RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMI NAGAR, THANDALAM – 602 105

CD19P02 FUNDAMENTALS OF IMAGE PROCESSING

Laboratory Manual Note Book

Name :
Year / Branch / Section :
Register No.:
Semester:
Academic Year:

List of Experiments				
1.	Practice of important image processing commands – imread(), imwrite(), imshow(), plot() etc.			
2.	Program to perform Arithmetic and logical operations			
3.	Program to implement sets operations, local averaging using neighborhood processing.			
4.	Program to implement Convolution operation.			
5.	Program to implement Histogram Equalization.			
6.	Program to implement Mean Filter.			
7.	Program to implement Order Statistic Filters			
8.	Program to remove various types of noise in an image			
9.	Program to implement Sobel operator.			

INDEX

EXP.No	DATE	NAME OF THE EXPERIMENT	SIGN
1		Practice of important image processing commands – imread(), imwrite(), imshow(), plot() etc.	
2a		Program to perform Arithmetic and logical operations	
2b		Program to perform logical operations	
3a		Program to implement sets operations using neighborhood processing.	
3b		Program to implement local averaging using neighborhood processing.	
4		Program to implement Convolution operation.	
5		Program to implement Histogram Equalization.	
6		Program to implement Mean Filter.	
7		Program to implement Order Statistic Filters	
8		Program to remove various types of noise in an image	
9		Program to implement Sobel operator.	
10			

INTRODUCTION TO MATLAB

MATLAB stands for MATrix LABoratory and the software is built up around vectors and matrices. It is a technical computing environment for high performance numeric computation and visualization. It integrates numerical analysis, matrix computation, signal processing and graphics in an easy-to-use environment, where problems and solutions are expressed just as they are written mathematically, without traditional programming. MATLAB is an interactive system whose basic data element is a matrix that does not require dimensioning. It enables us to solve many numerical problems in a fraction of the time that it would take to write a program and execute in a language such as FORTRAN, BASIC, or C. It also features a family of application specific solutions, called toolboxes. Areas in which toolboxes are available include signal processing, image processing, control systems design, dynamic systems simulation, systems identification, neural networks, wavelength communication and others. It can handle linear, non- linear, continuous-time, discretetime, multivariable and multirate systems.

How to start MATLAB

Choose the submenu "Programs" from the "Start" menu. From the "Programs" menu, open the "MATLAB" submenu. From the "MATLAB" submenu, choose "MATLAB".

Procedure

- 1. Open Matlab.
- 2. File New Script.
- 3. Type the program in untitled window
- 4. File Save type filename.m in Matlab workspace path.
- 5. Debug Run.
- 6. Output will be displayed at Figure dialog box.

Library Functions

clc:

Clear command window

Clears the command window and homes the cursor.

clear all:

Removes all variables from the workspace.

close all:

Closes all the open figure windows.

exp:

 $Y = \exp(X)$ returns the exponential e x for each element in array X.

linespace:

y = linspace(x1,x2) returns a row vector of 100 evenly spaced points between x1 and x2.

rand

X = rand returns a single uniformly distributed random number in the interval (0,1).

ones:

X = ones(n) returns an n-by-n matrix of ones.

zeros:

X = zeros(n) returns an n-by-n matrix of zeros.

plot:

plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X.

subplot:

subplot(m,n,p) divides the current figure into an m-by-n grid and creates an axes for a subplot in the position specified by p.

stem

stem(Y) plots the data sequence, Y, as stems that extend from a baseline along the x-axis. The data values are indicated by circles terminating each stem.

title

title(str) adds the title consisting of a string, str, at the top and in the center of the current axes.

xlabel:

xlabel(str) labels the x-axis of the current axes with the text specified by str.

