW = 0 \text{ Hz to } f_c$
RL HPF	V_i	$\mathbf{H} = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{\mathbf{Z}_L}{R + \mathbf{Z}_L}$	$f_c = \frac{R}{2\pi L}$	$BW = f_c \text{ to } \infty$

Higher Order RC Filters

- Higher order filters
 - Sometimes the roll-off of -20dB/decade may not be enough to remove unwanted signals
 - There we can use multiple stages of filtering to increase our roll-off rate
 - First order filters are cascaded (arranged in series) to get higher order filters which increase the roll-off rate
 - There is a limit to how many filters we can cascade (more in next lecture)

29

Practice Problems

- Problem 1a: Find the transfer magnitude function (V_0/V_i) of the circuit below
 - 1) Find Z_L

 $Z_L = j\omega L$

 $Z_{L} = j\omega(500 nH)$

21

31

RL Low-pass Filter

- Problem 1a: Find the transfer magnitude function (V_0/V_i) of the circuit below
 - 2) Find $\frac{v_0}{v_i}$

$$Z_{\rm L} = j\omega(500~n)$$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{R}{R + \mathbf{Z_L}}\right)$$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{1}{1 + j\omega(500n)}\right)$$

$$\frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{1}{1 + j2\pi f(500n)}\right)$$

• Problem 1b: Find f_c of the RL low-pass filter

33

33

RL Low-pass Filter

• Problem 1c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f = 1 Hz, 10 kHz, f_c , and 500 kHz

4) Solve for the magnitude at f = 1 Hz

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{1}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$
 Magnitude $H = \frac{V_0}{V_i} = \frac{R}{\sqrt{R^2 + X_L^2}}$ where $X_L = \omega L = 2\pi f L$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times 1 \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{1} = 1$$

• Problem 1c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f=1 Hz, 10 kHz, f_c , and 500 kHz

4) Solve for the magnitude at $f = 10 \ Hz$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{1}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$
 Magnitude
$$H = \frac{V_0}{V_i} = \frac{R}{\sqrt{R^2 + X_L^2}}$$
 where
$$X_L = \omega L = 2\pi f L$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times 10k \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{1.0005} = 0.9995 = 1$$

35

35

RL Low-pass Filter

• Problem 1c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f = 1 Hz, 10 kHz, f_c , and 500 kHz

4) Solve for the magnitude at $f = 318.3 \, kHz$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_t}} = \left(\frac{1}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times 318.3k \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{1.414} = 0.70712$$

• Problem 1c: Using the magnitude of transfer function (V_0/V_i) , create a bode plot using f=1 Hz, 10 kHz, f_c , and 500 kHz

4) Solve for the magnitude at $f = 500 \, kHz$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{1}{1 + j2\pi f(500n)}\right)$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times f \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{\sqrt{1^2 + (2 \times \pi \times 500k \times 500n)^2}}$$

$$H = \frac{V_0}{V_i} = \frac{1}{1.862} = 0.537$$

37

37

RL Low-pass Filter

8) Convert values into dB

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
1	1	0
10k	0.9995	-0.004
318.3k	0.70712	-3.01
500k	0.537	-5.4

38

RL Low-pass I	Filter
---------------	--------

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
1	1	0
10k	0.9995	-0.004
318.3k	0.70712	-3.01
500k	0.537	-5.4

39

RL Low-pass Filter

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
1	1	0
10k	0.9995	-0.004
318.3k	0.70712	-3.01
500k	0.537	-5.4

• Problem 2a: Find the transfer function ($H=V_0/V_i$) of circuit

1) Find Z_c

$$Z_c = \frac{1}{j\omega C}$$

$$Z_c = \frac{1}{j\omega(5\mu F)}$$

$$Z_c = -\frac{j}{\omega(5\mu)}$$

$$Z_c = -\frac{j}{2\pi f(5\mu)}$$

41

RC High-pass Filter

• Problem 2a: Find the transfer function ($H=V_0/V_i$) of circuit

1) Find $\frac{V_0}{V_i}$

$$Z_c = -\frac{j}{(5\mu)2\pi f}$$

 $\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{R}{R + \mathbf{Z_c}}\right)$

Remember the voltage divider?

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{50k}{50k + Z_c}\right)$$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{50k}{50k - \frac{j}{(5\mu)2\pi f}}\right)$$

• Problem 2b: Create the Bode plot for the magnitude of given transfer function using f = 0.01, f_c , 100 Hz

43

RC High-pass Filter

• Problem 2b: Create the Bode plot for the magnitude of given transfer function using f = 0.01, f_c , 100 Hz

• Problem 2b: Create the Bode plot for the magnitude of given transfer function using f = 0.01, f_c , 100 Hz

3) Solve for the magnitude of $f_c = 0.6366$

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{50k}{50k - \frac{j}{(5\mu)2\pi f}}\right)$$

$$H = \frac{V_0}{V_i} = \frac{50k}{\sqrt{(50k)^2 + \left(\frac{1}{(5\mu)2\pi \times 0.6366}\right)^2}}$$
 Magnitude $H = \frac{R}{\sqrt{R^2 + X_c^2}}$ where $X_c = \frac{1}{\omega C}$

$$H = \frac{V_0}{V_i} = \frac{50k}{\sqrt{(50k)^2 + (50002)^2}}$$

$$H = \frac{V_0}{V_i} = 0.7071$$

45

45

RC High-pass Filter

Problem 2b: Create the Bode plot for the magnitude of given transfer function using f = 0.01, f_c, 100 Hz 5μF

3) Solve for the magnitude of f = 100

$$\mathbf{H} = \frac{\mathbf{V_0}}{\mathbf{V_i}} = \left(\frac{50k}{50k - \frac{j}{(5\mu)2\pi f}}\right)$$

$$H = \frac{V_0}{V_i} = \frac{50k}{\sqrt{(50k)^2 + \left(\frac{1}{(5\mu)2\pi \times 100}\right)^2}}$$
 Magnitude $H = \frac{R}{\sqrt{R^2 + X_c^2}}$ where $X_c = \frac{1}{\omega C}$

$$H = \frac{V_0}{V_i} = \frac{50k}{\sqrt{(50k)^2 + (318.31)^2}}$$

$$H = \frac{V_0}{V_i} = 0.99998$$

46

7) Convert values into dB

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
0.01	0.0157	-36.08
0.637	0.7071	-3.01
100	0.99998	-0.00017

47

47

RC High-pass Filter

Frequency (Hz)	Amplitude [V/V]	Amplitude dB [20log ₁₀ (V/V)]
0.01	0.0157	-36.08
0.637	0.7071	-3.01
100	0.99998	-0.00017

48

