А.ЛГЕБРА

§1. Алгебраические операции и алгебраические системы

...главная трудность для начинающего заключается в овладении разумным словарным запасом за короткое время. Ни одно из новых понятий само по себе не является трудным, но их последовательное накопление может иногда показаться тяжким.

Серж Ленг

Опр. 1.1. n-арная (n-местная) алгебраическая операция — отображение $X_1 \times X_2 \times \ldots \times X_n \to Y$, где X_1, X_2, \ldots, X_n, Y — непустые множества.

Опр. 1.2. Если $X_1 = X_2 = \ldots = X_n = Y$, то алгебраическая операция называется **внутренней**.

n = 0 (нульарная): $\{\emptyset\} = X^0 \to X$ — выбор элемента в X.

n=1 (унарная): $X=X^1 \to X$ — функция из X в X.

n=2 (бинарная): $X^2 \to X$.

n=3 (тернарная): $X^3 \to X$.

Замечание. В дальнейшем, если не оговорено иное, будем рассматривать внутренние бинарные операции, которые ещё называются *внутренним законом композиции*.

Замечание. Обычно для записи бинарной операции используется undpukchas нотация, когда знак операции пишется mencdy операндами: $x*y, x\circ y, x\odot y$. Чаще всего мы будем использовать мультипликативную запись $(x\cdot y, xy)$ и называть операнды comhohoumensmu, а результат операции — npouseedehuem. Аддитивную запись (x+y) будем чаще всего использовать в контексте разговора об абелевых группах.

Опр. 1.3. Алгебраическая система $\mathcal{A} = \langle A, f_1, f_2, \dots, f_k, \dots \rangle$ — объект, являющийся совокупностью непустого множества A и непустого набора алгебраических операций, заданных на A. Множество A называется носителем алгебраической системы.

Опр. 1.4. Говорят, что множество $B \subseteq A$ замкнуто относительно операции *, если $\forall x, y \in B$ $x * y \in B$.

Опр. 1.5. Система $\mathscr{B} = \langle B, f_1, f_2, \dots, f_k, \dots \rangle$ называется **подсистемой** системы $\mathscr{A} = \langle A, f_1, f_2, \dots, f_k, \dots \rangle$, если $B \subseteq A$ и B замкнуто относительно всех операций f_i .

- **Опр. 1.6.** Алгебраическая система $\langle X, \cdot \rangle$ с одной бинарной операцией называется *группоидом* или *магмой*.
- **Опр. 1.7.** Элемент x группоида называется **идемпотентом**, если $x^2 = x$.
- Опр. 1.8. Элемент e_L группоида $\langle X, \cdot \rangle$ называется *левым нейтральным*, если $\forall x \in X \ e_L x = x$. Элемент e_R группоида называется *правым нейтральным*, если $\forall x \in X \ xe_R = x$. Элемент e группоида называется *нейтральным*, если $\forall x \in X \ ex = xe = x$.
- **Пемма 1.1.** Если в группоиде есть левый нейтральный и правый нейтральный, то они совпадают.
- Опр. 1.9. Элемент x группоида $\langle X, \cdot \rangle$ называется **регулярным слева**, если на него можно сокращать слева: $\forall y, z \in X \ xy = xz \Rightarrow y = z$. Элемент x моноида X называется **регулярным справа**, если на него можно сокращать справа.
- Опр. 1.10. Элемент y группоида $\langle X, \cdot \rangle$ с нейтральным элементом e называется **левым обратным** к x, если yx=e. Элемент y группоида $\langle X, \cdot \rangle$ с нейтральным элементом e называется **правым обратным** к x, если xy=e. Элемент y группоида $\langle X, \cdot \rangle$ с нейтральным элементом e называется **обратным** к x, если xy=yx=e. Если элемент имеет обратный, то он называется **обратимым**.

Замечание. При использовании аддитивной записи обратный часто называется *противоположным*.

- **Опр. 1.11.** Операция * на множестве X называется *ассоциативной*, если $\forall x, y, x \in X \ (x * y) * z = x * (y * z).$
- **Опр. 1.12.** Операция * на множестве X называется **коммутативной**, если $\forall x,y \in X \ x*y = y*x.$
- **Теорема 1.1.** (об обобщённой ассоциативности) Если на X задана ассоциативная операция *, то она обладает обобщённой ассоциативностью: результат $x_1 * x_2 * \ldots * x_n$ не зависит от расстановки скобок.
- Опр. 1.13. Группоид с ассоциативной операцией называется полугруппой.
- Опр. 1.14. Полугруппа с нейтральным элементов называется *моноидом*.

 Лемма 5.2. Если характеристика поля больше нуля, п
- **Опр. 1.15.** Элемент x моноида X называется стым числом.
- **Пемма 1.2.** Пусть $\langle X, \cdot \rangle$ моноид. Тогда если у элемента $x \in X$ есть правый обратный и левый обратный, то они совпадают.
- **Пемма 1.3.** Элемент x моноида X, обратимый слева/справа, является регулярным слева/справа.
- Лемма 1.4. Если операция ассоциативна, то обратный элемент единственен.

§2. Группы

...понятие группы является древнейшим математическим понятием, не только более древним, чем алгебраические уравнения, но даже более древним, чем само понятие числа, и неотделимым от человеческой цивилизации.

