datascience_project1_data_analysis

July 15, 2018

1 Datascience Project-1 - Data Analysis

1.0.1 Brief Description of Project

- In this project, URLs for few datasets (data-text.csv, berlin_weather_oldest.csv, users.csv, products.csv, session.csv, transactions.csv) are provided which will be used for analysis
- These datasets are first loaded using read_csv from the given URL
- Next these datasets are analyzed, processed including analyzing missing data to find answers for a set of given questions.
- Each question is answered by giving brief description of solution steps, code in python and output
- For analying mainly python packages pandas, numpy are mainly used

1.1 Load Given Dataset

1.2 Solution Steps:

- Import python packages numpy, pandas
- Load dataset data-text.csv from the URL provided using pandas read_csv method and assign to dataframe df
- Load dataset berlin_weather_oldest.csv from the URL provided using pandas read_csv method and assign to dataframe df1

```
In [187]: import numpy as np
          import pandas as pd
In [188]: # Load dataset data-text.csv from the URL provided using pandas read_csv method and
         df = pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/maste
In [189]: # Display two records of dataframe df by calling head method on df
         df.head(2)
Out[189]:
                                    Indicator PUBLISH STATES Year WHO region
         O Life expectancy at birth (years)
                                                                       Europe
                                                  Published 1990
          1 Life expectancy at birth (years)
                                                  Published 2000
                                                                       Europe
            World Bank income group Country
                                                     Sex Display Value
                                                                        Numeric Low \
```

77

77.0 NaN

High-income Andorra Both sexes

```
80.0 NaN
         1
                       High-income Andorra Both sexes
                                                                   80
            High
                  Comments
             NaN
                       NaN
         1
             NaN
                       NaN
In [190]: # Load dataset berlin_weather_oldest.csv from the URL provided using pandas read_csv
         df1 = pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/master
         df1.head(2)
Out[190]:
                      STATION
                                      STATION_NAME
                                                        DATE PRCP SNWD
                                                                         SNOW
                                                                               TMAX
           GHCND:GME00111445 BERLIN TEMPELHOF GM
                                                    19310101
                                                               46 -9999 -9999 -9999
                                                              107 -9999 -9999
            GHCND:GME00111445 BERLIN TEMPELHOF GM
                                                    19310102
                                                                                 50
            TMIN WDFG PGTM
                                    WT09
                                        WT07 WT01 WT06 WT05 WT04 WT16 WT08
             -11 -9999 -9999
                                   -9999 -9999 -9999 -9999 -9999 -9999 -9999
              11 -9999 -9999
                                   -9999 -9999 -9999 -9999 -9999 -9999 -9999
            WT18 WT03
         0 -9999 -9999
         1 -9999 -9999
          [2 rows x 21 columns]
```

1.3 1. Get the Metadata from the above files.

1.4 Solution Steps:

- Invoke method info on df with verbose=True, which will give metadata for dataframe df
- Invoke method info on df1 with verbose=True, which will give metadata for dataframe df1

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
Data columns (total 12 columns):
Indicator
                            4656 non-null object
PUBLISH STATES
                            4656 non-null object
                            4656 non-null int64
Year
WHO region
                            4656 non-null object
World Bank income group
                            4656 non-null object
Country
                            4656 non-null object
Sex
                            4656 non-null object
                            4656 non-null int64
Display Value
Numeric
                            4656 non-null float64
                            0 non-null float64
Low
                            0 non-null float64
High
Comments
                            0 non-null float64
```

```
memory usage: 436.6+ KB
In [192]: # Invoke method info on df1 with verbose=True will give metadata for dataframe df1
          df1.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117208 entries, 0 to 117207
Data columns (total 21 columns):
STATION
                117208 non-null object
                117208 non-null object
STATION_NAME
                117208 non-null int64
DATE
PRCP
                117208 non-null int64
SNWD
                117208 non-null int64
                117208 non-null int64
SNOW
                117208 non-null int64
XAMT
TMIN
                117208 non-null int64
                117208 non-null int64
WDFG
PGTM
                117208 non-null int64
WSFG
                117208 non-null int64
                117208 non-null int64
WT09
WT07
                117208 non-null int64
WT01
                117208 non-null int64
                117208 non-null int64
WT06
                117208 non-null int64
WT05
                117208 non-null int64
WT04
                117208 non-null int64
WT16
                117208 non-null int64
WT08
```

dtypes: int64(19), object(2) memory usage: 18.8+ MB

1.5 2. Get the row names from the above files.

117208 non-null int64

117208 non-null int64

dtypes: float64(4), int64(2), object(6)

1.6 Solution Steps:

WT18

WT03

- Create np.array using df.index to get row names for dataframe df
- Create np.array using df1.index to get row names for dataframe df1

1.7 3. Change the column name from any of the above file.

1.8 Solution Steps:

0

- Invoke rename method on dataframe df with with a dictionary with entry having key as current Column Name "Indicator" and value as changed column name "indicator_id" and store to a temporary dataframe df_temp
- Display first two records of df_temp by calling head method with argument 2

```
In [196]: # Invoke rename method on dataframe df with with a dictionary with entry having
          # key as current Column Name "Indicator" and value as changed column name "indicator"
          # store to a temporary dataframe df_temp
         df_temp = df.rename(columns= {"Indicator":"indicator_id"})
          # Display first two records
         df_temp.head(2)
Out[196]:
                                indicator_id PUBLISH STATES Year WHO region \
         O Life expectancy at birth (years)
                                                  Published 1990
                                                                      Europe
          1 Life expectancy at birth (years)
                                                  Published 2000
                                                                      Europe
            World Bank income group Country
                                                    Sex Display Value Numeric Low
                       High-income Andorra Both sexes
         0
                                                                    77
                                                                           77.0 NaN
          1
                       High-income Andorra Both sexes
                                                                    80
                                                                           80.0 NaN
            High Comments
         0
             NaN
                       NaN
          1
                       NaN
             NaN
```

1.9 4. Change the column name from any of the above file and store the changes made permanently.

- Invoke rename method on dataframe df with a dictionary with entry having key as current Column Name "Indicator" and value as changed column name "indicator_id"
- To persist permanently pass inplace=True while invoking rename method on df

```
In [197]: # Invoke rename method on dataframe df with with a dictionary columns with entry hav
          # current Column Name "Indicator" and value as changed column name "indicator_id"
          # To persist permanently pass inplace=True while invoking rename method on df
         df.rename(columns= {"Indicator":"indicator_id"}, inplace=True)
In [198]: # Display first two records
         df.head(2)
Out[198]:
                                indicator_id PUBLISH STATES Year WHO region \
         O Life expectancy at birth (years)
                                                                      Europe
                                                  Published 1990
          1 Life expectancy at birth (years)
                                                                      Europe
                                                  Published 2000
           World Bank income group Country
                                                    Sex Display Value Numeric Low \
```

77

77.0 NaN

High-income Andorra Both sexes

```
High-income Andorra Both sexes 80 80.0 NaN
High Comments
NaN NaN
NaN
```

1.10 5. Change the names of multiple columns.

1.11 Solution Steps:

- Invoke rename method on dataframe df with with a dictionary columns with two entries, first entry having key as existing Column Name "PUBLISH STATES" and value as changed column name "Publication Status", second entry having key as existing Column Name "WHO region" and value as changed Column Name "WHO Region"
- To persist permanently pass inplace=True while invoking rename method on df

```
In [199]: # Invoke rename method on dataframe df with with a dictionary columns with two entri
          # first entry having key as existing Column Name "PUBLISH STATES" and value as chang
          # "Publication Status", second entry having key as existing Column Name "WHO region"
          # changed Column Name "WHO Region"
         df.rename(columns= {"PUBLISH STATES": "Publication Status", "WHO region": "WHO Region
In [201]: df.head(2)
Out [201]:
                                 indicator_id Publication Status Year WHO Region \
         O Life expectancy at birth (years)
                                                      Published 1990
                                                                           Europe
          1 Life expectancy at birth (years)
                                                      Published 2000
                                                                           Europe
           World Bank income group Country
                                                     Sex Display Value
                                                                        Numeric Low
         0
                       High-income Andorra Both sexes
                                                                     77
                                                                            77.0
                                                                                  NaN
          1
                       High-income Andorra Both sexes
                                                                     80
                                                                            80.0 NaN
             High
                  Comments
             NaN
                        NaN
         1
             NaN
                        NaN
```

1.12 6. Arrange values of a particular column in ascending order.

1.13 Solution Steps:

- Invoke sort_values on dataframe df passing 'Year' as column to sort and ascending=True
- Call head method to display first 5 records

3193 3194 3197	Life ex	pecta	ncy at	bir	th (years) th (years) 60 (years))		Publisl Publisl Publisl	hed	19: 19: 19:	90 I	Europe Europe Europe	
	World Ban	k inc	ome gr	oup			Country		Se	ex	Display	7 Value	\
0		Hi	gh-inc	ome			Andorra	Both	sexe	es		77	
1270	High-income				Germany		Mal	Le		72			
3193	Lower-middle-income Republic of			of	Moldova		Mal	Le		65			
3194	Lower-middle-income Republic of			of	Moldova	Both	sexe	es		68			
3197	Lower	-midd	le-inc	ome	Republic	of	Moldova		Mal	Le		15	
	Numeric	Low	High	Com	ments								
0	77.0	NaN	NaN		NaN								
1270	72.0	NaN	${\tt NaN}$		NaN								
3193	65.0	NaN	${\tt NaN}$		NaN								
3194	68.0	NaN	${\tt NaN}$		NaN								
3197	15.0	NaN	${\tt NaN}$		NaN								

1.14 7. Arrange multiple column values in ascending order.

1.15 Solution Steps:

- Invoke sort_values on dataframe df passing list of columns 'indicator_id','Country','Year',
 'WHO Region', 'Publication Status' as column to sort and ascending=False for 'indicator_id'
 for rest of columns ascending=True and assign to dataframe df_temp
- Display only list of columns 'indicator_id','Country','Year', 'WHO Region', 'Publication Status'
- Call head method to display first 3 records on df_temp

1792 Life expectancy at birth (years)

 NOTE: There are few differences between output in this project and given output in project requirement, as if we make 'indicator_id' as ascending it will never match with Life expectancy, so I made with ascending=False, while rest of columns I have made ascending=True but still fields like 'Country', 'Year', 'WHO Region' will not match but I tried to keep as close output as possible

Afghanistan 1990

		WHO Region	Publication Status
554	${\tt Eastern}$	${\tt Mediterranean}$	Published
965	${\tt Eastern}$	${\tt Mediterranean}$	Published
1792	${\tt Eastern}$	${\tt Mediterranean}$	Published

1.16 8. Make country as the first column of the dataframe.

1.17 Steps:

- Get list of column values from dataframe df and store into current_column_list
- Remove "Country" column from the current column list
- Insert "Country" as first column into the current_column_list
- Get first few records of df with columns as current_column_list

