Chapter 7 Hypothesis Testing

Daxiang Na

2022-10-15

Contents

1	Hypothesis Testing 假设检验		1
	1.1	Definition and Concepts	1
	1.2	Calculation	2
2	Нур	pothesis Testing and Confidence Interval	4
	2.1	Mathematically equivalent	4
3	Type I and Type II errors		4
	3.1	Definition	4
	3.2	Calculation	4
4	Power		4
	4.1	Definition	4
	4.2	Calculation	4

1 Hypothesis Testing 假设检验

1.1 Definition and Concepts

- 1. null hypothesis, H_0 : "no change"
- 2. We believe the null hypothesis to be true unless overwhelming evidence exists to the contrary ("innocent until proven guilty")
- 3. The alternative hypothesis, H_1 , or H_A (in this class, we all use H_1), is a second statement that contradicts H_0 .
- 4. Either H_0 or H_1 must be true (mutually exclusive, exhaustive).

5. We need overwhelming evidence to conclude that H_1 is true. - That is why the alpha value, or the "threshold", should be very low, so the chance that H_0 is true is very low.

1.2 Calculation

- 1. We calculate the probability of H_0 is true, which is the probability that you get a mean value from samples that is as extreme or more extreme than \bar{X} if you assume that H_0 is true.
- 2. For now, we assume the population show normal distribution.
- 3. z-test:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

4. calculating the p-values for z-tests:

p-values for z-tests

- We calculate our p-value as follows, for each of the three types of tests (z-tests):
- One-sided, lower-tailed hypothesis ($H_1: \mu < \mu_0$):
 - pnorm(z)
- One-sided, upper-tailed hypothesis ($H_1: \mu > \mu_0$):
 - 1-pnorm(z)
- Two-sided hypothesis ($H_1: \mu \neq \mu_0$):
 - If $z \le 0$: 2*pnorm(z)
 - If z > 0: 2* (1-pnorm(z))

Notes for two sided hypothesis:

when z < 0, you get probability (pnorm(z)) like this:

```
----- tidyverse 1.3.2 --
## -- Attaching packages -----
## v ggplot2 3.3.6
              v purrr
                        0.3.4
## v tibble 3.1.8
                v dplyr
                       1.0.10
## v tidyr
         1.2.1
                v stringr 1.4.1
         2.1.3
## v readr
                 v forcats 0.5.2
## -- Conflicts -----
```

```
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```


when z > 0, you get probability (1 - pnorm(z))like this:

2 Hypothesis Testing and Confidence Interval

- 2.1 Mathematically equivalent.
- 3 Type I and Type II errors
- 3.1 Definition
- 3.2 Calculation
- 4 Power
- 4.1 Definition
- 4.2 Calculation