الثانية بكالوريا علوم رياضية المدّة: 4 ساعات المعامل 9

.

ثانوية مولاي سليمان التأهيلية

ذ: توفيق بنعمرو

فاس

(1/4**)**

معلومات عامة

- لا يسمح باستعمال الآلة الحاسبة.
- مدّة إنجاز موضوع الامتحان: 4 ساعات.
- عدد الصفحات: 4 صفحات (الصفحة الأولى تتضمّن معلومات و الصفحات الثانية و الثالثة و الرابعة تتضمّن تمارين الامتحان).
 - يمكن للمترشّع إنجاز تمارين الامتحان في التّرتيب الذي يناسبه.
 - ينبغي تفادي استعمال اللّون الأحمر عند تحرير الأجوبة.
- بالرّغم من تكرار بعض الرّموز في أكثر من تمرين فكل ّرمز مرتبط بالتّمرين المستعمل فيه و لا علاقة له بالتّمارين السّابقة أو اللاحقة.

معلومات خاصتة

يتكوّن الموضوع من خمسة تمارين مستقلّة فيما بينها و تتوزّع حسب المجالات التّالية:

النقطة الممنوحة	المجال	التمرين
3.5	البنيات الجبرية	التمرين الأول
3.5	الأعداد العقدية	التمرين الثاني
3	الحسابيات	التمرين الثالث
5	الدوال و المتتاليات و التكامل	التمرين الرابع
5	در اسة دالة معرفة بتكامل	التمرين الخامس

ثانوية مو لاي سليمان التأهيلية فاس ذ: توفيق بنعمرو

لا يسمح باستعمال الآلة الحاسبة

التمرين الأول 3.5 نقطة

$$I=egin{pmatrix}1&0\\0&1\end{pmatrix}$$
 حلقة واحدية، صفرها المصفوفة المنعدمة $O=egin{pmatrix}0&0\\0&0\end{pmatrix}$ و وحدتها المصفوفة $M_2(\mathbb{R}),+, imes$ نذكر أنّ

$$K=egin{pmatrix}1&-1\-1&1\end{pmatrix}$$
 و نعتبر $J=egin{pmatrix}1&1\1&1\end{pmatrix}$ و بالتوفيق $E=\{M(x,y)/\left(x,y
ight)\in\mathbb{R}^2\}$ و نعتبر

بين أنّ
$$(E,+,\cdot)$$
 فضاء متجهى حقيقى (1)

$$(E,+,\cdot)$$
 نحقّق أنّ (J,K) أساس في $(2$ 0.5

$$K \times J = O$$
 و $J \times K = O$ و $K^2 = 2K$ و $J^2 = 2J$ و $J \times K = O$

$$(M_2(\mathbb{R}), imes)$$
 استنتج أنّ E جزء مستقر بالتوليق من E 0.5

ملة غير كاملة
$$(E,+,\times)$$
 حلقة واحدية تبادلية غير كاملة $(E,+,\times)$

$$X^3 = X$$
 المعادلة باترفيق E حل في E محا

$$(\mathbb{C},T)$$
 نعتبر التطبیق $\varphi:E o\mathbb{C}$ حدد قانون ترکیب داخلی T فی \mathbb{C} لکی یکون ϕ تشاکل من (E,\times) نحو $M(a,b)\mapsto a+ib$ 0.5

التمرين الثاني 3.5 نقطة

0.25

0.25+0.25

0.5

لیکن m عدد عقدی غیر منعدم

$$(E): 2z^2 + m(1+i)z + m^2(1+i) = 0$$
 المعادلة \mathbb{C} المعادلة الأول: نعتبر في

$$\Delta = (m(1-3i))^2$$
 هو (E) تحقق أنّ مميز المعادلة بالتوفيق (E) عميز المعادلة المعا

