

WPISUJE ZDAJĄCY

——— KOD ZDAJĄCEGO ———				
ROD ZDI	ijącedo —			
symbol klasy	symbol zdającego			

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

MATEMATYKA – POZIOM PODSTAWOWY

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–33) i kartę odpowiedzi. Ewentualny brak stron zgłoś nauczycielowi nadzorującemu egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadań otwartych może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Podczas egzaminu możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie i na karcie odpowiedzi wpisz swój kod.
- 9. Odpowiedzi do zadań zamkniętych przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla osoby sprawdzającej.

Powodzenia!

dysleksja

STYCZEŃ 2019

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50 W zadaniach od 1. do 24. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba przeciwna do liczby $(1-\sqrt{3})^2$ jest równa

A.
$$4-2\sqrt{3}$$
.

B.
$$4 + 2\sqrt{3}$$
.

B.
$$4+2\sqrt{3}$$
. **C.** $-4-2\sqrt{3}$. **D.** $-4+2\sqrt{3}$.

D.
$$-4 + 2\sqrt{3}$$
.

Zadanie 2. (0-1)

Zadanie 2. (0–1) Liczba odwrotna do liczby $\frac{(5^{1,2})^3 \cdot \sqrt{5}^{0,8}}{5^3}$ jest równa

C.
$$\frac{1}{5}$$
.

D.
$$-\frac{1}{5}$$
.

Zadanie 3. (0-1)

Wartość bezwzględna liczby $3\sqrt{2} - 5$ jest równa

A.
$$3\sqrt{2} + 5$$
.

B.
$$5 - 3\sqrt{2}$$
.

C.
$$3\sqrt{2} - 5$$
.

B.
$$5-3\sqrt{2}$$
. **C.** $3\sqrt{2}-5$. **D.** $-3\sqrt{2}-5$.

Zadanie 4. (0-1)

Kwotę 3000 zł ulokowano w banku na lokacie oprocentowanej 2% w stosunku rocznym, przy czym odsetki są kapitalizowane co pół roku (nie uwzględniamy podatku od odsetek kapitałowych). Po trzech latach stan tej lokaty wyniesie

A.
$$3000 \cdot \left(1 + \frac{2}{100}\right)^3 z$$
ł.

B.
$$3000 \cdot \left(1 + \frac{1}{100}\right)^3$$
 zł.

C.
$$3000 \cdot \left(1 + \frac{2}{100}\right)^6 z$$
ł.

D.
$$3000 \cdot \left(1 + \frac{1}{100}\right)^6 z$$

Zadanie 5. (0-1)

Zbiorem rozwiązań nierówności $(x+3)^2 \le 0$ jest

C. zbiór pusty. D.
$$(-\infty, -3)$$
.

D.
$$(-\infty, -3)$$

Zadanie 6. (0-1)

Wyrażenie $(3x - y)^2 - (x - 3y)^2$ jest równe wyrażeniu

A.
$$8x^2 - 8y^2$$
.

B.
$$-12xy + 8x^2 - 8y^2$$
.

C.
$$8y^2 - 8x^2$$
.

D.
$$-12xy + 8x^2 + 10y^2$$
.

Zadanie 7. (0-1)

Układ równań liniowych $\begin{cases} 2x - 4y = 3 \\ -3x + 6y = -4 \end{cases}$

- A. nie ma rozwiązania.
- **B.** ma dokładnie jedno rozwiązanie.
- C. ma dokładnie dwa rozwiązania.
- D. ma nieskończenie wiele rozwiązań.

Zadanie 8. (0-1)

Iloczyn wszystkich pierwiastków równania $(2x-3)(x^2+2x)=0$ jest równy

A.
$$-\frac{4}{3}$$
.

B. 0.

C. 3.

D. -3.

Zadanie 9. (0-1)

W trójkącie prostokątnym jedna z przyprostokątnych ma długość 5, a przeciwprostokątna ma długość 13. Sinus większego kąta ostrego tego trójkąta jest równy

A.
$$\frac{12}{13}$$
.

B. $\frac{5}{13}$.

C. $\frac{\sqrt{5}}{13}$.

D. $\frac{5}{12}$.

Zadanie 10. (0-1)

Przyjmijmy, że $\log 5 = p$. Wtedy

A.
$$p + 1 = \log \frac{1}{2}$$
.

B.
$$2p - 2 = \log \frac{1}{4}$$
.

C.
$$p-1 = \log \frac{1}{20}$$
.

D.
$$p^2 - 2 = \log \frac{1}{4}$$
.

Zadanie 11. (0-1)

Wykres funkcji liniowej f(x) = -2x + 1 przesunięto o trzy jednostki w prawo wzdłuż osi OX. Otrzymano wykres funkcji

A.
$$y = -2x + 7$$
.

B.
$$y = -2x + 4$$
.

B.
$$y = -2x + 4$$
. **C.** $y = -2x + 5$. **D.** $y = -2x - 2$.

D.
$$y = -2x - 2$$
.

Zadanie 12. (0-1)

Funkcja liniowa f(x) = -3x + 2b i funkcja liniowa $g(x) = \frac{1}{2}x + 2$ mają to samo miejsce zerowe. Wynika stąd, że

A.
$$b = 12$$
.

B.
$$b = -12$$
.

C.
$$b = 6$$
.

D.
$$b = -6$$
.

Zadanie 13. (0-1)

Osią symetrii wykresu pewnej funkcji kwadratowej jest prosta o równaniu x=-3, a wartość największa tej funkcji jest równa 4. Który ze wzorów może opisywać tę funkcję kwadratową?

A.
$$y = 2 \cdot (x+3)^2 + 4$$

B.
$$y = -2 \cdot (x-3)^2 + 4$$

C.
$$y = -2 \cdot (x+3)^2 + 4$$

D.
$$y = -2 \cdot (x+3)^2 - 4$$

Zadanie 14. (0-1)

Do wykresu funkcji wykładniczej $y = a^x$ należy punkt $A = (\frac{1}{3}, 2)$. Wynika stąd, że a jest równe

A.
$$2^{-\frac{1}{3}}$$
.

B.
$$\frac{1}{8}$$
.

D.
$$2^{\frac{1}{3}}$$
.

Zadanie 15. (0-1)

Dany jest wykres funkcji y = f(x).

Zbiorem wartości funkcji f(x) jest przedział

A.
$$(-2, 2)$$
.

B.
$$(-2,2)$$

C.
$$\langle -2, 2 \rangle$$

B.
$$(-2,2)$$
. **C.** $\langle -2,2 \rangle$. **D.** $\langle -2,2 \rangle$.

Zadanie 16. (0-1)

W niemonotonicznym ciągu geometrycznym dane są wyrazy $a_4=16\,$ i $\,a_6=1.$ Piąty wyraz tego ciągu jest równy

A.
$$-8$$
.

B.
$$-4$$
.

Zadanie 17. (0-1)

Różnica r ciągu arytmetycznego o wzorze ogólnym $a_n = 5 - 3n \ (n \ge 1)$ wynosi

A. 5.

B. 3.

C. 2.

D. -3.

Zadanie 18. (0-1)

Dany jest okrag o środku S = (4, -3) i promieniu r = 5. Liczba wszystkich punktów wspólnych tego okręgu z osiami układu współrzędnych jest równa

A. 1.

B. 2.

C. 3.

D. 4.

Zadanie 19. (0-1)

Dana jest prosta o równaniu -2x - 4y + 3 = 0. Wskaż równanie prostej, która jest do niej równoległa i przechodzi przez punkt P = (0, -2).

A.
$$y = \frac{1}{2}x - 2$$

B.
$$y = -\frac{1}{2}x + 2$$

C.
$$y = 2x - 2$$

D.
$$y = -\frac{1}{2}x - 2$$

Zadanie 20. (0-1)

Dany jest romb, w którym kąt ostry ma miarę 45°, a wysokość wynosi 6 cm. Ile wynosi pole tego rombu?

- **A.** $36\sqrt{2}$ cm²
- **B.** 36 cm^2
- **C.** $24\sqrt{2} \text{ cm}^2$ **D.** $18\sqrt{2} \text{ cm}^2$

Zadanie 21. (0-1)

Miara kata środkowego w okręgu jest o 40° większa od miary kata wpisanego opartego na tym samym łuku. Ile wynosi miara kata wpisanego?

A. 80°

B. 40°

C. 20°

D. 10°

Zadanie 22. (0-1)

Z połowy koła o promieniu 10 zbudowano powierzchnię boczną stożka. Ile wynosi promień podstawy tego stożka?

