## Conjuntos disjuntos dinâmicos

**CLR 22 CLRS 21** 

## Conjuntos disjuntos

Seja  $S = \{S_1, S_2, \dots, S_n\}$  uma coleção de conjuntos disjuntos, ou seja,

$$S_i \cap S_j = \emptyset$$

para todo  $i \neq j$ .

## Conjuntos disjuntos

Seja  $S = \{S_1, S_2, \dots, S_n\}$  uma coleção de conjuntos disjuntos, ou seja,

$$S_i \cap S_j = \emptyset$$

para todo  $i \neq j$ .

Exemplo de coleção disjunta de conjuntos: componentes

conexos de um grafo



componentes = conjuntos disjuntos de vértices

$$\{a, b, c, d\}$$
  $\{e, f, g\}$   $\{h, i\}$   $\{j\}$ 

Conjuntos são modificados ao longo do tempo

Conjuntos são modificados ao longo do tempo

Exemplo: grafo dinâmico



aresta componentes

 $\{a\}$   $\{b\}$   $\{c\}$   $\{d\}$   $\{e\}$   $\{f\}$   $\{g\}$   $\{h\}$   $\{i\}$   $\{j\}$ 

Conjuntos são modificados ao longo do tempo





Conjuntos são modificados ao longo do tempo



| aresta | componentes                                                 |
|--------|-------------------------------------------------------------|
| (e,g)  | $\{a\} \ \{b,d\} \ \{c\} \ \{e,g\} \ \{f\} \ \{h\} \ \{j\}$ |

Conjuntos são modificados ao longo do tempo



| aresta | componentes                                           |  |
|--------|-------------------------------------------------------|--|
| (a, c) | $\{a,c\} \ \{b,d\} \ \{e,g\} \ \{f\} \ \{h\} \ \{j\}$ |  |

Conjuntos são modificados ao longo do tempo



| aresta | componentes                                             |  | componentes |  |
|--------|---------------------------------------------------------|--|-------------|--|
| (h, i) | $\{a,c\} \ \{b,d\} \ \{e,g\} \ \{f\} \ \{h,i\} \ \{j\}$ |  |             |  |

Conjuntos são modificados ao longo do tempo



| aresta | l | componentes                                            |  |
|--------|---|--------------------------------------------------------|--|
| (a,b)  |   | $\{a, b, c, d\} \ \{e, g\} \ \{f\} \ \{h, i\} \ \{j\}$ |  |

Conjuntos são modificados ao longo do tempo



| aresta | componentes                                       |
|--------|---------------------------------------------------|
| (e,f)  | $\{a, b, c, d\}$ $\{e, f, g\}$ $\{h, i\}$ $\{j\}$ |

Conjuntos são modificados ao longo do tempo



| aresta | componentes                                       |  |
|--------|---------------------------------------------------|--|
| (b,c)  | $\{a, b, c, d\}$ $\{e, f, g\}$ $\{h, i\}$ $\{j\}$ |  |

## Operações básicas

S coleção de conjuntos disjuntos.

Cada conjunto tem um representante.

MAKESET (x):  $x \in \text{elemento novo}$ 

$$\mathcal{S} \leftarrow \mathcal{S} \cup \{\{x\}\}\$$

UNION (x, y):  $x \in y$  em conjuntos diferentes

$$S \leftarrow S - \{S_x, S_y\} \cup \{S_x \cup S_y\}$$

 $\boldsymbol{x}$  está em  $S_{\boldsymbol{x}}$  e  $\boldsymbol{y}$  está em  $S_{\boldsymbol{y}}$ 

FINDSET (x): devolve representante do conjunto que contém x

## **Connected-Componets**

Recebe um grafo G e contrói uma representação dos componentes conexos.

```
CONNECTED-COMPONENTS (G)
```

```
1 para cada vértice v de G faça

2 MAKESET (v)

3 para cada aresta (u, v) de G faça

4 se FINDSET (u) \neq FINDSET (v)

5 então UNION (u, v)
```

### Consumo de tempo

- n := número de vértices do grafo m := número de arestas do grafo
  - linha consumo de todas as execuções da linha

```
1 = \Theta(n)
2 = n \times \text{consumo de tempo MAKESET}
3 = \Theta(m)
4 = 2m \times \text{consumo de tempo FINDSET}
5 \leq n \times \text{consumo de tempo UNION}
```

total  $\leq \Theta(n+m) + n \times$  consumo de tempo MAKESET  $+2m \times$  consumo de tempo FINDSET  $+n \times$  consumo de tempo UNION

## Same-Component

Decide se u e v estão no mesmo componente:

```
SAME-COMPONENT (u, v)

1 se FINDSET (u) = FINDSET (v)

2 então devolva SIM

3 senão devolva NÃO
```

## Algoritmo de Kruskal

Encontra uma árvore geradora mínima (CLRS 23).

```
MST-KRUSKAL (G, w) \triangleright G conexo
      coloque arestas em ordem crescente de w
      A \leftarrow \emptyset
      para cada vértice v faça
           \mathsf{MAKESET}(v)
 3
      para cada aresta uv em ordem crescente de w faça
           se FINDSET (u) \neq \text{FINDSET}(v)
 5
                 então UNION (u, v)
                        A \leftarrow A \cup \{uv\}
 9
      devolva A
```

"Avô" de todos os algoritmos gulosos.

## Conjuntos disjuntos dinâmicos

Sequência de operações MAKESET, UNION, FINDSET



Que estrutura de dados usar? Compromissos (*trade-off*s)

## Estrutura de listas ligadas



- cada conjunto tem um representante (início da lista)
- ullet cada nó x tem um campo repr
- repr[x] é o representante do conjunto que contém x

## Estrutura de listas ligadas



UNION (a, e): atualiza apontador para o representante.

# Consumo de tempo

| Operação             | número de objetos atualizados |
|----------------------|-------------------------------|
| $MAKESET(x_1)$       | 1                             |
| $MAKESET(x_2)$       | 1                             |
| <b>:</b>             | 1                             |
| $MAKESET(x_n)$       | 1                             |
| $UNION(x_1,x_2)$     | 1                             |
| $UNION(x_2,x_3)$     | 2                             |
| :                    | :<br>:                        |
| $UNION(x_{n-1},x_n)$ | n-1                           |
| total                | $=\Theta(n^2)=\Theta(m^2)$    |

### Consumo de tempo

**MAKESET**  $\Theta(1)$ 

UNION O(n)

FINDSET  $\Theta(1)$ 

Uma sequência de m operações pode consumir tempo  $\Theta(m^2)$  no pior caso.

Consumo de tempo amortizado de cada operação é O(m).

## Melhoramento: weighted-union



- cada representante armazena o comprimento da lista
- a lista menor é concatenada com a maior

Cada objeto x é atualizado  $\leq \lg n$ : cada vez que x é atualizado o tamanho da lista dobra.

#### **Conclusões**

Se conjuntos disjuntos são representados através de listas ligadas e *weighted-union* é utilizada, então uma seqüência de m operações MAKESET, UNION e FINDSET, sendo que n são MAKESET, consome tempo  $O(m + n \lg n)$ .

Se conjuntos disjuntos são representados através de listas ligadas e *weighted-union* é utilizada, então o algoritmos CONNECTED-COMPONENTS consome tempo  $O(m + n \lg n)$  e o algoritmo MST-KRUSKAL consome tempo  $O((n + m) \lg n)$ .

No que se refere ao algoritmo MST-KRUSKAL, estamos supondo que  $m = O(n^2)$ .

#### Estrutura disjoint-set forest



- cada conjunto tem uma raiz, que é o seu representate
- cada nó x tem um pai
- pai[x] = x se e só se x é uma raiz

#### Estrutura disjoint-set forest



- cada conjunto tem uma raiz
- ullet cada nó x tem um pai
- pai[x] = x se e só se x é uma raiz

### MakeSet<sub>0</sub> e FindSet<sub>0</sub>



#### $\mathsf{MAKESET}_0(x)$

1  $pai[x] \leftarrow x$ 

#### $FINDSET_0(x)$

- 1 enquanto  $pai[x] \neq x$  faça
- $x \leftarrow pai[x]$
- 3 devolva x

#### **FindSet**<sub>1</sub>



#### $FINDSET_1(x)$

- 1 se pai[x] = x
- 2 então devolva x
- 3 senão devolva  $FINDSET_1(pai[x])$

## Union<sub>0</sub>





#### UNION $_0(x,y)$

- 1  $x' \leftarrow \mathsf{FINDSET}_0(x)$
- 2  $y' \leftarrow \mathsf{FINDSET}_0(y)$
- 3  $pai[y'] \leftarrow x'$

## Union<sub>0</sub>





#### UNION $_0(x,y)$

- 1  $x' \leftarrow \mathsf{FINDSET}_0(x)$
- 2  $y' \leftarrow \mathsf{FINDSET}_0(y)$
- $3 \quad pai[y'] \leftarrow x'$

### Union<sub>0</sub>





#### UNION $_0(x,y)$

- 1  $x' \leftarrow \mathsf{FINDSET}_0(x)$
- 2  $y' \leftarrow \mathsf{FINDSET}_0(y)$
- $3 \quad pai[y'] \leftarrow x'$

#### MakeSet<sub>0</sub>, Union<sub>0</sub> e FindSet<sub>1</sub>

```
\mathsf{MAKESET}_0(x)
      pai[\mathbf{x}] \leftarrow \mathbf{x}
UNION<sub>0</sub> (x, y)
1 x' \leftarrow \mathsf{FINDSET}_0(x)
2 y' \leftarrow \mathsf{FINDSET}_0(y)
3 \quad pai[y'] \leftarrow x'
FINDSET_1(x)
      se pai[x] = x
             então devolva x
3
             senão devolva FINDSET<sub>1</sub> (pai[x])
```

### Consumo de tempo

 $\begin{array}{ll} \mathsf{MAKESET}_0 & \Theta(1) \\ \mathsf{UNION}_0 & \mathrm{O}(n) \\ \mathsf{FINDSET}_0 & \mathrm{O}(n) \end{array}$ 



#### Custo total da seqüência:

$$n \Theta(1) + n O(n) + m O(n) = O(mn)$$



$$rank[x] = posto do nó x$$

#### $\mathsf{MAKESET}(x)$

1 
$$pai[x] \leftarrow x$$

 $2 \quad rank[x] \leftarrow 0$ 





$$rank[x] = posto do nó x$$

#### $\mathsf{MAKESET}(x)$

1 
$$pai[x] \leftarrow x$$

$$2 \qquad rank[\mathbf{x}] \leftarrow 0$$





$$rank[x] = posto do nó x$$

#### $\mathsf{MAKESET}(x)$

1 
$$pai[x] \leftarrow x$$

$$2 \quad rank[x] \leftarrow 0$$



```
UNION (x, y) 
ightharpoonup com "union by rank"

1 x' \leftarrow \text{FINDSET}(x)

2 y' \leftarrow \text{FINDSET}(y) 
ightharpoonup supõe que } x' \neq y'

3 \text{se } rank[x'] > rank[y']

4 \text{então } pai[y'] \leftarrow x'

5 \text{senão } pai[x'] \leftarrow y'

6 \text{se } rank[x'] = rank[y']

7 \text{então } rank[y'] \leftarrow rank[y'] + 1
```

#### Melhoramento 1: estrutura

- $rank[x] \leq rank[pai[x]]$  para cada nó x
- rank[x] = rank[pai[x]] se e só se x é raiz
- rank[pai[x]] é uma função não-descrente do tempo
- número de nós de uma árvore de raiz x é  $\geq 2^{rank}[x]$ .
- número de nós de posto  $k \notin (1/2^k)$ .
- $altura(x) = rank[x] \le \lg n$  para cada nó x

altura(x) := comprimento do mais longo caminho que vai de x até uma folha

#### Melhoramento 1: custo

Sequência de operações MAKESET, UNION, FINDSET

M M M U F U U F F F U F

n

m

 $altura(x) \le \lg n$  para cada nó x

Consumos de tempo: MAKESET  $\Theta(1)$ 

UNION  $O(\lg n)$ 

FINDSET  $O(\lg n)$ 

Consumo de tempo total da seqüência:  $O(m \lg n)$ 

## Melhoramento 2: path compression



# Melhoramento 2: path compression



FINDSET(x)

## Melhoramento 2: path compression

```
FINDSET (x) > \text{com "path compression"}

1 se x \neq pai[x]

2 então pai[x] \leftarrow \text{FINDSET}(pai[x])

3 devolva pai[x]
```

- $rank[x] \leq rank[pai[x]]$  para cada nó x
- rank[x] = rank[pai[x]] se e só se x é raiz
- pai[x] é uma função não-descrente do tempo
- número de nós de uma árvore de raiz x é  $> 2^{rank[x]}$ .
- número de nós de posto  $k \notin 1 \leq n/2^k$ .
- $altura(x) \le rank[x] \le \lg n$  para cada nó x