Regresión lineal

Laboratorio de Datos, IC - FCEN - UBA - 1er. Cuatrimestre 2024

¿Qué modelo uso? 🤔

¿Cómo analizarías estos datos?

```
0
    16.99
            1.01
                 Female
                          No
                               Sun
    10.34
           1.66
                 Male
                          No
                               Sun 3
2
    21.01
           3.50
                 Male
                          No
                               Sun 3
   23.68
           3.31
                 Male
                          No
                               Sun
   24.59
           3.61
                 Female
                          No
                               Sun
5
   25.29
           4.71
                 Male
                          No
                               Sun
6
     8.77
           2.00
                 Male
                               Sun
                          No
   26.88
            3.12
                 Male
                          No
                               Sun
8
    15.04
           1.96
                 Male
                          No
                               Sun
```

¿Cómo analizarías estos datos?

0	16.99	1.01	Female	No	Cup	2	
1	10.34	1.66	Male	No	-		
2	21.01	3.50	Male	No			
3	23.68	3.31	Male	No			
4	24.59	3.61	Female	No		(4×2)	
5	25.29	4.71	Male	No	15		
6	8.77	2.00	Male	No	311		
7	26.88	3.12	Male	No	Jan	AL INT	
8	15.04	1.96	Male	No	Sun	2	
:	:	÷	:	:	:	:	

Primero, ¿qué es un modelo?

Un modelo es una representación de fenómenos o procesos del mundo real. En el contexto de Ciencias de Datos, los modelos son representaciones matemático-computacionales utilizadas para explicar relaciones potencialmente existentes entre las variables de los datos disponibles.

Primero, ¿qué es un modelo?

Un modelo es una representación de fenómenos o procesos del mundo real. En el contexto de Ciencias de Datos, los modelos son representaciones matemático-computacionales utilizadas para explicar relaciones potencialmente existentes entre las variables de los datos disponibles.

<u>Muchos</u> factores influyen en la elección del modelo

- ¿Cuál es el problema? ¿Cuál es el objetivo del análisis?
- ¿Qué tipos de variables tengo?

- ¿Cuál es el problema? ¿Cuál es el objetivo del análisis?
- ¿Qué tipos de variables tengo?
- ¿Cuántos datos tengo?

- ¿Cuál es el problema? ¿Cuál es el objetivo del análisis?
- ¿Qué tipos de variables tengo?
- ¿Cuántos datos tengo?
- ¿Tengo muchos outliers? ¿Qué tan robusto debe ser el modelo?

- ¿Cuál es el problema? ¿Cuál es el objetivo del análisis?
- ¿Qué tipos de variables tengo?
- ¿Cuántos datos tengo?
- ¿Tengo muchos outliers? ¿Qué tan robusto debe ser el modelo?
- ¿Con cuántos recursos computacionales cuento?

- ¿Cuál es el problema? ¿Cuál es el objetivo del análisis?
- ¿Qué tipos de variables tengo?
- ¿Cuántos datos tengo?
- ¿Tengo muchos outliers? ¿Qué tan robusto debe ser el modelo?
- ¿Con cuántos recursos computacionales cuento?
- ¿Es importante poder entender cómo el modelo toma decisiones?

Regresión

Regresión

Queremos utilizar los datos que tenemos para poder **estimar datos que no conocemos** o **predecir observaciones futuras**. Los valores a predecir son valores **numéricos**, más precisamente, continuos.

Ejemplo: predecir el valor de un inmueble a partir de su tamaño (m²)

¿Qué hacemos ahora?

Regresión Lineal

Modelo matemático: $Y = \beta_0 + \beta_1 X$

- β_0 es la ordenada al origen
- β_1 es la pendiente
- X es la variable predictora
- Y es la variable dependiente

Modelo de regresión lineal (simple): $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- (x_i, y_i) son los datos observados
- ε_i es un error aleatorio (variación de Y no explicada por X)
- β_0 y β_1 son los parámetros del modelo

Residuo: dados β_0 y β_1 , definimos al residuo como la diferencia entre el valor observado (y_i) y el valor predicho (\hat{y}_i) :

$$y_i - \underbrace{(\beta_0 + \beta_1 x_i)}_{\hat{y}_i}$$

Residuo: dados β_0 y β_1 , definimos al residuo como la diferencia entre el valor observado (y_i) y el valor predicho (\hat{y}_i) :

$$y_i - \underbrace{(\beta_0 + \beta_1 x_i)}_{\hat{y}_i}$$

ightarrow Queremos encontrar valores para eta_0 y eta_1 que minimicen los residuos

Cuadrados Mínimos

Cuadrados Mínimos

Minimizar la suma de los residuos al cuadrado:

$$RSS(\beta_0, \beta_1) = (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots + (y_n - \hat{y}_n)^2 =$$

$$= (y_1 - (\beta_0 + \beta_1 x_1))^2 + \dots + (y_n - (\beta_0 + \beta_1 x_n))^2 =$$

$$= \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

Hallamos $\hat{\beta}_0$ y $\hat{\beta}_1$ tales que $\nabla RSS(\hat{\beta}_0,\hat{\beta}_1)=(0,0)$:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

donde:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Error cuadrático medio (ECM): cuantifica qué tan cerca está un valor predicho del valor real:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Variabilidad del modelo:

Variabilidad total: $\sum_{i=1}^{n} (y_i - \bar{y})^2$ (\approx Varianza muestral)

Variabilidad no explicada: $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ (RSS)

Variabilidad explicada: $\sum_{i=1}^n (\hat{y}_i - \bar{y})^2$

La proporción de la variabilidad de Y explicada por X se puede explicar como:

$$R^2 = \frac{\text{Variabilidad explicada}}{\text{Variabilidad total}} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

La proporción de la variabilidad de Y explicada por X se puede explicar como:

$$R^2 = \frac{\text{Variabilidad explicada}}{\text{Variabilidad total}} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

Obs: $0 \le R^2 \le 1$

A mayor \mathbb{R}^2 más cercanos están los puntos a la recta y, por lo tanto, tiene más poder de predicción.