Описание прототипа инструмента сверки схем баз данных

Центр разработки PostgreSQL

Exported on 10/21/2020

Table of Contents

1	Общие сведения	8
2	Файлы	9
3	Предварительные требования	10
4	Установка	
5	Описание модели сверки	
6	Настройка правил сверки	
7		
	АРІ для запуска задач сверки	
7.1	Сверка записей НАЅН	
7.1.1	Формат	
7.1.2	Параметры запроса	
7.1.3	Тело запроса	
7.1.4	Возвращаемое значение	
7.1.5	Описание/Алгоритм	
7.1.6	Пример	
7.2	Инкрементальная сверка	17
7.2.1	Формат	18
7.2.2	Параметры запроса	18
7.2.3	Тело запроса	18
7.2.4	Возвращаемое значение	18
7.2.5	Описание/Алгоритм	18
7.2.6	Пример	19
7.3	Полная сверка по интервалам времени	19
7.3.1	Формат	19
7.3.2	Параметры запроса	19
7.3.3	Тело запроса	19
7.3.4	Возвращаемое значение	20
7.3.5	Описание/Алгоритм	20
7.3.6	Пример	20
7.4	Детальная сверка таблицы	21
7.4.1	Формат	21
7.4.2	Параметры запроса	21

7.4.3	Тело запроса	21
7.4.4	Возвращаемое значение	22
7.4.5	Описание/Алгоритм	23
7.4.6	Пример	23
8	REST API сверки	24
8.1	Источники данных (datasource)	24
8.1.1	Получить список источников данных	24
8.1.1.1	1 Формат	24
8.1.1.2	2 Возвращаемое значение	24
8.1.1.3	3 Описание/Алгоритм	24
8.1.1.4	4 Пример	24
8.1.2	Информация по источнику данных	24
8.1.2.1	1 Формат	24
8.1.2.2	2 Параметры запроса	24
8.1.2.3	3 Возвращаемое значение	25
8.1.2.4	4 Описание/Алгоритм	25
8.1.2.5	5 Пример	25
8.1.3	Добавление источника данных	25
8.1.3.1	1 Формат	25
8.1.3.2	2 Параметры запроса	25
8.1.3.3	3 Тело запроса	25
8.1.3.4	4 Возвращаемое значение	26
8.1.3.5	5 Описание/Алгоритм	26
8.1.3.6	5 Пример	26
8.1.4	Удаление источника данных	26
8.1.4.1	1 Формат	26
8.1.4.2	2 Параметры запроса	26
8.1.4.3	3 Возвращаемое значение	27
8.1.4.4	4 Описание/Алгоритм	27
8.1.4.5	5 Пример	27
8.1.5	Изменение источника данных	27
8.1.5.1	1 Формат	27
8.1.5.2	2 Параметры запроса	27
8.1.5.3	3 Тело запроса	27
8.1.5.4	4 Возвращаемое значение	28

8.1.5.5	Описание/Алгоритм	28
8.1.5.6	Пример	28
8.2	Схемы	28
8.2.1	Список схем	28
8.2.1.1	Формат	28
8.2.1.2	Параметры запроса	29
8.2.1.3	Возвращаемое значение	29
8.2.1.4	Описание/Алгоритм	29
8.2.1.5	Пример	29
8.2.2	Информация по схеме	29
8.2.2.1	Формат	29
8.2.2.2	Параметры запроса	29
8.2.2.3	Возвращаемое значение	29
8.2.2.4	Описание/Алгоритм	30
8.2.2.5	Пример	30
8.2.3	Добавление схемы	30
8.2.3.1	Формат	30
8.2.3.2	Параметры запроса	30
8.2.3.3	Тело запроса	30
8.2.3.4	Возвращаемое значение	31
8.2.3.5	Описание/Алгоритм	31
8.2.3.6	Пример	31
8.2.4	Удаление схемы	31
8.2.4.1	Формат	31
8.2.4.2	Параметры запроса	32
8.2.4.3	Возвращаемое значение	32
8.2.4.4	Описание/Алгоритм	32
8.2.4.5	Пример	32
8.2.5	Изменение схемы	32
8.2.5.1	Формат	32
8.2.5.2	Параметры запроса	32
8.2.5.3	Тело запроса	32
8.2.5.4	Возвращаемое значение	33
8.2.5.5	Описание/Алгоритм	33
8.2.5.6	Пример	33

8.2.6	Генерация описания таблиц схемы	. 33
8.2.6.1	Формат	. 33
8.2.6.2	Параметры запроса	. 33
8.2.6.3	Тело запроса	. 33
8.2.6.4	Возвращаемое значение	. 34
8.2.6.5	Описание/Алгоритм	. 34
8.2.6.6	Пример	. 34
8.3	Исключения схем	34
8.3.1	Список исключений для схемы	. 34
8.3.1.1	Формат	. 34
8.3.1.2	Параметры запроса	. 34
8.3.1.3	Возвращаемое значение	. 34
8.3.1.4	Описание/Алгоритм	. 34
8.3.1.5	Пример	. 34
8.3.2	Добавление исключения	. 35
8.3.2.1	Формат	. 35
8.3.2.2	Параметры запроса	. 35
8.3.2.3	Тело запроса	. 35
8.3.2.4	Возвращаемое значение	. 36
8.3.2.5	Описание/Алгоритм	. 36
8.3.2.6	Пример	. 36
8.3.3	Удаление исключения	. 36
8.3.3.1	Формат	. 36
8.3.3.2	Параметры запроса	. 36
8.3.3.3	Возвращаемое значение	. 36
8.3.3.4	Описание/Алгоритм	. 36
8.3.3.5	Пример	. 36
8.4	Правила	37
8.4.1	Список правил	. 37
8.4.1.1	Формат	. 37
8.4.1.2	Параметры запроса	. 37
8.4.1.3	Возвращаемое значение	. 37
8.4.1.4	Описание/Алгоритм	. 37
8.4.1.5	Пример	. 37
8.4.2	Информация по правилу	. 37

