4. LIMITE CONTINUITY

The only way to discover the limits of the possible is to go beyond them into the impossible."

~ ARTHUR C. CLARKE

We shall start with the notion of limits, followed by the notion of continuity of a function.

§4.1 LIMIT OF A FUNCTION

Let us begin with the definition.

DEFINITION 4.1.1 (LIMIT OF A FUNCTION)

For $-\infty < \alpha < b < \infty$, let $f: (a,b) \to \mathbb{R}$ be a function. Let $x_0 \in [a,b]$ and $L \in \mathbb{R}$. We say that L is the limit of fat xo, denoted by

 $L = \lim_{x \to x_0} f(x)$

if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all

 $0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon \qquad \cdots \qquad (4.1)$

Note that if 5>0 satisfies (4.1), then any 5'<5, 5'>0 also satisfies (4.1). Therefore, for any given $\epsilon>0$, 5>0 is satisfying (4.1) is not unique.

Define $f: (-1,1) \to \mathbb{R}$ by $f(x) = x^2$ for any $x \in (-1,1)$. (i) We claim that $\lim_{x \to 0} f(x) = 0.$

To see this, let $\varepsilon > 0$ be given. Let us choose $\delta := \sqrt{\varepsilon}$. Here $x_0 = 0$ and for any $x \in (-1, 1)$,

 $0 < |x-0| = |x| < 5 = \sqrt{\epsilon} \implies |f(x)-0| = |x^2| = x^2 < 5^2 = \epsilon.$ Thus, $\lim_{x\to 0} f(x) = 0$.

(ii) We claim that $\lim_{x\to 1} f(x) = 1$.

To see this, let $\varepsilon>0$ be given. Let us choose $\delta:=\varepsilon/2$. Here $x_0=1$ and for any $x\in(-1,1)$, |x+1|<2 as well as $0 < |x-1| < \delta = \frac{\varepsilon}{2} \implies |f(x)-1| = |x^2-1| = |x-1||x+1| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon.$ Thus, $\lim_{x\to 1} f(x) = 1$.

EXAMPLE 4.1.3

Let $a \in \mathbb{R}$ and let $g: \mathbb{R} \to \mathbb{R}$ be defined as $g(x) := \begin{cases} x \sin(x) & \text{if } x \in \mathbb{R} \& x \neq 0 \end{cases}$ le elain that

We claim that $\lim_{x\to 0} g(x) = 0$.

To see this, let $\varepsilon > 0$ be given. Let us choose $\delta = \varepsilon$. Here $x_0 = 0$ and for any $x \in \mathbb{R}$,

 $0 < |x-0| = |x| < \delta = \varepsilon \Rightarrow |g(x)-0| = |x \sin(\frac{y}{x})| \le |x| < \delta = \varepsilon$ Thus, $\lim_{x\to 0} g(x) = 0$. Note that the value of g at 0, which is a, is of no relevance.

EXAMPLE 4.1.4

det us define h: R → R as follows $h(x) := \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \in \mathbb{R} \text{ if } x \neq 2 \\ 2024 & \text{if } x = 2 \end{cases}$ We claim that $\begin{cases} \lim_{x \to 2} h(x) = 4. \end{cases}$

To see this, let $\varepsilon > 0$ be given let us choose $\delta = \varepsilon$. Here $x_0 = 2$ and for any $x \in \mathbb{R}$,

 $0 < |x-2| < 5 \Rightarrow |h(x)-4| = \left|\frac{x^2-4}{x-2}-4\right| = \left|(x+2)-4\right| = |x-2| < 5 = \varepsilon$

as 1x-2170 forces $x \neq 2$. Thus, $\lim_{x \to 2} h(x) = 4$.

If $f(x) = \begin{cases} \frac{1}{x-8} & \text{if } x \neq 8 \\ 0 & \text{if } x = 8 \end{cases}$, then $\lim_{x \to 8} f(x) = \infty$.

Thus, if $g(x) = \begin{cases} \frac{1}{x-5} & \text{if } x \neq 5 \\ 0 & \text{if } x = 5 \end{cases}$ then $\lim_{x \to 5} g(x) = 10$.

EXAMPLE 4.1.5

Let us define $\varphi: \mathbb{R} \to \mathbb{R}$ as follows: $\varphi(x) := \begin{cases} \sin(\sqrt{x}) & \text{if } x \in \mathbb{R} \& x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$

We claim that $\lim_{x\to 0} \varphi(x)$ does not exist. We shall prove this via contradiction. Let us suppose, to the contrary, that the limit exists; we write

 $L := \lim_{x \to 0} \varphi(x)$.

We have two cases to consider.

CASE1: L ≠ O

In this case, we have to find $\varepsilon>0$ for which no $\varepsilon>0$ will work, i.e., find an $\varepsilon>0$ s.t

0<1x-01=1x1<5 but 1p(x)-L1>E.

