2015.10.07

- 연산 작업을 수행하는 수학적 모델
 - 정해진 입력

맨 뒤 두 개의 문자열이 01인 문장을 받아들이는 오토마타

>> 001101

True

DFA

DFA
$$D = (Q, \Sigma, \delta, q_0, F)$$

- Q : 상태들의 집합
- Σ: 입력 문자열의 집합
- $\delta: Q \times \Sigma \to Q$: 상태 이동 함수
- $q_0 \in Q$: 초기 상태
- *F* ⊆ *Q* : 최종 상태들

DFA

```
def get_dfa (Q, Sigma, delta, q0, F):
    def dfa (str):
        state = q0
        for ch in str:
            assert(ch in Sigma)
            state = delta[state][ch]
        return state in F
    return dfa
```

DFA

•
$$Q = \{A, B, C\}, \Sigma = \{0,1\}$$

•
$$q_0 = A, F = \{C\}$$

•
$$\delta: Q \times \Sigma \to Q$$

	0	1
A	В	Α
В	В	С
С	В	Α

NFA
$$N = (Q, \Sigma, \delta, q_0, F)$$

- Q : 상태들의 집합
- Σ: 입력 문자열의 집합
- $\delta: Q \times \Sigma \rightarrow 2^Q$: 상태 이동 함수
- $q_0 \in Q$: 초기 상태
- $F \subseteq Q$: 최종 상태들

- DFA : $\delta: Q \times \Sigma \rightarrow Q$
 - 각 상태와 입력에 대해 다음 상태가 유일하게 정해져 있다
- NFA : $\delta: Q \times \Sigma \rightarrow 2^Q$
 - 다음 상태가 여러 가지 경우일 수도 있다. $(|\delta(q,a)| > 1)$
 - 다음 상태가 존재하지 않을 수도 있다. $(\delta(q,a) = \emptyset)$

맨 뒤 두 개의 문자열이 01인 문장을 받아들이는 오토마타

>> 001101 A

•
$$Q = \{A, B, C\}, \Sigma = \{0,1\}$$

•
$$q_0 = A, F = \{C\}$$

•
$$\delta: Q \times \Sigma \to 2^Q$$

	0	1
Α	{A,B}	{A}
В	Ø	{C}
С	Ø	Ø

DFA to NFA

주어진 DFA $D = (Q_D, \Sigma, \delta_D, q_{0D}, F_D)$ 에 대해

- $Q_N = Q_D$, $q_{0N} = q_{0D}$, $F_N = F_D$
- $\delta_N: Q_N \times \Sigma \to 2^{Q_N}, \ \delta_N(q,a) = \{\delta_D(q,a)\} \subset Q_D = Q_N$
 - 가능한 다음 상태가 유일하므로 DFA와 똑같이 작동하게 된다.

와 같이 지정하면 NFA $N=(Q_N,\Sigma,\delta_N,q_{0N},F_N)$ 은 DFA D와 똑같이 작동한다.

•
$$\{A, B\}, 0 \to \{A, B\}$$

•
$$\{A, B\}, 1 \to \{A, C\}$$

•
$$\{A, C\}, 1 \to \{A\}$$

• Etc...

주어진 NFA $N = (Q_N, \Sigma, \delta_N, q_{0N}, F_N)$ 에 대해서

- $Q_D = 2^{Q_N}$
- $\delta_D: Q_D \times \Sigma \to Q_D$, $\delta(P, a) = \bigcup_{q \in P} \delta(q, a) \subseteq Q_N$ $(P \subseteq Q_N)$
 - 이전까지의 입력으로 도달할 수 있는 상태의 집합이 P일 때 α 를 추가로 입력함으로써 도달할 수 있는 상태의 집합을 구한다.
- $q_{0D} = \{q_{0N}\}, F_D = \{P \subseteq Q_N \mid P \cap F_N \neq \emptyset\}$
 - 초기에는 q_{0N} 에만 도달할 수 있다.
 - 도달할 수 있는 상태들 중 하나라도 최종 상태이면 된다.

와 같이 지정하면 DFA $D=(Q_D, \Sigma, \delta_D, q_{0D}, F_D)$ 는 NFA N과 동치이다.

$$q_{0D} = \{q_{0N}\} = \{A\}$$

	0	1
<i>{A}</i>		

$$q_{0D} = \{q_{0N}\} = \{A\}$$

	0	1
<i>{A}</i>	$\{A,B\}$	<i>{A}</i>
{ <i>A</i> , <i>B</i> }		

$$q_{0D} = \{q_{0N}\} = \{A\}$$

	0	1
<i>{A}</i>	$\{A,B\}$	$\{A\}$
$\{A,B\}$	$\{A,B\}$	{ <i>A</i> , <i>C</i> }
<i>{A, C}</i>		

$$q_{0D} = \{q_{0N}\} = \{A\}$$

	0	1
<i>{A}</i>	$\{A,B\}$	$\{A\}$
$\{A,B\}$	$\{A,B\}$	{ <i>A</i> , <i>C</i> }
{ <i>A</i> , <i>C</i> }	$\{A,B\}$	$\{A\}$

$$q_{0D} = \{q_{0N}\} = \{A\}$$

	0	1
<i>{A}</i>	$\{A,B\}$	$\{A\}$
$\{A,B\}$	$\{A,B\}$	{ <i>A</i> , <i>C</i> }
{ <i>A</i> , <i>C</i> }	$\{A,B\}$	<i>{A}</i>

$$Q_D = \{ \{A\}, \{A, B\}, \{A, C\} \}$$

 $F = \{ \{A, C\} \}$

JFLAP

http://www.jflap.org/