Humza Naveed^a, Asad Ullah Khan^{b,*}, Shi Qiu^{c,*}, Muhammad Saqib^{d,e,*}, Saeed Anwar^{f,g}, Muhammad Usman^{f,g}, Naveed Akhtar^{h,j}, Nick Barnesⁱ, Ajmal

aThe University of Sydney, Sydney, Australia
bUniversity of Engineering and Technology (UET), Lahore, Pakistan
cThe Chinese University of Hong Kong (CUHK), HKSAR, China
dUniversity of Technology Sydney (UTS), Sydney, Australia
cCommonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
fKing Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
SSDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRCAI), Dhahran, Saudi Arabia
hThe University of Melbourne (UoM), Melbourne, Australia
Australian National University (ANU), Canberra, Australia
fThe University of Western Australia (UWA), Perth, Australia

Keywords:

, LLM, chatGPT, LLM, LLM, LLM , LLM

1.

Email addresses: humza_naveed@yahoo.com (Humza Naveed), aukhanee@gmail.com (Asad Ullah Khan), shiqiu@cse.cuhk.edu.hk (Shi Qiu), muhammad.saqib@data61.csiro.au (Muhammad Saqib), saeed.anwar@kfupm.edu.sa (Saeed Anwar), muhammad.usman@kfupm.edu.sa (Muhammad Usman), naveed.akhtar1@unimelb.edu.au (Naveed Akhtar), nick.barnes@anu.edu.au (Nick Barnes), ajmal.mian@uwa.edu.au (Ajmal Mian)

Preprint submitted to Elsevier

M

2.			2.4. Activation Functi	ons	
LLM . I	LLM		[69].	LLM	
			ReLU [70]:	(ReLU)	
2.1. Tokenization			R	eLU(x) = max(0, x)	(1)
[59] LLM	,	[60],	GeLU [71]: 가 [72]	(GeL)	U) ReLU,
[61] 가	. LLM [62],		GLU variants [74]:	[75]	(σ)
(BPE)[61] unigramLM [63]	[[60] .		(⊗)		
2.2. Encoding Positions			• • •	$Y(b,c) = (xW+b) \otimes \sigma(x)$	$V+c), \qquad (2)$
		[64]	X . LLM	l, W, b, V c GLU	[74]
, , , , , , , , , , , , , , , , , , ,	, 가	[64] 가 가 Alibi	GEGLU(x, W, V)	(x, b, c) = max(0, xW + b) (x, b, c) = GELU(xW + b) $(x, c, \beta) = Swish\beta(xW + b)$	$)\otimes (xV+c),$
·			2.5. Layer Normalizat	tion	
Alibi [65]:	가] LLM	[64]. LayerNorm[76]	RMSNorm[77
RoPE [66]:			_	(MHA)	LL
				DeepNorm[79]	•
2.3. Attention in LLMs	가		2.6. Distributed LLM	-	
[64]		,		LLM [13, 37, 80, 81]	
가			Data Parallelism:		가
LLM			가		
Self-Attention [64]:)	Tensor Parallelism:		
Cross Attention: -		,	. Pipeline Parallelism:		
Sparse Attention [67]: 기	O(n ²) フト [67]		Model Parallelism:		
Flash Attention [68]:	GPU		3D Parallelism: Optimizer Parallelism	, , :	3D
(HBM)	SRAM	GPU	=	37]	
		4	4		

2.7. Libraries LLM . Transformers [8		API
DeepSpeed [36]:	가	I am a causal decoder I am an encoder decoder
Megatron-LM [80]: LLM	GPU	
JAX [83]: Python mPy GPU	가 . Python	4: , [93] 7\ Nu Nu Full Language Modeling May the force be with you
Colossal-AI [84]:		Prefix Language Modeling May the force be with you
BMTrain [81]:	LLM	Masked Language Modeling May the force be with you
FastMoE [85]: PyTorch API	MoE(7ト)	5: , [93].
MindSpore [86]: , 7 PyTorch [87]: Facebook AI F	, Research Lab(FAIR)	
ch	.1	PyTor 4
Tensorflow [88]: Google TensorFlow	,	
MXNet [89]: Apache MXNet	Python, C++, Scala, R	Causal Decoder: 기
2.8. Data PreProcessing LLM		Prefix Decoder:
Quality Filtering:	, フト 2)	4 Mixture-of-Experts: フト フト
, , Data Dedupliedtion: 가	LLM	, 기 [90]. Mixture-of-Experts(MoE) 가 [91, 92].
Privacy Reduction: LLM LLM , , ,	가	2.10. Pre-Training Objectives LLM [93] Full Language Modeling:
2.9. Architectures LLM		가 5 Prefix Language Modeling: 가 5 가

							LLN	Л			
].	10,	[16, 97]			LLN	Л	
Instruction-tuning:					,	Chain-of-Thoug	ht (CoT):				
-				•				[55	102 103		СоТ
								[55,	103, 103	IJ	
				[16, 50, 97]		Self-Consistency Co			[가 [104].	
Alignment-tuning: 1	LLM	,	,			Tree-of-Thought 가					
LLM						[105]. Single-Turn Ins	tructions	:			LLM
LLM	[20, 2	17,98].		ינונוניי	,	. LLM					
가 [99].	,	,		"HHH' " "		Multi-Turn Inst	ructions:	•			LLM
(RLHF)[100]	6	. RLHF	•	(RM)		LLM		LLM			
(RL) M RL Reward modeling:	가			RLHF	R	3.	•				
Kewara modeting.		ННН			L		LLM			,	,
LM	• ·					,					
Reinforcement learn	s.			LLM		3.1. Pre-Trained	d LLMs				
,	(PPO)						NLP			LLM	
								LLM	NLU	NLG	
2.12.3. Prompting/U	Itilization 6	ı		LLM . LLM		1	2 .		가 LLN	М	
			,	,		3.1.1. General I	Purpose NLP				-
가 가 Zero-Shot Promptin	[32]	01, 102].				. T5	-	[64]	7	
LLM	ig. LLIV				•	()	•			
In-context Learning	:: f	ew-shot le	earning	g							가
, g . [54, 50	- , 18, 16]		(ICL)	few-shot le	arnin	[106] <i>GPT-3</i> [6]: Gparse Transform sparse attention			GPT-2 [. [5]	S dense
Reasoning in LLMs	s: LLM	zero-sho	ot							. GP	Γ-3 [107]
		٠	가			GPT-3			175B		٠
					7						

ERNIE 3.0 Titan 7	Bottmax Softmax Softma
GPT-3 GPT-NeoX-20B	
. [6] 20B 13B 175B . GPU	. 50 5000 7,000 160 400
$x + Attn(LN_1(x)) + FF(LN_2(x)) $ (4)	. Gopher(280B) 70B 4
<i>OPT [14]:</i> GPT-3 GPT-3 . OPT [120]	Gopher[116], GPT-3[6] **AlexaTM [122]: - , 7}
. OPT-175B GPT3-	가 . 100k 1
75B BLOOM [13]: LLM ROOTS BLOOM 9 , ALiBi , bitsandbytes ¹ 7	. (C LM) , [CLM] . CLM 20% .
	PaLM [15]: : Eq. 4
GLaM [91]: Generalist Language Model(GLaM) 7 (MoE) [121, 90]	. 가 S
가 가 . 가 GLaM GLaM(64B/6	. フト 200~500 100
4E) GPT-3[6] 7× . 가 GLaM(64B/64E)	7† 540B 2. 4% ,
GPT-3 1/3 GPT-3 7	PaLM-2 [123]: PaLM . PaLM-2 PaLM ,
3× GPT-3 가 . MT-NLG	가
プト GPT-3 プ Chinchilla [96]: Gopher[116] フト (MassiveText). Adam	U-PaLM [124]: UL2(UL2Restore) [125] 0.1% プト PaLM
AdamW Gopher . Chinchilla .	, , CoT NLP . UL2R PaLM PaL M 50% , 25%

UL2 [125]: Denoisers(MoD))						
Deno		R-Denoiser:	Grok [<i>133</i> , <i>134]:</i> Grok	XAI가	Grok-1	Grok-1.5
, 2) S-Denoi	iser:			LLM			
3) X-Denoiser:		UL2 R, S, X		1 [133]: Grok-1			가가
Denoiser	Denoising	ULZ K, S, A	314	4B	MoE ((가 8) .
. Denoisei	Delioising		Cuals 1	5 [124], Crole 1	5		
			Grok-1	.5 [134]: Grok-1 1	.J LM .		
. MoD			Gemin	i [135, 136]: Ge			
T5			00	. (100, 100).	Bard(Pal	LM)	
GLM-130B [33]: GLM-130B	B GLM[126	5]			`	,	
			Gemi	<i>ni-1</i> [135]: MN	ИLU		
() GPT-3	•	. GLM					
GLM-130B		. GEM		i-1.5 [136]: Mol	Е		LLM
		(Gemi		I	101/	•
5%)가 .			2M	フ	Γ	10M	
					•		
II. MA [127 21], 7D	70D		Nemoti	ron-4 340B [137]	7: 98%	29	%
- , -	70B LaMA				•		
. ப	Lawin	가					
		·					
LLaMA-1 [127]:	가	/					
	54.00	[128]					
•	[129]				•		
LLaMA-2 [21]:		•					
LLaMA-2-Chat						,	
•							
	40%		D C	!aal- [120], Daar	.C1. IIM		
LLaMA-3/3.1 [130]:.LLaM	A-2 7		Deeps	leek [138]: Deep	Seek LLM		
		가 2			1e ¹⁷ 3e ²⁰	FLOP	8
		•					10
<i>PanGu-</i> Σ [92]: PanGu- α				/			
RRE(Random Routed Expe	erts)	1			_,		
,		10	,		가		가
. RRE MoE		,		(B),	(n)	(M)	(D)
가	2			(<i>B</i>),	(η) ,	(M)	(D)
가	2			·			
•				$B_{opt} =$	$= 0.2920.C^{0.327}$	71	
,					$0.3118.C^{-0.12}$		
					$D_{ot} = M_{base}.C^a$		(5)
				•			(5)
Mixtral8x22b [131]: 8		가	1.7	•	$D_{base} = D_{base} \cdot C^b$	0.5242.1	0.4757
가 (MoE) 가	가		M_{base}	$= 0.1715, D_{base} =$	= 5.8316, a =	0.5243, b =	0.4/5/
Snowflake Arctic [132]: Arct	•	가	DoonS	eek-v2 [139]:			- (KV)
(MoE)		MoE(128×3.66B	Бсерь	eck-v2 [137].			(MLA)
MLP 가)	가	(1		MoE	. MLA		(MH
0B) .	MoE L	LM[131, 133]	A)		(GQA),		(MQA)
가	_1				_	_	
	가 OB		576	. MLA	DeepSeek-	_	
. 48 17B	0B	,	5.76			[138].	
1/1							

3.1.2. Coding CodeGen [140]: CodeGen PaLM[15] , MLP , RoPE	. HumanEval MBPP PaLM, LLaMA LAMDA .
(). 1) PILE, 2) BIGQUERY, 3) BIGPYTHON . CodeGen	3.1.3. Scientific Knowledge Galactica [148]: 4,800 , , , , , , Py
가 가	Torch fairscale[149] metaseq
. Co deGen 7 Multi-Tur n Programming Benchmark(MTPB) Codex [141]: LLM docstring Python Github .	3.1.4. Dialog LaMDA [150]: ,
. 가 Codex 100	90% . LaMDA
77.5%	, ,
. Github Copilot ² . **AlphaCode [142]: 300M~41B	. LaMDA
. [143]	•
가	
Alpha-Code Git Hub CodeContests . Code	3.1.5. Finance BloombergGPT [151]: (Bloomberg "FINPILE")
Contests Codeforces 3 .	BLOOM [13] OPT [14] . [113] 50B
[145] GOLD[144] CodeContests . AlphaCode 7 Codeforces	BloombergGPT < <i>endoftext</i> > , 1024 2048
. AlphaCode	, 1024 2040
5,000 54.3% , Codefor ces 28% .	Xuan Yuan 2.0 [152]: BLOOM [13]
CodeT5+ [34]: CodeT5+ CodeT5[146]	, , . Xuan
, () , (-	Yuan 2.0 .
) . 가	3.2. Fine-Tuned LLMs
,	LLM
CLM 가	가 .
, CLM . CodeT5+ 가	LLM ,
. , [CLS], - StarCodbf (it 47]: SantaCoder . , Flash attention . 8k . StarCoder .	[20]. LL M [16, 17, 97] [20]. フト [20]. フト [97, 16, 18]アトフト PaLM 540B 0.2%

1: pre-trained

Models	Findings & Insights
	• Encoder and decoder with shared parameters perform equivalently when parameters are not shared
T5	• Fine-tuning model layers (adapter layers) work better than the conventional way of training on only classification layers
GPT-3	• Few-shot performance of LLMs is better than the zero-shot, suggesting that LLMs are meta-learners
mT5	• Large multi-lingual models perform equivalently to single language models on downstream tasks. However, smaller multi-lingual models perform worse
PanGu-α	• LLMs have good few shot capabilities
CPM-2	 Prompt fine-tuning requires updating very few parameters while achieving performance comparable to full model fine-tuning Prompt fine-tuning takes more time to converge as compared to full model fine-tuning Inserting prompt tokens in-between sentences can allow the model to understand relations between sentences and long sequences In an analysis, CPM-2 finds that prompts work as a provider (additional context) and aggregator (aggregate information with the input text) for the model
ERNIE 3.0	 A modular LLM architecture with a universal representation module and task-specific representation module helps in the finetuning phase Optimizing the parameters of a task-specific representation network during the fine-tuning phase is an efficient way to take advantage of the powerful pre-trained model
Jurassic-1	 The performance of LLM is highly related to the network size To improve runtime performance, more operations can be performed in parallel (width) rather than sequential (depth) To efficiently represent and fit more text in the same context length, the model uses a larger vocabulary to train a SentencePiece tokenizer without restricting it to word boundaries. This further benefits in few-shot learning tasks
HyperCLOVA	By employing prompt-based tuning, the performances of models can be improved, often surpassing those of state-of-the-art models when the backward gradients of inputs are accessible
Yuan 1.0	• The model architecture that excels in pre-training and fine-tuning cases may exhibit contrasting behavior in zero-shot and few-shot learning
Gopher	• Relative encodings enable the model to evaluate for longer sequences than training.
ERNIE 3.0 Titan	 Additional self-supervised adversarial loss to distinguish between real and generated text improves the model performance as compared to ERNIE 3.0
GPT-NeoX-20B	 Parallel attention + FF layers speed-up training 15% with the same performance as with cascaded layers Initializing feed-forward output layers before residuals with scheme in [153] avoids activations from growing with increasing depth and width Training on Pile outperforms GPT-3 on five-shot Table Continued on Next Page

Models	Findings & Insights
OPT	 Restart training from an earlier checkpoint with a lower learning rate if loss diverges Model is prone to generate repetitive text and stuck in a loop
Galactica	 Galactica's performance has continued to improve across validation set, in-domain, and out-of-domain benchmarks, even with multiple repetitions of the corpus, which is superior to existing research on LLMs A working memory token approach can achieve strong performance over existing methods on mathematical MMLU and MATH benchmarks. It sets a new state-of-the-art on several downstream tasks such as PubMedQA (77.6%) and MedMCQA dev (52.9%)
GLaM	 The model capacity can be maintained at reduced computation by replacing the feed-forward layer in each transformer layer with a mixture-of-experts (MoE) The model trained on filtered data shows consistently better performances on both NLG and NLU tasks, where the effect of filtering is more significant on the former tasks Filtered pretraining corpora play a crucial role in the generation capability of LLMs, especially for the downstream tasks The scaling of GLaM MoE models can be achieved by increasing the size or number of experts in the MoE layer. Given a fixed budget of computation, more experts contribute to a better performance
LaMDA	• The model can be fine-tuned to learn to call different external information resources and tools
AlphaCode	 For higher effectiveness and efficiency, a transformer model can be asymmetrically constructed with a shallower encoder and a deeper decoder To achieve better performances, it is necessary to employ strategies such as massively scaling upsampling, followed by the filtering and clustering of samples into a compact set The utilization of novel sampling-efficient transformer architectures designed to facilitate large-scale sampling is crucial Simplifying problem descriptions can effectively improve the model's performance
Chinchilla	• The model size and the number of training tokens should be scaled proportionately: for each doubling of the model size, the number of training tokens should be doubled as well
PaLM	 English-centric models produce better translations when translating to English as compared to non-English Generalized models can have equivalent performance for language translation to specialized small models Larger models have a higher percentage of training data memorization Performance has not yet saturated even at 540B scale, which means larger models are likely to perform better
AlexaTM	 Encoder-decoder architecture is more suitable to train LLMs given bidirectional attention to the context than decoder-only Causal Language Modeling (CLM) task can be added to benefit the model with efficient in-context learning Placing layer norm at the beginning of each transformer layer improves the training stability Table Continued on Next I

Table Continued on Next Page

Models	Findings & Insights
	• Training with a mixture of denoisers outperforms PaLM when trained further for a few more FLOPs
U-PaLM	• Training with a mixture of denoisers improves the infilling ability and open-ended text generation diversity
UL2	 Mode switching training enables better performance on downstream tasks CoT prompting outperforms standard prompting for UL2
GLM-130B	 Pre-training data with a small proportion of multi-task instruction data improves the overall model performance
CodeGen	 Multi-step prompting for code synthesis leads to a better user intent understanding and code generation
LLaMA _	 A constant performance improvement is observed when scaling the model Smaller models can achieve good performances with more training data and computing time
	Sparse models provide the benefits of large models at a lower computation cost
PanGu-Σ	• Randomly Routed Experts reduces catastrophic forgetting effects which in turn is essential for
PaliGu-Z	 continual learning Randomly Routed Experts allow extracting a domain-specific sub-model in deployment which is cost-efficient while maintaining a performance similar to the original
BloombergGPT	 Pre-training with general-purpose and task-specific data improves task performance without hurt- ing other model capabilities
XuanYuan 2.0	• Combining pre-training and fine-tuning stages in single training avoids catastrophic forgetting
	Causal LM is crucial for a model's generation capability in encoder-decoder architectures
CodeT5+	 Multiple training objectives like span corruption, Causal LM, matching, etc complement each other for better performance
StarCoder	HHH prompt by Anthropic allows the model to follow instructions without fine-tuning
LLaMA-2	 Model trained on unfiltered data is more toxic but may perform better on downstream tasks afte fine-tuning Model trained on unfiltered data requires fewer samples for safety alignment
PaLM-2	 Data quality is important to train better models Model and data size should be scaled with 1:1 proportions Smaller models trained for larger iterations outperform larger models
LLaMA-3/3.1	 Increasing batch size gradually stabilizes the training without loss spikes High-quality data at the final stages of training improves the model performance Increasing model context length windows step-wise allows it to better adapt to various sequence lengths
Nemotron-40B	Model aligned iteratively on synthetic data with data generated from the previously aligned mode achieves competitive performance
DeepSeek	Batch size should increase with the increase in compute budget while decreasing the learning rate
DeepSeek-v2	• Mult-head latent attention (MLA) performs better than multi-head attention (MHA) while requiring a significantly smaller KV cache, therefore achieving faster data generation

2: instruction-tuned

Models	Findings & Insights
ТО	 Multi-task prompting enables zero-shot generalization and outperforms baselines Even a single prompt per dataset task is enough to improve performance
WebGPT	 To aid the model in effectively filtering and utilizing relevant information, human labelers play a crucial role in answering questions regarding the usefulness of the retrieved documents Interacting a fine-tuned language model with a text-based web-browsing environment can improve end-to-end retrieval and synthesis via imitation learning and reinforcement learning Generating answers with references can make labelers easily judge the factual accuracy of answers
Tk-INSTRUCT	 Instruction tuning leads to a stronger generalization of unseen tasks More tasks improve generalization whereas only increasing task instances does not help Supervised trained models are better than generalized models Models pre-trained with instructions and examples perform well for different types of inputs
mT0 and BLOOMZ	 Instruction tuning enables zero-shot generalization to tasks never seen before Multi-lingual training leads to even better zero-shot generalization for both English and non-English Training on machine-translated prompts improves performance for held-out tasks with non-English prompts English only fine-tuning on multilingual pre-trained language model is enough to generalize to other pre-trained language tasks
OPT-IML	 Creating a batch with multiple task examples is important for better performance Only example proportional sampling is not enough, training datasets should also be proportional for better generalization/performance Fully held-out and partially supervised tasks performance improves by scaling tasks or categories whereas fully supervised tasks have no effect Including small amounts i.e. 5% of pretraining data during fine-tuning is effective Only 1% reasoning data improves the performance, adding more deteriorates performance Adding dialogue data makes the performance worse
Sparrow	 Labelers' judgment and well-defined alignment rules help the model generate better responses Good dialogue goals can be broken down into detailed natural language rules for the agent and the raters The combination of reinforcement learning (RL) with reranking yields optimal performance in terms of preference win rates and resilience against adversarial probing
Flan	 Finetuning with CoT improves performance on held-out tasks Fine-tuning along with CoT data improves reasoning abilities CoT tuning improves zero-shot reasoning Performance improves with more tasks Instruction fine-tuning improves usability which otherwise is challenging for pre-trained models Improving the model's performance with instruction tuning is compute-efficient Multitask prompting enables zero-shot generalization abilities in LLM
WizardCoder	• Fine-tuning with re-written instruction-tuning data into a complex set improves performance
LLaMA-2-Chat	 Model learns to write safe responses with fine-tuning on safe demonstrations, while additional RLHF step further improves model safety and make it less prone to jailbreak attacks
LIMA	• Less high quality data is enough for fine-tuned model generalization

