Ens'IA

Ensimag 2022-2023

November 28, 2022

Ens'IA

The program:

- Introduction
- My first neuron
- My first neural network
- My first convolution
- AI challenge
- Reinforcement Learning?
- GANs?

And after? \rightarrow you tell us!

Reminder

How to approximate this function? \rightarrow Neural networks

 \rightarrow Succession of neuron layers

Sigmoid neuron

$$a_1, ..., a_n \in [0, 1]$$

 $s = \sigma(\sum_{i=0}^n a_i * w_i + b)$ with $\sigma(x) = \frac{1}{1 + e^{-x}}$

Training loop

```
How to train the neuron?

For each epoch

For each x

Forward pass

Loss calculation

Backward pass

(Accuracy calculation)
```

Image classification

Images of numbers between 0 and 9: 10 classes Black & white images 28x28 size

Input: 1D vector

Input: 1D vector

Output: 1 hot encoding

Training loop

```
How to train the neuron?

For each epoch

For each x

Forward pass

Loss calculation

Backward pass

(Accuracy calculation)
```

What about everything between the input and the output?

What about everything between the input and the output?

 \rightarrow We need to find the best hidden layer/neuron count

What about everything between the input and the output?

 \rightarrow We need to find the best hidden layer/neuron count

Which learning rate, batch size, epoch count and loss?

What about everything between the input and the output?

 \rightarrow We need to find the best hidden layer/neuron count

Which learning rate, batch size, epoch count and loss?

 \rightarrow We need to find them :3

Back to the *sigmoid* activation function:

- Expensive to calculate
- Vanishing Gradient
- And more...

Back to the *sigmoid* activation function:

- Expensive to calculate
- Vanishing Gradient
- And more...

In practice:

 \rightarrow ReLU (Rectified Linear Unit)

Back to the *backpropagation* and the gradient algorithm:

- Addition of a moment
- Adaptative η learning rate

Back to the *backpropagation* and the gradient algorithm:

- Addition of a moment
- Adaptative η learning rate

In practice:

 \rightarrow Adam

A major problem: overfitting

 $\rightarrow Dropout$

Conclusion

It works great!
We have to search for the best model
Other neural network types exist (CNN, RNN,
LSTM...)

Discord

Join us on Discord!

Useful to ask questions, contact us or to pass on information! \rightarrow https://discord.gg/UgTRbRFqNv

- Kaggle
- CS231N
- http://neuralnetworksanddeeplearning.com/
- http://www.deeplearningbook.org/