(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年8月18日(18.08.2005)

PCT

(10) 国際公開番号 WO 2005/076630 A1

(51) 国際特許分類7:

H04N 7/32

(21) 国際出願番号:

PCT/JP2005/000250

(22) 国際出願日:

2005年1月12日(12.01.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-026276 2004年2月3日(03.02.2004)

- (71) 出願人(米国を除く全ての指定国について): 松下電 器産業株式会社 (MATSUSHITA ELECTRIC INDUS-TRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大 字門真1006番地 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 笹井 寿郎 (SA-SAI, Hisao) [JP/JP]; (JP). 近藤 敏志 (KONDO, Satoshi) [JP/JP]; (JP). 角野 眞也 (KADONO, Shinya) [JP/JP]; (JP).
- (74) 代理人: 小野 由己男, 外(ONO, Yukio et al.); 〒 5300054 大阪府大阪市北区南森町1丁目4番19号 サウスホレストビル 新樹グローバル・アイピー特 許業務法人 Osaka (JP).

/続葉有/

(54) Title: DECODER, ENCODER, INTERPOLATION FRAME GENERATING SYSTEM, INTEGRATED CIRCUIT DEVICE, DECODING PROGRAM, AND ENCODING PROGRAM

ΤP

(54) 発明の名称: 復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび 符号化プログラム

- S431... ANY ADDITIONAL INFORMATION?
- S433... DETECT MOTION VECTOR BETWEEN DECODED IMAGE FRAMES
- S432... DECODE I-FRAME, P-FRAME, AND B-FRAME BY CONVENTIONAL METHOD
- ...DERIVE INTERPOLATION MOTION VECTOR FROM
- DETECTED MOTION VECTOR S435... ANY VECTOR DIFFERENCE?
- S436... GENERATE MOTION VECTOR OF B-FRAME
- GENERATE B-FRAME FOR WHICH MOTION COMPENSATION IS PERFORMED BY GENERATED MOTION VECTOR
- S438... ANY RESIDUAL INFORMATION?
- S439... ADD RESIDUAL INFORMATION

(57) Abstract: A decoder, an encoder, an interpolation frame generating system, an integrated circuit device, a decoding program, and an encoding program for generating an interpolation frame of high precision with an improved encoding efficiency. The decoder (12) comprises a decoding section (70), a motion vector detecting section (79), and an interpolation frame generating section (80). The decoding section (70) decodes a coded image signal (d211) produced by encoding an image frame constituting an image signal (d210) and additional information (d231) for generating an interpolation frame to be interpolated between image frames according to a motion vector (MV48) which is a motion vector between image frames. The motion vector detecting section (79) detects a motion vector (MV90) which is a motion vector between decoded image frames (d260). An interpolation frame generating section (80) generates an interpolation frame from the motion vector (MV90), the decoded image frame (d259), and the decoded additional information (d252).

本発明では、符号化効率を向上させつつ高精度 の補間フレームの生成を行うための復号化装置、符号化装 置、補間フレーム生成システム、集積回路装置、復号化プ ログラムおよび符号化プログラムを提供することを課題とす る。復号化装置12は、復号化部70と、動きベクトル検出 部79と、補間フレーム生成部80とを備えている。復号化 部70は、画像信号d210を構成する画像フレームと、画 像フレ―ム間の動きベクトルである動きベクトルMV48に 基づいて画像フレームを補間する補間フレームを生成する ための付加情報d231とが符号化された符号化画像信号 d211を復号化する。動きベクトル検出部79は、復号化 された画像フレームd260間の動きベクトルである動きべ クトルMV90を検出する。補間フレーム生成部80は、動 きベクトルMV90と復号化された画像フレームd259と 復号化された付加情報 d 2 5 2 とに基づいて補間フレームを 生成する。

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE,

BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 一 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受領の際には再公開される。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、 復号化プログラムおよび符号化プログラム

技術分野

[0001] 本発明は、復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび符号化プログラム、特に、補間フレームの生成を行うための復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび符号化プログラムに関する。

背景技術

[0002] テレビ、パーソナルコンピュータ(PC)、携帯電話、あるいはその他の画像信号を表示する装置において、画像信号を構成する画像フレームを補間する補間フレームを生成し、生成された補間フレームを画像フレームに内挿して表示させる技術が知られている。この技術は、低フレームレートで伝送された画像信号を滑らかに表示すること、あるいは画像信号を低ビットレートで符号化し伝送することを目的として利用されている。

前者を目的とする技術として、画像フレーム間の動きベクトルを検出し、求められた動きベクトルを用いて補間フレームを生成する技術が知られている(例えば、特許文献1参照)。

より具体的には、画像フレーム間の動きベクトルを検出し、動きベクトルを検出した 画像フレーム間の時間的距離と補間フレームの補間位置の時間的距離との比により 検出された動きベクトルを内分あるいは外分する。こうして導出された動きベクトル(以下、補間用動きベクトルという)と画像フレームの画素値とを用いて、補間フレームを 生成する。

ここで、補間フレームの精度を高めることを目的として、補間用動きベクトルを用いた補間の精度が低い部分については、補間フレームに対応する画像信号の画素値を伝送する技術についても知られている(例えば、特許文献2参照)。

後者を目的とする技術として、動き補償符号化という技術が知られている。動き補償

符号化とは、画像フレームを構成する画像ブロックの動きベクトルを用いて行われる符号化である。例えば、動画像信号圧縮の国際規格であるMPEG (Moving Picture Experts Group)では、符号化に際して、画面内符号化と画面間符号化の2つの符号化方法が用いられる。画面内符号化は、画像フレームをそのフレーム内の情報だけで符号化する方法であり、この方法で符号化された画像フレームをIフレームと呼んでいる。画面間符号化とは、画像フレームをそのフレーム内の情報と他のフレームの情報との両方を用いて符号化する方法であり、この方法で符号化された画像フレームをPフレームまたはBフレームと呼んでいる。

すなわち、後者を目的とする動き補償符号化は、補間フレーム(Bフレーム)と補間フレームに対して時間的に双方向に位置する画像フレーム(IフレームまたはPフレーム)との動きベクトルと、動きベクトルにより動き補償された画像フレームと補間フレームとの残差情報とを補間フレームを生成するための情報として符号化する技術である。復号化側では、符号化画像信号と既に復号化された画像フレームとを用いて、補間フレームの生成を行う。

特許文献1:特開平7-177514号公報(第5図)

特許文献2:特許第2828096号公報

発明の開示

[0003] [発明が解決しようとする課題]

本技術分野においては、さらに符号化効率を向上させつつ高精度の補間フレームの生成を行うことが求められている。具体的には、上記した2つの技術において、前者では、さらに高精度な補間フレームを生成することが求められており、後者では、符号化効率を向上させることが求められている。

そこで、本発明では、符号化効率を向上させつつ高精度の補間フレームの生成を 行うための復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、 復号化プログラムおよび符号化プログラムを提供することを課題とする。

[課題を解決するための手段]

請求項1に記載の復号化装置は、復号化手段と、動きベクトル検出手段と、補間フレーム生成手段とを備えている。復号化手段は、画像信号を構成する画像フレーム

と、画像フレーム間の動きベクトルである第1の動きベクトルに基づいて画像フレームを補間する補間フレームを生成するための付加情報とが符号化された符号化画像信号を復号化する。動きベクトル検出手段は、復号化された画像フレーム間の動きベクトルである第2の動きベクトルを検出する。補間フレーム生成手段は、第2の動きベクトルと復号化された画像フレームと復号化された付加情報とに基づいて補間フレームを生成する。

復号化手段は、符号化画像信号から画像フレームと付加情報とを復号化する。付加情報は、画像フレームを補間する補間フレームを生成するための情報であって、符号化前の画像フレームについて検出された第1の動きベクトルに基づいて補間フレームを生成するための情報である。動きベクトル検出手段は、例えばブロックマッチングなどにより復号化後の画像フレーム間の第2の動きベクトルを検出する。補間フレーム生成手段は、第2の動きベクトルを第1の動きベクトルとみなし、第2の動きベクトルと画像フレームと付加情報とに基づいて補間フレームを生成する。

ここで、第1の動きベクトルとは、補間フレームに対して時間的に前方および後方に位置する画像フレーム間について、一方向あるいは双方向に検出される動きベクトルだけでなく、補間フレームに対して時間的に前方あるいは後方に位置する複数の画像フレーム間について、一方向あるいは双方向に検出される動きベクトルであってもよい(以下、この欄において同じ)。また、フレームとは、順次走査画像におけるフレームであっても、飛び越し走査画像におけるフレームまたはフィールドであってもよい(以下、この欄において同じ)。さらに、画像フレームは、符号化される際に、画面内符号化されるものであってもよい(以下、この欄において同じ)。

本発明の復号化装置では、補間フレームを生成するために特別に必要となる情報 は付加情報のみである。すなわち、補間フレームの動きベクトルなどが符号化画像信 号に含まれていなくとも、符号化効率を向上させつつ高精度の補間フレームを生成 することが可能となる。

請求項2に記載の復号化装置は、請求項1に記載の復号化装置であって、付加情報は、画像フレームに対する補間フレームの補間方式と、補間フレームと補間フレー

ムに対応する画像フレームとの残差情報と、補間フレームの画像フレームに対して検 出された動きベクトルと第1の動きベクトルに基づいて導出される補間フレームの画像 フレームに対する動きベクトルとのベクトル差分と、第1の動きベクトルの検出に用い られた動き検出方式とのうち少なくともいずれかを含む。

補間方式は、例えば、補間フレームの生成に用いられる第1の動きベクトルの向き、 補間フレームの生成に用いられる画像フレーム、および画像フレームに対する補間 位置に関する情報などである(以下、この欄において同じ)。 残差情報とは、例えば、 補間フレームの画素値と補間フレームの生成に用いられる画像フレームの画素値と の差分などである(以下、この欄において同じ)。ベクトル差分とは、第1の動きベクト ルに基づいて補間フレームの動きベクトルを導出するための情報であり、例えば、動 き検出により検出される補間フレームの動きベクトルと、第1の動きベクトルを内分ある いは外分して求められる補間フレームの動きベクトルとの差分などである(以下、この 欄において同じ)。動き検出方式とは、例えば、動き検出のアルゴリズム、探索範囲、 サブペル精度、評価関数などに関する情報である(以下、この欄において同じ)。動 き検出のアルゴリズムに関する情報とは、例えば、全探索、間引き探索、OAT探索、 Nステップ探索、階層型探索などと呼ばれる探索方法を指定する情報である。探索 範囲に関する情報とは、例えば、ブロックマッチングを行う領域に関する情報である。 サブペル精度に関する情報とは、例えば、ブロックマッチングを行う精度に関する情 報である。評価関数に関する情報とは、例えば、ブロックマッチングにおける評価関 数であるSAD(絶対差分和)やSSD(平方差分和)などを指定する情報である。

本発明の復号化装置では、以下のいずれかの効果を実現することが可能となる。 すなわち、付加情報に補間方式、ベクトル差分、あるいは動き検出方式が含まれる場合には、補間フレームの動きベクトルがより正確に生成される。さらには、補間フレームがより正確に生成される。また、付加情報に残差情報が含まれる場合には、補間フレームの画素値がより正確に生成される。

請求項3に記載の復号化装置は、請求項2に記載の復号化装置であって、付加情報は、付加情報が含む情報の組み合わせを特定するためのプロファイル情報をさらに含んでいる。

プロファイル情報は、例えば、補間方式、残差情報、ベクトル差分、あるいは動き検 出方式などの情報が付加情報に含まれているか否かに関する情報であり、それぞれ の情報の組み合わせに対して割り当てられた番号などにより、付加情報が含む情報 の組み合わせを特定する。

本発明の復号化装置では、付加情報が含む情報の組み合わせを確実に取得する ことが可能となる。このため、より正確に補間フレームを生成することが可能となる。

請求項4に記載の復号化装置は、請求項2または3に記載の復号化装置であって、動き検出方式は、動き検出のパラメータの組み合わせを特定するためのコード情報として含まれている。動きベクトル検出手段は、コード情報が特定する動き検出のパラメータに基づいて、第2の動きベクトルの検出を行う。

ここで、動き検出のパラメータとは、例えば、動き検出のアルゴリズム、探索範囲、サブペル精度、評価関数などに関する情報それぞれについての内容である。コード情報は、例えば、動き検出のパラメータの組み合わせに対して割り当てられた番号などにより、動き検出のパラメータの組み合わせを特定する。

