УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Распределенные системы хранения данных»

Лабораторная работа №3

Вариант 47

Студент

Кузнецов М. А.

P33131

Преподаватель

Шешуков Д. М.

Описание задания

Лабораторная работа включает настройку резервного копирования данных с основного узла на резервный, а также несколько сценариев восстановления. Узел из предыдущей лабораторной работы используется в качестве основного; новый узел используется в качестве резервного. В сценариях восстановления необходимо использовать копию данных, полученную на первом этапе данной лабораторной работы.

Требования к отчёту

Отчет должен быть самостоятельным документом (без ссылок на внешние ресурсы), содержать всю последовательность команд, содержимое скриптов по каждому пункту задания. Для демонстрации результатов приводить команду вместе с выводом (самой наглядной частью вывода, при необходимости).

1. Резервное копирование

1.1 Настроить резервное копирование с основного узла на резервный следующим образом:

Периодические обособленные (standalone) полные копии.

Полное резервное копирование (pg_basebackup) по расписанию (cron) два раза в сутки. Необходимые файлы WAL должны быть в составе полной копии, отдельно их не архивировать. Срок хранения копий на основной системе - 1 неделя, на резервной - 1 месяц. По истечении срока хранения, старые архивы должны автоматически уничтожаться.

1.2 Подсчитать, каков будет объем резервных копий спустя месяц работы системы, исходя из следующих условий:

Средний объем новых данных в БД за сутки: ~650 МБ.

1.3 Проанализировать результаты.

2. Потеря основного узла

Этот сценарий подразумевает полную недоступность основного узла. Необходимо восстановить работу СУБД на резервном узле, продемонстрировать успешный запуск СУБД и доступность данных.

3. Повреждение файлов БД

Этот сценарий подразумевает потерю данных (например, в результате сбоя диска или файловой системы) при сохранении доступности основного узла. Необходимо выполнить полное восстановление данных из резервной копии и перезапустить СУБД на основном узле. Ход работы:

3.1 Симулировать сбой:

удалить с диска директорию конфигурационных файлов СУБД со всем содержимым.

- 3.2 Проверить работу СУБД, доступность данных, перезапустить СУБД, проанализировать результаты.
- 3.3 Выполнить восстановление данных из резервной копии, учитывая следующее условие:

Исходное расположение директории PGDATA недоступно - разместить в другой директории и скорректировать конфигурацию.

3.4 Запустить СУБД, проверить работу и доступность данных, проанализировать результаты.

4. Логическое повреждение данных

Этот сценарий подразумевает частичную потерю данных (в результате нежелательной или ошибочной операции) при сохранении доступности основного узла. Необходимо

выполнить восстановление данных на основном узле следующим способом: Восстановление с использованием архивных WAL файлов. (СУБД должна работать в режиме архивирования WAL, потребуется задать параметры восстановления). Ход работы:

- 4.1 В каждую таблицу базы добавить 2-3 новые строки, зафиксировать результат.
- 4.2 Зафиксировать время и симулировать ошибку:

Удалить любые две таблицы (DROP TABLE)

- 4.3 Продемонстрировать результат.
- 4.4 Выполнить восстановление данных указанным способом.
- 4.5 Продемонстрировать и проанализировать результат.

Этап 1. Резервное копирование

Создаем пользователя с replicant

create role replicant with replication login password '123';

```
В файле postgresql.conf:
wal level = replica
Подход -- создадим bash скрипт, в котором пропишем следующий код:
#!/bin/bash
backup dir="/var/db/postgres2/u06/dir6/backups"
current_datetime=$(date +'%Y%m%d_%H%M')
backup_name="backup_$current_datetime"
# Проверяем, существует ли директория backups
if [!-d "$backup dir"]; then
mkdir -p "$backup dir"
fi
# Создаем новую папку с именем вида "backup_20230522_1200"
new backup dir="$backup dir/$backup name"
mkdir "$new backup dir"
echo "Created backup directory: $new_backup_dir"
# Выполняем команду pg_basebackup и записываем резервную копию в новую папку
```

"\$new_backup_dir" # Копируем

pg basebackup --progress -p 9054 -U replicant --format=t --wal-method=fetch -D

scp -r "\$new_backup_dir" postgres2@pg132:backups/

Добавим в файл pg hba.conf также REPLICATION:

```
# TYPE DATABASE USE
host all,replication
```