Aligning with Supported Evidence:		,	[180]	LLM
.RI	LHF	LLM		
	, Sparrow[167] .Sparrow[167] 가	3.2.4. Continue Pro	e-Training	
, . 가 R	L	LLM	가	[181, 152].
Aligning Directly with SFT: RLHF	PPO	LLWI	(PCP)[182]	·
가 , [168, 169, 170] (SFT) (DPO)[168]	, , PP	3.2.5. Sample Ecie	ncy 7}	[16, 97, 18] フト
. RAFT[169] 가 (PRO)[171] RRHF[1' . , (CoH)[2		. [183, 184] 183] 0.5% 4] 2%	·	.[25%7} [18
Aligning with Synthetic Feedback: LL	. LL	(LIMA)[1	[185] GP:	1000 Γ-4
LLM .Constitutional AI[173] RLHF RL from AI feedback(RLAIF) pacaFarm[174] LLM API .Constitut AlpacaFarm .Self-Align[98] ICL		LLM LLM ALiBi	[186, 49]. [46] LLM	ALiBi[65] [66] I
LLM Aligning with Prompts: LLM 5, 176]. [176]	LLM [17 CoT	RoPE	,	, · [49].
Red-Teaming/Jailbreaking/Adversarial , , ,	Attacks: LLM	Position Interpolat	ion:	[49]
[17	77, 178]. , LLM [178, 179].	ffe [46] RoPE NTK		. Gira YaRN [47]

RAG RAG RAG Training Retriever: LLM 9] LLM 8] [207] ICL . REPLUG [209] Training Retriever and LLM: [257]	. RETRO[205] RAG . [206, 207, 208, 20 . [206, 20 7] . RoBERTa LLM . 5, 210, 211]	Tools	Planning Retrieval Execution Memory Observation Feedback
가 가 . (RPT)[210]	(MLM) [25, 211],	13: LLM LM ,	. 가 가 . L , - ,
가	n: フト n-in-Decoder) フト	API . API API GPT[220]	API . Toolken . LLM
[212, 193, 210, 25]. Web Augmented: 7	LLM 가 .	Training with Tool Aug	mentation: LLM
3, 214, 166].	LLM [21	Gorilla[221] API . API GPT-4	[221, 27, 222, 223]. LLaMA
3.4.2. Tool Augmented LLMs RAG7\ LLM		•	(TALM)[27] T5[10]
, LLM ,	, LLM	. T PI .	oolLLM[223] RapidAPI 16k A API ChatGPT
[215, 216, 217, 27]. 13	, 13	ToolLLM	. (DFSDT)
Zero-Shot Tool Augmentation:	LLM	Multimodal Tool Augm	
. (AR	Γ)[217]	15, 216, 224]. 13	[2 LLM
. RestGPT[219]	LLM ナLLM ナ	$\rightarrow \qquad \rightarrow \qquad .$	· → , 가 .

LLM [226].	가
3.5. LLMs-Powered Agents	Multi-Agents Systems: LLM
AI ,	가 LLM
AI Clippy[227] Deep Blue[228] LLM LLM	[229, 239]. LLMs in Physical Environment: LLM 7
LLM [224, 216] .LLM [16 6, 167], [229], [27, 223], [26]	. [240, 26]. SayCan[240] LLM 가 . LLM(Say)
. LLM . [230, 231] .	가 (Can) 가 . SayCan RL 가 . PaLM-E LLM LLM 가
LLMs Steering Autonomous Agents: LLM ,	Manipulation: [236, 241] LLM
LLM ,	, , . 가
,	Navigation: LLM [242, 243, 244, 245].
Planning and Reasoning:	가 [246].
, , , [103], [105], , LLM	, , , , 가 가 가
.LLM	3.6. Ecient LLMs ()
[232]. (R AP)[233] LLM	LLM . LLM
.Retroformer[234] LLM LLM	
Feedback: LLM フト	3.6.1. Parameter Efficient Fine-Tuning GPT-3(175B), BLOOM(176B), MT-NLG(540B) LLM .
가 LLM LLM 가	(PEFT) [40, 247, 41, 38, 39] 가 . [248] PEFT
[235, 236, 237, 195]. LLM [238]. (RL)	가 , 가 가 가
Memory: LLM . Reflexion[195]	. PEFT 가 14 Adapter Tuning: 가 가 가 가 가
. Retro former[234]	[106] [38] (AdaMix) [249]

	. 가 (PEQA)[264]	LLM [275, 274	[269, 270, 271],	[272, 273, 274],
LLM OAT[262]			. LLM	I(MLLM)
. LLM-QAT[262]			LLM	MLLM
. QLoR LoRA[2. LLM	A[261] 4 50] 4 . 4			. MLLM
	•		[276, 26].	
3.6.3. Pruning 7	LM	MLL	M 가	가
	가		, MLLM 가	,
가 . LLM 가	가	•	MLLM	
가	·	Pre-training:	MLLM	
LLM 가	[265, 42, 266].	, Flamingo	[269]	
Unstructured Pruning: 가	7} . LLM LLM	-2[270] g Transformer(Q	LLM 2-Former)	. BLIP Queryin 2
, [255].7 가 (Wanda)[265] .가 . 가 67] 가 Wanda	' 가 가 가 (OWL)[2	LLM [277] na LLM[159]	- ViT[가 MiniGPT-4 278], Q-Former Vicu
가	가 가 가 (CAP)[43]	Fine-tuning:	: NLP [20, 1	
, 가	,	LL M 279, 30, 280] LLM	[277, 271, 29]	. LL [. M [58]
	, , , LLM-Pruner[42] 3	1, 283]	[279, 28 [284, 280	0] 가
가	LoRA 가	, 가	가	가 . , LLaMA-
SIMPLE)[268]	(Adapter[285]	LaVIN[284]	,
가 LLM 가	1 [266].	가	가	가
3.7. Multimodal LLMs	-	가 sper[286]	VideoChat-Tex LLM	t[272] in-corporates Whi
LLN	Л	Prompting:		

가		,	LLM . BLOOM[13] ALiBiフト
		MLLM	. GLM-130B[33] A LiBi .
[103]	LLM	(Co	Parallel Attention:
[287].			. 15%
. ,	-CoT[28		. PaLM[15], GPT-NeoX[118] CodeGen[140]
T-PT[288]			o . Multi-Query Attention
LLM		. CoT	
290].		[289	가 . 가
Visual Reasoning Appli	ication:		. [15, 142]
[291, 292, 216, 293] LLM			Mixture of Experts: [92, 91].
VQA 294, 295]	LLM		[フトフト . MoE
, 8]. LLM			5 [91]
intClip V2[292] LLM	3D	. , I	o . MoE [92].
,		3D GPT4Tools[31]	МоЕ
LoRA[250]	[293],	LLM [296]	[92]. Sparse vs Dense Activated: GPT-3[6] [67]
[291, 297]	LLM .		GLaM[91] PanGu-∑[92] MoE[121]
			[67].
3.8. Summary and Disci	ussion		
3.8.1. Architecture LLM			3.8.2. Training Strategies
LLM		•	. LLM
,		,	Mixed Precision: LLM
Layer Normalization: L	LLM .		FP16
[6, 127	7, 108].BLOOM[13	LLM 3] AlexaTM[12	
가			[33].FP16 가 FP32
[33]		[13].	BF16 [13].BF16
		100B . GLI	가 A100 GPU 1 . LLM
-130B[33]			•
Positional Encoding:		가	Training Instability: LLM .

	[1	5].	3.8.4. Zero-Shot vs F LLM	Few-Shot		
200~500	[15, 33, 91], [15]	[91]			LLM 가	
		[33].			[6].	
[15] Weight Initialization:		2	[15	, 16].		
	.GPT-NeoX [118] [153	$\frac{2}{L\sqrt{d}}$	•			
가 가	[298] フト .MT-NLG [117]	가 가	Flan-PaLM[16] . 3.8.5. Encoder vs De	CoT ecoder vs End	coder-Decoder	
,	Callantina [149]	[298]. 가	, NLG		, NLU , sequence2seq	
Learning Rate: . [13, 15, 12	Galactica [148] (4] ⁴ ~8e ⁻⁴) . MT-	122] .		NLG 14], GPT-3[6], Bl	Bert[I [10, 11, LOOM[13]
		B~175B	LLaMA[156] NLU UL2[125]			T5[10]
Training Parallelism. 3D D [37] Σ [92] 3D	. , , , , , , , , , , , , , , , , , , ,		15]	フト LLM [125, 122	가] -	PaLM[
가 Mode Switching:	5D	٠		. 가 가	CodeT5+[34]	
가	[125, 124, 1	22]			,	
		가 .		Ι	LLM	-
Controllable Text Ge	neration:		4.			
. GPT-3[6]	LLM .				3	4
35] , , ,	, ERN	IE 3.0 Titan[, 가 5		, LLM	,
3.8.3. Supervised Mo	dels vs Generalized Models		7 가	LLM	. 7 가	6
5, 18]	NLP	[6, 1	/ I		/ 1	

3: LLM (>10B). LLM ." / " , (Dedup), (QF), (PF) ." " GPU/TPU GPU ." " (OP), (OP), (PP), (C), (C), (M), (OP), (R) ." " (D), (T), (T), (P), (C), (M), (OP), (R) ." " 7† ... " 7† ... " 7† ... " 7† ... " 7† ... " 7† ... " 7† ... "

	Publication	License	Model		No. of	Commercia	1 Stone	Data/	Data	No. of	Processing	Fraining	Calculated	Training	
Models	Venue	Type	Creators	Purpose		Use	Trained			Processing Units				Parallelism	Library
T5 [10]	JMLR'20	Apache-2.0	Google	General	11B	√	1M	1T	Heur+Dedup	1024	TPU v3	-	-	D+M	Mesh TensorFlow
GPT-3 [6]	NeurIPS'20	-	OpenAI	General	175B	×	-	300B	Dedup+QF	-	V100	-	-	M	-
mT5 [11]	NAACL'21	Apache-2.0	Google	General	13B	✓	1M	1T	2 2	-	-	-	-	-	-
PanGu-α [108]	arXiv'21	Apache-2.0	Huawei	General	200B	√	260k	1.1TB	Heur+Dedup	2048	Ascend 910	-	-	D+OP+P+O+F	R MindSpore
CPM-2 [12]	AI Open'21	MIT	Tsinghua	General	198B	✓	1M	2.6TB	Dedup	-	-	-	-	D+M	JAXFormer
Codex [141]	arXiv'21	-	OpenAI	Coding	12B	×	-	100B	Heur	-	-	-	-	-	-
ERNIE 3.0 [110]	arXiv'21	-	Baidu	General	10B	×	120k*	375B	Heur+Dedup	384	V100	-	-	M*	PaddlePaddle
Jurassic-1 [112]	White-Paper'21	Apache-2.0	AI21	General	178B	√	-	300B	- *	800	GPU	-	-	D+M+P	Megatron+DS
HyperCLOVA [114]	EMNLP'21		Naver	General	82B	×	-	300B	Clf+Dedup+PF	1024	A100	321h	1.32 Mil	M	Megatron
Yuan 1.0 [115]	arXiv'21	Apache-2.0	-	General	245B	√	26k*	180B	Heur+Clf+Dedur	p 2128	GPU	-	-	D+T+P	-
Gopher [116]	arXiv'21		Google	General	280B	×	-	300B	QF+Dedup	4096	TPU v3	920h	13.19 Mil	D+M	JAX+Haiku
ERNIE 3.0 Titan [35]	arXiv'21	-	Baidu	General	260B	×	-	300B	Heur+Dedup	-	Ascend 910	-	-	D+M+P+D*	PaddlePaddle
GPT-NeoX-20B [118]	BigScience'22	Apache-2.0	EleutherAI	General	20B	✓	150k	825GB	None	96	40G A100	-	-	M	Megatron+DS+PyTorch
OPT [14]	arXiv'22	MIT	Meta	General	175B	√	150k	180B	Dedup	992	80G A100	-	-	D+T	Megatron
BLOOM [13]	arXiv'22	RAIL-1.0	BigScience	General	176B	✓	-	366B	Dedup+PR	384	80G A100	2520h	3.87 Mil	D+T+P	Megatron+DS
Galactica [148]	arXiv'22	Apache-2.0	Meta	Science	120B	×	225k	106B	Dedup	128	80GB A100	-	-	-	Metaseq
GLaM [91]	ICML'22	-	Google	General	1.2T	×	600k*	600B	Clf	1024	TPU v4	-	-	M	GSPMD
LaMDA [150]	arXiv'22	-	Google	Dialog	137B	×	3M	2.81T	Filtered	1024	TPU v3	1384h	4.96 Mil	D+M	Lingvo
MT-NLG [117]	arXiv'22	Apache-v2.0			530B	×	-	270B	-	4480	80G A100	-	-	D+T+P	Megatron+DS
AlphaCode [142]	Science'22	Apache-v2.0	Google	Coding	41B	✓	205k	967B	Heur+Dedup	-	TPU v4	-	-	M	JAX+Haiku
Chinchilla [96]	arXiv'22	-	Google	General	70B	×	-	1.4T	QF+Dedup	-	TPUv4	-	-	-	JAX+Haiku
PaLM [15]	arXiv'22	-	Google	General	540B	×	255k	780B	Heur	6144	TPU v4	-	-	D+M	JAX+T5X
AlexaTM [122]	arXiv'22	Apache v2.0	Amazon	General	20B	×	500k	1.1T	Filtered	128	A100	2880h	1.47 Mil	M	DS
U-PaLM [124]	arXiv'22	-	Google	General	540B	×	20k	_	-	512	TPU v4	120h	0.25 Mil	-	-
UL2 [125]	ICLR'23	Apache-2.0	Google	General	20B	✓	2M	1T	-	512	TPU v4	-	-	M	JAX+T5X
GLM [33]	ICLR'23	Apache-2.0	Multiple	General	130B	×	-	400B	-	768	40G A100	1440h	3.37 Mil	M	-
CodeGen [140]	ICLR'23	Apache-2.0	Salesforce	Coding	16B	✓	650k	577B	Heur+Dedup	-	TPU v4	-	-	D+M	JAXFormer
LLaMA [127]	arXiv'23	-	Meta	General	65B	×	350k		Clf+Heur+Dedur	p 2048	80G A100	504h	4.12 Mil	D+M	xFormers
PanGuΣ [92]	arXiv'23	-	Huawei	General	1.085T	×	_	329B	_	512	Ascend 910	2400h	_	D+OP+P+O+F	R MindSpore
BloombergGPT [151]	arXiv23	-	Bloomberg		50B	×	139k	569B	Dedup	512	40G A100	1272h	1.97 Mil	M	PyTorch
Xuan Yuan 2.0 [152]	arXiv23	RAIL-1.0	Du Xiaoman		176B	√	-	366B	Filtered		80GB A100	-	-	P	DS
CodeT5+ [34]	arXiv'23	BSD-3	Salesforce	Coding	16B	· /	110k	51.5B	Dedup	16	40G A100	-	_	-	DS
StarCoder [147]		OpenRAIL-M		Coding	15.5B	·	250k	1T	Dedup+QF+PF		80G A100	624h	1.28 Mil	D+T+P	Megatron-LM
LLaMA-2 [21]	arXiv'23	LLaMA-2.0	Meta	General	70B	· /	500k		Minimal Filtering		80G A100	1.7Mh	-		-
PaLM-2 [123]	arXiv'23	-	Google	General	-	×	-		Ddedup+PF+QF		-	-	_	-	-
LLaMA-3.1 [130]	arXiv'24	LLaMA-3.0	Meta	General	405B	√	1.2M	15T	Dedup+QF	16k	80G H100	30.84Mh	_	D+T+P+C	PyTorch
Mixtral 8x22B [131]	web'24	Apache-2.0	Mistral AI	General	141B	· /	-	-	-	-	-	-	_	-	
Snowflake Arctic [132]		Apache-2.0	Snowflake	General	480B	· /	-	3.5T	-	-		-	_	T+P	DS
Nemotron-4 340B [137		Nvidia	Nvidia	General	340B	·	-	9T	-	6144	80G H100		_	D+T+P	-
DeepSeek [138]	arXiv'24	MIT	DeepSeek	General	67B	· /	-	2T	Dedup+QF	-		300.6Kh	_	D+T+P	DS
DeepSeek-v2 [139]	arXiv'24	MIT	DeepSeek		67B	·	-	8.1T	OF C	-		172.8Kh	_	D+P	HAI-LLM

4: LLM(>10B) . 3 . "S-" " / "

Models	Publication Venue	License Type	Model Creators	Purpose			Pre-trained Models		Data/ Tokens	No. of Processing Units	Processing Unit Type			Train. Parallelism	Library
WebGPT [166]	arXiv'21	-	OpenAI	General	175B	×	GPT-3	-	-	-	-	-	-	-	-
T0 [17]	ICLR'22	Apache-2.0	BigScience	General	11B	✓	T5	-	250B	512	TPU v3	270h	0.48 Mil	-	-
Tk-Instruct [18]	EMNLP'22	MIT	AI2+	General	11B	✓	T5	1000	-	256	TPU v3	4h	0.0036 Mil	-	Google T5
OPT-IML [97]	arXiv'22	-	Meta	General	175B	×	OPT	8k	2B	128	40G A100	-	-	D+T	Megatron
Flan-U-PaLM [16]	ICLR'22	Apache-2.0	Google	General	540B	✓	U-PaLM	30k	-	512	TPU v4	-	-	-	JAX+T5X
mT0 [154]	ACL'23	Apache-2.0	HuggingFace+	General	13B	✓	mT5	-	-	-	-	-	-	-	-
Sparrow [167]	arXiv'22	-	Google	Dialog	70B	×	Chinchilla	-	-	64	TPU v3	-	-	M	-
WizardCoder [164]	arXiv'23	Apache-2.0	HK Bapt.	Coding	15B	×	StarCoder	200	S-78k	-	-	-	-	-	-
Alpaca [158]	Github'23	Apache-2.0	Stanford	General	13B	✓	LLaMA	3-Epoch	S-52k	8	80G A100	3h	600	FSDP	PyTorch
Vicuna [159]	Github'23	Apache-2.0	LMSYS	General	13B	✓	LLaMA	3-Epoch	S-125k	-	-	-	-	FSDP	PyTorch
LIMA [185]	arXiv'23	-	Meta+	General	65B	-	LLaMA	15-Epoch	S-1000	-	-	-	-	-	-
Koala [300]	Github'23	Apache-2.0	UC-Berkley	General	13B	×	LLaMA	2-Epoch	S-472k	8	A100	6h	100	-	JAX/FLAX

5. 7 5.1. Training Datasets

LLM ,

 LLM
 カ
 . LLM

 . LLM
 . カ

. 가 . 5. I I M "DE" , "nH" , "HS"

5: LLM	•	"PE"	, "nL"

