Іспит з Комплексного Аналізу

Дмитра Захарова Олеговича. МП-31 3 червня 2024 р.

Білет #14

Вміст		
1	Теорема Морери	2
2	Ядро та формула Пуасона	3
3	Прообрази околу нуля	6
4	Експоненійне відображення	7

Передумова. Тут і далі будемо позначати через $\mathcal{H}(\mathcal{D})$ множину голоморфних функцій, а через $\mathcal{C}(\mathcal{D})$ – клас неперервних функцій на заданій області $\mathcal{D} \subset \mathbb{C}$. Також, позначаємо $B_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$.

1 Теорема Морери

Відповідь. Теорема Морери за своєю суттю є зворотньою до теореми Коші, тобто вона відповідає на питання: що саме потрібно від функції окрім неперервності, щоб вона була голоморфною. Сформуюємо її.

Theorem 1.1. Теорема Морери. Нехай $f(z) \in \mathcal{C}(\mathcal{D})$, а також для будь-якого замкненого контуру $\Gamma \subset \mathcal{D}$ виконується умова

$$\oint_{\Gamma} f(z)dz = 0. \tag{1}$$

Тоді, $f(z) \in \mathcal{H}(\mathcal{D})$.

Доведення. По-перше, доведемо наступну допоміжну лему.

Lemma 1.2. Значення інтегралу $\int_a^b f(z)dz$ для $a,b \in \mathbb{C}$ не залежить від обраного шляху від a до b.

Доведення леми. Дійсно, нехай є два шляхи ℓ_1, ℓ_2 від a до b. В такому разі розглянемо різницю

$$\int_{\ell_1} f(z)dz - \int_{\ell_2} f(z)dz = \int_{\ell_1} f(z)dz + \int_{-\ell_2} f(z)dz = \oint_{\ell_1 \cup (-\ell_2)} f(z)dz \quad (2)$$

Проте, оскільки $\ell_1 \cup (-\ell_2)$ є замкненою кривою, то цей інтеграл дорівнює 0. Отже, $\int_{\ell_1} f(z)dz = \int_{\ell_2} f(z)dz$ для будь-яких двох шляхів ℓ_1, ℓ_2 .

Тепер розглянемо функцію $F(z):=\int_a^z f(\zeta)d\zeta$, а також допоміжну функцію $\eta(z):=\left(F(z+\Delta z)-F(z)\right)\Big/\Delta z$. Помітимо, що функцію можна записати в дещо іншому виді:

$$\eta(z) = \frac{1}{\Delta z} \left(\int_{a}^{z + \Delta z} - \int_{a}^{z} \right) f(\zeta) d\zeta = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta \tag{3}$$

Тепер розглянемо наступну функцію:

$$\delta(z) := \eta(z) - f(z) = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} (f(\zeta) - f(z)) d\zeta \tag{4}$$

Ідея завершення доведення наступна: ми доведемо, що $\delta(z) \xrightarrow{\Delta z \to 0} 0$, звідки випливає, що $F'(z) = \lim_{\Delta z \to 0} \eta(z) = f(z)$, а тому $f \in \mathcal{H}(\mathcal{D})$. Робимо оцінку підінтегрального виразу на відрізку від z до $z + \Delta z$:

$$\left| \frac{1}{\Delta z} \int_{z}^{z + \Delta z} (f(\zeta) - f(z)) d\zeta \right| \le \frac{1}{|\Delta z|} \cdot \max_{\zeta \in [z, z + \Delta z]} |f(\zeta) - f(z)| \cdot |\Delta z|$$

Отже, робимо висновок, що

$$|\delta(z)| \le \max_{\zeta \in [z, z + \Delta z]} |f(\zeta) - f(z)| \xrightarrow{\Delta z \to 0} 0 \tag{5}$$

Отже, $|\delta(z)|=|\eta(z)-f(z)|\xrightarrow{\Delta z\to 0}0$, отже F'(z)=f(z), а тому наша функція $f(z)\in\mathcal{H}(\mathcal{D}).$

2 Ядро та формула Пуасона

Питання. Ядро Пуассона. Формула Пуасона для круга.

