Nur die Aufgaben mit einem \star werden korrigiert.

5.1. MC Fragen: Doppelte Summation, monotone Funktionen, Stetigkeit. Wählen Sie die einzige richtige Antwort.

(a) Sei $(a_{m,n})_{m,n\geq 0}$ eine reelle Doppelfolge. Welche der folgenden Bedingungen impliziert, dass die folgende Gleichung gilt:

$$\sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{m,n} \right) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{m,n} \right) ?$$

- O Keine Bedingung ist erforderlich. Diese Gleichung ist immer wahr.
- \bigcirc Es gibt eine Konstante $C \in \mathbb{R}$, so dass $|a_{m,n}| \leq C$ für alle $m, n \geq 0$.
- \bigcirc Es gibt eine Konstante $C \in \mathbb{R}$, so dass $\sum_{m=0}^{M} \sum_{n=0}^{N} a_{m,n} \leq C$ für alle $M, N \geq 0$.
- \bigcirc Es gibt eine Konstante $C \in \mathbb{R}$, so dass $\sum_{m=0}^{M} \sum_{n=0}^{N} |a_{m,n}| \leq C$ für alle $M, N \geq 0$.
- (b) Welche der folgenden Implikationen ist immer wahr?
 - $\bigcirc f \colon [0,1] \to \mathbb{R}$ beschränkt $\Longrightarrow f$ monoton.
 - $\bigcirc f \colon [0,1] \to \mathbb{R}$ streng monoton wach send $\implies f$ stetig.
 - $\bigcirc f : (0,1] \to \mathbb{R}$ monoton $\Longrightarrow f$ beschränkt.
 - $\bigcirc \ f \colon [0,1] \to \mathbb{R}$ monoton $\implies f$ beschränkt.
- (c) Welche der folgenden Bedingungen impliziert nicht, dass $f: \mathbb{R} \to \mathbb{R}$ stetig ist?
- \bigcirc Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|$ für alle $x, y \in \mathbb{R}$.
- \bigcirc Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|$ für alle $x, y \in \mathbb{R}$ mit $|x y| \ge 1$.
- \bigcirc Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|^2$ für alle $x, y \in \mathbb{R}$ mit $|x y| \le 1$.
- (d) Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion. Welche der folgenden Aussagen ist richtig?
 - \bigcirc Es gibt $x_0 \in \mathbb{R}$, so dass $f(x_0) = 0$.
 - \bigcirc Wenn $(x_n)_{n\geq 0}$ eine reelle Folge ist, die $\sum_{n=0}^{\infty}x_n=2$ erfüllt, dann gilt die Gleichung

$$f(2) = \sum_{n=0}^{\infty} f(x_n).$$

 \bigcirc Es gilt $f(0) = \lim_{n \to \infty} f\left(\frac{(-1)^n}{n}\right)$.

24. März 2024

- (e) Welche der folgenden Aussagen ist richtig?
 - \bigcirc Jede bijektive Funktion $f: [0,1] \rightarrow [0,1]$ ist monoton.
 - \bigcirc Es gibt eine injektive stetige Funktion $f:[0,1] \rightarrow [0,1]$ mit f(0)=0 und f(1)=1, die nicht monoton ist.
 - \bigcirc Jede stetige Funktion $f: [0,1] \to [0,1]$ mit f(0) = 0 und f(1) = 1 ist surjektiv.
- **5.2.** Cauchy Produkt. Zeigen Sie, dass für jedes $x \in \mathbb{R}$ mit |x| < 1 gilt:

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$

5.3. * Stetigkeit I. Finden Sie Werte $a, b \in \mathbb{R}$, so dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 - ax + b, & \text{wenn } x \le -1, \\ (a+b)x, & \text{wenn } -1 < x < 1, \\ x^2 + ax - b, & \text{wenn } x \ge 1, \end{cases}$$

stetig auf ganz \mathbb{R} ist. Zeichnen Sie den Graphen der Funktion.

5.4. * Stetigkeit II. Sei $f: [0, \infty) \to \mathbb{R}$, $x \mapsto \sqrt{x+1}$. Zeigen Sie, dass f stetig ist. Hinweis: Zeigen Sie, dass $|f(x) - f(y)| \le |x-y|$ für alle $x, y \ge 0$.

5.5. Stetigkeit III. Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

nur in $x_0 = \frac{1}{2}$ stetig ist und in allen anderen Punkten von \mathbb{R} unstetig ist.

5.6. Stetigkeit IV. Seien $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$ eine stetige Funktion. Sei $x_0 \in D$ ein Punkt mit $f(x_0) > 0$. Zeigen Sie, dass $\delta > 0$ existiert, so dass

$$\inf \left\{ f(x) \mid x \in D \cap (x_0 - \delta, x_0 + \delta) \right\} > 0.$$

5.7. Gegenbeispiele zum Zwischenwertsatz.

- (a) Sei $D = [0,1] \cup [2,3]$. Finden Sie eine stetige Funktion $f: D \to \mathbb{R}$ und $a,b \in D$ und $c \in \mathbb{R}$ mit $f(a) \le c \le f(b)$, so dass $kein \ z \in D$ existiert mit f(z) = c.
- (b) Finden Sie eine stetige Funktion $f: \mathbb{Q} \to \mathbb{Q}$ und $a, b, c \in \mathbb{Q}$ mit $f(a) \leq c \leq f(b)$, so dass $kein \ z \in \mathbb{Q}$ existiert mit f(z) = c.
- **5.8.** \star Existenz eines Fixpunkts. Sei $f: [0,1] \to [0,1]$ eine stetige Funktion. Beweisen Sie, dass es ein $x_0 \in [0,1]$ gibt, so dass $f(x_0) = x_0$.

24. März 2024