vlabel:

imread	Read image from graphics file
imwrite	Write image to graphics file
imfinfo	Information about graphics file
imshow	Display Image
Implay	Play movies, videos or image
	sequences
gray2ind	Convert grayscale to indexed
9.5,	image
ind2gray	Convert indexed image to
	grayscale image
mat2gray	Convert matrix to grayscale
	image
rgb2gray	Convert RGB image or colormap
	to grayscale
imbinarize	Binarize image by thresholding
adapthresh	Adaptive image threshold using
	local first-order statistics
otsuthresh	Global histogram threshold using
	Otsu's method
im2uint16	Convert image to 16-bit unsigned
	integers
im2uint8	Convert image to 8-bit unsigned
	integers
imcrop	Crop image
imresize	Resize image
imrotate	Rotate image
imadjust	Adjust image intensity values or
	colormap
imcontrast	Adjust Contrast tool
imsharpen	Sharpen image using unsharp
	masking
histeq	Enhance contrast using
	histogram equalization
adapthisteq	Contrast-limited adaptive
See le Sedana e de Se	histogram equalization (CLAHE)
imhistmatch	Adjust histogram of image to
	match N-bin histogram of
impoiso	reference image
imnoise	Add noise to image
imfilter	N-D filtering of multidimensional
fanacial	images Create prodefined 2 D filter
fspecial	Create predefined 2-D filter

weiner2	2-D adaptive noise-removal
	filtering
medfilt2	2-D median filtering
ordfilt2	2-D order-statistic filtering
imfill	Fill image regions and holes
imclose	Morphologically close image
imdilate	Dilate image
imerode	Erode image
imopen	Morphologically open image
imreconstruct	Morphological reconstruction
watershed	Watershed transform
dct2	2-D discrete cosine transform
hough	Hough transform
graydist	Gray-weighted distance transform
	of grayscale image
fft2	2-D fast Fourier transform
ifftshift	Inverse FFT shift
imcomplement	Complement image
immultiply	Multiply two images or multiply
	image by constant
imsubtract	Subtract one image from another
	or subtract constant from image
imdivide	Divide one image into another or
	divide image by constant
imadd	Add two images or add constant
	to image

Ex.No: 1 IMPLEMENTATION OF IMAGE PROCESSING COMMANDS

Date:

Aim:

To Perform important image processing commands using Matlab.

Software Used:

MATLAB

Program: (1A)

clear

close all

clc

I = imread('ex 1 imge.jpg');

imshow(I);

Output:

Program:(1B)

```
clc;
```

clear all;

close all;

subplot(2,2,1), imshow('chocolates.jpg'),title('chocolates');

subplot(2,2,2), imshow('friends.jpg'),title('frirnds');

subplot(2,2,3), imshow('cat.jpg'),title('cat');

subplot(2,2,4), imshow('tom&jerry.gif'),title('tom & jerry');

impixelinfo;

imageinfo('chocolates.jpg');

```
imageinfo('friend.jpg');
imageinfo('cat.jpg');
imageinfo('tom&jerry.gif');
```


Program: (1C)

clc; clear all; close all; A = rand(150); imwrite(A,"fun.png"); imshow('fun.png')

Output:

Program: (1D)

clc;
clear all;
close all;
load earth.mat
newmap = copper(81);
imwrite(X,newmap,'earth.png');
imshow('earth.png');

Output:

Result:

The important image commands have been displayed and studied

Ex.No: 2A IMPLEMENTATION OF ARITHMETIC OPERATIONS

Date:

Aim:

To implement arithmetic operations of an image using Matlab.

Software Used:

MATLAB

Program: (A)

clc;
close all;
clear all;
I = imread('rabbit2.jpg');
J = imread('rabbit.jpg');
K = imadd(I, J);
figure;imshow(I);title('input image 1');
figure;imshow(J);title('input image 2');
figure;imshow(K);title('Output image');
subplot(2,2,1);imshow(I);
subplot(2,2,2);imshow(J);

Output:

subplot(2,2,3);imshow(K);

Program: (B)

```
close all;
clear;
I = imread("bear.jpg");
background = imopen(I,strel('disk',15));
Ip = imsubtract(I,background);
imshow(Ip,[]), title('Difference Image');
Iq = imsubtract(I,50);
figure
subplot(1,2,1), imshow(I), title('Original Image');
subplot(1,2,2), imshow(Iq), title('Subtracted Image');
```

Output:

Program: (C)

clc;

close all;

clear all;

I = imread('Puppy.jpg');

I16 = uint16(I);

J = immultiply(116,116);

imshow(I), title ('input image'), figure, imshow(J), title ('multiplied image');

Output:

Program: (D)

clc;

clear all;

close all;

I = imread('babydragon.jpg');

J = imdivide(I,2);

subplot(1,2,1), imshow(I), title('Input Image');

subplot(1,2,2), imshow(J), title('Output Image');

Input Image

Output Image

Result:

Thus the arithmetic operations of an image have been implemented using MATLAB.

