Ánh xạ tuyến tính

PGS. TS. Mai Hoàng Biên

Khoa Toán-Tin hoc, Đai học Khoa học Tư nhiên, ĐHQG TP. HCM

Nội dung chính

- Ánh xạ tuyến tính và các tính chất cơ bản.
- 2 Không gian nhân và ảnh.
- 3 Ma trận ánh xạ tuyến tính

1.1 Định nghĩa

Cho hai không gian vector V và W trên K. Một ánh xạ $f:V\to W,v\mapsto f(v)$, được gọi là ánh xạ tuyến tính nếu thỏa 2 tính chất sau:

Chú ý

Trong chương trình, chúng ta luôn mặt định trong lý thuyết là không gian vector trên trường K. Trường K có thể là \mathbb{Q}, \mathbb{R} hoặc \mathbb{C} . Trong các ví dụ, thường lấy $K = \mathbb{R}$.

Quan sát hình vẽ

Quan sát hình vẽ

a. Chứng tỏ ánh xạ sau

$$f: \mathbb{R}^2 o \mathbb{R}^2, (x,y) \mapsto f(x,y) = (2x-y,x+2y)$$
 là ánh xạ tuyến tính

Ta có
$$f(x_1,x_2)=(2x_1-x_2,x_1+2x_2) \quad \forall (x_1,x_2) \in \mathbb{R}^2.$$
 Với $(x_1,x_2),(y_1,y_2) \in \mathbb{R}^2$ và $\alpha \in \mathbb{R}$, ta có

- ② *) $f(\alpha(x_1, x_2)) = f(\alpha x_1, \alpha x_2) = (2\alpha x_1 \alpha x_2, \alpha x_1 + 2\alpha x_2).$ **) $\alpha f(x_1, x_2) = \alpha(2x_1 - x_2, x_1 + 2x_2) = (2\alpha x_1 - \alpha x_2, \alpha x_1 + 2\alpha x_2).$ Suy ra $f(\alpha(x_1, x_2)) = \alpha f(x_1, x_2)$

Vậy f là ánh xạ tuyến tính (từ \mathbb{R}^2 vào \mathbb{R}^2).

b. Chứng minh tương tự, chúng ta có các ánh xạ tuyến tính sau:

- 2 $f: \mathbb{R}^3 \to \mathbb{R}^2, (x_1, x_2, x_3) \mapsto f(x_1, x_2, x_3) = (x_1 x_2 x_3, 2x_1 + x_2 + x_3).$

- **5** $f: \mathbb{R}^3 \to \mathbb{R}^2, (x_1, x_2, x_3) \mapsto f(x_1, x_2, x_3) = (x_1, x_2).$
- **6** $f: \mathbb{R}^3 \to \mathbb{R}^2, (x_1, x_2, x_3) \mapsto f(x_1, x_2, x_3) = (x_1, x_3).$

c. Hai ánh xạ tuyến tính đặc biệt

- **1** Ánh xạ $f: V \to W, x \mapsto f(x) = 0_W$ (tức là, $f(x) = 0_W$ $\forall x \in V$) là ánh xạ tuyến tính và gọi là *ánh xạ không*.
- ② Ánh xạ $f: V \to V, x \mapsto f(x) = x$ (tức là, $f(x) = x \ \forall x \in V$) là ánh xạ tuyến tính và gọi là ánh xạ đồng nhất , ký hiệu là Id_V .

d. Chứng tỏ ánh xạ

$$f:\mathbb{R}^2 o\mathbb{R}^2, (x_1,x_1)\mapsto f(x_1,x_2)=(x_1+x_2,x_1x_2)$$
, không là ánh xạ tuyến tính

Ta xét
$$u=(1,-1)$$
 và $v=(-1,1)$. Khi đó, $f(u+v)=f(0,0)=(0+0,0\cdot 0)=(0,0)$. Trong khí đó, $f(u)+f(v)=f(1,-1)+f(-1,1)=(1+(-1),1(-1))+(-1+1,(-1)1)=(0,-1)+(0,-1)=(0,-2)$. Vậy $f(u+v)\neq f(u)+f(v)$. Suy ra f không là ánh xạ tuyến tính.

e. (tự luyện tập) Chứng tỏ ánh xạ

$$f: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_1) \mapsto f(x_1, x_2) = (x_1 + x_2, 2 + x_2)$$
, không là ánh xa tuyến tính

Ta xét u = (0,0) và $\alpha = 2$. Khi đó, $f(\alpha u) = f(0,0) = (0,2)$. Trong khí đó, $\alpha f(u) = 2(0,2) = (0,4)$.

Vậy $f(\alpha u) \neq \alpha f(u)$. Suy ra f không là ánh xạ tuyến tính.

200

Nhận diện ánh xạ tuyến tính từ \mathbb{R}^n vào \mathbb{R}^m

Cho ánh xạ $f: \mathbb{R}^n \to \mathbb{R}^m, X = (x_1, x_2, \dots, a_n) \mapsto f(X)$. Khi đó, f là ánh xạ tuyến tính nếu f có thể viết thành một trong hai dạng sau:

- ② $f(X)^t = AX^t \ \forall X \in \mathbb{R}^n$ với A là ma trận có m dòng và n cột.

Kiểm tra lại một số ví dụ

- $\textbf{0} \quad \text{V\'ei} \ f: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto f(x,y) = (2x-y,x+2y). \ \text{Ta c\'e}$ $f(x,y) = (x,y) \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \text{ hoặc } f(x,y)^t = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$
- ② Với $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1, x_2) \mapsto f(x_1, x_2) = (x_1 x_2, 2x_1 + x_2, x_2 3x_1)$. Ta có $f(x_1, x_2) = (x_1, x_2) \begin{pmatrix} 1 & 2 & -3 \\ -1 & 1 & 1 \end{pmatrix}$ hoặc $f(x_1, x_2)^t = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- **3** $f: \mathbb{R}^3 \to \mathbb{R}^2, (x_1, x_2, x_3) \mapsto f(x_1, x_2, x_3) = (x_1 x_2 x_3, 2x_1 + x_2 + x_3).$ Ta có $f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}.$

1.2. Mênh đề

Ánh xạ $f: V \to W, v \mapsto f(v)$, là ánh xạ tuyến tính ^a khi và chỉ khi $f(u + \alpha v) = f(u) + \alpha f(v) \quad \forall u, v \in V, \alpha \in K$.

^aphải thỏa 2 tính chất: f(u+v) = f(u) + f(v) và $f(\alpha v) = \alpha f(v) \quad \forall u, v \in V, \alpha \in K$.

Ký hiệu và tên gọi

Ký liệu $\mathcal{L}(V,W)$ là tập hợp tất cả các ánh xạ tuyến tính từ V vào W. Trong trường hợp V=W thì ánh xạ tuyến tính $f:V\to V$ còn gọi là toán tử tuyến tính và ký hiệu $\operatorname{End}(V)=\mathcal{L}(V)=\mathcal{L}(V,V)$.

1.3. Mênh đề

Giả sử $f:V \to W, v \mapsto f(v)$ là ánh xạ tuyến tính. Khi đó,

- $f(0_V) = 0_W.$
- ② $f(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n) = \alpha_1 f(v_1) + \alpha_2 f(v_2) + \cdots + \alpha_n f(v_n) \quad \forall \alpha_i \in K \text{ và } v_i \in V. \text{ Nói riêng, } f(-v) = -f(v) \quad \forall v \in V.$

Ví dụ. Cho f là ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^3 thỏa f(1,1)=(1,2,3) và f(1,2)=(4,5,6). Xác định f(-1,2)?

Ta có
$$(-1,2) = -4(1,1) + 3(1,2)$$
 nên
$$f(-1,2) = -4f(1,1) + 3f(1,2) = -4(1,2,3) + 3(4,5,6) = (8,7,6).$$

1.4. Hê quả

Cho $f: V \to W, x \mapsto f(x)$ là ánh xạ tuyến tính. Giả sử $B = \{u_1, u_2, \dots, u_n\}$ là cơ sở

của
$$V$$
. Khi đó, nếu $[x]_B = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$, thì $f(x) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \cdots + \alpha_n f(u_n)$.

Ví dụ. Xác định toán tử tuyến tính
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 thỏa $f(1,1,1) = (1,-1,1); f(1,2,2) = (1,1,0)$ và $f(1,2,3) = (-1,2,1).$ Dặt $B = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\}.$ Ta chứng minh được B là cơ sở của \mathbb{R}^3 . Xét $x = (x_1,x_2,x_3) \in \mathbb{R}^3$. Ta có $(u_1^t u_2^t u_3^t | x^t) = \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 2 & | x_2 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 2 & | x_2 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 2 & | x_2 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1 & | x_1 \\ 1 & 2 & 3 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3} \begin{pmatrix} 1 & 1 & 1$

1.4. Hệ quả

Cho $f:V \to W, x \mapsto f(x)$ là ánh xạ tuyến tính. Giả sử $B=\{u_1,u_2,\ldots,u_n\}$ là cơ sở

của
$$V$$
. Khi đó, nếu $[x]_B = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$, thì $f(x) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \cdots + \alpha_n f(u_n)$.

