## Selected Problems Chapter 2 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

## Mustaf Ahmed

## October 16, 2020

**Problem 2.A.11.** Suppose  $v_1, \ldots, v_m$  is linearly independent in V and  $w \in V$ . Show that  $v_1, \ldots, v_m, w$  is linearly independent if and only if  $w \notin span(v_1, \ldots, v_m)$ .

*Proof.* For the forward direction, assume for a contradiction that the list  $v_1, \ldots v_m, w$  is linearly independent and  $w \in span(v_1, \ldots, v_m)$ . We can then choose  $a_1, \ldots, a_m \in F$  such that

$$w = \sum_{i=1}^{m} a_i v_i,$$

so we have that

$$\left(\sum_{i=1}^{m} a_i v_i\right) - w = 0.$$

Since not all of the coefficients are equal to zero, the list  $v_1, \ldots, v_m, w$  is not linearly independent, which is a contradiction.

For the backwards direction, assume for a contradiction that  $w \notin span(v_1, \ldots, v_m)$  and  $v_1, \ldots, v_m, w$  is linearly dependent. We can choose  $a_1, \ldots, a_m, a_{m+1} \in F$ , where not all of the coefficients are zero, such that

$$(\sum_{i=1}^{m} a_i v_i) + a_{m+1} w = 0.$$

Since  $v_1, \ldots, v_m$  are linearly independent,  $a_m + 1$  can't be equal to zero, otherwise we'd reach a contradiction. Thus,  $a_{m+1}$  is a non-zero coefficient, so we have that

$$w = \sum_{i=1}^{m} \frac{-a_i}{a_{m+1}} v_i$$

, by subtracting  $a_{m+1}w$  and dividing out by  $-a_{m+1}$ . Thus, we conclude that  $w \in span(v_1, \ldots, v_m)$ , which is a contradiction.

**Problem 2.29 Basis Criterion.** A list  $v_1, \ldots, v_n$  of vectors in V is a basis of V if and only if every  $v \in V$  can be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n,$$

where  $a_1, \ldots, a_n \in F$ .

*Proof.* For the forward direction, assume  $v_1, \ldots, v_n$  are vectors in V that form a basis for V. Given  $v \in V$ , we want v to be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n,$$

where  $a_1, \ldots, a_n \in F$ . Since the list forms a basis for V, we can choose  $a_1, \ldots, a_n \in F$ such that

$$v = a_1 v_1 + \dots + a_n v_n.$$

Suppose there exists  $b_1, \ldots, b_n \in V$  such that

$$v = b_1 v_1 + \dots + b_n v_n.$$

. Then,

$$0 = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n,$$

. so by linear independence, each coefficient must be equal, meaning that v is uniquely determined.

Next, we must show the backwards direction. Assume that every  $v \in V$  can be written uniquely as a linear combination of  $v_1, \ldots, v_n$ . By definition,  $v_1, \ldots, v_n$  spans V. We must now show the list in linearly independent. The zero vector is in V, so  $0 \in V$  can be written as a linear combination of  $v_1, \ldots, v_n$ , namely

$$0 = 0v_1 + \dots + 0v_n,$$

. which is unique by assumption. Thus, the list satisfies the conditions of linear independence.

2