П

0.1 由乘法交换性诱导的同时性质

命题 0.1 (矩阵乘法可交换的基本性质)

若两个矩阵或线性变换 A,B 乘法可交换, 即 AB=BA, 则有 $(AB)^m=A^mB^m$, f(A)g(B)=g(B)f(A) 以及二项式定理

$$(A + B)^m = A^m + C_m^1 A^{m-1} B + \dots + C_m^{m-1} A B^{m-1} + B^m$$

等成立, 其中 $m \ge 1$, f(x), g(x) 为多项式.

特别地, 一个矩阵或线性变换 A 一定与其自身可交换, 从而也满足 f(A)g(A) = g(A)f(A), 其中 f(x), g(x) 为 多项式.

证明 证明是显然的.

0.1.1 特征子空间互为不变子空间

命题 0.2 (特征子空间互为不变子空间)

- 1. 设 φ , ψ 是复线性空间 V 上乘法可交换的线性变换, 即 $\varphi\psi = \psi\varphi$, 求证: φ 的特征子空间是 ψ 的不变子空间, ψ 的特征子空间是 φ 的不变子空间.

注 这个命题的结论对一般的数域是不成立的. 例如, $A = I_2$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, 显然 A, B 乘法可交换, 但它们在有理数域或实数域上没有公共的特征向量. 事实上, B 在有理数域或实数域上都没有特征值 (它的特征值是 ±i), 从而也没有特征向量, 所以更谈不上公共的特征向量了. 为了这个命题的结论推广到数域 \mathbb{F} 上, 我们必须假设 A, B 的特征值都在 \mathbb{F} 中.

证明

1. 由代数基本定理以及线性方程组的求解理论可知, $n(n \ge 1)$ 维复线性空间上的线性变换或 n 阶复矩阵至少有一个特征值和特征向量. 任取线性变换 φ 的一个特征值 λ_0 , 设 V_0 是特征值 λ_0 的特征子空间,则对任意的 $\alpha \in V_0$,有

$$\varphi\psi(\alpha) = \psi\varphi(\alpha) = \psi(\lambda_0\alpha) = \lambda_0\psi(\alpha),$$

即 $\psi(\alpha) \in V_0$, 因此 V_0 是 ψ 的不变子空间. 同理可证 ψ 的特征子空间是 φ 的不变子空间.

2.

命题 0.3

设 $V \to n$ 维复线性空间, $S \neq L(V)$ 的非空子集, 满足: S 中的全体线性变换没有非平凡的公共不变子空间. 设线性变换 φ 与 S 中任一线性变换乘法均可交换, 证明: φ 是纯量变换.

证明 任取 φ 的特征值 λ_0 及其特征子空间 V_0 . 任取 $\psi \in S$, 则 $\varphi \psi = \psi \varphi$, 由命题 0.2可知 V_0 是 ψ – 不变子空间, 从而是 S 中全体线性变换的公共不变子空间. 又 $V_0 \neq 0$ (特征向量均非零), 故 $V_0 = V$, 从而 $\varphi = \lambda_0 I_V$ 为纯量变换. □

0.1.2 有公共的特征向量

命题 0.4

- 1. 设 φ, ψ 是复线性空间 V 上乘法可交换的线性变换, 求证: φ, ψ 至少有一个公共的 (复) 特征向量.
- 2. 若 n 阶复矩阵 A, B 乘法可交换, 即 AB = BA, 则 A, B 至少有一个公共的(复)特征向量.

注 这个命题的结论对一般的数域是不成立的. 例如, $A = I_2$, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, 显然 A, B 乘法可交换, 但它们在有理数域或实数域上没有公共的特征向量. 事实上, B 在有理数域或实数域上都没有特征值 (它的特征值是 ±i), 从而也没有特征向量, 所以更谈不上公共的特征向量了. 为了这个命题的结论推广到数域 \mathbb{F} 上, 我们必须假设 A, B 的特征值都在 \mathbb{F} 中.

证明

1. 任取 φ 的特征值 λ_0 及其特征子空间 V_0 , 由命题 0.2可知, V_0 是 ψ — 不变子空间. 将线性变换 ψ 限制在 V_0 上, 由于 V_0 是维数大于零的复线性空间, 故由命题??可知 $\psi|_{V_0}$ 至少有一个特征值 μ_0 及其特征向量 $\alpha \in V_0$, 从而 $\varphi(\alpha) = \lambda_0 \alpha$, $\psi(\alpha) = \mu_0 \alpha$, 于是 α 就是 φ , ψ 的公共特征向量.

2.

命题 0.5

- 1. 设 φ , ψ 是数域 \mathbb{F} 上线性空间 V 上的乘法可交换的线性变换, 且 φ , ψ 的特征值都在 \mathbb{F} 中, 求证: φ , ψ 的特征子空间互为不变子空间, 并且 φ , ψ 至少有一个公共的特征向量.
- 2. 若数域 \mathbb{F} 上的 n 阶矩阵 A, B 乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 则 A, B 的特征子空间互为不变子空间, 并且 A, B 在 \mathbb{F}^n 中至少有一个公共的特征向量.

证明

1. 由线性方程组的求解理论可知, 若数域 \mathbb{F} 上的线性变换或 \mathbb{F} 上的矩阵在 \mathbb{F} 中有一个特征值, 则在 \mathbb{F} 上的线性空间或 \mathbb{F} 上的列向量空间中必存在对应的特征向量. 任取线性变换 φ 的一个特征值 $\lambda_0 \in \mathbb{F}$, 设 V_0 是特征值 λ_0 的特征子空间,则对任意的 $\alpha \in V_0$, 有

$$\varphi\psi(\alpha) = \psi\varphi(\alpha) = \psi(\lambda_0\alpha) = \lambda_0\psi(\alpha),$$

即 $\psi(\alpha) \in V_0$, 因此 V_0 是 ψ -不变子空间. 取 V_0 的一组基并扩张为V的一组基,则 ψ 在这组基下的表示矩阵为分块对角矩阵 $\begin{pmatrix} A & C \\ O & B \end{pmatrix}$, 其中A是 $\psi|_{V_0}$ 在给定基下的表示矩阵,于是 $|\lambda I_V - \psi| = |\lambda I - A||\lambda I - B|$. 因为 ψ 的特征值都在 $\mathbb F$ 中,故A的特征值都在 $\mathbb F$ 中,于是 $\psi|_{V_0}$ 的特征值都在 $\mathbb F$ 中。任取 $\psi|_{V_0}$ 的一个特征值 $\mu_0 \in \mathbb F$ 及其特征向量 $\alpha \in V_0$,则 $\varphi(\alpha) = \lambda_0 \alpha$, $\psi(\alpha) = \mu_0 \alpha$,于是 α 就是 α , ψ 的公共特征向量.

2.

0.1.3 可同时相似上三角化

命题 0.6 (矩阵的上三角化)

- 1. 设数域 \mathbb{F} 上的 n 阶矩阵 A 的特征值都在 \mathbb{F} 中, 求证: A 在 \mathbb{F} 上可上三角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 是上三角矩阵.
- 2. 设数域 \mathbb{F} 上线性空间 V 上的线性变换 φ 的特征值都在 \mathbb{F} 中, 则存在 V 的一组基, 使得 φ 在这组基下的表示矩阵是上三角矩阵.

证明

1. 对阶数进行归纳. 当n=1 时结论显然成立,设对n-1 阶矩阵结论成立,现对n 阶矩阵 A 进行证明. 设 $\lambda_1 \in \mathbb{F}$ 是 A 的一个特征值,则由线性方程组的求解理论可知,存在特征向量 $e_1 \in \mathbb{F}^n$,使得 $Ae_1 = \lambda_1 e_1$. 由基扩张定理,可将 e_1 扩张为 \mathbb{F}^n 的一组基 $\{e_1,e_2,\cdots,e_n\}$,于是

$$(Ae_1, Ae_2, \cdots, Ae_n) = (e_1, e_2, \cdots, e_n) \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix},$$

其中 A_1 是 $\mathbb F$ 上的 n-1 阶矩阵. 令 $P=(e_1,e_2,\cdots,e_n)$,则 P 是 $\mathbb F$ 上的 n 阶可逆矩阵,且由上式可得 $AP=P\begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}$,即 $P^{-1}AP=\begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}$. 由此可得 $|\lambda I_n-A|=(\lambda-\lambda_1)|\lambda I_{n-1}-A_1|$,又 A 的特征值全在 $\mathbb F$ 中,从而 A_1 的特征值也全在 $\mathbb F$ 中,故由归纳假设,存在 $\mathbb F$ 上的 n-1 阶可逆矩阵 Q,使得 $Q^{-1}A_1Q$ 是上三角矩阵. 令

$$R = P \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix},$$

则 R 是 \mathbb{F} 上的 n 阶可逆矩阵, 且

$$R^{-1}AR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & Q^{-1}A_1Q \end{pmatrix}$$

是上三角矩阵.

