ML Final Project

Authors: Leo Li, Oliver Li

Introduction

- Stroke prediction dataset
 - Binary classification problem
- Models
 - Logistic
 - Support Vector Machine (SVM)
 - Neural Networks (NN)

Data

id <u></u>	▲ gender =	# age ==	# hypertensi =	# heart_dise =	✓ ever_marri =	▲ work_type =	A Residence =	# avg_gluco =	∆ bmi =	▲ smoking_s =	# stroke
9046	Male	67	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
51676	Female	61	0	0	Yes	Self-employed	Rural	202.21	N/A	never smoked	1
31112	Male	80	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
0182	Female	49	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
665	Female	79	1	0	Yes	Self-employed	Rural	174.12	24	never smoked	1
6669	Male	81	0	0	Yes	Private	Urban	186.21	29	formerly smoked	1
3882	Male	74	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
0434	Female	69	0	0	No	Private	Urban	94.39	22.8	never smoked	1
7419	Female	59	0	0	Yes	Private	Rural	76.15	N/A	Unknown	1
0491	Female	78	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1
2109	Female	81	1	0	Yes	Private	Rural	80.43	29.7	never smoked	1
2095	Female	61	0	1	Yes	Govt_job	Rural	120.46	36.8	smokes	1
2175	Female	54	0	0	Yes	Private	Urban	104.51	27.3	smokes	1
213	Male	78	0	1	Yes	Private	Urban	219.84	N/A	Unknown	1
317	Female	79	0	1	Yes	Private	Urban	214.09	28.2	never smoked	1
8202	Female	50	1	0	Yes	Self-employed	Rural	167.41	30.9	never smoked	1
6112	Male	64	0	1	Yes	Private	Urban	191.61	37.5	smokes	1
4120	Male	75	1	0	Yes	Private	Urban	221.29	25.8	smokes	1
7458	Female	60	0	0	No	Private	Urban	89.22	37.8	never smoked	1
5226	Male	57	0	1	No	Govt_job	Urban	217.08	N/A	Unknown	1
0630	Female	71	0	0	Yes	Govt_job	Rural	193.94	22.4	smokes	1
3861	Female	52	1	0	Yes	Self-employed	Urban	233.29	48.9	never smoked	1

Data Preparation

- Removed outliers
- Repaired incomplete features
- Categorical Encoding
 - Label Encoding
 - One-hot Encoding
- Normalization Scaling
- Data splits: 60% train, 20% validation, 20% test

Logistic Regression

- 1. Polynomial Feature Transformation
- 2. K-fold cross validation for regularization C selection

Polynomial Feature Transformation

Degree 1: 18 features

Degree 2: 171 features

Degree 3: 1140 features

Dataset	Polynomial Transformation Degree		
	1 (no transformation)	2	
Train	0.95106	0.953997	
Validation	0.962818	0.954012	

Table 1: Polynomial transformation results

K-Fold CV with Regularization

C = λ^{-1} , 10 values tested from 0.0001 to 10000

L1 Regularization					
К	Best C	Score (Accuracy)			
2	0.0001	0.95106			
3	0.0001	0.95106			
4	0.0001	0.95106			
5	0.35938	0.95139			
6	0.35938	0.95139			
7	2.78256	0.95139			
8	2.78256	0.95139			
9	2.78256	0.95139			
10	0.0001	0.95106			

Table 2: Logistic L1 Regularization Results

K-Fold CV with Regularization

C = λ^{-1} , 10 values tested from 0.0001 to 10000

L2 Regularization					
К	Best C	Score (Accuracy)			
2	0.0001	0.95106			
3	0.0001	0.95106			
4	0.0001	0.95106			
5	0.35938	0.95139			
6	0.35938	0.95139			
7	0.35938	0.95139			
8	0.35938	0.95139			
9	2.78256	0.95139			
10	0.0001	0.95106			

