1 Alcançabilidade de Definições

 $Gen\ \dots$

 $Kill\ \dots$

 $IN \ \dots$

 $OUT \ \dots$

	Gen	Kill	IN	OUT
B_1	10000000	10100000	00000000	10000000
B_2	01000000	01000110	10000000	11000000
B_3	00110000	10110001	10000000	00110000
B_4	00001000	00001000	11110000	11111000
B_5	00000100	01000110	11111100	10111100
B_6	00000000	00000000	10111100	10111100
B_7	00000010	01000110	10111100	10111010
B_8	00000000	00000000	10111100	10111100
B_9	00000001	00010001	10111110	10101111
B_{10}	00000000	00000000	11000000	11000000
B_{11}	00000000	00000000	00110000	00110000
B_{12}	00000000	00000000	11111000	11111000
B_{13}	00000000	00000000	10111100	10111100
B_{14}	00000000	00000000	10111010	10111010
B_{15}	00000000	00000000	10111100	10111100

Table 1: Alcançabilidade de Definições — (b:=1,a:=b+c,b:=7,d:=b+c,e:=b+c,a:=b

2 Vivacidade de Variáveis

 $Gen \ \dots$

 $Kill\ \dots$

 $IN \ \dots$

 $OUT \ \dots$

	Gen	Kill	IN	OUT
$\overline{B_1}$	00000	01000	00100	01100
B_2	01100	10000	01100	01100
B_3	00100	01010	00100	01100
B_4	01100	00001	01100	01100
B_5	01100	10000	01100	01100
B_6	00000	00000	01100	01100
B_7	01100	10000	01100	01100
B_8	00000	00000	01100	01100
B_9	01100	00010	01100	00000
B_{10}	00000	00000	01100	01100
B_{11}	00000	00000	01100	01100
B_{12}	00000	00000	01100	01100
B_{13}	00000	00000	01100	01100
B_{14}	00000	00000	01100	01100
B_{15}	00000	00000	01100	01100

Table 2: Vivacidade de Variáveis — (a,b,c,d,e)

3 Disponibilidade de Expressões

A análise é para frente (forward) e sua intenção é determinar em cada ponto do código, quais expressões estão disponíveis, isto é, foram seguramente executadas e, caso fossem executadas novamente (naquele ponto) produziriam o mesmo resultado.

- Gen Indica quais expressões foram geradas dentro do bloco e que não foram "mortas" por redefinições de seus operandos dentro do mesmo bloco. É igual à entrada das expressões antecipáveis.
- Kill Indica quais expressões (considerando o universo inteiro) foram mortas por redefinições (posteriores 1) de seus operandos que ocorrem dentro do bloco.
- IN Indica quais expressões estão disponíveis na entrada do bloco. É uma interseção das saídas dos blocos predecessores.
- OUT Indica quais expressões estão disponíveis na saída do bloco. É igual ao último Gen.

	Gen	Kill	IN	OUT
B_1	0	1	0	0
B_2	1	0	0	1
B_3	1	1	0	1
B_4	1	0	1	1
B_5	1	0	1	1
B_6	0	0	1	1
B_7	1	0	1	1
B_8	0	0	1	1
B_9	1	0	1	1
B_{10}	0	0	1	1
B_{11}	0	0	1	1
B_{12}	0	0	1	1
B_{13}	0	0	1	1
B_{14}	0	0	1	1
B_{15}	0	0	1	1

Table 3: Disponibilidade de Expressões — ((+, $b,\,c))$

 $^{^1{\}rm S}$ ó faz sentido em análises internas ao bloco.

4 Disponibilidade de Expressões Anticipáveis

A análise é para trás (backward) e sua intenção é determinar em cada ponto do código, quais expressões podem ser movidas para o início do bloco (ou para blocos antecedentes).

Gen Indica quais expressões podem ser movidas para o início do bloco (ou para blocos antecedentes).

- Kill Indica quais expressões (considerando o universo inteiro) foram mortas por redefinições (anteriores ²) de seus operandos que ocorrem dentro do bloco.
- IN Indica quais expressões podem ser movidas para blocos antecedentes.
- OUT Indica quais expressões de blocos subsequêntes podem ser movidas para o final do bloco atual estas expressões podem ou não serem antecipadas pelo bloco atual.

