

Decoder

Decoder is a combinational circuit that converts binary information from n input lines to 2ⁿ unique output lines.

We design a simple 2 to 4 Decoder

2×1 Decoder

$\mathbf{S_0}$	S_1
0	1

S_0	S_1
1	0

S_0	S_1
1	1

Encoder

Digital function produces the reverse operation of decider.

8 to 3 Encoder

8×3 Encoder

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
1	0	0	0	0	0	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	1	0	0	0	0	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	1	0	0	0	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	0	1	0	0	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	0	0	1	0	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	0	0	0	1	0	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	0	0	0	0	1	0

$\mathbf{D_0}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7
0	0	0	0	0	0	0	1

Mux

Multiple inputs → Single Output

\mathbf{S}_{0}	S_1	Output
0	0	D_0

S_0	S_1	Output
0	1	D_1

S_0	S_1	Output
1	0	D_2

S_0	S_1	Output
1	1	D_3

De-Mux

De-mux is a circuit that receives information on a single line and transmit this info to 2ⁿ output lines

1×4 Demux

En=0

En	S_0	$\mathbf{S_1}$	Output

0 1 0 1,2,4

En	S_0	$\mathbf{S_1}$	Output
0	1	1	1,2,3