Відповідь. Для цього питання сформулюємо спочатку задачу, для яких ми взагалі розглядаємо формулу та ядро Пуасона. Отже, ключова задача для подальшого розгляду — це *задача Діріхле*. Сформулюємо її.

Definition 2.1. Задача Діріхле полягає в побудові гармонічної та обмеженої в області \mathcal{D} функції u(z) так, щоб для кусково-неперервної функції $g(\zeta), \zeta \in \partial \mathcal{D}$, заданої на межі області \mathcal{D} , виконувалась гранична умова $\lim_{z \to \zeta} u(z) = g(\zeta)$ (або, скорочено $u\Big|_{\partial \mathcal{D}} = g$).

Далі конкретизуємо, яку саме область будемо досліджувати. Отже, розглядаємо одиничне коло $\mathcal{S} = \{\zeta \in \mathbb{C} : |\zeta| < 1\}$ і нехай $g(\zeta)$ є кусковонеперевною на $\partial \mathcal{S}$. Введемо поняття ядра Пуассона.

Definition 2.2. Ядром Пуассона називають функцію

$$V(z,t) = \frac{1}{2\pi} \cdot \frac{1 - r^2}{1 + r^2 - 2r\cos(t - \theta)}, \ z = re^{i\theta}$$
 (6)

3ауваження. Іноді під ядром називають вираз без коефіцієнту $\frac{1}{2\pi}$, проте це не є принциповим моментом для подальної дискусії.

Доведемо важливу властивість, що нам знадобиться пізніше.

Lemma 2.3. Нехай $\zeta=e^{it}$. Тоді ядро Пуассона також записується як

$$V(z,t) = \frac{1}{2\pi} \operatorname{Re} \left\{ \frac{\zeta + z}{\zeta - z} \right\}$$
 (7)

Доведення. Доведення суто механічне. Маємо:

$$\operatorname{Re}\left\{\frac{\zeta+z}{\zeta-z}\right\} = \operatorname{Re}\left\{\frac{(\zeta+z)(\overline{\zeta}-\overline{z})}{(\zeta-z)(\overline{\zeta}-\overline{z})}\right\} = \operatorname{Re}\left\{\frac{(\zeta\overline{\zeta}-z\overline{z}) + (z\overline{\zeta}-\zeta\overline{z})}{|\zeta-z|^2}\right\} \tag{8}$$

Далі користаємось тим, що $\zeta \overline{\zeta} = |\zeta|^2 = 1$, а $z\overline{z} = |z|^2 = r^2$. Також можемо легко знайти квадрат відстані $|\zeta - z|^2$ за теоремою косинусів: маємо відстань між двома точками на віддалях 1 та r, кут між якими $|t - \theta|$. Тому $|\zeta - z|^2 = 1 + r^2 - 2r\cos(t - \theta)$. Таким чином:

$$\operatorname{Re}\left\{\frac{\zeta+z}{\zeta-z}\right\} = \frac{1-r^2}{1+r^2-2r\cos(t-\theta)} + \operatorname{Re}\left\{\frac{z\overline{\zeta}-\zeta\overline{z}}{|\zeta-z|^2}\right\}$$
(9)

Далі, оскільки $\overline{z\overline{\zeta}}=\zeta\overline{z}$, то $\mathrm{Re}\{z\overline{\zeta}-\overline{z}\zeta\}=0$ оскільки різниця спряжених чисел є чисто уявною. Тому, робимо остаточний висновок, що

$$\frac{1}{2\pi} \operatorname{Re} \left\{ \frac{\zeta + z}{\zeta - z} \right\} = \frac{1 - r^2}{1 + r^2 - 2r \cos(t - \theta)} = V(z, t), \tag{10}$$

що і потрібно було довести.

Далі, доведемо ще два твердження:

Lemma 2.4. Справедливі наступні два твердження:

- 1. $V(z,t) > 0 \ \forall z \in \mathcal{S} \ \forall t \in \mathbb{R}$. 2. $\int_0^{2\pi} V(z,t)dt = 1$.

