MT23-Algèbre linéaire

Chapitre 6 : Equations différentielles

ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES

UTC

Chapitre VI Equations différentielles

VI.I	Rappels	و
VI.2	Systèmes d'équations différentielles	7
VI.3	Existence et unicité des solutions des systèmes différentiels	12
VI.4	Systèmes à coefficients constants	19
VI.5	Equations différentielles du second ordre à coefficients constants	24
VI.6	Systèmes différentiels à coefficients non constants	29

Sommaire Concepts

VI.1 Rappels

VI.1.1	Existence et unicité des solutions d'une équation différentielle	4
VI.1.2	Théorème de Cauchy-Lipschitz	6

Sommaire Concepts

Exercices Documents

VI.1.1 Existence et unicité des solutions d'une équation différentielle

Nous allons commencer par rappeler dans le premier paragraphe quelques résultats généraux sur les solutions des équations différentielles avant d'aborder la résolution des systèmes d'équations différentielles linéaires.

Soit I un intervalle ouvert de $\mathbb R$ et soit $f:I\times\mathbb R\to\mathbb R$, une équation différentielle est une équation de la forme

$$x'(t) = f(t, x(t)), \quad (x'(t) = \frac{dx}{dt}).$$
 (VI.1.1)

Il faut ajouter une condition initiale pour préciser la solution désirée :

$$x(t_0) = x_0, t_0 \in I, x_0 \in \mathbb{R}.$$
 (VI.1.2)

Unicité

Le système (VI.1.1)(VI.1.2) n'a pas toujours une seule solution. C'est le cas pour le système

$$\begin{cases} x'(t) = \sqrt{x(t)}, \\ x(0) = 0. \end{cases}$$
 (VI.1.3)

L'équation différentielle est à variables séparables

$$\frac{x'(t)}{\sqrt{x(t)}} = 1 \implies 2\sqrt{x(t)} = t + C.$$

Pour $t + C \ge 0$ uniquement, elle admet la solution $x(t) = \frac{(t + C)^2}{4}$.

Sommaire Concepts

Exemples
Exercices
Documents

Compte-tenu de la condition initiale on a une solution

$$x(t) = \frac{t^2}{4} \text{ pour } t \ge 0.$$

Cette solution n'est pas unique car le système (VI.1.3) admet aussi la solution $x(t) = 0, \forall t \in \mathbb{R}$.

Existence

Le système (VI.1.1)(VI.1.2) n'a pas toujours de solution. Par exemple, soit le système

$$\begin{cases} tx'(t) + x(t) = 0, \\ x(0) = x_0 & (x_0 \neq 0). \end{cases}$$
 (VI.1.4)

La solution de l'équation différentielle est $x(t)=\frac{C}{t}$. Mais elle est incompatible avec la condition initiale $x_0\neq 0$ et donc (VI.1.4) n'a pas de solution. Evidemment si on prend $x_0=0$, la solution unique de (VI.1.4) est $x(t)=0, \ \forall t\in \mathbb{R}$.

Existence et unicité des solutions d'une équation différentielle

Sommaire Concepts

VI.1.2 Théorème de Cauchy-Lipschitz

Théorème VI.1.1. Soit I un intervalle ouvert de \mathbb{R} , $t_0 \in I$ et $f : I \times \mathbb{R} \to \mathbb{R}$ qui vérifie les propriétés suivantes

- 1. f est continue sur $I \times \mathbb{R}$,
- 2. f vérifie la condition de Lipschitz suivante : il existe une constante L > 0 telle que

$$\forall t \in I, \ x, z \in \mathbb{R}, |f(t,x) - f(t,z)| \le L|x - z|,$$

alors le système

$$\begin{cases} x'(t) = f(t, x(t)), \\ x(t_0) = x_0, \end{cases}$$
 (VI.1.5)

admet une solution unique pour tout $t \in I$, quel que soit x_0 donné dans \mathbb{R} .

Si on applique ce théorème à

$$\begin{cases} tx'(t) + x(t) = 0, \\ x(0) = x_0 & (x_0 \neq 0), \end{cases}$$
 (VI.1.6)

alors $f(t,x) = -\frac{x}{t}$ et donc

$$|f(t,x) - f(t,z)| = \frac{|x-z|}{|t|}.$$

On ne pourra donc pas vérifier la condition de Lipschitz du théorème pour un intervalle I qui contient 0.

Ce théorème est aussi valable pour $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ en prenant la norme euclidienne de \mathbb{R}^n au lieu de la valeur absolue.

Sommaire Concepts

VI.2 Systèmes d'équations différentielles

VI.2.1	Définition d'un système d'équations différentielles		8
VI.2.2	Equation différentielle d'ordre n	. 1	(

Sommaire

Concepts

VI.2.1 Définition d'un système d'équations différentielles

Exemple VI.2.1. Le système suivant :

$$\begin{cases} x_1'(t) = (2t-1)x_1(t) + 2(1-t)x_2(t) + 2t, \\ x_2'(t) = (t-1)x_1(t) + (2-t)x_2(t) + t, \end{cases}$$
(VI.2.1)

est un système de deux équations différentielles, dont l'écriture matricielle est

$$x'(t) = A(t)x(t) + g(t)$$
 (VI.2.2)

où

$$x(t) = \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right), \ A(t) = \left(\begin{array}{cc} 2t-1 & 2(1-t) \\ t-1 & 2-t \end{array}\right) \ \text{et} \ g(t) = \left(\begin{array}{c} 2t \\ t \end{array}\right).$$

Dans la suite, plutôt que de parler de x_1 et x_2 solutions du système VI.2.1, on utilisera x le vecteur solution du système VI.2.2 écrit sous forme matricielle. Si x_1 et x_2 sont des fonctions continuement dérivables de $\mathbb R$ dans $\mathbb R$ ($\in \mathcal C^1(\mathbb R,\mathbb R)$), alors bien sûr $x\in (\mathcal C^1(\mathbb R,\mathbb R))^2$.

Définition VI.2.1. On appelle système d'équations différentielles linéaires du premier ordre un système de la forme

$$x'(t) = A(t)x(t) + g(t)$$
 (VI.2.3)

où $A(t) \in \mathcal{M}_{nn}(\mathbb{R})$ est une matrice donnée dont les éléments $a_{ij}(t)$ sont donc des fonctions de la variable t. Le **second membre** g(t) appartient à \mathbb{R}^n , ses composantes $g_i(t)$ sont des fonctions de la variable t.

Sommaire Concepts

On dit que le système est à **coefficients constants** si la matrice A ne dépend pas de la variable t.

On dit que le système est homogène si $g(t) = 0 \ \forall t$.

Définition d'un système d'équations différentielles

Sommaire

Concepts

VI.2.2 Equation différentielle d'ordre n

Exercices:

Exercice A.1.1

Une équation différentielle linéaire d'ordre n se met sous la forme d'un système de n équations différentielles linéaires du premier ordre. En effet soit l'équation

$$z^{(n)}(t) + \alpha_{n-1}(t)z^{(n-1)}(t) + \ldots + \alpha_1(t)z'(t) + \alpha_0(t)z(t) = f(t).$$
 (VI.2.4)

On pose:

$$x_1(t) = z(t), \ x_2(t) = z'(t), \dots, x_n(t) = z^{(n-1)}(t),$$

alors (VI.2.4) se récrit :

$$x'(t) = A(t)x(t) + g(t)$$

où

$$x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ \vdots \\ x_n(t) \end{pmatrix}, A(t) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -\alpha_0(t) & -\alpha_1(t) & -\alpha_2(t) & \dots & -\alpha_{n-2}(t) & -\alpha_{n-1}(t) \end{pmatrix},$$

Sommaire Concepts

Exemples
Exercices
Documents

$$g(t) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ f(t) \end{pmatrix}.$$

