PAZUZU 1.0 — LITE

Holographic Criticality Axiom Framework (essentials only).

Source: Pazuzu_1.0_FULL.pdf (user-supplied).

This lite edition keeps only the goal, stack, axioms, unified operator, control & governance essentials, core metrics, and the minimal test protocol.

Executive Highlights

GOAL: Maintain the dominant eigenvalue near zero (λ _dom \approx 0) while maximizing morphodynamic potential under governance.

STACK: $H^{crit} = H^{stab} + H^{obs}(\sigma(Q)) \cdot P(B) \cdot F$ (unified criticality operator).

CONTROL: RLA, DTC (PID), SEWP, PDM, Π-Lock, HLA, MDC, AMR, SSR.

METRICS: Criticality Index (CI), Aesthetic A = $N \cdot EP \cdot E$, coherence score, parity flips,

spectral early-warning indicators.

PARADOX ENGINE: Stabilization at the edge seeds the very fluctuations that sustain the system.

Core Axioms (v0.7 Consolidated)

- A1 Recursive Criticality: eigenvalue flow $d\lambda/dt = -\alpha \lambda + \beta < \Psi | R_self | \Psi > + \eta$; boundary attracts $\lambda(T) \rightarrow 0$.
- A2 Holographic Conservation: Boundary ledger current projects conservation into bulk: $J_mu = \partial^n u[G(B) \cdot G_{mu,nu}]$.
- A3 Coherence-Parity Switch: $\Pi(t) = C \cdot \Pi(t-\tau)$; coherence thresholds trigger parity flips.
- A4 Morphodynamic Imperative: Maximize $|\nabla_B E(B,Q,\sigma)|$ subject to $\lambda \approx 0$ (ceiling).
- A5 Participatory Spectrum: epsilon_eff = sum_n [alpha_n $\Pi(Q_n)$ G(B)] / (1 Gamma_n $\Pi(Q_n)$).
- A6 Chronodynamic Consistency: $\Psi(t) = F[\Psi(t-\tau)]$ (fixed-point filter on histories).
- A7 Aesthetic Manifold: Optimize A = Novelty \times EntropicPotential \times Elegance on feasible $\lambda \approx 0$ ridge.
- A8 Unified Operator: $H_{crit} = H_{stab} + H_{obs}(\sigma(Q)) \cdot P(B) \cdot F$; with spectral flow $d|\lambda|/dt <= 0$.

Unified Operator

Unified recursive eigen-problem (criticality engine):

$$H crit(t) | Psi(t) \rangle = lambda(t) | Psi(t) \rangle$$
, $d/dt | lambda(t) | <= 0$

Composition (A1+A2+A3+A5+A6):

$$H_{crit} = H_{stab}[Psi, g(B)] + H_{obs}(\sigma(Q)) \cdot G(B) + F[Psi(t-\tau)]$$

Interpretation: base stability + observation bands + boundary projection + delayed self-consistency drive λ to the origin without collapsing dynamics.

Control & Governance (Lite)

Control Stack (essentials):

- RLA: sets/feeds λ -target to zero (retro- or forward-damped).
- DTC (PID on β): gain-scheduled damping vs. overshoot; anti-windup; typical β clamps within a safe band.
- SEWP: spectral early-warnings (lag-1 autocorr, variance, low-freq power).
- PDM: phase-delay modulation (inject controlled phase-lag).
- Π-Lock: parity control; flip when coherence crosses threshold.
- HLA: holographic ledger budgets and logging.
- MDC / AMR / SSR: morphodynamic ceiling, aesthetic ridge following, single-step retro-reset.

Governance motifs: risk-tiered routing (sandbox -> shadow -> limited -> full), append-only governance ledger, anti-Goodhart comparability kernels.

Core Metrics

CI = 1 - |Re(lambda dom(tf))| / |Re(lambda base(tf))| (target >= 0.98)

Aesthetic metric: $A = N \cdot EP \cdot E$ (novelty \times entropic potential \times elegance).

Early warning near criticality: lag-1 autocorrelation -> 1, variance inflation; critical slowing down tau_relax = $1/|\text{lambda_dom}|$.

Parity thresholds: example band theta in [0.55, 0.80]; phase-lag range phi_amp in [0.05, 0.20] (illustrative safe bands).

Morphodynamic ceiling: cap $|\nabla S|$ relative to $|\lambda|$ to avoid re-exciting instability while sustaining structure.

Minimal Test Protocol

Diagnostic Triplet (minimal proof-of-concept):

- 1) Lotka-Volterra with PID on $\beta(t)$: measure damping vs. overshoot; enforce λ ->0 at horizon.
- 2) Parity-Flip Diagnostic: log Π flips versus morphodynamic ceiling crossings.
- 3) Spectral Early-Warnings (SEWP): track λ ->0, lag-1 autocorr->1, and variance inflation. Signals of success: divergent tau_relax consistent with the λ ->0 schedule; bounded closure with high coherence (\sim 0.95).

Experiments & Analogies

Analogical grounding:

- Lotka-Volterra thermostat: $\lambda_{1,2} = \pm i * \operatorname{sqrt}(\beta \delta P * R *)$; imposing $\lambda_{\text{final}} > 0 => \beta(tf) > 0$; PID tunes critical damping vs. overshoot.
- Digital thermostat analogy: sensor <-> P, actuator <-> R, gain <-> $\beta(t)$.
- Continuous QEC frame: syndrome-like steering near $\lambda \approx 0$.
- Swarm/oscillator locks: local gradient nudges drive $Re(\lambda) \rightarrow 0$.

v0.7 API — Compact Groups

Six groups (24 functions):

- IO: load, dump, import, export
- Ops: add, update, remove, get, search
- Policy: set, detect, isolate, override, sandbox
- Graph: graph, topo, cycles, impacts
- Metrics: metrics, snapshot, diff, timeline
- Eval: plan, evaluate

Metrics Snapshot

Axiom-level targets (illustrative from consolidated table):

A1 Cl≈0.95, A2 Cl≈0.89, A3 Cl≈0.92, A4 Cl≈0.96, A5 Cl≈0.88, A6 Cl≈0.87, A7 Cl≈0.94, A8 Cl≈0.98.

Coherence scores typically \sim 0.86-0.95 with bounded closure at the stability-fluctuation interface.