

Hy T. Son

Neural
Networks
Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Trans-

Conclusions

How to compress Deep CNNs?

Playing with Neural nets compression

Author: Hy Truong Son

The University of Chicago

Chicago, April 2017

Contents

Hy T. Son

Neural Networks Architectures

Compression Methods

Visualization

approximation

Sparsification K-Means

quantization

Fourier Trans-

formation

Conclusions

How to compress Deep CNNs?

Neural Networks Architectures

2 Compression Methods

3 Visualization

4 Low-rank approximation

Sparsification

6 K-Means quantization

Fourier Transformation

8 Conclusions

Architectures

Hy T. Son

Neural Networks Architectures

Compression Methods

Visualization

approximation

Sparsification

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

Weight matrices: W, W_0 , W_1

Input data matrix: \mathcal{X} Prediction matrix: $\hat{\mathcal{Y}}$ Activation function: σ

• Softmax: $\hat{\mathcal{Y}} = \sigma(W\mathcal{X})$

• Autoencoder (unsupervised learning):

$$\hat{\mathcal{Y}} = \sigma(W^T \sigma(W \mathcal{X}))$$

This case the second-layer's weight matrix is the **transpose** of the first-layer's one.

• Multi-Layer Perceptron: $\hat{\mathcal{Y}} = \sigma(W_1 \sigma(W_0 \mathcal{X}))$

Compression Methods

Hy T. Soi

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

-

K-Means quantization

Fourier Transformation

Conclusions

- Low-rank approximation: Singular Value Decomposition
- Sparsification
- K-Means quantization
- Fast Fourier Transformation: Compression in the frequency domain

Softmax

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

Autoencoder

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank

approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

SVD - Softmax

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

This kind of **shallow** neural network is **sensitive** to compression!

SVD - Autoencoder

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

We can cut more than half of the number of singular values to get **acceptable** reconstruction error.

SVD - MLP

Hy T. Son

Neural
Networks
Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

Only need to keep 18 first singular values to get more than 95% testing accuracy.

Sparsification - Softmax

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Transformation

Conclusions

Still, shallow nets are sensitive to compression!

Sparsification - Autoencoder

Hy T. Soi

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

Autoencoder is sensitive to sparsification!

Sparsification - MLP

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

We can **throw out** 80% of the second layer to get more than 90% testing accuracy. That is **5**-time compression.

K-Means - Figure 1

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

K-Means - Figure 2

Hy T. Sor

Neural
Networks
Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

I did the K-Means quantization with a very efficient algorithm $O(k \cdot d \cdot log(n))$ where k is the number of clusters, d is the number of iterations, and n is the number of data points.

K-Means - Figure 3

Hy T. Son

Neural
Networks
Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

We need only 2 bits for each weight in the first layer, and 1 bit for the second layer to get 95% testing accuracy. Comparing to 4-byte double-floating-point, we can obtain 32 time compression.

FFT - Softmax

Hy T. Sor

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

Basically, we cannot compress the shallow nets!

FFT - Autoencoder

Hy T. Son

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

Autoencoder is **sensitive** in the **frequency** domain!

FFT - MLP

Hv T. So

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means guantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

We need to keep 10% of the frequencies in the first layer to get 80% testing accuracy. On the second layer, to obtain 95% accuracy, we need to keep only 30% of the frequencies.

Conclusions

Hy T. Soi

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

- There are a lot of redundancy in MLP
- We only need 2 bits for each weight in the first layer, and
 1 bits for the second layer
- Further lossless compression by Huffman code or LZW can be applicable

My source code:

https://github.com/HyTruongSon/Neural-Nets-Compression

How to compress Deep CNNs?

Hy T. Son

Neural Networks Architectures

Compression Methods

Visualization

Low-rank approximation

Sparsification

K-Means quantization

Fourier Transformation

Conclusions

How to compress Deep CNNs?

Reference:

- Multiresolution Matrix Compression/Factorization, Prof. Risi Kondor (UChicago)
- Soft Weight-Sharing For Neural Network Compression, ICLR 2017, Karen Ullrich, Max Welling

Some more practical works:

- Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications, ICLR 2016
- Deep Compression: Compressing Deep Neural Networks With Prunning, Trained Quantization and Huffman Coding, ICLR 2016