Lecture 5: POS Tagging and Topic Modelling

Part of Speech (POS) Tagging

process of classifying and labelling words into appropriate parts of speech, such as noun, verb, adjective, adverb, conjunction, pronoun and other categories.

Examples of POS tags in NLTK (library of python):

- VBG verb, present participle or gerund,
- PRP pronoun, personal,
- NN noun, common, singular or mass

Some Applications of POS Tagging

- Text-to-speech conversion
- Disambiguation of statements (check the word **bear**)
- A bear was charging towards the car.
 noun
- Your plans may be about to bear verb
- Named Entity Recognition, etc.

Markov Chains

Markov Model: representation of states and transitions to different states by assuming future states depend only on the current state

E.g.

Current state \rightarrow tail of the arrow

Future state \rightarrow head of the arrow

the number on the arrow \rightarrow Likelihood of tail followed by head

Transition Matrix

Another way to represent transition probabilities

	NN	VB	0	Corpus: <s> in a station of the metro</s>
(initial)	1/3	0	2/3	<s> the apparition of these faces in the crowd :</s>
NN (noun)	0	0	1	<s> petals on a wet, black bough.</s>
VB (verb)	0	0	0	
O (other)	6/14	0,	8/14	

Hidden Markov Model (HMM)

Example illustration

Dotted lines \rightarrow transition to visible states

Observable (visible) states \rightarrow words of the sentences

 $Hidden\ states \rightarrow Parts\ of\ Speech$

Constituency Parsing

Process of analysing the sentences by breaking down it into sub-phrases also known as constituents

Dependency Trees

Arrows → parent-child relationship

Root → word with no arrow pointing towards it

Topic Modelling

Topics: Representative group of words in a large corpus.

Latent Dirichlet Allocation (LDA)

- LDA assumes that documents are composed of words that help determine the topics and maps documents to a list of topics by assigning each word in the document to different topics.
- While identifying the topics in the documents, it starts with random assignment of topics to each word and iteratively improves the assignment of topics to words through *Gibbs sampling*.

Architecture of LDA:

LDA Hyperparameters

Hyper-parameter usage

'α' document-topic density factor

β topic-word density factor

'K' number of topics to be considered

(predefined)

Dirichlet Distributions

Corners \rightarrow Topics

 $Dots \rightarrow Articles$

The middle distribution represents the distribution of articles w.r.t. topics (as articles generally belong to a unique topic, lower probability of belonging to 2, and so on)

References:

Latent Dirichlet Allocation (Part 1 of 2)

Understanding Latent Dirichlet Allocation (LDA)