St. Peter's Engineering College(Autonomous) Dullapally (P), Medchal, Hyderabad – 500100. QUESTION BANK

Subject

AS22-02ES01

Subject Code

us)
Dept. : CSE,CSD,CS
C
Academic Year
2023-24

Basic Electrical Engineering

Class/Section	:	B.Tech.	Year	:	ı	Semester	:	1
			BLOC	OMS LEVEL				

BLOOMS LEVEL					
Remember	L1	Understand	L2	Apply	L3
Analyze	L4	Evaluate	L5	Create	L6

Q. No	Question (s)	Marks	BL	CO
	UNIT - I			
1	a) state and explain kirchhoff's current law (KCL) The algebraic sum of current at given node is equals to zero. i_1 i_2 i_3 As from the above figure $i = i_1 + i_2 + i_3$ $[i - i_1 - i_2 - i_3 = 0]$	1M	L2	C114.1
	b) state and explain kirchhoff's voltage law The algebraic sum of voltages in a closed circuit is equals to zero. $V_x + V_1 - V_2 - V_3 - V_y$ As from the above figure, $V_x - V_1 - V_2 - V_3 - V_y = 0$	1M	L2	C114.1

Explain source transformation technique A current source in parallel with source resistance can be replaced with a voltage source in series with the same source resistance, and vice -versa. R _S NETWORK NETWORK	1M	L2	C114.1
Find the current, I in the given network. $ \begin{array}{c} & & & \\ & & &$	1M	L3	C114.1

	e) Define Power						
	Power, P						
	Work done per unit time is	s called as power.					
	$P = \frac{dw}{dt}$ Units: Watt	$P = \frac{dw}{dt} \times \frac{dQ}{dQ}$ $P = VI$ $P = (IR)I = I$ $P = VI = V \frac{V}{R}$	I^2R	$\frac{dQ}{dt} = VI$	1M	L1	C114.1
	S	noo industanse	and conscita	noo			
2	Resistance, R Inductance, L	R 	It is the ratio of voltage to the current. $R = \frac{V}{I}$ Flux linkages per ampere current. $L = \frac{N\phi}{I}$		3M	L1	C114.1
	Capacitance, C		Charge per unit potential. $C = \frac{Q}{V}$	Farad			
	b)		<u> </u>		3M	L1	C114.1

State and explain ohm's law. And write down its limitations.			
Ohm's law			
The current flowing through the given conductor is directly proportional to the			
applied voltage and inversely proportional to resistance of the conductor.			
$I = \frac{V}{R}$			
Limitations of Ohm's law			
1. It is applicable to only linear elements only.			
2. It is applicable at normal temperature and pressure (NTP) conditions only.			
c) Classify various network elements Network elements are classified into four types			
i. Active and Passive elements			
Active elements are the elements which supplies the energy.			
Examples: Battery, DC generator, AC generator etc.			
Passive elements are the elements which consume energy.			
Examples: R, L and C			
ii. Linear and nonlinear elements			
For a given element if the output is directly proportional to the input, then the element is called linear element, otherwise it is a nonlinear element Examples of linear elements are R,L and C and non-linear elements are diode, transistor.	3M	L2	C114.1
iii. Unilateral and bilateral element	3111	132	C114.1
If the element allows current in only one direction it is called unilateral element. Examples are diode and transistor. If the element allows current in both direction is called bilateral element. Examples: R.L.C			
iv. Lumped and distributed elements			
The elements which are physically separable are called lumped elements. Examples are R, L and C. The elements which are not physically separable is called distributed elements.			
Examples: Transmission line parameters			

