Synthèse du nylon

Référence : La chimie expérimentale – Chimie organique et minérale Barbe p.119

Leçons potentielles :

2, 9

Produits:

Nom	Formule brute	Masse molaire (g.mol ⁻¹)	Densité	Température	Sécurité
Acide décandioïque Chlorure de sébacoyle	C ₁₀ H ₁₆ Cl ₂ O ₂	239,14	-	-	-
Cyclohexane	C ₆ H ₁₂	84,16	0,78	T _{eb} = 80,75°C	Inflammable Irritant CMR Ecotoxique
Hexan-1,6- diamine (solide)	C ₆ H ₁₆ N ₂	116,2	-	-	Corrosif
Phénolphtaléine	C ₂₀ H ₁₄ O ₄ C ₂₀ H ₁₂ O ₄ ²⁻ ,Na+	318,32	-	-	Toxique
Eau distillée	H₂O	18	1	T _{eb} = 100 °C	-

Matériels:

- Grand bécher (pour réaliser la réaction)
- Béchers (2 pour préparer les solutions)
- Pipette pasteur (pour prélever le chlorure d'acide et l'hexan-1,6-diamide)
- Eprouvette graduée de 20 mL (2)
- Mortier et pilon (pour écraser l'hydroxyde de sodium)
- Baguette en verre
- Verre de montre pour stocker le polymère
- Balance

Modification protocole:

- Solution organique : 0.7 mL de chlorure d'acide dans 20 mL de cyclohexane
 Le dichlorométhane a été remplacé par le cyclohexane
- Solution aqueuse: équivalent de 0.8g d'hexan-1,6-diamine pur + une pastille de NaOH
 (environ 0,28g) + 20 mL d'eau + une goutte de phénolphtaléine pour colorer la solution
 Ajouter la phénolphtaléine au dernier moment, sinon la couleur s'atténue et c'est dommage.

Le cyclohexane étant moins dense que l'eau, la phase organique est donc la phase surnageante.

Verser doucement la phase organique sur la phase aqueuse en faisant tourner le bécher pour éviter de former de gros agglomérat de polymère.

Introduire la baguette en verre au niveau de l'interface entre les deux phases et enrouler le polymère sur la baguette.

C'est un peu dégueulasse au début mais c'est normal.