Lecture	9
Lecture	7

RECALL:

Define L: functions with - functions with (time) domain (R) domain (R)

FOR SER define

For those $S \in \mathbb{R}$ for which the integral converges we call F to be the Laplace transform of f.

Today: Which functions have a Laplace transform?

Preliminaries: Integral is said to converge absolutely if $\int_{0}^{\infty} |f(x)| dx < \infty$ Comparison test: |f(x)| < g(x)and $\int_{0}^{\infty} g(x) < \infty$. Then, $\int_{0}^{\infty} f(x) < \infty$ Piecewise continuous functions (P.W) on [0,∞). i) If $\lim_{t\to 0^+} f(t) = f(0^+)$ exists ii) f is continuous on every finite internal except at finite number of jump discontinuity · - value of f at that given 0 - limiting value of f. p-w. continuous) is not f(t) = t-3 not a jump discontinuous point

Choose M large enough so that
$$|f(t)| < M_2 e^{\alpha t}$$
, $\alpha \in \mathbb{R}$, $t > t_0$

Choose M large enough so that $|f(t)| < M$ ext

$$\int_0^\infty |e^{-st} f(t)| dt \le M \int_0^\infty |e^{-st} e^{\alpha t}| dt$$

SE $|R| \le 0$,

 $\leq M \int_0^\infty |e^{-(-s-\alpha)t}| dt$
 $= \lim_{t \to \infty} M e^{-(-s-\alpha)t} |T|$

why the limit to ∞ ?

Because ∞ is NOT a number $|G(\infty)|$ is an abuse of notation. Should be interpreted as $\lim_{t \to \infty} G(t)$.

 $= M - \lim_{s \to \infty} e^{-t} s^{-\alpha}$

Therefore, by the companion text, the haplace integral converges absolutely. \square

Aside) In fact, it converges uniformly!

This means that given E>0, there exists T>0 St $\int_{\mathcal{T}}^{\infty} |e^{-St} f(t)| dt < \mathcal{E}$ for all T>T.

and all $S>\infty$.

Note that piecewise continuity + exponential order are only sufficient conditions NOT necessary.

Fg. $f(t) = \frac{1}{\sqrt{t}}$ discontinuous at 0.

Vt (Not. p.w continuous)

However the Laplace transform exists

(proof in textbook).

Theorem: 9f f is piecewise continuous on $[0,\infty)$ & has exponential order α then $F(s) \rightarrow 0$ as $s \rightarrow \infty$.

proof: Homework.