8.4.2.1	Формат	. 37
8.4.2.2	Параметры запроса	. 37
8.4.2.3	Возвращаемое значение	. 38
8.4.2.4	Описание/Алгоритм	.38
8.4.2.5	Пример	. 38
8.4.3	Добавление правила	.38
8.4.3.1	Формат	.38
8.4.3.2	Параметры запроса	.38
8.4.3.3	Тело запроса	.38
8.4.3.4	Возвращаемое значение	.40
8.4.3.5	Описание/Алгоритм	.40
8.4.3.6	Пример	.40
8.4.4	Удаление правила	.40
8.4.4.1	Формат	.40
8.4.4.2	Параметры запроса	.41
8.4.4.3	Возвращаемое значение	.41
8.4.4.4	Описание/Алгоритм	.41
8.4.4.5	Пример	.41
8.4.5	Изменение правила	. 41
8.4.5.1	Формат	. 41
8.4.5.2	Параметры запроса	. 41
8.4.5.3	Возвращаемое значение	. 41
8.4.5.4	Описание/Алгоритм	. 41
8.4.5.5	Пример	. 42
8.5	Задачи	42
8.5.1	Список задач	. 42
8.5.1.1	Формат	. 42
8.5.1.2	Параметры запроса	. 42
8.5.1.3	Возвращаемое значение	. 42
8.5.1.4	Описание/Алгоритм	. 42
8.5.1.5	Пример	. 42
8.5.2	Информация по задаче	. 43
8.5.2.1	Формат	. 43
8.5.2.2	Параметры запроса	. 43
8.5.2.3	Возвращаемое значение	. 43

8.5.2.4	Описание/Алгоритм
8.5.2.5	Пример
8.5.3	Прерывание задачи
	Формат
8.5.3.2	Параметры запроса
	Тело запроса
8.5.3.4	Возвращаемое значение
8.5.3.5	Описание/Алгоритм
8.5.3.6	Пример47
8.5.4	Возобновление задачи
	Формат
8.5.4.2	Параметры запроса
8.5.4.3	Тело запроса
8.5.4.4	Возвращаемое значение
8.5.4.5	Описание/Алгоритм47
8.5.4.6	Пример
9	Рекомендации по выполнению полной сверки баз после миграции49

1 Общие сведения

Прототип инструмента сверки данных изначально был разработан для внутренних целей SberPlatform и по просьбе разработчиков был включен в состав дистрибутива PostgreSQL SE.

Данный прототип является одним из возможных вариантов инструментов сверки данных. Окончательный выбор инструмента и его использование находится в зоне ответственности продуктовой команды осуществляющей переход с Oracle на PostgreSQL.

Инструмент сверки – war-сервис для проверки данных при миграции с Oracle на PostgreSQL. Для работы необходим сервер PostgreSQL SE.

В разделе «Файлы» даны ссылки на инструмент и другие необходимые для выполнения инструкции файлы.

2 Файлы

Файлы расположены в дистрибутиве в папке migration_tools/db-data-comparator:

- db-data-comparator.zip архив с ? инструмента. Содержит каталог db-data-comparator:
 - 001.00 каталог с данными для PostgreSQL, используемым для работы сервиса:
 - dictionaries ?;
 - others ??;
 - schema/schema.sql скрипт создания схемы базы данных для работы сервиса.
 - db-data-comparator.xml файл набора изменений для liquibase (см. раздел « Установка », шаг 1):
 - db-data-comparator-schema.sh пример запуска liquibase (см. раздел « Установка », шаг 1).
- db-data-comparator-0.8-beta.war исполняемый код модуля, используется в WildFly (см. раздел « Установка », шаг 7.с);
- make-postgresql-hash-func.sql функции, используемые сверкой. Устанавливается в целевую схему PG (см. раздел «Настройка правил сверки», шаг 1);
- application.properties файл с настройками инструмента в WildFly (см. раздел «Установка», шаг 4);
- module.xml конфигурация WildFly модуля инструмента сверки (см. раздел «Установка», шаг 2.а).

3 Предварительные требования

Установлено ПО:

- 1. PostgreSQL SE версии 4.2.3 для работы инструмента.
- 2. Wildfly. Рекомендуемая версия 10.1.0.Final.
- 3. liquibase последней версии.

Выполните настройки:

- 1. B PostgreSQL SE для работы сервиса создайте:
 - а. Базу данных и схему. Рекомендация создайте пустую схему.
 - b. Техническую учетную запись (ТУЗ) с правами на создание схемы и объектов в схеме, выполнение DML операций над объектами схемы.
- 2. В проверяемой PostgreSQL создайте ТУЗ с правами на чтение таблиц и View из проверяемой схемы.
- 3. В проверяемой Oracle создайте ТУЗ с правами на чтение таблиц и View из проверяемой схемы.

4 Установка

- \${WILDFLY_PATH} директория, куда установлен WildFly.
 - 1. Выполните заполнение схемы с помощью liquibase. Файл набора изменений db-datacomparator.xml.Пример вызова приведен в db-data-comparator-schema.sh.
 - 2. Поместите конфигурацию модуля сервиса в WildFly:
 - а. В директории инсталляции WildFly создайте директорию \${WILDFLY_PATH} modules/ system/layers/base/ru/sbt/configuration/main.
 - b. В директорию \${WILDFLY_PATH}/modules/system/layers/base/ru/sbt/configuration/ main поместите файл

module.xml

- 3. Опционально. Добавьте или настройте пользователя для управления WildFly.
- 4. В файле

application.properties (\${WILDFLY_PATH}/modules/system/layers/base/ru/sbt/configuration/ main) добавьте параметр dataSource, в котором укажите

⚠ Упоминаемые jndi должны соответствовать jndi для datasources WildFly, создание которых указано ниже по пунктам

- 5. Установите объём кучи WildFly не меньше объёма данных. При запуске через \${WILDFLY_PATH}/ bin/standalone.sh размер кучи меняется в скрипте \${WILDFLY_PATH}/bin/ standalone.conf.ps1.
- 6. Запустите WildFly.
- 7. В консоли WildFly:
 - а. Выполните deployment passepтывание/установку драйверов jdbc для Oracle и Postgresql. Рекомендуемые версии:
 - ojdbc7 12.1.0.2;
 - postgresql 42.2.8.
 - b. В разделе Configuration System properties добавьте свойство с ключем oracle.jdbc.J2EE13Compliantи значением true.
 - с. Выполните deployment развертывание/установку war-файла сервиса.

