计算机体系结构实验四 实验报告

蒋滨泽 PB18030971

一、分析分支收益和分支代价

- 1. 一个分支在没有预测的情况下发生跳转的分支代价固定为2个周期。预测成功的情况下收益为2个周期。 个周期。
- 2. 对于一个循环N次的循环体,有N-1次跳转的分支和1次不跳转的分支
 - 。 无分支预测下,分支代价为2(N-1)个周期
 - BTB预测的分支代价为2*2=4个周期(第一次跳转的分支和最后一次不跳转的分支预测错误)
 - o 2-bit BHT预测的分支代价为2*3=6个周期(前两次跳转的分支和最后一次不跳转的分支)

在较为复杂的程序测试中,BHT的综合表现要明显好于BTB。

二、统计未使用分支预测和使用分支预测的总周期数及差值,分支指令数目、动态分支预测正确次数和错误次数

注意:由于测试时启用了cache,故总周期数中存在因cache miss而导致的stall。

BHT与BTB均为256个表项,BHT为2-bit预测器。

1.btb.s

	总周期数	总分支数	预测错误数	预测成功数
无分支预测	510	101	N/A	N/A
ВТВ	314	101	2	99
BTB+BHT	316	101	3	98

无分支预测与BTB总周期数差值: +196; 与BHT总周期数差值: +194.

BTB与BHT总周期数差值: -2; 预测成功数差值: +1.

2.bht.s

	总周期数	总分支数	预测错误数	预测成功数
无分支预测	536	110	N/A	N/A
ВТВ	382	110	22	88
BTB+BHT	368	110	15	95

无分支预测与BTB总周期数差值: +154; 与BHT总周期数差值: +168.

BTB与BHT总周期数差值: +14; 预测成功数差值: -7.

3.QuickSort256.s

	总周期数	总分支数	预测错误数	预测成功数
无分支预测	37708	6950	N/A	N/A
BTB	37086	6950	1450	5500
BTB+BHT	36408	6950	391	6559

无分支预测与BTB总周期数差值: +622; 与BHT总周期数差值: +800.

BTB与BHT总周期数差值: +678; 预测成功数差值: -1059.

4.MatrixMult16.s

	总周期数	总分支数	预测错误数	预测成功数
无分支预测	115865	4624	N/A	N/A
ВТВ	108259	4624	548	4076
BTB+BHT	107727	4624	282	4324

无分支预测与BTB总周期数差值: +7606; 与BHT总周期数差值: +8138.

BTB与BHT总周期数差值: +532; 预测成功数差值: -248.

三、对比不同策略并分析以上几点的关系

从运行周期数来看,带有分支预测的CPU运行周期数要小于不带分支预测的运行周期数;BHT预测减少的周期数要多于BTB预测所减少的周期数。

在复杂程序的测试中,BHT预测的成功率要明显高于BTB预测的成功率。尤其在快排测试中,BHT的预测效果要明显优于BTB。

从分支预测的角度来看,分支预测成功次数越多,CPU运行时钟周期数越少,总体呈现正相关性,但非线性,可能是由于cache发生miss时的stall所导致。

总的来说,BHT+BTB的效果要明显好于只用BTB的预测器或者不用预测器,在实践中应该采用预测器以提升性能。