

In the Specification:

Please amend paragraph [0028] on page 12, continuing on page 13, as follows:

[0028] Next, as shown in FIG. 6, portions of the attPS layer 24 are removed in a pattern to form the clear areas 26. In the second embodiment, part of the attPS layer 24 having a thickness D₃ remains over the transparent layer 22 at the clear areas 26 (see FIG. 6). Preferably, the removal of attPS layer material at the clear areas 26 is performed using a RIE process with an etch chemistry of SF₆ and/or CF₄, for example. However, one of ordinary skill in the art should realize other processes that may be used for such removal, including (but not necessarily limited to) wet etching, RIE, ion milling, or any combination thereof, for example. The following equations may be used to calculate the phase shift and transmittance, and/or to determine the values of D₁ and D₃ that provide desired values of phase shift and transmittance, for a given wavelength (λ_t) of light:

$$\Phi_t = [2(n_t - 1)(D_1 - D_3) / \lambda_t]180^\circ$$

$$T_1 = [[L_1/L_o =]] A_t \exp(-4\pi k_t D_1 / \lambda_t)$$

$$T_2 = [[L_2/L_o =]] A_t \exp(-4\pi k_t D_3 / \lambda_t)$$

$$T_t = [[L_1/L_2 =]] T_1/T_2 = \exp[-4\pi k_t (D_1 - D_3) / \lambda_t]$$

where:

Φ_t = phase shift of light through line-A relative to light through line-B, based on using D₁ for dark area, D₃ for clear area, and λ_t , where $\lambda_t < \lambda_o$

n_t = refractive index of attPS layer material at λ_t

D₁ = attPS layer thickness on mask blank at dark area

D₃ = attPS layer thickness on mask blank at clear area

λ_t = wavelength of light used

T_t = transmittance through line-A (T₁) divided by relative to the transmittance through line-B (T₂), based on using D₁, D₃, and λ_t

T_1 = transmittance through line-A based on using D_1 and λ_t

T_2 = transmittance through line-B based on using D_3 and λ_t

A_t = constant for attPS layer material at λ_t

k_t = extinction coefficient for attPS layer material at λ_t .