Главная

Личные данные

Мои проекты

Мои приглашения

17-47-020068 p_a

Математические основы моделирования процессов нефтехимических производств с учетом неопределенности в исходной физико-химической информации

Проект подан от имени	физического лица	Делегированная сумма	200000.00	
Основной код классификатора	07-381 Методы и системы математического моделирования для естественных наук			
Дополнительные коды классификатора	01-207 Вычислительная математика 07-225 Облачные вычисления 07-921 Системы компьютерной поддержки научных исследований. Компьютеризированное научное приборостроение	Продолжительность	Три года	
Ключевые слова	математическая химия, химическая кинетика, прямые и обратные задачи, идентификация, информативность, декомпозиция, значимость измерений, качество математических моделей, облачные вычисления, параллельные вычисления			
Номер ЦИТиС	AAAA-A17-117051110266-7			

Участники проекта (7) [2018]

ФИО		Ученая степень	без ученой степени		
Мустафина Софья Ильшатовна	Мустафина Софья Ильшатовна	Ученое звание	без ученого звания		
	Иванов Александр Николаевич	Коды классификатора	03-330,03-110		
	Григорьев Игорь Владимирович	Ключевые	chemistry, physics, nanomaterials, recycle, inhibitors, wollastonite		
	Михайлова Татьяна Анатольевна	слова	chemistry, physics, hanomaterials, recycle, himbitors, wondstonice		
	Сахибгареева Маргарита Владимировна	Адрес электронной	sanekclubstr@mail.ru		
Спивак Семен Израилевич	почты				
	Мустафина Светлана	Место работы	БашГУ		
Анатольевна (Р)		Должность	Аспирант		

Заявки и отчеты

Документ	Год	Дата создания	Статус
Заявка	2017	12.01.2017	Поддержана
Тромежуточный отчет	2017	16.01.2018	Поддержан
Тромежуточный отчет	2018	21.01.2019	Поддержан

Договоры

Номер договора	Сумма, ₽	Дата создания	Статус (№ платежа)	Дата оплаты	Дата отправки	
17-47- 020068\17	200000.00	12.05.2017	Оплачен (№881278)	20.06.2017	11.07.2018	
17-47- 020068\18	200000.00	03.05.2018	Оплачен (№226158)	09.06.2018	11.07.2018	
17-47- 020068\19	200000.00	06.06.2019	Создан		-	

Публикации

Т

[Добавить публикацию по проекту]

Промежуточный отчет, 2018

- 1. Разработка программного обеспечения для кинетического моделирования процессов радикальной полимеризации
- 2. Об автоматизации процессов хранения и обработки результатов эксперимента моделирования нефтехимического процесса
- 3. Исследование процессов промышленного производства синтетического каучука методами математического моделирования
- 4. Direct Modeling Of Chemical Processes In Conditions Of Uncertainty Of Initial Data
- 5. Study of Accuracy in Chemical Kinetics Problems
- 6. Automation of Control's Process of Macro of Microsoft Excel File for Data Processing of Chemical Experiments
- 7. Информативность кинетического эксперимента и области неопределенности параметров кинетических моделей
- 8. Моделирование и теоретические исследования процесса полимеризации изопрена в присутствии микрогетерогенных неодимовых каталитических систем
- 9. Using of interval analysis algorithms for technical systems optimization problem solving
- 10. Application of Monte Carlo Method in the Construction of Copolymerization Process Modeling Algorithm for the Continuous Mode in the Reactors Cascade
- 11. Моделирование процесса полимеризации бутадиена на неодимсодержащей каталитической системе
- Численное исследование колебательных химических реакций методом Монте-Карло
- 13. Разработка макроса файла Microsoft Excel для обработки экспериментальных данных

Организация [2018]

федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет"

0274011237 / 027401001 Уфа

Информация

КИАС::Справка

- * Данный раздел содержит основные данные проекта и отчетов, а также позволяет просматривать их содержимое и распечатывать документы.
- * Кнопка "Ввести номер ЦИТиС" позволяет Вам ввести регистрационный номер ЦИТиС, если это требуется по условиям конкурса.
- * Блок "Заявки и отчеты" содержит ссылки на предактирование и/или просмотр и печать документов в зависимости от их состояния.
- * Блок "Договоры" содержит ссылки, предназначенные для печати Договора.
- * Для возвращения к списку проектов Вам необходимо нажать на вкладку "Мои проекты".

Есть вопросы, замечания или пожелания? Служба поддержки

- Многоцелевая оптимизация параметров режима реактора на основе кинетической модели с применением нейронносетевого подхода
- Численное исследование процесса полимеризации бутадиена методами математического моделирования
- О проблеме обработки и хранения данных при моделировании процесса сополимеризации в каскаде реакторов методом Монте-Карло
- Построение распределения частиц в реакционной смеси в каскаде реакторов идеального смешения непрерывного действия
- 18. Application of the Monte Carlo Method to the Study of Compositional Heterogeneity of Styrene-Butadiene Copolymer
- 19. Mathematical Modeling of Polymerization of Butadiene
- Использование распределения по времени пребывания в задаче моделирования непрерывного производства синтетического каучука
- 21. NEURAL NETWORK MODELLING OF THE PROCESS OF METHYLBUTENE DEHYDRANATION INTO ISOPRENE

Промежуточный отчет, 2017

- 1. Исследование процесса сополимеризации альфаметилстирола с малеиновым ангидридом методами математического моделирования
- Математическое моделирование процессов в каскаде реакторов
- 3. Математическое моделирование процесса полимеризации бутадиена на неодимсодержащей каталитической системе
- Расчет процесса гидрирования а-пинена в трубчатом реакторе с прямотоком теплоносителя средствами пакета MATHCAD PRIME
- 5. Исследование неоднородности бутадиен-стирольного сополимера на основе метода Монте-Карло
- Исследование зависимости вязкости по Муни от молекулярно-массовых характеристик бутадиенстирольного сополимера методами корреляционнорегрессионного анализа
- Study of the chain transfer agent's effect on the butadienestyrene copolymer's properties based on the Monte-Carlo method
- Mathematical modeling of the copolymerization of amethylstyrene with maleic anhydride in a heterogeneous environment
- 9. О методе численного решения задач оптимального управления
- Построение зависимости вязкости по Муни бутадиенстирольного каучука от молекулярно-массовых характеристик на основе корреляционно-регрессионного анализа
- 11. Нелинейный механизм дезактивации
- 12. Моделирование колебательной реакции окисления молекулярного водорода на поверхности катализатора
- Численное исследование процесса сополимеризации метилстирола с малеиновым ангидридом
- 14. Взгляд на научный сервис как на инновационный проект на примере веб-сервиса для моделирования химической кинетики «Galo GO»
- Теоретическая оптимизация процесса олигомеризации альфаметилстирола
- Гомодесмический метод определения невалентных эффектов в ряду производных циклопропана
- Облачный вычислительный сервис GALO GO для математического моделирования химической кинетики с поддержкой параллельных вычислений
- 18. Численное исследование процесса полимеризации бутадиена на неодимсодержащей каталитической системе
- Определение базиса гомодесмических реакций циклических органических соединений с использованием теории графов
- Определение базиса гомодесмических реакций для циклогексана
- Поиск базиса нелинейных параметрических функций для математических моделей полимеризационных процессов
- 22. Предельно допустимые оценки параметров в задачах идентификации моделей сложных химических систем
- О подходе к хранению и обработке данных в решении задачи моделирования процесса сополимеризации методом Монте-Карло