```
In [204]: # Get list of column values from dataframe df and store into current_column_list
          current column list = df.columns.values.tolist()
          # Remove "Country" column from the current_column_list
          current_column_list.remove("Country")
          # Insert "Country" as first column into the current_column_list
          current_column_list.insert(0, "Country")
          # Get first few records of df with columns as current_column_list
          df[current_column_list].head()
                                                         indicator_id Publication Status
Out[204]:
                          Country
                                    Life expectancy at birth (years)
          0
                          Andorra
                                                                                Published
          1
                          Andorra
                                    Life expectancy at birth (years)
                                                                               Published
                          Andorra Life expectancy at age 60 (years)
          2
                                                                               Published
          3
                          Andorra Life expectancy at age 60 (years)
                                                                               Published
             United Arab Emirates
                                    Life expectancy at birth (years)
                                                                               Published
             Year
                              WHO Region World Bank income group
                                                                          Sex \
                                  Europe
          0 1990
                                                      High-income
                                                                   Both sexes
          1
             2000
                                  Europe
                                                      High-income
                                                                   Both sexes
          2
             2012
                                  Europe
                                                                       Female
                                                      High-income
             2000
          3
                                  Europe
                                                      High-income
                                                                   Both sexes
             2012 Eastern Mediterranean
                                                      High-income
                                                                       Female
             Display Value
                                          High
                                                 Comments
                            Numeric Low
          0
                        77
                               77.0 NaN
                                            NaN
                                                      NaN
          1
                        80
                               80.0 NaN
                                            NaN
                                                      NaN
          2
                        28
                               28.0 NaN
                                            NaN
                                                      NaN
          3
                        23
                               23.0 NaN
                                            NaN
                                                      NaN
                        78
                               78.0 NaN
                                                      NaN
```

1.18 9. Get the column array using a variable

1.19 Solution Steps:

• Create a np.array on only column 'WHO Region' of dataframe df

1.20 10. Get the subset rows 11, 24, 37

1.21 Solution Steps:

• Call iloc on dataframe df passign list of indexes 11, 24, 37

```
In [206]: # Call iloc on dataframe df passign list of indexes 11, 24, 37
          df.iloc[[11, 24, 37]]
Out [206]:
                                   indicator_id Publication Status Year \
               Life expectancy at birth (years)
                                                       Published 2012
          24 Life expectancy at age 60 (years)
                                                       Published 2012
          37 Life expectancy at age 60 (years)
                                                       Published 2012
                   WHO Region World Bank income group
                                                                 Country
                                                                             Sex \
                       Europe
                                          High-income
                                                                 Austria Female
          11
          24 Western Pacific
                                          High-income Brunei Darussalam Female
          37
                      Europe
                                          High-income
                                                                  Cyprus Female
             Display Value Numeric Low High Comments
          11
                                83.0 NaN
                                            {\tt NaN}
                         83
                                                      NaN
                                21.0 NaN
          24
                         21
                                            NaN
                                                      NaN
                                26.0 NaN
          37
                         26
                                            {\tt NaN}
                                                      NaN
```

1.22 11. Get the subset rows excluding 5, 12, 23, and 56

1.23 Solution Steps:

Exclude indexes 5,12,23,56 by calling drop method on dataframe df and passing these indexes

```
In [207]: # Exclude indexes 5,12,23,56 by calling drop method on dataframe df and passing thes df.drop(df.index[[5, 12, 23, 56]])
```

4			Life expe	ectancy	at birth	(years)	Publish	ned
6			Life expec	tancy a	t age 60	(years)	Publish	ned
7			Life expec	tancy a	t age 60	(years)	Publish	ıed
8			Life expe	ctancy	at birth	(years)	Publish	ıed
9			Life expe	ctancy	at birth	(years)	Publish	ıed
10			Life expe	ctancy	at birth	(years)	Publish	ned
11			Life expe	ectancy	at birth	(years)	Publish	ıed
13			Life expe	ectancy	at birth	(years)	Publish	ıed
14			Life expe	ectancy	at birth	(years)	Publish	ıed
15			Life expe	ectancy	at birth	(years)	Publish	ıed
16			Life expec	tancy a	it age 60	(years)	Publish	ıed
17			Life expe	-		•	Publish	ıed
18			Life expec	tancy a	it age 60	(years)	Publish	ıed
19			Life expe	ectancy	at birth	(years)	Publish	ıed
20			Life expec	tancy a	it age 60	(years)	Publish	ıed
21			Life expec	tancy a	it age 60	(years)	Publish	ıed
22			Life expec	tancy a	it age 60	(years)	Publish	ıed
24			Life expec	tancy a	it age 60	(years)	Publish	ıed
25			Life expe	ectancy	at birth	(years)	Publish	ıed
26			Life expec	tancy a	it age 60	(years)	Publish	ıed
27			Life expec	tancy a	it age 60	(years)	Publish	ıed
28			Life expe	ectancy	at birth	(years)	Publish	ıed
29			Life expe	ectancy	at birth	(years)	Publish	ıed
30			Life expec	tancy a	it age 60	(years)	Publish	ıed
31			Life expe	ectancy	at birth	(years)	Publish	ıed
32			Life expec	tancy a	it age 60	(years)	Publish	ıed
4626	•		expectancy			•	Publish	ıed
4627	•		expectancy			•	Publish	ıed
4628	Ü		expectancy			v	Publish	ıed
4629	•		expectancy			•	Publish	ıed
4630	•		expectancy			•	Publish	
4631	•		expectancy			•		
4632	•		expectancy			•		
4633	•		expectancy			•		
	•		expectancy			•		
4635	•		expectancy			•		
4636	•		expectancy			•		
4637	•		expectancy			•		
4638	•		expectancy			•		
4639	•		expectancy			•		
4640	•		expectancy			•		
4641	-		${\tt expectancy}$			-		
4642	•		expectancy			•		
4643	•		expectancy			•		
4644	•		expectancy			•		
4645	•		expectancy			•		
4646	Healthy	life	expectancy	(HALE)	at birth	(years)	Publish	ıed

