NXP Semiconductors

Data Sheet: Product Preview

S32K1XX

S32K1xx Data Sheet

Caution

 S32K148, S32K142, S32K146, and S32K116 specific information is preliminary until these devices are qualified.

Key Features

- Operating characteristics
 - Voltage range: 2.7 V to 5.5 V
 - Ambient temperature range: -40 °C to 105 °C for HSRUN, -40 °C to 125 °C for RUN
- ARMTM Cortex-M4F/M0+ core, 32-bit CPU
 - Supports up to 112 MHz frequency (HSRUN) with 1.25 Dhrystone MIPS per MHz
 - ARM Core based on the ARMv7 Architecture and Thumb®-2 ISA
 - Integrated Digital Signal Processor (DSP)
 - Configurable Nested Vectored Interrupt Controller (NVIC)
 - Single Precision Floating Point Unit (FPU)
- · Clock interfaces
 - 4 40 MHz fast external oscillator (SOSC)
 - 48 MHz Fast Internal RC oscillator (FIRC)
 - 8 MHz Slow Internal RC oscillator (SIRC)
 - 128 kHz Low Power Oscillator (LPO)
 - Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)
 - Up to 50 MHz DC external square wave input clock
 - Real Time Counter (RTC)
- · Power management
 - Low-power ARM Cortex-M4F/M0+ core with excellent energy efficiency
 - Power Management Controller (PMC) with multiple power modes: HSRUN, Run, Stop, VLPR, and VLPS
 - Supports peripheral specific clock gating. Only specific peripherals remain working in low power modes.

- Memory and memory interfaces
 - Up to 2 MB program flash memory with ECC
 - 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation
 - Up to 256 KB SRAM with ECC
 - Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation
 - Up to 4 KB Code cache to minimize performance impact of memory access latencies
 - QuadSPI with HyperBusTM support
- Mixed-signal analog
 - Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module
 - One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC)
- · Debug functionality
 - Serial Wire JTAG Debug Port (SWJ-DP) combines
 - Debug Watchpoint and Trace (DWT)
 - Instrumentation Trace Macrocell (ITM)
 - Test Port Interface Unit (TPIU)
 - Flash Patch and Breakpoint (FPB) Unit
- Human-machine interface (HMI)
 - Up to 156 GPIO pins with interrupt functionality
 - Non-Maskable Interrupt (NMI)
- · Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for flexible and high performance serial interfaces

This document contains information on a product under development. NXP reserves the right to change or discontinue this product without notice.

- Reliability, safety and security
 - HW Security Engine (CSEc)
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - Cyclic Redundancy Check (CRC) module
 - 128-bit Unique Identification (ID) number
 - System Memory Protection Unit (System MPU)
- · Timing and control
 - Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- · I/O and package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, MAPBGA-100, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Table of Contents

1	Blo	ck diagra	am		4			6.2.5	SPLL ele	ectrical specifications	27
2	Fear	ture com	parison		5		6.3	Memor	ry and men	nory interfaces	27
3	Ord	ering par	rts		7			6.3.1	Flash me	emory module (FTFC) electrical	
	3.1	Determ	nining valid	orderable parts	7				specifica	tions	27
	3.2	Orderin	ng informat	ion	8				6.3.1.1	Flash timing specifications —	
4	Gen	eral			9					commands	27
	4.1	Absolu	ıte maximui	n ratings	9				6.3.1.2	Reliability specifications	29
	4.2	Voltage	e and curre	nt operating requirements	10			6.3.2	QuadSPI	AC specifications	30
	4.3	Therma	al operating	characteristics.	11		6.4	Analog	g modules		34
	4.4	Power	and ground	pins	12			6.4.1	ADC ele	ctrical specifications	34
	4.5	LVR, I	LVD and PO	OR operating requirements	13				6.4.1.1	12-bit ADC operating conditions	34
	4.6	Power	mode transi	tion operating behaviors	14				6.4.1.2	12-bit ADC electrical characteristics	36
	4.7	Power	consumptio	n	15			6.4.2	CMP wit	h 8-bit DAC electrical specifications	37
		4.7.1	Modes co	nfiguration	18		6.5	Comm	unication r	nodules	41
	4.8	ESD ha	andling ratio	1gs	18			6.5.1	LPUART	Γ electrical specifications	41
	4.9	EMC r	adiated emi	ssions operating behaviors	18			6.5.2	LPSPI el	ectrical specifications	41
5	I/O	paramete	ers		18			6.5.3	LPI2C el	ectrical specifications	48
	5.1	AC ele	ectrical char	acteristics	18			6.5.4	FlexCAN	N electical specifications	49
	5.2	Genera	al AC specif	ications	19			6.5.5	SAI elec	trical specifications	49
	5.3	DC ele	ectrical spec	ifications at 3.3 V Range	19			6.5.6	Ethernet	AC specifications	51
	5.4	DC ele	ectrical spec	ifications at 5.0 V Range	20			6.5.7	Clockout	frequency	54
	5.5	AC ele	ectrical spec	ifications at 3.3 V range	21		6.6	Debug	modules		54
	5.6	AC ele	ectrical spec	ifications at 5 V range	22			6.6.1	SWD ele	ectrical specofications	54
	5.7	Standa	rd input pin	capacitance	22			6.6.2	Trace ele	ectrical specifications	56
	5.8	Device	clock spec	fications	22			6.6.3	JTAG ele	ectrical specifications	57
6	Peri	pheral o	perating rec	uirements and behaviors	23	7	The	rmal attı	ributes		60
	6.1	System	n modules		23		7.1	Descri	ption		60
	6.2	Clock i	interface mo	odules	23		7.2	Therm	al characte	ristics	60
		6.2.1	External S	System Oscillator electrical specification	ons23		7.3	Genera	al notes for	specifications at maximum junction	
		6.2.2	External S	System Oscillator frequency specificat	ions . 25			temper	rature		64
		6.2.3	System C	lock Generation (SCG) specifications.	26	8	Dim	ensions			65
			6.2.3.1	Fast internal RC Oscillator (FIRC)			8.1	Obtain	ing packag	e dimensions	65
				electrical specifications	26	9	Pinc	outs			66
			6.2.3.2	Slow internal RC oscillator (SIRC)			9.1	Packag	ge pinouts a	and signal descriptions	66
				electrical specifications	26	10	Rev	ision Hi	story		66
		6.2.4	Low Pow	er Oscillator (LPO) electrical specifica	ations						
					27						

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

Figure 1. High-level architecture diagram for the S32K14x family

Figure 2. High-level architecture diagram for the S32K11x family

2 Feature comparison

The following figure summarizes the memory and package options for the S32K product series and demonstrates where this device fits within the overall series. All devices which share a common package are pin-to-pin compatible.

