МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящих- ся процессов.

Вариант №24

Студент гр. 8381		Сергеев А.Д.
Преподаватель		Кирьянчиков А.В.
	Санкт-Петербург	

2019

Постановка задачи.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

$$f1 = \begin{cases} 7-4i, npua > b \\ 8-6i, npua \le b \end{cases}$$

$$f2 = \begin{cases} 7-4i, npua > b \\ 8-6i, npua \le b \end{cases}$$

$$f3 = \begin{cases} 5-4i, npua > b \\ 10-3i, npua \le b \end{cases}$$

Оптимизации:

- при а > b пусть k = 20 4i
 тогда в f1: i1 = k
 в f2: i2 = k 15
- 2) при а <= b пусть k = 10 3i тогда в f1: i1 = k*2 - 14 в f2: i2 = k

Замечания:

- 3) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 4) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
- 5) при вычислении функций f1 и f2 нельзя использовать процедуры;

6) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

Тестирование программы.

№ те- ста	Исходные дан- ные	Ожидаемый ре- зультат	Полученный ре- зультат	Коррект- ность ра- боты про- граммы
1	$\begin{array}{c} A = 0002_{16} = 2_{10} \\ B = 0001_{16} = 1_{10} \\ I = 0010_{16} = 16_{10} \\ K = 0000_{16} = 0_{10} \end{array}$			+
2	$A = FFFF_{16} = -1_{10}$ $B = FFFE_{16} = -2_{10}$ $I = 000A_{16} = 10_{10}$ $K = 0001_{16} = 1_{10}$	$I1 = FFEC_{16} = -20_{10}$ $I2 = FFDD_{16} = -35_{10}$ $RES = 0037_{16} = 55_{10}$	$I1 = FFEC_{16} = -20_{10}$ $I2 = FFDD_{16} = -35_{10}$ $RES = 0037_{16} = 55_{10}$	+
3	$\begin{array}{c} A = 0001_{16} = 1_{10} \\ B = 0002_{16} = 2_{10} \\ I = 0001_{16} = 1_{10} \\ K = 0000_{16} = 0_{10} \end{array}$			+
4	$A = FFFE_{16} = -2_{10}$ $B = FFFF_{16} = -1_{10}$ $I = 0003_{16} = 3_{10}$ $K = 0001_{16} = 1_{10}$	$I1 = FFF4_{16} = -12_{10}$ $I2 = 0001_{16} = 1_{10}$ $RES = 000D_{16} = 13_{10}$		+

Вывод.

В ходе выполнения данной лабораторной работы были получены сведения о реализации сравнения, меток и перехода по ним, а также изучены организации ветвлений в программах на языке Ассемблера.

Приложение 1. Исходный код программы.

```
DOSSEG
 .MODEL SMALL
 .STACK 4h
 .DATA
  A DW 0
  B DW 0
  I DW 0
  K DW 0
  R DW 0
 .CODE
 DataLoading:
  mov ax, @Data; Getting the pointer to actual app data
  mov ds, ax; Applying pointer
  mov cx, I; dx == I
 ; OCCUPATION: dx == I
 DecidingF1 and 2:
  mov ax, B; ax == B
  neg ax ; ax == -B
  add ax, A; ax == A - B
  cmp ax, 0; A - B? 0
  ing F1 and 2var2; Goes here if A - B \leq 0 -> A \leq B
 F1and2var1: ; Goes here if A - B > 0 - A > B
  sal cx, 1; cx == I << 1 == I * 2
  sal cx, 1; cx == I * 22 << 1 == I * 4
  neg cx ; cx == -I * 4
  add cx, 20; cx == 20 - I * 4 == i1
  mov dx, cx; dx == cx == 20 - I * 4
  add dx, -15; dx == 5 - I * 4 == i2
  jmp DecidingF3
 F1and2var2:
  mov dx, cx ; cx == I
  sal dx, 1; dx == 2 * I
  add dx, cx; dx == 3 * I
  neg dx : dx == -3 * I
  add dx, 10; dx == 10 - 3 * I == i2
  mov cx, dx; cx == 10 - 3 * I
  sal cx, 1; cx == 10 - 3 * I << 1 = 20 - 6 * I
  add cx, -14; cx == 6 - 6 * I == i1
```

```
; OCCUPATION: cx == i1, dx == i2
DecidingF3:
 neg cx ; cx == -i1
 js DecidingF3; Goes here if -i1 < 0
         ; cx == |i1|
 mov ax, K; ax == K
 cmp ax, 0; K? 0
 jne F3var2; Goes here if K != 0
F3var1: ; Goes here if K == 0
 cmp cx, 6; |i1|?6
 jb PushingResults; Goes here if |i1| < 6
 mov cx, 6 ; cx == 6 == res
 jmp PushingResults
F3var2:
 neg dx ; dx == -i2
 js F3var2; Goes here if -i2 < 0
       ; dx == |i2|
 add cx, dx; cx == |i1| + |i2| == res
; OCCUPATION: cx == res
PushingResults:
 mov R, cx; res goes to memory at "R" pointer
END
```

Приложение 2. Содержимое файла листинга.

