

A1 Formulas.

• products and lengths and angles:

$$\circ \mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta \quad \circ \|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$$

• projection and scalar component:

$$\circ \operatorname{proj}_v(w) = \left(\frac{v \cdot w}{v \cdot v}\right) v \quad \circ \operatorname{comp}_v(w) = \frac{v \cdot w}{\|v\|}$$

• scalar triple product:

$$\circ \mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) = \mathbf{r} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{r} \times \mathbf{v})$$

A2 Formulas.

• distance from point X to plane ₱ with normal n:

$$\circ \frac{|\mathbf{AX} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$$
 where A is on \mathcal{P}

• distance from point X to line ℓ with direction vector v:

$$\circ \frac{\|\mathbf{A}\mathbf{X} \times \mathbf{v}\|}{\|\mathbf{v}\|} \text{ where } \mathbf{A} \text{ is on } \mathbf{\ell}$$

• distance between non–parallel lines ℓ_1 and ℓ_2 :

$$\circ \frac{|\mathbf{AB} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$$
 where A is on ℓ_1 , B is on ℓ_2 , **n** is common normal