Ví dụ. Xác định toán tử tuyến tính
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 thỏa $f(1,1,1)=(1,-1,1); f(1,2,2)=(1,1,0)$ và $f(1,2,3)=(-1,2,1).$

Dặt
$$B = \{u_1 = (1, 1, 1); u_2 = (1, 2, 2); u_3 = (1, 2, 3)\}$$
. Vậy $[x]_B = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ x_3 - x_2 \end{pmatrix}$. Suy ra $f(x) = (2x_1 - x_2)f(1, 1, 1) + (-x_1 + 2x_2 - x_3)f(1, 2, 2) + (x_3 - x_2)f(1, 2, 3)$
$$= (2x_1 - x_2)(1, -1, 1) + (-x_1 + 2x_2 - x_3)(1, 1, 0) + (x_3 - x_2)(-1, 2, 1)$$
$$= (x_1 + 2x_2 - 2x_3, -3x_1 + x_2 + x_3, 2x_1 - 2x_2 + x_3).$$
Vậy $f(x_1, x_2, x_3) = (x_1 + 2x_2 - 2x_3, -3x_1 + x_2 + x_3, 2x_1 - 2x_2 + x_3)$.

Một ví dụ trong bài giảng của TS. Lê Văn Luyện.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vectơ:

$$u_1 = (1, -1, 1); u_2 = (1, 0, 1); u_3 = (2, -1, 3).$$

- a) Chứng tỏ $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- b) Tìm ánh xạ tuyến tính $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ thỏa:

$$f(u_1) = (2, 1, -2); f(u_2) = (1, 2, -2); f(u_3) = (3, 5, -7).$$

Một vài ví dụ trong bài giảng của TS. Lê Văn Luyện.

(a) Chứng tỏ $\mathcal{B}=(u_1,u_2,u_3)$ là một cơ sở của \mathbb{R}^3 .

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$
. Ta có $\det A = 1$, suy ra $\mathcal B$ độc lập

tuyến tính. Vì ${\rm dim}\mathbb{R}^3=3$ bằng số vectơ của $\mathcal B$ nên $\mathcal B$ là một cơ sở của $\mathbb{R}^3.$

b) Tìm ánh xạ tuyến tính $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ thỏa: $f(u_1) = (2,1,-2); f(u_2) = (1,2,-2); f(u_3) = (3,5,-7).$

Cho $u=(x,y,z)\in\mathbb{R}^3$, ta sẽ tìm $[u]_{\mathcal{B}}$. Lập ma trận mở rộng

$$(u_1^\top \, u_2^\top \, u_3^\top \, | u^\top) = \begin{pmatrix} 1 & 1 & 2 & x \\ -1 & 0 & -1 & y \\ 1 & 1 & 3 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & x-y-z \\ 0 & 1 & 0 & 2x+y-z \\ 0 & 0 & 1 & -x+z \end{pmatrix}.$$

Một vài ví dụ trong bài giảng của TS. Lê Văn Luyện.

Vậy
$$[u]_{\mathcal{B}} = \begin{pmatrix} x - y - z \\ 2x + y - z \\ -x + z \end{pmatrix}$$
. Suy ra
$$u = (x - y - z)u_1 + (2x + y - z)u_2 + (-x + z)u_3.$$

Vậy, ta có

$$f(u) = (x - y - z)f(u_1) + (2x + y - z)f(u_2) + (-x + z)f(u_3)$$

$$= (x - y - z)(2, 1, -2) + (2x + y - z)(1, 2, -2)$$

$$+ (-x + z)(3, 5, -7)$$

$$= (x - y, y + 2z, x - 3z).$$

Ví dụ.(tự làm) Cho

 $\mathcal{B}=(u_1=(1,-2,2);u_2=(-2,5,-4);u_3=(0,-1,1))$ là một cơ sở của $\mathbb{R}^3.$ Tìm $f\in L(\mathbb{R}^3,\mathbb{R}^3)$ thỏa

$$f(u_1) = (1, 1, -2); f(u_2) = (1, -2, 1); f(u_3) = (1, 2, -1).$$

1.4. Định nghĩa

Cho ánh xạ tuyến tính $f: V \to W, x \mapsto f(x)$.

- Nếu f là đơn ánh, tức là điều kiện f(x) = f(y) kéo theo x = y, thì ta nói f là đơn cấu.
- ② Nếu f là toàn ánh, tức là, với $y \in W, \exists x \in V : y = f(x)$, thì ta nói f là toàn cấu.
- ① Nếu f là song ánh, tức là f vừa đơn ánh vừa toàn ánh, thì ta nói f là $d\mathring{a}ng$ $c\^{a}u$. Khi đó, ta nói V và W $d\mathring{a}ng$ $c\^{a}u$, ký hiệu $V\cong W$.

Ta lấy vài ví dụ cơ bản.

- ① Cho n < m thì $f: \mathbb{R}^n \to \mathbb{R}^m, (x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_n, 0, 0 \dots, 0)$, là một đơn cấu.
- ② Cho n > m thì $f: \mathbb{R}^n \to \mathbb{R}^m, (x_1, x_2, \dots, x_m, x_{m+1}, \dots, x_n) \mapsto (x_1, x_2, \dots, x_m)$, là một toàn cấu.
- $\textbf{3} \ \ f: \mathbb{R}^n \to \mathbb{R}^n, (x_1, x_2, \dots, x_n) \mapsto (x_n, x_{n-1}, \dots, x_1) \ \text{là một đẳng cấu}.$

Bài 2. Không gian nhân và ảnh

2.1. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó,

- **1** Tập $ker(f) = \{x \in V \mid f(x) = 0\}$ là không gian vector con của V và ta gọi nó là *không gian nhân* của f.
- ② Tập $Im(f) = \{f(x) \mid x \in V\}$ là không gian vector con của W và ta gọi nó là *không gian ảnh* của f.

Muc tiêu

Trong bài này, ta đi mô tả các không gian nhân và ảnh của một ánh xạ tuyến tính cho trước và các tính chất liên quan.

2.2. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là đơn khi và chỉ khi $\ker(f) = \{0_V\}$.


```
Tìm 1 cơ sở của không gian nhân ker(f) với f: \mathbb{R}^3 	o \mathbb{R}^3 xác định bởi
 f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2 + 9x_3) \quad \forall (x_1, x_2, x_3) \in \mathbb{R}^3.
Giả sử (x_1, x_2, x_3) \in \ker(f). Khi đó, f(x_1, x_2, x_3) = (0, 0, 0). Suy ra
(x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2 + 9x_3) = (0, 0, 0)
\Leftrightarrow \begin{cases} x_1 + 2x_2 + 3.x_3 = 0 \\ 4x_1 + 5x_2 + 6x_3 = 0 \\ 7x_1 + 8x_2 + 9x_3 = 0 \end{cases}. Ma trận hóa hệ này, ta được \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}
 \frac{d_2 \to d_2 - 4d_1}{d_3 \to d_3 - 7d_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}. Suy ra hệ pttt có nghiệm
\begin{cases} x_1 = 0 - 2x_2 - 3x_3 \\ x_2 = 0 - 2x_3; \\ x_3 = a, a \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x_1 = a \\ x_2 = -2a; \end{cases} . \text{ Vậy không gian nhân}
\ker(f) = \{(a, -2a, a) : a \in \mathbb{R}\} Chọn a = 1, ta có 1 nghiệm cơ bản là u = (1, -2, 1).
Vậy ker(f) có sơ sở là \{u = (1, -2, 1)\}.
```

```
Cho ánh xa tuyến tính
f: \mathbb{R}^4 \to \mathbb{R}^3, (x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4).
a. Tìm một cơ sở S của không gian nhân ker(f).
b. Cho u = (1, 1, 0, -2). Chứng tỏ u \in \ker(f) và tính [u]_S.
c) Cho v = (1, 2, 0, m). Tìm m để v \in \ker(f). Với m đó, tính [v]_S.
a. Với (x_1, x_2, x_3, x_4) \in \ker(f). Ta có f(x_1, x_2, x_3, x_4) = (0, 0, 0)
\Leftrightarrow (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4) = (0, 0, 0)
\Leftrightarrow \begin{cases} x_1+x_2+x_3+x_4=0\\ x_1+x_2+2x_3+x_4=0\\ 2x_1+2x_2+3x_3+2x_4=0 \end{cases}. \text{ Ta tìm nghiệm của hệ pttt trên}
\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 3 & 2 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2 - d_1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Suy ra}
\begin{cases} x_1 = -x_2 - x_3 - x_4 \\ x_2 = a, a \in \mathbb{R}; \\ x_3 = 0; \\ x_4 = b, b \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x_1 = -a - b \\ x_2 = a; \\ x_3 = 0 \\ x_4 = b \end{cases}. \text{ Nên}
\ker(f)=\{(-a-b,a,0,b):a,b\in\mathbb{R}\}. Chọn 2 bộ nghiệm cơ bản u_1=(-1,1,0,0)
(ứng với a = 1, b = 0) và u_2 = (-1, 0, 0, 1) (ứng với a = 0, b = 1). Vậy S = \{u_1, u_2\}
là cơ sở của ker(f).
```

Ví dụ.
$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4) \quad \forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4.$$

- a. Ta đã tìm $S = \{u_1 = (-1, 1, 0, 0), u_2 = (-1, 0, 0, 1)\}$ là một cơ sở của $\ker(f)$.
- b. Cho u = (1, 1, 0, -2). Chứng tỏ $u \in \ker(f)$ và tính $[u]_S$.
- b. Chỉ cần kiểm tra f(1, 1, 0, -2) = (0, 0, 0) thì $u \in \ker(f)$. Ta tính $[u]_S$.

