

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

mmn. *tremepapers.com

*	
<u>~</u> د	
2	
7	
7	
7	
2	
9	
9	
ر ت	
œ	

CHEMISTRY Paper 3 (Exter	nded)	October/November 2	0/33 2013
CENTRE NUMBER		CANDIDATE NUMBER	
NAME			

No Additional Materials are required.

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Zir	coniu	ım (Zr) is a m	etal in Period 5. Its main oxidat	ion state is +4.	
(a)	The	e following are	e all zirconium atoms: $^{90}_{40}$ Zr, $^{91}_{40}$ Z	r and $^{92}_{40}\mathrm{Zr}$.	
			ers of electrons, neutrons and re they different?	protons, how are these three atoms	the
	The	ey are differer	t because		
(b)	Coı	ntainers for fu	el rods in nuclear reactors are		[O]
	(i)	Which isotop	pe of a different element is use	d as a fuel in nuclear reactors?	
					[1]
	(ii)	State one m	edical and one industrial use o	f radioactive isotopes.	
					[2]
	(iii)		C, zirconium reacts with water Vrite an equation for this reacti	to form zirconium(IV) oxide, ZrO_2 , aon.	and
					[2]
	(iv)		the presence of hydrogen in	ontact with very hot zirconium. nside the reactor greatly increases	the
					[1]
(c)	am	photeric using		n(IV) oxide is acidic, neutral, basic plete the table of possible results. If exted not to react write 'NR'.	
	if t	he oxide is	predicted result with hydrochloric acid	predicted result with aqueous sodium hydroxide	
		acidic			
		neutral			
		basic			
	а	mphoteric			

[4]

[Total: 13]

2 (a) The diagram shows the lattice of a typical ionic compound.

For Examiner's Use

(i)	Explain the term ionic lattice.
	[2]
(ii)	In this lattice, the ratio of positive ions to negative ions is 1:1. In the lattice of a different ionic compound, the ratio of positive ions to negative ions is 1:2. Suggest why this ratio varies in different ionic compounds.
	[1]
(iii)	Give three physical properties of ionic compounds.
	[3]

(b) Strontium oxide is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the **valency** electrons around the negative ion.

The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2.

Use o to represent an electron from a strontium atom.

Use x to represent an electron from an oxygen atom.

[3]

[Total: 9]

_													
3	The	maın	uses	of zinc	are	preventing	steel	trom	rusting	and	making	ı alloy	/S.

(a)	The of z	main ore of zinc is zinc blende. Zinc blende consists mainly of zinc sulfide, Zre are two major methods of extracting zinc from its ore. They are the direct reductions oxide to zinc and by electrolysis. In both methods, zinc oxide is made from the sulfide in the ore.	ion
	(i)	How is zinc oxide made from zinc sulfide?	
			[1]
	(ii)	Write an equation for the reaction used to reduce zinc oxide to zinc.	
			[1]
(b)		ne electrolytic method, zinc oxide reacts with sulfuric acid to form impure aquec sulfate. This solution contains Ni ²⁺ , Co ²⁺ and Cu ²⁺ ions as impurities.	us
	(i)	Write the equation for the reaction between zinc oxide and sulfuric acid.	
			[1]
	(ii)	Nickel, cobalt and copper are all less reactive than zinc. Explain why the addition zinc powder removes these ions from the solution.	of
			[2]
(c)		solution of zinc sulfate is electrolysed using inert electrodes. selectrolysis is similar to that of copper(II) sulfate with inert electrodes.	
	(i)	Write the equation for the reaction at the negative electrode (cathode).	
			[1]
	(ii)	Complete the equation for the reaction at the positive electrode (anode).	
		$OH^- \rightarrow 2H_2O + \dots + \dots e^-$	[2]
	(iii)	The electrolyte changes from zinc sulfate to	
			[1]

(d)	(i)	Brass is an alloy of copper and zinc. Suggest two reasons why brass is often used in preference to copper.	For Examiner's Use
		[2]	
	(ii)	Sacrificial protection is a method of rust prevention. Explain in terms of electron transfer why steel, which is in electrical contact with zinc, does not rust.	
		[4]	
		[Total: 15]	

For

4 Sulfuric acid is a strong acid. Hexanesulfonic acid is also a strong acid. It has similar properties to sulfuric acid.

(a) Sulfonic acids are made from alkanes and oleum, $H_2S_2O_7$.