Доведення.

Tвердження 1. Оскільки $r \in [0,1)$, то як чисельник $1-r^2$ додатний, так і знаменник:

$$1 + r^2 - 2r\cos(t - \theta) > 1 + r^2 - 2r = (r - 1)^2 > 0,$$
 (11)

Твердження 2. Маємо

$$\int_0^{2\pi} V(z,t)dt = \operatorname{Re}\left\{\frac{1}{2\pi i} \int_{|\zeta|=1} \frac{\zeta + z}{\zeta - z} \frac{d\zeta}{\zeta}\right\}$$
 (12)

Маємо дві особливі точки – z та ζ , тому

$$\int_{0}^{2\pi} V(z,t)dt = \operatorname{Re}\left\{\operatorname{Res}_{\zeta=0} \frac{\zeta+z}{\zeta(\zeta-z)}\right\} + \operatorname{Re}\left\{\operatorname{Res}_{\zeta=z} \frac{\zeta+z}{\zeta(\zeta-z)}\right\}$$
(13)

Оскільки маємо полюси першого ступеня, то

$$\int_0^{2\pi} V(z,t)dt = \operatorname{Re}\left\{\frac{\zeta+z}{\zeta-z}\Big|_{\zeta=0}\right\} + \operatorname{Re}\left\{\frac{\zeta+z}{\zeta}\Big|_{\zeta=z}\right\} = 1, \quad (14)$$

що і потрібно було довести.

Чому ця формула нам взагалі важлива? Для відповідь на це запитання, розглянемо ключову теорему.

Theorem 2.5. Функція Пуасона

$$u(z) = \int_0^{2\pi} V(z, t)g(e^{it})dt \tag{15}$$

є гармонічною і обмеженою в крузі \mathcal{S} , а $\lim_{re^{i\theta}\to e^{i\theta_0}}u(re^{i\theta})=g(e^{i\theta_0})$ для усіх θ_0 , для яких $g(\theta_0)$ неперервна, а отже є розв'язком задачі 2.1.

Доведення. Оскільки V(z,t) є гармонічною в \mathcal{S} , то і u(z) є гармонічною. Доведемо обмеженість. Маємо $|g(\zeta)| \leq \mu \ \forall \zeta \in \partial \mathcal{D}$, тому

$$|u(z)| \le \left(\int_0^{2\pi} V(z, t)dt\right) \cdot |g(e^{it})| \le \mu. \tag{16}$$

Тут ми скористались Лемою 2.4. Отже, розв'язок обмежений. Залишилось довести збіжність до g на $\partial \mathcal{S}$, тобто $u(re^{i\theta}) \to g(e^{i\theta_0})$ коли $re^{i\theta} \to e^{i\theta_0}$. Для цього розглянемо допоміжну функцію $\alpha(z) := u(re^{i\theta}) - g(e^{i\theta_0})$ і будемо доводити, що $|\alpha(z)| \xrightarrow[re^{i\theta} \to e^{i\theta_0}]{} 0$. Маємо:

$$\alpha(z) = \int_0^{2\pi} V(z, t) g(e^{it}) dt - g(e^{i\theta_0})$$

$$= \int_0^{2\pi} V(z, t) g(e^{it}) dt - \int_0^{2\pi} V(z, t) g(e^{i\theta_0}) dt$$

$$= \int_0^{2\pi} V(z, t) [g(e^{it}) - g(e^{i\theta_0})] dt, \tag{17}$$

де ми скористалися Лемою 2.4 для того, щоб замінити 1 на $\int_0^{2\pi}V(z,t)dt$. Далі, нехай $\varepsilon>0$. Тоді знайдеться $\delta>0$, що $|g(e^{it})-g(e^{i\theta_0})|<\varepsilon$ за умови

 $|t-\theta_0|<\delta$. В такому разі

$$|\alpha(z)| \leq \int_{|t-\theta_0| < \delta} V(z,t) |g(e^{it}) - g(e^{i\theta_0})| dt + \int_{|t-\theta_0| \geq \delta} V(z,t) |g(e^{it}) - g(e^{i\theta_0})| dt$$