Ex.No: 2B IMPLEMENTATION OF LOGICAL OPERATIONS

Date:

Aim:

To implement logical operations of an image using Matlab.

Software Used:

MATLAB

Program: (AND Operation)

```
imageSize = [200, 200];
i = zeros(imageSize);
rowStart = 100;
rowEnd = 150;
colStart = 50;
colEnd = 80;
i(rowStart:rowEnd, colStart:colEnd) = 1;
imageSize = [200, 200];
j = ones(imageSize);
resultImage = i & j;
subplot(1, 3, 1), imshow(i), title('Image 1');
subplot(1, 3, 2), imshow(j), title('Image 2');
subplot(1, 3, 3), imshow(resultImage), title('Output Image');
```

Output:

Program: (OR operation)

```
imageSize = [200, 200];
i = zeros(imageSize);
rowStart = 80;
rowEnd = 120;
colStart = 50;
colEnd = 120;
```

```
i(rowStart:rowEnd, colStart:colEnd) = 1;
imageSize = [200, 200];
j = ones(imageSize);
resultImage = i | j;
subplot(1, 3, 1), imshow(i), title('Image 1');
subplot(1, 3, 2), imshow(j), title('Image 2');
subplot(1, 3, 3), imshow(resultImage), title('Output Image');
```


Program: (NOT Operation)

```
imageSize = [200, 200];
i = zeros(imageSize);
rowStart = 90;
rowEnd = 110;
colStart = 50;
colEnd = 140;
i(rowStart:rowEnd, colStart:colEnd) = 1;
resultImage = ~i;
subplot(2, 2, 1), imshow(i), title('Input Image ');
subplot(2, 2, 2), imshow(resultImage), title('Output Image');
```

Output:

Program: (XOR Operation)

```
SSS
imageSize = [200, 200];
i = zeros(imageSize);
rowStart = 20;
rowEnd = 100;
colStart = 40;
colEnd = 120;
i(rowStart:rowEnd, colStart:colEnd) = 1;
imageSize = [200, 200];
j = ones(imageSize);
resultImage = xor(i,j);
subplot(1, 3, 1), imshow(i), title('Image 1');
subplot(1, 3, 2), imshow(j), title('Image 2');
subplot(1, 3, 3), imshow(resultImage), title('Output Image');
```

Output:

Result:

Thus the logical operations of an image have been implemented using MATLAB.

Ex.No: 3A IMPLEMENTATION OF SET OPERATIONS

Date:

Aim:

To implement Set operations of an image using Matlab.

Software Used:

MATLAB

Program:

```
A = imread('images (1).jpg');
imageB = imread('duck.jpg');
imageA = imresize(A, [225,225]);
if ~isequal(size(imageA), size(imageB))
error('Input images must have the same dimensions.');
end
unionImage = max(imageA, imageB);
intersectionImage = min(imageA, imageB);
complementImageA = 255 - imageA;
differenceImage = abs(imageA - imageB);
subplot(2, 3, 1);
imshow(imageA);
title('Image A');
subplot(2, 3, 2);
imshow(imageB);
title('Image B');
subplot(2, 3, 3);
imshow(unionImage);
title('Union (Max)');
subplot(2, 3, 4);
imshow(intersectionImage);
title('Intersection (Min)');
subplot(2, 3, 5);
imshow(complementImageA);
title('Complement of A');
subplot(2, 3, 6);
imshow(differenceImage);
title('Difference');
imwrite(unionImage, 'union_image.jpg');
imwrite(intersectionImage, 'intersection_image.jpg');
imwrite(complementImageA, 'complement imageA.jpg');
imwrite(differenceImage, 'difference image.jpg');
disp('Set operation images saved.');
```


Intersection (Min)

Result:

Thus, the set operations of an image have been implemented using MATLAB.

Ex.No: 3B IMPLEMENTATION OF LOCAL AVERAGING USING NEIGHBORHOOD PROCESSING

Date:

Aim:

To implement local averaging using neighborhood processing in an image using Matlab.

Software Used:

MATLAB

Program:

```
inputImage = imread('elephant.jpg');
path
neighborhoodSize = 3;
filter = fspecial('average', neighborhoodSize);
averagedImage = imfilter(inputImage, filter);
subplot(1, 2, 1);
imshow(inputImage);
title('Original Image');
subplot(1, 2, 2);
imshow(averagedImage);
title('Averaged Image');
imwrite(averagedImage, 'averaged_image.jpg');
disp('Averaged image saved as "averaged_image.jpg&quot');
```

Output:

Result:

Thus, the local averaging using neighborhoods processing of an image have been implemented using MATLAB.