		$C_6H_{14} + H_2S_2O_7 \rightarrow C_6H_{13}SO_3H + H_2SO_4$	
	(i)	Describe how oleum is made from sulfur by the Contact process. Give equationand reaction conditions.	ons
			[6]
	(ii)	How is concentrated sulfuric acid made from oleum?	
			[1]
(b)	The	formula of the hexanesulfonate ion is C ₆ H ₁₃ SO ₃ ⁻ .	
	The	formula of the barium ion is Ba2+. What is the formula of barium hexanesulfonate	∍?
			[1]
(c)	Cor	nplete the following equations.	
	(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1]
	(ii)	calcium + hexanesulfonic → +	[1]
	(iii)	\dots $C_6H_{13}SO_3H + Na_2CO_3 \rightarrow \dots + \dots + \dots + \dots + \dots$	[2]

© UCLES 2013 0620/33/O/N/13

(d) (i)	Sulfuric acid is a strong acid. You are given aqueous sulfuric acid, concentration 0.1 mol/dm³, and aqueous hexanesulfonic acid, concentration 0.2 mol/dm³. Describe how you could show that hexanesulfonic acid is also a strong acid.
	[2]
(ii)	Deduce why, for a fair comparison, the two acid solutions must have different concentrations.
	[1]
(iii)	Explain the terms strong acid and weak acid.
	[2]
	[Total: 17]

5 Domestic rubbish is disposed of in landfill sites. Rubbish could include the following items.

For Examiner's Use

item of rubbish	approximate time for item to break down
newspaper	one month
cotton rag	six months
woollen glove	one year
aluminium container	up to 500 years
styrofoam cup	1000 years

			. ,					
		styrofoam cup	1000 years					
(a)	Explain why	aluminium, a reactive meta	ll, takes so long to corrode.					
				[1]				
(b)	b) Both paper and cotton are complex carbohydrates. They can be hydrolysed to simple sugars such as glucose. The formula of glucose can be represented as:							
		но—[] —он					
		uctural formula of a comple ast two glucose units.	x carbohydrate, such as co	tton.				

[2]

© UCLES 2013 0620/33/O/N/13

(ii) Name another substance which can hydrolyse proteins.

(c) Wool is a protein. It can be hydrolysed to a mixture of monomers by enzymes.				
	(i)	What are enzymes?		
		[2]		

-[1]
- (iii) What type of compound are the monomers formed by the hydrolysis of proteins?
- (iv) Which technique could be used to identify the individual monomers in the mixture?

 [1]
- (v) Proteins contain the amide linkage. Name a synthetic macromolecule which contains the same linkage.
 -[1]
- (d) (i) What is the scientific term used to describe polymers which do not break down in landfill sites?
 -[1]
 - (ii) Styrofoam is poly(phenylethene). It is an addition polymer. Its structural formula is given below. Deduce the structural formula of the monomer, phenylethene.

$$\begin{array}{c|c} - & CH_2 - CH \\ \hline & C_6H_5 \end{array} \end{bmatrix}_n$$

[1]

[Total: 11]

6 The alcohols form a homologous series. The first five members are given in the table below.

For Examiner's Use

(a)

alcohol	formula	heat of combustion in kJ/mol
methanol	CH ₃ OH	730
ethanol	CH ₃ -CH ₂ -OH	1380
propan-1-ol		
butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	2680
pentan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	3350