5 Описание модели сверки

Сущности модели сверки данных схем баз данных:

- источник данных зарегистрированный источник данных, описывающий наименование источника данных в сервисе сверки:
 - идентификатор источника данных (id источника);
 - имя источника (name, имя источника);
 - jndi-имя в datasource WildFly, используемое для обращения к сверяемой схеме БД (uri);
 - тип источника данных обозначение используемой БД (type);
 - размера пула соединений (poolSize).
- схема описание сверяемой схемы:
 - идентификатор схемы (id схемы);
 - описание схемы отображаемое (идентифицирующее в сервисе) наименование схемы (schemaDesc);
 - имя схемы в базе данных (schemaName);
 - ? привязку к зарегистрированному источнику данных;
 - структура сверяемых таблиц и полей таблиц (datasource).
- правило зарегистрированная пара сверяемых схем, в привязке к параметрам сверки и опциональными правили соотнесения разноименованных (в сверяемых схемах) таблиц и полей таблиц:
 - идентификатор правила (id правила);
 - имя правила (name);
 - описания схем Oracle (firstSchemaDesc) и PostgreSQL (secondSchemaDesc);
 - (matching):
 - размер пачки сверки (batchSize);
 - максимальное количество повторов сверки (maxRetries).
- исключение правило исключения объектов схемы (таблиц или полей) из описания схемы при генерации описания схемы через вызов API сервиса:
 - идентификатор исключения (id исключения);
 - описание схемы Oracle (schemaDesc);
 - исключаемый объект: таблица или столбец таблицы (type);
 - маска имен таблиц, в формате для LIKE (tablePattern);
 - маска имен полей, в формате для LIKE (columnPattern).

Регистрируется в привязке к схеме, на которую действует:

- задача зарегистрированный запуск задачи сверки схем по определенному правилу с определенным типом сверки и параметрами:
 - идентификатор задачи (id задачи);
 - тип задачи (taskType):
 - HASH сверка записей HASH;
 - INCREMENT инкрементальная сверка;
 - OVERALL полная сверка по интервалам времени;
 - VERBOSE детальная сверка таблицы.
 - дата и время начала (fromDateTime) и окончания (toDateTime) задачи.

6 Настройка правил сверки

- 1. Из под ТУЗ в проверяемой схеме PostgreSQL выполните в pgAdmin скрипт scripts/makepostgresql-hash-func.sql
- 2. В консоли WildFly создайте non-XA datasource для БД под Oracle с параметрами подключения к схеме под Oracle. Подключение должно выполняться из под ТУЗ для Oracle.
- 3. В консоли WildFly создайте non-XA datasource для БД под PostgreSQL с параметрами подключения к схеме под PostgreSQL. Подключение должно выполняться из под ТУЗ для PostgreSQL.
- 4. Настройте пулы соединений datasources для Oracle и PostgreSQL: количество соединений больше минимального размера пула для схем (параметр poolSize в запросах). Пример:

Во всех запросах необходимо использовать одно и тоже значение параметра poolSize.

5. Выполните запрос регистрации datasource для Oracle, пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/datasource" -d '{"type":"ORACLE", "name":
"имя источника данных Oracle", "uri":"jndi источника данных Oracle в WildFly", "poolSize": 5}'
```

6. Выполните запрос регистрации datasource для PostgreSQL, пример:

```
\verb|curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/datasource" -d '{"type":"POSTGRESQL", to the comparator of the comparator of
"name": "имя источника данных PostgreSQL", "uri":"jndi источника данных PostgreSQL в WildFly",
"poolSize": 5}'
```

7. Выполните регистрацию схемы для Oracle, пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema" -d '{"schemaDesc":"Описание схемы
Oracle, идентифицирует схемы", "schemaName": "имя схемы", "dataSource":{"type":"ORACLE", "name":
"имя источника данных Oracle", "uri":"jndi источника данных Oracle в WildFly", "poolSize": 5}}'
```

8. Выполните регистрацию схемы для PostgreSQL, пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema" -d '{"schemaDesc":"Описание схемы
PostgreSQL, идентифицирует схемы", "schemaName": "имя схемы", "dataSource":{"type":"POSTGRESQL",
"name": "имя источника данных PostgreSQL", "uri":"jndi источника данных PostgreSQL в WildFly",
"poolSize": 5}}'
```

9. Добавьте ограничения на не требующие проверки объекты, выбираемые при формировании описаний схемы Oracle. Для таблиц:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/exclusion" -d '{"schemaDesc":"Описание
cxeмы Oracle", "type":"ТАВLE","tablePattern":"Маска имен таблиц, в формате для LIKE"}'
```

Для полей:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/exclusion" -d '{"schemaDesc":"Описание схемы Oracle", "type":"COLUMN","tablePattern":"Маска имен таблиц, в формате для LIKE","columnPattern":"Маска имен полей, в формате для LIKE"}'
```

ограничения можно удалять через вызовы методов, указанных в описании АРІ.

10. Добавьте ограничения на не требующие проверки объекты, выбираемые при формировании описаний схемы PostgreSQL.

```
Для таблиц:
```

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/exclusion" -d '{"schemaDesc":"Описание схемы PostgreSQL", "type":"TABLE","tablePattern":"Маска имен таблиц, в формате для LIKE"}'
```

Для полей:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/exclusion" -d '{"schemaDesc":"Описание
cxeмы PostgreSQL", "type":"COLUMN","tablePattern":"Маска имен таблиц, в формате для
LIKE","columnPattern":"Маска имен полей, в формате для LIKE"}'
```

ограничения можно удалять через вызовы методов, указанных в описании АРІ.

11. Выполните генерацию описания схемы Oracle, пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы Oracle>/ generate" -d '{}'
```

12. Выполните генерацию описания схемы PostgreSQL, пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы PostgreSQL>/generate" -d '{}'
```

- 13. При необходимости выполните редактирование и сохранение описания схемы Oracle. Для редактирования:
 - а. Получите текущее описание схемы:

```
curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы Oracle>"
```

- b. Выполните правки описания в любом редакторе.
- с. Выполните запрос на изменение:

```
curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы Oracle>"
-d 'json-документ описания схемы'
```

- 14. При необходимости выполните редактирование и сохранение описания схемы PostgreSQL. Для редактирования:
 - а. Получите текущее описание схемы:

```
curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы PostgreSQL>"
```

- b. Выполните правки описания в любом редакторе.
- с. Выполните запрос на изменение:

```
curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/schema/desc/<описание схемы
PostgreSQL>" -d 'json-документ описания схемы'
```

15. Зарегистрируйте правило сверки, при необходимости настройте правила соответствия таблиц и полей схем. Пример:

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/rule" -d '{"name":"имя правила, идентифицирует правило", "firstSchemaDesc":"описание схемы Oracle", "secondSchemaDesc":"описание схемы PostgreSQL", "matching":null, "batchSize":"размер пачки сверки", "maxRetries":"максимальное количество повторов сверки"}'
```

поле matching заполняется при изменениях именования объектов между сверяемыми схемами , по шаблону:

```
"matching":[{"tableOne":{"fields":["имя поля 1", ...]}, "tableTwo":{"fields":["имя поля 1", ...]}}, ...]
```

где соответствующие поля таблиц должны находится в соответствующих позициях в списках.

Изменение описаний схем, настроек datasources и параметров правила могут быть выполнены в любой момент времени с помощью REST-вызовов с методом PUT.

7 АРІ для запуска задач сверки

HTTP RC

404 - не найдено, в теле пояснение, что именно

409 - конфликт, в теле пояснение

500 - внутренняя ошибка, когда все плохо

200, 201, 204 - все ок

7.1 Сверка записей HASH

Сверка каждой записи для пар таблиц по хэшам.

7.1.1 Формат

POST /db-data-comparator

7.1.2 Параметры запроса

7.1.3 Тело запроса

```
{
  "ruleName"="имя правила",
  "taskType"="тип задачи",
  "fromDateTime"="дата и время начала",
  "toDateTime"="дата и время начала"
}
```

M (Mandatory) – обязательный атрибут.O (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
ruleName	strin g		M	Имя исполняем ого правила	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
taskType	strin g		M	Применяе мый алгоритм сверки. Для данного сценария только нАSH.	HASH
fromDateTime	strin g	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Начало интервала	
toDateTime	strin g	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Окончание интервала	

7.1.4 Возвращаемое значение

Вызов возвращает ID созданной задачи

7.1.5 Описание/Алгоритм

При несоответствии описаний таблиц схем правила, либо при отсутствии в какой-либо из таблиц схем ключевого поля - задача инициирована не будет и будет возвращено описание проблемы в конфигурации.

Выполняет последовательную сверку записей, отсортированных по первичному или уникальному ключу, заданному в конфигурации схемы для таблицы. Сверка производится по хэшу, вычисленному по всем полям, заданным в конфигурации для таблицы, кроме ключевых. Сверка больших LOB полей не рекомендована, т.к. происходит очень медленно.

7.1.6 Пример

Без ограничения интервала

```
 \label{curl-v-X-POST} $$ \ ''http://127.0.0.1:8080/db-data-comparator/"-d'{"ruleName": "ruleExample", "taskType": "HASH"}' $$
```

С ограничением интервала

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/" -d '{"ruleName": "ruleExample", "taskType":
"HASH", "fromDateTime":"1970-01-01T01:15:51.10+00:00", "toDateTime":"1970-02-01T05:40:21.04+00:00"}'
```

7.2 Инкрементальная сверка

краткое назначение

7.2.1 Формат

POST /db-data-comparator

7.2.2 Параметры запроса

7.2.3 Тело запроса

```
{
  "ruleName"="имя правила",
  "taskType"="тип задачи"
}
```

M (Mandatory) - обязательный атрибут.O (Optional) - не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
ruleName	strin g		М	Имя исполняем ого правила	
taskType	strin g		M	Применяе мый алгоритм сверки. Для данного сценария только INCREMENT.	INCREMENT

7.2.4 Возвращаемое значение

Вызов возвращает ID созданной задачи.

7.2.5 Описание/Алгоритм

При несоответствии описаний таблиц схем правила, либо при отсутствии в какой-либо из таблиц схем ключевого поля или поля определяющего временную метку записи - задача инициирована не будет и будет возвращено описание проблемы в конфигурации.

Для определения нижней границы времени для создаваемой задачи учитываются только успешно завершенные задачи полной сверки (не по отдельным таблицам)

Будет создана задача с границами времени от максимальной верхней границы интервала времени успешно завершенных задач (без расхождений) до момента времени вызова.

Выполняет последовательную сверку записей, отсортированных по первичному или уникальному ключу, заданному в конфигурации схемы для таблицы. Сверка производится по хэшу, вычисленному по всем полям, заданным в конфигурации для таблицы, кроме ключевых. Сверка больших LOB полей не рекомендована, т.к. происходит очень медленно.

7.2.6 Пример

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/" -d '{"ruleName": "ruleExample", "taskType":
"INCREMENT"}'
```

7.3 Полная сверка по интервалам времени

7.3.1 Формат

POST /db-data-comparator

7.3.2 Параметры запроса

7.3.3 Тело запроса

```
{
  "ruleName"="имя правила",
  "taskType"="тип задачи",
  "fromDateTime"="дата и время начала",
  "toDateTime"="дата и время начала"
}
```

M (Mandatory) – обязательный атрибут.O (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
ruleName	strin g		M	Имя исполняем ого правила	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
taskType	strin g		M	Применяе мый алгоритм сверки. Для данного сценария только OVERALL.	OVERALL
fromDateTime	strin g	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Начало интервала	
toDateTime	strin g	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Окончание интервала	

7.3.4

Возвращаемое значение

Вызов возвращает ID созданной задачи.

7.3.5 Описание/Алгоритм

При несоответствии описаний таблиц схем правила, либо при отсутствии в какой-либо из таблиц схем поля определяющего временную метку записи - задача инициирована не будет и будет возвращено описание проблемы в конфигурации.

Выполняется сверка каждой записи для пар таблиц по хэшам, вычисляемым по всем записям для интервала времени

Интервал времени, за который есть данные в таблицах сверяемой пары таблиц, попадающие в интервал времени, заданный параметрами задачи,

разбивается на 10 равных под интервалов, и каждый подинтервал считается как отдельный блок для сверки. Так сделано для возможности локализации

интервалов времени, на которых есть расхождения в данных

Сверка больших LOB полей не рекомендована, т.к. происходит очень медленно...

7.3.6 Пример

Без ограничения интервала

С ограничением интервала

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/" -d '{"ruleName": "ruleExample", "taskType":
"OVERALL", "fromDateTime":"1970-01-01T01:15:51.10+00:00", "toDateTime":"1970-02-01T05:40:21.04+00:00"}'
```

7.4 Детальная сверка таблицы

краткое назначение

7.4.1 Формат

POST /db-data-comparator

7.4.2 Параметры запроса

7.4.3 Тело запроса

```
{
  "ruleName"="имя правила",
  "taskType"="тип задачи",
  "fromDateTime"="дата и время начала",
  "toDateTime"="дата и время начала"
}
```

M (Mandatory) - обязательный атрибут.O (Optional) - не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
ruleName	string		М	Имя исполняемог о правила	
taskType	string		M	Применяем ый алгоритм сверки. Для данного сценария только VERBOSE.	VERBOSE
fromDateTim e	string	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Начало интервала	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
toDateTime	string	YYYY-MM- DDTHH24:MI:SS.MS+TZ	0	Окончание интервала	

7.4.4 Возвращаемое значение

Вызов возвращает ID созданной задачи.

При отсутствии ключа в одной из таблиц с соответствующей стороны от <-> будет пусто.

Результаты выполнения задачи могут быть получены из информации по задаче (см. АРІ для задач).

info

Самое интересное находится в поле "message" json'a.

Содержит это поле записи вида

Ключ в таблице в Oracle <-> Ключ в таблице в PostgreSQL: (<отличающееся значение поля 1 в таблице в Oracle> <-> <отличающееся значение поля 1 в таблице в PostgreSQL>, ..., <отличающееся значение поля N в таблице в PostgreSQL>)

Например:

Запись

<-> object_id:6729149752086136832: ()

Говорит о том что в таблице на стороне PostgreSQL найдена запись с ключом по полю object_id и значением 6729149752086136832, при этом в таблице в Oracle запись с таким ключом отсутствует

Запись

object_id:6814702018578457600 <->: ()

Говорит о том что в таблице на стороне Oracle найдена запись с ключом по полю object_id и значением 6814702018578457600, при этом в таблице в PostgreSQL запись с таким ключом отсутствует

Запись

object_id:6927793286421882880 <-> object_id:6927793286421882880: (<owner_id:1341671445132619497> <-> <owner_id:1199888763024125949>

```
<chgcnt:0> <-> <chgcnt:1>
```

<sys_affinityrootid:1341671445132619497> <-> <sys_affinityrootid:1199888763024125949>)

Говорит о том что для записей в таблице на стороне Oracle и на стороне PostgreSQL с ключами по полю object_id и значением 6927793286421882880 найдены расхождения в значениях по полям owner_id, chgcnt и sys_affinityrootid. Значения расходящихся полей указаны через:

7.4.5 Описание/Алгоритм

При несоответствии описаний таблиц схем правила, либо при отсутствии в какой-либо из таблиц схем ключевого поля - задача инициирована не будет и будет возвращено описание проблемы в конфигурации.

Имя таблицы является обязательным для задач детальной сверки

Формат границ времени YYYY-MM-DDTHH24:MI:SS.MS+TZ

Выполняется сверка для каждой записи пары таблиц, заданных параметром, на заданном (или без ограничений) интервале времени. Сверка производится по каждому полю таблиц.

7.4.6 Пример

Без ограничения интервала

С ограничением интервала

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/" -d '{"ruleName": "ruleExample", "taskType":
"VERBOSE", "tableName":"OracleTableNameExample", "fromDateTime":"1970-01-01T01:15:51.10+00:00",
"toDateTime":"1970-02-01T05:40:21.04+00:00"}'
```

8 REST API сверки

8.1 Источники данных (datasource)

8.1.1 Получить список источников данных

8.1.1.1 Формат

GET /db-data-comparator/datasource

8.1.1.2 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.1.1.3 Описание/Алгоритм

8.1.1.4 Пример

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/datasource"

8.1.2 Информация по источнику данных

8.1.2.1 Формат

GET /db-data-comparator/datasource/<id источника>

GET /db-data-comparator/datasource/name/<имя источника>

8.1.2.2 Параметры запроса

- [0] не обязательное поле.
 - id источника -;
 - имя источника .

8.1.2.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.1.2.4 Описание/Алгоритм

8.1.2.5 Пример

```
curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/datasource/105"

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/datasource/name/OracleExample"
```

8.1.3 Добавление источника данных

8.1.3.1 Формат

POST /db-data-comparator/datasource

8.1.3.2 Параметры запроса

8.1.3.3 Тело запроса

```
{
"type"="тип источника: ORACLE или POSTGRESQL",
"name"="имя источника данных",
"uri"="jndi источника данных в WildFly",
"poolSize"="размер пула"
}
```

(i) M (Mandatory) – обязательный атрибут. О (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
type	enum	(ORACLE) (POSTGRES QL)		Тип источника: ORACLE или POSTGRESQL.	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
name	string			Имя источника данных.	
uri	string			jndi источника данных в WildFly.	
poolSize	integ er			Размер пула.	

8.1.3.4 Возвращаемое значение

8.1.3.5 Описание/Алгоритм

8.1.3.6 Пример

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/datasource" -d '{"type":"тип источника: ORACLE или POSTGRESQL", "name": "имя источника данных", "uri":"jndi источника данных в WildFly", "poolSize": <pasмер пула>}'
```

8.1.4 Удаление источника данных

8.1.4.1 Формат

DELETE /db-data-comparator/datasource/<id источника>

DELETE /db-data-comparator/datasource/name/<имя источника>"

8.1.4.2 Параметры запроса

- [0] не обязательное поле.
 - id источника ;
 - имя источника .

8.1.4.3 Возвращаемое значение

8.1.4.4 Описание/Алгоритм

Источник не будет удален если он используется какой-либо схемой

8.1.4.5 Пример

```
curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/datasource/85"

curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/datasource/name/PostgreSQLExample"
```

8.1.5 Изменение источника данных

8.1.5.1 Формат

PUT /db-data-comparator/datasource/<id источника>

PUT /db-data-comparator/datasource/name/<имя источника>

8.1.5.2 Параметры запроса

- id источника ;
- имя источника .

8.1.5.3 Тело запроса

