6.857

NETWORK AND COMPUTER SECURITY RECITATION 2

LECTURER: ADA RALUCA POPA SCRIBE: JOHN WANG

1. Fast Exponentiation

1.1. **Euler's Theorem.** Theorem: Take any element $a \in \mathbb{Z}_n^*$, then for all $n \in \mathbb{N}$, we have $a^{\phi(n)} \equiv 1 \pmod{n}$, where $\phi(n)$ is the order of the group.

Corollary: $\forall n \in \mathbb{N} \text{ and } \forall a \in \mathbb{Z}_n^*, \text{ we have } a^d \equiv a^{d \mod \phi(n)} \pmod n.$

For any prime p, we have $\phi(p) = p - 1$. As a consequence, we obtain Fermat's Little Theorem: $a^{\phi(p)} \equiv a^{p-1} \equiv 1 \pmod{n}$.

1.2. Exercises with Euler's Theorem.

(1)
$$3^{25} \pmod{13} = 3^{25 \pmod{12}} = 3 \mod{13}$$

(2)
$$7^{1}0 \mod 10 \equiv 7^{10 \mod 4} \mod 10 \equiv 9 \mod 10$$

Because we know that 10 = (2)(5) so that $\phi(10) = \phi(2)\phi(5) = 4$.

2. Chinese Remainder Theorem

Theorem: For all $m_1, \ldots, m_r < N$ where $gcd(m_i, m_j) = 1$ for all $i, j, m = m_1 \ldots m_r < N$, and for all $a_1, \ldots, a_r < N$, there exists an integer y such that

- $(3) y \equiv a_1 \mod m_1$
- $(4) y \equiv a_2 \mod m_2$
- (5)
- $(6) y \equiv a_r \mod m_r$

Moreover, y is easy to find (can be found in $\theta(\log N)$).

2.1. Proof of CRT.

- (1) $n_i = \frac{m}{m_i}$ for all i. So for instance $n_i = m_1 m_2 \dots m_{i-1} m_{i+1} \dots m_r$.
- (2) Compute b_i which is the inverse of $n_i \mod m_i$. So compute $b_i n_i \equiv 1 \mod m_i$. We know that if gcd(c,d) = 1, then $cx+dy \equiv 1 \mod d$, which implies $cx \equiv 1 \mod d$. But we know that $gcd(n_i, m_i) = 1$ because all of the factors of n_i are m_j where $j \neq i$ and we have pairwise $gcd(m_i, m_j) = 1$.
- (3) $y = \sum_{i} n_i b_i a_i \mod m$

Proof: Straightforward, see wikipedia.

2.2. **Example.** Find y such that $y \equiv 6 \mod 7$ and $y \equiv 8 \mod 11$.

We can do this by using CRT. We know $a_1 = 6$, $a_2 = 8$, $m_1 = 7$, $m_2 = 11$. So $n_1 = 11$, $n_2 = 7$. Now we can compute the inverses, $b_1 = 2$ because $2(11) \equiv 1 \mod 7$ and $b_2 = 8$ because $8(7) \mod 11$. So we know that $y = (11)(2)(6) + (7)(8)(8) \mod 77 = 41 \mod 77$.