Ta xét hệ phương trình
$$(u_1^t u_2^t | u^t) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & | -2 \end{pmatrix} \xrightarrow{d_1 \to d_1 + d_2 + d_4} \xrightarrow{d_2 \leftrightarrow d_4}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{d_1 \leftrightarrow d_4} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \text{ Suy ra } [u]_S = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

- a. Ta đã tìm $S = \{u_1 = (-1, 1, 0, 0), u_2 = (-1, 0, 0, 1)\}$ là một cơ sở của ker(f).
- c) Cho v = (1, 2, 0, m). Tìm m để $v \in \ker(f)$. Với m đó, tính $[v]_S$.
- c. Ta phải tìm m để hệ phương trình $(u_1^t u_2^t | v^t)$ có nghiệm.

$$(u_1^t u_2^t | v^t) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & m \end{pmatrix} \xrightarrow{d_1 \to d_1 + d_2 + d_4} \begin{pmatrix} 0 & 0 & m + 3 \\ 0 & 1 & m \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{d_1 \leftrightarrow d_4}$$

$$\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & m \\
0 & 0 & 0 \\
0 & 0 & m+3
\end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & m \\ 0 & 0 & 0 \\ 0 & 0 & m + 3 \end{pmatrix}$. Để hệ có nghiệm thì $m+3=0 \Leftrightarrow m=-3$. Suy

$$\operatorname{ra} [u]_S = \begin{pmatrix} 2 \\ m \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}.$$


```
Chứng tổ ánh xạ sau là đơn cấu f: \mathbb{R}^3 \to \mathbb{R}^3 với f(x_1, x_2, x_3) =
(x_1 + x_2 + x_3, x_1 + 2x_2 + 2x_3, x_1 + 2x_2 + 3x_3) \quad \forall (x_1, x_2, x_3) \in \mathbb{R}^3.
```

Để chứng minh f là đơn cấu, ta chứng tỏ $ker(f) = \{0_V\}$. Giả sử $(x_1, x_2, x_3) \in \ker(f)$. Khi đó, $f(x_1, x_2, x_3) = (0, 0, 0)$. Suy ra $(x_1 + x_2 + x_3, x_1 + 2x_2 + 2x_3, x_1 + 2x_2 + 3x_3) = (0, 0, 0)$

$$\Leftrightarrow \begin{cases} x_1+x_2+x_3=0\\ x_1+2x_2+2x_3=0\\ x_1+2x_2+3x_3=0 \end{cases}$$
. Ma trận hóa hệ này, ta được

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$
 Suy ra hệ pttt có nghiệm

$$\begin{cases} x_1 = 0 \\ x_2 = 0; & \text{Vậy không gian nhân ker}(f) = \{(0,0,0)\}. \text{ Suy ra } f \text{ là} \\ x_3 = 0 \end{cases}$$
Mai Hoàng Biên Ánh xạ tuyến tính

Bài 2. Không gian nhân và ảnh

2.4. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó, f là đơn anh khi và chỉ khi mọi tập $S = \{u_1, u_2, \dots, u_m\}$ đltt trong V, tập $f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$ đltt trong W.

Bài 2. Không gian nhân và ảnh

2.4. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó, nếu $S = \{u_1, u_2, \ldots, u_m\}$ là tập sinh của V thì $f(S) = \{f(u_1), f(u_2), \ldots, f(u_m)\}$ là tập sinh của Im(f). Nói riêng, nếu $S = \{u_1, u_2, \ldots, u_n\}$ là cơ sở của V thì $Im(f) = \langle f(u_1), f(u_2), \ldots, f(u_n) \rangle$.

2.5. Hê quả

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó,

- **1** f là toàn cấu khi và chỉ khi Im(f) = W.
- 2 f là toàn cấu khi và chỉ khi có tập sinh $S = \{u_1, u_2, \dots, u_m\}$ của V sao cho $f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$ là tập sinh của W.

Thuật toán tìm cơ sở của ảnh Im(f) của ánh xạ tuyến tính $f: \mathbb{R}^n \to \mathbb{R}^m$

- Tìm một tập sinh S của \mathbb{R}^n , thường ta chọn $S = \{e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 1)\}$ là cơ sở chính tắc của \mathbb{R}^n .
- Tính $f(S) = \{f(e_1), f(e_2), \dots, f(e_n)\}$. Ta tìm cở sở của $Im(f) = \langle f(S) \rangle$ (coi lại Chương 3).

• Lập ma trận các dòng
$$\overline{f(S)} = \begin{pmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{pmatrix}$$
.

 $\text{Dura } \overline{f(S)} \xrightarrow{\text{thuật toán Gauss}} R_A = \begin{pmatrix} v_1 \\ \vdots \\ v_\ell \\ 0 \\ \vdots \\ \hat{o} \end{pmatrix} \text{ về dạng bậc thang với } v_i$

là các dòng khác không. Khi đó, $S' = \{v_1, v_2, \dots, v_\ell\}$ là cơ sở

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$

- a) Chứng minh f là ánh xạ tuyến tính.
- b) Tìm một cơ sở S của ảnh Im(f).
- c) cho $u=(a,b,c)\in\mathbb{R}^3$. Tìm điều kiện để $u\in Im(f)$ và tính $[u]_S$.
- d) Cho $T=\{w_1=(0,1,2),w_2=(1,0,-1)\}$. Chứng tỏ T cũng là cơ sở của Im(f) và tìm ma trận chuyển cơ sở $(S\to T)$.

a) Ta có
$$f(x_1, x_2, x_3)^t = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 với mọi $(x_1, x_2, x_3) \in \mathbb{R}^3$ nên f là ánh xạ tuyến tính.

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$ b) Tìm một cơ sở S của ảnh $Im(f)$.

b). Xét cơ sở chính tắc

$$\mathcal{B} = \{e_1 = (1,0,0); e_2 = (0,1,0); e_3 = (0,0,1)\}$$
 của \mathbb{R}^3 . Khi đó, $Im(f)$ sinh bởi $f(e_1) = f(1,0,0) = (1,2,3);$

 $f(e_2) = f(0,1,0) = (4,5,6)$ và $f(e_3) = f(0,0,1) = (7,8,9)$. Khi đó,

Ta có
$$\begin{pmatrix} f(e_1) \\ f(e_2) \\ f(e_3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{d_2 \to d_2 - 4d_1} \xrightarrow{d_3 \to d_3 - 7d_1}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix}.$$

Suy ra $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}\$ là cơ sở của Im(f).

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$ b) Đã có $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}$ là cơ sở của $Im(f)$.

c) cho $u = (a, b, c) \in \mathbb{R}^3$. Tìm điều kiện để $u \in Im(f)$ và tính $[u]_S$.

b) Xét $u = (a, b, c) \in \mathbb{R}^3$. Ta xét hệ phương trình

$$(v_1^t v_2^t | u^t) = \begin{pmatrix} 1 & 0 & | a \\ 2 & -3 & | b \\ 3 & -6 & | c \end{pmatrix} \xrightarrow{d_2 \to d_2 - 2d_1} \xrightarrow{d_3 \to d_3 - 3d_1}$$

$$\begin{pmatrix} 1 & 0 & a \\ 0 & -3 & b - 2a \\ 0 & -6 & c - 3a \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_2} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & \frac{b - 2a}{-3} \\ 0 & 0 & a - 2b + c \end{pmatrix}.$$

Để $u \in W$ thì hệ trên có nghiệm $\Leftrightarrow a - 2b + c = 0$.

Hơn nữa, khi
$$a-2b+c=0$$
 thì $[u]_S=inom{a}{\frac{b-2a}{-3}}.$

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3$. b) Đã có $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}$ là cơ sở của $Im(f)$.

c) cho
$$u=(a,b,c)\in\mathbb{R}^3$$
. Tìm điều kiện là $a-2b+c=0$ thì $[u]_{\mathcal{S}}=\left(rac{a}{\frac{b-2a}{-3}}
ight)$.

d) Cho $T = \{w_1 = (0,1,2), w_2 = (1,0,-1)\}$. Chứng tỏ T cũng là cơ sở của Im(f) và tìm ma trận chuyển cơ sở $(S \to T)$.

d). Ta có
$$w_1=(0,1,2), w_2=(1,0,-1)\in \mathit{Im}(f)$$
 vì $0-2.1+2=0$ và

$$1-2.0+(-1)=0. \text{ Hơn nữa, } \overline{T}=\begin{pmatrix}w_1\\w_2\end{pmatrix}=\begin{pmatrix}0&1&2\\1&0&-1\end{pmatrix} \rightarrow \begin{pmatrix}1&0&-1\\0&1&2\end{pmatrix} \text{ c\'o hạng}$$

là 2 nên T đlttt. Hơn nữa, vì dim Im(f) = 2 nên T là cơ sở của Im(f).

Áp dụng công thức
$$(S \to T) = ([w_1]_S \ [w_2]_S) = \begin{pmatrix} 0 & 1 \\ \frac{1-2.0}{-3} & \frac{0-2.1}{-3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{3} & \frac{2}{3} \end{pmatrix}$$
.

Bài 2. Không gian nhân và ảnh

2.6. Định lý.

Cho V là không gian hữu hạn chiều và $f:V\to W, x\mapsto f(x)$ là ánh xạ tuyến tính. Khi đó,

- ② f là đẳng cấu khi và chỉ khi $ker(f) = \{0_W\}$ (đôi lúc ta viết tắc là ker(f) = 0), và Im(f) = W.
- 3 Hơn thế nữa, nếu V=W thì f là đẳng cấu khi và chỉ khi f là toàn cấu; khi và chỉ khi f là đơn cấu.

Ví du. Cho ánh xa tuyến tính (phụ thuộc vào m)

$$f:\mathbb{R}^3 o \mathbb{R}^3$$
 với

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3).$$

- a) Tìm m để dim ker(f)=2 và tìm cơ sở của ker(f). Với m này, tìm nhanh một cơ sở của Im(f).
- b) Tìm m để f là đẳng cấu.

a) Giả sử
$$(x_1, x_2, x_3) \in \ker(f)$$
. Khi đó, $f(x_1, x_2, x_3) = (0, 0, 0)$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + mx_2 + mx_3 = 0 \\ x_1 + mx_2 + m^2x_3 = 0 \end{cases}$$
. Ma trận hóa hệ pttt $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 1 & m & m^2 \end{pmatrix}$

$$\xrightarrow[d_2 \to d_2 - d_1]{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & m - 1 & m - 1 \\ 0 & 0 & m^2 - m \end{pmatrix}. \text{ Dể dim ker}(f) = 2 \text{ thì hệ có 2}$$

nghiệm tự do, tức là hạng ma trận là 1. Suy ra m = 1.

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3).$$

a) Tîm m để dim $ker(f) = 2$ và tìm cơ sở của $ker(f)$. Với m này, tìm nhanh một cơ sở của $Im(f)$.

a) Với
$$m=1$$
, thì $\begin{pmatrix} 1 & 1 & 1 \\ 0 & m-1 & m-1 \\ 0 & 0 & m^2-m \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Suy ra $\begin{cases} x_1=-a-b \\ x_2=a, a\in\mathbb{R} \\ x_3=b, b\in\mathbb{R} \end{cases}$. Chọn 2 bộ nghiệm cơ bản $u_1=(-1,1,0)$ (ứng

với a = 1, b = 0) và $u_2 = (-1, 0, 1)$ (ứng với a = 0, b = 1). Suy ra $S = \{u_1, u_2\}$ là cơ sở của $\ker(f) = \{(-a - b, a, b) \mid a, b \in \mathbb{R}\}.$ Do dim ker(f) = 2 nên dim Im(f) = 3 - 2 = 1 (theo Định lý 2.6 (1)), vậy mọi vector khác không nằm trong Im(f) là cơ sở của Im(f). Chọn $\{u_3 = f(1,0,0) = (1,1,1)\}$ là cơ sở của Im(f).

Ví dụ.
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 với $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3)$. b) Tìm m để f là đẳng cấu.

b) Theo Định lý 2.6 (3) thì f là đẳng cấu nếu f là đơn cấu, khi và

chỉ khi ker
$$(f) = \{0_V\}$$
, tức là, hệ $\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + mx_2 + mx_3 = 0 \end{cases}$ có $x_1 + mx_2 + m^2x_3 = 0$

1 nghiệm (0,0,0). Ma trận hóa hệ pttt $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 1 & m & m^2 \end{pmatrix}$

$$\frac{d_3 \to d_3 - d_2}{d_2 \to d_2 - d_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & m - 1 & m - 1 \\ 0 & 0 & m^2 - m \end{pmatrix}$$
. Để $\ker(f) = \{(0, 0, 0)\}$ thì

 $m \neq 1, 0$. Vậy $m \neq 0$; 1 thì f là đẳng cấu.

Bài 2. Không gian nhân và ảnh

2.1. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó,

- **1** Tập $ker(f) = \{x \in V \mid f(x) = 0\}$ là không gian vector con của V và ta gọi nó là *không gian nhân* của f.
- ② Tập $Im(f) = \{f(x) \mid x \in V\}$ là không gian vector con của W và ta gọi nó là *không gian ảnh* của f.

Muc tiêu

Trong bài này, ta đi mô tả các không gian nhân và ảnh của một ánh xạ tuyến tính cho trước và các tính chất liên quan.

2.2. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là đơn khi và chỉ khi $\ker(f) = \{0_V\}$.


```
Tìm 1 cơ sở của không gian nhân ker(f) với f: \mathbb{R}^3 	o \mathbb{R}^3 xác định bởi
 f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2 + 9x_3) \quad \forall (x_1, x_2, x_3) \in \mathbb{R}^3.
Giả sử (x_1, x_2, x_3) \in \ker(f). Khi đó, f(x_1, x_2, x_3) = (0, 0, 0). Suy ra
(x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2 + 9x_3) = (0, 0, 0)
\Leftrightarrow \begin{cases} x_1 + 2x_2 + 3.x_3 = 0 \\ 4x_1 + 5x_2 + 6x_3 = 0 \\ 7x_1 + 8x_2 + 9x_3 = 0 \end{cases}. Ma trận hóa hệ này, ta được \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}
 \frac{d_2 \to d_2 - 4d_1}{d_3 \to d_3 - 7d_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}. Suy ra hệ pttt có nghiệm
\begin{cases} x_1 = 0 - 2x_2 - 3x_3 \\ x_2 = 0 - 2x_3; \\ x_3 = a, a \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x_1 = a \\ x_2 = -2a; \end{cases} . \text{ Vậy không gian nhân}
\ker(f) = \{(a, -2a, a) : a \in \mathbb{R}\} Chọn a = 1, ta có 1 nghiệm cơ bản là u = (1, -2, 1).
Vậy ker(f) có sơ sở là \{u = (1, -2, 1)\}.
```

```
Cho ánh xa tuyến tính
f: \mathbb{R}^4 \to \mathbb{R}^3, (x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4).
a. Tìm một cơ sở S của không gian nhân ker(f).
b. Cho u = (1, 1, 0, -2). Chứng tỏ u \in \ker(f) và tính [u]_S.
c) Cho v = (1, 2, 0, m). Tìm m để v \in \ker(f). Với m đó, tính [v]_S.
a. Với (x_1, x_2, x_3, x_4) \in \ker(f). Ta có f(x_1, x_2, x_3, x_4) = (0, 0, 0)
\Leftrightarrow (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4) = (0, 0, 0)
\Leftrightarrow \begin{cases} x_1+x_2+x_3+x_4=0\\ x_1+x_2+2x_3+x_4=0\\ 2x_1+2x_2+3x_3+2x_4=0 \end{cases}. \text{ Ta tìm nghiệm của hệ pttt trên}
\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 3 & 2 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2 - d_1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Suy ra}
\begin{cases} x_1 = -x_2 - x_3 - x_4 \\ x_2 = a, a \in \mathbb{R}; \\ x_3 = 0; \\ x_4 = b, b \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x_1 = -a - b \\ x_2 = a; \\ x_3 = 0 \\ x_4 = b \end{cases}. \text{ Nên}
\ker(f)=\{(-a-b,a,0,b):a,b\in\mathbb{R}\}. Chọn 2 bộ nghiệm cơ bản u_1=(-1,1,0,0)
(ứng với a = 1, b = 0) và u_2 = (-1, 0, 0, 1) (ứng với a = 0, b = 1). Vậy S = \{u_1, u_2\}
là cơ sở của ker(f).
```

Ví dụ.
$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, x_1 + x_2 + 2x_3 + x_4, 2x_1 + 2x_2 + 3x_3 + 2x_4) \quad \forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4.$$

- a. Ta đã tìm $S = \{u_1 = (-1, 1, 0, 0), u_2 = (-1, 0, 0, 1)\}$ là một cơ sở của $\ker(f)$.
- b. Cho u = (1, 1, 0, -2). Chứng tỏ $u \in \ker(f)$ và tính $[u]_S$.
- b. Chỉ cần kiểm tra f(1, 1, 0, -2) = (0, 0, 0) thì $u \in \ker(f)$. Ta tính $[u]_S$.