Feature comparison

		S32	K11x		S32I	K14x		
	Parameter	K116	K118	K142	K144	K146	K148	
	Core	Al	RM [®] Cortex™-M0+		AF	RM [®] Cortex™-M4	F	
	Frequency		MHz		up to 112 Mi	Hz (HSRUN)		
	IEEE-754 FPU		0	•				
	HW security module (CSEc)1		•	•				
	CRC module	1	х	1x				
	ISO 26262	capable u	o to ASIL-B		capable up to ASIL-B			
	Peripheral speed	up to 4	18 MHz		up to 112 MI	Hz (HSRUN)		
	Crossbar		•		•	•		
Ę	DMA		•		•	•		
System	EWM		0		•	•		
Ś	Memory protection unit		•			•		
	FIRC CMU		•			0		
	Watchdog	1	x		1	х		
	Low power modes		•		•	•		
	HSRUN mode	,	0		(•		
	Number of I/Os	up to 43	up to 58	up t	o 89	up to 128	up to 156	
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V		
	Operating temperature (Ta) Temperature ambient		+105°C / +125°C		-40 to +85°C / +	-105°C / +125°C		
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²	
	Error correction code (ECC)		•			•		
	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB	
5	FlexRAM (also available as system RAM)	2 KB				KB		
Memory	Cache	0			41	KB		
	EEPROM emulated by FlexRAM¹	2 KB (up to 32 KB D-Flash)		4 KB (up to 64 KB D-Flash)			4 KB (up to 512 KB D-Flash as a part of 2 MB Flash) ³	
	External memory interface	0		٥			QuadSPI incl. HyperBus™	
	Low power interrupt timer	1x		1x				
<u>-</u>	FlexTimer (16-bit counter) 8 channels		(16)	4x (32) 6x (48)			8x (64)	
Timer	Low power timer (LPTMR)		x	1x				
	Real time counter (RTC)		X		1			
	Programmable delay block (PDB)		X		2		1 (21)	
<u>oo</u>	Trigger mux (TRGMUX)	1x (43)	1x (45)		(64)	1x (73)	1x (81)	
Analog	12-bit SAR ADC (1 MSPS each)	1x (14)	1x (16)	2x	(16)	2x (24)	2x (32)	
_	Comparator with 8-bit DAC		X		1	X		
	100 Mbit IEEE-1588 ethernet MAC		0		0		1x 2x	
Communication	Serial audio interface (AC97, TDM, I2S) Low power UART/LIN		2x	2x		3x	2X	
i	(Supports LIN protocol versions 1.3, 2.0, 2.1, and SAE J2602)	4		0		2		
Ē	Low power SPI	1x	2x	2x	4	3x	0	
S	Low power I2C FlexCAN		x x	2x	1x 3x	3x	2x 3x	
	(CAN-FD ISO/CD 11898-1)		ith FD)	(1x with FD)	(1x with FD)	(2x with FD)	(3x with FD)	
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x	•	•	
IDEs	Debug & trace	SWD, MTB (1 KB), JTAG4		SWD, JTAG (ITM, SWV, SWO)			SWD, JTAG (ITM, SWV, SWO), ETM	
_	Ecosystem (IDE, compiler, debugger)	NXP S32 Design S IAR, GHS, COSMIC,	tudio (GCC) + SDK, Lauterbach, iSystems	A IAI	NXP S32 Design Si R, GHS, COSMIC,	Lauterbach, iSyste	ζ, ems	
Other	Packages	QFN-32 LQFP-48	LQFP-48 LQFP-64	LQFP-64 LQFP-100	LQFP-64 LQFP-100 MAPBGA-100	LQFP-64 MAPBGA-100 LQFP-100 LQFP-144	MAPBGA-100 LQFP-144 LQFP-176	

- LEGEND:

 Not implemented

 Available on the device

 1 No FTFC commands, including CSE commands (CSEc parts) are available when chip is in VLPR or HSRUN mode.

 2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

 3 Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

 4 Only for BSR

Figure 3. S32K1xx product series comparison

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search. Additionally see the attachment *S32K_Part_Numbers.xlsx*.

NOTE

Not all part number combinations exist

3.2 Ordering information

Product status

P: Prototype

F: Qualified ordering P/N

Product type/brand

S32: Automotive 32-bit MCU

Product line

K: ARM Cortex MCUs M: MagniV/Mixed Signal

Series/Family

- 1: 1st product series
- 2: 2nd product series

Core platform/Performance

- 1: ARM Cortex M0+
- 4: ARM Cortex M4F

Memory size

	2	4	6	8
M0+	32 K	64 K	128 K	256 K
M4F	256 K	512 K	1 M	2 M

Ordering option

X: Speed

B: 48 MHz without DMA (only for S32K11x)

L: 48 MHz with DMA (only for S32K11x)

M: 64 MHz

H: 80 MHz

U: 112 MHz

Y: Optional feature

N: No/None

R: Max. RAM

F: CAN-FD and FlexIO including max. RAM

S: Security including max. RAM

A: CAN-FD, FlexIO, and Security including max. RAM

E: Ethernet and audio including max. RAM

J: CAN FD, FlexIO, Security, Ethernet and audio including max. RAM

Fx: ATMC Tx: GF

XX: Flex #

x0: 1st fab revision x1: 2nd fab revision

Fab and Mask rev. letter

Temperature

C: -40C to 85C V: -40C to 105C M: -40C to 125C

Package

Pins	LQFP	LQFP -EP	QFN	BGA
32	LC	1	FM	-
48	LF	KF	FT	-
64	LH	кн	-	
100	LL	-	-	МН
144	LQ	-	-	-
176	LU	-	-	-

Tape and Reel

T: Trays and Tubes R: Tape and Reel

Figure 4. Ordering information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

All the limits defined in the datasheet specification must be honored together and any volilation to any one or more will not gaurantee desired operation.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V_{DD}^2	2.7 V - 5. 5V input supply voltage	_	-0.3	5.8 ³	V
V_{REFH}	3.3 V / 5.0 V ADC high reference voltage	_	-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} ⁴	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to V _{SS}	_	-0.8	5.8 ⁵	V
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	_	_	30	mA
T _{ramp} ⁶	Supply ramp rate	_	0.5 V/min	500 V/ms	_
T _A ⁷	Ambient temperature	_	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C
V _{IN_} TRANSIENT	Transient overshoot voltage allowed on I/O pin beyond V _{IN_DC limit}			6.8 ⁸	V

Table 1. Absolute maximum ratings

- 1. All voltages are referred to V_{SS} unless otherwise specified.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. 60 s lifetime No restrictions i.e. The part can switch.
 - 10 hours lifetime Device in reset i.e. The part cannot switch.
- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. T_J (Junction temperature)=135 °C. Assumes T_A =125 °C for RUN mode

General

T_{.1} (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode

- Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 8. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements NOTE

Full functionality/specifications cannot be guaranteed when voltage drops below 2.7 V.

Table 2. Voltage and current operating requirements 1

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V_{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V_{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.
- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- Open drain outputs must be pulled to V_{DD}.
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGA packages.

Symbol	Parameter	Value			Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	_	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	_	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	_	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	_	135 ²	°C

^{1.} Values mentioned are measured at ≤ 112 MHz in HSRUN mode.

^{2.} Values mentioned are measured at ≤ 80 MHz in RUN mode.

4.4 Power and ground pins

Figure 5. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} , 4, 5	ADC reference high decoupling capacitance	70	100	_	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100	_	nF

- V_{DD} and V_{DDA} must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.
- 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.

- No trace exceeding 1 mm from the protection to the trace or to the ground.
- The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
- · The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

*Note: VSSA and VSS are shorted at package level

Figure 6. Power diagram

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V _{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	_	45	_	mV	1
V_{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	_	50	_	mV	1
V _{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	_	mV	1
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

^{1.} Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS_CLK/CORE_CLK = 112 MHz
 - BUS_CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - BUS CLK = 4 MHz
 - FLASH CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH CLK = 24 MHz
- VLPS Mode: All clock sources disabled.

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.		325	_	μs

Table 6. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	VLPS → RUN	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.75	6.25	6.5	μs
	VLPS → VLPR	26.5	27.25	27.75	μs
	RUN → Compute operation	0.35	0.38	0.4	μs
	HSRUN → Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	RUN → STOP2	0.2	0.23	0.25	μs
	RUN → VLPS	0.35	0.38	0.4	μs
	RUN → VLPR	4.4	4.7	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset → Code execution	_	214	_	μs

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations.

