⑲ 日本国特許庁(JP)

①特許出願公開

◎ 公開特許公報(A) 昭61-270737

⑤Int Cl.⁴

識別記号

庁内整理番号

母公開 昭和61年(1986)12月1日

G 03 B 17/12

7610-2H

審査請求 未請求 発明の数 1 (全13頁)

❷発明の名称 二焦点式カメラ

②特 願 昭60-112752

20出 願 昭60(1985)5月25日

②発明者 若 林

央 東京都品川区西大井1丁目6番3号 日本光学工業株式会

社大井製作所内

⑪出 願 人 日本光学工業株式会社

東京都千代田区丸の内3丁目2番3号

20代 理 人 弁理士 渡辺 隆男

明細

1. 発明の名称

二焦点式カメラ

2. 特許請求の範囲

(1) 主光学系の直後に設けられた絞り兼用シャ ツタを前記主光学系と一体に光軸に沿つて前進さ せると共に前記絞り兼用シャツタの後方の光軸上 に副光学系を挿入することによつて焦点距離を切 替え可能な撮影レンズを存するカメラにおいて、 前記主光学系の前部を覆うレンズバリアを開閉可 能に設けると共に、前記レンズバリアと前記紋り 兼用シャッタとの間の前記主光学系を取り囲む位 置に前記絞り兼用シャッタを駆動するシャッタ駆 動装置を設け、さらに、前記副光学系を除き少な くとも前記レンズパリアと主光学系とを包囲する 断面円形の外筒を設け、前記割光学系が光軸上に 挿入されたときに前記外筒が少なくとも前記シャ ツタ駆動装置の駆動部を囲む位置までカメラ本体 の外部に突出移動する如く構成したことを特徴と する二魚点式カメラ。

(2) 前記シャツタ駆動装置は、電気で駆動されるモータを含み、波状に折り曲げられたフレキシブルプリント基板(72)を介してカメラ本体(1)側の制御回路(96、98)と接続していることを特徴とする特許請求の範囲第1項記載の二魚点式カメラ。

(3) 前記シャッタ駆動装置は、複数の磁極を有するコータ(88) と前記主光学系(3)のまわりにほぼ半円形に配置されたステータ(90A、90B)とを含むステップモータ(11)であることを特徴とする特許請求の範囲第1項または第2項記載の二焦点式カメラ。

3. 発明の詳細な説明

(発明の技術分野)

本発明は、主光学系の繰り出しに連動して副光学系を撮影光軸上に挿入して焦点距離を変換可能な撮影レンズを有する二焦点式カメラ、特に主光学系の直後に絞り兼用シャツタが設けられた二焦点式カメラに関する。

(発明の背景)

撮影レンズの主光学系を前方へ繰り出し、その 主光学系の後方の光軸上に関レンズを挿入して焦 点距離を変えることができるいわゆる二焦点式カ メラは、例えば特開昭52-76919号、特開 昭54-33027号、特開昭58-20243 1号などの公開特許公報により公知である。これ らの従来公知の二焦点式カメラの公開特許公報で は露光を制御するシャツタにつていは何等の言及 なされていないが、そのシャツタについての提宏 が特開昭59-19926号公報によつて既に開 示されている。

しかしながら、この公知のシャツタを具備した 二焦点式カメラにおいては、主光学系の周囲には フオーカシングのための繰り出し機構が設けられ、 その主光学系の直後にシャツタ駆動機構と絞り兼 用シャツタ羽根とが設けられ、さらに絞り兼用シ ヤツタ羽根の後方に副光学系が挿入されるように 構成され、シヤツタ駆動機構の構造が極めて複雑 で組立て作業に長い時間と経験とを必要とする。 また、主光学系、シヤツタ装置を囲む外筒は、光

囲む位置に、その絞り兼用シャッタを駆動するシ ヤツタ駆動装置を設け、さらに副光学系を除き少 なくともレンズバリアと主光学系とシャツタ駆動 装置とを包囲する断面円形の外筒を設け、斟光学 系が絞り兼用シャツタの後方の光軸上に挿入され たときに、その外筒が少なくともシャツタ駆動装 置の駆動部を囲む位置までカメラの外部に突出移 動するように構成することを技術的要点とするも のである.

(実施例)

次に、本発明の実施例を添付の図面に基づいて 詳しく説明する。

第1図および第2図は本発明の実施例を示す断 面図で、第1図はレンズバリアが閉じた収納状態、 第2図は主光学系の光軸上に副光学系が挿入され た氢遠状態を示し、第3図は第1図に示す実施例 の構成の一部をなす劇レンズホルダの拡大断面図、 第3図、第4図、第5図はそれぞれ第1図のA-A、B-B、C-C断面図である。

第1図および第2図において、カメラ本体1は

軸外の退避位置に在る副光学系のレンズ枠をも囲 むように四角筒状に形成されているため、その内 部に無駄なスペースが生じ、しかも、その外筒と をカメラ本体との間を光密に適閉するため、外筒 の外側をさらに四角筒のカバーで覆わねばならな い欠点が有つた。また、この特開昭59-199 2 6 号公報を含む従来公知の二焦点式カメラにお いては、主光学系を保護するレンズバリアについ て何等の考慮もなされていない。

(発明の目的)

本発明は、上記従来の二焦点式カメラの欠点を 解決し、焦点距離変換の際に光軸方向に移動する 鏡筒にレンズバリアとシャツタ駆動部とを内蔵し、 しかもコンパクトで、組立て作業性と操作性の良 好な二焦点式カメラを提供することを目的とする。 〔発明の概要〕

上記の目的を達成するために本発明は、主光学 系の前部を覆うレンズバリアを開閉可能に設ける と共にそのレンズバリアと主光学系の後部に設け られた絞り兼用シャツタとの間の主光学系を取り

外装ケース2にて覆われ、カメラ本体1の上部1 Aには図示されない投光レンズと受光レンズとを 含む距離検出装置やファインダー光学系などが設 けられている。撮影レンズの主光学系3の前面に は、後で詳しく述べられるレンズパリア28、2 9 が開閉可能に設けられ、その主光学系3の後方 には副光学系4が摄影光軸上に挿脱可能に設けら れている。また、外装カバー2の上面には、攝影 レンズの焦点距離切替えとレンズパリア28、2 9の開閉のために操作される魚点距離選択部材 5 が摺動可能に設けられている。この焦点距離選択 部材 5 は第 7 図に示すように指標 5 A を有し、そ の指標 5. A が外装カバー 2 の上面に設けられた記 号「OFF」に一致すると、レンズパリア28、 29は開成され、指標 5 Aが広角記号「W」に合 致すると、レンズパリア28、29は開成され且 つ主光学系3のみによつて、撮影可能な短焦点距 離状態(以下「広角状態」と称する。)となる。 また、指揮5Aが望遠記号「T」に合致すると、 後で詳しく述べられる光学系移動機構が作動して

主光学系3が前方に級り出され、これに伴つてて 光学系4がその主光学系3の後方に挿入されて 主光学系3と副光学系4とになる長い合成焦点。 なおまな(以下「望遠状態」と称する)となる。なお お、この焦点距離選択操作部材5には、主光生 おの光軸方向の移動と副光学系4の光軸に直角 向に変位との駆動源となる可逆モータMを制御する る制御回路に焦点距離切替え信号を送るスイッチ 装置57が連動している(第7図参照)。

9 に植設された 2 本の支柱 1 5 A 、 1 5 B (第 5 図参照)によつて支持されている。バリア基板9 と前環14の外周とを覆う外筒16の一端は第6 図に示す如く小ねじ17によつて台板10に固設 され、他端は第1図に示す如く前環14に嵌合し ている。また、パリア基板9と外筒16との間に は黒色飲質のパツキン1 8 A が設けられ、外筒1 6 の外間はカメラ本体 1 の前端に設けられた二重 の遮光部材18Bによつて光密的にシールされて いる。前環14は、パリア基板9と共にレンズ保 護カバー装置を支持する前側基板を構成している。 その前環14の中央に設けられた鏡筒開口14A は、第5図中で破線にて示す如く、光軸を中心と するX-X軸方向(フィルム開口1Bの長辺方向) に長くY-Y軸方向(フィルム開口1Bの短辺 方向)にやや短い矩形の四隅を光軸を中心として 円弧状に角を落としたほぼ六角形に形成されてい

前環14の裏側にはリングギャ19が回転可能 に支持され、そのリングギャ19には第5図に示 つて駆動される後述の光学系駆動装置(第8図参 照)が設けられ、その光学系移動機構は、台板1 0を光軸に沿つて移動させ、さらに馴光学系4を 支持する馴光学系ホルダ13を光軸に直交する方 向に変位させるように構成されている。

その副光学系4を保持する副レンズ枠13Aと、、 副光学系4を保持する副レンズ枠13Aと、にの副レンズ枠13Aに螺合する内枠簡13Bとの構成ないの関レンズ枠13Aとはないの間にはいいるのでは、 副したのではは 2 Dの付替 13 Bとの間によいの間には 2 Dの付替 13 Cとができ、これにより合成性となる。

台板 1 0 に固定されたバリア基板 9 の前面には 前環 1 4 が設けられ、この前環 1 4 はバリア基板

すように、互いに180°離れた位置に第1セグ メントギャ部19Aと第2セグメントギャ部19 Bとが光軸を中心として対称的に形成されている。 さらに第1セグメントギヤ部19Aの近傍のリン グギャ外周に、その一対のセグメントギャ部19 A、19Bの歯型外周よりやや小さい歯型外周を 有する第3セグメントギャ部19Cが形成されて いる。第1セグメントギヤ部19Aと噛み合う第 1ピニオンギヤ20は第1回動レバー21と一体 に形成され、その歯列の一方の側面にはフランジ 部20Aが一体に形成されている。また、第2セ グメントギャ部19Bと増み合う第2ピニオンギ ヤ22は第2回動レバー23と一体に形成され、 その歯列の一方の側面にはフランジ部22Aが一 体に形成されている。その第1回動レバー21は 第1ピニオンギヤ20と、また第2回動レバー2 3 は第 2 ピニオンギヤ 2 2 とそれぞれ一体にプラ スチック成形を可能にするように基部21A、2 3Aがそれぞれ鍵型に形成されている。また、そ れぞれ一体に形成された第1ピニオンギヤ20、

第1回動レバー21は第2ピニオンギヤ22、第2回動レバー23とは、それぞれ支触24、25を介してバリア基板9と前環14との間に回転可能に支持され、さらにリングギヤ19は、フランジ部20A、22Aによつてスラスト方向(第1図中で右方)の移動を阻止されている。

第1回動レバー21と第2回動レバー23の第日 端には、それぞれピン軸26、27を介し回転1 バリア28と第2バリア29とが自由に「288と第2バリア29とが自由に「728と第1バリア29とが第1だりで、 第2がリア29とは、外間16の内間にその内間には、レンズバリア28、29が開が外間16の内に は、レンズバリア28、29が開が外間16の には、レンズがリア28、29が開が外間16の は、それぞれ円弧部28a、29aが外間16の 大利間の直線状の玄部(開口回接が外面に接し、それぞれの 大利間の直線状の玄部(開口日接近がれている。こ29 りは、平行になるは、第5回に 大力になるに、レンズバリア28、29 が開成されたときは、第5回に示すように光軸 で互いに接し、その際第1パリア28の下端28 c は支柱15Aに当接し、また、第2パリア29 の右端上縁29cはパリア基板9に植設された制 限ピン30に当接して、玄部28b、29bの方 向が開成時と同じX-X軸方向になるように構成 されている。

するためのトランジスタT・I、T・I、後述の測光 用IC95、コンデンサC:、C:などの制御回 路装置が設けられている。

一方、リングギャ19の第3セグメントギャ部 19Cと噛み合う第3ピニオンギャ40は、第4 図に示す如く連動軸41に支持され且つフランジ 部40Aと一体に形成されている。このフランジ 節40Aは、第1ピニオンギャ20のフランジ部 2 0 Aおよび第 2 ピニオンギャ 2 2 のフランジ部 22 A と共にリングギャ19にスラスト方向(第 4 図中で右方)の動きを阻止するように構成され ている。第3ピニオンギヤ40を支持する連動軸 41は、台板10の裏面に固設されたブラケット 44に回転可能に支持されると共に、その一端は 第4図に示すように前環14に回転可能に支持さ れている。また、連動軸41の他端は、ブラケツ ト44を貫通してその裏側で第4図および第7図 に示す如くカム部材42を一体に支持している。 そのカム部材42は、台板10の移動方向に対し て傾斜したカム面42Aを有し、ねじりコイルば

ね43により第7図中で反時計方向に回動するように付勢され、その回動は、レンズバリア28、29が開いて外筒16の内面に当接したときおよびレンズバリア28、29が閉じて互いに接触したときに制限される。

一方、台板10および割レンズホルダ13を駆動変位させる可逆モータMは、焦点距離選択操作部材5に連動するスイツチ装置57およびカメラ本体1に設けられた自動焦点調調節の距離検出装置58からの信号に基づいて動作するモータ制御回路59を介して制御される。この場合、焦点調節のためのモータ駆動は、図示されないレリーズ

知の押圧によつてその動作が開始される。しかし、 魚点距離切換えは、そのレリーズ和の押圧とは無 関係に魚点距離選択操作部材 5 の操作によるモータ駆動によつてなされる。その際、台板 1 0 は、 スイツチ装置 5 7 の切換え信号によつて、広角状態での至近距離位置を超えて繰り出され、あるいは望遠状態での無限遠位置を超えて繰り込まれ、 その間に削光学系 4 は光軸上に挿入または光軸上から脱出するように構成される。

第8図は、台板10および副レンズホルダ13を駆動する駆動機構を示すために台板10を裏倒から見た斜視図である。可逆モータMは台板10の裏面上部に固設され、その回転は減速ギャヘルギャ61を介して、他のベベルギャ61を介して、他のベベルギャと一体の平歯車62に伝達される。この平・歯を2と噛み合う駆動歯車63は、台板10に回転でも2と噛み合う取動歯車63は、台板10に一下やして、カメラ本体1の固定部に固設された単り一方、平歯車62の回転は減速歯車列65を介し

第8図中で台板10の左側面(第6図では右側面)には切欠き簿10℃が設けられ、この切欠き 簿10℃内に、カメラ本体1の固定部に固設され 且つ光軸方向に長い第1案内軸70が嵌入され、 駆動歯車63が回転しても台板が送りねじ軸64

のまわりに回転することが無いように構成されて いる。また、台板10の真面に周設されたプラケ ツト44には、第8図に示すにように軸方向に長 く伸びた連動支柱71が突出して設けられ、この 連動支柱71の嫡面に設けられた貫通孔71aと 台板10に設けられた貫通孔10b(第6図参照) とを、カメラ本体1の固定部に固設され且つ光 触方向に伸びた第2案内軸72が貫通している。 その連動支柱71と第2案内軸72とにより、台 板10は撮影光軸に対して垂直に保持され、可逆 モータMの回転に応じて、光軸に沿つて前後に平 行移動するように構成されている。また、連動支 柱71の側面にはラツク73が設けられ、そのラ ツク13に噛み合うピニオン14は、図示されな い撮影距離表示装置、距離検出装置やファインダ 一倍率変換機構に連動している。

光軸方向に移動する台板 1 0 とカメラ本体 1 とは、第 4 図および第 8 図に示す如く波形に折り曲げられたフレキシブルブリント基板 7 5 によつて架橋され、このフレキシブルブリント基板 7 5 を

介して、台板10上の可逆モータM、シャツタ鯏 御回路基板38上のステップモータ11、露出計 用受光素子36は、カメラ本体1側の焦点検出回 路装置や露出値演算回路装置等の電気装置に接続 されている。

成されるように構成されている。セクターギャ 8 4 に噛み合うピニオン 8 5 は、シャツタ 基板 7 およびシャツタ 制御回路基板 3 8 を貫通する回転軸 8 7 の他端に はステップモータ 1 1 のロータ 8 8 が設けられている