	Gen	Kill	IN	OUT
$\overline{B_1}$	0	1	0	0
B_2	1	0	1	1
B_3	0	1	0	1
B_4	1	0	1	1
B_5	1	0	1	1
B_6	0	0	1	1
B_7	1	0	1	1
B_8	0	0	1	1
B_9	1	0	1	0
B_{10}	0	0	1	1
B_{11}	0	0	1	1
B_{12}	0	0	1	1
B_{13}	0	0	1	1
B_{14}	0	0	1	1
B_{15}	0	0	1	1

Table 4: Disponibilidade de Expressões Anticipáveis — ((+, b, c))

 $^{^2{\}rm S}$ ó faz sentido em análises internas ao bloco.

5 Disponibilidade Parcial de Expressões

 $Gen \ \dots$

 $Kill \ \dots$

 $IN \ \dots$

 $OUT \ \dots$

	Gen	Kill	IN	OUT
B_1	0	1	0	0
B_2	1	0	0	1
B_3	1	1	0	1
B_4	1	0	1	1
B_5	1	0	1	1
B_6	0	0	1	1
B_7	1	0	1	1
B_8	0	0	1	1
B_9	1	0	1	1
B_{10}	0	0	1	1
B_{11}	0	0	1	1
B_{12}	0	0	1	1
B_{13}	0	0	1	1
B_{14}	0	0	1	1
B_{15}	0	0	1	1

Table 5: Disponibilidade Parcial de Expressões — ((+, $b,\,c))$

6 Mortalidade de Variáveis

 $Gen\ \dots$

 $Kill \dots$

 $In \ \dots$

 $In \ \dots$

	Gen	Kill	IN	OUT
B_1	01000	00000	11011	10011
B_2	10000	01100	10011	10011
B_3	01010	00100	11011	10011
B_4	00001	01100	10011	10011
B_5	10000	01100	10011	10011
B_6	00000	00000	10011	10011
B_7	10000	01100	10011	10011
B_8	00000	00000	10011	10011
B_9	00010	01100	10011	11111
B_{10}	00000	00000	10011	10011
B_{11}	00000	00000	10011	10011
B_{12}	00000	00000	10011	10011
B_{13}	00000	00000	10011	10011
B_{14}	00000	00000	10011	10011
B_{15}	00000	00000	10011	10011

Table 6: Mortalidade de Variáveis — (a,b,c,d,e)

7 Alcançabilidade de Definições para Propagação de Cópias

 $Gen \ \dots$

 $Kill\ \dots$

 $In \ \dots$

 $In \ \dots$

	Gen	Kill	IN	OUT
B_1	10000000	10000000	00000000	10000000
B_2	00000000	00000000	10000000	10000000
B_3	00000000	10000000	10000000	00000000
B_4	00000000	00000000	00000000	00000000
B_5	00000000	00000000	00000000	00000000
B_6	00000000	00000000	00000000	00000000
B_7	00000000	00000000	00000000	00000000
B_8	00000000	00000000	00000000	00000000
B_9	00000000	00000000	00000000	00000000
B_{10}	00000000	00000000	10000000	10000000
B_{11}	00000000	00000000	00000000	00000000
B_{12}	00000000	00000000	00000000	00000000
B_{13}	00000000	00000000	00000000	00000000
B_{14}	00000000	00000000	00000000	00000000
B_{15}	00000000	00000000	00000000	00000000

Table 7: Alcançabilidade de Definições para Propagação de Cópias — (b:=1, a:=b+c, b:=7, d:=b+c, e:=b+c, a:=b+c, a:=b

8 Eliminação de Redundâncias Parciais

8.1 Expressão Redundante

Uma expressão é redundante no ponto p se em cada caminho até p:

- 1. Ela é avaliada antes de alcançar p, e
- 2. Nenhum de seus operandos constituintes é redefinido antes de p.

Por exemplo, na Equação 1, as ocorrências de expressões em negrito são redundantes.

Uma expressão é parcialmente redundante no ponto p se ela é redundante ao longo de alguns caminhos, mas não todos, até p.

Por exemplo, na Equação 2, a expressão b+c em negrido no diagrama da esquerda é parcialmente redundante. A inserção de uma cópia de b+c depois da definição de b pode tornar uma expressção parcialmente redundante em uma totalmente redundante como mostra o diagrama da direita.

