日本国特許庁 JAPAN PATENT OFFICE

S. Okamoto eta. 7/18/03 P 76473 10 fj

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月23日

出 願 番 号

Application Number:

特願2002-213642

[ST.10/C]:

[JP2002-213642]

出 願 人
Applicant(s):

住友化学工業株式会社

2003年 7月 2日

特許庁長官 Commissioner, Japan Patent Office

特2002-213642

【書類名】 特許願

【整理番号】 P154633

【提出日】 平成14年 7月23日

【あて先】 特許庁長官殿

【国際特許分類】 C08G 63/60

【発明者】

【住所又は居所】 茨城県つくば市北原6 住友化学工業株式会社内

【氏名】 岡本 敏

【発明者】

【住所又は居所】 大阪府大阪市此花区春日出中3丁目1番98号 住友化

学工業株式会社内

【氏名】 細田 朋也

【特許出願人】

【識別番号】 000002093

【氏名又は名称】 住友化学工業株式会社

【代理人】

【識別番号】 100093285

【弁理士】

【氏名又は名称】 久保山 隆

【電話番号】 06-6220-3405

【選任した代理人】

【識別番号】 100094477

【弁理士】

【氏名又は名称】 神野 直美

【電話番号】 06-6220-3405

【選任した代理人】

【識別番号】 100113000

【弁理士】

【氏名又は名称】 中山 亨

【電話番号】 06-6220-3405

【選任した代理人】

【識別番号】 100119471

【弁理士】

【氏名又は名称】 榎本 雅之

【電話番号】 06-6220-3405

【手数料の表示】

【予納台帳番号】 010238

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 0109029

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 芳香族液晶ポリエステルフィルムおよびその金属積層体

【特許請求の範囲】

【請求項1】

下記式(I)

で示される構造単位、下記式(II)

(nは、0または1を表す。)

で示される構造単位、及び下記式(III)

で示される構造単位がエステル結合してなり、重量平均分子量が5000~100000である芳香族液晶ポリエステルからなることを特徴とする芳香族液晶ポリエステルフィルム。

【請求項2】

式(II)、式(III)で示される構造単位に加えて、さらに下記式(IV)

(IV)

で示される構造単位がエステル結合してなる請求項1記載のフィルム。

【請求項3】

(I) が全構造単位に対して40~70モル%であり、かつ(II)/(III)のモル比が (95/100) ~(100/95)である請求項1記載のフィルム。

【請求項4】

(I) が全構造単位に対して55~60モル%である請求項1または3記載の芳香 族液晶ポリエステルフィルム。

【請求項5】

構造単位(II)がヒドロキノン由来の構造単位であり、構造単位(III)が2, 6ーナフタレンジカルボン酸由来の構造単位である請求項1、3、4のいずれかに記載のフィルム。

【請求項6】

(I) が全構造単位に対して40~70モル%であり、(III)/(IV)のモル比が(95/5)~(5/95)で、かつ(II)/[(III)+(IV)]のモル比が(95/100)~(100/95)である請求項2記載のフィルム。

【請求項7】

(I) が全構造単位に対して55~60モル%であり、(III)/(IV)のモル比が(8 0/20)~(20/80)である請求項2または6記載のフィルム。

【請求項8】

構造単位(II)がヒドロキノン由来の構造単位であり、構造単位(III)が2,6-ナフタレンジカルボン酸由来の構造単位であり、構造単位(IV)がテレフタル酸由来、イソフタル酸由来、またはテレフタル酸とイソフタル酸との混合物由来の構造単位である請求項2、6、7のいずれかに記載のフィルム。

【請求項9】

請求項1~8のいずれかに記載のフィルムと金属層とを積層してなることを特徴とする積層体。

【請求項10】

金属層が、金、銀、銅、ニッケルおよびアルミニウムからなる群から選ばれる 少なくとも1種の金属からなる金属層である請求項9に記載の積層体。

【請求項11】

金属層が、銅層である請求項9または10記載の積層体。

【請求項12】

請求項9~11のいずれかに記載の積層体を用いて得られることを特徴とする プリント配線板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、芳香族液晶ポリエステルフィルムおよび芳香族液晶ポリエステルフィルムと金属層との積層体に関する。

[0002]

