

Antarctic-Plots

A Python package to help download, visualize, and present Antarctic datasets

Introduction

Antarctic-Plots is a new Python package developed to help with conducting Antarctic science. The 5 modules shown here provide tools to help with a variety of uses.

from antarctic_plots import fetch

- download, store and retrieve datasets
- no need to remember file paths
- enables reproducible and shareable code
- easy to add more datasets!
- Bedmachine
- Magnetics
- Bedmap2
- Grounding line
- DeepBedMap
- Coastline
- Geothermal heat flux Satellite imagery
- Gravity
- Ice velocity

fetch.bedmap2(layer="icebase")

from antarctic_plots import regions

- helps with defining geographic regions
- pre-set regions for common areas
- > custom regions from an interactive map

ross_ice_shelf = regions.ross_ice_shelf

from antarctic_plots import Maps

- > easily create high-quality maps (uses **PyGMT** in the background)
- > use independently or use it as an extension to **PyGMT**

```
# download
ice thickness = fetch.bedmachine(
    layer = "thickness",
    region = regions.amery_ice_shelf,
    spacing = 1000)
# plot
fig = maps.plot_grd(
    grid = ice_thickness,
    cmap = "cool",
    title = "Amery Ice Shelf thickness",
    cbar_label = "Ice thickness (m)",
    inset = True,
    scalebar = True)
fig.show()
```


from antarctic_plots import profile

- sample of datasets along lines
- plot cross sections and profiles
- > 3 methods of defining a profile line:
 - straight line between 2 points
 - shapefile
 - interactively draw a line

from antarctic_plots import Utils

- useful functions for general geoscience applications
- > ex. compare two grids, fit a trend to a grid, mask grids based on shapefiles, various coordinate conversions

```
# define a region
region = regions.pine_island_glacier
# download
bedmachine = fetch.bedmachine("bed", spacing=1e3, region=region)
bedmap = fetch.bedmap2("bed", spacing=1e3, region=region)
# compare
dif, grid1, grid2 = utils.grd_compare(bedmachine, bedmap,
    plot=True, grid1_name="bedmachine bed", grid2_name="bedmap2 bed")
```


download ice_velocity = fetch.ice_vel(region=regions.marie_byrd_land, spacing=1e3) # extract and detrend fit, detrend = utils.grd_trend(ice_velocity, deg=3) # plot fig = maps.plot_grd(detrend, fig_height=10, cmap='plasma', grd2cpt=True, coast=True, cbar_label='detrended') fig = maps.plot_grd(fit, fig=fig, fig_height=10, cmap='plasma', grd2cpt=True, coast=True, cbar_label='trend order: 3', inset=True, inset_pos='BL', origin_shift='yshift') fig = maps.plot_grd(ice_velocity, fig=fig, fig_height=10, cmap='plasma', grd2cpt=True, coast=True, cbar_label='ice velocity', title="Detrending a grid", origin_shift='yshift') fig.show()

Try it on your phone: Open a Binder environment https://bndr.it/54sde

http://antarctic-plots.rtfd.io/

https://github.com/mdtanker/antarctic_plots

²GNS Science