Ta xét hệ phương trình
$$(u_1^t u_2^t | u^t) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix} \xrightarrow{d_1 \to d_1 + d_2 + d_4} \xrightarrow{d_2 \leftrightarrow d_4}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{d_1 \leftrightarrow d_4} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \text{ Suy ra } [u]_S = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

- a. Ta đã tìm $S = \{u_1 = (-1, 1, 0, 0), u_2 = (-1, 0, 0, 1)\}$ là một cơ sở của ker(f).
- c) Cho v = (1, 2, 0, m). Tìm m để $v \in \ker(f)$. Với m đó, tính $[v]_S$.
- c. Ta phải tìm m để hệ phương trình $(u_1^t u_2^t | v^t)$ có nghiệm.

$$(u_1^t u_2^t | v^t) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & m \end{pmatrix} \xrightarrow{d_1 \to d_1 + d_2 + d_4} \begin{pmatrix} 0 & 0 & m+3 \\ 0 & 1 & m \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{d_1 \leftrightarrow d_4}$$

$$\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & m \\
0 & 0 & 0 \\
0 & 0 & m+3
\end{pmatrix}.$$

 $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & m \\ 0 & 0 & 0 \\ 0 & 0 & m + 3 \end{pmatrix}$. Để hệ có nghiệm thì $m+3=0 \Leftrightarrow m=-3$. Suy

$$\operatorname{ra} [u]_S = \begin{pmatrix} 2 \\ m \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}.$$


```
Chứng tổ ánh xạ sau là đơn cấu f: \mathbb{R}^3 \to \mathbb{R}^3 với f(x_1, x_2, x_3) =
(x_1 + x_2 + x_3, x_1 + 2x_2 + 2x_3, x_1 + 2x_2 + 3x_3) \quad \forall (x_1, x_2, x_3) \in \mathbb{R}^3.
Để chứng minh f là đơn cấu, ta chứng tỏ ker(f) = \{0_V\}.
Giả sử (x_1, x_2, x_3) \in \ker(f). Khi đó, f(x_1, x_2, x_3) = (0, 0, 0). Suy ra
(x_1 + x_2 + x_3, x_1 + 2x_2 + 2x_3, x_1 + 2x_2 + 3x_3) = (0, 0, 0)
\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + 2x_3 = 0 \end{cases}. Ma trận hóa hệ này, ta được x_1 + 2x_2 + 3x_3 = 0
\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \xrightarrow[d_2 \to d_2 - d_1]{} \xrightarrow[0 \quad 0 \quad 1]{} . \text{ Suy ra hệ pttt có nghiệm}
\begin{cases} x_1 = 0 \\ x_2 = 0; \quad \text{Vậy không gian nhân ker}(f) = \{(0, 0, 0)\}. \text{ Suy ra } f \text{ là} \\ x_2 = 0 \end{cases}
```

Bài 2. Không gian nhân và ảnh

2.4. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó, f là đơn anh khi và chỉ khi mọi tập $S = \{u_1, u_2, \dots, u_m\}$ đltt trong V, tập $f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$ đltt trong W.

Bài 2. Không gian nhân và ảnh

2.4. Định lý

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó, nếu $S = \{u_1, u_2, \ldots, u_m\}$ là tập sinh của V thì $f(S) = \{f(u_1), f(u_2), \ldots, f(u_m)\}$ là tập sinh của Im(f). Nói riêng, nếu $S = \{u_1, u_2, \ldots, u_n\}$ là cơ sở của V thì $Im(f) = \langle f(u_1), f(u_2), \ldots, f(u_n) \rangle$.

2.5. Hê quả

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Khi đó,

- **1** f là toàn cấu khi và chỉ khi Im(f) = W.
- ② f là toàn cấu khi và chỉ khi có tập sinh $S = \{u_1, u_2, \dots, u_m\}$ của V sao cho $f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$ là tập sinh của W.

Thuật toán tìm cơ sở của ảnh Im(f) của ánh xạ tuyến tính $f: \mathbb{R}^n \to \mathbb{R}^m$

- Tìm một tập sinh S của \mathbb{R}^n , thường ta chọn $S = \{e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 1)\}$ là cơ sở chính tắc của \mathbb{R}^n .
- Tính $f(S) = \{f(e_1), f(e_2), \dots, f(e_n)\}$. Ta tìm cở sở của $Im(f) = \langle f(S) \rangle$ (coi lại Chương 3).

• Lập ma trận các dòng
$$\overline{f(S)} = \begin{pmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{pmatrix}$$
.

 $\text{Dura } \overline{f(S)} \xrightarrow{\text{thuật toán Gauss}} R_A = \begin{pmatrix} v_1 \\ \vdots \\ v_\ell \\ 0 \\ \vdots \\ \hat{o} \end{pmatrix} \text{ về dạng bậc thang với } v_i$

là các dòng khác không. Khi đó, $S' = \{v_1, v_2, \dots, v_\ell\}$ là cơ sở

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$

- a) Chứng minh f là ánh xạ tuyến tính.
- b) Tìm một cơ sở S của ảnh Im(f).
- c) cho $u=(a,b,c)\in\mathbb{R}^3$. Tìm điều kiện để $u\in Im(f)$ và tính $[u]_S$.
- d) Cho $T=\{w_1=(0,1,2),w_2=(1,0,-1)\}$. Chứng tỏ T cũng là cơ sở của Im(f) và tìm ma trận chuyển cơ sở $(S\to T)$.

a) Ta có
$$f(x_1, x_2, x_3)^t = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 với mọi $(x_1, x_2, x_3) \in \mathbb{R}^3$ nên f là ánh xạ tuyến tính.

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$ b) Tìm một cơ sở S của ảnh $Im(f)$.

b). Xét cơ sở chính tắc

$$\mathcal{B} = \{e_1 = (1,0,0); e_2 = (0,1,0); e_3 = (0,0,1)\}$$
 của \mathbb{R}^3 . Khi đó, $Im(f)$ sinh bởi $f(e_1) = f(1,0,0) = (1,2,3);$

 $f(e_2) = f(0,1,0) = (4,5,6)$ và $f(e_3) = f(0,0,1) = (7,8,9)$. Khi đó,

Ta có
$$\begin{pmatrix} f(e_1) \\ f(e_2) \\ f(e_3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{d_2 \to d_2 - 4d_1} \xrightarrow{d_3 \to d_3 - 7d_1}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix}.$$

Suy ra $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}\$ là cơ sở của Im(f).

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$ b) Đã có $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}$ là cơ sở của $Im(f)$.

c) cho $u=(a,b,c)\in\mathbb{R}^3$. Tìm điều kiện để $u\in Im(f)$ và tính $[u]_S$.

b) Xét
$$u=(a,b,c)\in\mathbb{R}^3$$
. Ta xét hệ phương trình

$$(v_1^t v_2^t | u^t) = \begin{pmatrix} 1 & 0 & | a \\ 2 & -3 & | b \\ 3 & -6 & | c \end{pmatrix} \xrightarrow{d_2 \to d_2 - 2d_1} \xrightarrow{d_3 \to d_3 - 3d_1}$$

$$\begin{pmatrix} 1 & 0 & a \\ 0 & -3 & b - 2a \\ 0 & -6 & c - 3a \end{pmatrix} \xrightarrow{d_3 \to d_3 - 2d_2} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & \frac{b - 2a}{-3} \\ 0 & 0 & a - 2b + c \end{pmatrix}.$$

Để $u \in W$ thì hệ trên có nghiệm $\Leftrightarrow a - 2b + c = 0$.

Hơn nữa, khi
$$a-2b+c=0$$
 thì $[u]_S=inom{a}{\frac{b-2a}{-3}}.$

Cho ánh xạ
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 xác định bởi $f(x_1, x_2, x_3) = (x_1 + 4x_2 + 7x_3, 2x_1 + 5x_2 + 8x_3, 3x_1 + 6x_2 + 9x_3) \ \forall (x_1, x_2, x_3) \in \mathbb{R}^3$. b) Đã có $S = \{v_1 = (1, 2, 3), v_2 = (0, -3, -6)\}$ là cơ sở của $Im(f)$.

c) cho
$$u=(a,b,c)\in\mathbb{R}^3$$
. Tìm điều kiện là $a-2b+c=0$ thì $[u]_{\mathcal{S}}=\left(rac{a}{\frac{b-2a}{-3}}
ight)$.

d) Cho $T = \{w_1 = (0,1,2), w_2 = (1,0,-1)\}$. Chứng tỏ T cũng là cơ sở của Im(f) và tìm ma trận chuyển cơ sở $(S \to T)$.

d). Ta có
$$w_1=(0,1,2), w_2=(1,0,-1)\in \mathit{Im}(f)$$
 vì $0-2.1+2=0$ và

$$1-2.0+(-1)=0. \text{ Hơn nữa, } \overline{T}=\begin{pmatrix}w_1\\w_2\end{pmatrix}=\begin{pmatrix}0&1&2\\1&0&-1\end{pmatrix} \rightarrow \begin{pmatrix}1&0&-1\\0&1&2\end{pmatrix} \text{ c\'o hạng}$$

là 2 nên T đlttt. Hơn nữa, vì dim Im(f) = 2 nên T là cơ sở của Im(f).