ステップモータ111は、4種に磁化、89BBと、コイル89A、89BBと、コイル89A、99BBと、コイル89A、99BBと、コイル89A、99BBと、コイル8988と、カータ90A、ラ・カータ90A、カータ90A、カーターのようにになった。カーターのようには、ステータのようには、ステータのようには、ステータのようには、ステータのようには、ステータのようには、ステータのよりには、ステータのようには、ステータのようには、ステータのようには、ステータのようには、ステースを表して、このでなりには、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステースを表して、ステータのようには、ステータのは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにはは、ステータのようにははないますがは、ステータのようにははないまりにははないますがは、ステータのようにははないますがはないまがはないまがはないまかはないますがはないまがはないますがはないますがはないますがはないまがはないまがはないますがはないまがはないますがはないますがはないますがはないますが

御回路基板38上の位置に配置されている。

第10図はステップモータ11を動作させるた めの電気系のブロツク図である。ミリコンフォト ダイオード(SPD)の如き受光素子36にて検 出された被写体輝度は測光用IC95にてデジタ ル化され演算回路96に送られる。また一方、フ イルムパトローネに設けられたフィルムの種別や フィルム感度値を示すコードを検出するフィルム 感度値検出装置97からのデジタル化されたフィ ルム感度値信号も演算回路96に送られ記憶され る。この被写体輝度信号とフィルム感度値信号か ら、演算回路において所定のプログラムに基づく 絞り値とシャツタ速度値が算出され、その算出さ れた露出値は駆動用IC98に送られる。その駆 動用1C98からのパルス信号によりステップモ ータ11は制御され、絞り兼用シャツタが算出さ · れた紋り値とシャツタ速度値との予め定められた 組合せに従って開閉するプログラムシャッタとし て作動するように構成されている。この場合、ス テツブモータ11のステータ90A、90Bの斑

化方向を交互に変えて磁界を移動させることによ り、ロータ 8 8 を正転または送転させることがで きる。

なお、カメラ本体1のフィルムパトローネ室1 Cの側壁には、第4図に示すように、フィルムパ トローネの表面に設けられたフィルム感度値等の フィルム情報コードを検知する接触子97Aが突 出して設けられている。この接触子97Aによつ て検出された検出信号のうち、フィルム感度値信 号はフィルム感度検出装置97によりデジタル化 され、カメラ本体1側に設けられた演算回路96 (第10図参照)に送られる。また、ステツブモ ータ11を制御する駆動用IC98からのパルス の信号はフレキシブルブリント基板75を介して カメラ本体1側からステツブモータ11に伝達さ れる。さらに、パトローネ室ICとフィルム巻取 り室1Dおよびフィルムアパーチヤ1Bとは、第 1 図および第3図に示す如く公知の裏蓋99に密 閉され、図示されないフィルムパトローネが装填 される際の寓答99の閉じ動作により、フィルム

パトローネが押圧されたときに、フィルム情報コード部分に接触子97Aは圧接するように出没可能に設けられている。

次に、上記の如く構成された実施例の動作および作用について説明する。

第1図および第5図に示す如くレンズバリア28、29が閉じている状態においては、台板10は繰り込まれ、外筒16はカメラ本体側の外装かのような人間では、大きなの場合、カンズバリア28、29、主光学系3、シャンズバリア28、29、主光学系3、シャンズバリア28、29、主光学系3、シャンズバリア28、29、主光学系3、シャンでは、カメテンでもので、外筒16と及いのでは、カメラ本体1の前端部に設けられたがある光は、カメラ本体1の前端部に設けられた断質の返光に、カメラ本体1の前端部に設けられた断質の返光に、また、土地方向により容易は16が内部へ侵入することは無い。

また、第1図の如くレンズバリア28、29の閉じ状態においては、魚点距離選択操作部材5(

ンズパリア28、29は閉成されている。この状 態から魚点距離選択操作部材5を広角位置(記号 「W」を示す位置) へ移動すると、カム板56が 第7図中で左方へ移動するので、摺動ピン55は カム面56Aに沿つて下降し下縁56Cに係合す る。この摺動ピン55の下降により連動板54は 引張コイルばね53の付勢力に抗して下方へ摺動 し、これに連動する摺動板50が第7図中で下方 へ移動する。従つて、カム部材 4 2 のカム面 4 2 Aに圧接している係合突起52が下方へ第11図 (B) に示す如く退避する。この係合突起52の . 下方への変位に応じて、カム部材 4 2 は、ねじり コイルばね43 (第7図参照) の付勢力により第 7 図中で反時計方向に回動する。このカム部材 4 2の回動は連動軸41を介して第3ピニオンギャ 40に伝達され、第3ピニオンギヤ40が第7図 中で反時計方向(第5図中では時計方向)に回動