	ENTRY	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}	B_{15}
e_gen	{0}	{0}	{1}	{0}	{1}	{1}	{1}	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}
e_kill	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
$anticipated_out$	{0}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{0}	{1}	{1}	{1}	{1}	{1}
$anticipated_in$	{0}	{0}	{1}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}
$available_in$	{0}	{0}	{0}	{0}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}
$available_out$	{0}	{0}	{1}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}
earliest	{0}	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
$postponable_in$	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
$postponable_out$	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
latest	{0}	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
$used_out$	{0}	{0}	{1}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{0}	{1}	{1}	{1}	{1}	{1}
$used_in$	{0}	{0}	{0}	{0}	{0}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}
$cond_1$	{0}	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}	{0}
$cond_2$	{0}	{0}	{1}	{0}	{1}	{1}	{1}	{0}	{1}	{0}	{1}	{0}	{0}	{0}	{0}	{0}
		•				•	•			•			•			

Table 8: Eliminação de Redundâncias Parciais — $((+,\,b,\,c))$

9 Propagação de Constantes

 $Gen \ \dots$

 $Kill \dots$

 $In \ \dots$

 $In \dots$

	IN	OUT
B_1	(T,T,T,T,T,T)	$(\top, 1, \top, \top, \top, \top)$
B_2	$(\top, 1, \top, \top, \top, \top)$	$(\top, 1, \top, \top, \top, \top)$
B_3	$(\top, 1, \top, \top, \top, \top)$	$(\top, 7, \top, \top, \top, \top)$
B_4	$(\top, 7, \top, \top, \top, \top)$	$(\top, 7, \top, \top, \top, \top)$
B_5	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_6	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_7	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_8	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_9	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_{10}	$(\top, \bot, \top, \top, \top, \top)$	$(\top, \bot, \top, \top, \top, \top)$
B_{11}	$(\top, 1, \top, \top, \top, \top)$	$(\top, 1, \top, \top, \top, \top)$
B_{12}	$(\top, 7, \top, \top, \top, \top)$	$(\top, 7, \top, \top, \top, \top)$
B_{13}	$\mid (\top, \bot, \top, \top, \top, \top) \mid$	$(\top, \bot, \top, \top, \top, \top)$
B_{14}	$\mid (\top, \bot, \top, \top, \top, \top) \mid$	$(\top, \bot, \top, \top, \top, \top)$
B_{15}	$\mid (\top, \bot, \top, \top, \top, \top) \mid$	$(\top, \bot, \top, \top, \top, \top)$
B_{16}	$\mid (\top, \bot, \top, \top, \top, \top)$	$\mid (\top, \bot, \top, \top, \top, \top) \mid$

Table 9: Propagação de Constantes — (a,b,c,d,e,t_6)

9.1 Exemplos

9.1.1 Exemplo 1

```
@1:
        i := 0
        j := 0
@2:
        t_8 := 4 * n
        v := a[t_8]
@10:
@11:
@12:
@3:
        i:=i+1
@4:
        t_9 := 4 * i
        t_{10} := a[t_9]
        if t_{10} < v goto @11
@13:
@14:
@5:
        j := j - 1
        t_{11} := 4 * j
@6:
        t_{12} := a[t_{11}]
        if t_{12} > v \ goto @14
        if i >= j goto @9
@7:
@8:
        x := t_{10}
        a[t_9] := t_{12}
        a[t_{11}] := x
        go to \ @12
@9:
        x := t_{10}
        t_{13} := a[t_8]
a[t_9] := t_{13}
        a[t_8] := x
@15:
```


9.1.2 Exemplo 3

```
@1:
        a := 4
        b := 5
        if\ d\ go to\ @5
@2:
        b := 5
@3:
        t_5 := 4 + 5
        c := 9
        if\ d\ go to\ @9
@4:
        goto @12
@5:
        a := 4
        goto @10
@10:
        t_5 := 4 + 5
@9:
@11:
@6:
        c := t_5
        a := 5
        b := c
        d := b
        goto @7
@7:
        t_5 := 5 + b
        c := t_5
        if\ d\ go to\ @11
@12:
@13:
@8:
        c := t_5
@14:
```


9.1.3 Exemplo 7

b := 1

@1:

- $\begin{array}{ccc} @4: & t_6 := 7 + c \\ & d := t_6 \end{array}$
- @13: @14: $a := t_6$
- $a := t_6$ goto @15
- @9: goto @16
- @15: @16:
- @10: $d := t_6$
- @17:

$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	i := 0 j := 0 $t_8 := 4 * n$	@0: @1:	$nop \\ i := 0 \\ i := 0$	@0: @1:	$nop \\ i := 0 \\ i := 0$	@0: @1:	$nop \\ i := 0 \\ i := 0$	@0: @1:	$nop \\ i := 0 \\ i := 0$
3	$v := a[t_8]$		$t_8 := 4 * n$		$t_8 := 4 * n$	@2:	$t_8 := 4 * n$	@2:	$t_8 := 4 * n$
4	i := i + 1		$v := a[t_8]$		$v := a[t_8]$		$v := a[t_8]$		$v := a[t_8]$
5	$t_9 := 4 * i$	@2:	i := i + 1	@7:		@10:		@4:	
6	$t_{10} := a[t_9]$		$t_9 := 4 * i$	@8:		@11:		@ 5:	
7	$if t_{10} < v goto 4$		$t_{10} := a[t_9]$	@9:		@12:		@6 :	
	j := j - 1		$if t_{10} < v goto @2$	@2:	i := i + 1	@3:	i := i + 1	@3:	i := i + 1
9	$t_{11} := 4 * j$	@3:	j := j - 1		$t_9 := 4 * i$	@4:	$t_9 := 4 * i$	@7:	$t_9 := 4 * i$
10	$t_{12} := a[t_{11}]$		$t_{11} := 4 * j$		$t_{10} := a[t_9]$		$t_{10} := a[t_9]$		$t_{10} := a[t_9]$
11	$if \ t_{12} > v \ goto \ 8$		$t_{12} := a[t_{11}]$		$if t_{10} < v goto @8$		$if \ t_{10} < v \ goto @11$		$if \ t_{10} < v \ goto \ @5$
12	if i >= j goto 17		$if \ t_{12} > v \ goto @3$	@10:		@13:		@9:	
13	$x := t_{10}$		if i >= j goto @6	@11:		@14:		@10:	
14	$a[t_9] := t_{12}$	@5:	$x := t_{10}$	@3:	j := j - 1	@5:	j := j - 1	@8:	j := j - 1
15	$a[t_{11}] := x$		$a[t_9] := t_{12}$		$t_{11} := 4 * j$	@ 6:	$t_{11} := 4 * j$	@11:	$t_{11} := 4 * j$
16	goto~4		$a[t_{11}] := x$		$t_{12} := a[t_{11}]$		$t_{12} := a[t_{11}]$		$t_{12} := a[t_{11}]$
17	$x := t_{10}$	0.0	goto @2	@ 4	$if t_{12} > v goto @11$	@ =	$if t_{12} > v goto @14$	0.10	$if t_{12} > v goto @10$
18	$t_{13} := a[t_8]$	@6:	$x := t_{10}$	@4:	if i >= j goto @6	@7:	if i >= j goto @9	@12:	if i >= j goto @14
19	$a[t_9] := t_{13}$		$t_{13} := a[t_8]$	@ 5:	$x := t_{10}$	@8:	$x := t_{10}$	@13:	$x := t_{10}$
20	$a[t_8] := x$		$a[t_9] := t_{13}$		$a[t_9] := t_{12}$		$a[t_9] := t_{12}$		$a[t_9] := t_{12}$
			$a[t_8] := x$		$a[t_{11}] := x$		$a[t_{11}] := x$		$a[t_{11}] := x$
				@ 6:	goto @9	@9:	goto @12	@14:	goto @6
				യ:	$x := t_{10}$	wy:	$x := t_{10}$	@14:	$x := t_{10}$
					$t_{13} := a[t_8]$		$t_{13} := a[t_8]$ $a[t_9] := t_{13}$		$t_{13} := a[t_8]$
					$a[t_9] := t_{13}$		$a[t_9] := t_{13}$ $a[t_8] := x$		$a[t_9] := t_{13}$ $a[t_8] := x$
					$a[t_8] := x$		$u[\iota 8] := x$		$u[\iota_8] := \iota$

