1 Chapter 11, Sequences

Sequences are a kind of summation, written in the following form:

$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

They can be alternating, meaning that x_n is on the opposite side of x_{n+1} for any n. Sequences are basically an ordered list of computed values, kinda like a function, but discrete instead of possibly continuous. Sequences can also depend on the previous term, which would make them recursive. A popular sequence like this is the fibionacci sequence:

$$x_1 = 0$$
 $x_2 = 1$
 $x_n = \{x_{n-1} + x_{n+2}\}_{n=1}$
which gives
 $\{0, 1, 1, 2, 3, 5, 8, \ldots\}$

A sequence $\{a_n\}_{n=0}$ has a limit L and we write

$$\lim_{n \to \infty} \{a_n\}_{n=0} = L$$

$$or$$

$$a_n \to L \text{ as } n \to \infty$$

If a sequence has a limit L, it can be said it converges to L, else it diverges. If $\{a_n\}_{n=0}$ converges to L, then each a_{n+1} is closer to L than a_n

Theorem (Th 5).

$$\lim_{n\to\infty} = \infty$$

For every positive number M, there is an integer N such that if n > N, then $a_n > M$

Example 1: $\{2n\}_{n=0}\,, M=1000, N=500$ Dan is er voor elke $M>1000, N\geq 500$

Theorem (Th 6). If $\{a_n\}_{n=0}$, $\{b_n\}_{n=0}$ are convergent sequences and c is a constant, then the following limit laws apply

$$\lim_{n \to \infty} a_n \pm b_m = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} if \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} (a_n)^p = \left(\lim_{n \to \infty} a_n\right)^p \text{ if n and p } > 0$$

All the normal limit laws apply as well, so review anal.

Theorem (Squeeze th.). Squeeze theorem also applies to sequences. If $a_n \leq b_n \leq c_n$ and $\lim a_n = \lim c_n = L$, then $\lim b_n = L$

Theorem (Th 6). If $\lim |a_n| = 0$, then $\lim a_n = 0$

See examples in notebook.

Theorem (Th 7). If $\lim a_n = L$, and if f(x) is continuous at L, then $\lim f(a_n) = f(L)$

Theorem. $\{a_n\}_{n=0}$ is increasing if $a_n < a_{n+1}$ for all n > 0, is decreasing if $a_n < a_{n-1}$ for all n > 0, is monotonic if it's only decreasing or increasing

Definition. $\{a_n\}_{n=0}$ is bounded $\frac{above}{below}$ if there is a number M such that a_n is always $\frac{below}{above}M$ for all n

Theorem (Th 12, Monotonic sequence theorem). Every bounded monotone sequence is convergent

2 Chapter 11.2, Sequences

A series is just a summation of a sequence. An infinite series is a summation of an infinite sequence, usually noted in the following forms:

$$\sum_{n=1}^{\infty} a_n \ or \ \sum a_n$$

Furthermore, we can also have partial sums, denoted as S_n . This is defined as

$$S_n = \sum_{n=1}^n = a_1 + a_2 + \ldots + a_n$$

If given a series S_n , we can compute a_n by subtracting S_n with S_{n-1} . Example:

$$S_{n} = \frac{n+1}{n+10}$$

$$S_{n-1} = \frac{n}{n+9}$$

$$a_{n} = S_{n} - S_{n-1}$$

$$= \frac{n+1}{n+10} - \frac{n}{n+9}$$

$$= \frac{9}{(n+9)(n+10)}$$

We can also compute a_k for any integer constant k, given an S_n by subtracting S_k by S_{k-1} .

Example: Calculate a_7 for the given S_n :

$$S_n = \frac{n+1}{n+10}$$

$$a_7 = S_7 - S_6 = \frac{8}{17} - \frac{7}{16} = \frac{9}{272}$$

Theorem. Given a series $S_n = \sum a_n$, we can compute if it diverges or converges, and where it does so by computing the limit of s_n as n goes to infinity. Or more math-y:

$$\lim_{n \to \infty} S_n = L$$

if $L \neq \infty$, S_n converges to L.

2.1 Geometric series

Geometric series are a special kind of series written in the following form:

$$\sum_{n=0}^{\infty} a(r)^k$$

Example:

$$S_n = 8 + \frac{8}{3} + \frac{8}{9} + \frac{8}{27} + \dots S_n = 8(\frac{1}{3})^n$$

The special property of these is that for any $r \in <-1, 1>$,

$$\sum_{k=0}^{\infty} a(r)^k = \frac{a}{1-r}$$

If $r \not\in <-1, 1>$, then S_n diverges.

Theorem. if $\sum a_n, \sum b_n$ are convergent, then so are the following:

$$\sum c_a n = c \sum a_n$$

$$\sum (a_n + b_n) = \sum a_n + \sum b_n$$

2.2 Divergence/convergence tests

There are several tests to see whether a series diverges or not. The first one is the n'th term test. This one does not guarantee that if a series passes this test, that it converges. But it does guarantee that if it fails the test, that it diverges.

Theorem. Divergence test
If

$$\lim_{n \to \infty} a_n \neq 0, \sum_{n \to \infty} a_n$$

will diverge. Furthermore, if $\sum a_n$ converges, $\lim a_n = 0$

This makes sense, because if a_n diverges to a nonzero value, as n approaches infinity, you'd be summing up that value infinity times, which does reach infinity. And if there is no limit, it obviously can't converge.

Theorem. P-series test

A series in the form $\sum \frac{1}{n^p}$ is called a p-series, and converges for all p > 1

Theorem. Integral test

If f(n) is a cont, decreasing function on $[1, \infty]$, then $\sum_{n=k}^{\infty} f(n)$ converges iff $\int_{k}^{\infty} f(x)dx$ converges (returns a real, non infinite number)

Furthermore, if $R_n = S - S_n$, if given a continuous, decreasing function f(n) and $\sum f(n)$ converges, then

$$\int_{n+1}^{\infty} f(n)dn \le R_n \le \int_{n}^{\infty} f(n)dn$$

Theorem. Comparison test

Given an $\sum a_n$ and $\sum b_n$ where $a_n, b_n > 0$ and $a_n < b_n$, if b_n converges, a_n converges too.

Conversely, if a_n diverges, so does b_n .

Theorem. Limit comparison test

Given an a_n, b_n , and both are positive for all $n \in \mathbb{N}$ if $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ where $L \in \mathbb{R}^+$, then they both converge or diverge.

Theorem. Alternating series test

Given a series $\sum a_n$ where $a_n = (-1)^n \cdot b_n$ or $(-1)^{n+1} \cdot b_n$ where $b_n > 0$ and $\lim b_n = 0$ and b_n is decreasing, $\sum a_n$ converges

Theorem. Ratio test Given a series $\sum a_n$, if

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = L$$
 then if
$$L < 1 \rightarrow series \ converges$$

$$L > 1 \rightarrow series \ diverges$$

$$L = 1 \rightarrow inconclusive$$

Conditional and absolute convergence

Given a series $\sum a_n$, if it converges but $\sum |a_n|$ diverges, we say that it **converges conditionally**. If $\sum |a_n|$ converges too, we speak of **absolute convergence**.