Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2904

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

SPICE MODEL


```
* PART NUMBER:NJM2904
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2904 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
         +IN1 -IN1 V+ V- OUT1 NJM2904 SUB
X_U2
         +IN2 -IN2 V+ V- OUT2 NJM2904_SUB
.ends NJM2904
.subckt NJM2904_SUB 1 2 3 4 5
 c1 11 12 13.6603E-12
 c2 6 7 29.000E-12
       5 53 dy
 dc
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
       4 3 dx
  egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
       7 99 poly(5) vb vc ve vlp vln 0 100.84E6 -1E3 1E3 100E6 -100E6
        6 0 11 12 47.124E-6
  ga
 gcm 0 6 10 99 2.5472E-9
      3 10 dc 15.050E-6
 hlim 90 0 vlim 1K
 q1
      11 2 13 qx1
 q2 12 1 14 qx2
 r2
       6 9 100.00E3
      4 11 21.221E3
 rc1
 rc2
      4 12 21.221E3
 re1 13 10 17.714E3
 re2 14 10 17.714E3
  ree 10 99 13.289E6
      8 5 50
 ro1
 ro2 7 99 25
       3 4 503.0
 rp
       9 0 dc 0
 vb
       3 53 dc 2.2879
 VC
      54 4 dc .79791
 ve
 vlim 7 8 dc 0
  vlp 91 0 dc 20
       0 92 dc 20
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=333.70)
.model gx2 PNP(Is=870.6645E-18 Bf=276.50)
.ends
*$
```

Output Voltage Swing, +Vout and -Vout

Simulation result

Evaluation circuit

Output Voltage Swing	Data sheet	Simulation	%Error
+Vout(V)	3.5	3.5085	0.243
-Vout(V)	0	0	0

Input Offset Voltage

Simulation result

Evaluation Circuit

Input offset Voltage	Data sheet	Simulation	%Error
V _{os} (mV)	2	2.0049	0.245

Slew Rate

Simulation result

Evaluation Circuit

V ⁺ / V ⁻ = ±15V	Data sheet	Simulation	%Error
SR (V/us)	0.5	0.4995	-0.1

Input Current

Simulation result

Evaluation Circuit

Input Current	Data sheet	Simulation	% Error
I _b (nA)	25	25.036	0.144
I _{bos} (nA)	5	5.0196	0.392

Open loop Voltage Gain vs. Frequency, Av-dc, f-0dB

Simulation result

Evaluation Circuit

	Data sheet	Simulation	% Error
Av (dB)	100	100.475	0.475
f-0dB (MHz)	0.2	0.204343	2.171

Operating Current

Simulation result

Evaluation Circuit

Operating Current	Data sheet	Simulation	% Error
I _{CC} (mA)	0.7	0.701	0.143

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR = AV/ACM

= 100000/(0.586718/0.1)

	Data sheet	Simulation	% Error
CMRR (dB)	85	84.631	-0.434