CORRECTION Contrôle N°01 THP 1ère année CS

Exo 1: (5pts)

- 1. Trouver la relation entre $L(E_1)$ et $L(E_2)$: $L(E_1) = \overline{L}(E_2)$ (0,5 pt)
- 2. Démontrer que :

$$\begin{cases} L(E_1) \cap L(E_2) = \varnothing & \dots (0,5 \text{ pt}) \\ L(E_1) \cup L(E_2) \subseteq X^* & \dots (01 \text{ pt}) \\ X^* \subseteq L(E_1) \cup L(E_2) & \dots (03 \text{ pt}) \end{cases}$$

Exo 2: (5pts)

Les étapes à suivre :

- 1. Trouver l'AEF A reconnaissant le L(E) en utilisant la méthode des dérivées (proposition démontrée en cours).
- 2. Trouver l'AEF Miroir \hat{A} reconnaissant le langage miroir du L(A) (proposition démontrée en cours).
- 3. Trouver la grammaire régulière droite G engendrant L(A) (proposition démontrée en cours);

La solution:

(02,5 pts)

$$E//a = (b \cup c)^* (bc \cup ab)^* = E_1.$$

$$E//b = (b \cup c)^* (bc \cup ab)^* = E_1.$$

$$E//c = (b \cup c)^* (bc \cup ab)^* = E_1.$$

$$E_1//a = b (bc \cup ab)^* = E_2.$$

$$E_1//b = (b \cup c)^* (bc \cup ab)^* = E_1.$$

$$E_1//c = (b \cup c)^* (bc \cup ab)^* = E_1.$$

$$E_2//a = P.$$

$$E_2//a = P.$$

$$E_2//b = (bc \cup ab)^* = E_3.$$

$$E_2//c = P.$$

$$E_3//a = b(bc \cup ab)^* = E_2.$$

$$E_3//b = c(bc \cup ab)^* = E_4.$$

$$E_3//c = P.$$

$$E_4//a = P.$$

$$E_4//a = P.$$

$$E_4//c = (bc \cup ab)^* = E_3.$$

$$P//a = P.$$

$$E_4//c = (bc \cup ab)^* = E_3.$$

$$P//a = P.$$

$$E_4//c = (bc \cup ab)^* = E_3.$$

$$P//a = P.$$

$$E_4//c = (bc \cup ab)^* = E_3.$$

$$P//a = P.$$

$$E_4//c = (bc \cup ab)^* = E_3.$$

Е

La GRD : (0,5 pts)S \rightarrow B/D/ ϵ

 $B \rightarrow bB/cB/a/b/c$

 $D\rightarrow bC/cE$

 $C \rightarrow aB/aD$

 $F \rightarrow aF/bF/cF/aC/cC/cD/aE/bE$

 $E \rightarrow bD$

Exo 3: (4 pts)

- 1. La grammaire G est une grammaire algébrique. Les productions de D ne sont pas utilisées car elles ne génèrent aucun mot de X*.(0,5 pt)
- 2. $L=\{a^i b^j / i \le j\}, \{b^n a^m, n \le m\}$ (1.0 pt)
- 3. Pour montrer que L=L(G): L⊆ L(G) (Vu en TD).....(1.0 pt) $L(G) \subseteq L \text{ (Vu en TD)}....(1.5 \text{ pts})$

Exo 4: (2pts)

L'automate reconnaissant L est un automate à pile. Je vous conseille de le faire

Exo 5: (2 pts) Nous avons traité un cas similaire en cours (aⁿ bⁿ cⁿ)

 $S \rightarrow aa A bbb c$ $A \rightarrow aa A T bbb/ aa B bbb / aabbb$ $B \rightarrow aa B bbb/ aa B bbb$ $Tb \rightarrow bT$ $Tc \rightarrow cc$

Exo 6: (2pts) Cet exercice fait partie de votre série sur les automates d'états finis.

 $L \in \text{Reg}(X^*) \Leftrightarrow \text{Il existe un automate d'états finis } A_{\text{réduit}} < X, S, S0, F, II > \text{tel que } L(A) = L.$

 $F = F1 \cup F2$ où F1 regroupe tous les états finaux ayant un arc sortant et F2 tous les états finaux n'ayant pas d'arc entrant.

 $L1 \in \text{Reg}(X^*)$? Trouvons à L1 un automate d'états finis A' < X, S', S₀',F',II'>. tq L(A') = L1

Première partie : on définit les paramètres de ${\it A^\prime}$

Définir S': 1. Il y'a deux cas de figure pour l'état initiale S0 :

- Si cet état a un arc entrant on le rajoute dans l'ensemble des états de l'automate S'.
- Sinon, il n'en fait pas partie.
- **2.** Pour les états finaux de l'automate A, on ne garde que l'ensemble F1 pour pouvoir former le mot y. On rajoute dans S' tous les éléments de F1 (F1 \subseteq S').
- 3. On rajoute dans S' tous les autres états.

Définir S₀': Comme tous les états sont initiaux, on ajoute à S' l'état S_0 ' (état initiale pour A) Il sera lié par transition spontanée à tous les états de l'automate.

Définir F': Tous les états de l'automate A' sont finaux (F'=S')

Définir II': on met dans II', toutes les instructions de II qui ont leurs état de départ et d'arrivée dans S'. On y rajoute $(S'_0, \varepsilon, S'_i)$ pour tous les états S'_i de S'

Deuxième partie on montre que L(A') = L1