无线局域网产品采用的 ECDSA 和 ECDH 密码算法

椭圆曲线和参数

1. 符号约定

对本文中使用到的符号约定如下:

p 192 比特的素数

 \mathbf{F}_p p个元素的有限域

 \mathbf{F}_{p} 中的元素,确定了椭圆曲线方程 $\mathbf{y}^{2} = x^{3} + ax + b$

E 以椭圆曲线方程 $y^2 = x^3 + ax + b$ 定义的**F**_n上的椭圆曲线

O 椭圆曲线上的一个特殊点, 称为无穷远点

 $E(\mathbf{F}_p)$ E在 \mathbf{F}_p 上的点及无穷远点构成的集合

n 曲线点集 $E(\mathbf{F}_p)$ 的阶# $E(\mathbf{F}_p)$,要求为奇素数

 $x \mod n$ 用n除x所得的余数 r , $0 \le r \le n-1$

G $E(\mathbf{F}_p)$ 的生成元, 称为基点, $G=(x_G, y_G)$

[x, y] 大于等于 x 且小于等于 y 的整数集合

 $\lceil x \rceil$ 取大于等于 x 的最小整数

 \mathbf{F}_p 中的元素的比特长度, $t = \lceil \log_2 p \rceil$,本文中t = 192

l **F**_n中的元素的字节长度, $l = \lceil t/8 \rceil$, 本文中l = 24

 $log_2 x$ 以2为底的 x 的对数

字节串的并置

 d_U 用户U的私钥, $d_U \in [1, n-1]$

 P_U 用户U的公钥, $P_U=d_U\cdot G$

2. 数学基础

2.1 有限域F_p

p为素数, \mathbf{F}_p 的元素表示为整数0, 1, 2, ..., p-1。

- (1) \mathbf{F}_p 中加法运算为整数的模 p加法运算: 即 $a, b \in \mathbf{F}_p$, $a+b=(a+b) \mod p$ 。
- (2) \mathbf{F}_p 中乘法运算为整数的模 p乘法运算: 即 $a, b \in \mathbf{F}_p$, $a \cdot b = (a \cdot b) \mod p$ 。
- (3) \mathbf{F}_p 中加法群的单位元为整数0。
- (4) \mathbf{F}_p 中乘法群的单位元为整数1。
- (5) \mathbf{F}_p 中加法群的元素a的逆元素为p-a。
- (6) \mathbf{F}_p 中乘法群的元素a的逆元素为b, b满足 $a \cdot b = 1 \mod p$,记为 a^{-1} 。

2.2 椭圆曲线定义

 \mathbf{F}_p 上椭圆曲线方程为 $y^2 = x^3 + ax + b$ $(4a^3 + 27b^2 \neq 0 \mod p)$,椭圆曲线点集 $\mathbf{E}(\mathbf{F}_p) = \{ (x, y) | x, y \in \mathbf{F}_p, \text{且满足 } y^2 = x^3 + ax + b \} \cup \{O\}$,其中O是椭圆曲线的无穷远点,曲线 $\mathbf{E}(\mathbf{F}_p)$ 的阶为 $n = \#\mathbf{E}(\mathbf{F}_p)$ 。按 2.3 定义的点加运算, $\mathbf{E}(\mathbf{F}_p)$ 构成一个Abel群。

2.3 点加运算

点 $P,Q \in E(\mathbf{F}_p), P=(x_1,y_1), Q=(x_2,y_2),$ 加法规则如下:

- (1) P + O = O + P = P;
- (2) $-P = (x_1, -y_1), P + (-P) = 0;$
- (3) 若 $Q\neq -P$, 记 $P+Q=(x_3,y_3)$,

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = \lambda (x_1 - x_3) - y_1 \end{cases}$$

其中

$$\lambda = \begin{cases} (y_2 - y_1)/(x_2 - x_1) &, & \exists x_1 \neq x_2 \\ (3x_1^2 + a)/2y_1 &, & \exists x_1 = x_2 \end{cases}$$

2.4 多倍点运算

多倍点运算: 点 $P \in E(\mathbf{F}_p)$, 整数k > 0, $k \cdot P = \underbrace{P + P + \cdots + P}_{k \cdot \uparrow}$ 。

3. 数据类型转换约定

3.1 整数至字节串的转换

输入: 非负整数x和期望得到的字节串长度k,满足: $2^{8k} > x$ 。

输出: 长度为k的字节串M。

(1) 设 M_1, M_2, \dots, M_k 表示M中从左至右的每个字节,字节 M_i =($M_{i1}, M_{i2}, \dots, M_{i8}$)代表整数 $\sum_{i=1}^8 2^{8-i} M_{ij}$, $1 \le i \le k$ 。

(2) 输出字节串
$$M$$
满足: $x = \sum_{i=1}^{k} 2^{8(k-i)} M_i$ 。

3.2 字节串至整数的转换

输入: 长度为k的字节串M。

输出: 整数x。

(1) 设 M_1,M_2,\cdots,M_k 表示M中从左至右的每个字节,字节 $M_{i=1}(M_{i1},M_{i2},\cdots,M_{i8})$ 代表整数 $\sum_{j=1}^8 2^{8-j} M_{ij}$, $1 \le i \le k$ 。

