This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-2}{5}$$
, 3, and $\frac{7}{4}$

The solution is $20x^3 - 87x^2 + 67x + 42$, which is option B.

- A. $a \in [19, 21], b \in [7, 23], c \in [-120, -111], \text{ and } d \in [34, 44]$ $20x^3 + 17x^2 - 115x + 42$, which corresponds to multiplying out (5x - 2)(x + 3)(4x - 7).
- B. $a \in [19, 21], b \in [-89, -86], c \in [61, 71], \text{ and } d \in [34, 44]$ * $20x^3 - 87x^2 + 67x + 42$, which is the correct option.
- C. $a \in [19, 21], b \in [87, 90], c \in [61, 71], \text{ and } d \in [-46, -36]$ $20x^3 + 87x^2 + 67x - 42$, which corresponds to multiplying out (5x - 2)(x + 3)(4x + 7).
- D. $a \in [19, 21], b \in [-89, -86], c \in [61, 71],$ and $d \in [-46, -36]$ $20x^3 - 87x^2 + 67x - 42$, which corresponds to multiplying everything correctly except the constant term.
- E. $a \in [19, 21], b \in [-104, -101], c \in [136, 145], \text{ and } d \in [-46, -36]$ $20x^3 - 103x^2 + 143x - 42$, which corresponds to multiplying out (5x - 2)(x - 3)(4x - 7).

General Comment: To construct the lowest-degree polynomial, you want to multiply out (5x + 2)(x - 3)(4x - 7)

2. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$4-4i$$
 and 1

The solution is $x^3 - 9x^2 + 40x - 32$, which is option D.

- A. $b \in [9, 11], c \in [39, 42]$, and $d \in [29, 35]$ $x^3 + 9x^2 + 40x + 32$, which corresponds to multiplying out (x - (4 - 4i))(x - (4 + 4i))(x + 1).
- B. $b \in [1, 6], c \in [-8, -1], \text{ and } d \in [0, 5]$ $x^3 + x^2 - 5x + 4$, which corresponds to multiplying out (x - 4)(x - 1).
- C. $b \in [1, 6], c \in [3, 11]$, and $d \in [-4, 3]$ $x^3 + x^2 + 3x - 4$, which corresponds to multiplying out (x + 4)(x - 1).
- D. $b \in [-12, -6], c \in [39, 42],$ and $d \in [-35, -30]$ $* x^3 9x^2 + 40x 32,$ which is the correct option.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (4 - 4i))(x - (4 + 4i))(x - (1)).

3. Which of the following equations *could* be of the graph presented below?

The solution is $6(x+2)^8(x-1)^6(x+3)^{10}$, which is option A.

A.
$$6(x+2)^8(x-1)^6(x+3)^{10}$$

* This is the correct option.

B.
$$2(x+2)^{10}(x-1)^4(x+3)^5$$

The factor (x+3) should have an even power.

C.
$$16(x+2)^8(x-1)^9(x+3)^7$$

The factors (x-1) and (x+3) should both have even powers.

D.
$$-12(x+2)^6(x-1)^6(x+3)^6$$

This corresponds to the leading coefficient being the opposite value than it should be.

E.
$$-12(x+2)^{10}(x-1)^{10}(x+3)^{11}$$

The factor (x + 3) should have an even power and the leading coefficient should be the opposite sign.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

4. Describe the zero behavior of the zero x = -6 of the polynomial below.

$$f(x) = 5(x-8)^9(x+8)^6(x-6)^{14}(x+6)^9$$

The solution is the graph below, which is option A.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

5. Describe the zero behavior of the zero x=2 of the polynomial below.

$$f(x) = 3(x-2)^3(x+2)^8(x+5)^6(x-5)^7$$

The solution is the graph below, which is option A.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

6. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

5+3i and 1

The solution is $x^3 - 11x^2 + 44x - 34$, which is option D.

- A. $b \in [7, 14], c \in [43.1, 45.1]$, and $d \in [32.85, 34.42]$
 - $x^3 + 11x^2 + 44x + 34$, which corresponds to multiplying out (x (5+3i))(x (5-3i))(x+1).
- B. $b \in [-4, 2], c \in [-6.2, -5.8], \text{ and } d \in [4.36, 5.61]$

$$x^3 + x^2 - 6x + 5$$
, which corresponds to multiplying out $(x - 5)(x - 1)$.

C. $b \in [-4, 2], c \in [-4.9, -1.2], \text{ and } d \in [1.56, 3.56]$

$$x^3 + x^2 - 4x + 3$$
, which corresponds to multiplying out $(x - 3)(x - 1)$.

- D. $b \in [-13, -2], c \in [43.1, 45.1], \text{ and } d \in [-35.09, -33.44]$
 - * $x^3 11x^2 + 44x 34$, which is the correct option.
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (5 + 3i))(x - (5 - 3i))(x - (1)).

7. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{2}{3}, \frac{-3}{2}$$
, and $\frac{-5}{3}$

The solution is $18x^3 + 45x^2 + 7x - 30$, which is option A.

- A. $a \in [18, 20], b \in [44, 49], c \in [4, 9], \text{ and } d \in [-33, -23]$
 - * $18x^3 + 45x^2 + 7x 30$, which is the correct option.
- B. $a \in [18, 20], b \in [10, 22], c \in [-45, -37], \text{ and } d \in [-33, -23]$

$$18x^3 + 15x^2 - 43x - 30$$
, which corresponds to multiplying out $(3x+2)(2x-3)(3x+5)$.

C. $a \in [18, 20], b \in [44, 49], c \in [4, 9], \text{ and } d \in [22, 35]$

 $18x^3 + 45x^2 + 7x + 30$, which corresponds to multiplying everything correctly except the constant term.

D. $a \in [18, 20], b \in [-52, -44], c \in [4, 9], \text{ and } d \in [22, 35]$

$$18x^3 - 45x^2 + 7x + 30$$
, which corresponds to multiplying out $(3x+2)(2x-3)(3x-5)$.

E. $a \in [18, 20], b \in [69, 80], c \in [79, 85], \text{ and } d \in [22, 35]$

$$18x^3 + 69x^2 + 83x + 30$$
, which corresponds to multiplying out $(3x + 2)(2x + 3)(3x + 5)$.

General Comment: To construct the lowest-degree polynomial, you want to multiply out (3x - 2)(2x + 3)(3x + 5)

8. Describe the end behavior of the polynomial below.

$$f(x) = 7(x-2)^4(x+2)^7(x+7)^4(x-7)^4$$

The solution is the graph below, which is option D.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

9. Which of the following equations *could* be of the graph presented below?

The solution is $-2(x-1)^4(x-2)^5(x-3)^{11}$, which is option B.

A.
$$10(x-1)^6(x-2)^{11}(x-3)^5$$

This corresponds to the leading coefficient being the opposite value than it should be.

B.
$$-2(x-1)^4(x-2)^5(x-3)^{11}$$

* This is the correct option.

C.
$$-10(x-1)^8(x-2)^6(x-3)^9$$

The factor (x-2) should have an odd power.

D.
$$-18(x-1)^7(x-2)^{10}(x-3)^7$$

The factor 1 should have an even power and the factor 2 should have an odd power.

E.
$$19(x-1)^{10}(x-2)^7(x-3)^8$$

The factor (x-3) should have an odd power and the leading coefficient should be the opposite sign.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

10. Describe the end behavior of the polynomial below.

$$f(x) = 6(x-3)^5(x+3)^8(x+6)^2(x-6)^2$$

The solution is the graph below, which is option D.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.