(E) حدّد
$$z_1$$
 و z_2 حلّى المعادلة (2

$$z_1 \times z_2 = \frac{7i-1}{2}$$
 حدّد قیم m بحیث (3

 $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ باشر مباشر متعامد متعامد منظم منافدي العقدي منسوب إلى معلم متعامد الثاني: المستوى العقدي

$$c=-m-rac{1}{2}mi$$
 و $b=-rac{m}{2}+rac{1}{2}im$ و $a=-mi$ يعتبر النقط $a=-mi$ و التي ألحاقها على التوالي

$$ABC$$
 و استنتج طبیعة المثلث $\frac{b-c}{a-c}=i$ ق أنّ (1) محقق أن

،
$$\sqrt{10}$$
 هو ABC هو $M(m)$ من المستوى بحيث يكون شعاع الدائرة المحيطة بالمثلث $M(m)$ هو 0.5

4 بين أنّ
$$(C)$$
 هي الدائرة التي مركزها (C) بين أن

ثانوية مولاي سليمان التأهيلية فاس ذ: توفيق بنعمرو

0.25+0.25

0.5

0.5

0.5

0.5

0.5

z' = 2iz - m(2+i) بحيث: M(z') بعتبر التحويل M(z') بعتبر الذي يربط كل نقطة ولا يربط كل نقطة (3)

$$h=h(A,-2)$$
 و التحاكي $r=R(A,-rac{\pi}{2})$ عدّد الصيغة العقدية لكل باتونيق من الدوران

$$f=h\circ r$$
 بين بالتوفيق أن

$$f$$
 التحويل (C) بالتحويل (C) ج

التمرين الثالث 3 نقط

الجزءان I) و II) مستقلان

$$(E) \ 2x^4 + 3x + 1 \equiv 0 \ [10]$$
 نعتبر في \mathbb{Z} المعادلة (I

bezout يمكنك استعمال مبر هنة $x \wedge 10 = 1$ فإنّ المعادلة (E) فإن عمكنك استعمال مبر هنة (1

$$\begin{cases} x\equiv 1\,[2] \\ x\equiv -1\,[5] \end{cases}$$
 فإن (E) فإن x حل للمعادلة (E) فإن (E)

(E) ثم حدد بالتونيق مجموعة حلول المعادلة $x \equiv 1$ ثم حدد بالتونيق مجموعة حلول المعادلة $x \equiv -1$ (5) ثم حدد بالتونيق مجموعة حلول المعادلة (5) $x \equiv -1$ (5)

$$S=1+a+a^2+...+a^{2018}$$
 و نضع $a\in \mathbb{N}^*-\{1\}$ نعتبر (II

$$a^{2019} \wedge (a-1) = 1$$
 تحقق أنّ بلترين $S = a^{2019} - 1$ ثم استنتج أنّ (1 $a^{2019} - 1$ تحقق أنّ بلترين (1 $a^{2019} - 1$

$$a^{2019}x + (a-1)y = 1$$
 المعادلة \mathbb{Z}^2 حل في (2 0.75

التمرين الرابع 5 نقط

 $f(x)=2xe^x$ نعتبر الدالة f المعرّفة على $\mathbb R$ بما يلي:

 $\parallel\!\vec{i}\parallel=\!1\,cm$ منحنى الدالة f في معلم متعامد باتريق ممنظم (O,\vec{i},\vec{j}) منحنى الدالة معلم متعامد التريق معلم متعامد الدالة م