(2) 输出整数
$$x$$
满足: $x = \sum_{i=1}^{k} 2^{8(k-i)} M_i$ 。

3.3 域元素至字节串的转换

输入: 有限域 \mathbf{F}_n 中元素c。

输出: 长度为 l 的字节串S。

按照3.1节描述的方法把 c转换成为一个长度为 l 的字节串S。

3.4字节串至域元素的转换

输入: 长度为 l 的字节串 S。

输出: 有限域 \mathbf{F}_p 中元素c。

按照3.2节描述的方法把 S转换成为一个整数c; 如果c不在区间[0, p-1]中,则报错。

3.5 点至字节串的转换

无穷远点O用字符串方式表示为单字节PC = 00。

椭圆曲线上的非无穷远点 $P = (x_P, y_P)$ 指定使用非压缩方式表示。

输入: 椭圆曲线上的非无穷远点 $P = (x_P, y_P)$ 。

输出: 长度为2l+1的字节串PO。

- (1) 按照3.3节描述的方法分别将 x_P , y_P 转换成长度为 l 的字节串 X_1 , Y_1 。
- (2) 单字节PC赋值为04, 输出字符串 $PO = PC || X_1 || Y_1$ 。

3.6 字节串至点的转换

输入: 长度为 2l+1 的字节串PO。

输出: 椭圆曲线上的非无穷远点 $P = (x_P, y_P)$ 。

- (1)设 $PO = PC \parallel X_1 \parallel Y_1$, 其中PC为单字节, X_1 , Y_1 分别是长度为 l 的字节串,若PC不等于04则报错。
 - (2) 按照3.4节描述的方法将字节串 X_1, Y_1 分别转换成域元素 x_P, v_P 。
 - (3) 输出点 $P = (x_P, y_P)$ 。

4. 椭圆曲线参数

ECDSA算法和ECDH算法的密钥长度选定为 192 比特,采用域 \mathbf{F}_p 上的椭圆曲线,其参数为 {p,a,b,G,n},以十六进制形式表示如下:

p: BDB6F4FE3E8B1D9E0DA8C0D46F4C318CEFE4AFE3B6B8551F

a: BB8E5E8FBC115E139FE6A814FE48AAA6F0ADA1AA5DF91985

b: 1854BEBDC31B21B7AEFC80AB0ECD10D5B1B3308E6DBF11C1

x_G: 4AD5F7048DE709AD51236DE65E4D4B482C836DC6E4106640

y_G: 02BB3A02D4AAADACAE24817A4CA3A1B014B5270432DB27D2

 $n\hbox{:}\quad \verb"BDB6F4FE3E8B1D9E0DA8C0D40FC962195DFAE76F56564677$

5. ECDSA 算法

ECDSA 算法参引 ISO/IEC 15946: 2002 (E), 具体参引第 2 部分第 6 章。

6. ECDH 算法

ECDH 算法参引 ISO/IEC 15946: 2002 (E), 具体参引第3部分第8章第4节。

7. SHA-256 算法

SHA-256 算法参引 ISO/IEC 10118: 2004 (E), 具体参引第 3 部分第 10 章。

8. 实例

8.1 ECDSA 算法实例

用户A的私钥 d_A :

- d_A : 3AC0E717EB61602EFCBB1DE81AA144A272B44BA1F16936AC 公钥 $P_A = d_A \cdot G = (x_1 \, , \, y_1)$:
- *x*₁: 7E1969FD0B001810A4E7F414C23F2BADF6B2DE96AE6B7856
- y₁: 29426771EDD3001F4A4253D8EEB9FFC18684C6C0B43ACA08 十六进制字节串消息:
- M: 00FFEEDDCCBBAA998877665544332211
 - (1) 计算 M 的杂凑值 e=h(M):
- 723AE33F076F199ECDFEFBC7169B7BE471ECB43E01ECE80ACA7539B48A4B0A90 其中,h 为杂凑算法 SHA-256。
 - (2) 取随机整数 k∈[1,n-1], 假定为:

5ABC270DBCEE31A4B00132331DDD596173EAF656ABCC39CB

(3) 将杂凑值e用用户A的私钥dA签名后得到签名结果:

A9F40F155FCF18E8D35AB47EE65CD2F906465155A71DFA38
7EAFA7E5A2335CD337E37B39601D2D5022E1799799F0E262

8.2 ECDH 算法实例

用户A的临时私钥记为 d_A , 临时公钥记为 $P_A=d_A\cdot G=(x_2,y_2)$:

 d_A : 3AC0E717EB61602EFCBB1DE81AA144A272B44BA1F16936AC

- *x*₂: 7E1969FD0B001810A4E7F414C23F2BADF6B2DE96AE6B7856
- y_2 : 29426771EDD3001F4A4253D8EEB9FFC18684C6C0B43ACA08 用户B的临时私钥记为 d_B ,临时公钥记为 $P_B = d_B \cdot G = (x_3, y_3)$:
- *d_B*: 25FBB32EFBEC6ECB1314332A026582DB7BE00C051CF2FA80
- *x*₃: 0621D8ADAB0952752EBEAE5007F6AE455C61860D1CEADB25
- y_3 : 6A58D5D55087325DAC434C0DD28A9F8159070C8AAECD21D8 按照ECDH算法,用户A、B分别计算出共享信息 K_{AB} = $d_A \cdot P_B$ = K_{BA} = $d_B \cdot P_A$ =(x_4 , y_4):
- *x*₄: 3A74DDFA3080F6B5A1688C6EB7B098240B5AFC672450A425
- y₄: 7FF89712A653D6E1B30CD24AC6C72BD3A90F2F9EACE3F3F6