표시과목 「전기·전자·통신」의 교사 자격 기준과 평가 영역 및 평가 내용 요소

표시과목	전기·전자·통신				
연구수행기관	한 국 교 육 과 정 평 가 원				
공동연구기관	• 연구주관학회 : 대한공업교육학회				
연구책임자	김진수 (한국교원대학교)				
공동연구자	김성득 (안동대학교) 김진권 (제천디지털전자고등학교) 노태천 (충남대학교) 오승균 (성남공업고등학교) 윤형기 (양영디지털고등학교) 은태욱 (광주정보고등학교) 이명의 (한국기술교육대학교) 이명훈 (성동공업고등학교) 이양원 (호남대학교)				

- □ 표시과목별 교사 자격 기준은 교육과학기술부가 발표한 "신규 교사의 자질과 능력에 관한 일반 기준 (2006. 11. 17)"을 바탕으로 표시과목의 성격에 맞게 구체화 한 것입니다.
- ② 표시과목별 "평가 영역"과 "평가 내용 요소"는 위의 교사 자격 기준을 근거로 하고, 교육과학기술부가 고시한 '표시과목의 기본 이수 과목 및 분야'에 제시된 과목을 준거로 각 학회가 정리한 내용을 공동관리위원회가 검토·확정한 것입니다. 이 자료는 2009학년도중등교사임용후보자선정경쟁시험부터 표시과목별 출제 문항의 타당도를 제고하는 기초 자료로 활용될 것입니다. 다만, 출제위원단의 결정에따라 세부적인 사항의 일부가 문항 출제 과정에서 조정될 수 있음을 밝힙니다.
- ③ 47개 학회가 한국교육과정평가원과 공동 연구를 수행하는 과정에서 표시과목별로 실시한 '세미나'자료와 '공청회'자료와 최종 연구 결과가 다를 수 있습니다. 따라서 공동관리위원회가 공식적으로 공개한 본 자료를 참고하시기 바랍니다.
- ④ 47개 학회가 연구수행 중 '세미나'와 '공청회'및 최종 보고서 등에서 제시한 1·2차 예시 문항은 출제의 참고자료로만 사용됨을 알려드립니다. 특히, '수업 능력 평가 도구 및 예시 자료'는 시·도 교육청의 교원 임용 정책 및 시험 시행 여건 등에 따라 각기 다를 수 있으므로 착오 없으시기 바랍니다.

중등학교교사 표시과목

전기·전자·통신

교사 자격 기준

2008. 9. 30.

한국교육과정평가원 대한공업교육학회

1. 교사 자격 기준

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
교사의 인성	[기준 1] 교시는 건전한 인성과 교직에 대한 사명감을 바탕으로 교직에 대한 올바른 윤리 의식과 책임의식을 갖춘다.	 전기전자통신 교사는 학생을 독립된 인격체로 존중하고 이끈다. 전기전자통신 교사는 학생들의 바른 인격 함양을 위해 노력한다. 전기전자통신 교사는 사명감을 갖고 학생 지도에 노력한다. 전기전자통신 교사는 사명감을 갖고 전문기술 지도에 노력한다. 전기전자통신 교사는 항상 모범이 되는 학생 지도를 한다. 전기전자통신 교사는 학생의 바른 윤리 의식 태도를 함양한다. 전기전자통신 교사는 학생이 사회의 건전한 구성원이 되도록 지도한다. 	기준 1 1-1 1-2 1-3
학생 이해	[기준 2] 교사는 학생을 존중하고 공정하게 대우하며 학생의 잠재력 발휘와 개개인의 교육적 요구에 적극 응한다.	 전기전자통신 교사는 매사 학생을 존중하는 자세로 대한다. 전기전자통신 교사는 학생을 하나의 개별 인격체로서 바라본다. 전기전자통신 교사는 학생과 함께하며 항상 중용을 지킨다. 전기전자통신 교사는 학생의 가능성을 넓은 안목으로 바라본다. 전기전자통신 교사는 학생의 가능성을 계발할 수 있도록 돕는다. 전기전자통신 교사는 학생의 잠재력을 발휘할 수 있도록 조력자 역할을 한다. 전기전자통신 교사는 학생의 교육적 요구를 긍정적으로 받아들인다. 전기전자통신 교사는 학생의 교육적 요구에 응할 수 있는 지식과 안목을 갖춘다. 전기전자통신 교사는 학생이 교육적 요구를 충족할 수 있도록 조력한다. 	기준 2 2-1 2-2 2-3
수업 활동	[기준 3] 교시는 학생의 선행학습, 학습방식, 학습동기, 학습 요구, 인지·사회성·정서·신 체 발달 상태, 개인적 특 성, 가정·사회·경제·문화적 환경을 이해한다.	 전기전자통신 교사는 학생의 선행학습 정도에 따라 개인별 학습수준 및 방법을 제시한다. 전기전자통신 교사는 학생의 학습동기를 자극하여 학업성취도를 높인다. 전기전자통신 교사는 학생의 다양한 학습요구를 수용하여 학습에 반영한다. 전기전자통신 교사는 학생 개인별 인지 발달 정도를 이해한다. 전기전자통신 교사는 학생 개인별 인지 발달 정도를 이해한다. 전기전자통신 교사는 학생이 올바른 사회성을 함양할 수 있도록 이끈다. 전기전자통신 교사는 학생 개인별 신체 발달 정도를 이해한다. 전기전자통신 교사는 학생의 개인별 특성을 이해하고 이를 인성지도 및 학습지도에 반영한다. 전기전자통신 교사는 학생의 가정·사회·경제·문화적 환경을 이해하고 이를 인성지도 및 학습지도에 반영한다. 	기준 3 3-1 3-2 3-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
교과 지식	[기준 4] 교사는 가르치는 교과의 내용의 이해를 바탕으로 자신의 교과에 대한 핵심 개념, 개념간의 관계, 탐구방식을 이해하고 최신 지식에 대한 지속적 탐구 자세를 가진다.	 전기전자통신 교사는 전기전자통신 과목에 대한 교과 내용을 정확히 숙지한다. 전기전자통신 교사는 교과 내용에 대한 깊이 있는 탐구 자세를 가진다. 전기전자통신 교사는 전기전자통신 교과 내용을 학습자 수준에 맞게 표현할 수 있다. 전기전자통신 교사는 전기전자통신교과의 학문적 핵심 개념을 항상 인지한다. 전기전자통신 교사는 전기전자통신교과 개념들 간의 인과 관계를 파악한다. 전기전자통신 교사는 전기전자통신 교과가 추구하는 학문적 탐구 방식의 접근 체계를 파악한다. 전기전자통신 교사는 전기전자통신 교과의 기반 학문을 함께 숙지한다. 전기전자통신 교사는 전기전자통신 교과의 최신 지식을 지속적으로 탐구한다. 전기전자통신 교사는 전기전자통신 교과의 이해 폭을 넓히기 위한 열린 자세를 갖춘다. 	기준 4 4-1 4-2 4-3
교육 과정 이해	[기준 5] 교시는 국가수준의 교육과정을 이해하고 이를 교육상황에 적합하게 재구성하며 교육과정 자료 연구 및 개발에 노력 한다. [기준 5] 교시는 국가수준의 교육과정을 이해하고 이를 교육상황에 적합하게 재구성하며 교육과정 자료 연구 및 개발에 노력 한다.	 전기전자통신 교사는 전기전자통신 교과의 교육과정 편성을 이해한다. 전기전자통신 교사는 전기전자통신 교과의 편성 교과목 지식 배경을 이해한다. 전기전자통신 교사는 전기전자통신 교과의 편성 교과목 지식 배경을 이해한다. 전기전자통신 교사는 전기전자통신 교육과정의 이해를 토대로 이를 수업 목표로 제시할 수 있다. 전기전자통신 교사는 전기전자통신 교과의 교육과정을 교육상황에 적합하게 재구성 할 수 있다. 전기전자통신 교사는 전기전자통신 교과의 교육과정을 학습자 수준에 맞도록 제시할 수 있다. 전기전자통신 교사는 전기전자통신 교과의 교육과정을 학습자 수준에 맞도록 제시할 수 있다. 전기전자통신 교사는 전기전자통신 교과의 효과적인 학습을 위한 교육과정 개발에 노력한다. 전기전자통신 교사는 전기전자통신 교과의 발전을 위해 상호 정보 및 연구 자료를 공유한다. 	기준 5 5-1 5-2 5-3 기준 5 5-1 5-2 5-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
