RESTRICTED 内部文件	RF	T2:	RI		FD	内	立べつ	一生
-----------------	----	-----	----	--	----	---	-----	----

		RESTRICTED 内部	文件	
		Solution	Marks	Remarks
1.	(a)	$x = \frac{y-3}{2} \qquad \text{(or } \frac{y-3}{2}\text{)}$	1 A	
	(b)	(a+b) (x+2y)	1A	No mark if parenthesis is missed
	(c)	4√3	1A	
	(d)	(i) 50	1A	In (d), accept ans. written in order
		(ii) 65 (iii) 60	1A	
		(111) 00	1A 6	
2.	(2)	$\frac{3\pi}{4} \qquad (\text{or } 0.75\pi)$	1 A	
2.		-		
	(c)	144 216	1A 1A	, ,
	(d)	5π (or 15.7)	1A	r.t. 15.7
_	(e)	8:27 (不接紙コアタ)	1A	Accept $\frac{8}{27}$ etc.
		(or 1:3.38, 0.296:1, 2 ³ :3 ³)		r.t 3 sig. fig.
			5	
3.	(k+3	$3) (k-2) + 2 = k^2$	1A	
		$C-A = k^2$	1A	
	k = 4		1A	
	OR	by long division,		
		$[(x+3)(\tilde{x}-2)\tilde{+}2]+(x-k) = (x+k+1)\dots(k^2+k-4)$ $\therefore k^2+k-4 = k^2$	≥A)	
		k = 4	1A	
			3	
	(2)	$y = k y^2$ (for some constant $k \neq 0$)	1A	
•	(4)	$x = k \frac{y^2}{z} \qquad \text{(for some constant } k \neq 0\text{)}$	16	
		$54 = k \frac{3^2}{10}$		
		k = 60	1A	
		$\therefore x = 60 \frac{y^2}{z}$		
		z		
	(b)	When $y = 5$, $z = 12$,		
		$x = \frac{60 \times 5^2}{12} = 125$	1A	
		OR 54 · 10 × · 12		
		$\frac{54 \cdot 10}{3^2} = \frac{x \cdot 12}{5^2}, x = 125$	1A	
			3	
94-	CE-Ma	ths I		P.1

RESTRICTED 内部文

		KESTRICTED 内部文件						
		Solution	Marks	Remarks				
15. (a)	(i)	The number of babies born in Hong Kong in the first year after 1994 = 70000×1.02 = 71400	1 A					
· · · · · · · · · · · · · · · · · · ·	(ii)	The number of babies born in Hong Kong n the nth year after 1994 = 70000(1.02)* eY 7/400× /.02	1 A	L 7 Accept 70000(1 +20%)*				
(p)		If 70000(1.02)* > 90000	1M	Accept using $=$, \geq , \leq , $<$				
		then $n\log(1.02) > \log(\frac{9}{7})$	1M 可建调 n值转数	For taking logarithm, may be absorbed by $n=13$ or $n>12.7$ in what follows				
		 n > 12.69 In the 13th year after 1994, the number of babies born in Hong Kong will exceed 90000. i.e. In the year 2007. 	1A					
(c)		The total number of babies born in Hong Kong in the years 1997 to 2046 inclusive = $70000(1.02^3 + 1.02^4 + + 1.02^{52})$ = $70000(1.02)^3(1 + 1.02 + 1.02^2 + + 1.02^{49})$. F. (1 1 7				
		= $70000(1.02)^3(\frac{1.02^{50}-1}{1.02-1})$ ≈ 6282944 ≈ 6280000	1M + 12	及1.02				
(d)	(i)	The leap years between 1997 to 2046 are 2000, 2004,, 2044. Number of leap years = \frac{2044 - 2000}{4} + 1		r.t. 6 280 000				
	(ii)	= 12 $70000(1.02^6 + 1.02^{10} + \ldots + 1.02^{50})$ = $70000(1.02)^6(1 + 1.02^4 + \ldots + 1.02^{44})$	1A					
		$= 70000 (1.02)^{6} \frac{(1.02)^{4 \times 12} - 1}{(1.02)^{4} - 1}$ ≈ 1517744 ≈ 1520000	1M + 12	A 1M for sum of G.P. {				

