The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Solutions Assignment #4

(Continuity, Intermediate Value Property, Derivatives)

Q1. Determine the points of continuity for the function $f:[0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational.} \end{cases}$$

- Ans. f is discontinuous everywhere.
 - For, if x is a rational point, then we can find a sequence of irrationals (x_n) converging to x. However, $(f(x_n)) \to 1 \neq f(x) = 0$. Similarly, f is not continuous at any irrational point.
- Q2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) > c$, then there exists a $\delta > 0$ such that f(x) > c for all $x \in (x_0 \delta, x_0 + \delta)$.
- Ans. Since $f(x_0)-c>0$, choose ϵ such that $0<\epsilon< f(x_0)-c$. Since, f is continuous at x_0 , for this choice of ϵ , there exists a $\delta>0$, such that $|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\epsilon$. Hence, for all $x\in (x_0-\delta,x_0+\delta)$ $f(x)>f(x_0)-\epsilon>c$.
- Q3. Prove that if a continuous function $f : \mathbb{R} \to \mathbb{R}$ is also one-one then either f is a strictly increasing function or f is a strictly decreasing function.
- Ans. Since f is 1-1, if $x \neq y$, $f(x) \neq f(y)$. Assume x < y and f(x) < f(y). Let $c \in (x,y)$. We claim that $f(c) \in (f(x),f(y))$.

 Clearly, $f(c) \neq f(x)$, f(y). If possible, assume that f(x) > f(c). Then, $\frac{f(x)+f(c)}{2}$ lies in both the intervals (f(c),f(x)) and (f(c),f(y)). By the intermediate value theorem, we can find, $x_1 \in (x,c)$ and $x_2 \in (c,y)$ such that $f(x_1) = \frac{f(x)+f(c)}{2}$ and $f(x_2) = \frac{f(x)+f(c)}{2}$. Here, $x_1 \neq x_2$, but $f(x_1) = f(x_2)$, a contradiction. Thus f(x) < f(c).
- Q4. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which takes only rational values. Show that f is a constant function.
- Ans. Suppose $f(x) \neq f(y)$ for some $x, y \in \mathbb{R}$. Let us choose an irrational number α between f(x) and f(y). Since f is continuous by IVP, there exists $z \in (x, y)$ such that $f(z) = \alpha$ which is a contradiction (as f takes only rational values).
- Q5. Show that the polynomial $x^4 + 2x^3 9$ has at least two real roots.

- Ans. Let $p(x) = x^4 + 2x^3 9$. Then p(0) = -9 and $p(x) \to \infty$ as $x \to \pm \infty$. Therefore, by intermediate value theorem there exist two real roots say a > 0, b < 0 of p(x). Note that $p'(x) = 4x^3 + 6x^2 = 2x^2(2x+3)$ and $p\left(-\frac{3}{2}\right) = \neq 0$. a, b are simple roots of p. Since complex roots occur in pair, if p has three real roots, it will have all four as real roots. Also none of them is a repeated root. Therefore, p' must vanish at three distinct points, which is not true. Hence p has exactly two real roots.
- Q6. Let $f:[1,3] \to \mathbb{R}$ be a continuous function. Prove that there exist real numbers $x_1, x_2 \in [1,3]$ such that

$$x_2 - x_1 = 1$$
 and $f(x_2) - f(x_1) = \frac{1}{2}(f(3) - f(1)).$

- Ans. Define $g(x) = f(x+1) f(x) \frac{1}{2}(f(3) f(1))$. Then g(1) = -g(2). By the intermediate value property, there exists $c \in (1,2)$ such that g(c) = 0 i.e. $f(c+1) f(c) = \frac{1}{2}(f(3) f(1))$. Here $x_1 = c$ and $x_2 = c + 1$.
- Q7. Show that the function f(x) = x|x| is differentiable at 0. More generally, if f is continuous at 0, then g(x) = xf(x) is differentiable at 0.
- Ans. Easy. Use definition of the derivative of a function.
- Q8. Check the function $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ for differentiability.
- Ans. f'(0) does not exist as $\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \sin\frac{1}{h}$, which doesn't exist.
- Q9. Show that the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ is differentiable at all $x \in \mathbb{R}$. Also show that the function f'(x) is not bounded on the interval [-1,1]. From this deduce that f'(x) is not continuous at x = 0. Thus, a function that is differentiable at every point of \mathbb{R} need not have a continuous derivative f'(x).
- Ans. Note that $f'(0) = \lim_{h \to 0} h \sin \frac{1}{h^2} = 0$. Therefore, f is differentiable at 0. At any other point f is differentiable being the product of two differentiable functions. Hence f is differentiable for all real x.

We have
$$f'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Here $2x \sin \frac{1}{x^2}$ is bounded in [-1,1] but $\frac{2}{x} \cos \frac{1}{x^2}$ is not bounded in any interval containing 0. Hence f'(x) is not bounded on [-1,1] and so it can not be continuous at [-1,1].

Q10. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is an even function $[(f(-x) = f(x) \text{ for all } x \in \mathbb{R}]$ and has a derivative at every point, then the derivative f' is an odd function $[(f(-x) = -f(x) \text{ for all } x \in \mathbb{R}]$.

Ans.
$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{x \to 0} \frac{f(x-h) - f(x)}{h} = -\lim_{k \to 0} \frac{f(x+k) - f(x)}{k} = -f'(x).$$

i.e. the derivative of f is an odd function.