Table 7. Power consumption (Typicals unless stated otherwise) 1

	Ambient Temperature (°C)		VLPS	(μΑ) ^{2, 3}		.PR nA)	STOP1 (mA)	STOP2 (mA)		I@48 (mA)		964 MHz nA)		980 MHz nA)		N@112 (mA) ⁴	ldd/MH z (µA/ MHz) ⁵
			Peripherals disabled ⁶	Peripherals enabled	Peripherals disabled	Peripherals enabled			Peripherals disabled	Peripherals enabled							
S32K116	25	Тур	26	38	1.9	2.5	7	12	TBD	TBD			N	IA		<u>'</u>	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	40		ı	T	Т	ı	T	TBD
S32K118	25	Тур	26	38	1.9	2.5	7	12	TBD	TBD		,	N	IA		'	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	42							TBD
S32K142	25	Тур	29	42	1.9	2.5	10	15	TBD	TBD	١	IA .	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			48	57	65	75	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			TBD	TBD	85	90	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			60	65	N	ΙA	TBD
S32K144	25	Тур	29.8	39.1	1.48	1.50	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

	Ambient Temperature (°C)		VLPS	(μ Α) ^{2, 3}		_PR nA)	STOP1 (mA)	STOP2 (mA)	_	I@48 (mA)		64 MHz nA)		980 MHz nA)		N@112 (mA) ⁴	ldd/MH z (µA/ MHz) ⁵
	85	Тур	150	159	1.72	1.85	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	8.3	9.2	21.9	28.5	27.8	34.4	32.9	41.5	45.5	57.5	411
	105	Тур	256	273	1.80	2.10	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	10.3	10.6	22.7	30	28.3	36.5	33.4	43.3	47.9	61.3	418
	125	Max	1960	1998	3.18	3.25	12.2	13	25.3	32.7	35	39.8	37.1	46.5	NA	NA	464
S32K146	25	Тур	40	55	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	95	110	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	70	80	NA	NA	TBD
S32K148 ^{7, 8}	25	Тур	40	60	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	120	125	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	100	110	NA	NA	TBD

- Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration.
- 2. This is an average based on the use case described in the Comparator section, whereby the analog sampling is taking place periodically, with a mechanism to only enable the DAC as required. The numbers quoted assumes that only a single ANLCMP is active and the others are disabled
- 3. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 5. Values mentioned are measured at 25 °C at RUN@80 MHz with peripherals disabled.
- 6. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 7. Above S32K148 data is preliminary targets only
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are active. If the same configuration is selected as per the S32K144, then the two devices will have very similar IDD.

4.7.1 Modes configuration

Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the above table Table 7. For full functionality refer to table: Module operation in available low power modes of the *Reference Manual*.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model		•	•	2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

^{3.} Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Figure 7. Input signal measurement reference

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Description Symbol Min. Unit **Notes** GPIO pin interrupt pulse width (digital glitch filter Bus clock 1.5 1, 2 disabled) — Synchronous path cycles GPIO pin interrupt pulse width (digital glitch filter 3 50 ns disabled, passive filter disabled) — Asynchronous path **WFRST RESET** input filtered pulse 4 100 ns **WFRST** RESET input not filtered pulse 100 ns

Table 8. General switching specifications

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter.

5.3 DC electrical specifications at 3.3 V Range

Table 9. DC electrical specifications at 3.3 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	٧	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} - 0.3	_	$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	_	V	
Ioh_Standard	I/O current source capability measured when pad = $(V_{DDE} - 0.8 \text{ V})$	3.5	-	_	mA	

Table 9. DC electrical specifications at 3.3 V Range (continued)

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
Iol_Standard	I/O current sink capability measured when pad = 0.8 V	3	_	_	mA	
loh_Strong	I/O current source capability measured when pad = $(V_{DDE} - 0.8 \text{ V})$	14	_	_	mA	4
Iol_Strong	I/O current sink capability measured when pad = 0.8 V	12	_	_	mA	5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full temper	ature range a	at $V_{DD} = 3.3$	V		6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins ⁷		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		60	kΩ	8
R _{PD}	Internal pulldown resistors	20		60	kΩ	9

- 1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to \$32K144_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input V = V_{DD}

5.4 DC electrical specifications at 5.0 V Range

Table 10. DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	_	V	
Ioh_Standard	I/O current source capability measured when pad = (V _{DDE} - 0.8 V)	5	_	_	mA	
Iol_Standard	I/O current sink capability measured when pad = 0.8 V	5		_	mA	

Table 10. DC electrical specifications at 5.0 V Range (continued)

Symbol	Parameter		Value	ı	Unit	Notes
		Min.	Тур.	Max.		
loh_Strong	I/O current source capability measured when pad = V _{DDE} - 0.8 V	20	_	_	mA	3, 4
lol_Strong	I/O current sink capability measured when pad = 0.8 V	20	_	_	mA	4, 5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full	temperature	e range at V _D	_D = 5.5 V		6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μΑ	
R _{PU}	Internal pullup resistors	20		50	kΩ	7
R _{PD}	Internal pulldown resistors	20		50	kΩ	8

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same Vil levels are applicable
- 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. Measured at input $V = V_{SS}$
- 8. Measured at input $V = V_{DD}$

5.5 AC electrical specifications at 3.3 V range

Table 11. AC electrical specifications at 3.3 V Range

Symbol	DSE	Rise tir	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
Standard	NA	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
Strong	0	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
	1	2.0	5.8	1.8	6.1	25
		2.8	8.0	2.6	8.3	50
		7.0	20.7	6.0	22.4	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Table 12. AC electrical specifications at 5 V Range

Symbol	DSE	Rise ti	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
Standard	NA	3.2	9.4	3.6	10.7	25
		5.4	15.7	5.1	17.4	50
		18.5	52.6	17.6	59.7	200
Strong	0	4.0	9.4	3.6	10.7	25
		5.8	15.7	5.1	17.4	50
		18.1	52.6	17.6	59.7	200
	1	1.6	4.6	1.5	5.0	25
		2.2	5.7	2.2	5.8	50
		5.6	14.6	5.0	15.4	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 13. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 14. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	_	112	MHz
f _{BUS}	Bus clock	_	56	MHz
f _{FLASH}	Flash clock	_	28	MHz
	Normal run mode (S32K11x series)		•

Table 14. Device clock specifications 1 (continued)

Symbol	Description	Min.	Max.	Unit
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁴			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock	_	16	MHz

^{1.} Refer to the section Feature comparison for the availability of modes and other specifications.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

^{2.} Only available on some devices. See section Feature comparison.

^{3.} With SPLL as system clock source.

^{4.} The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

Figure 8. Oscillator connections scheme

Table 15. External System Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes					
g _m xosc	Crystal oscillator transconductance										
	4-8 MHz	2.2	_	13.7	mA/V						
	8-40 MHz	16	_	47	mA/V						
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	0.35 * V _{DD}	V						
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V						
C ₁	EXTAL load capacitance	_	_	_		1					
C ₂	XTAL load capacitance	_	_	_		1					
R _F	Feedback resistor					2					
	Low-gain mode (HGO=0)	_	_	_	MΩ						

Table 15. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes		
	High-gain mode (HGO=1)	_	1	_	ΜΩ			
R _S	Series resistor							
	Low-gain mode (HGO=0)	_	0	_	kΩ			
	High-gain mode (HGO=1)							
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3		
	Low-gain mode (HGO=0)	_	1.0	_	V			
	High-gain mode (HGO=1)	_	3.3	_	V			

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_crit$. The gm_crit is defined as:

$$gm_crit = 4 * ESR * (2\pi F)^2 * (C_0 + C_L)^2$$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C₁, C₂ external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications Table 16. External System Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi}	Oscillator crystal or resonator frequency	4	_	40	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal Start-up Time					
	8 MHz low-gain mode (HGO=0)	_	1.5	_	ms	1
	8 MHz high-gain mode (HGO=1)	_	2.5	_		
	40 MHz low-gain mode (HGO=0)	_	2	_		
	40 MHz high-gain mode (HGO=1)	_	2	_		

1. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 17. Fast internal RC Oscillator electrical specifications

Symbol	Parameter ¹		Value		Unit
		Min.	Тур.	Max.]
F _{FIRC}	FIRC target frequency	_	48	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs²
T _{JIT} , 3	Cycle-to-Cycle jitter	_	250	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	_	0.04	0.1	%F _{FIRC}

- 1. With FIRC regulator enable
- 2. Startup time is defined as the time between clock enablement and clock availability for system use.
- 3. FIRC as system clock

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 18. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter		Unit		
		Min.	Тур.	Max.	
F _{SIRC}	SIRC target frequency	_	8	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	_	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time	_	9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 19. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	_	20	μs

6.2.5 SPLL electrical specifications

Table 20. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	_	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	_	40	MHz
F _{VCO_CLK}	VCO output frequency	180	_	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	_	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	120	_	ps
	at F _{VCO_CLK} 320 MHz	_	75	_	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS)3				
	at F _{VCO_CLK} 180 MHz	_	1350	_	ps
	at F _{VCO_CLK} 320 MHz	_	600	_	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	_	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

^{1.} F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

^{2.} F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

^{3.} This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

^{4.} Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3.1.1 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description ¹	Min.	Тур.	Max.	Unit	Notes
t _{rd1blk64k}	Read 1s Block execution time		_	0.5	ms	
t _{rd1blk512k}	64 KB data flash	_	_	1.8	ms	
TOTORSTER	512 KB program flash					
t _{rd1sec2k}	Read 1s Section execution time (2 KB flash)	_	_	75	μs	
t _{rd1sec4k}	Read 1s Section execution time (4 KB flash)	_	_	100	μs	
t _{pgmchk}	Program Check execution time	_	_	95	μs	
t _{pgm8}	Program Phrase execution time	_	90	150	μs	
t _{ersblk64k}	Erase Flash Block execution time	_	55	475	ms	2
t _{ersblk512k}	64 KB data flash	_	435	3700	ms	
-GISDING IZK	512 KB program flash					
t _{ersscr}	Erase Flash Sector execution time	_	15	115	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)	_	5	_	ms	
t _{rd1allx}	Read 1s All Blocks execution time	_	_	2.2	ms	
		_	_	4.4	ms	
		_	_	6.6	ms	
t _{rdonce}	Read Once execution time	_	_	30	μs	
t _{pgmonce}	Program Once execution time	_	90	_	μs	
t _{ersall}	Erase All Blocks execution time	_	500	4200	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	500	4200	ms	2
t _{pgmpart32k}	Program Partition for EEPROM execution time • 32 KB EEPROM backup	_	70	_	ms	3, 4
t _{pgmpart64k}	64 KB EEPROM backup (Non-Interleaved)	_	71	_	ms	
	DFlash)		250		ms	
	64 KB EEPROM backup (Interleaved DFlash)					
t _{setramff}	Set FlexRAM Function execution time:	_	70	_	μs	3, 4
t _{setram32k}	Control Code 0xFF	_	0.8	1.2	ms	
t _{setram48k}	32 KB EEPROM backup	_	1.0	1.5	ms	
t _{setram64k}	48 KB EEPROM backup	_	1.3	1.9	ms	
3CH amo 4R	64 KB EEPROM backup					
t _{eewr8b32k}	Byte-write to FlexRAM execution time:	_	385	1700	μs	3, 4
t _{eewr8b48k}	32 KB EEPROM backup	_	430	1850	μs	
t _{eewr8b64k}	48 KB EEPROM backup	_	475	2000	μs	
SSWIDDO4K	64 KB EEPROM backup				,	
t _{eewr16b32k}	16-bit write to FlexRAM execution time:	_	385	1700	μs	3, 4
-eewr I bD32K	32 KB EEPROM backup		555		۳۰	

Table 21. Flash command timing specifications (continued)

Symbol	Description ¹	Min.	Тур.	Max.	Unit	Notes						
t _{eewr16b64k}	48 KB EEPROM backup	_	475	2000	μs							
	64 KB EEPROM backup											
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	μs							
t _{eewr32b32k}	32-bit write to FlexRAM execution time:	_	630	2000	μs	3, 4						
t _{eewr32b48k}	32 KB EEPROM backup	_	720	2125	μs							
t _{eewr32b64k}	48 KB EEPROM backup	_	810	2250	μs							
	64 KB EEPROM backup											
t _{quickwr}	32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write)											
	1st 32-bit write	_	200	550	μs	5, 6						
	2nd through Next to Last (Nth-1) 32-bit	_	150	550	μs							
	write	_	200	550	μs							
	Last (Nth) 32-bit write (time for write only, not cleanup)											
t _{quickwrClnup}	Quick Write Cleanup execution time	_	_	(Number	ms	7						
				of Quick Writes) *								
				2.0								

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record clean up has occurred. This may
 be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM
 issues detected.
- 4. 'First time' EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. For 'Typ.', only after the Nth write completes will any data will be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power or reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write may take up to 550 µs as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 22. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash			

Table continues on the next page...

S32K1xx Data Sheet, Rev. 4, 06/2017

Memory and memory interfaces

Table 22. NVM reliability specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	_	_	years				
n _{nvmcycp}	Cycling endurance	1 K	_	_	cycles	2, 1			
	When using FlexMemory feature: FlexRAM as Emulated EEPROM								
t _{nvmretee}	Data retention	5	_	_	years				
n _{nvmwree16}	Write endurance • EEPROM backup to FlexRAM ratio = 16	100 K	_	_	writes	3, 4, 5			
n _{nvmwree256}	FEDDOM I I I DAM II OFO	1.6 M	_		writes				

- 1. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 2. Cycling endurance is per DFlash or PFlash Sector.
- 3. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across standard temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 4. For usage of any other EEE driver other than the FlexMemory feature, the endurance specification will fall back to the specified endurance value of the D-Flash specification (1 K).
- 5. EEE calculator tool is available at NXP web site to help estimate the maximum write endurance achievable at specific EEPROM/FlexRAM ratio. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 23. QuadSPI electrical specifications

FLASH PORT	Sym	Unit						FLA	ASH A							FLA	ASH B	
	•				RU	JN ¹					HSR	UN ¹				RUN/I	HSRUN ²	
QuadSPI Mode				SDR						SDR					SDR		DE	OR ³
			1	rnal pling		Intern	al DQS		1	rnal pling		Interna	al DQS			rnal pling	Extern	al DQS
			N	l1	1	AD back	1	ernal oback	١	l 1	P <i>I</i> Loop		1	rnal oback	N	l1	Extren	al DQS
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
							Regis	ster Set	tings	<u>'</u>		_		<u>'</u>				
MCR[DDR_EN]		-	(0 0		(0	()	С)	()	()	-	1	
MCR[DQS_EN]		-	()	-	1	-	1	0		1			1	0		1	
MCR[SCLKCFG[0]]		-		-	-	1	(0	-		1		0		-		-	
MCR[SCLKCFG[1]]		-		-	-	1	0 -		1		0		-		-			
MCR[SCLKCFG[2]]		-		•		•			-		,	-	-		0			
MCR[SCLKCFG[3]]		-		•		•				-		-		-		0		
MCR[SCLKCFG[5]]		-		-		-	-					-		-		1		
SMPR[FSPHS]		-	()	-	1	(0 0		1		(0)	0		
SMPR[FSDLY]		-	()	()	(0	()	C)	()	()	(0
SOCCR				-	()	2	23		-	C)	3	0				-
[SOCCFG[7:0]]																		
SOCCR[SOCCFG[15:8]]		-		-		-		-		-	-			-			3	80
FLSHCR[TDH]		-	0x	00	0x00 0x00 0x00 0x00 0x00 0x00				00	0x	:01							
							Timing	g Paran	neters									
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-

Table 23. QuadSPI electrical specifications (continued)

