

# The Fast Protection System for CSNS Accelerator

Yuliang Zhang CSNS@IHEP

**ICALEPCS 2021.Shanghai** 

# **Outline**



- 1 Brief Introduction of CSNS Protection Systems
- **2** Design and Deployment of Fast Protection System
- **3** Logic of the Beam Interlock and Mitigation Measures
- 4 Summary

#### **Brief Introduction of CSNS**





#### **Brief Introduction of CSNS**



- Three independent PPS control areas
- Five beam destinations, beam power limit is different for each destination



# **CSNS Protection Systems**



- CSNS accelerator machine protection system consists of NMPS (PLC-based) and FPS (FPGA-based), Normal-MPS consists of two independent systems (NMPS-A and NMPS-B)
- Both NMPS and FPS use independent cable routes to interlock beam.



MS: Machine Status RMS

RMS: Run Management System

# **Outline**



- 1 Brief Introduction of CSNS Protection Systems
- **Design and Deployment of Fast Protection System**
- 3 Logic of the Beam Interlock and Mitigation Measures
- 4 Summary

# Requirements and Design Rules for FPS



- Response time: <10μs (from receiving fault signal to switch off the H beam)
- Performing different actions according to the input signal's type
- All interfaces should be fail-safe or online real-time checked to make sure the reliability
- Interlock logic should be as simple as possible and developed with reliable tools
- Providing software mask for each input channel and friendly operator interface to check the status of the system.

# **Input Signals Classification**



• All input signals can be masked or unmasked automatically based on the selected beam destination.

| Input Device Name            | Number of Input<br>Signals | Input Signal Type | Inhibit Beam Next N<br>Cycle |
|------------------------------|----------------------------|-------------------|------------------------------|
| LEBT Chopper Power<br>Supply | 1                          |                   |                              |
| MEBT Power Supply            | 22                         |                   |                              |
| DTL Power Supply             | 98                         |                   |                              |
| Linac RF                     | 8                          | or                | ٧                            |
| Linac Beam Loss Monitor      | 40                         |                   | ٧                            |
| RCS Beam Loss Monitor        | 85                         |                   | ٧                            |
| RTBT Beam Loss Monitor       | 50                         |                   | ٧                            |
| Total                        | 304                        |                   |                              |

#### **FPS Architecture**



- The tree topology was adopted by FPS, consists of three layers.
- All signals are transmitted through optical fibers.



#### **FPS Architecture**



- The tree topology was adopted by FPS, consists of three layers.
- All signals are transmitted through optical fibers.



#### **FPS Hardware**



- Main logic board: FPGA + Rocket I/O + 6U VME, with embedded EVR
- Optical signal input board: 6U VME





# **Outline**



- 1 Brief Introduction of CSNS Protection Systems
- 2 Design and Deployment of Fast Protection System
- **3** Logic of the Beam Interlock and Mitigation Measures
- 4 Summary

#### **Actions of Shutdown of Beam**



• Case 1: Shutdown of the beam and sending interlock signal to RMS, accelerator will switch to BEAMOFF status, beam should be recovered manually.



# **FPS Output for Shutdown of beam**



• When FPS receives a fault signal, the output switches to interlock beam immediately, if the during time of the fault input more than 5 seconds, the output will be locked to interlock status.



# **FPS Output for Shutdown of beam**



- For the BLM input signal, the over threshold signal is pulsed type.
- If the input only has one pulse in 5 seconds, the mitigation measure will be carried out, if two pulses in 5 seconds, shut down the beam will be taken place.



# **Actions of Mitigation**



 Case 2: Inhibit the beam for the next 25 cycles and beam will be recovered automatically



# **FPS Output for Mitigation**



• When FPS received a fault signal, the output switches to interlock beam immediately, if the during time of the fault less 1 repetition cycle, FPS will inhibit the beam for the next 25 cycles as a mitigation measure.



# **Measured Response Time**



• From the FPS master receives the fault signal, to the timing trigger for ion source is turned off, the time consumption is no more than 1.3µs





# Summary



- The fast protection system for CSNS accelerator has been put into operation for more than 3 year, the beam interlock logic has improved due to operation requirements.
- The response time is much less than the requirement, and different mitigation measures has designed and implemented.
- New hardware is under design and will be upgraded in the CSNS-II project.

# Thank you for your attention!