Нехай перший інтеграл $\mathcal{I}_{<\delta}$, а другий $\mathcal{I}_{>\delta}$. Оцінимо їх окремо:

$$\mathcal{I}_{<\delta} \le \varepsilon \int_{|t-\theta_0|<\delta} V(z,t)dt < \varepsilon \int_0^{2\pi} V(z,t)dt = \varepsilon$$
 (18)

З другим інтегралом трошки складніше. По-перше, помітимо той факт, що $|t-\theta|=|t-\theta_0+\theta_0-\theta|\geq |t-\theta_0|-|\theta-\theta_0|$. Можна вважати $|\theta-\theta_0|\leq \frac{\delta}{2}$, тому $|t-\theta|\geq \delta-\frac{\delta}{2}=\frac{\delta}{2}$, а отже $1-\cos(t-\theta)\geq 1-\cos\frac{\delta}{2}$. Також, оскільки $g(\zeta)$ обмежена, тобто нехай $|g(\zeta)|\leq \mu$, то $|g(e^{it})-g(e^{i\theta_0})|\leq 2\mu$. Тоді справедлива наступна оцінка:

$$\mathcal{I}_{\geq \delta} \leq 2\mu \int_{|t-\theta_0| \geq \delta} \frac{1}{2\pi} \cdot \frac{1 - r^2}{1 + r^2 - 2r\cos(t - \theta)} dt \tag{19}$$

Далі маємо:

$$\mathcal{I}_{\geq \delta} \leq \frac{\mu}{\pi} \cdot 2\pi \cdot \frac{1 - r^2}{1 + r^2 - 2r\cos\frac{\delta}{2}} = \frac{2\mu(1 - r^2)}{1 + r^2 - 2r\cos\frac{\delta}{2}}$$
 (20)

Бачимо, що $\mathcal{I}_{\geq \delta} \xrightarrow{r \to 1} 0$, оскільки знаменник прямує до $2(1-\cos\frac{\delta}{2}) \neq 0$, а чисельник до 0. Отже за $|\theta - \theta_0| < \frac{\delta}{2}$ і якщо r близько до 1, то $\mathcal{I}_{\geq \delta} < \varepsilon$ і остаточно

$$|\alpha(z)| \le \mathcal{I}_{<\delta} + \mathcal{I}_{\ge \delta} < 2\varepsilon,$$
 (21)

а тому справедливо $\lim_{re^{i\theta}\to e^{i\theta_0}}\alpha(z)=0$ і тому отримуємо, що $u(re^{i\theta})\to g(e^{i\theta_0})$ за умови $re^{i\theta}\to e^{i\theta_0}$.

3 Прообрази околу нуля

Питання. Скільки прообразів точок з малого околу нуля має функція $w(z) = z(z-1)^2(z+2)^3$? В околі яких точок вони будуть розташовані? **Відповідь.** Позначимо $P(z) := z(z-1)^2(z+2)^3$. Візьмемо деяке число $w_0 \in B_{\varepsilon}(0)$ з околу нуля і розглянемо прообраз $P^{-1}(w_0)$: тобто множину таких $z \in \mathbb{C}$, для яких $P(z) = w_0$. Зрозуміло, що оскільки P(z) є поліномом шостого степіня, то маємо шість точок зурахуванням кратності.

 $^{^{1}}$ В цілому, тут не обов'язково саме розглядати точки з околу $B_{\varepsilon}(0)$, оскільки для будь-якого $w_{0}\in\mathbb{C}$ було б 6 точок-прообразів з урахуванням кратності.

Залишилося зрозуміти, в які околи потрапляють точки з $P^{-1}(w_0)$. Інтуїтивно справедливе наступне: зрозуміло, що для P(z) = 0 прообразами будуть точки $\{0,1,-2\}$. Коли ми відступаємо на малий крок від 0 (тобто по суті опиняємося в $B_{\varepsilon}(0) \setminus \{0\}$), то точки в прообразі не мають надто сильно змінити розташування. Отже, це мають бути точки з околу 0,1,-2 — це і є шукані околи. Проте, дана інтуїція не дає відповіді на те, скільки з 6 точок будуть потрапляти у відповідні околи.