```
4647
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4648
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4649
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4650
      Healthy life expectancy (HALE) at birth (years)
4651
                                                                  Published
4652
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4653
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4654
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
      Healthy life expectancy (HALE) at birth (years)
                                                                  Published
4655
      Year
                        WHO Region World Bank income group
0
      1990
                            Europe
                                                High-income
1
      2000
                            Europe
                                                High-income
2
      2012
                            Europe
                                                High-income
3
      2000
                            Europe
                                                High-income
4
      2012
            Eastern Mediterranean
                                                High-income
6
      1990
                          Americas
                                                High-income
7
      2012
                          Americas
                                                High-income
8
      2012
                   Western Pacific
                                                High-income
9
      2000
                   Western Pacific
                                                High-income
10
      2012
                   Western Pacific
                                                High-income
11
      2012
                            Europe
                                                High-income
13
      2012
                            Europe
                                                High-income
14
      2000
            Eastern Mediterranean
                                                High-income
15
      1990
            Eastern Mediterranean
                                                High-income
            Eastern Mediterranean
16
      1990
                                                High-income
17
      2012
                          Americas
                                                High-income
18
      2000
                          Americas
                                                High-income
19
      1990
                          Americas
                                                High-income
20
      2012
                          Americas
                                                High-income
21
      2012
                          Americas
                                                High-income
22
      1990
                   Western Pacific
                                                High-income
24
      2012
                   Western Pacific
                                                High-income
25
      2000
                          Americas
                                                High-income
26
      2000
                          Americas
                                                High-income
27
      1990
                          Americas
                                                High-income
28
      1990
                            Europe
                                                High-income
29
      2012
                            Europe
                                                High-income
30
      2000
                            Europe
                                                High-income
31
      2012
                   Western Pacific
                                                High-income
32
      2012
                   Western Pacific
                                                High-income
       . . .
4626
      2012
                            Europe
                                        Upper-middle-income
4627
      2012
                          Americas
                                        Upper-middle-income
4628
      2012
                            Europe
                                                High-income
4629
      2012
                            Africa
                                        Lower-middle-income
4630
      2000
                            Africa
                                        Upper-middle-income
4631
      2000
            Eastern Mediterranean
                                        Lower-middle-income
```

4632	2012	Africa		Low-in	come		
4633	2000	South-East Asia	Low	er-middle-in	come		
4634	2000	South-East Asia	Low	er-middle-in	come		
4635	2000	Europe		Low-in	come		
4636	2012	Europe		Low-in	come		
4637	2012	Western Pacific	Low	er-middle-in	come		
4638	2012	Americas		High-in	come		
4639	2012	Americas		High-in	come		
4640	2000	Eastern Mediterranean	Low	er-middle-in	come		
4641	2012	Western Pacific	Upp	er-middle-in	come		
4642	2000	Africa		Low-in	come		
4643	2000	Europe	Low	er-middle-in	come		
4644	2012	Americas	Upp	er-middle-in	come		
4645	2012	Americas	Upp	er-middle-in	come		
4646	2012	Americas	Upp	er-middle-in	come		
4647	2000	Americas	Upp	er-middle-in	come		
4648	2012	Americas	Upp	er-middle-in	come		
4649	2000	Western Pacific	Low	er-middle-in	come		
4650	2012	Western Pacific	Low	er-middle-in	come		
4651	2012	Western Pacific	Low	er-middle-in	come		
4652	2012	Eastern Mediterranean		Low-in	come		
4653	2000	Africa	Upp	er-middle-in	come		
4654	2000	Africa		Low-in	come		
4655	2012	Africa		Low-in	come		
		Coun	try	Sex	Display Value	Numeric	\
0		Ando		Both sexes	77	77.0	
1		Ando		Both sexes	80	80.0	
2		Ando		Female	28	28.0	
3		Ando		Both sexes	23	23.0	
4		United Arab Emira		Female	78	78.0	
6		Antigua and Barb		Male	17	17.0	
7		Antigua and Barb		Both sexes	22	22.0	
8		Austra		Male	81	81.0	
9		Austra		Both sexes	80	80.0	
10		Austra		Both sexes	83	83.0	
11		Aust		Female	83	83.0	
13		Belg		Female	83	83.0	
14		Bahr		Male	73	73.0	
15		Bahr		Female	74	74.0	
16		Bahr		Male	17	17.0	
17		Baha		Male	72	72.0	
18		Baha		Both sexes	21	21.0	
19		Barba		Male	71	71.0	
20		Barba	dos	Female	25	25.0	
21		Barba	dos	Both sexes	23	23.0	
22		Brunei Darussa	lam	Female	20	20.0	
24		Brunei Darussa	lam	Female	21	21.0	

25	Canada	Female	82	82.0
26	Canada	Male	21	21.0
27	Canada	Female	24	24.0
28	Switzerland	Male	74	74.0
29	Switzerland	Both sexes	83	83.0
30	Switzerland	Both sexes	23	23.0
31	Cook Islands	Both sexes	76	76.0
32	Cook Islands	Female	22	22.0
	•••			
4626	Serbia	Female	67	67.0
4627	Suriname	Both sexes	66	66.0
4628	Sweden	Both sexes	72	72.0
4629	Swaziland	Female	47	47.0
4630	Seychelles	Male	61	61.0
4631	Syrian Arab Republic	Female	64	64.0
4632	Chad	Female	44	44.0
4633	Thailand	Male	59	59.0
4634	Thailand	Female	65	65.0
4635	Tajikistan	Both sexes	56	56.0
4636	Tajikistan	Female	60	60.0
4637	Tonga	Female	61	61.0
4638	Trinidad and Tobago	Female	64	64.0
4639	Trinidad and Tobago	Both sexes	61	61.0
4640	Tunisia	Male	63	63.0
4641	Tuvalu	Male	57	57.0
4642	Uganda	Female	40	40.0
4643	Ukraine	Both sexes	60	60.0
4644	Uruguay	Male	65	65.0
4645	Uruguay	Female	70	70.0
4646	Uruguay	Both sexes	68	68.0
4647	Saint Vincent and the Grenadines	Both sexes	61	61.0
4648	Venezuela (Bolivarian Republic of)	Both sexes	66	66.0
4649	Vanuatu	Male	59	59.0
4650	Samoa	Male	62	62.0
4651	Samoa	Female	66	66.0
4652	Yemen	Both sexes	54	54.0
4653	South Africa	Male	49	49.0
4654	Zambia	Both sexes	36	36.0
4655	Zimbabwe	Female	51	51.0
	I II I G			
0	Low High Comments			
0	NaN NaN NaN			
1	NaN NaN NaN			
2	NaN NaN NaN			

NaN

NaN

NaN

NaN

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

NaN

3

4

6

7

8	NaN	NaN	NaN
9	NaN	NaN	NaN
10	NaN	NaN	NaN
11	NaN	NaN	NaN
13	NaN	NaN	NaN
14	NaN	NaN	NaN
15	NaN	NaN	NaN
16	NaN	NaN	NaN
17	NaN	NaN	NaN
18	NaN	NaN	NaN
19	NaN	NaN	NaN
20	NaN	NaN	NaN
21	NaN	NaN	NaN
22	NaN	NaN	NaN
24	NaN	NaN	NaN
25	NaN	NaN	NaN
26	NaN	NaN	NaN
27	NaN	NaN	NaN
28	NaN	NaN	NaN
29	NaN	NaN	NaN
30	NaN	NaN	NaN
31	NaN	NaN	NaN
32	NaN	NaN	NaN
4626	NaN	NaN	NaN
4627	NaN	NaN	NaN
4628	NaN	NaN	NaN
4629	NaN	NaN	NaN
4630	NaN	NaN	NaN
4631	NaN	NaN	NaN
4632	NaN	NaN	NaN
4633	NaN	NaN	NaN
4634	NaN	NaN	NaN
4635	NaN	NaN	NaN
4636	NaN	NaN	NaN
4637	NaN	NaN	NaN
4638	NaN	NaN	NaN
4639	NaN	NaN	NaN
4640	NaN	NaN	NaN
4641	NaN	NaN	NaN
4642	NaN	NaN	NaN
4643	NaN	NaN	NaN
4644	NaN	NaN	NaN
4645	NaN	NaN	NaN
4646	NaN	NaN	NaN
4647	NaN	NaN	NaN
4648	NaN	NaN	NaN
4649	NaN	NaN	NaN

