

Natural, Mathematical & Physical Sciences 24/1/2022

Dr Francesco Ciriello

Department of Engineering

4CCE1MCP: Design, Making a Connection

Week 23

Modelling Engineering Systems

Learning Outcomes

- Deduce relationships between physical quantities by applying dimensional analysis
- Draw a free body diagram for a mechanical component and identify the forces acting on it.
- Define inertia, damping and stiffness and critique how these mechanical properties affect system response.
- Explain how and why to use mechanical mechanisms (load transfer, motion control, operational efficiency, etc.).
- Interface with the simulation template that you will use for the individual coursework project

Autonomous Marine Debris Clean-up Project

By the end of the session...

Implement models of ship components

Operate the simulation template for the individual coursework

By the end of the session...

Agenda

Modelling

- Forces acting on ship
- Drag and Control surface models
- Vehicle models
- Propeller models

Mechanisms

- Rotational vs Translational motion
- Rotational mechanisms: gears (spur, worm, bevel), cables and belts, shafts, pulleys
- Translational mechanisms: sliders / rails, pistons
- Converter mechanisms: Wheel and axle, crank and slider, rack and pinion

Modelling the ship

DC Motor

The shaft reducing gearbox

The shaft reducing gearbox reducing gearbox

ship motion

propeller thrust

DC motor circuit

ship stability

Ship motion

Define **coordinate systems** (CS) to describe motion

World coordinates
describes motion with
respect to a fixed origin

Ego coordinates describe motion with respect to ship centre of mass (COM ◆)

Flotation analysis - Will your ship sink?

Freebody diagrams – Vertical forces

hydrostatic forces

integrate pressure over area to get buoyancy force

Waterline Level (draught) & Maximum Payload

volume, V(z)

waterline, z

Will your ship cap size? Trim & Heel Analysis

Will your ship cap size? Trim & Heel Analysis

Heel & trim stability estimated using curves of form or experimentation

$$COM = \int \int \int dx \, dy \, dz$$

$$M_W = W \times COM$$

$$B = \int \int \rho g \, dz \, dA$$

$$M_B = B \times COB$$

Good practice to keep COM as close to as possible to the geometric centre of ship

Freebody diagrams – Horizontal Forces

Apply Newton's 2nd Law of motion,

$$m\ddot{x}(t) = F(t)$$

Integrate equation twice with respect to time to obtain position

Drag

Drag forces act against the direction of motion

They arise due to the **viscous fluid forces** acting on the ship

The **drag force** is given by

$$F_d = \frac{1}{2} C_d \rho A_S v |v|$$

where a **drag coefficient** C_d characterizes the dynamics of the viscous forces, which depend on flow conditions and geometry

Thrust Response

Example: Simulink demonstration

$$m \ddot{x} = F(t) - b_d \dot{x} |\dot{x}|$$

Exercise: Vary thrust, mass and drag and inspect ship response

Freebody diagrams – Horizontal Forces

Freebody diagrams – Horizontal Forces

Freebody diagrams – Moments

Kinematic Equations

The Unicycle model

Transform ego coordinates to world coordinates

$$v_x = v \cos \theta$$

$$v_y = v \sin \theta$$

The Unicycle model

Transform **ego** coordinates to **world** coordinates

$$v_x = v \cos \theta$$

$$v_y = v \sin \theta$$

$$\frac{d\theta}{dt} = \omega$$

Vehicle pose

Integrate velocities with respect to time to obtain position and heading angle

$$x = \int v(t) \cos \theta(t) dt$$
$$y = \int v(t) \sin \theta(t) dt$$
$$\theta = \int \omega(t) dt$$

Vehicle pose

Use **integrator blocks** to solve coupled system of equations

Vehicle pose

The solution to the vehicle model with **inputs**:

v – linear velocity

 ω – angular velocity

are the **outputs**, x, y, θ , referred to as the **pose** of the vehicle

Kinematic Response

Dynamic equations

Apply Newton's 2^{nd} law of motion to deduce how the linear velocity v changes over time

Dynamic equations

Apply Newton's 2^{nd} law of motion to deduce how the **angular velocity** ω changes over time

moment of inertia, J [kgm²]

Dynamic equations

Integrate accelerations \dot{v} and $\dot{\omega}$ with respect to time to get velocities

Steering Response

Example: Simulink demonstration

$$m \dot{v} = T_1(t) + T_2(t) - b_d v |v|$$
$$J \dot{\omega} = \frac{L(T_1(t) - T_2(t))}{2} - b_{d\omega} \omega |\omega|$$

Exercise: Vary thrust, mass, inertia and drag and inspect ship response

$$v_x = v \cos \theta$$

$$v_y = v \sin \theta$$

$$\frac{d\theta}{dt} = \omega$$

Solution: Dynamic equations of Ship

Propeller

Control surfaces

Rudders

Aileron & Elevators

Rotational vs Translational Motion

Mechanical advantage

Power = Force \times speed vs. Torque \times rotational speed

Load transfer

Control how forces are distributed in components

Rotational Mechanisms

Rotational Mechanisms – Drivetrains & Shafts

Rotational Mechanisms – Drivetrains & Shafts

Ship Gearbox

Translational Mechanisms

Converter Mechanisms

Rudder design

Individual exercise - sketch a rudder mechanism (3 min)

Share drawing in small group - breakout rooms of 3

Solution: Rudder Mechanism

Conclusion

In this session we covered how to...

- Deduce relationships between physical quantities by applying dimensional analysis
- Draw a free body diagram for a mechanical component and identify the forces acting on it.
- Define inertia, drag and stiffness and critique how these mechanical properties affect system response.
- Explain how and why to use mechanical mechanisms (load transfer, motion control, operational efficiency, etc.).
- Interface with the simulation template that you will use for the individual coursework project

Lab Preview

In the second lab, you will use Simulink to model ship components. The assembly of all the components forms the ship model you will use in the individual coursework.

During Computer Lab – Week 23

Labs held in Bush House (S)7.01/2 (Lab)

Recommended: Bring your own laptop to run the tutorial on MATLAB Desktop

Files available for download from KEATS

17/1/2022 Dr Francesco Ciriello Week 22: Introduction to MCP