Évaluation sommative 1 PHY 1120 : Mécanique du point Licence Fondamental/ Semestre 1 Durée : 2h

Les supports de cours ne sont pas autorisés. L'étudiant n'aura pas besoin d'une calculatrice pour cette épreuve.

Questions de cours (5 pts)

Pour cet exercice, l'étudiant choisir la bonne réponse en inscrivant uniquement le numéro et la lettre correspondante sur la copie

- 1. Les composantes de la vitesse d'un point M en coordonnées cylindriques sont $(1,25\,pts)$: $(a) \ \overrightarrow{v} = \dot{r}\overrightarrow{e_r} + \dot{\theta}\overrightarrow{e_\theta} + \dot{z}\overrightarrow{e_z}; (b) \ \overrightarrow{v} = \dot{r}\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta} + \dot{z}\overrightarrow{e_z}; (c) \ \overrightarrow{v} = \frac{d}{dt}(r\overrightarrow{e_r}) + \dot{z}\overrightarrow{e_z}; (d) \ \overrightarrow{v} = \dot{r}\overrightarrow{e_r} + \frac{d}{dt}(\overrightarrow{e_r}) + \dot{z}\overrightarrow{e_z}.$
- 2. Les composantes de la vitesse d'un point M en coordonnées sphériques sont $(1, 25 \ pts)$: $(a) \overrightarrow{v} = \dot{r} \overrightarrow{e_r} + \dot{\theta} \overrightarrow{e_\theta} + \dot{\varphi} \overrightarrow{e_\varphi}$; $(b) \overrightarrow{v} = \dot{r} \overrightarrow{e_r} + r \dot{\theta} \overrightarrow{e_\theta} + \dot{\varphi} \overrightarrow{e_\varphi}$; $(c) \overrightarrow{v} = \dot{r} \overrightarrow{e_r} + r \dot{\theta} \overrightarrow{e_\theta} + \dot{\varphi} \overrightarrow{e_\varphi}$; $(d) \overrightarrow{v} = \frac{d}{dt} (r \overrightarrow{e_r})$.
- 3. Les composantes de l'accélération d'un point M en coordonnées cylindriques sont $(1, 25 \, pts)$: (a) $\overrightarrow{a} = (\ddot{r} - r\dot{\theta}^2) \overrightarrow{e_r} + \frac{1}{r} \frac{d}{dt} \left(r^2 \dot{\theta} \overrightarrow{e_r}\right) \overrightarrow{e_\theta} + \ddot{z} \overrightarrow{e_z}$; (b) $\overrightarrow{a} = (\ddot{r}) \overrightarrow{e_r} + \left(r\ddot{\theta}\right) \overrightarrow{e_\theta} + \ddot{z} \overrightarrow{e_z}$; (c) $\overrightarrow{a} = \frac{d^2}{dt^2} \left(r \overrightarrow{e_r}\right) + \ddot{z} \overrightarrow{e_z}$; (d) $\overrightarrow{a} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{e_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{e_\theta} + \ddot{z} \overrightarrow{e_z}$
- 4. Les composantes de l'accélération d'un point M en coordonnées sphériques sont $(1,25\,pts)$: $(a) \ \overrightarrow{a} = \frac{d\left(\dot{r}\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta} + sin\theta\dot{\varphi}\overrightarrow{e_\varphi}\right)}{dt}$; $(b) \ \overrightarrow{a} = \ddot{r}\overrightarrow{e_r} + r\ddot{\theta}\overrightarrow{e_\theta} + sin\theta\ddot{\varphi}\overrightarrow{e_\varphi}$; $(c) \ \overrightarrow{a} = \left(\ddot{r} - r\dot{\theta}^2\right)\overrightarrow{e_r} + \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\theta}\overrightarrow{e_r}\right)\overrightarrow{e_\theta} + r\ddot{\varphi}\overrightarrow{e_\varphi}$; $(d) \ \overrightarrow{a} = \frac{d^2}{dt^2}\left(r\overrightarrow{e_r}\right)$

Exercice (6, 5 pts)

Les équations horaires du mouvement de M par rapport à $R\left(\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z}\right)$ sont données par :

$$x(t) = be^{-kt}\cos(kt), \ y(t) = be^{-kt}\sin(kt), \ z(t) = 0$$

- 1. Calculer les coordonnées polaires ρ et θ de M en fonction de t. En déduire l'équation polaire de la trajectoire ρ (θ) . $(1,5\,pts)$
- 2. Déterminer les composantes polaires du vecteur vitesse $\overrightarrow{V}(M/R)$ (vitesse de M par rapport à R). Calculer l'angle $\alpha = \left(\overrightarrow{OM}, \widehat{\overrightarrow{V}(M/R)}\right)$. Conclure. Quelle est la nature du mouvement? $(1,5\,pts)$
- 3. Déterminer les composantes polaires de l'accélération. En déduire la direction et le sens de l'accélération. $(1,5\,pts)$
- 4. Calculer les vecteurs unitaires de la base de Fresnet. En déduire les composantes tangentielle et normale de l'accélération. Déterminer le rayon de courbure de la trajectoire au point M. $(2\,pts)$

Problème (8,5 pts)

Soit R(O,xyz) un référentiel muni de la base cartésienne $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$. On considère un système formé par deux tiges rigides de masses négligeables (OA) et (AB), avec $\|\overrightarrow{OA}\| = L_1$. La tige (OA) est articulée en O et tourne autour de Oz avec une vitesse angulaire constante $\dot{\theta}(t)$.

Soit $R_1(A, x_1y_1z_1)$ un référentiel muni de la base $(\overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1})$. La tige (AB) est articulée en A à la tige (OA) et tourne dans le référentiel R_1 avec une vitesse angulaire constante $\dot{\varphi}(t)$, voir figure (1).

Un anneau P se déplace sur la tige AB par rapport à R_1 avec une vitesse constante v_0 . A l'instant initial t=0, les barres OA et OB sont colinéaires avec Ox, $\theta_0=\varphi_0=0$, et l'anneau se trouve en A.

La position de l'anneau P est repérée dans R_1 par $\overrightarrow{AP} = \rho \overrightarrow{e_\rho}$. Dans la suite du problème, R est le référentiel absolu et R_1 est le référentiel relatif dont le vecteur de rotation est $\Omega(R_1/R) = \dot{\theta}$.

FIGURE 1 – Figure d'étude 1

Toutes les grandeurs vectorielles doivent être exprimées dans la base $(\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k_1})$

- 1. Calculer ρ en fonction de t et de v_0 . (1, 25 pts)
- 2. Calculer la vitesse relative $\overrightarrow{V_r}=\overrightarrow{V(P/R_1)}$ et la vitesse d'entraı̂nement $\overrightarrow{V_e}$ de l'anneau P. $(1,5\,pts)$
- 3. En déduire la vitesse absolue $\overrightarrow{V_a} = \overrightarrow{V(P/R)}$ de l'anneau P. $(1,5\,pts)$
- 4. Calculer L'accélération relative $\overrightarrow{a_r} = \overrightarrow{a(P/R_1)}$ de l'anneau P. $(1,5\,pts)$
- 5. Calculer l'accélération d'entraînement $\overrightarrow{a_e}$ et l'accélération de Coriolis $\overrightarrow{a_c}$ de l'anneau P. (1, 5 pts)
- 6. En déduire l'expression de l'accélération absolue $\overrightarrow{a_a} = \overrightarrow{a(P/R)}$. $(1, 25\,pts)$