Ex.No: 4 IMPLEMENTATION OF CONVOLUTION OPERATION

Date:

Aim:

To implement Convolution operation of an image using Matlab.

Software Used:

MATLAB

Program:

```
clc;
clear all;
close all;
a=imread('fox.jpg');
subplot(2,4,1);
imshow(a);
title('Original Image');
b=rgb2gray(a);
subplot(2,4,2);
imshow(b);
title('Gray Scale Image');
c=imnoise(b,'salt & pepper');
subplot(2,4,6);
imshow(c);
title('Salt and Pepper Noise');
h1=1/9*ones(3,3);
c1=conv2(c,h1,'same');
subplot(2,4,3);
imshow(uint8(c1));
title('3x3 Smoothing');
h2=1/25*ones(5,5);
c2=conv2(c,h2,'same');
subplot(2,4,7);
imshow(uint8(c2));
title('5x5 Smoothing');
```


Gray Scale Image

3x3 Smoothing

Salt and Pepper Noise 5x5 Smoothing

Result:

Thus, the convolution operations of an image have been implemented using MATLAB.

Ex.No: 5 IMPLEMENTATION OF HISTOGRAM EQUALIZATION

Date:

Aim:

To implement Histogram equalization of an image using Matlab.

Software Used:

MATLAB

Program:

```
clc;
clear all;
close all;
a= imread('google.jpg');
subplot(4,2,1);
imshow(a);
title('original image');
b=rgb2gray(a);
subplot(4,2,3);
imshow(b);
title('gray scale image');
subplot(4,2,4);
imhist(b);
title('histogram');
subplot(4,2,5);
c=histeq(b);
imshow(c);
title('histogram equalisation image');
subplot(4,2,6);
imhist(c);
title('histogram equalisation');
subplot(4,2,7);
f=adapthisteq(b);
imshow(f);
title('adaptive histogram image');
subplot(4,2,8);
imhist(f);
title('adaptive histogram');
```


Result:

Thus, the Histogram equalization of an image have been implemented using MATLAB.

Ex.No: 5A IMPLEMENTATION OF CORRELATION BETWEEN THE VISUAL QUANTITY OF AN IMAGE

Date:

Aim:

To study the correlation between the visual quality of an image with its histogram.

Software Used:

MATLAB

Program:

```
clc;
clear;
close;
img= imread ('color.jpg');
img=rgb2gray(img);
[ count , cells ]= imhist (img) ;
lheq = histeq(img);
[count1,cells1] = imhist (lheq);
corrbsameimg = corr2(img,lheq)
disp(corrbsameimg);
x = x corr (count, count);
x1 = xcorr (count, count1);
subplot(2,1,1);
plot(x);
title('correlation b/w histograms of original image');
subplot(2,1,2);
plot(x1)
title('correlation b/w histogram of original and equalized image')
```


Result:

Thus, the correlation between visual quantity of an image have been implemented using MATLAB.

Ex.No: 6 IMPLEMENTATION OF MEAN FILTER

Date:

Aim:

To implement mean filter in an image reduce noise in digital images using Matlab.

Software Used:

MATLAB

```
Program:
```

```
clc;
close all;
clear all;
inputImage = imread('bird.jfif');
filterSize = 5;
paddedImage = padarray(inputImage, [filterSize, filterSize], 'replicate');
outputImage = zeros(size(inputImage));
for i = 1:size(inputImage, 1)
for j = 1:size(inputImage, 2)
neighborhood = paddedImage(i:i+filterSize-1, j:j+filterSize-1);
meanValue = mean(neighborhood(:));
outputImage(i, j) = meanValue;
end
end
subplot(1, 2, 1);
imshow(inputImage);
title('Original Image');
subplot(1, 2, 2);
imshow(uint8(outputImage));
title('Mean Filtered Image');
```

Output:

Result:

The noise in an image is reduced using a mean filter, and it has been implemented using MATLAB.

Ex.No: 7 IMPLEMENTATION OF ORDER STATISTICS FILTERS

Date:

Aim:

To implement Order Statistics filters in an image using Matlab.

