

EXTREME HEAT

County Statistics

^{*}NL white = Non-Latino white

on-Citizen L copulation .atino: 17%

Latino: 17% NL white: 2%

Limited English Rente Proficiency Ho

Latino: 25% NL white: 3%

Renter Occupied Households

Latino: 46% NL white: 33%

Poverty Rate

Latino: 16% NL white: 11%

(Household)

Latino: \$67k NL white: \$81k

Benefits
Latino: 18%
NL white: 10%

Latino: 20% NL white: 10%

Latino: 8% NL white: 4%

Latino: 14% NL white: 17%

Expectancy
Latino: 79 yrs
NL white: 74 yrs

Neighborhood Statistics

Extreme Heat Days

Latino Neighborhoods and Exposure to Extreme Heat Days (≥ 90°F), 2018-2022

Extreme heat days are defined as days where the temperature is at or above 90°F.

Annual Number of Extreme Heat Days (2018-2022)

At 90°F, the risk of heat-related illnesses and conditions increases significantly. **Latino** neighborhoods **NL white** neighborhoods

120 days

117 days

average days ≥ 90°F annually

Longest Period of Consecutive Extreme Heat Days (2022)

The Federal Emergency Management Agency defines a period of extreme heat in most of the U.S. as a period of 2 to 3 days above 90°F. **Latino** neighborhoods

NL white neighborhoods

69 days

71 days

consecutive days ≥ 90°F annually

Projected Number of Extreme Heat Days by Mid-Century (2035–2064)

Looking forward, NL white neighborhoods are projected to experience a greater number of extreme heat days.

Latino neighborhoods

NL white neighborhoods

122 days

127 days

expected days ≥ 90°F annually

Neighborhood Statistics (cont.)

Barriers and Facilitators To Preventing Heat Exposure

Tree Canopy

Trees provide natural protection from extreme heat, reducing temperatures in areas with higher canopy coverage. Less tree cover can increase heat exposure.

Impervious Surfaces

Impervious surfaces, such as roads and buildings, increase heat retention and contribute to higher temperatures.

Older Housing Units (built pre-1970)

Older homes' structural characteristics, such as a lack of insulation, single-pane windows, inefficient HVAC systems, and outdated construction materials, can make them more susceptible to extreme temperatures.

NL white neighborhoods 7% 7% share of land 43% share of land 27% share of land

share of housing units

Vulnerable Groups

Age

Older adults and children are at higher risk for heat-related illnesses.

31% 9% ages 60+ Latino neighborhoods

23% 22% ages 0-18 ages 60+ NL white neighborhoods

Workers in Heat-Exposed Occupations

Not all occupations carry the same risk for heat-related fatalities. According to the Bureau of Labor Statistics, industries with the highest average heat-related fatalities per year include Agriculture, Forestry, Fishing, and Hunting; Mining; Construction; Administrative and Support and Waste Management and Remediation Services; and Transportation and Warehousing.

% of Workers in Heat-Exposed Occupations

34% Latino neighborhoods 23% NL white neighborhoods

Health

Extreme heat days pose significant health risks, particularly for individuals with pre-existing conditions like cardiovascular disease, asthma, diabetes, and obesity. People with these conditions are among the most vulnerable during extreme heat events due to the added strain on their bodies, which can exacerbate their symptoms or lead to emergencies.

% of Diagnosed Illness in Adults (18+)

13%
Latino
NL white
neighborhoods
Diabetes

39% 31%
Latino NL white
neighborhoods neighborhoods

Obesity

Emergency Department Visits (per 10,000 people)

18 19
Latino NL white
neighborhoods neighborhoods
Heart Attacks

75 54
Latino NL white
neighborhoods
Asthma

Heat-Related Illness

Heat-related
emergency room
visits serve as a
critical indicator of a
neighborhood's
vulnerability to
extreme
temperatures and the
effectiveness of its
heat mitigation
strategies.

Heat-Related Emergency Department Visits

Latino NL white neighborhoods neighborhoods

4 3

8888 888

per 10,000 people

Disadvantaged Communities

Disadvantaged communities, identified by the California Environmental Protection Agency, face significant environmental and socioeconomic challenges. Under Senate Bill 535, funds from California's Cap-and-Trade Program prioritize these areas to reduce pollution, build climate resilience, and improve health and economic outcomes.

% of Disadvantaged Communities

100% Latino neighborhoods 0% NL white neighborhoods