SFD-V1-Universeller Funktionsdecoder für den SX-Bus

Verwendung:

- Magnetartikel
- Beleuchtung
- Weichen
- Signale (Haupt/Vorsignalsteuerung)
- Bahnübergänge (mit/ohne Schranke)

Der SFD-V1 ist ein DIY Signal- und Funktionsdecoder. Die Platine kann in ein Kleingehäuse eingebaut werden.

Spannungsversorgung: Micro und Logik über den SX-Bus

Last Teil über Ext. – Klemmen V_{ss}: max. 16V∼, 20V-

Anschlüsse: 2 x RJ45 für den SX-Bus

1 x 2-pol. Schraubklemme für die Ext. – Stromversorgung (V_{ss})

4 x 3-pol. Schraubklemmen für die Ausgänge.

Die Masse wird geschaltet. Die mittlere Klemme der 3er Gruppen ist mit dem Pluspol der Ext. – Stromversorgung verbunden. Ausgangsstrom max. 1 A pro Ausgang (nicht Kurzschlussfest).

Max. 1,5 A alle Ausgänge zusammen.

Betriebsart:

- 0. 8 Schalt- / Impulsausgänge
- 1. 8 Schaltausgänge für Beleuchtung
- 2. 4 Weichen Impuls oder Dauerbetrieb
- 3. 2 Weichen und 1 Bahnübergang
- 4. 4 Blocksignale
- 5. 2 Einfahrsignale mit Vorsignal
- 6. 2 Haupt/Sperrsignale
- 7. 1 Einfahrsignale mit Vorsignal und 1 unabhängiges dreibegriffiges Vorsignal
- 8. 1 Haupt/Sperrsignal und 1 unabhängiges dreibegriffiges Vorsignal Ab Mode 9 mit Dunkeltastung des Vorsignals bei hp00 hp0 / sh1 des Hauptsignals
- 9. 1 Haupt/Sperrsignal u. 1 Blocksignal mit Vorsignal am Mast des Hauptsignal
- 10. 1 Einfahrsignal mit Vorsignal und 1 dreibegriffiges Vorsignal am Mast des HS
- 11. 1 Haupt/Sperrsignal und 1 dreibegriffiges Vorsignal am Mast des Hauptsignal

Bei allen Weichenmodi kann die letzte Weichenstellung gespeichert werden.

Alle Signal- und Bahnübergangmodi sind gedimmt (Glühlampensimulation).

Bei den Signalmodi wird nach einer Änderung erst das alte Signalbild ab gedimmt und danach das neue Signalbild auf gedimmt.

Decoderparameter:

_								
<u>Parameter</u>	<u>Wert</u>	<u>Mode</u>	Bemerkungen (1)					
0	0 – 11	-	Betriebsart: (Mode) Default 2					
	0	-	8 Schaltausgänge Impuls- oder Dauerbetrieb					
	1	-	8 Schaltausgänge gedimmt (Glühlampensimulation)					
	2	-	4 Weichen Impuls- oder Dauerbetrieb					
	3	-	2 Weichen und 1 Bahnübergang					
	4	-	4 Blocksignale					
	5	-	2 Einfahrsignale mit Vorsignale					
	6	-	2 Haupt/Sperrsignale					
	7	-	1 Einfahrsignale mit Vorsignal und 1 dreibegriffiges Vorsignal					
	8	-	1 Haupt/Sperrsignal und 1 dreibegriffiges Vorsignal					
	9	_	1 Haupt/Sperrsignal 1 Blocksignal mit Vorsignal am Mast des					
	3		Haupt/Sperrsignal. Mit Dunkeltastung des Vorsignals					
	10	_	1 Einfahrsignal mit Vorsignal und 1 dreibegriffiges Vorsignal am					
	10	_	Mast des Einfahrsignals. Mit Dunkeltastung des Vorsignals					
	11		1 Haupt/Sperrsignal und 1 dreibegriffiges Vorsignal am gleichen					
	11	-	Mast mit Dunkeltastung des Vorsignals					
1	3 – 103	0 - 11	1. Decoderadresse Default 15					
2	0 – 3	0 - 11	1. Subadresse Default 0					
3	3 – 103	5 – 11	2. Decoderadresse Default 16					
4	0 – 3	5 – 11	2. Subadresse Default 0					
5	0 – 63	0, 2, 3	Impulsdauer 0 = Dauerbetrieb Default 20					
6	1 – 255	1	Multiplikator für Zufallssteuerung Default 20					
7	1 – 255	3	Dauer Gelbphase am Bahnübergang Default 75					
8	1 – 255	3	Verzögerung bis Schrankenantrieb ein Default 125					
9	1 – 255	3	Impulsdauer für Schrankenantrieb Default 25					
10	0 – 255	-	Optionen: Default 00000000					
	Bit 1	7 – 11	1 = Fahrstraßenabhängige Vorsignalsteuerung					
	Bit 2	5 – 11	1 = Alternative Ansteuerung für mehrbegriffige Signale					
	Bit 3	3	1 = Bahnübergang mit Lichtzeichenanlage					
	Bit 4	3	1 = Impulsbetrieb für Schrankenantrieb					
	Bit 5	2 + 3	1 = Speichern der letzten Weichenstellung					
	Bit 6	1	1 = Neonleuchten-Simulation					
	Bit 7	1	1 = Simultansteuerung. D.h. Werte > 0 schaltet alle Lampen an					
			1 = Zufallssteuerung. D.h. die Lampen werden zufällig einge-					
	Bit 8	1	schaltet. Nur in Verbindung mit Simultansteuerung (Bit 7=1)					
11	0 – 255	7 – 11	Maske für fahrstraßenabh. Vorsignalsteuerung: Default 00000000					
	Bit 1	7 – 11	Fahrstraße 1 0 = inaktiv, 1 = aktiv					
	Bit 2	7 – 11	Fahrstraße 2 0 = inaktiv, 1 = aktiv					
	Bit 3	7 – 11	Fahrstraße 3 0 = inaktiv, 1 = aktiv					
	Bit 4	7 – 11	Nicht benutzt					
	Bit 5	7 – 11	Fahrstraße 1 Bit 1 0 od. 1 aktiv					
	Bit 6	7 – 11	Fahrstraße 2 Bit 2 0 od. 1 aktiv					
	Bit 7	7 – 11	Fahrstraße 3 Bit 3 0 od. 1 aktiv					
	Bit 8	7 – 11	Nicht benutzt					
12	3 – 104	7 – 11	Signaladresse Standartfahrstraße Default 17					
13	0-3	7 – 11	Subadresse Standartfahrstraße Default 0					
14	3 – 104	7 – 11	Signaladresse Fahrstraße 1 Default 18					
15	0-3	7 – 11	Subadresse Fahrstraße 1 Default 0					
16	3 – 104	7 – 11 7 – 11	Signaladresse Fahrstraße 2 Default 19					
17	0-3	7 – 11 7 – 11	Subadresse Fahrstraße 2 Default 19 Subadresse Fahrstraße 2 Default 0					
18	3 – 104	7 – 11 7 – 11	Signaladresse Fahrstraße 3 Default 20					
19	0 – 3	7 – 11 7 – 11						
10	0 3	, 11	Subadicase i dinstraise s					

Details:

Mode 0 und 2:

Wird im Parameter 5 (Impulsdauer) eine 0 eingetragen, dann wird der betreffende Ausgang dauerhaft Ein- bzw. Ausgeschaltet. Im Mode 2 ergibt sich somit ein Wechselschalter.