A. 10

B. 5

C. $\sqrt{10}$

D. $\sqrt{5}$

Zadanie 23. (0-1)

Jeśli graniastosłup ma 12 ścian, to liczba jego krawędzi jest równa

A. 20.

B. 27.

C. 30.

D. 36.

Zadanie 24. (0-1)

W dwukrotnym rzucie sześcienną kostką do gry prawdopodobieństwo otrzymania sumy oczek równej 8 wynosi

- **A.** $\frac{1}{18}$.
- **B.** $\frac{1}{12}$.
- C. $\frac{1}{9}$.

D. $\frac{5}{36}$.

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Zadanie 25. (0-2)

Rozwiąż nierówność $(2x-3)^2-4 \ge 0$.

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Zadanie 26. (0-2)

Dla kąta ostrego α dany jest $\cos \alpha = \frac{2}{3}$. Oblicz wartość wyrażenia $\sqrt{\operatorname{tg}^2 \alpha + 1}$.

	Nr zadania	25	26
Wypełnia sprawdzający	Maks. liczba pkt	2	2
F	Uzyskana liczba pkt		

Zadanie 27. (0-2)

Ze zbioru liczb naturalnych dwucyfrowych mniejszych od 30 losujemy dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia *A*, w którym obie wylosowane liczby będą podzielne przez 3.

Zadanie 28. (0-2)

W ciągu arytmetycznym (a_n) określonym dla $n \ge 1$, dane są wyrazy $a_2 = -2$ i $a_5 = 7$. Oblicz sumę wyrazów tego ciągu, od wyrazu piątego do wyrazu dwudziestego.

	Nr zadania	27	28
Wypełnia sprawdzający	Maks. liczba pkt	2	2
open sample y	Uzyskana liczba pkt		

Zadanie 29. (0-2)

Udowodnij, że dla dowolnej liczby rzeczywistej ujemnej prawdziwa jest nierówność

$$9x + \frac{1}{x} \leqslant -6.$$

Zadanie 30. (0-3)

W kwadracie ABCD, w którym punkt E jest środkiem boku CD, poprowadzono przekątną BD i odcinek AE, które przecięły się w punkcie P. Uzasadnij, że suma pól trójkątów ABP i DEP stanowi $\frac{5}{12}$ pola kwadratu ABCD.

	Nr zadania	29	30
Wypełnia sprawdzający	Maks. liczba pkt	2	3
- F	Uzyskana liczba pkt		

Zadanie 31. (0-4)

Wyznacz wzór funkcji kwadratowej w postaci ogólnej, jeżeli wierzchołek paraboli, która jest jej wykresem, znajduje się w punkcie W=(-1,5), a ta funkcja w przedziale $\langle -2,2\rangle$ osiąga najmniejszą wartość równą -4.

Wypełnia sprawdzający	Nr zadania	31
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 32. (0-5)

W trójkącie równoramiennym ABC dane są wierzchołki podstawy A=(2,1) i B=(6,5) oraz wysokość $|CD|=\frac{7\sqrt{2}}{2}$. Oblicz współrzędne wierzchołka C, jeżeli wiadomo, że obie te współrzędne są dodatnie.

	Nr zadania	32
Wypełnia sprawdzający	Maks. liczba pkt	5
-F	Uzyskana liczba pkt	

Zadanie 33. (0-4)

W ostrosłupie czworokątnym prawidłowym pole jednej ściany bocznej wynosi 12, a cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy jest równy $\frac{1}{3}$. Oblicz objętość tego ostrosłupa.

Wypełnia sprawdzający	Nr zadania	33
	Maks. liczba pkt	4
T	Uzyskana liczba pkt	

WPISUJE ZDAJĄCY

KARTA ODPOWIEDZI

Nr zad.	Odpowiedzi			
1	A	В	С	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	A	В	С	D
6	A	В	С	D
7	A	В	С	С
8	A	В	С	D
9	A	В	С	D
10	A	В	С	D
11	A	В	С	D
12	A	В	С	D
13	A	В	С	D
14	A	В	С	D
15	A	В	С	D
16	A	В	С	D
17	A	В	С	D
18	A	В	С	D
19	A	В	С	D
20	A	В	С	D
21	A	В	С	D
22	A	В	С	D
23	A	В	С	D
24	A	В	С	D

WYPEŁNIA ZESPÓŁ NADZORUJĄCY

Uprawnienia ucznia do: dostosowania kryteriów oceniania. nieprzenoszenia zaznaczeń na kartę.

WYPEŁNIA SPRAWDZAJĄCY

Nr	Punkty					
zad.	0	1	2	3	4	5
25						
26						
27						
28						
29						
30						
31						
32						
33						