LISTAS 12 E 13: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Exercício 1. Considere o modelo de Ising em uma rede quadrada bidimensional (d = 2) com $N = L \times L$ spins cujo Hamiltoniano é dado por [1]:

$$H = -J \sum_{\langle i,j \rangle} s_i s_j \quad ,$$

onde $s_i = \pm 1$ denota o spin da *i*-ésima partícula e a notação $\langle i, j \rangle$ indica que a soma em j é feita somente sobre os quatro primeiros vizinhos. Sabendo que cada spin também pode ser indicado por dois índices m e n, os quais denotam suas posições na rede (m, n = 1, ..., L), podemos calcular a energia total do sistema como

$$E = -J \sum_{m=1}^{L} \sum_{n=1}^{L} s_{m,n} (s_{m+1,n} + s_{m,n+1}) , \qquad (1)$$

onde considera-se condições de contorno periódicas:

$$m+1 \to 1$$
 se $m=L$ ou $m-1 \to L$ se $m=1$

e

$$n+1 \to 1$$
 se $n=L$ ou $n-1 \to L$ se $n=1$.

a) Mostre que a diferença de energia para inverter um spin $s_{m,n}^{\nu} \to s_{m,n}^{\nu'} = -s_{m,n}^{\nu}$ pode ser escrita como

$$\Delta E = E_{\nu'} - E_{\nu} = 2J s_{m,n}^{\nu} (s_{m+1,n}^{\nu} + s_{m-1,n}^{\nu} + s_{m,n+1}^{\nu} + s_{m,n-1}^{\nu}) \quad . \tag{2}$$

b) Implemente um programa para realizar simulações de Monte Carlo desse modelo no ensemble canônico, isto é, utilizando o peso de amostragem $w(E)=e^{-\beta E}$ do algoritmo de Metropolis (vide Lista 11), o qual define a **probabilidade de aceitação** como

$$p(\nu \to \nu') = \min\left[1, \frac{w(E_{\nu'})}{w(E_{\nu})}\right] = \min\left[1, e^{-\beta \Delta E}\right] , \qquad (3)$$

onde $\beta=1/k_BT$ e ΔE é dada pela expressão 2. Assuma que a **regra** para propor uma nova configuração é definida pela inversão de um spin, isto é, $s_{m,n}^{\nu} \to s_{m,n}^{\nu'} = -s_{m,n}^{\nu}$ (dessa maneira 1 passo de Monte Carlo, ou 1 MCs, é definido como as tentativas de inverter o sentido de cada um dos N spins da rede). Realize simulações para L=32 para obter séries da energia E_k e magnetização $M_k=\sum_m\sum_n s_{m,n}^k$ com $k=1,2,3,\ldots,1.1\times 10^6$ MCs para as seguintes temperaturas $T_{\alpha}'=2+(\alpha-1)0.2$, onde $\alpha=1,\ldots,5$ e $T'=k_BT/J$ (dica: utilize $k_B=1$ e J=1 para facilitar a implementação). Considere uma configuração inicial com todos os spins orientados aleatoriamente e, para as análises dos items abaixo, utilize as séries **descartando** os primeiros 10^5 MCs para termalização do sistema.

- c) Obtenha os tempos de auto-correlação integrado $2\tau_{\rm int}$ (vide Lista 10) das séries obtidas após os passos de termalização. Faça dois gráficos de $2\tau_{\rm int}$ em função da temperatura T', um para a energia e o outro para a magnetização.
- d) Faça dois gráficos dos histogramas das séries obtidas, um para a energia por spin $\varepsilon = E/(2N)$ e outro para a magnetização por spin $\mu = |M|/N$, incluindo em cada um deles os resultados para as cinco temperaturas simuladas. Note que no caso das energias os intervalos são de quatro unidades, isto é, as energias assumem valores $E_l = 4l 2N$ com $l = 0, 1, 2, \ldots, N$ e $H_l = H(E_l)$ define o número de configurações amostradas com energias no intervalo $[E_l, E_{l+1}[$. Já para os valores de magnetização M_l o intervalo é de duas unidades.

