Случайные процессы. Прикладной поток.

Теоретическое задание 1.

Ветвящиеся процессы Гальтона-Ватсона.

- 1. Найдите производящую функцию числа частиц в n-м поколении ветвящегося процесса, если производящая функция числа потомков одной частицы равна $1-p(1-z)^{\alpha}$, $\alpha \in (0,1)$.
- 2. Найдите вероятности вырождения для ветвящихся процессов с производящей функцией числа потомков одной частицы а) $1-p(1-z)^{\alpha}, \ \alpha \in (0,1), \ \delta) \ (1+z+z^2+z^3)/4.$
- 3. Пусть $(X_n, n \in \mathbb{Z}_+)$ ветвящийся процесс с законом размножения частиц ξ . Обозначим через $Y_n = X_n + \ldots + X_0$ общее число частиц в процессе за время n, а через $\varphi_{Y_n}(z)$ его производящую функцию. Докажите, что

$$\varphi_{Y_n}(z) = z\varphi_{\xi}(\varphi_{Y_{n-1}}(z)).$$

- 4. Пусть ветвящийся процесс Гальтона-Ватсона построен по случайной величине ξ , имеющей производящую функцию $\varphi(s)=1-\frac{1}{2}\sqrt{1-s}$. Найдите
 - (а) вероятность вырождения процесса;
 - (b) производящую функцию общего числа частиц процесса;
 - (с) вероятность того, что в процессе было всего 10 частиц.