Н. А. Вавилов

- Опр. 2.1. *Группа* моноид, в котором все элементы обратимы.
- Лемма 2.1. G epynna. $\forall g,h \in G \; \exists ! \; x \in G \; hx = g; \; \forall g,h \in G \; \exists ! \; x \in G \; xh = g$.
- Опр. 2.2. Группа с коммутативной операцией называется абелевой группой.
- **Опр. 2.3.** Пусть G группа. Её подсистема H называется nodepynnoй, если она является группой относительно той же групповой операции. Другими словами,
 - 1) Н замкнуто относительно групповой операции;
 - 2) $x \in H \Rightarrow x^{-1} \in H$;
 - 3) $e \in H$.
- **Опр. 2.4.** *Порядок группы* мощность носителя группы. Обозначается |G|.
- Опр. 2.5. Порядок элемента g группы G наименьшее натуральное n такое, что $g^n = e$, если такое существует. Если такого натурального числа нет, то порядок равен ∞ . Обозначение |g|, $\operatorname{ord}(g)$, o(g).
- Опр. 2.6. Группы $\langle G, * \rangle$ и $\langle H, \star \rangle$ называются **изоморфными**, если существует такая биекция $\varphi \colon G \to H$, что $\forall x, y \in G \ \varphi(x * y) = \varphi(x) \star \varphi(y)$. Обозначение $G \simeq H$. Изоморфизм группы на себя называется **автоморфизмом**.
- **Опр. 2.7.** Пусть $\langle G, * \rangle$ и $\langle H, \star \rangle$ группы. Отображение $\varphi \colon G \to H$ называются **гомоморфизмом**, если $\forall x, y \in G \ \varphi(x * y) = \varphi(x) \star \varphi(y)$. Гомоморфизм группы в себя называется **эндоморфизмом**.

Замечание. Можно аналогично определить изоморфизм и гомоморфизм произвольных группоидов.

- **Пемма 2.2.** Образом нейтрального элемента при гомоморфизме групп является нейтральный. Образом обратного κx обратный κ образу κ .
- **Лемма 2.3.** $(x^{-1})^{-1} = x$, $(xy)^{-1} = y^{-1}x^{-1}$. Другими словами, взятие обратного является антиавтоморфизмом групп порядка 2.

§3. Группа перестановок

Свойства перестановок настолько красивы, что представляют и самостоятельный интерес.

Дональд Кнут

...вместилище всех вообще конечных групп, рассматриваемых с точностью до изоморфизма.

А. И. Кострикин

Опр. 3.1. *Группой* S_n *перестановок на* n *точках* называется группа всех биекций на множестве $\{1, 2, \ldots, n\}$ относительно операции композиции.

Опр. 3.2. Полная запись перестановки — запись перестановки σ в виде $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$.

Замечание. В контексте разговора о перестановках операция композиции часто называется умножением.

Теорема 3.1. $|S_n| = n!$

Опр. 3.3. Перестановка $\sigma \in S_n$ называется **циклом** длины k, если для некоторых различных $i_1,i_2,\ldots,i_k \in \{1,2,\ldots,n\}$ $\sigma(i_1)=i_2,$ $\sigma(i_2)=i_3,\ldots,$ $\sigma(i_{k-1})=i_k,$ $\sigma(i_k)=i_1,$ а для всех остальных $i\in \{1,2,\ldots,n\}\setminus \{i_1,i_2,\ldots,i_k\}$ $\sigma(i)=i$. Цикл длины 1 будем называть **тривиальным циклом**. Цикл длины n называется **длиным циклом**.

Лемма 3.1. Порядок цикла длины k равен k.

Опр. 3.4. Циклы называются *независимыми*, если множества перемещаемых ими элементов не пересекаются.

Опр. 3.5. Пусть $\sigma \in S_n$. Определим отношение \sim на $\{1, 2, ..., n\}$ так: $i \sim j \Leftrightarrow j = \sigma^k(i)$ для некоторого $k \in \mathbb{Z}$. Это отношение является эквивалентностью. Её классы эквивалентности называются *орбитами* σ .

Теорема 3.2.

- 1) Любая перестановка раскладывается в произведение независимых циклов. Такое разложение единственно с точностью до порядка множителей.
- 2) Независимые циклы коммутируют.

Опр. 3.6. *Цикленная запись перестановки* — запись перестановки в виде произведения независимых циклов.

Замечание. Зависимые циклы в общем случае не коммутируют.

Опр. 3.7. *Транспозиция* — цикл длины 2, то есть перестановка двух элементов. $\mathbf{\Phi}$ *ундаментальная транспозиция* — перестановка двух соседних элементов.

Пемма 3.2. Любая перестановка раскладываться в произведение транспозиций.

Опр. 3.8. Говорят, что пара элементов $\sigma(i)$ и $\sigma(j)$ образуют **инверсию**, если $\sigma(i) > \sigma(j)$ при i < j.

Опр. 3.9. Чётность перестановки σ — чётность числа инверсий $\operatorname{inv}(\sigma)$ в ней. Соответственно, перестановки делятся на чётные и нечётные.

Опр. 3.10. Знак перестановки σ : $sgn(\sigma) = (-1)^{inv(\sigma)}$.

Лемма 3.3. Фундаментальная транспозиция является нечётной перестановкой.

Пемма 3.4. Пусть (i j) — произвольная транспозиция. Тогда для любой $\sigma \in S_n$ чётности перестановок σ и $\sigma(i j)$ различны.

Следствие 3.2.1. Любая перестановка раскладывается в произведение фундаментальных транспозиций.

Теорема 3.3. В S_n число чётных перестановок равно числу нечётных перестановок и равно $\frac{n!}{2}$ (n > 1).

Теорема 3.4. $sgn(\sigma\pi) = sgn(\sigma) sgn(\pi)$. Другими словам, знак перестановки является гомоморфизмом.

Следствие 3.4.1. $sgn(\sigma) = sgn(\sigma^{-1})$.

Следствие 3.4.2. Чётность числа транспозиций, на которые раскладывается перестановка, всегда одинакова.

Следствие 3.4.3. Все чётные перестановки A_n образуют подгруппу в группе S_n . A_n называется **знакопеременной группой**.

