SciComp Project 1 Weeks 1+2

September 2, 2020 To be handed in September 14 before 12:00 noon

1 Background

Many of you will know the phenomenon that a prism refracts light, i.e. splits it up in different colors, because the refractive index of the prism varies with the frequency ω of light. The underlying property of the molecules forming the material is the frequency dependent polarizability, $\alpha(\omega)$. The polarizability, like many other properties of molecules and materials, can be calculated from the basic laws of physics, here the the time-dependent Schrödinger equation.

In the end, the polarizability for a given frequency ω of the incoming light is obtained as the following scalar product of two column vectors \mathbf{z} and \mathbf{x} :

$$\alpha(\omega) = \mathbf{z}^T \mathbf{x} \tag{1}$$

Figure 1: A dispersive prism slows light at different rates depending on the wave-length, causing refraction.

where \mathbf{z} is a vector that can be calculated from the Schrödinger equation, and \mathbf{x} is the solution to the following system of linear equations:

$$(\mathbf{E} - \omega \mathbf{S}) \mathbf{x} = \mathbf{z} \tag{2}$$

Here, **E** and **S** are two square matrices, and ω is the frequency of the incoming light. Like the column vector **z**, the matrices **E** and **S** are calculated from the Schrödinger equation, which we will not discuss further in this course.

2 Data

In this project we consider the water molecule, H_2O , and its frequency dependent polarizability, $\alpha(\omega)$. It turns out that the matrices **E** and **S**, and the column vector **z**, have a structure that lets us decompose the matrices into submatrices as follows:

$$\mathbf{E} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \qquad \mathbf{S} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{bmatrix}, \qquad \mathbf{z} = \begin{bmatrix} \mathbf{y} \\ -\mathbf{y} \end{bmatrix}$$
(3)

The Python-file watermatrices.py and the Matlab-file watermatrices.mat contain the submatrices $\bf A$ and $\bf B$, and the subvector $\bf y$ for a water molecule, obtained by an approximate solution to the Schrödinger equation.

3 Questions for Week 1

a. (1) Write a small function that computes the condition number of a matrix under the maxnorm:

$$\operatorname{cond}_{\infty}(\mathbf{M}) = \|\mathbf{M}\|_{\infty} \|\mathbf{M}^{-1}\|_{\infty}$$

Use a library matrix inversion routine¹ for \mathbf{M}^{-1} , but do program the max-norm yourself using sum, abs, and max. (2) For three frequencies, $\omega = \{0.800, 1.146, 1.400\}$, calculate the condition number for the matrix $\mathbf{E} - \omega \mathbf{S}$. The right-hand-side \mathbf{z} is given with 8 significant digits. How many digits in the solution \mathbf{x} could we trust if everything else were exact? Why?

b. (1) For each of the three ω , determine a bound on the relative forward error in the max-norm:

$$\frac{\left\|\Delta \mathbf{x}\right\|_{\infty}}{\left\|\hat{\mathbf{x}}\right\|_{\infty}} \leq \operatorname{cond}_{\infty}\left(\mathbf{E} - \omega \mathbf{S}\right) \frac{\left\|\delta \omega \mathbf{S}\right\|_{\infty}}{\left\|\mathbf{E} - \omega \mathbf{S}\right\|_{\infty}}$$

for the perturbation that the frequency ω is changed by $\delta \omega = \frac{1}{2} \cdot 10^{-3}$. (2) As ω is given with 3 digits after the comma, how many digits in \mathbf{x} could we be guarantee are valid if everything else were exact? Why?

- c. Implement three separate functions
 - 1. L,U = $lu_factorize(A)$, which takes a square matrix M as input and returns two square matrices: A triangular matrix L and upper triangular matrix U such that M = LU.
 - 2. $y = forward_substitute(L,z)$, which takes a square lower triangular matrix L and a vector b as input, and returns the solution vector y to Ly = b.
 - 3. $\mathbf{x} = \mathbf{back_substitute}(\mathbf{U}, \mathbf{y})$, which takes a square upper triangular matrix \mathbf{U} and a vector \mathbf{y} as input, and returns the solution vector \mathbf{x} to $\mathbf{U}\mathbf{x} = \mathbf{y}$.

and test them with the linear equation

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & 1 & 4 \\ -6 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \\ 4 \end{bmatrix}$$

You can test your solution against a library routine.²

If you know how, try to use vector operations instead of for-loops where possible (orders of magnitude faster in Python and Matlab).

