Relatório d	la Experiência de Tho	omson
Turno:	Grupo:	_ Data:
1 Tral	balho preparató	rio a realizar ANTES da sessão de Laboratório:
2. Dese e for magn3. Esco nos e	enhe um diagrama de ças aplicadas nas dif nética e eléctrica. olha os 5 pares de co ensaios de deflexão n	tivos do trabalho que irá realizar na sessão de laboratório. os campos eléctricos, magnéticos, da velocidade dos electrões ferentes zonas do TRC, para a deflexão magnética e deflexão pordenadas, $(y, \pm z)$, na grelha do tubo TRC que irá utilizar magnética, de modo a obter os maiores valores de R possíveis. Ecolunas da Secção 2.1.2.
1.1 Ob	jectivos do Traba	ılho
111 Ea		
como as si	o seguinte quadro to uas incertezas e a le	odas as equações necessárias para calcular as grandezas, bem engenda de símbolos. Numere as equações para futura refe- ual a equação que utiliza para os cálculos.

2 Relatório

${f 2.1}$ DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA

2.1.1 Montagem Experimental

Desenhe um diagrama da experepectiva resolução e incerteza.	riência. Inclua uma	lista e legenda do	os instrumentos e

2.1.2 Medidas Experimentais e Cálculos Intermédios

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente. Indique as unidades de cada coluna, utilizando (sub)múltiplos mais adequados para o máximo de clareza nas tabelas.

$$U_a =$$
 _____ [] , $\delta U_a =$ ____ [], $\delta_y =$ ____ [mm], $\delta_z =$ ____ [mm]

y [cm]	$z_{+}/z_{-} [{\rm cm}]$	R[]	δR []	I_+ []	I_ []	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta I = \frac{ I_+ - I }{2} \left[\right]$

$U_a =$	\pm	V

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	I_+ []	I_{-} $[$ $]$	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta I = \frac{ I_+ - I }{2} []$

<i>I</i> /	 1/
II = III	

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	I_+ []	I_ []	$\overline{I} = \frac{ I_+ + I }{2} []$	$\delta \overline{I} = \frac{ I_{+} - I_{-} }{2} []$

${f 2.1.3}$ Cálculos de q/m

			R =	±[]		
$U_a []$	\overline{I} []	B []	δΒ []	$q/m \ [10^{11} \text{C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
	±					
土	±					±
	±					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	$\overline{I} \ [\]$	B []	$\delta B []$	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
+	±					
土	±					
土	±					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a \begin{bmatrix} & & \\ & & \end{bmatrix}$	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
土	±					
土	土					
土	土					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a []$	\overline{I} $[$ $]$	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
土	土					
土	土					
土	士					
			$R = \underline{\hspace{1cm}}$	± []		
$U_a \begin{bmatrix} & & \\ & & \end{bmatrix}$	\overline{I} $[$ $]$	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
土	±					
土	士					±
士	土					

Incertezas relativas

$\delta_{(U_a}$	$_{ m)}q/m$ []	$\delta_{(U_a)}q/m$ [%]	$\delta_{(R)}q/m$ []	$\delta_{(R)}q/m$ [%]	$\delta_{(\overline{I})}q/m~[~~]$	$\delta_{(\overline{I})}q/m$ [%]	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

2.1.4 Resultados Finais. Explique os critérios que utilizou para obter as incertezas.

Desvio à Exactidão =	$_{-}$ %, Incerteza relativa = $_{-}$ %	
$q/m_{(B)} = (\underline{} \pm \underline{}$	_)×10 ¹¹ C/kg	

2.2 DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA E ELÉTRICA QUASE COMPENSADAS

2.2.1 Dados Experimentais e Cálculos

			$U_a =$		_ ±	$_{\scriptscriptstyle{-}}V$	
I_{max} []	I_{min} []	$ar{I} \ [\ \]$	δI []	B[]	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

				$U_a =$		_ ±	$\overline{}V$	
ſ	$I_{max} []$	$I_{min} []$	\overline{I} $[$ $]$	δI []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

		$U_a = \underline{\hspace{1cm}}$	±	V	
$I_{max} [] \mid I_{min} [$	$] \mid \overline{I} \mid] \mid$	$\delta \overline{I} [] \mid B [$	$[] \mid \delta B \; [] \mid$	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

2.2.2 Resultados

$$q/m_{(B,E)} = (\underline{} \pm \underline{}) \times 10^{11} \text{ C/kg}$$

Desvio à Exatidão = _____%, Incerteza relativa = _____%

2.3 Trajetória não compensada

Aumente agora o campo B (sempre com $I \leq 3$ A) de forma a visualizar uma trajetória claramente não compensada. Faça um esboço da curva observada, indicando os vetores das forças em jogo (com uma estimativa do seu valor em [N]), bem como as condições experimentais. Comente a figura obtida.

2.4	Análise e comparação dos dois métodos.	Conclusões e Comentários Finais