動きベクトル検出手段は、取得されたコード情報により動き検出方式を特定し、特定された動き検出方式により第2の動きベクトルの検出を行う。

本発明の復号化装置では、動き検出方法がコード情報としてまとめられて符号化される。このため、符号化効率をより高めつつ高精度の補間フレームの生成が可能となる。

請求項5に記載の復号化装置は、請求項2~4のいずれか1項に記載の復号化装置であって、動きベクトル検出手段は、付加情報が含む動き検出方式を実行できない場合には、付加情報が含む動き検出方式に応じて定められた所定の動き検出方式により第2の動きベクトルを検出する。

動きベクトル検出手段は、例えば、付加情報が含む動き検出方式が動きベクトル検 出手段では実行できない動き検出のアルゴリズムを指定する場合、指定されたアル ゴリズムに応じて定められた他のアルゴリズムにより動き検出を実行する。

本発明の復号化装置では、第1の動きベクトルの検出に用いられた動き検出方式を実行できない場合であっても、異なる動き検出方式を用いて第2の動きベクトルを

検出することが可能となる。また、第1の動きベクトルの検出に用いられた動き検出方式とできるだけ近い特性の動き検出方式を用いることにより、第1の動きベクトルに近い動きベクトルを検出することが可能となる。

請求項6に記載の復号化装置は、請求項2~5のいずれか1項に記載の復号化装置であって、付加情報は、補間フレーム毎に作成されている情報である。

本発明の復号化装置では、補間フレーム毎に付加情報が作成されている。このため、より高精度な補間フレームを生成することが可能となる。

請求項7に記載の復号化装置は、請求項2~5のいずれか1項に記載の復号化装置であって、付加情報のうち、動き検出方式は、符号化画像信号のストリーム毎に作成されている情報である。

本発明の復号化装置では、動き検出方式はストリーム毎に作成されている。このため、より符号化効率を向上させることが可能となる。

請求項8に記載の復号化装置は、請求項1~7のいずれか1項に記載の復号化装置であって、補間フレーム生成手段は、符号化画像信号に付加情報が含まれていない場合に、復号化した画像フレームに基づいて補間フレームの生成を行う。

補間フレーム生成手段では、画像信号を画面内符号化と画面間符号化とのみにより符号化した符号化画像信号が取得される場合、復号化した画像フレームを用いて、補間フレームの生成が行われる。補間フレームの生成は、例えば、画像フレーム間の動きベクトルを検出し補間フレームの動きベクトルを求め補間フレームを生成する方法や、画面間符号化された画像フレームの動きベクトルを用いて補間フレームの動きベクトルを求め補間フレームの動きベクトルを求め補間フレームの動きベクトルを求め補間フレームを生成する方法などにより行われる。

本発明の復号化装置では、付加情報を含まない符号化画像信号を取得した場合にも補間フレームを生成することが可能となる。すなわち、従来法との互換性が保たれている。

請求項9に記載の符号化装置は、第1の動きベクトル検出手段と、付加情報作成手段と、符号化手段とを備えている。第1の動きベクトル検出手段は、画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検出する。付加情報作成手段は、画像フレームを補間する補間フレームを第1の動きベクトルに基づいて

生成するための付加情報を作成する。符号化手段は、画像フレームと付加情報とを符号化する。

第1の動きベクトル検出手段は、例えば、ブロックマッチングなどにより画像フレーム間の第1の動きベクトルを検出する。付加情報作成手段は、第1の動きベクトルに基づいて補間フレームを生成するための情報である付加情報を作成する。符号化手段は、画像フレームと付加情報とを符号化する。ここで、画像フレームの符号化は、画面内符号化あるいは画面間符号化などにより行われる。

本発明の符号化装置では、補間フレームを生成するために特別に符号化する情報は付加情報のみである。すなわち、補間フレームの動きベクトルなどを符号化することなく、符号化効率の向上と高精度の補間フレームの生成とが可能となる。

請求項10に記載の符号化装置は、請求項9に記載の符号化装置であって、付加情報は、画像フレームに対する補間フレームの補間方式と、補間フレームと補間フレームに対応する画像フレームとの残差情報と、補間フレームの画像フレームに対して検出された動きベクトルと第1の動きベクトルに基づいて導出される補間フレームの画像フレームに対する動きベクトルとのベクトル差分と、第1の動きベクトルの検出に用いられた動き検出方式とのうち少なくともいずれかを含む。

本発明の符号化装置により、以下のいずれかの効果が実現される。すなわち、付加情報に補間方式、ベクトル差分、あるいは動き検出方式が含まれる場合には、補間フレームの動きベクトルのより正確な生成が可能となる。さらには、補間フレームのより正確な生成が可能となる。また、付加情報に残差情報が含まれる場合には、補間フレームの画素値のより正確な生成が可能となる。

請求項11に記載の符号化装置は、請求項10に記載の符号化装置であって、付加情報は、付加情報が含む情報の組み合わせを特定するためのプロファイル情報をさらに含んでいる。

プロファイル情報は、例えば、補間方式、残差情報、ベクトル差分、あるいは動き検 出方式などの情報が付加情報に含まれているか否かに関する情報であり、それぞれ の情報の組み合わせに対して割り当てられた番号などにより、付加情報が含む情報 の組み合わせを特定する。 本発明の符号化装置では、付加情報が含む情報の組み合わせを確実に符号化することが可能となる。このため、補間フレームのより正確な生成が可能となる。

請求項12に記載の符号化装置は、請求項10または11に記載の符号化装置であって、動き検出方式は、動き検出のパラメータの組み合わせを特定するためのコード情報として含まれている。

ここで、動き検出のパラメータとは、例えば、動き検出のアルゴリズム、探索範囲、サブペル精度、評価関数などに関する情報それぞれについての内容である。コード情報は、例えば、動き検出のパラメータの組み合わせに対して割り当てられた番号などにより、動き検出のパラメータの組み合わせを特定する。

本発明の符号化装置では、動き検出方法がコード情報としてまとめられて符号化される。このため、符号化効率のさらなる向上と高精度の補間フレームの生成とが可能となる。

請求項13に記載の符号化装置は、請求項10~12のいずれか1項に記載の符号 化装置であって、付加情報は、補間フレーム毎に作成される情報である。

本発明の符号化装置では、補間フレーム毎に付加情報が作成されている。このため、より高精度の補間フレームの生成が可能となる。

請求項14に記載の符号化装置は、請求項10〜12のいずれか1項に記載の符号 化装置であって、動き検出方式は、画像信号のストリームのヘッダ情報として含まれている。

本発明の符号化装置では、動き検出方式はストリーム毎に作成されている。

請求項15に記載の符号化装置は、請求項11に記載の符号化装置であって、プロファイル情報は、画像信号のストリームのヘッダ情報として含まれている。

本発明の符号化装置では、プロファイル情報はストリーム毎に作成されている。

請求項16に記載の符号化装置は、請求項9~15のいずれか1項に記載の符号化 装置であって、符号化手段は、画像フレームに基づいて生成される補間フレームと 補間フレームに対応する画像信号との残差が小さい場合には、付加情報の符号化 を行わない。

符号化手段は、画像フレームに基づいて高精度の補間フレームの生成が行われる

場合には、付加情報の符号化を行わない。補間フレームの生成は、例えば、画像フレーム間の動きベクトルを検出し補間フレームの動きベクトルを求め補間フレームを生成する方法や、画面間符号化される画像フレームの動きベクトルを用いて補間フレームの動きベクトルを求め補間フレームを生成する方法などにより行われる。

本発明の符号化装置では、符号化効率のさらなる向上と高精度の補間フレームの生成とが可能となる。

請求項17に記載の補間フレーム生成システムは、画像信号を構成する画像フレームを補間する補間フレームを生成する補間フレーム生成システムであって、第1の動きベクトル検出手段と、付加情報作成手段と、符号化手段と、復号化手段と、第2の動きベクトル検出手段と、補間フレーム生成手段とを備えている。第1の動きベクトル検出手段は、画像フレーム間の動きベクトルである第1の動きベクトルを検出する付加情報作成手段は、第1の動きベクトルに基づいて補間フレームを生成するための付加情報を作成する。符号化手段は、画像フレームと付加情報とを符号化する。復号化手段は、符号化された画像フレームと付加情報とを復号化する。第2の動きベクトル検出手段は、復号化された画像フレーム間の動きベクトルである第2の動きベクトルを検出する。補間フレーム生成手段は、第2の動きベクトルと復号化された画像フレームと復号化された付加情報とに基づいて補間フレームを生成する。

本発明の補間フレーム生成システムでは、補間フレームを生成するために特別に 必要となる情報は付加情報のみである。すなわち、補間フレームの動きベクトルなど が符号化されていなくとも、符号化効率を向上させつつ高精度の補間フレームを生 成することが可能となる。

請求項18に記載の集積回路装置は、復号化部と、動きベクトル検出部と、補間フレーム生成部とを備えている。復号化部は、画像信号を構成する画像フレームと、画像フレーム間の動きベクトルである第1の動きベクトルに基づいて画像フレームを補間する補間フレームを生成するための付加情報とが符号化された符号化画像信号を復号化する。動きベクトル検出部は、復号化された画像フレーム間の動きベクトルである第2の動きベクトルを検出する。補間フレーム生成部は、第2の動きベクトルと復号化された画像フレームと復号化された付加情報とに基づいて補間フレームを生成す

る。

本発明の集積回路装置では、補間フレームを生成するために特別に必要となる情報は付加情報のみである。すなわち、補間フレームの動きベクトルなどが符号化画像信号に含まれていなくとも、符号化効率を向上させつつ高精度の補間フレームを生成することが可能となる。

請求項19に記載の集積回路装置は、第1の動きベクトル検出部と、付加情報作成部と、符号化部とを備えている。第1の動きベクトル検出部は、画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検出する。付加情報作成部は、画像フレームを補間する補間フレームを第1の動きベクトルに基づいて生成するための付加情報を作成する。符号化部は、画像フレームと付加情報とを符号化する。

本発明の集積回路装置では、補間フレームを生成するために特別に符号化する情報は付加情報のみである。すなわち、補間フレームの動きベクトルなどを符号化することなく、符号化効率の向上と高精度の補間フレームの生成とが可能となる。

請求項20に記載の復号化プログラムは、復号化ステップと、動きベクトル検出ステップと、補間フレーム生成ステップとを備える復号化方法をコンピュータに行わせるための復号化プログラムである。復号化ステップは、画像信号を構成する画像フレームと、画像フレーム間の動きベクトルである第1の動きベクトルに基づいて画像フレームを補間する補間フレームを生成するための付加情報とが符号化された符号化画像信号を復号化する。動きベクトル検出ステップは、復号化された画像フレーム間の動きベクトルである第2の動きベクトルを検出する。補間フレーム生成ステップは、第2の動きベクトルと復号化された画像フレームと復号化された付加情報とに基づいて補間フレームを生成する。

本発明の復号化プログラムでは、補間フレームを生成するために特別に必要となる情報は付加情報のみである。すなわち、補間フレームの動きベクトルなどが符号化画像信号に含まれていなくとも、符号化効率を向上させつつ高精度の補間フレームを生成することが可能となる。

請求項21に記載の符号化プログラムは、第1の動きベクトル検出ステップと、付加

情報作成ステップと、符号化ステップとを備える符号化方法をコンピュータに行わせるための符号化プログラムである。第1の動きベクトル検出ステップは、画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検出する。付加情報作成ステップは、画像フレームを補間する補間フレームを第1の動きベクトルに基づいて生成するための付加情報を作成する。符号化ステップは、画像フレームと付加情報とを符号化する。

本発明の符号化プログラムでは、補間フレームを生成するために特別に符号化する情報は付加情報のみである。すなわち、補間フレームの動きベクトルなどを符号化することなく、符号化効率の向上と高精度の補間フレームの生成とが可能となる。

[発明の効果]

本発明により、符号化効率を向上させつつ高精度の補間フレームの生成を行うための復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび符号化プログラムを提供することが可能となる。

図面の簡単な説明

- [0004] 「図1]補間フレーム生成システム10の概要を説明するブロック図
 - 「図2]符号化装置11の構成について説明するブロック図
 - 「図3]画像信号d210を構成する画像フレームについて説明する説明図
 - [図4]BフレームB42の符号化について説明する説明図
 - 「図5]付加情報作成方法について説明するフローチャート
 - 「図6]復号化装置12の構成について説明するブロック図
 - 「図7]BフレームB42の復号化について説明する説明図
 - 「図8]補間フレーム生成方法について説明するフローチャート
 - 「図9〕補間用動きベクトルの導出方法の変形例について説明する説明図
 - [図10]付加情報d21が含む動き検出方式のパラメータの組み合わせを特定するためのテーブル110

