Boolos and Jeffrey - HW1

 $David Maldonado, \ david.m.maldonado@gmail.com \\$

August 28, 2014

1 A question about \cap

Premise:

The intersection of a finite set S and an enumerable set T is enumerable.

Proof:

Lemma 1.1. Any finite set is enumerable.

Let **S** be a finite set with n elements. Let $\mathbf{K} = \{1, 2, ..., n\}$. Choose an element \mathbf{s} in **S** and assign $f(n) = \mathbf{s}$. Set \mathbf{S}' to $\mathbf{S} - \{\mathbf{s}\}$. Choose an element \mathbf{s}' in \mathbf{S}' and assign $f(n-1) = \mathbf{s}'$. Repeat this procedure until **S** is exhausted. The resulting function $f: \mathbf{K} \to \mathbf{S}$ is an enumeration of **S**.

Theorem 1.1. The intersection of two enumerable sets is enumerable.

Let \mathbf{f}_1 represent a function to enumerate the first set and \mathbf{f}_2 represent a function to enumerate the second set. Let \mathbf{A} be a set to store temporary values generated from \mathbf{f}_1 and \mathbf{f}_2 . Let \mathbf{B} be a set to store the final values. Run both functions in turn $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_1, \dots)$ storing the output in \mathbf{A} . If a value that is already contained in \mathbf{A} is generated by the functions move it to \mathbf{B} . If either of the sets are exhausted stop the procedure. The set \mathbf{B} contains the intersection of \mathbf{S} and \mathbf{T} enumerated by \mathbf{f}_1 and \mathbf{f}_2 .

2 A harder question about \cap

Premise:

The intersection of an enumerable set of enumerable sets is itself enumerable.

Proof:

foo

3 It takes two...

Premise:

Let \mathbf{F} be a set of *one to one* functions that both i) have a domain that's a subset of the positive integers, and ii) are *onto* a two element set $\{a,b\}$. \mathbf{F} is enumerable.

Proof:

foo

4 Enumerate all the things!

Premise:

The set of all finite sequences of positive integers is enumerable.

Proof:

foo