

Principais operações de manipulação de dados num BI

- Do menos complexo para o mais complexo
 - Filtro de Colunas
 - Filtro de Linhas
 - Join
 - Group By
 - Pivot com um único registro por grupo
 - Pivot com mais de um registro por grupo
- Domine essas operações no SQL e no Pandas
 - Treine com exercícios de recall (lembrar sem estímulo)
 - ✓ Em vez de reconhecer (olhar um exemplo pronto)

Revisão da Aula/Semana Anterior

- Foram apresentadas duas possíveis aplicações/utilidades
 - distintas das ferramentas de BI.
 - ✓ Quais são elas ?

Join com chave composta menor

- Adicionar ao modelo de dados o consumo de Energia por UF
 - basedosdados.br_mme_consumo_energia_eletrica.uf
- Seu modelo de dados tem granularidade por município
 - Se repetirmos o valor do consumo para cada registro
 - ✓ Não conseguiremos calcular o consumo do Brasil no Looker Studio
 - A soma seria muito maior do que o valor real

Como resolver ?

Tabela Fato

sigla_uf id_municipio populacao nome_municipio pib 1100023 78039.0 449592816.0 2002 RO Ariquemes RO Ariquemes 1100023 79680.0 2003 539636214.0 2004 RO 1100023 86901.0 Ariquemes 657193231.0 RO 1100023 85031.0 Ariquemes 749021187.0 2005 86924.0 2006 RO 1100023 Ariquemes 790696634.0

Tabela da Dimensão de Consumo de Energia (MWh)

ano	mes	sigla_uf	tipo_consumo	consumo	numero_consumidores
2004	1	RO	Total	112812.0	null
2004	1	AC	Total	34840.05	null
2004	1	AM	Total	274773.0	null
2004	1	RR	Total	31695.63	null
2004	1	PA	Total	1011353.04	null

Join com chave composta menor

Solução

- Crie um dataframe com o consumo repetido para apenas um dos registros de cada município
 - √ Não utilizar esta métrica como consumo de energia de municípios
- Existe mais alguma solução ?

Join com chave composta menor: Visualização

- Adicionar ao modelo de dados
 - Os dados do consumo de Energia por UF
 - ✓ Caderno colab
- Scatter Plot com os valores
 - do consumo de energia e do PIB dos Estados

Pivotar tabela usando a função CASE

- Calcular a quantidade de doses 1ª, 2ª, Única, Adicional e Reforço de vacina do COVID-19
 - Para cada UF, Semana, Imunizante
- Classificação das doses (do professor)
 - 1ª Dose
 - √ 1ª Dose, Dose, Dose Inicial
 - o 2ª Dose
 - Reforço
 - ✓ Qualquer contendo a palavra Reforço
 - Adicional
 - ✓ Doses Adicional e 3ª Dose
 - Única

	1	
Linha	dose	Qtd
1	Única	224783
2	1º Reforço	33188
3	3º Reforço	2
4	Tratamento com dezessete doses	1
5	Revacinação	3
6	1ª Dose	154696905
7	2º Reforço	1879
8	Reforço	11565304
9	Dose Adicional	511211
10	Dose Inicial	1378
11	Tratamento com uma dose	2
12	1ª Dose Revacinação	759
13	2ª Dose Revacinação	862
14	Dose	4353953
15	2ª Dose	118663607
16	3ª Dose	308020

Se entender, já está falando a língua dos nerds

Regex para detectar tipos de doses

- Usar a função REGEXP_CONTAINS(value, regexp) do BigQuery
 - REGEXP_CONTAINS(dose, regexp)
 - √ 1ª Dose
 - 1ª Dose, Dose, Dose Inicial
 - '1ª Dose\$|^Dose\$|Inicial'
 - √ '2ª Dose\$'
 - ✓ Reforço
 - Qualquer contendo a palavra Reforço
 - 'Reforço'
 - ✓ Adicional
 - Doses Adicional e 3ª Dose
 - 'Dose Adicional | 3ª Dose'
 - √ 'Única'
- Solução

Linha	dose	Qtd
1	Única	224783
2	1º Reforço	33188
3	3º Reforço	2
4	Tratamento com dezessete doses	1
5	Revacinação	3
6	1ª Dose	154696905
7	2º Reforço	1879
8	Reforço	11565304
9	Dose Adicional	511211
10	Dose Inicial	1378
11	Tratamento com uma dose	2
12	1ª Dose Revacinação	759
13	2ª Dose Revacinação	862
14	Dose	4353953
15	2ª Dose	118663607
16	3ª Dose	308020

Custom query no Looker Studio e BigQuery

- Simulação de projeção de demanda de 2ª e 3ª Dose
 - A partir de input do usuário
 - ✓ no Looker Studio
- Custom Query com Parâmetro
 - na <u>Documentação do BigQuery</u>

Atividade 8.2 (5 min)

- Caderno Colab
- Simulação de projeção de demanda de 2ª
 - A partir de input do usuário
 - √ no Looker Studio e query no BigQuery
- Criar uma Consulta Personalizada
 - Escolha um projeto SEU
 - Utilize a query do notebook

Escolha o seu projeto

Atividade 8.2

- Simulação de projeção de demanda de 2ª
 - A partir de input do usuário
 - √ no Looker Studio e query no BigQuery
- Criar um gráfico de Série Temporal
 - Eixo x: data (semana)
 - ✓ Ajuste para o tipo semana ano
 - Eixo y: Projeção da 2º dose (qt_D2_Proj)
 - Na métrica detalhada: nome da vacina (vacina_apelido)
 - Ordenação: pelo campo semana
 - ✓ Crescente
 - Ative a opção Cumulativo na aba estilos do gráfico
 - ✓ Para as 4 séries
- Teste <u>vários valores</u> para o parâmetro qtd_dias_proj_d2

Atividade 8.3 – Visualizar a projeção futura no gráfico (5 min)

- Simulação de projeção de demanda de 2ª
 - Mude a query para FULL OUTER JOIN
- Alterar a <u>query para ficar assim</u>

SELECT sigla_uf as sigla_uf_proj, vacina_apelido as vacina_apelido_proj, qt_D1 as qt_D2_Proj, DATE_ADD(semana, INTERVAL @qtd_dias_proj_d2 DAY) as semana_proj
FROM `enapdatasets.vacinacao`
) as vp ON v.sigla_uf=vp.sigla_uf_proj and v.vacina_apelido=vp.vacina_apelido_proj and vp.semana_proj=v.semana

- order by v.sigla_uf, v.vacina, v.semana, vp.semana_proj, vp.sigla_uf_proj, vp.vacina_apelido_proj
- Criar 2 (o da UF é opcional) campos calculado com as fórmula
 - IFNULL(semana, semana proj)
 - IFNULL(vacina_apelido, vacina_apelido_proj)
 - IFNULL(sigla_uf, sigla_uf_proj) não será usado na série temporal
- Adicionar os 2 campos ao gráfico de Série Temporal

Exercício 8.1

- Escolha um tema e seus respectivos dados, à sua conveniência
- Faça um relatório no Google Looker Studio
 - No formato de uma história
 - √ No mesmo layout do relatório deste <u>vídeo</u>, com gráficos dispostos verticalmente.
 - Numa sequência que ajuda a contar uma história
- Seu relatório/história deve conter
 - Pelo menos 3 gráficos ou tabelas
 - ✓ E para cada gráfico/tabela pelo menos 1 comentário/anotação
- Use a metodologia de ETL, DW e Ferramenta de BI
 - apresentada no curso
 - ✓ Hospede seu modelo de dados no BigQuery
- Informe <u>aqui</u> o link para o seu caderno colab e o link público do seu dashboard