AEEM 3042 – Aircraft Performance & Design

Aircraft Design Wing Loading

Aircraft Design Process

Cincinnati

Historical Wing Loading

	(W/S) _{TO}
Long Range	110 - 130
Short/Medium Range	80 - 110
Short Takeoff & Landing	40 - 90
Light Civil	10 - 30
Combat Fighter	40 - 70
Combat Intercept	120 - 150
High Altitude	30 - 60

1 Transports

Wing Loading is a primary input into these flight phases:

- Takeoff
- **Landing**
- 1 Climb
- **1 L** Acceleration
- ↑ Range
 - Combat
 - Ceiling
 - Glide Rate

- Low W/S (large wing)
- THigh W/S (small wing)

Takeoff

$$V_{stall} = \sqrt{\frac{2 (W/S)}{\rho C_{L_{max}}}}$$

OBSTACLE
CLEARANCE
SPEED
SPEED
START OF
INITIAL
CLIMB

TOTAL TAKEOFF DISTANCE

OBSTACLE
CLEARANCE
SPEED

START OF
INITIAL
CLIMB

Rotation Speed > 1.05 V_{stall}

Takeoff Speed > 1.10 V_{stall}

> 1.20 V_{stall} Cincinno

(LAND OPERATIONS)

Takeoff Parameter (TOP) – correlates takeoff distances for a wide variety of aircraft

$$TOP = \left(\frac{W}{S}\right)_{TO} \frac{1}{C_{L_{max}} (T/W)_{TO} \sigma} \qquad \sigma = \frac{\rho_{TO}}{\rho_{SL}}$$

$$s_{TO} = 20.9 \text{ TOP} + 87 \sqrt{\text{TOP} (T/W)}$$

Example

Wing Loading (W/S)

$$TOP = \left(\frac{W}{S}\right)_{TO} \frac{1}{C_{L_{max}} (T/W)_{TO} \sigma} \qquad \sigma = \frac{\rho_{TO}}{\rho_{SL}}$$

$$s_{TO} = 20.9 \text{ TOP} + 87 \sqrt{\text{TOP} (T/W)}$$

For the 747-400 airliner at Sea Level:

$$\left(\frac{T}{W}\right)_{TO} = 0.289$$
 $\left(\frac{W}{S}\right)_{TO} = 154.9$ $C_{L_{max}} = 1.6$

$$TOP = \frac{154.9}{(1.6)(0.289)(1)} = 335.0$$

$$s_{TO} = (20.9)(335.0) + (87)\sqrt{(335.0)(0.289)} = 7,858 \text{ ft}$$

👃 Landing

Landing

Landing Parameter (LP) – correlates landing distances for a wide variety of aircraft

$$TOP = \left(\frac{W}{S}\right)_{L} \frac{1}{C_{L_{max}} \sigma} \qquad \sigma = \frac{\rho_{TO}}{\rho_{SL}}$$

$$s_L = 118 LP + 400$$

Example

Wing Loading (W/S)

$$TOP = \left(\frac{W}{S}\right)_{L} \frac{1}{C_{L_{max}} \sigma} \qquad \sigma = \frac{\rho_{TO}}{\rho_{SL}}$$

$$s_L = 118 LP + 400$$

For the 747-400 airliner at 630,000 lb (MLW):

$$\left(\frac{W}{S}\right)_{L} = 111.5$$
 $C_{L_{max}} = 1.6$ $LP = \frac{111.5}{(1.6)(1)} = 69.7$

$$s_L = (118)(69.7) + 400 = 8,625 \text{ ft}$$

$$\frac{(T-D)\,V}{W}\;=\frac{dh}{dt}+\frac{V}{g}\,\frac{dV}{dt}\;=\;P_{s}$$

For best climb & accel rate, need to minimize D / W

$$C_{D} = C_{D_{0}} + \frac{1}{\pi AR e} C_{L^{2}} \longrightarrow \mathbf{V} \frac{D}{W} = \mathbf{V} \frac{q C_{D_{0}}}{(W/S)} + \frac{(W/S)\mathbf{V}}{q \pi AR e}$$

	(W/S) _{TO}
Long Range	110 - 130
Short/Medium Range	80 - 110
Short Takeoff & Landing	40 - 90
Light Civil	10 - 30
Combat Fighter	40 - 70
Combat Intercept	120 - 150
High Altitude	30 - 60

$$R = \frac{V}{c_t} \, \frac{L}{D} \; \ln \frac{W_0}{W_1} \qquad \text{Breguet Range Equation}$$