【従来の技術】

近年、電気・電子部品の軽量・小型化に伴い、樹脂フィルムと金属層との積層体からなるフレキシブルプリント配線板に対する需要が増大してきている。フレキシブルプリント配線板には、一般的にはポリイミド樹脂フィルムが使用されているが、ポリイミド樹脂フィルムは吸水性を有するという問題があった。そこで、吸水性が低い芳香族液晶ポリエステルフィルムと金属層との積層体を用いて得られるフレキシブルプリント配線板が検討されている。

しかしながら、従前の芳香族液晶ポリエステルフィルムは、ポリイミド樹脂フィルムに比べて線膨張係数が大きいため、金属層と樹脂フィルムとの界面で剥離が生じるなどの問題があった。

そこで、吸水性が低く、しかも線膨張係数が小さい芳香族液晶ポリエステルフィルムの開発が望まれていた。

[0003]

【発明が解決しようとする課題】

本発明の目的は、吸水性が低く、しかも線膨張係数が小さい芳香族液晶ポリエステルフィルムを提供することにある。

[0004]

【課題を解決するための手段】

本発明者らは、上記したような問題がない芳香族液晶ポリエステルフィルムを

見出すべく、鋭意検討を重ねた結果、下記式(I)~(III)で示される構造単位がエステル結合してなり、かつ重量平均分子量が5000~100000である芳香族液晶ポリエステルカらなる芳香族液晶ポリエステルフィルムが、吸水性が低く、しかも線膨張係数が小さいことを見出し、本発明を完成させるに至った。

[0005]

即ち、本発明は、下記式(I)

で示される構造単位、下記式(II)

(nは、0または1を表す。)

で示される構造単位、及び下記式(III)

で示される構造単位がエステル結合してなり、重量平均分子量が5000~100000である芳香族液晶ポリエステルからなることを特徴とする芳香族液晶ポリエステルフィルムを提供するものである。

[0006]

【発明の実施の形態】

以下、本発明を詳細に説明する。

本発明の芳香族液晶ポリエステルフィルムは、上記式(I)~(III)で示される構造単位または上記式(I)~(IV)で示される構造単位がエステル結合してなるサーモトロピック液晶ポリマーと呼ばれるポリエステルからなり、400℃以

下の温度で異方性溶融体を形成するものである。

[0007]

構造単位(I)は、pーヒドロキシ安息香酸に由来する構造単位であり、液晶性発現の観点から、pーヒドロキシ安息香酸に由来する構造単位は、全構造単位に対して30~80モル%が好ましく、より好ましくは40~70モル%、さらに好ましくは、55~60モル%である。

[0008]

構造単位(II)は、ヒドロキノンおよび4,4 'ージヒドロキシビフェニルからなる群から選ばれる少なくとも一種の化合物に由来する構造単位からなるが、これらの中でヒドロキノンに由来する構造単位であることが好ましい。

[0009]

構造単位(III)は、ナフタレンジカルボン酸類に由来する構造単位であり、ナフタレンジカルボン酸類に由来する構造単位としては、例えば、1,4ーナフタレンジカルボン酸、1,5ーナフタレンジカルボン酸、2,3ーナフタレンジカルボン酸、2,6ーナフタレンジカルボン酸、2,7ーナフタレンジカルボン酸に由来する構造単位などが挙げられる。構造単位(III)は、二種以上のナフタレンジカルボン酸類に由来する構造単位からなっていてもよい。入手性、耐熱性の点から、2,6ーナフタレンジカルボン酸に由来する構造単位であることが好ましい。

[0010]

構造単位(IV)は、テレフタル酸、イソフタル酸およびフタル酸からなる群から 選ばれる少なくとも一種の化合物に由来する構造単位からなり、テレフタル酸、 イソフタル酸、またはテレフタル酸とイソフタル酸との混合物に由来する構造単 位であることが好ましく、耐熱性の観点からテレフタル酸、またはテレフタル酸 とイソフタル酸との混合物に由来する構造単位であることがより好ましい。

[0011]

構造単位(I)~(III)がエステル結合してなる芳香族液晶ポリエステルの場合、構造単位(II)と構造単位(III)とのモル比が、(II)/(III)=(95/100)~(100/95)であることが好ましい。

構造単位(I)~(IV)がエステル結合してなる芳香族液晶ポリエステルの場合、構造単位(II)、構造単位(III)、構造単位(IV)のモル比が、(II)/[(III)+(IV)]=(95/100)~(100/95)であることが好ましい。また、構造単位(III)と構造単位(IV)とのモル比は、線膨張係数の観点から(III)/(IV)=(5/95)~(95/5)であることが好ましく、より好ましくは(20/80)~(80/20)である。(III)の割合が5未満であると線膨張係数が大きくなる傾向がある。