Mode1:

Jeder Ausgang wird mit dem korrespondierende Bit ein- bzw. ausgeschaltet. (Glühlampen) Bei **Option Bit 6 = 1** wird das Einschaltflackern von Neonleuchten simuliert. Bei **Option Bit 7 = 1** werden alle Ausgänge simultan ein- bzw. ausgeschaltet. Jeder Wert > 0 auf Adr1 schaltet alle Ausgänge ein, 0 schaltet alle Ausgänge aus. Kombinierbar mit **Bit 6**. Bei **Option Bit 8 = 1** werden alle Ausgänge zufällig eingeschaltet. Das Intervall kann über den Multiplikator Parameter 6 zwischen 20ms ... 320 ms und 5,1 sek ... 81,6 sek eingestellt werden. Die Berechnung erfolgt Folgendermaßen: Zufallszahl 1 bis 16 * 20 ms * Parameter 6. Ausgeschaltet wird immer sofort. Wird nur ausgeführt wenn **Bit 6 = 0 und Bit 7 = 1**.

<u>Tabelle Multiplikator Zufallssteuerung:</u>

Binär	Dezimal	Intervall
00000001	1	20ms 320ms
00001010	10	200ms 3,2s
00011001	25	500ms 8,0s
00110010	50	1,0s 16s
01001011	75	1,5s 24s
01100100	100	2,0s 32s
01111101	125	2,5s 40s
10010110	150	3,0s 48s
10101111	175	3,5s 56s
11001000	200	4,0s 64s
11100001	225	4,5s 72s
11111010	250	5,0s 80s

Mode 2 und 3:

Es ist möglich die Weichenstellung abzuspeichern (**Option Bit 5 = 1**). Nach dem Einschalten der Versorgungsspannung werden die Weichen nicht in die Grundstellung gebracht, sondern die letzte gespeicherte Weichenstellung wird auf den SX-Bus geschrieben.

<u>Verhalten bei Gleisspannung AN</u>: Änderungen zum letzten Zustand werden vorgemerkt und nach Ausschalten der Gleisspannung wird der letzte Zustand abgespeichert.

Verhalten bei Gleisspannung AUS: Bei Änderung wird sofort abgespeichert.

Dieses Verhalten verlängert die Lebensdauer des eingebauten EEPROM. Es muss nur darauf geachtet werden, dass vor dem Ausschalten der Zentrale die Gleisspannung ausgeschaltet wird. PC-Programme schalten i.d.R. die Gleisspannung beim Beenden aus.

Bei dem Bahnübergang kann statt Andreaskreuz-Blinklicht eine Rot-/Gelblicht-Ampel ausgewählt werden (**Option Bit 3 = 1**). Die Verzögerungszeiten bis zum Wechsel von Gelblicht auf Rotlicht, sowie bis zum Ansteuern der Schranke, können getrennt eingestellt werden. Der Schrankenausgang kann auf Impulsbetrieb geschaltet werden (**Option Bit 4 = 1**). Er wird dann bei jedem Aus- und Einschalten für die eingestellte Dauer eingeschaltet. Damit kann z.B. eine Faller-Schranke #120174 über ein Relais angesteuert werden. Die Impulsdauer ist zu diesem Zweck auf 90 ≜ 1,8 sek einzustellen. Bei "POWER-ON" wir kein Impuls generiert, um die Schranken nicht zu schließen. Dieses setzt voraus, das vor "POWER-OFF" die Schranken geöffnet sind. Mit **Option Bit 5 = 1** wird die letzte Stellung der Schranke gespeichert aber nicht auf den SX-Bus geschrieben. Wenn nach "POWER-ON" die letzte Stellung nicht mit dem SX-Bus Wert übereinstimmt, wird die Schranke nach dem SX-Bus Wert gestellt.

Mode 5 bis 11:

Ansteuerung der Signale: Standard: **Option Bit 2 = 0**

Bit2	Bit1	Signalbild
0	0	Hp0
0	1	Hp1
1	0	Sh1
1	1	Hp2

Alternativ: **Option Bit 2 = 1** (Rautenhaus® SLX813N kompatibel)

Bit2	Bit1	Signalbild
0	0	Hp0
0	1	Hp1
1	0	Hp2
1	1	Sh1

Mode 7 bis 11:

Ab Mode 7 ist fahrstraßenanhängige Steuerung für das 2. Signal (Vorsignal) möglich (**Option Bit 1 = 1**). Die Decoderadresse 2 dient dann als Steueradresse für die Vorsignalsteuerung. Bit 1 bis 3 bzw. Bit 5 bis 7 der Steueradresse wählt die jeweilige Adresse für das 2. Signal aus. Die Auswahl geht vom MSB nach LSB d.h. ist Bit 3 (7) von Adresse 2 gesetzt wird für die Steuerung des 2. Signals die Signaladresse der 3. Fahrstraße ausgewertet, unabhängig ob Bit 2 und/oder Bit 1 der Adresse 2 gesetzt ist. Ist keines der 3 Bit gesetzt, wird die Signaladresse der Standardfahrstraße ausgewertet. Über eine Bit-Maske (Parameter 11) kann das Verhalten gesteuert werden. Bit 1 bis 3 der Maske geben an ob die jeweilige Fahrstraße berücksichtigt werden soll. Bit 5 bis 7 der Maske geben an ob das jeweilig Bit der Adresse 2 invertiert werden soll (Low aktiv) oder nicht (Hi aktiv).

Die fahrstraßenanhängige Steuerung dient dazu dem Vorsignal, in Abhängigkeit von der Weichen- oder Fahrstraßenstellung, das richtige Hauptsignal zuzuordnen. Die Decoderadresse 2 wird zu diesem Zweck auf die Adresse des Weichendecoders der Einfahrweichengruppe gesetzt, die Signaladressen der Fahrstraßen auf die Adresse der Hauptsignaldecoder der jeweiligen Fahrstraße. Das Vorsignal zeigt dann automatisch das richtige Signalbild an. Beispiel im Anhang.

Mode 9 bis 11:

Es wird, entsprechend der Hauptsignal-Stellung, das am Mast befindliche Vorsignal dunkel geschaltet. Wenn bei eingestellter Vorsignalsteuerung sich im Fahrweg kein gültiges Hauptsignal befindet (Stumpfgleis etc.) wird das Vorsignal ebenfalls dunkel geschaltet. Dieses wird dadurch erreicht, dass die korrespondierende Signaladresse der Fahrstraße auf ungültige Adresse 104 gesetzt wird.

Subadresse:

Ab Mode 2 wird zum Steuern des Decoders nur 4 Bit benötigt. Um den Adressraum besser auszunutzen wir die Adresse in 2 halb Byte sog. Nibble unterteilt. Mit Bit 1 der Subadresse wird das halb Byte der Decoderadresse ausgewählt: Bit1 = $0 ext{ } ext{ }$

Einstellungen und Optionen:

Für alle Einstellungen und Optionen gilt: Werden sie in dem aktuellen Betriebsmode vom Decoder nicht verwendet, dann ist der Wert für den Betriebsmode unerheblich und wird bei der Verarbeitung der Daten nicht berücksichtigt.

Programmieren:

Die Programmierung des Decoders erfolgt über den SX-Bus Kanal 1 und Kanal 2. In Kanal 1 wird die Parameternummer geschrieben. Der Decoder gibt daraufhin in Kanal 2 den aktuellen Wert des Parameters aus. Dieser kann dann überschrieben werden. Beispiel:

In Kanal 1 wird der Wert $1 \triangleq 00000001$ geschrieben. Der Decoder gibt daraufhin in Kanal 2 die 1. Decoderadresse aus (Default $15 \triangleq 00001111$). Diese kann durch Schreiben in Kanal 2 geändert werden.

Die geänderten Werte werden sofort in den flüchtigen Speicher übernommen. Der Decoder kann dann mit den neuen Werten getestet werden, ohne den Programmier-Modus zu verlassen. Einzige Ausnahme: Das Ändern der Funktionsart wir nur vorgemerkt und erst nach dem Verlassen des Programmier-Modus umgestellt. D.H. solange sich der Decoder im Programmier-Modus befindet, bleibt die alte Betriebsart eingestellt. Mit dem Beenden des Programmier-Modus werden die Parameter ins EEPROM des Prozessors geschrieben und wenn die Betriebsart gewechselt wurde, wird der Decoder neu gestartet (Reset). Danach steht die neue Betriebsart zur Verfügung.

