Assignment No.1

Title: Principal Component Analysis(PCA)

Name: Wavhal Prathmesh Navnath

Roll No: 23107137

Div: TY-B

Batch:C

```
In [1]:
        import pandas as pd
        import seaborn as sns
        import sklearn as sk
        import matplotlib.pyplot as plt
        %matplotlib inline
In [3]: df = pd.read csv("/home/admin1/winequalityN.csv")
In [5]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 6497 entries, 0 to 6496
       Data columns (total 13 columns):
       #
            Column
                                 Non-Null Count Dtype
       - - -
                                  -----
        0
           type
                                 6497 non-null object
           fixed acidity 6487 non-null float64 volatile acidity 6489 non-null float64
        1
        2
        3
           citric acid
                                                float64
                                6494 non-null
                               6495 non-null float64
        4
          residual sugar
        5
           chlorides
                                 6495 non-null float64
        6
           free sulfur dioxide 6497 non-null
                                                float64
        7
           total sulfur dioxide 6497 non-null
                                                float64
                                                float64
            density
                                 6497 non-null
        9
            рΗ
                                 6488 non-null
                                                 float64
        10 sulphates
                                 6493 non-null
                                                 float64
        11 alcohol
                                 6497 non-null
                                                 float64
        12 quality
                                 6497 non-null
                                                 int64
       dtypes: float64(11), int64(1), object(1)
       memory usage: 660.0+ KB
       df.describe()
In [7]:
```

Out[7]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	t
	count	6487.000000	6489.000000	6494.000000	6495.000000	6495.000000	6497.000000	6
	mean	7.216579	0.339691	0.318722	5.444326	0.056042	30.525319	
	std	1.296750	0.164649	0.145265	4.758125	0.035036	17.749400	
	min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	
	25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	
	50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	
	75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	
	max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	,
In [9]:	df.isnu	ull().sum()						
Out[9]:								
In [11]:	df.isnu	ull().sum()						
Out[11]:	volati citric residu chlori free s total densit pH sulpha alcoho qualit	al sugar des ulfur dioxide sulfur dioxid y tes l						

In [13]: df.isna().sum()

```
0
Out[13]: type
          fixed acidity
                                  10
                                   8
          volatile acidity
          citric acid
                                   3
                                   2
          residual sugar
          chlorides
                                   2
          free sulfur dioxide
          total sulfur dioxide
                                   0
                                   0
          density
                                   9
          рΗ
          sulphates
                                   0
          alcohol
                                   0
          quality
          dtype: int64
In [15]: df1 = df.copy()
In [17]:
         import warnings
         warnings.filterwarnings('ignore')
In [19]: df1.dropna(inplace =True)
         df1.isnull().sum()
In [21]:
                                  0
Out[21]: type
          fixed acidity
                                  0
          volatile acidity
                                  0
          citric acid
                                  0
          residual sugar
                                  0
          chlorides
                                  0
          free sulfur dioxide
                                  0
          total sulfur dioxide
                                  0
          density
                                  0
          рΗ
                                  0
          sulphates
                                  0
          alcohol
                                  0
          quality
                                  0
          dtype: int64
In [23]: df1['type'].value_counts()
Out[23]: type
          white
                   4870
                   1593
          red
          Name: count, dtype: int64
In [25]:
         from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         df1['type'] = le.fit_transform(df1['type'])
```

In [27]:

df1

_			_	_
\cap	114	ロフ	7	1 .

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	1	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00
1	1	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30
2	1	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26
3	1	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19
4	1	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19
6491	0	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42
6492	0	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45
6494	0	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42
6495	0	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57
6496	0	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39

6463 rows × 13 columns

```
In [29]: x = df1.drop('type', axis=1)
y = df1['type']
```

In [31]: x

Out[31]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulpł
0	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	
1	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	
2	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	
3	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
4	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
6491	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	
6492	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	
6494	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	
6495	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	
6496	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	

6463 rows × 12 columns

In [33]: y

```
Out[33]: 0
                  1
         1
                  1
         2
                  1
         3
                  1
         4
                  1
         6491
                 0
         6492
                 0
         6494
                 0
         6495
                 0
         6496
                  0
         Name: type, Length: 6463, dtype: int64
In [35]:
         from sklearn.preprocessing import StandardScaler
         sta = StandardScaler()
         x scaled = sta.fit transform(x)
In [37]: from sklearn.decomposition import PCA
         model = PCA(n components=5)
In [39]: data pca = model.fit transform(x scaled)
In [41]:
         data pca
Out[41]: array([[ 2.49836923, 3.16466701, -0.10742263,
                                                          0.09531147, 1.91336261],
                 [-0.08269753, -0.47392403, -0.4210178, -0.16154951, -0.37486192],
                [ 0.18303919, 0.29170561, 0.52759909, -0.22941658, 0.4508861 ],
                [-2.20830864, -0.65283135, -1.29031679, 1.41103409, 0.07446737],
                [-2.53751532, -0.21505932, -2.6294559 ,
                                                          1.11390783, -0.50310317],
                 [-1.17991877, -0.62370364, 0.32226459, 1.0176013, -0.22178485]])
In [328... model.explained_variance_
Out[328... array([3.04385697, 2.64958447, 1.64109737, 1.06870618, 0.841535 ])
In [49]: model.score
Out[49]: <bound method PCA.score of PCA(n components=5)>
In [51]:
         model.explained_variance_ratio_
Out[51]: array([0.2536155 , 0.22076454, 0.13673695, 0.08904507, 0.07011707])
In [53]:
         plt.figure(figsize=(8,8))
         plt.scatter(data_pca[:,0],data_pca[:,1],c=df1['type'],cmap='plasma')
         plt.colorbar(label='Wine Quality')
         plt.xlabel('First principal component')
         plt.ylabel('Second Principal Component')
Out[53]: Text(0, 0.5, 'Second Principal Component')
```


LogisticRegression()

In [63]: y pred1 = model1.predict(x test)

```
In [65]: from sklearn.metrics import accuracy_score,classification_report
    acc = accuracy_score(y_test, y_pred)
    cr = classification_report(y_test,y_pred)
    print(cr)
    print("Accuracy after PCA on KNn:", acc)
```

	precision	recall	f1-score	support
0 1	0.97 0.99	0.97 0.99	0.97 0.99	322 971
accuracy macro avg weighted avg	0.98 0.99	0.98 0.99	0.99 0.98 0.99	1293 1293 1293

Accuracy after PCA on KNn: 0.9853054911059551

In []:

```
In [67]: crl = classification_report(y_test,y_pred1)
    print(crl)
    accl = accuracy_score(y_test, y_pred1)
    print("Accuracy after PCA on Logistic regression:", accl)
```

	precision	recall	f1-score	support
0 1	0.96 0.99	0.98 0.99	0.97 0.99	322 971
accuracy macro avg weighted avg	0.98 0.99	0.98 0.99	0.99 0.98 0.99	1293 1293 1293

Accuracy after PCA on Logistic regression: 0.9853054911059551

```
In [ ]:
```