Digital Systems Design and Laboratory [4. Applications of Boolean Algebra]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Objectives

- ☐ Design a combinational logic circuit starting with a <u>word</u> <u>description (specification)</u> of the desired circuit behavior
- Steps
 - > Translate the word description into a switching function
 - Boolean expression or truth table
 - > Simplify the function
 - Realize it using available logic gates
- Example
 - Mary watches TV <u>if and only if</u> it is Monday night <u>and</u> she has finished her homework
 - F: Mary watches TV
 - A: It is Monday night
 - B: Mary has finished her homework
 - $F = A \bullet B$

Another Example

- ☐ The alarm will ring <u>if and only if</u> the alarm switch is turned on <u>and</u> the door is <u>not</u> closed, <u>or</u> it is after 6pm <u>and</u> the window is <u>not</u> closed
 - > Z: The alarm will ring
 - > A: the alarm switch is on
 - > B: The door is closed
 - C: It is after 6pm
 - > D: The window is closed

- Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Threshold Detector (1/2)

- ☐ Design a detector that outputs 1 when input is greater than 2
 - Inputs (A, B, C)₂ represent a binary number N
 - \rightarrow If N = (A, B, C)₂ \geq 3, output F = 1; otherwise F = 0

Α	В	С	F	F'	
0	0	0	0	1	$A \longrightarrow$
0	0	1	0	1	B → N > 2?
0	1	0	0	1	_ C →
0	1	1	1	0	
1	0	0	1	0	
1	0	1	1	0	Show the condition
1	1	0	1	0	to make output = 1
1	1	1	1	0	
					=

 \triangleright F = A'BC + AB'C' + ABC' + ABC (SOP)

= A'BC + ABC + AB'C' + AB'C + ABC' + ABC

= A + BC

Threshold Detector (2/2)

- ☐ By counting 1's, we have SOP
- ☐ What if counting 0's

Α	В	С	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Show the condition to make output = 0

- F = F'' = (A'B'C' + A'B'C + A'BC')'= $(A'B'C')' \bullet (A'B'C)' \bullet (A'BC')' = (A + B + C) \bullet (A + B + C') \bullet (A + B' + C)$

Logic Design Using a Truth Table

Steps

- Make a truth table according to the word description
- Generate a Boolean expression
 - Sum-of-products (SOP): check 1's
 - Product-of-sums (POS): check 0's
 - Have F' in SOP and then derive F in POS
- Simplify the Boolean expression

- Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- **☐** Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Minterm and Maxterm

- ☐ Definition: A <u>minterm/maxterm</u> of n variables is a product/sum of n literals in which each variable appears exactly once in either true or complement form (but not both)
 - ➤ A literal is a variable or its complement (A or A')
 - > Examples of 3 variables
 - Minterm: A'BC, AB'C'
 - Maxterm: A + B + C, A + B + C' $(m_i)' = M_i$

Row No.	ABC	Minterm m _i ←	→ Maxterm M _i
0	000	$m_0 = A'B'C'$	$M_0 = A + B + C$
1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
2	010	m ₂ = A'BC'	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	m ₄ = AB'C'	$M_4 = A' + B + C$
5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Minterm Expansion

- A minterm expansion or a standard sum of products is a function written as a sum of minterms
 - ➤ Counting 1's
- Example

F = A'BC + AB'C' + AB'C + ABC' + ABC
=
$$m_3 + m_4 + m_5 + m_6 + m_7$$
 (m-notation)
= $\sum m(3, 4, 5, 6, 7)$

Row No.	ABC	Minterm m _i	Maxterm M _i
0	000	m ₀ = A'B'C'	$M_0 = A + B + C$
1	001	$m_1 = A'B'C$	$M_1 = A + B + C'$
2	010	$m_2 = A'BC'$	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	m ₄ = AB'C'	$M_4 = A' + B + C$
5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Maxterm Expansion

- A <u>maxterm expansion</u> or a <u>standard product of sums</u> is a function written as a product of maxterms
 - ➤ Counting 0's
- Example

$$F = (A + B + C) \bullet (A + B + C') \bullet (A + B' + C)$$

$$= M_0 M_1 M_2 \quad (M-notation)$$

$$= \prod M(0, 1, 2)$$

F	Row No.	ABC	Minterm m _i	Maxterm M _i
	0	000	$m_0 = A'B'C'$	$M_0 = A + B + C$
	1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
	2	010	m ₂ = A'BC'	$M_2 = A + B' + C$
	3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
	4	100	$m_4 = AB'C'$	$M_4 = A' + B + C$
	5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
	6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
	7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Complement by Minterms/Maxterms

