An Explicit Rate-Optimal Streaming Code for Channels with Burst and Arbitrary Erasures

Elad Domanovitz, Silas Fong and Ashish Khisti

Tel Aviv University & University of Toronto

August 27th, 2019 2019 IEEE Information Theory Workshop

Multimedia Streaming

Application	Delay		
Voice.	150 ms		
Vidoe Conf.	100 ms		
Gaming	50 ms		

In most cases retransmission does not meet the delay constraint

Problem Setup

- **Source Model** : i.i.d. sequence $s[t] \sim p_s(\cdot) = Unif\{(\mathbb{F}_q^k)\}$
- Streaming Encoder: $x[t] = f_t(s[0], ..., s[t]), x[t] \in (\mathbb{F}_q^n)$
- Erasure Channel (To be specified)
- Delay-Constrained Decoder: $\hat{s}[t] = g_t(y[0], \dots, y[t+T])$
- Rate $R = \frac{k}{n}$

Real-Time Communication System

Streaming Code: Causal Encoder + Delay Constrained Decoder

Channel Model

Channel Model

Link:

(b): Burst Erasure Sequence

Capacity (T=delay, N=Arbitrary erasures, B=Burst erasures)

• For any $T \ge B \ge N = 1$ (Martinian et al. (04))

$$C(T,B,1)=\frac{T}{T+B}$$

ullet For any $T \geq B \geq N$, N > 1 (Fong et al. (18), Krishnan et al. (18))

$$C(T, B, N) = \frac{T - N + 1}{T - N + B + 1}$$

• Can be extended to the sliding window model (Badr et al. (13))

Real-Time Communication System

Streaming Code: Causal Encoder + Delay Constrained Decoder

Achievable Schemes

For any $T \geq B \geq N = 1$

- Explicit
- Field size: scales linearly with the delay (O(T))

For any $T \geq B \geq N$, N > 1

- Explicit
- Field size

Achievable Schemes

For any $T \geq B \geq N = 1$

Explicit

V

• Field size: scales linearly with the delay (O(T))

For any $T \geq B \geq N$, N > 1

Explicit

?

Field size

?

General construction

- Block code at rate C(T, B, N) with a delay-constraint T (symbol-level)
- Diagonal interleaving
 - ▶ Originally suggested by Martinian et al. (04) for burst only channels
 - Recently extended to general channels by Krishnan et al. (19)

Example: T = 3, B = 2, N = 1 (Martinian and Sundberg)

• Step 1: Rate 3/5 block code

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
$$[a, b, c] \longrightarrow [a, b, c, a+c, b+c]$$

Step 2: Diagonal interleaving

x[i-1]	×[i]	x[i+1]	$\times[i+2]$	x[i+3]	x[i+4]
a_{i-1}	a_i	a_{i+1}	a_{i+2}	a_{i+3}	a_{i+4}
b_{i-1}	b_i	b_{i+1}	b_{i+2}	b_{i+3}	b_{i+4}
c_{i-1}	c_i	c_{i+1}	c_{i+2}	c_{i+3}	c_{i+4}
$a_{i-4} + c_{i-2}$	$a_{i-3} + c_{i-1}$	$a_{i-2} + c_i$	$a_{i-1} + c_{i+1}$	$a_i + c_{i+2}$	$a_{i+1} + c_{i+3}$
$b_{i-4} + c_{i-3}$	$b_{i-3} + c_{i-2}$	$b_{i-2} + c_{i-1}$	$b_{i-1} + c_i$	$b_i + c_{i+1}$	$b_{i+1} + c_{i+2}$

Example: T = 3, B = 2, N = 1 (Martinian and Sundberg)