2.

命题 0.7

- 1. 设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵, 满足: AB = BA 且 A, B 的特征值都在 \mathbb{F} 中, 求证: A, B 在 \mathbb{F} 上可同时上三角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是上三角矩阵.
- 2. 设数域 \mathbb{F} 上线性空间 V 上的线性变换 φ , ψ 乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 则存在 V 的一组 基, 使得 φ , ψ 在这组基下的表示矩阵都是上三角矩阵.

证明

1. 对阶数进行归纳. 当 n=1 时结论显然成立,设对 n-1 阶矩阵结论成立,现对 n 阶矩阵进行证明. 因为 AB=BA 且 A,B 的特征值都在 \mathbb{F} 中,故由命题 0.5可知, A,B 有公共的特征向量 $e_1\in\mathbb{F}^n$,不妨设

$$Ae_1 = \lambda_1 e_1, Be_1 = \mu_1 e_1,$$

其中 $\lambda_1, \mu_1 \in \mathbb{F}$ 分别是 A, B 的特征值. 由基扩张定理, 可将 e_1 扩张为 \mathbb{F}^n 的一组基 $\{e_1, e_2, \cdots, e_n\}$. 令 $P = (e_1, e_2, \cdots, e_n)$, 则 $P \in \mathbb{F}$ 上的 n 阶可逆矩阵, 从而有

$$A(e_{1}, e_{2}, \cdots, e_{n}) = (e_{1}, e_{2}, \cdots, e_{n}) \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix} \Leftrightarrow AP = P \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix} \Leftrightarrow P^{-1}AP = \begin{pmatrix} \lambda_{1} & * \\ O & A_{1} \end{pmatrix},$$

$$B(e_{1}, e_{2}, \cdots, e_{n}) = (e_{1}, e_{2}, \cdots, e_{n}) \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix} \Leftrightarrow BP = P \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix} \Leftrightarrow P^{-1}BP = \begin{pmatrix} \lambda_{1} & * \\ O & B_{1} \end{pmatrix}.$$

$$(1)$$

其中 A_1, B_1 是 \mathbb{F} 上的 n-1 阶矩阵. 由 AB = BA 及(1)式可得到

$$(P^{-1}AP) (P^{-1}BP) = P^{-1}ABP = P^{-1}BAP = (P^{-1}BP) (P^{-1}AP)$$

$$\Leftrightarrow \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & B_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & B_1 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \lambda_1 & * \\ O & A_1B_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & B_1A_1 \end{pmatrix}$$

从而 $A_1B_1 = B_1A_1$. 又由(1)式可得

$$|\lambda I_n - A| = |\lambda - \lambda_1| |\lambda I_{n-1} - A_1|, \quad |\lambda I_n - B| = |\lambda - \lambda_1| |\lambda I_{n-1} - B_1|.$$

因此 A_1 , B_1 的特征值也是 A, B 的特征值. 又由于 A, B 的特征值都在 \mathbb{F} 中, 故 A_1 , B_1 的特征值都在 \mathbb{F} 中. 故由归纳假设, 存在 \mathbb{F} 上的 n-1 阶可逆矩阵 Q, 使得 $Q^{-1}A_1Q$ 和 $Q^{-1}B_1Q$ 都是上三角矩阵. 令

$$R = P \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix},$$

则 R 是 \mathbb{F} 上的 n 阶可逆矩阵, 且

$$R^{-1}AR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & Q^{-1}A_1Q \end{pmatrix},$$

$$R^{-1}BR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \mu_1 & * \\ O & B_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix} = \begin{pmatrix} \mu_1 & * \\ O & Q^{-1}B_1Q \end{pmatrix}$$

都是上三角矩阵.

2.

命题 0.8 (一族两两可交换的一般域上的矩阵可同时上三角化)

给定域 \mathbb{F} 和指标集 Λ ,设 $A_{\lambda} \in \mathbb{F}^{n \times n}$, $\lambda \in \Lambda$ 且两两可交换且特征值都属于 \mathbb{F} ,则存在可逆矩阵 $P \in \mathbb{F}^{n \times n}$,使得

$$P^{-1}A_{\lambda}P$$
 是上三角矩阵, $\forall \lambda \in \Lambda$.

\$

笔记 证明的想法是对有限的量归纳,即矩阵降阶. 本结果将综合运用几何方法和矩阵方法.