FLASH PORT	Sym	Unit						FL <i>A</i>	ASH A							FL/	SH B		
			RUN ¹ SDR				HSRUN ¹ SDR				RUN/HSRUN ²								
QuadSPI Mode											SDR		DDR ³						
					ernal pling		Intern	al DQS			ernal ipling		Interna	al DQS			ernal pling	Extern	nal DQS
			N	N1		PAD Internal Loopback Loopback		N1		PAD Loopback		Internal Loopback		N1		Extrenal DQS			
	1		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
SCK Duty Cycle	tspc	ns	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 0.750	tSCK/2 - 0.750	tSCK/2 - 1.5	tSCK/2 + 1.5	tSCK/2 - 2.5	tSCK/2 + 2.5	tSCK/2 - 2.5	tSCK/2 + 2.5	
Data Input Setup Time	t _{IS}	ns	15	-	2.5	-	10	-	14	-	1.5	-	9	-	25	-	-2	-	
Data Input Hold Time	t _{IH}	ns	0	-	1	-	1	-	0	-	1	-	1	-	0	-	0	-	
Data Output Valid Time	t _{OV}	ns	-	4.5	-	4.5	-	4.5	-	4	-	4	-	4	-	10	-	10	
Data Output In-Valid Time	t _{IV}	ns	5	-	5	-	5	-	5	-	3 ⁵	-	5	-	5	-	5	-	
CS to SCK Time ⁶	t _{CSSCK}	ns	5	-	5	-	5	-	5	-	5	-	5	-	10	-	10	-	
SCK to CS Time ⁷	t _{SCKCS}	ns	5	-	5	-	5	-	5	-	5	-	5	-	5	-	5	-	
Output Load		pf	2	25	2	25	2	25	2	25	2	5	2	25	2	25	2	25	

- 1. See Reference Manual for details on mode settings
- 2. See Reference Manual for details on mode settings
- 3. Valid for HyperRAM only
- 4. RWDS(External DQS CLK) frequency
- 5. For operating frequency ≤ 64 Mhz, Output invalid time is 5 ns.
- 6. Program register value QuadSPI_FLSHCR[TCSS] = 4`h2
- 7. Program register value QuadSPI_FLSHCR[TCSH] = 4`h1

Memory and memory interfaces

Figure 9. QuadSPI input timing (SDR mode) diagram

Figure 10. QuadSPI output timing (SDR mode) diagram

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

Analog modules

Figure 12. QuadSPI output timing (HyperRAM mode) diagram

6.4 Analog modules

6.4.1 ADC electrical specifications

6.4.1.1 12-bit ADC operating conditions Table 24. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-0.1	0	+0.1	V	2
V _{REFH}	ADC reference voltage high		See Voltage and current operating requirements for values	V_{DDA}	See Voltage and current operating requirements for values	V	3
V _{REFL}	ADC reference voltage low		See Voltage and current operating requirements for values	0	See Voltage and current operating requirements for values	mV	3
V_{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	٧	
R _S	Source impedendance	f _{ADCK} < 4 MHz	_	_	5	kΩ	
R _{SW1}	Channel Selection Switch Impedance		_	-0.75	1.2	kΩ	
R _{AD}	Sampling Switch Impedance		_	2	5	kΩ	
C _{P1}	Pin Capacitance		_	10	_	pF	

Table 24. 12-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{P2}	Analog Bus Capacitance		_	_	4	pF	
Cs	Sampling capacitance		_	4	5	pF	
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	4, 5
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁶ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	7, 8
		ADC hardware averaging set to 32. ⁶ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	7, 8

- 1. Typical values assume $V_{DDA} = 5 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}.
 To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 4. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 5. ADC conversion will become less reliable above maximum frequency.
- 6. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.
- 7. Numbers based on the minimum sampling time of 275 ns.
- For guidelines and examples of conversion rate calculation, see the Reference Manual or download the ADC calculator tool.

Figure 13. ADC input impedance equivalency diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.

Table 25. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	1.5	mA	3
SMPLTS	Sample Time		275	_	Refer to the Reference Manual	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity			±2.0	_	LSB ⁵	6, 7, 8, 9

- All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to half the ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 3 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$, 100 LQFP package unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Table 26. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		3	_	5.5	V	
I _{DDA_ADC}	Supply current per ADC		_	1	2.1	mA	3
SMPLTS	Sample Time		275	_	Refer to the Reference Manual	ns	

Table 26. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±0.7	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9

- All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to half the ADC clock frequency.
- 2. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω, and C_{AS}=10 nF unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

6.4.2 CMP with 8-bit DAC electrical specifications

Table 28. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode ¹				μΑ
	-40 - 125 °C	_	230	300	
I _{DDLS}	Supply current, Low-speed mode ¹		•		μA
	-40 - 105 °C	_	5	10	
	-40 - 125 °C		5	13	

ADC electrical specifications

Table 28. Comparator with 8-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V_{DDA}	V
V _{AIO}	Analog input offset voltage, High-speed mode				mV
	-40 - 125 °C	-25	±1	25	
V _{AIO}	Analog input offset voltage, Low-speed mode				mV
	-40 - 125 ℃	-40	±4	40	
t _{DHSB}	Propagation delay, High-speed mode ²		1		ns
	-40 - 105 °C	_	30	200	
	-40 - 125 °C		30	300	
t _{DLSB}	Propagation delay, Low-speed mode ²		-1		μs
	-40 - 105 ℃	_	0.5	2	
	-40 - 125 °C	_	0.5	3	
t _{DHSS}	Propagation delay, High-speed mode ³				ns
	-40 - 105 ℃	_	70	400	
	-40 - 125 ℃	_	70	500	
t _{DLSS}	Propagation delay, Low-speed mode ³				μs
	-40 - 105 °C	_	1	5	
	-40 - 125 ℃	_	1	5	
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs
	-40 - 125 ℃	_	1.5	3	
t _{IDLS}	Initialization delay, Low-speed mode ⁴		μs		
	-40 - 125 ℃	_	10	30	
V _{HYST0}	Analog comparator hysteresis, Hyst0 (V _{AIO})				mV
	-40 - 125 ℃	_	0	_	
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode		1		mV
	-40 - 125 ℃	_	16	66	
	Analog comparator hysteresis, Hyst1, Low-speed mode				
	-40 - 125 ℃	_	11	40	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV
	-40 - 125 ℃	_	32	133	
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	22	80	
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV
	-40 - 125 °C	_	48	200	
	Analog comparator hysteresis, Hyst3, Low-speed mode		-		
	-40 - 125 ℃	 _ _ 	33	120	

Table 28. Comparator with 8-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DAC8b}	8-bit DAC current adder (enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity	-0.75	_	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	_	30	μs

- 1. Difference at input > 200mV
- 2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 3. Applied \pm (30 mV + 2 × V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 4. Applied \pm (100 mV + V_{HYST0/1/2/3}).
- 5. Calculation method used: Linear Regression Least Square Method
- 6. $1 LSB = V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/ EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

ADC electrical specifications

Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

6.5 Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the Reference Manual.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

- All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds.
- All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1).

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 29. LPSPI electrical specifications1

Num	Symbol	Description	Conditions		Run	Mode ²			HSRUN	N Mode ²			VLPR	Mode		Unit
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 \	/ IO	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
	f _{periph} , 3, 4	Peripheral	Slave	-	40	-	40	-	56	-	56	-	8	-	8	MHz
		Frequency	Master	-	40	-	40	-	56	-	56	-	8	-	8	
			Master Loopback ⁵	-	40	-	48	-	48	-	48	-	8	-	8	
			Master Loopback(Slow)	-	48	-	48	-	48	-	48	-	8	-	8	
1	f _{op}	Frequency of	Slave	-	10	-	10	-	14	-	14	-	4	-	4	MHz
	operation	operation	Master	-	10	-	10	-	14	-	14	-	4	-	4	1
			Master	-	20	-	12	-	24	-	12	-	4	-	4	1
			Loopback ⁵													
			Master Loopback(slow)	-	12	-	12	-	12	-	12	-	4	-	4	•
2	t _{SPSCK}	SPSCK	Slave	100	-	100	-	72	-	72	-	250	-	250	-	ns
		period	Master	100	-	100	-	72	-	72	-	250	-	250	-	1
			Master Loopback ⁵	50	-	83	-	42	-	83	-	250	-	250	-	
			Master Loopback(slow)	83	-	83	-	83	-	83	-	250	-	250	-	
3	t _{Lead} ⁷	Enable lead time (PCS to SPSCK delay)	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 29. LPSPI electrical specifications1 (continued)