교수학습 방법 이해 및 활용	[기준 6] 교사는 교육목표, 교사, 학생에게 적합한 수업을 계획하며 이를 실천할 수 있는 다양한 수업방법, 활동, 자료, 매체를 활용하여 효과적인 수업을 운영한다.	 전기전자통신 교사는 단원별 학습목표를 정확히 인지한다. 전기전자통신 교사는 자신의 교육적 자질을 최대한 발휘할 수 있는 수업 계획을 세우고 이를 실천한다. 전기전자통신 교사는 학습자의 개인 능력 및 수준을 고려한 수업을 계획한다. 전기전자통신 교사는 교과내용 특성에 따른 다양한 수업 방법을 계획한다. 전기전자통신 교사는 학습자의 학습 동기를 자극하기 위한 다양한 자료를 활용한다. 전기전자통신 교사는 전기전자통신 교과 내용을 효과적으로 학습하기 위한 매체 조작 능력을 습득한다. 전기전자통신 교사는 교과에 대한 학생의 학습요구를 진단하고 이에 대한 지원책을 계획한다. 전기전자통신 교사는 학생의 학습 요구에 따른 적절한 지원을 실천한다. 전기전자통신 교사는 교과 학습 후 교과에 대한 학생의 학습 요구를 평가 및 재확인하여 다음 수업에 적극 반영할 수 있는 자세를 지닌다. 	기준 6 6-1 6-2 6-3
평가	[기준 7] 교사는 학습자의 다양한 특성을 평가할 수 있는 평가방법을 활용하며 평가하고 이를 피드백 하여 학생의 학습 지원과 수업 개선에 활용한다.	 전기전자통신 교사는 교과 단원별 평가 목적을 명확히 계획한다. 전기전자통신 교사는 각 단원별 내용에서 핵심적 평가 내용을 제시한다. 전기전자통신 교사는 학습자의 다양한 특성 및 평가의 공정성을 위한 다양한 평가 방법을 활용한다. 전기전자통신 교사는 각 학습의 평가 결과를 평가과정 전반에 대한 분석 자료로 활용한다. 전기전자통신 교사는 교과의 평가 결과를 통해 학생의 학업성취도를 파악하고 이를 의사소통의 계기로 활용한다. 전기전자통신 교사는 평가 결과에 대한 분석을 토대로 추후 학습 활동 시 이를 반영할 수 있는 학습 계획을 세운다. 전기전자통신 교사는 교과의 평가결과를 학생의 학습지원의 자료로 활용한다. 전기전자통신 교사는 교과의 평가결과에 적절한 학생의 학습 지원 체제를 마련한다. 전기전자통신 교사는 교과의 평가결과에 적절한 학생의 학습 지원 체제를 마련한다. 	기준 7 7-1 7-2 7-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
학급 운영 및 학생 지도	[기준 8] 교사는 학생의 자율적 문제 해결과 의사결정을 지원하며 민주적 학급 운영을 통해 서로 존중하고 신뢰하는 학교 문화를 조성한다.	 전기전자통신 교사는 학생의 자율적 문제 해결 과정을 자극하고 이를 극대화 할 수 있는 지원체제를 마련한다. 전기전자통신 교사는 학생 스스로 문제를 파악하고 해결할 수 있는 의사결정과정을 지원한다. 전기전자통신 교사는 학생이 사회의 한 구성원으로 문제해결 및 의사결정 과정에 올바른 의식을 가지고 참여할 수 있도록 이끈다. 전기전자통신 교사는 민주의식을 확고히 한다. 전기전자통신 교사는 민주적으로 학급을 관리하고 운영한다. 전기전자통신 교사는 민주적으로 학급을 관리하고 운영한다. 전기전자통신 교사는 자신의 민주의식과 학급 경영과정이 학생의 민주의식의 기초가 될 수 있음을 인지하고 바른 의식과 태도를 가져야 한다. 전기전자통신 교사는 교사간 서로 존중하는 학교 문화를 조성한다. 전기전자통신 교사는 학생간 서로 존중하는 학교 문화를 조성한다. 전기전자통신 교사는 학생간 서로 존중하는 학교 문화를 조성한다. 전기전자통신 교사는 학부모간 서로 존중하는 학교 문화를 조성한다. 	기준 8 8-1 8-2 8-3
교육 환경 이해	[기준 9] 교사는 교육의 사회·문화·정치·경제적 맥락을 이해하고 교육공동체 구성원들과 효과적인 의사소통을 위한 참여와 협력을 유도하고 유지하도록 힘쓴다.	 전기전자통신 교사는 교육의 사회·문화·정치·경제적 맥락에 항상 관심을 가지고 접근한다. 전기전자통신 교사는 교육의 사회·문화·정치·경제적 맥락이 교육 및 생활지도에 반영이 되도록 힘쓴다. 전기전자통신 교사는 교육의 사회·문화·정치·경제적 맥락이 학습자의 학습 과정 및 교과내용의 적재적소에 반영되도록 한다. 전기전자통신 교사는 학생의 생활 지도 및 바른 인성 함앙을 위한 교육 공동체 구성원들과 효과적으로 의사소통한다. 전기전자통신 교사는 동료장학을 통해 교과 발전 및 학습 지도를 위한 교육 공동체 구성원들과 효과적으로 의사소통한다. 전기전자통신 교사는 학생 발전과 자신의 발전을 위한 교육공동체 구성원들과 효과적으로 의사소통 하도록 한다. 전기전자통신 교사는 교육공동체 구성원들과의 이해의 폭을 넓히고 서로의 발전을 위한 참여와 협력을 이끈다. 전기전자통신 교사는 교육공동체 구성원들과의 참여와 협력을 바탕으로 서로의 정보를 공유할 수 있는 체제를 형성한다. 전기전자통신 교사는 교육 변화와 사회 변화에 항상 열려진 마음으로 참여하도록 한다. 	기준 9 9-1 9-2 9-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
전문성 계발	[기준 10] 교사는 자신의 전문성 개발을 위해 교내외 연수 프로그램과 활동에 적극 참여하며 평생학습을 위해 노력한다.	 전기전자통신 교사는 학생 생활 지도와 인성 함양을 위한 교육 실천에 대하여 열려있는 자세로 연구하여 전문성을 향상시킨다. 전기전자통신 교사는 자신의 교과 내용에 있어서 교육 실천에 대해 열려있는 자세로 연구하고 전문성을 향상시킨다. 전기전자통신 교사는 교과 내용 및 직무와 관련된 국내·외 연수 프로그램과 활동에 적극 참여한다. 전기전자통신 교사는 학생 지도 및 인성 함양, 학생 상담을 위한 연수 프로그램에 적극 참여한다. 전기전자통신 교사는 자신의 발전과 학생에게 다양한 분야를 안내할 수 있는 능력 함양을 위해 자율 연수에 적극 참여한다. 전기전자통신 교사는 교사로서 현실에 안주하지 않고 발전하기 위해 항상 반성하는 자세를 가지며 노력한다. 전기전자통신 교사는 현실에 안주하지 않고 자기 발전 및 학생 지도 능력 함양을 위해 평생 학습하며 연구하는 자세로 교직에 임한다. 	기준 10 10-1 10-2 10-3

