(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94202468.8

(22) Date of filing: 26.08.94

(5) Int. CI.⁶: **C12N 15/74,** C12N 1/21, // C12N1:21, C12R1:225

30 Priority: 26.08.93 EP 93202513

(43) Date of publication of application: 15.03.95 Bulletin 95/11

@4 Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

71) Applicant: SOCIETE DES PRODUITS NESTLE S.A.
Case postale 353
CH-1800 Vevey (CH)

72 Inventor: Mollet, Beat Rte. de Mollie-Margot CH-1074 Mollie Margot (CH) Inventor: Pridmore, David Rte. du Jorat 126 CH-1000 Lausanne 26 (CH)

Representative: Van Malderen, Joelle et al Office Van Malderen, Place Reine Fabiola 6/1 B-1080 Bruxelles (BE)

64 Plasmid derived from Lactobacillus delbrueckii sp.

The present invention concerns a plasmid derived from Lactobacillus delbrueckii sp. comprising at least the restriction map of the Figure 1 or portion(s) thereof; the recombinant vector comprising the said plasmid, at least one DNA sequence capable of replication into E. coli and/or Lc. lactis and at least one marker.

The present invention concerns also the microorganism transformed by the said plasmid and/or by the said recombinant vector.

ED 0 642 427 A4

Field of the invention

10

15

20

25

30

35

40

45

The present invention concerns a new plasmid derived from Lactobacillus delbrueckii sp., a recombinant vector comprising said plasmid, the microorganism transformed by said plasmid and/or vector and the use of the plasmid and/or the vector for the transformation of microorganisms.

Background of the invention and state of the art

A successful biological transformation of an organism must satisfy the following three criteria:

- 1. Transforming DNA must enter the organism by physical or chemical means such as electrotransformation, treatment with inorganic ions, protoplast fusion, etc.
- 2. Transformants must be selected with the help of one or more markers from the non transformed cells in the population for instance by antibiotic resistance genes linked to the transforming DNA. This is best satisfied by either the isolation of a resistance gene against an antibiotic from the target host in question, or by the engineering of a known resistance gene with expression sequences (promoter and terminator) compatible with the target host.
- 3. Transforming DNA must be replicated (either autonomously or as part of the host genome). This is best satisfied by the isolation of replicating plasmids from the host to be transformed and to subsequently construct vectors able to replicate in a microorganism such as Escherichia coli (E. coli) or Lactococcus lactis (Lc. lactis) and in a specific target organism such as Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus).

The international patent application W092/14825 describes a plasmid pBULI having a length of about 7.9 kb and its derivative isolated from Lactobacillus delbrueckii subsp. bulgaricus M-878 strain.

The restriction map of this plasmid is characterized by the absence of restriction sites for BamHI, EcoRI, KpnI and PstI enzymes.

This plasmid is used as a vector for breeding various microorganisms such as lactic acid bacteria and the derivative of this plasmid is used as a shuttle vector (lactic acid bacterium - Escherichia coli).

Other shuttle vectors are described in the documents Canadian Journal of Microbiology (vol. 38 (1992) pp 69-74), ACTA MICROBIOLOGICA BULGARICA (vol. 27 (1991) 99 3-8) and in the Japanese Patent Application JP-A-4.218.381.

Aims of the invention

The present invention aims to provide a new plasmid derived from Lactobacillus delbrueckii sp. which can be used to transform specific microorganisms specially Lactobacillus bulgaricus.

Another aim of the invention is to obtain a recombinant vector comprising the said plasmid and which can replicate in E. coli and Lc. lactis and transform specific microorganisms, specially Lactobacillus bulgaricus.

Disclosure of the invention

The present invention concerns a new plasmid derived from Lactobacillus delbrueckii sp. comprising at least the restriction map of the Figure 1 or portion(s) thereof.

Preferably said portion is a sufficient amount of the restriction map of the Figure 1, so as to provide all the plasmid encoded TRANS and CIS elements necessary for replication of the plasmid in Lactobacillus bulgaricus.

The plasmid according to the invention comprises at least the DNA sequence SEQ ID N° 1 and/or its complementary strand, or portion(s) thereof.

Preferably, said portion is a sufficient amount of the DNA sequence SEQ ID N° 1 and/or its complementary strand so as to provide all the plasmid encoded TRANS and CIS elements necessary for replication of the plasmid in Lactobacillus bulgaricus.

Furthermore, the present invention concerns a recombinant vector comprising the plasmid according to the invention, at least one DNA sequence capable of replication in E. coli and/or Lc. lactis and at least one marker.

The DNA sequence capable of replication in E. coli and/or Lc. lactis is constituted for instance by a specific plasmid, such as pDP193, which allows the recombinant vector to be freely cultured in either E. coli or Lc. lactis for molecular manipulations.

The marker comprised in the recombinant vector according to the invention, is a DNA fragment used as a reference for analytical purposes (i.e. a gene with known phenotype and mapped position) and/or a foreign

DNA fragment which is expressed in the microorganism transformed by the vector according to the invention.

This DNA fragment may be used also for the transformation of microorganisms in order to obtain for instance:

- resistant strains to phages,
- ropy strains (improved texturing properties),
- probiotic strains.

5

10

15

30

45

50

- strains producing new or improved enzymes (lipases, deshydrogenases,...), aroma or flavor compounds,...

The present invention concerns also the microorganism, preferably Lactobacillus bulgaricus, transformed by the plasmid and/or by the recombinant vector according to the invention.

Finally, the present invention concerns the use of the plasmid and/or the vector according to the invention for the transformation of microorganisms.

Brief description of the drawings

	The Figure 1	represents the restriction map of the Lactobacillus delbrueckii sp. plasmid pN42 according to the invention.
	The Figure 2	represents the construction of the plasmid pN42-Sub CB from the pJDC9 plasmid and pN42 plasmid.
20	The Figure 3	represents the construction of pN42-Sub CE from the pJDC9 plasmid and pN42 plasmid.
	The Figure 4	represents the construction of pN42-Sub W and pN42-Sub X from the pUC19 plasmid and pN42 plasmid.
	The Figure 5	represents the construction of chloramphenicol transacetylase gene of pDP352.
	The Figure 6	represents the construction of the pDP193 plasmid.
25	The Figure 7	represents the construction of pDP359 plasmid.

Description of a preferred embodiment of the invention

The construction of pDP359, a E. coli/Lc. lactis-L. delbrueckii sp. shuttle vector according to the invention is characterized by the following features.

Firstly the incorporation of pDP193 allows the plasmid to be freely cultured in either E. coli or Lc. lactis for molecular manipulation, such as the addition of genes to be expressed in L. bulgaricus. Secondly the inclusion of a bona fide L. delbrueckii sp. plasmid in its entirety ensures that pDP359 contains all the sequences required for the replication of pN42 and hence must replicate in L. bulgaricus in the same fashion as pN42 in its host N42. Thirdly the inclusion of the chloramphenicol resistance gene engineered in pDP352 ensures a means to select for transformants in L. bulgaricus.

Analysis of over fifty L. delbrueckii sp. strains from the Nestle culture collection identified one, N42, that contains an extra-chromosomal replication plasmid. This is designated pN42 (its restriction map is shown in the figure 1)and chosen for analysis as it must contain all of the plasmid encoded TRANS and CIS elements necessary for its replication in L. bulgaricus. The integrity of N42 as a L. delbrueckii sp. is ascertained by API tests and molecular characterization of hybridization with the L. delbrueckii specific probe (Delley M., Mollet B., and Hottinger H., 1990, DNA probe for Lactobacillus delbrueckii, Appl. Environ. Microbiol, 56:1967-1970).

pN42 plasmid DNA is isolated by cesium chlorideethidium bromide buoyant density gradients for restriction mapping and sub cloning. Plasmid pN42 is cloned in its entirety into the E. coli vector pJDC9 (J.-D. Chen and D.A. Morrisson 1987, Cloning of Streptococcus pneumoniae DNA Fragments in Escherichia coli Requires Vector Protected by Strong Transciptional Terminators, Gene 55, 179-187) at several identified unique restriction sites Pstl (pN42-Sub CB), Avrll (pN42-Sub CE) or into the pUC/pK plasmids for DNA sequence analysis.

pN42 plasmid DNA is digested with the restriction enzyme Pstl, mixed with Pstl digested and dephosphory-lated pJDC9 vector, ligated and transformed into E. coli. Colonies are analyzed by restriction enzyme digestions and a positive clone designated pN42-Sub CB (figure 2).

pN42 plasmid DNA is digested with the restriction enzyme AvrII, mixed with XbaI digested and dephosphorylated pJDC9 vector, ligated and transformed into E. coli. Colonies are analyzed by restriction enzyme digestions and a positive clone designated pN42-Sub CE (figure 3).

Plasmid pN42-Sub CB is digested with the restriction enzymes EcoRV and PstI, the DNA fragments separated on an agarose gel and the 3.1 kb and 5.1 kb fragments purified. These two fragments are mixed with PstI and Small digested and dephosphorylated pUC19 vector, ligated and transformed into E. coli. Colonies are analyzed by restriction enzyme digestions and the positive clones designated PN42-Sub W and pN42-Sub X (for the 5.1 kb and 3.1 kb fragments respectively) (figure 4).

The complete DNA sequence of pN42 is determined from subclones from synthetic oligonucleotide primers on both strands by the dideoxy chain termination reactions using the ¹⁷sequencingo® kit of Pharmacia and ³⁵SdATP. pN42 consists of a circular double stranded plasmid of 8140 base pairs with at least five open reading frames (designated ORF1 to ORF5) of 50 amino acids or more as identified by the computer program "Frames" from the GCG suite (Computer software is from Genetics Computer Group Inc. (GCG), Devereux J., Haeberli P. and Smithies O. (1984), A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387-395). The GCG program "Repeat" identified a three times twenty-one base pair direct repeat which is the potential origin of replication. The restriction map of pN42 is shown in Figure 1 and the complete DNA sequence in sequence listing 1 (SEQ ID N° 1).

The DNA sequence analysis of pN42 allows the definition of structural features that may be important for the replication of the plasmid in L. delbrueckii sp. and the construction of shuttle vectors that include all these features intact (the introduction of genes may be obtained by cloning pN42 at the following restriction sites Avr II, NsiI, SphI, Nb plasmid DNA isolated from Lactobacillus delbueckii sp. digested at only one of the five SphI sites I.E. at bp 7882).

This ensures that the said shuttle vector must replicate when transformed into L. bulgaricus.

It is judged probable that antibiotic resistance conferred by a defined resistance gene may be transferred to any other organism if it contains the appropriate translation/transcriptional control signals. Therefore the defined gram positive chloramphenicol resistance gene (chloramphenicol acetyltransferase. CAT originally from Staphylococcus aureus) is been taken from the broad host range plasmid pNZ12 (W.M. de Vos. 1987, Gene Cloning and Expression in Lactic Streptococci, FEMS Microbiol. Reviews, 46, 281-295) and used to engineer the bona fide L. bulgaricus promoter from the lacS-Z operon (P. Leong-Morgenthaler, M.C. Zwahlen and H. Hottinger, 1991, Lactose Metabolism in Lactobacillus bulgaricus: Analysis of the Primary Structure and Expression of the Genes Involved, J. Bacteriol., 173, 1951-1957). This is followed with a gram positive stem-loop terminator from the lactose-galactose operon of Lc. lactis strain NCDO2054. The complete construction is shown in Figure 5.