- و باتونیق أدرس رتابة f(x) و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ و التغیرات (1 (I
- y=0 و x=1 و x=0 و المستقيمات C_f باستعمال مكاملة بالأجزاء أحسب ب cm^2 مساحة الحيز المستوي المحصور بين والمستقيمات cm^2
 - 0<lpha<1 بين أنّ المعادلة f(x)=1 تقبل حلا وحيداً lpha في $rac{\pi}{3}$
 - $\forall x \in [0,1]: |f'(x)| \ge 2$ آن آن (4 dage decomposition) تحقّق أن $\forall x \in [0,1]: |f'(x)| \ge 2$
 - $\forall x \in [0,1]: |(g^{-1})'(x)| \le \frac{1}{2}$ تقابل و أنّ g تقابل و أن g قصور g على g قصور g على g 0.5
- $\forall n \in \mathbb{N}: 0 < u_n < 1$ نعتبر المتتالية $u_n < 1$ بين بالترجع أن $u_n < 1$ و $u_n = g^{-1}(u_n)$ و $u_n = g^{-1}(u_n)$ و $u_n < 1$ و $u_n < 1$
 - $\forall n \in \mathbb{N}: 0 < u_{n+1} \leq \frac{1}{2}u_n$ باستعمال متفاوتة التزايدات المنتهية، بين أنّ بين 20.5
 - $\lim_{n \to +\infty} u_n$ و بالتوفيق حدّد $\forall n \in \mathbb{N} : 0 < u_{n+1} \le (\frac{1}{2})^n \cdot \alpha$ في حدّد (4) استنتج أنّ

ثانوية مولاي سليمان التأهيلية فاس موضوع امتحان تجريبي - 2018 / 2019 - (مادة الرياضيات) 2 بكالوريا علوم رياضية ذ: توفيق بنعمرو شرف المدة 4 ساعات

 $f_n(x)=2x^ne^x$:نعتبر الدالة f_n المعرّفة بالتوفيق على $\mathbb R$ بما يلي (II

 $(\forall n \in \mathbb{N}^*)(\exists ! \alpha_n \in]0,1[): f_n(\alpha_n) = 1$ بين أن (1

 $(\forall n \in \mathbb{N}^*)(\forall x \in]0,1[): f_{n+1}(x) < f_n(x)$ بين بالتوفيق أنّ (2

 $\lim_{n\to\infty}lpha_n$ بين أنّ المنتالية $(lpha_n)_{n\ge 1}$ تزايدية قطعا واستنتج أنها متقاربة ثم حدّد بين أن

0.25+0.25

0.5

0.5

0.5

0.5

بالتوفييق

التمرين الخامس 5 نقط

 $\begin{cases} h(x) = \int_{x}^{2x} \ln(e^{t} - 1) dt \; ; \; x > 0 \\ h(0) = 0 \end{cases}$ بما يلي: $(0, +\infty)$ بما يلي:

 $]0,+\infty[$ على $]0,+\infty[$ تحقّق أنّ الدالة $t\mapsto \ln(e^t-1)$ تزايدية قطعا على [1]

 $\forall x > 0: x \ln(e^x - 1) \le h(x) \le x \ln(e^{2x} - 1)$ (b) (2 0.5)

0 بين أنّ h متصلة بالتوفيق على اليمين في

0 على اليمين في 0 و أعط تأويلاً هندسياً للنتيجة h على اليمين في 0 و أعط تأويلاً هندسياً للنتيجة

د) أحسب $\lim_{x \to +\infty} h(x)$ و أعط تأويلاً $\lim_{x \to +\infty} h(x)$ التيجة (عصب أللتيجة المتابعة)

 $\forall x > 0: h'(x) = \ln(e^{3x} + e^{2x} - e^x - 1)$ و أنّ (3 - 1) = 0 و أنّ الدالة (3 - 1) = 0 فابلة للاشتقاق على (3 - 1) = 0

 $[0,+\infty[$ على $u(x)=e^{3x}+e^{2x}-e^x-2$ على الدالة (4 مارس تغير الت بالتوفيق الدالة $u(x)=e^{3x}+e^{2x}-e^x-2$

h'(a)=0 و أنّ بلتونيق u(a)=0 بحيث u(a)=0 و أنّ بلتونيق a

0.5 أدرس رتابة الدالة h وضع جدول التغيرات h

 $h(0,5) \approx 0$ و $h(a) \approx -0.3$ و $a \approx 0.2$ و $a \approx 0.2$ و $a \approx 0.2$ و $a \approx 0.3$ و $a \approx 0.3$