Cryptography Exercise Sheet 6

Prof. Dr. Thomas Wilke, Dr.-Ing. Kim-Manuel Klein

15. Mai 2020

1. **Problem:** The 802.11b insecure Mac (Exercise 6.1 in BS)

Consider the following MAC (a variant of this was used for WiFi encryption in 802.11b WEP). Let F be a PRF defined over $(\mathcal{K}, \mathcal{R}, \mathcal{X})$ where $\mathcal{X} := \{0, 1\}^{32}$. Let CRC32 be a simple and popular error-detecting code meant to detect random errors; CRC32 is a function that takes as input $m \in \{0, 1\}^{\leq \ell}$ and outputs a 32-bit string. Define the following MAC system (S, V):

$$S(k,m) := \left\{ \begin{array}{l} r \xleftarrow{\mathrm{R}} \mathcal{R}, \ t \leftarrow F(k,r) \oplus \mathrm{CRC32}(m), \ \mathrm{output(r,t)} \end{array} \right\}$$

$$V(k,m,(r,t)) := \left\{ \begin{array}{l} \mathbf{accept} \ \mathrm{if} \ t = F(k,r) \oplus \mathrm{CRC32}(m) \ \mathrm{and} \ \mathbf{reject} \ \mathrm{otherwise} \end{array} \right\}$$

Show that this MAC system is insecure.

2. **Problem:** MAC combiners (Exercise 6.5 in BS)

We want to build a MAC system \mathcal{I} using two MAC systems $\mathcal{I}_1 = (S_1, V_1)$ and $\mathcal{I}_2 = (S_2, V_2)$, so that if at some time one of \mathcal{I}_1 or \mathcal{I}_2 is broken (but not both) then \mathcal{I} is still secure. Put another way, we want to construct \mathcal{I} from \mathcal{I}_1 and \mathcal{I}_2 such that \mathcal{I} is secure if either \mathcal{I}_2 or \mathcal{I}_2 is secure.

(a) Define $\mathcal{I} = (S, V)$, where

$$S((k_1, k_2), m) := ((S_1(k_1, m), S_2(k_2, m)),$$

and V is defined in the obvious way: on input $(k, m, (t_1, t_2))$, V accepts iff both $V_1(k_1, m, t_1)$ and $V_2(k_2, m, t_2)$ accept. Show that \mathcal{I} is secure if either \mathcal{I}_1 or \mathcal{I}_2 is secure.

(b) Suppose that \mathcal{I}_1 and \mathcal{I}_2 are deterministic MAC systems (see the definition on page 214), and that both have tag space $\{0,1\}^n$. Define the deterministic MAC system $\mathcal{I} = (S,V)$, where

$$S((k_1, k_2), m) := S1(k_1, m) \oplus S_2(k_2, m).$$

Show that \mathcal{I} is secure if either \mathcal{I}_1 or \mathcal{I}_2 is secure.