1. Iris 데이터셋을 활용해 클래스별 변수 평균 차이를 검정

3. 시각화

Boxplot을 봤을 때 setosa, versicolor, virginica 순으로 petal_length의 평균이 높아진다. 또한 setosa와 versicolor 각각에서 이상치가 보인다.

4. 정규성 검정

HO(귀무가설): 데이터가 정규분포를 따른다.

H1(대립가설): 데이터가 정규분포를 따르지 않는다. 만약 p-value가 0.05이상이면 귀무가설을 기각한다.

<p-value>

setosa : 약 0.0548 → 정규분포를 따른다.

versicolor: 약 0.1585 → 정규분포를 따른다. virginica: 약 0.1098 → 정규분포를 따른다.

5. 등분산성 검정

H0(귀무가설): 세 그룹의 분산이 똑같다.

H1(대립가설): 세 그룹의 분산이 다르다.

만약 p-value가 0.05이상이면 귀무가설을 기각한다.

p-value: 3.1287566394085344e-08 → 세 그룹의 분산이 다르다.

6. 가설 수립

H0: 3 개 Species 간 Petal Length 의 평균이 모두 같다.

H1: 적어도 한 쌍의 Species 간 평균은 다르다.

7. ANOVA 실행

F: 1180.161182252981

p-value: 2.8567766109615584e-91 → 귀무가설 기각, 적어도 한 쌍의 Species 간 평균은 다르다.

8.사후검정(Tukey HSD)

사후검정 결과 모두 reject 가 True 로 나왔다. 이는 3개 Species 간 Petal Length의 평균이 모두 다르다는 뜻이다. 즉, 세 쌍 모두 간에 유의미한 차이가 존재한다.

9. 결과 요약

ANOVA 와 사후검정을 통해 세 그룹의 평균이 모두 다르다는 것을 알 수 있다. 또한, 등분산성 검정을 통해 세 그룹의 분산도 모두 다르다는 것을 알 수 있다. 세 그룹은 petal length 값에서 통계적으로 유의미한 차이를 갖고 있다. Boxplot을 보면 setosa의 petal_length 값이 통계적으로 유의하게 짧으며 virginica의 petal_length 값이 통계적으로 유의하게 길다.

2. 실제 신용카드 사기 데이터셋을 활용해 클래스 불균형 상황에서 분류 모델을 학습

5.SMOTE 적용

현재 학습 데이터의 클래스 불균형(사기 거래가 적음)으로 인해 모델이 정상 거래에 치우친 예측을 할 수 있다. 클래스 불균형을 해결하기 위해서는 소수 클래스(사기 거래)를 생성하여 균형을 맞춰줘야 한다. 이를 위해 SMOTE를 사용하는 것이다.

7. 최종 성능 평가

١	recision	recall	f1-score	support
0 1	0.99 0.95	1.00 0.89	1.00 0.92	2001 98
accuracy macro avg weighted avg	0.97 0.99	0.94 0.99	0.99 0.96 0.99	2099 2099 2099

PR-AUC: 0.9538

Class 0 을 보면 recall 값은 1.00, f1-score 은 1.00 으로 조건을 충족하였다. Class 1 을 보면 recall 값은 0.89, f1-score 은 0.92 으로 조건을 충족하였다. 또한 PR-AUC 는 0.9538 로 역시 조건을 충족하였다.