NVIDIA Agent Intelligence Toolkit - Comprehensive Developer Guide

Overview

NVIDIA Agent Intelligence (AIQ) Toolkit is a framework-agnostic, lightweight library for building enterprise AI agents. It treats agents, tools, and workflows as composable function calls, enabling you to build once and reuse across different scenarios.

Key Philosophy: Everything is a function call - agents, tools, and workflows can be composed together in complex applications.

Architecture Patterns

Core Design Principles

- 1. Framework Agnostic: Works alongside LangChain, LlamaIndex, CrewAI, Semantic Kernel
- 2. Composability: Functions can be nested and combined
- 3. Declarative Configuration: YAML-based workflow definitions
- 4. Tool Reusability: Build tools once, use in any agent
- 5. MCP Integration: Full Model Context Protocol support

Agent Types - Deep Dive

1. ReAct Agent (Reasoning + Acting)

Architecture Pattern: Iterative thought-action-observation loop

How It Works

Key Characteristics:

- Reasons between tool calls
- Uses tool names and descriptions for routing
- Iterative decision-making process
- Most flexible but most token-intensive

Configuration

```
workflow:
_type: react_agent
tool_names: [wikipedia_search, current_datetime, code_generation, math_agent]
llm_name: nim_llm
verbose: true
handle_parsing_errors: true
max_retries: 2
max_iterations: 15
max_history: 15
```

As a Nested Function (Agent calling Agent)

```
yaml
```

```
functions:
 calculator multiply:
  _type: calculator_multiply
 calculator inequality:
  _type: calculator_inequality
 calculator_divide:
  _type: aiq_simple_calculator/calculator_divide
 # Math agent as a tool for parent agent
 math_agent:
  _type: react_agent
  tool names:
   - calculator_multiply
   - calculator_inequality
   - calculator_divide
  description: 'Useful for performing simple mathematical calculations.'
  llm_name: agent_llm
```

Output Format

The LLM must output in ReAct format:

Thought: To answer this question, I need to find information about Dijkstra.

Action: wikipedia_search
Action Input: Dijkstra

Observation: (Wait for tool response...)

Thought: I now know the final answer

Final Answer: Dijkstra was a Dutch computer scientist...

Execution Example

Query: "What's the current weather in New York?"

Iteration 1:

• Observation: Question received

• Thought: "I don't have weather data, need to use weather API"

• Action: (weather api("New York"))

Iteration 2:

• Observation: (72°F, clear skies)

• Thought: "Now I can answer"

• Action: Returns final answer

Configuration Options Explained

Option	Default	Purpose
tool_names	Required	List of tools agent can use
(llm_name)	Required	LLM configuration reference
verbose	false	Enable debug logging
(retry_parsing_errors)	true	Auto-retry on format errors
(max_retries)	1	Max retry attempts
(max_iterations)	(15)	Max tool calls per query
(max_history)	15)	Conversation history size
(use_openai_api)	false	Output OpenAI API spec
(include_tool_input_schema_in_tool_description)	true	Add schemas to descriptions
system_prompt)	Default	Override system prompt
▲	•	•

Custom Prompt Template

python			

CUSTOM_PROMPT = """ Answer questions using these tools:

{tools}

Format for tool use:

Question: [input question]

Thought: [reasoning]

Action: [tool name from {tool_names}]

Action Input: [tool input or None]

Observation: [wait for response]

Format for final answer:

Thought: I now know the final answer

Final Answer: [answer]

111111

Limitations

• High Token Usage: Multiple LLM calls per task

• Prompt Sensitivity: Requires careful tuning

• Hallucination Risk: May output incorrect format

• Sequential Only: No parallel execution

• Complexity in Long Chains: Error propagation

Best Use Cases

- Complex reasoning tasks requiring adaptation
- Workflows where intermediate reasoning is valuable
- Tasks where you can't predict tool call sequence

• Debug-friendly scenarios (visible reasoning)

2. Reasoning Agent

Architecture Pattern: Plan-first execution with reasoning LLM

How It Works

```
User Query → Reasoning (Plan Creation) →

→ Augmented Function Execution → Final Answer
```

Key Characteristics:

- Reasons before execution (upfront planning)
- Wraps another agent/function with reasoning layer
- Requires reasoning-capable LLM (DeepSeek R1, etc.)
- Single planning phase, no inter-step reasoning

Configuration

```
workflow:
    _type: reasoning_agent
    llm_name: deepseek_r1_model
    augmented_fn: react_agent # The agent to reason on top of
    verbose: true
```

Architecture Pattern

```
yaml
llms:
 deepseek_r1_model:
  _type: nim_llm
  model_name: deepseek-ai/DeepSeek-R1
functions:
 wikipedia search:
  _type: wikipedia_search
 calculator:
  _type: calculator
 # Base agent that will be augmented
 base_react_agent:
  _type: react_agent
  tool_names: [wikipedia_search, calculator]
  llm_name: base_llm
# Reasoning agent wrapping the base agent
workflow:
 _type: reasoning_agent
llm_name: deepseek_r1_model
 augmented_fn: base_react_agent
```

Execution Flow

Step 1: Reasoning Phase

Input: "Calculate 15% tip on \$45.50 meal"

Reasoning LLM Output:

<think>

The user wants to calculate a tip. I need to:

- 1. Calculate 15% of \$45.50
- 2. Use the calculator tool
- 3. Return formatted result

</think>

Plan:

- 1. Call calculator with input "45.50 * 0.15"
- 2. Format result as currency
- 3. Return final answer

Step 2: Execution Phase

- Passes plan to augmented function
- Function executes with plan as guidance

Step 3: Response

• Final answer based on execution results

Configuration Options

Option	Default	Purpose
[llm_name]	Required	Reasoning-capable LLM
augmented_fn	Required	Agent/function to augment
verbose	false	Debug logging
reasoning_prompt_template	Default	Planning prompt
instruction_prompt_template	Default	Execution prompt
4	•	•

Custom Prompts

Reasoning Prompt:

```
yaml
reasoning_prompt_template:
 You are an expert reasoning model tasked with creating a detailed execution plan
 for a system that has the following description:
 **Description:**
 {augmented_function_desc}
 Given the following input and tools, provide a step-by-step plan:
 **Input:**
 {input_text}
 **Tools:**
 {tools}
 **PLAN:**
```

Instruction Prompt:

```
instruction_prompt_template: |
Answer the following question based on message history: {input_text}

Here is a plan for execution:
{reasoning_output}

You must respond with the answer to the original question directly.
```

Comparison: With vs Without Reasoning

Without Reasoning Agent:

```
Query → ReAct (iterate) → Answer

- Multiple LLM calls

- Reasons between steps

- Adapts during execution
```

With Reasoning Agent:

```
Query → Reason (plan) → ReAct (execute plan) → Answer

- Upfront comprehensive planning

- Better quality plans

- More efficient tool usage
```

Limitations

• Requires Reasoning LLM: Must support <think> tags

- No Dynamic Adaptation: Can't revise plan during execution
- Planning Overhead: Upfront cost for simple tasks
- LLM Dependency: Quality depends on reasoning model

Best Use Cases

- Complex multi-step workflows
- Tasks benefiting from comprehensive planning
- When you have access to reasoning models
- Reducing trial-and-error tool calls

3. ReWOO Agent (Reasoning Without Observation)

Architecture Pattern: Complete plan-first, then execute

How It Works

```
User Query → Complete Plan (with placeholders) →

→ Execute All Steps → Solve with Evidence → Answer
```

Key Characteristics:

- Total separation of planning and execution
- Uses evidence placeholders (#E1), (#E2))
- Most token-efficient
- All tool calls planned upfront

Configuration

```
yaml

workflow:
    _type: rewoo_agent
    tool_names: [wikipedia_search, current_datetime, code_generation]
    llm_name: nim_llm
    verbose: true
    use_tool_schema: true
```

Architecture Deep Dive

Phase 1: Planning


```
"plan": "Get today's date",
"evidence": {
 "placeholder": "#E1",
 "tool": "current datetime",
 "tool input": {}
"plan": "Search for historical weather data",
"evidence": {
 "placeholder": "#E2",
 "tool": "weather search",
 "tool input": "New York weather on #E1 last year"
"plan": "Compare temperatures",
"evidence": {
 "placeholder": "#E3",
 "tool": "calculator",
 "tool_input": "Compare #E2 current vs last year"
```

Phase 2: Execution

- Execute step $1 \rightarrow \text{Replace}(\#\text{E1})$ with actual date
- Execute step $2 \rightarrow \text{Use (\#E1)}$ value, get result for (#E2)

• Execute step $3 \rightarrow \text{Use}$ #E2 value	e, get result for (#E3)	
Phase 3: Solution		
• Combine all evidence (#E1), #E	2), (#E3))	
Generate final natural language at	nswer	
Example Walkthrough		
Query: "What was the weather in Ne	w York last year on this date?) II
1. Planning Phase:		
python		

```
plan = [
     "plan": "Get today's date",
     "evidence": {
       "placeholder": "#E1",
       "tool": "current_datetime",
       "tool input": {}
     "plan": "Calculate last year's date",
     "evidence": {
       "placeholder": "#E2",
       "tool": "date calculator",
       "tool_input": "#E1 minus 1 year"
     "plan": "Search historical weather",
     "evidence": {
       "placeholder": "#E3",
       "tool": "weather api",
       "tool_input": "New York #E2"
```

2. Execution Phase:

python

```
#Step 1

#E1 = current_datetime() → "2025-10-04"

#Step 2 (using #E1)

#E2 = date_calculator("2025-10-04 minus 1 year") → "2024-10-04"

#Step 3 (using #E2)

#E3 = weather_api("New York 2024-10-04") → "68°F, partly cloudy"
```

3. Solution Phase:

```
Evidence collected:
- #E1: 2025-10-04
- #E2: 2024-10-04
- #E3: 68°F, partly cloudy

Final Answer: "The weather in New York on October 4th, 2024
was 68°F with partly cloudy skies."
```