ser obtidas dividindo a série de dados x_k $(k=1,\ldots,N_{\rm dados})$ em N_a subintervalos com n_a MCs cada, i.e. $N_{\rm dados}=N_a\times n_a.$ Com isso as médias térmicas e as flutuações de uma grandeza x amostradas utilizando um peso $w_\alpha=e^{-\beta_\alpha E}$ podem ser calculadas, respectivamente, como

$$\bar{x}(\beta_{\alpha}) = \frac{1}{N_a} \sum_{j=1}^{N_a} \bar{x}_j(\beta_{\alpha}) \qquad e \qquad \bar{\chi}(\beta_{\alpha}) = \frac{1}{N_a} \sum_{j=1}^{N_a} \bar{\chi}_j(\beta_{\alpha}) \quad , \tag{4}$$

onde

$$\bar{x}_j(\beta_\alpha) = \frac{1}{N_{\text{dados}} - n_a} \sum_{k \notin \{j\}}^{N_{\text{dados}}} x_k \qquad , \qquad \bar{x}_j^2(\beta_\alpha) = \frac{1}{N_{\text{dados}} - n_a} \sum_{k \notin \{j\}}^{N_{\text{dados}}} x_k^2 \qquad \text{e} \qquad \bar{\chi}_j(\beta_\alpha) = \bar{x}_j^2 - \bar{x}_j^2 \quad , \quad (5)$$

sendo que a notação $k \notin \{j\}$ indica que k percorre toda a sequência com N_{dados} valores, **exceto** os n_a pontos que pertencem ao j-ésimo subintervalo. Além disso, os erros para essas quantidades podem ser estimados a partir da raíz quadrada dos seus respectivos desvios padrão, os quais são dados por

$$\sigma_{\bar{x}}^{2}(\beta_{\alpha}) = \frac{N_{a} - 1}{N_{a}} \sum_{j=1}^{N_{a}} \left[\bar{x}_{j}(\beta_{\alpha}) - \bar{x}(\beta_{\alpha}) \right]^{2} \qquad e \qquad \sigma_{\bar{\chi}}^{2}(\beta_{\alpha}) = \frac{N_{a} - 1}{N_{a}} \sum_{j=1}^{N_{a}} \left[\bar{\chi}_{j}(\beta_{\alpha}) - \bar{\chi}(\beta_{\alpha}) \right]^{2} . \tag{6}$$

Definindo o número de pontos em cada subintervalo como $n_a \approx 2\tau_{\rm int}$, onde $2\tau_{\rm int}$ é o valor máximo do tempo de autocorrelação para as séries de energia obtido dentre as cinco temperaturas simuladas, utilize as expressões 4 e 5 para calcular estimativas para a energia média por spin $\varepsilon(T'_{\alpha}) = \bar{x}(\beta_{\alpha})/(2N)$ e calor específico $C_v(T'_{\alpha}) = (Nk_BT_{\alpha}^{\ 2})^{-1}\bar{\chi}(\beta_{\alpha})$, com $x_k = E_k$; e também para a magnetização por spin $\mu(T'_{\alpha}) = \bar{x}(\beta_{\alpha})/N$ e a susceptibilidade magnética $\chi(T'_{\alpha}) = (NT_{\alpha})^{-1}\bar{\chi}(\beta_{\alpha})$, com $x_k = |M_k|$. Faça os quatro gráficos dessas quantidades em função das temperaturas simuladas T'_{α} ($\alpha = 1, \ldots, 5$) incluindo os erros dessas grandezas estimados pelas raízes quadradas dos desvios padrão (Eqs. 6). f) Em geral, podemos obter estimativas paras as médias térmicas e flutuações de uma grandeza x em temperaturas β_i próximas à β_{α} utilizando a técnica de **repesagem de histogramas**. Considere, por exemplo, a série obtida à uma temperatura $T'_{\alpha} = 1/\beta'_{\alpha}$ com um peso de amostragem $w_k^{\alpha} = e^{-\beta_{\alpha}E_k}$, é possível obter médias térmicas e flutuações de uma grandeza x em uma outra temperatura $T'_i = 1/\beta'_i$ reescrevendo as expressões em 5 como