[0012]

本発明で用いる芳香族液晶ポリエステルは、例えば、pーヒドロキシ安息香酸及びヒドロキノンのフェノール性水酸基を、脂肪酸無水物でアシル化してアシル化物を得、次いで1,4ーナフタレンジカルボン酸、または1,4ーナフタレンジカルボン酸とテレフタル酸との混合物のカルボキシル基と該アシル化物とをエステル交換するなどの方法により製造することができる。

所定の分子量を有する芳香族液晶ポリエステルを製造するためには、溶融状態でエステル交換時に触媒としてイミダゾール化合物を100~1000ppm添加して、重合して得られた樹脂を粉末状にして窒素雰囲気下、固層重合により所定の温度で熱処理することが好ましい。

熱処理温度は200~400℃が好ましく、さらに好ましくは250℃~350℃である。

[0013]

該イミダゾール化合物としては、例えば、イミダゾール、1ーメチルイミダゾール、2ーメチルイミダゾール、4ーメチルイミダゾール、1ーエチルイミダゾール、2ーエチルイミダゾール、4ーエチルイミダゾール、1, 2ージメチルイミダゾール、1, 4ージメチルイミダゾール、2, 4ージメチルイミダゾール、1ーメチルー2ーエチルイミダゾール、1ーメチルー4エチルイミダゾール、1ーエチルー2ーメチルイミダゾール、1ーエチルー2ーメチルイミダゾール、1ーエチルー2ーフェニルイミダゾール、2ーエチルー4ーメチルイミダゾール、2ーフェニルイミダゾール、2ーフェニルイミダゾール、2ーフェニルイミダゾール、1ーベンジルー2ーメチルイミダゾール、2ーフェニルー4ーメチルイミダゾール、1ーシアノエチルイミダゾール、1ーシアノエチルイミダゾール、1ーシアノエチルイミダゾール、1ーシアノエチルイミダゾール、1ーシアノエチルー2ーフェニルイミダゾール、4ーシアノエチルー2ーエチルー4ーメチルイ

ミダゾール、1-アミノエチルー2-メチルイミダゾール、1-(シアノエチル アミノエチル)-2-メチルイミダゾール、N-「2-(2-メチル-1-イミダゾリル) エチル 尿素、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエ チルー2ーメチルイミダゾールトリメリテート、1ーシアノエチルー2ーフェニ ルイミダゾールトリメリテート、1-シアノエチル-2-エチル-4-メチルイ ミダゾールトリメリテート、1-シアノエチルー2-ウンデシルイミダゾールト リメリテート、2, 4 - ジアミノー6 - [2' - メチルイミダゾリルー (1')]-エチルーSートリアジン、2,4-ジアミノー6-[2'ーウンデシルイミダゾ リル (- (1')) -エチル-S-トリアジン]、2,4-ジアミノ-6-[2-エチルー4ーメチルイミダゾリルー(1')]ーエチルーSートリアジン、1ード デシルー2ーメチルー3ーベンジルイミダゾリウムクロライド、N, N'ービス **(2-メチル-1-イミダゾリルエチル)尿素、N,N'-(2-メチル-1-**イミダゾリルエチル)アジポアミド、2,4-ジアルキルイミダゾールージチオ カルボン酸、1,3ージベンジルー2ーメチルイミダゾリウムクロライド、2ー フェニルー4ーメチルー5ーヒドロキシメチルイミダゾール、2ーフェニルー4 , 5 - ジヒドロキシメチルイミダゾール、1 - シアノエチルー2 - フェニルー4 **, 5-ビス(シアノエトキシメチル)イミダゾール、2-メチルイミダゾール・** イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2 , 4 ージアミノー6 ー [2'ーメチルイミダゾリルー(1')] ーエチルーSート リアジン・イソシアヌル酸付加物、2-アルキル-4-フォルミルイミダゾール 、2,4-ジアルキル-5-フォルミルイミダゾール、1-ベンジル-2-フェ ニルイミダゾール、イミダゾールー4ージチオカルボン酸、2ーメチルイミダゾ ールー4ージチオカルボン酸、2ーウンデシルイミダゾールー4ージチオカルボ ン酸、2-ヘプタデシルイミダゾールー4-ジチオカルボン酸、2-フェニルイ ミダゾールー4-ジチオカルボン酸、4-メチルイミダゾールー5-ジチオカル ボン酸、4ージメチルイミダゾールー5ージチオカルボン酸、2-エチルー4ー メチルイミダゾールー5ージチオカルボン酸、2ーウンデシルー4ーメチルイミ ダゾールー5-ジチオカルボン酸、2-フェニルー4-メチルイミダゾールー5 ージチオカルボン酸、1-アミノエチル-2-メチルイミダゾール、1-(シア

