1. Теорема существования и единственности решения для смешанной (начально-краевой) задачи для уравнения колебаний в одномерном случае

Рассматриваются поперечные колебания (вынужденные) конечной однородной струны, если заданы движения её концов, поперечное смещение и поперечная скорость в момент t=0.

$$\begin{cases} u_{tt} = a^{2}u_{xx} + f(x,t), x \in [0,l], 0 < t \\ u(0,t) = \mu_{1}(t) \\ u(l,t) = \mu_{2}(t) \\ u(x,0) = \varphi(x) \\ u_{t}(x,0) = \psi(x) \end{cases}$$

$$(1)$$

Для существования классического решения необходимы $f, \mu_1, \mu_2, \psi \in C(D); \varphi \in C'(D)$

- и согласование $\varphi(0)=\mu_1(0), \varphi(l)=\mu_2(0); \psi(0)=\frac{\partial \mu_1(0)}{\partial t}, \psi(l)=\frac{\partial \mu_2(0)}{\partial t}$
- в силу линейности задачи $u(x,t) = u_1(x,t) + u_2(x,t) + u_3(x,t)$, в каждом из слагаемых которой:
- $u_1(x,t)$ одноодные уравн. и кр.усл., неоднородные нач. усл.
- $u_2(x,t)$ однородные уравн., нач.усл. и кр. усл.
- $u_3(x,t)$ однородные уравн. и нач.усл., неоднородные кр. усл.

Существование классического решения

Необходимо полагать, что $\varphi(0) = \varphi(l) = 0, \psi(0) = \psi(l) = 0$

Метод разделения переменных даёт:

$$u(x,t) = \sum_{n=1}^{\infty} \left[\varphi_n cos(\frac{\pi n}{l}at) + \frac{l}{\pi na} \psi(n) sin(\frac{\pi n}{l}at) \right] sin(\frac{\pi n}{l}x)$$
(2) где $\varphi_n = \frac{2}{l} \int_0^l \varphi(\xi) sin(\frac{\pi n}{l}\xi d\xi), \psi_n = \frac{2}{l} \int_0^l \psi(\xi) sin(\frac{\pi n}{l}\xi d\xi)$

Утв: $\omega(x) \in C^m[0,l] \exists \omega^{(i)}(x)$ кусочно непр. $\omega^{(i)}(0) = \omega^{(i)}(l) = 0, i = 0...m$ (достаточно потребовать для чётных i)

$$\Rightarrow \sum\limits_{n=1}^{\infty} n^m |\omega_n|$$
 сх-ся, где $\omega_n = rac{2}{l} \int\limits_0^l \omega_(\xi) sin(rac{\pi n}{l} \xi d\xi)$

Теорема 1

$$\varphi \in C^2[0,l]$$

$$\exists \varphi'''(x)$$
 кус.непр. $x \in [0, l]$

$$\varphi(0) = \varphi(l) = \varphi''(0) = \varphi''(l) = 0; \psi(0) = \psi(l) = 0$$

- $\psi \in C'[0,l], \exists \varphi''(x)$ кус.непр. на [0,l]
- $\Rightarrow \exists$ Классическое решение (1), представимое в виде (2)

Теорема 2

$$\varphi \in C^3[0,l]$$

$$\exists \varphi''''(x)$$
 кус.непр. $x \in [0, l]$

$$\varphi(0) = \varphi(l) = \varphi''(0) = \varphi''(l) = 0; \psi(0) = \psi(l) = \psi''(0) = \psi''(l) = 0$$

- $\psi \in C^2[0, l], \exists \varphi'''(x)$ кус.непр. на [0, l]
- $\Rightarrow \exists$ Классическое решение (1), представимое в виде (2)

Единственность классического решения

Определим интеграл энергии - кинетическая + потенциальная энергии механической системы

в определенный момент $t. D \subset \mathbb{R}^n, n = 1...3$

$$\begin{cases} u_{tt}(M,t) = a^2 \Delta_M u_{xx}(M,t) + f(M,t), M \in D, t > 0 \\ u(M,0) = \varphi(M) \\ u_t(M,0) = \psi(M), M \in \overline{D} \\ \alpha(P) \frac{\partial u(P,t)}{\partial n_P} + \beta(P)u(P,t) = \chi(P,t), P \in \partial D, t > 0 \end{cases}$$
1) Свободные колебания $f \equiv \chi \equiv 0$. Обозначим ∂D^+ - область, где $\alpha(P), \beta(P) > 0$
Интеграл энергии $\varepsilon(t) = \frac{\rho}{2} \iiint\limits_D \left(u_t^2(M,t) + a^2 grad_M^2 u(M,t) \right) dD_M + a^2 \frac{\rho}{2} \iint\limits_{\partial D^+} \frac{\beta(P)}{\alpha(P)} u^2(P,t) dS_P$

$$\partial D^+ \neq 0$$
 только для третьего краевого условия

Интеграл энергии
$$\varepsilon(t) = \frac{\rho}{2} \iiint\limits_{D} \left(u_t^2(M,t) + a^2 grad_M^2 u(M,t) \right) dD_M + a^2 \frac{\rho}{2} \iint\limits_{\partial D^+} \frac{\beta(P)}{\alpha(P)} u^2(P,t) dS_P dt$$

 $\partial D^+ \neq 0$ только для третьего краевого условия

тройной интеграл это кинетическая энергия колеблющейся системы, dD_M - элемент объема

двойной интеграл это энергия упругого закрепления, dS_P - элемент площади поверхности

 $\rho = const$ - объемная плотность массы

Физический смысл $\varepsilon(t)$ - в отсутствие внешних сил полная энергия колеблющейся системы не изменяется со временем.

