HW 2 SOLUTION

Problem 1

Formulate the linear programming model for this problem:

(1) Decision variables:

A = number of pounds of brand A B = number of pounds of brand B

(2) Objective: Minimize

$$Cost = $0.8 * A + $0.8 * B ($)$$

(3) Constraints:

Protein) $6A+4B \ge 24$ ounces Carbohydrates) $3A+10B \ge 30$ ounces Vitamins) $50A+100B \ge 400$ units

In LINDO:

```
min 0.8a+0.8b
st
6a+4b >= 24
3a+10b >= 30
50a+100b >= 400
```

VARIABLE

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

VALUE

1) 4.000000

V A.	À B	Ì	2.000000 3.000000	0	.000000
	ROW 2) 3) 4)	SLACK	OR SURPLU 0.000000 6.000000 0.000000	-0 0	PRICES .100000 .000000
NO.	ITERATI	ONS=	2		

Optimal solution is 2 pounds of brand A and 3 pounds of brand B. The minimum cost is \$4. The first and third bounds (protein and vitamin) are binding.

REDUCED COST

Problem 2

Million \$ Money in:

First mortgages: x1
Second mortgages: x2
Personal loans: x3
Commercial loans: x4
Government securities: x5

Objective:

Max 9*x1+12*x2+15*x3+8*x4+6*x5

Constraints:

Budget) x1+x2+x3+x4+x5 = 100 million \$

```
Avg Risk)
            (3*x1+6*x2+8*x3+2*x4+x5)/(x1+x2+x3+x4+x5) \le 5
        or (3*x1+6*x2+8*x3+2*x4+x5) \le 5*(x1+x2+x3+x4+x5)
        or 3*x1+6*x2+8*x3+2*x4+x5 <= 500
commercial loans) x4 \ge 20
                                          million $
                                          million $
two mortgages)
                  x1+x2 <= 50
second mortgage and personal loans)
                                      x2+x3-x1 <= 0
```

Problem 3

Formulate the linear programming model for this problem:

(1) Decision variables:

```
x1b = number of units of product buying in Month 1
x2b = number of units of product buying in Month 2
x3b = number of units of product buying in Month 3
x4b = number of units of product buying in Month 4
x1s = number of units of product selling in Month 1
x2s = number of units of product selling in Month 2
x3s = number of units of product selling in Month 3
x4s = number of units of product selling in Month 4
```

(2) Objective: Maximize profits (\$)

x12-x11+x22-x21+x32-x31 <= 200 x12-x11+x22-x21+x32-x31+x42-x41 = 0

x41-x12+x11-x22+x21-x32+x31 <= 300

x31-x12+x11-x22+x21 <= 300

```
Profits = income from sales – payment of purchase – storage fees for four months
=55*x1s+44*x2s+66*x3s+55*x4s-50*x1b-40*x2b-60*x3b-50*x4b-(300+x1b-x1s)-
(300+x1b-x1s+x2b-x2s) - (300+x1b-x1s+x2b-x2s+x3b-x3s) - (300+x1b-x1s+x2b-x2s+x3b-x3s)
x3s+x4b-x4s)
```

\$ = 59*x1s + 47*x2s + 68*x3s + 56*x4s - 54*x1b - 43*x2b - 62*x3b - 51*x4b - 1200

(3) Constraints:

st

x11 <= 300

x21-x12+x11 <= 300

```
Storage1)
                                       %warehouse limitation for the first month
               300+x1b-x1s <= 500
   Storage2)
               300+x1b-x1s+x2b-x2s <= 500
   Storage3)
               300+x1b-x1s+x2b-x2s+x3b-x3s <= 500
               300+x1b-x1s+x2b-x2s+x3b-x3s+x4b-x4s = 300 %end of month 4 requirement
   Storage4)
   No exceed1) x1s \le 300
                                     % sales in Month 1 should not exceed initial inventories
   No exceed1) x2s <= 300+x1b-x1s % sales in Month 2 should not exceed Month 1 inventories
   No exceed1) x3s \le 300+x1b-x1s+x2b-x2s
   No exceed1) x4s \le 300+x1b-x1s+x2b-x2s+x3b-x3s
In LINDO:
|\max 59x11+47x21+68x31+56x41-54x12-43x22-62x32-51x42-c|
c = 1200
x12-x11 <= 200
x12-x11+x22-x21 <= 200
```

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

1 \	13700	0.0

1)	13700.00	
VARIABLE X11 X21 X31 X41 X12 X22 X32 X42 C	VALUE 300.000000 0.000000 500.000000 0.000000 500.000000 0.000000 300.000000	REDUCED COST 0.000000 7.000000 0.000000 6.000000 0.000000 0.000000 0.000000 0.000000
ROW 2) 3) 4) 5) 6) 7) 8) 9)	SLACK OR SURPLUS 0.000000 500.000000 0.000000 500.000000 0.000000 0.000000 0.000000 0.000000	DUAL PRICES -1.000000 0.000000 25.000000 -51.000000 5.000000 11.000000 11.000000

6

NO. ITERATIONS=

So the optimal buying and selling choice should be:

Month	Units of selling	Units of buying	Inventories
1	300	0	0
2	0	500	500
3	500	0	0
4	0	300	300

The optimal profits thereby should be \$13700.