ISIMA 1ère année

Examen de Programmation linéaire Juin 2012,Durée : 2 heures

Documents de cours autorisés

Calculatrices programmables non autorisées

EXERCICE 1

 Une usine chimique peut synthétiser quatre composés gamox, notés Γ_j, 1 ≤ j ≤ 4. Le processus de synthèse utilise notamment deux substances, l'alphol et le betaxyde. Le tableau ci-après indique les quantités nécessaires d'alphol et de betaxyde pour réaliser la synthèse d'une tonne de chaque type de gamox, les marges réalisées ainsi que les stocks hebdomadaires disponibles d'alphol et de betaxyde.

F 1	Γ_1	Γ_2	Γ_3	Γ4	Stocks disponibles (t)
Quantité d'alphol	10	4	1	-3	20
Quantité de betaxyde	3	3	2	10	30
Marges (kEuros / t)	30	21	9	-3	

Remarquons que le gamox Γ_4 permet de regénérer une partie des ressources en alphol.

- (a) Modéliser le problème de la synthèse de meilleure marge à l'aide d'un programme linéaire P.
- (b) Ecrire le dual D du programme P.
- (c) Représenter le domaine D des solutions réalisables associées à $\mathbb{D}.$
- (d) Quelle est la solution duale optimale (y1, y2)?
- (e) Grâce au théorème des écarts complémentaires, trouver une solution optimale du primal P.
- (f) En s'aidant du graphique :
 - i. Pour quels stocks pourrait-on fabriquer, de manière optimale, 110 tonnes de Γ₃ et 20 tonnes de Γ₄?
 - ii. Que se passe-t-il lorsque l'usine dispose de 60 tonnes d'alphol et 27 tonnes de betaxyde?

EXERCICE 2

(a) Considérons le programme linéaire suivant

$$P \begin{cases} \text{Maximiser } z = 8x_1 + 3x_2 + 2x_3 + x_4 \\ \text{s.t.} & 3x_1 + x_2 + x_3 + 2x_4 \le 5 \\ 4x_1 + 2x_2 + 3x_3 - x_4 \le 8 \\ x_1 + 2x_2 + 5x_3 + 5x_4 \le 11 \\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

En utilisant la méthode du simplexe, nous avons obtenu le programme linéaire equivalent suivant

$$x_{1} = \alpha + \frac{1}{2}x_{3} - \frac{5}{2}x_{4} - x_{5} + \frac{1}{2}x_{6}$$

$$x_{2} = \beta - \frac{5}{2}x_{3} + \frac{11}{2}x_{4} + 2x_{5} - \frac{3}{2}x_{6}$$

$$x_{7} = \gamma - \frac{1}{2}x_{3} - \frac{27}{2}x_{4} - 3x_{5} + \frac{5}{2}x_{6}$$

$$z = \overline{z} + rx_{3} + sx_{4} + tx_{5} + ux_{6}$$

où $x_5 \ge 0$, $x_6 \ge 0$ et $x_7 \ge 0$ sont les variables d'écart des première, seconde et troisième contraintes de P, respectivement, et $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}$, $\gamma \in \mathbb{R}$, $r \in \mathbb{R}$, $s \in \mathbb{R}$, $t \in \mathbb{R}$ et $u \in \mathbb{R}$.

- Écrire le système proposé sous forme matricielle.
- Quelles sont les valeurs de α, β et γ?
- iii. Quelle est la valeur de ₹?
- iv. Quelles sont les valeurs de r, s, t et u?
- 2. Considérons le programme linéaire suivant

où $b_1 \in \mathbb{R}$.

- (a) En utilisant la méthode révisée du simplexe, prouver que la solution x₁^{*} = x₂^{*} = x₃^{*} = 0 et x₄^{*} = 4 est optimale pour Q quand b₁ = 8.
- (b) Déterminer l'intervalle de valeurs de b₁ permettant de conserver l'optimalité de la solution x* donnée à la question précédente pour Q.
- (c) Supposons que b₁ = 12. Trouver la nouvelle solution optimale de Q.

EXERCICE 3

Soit le programme linéaire P suivant modélisant un problème de fabrication de 3 produits P_1, P_2, P_3 dans 3 ateliers A_1, A_2, A_3 où le nombre d'heures disponibles est respectivement $b_1 = 80$ $b_2 = 50$ et $b_3 = 40$:

$$\begin{cases} \text{Maximiser } z = 5x_1 + 3x_2 + 4x_3 & \text{(Bénéfice)} \\ \text{s.t.} & 4x_1 + 2x_2 + 4x_3 & \leq 80 & \text{(Atelier } A_1) \\ 2x_1 + 2x_2 + 3x_3 & \leq 50 & \text{(Atelier } A_2) \\ x_1 + 3x_2 + 2x_3 & \leq 40 & \text{(Atelier } A_3) \\ x_1, x_2, x_3 & \geq 0 \end{cases}$$

où x_i est la quantité à fabriquer de P_i pour i = 1, 2, 3.

- Montrer que la production de 16 unités du produit P₁ et de 8 unités du produit P₂ suffit à maximiser le bénéfice z. En déduire que la fabrication optimale n'utilise pas toutes les heures disponibles dans les différents ateliers.
- 2. Donner le dual D associé au problème P. Quelle est la valeur de chaque variable duale? Que représente cette valeur pour le problème de production?
- Déterminer les valeurs limites du nombre d'heures b₁, pour que la base primale soit inchangée.