

planetmath.org

Math for the people, by the people.

predictable process

Canonical name PredictableProcess
Date of creation 2013-03-22 18:36:30
Last modified on 2013-03-22 18:36:30

Owner gel (22282) Last modified by gel (22282)

Numerical id 12

Author gel (22282) Entry type Definition Classification msc 60G07

 ${\it Related topic} \qquad {\it Predictable Stopping Time}$

Related topic ProgressivelyMeasurableProcess

 ${\it Related topic} \qquad {\it Optional Process}$

Defines predictable
Defines previsible

A predictable process is a real-valued stochastic process whose values are known, in a sense, just in advance of time. Predictable processes are also called *previsible*.

1 predictable processes in discrete time

Suppose we have a http://planetmath.org/FiltrationOfSigmaAlgebrasfiltration $(\mathcal{F}_n)_{n\in\mathbb{Z}_+}$ on a measurable space (Ω,\mathcal{F}) . Then a stochastic process X_n is predictable if X_n is \mathcal{F}_{n-1} -http://planetmath.org/MeasurableFunctionsmeasurable for every $n \geq 1$ and X_0 is \mathcal{F}_0 -measurable. So, the value of X_n is known at the previous time step. Compare with the definition of adapted processes for which X_n is \mathcal{F}_n -measurable.

2 predictable processes in continuous time

In continuous time, the definition of predictable processes is a little more subtle. Given a filtration (\mathcal{F}_t) with time index t ranging over the non-negative real numbers, the class of predictable processes forms the smallest set of real valued stochastic processes containing all left-continuous \mathcal{F}_t -adapted processes and which is closed under taking limits of a sequence of processes.

Equivalently, a real-valued stochastic process

$$X: \mathbb{R}_+ \times \Omega \to \mathbb{R}$$

 $(t, \omega) \mapsto X_t(\omega)$

is predictable if it is measurable with respect to the predictable sigma algebra \wp . This is defined as the smallest σ -algebra on $\mathbb{R}_+ \times \Omega$ making all left-continuous and adapted processes measurable.

Alternatively, \wp is generated by either of the following collections of subsets of $\mathbb{R}_+ \times \Omega$

$$\wp = \sigma \left(\{ (t, \infty) \times A : t \ge 0, A \in \mathcal{F}_t \} \cup \{ \{ 0 \} \times A : A \in \mathcal{F}_0 \} \right)$$

= $\sigma \left(\{ (T, \infty) : T \text{ is a stopping time} \} \cup \{ \{ 0 \} \times A : A \in \mathcal{F}_0 \} \right)$
= $\sigma \left(\{ [T, \infty) : T \text{ is a predictable stopping time} \} \right)$

Note that in these definitions, the sets (T, ∞) and $[T, \infty)$ are stochastic intervals, and subsets of $\mathbb{R}_+ \times \Omega$.

3 general predictable processes

The definition of predictable process given above can be extended to a filtration (\mathcal{F}_t) with time index t lying in an arbitrary subset \mathbb{T} of the extended real numbers. In this case, the predictable sets form a σ -algebra on $\mathbb{T} \times \Omega$. If \mathbb{T} has a minimum element t_0 then let S be the collection of sets of the form $\{t_0\} \times A$ for $A \in \mathcal{F}_{t_0}$, otherwise let S be the empty set. Then, the predictable σ -algebra is defined by

```
\wp = \sigma \left( \left\{ (t, \infty) \times A : t \in \mathbb{T}, A \in \mathcal{F}_t \right\} \cup S \right)
= \sigma \left( \left\{ (T, \infty) : T : \Omega \to \mathbb{T} \text{ is a stopping time} \right\} \cup S \right).
```

Here, $(t, \infty]$ and $(T, \infty]$ are understood to be intervals containing only times in the index set \mathbb{T} . If \mathbb{T} is an interval of the real numbers then \wp can be equivalently defined as the σ -algebra generated by the class of left-continuous and adapted processes with time index ranging over \mathbb{T} .

A stochastic process $X: \mathbb{T} \times \Omega \to \mathbb{R}$ is predictable if it is \wp -measurable. It can be verified that in the cases where $\mathbb{T} = \mathbb{Z}_+$ or $\mathbb{T} = \mathbb{R}_+$ then this definition agrees with the ones given above.