Для автоматического удаления:

0 12 * * * find /var/db/postgres2/u06/dir6/backups -type d -name "backup_*" - mtime +7 -exec rm -rf {} \;/

Также сделаем ssh ключ, чтобы не требовался пароль для отправки файлов на резервный узел.

ssh-keygen -t rsa

ssh-copy-id -I ~/.ssh/id_rsa.pub postgres2@132

Подсчет размера копий

Бекап весит:

[postgres2@pg132 ~/backups]\$ du -sh backup_20230522_1900/
291M backup_20230522_1900/
[postgres2@pg132 ~/backups]\$

a1 = 291 Mb

d = 650 Mb

n = 30 days

S_30 = (2*291+650*29)/2 * 30 = 582966 Mb = 569 GB

Инкрементальный подход будет эффективнее.

Этап 2. Потеря основного узла

Воссоздадим файловую структуру кластера для восстановления

mkdir ~/u06/dir6 chmod 700 ~/u06/dir6 cd u06/dir6

tar xvf ~/backups/backup_***/base.tar

```
[postgres2@pg132 ~/u06/dir6]$ tar xvf ~/backups/backup_20230522_1637/base.tar
x backup_label
x tablespace_map
x postgres2@pg132/
x postgres2@pg132/16387.tar
x postgres2@pg132/base.tar
x base/
x base/1/
x base/1/2678
x base/1/2696
x base/1/2702
x base/1/2605
x base/1/2673_fsm
x base/1/2674_fsm
y base/1/2608 fsm
```

Файлы табличного пространства

```
mkdir ~/u06/dir7
cd ~/u06/dir7
tar xvf ~/backups/backup ***/16387.tar
```

```
[postgres2@pg132 ~/u06/dir7]$ tar xvf ~/backups/backup_20230522_1637/16387.tar
x PG_14_202107181/
x PG_14_202107181/16388/
x PG_14_202107181/16388/2619
x PG_14_202107181/16388/2680
x PG_14_202107181/16388/2613
x PG_14_202107181/16388/2664
y PG_14_202107181/16388/13938
```

Отчищаем директорию для wal-файлов

```
rm -rf ~/u06/dir6/pg wal/*
```

In -s /var/db/postgres2/u06/dir7 ~/u06/dir6/pg_tblspc/16387

```
[postgres2@pg132 ~/u06/dir6/pg_tblspc]$ ln -s /var/db/postgres2/u06/dir7 /var/db/postgres2/u06/dir6/
pg_tblspc/16387
[postgres2@pg132 ~/u06/dir6/pg_tblspc]$ ls
16387
[postgres2@pg132 ~/u06/dir6/pg_tblspc]$
```

Указываем команду для загрузки wal-файлов

```
restore_command = 'cp /var/db/postgres2/wal_archive/%f %p'  # command to use to restore an archived logfile segment
# placeholders: %p = path of file to restore
# %f = file name only
```

Файл – флаг о восстановлении touch recovery.signal

2023-05-28 17:33:09.319 MSK [99367] СООБЩЕНИЕ: передача вывода в протокол процессу сбора протоколов 2023-05-28 17:33:09.319 MSK [99367] ПОДСКАЗКА: В дальнейшем протоколы будут выводиться в каталог "log".

Проверяем работоспособность

postgres=# select * from users; id name 	email	phone_number
1 Иванов Иван Иванович 2 Петров Петр Петрович 3 Сидорова Анна Сергеевна 4 Кузнецова Ольга Игоревна 5 Васильев Алексей Николаевич 6 Макаров Сергей Дмитриевич 7 Тимофеева Наталья Валерьевна 8 Андреева Елена Игоревна 9 Козлов Артем Игоревич 10 Смирнова Екатерина Александровна (10 строк)	ivanov@mail.ru petrov@gmail.com sidorova@yahoo.com kuznetsova@hotmail.com vasiliev@yandex.ru makarov@mail.ru timofeeva@gmail.com andreeva@yahoo.com kozlov@hotmail.com	+79161234567 +79162345678 +79163456789 +79164567890 +791656789012 +791667890123 +79168901234 +79169012345 +79160123456

Анализ выполнения

Восстановление завершилось успешно. Но для корректного запуска необходимо подкорректировать ссылку

Повреждение файлов БД

Последняя актуальная копия находится на узле, скачивать еще раз нет смысла.

Отчищаем директорию для wal-файлов

rm -rf ~/u06/dir6/pg wal/*

Подключаемся к базе, которая была в пространстве

~/u06/dir6]\$ pg_ctl start

```
ожидание запуска сервера....2023-05-28 17:40:20.143 MSK [443] СООБЩЕНИЕ: передача вывода в протокол процессу сбора протоколов 2023-05-28 17:40:20.143 MSK [443] ПОДСКАЗКА: В дальнейшем протоколы будут выводиться в каталог "log ". прекращение ожидания pg_ctl: не удалось запустить сервер Изучите протокол выполнения.
```

Из-за того, что расположение директории PGDATA недоступно, распакуем копию в новое местоположение.

```
mkdir dir6_new
cd dir6_new/
scp -r postgres2@pg132:u06/dir6/~u06/dir6_new/
```

```
[postgres2@pg110 ~/u06]$ scp -r postgres2@pg132:u06/dir6/* /var/db/postgres2/u06/dir6_new/
0000000100000000000000006
                                                                                            00:00
                                                                    100%
                                                                           16MB 107.1MB/s
0000000100000000000000015
                                                                    100%
                                                                           16MB 115.3MB/s
                                                                                            00:00
00000001000000000000000D
                                                                    100%
                                                                           16MB 118.8MB/s
                                                                                            00:00
0000000100000000000000027
                                                                    100%
                                                                          16MB 114.9MB/s
                                                                                            00:00
00000001000000000000012.00000028.backup
                                                                    100%
                                                                         341
                                                                                  9.6KB/s
                                                                                            00:00
00000001000000000000022.00000028.backup
                                                                                828.8KB/s
                                                                                            00:00
                                                                    100%
                                                                          341
0000000100000000000000000
                                                                           16MB 97.5MB/s
                                                                                            00:00
                                                                    100%
00000001000000000000000C
                                                                    100%
                                                                           16MB 130.2MB/s
                                                                                            00:00
                                                                           16MB 143.0MB/s
0000000100000000000000018
                                                                                            00:00
0000000100000000000000012
                                                                    100%
                                                                           16MB 147.0MB/s
                                                                                            00:00
```

Запускаем поврежденный кластер в режиме восстановления wal-файлов и указываем команду для восстановления

restore_command = 'cp /var/db/postgres2/u06/dir6_new/archives/%f %p'

Запускаем в режиме восстановления

```
touch recovery.signal postgres -D ~/u06/dir6_new/
```

Проверяем работоспособность

Анализ

Восстановление завершилось успешно.