[図11]付加情報d231が含む情報の組み合わせを特定するためのテーブル115 [図12]付加情報d252が指定する動き検出のアルゴリズム120と、動きベクトル検出 部79で実行される動き検出のアルゴリズム121との対応関係 [図13]コンテンツ供給システムの全体構成について説明するブロック図

[図14]本発明の補間フレーム作成装置を搭載する携帯電話の例

[図15]携帯電話の構成について説明するブロック図

[図16]ディジタル放送用システムの例

符号の説明

[0005] 10 補間フレーム生成システム

- 11 符号化装置
- 12 復号化装置
- 17 動き補償部
- 18 付加情報作成部
- 30 フレームメモリ
- 31 動きベクトル検出部
- 70 復号化部
- 71 フレーム出力部
- 79 動きベクトル検出部
- 80 補間フレーム生成部
- MV 動きベクトル
- CMV 補間用動きベクトル

発明を実施するための最良の形態

[0006] [第1実施形態]

〈補間フレーム生成システム10の構成〉

図1〜図12を用いて、本発明の第1実施形態としての補間フレーム生成システム、 符号化装置および復号化装置について説明する。

図1は、補間フレーム生成システム10の概要を説明するブロック図である。補間フレーム生成システム10は、画像信号d210を入力とし符号化された符号化画像信号d211を出力とする符号化装置11と、符号化画像信号d211を入力とし復号化された復号化画像信号d212を出力とする復号化装置12とを備えている。符号化装置11は、画像信号d210を提供する提供者側に設置され、インターネットや電話回線などの通

信網もしくは地上波放送、ケーブルテレビあるいは衛星放送などの放送網などを介して復号化装置12と接続されている。復号化装置12は、符号化画像信号d211を受信する受信者側に設置される。復号化装置12は、主にコンピュータ、携帯電話、PDA、デジタルテレビ、デジタルテレビのセットアップボックスあるいはカーナビゲーションシステムなどの画像を取り扱う機器において備えられる。

補間フレーム生成システム10は、画像信号d210をできるだけ低ビットレートで、すなわち符号化効率を向上させて伝送すること、および画像信号d210をできるだけ高画質で伝送することを目的とするシステムである。より具体的には、画像信号d210をフレーム毎に画面内符号化あるいは画面間符号化する際に、一部のフレーム(例えば、Bフレームなど)については、動きベクトルの伝送を行わない。これにより符号化効率を向上させるとともに、一部のフレーム(例えば、Bフレームなど)の復号化に必要な情報を付加情報として伝送し、復号化画像信号d212を高画質化する。

以下、図2〜図8を用いて、補間フレーム生成システム10に備えられる符号化装置 11および復号化装置12について詳細な説明を加える。

〈符号化装置11〉

(符号化装置11の構成)

図2は、符号化装置11の構成について説明するブロック図である。符号化装置11は、画像信号d210を直交変換と量子化を含む方法で符号化し、符号化画像信号d211を出力する装置である。図2では、MPEGなどで用いられる画面内符号化あるいは画面間符号化により画像信号d210を符号化する場合の符号化装置11について説明している。

符号化装置11は、画像信号d210を動き補償符号化し符号化画像信号d211を出力する装置であって、符号化部16と、動き補償部17と、付加情報作成部18とを備えている。

符号化部16は、減算部20と、スイッチ21と、直交変換部22と、量子化部23と、可変長符号化部24と、逆量子化部25と、逆直交変換部26と、加算部27とを備えている。

減算部20は、画像信号d210を第1の入力、動き補償された画像信号d225を第2

の入力とし、第1の入力と第2の入力との差分である減算信号d220を出力する。スイッチ21は、減算信号d220の出力先を切り換えるスイッチであり、直交変換部22あるいは付加情報作成部18に接続される。直交変換部22は、スイッチ21の出力である減算信号d220を入力とし、減算信号d220を直交変換したDCT係数d221を出力する。量子化部23は、DCT係数d221を入力とし、DCT係数d221を量子化した量子化DCT係数d222を出力とする。可変長符号化部24は、量子化DCT係数d222を第1の入力、付加情報作成部18の作成した付加情報d231を第2の入力とし、動き補償部17から取得される動きベクトルや符号化モードとあわせて可変長符号化した符号化画像信号d211を出力とする。逆量子化部25は、量子化DCT係数d222を入力とし、量子化DCT係数d222を対力とし、量子化DCT係数d222を対力とし、逆量子化DCT係数d223を出力とする。逆直交変換部26は、逆量子化DCT係数d223を入力とし、逆量子化DCT係数d223を分力とし、逆量子化DCT係数d223を決力とし、逆量子化DCT係数d223を分力とし、逆量子化DCT係数d223を分力とし、逆量子化DCT係数d223を対力とする。加算部27は、逆直交変換信号d224を第1の入力、動き補償された画像信号d225を第2の入力とし、第1の入力と第2の入力とを加算した局所復号化信号d226を出力とする。

動き補償部17は、フレームメモリ30と、動きベクトル検出部31とを備えており、画像信号d210を第1の入力、局所復号化信号d226を第2の入力とし、動き補償された画像信号d225を第1の出力、検出された動きベクトルd228を第2の出力とする。

フレームメモリ30は、局所復号化信号d226を第1の入力、動きベクトル検出部31の検出した動きベクトルd228を第2の入力とし、動きベクトルd228で動き補償された動き補償された画像信号d225を第1の出力、フレームメモリ30に記憶された局所復号化信号d227を第2の出力とする。動きベクトル検出部31は、画像信号d210を第1の入力、フレームメモリ30に記憶された局所復号化信号d227を第2の入力とし、動きベクトルd228を出力とする。

付加情報作成部18は、スイッチ21の出力である減算信号d220を第1の入力、動きベクトルd228を第2の入力とし、付加情報d231を出力とする。

可変長符号化部24は、付加情報d231を、量子化DCT係数d222、動き補償部17から取得される動きベクトルや符号化モードなどとあわせて可変長符号化する。この時、付加情報d231が付加される場合には、可変長符号化される符号列に付加情報

d231が付加されていることを示す判別情報が含められてもよい。

なお、上記した各部は、LSIなどの集積回路として、独立にあるいは一体的に構成されている。また、フレームメモリ30は、DRAM、SRAMなどの記憶装置である。

(符号化装置11の作用)

図3と図4とを用いて、画像信号d210を構成する画像フレーム(IフレームI41、BフレームB42, B43、PフレームP44(図3(a)参照))を符号化する場合の符号化装置11の動作について説明する。なお、本発明は、BフレームB42, B43を符号化する場合に特徴を有している。

《IフレームI41、PフレームP44の符号化》

IフレームI41を符号化する場合、減算部20は、減算処理を行わない。また、スイッチ21は、直交変換部22側を向く。これにより、画像信号d210を構成するIフレームI41は、直交変換部22により直交変換され、量子化部23により量子化され、可変長符号化部24により可変長符号化され、符号化画像信号d211として出力される。さらに、量子化されたIフレームI41は、ローカルデコードされフレームメモリ30に記憶される

PフレームP44を符号化する場合について、図3(b)を用いて説明する。PフレームP44を符号化する場合、動き補償部17は、既にローカルデコードされフレームメモリ30に記憶されているIフレームI41との動きベクトルMV46を検出する。さらに、検出された動きベクトルMV46により動き補償された画像信号d225を導出する。減算部20は、画像信号d210と動き補償された画像信号d225との減算処理を行い、減算信号d220を出力する。スイッチ21は、直交変換部22側を向く。これにより、減算信号d220は、直交変換部22により直交変換され、量子化部23により量子化され、可変長符号化部24により可変長符号化され、検出された動きベクトルMV46とともに符号化画像信号d211として出力される。さらに、量子化されたPフレームP44は、ローカルデコードされフレームメモリ30に記憶される。

《BフレームB42の符号化》

BフレームB42を符号化する場合について、図4を用いて説明する。なお、BフレームB43を符号化する場合については同様であり、説明を省略する。

(1)

BフレームB42を符号化する場合、動き補償部17は、既にローカルデコードされフレームメモリ30に記憶されているIフレームI41とPフレームP44との動きベクトルを検出する(図4(a)参照)。より具体的には、BフレームB42のブロックb51の符号化に際して、ブロックb51と同じ位置にあるPフレームP44のブロックb53のブロックマッチングをIフレームI41に対して行う。これにより、IフレームI41のブロックb52に対する動きベクトルMV48が検出される。検出された動きベクトルMV48は、動きベクトル検出部31から動きベクトルd228として付加情報作成部18に出力される。同様の処理により、BフレームB42の全てのブロックについて動きベクトルが出力される。

フレームメモリ30は、検出された動きベクトルMV48を用いて、動き補償されたBフレームB42を生成する。より具体的には、画像信号d210におけるIフレームI41とPフレームP44との時間的距離に対する画像信号d210におけるIフレームI41とBフレームB42との時間的距離の割合で動きベクトルMV48を内分し、IフレームI41のブロックb54に対するブロックb51の補間用動きベクトルCMV49を導出する。また、画像信号d210におけるIフレームI41とPフレームP44との時間的距離に対する画像信号d210におけるIフレームI41とPフレームP44との時間的距離に対する画像信号d210におけるPフレームP44とBフレームB42との時間的距離の割合で動きベクトルMV48を内分し、PフレームP44のブロックb55に対するブロックb51の補間用動きベクトルCMV50を導出する。さらに、動き補償されたBフレームB42におけるブロックb51に対応する画素値として、ブロックb54とブロックb55の画素値を平均した値が出力される。ブロックb54とブロックb55の画素値を平均した値が出力される。ブロックb54とブロックb55の画素値を平均した値が出力される。可能の処理により、BフレームB42の全てのブロックについて動き補償された画素値が出力される。

減算部20は、画像信号d210と動き補償された画像信号d225とを減算処理し、減算信号d220を出力する。スイッチ21は、付加情報作成部18側を向き、減算信号d220は、付加情報作成部18に入力される。

付加情報作成部18は、入力された減算信号d220の大きさに応じて、付加情報d2 31の作成を行う。より具体的には、減算信号d220の大きさが[0]あるいは所定の閾 値より小さい場合には、付加情報作成部18は、BフレームB42の補間方式と、動きべ クトルMV48の動き検出方式とを付加情報d231として作成する。作成された付加情報d231は、可変長符号化部24において、PフレームP44についての量子化DCT 係数d222の後に符号化される。

ここで、補間方式とは、BフレームB42の生成に用いられる動きベクトルMV48の向き、BフレームB42の生成に用いられるIフレームI41およびPフレームP44を特定する情報およびBフレームB42の補間位置に関する情報などである。

また、動き検出方式とは、動き検出のアルゴリズム、探索範囲、サブペル精度、評価関数などに関する情報である。動き検出のアルゴリズムに関する情報とは、全探索、間引き探索、OAT探索、Nステップ探索、階層型探索などと呼ばれる探索方法を指定する情報である。探索範囲に関する情報とは、ブロックマッチングを行う画素領域(生8画素、±16画素、±32画素、±64画素など)に関する情報である。サブペル精度に関する情報とは、ブロックマッチングを行う画素精度(整数画素単位、1/2画素単位、1/4画素単位、1/8画素単位など)に関する情報である。評価関数に関する情報とは、ブロックマッチングにおける評価関数であるSAD(絶対差分和)やSSD(平方差分和)などを指定する情報である。

(2)

一方、減算信号d220の大きさが所定の閾値より大きい場合、動き補償部17は、既にローカルデコードされフレームメモリ30に記憶されているIフレームI41とPフレームP44とに対する画像信号d210におけるBフレームB42の動きベクトルを検出する(図4(b)参照)。より具体的には、画像信号d210におけるBフレームB42のブロックb51の符号化に際して、ブロックb51の双方向へのブロックマッチングを行い、IフレームI41のブロックb61に対する動きベクトルMV63とPフレームP44のブロックb62に対する動きベクトルMV64とが検出される。検出された動きベクトルMV63とMV64とは、動きベクトル検出部31から動きベクトルd228として付加情報作成部18に出力される。同様の処理により、BフレームB42の全てのブロックについて動きベクトルが出力される。

さらに、フレームメモリ30は、検出された動きベクトルMV63とMV64とを用いて動き補償されたBフレームB42を作成する。より具体的には、動き補償されたBフレーム

