# **Brain Scan Tumor Classification**

## **Project Examples**

Jordan Fields, Aaliyah Hänni, Vanessa Hsu, Trevor Nims, Alyson Suchodolski, Sabrina Wang

#### **Contents**

| Overview                                      | 2 |
|-----------------------------------------------|---|
| Using the Web Application: Do I Have A Tumor? | 2 |
| Run Web Application on Localhost              | 5 |
| Accessing the Model                           | 6 |

#### Overview

This document provides users with in-depth examples of how to utilize the published web application, how to run the web application on your own local host, and how to access our model directly.

#### Using the Web Application: Do I Have A Tumor?

The purpose of this project is to decide if a brain is tumorous or not based on an MRI scan input. To utilize the web application you must have an MRI scan image ready (.jpg, jpeg, .png)

- 1. Navigate to <a href="http://doihaveatumor.com/">http://doihaveatumor.com/</a>
- 2. Click the 'Choose File' button, and select the 2D brain scan (.jpg, .jpeg, .png supported) from your file explorer



UW DATA 515 Winter 2021 Final Project - Brain Tumor Detection GitHub Page



3. Click the 'Submit' button, and wait for the results to display at the top of the page



UW DATA 515 Winter 2021 Final Project - Brain Tumor Detection <u>GitHub Page</u>



UW DATA 515 Winter 2021 Final Project - Brain Tumor Detection GitHub Page

 Use the top navigation bar to explore more about the model and our development team



### Run Web Application on Localhost

1. In the command line interface run the following command:

git clone https://github.com/aaliyahfiala42/DATA515-Brain-Scan-Classification.git

```
[-bash-3.2$ git clone https://github.com/aaliyahfiala42/DATA515-Brain-Scan-Classification.git Cloning into 'DATA515-Brain-Scan-Classification'... remote: Enumerating objects: 54, done. remote: Counting objects: 100% (54/54), done. remote: Compressing objects: 100% (38/38), done. remote: Total 813 (delta 11), reused 36 (delta 7), pack-reused 759 Receiving objects: 100% (813/813), 121.01 MiB | 19.25 MiB/s, done. Resolving deltas: 100% (398/398), done.
```

 Install all required packages by navigating to the root directory (using cd DATA515-Brain-Scan-Classification) and run:

```
pip install -e.
```

3. To run the application, navigate to the brain\_scan folder (using *cd brain\_scan*)

and run:

```
python brain scan/app.py
```

4. Copy the local host url provided (the http address in the red box) and past the url to a browser of your choice.

```
* Serving Flask app "application" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use it in a production deployment.

Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
```

#### Accessing the Model

There are several ways to access our model, to train it on your own dataset, or to simply learn in more detail about how it was created. There is a model class structure (found in the model.py file) that can be accessed from the brain\_scan module, following the instructions provided above. Our model is also available as a Jupyter Notebook located in the "notebooks" folder under the root directory. To access the model, you must have a Jupyter\_Notebook installed on your local machine, or utilize software such as the Anaconda Navigator, and follow the instruction below using the Anaconda CMD.exe prompt.

1. In the command line interface run the following command:

git clone https://github.com/aaliyahfiala42/DATA515-Brain-Scan-Classification.git

```
[-bash-3.2$ git clone https://github.com/aaliyahfiala42/DATA515-Brain-Scan-Classification.git Cloning into 'DATA515-Brain-Scan-Classification'... remote: Enumerating objects: 54, done. remote: Counting objects: 100% (54/54), done. remote: Compressing objects: 100% (38/38), done. remote: Total 813 (delta 11), reused 36 (delta 7), pack-reused 759 Receiving objects: 100% (813/813), 121.01 MiB | 19.25 MiB/s, done. Resolving deltas: 100% (398/398), done.
```

2. To run the application, in the command line interface run:

jupyter notebook

This will then open the Jupyter Notebook interface. Navigate to the notebooks
and open the brain\_tumor\_classification\_FINAL notebook. Now you can view,
run, and edit the notebook directly.