- d. Implement a function $\alpha = \text{solve_alpha(omega)}$ for calculating the frequency-dependent polarizability $\alpha(\omega) = \mathbf{z}^T \mathbf{x}$ for water in the given approximation. This routine should solve Equation (2) by LU-factorization using your own three routines from (c). (1) Using your routine, make a table of the polarizabilities for the frequencies given in (a) and their perturbations, i.e. for $\omega = \{0.800 \pm \delta\omega, 1.146 \pm \delta\omega, 1.400 \pm \delta\omega\}$, with $\delta\omega = \frac{1}{2} \cdot 10^{-3}$ as before. (2) Which error-bound is the correct one to understand the variation of the calculated polarizabilities due to the perturbation: (a) or (b) or both? Do your calculated values fall within the bounds you calculated above?
- e. (1) Compute a table of $\alpha(\omega)$ for 1000 evenly spaced values in the interval $[0.7, 1.5]^3$ using your routine from (d), and plot the values. (2) What happens to the linear system of Equation (2) around the frequency $\omega = 1.146307999$, and how is this reflected in $\alpha(\omega)$?

¹E.g. inv from numpy.linalg for Python, inv for Matlab. But only here.

²E.g. numpy.linalg.solve in Python, or linsolve in Matlab.

³Use linspace in both Python and Matlab.

4 Questions for Week 2

f. Implement two routines and test them with the matrix \mathbf{A}_{test} and right-hand-side \mathbf{b} :

$$\mathbf{A}_{\text{test}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \text{ and } \mathbf{b}_{\text{test}} = \begin{bmatrix} 1237 \\ 1941 \\ 2417 \\ 711 \\ 1177 \\ 475 \end{bmatrix}$$

- 1. Q,R = householder_QR(A), which takes as input a rectangular matrix $A: m \times n$ and uses the Householder method to compute its QR decomposition. Check that $Q: m \times m$ is orthogonal, i.e., $Q^TQ = QQ^T = I$, and that the upper triangular matrix $R: m \times n$ satisfies A = QR.
- 2. A more efficient version of (f.1) that doesn't compute the $m \times m$ matrix \mathbf{Q} , but just stores the reflection vectors \mathbf{v} . You can either give it the interface $\mathbf{V}, \mathbf{R} = \mathbf{householder_fast}(\mathbf{A})$ or (as is done in practice) let the result be a combined $(m+1) \times n$ matrix \mathbf{VR} , in which the upper $n \times n$ triangle contains \mathbf{R} , and the kth column below the diagonal is \mathbf{v}_k (of length m-k).
- 3. $\tilde{\mathbf{x}} = \mathbf{least_squares}(\mathbf{A}, \mathbf{b})$, which combines this routine with your back-substitution from (c.3) to compute a linear least squares fitting. It should take as input a rectangular $m \times n$ matrix \mathbf{A} and an $m \times 1$ right-hand-side vector \mathbf{b} , returning an $n \times 1$ approximate solution vector $\tilde{\mathbf{x}}$ to $\mathbf{A}\tilde{x} \simeq \mathbf{b}$ as output. If you did not get (f.2) to work, you can just use your solution to (f.1).
- g. We now want to approximate $\alpha(\omega)$ in the interval $[0.7, \omega_p]$ using a polynomial

$$P(\omega) = \sum_{j=0}^{n} a_j \omega^{2j} \tag{4}$$

- (1) Suggest a suitable value of $\omega_p < 1.5$. What makes this choice reasonable? (2) Find the coefficients of the polynomial using your linear least squares routine from (f)⁴, the table computed above, and n=4. (3) Repeat the computation for n=6 and compare the accuracies of the two polynomials: Plot the magnitude of the relative error (in a log₁₀-scale) of the polynomial approximation as the difference between the $P(\omega)$ and $\alpha(\omega)$ values. (4) How many correct digits does each approximation yield?
- h. We would now like to approximate $\alpha(\omega)$ in the entire interval [0.7, 1.5], and choose the rational approximating function, which is able to represent singularities:

$$Q(\omega) = \frac{\sum_{j=0}^{n} a_j \omega^j}{1 + \sum_{i=1}^{n} b_i \omega^j}$$
 (5)

(1) Why will this fail with the polynomial approximation of Problem (g)? And why can Eq. (5) do a better job? (2) Find the coefficients a_j and b_j using your linear least squares routine, the table of α -values computed above, and n=2. You need to reformulate the expression as an linear approximation so that you can use a linear least squares fitting. Plot the error of the the rational-function approximation $Q(\omega)$ compared to $\alpha(\omega)$ calculated by Equations (1) and (2).⁵ (3) Repeat the computation for n=4 and compare the accuracies of the two approximations quantitatively.

⁴If you could not get your own least squares solver to work, you can use a library version for the remaining problms - but make sure to write clearly that you have done so.

⁵Once you have computed the coefficients **a** and **b**, be sure to finish the construction of $Q(\omega)$ using Eq. (5), and to use this for the error. It is tempting (but wrong) to just use the linear approximation you used to find **a** and **b**, but that is linear and hence cannot represent singularities.