Comparing Session Type Interpretations of Linear Logic*

Bas van den Heuvel and Jorge A. Pérez

Bernoulli Institute for Math, CS, and Al University of Groningen

TYPES 2020

^{*}Based on work to appear in the proceedings of PLACES 2020

Introduction

- Curry-Howard for concurrency: Linear Logic as Session Type system for the π -calculus
- Two logics, two interpretations:
 Classical and Intuitionistic Linear Logic (CLL resp. ILL)
- Logic ensures several correctness properties, so studying the fundamentals of these type systems is essential
- Can explain the many derived works on both interpretations

Introduction

- Urgent open question: how do the interpretations relate?
- Exists informal observation by Caires, Pfenning, Toninho; might be an answer
- Our work formalizes the observation, by developing a common ground for comparison called United Linear Logic (ULL)

Propositions as types

Sequential Curry-Howard (simply-typed λ -calculus)

Concurrent Curry-Howard (typed π -calculus)

```
\begin{array}{cccc} \mathsf{Linear\ logic\ propositions} & \longleftrightarrow & \mathsf{Session\ types} \\ \mathsf{Sequent\ calculus} & \leftrightarrow & \mathsf{Type\ inference} \\ \mathsf{Cut\ reduction} & \leftrightarrow & \mathsf{Communication} \end{array}
```

Curry-Howard for concurrency

Session types dually on type channels opposite sides

Session type	Linear logic	Meaning	π -calculus
end	${f 1}$ and ot	Termination	x[]. 0 and $x().P$
!A.B	$A \otimes B$	Send A , continue as B	x[y].P
?A.B	$A \% B$ and $A \rightarrow B$	Receive A , continue as B	x(y).P

Communication:

$$(\nu x)(x[y].P \mid x(z).Q) \rightarrow (\nu x)(\nu y)(P \mid Q\{y/z\})$$

Our approach

- Not comparing logics, but type systems: expressivity
- A type system induces a class of typable processes:
 We want to compare the classes of CLL- and ILL-typable processes
- Problem: there is no common ground
- Our solution: United Linear Logic (ULL), based on Girard's Logic of Unity
- ULL subsumes CLL and ILL
- Comparison of classes of processes typable in CLL, ILL and ULL

Towards United Linear Logic

Classical:

$$P \vdash \Delta, x : A$$

$$\downarrow \qquad \qquad \qquad \downarrow$$
 $Q \vdash \Delta', x : A^{\perp}$

Intuitionistic:

$$\Delta \vdash P :: x : A \qquad \Delta', x : A \vdash Q :: y : B$$

United:

$$\Delta \vdash P :: \Lambda, x : A \qquad \Delta', x : A \vdash Q :: \Lambda', y : B$$

$$\Delta'', x : A^{\perp} \vdash R :: \Lambda''$$

Towards United Linear Logic

Combination of rules for input x(y).P in ULL:

- CLL has one rule: A ⅋ B
- ILL has two: $A \multimap B$ on the right, and $A \otimes B$ on the left
- ULL has three: $A \ B$ and $A \multimap B$ on the right, and $A \otimes B$ on the left

Other inference rules are similarly combined, making sure that ULL subsumes CLL and ILL

Results

Comparison between three classes of processes:

- \bullet \mathcal{C} : CLL-typable processes
- \bullet \mathcal{I} : ILL-typable processes
- ullet \mathcal{U} : ULL-typable processes

Results: locality

- Locality (Merro): no input is allowed on received channels
- Well-known principle in process calculi that model programming languages
- ILL enforces locality for shared channels, CLL does not
- Shared names can indefinitely receive channels to perform a service on

$$!x(y).P \rightarrow P \mid !x(y).P$$

Typable in ILL and CLL:

Not typable in ILL:

Conclusion and Current Work

- Comparison of session type interpretations of CLL and ILL
- ULL: fair ground for comparison
- Result: CLL is strictly more expressive than ILL
 - ULL is two-sided CLL
 - ULL with restriction on the right is ILL
 - ULL and CLL are symmetrical, ILL is not
- Due to asymmetry, ILL enforces locality, CLL does not
- Current work: use ULL to transfer extensions of CLL to ILL and vice versa