Теорема 3.5. Всякую перестановку из S_n можно разложить на n-s транспозиций, где s- числов независимых циклов, на которые раскладывается перестановка, включая тривиальные.

Опр. 3.11. Число $d(\sigma)=n-s$ из предыдущей теоремы называется $\pmb{\partial e \kappa p e Me u}$ - \pmb{mom} перестановки σ . Легко заметить, что он равен разности между числом перемещаемых элементов и нетривиальных циклов.

Теорема 3.6. (смысл декремента) Декремент — наименьшее число транспозиций, на которые можно разложить перестановку.

Теорема 3.7. (теорема Кэли) Любая конечная группа порядка n изоморфна некоторой подгруппе симметрической группы S_n .

§4. Разбиение на смежные классы и факторгруппы

Переход от уровня абстракции, который ассоциируется со школьной алгеброй, к тому уровню абстракции, который ассоциируется с алгеброй университетской, связан ровно с одной конструкцией — рассмотрением фактор-объектов.

Н. А. Вавилов

Гомоморфный образ группы
До победы коммунизма
Изоморфен факторгруппе
По ядру гомоморфизма
Математический фольклор

Опр. 4.1. Пусть G — группа, $H \leqslant G$. Будем говорить, что $g_1,g_2 \in G$ сравними по модулю H, если $g_1^{-1}g_2 \in H$, то есть $g_2 = g_1H$. Это отношение является эквивалентностью. Классы этой эквивалентности называются левыми смежными классами.

Левый смежный класс, содержащий элемент g, имеет вид $gH = \{gh \mid h \in H\}$.

Замечание. Иногда смежные классы gH называют правыми смежными классами.

Лемма 4.1. (свойства смежных классов)

- $1)\ {\it Oбразуют разбиение множества}\ {\it G}\ {\it на попарно непересекающиеся подмножества};$
- 2) Существует биекция между H и gH $(H\ni h\mapsto gh\in H)$ и, следовательно, |H|=|gH|.

Теорема 4.1. (теорема Лагранжа)

Пусть G — конечная группа, $H \leqslant G$, тогда |G| = |H||G/H|.

Следствие 4.1.1.

- 1) Порядок любой подгруппы конечной группы делит порядок группы;
- 2) Порядок любого элемента конечной группы делит порядок группы;
- 3) Всякая конечная группа простого порядка является циклической;
- 4) $Ecnu |G| = n, mo g^n = e \forall g \in G.$
- **Опр. 4.2.** *Щиклической* называется группа G, состоящая из степеней одного элемента $g \in G$. Обозначение $G = \langle g \rangle$.
- Опр. 4.3. Число смежных классов G по подгруппе H называется undercom noderpynnu H и обозначается |G:H|, [G:H] или просто |G/H|.

Замечание. Можно рассмотреть смежность справа по подгруппе H, тогда получатся **правые смежные классы** $Hg = \{hg \mid h \in H\}$. Отображение $g \mapsto g^{-1}$ устанавливает биекцию $(gH)^{-1} = Hg^{-1}$ и вся теория переносится на правые смежные классы.

Опр. 4.4. Подгруппа $H \leqslant G$ называется **нормальной**, если $\forall g \in G \ gH = Hg$. Обозначается $H \leqslant G$.

Замечание. Если группа абелева, то в ней любая подгруппа нормальна.

Лемма 4.2. Следующие условия эквиваленты:

- 1) $H \triangleleft G$:
- 2) $gHg^{-1} = H \ \forall g \in G;$
- 3) $gHg^{-1} \in H \ \forall h \in H, \ \forall g \in G.$

Опр. 4.5. Элемент ghg^{-1} называется **сопряжённым** к h с помощью **сопря**зающего элемента g. **Отношение сопряжённости** является эквивалентностью.

Замечание. Условие 3 обычно проще всего проверить: нормальная подгруппа замкнута относительно сопряжения.

Теорема 4.2. (описание сопряжённости в группе S_n)

Две перестановки сопряжены тогда и только тогда, когда они имеют одина-ковое цикленное строение.

Опр. 4.6. Факторгруппа 1 группы G по нормальной подгруппе H — это множество смежных классов G/H с операцией умножения смежных классов как подмножеств в G: $AB = \{ab \mid a \in A, b \in B\}$.

Лемма 4.3. Пусть $\varphi \colon G \to H$ — гомоморфизм групп. Тогда:

- 1) $\operatorname{Im} \varphi = \{ \varphi(g) \, | \, g \in G \} \leqslant H;$
- 2) $\operatorname{Ker} \varphi = \{g \in G \,|\, \varphi(g) = e\} \leqslant G.$

Опр. 4.7. В <u>абелевой</u> группе можно рассмотреть факторгруппу $G/\mathrm{Im}\,\varphi$, которая называется **коядром** гомоморфизма φ .

Пусть $H \leqslant G$. Каноническая проекция π — отображение $\pi\colon G \to G/H$, $g \mapsto gH$. Она является гомоморфизмом и $\operatorname{Im} \pi = G/H$, $\operatorname{Ker} \pi = H$. Любая нормальная подгруппа является ядром некоторого гомоморфизма и наоборот, ядро гомоморфизма — нормальная подгруппа. То есть нормальные подгруппы — это в точности ядра гомоморфизмов.

Теорема 4.3. (о гомоморфизме групп)

Пусть $\varphi \colon G \to H$ — гомоморфизм групп. Тогда существует изоморфизм

$$\overline{\varphi} \colon G / \operatorname{Ker} \varphi \xrightarrow{\sim} \operatorname{Im} \varphi$$
,

для которого $\varphi = \overline{\varphi} \circ \pi$, где $\pi \colon G \to G / \operatorname{Ker} \varphi$ — каноническая проекция. Другими словами, $\varphi(g) = \overline{\varphi}(g \operatorname{Ker} \varphi)$.