• Step 1: Rate 3/5 block code

$$G = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

$$[a,b,c] \longrightarrow [a,b,c,a+c,b+c]$$

Step 2: Diagonal interleaving

x[i-1]	×[i]	$\times[i+1]$	x[i+2]	x[i+3]	x[i+4]
a_{i-1}	a _i /	a _{i+1} /	a_{i+2}	a_{i+3}	a_{i+4}
b_{i-1}	b_i	b_{i+1}	b_{i+2}	b_{i+3}	b_{i+4}
c_{i-1}	X	c 1	c_{i+2}	c_{i+3}	c_{i+4}
$a_{i-4} + c_{i-2}$	$a_{i-3} + i_{i-1}$	$a_i - 2 + c_i$	$a_{i-1} + c_{i+1}$	a_i + c_{i+2}	$a_{i+1} + c_{i+3}$
$b_{i-4} + c_{i-3}$	$y_{i-3} + c_{i-2}$	$V_{i-2} + c_{i-1}$	$b_{i-1} + c_i$	b_i + c_{i+1}	$b_{i+1} + c_{i+2}$

Can recover from from a burst of two erasures

Example: T = 3, B = 2, N = 1 (Martinian and Sundberg)

• Step 1: Rate 3/5 block code

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
$$[a, b, c] \longrightarrow [a, b, c, a+c, b+c]$$

• Step 2: Diagonal interleaving

x[i-1]	×[i]	$\times[i+1]$	x[i+2]	x[i+3]	x[i+4]
a_{i-1}	a _i /	a_{i+1}	a_{i+2}	a _{i+3} /	a_{i+4}
b_{i-1}	b_i	b_{i+1}	b_{i+2}	bi+3	b_{i+4}
c_{i-1}	X	c_{i+1}	c_{i+2}	c)\square 3	c_{i+4}
$a_{i-4} + c_{i-2}$	$a_{i-3} + i_{i-1}$	$a_{i-2} + c_i$	$a_{i-1} + c_{i+1}$	ai + c +2	$a_{i+1} + c_{i+3}$
$b_{i-4} + c_{i-3}$	$y_{i-3} + c_{i-2}$	$b_{i-2} + c_{i-1}$	$b_{i-1} + c_i$	$b_i + c_{i+1}$	$b_{i+1} + c_{i+2}$

Can not recover from more than one sporadic erasure...

Achievable Schemes For N > 1: What is Known?

Construction	Field size	Explicit
Fong et al. (18)	$O\binom{\tau}{N}$	No
Dudzicz et al. (19)	O(exp(T))	Yes (for $R \geq \frac{1}{2}$)
Krishnan et al. (18)	$O(\exp(T))$	Yes
Krishnan et al. (19)	$O(T^2)$	only for specific cases

Can we find an **explicit** capacity achieving code with field size that **scales quadratically** with the delay constraint $(O(T^2))$?

Step 1

• Take an (n, k) MDS code C'' over \mathbb{F}_q with the generator matrix

$$\mathbf{G}'' = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & Y & \cdots & \cdots & \cdots & Y \\ 0 & 1 & 0 & 0 & \cdots & 0 & Y & \cdots & \cdots & \cdots & Y \\ 0 & 0 & \ddots & 0 & \cdots & 0 & Y & \cdots & \cdots & \cdots & Y \\ \vdots & \vdots & & 1 & & \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & \ddots & 0 & \vdots & & & & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 & Y & \cdots & \cdots & Y \end{bmatrix}$$

Y is a place-holder

Step 2

Perform row operations to generate

$$\mathbf{G}' = \begin{bmatrix} 1 & X & \cdots & X & 0 & 0 & 0 & \cdots & 0 & X & \cdots & X \\ 0 & 1 & X & \cdots & X & 0 & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & 0 & \cdots & 0 & X & \cdots & X \\ \vdots & \vdots & & 1 & \ddots & \ddots & \ddots & \vdots & X & X \\ \vdots & \vdots & & & \ddots & X & \cdots & X & 0 & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 & X & \cdots & X & X & \cdots & X \end{bmatrix}$$

