CLIK | Contrastive Learning of text and Image for ranking

CLOVA MD, CLOVA ML X Jee Hyung Ko / 고지형

Problem Definition - AS-IS

< An Example of Online Special Exhibition Service, NAVER Shopping >

Generated Special Exhibition & Included items

Select representative image

Human Service Operator

Drop unrelated images

Topic - 'Winter Wide Pants for Men'

Choose the image that looks the most appealing

Problem Definition - TO-BE

< An Example of Online Special Exhibition Service, NAVER Shopping >

Generated Special Exhibition & Included items

What is 'Representative Image'?

- Contextual: suitable for given context
- Attractive: draw the attention of users

What is 'Representative Image'?

- Contextual: suitable for given context
- Attractive: draw the attention of users

What is 'Representative Image Selection'?

- To find the most compatible image as a representative among item images included to a special exhibition
- Compatibility contextual & attractive

What is 'Representative Image'?

- Contextual: suitable for given context
- Attractive: draw the attention of users

What is 'Representative Image Selection'?

- To find the most compatible image as a representative among item images included to a special exhibition
- Compatibility contextual & attractive

Define it more generally.

Our goal is to find a function f as follows:

$$(x_{i*}, c_{i*}) = \max_{c} (f(s_i, X_i))$$

= $\max_{c} (\{(x_{i1}, c_{i1}), ..., (x_{i|X_i|}, c_{i|X_i|})\})$

 $(s_i, X_i) := g_i : i$ th instance group (=given special exhibition)

 s_i : shared context of g_i (=theme of given special exhibition)

 $X_i = \{x_{ij}\}_{j=1}^{|X_i|}$: set of instances of g_i (=item images included to given special exhibition)

 c_{ij} : (predicted) compatibility of instance x_{ij}

Representation Learning for 'Contextual'

- Contrastive approach-based self-supervised learning
- Good to learn 'contextual' aspect,
 but hard to consider how attractive each instance is

CTR Prediction/Creative Ranking for 'Attractive'

- Predict CTR for an item or compare ranking scores among items
- Good to learn 'attractive' aspect,
 but hard to consider shared context of instance group directly

Representation Learning for 'Contextual'

- Contrastive approach-based self-supervised learning
- Good to learn 'contextual' aspect,
 but hard to consider how attractive each instance is

CTR Prediction/Creative Ranking for 'Attractive'

- Predict CTR for an item or compare ranking scores among items
- Good to learn 'attractive' aspect,
 but hard to consider shared context of instance group directly

→ Goal: Representation Learning + Ranking

CLIK: Contrastive Learning of text and Image for ranking

Overview

- Perform two training tasks
- Task I. Semantic Matching (Representation Learning)
 understand 'shared context ↔ instance' relation
- *Task II. Preference Discrimination* (Ranking) select the best of instances in given instance group
- Both tasks are performed mainly by dual encoder with shared weights, in end-to-end manner

Task I. Semantic Matching

- Same as the training task of CLIP, SSL with contrastive approach so, it need NO human annotations
- Maximize similarities of 'shared context ↔ instance' pairs from the same instance group,
- Minimize similarities for the other pairs
- Contrast pairs are composed as follows

a pair of $g_i = (s_i, x_{ij}), \quad x_{ij} \in X_i \text{ (randomly sampled)}$

Task I. Semantic Matching

Loss function - the same as that of CLIP, NT-Xent Loss

$$L_{matching} = (L_{S2I} + L_{I2S}) / 2$$

$$L_{S2I} = -\frac{1}{M} \sum_{m=1}^{M} \log \frac{\exp(sim(z_{m}^{S}, z_{m}^{I}) / \tau)}{\sum_{i=1}^{M} \exp(sim(z_{m}^{S}, z_{i}^{I}) / \tau)}$$

$$L_{I2C} = -\frac{1}{M} \sum_{m=1}^{M} \log \frac{\exp(sim(z_{m}^{I}, z_{m}^{S}) / \tau)}{\sum_{i=1}^{M} \exp(sim(z_{m}^{I}, z_{i}^{S}) / \tau)}$$

M : batch size for Semantic Matching

 z_i^I : instance embedding sampled from g_i

 z_i^S : shared context embedding of g_i

 $sim(\cdot)$: cosine similarity

 τ : temperature parameter

Task II. Preference Discrimination

- Select the best of instances in given instance group
- Anchor: a special embedding called 'Group Context'
- Positive/Negative: instances of given group

Task II. Preference Discrimination

Loss function

$$L_{discrim} = -\frac{1}{D} \sum_{i=1}^{D} \log \frac{\exp(sim(z_{i}^{G}, z_{i*}^{I}) / \tau)}{\sum_{k=1}^{K} \exp(sim(z_{i}^{G}, z_{ik}^{I}) / \tau)}$$

D : # discrimination iterations

K : sampling size of instances from group

 z_i^G : group context embedding of g_i

 z_{ik}^{I}/z_{i*}^{I} : kth sampled instance/best instance of g_{i}

au: temperature parameter

 $sim(\cdot)$: cosine similarity

- Maximize similarity of 'group context

 instance' pair

 when compatibility of the instance is greater than the others
- Minimize similarities for the other pairs