```
4650
                         NaN
      NaN
             NaN
4651
      NaN
             NaN
                        NaN
4652
             NaN
                        NaN
      NaN
4653
      NaN
             NaN
                        NaN
4654
      NaN
             NaN
                        NaN
4655
      NaN
             NaN
                        NaN
```

[4652 rows x 12 columns]

1.24 Load datasets from CSV

1.25 Solution steps

- Load users dataframe by calling pandas_csv method and calling the URL provided
- Load sessions dataframe by calling pandas_csv method and calling the URL provided
- Load products dataframe by calling pandas_csv method and calling the URL provided
- Load transactions dataframe by calling pandas_csv method and calling the URL provided

```
In [208]: # Load users dataframe by calling pandas_csv method and calling the URL provided
          users = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/De
In [209]: # Load sessions dataframe by calling pandas_csv method and calling the URL provided
          sessions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master
In [210]: # Load products dataframe by calling pandas_csv method and calling the URL provided
          products = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master
In [211]: # Load transactions dataframe by calling pandas_csv method and calling the URL provi
          transactions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/me
In [212]: # Display first 5 records of users by calling head method on users
          users.head()
Out [212]:
             UserID
                         User
                               Gender
                                       Registered
                                                     Cancelled
          0
                  1
                      Charles
                                 male
                                       2012-12-21
                                                           NaN
          1
                  2
                        Pedro
                                 male 2010-08-01
                                                   2010-08-08
```

```
0 1 Charles male 2012-12-21 NaN
1 2 Pedro male 2010-08-01 2010-08-08
2 3 Caroline female 2012-10-23 2016-06-07
3 4 Brielle female 2013-07-17 NaN
4 5 Benjamin male 2010-11-25 NaN
```

In [213]: # Display first 5 records of users by calling head method on sessions sessions.head()

```
Out [213]:
             SessionID SessionDate
          0
                      1 2010-01-05
                                           2
                     2 2010-08-01
                                          2
          1
          2
                     3 2010-11-25
                                          2
          3
                      4 2011-09-21
                                          5
          4
                      5 2011-10-19
                                          4
```

In [214]: # Display first 5 records of users by calling head method on transactions transactions.head()

Out[214]:	${\tt TransactionID}$	${\tt TransactionDate}$	UserID	${\tt ProductID}$	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1

1.26 12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join)

1.27 Solution:

• Perform left join on transactions dataframe and users dataframe so that all all rows from transactions are kept and only matching rows from users using pandas merge method

In [216]: # Perform left join on transactions dataframe and users dataframe so that all all # from transactions are kept and only matching rows from users using pandas merge me pd.merge(transactions, users, how='left')

\	User	Quantity	${\tt ProductID}$	UserID	${\tt TransactionDate}$	TransactionID	Out[216]:
	NaN	1	2	7	2010-08-21	1	0
	Caroline	1	4	3	2011-05-26	2	1
	Caroline	1	3	3	2011-06-16	3	2
	Charles	3	2	1	2012-08-26	4	3
	Pedro	1	4	2	2013-06-06	5	4
	Pedro	6	5	2	2013-12-23	6	5
	Caroline	1	4	3	2013-12-30	7	6
	NaN	3	2	NaN	2014-04-24	8	7
	NaN	3	4	7	2015-04-24	9	8
	Caroline	4	4	3	2016-05-08	10	9

Cancelled	Registered	Gender	
NaN	NaN	NaN	0
2016-06-07	2012-10-23	female	1
2016-06-07	2012-10-23	female	2
NaN	2012-12-21	male	3

```
4 male 2010-08-01 2010-08-08
5 male 2010-08-01 2010-08-08
6 female 2012-10-23 2016-06-07
7 NaN NaN NaN NaN
8 NaN NaN NaN
9 female 2012-10-23 2016-06-07
```

1.28 13. Which transactions have a UserID not in users?

1.29 Solution Steps:

• Apply a filter on transactions dataframe, where column 'UserID' in transactions dataframe is not in column 'UserID' in users dataframe

```
In [217]: # Apply a filter on transactions dataframe, here column 'UserID' in transactions dat
          # is not in column 'UserID' in users dataframe
          transactions[~transactions['UserID'].isin(users['UserID'])]
Out [217]:
             TransactionID TransactionDate UserID ProductID Quantity
                         1
                                2010-08-21
                                               7.0
                                                                      1
          0
          7
                                                            2
                         8
                                2014-04-24
                                               NaN
                                                                      3
                                                                      3
          8
                         9
                                2015-04-24
                                               7.0
```

2 14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)

2.1 Solution Steps:

• Using pandas merge method perform inner join between dataframes transactions and users with 'UserID' as common field beween these dataframes

```
In [218]: # Using pandas merge method perform inner join between dataframes transactions and u
          # with 'UserID' as common field beween these dataframes
          pd.merge(transactions, users, how='inner', on=['UserID'])
Out [218]:
                                                               Quantity
             TransactionID TransactionDate UserID ProductID
                                                                             User \
                         2
          0
                                2011-05-26
                                                 3
                                                            4
                                                                      1 Caroline
          1
                         3
                                2011-06-16
                                                 3
                                                            3
                                                                      1 Caroline
          2
                         7
                                                 3
                                                            4
                                2013-12-30
                                                                      1 Caroline
          3
                        10
                                2016-05-08
                                                 3
                                                            4
                                                                      4 Caroline
          4
                         4
                                2012-08-26
                                                 1
                                                            2
                                                                      3
                                                                          Charles
          5
                         5
                                                 2
                                2013-06-06
                                                                      1
                                                                            Pedro
                                                 2
          6
                         6
                                2013-12-23
                                                                            Pedro
```

```
Gender Registered Cancelled
0 female 2012-10-23 2016-06-07
1 female 2012-10-23 2016-06-07
2 female 2012-10-23 2016-06-07
3 female 2012-10-23 2016-06-07
```

```
4 male 2012-12-21 NaN 5 male 2010-08-01 2010-08-08 6 male 2010-08-01 2010-08-08
```

2.2 15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)

2.3 Steps:

• Using pandas merge method perform full outer join between transactions and users dataframe

-	Ŭ							
Out[219]:	Transac	tionID Tr	ansactionDate	UserID	ProductID	Quantity	User	\
0		1.0	2010-08-21	7.0	2.0	1.0	NaN	
1		9.0	2015-04-24	7.0	4.0	3.0	NaN	
2		2.0	2011-05-26	3.0	4.0	1.0	Caroline	
3		3.0	2011-06-16	3.0	3.0	1.0	Caroline	
4		7.0	2013-12-30	3.0	4.0	1.0	Caroline	
5		10.0	2016-05-08	3.0	4.0	4.0	Caroline	
6		4.0	2012-08-26	1.0	2.0	3.0	Charles	
7		5.0	2013-06-06	2.0	4.0	1.0	Pedro	
8		6.0	2013-12-23	2.0	5.0	6.0	Pedro	
9		8.0	2014-04-24	NaN	2.0	3.0	NaN	
10	1	NaN	NaN	4.0	NaN	NaN	Brielle	
11		NaN	NaN	5.0	NaN	NaN	Benjamin	
	Gender	Register	ed Cancelled	l				
0	NaN	N	aN NaN	Ī				
1	NaN	N	aN NaN	Ī				

		0	
0	NaN	NaN	NaN
1	NaN	NaN	NaN
2	female	2012-10-23	2016-06-07
3	female	2012-10-23	2016-06-07
4	female	2012-10-23	2016-06-07
5	female	2012-10-23	2016-06-07
6	male	2012-12-21	NaN
7	male	2010-08-01	2010-08-08
8	male	2010-08-01	2010-08-08
9	NaN	NaN	NaN
10	female	2013-07-17	NaN
11	male	2010-11-25	NaN

2.4 16. Determine which sessions occurred on the same day each user registered

2.5 Solution Steps:

 Perform inner join on dataframes users, sessions by joining on common field UserID and 'Registered' fiedl on users dataframe with 'SessionDate' on sessions dataframe using pandas merge method

```
In [220]: # Perform inner join on dataframes users, sessions by joining on common field 'User I.
          # and 'Registered' fiedl on users dataframe with 'SessionDate' on sessions dataframe
          # using pandas merge method
          pd.merge(users, sessions, how='inner', left_on=['UserID', 'Registered'], right_on=[''
Out [220]:
             UserID
                       User Gender Registered
                                                   Cancelled SessionID SessionDate
                       Pedro
                                male 2010-08-01
                                                  2010-08-08
                                                                      2 2010-08-01
          1
                  4 Brielle female 2013-07-17
                                                                      9 2013-07-17
                                                         NaN
```

2.6 17. Build a dataset with every possible (UserID, ProductID) pair (cross join)

3 Solution Steps:

3

4

5

1

1 2

4

5

1

- Create a new pandas dataframe users_temp_df from the 'UserID' column of users dataframe
- Create a new pandas dataframe products_temp_df from the 'ProductID' column of products dataframe
- To perform outer join a dummy common column 'key' is added to both the dataframes users_temp_df, products_temp_df
- Add a dummy column key to products_temp_df and initialize its value to 0
- Add a dummy column key to products_temp_df and initialize its value to 0
- Do full outer join on dataframes users_temp_df, products_temp_df using padas merge and take only columns "UserID", "ProductID" and assign the result to dataframe user_id_product_id_df