#Microsoft (R) Macro Assembler Version 5.10

11/13/19 02:24:1

Page 1-1

1	DOSSEG
2	.MODEL SMALL
3	.STACK 4h
4	.DATA

5 0000 0000	A DW 0
6 0002 0000	B DW 0
7 0004 0000	I DW 0
8 0006 0000	K DW 0
9 0008 0000	R DW 0
10	.CODE
11	
12 0000	DataLoading:
13 0000 B8 R	mov ax, @Data; Getting the pointer
	to actual app data
14 0003 8E D8	mov ds, ax; Applying pointer
15	
16 0005 8B 0E 0004 R	mov cx, I ; dx == I
17	
18	
19	
20	; OCCUPATION: $dx == I$
21 0009	DecidingF1and2:
22 0009 A1 0002 R	mov ax, B; ax == B
23 000C F7 D8	neg ax ; ax == -B
24 000E 03 06 0000 R	add ax, A; ax == A - B
25 0012 3D 0000	cmp ax, 0; A - B? 0
26 0015 7E 11	jng F1and2var2; Goes here if A - B
	<= 0 -> A <= B
27	
28 0017	F1and2var1: ; Goes here if A - $B > 0$
	-> A > B

```
29 0017 D1 E1
                                 sal cx, 1; cx == I << 1 == I * 2
30 0019 D1 E1
                                 sal cx, 1; cx == I * 22 << 1 == I
                               * 4
                                 neg cx ; cx == -I * 4
31 001B F7 D9
32
                                        add cx, 20; cx == 20 - I * 4 == i1
33 001D 83 C1 14
34 0020 8B D1
                                 mov dx, cx; dx == cx == 20 - I * 4
                                        add dx, -15; dx == 5 - I * 4 == i2
35 0022 83 C2 F1
36 0025 EB 13 90
                                        jmp DecidingF3
37
38 0028
                                F1and2var2:
39 0028 8B D1
                                 mov dx, cx ; cx == I
40 002A D1 E2
                                 sal dx, 1; dx == 2 * I
41 002C 03 D1
                                 add dx, cx; dx == 3 * I
42 002E F7 DA
                                 neg dx ; dx == -3 * I
43
                                        add dx, 10; dx == 10 - 3 * I == i2
44 0030 83 C2 0A
45 0033 8B CA
                                 mov cx, dx; cx == 10 - 3 * I
46 0035 D1 E1
                                 sal cx, 1; cx == 10 - 3 * I << 1 =
                               20 - 6 * I
                                        add cx, -14; cx == 6 - 6 * I == i1
47 0037 83 C1 F2
48
```

49

Page 1-2

50	
51	; OCCUPATION: $cx == i1$, $dx == i2$
52 003A	DecidingF3:
53 003A F7 D9	neg cx ; cx == -i1
54 003C 78 FC	js DecidingF3; Goes here if -i1 <
	0
55	; cx == i1
56	
57 003E A1 0006 R	mov ax, K; ax == K
58 0041 3D 0000	cmp ax, 0; K? 0
59 0044 75 0B	jne F3var2; Goes here if K!= 0
60	
61 0046	F3var1:; Goes here if $K == 0$
62 0046 83 F9 06	cmp cx, 6; i1 ?6
63 0049 72 0C	jb PushingResults ; Goes here if i
	1 < 6
64	
65 004B B9 0006	mov cx, 6 ; cx == 6 == res
66 004E EB 07 90	jmp PushingResults
67	
68 0051	F3var2:
69 0051 F7 DA	neg dx ; dx == -i2
70 0053 78 FC	js F3var2; Goes here if -i2 < 0
	8

; dx == |i2|71 72 73 0055 03 CA add cx, dx; cx == |i1| + |i2| == res 74 75 76 77 ; OCCUPATION: cx == res78 0057 PushingResults: mov R, cx; res goes to memory at " 79 0057 89 0E 0008 R R" pointer 80 81 END

Symbols-1

Segments and Groups:

F1AND2VAR1....

F1AND2VAR2....

N a m e	Length Align Combine Class					
DGROUP		JP Wori)	PUBL	IC	'DATA'
STACK	0004 PARA STACK 'STACK'			CK'		
_TEXT	005B	WORI)	PUBL	IC	'CODE'
Symbols:						
N a m e	Type	Value	Attr			
Α	L WO	RD	0000	_DAT	A	
В	L WO	RD	0002	_DAT	A	
DATALOADING		L NEA	ΛR	0000	_TEX	Т
DECIDINGF1AND2		L NEA	AR	0009	_TEX	Т
DECIDINGF3		L NEA	ΛR	003A	_TEX	Т

L NEAR

L NEAR

0017 _TEXT

0028 _TEXT

F3VAR1	L NEAR	0046	_TEXT
F3VAR2	L NEAR	0051	_TEXT

I L WORD 0004 _DATA

K L WORD 0006 _DATA

PUSHINGRESULTS L NEAR 0057 _TEXT

R L WORD 0008 DATA

@CODE TEXT _TEXT

@CODESIZE TEXT 0

@CPU TEXT 0101h

@DATASIZE TEXT 0

@FILENAME TEXT lab3

@VERSION TEXT 510

- 81 Source Lines
- 81 Total Lines
- 30 Symbols

47440 + 459820 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors