Measurement #3 (Review)

Metric Prefixes		
k	kilo-	10^{3}
_	(base)	10^{0}
\mathbf{c}	centi-	10^{-2}
\mathbf{m}	milli-	10^{-3}
μ	micro-	10^{-6}
n	nano-	10^{-9}

- 1. Complete the following unit conversions.
 - (a) $2500 \, \mu m = ? m$

(c) $4.8 \,\mathrm{m} = ? \,\mathrm{mm}$

(b) $326\,000\,\text{mg} = ?\,\text{kg}$

- (d) 2.1 s = ? ms
- 2. Express each of these measurements in MKS units:
 - $(a) 9.1 \,\mathrm{km}$

(c) 320 g

(b) 53 cm

- (d) $1.2 \,\mathrm{h}$
- 3. Express these numbers in scientific notation.
 - (a) 0.025

(c) 0.0000771

(b) 1150000

- (d) 6070
- 4. Express these numbers in standard form.
 - (a) 2.96×10^7

(c) 6.67×10^{-11}

(b) 6.02×10^{-3}

(d) 9.8×10^5

5. You perform an experiment to measure the density of aluminum. After performing five trials, you get the following results:

Trial	Result (g/mL)
1	2.5
2	3.2
3	2.9
4	3.0
5	2.6

(a) Are your measurements precise? Explain.

(b) The widely accepted value for the density of aluminum is $2.7\,\mathrm{g/mL}$. Are your measurements accurate? Explain.

(c) Calculate the percent error based upon your average measurement. Is your percent error reasonable? Explain.