SMARTWIZ

GRADE11 PHYSICAL SCIENCE EXAM

MARKS: 100	MARKS	
TIME: 2 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of five pages, including the cover page.

SECTION A: CONCEPTUAL KNOWLEDGE (15 marks)

Choose the correct answer. Write the letter only. (1 mark each)

1.	The change in velocity per unit time is called:
	a) Speed
	b) Acceleration
	c) Inertia
	d) Force
	Answer:
2.	Which of the following is a contact force?
	a) Gravity
	b) Magnetic force
	c) Friction
	d) Electrostatic force
	Answer:
3.	One kilowatt-hour (kWh) equals:
	a) 3600 J
	b) 1,000 J
	c) $3.6 \times 10^6 \mathrm{J}$
	d) 6000 J
	Answer:
4.	The unit of momentum is: a) kg·m/s
	a) kg·m/s
	b) N·m
	c) m/s ²
	d) J/s
	Answer:
5.	Which law states: "The rate of change of momentum is directly proportional to the net force acting
	on an object?"
	a) Newton's First Law
	b) Newton's Second Law
	c) Newton's Third Law
	d) Law of Conservation of Momentum
	Answer:

SECTION B: MATCHING ITEMS (10 marks)

Match Column A with Column B by writing the correct letter (A–E) next to the number.

Column A	Column B
1. Ohm's Law	A. Force \times displacement
2. Hooke's Law	B. $V = IR$
3. Work done	C. m \times v ² / 2
4. Kinetic Energy	D. $F = kx$
5. Weight	E. mg

Answers:
1: 2:
3: 4:
5:
SECTION C: EXPLANATION AND THEORY
$(5 \times 4 = 20 \text{ marks})$
1. State the difference between <i>mass</i> and <i>weight</i> .
2. Explain why passengers feel a jolt forward when a moving bus suddenly stops.
3. Describe two ways to reduce energy loss in an electrical appliance.
4. State the law of conservation of charge and give one practical example.
5. Why does a metal rod feel colder than a wooden stick at the same temperature?

SECTION D: CALCULATIONS (30 marks) Show all steps and units clearly. 1. A car of mass 800 kg moves with a velocity of 20 m/s. Calculate: a) Its momentum b) Its kinetic energy Work: Answer a: Answer a: Answer b: 2. A 2 m long spring stretches by 5 cm when a 10 N weight is attached. Calculate the spring constant work: Answer: Answer: 3. A 1000 W heater runs for 3 hours. Calculate the energy consumed in kWh and J. a) Energy in kWh: b) Energy in J: 4. An object falls freely from rest. Find the distance it travels in 4 seconds. Use g=9.8 m/s2g = 9.8 m/s^2g=9.8 m/s2) Formula: Work:	
Show all steps and units clearly. 1. A car of mass 800 kg moves with a velocity of 20 m/s. Calculate: a) Its momentum b) Its kinetic energy Work: Answer a:	
Show all steps and units clearly. 1. A car of mass 800 kg moves with a velocity of 20 m/s. Calculate: (a) Its momentum (b) Its kinetic energy **Work:** Answer a: Answer b: 2. A 2 m long spring stretches by 5 cm when a 10 N weight is attached. Calculate the spring constant formula: **Work:** Answer: 3. A 1000 W heater runs for 3 hours. Calculate the energy consumed in kWh and J. (c) Energy in kWh: (d) Energy in J: 5. An object falls freely from rest. Find the distance it travels in 4 seconds. Use g=9.8 m/s2g = 9.8 m/s^2g=9.8 m/s2) Gormula:	· · · · · · · · · · · · · · · · · · ·
Its momentum Its kinetic energy Nork: Answer a:	
Answer a:	1) Its momentum
Answer b:	Vork:
Answer:	
3. A 1000 W heater runs for 3 hours. Calculate the energy consumed in kWh and J. a) Energy in kWh: b) Energy in J: 4. An object falls freely from rest. Find the distance it travels in 4 seconds. Use g=9.8 m/s2g = 9.8 m/s^2g=9.8m/s2) Formula:	Formula:
Energy in kWh:	Answer:
Use $g=9.8 \text{ m/s}2g = 9.8 \setminus, \text{ m/s}^2g=9.8 \text{m/s}2)$ Formula:) Energy in kWh:
	Use $g=9.8 \text{ m/s}2g = 9.8 \setminus, \text{ m/s}^2g=9.8 \text{m/s}2)$ Formula:
Answer:	Answer:

5. A lightbulb has a resistance of 240 Ω and is connected to a Formula: Work:	a 120 V source. Calculate the current.
Answer:	
SECTION E: DIAGRAMS & DATA AI	PPLICATION (25 marks)
1. The graph below shows the velocity of a cyclist over time: (<i>Teacher to draw or attach velocity-time graph if printed; for te</i> "A cyclist accelerates from 0 to 10 m/s in 5 seconds, maintains m/s over 5 seconds."	ext version, describe it as follows):
a) Sketch and label the graph on the grid. (10 marks)	
	RIKS
b) Calculate the total distance travelled in the 15 seconds. (5 ma	arks)
2. Draw and label a simple series circuit with:	
A batteryA switchTwo resistors	
(Diagram must be neat and correct with symbols.) (10 marks)	