Software Used:

MATLAB

Program:

```
clc;
clear all;
close all;
b = imread('mush.jpg');
subplot(2,3,1);
imshow(b);
title('Original Image');
a=rgb2gray(b);
a = im2double(a);
a = imnoise(a,'salt & pepper',0.02);
subplot(2,3,2);
imshow(a);
title('Noise Image');
I = medfilt2(a);
subplot(2,3,3);
imshow(I);
title('Median filtered Image');
x=rand(size(a));
a(x(:) < 0.05) = 0;
max_{lmg} = ordfilt2(a,9,ones(3,3));
subplot(2,3,4);
imshow(max_lmg);
title('Maximum filtered Image');
a(x(:) < 0.95) = 255;
min_lmg = ordfilt2(a,1,ones(3,3));
subplot(2,3,5);
imshow(min_Img);
```

title('Minimum filtered Image');

Original Image

Noise Image

Median filtered Image

Maximum filtered Im**⊠ige**imum filtered Image

Result:

The different Order Statistics filters in an image have been implemented using MATLAB.

Ex.No: 8 REMOVE VARIOUS TYPES OF NOISE IN AN IMAGE

Date:

Aim:

To Remove Various types of Noise in an Image an image using Matlab.

Software Used:

MATLAB

Program: (Salt and Pepper Noise)

```
clc;
clear all;
close all;
I = imread('apple.jpeg');
J = imnoise(I,'salt & pepper',0.02);
subplot(2,3,1);
imshow(I)
title('Original Image');
subplot(2,3,2)
imshow(J)
title('Noisy Image');
Kmedian = medfilt2(J);
subplot(2,3,3);
imshow(Kmedian);
title('Noise removed Image');
```

Output:

Original Image

Noisy Image

Noise removed Image

Program:(Gaussian Noise)

```
clc;
close all;
clear all;
RGB = imread('kutty fox.jpg');
I = im2gray(RGB);
J = imnoise(I,'gaussian',0,0.025);
K = wiener2(J,[5 5]);
subplot(2,3,1);
imshow(I)
title('Original Image');
subplot(2,3,2);
imshow(J)
```

```
title('Added Gaussian Noise');
subplot(2,3,3);
imshow(K);
title(' Wiener Filtered Image');
```

Original Image Added Gaussian NoisWiener Filtered Image

Program: (Rayleigh Noise)

```
clc;
close all;
clear all;
RGB = imread('saturn.jpg');
I = im2gray(RGB);
rayleighNoise = raylrnd(0.05, size(I));
J = im2double(I) + rayleighNoise;
K = wiener2(J, [5 5]);
subplot(2,3,1);
imshow(I)
title('Original Image');
subplot(2,3,2);
imshow(J)
title('Added Rayleigh Noise');
subplot(2,3,3);
imshow(K);
title('Wiener Filtered Image');
```

Output:

Original Image Added Rayleigh NoisWiener Filtered Image

Program:(Erlang Noise)

```
clc;
close all;
clear all;
H = imread('kutty cat.jfif');
I=im2gray(H);
scale = 10;
shape= 5;
sizeSignal = size(I);
erlangNoise = scale*gamrnd(shape, 1, sizeSignal);
noisy = double(I) + erlangNoise;
noisy = min(max(noisy, 0), 255);
noisy = uint8(noisy);
denoised=medfilt2(noisy);
figure;
subplot(2, 3, 1);
imshow(I);
title('Input Image');
subplot(2, 3, 2);
imshow(noisy);
title('Noisy Image');
subplot(2, 3, 3);
imshow(denoised);
title('Denoised Image');
```

Output:

clc;

Program:(Exponential Noise)

```
close all;
clear all;
H = imread('boo.jpg');
I=im2gray(H);
lambda = 0.1;
sizeSignal = size(I);
exponentialNoise = -log(1 - rand(sizeSignal)) / lambda;
noisy = double(I) + exponentialNoise;
noisy = min(max(noisy, 0), 255);
noisy = uint8(noisy);
denoised=medfilt2(noisy);
figure;
subplot(1, 2, 1);
imshow(noisy);
title('Noisy Image');
subplot(1, 2, 2);
imshow(denoised);
title('Denoised Image');
```