Equation différentielle d'ordre n

Sommaire

Concepts

Exemples

Exercices Documents

VI.3 Existence et unicité des solutions des systèmes différentiels

VI.3.1	Notations	13
VI.3.2	Système homogène	15
VI.3.3	Systèmes différentiels avec second membre	17

Sommaire Concepts

VI.3.1 Notations

Exercices:

Exercice A.1.2

Exercice A.1.3

– On note $\mathcal{C}^1(I,\mathbb{R})$ l'espace vectoriel des fonctions continuement dérivables sur I à valeur dans \mathbb{R} . On définit $\left(\mathcal{C}^1(I,\mathbb{R})\right)^n$ comme d'habitude par :

$$x = (x_1, \dots, x_n) \in (\mathcal{C}^1(I, \mathbb{R}))^n \iff x_i \in \mathcal{C}^1(I, \mathbb{R}), \ 1 \le i \le n.$$

 $-\left(\mathcal{C}^1(I,\mathbb{R})\right)^n$ est un espace vectoriel donc on peut définir la notion de famille libre : $\{X_1,X_2,\ldots,X_p\}$ sont linéairement indépendants ou encore $\{X_1,X_2,\ldots,X_p\}$ est une famille libre si et seulement si :

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_p X_p = 0 \iff \alpha_1 = \alpha_2 = \ldots = \alpha_p = 0.$$

Bien sûr $X_1, X_2, \ldots, X_p, \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_p X_p$ appartiennent à $\left(\mathcal{C}^1(I,\mathbb{R})\right)^n$, par exemple $X_1 = (x_{11}, x_{21}, \ldots, x_{n1})$ où $x_{11}, x_{21}, \ldots, x_{n1}$ sont des fonctions appartenant à $\mathcal{C}^1(I,\mathbb{R})$.

On rappelle que:

$$\begin{array}{l} \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_p X_p = 0 \Longleftrightarrow \alpha_1 X_1(t) + \alpha_2 X_2(t) + \ldots + \alpha_p X_p(t) = 0 \ \forall t \in I \\ \Longleftrightarrow \alpha_1 x_{i1}(t) + \alpha_2 x_{i2}(t) + \ldots + \alpha_p x_{ip}(t) = 0 \ \forall t \in I, \ \forall i \ \text{comprise entre 1 et } n. \end{array}$$

- On va introduire une notation qui nous servira par la suite :

$$\mathcal{S}_0 = \{ x \in \left(\mathcal{C}^1(I, \mathbb{R}) \right)^n \mid x'(t) = A(t)x(t) \}$$

Sommaire Concepts

Exemples
Exercices
Documents

On peut montrer en exercice que S_0 est un sous espace vectoriel de $(\mathcal{C}^1(I,\mathbb{R}))^n$.

– Dans la suite on suppose que A(t) est une matrice dont tous les coefficients $a_{ij}(t)$ sont des fonctions continues de $J \to \mathbb{R}$, où J est un intervalle fermé borné contenant I.

Notations

Sommaire

Concepts

VI.3.2 Système homogène

 $\begin{array}{lll} Exercices: & Documents: & Cours: \\ Exercice \ A.1.4 & Document \ B.1.1 & Notations \end{array}$

Proposition VI.3.1. Soit:

- $-t_0 \in I$
- $-(\xi_1, \xi_2, \dots, \xi_n)$ un vecteur de \mathbb{R}^n alors il existe un unique $x \in (\mathcal{C}^1(I, \mathbb{R}))^n$ tel que

$$x'(t) = A(t)x(t), x(t_0) = (\xi_1, \xi_2, \dots, \xi_n).$$

Voir la démonstration de cette proposition en document.

Proposition VI.3.2. $S_0 = \{x \in (C^1(I,\mathbb{R}))^n \mid x'(t) = A(t)x(t)\}\$ est un sous-espace vectoriel de $(C^1(I,\mathbb{R}))^n$ de dimension n.

Donc toute solution de x'(t) = A(t)x(t) peut s'écrire sous la forme

$$x = \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_n X_n,$$

où X_1, X_2, \dots, X_n sont n solutions de x'(t) = A(t)x(t) linéairement indépendantes.

Démonstration – On définit l'application $u: x \mapsto \xi$ de S_0 dans \mathbb{R}^n , qui à $x \in S_0$ associe $\xi = x(t_0)$, on a donc $u(x) = x(t_0)$.

Sommaire Concepts

Exemples
Exercices
Documents

- L'application u est linéaire. En effet, $u(\lambda \phi + \mu \psi) = (\lambda \phi + \mu \psi)(t_0) = \lambda \phi(t_0) + \mu \psi(t_0) = \lambda u(\phi) + \mu u(\psi)$.
- -u est injective, en effet la solution du système x'(t)=A(t)x(t) est unique pour une condition initiale donnée, donc si $\phi(t_0)=0$, alors $\phi=0$, donc Ker $u=\{0\}$.
- -u est surjective, en effet pour tout $\xi \in \mathbb{R}^n$ il existe une solution ϕ au système différentiel $\phi'(t) = A(t)\phi(t)$ qui vérifie $\phi(t_0) = \xi$, donc $u(\phi) = \xi$.
- L'application u est donc un isomorphisme de S_0 dans \mathbb{R}^n , ce qui démontre que la dimension S_0 est égale à la dimension de \mathbb{R}^n , c'est à dire n.

Système homogène

Sommaire Concepts

VI.3.3 Systèmes différentiels avec second membre

Exercices: Cours: Exercice A.1.5 Notations

Système homogène

Proposition VI.3.3. Soit $g \in (C^0(I,\mathbb{R}))^n$, la solution générale de l'équation

$$x'(t) = A(t)x(t) + g(t)$$

s'écrit

$$x = x_p + x_h$$

où x_p est une solution particulière qui vérifie :

$$x_p'(t) = A(t)x_p(t) + g(t)$$

et où x_h est la solution générale du système homogène correspondant donc si X_1, X_2, \dots, X_n sont n solutions linéairement indépendantes du système homogène, on a

$$x_h = \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_n X_n.$$

Démonstration – On peut démontrer comme pour les systèmes homogènes qu'il existe au moins une solution à l'équation

$$x'(t) = A(t)x(t) + g(t).$$

Sommaire Concepts

Exemples
Exercices
Documents

Cette solution est unique si on fixe $x(t_0)$. Appelons x_p une solution particulière. $x-x_p$ vérifie l'équation homogène

$$(x - x_p)'(t) = A(t)(x - x_p)(t),$$

ce qui implique que $x - x_p \in \mathcal{S}_0$ et donc

$$x - x_p = \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_n X_n$$

d'où le résultat.

Systèmes différentiels avec second membre

Sommaire Concepts

VI.4 Systèmes à coefficients constants

VI.4.1	Systèmes homogènes à coefficients constants avec A diagonali-
	sable
VI.4.2	Systèmes homogènes à coefficients constants avec A non diagona-
	lisable
VI.4.3	Systèmes non homogènes à coefficients constants 23

Sommaire Concepts

VI.4.1 Systèmes homogènes à coefficients constants avec A diagonalisable

Exercices:

Exercice A.1.6

Exercice A.1.7

Dans toute cette section on supposera que la matrice A ne dépend pas de t.

Traiter l'exercice A.1.6, on voit alors que le système différentiel est très facile à résoudre lorsque la matrice A est diagonale. En fait on peut se ramener à ce cas très simple dès que A est diagonalisable. En effet on peut utiliser :

- $-A = PDP^{-1}$.
- D matrice diagonale dont les termes diagonaux sont les valeurs propres λ_i ,
- -P: matrice des vecteurs propres de $A, P = (Y_1, Y_2, \dots, Y_n)$, pour récrire le système x'(t) = Ax(t) sous la forme

$$x'(t) = PDP^{-1}x(t)$$

soit en multipliant à gauche par P^{-1} et en posant $z(t) = P^{-1}x(t)$

$$z'(t) = Dz(t).$$

Chaque équation $z_i'(t) = \lambda_i z_i(t)$ se résout directement pour donner

$$z_i(t) = \alpha_i e^{\lambda_i t},$$

Sommaire Concepts

Exemples
Exercices
Documents

d'où le résultat

$$x(t) = Pz(t) = \alpha_1 e^{\lambda_1 t} Y_1 + \alpha_2 e^{\lambda_2 t} Y_2 + \ldots + \alpha_n e^{\lambda_n t} Y_n.$$

Proposition VI.4.1. Si la matrice A est diagonalisable, alors toute solution de

$$x'(t) = Ax(t)$$

s'écrit sous la forme

$$x(t) = \alpha_1 e^{\lambda_1 t} Y_1 + \alpha_2 e^{\lambda_2 t} Y_2 + \ldots + \alpha_n e^{\lambda_n t} Y_n$$

où $(\lambda_i)_{i=1,\dots,n}$ sont les valeurs propres de A et $\{Y_1,Y_2,\dots,Y_n\}$ une base de vecteurs propres correspondants.

Systèmes homogènes à coefficients constants avec A diagonalisable

Sommaire Concepts

VI.4.2 Systèmes homogènes à coefficients constants avec A non diagonalisable

Exercices:

Exercice A.1.8

On a montré que A est toujours trigonalisable, c'est à dire il existe T triangulaire supérieure telle que $T=P^{-1}AP$, (la matrice T peut être éventuellement écrite sous forme de Jordan), donc

$$x'(t) = Ax(t) \iff x'(t) = PTP^{-1}x(t) \iff z'(t) = Tz(t)$$

où $z(t) = P^{-1}x(t)$. On a donc

$$\begin{cases} z'_1(t) = \lambda_1 z_1(t) + t_{12} z_2(t) + \ldots + t_{1n} z_n(t) \\ z'_2(t) = \lambda_2 z_2(t) + \ldots + t_{2n} z_n(t) \\ \vdots \\ z'_n(t) = \lambda_n z_n(t) \end{cases}$$

avec sur la diagonale de T les valeurs propres de A. On peut alors résoudre ce système en commencant par résoudre la dernière équation, puis on remplace z_n par sa valeur dans l'équation précédente que l'on peut alors résoudre, etc.

Concepts

VI.4.3 Systèmes non homogènes à coefficients constants

Exercices:

Exercice A.1.9

On veut résoudre

$$x'(t) = Ax(t) + g(t).$$

On suppose que \hat{A} est semblable à A, c'est à dire $\hat{A} = P^{-1}AP$, on a donc :

$$\begin{split} x'(t) &= P\hat{A}P^{-1}x(t) + g(t) \Longleftrightarrow \\ P^{-1}x'(t) &= \hat{A}P^{-1}x(t) + P^{-1}g(t) \Longleftrightarrow \\ z'(t) &= \hat{A}z(t) + \hat{g}(t) \text{ où } z(t) = P^{-1}x(t), \hat{g}(t) = P^{-1}g(t). \end{split}$$

Si \hat{A} est diagonale ou triangulaire, on sait résoudre ce dernier système, ce qui permet d'obtenir z.

On en déduit x par :

$$x(t) = Pz(t).$$

Sommaire Concepts

VI.5 Equations différentielles du second ordre à coefficients constants

VI.5.1	Rappels	2
VI.5.2	Solutions d'une équation différentielle du second ordre	26

Sommaire Concepts

VI.5.1 Rappels

Exercices:

Exercice A.1.10

Exercice A.1.11

On veut résoudre l'équation différentielle du second ordre suivante :

$$ay''(t) + by'(t) + cy(t) = 0, \ a, b, c \in \mathbb{R}, a \neq 0.$$
 (VI.5.1)

Vous avez vu dans les cours précédents que pour résoudre une telle équation on écrivait le trinôme caractéristique as^2+bs+c , dont on cherchait les racines complexes. Deux cas peuvent se présenter :

- Si les deux racines sont distinctes, appelons les λ_1 et λ_2 , alors on a :

$$y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t},$$

– Si les deux racines sont confondues (donc réelles), appelons λ cette racine double alors on a :

$$y(t) = (\alpha_1 + \alpha_2 t)e^{\lambda t}.$$

Bien sûr dans le cas de racines distinctes complexes, λ_1 et λ_2 sont complexes conjuguées, si l'on cherche une solution réelle on choisira alors α_1 et α_2 complexes conjugués. Vous pouvez traiter l'exercice A.1.11, vous y trouverez une démonstration dans le cas des racines distinctes.

Concepts

VI.5.2 Solutions d'une équation différentielle du second ordre

Exercices: Cours:

Exercice A.1.12 Equations différentielles du second

Exercice A.1.13 ordre-rappels

Traiter l'exercice A.1.12.

On peut démontrer les résultats énoncés dans le paragraphe référencé en utilisant les propriétés des systèmes différentiels. On transforme l'équation

$$ay''(t) + by'(t) + cy(t) = 0, \ a, b, c \in \mathbb{R}, a \neq 0$$

en un système d'équations différentielles du premier ordre en posant

$$x_1(t) = y(t), \ x_2(t) = y'(t),$$

ce qui donne

$$x'(t) = Ax(t), A = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}.$$

Si l'on calcule les valeurs propres de A (c'est une matrice Compagnon), on est amené à chercher les racines du polynôme caractéristique

$$\det(sI - A) = s^2 + \frac{b}{a}s + \frac{c}{a}$$

et l'on retrouve l'équation caractéristique de (VI.5.1):

$$as^2 + bs + c = 0.$$
 (VI.5.2)

Sommaire Concepts

Exemples
Exercices
Documents

- Si les deux racines de (VI.5.2) sont distinctes, les deux valeurs propres λ_1 et λ_2 de A sont distinctes, la matrice est diagonalisable et l'on a

$$x(t) = \alpha_1 e^{\lambda_1 t} Y_1 + \alpha_2 e^{\lambda_2 t} Y_2$$

où les deux vecteurs propres sont

$$Y_1 = \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix} \text{ et } Y_2 = \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix},$$

et puisque $y(t) = x_1(t)$ on retrouve la solution (bien connue)

$$y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t},$$

les scalaires α_1,α_2 étant réels ou complexes suivant que les valeurs propres sont réelles ou complexes.

– Si les deux racines de (VI.5.2) sont confondues alors on a une valeur propre double $\lambda=-\frac{b}{2a}$, et un sous-espace propre de dimension 1. Un vecteur propre est donné par

$$Y = \left(\begin{array}{c} 1\\ \lambda \end{array}\right)$$

que l'on complète, par exemple, avec le vecteur

$$U = \left(\begin{array}{c} 0\\1 \end{array}\right)$$

pour former une base de \mathbb{R}^2 . Puisque

$$A\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-\frac{b}{a} \end{pmatrix} = \begin{pmatrix} 1\\\lambda \end{pmatrix} - \left(\lambda + \frac{b}{a}\right) \begin{pmatrix} 0\\1 \end{pmatrix} = Y + \lambda U,$$

Solutions d'une équation différentielle du second ordre

Sommaire Concepts

Exemples
Exercices
Documents

ightharpoonup

la matrice T s'écrit

$$T = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right).$$

On résout la deuxième équation, ce qui donne $z_2(t)=\alpha_2 e^{\lambda t}$, que l'on reporte dans la première équation, ce qui donne

$$z_1'(t) = \lambda z_1(t) + \alpha_2 e^{\lambda t}$$

dont les solutions sont

$$z_1(t) = \alpha_1 e^{\lambda t} + \alpha_2 t e^{\lambda t}.$$

Si l'on revient alors à x = Pz, on voit que $y = x_1 = z_1$, ce qui redonne les solutions bien connues

$$y(t) = \alpha_1 e^{\lambda t} + \alpha_2 t e^{\lambda t}, \ \alpha_1, \alpha_2 \in \mathbb{R}, \ (\lambda \in \mathbb{R}).$$

Solutions d'une équation différentielle du second ordre

Sommaire Concepts

VI.6 Systèmes différentiels à coefficients non constants

VI.6.1 Systèmes différentiels à coefficients non constants 30

Sommaire Concepts

VI.6.1 Systèmes différentiels à coefficients non constants

Exercices:

Exercice A.1.14

On veut résoudre le système x'(t)=A(t)x(t)+g(t), bien sûr comme précédemment si la matrice A(t) est diagonale, alors la résolution est immédiate puisqu'on doit résoudre la famille d'équations différentielles linéaires indépendantes

$$x'_{i}(t) = a_{ii}(t)x_{i}(t) + g_{i}(t)$$
, pour $i = 1, 2, ..., n$.

