UFRJ/EQ, Agosto de 2018.

Proposta de trabalho computacional como critério de avaliação na disciplina de termodinâmica.

Frederico W. Tavares¹; Iuri S. V. Segtovich.
¹Professor responsável

Modificação na fórmula para cálculo da média:

$$M_1 = \frac{(P_1 + P_2 + T_C)}{3}$$

$$M_2 = \frac{(M_1 + P_f)}{2}$$

A nota da P_S substitui a nota da P_1 ou P_2 , não substitui a nota do trabalho computacional T_C .

Critérios para avaliação do trabalho

1. Documento:

- O trabaho deverá ser entregue no formato jupyter-notebook, incluindo introdução, metodologia, código desenvolvido, resultados e discussão, e conclusão.
 - Apresentação o embasamento da metodologia utilizada,
 - Organização do código (#comentários)
 - Se o programa roda e gera resultados corretos para o sistema proposto,
 - Discussão dos resultados (descrever e interpretar os gráficos obtidos),
 - Conclusão.

2. Arguição:

- Significância de instruções e blocos de código do trabalho,
- Descrição e interpretação dos resultados.

Objetivos

Cálculo de equilíbrio líquido-vapor de mistura binária com modelo de energia de Gibbs em excesso.

1. Implementar o modelo de Margules para cálculo de coeficiente de atividade em uma mistura binária.

- Apresentar referência do equacionamento e parâmetros.
- 2. Implementar a correlação de Antoine para pressão de saturação dos componentes puros
 - Apresentar referência do equacionamento e parâmetros.
- 3. Desenhar gráfico do coeficiente de atividade de cada componente em função da fração molar para temperatura e pressão ambiente.
 - Discutir as características observadas no gráfico.
- 4. Implementar algoritmo de cálculo de pressão de ponto de bolha
 - Explicar eventuais aproximações utilizadas.
- 5. Desenhar diagrama de equilíbrio líquido-vapor em pressão contra fração molar a temperatura constante.
 - Discutir as características observadas no diagrama obtido.
- 6. Implementar algoritmo de cálculo de temperatura de ponto de bolha
 - Explicar eventuais aproximações utilizadas.
- 7. Desenhar diagrama de equilíbrio líquido-vapor em pressão contra fração molar a temperatura constante.
 - Discutir as características observadas no diagrama obtido.

Referências recomendadas

Smith, van Ness e Abbott (Termodinâmica da engenharia química)

Reid, Prausnitz e Poling (Properties of gases and liquids, 4th)