Softwarový proces

Radek Mařík

CA CZ, s.r.o.

September 14, 2007

Obsah

- Softwarový process
 - Modely
 - Ekonomika softwarového procesu

- Příloha UML notace
 - Grafická notace
 - UML diagramy

Cyklus vývoje softwaru.

IEEE/ANSI, 1991(Std 1074-1991) Množina aktivit, které vytváří procesy nutné k vývoji a údržbě softwaru.

Typický model vývojového cyklu

- koncept,
- požadavky,
- návrh,
- implementace (kódování),
- testování,
- používání a údržba.

[Kol95] Vývoj "přes stěnu"

- rozděl a panuj [Kan95]
- přespecializované prostředí,
- konkurenční oddělení impéria,
- ukazování prstem.
- Sekvenční procesy vytváření kvality musí spolupracovat.

Modely

Spirálový model [Kan95]

U model [Kit95]

Tunelový model [Mul97]

Iterativní model [Kru99]

Iterativní a inkrementální model [Kru99]

Modely

Fázování procesních aktivit [Kru99]

Riskové řízení [Kru99, Rat99]

Cena nalezení a opravy chyb [KFN9]

Čím dříve je chyba nalezena a opravena, tím je levnější.

Distribuce chyb

Literatura I

Martin Fowler and Kendall Scott.

UML Distilled, Applying the Standard Object Modeling Language. Addison-Wesley, 1997.

Jonathan Jacky.

The Way of Z: Practical Programming with Formal Methods. Cambridge University, 1997.

Stephen H. Kan.

Metrics and Models in Software Quality Engineering. Addison-Wesley, 1995.

Cem Kaner, Jack Falk, and Hung Quoc Nguyen.

Testing Computer Software.

International Thomson Computer Press, second edition, 1993.

Edward Kit

Software Testing in the Real World.

Addison-Wesley, 1995.

William J. Kolarik.

Creating Quality: Concepts, Systems, Strategies, and Tools. McGRAW-HILL, INC., 1995.

Philippe Kruchten.

The Rational Unified Process.

Addison-Wesley, 1999.

September 14, 2007

Literatura II

Pierre-Alain Muller.

Instant UML.

Wrox Press Ltd., 1997.

Rational software symposium 1999.

Unicorn, Praha, Czech Republic, February 1999.

Sally Shlaer and Stephen J. Mellor.

Object-Oriented Systems Analysis: Modeling the World in Data. Prentice Hall, 1988.

Software Project Example [Jac9]

Systém řízení dokumentů

Výňatek z neformálního popisu:

- Jestliže chce uživatel změnit dokument a má na tuto operaci povolení, nikdo jiný jej právě nemění, pak uživatel si může vypůjčit (check out) daný dokument.
- Jakmile si uživatel vypůjčí dokument, ostatní si jej již vypůjčit nemohou, ale mohou jej číst.
- Když uživatel skončí editaci dokumentu, měl by jej vrátit zpět (check in), a takto povolit jiným uživatelům jeho editaci.

- **Notace** je grafické vyjádření modelů, určuje syntaxi modelovacího jazyka.
- jazyk modelování použitelný jak lidmi tak stroji,
- Slouží k:
 - výstavbě toho správného systému toho, který splní potřeby uživatele za rozumnou cenu.
 - komunikaci s experty domény vysvětlení práce jiným,
 - výměně informace mezi různými účastníky,
 - snadnou manipulaci s modely,
 - reprezentaci celých systémů použitím objektově orientovaných konceptů

$$Object = Stav + Chování + Identita$$

Unified Model Language - UML

- grafická notace,
- průmyslový standard (OMG 1997),
- 9 různých typů diagramů . . . různých pohledů na softwarový systém.
- pomáhá komunikaci mezi lidmi,
- zachycuje systém na vysoké úrovni abstrakce.

