| Wei | rsja |
|-----|------|
|     |      |

| Numer | r indeksu | ι: |  |
|-------|-----------|----|--|
|       |           |    |  |
|       |           |    |  |
|       |           |    |  |

| Grupa <sup>1</sup> : |
|----------------------|
|----------------------|

| s. 4   | s. 5   | s. 103 | s. 104 |
|--------|--------|--------|--------|
| s. 105 | s. 139 | s. 140 | s. 141 |

Logika dla informatyków

Kolokwium nr 2, 14 grudnia 2018 Czas pisania: 30+60 minut

**Zadanie 1 (2 punkty).**  $R\acute{o}\acute{z}nicę\ symetryczną$   $\dot{-}$  zbiorów A i B definiujemy następująco:

$$A - B = \{x \mid x \in A \Leftrightarrow x \notin B\}.$$

Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne operatory  $\cup$ ,  $\cap$ ,  $\setminus$ ,  $\dot{}$  i nawiasy, oraz W zawiera mniej operatorów niż W'. Np.  $A \cup B$  jest uproszczeniem  $(A \setminus B) \cup B$ . Jeśli istnieje uproszczenie wyrażenia  $A \setminus (A \dot{} - B)$  to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

$$A \cap B$$

**Zadanie 2 (2 punkty).** Jeśli istnieje taka rodzina  $\{X_{i,j} \mid i,j \in \mathbb{N}\}$  zbiorów niepustych, że

$$\bigcap_{i=0}^{\infty} \bigcup_{j=0}^{\infty} X_{i,j} = \emptyset$$

to w prostokąt poniżej wpisz dowolną taką rodzinę. W przeciwnym przypadku wpisz słowo "NIE".

$$X_{i,j} = \{ n \in \mathbb{N} \mid n > i+j \}$$

Zadanie 3 (2 punkty). Rozważmy funkcje

$$f : \mathbb{N} \to \mathbb{N}, \qquad g : \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}, \qquad h : \mathbb{N} \times \mathbb{N} \to \mathbb{N}^{\mathbb{N}}.$$

Rozważmy wyrażenia zbudowane z symboli ( , f g h ;  $\circ$ ), gdzie  $\circ$  oznacza operator składania funkcji. Wyrażenie uznajemy za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(g) nie jest poprawne, bo  $g \notin \mathbb{N}$ . Jeśli istnieje wyrażenie, którego wartością jest liczba naturalna i w którym każdy z symboli f,g i h występuje co najmniej raz, to w prostokąt poniżej wpisz dowolny przykład takiego wyrażenia; w przeciwnym przypadku wpisz słowo "NIE".

 $<sup>^{1}\</sup>mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.



Wersja:



| Numer indeksu: |  |
|----------------|--|
|                |  |
|                |  |

| $Grupa^1$ | • |
|-----------|---|
| Grupa     | • |

| s. 4   | s. 5   | s. 103 | s. 104 |
|--------|--------|--------|--------|
| s. 105 | s. 139 | s. 140 | s. 141 |

**Zadanie 6 (5 punktów).** Rozważmy taką relację binarną  $R \subseteq A \times A$ , że  $R; R = I_A$ , gdzie  $I_A = \{\langle a, a \rangle \mid a \in A\}$  jest relacją identycznościową na zbiorze A. Udowodnij, że R jest funkcją.

**Zadanie 7 (5 punktów).** Rozważmy indeksowaną rodzinę zbiorów  $\{A_i \mid i \in \mathbb{N}\}$ , gdzie  $A_i \subseteq \mathbb{N}$  dla wszystkich  $i \in \mathbb{N}$ . Uogólnionym produktem kartezjańskim tej rodziny nazywamy zbiór

$$\prod_{i\in\mathbb{N}}A_i=\{f:\mathbb{N}\to\mathbb{N}\mid \forall i\in\mathbb{N}.f(i)\in A_i\}.$$

W szczególności dla ustalonego zbioru  $B\subseteq\mathbb{N}$ mamy

$$\prod_{i\in\mathbb{N}}B=\{f:\mathbb{N}\rightarrow\mathbb{N}\mid\forall i\in\mathbb{N}.f(i)\in B\}.$$

Czy dla dowolnego zbioru  $B\subseteq \mathbb{N}$  zachodzi równość

$$\prod_{i\in\mathbb{N}}(A_i\cap B)=(\prod_{i\in\mathbb{N}}A_i)\cap(\prod_{i\in\mathbb{N}}B)?$$

Uzasadnij odpowiedź.