Models	Туре	Training Objective	Attention	Vocab	Tokenizer	Norm	PE	Activation	Bias	nL	nН	HS
T5 (11B)	Enc-Dec	Span Corruption	Standard	32k	SentencePiece	Pre-RMS	Relative	ReLU	×	24	128	1024
GPT3 (175B)	Causal-Dec	Next Token	Dense+Sparse	-	-	Layer	Learned	GeLU	✓	96	96	12288
mT5 (13B)	Enc-Dec	Span Corruption	Standard	250k	SentencePiece	Pre-RMS	Relative	ReLU	-	-	-	-
PanGu-α (200B)	Causal-Dec	Next Token	Standard	40k	BPE	Layer	-	-	-	64	128	16384
CPM-2 (198B)	Enc-Dec	Span Corruption	Standard	250k	SentencePiece	Pre-RMS	Relative	ReLU	-	24	64	-
Codex (12B)	Causal-Dec	Next Token	Standard	-	BPE+	Pre-Layer	Learned	GeLU	-	96	96	12288
ERNIE 3.0 (10B)	Causal-Dec	Next Token	Standard	-	WordPiece	Post-Layer	Relative	GeLU	-	48	64	4096
Jurassic-1 (178B)	Causal-Dec	Next Token	Standard	256k	SentencePiece*	Pre-Layer	Learned	GeLU	✓	76	96	13824
HyperCLOVA (82B)	Causal-Dec	Next Token	Dense+Sparse	-	BPE*	Pre-Layer	Learned	GeLU	-	64	80	10240
Yuan 1.0 (245B)	Causal-Dec	Next Token	Standard	-	-	-	-	-	-	76	-	16384
Gopher (280B)	Causal-Dec	Next Token	Standard	32k	SentencePiece	Pre-RMS	Relative	GeLU	✓	80	128	16384
ERNIE 3.0 Titan (260B)	Causal-Dec	Next Token	Standard	-	WordPiece	Post-Layer	Relative	GeLU	-	48	192	12288
GPT-NeoX-20B	Causal-Dec	Next Token	Parallel	50k	BPE	Layer	Rotary	GeLU	✓	44	64	-
OPT (175B)	Causal-Dec	Next Token	Standard	-	BPE	-	-	ReLU	✓	96	96	-
BLOOM (176B)	Causal-Dec	Next Token	Standard	250k	BPE	Layer	ALiBi	GeLU	✓	70	112	14336
Galactica (120B)	Causal-Dec	Next Token	Standard	50k	BPE+custom	Layer	Learned	GeLU	×	96	80	10240
GLaM (1.2T)	MoE-Dec	Next Token	Standard	256k	SentencePiece	Layer	Relative	GeLU	✓	64	128	32768
LaMDA (137B)	Causal-Dec	Next Token	Standard	32k	BPE	Layer	Relative	GeGLU	-	64	128	8192
MT-NLG (530B)	Causal-Dec	Next Token	Standard	50k	BPE	Pre-Layer	Learned	GeLU	✓	105	128	20480
AlphaCode (41B)	Enc-Dec	Next Token	Multi-query	8k	SentencePiece		-	-	-	64	128	6144
Chinchilla (70B)	Causal-Dec	Next Token	Standard	32k	SentencePiece-NFKC	Pre-RMS	Relative	GeLU	✓	80	64	8192
PaLM (540B)	Causal-Dec	Next Token	Parallel+Multi-query	256k	SentencePiece	Layer	RoPE	SwiGLU	×	118	48	18432
AlexaTM (20B)	Enc-Dec	Denoising	Standard	150k	SentencePiece	Pre-Layer	Learned	GeLU	✓	78	32	4096
Sparrow (70B)	Causal-Dec	Pref.&Rule RM	-	32k	SentencePiece-NFKC	Pre-RMS	Relative	GeLU	✓	16*	64	8192
U-PaLM (540B)	Non-Causal-Dec	MoD	Parallel+Multi-query	256k	SentencePiece	Layer	RoPE	SwiGLU	×	118	48	18432
UL2 (20B)	Enc-Dec	MoD	Standard	32k	SentencePiece	-	-	-	-	64	16	4096
GLM (130B)	Non-Causal-Dec	AR Blank Infilling	Standard	130k	SentencePiece	Deep	RoPE	GeGLU	✓	70	96	12288
CodeGen (16B)	Causal-Dec	Next Token	Parallel	-	BPE	Layer	RoPE	-	-	34	24	-
LLaMA (65B)	Causal-Dec	Next Token	Standard	32k	BPE	Pre-RMS	RoPE	SwiGLU	-	80	64	8192
PanGu-Σ (1085B)	Causal-Dec	Next Token	Standard	-	BPE	Fused Layer	-	FastGeLU	-	40	40	5120
BloombergGPT (50B)	Causal-Dec	Next Token	Standard	131k	Unigram	Layer	ALiBi	GeLU	✓	70	40	7680
Xuan Yuan 2.0 (176B)	Causal-Dec	Next Token	Self	250k	BPE	Layer	ALiBi	GeLU	✓	70	112	14336
CodeT5+ (16B)	Enc-Dec	SC+NT+Cont.+Match	Standard	-	Code-Specific	-	-	-	-	-	-	-
StarCoder (15.5B)	Causal-Dec	FIM	Multi-query	49k	BPE	-	Learned	-	-	40	48	6144
LLaMA-2 (70B)	Causal-Dec	Next Token	Grouped-query	32k	BPE	Pre-RMS	RoPE	SwiGLUE	-	-	-	-
PaLM-2	-	MoD	Parallel	-	-	-	-	-	-	-	-	-
LLaMA-3.1 (405B)	Causal-Dec	Next Token	Grouped-query	128k	BPE	Pre-RMS	RoPE	SwiGLU	-	126	128	16384
Nemotron-4 (340B)	Causal-Dec	Next Token	Standard	256k	SentencePiece	-	RoPE	ReLU	×	96	96	18432
DeepSeek (67B)	Causal-Dec	Next Token	Grouped-query	100k	BBPE	Pre-RMS	RoPE	SwiGLU	-	95	64	8192
DeepSeek-v2 (67B)	MoE-Dec	Next Token	Multi-Head Latent	100k	BBPE	Pre-RMS	RoPE	SwiGLU	-	60	128	5120

5.2. Evaluation Datasets and Tasks 가 LLM LLM (LM) 가 가 . 1) (NLU) 2) (NLG). NLU NLG

Natural Language Understanding: LM (NLI), (CR), (QA), (M

(RC) R),

Natural Language Generation: 가 LLM

(MT), 가 LLM 가 가 가

가

10 LLM 11 12 LLM NLP LLM

5.2.1. Multi-task MMLU [307]: 57 가

SuperGLUE [2]: GLUE [309] SuperGLUE

가

BIG-bench [308]: BIG-bench(LLM

GLUE [309]: GLUE(General Language Understanding Eval , 가 uation)

26

6: LLM . LLM 7 , 0.1, 1.0 0.1

		Sequence			LR		Optimize			Precisio		Weight	Grad	
Models	Batch Size	Length	LR	Warmup	Decay	Adal	Facto A dar	n Adam	WFI	P16 BF16	Mixe	d Decay	Clip	Dropout
T5 (11B)	211	512	0.01	X	inverse square root	√			-	-	-	-	-	✓
GPT3 (175B)	32K	-	6e-5	✓	cosine		✓		1			✓	✓	-
mT5 (13B)	1024	1024	0.01	-	inverse square root	√			-	-	-	-	-	✓
PanGu-α (200B)	-	1024	2e-5	-	-	-	-	-	-	✓	-	-	-	-
CPM-2 (198B)	1024	1024	0.001	-	-	√			-	-	-	-	-	✓
Codex (12B)	-	-	6e-5	✓	cosine		✓		✓			✓	-	-
ERNIE 3.0 (12B)	6144	512	1e-4	✓	linear		✓		-	-	-	✓	-	-
Jurassic-1 (178B)	3.2M	2048	6e-5	✓	cosine		✓		✓			✓	✓	-
HyperCLOVA (82B)	1024	-	6e-5	-	cosine			\checkmark	-	-	-	✓	-	-
Yuan 1.0 (245B)	<10M	2048	1.6e-4	✓	cosine decay to 10%		✓		-	-	-	✓	-	-
Gopher (280B)	3M	2048	4e-5	✓	cosine decay to 10%		✓			✓		-	✓	-
ERNIE 3.0 Titan (260B)	-	512	1e-4	✓	linear		✓		✓			✓	✓	-
GPT-NeoX-20B	1538	2048	0.97e-5	✓	cosine			\checkmark	1			✓	✓	×
OPT (175B)	2M	2048	1.2e-4	-	linear			✓	✓			✓	✓	✓
BLOOM (176B)	2048	2048	6e-5	✓	cosine		✓			✓		✓	✓	X
Galactica (120B)	2M	2048	7e-6	✓	linear decay to 10%			✓	-	-	-	✓	✓	✓
GLaM (1.2T)	1M	1024	0.01	-	inverse square root	√				FP32 +	✓	-	✓	×
LaMDA (137B)	256K	-	-	-	-	-	-	-	-	-	-	-	-	-
MT-NLG (530B)	1920	2048	5e-5	✓	cosine decay to 10%		✓			✓		✓	✓	-
AlphaCode (41B)	2048	1536+768	1e-4	✓	cosine decay to 10%			✓		✓		✓	✓	-
Chinchilla (70B)	1.5M	2048	1e-4	✓	cosine decay to 10%			✓		✓		-	-	-
PaLM (540B)	2048	2048	0.01	-	inverse square root	✓			-	-	-	✓	✓	×
AlexaTM (20B)	2M	1024	1e-4	-	linear decay to 5%		✓			✓		✓	-	✓
U-PaLM (540B)	32	2048	1e-4	-	cosine	✓			-	-	-	-	-	-
UL2 (20B)	1024	1024	-	-	inverse square root	-	-	-	-	-	-	×	-	-
GLM (130B)	4224	2048	8e-5	✓	cosine			✓	✓			✓	✓	✓
CodeGen (16B)	2M	2048	5e-5	✓	cosine		✓		-	-	-	✓	✓	-
LLaMA (65B)	4M Tokens	2048	1.5e-4	✓	cosine decay to 10%			\checkmark	-	-	-	✓	✓	-
PanGu- Σ (1.085T)	512	1024	2e-5	✓	-		✓				✓	-	-	-
BloombergGPT (50B)	2048	2048	6e-5	✓	cosine			\checkmark			\checkmark	✓	\checkmark	×
Xuan Yuan 2.0 (176B)	2048	2048	6e-5	✓	cosine		✓		✓			✓	✓	-
CodeT5+ (16B)	2048	1024	2e-4	-	linear			✓			✓	✓	-	-
StarCoder (15.5B)	512	8k	3e-4	✓	cosine		✓			✓		✓	-	-
LLaMA-2 (70B)	4M Tokens	4k	1.5e-4	✓	cosine			✓		✓		✓	✓	-
LLaMA-3.1 (405B)	16M	8192	8e-5	✓	linear+cosine			✓		✓		-	-	-
Nemotron-4 (340B)	2304	4096	-	-	linear	-	-	-		✓		-	-	×
DeepSeek (67B)	4608	4096	3.2e-4	✓	cosine			✓		✓		✓	✓	-
DeepSeek-v2 (67B)	9216	4k	2.4e-4	✓	step-decay			✓	-	-	-	✓	\checkmark	-

		Sequence				0	ptimizers		Grad	
Models	Batch Size	Length	LR	Warmup	LR_Decay	AdaFactor	Adam	AdamW	Clip	Dropout
WebGPT (175B)	BC:512, RM:32	-	6e-5	-	-		✓		-	-
T0 (11B)	1024	1280	1e-3	-	-	✓			-	✓
Tk-Instruct (11B)	1024	-	1e-5	-	constant	-	-	-	-	-
OPT-IML (175B)	128	2048	5e-5	×	linear		\checkmark		✓	√
Flan-U-PaLM (540B)	32	-	1e-3	-	constant	✓			-	✓
Sparrow (70B)	RM: 8+16, RL:16	-	2e-6	✓	cosine decay to 10%	✓			✓	×
WizardCoder (15B)	512	2048	2e-5	✓	cosine	-	-	-	-	-
Alpaca (13B)	128	512	1e-5	✓	cosine	-	-	✓	✓	×
Vicuna (13B)	128	-2048	2e-5	✓	cosine			✓	-	×
LIMA (65B)	32	2048	1e-5	×	linear			✓	-	√

8:

Dataset	Type	Size/Samples	Tasks	Source	Creation	Comments
C4 [10]	Pretrain	806GB	-	Common Crawl	Automated	A clean, multilingual dataset with billions of tokens
mC4 [11]	Pretrain	38.49TB	-	Common Crawl	Automated	A multilingual extension of the C4 dataset, mC4 identifies over 100 languages using cld3 from 71 monthly web scrapes of Common Crawl.
PILE [301]	Pretrain	825GB	-	Common Crawl, PubMed Central, OpenWebText2, ArXiv, GitHub, Books3, and others	Automated	A massive dataset comprised of 22 constituent sub-datasets
ROOTs [302]	Pretrain	1.61TB	-	498 Hugging Face datasets	Automated	46 natural and 13 programming languages
MassiveText [116]	Pretrain	10.5TB	-	MassiveWeb, Books, News, Wikipedia, Github, C4	Automated	99% of the data is in English
Wikipedia [303]	Pretrain	-	-	Wikipedia	Automated	Dump of wikipedia
RedPajama [304]	Pretrain	5TB	-	CommonCrawl, C4, Wikipedia, Github, Books, StackExchange	Automated	Open-source replica of LLaMA dataset
PushShift.io Reddit	Pretrain	21.1GB	-	Reddit	Automated	Submissions and comments on Reddit from 2005 to 2019
BigPython [140]	Pretrain	5.5TB	Coding	GitHub	Automated	-
Pool of Prompt (P3) [17]	Instructions	12M	62	PromptSource	Manual	A Subset of PromptSource, created from 177 datasets including summarization, QA, classification, etc.
xP3 [154]	Instructions	81M	71	P3+Multilingual datasets	Manual	Extending P3 to total 46 languages
Super-NaturalInstructions (SNI) [18]	Instructions	12.4M	1616	Multiple datasets	Manual	Extending P3 with additional multi- lingual datasets, total 46 languages
Flan [16]	Instructions	15M	1836	Muffin+T0-SF+NIV2	Manual	Total 60 languages
OPT-IML [97]	Instructions	18.1M	1667	-	Manual	-
Self-Instruct [19]	Instructions	82k	175	-	Automated	Generated 52k instructions with 82k samples from 175 seed tasks using GPT-3
Alpaca [158]	Instructions	52k	-	-	Automated	Employed self-instruct method to generate data from text-davinci-003
Vicuna [159]	Instructions	125k	-	ShareGPT	Automated	Conversations shared by users on ShareGPT using public APIs
LLaMA-GPT-4 [160]	Instructions	52k	-	Alpaca	Automated	Recreated Alpaca dataset with GPT-4 in English and Chinese
Unnatural Instructions [305]	Instructions	68k	-	15-Seeds (SNI)	Automated	-
LIMA [185]	Instructions	1k	-	Multiple datasets	Manual	Carefully created samples to test performance with fine-tuning on less data
Anthropic-HH-RLHF [306]	Alignment	142k	-	-	Manual	-
Anthropic-HH-RLHF-2 [178]	Alignment	39k	-	_	Manual	

Wikitext103 [318]: Wikipedia 1 *LAMBADA* [335]: 가 가 PG19 [319]: Project Gutenberg 5.2.4. Physical Knowledge and World Understanding C4 [10]: PIQA [340]: C4 Transformer (LCQMC LCQMC [320]: *TriviaQA* [341]: (QA) 가 가 QA 가 ARC [342]: ARC-Challenge 가 5.2.3. Story Cloze and Sentence Completion StoryCloze [334]: ARC-Easy [342]: ARC AR 가 "StoryCl C-Easy oze Test"

Туре	Datasets/Benchmarks
Multi-Task	MMLU [307], SuperGLUE [2], BIG-bench [308], GLUE [309], BBH [308], CUGE [310], Zero-CLUE [311], FewCLUE [312], Blended Skill Talk [313], HELM [314], KLUE-STS [315]
Language Understanding	CoQA [316], WiC [317], Wikitext103 [318], PG19 [319], LCQMC [320], QQP [321], WinoGender [322], CB [323], FinRE [324], SanWen [325], AFQMC [311], BQ Corpus [326], CNSS [327], CKBQA 13 [328], CLUENER [311], Weibo [329], AQuA [330], OntoNotes [331], HeadQA [332], Twitter Dataset [333]
Story Cloze and Sentence Completion	StoryCloze [334], LAMBADA [335], LCSTS [336], AdGen [337], E2E [338], CHID [339], CHID-FC [312]
Physical Knowledge and World Understanding	PIQA [340], TriviaQA [341], ARC [342], ARC-Easy [342], ARC-Challenge [342], PROST [343], Open-BookQA [344], WebNLG [345], DogWhistle Insider & Outsider [346]
Contextual Language Understanding	RACE [347], RACE-Middle [347], RACE-High [347], QuAC [348], StrategyQA [349], Quiz Bowl [350], cMedQA [351],cMedQA2 [352], MATINF-QA [353]
Commonsense Reasoning	WinoGrande [354], HellaSwag [355], COPA [356], WSC [357], CSQA [358], SIQA [359], C ³ [360], CLUEWSC2020 [311], CLUEWSC [311], CLUEWSC-FC [312], ReCoRD [361]
Reading Comprehension	SQuAD [362], BoolQ [363], SQUADv2 [364], DROP [365], RTE [366], WebQA [367], CMRC2017 [368], CMRC2018 [369], CMRC2019 [370], COTE-BD [371], COTE-DP [371], COTE-MFW [371], MultiRC [372], Natural Questions [373], CNSE [327], DRCD [374], DuReader [375], Dureader _{robust} [376], DuReader-QG [375], SciQ [377], Sogou-log [378], Dureader _{robust} -QG [376], QA4MRE [379], KorQuAD 1.0 [380], CAIL2018-Task1 & Task2 [381]
Mathematical Reasoning	MATH [382], Math23k [383], GSM8K [384], MathQA [385], MGSM [386], MultiArith [387], AS-Div [388], MAWPS [389], SVAMP [390]
Problem Solving	HumanEval [141], DS-1000 [391], MBPP [392], APPS [382], CodeContests [142]
Natural Language Inference & Logical Reasoning	ANLI [393], MNLI-m [394], MNLI-mm [394],QNLI [362], WNLI [357], OCNLI [311], CMNLI [311], ANLI R1 [393], ANLI R2 [393], ANLI R3 [393], HANS [395], OCNLI-FC [312], LogiQA [396], StrategyQA [349]
Cross-Lingual Understanding	MLQA [397], XNLI [398], PAWS-X [399], XSum [400], XCOPA [401], XWinograd [402], TyDiQA-GoldP [403], MLSum [404]
Truthfulness and Fact Checking	TruthfulQA [405], MultiFC [406], Fact Checking on Fever [407]
Biases and Ethics in AI	ETHOS [408], StereoSet [409], BBQ [410], Winobias [411], CrowS-Pairs [412]
Toxicity	RealToxicityPrompts [413], CivilComments toxicity classification [414]
Language Translation	WMT [415], WMT20 [416], WMT20-enzh [416], EPRSTMT [312], CCPM [417]
Scientific Knowledge	AminoProbe [148], BioLAMA [148], Chemical Reactions [148], Galaxy Clusters [148], Mineral Groups [148]
Dialogue	Wizard of Wikipedia [418], Empathetic Dialogues [419], DPC-generated [96] dialogues, ConvAI2 [420], KdConv [421]
Topic Classification	TNEWS-FC [312], YNAT [315], KLUE-TC [315], CSL [311], CSL-FC [312], IFLYTEK [422]

ARC-Challenge [342]: QuAC [348]: ARC-Challenge 가 5.2.5. Contextual Language Understanding 5.2.6. Commonsense Reasoning **RACE** [347]: RACE , AI HellaSwag [355]: **RACE-Middle [347]:** RACE [347] COPA [401]: 가 RACE-Middle 가 가 가 **RACE-High** [347]: RACE [347] WSC [357]: Winograd Schema Challenge(WSC) RACE-High

10 : LLM 7, "QA" , "Clf" , "NL" g, "Clf" . "QA" . "QA" . "QA" . "NL"