The plasmid pKN19 is the E. coli cloning vector pK 19 (R.D. Pridmore, 1987, New and Versatile Cloning Vectors with Kanamycin-Resistance, Gene, 56, 309-312) where the unique BspHI restriction site in a non essential region is destroyed by restriction enzyme digestion and the four base overhang repared with Klenow enzyme and the four nucleotides according to Maniatis et al. (T. Maniatis, E.F. Fritch and J. Sambrook, Molecular cloning a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982). The chloramphenicol resistance gene from pNZ12 is extracted by PCR amplification (Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., and Ehrlich H.A., 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239: 487-491; Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Ehrlich H.A. and Arnheim N., 1985, Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230: 1350-1354) using the mutagenic primers A (5'-AGGAGGATCCTCTCATGAACTTTAATAAAATTG) that introduced a BspHI restriction site overlapping the ATG initiation codon of the CAT gene, plus primer B (5'-TACAGTATCGATTATCTCATAT-TATA) that introduces a Clal restriction site 9 bp down stream of the CAT gene. The PCR amplification is performed on 50 ng of BgIII digested pNZ12 DNA with 0.3 μM each of oligonucleotides C plus D, 200 μM of the four nucleotides and PCR cycling at 94°C for 0.5 minutes, 50°C for 0.5 minutes, 72°C for 0.5 minutes for a total of 30 cycles.

The product is digested with the restriction enzymes Clal plus BamHI and the 660 bp fragment purified from an agarose gel and cloned into the E. coli vector pBS KS+® (Stratagene Corp.) also digested with Clal, BamHI and dephosphorylated. The ligated fragments are transformed into E. coli and plated onto LB plates supplemented with ampicillin, 5-bromo-4-chloro-3-indolyl-(3-D-galactopyranoside) (X-Gal) and isopropyl-β-D-thiogalactopyranoside (IPTG). Clones are screened by restriction enzyme digestions, a positive clone chosen and designated clone A; both chloramphenicol and ampicillin resistant. Clone A is digested with restriction enzymes Mfel, Stul and dephosphorylated. This fragment is replaced by the equivalent CAT Mfel-Stul fragment from pNZ12. This is to eliminate any PCR induced mutations within the CAT gene, giving Clone B. (This step is not shown in Figure 5).

Clone B is digested with the restriction enzymes BamHI plus Clal and the 660 bp fragment purified from an agarose gel. pKN19/galT-term is pKN19 containing the Lc. lactis NCDO2054 lactose-galactose operon terminator as an Spel-SacI restriction fragment, with its internal BspHI restriction site destroyed as described above. pKN19/galT-term is digested with the restriction enzymes Sful plus SacI (both sites natural to the fragment) and the 190 bp fragment purified from an agarose gel. These two fragments are mixed together with the vector pKN19 digested with the restriction enzymes SacI, BamHI plus dephosphorylated, ligated together and transformed into E. coli. Clones are screened by restriction enzyme digestions, a positive clone chosen and designated clone C.

10

15

20

35

40

50

The published L. bulgaricus lacS promoter is used to design two mutagenic oligonucleotides, C (5'-ATTG-GAAGAATTCACCAACGCTTTTCATTTC) which introduces an EcoRI restriction site 240 bp upstream of the ATG initiation codon and oligonucleotide D (5'-GGTGGTGACGAAGACGATA) which primes 110 bp down stream of the ATG of the lacS gene which naturally contains a BspHI restriction site overlapping the start codon. The PCR amplification is performed on 100 ng of genomic L. delbrueckii sp. DNA with 0.3 μ M each of oligonucleotides C plus D, 200 μ M of the four nucleotides and PCR cycling at 94°C for 0.5 minutes, 50°C for 0.5 minutes, 72°C for 0.5 minutes and a total of 30 cycles. The PCR product is digested with the restriction enzymes EcoRI plus BspHI and the 250 bp fragment purified from an agarose gel. Clone D is digested with the restriction enzymes BspHI plus SacI and the 780 bp fragment purified from an agarose gel. These two fragments are ligated together into EcoRI, SacI plus dephosphorylated pKN19 vector, transformed into E. coli, and plated onto LB plates supplemented with kanamycin. Clones are screened by restriction enzyme digestions, a positive clone chosen and designated pDP352 the complete DNA sequence of which is given in sequence listing 2 (SEQ ID No. 2).

The chloramphenicol resistance gene constructed in pDP352 is transcribed from a bona fide L. bulgaricus promoter that is constitutively expressed in this host. This includes the natural promoter elements of -35, -10 regions and the ribosome binding site at exactly the same relative position to the ATG of the chloramphenicol resistance gene as to the original ATG of the lacS gene. This ensures that the chloramphenicol resistance gene will be correctly transcribed and translation initiated at the correct position and that the resistance gene will work.

The E. coli-Lc. lactis shuttle vector pDP193 is constructed from the E. coli vector pUC18 (R.D. Pridmore, 1987, New and Versatile Cloning Vectors with Kanamycin-Resistance, Gene, 56, 309-312) plus the plasmid pVA749 (F.L. Macrina, J.A. Tobian, K.R. Jones and R.P. Evans, Molecular cloning in the Streptococci, in A. Hallaender, R. DeMoss, S. Kaplan, S. Konisky, D. Savage and R. Wolve (Eds.), Genetic engineering of microorganisms for chemicals, Plenum, New York, 1982, pp. 195-210). pVA749 is extracted from the chimeric plasmid pVA838 (F.L. Macrina, J.A. Tobian, K.R. Jones, R.P. Evans and D.B. Clewell, 1982, A Cloning Vector able to Replicate in Escherichia coli and Streptococcus sanguis, Gene, 19, 345-353) as a HindIII restriction fragment and cloned into the HindIII site of pUC18. The second HindIII site opposite to the pUC cloning array is removed by Klenow enzyme end repair. pVA749 itself consists of a gram positive plasmid origin of replication from Streptococcus faecalis (capable of replication in Lc. lactis) and the erythromycin resistance gene from pAMβ1. The construction of pDP193 is depicted in Figure 6.

Plasmid pVA838 is digested with the restriction enzyme HindIII, the fragments separated on an agarose gel and the 5.2 kb pVA749 fragment purified. Vector pUC18 is digested with the restriction enzyme HindIII, dephosphorylated, mixed with the pVA749 fragment, ligated and transformed into E. coli. Colonies are analyzed by restriction enzyme digestions and a positive clone designated Clone D. Clone D is digested with the restriction enzyme HindIII in the presence of 50 μg/ml ethidium bromide (M. Osterlund, H. Luthman, S.V. Nilsson and G. Magnusson (1982), Ethidium-bromide-inhibited restriction endonucleases cleave one strand of circular DNA, Gene 20, 121-125), the fragments separated on an agarose gel and the linear 7.9 kb fragment purified. The four base overhang generated by HindIII in the linear Clone D is filled in with Klenow enzyme in the presence of four nucleotides according to Maniatis et al. (T. Maniatis, E.F. Fritch and J. Sambrook, Molecular cloning a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982), ligated and transformed into E. coli. Colonies are analyzed by restriction enzyme digestions and a positive clone designated pDP193.

Plasmid pDP193 is digested with the restriction enzymes SacI plus EcoRI and dephosphorylated. pDP352 is digested with the restriction enzymes SacI plus EcoRI and the 1100 bp CAT gene purified from an agarose gel. These two are mixed together, ligated and electrotransformed into the Lc. lactis plasmid free strain LM0230. Positive colonies are identified as erythromycin plus chloramphenicol resistant and confirmed by restriction enzyme digestions. A positive clone is chosen and designated pDP193-CAT 352.

pDP193-CAT 352 is digested with the restriction enzymes Ssel plus BamHI and dephosphorylated. Plasmid pN42-Sub CE is digested with the restriction enzymes Ssel plus BamHI (both sites from the linker) and the 9.3 kb fragment purified from an agarose gel. These two fragments are mixed, ligated and electrotransformed into Lc. lactis strain LM0230. Clones are screened by restriction enzyme digestions, a positive clone chosen and designated pDP359 as shown in figure 7.

The vector pDP359 satisfies the requirements for a shuttle vector for L. bulgaricus that must work in this host. It includes a complete bona fide replicating plasmid isolated and characterized from L. delbrueckii sp. plus a chloramphenicol resistance gene that is transcribed from a native L. bulgaricus promoter. These considerations ensure that the said plasmid pDP359 which replicate when introduced into L. bulgaricus.

50

55

10

SEQUENCES LIST

5	Infor	rmation for sequence ID No 1.
	(i)	Sequence characteristics:
10		 (A) Length: 8140 base pairs (B) Type: Nucleic acid (C) Strandedness: Double (D) Topology: Circular
	(ii)	Molecule type: DNA (plasmid)
15	(xi) (vi)	Feature: Origional source: Lactobacillus bulgaricus Strain N2. (A) Name/key: Plasmid pN42 (B) Location: 18140
20	(XI)	<pre>feature: (A) Name/Key: Origin of replication. (B) Location: 56945758.</pre>
25	(XI)	<pre>feature: (A) Name/Key: ORF1. (B) Location: 1344169.</pre>
30	(XI)	<pre>feature: (A) Name/Key: ORF2. (B) Location: 59657806.</pre>
35	(XI)	feature: (A) Name/Key: ORF3. (B) Location: 47185668.

(XI) feature:

(A)

Name/Key: ORF4. Location: 3116..3637. (B)

(XI) feature:

5

(A)

Name/Key: ORF5. Location: 1779..2360. (B)

CCTAGGCTTG AAATTGACGC ATAGGCGCAA AGGGAGCGGG CGACAGGGGG TAAAGCACGA 60 10 TAAATTCGTT TTTTACAGAC GTTCAGTCCA TGTTGTCATA TTTGTACTCC CGTTTTTAGG 120 GCTGTTTTAA AAGTATTTTT AGCGGCGATT TGTTAATTAT AGCCCCTATA CAAACATCTT 180 TTGTAAAAAG CCTTTTTCT GTTCTTCAA CAAATCTAAC TTACGTTGAT GAAGAGCGAT 240 15 AGTGTCATCT AGCTGTTTTA AAAATGAGCC TATTTTTTTT TGTTCTTCCT GACTAGGTTT 300 ATAGATTTTA AATGATGAAA ATTTAGAAAT CCAATGACGT TCATGACTTT GAGGTACATA 360 TTTTATATTC TTCAATGTAT TAAACATAAA ATAGAAATTG TCAGAATTAT CATTCAAACT 420 20 AAGTAATTTC ATTGCGGAGC TCTTAATTTT AAAAGGGAAA TCTACATAAT GAGAGTCAGT 480 TGTAAAATCA TCAAATATAA CAACTGGATT TTCTACGGTA GCATTTTTAA TCCCGCTAAT 540 25 TTCATCTGTA TAGCCCAATA AGAAACTCTT GCCTGCTGTT AAAACAGGGG TATTAAAATT 600 GTCATCGTAC TCTGTAGATT TGACAATATA TTTTGTTGGT TGCTCATAGT TAAATACCTC 660 CCCCAACTTA CACTGCTCCC ATTCGTCACT AAATCCTTCA AACCGAATAG CTGGATACCC 720 30 GCTCTTATAA GCGAACATTT TCTGCAGTAA AGCGCTTTTT AAGCATTTAA GTTGCTGTTT 780 CTTTTCCTCA TGTAAAGTGA TTGCAGTATC CAATTCAGAG AAGAAGTTAG CAATTCTTTC 840 TTGTTCAGAC GTAGTTGGAA ACGCAACAGA CTGATTTCCG ACAATATCCG AGTTCAAATT 900 35 AACCTGACTT CCCGGCTGAC CATATTTGTT CCAATATGGT TTGAACATAA GAAGCCATTG 960 AAACATAAAT TCCTTATTAA ATGTTGGGTT GAGAAATATT AAGAATCCAT CGTGAACTCC 1020 TGTGTTAACG TAATTGATCA CTGGACTACC CACAGTAGCA GCAATACTTA ACAATAAATG 1080 40 TGGTTCTGTG ATAACACGCG TTTTAGATTG ACCAGCTTTT GAAATGTGTT GCGATAAGTG 1140 ATGAATGCGT CCTTTTTGTT CAGTGACATC GGATATTCTT AGCCATCCAA CATTTGAATT 1200 ATCATCGAAC CATTTGGGGT TAGAAATAGG TCTTGGACTC GCTCCACGTA CGATTTCCGC 1260 45 TTTGTTTTTT AACTTACACT GCTCCCAAGG ATCAGCGAAA CCTTTAAATC TTAATTGCGG 1320 ATATTTAGCT TGTGTATCAT TCATTATTTT TCCTCCGGTT TAATGTCTAA GGCCATTTTA 1380 TCAAATTAAA AATCAGCAAA ACCTATTTTG TGTCTGGTGG AACCAACAAG CGGCTAGAAA 1440

55

	ATATGCTGCC	AAACACCCTA	AAGAACAAAA	TATTGATAAC	GAGCATACTT	GGCATTAAAC	1500
5	GCCGTATAAG	CTCATTTAAG	CCGTTTTAAG	TGTTATATGC	ATAATTATAT	TAAAACTGCT	1560
	TTAAAATCGC	TTAGAAGCAA	GAATAGGCAG	CTTGAGTGGC	TGAATTGGCG	ATGACTGAAC	1620
	TAAGGACTAG	GCCAAGAAAC	TTTTGCACAG	TCAACAATTC	CCCGGACTAA	TTCGGACTTT	1680
10	TTCTTTCTGG	TCAGGTCTCC	TAATGGTCAG	TAAGGTCAGC	CGCTTCAGCG	GTCAATCGTG	1740
	ТАТААТАТА	ATCAAGATTG	ACAAGAGGAG	GGCTGACAAT	GGCAAATAGC	GCTGGCATGC	1800
	TGTCAGTAGG	TCAAATAGCT	AAAATGCTGA	AGACCAACAG	ACAGAACATT	TACAACGTGC	1860
15	TTAAAGCTGA	GCATATTAAA	CCTGACGGCT	TCAATGACAA	GCACTATTCA	CTTTACAGCC	1920
	CGGAAACAAT	TCAAGAGATC	AAGGCCGCTC	тстстаасаа	GGCAACGCTG	AGAAGTAAGA	1980
	AGGTAGTAGC	AAAAGAGCAG	GCTGAAGAGA	TAGCTGACTT	GAAGAATCAG	CTGTCAGAAC	2040
20	AGCAGAGATT	GACAACCTGG	CTACAGTCTC	AGCTGGTTCA	ACTTCAAGTA	GAGGCTGACA	2100
	AGCTCAGGAG	TCAGAACAGC	CAGTTACAGC	TAGACAATGC	AAAGACTCAG	CTCCTTATTG	2160
	GCCAGGTTGA	CCAGGAGAAG	ACAACACTGA	AGGCCGAGAA	TGACCGACTG	AGCGCTGAAA	2220
25	ATAACAAACT	AGGACAATTA	ACCGATAAGG	TGCTGAAGGA	CGCTCAGAGA	GCAGAAGAGG	2280
	ACGCTCAGAA	GGCTAAAGCT	GATCTAGATA	AAGCCCAAGC	CCGGCGGGCT	GGCTTATGGT	2340
	CTAGAATCAC	CAGGAATTAT	TAAGAGTGGT	ATAGCCGTTA	TCTGACTTTG	TGAAATTCCT	2400
30	TATTGGCTCT	GTCAGATCAA	GCGATTTTAA	ACCTATACGA	GTTTGTGAAT	CCTAGTTTAC	2460
	GGAATTGGGC	GATAAGGAAG	CCCGTCATTG	CAAGGATAGA	AGGTTAGTTC	CAATAAGACA	2520
	CATTATGTAA	AGTTGTAAGI	GGTATACCTG	TAATTGATTG	ACAGGAACTA	TACACGGGCT	2580
35	AGACACTTGC	CAGCATTGAC	TGTAGCGGCT	TTACAATGAC	C ACTAGATCTA	CACTATAATI	2640
	ACAGCGGAAA	GAGAAAGGCI	GAGCGGTCTC	CTAATGGACA	A ACTACAACTO	GCCAGCCCG	2700
	CAACTTTGAC	AGCCGTTAAA	GAGCTCTCTC	AGCATGGTTA	A GAGTATAGAA	AGAGTGCTGA	2760
40	ACATGGACTT	TAAAAAAGG	CTGAAGGGCT	TGCAAGATC	A GCAGACCCGC	CTTGAAGCT	2820
	AACAGGAAGT	ACTGTTAGAC	ATCATGGCT	AGTTCTGGC	TAAAGTAGCI	AAAGAAGGC	2880
	ATGACGTTG	TGAAGCGGT	AAGGTAGAAC	ACCTGGCTG	A ATGGTTCGCT	r AAGAACAGC	2940
45	GGAAAACTGT	TATTTGCGTC	TCAGCAAGAG	AGAAGACGG	C TATGACCTG	CTTTTGAAC	300
	ACAACAGCC!	r TCAAGAGAA	TGTTATGGT	CGATGATCT	r TATTGGCGG	TGGGTAAAA	306
	AGCTGACCA	A CTCAAAACG	r AAATCTAAG	TCAAGACGC	r agaggaaat	r atctaatgg	312

55

5	GGTTTACAAA	GAATGGACTG	ATTCAGATCA	TTTAGAGTTA	GTCAAAAA TT	GGAAATTACA	3180
3	CGGGCTGACT	AACGTTGAGA	TAGCTCAAAG	AATAGGCATT	GCTGAGAAGA	CTTTGTACGT	3240
	ATGGTTGAAG	AAGTCTCCTA	AGCTGAAGAA	GGCCATTAGA	GGCGGCAAGG	ATATTGCCAG	3300
	GGCTAGGGCT	GAGAATGCAC	TGTATGAGCT	TGCTCTTAAT	GGCGATAGGC	AAGCCCTTTT	3360
10	CTTTTGGCTC	ааааасааст	ACAGAGAACG	CTACTCAGAC	AAGCCGTTAA	GCCCGGCTGA	3420
	AGCCGATTTG	ATGAGTCAGA	AGGCAAGGCT	GGCCAAATTA	CAGGCTGACC	TGGCTGAGGC	3480
	TCAGCTGAAG	GCCATTAAGG	AAGACCAGGG	AGACCAAGCA	ACGCAATTAA	ACAACCTGTT	3540
15	AGACAGTCTG	AAGGAAGCCG	TGTTAGATGA	GGGAATTAGC	CCCGATAACA	TCGTTCCTAC	3600
	TGGCAACGGC	TTAATTATCG	ATGATATTCC	TGACTCTTAG	GTTTACACGA	CATTGACAGT	3660
	GTAAACACAA	GATAGCGGAA	AATCTŤCTGA	TTATTATATT	TACAAGCACT	GTATATTGTG	3720
20	CTATTCTAAG	ATGTGCTAAA	CGGATTTGGG	GAATGCAACT	AACTGCTGTA	AGGTATCAAC	3780
	TTTTTTTTTT	GCGCTCTTTA	ATTCTTTAGC	AAAAAGCTAG	АТАТСААААА	AGAGCGAGAC	3840
	CGGGTATTGC	TTCACGGGTT	CGCTCTTATT	TTTTTATCTG	GCTAGTTGCC	TACTGGTACT	3900
25	ATGCTGACAC	CCTAGCGGCA	TGTTTGCGGT	ATTGCACTAC	AGCGGCAACA	ATGGTAAAAA	3960
	TAATAATAGG	ТААСААААА	GCCTTTAGTA	CTGGCAATAC	TAGAGGCGGG	CTGTGTTTAG	4020
	CTCTGGCAAA	GCTTAACACG	GTTAGAATTA	TATTCCGTAC	CACATATGAT	ACGTTTAAAC	4080
30	GTAACACTCT	GTCAAGGAGA	ACATATCACC	TTAAGGGTAC	ATATAGTAGT	TTTCTTCTAA	4140
	CATTATGTTG	TAAAAACATA	ACATTTTGTA	GACAAACACT	ATACTTCTAT	GACTCTAACC	4200
	ATGTTTAAGA	CAGGCCAGGC	TAACACCTAT	TGGCCTGTTT	TTTGTTGCCA	AAATTTCAAA	4260
35	AGAAAGGCGG	TAACAGCCGT	GATTAAACAA	CAAAACATTG	ATGTTAGAGC	GGCTATTAAA	4320
	GCTTCTGGTC	TGAAGCAATA	TGAGGTAGCT	ACTTTGATGA	ATGTTTCAGC	TAGCTATCTC	4380
	AGCCAGCTTT	TACTTCAACC	ATTGTCAGAA	GGCCATAAGA	AGCGCATTAT	GGCGGCGATT	4440
40	AAACAAGGCG	AGTCATTGAA	GGGAGAACAA	GAATAATGAT	GAGCTTAGAA	GAACGTGAGC	4500
	AAGAAATTGA	AAAGGTAGTA	CGCATTGCTG	AAGCTGACTT	CAACAACGCT	TGTCAATTGC	4560
	ATGCTATCAA	CAAGGAAGAT	GTTATTAAGA	ACCATGCTTA	CAAGTATGCT	GAAGTGCTGA	4620
45	GGCTTCAGGA	ATTGCTGGCA	TTGAACAAGA	CCATTAGGGA	CGGTCTGAAC	GGCATTGAAA	4680
	TGTCAGTAGA	TCTCATTGAG	TAGCGGGGAG	ACCCGCCATG	AACAACAGTG	ааааааастс	4740
	TCTAATGGCT	GAACCGTATA	ACTCAGACCG	CAACGCCATT	GACAGACTCA	GAATCAACCA	4800