		Propeller Aircraft	Jet Aircraft
R = 1 / 3	$\operatorname{Max} \frac{\operatorname{C_L}^{3/2}}{\operatorname{C_D}}$	Maximum Endurance	
R = 1	$\operatorname{Max} \frac{\operatorname{C_L}}{\operatorname{C_D}}$	Maximum Range	Maximum Endurance
R = 3	$Max \frac{C_L^{-1/2}}{C_D}$		Maximum Range

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$

↑ In Range

$$R = 3 C_{D_0} = 3 C_{D_L} = 3 k C_L^2$$

$$C_D = C_{D_0} + k C_L^2 = 4 k C_L^2$$

$$\frac{V L}{D} = \frac{V C_L}{C_D} = \frac{V C_L}{4 k C_L^2} = \frac{V}{4 k C_L}$$
Since $L = W \longrightarrow 1 V D = \frac{V q S}{4 k W} = \frac{q}{4 k W/S}$

↑ ↓ Range

- Lower W/S = bigger wing = less α to generate required lift = less induced drag = less thrust required = less fuel flow
- **1** Higher W/S = smaller wing = more α to generate required lift = less skin friction drag = less fuel flow
- Thigher W/S is desirable for a smoother ride at higher speeds, less area for a gust to act upon

Constant Altitude Cruise

As the aircraft burns off fuel during the cruise, the aircraft will naturally want to slow down to maintain a constant L / D

Calculate C_L at beginning of cruise leg: $C_L = W_1 / (0.5 \rho V^2 S)$ $C_L = constant$ for the entire cruise leg $W_2 = W_1 - fuel burned$, calculate V at the end of cruise leg

747-400 Example

Weight at beginning of cruise = 824,176 lb at 36,000 ft & 834.36 ft/sec

$$C_L = \frac{W_1}{0.5 \, \rho \, V^2 \, S} = \frac{824,176 \, (W1)}{(0.5)(0.00070856)(834.36)^2 (5650)} = 0.5915$$

$$V = \sqrt{\frac{W_2}{0.5 \, \rho \, C_L \, S}} = \sqrt{\frac{756,416 \, (W2)}{(0.5)(0.00070856)(0.5915)(5650)}} = 799.33 \, \text{ft/sec}$$

Cruise Climb

As the aircraft burns off fuel during the cruise, the aircraft will naturally want to climb to maintain a constant L / D

Calculate W_1 / δ at beginning of cruise leg (δ = density ratio) W / δ = constant for the entire cruise leg $W_2 = W_1$ – fuel burned, calculate δ at the end of cruise leg

747-400 Example

Weight at beginning of cruise = 824,176 lb at 36,000 ft

$$\frac{W_1}{\delta_1} = \frac{824,176}{0.2981} = 2,764,764 = \frac{W_2}{\delta_2}$$

$$\delta_2 = \frac{W_2}{(W_1/\delta_1)} = \frac{756,416}{2,764,764} = 0.2736 \longrightarrow h_2 = 37,806 \text{ ft}$$

Combat

Instantaneous Load Factor
$$\mathbf{1} n = \frac{q C_{L_{max}}}{(W/S)}$$

Sustained Load Factor
$$\mathbf{1}$$
 $\mathbf{n} = \sqrt{\frac{q \pi AR e}{(W/S)}} \left[\left(\frac{T}{W} \right)_{max} \frac{q C_{D_0}}{\mathbf{1}} \right]$

$$\tan \theta_{min} = \frac{1}{(L/D)_{max}}$$

Minimum descent angle = Maximum glide range

$$\begin{split} R &= 1 \qquad C_{D_0} = C_{D_L} = k \, C_L^{\ 2} \\ C_D &= C_{D_0} + k \, C_L^{\ 2} = 2 \, k \, C_L^{\ 2} \\ \frac{L}{D} &= \frac{C_L}{C_D} = \frac{C_L}{2 \, k \, C_L^{\ 2}} = \frac{1}{2 \, k \, C_L} \end{split}$$

Since
$$L = W \longrightarrow \frac{1}{D} = \frac{qS}{2kW} = \frac{q}{2k} \frac{1}{(W/S)}$$

