INTRODUCTION TO CRYPTOGRAPHY – QUIZ 4

B.Tech. Computer Science and Engineering (Cybersecurity)

Name: Anish Sudhan Nair	Roll No.: K041
Batch: K2/A2	Date of submission: 01/02/2022

Quiz

- 1. (2 points) An involutory key in a permutation cipher is a permutation π such that $\pi^{-1}=\pi$. In other words, $\pi(i)=j$ \Longrightarrow $\pi(j)=i$. For m= 3, there are four involutory keys. Find them.
 - -> Consider p = (123)

Involuntary keys (π) include :

- ${123 \choose 123}$
- $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$
- $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}$
- $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}$

Eg: CAT encrypted using $\pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ -> TAC Now π (TAC) -> CAT

2. (4 points) For the key $K = \begin{pmatrix} 3 & 2 \\ 5 & 7 \end{pmatrix}$ in Hill Cipher, find K^{-1} .

-> $K = \binom{3}{5} \binom{2}{7}$ is a 2x2 matrix, therefore inverse of such matrix -> $K^{-1} = (1/\det|k|)\binom{7}{-5} \binom{-2}{3}$ |K| = 21 - 10 = 11 $1/|K| = 11^{-1} = 19$ $K^{-1} = (19)\binom{7}{-5} \binom{-2}{3} = \binom{133}{-95} \binom{-38}{57} = \binom{3}{-17} \binom{-12}{5} = \binom{3}{9} \binom{14}{5}$ Therefore, $K^{-1} = \binom{3}{9} \binom{14}{5}$

3. (6 points) By using the Hill cipher with the key K as given in the previous problem, decrypt:

WZNLQM

(22 25)
$$\begin{pmatrix} 3 & 14 \\ 9 & 5 \end{pmatrix}$$
 = (5 17)

(13 11)
$$\begin{pmatrix} 3 & 14 \\ 9 & 5 \end{pmatrix} = (8 3)$$

$$(16 12) \begin{pmatrix} 3 & 14 \\ 9 & 5 \end{pmatrix} = (0 24)$$

Therefore, decrypted text = friday

4. (2 points) Suppose that a key stream is generated for a stream cipher by using the following linear recurrence $z_{i+2}=z_i+z_{i+1} \mod 2$ for $i\geq 1$. For the initial vector $(z_1,z_2)=(1,1)$ find the first six bits of the key stream.

->

$$\mathbf{z}_{i+2} = \mathbf{z}_i + \mathbf{z}_{i+1}$$

$$z_1 = 1$$
, $z_2 = 1$

$$z_3 = z_{1+2} = z_1 + z_{1+1} = z_1 + z_2 = 1 + 1 = 2 \mod 2 = 0$$

$$z_4 = z_{2+2} = z_2 + z_{2+1} = z_2 + z_3 = 1 + 0 = 1 \mod 2 = 1$$

$$z_5 = z_{3+2} = z_3 + z_{3+1} = z_3 + z_4 = 0 + 1 = 1 \mod 2 = 1$$

$$z_6 = z_{4+2} = z_4 + z_{4+1} = z_4 + z_5 = 1+1 = 2 \mod 2 = 0$$

Therefore, the first 6 bits of the key stream are: 1,1,0,1,1,0

- 5. (2 points) Find the period of the key stream generated by linear recurrence and initial vector as given in the previous problem.
- -> Key stream's period is given by 2^m -1 where m is the initial key length. The initial key length in the previous question is m=2, therefore

Period =
$$2^2 - 1 = 4 - 1 = 3$$

6. (4 points) By using auto key cipher with the key k = 7, decrypt:

LBFB

-> Auto key = 7

L	В	F	В
11	1	5	1
11-7=4	1-4=-3=23	5-23=-18=8	1-8=-7=19
4	23	8	19
Е	X	I	Т

Plaintext = exit