การบ้านการเชียนโปรแกรม 1: Linear Regression

Thanks Andrew Ng for this beautiful programming exercise

ในการบ้านนี้เราจะทดลองเขียนโปรแกรมเพื่อทำตามชั้นตอนของ linear regression โดยใช้ matrix operation ด้วย Octave/Matlab

ในpackage ประกอบด้วยไฟส์

- ex1.m เป็น main script ของการเรียกใช้ฟังก์ชันต่างๆ (ไม่ต้องแก้ไขอะไรในนี้ แต่ให้เรียก ex1 เพื่อรัน)
- ex1data1.txt เป็นชุดข้อมูลเพื่อใช้สอน และจะเรียกใช้เพื่อสร้างการทำนายด้วย linear regression
- *warmUpExercise.m ฟังก์ชันเพื่อสร้างความคุ้นเคยกับการใช้งานเมตริกซ์และ Octave/Matlab environment
- plotData.m ฟังก์ชันเพื่อแสดงกราฟ
- *computeCost.m ฟังก์ชันเพื่อคำนวณ cost
- *gradientDescent.m ฟังก์ชันที่ใช้ทำ Parameter learning ด้วยวิธี gradient descent
- * คือ ไฟล์ที่ต้องแก้ไขและส่ง

<u>วิชีส่งงาน</u>

1. ให้ลบส่วนที่คุณเขียนเกินและไม่จำเป็นออกทั้งหมดก่อนส่ง และเขียนโค้ดเติมลงในขอบเขตที่กำหนดให้ เท่านั้น ดังภาพ

		Compute the cost You should set J	of a particular	== neta
%	==========			

*****อาจารย์จะไม่ตรวจบรรทัดอื่นๆนอกขอบเขตนี้ *****

2. ฮัพโหลดเฉพาะไฟล์ที่กำหนดเท่านั้น

1. การโปรแกรม matrix อย่างง่าย (10 คะแนน)

การบ้านส่วนนี้ให้คุณแก้ไข warmUpExercise.m เพื่อให้โปรแกรมแสดงเอาท์พุต เป็นเมตริกซ์เอกลักษณ์ ขนาด 3x3 ซึ่งทำได้โดยโค้ดดังต่อไปนี้

A=eye(3);

ถ้าต้องการทดสอบให้สั่งรันที่ ex1.m หรือพิมพ์ ex1 ที่ Octave console สิ่งที่โปรแกรมต้องแสดงผลคือ 1 0 0 0 1 0 0 0 1

2. การโปรแกรม linear regression with one variable

ในส่วนนี้ประกอบด้วย 2 ส่วนย่อยคือ cost function และ gradient descent การที่เราจะสร้างโปรแกรม linear regression ได้ต้องมีส่วนสำคัญอื่นๆ (ที่ไม่ได้ต้องทำเป็นการบ้าน) ซึ่งใน package มีส่วนที่ทำหน้าที่นั้นให้ คุณเสร็จแล้ว คุณอาจศึกษาเพิ่มเติมได้ เช่น การโหลดข้อมูล อยู่ใน ex1.m ดังภาพ

การแสดงกราฟในฟังก์ชัน plotData ดังภาพ

ส่วนต่างๆที่ว่ามานี้ อาจมีประโยชน์ในการปรับใช้เมื่อคุณสร้างระบบของตนเองในอนาคตได้

2.1 การคำนวณ gradient descent

การบ้านนี้ยังเหลืออีก 2 ส่วนย่อยคือ cost function และ gradient descent ทั้ง 2 อันแยกกันไปคนละไฟล์ สิ่งที่ คุณต้องทำคือ

2.1.1 cost function (40 คะแนน)

ชื่อไฟล์ที่ต้องแก้ไขชื่อ computeCost.m เป้าหมายคือเพื่อคำนวณค่า cost ดังสมการ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

โดยที่ คำนวณ hypothesis function ได้จาก

$$h_{\theta}(x) = \theta^T x = \theta_0 + \theta_1 x_1$$

ให้แก้ไขโปรแกรม โดยให้โปรแกรมสามารถคำนวณค่า J ออกมาให้ถูกต้อง ค่าที่คาดหวังคือ J=32.07 <u>ข้อบังคับ คุ</u>ณ จะต้องเขียนโปรแกรมโดยใช้ matrix operation ไม่ใช่การวนลูป ทดสอบด้วยการสั่งรันที่ ex1.m หรือพิมพ์ ex1 ที่ Octave console

2.1.2 gradient descent (50 คะแนน)

ชื่อไฟล์ที่ต้องเขียนส่วนของ gradient descent คือ gradientDescent.m ฟังก์ชันนี้ต้องการให้มันสามารถ คำนวณตามหลักการของ gradient descent ให้ถูกต้อง

