NumPy

Numerical Python a powerful n-dimensional array tool / library

Agenda

After successfully installing Numpy library we shall create a numpy array

```
#Creating a single dimensional array
import numpy as np #importing the numpy library as np
a = np.array([1,2,3,4]) #creating a one dimensional array using
numpy
print(a) #printing the array
```

[1 2 3 4]

Now, let's create a ndarray having elements of

float data type

```
#creating a ndarray having elements of float data type import numpy as np a = np.array([0.2, 5.2, 3]) print(a)
```

[0.2 5.2 3.]

Creating a two dimensional array

```
#Creating a 2 dimensional array import numpy as np b = np.array([(1,2,3), (4,5,6)]) print(b)
```

```
[ [1 2 3]
[4 5 6] ]
```

NumPy Operations It help us finding the:

#1

Dimension of array.

#2

Byte size each element.

#3

Data.

List item.

ndim()

This function helps us to find the dimension of the array, whether it is a multidimensional array or a single dimensional array.

```
#find the dimension of array import numpy as np a = np.array([(1,2,3), (2,3,4)]) print(a.ndim)
```

2

itemsize()

```
#To check the size of a single element in the array import numpy as np
A = np.array([1, 2, 3, 4, 5, 6], dtype = np.int8)
print(A.itemsize)
```

1

dtype()

dtype(): Using this function we can find the data type of the elements stored in an array

To find the data type of the elements of the array:

```
import numpy as np
a = np.array([4.5, 22.8, 6.2, 1.1])
print("the data type of the elements of array is: ", a.dtype)
```

Output: the data type of the elements of array is: float64

size

Size of array: The size of array means the total number of elements present in the array.

To check the size of array

import numpy as np
a = np.array([(1,2,3,4,5,6)])
print(a.size)

Output: 6

Slicing and Indexing

Slicing in python means taking elements from one given index to another given index.

We can slice instead of index like this [start:end].

We can also define the step, like this: [start:end:step].

Note: The result includes the start index, but excludes the end index.

Reading and Showing images

To use the OpenCV library in python, we need to install these libraries as a prerequisite:

1. Numpy Library: The computer processes images in the form of a matrix for which NumPy is used and OpenCV uses it in the background.

2. OpenCV python: OpenCV library previously it was cv but the updated version is cv2. It is used to manipulate images and videos.

Image Functions

Function	Description
Imread()	Read an image from a file into an array.
Imsave()	Save an array as in image file.
Imshow()	Display an image on the axes.

The steps to read and display an image in OpenCV are:

- 1.Import Numpy and cv2
- 2.Read an image using imread() function.
- 3. Create a GUI window and display image using imshow() function.
- 4. Use function waitkey(0) to hold the image window on the screen by the specified number of seconds, o means till the user closes it, it will hold GUI window on the screen.
- 5. Delete image window from the memory after displaying using destroyAllWindows() function.

Basic code

```
import cv2
import numpy as np
img=cv2.imread("path",cv2.flag)
cv2.imshow("name to show(window",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Reading an Image

For reading an image, use the imread() function in OpenCV.

Here's the syntax:imread(filename, flags)

It takes two arguments:

- 1. The first argument is the image name, which requires a fully qualified pathname to the file.
- 2. The second argument is an optional flag that lets you specify how the image should be represented. OpenCV offers several options for this flag

Displaying an image

In OpenCV, you display an image using the imshow() function.

Here's the syntax: cv2.imshow(window_name, image)

This function also takes two arguments:

- 1. The first argument is the window name that will be displayed on the window
- 2. The second argument is the image that you want to display.

Writing an image

How to write/save an image into the file directory, using the imwrite() function.

Syntax: cv2.imwrite(filename, image).

- 1. The first argument is the filename, which must include the filename extension (for example.png.jpg etc). OpenCV uses this filename extension to specify the format of the file.
- 2. The second argument is the image you want to save. The function returns True if the image is saved successfully.

Function	Syntax
Grayscale	<pre>image = cv2.imread('colourful.jpg') grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow('Grayscale', grayscale)</pre>
Shape	<pre>img = cv2.imread("test.jpeg") print(img.shape) Output : (height, width, channel)</pre>
Cropping	img = cv2.imread("test.jpeg") crop = img[50:180, 100:300] cv2.imshow('cropped', crop)