注 因为数量矩阵的特征子空间就是全空间,将其限制在特征子空间上,维数并未下降,所以需要分类讨论.

证明 Step 1 若 $\forall \lambda \in \Lambda$, 都有 A_{λ} 是数量矩阵, 此时结论显然成立.

Step 2 任取一个非数量矩阵 $A_1 \in \mathbb{F}^{n \times n}$, 再任取 A_1 的一个特征子空间 V_1 , 则 $1 \leq \dim V_1 < n$, 否则 A_1 就是纯量阵. 由命题 0.2可知, V_1 是 A_{λ} 一不变子空间, $\forall \lambda \in \Lambda$. 因此可考虑线性变换 $A_{\lambda}|_{V_1}$, $\lambda \in \Lambda$. 下对矩阵阶数进行归纳证明.

当n=1时,结论显然成立. 假设命题对小于等于n-1的情况都成立,考虑n的情形.

注意到 $A_{\lambda}|_{V_{1}},\lambda\in\Lambda$ 两两乘法可交换,故由归纳假设可知,存在 V_{1} 的一组基,使 $A_{\lambda}|_{V_{1}}$ 在这组基下有上三角表示矩阵 $\widetilde{A}_{\lambda},\lambda\in\Lambda$. 将这组基扩充为 V 的一组基,于是在新的基下, $A_{\lambda}(\lambda\in\Lambda)$ 有表示矩阵 $\begin{pmatrix}\widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ \widetilde{C}_{\lambda} \end{pmatrix}$, $\lambda\in\Lambda$.

又由于 A_{λ} , $\lambda \in \Lambda$ 两两乘法可交换, 故对 $\forall \lambda, \mu \in \Lambda$, 有

$$\begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ & \widetilde{C}_{\lambda} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ & \widetilde{C}_{\mu} \end{pmatrix} = \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ & \widetilde{C}_{\mu} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ & \widetilde{C}_{\lambda} \end{pmatrix}$$

$$\iff \begin{pmatrix} \widetilde{A}_{\lambda}\widetilde{A}_{\mu} & * \\ & \widetilde{C}_{\lambda}\widetilde{C}_{\mu} \end{pmatrix} = \begin{pmatrix} \widetilde{A}_{\mu}\widetilde{A}_{\lambda} & * \\ & \widetilde{C}_{\mu}\widetilde{C}_{\lambda} \end{pmatrix}$$

即 \widetilde{A}_{λ} , \widetilde{C}_{λ} , $\lambda \in \Lambda$ 两两乘法可交换. 从而由归纳假设可知, 对 $\forall \lambda \in \Lambda$, 存在可逆阵 \widetilde{P}_{λ} , 使得 $(\widetilde{P}_{\lambda})^{-1}\widetilde{C}_{\lambda}\widetilde{P}_{\lambda}$ 是上三角阵. 取 $P = \begin{pmatrix} I & O \\ O & \widetilde{P}_{\lambda} \end{pmatrix} \in \mathbb{F}^{n \times n}$, 则此时对 $\forall \lambda \in \Lambda$, 就有

$$P^{-1}A_{\lambda}P = \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ & (\widetilde{P}_{\lambda})^{-1}\widetilde{C}_{\lambda}\widetilde{P}_{\lambda} \end{pmatrix}.$$

而 \widetilde{A}_{λ} , $(\widetilde{P}_{\lambda})^{-1}\widetilde{C}_{\lambda}\widetilde{P}_{\lambda}$ 都是上三角阵, 故 $P^{-1}A_{\lambda}P$ 也是上三角阵. 因此由数学归纳法可知, 结论成立.

命题 0.9 (一族两两可交换的复数 (实数) 域上的矩阵可同时酉 (正交) 上三角化)

1. 给定指标集 Λ , 设 $A_{\lambda} \in \mathbb{C}^{n \times n}$, $\lambda \in \Lambda$ 且两两可交换, 则存在酉矩阵 $P \in \mathbb{C}^{n \times n}$, 使得 $P^{-1}A_{\lambda}P$ 是上三角 矩阵, $\forall \lambda \in \Lambda$.

- 2. 给定指标集 Λ , 设 $A_{\lambda} \in \mathbb{R}^{n \times n}$, $\lambda \in \Lambda$ 且两两可交换且特征值都是实数. 则存在正交矩阵 $P \in \mathbb{R}^{n \times n}$, 使 得 $P^{-1}A_{\lambda}P$ 是上三角矩阵, $\forall \lambda \in \Lambda$.
- 笔记 证明的想法是对有限的量归纳,即矩阵降阶.本结果将综合运用几何方法和矩阵方法.
 注 因为数量矩阵的特征子空间就是全空间,将其限制在特征子空间上,维数并未下降,所以需要分类讨论.
 证明
 - 1. 设 $V = \mathbb{C}^n$ 且 A_1 是V上线性变换.