	Benchmark								T41-6-1/					
Models	Training Dataset	BIG- bench	MMLU	Super GLUE	QA	Clf	NLI	МТ	Cloze/ Completion	RC	CR		Coding	Truthful/ Bias/ Toxicity/ Mem.
T5	C4 [10]			√	√		√	√	√	√	✓	✓		
GPT-3	Common Crawl, WebText, Books Corpora, Wikipedia			√	√			√	√	√				√
mT5 PanGu-α	mC4 [11] 1.1TB Chinese Text Corpus				√		√	√	√	√	/			
CPM-2	WuDaoCorpus [109]				V		V		V	√	· ·	V		
Codex	54 million public repositories from Github									· ·		· ·	√	
ERNIE-3.0	Chinese text corpora, Baidu Search, Web text, QA-long, QA-short, Poetry and Cou- plet Domain-specific data from medical, law, and financial area Baidu knowledge graph with more than 50 million facts			√	√	√	√	√	√	√		√	·	
Jurassic-1	Wikipedia, OWT, Books, C4, Pile [301], arXiv, GitHub				√		√		√	√				
HyperCLOVA	Korean blogs, Community sites, News, KiN Korean Wikipedia, Wikipedia (En- glish and Japanese), Modu-Corpus: Mes- senger, News, Spoken and written lan- guage corpus, Web corpus							√						
Yuan 1.0	Common Crawl, SogouT, Sogou News, Baidu Baike, Wikipedia, Books				√	√	√			√				
Gopher	subsets of MassiveWeb Books, C4, News, GitHub and Wikipedia samples from Mas- siveText	√	√	√	√						√	√		√
ERNIE-3.0 TITAN	Same as ERNIE 3.0 and ERNIE 3.0 adversarial dataset, ERNIE 3.0 controllable dataset				√	√	√		√	√				
GPT-NeoX-20B	Pile [301]			√	√		1		√		√	√		
OPT	RoBERTa [299], Pile [301], PushShift.io Reddit [423]				√	√					√			√
BLOOM	ROOTs [13]			√			V	√	√				√	√
Galactica	arXiv, PMC, Semantic Scholar, Wikipedia, StackExchange, LibreText, Open Text- books, RefSeq Genome, OEIS, LIPID MAPS, NASAExoplanet, Common Crawl, ScientificCC, AcademicCC, GitHub repos- itories Khan Problems, GSM8K, OneS- mallStep	√	√		\ \frac{1}{2}							√		v
GLaM	Filtered Webpages, Social media conversa- tions Wikipedia, Forums, Books, News				√		√		√	√	√			
LaMDA	Infiniset: Public documents, Dialogs, Utterances													✓
MT-NLG	Two snapshots of Common Crawl and Books3, OpenWebText2, Stack Exchange, PubMed Abstracts, Wikipedia, PG-19 [242], BookCorpus2, NIH ExPorter, Pile, CC-Stories, RealNews						√		√	√	√			√
AlphaCode	Selected GitHub repositories, CodeContests: Codeforces, Description2Code, CodeNet												√	
Chinchilla	MassiveWeb, MassiveText Books, C4, News, GitHub, Wikipedia	√	√		√					√	√			√
PaLM	webpages, books, Wikipedia, news, arti- cles, source code, social media conversa- tions	√			√			√			√		√	√
AlexaTM	Wikipedia, mC4			√			√	✓			√			√
U-PaLM	Same as PaLM	√		√	√	-	√		✓	✓	✓	,		,
UL2 GLM-130B	-	√	√	✓	√	√	√		√		-	√		√
CodeGen	Pile, BigQuery, BigPython	V				-		\vdash	V		-		√	
LLaMA	CommonCrawl, C4, Github, Wikipedia, Books, arXiv, StackExchange		√		√					√	√	√	√	√
PanGu-Σ	WuDaoCorpora, CLUE, Pile, C4, Python code				V	√	V	√	√				√	
BloombergGPT	inPile, Pile, C4, Wikipedia	√	√				√		√	√	√			√
CodeT5+	CodeSearchNet, Github Code											✓	√	
StarCoder	The Stack v1.2		√									√	√	✓
LLaMA-2 PaLM-2	✓ Web documents, Code, Books, Maths,	✓		√ √	√	\	/	-	√	√ √	√	√	√ √	/
1 dLlVI-4	Conversation			V				'		'	'	'	'	V

11:

Models	Training Dataset	BIG- bench	MMLU	ввн	RAFT	FLAN	SNI	PromptSource	TyDiQA	HumanEval	MBPP	Truthful/ Bias/ Toxicity
T0	Pool of Prompts	√										
WebGPT	ELI5 [424], ELI5 fact-check [166], TriviaQA [341], ARC-Challenge [342], ARC-Easy [342], Hand-written data, Demonstrations of humans, Comparisons between model-generated answers											√
Tk-INSTRUCT	SNI [18]						√					
mT0	xP3 [154]											
OPT-IML	PromptSource [17], FLAN [16], SNI [425], UnifiedSKG [426], CrossFit [427], ExMix [428], T5 [10], Reasoning		√	√	√	✓	√	√				
Flan	Muffin, T0-SF, NIv2, CoT		√	✓					√			
WizardCoder	Code Alpaca									√	√	

	nseQA AI 기 ・		5.2.8. Mathematical Reasoning MATH [382]: フト	AI 가 ,
5.2.7. Reading Comprehens BoolQ [363]: Google BoolQ (. edia		Wikip	. <i>Math23k [383]:</i> プト	23,000
SQUADv2 [364]: Stanford uAD) [362] Wikipedia	rd Question Answerin	ag Dataset(SQ 가	GSM8K [384]:	
1.1 50,000	. SQuADv2 가 가	SQuAD	5.2.9. Problem Solving and Logi ANLI [393]: (NLI	
DROP [365]: DROP, ntent of Paragraphs	Discrete Reasonir	ng Over the co	HumanEval [141]: AI	가
DTE [244].	가		AI . StrategyQA [349]: AI	가 가
RTE [366]:	(RTE)		가 가	
フト WebQA [367]: WebQA AI フト CMRC2018 [369]:			5.2.10. Cross-Lingual Understan XNLI [398]: 9] . 37 112,500	XNLI MultiNLI[42 15
			<i>PAWS-X</i> [399]: PAWS-X ngual Paraphrase Adversaries	Word Scrambling Cross-l

PAWS[430]	-1			AI	가 ,	
7 - 2	가 가			Medicine: 가	LLM	, LLM
5.2.11. Truthfulness Truthful-QA [405]	:					[436, 437, 438].
, ,		•			, . 가LI	, LM
				[4	139, 440, 441]	,
5.2.12. Biases and El ETHOS [408]: ET			Reddit	LLM	,	,
	,			,		, , , , , , , , , , , , , , , , , , ,
StereoSet [409]: S	tereoS	et 가		,	LLM	,
	,	,	가	,	[445, 446, 447, 4	48].
		가 .				LLM
						,
6.			(LLM)	, <i>7</i>	[4]}	149]. LLM
AI 가	,		가			450, 451].
LLM				Education: LLN	М	,
, , ,			, , , LLM			가 ,
		LLM .	가	LLM LLM		[452]. 가
General Purpose:	LLM	[431].		[453, 4	1541	가 LLM
			,		,	,
		,	,	,	[455].	LLM 가
		[432]. LLM			,	가
			LLM			[451]. LLM
	가	[433].				
				Science:		LLM
[434]. . LLM	LLM					가 가
		[435]			LLM	가
]	LLM			[45	6, 457]. LL	M

Task	Dataset/Benchmark	Top)-1	To	p-2	Top-3		
iask	Dataset/Deficilitat K	Model (Size)	Score (N-shots)	Model (Size)	Score (N-shots)	Model (Size)	Score (N-shots)	
Multi-Task	BIG-bench (B)	Chinchilla (70B)	65.1 (5-shot)	Gopher (280B)	53.97 (5-shot)	PaLM (540B)	53.7 (5-shot)	
Wutti-Task	MMLU (B)	GPT-4 (-)	86.4 (5-shot)	Gemini (Ultra)	83.7 (5-shot)	Flan-PaLM-2 _(f) (Large)	81.2 (5-shot)	
Language Understanding	SuperGLUE (B)	ERNIE 3.0 (12B)	90.6 (-)	PaLM _(f) (540B)	90.4 (-)	T5 (11B)	88.9 (-)	
Story Comprehension and	HellaSwag	GPT-4 (-)	95.3 (10-shot)	Gemini (Ultra)	87.8 (10-shot)	PaLM-2 (Large)	86.8 (one shot)	
Generation	StoryCloze	GPT3 (175B)	87.7 (few shot)	PaLM-2 (Large)	87.4 (one shot)	OPT (175B)	79.82 (-)	
Physical Knowledge and	PIQA	PaLM-2 (Large)	85.0 (one shot)	LLaMa (65B)	82.8 (zero shot)	MT-NLG (530B)	81.99 (zero shot)	
World Understanding	TriviaQA	PaLM-2 (Large)	86.1 (one shot)	LLaMA-2 (70B)	85.0 (one shot)	PaLM (540B)	81.4 (one shot)	
Contextual Language	LAMBADA	PaLM (540B)	89.7 (few shot)	MT-NLG (530B)	87.15 (few shot)	PaLM-2 (Large)	86.9 (one shot)	
Understanding			0,11 (2011 01101)	(****)	07110 (0111 01101)	g-/	**** (*********************************	
Commonsense Reasoning	WinoGrande	GPT-4 (-)	87.5 (5-shot)	PaLM-2 (Large)	83.0 (one shot)	PaLM (540B)	81.1 (zero shot)	
Commonsense Reasoning	SIOA	LLaMA (65B)	52.3 (zero shot)	Chinchilla (70B)	51.3 (zero shot)	Gopher (280B)	50.6 (zero shot)	

T5 (11B)

PaLM-2 (Large)

PaLM-2 (Large)

GPT-4 (-)

91.2 (-)

34.3 (4-shot)

80.7 (8-shot)

67.0 (zero shot)

PaLM-2 (Large)

LLaMa-2 (65B)

U-PaLM (540B)

Code Llama (34B)

90.9 (one shot)

13.5 (4-shot)

58.5 (-)

48.8 (zero shot)

92.2 (-)

57 (-)

53.2 (4-shot)

92.0 (5-shot)

74.4 (zero shot)

PaLM_(f) (540B)

LLaMA (65B)

Gemini (Ultra)

GPT-4 (-)

Gemini_(f) (Ultra)

Reading Comprehension

Mathematical Reasoning

Problem Solving and

Logical Reasoning

Truthfulness

BoolQ

MATH

GSM8K

Truthful-QA

HumanEval

가 [468] [469]. Finance: BloombergGPT[151] LLM 가 [458]. LLM 가 [459, 460]. LLM 가 Fi nGPT[470] 가 Maths: LLM $. \ Bloomberg GPT \\$ Fi nGPT LLM 가 LLM [461, 462]. LLM 가 [471]. [463, 464]. 가 LLM 가 Robotics: LLM [465] [28, 472, 473, 474], [237], [246], [236], [476] [246, 475], 가 . LLM [240, 26]. Law: LLM 가 L LM [224, 233, 234]. [466]. 7. LLM GPT-4 LLM 가 LLM 가 가 [467]. 가 LLM

가 LLM Prompt Engineering: LLM LLM 가 LLM [484, 3 Computational Cost: LLM 2]. Limited Knowledge: 가 가 [198]. [477] (RAG)[6, 21][193, 25]. Bias and Fairness: LLM Safety and Controllability: LLM 가 [478]. Overfitting: LLM 가 Secur#354nd Privacy: LLM 가 [479]. LLM LLM LLM ΑI [486]. Multi-Modality: LLM 가 [480]. Catastrophic Forgetting: LLM Economic and Research Inequality: LLM [481]. 가 Reasoning and Planning: Adversarial Robustness: (LLM) , 가 가 LLM LLM 가 **BERT** [487]. LLM MLLLM Hallucinations: LLM [488]. 가 [483]. LLM 가 가 [489]. 가 LLM Interpretability and Explainability: LLM

