МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Лабораторна робота №13 З дисципліни «Організація баз даних та знань»

Виконав:

студент групи КН-210 Бікєєв Андрій

Перевірив:

Кандидат тех. наук, ст. викладач Мельникова Н. І. **Мета:** Навчитися аналізувати роботу СУБД та оптимізовувати виконання складних запитів на вибірку даних. Виконати аналіз складних запитів за допомогою директиви EXPLAIN, модифікувати найповільніші запити з метою їх пришвидшення.

Теоретичні відомості

Для аналізу виконання запитів в MySQL існує декілька спеціальних директив. Основна з них — EXPLAIN.

Директива EXPLAIN дозволяє визначити поля таблиці, для яких варто створити додаткові індекси, щоб пришвидшити вибірку даних. Індекс — це механізм, який підвищує швидкість пошуку та доступу до записів за індексованими полями. Загалом, варто створювати індекси для тих полів, за якими відбувається з'єднання таблиць, перевірка умови чи пошук.

За допомогою директиви EXPLAIN також можна визначити послідовність, в якій відбувається з'єднання таблиць при вибірці даних. Якщо оптимізатор вибирає не найкращу послідовність з'єднання таблиць, потрібно використати опцію STRAIGHT_JOIN директиви SELECT. Тоді з'єднання таблиць буде відбуватись в тому порядку, в якому перераховані таблиці у запиті. Також, за допомогою опцій FORCE INDEX, USE INDEX та IGNORE INDEX можна керувати використанням індексів у випадку їх неправильного вибору оптимізатором, тобто, якщо вони не підвищують ефективність вибірки рядків.

Опис директив.

SELECT BENCHMARK(кількість_циклів, вираз)

Виконує вираз вказану кількість разів, і повертає загальний час виконання.

EXPLAIN SELECT ...

Використовується разом із запитом SELECT. Виводить інформацію про план обробки і виконання запиту, включно з інформацією про те, як і в якому порядку з'єднувались таблиці. EXPLAIN EXTENDED виводить розширену інформацію.

Результати директиви виводяться у вигляді рядків з такими полями:

id – порядковий номер директиви SELECT у запиті;

select_type – тип вибірки (simple, primary, union, subquery, derived, uncachable subquery тощо);

table – назва таблиці, для якої виводиться інформація;

type – тип з'єднання (system, const, eq_ref, ref, fulltext, range тощо);

possible_keys – індекси, які наявні у таблиці, і можуть бути використані;

key – назва індексу, який було обрано для виконання запиту;

key_len – довжина індекса, який був використаний при виконанні запиту;

 \mathbf{ref} – вказує, які рядки чи константи порівнюються зі значенням індекса при відборі;

rows — (прогнозована) кількість рядків, потрібних для виконання запиту;

Extra – додаткові дані про хід виконання запиту.

ANALYZE TABLE

Оновлює статистичну інформацію про таблицю (наприклад, поточний розмір ключових полів). Ця інформація впливає на роботу оптимізатора запитів, і може вплинути на вибір індексів при виконанні запитів.

SHOW INDEX FROM ім'я_таблиці

Виводить інформацію про індекси таблиці.

CREATE [UNIQUE | FULLTEXT] INDEX назва

ON ім 'я_таблиці (перелік_полів)

Створює індекс для одного або декількох полів таблиці. Одне поле може входити до кількох індексів. Якщо індекс оголошено як UNIQUE, то значення відповідних полів таблиці повинні бути унікальними. Таблиці MyISAM підтримують створення повнотекстових індексів (FULLTEXT) для полів типу TEXT, CHAR, VARCHAR.

Хід роботи

- 1. Визначити індекси таблиці.
- 2. Створити додаткові індекси для таблиці.
- 3. Дослідити процес виконання запитів за допомогою EXPLAIN.