Programmier-Modus ein: - Taste am Decoder drücken.

Programmier-Modus aus: - Taste am Decoder drücken

- Gleisspannung einschalten

Pseudo-Parameter: - 254 lädt die Default Werte und beendet den Programmier-Modus

- 255 beendet den Programmier-Modus

Programmieren mit dem Programmiertool "DecProg.exe":

Startfenster:

Decoder, 1. Decoderadresse und Steuerbits auswählen. Danach den "Programmieren ein" Button drücken. Der Decoder geht dann in den Programmier-Modus, ohne das die Taste gedrückt werden muss. Das ermöglicht das Programmieren ohne unter die Anlage zu kriechen. Dieses Funktioniert aber nur, wenn sich unter der angegebenen Adresse/Subadresse nur ein Decoder gleicher Bauart befindet.

Unabhängig davon kann auch der Programmier-Button am Decoder gedrückt werden. Wenn das ProgTool den Decoder erkennt wird automatisch der passende Programmierdialog aufgerufen.

SFD-V1 Programmierdialog:

Alle Änderungen werden sofort zum Decoder übertragen und können noch während des Programmier-Modus im Monitorfenster getestet werden.

Anhang:

Beispiel fahrstraßenabhängige Vorsignalsteuerung:

Entgegen der üblichen Nummerierung sind im Gleisplan bei den Signal- und Weichenbezeichnungen die SX-Bus Adressen und Bit-Nummern angegeben.

Die 2. Adresse des F/p-Signaldecoders ist identisch mit der des Weichendecoders (Adr. 16).

Signaladresse Standartfahrstraße = Adr.17

Signaladresse Fahrstraße 1 = Adr.18

Signaladresse Fahrstraße 2 = Adr.19

Signaladresse Fahrstraße 3 = Adr.104 (dunkel Schalten)

In die Bit Maske kommt folgender Wert:

Parameter 11 = x101x111

Szenario:

Fahrweg nach Gleis 1:

Der Wert der Adr. 16 ist xxxxx010 nach der Maskierung = xxxxx000

Keine Fahrstraße gültig, es wird die Default-Adresse ≙ genommen.

Das Vorsignal **p** kündigt das Signalbild von **P17** an.

Fahrweg nach Gleis 2:

Adr. 16 = xxxxx<mark>011</mark> nach Maskierung = xxxxx<mark>001</mark> Signaladresse1 aktiv.

Das Vorsignal **p** kündigt das Signalbild von **P18** an.

Fahrweg nach Gleis 3:

Adr. 16 = xxxxxx00x nach Maskierung = xxxxx01x Signaladresse2 aktiv.

Da von MSB nach LSB abgefragt wird, ist die Stellung von W16/1 unerheblich.

Das Vorsignal **p** kündigt das Signalbild von **P19** an.

Fahrweg nach Gleis 4:

Adr. 16 = xxxxx1xx nach Maskierung = xxxxx1xx Signaladresse3 aktiv.

Stellung von W16/1 u. W16/2 wird nicht berücksichtigt. Da als Signaladresse die Adresse 104 eingetragen ist (Stumpfgleis), wird das Vorsignal p dunkel geschaltet.

Tipp: Die Werte für die fahrstraßenabhängige Vorsignalsteuerung lassen sich übersichtlich mit dem Programmiertool eingeben.

Tabelle Impulsdauer und Verzögerungszeiten:

Binär	Dezimal	Dauer	Binär	Dezimal	Dauer	Binär	Dezimal	Dauer
0000001	1	20 ms	00101101	45	900 ms	01011001	89	1780 ms
00000010	2	40 ms	00101110	46	920 ms	01011010	90	1800 ms
00000011	3	60 ms	00101111	47	940 ms	01011011	91	1820 ms
00000100	4	80 ms	00110000	48	960 ms	01011100	92	1840 ms
00000101	5	100 ms	00110001	49	980 ms	01011101	93	1860 ms
00000110	6	120 ms	00110010	50	1000 ms	01011110	94	1880 ms
00000111	7	140 ms	00110011	51	1020 ms	01011111	95	1900 ms
00001000	8	160 ms	00110100	52	1040 ms	01100000	96	1920 ms
00001001	9	180 ms	00110101	53	1060 ms	01100001	97	1940 ms
00001010	10	200 ms	00110110	54	1080 ms	01100010	98	1960 ms
00001011	11	220 ms	00110111	55	1100 ms	01100011	99	1980 ms
00001100	12	240 ms	00111000	56	1120 ms	01100100	100	2000 ms
00001101	13	260 ms	00111001	57	1140 ms	01100101	101	2020 ms
00001110	14	280 ms	00111010	58	1160 ms	01100110	102	2040 ms
00001111	15	300 ms	00111011	59	1180 ms	01100111	103	2060 ms
00010000	16	320 ms	00111100	60	1200 ms	01101000	104	2080 ms
00010001	17	340 ms	00111101	61	1220 ms	01101001	105	2100 ms
00010010	18	360 ms	00111110	62	1240 ms	01101010	106	2120 ms
00010011	19	380 ms	00111111	63	1260 ms	01101011	107	2140 ms
00010100	20	400 ms	01000000	64	1280 ms	01101100	108	2160 ms
00010101	21	420 ms	01000001	65	1300 ms	01101101	109	2180 ms
00010110	22	440 ms	01000010	66	1320 ms	01101110	110	2200 ms
00010111	23	460 ms	01000011	67	1340 ms	01101111	111	2220 ms
00011000	24	480 ms	01000100	68	1360 ms	01110000	112	2240 ms
00011001	25	500 ms	01000101	69	1380 ms	01110001	113	2260 ms
00011010	26	520 ms	01000110	70	1400 ms	01110010	114	2280 ms
00011011	27	540 ms	01000111	71	1420 ms	01110011	115	2300 ms
00011100	28	560 ms	01001000	72	1440 ms	01110100	116	2320 ms
00011101	29	580 ms	01001001	73	1460 ms	01110101	117	2340 ms
00011110	30	600 ms	01001010	74	1480 ms	01110110	118	2360 ms
00011111	31	620 ms	01001011	75	1500 ms	01110111	119	2380 ms
00100000	32	640 ms	01001100	76	1520 ms	01111000	120	2400 ms
00100001	33	660 ms	01001101	77	1540 ms	01111001	121	2420 ms
00100010	34	680 ms	01001110	78	1560 ms	01111010	122	2440 ms
00100011	35	700 ms	01001111	79	1580 ms	01111011	123	2460 ms
00100100	36	720 ms	01010000	80	1600 ms	01111100	124	2480 ms
00100101	37	740 ms	01010001	81	1620 ms	01111101	125	2500 ms
00100110	38	760 ms	01010010	82	1640 ms	01111110	126	2520 ms
00100111	39	780 ms	01010011	83	1660 ms	01111111	127	2540 ms
00101000	40	800 ms	01010100	84	1680 ms	10000000	128	2560 ms
00101001	41	820 ms	01010101	85	1700 ms	10000001	129	2580 ms
00101010	42	840 ms	01010110	86	1720 ms	10000010	130	2600 ms
00101011	43	860 ms	01010111	87	1740 ms	10000011	131	2620 ms
00101100	44	880 ms	01011000	88	1760 ms	10000100	132	2640 ms