Step 1 若 A_{λ} 都是数量矩阵,则结果已经成立.

Step 2 取某个非数量矩阵 A_1 和一个特征子空间 V_1 且 $1 \le \dim V_1 < n$. 由交换性知 V_1 是所有 A_λ 不变子空间,因此 $A_\lambda|_{V_1}$, $\lambda \in \Lambda$ 也是一族更低维度的两两可交换的矩阵. 于是我们就将维度降了下去,从而可以使用归纳法来完成证明. 即:

当 n=1,命题显然成立,假设命题对小于等于 n-1 都成立,当 n 时,由归纳假设, $A_{\lambda}|_{V_{1}}$, $\lambda \in \Lambda$ 也是一族两两可交换的矩阵,从而存在 V_{1} 的一族标准正交基,使得在这组基下 $A_{\lambda}|_{V_{1}}$ 有上三角的表示矩阵 A_{λ} A_{λ} 0 A_{λ} 1 这组基扩充到 A_{λ} 0 A_{λ} 0 A_{λ} 1 以 A_{λ} 1 有表示矩阵 A_{λ} 1 人 A_{λ} 2 的 A_{λ} 3 有表示矩阵 A_{λ} 4 有表示矩阵 A_{λ} 6 A_{λ} 7 的 A_{λ} 8 的 A_{λ} 9 的 A

$$\begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \widetilde{C}_{\lambda} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ 0 & \widetilde{C}_{\mu} \end{pmatrix} = \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ 0 & \widetilde{C}_{\mu} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \widetilde{C}_{\lambda} \end{pmatrix}, \mu, \lambda \in \Lambda.$$

知 \widetilde{C}_{λ} , $\lambda \in \Lambda$ 也是两两可交换的矩阵. 因此存在酉矩阵 \widetilde{P} , 使得每一个 $\left(\widetilde{P}\right)^{-1}\widetilde{C}_{\lambda}\widetilde{P}$ 都是上三角的. 然后我们取酉矩阵 $P = \begin{pmatrix} E & 0 \\ 0 & \widetilde{P} \end{pmatrix} \in \mathbb{C}^{n \times n}$, 就有 $P^{-1}A_{\lambda}P = \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \left(\widetilde{P}\right)^{-1}\widetilde{C}_{\lambda}\widetilde{P} \end{pmatrix}$, $\forall \lambda \in \Lambda$ 都是上三角矩阵, 我们完成了证明.

2. 设 $V = \mathbb{R}^n$ 且 A_{λ} 是V上线性变换.

Step 1 若 A_{λ} 都是数量矩阵,则结果已经成立.

Step 2 取某个非数量矩阵 A_1 和一个特征子空间 V_1 且 $1 \le \dim V_1 < n$. 由交换性知 V_1 是所有 A_λ 不变子空间,因此 $A_{\lambda}|_{V_1}$, $\lambda \in \Lambda$ 也是一族更低维度的两两可交换的矩阵. 于是我们就将维度降了下去,从而可以使用归纳法来完成证明. 即:

当 n=1,命题显然成立,假设命题对小于等于 n-1 都成立,当 n 时,由归纳假设, $A_{\lambda}|_{V_{1}},\lambda\in\Lambda$ 也是一族两两可交换的矩阵,从而存在 V_{1} 的一族标准正交基,使得在这组基下 $A_{\lambda}|_{V_{1}}$ 有上三角的表示矩阵 $\widetilde{A}_{\lambda},\lambda\in\Lambda$. 将这组基扩充到 \mathbb{R}^{n} 使得构成一组标准正交基,则在新的标准正交基下, A_{λ} 有表示矩阵 $\begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \widetilde{C}_{\lambda} \end{pmatrix}$, $\lambda\in\Lambda$. 由

$$\begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \widetilde{C}_{\lambda} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ 0 & \widetilde{C}_{\mu} \end{pmatrix} = \begin{pmatrix} \widetilde{A}_{\mu} & \widetilde{B}_{\mu} \\ 0 & \widetilde{C}_{\mu} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \widetilde{C}_{\lambda} \end{pmatrix}$$

