

Research on Time-sync Danmaku data

Background: Crowdsourced Time-sync Video comment

- Millions of videos generated everyday;
- Political debate organizers adjust their strategies by analyzing users' comments.
- A director of a TV show can optimize his plays by analyzing the topics and feedback about the videos
- ...and more.

Background: Crowdsourced Time-sync Video comment

Movie captions

comments/twitter

Time-sync comments

- Traditional methods utilize low-level features (comments, twetter, etc.); Drawbacks:
- (1) it is difficult to capture the segment information since the comments are based on entire video;
- (2) we do not know what specific content of the video causes the point of view.

Background: Key observations of Danmaku comments

Problems with danmaku

- Large amount of unlabeled data: comment is usually short; large amounts of comments;
- Semantic dependency;
- Semantic noise: some comments are irrelevant to the shots; Slang lauguage; follower brush phenomenon

Summary

Related work: Video Tagging

Crowdsourced Time-sync Video Tagging using Temporal and Personalized Topic Modeling

KDD 14

Bin Wu¹, Erheng Zhong¹, Ben Tan¹, Andrew Horner¹, Qiang Yang^{1,2}

¹Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong

²Noah's Ark Lab, Huawei, Hong Kong

Figure 2: Snapshot of an example Time-Sync Commented (TSC) video. Users share their watching experience by providing time-sync comments that appear on the screen.

temporal and personalized topic model

Related work: Video Summarization

Bridging Video Content and Comments: Synchronized Video Description with Temporal Summarization of Crowdsourced Time-Sync Comments

AAAI 2017

Linli Xu, Chao Zhang

Table 2: The average F-measures of ROUGE-1 and ROUGE-2. A bold number indicates the highest ROUGE score.

	QPS-EP06		QPS-EP07		QPS-EP12		LYB-EP07		LYB-EP26		LYB-EP40	
	R-I	R-2	R-1	R-2								
Random	0.2353	0.0526	0.2374	0.0583	0.2443	0.0616	0.2694	0.0583	0.2611	0.0657	0.2573	0.0547
ClusterHITS	0.2808	0.0985	0.2816	0.0993	0.3033	0.1045	0.3108	0.1013	0.3213	0.1167	0.3087	0.0973
LexRank	0.2787	0.0968	0.2932	0.1082	0.2908	0.1026	0.3076	0.0966	0.3142	0.1128	0.2985	0.0926
DSDR	0.3356	0.1172	0.3407	0.1218	0.3346	0.1288	0.3386	0.1207	0.3511	0.1202	0.3353	0.1198
TopicDSDR	0.2793	0.0977	0.2976	0.1116	0.3067	0.1102	0.3150	0.1064	0.3052	0.1097	0.3043	0.0954
SJTTR	0.3682	0.1375	0.3761	0.1463	0.3874	0.1404	0.3775	0.1413	0.3913	0.1475	0.3704	0.1385
T-SJTTR	0.3758	0.1402	0.3895	0.1525	0.3982	0.1486	0.3969	0.1517	0.4095	0.1583	0.3843	0.1447

Table 3: Selected comments and the corresponding video plots along the timeline of a segment in "LYB-EP26"

22:11	23:06	24:20	25:27	25:51
Nian Nian has slanted eyebrows.	Mr. Su used to be Brother Su. How sad.	I feel sorry for both Jing Rui and Su from their conversation.	Mr. Su lost a good friend forever!	Jing Rui leaves the place where his heart broke and dreams faded away.
keywords by LDA:	'Su', 'say', 'really', 'J	ing Rui', 'leave', 'eyebro	ow', 'Nian Nian', 'come	e', 'friends', 'love'

Related work: Video Summarization

LiveBot: Generating Live Video Comments Based on Visual and Textual Contexts

AAAI 2019

Shuming Ma^{1*}, Lei Cui², Damai Dai¹, Furu Wei², Xu Sun¹

¹MOE Key Lab of Computational Linguistics, School of EECS, Peking University

²Microsoft Research Asia

Figure 5: An illustration of Fusional RNN Model.

Figure 6: An illustration of Unified Transformer Model.

