Minh Nguyen

CS 225

Asn 3.2: Set Operations

Section 2.2 (7th edition) = $\{2,4,12,16,18,20\}$

- 2) a) A ∩ B
 - b) A B
 - c) A U B
 - d) AUB
- **4**) Let $A = \{a,b,c,d,e\}$ and $B = \{a,b,c,d,e,f,g,h\}$
- a) A U B = $\{a,b,c,d,e,f,g,h\}$ b) A \cap B = $\{a,b,c,d,e\}$ c) A B = \emptyset d) B A = $\{f,g,h\}$

12) Prove A U ($A \cap B$) = A

This identity can be proven by being able to show that each side of the solution is the subset of the other.

We start off by trying to show that A U (A \cap B) is a subset of A. If $x \in A \cup (A \cap B)$, then $(x \in A \cup (A \cap B))$ A) or $(x \in A \cap B)$ by the law of unions. With the definition of intersections, we get $(x \in A)$ OR $(x \in A)$ and $x \in B$). Since the element x is in both cases of A no matter what, then we know that A U (A \cap B) is a subset of A.

Now to show that A is a subset of A U (A \cap B), let $x \in A$. Then, $(x \in A)$ or $(x \in A)$ and $x \in B$). This means that $x \in A \cup (A \cap B)$, by the definition of unions. This shows that subset A has an element x, that is also in A U (A \cap B), which means A is a subset of A U (A \cap B).

16) a) Show (A \cap B) \subseteq A

let $x \in (A \cap B)$. this also means $x \in A$ and $x \in B$ using the definition of interections. If $x \in A$, that means $(A \cap B)$ is a subset of A.

b)
$$A \subseteq (A \cup b)$$

let $x \in A$. By the definition of unions, $x \in A$ or $x \in B$. so $x \in A \cup B$, which shows that A is a subset of A U B

c) A - B
$$\subseteq$$
 A

let $x \in A$ - B. This is a difference of A and B, which can be written as $x \in A$ and $x \in B$. That mean $x \in A$, so A - B must be a subset of A.

d)
$$A \cap (B - A) = \emptyset$$

The approach here is to use contradiction. We can assume that $A \cap (B - A)$ is not \emptyset , and that there is an element x that such that $x \in A$, $x \in B$ and $x \notin A$, By the definition of intersection and differences. But that is a contradiction since cannot be $x \in A$ and $x \notin A$. So our proof for contradiction was false, which means $A \cap (B - A) = \emptyset$ is true.

$$e) A U (B - A) = A U B$$

Α	В	B - A	A U (B - A)	AUB
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

The proof is complete, The two collumns are the same.

18) a) show (AUB) \subseteq (AUBUC)

let $x \in (A \cup B)$. Then $x \in A$ or $x \in B$, by definition of union. Then that means for $(A \cup B \cup C)$, $x \in A$, $x \in B$, or $x \in C$. We can show that $x \in (A \cup B \cup C)$ by using union definition, which means that $(A \cup B) \subseteq (A \cup B \cup C)$.

b) show
$$(A \cap B \cap C) \subseteq (A \cap B)$$

let $x \in (A \cap B \cap C)$. We can distribute this out by the law of intersection, $x \in A$, $x \in B$, and $x \in C$. Using this same method for $(A \cap B)$, we get $x \in A$, and $x \in B$. It doesn't matter that $x \in C$, because as long as $x \in A$, $x \in B$ is true in $(A \cap B \cap C)$, then $x \in (A \cap B)$ as well. Which concludes our proof that $(A \cap B \cap C) \subseteq (A \cap B)$

c) show
$$(A - B) - C \subseteq (A - C)$$

let $x \in (A-B)$ - C). The definition of difference allows us to write $\in A$, $x \in B$, and $x \in C$. For the $(A \cap B)$, we use the same rules to show that $x \in A$ and $x \in C$. This completes our proof since we have shown that x is an element in A, but not C on both accounts $(A - B) - C \subseteq (A - C)$.

d)
$$(A - C) \cap (C - B) = \emptyset$$

We prove this by contradiction. Let's assume that $(A - C) \cap (C - B)$ contains an x that the case is $x \in (A - C) \cap (C \cap B)$. This means $x \in (A - C)$ and $x \in (C - B)$ by definition of intersection. Then by the definition of differences, $x \in A$, and $x \in C$ and $x \in C$ and $x \in C$ are or original hypothesis $(A - C) \cap (C - B) = \emptyset$ is true.

$$e. (B - A) U (C - A) = (B U C) - A$$

A	В	С	C - A	B - A	BUC	(B - A) U (C- A)	(B U C) - A
1	1	1	0	0	1	0	0
1	1	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1
0	1	0	0	0	1	1	1
0	0	1	1	1	1	1	1
0	0	0	0	0	0	0	0

20) Show (A
$$\cap$$
 B) U (A \cap B) = A

А	В	(A ∩ B)	В	(A ∩ B)	(A ∩ B) U (A ∩ B)
1	1	1	0	0	1
1	0	0	1	1	1
0	1	0	0	0	0
0	0	0	1	0	0