Motivation Fichiers structurés Systèmes de fichiers Bases de données

Gestion des données Stockage structuré des données

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>

Master Statistiques Sorbonne Université

2022-2023

Données sur le disque

Données hétérogènes

- Valeurs numériques
- Images
- Textes

Gros volumes

- Giga-octets
- ▶ Tera-octets
- Peta-octets

Exploitable par une machine

Données structurées

- ► Interprétable par un programme
- Formats de fichiers

Retrouver l'information

- Recherche rapide
- Filtrage selon des critères
- ► Indexation

Fichiers non-structuré

Le Costa Rica, officiellement appelée république du Costa Rica, en espagnol República de Costa Rica, est une république constitutionnelle unitaire d'Amérique centrale ayant un régime présidentiel.

La majeure partie de son territoire est situé sur l'isthme centraméricain, encadré par mer des Caraïbes à l'est et l'océan Pacifique à l'ouest et au sud, bordé au nord par le Nicaragua et au sud-est par le Panama, mais comprend également l'Île Cocos située dans l'océan Pacifique à plus de 500 kilomètres des côtes du pays. Elle a pour capitale San José, pour langue officielle l'espagnol et pour monnaie le colon. Sa devise est « ¡Vivan siempre el trabajo y la paz! » (« Que vivent pour toujours le travail et la paix ! ») et son drapeau est constitué de cinq bandes horizontales respectivement bleue, blanche, rouge, blanche et bleue. Son hymne est Noble patria, tu hermosa bandera.

Fichiers structurés

```
{{Infobox Pays
 nom français=République du Costa Rica
 nom_local1=República de Costa Rica
 langue1=es
 image_drapeau=Flag of Costa Rica.svg
| lien_drapeau=Drapeau du Costa Rica
 image_blason=Coat_of_arms_of_Costa_Rica.svg
| lien_blason=Armes du Costa Rica
 image_carte=Costa Rica (orthographic projection).svg
 devise=¡Vivan siempre el trabajo y la paz! <br />(Que vi
|capitale=[[San José (Costa Rica)|San José]]
|coordonnées capitale={{coord|9|56|N|84|05|W|type:city}}
|lien villes=Villes du Costa Rica
titre plus grande ville=Plus grande ville
```

Fichiers structurés

Formats

Sur le disque

► Stockage à long terme

Entrées/sorties

- Lire les données
- Écrire les données

Contraintes

- Exploitable par une machine
- Bonus: exploitable par un humain
- ▶ Lecture facile ? Modification facile ? Création facile ?

Comma Separated Values

PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticker 1,0,3,"Braund, Mr. Owen Harris", male, 22,1,0,A/5 21171,7.25 2,1,1, "Cumings, Mrs. John Bradley (Florence Briggs Thayer) 3,1,3,"Heikkinen, Miss. Laina", female, 26,0,0,STON/02. 31013 4,1,1, "Futrelle, Mrs. Jacques Heath (Lily May Peel)", female 5,0,3,"Allen, Mr. William Henry", male, 35,0,0,373450,8.05,, 6,0,3, "Moran, Mr. James", male,,0,0,330877,8.4583,,Q 7,0,1,"McCarthy, Mr. Timothy J", male, 54,0,0,17463,51.8625,1 8,0,3, "Palsson, Master. Gosta Leonard", male, 2,3,1,349909,2 9,1,3, "Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",: 10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0 11,1,3, "Sandstrom, Miss. Marguerite Rut", female, 4,1,1,PP 99 12,1,1, "Bonnell, Miss. Elizabeth", female, 58,0,0,113783,26.

JavaScript Object Notation

```
{
  "titanic": [
      { "PassengerId": 1, "Survived": 0, "Pclass": 3,
            "Name": "Braund, Mr. Owen Harris", "Sex": "male", ...
      { "PassengerId": 2, "Survived": 1, "Pclass": 1,
            "Name": "Cumings, Mrs. John Bradley", "Sex": "female"
            ...
]
```

YAML

```
titanic:
   - PassengerId: 1
     Survived: 0
     Pclass: 3
     Name: Braund, Mr. Owen Harris
     Sex: male
   - PassengerId: 2
     Survived: 1
     Pclass: 1
     Name: Cumings, Mrs. John Bradley
     Sex: female
```

XML

```
<dataset name="titanic">
  <passenger id="1">
   <Survived>0</Survived>
   <Pclass>3</Pclass>
   <Name>Braund, Mr. Owen Harris</Name>
   <Sex>male</Sex>
  </passenger>
  <passenger id="2">
   <Survived>1</Survived>
   <Pclass>1</Pclass>
   <Name>Cumings, Mrs. John Bradley</Name>
   <Sex>female</Sex>
  </passenger>
</dataset>
```

HTML

```
<!doctype html>
<html>
 <head>
   <title>M2 Statistiques - Business Intelligence</title>
   <link href="https://cdnjs.cloudflare.com/ajax/libs/twing")</pre>
 </head>
 <body>
   <h1 class="title">M2 Statistiques - Business Intelligen
   <h2 id="agenda">Emploi du temps</h2>
   <table class="table table-striped table-bordered table-
     Mardi 5 janvier
       14h - 17h
       salle 1525-101
```