Noisy Image

Denoised Image

Program:(Uniform Noise)

```
H = imread('kutty panda.jpg');
I=im2gray(H);
minValue = 0;
maxValue = 255;
sizeImage = size(I);
uniformNoise = (maxValue - minValue) * rand(sizeImage) + minValue;
noisy = double(I) + uniformNoise;
noisy = min(max(noisy, 0), 255);
noisy = uint8(noisy);
denoised=medfilt2(noisy);
figure;
subplot(1, 2, 1);
imshow(noisy);
title('Noisy Image');
subplot(1, 2, 2);
imshow(denoised);
title('Denoised Image');
```

Output:

Noisy Image

Denoised Image

Result:

Thus, the various types of noise in an image have been removed and implemented using

MATLAB.

Ex No: 9 IMPLEMENTATION OF SOBEL OPERATOR

Date:

Aim:

To implement SOBEL operator in digital images for edge detection using Matlab.

Software Used:

MATLAB

Program:

```
a = imread('duck.jpg');
b = rgb2gray(a);
gray_img = double(b);
h_kernel = [-1, 0, 1; -2, 0, 2; -1, 0, 1];
v_kernel = [-1, -2, -1; 0, 0, 0; 1, 2, 1];
c = imfilter(gray_img, h_kernel);
d = imfilter(gray_img, v_kernel);
gradient_magnitude = sqrt(c.^2 + d.^2);
figure;
subplot(2, 2, 1);
imshow(a);
title('Original Image');
subplot(2, 2, 2);
imshow(uint8(gradient_magnitude));
title('Sobel Edge Detected Image');
```

Output:

Original Image

Sobel Edge Detected Image

Result:

The SOBEL operator in digital images for edge detection has been implemented using MATLAB.

MINI PROJECT

IMPLEMENTATION OF ROTATION AND TRANSFORMATION IN IMAGES

Aim:

To implementation of rotation and transformation in images using matlab

Software used:

MATLAB

Introduction

- **Image Processing Overview**: Briefly introduce image processing and its importance in fields like computer vision, graphics, medical imaging, and robotics.
- Transformations in Image Processing: Discuss how transformations are used to manipulate image geometry, making it easier to analyze or align images for further processing.

Objective

- Define the project's goal: to implement and analyze different image transformations, including rotation, scaling, translation, and shearing.
- Explain how these transformations can be applied to real-world applications such as image alignment, object recognition, and pattern matching.

Background and Theory

Image Rotation

- **Definition**: Image rotation is the process of rotating an image by a specified angle around a pivot point, typically the center of the image.
- Mathematics of Rotation:
 - Explain the rotation matrix:

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Scaling

- **Definition**: Scaling changes the size of an image by expanding or contracting it based on a scale factor.
- Mathematics of Scaling:
 - Explain the scaling matrix:

$$S_v = egin{bmatrix} v_x & 0 & 0 \ 0 & v_y & 0 \ 0 & 0 & v_z \end{bmatrix}.$$

Translation

- **Definition**: Translation shifts an image by moving every pixel a specified distance horizontally or vertically.
- Mathematics of Translation:
 - Explain the translation matrix:

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shearing

- **Definition**: Shearing is a transformation that slants the image along an axis, creating a "skewed" effect.
- Mathematics of Shearing:
 - Explain the shear matrix for x-axis shear:

$$\mathbf{S_x} = \begin{bmatrix} 1 & s_y & s_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Program:

```
img = imread('babydragon.jpg');
imshow(img);
title('Original Image');
angle = 45;
rotated_img = imrotate(img, angle);
figure;
imshow(rotated_img);
title(['Image Rotated by ', num2str(angle), ' degrees']);
scaleFactor = 0.5;
```

```
scaled img = imresize(img, scaleFactor);
figure;
imshow(scaled img);
title(['Image Scaled by ', num2str(scaleFactor)]);
tx = 50;
ty = 30;
tform_translate = affine2d([1 0 0; 0 1 0; tx ty 1]);
translated img = imwarp(img, tform translate);
figure;
imshow(translated img);
title(['Image Translated by [', num2str(tx), ', ', num2str(ty), ']']);
shear factor = 0.3;
tform shear = affine2d([1 shear factor 0; 0 1 0; 0 0 1]);
sheared img = imwarp(img, tform shear);
figure;
imshow(sheared img);
title(['Image Sheared with Factor', num2str(shear factor)]);
```


Image Sheared with Factor 0.3