 $^{^{1}}$ Иногда через дефис: $\phi a \kappa mop\text{-}rpynna.$

Следствие 4.3.1. Для любого гомоморфизма конечных групп $\varphi \colon G \to H$ верно, $umo |G| = |\operatorname{Im} \varphi| |\operatorname{Ker} \varphi|.$

Теорему о гомоморфизме можно проиллюстрировать следующей диаграммой (движение по стрелкам приводит к одинаковому результату, стрелка \hookrightarrow означает изоморфное вложение (в данном случае абсолютно естественное), пунктирная стрелка означает утверждение о существовании гомоморфизма, знак \sim говорит о том, что гомоморфизм является изоморфизмом):

$$\begin{array}{c|c} G & \xrightarrow{\varphi} & H \\ \downarrow^{\pi} & & \downarrow^{\vee} / \\ G / \operatorname{Ker} \varphi & \stackrel{\sim}{-_{\overline{\varphi}}} & > \operatorname{Im} \varphi \end{array}$$

§5. Кольца и поля

Опр. 5.1. *Кольцом* называется алгебраическая система $(R, +, \cdot)$ с двумя бинарными операциями — сложением и умножением, если выполняются следующие условия (аксиомы кольца):

- 1) R является абелевой группой по сложению;
- 2) $\forall x, y, z \in R \ (x + y)z = xz + yz, \ x(y + z) = xy + xz.$

Следствие 5.0.2. (из аксиом кольца)

- 1) $\forall x \in R \ x0 = 0x = 0$;
- 2) $\forall x, y \in R \ x(-y) = (-x)y = -xy;$
- 2) $\forall x, y \in \mathbf{n} \ x(-y) = (-x)y = -xy;$ 3) $\forall x, y, z \in R \ x(y-z) = xy xz, \ (x-y)z = xz yz.$

Опр. 5.2. Подмножество $L \subseteq R$ называется **подкольцом** $(L \le R)$, если:

- 1) L является подгруппой аддитивной группы кольца R;
- 2) L замкнуто относительно умножения.

Опр. 5.3. Кольцо называется ассоциативным, если операция умножения ассоциативна, и *коммутативным* — если операция умножения коммутативна. Кольцо называется *кольцом с единицей*, если существует нейтральный элемент по умножению.

Замечание. Если 1=0, то $\forall x\in R\; x=1x=0x=0,$ и такое кольцо называется нулевым.

Замечание. При наличии коммутативности из двух аксиом дистрибутивности можно оставить только одну.

Опр. 5.4. Элемент x^{-1} называется *обратным* к x, если $xx^{-1} = x^{-1}x = 1$. Сам элемент x при этом называется обратимым. Множество всех обра**тимых элементов** кольца R обозначается R^* .

- Опр. 5.5. Ненулевые элементы $x,y\in R$, для которых xy=0 называются ∂e лителями нуля. Кольцо в котором нет делителей нуля, называется кольцом без делителей нуля.
- **Опр. 5.6.** Ассоциативное коммутативное кольцо с единицей, в котором каждый ненулевой элемент обратим, называется *полем*.
- Лемма 5.1. В поле нет делителей нуля.

Замечание. Ненулевые элементы поля F образуют абелеву групп по умножению, которая называется **мультипликативной группой поля** F и обозначается F^* .

Опр. 5.7. Подмножество K поля F называется **подполем**, если:

- 1) K является подкольцом F;
- 2) $x \in K, x \neq 0 \Rightarrow x^{-1} \in K$;
- 3) $1 \in K$.
- **Опр. 5.8.** $\Pi opsdox$ кольца мощность его носителя.

Опр. 5.9. Отображение $\varphi \colon R \to Q$ называется **гомоморфизмом колеи**, если:

- 1) $\forall x, y \in R \ \varphi(x+y) = \varphi(x) + \varphi(y)$;
- 2) $\forall x, y \in R \ \varphi(xy) = \varphi(x)\varphi(y);$

Замечание. При гомоморфизме колец единица кольца R не обязана переходить в единицу кольца Q (её может вообще не быть).

Опр. 5.10. Пусть F — произвольное поле. Наименьшее натуральное число n такое, что $\underbrace{1+1+\ldots+1}_{r}=0$ называется xapaxmepucmuxoŭ этого поля

 $(\operatorname{char} F = n)$. Если такого натурального числа нет, что $\operatorname{char} F = 0$.

Пемма 5.2. Если характеристика поля больше нуля, то она является простым числом.

§6. Кольцо вычетов

Рассмотрим группу $\langle \mathbb{Z}_n, + \rangle$ и введём на её элементах операцию умножения: $\overline{x}\,\overline{y} = \overline{xy}$. Операция введена корректно, так как $a \equiv b \pmod n$ и $c \equiv d \pmod n$ влечёт $ac \equiv bd \pmod n$.

Теорема 6.1. $\langle \mathbb{Z}_n, +, \cdot \rangle$ является ассоциативным коммутативным кольцом c единицей.

Теорема 6.2. $\langle \mathbb{Z}_n, +, \cdot \rangle$ является полем тогда и только тогда, когда n- простое число.

Замечание. Говоря о поле, будем писать \mathbb{Z}_p . Легко понять, что char $\mathbb{Z}_p = p$.

Лемма 6.1. (бином Ньютона в поле \mathbb{Z}_p) $\forall x, y \in \mathbb{Z}_p (a+b)^p = a^p + b^p$.

Следствие 6.2.1. (малая теорема Ферма)

- 1) $\forall a \in \mathbb{Z}, \ \forall p \in \mathbb{P} \ a^p \equiv a \pmod{p}$.
- 2) $\forall a \in \mathbb{Z}, \forall p \in \mathbb{P} \ a^{p-1} \equiv 1 \pmod{p}$, если а взаимно просто с p.

