Particionado de Red Basado en Redes SDN

Autor: Ángel Guzmán Martínez

Tutor: Jorge Navarro Ortiz

Departamento de Teoría de la Señal, Telemática y Comunicaciones

Universidad de Granada

- Objetivos y Motivación
- 2 Introducción a SDN
- OpenFlow
 3 Descripción de
- 4 Hipervisor OpenFlow

- 5 Implementación
- **6** Conclusiones

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
- 6 Conclusiones

Objetivos y Motivación

Objetivos

- Entender las limitaciones de las redes tradicionales.
- Familiarizaros con el concepto de SDN y network slicing.
- Particionar una red SDN y comprobar su funcionamiento.

Objetivos y Motivación

Objetivos

- Entender las limitaciones de las redes tradicionales.
- Familiarizaros con el concepto de SDN y network slicing.
- Particionar una red SDN y comprobar su funcionamiento.

¿Por qué particionar una red (network slicing)?

- Tráfico heterogéneo. IoT, eMBB, URLLC...
- Redes Tradicionales. Limitaciones en Quality of Service (QoS).
- Implantación de Software Defined Network (SDN).

Ejemplo de Network Slicing

Fuente: https://www.onug.net/blog/
5g-network-slicing-and-enterprise-networking/

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
- 6 Conclusiones

Introducción a SDN

¿Qué es una red SDN?

En esencia, el concepto de SDN consiste en la separación entre el plano de control y el plano de datos.

Analogía con Cloud Computing.

Introducción a SDN

Introducción a SDN

Ventajas de una red SDN frente a una tradicional.

- Flexibilidad y adaptabilidad.
- Visión general de la red.
- Monitorización.
- Hardware homogéneo.
- Mantenimiento y configuración.

- Objetivos y Motivación
- Introducción a SDN
- OpenFlow
 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
- 6 Conclusiones

OpenFlow es el protocolo de comunicación *southbound* más utilizado en redes SDN.

Comunicación southbound

Es la comunicación entre los *forwarding devices* y el controlador o controladores.

Los tipos de paquetes más importantes son:

- Packet In.
- Packet_Out.
- FlowMod.

Estructura de una regla de flujo (flow) OpenFlow.

Matching Fields

Dirección IP destino Dirección IP origen Protocolo de Transporte Puerto TCP destino

Puerto TCP origen

Action

Enviar por puerto X Descartar Packet_In Inundar

Estructura de una regla de flujo (flow) OpenFlow.

Matching Fields

Dirección IP destino Dirección IP origen Protocolo de Transporte

Puerto TCP destino

Puerto TCP origen

Action

Enviar por puerto X

Descartar

Packet_In

Inundar

Estructura de una regla de flujo (flow) OpenFlow.

Matching Fields

Dirección IP destino Dirección IP origen Protocolo de Transporte

Puerto TCP destino

Puerto TCP origen

Action

Enviar por puerto X

Descartar

Packet_In

Inundar

Estructura de una regla de flujo (flow) OpenFlow.

Matching Fields

Dirección IP destino Dirección IP origen Protocolo de Transporte

Puerto TCP destino

Puerto TCP origen

Action

Enviar por puerto X

Descartar

Packet_In

Inundar

Estructura de una regla de flujo (flow) OpenFlow.

Matching Fields

Dirección IP destino Dirección IP origen Protocolo de Transporte

Puerto TCP destino

Puerto TCP origen

Action

Enviar por puerto X

Descartar Packet In

Packet_In

Inundar

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow
 - Introducción
 - Sintaxis
 - Ventajas

- 5 Implementación
- 6 Conclusiones

Hipervisor OpenFlow

- Tipo especial de controlador.
- Situado entre los switches OpenFlow y los controladores.
- Intercepta mensajes OpenFlow y los distribuye acorde a su configuración.
- Clave para network slicing. Slices. Múltiples controladores.
- Configuración análoga a reglas OpenFlow.
- Hipervisor *open source*: **FlowVisor**.

Hipervisor OpenFlow

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow
 - Introducción
 - Sintaxis
 - Ventajas

- 5 Implementación
- 6 Conclusiones

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Comando para añadir un flowspace

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Nombre del flowspace

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Identificador del switch (DPID)

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Prioridad de la regla

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Campo que analizar el paquete

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Slice al que asignar el paquete

Regla ejemplo con la sintaxis usada por FlowVisor. Análogo a las reglas OpenFlow.

fvctl -n add-flowspace example 1 200 in_port=2 LoRa=6

Permisos del slice

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow
 - Introducción
 - Sintaxis
 - Ventajas

- 5 Implementación
- 6 Conclusiones

Network Slicing. Ventajas y Aplicaciones

Ventajas

- Simplificación de la lógica de los controladores.
- Mantenimiento.
- Adaptabilidad.
- Aislamiento entre slices.

Aplicaciones

- Ingeniería de tráfico.
- Multiplexación de servicios en la misma red física.
- Uso de una red de producción como escenario de pruebas.

- Objetivos y Motivación
- 2 Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
 - Virtualización
 - TCP Port Slicing
 - Demo TCP Port Slicing
 - IP Address Slicing
 - Demo IP Address Slicing
- 6 Conclusiones

Virtualización

No disponemos de *switches* OpenFlow para montar una red SDN. Tenemos que recurrir a emulación.

- Open vSwitch.
- Mininet.
- Iperf.

Virtualización

No disponemos de *switches* OpenFlow para montar una red SDN. Tenemos que recurrir a emulación.

- Open vSwitch.
- Mininet.
- Iperf.

Como controlador OpenFlow usaremos **POX**.

Virtualización. Topología

- Objetivos y Motivaciór
- Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
 - Virtualización
 - TCP Port Slicing
 - Demo TCP Port Slicing
 - IP Address Slicing
 - Demo IP Address Slicing
- **6** Conclusiones

TCP Port Slicing

- Objetivos y Motivación
- Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
 - Virtualización
 - TCP Port Slicing
 - Demo TCP Port Slicing
 - IP Address Slicing
 - Demo IP Address Slicing
- **6** Conclusiones

- Objetivos y Motivación
- Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
 - Virtualización
 - TCP Port Slicing
 - Demo TCP Port Slicing
 - IP Address Slicing
 - Demo IP Address Slicing
- 6 Conclusiones

IP Address Slicing

SRC/DST IP ADDRESS = 10.0.0.0/16

IP Address Slicing

IP Address Slicing

- Objetivos y Motivación
- Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
 - Virtualización
 - TCP Port Slicing
 - Demo TCP Port Slicing
 - IP Address Slicing
 - Demo IP Address Slicing
- 6 Conclusiones

- Objetivos y Motivación
- Introducción a SDN
- 3 Descripción de OpenFlow
- 4 Hipervisor OpenFlow

- 5 Implementación
- 6 Conclusiones

Conclusiones

¿Hemos cumplido con los objetivos?

- Hemos entendido las limitaciones de redes tradicionales.
- Familiarización con redes SDN y network slicing.
- Particionado de red de dos formas diferentes.

Conclusiones

¿Hemos cumplido con los objetivos?

- Hemos entendido las limitaciones de redes tradicionales.
- Familiarización con redes SDN y network slicing.
- Particionado de red de dos formas diferentes.

Respecto al network slicing.

- Solución al tráfico heterogéneo.
- Alternativa a QoS.
- Simplifica la configuración del controlador o controladores.
- Aislamiento entre secciones de la misma red.