Graph Theory - Sheet 4 - November 17, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 13

Theorem 1.1. If a graph has an ear-decomposition, then it is 2-connected.

Proof. By Menger's Theorem, a graph G is k-connected if and only if for any two vertices a, b in G there exist k independent a-b-paths. We find those 2 paths for any ear-composable graph.

Problem 14

For $0 < l < m \le d$, we will construct a graph F(d, l, m) with

- $\delta(F(d,l,m)) = d$
- $\kappa(F(d,l,m)) = l$
- $\kappa'(F(d,l,m)) = m$

Let $F'(l,m) := K_{l,m}$ be the complete bipartite graph of l,m partition sizes. Thus,

$$\kappa(F'(l,m)) = \kappa(K_{l,m}) = \min\{l, m\} = l \tag{1}$$

and furthermore,

$$\kappa'(F'(l,m)) = \kappa'(K_{l,m}) = \max\{l,m\} = m \tag{2}$$

Now, we construct F(d,l,m) by substituting each vertex of F'(l,m) with the complete graph K_d . Hence, $\delta(F(d,l,m))=d$. Since $\kappa(K_d)=d\geq m$ and $\kappa'(K_d)>l$ and since we do not modify the connections between those substituted vertices, the edge- and vertex-connectivity of F'(l,m) are maintained in F(d,l,m).

Problem 15

I will prove that any block-cut-vertex graph is a tree, by showing by contradiction that any block-cut-vertex graph is acyclic and connected.

Theorem 3.1. The block-cut-vertex graph G = (V, E) of any connected graph G' = (V', E') is a tree.

Proof. Let's assume for the sake of contradiction that G has a cycle $C = (b_1b_2...b_1)$. Then, the C induced subgraph of G is 2-connected, because obviously each pair $b_i, b_j \in C$ is connected by two distinct paths. Let $u, v \in V'$ be two vertices with u being in the block represented by b_i and v being in the block represented by b_j .

Problem 16