この第3ビニオンギヤ40の回動により、リングギヤ19は光軸を中心として第7図中で時計方

第7回参照)は指標5Aが記号「OFF」と合致する位置(以下「OFF位置」と称する。)に在り、摺動ピン55は、カム板56の上縁56Bと係合し、摺動板50の係合突起52は、レンズバリア28、29に連動する連動軸41の一端に固設されたカム部材42のカム面42Aの基板に第4回に示す如く係合している。一方、副光学系4は、第1図および第8図に示す如く摄影光軸外の退避位置に置かれている。

第11図は、焦点距離選択操作部材 5、係合突起 5 2、カム部材 4 2 およびレンズパリア 2 8、2 9の連動関係を示す説明図で、(a)は焦点距離選択操作部材 5 が 0 F F 位置に在るときの状態を示し、(b)および(c)は焦点距離選択操作部材 5 がそれぞれ広角位置、望遠位置へ移動したときの状態を示す。以下、この第10図に従つて、レンズパリア 2 8、2 9の連動機構および撮影レンズ光学系の駆動機構の動作を説明する。

第11回において、焦点距離選択操作部材 5 が OFF位置に在るときは、(A)に示すようにレ

向(第5図中では反時計方向)に回動する。リングギヤ19のこの回動により第1ピニオンギヤ20および第2ピニオンギヤ22が共に第7図中で反時計方向(第5図中では時計方向)に回動するので、第1ピニオンギヤ20と一体の第1回動レバー21、第2ピニオンギヤ22と一体の第2回動レバー23の自由端にそれぞれ回転可能に結合された第1パリア28と第2パリア29とは、互いに反対方向に変位し、それぞれの外周の円弧では、近近大方向に変位し、それぞれの外周の円弧での内に変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間の内で変位し、それぞれの外間で呼止する。これにより、レンズバリア28、29は開成され、第11図(B)に示す状態となる。

一方、焦点距離選択操作部材 5 が O F F 位置から広角 (W)位置へ移動すると、これに連動するスイツチ装置 5 7 (第 7 図参照)から摄影レンズを広角状態におく広角コード信号が可逆モータ M を制御するモータ制御回路 5 9 に送られる。そこでモータ制御回路 5 9 は可逆モータ M を駆動制御し、台板 1 0 と共に主光学系 3 をわずかに繰り出

し、主光学系3が広角状態での無限遠位置まで変位したときに可逆モータMを停止させる。その際、台板10の広角状態における無限遠位置は、この台板10と一体に移動する連動支柱71のラック73 (第8図参照)と噛み合うピニオン74の回転に連動する図示されないエンコーダから発信される距離信号によつて決定される。

より極めて小径に形成される。しかし、その周囲を囲む外筒16の内径は、開成状態に在るレンズバリア28、29の外周径によつて決定されるので、その外筒16と主レンズ枠6との間にドーナツツ状の比較的大きくスペースが生じる。このスペース内にステツブモータ11、測光用受光素子36や測光用1C95などがそのスペースを有効に利用して配置される。

の反射光を受光して被写体位置を検出し、その検出信号をモータ制御回路 5 9 に送り、可逆モータをその位置で停止させ、主光学系 3 の距離調知知の定する。この距離検出装置 5 8 は一般に公の配置の一般についるのでは当ちる。減速歯車列 6 5 を介して回転するのは当中 6 6 は、距離調節の際の平歯車 6 2 の回転のはギャ 6 6 は、距離調節の際の平歯車 6 2 の回転のが、副レンズホルダ 1 3 の腕の部 1 3 E が のではるのではるのでは、これが1 3 の腕ののまま維持される。

上記の如く、主光学系3の距離調節(焦点調節)のための光軸方向の移動は、台板10に設けられた駆動歯車63の回転に応じて台板10が光軸方向に移動することによつて行われる。そのため、主光学系3のまわりには、通常の撮影レンズの如き、距離調節用へリコイドねじ機構は設けられておらず、主光学系3を保持する主レンズ枠6の外径は従来公知の二焦点式カメラ用摄影レンズ鏡筒

れる.