	KESTRICTED M	沙义任	
	Solution	Marks	Remarks
5. (a)	$BE = \sqrt{1^2 + 2^2} = \sqrt{5}$ (or 2.24)	1A	r.t. 2.24
(b)	$\tan x^{\circ} = \frac{1}{2} (\text{or } \sin x^{\circ} = \frac{1}{\sqrt{3}})$	1A	
	x ≈ 26.57 ≈ 26.6	1A	r.t. 26.6; accept 26°34'
	$tan \angle EBC = 2$, $\angle EBC = 63.43^{\circ}$ $y \approx 63.43 - 26.57$		
	≈ 36.9	1 <u>A</u>	r.t. 36.9 accept 36°52'
	$A \xrightarrow{x^{\circ}} B \xrightarrow{1} C$		
5. (a)	Selling Price = $$x(1+70\%)(1-5\%)$ Percentage gain = $\frac{(1.7)(0.95)x-x}{x} \times 100\%$	1A 1M	
•	= 61.5%	1A	
_	OR (1+70%) (1-5%) -1 = 61.5%	1A + 11 1A	2
(b)	$x = \frac{2907}{(1+61.5\%)}$	1M	
	= 1800	1A	
	•		
	•		
4-CE-Ma	ths I		P.2

	KESTRIC I ED 135	VAIT	
	Solution	Marks	Remarks
14. (a)	$\frac{OQ}{\sin 50^{\circ}} = \frac{500}{\sin 70^{\circ}} = \frac{OP}{\sin 60^{\circ}}$	1A	For either
	$OQ = \frac{500 \sin 50^{\circ}}{\sin 70^{\circ}} \approx 407.60 \text{ (m)}$		
	≈ 408 (m)	1A	r.t. 408
	$OP = \frac{500 \sin 60^{\circ}}{\sin 70^{\circ}} \approx 460.80 \text{ (m)}$		
	≈ 461 (m)	1A	r.t. 461
(b)	h = OPtan30°		,
	≈ (460.80)tan30°	ĺМ	(引外代的)主值)
•	≈ 266	1A	r.t. 266
(c)	$\tan \angle TQO = \frac{h}{OQ} = \frac{266.044}{407.6} \approx 0.6527$	M	え必代の民之値)
	∠TQO ≈ 33.1° ≈ 33°	1A	,
(d)	(i) $OR = \frac{h}{\tan 20^{\circ}} \approx 730.95 \approx 731 \text{ (m)}$		
	$\cos \angle OQR = \frac{(OQ)^2 + (QR)^2 - (OR)^2}{2(OQ)(QR)}$	1	
	$= \frac{(407.60)^2 + (400)^2 - (730.95)^2}{2(407.60)(400)}$	1M	(X. Yz ft CQ, RR, CR之值
	≈ -0.6383 ∠ <i>OQR</i> = 129.66° ≈ 130°		
	$\theta = 130 - 70$	1A	r.t. 130
	= 60	1A	
	(ii) By symmetry, $\triangle OQR \equiv \triangle OQS$,		
	$\therefore \ \angle OQR = \angle OQS$	1M	
	$\alpha + 50 + 60 = 130$		
	$\alpha = 20$ The bearing of S from Q is S20°E (or 160°)		
	The Seating of S from Q is S20°E (or 160°)	1A	