$$\bar{x}_{j}^{\alpha}(\beta_{i}) = [Z_{j}^{\alpha}(\beta_{i})]^{-1} \sum_{k \notin \{j\}}^{N_{\text{dados}}} x_{k} [w_{k}^{\alpha}]^{-1} e^{-\beta_{i} E_{k}} , \quad \bar{x}_{j}^{\bar{\alpha}^{2}}(\beta_{i}) = [Z_{j}^{\alpha}(\beta_{i})]^{-1} \sum_{k \notin \{j\}}^{N_{\text{dados}}} x_{k}^{2} [w_{k}^{\alpha}]^{-1} e^{-\beta_{i} E_{k}} \quad \text{e} \quad \bar{\chi}_{j}(\beta_{i}) = \bar{x}_{j}^{\bar{\alpha}^{2}} - (\bar{x}_{j}^{\alpha})^{2} ,$$

$$(7)$$

onde $Z_j^{\alpha}(\beta_i) = \sum_{k \notin \{j\}}^{N_{\rm dados}} [w_k^{\alpha}]^{-1} e^{-\beta_i E_k}$. Assim, relações similares às expressões 4 e 6 podem ser definidas utilizando as relações em 7 para fornecer médias térmicas $\bar{x}(\beta_i)$ e flutuações $\bar{\chi}(\beta_i)$ (e os seus respectivos desvios padrão e erros) em uma temperatura arbitrária $T_i' = 1/\beta_i'$ a partir da série obtida à uma temperatura T_α' . Considerando a série obtida na temperatura $T_3' = 2.4$, utilize a técnica de repesagem para obter estimativas para $\varepsilon(T_i')$, $C_v(T_i')$, $\mu(T_i')$ e $\chi(T_i')$ nas temperaturas $T_i' = 2 + (i-1)0.04$ com $i = 1, \dots, 21$. Faça os gráficos dessas quatro quantidades em função de T_i' incluindo as barras de erro estimadas pela raíz quadrada dos respectivos desvios padrão, $\sigma_{\bar{x}}^2(\beta_i)$ e $\sigma_{\bar{\chi}}^2(\beta_i)$.

g) A técnica de repesagem também permite combinar as estimativas fornecidas em cada uma das simulações (e.g. item anterior) para as médias térmicas $\bar{x}_{\alpha}(\beta_i)$, flutuações $\bar{\chi}_{\alpha}(\beta_i)$, e seus respectivos desvios padrão, $\sigma_{\bar{x}_{\alpha}}^2$ e $\sigma_{\bar{\chi}_{\alpha}}^2$, para fornecer estimativas únicas através de expressões como

$$\bar{x}(\beta_i) = \sum_{\alpha} c_{\alpha}^x \bar{x}_{\alpha}(\beta_i) \quad , \quad \bar{\chi}(\beta_i) = \sum_{\alpha} c_{\alpha}^\chi \bar{\chi}_{\alpha}(\beta_i)$$
 (8)

e

$$\sigma_{\bar{x}}^2(\beta_i) = \sum_{\alpha} c_{\alpha}^x \sigma_{\bar{x}_{\alpha}}^2 \quad , \quad \sigma_{\bar{\chi}}^2(\beta_i) = \sum_{\alpha} c_{\alpha}^{\chi} \sigma_{\bar{\chi}_{\alpha}}^2 \tag{9}$$

sendo os coeficientes definidos pelos pesos $c_{\alpha}^x = C_x/\sigma_{\bar{x}_{\alpha}}^2(\beta_i)$ e $c_{\alpha}^\chi = C_\chi/\sigma_{\bar{\chi}_{\alpha}}^2(\beta_i)$, com as constantes C_x e C_χ calculadas impondo as condições de normalização $\sum_{\alpha} c_{\alpha}^x = 1$ e $\sum_{\alpha} c_{\alpha}^\chi = 1$, respectivamente. Utilize essa técnica de repesagem combinada para obter estimativas para $\varepsilon(T_i')$, $C_v(T_i')$, $\mu(T_i')$ e $\chi(T_i')$ nas temperaturas $T_i' = 2 + (i-1)0.04$ com $i=1,\ldots,21$ utilizando as séries de todas as simulações realizadas nas cinco temperaturas T_{α}' . Faça os gráficos dessas quatro quantidades em função de T_i' incluindo as barras de erro estimadas pela raíz quadrada dos respectivos desvios padrão, $\sigma_{\bar{x}}^2(\beta_i)$ e $\sigma_{\bar{y}}^2(\beta_i)$.

h) Plote configurações significativas para cada uma das cinco temperaturas simuladas (i.e. indicando o valor de energia E_k e de magnetização M_k específicos para cada uma delas) e discuta qual a transição de fase é observada levando em consideração os gráficos das quantidades obtidas no item anterior.

Exercício 2. Utilizando o logaritmo da densidade de estados exata do modelo de Ising bidimensional, $\ln \Omega(E)$, para a rede quadrada de lado L=32 do arquivo LNgE.txt, escreva um programa que implemente um algoritmo de amostragem uniforme com probabilidade de aceitação definida como na relação geral da Eq. 3, porém considerando

$$\frac{w(E_{\nu'})}{w(E_{\nu})} = \exp\left[-\Delta S(E)\right] \ ,$$

onde $\Delta S(E) = S(E_{\nu'}) - S(E_{\nu}) = \ln \Omega(E_{\nu'}) - \ln \Omega(E_{\nu}).$

- a) Realize uma simulação utilizando esse algoritmo para obter as séries de energia E_k e magnetização M_k com $N_{\rm dados} = 10^7$ MCs, as quais devem ser utilizadas nos items abaixo.
- b) Forneça os tempos de auto-correlação integrado $2\tau_{\text{int}}$ (vide Lista 10) para as séries de energia e de magnetização. c) Grafique separadamente os dois histogramas das séries obtidas, isto é, para a série de energias, $H(E_l)$ por
- $\varepsilon_l = E_l/(2N)$, e para a série de magnetizações, $H(M_l)$ por $\mu_l = |M_l|/N$.
- d) Utilizando a **técnica de repesagem** (vide item (f) do Exercício 1 com $w_k^{\alpha} = \exp[-\ln \Omega(E_k)]$) aplicada para séries obtidas pelo algoritmo de amostragem uniforme (tal como mencionado acima), calcule as estimativas para a energia média por spin $\varepsilon(T_i) = \bar{x}(\beta_i)/(2N)$ e calor específico $C_v(T_i) = (Nk_BT_i^2)^{-1}\bar{\chi}(\beta_i)$, com $x_k = E_k$; e também para a magnetização por spin $\mu(T_i) = \bar{x}(\beta_i)/N$ e a susceptibilidade magnética $\chi(T_i) = (NT_i)^{-1}\bar{\chi}(\beta_i)$, com $x_k = |M_k|$. Faça os quatro gráficos dessas quantidades em função das temperaturas $T_i = 2 + (i-1)0.04$ com $i = 1, \ldots, 21$ e $\beta_i = 1/T_i$. Inclua os erros dessas grandezas estimados pelas raízes quadradas dos desvios padrão. Compare $\varepsilon(T_i)$ e $C_v(T_i)$ com as estimativas obtidas no item (f) do Exercício 1.

Referências:

- [1] Newman&Barkema. Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)
- [2] B. A. Berg. Markov Chain Monte Carlo Simulations and Their Statistical Analysis (World Scientific, 2004).