Опр. 6.1. $\varphi \colon \mathbb{N} \to \mathbb{N}_0, \ \varphi(n)$ — количество натуральных чисел, меньших n, и взаимно простых с ним.

Теорема 6.3. (теорема Эйлера)

Если а взаимно просто с n, то $a^{\varphi}(n) \equiv 1 \pmod{n}$.

Теорема 6.4. $(mеорема \ Вильсона)$

$$p \in \mathbb{P} \Leftrightarrow (p-1)! \equiv -1 \pmod{p}$$
.

Пример 6.1. (конечные геометрии) Будем говорить, что **прямая** — это множество точек, удовлетворяющих уравнению ax + by = c, $a, b, c \in F$ и хотя бы один из коэффициентов a и b отличен от нуля. Либо, что эквивалентно, прямая — траектория точки (x_0, y_0) , движущейся со скоростью (v, u), то есть множество точек $(x_0 + tv, y_0 + tu) \in F^2$, параметр t пробегает поле F. Тогда на плоскости $\mathbb{Z}^2 \times \mathbb{Z}^2$, состоящей из точек A(0, 0), B(0, 1), C(1, 0), D(1, 1), ровно 6 прямых:

- 1) AB: x = 0;
- 2) BC: x + y = 1;
- 3) CD: x = 1;
- 4) AC: y = 0;
- 5) AD: x + y = 0;
- 6) BD: y = 1.

Всего на этой плоскости 3 пары параллельных прямых: $AB\|CD,AD\|BC,AC\|BD.$

§7. Поле комплексных чисел

Рассмотрим пары $(x,y) \in \mathbb{R}^2$ и введём операции над ними:

$$(a,b) + (c,d) = (a+c,b+d);$$

$$(a,b)(c,d) = (ac - bd, ad + bc).$$

Теорема 7.1. Множество \mathbb{R}^2 с введёнными выше операциями сложения и умножения является полем.

Это поле называется *полем комплексных чисел* и обозначается \mathbb{C} . Вещественные числа естественным образом вкладываются в комплексные: $\mathbb{R} \hookrightarrow \mathbb{C}$, $x \mapsto (x,0)$. Числа $\mathbb{C} \setminus \mathbb{R}$ называются *мнимыми*. Числа вида (0,y) называются *чисто мнимыми*. Элемент (0,1) называется *мнимой единицей*. Легко проверить, что $(0,1)^2=(-1,0)$. Обозначим мнимую единицу i, тогда $i^2=-1$. Комплексные числа можно изобразить точками на плоскости, ось Ox называется *вещественной осью*, Oy- *мнимой осью*.

Опр. 7.1. Форма записи комплексного числа $\boldsymbol{x}+\boldsymbol{y}\boldsymbol{i}=x(1,0)+y(0,1)=(x,y)$ называется *алгебраической формой* записи.

Опр. 7.2. Отображение $\bar{}$: $\mathbb{C} \to \mathbb{C}$, $x+yi \mapsto x-yi=\overline{x+yi}$ называется *сопряжением* комплексного числа.

Лемма 7.1. Сопряжение — автоморфизм поля \mathbb{C} , то есть $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$.

Опр. 7.3. Пусть $z = x + yi \in C$. Тогда:

x = Re(z) - вещественная часть z;

 $y = \operatorname{Im}(z) -$ мнимая часть z;

$$|z|=\sqrt{x^2+y^2}$$
 — модуль $z;$

 $|z|^2 -$ норма z;

Угол между радиус-вектором точки z и положительным направлением вещественной оси — apzyменm $arg(z) \in \mathbb{T}$ числа z.

Опр. 7.4. Форма записи $\rho(\cos \varphi + i \sin \varphi) = |z| \left(\frac{x}{|z|} + i \frac{y}{|z|}\right)$ называется *тригонометрической формой* записи.

Опр. 7.5. Форма записи $\rho e^{i\varphi}$ называется **показательной формой** записи.

Теорема 7.2. $\mathbb{C}^* \simeq \mathbb{R}_{>0} \times \mathbb{T}$.

Теорема 7.3. $\rho e^{i\varphi} = \rho(\cos\varphi + i\sin\varphi).$

Следствие 7.3.1. $e^{i\pi} = -1$.

Следствие 7.3.2. Пусть $z_1 = \rho_1(\cos \varphi_1 + i \sin \varphi_1), \ z_2 = \rho_2(\cos \varphi_2 + i \sin \varphi_2),$ тогда:

- 1) $z_1 z_2 = \rho_1 \rho_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2));$
- 2) $\frac{\rho_1}{\rho_2} = \frac{z_1}{z_2} (\cos(\varphi_1 \varphi_2) + i\sin(\varphi_1 \varphi_2)), \ ecau \ z_2 \neq 0;$
- 3) $(\tilde{\rho}(\cos\tilde{\varphi} + i\sin\varphi))^n = \rho^n(\cos n\varphi + i\sin n\varphi)$ (формула Муавра).

Теорема 7.4. (извлечение корней из комплексного числа) Корней степени n из комплексного числа z существует ровно n штук u они находятся по формуле

$$\sqrt[n]{\rho} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, \dots, n - 1,$$

 $\epsilon \partial e \ \varphi = \arg(z), \ \rho = |z|.$

Следствие 7.4.1. Корни n-ной степени располагаются в вершинах правильного n-угольника.

Следствие 7.4.2. Множество корней n-ой степени из 1 относительно умножения образует группу μ_n и $\mu_n \simeq \mathbb{Z}_n$.

Замечание. Все комплексные числа с модулем 1 образуют мультипликативную группу, изоморфную группе углов \mathbb{T} . Иногда это принимают за определение группы углов.

