$Solving\ systems,\ eigenstuff$

September 17th, 2024

	in matrix notation as $A\vec{x} = \vec{b}$. A is a If \vec{b} is not the 0 vector, we say the system by	em is
	•	
	$3x_1 - 2x_2 = -4$	
	$7x_1 + x_2 = 19,$	
the corresponding matrix equation	n is	
and corresponding names equation		
Fill out the following table with the	ne number of solutions to the matrix e	quation.
	A is invertible	A is not invertible
Homogeneous $(\vec{b} = \vec{0})$		
Inhomogeneous $(\vec{b} \neq \vec{0})$		
An	is a nonzero vector \vec{v} satisfying	the equation below.
	$A\vec{v} = \lambda \vec{v}.$	
The corresponding	is λ .	
We can rewrite to get		
8-1		
which tells us that there are nonze	ero eigenvectors if and only if	
lem 1: (Stewart & Day 8.6) Solve the	ne discussed system of equations usin	g matrices. Hint: multiply by A^{-1} .
	$3x_1 - 2x_2 = -4$	
	$7x_1 + x_2 = 19,$	
Лу Attempt:	Solution:	

Problem 2: (Stewart & Day 8.7) Which of the following scalars *k* are eigenvalues of their corresponding matrices?

a)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $k = 3$;

b)
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
, $k = 0$; c) $A = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$, $k = 2$.

c)
$$A = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$$
, $k = 2$.

My Attempt:

Solution:

Problem 3: (Stewart & Day 8.7) Consider the following system of equations:

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2.$$

Suppose that the matrix $A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is nonsingular. Derive expressions for x_1 and x_2 .

My Attempt:

Solution:

Problem 4: (Stewart & Day 8.7) Find the eigenvalues of each matrix.

a)
$$\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix};$$

b)
$$\begin{bmatrix} 5 & -4 \\ 6 & -5 \end{bmatrix}$$
;

c)
$$\begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$$
.

My Attempt:

Solution:

Problem 5: (Stewart & Day 8.7) Find an eigenvector associated with the given eigenvalue of *A*.

a)
$$A = \begin{bmatrix} 9 & 0 \\ 2 & 3 \end{bmatrix}$$
, $\lambda = 9$;

b)
$$A = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$
, $\lambda = 4 + \sqrt{19}$; c) $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $\lambda = \frac{1+\sqrt{5}}{2}$.

c)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\lambda = \frac{1+\sqrt{5}}{2}$.

My Attempt:

Solution:

Challenge Problem: (Stewart & Day 8.7) Derive a general formula for the eigenvalues of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.