Логическое повреждение данных

Попробуем создать некорректные изменения

postgres=# select * from users; id name	email	phone_number
1 Иванов Иван Иванович 2 Петров Петр Петрович 3 Сидорова Анна Сергеевна 4 Кузнецова Ольга Игоревна 5 Васильев Алексей Николаевич 6 Макаров Сергей Дмитриевич 7 Тимофеева Наталья Валерьевна 8 Андреева Елена Игоревна 9 Козлов Артем Игоревич 10 Смирнова Екатерина Александровна (10 строк)	ivanov@mail.ru petrov@gmail.com sidorova@yahoo.com kuznetsova@hotmail.com vasiliev@yandex.ru makarov@mail.ru timofeeva@gmail.com andreeva@yahoo.com kozlov@hotmail.com smirnova@yandex.ru	+
postgres=# insert into users values(11, INSERT 0 1 postgres=# insert into users values(12, INSERT 0 1 postgres=# select * from users; id name		
1 Иванов Иван Иванович 2 Петров Петр Петрович 3 Сидорова Анна Сергеевна 4 Кузнецова Ольга Игоревна 5 Васильев Алексей Николаевич 6 Макаров Сергей Дмитриевич 7 Тимофеева Наталья Валерьевна 8 Андреева Елена Игоревна 9 Козлов Артем Игоревич 10 Смирнова Екатерина Александровна 11 Кузнецов М. А. 12 Kovalchuk M. A. (12 строк)	ivanov@mail.ru petrov@gmail.com sidorova@yahoo.com kuznetsova@hotmail.com vasiliev@yandex.ru makarov@mail.ru timofeeva@gmail.com andreeva@yahoo.com kozlov@hotmail.com smirnova@yandex.ru maxmax@gmail.com maxmax@gmail.com	+

```
postgres=# select * from payments
postgres-#;
id |
         card_num
                       | card_date | card_cvv
 1 | 1234567812345678 | 10/24
                                    123
 2 | 2345678923456789 | 11/25
                                     234
 3 | 3456789034567890 | 12/26
                                     345
 4 | 4567890145678901 | 01/27
                                     456
 5 | 5678901256789012 | 02/28
                                    567
(5 строк)
postgres=# insert into payments values(6, '1111222233334444', '03/29', '888');
postgres=# insert into payments values(7, '4444333322221111', '04/30', '999');
INSERT 0 1
postgres=# select * from payments;
         card_num
                       | card_date | card_cvv
 1 | 1234567812345678 | 10/24
                                     123
 2 | 2345678923456789 | 11/25
                                    234
 3 | 3456789034567890 | 12/26
                                     345
 4 | 4567890145678901 | 01/27
                                     456
 5 | 5678901256789012 | 02/28
                                    567
 6 | 1111222233334444 | 03/29
                                    888
 7 | 4444333322221111 | 04/30
                                   999
(7 строк)
```

Фиксируем время

Удаляем таблички выше

```
postgres=# drop table if exists users, payments;
```

Останавливаем сервер

pg_ctl stop

Произведем синхронизацию между основным узлом и резервной копией scp postgres2@pg132:/u06/dir6/ /var/db/postgres2/u06/dir6/

Очищаем директорию для wal-файлов rm -rf ~/u06/dir6/pg_wal/*

Скопируем последний файл

[postgres2@pg110 ~/u06/dir6/archives]\$ cp 0000000100000000000000 ~/u06/dir6/pg_wal/

Boccmaновление (прописываем в postgresql.conf)
recovery_target_time = '2023-05-28 21:55:12.3683+03'

Перезапустим базу с восстановлением из wal-файла touch recovery.signal pg_ctl start

Далее остается прописать команду pg_wal_replay_resume() - это функция, которая используется для возобновления воспроизведения журнала транзакций

Проверяем

```
postgres=# select * from users;
id l
                    name
                                                 email
                                                                 | phone_number
 1 | Иванов Иван Иванович
                                         ivanov@mail.ru
                                                                  +79161234567
     Петров Петр Петрович
                                         petrov@gmail.com
                                                                  +79162345678
   Сидорова Анна Сергеевна
                                         sidorova@yahoo.com
                                                                  +79163456789
   | Кузнецова Ольга Игоревна
                                         kuznetsova@hotmail.com
                                                                  +79164567890
 5 | Васильев Алексей Николаевич
                                         vasiliev@yandex.ru
                                                                  +79165678901
   Макаров Сергей Дмитриевич
                                                                  +79166789012
                                         makarov@mail.ru
   | Тимофеева Наталья Валерьевна
                                         timofeeva@gmail.com
                                                                  +79167890123
 8 | Андреева Елена Игоревна
                                         andreeva@yahoo.com
                                                                  +79168901234
 9 | Козлов Артем Игоревич
                                         kozlov@hotmail.com
                                                                  +79169012345
10 | Смирнова Екатерина Александровна |
                                         smirnova@yandex.ru
                                                                  +79160123456
(10 строк)
postgres=# select * from payments;
                       | card_date | card_cvv
         card_num
   | 1234567812345678 | 10/24
                                     123
   | 2345678923456789 | 11/25
                                     234
   3456789034567890 | 12/26
                                     345
   | 4567890145678901 |
                        01/27
                                     456
 5 | 5678901256789012 | 02/28
                                     567
(5 строк)
postgres=#
```

Восстановление прошло успешно

Анализ

Wal-архивация полезна, так как можно не только вернуться к последнему состоянию, но и также выбрать определенный момент времени

Вывод

Во время выполнения лабораторной работы я:

- 1. изучил способы непрерывного создания резервной копии кластера PostgreSQL.
- 2. настроил и применил его при различных сбоях.