Choose $\varepsilon = \frac{1}{2}$ | L1 and 5 > 0 be arbitrary. Let us choose $N \in IN$ such that $0 < \frac{1}{N\pi} < 5$.

If we set $x = 1/N\pi$, then

 $|\varphi(x)-L|=|\sin(N\pi)-L|=|L|>\frac{1}{2}|L|=\varepsilon.$

CASE 2: L = 0

As in the previous case, we set $\mathcal{E}=\frac{1}{2}$. For any 5>0, choose $M\in\mathbb{N}$ such that

 $0 < \frac{1}{2M\pi + \sqrt{2}} < \delta.$

If we set $x = \frac{1}{2M\pi + \pi y_2}$, then 0 < |x| < 5 but

 $|\varphi(x)-0|=|\sin(2M\pi+\pi/2)|=1>\frac{1}{2}=\epsilon.$

Therefore, we conclude that him sin(1/x) does not exist. It is instructive to draw the graphs of the functions in Example 4.1.3 and Example 4.1.5.

The following result states the elementary properties of the limit of a function.

(3)

```
THEOREM 4.1.6 (PROPERTIES OF LIMIT)
          Let -\infty < \alpha < b < \infty. Let x_0 \in [a, b] & let f, g: (a, b) \to \mathbb{R}
       be such that
                            \lim_{x \to x_0} f(x) exists & \lim_{x \to x_0} g(x) exists.
      Then the following hold:
      (i) \lim_{x \to x_0} (f(x) + g(x)) exist and
                                 \lim_{x\to x_0} \left( f(x) + g(x) \right) = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x).
      (ii) \lim_{x\to x_0} (f(x)g(x)) exist and
                                  \lim_{x\to x_0} \left( f(x)g(x) \right) = \left( \lim_{x\to x_0} f(x) \right) \left( \lim_{x\to x_0} g(x) \right)
      (iii) For any \alpha \in \mathbb{R},
                                  \lim_{x\to x_0} (x f(x)) = \alpha (\lim_{x\to x_0} f(x)).
       (iv) If \lim_{x\to x_0} g(x) \neq 0, then \lim_{x\to x_0} (f(x)/g(x)) exist and
                            \lim_{x \to x_0} \left( \frac{f(x)}{g(x)} \right) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x)
Proof. Let us write
                       L := \lim_{x \to x} f(x) \qquad \& \qquad M := \lim_{x \to x_0} g(x).
      We shall prove (ii); others are left as exercise. Let E>O be given. By definition of limit, there exists 5, > O such that
                  0 < |x-x_0| < \delta, \Rightarrow |g(x)-M| < 1 \Rightarrow |g(x)| < |t+|m| ... (4.2)
       With E' = \frac{E}{1+|L|+|M|}, there exists \delta_2 > 0 such that
                   0 < |x - x_0| < \delta_2 \Rightarrow |g(x) - M| < \frac{\varepsilon}{1 + |L| + |M|}
                                                                                               .. (4.3)
                   0 < |x - x_0| < \delta_3 \Rightarrow |f(x) - L| < \frac{\varepsilon}{1 + |L| + |M|}
      Let us set \delta := \min\{\delta_1, \delta_2, \delta_3\}. Then for x \in (a, b) with
       0<1x-x01<5, we have (using (4.1), (4.2)
         |f(x)g(x)-LM| = |f(x)g(x)-Lg(x)+Lg(x)-LM|
                                  = |(f(x) - L)g(x) + L(g(x) - M)| \le |f(x) - L||g(x)| + |L||g(x) - M
                                 \leq \frac{\varepsilon}{1+|L|+|M|} (1+|M|) + |L| \frac{\varepsilon}{1+|L|+|M|}
```


Two interesting limits:

0.9999 ... = 1

 $\lim_{x\to\infty} x^2 = 0000$

§ 4.2 CONTINUITY

Let us begin with the definition.

DEFINITION 4.2.1 (CONSTINUITY AT A POINT)

For $-\infty < \alpha < b < \infty$, let $f: [a,b] \to \mathbb{R}$ be given. We say that f is continuous at $x_0 \in [a,b]$, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that, for any $x \in [a,b]$

 $|x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon$.

If f is continuous at every point, then we say that f is continuous on [a, b].

Although Definitions 4.1.1 & 4.2.1 look similar, note the differences. The following result connects the two notions.

THEOREM 4.2.2 (RELATION BETWEEN LIMIT & CONTINUITY)

Let $-\infty < a < b < \infty$, $f: [a,b] \to \mathbb{R}$ & $x_o \in [a,b]$. Then, f is continuous at x_o if and only if

- i) lim f(x) exists, and
- ii) $\lim_{x\to x_0} f(x) = f(x_0)$.

