SynSeq - LabVIEW Synthesizer with built in 16step Sequencer

Celem projektu było stworzenie syntezatora sekwencera z obsługą w stylu KORG-a SQ-1 z całą obsługą filtracji oraz modulacji dźwięku. Cała aplikacja miała być oparta na podstawie maszyny stanów.

Aktualna wersja wraz z angielskim opisem dostępna jest pod podanym linkiem:

https://github.com/kszdomagh/SynSeq LabVIEW Synthesizer

FRONT PANEL

Front Panel inspirowany był syntezatorami, bitmaszynami i sekwenerami KORG-a, ARTURII, MOOG-a oraz ROLAND-a.

Zawiera 16 pokręteł do ustawiania nutek, zmianę zakresu oktawy, ustawienie kształtu fali, długości dźwięku, głośności.

Obwiednia zawiera ustawianie czterech parametrów: ATTACK, DECAY, SUSTAIN, RELEASE. Kształt obwiedni jest wyświetlany na "ADSR GRAPH"

Dostępne są także dwa przełączniki oraz dwa slidery do

ustawienia filtru dolnoprzepustowego oraz clippowania fali (distortion).

Front panel zawiera także kontrolę nad sub-oscylatorem - Pokrętła głośności, częstotliwości (możliwe do ustawienia jest zakres oktawy poniżej obecnie granego dźwięku) oraz wybór fali sub-oscylatora.

"Waveform Graph" wyświetla obecnie graną falę. "FFT Graph" - szybką transformatę fouriera obecnie granej fali.

Buttony "PLAY" oraz "PAUSE" zatrzymują granie sekwencji.

Buttony "LOAD" oraz "SAVE" zapisują dane sekwencje (ustawenia 16 pokręteł + pokrętło do ustawienia zakresu oktawy).

Przycisk "SETTINGS" włącza SubVI do ustawiania urządzenia odtwarzania oraz częstotliwości próbkowania.

Przycisk "STOP" zatrzymuje cały program.

MASZYNA STANÓW - SCHEMAT BLOKOWY

Całość sekwencera działa na podstawie centralnego stanu IDLE, głównej pętli programu składającej się ze stanów: WRITE DATA; READ DATA oraz PLAY DATA, stanów do odczytu i zapisu pliku (zaznaczone na niebiesko) LOAD oraz SAVE, stanu SETTINGS oraz stanu STOP oraz ERR.

Poszczególne stany, ich blockdiagram oraz opis zostanie zaprezentowany poniżej

INIT:

Stan inicjalizacji - wpisywane są najważniejsze dane bez których program nie działałby poprawnie. Konfigurowany jest Sound Output zgodnie z podstawowymi parametrami (DeviceID = 0, Sample Rate = 22.500Hz).

IDLE:

Stan idle - tutaj obsługiwane są wszystkie requesty odnośnie przycisków. Jest to stan podstawowy w programie.

WRITE DATA:

Stan wpisania danych - dane są zbeirane z front panelu oraz wpisywane do głownego Cluster'a Danych. WYkonywane są potrzebne obliczenia (dwie jednakowe SubVI) w celu zmieniania formatu danych na prawidłowy, używany w następnych stanach.

READ DATA:

Stan odczytania danych - dane wpisane ze stanu "Write Data" są używane do popełnienia odpowiednich obliczeń, które są wykowanywane w czterech SubVI (ADSR, Signal Generation, Signal FIltering oraz Distortion). Gotowy waveform jest wpisywany do Głównego Cluster'a Danych.

PLAY DATA:

Stan odtwarzania dźwięku – użyta jest SubVI która gra kolejno 128 próbek danego dźwięku oraz zwiększa licznik granej nutki. Polepsza to responsywność całego programu.

SETTINGS:

Stan wprowadzania ustawień - za pomocą SubVI można wpisać sample rate oraz deviceID, które będą używane przez program.

SAVE:

Stan zapisu sekwencji - stan zapisuje odpowiednie dane do pliku tekstowego, o odpowiednim formacie.

LOAD:

Stan odczytu sekwencji - dane z pliku tekstowego są odczytywane a następnie wpisywane za pomocą wpisania do Głównego Clustera Danych oraz property node'ów na kontrolki na Front Panelu.

ERR:

Stan obsługi błędów – w razie wystąpienia błędu program jest przekierowywany ze stanu Idle do tego stanu.

STOP:

Stan zamykiwania programu - program czyści wyjście audio oraz kończy swoje działanie.

UŻYTE SUBVI'S

Program używa 9 SubVIs, które zostały zrobione w celu zamknięcia jednej funkcjonalności/wykonywanej przez program funkcji w jeden blok. Lista SubVIs:

- ADSR_Envelope_Generation_subVI;
- FrequencyArrayToHz SubVI;
- Distortion SubVI;
- Filter SubVIv;

- Settings_SubVI;
- FFTCalc SubVI;
- Waveform_Generation_SubVI;
- WaveformBuffer_SubVI;

ADSR_Envelope_Generation_subVI:

${\tt FrequencyArrayToHz_SubVI:}$

Distortion_SubVI

Filter_SubVI:

Settings_SubVI:

FFTCalc_SubVI:

Waveform_Generation_SubVI:

WaveformBuffer_SubVI:

