R documentation "keggseq"

November 9, 2016

Package: keggseq

Title: KEGG analysis and visualizing of differentially expressed genes

Version: 0.1

Authors@R: person("Walid", "Korani", email = "korani@uga.edu",

role = c("aut", "cre"))

Description: The package do a run time KEGG analysis from the original database, different

functions are included to find, grep and combine the interested datasets. It produces the plain text results in addition to graphs which is read to be

published.

Depends: R (>= 3.2.2)

License: MIT License

LazyData: true

Imports: ggplot2, qvalue

URL: https://github.com/w-korani/keggseq

The keggseq workflow

R documentation

of 'list_species.Rd' etc.

April 24, 2017

list_species

list_species

Description

The function returns the all currently availabe datasets in the KEGG databse. In addition, a search term can be passed to the function to find a particular organism.

The searching term is not case sensitive.

Usage

```
list_species()
list_species(key_word)
```

Arguments

key_word

A not case sensitive string.

Value

A data frame of two columns, the first one is the dataset abbreviation and the second is the scientific name of the species.

```
list_species("arachis")
```

2 corrected_datasets_ids

grep_datasets

grep_datasets

Description

grep_datasets funcion takes a list of species as an input and produces a datasets of map numpers of the pathways and gene IDs

Usage

```
grep_datasets(list)
```

Arguments

list

A list of abbreviations of the intersested species.

Value

A data frame of two columns, the first one is KEGG gene ids and the second one is the map numpers

Examples

```
a <- grep_datasets(c("adu","aip"))

corrected_datasets_ids

corrected_datasets_ids
```

Description

corrected_datasets_ids corrects genes_id to a different id set

Usage

```
corrected_datasets_ids(dataset,,dataset_alternate_file)
```

Arguments

```
\label{lem:dataset} A \ dataset \ containing \ kegg \ genes\_id, \ the \ output \ of \ grep\_datasets \ function. \ dataset\_alternate\_file
```

A string for the name, and path, of a csv file contiaing the new genes_id in the same format of the dataset, the first one is the new gene ids and the second one is the map numpers.

Value

A dataset of the new genes_id in the same format of the input dataset

```
a <- grep_datasets(c("adu", "aip"))
b <- corrected_datasets_ids(a, "new_ids.csv")</pre>
```

calculate_kegg 3

```
calculate_kegg calculate_kegg
```

Description

calculate_kegg calculates hypergeometric test pvalues of kegg pathways and their adjusted_pvalue using Bonferroni method.

It takes the input of grep_datasets function or corrected_datasets_ids function as an input

Usage

```
calculate_kegg(dataset, list)
```

Arguments

dataset A output dataset of grep_datasets or corrected_datasets_ids.

list A list containing the differentially expressed genes.

Value

A data frame containg 6 colums as following:

column1: map_numbers, the map numbers of the KEGG pathway.

column2: background_gene_numbers, number of all genes included in the pathway.

column3: deg_gene_numbers, number of differentially expressed genes in the pathway.

column4: pvalue, p-value of the hypergeometric test for the pathway.

column5: adjusted_pvalue, the Bonferroni method adjustment of p-values.

column6: gene_list, a list of the differentially expressed genes included in the pathway

Examples

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)</pre>
```

```
kegg_summary
```

kegg_summary

Description

kegg_summary produces a summary table of the output of calculate_kegg function with including the qvalues.

Usage

```
kegg_summary(dataset)
```

Arguments

dataset

A output dataset of calculate_kegg.

4 create_plot

Value

```
A data frame containg 7 colums as following: column1: map_numbers, the map numbers of the KEGG pathway. column2: pathway_description, the discription the the pathway. column3: background_gene_numbers, number of all genes included in the pathway. column4: deg_gene_numbers, number of differentially expressed genes in the pathway. column5: pvalue, p-values of the hypergeometric test for the pathway. column6: adjusted_pvalue, the Bonferroni method adjustment of p-values. column7: qvalue, q-values of the pvalues of column5.
```

Examples

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)
d <- kegg_summary(c)</pre>
```

create_plot

create_plot

Description

create_plot generates a scatter plot of the output of the calculate_kegg function

Usage

```
create_plot(dataset)
create_filtered_plot(dataset, filter_name, filter_value)
```

Arguments

dataset

The output dataset of the calculate_kegg function.

