General Instruction

- Submit uncompressed file(s) in the Dropbox folder via Canvas (Not email).
- Use Python 3, any other programming language is not acceptable.
- You can import modules in the following list of libraries (please check the full list *here*). If you want to use any other library, please consult with the instructor.
- 1. Tune hyper-parameters of a neural network.
 - (a) Read and Understand: Familiarize yourself with the article *PyTorch Lightning classifier for MNIST*.
 - (b) (5 points) Data Split: Divide train dataset into sub_train and valid.
 - MNIST train dataset contains 60,000 samples.
 - Allocate 50,000 samples to sub_train and remaining 10,000 sample to valid.
 - (c) (5 points) Build a Neural Network: Construct a neural network according to the following specifications
 - Exclude convolution ('Conv') layer.
 - Use the cross entropy loss function.
 - You may design your own network architecture by adjusting the width, depth, batch size, and activation functions.
 - (d) (40 points) Tune the hyperparameters for each of the following optimizers: Stochastic Gradient Descent with Momentum (SGD), AdaGrad, RMSProp, and Adam.
 - Tune the following hyper-parameters.
 - SGD (reference): γ, μ, τ
 - AdaGrad (reference): γ, τ, η
 - RMSProp (reference): α, γ, μ
 - Adam (reference): γ, β_1, β_2
 - Train the model with sub_train and validate it using valid.
 - Identify the best combination of hyperparameters for each optimizer based on validation accuracy.
 - For each optimizer, using its optimal settings, plot the curves for training and validation loss as depicted in Figure 1. Additionally, report the test accuracy (not the validation accuracy).
 - (e) Submit your ipynb file.

Figure 1: Training and validation loss vs. epoch