Дополнительная лекция

Лекция 10

Semi-supervised learning

Не всегда есть разметка на всем множестве наблюдений

Можно обучить промежуточную модель, чтобы доразметить датасет

Борьба с дисбалансом

Борьба с дисбалансом

Можно перевзвешивать лосс функцию (с помощью class_weight)

$$log \ loss = \frac{1}{N} \sum_{i=1}^{N} [-(w_0(y_i^* log(\widehat{y_i})) + w_1((1-y_i)^* log(1-\widehat{y_i})))]$$

Кроме того, хорошей практикой является подбор правильного порога

https://alexanderdyakonov.wordpress.com/2021/05/27/imbalance/

Борьба с дисбалансом. SMOTE

Борьба с дисбалансом. Кратко

Подбор порога (без совмещения с любой другой техникой) — идеальная стратегия для «нешумных данных». На самом деле, только это и надо использовать, когда геометрия данных относительно проста, модель хорошо описывает данные (и особенно, если хорошо откалибрована). Обратим внимание, что качество признакового пространства (шум и геометрия) в классическом ML зависит исключительно от Вас, поэтому, если Вы умеете решать задачи, то кроме подбора порога Вам ничего не нужно.

Многоклассовая классификация

Многоклассовая классификация. Методы решения

Многоклассовая классификация

Многоклассовая классификация. Multiclass

Многоклассовая классификация. Multiclass

OvA & OvO

(a) Separation with OvA.

(b) Separation with OvO.

Многоклассовая классификация. Multilabel

$$\frac{\mathsf{Recall}}{\mathsf{Class}\,A} = \frac{\mathsf{TP}_{\mathit{Class}\,A}}{\mathsf{TP}_{\mathit{Class}\,A} + \mathsf{FN}_{\mathit{Class}\,A}}$$

Precision =
$$\frac{TP_{Class A}}{TP_{Class A} + FP_{Class A}}$$

ıď

All true positives

All false negatives

Критерий	Макро	Микро
Относительно чего смотрим	Классы (все равны, неважно, сколько наблюдений в каждом классе)	Объекты (все равны, неважно, какого класса каждый объект)
Полезно в случае	Все классы одинаково важны Есть дисбаланс классов	Важен общий уровень ошибок
Возможные недостатки	Влияние редких классов может сильно портить картину	Можно пропустить плохую работу на малых классах
Искажения	Заниженный результат из-за слабых классов Размывание ошибки в важных (частых) классах	Завышение результата за счет доминирующего класса

Поиск аномалий

Поиск аномалий. Зачем?

Поиск аномалий. Как?

Поиск аномалий. Как?

SHAP

Explanation

SHAP. Аддитивный характер значений Шепли

SHAP. Force Plot

SHAP. Force Plot

SHAP. Bar Plot

SHAP. Beeswarm

SHAP. CV