Num	Num Symbol Description		Conditions		Run	Mode ²			HSRUI	N Mode ²			VLPF	R Mode		Unit
				5.0	V IO	3.3	V IO	5.0	V IO	O 3.3 V IO		5.0	V IO	3.3 V	/ IO	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
			Master		-		-		-		-		-		-	
			Master Loopback ⁵													
			Master Loopback(slow)	(PCSSCK + 1)*t _{SPSCK} - 25		(PCSSCK + 1)*t _{SPSCK} - 25		(PCSSCK + 1)*t _{SPSCK} - 25		(PCSSCK + 1)*t _{SPSCK} - 25		(PCSSCK + 1)*t _{SPSCK} - 50		(PCSSCK + 1)*t _{SPSCK} - 50		
4	t _{Lag} 8	Enable lag	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns
		time (After SPSCK	Master		-		-		-		-		-		-	
		delay)	Master													
			Loopback ⁵													
			Master Loopback(slow)	(SCKPCS + 1)*t _{SPSCK} - 25		(SCKPCS + 1)*t _{SPSCK} - 25		(SCKPCS + 1)*t _{SPSCK} - 25		(SCKPCS + 1)*t _{SPSCK} - 25		(SCKPCS + 1)*t _{SPSCK} - 50		(SCKPCS + 1)*t _{SPSCK} - 50		

Table 29. LPSPI electrical specifications1 (continued)

Num	Symbol	Symbol Description	Conditions		Run	Mode ²		HSRUN Mode ²				VLPR Mode				Unit				
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 \	/ IO	l				
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.					
5	twspsck	Clock(SPSC	Slave													ns				
		K) high or low time	Master	-																
		(SPSCK duty cycle)	Master Loopback ⁵																	
							Master Loopback(slow)	tspsck/2 - 3	t _{SPSCK} /2 + 3	t _{SPSCK} /2 - 3	tspsck/2 + 3	tspsck/2 - 3	t _{SPSCK} /2 + 3	t _{SPSCK} /2 - 3	tspsck/2 + 3	tspsck/2 - 5	t _{SPSCK} /2 + 5	tspsck/2 - 5	t _{SPSCK} /2 + 5	
6	t _{SU}	Data setup	Slave	3	-	5	-	3	-	5	-	18	-	18	-	ns				
	time(inputs)	time(inputs)	Master	29	-	38	-	26	-	37	-	72	-	78	-					
			Master	7	-	8	-	5	-	7	-	20	-	20	-					
		Loopback ⁵																		
			Master Loopback(slow)	8	-	10	-	7	-	9	-	20	-	20	-					
7	t _{HI}	Data hold	Slave	3	-	3	-	3	-	3	-	14	-	14	-	ns				
		time(inputs)	Master	0	-	0	-	0	-	0	-	0	-	0	-					
			Master	3	-	3	-	2	-	3	-	11	-	11	-					
			Loopback ⁵																	
			Master Loopback(slow)	3	-	3	-	3	-	3	-	12	-	12	-					
8	t _a	Slave access time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	ns				
9	t _{dis}	Slave MISO (SOUT) disable time	Slave	-	50	-	50	-	50	-	50	-	100	-	100	ns				

Communication modules

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 29. LPSPI electrical specifications1 (continued)

Num	Symbol	Description	Conditions		Run	Mode ²			HSRUN	N Mode ²			VLPR	Mode		Unit
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 \	/ IO	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
10	t _v	Data valid	Slave	-	30	-	39	-	26	-	36	-	92	-	96	ns
		(after SPSCK	Master	-	12	-	16	-	11	-	15	-	47	-	48	
		edge)	Master Loopback ⁵	-	12	-	16	-	11	-	15	-	47	-	48	
	1 110		Master Loopback(slow)	-	8	-	10	-	7	-	9	-	44	-	44	
11	t _{HO}		Slave	4	-	4	-	4	-	4	-	4	-	4	-	ns
		time(outputs)	Master	-15	-	-22	-	-15	-	-23	-	-22	-	-29	-	
		Master Loopback ⁵	-10	-	-14	-	-10	-	-14	-	-14	-	-19	-		
		Master Loopback(slow)	-15	-	-22	-	-15	-	-22	-	-21	-	-27	-		
12	t _{RI/FI}	Rise/Fall	Slave	-	1	-	1	-	1	-	1	-	1	-	1	ns
		time input	Master	-		-		-		-		-		-	1	
			Master Loopback ⁵	-		-		-		-		-		-		
			Master Loopback(slow)	-		-		-		-		-		-		
13	t _{RO/FO}	Rise/Fall	Slave	-	25	-	25	-	25	-	25	-	25	-	25	ns
		time output	Master	-		-		-		-	-	-		-		
		Master Loopback ⁵	-		-		-		-		-		-			
		Master Loopback(slow)	-		-		-		-		-		-			

Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.

While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.
 f_{periph} = LPSPI peripheral clock

- 4. $t_{periph} = 1/f_{periph}$
- 5. Master Loopback mode In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.
- 6. Master Loopback (slow) In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0.

Communication modules

- 7. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.
- 8. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. LPSPI master mode timing (CPHA = 0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Communication modules

Figure 20. LPSPI slave mode timing (CPHA = 0)

Figure 21. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the *Reference Manual*.

6.5.5 SAI electrical specifications

The following table describes the SAI electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 30. Master mode timing specifications

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S1	SAI_MCLK cycle time	40	_	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	_	ns
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period
S5	SAI_RXD input setup before SAI_BCLK	28	_	ns
S6	SAI_RXD input hold after SAI_BCLK	0	_	ns
S7	SAI_BCLK to SAI_TXD output valid	_	8	ns
S8	SAI_BCLK to SAI_TXD output invalid	-2	_	ns
S9	SAI_FS input setup before SAI_BCLK	28	_	ns
S10	SAI_FS input hold after SAI_BCLK	0	_	ns
S11	SAI_BCLK to SAI_FS output valid	_	8	ns
S12	SAI_BCLK to SAI_FS output invalid	-2	_	ns

Communication modules

Figure 22. SAI Timing — Master modes

Table 31. Slave mode timing specifications

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S13	SAI_BCLK cycle time (input)	80	_	ns
S14 ¹	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S15	SAI_RXD input setup before SAI_BCLK	8	_	ns
S16	SAI_RXD input hold after SAI_BCLK	2	_	ns
S17	SAI_BCLK to SAI_TXD output valid	_	28	ns
S18	SAI_BCLK to SAI_TXD output invalid	0	_	ns
S19	SAI_FS input setup before SAI_BCLK	8	_	ns
S20	SAI_FS input hold after SAI_BCLK	2	_	ns
S21	SAI_BCLK to SAI_FS output valid	_	28	ns
S22	SAI_BCLK to SAI_FS output invalid	0	_	ns

^{1.} The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.

Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	_	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 32. MII signal switching specifications

Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 33. RMII signal switching specifications

Symbol	Description	Min.	Max.	Unit
_	RMII input clock RMII_CLK Frequency	_	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns

Table 33. RMII signal switching specifications (continued)

Symbol	Description	Min.	Max.	Unit
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	2	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

Figure 26. RMII receive diagram

Figure 27. RMII transmit diagram

The following table describes the MDIO electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- MDIO pin must have external Pull-up.