**Zadanie 8 (5 punktów).** Czy dla dowolnych funkcji  $f: A \to B$  i  $g: B \to C$ , jeśli złożenie gf jest funkcją różnowartościową i f jest "na", to g jest różnowartościowa? Uzasadnij odpowiedź.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

| Wersja:      | Numer indeksu: |  |
|--------------|----------------|--|
| $\mathbf{D}$ |                |  |

| Grupa*: |        |        |        |
|---------|--------|--------|--------|
| s. 4    | s. 5   | s. 103 | s. 104 |
| s. 105  | s. 139 | s. 140 | s. 141 |

Logika dla informatyków

Kolokwium nr 2, 14 grudnia 2018 Czas pisania: 30+60 minut

**Zadanie 1 (2 punkty).** Jeśli istnieje taka rodzina  $\{A_{i,j} \mid i,j \in \mathbb{N}\}$  zbiorów niepustych, że

$$\bigcup_{i=0}^{\infty} \bigcap_{j=0}^{\infty} A_{i,j} = \emptyset$$

to w prostokąt poniżej wpisz dowolną taką rodzinę. W przeciwnym przypadku wpisz słowo "NIE".

$$A_{i,j} = \{j\}$$

Zadanie 2 (2 punkty). Rozważmy funkcje

$$f: \mathbb{N} \to \mathbb{N}, \qquad g: (\mathbb{N} \times \mathbb{N})^{\mathbb{N}} \to \mathbb{N}, \qquad h: \mathbb{N} \to \mathbb{N} \times \mathbb{N}.$$

Rozważmy wyrażenia zbudowane z symboli ( , f g h ;  $\circ$ ), gdzie  $\circ$  oznacza operator składania funkcji. Wyrażenie uznajemy za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(g) nie jest poprawne, bo  $g \notin \mathbb{N}$ . Jeśli istnieje wyrażenie, którego wartością jest liczba naturalna i w którym każdy z symboli f,g i h występuje co najmniej raz, to w prostokąt poniżej wpisz dowolny przykład takiego wyrażenia; w przeciwnym przypadku wpisz słowo "NIE".

$$g(h\circ f)$$

**Zadanie 3 (2 punkty).** Różnicę symetryczną  $\dot{}$  zbiorów A i B definiujemy następująco:

$$A \doteq B = \{x \mid x \in A \Leftrightarrow x \notin B\}.$$

Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne operatory  $\cup$ ,  $\cap$ ,  $\setminus$ ,  $\dot{}$  i nawiasy, oraz W zawiera mniej operatorów niż W'. Np.  $A \cup B$  jest uproszczeniem  $(A \setminus B) \cup B$ . Jeśli istnieje uproszczenie wyrażenia  $(A \cap B) \cup (A \dot{} B)$  to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

 $A \cup B$ 

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

**Zadanie 4 (2 punkty).** Rozważmy zbiory osób O, barów B i soków S oraz relacje binarne  $Bywa\subseteq O\times B$ ,  $Lubi\subseteq O\times S$  i  $Podajq\subseteq B\times S$  informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę  $\varphi$ , że  $\{\langle b,s\rangle\mid\varphi\}$  jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów i soków o tej własności, że sok s jest podawany w barze b ale nie lubi go żadna osoba bywająca w tym barze.

$$Podajq(b,s) \land \forall o \in O.Bywa(o,b) \Rightarrow \neg Lubi(o,s)$$

**Zadanie 5 (2 punkty).** Jeśli formuła  $\Big( \forall x \, (\neg p(x) \Rightarrow q(x)) \Big) \Rightarrow \Big( \forall x \, (\neg q(x) \Rightarrow p(x)) \Big)$  jest tautologią rachunku predykatów, to w prostokąt poniżej wpisz jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.



| Wersja |
|--------|
|        |

| Numer indeksu: |  |
|----------------|--|
|                |  |
|                |  |
|                |  |

| Grupa <sup>1</sup> |  |
|--------------------|--|
| Grupa              |  |

| s. 4   | s. 5   | s. 103 | s. 104 |
|--------|--------|--------|--------|
| s. 105 | s. 139 | s. 140 | s. 141 |

**Zadanie 6 (5 punktów).** Rozważmy indeksowaną rodzinę zbiorów  $\{A_i \mid i \in \mathbb{N}\}$ , gdzie  $A_i \subseteq \mathbb{N}$  dla wszystkich  $i \in \mathbb{N}$ . Uogólnionym produktem kartezjańskim tej rodziny nazywamy zbiór

$$\prod_{i \in \mathbb{N}} A_i = \{ f : \mathbb{N} \to \mathbb{N} \mid \forall i \in \mathbb{N}. f(i) \in A_i \}.$$

Czy prawdziwe jest stwierdzenie

$$(\prod_{i\in\mathbb{N}}A_i)\neq\emptyset \ \text{ wtedy i tylko wtedy, gdy } \forall i\in\mathbb{N}.A_i\neq\emptyset?$$

Uzasadnij odowiedź.

**Zadanie 7 (5 punktów).** Rozważmy taką relację binarną  $R \subseteq A \times A$ , że R; $R = I_A$ , gdzie  $I_A = \{\langle a, a \rangle \mid a \in A\}$  jest relacją identycznościową na zbiorze A. Udowodnij, że  $R = R^{-1}$ .

**Zadanie 8 (5 punktów).** Czy dla dowolnych funkcji  $f: A \to B$  i  $g: B \to C$ , jeśli złożenie gf jest funkcją "na" i g jest różnowartościowa, to f jest "na"? Uzasadnij odpowiedź.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.