- \square (m_i)' = M_i
- ☐ Complement of F
 - Counting 0's in F (find F' directly)
 - $F' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$
 - $F' = M_3 M_4 M_5 M_6 M_7 = \prod M(3, 4, 5, 6, 7)$
 - Counting 1's in F (find F and then complement it)

•
$$F' = (m_3 + m_4 + m_5 + m_6 + m_7)'$$

 $= m_3' m_4' m_5' m_6' m_7'$
 $= M_3 M_4 M_5 M_6 M_7$
 $= \prod M(3, 4, 5, 6, 7)$

• $F' = (M_0 M_1 M_2)'$
$= M_0' + M_1' + M_2'$
$= m_0 + m_1 + m_2$
$= \sum m(0, 1, 2)$

А	В	С	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Another Example

```
\square Example: F(A, B, C, D) = A'(B' + D) + ACD'
     F(A, B, C, D)
   = A'(B' + D) + ACD'
   = A'B' + A'D + ACD'
   = A'B'(C + C')(D + D') + A'D(B + B')(C + C') + ACD'(B + B')
   = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BC'D + A'BCD + ABCD' + AB'CD'
      0000
                0001
                         0010 0011
                                            0101
                                                     0111
                                                             1110
                                                                       1010
   = \sum m(0, 1, 2, 3, 5, 7, 10, 14) ... Minterm Expansion
     F(A, B, C, D)
   = (A' + CD')(A + B' + D) = (A' + C)(A' + D')(A + B' + D)
   = (A' + BB' + C + DD')(A' + BB' + CC' + D')(A + B' + CC' + D)
   = ...
   = \prod M(4, 6, 8, 9, 11, 12, 13, 15) ... Maxterm Expansion
```

Summary

- ☐ Convert a Boolean expression to a minterm/maxterm expansion
 - > Use truth table
 - Sometimes there are too many terms
- ☐ Use Boolean algebra
 - \triangleright SOP: multiply out and use $(X + X') = 1 \rightarrow$ minterm expansion
 - \triangleright POS: factor and use XX' = 0 \rightarrow maxterm expansion

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

General Truth Table

- ☐ Given n Boolean variables, how many different Boolean functions can you produce?
 - Each a_i can be assigned with either 0 or 1
 - $> 2^{(2^n)}$

Α	В	С	F
0	0	0	a_0
0	0	1	a_1
0	1	0	a_2
0	1	1	a_3
1	0	0	a_4
1	0	1	a ₅
1	1	0	a_{6}
1	1	1	a ₇

AND of Minterm Expansions

- Given $F_1 = \sum m(0, 2, 3, 5, 9, 11)$ and $F_2 = \sum m(0, 3, 9, 11, 13, 14)$, find $F_1F_2 = ?$
 - > AND: take the numbers that appear in both expansions
 - $F_1F_2 = \sum m(0, 3, 9, 11)$
- ☐ AND for two maxterm expansions?
- ☐ OR for two minterm expansions?
- ☐ OR for two maxterm expansions?

Conversion of Forms

☐ Convert between a minterm and a maxterm expansion

Given Form	Desired Form	Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
Minterm Expansion of F			The nos. not on the minterm list for F	The minterms not present in F	The same as minterm nos. of F
Maxterm Expansion of F		The nos. not on the maxterm list for F		The same as maxterm nos. of F	The maxterms not present in F
		-			
Given Form	Desired Form	Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
	Form	Expansion of F			

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- **☐** Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Incompletely Specified Functions (1/2)

- ☐ A large digital system is usually divided into subcircuits
- \square Assume N₁ never generates ABC = 001/110 for any W, X, Y, Z

Α	В	С	F
0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

- ☐ F: Incompletely specified function
- ☐ A'B'C, ABC': don't care terms
 - "don't care" (DC) terms can be assigned with either 0 or 1

Incompletely Specified Functions (2/2)

☐ Impact of don't care terms on Boolean simplification

- > Try exhaustive combinations of DCs to find the best
 - (may be stupid but works for now)
- Assign 0 to both "X"
 - F = A'B'C' + A'BC + ABC = A'B'C' + BC
- Assign 1 to 1st "X" and 0 to 2nd "X" (seems to be the simplest)
 - F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC
- Assign 1 to both "X"
 - F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB
- > ...
- ➤ 2. is the simplest solution

Notation

- $F = \sum m(0, 3, 7) + \sum d(1, 6)$
- $F = \prod M(2, 4, 5) \bullet \prod D(1, 6)$

Α	В	С	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Χ
1	1	1	1

- Conversion of English Sentences to Boolean Equations
- Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- **☐** Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Error Detector for 6-3-1-1 Codes (1/2)

☐ Design an error detector for 6-3-1-1 codes:

- The output F = 1 iff inputs (A, B, C, D) represent an <u>invalid</u> code combination
- > Step 1: construct the truth table

Decimal Digit	6-3-1-1 Code
0	0000
1	0001
2	0011
3	0100
4	0101
5	0111
6	1000
7	1001
8	1011
9	1100

ABCD	F
0000	0
0001	0
0010	1
0011	0
0100	0
0101	0
0110	1
0111	0
1000	0
1001	0
1010	1
1011	0
1100	0
1101	1
1110	1
1111	1

Error Detector for 6-3-1-1 Codes (2/2)

☐ Design an error detector for 6-3-1-1 codes:

- The output F = 1 iff inputs (A, B, C, D) represent an <u>invalid</u> code combination
- > Step 2: simplify the function

```
F(A, B, C, D)
= \sum m(2, 6, 10, 13, 14, 15)
= A'B'CD' + A'BCD' + AB'CD' + ABCD' + ABCD' + ABCD
```

- = A'CD' + ACD' + ABD
- = CD' + ABD
- > Step 3: realize it

ABCD	F
0000	0
0001	0
0010	1
0011	0
0100	0
0101	0
0110	1
0111	0
1000	0
1001	0
1010	1
1011	0
1100	0
1101	1
1110	1
1111	1

Another Example

- The output Z = 1 iff the 8-4-2-1 BCD number (A, B, C, D) is divisible by 3

 Decimal 8-4-2-1

 ABCD
 - > Step 1: construct the truth table
 - > Step 2: simplify the function

$$= \sum m(0, 3, 6, 9) +$$

- > Step 3: realize it
 - ?
 - Unit 5!

Decimal Digit	8-4-2-1 Code	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	۲
6	0110	
7	0111	
8	1000	
9	1001	

ABCD	Z
0000	1
0001	0
0010	0
0011	1
0100	0
0101	0
0110	1
0111	0
1000	0
1001	1
1010	X
1011	X
1100	X
1101	X
1110	X
1111	X

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- **☐** Design of Binary Adders and Subtracters

1-Bit Half Adder (HA)

☐ Step 1: construct the truth table

X	Υ	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

☐ Step 2: simplify the function

$$\triangleright$$
 C = XY

$$\triangleright$$
 S = X'Y + XY' = X \bigoplus Y

☐ Step 3: realize it

1-Bit Full Adder (FA)

- ☐ Step 1: construct the truth table
- ☐ Step 2: simplify the function

$$\triangleright$$
 S = X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}

☐ Step 3: realize it

X	Υ	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4-Bit Parallel Adder (1/3)

 \Box A = (A₃A₂A₁A₀), B = (B₃B₂B₁B₀)

Example

- ☐ How?
 - > Step 1: construct the truth table
 - **>** ...

4-Bit Parallel Adder (2/3)

- ☐ Decompose the 4 bit adder into four modules
 - ➤ Each module adds two bits and a carry → use full adder
- ☐ Extend to negative numbers
 - Consider 1's complement
 - Add just as if all numbers are positive
 - Add the carry out back to the rightmost bit
 - ➤ How to detect overflow?
 - Check the sign
 - (+) + (+) becomes (-)
 - -(-)+(-) becomes (+)

Case 1	Case 2	Case 3		Case 4		Case 5		Case 6
+3 0011	+5 0101	+5 0101	- 5	1010	-3	1100	- 5	1 010
+4 0100	+6 0110	-6 1001	<u>+6</u>	0110	<u>-4</u>	1011	<u>-6</u>	1001
+7 0111	1011	$\overline{-1}$ $\overline{1110}$	+1	$(1) \overline{0000}$	-7	$(1) \overline{0111}$		$(1) \overline{0011}$
				1		1		1
				0001		1000		0100

4-Bit Parallel Adder (3/3)

end-around carry for 1's complement

☐ Overflow detection?

- $> V = A_3'B_3'S_3 + A_3B_3S_3'$
- ➤ Why?

Binary Subtracter (1/2)

- \Box Consider A B = A + (-B) in 2's complement
 - \rightarrow A B = A + (-B) = A + B* = A + \overline{B} + 1
 - Convert B to 2's complement: inverse and then add 1
- ☐ Discard the carry from the sign bit

Binary Subtracter (2/2)

☐ Or design a full subtracter

- \triangleright D = X Y: difference
- ➤ B: borrow

Q&A