• LLM

AI	[490, 491].	LLM	가 . LLM	가	LLM	AI	, [497]. , ,
Privacy	Concerns:	가	(LLM)	,	8.		
	,	가		가	LLM LLM	1	
	. LLM , 가		가	가	,	,	. LLM
R@a]-Tin 가	ne Processing:		가 (LLM)	[492,	· ·	,	LLM ,
AI				LLM ,	LM, LLM 가,	,	. LLM, L LLM, ,
	가 [494]. Mobil	eBERT			, LLM LLM		71
가			, 가		·		
Long-Te	rm Dependenci	es:	,	가	: I (SDAIA)	SDAIA- JRC-AI-RF)	
Hardwar	re Acceleration:	LLM 가					
		LLM	. GP 가	U LLM	Databases. , 2021 9 1 [2] A. Wang, Y O. Levy, S. Bow	"?, in: Machin : 13 -17 , Y. Pruksachatkun man, Superglue:	32(2019). 1, 26, 29 [
[4	495]. GPU TP	U	5	가 가	Z. Yang, A. Kul	shreshtha, G. Nei , arXiv	D. R. So, J. Hall, N. Fiedel, R. Thoppilan, made, Y. Lu, et al., arXiv:2001.09977 (2020). 1 [4 ?, Daedalus 151 (2)
	가			•	. Sutskever , 1(8) (20	19) 9. 2, 7 [6] T.	rd, J. Wu, R. Child, D. Luan, D. Amodei, I .OpenAI Brown, B. Mann, N. Ryder, M. Subbiah, J. .kantan, P. Shyam, G. Sastry, A. Askell
_			ogle Bard	,) 1877 – 1901. 2 g, K. Lee, K. To	, 6, 7, 8, 9, 16, 18	. 33(2020 3, 23, 24, 25, 34 [7] J. Devlin, MW. Chan arXiv:1810.04805(2018). 2, 18, 24
[496].	, LLN	Л					

```
arXiv:2303.03378 (2023). 2, 2
 [8] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L.
                                                                                                              , arXiv
                                                                                  0, 22, 33 [27] A. Parisi, Y. Zhao, N. Fiedel, Talm:
Zettlemoyer,
                                         , NAACL-HLT,
                                                                                                                                                         , arX
  , 2018, pp. 2227 - 2237. 2 [9] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininej
                                                                                               arXiv:2205.12255 (2022). 2, 19, 20 [28] B. Zhang, H. Soh,
                                                                                  iv
ad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettlemoyer, Bart:
                                                        , arXiv
                                                                                  Xiv
                                                                                                 arXiv:2303.03548 (2023). 2, 33 [29] Q. Ye, H. Xu, G. Xu, J.
   arXiv:1910.13461(2019). 2 [10] C. Raffel, N. Shazeer, A. Roberts, K. Lee
                                                                                  Ye, M. Yan, Y. Zhou, J. Wang, A. Hu, P. Shi, Y. Shi, et al., mplug-owl:
, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
                                                                                                                                                 . arXiv
                                                                                        arXiv:2304.14178 (2023). 2, 22 [30] W. Wang, Z. Chen, X. Chen, J. W
                                                              21(1)(2020)
5485 – 5551. 2, 7, 8, 18, 19, 24, 25, 28, 30, 31 [11] L. Xue, N. Constant, A.
                                                                                  u, X. Zhu, G. Zeng, P. Luo, T. Lu, J. Zhou, Y. Qiao, et al., Visionllm:
Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, C. Raffel, mt5:
                                                                                                                                                        . arXiv
                                             , arXiv
                                                                                             arXiv:2305.11175 (2023). 2, 22 [31] R. Yang, L. Song, Y. Li, S.
                                                                 arXiv:201
0.11934(2020). 2, 7, 8, 24, 25, 28, 30 [12] Z. Zhang, Y. Gu, X. Han, S. Chen,
                                                                                  Zhao, Y. Ge, X. Li, Y. Shan, Gpt4tools:
C. Xiao, Z. Sun, Y. Yao, F. Qi, J. Guan, P. Ke, et al., Cpm-2:
                                                                                                                                 arXiv:2305.18752(2023). 2,
                                                                                                             , arXiv
                                  , AI Open 2(2021) 216 - 224. 2, 8, 25 [13]
                                                                                  19, 22, 23 [32] E. Saravia, Prompt Engineering Guide, https://github.com/dai
T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A.
                                                                                  r- ai/Prompt-Engineering-Guide(12 2022). 2, 7, 18, 34 [33] A. Zeng, X. Liu,
S. Luccioni, F. Yvon, M. Gallé, et al., Bloom: A 176b-
                                                                                  Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia, et al.,
                        , arXiv
                                          arXiv:2211.05100 (2022). 2, 4, 9,
                                                                                                                             , arXiv
                                                                                                                                              arXiv:2210.02
11, 23, 24, 25, 30 [14] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S
                                                                                  414 (2022). 2, 10, 23, 24, 25 [34] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui,
. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, et al., Opt:
                                                                                  J. Li, S. C. Hoi, Codet5+:
                     , arXiv
                                       arXiv:2205.01068 (2022). 2, 9, 11, 2
                                                                                                               arXiv:2305.07922 (2023). 2, 11, 24, 25 [35] S.
                                                                                            . arXiv
4, 25 [15] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Ro
                                                                                  Wang, Y. Sun, Y. Xiang, Z. Wu, S. Ding, W. Gong, S. Feng, J. Shang, Y. Zh
berts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., Palm:
                                                                                  ao, C. Pang , Ernie 3.0 titan:
                        , arXiv
                                         arXiv:2204.02311 (2022). 2, 6, 9,
                                                                                                     , arXiv
                                                                                                                          arXiv:2112.12731(2021). 2, 8, 24, 2
11, 23, 24, 25 [16] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. F
                                                                                  5 [36] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, Deepspeed:
                                                                                                                                                         가
edus, E. Li, X. Wang, M. Dehghani, S. Brahma, et al.,
                                                                                               1.000
                                                                                  , 2020
                                 arXiv:2210.11416(2022). 2, 7, 11, 16, 17,
                                                                                              26 ACM SIGKDD
22, 24, 25, 28, 31 [17] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawi
                                                                                            , 3505-3506 . 2, 5 [37] S. Rajbhandari, J. Rasley, O. Ruwase, Y.
ka, Z. Alyafeai, A. Chaffin, A. Stiegler, T. L. Scao, A. Raja, et al.,
                                                                                  He. Zero:
                                                                                                                                                . SC20:
                                             가 , arXiv
v:2110.08207(2021).\ 2,\ 11,\ 16,\ 25,\ 28,\ 31\ [18]\ Y.\ Wang,\ S.\ Mishra,\ P.\ Alipo
                                                                                  4, 24 [38] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, G. Neubig.
ormolabashi, Y. Kordi, A. Mirzaei, A. Naik, A. Ashok, A. S. Dhanasekaran,
                                                                                                                                    , arXiv
                                                                                  110.04366 (2021). 2, 20, 21 [39] Z. Hu, Y. Lan, L. Wang, W. Xu, E.-P. Lim,
A. Arunkumar, D. Stap, et al.,
                                          : 1600
          + nlp
                    , in: 2022
                                                                                  R. K.-W. Lee, L. Bing, S. Po- ria, Llm-adapters:
          , 2022, pp. 5085 – 5109. 2, 7, 11, 16, 17, 24, 25, 28, 31 [19] Y. Wa
                                                                                                                                 , arXiv
                                                                                                                                                    arXiv:230
                                                                                  4.01933 (2023). 2, 20 [40] B. Lester, R. Al-Rfou, N. Constant,
ng, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, H. Ha- jishirzi,
                                                                                                                                                 arXiv:2104.0
                                                . arXiv
:2212.10560(2022). 2, 16, 19, 22, 28 [20] L. Ouyang, J. Wu, X. Jiang, D. Al
                                                                                  8691(2021). 2, 8, 20, 21 [41] X. L. Li, P. Liang,
meida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
                                                                                                         , arXiv
                                                                                                                              arXiv:2101.00190(2021). 2, 20,
                                                                                  21 [42] X. Ma, G. Fang, X. Wang, Llm-pruner:
et al.,
                     35(2022) 27730 – 27744. 2, 7, 11, 16, 22 [21] H. Touvr
                                                                                       , arXiv
                                                                                                           arXiv:2305.11627(2023). 2, 22 [43] R. Xu, F. Luo,
on, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S.
                                                                                  C. Wang, B. Chang, J. Huang, S. Huang, F. Huang,
Batra, P. Bhargava, S. Bhosale, et al., Llama 2:
                                                                                                                                             . AAAI
             , arXiv
                              arXiv:2307.09288 (2023). 2, 7, 10, 16, 25, 3
                                                                                                          36 , 2022 , 11547~11555 . 2, 22 [44] G. Xiao,
4 [22] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Y
                                                                                  J. Lin, M. Seznec, H. Wu, J. Demouth, S. Han, Smoothquant:
                                                                                                                                    , ICML.
o-gatama, M. Bosma, D. Zhou, D. Metzler, et al.,
                       arXiv:2206.07682 (2022). 2 [23] T. Webb, K. J. Holy
                                                                                            202 , PMLR, 2023 , 38087~38099 . 2, 21 [45] C. Tao, L. Ho
    , arXiv
                                                                                  u, W. Zhang, L. Shang, X. Jiang, Q. Liu, P. Luo, N. Wong,
oak, H. Lu.
                                                   . Nature Human Behavio
ur 7 (9) (2023) 1526 - 1541. 2 [24] D. A. Boiko, R. MacKnight, G. Gomes,
                                                                                                                       , arXiv
                                                                                                                                         arXiv:2203.10705 (
                                                                                  2022). 2, 21 [46] A. Pal, D. Karkhanis, M. Roberts, S. Dooley, A. Sundararaj
                                                     . arXiv
Xiv:2304.05332 (2023). 2 [25] G. Izacard, P. Lewis, M. Lomeli, L. Hosseini,
                                                                                  an, S. Naidu, Giraffe: llms
                                                                                                                                          . arXiv
                                                                                  Xiv:2308.10882(2023). 2, 17 [47] B. Peng, J. Quesnelle, H. Fan, E. Shippole,
F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, E. Grave,
                        Few-shot learning, arXiv
                                                                                                                                          , arXiv
                                                              arXiv:2208.0
3299 (2022). 2, 18, 19, 34 [26] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A.
                                                                                     arXiv:2309.00071(2023). 2, 17 [48] M. Guo, J. Ainslie, D. Uthus, S. Onta
Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu , Palm-e:
                                                                                  non, J. Ni, Y.-H. Sung, Y. Yang,
```

```
Longt5:
                                                                  , arXiv
                                                                                                 (ICML-10), 2010, 807-814 . 4 [71] D. Hendrycks, K. Gimp
             arXiv:2112.07916 (2021). 2, 18 [49] S. Chen, S. Wong, L. Che
                                                                                 el, 가
                                                                                                              (gelus), arXiv
                                                                                                                                         arXiv:1606.08415(
n. Y. Tian.
                                                                                 2016). 4 [72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salak
               arXiv:2306.15595 (2023). 2, 17 [50] W. X. Zhao, K. Zhou, J.
                                                                                 hutdinov,
                                                                                               15(1)(2014) 1929-1958. 4 [73] D. Krueger, T. Maharaj, J. Kra
Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al.,
                       , arXiv
                                            arXiv:2303.18223 (2023). 2, 3,
                                                                                 már, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal, Y. Bengio, A. Courville, C.
7 [51] U. Naseem, I. Razzak, S. K. Khan, M. Prasad,
                                                                                           arXiv:1606.01305(2016). 4 [74] N. Shazeer, Glu
                                                           20(5) (2021) 1
                                                                                                             arXiv:2002.05202(2020). 4 [75] Y. N. Dauphin,
-35. 2, 3 [52] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O
                                                                                 A. Fan, M. Auli, D. Grangier,
                                                                                                           , PMLR, 2017, 933-941 . 4 [76] J. L. Ba, J. R. K
. Sainz, E. Agirre, I. Heinz, D. Roth,
                               , arXiv
                                                  arXiv:2111.01243 (2021)
                                                                                 iros, G. E. Hinton,
                                                                                                                , arXiv
                                                                                                                                    arXiv:1607.06450(2016
. 2, 3 [53] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q.
                                                                                 ). 4 [77] B. Zhang, R. Sennrich,
Yan, L. He
                                                           : bert
                                                                                                      32(2019). 4 [78] A. Baevski, M. Auli,
                                    arXiv:2302.09419(2023). 2, 3 [54] Q.
                                                                                                                                 arXiv:1809.10853(2018).
                                                                                                              . arXiv
Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, Z. Sui,
                                                                                 4 [79] H. Wang, S. Ma, L. Dong, S. Huang, D. Zhang, F. Wei, Deepnet:
                     , arXiv
                                         arXiv:2301.00234(2022). 2, 7, 18
                                                                                       1.000
                                                                                                              , arXiv
                                                                                                                                  arXiv:2203.00555(2022).
                                                                                 4 [80] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzar
[55] J. Huang, K. C.-C. Chang,
                         arXiv:2212.10403 (2022). 2, 7, 18 [56] Y. Wang,
                                                                                 o, Megatron-lm:
W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang, X. Jiang, Q. Liu,
                                                                                           , arXiv
                                                                                                                arXiv:1909.08053(2019). 4, 5 [81] "bmtrain:
                                            , arXiv
                                                                                                                     .". URL https://github.com/OpenBMB/
                                                                                 BMTrain 4, 5 [82] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A
07.12966 (2023). 2 [57] X. Zhu, J. Li, Y. Liu, C. Ma, W. Wang,
                                       , arXiv
                                                            arXiv:2308.07
                                                                                 . Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Transformers: State-
633 (2023). 2 [58] S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, E. Chen,
                                                                                 of-the-art natural language processing, in: Proceedings of the 2020 conferenc
                                                            arXiv:2306.13
                                                                                 e on empirical methods in natural language processing: system demons, 2020
                                        . arXiv
549(2023). 2, 22, 23 [59] J. J. Webster, C. Kit, NLP
                                                                                 , pp. 38 - 45. 5 [83] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. L
     , COL-ING 1992 4 : 14
                                                                 , 1992. 4
                                                                                 eary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Mil
                                                                                                                                 가
[60] T. Kudo.
                                                                                 ne, et al., Jax: python+ numpy
                                                                                                                                              (2018), 5 [84]
                                                                                 S. Li, J. Fang, Z. Bian, H. Liu, Y. Liu, H. Huang, B. Wang, Y. You, Colossal
                                                        (1 :
), 2018, 66-75 . 4 [61] R. Sennrich, B. Haddow, A. Birch,
                                                                                 -ai:
                                                                                                                                     , arXiv
                                        , 2016
                                                  54
                                                                                 v:2110.14883(2021). 5 [85] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, J. Tang,
                               ), pp. 1715-1725. 4 [62] M. Schuster, K. Nak
                                                                                             가
                                                                                                                                              arXiv:2103.1
                                                                                 Fastmoe:
                                                                                                                            . arXiv
                                    , 2012 IEEE
                                                                                 3262(2021). 5 [86] L. Huawei Technologies Co., Huawei mindspore ai
ajima,
                  (ICASSP), IEEE, 2012, pp. 5149-5152. 4 [63] S. J. Mielke
                                                                                                             , Springer, 2022, pp. 137 - 162. 5 [87] A. Pasz
, Z. Alyafeai, E. Salessky, C. Raffel, M. Dey, M. Gallé, A. Raja, C. Si, W. Y.
                                                                                 ke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
Lee, B. Sagot, et al.,
                                                                                 N. Gimelshein, L. Antiga, et al., Pytorch:
                                      : nlp
                        , arXiv
                                         arXiv:2112.10508 (2021). 4 [64]
                                                                                                                              32(2019). 5 [88] M. Abadi, P.
                                                                                 Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, I. Polosukhin,
                                                                                 ing, M. Isard, et al., Tensorflow:
   30(2017). 4, 7 [65] O. Press, N. Smith, M. Lewis,
                                                                                 ol. 16, Savannah, GA, USA, 2016, pp. 265 – 283. 5 [89] T. Chen, M. Li, Y.
                                             가
                                                          . International Co
                                                                                 Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet:
                                               . URL https://openreview.ne
nference on Learning Representations, 2022
t/forum?id=R8sQPpGCv0 4, 17 [66] J. Su, Y. Lu, S. Pan, A. Murtadha, B. W
                                                                                 rXiv
                                                                                                    arXiv:1512.01274(2015). 5 [90] W. Fedus, B. Zoph, N. S
en, Y. Liu, Roformer:
                                                                                 hazeer,
        arXiv:2104.09864(2021). 4, 9, 17 [67] R. Child, S. Gray, A. Radford
                                                                                                 , The Journal of Machine Learning Research 23(1)(2022) 52
                                                                                 32 – 5270. 5, 9 [91] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. X
                                                       , arXiv
                                                                                                                                         가
rXiv:1904.10509(2019). 4, 7, 23 [68] T. Dao, D. Fu, S. Ermon, A. Rudra, C.
                                                                                 u, M. Krikun, Y. Zhou, A. W. Yu, O. Firat , Glam:
Ré, Flashattention: io-awareness
                                                                                                                                    , PMLR, 2022, 5547-55
                                      35(2022) 16344 - 16359. 4 [69] K. H
                                                                                 69 . 5, 9, 23, 24, 25 [92] X. Ren, P. Zhou, X. Meng, X. Huang, Y. Wang,
ornik, M. Stinchcombe, H. White,
                                                                                 W. Wang, P. Li, X. Zhang, A. Podolskiy, G. Arshinov
                                                                                                                                       , Pangu-∑:
                     2(5)(1989) 359 - 366. 4 [70] V. Nair, G. E. Hinton,
                                                                                    arXiv:2303.10845(2023). 5, 10, 16, 23, 24, 25 [93] T. Wang, A. Roberts,
                                                 , 27
                                                                                 D. Hesslow, T. Le Scao, H. W. Chung, I. Beltagy, J. Launay, C. Raffel,
```

```
: ing objective works best for zero-shot generalization?, in: Interna
                                                                                         S. Kim, S. Kim, D. Seo, et al.,
tional Conference on Machine Learning, PMLR, 2022, pp. 22964 - 22984. 5 [
                                                                                               ? Hyperclova
94] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou,
                                                                                                                              arXiv:2109.04650 (2021), 8, 25 [
                                                                                                          , arXiv
H.-W. Hon,
                                                                                  115] S. Wu, X. Zhao, T. Yu, R. Zhang, C. Shen, H. Liu, F. Li, H. Zhu, J. Luo,
                          32(2019). 6 [95] J. Kaplan, S. McCandlish, T. Hen
                                                                                  L. Xu, et al., Yuan 1.0:
                                                                                                                 arXiv:2110.04725 (2021). 8, 24, 25 [116] J. W
ighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, D. Amod
                                                                                            , arXiv
                                         , arXiv
                                                              arXiv:2001.0
                                                                                  . Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S.
8361(2020). 6 [96] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T.
                                                                                  Henderson, R. Ring, S. Young, et al.,
                                                                                                                                      : Gopher
Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
                                                                                                                                arXiv:2112.11446(2021). 8, 9,
                                                                                                           , arXiv
                                  , arXiv
                                                     arXiv:2203.15556(2022
                                                                                  25, 28 [117] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J.
). 6, 9, 25, 29 [97] S. Iyer, X. V. Lin, R. Pasunuru, T. Mihaylov, D. Simig, P.
                                                                                  Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti , deepspeed
Yu, K. Shuster, T. Wang, Q. Liu, P. S. Koura, et al., Opt-iml:
                                                                                  megatron
                                                                                                                                   megatron-turing nlg 530b
                                                       arXiv:2212.12017 (2
                                                                                                           arXiv:2201.11990(2022). 8, 9, 24, 25 [118] S. Black
                                     , arXiv
                                                                                       , arXiv
022). 7, 11, 16, 17, 22, 25, 28 [98] Z. Sun, Y. Shen, Q. Zhou, H. Zhang, Z. Ch
                                                                                  , S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
                                                                                  K. McDonell, J. Phang, et al., Gpt-neox-20b:
en, D. Cox, Y. Yang, C. Gan,
                                             arXiv:2305.03047 (2023). 7, 17
                                                                                                    arXiv:2204.06745 (2022). 9, 23, 24, 25 [119] W. Ben, K. A
[99] A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli, T. Henighan, A. Jones,
                                                                                  ran, Gpt-j-6b: 60
                                                                                                                                     (2021). 9 [120] P. Micike
                                                                                  vicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M.
N. Joseph, B. Mann, N. DasSarma, et al.,
                                arXiv:2112.00861 (2021). 7 [100] D. M. Zi
                                                                                  Houston, O. Kuchaiev, G. Venkatesh, et al.,
egler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano,
                                                                                       arXiv:1710.03740 (2017). 9, 23 [121] N. Shazeer, A. Mirhoseini, K. Ma
                                                 , arXiv
                                                                                  ziarz, A. Davis, Q. Le, G. Hin-ton, J. Dean,
1909.08593(2019). 7 [101] S. Kim, S. J. Joo, D. Kim, J. Jang, S. Ye, J. Shin,
                                                                                               가
                                                                                                                         arXiv:1701.06538 (2017). 9, 23 [122]
                                                                                                     , arXiv
M. Seo, Cot
                                                                                  S. Soltan, S. Ananthakrishnan, J. FitzGerald, R. Gupta, W. Hamza, H. Khan,
                                       arXiv:2305.14045(2023). 7, 16 [102]
                   . arXiv
                                                                                  C. Peris, S. Rawls, A. Rosenbaum, A. Rumshisky, et al., Alexatm 20b:
Q. Liu, F. Zhou, Z. Jiang, L. Dou, M. Lin, \boldsymbol{0}
                                                                                                                               , arXiv preprint arXiv:2208.01
                                                                                                                 Few-shot
                                                                                          seq2seq
                                                                                  448 (2022). 9, 23, 24, 25 [123] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. L.
                                            arXiv:2304.07995(2023). 7, 16 [
                      , arXiv
103] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D
                                                                                  epikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey, Z. Chen, et al., Palm 2
                                                                                                             arXiv:2305.10403(2023). 9, 25 [124] Y. Tay, J.
. Zhou, et al.,
                                                                                            . arXiv
                                                                                  Wei, H. W. Chung, V. Q. Tran, D. R. So, S. Shakeri, X. Garcia, H. S. Zheng, J
                                           35(2022) 24824 - 24837. 7, 20, 2
3 [104] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chow-
                                                                                  . Rao, A. Chowdhery, et al., 0.1% 가
                                                                                                   arXiv:2210.11399(2022). 9, 24, 25 [125] Y. Tay, M. Dehgh
hery, D. Zhou,
                       arXiv:2203.11171 (2022). 7, 20 [105] S. Yao, D. Yu, J
                                                                                  ani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri, T. Schus
    . arXiv
. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, K. Narasimhan,
                                                                                  ter, S. Zheng, et al., Ul2:
                                                                                                                                       -11
                                            , arXiv
                                                               arXiv:2305.1
                                                                                           , 2022. 9, 10, 24, 25 [126] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu,
0601 (2023). 7, 20 [106] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
                                                                                  Z. Yang, J. Tang, Glm:
Q. De Laroussilhe, A. Gesmundo, M. Attariyan, S. Gelly, NLP
                                                                                  20-335 . 10 [127] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lac
                                                   , PMLR, 2019, pp. 2790
– 2799. 7, 20 [107] S. McCandlish, J. Kaplan, D. Amodei, O. D. Team,
                                                                                  haux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., Llama:
                         , arXiv
                                              arXiv:1812.06162(2018). 7 [1
                                                                                                                                        arXiv:2302.13971 (20
                                                                                                                      , arXiv
                                                                                  23). 10, 23, 25 [128] M. N. Rabe, C. Staats,
08] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang, K
. Wang, X. Zhang , Pangu-\alpha:
                                                                                                      , arXiv
                                                                                                                        arXiv:2112.05682 (2021). 10 [129] V.
                                                    arXiv:2104.12369(2021)
                                                                                  A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, B. C
                                . arXiv
. 8, 23, 24, 25 [109] S. Yuan, H. Zhao, Z. Du, M. Ding, X. Liu, Y. Cen, X. Zo
                                                                                  atanzaro,
                                                                                                                                        , Machine Learning an
                                                                                                    5(2023). 10 [130] A. Dubey, A. Jauhri, A. Pandey, A. Kadi
u, Z. Yang, J. Tang, Wudaocorpora:
                                                                                  d Systems
               , AI Open 2(2021) 65 - 68. 8, 30 [110] Y. Sun, S. Wang, S. Fe
                                                                                  an, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang, A. Fan, et al.,
ng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu, et al., Ernie 3.
                                                                                                                        arXiv:2407.21783(2024). 10, 25 [131]
                                                                                       3
                                                                                  https://mistral.ai/news/mixtral-8x22b/. 10, 25 [132] https://github.com/Snowfl
                                                           . arXiv
  arXiv:2107.02137 (2021). 8, 25 [111] Z. Dai, Z. Yang, Y. Yang, J. Carbon
                                                                                  ake-Labs/snowflake-arctic. 10, 25 [133] https://github.com/xai-org/grok-1. 10
                                                                                  [134] https://x.ai/blog/grok-1.5. 10 [135] G. Team, R. Anil, S. Borgeaud, Y.
ell, Q. V. Le, R. Salakhutdinov, Transformer-xl:
                           , arXiv
                                               arXiv:1901.02860 (2019). 8 [
                                                                                  Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, et al.
112] O. Lieber, O. Sharir, B. Lenz, Y. Shoham, Jurassic-1:
                                                                                                                                , arXiv
```

가, . AI21 Labs 1 (2021). 8, 24, 25 [113] Y. Levine, N. Wies, O. Sh

Lee, G. Lee, D. Kwak, D. H. Jeon, S. Park,

33 (2020) 22640 – 22651. 8, 11 [114] B. Kim, H. Kim, S.-W.

. arXiv

 $o(n^2)$

12.11805 (2023). 10 [136] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin,

T. Lillicrap, J.-b.

```
Alayrac, R. Soricut, A. Lazaridou, O. Firat, J. Schrittwieser, et al., Gem
ini 1.5:
             arXiv:2403.05530(2024). 10 [137] B. Adler, N. Agarwal, A. Ait
iv
hal, D. H. Anh, P. Bhattacharya, A. Brundyn, J. Casper, B. Catanzaro, S. Clay,
J. Cohen , Nemotron -4 340b
                                           , arXiv
                                                            arXiv:2406.11
704(2024). 10, 25 [138] X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H
. Ding, K. Dong, Q. Du, Z. Fu, et al., Deepseek llm:
                                         arXiv:2401.02954(2024). 10, 25 [1
                     , arXiv
39] DeepSeek-AI, A. Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. De
ng, C. Ruan, D. Dai, D. Guo, D. Yang, D. Chen, D. Ji, E. Li, F. Lin, F. Luo, G.
Hao, G. Chen, G. Li, H. Zhang, H. Xu, H. Yang, H. Zhang, H. Ding, H. Xin,
H. Gao, H. Li, H. Qu, J. L. Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Chen, J. Yuan,
J. Qiu, J. Song, K. Dong, K. Gao, K. Guan, L. Wang, L. Zhang, L. Xu, L. Xia,
L. Zhao, L. Zhang, M. Li, M. , M. Zhang, M. Zhang, M. Tang, M. Li, N. Ti
an, P. Huang, P. Wang, P. Zhang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L. Ji
n, R. Ge, R. Pan, R. Xu, R. Chen, S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu, S.
Ye, S. Ma, S. Wang, S. Zhou, S. Yu, S. Zhou, S. Zheng, T. Wang, T. Pei, T.
Yuan, T. Sun, W. L. Xiao, W. Zeng, W. An, W. Liu, W. Liang, W. Gao, W. Z
hang, X. Q. Li, X. Jin, X. Wang, X. Bi, X. Liu, X. Wang, X. Shen, X. Chen, X
. Chen, X. Nie, X. Sun, Deepseek-v2:
                   , CoRR abs/2405.04434(2024). 10, 25 [140] E. Nijkamp, B
. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, C. Xiong, Codegen
             arXiv:2203.13474(2022). 11, 23, 25, 28 [141] M. Chen, J. Twor
ek , H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Jo
                                                            가, arXiv
        arXiv:2107.03374(2021). 11, 25, 29, 31 [142] Y. Li, D. Choi, J. Chun
g, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. Dal Lago, et al., alphacode
                                                             , Science 378(6
624)(2022) 1092 – 1097. 11, 23, 25, 29 [143] N. Shazeer,
                                                             arXiv:1911.021
50(2019). 11 [144] R. Y. Pang, H. He,
                                                                     . arXiv
          arXiv:2009.07839(2020). 11 [145] R. Dabre, A. Fujita,
                           Softmax
                                           , arXiv
                                                             arXiv:2009.09
372(2020). 11 [146] Y. Wang, W. Wang, S. Joty, S. C. Hoi, Codet5:
               arXiv:2109.00859(2021). 11 [147] R. Li, L. B. Allal, Y. Zi, N.
Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim, et al
                                        !, arXiv
., Starcoder:
                                                              arXiv:2305.06
161 (2023). 11, 25 [148] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. H
artshorn, E. Saravia, A. Poulton, V. Kerkez, R. Stojnic, Galactica:
                     , arXiv
                                       arXiv:2211.09085 (2022). 11, 24, 25,
29 [149] FairScale
                          , Fairscale:
                              , https://github.com/facebookresearch/fairscale(
2021). 11 [150] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshresh
tha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al., Lamda:
                              , arXiv
                                                arXiv:2201.08239(2022). 1
1, 25 [151] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann,
P. Kambadur, D. Rosenberg, G. Mann, Bloomberggpt:
           , arXiv
                            arXiv:2303.17564 (2023). 11, 25, 33 [152] X. Z
                                                               가
hang, Q. Yang, D. Xu, Xuanyuan 2.0:
                     , arXiv
                                       arXiv:2305.12002(2023). 11, 17, 25 [
153] W. Ben, Mesh-transformer-jax: jax
          (2021). 12, 24 [154] N. Muennighoff, T. Wang, L. Sutawika, A. Ro
berts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen, Z.-X. Yong, H. Schoelkop
f, et al.,
                                                            , arXiv
     arXiv:2211.01786(2022). 16, 25, 28, 31 [155] D. Yin, X. Liu, F. Yin, M.
```