Áp dụng công thức
$$(S \to T) = ([w_1]_S \ [w_2]_S) = \begin{pmatrix} 0 & 1 \\ \frac{1-2.0}{-3} & \frac{0-2.1}{-3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{3} & \frac{2}{3} \end{pmatrix}$$
.

Bài 2. Không gian nhân và ảnh

2.6. Định lý.

Cho V là không gian hữu hạn chiều và $f:V\to W, x\mapsto f(x)$ là ánh xạ tuyến tính. Khi đó,

- ② f là đẳng cấu khi và chỉ khi $ker(f) = \{0_W\}$ (đôi lúc ta viết tắc là ker(f) = 0), và Im(f) = W.
- 3 Hơn thế nữa, nếu V=W thì f là đẳng cấu khi và chỉ khi f là toàn cấu; khi và chỉ khi f là đơn cấu.

Ví du. Cho ánh xa tuyến tính (phụ thuộc vào m)

$$f:\mathbb{R}^3 o \mathbb{R}^3$$
 với

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3).$$

- a) Tìm m để dim ker(f)=2 và tìm cơ sở của ker(f). Với m này, tìm nhanh một cơ sở của Im(f).
- b) Tìm m để f là đẳng cấu.

a) Giả sử
$$(x_1, x_2, x_3) \in \ker(f)$$
. Khi đó, $f(x_1, x_2, x_3) = (0, 0, 0)$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + mx_2 + mx_3 = 0 \\ x_1 + mx_2 + m^2x_3 = 0 \end{cases}$$
. Ma trận hóa hệ pttt $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 1 & m & m^2 \end{pmatrix}$

$$\xrightarrow[d_2 \to d_2 - d_1]{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & m - 1 & m - 1 \\ 0 & 0 & m^2 - m \end{pmatrix}. \text{ Dể dim ker}(f) = 2 \text{ thì hệ có 2}$$

nghiệm tự do, tức là hạng ma trận là 1. Suy ra m = 1.

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3).$$

a) Tîm m để dim $ker(f) = 2$ và tìm cơ sở của $ker(f)$. Với m này, tìm nhanh một cơ sở của $Im(f)$.

a) Với
$$m=1$$
, thì $\begin{pmatrix} 1 & 1 & 1 \\ 0 & m-1 & m-1 \\ 0 & 0 & m^2-m \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Suy ra $\begin{cases} x_1=-a-b \\ x_2=a, a\in\mathbb{R} \\ x_3=b, b\in\mathbb{R} \end{cases}$. Chọn 2 bộ nghiệm cơ bản $u_1=(-1,1,0)$ (ứng

với a = 1, b = 0) và $u_2 = (-1, 0, 1)$ (ứng với a = 0, b = 1). Suy ra $S = \{u_1, u_2\}$ là cơ sở của $\ker(f) = \{(-a - b, a, b) \mid a, b \in \mathbb{R}\}.$ Do dim ker(f) = 2 nên dim Im(f) = 3 - 2 = 1 (theo Định lý 2.6 (1)), vậy mọi vector khác không nằm trong Im(f) là cơ sở của Im(f). Chọn $\{u_3 = f(1,0,0) = (1,1,1)\}$ là cơ sở của Im(f).

Ví dụ.
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 với $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + mx_2 + mx_3, x_1 + mx_2 + m^2x_3)$. b) Tìm m để f là đẳng cấu.

b) Theo Định lý 2.6 (3) thì f là đẳng cấu nếu f là đơn cấu, khi và

chỉ khi ker
$$(f) = \{0_V\}$$
, tức là, hệ $\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + mx_2 + mx_3 = 0 \end{cases}$ có $x_1 + mx_2 + m^2x_3 = 0$

1 nghiệm (0,0,0). Ma trận hóa hệ pttt $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 1 & m & m^2 \end{pmatrix}$

$$\frac{d_3 \to d_3 - d_2}{d_2 \to d_2 - d_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & m - 1 & m - 1 \\ 0 & 0 & m^2 - m \end{pmatrix}$$
. Để $\ker(f) = \{(0, 0, 0)\}$ thì

 $m \neq 1, 0$. Vậy $m \neq 0$; 1 thì f là đẳng cấu.

Bài 3. Ma trận ánh xạ tuyến tính

3.1. Định nghĩa

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Giả sử $B = \{u_1, u_2, \ldots, u_n\}$ là cơ sở của V và $C = \{w_1, w_2, \ldots, w_m\}$ là cơ sở của W. Khi đó, ma trận biểu diễn của f theo cơ sở g và g0, ký hiệu $[f]_{B,C}$, được xác định bởi

$$[f]_{B,C} = ([f(u_1)]_C \ [f(u_2)]_C \ \dots \ [f(u_n)]_C).$$

Trong trường hợp V=W và B=C, ta viết đơn giản

$$[f]_B = [f]_{B,B} = ([f(u_1)]_B \ [f(u_2)]_B \ \dots \ [f(u_n)]_B)$$


```
Cho \mathcal{A} = \{e_1 = (1,0); e_2 = (0,1)\}; \mathcal{B} = \{\epsilon_1 = (1,0,0); \epsilon_2 = (0,1,0); \epsilon_3 = (0,0,1)\} là lần lượt hai cơ sở chính tắc của \mathbb{R}^2 và \mathbb{R}^3 và \mathcal{C} = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\} \subseteq \mathbb{R}^3.
```

Cho
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x_1, x_2) \mapsto (x_1 + x_2, 2x_1 - x_2, x_1 - x_2)$ và $g: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (x_1 + x_2 - x_3, 2x_1 - x_2 - x_3, x_1 - x_2 - x_3)$.

- a Chứng minh f là ánh xạ tuyến tính và tính $[f]_{\mathcal{A},\mathcal{B}}$.
- b) Chứng minh C là cơ sở của \mathbb{R}^3 . Tính $[f]_{\mathcal{A},C}$.
- c) Chứng minh g là ánh xạ tuyến tính và tính $[g]_{\mathcal{B},\mathcal{C}}$.
- d) Tính $[g]_C$.

Cho
$$\mathcal{A} = \{e_1 = (1,0); e_2 = (0,1)\};$$
 $\mathcal{B} = \{\epsilon_1 = (1,0,0); \epsilon_2 = (0,1,0); \epsilon_3 = (0,0,1)\}$ là lần lượt hai cơ sở chính tắc của \mathbb{R}^2 và \mathbb{R}^3 . Cho $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1,x_2) \mapsto (x_1+x_2,2x_1-x_2,x_1-x_2)$ a Tính $[f]_{\mathcal{A},\mathcal{B}}$.

a) Ta có
$$f(x_1,x_2)^t=\begin{pmatrix}1&1\\2&-1\\1&-1\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}\quad \forall (x_1,x_2)\in R^2.$$
 Suy ra f là

ánh xạ tuyến tính.

Ta có chú ý là nếu $\mathcal S$ là cơ sở chính tắc của $\mathbb R^n$ thì $[x]_{\mathcal S}=x^t$ với $x\in\mathbb R^n$.

Vậy
$$[f]_{\mathcal{A},\mathcal{B}} = ([f(e_1)]_{\mathcal{B}} \ [f(e_2)]_{\mathcal{B}}) = (f(e_1)^t \ f(e_2)^t)$$

= $((1,2,1)^t \ (1,-1,-1)^t) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 1 & -1 \end{pmatrix}$.

Cho
$$\mathcal{A} = \{e_1 = (1,0); e_2 = (0,1)\}$$
 là cơ sở chính tắc của \mathbb{R}^2 và $C = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\} \subseteq \mathbb{R}^3$. Cho $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1,x_2) \mapsto (x_1+x_2,2x_1-x_2,x_1-x_2)$ b) Chứng minh C là cơ sở của \mathbb{R}^3 . Tính $[f]_{\mathcal{A},C}$.

Ta có
$$\overline{C} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 có hạng là 3 (= số vector) nên C

đltt. Do dim $\mathbb{R}^3 = 3$ nên C là cơ sở của \mathbb{R}^3 .