			ı			ı		
Binär	Dezimal	Dauer	Binär	Dezimal	Dauer	Binär	Dezimal	Dauer
10000101	133	2660 ms	10101110	174	3480 ms	11010111	215	4300 ms
10000110	134	2680 ms	10101111	175	3500 ms	11011000	216	4320 ms
10000111	135	2700 ms	10110000	176	3520 ms	11011001	217	4340 ms
10001000	136	2720 ms	10110001	177	3540 ms	11011010	218	4360 ms
10001001	137	2740 ms	10110010	178	3560 ms	11011011	219	4380 ms
10001010	138	2760 ms	10110011	179	3580 ms	11011100	220	4400 ms
10001011	139	2780 ms	10110100	180	3600 ms	11011101	221	4420 ms
10001100	140	2800 ms	10110101	181	3620 ms	11011110	222	4440 ms
10001101	141	2820 ms	10110110	182	3640 ms	11011111	223	4460 ms
10001110	142	2840 ms	10110111	183	3660 ms	11100000	224	4480 ms
10001111	143	2860 ms	10111000	184	3680 ms	11100001	225	4500 ms
10010000	144	2880 ms	10111001	185	3700 ms	11100010	226	4520 ms
10010001	145	2900 ms	10111010	186	3720 ms	11100011	227	4540 ms
10010010	146	2920 ms	10111011	187	3740 ms	11100100	228	4560 ms
10010011	147	2940 ms	10111100	188	3760 ms	11100101	229	4580 ms
10010100	148	2960 ms	10111101	189	3780 ms	11100110	230	4600 ms
10010101	149	2980 ms	10111110	190	3800 ms	11100111	231	4620 ms
10010110	150	3000 ms	10111111	191	3820 ms	11101000	232	4640 ms
10010111	151	3020 ms	11000000	192	3840 ms	11101001	233	4660 ms
10011000	152	3040 ms	11000001	193	3860 ms	11101010	234	4680 ms
10011001	153	3060 ms	11000010	194	3880 ms	11101011	235	4700 ms
10011010	154	3080 ms	11000011	195	3900 ms	11101100	236	4720 ms
10011011	155	3100 ms	11000100	196	3920 ms	11101101	237	4740 ms
10011100	156	3120 ms	11000101	197	3940 ms	11101110	238	4760 ms
10011101	157	3140 ms	11000110	198	3960 ms	11101111	239	4780 ms
10011110	158	3160 ms	11000111	199	3980 ms	11110000	240	4800 ms
10011111	159	3180 ms	11001000	200	4000 ms	11110001	241	4820 ms
10100000	160	3200 ms	11001001	201	4020 ms	11110010	242	4840 ms
10100001	161	3220 ms	11001010	202	4040 ms	11110011	243	4860 ms
10100010	162	3240 ms	11001011	203	4060 ms	11110100	244	4880 ms
10100011	163	3260 ms	11001100	204	4080 ms	11110101	245	4900 ms
10100100	164	3280 ms	11001101	205	4100 ms	11110110	246	4920 ms
10100101	165	3300 ms	11001110	206	4120 ms	11110111	247	4940 ms
10100110	166	3320 ms	11001111	207	4140 ms	11111000	248	4960 ms
10100111	167	3340 ms	11010000	208	4160 ms	11111001	249	4980 ms
10101000	168	3360 ms	11010001	209	4180 ms	11111010	250	5000 ms
10101001	169	3380 ms	11010010	210	4200 ms	11111011	251	5020 ms
10101010	170	3400 ms	11010011	211	4220 ms	11111100	252	5040 ms
10101011	171	3420 ms	11010100	212	4240 ms	11111101	253	5060 ms
10101100	172	3440 ms	11010101	213	4260 ms	11111110	254	5080 ms
10101101	173	3460 ms	11010110	214	4280 ms	11111111	255	5100 ms

Zeitbasis für alle Impuls- und Verzögerungszeiten ist 20 ms

Anschluss Schema Signale:

Der gemeinsame Anschluss der Signale wird an einem mittleren Anschluss der 3er Blocks (+) angeschlossen. Vorwiderstände sind nicht auf der Platine und müssen freiverdrahtet werden.

Einfahrsignal mit abhängigem Vorsignal

Ausfahrsignal mit unabhängigem Vorsignal.

Ausfahrsignal und Blocksignal mit abhängigem Vorsignal am Mast des Ausfahrsignals

Anschluss Schema Weichen und Bahnübergang

Weichen: Gerade Anschlussnummern = Abzweig, Ungerade Nummern = Geradeaus. Bahnübergang: Sowohl Andreaskreuz-Blinklicht als auch Ampel ist möglich. Die Ansteuerung des Schrankenantriebs sollte vorzugsweise über Relais erfolgen.