Example01-6-1Shi-en

April 25, 2025

1 Plate cam with simple harmonic motion example

1.1 Reciprocating radial roller follower

The reciprocating radial roller follower of a plate cam is to rise 2 in with simple harmonic motion in $180 \circ$ of cam rotation and return with simple harmonic motion in the remaining $180 \circ$. If the roller radius is 0.375 in and the prime-circle radius is 2 in, construct the displacement diagram, the pitch curve, and the cam profile for clockwise cam rotation.

1.2 Libraries

It must be used the DiskCamMechanismLibrary library, which can be found on this link, matplotlib and numpy must to be installed on the python system.

```
[4]: from DiskCamMechanismLibrary import PDCamRollerFollower
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation
import matplotlib.animation as animation

import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 300
```

1.3 Simple harmonic motion

The simple harmonic motion equations for rise and fall of the follower are shown below:

$$y = \frac{L}{2} (1 - \cos \theta)$$

$$y' = \frac{L}{2} \sin \theta$$

$$y'' = \frac{L}{2} \cos \theta$$

where L is the maximum displacement reached by the follower and θ is the angular position of the cam.

The following python code is added to calculate the displacement, velocity and acceleration of the follower.

```
[6]: def SimpleHarmonicMotion(th,L):
    y = 0.5*L*(1-np.cos(th))
    yp = 0.5*L*np.sin(th)
    ypp = 0.5*L*np.cos(th)
    return y,yp,ypp
```

1.4 Problem data:

```
L=2 \ \mbox{in} r_{\rm prime}=2 \ \mbox{in} r_{\rm roller}=0.375 \ \mbox{in}
```

```
[8]: L=2
    Rprime=2 #prime radius circle
     rd=0.375 #roller radius
     Rdrill=3/16 # drill bit radius (cam center)
     eccentricity = 0.0
     FollowerAng = np.pi/2 # Angular position of the follower in radians
     theta = np.linspace(0,1,500)*2*np.pi # angular sweep from zero to 2 pi radians
     # calculate displacement, velocity, acceleration
     y,yp,ypp = SimpleHarmonicMotion(theta,L)
     # Group data in dictionary, for other parameters consult the documentation of \Box
      → DiskCamMechanismLibrary
     CamData={'theta':theta,
              'y':y,
              'yp':yp,
              'ypp':ypp,
              'Rbase':Rprime,
              'Rhole':Rdrill,
              'epsilon':eccentricity,
              'FollowerAng':FollowerAng,
              'Followerwidth': 4/16,
              'turn_direction':'clockwise',
              'Rroller':rd
             }
```

1.5 Calculating the Cam Profile

```
[10]: Cam=PDCamRollerFollower(**CamData)
```

1.6 Motion diagram

dtype=object)

Displacement Diagram

Velocity Diagram

Acceleration Diagram

3
Angle [radians]

5

6

1.7 Plot the cam profile

1

2

```
[14]: figPCam=plt.figure()
Cam.PlotCamRollerFollower(figPCam)
```

[14]: <Axes: >

The profile coordinate data is found in the attributes Cam. Xp y Cam. Yp:

[16]: print(Cam.Xp[0:10]) # Just a few data

print(Cam.Yp[0:10]) # Just a few data

2.37106969 2.36964733 2.36800412 2.3661392]

1.8 Cam animation

1.9 Saving the cam animation to a file

```
[]: writer = animation.writers['ffmpeg'](fps=30)
anim3.save('Cam01.mp4',writer=writer,dpi=dpi)
```

1.10 Complete code

```
[]: """
     The reciprocating radial roller follower of a plate
     cam is to rise 2 in with simple harmonic motion
     in 180° of cam rotation and return with simple
     harmonic motion in the remaining 180°. If the roller
     radius is 0.375 in and the prime-circle radius is 2 in,
     construct the displacement diagram, the pitch curve,
     and the cam profile for clockwise cam rotation.
     11 11 11
     #%% Libraries
     from DiskCamMechanismLibrary import PDCamRollerFollower
     import matplotlib.pyplot as plt
     import numpy as np
     from matplotlib.animation import FuncAnimation
     import matplotlib.animation as animation
     # %% Simple Harmonic Motion
     def SimpleHarmonicMotion(th,L):
         y = 0.5*L*(1-np.cos(th))
         yp = 0.5*L*np.sin(th)
         ypp = 0.5*L*np.cos(th)
         return y,yp,ypp
     # %% problem data
     L=2
     Rprime=2 #prime radius circle
     rd=0.375 #roller radius
     Rdrill=3/16 # drill bit radius (cam center)
     eccentricity = 0.0
     FollowerAng = np.pi/2 # Angular position of the follower in radians
     theta = np.linspace(0,1,500)*2*np.pi # angular sweep from zero to 2 pi radians
     # calculate displacement, velocity, acceleration
     y,yp,ypp = SimpleHarmonicMotion(theta,L)
     # Group data in dictionary, for other parameters consult the documentation of \Box
      → DiskCamMechanismLibrary
     CamData={'theta':theta,
              'v':v,
              'yp':yp,
              'ypp':ypp,
```

```
'Rbase':Rprime,
         'Rhole':Rdrill,
         'epsilon':eccentricity,
         'FollowerAng':FollowerAng,
         'Followerwidth': 4/16,
         'turn_direction':'clockwise',
         'Rroller':rd
        }
#%% Calculating the Cam Profile
Cam=PDCamRollerFollower(**CamData)
#%% Motion diagram
figMD=plt.figure()
Cam.PlotMotionDiagram(figMD)
#%% Plot the cam profile
figPCam=plt.figure()
Cam.PlotCamRollerFollower(figPCam)
#%% Cam animation
fig, ax=plt.subplots()
ax.set_axis_off()
init_func=Cam.initAnim(ax),
dpi=100
width = 1920/dpi
hight = 1080/dpi
fig.set_size_inches(width,hight)
anim3 = FuncAnimation(fig, Cam, frames=np.arange(1000),
                    interval=100, blit=False)
plt.show()
#%% Saving the cam animation to a file
writer = animation.writers['ffmpeg'](fps=30)
anim3.save('Cam01.mp4',writer=writer,dpi=dpi)
```