

复习课(1,2章)

概述 进程管理

第一章 概述

- ・内容提要
 - 操作系统的定义
 - 操作系统的发展
 - 3种基本的操作系统
 - 操作系统4个基本特征
 - 操作系统5种功能
 - 操作系统结构

- · 操作系统是对()进行管理的软件
 - A软件
 - B硬件
 - C计算机资源
 - D应用程序

- · 允许多个用户以交互方式使用计算机的操作系统称为();允许多个用户将多个作业提交给计算机集中处理的操作系统称为();计算机系统能及时处理过程控制数据并做出响应的操作系统称为()。
 - A批处理操作系统
 - B分时操作系统
 - C多处理机操作系统
 - D实时操作系统
 - F网络操作系统

- **A**并行
- B真实
- C虚拟
- **D**共享

- · 多道程序设计是指()
 - A在分布式系统中同一时刻运行多个程序
 - B在实时系统中并发运行多个程序
 - C在一台处理机上同一时刻运行多个程序
 - D在一台处理机上并发运行多个程序

- · (2010考研)下列选项中,操作系统提供给应用程序的接口是
 - A系统调用
 - B中断
 - C库函数
 - D原语

- ·操作系统的4大资源管理功能是()() ()。
- 现代操作系统的两个最基本特征是()()。
- 用户与os的接口主要分为() () ()。

- · 叙述操作系统在计算机系统中的位置。
- · 对分时系统和实时系统进行比较。(多路性,独立性,及时性,交互性,可靠性)
- · 什么是操作系统,它有什么基本特征?
- · 什么是多道程序设计技术? 它的特点是什么?

·设内存中有3道程序a、b、c,无论使用、CPU还是I/O设备,优先次序均为a、b、c。已知计算和I/O的时间如表所示,试画出多道运行的时间关系图(忽略调度时间)。

	A	В	C
计算	30	60	20
I/O	40	30	40
计算	10	10	20

第二章 进程管理

- ・内容提要
 - 进程的定义及特征
 - 进程状态及引起状态变化的典型原因
 - 进程控制
 - 进程同步与互斥
 - 进程通信
 - 死锁
 - 线程

选择题

- · 分配到足够的资源并获得处理机的进程 状态是()
 - A 就绪
 - B执行
 - C 阻塞
 - D 撤销

- 常用的进程调度算法及其特点
- 死锁的概念、死锁产生的原因及必要条件, 死锁的处理
- 银行家算法

- · 对进程的管理和控制使用()
- · A 指令
- · B 原语
- ·C信号量
- ·D信箱

- ·若信号量S的初值为2,当前值为一1,则表示有()个等待进程。
 - -A 0
 - B 1
 - -C 2
 - D 3

- · 下列进程状态变化, () 是不可能发生的。
 - A 运行一》就绪
 - B 运行一》等待
 - C 等待一》运行
 - D 等待一》就绪

- · 用P、V操作管理临界区时,信号量的初值应定义为()。
 - -A -1
 - B 0
 - C 1
 - D 任意值

- ・临界区是()。
 - A 一个缓冲区
 - B 一段共享数据区
 - C 一段程序
 - D 一个互斥资源

- · (2010考研)下列选项中,导致创建新 进程的操作是
- · 1用户登录成功 2设备分配 3启动程序执行
 - A 仅1和2
 - B 仅2和3
 - C 仅1和3
 - D 1、2和3

- · 下列步骤, () 不是创建进程所必须的。
 - A 调度程序为进程分配cpu
 - B 建立pcb
 - C 为进程分配内存
 - D 将pcb链入就绪队列

- -An+1
- B n
- -Cn-1
- D 1

- 一个进程被唤醒,意味着()
 - A 该进程重新占有了cpu
 - B 它的优先权最大
 - C 其PCB移至等待队列队首
 - D 进程变为就绪状态

- · 为多道程序提供的可共享资源不足时,可能出现死锁。但是,不适当的()也可能造成死锁。
 - A 进程优先权
 - B 资源的线性分配
 - C 进程的推进顺序
 - D 分配队列优先权

