Hex	Mnemonic	Meaning		
0x10	BIPUSH byte	Push byte onto stack		
0x59	DUP	Copy top word on stack and push onto stack		
0xA7	GOTO offset	Unconditional branch		
0x60	IADD	Pop two words from stack; push their sum		
0x7E	IAND	Pop two words from stack; push Boolean AND		
0x99	IFEQ offset	Pop word from stack and branch if it is zero		
0x9B	IFLT offset	Pop word from stack and branch if it is less than zero		
0x9F	IF_ICMPEQ offset	Pop two words from stack; branch if equal		
0x84	IINC varnum const	Add a constant to a local variable		
0x15	ILOAD varnum	Push local variable onto stack		
0xB6	INVOKEVIRTUAL disp	Invoke a method		
0x80	IOR	Pop two words from stack; push Boolean OR		
0xAC	IRETURN	Return from method with integer value		
0x36	ISTORE varnum	Pop word from stack and store in local variable		
0x64	ISUB	Pop two words from stack; push their difference		
0x13	LDC_W index	Push constant from constant pool onto stack		
0x00	NOP	Do nothing		
0x57	POP	Delete word on top of stack		
0x5F	SWAP	Swap the two top words on the stack		
0xC4	WIDE	Prefix instruction; next instruction has a 16-bit index		

F ₀	F ₁	ENA	ENB	INVA	INC	Function
0	1	1	0	0	0	Α
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	Ē
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B + 1
1	1	1	1	1	1	B – A
1	1	0	1	1	0	B – 1
1	1	1	0	1	1	-A
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
1	1	0	0	0	1	1
1	1	0	0	1	0	-1

Figure 4-2. Useful combinations of ALU signals and the function performed.

Figure 4-6. The complete block diagram of our example microarchitecture, the Mic-1.

Figure 4-5. The microinstruction format for the Mic-1 (to be described shortly).