AI classical planning algorithms overview

	Graphplan	Boolean Satisf	Heuristic planning
Years of popularity*	1996-2000	1995-present	1999-present
Major concepts and approach	 In a forward phase, build a layered "planning graph" whose "time steps" capture which pairs of actions can achieve which pairs of facts; in a backward phase, search this graph starting at goals and excluding options proved to not be feasible. 	 Is good for to domain-independent planning** It converts the planning problem instance into an instance of the Boolean satisfiability problem (SAT) SAT is the problem of determining if there exists an interpretation that satisfies a given Boolean formula 	 Forward search addresses the problem heuristically by trying to find patterns (subsets of propositions) that cover the independent subproblems. Fast downward. Fast Downward (FD) is a progression planner, searching the space of world states of a planning task in the forward direction. However, the input is first translated into an alternative representation called multi-valued planning tasks, which makes many of the implicit constraints of a propositional planning task explicit.
Impact on AI world	 Due to speed problem, partial ordered approach dominated in 80's and early 90's in AI it has the disadvantage of not having an explicit representation of states in the state-transition model Graphplan algoritm works faster than the partial-order planners and after inventing it, it is became possible to use all advantages of totally ordered algorithms and have reasonable time for calulation 	The planners based on SAT win planners based on other search paradigms during win International Planning Competition (IPC) in 2006-2008	 Heuristic approach let to work even when the subproblems are not completely independent. FD heuristic function, called the causal graph heuristic, unlike traditional HSP-like heuristics doesn't ignore negative interactions of operators and provides better performance for solving AI tasks Actually this planning approach dominate in AI world: planners win IPC in 2006, 2008 (fast forward), 2008, 2011, 2014, 2016 (fast downward)
Major works and studies	 A. Blum and M. Furst, "Fast Planning Through Planning Graph Analysis", Artificial Intelligence, 90:281300 (1997) Bryce, D., & Kambhampati, S. (2007). A tutorial on planning graph - Based reachability heuristics. AI Magazine, 28(1), 47-83. 	 H. Kautz and B. Selman, Pushing the envelope: planning, propositional logic, and stochastic search, AAAI Press, 1996 Jussi Rintanen. Heuristic planning with SAT: beyond strict depthfirst search. Twenty-Third Australasian Joint Conference on Artificial Intelligence, Adelaide, December 7-10, 2010 	 Helmert, M. (2006). The fast downward planning system. JAIR, 26, 191–246. Fast Downward Aidos Jendrik Seipp and al. University of Basel Basel, Switzerland, 2016 (winner of last IPC)

^{*}According to Jorg Hoffmann Wolfgang Wahlster "AI course" 2016 and International Planning competition results **Rintanen "Planning as Satisfiability" https://users.ics.aalto.fi/rintanen/satplan.html