중등학교교사 표시과목

전기·전자·통신

평가 영역 및 평가 내용 요소

2008. 9. 30.

한국교육과정평가원 대한공업교육학회

2. 평가 영역 및 평가 내용 요소

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			공업교육의 개념	
			공업교육 성격	공업계열 전문교과 성격
		공업교육 일반	공업교육 발달사	직업교육훈련 100년사
			공업교육 정책	공업교육 국가정책
			공업교육 연구 방법	공업교육 연구 방법론
			공업 교육과정의 개념	교육과정의 개요
			공업 교육과정의 목표와 내용	교육과정-목표 및 내용체계
		공업교육	공업 교육과정의 개발 과정	교육과정의 개요
		교육과정	공업 교육과정의 선정과 조직	교육과정의 개요
			공업 교육과정의 편성·운영	교육과정의 개요
			공업 교육과정의 평가	교육과정 평가
		공업교육 교수·학습법	공업 교수·학습 방법의 개념	교과의 교수·학습 방법
			공업 교수·학습 방법의 유형	교과의 교수·학습 방법
			공업 교수·학습 계획	교과의 교수·학습 방법
교과	공업		공업 교수·학습 매체 선정과 방법	교과의 교수·학습 방법
교육학	교육론		실험·실습의 개념	실험·실습 교수·학습 방법
			실험·실습 지도 방법	실험·실습 교수·학습 방법
			실험·실습 학습자료 개발 과정	실험·실습 교수·학습 방법
			실험·실습의 안전관리	실험·실습 교수·학습 방법
		실험·실습실 관리	실험·실습실 조직과 관리 개념	실험·실습장 관리
			실험·실습실 조직과 관리 방법	실험·실습장 관리
		119	실험·실습실의 안전관리	실험·실습장 관리
		공업교육 평가	공업교육 평가의 개념 및 유형	수행 평가
		0.月元廿 -871	수행평가의 유형	수행 평가
			산학협동교육의 개념	산학협동 교육
		산학협동교육	산학협동교육의 유형	산학협동 교육
			산학협동체제의 조직과 운영 방법	산학협동 교육
			직업진로 교육의 개념	직업진로 교육
		직업진로교육	직업진로 교육의 발전 과정	직업진로 교육
		1 1 1 1 1 1 1 1	직업진로 교육의 유형	직업진로 교육
			직업진로 교육의 방법	직업진로 교육

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
	전기일반		'전기일반' 교과목을 별도의 기본이수과목으로 비지 않고, '전기일반'의 '1. 전기 이론' 단원은 '회의 기초' 단원은 '전자기기' 교과목에, '3. 전력 '기'단원은 '전기기기' 교과목에 그리고 '5. 전기·세분화된 교과목에 통합해서 평가영역과 평가 내	로이론' 교과목에, '2. 전자소자와 전자 회로 설비' 단원은 '전력공학' 교과목에, '4. 전기기 전자 응용'은 '전기설비 및 법규' 교과목 등
			• 전기회로 구성의 기초가 되는 옴의 법칙과 키르히호프의 법칙을 이해하고 적용	10~11학년-전기회로-직류회로
			• 전위의 평형과 휘트스톤 브리지의 원리	10~11학년-전기회로-직류회로
			• 테브난, 노튼 및 중첩의 원리	10~11학년-전기회로-직류회로
		712217	• 저항의 성질을 나타내는 고유저항, 전도율 및 온도 계수	10~11학년-전기회로-직류회로
		직류회로	• 전류의 발열 작용과 이에 관련된 줄의 법칙	10~11학년-전기회로-직류회로
		이론	• 열과 전기 관련 제베크 효과와 펠티어 효과에 대하여 이해하고 실생활에서 응용하여 설명할 수 있다.	10~11학년-전기회로-전기와 자기
	회로이론		• 전류의 작용	10~11학년-전기회로-직류회로
			• 전지의 원리와 종류	10~11학년-전기회로-직류회로
			•사인파 교류의 발생 원리와 표현 방법	10~11학년-전기회로-교류회로
교과 내용학			• 복소수에 의한 사인파 교류의 표시하고 저항, 코일과 콘덴서의 특성에 대한 복소수 표현	10~11학년-전기회로-교류회로
			• RLC회로의 특성을 이해하고 벡터 표기법	10~11학년-전기회로-교류회로
		교류회로	• 교류회로에서의 전력과 역률의 의미	10~11학년-전기회로-교류회로
			• 3상교류의 발생 원리와 3상 교류 회로의 결선법과 3상 전력	10~11학년-전기회로-교류회로
			• 3상 전력의 측정 방법	10~11학년-전기회로-교류회로
			• 과도 현상	10~11학년-전기회로-교류회로
			• 직류전동기의 동작원리	11-12학년-전기기기-직류기의 원리와 구조
		-J = -J	• 직류 발전기의 동작원리	11-12학년-전기기기-직류 발전기의 특성
		직류기	• 전기자 반작용	11-12학년-전기기기-직류기의 원리와 구조
عاماء			• 직류기의 손실, 효율 및 정격	11-12학년-전기기기-분권 전동기의 부하 특성
	2] -] -] -]		• 변압기의 동작 원리와 구조.	11-12학년-전기기가-변압기의 원리 및 구조
	전기기기		• 변압기의 정격, 전압 변동률, 손실, 효율 및	11-12학년-전기기기-변압기의 정격, 손실 및
		njej-j	온도 상승 등의 특성	효율
		변압기	• 변압기의 결선 방법과 이용률과 출력값	11-12학년-전기기기-변압기의 병렬 운전 및 3상 결선
			• 단권 변압기의 원리와 용도 및 역률 및 전력계산	11-12학년-전기기기단권 변압기의 권선 및 조립

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			• 유도 전동기의 회전 원리.	11-12학년-전기기기-3상 유도 전동기의 동작원리
		유도전동기	• 유도 전동기의 동기 속도, 슬립과 주파수	11-12학년-전기기가-3상유도 전동기의 회전 자기장
		开工业671	• 유도 전동기의 손실과 효율	11-12학년-전기기가-3상유도 전동기의 슬립 및 토크 특성
			• 단상 유도 전동기의 기동 방법	11-12학년-전기기가-단상 유도전동기의 동작 원리 및 기동법
	전기기기		•동기발전기의 원리와 구조	11-12학년-전기기기-동기기의 원리 및 특성
			•동기 발전기의 유도 기전력과 전압 변동률	11-12학년-전기기기-3상 동기 발전기의 특성 시험 및 병렬운전
		동기기	• 전기자 반작용	11-12학년-전기기가-3상 동기 발전기의 특성 시험 및 병렬운전
			•동기 전동기의 특징	11-12학년-전기기기-동기 전동기의 기동 특성 및 특수 전동기
		전동력응용	• 전동기의 응용 및 부하와 제어	11-12학년-전기기기-전력용 반도체 소자, 전동기의 제어
			• 수력발전의 원리와 구조 및 종류	11-12학년-전력설비(I)-수력발전
교과 내용학			• 수럭발전의 출력과 유효낙차 및 효율	11-12학년-전력설비(I)-수력발전
-110 7			• 화력발전의 원리와 구조 및 종류	11-12학년-전력설비(I)-화력발전
		발전	• 증기의 성질과 열사이클	11-12학년-전력설비(I)-화력발전
			• 화력발전의 터빈 열효율과 정격 출력	11-12학년-전력설비(I)-화력발전
			• 원자력발전의 원리와 구조 및 종류	11-12학년-전력설비(I)-원자력 발전
			• 해양발전, 태양 에너지에 의한 발전, 풍력발전, 지열발전, 직접발전에 대한 원리	11-12학년-전력설비(I)-그 밖의 발전
	전력공학		• 직류송전방식과 교류송전 방식과 장·단점을 비교	11-12학년-전력설비(I)-송전
			• 경제적인 송전 전압과 공칭 전압	11-12학년-전력설비(I)-송전
			• 송전 선로의 안정을 위한 방법	11-12학년-전력설비(I)-
		송전과	• 변전과 배전 및 변전소의 안전 대책과 재해 대책	11-12학년-전력설비(I)-변전, 배전
		배전	• 배전 방식	11-12학년-전력설비(I)-배전
			• 수용 설비와 공급 설비를 위한 수용률, 부등률, 부하율	11-12학년-전력설비(Ⅱ)-수변전 설비 및 예비전원설비

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
		전기설비설계	• 전기설비설계에 필요한 도면의 종류와 전기기호	11-12학년-전력설비(I)-옥내배선설비, 전력설비(II)-동력배선설비
			• 전선 및 케이블의 허용전류	11-12학년-전력설비(I)-옥내배선설비
		조명설비	•조명 용어	11-12학년-전기응용-조명
	전기설비	조용된	• 조명 방식	11-12학년-전기응용-조명
	및	동력설비	• 전동기의 운전 및 제동	11-12학년-전기응용-그 밖의 전기응용
	법규	중덕설비	• 동력제어기기류	11-12학년-전기응용-그 밖의 전기응용
		시험 및 측정	• 접지저항, 절연저항의 측정방법	11-12학년-전기전자측정-전압,전류 및 전력측정
		기심 중 국정	• 적산전력계에 의한 전력량을 측정	11-12학년-전기전자측정-전압,전류 및 전력측정
		정전계	• 자유공간에서 정전계를 이해하고, 도체, 유전체 및 정전용량	10-11학년-전기회로-전기와 자기
			• 전기현상	10-11학년-전기회로-전기와 자기
	전자 기학	정상전류	• 전류밀도와 Ohm의 법칙, 연속방정식과 Kirchhoff전류법칙, 전력소비와 Joule의 법칙	10-11학년-전기회로-전기와 자기
교과	기억	정자계	• 자유공간에서 정자계를 이해하고, 자기력 자성체와 인덕턴스와 Biot-Savart법칙	10-11학년-전기회로-전기와 자기
내용학		시변계와 Maxwell방정식	• 전자기 유도의 Faraday법칙과 Maxwell 방정식	10-11학년-전기회로-전기와 자기
			• 전기계의 상태 공간 해석	11-12학년-자동화설비-자동화의 개요
		자동제어	• 전달함수와 블록선도	11-12학년-자동화설비-자동화의 개요
	제어		• 주파수 응답을 해석하기 위한 보드 선도	11-12학년-자동화설비-자동화의 개요
	제어 공학	시퀀스 제어	• 시퀀스제어 및 타임차트	11-12학년-자동화설비-시퀀스 제어
		시원스 세역	• 시퀀스 회로의 동작	11-12학년-자동화설비-시퀀스 제어
		PLC	• PLC의 개념과 구조 이해 및 PLC 프로그램을 설계	11-12학년-자동화설비-PLC
			• 전력용 다이오드의 전압-전류 특성	11-12학년-전기응용-반도체 전력변환 기기
		전력용	• 전력용 트랜지스터의 특성	11-12학년-전기응용-반도체 전력변환 기기
		선덕중 반도체 소자	• 전력용 MOSFET의 동작 원리 및 출력특성	11-12학년-전기응용-반도체 전력변환 기기
	전력 전자 공학		• 다이리스터(Thyristor)의 동작원리 및 전압-전류 특성	11-12학년-전기응용-반도체 전력변환 기기
		취비디	• 단상 반파 컨버터의 회로 구성과 중요부분의 전압 전류 파형	無
		컨버터	• 단상 전파 컨버터의 구성과 출력전압과 전류를 해석	無

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
		교류전압	• 온 오프 제어방식을 통한 교류전압제어기의 구성과 출력파형	無
	전력	제어기	• 위상제어 방식을 통한 교류전압제어기의 구성과 출력파형	無
	전자 공학	직류전압 제어기	• 초퍼의 회로구성, 동작원리 및 특성	無
		인버터	• 단상 반파 브리지 인버터를 통해 출력전압, 주파수와 전류의 파형	無
			• 10진수, 2진수, 8진수, 16진수 사이의 변환	11~12학년-디지털 논리회로-정보의 표현
			•디지털 코드의 종류와 활용법	11~12학년-디지털 논리회로-정보의 표현
		디지털 기초이론	•논리회로에서의 게이트의 동작과 불 대수와의 관계	11~12학년-디지털 논리회로-불 대수
			•불 대수, 카르노 도 등을 활용한 논리식의 간소화	11~12학년-디지털 논리회로-불 대수
			• 최소항을 이용한 출력함수의 유도	11~12학년-디지털 논리회로-조합논리회로
		조합논리회로	• 반가산기와 전가산기의 구조와 원리	11~12학년-디지털 논리회로-조합논리회로
교과	디지털 시스템	エ目しいガエ	• 비교기, 해독기와 부호기, 멀티플렉서와 디멀티플렉서, 코드 변환기의 원리	11~12학년-디지털 논리회로-조합논리회로
과라 내용학		순서논리회로	• R-S, J-K, D, T 플립플롭 등의 동작원리와 활용	11~12학년-디지털 논리회로-순서논리회로
,, 0 ,			• 레지스터의 종류와 동작	11~12학년-디지털 논리회로-순서논리회로
			• 동기식 계수기의 동작 원리와 활용	11~12학년-디지털 논리회로-순서논리회로
			• 비동기식 계수기의 동작 원리와 활용	11~12학년-디지털 논리회로-순서논리회로
			•동기식 순서논리회로의 해석과 설계	11~12학년-디지털 논리회로-순서논리회로
		커 E 에 시 기 스	• 하드웨어기술언어로 작성된 디지털회로의 이해	無
		하드웨어기술 언어	• 조합논리회로와 순서논리회로를 하드웨어기술 언어로 작성	無
		조합논리회로 의 설계	• 출력함수를 이용한 조합 논리회로 구성	11~12학년-디지털 논리회로-조합논리회로
		가산기	• 3비트 가산기와 4비트 병렬 가산기의 설계	11~12학년-디지털 논리회로-조합논리회로
		비교기	•n비트 비교기 설계	11~12학년-디지털 논리회로-조합논리회로
	디지털 회로실험	해독기와 부호기	•2×4, 3×8 해독기와 4×2, 8×3 부호기 구성	11~12학년-디지털 논리회로-조합논리회로
		MUX와 DEMUX	•4×1 멀티플렉서와 1×4 디멀티플렉서 구성	11~12학년-디지털 논리회로-조합논리회로
		플립플롭	• 각종 플립플롭의 동작에 대한 타이밍 도 표현법	11~12학년-디지털 논리회로-순서논리회로

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
	디지털	시 <u>프트</u> 레지스터	•좌우 방향 시프트 레지스터 및 순환 레지스터 설계	11~12학년-디지털 논리회로-순서논리회로
	회로실험	계수기	•상태도 및 회로 여기표를 활용한 각종 계수기 설계	11~12학년-디지털 논리회로-순서논리회로
			•마이크로폰의 전기적 특성과 지향성	11~12학년-전자 기기 -음향기기
		음향기기	• 스피커의 종류와 스피커 시스템	11~12학년-전자 기기 -음향기기
		급상기기	• 라디오 송·수신기의 원리	11~12학년-전자 기기 -음향기기
	전자기기		• 디지털 음향 기기의 원리	11~12학년-전자 기기 -음향기기
	- (1/1/1/1		•텔레비전 신호의 전기적 표현과 이의 재현 원리	11~12학년-전자 기기 -영상기기
		영상기기	•디지털 텔레비전 수상기 구성과 동작	11~12학년-전자 기기 -영상기기
		0 0 / 1 / 1	• 영상 입력 장치와 영상 출력 장치의 종류, 용도 및 특성	11~12학년-전자 기기 -영상기기
		반도체 물성의	• 전자의 에너지 상태 표현	11~12학년-전자회로-반도체 소자와 집적회로
		기초	• 반도체의 에너지 대역에 대한 표현	11~12학년-전자회로-반도체 소자와 집적회로
		반도체 캐리어	•n형 반도체의 캐리어 특성	11~12학년-전자회로-반도체 소자와 집적회로
			•p형 반도체의 캐리어 특성	11~12학년-전자회로-반도체 소자와 집적회로
		pn 접합	•pn 접합의 공핍층 형성과정	11~12학년-전자회로-반도체 소자와 집적회로
교과 내용학		다이오드	•pn 접합의 바이어스 방법	11~12학년-전자회로-반도체 소자와 집적회로
,, 0 1			•BJT의 접합구조와 캐리어 특성	11~12학년-전자회로-증폭회로
	반도체공학	쌍극성 접합	•BJT의 증폭 작용과 스위칭 작용	11~12학년-전자회로-증폭회로
		트랜지스터 (BJT)	•베이스 공통접속과 α, 이미터 공통접속과 β, 컬렉터 공통접속 방법과 차이점	11~12학년-전자회로-증폭회로
			• J-FET의 구조와 핀치오프 현상 설명	11~12학년-전자회로-증폭회로
		전계효과	• 드레인-소오스 특성과 전달특성의 표현	11~12학년-전자회로-증폭회로
		트랜지스터 (FET)	• 공핍형 MOS FET와 증진형 MOS FET의 구조에 대한 표현	11~12학년-전자회로-증폭회로
			• FET에서 드레인 전류, 전달 콘덕턴스 등의 계산	11~12학년-전자회로-증폭회로
		전압, 전류, 저항 측정	• 각종 지시계기를 사용한 전압, 전류, 저항 등의 측정	11~12학년-전기전자측정-전압, 전류 및 전력 측정
	전기	전기 전력 측정	• 직류회로에서 전압계 및 전류계법에 의한 전력 측정	11~12학년-전기전자측정-전압, 전류 및 전력 측정
	전자실험		• 교류회로에서 단상전력 및 3상전력 측정	11~12학년-전기전자측정-전압, 전류 및 전력 측정
		오실로스코프 사용법	• 오실로스코프를 사용한 전압, 주파수 등의 측정 방법	11~12학년-전기전자측정-주파수 및 파형 측정

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
		반도체 다이오드 특성실험	• 반파 및 전파 정류회로의 동작 원리와 활용	11~12학년-전자회로-직류 전원회로
			•클리퍼와 클램퍼 회로의 동작 원리와 활용	11~12학년-전자회로-직류 전원회로
		제너다이오드 특성실험	•제너다이오드를 이용한 정전압 안정화 회로의 동작 원리와 활용	11~12학년-전자회로-직류 전원회로
		트랜지스터의	• 전압 증폭기와 전류 증폭기의 직류 등가회로에서 동작점, 직류부하선 등의 표현	11~12학년-전자회로-증폭회로
			• 트랜지스터의 바이어스 안정화 원리	11~12학년-전자회로-증폭회로
			• hybrid-π 파라미터를 활용한 소신호 등가회로 표현과 해석	11~12학년-전자회로-증폭회로
		동작 특성 실험	• A급, B급, C급 전력 증폭기의 특성	11~12학년-전자회로-증폭회로
		[결임 	• 여러 전압증폭기가 연결된 다단 증폭기의 해석	11~12학년-전자회로-증폭회로
			• 차동증폭기의 동작 원리	11~12학년-전자회로-증폭회로
	전기		•되먹임 회로의 동작 원리와 해석	11~12학년-전자회로-증폭회로
	전자실험		• 각종 증폭기의 주피수 특성 해석	11~12학년-전자회로-증폭회로
		연산 증폭기의 동작 실험	• 반전 증폭기와 비반전 증폭기의 원리	11~12학년-전자회로-연산증폭기
			• 가산기와 감산기의 동작 원리	11~12학년-전자회로-연산증폭기
교과			• 적분기와 미분기의 동작 원리	11~12학년-전자회로-연산증폭기
내용학			• 저역통과 필터와 고역통과 필터의 차단 특성	11~12학년-전자회로-연산증폭기
			• 전압 비교기의 입력과 출력 동작에 대한 타이밍 도 표현	11~12학년-전자회로-연산증폭기
		전계효과트랜 지스터의 특성 실험	• J-FET와 공핍형 MOSFET의 교류 소신호 동작	11~12학년-전자회로-증폭회로
			•FET 증폭기의 동작 원리와 활용	11~12학년-전자회로-증폭회로
		발진회로 실험	• 발진회로의 종류와 동작 원리	11~12학년-전자회로-발진회로
		데이터 변환실험	• ADC와 DAC의 동작 원리와 활용	11~12학년-전자회로-신호 변환회로
	마이크로 프로세서	마이크로 프로세서	•마이크로프로세서의 기본 기능과 동작 원리	11~12학년-전자 전산 응용-마이크로프로세서
			•마이크로프로세서의 활용	11~12학년-전자 전산 응용-마이크로프로세서
			•마이크로프로세서의 하드웨어 구조 체계	11~12학년-전자 전산 응용-마이크로프로세서
			•마이크로프로세서 시스템의 메모리 공간 해석	11~12학년-전자 전산 응용-마이크로프로세서
			• 인터럽트의 구조 및 동작	11~12학년-전자 전산 응용-AVR마이크로프 로세서
			•마이크로프로세서 시스템의 해석과 설계	11~12학년-전자 전산 응용-AVR마이크로프로세서

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			• 어셈블리 디렉티브의 종류와 의미	11~12학년-시스템프로그래밍-어셈블리어
		어셈블리어	• 어셈블리어의 명령어 형식과 활용	11~12학년-시스템프로그래밍-어셈블리어
	마이크로 프로세서		• 어셈블리어 프로그램 작성 문법	11~12학년-시스템프로그래밍-어셈블리어
		C 언어	• 데이터 표현 방법	11~12학년-프로그래밍-프로그래밍 언어의 기초
			• 조건문, 반복문 등 기본적인 제어문 활용	11~12학년-프로그래밍-제어문
			• 기본적인 함수와 배열을 활용한 프로그래밍	11~12학년-프로그래밍-배열과 함수
		신호와 시스템	• 주파수와 파장의 관계	11~12학년- 통신일반- 통신신호 와 파형
			• 주파수 대역폭 및 채널 할당	11~12학년- 통신일반- 통신신호 와 파형
			• 여러가지 신호의 특성	11~12학년- 통신일반- 통신신호 와 파형
			• 신호의 크기와 데시벨에 대한 의미	11~12학년- 통신일반- 신호의 이득 과 잡음
			• 정보신호의 디지털 표현 해석	11~12학년- 통신일반- 데이터의 부호화
		아날로그 및 디지털 통신	• 아날로그 통신 시스템의 구조	11~12학년- 통신일반- 아날로그 통신방식
			• AM및 FM 통신의 원리	11~12학년- 통신일반- 아날로그 통신방식
	통신		• 고주파 회로의 종류와 특징	11~12학년- 통신일반- 아날로그 통신방식
	이론		• 디지털 변복조 과정	11~12학년- 통신일반- 디지털 통신방식
			• 다원 접속 방식 원리	11~12학년- 통신일반- 디지털 통신방식
교과		전송 방식	• 베이스밴드 전송방식 종류와 파형 표시	11~12학년- 통신일반- 디지털 통신방식
내용학			• 단방향, 반이중, 전이중 통신 방식의 차이점	11~12학년- 통신일반- 데이터 전송
			• 비트동기와 블록동기 방식 원리와 특성	11~12학년- 통신일반- 디지털 통신방식 11~12학년- 통신일반- 데이터 전송
			• 데이터 신호 속도와 전송 속도	無
			• 전송효율 이론	11~12학년- 통신일반- 디지털 통신방식
	정보 통신	정보통신 시스템	• 정보통신시스템 구성요소와 장치	11~12학년- 정보통신- 정보통신 망의 형태 11~12학년-통신일반- 데이터 통신시스템의 구성
			• 전송제어절차 단계별 역할과 기능	11~12학년- 통신일반- 데이터 통신의 전송 제어
			• HDLC(고레벨 데이터링크 제어)의 특징과 구성요소	11~12학년- 통신일반- 데이터 통신의 전송 제어
			• 오류제어방식의 원리	11~12학년- 정보통신- 통신프로토콜과 OSI 참조모델
			• 오류검출 과정	11~12학년- 정보통신- 통신프로토콜과 OSI 참조모델

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
	정보 통신	정보통신망의 활용	•네트워크의 형태별 기본구조	11~12학년- 정보통신- 정보통신 망의 형태 11~12학년- 통신일반- 데이터 통신시스템의 응용
			• 유무선 전송매체별 특징	11~12학년- 정보통신- LAN의 기술 11~12학년- 통신일반- 데이터 전송
			•네트워크 주요 장비 역할과 특징	11~12학년- 정보통신- LAN의 구성요소
			• 프로토콜 기본 요소와 기능 이해 OSI참조모델 구조	11~12학년- 정보통신- 통신프로토콜과 OSI 참조모델
			•LAN의 액세스 방식 종류별 동작순서	11~12학년- 정보통신- LAN의 기술 11~12학년- 통신일반- 데이터 통신시스템의 응용
			•TCP/IP의 개념과 원리 및 OSI 7계층 비교	11~12학년- 정보통신- 통신프로토콜과 OSI 참조모델
		(ا داداد	• IP 주소의 개념과 체제	11~12학년- 정보통신- 인터넷의 체계
		인터넷 통신	•도메인 네임 시스템의 구성방법과 동작 원리	11~12학년- 정보통신- 인터넷의 체계
		0 C	•라우팅 프로토콜의 개념과 라우팅 방법	11~12학년- 정보통신- 인터넷의 체계
			• 기본적인 HTML 태그를 이용 홈페이지 제작 및 서버 탑재 방법	11~12학년- 정보통신- 인터넷의 활용 11~12학년- 정보통신- 웹페이지 제작 및 운용
교과 내용학			• 전계의 현상 이론	無
-110-4	안테나공학 / 전자파 응용	전자파 이론	• 자계의 현상 이론	無
			• 전자유도 작용에 대한 법칙	無
			• 전자계 기초방정식 수식 적용 계산	無
			• 전자파 성질	11~12학년- 통신일반- 무선통신 11~12학년- 통신일반- 통신신호 와 파형
		안테나 이론	• 급전선의 종류와 특성	無
			• 급전선의 임피던스 정합 수식 적용 계산	無
			• 다이폴안테나 방사 이론 수식 적용 계산	11~12학년- 통신일반- 무선통신
			• 접지안테나 방사 이론 수식 적용 계산	11~12학년- 통신일반- 무선통신
			• 안테나의 종류별 특성	11~12학년- 통신일반- 무선통신
		전자파 전파	• 전자파의 발생과 방사 원리	11~12학년- 통신일반- 무선통신
			• 전자파 주파수 및 도달경로에 따른 분류	11~12학년- 통신일반- 무선통신
			• 공간파의 전파 퍼짐 특성	11~12학년- 통신일반- 무선통신
			• 전리층파의 전파 퍼짐 특성	11~12학년- 통신일반- 무선통신
			• 전자파 잡음 및 기타현상	11~12학년- 통신일반- 무선통신

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
	` 1	무선통신 시스템	• 변복조 회로 및 파형 해석	11~12학년- 통신일반- 아날로그 통신방식 11~12학년- 통신일반- 디지털 통신방식
			• 무선 송신기 구성과 동작원리	11~12학년- 통신일반- 무선통신 11~12학년- 통신시스템- AM FM 통신시스템
			• 무선 수신기 구성과 동작원리	11~12학년- 통신일반- 무선통신 11~12학년- 통신시스템- AM FM 통신시스템
			• 송신기 특성 측정시험 과정	11~12학년- 통신일반-무선통신
			• 수신기 특성 측정시험 과정	11~12학년- 통신일반-무선통신
교과 내용학		이동통신	• 이동통신 기본 구성 개념	11~12학년- 통신일반- 무선통신 11~12학년- 정보통신- 정보통신 망의 종류 11~12학년- 통신시스템- 개인 이동통신시스템
			• 이동통신의 종류별 특징	11~12학년- 통신일반- 무선통신 11~12학년- 정보통신- 정보통신 망의 종류 11~12학년- 통신시스템- 개인 이동통신시스템
			•이동통신의 셀 개념과 구성법	11~12학년- 통신일반- 무선통신 11~12학년- 정보통신- 정보통신 망의 종류 11~12학년- 통신시스템- 개인 이동통신시스템
			• 셀룰러 시스템의 동작 과정	11~12학년- 통신일반- 무선통신 11~12학년- 정보통신- 정보통신망의 종류 11~12학년- 통신시스템- 개인 이동 통신시스템
		마이크로파 통신	• 최근의 이동통신 기술	11~12학년- 통신일반- 무선통신 11~12학년- 정보통신- 정보통신망의 종류
			•마이크로파 통신시스템의 기본 구성	11~12학년- 통신일반- 무선통신
			•마이크로파용 도파관 모드	11~12학년- 통신일반- 무선통신
			•마이크로스트립 선로 구조 및 특징	11~12학년- 통신일반- 무선통신
			•마이크로파 수동소자의 종류별 특성	11~12학년- 통신일반- 무선통신
			•마이크로파 반도체소자의 종류별 특성	11~12학년- 통신일반- 무선통신