55

	MACANCHICAG AGGGCTTAGA 4860
	GAAGGCCTTA CAGGCGGGCT CTGTCAAGCG TGAAGAGGGC TACAACTCAG AGGGCTTAGA 4860
5	AATGGTCTCC TACACGGCTT ATAAGAGCGG CATTCAGTAT GTCATTTCTT CAGAAGCTGA 4920
	AGGCGGCAAA ATGGTTATTA ACGAGACCTT CAGCAAGGTT CAACATCTAC TAATTGCCAG 4980
	CTGGTATAGC CAGCCAGACA GAGCCAGCAA TTTCAGAATA CAGCTGACCT TTAAAGAGAT 5040
10	CTCAGAGGCG CTAGGAGTCA GCAGAAGCCA GGCTACAGCG CTCAGAAAGC AGCTGAGAGA 5100
-	GCTAATTACA CAGCTAGTAC GTTGTACTTT TGTTAACAGC AATAAAGACG GCATAGACGC 5160
	TGTCAATCTC TTTGCAGCTG GCAACTACAG TAAAGGGAAG CTGACAATGT GGTTAACTCC 5220
15	TAACATGGCT GAGCGGCTTC TGTCAGAAGA ATCATCTACG GAATATTTTC CGTTATCTTT 5280
	ACTGAAGCTG AAAGGGACAG CCTATTATTT AGCCTTAAAG GTCATGCACA ACGCAAACAT 5340
	TAATGCACGC TGGCATGCTG ACAGAGTTGA CAGATTGGGC TTAGAAAACA CGCTGAAGGC 5400
20	CTTGCCTACA CTCCCCGACC CGGTAAAACT CTCTAAAGGC AACAGCAGAA GCCTATACCT 5460
	AAAAATCTTA ACTCCCCTGG CTAAAGCTAT TGAAGAGCTT GAAGCCGTCA CTGGCATTGT 5520
	CGTTAGACCT AGCCAGCCAC TAAAGGGAAT GAAGACGAAA GATCTGTCTA AAGTCACTTT 5580
25	GAATGTCATT GATTGGGGAC AGGTTGATAT AGCCGAATTG ACCAGAAATA AGAGAAAACG 5640
	CTTGCGAAAA AATAATGTTC GTGAGGACTA AAACTATATT TGTCCTAATT CGTATGTAGG 5700
	TAATTATGGT CGCAAATGTA GGTAATTATG GTCGCAAATG TAGGTAATTA TGGTCGCATT 5760
30	GTGAAATTTA GGCAAGTGCC TTGAGGCATT GAGCCAGTAA GGAGTAAGCG CATTTTTTTA 5820
	AAAAGCTTCA CTTGCTAATA GTTTAATAGT ATTAAAAGCA ACGGCTCAGC TTGACGCTGG 5880
	CCTTGCTTGA AAATTGAAAA AAGATGAAAC AGCCAGGGAG AGCAGAGGCT TCTACTGGCC 5940
35	TGTTTTTAGA AGAAGGTATC TAGCATGAAC AATAACTTAG TTAAACCAAC AGATTTAAAG 6000
	GGCTTGGTCT CTTTACCGGA ATACATTGCC AGCGTGGTTA GCATGGACTC TAAAGGCTTC 6060
	TTTAGCTGTC TCAATCCGAA CCACCCGGAC AATCACCCTA GCATGTGTTT AGACCCTAAC 6120
40	CACCCGCAAT ATGTTCATTG CTTCAGTTGC GGCGTGTCCT ATGATCTGTT TGATTGTTGG 6180
40	GCGCTGATTA ATGACGGCGT GACAGAGACC AAGAAGAATA GCGCTGGCAA GGAAAAGCCA 6240
	GCGCTGATTA ATGACGGCGT GACAGAGACC AAGAACATTT COORDINATE 6300
4F	GTCTATAACT TCAATGCTGT AGCTTCAGAG ATTGCTGACC TCCCAGAACC ACCAGCAGAA 6360
45	GGCGACCCGG CAAATGATCT CTATTCGGTA GAACCACCCT TGCCAGAACC ACCAGCAGAA 6360
	CCAGCTCAGA CCAGCACCAA TTTTAGAGAG CAATTAGAAG ATTGGCATGC TAACTTGAAT 6420
	CAGACTGACT ATCTTCAGAA GCGGGGAATC ACTCAGACAA CAGCAGAGAT TTTCAATTTA 6480

55

	GGCTACTCCC	CGTTGACCAA	CAGCATTATT	ATCCCTTACG	GTCAGGACGG	CTATTACGTT	6540
5	CAGAGGGCGC	TGAATCCAAT	TGAGAAGCGT	GACCGCTACC	GCTTCCCTAT	TGGCCAGGCT	6600
	AGAGCCTACA	ACATTGAAGC	ATTGGCTAAA	TGCAAGACGG	TATTCATCGT	TGAAGGCCAG	6660
	TTTGACGCTC	TGTCAATCAT	GCAAGAATCC	GATGTAGGAG	CTGTAGCAAC	TTCAACCAGC	6720
10	CAGACTCGGC	TTATTGTCAA	GGCCTTACAG	AAGTTCAAAG	AGCAAGACCC	AACAATTAAC	6780
	CCGACTATCA	TTCTCAGCAT	GGACAACGAC	AGAGCAGGCC	AGAAGGCGAA	TAGAGCCCTT	6840
	CAGAGGGACT	TAGAAGCCCT	GGGCTTTACT	TGCTATGTCA	ACCCGGTTAA	CGGCGACTAC	6900
15	AAGGACGCTA	ACGAGTTCCT	GGTAAAGGAT	AGAGAGGGCT	TCAGACAGAA	ACTTCAGCAC	6960
					CTGACATCAA		
	GACTACCCGG	АСЛАТАТССС	TACTGGCTTC	AAGAATTTAG	ATGATGAGCT	TGACGGCGGT	7080
20	CTTCAGCCTA	AACTGTATGT	TTTAGGCGCT	GTCAGTTCGC	TAGGGAAAAC	GACTTTTGCC	7140
	TTGAATATTG	CTGACAACCT	GGCTAAACAG	GGGAGACATG	TTTTCTTCTT	CAGCATGGAA	7200
	TCTAGCAAGA	GAGAAGTGAC	GGACAAGCTT	TTAAGCCGGG	CTAGCTGTCT	CTCTAACGGC	7260
25	CATAAATGGA	CTCAGCTTCA	AGTCAGCCGG	GGAGAATGGT	TGAACAATGC	TGAGGACAAA	7320
	GAAGAGTTTG	ACGGCCTGTT	TAAAGCCTTC	AGCCGTTACC	AGCACTTCTT	ACATATCTAT	7380
	GACAATAGAG	TTAAGGCAAG	TCAGGTAAAA	GACCTGGTCA	ATAGTTGGCT	TGACAACCAC	7440
30	CCGGACGAGA	AGAAGCCGCT	TGTAGTCGTT	GACTATCTTC	AGATCTTGCA	AGCTGAGCAG	7500
	GACAATGTGA	CAGATAAGGC	GAAAGTGACG	GACAGCGTGA	GTGTTCTCTC	AGAGCTGACT	7560
	AAACAGGCTG	AAGTCCCTGT	TCTGGTCATC	TCATCATTGA	ACCGGGCTTC	CTACTGGCAA	7620
35	GACGTAAGTT	TTGAATCCTT	CAAGGAATCC	GGGGAAATT	AGTACTCAGO	AGACGTTATO	7680
	TTAGGATTAG	AGTTCGCTCA	TCGTGAAGAA	TACATTACAG	TTAAGGGCAA	CGGCCATGTT	7740
	GAATTGAACA	AAGAGAAGTI	TGACCAGCGG	AAACAGGAAG	TCCTAGACGC	GTTGAAATGO	7800
40	TCATTCTGAA	GAATCGAACT	GGCAAGACAG	GCGGTCATAT	CTTCTTCAAC	TACAACGCC	7860
	TGTTTAACAG	CTACCAGGCA	TGCACTGAGG	AAGAGGCGG	AATACCCAAT	T AACTTTAAT!	7920
	AGTTGTTTCA	TAGCAAGGAA	GTAGGCAAGG	CAATTGAAGO	GGCTGTGCG	r GATTACACGO	7980
45					A TAAATAGAA		
	GGCCAGGAAT	GGCTGGCTTT	TGTTTTGCCT	TCAGACGCT	C TCAGAAGCT	C ATAGAGCCC	8100
	TCTGAGCCTG	CATTGGTAG	A TTTTTCCGG	C CGAĄCACCC	C		8140