Configuration Options

Option	Default	Purpose
(tool_names)	Required	Available tools
(llm_name)	Required	LLM for planning/solving
verbose	false	Debug logging
(use_tool_schema)	true	Include tool schemas
(include_tool_input_schema_in_tool_description)	true	Schema in descriptions
(max_history)	15)	Conversation history
(use_openai_api)	false	API format
planner_prompt	Default	Planning prompt
solver_prompt	Default	Solution prompt
(additional_instructions)	None	Extra instructions
◀	•	•

Token Efficiency Comparison

ReAct Agent (Iterative):

```
Prompt 1: [System + Query + Tools] = 1000 tokens
Response 1: [Thought + Action] = 100 tokens
Prompt 2: [System + History + Tools + Observation] = 1300 tokens
Response 2: [Thought + Action] = 100 tokens
...
Total: ~3000+ tokens
```

ReWOO Agent (Decoupled):

Prompt 1 (Plan): [System + Query + Tools] = 1000 tokens

Response 1: [Complete Plan with placeholders] = 300 tokens

Execution: [Replace placeholders] = minimal

Prompt 2 (Solve): [Plan + Evidence] = 800 tokens

Response 2: [Final Answer] = 100 tokens Total: ~2200 tokens (25-30% reduction)

Limitations

• Sequential Execution: Can't parallelize independent steps

• Planning Overhead: Upfront cost for simple queries

• Limited Adaptability: Can't revise plan based on results

• Complex Planning: Requires good tool understanding

• **Memory Constraints**: Must hold entire plan + evidence

Best Use Cases

- Token-constrained environments
- Predictable multi-step workflows
- When tool outcomes are reliable
- Cost optimization scenarios
- Clear sequential dependencies

4. Tool Calling Agent

Architecture Pattern: Direct function invocation via LLM tool calling

How It Works

```
User Query → Function Matching (via schema) →
→ Direct Tool Execution → Response
```

Key Characteristics:

- No reasoning between calls
- Uses native LLM tool calling capability
- Relies on tool schemas for routing
- Most efficient for structured tasks
- Requires tool-calling compatible LLM

Configuration

```
workflow:
_type: tool_calling_agent
tool_names: [wikipedia_search, current_datetime, code_generation]
llm_name: nim_llm
verbose: true
handle_tool_errors: true
max_iterations: 15
```

Requirements

```
# Install with LangChain support
uv pip install -e '.[langchain]'
```

Architecture Pattern

yaml		

```
llms:
tool calling llm:
  _type: nim_llm
  model_name: gpt-4 # Must support tool calling
  supports_tool_calling: true
functions:
 # Tool with explicit schema
 weather_tool:
  _type: weather_api
  input_schema:
   type: object
   properties:
    location:
     type: string
     description: "City name"
    units:
     type: string
     enum: ["celsius", "fahrenheit"]
   required: ["location"]
 # Another tool
 calculator_tool:
  _type: calculator
  input_schema:
   type: object
   properties:
    expression:
     type: string
     description: "Math expression to evaluate"
   required: ["expression"]
```

```
workflow:
_type: tool_calling_agent
tool_names: [weather_tool, calculator_tool]
llm_name: tool_calling_llm
handle_tool_errors: true
```

Execution Flow

Query: "What's the weather in New York?"

1. Function Matching:

```
| json
| {
| "tool_calls": [
| {
| "id": "call_123",
| "type": "function",
| "function": {
| "name": "weather_tool",
| "arguments": "{\"location\": \"New York\", \"units\": \"fahrenheit\"}"
| }
| }
| ]
| ]
| }
| ]
| ]
```

2. Direct Execution:

```
python
```

```
result = weather_tool(location="New York", units="fahrenheit")
# → "72°F, clear skies"
```

3. Response:

"The weather in New York is currently 72°F with clear skies."

No intermediate reasoning steps!

Tool Schema Definition

Pydantic Model:

python

```
from pydantic import BaseModel, Field
class WeatherInput(BaseModel):
  location: str = Field(description="City name or coordinates")
  units: str = Field(
    default="celsius",
    description="Temperature units",
    enum=["celsius", "fahrenheit"]
class WeatherTool:
  name = "weather_api"
  description = "Get current weather for a location"
  input_schema = WeatherInput
  def call (self, location: str, units: str = "celsius"):
    # Implementation
    return f''Weather in {location}"
```

JSON Schema:

```
json
```

```
"name": "weather api",
"description": "Get current weather for a location",
"parameters": {
 "type": "object",
 "properties": {
  "location": {
   "type": "string",
   "description": "City name or coordinates"
  "units": {
   "type": "string",
   "description": "Temperature units",
   "enum": ["celsius", "fahrenheit"]
 "required": ["location"]
```

Configuration Options

Option	Default	Purpose
(tool_names)	Required	Available tools
(llm_name)	Required	Tool-calling capable LLM
verbose	false	Debug logging
(handle_tool_errors)	true	Catch and retry on errors
(max_iterations)	15)	Max tool calls
description	Default	Tool description
4	•	l de la companya de

Error Handling

With (handle_tool_errors: true):

```
try:
    result = tool(**args)
except Exception as e:
    # Return error as ToolMessage
return ToolMessage(
    content=f'Error: {str(e)}",
    tool_call_id=call_id
)
# LLM can try again with corrected input
```

Without error handling:

```
python
# Error propagates, workflow stops
```

Multi-Tool Calling

Some LLMs support parallel tool calling:

,		
	json	

```
"tool_calls": [
  "id": "call_1",
  "function": {
   "name": "weather_tool",
    "arguments": "{\"location\": \"New York\"}"
  "id": "call_2",
  "function": {
    "name": "weather_tool",
    "arguments": "{\"location\": \"London\"}"
```

Both execute simultaneously, results combined.

Comparison with ReAct

Aspect	Tool Calling	ReAct	
Reasoning	None	Between every step	
Token Usage	Low	High	
Flexibility	Low	High	
Speed	Fast	Slow	
Debugging	Harder	Easier (visible thoughts)	
LLM Requirement Tool calling support		Any LLM	
Use Case	Structured tasks	Complex reasoning	

Limitations

- Requires Tool Calling LLM: GPT-4, Claude, Gemini, etc.
- No Reasoning: Can't adapt strategy
- Schema Dependent: Needs well-defined schemas
- Less Flexible: Can't handle unexpected scenarios
- Poor Tool Names = Poor Performance

Best Use Cases

- API orchestration
- Database queries
- Structured data retrieval
- High-throughput scenarios
- Cost-sensitive applications
- Clear tool-task mapping

Agent Comparison Matrix

Feature	ReAct	Reasoning	ReWOO	Tool Calling
Token Efficiency	**	***	****	***
Speed	**	***	***	****
Flexibility	****	***	**	**
Debugging	****	***	***	**
Complex Reasoning	***	****	***	*
Setup Complexity	***	***	***	**
LLM Requirements	Any	Reasoning LLM	Any	Tool Calling
4		•	•	•

Model Context Protocol (MCP) Integration

MCP Overview

MCP is Anthropic's open protocol for standardizing how applications provide context to LLMs. AIQ Toolkit has **full bidirectional MCP support**.

AIQ as MCP Client

Use Case: Connect to remote MCP servers and use their tools in your workflows

Architecture

AIQ Workflow \rightarrow MCP Client \rightarrow Remote MCP Server \rightarrow External Tools

Configuration Pattern

```
yaml
functions:
 # Wrap individual MCP tools
 mcp_time_tool:
  _type: mcp_tool_wrapper
  url: "http://localhost:8080/sse"
  mcp tool name: get current time
  description: "Get current time from MCP server"
 mcp weather tool:
  _type: mcp_tool_wrapper
  url: "http://localhost:8080/sse"
  mcp_tool_name: get_weather
  description: "Get weather from MCP server"
 # Local tools
 local calculator:
  type: calculator
# Use in agent
workflow:
 _type: react_agent
tool_names: [mcp_time_tool, mcp_weather_tool, local_calculator]
llm_name: nim_llm
```

MCP Tool Wrapper

yaml

```
mcp_tool_config:
_type: mcp_tool_wrapper

# Required: MCP server URL
url: "http://localhost:8080/sse"

# Required: Specific tool name from server
mcp_tool_name: "tool_name"

# Optional: Override server description
description: "Custom description for better routing"
```

Complete Example

1. Start MCP Server (external service):

```
bash

# Check if MCP server is running

docker ps --filter "name=mcp-proxy-aiq-time"

# Should show:

# CONTAINER ID IMAGE PORTS NAMES

# 4279653533ec time_service 0.0.0.0:8080->8080/tcp mcp-proxy-aiq-time
```

2. Configure AIQ Workflow:

(config-mcp-date.yml):

yaml

```
llms:
 nim 11m:
  _type: nim_llm
  model name: gpt-4
functions:
 # MCP tool
 mcp_time_tool:
  _type: mcp_tool_wrapper
  url: "http://localhost:8080/sse"
  mcp tool name: get current time
  description: "Returns current date/time from MCP server"
 # Local tools
 calculator_multiply:
  _type: calculator_multiply
 calculator_inequality:
  _type: calculator_inequality
workflow:
 _type: react_agent
 tool_names:
  - mcp_time_tool
  - calculator_multiply
  - calculator_inequality
 llm_name: nim_llm
```

3. Run Workflow:

```
aiq run \
--config_file config-mcp-date.yml \
--input "Is the product of 2 * 4 greater than the current hour?"
```

Execution:

- 1. Agent calls mcp_time_tool → MCP Server returns "14:00"
- 2. Agent calls calculator_multiply(2, 4) \rightarrow Returns 8
- 3. Agent calls calculator_inequality(8, 14) \rightarrow Returns false
- 4. Agent returns: "No, 2 * 4 (8) is not greater than the current hour (14)"

Input Schema Generation

MCP tools automatically generate Pydantic schemas:

MCP Server Schema:

json

Generated Pydantic Model:

```
python

class GetCurrentTimeInput(BaseModel):

timezone: str = Field(description="IANA timezone")
```

Usage in Agent:

```
python

# Agent can call with:

mcp_time_tool(timezone="America/New_York")

mcp_time_tool('{"timezone": "America/New_York"}) # JSON string

mcp_time_tool({"timezone": "America/New_York"}) # Dict
```

Discovering MCP Tools

```
bash
# List all tools from MCP server
aiq info mcp --url http://localhost:8080/sse
# Output:
# get current time
# convert time
# get timezone info
# Get detailed info about specific tool
aiq info mcp --url http://localhost:8080/sse --tool get current time
# Output:
# Tool: get current time
# Description: Get current time in a specific timezone
# Input Schema:
# {
# "properties": {
    "timezone": {
     "description": "IANA timezone name",
     "type": "string"
# "required": ["timezone"]
```

AIQ as MCP Server

Use Case: Expose your AIQ tools as MCP tools for other clients

Architecture

```
AIQ Workflow Tools → MCP Server → MCP Clients (Claude Desktop, etc.)
```

Basic Server

```
# Start MCP server exposing all tools from workflow
aiq mcp --config_file examples/simple_calculator/configs/config.yml

# Server starts on http://localhost:9901/sse
```

Filtered Publishing

```
bash

# Publish only specific tools

aiq mcp \
--config_file config.yml \
--tool_names calculator_multiply \
--tool_names calculator_divide \
--tool_names calculator_subtract
```

Complete Example

1. Define Workflow with Tools:

(config.yml):

```
yaml
functions:
 calculator add:
  _type: calculator_add
 calculator_multiply:
  _type: calculator_multiply
 calculator_divide:
  _type: calculator_divide
 wikipedia_search:
  _type: wikipedia_search
workflow:
 _type: react_agent
 tool_names:
  - calculator_add
  - calculator_multiply
  - calculator_divide
  - wikipedia_search
 llm_name: nim_llm
```

2. Start MCP Server:

bash

```
# Terminal 1: Start server
aiq mcp --config_file config.yml

# Output:

# MCP Server started on http://localhost:9901

# Publishing 4 tools: calculator_add, calculator_multiply, calculator_divide, wikipedia_search
```

3. Verify Published Tools:

bash		
bash		
		bash
	١	
	١	
	١	
	١	
	١	
	١	
	١	
	١	
	١	
	١	

```
# Terminal 2: Check published tools
aiq info mcp
# Output:
# calculator add
# calculator_multiply
# calculator_divide
# wikipedia_search
# Get detailed schema
aiq info mcp --tool calculator_multiply
# Output:
# Tool: calculator multiply
# Description: Multiply two numbers together
# Input Schema:
# "properties": {
    "text": {
     "type": "string",
     "title": "Text"
# "required": ["text"]
# }
```

4. Use from Another AIQ Workflow (as MCP Client):

(config-mcp-client.yml):

```
functions:
 # Remote MCP tools
 remote_multiply:
  _type: mcp_tool_wrapper
  url: "http://localhost:9901/sse"
  mcp_tool_name: calculator_multiply
 remote_divide:
  _type: mcp_tool_wrapper
  url: "http://localhost:9901/sse"
  mcp_tool_name: calculator_divide
 #Local tool
 local subtract:
  _type: calculator_subtract
workflow:
 _type: tool_calling_agent
 tool_names: [remote_multiply, remote_divide, local_subtract]
 llm_name: nim_llm
```

5. Execute:

bash

```
aiq run \
--config_file config-mcp-client.yml \
--input "What is (10 * 5) / 2 minus 3?"

# Flow:
# 1. Calls remote_multiply(10, 5) via MCP → 50
# 2. Calls remote_divide(50, 2) via MCP → 25
# 3. Calls local_subtract(25, 3) → 22
# Result: 22
```

MCP Server Configuration

Custom Host/Port:

```
bash
aiq mcp \
--config_file config.yml \
--host 0.0.0.0 \
--port 8080
```

With Environment Variables:

```
export AIQ_MCP_HOST=0.0.0.0
export AIQ_MCP_PORT=8080
aiq mcp --config_file config.yml
```

Integration with External MCP Clients

AIQ MCP server is compatible with any MCP client:

Claude Desktop Integration:

```
json

// claude_desktop_config.json
{
   "mcpServers": {
     "aiq-calculator": {
     "url": "http://localhost:9901/sse"
     }
   }
}
```

Custom Python MCP Client:

pyt	hon		

```
import httpx
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio client
async def use aiq tools():
  async with httpx.AsyncClient() as client:
    # Connect to AIQ MCP server
    response = await client.get(
       "http://localhost:9901/sse/tools/list"
    tools = response.json()
    # Call tool
    result = await client.post(
       "http://localhost:9901/sse/tools/call",
       json={
         "name": "calculator_multiply",
          "arguments": {"text": "5 * 3"}
    print(result.json())
```

Advanced Patterns

1. Hierarchical Agent Architecture

Pattern: Specialized sub-agents coordinated by parent agent

```
llms:
 main llm:
  _type: nim_llm
  model name: gpt-4
 fast llm:
  _type: nim_llm
  model_name: gpt-3.5-turbo
functions:
 # Calculation sub-agent
 math_tools:
  calculator add:
   _type: calculator_add
  calculator_multiply:
   _type: calculator_multiply
 math_agent:
  _type: tool_calling_agent
  tool_names: [calculator_add, calculator_multiply]
  llm_name: fast_llm
  description: "Performs mathematical calculations efficiently"
 # Research sub-agent
 research_tools:
  wikipedia_search:
   _type: wikipedia_search
  web_search:
   _type: web_search
 research_agent:
  _type: react_agent
```

```
tool_names: [wikipedia_search, web_search]
  llm name: main llm
  description: "Researches information from various sources"
 # Code generation sub-agent
 code_agent:
  _type: reasoning_agent
 llm_name: main_llm
 augmented_fn: code_generator
  description: "Generates and debugs code"
# Coordinator agent
workflow:
 _type: react_agent
tool_names: [math_agent, research_agent, code_agent]
llm_name: main_llm
verbose: true
```

Execution:

```
User: "Research Python's creator and calculate their age if born in 1956"
Coordinator Agent:
 Thought: Need to research AND calculate
 Action: research_agent
 Input: "Python programming language creator"
Research Agent:
 → wikipedia search("Python creator")
 → Returns: "Guido van Rossum, born 1956"
Coordinator Agent:
 Thought: Now calculate age
 Action: math_agent
 Input: "2025 - 1956"
Math Agent:
 \rightarrow calculator subtract(2025, 1956)
 → Returns: 69
Coordinator Agent:
 Final Answer: "Guido van Rossum, born 1956, is 69 years old"
```

2. Hybrid Agent Pattern

Pattern: Combine different agent types for optimal performance

```
functions:
 # Fast tool calling for simple operations
 quick tools agent:
  type: tool calling agent
  tool names: [calculator, datetime, string format]
  llm name: fast llm
  description: "Fast execution of simple operations"
 # ReAct for complex reasoning
 reasoning tools agent:
  type: react agent
  tool names: [database query, api call, data analysis]
  llm name: smart llm
  description: "Complex reasoning tasks"
 # ReWOO for token-efficient multi-step
 pipeline_agent:
  _type: rewoo_agent
  tool names: [extract, transform, load]
  llm_name: efficient_llm
  description: "Data pipeline operations"
# Router selects appropriate agent
workflow:
 _type: react_agent
 tool names: [quick tools agent, reasoning tools agent, pipeline agent]
llm name: router llm
 system_prompt:
  Route tasks to agents:
  - quick tools agent: Simple, fast operations
```

- reasoning_tools_agent: Complex decision making
- pipeline_agent: Multi-step data workflows

3. MCP Microservices Architecture

Pattern: Distribute tools across multiple MCP servers

Service 1: Math Service

```
# math-service/config.yml

functions:
    calculator_add:
    _type: calculator_add
    calculator_multiply:
    _type: calculator_multiply
    calculator_divide:
    _type: calculator_divide

workflow:
    _type: tool_calling_agent
    tool_names: [calculator_add, calculator_multiply, calculator_divide]

llm_name: local_llm
```

```
# Start on port 9901
aiq mcp --config_file math-service/config.yml --port 9901
```

Service 2: Data Service

```
yaml

# data-service/config.yml

functions:
database_query:
_type: database_query
csv_reader:
_type: csv_reader
json_parser:
_type: json_parser

workflow:
_type: react_agent
tool_names: [database_query, csv_reader, json_parser]
llm_name: local_llm
```

```
# Start on port 9902
aiq mcp --config_file data-service/config.yml --port 9902
```

Service 3: AI Service

```
# ai-service/config.yml

functions:

image_analyzer:
   _type: image_analyzer

text_summarizer:
   _type: text_summarizer

sentiment_analyzer:
   _type: sentiment_analyzer

workflow:
   _type: reasoning_agent
augmented_fn: image_processor

llm_name: vision_llm
```

```
# Start on port 9903
aiq mcp --config_file ai-service/config.yml --port 9903
```

Orchestrator Service

```
# orchestrator/config.yml
functions:
# Math service tools
 math add:
  _type: mcp_tool_wrapper
  url: "http://localhost:9901/sse"
  mcp_tool_name: calculator_add
 math_multiply:
  _type: mcp_tool_wrapper
  url: "http://localhost:9901/sse"
  mcp_tool_name: calculator_multiply
 # Data service tools
 db_query:
  _type: mcp_tool_wrapper
  url: "http://localhost:9902/sse"
  mcp_tool_name: database_query
 csv_read:
  _type: mcp_tool_wrapper
  url: "http://localhost:9902/sse"
  mcp_tool_name: csv_reader
 # AI service tools
 analyze_image:
  _type: mcp_tool_wrapper
  url: "http://localhost:9903/sse"
  mcp_tool_name: image_analyzer
 summarize_text:
  _type: mcp_tool_wrapper
```

```
url: "http://localhost:9903/sse"
    mcp_tool_name: text_summarizer

workflow:
    _type: react_agent
tool_names:
    - math_add
    - math_multiply
    - db_query
    - csv_read
    - analyze_image
    - summarize_text
Ilm_name: orchestrator_llm
```

```
# Run orchestrator
aiq run --config_file orchestrator/config.yml --input "Query sales data and calculate total"
```

