UNIVERSIDADE FEDERAL DE CAMPINA GRANDE UNIDADE ACADÊMICA DE ESTATÍSTICA

Disciplina: Estatística Multivariada

Créditos: 4 (quatro)

Professor: Alexsandro Cavalcanti

Aluno(a): _

Período 2020.2

$1^{\underline{a}}$ LISTA DE EXERCÍCIOS

1. Considere o seguinte conjunto de observações das variáveis X_1 e X_2 , abaixo:

Calcule estimativas para o vetor de médias, para a matriz de covariâncias e para a matriz de correlação.

2. O conjunto de dados abaixo representam medidas para as variáveis X_1, X_2 e X_3 .

Calcule estimativas para o vetor de médias, a matriz de covariâncias e para a matriz de correlação.

3. Considere a matriz

$$A = \left[\begin{array}{cc} 9 & -2 \\ -2 & 6 \end{array} \right].$$

- a) A matriz A é simétrica?
- b) Mostre que A é positiva definida.
- c) Determine os autovalores e autovetores da matriz A.
- d) Encontre A^{-1} .
- e) Encontre os autovalores e autovetores de A^{-1}
- f) Determine a decompósição expectral de A.
- 4. Considere a seguinte matriz de covariâncias associada a uma variável X.

$$\Sigma = \left[\begin{array}{rrr} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{array} \right].$$

- a) Encontre as matrizes P_X e $V^{1/2}$ tais que $V^{1/2}P_XV^{1/2}=\Sigma.$
- b) Encontre a média e a variância das seguintes combinações lineares:

(i)
$$X_1 - 2X_2$$

(ii)
$$X_1 + X_2 + X_3$$

(iii)
$$3X_1 - 4X_2 + 3X_3$$

5. Considere o vetor aleatório $X^{\top}=[X_1X_2X_3X_4]$ com vetor de médias $\mu^{\top}=[4,3,2,1]$ e matriz de covariâncias

$$\Sigma = \begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix}.$$

Particionando X como

$$X = \begin{bmatrix} X_1 \\ \frac{X_2}{X_3} \\ X_4 \end{bmatrix} = \begin{bmatrix} \frac{X^{(1)}}{X^{(2)}} \end{bmatrix}.$$

sendo
$$A=[1,2]$$
 e $B=\left[egin{array}{cc} 1 & -2 \\ 2 & -1 \end{array} \right]$

e considerando as combinações lineares $AX^{(1)}$ e $BX^{(2)}$. Encontre

- a) $E(X^{(1)})$
- b) $E(AX^{(1)})$
- c) $Cov(X^{(1)})$
- d) $\operatorname{Cov}\left(AX^{(1)}\right)$
- e) $E(X^{(2)})$
- f) $E\left(BX^{(2)}\right)$
- g) $\operatorname{Cov}\left(X^{(2)}\right)$
- h) $\operatorname{Cov}\left(BX^{(2)}\right)$
- i) $Cov(X^{(1)}, X^{(2)})$
- j) $Cov(AX^{(1)}, BX^{(2)})$
- 6. Considere a distribuição normal bivariada com parâmetros $\mu_1=0, \mu_2=2, \sigma_{11}=2, \sigma_{22}=1,$ e $\rho_{12}=0,5.$

2

- a) Escreva a densidade dessa normal bivariada.
- b) Escreva a expressão do quadrado da distância de Mahalanobis.
- c) Determine a equação do contorno de probabilidade para $\alpha=50\%.$
- 7. Seja $X \sim N_3\left(\mu,\Sigma\right)$, com $\mu^{\top} = [2,-3,1]$ e

$$\Sigma = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{array} \right].$$

- a) Encontre a distribuição de $3X_1-2X_2+X_3$.
- b) Encontre a distribuição do vetor $Z^{\top} = [X_1, X_2]$.
- c) Calcule a $Cov(Z, X_3)$.
- 8. (Exemplo de uma distribuição não normal bivariada com marginais normal.) Considere $X_1 \sim N(0,1)$, e seja

$$X_2 = \left\{ \begin{array}{ll} -X_1, & \text{se } -1 \leq X_1 \leq 1 \\ X_1, & c.c. \end{array} \right.$$

Mostre que:

- a) X_2 também tem distribuição normal padrão.
- b) A variável $X = [X_1, X_2]^{\top}$ não tem distribuição normal bivariada.
- 9. A tabela abaixo mostra a idade (X_1 em anos) e o preço de venda (X_2 em unidades de US\$ 1000) para n=10 carros usados,

Desenhe o contorno de probabilidade de 90% e conte quantas observações estão no interior do contorno.

10. Seja $X \sim N_3\left(\mu,\Sigma\right)$, com $\mu^{\top} = [-3,1,4]$ e

$$\Sigma = \left[\begin{array}{rrr} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

3

Qual (is) das seguintes variáveis são independentes? Justifique.

- a) X_1 e X_2
- b) X_2 e X_3
- c) (X_1, X_2) e X_3
- d) $\frac{X_1+X_2}{2}$ e X_3