Cho
$$x=(x_1,x_2,x_3)\in\mathbb{R}^3$$
, ta tính $[x]_C$. Ta xét $(u_1^t \ u_2^t \ u_3^t|x^t)$

$$=\begin{pmatrix}1&1&1&|x_1\\1&2&2&|x_2\\1&2&3&|x_3\end{pmatrix} \xrightarrow[d_2\to d_2-d_1]{} \begin{pmatrix}1&1&1&|x_1\\0&1&1&|x_2-x_1\\0&0&1&|x_3-x_2\end{pmatrix} \xrightarrow[d_2\to d_2-d_3]{} \frac{d_1\to d_1-d_2}{d_2\to d_2-d_3}$$

$$\begin{pmatrix} 1 & 0 & 0 & 2x_1 - x_2 \\ 0 & 1 & 0 & 2x_2 - x_1 - x_3 \\ 0 & 0 & 1 & x_3 - x_2 \end{pmatrix}. \text{ Vây } [x]_C = \begin{pmatrix} 2x_1 - x_2 \\ 2x_2 - x_1 - x_3 \\ x_3 - x_2 \end{pmatrix}. \text{ Như vây,}$$

$$[f]_{\mathcal{A},C} = ([f(e_1)]_C \ [f(e_2)]_C) = ([(1,2,1)]_C \ [(1,-1,-1)]_C) = \begin{pmatrix} 0 & 3 \\ 2 & -2 \\ -1 & 0 \end{pmatrix}$$


```
Cho \mathcal{B} = \{\epsilon_1 = (1,0,0); \epsilon_2 = (0,1,0); \epsilon_3 = (0,0,1)\} là cơ sở chính tắc của \mathbb{R}^3 và C = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\} \subseteq \mathbb{R}^3. g: \mathbb{R}^3 \to \mathbb{R}^3, (x_1,x_2,x_3) \mapsto (x_1+x_2-x_3,2x_1-x_2-x_3,x_1-x_2-x_3) c) Chứng minh g là ánh xạ tuyến tính và tính [g]_{\mathcal{B},\mathcal{C}}. d) Tính [g]_{\mathcal{C}}.
```

c)
$$g(x_1,x_2,x_3)=(x_1,x_2,x_3)\begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix} \quad \forall (x_1,x_2,x_3)\in R^3.$$
 Suy ra g là ánh xạ tuyến tính. Theo câu b) $[x]_C=\begin{pmatrix} 2x_1-x_2\\ 2x_2-x_1-x_3\\ x_3-x_2 \end{pmatrix}$ với $x=(x_1,x_2,x_3)\in \mathbb{R}^3.$ Suy ra $[g]_{\mathcal{B},C}=([g(\epsilon_1)]_C\ [g(\epsilon_2)]_C\ [g(\epsilon_3)]_C)= \\ [(1,2,1)]_C\ [(1,-1,-1)]_C\ [(-1,-1,-1)]_C=\begin{pmatrix} 0 & 3 & -1\\ 2 & -2 & 0\\ -1 & 0 & 0 \end{pmatrix}.$ d) $[g]_C=[g]_{C,C}=([g(u_1)]_C\ [g(u_2)]_C\ [g(u_3)]_C)= \\ ([(1,0,-1)]_C\ [(1,-2,-3)]_C\ [(0,-3,-4)]_C)=\begin{pmatrix} 2 & 4 & 3\\ 0 & -2 & -2\\ -1 & -1 & -1 \end{pmatrix}.$

Thuật toán tìm ma trận ánh xạ tuyến tính $f:\mathbb{R}^n o \mathbb{R}^m$

Cho $f: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto f(x)$, là ánh xạ tuyến tính. Giả sử $B = \{u_1, u_2, \dots, u_n\}$ và $C = \{v_1, v_2, \dots, v_m\}$ lần lượt là hai cơ sở của \mathbb{R}^n và \mathbb{R}^m . Thuật toán sau cho ta ma trận ánh xạ $[f]_{B,C}$.

- **1** Bước 1. Lập ma trận mở rộng $(\overline{C}|\overline{f}(B)) = (v_1^t \ v_2^t \ \dots \ v_m^t|f(u_1)^t \ f(u_2)^t \ \dots \ f(u_n)^t).$
- **2** Bước 2. $(\overline{C}|\overline{f}(B)) \xrightarrow{\text{Gauss-Jordan}} (J|P)$.
- **3** Bước 3. Khi đó, $J = I_m$ và $[f]_{B,C} = P$.

Kiếm tra lại các ví dụ vừa rồi theo thuật toán này

a. Cho
$$\mathcal{A} = \{e_1 = (1,0); e_2 = (0,1)\};$$
 $\mathcal{B} = \{\epsilon_1 = (1,0,0); \epsilon_2 = (0,1,0); \epsilon_3 = (0,0,1)\}$ là lần lượt hai cơ sở chính tắc của \mathbb{R}^2 và \mathbb{R}^3 . Cho $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1,x_2) \mapsto (x_1+x_2,2x_1-x_2,x_1-x_2)$. Tính $[f]_{\mathcal{A},\mathcal{B}}$.

Ta có
$$(\epsilon_1^t \ \epsilon_2^t \ \epsilon_3^t | f(e_1)^t \ f(e_2)^t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (1, 2, 1)^t \ (1, -1, -1)^t) = \\ \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & -1 \end{pmatrix} = (I_3 | P). \ \text{Vậy } [f]_{\mathcal{A}, \mathcal{B}} = P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 1 & -1 \end{pmatrix}.$$

b. Cho $\mathcal{A} = \{e_1 = (1,0); e_2 = (0,1)\}$ là cơ sở chính tắc của \mathbb{R}^2 và $C = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\} \subseteq \mathbb{R}^3$. Cho $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1,x_2) \mapsto (x_1+x_2,2x_1-x_2,x_1-x_2)$. Chứng minh C là cơ sở của \mathbb{R}^3 . Tính $[f]_{\mathcal{A},C}$.

Tự kiểm
$$C$$
 là cơ sở của \mathbb{R}^3 . Ta có $(u_1^t \ u_2^t \ u_3^t | f(e_1)^t \ f(e_2)^t)$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & -1 \\ 1 & 2 & 3 & 1 & -1 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & -2 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix} \xrightarrow{d_1 \to d_1 - d_2} \xrightarrow{d_2 \to d_2 - d_1} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \end{pmatrix} \xrightarrow{d_1 \to d_1 - d_2} \xrightarrow{d_2 \to d_2 - d_3} \begin{pmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \end{pmatrix} = (I_3 | P).$$

$$\text{Vậy } [f]_{\mathcal{A},C} = P = \begin{pmatrix} 0 & 3 \\ 2 & -2 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

```
c. Cho \mathcal{B}=\{\epsilon_1=(1,0,0);\epsilon_2=(0,1,0);\epsilon_3=(0,0,1)\} là cơ sở chính tắc của \mathbb{R}^3 và C=\{u_1=(1,1,1);u_2=(1,2,2);u_3=(1,2,3)\}\subseteq \mathbb{R}^3. Cho g:\mathbb{R}^3\to\mathbb{R}^3,(x_1,x_2,x_3)\mapsto (x_1+x_2-x_3,2x_1-x_2-x_3,x_1-x_2-x_3). Chứng minh g là ánh xạ tuyến tính và tính [g]_{\mathcal{B},C}
```

$$\begin{split} & \text{Tự kiểm } g \text{ là ánh xạ tuyến tính. Ta có } (u_1^t \ u_2^t \ u_3^t | g(e_1)^t \ g(e_2)^t \ g(e_3)^t) \\ & = \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 1 & 2 & 2 & 2 & -1 & -1 \\ 1 & 2 & 3 & 1 & -1 & -1 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{d_1 \to d_1 - d_2} \xrightarrow{d_2 \to d_2 - d_1} \begin{pmatrix} 1 & 0 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{pmatrix} = (I_3 | P). \end{split}$$

$$& \text{Vậy } [g]_{\mathcal{B}, \mathcal{C}} = P = \begin{pmatrix} 0 & 3 & -1 \\ 2 & -2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

d. Cho
$$C = \{u_1 = (1,1,1); u_2 = (1,2,2); u_3 = (1,2,3)\} \subseteq \mathbb{R}^3$$
. Cho $g : \mathbb{R}^3 \to \mathbb{R}^3, (x_1, x_2, x_3) \mapsto (x_1 + x_2 - x_3, 2x_1 - x_2 - x_3, x_1 - x_2 - x_3)$. Tính $[g]_C$

Ta có $(u_1^t \ u_2^t \ u_3^t | g(u_1)^t \ g(u_2)^t \ g(u_3)^t) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 0 & -2 & -3 \\ 1 & 2 & 3 & -1 & -3 & -4 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} d_2 \to d_2 - d_1$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 & -3 & -3 \\ 0 & 0 & 1 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{d_1 \to d_1 - d_2} \begin{pmatrix} 1 & 0 & 0 & 2 & 4 & 3 \\ 0 & 1 & 0 & 0 & -2 & -2 \\ 0 & 0 & 1 & -1 & -1 & -1 \end{pmatrix} = (I_3|P).$$

$$V_{\hat{q}y}[g]_C = P = \begin{pmatrix} 2 & 4 & 3 \\ 0 & -2 & -2 \\ -1 & -1 & -1 \end{pmatrix}$$

Ví dụ từ bài giảng của TS. Lê Văn Luyện

 $\mathbf{V}\mathbf{i}$ dụ. Xét ánh xạ tuyến tính $f:\mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (x - y, 2x + y + z)$$

và cặp cơ sở $\mathcal{B} = (u_1 = (1, 1, 0), u_2 = (0, 1, 2), u_3 = (1, 1, 1)),$ $\mathcal{C} = (v_1 = (1, 3), v_2 = (2, 5)).$ Tìm $[f]_{\mathcal{B},\mathcal{C}}$?