B42のブロックb51に対応する画素値として、ブロックb61とブロックb62の画素値を 平均した値が出力される。ブロックb61とブロックb62の画素値を平均した値は、フレ ームメモリ30から、動き補償された画像信号d225として出力される。同様の処理によ り、BフレームB42の全てのブロックについて動き補償された画素値が出力される。

減算部20は、画像信号d210を構成するBフレームB42と動き補償された画像信号d225(動きベクトルMV63、MV64により動き補償されたBフレームB42)とを減算処理し、減算信号d220を出力する。スイッチ21は、付加情報作成部18側を向き、減算信号d220は、付加情報作成部18に入力される。

付加情報作成部18は、上記した補間方式と動き検出方式とに加えて、残差情報とベクトル差分とを付加情報d231として作成する。作成された付加情報d231は、可変長符号化部24において、PフレームP44についての量子化DCT係数d222の後に符号化される。

ここで、残差情報とは、減算信号d220の値である。また、ベクトル差分とは、動きベクトルMV48に基づいて、BフレームB42の動きベクトルMV63とMV64とを導出するための情報であり、具体的には、動きベクトルMV63と補間用動きベクトルCMV49とのベクトル差分および動きベクトルMV64と補間用動きベクトルCMV50とのベクトル差分のことである(図4(c)参照)。

(方法・プログラム)

図5に、符号化装置11における付加情報作成方法について説明するフローチャートを示す。なお、詳しい内容は、上記と同様であり、説明を省略する。また、この付加情報作成方法は、全てあるいは一部の動作をプログラムとして実行可能である。

画像信号d210におけるBフレームB42を符号化する場合、動き補償部17は、既にローカルデコードされフレームメモリ30に記憶されているIフレームI41とPフレームP44との動きベクトルを検出する(ステップS401)。さらに、フレームメモリ30は、検出された動きベクトルを用いて、動き補償されたBフレームB42を作成する(ステップS402)。減算部20は、画像信号d210に含まれるBフレームB42と動き補償されたBフレームB42とを減算処理し減算信号d220を出力する(ステップS403)。

付加情報作成部18は、減算信号d220の大きさに応じて、付加情報d231の作成

を行う。

減算信号d220の大きさが[0]あるいは所定の閾値より小さい場合には、付加情報作成部18は、BフレームB42の補間方式と、動きベクトルMV48の動き検出方式とを付加情報d231として作成する(ステップS404, S405)。

減算信号d220の大きさが所定の閾値より大きい場合、動き補償部17は、既にローカルデコードされフレームメモリ30に記憶されているIフレームI41とPフレームP44とに対する画像信号d210におけるBフレームB42の動きベクトルを検出する(ステップS406)。フレームメモリ30は、検出された動きベクトルを用いて、動き補償されたBフレームB42を作成する(ステップS407)。減算部20は、画像信号d210に含まれるBフレームB42と動き補償されたBフレームB42とを減算処理し、減算信号d220を出力する(ステップS408)。

付加情報作成部18は、補間方式と動き検出方式とに加えて、残差情報とベクトル差分とを付加情報d231として作成する(ステップS409)。ここで、残差情報とは、ステップS408で出力された減算信号d220の値である。また、ベクトル差分とは、ステップS406で検出された動きベクトルと、ステップS401で検出された動きベクトルから作成された補間用動きベクトルとの差分である。

〈復号化装置12〉

(復号化装置12の構成)

図6は、復号化装置12の構成について説明するブロック図である。復号化装置12は、画像信号d210を直交変換と量子化を含む方法で符号化した符号化画像信号d211を復号化し、復号化画像信号d212を出力する装置である。復号化装置12は、復号化部70と、フレーム出力部71とを備えている。

復号化部70は、動き補償符号化された符号化画像信号d211を入力とし、画像フレームd258~d260を第1~第3の出力、付加情報d252を第4の出力とする。復号化部70は、可変長復号化部72と、逆量子化部73と、逆直交変換部74と、加算部75と、フレームメモリ76と、動き補償部77とを備えている。

可変長復号化部72は、符号化画像信号d211を第1の入力とし、符号化画像信号d211を復号化することにより、量子化DCT係数d250を第1の出力、復号化動きベク

トルd251を第2の出力、付加情報d252を第3の出力とする。逆量子化部73は、量子化DCT係数d250を入力とし、量子化DCT係数d250を逆量子化した逆量子化DCT係数d253を出力とする。逆直交変換部74は、逆量子化DCT係数d253を入力とし、逆量子化DCT係数d253を逆直交変換した逆直交変換信号d254を出力とする。加算部75は、逆直交変換信号d254を第1の入力、動き補償された画像フレームd255を第2の入力とし、第1の入力と第2の入力とを加算した加算信号d256を出力とする。フレームメモリ76は、加算信号d256を入力とし、画像フレームd257~d260を第1~第4の出力とする。動き補償部77は、復号化動きベクトルd251を第1の入力、画像フレームd257を第2の入力とし、動き補償された画像フレームd255を出力とする。

フレーム出力部71は、画像フレームd258~d260を第1~第3の入力とし、付加情報を第4の入力とし、復号化画像信号d212を出力とする。フレーム出力部71は、動きベクトル検出部79と、補間フレーム生成部80と、スイッチ81とを備えている。

動きベクトル検出部79は、画像フレームd260を第1の入力、付加情報d252を第2の入力とし、画像フレームd260間に検出された動きベクトルd265を出力とする。補間フレーム生成部80は、画像フレームd259を第1の入力、動きベクトルd265を第2の入力、付加情報d252を第3の入力とし、補間フレームd268を出力とする。スイッチ81は、画像フレームd258を第1の入力、補間フレームd268を第2の入力とし、それぞれの入力を切り換えて復号化画像信号d212を出力する。

なお、上記した各部は、LSIなどの集積回路として、独立にあるいは一体的に構成されている。また、フレームメモリ76は、DRAM、SRAMなどの記憶装置である。

(復号化装置12の作用)

画像信号d210を構成する画像フレーム(IフレームI41、BフレームB42, B43、PフレームP44(図3(a)参照))が符号化された符号化画像信号d211を復号化する場合の復号化装置12の動作について説明する。なお、本発明は、BフレームB42, B43を復号化する場合に特徴を有している。

《IフレームI41、PフレームP44の復号化》

IフレームI41を復号化する場合、符号化画像信号d211は、可変長復号化部72に

より可変長復号化され、逆量子化部73により逆量子化され、逆直交変換部74により 逆直交変換され、逆直交変換信号d254が出力される。また、加算部75は、加算処 理を行わない。これにより、フレームメモリ76には、復号化されたIフレームI41が記憶 される。スイッチ81は、IフレームI41を出力するタイミングでフレームメモリ76側を向く 。これにより、IフレームI41が復号化画像信号d212として出力される。

PフレームP44を復号化する場合、符号化画像信号d211は、可変長復号化部72により可変長復号化され、逆量子化部73により逆量子化され、逆直交変換部74により逆直交変換され、逆直交変換信号d254が出力される。また、動き補償部77は、可変長復号化部72より取得された復号化動きベクトルd251と、フレームメモリ76に記憶されたIフレームI41とを用いて、動き補償された画像フレームd255(動き補償されたPフレームP44)を出力する。加算部75は、逆直交変換信号d254と動き補償された画像フレームd255とを加算する。これにより、フレームメモリ76には、復号化されたPフレームP44が記憶される。スイッチ81は、PフレームP44を出力するタイミングでフレームメモリ76側を向く。これにより、PフレームP44が復号化画像信号d212として出力される。

《BフレームB42の復号化》

BフレームB42を復号化する場合について、図7を用いて説明する。なお、BフレームB43を復号化する場合については同様であり、説明を省略する。

(1)

復号化部70は、符号化画像信号d211が付加情報d252を含んでいない場合には、従来のBフレームと同様の符号化が行われていると判断する。すなわち、符号化画像信号d211は、可変長復号化部72により可変長復号化され、逆量子化部73により逆量子化され、逆直交変換部74により逆直交変換され、逆直交変換信号d254が出力される。また、動き補償部77は、可変長復号化部72より取得された復号化動きベクトルd251とフレームメモリ76に記憶されたIフレームI41またはPフレームP44とを用いて、動き補償された画像フレームd255(動き補償されたBフレームB42)を出力する。加算部75は、逆直交変換信号d254と動き補償された画像フレームd255とを加算する。これにより、フレームメモリ76には、復号化されたBフレームB42が記憶され

る。スイッチ81は、BフレームB42を出力するタイミングでフレームメモリ76側を向く。 これにより、BフレームB42が復号化画像信号d212として出力される。

(2)

一方、符号化画像信号d211が付加情報d252を含んでいる場合には、フレーム出力部71においてBフレームB42の生成が行われる。以下、具体的に説明する。

なお、符号化画像信号d211が付加情報d252を含んでいることは、付加情報d252の有無で判断してもよいが、可変長復号化される符号化画像信号d211が判別情報を含んでいるか否かで判断してもよい。ここで、判別情報とは、符号化画像信号d211に付加情報d231が付加されているか否かを示すものであり、例えば、フラグなどであっても良い。

(2-1)

動きベクトル検出部79は、付加情報d252が含む補間方式および動き検出方式を取得し、動きベクトルの検出を行う。

ここで、補間方式とは、BフレームB42の生成に用いられる動きベクトルの向き、BフレームB42の生成に用いられるIフレームI41およびPフレームP44を特定する情報およびBフレームB42の補間位置に関する情報などである。

また、動き検出方式とは、動き検出のアルゴリズム、探索範囲、サブペル精度、評価関数などに関する情報である。動き検出のアルゴリズムに関する情報とは、全探索、間引き探索、OAT探索、Nステップ探索、階層型探索などと呼ばれる探索方法を指定する情報である。探索範囲に関する情報とは、ブロックマッチングを行う領域に関する情報である。サブペル精度に関する情報とは、ブロックマッチングを行う精度に関する情報である。評価関数に関する情報とは、ブロックマッチングにおける評価関数であるSAD(絶対差分和)やSSD(平方差分和)などを指定する情報である。

図7(a)を用いて、動きベクトル検出部79の動作についてさらに詳しく説明する。B フレームB42のブロックb51を復号化する場合、動きベクトル検出部79は、補間方式 が指定する画像フレーム間の動きベクトルであって、ブロックb51に対応する位置の ブロックの動きベクトルを検出する。図7(a)は、補間方式として、BフレームB42の生 成に用いられる動きベクトルは、PフレームP44からIフレームI41への動きベクトルで ある、という情報が含まれている場合に検出される動きベクトルMV90について示している。この場合、動きベクトル検出部79は、フレームメモリ76に記憶されているPフレームP44のブロックb53からIフレームI41のブロックb91への動きベクトルMV90を検出する。この際、動きベクトル検出部79は、付加情報d252が含む動き検出方式により動きベクトルMV90の検出を行う。

(2-2)

補間フレーム生成部80は、付加情報d252が含む補間方式、残差情報およびベクトル差分を取得し、BフレームB42の生成を行う。

ここで、残差情報とは、符号化装置11(図2参照)において、画像信号d210が含むBフレームB42と動き補償されたBフレームB42とを減算処理した減算信号d220の値である。ベクトル差分とは、具体的には、動きベクトルMV63と補間用動きベクトルCMV49とのベクトル差分および動きベクトルMV64と補間用動きベクトルCMV50とのベクトル差分のことである(図4(c)参照)。

図7(b)および(c)を用いて、補間フレーム生成部80の動作についてさらに詳しく説明する。補間フレーム生成部80は、動きベクトル検出部79が検出した動きベクトルMV90を補間方式が含むBフレームB42の補間位置により内分し、BフレームB42からIフレームI41への補間用動きベクトルCMV93と、BフレームB42からPフレームP44への補間用動きベクトルCMV95とを導出する(図7(b)参照)。

導出された補間用動きベクトルCMV93に対して、動きベクトルMV63と補間用動きベクトルCMV49とのベクトル差分を加算し、BフレームB42からIフレームI41への動きベクトルMV97が作成される(図7(c)参照)。また同様に、導出された補間用動きベクトルCMV95に対して、動きベクトルMV64と補間用動きベクトルCMV50とのベクトル差分を加算し、BフレームB42からPフレームP44への動きベクトルMV99が作成される(図7(c)参照)。

さらに、作成された動きベクトルMV97とMV99とを用いて、動き補償されたBフレームB42を作成する。より具体的には、動き補償されたBフレームB42のブロックb51に対応する画素値として、ブロックb51を動きベクトルMV97で移動させた先のブロックb101とブロックb51を動きベクトルMV99で移動させた先のブロックb103との画素