D	ECT	r D I		ED	7	+17	حياب	سلدا
Л	E 3	I N I	L	EU	M	台)	\mathbf{X}^{\prime}	 -

Solution $(a) \frac{(a^4b^{-2})^2}{ab} = \frac{a^8b^{-4}}{ab} \\ = \frac{a^8}{ab^{1+4}}$	Marks 1M	Remarks For applying (a ^p b ^q) ^a =a ^{pa} b ^{qa}
	l	For applying (a ^p b ^q) ⁿ =a ^{pn} b ^{qn}
	1 114	i
•	1111	For applying $a^{-n} = \frac{1}{a^n}$
$= \frac{a^7}{b^5}$	1A	
(b) $\log \sqrt{12} = \frac{1}{2} (\log 12)$	1M	For applying logx =nlogx
$= \frac{1}{2} (\log 4 + \log 3)$	1M	For applying logxy=logx+logy
$= \frac{2x+y}{2} (\text{or } x+\frac{y}{2})$	_1A_	
	6	
(a) $c = 6$ $\alpha\beta = c = 6$	1A 1A	
(b) $\alpha + \beta = -b$	1A	Accept - b
		1
$(c) (\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$		
$= (\alpha + \beta)^2 - 4\alpha\beta$ $= b^2 - 24$	1A 1A	
Area of $\triangle ABC = \frac{1}{2} (AB) (OC)$ (or $\frac{1}{2} \begin{vmatrix} 0 & 6 \\ \beta & 0 \\ \alpha & 0 \\ 0 & 6 \end{vmatrix}$)		,
$= \frac{6}{2} (\alpha - \beta)$	换	
$= 3\sqrt{b^2-24}$	14 <u>+1A</u>	
$y = x^2 + bx + c$ $(0,6)$ C $(\beta,0)$ $(\alpha,0)$		

P.3

94-CE-Maths I

• • •	RESTRICTE	D 内部文件	
	Solution	Marks	Remarks
13. (c)(ii)	$\therefore \angle EKC = h_2 + f, \qquad c = \angle EKC + e$ $\therefore \angle EKC = 90^{\circ} + 23^{\circ} = 113^{\circ}$ $c = 113^{\circ} + 14^{\circ}$	1м	For either
	= 127°	2A .	
	OR : $c = b+2e$, $b = a+2f$: $c = a+2f+2e = a+74^\circ$: $a+c = 180^\circ$: $c = (180^\circ-c)+74^\circ$	1M	For either
	= 127°	2A	
	OR $g = 180^{\circ} - f - h_{I}$ $= 180^{\circ} - 23^{\circ} - 90^{\circ} = 67^{\circ}$ $d = 180^{\circ} - g - e$ $= 180^{\circ} - 67^{\circ} - 14^{\circ} = 99^{\circ}$ $c = 2f + 180^{\circ} - d$ $= 46^{\circ} + 180^{\circ} - 99^{\circ}$	1M	
•	= 127°	2A	
	OR : 2a+2e+2f = 180° ∴ a = 90°-14°-23° = 53° c = 180°-a = 180°-53°	1M	
	= 127°	2A	
A /	B A Contract of the second of	E	

, н		RESTRICTED 内部	了文件	•
-		Solution	Marks	Remarks
). (a)	(i)	The probability that he will be late on		
		all the three days		
		$= (\frac{1}{7})^3$ (or $\frac{1}{7} \times \frac{1}{7} \times \frac{1}{7}$)	1A	
		$= \frac{1}{343} $ (or 0.00292)	1A	r.t. 0.00292
	(ii)	The probability that he will not be late on all the three days		
		$= (1-\frac{1}{7})^3$	1M	(1-p) ³ , p in a(i)
		$= \frac{216}{343} $ (or 0.630)	1 A	r.t. 0.630
(b)	(i)	The probability that he will be late on Thursday and Friday only		
		$= \frac{1}{10} \times \frac{1}{10} \times (1 - \frac{1}{10})$	1A	
		$= \frac{9}{1000} (or \ 0.009)$	1A	
	(ii)	The probability that he will be late on		
		any two of the three days $= \frac{1}{10} \times \frac{1}{10} \times (1 - \frac{1}{10}) + \frac{1}{10} \times (1 - \frac{1}{10}) \times \frac{1}{10} + (1 - \frac{1}{10}) \times \frac{1}{10} \times \frac{1}{10}$		
		$(\text{or } 3 \times \frac{9}{1000})$	1M	3p , p in (b)(i)
		$= \frac{27}{1000} (or \ 0.027)$	1A	
(c)		probability that he will be late for school		
_	on Su $= \frac{1}{2}$	$\frac{1}{7} + \frac{1}{2} \times \frac{1}{10}$	1A	For the value $\frac{1}{2}$
	2	7 2 10	1M	For p ₁ + p ₂
			1A	For the whole expression
	$= \frac{17}{14}$	(or 0.121)	1 A	r.t. 0.121
		全無解釋 PP-1		
			1 1	

