Low-Power LC-VCO-Based Chirp Signal Generator

Using Active Inductor

Full-Custom Design and Measurement on UMC 0.18 μm CMOS

AWARDS & RESEARCH FUNDING

Outstanding Project Award

VLSI Design Contest, Department of Electrical Engineering, National Yunlin University of Science and Technology, Taiwan, Nov. 2023

Research Grant Recipient

Undergraduate Student Research Program, National Science and Technology Council (NSTC), Taiwan, Jun. 2023

Chip Micrograph – UMC 0.18 µm CMOS

RF Test PCB with SMA Output

Hsuan-Yu Wu

Department of Electrical Engineering
National Yunlin University of Science and Technology

EMAIL: wuhsuanyu2002@gmail.com

Portfolio for M.S. Application – Analog IC Design

Contents

1.	MOTIVATION P.02 Present the motivation behind generating chirp signals for FMCW radar and the limitations of traditional analog / digital approaches.
2.	DESIGN OVERVIEW & KEY TECHNIQUES P.03 Introduce the architecture of the proposed chirp generator using an LC-VCO with active inductor and ramp voltage control.
3.	SIMULATION & VALIDATION RESULTS P.04 Show tuning range, output power, and chirp characteristics through Cadence simulations and waveform analysis.
4.	MEASUREMENT RESULTS & LITERATURE COMPARISON P.05 Present post-tape-out test results and benchmark design against recent analog chirp generation works.
5.	LAYOUT & HARDWARE IMPLEMENTATION P.06 Demonstrate full-custom layout, die photo, and PCB-level integration including impedance-matched routing and bonding.
6.	PROJECT SUMMARY & REFERENCES P.07 Summarizes project goals, acquired skills, future research plan, and key references in analog LC-VCO with active inductor design.

Motivation

MOTIVATION & PROBLEM

- 1. Require wideband frequency sweep for FMCW radar systems.
- 2. F a c e limitations in analog VCO: narrow tuning and high phase noise.
- **3.** A v o i d high-power and complex digital architectures.

DESIGN OBJECTIVES

- 1. Generate chirp signals with low power and continuous sweep.
- 2. Optimize spectral purity, tuning linearity, and integration size.
- 3. Target 3.0 3.5 GHz range for embedded radar use.

PROPOSED SOLUTION

- **1. Implement** LC-tank VCO with tunable active inductor.
- 2. Control oscillation frequency via ramp voltage from PCB circuit.
- **3. Fabricate** full-custom layout in UMC 0.18 μm CMOS with RO4003C PCB.

Design Overview & Key Techniques ≡

SYSTEM DESIGN HIGHLIGHTS

- 1. Designed LC-VCO with active inductor for linear sweep.
- 2. Achieved chirp range of 3.0-3.5 GHz with ramp control.
- 3. Completed full-custom layout in UMC 0.18µm CMOS, 0.122 mm².
- 4. Integrated external control via high-frequency RO4003C PCB.
- 5. Verified spectral purity and frequency sweep in simulation.

COMPARISON OF CHIRP SIGNAL

Type	Pros	Cons
Analog	Low power, simple circuit	Limited accuracy, higher phase noise
Digital	High precision, clean output	High power, complex hardware
Mixed	Combines advantages of both	Costly, harder to implement

LC-VCO Core

This work adopts the analog architecture to achieve low power, compact layout, and straightforward integration, making it suitable for practical chirp-based RF applications.

Ramp Control (Vctrl) & External PCB Circuit (RO4003C)

Full-custom LC-VCO design with active inductor for chirp modulation

Simulation & Validation Results

SIMULATION SUMMARY

- 1. Simulated tuning range: 2.0-5.0 GHz
- 2. Applied control voltage: 2.0-3.4V
- 3. Observed nonlinear tuning characteristic
- 4. Maintained output power : -30 ± 5 dBm
- 5. Verified continuous frequency sweep from ramp input
- **6. Improved** output flatness by increasing output capacitor from 100 pF to 300 pF

TECHNICAL OBSERVATION

Large output capacitor (300 pF) results in smoother power profile. Spectral output remains clean and monotonic — ideal for FMCW radar.

