STA 221: LECTURE 5

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

Word Representation

WORD2VEC: MOTIVATION

- □ Given a large text corpus, how to learn low-dimensional features to represent a word?
- ▷ Skip-gram model:

For each word w_i , define the "contexts" of the word as the words surrounding it in an L-sized window:

$$w_{i-L-2}, w_{i-L-1}, \underbrace{w_{i-L}, \cdots, w_{i-1}}_{\text{contexts of } w_i}, \underbrace{w_{i+1}, \cdots, w_{i+L}}_{\text{contexts of } w_i}, w_{i+L+1}, \cdots$$

 \triangleright Get a collection of (word, context) pairs, denoted by D.

3

SKIP-GRAM MODEL

(Figure from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/)

Use bag-of-word model

- ▷ Idea 1: Use the bag-of-word model to "describe" each word
- \triangleright Assume we have context words c_1, \dots, c_d in the corpus, compute
 - $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D
- ▶ For each word w, form a d-dimensional (sparse) vector to describe w

$$\#(w, c_1), \cdots, \#(w, c_d),$$

PMI/PPMI REPRESENTATION

- Similar to TF-IDF: Need to consider the frequency for each word and each context
- \triangleright Instead of using co-ocurrent count #(w,c), we can define pointwise mutual information:

$$\begin{aligned} \mathsf{PMI}(w,c) &= \log(\frac{\widehat{P}(w,c)}{\widehat{P}(w)\widehat{P}(c)}) = \log\frac{\#(w,c)|D|}{\#(w)\#(c)}, \\ \#(w) &= \sum_c \#(w,c) \text{: number of times word } w \text{ occurred in } D \\ \#(c) &= \sum_w \#(w,c) \text{: number of times context } c \\ \mathsf{occurred in } D \\ |D| \text{: number of pairs in } D \end{aligned}$$

|D|: number of pairs in D

▷ Positive PMI (PPMI) usually achieves better performance:

$$PPMI(w,c) = \max(PMI(w,c),0)$$

 \triangleright M^{PPMI} : a *n* by *d* word feature matrix, each row is a word and each column is a context

PPMI Matrix

Low-dimensional embedding (Word2vec)

▶ Advantages to extracting low-dimensional dense representations:

> Improve computational efficiency for end applications Better visualization Better performance (?)

▷ Perform PCA/SVD on the sparse feature matrix:

$$M^{\mathsf{PPMI}} \approx U_k \Sigma_k V_k^T$$

Then $W^{\text{SVD}} = U_k \Sigma_k$ is the context representation of each word

(Each row is a k-dimensional feature for a word)

▶ This is one of the word2vec algorithm.

GENERALIZED LOW-RANK EMBEDDING

▷ SVD basis will minimize

$$\min_{W,V} \| M^{\mathsf{PPMI}} - WV^T \|_F^2$$

Extensions (Glove, Google W2V, . . .):

Use different loss function (instead of $\|\cdot\|_F$) Negative sampling (less weights to 0s in M^{PPMI}) Adding bias term:

$$M^{\mathsf{PPMI}} \approx WV^T + \mathbf{b}_w \mathbf{e}^T + \mathbf{e} \mathbf{b}_c^T$$

▶ Details and comparisons:

"Improving Distributional Similarity with Lessons Learned from Word Embeddings", Levy et al., ACL 2015. "Glove: Global Vectors for Word Representation", Pennington et al., EMNLP 2014.

RESULTS

The low-dimensional embeddings are (often) meaningful:

(Figure from

https://www.tensorflow.org/tutorials/word2vec)

Kernel PCA

Kernel Trick

KERNEL PCA: FORMULATION

ightharpoonup Given (mean-zero) data $X^{(1)}, \cdots, X^{(n)} \in \mathbb{R}^d$, compute the feature mapping $\phi(X^{(1)}), \cdots, \phi(X^{(n)}) \in \mathbb{R}^k$ the principal vector \mathbf{v}_1 by:

$$\mathbf{v}_1 = \arg\max_{\|\mathbf{v}\|_2 = 1} \frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \phi(X^{(i)}))^2 = \arg\max_{\|\mathbf{v}\| = 1} \frac{1}{n} \mathbf{v}^T \phi(\widehat{X}) \phi(\widehat{X})^T \mathbf{v}$$

where each column of $\phi(\widehat{X})$ is $\phi(X^{(i)})$

ightharpoonup The first principal component \mathbf{v}_1 is the leading eigenvector of $\frac{1}{n}\phi(\widehat{X})\phi(\widehat{X})^T$ (eigenvector corresponding to the largest eigenvalue)

KERNEL PCA: FORMULATION

- ▷ It appears that we are actually lifting the data from already high-dimensional space to an even higher-dimensional space.
- ▶ But the so-called kernel trick comes to our rescue!
- ▷ Specifically, we have a kernel as follows:

$$K(X^{(i)}, X^{(j)}) = \phi(X^{(i)})^{\top} \phi(X^{(j)})$$

 \triangleright The eigenvector computation from the previous slide could be all done with the help of this kernel trick without actually computing the mapping $\phi(X^{(i)})$ at all!

WIDELY USED KERNEL

$$K(X^{(i)}, X^{(j)}) = e^{-\|X^{(i)} - X^{(j)}\|^2/\gamma^2}$$

▷ In Lecture5.ipynb we have the command

$$KernelPCA(n_components = 2, kernel = 'rbf', gamma = 15)$$

- \triangleright kernel = 'rbf' means we are picking this kernel
- \triangleright gamma = 15 means we are setting γ .

Clustering

Clustering

- \triangleright Given $\{x_1, x_2, \dots, x_n\}$ and K (number of clusters)
- \triangleright Output $A(x_i) \in \{1, 2, ..., K\}$ (cluster membership)

CONCENTRIC CIRCLES

Can we split the data into two clusters?

CONCENTRIC CIRCLES

Can we split the data into two clusters?

Clustering is Subjective

- ▶ Non-trivial to say one clustering is better than the other
- ▶ Each algorithm has two parts:

Define the objective function

Design an algorithm to minimize this objective function

K-MEANS OBJECTIVE FUNCTION

 \triangleright Partition dataset into C_1, C_2, \dots, C_K to minimize the following objective:

$$J = \sum_{k=1}^K \sum_{\boldsymbol{x} \in C_k} \|\boldsymbol{x} - \boldsymbol{m}_k\|_2^2,$$

where \mathbf{m}_k is the mean of C_k .

Multiple ways to minimize this objective
 Hierarchical Agglomerative Clustering
 K-means Algorithm (Today)
 ...

20

▶ Re-write objective:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_n - \boldsymbol{m}_k \|_2^2,$$

where $r_{nk} \in \{0,1\}$ is an indicator variable

$$r_{nk}=1$$
 if and only if $\boldsymbol{x}_n\in\mathcal{C}_k$

\triangleright Step 0: Initialize $\{\boldsymbol{m}_k\}$ to some values

▷ Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| oldsymbol{x}_n - oldsymbol{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

▷ Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

Step 3: Return to step 1 unless stopping criterion is met

- \triangleright Step 0: Initialize $\{\boldsymbol{m}_k\}$ to some values
- ▷ Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|oldsymbol{x}_n - oldsymbol{m}_j\|_2^2 \ 0 & ext{otherwise} \end{cases}$$

▷ Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

riangle Step 3: Return to step 1 unless stopping criterion is met

- \triangleright Step 0: Initialize $\{\boldsymbol{m}_k\}$ to some values
- ▷ Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|oldsymbol{x}_n - oldsymbol{m}_j\|_2^2 \ 0 & ext{otherwise} \end{cases}$$

▷ Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

Step 3: Return to step 1 unless stopping criterion is met

- \triangleright Step 0: Initialize $\{\boldsymbol{m}_k\}$ to some values
- ▷ Step 1: Fix $\{m_k\}$ and minimize over $\{r_{nk}\}$:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \| oldsymbol{x}_n - oldsymbol{m}_j \|_2^2 \ 0 & ext{otherwise} \end{cases}$$

▷ Step 2: Fix $\{r_{nk}\}$ and minimize over $\{\boldsymbol{m}_k\}$:

$$\boldsymbol{m}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}}$$

▷ Step 3: Return to step 1 unless stopping criterion is met

Equivalent to the following procedure:

- \triangleright Step 0: Initialize centers $\{\boldsymbol{m}_k\}$ to some values
- \triangleright Step 1: Assign each x_n to the nearest center:

$$A(\boldsymbol{x}_n) = \arg\min_{j} \|\boldsymbol{x}_n - \boldsymbol{m}_j\|_2^2$$

Update clusters:

$$C_k = \{ \boldsymbol{x}_n : A(\boldsymbol{x}_n) = k \} \quad \forall k = 1, \dots, K$$

 \triangleright Step 2: Calculate mean of each cluster C_k :

$$\boldsymbol{m}_k = \frac{1}{|C_k|} \sum_{\boldsymbol{x}_n \in C_k} \boldsymbol{x}_n$$

▷ Step 3: Return to step 1 unless stopping criterion is met

More on K-means Algorithm

- ▷ Always decrease the objective function for each update
- Descrive function will keep unchanged when step 1 doesn't change cluster assignment ⇒ Converged
- May not converge to global minimum
 Sensitive to initial values
- Kmeans++: A better way to initialize the clusters

More on K-means Algorithm

- ▷ Always decrease the objective function for each update
- ightharpoonup Objective function will keep unchanged when step 1 doesn't change cluster assignment \Rightarrow Converged
- ▶ May not converge to global minimum Sensitive to initial values
- ▷ Kmeans++: A better way to initialize the clusters

More on K-means Algorithm

- ▷ Always decrease the objective function for each update
- Descrive function will keep unchanged when step 1 doesn't change cluster assignment ⇒ Converged
- ▶ May not converge to global minimum Sensitive to initial values
- ▷ Kmeans++: A better way to initialize the clusters