ノエチルアミノエチル) -2 ーメチルイミダゾール、N ー(2 ーメチルイミダゾリル ー 1 ーエチル) 尿素、N, N ー [2 ーメチルイミダゾリル(1) ーエチル [2 ーアジポイルジアミド、[2 ーアミノエチルー[2 ーエチルイミダゾール、[2 ースチルー[2 ーエチルイミダゾール、[2 ースチルー[2 ーズチルー[2 ーズチルーズーズール、[2 ーズチルー[2 ーズチルー[2] ーズチルー[3] ーズチルー[3]

これらの中で、1 - メチルイミダゾール、1 - エチルイミダゾールが好ましく 用いられる。

[0014]

本発明で用いる芳香族液晶ポリエステルの重量平均分子量は、5000~100000であることが必要であり、10000~50000であることが好ましく、20000~40000であることがより好ましく、25000~35000であることがさらに好ましい。重量平均分子量が5000より小さいと、フィルム化が困難であり、重量平均分子量が100000を超えると粘度が高いため、フィルム製造時の取り扱いが困難となる。

[0015]

芳香族液晶ポリエステルから本発明の芳香族液晶ポリエステルフィルムを成形する方法は、特に限定されないが、例えば、Tダイから溶融した芳香族液晶ポリエステルを押し出し巻き取るTダイ法、環状ダイスを設置した押し出し機から溶融した芳香族液晶ポリエステルを円筒状に押し出し、冷却し巻き取るインフレーション製膜法、射出成形法や押し出し法で得られた芳香族液晶ポリエステルシートをさらに一軸延伸する方法、芳香族液晶ポリエステルを溶剤に溶解した後、溶剤を除く溶液キャスト法などが挙げられる。これらの中で、Tダイから溶融した芳香族液晶ポリエステルを押し出し巻き取るTダイ法、環状ダイスを設置した押し出し機から溶融した芳香族液晶ポリエステルを円筒状に押し出し、冷却し巻き取るインフレーション製膜法が好ましい。

[0016]

溶液キャスト法でフィルムを製造する場合に使用される溶剤は、芳香族液晶ポ リエステルを溶解することができれば特に限定されないが、溶解性の観点から、 ハロゲン置換フェノールが好ましく使用される。ハロゲン置換フェノールとしては、例えば、3,5ービストリフルオロメチルフェノール、ペンタフロオロフェノール、テトラフルオロフェノール、パラクロルフェノールなどが挙げられる。

[0017]

本発明の芳香族液晶ポリエステルフィルムには、必要に応じて、表面処理を施 してもよい。表面処理の方法としては、例えば、コロナ放電処理、火炎処理、ス パッタリング処理、溶剤処理、UV処理、プラズマ処理等が挙げられる。

[0018]

本発明の芳香族液晶ポリエステルフィルムは、例えば、下記の(1)から(5)の方法により金属層と積層することにより積層体を製造することができる。

[0019]

- (1) 芳香族液晶ポリエステルを有機溶剤に溶解して芳香族液晶ポリエステル溶液を得、これを必要に応じて、フィルターなどでろ過し、溶液中に含まれる微細な異物を除去した後、該溶液を金属層上に、例えば、ローラーコート法、ディップコート法、スプレイコート法、スピナーコート法、カーテンコート法、スロットコート法、スクリーン印刷法等の各種手段により、直接金属箔などの金属層に表面平坦かつ均一に流延し、その後溶媒を除去することにより得られる芳香族液晶ポリエステルフィルムと金属層とを積層する方法。
- (2)押し出し成形またはインフレーション成形して得られる芳香族液晶ポリエステルフィルを加熱圧着により金属層と積層する方法。
- (3)押し出し成形またはインフレーション成形して得られる芳香族液晶ポリエステルフィルと金属層とを接着剤により貼付して積層する方法。
- (4) 芳香族液晶ポリエステルを有機溶剤に溶解して芳香族液晶ポリエステル溶液を得、これを必要に応じて、フィルターなどでろ過し、溶液中に含まれる微細な異物を除去した後、該溶液を上記(1)記載の各種手段により表面平坦かつ均一に流延し、その後溶媒を除去して得られる芳香族液晶ポリエステルフィルムを加熱圧着により金属層に貼付して積層する方法。
- (5)上記(4)において、加熱圧着に代えて接着剤により芳香族液晶ポリエステルフィルムを金属層に貼付して積層する方法。