値を平均した値が計算される。補間フレーム生成部80は、ブロックb101とブロックb103との画素値をフレームメモリ76からの出力である画像フレームd259により取得する。

さらに、補間フレーム生成部80は、付加情報d252が残差情報を含む場合、動き補償されたBフレームB42の値に残差情報の値を加算し、復号化されたBフレームB42を出力する。復号化されたBフレームB42は、補間フレームd268として補間フレーム生成部80から出力される。

スイッチ81は、BフレームB42を出力するタイミングで補間フレーム生成部80側を向く。これにより、BフレームB42が復号化画像信号d212として出力される。

(方法・プログラム)

図8に復号化装置12における補間フレーム生成方法について説明するフローチャートを示す。なお、詳しい内容は、上記と同様であり、説明を省略する。また、この補間フレーム生成方法は、全てあるいは一部の動作をプログラムとして実行可能である。

復号化部70は、符号化画像信号d211が付加情報d252を含まない場合、画面内符号化されたIフレーム、画面間符号化されたPフレームあるいはBフレームの復号化を行う(ステップS431、ステップS432)。

符号化画像信号d211が付加情報d252を含む場合、フレーム出力部71によるBフレームB42(図7(a)参照)の復号化が行われる(ステップS433〜S439)。

付加情報d252が含む補間方式および動き検出方式に基づいて、フレームメモリ76に記憶されている画像フレームについて動きベクトルが検出される(ステップS433)。また、付加情報d252が含む補間方式に基づいて、ステップS433で検出された動きベクトルから補間用動きベクトルが導出される(ステップS434)。補間フレーム生成部80は、付加情報d252がベクトル差分を含むか否かを判定し(ステップS435)、ベクトル差分を含む場合には、補間用動きベクトルに対してベクトル差分を加算して、BフレームB42からIフレームI41またはPフレームP44への動きベクトルを作成する(ステップS436)。ベクトル差分を含まない場合には、導出された補間用動きベクトルを作成された動きベクトルとみなす。

補間フレーム生成部80は、作成された動きベクトルを用いて、動き補償されたBフレームB42を作成する(ステップS437)。補間フレーム生成部80は、付加情報d252が残差情報を含むか否かを判定し(ステップS438)、残差情報を含む場合には、動き補償されたBフレームB42に対して残差情報を適用して(ステップS439)、復号化されたBフレームB42を出力する。残差情報を含まない場合には、ステップS437で作成された動き補償されたBフレームB42を復号化されたBフレームB42とみなす。

〈補間フレーム生成システム10の効果〉

(符号化装置11の効果)

 $\langle 1 \rangle$

本発明の符号化装置11では、BフレームB42を生成するために特別に符号化する情報は付加情報d231のみである。すなわち、BフレームB42について検出された動きベクトル(動きベクトルMV63, MV64(図4(b)参照))を符号化することなく、符号化効率の向上と高精度の補間フレームの生成とが可能となる。

 $\langle\!\langle 2\rangle\!\rangle$

本発明の符号化装置11では、以下のいずれかの効果が実現される。すなわち、付加情報d231に補間方式、ベクトル差分、あるいは動き検出方式が含まれる場合には、BフレームB42の動きベクトルMV63、MV64のより正確な作成が可能となる。さらには、BフレームB42のより正確な生成が可能となる。また、付加情報d231に残差情報が含まれる場合には、BフレームB42の画素値のより正確な生成が可能となる。

《3》

本発明の符号化装置11では、付加情報d231が含む情報を必要に応じて変更可能である(図5(ステップS404)参照)。このためさらなる符号化効率の向上が可能となる。

 $\langle\!\langle 4 \rangle\!\rangle$

本発明の符号化装置11では、付加情報d231は、Bフレーム毎に作成されている。 このため、より高精度な補間フレームの生成が可能となる。

(復号化装置12の効果)

 $\langle 1 \rangle$

本発明の復号化装置12では、BフレームB42を生成するために特別に符号化する情報は付加情報d231のみである。すなわち、画像信号d210におけるBフレームB42について検出された動きベクトル(動きベクトルMV63, MV64(図4(b)参照))が符号化されていなくとも、符号化効率の向上と高精度の補間フレームの生成とが可能となる。

 $\langle\!\langle 2\rangle\!\rangle$

本発明の復号化装置12では、以下のいずれかの効果が実現される。すなわち、付加情報d231に補間方式、ベクトル差分、あるいは動き検出方式が含まれる場合には、画像信号d210におけるBフレームB42の動きベクトルMV63、MV64がより正確に作成される。さらには、BフレームB42のより正確な生成が可能となる。また、付加情報d231に残差情報が含まれる場合には、BフレームB42の画素値のより正確な生成が可能となる。

 $\langle \langle 3 \rangle \rangle$

本発明の復号化装置12では、付加情報d231を含まない符号化画像信号d211を 取得した場合にもBフレームB42を生成することが可能となる(図8(ステップS431) 参照)。すなわち、従来法との互換性が保たれている。

 $\langle\!\langle 4 \rangle\!\rangle$

本発明の復号化装置12では、付加情報d231は、Bフレーム毎に作成されている。 このため、より高精度な補間フレームの生成が可能となる。

(補間フレーム生成システム10の効果)

 $\langle 1 \rangle$

本発明の補間フレーム生成システム10では、BフレームB42を生成するために特別に符号化する情報は付加情報d231のみである。すなわち、BフレームB42について検出された動きベクトル(動きベクトルMV63, MV64(図4(b)参照))が符号化されていなくとも、符号化効率の向上と高精度の補間フレームの生成とが可能となる。より具体的に効果について説明する。補間フレーム生成システム10では、付加情報d231を用いて、符号化装置11の動きベクトル検出部31と、復号化装置12の動きベクトル検出部79とに同様の動き検出を実現させることが可能となる。これにより、動

きベクトルMV48(図4参照)と動きベクトルMV90(図7参照)とを近似したベクトルとして検出することが可能となる。また、符号化および復号化の基準となる情報(動きベクトルMV48および動きベクトルMV90)について伝送することなく、この基準となる情報からの差分のみを伝送する。このため、符号化効率の向上が可能となる。さらに、従来と同程度に高精度な補間フレームの生成が可能となる。

〈変形例〉

本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。また、上記実施形態で述べた方法は、 プログラムとしてコンピュータなどにより実現されることも可能である。

(動きベクトルについて)

 $\langle 1 \rangle$

上記実施形態では、BフレームB42に対して時間的に前方に位置するIフレームI4 1と、時間的に後方に位置するPフレームP44との間の動きベクトルMV48を検出すると説明した(図4参照)。ここで、BフレームB42の符号化のために検出される動きベクトルは、これに限定されるものでは無い。

例えば、IフレームI41からPフレームP44への動きベクトルが検出されていてもよい。また、BフレームB42に対して時間的に前方あるいは後方に位置する複数の画像フレーム間について動きベクトルが検出されていてもよい。また、動きベクトルの検出は、一方向のみでなく、双方向に検出されるものであってもよい。

また、これら複数の検出方法について、動きベクトルの検出精度を比較し、最も精 度の高い方法を採用するとしてもよい。

さらに、図4に示したフレームの構成は一例であり、本発明の効果がこのフレームの 構成に限定されるものではない。

例えば、IフレームI41は、Pフレームに置き換えられていてもよいし、PフレームP44は、Iフレームに置き換えられていてもよい。また、Bフレームの枚数も図4に示した枚数に限定されるものではない。

また、本発明の効果は、上記実施形態で説明したIフレームI41、PフレームP44の符号化の方法に限定されるものでは無い。例えば、IフレームI41は、あらかじめ決め

られたルールに従い、フレームメモリ30に作成された画素値の減算処理を行うことにより符号化されるものであっても良い。より具体的には、MPEG-4などで行われる様に、イントラ符号化では、フレーム内で予測画素を作成し、その画素値を減算し、その残差成分の符号化を行うものであってもよい。すなわち、本発明では、符号化済のフレームであれば、符号化方法に依存せず、IフレームI41、PフレームP44の代わりに用いられることが可能である。

また、同様に、本発明の効果は、上記実施形態で説明したIフレームI41、PフレームP44の復号化の方法に限定されるものでは無い。例えば、加算部75は、あらかじめ決められたルールに従い、フレームメモリ76に作成された画素値の加算処理を行うことにより、IフレームI41を復号化するものであっても良い。

 $\langle\!\langle 2\rangle\!\rangle$

上記実施形態では、ブロックb51に対する補間用動きベクトルCMV49, CMV50を導出するための動きベクトルMV48は、ブロックb51と同じ位置にあるPフレームP44のブロックb53について検出される動きベクトルであると説明した(図4参照)。ここで、動きベクトルの検出方法は、これに限定されるものでは無い。

例えば、ブロックb51に対する補間用動きベクトルを導出するための動きベクトルは、PフレームP44とIフレームI41との間に検出される動きベクトルのうち、ブロックb51を横切る動きベクトルとして求められてもよい。

さらにこの場合、ブロックb51を横切る複数の動きベクトルがある場合には、それらの動きベクトルにより動き補償されたBフレームB42のブロックb51に対応する画素値として、複数の動きベクトルを検出するのに用いられたブロックの画素値を単純平均あるいは加重平均した値としてもよい。

さらにこの場合、ブロックb51を横切る動きベクトルが無い場合には、ブロックb51の 近傍のブロックの動きベクトルの平均値、もしくは線形補間の値、もしくは平滑化フィ ルタをかけた値、もしくは重みつきの平滑化フィルタをかけた値などの値としてもよい

《3》

上記実施形態では、BフレームB42に対して双方向の補間用動きベクトルCMV49

, CMV50が導出され、BフレームB42に対して双方向の動きベクトルMV63, MV6 4が検出され、それぞれのベクトル差分が算出されると説明した。ここで、BフレームB 42のそれぞれのブロックについて検出される動きベクトルは、双方向のものに限定されない。

例えば、一方向のものであっても良いし、さらに多くの動きベクトルが検出されるも のであってもよい。

 $\langle\!\langle 4 \rangle\!\rangle$

上記実施形態では、ブロックb51に対する補間用動きベクトルCMV49, CMV50は、ブロックb51と同じ位置にあるPフレームP44のブロックb53について検出される動きベクトル、または、PフレームP44とIフレームI41との間に検出される動きベクトルのうち、ブロックb51を横切る動きベクトルにより算出される値であると説明した(図4参照)。ここで、補間用動きベクトルの導出方法は、これに限定されるものでは無い。

これについて、図9を用いて説明する。図9(a)は、図4のBフレームB42を符号化する場合、P する場合の例である。画像信号d210におけるBフレームB42を符号化する場合、P フレームP44とIフレームI41との間に検出される動きベクトルにより算出される値から、BフレームB42上のブロックb511~b519に対して、双方向のベクトルV511a~V 519a及び、V511b~V519bが算出できる(図9(a)参照)。ここで、PフレームP44と IフレームI41との間に検出される動きベクトルからベクトルV511a~V519a及び、V 511b~V519bを導出する方法は、上記実施形態で、補間用動きベクトルの導出方法として説明した方法と同様である。なお、図9において、V511b~V519bについては、V511a~V519aと同じ処理で行うため、説明は省略する。

さらに、それぞれのブロックについて導出されたベクトルを隣接ブロックについて導出されたベクトルを用いて平滑化処理などすることにより、それぞれのブロックについて補間用動きベクトルが導出される。例えば、ブロックb515に対する補間用動きベクトルとMV515a及びCMV515bは、周囲のブロックのベクトルであるV511a~V519a及び、V511b~V519bに対して、例えば、平滑化フィルタまたはメディアンフィルタまたは重みをつけた平滑化フィルタをかけることにより、算出される(図9(b)参照)。また、周囲のブロックの範囲は8近傍でなくてもよい。

なお、PフレームP44とIフレームI41との間に検出される動きベクトルを平滑化し、 平滑化された動きベクトルを内分あるいは外分することにより補間用動きベクトルを算 出しても同様の結果が得られる。

符号化装置11では、算出された補間用動きベクトルを用いて、上記実施形態で説明したベクトル差分、残差情報を計算し、付加情報として符号化する。

あるいは、ベクトル差分、残差情報は付加情報として符号化せず、補間方式あるい は平滑化方式などを付加情報として符号化する。

復号化装置12では、復号化したPフレームP44とIフレームI41とから、各ブロックに対する補間用動きベクトルを算出する。さらに、補間用動きベクトルと付加情報とを用いて、各ブロックの復号化を行う。

ここで、付加情報としてベクトル差分、残差情報が含まれていない場合には、補間 用動きベクトルを各ブロックの動きベクトルとみなして補間フレームの各ブロックの復 号化を行う。

