ЛЕКЦИЯ № 6.

Энергетические характеристики случайных процессов.

1) Корреляционная функция стационарного СП.

Пусть $\zeta(t)$ - стационарный СП с математическим ожиданием (средним значением) $M\{\zeta(t)\}=m_x$ и дисперсией $M\{\zeta(t)-m_x\}^2=\sigma_x^2$. Тогда корреляционная и ковариационная функция определяются следующим образом:

$$R_{x}(\tau) = M\{\zeta(t)\zeta(t+\tau), B_{x}(\tau) = M\{(\zeta(t) - m_{x})(\zeta(t+\tau) - m_{x})\} = R_{x}(\tau) - m_{x}^{2}.$$
(6.1)

Значение ковариационной функции при $\tau = 0$ равно дисперсии сигнала:

$$\sigma_x^2 = B_x(0) = R_x(0) - m_x^2, \tag{6.2}$$

где $R_x(0) = M\{\zeta(t)\}^2 = m_{2x}$. Выражение (6.2) выполняется для стационарных в широком смысле случайных процессов.

Свойства корреляционной и ковариационной функции.

- а) $R_x(\tau) = R_x(-\tau), B_x(\tau) = B_x(-\tau)$, т.е. функции являются четными.
- б) $|R_x(\tau)| \le R_x(0), |B_x(\tau)| \le B_x(0)$, т.е. функции принимают максимальное значение при $\tau=0$.
- в) Отношение $\rho_x(\tau) = \frac{B_x(\tau)}{B_x(0)}$ называют **нормированной** корреляционной функцией. Она обладает следующими свойствами:

$$\rho_x(0) = 1, \, \rho_x(\infty) = 0, \, \rho_x(\tau) = \rho_x(-\tau), \, |\rho_x(\tau)| \le 1$$

Для стационарного СП всегда можно указать такое $\tau_0 = \tau$, при котором величины $\zeta(t)$ и $\zeta(t+\tau)$ для любого t будут практически