CSSE 332 – Operating Systems Rose-Hulman Institute of Technology Computer Science and Software Engineering Department

Page Table Structure B

Name:				Box:
(3 points) Consider	a two level	paging sy	stem. Assum	ne that frames are 256 bytes
Root Page Table Ptr	Addresss	Main Valid bit	Memory Frame Number	Physical Address Frame # Offset
	$0\\4$	1 1	104 334	
	8 12	0 1	45	
	16 20 24	1 1 1	115 713 2	
	28	0	228	
Virtual Address Page # Offset	256 260	1	900	
$rac{\text{or}}{\text{Index}_1 \mid \text{Index}_2 \mid \text{Offset}}$	264 268 272	0 1 0	820 20 5	
	276 280	0 0	1005 220	
	512	1	303	
	516 520 524	1 0 1	689 446 848	
	524 528 532	0	666	Register
	536	1	229	Interrupt Indicator

1. $2 2 105$
2. 6 2 240
3. 3 3 120
(7 points) Consider a 32-bit addressing scheme with 6 bits for $Index_1$, 12 for $Index_2$, 14 for the offset and 4 GB of physical memory.
4. How many entries are there in the root page table?
5. How many entries are there in the second level page table?
6. How many total entries are there in the page table structure?
7. What is the minimum size of each page table entry?
8. What is the size of each page?
9. What are the advantages of using a two level page table?
10. What are the disadvantages of using a two level page table?

(5 points) Consider an inverted page table system with hashing. Assume that frames are 1024 Bytes.

Virtual A	Address
Dama //	Official

Page # | Offset

D
Function

		Main Memory		
Addresss	Page	Frame	Valid	

	Page	Frame	vana	Rei.	
	#	#	bit	Ptr	
	104	8	1	0	
•••					

0	104	8	1	0
			•	
256	33	0	0	0
260	81	1	1	0
264	807	2	1	0
268	19	3	1	0
272	41	4	1	-3
276	26	5	0	0
280	803	6	1	-3
284	404	7	0	0

Physical Address Frame #Offset

Register

Interrupt Indicator

Page Table Ptr 256

> For each of the following virtual addresses, determine whether or not a page fault occurs, and if a page fault does not occur, translate the virtual address to a physical address.

Assume the hash function is h(x) = 3 + (x%8)

Note that this system uses chained hashing, with the Rel Ptr indicating the page table elements to the next entry in the chain.

- 11. 81|105
- 12. 41|640
- 13. 25|320
- $14. \ 28|204$
- 15. 19|880