Zhong, H. Bansal, J. Han, K.-W. Chang, Dynosaur:

```
ration, arXiv
                              arXiv:2305.14327 (2023). 16 [156] P. Gao, J.
Han, R. Zhang, Z. Lin, S. Geng, A. Zhou, W. Zhang, P. Lu, C. He, X. Yue, et
al., Llama-adapter v2:
                                                       , arXiv
Xiv:2304.15010 (2023). 16, 24 [157] Openai. gpt-4
                                                               (2023). 16, 3
5 [158] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Lian
g, T. B. Hashimoto, Stanford
                                                               , https://githu
b.com/tatsu-lab/stanford_alpaca (2023). 16, 25, 28 [159] W.-L. Chiang, Z. Li,
Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Go
nzalez, I. Stoica, E. P. Xing, Vicuna: 90%* chatgpt
                                                         gpt-4
                  (2023 3 ). URL https://lmsys.org/blog/2023-03-30-vic
una/ 16, 22, 25, 28 [160] B. Peng, C. Li, P. He, M. Galley, J. Gao, gpt-4
                 . arXiv
                                      arXiv:2304.03277(2023). 16, 28 [161]
T. Liu, B. K. H. Low,
                                                                gpt-4
               , arXiv
                                   arXiv:2305.14201(2023). 16 [162] H. Wa
ng, C. Liu, N. Xi, Z. Qiang, S. Zhao, B. Qin, T. Liu, Huatuo:
                          , arXiv
                                               arXiv:2304.06975(2023). 16 [
163] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, D. Jiang, W
  arXiv:2304.12244(2023). 16 [164] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Gen
g, W. Hu, C. Tao, J. Ma, Q. Lin, D. Jiang, Wizardcoder: evol-instruct
                                  , arXiv
                                                      arXiv:2306.08568(20
23). 16, 25 [165] J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M.
Chadwick, M. Glaese, S. Young, L. Campbell-Gillingham, G. Irving
                                                 , arXiv
2203.11147(2022). 17 [166] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang
                                                     , Webgpt:
, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders
                                    . arXiv
                                                        arXiv:2112.09332(
2021). 17, 19, 20, 25, 31 [167] A. Glaese, N. McAleese, M. Tębacz, J. Aslanid
es, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger, M. Chadwick, P. Thacker
                                                      , arXiv
                                                                          ar
Xiv:2209.14375(2022). 17, 20, 25 [168] R. Rafailov, A. Sharma, E. Mitchell,
S. Ermon, C. D. Manning, C. Finn,
                               , arXiv
                                                 arXiv:2305.18290 (2023), 1
7 [169] H. Dong, W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, T.
                                                               , arXiv
Zhang, Raft:
     arXiv:2304.06767 (2023). 17 [170] Z. Yuan, H. Yuan, C. Tan, W. Wang
, S. Huang, F. Huang, Rrhf:
                                            arXiv:2304.05302(2023). 17 [17
1] F. Song, B. Yu, M. Li, H. Yu, F. Huang, Y. Li, H. Wang,
                                            arXiv:2306.17492(2023). 17 [17
                       , arXiv
2] H. Liu, C. Sferrazza, P. Abbeel,
                                            arXiv:2302.02676(2023). 17 [17
                       . arXiv
3] Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A.
. Goldie, A. Mirhoseini, C. McKinnon ,
                                                ai: ai
                                                                        . ar
              arXiv:2212.08073(2022). 17 [174] Y. Dubois, X. Li, R. Taori,
Xiv
T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, T. B. Hashimoto, Alpacafa
            arXiv:2305.14387(2023). 17 [175] C. Si, Z. Gan, Z. Yang, S. Wa
ng, J. Wang, J. Boyd-Graber, L. Wang, gpt-3
                                                          . arXiv
   arXiv:2210.09150(2022). 17 [176] D. Ganguli, A. Askell, N. Schiefer, T. L.
iao, K. Luko š iūtė, A. Chen, A. Goldie, A. Mirhoseini, C. Olsson, D. Hernand
                                                      . arXiv
                                                                        arX
iv:2302.07459 (2023). 17 [177] A. Wei, N. Haghtalab, J. Steinhardt,
                                    ?. arXiv
                                                         arXiv:2307.024830
M
2023). 17
```

```
[178] D. Ganguli, L. Lovitt, J. Kernion, A. Askell, Y. Bai, S. Kadavath, B. Ma
nn, E. Perez, N. Schiefer, K. Ndousse ,
                                        , arXiv
                                                           arXiv:2209.07
858(2022). 17, 28 [179] S. Casper, J. Lin, J. Kwon, G. Culp, D. Hadfield-Men
                                               , arXiv
                                                                   arXi
v:2306.09442(2023). 17 [180] E. Perez, S. Huang, F. Song, T. Cai, R. Ring, J.
Aslanides, A. Glaese, N. McAleese, G. Irving,
                             arXiv:2202.03286(2022). 17 [181] T. Scialom,
         . arXiv
T. Chakrabarty, S. Muresan,
    . 2022
                                                              . 2022, 6107-
6122 . 17 [182] Z. Shi, A. Lipani,
                                             . arXiv
                                                                 arXiv:23
05.01711(2023). 17 [183] H. Gupta, S. A. Sawant, S. Mishra, M. Nakamura,
A. Mitra, S. Mashtty, C. Baral,
          arXiv:2306.05539(2023). 17 [184] H. Chen, Y. Zhang, Q. Zhang,
H. Yang, X. Hu, X. Ma, Y. Yanggong, J. Zhao,
                                                  0.5%
          arXiv:2305.09246(2023). 17 [185] C. Zhou, P. Liu, P. Xu, S. Iyer,
J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu, L. Yu, et al.,
                            arXiv:2305.11206 (2023). 17, 25, 28 [186] C.
         . arXiv
Han, Q. Wang, W. Xiong, Y. Chen, H. Ji, S. Wang, Lm-infinite:
                                      , arXiv
                                                       arXiv:2308.1613
7 (2023). 17, 18 [187] J. Ainslie, T. Lei, M. de Jong, S. Ontañón, S. Brahma,
Y. Zemlyan- skiy, D. Uthus, M. Guo, J. Lee-Thorp, Y. Tay, et al., Colt5:
                                      , arXiv
                                                       arXiv:2303.09752
(2023). 18 [188] J. Ding, S. Ma, L. Dong, X. Zhang, S. Huang, W. Wang, F.
                       1,000,000,000
Wei, Longnet:
                                                      . arXiv
rXiv:2307.02486(2023). 18 [189] Y. Chen, S. Qian, H. Tang, X. Lai, Z. Liu, S
. Han, J. Jia, Longlora:
                 arXiv:2309.12307(2023). 18 [190] N. Ratner, Y. Levine, Y.
Xiv
Belinkov, O. Ram, I. Magar, O. Abend, E. Karpas, A. Shashua, K. Leyton-Bro
wn, Y. Shoham,
                                                          . 61
                      ), 2023, 6383-6402 . 18 [191] W. Wang, L. Dong, H.
    (1:
Cheng, X. Liu, X. Yan, J. Gao, F. Wei,
           arXiv:2306.07174(2023). 18 [192] X. Xu, Z. Gou, W. Wu,
Z.-Y. Niu, H. Wu, H. Wang, S. Wang,
                                               !
                                             arXiv:2203.05797(2022). 18 [
                         , arXiv
193] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Milli- c
an, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc, A. Clark
                                                              , PMLR, 20
22, pp. 2206 - 2240. 18, 19, 34 [194] W. Zhong, L. Guo, Q. Gao, Y. Wang,
Memorybank:
                                                              . arXiv
       arXiv:2305.10250(2023). 18 [195] N. Shinn, F. Cassano, B. Labash,
A. Gopinath, K. Narasimhan, S. Yao, Reflexion:
                               arXiv:2303.11366 14(2023). 18, 20 [196] C.
            . arXiv
Hu, J. Fu, C. Du, S. Luo, J. Zhao, H. Zhao, Chatdb:
                 llms , arXiv
                                         arXiv:2306.03901(2023). 18 [1
97] Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Call
                                                   arXiv:2305.06983(202
an, G. Neubig.
                                  . arXiv
3). 18 [198] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. L
                                                      , arXiv
eyton-Brown, Y. Shoham,
arXiv:2302.00083(2023). 18, 34 [199] X. Li, X. Qiu, Mot:
Xiv:2305.05181
```

```
(2023). 18 [200] D. Schuurmans,
                                         arXiv:2301.04589(2023). 18 [201]
                        .arXiv
A. Modarressi, A. Imani, M. Fayyaz, H. Schütze, Ret-llm:
                                                         arXiv:2305.14322
                                      . arXiv
(2023). 18 [202] S. Robertson, H. Zaragoza ,
                                            ® 3(4)(2009) 333 – 389. 18 [20
Bm25
3] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, D. Zhou,
ionale-augmented ensembles, arXiv
                                             arXiv:2207.00747(2022). 18
[204] F. Zhang, B. Chen, Y. Zhang, J. Liu, D. Zan, Y. Mao, J.-G. Lou, W. Che
n, Repocoder:
             arXiv:2303.12570(2023). 18 [205] B. Wang, W. Ping, P. Xu, L.
McAfee, Z. Liu, M. Shoeybi, Y. Dong, O. Kuchaiev, B. Li, C. Xiao, et al.,
                                                        ?
                 arXiv:2304.06762(2023). 19 [206] L. Wang, N. Yang, F. W
ei.
               arXiv:2307.07164(2023). 19 [207] J. Liu, D. Shen, Y. Zhang,
iv
B. Dolan, L. Carin, W. Chen, gpt-3
                           arXiv:2101.06804(2021). 19 [208] O. Rubin, J.
      ?, arXiv
Herzig, J. Berant,
                                                          . arXiv
     arXiv:2112.08633(2021). 19 [209] W. Shi, S. Min, M. Yasunaga, M. Se
o, R. James, M. Lewis, L. Zettle-moyer, W.-t. Yih, Replug:
            , arXiv
                                arXiv:2301.12652(2023). 19 [210] O. Rubi
n, J. Berant,
                                                  , arXiv
iv:2306.13421(2023). 19 [211] K. Guu, K. Lee, Z. Tung, P. Pasupat, M. Chan
                                                            PMLR 2020
pp. 3929 - 3938. 19 [212] S. Hofstätter, J. Chen, K. Raman, H. Zamani, Fid-li
ght:
                                                   , 2023, pp. 1437 - 1447.
          46
                     ACM SIGIR
19 [213] M. Komeili, K. Shuster, J. Weston,
                                                                 . arXiv
             arXiv:2107.07566(2021). 19 [214] A. Lazaridou, E. Gribovskay
a, W. Stokowiec, N. Grigorev,
                                                               가
                                      . arXiv
                                                          arXiv:2203.0511
5(2022). 19 [215] D. Gao, L. Ji, L. Zhou, K. Q. Lin, J. Chen, Z. Fan, M. Z. Sh
ou, Assist- gpt:
                             arXiv:2306.08640(2023). 19 [216] P. Lu, B. Pe
         , arXiv
ng, H. Cheng, M. Galley, K.-W. Chang, Y. N. Wu, S.-C. Zhu, J. Gao,
                                                            . arXiv
     arXiv:2304.09842(2023). 19, 20, 23 [217] B. Paranjape, S. Lundberg, S.
Singh, H. Hajishirzi, L. Zettlemoyer, M. T. Ribeiro,
                                                         arXiv:2303.09014
                                       , arXiv
(2023). 19 [218] C.-Y. Hsieh, S.-A. Chen, C.-L. Li, Y. Fujii, A. Ratner, C.-Y.
Lee, R. Kr- ishna, T. Pfister,
                가 , arXiv
                                        arXiv:2308.00675(2023). 19 [219]
Y. Song, W. Xiong, D. Zhu, C. Li, K. Wang, Y. Tian, S. Li, Restgpt: Restful
                                                            , arXiv
       arXiv:2306.06624(2023). 19 [220] S. Hao, T. Liu, Z. Wang, Z. Hu, To
olkengpt:
              arXiv:2305.11554(2023). 19 [221] S. G. Patil, T. Zhang, X. W
ang, J. E. Gonzalez, Gorilla:
                                 API
          arXiv:2305.15334(2023). 19 [222] Q. Xu, F. Hong, B. Li, C. Hu, Z
. Chen, J. Zhang,
               arXiv:2305.16504(2023). 19 [223] Y. Qin, S. Liang, Y. Ye,
arXiv
K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong, X. Tang, B. Qian, et al., Toolllm: 160
00 +
              API
```

arXiv:2307.16789(2023). 19,

```
20 [224] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, Y. Zhuang, Hugging
                                                                                                                "? llm
                                                                                                                                              , arXiv
gpt: huggingface
                    chatgpt
                                              ai
                                                                                    arXiv:2303.03480(2023). 20 [245] C. Huang, O. Mees, A. Zeng, W. Burga
                                                           , arXiv
  arXiv:2303.17580 (2023). 19, 20, 33 [225] Y. Liang, C. Wu, T. Song, W.
                                                                                                                    , 2023 IEEE
Wu, Y. Xia, Y. Liu, Y. Ou, S. Lu, L. Ji, S. Mao, et al., Taskmatrix.ai:
                                                                                      (ICRA), IEEE, 2023, pp. 10608 - 10615. 20 [246] Y. Ding, X. Zhang, C.
                                            , arXiv
                                                                                 Paxton, S. Zhang,
6434 (2023). 19 [226] D. Surís, S. Menon, C. Vondrick, Vipergpt:
                                                                                           , arXiv
                                                                                                             arXiv:2303.06247(2023). 20, 33 [247] X. Liu, Y.
  Python
                                   , arXiv
                                                        arXiv:2303.08128 (
                                                                                 Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, J. Tang, Gpt arXiv
2023). 20 [227] A. Maedche, S. Morana, S. Schacht, D. Werth, J. Krumeich,
                                                                                 Xiv:2103.10385(2021)
                                                                                                                      . 20, 21 [248] G. Chen, F. Liu, Z. Meng,
                                                                                 S. Liang,
367 - 370.\ 20\ [228]\ M.\ Campbell,\ A.\ J.\ Hoane\ Jr,\ F.-h.\ Hsu,
                                                                                                arXiv:2202.07962(2022). 20 [249] Y. Wang, S. Mukherjee, X.
  134 (1-2) (2002) 57 – 83. 20 [229] S. Hong, X. Zheng, J. Chen, Y. Cheng,
                                                                                 Liu, J. Gao, A. H. Awadallah, J. Gao, Adamix:
J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou , Metagpt:
                                                                                                                     , arXiv
                                                                                                                                          arXiv:2205.12410
                                                     , arXiv
                                                                                 1 (2) (2022) 4. 20 [250] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.
Xiv:2308.00352(2023). 20 [230] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B.
                                                                                 Wang, L. Wang, W. Chen, Lora:
Hong, M. Zhang, J. Wang, S. Jin, E. Zhou ,
                                                                                           arXiv:2106.09685 (2021). 21, 22, 23 [251] X. Liu, K. Ji, Y. Fu, W.
                                                 arXiv:2309.07864(2023). 2
                                                                                 Tam, Z. Du, Z. Yang, J. Tang, P-tuning: Prompt tuning can be comparable to f
0 [231] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Ta
                                                                                 ine-tuning across scales and task, in: Pro-ceedings of the 60th Annual Meeting
ng, X. Chen, Y. Lin, et al.,
                                                                                 of the Association for Comput-ational Linguistics (Volume 2: Short Papers), 2
                                                                                 022, pp. 61 - 68. 21 [252] A. Razdaibiedina, Y. Mao, R. Hou, M. Khabsa, M.
    . arXiv
                        arXiv:2308.11432(2023). 20 [232] W. Huang, P. Ab
beel, D. Pathak, I. Mordatch,
                                                                                 Lewis, A. Almahairi, Progressive prompts: Continual learning for language m
                    가
                                                                                 odels, arXiv preprint arXiv:2301.12314 (2023). 21 [253] Z.-R. Zhang, C. Tan,
2022, pp. 9118 – 9147. 20 [233] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang,
                                                                                 H. Xu, C. Wang, J. Huang, S. Huang, Towards adaptive prefix tuning for para
D. Z. Wang, Z. Hu,
                                                                                 meters-efficient language model fine-tuning, arXiv preprint arXiv:2305.15212
          arXiv:2305.14992 (2023). 20, 33 [234] W. Yao, S. Heinecke, J. C.
                                                                                 (2023). 21 [254] E. B. Zaken, S. Ravfogel, Y. Goldberg, Bitfit:
Niebles, Z. Liu, Y. Feng, L. Xue, R. Murthy, Z. Chen, J. Zhang, D. Arpit, et al
                                                                                                                                                arXiv prepri
                                                                                 nt arXiv:2106.10199 (2021). 21 [255] T. Dettmers, M. Lewis, Y. Belkada, L.
                      arXiv:2308.02151 (2023). 20, 33 [235] W. Huang, F.
                                                                                                                                 8
     . arXiv
                                                                                 Zettlemover, Llm. int8():
Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatc
                                                                                 print arXiv:2208.07339 (2022). 21, 22 [256] E. Frantar, S. Ashkboos, T. Hoefl
                                                                                 er, D. Alistarh, Gptq:
h, Y. Chebotar, P. Sermanet, T. Jackson, N. Brown, L. Luu, S. Levine, K. Hau
                                                                                                          arXiv:2210.17323 (2022). 21 [257] X. Wei, Y. Zhan
sman, brian ichter,
                                                                                        , arXiv
                                            , 2022. URL https://openreview.
                                                                                 g, Y. Li, X. Zhang, R. Gong, J. Guo, X. Liu,
net/forum?id=3R3Pz5i0tye 20 [236] C. Jin, W. Tan, J. Yang, B. Liu, R. Song,
                                                                                                                                                   , arXiv
L. Wang, J. Fu, Alphablock:
                                                                                         arXiv:2304.09145 (2023). 21 [258] E. Frantar, D. Alistarh,
            , arXiv
                               arXiv:2305.18898 (2023). 20, 33 [237] I. Sing
                                                                                                      35(2022) 4475 - 4488. 21 [259] C. Lee, J. Jin, T. Kim,
h, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomas
                                                                                                                             가
on, A. Garg, Progprompt:
                , 2023 IEEE
                                                                                                        . arXiv
                                                                                                                            arXiv:2306.02272(2023), 21 [260
                                                           (ICRA), IEEE, 2
023, pp. 11523 - 11530. 20, 33 [238] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.
                                                                                 ] S. J. Kwon, J. Kim, J. Bae, K. M. Yoo, J.-H. Kim, B. Park, B. Kim, J.- W. H
-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik
                                                                                 a, N. Sung, D. Lee, Alphatuning: Quantization-aware parameters- efficient ada
                                             , arXiv
                                                                                 ptation of large-scale pre-trained language models, arXiv preprint arXiv:2210.
                                                               arXiv:2306.
08647(2023). 20 [239] X. Tang, A. Zou, Z. Zhang, Y. Zhao, X. Zhang, A. Coh
                                                                                 03858 (2022). 21 [261] T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer
                                                                                 , Qlora: Efficient finetuning of quantized llms, arXiv preprint arXiv:2305.143
an, M. Gerstein, Medagents:
                                 arXiv:2311.10537(2023). 20 [240] A. Broh
                                                                                 14 (2023). 21, 22 [262] Z. Liu, B. Oguz, C. Zhao, E. Chang, P. Stock, Y. Meh
an, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E.
                                                                                 dad, Y. Shi, R. Kr- ishnamoorthi, V. Chandra, Llm-qat:
Jang, R. Julian , 가
                                                                                                                      . arXiv
                                                                                                                                          arXiv:2305.17888(
                                                       , PMLR, 2023, 287-3
                                                                                 2023). 21, 22 [263] Y. Guo, A. Yao, H. Zhao, Y. Chen,
                                                                                                           , IEEE
18 . 20, 33 [241] H. Ha, P. Florence, S. Song,
                                                                                 CNN
                                 arXiv:2307.14535(2023). 20 [242] A. Rajv
                                                                                    , 2017, 5955-5963 . 21 [264] J. Kim, J. H. Lee, S. Kim, J. Park, K. M. Yo
anshi, K. Sikka, X. Lin, B. Lee, H.-P. Chiu, A. Velasquez, Say-nav:
                                                                                 o, S. J. Kwon, D. Lee, 4
                                                                                                                   . arXiv
                                                                                                                                       arXiv:2305.14152(20
          arXiv:2309.04077(2023). 20 [243] C. H. Song, J. Wu, C. Washingt
                                                                                 23). 22 [265] M. Sun, Z. Liu, A. Bair, J. Z. Kolter,
                                                                                                     가
on, B. M. Sadler, W.-L. Chao, Y. Su, Llm-planner:
                                                                                                                                              arXiv:2306.11
                                                                                 695(2023). 22 [266] Z. Wang, J. Wohlwend, T. Lei,
                               Few-shot
v:2212.04088(2022). 20 [244] V. S. Dorbala, J. F. Mullen Jr, D. Manocha,
                                                                                              , arXiv
                                                                                                                    arXiv:1910.04732(2019). 22
                                      ?
```

