

2.3.6 To Draw an Arc of Radius R and Tangent to Given Two Circles (or Circular Arcs)

(a) Outside to the Given Circles

- Draw circles with O_1 and O_2 as their centers, R_1 and R_2 as their radii respectively. The relative positions of O_1 and O_2 are also given. (Figure 2.32(a))
- Draw arcs with O_1 as center and $R+R_1$ as radius and O_2 as center and $R+R_2$ as radius respectively. Intersection of these arcs gives the center O of the required arc. (Figure 2.32(b))
- Join O and O1 and O and O2 to get the point of tangencies A and B respectively. (Figure 2.32(c))
- Draw the required arc with O as center and OA (= OB = R) as radius. (Figure 2.32(d))

Geometrical Construction 53

(b) Including the Given Circles

- Draw circles with O_1 and O_2 as their centers, R_1 and R_2 as their radii respectively. The relative positions of O_1 and O_2 are also given.
- Draw arcs with O₁ as center and R R₁ as radius and O₂ as center and R R₂ as radius respectively. Intersection of these arcs gives the center O of the required arc. (Figure 2.33(b))
- Join O and O₁ and O and O₂ and extend to get the point of tangencies A and B respectively. (Figure 2.33(c))
- Draw the required arc with O as center and OA (= OB = R) as radius.

 (Figure 2.33(d))

(c) Including the Circle with Radius R₁ and Outside to the Circle with Radius R₂

- Draw circles with O₁ and O₂ as their centers, R₁ and R₂ as their radii respectively. The relative positions of O₁ and O₂ are also given. (Figure 2.34(a))
- Draw arcs with O₁ as center and R R₁ as radius and O₂ as center and R + R₂ as radius respectively. Intersection of these arcs gives the center O of the required arc. (Figure 2.34(b))
- Join O and O₁ and extend to get the point of tangency A. Similarly join O and O₂ to get the point of tangency B. (Figure 2.34(c))
- Draw the required arc with O as center and OA (= OB = R) as radius. (Figure 2.34(d))

(d) Including the Circle with Radius R2 and Outside to the Circle with Radius R1

• Draw circles with O_1 and O_2 as their centers, R_1 and R_2 as their radii respectively. The relative positions of O_1 and O_2 are also given. (Figure 2.35(a))

Draw arcs with O₁ as center and R + R₁ as radius and O₂ as center and R - R₂ as radius respectively. Intersection of these arcs gives the center O of the required arc. (Figure 2.35(b))

• Join O and O₁ to get the point of tangency A. Similarly join O and O₂ and extend

to get the point of tangency B. (Figure 2.35(c))

• Draw the required arc with O as center and OA (= OB = R) as radius, (Figure 2.35(d))

2.3.7 To Draw Common Line Tangents to Given Two Circles

(a) Open Belt Tangent

- Draw circles with O_1 and O_2 as their centers, R_1 and R_2 as their radii respectively. The relative positions of O_1 and O_2 are also given. (Figure 2.36(a))
- Draw a circle with O2 as center and R2 R1 as radius. (Figure 2.36(b))
- Join O₁ and O₂ and draw it perpendicular to locate its midpoint A. (Figure 2.36(c))
- With A as center and O_1A (= O_2A) as radius draw a circle which intersects the circle with radius R_2 R_1 at point B. (Figure 2.36(d))

Join O₂ and B and extend it to get point of tangency T₂ on the circle with radius R₂. (Figure 2.36(e))