Algebra und Zahlentheorie SS 2019

Dozent: Prof. Dr. Arno Fehm

14. Juni 2019

In halts verzeichnis

I	Körper		3
	1	Körpererweiterungen	3
	2	Algebraische Körpererweiterungen	6
	3	Wurzelkörper und Zerfällungskörper	10
	4	Der algebraische Abschluss	14
	5	Die transzendente Erweiterung	18
	6	Separable Polynome	21
	7	Separable Erweiterungen	25
	8	Norm und Spur	29
	9	Einfache Erweiterung	33
п	Galoistheorie		
	1	Normale Körpererweiterungen	35
	2	Der Hauptsatz der Galoistheorie	40
	3	Endliche Körper	44
Anhang			46
Index			46

Vorwort

Kapitel I

Körper

1. Körpererweiterungen

Seien K, L, M Körper.

▶ Bemerkung 1.1

In diesem Kapitel bedeutet "Ring" <u>immer</u> kommutativer Ring mit Einselement, und ein Ringhomomorphismus bildet stets das Einselement auf das Einselement ab. Insbesondere gibt es für jeden Ring einen eindeutig bestimmten Ringhomomorphismus : $\mathbb{Z} \to R$.

▶ Bemerkung 1.2

- (a) Ein Körper ist ein Ring R, in dem eine der folgenden äquivalenten Bedingungen gilt:
 - 1) $0 \neq 1$ und jedes $0 \neq x \in R$ ist invertierbar
 - $2) \ R^{\times} = R \setminus \{0\}$
 - 3) R hat genau zwei Hauptideale (nämlich (0) und (1))
 - 4) (0) ist ein maximales Ideal von R
 - 5) (0) ist das einzige echte Ideal von R
 - 6) (0) ist das einzige Primideal von R
- (b) Insbesondere sind Körper nullteilerfrei, weshalb $\operatorname{Ker}(\mathbb{Z} \to K)$ prim ist.
- (c) Aus (5) folgt: Jeder Ringhomomorphismus $K \to L$ ist injektiv
- (d) Der Durchschnitt einer Familie von Teilkörpern von K ist wieder ein Teilkörper von K.

Definition 1.3 (Charakteristik)

Die Charakteristik von K, char(K), ist das $p \in \{0, 2, 3, 5, 7, \ldots\}$ mit $\operatorname{Ker}(\mathbb{Z} \to K) = (p)$.

■ Beispiel 1.4

- (a) $\mathrm{char}(\mathbb{Q})=0$ und $\mathrm{char}(\mathbb{F}_p)=(p)$ $(p=\mathrm{Primzahl}),$ wobei $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$
- (b) Ist $K_0 \subseteq K$ Teilkörper, so ist $char(K_0) = char(K)$.

Definition 1.5 (Primkörper)

Der Primkörper von K ist der kleinste Teilkörper von K. (existiert nach Bemerkung 1.2 (d)).

Satz 1.6

Sei \mathbb{F} der Primkörper von K.

- (a) $char(K) = 0 \Leftrightarrow \mathbb{F} \cong \mathbb{Q}$
- (b) $\operatorname{char}(K) = p > 0 \Leftrightarrow \mathbb{F} \cong \mathbb{F}_p$

Beweis.

- (⇐) Beispiel 1.4
- (\Rightarrow) Es ist $\operatorname{Im}(\mathbb{Z} \to K) \subseteq \mathbb{F}$ und $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/\operatorname{Ker}(\mathbb{Z} \to K)$, sowie
 - (a) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(0) \cong \mathbb{Z} \Rightarrow \mathbb{F} = \operatorname{Quot}(\operatorname{Im}(\mathbb{Z} \to K)) \cong \operatorname{Quot}(\mathbb{Z}) \cong \mathbb{Q}$
 - (b) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(p) \cong \mathbb{F}_p$ ist Teilkörper von $K \Rightarrow \mathbb{F} = \operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{F}_p$

Definition 1.7 (Körpererweiterung)

Ist K ein Teilkörper von L, so nennt man L eine Köpererweiterung von K, auch geschrieben $L \mid K$.

Definition 1.8 (K-Homomorphismus)

Seien $L_1 \mid K$ und $L_2 \mid K$ Körpererweiterungen.

- (a) Ein Ringhomomorphismus $\varphi \colon L_1 \to L_2$ ist ein K-Homomorphismus, wenn $\varphi|_K = \mathrm{id}_K$ (i.Z. $\varphi \colon L_1 \to_K L_2$)
- (b) $\operatorname{Hom}_K(L_1, L_2) = \{ \varphi \mid \varphi : L_1 \to L_2 \text{ ist } K\text{-Homomorphismus} \}$
- (c) L_1 und L_2 sind K-isomorph (i.Z. $L_1 \cong_K L_2$), wenn es einen Isomorphismus $\varphi \in \text{Hom}_K(L_1, L_2)$ gibt.

▶ Bemerkung 1.9

Ist $L \mid K$ eine Körpererweiterung, so wird L durch Einschränkung der Multiplikation zu einem K-Vektorraum.

Definition 1.10 (Körpergrad)

Es ist $[L:K] := \dim_K(L) \in \mathbb{N} \cup \{\infty\}$ der Körpergrad der Körpererweiterungen $L \mid K$.

■ Beispiel 1.11

- (a) [K:K]=1
- (b) $[\mathbb{C} : \mathbb{R}] = 2$ (Basis (1, i)) (aber $(\mathbb{C} : \mathbb{R}) = \infty$)
- (c) $[\mathbb{R} : \mathbb{Q}] = \infty$ (mit Abzählarbarkeitsargument oder siehe §2)
- (d) $[K(x):K] = \infty$ (K(x) = Quot(K[x]) (vgl. GEO II.8)

Satz 1.12

Für $K \subseteq L \subseteq M$ Körper ist $[M:K] = [M:L] \cdot [L:K]$ ("Körpergrad ist multiplikativ")

Beweis. Für den Beweis betrachte folgende Aussage:

Behauptung: Sei $x_1, \ldots, x_n \in L$ K-linear unabhängig und $y_1, \ldots, y_m \in M$ L-linear unabhängig $\Rightarrow \{x_i y_j \mid i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}\}$ K-linear unabhängig.

Beweis: Sei $\sum_{i,j} \lambda_{ij} x_i y_j = 0$ mit $\lambda_{ij} \in K$

$$\Rightarrow \sum_{j} \left[\underbrace{\sum_{i} \lambda_{ij} x_{i}}_{i} \right] y_{j} = 0 \quad \xrightarrow{y_{j} L - 1.u.} \sum_{i} \lambda_{ij} x_{i} = 0 \quad \forall j \quad \xrightarrow{x_{i} K - 1.u.} \lambda_{ij} = 0 \quad \forall i, \forall j$$

Dann:

- $[L:K] = \infty$ oder $[M:L] = \infty \Rightarrow [M:K] = \infty$
- $\bullet \ \ [L:K]=n,\, [M:L]=m<\infty :$

Sei (x_1, \ldots, x_n) Basis des K-Vektorraum L und (y_1, \ldots, y_m) Basis des L-Vektorraums M $\Rightarrow \{x_i y_j \mid i=1, \ldots, n; \ j=1, \ldots, m\}$ K-linear unabhängig und

$$\sum_{i,j} Kx_i y_j = \sum_{j} \left[\underbrace{\sum_{i} \lambda_{ij} x_i}_{=L} \right] y_j = M,$$

also ist $\{x_iy_j \mid i=1,\ldots,n; j=1,\ldots,m\}$ Basis von M.

Definition 1.13 (Körpergrad endlich)

 $L \mid K \text{ endlich } :\Leftrightarrow [L : K] < \infty.$

Definition 1.14 (Unterring, Teilkörper)

Sei $L \mid K$ eine Körpererweiterung $a_1, a_2, \ldots, a_n \in L$.

- (a) $K[a_1, \ldots, a_n]$ ist kleinster <u>Unterring</u> von L, der $K \cup \{a_1, \ldots, a_n\}$ enthält (" a_1, \ldots, a_n über K erzeugt")
- (b) $K(a_1, \ldots, a_n)$ ist kleinster <u>Teilkörper</u> von L, der $K \cup \{a_1, \ldots, a_n\}$ enthält ("von " a_1, \ldots, a_n " über K erzeugte", " a_1, \ldots, a_n " zu K adjungieren)
- (c) L|K ist endlich erzeugt $\Leftrightarrow a_1, \ldots, a_n \in L$: $L = K(a_1, \ldots, a_n)$
- (d) L|K ist einfach : \Leftrightarrow existiert $a \in L$: L = K(a)

▶ Bemerkung 1.15

- (a) $L \mid K$ endlich $\Rightarrow L \mid K$ endlich erzeugt.
- (b) $K[a_1, \ldots, a_n]$ ist das Bild des Homomorphismus

$$\begin{cases} K[x_1, \dots, x_n] & \to L \\ f & \mapsto f(a_1, \dots, a_n) \end{cases}$$

und $K(a_1, \ldots, a_n) = \{ \alpha \beta \mid \alpha, \beta \in K[a_1, \ldots, a_n], \beta \neq 0 \} \cong \text{Quot} (K[a_1, \ldots, a_n])$

2. Algebraische Körpererweiterungen

Sei $L \mid K$ eine Körpererweiterung.

Definition 2.1 (algebraisch, transzendent)

Sei $\alpha \in L$. Gibt es ein $0 \neq f \in K$ mit $f(\alpha) = 0$, so heißt α <u>algebraisch</u> über K, andernfalls transzendent über K.

■ Beispiel 2.2

- (a) $\alpha \in K \Rightarrow \alpha$ ist algebraisch über K (denn $f(\alpha) = 0$ für $f = X \alpha \in K[X]$)
- (b) $\sqrt{-1} \in \mathbb{Q}(\sqrt{-1})$ ist algebraisch über \mathbb{Q} (denn $f(\sqrt{-1}) = 0$ für $f = X^2 + 1 \in \mathbb{Q}[X]$) $\sqrt{-1} \in \mathbb{C}$ ist algebraisch über \mathbb{R}

▶ Bemerkung 2.3

Sind $K \subseteq L \subseteq M$ Körper und $\alpha \in M$ algebraisch über K, so auch über L.

Lemma 2.4

Genau dann ist $\alpha \in L$ algebraisch über K, wenn 1, α , α^2 , ... K-linear abhängig sind.

Beweis. Für $\lambda_0, \lambda_1, \ldots \in K$, fast alle gleich Null, so ist

$$\sum_{i=0}^{\infty} \lambda_i \alpha^i = 0 \quad \Leftrightarrow \quad f(\alpha) = 0 \text{ für } f = \sum_{i=0}^{\infty} \lambda_i X^i \in K[X]$$

Lemma 2.5

Betrachte den Epimorphismus

$$\varphi_{\alpha} \colon \begin{cases} K[X] & \to K[\alpha] \\ f & \mapsto f(\alpha). \end{cases}$$

Genau dann ist α algebraisch über K, wenn $\operatorname{Ker}(\varphi_{\alpha}) \neq (0)$. In diesem Fall ist $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit einem eindeutig bestimmten irreduziblen, normierten $f_{\alpha} \in K$.

Beweis. K Hauptidealring $\Rightarrow \operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha}), f_{\alpha} \in K$, und o.E. sei f_{α} normiert. Aus $K[\alpha] \subseteq L$ nullteilerfrei folgt, dass $\operatorname{Ker}(\varphi_{\alpha})$ prim ist. Somit ist f_{α} prim im Hauptidealring, also auch irreduzibel.

Definition 2.6 (Minimal polynom, Grad)

Sei $\alpha \in L$ algebraisch über K, $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit $f_{\alpha} \in K$ normiert und irreduzibel.

- (a) $\operatorname{MinPol}(\alpha \mid K) := f_{\alpha}$, das $\operatorname{\underline{Minimal polynom}}$ von α über K.
- (b) $\deg(\alpha \mid K) : \Leftrightarrow \deg(f_{\alpha})$, der Grad von α über K.

Satz 2.7

Sei $\alpha \in L$.

(a) α transzendent über K $\Rightarrow K[\alpha] \cong K[X], K(\alpha) \cong_K K(X), [K(\alpha) : K] = \infty.$

(b) α algebraisch über K

$$\Rightarrow K[\alpha] = K(\alpha) \cong K/\operatorname{MinPol}(\alpha \mid K) , [K(\alpha) : K)] = \deg(\alpha \mid K) < \infty, \text{ und}$$

$$1, \alpha, \dots, \alpha^{\deg(\alpha \mid K) - 1} \text{ ist } K\text{-Basis von } K(\alpha).$$

Beweis.

(a)
$$\operatorname{Ker}(\varphi_{\alpha}) = (0) \Rightarrow \varphi_{\alpha}$$
 ist Isomorphismus (da zusätzlich injektiv)
 $\Rightarrow K(\alpha) \cong_K \operatorname{Quot}(K[\alpha]) \cong_K \operatorname{Quot}(K[X]) = K(X)$
 $\Rightarrow [K(\alpha) \colon K] = [K(X) \colon K] = \infty$

- (b) Sei $f = f_{\alpha} = \text{MinPol}(\alpha \mid K)$, und $n = \deg(\alpha \mid K) = \deg(f)$.
 - f irreduzibel \Rightarrow $(f) \neq$ (0) prim $\xrightarrow{\text{GEO II.4.7}}$ (f) ist maximal \Rightarrow $K[\alpha] \cong K[X]/(f)$ ist Körper \Rightarrow $K[\alpha] = K(\alpha)$
 - $1, \alpha, \ldots, \alpha^{n-1}$ sind K-linear unabhängig:

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0 \quad \Rightarrow \quad \sum_{i=0}^{n-1} \lambda_i X^i \in (f) \quad \xrightarrow{\deg f = n} \quad \lambda_i = 0 \ \forall i$$

• $1, \alpha, \dots, \alpha^{n-1}$ ist Erzeugendensystem: Für $g \in K[X]$ ist

$$g = qf + r$$

mit $q, r \in K[X]$ und $\deg(r) < \deg(f) = n$ und

$$g(\alpha) = q(\alpha) \underbrace{f(\alpha)}_{\alpha} + r(\alpha) = r(\alpha).$$

Somit folgt:

$$K[\alpha] = \operatorname{Im}(\varphi_{\alpha}) = \left\{ g(\alpha) \mid g \in K \right\} = \left\{ r(\alpha) \mid r \in K, \deg(r) < n \right\} = \sum_{i=0}^{n-1} K \cdot \alpha^{i}$$

■ Beispiel 2.8

- (a) $p \in \mathbb{Z}$ prim $\Rightarrow \sqrt{p} \in \mathbb{C}$ ist algebraisch über \mathbb{Q} . Da $f(X) = X^2 - p$ irreduzibel in \mathbb{Q} ist (GEO II.7.3), ist MinPol $(\sqrt{p} \mid \mathbb{Q}) = X^2 - p$, $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$.
- (b) Sei $\zeta_p = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ $(p \in \mathbb{N} \text{ prim})$. Da $\Phi_p = \frac{X^p 1}{X 1} = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Q}$ irreduzibel in \mathbb{Q} ist (GEO II.7.9), ist MinPol $(\zeta_p \mid \mathbb{Q}) = \Phi_p$, $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p 1$.

Daraus folgt schließlich $[\mathbb{C}:\mathbb{Q}] \geq [\mathbb{Q}(\zeta_p):\mathbb{Q}] = p-1 \ \forall p \Rightarrow [\mathbb{C}:\mathbb{Q}] = \infty \Rightarrow [R:\mathbb{Q}] = \infty.$

(c) $e, \pi \in \mathbb{R}$ sind transzendent über \mathbb{Q} (Hermite 1873, Lindemann 1882). Daraus folgt: $[R:\mathbb{Q}] \geq [\mathbb{Q}(\pi):\mathbb{Q}] = \infty$. Jedoch ist unbekannt, ob z.B. $\pi + e$ transzendent ist.

Definition 2.9

 $L \mid K$ ist algebraisch : \Leftrightarrow jedes $\alpha \in L$ ist algebraisch über K.

Satz 2.10

 $L \mid K$ endlich $\Rightarrow L \mid K$ algebraisch.

Beweis. Sei $\alpha \in L$, [L:K] = n. Dann ist $1, \alpha, \ldots, \alpha^n$ K-linear abhängig $\stackrel{2.4}{\Longrightarrow} \alpha$ algebraisch über K.