	Landing		Weights			
0	H (f)	0	TOGW	874,786		
1.6	CL(max)	1.6	Start-up & Takeoff	852,916		
253,200	T(max) (lb)	253,200	Climb	823,917		
874,786	W_L (lb)	622,754	Cruise Out	721,904		
5650	S (f^2)	5650	Loiter	622,754		
154.83	W/S (lb/f^2)	110.22				
1.0000	SIGMA	1.0000				
0.289	T/W	0.407				
334.33	LP	68.89				
7,843	S_TO (f)	8,529				
	1.6 253,200 874,786 5650 154.83 1.0000 0.289 334.33	0 H (f) 1.6 CL(max) 253,200 T(max) (lb) 874,786 W_L (lb) 5650 S (f^2) 154.83 W/S (lb/f^2) 1.0000 SIGMA 0.289 T/W 334.33 LP	0 H (f) 0 1.6 CL(max) 1.6 253,200 T(max) (lb) 253,200 874,786 W_L (lb) 622,754 5650 S (f^2) 5650 154.83 W/S (lb/f^2) 110.22 1.0000 SIGMA 1.0000 0.289 T/W 0.407 334.33 LP 68.89	0 H (f) 0 TOGW 1.6 CL(max) 1.6 Start-up & Takeoff 253,200 T(max) (lb) 253,200 Climb 874,786 W_L (lb) 622,754 Cruise Out 5650 S (f^2) 5650 Loiter 154.83 W/S (lb/f^2) 110.22 1.0000 SIGMA 1.0000 0.289 T/W 0.407 334.33 LP 68.89	0 H (f) 0 TOGW 874,786 1.6 CL(max) 1.6 Start-up & Takeoff 852,916 253,200 T(max) (lb) 253,200 Climb 823,917 874,786 W_L (lb) 622,754 Cruise Out 721,904 5650 S (t^2) 5650 Loiter 622,754 154.83 W/S (lb/t^2) 110.22 1.0000 SIGMA 1.0000 0.289 T/W 0.407 334.33 LP 68.89	0 H (f) 0 TOGW 874,786 1.6 CL(max) 1.6 Start-up & Takeoff 852,916 253,200 T(max) (lb) 253,200 Climb 823,917 874,786 W_L (lb) 622,754 Cruise Out 721,904 5650 S (f^2) 5650 Loiter 622,754 154.83 W/S (lb/f^2) 110.22 1.0000 SIGMA 1.0000 0.289 T/W 0.407 334.33 LP 68.89

	CRUISE	CLIMB			CONSTANT AL	TITUDE CRUISE	
Cruise Out				Cruise Out			
Cruise Start		Cruise End		Cruise Start		Cruise End	
CD_0	0.0189	CD_0	0.0189	CD_0	0.0189	CD_0	0.0189
Α	7.9	Α	7.9	Α	7.9	Α	7.9
H (f)	26,180	H (f)	29,130	H (f)	26,180	H (f)	26,180
Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.7956
W (lb)	823,917	W (lb)	721,904	W (lb)	823,917	W (lb)	721,904
Lift (lb)	823,957	Lift (lb)	721,891	Lift (lb)	823,957	Lift (lb)	721,866
Delta	-40	Delta	13	Delta	-40	Delta	38
Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537
k	0.0504	k	0.0504	k	0.0504	k	0.0504
V (f/s)	862.74	V (f/s)	854.21	V (f/s)	862.74	V (f/s)	807.52
rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0318839	rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0356762
q (lbf/f^2)	412.34	q (lbf/f^2)	361.26	q (lbf/f^2)	412.34	q (lbf/f^2)	361.25
W/S (lb/f^2)	145.83	W/S_optimum	127.77	W/S (lb/f^2)	145.83	W/S_optimum	127.76
W/S_actual	145.83	W/S_actual	127.77	W/S_actual	145.83	W/S_actual	127.77

WINGLOAD.XLS

Iteration on Cruise Altitude

"Design of Aircraft"
- Thomas C. Corke

Take-off		Landing		Weights	
H (f)	0	H (f)	0	TOGW	874,786
CL(max)	1.6	CL(max)	1.6	Start-up & Takeoff	852,916
T(max) (lb)	253,200	T(max) (lb)	253,200	Climb	823,917
W_TO (lb)	874,786	W_L (lb)	622,754	Cruise Out	721,904
S (f^2)	5650	S (f^2)	5650	Loiter	622,754
M//O (II- (MO)	454.00	VV/O (II- (100)	440.00		
W/S (lb/f^2)	154.83	W/S (lb/f^2)	110.22		
SIGMA	1.0000	SIGMA	1.0000		
T/W	0.289	T/W	0.407		
TOP	334.33	LP	68.89		
S_TO (f)	7,843	S_TO (f)	8,529		