Par contre, si A(t) est diagonalisable, est-il toujours possible, comme dans le cas où A est constante, de se ramener à un système dont la matrice est diagonale? La réponse n'est pas toujours positive. En effet si A dépend du temps t et même si, pour tout t, A(t) est diagonalisable, le changement de base P(t) dépend du paramètre t. Ainsi s'il existe une famille de matrices P(t) régulières telles que

$$D(t) = P^{-1}(t)A(t)P(t)$$

est une matrice diagonale, alors en posant x(t) = P(t)z(t), on obtient

$$P'(t)z(t) + P(t)z'(t) = A(t)P(t)z(t) + g(t)$$

et donc en multipliant à gauche par $P^{-1}(t)$, on obtient

$$P^{-1}(t)P'(t)z(t) + z'(t) = D(t)z(t) + P^{-1}(t)g(t)$$

Sommaire Concepts

Exemples
Exercices
Documents

et donc on n'est pas ramené à un système dont la matrice est diagonale (à cause du premier terme). Sauf bien sûr dans le cas très particulier où P'(t)=0.

L'exemple suivant illustre ce cas : on veut résoudre

$$x'(t) = A(t)x(t) + g(t)$$

où

$$x(t) = \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right), \ A(t) = \left(\begin{array}{cc} 2t-1 & 2(1-t) \\ t-1 & 2-t \end{array}\right) \ \text{et} \ g(t) = \left(\begin{array}{c} 2t \\ t \end{array}\right).$$

La matrice A(t) admet $\lambda_1 = 1, \lambda_2 = t$ comme valeurs propres avec

$$P_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

comme vecteurs propres associés. Donc, si on pose x=Pz, on obtient le système d'équations différentielles

$$\begin{cases} z'_1(t) = z_1(t) \\ z'_2(t) = tz_2(t) + t \end{cases}$$

dont on peut résoudre indépendamment les deux équations différentielles.

Systèmes différentiels à coefficients non constants

> Sommaire Concepts

→ précédent

suivant ▶

Annexe A Exercices

A.1	Exercices du c	hapitre	VI	 									33
A.2	Exercices de T	'D		 									49

Sommaire Concepts

A.1 Exercices du chapitre VI

A.1.1	Ch6-Exercice1	
A.1.2	Ch6-Exercice2	
A.1.3	Ch6-Exercice3	
A.1.4	Ch6-Exercice4	
A.1.5	Ch6-Exercice5	
A.1.6	Ch6-Exercice6	
A.1.7	Ch6-Exercice7	
A.1.8	Ch6-Exercice8	
A.1.9	Ch6-Exercice9	
A.1.10	Ch6-Exercice10	
A.1.11	Ch6-Exercice11	
A.1.12	Ch6-Exercice12	
A.1.13	Ch6-Exercice13	
A.1.14	Ch6-Exercice14	

Sommaire Concepts

Exercice A.1.1 Ch6-Exercice1

On veut résoudre

$$z''(t) + b(t)z'(t) + c(t)z(t) = 0$$
, b et c étant des fonctions réelles.

Transformer cette équation différentielle du second ordre en un système d'équations différentielles du premier ordre

retour au cours

Solution

Sommaire Concepts

Exercice A.1.2 Ch6-Exercice2

On définit X_1, X_2 par $X_1(t) = \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix}, X_2(t) = \begin{pmatrix} 0 \\ e^{-cost} \end{pmatrix}$. Montrer que $\{X_1, X_2\}$ est une famille libre de $\left(\mathcal{C}^1(\mathbb{R},\mathbb{R})\right)^2$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercices Documents

Exercice A.1.3 Ch6-Exercice3

On définit $S_0 = \{x \in (C^1(I,\mathbb{R}))^n \mid x'(t) = A(t)x(t)\}.$ Montrer que S_0 est un sous-espace vectoriel de $(C^1(I,\mathbb{R}))^n$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercices Documents

Exercice A.1.4 Ch6-Exercice4

On définit $A(t)=\left(\begin{array}{cc} 2t & 0 \\ 0 & sint \end{array}\right)$, résoudre x'(t)=A(t)x(t). Montrer que l'on peut écrire

$$x(t) = \alpha_1 X_1(t) + \alpha_2 X_2(t)$$

où X_1, X_2 sont 2 solutions linéairement indépendantes de $(\mathcal{C}^1(\mathbb{R}, \mathbb{R}))^2$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercice A.1.5 Ch6-Exercice5

Résoudre
$$x'(t) = A(t)x(t) + g(t)$$
 où $A(t) = \begin{pmatrix} 2t & 0 \\ 0 & \sin t \end{pmatrix}$, $g(t) = \begin{pmatrix} -t \\ 1 - t\sin t \end{pmatrix}$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercice A.1.6 Ch6-Exercice6

Résoudre le système différentiel x'(t) = Ax(t), avec $A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right)$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercice A.1.7 Ch6-Exercice7

Résoudre le système différentiel x'(t) = Ax(t), avec $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercice A.1.8 Ch6-Exercice8

On définit $A=\left(\begin{array}{cc} 1 & 1 \\ -1 & 3 \end{array}\right)$, montrer que A n'est pas diagonalisable.

On note Y_1 un vecteur propre de A, on choisit Y_2 un vecteur quelconque tel que $\{Y_1,Y_2\}$ soit une famille libre. On définit $P=(Y_1Y_2)$. P est inversible. (pourquoi?)

1. Montrer que $T = P^{-1}AP$ est une matrice triangulaire supérieure qui vérifie

$$t_{11} = t_{22} = 2.$$

2. Résoudre x'(t) = Ax(t).

retour au cours

Solution

Sommaire Concepts

Exercice A.1.9 Ch6-Exercice9

Résoudre le système différentiel x'(t) = Ax(t) + g(t), avec $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$, $g(t) = \begin{pmatrix} t \\ 2t \end{pmatrix}$.

retour au cours

Solution

Sommaire

Concepts

Exemples

Exercice A.1.10 Ch6-Exercice10

Résoudre y'' - 2y' + 2y = 0. Donner les solutions dans $\mathbb C$ puis dans $\mathbb R$.

retour au cours

Solution

Sommaire

Concepts

Exercice A.1.11 Ch6-Exercice11

 $t_0,a,\ b$ et c sont des réels fixés, on suppose $a\neq 0$. On admettra que pour tout couple (y_0,y_1) donné il existe une et une seule fonction $y\in\mathcal{C}^2(\mathbb{R},\mathbb{R})$ vérifiant

$$\begin{cases} ay''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R} \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$
(A.1.1)

On note $S_0 = \{y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \text{ v\'erifiant } y''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R} \}$ On appelle u l'application de S_0 dans \mathbb{R}^2 qui à y associe (y_0, y_1) définis par $y_0 = y(t_0), y_1 = y'(t_0)$.

- 1. Montrer que S_0 est un sous espace vectoriel de $C^2(\mathbb{R}, \mathbb{R})$.
- 2. Montrer que u est linéaire.
- 3. Montrer que u est bijective de S_0 dans \mathbb{R}^2 .
- 4. En déduire que la dimension de S_0 est 2.
- 5. Si λ vérifie $a\lambda^2+b\lambda+c=0$, montrer que la fonction y définie par $y(t)=e^{\lambda t}$ appartient à S_0 .
- 6. On suppose qu'il existe 2 racines distinctes λ_1 et λ_2 de l'équation $a\lambda^2 + b\lambda + c = 0$, montrer que $e^{\lambda_1 t}$ et $e^{\lambda_2 t}$ sont 2 fonctions linéairement indépendantes de S_0 .
- 7. En déduire que $\forall y \in S_0 \ y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$.

Sommaire Concepts

retour au cours

Solution

Exercice A.1.11 Ch6-Exercice11

Sommaire

Concepts

Exemples

Exercice A.1.12 Ch6-Exercice12

- Quel est le polynôme caractéristique de la matrice

$$A = \begin{pmatrix} 0 & 1 \\ -\gamma & -\beta \end{pmatrix}$$
 ($\beta, \gamma \in \mathbb{R}$)?

- Montrer que si λ est une valeur propre de A alors $\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$ est un vecteur propre associé.
- Montrer que si A admet une valeur propre double, elle n'est pas diagonalisable.

retour au cours

Solution

Sommaire Concepts

Exercice A.1.13 Ch6-Exercice 13

Mettre l'équation différentielle y'' - 2y' + 2y = 0 sous forme d'un système différentiel du premier ordre. Puis le résoudre dans \mathbb{C} , comparer avec les résultats obtenus dans l'exercice A.1.10.

retour au cours

Solution

Sommaire Concepts

Exercice A.1.14 Ch6-Exercice14

Résoudre le système :

$$\begin{cases} z_1'(t) = z_1(t) \\ z_2'(t) = tz_2(t) + t \end{cases}$$

En déduire la solution du système différentiel
$$x'(t) = A(t)x(t) + g(t)$$
, avec
$$A(t) = \left(\begin{array}{cc} 2t-1 & 2(1-t) \\ t-1 & 2-t \end{array}\right) \text{ et } g(t) = \left(\begin{array}{c} 2t \\ t \end{array}\right).$$

retour au cours

Solution

Concepts

A.2 Exercices de TD

A.2.1	TD6-Exercice1					•		•		•			•		•		50
A.2.2	TD6-Exercice2																51
A.2.3	TD6-Exercice3																52
A.2.4	TD6-Exercice4																53
A.2.5	TD6-Exercice5																54

Sommaire Concepts

Exercice A.2.1 TD6-Exercice1

Soit le système d'équations différentielles linéaires du 1^{er} ordre suivant :

$$\begin{cases} x_1' = 5x_1 - x_2 + 2x_3 \\ x_2' = -x_1 + 5x_2 + 2x_3 \\ x_3' = 2x_1 + 2x_2 + 2x_3 \end{cases}, \quad \text{avec} \begin{cases} x_1(0) = \alpha \\ x_2(0) = \beta \\ x_3(0) = \gamma \end{cases}.$$

1. Montrer que (I) peut se mettre sous la forme

(II)
$$z' = Dz \quad \text{avec} \begin{cases} z_1(0) = a \\ z_2(0) = b \\ z_3(0) = c \end{cases} \text{ et } D \text{ matrice diagonale.}$$

Déterminer D et les coefficients a, b, c.

- 2. Résoudre (II).
- 3. En déduire la solution x de (I).

$$\begin{array}{l} \text{R\'eponses}: \left\{ \begin{array}{l} x_1(t) = \frac{1}{6}(\alpha + \beta - 2\gamma) + \frac{1}{6}(5\alpha - \beta + 2\gamma)e^{6t} \\ x_2(t) = \frac{1}{6}(\alpha + \beta - 2\gamma) + \frac{1}{6}(-\alpha + 5\beta + 2\gamma)e^{6t} \\ x_3(t) = -\frac{1}{3}(\alpha + \beta - 2\gamma) + \frac{1}{3}(\alpha + \beta + \gamma)e^{6t} \end{array} \right. \end{array}$$

Aide 1 Aide 2 Aide 3

Sommaire Concepts

Exercice A.2.2 TD6-Exercice2

Soit le système d'équations différentielles linéaires du 1^{er} ordre suivant :

(I)
$$\begin{cases} x_1' = x_1 + x_2 - x_3 \\ x_2' = x_1 + x_2 + x_3 \\ x_3' = x_1 + 2x_3 \end{cases} \quad \text{avec} \begin{cases} x_1(0) = \alpha \\ x_2(0) = \beta \\ x_3(0) = \gamma \end{cases}.$$

1. Montrer que (I) peut se mettre sous la forme

$$(II) \hspace{1cm} z' = Tz \quad \text{avec} \left\{ \begin{array}{l} z_1(0) = a \\ z_2(0) = b \\ z_3(0) = c \end{array} \right. \hspace{1cm} \text{et T matrice de Jordan.}$$

2. Résolvez (II), puis donnez la solution de (I).

$$\begin{aligned} \mathbf{R\acute{e}ponses} : & \begin{cases} & x_1(t) = \alpha e^t + (\beta - \gamma)te^t \\ & x_2(t) = (\alpha + \beta)e^{2t} - \alpha e^t + (-\beta + \gamma)te^t \\ & x_3(t) = (\alpha + \beta)e^{2t} + (-\alpha - \beta + \gamma)e^t + (-\beta + \gamma)te^t \end{cases} \end{aligned}$$

Question 1 Aide 1 Aide 2 Question 2 Aide 1 Aide 2

Sommaire Concepts

Exercice A.2.3 TD6-Exercice3

Soit le système d'équations différentielles linéaires du 1^{er} ordre suivant :

(I)
$$\begin{cases} x_1' = x_1 + x_2 \\ x_2' = -2x_1 - x_2 \end{cases}.$$

- 1. Montrer que (I) peut se mettre sous la forme (II) z' = Dz avec D matrice diagonale.
- 2. Résoudre (II).
- 3. En déduire les solutions réelles x de (I).

$$\begin{aligned} & \text{R\'eponses}: A = PDP^{-1} \text{ avec } P = \left(\begin{array}{cc} 1 & 1 \\ -1+i & -1-i \end{array} \right), D = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right) \\ & \text{et } \left\{ \begin{array}{cc} x_1(t) = \alpha_1 cost - \beta_1 sint \\ x_2(t) = -(\alpha_1 + \beta_1) cost + (-\alpha_1 + \beta_1) sint \end{array} \right. \end{aligned}$$

Aide 1 Aide 2 Aide 3 Aide 4

Sommaire Concepts

Exercice A.2.4 TD6-Exercice4

Soit le système d'équations différentielles linéaires du 1^{er} ordre suivant :

(I)
$$\begin{cases} x_1'(t) = x_1(t) + 2x_2(t) + e^t \\ x_2'(t) = 2x_1(t) + x_2(t) + t \end{cases}$$

- 1. Montrer que (I) peut se mettre sous la forme (II) z' = Dz + g avec D matrice diagonale et g fonction de \mathbb{R} dans \mathbb{R}^2 . Déterminer D et la fonction g.
- 2. Résoudre (II).
- 3. En déduire les solutions x de (I).

$$\mbox{Réponses}: \left\{ \begin{array}{l} x_1(t) = C_1 e^{-t} + C_2 e^{3t} - \frac{2}{3} t + \frac{4}{9} \\ x_2(t) = -C_1 e^{-t} + C_2 e^{3t} - \frac{1}{2} e^t + \frac{1}{3} t - \frac{5}{9}) \end{array} \right. .$$

Question 1 Aide 1 Aide 2 Aide 3 Question 2 Aide 1 Aide 2

Sommaire Concepts

Exercice A.2.5 TD6-Exercice5

1. Soit le système d'équations différentielles linéaires du 1^{er} ordre suivant :

(I)
$$\begin{cases} x'_1(t) = x_2(t) \\ x'_2(t) = x_1(t) + 2cht \end{cases}$$
.

- (a) Montrer que (I) peut se mettre sous la forme
 - (II) z' = Dz + g avec D matrice diagonale et g fonction de \mathbb{R} dans \mathbb{R}^2 .
- (b) Résoudre (II).
- (c) En déduire la solution x de (I).

Réponses :
$$\begin{cases} x_1(t) = (C_1 - \frac{1}{4})e^{-t} + (C_2 - \frac{1}{4})e^t + tsht \\ x_2(t) = (-C_1 - \frac{1}{4})e^{-t} + (C_2 + \frac{1}{4})e^t + tcht \end{cases} .$$

2. Résoudre l'équation différentielle du second ordre

$$y''(t) = y(t) + 2cht.$$

Comparer avec ce qui a été trouvé précedemment.

Question 1b Aide 1 Aide 2

Question 1c Aide 1 Aide 2 Aide 3

Question 2 Aide 1

Sommaire Concepts

Annexe B Documents

Sommaire Concepts

B.1 Documents du chapitre VI

B.1.1 Existence et unicité de la solution d'un système différentiel . 57

Sommaire

Concepts

Exemples

Document B.1.1 Existence et unicité de la solution d'un système différentiel

- Soit I un intervalle ouvert de \mathbb{R} .
- On note $C^1(I,\mathbb{R})$ l'espace vectoriel des fonctions continuement dérivables sur I à valeur dans \mathbb{R} ,
- − *J* est un intervalle fermé borné contenant *I*,
- A(t) est une matrice dont tous les coefficients $a_{ij}(t)$ sont des fonctions continues de $J \to \mathbb{R}$,
- $-t_0 \in I$
- $-(\xi_1, \xi_2, \dots, \xi_n)$ un vecteur de \mathbb{R}^n alors il existe un unique $x \in (\mathcal{C}^1(I, \mathbb{R}))^n$ tel que

$$x'(t) = A(t)x(t), x(t_0) = (\xi_1, \xi_2, \dots, \xi_n).$$

Démonstration – L'existence et l'unicité proviennent du théorème de Cauchy-Lipschitz. D'une part le deuxième membre f(t,x)=A(t)x est continu puisque les éléments de la matrice sont des fonctions continues. D'autre part le deuxième membre vérifie la condition de Lipschitz. En effet, les fonctions $a_{ij}(t)$ sont continues sur un intervalle J $(I\subset J)$ fermé borné, donc $|a_{ij}(t)|\leq M, \ \forall t\in I,\ i=1,\ldots,n,\ j=1,\ldots,n.$ Alors

$$||A(t)(x-z)||^2 = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij}(t)(x_j-z_j)\right)^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n (a_{ij}(t))^2\right) \left(\sum_{k=1}^n (x_k-z_k)^2\right) \le \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij}(t)(x_j-z_j)\right)^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij}(t)(x$$

Concepts

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} M^2 \right) \left(\sum_{k=1}^{n} (x_k - z_k)^2 \right) = n^2 M^2 ||(x - z)||^2$$

Dans la démonstration précédente on a utilisé l'inégalité de Cauchy-Schwarz, à savoir :

$$\left(\sum_{j=1}^{n} a_{ij}(t)(x_j - z_j)\right)^2 \le \sum_{j=1}^{n} (a_{ij}(t))^2 \sum_{k=1}^{n} (x_k - z_k)^2$$

retour au cours

Document B.1.1

Existence et unicité de la solution d'un système différentiel

Sommaire Concepts

Index des concepts

Le gras indique un grain où le concept est défini; l'italique indique un renvoi à un exercice ou un exemple, le gras italique à un document,	Equations différentielles, existence et unicité des solutions 4
tionné.	N Notations
Cauchy-Lipschitz,théorème6	~
Equation différentielle d'ordre n 10 Equations différentielles du second ordre- rappels	Système d'équations différentielles, définition 8 Système différentiel à coefficients non constants 30 Système homogène

Concepts

Systèmes homogènes à coefficients constants avec A non diagonalisable.....22
Systèmes non homogènes à coefficients constants
23

Sommaire

Concepts

$$x_1(t) = z(t),$$

$$x_2(t) = z'(t)$$

donc

$$\left\{\begin{array}{ll} x_1'(t) &= x_2(t) \\ x_2'(t) &= -b(t)x_2(t) - c(t)x_1(t) \end{array} \right. \iff x'(t) = A(t)x(t) \text{ avec } A(t) = \left(\begin{array}{cc} 0 & 1 \\ -c(t) & -b(t) \end{array}\right)$$

On remarque tout d'abord que X_1 et X_2 appartiennent à $(\mathcal{C}^1(\mathbb{R},\mathbb{R}))^2$. D'autre part :

$$\alpha_1 X_1 + \alpha_2 X_2 = 0 \iff \alpha_1 X_1(t) + \alpha_2 X_2(t) = 0 \ \forall t \in \mathbb{R} \iff \begin{cases} \alpha_1 e^{t^2} \\ \alpha_2 e^{-cost} \end{cases} = 0 \ \forall t \in \mathbb{R} \iff \begin{cases} \alpha_1 e^{t^2} = 0 \ \forall t \in \mathbb{R} \\ \alpha_2 e^{-cost} = 0 \ \forall t \in \mathbb{R} \end{cases} \iff \begin{cases} \alpha_1 = 0 \\ \alpha_2 = 0 \end{cases}.$$

(Il suffit de choisir t = 0.)

 S_0 n'est pas vide, car $0 \in S_0$ et S_0 est stable.

$$x'(t) = A(t)x(t) \iff \begin{cases} x'_1(t) = 2t \ x_1(t) \\ x'_2(t) = sint \ x_2(t) \end{cases} \iff \begin{cases} x_1(t) = \alpha_1 e^{t^2} \\ x_2(t) = \alpha_2 e^{-cost} \end{cases}$$
$$\iff x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \alpha_1 \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ e^{-cost} \end{pmatrix}.$$

On retrouve les fonctions X_1, X_2 définies dans l'exercice 2, on a montré qu'elles étaient linéairement indépendantes.

$$x'(t) = A(t)x(t) + g(t) \iff \begin{cases} x'_1(t) = 2t \ x_1(t) - t \\ x'_2(t) = \sin t \ x_2(t) + 1 - t \sin t \end{cases}.$$

On obtient deux équations différentielles avec second membre.

On résout les équations sans second membre, on obtient

$$x_{1h}(t) = \alpha_1 e^{t^2}, \quad x_{2h}(t) = \alpha_2 e^{-\cos t}.$$

En réfléchissant un peu on trouve une solution particulière pour chacune des équations qui sont

$$x_{1p}(t) = \frac{1}{2}, \ x_{2p}(t) = t.$$

D'où la solution

$$x(t) = \alpha_1 \begin{pmatrix} e^{t^2} \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ e^{-\cos t} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ t \end{pmatrix}.$$

$$x'(t) = Ax(t) \iff \begin{cases} x'_1(t) &= 2x_1(t) \\ x'_2(t) &= 3x_2(t) \end{cases} \iff \begin{cases} x_1(t) &= \alpha_1 e^{2t} \\ x_2(t) &= \alpha_2 e^{3t} \end{cases} \text{ avec } \alpha_1 \alpha_2 \in \mathbb{R}$$

On calcule les valeurs propres de A, on obtient

$$\lambda_1 = 2, \lambda_2 = 3,$$

on calcule des vecteurs propres associés, on obtient

$$Y_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, Y_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

donc si on note

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix},$$

on a $A = PDP^{-1}$, donc

$$x'(t) = Ax(t) \iff P^{-1}x'(t) = DP^{-1}x(t).$$

Si l'on pose $z(t) = P^{-1}x(t)$, on a donc en utilisant l'exercice précédent :

$$z'(t) = Dz(t) \iff \begin{cases} z_1(t) = \alpha_1 e^{2t} \\ z_2(t) = \alpha_2 e^{3t} \end{cases}$$
.