:

```
[267] L. Yin, Y. Wu, Z. Zhang, C.-Y. Hsieh, Y. Wang, Y. Jia, M. Pechenizkiy
, Y. Liang, Z. Wang, S. Liu,
                                                       (
          llms 가
                                                    arXiv
                                                                        arXi
v:2310.05175(2023). 22 [268] C. Tao, L. Hou, H. Bai, J. Wei, X. Jiang, Q. Liu
, P. Luo, N. Wong,
          , in: Findings of the Association for Computational Linguistics: AC
L 2023, 2023, pp. 10880 - 10895. 22 [269] J.-B. Alayrac, J. Donahue, P. Luc,
A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican, M. Reynolds,
et al., Flamingo: a visual language model for few-shot learning,
                  35(2022) 23716 - 23736. 22 [270] J. Li, D. Li, S. Savarese,
S. Hoi, Blip-2:
                                 . arXiv
                                                     arXiv:2301.12597(202
3). 22 [271] H. Liu, C. Li, Q. Wu, Y. J. Lee, Visual instruction tuning, arXiv
            arXiv:2304.08485(2023). 22 [272] K. Li, Y. He, Y. Wang, Y. Li
, W. Wang, P. Luo, Y. Wang, L. Wang, Y. Qiao, Videochat:
                            arXiv:2305.06355(2023). 22 [273] M. Maaz, H.
Rasheed, S. Khan, F. S. Khan, Video-chatgpt:
                             , arXiv
                                                 arXiv:2306.05424(2023). 2
2 [274] H. Zhang, X. Li, L. Bing, Video-llama:
                                           arXiv:2306.02858(2023), 22 [27
                        . arXiv
5] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. Plumbley, Y. Zo
u, W. Wang, Wavcaps:
                                                             chatgpt
                                                  , arXiv
                                                                      arXiv:
2303.17395(2023). 22 [276] C. Lyu, M. Wu, L. Wang, X. Huang, B. Liu, Z. D
u, S. Shi, Z. Tu, Macaw-llm:
                          , arXiv
                                               arXiv:2306.09093(2023). 22 [
277] D. Zhu, J. Chen, X. Shen, X. Li, M. Elhoseiny, Minigpt-4:
                                       , arXiv
                                                         arXiv:2304.10592
(2023). 22 [278] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X
. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
                       arXiv:2010.11929(2020). 22 [279] W. Dai, J. Li, D. Li
     . arXiv
, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. Fung, S. Hoi, Instructblip:
                                             , arXiv
                                                                  arXiv:230
5.06500(2023).\ 22\ [280]\ Z.\ Xu,\ Y.\ Shen,\ L.\ Huang,\ Multiinstruct:
                                                            arXiv:2212.107
                                        . arXiv
73(2022). 22 [281] Z. Zhao, L. Guo, T. Yue, S. Chen, S. Shao, X. Zhu, Z. Yua
n, J. Liu, Chatbridge:
                            arXiv:2305.16103 (2023). 22 [282] L. Li, Y. Yin
          , arXiv
, S. Li, L. Chen, P. Wang, S. Ren, M. Li, Y. Yang, J. Xu, X. Sun, et al., M3 it:
                                                             . arXiv
   arXiv:2306.04387 (2023). 22 [283] R. Pi, J. Gao, S. Diao, R. Pan, H. Dong,
J. Zhang, L. Yao, J. Han, H. Xu, L. K. T. Zhang, Detgpt:
          , arXiv
                              arXiv:2305.14167(2023). 22 [284] G. Luo, Y.
Zhou, T. Ren, S. Chen, X. Sun, R. Ji,
                                     , arXiv
                                                          arXiv:2305.15023(
2023). 22 [285] R. Zhang, J. Han, A. Zhou, X. Hu, S. Yan, P. Lu, H. Li, P. Ga
o, Y. Qiao, Llama-adapter: zero-init attention
          , arXiv
                             arXiv:2303.16199(2023). 22 [286] A. Radford
, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, I. Sutskever,
                                                        , PMLR, 2023, pp. 2
8492 - 28518. 22 [287] Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, A. S
                                                  , arXiv
v:2302.00923(2023). 23 [288] J. Ge, H. Luo, S. Qian, Y. Gan, J. Fu, S. Zhan,
                                                                      arXiv:
                                                 , arXiv
```

2304.07919(2023). 23

```
[289] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, N. Duan,
                                                               chatgpt:
                                                 , arXiv
                                                                   arXiv:2
303.04671\ (2023).
 23[290] Z. Yang, L. Li, J. Wang, K. Lin, E. Azarnasab, F.
Ahmed, Z. Liu, C. Liu, M. Zeng, L. Wang, Mm-react: chatgpt
                               arXiv
                                              arXiv:2303.11381 (2023). 2
3 [291] T. Wang, J. Zhang, J. Fei, Y. Ge, H. Zheng, Y. Tang, Z. Li, M. Gao, S.
Zhao, Y. Shan
                                :
                                   arXiv:2305.02677(2023). 23 [292] X. Zh
                arXiv
u, R. Zhang, B. He, Z. Zeng, S. Zhang, P. Gao, Pointclip v2:
                                                arXiv:2211.11682(2022). 2
                            . arXiv
3 [293] T. Gupta, A. Kembhavi,
         , IEEE/CVF
p. 14953 - 14962. 23 [294] P. Gao, Z. Jiang, H. You, P. Lu, S. C. Hoi, X. Wa
ng, H. Li,
                                   /CVF
  , 2019, 6639-6648 . 23 [295] Z. Yu, J. Yu, Y. Cui, D. Tao, Q. Tian,
                                                    , IEEE/CVF
                               , 2019, 6281-6290 . 23 [296] H. You, R. Su
n, Z. Wang, L. Chen, G. Wang, H. A. Ayyubi, K.- W. Chang, S.-F. Chang, Ide
                                                                      . arX
algpt:
               arXiv:2305.14985(2023). 23 [297] R. Zhang, X. Hu, B. Li, S.
Huang, H. Deng, Y. Qiao, P. Gao, H. Li,
                                                        , IEEE/CVF
                         가
                                            -shot
                                       , 2023, pp. 15211 – 15222. 23 [298]
T. Q. Nguyen, J. Salazar,
                                                                      Co
RR abs/1910.05895(2019). 24 [299] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi,
D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, Roberta:
            bert
                                      , arXiv
                                                       arXiv:1907.11692(
2019). 24, 30 [300] X. Geng, A. Gudibande, H. Liu, E. Wallace, P. Abbeel, S.
Levine, D. Song, Koala:
   4 ). URL https://bair.berkeley.edu/blog/2023/04/03/koala/ 25 [301] L. Ga
o, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A
. Thite, N. Nabeshima, et al., The pile:
  800gb
                     , arXiv
                                          arXiv:2101.00027(2020). 28, 30 [
302] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. Villanova del Moral, T
. Le Scao, L. Von Werra, C. Mou, E. González Ponferrada, H. Nguyen, et al.,
                         : 1.6TB
               35 (2022) 31809-31826. 28 [303]
                                                           . URL https://e
n.wikipedia.org/wiki/Main_Page 28 [304] Together Computer, Redpajama:
                                                         (2023 4 ). UR
L https://github.com/togethercomputer/ RedPajama-Data 28 [305] O. Honovic
h, T. Scialom, O. Levy, T. Schick,
                  , arXiv
                                      arXiv:2212.09689 (2022). 28 [306] Y
. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. F
ort, D. Ganguli, T. Henighan, et al.,
                                                arXiv:2204.05862(2022). 2
                           , arXiv
8 [307] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J. St
                                             , arXiv
                                                                 arXiv:200
9.03300(2020). 26, 29 [308] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoe
b, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso
  , Beyond
```

. , diAiv diAi	[331] K. Weischedel, S. Hadhall, L. Kallishaw, W. Halliel, N. Ade, W. Mai-C
v:2206.04615 (2022). 26, 29 [309] A. Wang, A. Singh, J. Michael, F. Hill, O.	us, A. Taylor, C. Greenberg, E. Hovy, R. Belvin , Ontonotes 4.0, L
Levy, S. R. Bowman, Glue:	DC2011T03, ; (2011). 29
, arXiv arXiv:1804.07461 (2018). 26, 29 [310] Y. Yao,	[332] D. Vilares, C. Gómez-Rodríguez, Head-qa:
Q. Dong, J. Guan, B. Cao, Z. Zhang, C. Xiao, X. Wang, F. Qi, J. Bao, J. Nie, e	, arXiv arXiv:1906.04701(2019). 29 [333] S. L. Blo
	dgett, L. Green, B. O ' Connor, :
2.13610 (2021). 29 [311] L. Xu, H. Hu, X. Zhang, L. Li, C. Cao, Y. Li, Y. Xu,	, arXiv arXiv:1608.0886
K. Sun, D. Yu, C. Yu, et al., Clue: 7 , arXiv	8(2016). 29 [334] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra,
arXiv:2004.05986 (2020). 29 [312] L. Xu, X. Lu, C. Yuan, X. Zhang,	L. Van- derwende, P. Kohli, J. Allen,
H. Xu, H. Yuan, G. Wei, X. Pan, X. Tian, L. Qin, et al., Fewclue: few-	가 , arXiv arXiv:1604.01696(
shot 가 , arXiv arXiv:2107.07498 (2021). 29 [2016). 28, 29 [335] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R.
313] E. M. Smith, M. Williamson, K. Shuster, J. Weston, YL. Boureau, Can	Bernardi, S. Pezzelle, M. Baroni, G. Boleda, R. Fernández,
you put it all together: Evaluating conversational agents 'ability to blend skil	: , arXiv arXiv:160
ls, arXiv preprint arXiv:2004.08449 (2020). 29 [314] P. Liang, R. Bommasani,	6.06031(2016). 28, 29 [336] B. Hu, Q. Chen, F. Zhu, Lcsts:
T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu,	, arXiv arXiv:1506.05865(2015). 2
A. Kumar, et al., Holistic evaluation of language models, arXiv preprint arXiv	9 [337] Z. Shao, M. Huang, J. Wen, W. Xu, X. Zhu,
:2211.09110 (2022). 29 [315] S. Park, J. Moon, S. Kim, W. I. Cho, J. Han, J. P	, arXiv arXiv:1908.0660
ark, C. Song, J. Kim, Y. Song, T. Oh, et al., Klue: 7, arXiv pr	5(2019). 29 [338] J. Novikova, O. Du š ek, V. Rieser, e2e :
eprint arXiv:2105.09680 (2021). 29 [316] S. Reddy, D. Chen, C. D. Manning,	
Coqa: , 7(2019) 249 – 266.	9 [339] C. Zheng, M. Huang, A. Sun, Chid:
27, 29 [317] M. T. Pilehvar, J. Camacho-Collados, Wic:	, arXiv arXiv:1906.01265(20
가 10,000 , arXiv arXiv:1808.09121 6	19). 29 [340] Y. Bisk, R. Zellers, J. Gao, Y. Choi , Piqa:
(2018). 27, 29 [318] S. Merity, C. Xiong, J. Bradbury, R. Socher,	, AAAI , 34 , 2020 , 743
, arXiv arXiv:1609.07843(2016). 28, 29 [319] J.	2~7439 . 28, 29 [341] M. Joshi, E. Choi, D. S. Weld, L. Zettlemoyer, Triviaq
W. Rae, A. Potapenko, S. M. Jayakumar, T. P. Lillicrap,	a: , arXiv
, arXiv arXiv:1911.05507(2019). 28, 29	arXiv:1705.03551(2017). 28, 29, 31 [342] P. Clark, I. Cowhey, O. Etzio
[320] X. Liu, Q. Chen, C. Deng, H. Zeng, J. Chen, D. Li, B. Tang, Lcqmc:	ni, T. Khot, A. Sabharwal, C. Schoenick, O. Tafjord,
, 27	? try arc, ai2 , arXiv arXiv:1803.054
, 2018, pp. 1952 – 1962. 28, 29 [321] S. Iyer, N. Dandekar, K. Csernai,	57(2018). 28, 29, 31 [343] S. Aroca-Ouellette, C. Paik, A. Roncone, K. Kann,
quora : , https://quoradata.quora.com/ First-	Prost: , arXiv arXiv:2
Quora-Dataset-Release-Question-Pairs. 29 [322] R. Rudinger, J. Naradowsky,	106.03634(2021). 29 [344] T. Mihaylov, P. Clark, T. Khot, A. Sabharwal,
B. Leonard, B. Van Durme, , arXiv ar	9
Xiv:1804.09301(2018). 29 [323] MC. De Marneffe, M. Simons, J. Tonhause	, arXiv arXiv:1809.02789(2018). 29 [345] T. C. Ferreira, C.
r, ; , Sinn und B	Gardent, N. Ilinykh, C. Van Der Lee, S. Mille, D. Moussallem, A. Shimorina,
edeutung , 23 , 2019 , 107-124 . 29 [324] Z. Li, N. Ding, Z. Li	2020 , webnlg+ 가 (webnlg+
u, H. Zheng, Y. Shen,	2020), 3 (WebN
, 2019 57 , 4377-4386 . 29 [325] J.	LG+), 2020 . 29 [346] C. Xu, W. Zhou, T. Ge, K. Xu, J. McAuley, F. Wei,
Xu, J. Wen, X. Sun, Q. Su,	:
, arXiv arXiv:1711.07010(2	arXiv arXiv:2104.02704(2021). 29 [347] G. Lai, Q. Xie, H. Liu,
017). 29 [326] J. Chen, Q. Chen, X. Liu, H. Yang, D. Lu, B. Tang, bq	Y. Yang, E. Hovy, : , ar
,	Xiv arXiv:1704.04683(2017). 29 [348] E. Choi, H. He, M. Iyyer,
2018 , 2018, 4946-4951 .	M. Yatskar, Wt. Yih, Y. Choi, P. Liang, L. Zettlemoyer, Quac:
29 [327] B. Liu, D. Niu, H. Wei, J. Lin, Y. He, K. Lai, Y. Xu,	, arXiv arXiv:1808.07036(2018). 29 [349] M. Geva,
, arXiv arXiv:1802.07459(2018)	D. Khashabi, E. Segal, T. Khot, D. Roth, J. Berant,
. 29 [328] P. Li, W. Li, Z. He, X. Wang, Y. Cao, J. Zhou, W. Xu,	2
12) [020] 1121, W. 23, 21 110, 111 Wang, 11 040, 01 21104, Willia,	9(2021) 346 – 361. 29, 31 [350] J. Boyd-Graber, B. Sati
arXiv arXiv:1607.06275(2016). 29 [329] N. Peng, M. Dredze,	noff, H. He, H. Daumé III,
arxiv.1007.00273(2010). 27 [327] 14. 1 olig, Wi. Dicuze,	2012
, 2015 , 2015, 548-5	,
	, 2012, pp. 1290 – 1301. 29 [351] S. Zhang, X. Zhang, H.
54 . 29 [330] W. Ling, D. Yogatama, C. Dyer, P. Blunsom,	. Wang, J. Cheng, P. Li, Z. Ding, CNN
; , arXiv	, 7(8)(2017) 767. 29 [352] S. Z
arXiv:1705.04146(2017). 29	hang, X. Zhang, H. Wang, L. Guo, S. Liu,
	, IEEE

```
Access 6(2018) 74061 - 74071. 29 [353] C. Xu, J. Pei, H. Wu, Y. Liu,
                                                                            [374] C. C. Shao, T. Liu, Y. Lai, Y. Tseng, S. Tsai, Drcd:
                                                                                            , arXiv arXiv:1806.00920(2018). 29 [375] W. He
C. Li, Matinf:
                                                                            , K. Liu, J. Liu, Y. Lyu, S. Zhao, X. Xiao, Y. Liu, Y. Wang, H. Wu, Q. She, et
              , arXiv
                                 arXiv:2004.12302(2020), 29 [354] K. Sa
kaguchi, R. L. Bras, C. Bhagavatula, Y. Choi, Winogrande:
                                                                            al., Dureader:
Winograd
           , ACM
                                           64(9)(2021) 99 – 106. 27, 29
                                                                                , arXiv
[355] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, Y. Choi, Hellaswag:
                                                                            Li, Y. Hong, H. Wu, H. Wang, Dureaderrobust:
                                        ?, arXiv
                                                     arXiv:190
                                                                                                           , arXiv
                                                                            20). 29 [377] J. Welbl, N. F. Liu, M. Gardner,
5.07830(2019). 29 [356] M. Roemmele, C. A. Bejan, A. S. Gordon, 7
                                 가, AAAI
                                                                               , arXiv
                 , 2011, 90-95 . 29 [357] H. Levesque, E. Davis, L. Morge
                                                                            Callan, Z. Liu, R. Power,
nstern, Winograd
                                                                13
                                                                                                        40
                                                                                                                  ACM SIGIR
             , 2012. 27, 29 [358] A. Talmor, J. Herzig, N. Lourie, J. Berant,
                                                                            . Morante, Qa4mre 2011-2013:
                                                                                                                     가
Commonsensega:
                                                                            rmation Access Evaluation
         arXiv:1811.00937(2018). 29, 31 [359] M. Sap, H. Rashkin, D. Che
                                                                                                          , CLEF 2013,
n, R. LeBras, Y. Choi, Socialiga:
                                                                                      4
                arXiv:1904.09728(2019). 29 [360] K. Sun, D. Yu, D. Yu, C.
Xiv
Cardie,
                                                                            m, J. Lee, Korquad1.0:
                 8(2020) 141 - 155. 29 [361] S. Zhang, X. Liu, J. Liu, J. Ga
                                                                            V
o, K. Duh, B. Van Durme, :
   , arXiv arXiv:1810.12885(2018). 29 [362] P. Rajpurkar, J.
                                                                                                                   , arXiv
Zhang, K. Lopyrev, P. Liang, Squad:
       , arXiv
                              arXiv:1606.05250(2016). 29, 31 [363] C.
Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, K. Toutanova, Boo
                                                                                           , arXiv
                                                                            . Wang, X. Liu, S. Shi,
                                                   . arXiv
arXiv:1905.10044(2019). 29, 31 [364] P. Rajpurkar, R. Jia, P. Liang,
                                                                                               2017
                                          , arXiv
                                                              arXiv:1
806.03822(2018). 29, 31 [365] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S.
                                                                            ert, J. Tworek, J. Hilton, R. Nakano, et al.,
Singh, M. Gardner, Drop:
                                                                                   . arXiv
                          arXiv:1903.00161(2019). 29, 31 [366] I. Dagan,
      . arXiv
O. Glickman, B. Magnini,
                                                                            i, M. Terry, Q. V. Le, C. Sutton,
                   , Springer, 2005, pp. 177 - 190. 29, 31 [367] Y. Chang,
M. Narang, H. Suzuki, G. Cao, J. Gao, Y. Bisk, Webqa: Multi-tihop multi
modal qa, IEEE/CVF
                                                             , 2022, pp.
                                                                                                                 , arXiv
16495 - 16504. 29, 31 [368] Y. Cui, T. Liu, Z. Chen, W. Ma, S. Wang, G. Hu,
                                                                            2022). 29 [387] S. Roy, D. Roth,
                                       가
                                                             , arXiv
        arXiv:1709.08299(2017). 29 [369] Y. Cui, T. Liu, W. Che, L. Xiao, Z
                                                                                                          가
. Chen, W. Ma, S. Wang, G. Hu,
           , arXiv
                      arXiv:1810.07366(2018). 29, 31 [370] Y. Cui,
                                                                            oy, A. Amini, N. Kushman, H. Hajishirzi, Mawps:
T. Liu, Z. Yang, Z. Chen, W. Ma, W. Che, S. Wang, G. Hu,
                                            , arXiv
                                                                            29 [390] A. Patel, S. Bhattamishra, N. Goyal, NLP
                                                             arXiv:2004
.03116(2020). 29 [371] Y. Li, T. Liu, D. Li, Q. Li, J. Shi, Y. Wang,
                                                bilstm-crf. Asian Confer
                pos
ence on Machine Learning, PMLR, 2018, 518-533 . 29 [372] D. Khashabi, S
                                                                            ih, D. Fried, S. Wang, T. Yu, Ds-1000:
. Chaturvedi, M. Roth, S. Upadhyay, D. Roth,
                                  , 2018
                                     ), 2018, 252-262 . 29 [373] T. Kwi
atkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epste
                                                                                                                      , arXiv
in, I. Polosukhin, J. Devlin, K. Lee, et al.,
                                               7(2019)453 - 466.29
                                                                                           nli:
                                                                            D. Kiela.
```