以上の手順で導出された補間用動きベクトルは、例えば、付加情報として残差情報あるいはベクトル差分が伝送されない場合において、言い換えれば、低ビットレートの伝送において、復号化装置12で生成されるBフレームの画質向上に有効である。すなわち、復号化装置12で算出される各ブロックの補間用動きベクトルでは、隣接ブロックとの空間的な相関性が強められており、Bフレームの精度の向上、特にブロック歪みなどの削減に有効である。

((5)

上記実施形態では、BフレームB42のブロックb51の大きさについて、PフレームP4 4のブロックと同じ大きさとして説明した(図4参照)。ここで、ブロックb51の大きさは、 これに限定されるものでは無い。

例えば、BフレームB42のブロックb51はPフレームP44のブロックの4分の1の大き さであってもよい。

これにより、詳細に動き補償することができるため、復号化装置12で生成されるBフレームの精度を向上させることができる。

(付加情報について)

(6)

符号化装置11で作成される付加情報d231は、デフォルトの付加情報をコード化して含むものであってもかまわない。これについて、図10と図11とを用いて説明する。 (6-1)

図10は、付加情報d231が含む動き検出方式のパラメータの組み合わせを特定するためのテーブル110である。テーブル110は、動き検出の探索範囲(±8画素、±16画素、±32画素、±64画素)、サブペル精度(整数画素単位、1/2画素単位、1/4画素単位、1/8画素単位)および評価関数(F1~F4:F1~F4は、SADあるいはSSDなどの評価関数を示す。)についてパラメータの組み合わせを複数格納しており、それぞれの組み合わせは、コード情報111により特定可能である。なお、符号化装置11と復号化装置12とは、共通のテーブル110を有している。

付加情報d231は、動きベクトル検出部31で実行された動き検出方式をコード情報111として含んでいる。コード情報111は、数ビットの情報として表現される。このため、付加情報d231の情報量は、さらに削減可能となる。

なお、動き検出方式に限らず、補間方式などについてもテーブル化されていてもよい。また、図10は、一例であり、本発明の効果がこの場合に限定されるものではない。

(6-2)

図11は、付加情報d231が含む情報の組み合わせを特定するためのテーブル115である。テーブル115は、付加情報d231が含む情報の組み合わせを複数のプロファイル情報116として有している。図11では、プロファイル情報116は、1~4の番号により特定される。また、テーブル115中[〇]は、その情報が含まれていることを示している。テーブル115中[×]は、その情報が含まれていないことを示している。なお、符号化装置11と復号化装置12とは、共通のテーブル110を有している。

復号化装置12では、テーブル115により、符号化画像信号d211から取得された付加情報d252が含む情報の組み合わせを認識可能となる。このため、復号化装置12は、付加情報d252が含む情報の一部を利用できない場合であっても、その情報が含まれているか否かを認識することにより確実にスキップすることが可能となる。ま

た、付加情報d252が含む情報を確実に取得することが可能となる。このため、付加情報d252の内容を誤って認識することが防止可能となる。

なお、図11は、一例であり、本発明の効果がこの場合に限定されるものではない。 《7》

復号化装置12(図6参照)において、動きベクトル検出部79は、符号化画像信号d 211から取得された付加情報d252が指定する動き検出方式を実行できない場合に は、あらかじめ定めた他の動き検出方式により動きベクトルの検出を行ってもよい。

図12は、付加情報d252が指定する動き検出のアルゴリズム120と、動きベクトル検出部79で実行される動き検出のアルゴリズム121との対応関係について示している

これにより、動きベクトル検出部79は、付加情報d252が指定する動き検出のアルゴリズム120を実行できない場合であっても、できるだけ近い動きベクトルを検出することができる他の動き検出のアルゴリズム121を実行する。

なお、図12は、対応関係の一例であり、本発明の効果がこの場合に限定されるも のではない。

(8)

符号化装置11(図2参照)では、動き検出方式あるいは補間方式などの情報があらかじめ定めたデフォルトと一致する場合には、付加情報d231に含めないこととしてもよい。

この場合、復号化装置12(図6参照)では、動き検出方式あるいは補間方式などに相当する情報が付加情報d252に含まれない場合には、あらかじめ符号化装置11と共通に有するデフォルトの動き検出方式あるいは補間方式を用いて補間フレームの生成を行う。

また、符号化装置11(図2参照)では、画像フレームの画面間符号化の際に検出される動きベクトルが利用可能である場合には、動き検出方式を付加情報d231に含めないこととしても良い。

例えば、BフレームB42の符号化に際して検出される動きベクトルMV48(図4(a) 参照)がすでにPフレームP44の符号化の際に検出されている場合、再度Pフレーム P44とIフレームI41との動きベクトルの検出を行わない。符号化装置11では、BフレームB42の符号化に際して、PフレームP44の符号化の際に検出された動きベクトルを利用する。

この場合、復号化装置12では、補間フレームの生成に際して、動きベクトル検出部79によるPフレームP44とIフレームI41との動きベクトルの検出を行わない。補間フレーム生成部80は、復号化部70から、PフレームP44の符号化の際に用いられた動きベクトル取得し、この動きベクトルを利用してBフレームB42の復号化を行う。

(9)

上記実施形態では、付加情報d231は、補間フレーム毎に作成されるとした。ここで、付加情報d231に含まれる情報のうちの一部は、画像信号d210のストリーム毎に含まれるものであってもよい。

例えば、動き検出方式や補間方式などは、画像信号d210のストリーム毎に含まれるものであってもよい。これにより、補間フレーム毎に動き検出方式や補間方式を付加する必要がなくなり、符号化効率が向上する。

また、付加情報d231の少なくとも一部は、画像信号d210のストリームヘッダとして含まれるものであっても良い。

《10》

上記実施形態では、付加情報作成部18は、入力された減算信号d220の大きさに応じて、付加情報d231の作成を行うとした。ここで、付加情報作成部18は、動きベクトル検出部31によるPフレームP44とIフレームI41との動きベクトルの検出結果に応じて、付加情報d231の作成を行ってもよい。

例えば、動きベクトル検出部31での動きベクトルが近傍の動きベクトルとの類似している、つまり大きく異ならない場合、付加情報を作成する。また、付加情報作成部18は、前記減算信号d220の大きさ及び動きベクトル検出部31での動きベクトルの近傍の動きベクトルと類似性に応じて、付加情報d231の作成を行ってもよい。

これにより、Bフレームの生成精度の向上を図ることができる。

《11》

上記実施形態では、残差情報を付加情報d231とする際に、減算信号d220を付加

情報作成部18に入力するとした。ここで、残差情報を付加情報d231とする際に、減算信号d220を直行変換部22および量子化部23を用いて処理した量子化DCT係数d222を付加情報作成部18に入力してもよい。

この場合、付加情報d231の情報量を削減することが可能である。

また、これに対応して、復号化装置12においても、可変長復号化部72により出力される付加情報d252のうち、減算信号d220を直行変換部22および量子化部23を用いて処理した量子化DCT係数d222は、逆量子化部73および逆直行変換部74を用いて処理され、補間フレーム生成部80に出力されるものであってもよい。これにより、減算信号d220の値は、補間フレーム生成部80に与えられることとなる。

(復号化部70について)

 $\langle 12 \rangle$

上記実施形態では、復号化部70は、符号化画像信号d211が付加情報d252を含んでいない場合には、BフレームB42について従来のBフレームと同様の符号化が行われていると判断すると説明した(図8(ステップS431)参照)。ここで、復号化部70は、付加情報d252が含まれていない場合には、フレームメモリ76に記憶されている画像フレームを用いて補間フレームを生成するものであってもよい。

例えば、補間フレーム生成部80は、あらかじめ定めた方法により補間フレームの生成を行う。

ここで、あらかじめ定めた方法とは、例えば、フレームメモリ76に記憶されている画像フレーム間の動きベクトルを検出し、補間フレームの動きベクトルを求め、補間フレームを生成する方法や、符号化画像信号d211が含む画面間符号化された画像フレームの動きベクトルを用いて、補間フレームの動きベクトルを求め、補間フレームを生成する方法などである。

(符号化装置11および復号化装置12について)

 $\langle 13 \rangle$

符号化装置11(図2参照)および復号化装置12(図6参照)の各部は、それぞれ一体として存在していてもよいし、別体として存在していても良い。例えば、符号化装置11において、符号化部16と、動き補償部17と、付加情報作成部18などは、一体とし

て備えられるものであっても、別々の装置として別体として備えられるものであってもよい。また、復号化装置12において、復号化部70とフレーム出力部71とは一体として備えられるものであっても、別々の装置として別体として備えられるものであってもよい。

 $\langle 14 \rangle$

符号化装置11(図2参照)および復号化装置12(図6参照)の各部は、それぞれフレーム単位での切換として説明した。ここで、切換の単位はブロック単位であってもよい。例えば、スイッチ21(図2参照)やスイッチ81(図6参照)の動作は、ブロック単位での判定で行っても良い。

この場合、図5で説明した付加情報作成方法および図8で説明した補間フレーム生成方法におけるBフレームについての処理は、ブロック単位で行われることとなる。

これにより、ブロック毎に適した符号化・復号化方法を選択することができるため、B フレームの画質を向上させることができる。

また、上記実施形態および変形例で説明したそれぞれの内容は、ブロック単位、フレーム単位、ストリーム単位などで任意に組み合わせて用いられることが可能である。また、ブロック単位で切換を行う場合、Bフレームの符号化では、付加情報を作成しない従来の符号化と、付加情報を作成する本発明の符号化とを切換るものであってもよい。

具体的には、スイッチ21(または、スイッチ21を制御する制御部(図示せず))は、Bフレームを構成するブロック毎に以下に示す符号化手法選択処理を行う。符号化手法選択処理は、入力されたブロックに対して、符号化手法の候補毎に、次の(式1)を計算する。

 $J=D+\lambda\cdot R$ ··· (式1)

ここで、Jは、コスト、Dは、ひずみ、λは、所定の係数、Rは、符号量である。より詳しくは、Dは、それぞれの手法を用いて符号化した画像の復号化画像と、原画像との誤差を示す。Rは、それぞれの手法を用いて符号化した場合の符号量を示し、量子化DCT係数d222、動きベクトル、符号化モード、付加情報d231などを符号化する場合の符号量である。

符号化手法選択処理は、計算された(式1)の値Jを最小とする符号化手法の候補 を選択する。

これにより、(式1)を最小とする符号化手法の候補がブロック毎に選択され、復号化の際のひずみを抑えつつ、符号量を低減するBフレームの符号化が実現できる。

なお、符号化手法の候補としては、従来の符号化手法や、上記実施形態で説明した符号化手法が用いられる。ここで、従来の符号化手法とは、例えば、Bフレームを構成するブロックの符号化手法として用いられる画面内符号化、片方向予測、双方向予測、ダイレクトモードなどといった手法である。

より具体的には、画面内符号化、片方向予測は、IフレームやPフレームの符号化として説明したのと同様に行われる。双方向予測では、動き補償部17(図2参照)は、既にローカルデコードされフレームメモリ30に記憶されているIフレームとPフレームとに対して、Bフレームの動きベクトルを検出する。さらに、フレームメモリ30は、検出された動きベクトルを用いて動き補償されたBフレームを作成する。さらに、減算部20は、画像信号d210を構成するBフレームと動き補償されたBフレームとを処理し、減算信号d220を出力する。また、ダイレクトモードでは、動き補償部17(図2参照)は、既にローカルデコードされフレームメモリ30に記憶されているPフレームにおいて、符号化対象となるBフレームのブロックと同じ位置にあるブロック(アンカーブロック)の動きベクトルを、Bフレームの位置でスケーリングし、BフレームのIフレームおよびPフレームに対する動きベクトルを算出する。さらに、フレームメモリ30は、検出された動きベクトルを用いて動き補償されたBフレームを作成する。さらに、減算部20は、画像信号d210を構成するBフレームと動き補償されたBフレームとを処理し、減算信号d220を出力する。

スイッチ21により、従来法がBフレームの符号化手法として選択された場合には、スイッチ21は、直交変換部22側を向き、減算信号d220は、直交変換部22に入力される。また、検出された動きベクトルは、可変長符号化部24に入力される。

このように、従来法と本発明の手法とをブロック毎に切換えることにより、より符号化 効率が向上する。例えば、従来法としてはダイレクトモードで符号化することが望まし い場合において、そのダイレクトモードよりも符号化効率の高い本発明の手法を用い ることが可能となる。

