

Chapter 5

Large and Fast: Exploiting Memory Hierarchy

Memory Technology

- Static RAM (SRAM)
 - 0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per *G*B
- Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

DRAM Technology

- Data stored as a charge in a capacitor
 - Single transistor used to access the charge
 - Must periodically be refreshed
 - Read contents and write back
 - Performed on a DRAM "row"

 Column

 Rd/Wr

 Pre

 Pre

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Advanced DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
- Quad data rate (QDR) DRAM
 - Separate DDR inputs and outputs

DRAM Generations

30	\$/GB	Capacity	Year
25	\$1500000	64Kbit	1980
	\$500000	256Kbit	1983
20	\$200000	1Mbit	1985
15	\$50000	4Mbit	1989
13	\$15000	16Mbit	1992
10	\$10000	64Mbit	1996
_	\$4000	128Mbit	1998
5	\$1000	256Mbit	2000
	\$250	512Mbit	2004
	\$50	1Gbit	2007

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

DRAM Performance Factors

Row buffer

Allows several words to be read and refreshed in parallel

Synchronous DRAM

- Allows for consecutive accesses in bursts without needing to send each address
- Improves bandwidth

DRAM banking

- Allows simultaneous access to multiple DRAMs
- Improves bandwidth

Increasing Memory Bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Pop Quiz

- From the previous slide, why would we choose the interleaved memory organization over the wider memory organization?
- A: performance
- B: throughput
- C: cost
- D: simplicity

Flash Storage

- Nonvolatile semiconductor storage
 - 100x 1000x faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

Disk Storage

Nonvolatile, rotating magnetic storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Disk Access Example

- Given
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
 - 4ms seek time
 - $+\frac{1}{2}$ / (15,000/60) = 2ms rotational latency + 512 / 100MB/s = 0.005ms transfer time

 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - Average read time = 3.2ms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times
- Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI, ATA, SATA
- Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay