Seven Sketches in Compositionality – Exercises

Adam Catto

1 Chapter 1 — Generative Effects: Orders and Galois Connections

(1.1)

- (a) order-preserving $f: x \mapsto x+1$ non-order-preserving $f: x \mapsto -x$
- (b) metric-preserving $x \mapsto x + 2$ non-metric-preserving $x \mapsto 2x$
- (c) addition-preserving $x \mapsto x$ non-addition-preserving $x \mapsto 2x$

(1.2)

Circle 21, Circle the rest, box around the whole thing. i.e.

(1.6)

- 1. True
- 2. False
- 3. True

(1.7)

- 1. $\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
- 2. $\{1\} \cup \{1,3\} = \{1,3\}$
- 3. (h,1), (h,2), (h,3), (1,1), (1,2), (1,3)
- 4. (h,1), (1,1), (1,2), (2,2), (3,2)

5. $A \cup B = \{h, 1, 2, 3\}$

1.11

- 1. If there were more than one $p' \in P'$ such that $A_p = A'_{p'}$ (i.e. p'_1 and p'_2 such that $A_p = A'_{p'_1}$ and $A_p = A'_{p'_2}$), then $p'_1 \neq p'_2$, so necessarily $A'_{p'_1} \cap A'_{p'_2} = \emptyset$. But then since $A'_{p'_1} = A_p = A'_{p'_2}$, then $A'_{p'_1} = A'_{p'_2}$, thus $A'_{p'_1} \cap A'_{p'_2} = A_p \cap A_p = A_p \neq \emptyset$, by definition of partition, therefore there cannot be more than one $p' \in P'$ such that $A_p = A'_{p'}$.
- 2. Since there exists a $p' \in P'$ such that $A_p = A'_{p'}$, and by 1.11.1, there is at most one such p', it follows that there is a bijection between these $p \in P$ and $p' \in P'$, thus for each $p' \in P'$ there exists a $p \in P$ such that $A_p = A'_{p'}$.