Task II. Preference Discrimination

• Group Context z_t^G (core component of CLIK) anchor embedding representing given g_t

$$z_t^G = Agg(z_t^S, z_t^V)$$

• Virtual Instance z_t^V virtual embedding likely to fit with z_t^S semantically generated by attention between z_t^S and external instances

$$z_t^V = Attention\left(z_t^S, \left\{z_{\sim t}^I \mid x_{\sim t} \in \bigcup_{i \neq t} X_i\right\}\right)$$

• External Instances (Instance Queue) instance sources used to generate z_t^V right after $task\ I$, store their instance embeddings to the queue

Instance Queue =
$$\{z_{ij}^I | x_{ij} \in X_{i\neq t}\}$$

Task II. Preference Discrimination

Intuitive Example

Task II. Preference Discrimination

- Intuitive Example
- Role of Group Context z_t^G
 - With additional information, make anchor representation rich helpful for contents-only-based recommendation
 - Prevent confusion between two training tasks with new modality of z_t^G , ironic positive/negative aligning can be avoided (without z_t^G , train/generalization performance both become poor)

Summary

Loss function

$$L = L_{matching} + \lambda \cdot L_{discrim}$$
 (default $\lambda = 0.05$)

Experiments

Dataset

- Collected from Online Special Exhibition, NAVER Shopping
- De-duplicate & removed data leakage

Туре	# Train Exhibitions	# Eval Exhibitions	# Train Items	# Eval Items	Target
1	3.7K	290	2.6M	14K	Review Counts
2	1.2K	343	83K	17K	CTR

Metric

- Evaluation for Ranking
 - $MRR(X_n) = \frac{1}{Predicted \ Rank \ of \ x_{n*}}$
 - TopK Top1 Accuracy

$$= \frac{1}{N} \sum_{n=1}^{N} \begin{cases} 1 & \text{if (true rank of the instance predicted as } 1^{st}) \leq K \\ 0 & \text{others} \end{cases}$$

- Evaluation for context ↔ instance understanding
 - Linear Evaluation Protocol with frozen dual encoders
 Target: Exhibitions & products category

ex) Label of laptop at digital exhibition: 'laptop-digital'

Epochs / LR / Batch Size: 10 / 1e-4 / 32

Experiments

Implementation/Train Detail

context	instance	emb.	queue	agg.	attn.	# params
enc. (text)	enc. (image)	dim	size	method	method	
BERT 70M	ViT S/16	128	512	concat	dot-product	92.9M

Epochs	LR (text)	LR (image)	optim	scheduler	batch size(M) (task I)	batch size (task II)
10	5e-5	1e-4	AdamW (decay 0.01)	cos. annealing 1% warm-up	512	20(K), 12(D)

Baselines

• Triplet Loss (# Params: 92.9M)

Pairwise Loss (# Params: 93.0M)

Pointwise Loss (# Params: 92.9M)

*Backbones of dual encoders are the same as CLIK

Epochs	LR	optim	scheduler	batch size
10	1e-4	AdamW (decay 0.01)	cos. annealing 1% warm-up	32

Experiments

Main Results

• Result for Data Type 1 (3.7K Exhibitions, Review Counts)

Model	Target	Linear Eval.	MRR	Top1-Top1	Top3-Top1	Top5-Top1
CLIK		0.8347	0.1561	0.0621	0.1345	0.1897
Triplet	Review	0.2541	0.1645	0.0448	<u>0.1</u>	0.1414
Pairwise	Count	0.2784	0.1380	0.0448	0.0828	0.131
Pointwise		0.2509	0.1078	0.0207	0.0517	0.0724
Random		0.0103	0.0899	0.02	0.06	0.1

• Result for Data Type 2 (1.2K Exhibitions, CTR)

Model	Target	Linear Eval.	MRR	Top1-Top1	Top3-Top1	Top5-Top1
CLIK		0.7528	0.1226	0.0496	0.0729	0.1283
Triplet	CTD	<u>0.2682</u>	0.102	0.0233	0.0758	0.1254
Pairwise	CTR	0.2192	0.1063	0.0379	0.0641	0.1195
Pointwise		0.239	<u>0.121</u>	0.0379	0.0947	0.1457
Random		0.0119	0.0899	0.02	0.06	0.1

Additional Experiments

Usage of Group Context z^G

Model	Target	Linear Eval.	MRR	Top1-Top1	Top3-Top1	Top5-Top1
CLIK	Review	0.8347	0.1561	0.0621	0.1345	0.1897
CLIK w/o z^G	Count	0.8280	0.0909	0.0207	0.0621	0.1
Random		0.0103	0.0899	0.02	0.06	0.1

Make contrastive representation learning more powerful
Limitation of exhibition dataset: too few texts compared to images
With more texts, performance can be improved with NO annotations

Model	Target	Linear Eval.	MRR	Top1-Top1	Top3-Top1	Top5-Top1
CLIK	Review	0.8347	0.1561	0.0621	0.1345	0.1897
CLIK w txt aug.	Count	0.8752	0.1596	0.069	0.1345	0.2138
Random		0.0103	0.0899	0.02	0.06	0.1

Appendix

Inference Comparison

Shared Context

Title: Trousers, Bending, Spandex Pants for Men

Open Date: Aug 30, 2021

Category: Fashion / Men Clothing

Keywords: MensBendingPants, MensTrousers, ...

Inference Result of CLIK

Most of tops ranked at bottom