Table 3: Logistic L2 Regularization results

Logistic Regression - Conclusion

Best model: No polynomial feature transformation, no regularization

Test set accuracy: 0.9413

Insights:

- 1. Best C values suggest data is very linearly separable
- 2. Rest of loss probably caused by irreducible noise

Support Vector Machine: Linear Kernel

Observed convergence of results

Dataset	Configuration			
	No Regularization	L1 Norm	L2 Norm	
Train	0.955257	0.955257	0.955257	
Test	0.941944	0.941944	0.941944	

Support Vector Machine: Polynomial Kernel

Degree	Training	Test
1	0.955257	0.941944
2	0.955257	0.941944
3	0.957215	0.939987
4	0.962248	0.938030
5	0.964765	0.936073
6	0.967841	0.934768
7	0.969519	0.930855
8	0.971197	0.930202
9	0.971197	0.927593

Support Vector Machine: Polynomial Kernel

K-Fold Cross Validation

- 20% test set, 80% train and validation
- Folds: 2, 3, 4 ... 10

Fold	poly val	poly train	linear val	linear train
2	0.949511	0.956147	0.951449	0.951076
3	0.950088	0.955079	0.951262	0.951262
4	0.950704	0.954842	0.951449	0.9512
5	0.950098	0.953756	0.952008	0.951076
6	0.949531	0.953958	0.951821	0.951151
7	0.950685	0.954556	0.952055	0.95113
8	0.951487	0.953468	0.951487	0.95123
9	0.952381	0.953325	0.952381	0.951123
10	0.951076	0.953893	0.952941	0.951076

K-Fold Cross Validation

- Best linear validation accuracy: 0.952941
- Best polynomial validation accuracy: 0.952381

Test Scores

- Slight improvement with cross validation
- Convergence around 0.94

Linear	Polynomial degree 1	Linear CV	Polynomial CV
0.941292	0.941292	0.941973	0.943901

Neural Network

1. No regularization on neural networks of 3, 4, and 5 layers

3 Layer: 17 - 10 - 1

4 Layer: 17 - 10 - 5 - 1

5 Layer: 17 - 12 - 7 - 4 - 1

2. L1 and L2 regularization on all neural networks above

Experiment Settings:

- Bias: Included
- Metric: Accuracy
- Batch size: 10, Epochs = 70

Three Layer Neural Network

Three Layer Neural Network

3-layer Neural Network					
Metric	Regularization				
	No Regularization	L1 Norm	L2 Norm		
Best Validation Loss	0.1719	0.1920	0.1877		
Best Validation Accuracy	0.9499	0.9499	0.9499		
Best Validation Epoch	24	69	68		

Table 7: Three Layer Results

Four Layer Neural Network

Four Layer Neural Network

4-layer Neural Network					
Metric	Regularization				
	No Regularization	L1 Norm	L2 Norm		
Best Validation Loss	0.1687	0.2020	0.1967		
Best Validation Accuracy	0.9499	0.9499	0.9499		
Best Validation Epoch	9	69	51		

Table 8: Four Layer Results

Five Layer Neural Network

Five Layer Neural Network

5-layer Neural Network					
Metric	Regularization				
	No Regularization	L1 Norm	L2 Norm		
Best Validation Loss	0.1964	0.1964	0.1965		
Best Validation Accuracy	0.9499	0.9499	0.9499		
Best Validation Epoch	17	52	40		

Table 9: Five Layer Results

Neural Network - Conclusions

Best Model: 4 layers, no regularization

Test loss and accuracy: 0.1808, 0.9413

Insights:

- Better with no regularization, but needs validation & early stopping
- Underfitting with regularization

Final Conclusion

- Polynomial kernel SVM with 9 fold cross validation wins!
- Dataset is extremely linearly separable,
- Potential Bottleneck:
 - Outliers in the dataset
 - Unaccounted/missing features in the dataset
 - Noise / variance in the problem itself

Logistic	SVM	Neural Network
0.9413	0.9439	0.9413

Logistic Regression & SVM Biggest Contributors