Table 34. MDIO timing specifications

Symbol	Description	Min.	Max.	Unit
_	MDC Clock Frequency		2.5	MHz

Table 34. MDIO timing specifications (continued)

Symbol	Description	Min.	Max.	Unit
MDC1	MDC pulse width high	40%	60%	MDC period
MDC2	MDC pulse width low	40%	60%	MDC period
MDC3	MDIO (input) to MDC rising edge setup	25	_	ns
MDC4	MDIO (input) to MDC rising edge hold	0	_	ns
MDC5	MDC falling edge to MDIO output valid (maximum propagation delay)	_	25	ns
MDC6	MDC falling edge to MDIO output invalid (minimum propagation delay)	-10	_	ns

Figure 28. MII/RMII serial management channel timing diagram

6.5.7 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 35. SWD electrical specifications

Symbol	Description		Run	Mode			HSRU	N Mode			VLPR	Mode		Unit
		5.0	V IO	3.3 \	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	
		Min.	Max.	1										
S1	SWD_CLK frequency of operation	-	25	-	25	-	25	-	25	-	10	-	10	MHz
S2	SWD_CLK cycle period	1/S1	-	ns										
S3	SWD_CLK clock pulse width	S2/2 - 5	S2/2 + 5	ns										
S4	SWD_CLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	4	-	4	-	4	-	4	-	16	-	16	-	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	3	-	3	-	3	-	3	-	10	-	10	-	ns
S11	SWD_CLK high to SWD_DIO data valid	-	28	-	38	-	28	-	38	-	70	-	77	ns
S12	SWD_CLK high to SWD_DIO high-Z	-	28	-	38	-	28	-	38	-	70	-	77	ns
S13	SWD_CLK high to SWD_DIO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	ns

Figure 29. Serial wire clock input timing

Figure 30. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 36. Trace specifications

Symbol	Description	R	RUN Mode		HSRUI	N Mode	VLPR Mode	Unit
Fsys	System frequency	80	48	40	112	80	4	MHz

Table 36. Trace specifications (continued)

	Symbol	Description	F	RUN Mode	e	HSRU	N Mode	VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
spg	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

Figure 31. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

Table 37. JTAG electrical specifications

Symbol	Description		Rur	Mode			HSRU	N Mode			VLPR	Mode		Unit
		5.	0 V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	
		Min.	Max.											
JI	TCLK frequency of operation		•									•	•	MHz
	Boundary Scan	-	20	-	20	-	20	-	20	-	10	-	10	
	JTAG	-	20	-	20	-	20	-	20	-	10	-	10	
J2	TCLK cycle period	1/JI	-	ns										
J3	TCLK clock pulse width	•					•		•	•	•	•	•	ns
	Boundary Scan	5	5	- 5	5	5	5	5	5	5	5	5	5	
	JTAG	J2/2 -	J2/2 +											
J4	TCLK rise and fall times	-	1	-	1	-	1	-	1	-	1	-	1	ns
J5	Boundary scan input data setup time to TCLK rise	5	-	5	-	5	-	5	-	15	-	15	-	ns
J6	Boundary scan input data hold time after TCLK rise	5	-	5	-	5	-	5	-	8	-	8	-	ns
J7	TCLK low to boundary scan output data valid	-	28	-	32	-	28	-	32	-	80	-	80	ns
J8	TCLK low to boundary scan output data invalid	0	-	0	-	0	-	0	-	0	-	0	-	
J9	TCLK low to boundary scan output high-Z	-	28	-	32	-	28	-	32	-	80	-	80	ns
J10	TMS, TDI input data setup time to TCLK rise	3	-	3	-	3	-	3	-	15	-	15	-	ns
J11	TMS, TDI input data hold time after TCLK rise	2	-	2	-	2	-	2	-	8	-	8	-	ns
J12	TCLK low to TDO data valid	-	28	-	32	-	28	-	32	-	80	-	80	ns
J13	TCLK low to TDO data invalid	0	-	0	-	0	-	0	-	0	-	0	-	ns
J14	TCLK low to TDO high-Z	-	28	-	32	-	28	-	32	-	80	-	80	ns

Figure 32. Test clock input timing

Figure 33. Boundary scan (JTAG) timing

Figure 34. Test Access Port timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 38. Thermal characteristics for the 64/100/144/176-pin LQFP package

Rating	Conditions	Symbol	Packages			Values			Unit																							
				S32K11x	S32K142	S32K144	S32K146	S32K148	1																							
Thermal resistance, Junction to Ambient	Single layer	$R_{\theta JA}$	64	TBD	61	61	59	NA	°C/W																							
(Natural Convection) ^{1, 2}	board (1s)		100	TBD	53	52	21	NA	°C/W																							
			144	TBD	NA	NA	51	44	°C/W																							
			176	TBD	NA	NA	NA	42	°C/W																							
Thermal resistance, Junction to Ambient	Two layer board	$R_{\theta JA}$	64	TBD	45	45	44	NA	°C/W																							
(Natural Convection) ¹	(1s1p)		100	TBD	42	42	40	NA	°C/W																							
			144	TBD	NA	NA	44	37	°C/W																							
			176	TBD	NA	NA	NA	36	°C/W																							
Thermal resistance, Junction to Ambient	Four layer board	$R_{\theta JA}$	64	TBD	43	43	41	NA	°C/W																							
(Natural Convection) ^{1, 2}	(2s2p)		100	TBD	40	40	39	NA	°C/W																							
			144	TBD	NA	NA	42	36	°C/W																							
				176	TBD	NA	NA	NA	35	°C/W																						
Thermal resistance, Junction to Ambient	Single layer board (1s)	$R_{\theta JMA}$	64	TBD	49	49	48	NA	°C/W																							
(@200 ft/min) ^{1, 3}				100	TBD	43	42	41	NA	°C/W																						
				144	TBD	NA	NA	42	36	°C/W																						
								176	TBD	NA	NA	NA	34	°C/W																		
Thermal resistance, Junction to Ambient			Two layer board		•	$R_{\theta JMA}$	64	TBD	38	38	37	NA	°C/W																			
(@200 ft/min) ¹	(1s1p)							100	TBD	35	35	34	NA	°C/W																		
																																144
			176	TBD	NA	NA	NA	30	°C/W																							
Thermal resistance, Junction to Ambient	Four layer board	R _{0JMA}	64	TBD	36	36	35	NA	°C/W																							
(@200 ft/min) ^{1, 3}	(2s2p)		100	TBD	34	34	33	NA	°C/W																							
				144	TBD	NA	NA	36	30	°C/W																						
			176	TBD	NA	NA	NA	29	°C/W																							
Thermal resistance, Junction to Board ⁴	_	$R_{\theta JB}$	64	TBD	25	25	23	NA	°C/W																							
			100	TBD	25	25	24	NA	°C/W																							
						144	TBD	NA	NA	30	24	°C/W																				
			176	TBD	NA	NA	NA	24	°C/W																							

Table 38. Thermal characteristics for the 64/100/144/176-pin LQFP package (continued)

Rating	Conditions	Symbol	Packages			Values	1		Unit
				S32K11x	S32K142	S32K144	S32K146	S32K148	
Thermal resistance, Junction to Case ⁵	_	$R_{ heta JC}$	64	TBD	13	12	11	NA	°C/W
			100	TBD	13	12	11	NA	°C/W
			144	TBD	NA	NA	12	9	°C/W
			176	TBD	NA	NA	NA	9	°C/W
Thermal resistance, Junction to Package	Natural	ΨЈТ	64	TBD	2	2	2	NA	°C/W
Top ⁶	Convection		100	TBD	2	2	2	NA	°C/W
			144	TBD	NA	NA	2	1	°C/W
			176	TBD	NA	NA	NA	1	°C/W

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 39. Thermal characteristics for the 100 MAPBGA package

Rating	Conditions	Symbol		Values					
			S32K146	S32K144	S32K148	1			
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	$R_{ hetaJA}$	57.2	61.0	52.5	°C/W			
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2, 3}	Four layer board (2s2p)	$R_{ hetaJA}$	32.1	35.6	27.5	°C/W			
Thermal resistance, Junction to Ambient (@200 ft/min) 1,2,3	Single layer board (1s)	$R_{\theta JMA}$	44.1	46.6	39.0	°C/W			
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Two layer board (2s2p)	$R_{ heta JMA}$	27.2	30.9	22.8	°C/W			
Thermal resistance, Junction to Board ⁴	_	$R_{\theta JB}$	15.3	18.9	11.2	°C/W			
Thermal resistance, Junction to Case ⁵	_	$R_{ heta JC}$	10.2	14.2	7.5	°C/W			
Thermal resistance, Junction to Package Top outside center ⁶	_	Ψлт	0.2	0.4	0.2	°C/W			
Thermal resistance, Junction to Package Bottom outside center ⁷	_	ΨЈВ	12.2	15.9	18.3	°C/W			

