1. Let function f be defined by the polynomial below:

$$f(x) = -2x^4 - 3x^3 + 5x^2 - 4x + 7$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
-f(x) •		
-f(-x) •		
f(−x) •	$\bullet -2x^4 + 3x^3 + 5x^2 + 4x + 7$	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	2	4	8
$\frac{2}{3}$	4	3	6
3	7	1	5
4	9	7	9
5	5	8	2
6	8	6	4
7	6	5	1
8	3	9	3
9	1	2	7

3. Evaluate h(1).

4. Evaluate $g^{-1}(2)$.

5. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-7)?

6. By filling more rows of the table, it is possible to make function g odd. If that were done, what would be the value of g(-5)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x-4}{5}$$

a. Evaluate f(59).

b. Evaluate $f^{-1}(10)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(5).

b. Evaluate $b^{-1}(3)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	5			
-1	-8			
0	0			
1	-8			
2	5			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?