Bus types

GCSE A Level

Match the bus type to its purpose. Drag a label into each row of the table below to correctly identify the bus described.

Bus	Purpose
	Carries data to and from the processor, main memory, and input/output controllers
	Carries the locations of stored data from the processor to main memory and input/output controllers
	Carries signals that coordinate the operation of the components

Items:

Bus types

GCSE A Level

There are 3 buses that make up the system bus: the data bus, address bus and control bus. Each of them carries signals appropriate to their purpose.

Which bus is the only one to carry signals in one direction?

Label a system diagram 1

A Level

The diagram in **Figure 1** below illustrates the connection between the core components of a computer system. Determine the correct label for each component by studying the connections carefully.

Figure 1: An unlabelled system diagram

Component	Label
А	
В	
С	
D	
Е	
F	
G	

Items:

System bus communication

A Level

Below is a list of examples of computer system communications. Label each communication correctly depending on whether it would be serviced by the **address bus**, **control bus**, or **data bus**.

Bus	Description
	Data 01001010 being transferred from processor to main memory
	Bus busy signal
	Memory location 10110010 being sent from the processor to an I/O controller
	Interrupt request
	Instruction 10001110 being transferred from main memory to the processor

Items:

Address Control Data	

Registers

A Level

Every processor has a set of registers. Some of them are general purpose registers and others have a specific purpose. From the following list, match each description to the appropriate register.

Bus	Description
	Holds the address of the next instruction to be executed by the processor
	Holds the instruction that the processor is currently executing
	Holds the address of the memory location (in main memory) that the processor needs to access, either to read from (i.e., load data) or write (i.e., store data) to
	Holds the data (data values or instructions) that are read from or written to the main memory
	Holds the immediate result of an instruction executed by the ALU
	Holds information about the result of the last instruction that the ALU executed

Items:

FDE cycle components 3

A Level

What is the role of the CIR in the fetch-decode-execute cycle?
--

The CIR stores the address of the instruction that needs to be fetched from the
main memory so that it is decoded

The CIR stores the address of the next instruction to be executed so that it can be
fetched from the main memory

The CIR stores temporarily data that need to be read from or written to the main
memory

The CIR stores the instruction to be decoded so that it is not overwritten by
additional data fetched to the MBR(MDR)

Stages of FDE cycle 4

A Level

Select one statement that describes one operation that happens in the *fetch phase* of the fetch-decode-execute cycle.

- The arithmetic and logic unit (ALU) carries out the instruction.
- The address of the next instruction to be executed is copied to the memory address register (MAR).
- The instruction held in the current instruction register (CIR) is split into operand and opcode.
- The result of the instruction is stored in a general-purpose register or the accumulator.

FDE cycle components 4

A Level

The status register is one of the special purpose registers that have a specific role to play in the fetch-decode-execute cycle.

Select the option that describes how the status register may be used.

) Indicate	es if a c	alculation	has	produced	an	overflow	error
--	------------	-----------	------------	-----	----------	----	----------	-------

Handles the interrupt that may occur due a hardware failure.

Add the carry bit produced during the calculation of adding two numbers.

Ensure that if a negative number is produced, it is not used as a divisor.

Stages of FDE cycle 3

A Level

Rearrange the operations below in the order they are performed during the **fetch** stage of the fetch-decode-execute cycle.

Available items

The contents of the PC are copied to the MAR
The fetched instruction is transferred to the processor using the data bus
The fetched instruction is saved in the MBR/MDR
At the same time, the contents of the PC are incremented by one
The contents of the MAR are used to access the correct location in memory
The contents of the MBR/MDR are copied to the CIR

Stages of FDE cycle 5

GCSE A Level

The instruction LOAD 9 has been read from main memory into the Current Instruction Register (CIR). What does the control unit do next?

() Fetches	the next	instruction
	\ .	/		

/	1			^
()	Executes the instruction	LUAD	9

Decodes the instruction LOAD	9 so that the correct signals for this operation can
be issued.	

