Tutorial 06

According to central limit theorem,
$$\times N(100, \frac{20^2}{225})$$

$$=P(Z(-1.875)$$

According to central limit theorem

$$\bar{x} \sim N(32, \frac{5^2}{64})$$

mean of the sampling distribution = $\frac{32}{5}$ = $\frac{5}{\sqrt{64}}$ = $\frac{5}{\sqrt{64}}$ = $\frac{5}{8}$

$$P(X > 33.5) = P(Z > 33.5 - 32)$$

$$= P(Z > 2.4)$$

= 0.00820

- 9) mean of the distribution = $\frac{75}{5}$ Standard deviation of the dis = $\frac{12}{5121} = \frac{12}{11}$ = 1.091
- b) mean of the distribution = $\frac{75}{12}$.

 Standard deviation of the dist = $\frac{12}{120}$ = $\frac{12}{20}$
- mean = 5.75 Standard diviation = 1.02
 - a) mean of the distribution = $\frac{5.75}{5}$ standard deviation of the dist = $\frac{1.02}{5}$ = $\frac{1.02}{9}$

b) mean of the distribution =
$$\frac{5.75}{5.4}$$
 of the deviation = $\frac{1.02}{\sqrt{25}} = \frac{0.204}{\sqrt{25}}$