Для більш строгого обгрунтування, скористаємося теоремою про кількість прообразів.

Theorem 3.1. Нехай f(z) голоморфна в z_0 та $f(z_0) = w_0$. Нехай для $p \geq 1$ справедливо $f^{(p)}(z_0) \neq 0$, проте $f^{(k)}(z_0) = 0, 1 \leq k < p$. Тоді знайдуться достатньо малі ε та δ такі, що рівняння f(z) = w для кожного $w \in B_{\varepsilon}(w_0)$ має точно p розв'язків в крузі $z \in B_{\delta}(z_0)$.

Отже кандидатами є $z_0=0, z_1=1, z_2=-2$. Далі скористаємося наступною допоміжною лемою.

Lemma 3.2. Нехай $a_1 \neq a_2 \neq \ldots \neq a_n$ – попарно різні комплексні числа. Тоді якщо $Q(z) = \prod_{j=1}^n (z-a_j)^{p_j}$, то $Q^{(k_j)}(a_j) = 0$ для усіх $1 \leq k_j < p_j$ і $Q^{(p_j)} \neq 0$.

Оскільки ця лема була доведена у курсі алгебри, ми вважаємо її відомою. Отже, з теореми і леми одразу випливає наступний висновок:

- В околі $z_0 = 0$ буде знаходитися один розв'язок $P(z) = w_0 \in B_{\varepsilon}(0)$.
- В околі $z_1 = 1$ два розв'язки.
- ullet В околі $z_2 = -2$ три розв'язки.

4 Експоненійне відображення

Питання. Знайти образ квадрата с вершинами $\{1,2,2+i,1+i\}$ під дією відображення $\mathsf{Exp}: z \mapsto e^z.$

Відповідь. Підемо наступним шляхом: задамо квадрат γ як об'єднання:

$$\gamma = \gamma_{\to} \cup \gamma_{\uparrow} \cup \gamma_{\leftarrow} \cup \gamma_{\downarrow}, \tag{22}$$

де ми послідовно позначили: нижню, праву, верхню та ліву сторони. Отже, ці сторони ми можемо легко параметризувати:

•
$$\gamma_{\rightarrow}: z = 1 + t, t \in [0, 1]$$

- $\gamma_{\uparrow}: z = 2 + it, t \in [0, 1]$
- $\gamma_{\leftarrow} : z = (2 t) + i, t \in [0, 1]$
- $\gamma_{\downarrow}: z = 1 + (1 t)i, t \in [0, 1]$

Тепер поглянемо образи кожного з відрізків при застосуванні $\mathsf{Exp}: z \mapsto e^z$:

- ullet Exp $(\gamma_{\to}): z = e^{1+t}, t \in [0,1]$ відрізок $[e,e^2]$ на дійсній вісі.
- $\mathsf{Exp}(\gamma_{\uparrow}): z = e^{2+it} = e^2 e^{it}, t \in [0,1]$ дуга в 1 радіан кола радіусу e^2 від e^2 до $\zeta:=e^{2+i}=e^2(\cos 1+i\sin 1)$.
- $\mathsf{Exp}(\gamma_{\leftarrow}): z = e^{(2-t)+i} = e^2 e^i e^{-t} = \zeta e^{-t}, t \in [0,1]$ відрізок, що лежить на проміні, що проходить через початок координат і точку ζ . Сам відрізок від точки ζ до $\xi := \zeta/e = e^{1+i} = e(\cos 1 + i \sin 1)$.
- $\mathsf{Exp}(\gamma_{\downarrow}): z=e^{1+(1-t)i}=e\cdot e^{(1-t)i}, t\in [0,1]$ дуга в 1 радіан кола радіусу e від точки ξ до e.

Ітоговий малюнок зображено на Рисунку 1.

Рис. 1: Образ квадрата під дією відображення $\mathsf{Exp}: z \mapsto e^z.$