• • •	KES	I RIC I ED 内部	文件	
	Solution		Marks	Remarks
13. (a)	In $\triangle BKE$, $b + e + k_1 = 180^{\circ}$ $k_1 = 180^{\circ} - b - e$	(\(\lambda\) sum of \(\Delta\)	1	三角形內角和
	Similarly, in $\triangle GDE$,			st is extit . commention
	$g = 180^{\circ} - d - e$			多例 ext L, ugdic
	b = d	(ext./, cyclic quad.)	1	接納 ext. L, conyclic 接納 ext. L, cyclic Note 「 「 「 「 「 「 「
	$\therefore k_1 = g$			lexil L = int. spp. L
	$k_1 = k_2$	(vert. opp /s)	1	
	∴ g = k ₂			對頂角不接納 分分 3
	i.e. $\angle FGH = \angle FKH$			t多湖 044 04
(b)	In ΔFHG , $h_1 + f + g = 180^\circ$	$(\angle sum of \Delta)$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-	$h_1 = 180^{\circ} - f - g$			
	Similarly, in Δ FHK,			•
	$h_2 = \boxed{180^\circ - f - f}$	k_2	1A	
	$g = k_2$	(proved)		
	$\therefore h_1 = h_2$		1A	
	$\therefore h_1 + h_2 = 180^{\circ}$	(adj. /s on st. line)	1	直線上的鄰角和
	$\therefore 2h_1 = 180^{\circ}$			接流 LS on a
	$h_1 = 90^{\circ}$			L Sum 12
	i.e. FH⊥GK			P技法内 ag.15
(c)(i)	In $\triangle EHJ$, $h_1 = j + e$	(ext. / of A)	1	三角形外角
- .	$j = h_1 - e$	(11 -exd.L)		
	= 90° - e			
	In $\triangle FHG$, $g + h_1 + f = 180^\circ$	(∠ sum of ∆)		
	$g = 180^{\circ} - h_1 - f$			
	= 180° - 90° - f			
	$= 90^{\circ} - f$ $\therefore \angle AED = \angle AFB$	(Circa)		
	2e = 2f	(Given)		
	e = f			
	∴ j = g	(3x1. Lod found som	(JA	
	Hence, D,J,H,G are concyclic.	$(\underbrace{SX(\cdot L) \text{ of quad. equal.}}_{\text{ext.} \ell})$	1	外角=內對角 Converse of ext. L, cyclic quad.
-CE-Mat	tha T			圓內接四邊形外角的逆定理
on-wd₁	CHO I	İ		P.8

	ILOII	MCILDY	ABY XIL	
	Solution		Marks	Remarks
10. (a) volume of water				
	$= 6\pi \text{ m}^3$		1A	
(b) $\pi (2)^2 h = \frac{4}{3} \pi (0)$.6)³		1M + 1	
$h = 0.072$ 以 $\frac{9}{12}$ (要於主義院)				1M for an equation in h
n = 0.072 ty	1A	7 7		
(c) $\frac{4}{3}\pi r^3 + 6\pi = \pi (2)$)²(2r)		1M + 1	1M for an equation in r in the form
				of $x+y=z$, or equivalent, with
$2r^3 - 12r + 9 = 0$			1	exactly 2 terms in r
				f.t.
Let $f(r) = 2r^3$ -	12r+9 = () (om 1	r3_6~14 E > 2 . C		、大意味。
Let f(r) = 2r³- f(0.6)≈2.23 f(1)=-1 < 0	> 0	01+4.5) (6γ	-1 -127 11 3	0)(pp-1)
f(1)=-1<0	7.8		1M	Testing that the signs are different
(" I(I) = 0 he	us a root between	0.6 and 1		
Interval	mid-value (r _i)	f(r _i)]	
[t 0.6 < r < 1	0.8	+ve (0.424)	1M + 1	1 M for testing sign at mid-value
0.8 < r < 1	0.9	-ve (-0.342)		1A for the correst sign of the function at mid-value
0.8 < r < 0.9	0.85	+ve (0.0283)	1M	1M for the correct choice of the
0.85 < r < 0.9	0.875	-ve (-0.160)		next interval
0.85 < r < 0.875 0.85 < r < 0.8625	0.8625	-ve (-0.0668)		
0.85 < r < 0.85625	0.85625 0.853125	-ve (-0.0195)		
0.853125 < r < 0.85625	0.8546875	+ve (0.00435) -ve (-0.00757)		
		10 (0.00737)		
∴ 0.853125 < r <				
The value of r c	orrect to 2 deci	mal places is 0.8	5. 1A	Check whether it is bounded by the
*.				last interval
e e e e e e e e e e e e e e e e e e e		en general de la companya de la comp		e de la companya de
] 1	1	! 1		
h.	T	1==		
3m —————		2r m	킄	
1.5m 1.	5m	国	3	
2m	2m	<u> </u>	=	
				V