Některé modely

```
model případů použití popisuje požadavky uživatele,
           model tříd zachycuje statickou strukturu,
       statový model vyjadřuje dynamické chování objektů,
      model interakcí představuje scénáře a toky zpráv,
implementační model určuje pracovní jednotky,
    model rozmístění poskytuje detaily příslušné k rozvržení procesů.
```

Diagram případu použití

- je reprezentace funkcionality systému z pohledu uživatele.
- **Případ použití** je typická interakce mezi uživatelem a systémem počítače.
 - zachycuje nějakou uživatelem viditelnou funkci,
 - může být malý či velký,
 - zajisťuje diskrétní cíl pro uživatele.
 - Případy použití se točí okolo externě vyžadované funkcionality.
- **Učastník** je role, kterou hraje uživatel vůči systému,
 - může být externí systém, který potřebuje informaci od daného systému.
- Stereotyp rozšíření popisuje variaci obvyklého chování.
- Stereotyp použití se doporučuje použít pokud se část případu opakuje.
- Scénář referuje jednu cestu skrz daný případ použití.

[Mul97, FS97] Diagram tříd - základní pojmy

- reprezentuje statickou strukturu systému pomocí typů objektů a jejich různých druhů statických relací.
- **Třída** je popis množiny objektů sdílející ty samé odpovědnosti, vlastnosti, operace, atributy, a sémantiku.
- Asociace reprezentují vztah mezi instancemi tříd.
 - Každá asociace má dvě role; každá role je jedním ze směrů asociace.
 - zdroj, cíl, multiplicita.
- Atribut [SM88] je abstrakce jedné charakteristiky vlastněnou všemi entitami, které samy byly abstrahovány do třídy.
- Operace jsou procesy, které třídy mohou provést (odpovídají metodám třídy).
- Agregace je druh asociace který vyjadřuje silnějšího vazbu mezi třídami $(\approx \text{reference}).$
- Kompozice je silnější forma agregace $(\approx hodnota)$.

September 14, 2007

Class Diagram - dědičnost [Mul97]

- Zobecnění spočívá ve vyčlenění společných prků v rámci množiny tříd do jedné obecné třídy zvané supertřída.
- Specializace dovoluje zachytit speciální vlastnosti množiny objektů, které nejsou popsány dosud identifikovanými třídami (podtřída).

[Mul97] Diagram objektů

- vyjadřuje statickou strukturu systému pomocí objektů a jejich vztahů,
- je instancí diagramu tříd.

Sekvenční diagramy

- ilustruje interakci mezi objekty použitím časových struktur, které určují pořadí komunikace.
- vysílání:
 - synchronní při kterém vysílač je blokován a čeká na ukončení zpracování zprávy volaným objektem,
 - asynchronní při kterém odesílatel není blokován a může pokračovat ve zpracování své agendy.
- Aktivace koresponduje s dobou, po kterou objekt vykonává nějakou akci.

RCS CheckOut sekvence

Diagram kolaborace

- ilustruje interakce mezi objekty použitím prostorové struktury, která představuje fyzické rozmístění,
- čas se nevyjadřuje explicitně,
- zprávy jsou očíslovány podle pořadí odeslání.

Diagram stavových schémat (statechart)

- zachycují chování tříd použitím statových automatů založených na pojmech stavu a přechodů,
- stav, počáteční stav, koncové stavy,
- Změna z jednoho stavu do jiného se provede tehdy, když je daný přechod iniciován událostí, která nastane v rámci dané domény problému.
- Stavová schémata jsou hierarchické stavové automaty.
 - agregace: je kompozice jednoho stavu z několika jiných nezávislých stavů (konjuktivní typ).
 - zobecnění: maskuje detaily,
 - obecnější stavy se nazývají superstavy,
 - speciálnější stavy se nazývají podstavy,

Příklad stavového schématu

[Mul97, FS97] Diagram aktivit

- reprezentují chování operací užitím množiny akcí organizovaných do sekvencí kroků se sekvenčním či paralelním provedení větví řízení.
- aktivita:
 - úloha, která je potřeba udělat,
 - metoda třídy,
- rozhodnutí: blokující podmínky (guard conditions) řídí, které přechody se uskuteční.
- synchronizační brána smí být překročena, pokud byly iniciovány všechny vstupní přechody.

• popisuje softwarové komponenty aplikace v implementačním prostředí.

Diagram rozmístění [Mul97]

• ukazuje umístění softwarových komponent na hardwarových komponentách.