```
In [221]: # Create a new pandas dataframe users_temp_df from the 'UserID' column of users data
                                users_temp_df = pd.DataFrame(users['UserID'])
                                \# Create a new pandas dataframe products_temp_df from the 'ProductID' column of products_temp_df from the 'Products_temp_df from the 'Products_temp_df from the 'Products_t
                                products_temp_df = pd.DataFrame(products['ProductID'])
                                 # To perform outer join a dummy common column 'key' is added to both the dataframes
                                 # Add a dummy column key to products_temp_df and initialize its value to O
                                 # Add a dummy column key to products\_temp\_df and initialize its value to O
                                users_temp_df['key'] = 0
                                products_temp_df['key'] = 0
                                 \# Do full outer join on dataframes users_temp_df, products_temp_df using padas merge
                                 # take only columns "UserID", "ProductID" and assign the result to dataframe user_id
                                user_id_product_id_df = pd.merge(users_temp_df, products_temp_df, how='outer')[["Use."]
                                user_id_product_id_df
Out[221]:
                                             UserID ProductID
                                0
                                                             1
                                1
                                                                                                 2
                                                             1
                                2
                                                             1
                                                                                                 3
```

6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3
23	5	4
24	5	5

3.1 18. Determine how much quantity of each product was purchased by each user

3.2 Solution Steps:

- Perform left join on user_id_product_id_df, transactions dataframe using fields 'UserID', 'ProductID' using pandas merge method
- Perform sum on Quatity column of user_product_transation_df group by 'UserID', 'ProductID'

Out[222]:		UserID	${\tt ProductID}$	Quantity
	0	1	1	0.0
	1	1	2	3.0
	2	1	3	0.0
	3	1	4	0.0
	4	1	5	0.0
	5	2	1	0.0
	6	2	2	0.0
	7	2	3	0.0
	8	2	4	1.0
	9	2	5	6.0
	10	3	1	0.0
	11	3	2	0.0
	12	3	3	1.0

13	3	4	6.0
14	3	5	0.0
15	4	1	0.0
16	4	2	0.0
17	4	3	0.0
18	4	4	0.0
19	4	5	0.0
20	5	1	0.0
21	5	2	0.0
22	5	3	0.0
23	5	4	0.0
24	5	5	0.0

3.3 19. For each user, get each possible pair of pair transactions (TransactionID1,TransacationID2)

3.4 Solution Steps:

• Perform full outer self join on same transactions dataframe twice on column 'UserID' using merge method of pandas

In [223]: # Perform full outer self join on same transactions dataframe twice on column 'UserI pd.merge(transactions, transactions, how='outer', on=['UserID'])

Out[223]:	${\tt TransactionID_x}$	TransactionDate_x	UserID	${\tt ProductID_x}$	$Quantity_x$	\
0	1	2010-08-21	7.0	2	1	
1	1	2010-08-21	7.0	2	1	
2	9	2015-04-24	7.0	4	3	
3	9	2015-04-24	7.0	4	3	
4	2	2011-05-26	3.0	4	1	
5	2	2011-05-26	3.0	4	1	
6	2	2011-05-26	3.0	4	1	
7	2	2011-05-26	3.0	4	1	
8	3	2011-06-16	3.0	3	1	
9	3	2011-06-16	3.0	3	1	
10	3	2011-06-16	3.0	3	1	
11	3	2011-06-16	3.0	3	1	
12	7	2013-12-30	3.0	4	1	
13	7	2013-12-30	3.0	4	1	
14	7	2013-12-30	3.0	4	1	
15	7	2013-12-30	3.0	4	1	
16	10	2016-05-08	3.0	4	4	
17	10	2016-05-08	3.0	4	4	
18	10	2016-05-08	3.0	4	4	
19	10	2016-05-08	3.0	4	4	
20	4	2012-08-26	1.0	2	3	
21	5	2013-06-06	2.0	4	1	
22	5	2013-06-06	2.0	4	1	
23	6	2013-12-23	2.0	5	6	

24	6	2013-12-23	2.0	5	6
25	8	2014-04-24	NaN	2	3
	${\tt TransactionID_y}$	<pre>TransactionDate_y</pre>	ProductID_y	${\tt Quantity_y}$	
0	1	2010-08-21	2	1	
1	9	2015-04-24	4	3	
2	1	2010-08-21	2	1	
3	9	2015-04-24	4	3	
4	2	2011-05-26	4	1	
5	3	2011-06-16	3	1	
6	7	2013-12-30	4	1	
7	10	2016-05-08	4	4	
8	2	2011-05-26	4	1	
9	3	2011-06-16	3	1	
10	7	2013-12-30	4	1	
11	10	2016-05-08	4	4	
12	2	2011-05-26	4	1	
13	3	2011-06-16	3	1	
14	7	2013-12-30	4	1	
15	10	2016-05-08	4	4	
16	2	2011-05-26	4	1	
17	3	2011-06-16	3	1	
18	7	2013-12-30	4	1	
19	10	2016-05-08	4	4	
20	4	2012-08-26	2	3	
21	5	2013-06-06	4	1	
22	6	2013-12-23	5	6	
23	5	2013-06-06	4	1	
24	6	2013-12-23	5	6	
25	8	2014-04-24	2	3	

3.5 20. Join each user to his/her first occuring transaction in the transactions table

3.6 Solution Steps:

- Get the list of indexes from minimum value of TransactionID by Group transactions dataframe based on UserID column
- Get the records for the transaction for list of indexes found above and assign to dataframe first_transacton_df
- For the UserID column first_transacton_df apply lambda expression of converting to integer. This is needed while joining with dataframe users as by default UserID column in first_transacton_df becomes float type
- Left join users and first_transacton_df dataframes based on common column 'UserID' using pandas merge method

In [167]: # Get the list of indexes from minimum value of TransactionID by Group transactions
Get the records for the transaction for list of indexes found above and assign to
first_transacton_df = transactions.loc[transactions.groupby(["UserID"], as_index=Falsactions.groupby("UserID"])