n	C	CD		- 1	77 —	14
K	E2	IK	ED	内部	SX	4Ŧ

RESTRICTED 內部文件								
		Solution	Marks	Remarks				
12.	(a)	A = (10,0)	1A	pp-1 if parenthesis is missed				
		radius of $C_2 = 7$	l 1A	Accept $x=10$, $y=0$				
	(b)	·· AOQR - AAPR (] 東京 元 () 對 ()	1M	Or equating ratios involving OR				
7=	10+0	$\frac{\sqrt{2}}{\sqrt{2}} \cdot \frac{OR}{1} = \frac{10 + OR}{7}$ $OR = \frac{5}{3}$	1A					
Į	01							
		Hence the x-coordinate of $R = -\frac{5}{3}$. (3)	1A	pp-1 if writing $R = -\frac{5}{3}$ $P(x) = \left(-\frac{5}{3}, 0\right)$				
		(接納一/67,以後之營	·	Ph/1/ R=(-2/10)				
	(c)	$QR = \sqrt{(\frac{5}{3})^2 - 1^2} = \frac{4}{3}$ Slope of $QP = \tan \angle ORQ$ $2 = \frac{1}{3}$	1A					
		$= \frac{OQ}{OR} = \frac{3}{4} (\text{or } 0.75)$	1A					
		OR $\sin \angle ORQ = \frac{OQ}{OR} = \frac{3}{5}$ slope of $QP = \tan \angle ORQ$	1A					
		$= \frac{\frac{3}{5}}{\sqrt{1-(\frac{3}{5})^2}}$						
		$=\frac{3}{4}$ (or 0.75)	1A					
		4	- An					
	(4)	The outernal games to see the						
	(d)	The external common tangent <i>QP</i> has equation $\frac{y-0}{x+\frac{5}{2}} = \frac{3}{4}$	1M + 12	1M for pointt-slope form				
		3						
		3x - 4y + 5 = 0	1A	Or equivalent				
	(e)	The external common tangent with negative slope has slope = $-\frac{3}{4}$	1M					
		equation:	IM					
		$\frac{y-0}{x+\frac{5}{3}} = -\frac{3}{4}$						
		3x + 4y + 5 = 0	1A	Or equivalent				
		P		or oquivalous				
				\				
		R O A		x				
		C_i	/					
				·				
94-c	E-Mat	ths I						
_			C_2	P.7				

RESTRICTED 内部文件 Solution Marks Remarks 11. (a) 4x + 3y = k铁色或客院 dated 彩山多 1A For the line x+y=101A For the line x+2y=12For the line 2x=3yAccept broken lines 割除轮圆水的 (b) (i) $2x+2y \ge 20$ (or $x+y \ge 10$) 1A $2x \ge 3y$ 1A $x+2y \ge 12$ 1A -1 for any strict inequality (or x > 0, y > 0)1A Accept $x \ge 0$, $y \ge 0$; go through (ii) Total payment, P, in \$ is P = 300(x+2y) + 500xIgnore unit = 800x + 600yBy drawing parallel lines of 4x + 3y = 0, 1M + 1Must shown on the graph paper OR P(6,4)=7200, P(8,2)=7600 1M + 11M for substituting 1 point P(12,0)=9600Optional P is minimum when x=6, y=41A .. The total payment is minimum when the length is 6 m and the width is 4 m $\,$ Minimum total payment = $$(800 \times 6 + 600 \times 4)$. = \$ 7200 1A 94-CE-Maths I P.6