	connected in series and par	allel			
	Resistors in series	Resistors in Parallel			
	R ₁ R ₂	I			
	+ V- I V2	v I_1 I_2 I_2 I_3 I_4 I_2 I_2 I_3 I_4 I_4 I_5 I_4 I_5			
	$V = V_1 + V_2$ $V = IR_1 + IR_2$ $V = I(R_1 + R_2)$ $\frac{V}{I} = (R_1 + R_2)$ $R_{eq} = (R_1 + R_2)$	$I = I_1 + I_2$ $I = \frac{V}{R_1} + \frac{V}{R_2}$ $\frac{I}{V} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$			
		$\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$			
	connected in series and par	nce when two inductors are			
	Inductors in Series	Inductors in Parallel			
	inductors in Series	Inductors in Paranei			
	$\mathbf{v} \stackrel{L_1}{\rightleftharpoons} \stackrel{L_2}{\bigvee_1} \stackrel{L_2}{\bigvee_2}$	$ \begin{array}{c c} I_1 & L_1 \\ \hline I_2 & C_2 \\ \hline V \end{array} $			
	$V = V_1 + V_2$ $V = L \frac{dI}{dt}$ $V_1 = L_1 \frac{dI}{dt}$ $V_2 = L_2 \frac{dI}{dt}$	$I = I_1 + I_2$ $I = \frac{1}{L} \int V dt$ $I_1 = \frac{1}{L_1} \int V dt$	5M	L4	C114.1
	$V_2 = L_2 \frac{dI}{dt}$ $L \frac{dI}{dt} = L_1 \frac{dI}{dt} + L_2 \frac{dI}{dt}$	$I_2 = \frac{1}{L_2} \int V dt$ $\frac{1}{L_2} \int V dt - \left(\frac{1}{L_2} \int V dt\right) + \left(\frac{1}{L_2} \int V dt\right)$			
		$I_{2} = \frac{1}{L_{2}} \int V dt$ $\frac{1}{L} \int V dt = \left(\frac{1}{L_{1}} \int V dt\right) + \left(\frac{1}{L_{2}} \int V dt\right)$ $\frac{1}{L} \int V dt = \left(\frac{1}{L_{1}} + \frac{1}{L_{2}}\right) \int V dt$ $\frac{1}{L_{eq}} = \left(\frac{1}{L_{1}} + \frac{1}{L_{2}}\right)$ $L_{eq} = \frac{L_{1}L_{2}}{L_{+}L_{-}}$			
c) Deri		ce when two capacitors are			

connected in serie	<u> </u>	5M	L4	C114.1
Capacitors in Series	Capacitors in Parallel			
$\mathbf{v} \otimes \mathbf{v}_1 \qquad \mathbf{v}_2$	$v \bigcirc \qquad \qquad \downarrow l_1 \qquad \qquad \downarrow l_2 \qquad \qquad \downarrow l_2 \qquad \qquad \downarrow l_3 \qquad \qquad \downarrow l_4 \qquad \qquad \downarrow l_5 $			
$V = V_1 + V_2$ $V = \frac{1}{C} \int I dt$ $V_1 = \frac{1}{C_1} \int I dt$	$I = I_1 + I_2$ $I = C \frac{dV}{dt}$ $I_1 = C_1 \frac{dV}{dt}$			
$V_2 = \frac{1}{C_2} \int I dt$ $\frac{1}{C} \int I dt = \left(\frac{1}{C_1} \int I dt\right) + \left(\frac{1}{C_2} \int I dt\right)$ $\frac{1}{C} \int I dt = \left(\frac{1}{C_1} + \frac{1}{C_2}\right) \int I dt$	$I_{2} = C_{2} \frac{dV}{dt}$ $C \frac{dV}{dt} = C_{1} \frac{dV}{dt} + C_{2} \frac{dV}{dt}$ $C \frac{dV}{dt} = (C_{1} + C_{2}) \frac{dV}{dt}$			
$\frac{1}{C_{eq}} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)$ $C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$C_{eq} = (C_1 + C_2)$			
	tage Division Rule When two nected in Series			
+ V I I V2	$V = V_1 + V_2$ $V = IR_1 + IR_2$ $V = I(R_1 + R_2)$ $\frac{V}{I} = (R_1 + R_2)$ $R_{eq} = (R_1 + R_2)$	5M	L4	C114.1
$r_1 - r_1 - r_2$	$V_{1} = IR_{1} = \left(\frac{V}{R_{1} + R_{2}}\right)R_{1} = V\frac{R_{1}}{R_{1} + R_{2}}$ $V_{2} = IR_{2} = \left(\frac{V}{R_{1} + R_{2}}\right)R_{2} = V\frac{R_{2}}{R_{1} + R_{2}}$			

	Resistors connected in parallel $I = I_1 + I_2$ $I = \frac{V}{R_1} + \frac{V}{R_2}$ $I_1 = I \frac{R_2}{R_1 + R_2}$ $I_2 = I \frac{R_1}{R_1 + R_2}$ $I_2 = \frac{V}{R_2} = \frac{I_1 R_2}{R_1 + R_2}$ $I_3 = \frac{V}{R_2} = \frac{I_1 R_2}{R_1 + R_2} = I_2 \frac{R_2}{R_1 + R_2}$ $I_4 = \frac{V}{R_1} = \frac{I_1 R_2}{R_1 + R_2} = I_2 \frac{R_2}{R_1 + R_2}$ $I_5 = \frac{V}{R_2} = \frac{I_1 R_2}{R_1 + R_2} = I_2 \frac{R_2}{R_1 + R_2} = I_3 \frac{R_2}{R_1 + R_2}$	5M	L4	C114.1
4	Find the node voltages, V_a and V_b in the given network using nodal analysis. $V_b = 10 \text{ V} - V_b = 6 \Omega$ $8 \Omega - V_b = 0.0 \text{ V}_b$	10M	L5	C114.1

$\frac{V_a - 10}{2} + \frac{V_a}{6} + \frac{V_a - V_b}{4} = 0$			
$V_a \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{4} \right) - \frac{V_b}{4} = 5$			
$V_a \left(\frac{6+2+3}{12}\right) - \frac{V_b}{4} = 5$			
$0.91V_a - 0.25V_b = 5 (1)$			
Apply KCL at Node 2			
$\frac{V_b - 20}{12} + \frac{V_b}{8} + \frac{V_b - V_a}{4} = 0$			
$-0.25V_a + 0.458V_b = 1.66 \qquad (2)$			
By solving Equations (1) and (2), one can get			
$V_a = 7.63 \ V$			
$V_b = 7.79 \ V$			
State Super position theorem. Find the current flowing through 6 ohm resistor using Super position theorem.			
$V_1=10 \text{ V}$ $V_2=20 \text{ V}$	10M	L5	C114.1
b)			

Statement of Super Position Theorem

"In a linear bilateral active circuit, the response at any branch when all sources acting simultaneously is equals to the algebraic sum of responses when individual sources alone."

Step 1: To find the current flowing through the 6 ohm resistor with

$$V_1 = 10 \text{ V} \text{ and } V_2 = 0 \text{ i.e. } I^1$$

Apply KCL at node a

$$\frac{V_a - 10}{2} + \frac{V_a}{6} + \frac{V_a}{4} = 0$$
$$\Rightarrow V_a = 5.45 \text{ V}$$

$$I_{6\Omega} = I^1 = \frac{V_a}{6} = 0.9 \text{ A}$$

	$I^1 = 0.9 \text{ A}$			
	Step 2: To find the current flowing through the 6 ohm resistor with $V_1 = 0 \text{ V}$ and $V_2 = 20 \text{ i.e. } I^{11}$			
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & & $			
	Apply KCL at node a $\frac{V_a}{2} + \frac{V_a}{6} + \frac{V_a - 20}{4} = 0$ $\implies V_a = 5.45 \text{ V}$			
	$I_{6\Omega} = I^{11} = \frac{V_a}{6} = 0.9 \text{ A}$			
	$I^{11} = 0.9 \text{ A}$			
	Step 3: To find the total current flowing through the 6 ohm resistor when two			
V	voltages sources acting simultaneously $I = I^1 + I^{11} = 0.9 + 0.9 = 1.8 \text{ A}$			
	State Thevenin's theorem. Find the load current I _L using Thevenin's theorem			
	$V_1 = 10 \text{ V} $ $V_2 = 10 \text{ V} $ $A \Omega $	10M	L5	C114.1
c)	b			

Statement of Thevenin's Theorem

"A linear bilateral active circuit consisting of several voltage and or current sources and resistances across the load terminal (a and b) can be replaced with a single voltage source in series with a resistance"

Step 1: To find open circuit voltage across load terminals i.e. $V_{\it th}$

Apply KVL to the loop 1

$$10 - 2I - 6I = 0$$

 $8I = 10 \Rightarrow I = \frac{10}{8} = 1.25 \text{ A}$

\$8\$ The 4 Ω resistor open, so current in the 4 Ω is zeroand

 V_{ab} = Voltage drop across 6 Ω resistor

$$V_{th} = 6I = 6 \times 1.25 = 7.5 \text{ V}$$

$$V_{th} = 7.5 \text{ V}$$

voltage drop across 4Ω is also equals to zero.