```
\# For the UserID column first_transacton_df apply lambda expression of converting to
          # This is needed while joining with dataframe users, as by default values in UserID
          # in first_transacton_df becomes float type
          first_transacton_df["UserID"] = first_transacton_df["UserID"].apply(lambda x: int(x)
          # Display first_transacton_df
          first_transacton_df
Out [167]:
             TransactionID TransactionDate UserID ProductID
                         4
                                2012-08-26
                                                  1
          4
                         5
                                2013-06-06
                                                  2
                                                             4
                                                                       1
          1
                         2
                                2011-05-26
                                                  3
                                                             4
                                                                       1
          0
                         1
                                2010-08-21
                                                  7
                                                             2
                                                                       1
In [165]: # Left join users and first_transacton_df dataframes based on common column 'UserID'
          # using pandas merge method
          # Note: UserID 7 on first_transacton_df does not show up in the data as there is no
          # UserID in users table, this is likely to be a invalid data
          pd.merge(users, first_transacton_df, how='left', on='UserID')
Out[165]:
             UserID
                         User
                              Gender Registered
                                                     Cancelled TransactionID \
                  1
                      Charles
                                 male 2012-12-21
                                                           NaN
                                                                          4.0
          1
                  2
                        Pedro
                                 male 2010-08-01 2010-08-08
                                                                          5.0
                  3 Caroline female 2012-10-23 2016-06-07
                                                                          2.0
                      Brielle female 2013-07-17
          3
                                                           {\tt NaN}
                                                                          NaN
                                 male 2010-11-25
                  5 Benjamin
                                                           {\tt NaN}
                                                                          NaN
            TransactionDate ProductID Quantity
          0
                 2012-08-26
                                   2.0
                                              3.0
          1
                 2013-06-06
                                   4.0
                                              1.0
          2
                 2011-05-26
                                   4.0
                                              1.0
          3
                        NaN
                                              NaN
                                   NaN
          4
                        NaN
                                   NaN
                                              NaN
```

3.7 21. Test to see if we can drop columns

3.8 Solution Steps:

- Left join users and transactions dataframes using pands merge method and assign the result to dataframe data
- Get list of columns of data and display them
- Set threshold to drop NAs in data
- Find and display columns in data which has missing values
- Find and Display number of missing values in each column
- Find and Display percentage of missing values in each column

Display data data

```
Out [224]:
            UserID
                        User Gender Registered
                                                   Cancelled TransactionID \
          0
                 1
                     Charles
                                male 2012-12-21
                                                          NaN
                                                                         4.0
          1
                 2
                       Pedro
                                male 2010-08-01 2010-08-08
                                                                         5.0
          2
                 2
                       Pedro
                                male 2010-08-01 2010-08-08
                                                                         6.0
          3
                 3 Caroline female 2012-10-23
                                                                         2.0
                                                  2016-06-07
          4
                 3 Caroline female 2012-10-23
                                                                         3.0
                                                  2016-06-07
          5
                 3 Caroline female 2012-10-23
                                                  2016-06-07
                                                                         7.0
          6
                 3 Caroline female 2012-10-23
                                                  2016-06-07
                                                                        10.0
          7
                 4
                    Brielle female 2013-07-17
                                                                         NaN
                                                          NaN
          8
                 5 Benjamin
                                male 2010-11-25
                                                          NaN
                                                                         {\tt NaN}
            TransactionDate ProductID
                                        Quantity
          0
                 2012-08-26
                                   2.0
                                             3.0
                                   4.0
          1
                                             1.0
                 2013-06-06
          2
                                   5.0
                 2013-12-23
                                             6.0
                 2011-05-26
                                   4.0
                                             1.0
          4
                 2011-06-16
                                   3.0
                                             1.0
          5
                                   4.0
                                             1.0
                 2013-12-30
                                   4.0
                                             4.0
          6
                 2016-05-08
          7
                        NaN
                                   NaN
                                             NaN
          8
                        NaN
                                   {\tt NaN}
                                             NaN
In [158]: # Get list of columns of data and display them
          my_columns = list(data.columns)
          my_columns
Out[158]: ['UserID',
           'User',
           'Gender',
           'Registered',
           'Cancelled',
           'TransactionID',
           'TransactionDate',
           'ProductID',
           'Quantity']
In [225]: #set threshold to drop NAs
          list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns)
Out[225]: ['UserID', 'User', 'Gender', 'Registered']
In [226]: # Find and display columns in data which has missing values
          missing_info = list(data.columns[data.isnull().any()])
          missing_info
Out[226]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
```

```
In [161]: # Find and Display number of missing values in each column
          for col in missing_info:
              num_missing = data[data[col].isnull() == True].shape[0]
              print('number missing for column {}: {}'.format(col, num_missing))
number missing for column Cancelled: 3
number missing for column TransactionID: 2
number missing for column TransactionDate: 2
number missing for column ProductID: 2
number missing for column Quantity: 2
In [227]: # Find and Display percentage of missing values in each column
          for col in missing_info:
              percent_missing = data[data[col].isnull() == True].shape[0] / data.shape[0] * 10
              print('percent missing for column {}: {:.2f}%'.format(col, round(percent_missing
percent missing for column Cancelled: 33.33%
percent missing for column TransactionID: 22.22%
percent missing for column TransactionDate: 22.22%
percent missing for column ProductID: 22.22%
percent missing for column Quantity: 22.22%
```