2/2

3/3

2/2

Note: 20/20 (score total: 26/26)

+47/1/28+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS			
\mathbf{Quizz}	du	13/11/2013	

Nom et prénom :	
JOIE Kristen	·

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.
Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
approximation successives - flash - double rampe - simple rampe
double rampe - flash - approximation successives - simple rampe
flash - approximation successives - double rampe - simple rampe
approximation successives - flash - simple rampe - double rampe
flash - approximation successives - simple rampe - double rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant
$V_G \bigcap R_1 = R_C(26^{\circ}\text{C}) = 1,1\text{k}\Omega$ L'étendu de mesure est $[-25^{\circ}\text{C};60^{\circ}\text{C}].$ Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.
Question $3 \bullet$ Quelle est la capacité d'un condensateur plan? On note : • ϵ : Permittivité du milieu entre les armatures. • S : Surface des armatures. • d : Distance entre les armatures.
Question 4 •
Le capteur sur la photo ci-contre permet de mesurer
des différences de potentiels des potentiels des courants des températures.

...des différences de températures.

 $\frac{A_0}{1+ au_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u_-$. Pour le montage suivant, quel(s) est(sont) le(s) pol
c(s) de la FT entre ${\cal E}$

et Us, Que dire de la stabilité du système bouclé ?

6/6

Le système est instable $p = (A_0 + 1)/\tau_C$ $p = -(1 + A_0)/\tau_C$ $p = -A_0/\tau_C$ Le système est oscillant $p_1 = A_0/\tau_C$ et $p_2 = -A_0/\tau_C$ $p = (A_0 + 1)/\tau_C$