On obtient enfin:

$$x(t) = Pz(t) \Longleftrightarrow \left\{ \begin{array}{ll} x_1(t) &= \alpha_1 e^{2t} + \alpha_2 e^{3t} \\ x_2(t) &= -\alpha_1 e^{2t} - 2\alpha_2 e^{3t} \end{array} \right., \text{ avec } \alpha_1 \alpha_2 \in \mathbb{R}.$$

On calcule les valeurs propres de A, on obtient que 2 est valeur propre double. On détermine les vecteurs propres associés, on obtient un sous espace propre de dimension 1 un vecteur propre est par exemple

$$Y_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

On peut choisir par exemple $Y_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

La matrice P est inversible puisque Y_1, Y_2 forment une base de \mathbb{R}^2 .

- 1. On note f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 qui a x associe Ax. La matrice de f dans la base canonique est bien sûr A. D'autre part $AY_1=2Y_1$, donc la matrice de f dans la base $\{Y_1,Y_2\}$ est $T=\begin{pmatrix}2&t_{12}\\0&t_{22}\end{pmatrix}$, d'autre part cette matrice est semblable à A ($T=P^{-1}AP$) donc elle admet les mêmes valeurs propres donc $t_{22}=2$, ce qui termine la démonstration.
- 2. On peut maintenant déterminer t_{12} , on calcule $AY_2=\begin{pmatrix}1\\3\end{pmatrix}=Y_1+2Y_2$, on obtient donc $t_{12}=1$, on retrouve bien sûr que $t_{22}=2$. On peut maintenant résoudre le système :

$$x'(t) = Ax(t) \iff z'(t) = Tz(t) \text{ avec } z(t) = P^{-1}x(t),$$

on obtient les équations différentielles :

$$z_2'(t) = 2z_2(t) \Longleftrightarrow z_2(t) = \alpha_2 e^{2t},$$

$$z_1'(t) = 2z_1(t) + z_2(t) \Longleftrightarrow z_1(t) = (\alpha_1 + \alpha_2 t)e^{2t}.$$

On obtient enfin

$$x(t) = Pz(t) \iff x(t) = \begin{pmatrix} (\alpha_1 + \alpha_2 t)e^{2t} \\ (\alpha_1 + \alpha_2 + \alpha_2 t)e^{2t} \end{pmatrix}$$

2 façons de procéder :

- On effectue un changement de fonction inconnue en posant $z(t) = P^{-1}x(t)$, on a :

$$x'(t) = Ax(t) + g(t) \iff z'(t) = Dz(t) + P^{-1}g(t) \iff \begin{cases} z'_1(t) &= 2z_1(t) + 4t \\ z'_2(t) &= 3z_2(t) - 3t \end{cases}.$$

On résout chacune des équations différentielles , on ajoute à la solution générale de l'équation sans second membre déjà calculée dans l'exercice précédent, une solution particulière cherchée sous forme polynômiale (1-er degré), on obtient :

$$\begin{cases} z_1(t) = \alpha_1 e^{2t} - 2t - 1 \\ z_2(t) = \alpha_2 e^{3t} + t + \frac{1}{3} \end{cases},$$

donc x(t) = Pz(t) donne :

$$\begin{cases} x_1(t) = \alpha_1 e^{2t} + \alpha_2 e^{3t} - t - \frac{2}{3} \\ x_2(t) = -\alpha_1 e^{2t} - 2\alpha_2 e^{3t} + \frac{1}{3} \end{cases}$$

- On utilise les résultats du paragraphe Systèmes non homogènes à coefficients constants, on connaît déjà la solution générale du système sans second membre (homogène), il reste à calculer une solution particulière. On cherche cette solution $x_p(t)$ sous forme polynomiale :

$$x_p(t) = \begin{pmatrix} \beta_1 t + \gamma_1 \\ \beta_2 t + \gamma_2 \end{pmatrix}.$$

On obtient alors les équations vérifiées par $\beta_1, \beta_2, \gamma_1, \gamma_2$:

$$\begin{cases} \beta_1 & -\beta_2 & = -1 \\ \beta_1 & -\gamma_1 & +\gamma_2 & = 0 \\ 2\beta_1 & +4\beta_2 & = -2 \\ \beta_2 & -2\gamma_1 & +4\gamma_2 & = 0 \end{cases} \iff \begin{cases} \beta_1 = -1 \\ \beta_2 = 0 \\ \gamma_1 = -\frac{2}{3} \\ \gamma_2 = \frac{1}{3} \end{cases}.$$

Ce qui donne bien sûr la même solution.

Le trinôme caractéristique $s^2 - 2s + 2$ a pour racines 1 + i et 1 - i. On obtient donc les solutions complexes :

$$y(t) = \alpha_1 e^{(1+i)t} + \alpha_2 e^{(1-i)t}$$
 avec $\alpha_1, \alpha_2 \in \mathbb{C}$.

Pour obtenir les solutions réelles on doit choisir α_1, α_2 complexes conjugués, par exemple

$$\alpha_1 = a_1 + ia_2, \alpha_2 = a_1 - ia_2 \text{ avec } a_1, a_2 \in \mathbb{R}.$$

Après calculs, on obtient les solutions réelles :

$$y(t) = (\beta_1 cost + \beta_2 sint)e^t$$
 avec $\beta_1, \beta_2 \in \mathbb{R}$.

On a posé $\beta_1 = 2a_1, \beta_2 = -2a_2$.

- 1. S_0 contient la fonction nulle donc est non vide, on montre d'autre part que S_0 est stable.
- 2. On montre facilement que $u(y+z)=u(y)+u(z), u(\alpha y)=\alpha u(y)$.
- 3. u est surjective : c'est l'existence de la solution du problème

$$\begin{cases} ay''(t) + by'(t) + cy(t) = 0 \ \forall t \in \mathbb{R} \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

qui permet de conclure en effet à tout couple (y_0, y_1) correspond une fonction y de S_0 .

- u est injective : c'est l'unicité de la solution au même problème qui permet de conclure, il ne peut exister 2 fonctions distinctes de S_0 qui vérifient $y(t_0) = y_0, y'(t_0) = y_1$.
- 4. Les dimensions des 2 espaces vectoriels S_0 et \mathbb{R}^2 sont donc égales.
- 5. Il suffit de calculer ay''(t) + by'(t) + cy(t).
- 6. Tout d'abord les fonctions y_1 et y_2 définies par $y_1(t) = e^{\lambda_1 t}$ et $y_2(t) = e^{\lambda_2 t}$ appartiennent à S_0 , montrons que ces fonctions forment une famille libre. On a :

$$\alpha_1 y_1 + \alpha_2 y_2 = 0 \Longleftrightarrow \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t} = 0 \forall t \in \mathbb{R},$$

donc en particulier pour t = 0 on obtient

$$\alpha_1 + \alpha_2 = 0.$$

D'autre part puisque $\alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t} = 0 \forall t$ cette fonction a une dérivée nulle, si on évalue la dérivée pour t=0 on obtient

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 = 0.$$

On a donc obtenu 2 équations linéaires dont les inconnues sont α_1, α_2 , le déterminant de la matrice du système vaut $\lambda_1 - \lambda_2$, il est donc différent de 0. Donc ce système admet une solution unique $\alpha_1 = \alpha_2 = 0$. Les fonctions y_1, y_2 sont donc linéairement indépendantes.