			3 2 2			
	(i)	Complete the tak	ole.			[2]
	(ii)	Complete the eq	uation for the comb	oustion of per	ntan-1-ol in excess oxy	/gen.
		C ₅ H ₁₁ OH	+O ₂ →	+		[1]
(b)		te three characte perties down the s		gous series o	other than the variatio	n of physical
						[3]
(c)	The	e following alcohol	s are isomers.			
		CH ₃ -CI	H ₂ -CH ₂ -CH ₂ -OH	and (CH ₃) ₂ C	CH-CH ₂ -OH	
	(i)	Explain why they	are isomers.			
						[2]

(ii) Draw the structural formula of another isomer of the above alcohols.

[1]

For
Examiner's
1100

(d) Alcohols can be made by fermentation and from petroleum.

(i) Ethanol is made from sugars by fermentation.

$C_6H_{12}O_6 \rightarrow$	2C ₂ H ₅ OH	+	$2CO_2$
----------------------------	-----------------------------------	---	---------

	The mass of one mole of glucose, $C_6H_{12}O_6$, is 180 g. Calculate the maximum mass of ethanol which could be obtained from 72 g of glucose.
	[3]
(ii)	Describe how ethanol is made from petroleum.
	petroleum (alkanes) $ ightarrow$ ethene $ ightarrow$ ethanol
	[3]
	[Total: 15]

© UCLES 2013 0620/33/O/N/13

DATA SHEET
The Periodic Table of the Elements

	0	4 T	Heliun 2		Ne	10		Ā	18		궃	e Krypton 36	131	Xe	54			e Radon 86						m Lutetium 71		ב	
	=			19	ш	Fluorine 9		CI	17	80	፵	Bromine 35	127	_	lodine 53		Ą	Astatine 85						Ytterbium 70	_	å	
	>			16	0	Oxygen 8	32	တ	Sulfur 16	62	Se	Selenium 34	128	<u>a</u>	Tellurium 52		Po	Polonium 84				169	E	Thulium 69		Md	1111
	>			41	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	ä	Bismuth 83				167	ш	Erbium 68		Fm	
	2			12		_	28	:S	Silicon 14	73	Ge	Ε		Sn	Tin 50			Lead 82					운	Holmium 67		Es	ì
	=			1	Ω	Boron 5	27	PΙ	Aluminium 13	70	Ga	Gallium 31	115	_	Indium 49		11	. 18				162	ρ	Dysprosium 66		ర	
										65	Zn	Zinc 30	112	ပ်	Cadmium 48	201	Η̈́	Mercury 80						Terbium 65		æ	
										64	D C	Copper 29	108	Ag	Silver 47			Gold 79				157	gq	Gadolinium 64		S	
Group										59	Z	Nickel 28	106	Pd	Palladium 46			_				152		Europium 63		Am	
Gre										59	ပိ	Cobalt 27	103	R	Rhodium 45	192		Iridium 77				150		Samarium 62		Pu	
		- I	Hydrogen 1							26	Fe	Iron 26	101	Ru	Ruthenium 44	190	os	Osmium 76					Pn	Promethium 61		۵N	
												Manganese 5		ည	n Technetium 43	186	Re	Rhenium 75				144	P N	Neodymium 60	238	_	
										52	ပ်	Chromium 24	96	Mo	Molybdenum 43	184	≯					141	Ā	Praseodymium 59		Ъа	
										51	>	Vanadium 23	93	QN	Niobium 41	181	Та	Tantalum 73				140	S	Cerium 58	232	Ŧ	
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72							nic mass	loc	
										45	လွ	Scandium 21	68	>	Yttrium 39	139	Ľa	Lanthanum 57 *	227	Ac	Actinium 89	Sprips	eries)	a = relative atomic mass	X = atomic symbol	
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	*58-71 Lanthanoid series	190-103 Actinoid series		a a	× ×	
	_			7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55		<u>ٿ</u>	Francium 87	58-711	90-1037			Kev	

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.