知 \widetilde{C}_{λ} , $\lambda \in \Lambda$ 也是两两可交换的矩阵. 因此存在正交矩阵 \widetilde{P} , 使得每一个 $\left(\widetilde{P}\right)^{-1}\widetilde{C}_{\lambda}\widetilde{P}$ 都是上三角的. 然后我们取正交矩阵 $P = \begin{pmatrix} E & 0 \\ 0 & \widetilde{P} \end{pmatrix} \in \mathbb{R}^{n \times n}$, 就有 $P^{-1}A_{\lambda}P = \begin{pmatrix} \widetilde{A}_{\lambda} & \widetilde{B}_{\lambda} \\ 0 & \left(\widetilde{P}\right)^{-1}\widetilde{C}_{\lambda}\widetilde{P} \end{pmatrix}$, $\forall \lambda \in \Lambda$ 都是上三角矩阵, 我们完成了证明.

0.1.4 可同时相似对角化

命题 0.10

- 1. 设 φ , ψ 是数域 \mathbb{F} 上 n 维线性空间 V 上的线性变换, 满足: $\varphi\psi = \psi\varphi$ 且 φ , ψ 都可对角化, 求证: φ , ψ 可同时对角化, 即存在 V 的一组基, 使得 φ , ψ 在这组基下的表示矩阵都是对角矩阵.
- 2. 设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵, 满足: AB = BA 且 A, B 都在 \mathbb{F} 上可对角化, 则 A, B 在 \mathbb{F} 上可同时对角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是对角矩阵.

证明

1. 对空间维数进行归纳. 当 n=1 时结论显然成立,设对维数小于 n 的线性空间结论成立,现对 n 维线性空间进行证明. 设 φ 的全体不同特征值为 $\lambda_1,\cdots,\lambda_s\in\mathbb{F}$, 对应的特征子空间分别为 V_1,\cdots,V_s ,则由 φ 可对角化可知

$$V = V_1 \oplus \cdots \oplus V_s$$
.

若 s=1,则 $\varphi=\lambda_1 I_V$ 为纯量变换,此时只要取 V 的一组基,使得 ψ 在这组基下的表示矩阵为对角矩阵,则 φ 在这组基下的表示矩阵为 $\lambda_1 I_n$,结论成立. 若 s>1,则 $\dim V_i < n$. 注意到 $\varphi\psi=\psi\varphi$ 且 φ,ψ 的特征值都在 $\mathbb P$ 中,由命题 0.2可知 V_i 都是 $\psi-$ 不变子空间. 考虑线性变换的限制 $\varphi|_{V_i},\psi|_{V_i}$: 它们乘法可交换,且由可对角化线性变换的性质可知它们都可对角化,故由归纳假设可知, $\varphi|_{V_i},\psi|_{V_i}$ 可同时对角化,即存在 V_i 的一组基,使得 $\varphi|_{V_i},\psi|_{V_i}$ 在这组基下的表示矩阵都是对角矩阵. 将 V_i 的基拼成 V 的一组基,则 φ,ψ 在这组基下的表示矩阵都是对角矩阵,即 φ,ψ 可同时对角化.

2.

引理 0.1

任何域上的可对角化矩阵限制到不变子空间上仍然是可对角化矩阵.

证明 注意到矩阵可对角化等价于极小多项式可以分解为一次式的积. 设 A 的极小多项式是 p, W 是矩阵 A 一个不变子空间且 p_W 是 $A|_W$ 极小多项式. 注意到 $p(A|_W)=0$, 故 $p_W|_p$. 从而 p_W 也是一次式的积, 故 $A|_W$ 可对角化.

命题 0.11 (一族两两可交换的可对角化矩阵可同时相似对角化)

给定域 \mathbb{F} , 设 $A_{\lambda} \in \mathbb{F}^{n \times n}$, $\lambda \in \Lambda$ 且两两可交换. 若每一个 A_{λ} , $\lambda \in \Lambda$ 都可以在 \mathbb{F} 上相似对角化, 则存在可逆矩阵 $P \in \mathbb{F}^{n \times n}$, 使得

$$P^{-1}A_{\lambda}P$$
 是对角矩阵, $\forall \lambda \in \Lambda$.

证明 设 $V = \mathbb{F}^n$ 且 A_{λ} 是V 上线性变换.

Step 1 若 A_{λ} 都是数量矩阵,则结果已经成立.

