MATLAB-SUMo INTERFACE WITH

TRACI4MATLAB

ABHINAV ANAND Summer Project Intern IIT-Kharagpur

OBJECTIVES:

Understand the working of Electric vehicle and conventional vehicle simulation in SUMo through MATLAB

& Access the vehicle models for energy/emission calculation and edit the source code to get required hybrid vehicle model

& Simulate the resultant model in SUMo through Matlab

TIMELINE

Simulation of electric and conventional vehicle in SUMo (MATLAB) 16 June Accessing and editing of SUMo source code 22 June MATLAB-SUMo simulation of resultant model 26 June Project Report 30 June

About SUMo

- The simulation platform offers many features, like *microscopic simulation* (small area of map), *online interaction*(access sumo using other software like TRACI) and the simulation of *multimodal traffic* (cars, trucks, buses, pedestrians etc.)

Steps in TraCI modelling

Building a road network

Each SUMO model is built on a network of roads, junctions, traffic lights, and other infrastructure items such as induction loop detectors. Compared to the vehicles and their movements, these are the **static** elements of the model. For TraCI, we separate these definitions from the Python scripts in a data folder.

Generating the .net.xml file

We use the functions netconvert and *.netccfg to compile all the data files created.

Add Vehicles and Routes with *.rou.xml

To get traffic moving on our network, we first need to define vehicles and routes for vehicles to travel along.

This is done in the cross.rou.xml file

Generate Traffic

Generate_routefile()

Control Traffic with Traffic Lights and Induction Loop

trafficlights.setPhase(string,int) ->

The try block tries to locate and include the TraCI python module traci and sumolib from the \$SUMO_HOME/tools directory.

Finally, once import has been completed, the script triggers the sumo model and then execute the run() function to establish the connection with the following code section

MATLAB

Getting results from MATLAB

```
indloopSubsResults = traci.inductionloop.getSubscriptionResults('0');
no = indloopSubsResults(constants.LAST_STEP_VEHICLE_NUMBER);
lsms = indloopSubsResults(constants.LAST_STEP_MEAN_SPEED);
```

The results from TraCI simulation are in the form of TraCI constants which are the traffic parameters for a given map system