```
{
"type"="тип источника: ORACLE или POSTGRESQL",
"name"="имя источника данных",
"uri"="jndi источника данных в WildFly",
"poolSize"="paзмер пула"
}
```

(i) М (Mandatory) – обязательный атрибут.О (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
type	enum	(ORACLE) (POSTGRESQL)		Тип источника: ORACLE или POSTGRESQL.	
name	string			Имя источника данных.	
uri	string			jndi источника данных в WildFly.	
poolSize	integer			Размер пула.	

8.1.5.4 Возвращаемое значение

8.1.5.5 Описание/Алгоритм

8.1.5.6 Пример

```
curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/datasource/<id источника>" -d'{"type":"тип источника: ORACLE или POSTGRESQL", "uri":"jndi источника данных в WildFly", "poolSize": <pasмep пула>}'
```

curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/datasource/name/<имя источника>" -d'{"type":"тип источника: ORACLE или POSTGRESQL", "uri":"jndi источника данных в WildFly", "poolSize": <pasмep пула>}'

8.2 Схемы

8.2.1 Список схем

8.2.1.1 Формат

GET /db-data-comparator/schema

8.2.1.2 Параметры запроса

[0] – не обязательное поле.

8.2.1.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.2.1.4 Описание/Алгоритм

8.2.1.5 Пример

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/schema"

8.2.2 Информация по схеме

8.2.2.1 Формат

GET /db-data-comparator/schema/<id схемы>

GET /db-data-comparator/schema/desc/<описание схемы>

8.2.2.2 Параметры запроса

[0] – не обязательное поле.

- id схемы -;
- описание схемы .

8.2.2.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.2.2.4 Описание/Алгоритм

8.2.2.5 Пример

```
curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/schema/105"

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/schema/desc/OracleExample"
```

8.2.3 Добавление схемы

8.2.3.1 Формат

POST /db-data-comparator/schema

8.2.3.2 Параметры запроса

8.2.3.3 Тело запроса

(i) М (Mandatory) – обязательный атрибут.О (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
schemaDesc	string		М	Описание схемы, идентифици рует схемы	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
schemaName	string		М	Имя схемы	
dataSource	object		M	Структура с описанием источника данных	
dataSource.type	enum	(ORACLE) (POSTGRES QL)	M	Тип источника: ORACLE или POSTGRESQL.	
dataSource.name	string		М	Имя источника данных.	
dataSource.uri	string		М	jndi источника данных в WildFly.	
dataSource.poolSi ze	intege r		М	Размер пула.	

8.2.3.4 Возвращаемое значение

8.2.3.5 Описание/Алгоритм

8.2.3.6 Пример

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema" -d '{"schemaDesc":"OracleExample",
"schemaName": "OracleSchemaExample", "dataSource":{"type":"ORACLE", "name": "OracleExample", "uri":"java:/
OracleDS", "poolSize": 3}}'
```

8.2.4 Удаление схемы

8.2.4.1 Формат

DELETE /db-data-comparator/schema/<id схемы>

DELETE /db-data-comparator/schema/desc/<описание схемы>

8.2.4.2 Параметры запроса

- [0] не обязательное поле.
 - id схемы -;
 - описание схемы .

8.2.4.3 Возвращаемое значение

8.2.4.4 Описание/Алгоритм

Схема не будет удалена если она используется каким-либо правилом или для нее задано исключение

8.2.4.5 Пример

```
curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/schema/105"
```

curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/schema/desc/PostrgeSQLExample"

8.2.5 Изменение схемы

8.2.5.1 Формат

PUT db-data-comparator/schema/desc/<описание схемы>

8.2.5.2 Параметры запроса

[0] – не обязательное поле.

описание схемы -

8.2.5.3 Тело запроса

json-документ описания схемы

8.2.5.4 Возвращаемое значение

8.2.5.5 Описание/Алгоритм

8.2.5.6 Пример

```
curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/schema/desc/OracleExample" -d '{"tables":
    [{"keyFields":["fieldOne"], "timeField":"fieldFour", "fields":
    [{"fieldName":"fieldOne", "fieldType":"VARCHAR2"}, {"fieldName":"fieldTwo", "fieldType":"DATE"},
    {"fieldName":"fieldThree", "fieldType":"NUMBER"},
    {"fieldName":"fieldFour", "fieldType":"DATE"}], "tableName":"fieldOne", {"keyFields":
    ["fieldOne"], "timeField":"fieldTwo", "fields":[{"fieldName":"fieldOne", "fieldType":"NUMBER"},
    {"fieldName":"fieldTwo", "fieldType":"NUMBER"}], "tableName":"tableTwo"}, {"keyFields":[], "fields":
    [{"fieldName":"fieldOne", "fieldType":"NUMBER"},
    {"fieldName":"fieldTwo", "fieldType":"NUMBER"}], "tableName":"tableThree"}], "schemaId":
    105, "schemaType":"ORACLE", "schemaDesc":"OracleExample", "schemaName":"OracleSchemaExample", "dataSource":
    {"poolSize":3, "name":"OracleExample", "type":"ORACLE", "uri":"java:/OracleDS"}}'
```

8.2.6 Генерация описания таблиц схемы

8.2.6.1 Формат

POST /db-data-comparator/schema/desc/<описание схемы>/generate

8.2.6.2 Параметры запроса

[0] – не обязательное поле.

описание схемы -

8.2.6.3 Тело запроса

8.2.6.4 Возвращаемое значение

8.2.6.5 Описание/Алгоритм

8.2.6.6 Пример

curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/schema/desc/OracleExample/generate" -d '{}'

8.3 Исключения схем

8.3.1 Список исключений для схемы

8.3.1.1 Формат

GET /db-data-comparator/exclusion/schema/desc/<описание схемы>

8.3.1.2 Параметры запроса

(i) [O] – не обязательное поле.

описание схемы -

8.3.1.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.3.1.4 Описание/Алгоритм

также можно увидеть в поле exclusions документа информации по схеме

8.3.1.5 Пример

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/exclusion/schema/desc/PostgreSQLExample"

8.3.2 Добавление исключения

8.3.2.1 Формат

POST /db-data-comparator/exclusion

8.3.2.2 Параметры запроса

8.3.2.3 Тело запроса

```
{
  "schemaDesc"="описание схемы",
  "type"="TABLE или COLUMN",
  "tablePattern"="паттерн имен таблиц в формате для LIKE",
  "columnPattern"="паттерн имен полей в формате для LIKE, для типа TABLE не задается"
}
```

M (Mandatory) – обязательный атрибут.O (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	М/О	Описание	Значение по умолчанию
schemaDesc	enum	(ORACLE) (POSTGRESQL)	М	описание схемы.	
type	string	(TABLE) (COLUMN)	М	TABLE или COLUMN.	
tablePattern	string		M	паттерн имен таблиц в формате для LIKE.	
columnPattern	integer		0	паттерн имен полей в формате для LIKE, для типа TABLE не задается.	