§8. Кольцо многочленов

Пусть R — кольцо. Построим новое кольцо R[x], состоящее из последовательностей (a_0,a_1,a_2,\ldots) , где $a_i\in R$, в которых лишь конечное число элементов отлично от нуля (**noчти все** равны нулю). Если $a=(a_0,a_1,a_2,\ldots)$, $b=(b_0,b_1,b_2,\ldots)$, то определим сумму a+b как последовательность с элементами a_i+b_i и произведение c=ab как

$$c_i = \sum_{k=0}^i a_k b_{i-k}.$$

Теорема 8.1. Если R — ассоциативное коммутативное кольцо c единицей, то R[x] — ассоциативное коммутативное кольцо c единицей.

Введём сокращения: $x^0=(1,0,0,0,\ldots),\ x=x^1=(0,1,0,0,\ldots).$ Тогда $x^2=x\cdot x=(0,0,1,0,\ldots),\ x^3=x^2\cdot x=(0,0,0,1,\ldots)$ и т.д. Кольцо R естественным образом вкладывается в $R[x]\colon R\ni r\mapsto (r,0,0,0,\ldots)\in R[x].$ Тогда любой многочлен можно записать в стандартном виде $a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0.$

Опр. 8.1. Построенное выше кольцо R[x] называется кольцом многочленов от одной переменной над кольцом R.

Опр. 8.2. Номер n наибольшего ненулевого элемента a_n называется cmeneнью многочлена и обозначается deg. Будем считать, что $deg(0,0,0,\ldots) = -\infty$, то есть $deg: R[x] \to \mathbb{N}_0 \cup \{-\infty\}$.

Лемма 8.1.

- $1) \ \forall f,g \in R[x] \ \deg(f+g) \leqslant \max\{\deg(f),\deg(g)\};$
- 2) $\forall f, g \in R[x] \deg(fg) \leq \deg(f) + \deg(g)$.

Пемма 8.2. (О делении с остатком в кольце многочленов) Пусть F- поле, $f,g \in F[x], g \neq 0$. Тогда существуют единственные многочлены $q,r \in R[x]$ такие, что f = dq + r, $\deg r < \deg g$.

Определим **значение** f(c) многочлена $f = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ в точке c как отображение $ev_c \colon R[x] \to R$, $f \mapsto a_n c^n + a_{n-1} c^{n-1} + \ldots + a_1 c + a_0$.

Пемма 8.3. Отображение ev_c является гомоморфизмом колец, то есть

- 1) $\operatorname{ev}_c(f+g) = \operatorname{ev}_c(f) + \operatorname{ev}_c(g);$
- 2) $\operatorname{ev}_c(fg) = \operatorname{ev}_c(f) \operatorname{ev}_c(g)$.

Опр. 8.3. Пусть $f \in R[x], c \in R$. Говорят, что c является **корнем** многочлена, если f(c) = 0.

Лемма 8.4. Пусть $f \in \mathbb{R}[x]$. Если f(c) = 0, то $f(\overline{c}) = 0$.

Опр. 8.4. Поле F называется *алгебраически замкнутым*, если у любого многочлена из F[x] положительной степени есть корень в F.

Теорема 8.2. (*«основная теорема алгебры»*) Поле $\mathbb C$ алгебраически замкнуто.

Следствие 8.2.1.

- 1) Любой многочлен из $\mathbb{R}[x]$ нечётной степени имеет как минимум один вещественный корень;
- 2) Любой многочлен из $\mathbb{R}[x]$ раскладывается на линейные многочлены и квадратичные с отрицательным дискриминантом.

§9. Кольцо квадратных матриц

Опр. 9.1. Пусть F — поле. Отображение $\mathscr{A}\colon I\times J\to F$ называется **матрицей** над полем F. Если $I=\{1,2,\ldots,m\},\ J=\{1,2,\ldots,n\},$ то матрицу \mathscr{A} можно записать в виде таблицы $A=(a_{ij}),$ где i — номер строки, j — номер столбца. Обозначим все матрицы $F^{\{1,2,\ldots,m\}\times\{1,2,\ldots,n\}}$ как $M_{m\times n}(F)$. Если m=n, то матрицы называются **квадратными** и пишется $M_n(F)$.

Определим операции над матрицами:

- 1) $A, B \in M_{m \times n}(F), M_{m \times n}(F) \ni C = A + B,$ если $c_{ij} = a_{ij} + b_{ij}.$
- 2) $A \in M_{m \times k}, B \in M_{k \times n}(F), M_{m \times n}(F) \ni C = AB, \text{ если } c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}.$

Теорема 9.1. Множество $M_n(F)$ с введёнными выше операциями является ассоциативным кольцом с единицей E.

«Негативные» свойства кольца матриц:

- 1) Не коммутативно;
- 2) Есть делители нуля;
- 3) Не всякое уравнение AX = E, где $A \neq 0$ имеет решение.

Опр. 9.2. Список $(a_{11}, a_{22}, \ldots, a_{nn})$ называется главной диагональю матрицы $A \in M_n(F)$. Сумма $a_{11} + a_{22} + \ldots + a_{nn} = \operatorname{tr} A$ называется *следом* матрицы A.

Лемма 9.1. Пусть $A, B \in M_n(F)$, тогда:

- 1) $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B;$
- $2) \operatorname{tr}(AB) = \operatorname{tr}(BA).$

Отображение **транспонирования** $^{\mathrm{T}}$: $M_n(F) \to M_n(F), (a_{ij}) \mapsto (a_{ji})$. Легко понять, что оно биективно.

