Una Energía Mecánica Alternativa

Antonio A. Blatter

Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires
Argentina

Este trabajo presenta una energía mecánica alternativa que es invariante bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Introducción

El trabajo W realizado por las fuerzas que actúan sobre un sistema de N partículas, la energía cinética K del sistema de partículas, la energía potencial U del sistema de partículas y la energía mecánica E del sistema de partículas, están dados por:

$$\begin{split} \mathbf{W} &\doteq \sum_{i}^{\mathbf{N}} \left[\int_{1}^{2} \mathbf{F}_{i} \cdot d(\vec{r}_{i} - \vec{R}_{cm}) + \Delta \sqrt{1} \mathbf{F}_{i} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] = \Delta \mathbf{K} \\ \Delta \mathbf{K} &\doteq \sum_{i}^{\mathbf{N}} \Delta \sqrt{1} \mathbf{m}_{i} \left[(\vec{v}_{i} - \vec{V}_{cm})^{2} + (\vec{a}_{i} - \vec{A}_{cm}) \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] \\ \Delta \mathbf{U} &\doteq -\sum_{i}^{\mathbf{N}} \left[\int_{1}^{2} \mathbf{F}_{i} \cdot d(\vec{r}_{i} - \vec{R}_{cm}) + \Delta \sqrt{1} \mathbf{F}_{i} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right] \\ \mathbf{E} &\doteq \mathbf{K} + \mathbf{U} \end{split}$$

donde \vec{r}_i , \vec{v}_i y \vec{a}_i son la posición, la velocidad y la aceleración de la *i*-ésima partícula, \vec{R}_{cm} , \vec{V}_{cm} y \vec{A}_{cm} son la posición, la velocidad y la aceleración del centro de masa del sistema de partículas, m_i es la masa de la *i*-ésima partícula y \mathbf{F}_i es la fuerza neta que actúa sobre la *i*-ésima partícula.

Principio

La energía mecánica E de un sistema de N partículas permanece constante si el sistema está sujeto solamente a fuerzas conservativas.

$$E \doteq K + U = constante$$

donde K es la energía cinética del sistema de partículas y U es la energía potencial del sistema de partículas.

Relaciones

El trabajo W, la energía cinética K y la energía potencial U de un sistema de N partículas (de masa M) pueden ser también expresados como sigue:

$$\label{eq:W} {\bf W} \ = \ \textstyle \sum_{j>i}^{{\bf N}} \, m_i \, m_j \, {\bf M}^{-1} \left[\, \int_{{\bf 1}}^2 \big(\frac{{\bf F}_i}{m_i} - \frac{{\bf F}_j}{m_j} \big) \cdot d(\vec{r}_i - \vec{r}_j) + \Delta \, 1 \! /_{\! 2} \, \big(\frac{{\bf F}_i}{m_i} - \frac{{\bf F}_j}{m_j} \big) \cdot (\vec{r}_i - \vec{r}_j) \, \right] \ = \ \Delta \, {\bf K}$$

$$\Delta\, {\rm K} \ = \ \sum_{j>i}^{\rm N} \, \Delta\, 1\!/\!/_2 \, m_i \, m_j \, {\rm M}^{-1} \big[\, (\vec{v}_i - \vec{v}_j)^2 + (\vec{a}_i - \vec{a}_j) \cdot (\vec{r}_i - \vec{r}_j) \, \big]$$

$$\Delta\,\, \mathrm{U} \,\,=\,\, -\, \textstyle \sum_{j>i}^{\scriptscriptstyle \rm N} \, m_i \, m_j \, \mathrm{M}^{\scriptscriptstyle -1} \big[\, \textstyle \int_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} \, (\frac{\mathbf{F}_i}{m_i} - \frac{\mathbf{F}_j}{m_j}) \cdot d(\vec{r}_i - \vec{r}_j) \, + \, \Delta\, 1 \! /_{\! 2} \, (\frac{\mathbf{F}_i}{m_i} - \frac{\mathbf{F}_j}{m_j}) \cdot (\vec{r}_i - \vec{r}_j) \, \big]$$

Si la posición radial r_{ij} , la velocidad radial \dot{r}_{ij} y la aceleración radial \ddot{r}_{ij} de un par de partículas ij, están dadas por: $r_{ij} \doteq |\vec{r}_i - \vec{r}_j|$, $\dot{r}_{ij} \doteq d(r_{ij})/dt$ y $\ddot{r}_{ij} \doteq d^2(r_{ij})/dt^2$ entonces la energía cinética K de un sistema de N partículas puede ser también expresada como sigue:

$$\Delta \, \mathrm{K} \ = \ \sum_{j>i}^{\scriptscriptstyle \mathrm{N}} \, \Delta \, {}^{1}\!/_{\!2} \, m_{i} \, m_{j} \, \mathrm{M}^{\scriptscriptstyle -1} \big[\, \dot{r}_{ij} \, \dot{r}_{ij} + \ddot{r}_{ij} \, r_{ij} \, \big]$$