より具体的には、ダイレクトモードでは、符号化の対象となるBフレームに対する動きベクトルを求めず、例えば、Pフレームの動きベクトルを利用する。このように、ダイレクトモードでは、動きベクトルを符号化しないことにより、符号化効率を向上させている。この一方で、ダイレクトモードでは、Pフレームの動きベクトルを利用しているため、動き補償されたBフレームの精度が十分に得られず、残差情報が大きくなることがある。しかし、本発明の手法を用いる場合、符号化の対象となるBフレームに対する動きベクトルが求められている。このため、動き補償されたBフレームの精度を十分に得ることが可能となる。さらに、求めた動きベクトルを符号化する必要なく、ダイレクトモードと同様に符号化効率を高めることが可能となっている。

また、このように符号化された符号化画像信号d211に対応して、スイッチ81(図6参照)をブロック単位で動作させることも可能である。

「第2実施形態]

本発明の第2実施形態として、上記で説明した補間フレーム生成システム、符号化装置、復号化装置、補間フレーム生成方法、補間フレーム生成プログラムの応用例と それを用いたシステムを図13〜図16を用いて説明する。

図13は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示すブロック図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex107~ex110が設置されている。このコンテンツ供給システムex100は、例えば、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex107~ex110を介して、コンピュータex111、PDA(personal digital assistant)ex112、カメラex113、携帯電話ex114、カメラ付きの携帯電話ex115などの各機器が接続される。

しかし、コンテンツ供給システムex100は図13のような組合せに限定されず、いずれかを組み合わせて接続するようにしてもよい。また、固定無線局である基地局ex107ーex110を介さずに、各機器が電話網ex104に直接接続されてもよい。

カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器である。また、携帯電話は、PDC (Personal Digital Communications) 方式、CDMA (Code Division

Multiple Access) 方式、W-CDMA (Wideband-Code Division Multiple Access) 方式、若しくはGSM (Global System for Mobile Communications) 方式の携帯電話機、またはPHS (Personal Handyphone System) 等であり、いずれでも構わない。

また、ストリーミングサーバex103は、カメラex113から基地局ex109、電話網ex104を通じて接続されており、カメラex113を用いてユーザが送信する符号化処理されたデータに基づいたライブ配信等が可能になる。撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするサーバ等で行ってもよい。また、カメラex116で撮影した動画データはコンピュータex111を介してストリーミングサーバex103に送信されてもよい。カメラex116はデジタルカメラ等の静止画、動画が撮影可能な機器である。この場合、動画データの符号化はカメラex116で行ってもコンピュータex111で行ってもどちらでもよい。また、符号化処理はコンピュータex111やカメラex116が有するLSIex117において処理することになる。なお、画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な記録媒体である何らかの蓄積メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込んでもよい。さらに、カメラ付きの携帯電話ex115で動画データを送信してもよい。このときの動画データは携帯電話ex115が有するLSIで符号化処理されたデータである。

このコンテンツ供給システムex100では、ユーザがカメラex113、カメラex116等で撮影しているコンテンツ(例えば、音楽ライブを撮影した映像等)を符号化処理してストリーミングサーバex103に送信する一方で、ストリーミングサーバex103は要求のあったクライアントに対して上記コンテンツデータをストリーム配信する。クライアントとしては、符号化処理されたデータを復号化することが可能な、コンピュータex111、PD Aex112、カメラex113、携帯電話ex114等がある。このようにすることでコンテンツ供給システムex100は、符号化されたデータをクライアントにおいて受信して再生することができ、さらにクライアントにおいてリアルタイムで受信して復号化し、再生することにより、個人放送をも実現可能になるシステムである。

コンテンツの符号化処理あるいは復号化処理に際して、上記実施形態で説明した 補間フレーム生成システム、符号化装置、復号化装置、補間フレーム生成方法、補 間フレーム生成プログラムを用いてもよい。例えば、コンピュータex111、PDAex112、カメラex113、携帯電話ex114等は、上記実施形態で示した符号化装置、復号化装置を備え、補間フレーム生成方法、補間フレーム生成プログラムを実現でき、全体として補間フレーム生成システムを構築するものであってよい。

一例として携帯電話について説明する。

図14は、上記実施形態の符号化装置および復号化装置を用いた携帯電話ex115を示す図である。携帯電話ex115は、基地局ex110との間で電波を送受信するためのアンテナex201、CCDカメラ等の映像、静止画を撮ることが可能なカメラ部ex203、カメラ部ex203で撮影した映像、アンテナex201で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex202、操作キーex204群から構成される本体部、音声出力をするためのスピーカ等の音声出力部ex208、音声入力をするためのマイク等の音声入力部ex205、撮影した動画もしくは静止画のデータ、受信したメールのデータ、動画のデータもしくは静止画のデータ等、符号化されたデータを保存するための記録メディアex207、携帯電話ex115に記録メディアex207を装着可能とするためのスロット部ex206を有している。記録メディアex207はSDカード等のプラスチックケース内に電気的に書換えや消去が可能な不揮発性メモリであるEEPROM(Electrically Erasable and Programmable Read Only Memory)の一種であるフラッシュメモリ素子を格納したものである。

さらに、携帯電話ex115について図15を用いて説明する。携帯電話ex115は表示部ex202および操作キーex204を備えた本体部の各部を統括的に制御するようになされた主制御部ex311に対して、電源回路部ex310、操作入力制御部ex304、画像符号化部ex312、カメラインターフェース部ex303、LCD(Liquid Crystal Display)制御部ex302、画像復号化部ex309、多重分離部ex308、記録再生部ex307、変復調回路部ex306および音声処理部ex305が同期バスex313を介して互いに接続されている。

電源回路部ex310は、ユーザの操作により終話および電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりカメラ付ディジタル携

帯電話ex115を動作可能な状態に起動する。

携帯電話ex115は、CPU、ROMおよびRAM等でなる主制御部ex311の制御に基づいて、音声通話モード時に音声入力部ex205で集音した音声信号を音声処理部ex305によってディジタル音声データに変換し、これを変復調回路部ex306でスペクトラム拡散処理し、送受信回路部ex301でディジタルアナログ変換処理および周波数変換処理を施した後にアンテナex201を介して送信する。また携帯電話ex115は、音声通話モード時にアンテナex201で受信した受信信号を増幅して周波数変換処理およびアナログディジタル変換処理を施し、変復調回路部ex306でスペクトラム逆拡散処理し、音声処理部ex305によってアナログ音声信号に変換した後、これを音声出力部ex208を介して出力する。

さらに、データ通信モード時に電子メールを送信する場合、本体部の操作キーex2 04の操作によって入力された電子メールのテキストデータは操作入力制御部ex304 を介して主制御部ex311に送出される。主制御部ex311は、テキストデータを変復 調回路部ex306でスペクトラム拡散処理し、送受信回路部ex301でディジタルアナログ変換処理および周波数変換処理を施した後にアンテナex201を介して基地局e x110へ送信する。

データ通信モード時に画像データを送信する場合、カメラ部ex203で撮像された画像データをカメラインターフェース部ex303を介して画像符号化部ex312に供給する。また、画像データを送信しない場合には、カメラ部ex203で撮像した画像データをカメラインターフェース部ex303およびLCD制御部ex302を介して表示部ex202に直接表示することも可能である。

画像符号化部ex312は、カメラ部ex203から供給された画像データを圧縮符号化することにより符号化画像データに変換し、これを多重分離部ex308に送出する。また、このとき同時に携帯電話ex115は、カメラ部ex203で撮像中に音声入力部ex205で集音した音声を音声処理部ex305を介してディジタルの音声データとして多重分離部ex308に送出する。

多重分離部ex308は、画像符号化部ex312から供給された符号化画像データと音声処理部ex305から供給された音声データとを所定の方式で多重化し、その結果

得られる多重化データを変復調回路部ex306でスペクトラム拡散処理し、送受信回路部ex301でディジタルアナログ変換処理および周波数変換処理を施した後にアンテナex201を介して送信する。

データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、アンテナex201を介して基地局ex110から受信した受信信号を変復調回路部ex306でスペクトラム逆拡散処理し、その結果得られる多重化データを多重分離部ex308に送出する。

また、アンテナex201を介して受信された多重化データを復号化するには、多重分離部ex308は、多重化データを分離することにより画像データの符号化ビットストリームと音声データの符号化ビットストリームとに分け、同期バスex313を介して当該符号化画像データを画像復号化部ex309に供給すると共に当該音声データを音声処理部ex305に供給する。

次に、画像復号化部ex309は、画像データの符号化ビットストリームを復号することにより再生動画像データを生成し、これをLCD制御部ex302を介して表示部ex202に供給し、これにより、例えばホームページにリンクされた動画像ファイルに含まれる動画データが表示される。このとき同時に音声処理部ex305は、音声データをアナログ音声信号に変換した後、これを音声出力部ex208に供給し、これにより、例えばホームページにリンクされた動画像ファイルに含まる音声データが再生される。

以上の構成において、画像符号化部ex312は、上記実施形態の符号化装置を備え、画像復号化部ex309は、上記実施形態の復号化装置を備えている。この時、図2に示す符号化装置11と図6に示す復号化装置12とで共通する構成については同一のハードウェアを共用することとしてもよい。すなわち、フレームメモリ、動きベクトル検出部、逆量子化部、逆直交変換部などは、同一のハードウェアであっても良い。

なお、上記システムの例に限られず、最近は衛星、地上波によるディジタル放送が 話題となっており、図16に示すようにディジタル放送用システムにも上記実施形態で 説明した補間フレーム生成システム、符号化装置、復号化装置、補間フレーム生成 方法、補間フレーム生成プログラムを組み込むことができる。具体的には、放送局ex 409では映像情報の符号化ビットストリームが電波を介して通信または放送衛星ex4

10に伝送される。これを受けた放送衛星ex410は、放送用の電波を発信し、この電 波を衛星放送受信設備をもつ家庭のアンテナex406で受信し、テレビ(受信機)ex4 01またはセットトップボックス(STB)ex407などの装置により符号化ビットストリームを 復号化してこれを再生する。ここで、テレビ(受信機)ex401またはセットトップボックス (STB)ex407などの装置が上記実施形態で説明した符号化装置、復号化装置を備 えていてもよい。また、上記実施形態の補間フレーム生成方法を用いるものであって もよい。さらに、補間フレーム生成プログラムを備えていてもよい。また、記録媒体であ るCDやDVD等の蓄積メディアex402に記録した符号化ビットストリームを読み取り、 復号化する再生装置ex403にも上記実施形態で説明した符号化装置、復号化装置 、補間フレーム生成方法、補間フレーム生成プログラムを実装することが可能である 。この場合、再生された映像信号はモニタex404に表示される。また、ケーブルテレ ビ用のケーブルex405または衛星/地上波放送のアンテナex406に接続されたセ ットトップボックスex407内に上記実施形態で説明した符号化装置、復号化装置、補 間フレーム生成方法、補間フレーム生成プログラムを実装し、これをテレビのモニタe x408で再生する構成も考えられる。このときセットトップボックスではなく、テレビ内に 上記実施形態で説明した符号化装置、復号化装置を組み込んでも良い。また、アン テナex411を有する車ex412で衛星ex410からまたは基地局ex107等から信号を 受信し、車ex412が有するカーナビゲーションex413等の表示装置に動画を再生す ることも可能である。

更に、画像信号を符号化し、記録媒体に記録することもできる。具体例としては、D VDディスクex421に画像信号を記録するDVDレコーダや、ハードディスクに記録するディスクレコーダなどのレコーダex420がある。更にSDカードex422に記録することもできる。レコーダex420が上記実施形態の復号化装置を備えていれば、DVDディスクex421やSDカードex422に記録した画像信号を補間して再生し、モニタex408に表示することができる。

なお、カーナビゲーションex413の構成は例えば図15に示す構成のうち、カメラ部 ex203とカメラインターフェース部ex303、画像符号化部ex312を除いた構成が考えられ、同様なことがコンピュータex111やテレビ(受信機)ex401等でも考えられる

^

また、上記携帯電話ex114等の端末は、符号化器・復号化器を両方持つ送受信型の端末の他に、符号化器のみの送信端末、復号化器のみの受信端末の3通りの実装形式が考えられる。

このように、上記実施形態で説明した補間フレーム生成システム、符号化装置、復号化装置、補間フレーム生成方法、補間フレーム生成プログラムを上述したいずれの機器・システムに用いることは可能であり、上記実施形態で説明した効果を得ることができる。