Requêtes XML et HTML

XPath

- Langage standardisé de requêtes XML et HTML
- /dataset/passenger/: tous les passagers
- ▶ //Name: tous les noms, peu importe la position
- //passenger[@id=1]: passager avec l'identifiant 1

CSS

- Pour le HTML: surtout pour l'apparence des pages web, mais pas seulement
- h1.title: titre h1 avec la classe title
- #agenda: nœud avec l'identifiant agenda

Numpy .npy

Entête

- Magic string: [93, "N", "U", "M", "P", "Y"]
- Numéro de version du format: 2 octets
- ► Taille de l'entête: 2 octets
- Description du format numpy: (taille de l'entête) 10 octets

Données

Données brutes du tableau

http://docs.scipy.org/doc/numpy-dev/neps/npy-format.html

Systèmes de fichiers

Stockage des données

- Disque dur
- ► Mémoire flash

Chemins de fichiers

- ► C:\Windows\system\bsod.dll
- C:\Users\Toto\Documents\blah.docx
- /etc/fstab
- ▶ /home/toto/Documents/blah.odt
- /Users/Toto/stevejobs.pdf

Conception

Arborescence

- Trouver un fichier: chemin à parcourir dans un arbre
- ► Chercher un fichier: parcourir toutes les branches possibles

Contraintes

- Optimisé pour la lecture, pour l'écriture
- ▶ Pour les gros fichiers, les petits fichiers
- Les gros disques, les petits
- Les disques magnétiques, les mémoires flash

Exemples de systèmes de fichiers

Génériques

- ► DECTape: PDP (1964)
- ► FAT{8,12,16,32}: DOS, Windows (1977, 1980, 1984, 1996)
- ► ext{1,2,3,4}: Linux (1992, 1993, 1999, 2006)

Gros volumes

ZFS: Solaris (2004)

Mémoire flash

- ► UBIFS: Linux (2008)
- exFAT: Windows (2006)
- ► F2FS: Linux (2012)

Bases de données relationnelles

Universel

- Domaines différents
- Données différentes
- Tailles différentes

Avantages

- Garanties de sûreté sur les données
- Requêtes efficaces

Contrainte

Besoin d'une formalisation de la structure des données

Orienté tables

Schéma

Description des tables: types et noms des colonnes

ACID

Atomicité

▶ Une transaction se fait complètement ou pas du tout

Cohérence

Le système passe toujours d'un état valide à un autre

Isolation

Indépendance entre les transactions

Durabilité

Une transaction effectuée l'est de façon durable

Langage de requêtes standardisé

Structured Query Langage

- ► Interopérable (à peu près)
- Langage déclaratif

Insertion

► INSERT INTO passengers (name, survived, sex, class) VALUES ("Braund, Mr. Owen Harris", 0, "male", 1);

Requête

► SELECT (name, sex, class) FROM passengers WHERE survived = 1;

Algèbre relationnelle

Relation

- ▶ Table
- Ensemble de n-uplets

Opérations ensemblistes

- Projection: sélection de colonnes SELECT
- Sélection: sélection de lignes WHERE
- ▶ Jointure: lien entre deux tables JOIN

Architecture client-serveur

Serveur

- Stocke les données
- Reçoit et interprète les requêtes

Client

Application qui utilise la base de donnée

Systèmes de gestion des bases de données

MySQL

- Libre
- ► Très utilisé par des sites web

PostgreSQL

- ► Libre
- Extensible
- Types de données évolués

Oracle Databse

Propriétaire

SQLite

- Libre
- Embarqué dans l'application
- Compact

Passage à l'échelle

Réplication des données

Copies de la base

Maître/esclaves

- Écriture sur le maître
- Propagation des modifications sur les esclaves
- Lecture sur les esclaves

Not Only SQL

Bases relationnelles pas toujours appropriées

- Schémas compliqués à concevoir
- Passage à l'échelle pas toujours bon
- Pas forcément besoin de requêtes compliquées
- Données faiblement structurées

Évolution récente

- Pas de SQL
- Modèle plus simple pour les données

Idées anciennes

Stockage simple

Orienté document

Tableau associatif

- Pas de tables
- Passage à l'échelle facile

Clé-valeur

Identifiants pour les documents

Document

Format JSON ou autre

Exemples de serveurs

BigTable

► Google

HBase

Facebook, Airbnb

BerkeleyDB

- **1994**
- Bibliothèque embarquée

MongoDB

Expedia, Amadeus

CouchDB

► BBC, CANAL+

Redis

- Stockage en mémoire
- Cache

Language de requête spécifique

Pas de langage commun

Exemple avec MongoDB

Théorème CAP

Dans un système distribué

Cohérence Consistency

► Tous les nœuds voient la même version

Disponibilité Availability

Chaque requête obtient une réponse

Résistance aux pannes Partition tolerance

▶ Perdre un nœud ou un message ne bloque pas le système

Théorème: au plus deux propriétés sur les trois

Passage à l'échelle

Deux propriétés

- Disponibilité
- Résistance aux pannes

Sacrifice

Cohérence: des nœuds peuvent avoir de vieilles versions

Table de hachage distribuée

- Données réparties sur plusieurs nœuds
- ▶ Mécanismes pour trouver le nœud qui contient le document