

Classe: 4^{ème} Math & 4^{ème} Sc-exp

Série physique:

Oscillations électriques forcées : série 3

Prof: Hílelí Adel

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

Le circuit électrique de la figure ci-contre comporte en série :

- un condensateur de capacité **C**.
- un résistor de résistance $R = 160 \Omega$.
- une bobine d'inductance L et de résistance propre r.

L'ensemble est alimenté par un G.B.F, délivrant une tension

sinusoïdale $u(t) = 20\sqrt{2} \sin(2\pi Nt)$, de et de fréquence N réglable.

 1°) A l'aide d'un oscilloscope bi-courbe on visualise les tensions $u_{R}(t)$ et $u_{R}(t)$ respectivement aux bornes de la bobine et aux bornes du résistor. On obtient, sur l'écran de l'oscilloscope, les deux courbes de la figure ci-dessous.

helle	EC
2,5ms/div	Horizontale
4Volt/div	Voie(A)
2√2 Volt/div	Voic(B)

Montrer que la courbe de la **voie** (B) correspond à celle de $u_B(t)$.

- 2°) En utilisant les courbes de la Figure ci-dessus déterminer:
 - a- La fréquence excitatrice N.
 - **b-** Les tensions maximales respectives U_{Rm} aux bornes du résistor et U_{Bm} aux bornes de la bobine.
 - **c-** L'impédance **Z** du circuit.
 - **d-** Le déphasage de la tension $\mathbf{u}_{\mathbf{B}}(t)$ par rapport au courant $\mathbf{i}(t)$ du circuit.

3°)

a- Faire une construction de Fresnel décrivant les oscillation du circuit où l'on représentera les vecteurs associés aux tensions $u_R(t)$, $u_B(t)$ et u(t) et u(t).

Echelle: 1cm
$$\longrightarrow$$
 $2\sqrt{2}$ v

b- Déduire en utilisant cette construction de Fresnel les valeurs de la résistance \mathbf{r} de la bobine, de l'inductance \mathbf{L} de la bobine et de la capacité \mathbf{C} du condensateur.

- c- Déterminer le déphasage de la tension u(t) par rapport à i(t). Préciser alors la nature du circuit.
- **d-** Calculer la valeur de la puissance moyenne consommée par le résonateur pour cette fréquence.
- $\mathbf{4}^{\circ}$) On règle la fréquence du GBF à une valeur pour laquelle la tension $\mathbf{u}_{\mathcal{C}}(t)$ aux bornes du condensateur devient en quadrature de phase avec la tension $\mathbf{u}(t)$.
 - a- Montrer alors que le circuit est siège d'une résonance d'intensité.
 - **b-** Calculer la valeur maximale I_{m0} de l'intensité de courant.
 - c- Calculer la puissance moyenne consommée par le circuit.
 - d-Dire, en le justifiant, s'il y a apparition du phénomène de surtension dans ces conditions.
 - e-Montrer que, dans ces conditions, $\mathbf{u}(\mathbf{t}) = (\mathbf{R}+\mathbf{r}).\mathbf{i}(\mathbf{t})$.
 - f-En déduire que, dans ces conditions, l'énergie électromagnétique du circuit est conservée.

Exercice 2:

Une portion de circuit AB comporte en série un résistor de résistance \mathbf{R} variable, une bobine de résistance \mathbf{r} et d'induction \mathbf{L} et un condensateur de capacité \mathbf{C} variable. Cette portion de circuit AB est excitée par un générateur de basse fréquence (GBF) qui délivre une tension sinusoïdale $\mathbf{u}(\mathbf{t}) = \mathbf{U}_m \sin(\omega t)$ de fréquence N réglable. On observe sur un oscilloscope bicourbe les tensions $\mathbf{u}(\mathbf{t})$ sur la voie \mathbf{X} et $\mathbf{u}_{\mathcal{C}}(\mathbf{t})$ sur la voie \mathbf{Y} .

I- Pour une résistance R_1 du résistor et pour une capacité C_1 = 4,5 μF on obtient les oscillogrammes suivants pour une fréquence N= N_1 du GBF :

- 1- Compléter le schéma de la **figure 2** de l'annexe en indiquant les éléments de la partie du circuit AB et les connexions aux bornes de l'oscilloscope permettant cette visualisation.
- 2- Montrer que la courbe & représente u(t).
- 3- Déterminer à partir du graphe :
- a- la fréquence N₁.
- **b** les tensions maximales U_m et U_{cm} .
- c- Le déphasage $\Delta \boldsymbol{\varphi} = \boldsymbol{\varphi_u} \boldsymbol{\varphi_{uc}}$.
- d- En déduire que $\varphi_i \varphi_u = \frac{\pi}{6}$ rad. Préciser alors l'état électrique du circuit.
- 4- Ecrire u(t) et $u_c(t)$.
- 5- Calculer la valeur de l'intensité maximale I_m qui traverse le circuit et l'impédance \mathbb{Z} du circuit AB.

6-

- a- Faire la construction de Fresnel de l'annexe en traçant selon l'échelle indiquée les vecteurs correspondant à $\mathbf{u}(t)$; $R_T i(t)$; $\frac{1}{C_1} \int i d(t) \, dt \, dt$ avec $R_T = (\mathbf{R_1} + \mathbf{r})$
- **b** Déduire de cette construction la valeur :
- de la résistance totale du circuit R_T
- de l'inductance L de la bobine.
- 7- On modifie la valeur de la capacité à une valeur C_2 on constate que l'intensité maximale I_m qui traverse le circuit reste la même.
 - a- Montrer que C_1 et C_2 vérifie la relation $\frac{1}{C_2} + \frac{1}{C_1} = 8\pi^2 N_1^2 L$
 - b- Calculer C2.

VoieX VoieY

Axe des phases