また、上記実施形態で図を用いて説明した符号化装置、復号化装置において、各機能ブロックは、LSIなどの半導体装置により個別に1チップ化されても良いし、一部又は全部を含むように1チップ化されても良い。

具体的には、図2における各ブロックは、1チップ化されても良い。この際、フレーム メモリ30は、別体として外部に接続されるものであっても良い。

また、図6における各ブロックは、1チップ化されても良い。この際、フレームメモリ76は、別体として外部に接続されるものであっても良い。また、復号化部70とフレーム 出力部71とは、別対として構成されていても良い。このような構成においても、フレームメモリ76は、別体として復号化部70の外部に接続されるものであっても良い。

なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLS I、ウルトラLSIと呼称されることもある。

また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで 実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリ コンフィギュラブル・プロセッサーを利用しても良い。

さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行って もよい。バイオ技術の適応等が可能性としてありえる。

また、上記実施形態で図を用いて説明した各機能ブロックの処理の一部又は全部は、プログラムにより実現されるものであってもよい。この場合、具体的な処理は、例

えば、中央演算装置(CPU)により行われる。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。

産業上の利用可能性

[0007] 本発明の復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび符号化プログラムは、符号化効率を向上させつつ高精度の補間フレームを生成を行うことが必要な復号化装置、符号化装置、補間フレーム生成システム、集積回路装置、復号化プログラムおよび符号化プログラムなどに適用することが可能である。

請求の範囲

[1] 画像信号を構成する画像フレームと、前記画像フレーム間の動きベクトルである第 1の動きベクトルに基づいて前記画像フレームを補間する補間フレームを生成するた めの付加情報とが符号化された符号化画像信号を復号化する復号化手段と、

復号化された前記画像フレーム間の動きベクトルである第2の動きベクトルを検出 する動きベクトル検出手段と、

前記第2の動きベクトルと復号化された前記画像フレームと復号化された前記付加 情報とに基づいて補間フレームを生成する補間フレーム生成手段と、 を備える復号化装置。

[2] 前記付加情報は、前記画像フレームに対する前記補間フレームの補間方式と、前記補間フレームと前記補間フレームに対応する画像フレームとの残差情報と、前記補間フレームの前記画像フレームに対して検出された動きベクトルと前記第1の動きベクトルに基づいて導出される前記補間フレームの前記画像フレームに対する動きベクトルとのベクトル差分と、前記第1の動きベクトルの検出に用いられた動き検出方式とのうち少なくともいずれかを含む、

請求項1に記載の復号化装置。

[3] 前記付加情報は、前記付加情報が含む情報の組み合わせを特定するためのプロファイル情報をさらに含んでいる、

請求項2に記載の復号化装置。

[4] 前記動き検出方式は、動き検出のパラメータの組み合わせを特定するためのコード 情報として含まれており、

前記動きベクトル検出手段は、前記コード情報が特定する前記動き検出のパラメータに基づいて、前記第2の動きベクトルの検出を行う、

請求項2または3に記載の復号化装置。

[5] 前記動きベクトル検出手段は、前記付加情報が含む前記動き検出方式を実行できない場合には、前記付加情報が含む前記動き検出方式に応じて定められた所定の動き検出方式により前記第2の動きベクトルを検出する、

請求項2〜4のいずれか1項に記載の復号化装置。

- [6] 前記付加情報は、補間フレーム毎に作成されている情報である、 請求項2~5のいずれか1項に記載の復号化装置。
- [7] 前記付加情報のうち、前記動き検出方式は、前記符号化画像信号のストリーム毎に作成されている情報である、

請求項2~5のいずれか1項に記載の復号化装置。

[8] 前記補間フレーム生成手段は、前記符号化画像信号に前記付加情報が含まれていない場合に、復号化した前記画像フレームに基づいて前記補間フレームの生成を行う、

請求項1~7のいずれか1項に記載の復号化装置。

[9] 画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検 出する第1の動きベクトル検出手段と、

前記画像フレームを補間する補間フレームを前記第1の動きベクトルに基づいて生成するための付加情報を作成する付加情報作成手段と、

前記画像フレームと前記付加情報とを符号化する符号化手段と、

を備える符号化装置

[10] 前記付加情報は、前記画像フレームに対する前記補間フレームの補間方式と、前記補間フレームと前記補間フレームに対応する画像フレームとの残差情報と、前記補間フレームの前記画像フレームに対して検出された動きベクトルと前記第1の動きベクトルに基づいて導出される前記補間フレームの前記画像フレームに対する動きベクトルとのベクトル差分と、前記第1の動きベクトルの検出に用いられた動き検出方式とのうち少なくともいずれかを含む、

請求項9に記載の符号化装置。

[11] 前記付加情報は、前記付加情報が含む情報の組み合わせを特定するためのプロファイル情報をさらに含んでいる、

請求項10に記載の符号化装置。

[12] 前記動き検出方式は、動き検出のパラメータの組み合わせを特定するためのコード 情報として含まれている、

請求項10または11に記載の符号化装置。

- [13] 前記付加情報は、補間フレーム毎に作成される情報である、 請求項10~12のいずれか1項に記載の符号化装置。
- [14] 前記動き検出方式は、前記画像信号のストリームのヘッダ情報として含まれている、

請求項10~12のいずれか1項に記載の符号化装置。

[15] 前記プロファイル情報は、前記画像信号のストリームのヘッダ情報として含まれている、

請求項11に記載の符号化装置。

[16] 前記符号化手段は、前記画像フレームに基づいて生成される補間フレームと前記 補間フレームに対応する前記画像信号との残差が小さい場合には、前記付加情報 の符号化を行わない、

請求項9~15のいずれか1項に記載の符号化装置。

[17] 画像信号を構成する画像フレームを補間する補間フレームを生成する補間フレーム生成システムであって、

前記画像フレーム間の動きベクトルである第1の動きベクトルを検出する第1の動きベクトル検出手段と、

前記第1の動きベクトルに基づいて前記補間フレームを生成するための付加情報 を作成する付加情報作成手段と、

前記画像フレームと前記付加情報とを符号化する符号化手段と、

前記符号化された前記画像フレームと前記付加情報とを復号化する復号化手段と

復号化された前記画像フレーム間の動きベクトルである第2の動きベクトルを検出 する第2の動きベクトル検出手段と、

前記第2の動きベクトルと復号化された前記画像フレームと復号化された前記付加 情報とに基づいて補間フレームを生成する補間フレーム生成手段と、

を備える補間フレーム生成システム。

[18] 画像信号を構成する画像フレームと、前記画像フレーム間の動きベクトルである第 1の動きベクトルに基づいて前記画像フレームを補間する補間フレームを生成するた めの付加情報とが符号化された符号化画像信号を復号化する復号化部と、

復号化された前記画像フレーム間の動きベクトルである第2の動きベクトルを検出 する動きベクトル検出部と、

前記第2の動きベクトルと復号化された前記画像フレームと復号化された前記付加 情報とに基づいて補間フレームを生成する補間フレーム生成部と、 を備える集積回路装置。

[19] 画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検 出する第1の動きベクトル検出部と、

前記画像フレームを補間する補間フレームを前記第1の動きベクトルに基づいて生成するための付加情報を作成する付加情報作成部と、

前記画像フレームと前記付加情報とを符号化する符号化部と、を備える集積回路装置。

[20] 画像信号を構成する画像フレームと、前記画像フレーム間の動きベクトルである第 1の動きベクトルに基づいて前記画像フレームを補間する補間フレームを生成するた めの付加情報とが符号化された符号化画像信号を復号化する復号化ステップと、

復号化された前記画像フレーム間の動きベクトルである第2の動きベクトルを検出 する動きベクトル検出ステップと、

前記第2の動きベクトルと復号化された前記画像フレームと復号化された前記付加 情報とに基づいて補間フレームを生成する補間フレーム生成ステップと、 を備える復号化方法をコンピュータに行わせるための復号化プログラム。

[21] 画像信号を構成する画像フレーム間の動きベクトルである第1の動きベクトルを検 出する第1の動きベクトル検出ステップと、

前記画像フレームを補間する補間フレームを前記第1の動きベクトルに基づいて生成するための付加情報を作成する付加情報作成ステップと、

前記画像フレームと前記付加情報とを符号化する符号化ステップと、を備える符号化方法をコンピュータに行わせるための符号化プログラム。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

(a)

[図10]

111				110
Code	探索範囲	サブペル 精度	評価関数	
1	±8	1	F1	
2	±16	1/2	F2	
3	±32	1/4	F3	
4	±64	1/8	F4	

[図11]

						115
116	Profile	1	2	3	4	
	補間方式	0	0	0	0	
	残差情報	0	×	×	0	
	ベクトル 差分	0	0	×	0	
	動き検出 方式	全探索	3step	3step	OAT	

[図12]

[図13]

[図14]

ex 115

[図15]

[図16]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000250

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H04N7/32			
According to International Patent Classification (IPC) or to both national classification and IPC			
	nentation searched (classification system followed by cla	assification symbols)	
Int.Cl	H04N7/26-7/68	,	
Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2005 To:	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005
Electronic data b	pase consulted during the international search (name of d	lata base and, where practicable, search to	erms used)
C. DOCUMEN	VTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	JP 2828096 B (Matsushita Elec Co., Ltd.), 18 September, 1998 (18.09.98) Full text (Family: none)	ctric Industrial	1-21
Y	JP 07-177519 A (Kyocera Corp 14 July, 1995 (14.07.95), Par. Nos. [0010] to [0011] (Family: none)	.),	1-21
Y	JP 08-256340 A (Sony Corp.), 01 October, 1996 (01.10.96), Par. Nos. [0031] to [0036], [(Family: none)	1-21	
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand	
to be of particular relevance "E" earlier application or patent but published on or after the international		the principle or theory underlying the invention X" document of particular relevance; the claimed invention cannot be	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be	
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination	
"P" document published prior to the international filing date but later than the priority date claimed		being obvious to a person skilled in the art"&" document member of the same patent family	
Date of the actual completion of the international search 10 May, 2005 (10.05.05)		Date of mailing of the international sear 07 June, 2005 (07.0	
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer			
Facsimile No.		Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/000250

			0037000230	
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim No.	
Y	JP 05-115061 A (Sony Corp.), 07 May, 1993 (07.05.93), Par. Nos. [0023] to [0025] & DE 69224055 C & EP 0556507 A1 & KR 0272815 B & US 5337086 A1		1-21	
A	JP 07-177514 A (Casio Computer Co., Ltd.) 14 July, 1995 (14.07.95), Par. No. [0044] (Family: none)),	1-21	
A	JP 09-284777 A (Sony Corp.), 31 October, 1997 (31.10.97), Par. Nos. [0013] to [0024] (Family: none)		1-21	
A	JP 2002-77789 A (Canon Inc.), 15 March, 2002 (15.03.02), Par. No. [0044] & EP 1124379 A2 & US 2001/0012444	. A1	1-21	

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ H04N7/32

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ H 0 4 N 7/26-7/68

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

C. 関連すると認められる文献			
引用文献の カテゴリー *	, 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP 2828096 B (松下電器産業株式会社) 1998.09.18,全文 (ファミリーなし)	1-21	
Y	JP 07-177519 A (京セラ株式会社) 1995.07.14、【0010】~【0011】、(ファミリーなし)	1-21	
Y	JP 08-256340 A (ソニー株式会社) 1996.10.01、【0031】~【0036】、【0044】、(ファミ リーなし)	1-21	

▼ C欄の続きにも文献が列挙されている。

「パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

10.05.2005

国際調査報告の発送日

07, 06, 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

5C 8725

菅原 道晴

電話番号 03-3581-1101 内線 3541

引用文献の カテゴリー*	C(続き).	関連すると認められる文献	
Y		引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
1995.07.14、[0044]、(ファミリーなし) JP 09-284777 A (ソニー株式会社) 1997.10.31、[0013] ~ [0024]、(ファミリーなし) A JP 2002-77789 A (キャノン株式会社) 2002.03.15、[0044]、& EP 1124379 A2 & US 2001/0012444 A1	Y	1993. 05. 07、[0023] ~ [0025] & DE 6922 4055 C & EP 0556507 A1 & KR 02728	
1997. 10. 31、【0013】~【0024】、(ファミリーなし) JP 2002-77789 A (キヤノン株式会社) 2002. 03. 15、【0044】、& EP 1124379 A2 & US 2001/0012444 A1	A		1-21
2002.03.15, [0044], & EP 1124379 A2 & US 2001/0012444 A1	A		1-21
	A	2002.03.15、[0044]、& EP 1124379 A2 &	1-21
			,
		,	
			,