MEMO

SECTION A: MULTIPLE CHOICE QUESTIONS

 $(5 \times 1 = 5 \text{ marks})$

- 1. b) Acceleration
- 2. c) Friction
- 3. c) $3.6 \times 10^6 \,\mathrm{J}$
- 4. a) kg·m/s
- 5. b) Newton's Second Law

SECTION B: MATCHING ITEMS

 $(5 \times 2 = 10 \text{ marks})$

Question	Answer
1	В
2	D
3	A
4	C
5	Е

MYST PATHWORKS

 \checkmark 2 marks each = 10 marks

SECTION C: EXPLANATION AND THEORY

 $(5 \times 4 = 20 \text{ marks})$

- 1. Mass vs Weight
- Mass is the amount of matter in an object (kg); it remains constant.
- Weight is the force due to gravity (W = mg), and it varies with gravitational field strength.
 - (2 marks each)

2. Bus Stop Inertia Explanation

- Due to inertia, the passenger's body tends to remain in motion.
- When the bus stops suddenly, the lower part stops, but the upper body continues forward.
 - ✓ (4 marks: concept + example)

3. Ways to Reduce Energy Loss

- Use better insulation to prevent heat loss.
- Use low-resistance wires or efficient components.
 - (2 marks per valid method)

4. Conservation of Charge

- Total electric charge in an isolated system remains constant.
- Example: Charging by friction electrons are transferred, not created.
 - (2 marks for principle, 2 for example)

5. Metal Feels Colder

- Metal conducts heat away from the skin faster than wood.
- This rapid heat transfer makes it feel colder.
 - (2 marks for conduction, 2 marks for heat transfer concept)

SECTION D: CALCULATIONS

 $(5 \times 6 = 30 \text{ marks})$

1. Momentum and KE of Car

- a) p=mv=800×20=16 000 kg\cdotpm/sp = mv = 800 \times 20 = 16\,000 \, \text{kg·m/s}p=mv=800×20=16000kg\cdotpm/s
- b) KE=12mv2=12×800×400=160 000 JKE = $\frac{1}{2}$ mv^2 = $\frac{1}{2}$ \times 800 \times 400 = 160\,000 \, \text{J}KE=21mv2=21×800×400=160000J
 - (3 marks each)

2. Spring Constant

- $F=kx \Rightarrow k=Fx=100.05=200 \text{ N/mF} = kx \setminus \text{Rightarrow } k = \frac{F}{x} = \frac{10}{0.05} = 200 \setminus \frac{N/m}{F=kx} = 0.0510=200 \text{ N/m}$
 - (1 mark formula, 2 substitution, 3 correct answer)

3. Heater Energy Use

- a) $E=Pt=1 \text{ kW}\times 3 \text{ h}=3 \text{ kWhE} = Pt=1 \setminus \text{text}\{kW\} \text{ times } 3 \setminus \text{text}\{h\} = 3 \setminus \text{text}\{kWh\}E=Pt=1kW\times 3h=3kWh$
- b) E=1000×3600×3=10 800 000 JE = 1000 \times 3600 \times 3 = 10\,800\,000 \, \text{J}E=1000×3600×3=10800000J
 - (3 marks each)

4. Free Fall Distance

- $d=12gt2=0.5\times9.8\times16=78.4 \text{ md} = \frac{1}{2}gt^2=0.5 \times 9.8 \times 16=78.4 \text{ m} = \frac{1}{2}gt^2=0.5\times9.8\times16=78.4 \text{ m} = \frac{1}{2}gt^2=0.5\times16=78.4 \text{ m}$
 - (1 mark formula, 2 for substitution, 3 for correct answer)

5. Current in Circuit

• $I=VR=120240=0.5 \text{ AI} = \frac{V}{R} = \frac{120}{240} = 0.5 \text{ , } \frac{A}{I=RV=240120=0.5A}$ \checkmark (6 marks total)

SECTION E: DIAGRAMS & APPLICATION

(25 marks total)

1. Velocity-Time Graph & Distance

- a) Graph:
 - o Straight line from (0,0) to $(5,10) \rightarrow$ acceleration
 - o Horizontal line from (5,10) to $(10,10) \rightarrow$ constant speed
 - o Straight line from (10,10) to (15,0) → deceleration
 - (10 marks: 2 per phase, 2 for labels and scale)
- b) Distance travelled:
 - o Triangle 1: $12 \times 5 \times 10 = 25 \text{ frac} \{1\} \{2\} \text{ times } 5 \text{ times } 10 = 2521 \times 5 \times 10 = 25$
 - o Rectangle: $5 \times 10 = 505 \times 10 = 505 \times 10 = 50$
 - o Triangle 2: $12 \times 5 \times 10 = 25 \text{ frac } \{1\} \{2\} \text{ \times 5 \times } 10 = 2521 \times 5 \times 10 = 25$
 - \circ Total = 25 + 50 + 25 = 100 m \checkmark (5 marks)

2. Series Circuit Diagram

• Must include:

- Correct symbols for battery, switch, and two resistors
- o Components in one continuous loop
- Neat layout and labels
 - ✓ (10 marks: 2 per symbol, 2 for correct connections, 2 for labels)

✓ Total: 100 marks