前述の距離検出装置 5 8 の距離検出信号(可逆 モータ停止信号)を演算回路96が受信すると、 演算結果に基づく絞り値とシャツタ速度値はパル ス化され、次段の駆動用IC98に送られる。駆 動用IC98はステップモータ11を駆動制御し、 演算回路96の演算結果に基づく紋り値とシャツ 夕速度値との組合わせに従つてステップモータ 1 1 は、その絞り値に相当する絞り開口に絞り羽根 12A、12Bを閉状態から開かせ、そのシャツ 夕速度値に相当する遅れ時間の後に絞り羽根12 A、12Bを閉状態に復帰させて露光を終了する。 次に、焦点距離の切替えについて説明する。焦 点距離選択操作部材 5 を第 1 1 図 (C) に示す如 〈望遠(T)位置へ移動すると、その移動に応じ てスイツチ 4 装置 5 7 (第7図参照) から望遠状 腹信号がモータ制御回路59に送られ、可逆モー タ M が回転して、台板10は広角状態における至 近距離位置に超えて望遠状態での無限遠位置まで 繰り出される。その際、カムギャ66は第8図中

上記の望遠状態への切替え動作において、焦点 距離選択操作部材 5 が第 1 1 図 (B) に示す如く 広角 (W) 位置から第 1 1 図 (C) に示す望遠 (T) 位置へ移動する場合には、係合突起 5 2 はカ ム部材 4 2 のカム面 4 2 Aから離れ、レンズバリ ア 2 8 、 2 9 は既に完成状態におかれているので、 カム部材 4 2 は回転すること無く単に第11図(C)に示すように左方へ台板10と共に移動するのみである。しかし、魚点距離選択操作部材5を第11図(A)に示すOFF位置から広角(W)位置を超えて直接望遠(T)位置に変位させた場合には、カム部材 4 2 は回転しつつ左方へ移動するので、レンズバリア28、29はこれに応じて開成され、第2図および第7図に示すように全開される。

なお、この望遠状態においては、外筒16が第 2 図に示す如く外装ケース2の前状に形成されると、外筒16は円筒状に形成されると、外筒16は円筒状に形材18日は2度の遮光部材18日は2度の変光のでで、極めて簡単なではなった。なな光でではないでで、ないでではないではではないではないでは、カメラ本体1のに、大きするのでは、カメラ本体1で当接するの対にに、大きなが、10の一部が台板10の下端縁かないて、外枠13Cの一部が台板10の下端縁か

ら下方へはみ出しても差し支え無い。従つて、外筒6の大きさは、レンズバリア28、29が開成されたときの円弧部28a、29aの位置によつて決定される。そのため、外筒6の外周半径は、退避位置に在る劇レンズホルダ13には無関係に小さく設定できる。

副光学系4が第2図に示す如く主光学系3の光軸上に挿入され、台板10が望遠状態での無限遠位置に達すると、可逆モータMは停止する。その後、図示されないレリーズ釦を押し下げると、広角状態における摄影と同様にして距離調節が行われ、距離調節完了と同時に演算回路96(第10図参照)で計算された紋り値とシャツタ速度値に基づいてステップモータ11が作動し、紋り兼用シャッタ羽根12が開閉し、露出が行われる。

焦点距離選択操作部材 5 を望遠 (T) 位置から 広角 (W) 位置に切替えると、可逆モータ M は逆 転し、台板 1 0 は望遠状態での無限遠位置を超え て繰り込まれ、広角状態での無限遠位置に達した とき可逆モータは停止する。その間に副レンズホ ルグ13は第1図に示すは第1図に示すは第1図に示すなりに退職になるの作りで、主光学系3は広角に選択機が5を0図に振いで移動をできる。は点点を超数ピン55を1型のではなり、ないであるのかとではないで、ではないではないではないがあり、42からのでは、2から

