A NOTE ON $\mathcal{O}G ext{-MODULES}$ WHICH ARE NECESSARILY FREE AS $\mathcal{O} ext{-MODULES}$

CAROLINE LASSUEUR

ABSTRACT. In this note we prove that endo-p-permutation $\mathcal{O}G$ -modules are necessarily free when regarded as \mathcal{O} -modules, i.e. $\mathcal{O}G$ -lattices. In particular, so are endo-trivial and endo-permutation modules.

Throughout, we let p denote a prime number, and G a finite group of order divisible by p. As base ring, we consider a complete discrete valuation ring \mathcal{O} of characteristic zero with unique maximal ideal $J(\mathcal{O})$ and with residue field $\mathcal{O}/J(\mathcal{O})$ of characteristic p. Furthermore, all $\mathcal{O}G$ -modules considered are assumed to be finitely generated left modules.

To begin with, let us recall the definitions and some elementary facts about endo-p-permutation modules and related classes of modules:

- (a) An $\mathcal{O}G$ -lattice is an $\mathcal{O}G$ -module which is free as an \mathcal{O} -module.
- (b) An $\mathcal{O}G$ -module M is called a **permutation module** if M is free as an \mathcal{O} -module and admits a G-invariant \mathcal{O} -basis. Therefore permutation $\mathcal{O}G$ -modules are $\mathcal{O}G$ -lattices by definition.
- (c) An $\mathcal{O}G$ -module M is called a p-permutation module if $\operatorname{Res}_Q^G(M)$ is a permutation $\mathcal{O}G$ -module for every p-subgroup Q of G. Now, let P be a Sylow p-subgroup P of G. Then, equivalently, it suffices to require that $\operatorname{Res}_P^G(M)$ is a permutation $\mathcal{O}P$ -module. In other words an $\mathcal{O}G$ -module is a p-permutation module if and only if M is free as an \mathcal{O} -module and admits a P-invariant \mathcal{O} -basis.
 - Again, p-permutation $\mathcal{O}G$ -modules are by definition $\mathcal{O}G$ -lattices. Furthermore, an indecomposable $\mathcal{O}G$ -lattice M is a p-permutation module if and only if M is a trivial source $\mathcal{O}G$ -lattice. (Cf. [The95, §27].)
- (d) An $\mathcal{O}G$ -module M is called an **endo-permutation** module if its endomorphism algebra $\operatorname{End}_{\mathcal{O}}(M)$ is a permutation $\mathcal{O}G$ -module.

Here (and below) $\operatorname{End}_{\mathcal{O}}(M)$ is endowed with its natural $\mathcal{O}G$ -module structure via the action of G by conjugation, i.e.

$${}^g\!\phi(m)=g\cdot\phi(g^{-1}\cdot m)\quad\forall\,g\in G,\;\forall\,\phi\in\mathrm{End}_{\mathcal{O}}(M)\;\mathrm{and}\;\forall\,m\in M\,.$$

(Cf. [The95, §28].)

(e) An OG-module M is called an endo-p-permutation module if its endomorphism algebra End_O(M) is a p-permutation OG-module.
(Cf. [Urf07, Definition 1.1].)

²⁰¹⁰ Mathematics Subject Classification. Primary 20C20; Secondary 20C25.

Key words and phrases. Lattices, Permutation modules, p-permutation modules, trivial source modules, Endotrivial modules, Endo-p-permutation modules.

- (f) An $\mathcal{O}G$ -module M is called an **endo-trivial** module if $\operatorname{End}_{\mathcal{O}}(M) \cong \mathcal{O} \oplus X$ for some projective $\mathcal{O}G$ -module X.
- (g) Clearly:
 - \cdot projective modules are p-permutation modules;
 - · permutation modules are p-permutation modules;
 - · permutation modules are endo-permutation modules;
 - \cdot p-permutation modules are endo-p-permutation modules;
 - \cdot endo-trivial modules over p-groups are endo-permutation modules; and
 - \cdot over arbitrary finite groups endo-trivial modules are endo-p-permutation modules.

Thus the class of all endo-p-permutation $\mathcal{O}G$ -modules encompasses all the $\mathcal{O}G$ -modules defined above, namely the permutation modules, the p-permutation modules, the endo-permutation modules, and the endo-trivial modules.

Proposition A. If M is an $\mathcal{O}G$ -module such that $\operatorname{End}_{\mathcal{O}}(M)$ is free when regarded as an \mathcal{O} -module, then so is M when regarded as an \mathcal{O} -module.

Proof. By the assumption $\operatorname{End}_{\mathcal{O}}(M)$ is \mathcal{O} -free. Furthermore, since \mathcal{O} is assumed to be a discrete valuation ring, by the structure theorem for finitely generated modules over principal ideal domains, the module M, regraded as an \mathcal{O} -module, admits a direct sum decomposition of the form

$$M \cong \bigoplus_{i=1}^r \left(\bigoplus_{j_i=1}^{s_i} \mathcal{O}/J(\mathcal{O})^{n_i}\right) \oplus (\mathcal{O}\text{-free summands}),$$

where r is a non-negative integer and s_i , n_i $(1 \le i \le r)$ are positive integers. Now, we claim that if the torsion part of M is not trivial, then neither is the torsion part of $\operatorname{End}_{\mathcal{O}}(M)$. Indeed, for every $1 \le i \le r$ we have that

$$\operatorname{End}_{\mathcal{O}}(\mathcal{O}/J(\mathcal{O})^{n_i}) \cong \mathcal{O}/J(\mathcal{O})^{n_i}$$

as \mathcal{O} -module, therefore the \mathcal{O} -linear endomorphisms of M have the form

$$\operatorname{End}_{\mathcal{O}}(M) \cong \bigoplus_{i=1}^{r} \left(\bigoplus_{j_{i}=1}^{s_{i}} \operatorname{End}_{\mathcal{O}} \left(\mathcal{O}/J(\mathcal{O})^{n_{i}} \right) \right) \oplus X \cong \bigoplus_{i=1}^{r} \left(\bigoplus_{j_{i}=1}^{s_{i}} \mathcal{O}/J(\mathcal{O})^{n_{i}} \right) \oplus X$$

(as \mathcal{O} -module) for some \mathcal{O} -module X. This is a contradiction.

Corollary B. Any endo-p-permutation $\mathcal{O}G$ -module is free when regarded as an \mathcal{O} -module. In particular, so is any endo-trivial $\mathcal{O}G$ -module and any endo-permutation $\mathcal{O}G$ -module.

Proof. If M is an endo-p-permutation $\mathcal{O}G$ -module, then by definition $\operatorname{End}_{\mathcal{O}}(M)$ is a p-permutation $\mathcal{O}G$ -module, hence \mathcal{O} -free by the above and the claim follows from Proposition A. \square

APPENDIX

Recall that a ring \mathcal{O} is by definition ([Ser68, §1]) a discrete valuation ring if \mathcal{O} is a PID, and possesses a unique non-zero prime ideal $\mathfrak{m}(\mathcal{O})$. It follows immediately that in this case $\mathfrak{m}(\mathcal{O})$ is the unique maximal ideal of \mathcal{O} , so that \mathcal{O} is a local ring and $\mathfrak{m}(\mathcal{O}) = J(\mathcal{O})$, the Jacobson radical of \mathcal{O} . Moreover, as \mathcal{O} is a PID, the ideal $\mathfrak{m}(\mathcal{O})$ is of the form $\mathfrak{m}(\mathcal{O}) = \pi \mathcal{O}$, where π is an irreducible element of \mathcal{O} , and any non-zero ideal of \mathcal{O} is of the form $\mathfrak{m}(\mathcal{O})^n = \pi^n \mathcal{O}$, where $n \in \mathbb{Z}_{>0}$.

In fact a commutative ring \mathcal{O} is a discrete valuation ring if and only if it is a Noetherian local ring and its unique maximal ideal is generated by a non-nilpotent element.

References

[Ser68] J.-P. Serre, Corps Locaux. (French) Deuxime dition. Hermann, Paris, 1968.

[The95] J. Thévenaz, G-Algebras and modular representation theory. Clarendon Press, Oxford, 1995.

[Urf07] J.-M. Urfer, Endo-p-permutation modules, J. Algebra 316 (2007), no. 1, 206–223.

Caroline Lassueur, FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany.

E-mail address: lassueur@mathematik.uni-kl.de