

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA – INFORMÁTICA APLICADA INFO1108 - Arquitetura e Organização de Computadores I – 2021/1

Profs. José Rodrigo, Renato Ribas e Sérgio Cechin

Trabalho de Programação - Processador RAMSES

1. Descrição Geral

Imagine uma caixa fechada nas partes superior e inferior e com aberturas nos outros quatro lados. Escrever um programa para determinar a direção e a localização da saída de uma esfera sendo conhecidas a direção e a localização da entrada da mesma.

Olhando a caixa de cima (um dos lados que é fechado), pode-se dividi-la em células de maneira a formar uma matriz quadrada de ordem 6 (6 linhas e 6 colunas).

A localização da entrada da esfera assim como a da saída será feita através da indicação das abcissas ("X") e ordenadas ("Y") da célula correspondente. Por exemplo, na figura 1 (a) a esfera está entrando na caixa através da célula (0,2) com deslocamento para direita; na figura 1 (b) a esfera está saindo da caixa pela célula (3,5) com deslocamento para baixo.

Figura 1 – Entrada e saída da esfera na caixa

Dentro da caixa estão dispostos elementos redirecionadores da esfera. Esses dispositivos são capazes de alterar a direção do movimento da esfera. Cada célula da matriz pode ter, no máximo, um desses dispositivos.

São quatro os tipos de dispositivos de redirecionamento: aqueles que desviam para a direita da caixa, os que desviam para a esquerda da caixa, os que desviam para baixo e os que desviam para cima.

Na figura 2, por exemplo, foi colocado um dispositivo redirecionador para baixo nas coordenadas (3,2). Dessa forma, a esfera que se desloca para a direita (a) na linha 2 será desviada para baixo e passará a se deslocar na vertical, pela coluna 3. Além disso, qualquer que seja a direção do movimento da esfera quando esta chegar à célula que contenha um redirecionador, a direção de saída da esfera será sempre aquele indicado pelo redirecionador.

Figura 2 – Desvio da esfera

Notar que, dependendo da disposição dos dispositivos de redirecionamento e da localização e direção de entrada da esfera, pode acontecer da esfera jamais sair da caixa (entrar em um ciclo de movimentação). Um desses casos está representado na figura 3.

Figura 3 – Exemplo de ciclo

Sua tarefa é escrever e implementar, na linguagem do processador RAMSES, um programa para determinar as informações de saída da esfera: sua localização na caixa e a direção do movimento. Para isso, serão fornecidas as seguintes informações:

- localização e direção de movimento da esfera no instante de sua entrada na caixa;
- localização e descrição dos redirecionadores.

É garantido que os redirecionadores jamais formarão ciclos.

2. Disposição dos dados na memória

Informações de entrada

A localização e a direção de entrada da esfera serão fornecidas nos seguintes endereços:

- Posição Coordenada X (valor entre 000H e 005H): endereço 0FDH
- Posição Coordenada Y (valor entre 000H e 005H): endereço 0FEH
- Direção de movimento: endereço OFFH

A direção de movimento será informada por quatro bits. Cada bit indica uma direção de movimento. Se o bit correspondente estiver ligado (em "1"), então a direção associada será aquela da esfera. O significado dos bits são os seguintes:

- Bit 0: deslocamento para a direita;
- Bit 1: deslocamento para a esquerda;
- Bit 2: deslocamento para baixo;
- Bit 3: deslocamento para cima.

Matriz que representa a caixa

A matriz que representa a caixa ocupará 36 posições de memória começando no endereço 0D9H, sendo que os primeiros 6 elementos (endereços 0D9H até 0DEH) representam a primeira linha da matriz (linha de coordenadas Y=0 e X=0 até X=5). Dessa forma, por exemplo, as coordenadas (2,3) correspondem ao endereço 0EDH (ou seja, 0D9H + (3*6+2)).

As posições de memória da matriz que representa a caixa conterão as informações necessárias para "dirigir" a movimentação da esfera. As informações em cada elemento da matriz seguem a mesma convenção daquela usada para indicar a direção do movimento da esfera quando colocada na caixa.

Assim, os quatro bits menos significativos dos bytes que formam a matriz corresponderão aos dispositivos redirecionadores, enquanto que os quatro bits superiores são "don't care" (lixo).

Com isso, sempre que existir um redirecionador em um elemento da matriz, o nibble inferior deste elemento poderá conter apenas um dentre quatro valores possíveis:

- 0001 desviar para a direita
- 0010 desviar para a esquerda
- 0100 desviar para baixo
- 1000 desviar para cima

Caso o níbble inferior contenha o valor 0000, a esfera não deverá sofrer nenhuma alteração de rota, permanecendo com a mesma direção e sentido de deslocamento.

O resultado (localização e direção da esfera) deverá ser informado, ao final da execução do programa, nos mesmos endereços usados para informar sua localização e direção de entrada.

3. Exemplo

A esfera entrou na caixa através das coordenadas (2,0) com movimento para baixo. A caixa contém os seguintes redirecionadores:

- Redirecionador para baixo, nas coordenadas (0,1)
- Redirecionador para direita, nas coordenadas (0,4)
- Redirecionador para esquerda, nas coordenadas (2,1)

Esse conjunto de informações está representado na figura 4. Para esse caso, pode-se ver que a esfera sairá da caixa através das coordenadas (5,4), com movimento para a direita.

Figura 4 - Exemplo de teste

Na memória, ao iniciar o programa, as informações da esfera e da caixa estarão dispostas conforme a tabela abaixo. Notar que as posições de memória que contém H00 não foram preenchidas, para facilitar a visualização. Notar, também, que todos os valores (Endereços e Dados) estão representados em hexadecimal.

End	Dado
D9	
DA	
DB	
DC	
DD	
DE	
DF	04
E0	

End	Dado
E1	02
E2	
E3	
E4	
E5	
E6	
E7	
E8	

End	Dado
E9	
EA	
EB	
EC	
ED	
EE	
EF	
F0	

End	Dado
F1	01
F2	
F3	
F4	
F5	
F6	
F7	
F8	

End	Dado
F9	
FA	
FB	
FC	
FD	02
FE	00
FF	04

4. Correção dos Trabalhos

Os arquivos fonte do RAMSES entregues serão montados usando o montador DAEDALUS. A seguir serão aplicados 10 (dez) casos de teste, de forma sequencial e contínua (sem recarga ou inicialização da memória, apenas alterando as posições de memória do tabuleiro e apontando o PC para 0). A nota final do trabalho será proporcional ao número de casos de teste em que os programas produzirem a resposta correta.

5. O que deve ser entregue?

Deverão ser entregues somente os arquivos fonte (arquivos .RAD) escritos na linguagem simbólica do RAMSES, com a solução do problema apresentado, no Moodle da disciplina. **Esses arquivos serão montados com o DAEDALUS**. O programa fonte deverá conter comentários descritivos da implementação. Por exemplo, nos comentários podem ser usados comandos da linguagem "C".

O trabalho deverá ser entregue até a data especificada no link de entrega no sistema Moodle. **Não serão aceitos trabalhos após o prazo estabelecido**.

6. Observações

Recomenda-se a troca de ideias entre os alunos. Entretanto, a identificação de cópias de trabalhos acarretará na aplicação do Código Disciplinar Discente e a tomada das medidas cabíveis para essa situação (tanto o trabalho original quanto os copiados receberão nota zero).

O professor da disciplina reserva-se o direito, caso necessário, de solicitar uma demonstração do programa, onde o aluno será arguido sobre o trabalho como um todo. Nesse caso, a nota final do trabalho levará em consideração o resultado da demonstração.