ทำซ้ำจนกว่าจะลู่เข้า{

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \quad \text{(simultaneously update θ_j for all j)}.$$

ซึ่งในการโปรแกรมจริง มักจะคำนวณตามจำนวนรอบที่กำหนด ใน ex1.m ได้มีการกำหนดจำนวนรอบไว้เรียบร้อย แล้ว ดังภาพ

```
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
```

สิ่งที่ต้องคุณต้องทำคือ คำนวณค่า theta ใหม่และปรับค่าในทุกๆรอบ <u>ข้อบังคับ</u> คุณจะต้องเขียนโปรแกรมโดยใช้ matrix operation ไม่ใช่การวนลูป คุณสามารถตรวจสอบว่าเขียนโปรแกรมได้ถูกต้อง โดยทดลองแสดงผลลัพธ์ค่า J ซึ่งจะลดลงทุกๆรอบของการรัน นอกจากนี้ เมื่อสั่งรัน ผลที่ได้ควรปรากฏภาพ คล้ายกับด้านล่างนี้

3. Linear Regression with Multiple Variables (Optional)

ส่วนนี้เป็นการโปรแกรมโดยเพิ่มจำนวน feature ให้มากขึ้น จากส่วนที่ 2 ที่มีเพียง 1 feature เท่านั้น โปรแกรมส่วนนี้ใช้ไฟล์ ex1_multi.m เป็นสคริปต์หลัก ให้ทดสอบและสั่งรันจากไฟล์นี้ และเรียกข้อมูลจาก ex1data2.txt ซึ่งมีข้อมูลเพื่อทำนายราคาบ้านจากพื้นที่ และจำนวนห้องในบ้าน

3.1 feature scaling

เนื่องจาก พื้นที่ และ จำนวนห้อง มีช่วงของข้อมูลที่แตกต่างกันมาก เราจึงต้องทำสเกล ให้ชุดข้อมูลอยู่ในช่วงเดียวกัน

ชั้นตอนนี้ใช้ไฟล์ featureNormalize.m สิ่งที่คุณต้องทำคือ หาค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐานแยก แต่ละ feature แล้วใช้ทั้งสองค่านี้ ปรับค่าแต่ละ feature การปรับค่าใช้สูตร

$$x_i = rac{x_i - \mu}{s_i}$$

<u>แนะแนว</u> std(), mean() สามารถใช้เพื่อหาค่าส่วนเบี่ยงเบนมาตรฐานและ ค่าเฉลี่ยได้ <u>ช้อบังคับ</u> ให้ใช้การคำนวณด้วย matrix ไม่ใช้ loop

3.2 gradient descent

สำหรับการสอนพารามิเตอร์ด้วย gradient descent นั้นสามารถประยุกต์ใช้ gradient descent ในตอน one variable (ข้อที่ 2) ได้ แต่ต้องปรับให้มันไม่ยึดติดกับขนาดใดขนาดหนึ่ง ใช้ไฟล์ gradientDescentMulti.m และ computeCostMulti.m <u>ข้อบังคับ</u> ให้ใช้การคำนวณด้วย matrix ไม่ใช้ loop

3.3 Normal Equation

ใช้สำหรับการทำ gradient descent เช่นกัน แต่เป็นขั้นตอนเดียวแล้วได้คำตอบเลย ไม่ต้องทำซ้ำเพื่อปรับ พารามิเตอร์ไปเรื่อยๆ normal equation เป็นดังสมการ

$$\theta = (X^T X)^{-1} X^T y$$

ให้ใช้ไฟล์ normalEqn.m <u>ช้อบังคับ</u> ให้ใช้การคำนวณด้วย matrix ไม่ใช้ loop

ตารางคะแนน

ที่	งานที่ต้องทำ	ไฟล์ที่แก้ไขและส่ง	คะแนน
1	warm up	warmUpExercise.m	10
2 3	คำนวณ cost สำหรับ 1 ตัวแปร คำนวณ gradient descent สำหรับ 1 ตัวแปร	computeCost.m gradientDescent.m	40 50
	รวม		100

คะแนนพิเศษ

ที่	งานที่ต้องทำ	ไฟล์ที่แก้ไขและส่ง	คะแนน
-----	--------------	--------------------	-------

1	feature normalization	featureNormalize.m	5
2	คำนวณ cost สำหรับหลายตัวแปร คำนวณ gradient descent สำหรับหลาย ตัวแปร	computeCostMulti.m gradientDescentMulti.m	20 20
4	คำนวณ normal equation	normalEqn.m	5
	รวม		50