arXiv:1711.05073(2017). 29 [376] H. Tang, J. Liu, H. arXiv:2004.11142(20 arXiv:1707.06209(2017). 29 [378] C. Xiong, Z. Dai, J. 7, 55-64 . 29 [379] A. Peñas, E. Hovy, P. Forner, Á. Rodrigo, R. Sutcliffe, R , Info , 2013 9 $23\text{-}26 \quad . \text{ Pro-ceedings 4, Springer, 2013, pp. 303-320. 29 [380] S. \text{ Lim, M. Ki}}$ qa arXiv:1909.07005(2019). 29 [381] C. Xiao, H. Zhong, Z. Guo, C. Tu, Z. Liu, M. Sun, Y. Feng, X. Han, Z. Hu, H. Wang, et al., Cail2018: arXiv:1807.02 478(2018). 29 [382] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Ar ora, E. Guo, C. Burns, S. Puranik, H. He, D. Song, et al., arXiv:2105.09938(2021). 29, 31 [383] Y , 2017, 845-854 . 29, 31 [38 4] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plapp arXiv:2110.14168(2021), 29, 31 [385] J. Austin, A. Odena, M. I. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. J. Ca , CoRR abs/2108.07732(2021). 29 [386] F. Shi, M. Suzgun, M. Freitag, X. Wa ng, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, et al., arXiv:2210.03057(, arXiv arXiv:1608.01413(2016). 29 [388] S.-Y. Miao, C.-C. Liang, K.-Y. Su, arXiv:2106.15772(2021). 29 [389] R. Koncel-Kedziorski, S. R , 2016, 1152-1157 . ?, arXiv arXiv:2103.07191(2021). 29 [391] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, W.-t. Y , International Conference on Machine Lear ning, PMLR, 2023, pp. 18319 - 18345. 29 [392] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, et al. arXiv:210 8.07732(2021). 29 [393] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, . arXiv arXiv:1910.14599(2019). 29, 31 [394] A. Williams, N. Nangia, S. R. Bo wman. arXiv:1704.05426(2017). 29 [395] R. T. McCoy, E. Pavlick, T. Lin

```
, arXiv
                                                                               [417] W. Li, F. Qi, M. Sun, X. Yi, J. Zhang, Ccpm:
arXiv:1902.01007 (2019). 29 [396] J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang,
                                                                                      , arXiv arXiv:2106.01979(2021). 29 [418] E. Dinan, S. Rol
Y. Zhang, Logiqa:
                                                                               ler, K. Shuster, A. Fan, M. Auli, J. Weston,
                             arXiv:2007.08124 (2020). 29 [397] P. Lewis,
                                                                                                , arXiv
                                                                                                                 arXiv:1811.01241(2018). 29 [419] H. Ra
          . arXiv
                                                                               shkin, E. M. Smith, M. Li, Y.-L. Boureau,
B. Oğuz, R. Rinott, S. Riedel, H. Schwenk, Mlqa:
                                                                                                                       , arXiv
                     arXiv:1910.07475 (2019). 29 [398] A. Conneau, G. La
가, arXiv
                                                                                                                                         arXiv:1811.002
mple, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk, V. Stoyanov, Xnli:
                                                                               07(2018). 29 [420] E. Dinan, V. Logacheva, V. Malykh, A. Miller, K. Shuster,
                    가. arXiv
                                         arXiv:1809.05053(2018), 29, 31
                                                                              J. Urbanek, D. Kiela, A. Szlam, I. Serban, R. Lowe, et al.,
[399] Y. Yang, Y. Zhang, C. Tar, J. Baldridge, Paws-x:
                                                                                        (convai2), NeurIPS'18
                                             arXiv:1908.11828(2019). 29,
                                                                                 , Springer, 2020, pp. 187 – 208. 29 [421] H. Zhou, C. Zheng, K. Huang, M.
                         . arXiv
31 [400] S. Narayan, S. B. Cohen, M. Lapata,
                                                                               Huang, X. Zhu, Kdconv:
                                                         . ArXiv, abs (180
                                                                                                                       arXiv:2004.04100(2020). 29 [422]
8). 29 [401] E. M. Ponti, G. Glava Š, O. Majewska, Q. Liu, I. Vulić, A. Korho
                                                                              L. CO, Iflytek:
nen, Xcopa:
                                                                               (2019). 29 [423] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, J. Black
     arXiv:2005.00333 (2020). 29 [402] A. Tikhonov, M. Ryabinin,
                                                                               burn, pushshift reddit
                                                                                             , 14 , 2020 , 830-839 . 30 [424] A. Fan, Y. Jernite, E. P
                                                                                                                                    , arXiv
               . arXiv
                                  arXiv:2106.12066 (2021). 29 [403] J. H.
                                                                              erez, D. Grangier, J. Weston, M. Auli, Eli5:
Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev, J. Palo
                                                                                 arXiv:1907.09190(2019). 31 [425] Y. Wang, S. Mishra, P. Alipoormolabas
maki, Tydi qa:
                                                                               hi, Y. Kordi, A. Mirzaei, A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. N
                                           8(2020) 454 – 470, 29 [404] T.
                                                                               aik, D. Stap, et al., 1,600+
Scialom, P.-A. Dray, S. Lamprier, B. Piwowarski, J. Staiano, Mlsum:
                                                                                     , arXiv
                                                                                                      arXiv:2204.07705 (2022). 31 [426] T. Xie, C. H. W
                                                                               u, P. Shi, R. Zhong, T. Scholak, M. Yasunaga, C.-S. Wu, M. Zhong, P. Yin, S.
                     arXiv:2004.14900(2020). 29 [405] S. Lin, J.
           , arXiv
Hilton, O. Evans, Truthfulqa:
                                                                              I. Wang , Unifiedskg:
                                                                                                          , arXiv
                 arXiv:2109.07958(2021). 29, 32 [406] I. Augenstein
                                                                                                                              arXiv:2201.05966(2022). 3
    . arXiv
 C. Lioma, D. Wang, L. C. Lima, C. Hansen, C. Hansen, J. G. Simonsen, Mul
                                                                               1 [427] Q. Ye, B. Y. Lin, X. Ren, Crossfit: NLP
                                                                                                     , arXiv
                                                                                                                          arXiv:2104.08835(2021). 31 [4
    , arXiv
                       arXiv:1909.03242(2019). 29 [407] J. Thorne, A. Vl
                                                                               28] V. Aribandi, Y. Tay, T. Schuster, J. Rao, H. S. Zheng, S. V. Mehta, H. Zh
                                                                              uang, V. Q. Tran, D. Bahri, J. Ni , Ext5:
achos, C. Christodoulopoulos, A. Mittal, Fever:
                                    arXiv:1803.05355(2018). 29 [408] I.
                                                                                                         , arXiv
                , arXiv
                                                                                                                             arXiv:2111.10952(2021). 31
Mollas, Z. Chrysopoulou, S. Karlos, G. Tsoumakas, Ethos:
                                                                               [429] A. Williams, N. Nangia, S. Bowman,
                             arXiv:2006.08328(2020). 29, 32 [409]
                 , arXiv
                                                                                                       , 2018
M. Nadeem, A. Bethke, S. Reddy, Stereoset:
                                                                                                        ).
                                         arXiv:2004.09456(2020). 29, 32 [
                                                                              2018, 1112-1122 . doi:10.18653/v1/ N18-1101. URL https://aclanthology.or
                     , arXiv
                                                                              g/N18-1101 31 [430] Y. Zhang, J. Baldridge, L. He, PAWS:
410] A. Parrish, A. Chen, N. Nangia, V. Padmakumar, J. Phang, J. Thomp-son
, P. M. Htut, S. R. Bowman, Bbq:
                                                                                                    , 2019
                 arXiv:2110.08193(2021). 29 [411] J. Zhao, T. Wang, M.
                                                                               019, 1298-1308 . doi:10.18653/v1/N19-1131. URL https://aclanthology.org/
Yatskar, V. Ordonez, K.-W. Chang,
                             arXiv:1804.06876(2018). 29 [412] N. Nangia,
                                                                              N19-1131 32 [431] C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, D. Ya
C. Vania, R. Bhalerao, S. R. Bowman, Crows-pairs: 가
                                                                              ng, GPT가
                                                                                                                       가?, 2023
                                                                                                       , 2023. URL https://openreview.net/forum?id=u03x \,
                                                                                         2023
                                                     , arXiv
arXiv:2010.00133(2020). 29 [413] S. Gehman, S. Gururangan, M. Sap, Y. Ch
                                                                               n1COsO 32 [432] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B.
oi, N. A. Smith, Realtoxicityprompts:
                                                                              Shaikh, N. Akhtar, J. Wu, S. Mirjalili, et al.,
                 arXiv:2009.11462(2020). 29 [414] D. Borkan, L. Dixon, J.
                                                                                                                                 , TechRxiv(2023). 32 [4
                                                                               33] X. L. Dong, S. Moon, Y. E. Xu, K. Malik, Z. Yu, LLM
Sorensen, N. Thain, L. Vasserman,
                                                                                                       , 2023 29 ACM SIGKDD
                                              . 2019
                     , 2019, 491-500 . 29 [415] O. Bojar, R. Chatterjee, C
                                                                                                            , 5792-5793 . 32 [434] K. Pandya, M. Holia,
. Federmann, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, V. Lo
                                                                              Langchain
                                                                                                                arXiv:2310.05421(2023). 32 [435] J. Li, B.
gacheva, C. Monz, et al., 2016
                                                        . 2016
                                                                                            , arXiv
                                                   , 131-198 . 29 [416] B
                                                                               Hui, G. Qu, B. Li, J. Yang, B. Li, B. Wang, B. Qin, R. Cao, R. Geng , LLM
. Loïc, B. Magdalena, B. Ondřej, F. Christian, G. Yvette, G. Roman, H. Barry,
H. Matthias, J. Eric, K. Tom, et al., 2020
), in: 5
                                      , Association for Compu-tational Li
nguistics ", 2020, pp. 1 - 55. 29
```

```
-SOL
                                                                                                                             14(6)(2023). 32 [456] J. Irons,
               arXiv:2305.03111 (2023). 32 [436] A. Rao, J. Kim, M. Kamin
                                                                                 C. Mason, P. Cooper, S. Sidra, A. Reeson, C. Paris,
Xiv
eni, M. Pang, W. Lie, M. D. Succi,
                                                                                                   , SocArXiv(2023). 32 [457] P. G. Schmidt, A. J. Meir,
                                                                                hatgpt
     chatgpt 7, medRxiv (2023) 2023 – 02. 32 [437] M. Benary, X. D. Wa
                                                                                                              ΑI
ng, M. Schmidt, D. Soll, G. Hilfenhaus, M. Nas-sir, C. Sigler, M. Knödler, U.
                                                                                      ?, arXiv
                                                                                                           arXiv:2311.06981(2023). 32 [458] Y. Zheng, H. Y.
Keller, D. Beule, et al.,
                                                                                 Koh, J. Ju, A. T. Nguyen, L. T. May, G. I. Webb, S. Pan,
                  , JAMA Network Open 6 (11) (2023) e2343689 - e234368
                                                                                                                   , arXiv
                                                                                                                                       arXiv:2310.07984(20
                                                                                 23). 33 [459] B. Aczel, E.-J. Wagenmakers,
9. 32 [438] C. M. Chiesa-Estomba, J. R. Lechien, L. A. Vaira, A. Brunet, G. C
                                                                                                                                               chatgpt
amaroto, M. Mayo-Yanez, A. Sanchez-Barrueco, C. Saga-Gutierrez,
                                                                                                     , PsyArXiv(2023). 33 [460] S. Altmäe, A. Sola-Leyva,
                                                                                                                                      가
                                                                                                                                              가?, Reproduc
                                                                chat-gpt

 A. Salumets.

                                                                                tive BioMedicine Online(2023). 33 [461] S. Imani, L. Du, H. Shrivastava, Mat
                                            (2023) 1 - 6. 32 [439] S. Monta
gna, S. Ferretti, L. C. Klopfenstein, A. Florio, M. F. Pengo,
                                                                                hprompter:
                                                                                                                                     , arXiv
                                                                                v:2303.05398(2023). 33 [462] Z. Yuan, H. Yuan, C. Li, G. Dong, C. Tan, C. Z
          11m
                2023 ACM
                                             , 2023, 205 – 212 . 32 [440]
D. Bill, T. Eriksson,
                                                                                                 arXiv:2308.01825(2023). 33 [463] K. Yang, A. M. Swope,
                                                                                arXiv
                     LLM
                                     (2023). 32 [441] M. Abbasian, I. Azimi,
                                                                                 A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger, A. Anandkumar, L
                                                                                                                                   , arXiv
A. M. Rahmani, R. Jain,
                                                          LLM
                 , arXiv
                                      arXiv:2310.02374(2023). 32 [442] K.
                                                                                2306.15626(2023). 33 [464] K. M. Collins, A. Q. Jiang, S. Frieder, L. Wong,
                                                                                M. Zilka, U. Bhatt, T. Lukasiewicz, Y. Wu, J. B. Tenenbaum, W. Hart, et al.,
V. Lemley, chatgpt가
                                                              ?. Journal of
the American Society of Nephrology(2023) 10 - 1681. 32 [443] S. Pal, M. Bh
                                                                                                                              가. arXiv
                                                                                                                                                    arXiv:2
attacharya, S.-S. Lee, C. Chakraborty,
                                                                                 306.01694(2023). 33 [465] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian,
                                    chatgpt가
                                                                                H. He, A. Li, M. He, Z. Liu , chatgpt
                         (llm)
                                                           . Annals of Biom
edical Engineering(2023) 1 - 4. 32 [444] Y. Du, S. Zhao, Y. Chen, R. Bai, J. L
                                                                                                      , Meta-Radiology (2023) 100017. 33 [466] J. Drápal, H.
iu, H. Wu, H. Wang, B. Qin, calla
                                                                                 Westermann, J. Savelka,
                                           arXiv:2309.04198(2023). 32 [44
                                                                                                                               arXiv:2310.18729 (2023), 33
                        . arXiv
                                                                                                            . arXiv
5] A. Abd-Alrazaq, R. AlSaad, D. Alhuwail, A. Ahmed, P. M. Healy, S. Latifi
                                                                                 [467] J. Savelka, K. D. Ashley, M. A. Gray, H. Westermann, H. Xu,
, S. Aziz, R. Damseh, S. A. Alrazak, J. Sheikh
                                                                                                                                   . arXiv
                                                                                                                                                        arXi
                                                                                                  (gpt-4)
                                                                                 v:2306.09525 (2023). 33 [468] N. Guha, J. Nyarko, D. E. Ho, C. Ré, A. Chilto
                              . JMIR
                                                9(1)(2023) e48291, 32 [446
] A. B. Mbakwe, I. Lourentzou, L. A. Celi, O. J. Mechanic, A. Dagan, Chatgpt
                                                                                n, A. Narayana, A. Chohlas-Wood, A. Peters, B. Waldon, D. N. Rockmore
                                    (2023). 32 [447] S. Ahn,
                                                                                Legal-bench:
                                                                                                              arXiv:2308.11462(2023). 33 [469] J. Cui, Z. Li
                                                                                          , arXiv
103. 32 [448] E. Waisberg, J. Ong, M. Masalkhi, A. G. Lee,
                                                                                 , Y. Yan, B. Chen, L. Yuan, Chatlaw:
                               (llm)
                                               , Eye (2023) 1 - 3.32 [449]
                                                                                                        , arXiv
                                                                                                                            arXiv:2306.16092(2023). 33 [47
G. Deiana, M. Dettori, A. Arghittu, A. Azara, G. Gabutti, P. Castiglia,
                                                                                0] H. Yang, X.-Y. Liu, C. D. Wang, Fingpt:
                                                          가, Vaccines 11(
                                                                                                     arXiv:2306.06031(2023). 33 [471] Y. Li, S. Wang, H. Di
                                           chatgpt
                                                                                   , arXiv
7)(2023) 1217. 32 [450] L. De Angelis, F. Baglivo, G. Arzilli, G. P. Privitera,
                                                                                 ng, H. Chen,
                                                                                                                               4 ACM
P. Ferragina, A. E. Tozzi, C. Rizzo, Chatgpt
                                                                                                , 2023, 374-382 . 33 [472] A. Lykov, D. Tsetserukou, Llm-b
                  ΑI
                                            , Frontiers in Public Health 11(2
023) 1166120. 32 [451] N. L. Rane, A. Tawde, S. P. Choudhary, J. Rane, chat
                                                                                   , arXiv
                                                                                                     arXiv:2305.19352(2023). 33 [473] E. Billing, J. Rosén,
                                                                                                                                  , ACM/IEEE
                                              (llm)
                                                                                 M. Lamb.
                                                            5(10) (2023) 8
                                                                                                     , 2023 3 13-16
                                                                                                                                            , ACM
75 - 899. 32 [452] W. Dai, J. Lin, H. Jin, T. Li, Y.-S. Tsai, D. Ga š ević, G. C
                                                                                             , 2023, 905-906 . 33 [474] Y. Ye, H. You, J. Du, chatgpt
                                                                  ? chatgpt
                                                                                                                   , IEEE Access(2023). 33 [475] Y. Ding, X
                                                              (ICALT), IEE
                                                                                 . Zhang, C. Paxton, S. Zhang,
                  . 2023 IEEE
E, 2023, pp. 323 - 325. 32 [453] E. Kasneci, K. Seßler, S. Küchemann, M. Ba
                                                                                                      , RSS 2023
nnert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüll
                                                                                23. 33 [476] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Boh
ermeier, et al.,
                   Chatgpt 가?
                                                                                g, S. Rusinkiewicz, T. Funkhouser, Tidybot:
                         103(2023) 102274. 32 [454] N. Rane, chatgpt
                                                                                                , arXiv
                                                                                                                    arXiv:2305.05658(2023). 33 [477] E. Str
                                                                                ubell, A. Ganesh, A. McCallum, NLP
                                                                                           . arXiv
                                                                                                               arXiv:1906.02243(2019). 34 [478] E. M. Bend
          9 15 )(2023). 32 [455] J. C. Young, M. Shishido,
                                                                                er, T. Gebru, A. McMillan-Major, S. Shmitchell,
                                          openai chatgpt
```

```
?, 2021 ACM
                                  , 2021, 610-623 \, . 34 [479] C. Zhang, S. Bengio, M. Har
dt, B. Recht, O. Vinyals,
                                           (
                                                  )
M
                 64(3)(2021) 107-115. 34 [480] M. Tänzer, S. Ruder, M. Rei,
                                                 arXiv:2105.00828(2021). 34 [481] S.
                               , arXiv
M. West, M. Whittaker, K. Crawford,
                                               , AI Now(2019) 1 - 33. 34 [482] K. Valmee
kam, A. Olmo, S. Sreedharan, S. Kambhampati,
                         llms
                                 ), arXiv
                                                            arXiv:2206.10498(2022). 34
[483] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et
                                                                , arXiv
al.. AI
2309.01219(2023). 34 [484] A. Webson, E. Pavlick,
                                          arXiv:2109.01247(2021). 34 [485] O. Shaikh, H.
                     ?, arXiv
Zhang, W. Held, M. Bernstein, D. Yang,
                      , arXiv
                                          arXiv:2212.08061(2022). 34 [486] B. C. Das, M.
H. Amini, Y. Wu,
                                                                            . arXiv
       arXiv:2402.00888(2024). 34 [487] X. Liu, H. Cheng, P. He, W. Chen, Y. Wang, H. Po
on, J. Gao,
                                                     , ArXiv(2020 4 ). URL https://w
                                     /adversarial-training-for-large-neural- -models/ 34
ww.microsoft.com/en-us/research/
[488] E. Shayegani, M. A. A. Mamun, Y. Fu, P. Zaree, Y. Dong, N. Abu-Ghazaleh,
                                               (2023). arXiv:2310.10844. 34 [489] X. Xu,
K. Kong, N. Liu, L. Cui, D. Wang, J. Zhang, M. Kankanhalli, llm
                            (2023). arXiv: 2310.13345. 34 [490] H. Zhao, H. Chen, F. Yan
g, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, M. Du,
                                                                                가
    (2023). arXiv:2309.01029. 35 [491] S. Huang, S. Mamidanna, S. Jangam, Y. Zhou, L. H.
                                                      9 11m
       (2023). arXiv:2310.11207. 35 [492] H. Brown, K. Lee, F. Mireshghallah, R. Shokri, F.
                                                                      ?2022 ACM
Tramèr.
                                      , 2022, 2280-2292 .35 [493] R. Plant, V. Giuffrida,
D. Gkatzia,
                arXiv:2204.09391(2022).35 [494] W. Niu, Z. Kong, G. Yuan, W. Jiang, J. G
Xiv
uan, C. Ding, P. Zhao, S. Liu, B. Ren, Y. Wang,
  (2020). arXiv:2009.06823. 35 [495] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y.
Liu, M. Guo, Y. Zhu, Olive:
       가 , 2023
                                                                      , 1-15 . 35 [496]
                                                                 AI)
B. Meskó, E. J. Topol,
       , npj Digital Medicine 6(1)(2023) 120 . 35 [497] J. Zhang, X. Ji, Z. Zhao, X. Hei, K.-
K. R. Choo,
                             arXiv:2308.02678(2023). 35 [498] J. Mökander, J. Schuett, H.
        , arXiv
R. Kirk, L. Floridi,
                                        : 3
                                                         , AI
                                                                     (2023) 1 - 31.35
```