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta IA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta IA} = R_{\theta IC} + R_{\theta CA}$$

where:

- $R_{\theta IA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{IT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100 MAP BGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Table 40. Revision History

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Determining valid orderable parts Updated figure: Ordering information In table: Absolute maximum ratings: Added footnote to I _{INJPAD_DC} Updated min and max value of I _{INJPAD_DC} Updated description, max and min values for I _{INJSUM} Updated V _{IN_TRANSIENT} In table: Voltage and current operating requirements: Renamed V _{SUP_OFF} Updated max value of V _{DD_OFF} Removed V _{INA} and V _{IN} Added V _{REFH} and V _{REFL} Updated footnote "Typical conditions assumes V _{DD} = V _{DDA} = V _{REFH} = 5 V Removed I _{NJSUM_AF} Updated footnotes in table Table 4 Updated section Power mode transition operating behaviors In table: Power consumption Added footnote "With PMC_REGSC[CLKBIASDIS] " Updated conditions for VLPR Removed Idd/MHz for S32K144 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration: Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes_Master_configuration_sheet' In table: DC electrical specifications at 3.3 V Range: Added footnote to High drive port pins In table: DC electrical specifications at 5.0 V Range:

Table 40. Revision History

Rev. No.	Date	Substantial Changes
		 Added footnotes V_{ih} Input Buffer High Voltage and V_{ih} Input Buffer Low
		Voltage
		Updated table: AC electrical specifications at 3.3 V range
		Updated table: AC electrical specifications at 5 V range In table: Standard input pin conseitance.
		In table: Standard input pin capacitance Added feetness to Normal run mode (\$22K14x period)
		Added footnote to Normal run mode (S32K14x series) Removed note from 1M above Foodback Popietor in figure Occillator
		Removed note from 1M ohms Feedback Resistor in figure Oscillator connections scheme
		In table: External System Oscillator electrical specifications
		 Updated typical of I_{DDOSC} Supply current — low-gain mode (low-power mode) (HGO=0) 1 for 4 and 8 MHz
		 Removed rows for I_{Ik_ext} EXTAL/XTAL impedence High-frequency, low-
		gain mode (low-power mode) and high-frequency, high-gain mode and $V_{\sf EXTAL}$
		 Updated Typ. of R_S low-gain mode
		 Updated description of R_F, R_S, and V_{PP}
		 Removed footnote from R_F Feedback resistor
		Updated footnote for C ₁ C ₂ and R _F
		• In table: Table 16
		Removed mention of high-frequency
		Added HGO 0, 1 information And table 5 feet internal BC Conflictor aleatrical and iffeet in a
		In table: Fast internal RC Oscillator electrical specifications Undeted E
		Updated F _{FIRC} Updated description of A F
		 Updated description of ΔF Updated typ and max values of T_{JIT} cycle-to-cycle jitter and T_{JIT} Long
		term jitter over 1000 cycles
		 Added footnotes to T_{JIT} cycle-to-cycle jitter and T_{JIT} Long term jitter over 1000 cycles
		 Updated naming convention of I_{DDFIRC} Supply current
		 Added footnote to I_{DDFIRC} Supply current Added footnote to column Parameter
		In table: Slow internal RC oscillator (SIRC) electrical specifications
		Removed V _{DD} Supply current in 2 MHz Mode
		 Removed footnote and updated description of ΔF
		Updated footnote to F _{SIRC} and I _{DDSIRC}
		In table: SPLL electrical specifications
		Added row for F _{SPLL_REF} PLL Reference
		Updated naming convention throughout the table
		 Updated the max value of T_{SPLL_LOCK} Lock detector detection time
		In table: Table 21
		Added footnotes:
		All command times assumes
		For all EEPROM Emulation terms
		'First time' EERAM writes after a POR
		Removed footnote 'Assumes 25 MHz or'
		Updated Max of t _{eewr32bers}
		Added parameters t _{quickwr} and t _{quickwrClnup}
		In table: Table 22 Democrated Type values for all payorestage.
		Removed Typ. values for all parameters Parameter Typical values represent the second of the se
		Removed footnote 'Typical values represent' Added footnote 'Applications for June 1997 and
		Added footnote 'Any other EEE driver usage ' Undeted QuadSBLAC appointment
		Updated QuadSPI AC specifications Percentage Police little Sefety and Security modules
		Removed topic: Reliability, Safety and Security modules In table: 12-bit ADC operating conditions
ı		 In table: 12-bit ADC operating conditions Updated V_{DDA}
1		- Opuated ADDV

Table 40. Revision History (continued)

Rev. No.	Date	Substantial Changes
		Updated values for V _{REFH} and V _{REFL} to add refernce to the section "voltage and current operating requirments" for Min and Max valaues Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V _{REFH} = V _{DDA} , V _{REFL} = V _{SS}) Removed rows for V _{TEMP_S} and V _{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V _{REFH} = V _{DDA} , V _{REFL} = V _{SS}) Removed rows for V _{TEMP_S} and V _{TEMP25} Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I _{DDLS} Supply current, Low-speed mode Updated Typ. of t _{DLSB} Propagation delay, Low-speed mode Updated Typ. of t _{DHSS} Propagation delay, High-speed mode Updated Typ. of I _{DHSS} Propagation delay, High-speed mode Updated Typ. of Initialization and switching settling time Updated section LPSPI electrical specifications Added section: SAI electrical specifications Updated section: Ethernet AC specifications Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 38: Updated numbers for S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 2 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' In Table 21 updated Max. value of t_{VfVkey} to 33 µs
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Determining valid orderable parts, added reference to attachement S32K_Part_Numbers.xlsx. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table 40. Revision History

Rev. No.	Date	Substantial Changes
		Updated note 'All the limits defined '
		 Updated parameter 'I_{INJPAD_DC_ABS}', 'V_{IN_DC}', I_{INJSUM_DC_ABS}.
		• In Table 2,
		 Updated parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}.
		 In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and _{VLVW_HYST}
		• In Table 6,
		 Added VLPR → VLPS
		 Added VLPS → VLPR
		 Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 →
		Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA
		Wakeup
		 In Table 7, updated the specifications for S32K144.
		 Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx.
		 In Table 13, removed C_{IN_A}.
		• In Table 15,
		 Updated specificatins for g_{mXOSC}.
		Removed I _{DDOSC}
		• In Table 17,
		 Added parameter ΔF125.
		Removed I _{DDFIRC}
		• In Table 18,
		 Added parameter ΔF125.
		Removed I _{DDSIRC}
		• In Table 19, removed I _{LPO}
		Updated section: Flash memory module (FTFC) electrical specifications
		In section: 12-bit ADC operating conditions,
		Updated TBDs for I _{DDA_ADC} and TUE in Table 25
		Updated TBDs for I _{DDA_ADC} and TUE in Table 26 In Table 26
		In section: QuadSPI AC specifications, updated figure 'QuadSPI output
		timing (HyperRAM mode) diagram'.
		In section: 12-bit ADC operating conditions, updated Table 24. In section: CMB with 8 bit DAC electrical prooffications, added note [For
		In section: CMP with 8-bit DAC electrical specifications, added note 'For appropriate IN eigenstant's like signals adjacent.
		comparator IN signals adjacent '
		In table: Table 29, minor update in footnote 6. In table: Table 29, updated analysis for \$220K146. In table: Table 29, updated analysis for \$220K146. In table: Table 29, updated analysis for \$220K146.
		 In table: Table 38, updated specifications for S32K146.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE. JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2015-2017 NXP B.V.

Document Number S32K1XX Revision 4, 06/2017

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

S32K144EVB-Q100 S32K144EVB-Q100X