Analysis

- 1. There is no much difference in mean and median, so maybe their will be no outlier
- 2. Mileage, Enginesize, horsepowerr, resaleprice having negative values
- 3.Owner count column having 133 null values
- 4.car_age standard deviation is 5, so most of the car having age around 5,6,4 years.
- 5.no duplicated data
- 6.based on the Box plot of numerical data, except ownercount and car_age other column having outliers
- 7.correlation of car_age and resaleprice is -0.477, which means both having medium negative correlation, car_age increase price decrease
- 8.correlation of mileage and resaleprice = -.0.21, which means both having slightly negative correlation, mileage increase price decrease
- 9.correlation of enginesize and resaleprice = 0.20, which means both having slightly positive correlation, enginesize increase price increase
- 10.correlation of horsepower and resaleprice = 0.65, which means both having strong positive correlation, horsepower increase price increase

Catagorical column

- 11.Car condition, brand making few changes in resale price column
- 12.fuel,trasmission not doing any changes in resale price column

RESULT

Prediction number	Major changes	Error metrics						
1	1.Owner count column null value replaced by Mean of that column.		MSE	RMSE	MAPE	r square		
		Train	34,624,079.09	5,884.22	0.10	0.70		
	2.Categorical column encoded [Fuel type, brand, transmission,carcondition] 3.standardization	Test	33,217,715.91	5,763.48	0.09	0.71		
2.	I used SelectKBest to select best 5 columns		MSE	RMSE	MAPE	r_square_		
		Train	34,788,331.04	5,898.16	0.10	0.70		
	Columns are (['CarAge', 'Mileage', 'EngineSize', 'Horsepower', 'CarCondition']')	Test	34,788,331.04	5,751.92	0.09	0.71		

3.	I took only Horse power columns as train set , because it is having strong positive correlation with resaleprice	MSE		RMSE	MAPE	r_square_
		Train	86,740,700.29	9,313.47	0.14	0.38
		Test	77,096,509.06	8,780.46	0.14	-0.23
						-
4.	1.Based on the sns.pairplot(data), i can see some outliers in the following columns [Car_age, Mileage,Engine_size]		MSE	RMSE	MAPE	r-square
		Train	34,823,019.02	5,901.10	0.09	0.65
		Test	32,098,033.11	5,665.51	0.09	0.70
	2.Remove those outliers in car_age,mileage,enginesize columns					
	3.Encode catagorical columns					
	4.standardization					
5.	1.remove negative values in Mileage, enginesize and horsepower 2.Encode catagorical columns 3.standardization		MSE	RMSE	MAPE	r-square_
		Train	33,541,552.94	5,791.51	0.09	0.69
		Test	35,672,321.97	5,972.63	0.10	0.70