Proof. Let f be continuous at x_0 . Then for a given $\varepsilon > 0$, there exists $\delta > 0$ such that

 $|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\varepsilon$.

Thus, the above holds even when $0 < |x-x_0| < 5$ & we may set $L := f(x_0)$ to obtain that the limit exists and $\lim_{x \to x_0} f(x) = L (= f(x_0))$.

Conversely, assume (i) & (ii), i-e, $f(x_0)$ is the limit. When $x = x_0$, $f(x) = f(x_0)$, whence $|f(x) - f(x_0)| = 0 < \varepsilon$ in this case. The other cases $(x \neq x_0)$ is taken care of by (i).

(5

EXAMPLE 4.2.3

Let us define $f: \mathbb{R} \to \mathbb{R}$ by

 $f(x) = x^2$ for any $x \in \mathbb{R}$.

We claim that f is continuous on R, i.e., f is continuous at all points of R.

CASE1: a = 0

yiven €>0, set S := JE. If

 $|\chi| = |\chi - 0| < S \implies \chi^2 = |\chi|^2 = |\chi^2 - 0| < S^2 = \varepsilon.$

Thus, f is continuous at O.

CASE 2: a = 0

Given $\varepsilon > 0$, set $\delta := \min \left\{ \frac{\varepsilon}{3|a|}, |a| \right\}$. If $|x-a| < \delta$, then $|x^2 - a^2| = |x - a| \cdot |x + a| \le |x - a| (|x - a| + 2|a|) < \delta(\delta + 2|a|)$

 $\leq \frac{\varepsilon}{3|a|} (|a|+2|a|) = \varepsilon.$

Thus, f is continuous at a.

EXAMPLE 4.2.4

Let us define $g: R \to R$ by

 $g(x) := \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0. \end{cases}$

We claim that g is not continuous at 0. If g is continuous at 0, then for $\varepsilon=1$, there exists $\delta>0$ such that $|x| < \delta \implies |g(x) - g(0)| = |g(x) - 1| < 1.$

In particular, for x = - 3/2, we obtain

 $2 = |g(-\delta/2) - 1| < 1,$

a contradiction. Observe that for a ER, the function

 $g_{a}(x) := \begin{cases} 1 & \text{if } x > 0 \\ a & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$

is not continuous at o for any choice of a ER.

THEOREM 4.2.5

Let $-\infty < a < b < \infty$ and let $f,g:[a,b] \to \mathbb{R}$ be continuous at $x_0 \in [a,b]$. Then,

- i) f+g is continuous at xo.
- ii) of is continuous at xo for any XEIR.
- iii) fg is continuous at xo.
- iv) if $g(x_0) \neq 0$, then f/g is continuous at x_0 .

Proof. We shall prove i) & ii). The others are left as an exercise. For i), given $\varepsilon > 0$, find $\delta_1 > 0$ & $\delta_2 > 0$ such that $|x-x_0| < \delta_1 \Rightarrow |f(x)-f(x_0)| < \varepsilon/2$

 $|\chi - \chi_0| < \delta_2 \Rightarrow |g(\chi) - g(\chi_0)| < \varepsilon/2$

Set S:= min{8,, 8, } & notice that

 $|x-x_0|<\delta \Rightarrow \varepsilon = \varepsilon_2 + \varepsilon_2 > |f(x)-f(x_0)| + |g(x)-g(x_0)|$

 $\geq |f(x)+g(x)-(f(x_0)+g(x_0))|.$

Thus, f + g is continuous at xo.

For ii), given $\varepsilon > 0$ and $\alpha \neq 0$, find $\delta > 0$ such that $|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\frac{\varepsilon}{|\alpha|}$

Then, for the same S.

 $|x f(x) - \alpha f(x_0)| = |\alpha| |f(x) - f(x_0)| < |\alpha| \cdot \xi_{|\alpha|} = \varepsilon$. This proves that αf is continuous at x_0 . The case $\alpha = 0$ reduces to the zero function, which is continuous.

COROLLARY 4.2.6

Let $-\infty < \alpha < b < \infty$ and let $P: [a,b] \to \mathbb{R}$ be a polynomial, i.e., $P(x) := a_0 + a_1 x + \cdots + a_d x^d$ with $a_d \neq 0$ and $a_i \in \mathbb{R}$. Then, P is continuous.

Proof. We know that f(x) = x and g(x) = c are continuous maps. Using iii) (k-1) times, we conclude that the function $P_{\kappa}(x) := x^{\kappa}$ is continuous. Using ii), we conclude that $a_{\kappa}x^{\kappa}$ is continuous. Using i) κ times (by adding the functions a_0 , $a_1x, ..., a_dx^d$), we conclude that P_{κ} (the sum) is continuous.