Лемма 9.2. Пусть $A, B \in M_n(F)$, тогда:

- 1) $(A^{\mathrm{T}})^{\mathrm{T}} = A;$
- 2) $(A + B)^{T} = A^{T} + B^{T}$;
- 3) $(AB)^{T} = B^{T}A^{T}$;

Другими словами, транспонирование является **антиавтоморфизмом ко**лец порядка 2. Матрицы E_{ij} , в которых на позиции (i,j) стоит 1, а на остальных позициях - 0, называются cmandapmными mampuunumu edunuuumu. Можно убедиться, что $E_{ij}E_{kl}=\delta_{jk}E_{il}$, где $\delta_{jk}=\begin{cases} 1,\ \text{если}\ j=k\\ 0,\ \text{если}\ j\neq k \end{cases}$ — $cumbon\ Kpoherepa$.

Пусть $X \in M_{m \times n}(F)$ и $m = m_1 + m_2 + \ldots + m_r$, $n = n_1 + n_2 + \ldots + n_s$. Рассмотрим блочную матрицу $r \times s$, элементами которой являются матрицы $X_{ij} \in M_{m_i \times n_j}(F)$, называемые блоками:

$$\begin{pmatrix} X_{11} & X_{12} & \dots & X_{1s} \\ X_{21} & X_{22} & \dots & X_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ X_{r1} & X_{r2} & \dots & X_{rs} \end{pmatrix}.$$

Теорема 9.2. Если разбиения и размеры блоков согласованны, то сложение и умножение блочных матриц происходят по обычным правилам.

Следующие матрицы из $M_n(F)$ называются **элементарными**:

- а) $T_{ij}(\lambda) = E + \lambda E_{ij}$ элементарная трансвекция;
- б) $R_{ij} = E (E_{ii} + E_{jj}) + (E_{ij} + E_{ji})$ элементарное отражение;
- в) $D_i(\lambda) = E + (\lambda 1)E_{ii}$ элементарное псевдоотражение.

Опр. 9.3. Матрица $A \in M_n(F)$ называется симметрической, если $A = A^{\mathrm{T}}$ и кососимметрической, если $A = -A^{\mathrm{T}}$. Матрицы A и B называются коммутирующими или перестановочными, если AB = BA.

§10. Евклидовы кольца

- Опр. 10.1. Ассоциативное коммутативное кольцо с единицей и без делителей нуля называется *целостным кольцом* или *областью целостности*.
- Опр. 10.2. Пусть R целостное кольцо. Элемент $y \in R$ делит $x \in R$ $(y \mid x)$ если существует такой $z \in R$, что x = yz. Элементы x и y называются $accouu-upoванными <math>(x \sim y)$, если $x \mid y$ и $y \mid x$.
- **Опр. 10.3.** Целостное кольцо R, не являющееся полем, называется esknudo-sum, если существует такая функция $N: R \setminus \{0\} \to \mathbb{N}_0$, называемая nopmou, которая удовлетворяет следующим условиям:
 - 1) $N(fg) \geqslant N(f)$, причём $N(fg) = N(f) \Leftrightarrow g$ обратим;
 - 2) $\forall f, 0 \neq g \in R, \exists q, r \in R,$ что f = gq + r и либо r = 0, либо N(r) < N(g).
- **Опр. 10.4.** *Наибольший общий делитель* элементов a и b целостного кольца их общий делитель, который делится на все их общие делители.

Процедура нахождения НОДа, используемая в доказательстве этой теоремы, называется *алгоритмом Евклида*. Элементы $a, b \in R$ называются *вза-имно простыми*, если НОД(a, b) = 1.

Опр. 10.5. Необратимый ненулевой элемент p целостного кольца называется **простым**, если он не может быть представлен в виде p=xy, где x,y — необратимые элементы.

Теорема 10.2. Если простой элемент p евклидова кольца делит произведение $x_1x_2...x_n$, то он делит хотя бы один из сомножителей $x_1, x_2,...,x_n$.

Теорема 10.3. В евклидовом кольце всякий необратимый ненулевой элемент может быть разложен на простые множители, причём это разложение единственного с точностью до порядка сомножителей и умножения на обратимые элементы.

Замечание. Свойство, описанное в предыдущей теореме, называется *факто- риальностью*. То есть каждое евклидово кольцо факториально.

Опр. 10.6. *Наименьшим общим кратным* элементов a и b целостного кольца называется их общее кратное, делящее все их общие кратные.

Лемма 10.1. $HOK(x,y) \cdot HOД(x,y) \sim xy$.

Замечание. Простые элементы кольца \mathbb{Z} — простые числа и противоположные к ним, кольца F[x] — nenpusodumыe над F (то есть не раскладывающиеся на многочлены с коэффициентами из F меньших, но положительных степеней) многочлены.

Пемма 10.2. (*лемма Гаусса*) Приводимость многочлена из $\mathbb{Z}[x]$ в кольце $\mathbb{Q}[x]$ равносильна его приводимости в $\mathbb{Z}[x]$.

Теорема 10.4. (признак Эйзенштейна) $f = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x]$. Если существует такое простое число p, что $p \nmid a_n$, $p \mid a_i$ для всех i от 0 до n-1, $p^2 \nmid a_0$, то f неприводим над \mathbb{Q} .

§11. Идеалы и факторкольца

Ах, какое блаженство, Ах, какое блаженство, Знать, что я совершенство, Знать, что я идеал.

Опр. 11.1. Нормальная подгруппа I аддитивной группы кольца R называется **левосторонним идеалом**, если $\forall x \in I \ \forall \in R \ ax \in I$ и **правосторонним идеалом**, если $\forall x \in I \ \forall \in R \ xa \in I$. Если выполняются оба этих условия, то I называется идеалом кольца R и обозначается $I \leq R$.

Пемма 11.1. Отношение сравнимости по модулю I согласованно c умножением тогда и только тогда, когда I — идеал.

