Instructor: C.-S. CHEN

Homework 5 Essay, Due 21:00, Wednesday, December 15, 2021

Late submission within 24 hours: score*0.9;

Late submission before post of solution: score*0.8 (the solution will usually be posted within a week); no late submission after the post of solution)

Total 70%

1. (40%) Name your file HW5_Prob1.pdf. Consider the simple network example with a single input x = 2 and a single output y = 1 shown below, as we have discussed in lecture.

- (a) (10%) Using the **half** of the sum square as our error function, derive and compute $\delta^{(3)}$, $\delta^{(2)}$, $\delta^{(1)}$.
- (b) (10%) Compute $\frac{\partial e}{\partial \mathbf{W}^{(1)}}$, $\frac{\partial e}{\partial \mathbf{W}^{(2)}}$, $\frac{\partial e}{\partial \mathbf{W}^{(3)}}$.
- (c) (20%) Update the weight matrices using this single datapoint with a learning rate $\eta = 0.5$, repeat the forward propagation and compute $\mathbf{s}^{(1)}, \mathbf{x}^{(1)}, \mathbf{s}^{(2)}, \mathbf{x}^{(2)}$, and $\mathbf{x}^{(3)}$.
- 2. (30%) Name your file HW5_Prob2.pdf. Consider the simple network example with a single input x = 2 and a single output y = 1 shown below.

$$\sigma = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

- (a) (10%) Derive and compute $\mathbf{s}^{(1)}, \mathbf{x}^{(1)}, \mathbf{s}^{(2)}, \mathbf{x}^{(2)}$, and $\mathbf{x}^{(3)}$.
- (b) (10%) Using the sum square as our error function, derive and compute $\delta^{(3)}$, $\delta^{(2)}$, $\delta^{(1)}$. (c) (10%) Compute $\frac{\partial e}{\partial \mathbf{w}^{(1)}}$, $\frac{\partial e}{\partial \mathbf{w}^{(2)}}$, $\frac{\partial e}{\partial \mathbf{w}^{(3)}}$.
- Submission Format: Please compress the .pdf files into yourStudentId_hw5.zip, then upload it to NTU COOL.