Primeasia University

Department of Computer Science and Engineering

Department: CSE	Semester : OSpring	Summer	O Fall	Year	2	0	2	0
-----------------	--------------------	--------	--------	------	---	---	---	---

Course Outline

Course Code	:	CSE 333	CREDIT	:	3.0	
Course Title	:	Artificial Intelligence	Class/Week	:	2	

Academic Policy, Class Schedule, Rationale, Objective, LO, Skills & GCD

Administrative Information		Class Routine Day, Time and Venue for Lectures			
Mosaddek Adnan Sikder		Dav	Room & Time		
Lecturer		Monday	(Star 1610) 03.10 pm-04.40 pm		
Department of CSE Primeasia University, Banani.		Wednesday	(Star 1610) 01.35 pm-03.05 pm		

Office: Star-1602

Email:

mos addek. adnan@prime asia. edu.bd

Cell: +8801685212708

Marks Distribution Policy

Attendance	5%
Assessment	25%
(CT, Presentation and	
Assignment)	
Midterm	20%
Final Exam	50%
Total	100%

Teaching Learning Equipments & Aids

Lecture, Orbit OCP, Class Discussion, White Board, Power Point Presentations, MMP, Assignment, Home work, Web Contents.

Grading Policy			
Uniform Grading System			
80-100	A+		
75-79	Α		
70-74	A-		
65-69	B+		
60-64	В		
55-59	B-		
50-54	C+		
45-49	С		
40-44	D		
00-39	F		

General Instruction

Receiving mobile call is prohibited Sharing calculator is prohibited

Reference Books

 Artificial Intelligence A Modern Approach By Stuart Russell & Peter Norvig (3rd Edition)

Course Description and Objectives:

This course provides an introduction to the fundamentals of artificial intelligence. It contains a theory component about the concepts and principles that underlie modern Al algorithms, and a practice component to relate theoretical principles with practical implementation. The course divides into four parts. The first part of the course discusses search algorithms (BFS, DFS, UCS, A*, Min-Max trees). The second part of the course discusses probability as a mathematical tool, Bayesian networks and hidden Markov models. The third part of the course overviews machine learning algorithms both supervised and unsupervised. An introduction to learning by reinforcement is included as well. The last part concerns logic and planning algorithms such as value iteration for MDP. Along the course we highlight application domains such as robotics (e.g. particle filters for perception) and natural language processing. The objective is to give an overall idea about the field without delving into advanced details whenever possible.

Learning Outcomes: Upon successful completion of this course, you will be able to:

- List the objectives and functions of modern Artificial Intelligence.
- Categorize an AI problem based on its characteristics and its constraints.
- Understand and implement search and adversarial (game) algorithms.
- Understand mathematical models such as belief networks and Markov decision processes and apply them to a range of AI problems.
- Have a glance at machine learning algorithms and extracting knowledge models from data.
- Learn different logic formalisms and decision taking in planning problems.
- Learn how to analyze the complexity of a given problem and come with suitable optimizations.
- Demonstrate practical experience by implementing and experimenting with the learnt algorithms.

The course will be able to transform following skills:

Transferable Skills

	Skills	How they are developed?		
	Critical	Problem solving		
	Thinking	Self study and Assignment		
	THITKING	Discussion		
	A so a la series es	Home works		
Transferable Skills	Analyzing Information	Book Review Assignment		
	illioilliation	Discussion		
	Presentation	Discuss the solving techniques		
	Creativity	Implement and apply the knowledge		
	Communication	Class Discussions		
	Communication	Case Presentation		
	Droblom Colving	Assignment		
	Problem-Solving	Solving Problems		

Primeasia University

Department of CSE

Summer Semester 2020

Course title : Artificial Intelligence Credit : 3.0 Course code : CSE 333 Class/Week : 2

Class duration 90 Minutes

Weeks	Classes or Lectures	Following topics are to be taught	Remarks
	Lecture 1	Part I – Introduction to Artificial Intelligence	
Week 1	Lecture 2	Introduction (Chapter 1)Intelligent Agents (Chapter 2)	
Week 2	Lecture 3		
Week 2	Lecture 4		
Week 3	Lecture 5	Part II – Problem Solving Techniques	
Week 5	Lecture 6	Problem Solving by Searching (Chapter 3)	
Week 4	Lecture 7	Beyond Classical Search (Chapter 4)	
week 4	Lecture 8	Adversarial Search (Chapter 5)	Quiz
Week 5	Lecture 9	` ' '	
week 5	Lecture 10	Constraint Satisfaction Problems (Chapter 6)	
Week 6	Lecture 11		
week 6	Lecture 12		Assignment
Week 7	Lecture 13	Part III – Logic & Planning	
week /	Lecture 14	Logical Agents (Chapter 7)	
	Lecture 15	First-Order Logic (Chapter 8)	
Week 8	Lecture 16	Inference in First-Order Logic (Chapter 9)	Quiz
		Classical Planning (Chapter 10)	Quiz
Week 9	Lecture 17		
week 9	Lecture 18	Doubliv Dyshability and Dayraian naturally (Chantay 12 14)	
Week	Lecture 19	Part IV - Probability and Bayesian networks (Chapter 13,14)	
10	Lecture 20		Assignment
Week	Lecture 21		
11	Lecture 22	Part V - Machine Learning (Chapter 18,19,20)	
Week	Lecture 23	Tare Tradimic Learning (Grapher 10,13,20)	
12	Lecture 24		Quiz
Week	Lecture 25	Part VI Painforcement Learning (Chanter 21)	
13	Lecture 26	Part VI – Reinforcement Learning (Chapter 21)	Assignment

AA III AI CIII	
Mosaddek Adnan Sikder	
Name of the faculty member	Signature of the faculty member