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)
pdf("kegg_scatter_output.pdf")
create_plot(c)
dev.off()</pre>
```

create_filtered_plot 5

Description

create_filtered_plot generates a scatter plot of the output of the calculate_kegg function with passing a specific filter

Usage

```
create_filtered_plot(dataset, filter_name, filter_value)
create_plot(dataset)
```

Arguments

dataset The output dataset of the calculate_kegg function filter_name a string of one of the following filters can be used:

background_gene_numbers, all genes included in the pathways.

deg_gene_numbers, the differentially expressed genes included int the pathway.

pvalue, the p-values.

adjusted_pvalue, the adjusted p-values.

qvalue, the q-values.

filter_value A string starts by <,>,==,<= or >= then the values for filtering

Examples

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)
pdf("kegg_scatter_output.pdf")
create_filtered_plot(c,"deg_gene_numbers",">0")
create_filtered_plot(c,"qvalue","<0.01")
dev.off()</pre>
```

create_kegg_map

Description

create_kegg_map generates kegg_map with highlighted DEGs for an interested pathway. the function creates three objects that saved directly to the working directory:

"map_number".png: it has the pathway map graph with highlighted differentially expressed genes, the differentially expressed gene are highlighted by blue color,

the differentially expressed genes that translated in a unque, specific, enzyme for the interested pathway are highlighted by red color.

"map_number"_enzymes.csv": a two column csv file contains the enzyme names and corresponding gene ids included in the interested pathway

"map_number"_de_enzymes.csv: a two column csv file contains the enzyme names and corresponding differentially expressed gene ids included in the interested pathway

6 kegg_map_enzymes

Usage

```
create_kegg_map(species, dataset, deg_list, map_number, correction_file_name)
kegg_map_enzymes(dataset, deg_list, map_number, correction_file_name, deg)
```

Arguments

species A list of abbreviations of the intersested species.

dataset The output dataset of the calculate_kegg function.

deg_list A list containing the differentially expressed genes.

map_number A string of the interested map number.

correction file name

An optional filed, a string to file name, and path, of the dataset_alternate_file in case of using corrected_datasets_ids function.

Examples

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)
create_kegg_map(c("adu","aip"),c,deg_list,"00480","new_ids.csv")</pre>
```

kegg_map_enzymes kegg_map_enzymes

Description

kegg_map_enzymes returns a dataset of enzymes included in an interested pathway.

Usage

```
kegg_map_enzymes(dataset,deg_list,map_number,correction_file_name,deg)
create_kegg_map(dataset,deg_list,map_number,correction_file_name)
```

Arguments

dataset The output dataset of the calculate_kegg function deg_list A list containing the differentially expressed genes.

map_number A string of the interested map number.

correction_file_name

An optional filed, a string to file name, and path, of the dataset_alternate_file in

case of using corrected_datasets_ids function.

deq A logical value can be set to TRUE in case of reurning only enzymes of dif-

ferentially expressed genes, and FLASE to return all enzymes in the intersetd

pathway.

Value

A data set with three colnames, the first is the enzyme id, the second is the corresponding gene id and the third is the discription of the enzyme.

kegg_map_enzymes 7

```
a <- grep_datasets(c("adu","aip"))
b <- corrected_datasets_ids(a,"new_ids.csv")
deg_list <- differentially_expressed_gene_list$id
c <- calculate_kegg(b,deg_list)
enz = kegg_map_enzymes(c,deg_list,"00480","new_ids.csv",TRUE)</pre>
```

Index

```
calculate_kegg, 3
corrected_datasets_ids, 2
create_filtered_plot, 5
create_kegg_map, 5
create_plot, 4
grep_datasets, 2
kegg_map_enzymes, 6
kegg_summary, 3
list_species, 1
```