Quick sketch of what we've covered so far

Module 1

- · Sup, inf, completeness axiom of IR, Archimedean prop.
- · sequences, convergence of sequences
 - · bounded sequences, monotone seq
 - · subsequences
 - · Bolzano Weierstrass Thm
- . (lim sup & lim inf (HWZ))

Module 2

· Cauchy sequences

- topological
- Sets: Open, closed, compact < sequential
 - · Heine Borel Thm
 - · Bolzano Weierstrass Thm (Hw3)
- · Continuous functions: Sequential, S-E def.
 - · EVT & IVT

Module 3

- · Convex sets
 - · convex hull
- Caratheodory's Thm
- · Separating hyperplane +hm (weak & strong)
- · Supporting hyperplane thm
- · (quasi-) concave/convex func.

General tips: 1 Start w/ the definition!

2 Write down what's given & what you need to show.

EVT $f: [a,b] \rightarrow \mathbb{R}$ cont. Then f is bounded and attains its max on [a,b].

1 Show f is bounded on [a,b]

Suppose f is not bounded on [a,b]. Then \forall $n \in \mathbb{N}$, $\exists x_n \in [a,b]$ s.t. $|f(x_n)| > n$. Take the seq x_n . Since [a,b] is bounded, x_n has a subseq $x_n \to x \in [a,b]$ (by B-w, and [a,b] is closed).

Sequential continuity of f gives $x_{n_k} \rightarrow x \implies f(x_{n_k}) \rightarrow f(x)$ But we have $\forall n_k \in \mathbb{N}$, $|f(x_{n_k})| > n_k$

=)
$$\lim_{N_k \to \infty} |f(xn_k)| > \lim_{N_k \to \infty} N_k = \infty$$

Contradiction. So F is bounded.

2 fattains its max on [a,b]

Since we know f is bounded, $M = \sup \{f(x) : x \in [a,b]\}$ exists (by the completeness axiom; also note that M may not be in range(f) for bounded f in general:

We want to show M is in range(f).

Since M is the sup, $\forall \xi > 0$, $\exists y_n \in [a,b]$ s.t. $f(y_n) > M - \xi$. Take $\xi = \frac{1}{n}$, $n \in \mathbb{N}$. Construct a sequence $y_n \in [a,b]$ s.t. $f(y_n) > M - \frac{1}{n}$. Take limit as $n \to \infty$ on both sides, then $\lim f(y_n) > M$. But we also have $f(y_n) \leq M + M$. $\implies \lim f(y_n) = M$.

Since [a,b] is bounded, B-w says Yn has a convergent subseq $y_{n_k} \rightarrow y \in [a,b]$. By sequential continuity of f, $f(y_{n_k}) \rightarrow f(y)$. But $f(y_n) & f(y_{n_k})$ both converge =) f(y) = M. So M is attained. (module), Ex 24)

Ex. If f & g are concave on X, then f+g also concave on X. Start w/ def: $\forall x_1, x_2 \in X$, $\lambda \in [0,1]$, $f(\lambda x_1 + (1-\lambda)x_2) \gg \lambda f(x_1) + (1-\lambda)f(x_2)$ $g(\lambda x_1 + (1-\lambda)x_2) \gg \lambda g(x_1) + (1-\lambda)g(x_2)$

$$\frac{\text{WTS}:}{f(\lambda x_1 + (i-\lambda) x_2) + g(\lambda x_1 + (i-\lambda) x_2)} \geqslant \lambda \left(f(x_1) + g(x_1) \right) \\ + (i-\lambda) \left(f(x_2) + g(x_2) \right) \\ \left[f+g \right] \left(\lambda x_1 + (i-\lambda) x_2 \right) \geqslant \lambda \left[f+g \right] (x_1) + (i-\lambda) \left[f+g \right] (x_2)$$

quasi-concave f: $\forall x_1, x_2 \in X, \lambda \in [0,1],$ $f(\lambda x_1 + (1-\lambda)x_2) > min \{f(x_1), f(x_2)\}$

Note that f(x) is quasi-concave but not concave (fails at $x_1 & x_2$ and any $\lambda \in (0,1)$).

quasi-convex f: $\forall x_1, x_2 \in X$, $\lambda \in [0,1]$ $f(\lambda x_1 + (1-\lambda)x_2) \leq \max\{f(x_1), f(x_2)\}$

3(x) is quasi-convex but not convex.

Ex. If f is convex, then $\forall r \in \mathbb{R}$, the set $A = \{x \in X : f(x) \le r\}$ is convex.

How did we define convex func in class? "f is convex if -f is concave." This is equivalent to:

 $f convex : \forall x_1, x_2 \in X, \lambda \in [0,1], f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$

WTS: $\forall x_1, x_2 \in A$, $\forall \lambda \in [0, 1]$, $\lambda x_1 + (1-\lambda)x_2 \in A$ $(=) \forall x_1, x_2 \in A$, $\forall x_1 \in A$, $\forall x_2 \in A$, we have $f(\lambda x_1 + (1-\lambda)x_2) \leq r$

We know from convexity of f:

$$f(\lambda x_1 + (1-\lambda) x_2) \leq \lambda f(x_1) + (1-\lambda) f(x_2)$$

$$\leq \lambda r + (1-\lambda) r = r$$

- $\Rightarrow \lambda \times_1 + (1-\lambda) \times_2 \in A$
- =) A is convex