55

(3) Information for sequence ID No 2. (i) Sequence characteristics: (h) Length: 1202 base pairs (B) Type: Nucleic acid (C) Strandedness: Double (D) Topology: Linear (ii) Molecule type: DNA (synthetic) (xi) Feature: (vi) Origional source: Lactobacillus bulgaricus (A) Name/key: lacS promotor (B) Location: 1239 (ix) Feature: (vi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 26 GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 6(B) Location: 9031102 27 GAATTCACCA ACGCTTTCAT TATATACTAG CTAACTATT GAGTTTTCAA GGCTTCATAG 1: TTCATTAGCAG CTTAATTGAA TATTTACTGG CTAACTATT GAGTTTTCAA GGCTTCATAG 1: TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTTAC ACACCTAAAG GAGAATTTCA 2: TGAACTATAA TAAAATTCAT TAGACAATT GGAAGAGAAA AGGAATATT AATCATTATT 3: TGAACCAACA AACGACTTT AGTATTATAA CAAGTTTAC ACACCTAAGA GAGAATTTCA 2: TGAACTAAAACA AGAAGGATAT AAAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 TAAACTCAAA TACAGCTTT AGTATTACCCA CAGAAATTGA TATTAGTGTT TTATACCGAA ACAATTATAGA GCCACTTTAT ACAATTTTTC CTGCATTTAT TTTCTTTAGT ACAAGGGTGA 4 TAAACTCAAA TACAGCTTTA AGAATTGTT ACAATTATTA ATGCGTATC TAAAACAAT CTTGGTTATT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTATAGATTA TATACCTTCT GATGTAAGAG AATAATAGG TTCGGGGAAA TTGTTTCCCA AAACACCTTA ACCTGAAAAT GCTTTTTCTC 6 TTTCTATTAT TCCATGGGATA TATTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACCG GGTTTAACTT AAATATCAAT AAATATAATAT										
(A) Length: 1202 base pairs (B) Type: Nucleic acid (C) Strandedness: Double (D) Topology: Linear (ii) Molecule type: DNA (synthetic) (xi) Feature: (Yi) Origional source: Lactobacillus bulgaricus (A) Name/key: lacs promotor (B) Location: 1239 (ix) Feature: (Yi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 (ix) Feature: (Yi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 25 GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 6(A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 25 GAATTCACCA ACGCTTTCAT TATATCTGG CTAAACTACT GAGGTTTCAA GGCTTCATAG 1: TTCATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTACT AGGATTTCAA GGCTTCATAG 1: TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA 2: TGAACCTTAA TAAAATTGAT TTAGACAATT GGAAGAGAA AGAGATATTT AATCATTATT 3: TGAACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA 3: ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTCTTAGTG ACAAGGGTGA 4 TAAACTCAAA TACAGCTTTT AGAACTGGT ACAATACCGA CGGAGAGTTA GGTTATTGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTG ATGGTTATC TAAAACATC TCTGGTATT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTCT GATTTAGAGA 6 AATAATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTTA ACCTGAAAAT GCTTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 AATACCTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAAGGTAAT TCAATTATAT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCCA GGATTCTTTA		(3)	Info	mati	on for s	equence ID	No 2.			
(A) Length: 1202 base pairs (B) Type: Nucleic acid (C) Strandeness: Double (D) Topology: Linear (ii) Molecule type: DNA (synthetic) (xi) Feature: (vi) Origional source: Lactobacillus bulgaricus (A) Name/key: lacS promotor (B) Location: 1.239 (ix) Feature: (vi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 25 GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 60 (B) Location: 9031102 25 GAATTCACCA ACGCTTTCAT TAAATTACTA AAAACTATT GAGTTTTCAA GGCTTCATAG 13 TTCATTAGCAG CTTAATTGAA TATTTACTG CTAAACTATT AGTAAAACAA CTTGGTTTAT 14 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA 2- TGAACCTACA AACGACTTT AGTATAACCA CAGAAATGA TATTAGTGT TATATCCGAA 3- ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTAT TTTCTTAGT TATATCCGAA 3- ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGT ACAAGGGGG A TAAACTCAAA TACAGCTTT AGAACTGGT ACAATAGCGA CGGAGAGTAT GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAACTGTT ACAATTATT ATACCTTCT TATACCGAA 6- GGACTCCTG AAAGAATGAC TTCAAAGAGT TTTATGATT TAAACCATT CTCTGGTATT 5 GGACTCCTG AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTCT GATTGAGGA 6 AATATAATGG TTCGGGGAAA TGTTTCCCA AAACCCTTA ACCTGAAAAT CCTTGGTATT 5 TTCTATTAT TCCATGGACT TCATTTACTG GGTTTACTT AAAACATT CTCTGGTATT 7 ATTACCTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATTATT 7 ATTACCTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAAGGTAAT TCAATTATAT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCCA GGATTCTTTT T	5		(i)	Sequ	ence cha	racteristic	s:			
(xi) Feature: (vi) Origional source: Lactobacillus bulgaricus (A) Name/key: lacs promotor (B) Location: 1239 (ix) Feature: (vi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 20 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: chloramphenicol acetyltransferase peptide (B) Location: 240890 20 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 25 GAATTCACCA ACGCTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 60 (B) Location: 9031102 25 TCATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG 12 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTATA AGTAAAACAT CTTGGTTTAT 18 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTACA CACCCTAAAG GAGAATTCA 2. TGAACTTTAA TAAAATTGAT TTAGACAATT GGAAGAGAAA AGAGATATT AATCATTATT 33 TGAACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA 3. ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ATAAGTTAGA GCCACTTTAT ACAACTTTTC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ATAAGTTAGA GCCACTTTAT ACAACTTTTTG ATGGTGATC TAAAACATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTC GATGTAGAGA 6 AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATTCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCA GGTTTCTTTA 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCA GGTTTCTTTA 7				(B) (C)	Type: N Strande	ucleic acid dness: Doub				
(vi) Origional source: Lactobacillus bulgarious (A) Name/key: lacs promotor (B) Location: 1239 (ix) Feature: (vi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 20 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 25 GAATTCACCA ACGCTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 60 TCATTAGGAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG 1: TTAGTAAACA AGTCTATACT GTAATTATAA ACAACTATT AGTAAAACAT CTTGGTTTAT 1: TTAGTAAACA AGTCTATACT GTAATTATAA ACAACTTACA ACACCTAAAG GAGAATTCA 2: TGAACCTACA AACGACTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TATACCGAA 3: ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTAT TTTCTTAGTG ACAAGGGTGA 4 TAAACTCAAA TACAGCTTTT AGAACTGTT ACAATAGCGA CGGAGGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTG ACAATAGCGA CGGAGGTTA GGTTATTGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTG ACAATAGCGA CGGAGGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTTG ACAATAGCGA CGGAGGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTTG ACAATAGCTA TATACCTTCT GATGTAGTA 6 40 ATAAGTTAGA TCCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTATTCC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAAACATTC TCTGGTATTT 5 TTCTTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAAACATTC TCTGGTATTT 7 ATTACCTTCT ACCAATTAT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCAA AATAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCAA GAATTATATT 7	10		(ii)	Mole	cule typ	e: DNA (syn	thetic)			
(vi) Origional source: Staphylococcus aureus (A) Name/key: Chloramphenicol acetyltransferase peptide (B) Location: 240890 (ix) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 60 TCATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG 13 TTCTTTTTGG TGTGGAAGTT TAAATTACTA AAAATATTTT AGTAAAACAT CTTGGTTTAT 13 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTACA ACACCTAAAG GAGAATTTCA 24 TGAACTTTAA TAAAATTGAT TTAGACAATT GGAAGAGAA AGAGATATTT AATCATTATT 33 TGAACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA 34 ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ATAAGTTAGA GCCACTTTAT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTG ATGGTGATC TAAAACATC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTCT GATGTAGAGA 6 AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATACAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGGAGGAA AATTCATTAA TAAAGGTAAT TCAATTATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCCA GGATTTTTT 7	15		(xi) (vi)	Orig	ional so Name/ke	y: lacs pro	bacillus bu omotor	lgaricus		
(1x) Feature: (vi) Origional source: Lactococcus lactis (A) Name/key: stem-loop terminator following galT gene (B) Location: 9031102 GAATTCACCA ACGCTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 60 TCATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG 1.2 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA 2.2 TGAACTTTAA TAAAATTGAT TTAGACAATT GGAAGAGAAA AGAGATATT AATCATTATT 3.3 TGAACCAACA AACGACTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA 3.4 ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4.4 TAAACTCAAA TACAGCTTTT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG 4.4 ATAAGTTAGA GCCACTTTAT ACAATTTTTG ATGGTTATC TAAAACATTC TCTGGTATTT 5.5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTCT GATGTAGGA 6.4 AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTCTC 6.4 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7.4 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7.4 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATCAC GGATTGTTTA 7.4 TACCGCTATC TTTACAGGTA CATCATTCTG TTTTGTGATGG TTATCATCAC GGATTGTTTA 7.4			(ix) (vi)	Orig	ional so	y: Chloramp	phenicol ace	ureus tyltransfer	ase peptide	
GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA 6 CTACATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG 1 CTTCTTTTTGG TGTGAAGTT TAAATTACTA AAAATATTT AGTAAAACAA CTTGGTTTAT 1 CCCATGAACAA TTCATTACCG CAGAAGTAAA ACAATTTTAAAACAA ACAAGTTAAA ACAAGTTAAA ACAAGATATT AAAAATTACTA ACAATTTTAACCGAAAAAAACAA AGAAGGATAT AAAATTTACC CTGCATTTAT TTTCTTAGTG ACAAGAGGATAAAAACAA ACAAGCTTTA ACAATTTTCA ACAATTTTCAAAAACAAAAC	20		(ix) (vi)	Orig	ional so	v: stem-loc	op terminato	is or following	galT gene	
TCATTAGCAG CTTAATTGAA TATTACTGG CTAAACTATT GAGTTTCAA GGCTTCATAG 1.2 TTCTTTTTGG TGTGGAACTT TAAATTACTA AAAATATTT AGTAAAACAA CTTGGTTTAT 1.2 TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA 2.2 TGAACCTAAA AACGACTTTT AGTATAAACCA CAGAAATTGA TATTACCGAA ACACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTACCGAA ACAACCAACA AACGACTTTT AGAACCAACA CAGAAATTGA TATTACCGAA ACAACCAACA TACAGCTTTT AGAACCAACA CAGAAATTGA TATTACCGAA CAGAGGTGA AAAACATTC TATTACCGAA AACAACTTCAAAAACA GCCACTTTAT ACAACTTCTT ACAAACACA CAGAGATATT AAAACAATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAAGAGT TTTATGATTT ATACCTTCT GATGTAGAAA CATTCTCTCAAAACAACCATC TCCAATAAACAACATC CTTTTTCTCCAAAACACATC CTTTTTTCTCAAAACAACATC CTTTTTTCTCAAAACACATC CTTTTTTCTCAAAACACATC CTTTTTTTCTCAAAACACATC CTTTTTTTT	25									
THEOTITIGG TGTGGAAGTT TAAATTACTA AAAATTATT AGTAAAACAA CTTGGTTTAT 1 CAAAACAA AGTCTAAACA AGTCTAAACA AGTCTAAACA AGTCTAAACA ACAAGTTAACA ACAACTAAAG GAGAATTTCA 2 CAAAACAACAACAACAACAACAACAACAACAACAACAAC		GAAT	TCACC	A ACG	CTTTCAT	TTCACGCCTC	CCGAAGTACA	TGCAAGAGGC	TATATCGCCA	60
TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA 24 TGAACCTATAA TAAAATTGAT TTAGACAATT GGAAGAGAAA AGAGATATTT AATCACTACT ACAAGAGTAAA AACGACTTTT AGAACAATT GAAAATTGA TTATACCGAA ACAATATAAAAAAAAAA		TCAT	TAGCA	G CTI	AATTGAA	TATTTACTGG	СТАААСТАТТ	GAGTTTTCAA	GGCTTCATAG	120
TGAACTTTAA TAAAATTGAT TTAGACAATT GGAAGAAAA AGAGATATT AATCATTATAT 3 ATCATTATA AACGACAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ATAAAGTTAGA GCCACTTTAT AGAACTGGTT ACAATAGCGA CGGAGAGTTA CTTGGTATTT 5 ATAAACTACAA AAAGAATGAC TTCAAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA GCTTTTATACCGAA AAACACTTA ACAATACAAT	30	ттст	TTTTG	G TGT	GGAAGTT	ТАААТТАСТА	AAAATATTTT	AGTAAAACAT	CTTGGTTTAT	180
TGAACCAACA AACGACTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ATAAACTCAAA TACAGCTTTT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG AAAACATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA GCTTTTCCCA AAACACCTAT ACCTGAAAAA GCTTTTCCCA AAACACTAT ACCTGAAAAAT AATAATAGTA 7 ATTACCTTCT ACCATGGACT TCATTTACTG GGTTTAACTT AAAACATCAT AATAATAGTA 7 ATTACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 7		TTAG	TAAAC	A AGI	CTATACT	GTAATTATAA	ACAAGTTAAC	ACACCTAAAG	GAGAATTTCA	240
TGAACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA 3 ACAAGAAAACA AGAAGGATAT AAAATTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA 4 ACAACTCAAA TACAGCTTTT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAATTTTTG ATGGTGATC TAAAACATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAAATAATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTTATCATGCA GGATTGTTTA 8 ACACCCTAT ACACCCTATC TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTTATCATGCA GGATTGTTTA 8 ACACCCTATCT TTTACAGGTA CATCATTCTG TTTTGTGATGG TTTATCATGCA GGATTGTTTA 8 ACACCCTATCTG TTTTTTTTTTTTTTTTTTTTTTTTTT		TGAA	.CTTTA	A TAA	AATTGAT	TTAGACAATT	GGAAGAGAAA	AGAGATATTT	AATCATTATT	300
TAAACTCAAA TACAGCTTTT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG 4 ATAAGTTAGA GCCACTTTAT ACAAGAGT TTTATGATTT ATACAGGAAAAAT TCCATGGAAAAA TTTTCCCA AAACACTTT ACAGGAAAAT TTTTCCCA AAACACTTAT AAAACAATTA AATAATAGTA TACAGTTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAAATAATAAAAAAAAAA	35	TGAA	CCAAC	A AAC	GACTTTT	AGTATAACCA	CAGAAATTGA	TATTAGTGTT	TTATACCGAA	360
ATAAGTTAGA GCCACTTTAT ACAATTTTG ATGGTGTATC TAAAACATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA 6 AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAAT GCTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8		ACAT	' AAA AC	A AGA	AGGATAT	AAATTTTACC	CTGCATTTAT	TTTCTTAGTG	ACAAGGGTGA	420
ATAAGTTAGA GCCACTTTAT ACAATTTTTG ATGGTGTATC TAAAACATTC TCTGGTATTT 5 GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA 6 AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8		TAAA	CTCAA	A TAC	CAGCTTTT	AGAACTGGTT	ACAATAGCGA	CGGAGAGTTA	GGTTATTGGG	480
AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTCTC 6 TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8	40	ATAA	GTTAG	A GC	CACTTTAT	ACAATTTTTG	ATGGTGTATC	TAAAACATTC	TCTGGTATTT	540
TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8		GGAC	TCCTC	AA T	\GAATGAC	TTCAAAGAGT	TTTATGATTT	ATACCTTTCT	GATGTAGAGA	600
TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA 7 ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT 7 TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8	45	AATA	TAATO	G TT	CGGGGAAA	TTGTTTCCCA	AAACACCTAT	ACCTGAAAAT	GCTTTTTCTC	660
TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 8	45	TTTC	TATTA	T TC	CATGGACT	TCATTTACTG	GGTTTAACTT	AAATATCAAT	AATAATAGTA	720
		ATTA	ACCTTO	T AC	CCATTATT	ACAGCAGGAA	AATTCATTAA	TAAAGGTAAT	TCAATATATT	780
	50	TAC	CGCTAT	C TT	TACAGGTA	CATCATTCTG	TTTGTGATGG	TTATCATCA	GGATTGTTTA	840

	TGAACTCTAT	TCAGGAATTG	TCAGATAGGC	CTAATGACTG	GCTTTTATAA	TATGAGATAA	900
5	тссалалала	AAAGCTCAAA	TTTTTGAGCT	TTTTTTGTAT	GTAATTGTCA	ТССАТСАААА	960
J	TCTAATGGTA	ATTGTGATAA	AATAATTA	AAAAATTGAT	ATAATGAAGT	GGATGAAAAA	1020
	AAGACAGTTA	AGAAGAAATA	AAAATAAATT	TAAAAGAGTA	TCACTAGCTT	TTTTTGGTTT :	1080
10	AGTGATTATT	TTAGCGGAGC	TC			:	102
10							
45							
15							
20							
25							
20							
30							
0.5							
35							
40							
40							
15							
45							
50							
50							

5

SEQUENCES LISTING

10	(1) GENERAL INFORMATION :
15	(i) APPLICANT: (A) NAME: SOCIETE DES PRODUITS NESTLE S.A. (3) STREET ADRESS: P.O.Box 353 (C) CITY: VEVEY (E) COUNTRY: SWITZERLAND (F) POSTAL CODE: 1800 (G) TELEPHONE: (21) 924 21 39 (H) FAX: (21) 921 18 85 (I) TELEX: 451 311
20	(ii) TITLE OF INVENTION: Plasmid derived from Lactobicillus bulgaricu
25	(iii) NUMBER OF SEQUENCES: 6 (iv) MANDATORY INFORMATIONS: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) CPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO) (2) Information for SEQ ID NO: 1:
	(i) Sequence characteristics:
30	(A) Length: 8140 base pairs(B) Type: Nucleic acid(C) Strandedness: Double(D) Topology: Circular
35	(ii) Molecule type: DNA (plasmid)
	(vi) Origional source: Lactobacillus bulgaricus Strain N2.(A) Name/key: Plasmid pN42(B) Location: 18140
40	(ix) feature:(A) Name/Key: Origin of replication.(B) Location: 56945758.
	<pre>(ix) feature: (A) Name/Key: ORF1. (B) Location: 1344169.</pre>
45	<pre>(ix) feature: (A) Name/Key: ORF2. (B) Location: 59657806.</pre>
50	<pre>(ix) feature: (A) Name/Key: ORF3. (B) Location: 47185668.</pre>

5

(ix) feature:

(A) Name/Key: ORF4.
(B) Location: 3116..3637.

10

(ix) feature:
 (A) Name/Key: ORF5.
 (B) Location: 1779..2360.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

15	CCTAGGCTTG	AAATTGACGC	ATAGGCGCAA	AGGGAGCGGG	CGACAGGGGG	TAAAGCACGA	60
	TAAATTCGTT	TTTTACAGAC	GTTCAGTCCA	TGTTGTCATA	TTTGTACTCC	CGTTTTTAGG	120
	GCTGTTTTAA	AAGTATTTT	AGCGGCGATT	TGTTAATTAT	AGCCCCTATA	CAAACATCTT	130
20	TTGTAAAAAG	CCTTTTTTCT	GTTCTTTCAA	CAAATCTAAC	TTACGTTGAT	GAAGAGCGAT	240
	AGTGTCATCT	AGCTGTTTTA	AAAATGAGCC	TATTTTTTT	TGTTCTTCCT	GACTAGGTTT	300
	ATAGATTTTA	AATGATGAAA	ATTTAGAAAT	CCAATGACGT	TCATGACTTT	GAGGTACATA	360
25	TTTTATATTC	TTCAATGTAT	TAAACATAAA	ATAGAAATTG	TCAGAATTAT	CATTCAAACT	420
	AAGTAATTTC	ATTGCGGAGC	TCTTAATTTT	AAAAGGGAAA	TCTACATAAT	GAGAGTCAGT	430
	TGTAAAATCA	TCAAATATAA	CAACTGGATT	TTCTACGGTA	GCATTTTTAA	TCCCGCTAAT	540
30	TTCATCTGTA	TAGCCCAATA	AGAAACTCTT	GCCTGCTGTT	AAAACAGGGG	TATTAAAATT	600
	GTCATCGTAC	TCTGTAGATT	TGACAATATA	TTTTGTTGGT	TGCTCATAGT	TAAATACCTC	660
	CCCCAACTTA	CACTGCTCCC	ATTCGTCACT	AAATCCTTCA	AACCGAATAG	CTGGATACCC	720
35	GCTCTTATAA	GCGAACATTT	TCTGCAGTAA	AGCGCTTTTT	AAGCATTTAA	GTTGCTGTTT	780
	CTTTTCCTCA	TGTAAAGTGA	TTGCAGTATC	CAATTCAGAG	AAGAAGTTAG	CAATTCTTTC	840
	TTGTTCAGAC	GTAGTTGGAA	ACGCAACAGA	CTGATTTCCG	ACAATATCCG	AGTTCAAATT	900
40	AACCTGACTT	CCCGGCTGAC	CATATTTGTT	CCAATATGGT	TTGAACATAA	GAAGCCATTG	960
	AAACATAAAT	TCCTTATTAA	ATGTTGGGTT	GAGAAATATT	AAGAATCCAT	CGTGAACTCC	1020
	TGTGTTAACG	TAATTGATCA	CTGGACTACC	CACAGTAGCA	GCAATACTTA	ACAATAAATG	1080
45	TGGTTCTGTG	ATAACACGCG	TTTTAGATTG	ACCAGCTTTT	GAAATGTGTT	GCGATAAGTG	1140
	ATGAATGCGT	CCTTTTTGTT	CAGTGACATC	GGATATTCTT	AGCCATCCAA	CATTTGAATT	1200
	ATCATCGAAC	CATTTGGGGT	TAGAAATAGG	TCTTGGACTC	GCTCCACGTA	CGATTTCCGC	1260
50	TTTGTTTTT	AACTTACACT	GCTCCCAAGG	ATCAGCGAAA	CCTTTAAATC	TTAATTGCGG	1320
	ATATTTAGCT	TGTGTATCAT	TCATTATTTT	TCCTCCGGTT	TAATGTCTAA	GGCCATTTTA	1380

5 TCAAATTAAA AATCAGCAAA ACCTATTTTG TGTCTGGTGG AACCAACAAG CGGCTAGAAA 1440 ATATGCTGCC AAACACCCTA AAGAACAAAA TATTGATAAC GAGCATACTT GGCATTAAAC 1500 GCCGTATAAG CTCATTTAAG CCGTTTTAAG TGTTATATGC ATAATTATAT TAAAACTGCT 1560 10 TTAAAATCGC TTAGAAGCAA GAATAGGCAG CTTGAGTGGC TGAATTGGCG ATGACTGAAC 1620 TAAGGACTAG GCCAAGAAAC TTTTGCACAG TCAACAATTC CCCGGACTAA TTCGGACTTT 1680 TTCTTTCTGG TCAGGTCTCC TAATGGTCAG TAAGGTCAGC CGCTTCAGCG GTCAATCGTG 1740 15 TATAATAATA ATCAAGATTG ACAAGAGGAG GGCTGACAAT GGCAAATAGC GCTGGCATGC 1800 TGTCAGTAGG TCAAATAGCT AAAATGCTGA AGACCAACAG ACAGAACATT TACAACGTGC 1860 TTAAAGCTGA GCATATTAAA CCTGACGGCT TCAATGACAA GCACTATTCA CTTTACAGCC 1920 20 CGGAAACAAT TCAAGAGATC AAGGCCGCTC TGTCTAAGAA GGCAACGCTG AGAAGTAAGA 1980 AGGTAGTAGC AAAAGAGCAG GCTGAAGAGA TAGCTGACTT GAAGAATCAG CTGTCAGAAC 2040 AGCAGAGATT GACAACCTGG CTACAGTCTC AGCTGGTTCA ACTTCAAGTA GAGGCTGACA 2100 25 AGCTCAGGAG TCAGAACAGC CAGTTACAGC TAGACAATGC AAAGACTCAG CTCCTTATTG 2160 GCCAGGTTGA CCAGGAGAAG ACAACACTGA AGGCCGAGAA TGACCGACTG AGCGCTGAAA 2220 ATAACAAACT AGGACAATTA ACCGATAAGG TGCTGAAGGA CGCTCAGAGA GCAGAAGAGG 2280 30 ACGCTCAGAA GGCTAAAGCT GATCTAGATA AAGCCCAAGC CCGGCGGGCT GGCTTATGGT 2340 CTAGAATCAC CAGGAATTAT TAAGAGTGGT ATAGCCGTTA TCTGACTTTG TGAAATTCCT 2400 TATTGGCTCT GTCAGATCAA GCGATTTTAA ACCTATACGA GTTTGTGAAT CCTAGTTTAC 2460 35 GGAATTGGGC GATAAGGAAG CCCGTCATTG CAAGGATAGA AGGTTAGTTC CAATAAGACA 2520 CATTATGTAA AGTTGTAAGT GGTATACCTG TAATTGATTG ACAGGAACTA TACACGGGCT 258C AGACACTTGC CAGCATTGAC TGTAGCGGCT TTACAATGAC ACTAGATCTA CACTATAATT 2640 40 ACAGCGGAAA GAGAAAGGCT GAGCGGTCTC CTAATGGACA ACTACAACTG GCCAGCCCGG 2700 CAACTTTGAG AGCCGTTAAA GAGCTCTCTC AGCATGGTTA GAGTATAGAA AGAGTGCTGA 2760 ACATGGACTT TAAAAAAGGG CTGAAGGGCT TGCAAGATCA GCAGACCCGG CTTGAAGCTA 2820 45 AACAGGAAGT ACTGTTAGAC ATCATGGCTG AGTTCTGGCC TAAAGTAGCT AAAGAAGGCA 2880 ATGACGTTGC TGAAGCGGTC AAGGTAGAAG ACCTGGCTGA ATGGTTCGCT AAGAACAGCC 2940 GGAAAACTGT TATTTGCGTG TCAGCAAGAC AGAAGACGGC TATGACCTGG CTTTTGAACC 3000 50 ACAACAGCCT TCAAGAGAAT TGTTATGGTA CGATGATCTT TATTGGCGGC TGGGTAAAAC 3060

5 AGCTGACCAA CTCAAAACGT AAATCTAAGG TCAAGACGCT AGAGGAAATT ATCTAATGGC 3120 GGTTTACAAA GAATGGACTG ATTCAGATCA TTTAGAGTTA GTCAAAAATT GGAAATTACA 3180 CGGGCTGACT AACGTTGAGA TAGCTCAAAG AATAGGCATT GCTGAGAAGA CTTTGTACGT 3240 10 ATGGTTGAAG AAGTCTCCTA AGCTGAAGAA GGCCATTAGA GGCGGCAAGG ATATTGCCAG 3300 GGCTAGGGCT GAGAATGCAC TGTATGAGCT TGCTCTTAAT GGCGATAGGC AAGCCCTTTT 3360 CTTTTGGCTC AAAAACAACT ACAGAGAACG CTACTCAGAC AAGCCGTTAA GCCCGGCTGA 3420 15 AGCCGATTTG ATGAGTCAGA AGGCAAGGCT GGCCAAATTA CAGGCTGACC TGGCTGAGGC 3430 TCAGCTGAAG GCCATTAAGG AAGACCAGGG AGACCAAGCA ACGCAATTAA ACAACCTGTT 3540 AGACAGTCTG AAGGAAGCCG TGTTAGATGA GGGAATTAGC CCCGATAACA TCGTTCCTAC 3600 20 TGGCAACGGC TTAATTATCG ATGATATTCC TGACTCTTAG GTTTACACGA CATTGACAGT 3660 GTAAACACAA GATAGCGGAA AATCTTCTGA TTATTATATT TACAAGCACT GTATATTGTG 3720 CTATTCTAAG ATGTGCTAAA CGGATTTGGG GAATGCAACT AACTGCTGTA AGGTATCAAC 3780 25 TTTTTTGTT GCGCTCTTTA ATTCTTTAGC AAAAAGCTAG ATATCAAAAA AGAGCGAGAC 3840 CGGGTATTGC TTCACGGGTT CGCTCTTATT TTTTTATCTG GCTAGTTGCC TACTGGTACT 3900 ATGCTGACAC CCTAGCGGCA TGTTTGCGGT ATTGCACTAC AGCGGCAACA ATGGTAAAAA 3960 30 TAATAATAGG TAACAAAAA GCCTTTAGTA CTGGCAATAC TAGAGGCGGG CTGTGTTTAG 4020 CTCTGGCAAA GCTTAACACG GTTAGAATTA TATTCCGTAC CACATATGAT ACGTTTAAAC 4080 GTAACACTCT GTCAAGGAGA ACATATCACC TTAAGGGTAC ATATAGTAGT TTTCTTCTAA 4140 35 CATTATGTTG TAAAAACATA ACATTTTGTA GACAAACACT ATACTTCTAT GACTCTAACC 4200 ATGTTTAAGA CAGGCCAGGC TAACACCTAT TGGCCTGTTT TTTGTTGCCA AAATTTCAAA 4260 AGAAAGGCGG TAACAGCCGT GATTAAACAA CAAAACATTG ATGTTAGAGC GGCTATTAAA 4320 40 GCTTCTGGTC TGAAGCAATA TGAGGTAGCT ACTTTGATGA ATGTTTCAGC TAGCTATCTC 4380 AGCCAGCTTT TACTTCAACC ATTGTCAGAA GGCCATAAGA AGCGCATTAT GGCGGCGATT 4440 AAACAAGGCG AGTCATTGAA GGGAGAACAA GAATAATGAT GAGCTTAGAA GAACGTGAGC 4500 45 AAGAAATTGA AAAGGTAGTA CGCATTGCTG AAGCTGACTT CAACAACGCT TGTCAATTGC 4560 ATGCTATCAA CAAGGAAGAT GTTATTAAGA ACCATGCTTA CAAGTATGCT GAAGTGCTGA 4620

55

50

GGCTTCAGGA ATTGCTGGCA TTGAACAAGA CCATTAGGGA CGGTCTGAAC GGCATTGAAA 4680

TGTCAGTAGA TCTCATTGAG TAGCGGGGAG ACCCGCCATG AACAACAGTG AAAAAAACTC 4740

5	TCTAATGGCT	GAACCGTATA	ACTCAGACCG	CAACGCCATT	GACAGACTCA	GAATCAACCA	4800
	GAAGGCCTTA	CAGGCGGGCT	CTGTCAAGCG	TGAAGAGGGC	TACAACTCAG	AGGGCTTAGA	4860
	AATGGTCTCC	TACACGGCTT	ATAAGAGCGG	CATTCAGTAT	GTCATTTCTT	CAGAAGCTGA	4920
10	AGGCGGCAAA	ATGGTTATTA	ACGAGACCTT	CAGCAAGGTT	CAACATCTAC	TAATTGCCAG	4980
	CTGGTATAGC	CAGCCAGACA	GAGCCAGCAA	TTTCAGAATA	CAGCTGACCT	TTAAAGAGAT	5040
	CTCAGAGGCG	CTAGGAGTCA	GCAGAAGCCA	GGCTACAGCG	CTCAGAAAGC	AGCTGAGAGA	5100
15	GCTAATTACA	CAGCTAGTAC	GTTGTACTTT	TGTTAACAGC	AATAAAGACG	GCATAGACGC	5160
	TGTCAATCTC	TTTGCAGCTG	GCAACTACAG	TAAAGGGAAG	CTGACAATGT	GGTTAACTCC	5220
	TAACATGGCT	GAGCGGCTTC	TGTCAGAAGA	ATCATCTACG	GAATATTTTC	CGTTATCTTT	5280
20	ACTGAAGCTG	AAAGGGACAG	CCTATTATTT	AGCCTTAAAG	GTCATGCACA	ACGCAAACAT	5340
	TAATGCACGC	TGGCATGCTG	ACAGAGTTGA	CAGATTGGGC	TTAGAAAACA	CGCTGAAGGC	5400
	CTTGCCTACA	CTCCCCGACC	CGGTAAAACT	CTCTAAAGGC	AACAGCAGAA	GCCTATACCT	5460
25	AAAAATCTTA	ACTCCCCTGG	CTAAAGCTAT	TGAAGAGCTT	GAAGCCGTCA	CTGGCATTGT	5520
	CGTTAGACCT	AGCCAGCCAC	TAAAGGGAAT	GAAGACGAAA	GATCTGTCTA	AAGTCACTTT	5580
	GAATGTCATT	GATTGGGGAC	AGGTTGATAT	AGCCGAATTG	ACCAGAAATA	AGAGAAAACG	5640
30	CTTGCGAAAA	AATAATGTTC	GTGAGGACTA	AAACTATATT	TGTCCTAATT	CGTATGTAGG	5700
	TAATTATGGT	CGCAAATGTA	GGTAATTATG	GTCGCAAATG	TAGGTAATTA	TGGTCGCATT	5760
	GTGAAATTTA	GGCAAGTGCC	TTGAGGCATT	GAGCCAGTAA	GGAGTAAGCG	CATTTTTTA	5820
35	AAAAGCTTCA	CTTGCTAATA	GTTTAATAGT	ATTAAAAGCA	ACGGCTCAGC	TTGACGCTGG	5830
	CCTTGCTTGA	AAATTGAAAA	AAGATGAAAC	AGCCAGGGAG	AGCAGAGGCT	TCTACTGGCC	5940
	TGTTTTTAGA	AGAAGGTATC	TAGCATGAAC	AATAACTTAG	TTAAACCAAC	AGATTTAAAG	6000
40	GGCTTGGTCT	CTTTACCGGA	ATACATTGCC	AGCGTGGTTA	GCATGGACTC	TAAAGGCTTC	6060
	TTTAGCTGTC	TCAATCCGAA	CCACCCGGAC	AATCACCCTA	GCATGTGTTT	AGACCCTAAC	6120
	CACCCGCAAT	ATGTTCATTG	CTTCAGTTGC	GGCGTGTCCT	ATGATCTGTT	TGATTGTTGG	6180
45	GCGCTGATTA	ATGACGGCGT	GACAGAGACC	AAGAAGAATA	GCGCTGGCAA	GGAAAAGCCA	6240
	GTCTATAACT	TCAATGCTGT	AGCTTCAGAG	ATTGCTGACC	ATTACGGCTA	TGCTCTTATT	6300
	GGCGACCCGG	CAAATGATCT	CTATTCGGTA	GAACCACCCT	TGCCAGAACC	ACCAGCAGAA	6360
50	CCAGCTCAGA	CCAGCACCAA	TTTTAGAGAG	CAATTAGAAG	ATTGGCATGC	TAACTTGAAT	6420

5							
	CAGACTGACT	ATCTTCAGAA	GCGGGGAATC	ACTCAGACAA	CAGCAGAGAT	TTTCAATTTA	6480
	GGCTACTCCC	CGTTGACCAA	CAGCATTATT	ATCCCTTACG	GTCAGGACGG	CTATTACGTT	6540
10	CAGAGGGCGC	TGAATCCAAT	TGAGAAGCGT	GACCGCTACC	GCTTCCCTAT	TGGCCAGGCT	6600
	AGAGCCTACA	ACATTGAAGC	ATTGGCTAAA	TGCAAGACGG	TATTCATCGT	TGAAGGCCAG	6660
	TTTGACGCTC	TGTCAATCAT	GCAAGAATCC	GATGTAGGAG	CTGTAGCAAC	TTCAACCAGC	6720
15	CAGACTCGGC	TTATTGTCAA	GGCCTTACAG	AAGTTCAAAG	AGCAAGACCC	AACAATTAAC	6780
	CCGACTATCA	TTCTCAGCAT	GGACAACGAC	AGAGCAGGCC	AGAAGGCGAA	TAGAGCCCTT	6840
	CAGAGGGACT	TAGAAGCCCT	GGGCTTTACT	TGCTATGTCA	ACCCGGTTAA	CGGCGACTAC	6900
20	AAGGACGCTA	ACGAGTTCCT	GGTAAAGGAT	AGAGAGGGCT	TCAGACAGAA	ACTTCAGCAC	6960
	GTCATCAATC	AGCCCGACAA	TTGGCTTGAC	AATTACTATG	CTGACATCAA	AAAACGCCAT	7020
	GACTACCCGG	ACAATATCCC	TACTGGCTTC	AAGAATTTAG	ATGATGAGCT	TGACGGCGGT	7080
25	CTTCAGCCTA	AACTGTATGT	TTTAGGCGCT	GTCAGTTCGC	TAGGGAAAAC	GACTTTTGCC	7140
	TTGAATATTG	CTGACAACCT	GGCTAAACAG	GGGAGACATG	TTTTCTTCTT	CAGCATGGAA	7200
	TCTAGCAAGA	GAGAAGTGAC	GGACAAGCTT	TTAAGCCGGG	CTAGCTGTCT	CTCTAACGGC	7260
30	CATAAATGGA	CTCAGCTTCA	AGTCAGCCGG	GGAGAATGGT	TGAACAATGC	TGAGGACAAA	7320
	GAAGAGTTTG	ACGGCCTGTT	TAAAGCCTTC	AGCCGTTACC	AGCACTTCTT	ACATATCTAT	7380
	GACAATAGAG	TTAAGGCAAG	TCAGGTAAAA	GACCTGGTCA	ATAGTTGGCT	TGACAACCAC	7440
35	CCGGACGAGA	AGAAGCCGCT	TGTAGTCGTT	GACTATCTTC	AGATCTTGCA	AGCTGAGCAG	7500
	GACAATGTGA	CAGATAAGGC	GAAAGTGACG	GACAGCGTGA	GTGTTCTCTC	AGAGCTGACT	7560
	AAACAGGCTG	AAGTCCCTGT	TCTGGTCATC	TCATCATTGA	ACCGGGCTTC	CTACTGGCAA	7620
40	GACGTAAGTT	TTGAATCCTT	CAAGGAATCC	GGGGAAATTG	AGTACTCAGC	AGACGTTATG	7680
	TTAGGATTAG	AGTTCGCTCA	TCGTGAAGAA	TACATTACAG	TTAAGGGCAA	CGGCCATGTT	7740
	GAATTGAACA	AAGAGAAGTT	TGACCAGCGG	AAACAGGAAG	TCCTAGACGG	GTTGAAATGG	7800
45	TCATTCTGAA	GAATCGAACT	GGCAAGACAG	GCGGTCATAT	CTTCTTCAAG	TACAACGCCA	7860
	TGTTTAACAG	CTACCAGGCA	TGCACTGAGC	AAGAGGCGGC	AATACCCAAT	AACTTTAATA	7920
	AGTTGTTTCA	TAGCAAGGAA	GTAGGCAAGC	CAATTGAAGC	GGCTGTGCGT	GATTACACGG	7980
50	TAGACCCGGT	AACAGGCCTG	GCAACAGAGA	AGAAGCCCGA	TAAATAGAAC	TGAAGAAGCT	3040
	GGCCAGGAAT	GGCTGGCTTT	TGTTTTGCCT	TCAGACGCTC	TCAGAAGCTC	ATAGAGCCCC	9100

5		
	TCTGAGCCTG CATTGGTAGA TTTTTCCGGC CGAACACCCC	814
10	(3) Information for SEQ ID NO: 2:	
	(i) Sequence characteristics:	
15	(A) Length: 1202 base pairs(B) Type: Nucleic acid(C) Strandedness: Double(D) Topology: Linear	
	(ii) Molecule type: DNA (synthetic)	
20	(vi) Origional source: Lactobacillus bulgaricus(A) Name/key: lacS promotor(B) Location: 1239	
	(vi) Origional source: Staphylococcus aureus(A) Name/key: Chloramphenicol acetyltransferase peptid(B) Location: 240890	e
25	(vi) Origional source: Lactococcus lactis(A) Name/key: stem-loop terminator following galT gene(B) Location: 9031102	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
30	GAATTCACCA ACGCTTTCAT TTCACGCCTC CCGAAGTACA TGCAAGAGGC TATATCGCCA	. 60
	TCATTAGCAG CTTAATTGAA TATTTACTGG CTAAACTATT GAGTTTTCAA GGCTTCATAG	120
25	TTCTTTTTGG TGTGGAAGTT TAAATTACTA AAAATATTTT AGTAAAACAT CTTGGTTTAT	180
35	TTAGTAAACA AGTCTATACT GTAATTATAA ACAAGTTAAC ACACCTAAAG GAGAATTTCA	. 240
	TGAACTTTAA TAAAATTGAT TTAGACAATT GGAAGAGAAA AGAGATATTT AATCATTATT	300
40	TGAACCAACA AACGACTTTT AGTATAACCA CAGAAATTGA TATTAGTGTT TTATACCGAA	. 360
	ACATAAAACA AGAAGGATAT AAATTTTACC CTGCATTTAT TTTCTTAGTG ACAAGGGTGA	420
	TAAACTCAAA TACAGCTTTT AGAACTGGTT ACAATAGCGA CGGAGAGTTA GGTTATTGGG	480
	ATAAGTTAGA GCCACTTTAT ACAATTTTTG ATGGTGTATC TAAAACATTC TCTGGTATTT	540
45	GGACTCCTGT AAAGAATGAC TTCAAAGAGT TTTATGATTT ATACCTTTCT GATGTAGAGA	600
	AATATAATGG TTCGGGGAAA TTGTTTCCCA AAACACCTAT ACCTGAAAAT GCTTTTTCTC	: 660
	TTTCTATTAT TCCATGGACT TCATTTACTG GGTTTAACTT AAATATCAAT AATAATAGTA	720
50	ATTACCTTCT ACCCATTATT ACAGCAGGAA AATTCATTAA TAAAGGTAAT TCAATATATT	780

55

TACCGCTATC TTTACAGGTA CATCATTCTG TTTGTGATGG TTATCATGCA GGATTGTTTA 840

5		
	TGAACTCTAT TCAGGAATTG TCAGATAGGC CTAATGACTG GCTTTTATAA TATGAGATAA	900
	TCGAAAAAA AAAGCTCAAA TTTTTGAGCT TTTTTTGTAT GTAATTGTCA TGCATGAAAA	960
10	TGTAATGGTA ATTGTGATAA TTATTAATAA AAAAATTGAT ATAATGAAGT GGATGAAAAA	1020
	AAGACAGTTA AGAAGAAATA AAAATAAATT TAAAAGAGTA TCACTAGCTT TTTTTGGTTT	1080
	AGTGATTATT TTAGCGGAGC TC	1102
15		
20	(4) Information for SEQ ID NO: 3:	
	(i) Sequence characteristics:	
	(A) Length: 33 base pairs (B) Type: Nucleic acid	
25	(C) Strandedness: Single (D) Topology: Linear	
	(ii) Molecule type: DNA (synthetic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
30	AGGAGGATCC TCTCATGAAC TTTAATAAAA TTG	33
35	(5) Information for SEQ ID NO: 4:	
	(i) Sequence characteristics:	
	(A) Length: 26 base pairs (B) Type: Nucleic acid	
40	(C) Strandedness: Single (D) Topology: Linear	
	(ii) Molecule type: DNA (synthetic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
45	TACAGTATCG ATTATCTCAT ATTATA	26
50		

5	(6) Information for SEQ ID NO: 5:			
	(i)	(i) Sequence characteristics:		
10		(A) Length: 31 base pairs(B) Type: Nucleic acid(C) Strandedness: Single(D) Topology: Linear		
	(ii) Molecule type: DNA (synthetic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:		
15	ATTGGAAG	AA TTCACCAACG CTTTTCATTT C	31	
20	(7) Inf	ormation for SEQ ID NO: 6:		
	(i) Sequence characteristics:		
25		(A) Length: 19 base pairs(B) Type: Nucleic acid(C) Strandedness: Single(D) Topology: Linear		
	(ii) Molecule type: DNA (synthetic)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:		
30	GGTGGTGA	CG AAGACGATA	19	

Claims

35

- Plasmid derived from Lactobacillus delbrueckii sp. comprising at least the restriction map of the Figure
 1 or portion(s) thereof.
 - 2. Plasmid according to claim 1, characterized in that the portion is a sufficient amount of the restriction map of the Figure 1, so as to provide all the plasmid encoded TRANS and CIS elements necessary for replication of the plasmid in Lactobacillus bulgaricus.
 - 3. Plasmid according to claim 1 or 2 comprising at least the DNA sequence SEQ ID N° 1 and/or its complementary strand or portion(s) thereof.
- 4. Plasmid according to claim 3. characterized in that the portion is a sufficient amount of the DNA sequence SEQ ID N° 1, and/or its complementary strand, so as to provide all the plasmid encoded TRANS and CIS elements necessary for replication of the plasmid in Lactobacillus bulgaricus.
 - 5. Recombinant vector comprising the plasmid according to any of the preceding claims, at least one DNA sequence capable of replication in E. coli and/or Lc. lactis and at least one marker.
- 6. Microorganism transformed by the plasmid according to any of the claims 1 to 4 and/or by the recombinant vector according to claim 5.
 - 7. Lactobacillus bulgaricus transformed by the plasmid according to any of the claims 1 to 4 and/or by the

recombinant vector according to claim 5.

8. Use of the plasmid according to any of the claims 1 to 4 and/or the vector according to claim 5 for the transformation of microorganisms.

FIG.1

FIG.6

EcoRI-SacI-KpnI-SmaI-BamHI-XbaI-SalI-SaeI-SphI-HindIII

 $E\infty \text{RI-SacI-KpnI-SmaI-BamHI-XbaI-SaII-SseI-SphI-HindIIII}$

EcoRI-SacI-KpnI-SmaI-BamHI-XbaI-SalI-SseI-SphI-HindIII

EUROPEAN SEARCH REPORT

Application Number EP 94 20 2468

Category	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, of relevant to ctalm			CLASSIFICATION OF THE APPLICATION (Int.CL6)		
D, A	EP-A-0 529 088 (MEIJ LTD.) 3 March 1993 * the whole document	I MILK PROD. CO.,	1-8	C12N15/74 C12N1/21 //(C12N1/21, C12R1:225)		
A	JAPANESE PATENTS ABSTRACTS (UNEXAMINED) Week 9238, Derwent Publications Ltd., London, GB; AN 92-312519 & JP-A-4 218 381 (SNOW BRAND MILK PROD CO LTD) 7 August 1992 * abstract *					
A	CAN. JOURNAL OF MICH vol.38, 1992, NATL. COUNCIL,OTTAWA,CAN; pages 69 - 74 P. CHAGNAUD ET AL. shuttle vector for the whole document	RESEARCH Construction of a new actobacillus'	1-8			
A	SCIENCES, SOFIA, BUL pages 3 - 8 V. MITEVA ET AL. 'I characterization of different strains 0	BULGARIAN ACADEMY OD GARIAN; solation and plasmids from f Lactobacillus cillus helveticus and ophilus'	1-8	TECHNICAL FIELDS SEARCHED (IDL.CI.6) C12N		
D,A	APPLIED AND ENVIRON vol.56, no.6, June AM.SOC.MICROBIOL., w pages 1967 - 1970 M. DELLEY ET AL. 'D Lactobacillus delbr * the whole document	ASHINGTON,DC,US; NA probe for weckii'	1-8			
	The present search report has t			Prominer		
	Place of search	Date of completion of the search	994 H	ornig, H		
A:t	THE HAGUE CATEGORY OF CITED DOCUME articularly relevant if taken alone articularly relevant if combined with an ocument of the same category echnological background son-written disclosure nermediate document	NTS T: theory or prize E: earlier patent after the fills other D: document cit L: document cit.	ciple underlying document, but p g date ed in the applicated for other reason	the invention ublished on, or tion		

EUROPEAN SEARCH REPORT

Application Number EP 94 20 2468

Category	Citation of document with in	dication, where appropriate,	Relevant to claim	CLASSIFICATION	
D, A	JOURNAL OF BACTERIOL vol.173, no.6, March MICROBIOL., BALTIMOR pages 1951 - 1957 P. LEONG-MORGENTHALE metabolism in Lactob Analysis of the primexpression of the getabolism the whole document	OGY, 1991, AM. SOC. E, US; RET AL. 'Lactose pacillus bulgaricus: pary structure and enes involved'	-8		. (
				TECHNICAL I SEARCHED	FIELDS (Int.Cl.6)
	The present search report has been Place of search	n drawn up for all claims Data of completion of the search		Except for	
THE HAGUE		16 December 1994	Horr	nig, H	
C. X: partie Y: partie docur A: techn	ATEGORY OF CITED DOCUMENT milarly relevant if taken alone milarly relevant if combined with anoth- ment of the same cartegory ological background written discourse	S T: theory or principle up E: earlier patient document after the filing date	derlying the i mt, but publis application her reasons	nvention hed on, or	•••••••

EPO FORM ISO CLAS (POCCA)