OPTIMIZACIÓN

Erik Cuevas, Valentín Osuna, Diego Oliva y Margarita Díaz

SISTEMAS INMUNES ARTIFICIALES (AIS)

Introducción

- Técnica inspirada en el funcionamiento del sistema inmune de los mamíferos (teoría de selección clonal):
- 1. Exposición a un conjunto de Ag
- 2. Producción de Ac
- 3. Interacciones Ac-Ag
- 4a. Ac con baja afinidad mueren
- 4b. Ac con alta afinidad provocan respuesta inmune:
 - 4b1. Clonación
 - 4b2. Hipermutación
 - 4b3. Ataque a Ag
- 5. Re-selección
- 6. Memorización

Generalidades

Minimizar

$$f(x) = f(x_1, x_2) = \left(\sum_{i=1}^{5} i \cdot \cos((i+1) \cdot x_1 + i)\right) \left(\sum_{i=1}^{5} i \cdot \cos((i+1) \cdot x_2 + i)\right)$$
(7.1)

considerando

Inicialización

• Los individuos son vectores de números binarios:

$$b_{i,j} = 2 * rand(\cdot) - 1$$

 $i = 1,..., Np; j = 1,..., Nb * d$ (7.2)

• La población se divide en dos, memoria y remanente:

Fig. 7.3. Composición de la población en el ASC.

Clonación

- El operador de reproducción es asexual: cada descendiente se crea a partir de un solo padre, y este operador se aplica solamente a los *n* mejores individuos de la población, cada uno de los cuales serán clonados considerando un cierto porcentaje de toda la población
- Se ordenan los individuos de acuerdo con su correspondiente valor respecto a la función objetivo, se seleccionan los n mejores, y por cada uno de ellos se generarán Np·Pc individuos, produciendo una matriz C de clones

Hipermutación

• Este operador del algoritmo considera una probabilidad de mutación (pm) para cada uno de los individuos de la matriz binaria de clones C:

```
% Mutación de los clones en Algoritmo de Selección Clonal
% Erik Cuevas, Valentín Osuna, Diego Oliva y Margarita Díaz
Cm=C;
for i1=1:nc
  for i2=1:Nb*d
    if rand()<=pm</pre>
      Cm(i1,i2) = C(i1,i2);
    end
  end
end
Cm(pcs,:) = B(ind(end-n+1:end),:);
```

Programa 7.5. Obtención de la matriz de clones mutados.

Reselección

- Partiendo de una matriz binaria de clones mutados *Cm* que se convierte a una matriz de números reales *Xm*, se evalúa a cada uno de los individuos para generar un vector de valores de *fitness fm*.
- Por cada uno de los *n* individuos a clonar de la población remanente original tenemos *Np* Pc* clones: los mejores individuos de cada uno de esos bloques de clones sobrevivirán a la siguiente generación.

Figura 7.4. Ejemplo de re-selección en el ASC.

Introducción de diversidad

- Con la intención de mantener en todo momento una exploración suficiente de todo el espacio de búsqueda, en el ASC se introducen nuevos elementos que se generan de manera aleatoria
- Este operador se aplica directamente sobre los peores individuos de la población

Programa 7.8. Introducción de diversidad en los peores individuos de la población.

Pseudocódigo

Algoritmo 7.1 Algoritmo de Selección Clonal	
1.	Configurar parámetros del algoritmo
2.	Inicializar y evaluar población inicial
3.	Mientras (no se cumpla criterio)
4.	Clonar n padres y generar población C
5.	Mutar a C y generar Cm
6.	Re-seleccionar de Cm a n padres y reemplazarlos en Br
7.	Introducir <i>nd</i> individuos aleatorios en <i>Br</i> (diversidad)
8.	Mostrar resultado