Input data from fact sheet & historical parameters

Input weights from HW #19 results in ITERTOW.XLS

Takeoff Altitude
Takeoff C_{Lmax}
Total Thrust
Wing Area

Landing Altitude Landing C_{Lmax}

	CRUISE CLIMB				CONSTANT AL	TITUDE CRUISE	
Cruise Out				Cruise Out			
Cruise Start		Cruise End		Cruise Start		Cruise End	
CD_0	0.0189	CD_0	0.0189	CD_0	0.0189	CD_0	0.0189
Α	7.9	Α	7.9	Α	7.9	Α	7.9
H (f)	26,180	H (f)	29,130	H (f)	26,180	H (f)	26,180
Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.7956
W (lb)	823,917	W (lb)	721,904	W (lb)	823,917	W (lb)	721,904
Lift (lb)	823,957	Lift (lb)	721,891	Lift (lb)	823,957	Lift (lb)	721,866
Delta	-40	Delta	13	Delta	-40	Delta	38
Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537
k	0.0504	k	0.0504	k	0.0504	k	0.0504
V (f/s)	862.74	V (f/s)	854.21	V (f/s)	862.74	V (f/s)	807.52
rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0318839	rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0356762
q (lbf/f^2)	412.34	q (lbf/f^2)	361.26	q (lbf/f^2)	412.34	q (lbf/f^2)	361.25
W/S (lb/f^2)	145.83	W/S_optimum	127.77	W/S (lb/f^2)	145.83	W/S_optimum	127.76
W/S_actual	145.83	W/S_actual	127.77	W/S_actual	145.83	W/S_actual	127.77

Calculate C_{D0}
Input Aspect Ratio
Input Cruise Mach
Iterate on altitude so W = L

$$\mathsf{C_{D_0}} = rac{\mathsf{S_{wet}}}{\mathsf{S_{ref}}} \; \mathsf{C_{f_e}}$$

Use same starting conditions as Cruise Climb Set end altitude = start altitude Iterate on Mach Number so W = L

	C _{fe} - subsonic
Bomber and Civil Transport	0.0030
Military Cargo	0.0035
Air Force Fighter	0.0035
Navy Fighter	0.0040
Clean Supersonic Cruise	0.0025
Light Aircraft – Single Engine	0.0055
Light Aircraft – Twin Engine	0.0045

$$C_{D_0} = \frac{S_{wet}}{S_{ref}} \ C_{f_e}$$

CRUISE CLIMB					CONSTANT AL	TITUDE CRUISE	
Cruise Out				Cruise Out			
Cruise Start		Cruise End		Cruise Start		Cruise End	
CD_0	0.0189	CD_0	0.0189	CD_0	0.0189	CD_0	0.0189
Α	7.9	Α	7 9	Α	7.9	Α	7.9
H (f)	26,180	H (f)	29,130	H (f)	26,180	H (f)	<u> 26,180</u>
Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.8500	Cruise Mach	0.7956
W (lb)	823,917	W (lb)	721,904	W (lb)	823,917	W (lb)	721,904
Lift (lb)	823,057	Lift (lb)	721,891	Lift (lb)	823,957	Lift (lb)	721,866
Delta	-40	Delta	13	Delta	-40	Delta	38
Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537	Cruise CL	0.3537
k	0.0504	k	0.0504	k	0.0504	k	0.0504
V (f/s)	862.74	V (f/s)	854.21	V (f/s)	862.74	V (f/s)	807.52
rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0318839	rho (lbm/f^3)	0.0356762	rho (lbm/f^3)	0.0356762
q (lbf/f^2)	412.34	q (lbf/f^2)	361.26	q (lbf/f^2)	412.34	q (lbf/f^2)	361.25
W/S (lb/f^2)	145.83	W/S_optimum	127.77	W/S (lb/f^2)	145.83	W/S_optimum	127.76
W/S_actual	145.83	W/S_actual	127.77	W/S_actual	145.83	W/S_actual	127.77

Use Excel Solver:

Find the altitude (H) that will result in W = L (or Delta = 0)

Use Excel Solver:

Find the Cruise Mach that will result in W = L (or Delta = 0)

Homework Assignments

HW #21 – Aircraft Design - Wing Loading (due by 11:59 pm ET on Monday)

HW Help Session

Monday 4:00 – 5:00 pm ET

Posted on Canvas

HW #21 Assignment with instructions, tips, and checklist WINGLOAD.XLS Excel file

Questions?