また、魚点距離選択操作部材 5 を望遠 (T) 位置から直接 OFF 位置まで移動すると、台板 1 0 は鏡筒収納位置まで復帰するが、その復帰の初期に係合突起 5 2 は第11図 (C) に示す如くカム部材 4 2 の光軸方向の動きの軌道 L上に挿入 (破

線52'にて示す。)されている。そのため、台板10が繰り込まれ、カム部材42が第11図(C)中で右方へ移動すると、カム面52Aが破線(52')位置まで移動した保合突起52と係合し、さらに右方への移動につれて、カム面42Aが保合突起に押され、カム部材42は第7図中で時計方向に回転する。これにより、レンズバリア28、29は自動的に閉成される。

上記の実施例においては、絞り兼用シャツタ羽根12を駆動するシャツタ駆動装置としてステツプモータ11を用いたが、ステツプモータに限ること無く、通常の小型可逆モータあるいはマグネットであつても登支え無い。

(発明の効果)

以上の如く本発明によれば、レンズバリアを包む外筒を断面円形に形成し、そのレンズバリアと 紋り兼用シャッタ羽根との間の主光学系のまわり にその紋り兼用シャッタ羽根を駆動するシャッタ 駆動装置を配置したので、スペース効率がすこぶ る良く小型化が可能である。さらにそのシャッタ

第1図および第2図は本発明の実施例の断面図 で、第1回は主光学系が収納位置まで繰り込まれ た状態、第2図は主光学系望遠位置まで繰り出さ れた状態を示し、第3図は第1図の実施例の副レ ンズホルダの拡大断面図、第4図は第1図のA-A 断面図、第5 図は第1 図のB ~ B 断面図、第6 図は第1図のC-C断面図、第7図は、第1図に 示すレンズバリア開閉装置の構成を示す斜視図、 第8図は第1図の台板の裏面に設けられた光学系 移動装置部を示す斜視図、第9図は、第1図にお けるシャツタ駆動部の斜視図、第10図は第1図 の実施例の絞り兼用シャツタの制御回路のブロツ ク図、第11図は第7図に示すレンズバリア開閉 装置の動作説明図で、第11図の (A) 、 (B) および(C)は、それぞれ焦点距離選択操作部材 がOFF位置、広角位置、望遠位置にあるときの 状態を示す。

(主要部分の符号の説明)

1---- カメラ本体、2---- 外装カバー、

3---- 主光学系、 4---- 副光学系、

駆動装置とレンズバリアを囲む外筒の断面は円形 に形成されているので、魚点距離切替えの際の主 光学系の移動量が大きく、これに伴つてカメラ本 体からの外筒の突出変位量が大きくても、外筒と カメラ本体との遮光を簡単な構成で確実に行うこ とができ、光がカメラ本体の暗箱内に侵入する恐 れが無い。なお、実施例に示す如く、台板の裏側 に設けられる光学系移動機構、シャツタ基板に設 けられる絞り兼用シャッタおよびその駆動装置、 パリア基板と前環とに支持されるレンズバリア装 置は、いずれもユニツト化され、それぞれ部分組 立て後に積み重ねで結合すればよいから極めて作 業性が良く、また、台板を含む撮影レンズ鏡筒側 の動作は、収納時のパリア開閉用カム部材とカメ ラ本体側の焦点距離選択操作部材との機械的連動 **結合以外はすべて折畳み式のフレキシブルブリン** ト基板を介して電気的に接続されているので組立 てが容易で、しかも信頼性の高いカメラにするこ とができる利点がある。

4. 図面の簡単な説明

5---- 焦点距離選択操作部材、6---- 主レンズ枠、

7----シャツタ基板、9----バリア基板、

1 0 ---- 台板、 1 1 ---- ステツブモータ (シャック騒動装置)、 1 2 ---- 絞り兼用シャツタ、

1 3 ---- 削レンズホルダ、1 4 ---- 前環、

16----外筒、28、29----レンズパリア、

3 8 ---- シャツタ制御回路基板、

4 2 ---- カム部材、5 2 ---- 係合突起

75----フレキシブルプリント基板

出顧人 日本光学工業株式会社 代理人 渡 迈 隆 男

図

第 1 図

第 2 図

第4図

—253—

特開昭61-270737(13)

