0.0.1 recap

Defined \mathbb{N}

$$0 = \emptyset$$

$$1 = \{\emptyset\}$$

$$2 = \{\emptyset, \{\emptyset\}\}$$

0.0.2 Today

Arithmetic on $\mathbb N$

How can we make sense of "1+2=3?"

Strategy: Define the function "addition of m" for every $m \in N$

Theorem 0.1 For every $m \in \mathbb{N}$, there exists a function $S_m \subset \mathbb{N} \times \mathbb{N}$ such that

- $S_m(0) = m$
- $\forall n \in \mathbb{N}, S_m(n^+) = [S_m(n)]^+$

Proof: Let's construct a relation $S'_m = \mathbb{N} \times \mathbb{N}$ with the "right" properties, then we'll show S'_m is a function.

$$\mathcal{S}_m = \{ R \subset \mathbb{N} \times \mathbb{N} | (0, m) \in R, \text{ and if } (n, x) \in R \text{ then } (n^+, x^+) \in R \}$$

$$S_m \ni \mathbb{N} \times \mathbb{N}$$
, so $S \neq \emptyset$

Define
$$s'_m = \bigcap_{R \in \mathcal{S}_{\hat{\Pi}}} R$$

Notice:

- 1. $S + m' \subseteq \mathbb{N} \times \mathbb{N}$
- 2. $(0,m) \in s'_m$
- 3. If $(n, x) \in s'_m$, then $(n^+, x^+) \in s'_m$

Strategy: Show that S_m^\prime is a function.

Show

- 1. $Domain(s'_m) = \mathbb{N}$
- 2. If (n, x) and (n, y) are both in s'_m then then x = y

Proof: of 1

Let p(n) be true if there is some $x \in \mathbb{N}$ such that $(n,x) \in s_m'$

p(0) is true because $(0,m) \in s'_m$

Suppose p(n) is true, so there is some $x \in \mathbb{N}$ such that $(n, x) \in s_r m \implies (n^+, x^+)$, so p_n is true.

So domain $s'_m = \mathbb{N}$

Proof: of 2 Let p(n) be true if for $\forall r \in n$, there is a unique $x \in \mathbb{N}$ such that $(r, x) \in s'_m$.

p(0) is vacuously true.

Suppose p(n) is true.

We want to show $p(n^+)$, i.e. $\forall r \in \mathbb{N}, r \in n_+, \exists! x \in \mathbb{N} \text{ such that } (r, x) \in s'_m$

If $r \in n^+$, then either $r \in n$ or r = n. Consider any $r \in n^+$.

If $R \in n$, then we know $\exists ! x \in \mathbb{N}$, s.t. $(r, x) \in s'_m$

Now lets prove the statement for r = n.

Suppose that $\exists a, b \in \mathbb{N}$ such that (n, a) and (n, b) are both in s'_m .

Claim: If $a \neq b$, not both of these can have "predecessors".

Suppose $a \neq b$

Suppose that there are $p_1, x_1, p_2, x_2 \in \mathbb{N}$ such that $(p_1, x_1) \in s'_m, (p_2, x_2) \in s'_m and(p_1, x_1) = (n, a), (p_2, x_2) = (n, b)$

$$\implies p_1^+ = p_2 +, \implies p_1 = p_2 = p$$

$$(p, x_1) \in s'_m, (p, x_2) \in s'_m \text{ and } p^+ = n \text{ so } p \in n.$$

Induction hypothesis $x_1 = x_2 \implies a = b$. Contradiciton.

Suppose $a \neq b$. Suppose WLOG that (n, a) doesn't have a predecessor. Define $s''_m := s'_m(n, a)$.

 s_m'' satisfies the properties of being in \mathcal{S}_m - Exercise.

Problem, because s'_m was the intersection of all $R \in \mathcal{S}_m$.

$$\implies s'_m \subseteq s''_m$$
. Contradiciton.

Write $s'_m = s_m$ Addition by m function.

Properties

- 1. $\forall n \in \mathbb{N}, s_1(n) = n^+$
- 2. $\forall n \in \mathbb{N}, s_0(n) = n$
- 3. $\forall m, n, k \in \mathbb{N}$ we have $S_{s_m(n)}(k) = s_m(s_n(k))$ (Assoc)
- 4. $\forall m, n \in \mathbb{N}$, we have $s_m(n) = s_n(m)$.
- Let p(n) be true if $s_1(n) = n^+$, p(0). Suppose p(n) is true. $s_1(n^+) = [s_1(n)]^+ = (n^+)^+$ $p(n^+)$ is true.