Опр. 11.2. Пусть $I \leq R$, тогда на факторгруппе R/I можно определить умножение по правилу (x+I)(y+I) = xy+I и получить **факторкольцо** кольца R по идеалу I.

Пемма 11.2. Если R ассоциативно, коммутативно или кольцо c единицей, то R/I тоже ассоциативно, коммутативно и кольцо c единицей соответственно.

Лемма 11.3. $\varphi \colon R \to Q$ — гомоморфизм колец. Тогда:

- 1) Im $\varphi = \{y \mid y = \varphi(x), x \in R\} \leqslant Q$;
- 2) Ker $\varphi = \{x \mid \varphi(x) = 0\} \leqslant R$.

Опр. 11.3. $\pi\colon R\to R/I,\, x\mapsto x+I$ — каноническая проекция.

Замечание. $\operatorname{Im} \pi = R/I$, $\operatorname{Ker} \pi = I$. Таким образом, идеалы — это в точности ядра гомоморфизмом колец.

Теорема 11.1. Пусть $\varphi \colon R \to Q$ — гомоморфизм колец. Тогда существует изоморфизм

$$\overline{\varphi} \colon R / \operatorname{Ker} \varphi \xrightarrow{\sim} \operatorname{Im} \varphi,$$

для которого $\varphi=\overline{\varphi}\circ\pi$, где $\pi\colon R\to R/\operatorname{Ker}\varphi$ — каноническая проекция. Другими словами, $\varphi(x)=\overline{\varphi}(x+\operatorname{Ker}\varphi)$.

Опр. 11.4. (a) = aR = Ra — идеал, порождённый одним элементом $a \in R$, — *главный идеал*. Кольцо, в котором все идеалы главные, называется *кольцом главных идеалов*.

Теорема 11.2. Пусть $f \in F[x]$. F[x]/(f) является полем тогда и только тогда, когда f неприводим в F[x].

Следствие 11.2.1. $\mathbb{R}[x]/(x^2+1) \simeq \mathbb{C}$.

§12. Определители и их приложения

Определим функцию det: $\underbrace{F^n \times F^n \times \ldots \times F^n}_n \to F$, которая удовлетворяет следующим условиям:

- 1) Полилинейность: линейна по каждом аргументу;
- 2) Антисимметричность: если два аргумента равны, то она равна нулю;
- 3) **Нормированность**: $\det(e_1, e_2, \dots, e_n) = 1$, $e_1 = (1, 0, 0, \dots, 0)^T$, $e_2 = (0, 1, 0, \dots, 0)^T$, \dots , $e_n = (0, 0, 0, \dots, 1)^T \in F^n$.

Замечание. Из антисимметричности следует *кососимметричность*: det меняет знак при перестановке двух аргументов. Обратное в общем случае неверно.

Замечание. Можно проинтерпретировать аргументы функции det как столбцы матрицы $A \in M_n(F)$ и говорить о функции det: $M_n(F) \to F$. Тогда, например, det E = 1.

Следствие 12.0.2. (непосредственно из условий)

- 1) $\det(AT_{ij}(\lambda)) = \det A$;
- 2) $\det(AD_i(\lambda)) = \lambda \det A$;
- 3) $\det(AP_{ij}) = -\det A$.

Теорема 12.1. Существует единственная функция det, удовлетворяющая описанным условиям:

$$\det A = \det(a_1, a_2, \dots a_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1), 1} a_{\sigma(2), 2} \dots a_{\sigma(n), n}.$$

Эта функция называется определителем матрицы А.

Следствие 12.1.1.

- 1) $\det A = \det A^{\mathrm{T}}$;
- 2) Определитель треугольной матрицы равен произведению её элементов на главной диагонали.

Опр. 12.1. Определитель матрицы, которая получается при вычёркивании из матрицы A i-той строки и j-того столбца, называется i-тым j-тым munopom M_{ij} . $A_{ij} = (-1)^{i+j} M_{ij}$ называется ancefpauveckom dononnehuem элемента a_{ij} .

Теорема 12.2. (разложение определителя по строке/столбцу)

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}.$$

Пемма 12.1. Сумма произведение элементов строки/столбца на соответствующие алгебраические дополнения элементов другой строки/столбца равна нулю.

Лемма 12.2.
$$\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det A \det B.$$

Теорема 12.3. det(AB) = det A det B.

Опр. 12.2. Матрица называется *невырожденной*, если её определитель не равен нулю.

Замечание. Все невырожденные матрицы из $M_n(F)$ образуют (мультипликативную) **общую линейную группу** $\mathrm{GL}_n(F)$. Определитель является гомоморфизмом групп: $\mathrm{GL}_n(F) \to F^*$, $A \mapsto \det A$. Все матрицы из $M_n(F)$ с определителем единица образуют **специальную линейную группу** $\mathrm{SL}_n(F) \leqslant \mathrm{GL}_n(F)$.

Рассмотрим отображение $L\colon S_n\to \mathrm{GL}_n(F), \sigma\mapsto E_{\sigma(1),1}+E_{\sigma(2),2}+\ldots+E_{\sigma(n),n}.$ Можно показать, что L — гомоморфизм групп. Это пример **матричного представления** группы над полем F.

Теорема 12.4. Если $\det A \neq 0$, то квадратная система Ax = b линейных алгебраических уравнений имеет единственное решение, которое может быть найдено по формулам Крамера $x_i = \frac{\det A_i}{\det A}$, где A_i — матрица, полученная из матрицы A заменой i-того столбца на столбец b свободных коэффициентов.

Опр. 12.3. Матрица A^{-1} называется *обратной* к матрице A, если $A^{-1}A = AA^{-1} = E$.

Теорема 12.5. Пусть $\det A \neq 0$. Тогда

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T}.$$