Related work: Video Highlight

Reading the Videos: Temporal Labeling for Crowdsourced Time-Sync Videos Based on Semantic Embedding

AAAI-16

Guangyi Lv[†], Tong Xu[†], Enhong Chen^{†*}, Qi Liu[†], Yi Zheng[‡]

†School of Computer Science and Technology, University of Science and Technology of China gylv@mail.ustc.edu.cn, tongxu@mail.ustc.edu.cn, cheneh@ustc.edu.cn, qiliuql@ustc.edu.cn ‡Ant Financial Services Group aliguagua.zhengy@alipay.com

Figure 1: The architecture of T-DSSM with 3 hidden layers.

Our work: Time-sync Danmaku Dataset

报雪的挚爱被人重伤,他甘愿承受百年苦痛换来爱人的重生希望。品花楼招收丫鬟,烈如歌隐瞒大小姐身份面试成功。风细细向烈如歌提出考验,要她帮忙招刀无痕成为座上宾。烈如歌拜托二师兄玉自寒帮助调<u>查</u>刀无痕,自 己前去请有琴泓先生帮忙。凤凰别出心裁欲打女仆来赢得刀无痕青睐,却致使刀无瑕将要出手,玉自寒显露身份方才平息风波。银雪遭遇仇家的追杀,轻松退敌的动作恍若仙人一般。

品花楼绝色名花榜榜首即将赶回,品花楼使用门牌限制客流。霹雳门少主雷惊鸿欲一膳榜首芳容,请求如歌帮忙获取门牌。风细细察觉出玉自寒的真实身份,希望王爷帮忙洗脱家族冤屈。品花楼内人满为患,银雪决定挑选一 人生死相随。刀冽香与雷惊鸿相继败下阵来,银雪意外指定如歌成为他的主人。玉自寒认为烈如歌大小姐的身份已被泄露,不愿其陷入危地。烈如歌前去质问银雪,却被其话语打动而改变主意。

玉自寒为保如歌安全而拜访银雪,却被告知其是庄主的故友而暂且放下防备心。雷惊鸿与刀冽香结盟,决定一起护送银雪一行前往烈火山庄。烈如歌因为将见到昔日恋人战枫而慌张,银雪却出言调戏于她。烈明镇识得银雪仙 人身份,秘而不言的恭谨言行让山庄上下很吃惊。雷惊鸿预感山庄有大事发生,说服刀冽香暂时留在这里。烈如武鼓起勇气去见战枫,却再次遭到曾经最亲密的人的伤害。蝶衣为烈如武打抱不平,决定戏弄战枫宠幸的女子。

雷悚鸿为了继续留在山庄,与银雪达成交易换得秘药。莹衣假装被如歌伤害来诬陷她,战枫出手将蝶衣打伤。烈明镜决定将象征庄主之位的烈火令传给战枫,却遭其言辞激烈的拒绝。刀冽香奇怪雷惊鸿留在山庄的真实目的, 被其告知是为了寻找妹妹。战枫在议事堂煜出退婚一事,玉自寒为保护如歌颜面宣布已向庄主提亲。烈如歌面对战枫的冷漠相待却不打算退缩,不顾自己遍体鳞伤仍在想方设法接近。

全部评论 (50,257)

第1页/共1472页

热门评论

烈火如歌终于开播啦 爱死了 我家热巴加油 为你打电话

4 30847 **9** 2176 **10** (954)

忧伤的姑娘520 ቈ

哈哈,抢沙发了,祝大家新年快乐

,据说点赞的人会幸福快乐哟♡

4 25014 **9** 1598 **(350)**

好有质感 像看电影一样 太有诚意了 好喜欢雪和如歌

4 18574 **9** 1215 **3** (299)

简单点0419 · 编 3周前

等了好久了,终于等到了,热巴。有没有一样的。

♣ 16912 ♥ 1114 ■ (193)

好神奇,前一秒还不能看,后一秒就开播了,哈哈

6 11049 **9** 884 **33** (104)

绯灯少年的伤 🗐 🛵 3周前

说好8点的呢,一进来就开播了,三个男主都帅啊,剧情也经不重要了,有颜就好♡

▲ 9298 **♥** 1066 **Ⅲ** (117)

Time-sync Danmaku Dataset

Table 1: The statistics of danmaku datasets. (1) #Seasons, #Videos, #Danmaku, #Users, #Tags: the number of seasons, videos, Danmaku reviews, uses and tags respectly; (2) #Comments: the number of traditional comments about the video; (3) #UCS: the number of users of traditional comments; (4) Summarization: video summarization; (5) Sentiment Tag: the labeled sentiment class.

