

Χ

Click to register for Certification exam

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Biological Neuron (unit? unit=17&lesson=18)

Thank you for taking the Week 1: Assignment 1.

Week 1: Assignment 1

Your last recorded submission was on 2023-07-31, 08:17 IST

1) The table below shows the temperature and humidity data for two cities. Is the data linearly separable?

City	Temperature (°C)	Humidity (%)
A	25	50
A	20	60
A	30	40
D	-28	45

- O Yes
- ONo
- Cannot be determined from the given information
- 2) What is the perceptron algorithm used for?

1 point

1 point

Due date: 2023-08-09, 23:59 IST.

Assex	From Spring to Winter essment submitted. of AI (unit? unit=17&lesson=19)	 Clustering data points Finding the shortest path in a graph Classifying data 	
	The Deep Revival (unit? unit=17&lesson=20)	Solving optimization problemsWhat is the most common activation function used in perceptrons?	
	From Cats to Convolutional Neural Networks (unit? unit=17&lesson=21)	○ Sigmoid○ ReLU○ Tanh	
	Faster, higher, stronger (unit? unit=17&lesson=22)	Step4) Which of the following Boolean functions cannot be implemented by a perceptron?	l poin
	The Curious Case of Sequences (unit? unit=17&lesson=23)	O AND O OR	(0,0) on this data.
	Beating humans at their own games (literally) (unit? unit=17&lesson=24)	$lacktriangle$ XOR $lacktriangle$ NOT S) We are given 4 points in ${f R2}$ say, $x1=(0,1), x2=(-1,-1), x3=(2,3), x4=(4,-5).$ Labels of	
	The Madness (2013-) (unit? unit=17&lesson=25)	$x1, x2, x3, x4$ are given to be $-1, 1, -1, 1$ We initiate the perceptron algorithm with an initial weight $w_0 = (0, 0)$ on this data. What will be the value of w_0 after the algorithm converges? (Take points in sequential order from $x1$ to x)(update happens when value of weight changes)	
	(Need for) Sanity (unit? unit=17&lesson=26)	$\stackrel{\bigcirc}{(0,0)}$	
	Motivation from Biological Neurons (unit? unit=17&lesson=27)	$egin{pmatrix} \bigcirc \ (-2,-2) \ @ \ (-2,-3) \ \bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	McCulloch PittsNeuron, Thresholding	$(ar{1},1)$	

Logic (unit? essm թուե բենը <u>itted</u> 28)	6) We are given the following data:	1 point			
• Perceptrons (unit?	$\begin{bmatrix} x1 & x2 & y3 \end{bmatrix}$				
unit=17&lesson=29)					
Error and Error Surfaces (unit? unit=17&lesson=30)					
Perceptron Learning Algorithm (unit? unit=17&lesson=31)					
 Proof of Convergence of Perceptron Learning Algorithm (unit? unit=17&lesson=32) 	Can you classify every label correctly by training a perceptron algorithm? (assume bias to be 0 while training) O Yes				
Lecture Material for Week 1 (unit? unit=17&lesson=33)		1 point			
Quiz: Week 1: Assignment 1 (assessment? name=226)	heta=1 . For how many inputs will this MP neuron give output $y=1$? $ extstyle 21$ $ extstyle 31$ $ extstyle 30$				
Week 1 FeedbackForm: Deep Learning -IIT Ropar (unit?unit=17&lesson=35)	O 32	1 point			
Week 2 ()	The ability of a machine to perform tasks that normally require human intelligence				
	○ The ability of a machine to perform simple, repetitive tasks				
Download Videos ()	The ability of a machine to follow a set of pre-defined rules				
Books ()	○ The ability of a machine to communicate with other machines				

Text Transcripts ()

9) Which of the following statements is true about error surfaces in deep learning?

1 point

Assessment Sessiones ()

Χ

- O They are always convex functions.
- They can have multiple local minima.
- O They are never continuous.
- O They are always linear functions.
- 10) What is the output of the following MP neuron for the AND Boolean function?

$$y = \left\{egin{array}{ll} 1, & ext{if } x_1 + x_2 + x_3 \geq 1 \ 0, & ext{otherwise} \end{array}
ight.$$

$$oldsymbol{y}=1$$
 for $(x_1,x_2,x_3)=(0,1,1)$

$$y=0$$
 for $(x_1,x_2,x_3)=(0,0,1)$

$$y=1$$
 for $(x_1,x_2,x_3)=(0,1,1)$
 $y=0$ for $(x_1,x_2,x_3)=(0,0,1)$
 $y=1$ for $(x_1,x_2,x_3)=(1,1,1)$

$$y=0$$
 for $(x_1,x_2,x_3)=(1,0,0)$

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers