Malh 556 Lecture 17 - Wed March 10 - Differhation and integration	①
Differentiation in one variable (Rudin ch 5 = Mc Mullen \$5)	<u> </u>
Def: $f: [a,b] \rightarrow \mathbb{R}$ is differentiable at x if $\lim_{t\to x} \frac{f(t)-f(x)}{t-x} = f'(x)$ exists.	
(ie. $\forall \epsilon \exists S \text{ st. } 0 < \xi - \kappa < S \Rightarrow \frac{f(\xi) - f(\kappa)}{\xi - \kappa} - f'(\kappa) < \mathcal{E}.$)	`
Prop: If differentiable at $x \Rightarrow f$ continuous at x . (The convenies false, eg. $ x $ at 0) <u>.</u>
$Pf; f(t)-f(k) = \frac{f(t)-f(k)}{(t-x)}$	
$\frac{Pf}{f(x)} = \frac{f(f) - f(x)}{t - x} \cdot (t - x)$ $f'(x) \text{ as } t - x$ $\begin{cases} f'(x) \text{ as } t - x \end{cases} + \text{rm liplication is } \Rightarrow f(t) - f(x) \rightarrow f'(x) \text{ continuous}$)=0.
. Usual rules of calculation hold: decrating of f+g, fg,; (fog)(x) = f"(g(x)).g"((see Rud's p 104·105).	(×)
$\frac{Ex}{f(x)} = x \sin \frac{1}{x} (x \neq 0) $ $\int_{Continuous}^{\infty} \int_{Continuous}^{\infty} \int_{Continuou$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.
• $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(n! x)$ continuous (seis conveges uniformly, since $\sum_{n=1}^{\infty} \cos(n! x)$, differential (see also Rudin 7.18 for a related example).	ble!
* Mean value theorem. f: [a,b] - R differentiable =>] c = (a,b) st. f(b) - f(a) = f'(c).(b-a)	•
Follows logically from easier results:	
(1) if $f: [a,b] \to \mathbb{R}$ has a local max (or min) at $x \in (a,b)$ (i.e. max of $f _{(x-6,x+6)}$ and f is differentiable at x , then $f'(x)=0$.	s))
(because $\frac{f(t)-f(x)}{t-x}$ is $\geqslant 0$ for $t\in(x-\delta,x)$ = take lim. as $t\rightarrow x$ from legal $t\rightarrow x$ from in	
(2) if $f: [a,b] \rightarrow \mathbb{R}$ is differentiable and $f(a) = f(b)$ then $\exists c \in (a,b)$ st- $f'(c) = 0$	
clear if f is constant; otherwise look at max or min of f over [9,6] & app	hy (1)
(3) mean val. then = apply (2) to $g(x) = f(x) - \frac{f(b) - f(a)}{b - a} x$.	- •
Corollay: mean value inequality: $m \in f'(x) \leq M$ $\forall x \in (a, b) \Rightarrow m(b-a) \leq f(b) - f(a) \leq M(b)$'s-a)
* Generalization: Taylor's heaven:	
f: [a,b] -IR n times differentiable. The deg.(n-1) Taylor polynomial of f at a is;	

· now: the mean value than for g; g(a)=g(b)=0 → 3 x1 ∈ (a,b) st. g'(x1)=0. (2) and so on until $\exists c = x_n \in (a, x_{n-1})$ st. $g^{(n)}(c) = 0$. Ie: $f^{(n)}(c) - \frac{n! f(b)}{(b-a)^n} = 0$. If Rmle: . can conjune f(x) to P(x) by applying than to [a,x] instead! · as with mean value inequality: a bound $|f^{(n)}| \le M$ gives a bound $|f(x)-P(x)| \le \frac{M(x-a)^n}{n!}$ over [a,b]. Rok: there exist nowzero functions whose Taylor polynomials are all zero! eg. $f(x) = \exp(-\frac{1}{x^2})$, f(0) = 0; $f \in C^{\infty}$ (all derivative exist), $f^{(k)}(0) = 0$ $\forall k$ so the Taylor polynomials are all zero! The Taylor seies of f at O conveyes but ff! (in other examples, it can also have R=0 ic never conveyed for xfa). Most Co findions aren't analytic, ie. can't be written as power series. Let $C^{k}([a,b],R) = \{k. \text{ himes differentiable functions, } f^{(k)} \text{ continuous}\}$, with $\|f\|_{C^{k}} = \sum_{j=0}^{k} \|f^{(j)}\|_{C^{k}}$ Thm: $f_n \in C^1$, $f_n \to f$ pointwise, $f'_n \to g$ uniformly $\Rightarrow f \in C^1$ and $f' = g (lef_n - f uniformly)$ $\frac{Pf: \star fix \ z + y \in [a,b], \ mean \ value \ theorem \ \Rightarrow (\star) \frac{f_n(y) - f_n(x)}{y - x} = f_n'(c_n) \ \text{ for some } \ c_n \in [x,y]}{y - x}$ The left hand side $\rightarrow \frac{f(y) - f(x)}{y - x}$ as $n \to \infty$. For the right hand side: (cn) has a subsequence (cnx) converging to some $c \in [x,y]$. Since f'n is continuous, the uniform limit g is continuous; we claim for (cont) -> g(c). Indeed: fix $\epsilon>0$, let s st. $|t-c|<\delta \Rightarrow |g(t)-g(c)|<\frac{\epsilon}{2}$, and let N st. $n \ge N \Rightarrow \sup |f_n' - g| \le and |\eta_k \ge N \Rightarrow |C_{n_k} - c| \le \delta$. Then for $\eta_k \ge N$, $|f'_{n_k}(c_{n_k}) - g(c)| \le |f'_{n_k}(c_{n_k}) - g(c_{n_k})| + |g(c_{n_k}) - g(c)| \le \varepsilon$ Hence: returning to (+) and taking limit as now: $\exists c \in [x,y]$ st. $\frac{f(y)-f(x)}{y-x} = g(c)$. We now take the limit as $y \to x$: the rhs. $\to g(x)$ using continuity of g and the fact that $|c-x| \leq |y-x|$ (check this!). Hence f is differentiable of x and f'(x) = g(x). (+since g is continuous, $f \in C^1$), * Finally: mean value ineq. \Rightarrow $|f_n(x) - f(x)| \leq |f_n(a) - f(a)| + |x-a| \sup |f_n - f'|$ give a wifin bound so sup far-fl-10. ->0 {(b-a) -10 since far g uniformly Conllay: (Ch([a,6], R) is a complete metric space PF: Using completeness of Co (uniform top), (fn) cauchy in C1 = fn, fn cauchy in C0 => I uniform limits f,g (Co) fe C1 and f'=g. Now {fint} uniformly > fint of. This proves the case k=1. Repeat same organist for successive derivatives for k>1. 1.

Corollay: $\int f(x) = \sum a_n x^n$ power seize with radius of convergence = R \Rightarrow f(x) is C^{∞} over (-R,R), and $f'(x) = \sum_{n=1}^{\infty} x^{n-1}$. If: $f = \sum a_n x^n$ and $g = \sum n a_n x^{n-1}$ have the same radius of convergence, so the partial shows for both converge uniformly over compact subsets of (-R,R), hence $f \in C^1$ and f' = g. Repeat for successive devaktes $(g \in C^1 \text{ so } f \in C^2,...)$ Internation (Riemann S, see Mall 114 for Lebesgue integral and ruch more) The definite integral of continuous functions is a linear operator I i C([a,6]) -> IR, for each $a(b \in \mathbb{R})$, $\int_{a}^{b} (f+g) dx = \int_{a}^{b} f + \int_{a}^{b} g + \int_{a}^{b} f + \int_{a}^{b} f$ 1) If $f \ge 0$ then $\int_a^b f dx \ge 0$ (=) if $f \ge g$ then $\int_a^6 f dx \ge \int_a^6 g dx$). 2) If acceb hen Sofdx = Sofdx + Sofdx. (3) So 1 dx = b-a. In fact, such a linear map is unique; he difference between different Kennies of integration is in how much more general functions we allow ourselves to integrate. The Riemann integral starts from step function: s(x): [a,b] - 1R such that $\exists a=x_0 < x_1 < ... < x_n=b$ ch. s(x) is carefact our each (x_{i-1},x_i) , $s(x)=s_i$. (the values at x; don't matter). Then 2)+3) suggest we must have $I(s) = \int_a^b s(x) dx = \sum_{i=1}^b s_i (x_i - x_{i-1}).$ This definition of the integral for step functions satisfies the required axioms. Next; if $s \le f \le S$ for s, S step functions, then $\int_a^b dx \le \int_a^b f dx \le \int_a^b S dx$. In particular: f: [a,b] -s R bounded => fixing a=x, <x, < . < x, =b, we can take $s_i = \inf f([x_{i-1}, x_i])$ and $S_i = \sup f([x_{i-1}, x_i])$, giving the lover and uper Riemann suns of for the given partition of [9,6]. s det bounds on f

S dx < S s'dx < S f dx < S s'dx < S dx Refining lie. subdividing further) gives better bounds on f Lower and yer Riemann integral: s step function $I_(f) = \sup \left\{ \int_a^b s \, dx \right\}$ $\forall f$ bounded $[a,b] \rightarrow R$, $I_{-}(F) \leq I_{+}(F)$ $I_{+}(f) = \inf \{ \int_{a}^{b} S dx |$ S > f on (9,5) } S step fuction if $I_{+}(F) = I_{-}(F)$; we set $\int_{a}^{b} f dx = I_{+}(F)$. Def. f is Reman integrable, f E R([a,5]),

Then, Continuous functions are Remain integrable.

Pf: The key ingular is uniform continuity: $\forall \varepsilon > 0 \exists S \text{ st. } x,y \in [a,b]$, $|x-y| < S \Rightarrow |f(x)-f(y)| < \varepsilon$.