Step 2 取某个非数量矩阵 A_1 , 于是有 $V = \bigoplus_{i=1}^{i} V_i$, 这里 $s \geq 2$ 且 V_i 是属于 A_1 不同特征值的特征子空间. 显然由交换性, 对每一个 $i = 1, 2, \cdots, s$, V_i 是所有 A_{λ} 不变子空间, 且 $A_{\lambda}|_{V_i}$, $\lambda \in \Lambda$ 是一族两两可交换的矩阵, 由引理 0.1知它们也是可对角化的. 注意到 $1 \leq \dim V_i < n$, $i = 1, 2, \cdots, s$, 所以我们的维度降下去了, 因此可使用归纳法.

当n=1,命题显然成立,假设命题对 $\leq n-1$ 都成立,当n时,由归纳假设,对每一个 $i=1,2,\cdots,s$,存在 V_i 的一个基使得 $A_{\lambda}|_{V_i}$, $\lambda\in\Lambda$ 在这个基下表示矩阵是对角矩阵.于是把这些基合起来构成一个新的基,我们就得到在这个新的基下 A_{λ} , $\lambda\in\Lambda$ 都是对角矩阵.

命题 0.12 (一族两两可交换的复正规 (实对称) 矩阵可同时酉 (正交) 相似对角化)

- 1. 给定指标集 Λ , 设 $A_{\lambda}\in\mathbb{C}^{n\times n},\lambda\in\Lambda$ 且两两可交换且复正规,则存在酉矩阵 $P\in\mathbb{C}^{n\times n}$,使得 $P^{-1}A_{\lambda}P$ 是对角矩阵, $\forall\lambda\in\Lambda$.
- 2. 给定指标集 Λ , 设 $A_{\lambda} \in \mathbb{R}^{n \times n}$, $\lambda \in \Lambda$ 且两两可交换且实对称, 则存在正交矩阵 $P \in \mathbb{R}^{n \times n}$, 使得 $P^{-1}A_{\lambda}P$ 是对角矩阵, $\forall \lambda \in \Lambda$.
- 筆记 注意到 $(Ax, y) = (x, A^Ty)$, $(Ax, y) = (x, A^*y)$ 在全空间成立则在子空间也成立, 所以 $A^T|_V = (A|_V)^T$, $A^*|_V = (A|_V)^*$, 所以一个实对称变换限制在不变子空间也是实对称的, 一个复正规变换限制在不变子空间也是复正规的. 证明
 - 1. 设 $V = \mathbb{C}^n$ 且 A_{λ} 是V上线性变换.
 - Step 1 若 A₁ 都是数量矩阵,则结果已经成立.
 - **Step 2** 取某个非数量矩阵 A_1 , 于是有 $V = \bigoplus_{i=1}^{i} V_i$, 这里 $s \ge 2$ 且 V_i 是属于 A_1 不同特征值的特征子空间. 显然由交换性, 对每一个 $i = 1, 2, \cdots, s$, V_i 是所有 A_λ 不变子空间, 从而 V_i 两两正交, 且 $A_\lambda |_{V_i}$, $\lambda \in \Lambda$ 是一族两两可交换的正规矩阵, 于是可酉对角化的. 注意到 $1 \le \dim V_i < n, i = 1, 2, \cdots, s$. 所以我们的维度降下去了, 因此可使用归纳法.

当n=1,命题显然成立,假设命题对 $\leq n-1$ 都成立,当n时,由归纳假设,对每一个 $i=1,2,\cdots,s$,存在 V_i 的一个标准正交基使得 $A_{\lambda}|_{V_i}$, $\lambda \in \Lambda$ 在这个基下表示矩阵是对角矩阵. 由于 V_i 两两正交,于是把这些基合起来构成一个新的正交基,我们就得到在这个新的基下 A_{λ} , $\lambda \in \Lambda$ 都是对角矩阵.

- 2. 设 $V = \mathbb{R}^n$ 且 A_1 是V上线性变换.
 - Step 1 若 A_{λ} 都是数量矩阵,则结果已经成立.
 - **Step 2** 取某个非数量矩阵 A_1 , 于是有 $V = \bigoplus_{i=1}^{i=1} V_i$, 这里 $s \ge 2$ 且 V_i 是属于 A_1 不同特征值的特征子空间. 显然由交换性, 对每一个 $i = 1, 2, \cdots, s$, V_i 是所有 A_λ 不变子空间, 从而 V_i 两两正交, 且 $A_\lambda |_{V_i}$, $\lambda \in \Lambda$ 是一族两两可交换的实对称矩阵, 由引理 0.1知它们也是可正交相似对角化的. 注意到 $1 \le \dim V_i < n, i = 1, 2, \cdots, s$, 所以我们的维度降下去了, 因此可使用归纳法.

当 n=1,命题显然成立,假设命题对 $\leq n-1$ 都成立,当 n 时,由归纳假设,对每一个 $i=1,2,\cdots$,s,存在 V_i 的一个标准正交基使得 $A_{\lambda}|_{V_i}$, $\lambda \in \Lambda$ 在这个基下表示矩阵是对角矩阵. 由于 V_i 两两正交,于是把这些基合起来构成一个新的正交基,我们就得到在这个新的基下 A_{λ} , $\lambda \in \Lambda$ 都是对角矩阵.

0.1.5 个数的推广

命题 0.13

设数域 \mathbb{F} 上的n阶矩阵 A_1,A_2,\cdots,A_m 两两乘法可交换,且它们的特征值都在 \mathbb{F} 中,求证:它们在 \mathbb{F}^n 中至少有一个公共的特征向量.

证明 对 m 进行归纳,m=2 时就是命题 0.4. 设矩阵个数小于 m 时结论成立,现证 m 个矩阵的情形. 将所有的 A_i 都 看成是列向量空间 \mathbb{F}^n 上的线性变换,任取 A_1 的一个特征值 $\lambda_1 \in \mathbb{F}$ 及其特征子空间 $V_1 \subseteq \mathbb{F}^n$. 注意到 $A_1A_i = A_iA_1$,故由命题 0.2可知, V_1 是 A_2, \cdots , A_m 的不变子空间. 将 A_2, \cdots , A_m 限制在 V_1 上,它们仍然两两乘法可交换且特征 值都在 \mathbb{F} 中,故由归纳假设可得 $A_2|_{V_1}, \cdots, A_m|_{V_1}$ 有公共的特征向量 $\alpha \in V_1$. 注意到 α 也是 A_1 的特征向量,于是 α 是 A_1, A_2, \cdots, A_m 的公共特征向量.

命题 0.14

设数域 \mathbb{F} 上的 n 阶矩阵 A_1, A_2, \cdots, A_m 两两乘法可交换, 且它们的特征值都在 \mathbb{F} 中, 求证: 它们在 \mathbb{F} 上可同时上三角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}A_iP(1 \leq i \leq m)$ 都是上三角矩阵.

证明 完全类似于命题 0.7的证明, 其中利用命题 0.13得到 A_1, A_2, \cdots, A_m 的公共特征向量, 请读者自行补充相关的细节.

命题 0.15

设数域 \mathbb{F} 上的 n 阶矩阵 A_1, A_2, \dots, A_m 两两乘法可交换, 且它们都在 \mathbb{F} 上可对角化, 求证: 它们在 \mathbb{F} 上可同时对角化, 即存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}A_iP(1 \le i \le m)$ 都是对角矩阵.

证明 若 A_i 都是纯量矩阵,则结论显然成立.以下不妨设 A_1 不是纯量矩阵,余下的证明完全类似于命题 0.10的证明,请读者自行补充相关的细节.

例题 0.1 设 A, B 都是 n 阶矩阵且 AB = BA. 若 A 是幂零矩阵, 求证: |A + B| = |B|.

证明 证法一: 由命题 0.7可知, A, B 可同时上三角化, 即存在可逆矩阵 P, 使得 $P^{-1}AP$ 和 $P^{-1}BP$ 都是上三角矩阵. 因为上三角矩阵的主对角元是矩阵的特征值, 而幂零矩阵的特征值全为零, 所以 $|P^{-1}AP + P^{-1}BP| = |P^{-1}BP|$, 即有 |A + B| = |B|.

证法二: 先假设 B 是可逆矩阵, 则 $|A+B|=|I_n+AB^{-1}||B|$, 只要证明 $|I_n+AB^{-1}|=1$ 即可. 由 AB=BA 可知 $AB^{-1}=B^{-1}A$, 再由 A 是幂零矩阵容易验证 AB^{-1} 也是幂零矩阵, 从而其特征值全为零. 因此 I_n+AB^{-1} 的特征值全为 1, 故 $|I_n+AB^{-1}|=1$.

对于一般的矩阵 B, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + B$ 是可逆矩阵. 由可逆情形的证明可得 $|A + t_k I_n + B| = |t_k I_n + B|$. 注意到上式两边都是 t_k 的多项式, 从而关于 t_k 连续. 将上式两边同时取极限, 令 $t_k \to 0$, 即得结论. \square