DoSA-Open_3D User Manual

Example of Solenoid

2020-12-02 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

Analysis Model

Analysis Model

1. Model Shape

2. Product Specifications

A. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

B. Power

• Voltage : 14.5V

(Example Files: DoSA-Open_3D Install Directory > Samples > Solenoid)

New design

1. Toolbar > Click New Button

2. Design Name: "Solenoid"

3. Shape File (STEP): Select Solenoid.step (Example Files: DoSA Install Directory > Samples > Solenoid)

[Precautions for the Shape Model]

DoSA-Open_3D still has the following functional limitations.

- 가. Limitation of Coil Shape
 - Coil center axis should be Y axis direction.
 - The current is applied like a cylindrical coil. (Square coils can cause some differences)
- 나. Moving Part
 - The moving part still supports only one component..

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add Coil

- 1. Toolbar > Click Coil button
- Coll
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

- 1. Input Coil specifications
 - ✓ Part Material : Copper
 - ✓ Current Direction : IN (Inner Direction)
 - ✓ Moving Parts : FIXED (Fixed Part)
 - ✓ Coil Wire Grade : Enameled_IEC_Grade_2
 - ✓ Inner Diameter : 9.6 mm
 - ✓ Outer Diameter : 21.6 mm
 - ✓ Coil Height: 16 mm
 - ✓ Copper Diameter: 0.27 mm
 - ✓ Horizontal Coefficient : 0.9 (Enameled Type)
 - ✓ Vertical Coefficient : 0.98 (Enameled Type)
 - ✓ Resistance Coefficient : 1 (Enameled Type)
- 2. Calculate the coil specification
 - ✓ Click "Coil Design" button

1

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
■ Design Fields (optional)		nal)
	Coil Wire Grade	Enameled_IEC_Grade_2
	Inner Diameter [mm]	9.6
	Outer Diameter [mm]	21.6
	Coil Height [mm]	16
	Copper Diameter [mm]	0,27
	Wire Diameter [mm]	0,31072
	Coil Temperature [°€]	20
	Horizontal Coefficient	0.9
	Vertical Coefficient	0,98
	Resistance Coefficient	1

Add Armature

- 1. Toolbar > Click Steel button
- Steel
- 2. Select "Armature" in the list box.
- 3. Click the OK button.

Armature setting

1. Armature setting

✓ Part Material : SUS_430

✓ Moving Parts : Moving (Moving Part)

[BH 곡선]

Add core

- 1. Toolbar > Click Steel button
- Steel
- 2. Select "Core" in the list box.
- 3. Click the OK button.

Core setting

1. Core settings

✓ Part Material : SUS_430

✓ Moving Parts : FIXED (Fixed Component)

[BH 곡선]

1

Δ	Common Fields		
	Node Name	Core	
Δ	Specification Fields		
	Part Material	SUS_430	
	Moving Parts	FIXED	

Add case

- 1. Toolbar > Click Steel button
- Steel
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Settings

✓ Part Material : SUS_430

✓ Moving Parts : FIXED (Fixed Component)

[BH 곡선]

1

■ Common Fields	
Node Name	Case
■ Specification Fields	3
Part Material	SUS_430
Moving Parts	FIXED

Virtual Experiments

Virtual Experiment of magnetic force

1. Toolbar > Click Force Button

4 Force

2. Force Experiment Name: "Force"

3. Click OK Button

4. Setting of magnetic force experiment

✓ Voltage: 14.5 V

5. Setting of analysis condition

✓ Mesh Size Percent : 5 %✓ Actuator Type : Solenoid

6. Click "Force Test" Button

Run the virtual experiment

7. Click the Run button after checking the shape.

Results of the virtual experiment

- 8. Check the analysis results after solving. (The solving time is depend on you system specification)
- 9. Quit the Gmsh.
- 10. If you want to see the analysis progress, click the status bar of the Gmsh.
- 11. Check a magnetic force of the solenoid.

Thank You