(Recall: this is proved by applying the Lebesgue number lemma to the open cover $(a,b] \subset \bigcup_{C \in \mathbb{R}} f^{-1}((c,c+\varepsilon)): \exists S>0 \text{ st. } |x-y| = diam(\{x,y\}) < S \Rightarrow \exists c \text{ st. } \{x,y\} = f((c,c+\varepsilon))$

Thus; given $\varepsilon>0$, take S as in uniform continuity, and split $a=\kappa_0 < \kappa_1 < \dots < \kappa_n = b$. st. $x_{i+1}-x_i < S$ $\forall i$. Then $s_i=\min \ f([x_i,x_{i+1}])$, $S_i=\max \ f([x_i,x_{i+1}])$ (attained) satisfy $S_i'-s_i < \varepsilon$ $\forall i'$, and $s_i \in f \in S_i$ on $[x_i,x_{i+1}]$. Let A, S = step functions taking values A_i , S_i on $[x_i,x_{i+1}]$: $A \subseteq f \subseteq S$ on [q,G], so $I(A) \subseteq I(f)$, $I(S) \ge I_1(f)$;

revover, $S_i-s_i \in S$ $\forall i'$ so $I(S)-I(A) \in S(G-A)$.

Hence: $I_{+}(F) - I_{-}(F) \angle \mathcal{E}(6-\alpha)$ $\forall \epsilon > 0 \Rightarrow I_{+}(F) = I_{-}(F)$ $f \in \mathbb{R}([95])$. \square

Rook: piecewise continuous functions are also integrable; and so do some stranger functions (see Rudin & see HW). However for example $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{is not Riemann integrable} \end{cases} \begin{pmatrix} I_{-}(f) = 0 \\ I_{+}(f) = b-a \end{pmatrix}.$

The lebesgue integral allows more general decompositions into "measurable" subsets (rather than just sub-intervals) & allows more general functions to be integrated (including unbounded functions, which are never Riemann integrable) (eg for Riemann integration, $\int_0^{\infty} \frac{1}{\sqrt{t}} dt = \frac{1}{2} \sqrt{x}$ only makes sense as an "improper integral" ie. $\lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} ... \text{ whereas lebesgue can handle this & worse).}$

- In fact, lebesque gave a characterization of exactly which functions are Riemann. integrable: $f \in \mathcal{R}([a,b])$ iff f is bounded on [a,b] and the set of pints where f is discontinuous has lebesque measure O, which means: $\forall E>0$ $\exists (Ii)$ at most contable collection of open intervals at $E\subset UI$; and $E \log k(Ii) \angle E$.
- · It is easy to check (do it!) that $\Re([a,b])$ is a vector space, $I:\Re([a,b]) \to R$ is linear and satisfies the above axioms.
- Fundamental Man of calculus: if f is contimons on [a,b] then $F(x) = \int_a^x f(t)dt$ is differentiable and F'=f.

 $\underline{Pf}: \frac{1}{h}(F(x+h)-F(h)) = \frac{1}{h} \int_{x}^{x+h} f(t)dt \longrightarrow f(x) \text{ using continuity of } f \xrightarrow{x} x \text{ to estimate the integral } f \xrightarrow{x} h \rightarrow 0. \square$

Thm: I: $C^0(Gab) \rightarrow \mathbb{R}$ is continuous with reject to the uniform topology: if $f_n \rightarrow f$ withouty then $\int_a^b f_n dx \longrightarrow \int_a^b f dx$.

The fact, $|\int f dx - \int g dx| \le \int |f-g| dx \le (b-a)$ sup |f-g|.

On the other hand, pointwise convergence isn't enough: $f_n = 2n$ $f_n \to 0$ pointwise but $\int_0^1 f_n dx = 1 + s \int_0^1 0 dx = 0$.

* Besides ||floo = sup If1, we have other nows on the vector space C°([a,6], R): narely $\|f\|_1 = \int_a^b |f(x)| dx$, and also $\|f\|_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p} \forall p \ge 1$.

(Triangle inequality follows from Hölder's inequality, if homework).

These are called the LP norms; since ||flp = (6-a) 1/P ||flow, ballo for 1.1/p contain balls for 1.1/00 and the topologies defined by these metrics are coarser than the uniform topology; (C°([a,b]), (.1p) isn't complete, its completion is the lessogne space LP([a, b]) - see Math 114!

Ex: $f_n = 1$ is cauchy in L^1 norm, in fact converges in L^2 to its point with f = 1 f(1) = $\left(\int_{n}^{1}\left|f_{n}-f\right|dx=\frac{1}{2n}\rightarrow0\right)$, but $f\notin C^{\circ}$.

L¹ is quite natural, but so is L², which comes from an inner product $\langle f, g \rangle_{L^2} = \int_a^b f g \, dx$ $(\Rightarrow) ||f||_{L^2} = \sqrt{\langle f, f \rangle}$.

(Carchy Schwaz: <f,g> < ||f||_{L2} ||g||_{L2} is a special case of Hölde's ineq.)