Control Voltage: 2.0 - 3.4 V

VCO Tuning Curve (Vctrl-Frequency Response)

(Time Domain)

CONCLUSIONS

These results confirm the VCO's wide tuning capability and power stability, demonstrating its suitability for clean, wideband chirp generation in analog radar systems.

Measurement Results & Literature Comparison

MEASUREMENT SUMMARY

- 1. Applied ramp voltage (2.6 3.2 V @ 1 MHz) from PCB
- 2. Measured chirp output in 3.0 3.5 GHz range
- 3. Observed power level of -40 to -50 dBm
- 4. Matched simulation result in bandwidth and waveform shape
- 5. Verified functional chirp generation using spectrum analyzer

Measured Spectrum Output (3.0–3.5 GHz)

Time-Domain Output (100 Hz Ramp)

This Design Outperforms Recent Cmos Chirp Generators In Both Bandwidth And Area Efficiency

Work	Technology	BW (Mhz)	Area (mm)	Center Freq (Ghz)
[1] APF (2020)	22 nm	140	0.25	0.08
[2] Mixer + VCO (2023)	65 nm	275	0.45	5.8
This Work	0 . 1 8 μ m CMOS	500	0.122	3.25

CONCLUSION HIGHLIGHT

These measurements confirm **successful** chirp generation with **clean spectrum** and **consistent bandwidth**, validating the full-custom analog design through both simulation and post-fabrication testing.

Layout & Hardware Implementation ≡

LAYOUT SUMMARY

- 1. Designed full-custom LC-VCO in UMC 0.18 µm CMOS
- 2. Integrated active inductor, output buffer, and pad ring
- 3. Achieved compact layout: 0.122 mm
- 4. Verified design via DRC, LVS, and post-layout simulation

HARDWARE INTEGRATION

- 1. Bonded fabricated chip to RO4003C PCB
- 2. Implemented ramp control externally via PCB circuit
- 3. Matched 50 Ω output trace with SMA port for RF measurement

Full-Custom Layout (0.122mm)

Fabricated Chip (UMC 0.18µm CMOS)

Test PCB with Bonded Chip (RO4003C)

Project Summary & References

This project presents a full-custom **analog chirp generator** based on an LC-VCO with a tunable active inductor, implemented in UMC 0.18 µm CMOS. From **schematic design** to **layout**, **tape-out**, and **hardware testing**, the complete system was validated through **simulation** and **measurement**.

SKILLS ACQUIRED

- · Designed and verified wideband LC-VCO with active inductor
- Completed full-custom layout and physical verification
- Built high-frequency PCB and executed full-system measurement
- · Acquired experience in Cadence, ADS, PCB tools, and RF analysis
- Conducted literature review and compared alternative VCO topologies, evaluating their advantages and limitations.
- Collaborated effectively to discuss technical challenges and implemented solutions through cross-functional communication.

FUTURE PLAN

I plan to pursue graduate research in analog and RF IC design, focusing on oscillator design, frequency synthesis, and mixed-signal systems. I aim to further enhance my design skills and contribute to next-generation wireless and radar front-end technologies.

REFERENCES

- [1] S. Kagita, S. George, and G. Fettweis, "Analog CMOS Non-Linear Chirp Generation Using All-Pass Filters," IEEE MWSCAS, 2020.
- [2] N. Naseh et al., "A Signal Generator and Down-Conversion Mixer for a 5.8-GHz FMCW Receiver," IEEE RWS, 2023.
- [3] B. Razavi, *Fundamentals of Microelectronics*, 2nd ed., Wiley, 2013.
- [4] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," Proc. IEEE, vol. 54, no. 2, pp. 329–330, 1966.

"This work demonstrates competitive performance in bandwidth and area compared to recent CMOS-based chirp generation circuits."