То есть это закон сохранения энергии:

$$\varepsilon(t) = \varepsilon(0) = \frac{\rho}{2} \iiint\limits_{D} \left(\psi^{2}(M) + a^{2} grad_{M}^{2} \varphi(M) \right) dD_{M} + a^{2} \frac{\rho}{2} \iint\limits_{\partial D^{+}} \frac{\beta(P)}{\alpha(P)} \varphi^{2}(P) dS_{P}$$

2) Вынужденные колебания $f \neq 0, \chi \equiv 0$

$$\varepsilon(t) = \varepsilon(0) + \rho \int_{0}^{t} \left(\iiint_{D} f(M, \tau) u_{\tau}(M, \tau) dD_{M} \right) d\tau$$

ho f - объемная плотность внешней силы

Теорема 3

Задача может иметь только одно классическое решение.
$$\begin{cases} u_{tt} = a^2 u_{xx}(x,t) + f(x,t), x \in [0,l], t > 0 \\ u(x,0) = \varphi(x) \\ u_t(x,0) = \psi(x) \\ \alpha_i(x) \frac{\partial u(x,t)}{\partial x} + \beta_i(x) u(X,t) = \chi_i(x,t), i = 1, 2, x_1 = 0, x_2 = l \end{cases}$$
 Доказательство: пусть $\exists u_1(x,t), u_2(x,t)$ - решения. Тогда $w = u_1 - u_2$ удовл. системе:

$$\begin{cases} w_{tt} = a^2 w_{xx}(x,t), x \in [0,l], t > 0 \\ w(x,0) = 0 \\ w_t(x,0) = 0 \\ \alpha_i(x) \frac{\partial u(x,t)}{\partial x} + \beta_i(x) u(X,t) = 0, i = 1, 2, x_1 = 0, x_2 = l \end{cases}$$

Введем
$$E(t)=\frac{1}{2}\int\limits_0^l \left(w_t^2(x,t)+a^2w_x^2(x,t)\right)\!dx, E(0)=0, E(t)\geq 0$$

$$\frac{dE}{dt} = \int_{0}^{l} \left(w_{t} w_{tt} + a^{2} w_{x} w_{xt} \right) dx = \int_{0}^{l} w_{t} (w_{tt} - a^{2} w_{xx}) dx + a^{2} (w_{x} w_{t}) \Big|_{x=0}^{x=l}$$

$$\omega(0,t) = \omega(l,t) \ \, \forall t \geq 0 \Rightarrow \omega_t(0,t) = \omega_t(l,t) = 0 \Rightarrow \frac{dE}{dt} = 0 \Rightarrow E(t) \equiv 0$$

Вторая краевая задача:
$$\omega_x(0,t)=\omega_x(l,t)\Rightarrow \frac{dE}{dt}=0\Rightarrow E(t)\equiv 0$$
 Третья краевая задача:

Третья краевая задача:
... тоже
$$\Rightarrow E(t) \equiv 0 \Rightarrow \begin{cases} \omega_x \equiv 0 \\ \omega_t \equiv 0 \end{cases} \Rightarrow \omega(x,t) = const, \text{ т.к } \omega(x,0) = 0 \Rightarrow \omega \equiv 0$$

2. Разрыв логарифмического потенциала двойного слоя на границе области

Логарифмический потенциал двойного слоя выражается интегралом:

$$W(x)=\int\limits_L v(\xi) rac{d}{dn} (lnrac{1}{r}) dL$$
, где L - контур, $v(\xi)$ - плотность дв-го слоя

n - напр-ие внеш. нормали к $L,\,r$ - расст. от x дло переменной точки ξ на L.

 $\frac{d}{dn}(ln\frac{1}{r})=\frac{\cos\varphi}{r}$, где φ - угол между наравлениями n и r Имеем: $W(x)=\int\limits_{L}v(\xi)\frac{\cos\varphi}{r}dL$

Обозначим $v(p) = v_0 = const$ - постоянная плотность. Если L - замкнутый контур, тогда на нем потенциал имеет разрыв, харак-ся равенствами:

$$\begin{cases} W_{int} = W_0 + \pi v_0 \\ W_{ext} = W_0 - \pi v_0 \end{cases}$$

Здесь W_{int} - предельное значение потенциала внутри контура, W_{ext} - предельное значение потенциала вне контура, W_0 - прямое значение потенциала в точке, лежащей на контуре L.