7. On en déduit que y_1, y_2 est une base de S_0 donc toute fonction y de S_0 se décompose sur cette base.

 $-\pi_A(s) = s^2 + \beta s + \gamma$ (A est une matrice Compagnon comme vous l'avez vu dans l'exercice 2 du TD4).

$$A\left(\begin{array}{c} 1 \\ \lambda \end{array}\right) = \left(\begin{array}{c} \lambda \\ -\gamma - \beta \lambda \end{array}\right) = \left(\begin{array}{c} \lambda \\ \lambda^2 \end{array}\right) = \lambda \left(\begin{array}{c} 1 \\ \lambda \end{array}\right)$$

 $\operatorname{donc}\left(\begin{array}{c}1\\\lambda\end{array}\right)$ est un vecteur propre de A

(On rappelle que λ vérifie $\lambda^2 + \beta\lambda + \gamma = 0$).

– Comme on l'a déjà vu si A admet une valeur propre double λ et si A est diagonalisable, alors A est semblable à λI et on a $A=P^{-1}(\lambda I)P=\lambda I$, ce qui n'est pas possible. Une autre façon de démontrer le résultat serait :

$$A - \lambda I = \begin{pmatrix} -\lambda & 1 \\ -\gamma & -\beta - \lambda \end{pmatrix},$$

donc le rang de $A-\lambda I$ est supérieur ou égal à 1, donc la dimension de Ker $(A-\lambda I)$ est inférieur ou égal à 1, donc la dimension de V_{λ} n'est pas égale à la multiplicité de la valeur propre (double) λ , donc A n'est pas diagonalisable.

On pose $y = x_1, y' = x_2$, on a alors :

$$y'' - 2y' + 2y = 0 \iff \begin{cases} x_1'(t) &= x_2(t) \\ x_2'(t) &= -2x_1(t) + 2x_2(t) \end{cases} \iff x'(t) = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix} x(t).$$

La matrice $A = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$ admet 2 valeurs propres 1 + i et 1 - i, des vecteurs propres correspondants sont

$$Y_1 = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}, Y_2 = \begin{pmatrix} 1 \\ 1-i \end{pmatrix}.$$

On définit comme d'habitude $P = (Y_1Y_2), x = Pz$. On résout

$$\begin{cases} z_1'(t) &= (1+i)z_1(t) \\ z_2'(t) &= (1-i)z_2(t) \end{cases},$$

on obtient

$$\begin{cases} z_1(t) = \alpha_1 e^{(1+i)t} \\ z_2(t) & \alpha_2 e^{(1-i)t} \end{cases}$$

Enfin

$$x = Pz \iff \begin{cases} x_1(t) = \alpha_1 e^{(1+i)t} + \alpha_2 e^{(1-i)t} \\ x_2(t) = \alpha_1 (1+i) e^{(1+i)t} + \alpha_2 (1-i) e^{(1-i)t} \end{cases}.$$

On retrouve bien sûr $y = x_1$ et on vérifie que $y' = x_2$

On a vu dans le cours que la matrice A(t) admet $\lambda_1 = 1, \lambda_2 = t$ comme valeurs propres avec

$$P_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $P_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

comme vecteurs propres associés.

Donc, si on pose x(t) = Pz(t), le système

$$x'(t) = A(t)x(t) + g(t)$$

est équivalent à

$$\begin{cases} z_1'(t) &= z_1(t) \\ z_2'(t) &= t z_2(t) + t \end{cases} \iff \begin{cases} z_1(t) &= \alpha_1 e^t \\ z_2(t) &= \alpha_2 e^{\frac{t^2}{2}} - 1 \end{cases}.$$

D'où

$$x(t) = Pz(t) \iff \begin{cases} x_1(t) = \alpha_1 e^t + 2\alpha_2 e^{\frac{t^2}{2}} - 2\\ x_2(t) = \alpha_1 e^t + \alpha_2 e^{\frac{t^2}{2}} - 1 \end{cases}$$

Aide 1, Exercice A.2.1

Voir le paragraphe "Systèmes homogènes à coefficients constants avec A diagonalisable".

Aide 2, Exercice A.2.1

Ecrire la matrice du système, elle a déjà été étudiée dans l'exercice 7 du TD5. Utiliser les résultats trouvés alors.

Aide 3, Exercice A.2.1

Montrer que l'on obtient trois équations différentielles faisant intervenir respectivement z_1, z_2 et z_3 . Résoudre ces trois équations.

Aide 1, Question 1, Exercice A.2.2

Voir le paragraphe "Systèmes homogènes à coefficients constants avec A non diagonalisable".

Aide 2, Question 1, Exercice A.2.2

Ecrire la matrice du système, elle a déjà été étudiée dans l'exercice 11 du TD4. Utiliser les résultats trouvés alors.

Aide 1, Question 2, Exercice A.2.2

Vous avez appris en MT21 que la solution générale d'une équation linéaire non homogène est égale à la somme de la solution générale de l'équation homogène et d'une solution particulière de l'équation non homogène.

Aide 2, Question 2, Exercice A.2.2

Quand le second membre est e^{at} , on cherche la solution particulière sous forme αe^{at} , sauf si e^{at} est solution de l'équation homogène, dans ce cas on cherche la solution particulière sous forme $\alpha t e^{at}$.

Aide 1, Exercice A.2.3

Voir le paragraphe "Systèmes homogènes à coefficients constants avec A diagonalisable".

Aide 2, Exercice A.2.3

La recherche des solutions complexes se fait comme dans les exercices précédents.

Aide 3, Exercice A.2.3

N'oubliez pas que la somme de 2 complexes conjugués est réelle, choisissez donc les constantes complexes de façon astucieuse.

Aide 4, Exercice A.2.3

Vous pouvez vous inspirer du corrigé de l'exercice A.1.10 du cours.

Aide 1, Question 1, Exercice A.2.4

Voir le paragraphe "Systèmes non homogènes à coefficients constants".

Aide 2, Question 1, Exercice A.2.4

Etudier rapidement la matrice A du système, elle est diagonalisable. Pourquoi?

Aide 3, Question 1, Exercice A.2.4

Montrer que $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Aide 1, Question 2, Exercice A.2.4

Vous avez appris en MT21 que la solution générale d'une équation linéaire non homogène est égale à la somme de la solution générale de l'équation homogène et d'une solution particulière de l'équation non homogène.

Aide 2, Question 2, Exercice A.2.4

Quand le second membre est polynômial, on cherche la solution particulière sous forme polynômiale, quand le second membre est exponentiel on cherche la solution particulière sous forme exponentielle. Lorsque le second membre est une somme de termes on peut ajouter les solutions particulières correspondant à chacun d'eux.

Aide 1, Question 1b, Exercice A.2.5

Voir le paragraphe "Systèmes non homogènes à coefficients constants".

Aide 2, Question 1b, Exercice A.2.5

Montrer que la matrice A est diagonalisable et s'écrit $A = PDP^{-1}$ avec

$$D = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right), \ P = \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right).$$

Aide 1, Question 1c, Exercice A.2.5

Vous avez appris en MT21 que la solution générale d'une équation linéaire non homogène est égale à la somme de la solution générale de l'équation homogène et d'une solution particulière de l'équation non homogène.

Aide 2, Question 1c, Exercice A.2.5

Lorsque le second membre est une somme de termes on peut ajouter les solutions particulières correspondant à chacun d'eux.

Quand le second membre est e^{at} , on cherche la solution particulière sous forme αe^{at} , sauf si e^{at} est solution de l'équation homogène, dans ce cas on cherche la solution particulière sous forme $\alpha t e^{at}$.

Aide 3, Question 1c, Exercice A.2.5

Quelle relation lie x_1, x_2 et y?

Aide 1, Question 2, Exercice A.2.5

Voir le paragraphe "Equations différentielles du second ordre-rappels".