[0020]

(1)の方法は、芳香族液晶ポリエステル溶液を前記した各種手段により流延 し、その後乾燥するなどして溶剤を除去することにより、容易に均一な膜厚で、 かつ金属層との接着性が良好なフィルムを得ることができるため好ましい。

[0021]

(2)または(4)の方法は、芳香族液晶ポリエステルフィルムを、該フィルムの流動開始温度付近でプレス機または加熱ロールを用いて金属層と容易に圧着することができるできるため好ましい。

[0022]

(3)または(5)の方法において使用される接着剤は、特に限定されないが、ホットメルト接着剤、ポリウレタン接着剤などを例示することができる。中で もエポキシ基含有エチレン共重合体などが接着剤として好ましく使用される。

[0023]

本発明で使用される金属層の金属としては、例えば、金、銀、銅、ニッケル、アルミニウムなどが挙げられるが、銅が好ましく使用される。金属層の厚さは、 $1\sim1000~\mu$ mが好ましく、 $3\sim100~\mu$ mがより好ましい。本発明の金属層は、いわゆる金属箔であることが好ましい。

[0024]

本発明の積層体は、芳香族液晶ポリエステルフィルムと金属層の少なくとも二層を含む積層体であり、例えば、該芳香族液晶ポリエステルフィルムと金属層との二層構造、該芳香族液晶ポリエステルフィルム両面に金属層を積層させた三層構造、または該芳香族液晶ポリエステルフィルムと金属層を交互に積層させた五層構造などが挙げられる。

[0025]

このようにして得られた積層体の厚みは、5~500μm程度が好ましく、特に高い絶縁性が要求される場合には、500μm以上の厚みであってもよい。

また、本発明の積層体には、高強度を賦与する目的で、必要に応じて、熱処理を行なってもよい。

本発明の積層体は、吸水性が低く、しかも線膨張係数が小さいことから、プリ

ント配線基板などに好適に使用される。

[0026]

【実施例】

以下、本発明を実施例に基いて説明するが、本発明が実施例により限定される ものでないことは言うまでもない。

[0027]

製造例1

攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、パラヒドロキシ安息香酸 8 3 5 . 6 3 g((I)、6 . 0 5 モル)、ハイドロキノン 2 7 2 . 5 2 g((II)、2 . 4 7 5 モル)、2 , 6 ーナフタレンジカルボン酸 3 7 4 . 5 5 g((III)、1 . 7 3 8 モル)、テレフタル酸 1 2 3 . 3 5 g((IV)、0 . 7 4 8 モル)、無水酢酸 1 3 4 9 . 5 5 (1 2 . 6 5 モル)および 1- メチルイミダゾール 0 . 1 6 3 gを添加し、室温で 1 5 分間攪拌した後、攪拌しながら昇温した。内温が 1 4 5 $\mathbb C$ となったところで、同温度を保持したまま 3 0 分間攪拌した。

次に、留出する副生酢酸、未反応の無水酢酸を留去しながら、145℃から310℃まで3時間かけて昇温した。その後、1-メチルイミダゾール(以下、MIという)1.426gをさらに加えたのち、同温度で1時間保温して芳香族ポリエステルを得た。得られた芳香族ポリエステルを室温に冷却し、粉砕機で粉砕して、芳香族ポリエステルの粉末(粒子径は約0.1mm~約1mm)を得た。

上記で得た粉末を25℃から250℃まで1時間かけて昇温したのち、同温度から301℃まで8時間かけて昇温し、次いで同温度で5時間保温して固相重合させた。その後、固相重合した後の粉末を冷却して、芳香族ポリエステル粉末(重量平均分子量 28000)を得た。

[0028]

製造例2

攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、パラヒドロキシ安息香酸 7 5 9. 6 6 g ((I)、5. 5 0 モル)、ハイドロキノン3 0 2. 8 g ((II)、2. 7 5 モル)、2, 6 ーナフタレンジカ