8.3.2.4 Возвращаемое значение

8.3.2.5 Описание/Алгоритм

8.3.2.6 Пример

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/exclusion" -d '{"schemaDesc":"OracleExample",
"type":"COLUMN","tablePattern":"%examp%","columnPattern":"%3%"}'
```

8.3.3 Удаление исключения

8.3.3.1 Формат

DELETE /db-data-comparator/exclusion/<id исключения>

DELETE /db-data-comparator/exclusion/schema/desc/<описание схемы>

8.3.3.2 Параметры запроса

- [0] не обязательное поле.
 - іd исключения -;
 - описание схемы .

8.3.3.3 Возвращаемое значение

8.3.3.4 Описание/Алгоритм

8.3.3.5 Пример

```
curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/exclusion/105"
```

curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/exclusion/schema/desc/PostgreSQLExample"

8.4 Правила

8.4.1 Список правил

8.4.1.1 Формат

GET /db-data-comparator/rule

8.4.1.2 Параметры запроса

(i) [O] – не обязательное поле.

8.4.1.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.4.1.4 Описание/Алгоритм

8.4.1.5 Пример

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/rule"

8.4.2 Информация по правилу

8.4.2.1 Формат

GET /db-data-comparator/rule/id правила

GET /db-data-comparator/rule/name/имя правила

8.4.2.2 Параметры запроса

- [0] не обязательное поле.
 - id правила -;
 - имя правила .

8.4.2.3 Возвращаемое значение

В результирующем сообщении задачи (message результате в GET запроса) выводится список пар таблиц с указанием количества расхождений для пары таблиц

8.4.2.4 Описание/Алгоритм

8.4.2.5 Пример

```
curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/rule/15"

curl -v -X GET "http://127.0.0.1:8080/db-data-comparator/rule/name/ruleExample"
```

8.4.3 Добавление правила

8.4.3.1 Формат

POST /db-data-comparator/rule

8.4.3.2 Параметры запроса

8.4.3.3 Тело запроса

M (Mandatory) – обязательный атрибут.O (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
name	string		М	Имя правила, идентифиц ирует правило.	
firstSchemaD esc	string		М	Имя сверяемой PostgreSQL схемы.	
secondSche maDesc	string		M	Имя сверяемой Oracle схемы.	
matching	array		0	Массив с соответств ием имён таблиц для схем, указанных в атрибутах firstSchema Desc и secondSche maDesc.	null
matching.< имя таблицы в схеме firstSchemaD esc>	string		M	Уникальное имя таблицы в схеме, указанной в атрибуте firstSchema Desc.	

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
matching.< имя таблицы в схеме secondSche maDesc>	string		М	Уникальное имя таблицы в схеме, указанной в атрибуте secondSche maDesc.	
matching.fiel ds	enum		М	Перечисле ние с названиями полей таблицы.	

8.4.3.4 Возвращаемое значение

8.4.3.5 Описание/Алгоритм

при необходимости установления соответствия между таблицами и полями схем поле matching заполняется следующим образом:

"matching":[{"имя первой таблицы":{"fields":["имя поля 1", ...]}, "имя второй таблицы":{"fields":["имя поля 1", ...]}}, ...]

где соответствующие поля таблиц должны находится в соответствующих позициях в списках

8.4.3.6 Пример

```
curl -v -X POST "http://127.0.0.1:8080/db-data-comparator/rule" -d '{"name":"ruleExample",
   "firstSchemaDesc":"OracleExample", "secondSchemaDesc":"PostgreSQLExample", "matching":null, "batchSize":50000,
   "maxRetries":2}'
```

8.4.4 Удаление правила

8.4.4.1 Формат

DELETE /db-data-comparator/rule/<id правила>

DELETE /db-data-comparator/rule/name/<имя правила>

8.4.4.2 Параметры запроса

- [0] не обязательное поле.
 - id правила -;
 - имя правила .

8.4.4.3 Возвращаемое значение

8.4.4.4 Описание/Алгоритм

8.4.4.5 Пример

```
curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/rule/15"
```

 $\verb|curl -v -X DELETE "http://127.0.0.1:8080/db-data-comparator/rule/name/ruleExample"|$

8.4.5 Изменение правила

8.4.5.1 Формат

PUT /db-data-comparator/rule/<id правила>

PUT /db-data-comparator/rule/name/<имя правила>

8.4.5.2 Параметры запроса

- id правила -;
- имя правила .

8.4.5.3 Возвращаемое значение

8.4.5.4 Описание/Алгоритм

формирование matching выполняется по тем же правилам что и для случая добавления

8.4.5.5 Пример

```
curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/rule/15"
```

curl -v -X PUT "http://127.0.0.1:8080/db-data-comparator/rule/name/ruleExample"

8.5 Задачи

8.5.1 Список задач

8.5.1.1 Формат

GET /db-data-comparator

8.5.1.2 Параметры запроса

[0] – не обязательное поле.

8.5.1.3 Возвращаемое значение

формат ответа - массив json записей формата, описанного в получении информации по задаче запрос возвращает последние 50 задач

8.5.1.4 Описание/Алгоритм

8.5.1.5 Пример

curl -v -X GET "http://адрес WildFly:8080/db-data-comparator"

8.5.2 Информация по задаче

8.5.2.1 Формат

GET /db-data-comparator/<id задачи>

8.5.2.2 Параметры запроса

[0] – не обязательное поле.

id задачи - .

8.5.2.3 Возвращаемое значение

Вызов возвращает состояние указанной задачи на момент вызова, в виде json

