REPORT

TITLE: Credit Card Behaviour Score Prediction Using Classification and Risk-Based Techniques

1. Overview of Approach and Modeling Strategy

The objective of this project was to build a predictive model to identify customers likely to default on their credit obligations next month. Given the real-world nature of the dataset, special care was taken to address class imbalance, financial interpretability, and performance evaluation that aligns with business risk.

Key steps:

- ➤ Data cleaning, outlier handling, and missing value imputation.
- Financially meaningful feature engineering.
- > Tackling class imbalance using SMOTE.
- Baseline modeling and advanced modeling (Random Forest, XGBoost, LightGBM).
- > Threshold tuning
- Final predictions on a held-out validation dataset.

2. EDA Findings and Visualizations

- Female customers have a slightly higher default rate than males comparing the percentage.
- educated ones are more defaulter than others
- > singles are more defaulters than married and others.
- ➤ Defaulters have significantly lower average credit limits than non-defaulters. This suggests that customers with lower credit limits are more likely to default.
- Customers in lower credit limit bands have a higher default rate, indicating that low-limit customers are more financially at risk.
- Defaulters have a lower payment-to-bill ratio, meaning they are less likely to pay off their bills, a strong financial stress indicator.
- ➤ Highly imbalanced target variable (~22% default rate).
- Strong correlation between delayed payments (pay 0 to pay 6) and default.
- > Credit limit (LIMIT_BAL) and past bill amounts had right-skewed distributions.
- Customers with zero repayments over several months had significantly higher default rates.
- ➤ Variables like avg_pay_amt, dues, and months_delayed clearly separated defaulting vs. non-defaulting behavior.

PAY = 0 (Partial Payments) This is the most frequent bar across all months.
Second Most Common: PAY = -1 (Fully Paid on Time)

- Most values are concentrated on the left side (low amounts).
- A long tail extends to the right, indicating a small number of customers with very large bills.
- Majority of customers have monthly bills < 100,000.
- This suggests most users are using moderate credit amounts.

- ➤ Bill Amounts (Bill_amt1 to Bill_amt6)
- > Strong positive correlations among all months (deep red).
- Implies customers with higher bills tend to carry that trend month-to-month.

- Suggests stable credit usage.
- Payment Amounts (pay_amt1 to pay_amt6)
- ➤ Weak-to-moderate correlations among each other.
- Means people don't always pay the same amounts, even if bills are similar.
- ➤ Could be due to partial payments, minimum dues, or missed payments.
- Payment Status (pay_m) vs Bill or Pay Amounts
- Weak or slightly negative correlations with pay_amtX.
- > Suggests that late payments are not always tied to high bills or payment amounts.

- ➤ Defaulters generally have a higher average pay status, indicating more frequent and severe payment delays
- > Defaulters have a lower payment-to-bill ratio, meaning they are less likely to pay off their bills, a strong financial stress indicator.

Across all months, average bill amounts are consistently higher than payments, suggesting that many customers are underpaying or carrying balances.

Defaulters (1) have a higher median utilization rate than non-defaulters (0). Indicates they are using more of their credit limit, which is a classic risk signal. over half of defaulters consistently carry higher credit usage. More outliers in non-defaulters Possibly high-spending but responsible customers

Non-defaulters (0): Higher median — repaying more relative to their credit limit Defaulters (1): Lower median — repaying less, sometimes far below what they should The IQR (middle 50%) is narrower for defaulters Suggests they consistently under-repay, with less variation in behavior Some non-defaulters pay more than their credit limit (ratio > 1) Likely high-income or responsible users repaying aggressively.

> Defaulters (1) have a higher median bill-to-limit ratio than non-defaulters (0). This means defaulters consistently use more of their credit limit. The distribution for defaulters is more spread, showing that some users fluctuate wildly in billing.