Folgerung 2.11

Ist $L = K(\alpha_1, \ldots, \alpha_n)$ mit $\alpha_1, \ldots, \alpha_n$ algebraisch über K, so ist $L \mid K$ endlich, insbesondere algebraisch.

Beweis. Induktion nach n:

- n = 0: \checkmark
- n > 0: $K_1 := K(\alpha_1, \dots, \alpha_{n-1})$ $\Rightarrow L = K_1(\alpha_n), \alpha_n$ algebraisch über K_1 (Bemerkung 2.3) $\Rightarrow [L:K] = \underbrace{[K_1(\alpha_n):K_1]}_{<\infty \text{ nach Satz } 2.7} \cdot \underbrace{[K_1:K]}_{<\infty \text{ nach IH}}$

Folgerung 2.12

Es sind äquivalent:

- (a) $L \mid K$ ist endlich.
- (b) $L \mid K$ ist endlich erzeugt und algebraisch.
- (c) $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ algebraisch über K.

Beweis.

- $(1) \Rightarrow (2)$: Bemerkung 1.15 und Satz 2.10
- $(2) \Rightarrow (3)$: trivial
- $(3) \Rightarrow (1)$: Folgerung 2.11

▶ Bemerkung 2.13

Nach Satz 2.7 ist

 α algebraisch über $K : \Leftrightarrow K[\alpha] = K(\alpha)$.

Direkter Beweis für (\Rightarrow) :

Sei $0 \neq \beta \in K[\alpha]$. Daraus folgt, dass $f(\beta) = 0$ für ein irreduzibles $0 \neq f = \sum_{i=0}^{n} a_i X^i \in K$. Durch Einsetzen von β und Division durch β erhält man

$$\stackrel{a_0 \neq 0}{\Longrightarrow} \beta^{-1} = -a_0^{-1}(a_1 + a_2\beta + \dots + a_n\beta^{n-1}) \in K[\beta] \subseteq K[\alpha]$$

Satz 2.14

Seien $K \subseteq L \subseteq M$ Körper. Dann gilt:

 $M \mid K$ algebraisch $\Leftrightarrow M \mid L$ algebraisch und $L \mid K$ algebraisch

Beweis. (\Rightarrow) klar, siehe Bemerkung 2.3.

(
$$\Leftarrow$$
) Sei $\alpha \in M$. Schreibe $f = \text{MinPol}(\alpha \mid L) = \sum_{i=0}^{n} a_i x^i, \ L_0 := K(a_0, \dots, a_n)$

$$\Rightarrow f \in L_0[X]$$

$$\Rightarrow [L_0(\alpha):L_0] \leq \deg(f) < \infty$$

$$\Rightarrow [K(\alpha):K] \leq [K(a_0,\ldots,a_n,\alpha):K] = \underbrace{[L_0(\alpha):L_0]}_{<\infty} \underbrace{[L_0:K]}_{<\operatorname{nach} 2.7}$$

 $\Rightarrow~\alpha$ algebraisch über K

$$\stackrel{\alpha \text{ bel.}}{\Rightarrow} M \mid K \text{ algebraisch.}$$

Folgerung 2.15

 $\tilde{K} = \{ \alpha \in L \mid \alpha \text{ algebraisch """} \text{über } K \}$ ist ein Körper, und ist $\alpha \in L$ algebraisch """ ber \tilde{K} , so ist schon $\alpha \in \tilde{K}$.

Beweis.

- $\alpha, \beta \in \tilde{K}$:
 - $\Rightarrow K(\alpha, \beta) \mid K$ endlich, insbesondere algebraisch
 - $\Rightarrow \alpha + \beta, \alpha \beta, \alpha \cdot \beta, \alpha^{-1} \in K(\alpha, \beta)$ alle algebraisch über K, also $K(\alpha, \beta) \subseteq \tilde{K}$.
- $\alpha \in L$ algebraisch über \tilde{K} :
 - $\Rightarrow \tilde{K}(\alpha) \mid \tilde{K}$ algebraisch
 - $\Rightarrow \tilde{K} \mid K$ algebraisch
 - $\stackrel{\text{2.14}}{\Rightarrow} \tilde{K}(\alpha) \mid K$ algebraisch, insbesondere $\alpha \in \tilde{K}$.

Definition 2.16 (relative algebraische Abschluss)

 $\tilde{K} = \{ \alpha \in L \mid \alpha \text{ algebraisch "über } K \}$ heißt der relative algebraische Abschluss von K in L.

■ Beispiel 2.17

 $\tilde{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraisch über } \mathbb{Q} \}$ ist ein Körper, der Körper der algebraischen Zahlen. Es ist $[\tilde{\mathbb{Q}} : \mathbb{Q}] = \infty$, z.B. da $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p-1$ für jedes p prim. (algebraische Erweiterung die nicht endlich ist.)

3. Wurzelkörper und Zerfällungskörper

Sei K ein Körper, $f \in K[X]$ mit $n = \deg(f) > 0$.

■ Beispiel 3.1

Sei $K = \mathbb{Q}$. Dann hat f eine Nullstelle ("Wurzel") $\alpha \in \mathbb{C}$, und $L := K(\alpha) = K[\alpha]$ ist die kleinste Erweiterung von \mathbb{Q} in \mathbb{C} , die diese Nullstelle enthält.

Definition 3.2 (Wurzelkörper)

Ein Wurzelkörper von f ist eine Körpererweiterung $L \mid K$ der Form $L = K(\alpha)$ mit $f(\alpha) = 0$.

Lemma 3.3

Sei $L = K(\alpha)$ mit $f(\alpha) = 0$ ein Wurzelkörper von f. Dann ist $[L:K] \leq n$. Ist f irreduzibel, so ist [L:K] = n und $g \mapsto g(\alpha)$ induziert einen Isomorphismus $K[X]/(f) \xrightarrow{\cong}_K L$.

Beweis. Sei zunächst f irreduzibel, $f_{\alpha} = \text{MinPol}(\alpha \mid K)$. Dann ist $f = cf_{\alpha}$, die Behauptung folgt somit aus Satz 2.7 (b). Für $f \in K[X]$ beliebig, schreibe $f = f_1 \cdots f_r$ mit $f_i \in K[X]$ irreduzibel und

$$f(\alpha) = 0 \Rightarrow \text{O.E. } f_1(\alpha) = 0 \Rightarrow [L:K] = \deg(f_1) \le \deg(f) = n$$

Lemma 3.4

Sei f irreduzibel. Dann ist L := K[X]/(f) ein Wurzelkörper von f.

Beweis. Betrachte den Epimorphismus $\pi = \pi_f \colon K[X] \to K[X]/(f) = L$, setze $\alpha = \pi(X)$

- K Körper $\Rightarrow \pi_{|K}$ injektiv \Rightarrow können K mit Teilkörper von L identifizieren, sodass $\pi_{|K}=\mathrm{id}_K$
- (f) irreduzibel \Rightarrow prim $\xrightarrow{\text{GEO II.4.7}} (f)$ maximal $\Rightarrow L = K[X]/(f)$ ist Körper
- $f(\alpha) = f(\pi(X)) \stackrel{(*)}{=} \pi(f(X)) = 0 \Rightarrow f(X) \in \text{Ker}(\pi)$ (* gilt, da $f = \sum a_i x^i \Rightarrow \pi(f) = \sum \pi(a_i)\pi(x)^i = \sum a_i \pi(x)^i = f(\pi(x))$)
- $L = \pi(K[X]) = K[\pi(X)] = K[\alpha] \stackrel{\alpha \text{ alg.}}{=} K(\alpha)$

Satz 3.5

Sei f irreduzibel. Ein Wurzelkörper von f existiert und ist eindeutig in folgendem Sinn: Sind $L_1 = K(\alpha_1), L_2 = K(\alpha_2)$ mit $f(\alpha_1) = 0 = f(\alpha_2)$, so existiert genau ein K-Isomorphismus $\varphi \colon L_1 \to L_2$ mit $\varphi(\alpha_1) = \alpha_2$.

Beweis.

- Existenz gibt Lemma 3.4
- Lemma 3.3 liefert Isomorphismus

$$L_1 \underset{\varphi_1}{\overset{\cong}{\longleftarrow}} K[X]/(f) \xrightarrow{\cong} L_2$$

$$\alpha_1 \longleftrightarrow X + (f) \longrightarrow \alpha_2$$

$$\Rightarrow \varphi_2 \circ \varphi_1 \colon L_1 \xrightarrow{\cong}_K L_2 \text{ mit } \alpha_1 \mapsto \alpha_2$$

Umgekehrt ist jeder K-Isomorphismus $\varphi \colon L_1 \to_K L_2$ wegen $L_1 = K(\alpha_1)$ schon durch $\varphi(\alpha_1)$ festgelegt. \square

Folgerung 3.6

f hat einen Wurzelkörper.

Beweis. Schreibe $f = f_1 \cdots f_r, f_1, \dots, f_r \in K[X]$ irreduzibel, nehme einen Wurzelkörper von f_1 .

Folgerung 3.7

Es gibt eine Erweiterung $L \mid K$, über der f in Linearfaktoren zerfällt, also $f = c \prod_{i=0}^{n} (x - \alpha_i)$ mit $c \in K^{\times}$, $\alpha, \ldots, \alpha_n \in L$.

Beweis. Schreibe $f = c \cdot f_0$ mit $c \in K^{\times}, f_0 \in K[X]$ normiert.

Induktion nach n:

$$n=1$$
: $f=x-a$, nehme $L=K$.

$$n > 1$$
: Nach Folgerung 3.6 existiert $L_1 \mid K, \alpha_1 \in L_1$ mit $f_0(\alpha_1) = 0$

$$\Rightarrow f_0 = (x - \alpha_1) \cdot f_1 \text{ mit } f_1 \in L_1[X] \text{ normiert}$$

$$\stackrel{\text{(IH)}}{\Longrightarrow}$$
 Es existiert $L \mid L_1, \alpha_1, \ldots, \alpha_n \in L$ mit $f_1 = \prod_{i=2}^n (x - \alpha_i)$

$$\Rightarrow f = c \cdot f_0 = c \cdot (x - \alpha_1) \cdot f_1 = c \prod_{i=1}^n (x - \alpha_i)$$

Definition 3.8 (Zerfällungskörper)

Ein Zerfällungskörper von K ist eine Erweiterung $L \mid K$ der Form $L = K(\alpha_1, \dots, \alpha_n)$ mit $f = c \cdot \prod_{i=1}^n (x - \alpha_i)$ und $c \in K^{\times}$.

Satz 3.9

Ein Zerfällungskörper von f existiert.

Beweis. Ist $L \mid K$ wie in Folgerung 3.7, ist $K(\alpha_1, \ldots, \alpha_n)$ ein Zerfällungskörper von f.

Lemma 3.10

Ist $L \mid K$ ein Zerfällungskörper von f, so ist $[L:K] \leq n!$

Beweis. Sei $L = K(\alpha_1, \ldots, \alpha_n), f = c \prod_{i=1}^n (x - \alpha_i).$

Induktion nach n:

$$n = 1$$
: $L = K$, $[K : K] = 1$

n > 1: $L_1 = K(\alpha_1)$ ist Wurzelkörper von f

$$\overset{3.3}{\Longrightarrow}$$
 $[L_1:K] \leq n$ und schreibe $f = c \cdot (x - \alpha_1) \cdot f_1, f_1 = \prod_{i=2}^n (x - \alpha_i) \in L_1[X]$

$$\Rightarrow L = K(\alpha_1, \dots, \alpha_n) = L_1(\alpha_1, \dots, \alpha_n)$$
 ist Zerfällungskörper von f_1 (über L_1)

$$\stackrel{\text{IH}}{\Longrightarrow} [L:L_1] \leq \deg(f_1)! = (n-1)!$$

$$\Rightarrow [L:K] = [L:L_1][L_1:K] = (n-1)! n = n!$$

■ Beispiel 3.11

- (a) Ist n=2, so ist jeder Wurzelkörper L von f, schon ein Zerfällungskörper: $[L:K] \leq 2$.
- (b) Ist n=3, f irreduzibel. Schreibe $L_1=K(\alpha), f=c(x-\alpha_1)f_1$ mit $f_1\in L_1[X]$
 - f_1 reduzibel: L_1 ist schon Zerfällungskörper von f, $[L_1:K]=3$
 - f_1 irreduzibel: L_1 ist kein Zerfällungskörper von f. Ist L Wurzelkörper von f_1 , so ist L

Zerfällungskörper von f, [L:K] = 3! = 6

■ Beispiel

Sei $f = x^3 - 2 \in \mathbb{Q}[X]$, dann sind die Nullstellen von $f: \sqrt[3]{2} \in \mathbb{R}, \zeta_3 \sqrt[3]{2}, \zeta_3^2 \sqrt[3]{2}$

• $\mathbb{Q}(\sqrt[3]{2})$ ist Wurzelkörper von f. $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, $\zeta_3\sqrt[3]{2}$, $\zeta_3^2\sqrt[3]{2} \notin \mathbb{R}$, aber kein Zerfällungskörper. Der Zerfällungskörper von f ist

$$\mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2}, \zeta_3\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2})$$

Mathematica/WolframAlpha-Befehle

Will man die Nullstellen von $f=X^3-2\in\mathbb{Q}[X]$ finden, dann bietet Mathematica folgende Funktion:

der letzte Parameter lässt einem den Körper wählen, in dem Mathematica suchen soll. Es gibt zur Auswahl Integers, Rationals, Reals, Complexes. Für das Beispiel erhält man folgenden Output:

$$\left\{x \to -(-2)^{(1/3)}, x \to 2^{(1/3)}, x \to (-1)^{(2/3)}2^{(1/3)}\right\}.$$

Dabei müsste man die Einheitswurzeln identifizieren:

$$\left\{ x \to \zeta_3 \sqrt[3]{2}, x \to \sqrt[3]{2}, x \to \zeta_3^2 \sqrt[3]{2} \right\}$$

Anmerkung

Wenn f irreduzibel $\Rightarrow K[X]/(f)$ ist Wurzelkörper.

Lemma 3.12

Sei $f = \sum_{i=0}^{n} a_i X^i$ irreduzibel und sei $L = K(\alpha)$ mit $f(\alpha) = 0$ ein Wurzelkörper von f. Sei $L' \mid K'$ eine weitere Körpererweiterung und $\varphi \in \operatorname{Hom}(K, K')$. Ist $\sigma \in \operatorname{Hom}(L, L')$ eine Fortsetzung von φ (d.h. $\sigma_{|K} = \varphi$), so ist $\sigma(\alpha)$ eine Nullstelle von $f^{\varphi} = \sum_{i=0}^{n} \varphi(\alpha_i) X^i \in K[X]$.

Ist umgekehrt $\beta \in L'$ eine Nullstelle von f^{φ} , so gibt es genau eine Fortsetzung $\sigma \in \operatorname{Hom}(L, \tilde{L})$ von φ mit $\sigma(\alpha) = \beta$.

$$\begin{array}{ccc} L & \stackrel{\sigma}{\longrightarrow} & L' \\ \uparrow & & \uparrow \\ K & \stackrel{\varphi}{\longrightarrow} & K' \end{array}$$

Beweis (was für die Prüfung!).

- $f(\alpha) = 0 \Rightarrow 0 = \sigma(0) = \sigma(f(\alpha)) = \sigma(\sum_{i=0}^{n} a_i \alpha^i) = \sum_{i=0}^{n} \varphi(a_i) \sigma(\alpha)^i = f^{\varphi}(\sigma(\alpha))$
- Eindeutigkeit klar, da $L = K(\alpha)$

• Existenz: Betrachte

$$\eta \colon \begin{cases} K[X] \to L \\ g \mapsto g(\alpha) \end{cases} \qquad \psi \colon \begin{cases} K[X] \to L' \\ g \mapsto g^{\varphi}(\beta) \end{cases}$$

Beide sind Homomorphismen nach der universellen Eigenschaft. (Bemerke: η surjektiv: $\eta_{|K} = \mathrm{id} \to K \subset \mathrm{Im}(\eta)$ mit $\eta(X) = \alpha \to \alpha \in \mathrm{Im}(\eta)$)

Aus $\operatorname{Ker}(\eta)=(f)$ folgt der Isomorphismus $\bar{\eta}\colon K[X]/(f)\xrightarrow{\cong} L$ und

 $f \in \text{Ker}(\psi) \Rightarrow \text{Ker}(\psi) = (f)$ liefert Homomorphismus $\bar{\psi} \colon K[X]/(f) \to L'$

 $\sigma := \bar{\psi} \circ \bar{\eta}^{-1} \colon L \to L'$ ist eine Fortsetzung von φ und

$$\sigma(\alpha) = \bar{\psi}(X + (f)) = \beta$$

Satz 3.13

Der Zerfällungskörper von f ist eindeutig bestimmt bis auf K-Isomorphie.

Beweis. Für den Beweis betrachte erst folgende Aussage.

Behauptung: Ist $\varphi \colon K \to K'$ ein Isomorphismus, L ein Zerfällungskörper und L' ein Zerfällungskörper von f^{φ} , so setzt sich φ zu einem Isomorphismus $L \to L'$ fort.

Beweis. Induktion nach $n = \deg(f)$:

$$n=1 \colon \ L=K \xrightarrow{\cong}_{\varphi} K'=L' \ \checkmark$$

n > 1: Schreibe $f = cg_1 \cdots g_r$ mit $g_i \in K[X]$ normiert und irreduzibel, $c \in K^{\times}$

 $\Rightarrow f^{\varphi} = c^{\varphi}g_1^{\varphi}\cdots g_r^{\varphi} \text{ mit } c^{\varphi} \in (K')^{\varphi} \text{ und } g_i^{\varphi} \in K'[X] \text{ normiert und irreduzibel (weil } \varphi \text{ Isomorphismus ist)}.$ Sei $\alpha_1 \in L$ mit $g_1(\alpha_1) = 0$, $\alpha_1' \in L'$ mit $g_1^{\varphi}(\alpha_1') = 0$

 $\stackrel{3.12}{\Longrightarrow} \varphi$ setzt man zu einem Isomorphismus

$$\sigma \colon K_1 := K(\alpha_1) \to K'(\alpha_1') \quad \text{mit } \sigma(\alpha_1) = \alpha_1'$$

fort.

Schreibe
$$f = (x - \alpha_1) \cdot f_1$$
 mit $f_1 \in K_1[X]$
 $\Rightarrow f^{\varphi} = (x - \underbrace{\sigma(\alpha_1)}_{\alpha'_1}) \cdot f_1^{\sigma}$ mit $f_1^{\sigma} \in K'_1[X]$.

L ist Zerfällungskörper von f_1 , L' ist Zerfällungskörper von f_1^{σ}

 $\Rightarrow~\sigma$ setzt sich fort zu einem Isomorphismus $L\to L'$

Die Behauptung im Fall $\varphi = \mathrm{id}_K$ ist genau die Aussage von Satz 3.13.

▶ Bemerkung 3.14

Ist $M \mid K$ eine Erweiterung, die einem Zerfällungskörper L von f enthält, dann ist dieser nicht nur bis auf die Isomorphie sondern als Teilkörper eindeutig bestimmt: $L = K(\alpha_1, \ldots, \alpha_n)$, wobei $\alpha_1, \ldots, \alpha_n$ genau die n Nullstellen von f in M sind.

4. Der algebraische Abschluss

Sei $L \mid K$ eine Körpererweiterung.

Definition 4.1 (algebraisch abgeschlossen)

K ist algebraisch abgeschlossen \iff jedes $f \in K[X]$ mit $\deg(f) > 0$ hat eine Nullstelle in K.

Lemma 4.2

Es ist äquivalent:

- (a) K ist algebraisch abgeschlossen.
- (b) Jedes $0 \neq f \in K[X]$ zerfällt über K in Linearfaktoren.
- (c) K hat keine echte algebraische Erweiterung.

Beweis.

- (a) \Rightarrow (b): Induktion nach deg(f) (siehe LAAG)
- (b) \Rightarrow (c): Sei $L \mid K$ algebraisch, $\alpha \in L$. Schreibe $f = \text{MinPol}(\alpha \mid K)$. Nach (b) zerfällt f in Linearfaktoren über $K \Rightarrow \alpha \in K$
- (c) \Rightarrow (a): Sei $f \in K[X]$, $\deg(f) > 0$. Nach Satz 3.9 existiert ein Zerfällungskörper L von f. Da $L \stackrel{(*)}{=} K$ nach (c) hat f Nullstellen in K.
 - $((*) L \text{ ist Erweiterung} \rightarrow \text{die nach (c) trivial ist})$

Definition 4.3 (algebraischer Abschluss)

L ist algebraischer Abschluss von $K:\iff L$ ist algebraisch abgeschlossen und $L\mid K$ algebraisch.

Lemma 4.4

Ist L algebraischer Abschluss, so ist der relative algebraische Abschluss \tilde{K} ein algebraischer Abschluss von K.

Beweis.

- \tilde{K} ist Körper: Folgerung 2.15
- $\tilde{K} \mid K$ ist algebraisch: Definition
- \tilde{K} ist algebraisch abgeschlossen: Sei $f \in \tilde{K}[X]$ mit $\deg(f) > 0$. L algebraisch abgeschlossen \Rightarrow existiert $\alpha \in L$ mit $f(\alpha) = 0 \Rightarrow \alpha$ algebraisch über $\tilde{K} \stackrel{2.15}{\Longrightarrow} \alpha \in \tilde{K}$.

■ Beispiel 4.5

- (a) ℂ ist algebraisch abgeschlossen (Fundamentalsatz der Algebra, ↗ II.)
- (b) \mathbb{C} ist algebraischer Abschluss von \mathbb{R} .
- (c) $\tilde{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraisch "über } \mathbb{Q} \}$ ist nach Lemma 4.4 ein algebraischer Abschluss von \mathbb{Q} .

Lemma 4.6

Sei $L \mid K$ algebraisch, E ein algebraisch abgeschlossener Körper und $\varphi \in \text{Hom}(K, E)$. Dann existiert eine Fortsetzung von φ auf L, d.h. ein $\sigma \in \text{Hom}(L, E)$ mit $\sigma_{\mid K} = \varphi$.

Beweis. Definiere die Halbordnung

$$\mathfrak{X} := \{ (M, \sigma) \mid K \subseteq M \subseteq L \text{ Zwischenk\"orper}, \sigma \in \text{Hom}(M, E), \sigma_{|K} = \varphi \}$$

mit der Ordnung

$$(M, \sigma) \subseteq (M', \sigma') : \iff M \subset M' \text{ und } \sigma'_{|M} = \sigma$$

- $\mathfrak{X} \neq \varnothing$: $(K, \varphi) \in \mathfrak{X}$
- Ist $(M, \sigma)_{i \in I}$ eine Kette in \mathfrak{X} , so definieren wir $M := \bigcup_{i \in I} M_i$ und $\sigma \colon M \to E$ durch $\sigma(x) = \sigma_i(x)$ falls $x \in M_i$.

Dann ist $(M, \sigma) \in \mathfrak{X}$ eine obere Schranke der Kette $(M_i, \sigma_i)_{i \in I}$. Nach Lemma von ZORN existiert (M, σ) maximal. Es ist M = L: Sei $\alpha \in L$, $f = \text{MinPol}(\alpha \mid M)$. $f \in E[X]$ hat Nullstelle $\beta \in E$, da E algebraisch abgeschlossen ist $\stackrel{3.12}{\Longrightarrow}$ existiert Fortsetzung $\sigma' \in \text{Hom}(M(\alpha), E)$ von σ

$$(M,\sigma) \le (M(\alpha),\sigma') \in \mathfrak{X} \xrightarrow{(M(\alpha),\sigma) \text{ max.}} M = M(\alpha), \ \alpha \in M.$$

Theorem 4.7 (Steinitz, 1910)

Jeder Körper K besitzt einen bis auf K-Isomorphie eindeutig bestimmten algebraischen Abschluss.

Beweis.

• Eindeutigkeit:

Seien L_1 , L_2 algebraische Abschlüsse von K

 $L_1 \mid K, L_2$ algebraisch abgeschlossen $\stackrel{4.6}{\Longrightarrow}$ existiert $\sigma \in \text{Hom}(L_1, L_2)$

 L_1 algebraisch abgeschlossen $\Rightarrow \sigma(L_1) \cong L_1$ algebraisch abgeschlossen

 $L_2 \mid K$ algebraisch $\Rightarrow L_2 \mid \sigma(L_1)$ algebraisch

 $\left.\begin{array}{c} \stackrel{1}{\Longrightarrow} L_2 = \sigma(L_1). \end{array}\right.$

Somit ist $\sigma: L_1 \to L_2$ ein K-Isomorphismus.

- Existenz: Seien
 - $\mathscr{F} = \{ f \in K[X] \mid \deg(f) > 0 \}$
 - $-\mathfrak{X}=(X_f)_{f\in\mathscr{F}}$ Familie von Variablen
 - $-R:=K[\mathfrak{X}]$ Polynomring in den Variablen X_f $(f\in\mathscr{F})$
 - $-I := (f(X_f) : f \in \mathscr{F}) \trianglelefteq R$

Behauptung 1: Es gilt $I \subseteq R$.

Beweis. Angenommen I = R. Dann existieren $f_1, \ldots, f_n \in \mathcal{F}$ und $g_1, \ldots, g_n \in R$ mit

$$\sum_{i=1}^{n} g_i \cdot f_i(X_f f_i) = 1.$$

Sei L ein Zerfällungskörper von f_1, \ldots, f_n . Dann existieren $\alpha_1, \ldots, \alpha_n \in L$ mit $f_i(\alpha_i) = 0$ für alle i. Sei $\varphi : R \to L$ der Einsetzungshomomorphismus gegeben durch

$$\varphi_{|K} = \mathrm{id}_K, \quad \varphi(X_{f_i}) = \alpha_i, \quad \varphi(X_f) = 0 \text{ für } f \in \mathscr{F}/\{f_1, \dots, f_n\}$$

Dann folgt

$$1 = \varphi(1) = \sum_{i=1}^{n} \varphi(g_i) \cdot \varphi(f_i(X_f)) = \sum_{i=1}^{n} \varphi(g_i) \cdot f_i(\underbrace{\varphi(X_f)}_{=\alpha_i}) = \sum_{i=1}^{n} \varphi(g_i) \cdot \underbrace{f_i(\alpha_i)}_{=0} = 0$$

Jedes echte Ideal ist in einem maximalen Ideal von R enthalten (GEO II 2.13)

 \implies existiert maximales Ideal $m \leq R$ mit $I \subseteq m$. $L_1 := R/m$ ist Körpererweiterung von K, und jedes $f \in \mathscr{F}$ hat eine Nullstelle in L_1 , nämlich $f(X_f + m) = f(X_f) + m = 0 + m$. Iteriere dies und

$$K := L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$$

wobei jedes $f \in L_i[X]$, $\deg(f) > 0$ eine Nullstelle in L_{i+1} hat. Setze nun $L = \bigcup_{i=1}^{\infty} L_i$.

Behauptung 2: L ist algebraisch abgeschlossen.

Beweis. Sei $f \in L[X]$, $\deg(f) > 0 \implies f \in L_i[X]$ für ein $i \implies f$ hat eine Nullstelle in $L_{i+1} \subseteq L$

Nach Lemma 4.4 ist somit

$$\tilde{K} = \{ \alpha \in L \mid \alpha \text{ algebraisch "uber } K \}$$

ein algebraischer Abschluss von K.

Definition 4.8 (algebraischer Abschluss)

Mit \bar{K} bezeichnen wir den (bis auf K-Isomorphie eindeutig bestimmten) <u>algebraischen Abschluss</u> von K.

Definition 4.9 (Automorphismengruppe)

 $\operatorname{Aut}(L \mid K) := \{ \sigma \in \operatorname{Hom}_K(L, L) \mid \sigma \text{ Isomorphismus} \}, \text{ die Automorphismengruppe von } L \mid K.$

▶ Bemerkung 4.10

 $\operatorname{Aut}(L \mid K)$ ist Gruppe unter $\sigma \cdot \sigma' = \sigma' \circ \sigma$ und wirkt auf L durch $x^{\sigma} := \sigma(x)$.

Satz 4.11

Sei $K \subseteq L \subseteq \bar{K}$ ein Zwischenkörper. Jedes $\varphi \in \operatorname{Hom}_K(L, \bar{K})$ lässt sich zu einem $\sigma \in \operatorname{Aut}(\bar{K} \mid K)$ fortsetzen

Beweis. Sei $\bar{K} \mid K$ algebraisch abgeschlossen und \bar{K} algebraisch abgeschlossen

 $\stackrel{4.6}{\Longrightarrow}$ existiert Fortsetzung $\sigma \in \operatorname{Hom}_K(\bar{K}, \bar{K})$ von φ

$$\bar{K} \text{ algebraisch abgeschlossen } \Longrightarrow \sigma(\bar{K}) \text{ algebraisch abgeschlossen } \\ \bar{K} \mid K \text{ algebraisch ist } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch ist } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch ist } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch ist } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \sigma(\bar{K}) \text{ algebraisch } \\ \bar{K} \mid K \text{ algebraisch } \Longrightarrow \bar{K} \mid \bar{$$

Definition 4.12 (konjugiert)

 $\alpha, \beta \in \overline{K}$ sind K-konjugiert \iff existiert $\sigma \in \operatorname{Aut}(\overline{K}, K)$ mit $\sigma(\alpha) = \beta$.

▶ Bemerkung 4.13

K-Konjugiertheit ist eine Äquivalenzrelation auf \bar{K} .

Folgerung 4.14

 $\alpha, \beta \in \overline{K} \text{ sind } K\text{-konjugiert} \iff \operatorname{MinPol}(\alpha \mid K) = \operatorname{MinPol}(\beta \mid K).$

Beweis.

$$(\Rightarrow) \ \sigma(\alpha) = \beta \ \text{mit} \ \sigma \in \text{Aut}(\bar{K} \mid K), \ f \in K[X], \ f(\alpha) = 0 \implies 0 = \sigma(0) = \sigma(f(\alpha)) = f(\sigma(\alpha)) = f(\beta)$$

 $(\Leftarrow) \operatorname{MinPol}(\alpha \mid K) = \operatorname{MinPol}(\beta \mid K)$

 $\stackrel{3.5}{\Longrightarrow}$ existiert K-Isomorphismus $\varphi \colon K(\alpha) \to K(\beta)$ mit $\varphi(\alpha) = \beta$

 $\stackrel{4.11}{\Longrightarrow}$ existiert Fortsetzung $\sigma \in \operatorname{Aut}(\bar{K}, K)$ von φ .

■ Beispiel 4.15

- i, $-i \in \tilde{\mathbb{Q}}$ sind $\mathbb{Q}\text{-konjugiert:}$ komplex Konjugation (eingeschränkt auf $\tilde{\mathbb{Q}})$
- $\sqrt{2}$, $-\sqrt{2} \in \tilde{\mathbb{Q}}$ sind \mathbb{Q} -konjugiert: $\mathrm{MinPol}(\sqrt{2}\mid \mathbb{Q}) = x^2 2 = \mathrm{MinPol}(-\sqrt{2}\mid \mathbb{Q})$

5. Die transzendente Erweiterung

Sei $L \mid K$ eine Körpererweiterung.

Definition 5.1 (algebraisch abhängig)

- (a) $a_1, \ldots, a_n \in L$ sind <u>algebraisch abhängig</u> über K, wenn ein $0 \neq f \in K(X_1, \ldots, X_n)$ existiert mit $f(a_1, \ldots, a_n) = 0$.
- (b) $(a_i)_{i\in I}$ ist <u>algebraisch abhängig</u> über K, wenn ein endliches $J\subseteq I$ existiert und $(a_i)_{i\in J}$ ist algebraisch abhängig über K.

■ Beispiel (nicht aus VL, sondern ergänzt!)

Betrachte die reellen Zahlen $\sqrt{\pi}$ und $2\pi + 1$, beide sind transzendent über \mathbb{Q} . Die Singletons $\{\sqrt{\pi}\}$ und $\{2\pi + 1\}$ sind algebraisch unabhängig über \mathbb{Q} . Aber die Vereinigung $\{\sqrt{\pi}, 2\pi + 1\}$ ist nicht algebraisch unabhängig in \mathbb{Q} , da

$$P(x,y) = 2x^2 - y + 1 = 0$$

ist, wenn $x = \sqrt{\pi}$ und $y = 2\pi + 1$ gesetzt sind.

▶ Bemerkung 5.2

- (a) (a) ist algebraisch abhängig über $K \iff a$ ist algebraisch über K
- (b) $L = K(X_1, ..., X_n) = \text{Quot}(K[X_1, ..., X_n]) \implies X_1, ..., X_n$ sind algebraisch unabhängig über K
- (c) Sind π , e unabhängig über \mathbb{Q} ? Falls "Ja", wäre z.B. $\pi + e$ transzendent über \mathbb{Q}

Definition 5.3 (rein transzendent)

 $L \mid K$ rein transzendent : $\iff L = K(\mathfrak{X})$ mit $\mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig über K.

Lemma 5.4

 $\mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig über $K \implies K(\mathfrak{X}) \cong_K K(X_i : i \in I) = \operatorname{Quot}(K[X_i : i \in I]).$

Beweis. Betrachte K-Isomorphismus

$$\varphi = \begin{cases} K[X_i \colon I \in I] \to K[a_i \colon i \in I] \\ f & \mapsto f(\mathfrak{X}) \end{cases}$$

Da \mathfrak{X} algebraisch unabhängig über K, ist $Ker(\varphi) = (0)$

$$\implies K(\mathfrak{X}) = \operatorname{Quot}(K[\mathfrak{X}]) \cong_K \operatorname{Quot}(K[X_i : i \in I]).$$

Satz 5.5

 $L \mid K$ rein transzendent $\implies \tilde{K} = K$.

Beweis. Nach Lemma 5.4 sei o.E. $L = K(X_i : i \in I)$. Weiter o. E. $I = \{1, ..., n\}$ endlich. Sei $\alpha \in L$ algebraisch über K. Definiere $f = \text{MinPol}(\alpha \mid K)$.

f irreduzibel in $K[X] \xrightarrow{\text{GAUSS}} f$ irreduzibel in $K[X_1, \dots, X_n][X]$

 $\xrightarrow{\text{GAUSS}} f \text{ irreduzibel in } K(X_1, \dots, X_n)[X]$

$$\overset{\alpha \in L}{\Longrightarrow} \deg(f) = 1$$

$$\Longrightarrow \alpha \in K$$

▶ Bemerkung 5.6

Die Umkehrung gilt nicht, da z.B. $L = \mathbb{C}$. Sei $K = \mathbb{Q}$, dann $\tilde{K} = K$, aber $L \mid K$ nicht rein transzendent. Ist $L = K[\mathfrak{X}], \mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig, so wäre $a_i \in L$ aber $\sqrt{a_i} \in \bar{L} \setminus L$.

Definition 5.7 (Transzendentbasis)

 $\mathfrak{X} = (a_i)_{i \in I}$ ist eine <u>Transzendentbasis</u> von $L \mid K : \iff \mathfrak{X}$ ist algebraisch unabhängig über K und $L \mid K(\mathfrak{X})$ algebraisch.

Lemma 5.8

 $\mathfrak{X} = (a_i)_{i \in I} \subseteq L$ ist genau dann eine Transzendentbasis von $L \mid K$, wenn \mathfrak{X} maximal algebraisch unabhängig über K ist.

Beweis.

(\Leftarrow) $a \in L \setminus K(\mathfrak{X}) \xrightarrow{\text{maximal}} \mathfrak{X} \cup \{a\}$ algebraisch abhängig, d.h. existieren $i_1, \ldots, i_n \in I, 0 \neq f \in K[X_1, \ldots, X_n, X]$ mit $f(a_{i_1}, \ldots, a_{i_n}, a) = 0$

 $a_{i_1},\,\ldots,\,a_{i_n}$ algebraisch unabhängig über K

$$\Longrightarrow \underbrace{f(a_{i_1}, \dots, a_{i_n}, X)}_{\in K(a_{i_1}, \dots, a_{i_n})[X] \subseteq K(\mathfrak{X})[X]} \neq 0$$

 $\implies a$ ist algebraisch über $K(\mathfrak{X})$

(⇒) $a \in L \setminus K(\mathfrak{X}) \xrightarrow{L \setminus K(\mathfrak{X}) \text{ alg}}$ existiert $0 \neq f \in K(\mathfrak{X})[X]$ mit f(a) = 0O.E. (Problem: Nenner kann Koeffizienten in $K(\mathfrak{X})$ haben \to Multiplikation mit Nenner, weil f(a) = 0) $f \in K[\mathfrak{X}][X]$, d.h. es existiert $g \in K[X_1, \ldots, X_n][X]$ und $i_1, \ldots, i_n \in I$ mit $f(X) = g(a_{i_1}, \ldots, a_{i_n}, X)$ und $\mathfrak{X} \cup \{a\}$ ist algebraisch abhängig.

Satz 5.9

Es gibt eine Transzendenzbasis von $L \mid K$.

Beweis. Nach Lemma von ZORN gibt es eine Familie $\mathfrak X$ in L, die maximal algebraisch unabhängig über K ist. \square

Folgerung 5.10

Jede Erweiterung $L \mid K$ lässt sich zerlegen als

$$L$$
 \downarrow algebraisch $K(\mathfrak{X})$ \downarrow rein transzendent K

Lemma 5.11

Ist $\mathcal{Y} = (b_j)_{j \in J}$ mit $L \mid K(\mathcal{Y})$ algebraisch und $\mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig über K, so existiert $J_0 \subseteq J$ mit $\mathfrak{X} \cup (b_j)_{j \in J_0}$ eine Transzendenzbasis von $L \mid K$.

Beweis. Nach dem Lemma von ZORN existiert $J_0 \subseteq J$ maximal mit $\mathfrak{X}' = \mathfrak{X} \cup (b_j)_{j \in J_0}$ algebraisch unabhängig über K. Für jedes $j \in J$ ist $\mathfrak{X}' \cup \{b_j\}$ algebraisch abhängig über K, somit b_j algebraisch über $K(\mathfrak{X}')$

 $\implies K(\mathfrak{X} \cup \mathcal{Y}) \mid K(\mathfrak{X}')$ algebraisch

 $L \mid K(\mathcal{Y})$ algebraisch $\implies L \mid K(\mathfrak{X} \cup \mathcal{Y})$ algebraisch $\xrightarrow{\text{alg. transitiv}} L \mid K(\mathfrak{X}')$ algebraisch. Somit ist \mathfrak{X}' eine Transzendenzbasis.

Theorem 5.12 (Steinitz, 1910)

Je zwei Transzendenzbasen von $L \mid K$ besitzen die gleiche Mächtigkeit.

Beweis. Seien $\mathfrak{X} = (a_i)_{i \in I}$, $\mathcal{Y} = (b_j)_{j \in J}$ Transzendenzbasis von $L \mid K$.

Beweisen hier nur für J endlich:

Wegen Symmetrie genügt es zu zeigen, dass $|I| \leq |J|$.

Induktion nach n = |J|:

$$n = 0$$
: $L \mid K$ algebraisch $\implies |I| = 0$

$$n > 0$$
: $L \mid K$ nicht algebraisch $\Longrightarrow |I| > 0$.

O.E. $1 \in I$. Nach Lemma 5.11 existiert ein $J_0 \subset J$ mit $\{a_i\} \cup (b_j)_{j \in J_0}$ eine Transzendentenbasis von $L \mid K$. Da \mathcal{Y} maximal algebraisch unabhängig über K ist, ist $|J_0| \leq |J| - 1$.

Sowohl $\mathfrak{X}'=(a_i)_{i\in I\setminus\{1\}}$ als auch $(b_j)_{j\in J_0}$ sind Transzendentenbasen von $L\mid K(a_1)$:

$$K(a_1)(\mathfrak{X}') = K(\mathfrak{X}) \Rightarrow L \mid K(a_1)(\mathfrak{X}')$$
 algebraisch, analog $L \mid K(a_1)(b_j)_{j \in J_0}$ algebraisch.

Wäre \mathfrak{X}' algebraisch abhängig über $K(a_1)$, so existierte ein

$$0 \neq f \in K(a_1)[X_1, \dots, X_m], \quad i_1, \dots, i_m \in I \setminus \{1\}$$

mit
$$f(a_{i_1}, \ldots, a_{i_m}) = 0$$
.

O.E. ist
$$f \in K[a_1][X_1, \dots, X_m]$$
, d.h. es existiert $g \in K[X, X_1, \dots, X_m]$ mit

$$f(X_1,\ldots,X_m)=g(a_1,X_1,\ldots,X_m)$$

im Widerspruch zur algebraischen Unabhängigkeit von $\mathfrak{X}.$

$$\stackrel{\text{(IH)}}{\Longrightarrow} |I| - 1 \le |J_0| \Rightarrow |I| - 1 \le |J| - 1 \Rightarrow |I| \le |J|.$$

Definition 5.13 (Transzendenzgrad)

Der Transzendenzgrad von $L \mid K$ ist die Mächtigkeit tr. deg $(L \mid K)$ einer Tarnszendenzbasis von $L \mid K$.

Folgerung 5.14

Sind $L \subseteq L \subseteq M$ Körper, so ist

$$\operatorname{tr.deg}(M \mid K) = \operatorname{tr.deg}(M \mid L) + \operatorname{tr.deg}(L \mid K).$$

Beweis. Ist \mathfrak{X} eine Transzendentenbasis von $L \mid K$, \mathcal{Y} eine Transzendentenbasis von $M \mid L$, so ist $\mathfrak{X} \cup \mathcal{Y}$ eine Transzendentenbasis von $M \mid K$.

- $\mathfrak{X} \cup \mathcal{Y}$ ist algebraisch unabhängig über K. Denn ist $f(a_{i_1}, \ldots, a_{i_n}, b_{j_1}, \ldots, b_{j_m}) = 0$ mit $i_1, \ldots, i_n \in I$ und $j_1, \ldots, j_m \in J$ sowie $0 \neq f \in K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$, so gälte:
 - $-f \in K[X_1,\ldots,X_n]$: im Widerspruch zur algebraischen Unabhängigkeit von $\mathfrak X$ über K
 - $-f \notin K[X_1,\ldots,X_n]: 0 \neq f(a_{i_1},\ldots,a_{i_n},Y_1,\ldots,Y_m) \in L[Y_1,\ldots,Y_m]$ im Widerspruch zur algebraischen Unabhängigkeit von $\mathcal Y$ über L.
- $M \mid K(\mathfrak{X} \cup \mathcal{Y})$ algebraisch:

$$L(\mathcal{Y}) = K(\mathfrak{X} \cup \mathcal{Y})(L)$$

 $\xrightarrow{L|K(\mathfrak{X}) \text{ alg.}} L(\mathcal{Y}) \mid K(\mathfrak{X} \cup \mathcal{Y}) \text{ algebraisch}$

$$\Rightarrow \ M \mid K(\mathfrak{X} \cup \mathcal{Y})$$
 algebraisch.

6. Separable Polynome

Sei K ein Körper, $f \in K[X]$, $n = \deg(f)$.

Definition 6.1

Sei $a \in K$.

- (1) $\mu(f,a) := v_{x-a}(f) := \sup\{k \in \mathbb{N}_0 : (x-a)^k \mid f\} \in \mathbb{N}_0 \cup \{\infty\} \text{ die } \underline{\text{Vielfachheit}} \text{ der Nullstelle } a \text{ von } f$
- (2) Nullstelle a von f ist $\underline{\operatorname{einfach}}:\Leftrightarrow \mu(f,a)=1$
- (3) f ist separabel : \Leftrightarrow jede Nullstelle $a \in \overline{K}$ von $f \in \overline{K}[X]$ ist einfach.

▶ Bemerkung 6.2

(a) Ist $L \mid K$ eine Körpererweiterung und $g \in K[X]$, so gilt

$$f \mid g \text{ in } K[X] \quad \Leftrightarrow \quad f \mid g \text{ in } L[X]$$

Insbesondere ist die Nullstelle $\mu_K(f, a) = \mu_L(f, a)$. Wir können deshalb von der Vielfachheit der Nullstelle von f sprechen.

(b)
$$\#\{a \in K \mid f(a) = 0\} \le \sum_{a \in K} \mu(f, a) \le \sum_{a \in \bar{K}} \mu(f, a) = \deg(f)$$
, falls $(f \ne 0)$

(c) Aus (b) folgt insbesondere:

fist separabel $\quad\Leftrightarrow\quad f$ hat genau $\deg(f)$ paarweise verschiedene Nullstellen in \bar{K}

Definition 6.3

Die formale Ableitung von $f = \sum_{i=1}^{n} a_i X^{i-1}$ ist

$$f' := \frac{\mathrm{d}}{\mathrm{d}x} f(x) := \sum_{i=1} i a_i X^{i-1}$$

Lemma 6.4

Für $f,g\in K[X], a,b\in K$ gelten

- (a) (af + bg)' = af' + bg' (Linearität)
- (b) (fg)' = f'g + fg' (Produktregel)
- (c) $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ (Kettenregel)

Beweis. Übung.

Lemma 6.5

Sei $f \neq 0$. Für $a \in K$ gilt

$$\mu(f', a) \ge \mu(f, a) - 1$$

mit Gleichheit genau dann, wenn $char(K) \nmid \mu(f, a)$.

Beweis. Schreibe $f = (X - a)^k \cdot g$, $k = \mu(f, a)$

$$k = 0$$
: $\mu(f', a) \ge 0 > -1$ und char $(K) \mid 0$

$$k = 0: \ \mu(f', a) \ge 0 > -1 \text{ und char}(K) \mid 0$$

$$k > 0: \ f' = k(X - a)^{k-1}g + (X - a)^k \cdot g' \implies \mu(f', a) \ge k, \text{ sowie}$$

$$\mu(f', a) \ge k \quad \Leftrightarrow \quad (X - a)^k \mid k(X - a)^{k-1} \cdot g$$

$$\Leftrightarrow \quad X - a \mid k \cdot g$$

$$\Leftrightarrow \quad X - a \mid k$$

$$\Leftrightarrow \quad k = 0 \text{ in } K$$

$$\Leftrightarrow \quad \text{char}(K) \mid k$$

Satz 6.6

Sei $f \neq 0$. Dann gilt:

$$f$$
 separabel \Leftrightarrow $ggT(f, f') = 1$

Beweis.

 (\Rightarrow) f separabel

$$\Rightarrow f = c \cdot \prod_{i=1}^{n} (X - a_i) \text{ mit } c \in K, a_1, \dots, a_n \in \overline{K} \text{ paarweise verschieden und } \mu(f, a_i) = 1$$

$$\xrightarrow[\text{char}(K) \nmid 1]{6.5} \mu(f', a_i) = 0 \ \forall i$$

$$\Rightarrow \text{ggT}(f, f') = \prod_{a \in \overline{K}} (X - a)^{\min\{\mu(f, a), \mu(f', a)\}} = 1$$

 (\Leftarrow) f nicht separabel $\Rightarrow \exists a \in \bar{K} \text{ mit } \mu(f,a) \geq 2 \stackrel{6.5}{\Longrightarrow} \mu(f',a) \geq 1.$

$$\mathrm{Mit}\ g = \mathrm{MinPol}(a \mid K)\ \mathrm{gilt} \colon g \mid f \Rightarrow \mathrm{ggT}(f,f') \neq 1$$

Lemma 6.7

$$f'=0 \Leftrightarrow \exists g \in K[X] \text{ mit } f(X)=g(X^p) \text{ und } p=\text{char}(K).$$

Beweis. Ist
$$f = \sum_{i=1}^{n} a_i X^i \Rightarrow f' = \sum_{i=1}^{n} i a_{i-1} X^{i-1}$$
 und $f' = 0 \Leftrightarrow i a_i = 0$ in $K \forall i$ $\Leftrightarrow \forall i : i = 0$ in K oder $a_i = 0$ $\Leftrightarrow f = a_0 + a_p X^p + \dots + a_{pm} X^{pm} = g(X^p)$ mit $g = a_0 + a_p X + \dots + a_{pm} X^m$

Folgerung 6.8

Sei f irreduzibel

- (a) Ist char(K) = 0, so ist f separabel
- (b) Ist char(K) = p > 0, so sind äquivalent
 - (1) f ist inseparabel
 - (2) f' = 0
 - (3) $f(X) = g(X^p)$ für ein $g \in K[X]$

Beweis. f irreduzibel $\Longrightarrow \underbrace{\operatorname{ggT}(f,f') \sim 1}_{\stackrel{\text{\scriptsize 6.6}}{\longleftarrow} f \text{ sep}}$ oder $\underbrace{\operatorname{ggT}(f,f') \sim f}_{\stackrel{\text{\scriptsize 6.6}}{\longleftarrow} f \text{ sep}}$.

Da $\deg(f') = \deg(f)$ ist

$$f \mid f' \iff f' = 0 \iff f(X) = g(X^p)$$
 für ein g

Im Fall char(K) = 0 tritt dieser Fall nicht ein.

Definition 6.9 (vollkommen)

K ist vollkommen \iff jedes irreduzibel $f \in K[X]$ ist separabel.

■ Beispiel 6.10

- (a) $char(K) = 0 \implies K$ ist vollkommen
- (b) $K = \bar{K} \implies K$ ist vollkommen
- (c) $K = \mathbb{F}_p(t)$ ist nicht vollkommen:

$$f = X^p - t \in K[X]$$
 ist irreduzibel $f' = pX^{p-1} = 0 \implies f$ nicht seperabel.

Tatsächlich hat fnur eine Nullstelle in $\bar{K}\colon f=X^p-t\stackrel{\mathrm{V1}}{=}(X-t^{\frac{1}{p}})^p.$

Definition 6.11

Sei char(K) = p > 0.

(1) Der Frobenius-Endomorphismus von K ist

$$\Phi_p \colon \begin{cases} K \to K \\ X \mapsto X^p \end{cases}$$

(2)
$$K^p = \text{Im}(\Phi_p) = \{a^p \mid a \in K\}$$

Satz 6.12

Sei $\mathrm{char}(K)=p>0.$ Dann ist $\Phi_p\in\mathrm{End}(K):=\mathrm{Hom}(K,K)$

Beweis. Für $a, b \in K$ ist

- $\Phi_p = (ab)^p = a^p \cdot b^p = \Phi_p(a) \cdot \Phi_p(b)$
- $\Phi_p(a+b) = (a+b)^p = \sum_{i=0}^p \binom{p}{i} a^i b^{p-i} = b^p + a^p = \Phi_p(a) + \Phi_p(b)$, da $p \mid \binom{p}{i}$ für $i = 1, \dots, p-1$ (V1).

•
$$\Phi_p(1) = 1^p = 1$$

▶ Bemerkung 6.13

- (a) Da $\Phi_p \in \text{End}(K)$ ist K^p ein Teilkörper von K und Φ_p ist injektiv.
- (b) Insbesondere gibt es zu jedem $a \in K$ ein eindeutig bestimmtes $a^{\frac{1}{p}} \in \bar{K}$ mit

$$\Phi_p(a^{\frac{1}{p}}) = (a^{\frac{1}{p}})^p = a$$

(c) Für $a \in \mathbb{F} \cong \mathbb{F}_p$ ist $\Phi_p(a) = a$. (z.B. $\Phi_p(1) = 1$ oder kleiner Satz von FERMAT)

Lemma 6.14

Sei char(K) = p > 0, $a \in K \setminus K^p$. Dann ist $f = X^p - a$ irreduzibel und inseparabel

Beweis. Sei $\alpha \in \bar{K}$ mit $f(\alpha) = 0$, $g = \text{MinPol}(\alpha \mid K)$

$$\implies g \mid f = X^p - \alpha = (X - \alpha)^p$$

$$\implies g \equiv (X - \alpha)^k \text{ mit } k \leq p.$$

 $a \notin K^p$

$$\implies \alpha \notin K \implies k > 1$$

$$\implies$$
 g ist inseperabel

$$\stackrel{g \text{ irred.}}{\Longrightarrow} g(X) = h(X^p)$$
 für ein h

$$\implies k = p \implies f = g$$
 irreduzibel

Satz 6.15

Genau dann ist K vollkommen, wenn

(i)
$$char(K) = 0$$
 oder

(ii)
$$char(K) = \beta > 0$$
 und $K^P = K$

Beweis.

- $\operatorname{char}(K) = 0$: klar (Beispiel 6.10 (a))
- char(K) = p > 0:
 - (⇒) Es existiert ein $a \in K \setminus K^p$, so ist K nicht vollkommen nach Lemma 6.14.
 - (\Leftarrow) Sei $f(X) \in K[X]$ irreduzibel und inseparabel. Nach Folgerung 6.8 existiert ein $g(X) \in K[X]$ mit

$$f(X) = g(X^p)$$

Setze $g(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$. Dann ist

$$f(X) = g(X^p) = \sum_{i=0}^n a_i \left(X^i\right)^p \overset{=}{\mathrm{V1}} \left(\sum_{\substack{i=\overline{K}^0 \text{ da } K^p = K}}^n a_i^{1/n} X^i\right)^p,$$

folglich ein Widerspruch.

■ Beispiel 6.16

K endlich $\Rightarrow K$ vollkommen (Bemerkung 6.13 (a), Satz 6.15).

7. Separable Erweiterungen

Sei K ein Körper und $L \mid K$ algebraische Körpererweiterung.

▶ Bemerkung 7.1

Für $L = K(\alpha)$ mit $f = \text{MinPol}(\alpha \mid K \text{ ist})$

$$[L:K] = \deg(f) \ge \left| \left\{ \beta \in \bar{K} \mid f(\beta) = 0 \right\} \right| \stackrel{3.12}{=} |\operatorname{Hom}_{\mathbb{K}}(L, \bar{K})|$$

mit Gleichheit genau dann wenn f separabel.

Definition 7.2

Sei $\alpha \in L$.

- 1. α ist separabel über $K : \Leftrightarrow \text{MinPol}(\alpha \mid K)$ ist separabel.
- 2. $L \mid K$ ist separabel : \Leftrightarrow jedes $\alpha \in L$ ist separabel über K.
- 3. Der Separabilitätsgrad von $L \mid K$ ist

$$[L:K]_{S} = |\operatorname{Hom}_{\mathbb{K}}(L,\bar{K})|$$

Lemma 7.3

Sei E algebraisch abgeschlossen, $\varphi \in \text{Hom}(K, E)$. Dann ist

$$\left|\left\{\psi\in\operatorname{Hom}(L,E)\;\middle|\;\psi_{\mathbb{K}}=\varphi\right\}\right|=[L:K]_{\mathcal{S}}$$

Beweis. Nach Lemma 4.6 existiert ein $g \in \text{Hom}(\bar{K}, E)$ mit $g_{|K} = \varphi$. Ohne Einschränkung ist $E = \widetilde{\varphi(K)} = g(\bar{K})$, d.h. g ist Isomorphismus. Dann ist die Abbildung

$$\left\{ \begin{array}{c} \operatorname{Hom}_{\mathbb{K}}(L,\bar{K}) \Rightarrow \left\{ \psi \in \operatorname{Hom}(L,E) \;\middle|\; \psi_{|K} = \varphi \right\} \\ \sigma & \mapsto g \circ \sigma \end{array} \right. .$$

Diese ist bijektiv mit Umkehrabbildung $\psi \mapsto g^{-1} \circ \psi$.

Satz 7.4

Sind $K \subset L \subset M$ Körer mit $M \mid K$ algebraisch, so ist

$$[M:K]_{S} = [M:L]_{S}[L:K]_{S}$$

Insbesondere ist $[L:K]_S \leq [M:K]_S$.

Beweis. Betrachte die Abbildung

$$f \colon \left\{ \begin{array}{l} \operatorname{Hom}(M, \bar{K}) \to \operatorname{Hom}_{\mathbb{K}}(L, \bar{K}) \\ \\ \sigma & \mapsto \sigma_{|L} \end{array} \right. .$$

Für $\tau \in \operatorname{Hom}_{\mathbb{K}}(L, \bar{K})$ ist

$$f^{-1}(\lbrace \tau \rbrace) = \left| \left\{ \sigma \in \operatorname{Hom}_{\mathbb{K}}(M, \bar{K}) \mid \sigma_{|L} = \tau \right\} \right| = [M:L]_{S}$$

Daher gilt $[M : K]_{S} = [M : L]_{S}[L : K]_{S}$.

Lemma 7.5

Sei $L \mid K$ endlch und p = char(K) > 0. Dann ist

$$[L:K] = p^l[L:K]_S$$

für ein $L \in \mathbb{N}$. Insbesondere ist $[L:K]_S \leq [L:K]$.

Beweis. Schreibe $L=K(\alpha_1,\ldots,\alpha_n)$, ohne Einschränkung ist n=1 (nach Sätze 1.12 und 7.4). Sei $f=\text{MinPol}(\alpha_1\mid K)$ und $l\in\mathbb{N}$ die größte Zähl mit

$$f(X) = g(X^{lp}), \quad g(X) \in K[X].$$

Dann ist g(X) irreduzibel und separabel nach Folgerung 6.8. Daher gilt

$$[L:K]_{\mathbf{S}} \stackrel{7.1,7.2}{=} \left| \left\{ x \in \bar{K} \ \middle| \ f(x) = 0 \right\} \right| = \left| \left\{ x \in \bar{K} \ \middle| \ g(x) = 0 \right\} \right| = \deg(g) = \frac{\deg(f)}{p^l} = \frac{[L:K]}{p^l},$$

so dass $[L:K] = p^l[L:K]_S$.

Satz 7.6

Für $L \mid K$ endlich sind äquivalent

- (1) $L \mid K$ ist separabel.
- (2) $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ separabel über K
- (3) $[L:K]_S = [L:K].$

Beweis.

- $(1) \Rightarrow (2)$ klar nach Definition 7.2
- $(2) \Rightarrow (3)$ Da α_i separabel über K ist α_i separabel über $K(\alpha_1, \ldots, \alpha_{n-1})$. Daher ist

$$[K(\alpha_1,\ldots,\alpha_i):K(\alpha_1,\ldots,\alpha_{i-1})]_{\mathbf{S}}\stackrel{7.1}{=}[K(\alpha_1,\ldots,\alpha_i):K(\alpha_1,\ldots,\alpha_{i-1})]$$

Nach Sätze 1.12 und 7.4 gilt dann

$$[L:K]_{S} = [L:K]$$

 $(3) \Rightarrow (1)$ Für $\alpha \in L$ ist mit $l \in \mathbb{N}$

$$[L:K] \stackrel{1.12}{=} [L:K(\alpha)][K(\alpha):K] \stackrel{7.5}{\geq} [L:K(\alpha)]_{\mathbf{S}} \cdot p^l[K(\alpha):K]_{\mathbf{S}} \stackrel{7.4}{=} [L:K]_{\mathbf{S}} p^l \stackrel{(3)}{=} [L:K] p^l,$$

daher l=0, d.h. $[K(\alpha):K]=[K(\alpha):K]_{S}.$ Nach Bemerkung 7.1 ist α separabel über K, d.h. (1) gilt.

Folgerung 7.7

Der relative, separable Abschluss

$$L_{\mathbf{S}} = \big\{ \alpha \in L \ \big| \ \alpha \text{ separabel "uber } K \big\}$$

von K in L ist Teilkörper in L.

Beweis. Folgt aus Satz 7.6 (vergleiche Folgerung 2.15).

Folgerung 7.8

Seien $K \subset L \subset M$ mit $M \mid K$ algebraisch. Dann gilt:

 $M \mid K$ separabel $\Leftrightarrow M \mid L$ separabel und $L \mid K$ separabel

Beweis.

- (⇒) klar
- (\Leftarrow) Sei $\alpha \in M$, setzte $f = \text{MinPol}(\alpha \mid L) = \sum_{i=0}^{n} a_i X^i$ und $L_0 = K(a_0, \ldots, a_n)$. Da $M \mid L$ separabel ist f separabel. Daher ist α separabel über L_0 , d.h $L_0(\alpha) \mid L_0$ ist separabel (siehe Satz 7.6). Da $L \mid K$ separabel ist, ist auch $L_0 \mid K$ separabel und es gilt

$$[L_0(\alpha) \mid K]_S \stackrel{7.4}{=} [L_0(\alpha) : L_0]_S [L_0 : K]_S \stackrel{7.5}{=} [L_0(\alpha) \mid L_0] [L_0 : K] \stackrel{1.2}{=} [L_0(\alpha) \mid K]$$

Deswegen ist $L_0(\alpha) \mid K$ separabel (siehe Satz 7.6). Insbesondere ist α separabel über K.

Folgerung 7.9

Sei $K \subset L_1$, $L_2 \subset M$ Körper mit $M \mid K$ algebraisch. Sind $L_1 \mid K$ und $L_2 \mid K$ separabel, so auch die Komposition $L1 \cdot_2 := K(L_1, L_2)$.

Beweis. Es sei $\alpha \in L_1L_2$. Dann gibt es $x_1, \ldots, x_n \in L_1$ und $y_1, \ldots, y_m \in L_2$ mit $\alpha \in K(x_1, \ldots, x_n, y_1, \ldots, y_n) =: L_0$. Da x_i, y_i separabel über K, so ist $L_0 \mid K$ separabel. Nach Satz 7.6. Insbesondere ist α separabel über K. \square

Definition 7.10

Die Erweiterung $L \mid K$ ist rein separabel : \Leftrightarrow jedes $\alpha \in L \setminus K$ ist inseparabel über K.

Beweis. Ist p = char(K) > 0, so sind äquivalent

- (1) \Rightarrow (2) Sei $\alpha \in L$, $f = \text{MinPol}(\alpha \mid K) = g(X^{p^l})$ mit l maximal und $g \in K[X]$ (wie in Lemma 7.5). Dann ist α^{p^l} separabel über K. Da $L \mid K$ rein inseparabel ist, folgt $\alpha^{p^l} \in K$.
- (2) \Rightarrow (3) Sei $\varphi \in \operatorname{Hom}_{\mathbb{K}}(L, \bar{K})$ Für $\sigma \in L$ ist

$$\sigma(\alpha) = \sigma(\underbrace{\alpha^{p^l}}_{\in K})^{1/p l} = (\alpha^{p^l})^{1/p l} = \alpha,$$

also $\sigma_{|L} = \mathrm{id}_L$ und daher $[L:K]_S = 1$.

 $(3) \Rightarrow (1)$ Es sei $\alpha \in L \setminus K$. Es ist

$$[K(\alpha):K] > 1 \stackrel{(3)}{=} [L:K]_{S} \stackrel{7.4}{\geq} [K(\alpha):K]_{S},$$

also ist α inseparabel über α nach Satz 7.6.

■ Beispiel 7.11

Die Erweiterung $\mathbb{F}_p(t) \mid \mathbb{F}_p(t)^p = \mathbb{F}_p(t)$ ist rein inseparabel vom Grad p.

▶ Bemerkung 7.12

Jede algebraische Erweiterung $L \mid K$ hat also eine Unterteilung in eine separablen und inseparablen Teil. Es gilt

$$[L:K]_{S} \stackrel{7.4}{=} [L:L_{S}]_{S}[L_{S}:K] \stackrel{7.11}{\underset{7.6}{=}} 1 \cdot [L_{S}:K] = [L_{S}:K]$$

8. Norm und Spur Kapitel I: Körper

8. Norm und Spur

Sei $L \mid K$ endliche Körpererweiterung und $\alpha \in L$.

▶ Bemerkung 8.1

L ist ein K-Vektorraum $\implies \operatorname{End}_K(L)$ ist ein K-Vektorraum und ein (nicht kommutativer) Ring unter Komposition.

Definition 8.2 (Spur, Norm)

(a)
$$\mu_{\alpha} \colon \begin{cases} L & \to L \\ x & \mapsto \alpha x \end{cases} \in \operatorname{End}_{K}(L)$$

- (b) $N_{L|K}(\alpha) := \det(\mu_{\alpha}, \operatorname{die}(L \mid K)$ Norm von α $\operatorname{Tr}_{L|K}(\alpha) := \operatorname{Tr}(\mu_{\alpha}), \operatorname{die}(L \mid K)$ -Spur von α
- (c) $\chi_{\alpha} := \text{charakteristisches Polynom von } \mu_{\alpha}$ $f_{\alpha} := \text{Minimal polynom von } \mu_{\alpha}$

Lemma 8.3

(a)
$$f_{\alpha} = \text{MinPol}(\alpha \mid K)$$

(b)
$$\chi_{\alpha} = f_{\alpha}^{m} \text{ für } m = [L:K(\alpha)]$$

Beweis.

(a) Die Abbildung

$$\mu \colon \begin{cases} L \to \operatorname{End}_K(L) \\ \beta \mapsto \mu_{\beta} \end{cases} \tag{\star}$$

ist K-linearer Ringhomomorphismus: \checkmark

Sei $g := \text{MinPol}(\alpha \mid K)$. Dann

$$g(\mu_{\alpha}) \stackrel{(\star)}{=} \mu_{g(\alpha)} = 0 \in \operatorname{End}_{K}(L) \Longrightarrow f_{\alpha} \mid g$$

$$\mu_{f_{\alpha}(\alpha)} \stackrel{(\star)}{=} f_{\alpha}(\mu_{\alpha}) = 0 \in \operatorname{End}_{K}(L) \xrightarrow{\mu \text{ inj.}} f_{\alpha}(\alpha) = 0 \Longrightarrow g \mid f_{\alpha}$$

$$\Longrightarrow f_{\alpha} = g$$

(b) Charakteristisches Polynom und Minimalpolynom haben die gleichen irreduziblen Faktoren:

∠ LAAG VIII.7.6 oder direkt:

V n-dimensionaler K-VR, $\varphi \in \text{End}_K(V)$, \mathscr{B} Basis von $V \rightsquigarrow A = M_{\mathscr{B}}(f)$. $\chi_{\varphi} = \chi_A \in K[X]$ zerfällt in Linearfaktoren in $\bar{K}[X]$

 \implies lese $\chi_{\varphi}=\chi_A$ und $P_{\varphi}=P_A$ aus der Jordan-Normalform von A ab.

 $f_{\alpha} = \mathrm{MinPol}(\alpha \mid K)$ irreduzibel $\implies \chi_{\alpha} = f_{\alpha}^{m}$ für ein m und

$$\frac{\deg(f_{\alpha}) = \deg(\alpha \mid K) = [K(\alpha) : K]}{\deg(\chi_{\alpha}) = \dim_{K} L} \implies m = \frac{\deg(\chi_{\alpha})}{\deg(f_{\alpha})} = \frac{[L : K]}{[K(\alpha) : K]} = [L : K(\alpha)]$$

8. Norm und Spur Kapitel I: Körper

■ Beispiel 8.4

Sei $\mathbb{C} = \mathbb{R} + \mathbb{R}i$, $\alpha = x + yi \in \mathbb{C}$. $\Rightarrow \mu_{\alpha}$ bezüglich Basis $(1, i) = \mathcal{B}$ ist

$$M_{\mathcal{B}}(\mu_{\alpha}) = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

$$\Rightarrow N_{\mathbb{C}|\mathbb{R}}(\alpha) = \det\left(M_{\mathcal{B}}(\mu_{\alpha})\right) = x^{2} + y^{2} = |\alpha|^{2} = \alpha\bar{\alpha},$$

$$\operatorname{Sp}_{\mathbb{C}|\mathbb{R}}(\alpha) = \operatorname{Sp}\left(M_{\mathcal{B}}(\mu_{\alpha})\right) = 2\alpha = \alpha + \bar{\alpha}$$

$$\chi_{\alpha}(t) = \det(\mathbb{1} - A) = (t - x)^{2} + y^{2} = t^{2} - 2xt + x^{2} + y^{2} = t^{2} - 2\operatorname{Sp}_{\mathbb{C}|\mathbb{R}}(\alpha)t + N_{\mathbb{C}|\mathbb{R}}(\alpha)$$

$$= (t - \alpha)(x - \bar{\alpha}),$$

$$f_{\alpha}(t) = \begin{cases} t - \alpha, & \alpha \in \mathbb{R}, \\ (t - \alpha)(t - \bar{\alpha}), & \alpha \notin \mathbb{R} \end{cases}$$

Lemma 8.5

Seien n = [L : K] und $\alpha, \beta \in L, \lambda \in K$.

(a)
$$N_{L|K}(\alpha\beta) = N_{L|K}(\alpha) \cdot N_{L|K}(\beta)$$
,

(b)
$$\operatorname{Sp}_{L|K}(\lambda \alpha + \beta) = \lambda \operatorname{Sp}_{L|K}(\alpha) + \operatorname{Sp}_{L|K}(\beta),$$

(c)
$$N_{L|K}(\lambda) = \lambda^n$$
, $\operatorname{Sp}_{L|K}(\lambda) = n \cdot \lambda$,

(d) Ist
$$f_{\alpha} = X^r + a_{r-1}X^{r-1} + \dots + a_0 \text{ und } m = [L : K(\alpha)] = n/r$$
, so ist

$$N_{L|K}(\alpha) = (-1)^n a_0^m, \quad \text{Sp}_{L|K}(\alpha) = -ma_{r-1}$$

Beweis.

- (a), (b) klar: Multiplikativität der Determinante und Linearität der Spur
 - (c) $M_{\mathcal{B}}(\mu_{\lambda}) = \lambda \mathbb{1}$ für alle Basen \mathcal{B} von L.

(d)
$$\chi_{\alpha} = X^{n} + b_{n-1}X^{n-1} + \dots + b_{0}$$

 $\Rightarrow \det \mu_{\alpha} = (-1)^{n} \chi_{\alpha}(0) = (-1)^{n} b_{0}, \operatorname{Sp}_{\mu_{\alpha}} = -b_{n-1}$
 $\chi_{\alpha} = (f_{\alpha})^{m}$
 $\Rightarrow N_{L|K}(\alpha) = \det(\mu_{\alpha}) = (-1)^{n} a_{0}^{m}, \operatorname{Sp}_{L|K}(\alpha) = \operatorname{Sp} \mu_{\alpha} = -b_{n-1} = -m \cdot a_{n-1}$

▶ Bemerkung 8.6

(a) Ist α inseparabel über K, so ist $f_{\alpha}(X) = g(X^r)$ für ein $g \in K[X]$, und somit ist

$$\mathrm{Sp}_{L|K}(\alpha) = -m \cdot \underbrace{a_{r-1}}_{=0} = 0$$

8. Norm und Spur Kapitel I: Körper

(b) Ist $L \mid K(\alpha)$ inseparabel, so ist $m = p^d \cdot [L : K(\alpha)]_S$, somit ist ist

$$\operatorname{Sp}_{L|K}(\alpha) = \underbrace{m}_{=0} \cdot a_{r-1} = 0$$

(c) Aus (a) und (b) folgt:

$$L \mid K \text{ inseparabel} \quad \Leftrightarrow \quad \operatorname{Sp}_{L \mid K} = 0$$

Satz 8.7

Ist $\alpha \in L$, $n = [L : K] = q \cdot r$ und $r = [L : K]_S$ sowie $hom_K(L, \bar{K}) = \{\sigma_1, \dots, \sigma_r\}$, so gilt

$$N_{L|K}(\alpha) = \left(\prod_{r=1}^{n} \sigma_j(\alpha)\right)^q, \quad \operatorname{Sp}(\alpha) = q \sum_{i=1}^{r} \sigma_i(\alpha)$$

Beweis. Sei $n_1 = [K(\alpha) : K] = r_1q_1$ und $n_2 = [L : K(\alpha)] = r_2q_2$. Schreibe

$$f_{\alpha} = X^{r_1} + a_{n_1 - 1} X^{n_1 - 1} + \dots + a_0 = \prod_{i = 1}^{r_1} (X - \tau_i(\alpha))^{q_1} = g(X^{q_1}), \quad g(X) = \prod_{i = 1}^{r_1} (X - \tau_i^{q_1}(\alpha))^{q_1}$$

Jedes τ_i hat genau r_2 viele Fortsetzungen zu einem $\sigma_j \in \text{hom}_K(L \mid \bar{K})$ (Lemma 7.3), sodass

$$\left(\prod_{j=1}^{r} \sigma_{j}(\alpha)\right)^{q} = \left(\prod_{i=1}^{r_{1}} \tau_{i}(\alpha)^{r_{2}}\right)^{q} = \left((-1)^{r_{1}} a_{0}\right)^{r_{2}q_{2}} = (-1)^{n} a_{0}^{r_{2}} \stackrel{8.5}{=} N_{L|K}(\alpha),$$

$$q \sum_{i=1}^{r} \sigma_{j}(\alpha) = q r_{2} \sum_{i=1}^{r_{1}} \tau_{j}(\alpha) = -q_{2} r_{1} a_{n_{1}-1} = \operatorname{Sp}_{L|K}(\alpha)$$

Lemma 8.8

Seien $K \subseteq L \subseteq M$ Körper mit $M \mid K$ endlich und sei $\alpha \in M$. Dann ist

- $N_{M|K}(\alpha) = N_{L|K}(N_{M|L}(\alpha))$
- $\operatorname{Tr}_{M|K}(\alpha) = \operatorname{Tr}_{L|K} \left(\operatorname{Tr}_{M|L}(\alpha) \right)$

Beweis. Sei $[L:K] = q_1 \cdot r_1$, $[M:L] = q_2 \cdot r_2$; $\operatorname{Hom}(M, \bar{L}) = \{\sigma_1, \dots, \sigma_{r_2}\}$. Fixiere die Einbettung $L \subseteq \bar{K}$ und setze τ_i fort zu $\tilde{\tau}_i \in \operatorname{Aut}(\bar{K} \mid K)$ (Satz 4.11) Dann ist

$$\operatorname{Hom}_K(M, \bar{K}) = \{ \tilde{\tau}_i \circ \sigma_i \mid i = 1, \dots, r_1, \ j = 1, \dots, r_2 \},\$$

denn $\# \operatorname{Hom}(M, \bar{K}) = [M : K]_{S} = r_1 \cdot r_2$ und

$$\begin{split} &\tilde{\tau}_{i} \circ \sigma_{j} = \tilde{\tau}_{i'} \circ \sigma_{j'} \\ \Rightarrow \sigma_{j} = \left(\tilde{\tau}_{i}^{-1} \circ \tilde{\tau}_{i'}\right) \circ \sigma_{j'} \\ \Rightarrow \tilde{\tau}_{i}^{-1} \circ \tilde{\tau}_{i}|_{L} = \mathrm{id}_{L} \\ \Rightarrow \tau_{i} = \tau_{k'} \quad \Rightarrow i = i' \quad \Rightarrow \sigma_{j} = \sigma_{j'} \quad \Rightarrow j = j' \\ \Rightarrow N_{L|K} \left(N_{M|L}(\alpha)\right) \overset{8.7}{=} N_{L|K} \left(\prod_{j=1}^{r_{2}} \sigma_{i}(\alpha)\right)^{q_{2}} \overset{8.7}{=} \prod_{i=1}^{r_{1}} \tilde{\tau}_{i} \left(\prod_{j=1}^{r_{2}} \sigma_{j}(\alpha)\right)^{q_{1}q_{2}} = \left(\prod_{i,j} \left(\tilde{\tau}_{i} \circ \sigma_{j}\right)(\alpha)\right)^{q_{1}q_{2}} \overset{8.7}{=} N_{M|K}(\alpha) \end{split}$$

Analog für die Spur.

Theorem 8.9 (Unabhängigkeit der Charaktere, Artin)

Sei G eine Gruppe. Sind $\chi_1, \ldots, \chi_n \in \text{Hom}(G, K^{\times})$ paarweise verschieden, so sind sie linear unabhängig im K-Vektorraum Abb(G, K).

Beweis. Seien χ_1, \ldots, χ_n linear abhängig, oE $n \ge 2$ minimal, d.h.

$$\sum_{i=1}^{n} a_i \chi_i = 0 \quad \text{mit } a_1, \dots, a_n \in K^{\times}.$$

Sind $\chi_1 \neq \chi_n \implies \exists g \in G \text{ mit } \chi_1(g) \neq \chi_n(g)$. Ist die Summe $\sum a_i \chi_i = 0$, so folgt, dass $\forall h \in G \text{ ist } \sum_{i=1}^n a_i \chi_i(h) = 0$ und

$$\Rightarrow \forall h \in G: \begin{cases} \sum_{i=1}^{n} a_i \cdot \underbrace{\chi_i(hg)}_{\chi_i(h) \cdot \chi_i(g)} = 0 \\ \sum_{i=1}^{n} a_i \cdot \chi_i(h) \cdot \chi_i(g) = 0 \end{cases}$$
$$\Rightarrow 0 = \sum_{i=1}^{n} a_i \cdot \chi_i(h) \left(\chi_i(g) - \chi_n(g) \right) = \sum_{i=1}^{n-1} a_i \left(\chi_i(g) - \chi_n(g) \right) \cdot \chi_i(h)$$
$$\Rightarrow \sum_{i=1}^{n-1} a_i \cdot \left(\chi_i(g) - \chi_n(g) \right) \cdot \chi_i = 0$$

 $a_n(\chi_1(g) - \chi_n(g)) \neq 0$, was ist ein Widerspruch zur Minimalität von n.

Folgerung 8.10

Genau dann ist $\operatorname{Tr}_{L|K} \neq 0$, wenn $L \mid K$ separabel.

Beweis.

- (\Rightarrow) Bemerkung 8.6
- (⇐) Sei $\operatorname{Hom}_K(L, \bar{K}) = \{\sigma_1, \dots, \sigma_n\}. \ \sigma_i|_{L^{\times}} \in \operatorname{Hom}_K(L^{\times}, K^{\times})$ $\stackrel{8.7}{\Longrightarrow} \sigma_1, \dots, \sigma_n \text{ sind } \bar{K}\text{-linear unabhängig. Insbesondere ist } \operatorname{Tr}_{L|K} = \sum_{i=1}^n \sigma_i \neq 0.$

9. Einfache Erweiterung

Sei K unendlich, $L \mid K$ endliche Erweiterung.

▶ Bemerkung 9.1

 $L \mid K$ einfach $\iff L = K(\alpha)$ für ein $\alpha \in L$. Ein solches α heißt ein primitives Element von $L \mid K$.

Satz 9.2

 $L \mid K$ einfach \Leftrightarrow Die Menge der Zwischenkörper von $\mathcal{M} = \{M \mid K \subseteq M \subseteq L\}$ ist endlich.

Beweis.

(⇒) Sei $L = K(\alpha)$, $f = \text{MinPol}(\alpha \mid K)$. Für $M \in \mathcal{M}$ setze

$$g := \operatorname{MinPol}(\alpha \mid M) = \sum_{i=0}^{n} a_i X^i,$$

$$M_0 := K(a_0, \dots, a_n).$$

Dann gilt $g \mid f$ in L[X], es gibt also nur endlich viele solche g. Da $K \subseteq M_0 \subseteq M \subseteq L$ und

$$[L:M_0] = [M(\alpha):M_0] = \deg(g) = [M(\alpha):M] = [L:M]$$

ist $M = M_0$ durch g bestimmt.

(\Leftarrow) Sei $L = K(\alpha_1, \dots, \alpha_r)$. Es genügt, die Behauptung für r = 2 zu zeigen. Sei also $L = K(\alpha, \beta)$, oE $\beta \neq 0$. Da $|K| = \infty$ ist $|\{\alpha + c\beta \mid c \in K\}| = \infty$. Ist $|\mathcal{M}| < \infty$, so existiert somit $c, c' \in K$ mit $c \neq c'$ und $K(\alpha + c\beta) = K(\alpha + c'\beta) =: M \in \mathcal{M}$

$$\implies M \ni (\alpha + c\beta) \cdot (\alpha + c'\beta) = \underbrace{(c - c')\beta}_{\in K^{\times}}$$

$$\implies \beta \in M \implies \alpha \in M$$

$$\implies L = K(\alpha, \beta) \subseteq M \subseteq L$$

$$\implies L = M = K(\alpha + c\beta).$$

▶ Bemerkung 9.3

- (a) Insbesondere gilt: $K\subseteq M\subseteq L,\,L\mid K$ endlich und einfach
 - $\implies M \mid K$ endlich und einfach
- (b) Dies gilt auch für transzendente einfache Erweiterungen. $K \subseteq M \subseteq L = K(X) \implies M = K(f)$ für ein $f \in K(X)$. (\nearrow Satz von LÜROTH)

Theorem 9.4 (Satz vom primitiven Element, Abel)

Sei $L = K(\alpha_1, ..., \alpha_r)$ eine endliche Erweiterung von K. Ist höchstens eines der α_i inseparabel über K, so ist die $L \mid K$ einfach.

Beweis. Es genügt, den Fall r=2 zu betrachten (Satz 7.6). Sei also $L=K(\alpha,\beta)$ und β sei separabel über K. Seien

$$\alpha = \alpha_1, \dots, \alpha_n, \ \beta = \beta_1, \dots, \beta_l$$

die zu α bzw. β K-Konjugierten. Da $|K|=\infty$ existiert ein $c\in K$ mit

$$c \neq \frac{\alpha_i - \alpha}{\beta - \beta_j}, \quad i = 1, \dots, n, \ j = 2, \dots, l$$

Sei $\gamma := \alpha + c\beta$ und $f = \text{MinPol}(\alpha \mid K)$ sowie $g := \text{MinPol}(\beta \mid K)$.

Behauptung: g(X) und $f(\gamma - cX)$ haben genau eine gemeinsame Nullstelle β .

Beweis.

•
$$g(\beta) = 0$$
, $f(\gamma - c\beta 9 = f(\alpha) = 0)$

•
$$f(\gamma - c\beta_j) = 0$$

 $\Rightarrow \exists i: \ \alpha + c(\beta - \beta_j) = \alpha_i$
 $\Rightarrow c = \frac{\alpha_i - \alpha}{\beta - \beta_j}$
 $\Rightarrow \text{ Entweder ein Widerspruch oder } j = 1$

Sei $h := \text{MinPol}(\beta \mid K(\gamma))$. Dann gilt $h \mid g, h \mid f(\gamma - cX)$

 $\stackrel{\mathrm{Beh.}}{\Longrightarrow}$ h hat nur eine Nullstelle in \bar{K}

 $\xrightarrow{\beta \text{ sep.}} g \text{ separabel}$

$$\Rightarrow \deg(h) = 1$$

$$\Rightarrow \beta \in K(\gamma) \Rightarrow \alpha \in K(\gamma)$$

$$\Rightarrow L = K(\alpha, \beta) = K(\gamma)$$

Folgerung 9.5

Jede endliche separable Erweiterung von K ist einfach und besitzt nur endliche viele Zwischenkörper. Dies gilt insbesondere für jede endliche Erweiterung in Charakteristik 0.

Beweis. Folgt aus Satz 9.2, Theorem 9.4 und Satz 6.15.

■ Beispiel 9.6

 $\mathbb{Q}(\sqrt{2},\sqrt{3})\mid \mathbb{Q}$ besitzt ein primitives Element, z.B. $\sqrt{2}+\sqrt{3}$ (\nearrow Übung 21). Tatsächlich ist $\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2}+c\sqrt{3})$ für jedes $c\in\mathbb{Q}^{\times}$.

K-Konjugierte zu
$$\sqrt{2}$$
: $\pm \sqrt{2}$
 $\sqrt{3}$: $\pm \sqrt{3}$

Folglich ist

$$\left\{ \frac{\alpha_i - \alpha}{\beta - \beta_j} \mid i = 1, 2, \ j = 2 \right\} = \left\{ 0, \frac{-2\sqrt{3}}{2\sqrt{3}} \right\}$$

die Menge der nicht-zugelassenen Proportionalitätsfaktoren und $\alpha+c\beta$ ist primitives Element für alle $c\in\mathbb{Q}\setminus\{0,-\sqrt{2}/\sqrt{3}\}=\mathbb{Q}^{\times}$

■ Beispiel 9.7

Sei $L = \mathbb{F}_p(t,s) = \text{Quot}(\mathbb{F}_p[t,s]), K = L^p$. Dann ist $[L:K] = p^2 \ (\nearrow \text{P41})$ aber $L \mid K$ ist <u>nicht</u> einfach und besitzt unendliche viele Zwischenkörper. (Nach Satz 9.2) $(\nearrow \text{Übung})$

▶ Bemerkung 9.8

Das Theorem 9.4 gilt auch für K endlich, siehe II.3.

Kapitel II

Galoistheorie

1. Normale Körpererweiterungen

Sei K Körper, \bar{K} ein fixierter algebraischer Abschluss von K und L ein Zwischenkörper $K \subseteq L \subseteq \bar{K}$.

Definition 1.1

 $L \mid K$ ist Normal : \Leftrightarrow Ist $\alpha \in L$ und $\beta \in \overline{K}$ K-konjugiert, so ist $\beta \in L$.

Satz 1.2

Ist $L \mid K$ endlich, so sind äquivalent

- (a) $L \mid K$ ist normal
- (b) Jedes irreduzible $f \in K[X]$, das eine Nullstelle in L hat, zerfällt über L in Linearfaktoren
- (c) L ist der Zerfällungskörper von $f \in K[X]$
- (d) Für jedes $\sigma \in \operatorname{Aut}(\bar{K} \mid K)$ ist $\sigma(L) = L$
- (e) Jedes $\sigma \in \operatorname{Aut}(\bar{K} \mid K)$ ist $\sigma(L) \subseteq L$

Beweis.

- $(1) \Rightarrow (2)$ klar nach Folgerung I.4.14
- $(2) \Rightarrow (3)$ Sei $L = K(\alpha_1, \dots, \alpha_n)$. Mit

$$f = \prod_{i=1}^{n} \operatorname{MinPol}(\alpha_i \mid K)$$

ist L der Zerfällungskörper von f.

 $(3) \Rightarrow (4)$ Ist fder Zerfällungskörper von

$$f = \prod_{i=1}^{n} (X - X_i),$$

und $\sigma \in \operatorname{Aut}(\bar{K} \mid K)$, so permutiert σ die Nullstellen $\{\alpha_1, \dots, \alpha_n\}$ von f, folglich

$$\sigma(L) = \sigma(K(\alpha_1, \dots, \alpha_n)) = K(\sigma(\alpha_1), \dots, \sigma(\alpha_n)) = K(\alpha_1, \dots, \alpha_n) = L.$$

 $(4) \Rightarrow (5)$ trivial

 $(5) \Rightarrow (1)$ trivial

■ Beispiel 1.3

- a) $K \mid K$ ist normal
- b) $\bar{K} \mid K$ ist normal

- c) $\bar{K}_{\rm S} \mid K$ ist normal (Folgerung I.7.7)
- d) $[L:K] = 2 \Rightarrow L \mid K \text{ ist normal}$

 $(\deg(f) = 2, f \text{ hat Nullstelle} \Rightarrow f \text{ zerfällt in Linearfaktoren})$

- e) $L = \mathbb{Q}(\sqrt[3]{2})$, $[L:\mathbb{Q}] = 3$ $L \mid Q$ ist nicht normal, die zu $\sqrt[3]{2}$ \mathbb{Q} -konjugierte Elemente $\zeta_3\sqrt[3]{2}$ und $\zeta_3^2\sqrt[3]{2}$ liegen nicht in L (Beispiel I.3.11 (b))
- f) $Sei\alpha = \sqrt[4]{2} \in \mathbb{R}_{\geq 0}$ und $f = \text{MinPol}(\alpha \mid \mathbb{Q}) = X^4 2$. Dann sind die \mathbb{Q} -konjugierten $\pm \sqrt[4]{2}$ und $i\sqrt[4]{2}$. Da $i\sqrt[4]{2} \notin \mathbb{R}$ ist $\mathbb{Q}(\alpha) \mid \mathbb{Q}$ nicht normal und

$$\mathbb{Q}(\sqrt[4]{2}) \xrightarrow[\text{normal}]{2} \mathbb{Q}(\sqrt{2}) \xrightarrow[\text{normal}]{2} \mathbb{Q},$$

also ist Normalität nicht transitiv.

Folgerung 1.4

Sei $L \mid K$ endlich und seien $K \subseteq L_1, L_2 \subseteq L$ Zwischenkörper. Dann

- (a) Sind $L_1 \mid K$ und $L_2 \mid K$ normal, so auch $L_1 \cap L_2 \mid K$ und $L_1L_2 \mid K$
- (b) Ist $L \mid K$ normal, so auch $L \mid L_1$

Beweis.

- a) $L1 \cap L_2$: klar aus Definition
 - L_1L_2 : Sei $\sigma \in \operatorname{Aut}(\bar{K} \mid K) \Rightarrow \sigma(L_1L_2) = \sigma(L_1)\sigma(L_2) = L_1L_2$
- b) klar, da $\operatorname{Aut}(\bar{L}_1 \mid L_1) \subseteq \operatorname{Aut}(\bar{K} \mid K)$

Satz 1.5

Sei $L \mid K$ endlich. Es ist

$$\# \operatorname{Aut}(L \mid K) \leq [L : K]_{S}$$

mit Gleichheit, wenn die Erweiterung normal ist.

Beweis. Es ist

$$\operatorname{Aut}(L \mid K) = \operatorname{Hom}_K(L, L) = \left\{ \sigma \in \operatorname{Hom}_K(L, \bar{K}) \mid \sigma(L) \subseteq L \right\} \subseteq \operatorname{Hom}_K(L, \bar{K}),$$

sodass $\# \operatorname{Aut}(L \mid K) \leq \# \operatorname{Hom}_K(L, \bar{K}) = [L : K]_S$.

Es gilt: $\operatorname{Aut}(L \mid K) = \operatorname{Hom}_K(L \mid \bar{K})$

$$\Leftrightarrow \forall \sigma \in \operatorname{Hom}_K(L \mid \bar{K}) : \sigma(L) \subseteq L$$

$$\stackrel{\text{I.4.11}}{\Longleftrightarrow} \ \forall \sigma \in \operatorname{Aut}(\bar{K} \mid K) \colon \sigma(L) \subseteq L$$

 $\stackrel{1.2}{\Leftrightarrow} L \mid K \text{ normal.}$

▶ Bemerkung 1.6

Es ist also

$$\operatorname{Aut}(L \mid K) \stackrel{\text{\scriptsize (1)}}{\leq} [L : K]_{S} \stackrel{\text{\scriptsize (2)}}{\leq} [L : K],$$

wobei gilt:

- (1) ist Gleichheit : $\stackrel{1.5}{\Longleftrightarrow} L \mid K$ normal
- (2) ist Gleichheit : $\stackrel{\text{I.7.6}}{\Longleftrightarrow} L \mid K$ separabel

Definition 1.7

 $L \mid K$ ist galoissch (oder Galoiserweiterung) $\Leftrightarrow L \mid K$ ist normal und separabel

Satz 1.8

Ist $L \mid K$ endlich, so sind äquivalent

- (1) $L \mid K$ ist galoissch
- (2) Jedes $\alpha \in L$ hat $\deg(\alpha \mid L)$ viele K-konjugierte in L
- (3) L ist Zerfällungskörper eines irreduziblen, separablen Polynoms $f \in K[X]$
- (4) L ist Zerfällungskörper eines separablen Polynoms $f \in K[X]$
- (5) $\# \operatorname{Aut}(L \mid K) = [L : K]$

Beweis.

- $(1) \Leftrightarrow (5)$ Bemerkung 1.6
- $\begin{array}{ll} \text{(1)} \Leftrightarrow \text{(2)} \ L \mid K \text{ separabel} \Leftrightarrow \text{jdes } \alpha \in L \text{ hat } \deg(\alpha \mid K) \text{ viele } K\text{-konjugierte in } \bar{K}. \\ L \mid K \text{ normal} \Leftrightarrow \text{alle } K\text{-konjugierte von } \alpha \in L \text{ liegen in } L. \end{array}$
- (1) \Rightarrow (3) $L \mid K$ separabel $\stackrel{\text{I.9.4}}{\Longrightarrow} L = K(\alpha)$ einfach. $L \mid K$ normal $\Rightarrow L$ ist Zerfällungskörper von MinPol $(\alpha \mid K)$
- $(3) \Rightarrow (4)$ trivial
- $(4) \Rightarrow (1)$ Satz 1.2 und Satz I.7.6

Folgerung 1.9

Sei $L \mid K$ endlich und seien $K \subseteq L_1, L_2 \subseteq L$ Zwischenkörper.

- (a) Sind $L_1 \mid K$ und $L_2 \mid K$ galoissch, so auch $L_1 \cap L_2 \mid K$ und $L_1L_2 \mid K$
- (b) Ist $L \mid K$ galoissch, so auch $L \mid L_1$

Beweis. Folgerung 1.4, Folgerung I.7.8 und Folgerung I.7.9.

Definition 1.10

Ist $L \mid K$ galoissch, so heißt

$$Aut(L \mid K) = Gal(L \mid K)$$

die Galoisgruppe von $L \mid K$.

▶ Bemerkung 1.11

Ist $L \mid K$ endlich und galoissch, so gilt nach Satz 1.8

$$\#\operatorname{Gal}(L\mid K) = [L:K].$$

Definition 1.12

Sei $G \leq \operatorname{Aut}(L \mid K)$ Untergruppe. Dann ist

$$L^{\mathbf{G}} := \left\{ \alpha \in L \mid \forall \sigma \in G \colon \alpha^{\sigma} = \alpha \right\}$$

der Fixkörper von G.

▶ Bemerkung 1.13

 $L^{\mathbf{G}}$ ist ein Teilkörper von L.

Satz 1.14 (Artin)

Sei $G \leq \operatorname{Aut}(L)$ endlich, so ist $L \mid L^{G}$ galoissch und $\operatorname{Gal}(L \mid L^{G}) = G$.

Beweis. Sei $\alpha \in K = L^{G}$. Dann ist

$$G_{\alpha} = \left\{ \sigma \in G \mid \alpha^{\sigma} = \alpha \right\} \le G$$

und die G_{α} partitionieren G:

$$G = \bigcup_{i=1}^{m} G_{\alpha} \sigma_{i},$$

wobei $m = [G : G_{\alpha}]$ und σ_i ein Repräsentantensystem ist.

Betrachte

$$f(X) = \prod_{i=1}^{m} (X - \alpha^{\sigma_i}) \in L[X].$$

Dannn gilt

- f ist unabhängig von der Wahl der σ_i ,
- $f(\alpha) = 0$,
- f ist separabel, da $\alpha^{\sigma_i} = \alpha^{\sigma_j} \Rightarrow G_{\alpha}\sigma_i = G_{\alpha}\sigma_j \Rightarrow i = j$,
- $f \in K[X]$, da

$$\forall \tau \in G \colon \ G = G_{\tau} = \bigcup_{i=1}^{m} G_{\alpha} \sigma_{i}^{\tau}$$

und

$$f^{\tau}(X) = \prod_{i=1}^{m} (X - \alpha^{\sigma_i \tau}) = f(X).$$

 $L \mid L^{\mathrm{G}}$ ist also nach Definition I.7.2 separabel.

Für jedes $\alpha \in L$ gilt, dass $deg(\alpha \mid K) \leq \#G$ und

$$[L:K] \stackrel{\text{I.9.4}}{\leq} \#G \leq \#\operatorname{Aut}(L \mid K) \stackrel{\text{1.6}}{\leq} [L:K].$$

Daher: $G = Aut(L \mid K)$ und aus

$$\#\operatorname{Aut}(L\mid K) = [L:K]$$

folgt, dass die Erweiterung $L \mid K$ galoissch ist.

Folgerung 1.15

Sei $L \mid K$ endlich. Es gilt

$$L \mid K \text{ galoisch} \quad \Leftrightarrow \quad L^{\text{Aut}(L\mid K)} = K$$

Beweis.

 (\Rightarrow) $L \mid K$ galoissch

$$\overset{1.8}{\Longrightarrow} \operatorname{Aut}(L \mid K) = [L : K]$$

$$K \subset L^{\operatorname{Aut}(L \mid K)} \subset L$$

$$\Rightarrow [L : L^{\operatorname{Aut}(L \mid K)}] \overset{1.14}{=} \# \operatorname{Aut}(L \mid K)$$

$$\Rightarrow K = L^{\operatorname{Aut}(L \mid K)}$$

 (\Leftarrow) $L \mid K$ endlich

$$\stackrel{1.5}{\Longrightarrow}$$
 Aut $(L \mid K)$ endlich

$$\stackrel{1.14}{\Longrightarrow} L \mid L^{\text{Aut}(L|K)} = K \text{ ist galoissch}$$

Lemma 1.16

Sind $K \subset L \subset M \subset \overline{K}$ Körper mit $L \mid K$ und $M \mid K$ normal, dann ist

$$\operatorname{res}_{M|L} \colon \begin{cases} \operatorname{Aut}(M \mid K) \to \operatorname{Aut}(L \mid K) \\ \sigma & \mapsto & \sigma|_{L} \end{cases}$$

ein Epimorphismus.

Beweis. Nach Satz I.4.11 sind $\mathrm{res}_{\bar{K}|M}$ und $\mathrm{res}_{\bar{K}|L}$ surjektiv. Dann

- $\sigma|_L \in \operatorname{Aut}(L \mid K)$: Schreibe $\sigma = \operatorname{res}_{\bar{K} \mid M}(\tilde{\sigma})$. Es gilt wegen Satz 1.2 (d): $\sigma(L) = \tilde{\sigma}(L) = L$.
- $\mathrm{res}_{M|L}$ ist Homomorphismus: klar
- $\operatorname{res}_{M|L}$ ist surjektiv: $\operatorname{res}_{\bar{K}|L} = \operatorname{res}_{M|L} \circ \operatorname{res}_{\bar{K}|M}$. Als zweiter Teil einer surjektiven Verkettung ist dieser selbst surjektiv.

2. Der Hauptsatz der Galoistheorie

 $L \mid K$ ist endliche Galoiserweiterung mit $G = Gal(L \mid K)$.

Definition 2.1

Es sind

- $\operatorname{Zwk}(L \mid K) = \{F \mid K \subset F \subset L, F \operatorname{Zwischenk\"{o}rper} \}$ die Menge der Zwischenk\"{o}rper und
- $Ugr(G) = \{H \mid H \leq G\}$ die Menge der Untergruppen.

Theorem 2.2 (Galoiskorrespondenz)

Es sind

$$\begin{cases} \operatorname{Zwk}(L \mid K) \to & \operatorname{Ugr}(G) \\ F & \mapsto F^{\circ} := \operatorname{Gal}(L \mid F) \end{cases} \qquad \begin{cases} \operatorname{Ugr}(G) \to \operatorname{Zwk}(L \mid K) \\ H & \mapsto H^{\circ} := L^{H} \end{cases}$$

zueinander inverse Bijektionen. Weiterhin gilt für F, F_1 , $F_2 \in \text{Zwk}(L \mid K)$ mit $H = F^{\circ}$, $H_1 = F_1^{\circ}$ und $H_2 = F_2^{\circ}$

i) die Bijketion ist antiton

$$F_1 \subset F_2 \quad \Leftrightarrow \quad H_1 \supset H_2$$

ii) die Bijektion ist indextreu, d.h.

$$[F_2:F_1]=(H_1:H_2), \text{ wenn } F_1\subset F_2$$

iii) die Bijektion vertauscht Erzeugnis und Durchschnitt

$$(F_1 \cap F_2)^{\circ} = \langle H_1, H_2 \rangle$$
 und $(F_1 F_2)^{\circ} = H_1 \cap H_2$

iv) die Bijektion ist mit Konjugation verträglich: $\forall \sigma \in G$

$$(F^{\sigma})^{\circ} = (F^{\circ})^{\sigma}$$

v) die Bijektion erhält Normalität:

$$F \mid K \text{ normal} \iff H \subseteq G$$

In disem Fall gilt:

$$Gal(F \mid K) \cong G/H = Gal(L \mid K)/Gal(L \mid F)$$

Beweis.

• $F \in \text{Zwk}(L \mid K) \stackrel{1.9}{\Longrightarrow} F \text{ galoissch} \stackrel{1.15}{\Longrightarrow} (F^{\circ})^{\circ} = L^{F^{\circ}} = F$

- $H \in \mathrm{Ugr}(G) \stackrel{1.14}{\Longrightarrow} L \mid H^{\circ}$ galoissch mit $(H^{\circ})^{\circ} = \mathrm{Gal}(L \mid H^{\circ}) = H$
- i) (<
=) klar, da $F_1=H_1^\circ,\,F_2=H_2^\circ$
 - (⇒) klarer
- ii) $L \mid F_i$ ist galoissch, daher folgt aus Bemerkung 1.11 $[L:F_i] = \#H_i$ für i=1,2 und

$$[F_2:F_1] = \frac{[L:F_1]}{[L:F_2]} = \frac{\#H_1}{\#H_2} = (H_1:H_2)$$

- iii) $F_1 \cap F_2 \subset F_1 F_2 \Rightarrow (F_1 \cap F_2)^{\circ} \stackrel{\text{i}}{\supset} \langle H_1, H_2 \rangle,$ $H_1, H_2 \subset \langle H_1, H_2 \rangle \Rightarrow F_1 \cap F_2 \supset (\langle H_1, H_2 \rangle)^{\circ} \Rightarrow (F_1 \cap F_2)^{\circ} \subset ((\langle H_1, H_2 \rangle)^{\circ})^{\circ} = \langle H_1, H_2 \rangle$
 - $F_1, F_2 \subset F_1F_2 \Rightarrow H_1 \cap H_2 \supset (F_1F_2)^{\circ}$ $H_1 \cap H_2 \subset H_1, H_2 \Rightarrow (H_1 \cap H_2)^{\circ} \supset F_1F_2 \Rightarrow (F_1F_2)^{\circ} \supset ((H_1 \cap H_2)^{\circ})^{\circ} = H_1 \cap H_2$
- iv) $(F^{\sigma})^{\circ} = \{ \tau \in G \mid \tau|_{F^{\sigma}} = id \} = \{ \tau \in G \mid \tau(x) = x \ \forall x \in F^{\sigma} \} = \{ \tau \in G \mid \tau(x^{\sigma}) = x^{\sigma} \ \forall x \in F \} = \{ \tau \in G \mid \tau^{\sigma^{-1}} \in F^{\circ} \} = (F^{\circ})^{\sigma}$
- v) $F \mid K$ normal

$$\stackrel{1.2}{\iff} F^{\sigma} = F \ \forall \sigma \in \operatorname{Aut}(\bar{K} \mid K)$$

$$\stackrel{\text{1.16}}{\iff} F^{\sigma} = F \ \forall \sigma \in G$$

$$\stackrel{\text{iv})}{\iff} H^{\sigma} = H \ \forall \sigma \in G$$

$$\Leftrightarrow \ H \unlhd G$$

Sei $F \mid K$ normal. Nach Lemma 1.16 gilt

res:
$$\begin{cases} \operatorname{Gal}(L \mid K) \to \operatorname{Gal}(F \mid K) \\ \sigma & \mapsto \sigma|_F \end{cases}$$

ist ein Epimorphismus.

$$\Rightarrow \operatorname{Gal}(F \mid K) \cong \mathfrak{Im}(\operatorname{res}) \cong \operatorname{Gal}(L \mid K) / \ker(\operatorname{res}) \cong \operatorname{Gal}(L \mid K) / \operatorname{Gal}(L \mid F) = G/H$$

■ Beispiel 2.3

Betrachte $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \mid \mathbb{Q}$:

mit den Automorphismen

$$\sigma_1: \quad \sqrt{2} \quad \rightarrow \quad \sqrt{2} \quad , \quad \sigma_2: \quad \sqrt{2} \quad \rightarrow \quad \sqrt{2} \quad , \quad \sigma_3: \quad \sqrt{2} \quad \rightarrow \quad -\sqrt{2} \quad , \quad \sigma_4: \quad \sqrt{2} \quad \rightarrow \quad -\sqrt{2} \quad .$$

$$\sqrt{3} \quad \rightarrow \quad \sqrt{3} \quad \rightarrow \quad \sqrt{3} \quad \rightarrow \quad -\sqrt{3} \quad \qquad \sqrt{3} \quad \rightarrow \quad \sqrt{3} \quad \rightarrow \quad -\sqrt{3}$$

▶ Bemerkung 2.4

- (a) Die Bijektivität in Theorem 2.2 lässt sich mit i) und iii) auch so ausdrücken: Das Bilden von Fixkörpern ist ein Verbandisomorphismus zwischen Ugr(G) und $Zwk(L \mid K)$.
- (b) Die Bijektivität gilt nicht für unendliche Galoiserweiterungen (siehe Übung)
- (c) Mit Theorem 2.2 erhalten wir einen neuen Beweis der Aussage

$$L \mid K$$
 endlich galoissch \Leftrightarrow Zwk $(L \mid K)$ endlich,

was schon aus Satz I.9.2 folgt.

Satz 2.5

Sei $f \in K[X]$ separabel mit Nullstellen $\alpha_1, \ldots, \alpha_n \in \bar{K}$ und sei $L = K(\alpha_1, \ldots, \alpha_n)$ der Zerfällungskörper von f. Dann wirkt $G = \operatorname{Gal}(L \mid K)$ treu auf $X := \{\alpha_1, \ldots, \alpha_n\}$; der Homomorphismus

$$G \to \operatorname{Sym}(X) \cong S_n$$

ist also eine Einbettung. Die Wirkung von G auf X ist genau dann transitiv, wenn f irreduzibel ist.

Beweis. Sei $\sigma \in G$.

- treu: $\alpha_i^{\sigma} = \alpha_i \ \forall i \Rightarrow \sigma = \mathrm{id}$, denn $L = K(\alpha_1, \ldots, \alpha_n)$ und $\sigma|_K = \mathrm{id}_K$.
- Einbettung: GEO I.6.8

• transitiv
$$\Leftrightarrow \forall i, j: \exists \sigma \in G: \sigma(\alpha_i) = \alpha_j$$

$$\Leftrightarrow \forall i, j: \exists \sigma \in \operatorname{Aut}(\bar{K} \mid K): \sigma(\alpha_i) = \alpha_j$$

$$\Leftrightarrow \alpha_1, \dots, \alpha_n \text{ sind paarweise } k\text{-konjugiert}$$

$$\Leftrightarrow f = c \cdot \operatorname{MinPol}(\alpha_1 \mid K), c \in K^{\times}$$

$$\Leftrightarrow f \text{ irreduzibel}$$

Definition 2.6

In der Situation von Satz 2.5 heißt

$$\operatorname{Gal}(f \mid K) := \operatorname{Im}(G \to \operatorname{Sym}(\alpha_1, \dots, \alpha_n))$$

die Galoisgruppe von f. Man nennt f galoissch, wenn f irreduzibel ist und ein Wurzelkörper von f schon ein Zerfällungskörper von f ist.

▶ Bemerkung 2.7

(a) Ist L ein Zerfällungskörper von $f = \prod_{i=1}^{n} (X - \alpha_i) \in K[X]$, so gilt also

$$\operatorname{Gal}(L \mid K) \cong \operatorname{Gal}(f \mid K) \leq \operatorname{Sym}(\{\alpha_1, \dots, \alpha_n\}) \cong S_n.$$

(b) Genau dann ist f galoissch, wenn $G := \operatorname{Gal}(f \mid K) \leq S_n$ transitiv und #G = n.

■ Beispiel 2.8

Sei $f=X^3-2\in \mathbb{Q}[X].$ Die Nullstellen von f sind

$$\alpha_1 = \sqrt[3]{2}$$
,

$$\alpha_2 = \sqrt[3]{2}\zeta_3,$$

$$\alpha_3 = \sqrt[3]{2}\zeta_3^2.$$

Der Zerfällungskörper ist $L := \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) = \mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$. Weiterhin ist

$$G = \operatorname{Gal}(f \mid \mathbb{Q}) \leq S_3; \quad \#G = [L:K] = 6 \quad \Rightarrow \quad \operatorname{Gal}(L \mid K) \cong \operatorname{Gal}(f \mid K) = S_3 = \langle (1\,2\,3), (2\,3) \rangle$$

Sei
$$\sigma \in G \iff (1\ 2\ 3)$$
, also $(\sqrt[3]{2})^{\sigma} = \zeta_3\sqrt[3]{2}$, $(\zeta_3\sqrt[3]{2})^{\sigma} = \zeta_3^2\sqrt[3]{2}$, $(\zeta_3^2\sqrt[3]{2})^{\sigma} = \sqrt[3]{2}$, $\zeta_3^{\sigma} = (\frac{\alpha_2}{\alpha_1})^{\sigma} = \zeta_3$.

$$G\ni\tau \leftrightsquigarrow (2\,3), \text{ also } (\sqrt[3]{2})^{\tau} = \sqrt[3]{2}, (\zeta_3\sqrt[3]{2})^{\tau} = \zeta_3^2\sqrt[3]{2}, (\zeta_3^2\sqrt[3]{2})^{\tau} = \zeta_3\sqrt[3]{2}, \zeta_3^{\tau} = (\tfrac{\alpha_2}{\alpha_1})^{\tau} = \zeta_3^2 = \zeta_3^{-1} = \bar{\zeta}_3.$$

3. Endliche Körper

Sei K ein endlicher Körper mit $\operatorname{char}(K) = p$ und Primkörper \mathbb{F}_p .

▶ Bemerkung 3.1

 $K\mid \mathbb{F}_p$ ist endlich, insbesondere algebraisch, also o.E. $K\subset \bar{\mathbb{F}_p}.$

Lemma 3.2

- (a) $\#K = p^n$ für ein $n \in \mathbb{N}$.
- (b) K ist vollkommen.
- (c) $K^{\times} \cong C_{p^n-1}$
- (d) K ist Zerfällungskörper von $X^{p^n} X = \prod_{\alpha \in K} (X_{\alpha})$ über \mathbb{F}_p .

Beweis.

- (1) $K \cong \mathbb{F}_p^{[K:\overline{\mathbb{F}_p}]}$ als \mathbb{F}_p -Vektorraum
- (2) Beispiel I.6.16
- (3) GEO I.4.13.
- $(4) \ \alpha^{p^n-1} = 1 \ \forall \alpha \in K^{\times}$
 - \Rightarrow jedes $\alpha \in K$ ist Nullstelle von $X(X^{p^n-1}-1)=X^{p^n}-X$
 - $\Rightarrow \ X^{p^n} X = \prod_{\alpha \in K} (X \alpha)$ zerfällt über K in Linearfaktoren.

Satz 3.3

Zu jeder Primpotenz $q=p^n$ gibt es bis auf Isomorphie genau einen Körper mit #K=q. Ein gegebener Körper E besitzt höchstens einen Teilkörper mit #K=q.

Beweis.

- Eindeutigkeit: Lemma 3.2 (d) + Satz I.3.13 + Bemerkung I.3.14
- Existenz: $f = X^q X \in \mathbb{F}_p[X]$
 - $-f'=-1 \Rightarrow f$ separabel $\Rightarrow f$ hat genau q viele Nullstellen in $\bar{\mathbb{F}}_p$
 - Die Nullstellen von fbilden einen Körper: Für $\alpha \in \bar{\mathbb{F}_p}$ gilt:

$$f(\alpha) = 0 \quad \Leftrightarrow \quad \alpha^{p^n} = \alpha \quad \Leftrightarrow \quad \Phi_p(\alpha) = \alpha \quad \Leftrightarrow \quad \alpha \in \bar{\mathbb{F}}_p^{\langle \Phi_p^n \rangle}$$

Definition 3.4

Man bezeichnet den eindeutig bestimmten Körper $K \subseteq \bar{\mathbb{F}_p}$ mit $q = p^n$ Elementen mit \mathbb{F}_q .

Index

A	P
algebraisch, 6, 8	primitives Element, 33
algebraisch abhängig, 18	Primkörper, 3
algebraischen Abschluss, 16	
algebraischer Abschluss, 14	R
Automorphismengruppe, 16	rein separabel, 27
\mathbf{C}	rein transzendent, 18
Charakteristik, 3	relative algebraische Abschluss, 9
Characteristik, o	g
${f E}$	S
einfach, 5, 21	separabel, 21, 25
endlich erzeugt, 5	Separabilitätsgrad, 25
\mathbf{F}	T
Fixkörper, 38	Teilkörper, 5
formale Ableitung, 21	transzendent, 6
-	Transzendentbasis, 19
G	Transzendenzgrad, 20
Galoisgruppe, 37	
galoissch, 37	U
Grad, 6	Unterring, 5
K	V
konjugiert, 16	Vielfachheit, 21
Köpererweiterung, 4	vollkommen, 23
Körpergrad, 4	vollionimen, 20
M	\mathbf{W}
Minimalpolynom, 6	Wurzelkörper, 10
N	${f z}$
Normal, 35	Zerfällungskörper, 11