```
"id": "id задачи",
"ruleId": "идентификатор правила",
"taskState": "статус задачи - WAITING, RUNNING, ERROR или FINISHED",
"result": "сообщение с результатам выполнения задачи",
"errorMessage": "сообщение об ошибке, если статус - ошибка",
"taskType": "тип задачи",
 "tableName": "имя таблицы для детальной сверки по таблице, опционально. Для полных и инкрементальных
сверок отсутствует",
"fromDateTime": "строковое представление нижней границы интервала сверки для задачи, опционально. Формат
YYYY-MM-DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00",
"toDateTime": "строковое представление верхней границы интервала сверки для задачи, опционально. Формат
YYYY-MM-DDTHH24:MI:SS.MS+TZ, Hanpumep 2019-11-01T10:31:30.566+03:00",
"stateDateTime": "строковое представление даты и времени последней смены статуса задачи. Формат YYYY-MM-
DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00",
"createDateTime": "строковое представление даты и времени создания задачи. Формат YYYY-MM-
DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00",
"finishDataTime": "строковое представление даты и времени окончания задачи. Формат ҮҮҮҮ-ММ-
DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00",
"maxRetries": "максимальное количество итераций для задачи",
"retry": "номер текущей итерации задачи",
"tasks": "общее количество задач в текущей итерации",
"completed": "количество завершенных задач в итерации"
```

Атрибут	Тип	Описание
id	integ er	Уникальное имя таблицы.

Атрибут	Тип	Описание
ruleId	integ er	Перечисление с названиями полей таблицы.
taskState	strin g	Статус задачи: WAITING RUNNING ERROR FINISHED
result	strin g	сообщение с результатам выполнения задачи
errorMessag e	strin g	сообщение об ошибке, если статус - ошибка
taskType	strin g	тип задачи
tableName	strin g	имя таблицы для детальной сверки по таблице, опционально. Для полных и инкрементальных сверок отсутствует
fromDateTi me	strin g	строковое представление нижней границы интервала сверки для задачи, опционально. Формат YYYY-MM-DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00
toDateTime	strin g	строковое представление верхней границы интервала сверки для задачи, опционально. Формат YYYY-MM-DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00
stateDateTi me	strin g	строковое представление даты и времени последней смены статуса задачи. Формат YYYY-MM-DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00
createDateT ime	strin g	строковое представление даты и времени создания задачи. Формат YYYY-MM- DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00
finishDataTi me	strin g	строковое представление даты и времени окончания задачи. Формат YYYY-MM- DDTHH24:MI:SS.MS+TZ, например 2019-11-01T10:31:30.566+03:00
maxRetries	integ er	максимальное количество итераций для задачи
retry	integ er	номер текущей итерации задачи
tasks	integ er	общее количество задач в текущей итерации

Атрибут	Тип	Описание
completed	integ er	количество завершенных задач в итерации

содержимое поля result зависит от типа выполненной задачи.

Для задачи типа verbose - содержит записи вида

Ключ в таблице в первой схеме <-> Ключ в таблице во второй схеме: (<отличающееся значение поля 1 в таблице в первой схеме> <-> <отличающееся значение поля 1 в таблице во второй схеме>, ..., <отличающееся значение поля N в таблице в первой схеме> <-> <отличающееся значение поля N в таблице во второй схеме>)

Например:

1. Запись

<-> object_id:6729149752086136832: ()

Говорит о том что в таблице на стороне второй схемы найдена запись с ключом по полю object_id и значением 6729149752086136832, при этом в таблице в первой схеме запись с таким ключом отсутствует

1. Запись

object id:6814702018578457600 <->: ()

Говорит о том что в таблице на стороне первой схемы найдена запись с ключом по полю object_id и значением 6814702018578457600, при этом в таблице во второй схеме запись с таким ключом отсутствует

1. Запись

object_id:6927793286421882880 <-> object_id:6927793286421882880: (<owner_id:1341671445132619497> <-> <owner_id:1199888763024125949>

```
<chgcnt:0> <-> <chgcnt:1>
```

<sys_affinityrootid:1341671445132619497> <-> <sys_affinityrootid:1199888763024125949>)

Говорит о том что для записей в таблице на стороне первой схемы и на стороне второй схемы с ключами по полю object_id и значением 6927793286421882880 найдены расхождения в значениях по полям owner_id, chgcnt и sys_affinityrootid. Значения расходящихся полей указаны через:

Для задачи типа overall - содержит записи вида

Таблица в первой схеме <-> таблица во второй схеме : (<интервал времени с расхождениями>, .., <интервал времени с расхождениями>).

Надо понимать, что задачи типа overall служат для грубого определения наличия расхождений в данных при первоначальной сверке и определения интервалов времени, на которых есть расхождения, для дальнейшего уточнения задачами других типов.

Для остальных задач - формат схож с форматом для задачи типа verbose, но без детализации расхождений по полям.

8.5.2.4 Описание/Алгоритм

8.5.2.5 Пример

```
curl -v -X GET "http://адрес WildFly:8080/db-data-comparator/36"
```

8.5.3 Прерывание задачи

8.5.3.1 Формат

POST /db-data-comparator/terminate

8.5.3.2 Параметры запроса

8.5.3.3 Тело запроса

```
{
"id"="id задачи"
}
```

(i) М (Mandatory) – обязательный атрибут.О (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
id	intege r		М	id задачи.	

8.5.3.4 Возвращаемое значение

Вызов возвращает описание прерванной задачи

8.5.3.5 Описание/Алгоритм

Вызов сохраняет состояние задачи

8.5.3.6 Пример

```
curl -v -X POST "http://адрес WildFly:8080/db-data-comparator/terminate" -d '{"id":"36"}'
```

8.5.4 Возобновление задачи

8.5.4.1 Формат

POST /db-data-comparator/resume

8.5.4.2 Параметры запроса

8.5.4.3 Тело запроса

```
{
"id"="id задачи"
}
```

(i) M (Mandatory) – обязательный атрибут. О (Optional) – не обязательный атрибут.

Атрибут	Тип	Шаблон	M/O	Описание	Значение по умолчанию
id	intege r		М	id задачи.	

8.5.4.4 Возвращаемое значение

Вызов возвращает ID возобновленной задачи

8.5.4.5 Описание/Алгоритм

Выполнение задачи возобновляется только при наличии сохраненного состояния прерванной или завершенной с ошибкой задачи

8.5.4.6 Пример

curl -v -X POST "http://адрес WildFly:8080/db-data-comparator/resume" -d '{"id":"36"}'

9 Рекомендации по выполнению полной сверки баз после миграции

Выполнить полную сверку по интервалам времени.