Note: UG: 100+10, G: 100

Data set used in this homework:

X	Y	Class
0.8	1.2	1
0.9	1.4	1
1.2	1.4	1
1.1	1.5	1
0.8	1.1	2
0.6	1	2
0.65	1.1	2
0.75	0.9	2

- 1) (30/20) Mahalanobis distance vs. Euclidean distance.
 - a. (5/5) Show the equations to calculate these two distances.
 - b. (5/5) Explain intuitively (in no more than three sentences) the differences between the two distances.
 - c. (20/10) Use the following example to understand the differences these two distances make in classification. Here, the minimum distance classifier is used.
 - i. Plot the above data set on the same figure.
 - ii. Given a test sample $x = [0.85 \ 1.15]^T$, calculate the Euclidean distance to the two classes. Based on the distances, which class should x belong to?
 - iii. Use the same test sample, calculate the Mahalanobis distance to the two classes. Based on this pair of distances, which class should x belong to?
 - iv. Plot the test sample x on the same figure as the data set. Just by observing the plot, which decision do you think makes more sense?

- 2) (70/70) Dimensionality reduction with a two-feature two-class data set.
 - a. (10/10) Preprocessing steps (Need to show step-by-step details):
 - i. Calculate the mean of each class (m1, m2) manually.
 - ii. Calculate the covariance matrix of each class (Σ_1, Σ_2) manually.
 - b. (20/20) Using Fisher's Linear Discriminant (FLD) to find the vector (w) which optimally (in the Fisher sense) separates the projections of these two classes.
 - c. (10/10) Is the vector derived from FLD along the same direction as (m1-m2)? Plot m1-m2 and w on the same figure. Also explain it analytically.
 - d. (20/20) Using principal component analysis (PCA) to reduce the dimension and compare it with the one derived from FLD. (You can use existing functions to find the eigenvectors and eigenvalues.)
 - e. (10/10) Comment on the differences between FLD and PCA.
- 3) (+10/10) Using maximum likelihood method to derive the equation for mean and variance assuming the pdf (or likelihood) is modeled by 1-D Gaussian.