Giải. Ta có

$$f(u_1) = (0,3),$$

$$f(u_2) = (-1,3),$$

$$f(u_3) = (0,4).$$

Lập
$$(v_1^\top \ v_2^\top \ | \ f(u_1)^\top \ f(u_2)^\top \ f(u_3)^\top) = \begin{pmatrix} 1 & 2 & 0 & -1 & 0 \\ 3 & 5 & 3 & 3 & 4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 6 & 11 & 8 \\ 0 & 1 & -3 & -6 & -4 \end{pmatrix}.$$

Vây

$$[f]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 6 & 11 & 8 \\ -3 & -6 & -4 \end{pmatrix}.$$

Bài 3. Ma trận ánh xạ tuyến tính

3.2. Định lý.

Cho $f: V \to W, x \mapsto f(x)$, là ánh xạ tuyến tính. Giả sử B, B' là hai cơ sở của V, C, C' là hai cơ sở của W và $x \in V$. Khi đó,

- $[f]_{B',C'} = (C' \to C)[f]_{B,C}(B \to B')$ $= (C \to C')^{-1}[f]_{B,C}(B \to B').$

3.2. Định lý.

Cho $f: V \to V, x \mapsto f(x)$, là ánh xạ tuyến tính. Giả sử B, B' là hai cơ sở của V và $x \in V$. Khi đó,

- ② $[f]_{B'} = (B \to B')^{-1}[f]_B(B \to B').$

Cho \mathbb{R}^2 với cơ sở chính tắc E và cơ sở

$$F = \{X_1 = (-4, -9), X_2 = (3, 7)\}$$
. Cho \mathbb{R}^3 với cơ sở chính tắc G và cơ sở $H = \{Y_1 = (1, 1, 1), Y_2 = (0, 1, 1), Y_3 = (1, 0, 1)\}$.

a) Cho $L(\mathbb{R}^3)$ thỏa

$$f(X) = (x+6y+4z, 4y-2z-4x, 3z+2x+2y) \ \forall X = (x, y, z) \in \mathbb{R}^3.$$

Tìm một cơ sở của không gian Im(f) rồi suy ra dimKer(f).

b)
$$g\in(\mathbb{R}^2,\mathbb{R}^3)$$
 có $[g]_{F,H}=egin{pmatrix}2&-1\\-3&2\\0&-1\end{pmatrix}$. Viết $[g]_{E,G}$ rồi suy ra

công thức g.

c) Cho $h \in L(\mathbb{R}^3, \mathbb{R}^2)$ thỏa

$$h(Y_1) = (2, -1), h(Y_2) = (-4, 3), h(Y_3) = (0, 4)$$
 và

 $X=(x,y,z)\in\mathbb{R}^3$. Tîm $a,b,c\in\mathbb{R}$ thỏa $X=aY_1+bY_2+cY_3$ rồi xác định h(X).

Cho
$$\mathbb{R}^3$$
 với cơ sở chính tắc $G = \{e_1 = (1,0,0); e_2 = (0,1,0); e_3 = (0,0,1)\}$ a) Cho $L(\mathbb{R}^3)$ thỏa $f(X) = (x+6y+4z, 4y-2z-4x, 3z+2x+2y) \ \forall X = (x,y,z) \in \mathbb{R}^3$. Tìm một cơ sở của không gian $Im(f)$ rồi suy ra $dimKer(f)$.

Ta có
$$Im(f)$$
 sinh bởi $f(G) = \{f(e_1) = (1, -4, 2); f(e_2) = (6, 4, 2); f(e_3) = (4, -2, 3)\}.$ Xét $\overline{f(G)} = \begin{pmatrix} f(e_1) \\ f(e_2) \\ f(e_3) \end{pmatrix} = \begin{pmatrix} 1 & -4 & 2 \\ 6 & 4 & 2 \\ 4 & -2 & 3 \end{pmatrix} \xrightarrow{d_1 \to d_1 - 6d_2} \xrightarrow{d_3 \to d_3 - 4d_1}$
$$\begin{pmatrix} 1 & -4 & 2 \\ 0 & 28 & -10 \\ 0 & -14 & -5 \end{pmatrix} \xrightarrow{d_2 \to \frac{1}{2}d_2} \begin{pmatrix} 1 & -4 & 2 \\ 0 & 14 & -5 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix}. \text{ Suy ra }$$
 Suy ra dim $Im(f) = 2$. Vậy dim $Im(f) = 3 - 2 = 1$ (Dịnh lý 2.6 (1))

b.

Cho
$$\mathbb{R}^2$$
 với 2 cơ sở $E = \{\epsilon_1 = (1,0); \epsilon_2 = (0,1)\}$ và $F = \{X_1 = (-4,-9), X_2 = (3,7)\}$ và \mathbb{R}^3 với 2 cơ sở $G = \{e_1 = (1,0,0); e_2 = (0,1,0); e_3 = (0,0,1)\}$ và $H = \{Y_1 = (1,1,1), Y_2 = (0,1,1), Y_3 = (1,0,1)\}$. b) $g \in (\mathbb{R}^2, \mathbb{R}^3)$ có
$$[g]_{F,H} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \\ 0 & -1 \end{pmatrix}. \text{ Viết } [g]_{E,G} \text{ rồi suy ra công thức } g.$$
 Ta có $g]_{E,G} = (G \to H)[g]_{F,H}(F \to E). \text{ Chú ý}$
$$(G \to H) = ([Y_1]_G \quad [Y_2]_G \quad [Y_3]_G) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}. \text{ Còn }$$

$$(F \to E) = (E \to F)^{-1} = ([X_1]_E \quad [X_2]_E)^{-1} = \begin{pmatrix} -4 & 3 \\ -9 & 7 \end{pmatrix}^{-1} = \begin{pmatrix} -7 & 3 \\ -9 & 4 \end{pmatrix}. \text{ Vậy }$$

$$[g]_{E,G} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -3 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -7 & 3 \\ -9 & 4 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -2 & 1 \\ 7 & -3 \end{pmatrix} \text{ Suy ra }$$

$$[g(X)]_G = [g]_{E,G}[X]_E = \begin{pmatrix} 4 & -2 \\ -2 & 1 \\ 7 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4x_1 - 2x_2 \\ -x_1 + x_2 \\ 7x_1 - 3x_2 \end{pmatrix} \forall X = (x_1, x_2) \in \mathbb{R}^2.$$

$$\text{Vậy } g(X) = (4x_1 - 2x_2, -x_1 + x_2, 7x_1 - 3x_2) \ \forall X = (x_1, x_2) \in \mathbb{R}^2.$$

Cho
$$\mathbb{R}^3$$
 với cơ sở $H=\{Y_1=(1,1,1),Y_2=(0,1,1),Y_3=(1,0,1)\}$. c) Cho $h\in L(\mathbb{R}^3,\mathbb{R}^2)$ thỏa $h(Y_1)=(2,-1),h(Y_2)=(-4,3),h(Y_3)=(0,4)$ và

Tìm
$$a, b, c \in \mathbb{R}$$
 thỏa $X = aY_1 + bY_2 + cY_3$ rồi xác định $h(X)$.

 $X = (x_1, x_2, x_3) \in \mathbb{R}^3$.

Trước tiên, ta tìm
$$a,b,c$$
 (theo x_1,x_2,x_3). Ta có
$$(Y_1^t \ Y_2^t \ Y_3^t | X^t) = \begin{pmatrix} 1 & 0 & 1 & | x_1 \\ 1 & 1 & 0 & | x_2 \\ 1 & 1 & 1 & | x_3 \end{pmatrix} \xrightarrow{d_3 \to d_3 - d_2} \begin{pmatrix} 1 & 0 & 1 & | x_1 \\ 0 & 1 & -1 & | x_2 - x_1 \\ 0 & 0 & 1 & | x_3 - x_2 \end{pmatrix} \xrightarrow{d_1 \to d_1 - d_3} \begin{pmatrix} 1 & 0 & 0 & | x_1 + x_2 - x_3 \\ 0 & 1 & 0 & | -x_1 + x_3 \\ 0 & 0 & 1 & | x_3 - x_2 \end{pmatrix}.$$
 Suy ra
$$X = (x_1 + x_2 - x_3)Y_1 + (-x_1 + x_3)Y_2 + (x_3 - x_2)Y_3.$$
 Suy ra $h(X) = h((x_1 + x_2 - x_3)Y_1 + (-x_1 + x_3)Y_2 + (x_3 - x_2)Y_3) = (x_1 + x_2 - x_3)h(Y_1) + (-x_1 + x_3)h(Y_2) + (x_3 - x_2)h(Y_3) = (x_1 + x_2 - x_3)(2, -1) + (-x_1 + x_3)(-4, 3) + (x_3 - x_2)(0, 4) = (6x_1 + 2x_2 - 6x_3, -4x_1 - 5x_2 + 8x_3) \ \forall X = (x_1, x_2) \in \mathbb{R}^2.$