Architecture Benefits:

- Scalability: Scale individual services independently
- Isolation: Service failures don't crash entire system
- **Deployment**: Update services without redeploying everything
- Load Balancing: Route requests to multiple instances

Production Patterns

1. Error Handling & Resilience

```
yaml
workflow:
 _type: react_agent
 tool_names: [flaky_api, backup_api]
 llm_name: nim_llm
 # Retry configuration
 max_retries: 3
 retry_parsing_errors: true
 handle parsing errors: true
 # Tool error handling
 handle_tool_errors: true
 # Timeout configuration
 max_iterations: 15
 # Logging
 verbose: true
```

Custom Error Handler:

python				

```
from aiqtoolkit import Function

class ResilientAPITool(Function):
    def __call__(self, input_data):
        max_attempts = 3
        for attempt in range(max_attempts):
        try:
            result = self.api_call(input_data)
            return result
        except TimeoutError:
            if attempt == max_attempts - 1:
                return "Service unavailable, using cached data"
                time.sleep(2 ** attempt) # Exponential backoff
                except ValueError as e:
                 return f"Invalid input: {str(e)}"
```

2. Observability & Profiling

```
yaml
```

```
workflow:
_type: react_agent
tool_names: [tool1, tool2, tool3]
llm_name: nim_llm
verbose: true

# Profiling
enable_profiling: true

# OpenTelemetry observability
enable_tracing: true
tracing_backend: phoenix # or weave
```

Profiling Output:

```
Workflow Execution Profile:

|-- Agent: react_agent (5.2s)
| |-- LLM Call 1 (1.2s) - 450 tokens
| |-- Tool: wikipedia_search (2.1s)
| |-- LLM Call 2 (0.9s) - 320 tokens
| |-- Tool: calculator (0.05s)
|-- Total: 5.2s, 770 tokens
```

3. Caching Strategy

```
Ilms:
    cached_llm:
    _type: nim_llm
    model_name: gpt-4
    enable_caching: true
    cache_ttl: 3600 # 1 hour

functions:
    expensive_search:
    _type: wikipedia_search
    enable_caching: true
    cache_backend: redis
    cache_ttl: 1800
```

4. Rate Limiting

```
functions:
    rate_limited_api:
    _type: external_api
    rate_limit:
    requests_per_minute: 60
    burst_size: 10

expensive_llm_call:
    _type: nim_llm
    rate_limit:
    tokens_per_minute: 10000
    requests_per_minute: 20
```

Development Workflow

1. Local Development

```
bash

# Install in development mode
git clone https://github.com/NVIDIA/AIQToolkit.git
cd AIQToolkit
uv pip install -e '.[dev]'

# Install with specific integrations
uv pip install -e '.[langchain,llamaindex]'
```

2. Testing Tools


```
# test-config.yml

functions:

test_calculator:
    _type: calculator_add

test_mock_api:
    _type: mock_api
    responses:
    - input: "test"
    output: "success"

workflow:
    _type: tool_calling_agent
    tool_names: [test_calculator, test_mock_api]
    llm_name: test_llm
```

```
bash

# Run tests
aiq run --config_file test-config.yml --input "test query"
```

3. Interactive UI Development

bash

```
# Launch UI for debugging
aiq ui --config_file config.yml

# Opens browser at http://localhost:8000

# Features:
# - Interactive chat
# - Tool call visualization
# - Step-by-step debugging
# - Token usage tracking
```

4. Evaluation

```
# eval-config.yml
evaluation:
dataset: test-queries.jsonl
metrics:
- accuracy
- latency
- token_usage
- tool_call_correctness

test_cases:
- input: "What is 2 + 2?"
expected: "4"
- input: "Who created Python?"
expected: "Guido van Rossum"
```

aiq evaluate --config_file eval-config.yml

Custom Tool Development

Basic Tool

python		

```
from aiqtoolkit import Function, FunctionBaseConfig
from pydantic import BaseModel, Field
# Input schema
class MyToolInput(BaseModel):
  query: str = Field(description="Query parameter")
  limit: int = Field(default=10, description="Result limit")
# Configuration
class MyToolConfig(FunctionBaseConfig, name="my custom tool"):
  api key: str = Field(description="API key for service")
  endpoint: str = Field(default="https://api.example.com")
# Implementation
class MyCustomTool(Function):
  def init (self, config: MyToolConfig):
    super().__init__(config)
    self.api_key = config.api_key
    self.endpoint = config.endpoint
  @property
  def input schema(self):
    return MyToolInput
  @property
  def name(self):
    return "my_custom_tool"
  @property
  def description(self):
    return "Custom tool for specific functionality"
```

```
def __call__(self, query: str, limit: int = 10) -> str:
    # Implementation
    result = self.call_api(query, limit)
    return f"Found {len(result)} results"

def call_api(self, query, limit):
    # API call logic
    pass
```