Рис 1. ER-діаграма

1.За допомогою директиви SHOW INDEX визначимо наявні індекси для таблиць tag і note.

show index from tag;

	Table	Non_unique	Key_name	Seq_in_index	Column_name	Collation	Cardinality	Sub_part	Packed	Null	Index_type	Comment	Index_comment	Visible	Expression
>	tag	0	PRIMARY	1	id	Α	7	NULL	NULL		BTREE			YES	NULL
	tag	0	tag_id_UNIQUE	1	id	Α	7	NULL	NULL		BTREE			YES	NULL

show index from permission;

					-										
	Table	Non_unique	Key_name	Seq_in_index	Column_name	Collation	Cardinality	Sub_part	Packed	Null	Index_type	Comment	Index_comment	Visible	Expression
•	permission	0	PRIMARY	1	id	Α	50	NULL	NULL		BTREE			YES	NULL

2. Створимо новий індекс для таблиці tag і permission. Індекси повинні оптимізувати виконання запитів.

create index tag_idx on tag (id, color);

	Table	Non_unique	Key_name	Seq_in_index	Column_name	Collation	Cardinality	Sub_part	Packed	Null	Index_type	Comment	Index_comment	Visible	Expression
>	tag	0	PRIMARY	1	id	Α	7	HULL	NULL		BTREE			YES	NULL
	tag	0	tag_id_UNIQUE	1	id	Α	7	HULL	NULL		BTREE			YES	NULL
	tag	1	tag_idx	1	id	Α	6	NULL	NULL		BTREE			YES	NULL
	tag	1	tag idx	2	color	Α	6	NULL	NULL		BTREE			YES	NULL

create index permission_note_idx on permission(id, note_id);

	Table	Non_unique	Key_name	Seq_in_index	Column_name	Collation	Cardinality	Sub_part	Packed	Null	Index_type	Comment	Index_comment	Visible	Expression
>	permission	0	PRIMARY	1	id	A	50	NULL	NULL		BTREE			YES	NULL
	permission	1	note's id_idx	1	note_id	A	24	HULL	NULL	YES	BTREE			YES	NULL
	permission	1	permission_idx	1	id	A	54	HULL	NULL		BTREE			YES	NULL
	permission	1	permission_idx	2	permission	Α	54	NULL	NULL		BTREE			YES	NULL
	permission	1	permission_note_idx	1	id	Α	54	NULL	NULL		BTREE			YES	NULL
	permission	1	permission_note_idx	2	note_id	A	54	NULL	NULL	YES	BTREE			YES	NULL

3. Виконаємо аналіз виконання складного запиту використовуючи EXPLAIN та опцію STRAIGHT_JOIN.

explain select straight_join u.id as user_id, t.name, t.color from user as u

inner join user_permissions as up
on up.user_id = u.id
inner join permission as p
on up.permission_id = p.id
inner join note as n
on p.note_id = n.id
inner join note_tags as nt
on nt.note_id = n.id
inner join tag as t

on nt.tag_id = t.id where t.color = "#0f0f0f";

explain select straight_join u.id as user_id, t.name, t.color from user as u inner join user_permissions as up on up.user_id = u.id inner join permission as p on up.permission id = p.id inner join note as n on p.note_id = n.id inner join note tags as nt on nt.note id = n.id inner join tag as t on nt.tag_id = t.id Export: Wrap Cell Content: 🖽
 id
 select_type
 table
 partitions
 type
 possible_keys

 1
 SIMPLE
 u
 index
 PRIMARY
 1 SIMPLE u index PRIMARY
1 SIMPLE up index PRIMARY
1 SIMPLE up ref user's id_idx,permission's id_idx user's id_idx 5 noteworthy.u.id 10 100.00 Using where SIMPLE p eq_ref PRIMARY,note's id_jdx,permission_jdx,permissi...
SIMPLE n eq_ref PRIMARY Using where PRIMARY noteworthy.up.permission_id 100.00 noteworthy.p.note_id note's id_idx note's id_idx,tag's id_idx ALL PRIMARY,tag_id_UNIQUE,tag_idx Using where; Using join buffer (Block Nest

Висновок: На даній лабораторній роботі я навчився аналізувати і оптимізувати виконання запитів. Для аналізу запитів було використано директиву EXPLAIN, що ϵ в декому роді тулзою для «дебагу» мо ϵ ї БД, а для оптимізації — модифікація порядку з' ϵ днання таблиць і створення додаткових індексів.