Step 3

$$\mathbf{G} = \begin{bmatrix} 1 & X & \cdots & X & 0 & 0 & 0 & \cdots & 0 & \alpha & \cdots & 0 \\ 0 & 1 & X & \cdots & X & 0 & 0 & \cdots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & \cdots & 0 & 0 & \cdots & \alpha \\ \vdots & \vdots & & 1 & \ddots & \ddots & \ddots & & \vdots & X & \cdots & X \\ \vdots & \vdots & & & \ddots & X & \cdots & X & 0 & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 & X & \cdots & X & X & \cdots & X \end{bmatrix}$$

• $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$, all other elements in \mathbb{F}_q

$$\mathbf{G} = \begin{bmatrix} \mathbf{H}_1 \Longrightarrow MDS_1 & \mathbf{H}_3 \\ 1 & X & \cdots & X & 0 & 0 & 0 & \cdots & 0 & \alpha & \cdots & 0 \\ 0 & 1 & X & \cdots & X & 0 & 0 & \cdots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & X & \cdots & X \\ \vdots & \vdots & & 1 & \ddots & \ddots & \ddots & \vdots & X & \cdots & X \\ \vdots & \vdots & & \ddots & X & \cdots & X & 0 & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 1 & X & \cdots & X & X & \cdots & X \end{bmatrix}.$$

$$H_2 \Longrightarrow MDS_2$$

- $\mathbf{H}_1 = \text{generator matrix of } (k+N-1,k) \text{ MDS code over } \mathbb{F}_q$
- \mathbf{H}_2 = generator matrix of (n (B N + 1), k (B N + 1)) MDS code over \mathbb{F}_a

Generator matrix

$$G = \begin{bmatrix} (6,4) & MDS_1 \\ 1 & 10 & 9 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 1 & 9 & 1 & 0 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 6 & 9 & 0 & 4 & 8 \\ 0 & 0 & 0 & 1 & 4 & 1 & 9 & 8 \end{bmatrix}$$

$$(6,2) & MDS_2$$

- $q = 11, \ \alpha \in GF(121) \setminus GF(11)$
- Decode s₀
- Trivial when x_0 is not erased \Longrightarrow assume x_0 is erased

A burst of size B = 4 starting at time 0

0 1 2 3 4 5 6 7

$$\begin{bmatrix} 1 & 10 & 9 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 1 & 9 & 1 & 0 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 6 & 9 & 0 & 4 & 8 \\ 0 & 0 & 0 & 1 & 4 & 1 & 9 & 8 \end{bmatrix}$$

- At time 5: s_2 and s_3 are recovered using MDS_2
- At time 6: s₀ is recovered

N=3 sporadic erasures where x_6 is erased

• Using MDS₁, all data symbols can be decoded at time 4

N=3 sporadic erasures where x_6 is not erased

0 1 2 3 4 5 6 7

- MDS_1^1 = "shortening" \mathbf{H}_1 by one symbol $\Longrightarrow (5,3)$ MDS code with known interference from s_0
- Dashed part of x_6 is in the span of $MDS_1^1 \Longrightarrow$ can be cancelled
- $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \Longrightarrow \alpha$ is not nulled
- $\bullet \implies S_0$ can be recovered

Main Result

Theorem

Block code \mathcal{C} with generator matrix \mathbf{G} is a block code which conforms to $\mathcal{C}(T,B,N)$ with a delay-constraint T and thus a capacity-achieving streaming code of any $\mathcal{C}(T,B,N)$ with delay T and field size that scales quadratically with the delay constraint $(\mathcal{O}(T^2))$ can be generated from \mathcal{C} using diagonal interleaving.

• The proof is a generalization of the example

Concluding Remarks

- We show (for the first time):
 An explicit capacity achieving construction with field size that scales quadratically with the delay constraint
- It can be shown that the generator matrix can be systematic
- Can be used in other applications (broadcast, unequal protection)
- Is it the minimal field size of capacity achieving code?

Thank you for your attention