Class 25: Outline

Hour 1:

Expt. 10: Part I: Measuring L

LC Circuits

Hour 2:

Expt. 10: Part II: LRC Circuit

Last Time: Self Inductance

Self Inductance

To Calculate:
$$L=N\Phi/I$$

- 1. Assume a current I is flowing in your device
- 2. Calculate the B field due to that I
- 3. Calculate the flux due to that B field
- 4. Calculate the self inductance (divide out I)

The Effect: Back EMF:
$$\mathcal{E} \equiv -L \frac{dI}{dt}$$

Inductors hate change, like steady state
They are the opposite of capacitors

LR Circuit

t=0+: Current is trying to change. Inductor works as hard as it needs to to stop it

t=∞: Current is steady. Inductor does nothing.

LR Circuit: AC Output Voltage

Non-Ideal Inductors

Non-Ideal (Real) Inductor: Not only L but also some R

In direction of current:
$$\mathcal{E} = -L \frac{dI}{dt} - IR$$

LR Circuit w/ Real Inductor

- 1. Time constant from I or V
- 2. Check inductor resistance from V just before switch

Experiment 10: Part I: Measure L, R

STOP
after you do Part I of Experiment
10 (through page E10-5)

LC Circuits Mass on a Spring: Simple Harmonic Motion (Demonstration)

Mass on a Spring

What is Motion?

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$m\frac{d^2x}{dt^2} + kx = 0$$

Simple Harmonic Motion

$$x(t) = x_0 \cos(\omega_0 t + \phi)$$

 x_0 : Amplitude of Motion

 ϕ : Phase (time offset)

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 = Angular frequency

Mass on a Spring: Energy

(1) Spring

(2) Mass

(3) Spring

(4) Mass

$$x(t) = x_0 \cos(\omega_0 t + \phi)$$

$$x'(t) = -\omega_0 x_0 \sin(\omega_0 t + \phi)$$

Energy has 2 parts: (Mass) Kinetic and (Spring) Potential

$$K = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2 = \frac{1}{2}kx_0^2\sin^2(\omega_0 t + \phi)$$

$$U_s = \frac{1}{2}kx^2 = \frac{1}{2}kx_0^2\cos^2(\omega_0 t + \phi)$$

Energy sloshes back and forth

Simple Harmonic Motion

Electronic Analog: LC Circuits

Analog: LC Circuit

Mass doesn't like to accelerate

Kinetic energy associated with motion

$$F = ma = m\frac{dv}{dt} = m\frac{d^{2}x}{dt^{2}}; \quad E = \frac{1}{2}mv^{2}$$

Inductor doesn't like to have current change Energy associated with current

$$\varepsilon = -L\frac{dI}{dt} = -L\frac{d^2q}{dt^2}; \quad E = \frac{1}{2}LI^2$$

Analog: LC Circuit

Spring doesn't like to be compressed/extended Potential energy associated with compression

$$F = -kx; \quad E = \frac{1}{2}kx^2$$

Capacitor doesn't like to be charged (+ or -) Energy associated with stored charge

$$\varepsilon = \frac{1}{C}q; \quad E = \frac{1}{2}\frac{1}{C}q^2$$

$$F \to \varepsilon; \ x \to q; \ v \to I; \ m \to L; \ k \to C^{-1}$$

LC Circuit

- 1. Set up the circuit above with capacitor, inductor, resistor, and battery.
- 2. Let the capacitor become fully charged.
- 3. Throw the switch from a to b
- 4. What happens?

LC Circuit

It undergoes simple harmonic motion, just like a mass on a spring, with trade-off between charge on capacitor (Spring) and current in inductor (Mass)

PRS Questions: LC Circuit

LC Circuit

$$\frac{Q}{C} - L \frac{dI}{dt} = 0 \quad ; \quad I = -\frac{dQ}{dt}$$

$$\frac{d^2Q}{dt^2} + \frac{1}{LC}Q = 0$$

Simple Harmonic Motion

$$Q(t) = Q_0 \cos(\omega_0 t + \phi)$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Q₀: Amplitude of Charge Oscillation

 ϕ : Phase (time offset)

LC Oscillations: Energy

Notice relative phases

$$U_E = \frac{Q^2}{2C} = \left(\frac{Q_0^2}{2C}\right) \cos^2 \omega_0 t$$

$$U_{E} = \frac{Q^{2}}{2C} = \left(\frac{Q_{0}^{2}}{2C}\right) \cos^{2} \omega_{0} t \qquad U_{B} = \frac{1}{2}LI^{2} = \frac{1}{2}LI_{0}^{2} \sin^{2} \omega_{0} t = \left(\frac{Q_{0}^{2}}{2C}\right) \sin^{2} \omega_{0} t$$

$$U = U_E + U_B = \frac{Q^2}{2C} + \frac{1}{2}LI^2 = \frac{Q_0^2}{2C}$$

Total energy is conserved !!

Adding Damping: RLC Circuits

Damped LC Oscillations

Resistor dissipates energy and system rings down over time

P25- 22

Also, frequency decreases: $\omega' = \sqrt{\omega_0^2 - \left(\frac{R\Box}{2L}\right)^2}$

Experiment 10: Part II: RLC Circuit

Use Units

PRS Questions: 2 Lab Questions