3. Financial Analysis of Default Drivers

Feature	Description
dues	Total billed amount minus total paid amount
dues_to_limit_ratio	Measures over-utilization
zero_pay_count	Count of months with no payments
months_delayed	Number of delayed payment months
pay_trend	Linear trend in repayment over 6 months
recent_late, last_two_months_late Recency of delay	

Customers with consistently delayed or zero payments and high utilization showed much higher risk of default.

The graphs for many features, has been displayed above.

4. Model Comparison and Final Model Justification:

Models Trained:

- ➤ Logistic Regression
- Decision Tree
- ➤ LightGBM
- > XGBoost
- > Random Forest (Final Chosen Model)

Why Random Forest?

- ➤ Highest **F2 Score**: ~0.89 after threshold tuning.
- > Strong **ROC** AUC and generalization performance.
- > Robust to outliers and overfitting.
- > Balanced recall and precision.

5. Evaluation Methodology

The dataset was **highly imbalanced**, with only about **22% of customers defaulting**. This posed a serious challenge because most models could easily achieve high accuracy by predicting only the majority class (non-defaulters), yet perform poorly where it really matters: **identifying actual defaulters**.

To address this:

- > SMOTE (Synthetic Minority Oversampling Technique) was applied only to the training set, ensuring the model learned from a more balanced view of both default and non-default cases.
- Evaluation focused on metrics that highlight the model's ability to catch defaulters.

The performance was evaluated using multiple metrics:

- **F2 Score** (prioritized): More weight on recall.
- Accuracy, Precision, Recall, F1 Score.
- > ROC AUC.

Why F2 Score?

- > The **F2 score** gives more weight to **recall** than precision, which aligns with business needs in credit risk.
- ➤ In financial lending:
- ✓ A false negative (missing a real defaulter) could lead to significant financial loss.
- ✓ A **false positive** (flagging a safe customer) may result in **temporary friction**, but it's far less costly than default.

By optimizing the **F2 score**, the model becomes more sensitive to **catching defaulters**, even if it sacrifices a bit of precision.

6. Classification Threshold Selection

Instead of using the default 0.5 cutoff, threshold tuning was done from 0.1 to 0.9 using F2 optimization.

- > Optimal threshold for Random Forest: 0.31
- ▶ Boosted recall significantly while maintaining acceptable precision.
- ➤ Used fbeta score (beta=2) for evaluation during tuning.

7. Business Implications

Implementing this model at Bank A can deliver multiple strategic benefits:

- 1. Early Risk Detection
- ➤ Identifying customers with high likelihood of default before they miss payments enables the bank to take proactive actions (e.g., calls, restructuring, soft collections).
- 2. Reduced Credit Losses
- Minimizing false negatives (missed defaulters) helps the bank avoid nonperforming assets (NPAs) and associated write-offs.
- 3. Personalized Risk Communication
- ➤ The bank can design targeted outreach campaigns or offer custom repayment plans for at-risk customers based on their SHAP-based explanations.
- 4. Better Credit Limit Management
- Customers predicted as high risk can have their credit limits frozen, reduced, or more closely monitored.
- 5. Improved Portfolio Quality & Compliance
- ➤ Helps the bank stay within risk-weighted asset thresholds set by regulators and maintain a healthier loan book.

8. Summary of Findings and Key Learnings

This project addressed the challenge of predicting credit card defaults using a structured machine learning pipeline. Key takeaways include:

- ➤ Class imbalance (only ~22% defaulters) was handled effectively using **SMOTE**, improving model learning.
- Financially driven **feature engineering** (e.g., dues, utilization ratio, payment trend) improved both performance and interpretability.
- ➤ **F2 score** was chosen to prioritize recall, reflecting the business need to catch as many defaulters as possible. Threshold tuning (optimal at 0.31) enhanced this.
- ➤ **Random Forest** emerged as the best model, achieving a strong F2 score (~0.89) and ROC AUC (~0.93).
- The model has clear business value: enabling early risk detection, reducing credit losses, and supporting regulatory compliance.