YAML Usage

```
functions:

my_tool:
    _type: my_custom_tool

api_key: ${MY_API_KEY}}

endpoint: "https://api.example.com"

workflow:
    _type: react_agent

tool_names: [my_tool]

llm_name: nim_llm
```

Best Practices

1. Agent Selection Decision Tree

```
Start |
```

```
Need complex reasoning between steps?
| Yes → Need token efficiency?
| Yes → ReWOO Agent
| No → ReAct Agent
| No → Have reasoning LLM?
| Yes → Reasoning Agent (with Tool Calling base)
| No → Tool Calling Agent
| Need debugging visibility? → ReAct Agent
```

2. Tool Design Principles

- 1. **Single Responsibility**: One tool = one clear purpose
- 2. **Descriptive Names**: (calculate_mortgage_payment) > (calc
- 3. Rich Descriptions: Include examples in descriptions
- 4. Schema Validation: Always define input schemas
- 5. Error Messages: Return actionable error messages

3. Prompt Engineering

Good Tool Description:


```
description = """

Calculate monthly mortgage payment including principal and interest.

Parameters:
- principal: Loan amount in dollars (e.g., 300000)
- interest_rate: Annual interest rate as percentage (e.g., 3.5)
- years: Loan term in years (e.g., 30)

Returns: Monthly payment amount in dollars

Example: calculate_mortgage(300000, 3.5, 30) → $1347.13
```

Bad Tool Description:

```
python

description = "Calculates mortgage" # Too vague!
```

4. Configuration Management

```
# Use environment variables
llms:
production llm:
  _type: nim_llm
 model_name: ${LLM_MODEL_NAME}
 api_key: ${LLM_API_KEY}
  endpoint: ${LLM_ENDPOINT}
# Use includes for modularity
functions:
 include:
 - tools/math_tools.yml
 - tools/search tools.yml
 - tools/api tools.yml
# Environment-specific configs
workflow:
 _type: react_agent
tool_names: ${TOOL_NAMES} # Different per environment
verbose: ${DEBUG_MODE}
```

5. Performance Optimization

```
# Token optimization
workflow:
 type: rewoo agent # Most token-efficient
max history: 5 #Limit context
include tool input schema in tool description: false # Reduce prompt size
# Speed optimization
workflow:
 _type: tool_calling_agent #Fastest execution
max iterations: 5
                       # Prevent long chains
handle tool errors: false #Fail fast
# Quality optimization
workflow:
 _type: reasoning_agent
llm name: best llm
augmented_fn: react_agent
verbose: true
```

Common Patterns & Examples

Pattern 1: RAG Agent

yaml			

```
functions:
vector search:
  type: vector search
  embedding model: text-embedding-ada-002
  index name: knowledge base
 reranker:
  _type: cross_encoder_reranker
  model name: cross-encoder/ms-marco-MiniLM-L-6-v2
 document qa:
  _type: react_agent
 tool_names: [vector_search, reranker]
 llm name: gpt-4
  system_prompt:
  You are a QA agent. Use vector search to find relevant documents,
   then reranker to select the best ones. Answer based only on retrieved content.
workflow:
 _type: reasoning_agent
llm_name: deepseek_r1
augmented_fn: document_qa
```

Pattern 2: Code Agent

yaml			

```
functions:
 code interpreter:
  _type: python_repl
  sandbox: true
 linter:
  _type: code_linter
  languages: [python, javascript]
 test runner:
  _type: pytest_runner
 code_agent:
  _type: react_agent
  tool_names: [code_interpreter, linter, test_runner]
  llm_name: code_llm
  system_prompt: |
   Generate code, lint it, run tests. Iterate until all tests pass.
workflow:
 _type: reasoning_agent
llm_name: reasoning_llm
 augmented_fn: code_agent
```

Pattern 3: Multi-Modal Agent

yaml			

```
functions:
image analyzer:
  type: vision api
 model: gpt-4-vision
 image_generator:
  _type: dalle_api
 model: dall-e-3
 ocr tool:
  _type: ocr_engine
 multimodal agent:
  _type: tool_calling_agent
 tool_names: [image_analyzer, image_generator, ocr_tool]
 llm name: vision llm
workflow:
 _type: reasoning_agent
llm_name: reasoning_llm
augmented_fn: multimodal_agent
```

Conclusion

NVIDIA Agent Intelligence Toolkit provides:

- 1. Four Agent Types for different use cases
- 2. Full MCP Support for distributed architectures
- 3. Framework Agnostic design

- 4. **Production Ready** with observability and profiling
- 5. Highly Composable function-based architecture

Quick Selection Guide:

- ReAct: Complex, unpredictable workflows
- Reasoning: High-quality planning with reasoning LLMs
- **ReWOO**: Token-efficient, predictable workflows
- Tool Calling: Fast, structured tasks

Next Steps:

- 1. Install: (uv pip install aiqtoolkit)
- 2. Choose agent type based on your use case
- 3. Define tools in YAML
- 4. Run: (aiq run --config_file config.yml --input "query")
- 5. Iterate and optimize

For full documentation: https://docs.nvidia.com/aiqtoolkit/latest/