Si la posición escalar τ_{ij} , la velocidad escalar $\dot{\tau}_{ij}$ y la aceleración escalar $\ddot{\tau}_{ij}$ de un par de partículas ij, están dadas por: $\tau_{ij} \doteq 1/2 (\vec{r}_i - \vec{r}_j) \cdot (\vec{r}_i - \vec{r}_j)$, $\dot{\tau}_{ij} \doteq d(\tau_{ij})/dt$ y $\ddot{\tau}_{ij} \doteq d^2(\tau_{ij})/dt^2$ entonces la energía cinética K de un sistema de N partículas puede ser también expresada como sigue:

$$\Delta \, {
m K} \; = \; \sum_{j>i}^{{
m N}} \, \Delta \, {}^{1}\!/_{\!2} \, m_{i} \, m_{j} \, {
m M}^{{}_{-1}} \left[\, \ddot{\tau}_{ij} \,
ight]$$

El trabajo W y la energía potencial U de un sistema aislado de N partículas cuyas fuerzas internas obedecen la tercera ley de Newton en su forma débil se reducen a:

$$\mathbf{W} = \sum_{i}^{\mathbf{N}} \left[\int_{1}^{2} \mathbf{F}_{i} \cdot d\vec{r}_{i} + \Delta \frac{1}{2} \mathbf{F}_{i} \cdot \vec{r}_{i} \right] = \Delta \mathbf{K}$$

$$\Delta U = -\sum_{i}^{N} \left[\int_{1}^{2} \mathbf{F}_{i} \cdot d\vec{r}_{i} + \Delta \frac{1}{2} \mathbf{F}_{i} \cdot \vec{r}_{i} \right]$$

Observaciones

Todas las ecuaciones de este trabajo pueden ser aplicadas en cualquier sistema de referencia inercial o no inercial.

Los sistemas de referencia inerciales y no inerciales no deben introducir las fuerzas ficticias sobre \mathbf{F}_i ni sobre \mathbf{F}_j .

En este trabajo, las magnitudes [$m, \vec{r}_{ij}, r_{ij}, \dot{r}_{ij}, \dot{r}_{ij}, \dot{\tau}_{ij}, \dot{\tau}_{ij}, M, \mathbf{F}, W, K, U y E$] son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Anexo

Si se considera un sistema cualquiera de N partículas entonces entre las siguientes magnitudes cinemáticas del sistema se dan siempre estas relaciones:

 \mathbf{r}_i , \mathbf{v}_i y \mathbf{a}_i son la posición, la velocidad y la aceleración de la *i*-ésima partícula respecto a un sistema de referencia inercial S.

 \mathbf{R}_{cm} , \mathbf{V}_{cm} y \mathbf{A}_{cm} son la posición, la velocidad y la aceleración del centro de masa del sistema de partículas respecto al sistema de referencia inercial S.

 \vec{r}_i , \vec{v}_i y \vec{a}_i son la posición, la velocidad y la aceleración de la *i*-ésima partícula respecto a un sistema de referencia inercial o no inercial S'.

 \vec{R}_{cm} , \vec{V}_{cm} y \vec{A}_{cm} son la posición, la velocidad y la aceleración del centro de masa del sistema de partículas respecto al sistema de referencia inercial o no inercial S'.

 $\vec{\omega}$ y $\vec{\alpha}$ son la velocidad angular y la aceleración angular del sistema de referencia inercial o no inercial S' respecto al sistema de referencia inercial S.

$$(\mathbf{r}_{i} - \mathbf{R}_{cm}) = (\vec{r}_{i} - \vec{R}_{cm})$$

$$(\mathbf{v}_{i} - \mathbf{V}_{cm}) \cdot (\mathbf{v}_{i} - \mathbf{V}_{cm}) = \left[(\vec{v}_{i} - \vec{V}_{cm}) + \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[(\vec{v}_{i} - \vec{V}_{cm}) + \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] =$$

$$(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) + 2 \cdot (\vec{v}_{i} - \vec{V}_{cm}) \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] =$$

$$(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) - 2 \cdot (\vec{r}_{i} - \vec{R}_{cm}) \cdot \left[\vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] =$$

$$(\vec{v}_{i} - \vec{V}_{cm}) \cdot (\vec{v}_{i} - \vec{V}_{cm}) - \left[2 \cdot \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \cdot \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] =$$

$$(\vec{v}_{i} - \vec{V}_{cm})^{2} - \left[2 \cdot \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right]^{2}$$

$$(\mathbf{a}_{i} - \mathbf{A}_{cm}) \cdot (\mathbf{r}_{i} - \mathbf{R}_{cm}) = \left((\vec{a}_{i} - \vec{A}_{cm}) + 2 \cdot \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) + \vec{\omega} \times (\vec{v}_{i} - \vec{R}_{cm}) \right] +$$

$$\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) = (\vec{a}_{i} - \vec{A}_{cm}) \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left[2 \cdot \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times \left[\vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right] \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left\{ \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times \left[\vec{v} \times (\vec{v}_{i} - \vec{V}_{cm}) \right] \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left\{ \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left\{ \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) + \left\{ \vec{\omega} \times (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm})$$

$$\left\{ \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right\} \cdot (\vec{r}_{i} - \vec{R}_{cm}) +$$

$$\left\{ \vec{\omega} \times (\vec{v}_{i} - \vec{V}_{cm}) \right\} \cdot (\vec$$