	Paper [3]	Paper [14]	Paper [2]	Paper [11]	Paper [15]	Paper [15]
Source	acfun.tv	acfun.tv	iqiyi	bilibili	acfun.tv	acfun.tv
#Seasons	×	×	2	×	×	×
# Videos	6,506	6	7166	6	120	120
# Danmaku	1,704,930	234,003	11,842,166	52,174	227,780	227,780
# Users	320,000	×	1,133,750	×	×	×
#Tags ×		×	×	×	3	3
Likes ×		×	×	×	√	✓
#Comments	×	×	×	×	×	×
#UCS	×	×	×	×	×	×
Summarization	×	×	×	×	×	×
Sentiment Tag	×	×	×	×	×	×
	Paper [5]	Paper [12]	Paper [8]	Paper [4]	DR_Four	DRE
Source	bilibili	acfun.tv	bilibili	bilibili	youku	youku
#Seasons	64	×	×	×	×	612
# Videos	716	16,414	×	3,623	4,517	8,156
# Danmaku	7,413,517	1,103,884	133,250	60,956	32,950,000	57,176,457
# Users	1,482,120	382,752	×	278,520	5,412,000	6,259,558
#Tags	42	×	×	×	×	17
Likes	V	×	×	×	×	✓
#Comments	×	×	×	×	×	2,170,033
#UCS	×	×	×	×	×	1,264,811
Summarization	×	×	×	×	×	✓
Sentiment Tag	×	×	×	×	×	V

Statistics information

Fig. 4: Distribution of danmaku users.

Plan: Matching Video Storyline and Comments

In the unpaired Video Storyline and Comments matching tasks, we have a dataset of Storyline $S = \{s_1, s_2, ..., s_N\}$, and a dataset of danmaku comment sentences $C = \{c_1, c_2, ..., c_M\}$, where M and N are the total numbers of storyline and comments, respectively. In this setting, there is no alignment between C and S. Our goal is to train an Matching model to bridge the relation between storyline and comments.

Plan: Matching Video Storyline and Key Frame Comments

- Step 1: Temporal Semantic Segmention
- Step 2. Computing Semantic similarity between storyline and danmu comment
- Step 3. Finding Optimal Segmention by Dynamic Programming

Cosin-Sim-TF-IDF

Cosin-Sim-WordEmbeding

Plan: Matching Video Storyline and Key Frame Comments

e n coder

$$c_i = \text{counts}(x_i) \tag{6}$$

$$h_i = MLP(c_i) \tag{7}$$

$$\boldsymbol{\mu}_i = f_{\mu}(\boldsymbol{x}_i) = \boldsymbol{W}_{\mu} \boldsymbol{h}_i + \boldsymbol{b}_{\mu} \tag{8}$$

$$\sigma_i = f_{\sigma}(\boldsymbol{x_i}) = \exp(\boldsymbol{W_{\sigma}h_i} + \boldsymbol{b_{\sigma}})$$
 (9)

$$\boldsymbol{z}_i^{(s)} = \boldsymbol{\mu}_i + \boldsymbol{\sigma}_i \cdot \boldsymbol{\varepsilon}^{(s)}. \tag{10}$$

decoder

$$\boldsymbol{\theta}_i = \operatorname{softmax}(\boldsymbol{z}_i^{(s)}) \tag{11}$$

$$\eta_i = \operatorname{softmax}(\boldsymbol{b} + \boldsymbol{B}\boldsymbol{\theta}_i)$$
 (12)

$$\log p(\boldsymbol{x}_i \mid \boldsymbol{z}_i^{(s)}) = \sum_{j=1}^{V} \boldsymbol{c}_{ij} \cdot \log \boldsymbol{\eta}_{ij}, \qquad (13)$$

where j ranges over the vocabulary.

prove classification in the low-resource setting.

[ACL 2019] Variational Pretraining for Semi-supervised Text Classification. Suchin Gururangan, Tam Dang, Dallas Card and Noah A. Smith

Plan: Matching Video Storyline and Key Frame Comments

Thanks