ルボン酸 5 9 4. 5 2 g ((III)、2. 7 5 モル)、無水酢酸 1 3 5 6. 0 1 (1 2. 6 5 モル) および複素環状有機塩基化合物として 1 ーメチルイミダゾール 0. 1 6 8 g を添加し、室温で 1 5 分間攪拌した後、攪拌しながら昇温した。 内温が 1 4 5 ℃となったところで、同温度を保持したまま 3 0 分間攪拌した。

次に、留出する副生酢酸、未反応の無水酢酸を留去しながら、145℃から310℃まで3時間かけて昇温した。その後、1-メチルイミダゾール(以下、MIという)1.687gをさらに加えたのち、同温度で1時間保温して芳香族ポリエステルを得た。得られた芳香族ポリエステルを室温に冷却し、粉砕機で粉砕して、芳香族ポリエステルの粉末(粒子径は約0.1mm~約1mm)を得た。

上記で得た粉末を25℃から250℃まで1時間かけて昇温したのち、同温度から307℃まで8時間かけて昇温し、次いで同温度で5時間保温して固相重合させた。その後、固相重合した後の粉末を冷却して、芳香族ポリエステル粉末(重量平均分子量 32000)を得た。

[0029]

製造例3

攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、パラヒドロキシ安息香酸 911g ((I)、6.6モル)、4,4'ージヒドロキシビフェニル 409g ((II)、2.2モル)、テレフタル酸 274g ((IV)、1.65モル)、イソフタル酸 91g ((IV)、0.55モル)及び無水酢酸 1235g (12.1モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で150かけて150でまで昇温し、温度を保持して3時間環流させた。

その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。得られた固形分は室温まで冷却し、粗粉砕機で粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から288℃まで5時間かけて昇温し、288℃で3時間保持し、固層で重合反応を進めた。その後、固相重合した後の粉末を冷却して、芳香族ポリエステル粉末(重量平均分子量 26000)を得た。

[0030]

実施例1

製造例1により得られた芳香族液晶ポリエステル粉末0.3gを、270℃で50kgf /cm²の条件下、10分間保持することにより、圧縮成形した試験片の錠剤を得た 。この試験片について下記の物性を評価した。結果を表1に示す。

線膨張率:セイコー電子工業(株)製、熱分析装置TMA120を用いて荷重3g下5 ℃/分の昇温速度で50~100℃の平均線膨張率を測定した。

平衡吸水率:85℃/85%RHの条件で吸水させ、168時間後の重量変化から求めた

また製造例1により得られた芳香族液晶ポリエステル粉末1gを、3,5-ビストリフロカ ロメチルフェノール10gに溶解し、得られた溶液を18ミクロン厚の電解銅箔に塗布後、ホットプレート上で100℃で1時間乾燥させ、さらに通風オーブン中250℃で1時間熱処理した後、テンションゲージ(超音波工業製)でピール強度の測定を行った。結果を表1に示す。

[0031]

実施例2

芳香族液晶ポリエステルフィルムとして製造例2のものを用いた以外は、実施例1と同様にしてピール強度の測定を行った。結果を表1に示す。

[0032]

比較例1

芳香族液晶ポリエステルフィルムとして製造例3のものを用いた以外は、実施例1と同様にしてピール強度の測定を行った。結果を表1に示す。

[0033]

【表i】

	実施例1	実施例2	比較例1
線膨張係数(50~100℃)	139ppm∕°C	85ppm/°C	174ppm∕°C
平衡吸水率(85℃/85%RH)	0. 1%	0. 1%	0. 1%
銅箔とのピール強度(kg/cm)	1. 0	1. 1	0. 7

[0034]

【発明の効果】

本発明によれば、吸水性が低く、しかも線膨張係数が小さい芳香族液晶ポリエステルフィルムを提供することが可能となる。

【書類名】

要約書

【要約】

【課題】

吸水性が低く、しかも線膨張係数が小さい芳香族液晶ポリエステルフィルムを 提供する。

【解決手段】

p-ヒドロキシ安息香酸に由来する下記式(I)

で示される構造単位、ヒドロキノン、ジヒドロキシビフェニルに由来する下記式 (II)

(nは、0または1を表す。)

で示される構造単位、及びナフタレンジカルボン酸に由来する下記式(III)

で示される構造単位がエステル結合してなり、重量平均分子量が5000~100000である芳香族液晶ポリエステルからなることを特徴とする芳香族液晶ポリエステルフィルム。

【選択図】

なし

出願人履歴情報

識別番号 [000002093]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友化学工業株式会社

2. 変更年月日 2003年 5月 8日

[変更理由] 名称変更

住 所 大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友化学工業株式会社