1 Descriptive statistics notation and formulas

Descriptive Statistic	Sample Version	Population Version
Number of observations	n	N
Mean of x	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$
Variance of x	$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$	$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2$
Standard deviation of x	$s_x = \sqrt{s_x^2}$	$\sigma_x = \sqrt{\sigma_x^2}$
Covariance of x and y	$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$	$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x) (y_i - \mu_y)$
Correlation of x and y	$\Gamma_{xy} = rac{s_{xy}}{s_x s_y}$	$ \rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} $

Using the frequency method

Descriptive Statistic	Sample Version	Population Version
Mean of x	$\overline{x} = \frac{1}{n} \sum_{h=1}^{m} x_h F_{x_h}$	$\mu_x = \frac{1}{N} \sum_{h=1}^{M} x_h F_{x_h}$
Variance of x	$s_x^2 = \frac{1}{n-1} \sum_{h=1}^m (x_h - \overline{x})^2 F_{x_h}$	$\sigma_x^2 = \frac{1}{N} \sum_{h=1}^{M} (x_i - \mu_x)^2 F_{x_h}$

 x_h : distinct value of x

m or M: number of distinct values of x in the sample or population

 F_{x_h} : Frequency of the value x_h