- · 产生系统死锁的四个必要条件是: 互斥、 ()、循环等待和不剥夺。
 - A 请求与阻塞
 - B 请求与保持
 - C 请求与释放
 - D 释放与阻塞

- · 在分时操作系统中,进程调度经常采用 ()算法。
 - A 先来先服务
 - B 最高优先权
 - C 时间片轮转
 - D 随机

- · (2010考研)下列选项中,降低进程优 先级的合理时机是
 - A 进程的时间片用完
 - B 进程刚完成I/O,进入就绪队列
 - C 进程长期处于就绪队列
 - D 进程从就绪状态转为运行态

· 设有四个作业同时到达,每个作业的执行时间为2小时,他们在一台处理器上按单道方式运行,则平均周转时间为

- A 1小时
- B 5小时
- C 2.5小时
- D 3小时

- · (2009考研)既考虑作业等待时间,又 考虑作业执行时间的调度算法是()。
 - A 响应比高者优先
 - B 短作业优先
 - C 优先级调度
 - D 先来先服务

· 一作业8: 00到达系统,估计运行时间1 小时。若10: 00开始执行该作业,其响应比是。

- A 2
- B 1
- C 3
- D 0.5

- A、预防死锁
- B、避免死锁
- C、检测死锁
- D、解除死锁

- · 某系统有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是()。
 - -A9
 - B 10
 - C 11

- · (2009考研) 8台打印机,由K个进程 竞争使用,每个进程最多需要3台,该系统可能会发生司索的K的最小值是
 - A 2
 - B 3
 - C 4
 - D 5

填空题

- 进程调度的方式有()()两种。
- · 在有m个进程的系统中出现死锁,死锁 进程个数k的取值范围是()。

- · 若一个进程已经进入临界区,其他欲进入临界区的进程必须()
- ·对于信号量,()操作用于阻塞进程,()操作用于释放进程
- · m个进程共享临界资源,若使用信号量实现互斥,则信号量的变化范围是()
- · 进程由()()()组成,其中() 是进程存在的唯一标志。

论述题

- · 进程的定义是什么? 它最少有哪几种状态?
- · 进程与线程的区别是什么? (调度,拥 有资源,并发性,系统开销)
- · 进程与程序的区别是什么? (动静,生 命期,组成,不对应)

• 三个并发进程的读写

- > get进程负责从输入序列f中读取字符,送到缓冲区s中;
- > copy进程把缓冲区s中的数据复制到缓冲区t;
- > put进程从缓冲区t中取出数据打印。

· 某寺庙,有和尚若干,有一个水缸,小和尚提水供老和尚饮用。水缸可容水10桶,水取自同一水井。水井每次只能容一个桶取水。水桶总数为3个。每次入、取水缸仅限1桶,不可同时进行。试给出取水,入水的算法描述。

· 设系统中有3种类型的资源(A, B, C)和5个进程P1, P2, P3, P4, P5, A资源的数量为17, B资源的数量为5, C资源的数量为20。在T0时刻系统状态如表所示。系统采用银行家算法实施死锁避免策略。

- · 1) TO时刻是否为安全状态?若是,请给出安全序列。
- · 2) 若在TO时刻进程P2请求资源(O, 3, 4) 是否能实施资源分配? 为什么?
- · 3)在(2)的基础上,若进程P4请求资源(2,0,1)是本能实施资源分配?为什么?

进程↩	最大资源需求量₽			已分配资源数量₽		
	A₽	В€	C₽	Å₽	B₽	C₽
P1₽	5₽	5₽	9₽	2€	1€	2₽
P2₽	5₽	3₽	6₽	4₽	0₽	2₽
P3₽	4₽	0₽	11₽	4₽	0₽	5₽
P4₽	4₽	2₽	5₽	2₽	04	4₽
P5₽	4₽	2₽	4₽	3₽	10	4₽
刺余资源	A₄□		B₽		C₽	
数₽	2₽		3₽		3₽	

