7.0 APRESENTAÇÃO DA TEMÁTICA TRANSFERÊNCIA DE CALOR

Fernando Neto fneto@ua.pt

OBJETIVOS

- Compreensão dos fundamentos da transferência de calor
- Identificação dos principais mecanismos da transferência de calor
- Aplicar os conhecimentos à análise e dimensionamento de processos e equipamentos

O QUE É A TRANSFERÊNCIA DE CALOR

- Transferência de calor: transporte de energia sob a forma de calor
- Importância:
 - Arrefecimento de componentes eletrónicos
 - Climatização e frio industrial
 - Produção de vapor
 - Arrefecimento de um motor
 - Projeto de estruturas
 - etc.

PROGRAMA DA UC

- Introdução à Transferência de calor. Condução, convecção e radiação. Equação da difusão do calor.
- Transferência de calor por condução em regime estacionário e em regime transiente em diferentes sistemas de coordenadas.
- Transferência de calor por convecção. Convecção externa, convecção interna e convecção livre.
- Transferência de calor por radiação. Emissividade. Absortividade, refletividade e transmissividade. O corpo negro. Superfícies cinzentas e difusas. Fator de forma. Troca de calor por radiação entre superfícies.
- Aplicações

7.1 PRINCÍPIOS DA TRANSFERÊNCIA DE CALOR

TERMODINÂMICA E TRANSFERÊNCIA DE CALOR

l^a Lei da Termodinâmica

Como é transferido o calor de ou para um sistema?

MECANISMOS DE TRANSFERÊNCIA DE CALOR: CONDUÇÃO, CONVECÇÃO E RADIAÇÃO

- Condução: resulta de um gradiente de temperatura existente num sólido ou num fluído
- Convecção: resulta de uma diferença de temperatura entre uma superfície e um fluído que se escoa sobre ela
- Radiação: troca de calor sob a forma de radiação eletromagnética entre duas superfícies que não estão em contacto direto

MECANISMOS DE TRANSFERÊNCIA DE CALOR: CONDUÇÃO, CONVECÇÃO E RADIAÇÃO

CONDUÇÃO

CONVECÇÃO

RADIAÇÃO

8

MECANISMOS DA CONDUÇÃO DE CALOR

- Transferência de energia de partículas com maior carga cinética para partículas com menor carga cinética
- Teoria cinética de um gás com um gradiente de temperatura: a temperatura de um corpo é uma medida da energia nele contida
 - partículas com mais energia possuem maiores velocidades de translação, rotação e vibração
 - em geral, movimento aleatório, mas...
 - ...as partículas provenientes de zonas a temperaturas mais elevadas possuem mais energia que transferem por colisões para partículas com menor energia presentes nas zonas mais frias

LEI DE FOURIER DA CONDUÇÃO DE CALOR

$$q'' = -k \frac{dT}{dx}$$

q": fluxo de calor – energia transferida sob a forma de calor por unidade de tempo e por unidade de área (W.m⁻²) dT/dx: gradiente de temperatura – variação da temperatura T na direção x (K.m⁻¹) k: condutibilidade térmica – propriedade térmica dos materiais (W.m⁻¹.K⁻¹) (ver tabelas para a determinar)

Description/Composition	Typical Properties at 300 K		
	Density, ρ (kg/m ³)	Thermal Conductivity, k (W/m·K)	Speci fi Heat, c _p (J/kg·K)
Building Boards			
Asbestos-cement board	1920	0.58	_
Gypsum or plaster board	800	0.17	_
Plywood	545	0.12	1215
Sheathing, regular density	290	0.055	1300
Acoustic tile	290	0.058	1340
Hardboard, siding	640	0.094	1170
Hardboard, high density	1010	0.15	1380
Particle board, low density	590	0.078	1300
Particle board, high density	1000	0.170	1300
Woods			
Hardwoods (oak, maple)	720	0.16	1255
Softwoods (fir, pine)	510	0.12	1380

DE ONDE PROVÊM O SINAL NEGATIVO NA LEI DE FOURIER DA CONDUÇÃO DE CALOR?

$$q'' = -k \frac{dT}{dx}$$

O fluxo de calor é positivo na direção em que a temperatura decresce: sendo k uma quantidade positiva e como $dT \approx T_2 - T_1$, só através da utilização do sinal negativo se consegue converter uma diferença $(T_2 - T_1) < 0$ numa quantidade positiva.

UMA QUESTÃO DE NOMENCLATURA (E DE UNIDADES...)

- Q calor (forma de transmissão de energia, J)
- q potência (calor transferido por unidade de tempo, J/s ou W)
- q" fluxo de calor (energia transferida sob a forma de calor por unidade de tempo e por unidade de área, W/m²)

LEI DE FOURIER DA CONDUÇÃO DE CALOR

$$q''\left[\frac{W}{m^2}\right] = \frac{q}{A} = \frac{Q}{A.\,\Delta t} = -k\,\frac{dT}{dx}$$

$$q[W] = \frac{Q}{\Delta t} = -k.A.\frac{dT}{dx}$$

MECANISMOS DA CONVEÇÃO DE CALOR

- Convecção: combinação de dois mecanismos:
 - **Condução**: resultante do gradiente de temperatura existente no fluído; é o mecanismo de transporte de calor predominante junto à superfície (elevados gradientes de temperatura e baixa velocidade)
 - Advecção: transporte de energia devido ao movimento global do fluído

TIPOS DE CONVEÇÃO

- Convecção forçada
 - · Causada por ventiladores, bombas, incidência de vento, etc.
- Convecção natural (ou livre)
 - Causada por diferenças de densidade entre a parte quente e a parte fria de um fluído: o ar frio desce por gravidade, o ar quente sobe
- Outras formas de convecção (mudança de fase):
 - Vaporização
 - Condensação

TIPOS DE CONVEÇÃO

Convecção forçada

Vaporização ou ebulição

Condensação

LEI DE NEWTON DA CONVEÇÃO DE CALOR

$$q'' = h(T_s - T_\infty)$$

q": fluxo de calor – energia transferida sob a forma de calor por unidade de tempo e por unidade de área (W.m⁻²)

T_s: temperatura à superfície (K)

T_∞: temperatura do fluido (K)

h: coeficiente de transferência de calor por convecção (W.m⁻².K⁻¹)

 depende das condições na camada-limite (as quais, por sua vez dependem da geometria da superfície, da natureza do escoamento e de uma série de propriedade termodinâmicas e de transporte do fluido)

COEFICIENTE DE TRANSFERÊNCIA DE CALOR POR CONVEÇÃO, H

Process	$\frac{h}{(W/m^2 \cdot K)}$	
Free convection		
Gases	2–25	
Liquids	50-1000	
Forced convection		
Gases	25-250	
Liquids	100-20,000	
Convection with phase change		
Boiling or condensation	2500-100,000	

MECANISMOS DA RADIAÇÃO

Radiação:

- Emissão de energia associada a alterações da nuvem de eletrões que rodeiam um átomo
- Transporte de energia através de ondas eletromagnéticas ou fotões
- Um meio físico não é necessário para o transporte de energia sob a forma de radiação

EMISSÃO DE RADIAÇÃO: **LEI DE STEFAN- BOLTZMANN**

Valor máximo da radiação emitida por uma superfície à temperatura T:

$$E_b = \sigma . T_s^4$$

E_b – taxa máxima de emissão de radiação (W.m⁻²)

σ – constante de Stefan-Boltzmann (=5,67X10⁻⁸ W.m⁻².K⁻⁴)

 T_s – temperatura da superfície (K)

EMISSÃO DE RADIAÇÃO POR UMA SUPERFÍCIE REAL

Radiação emitida por uma superfície qualquer à temperatura T:

$$E = \varepsilon.\sigma.T_s^4$$

E – taxa de emissão de radiação (W.m⁻²)

σ – constante de Stefan-Boltzmann (=5,67×10⁻⁸ W.m⁻².K⁻⁴)

T_s – temperatura da superfície (K)

ε – emissividade da superfície (grandeza adimensional, variável entre 0 e 1 e cujo valor depende das propriedades da matéria que constitui a superfície bem como da temperatura a que ela se encontra)

RECEÇÃO DE RADIAÇÃO POR UMA SUPERFÍCIE

- Qualquer superfície está sujeita à radiação emitida pelas restantes superfícies que a rodeiam
- Designa-se por irradiação, G, o fluxo de radiação (em W.m⁻²) recebido por uma superfície, independentemente da origem dessa radiação

RECEÇÃO DE RADIAÇÃO POR UMA SUPERFÍCIE

• Da irradiação recebida por uma superfície, parte é refletida, parte é transmitida e parte é absorvida

RECEÇÃO DE RADIAÇÃO POR UMA SUPERFÍCIE

• A irradiação absorvida pela superfície é dada por:

$$G_{abs} = \alpha . G$$

em que α é designada por **absortividade** da superfície, grandeza adimensional com valores compreendidos entre 0 e 1, cujo valor depende quer da natureza da irradiação, quer das propriedades da superfície

• A irradiação refletida pela superfície é dada por:

$$G_{ref} = \rho . G$$

em que ρ é designada por **refletividade** da superfície, grandeza adimensional com valores compreendidos entre 0 e 1, cujo valor depende quer da natureza da irradiação, quer das propriedades da superfície

A irradiação transmitida pela superfície é dada por:

$$G_{tra} = \tau . G$$

em que τ é designada por **transmissividade**, grandeza adimensional com valores compreendidos entre 0 (para corpos opacos) e I, cujo valor depende quer da natureza da irradiação, quer das propriedades da superfície

Fernando Neto

05/11/2022 24

TRANSFERÊNCIA DE CALOR POR RADIAÇÃO ENTRE DUAS SUPERFÍCIES (CASO ESPECIAL)

- Um caso especial de troca de calor por radiação entre duas superfícies ocorre quando uma delas envolve totalmente a outra
- É possível provar que, para determinadas superfícies, a troca líquida de calor por radiação entre elas é dada por

$$q'' = \varepsilon.\sigma(T_s^4 - T_{sur}^4)$$

7.2 INTRODUÇÃO À CONDUÇÃO DE CALOR

A LEI DE FOURIER

- É uma generalização baseada em evidência experimental (lei fenomenológica);
- É uma lei vetorial;
- Na sua forma multidimensional, e em coordenadas cartesianas, pode ser escrita como:

$$\overrightarrow{q''} = -k\frac{dT}{dx}\overrightarrow{i} - k\frac{dT}{dy}\overrightarrow{j} - k\frac{dT}{dz}\overrightarrow{k} = -k\overrightarrow{\nabla}T$$

CONDUTIBILIDADE TÉRMICA

- A lei de Fourier define implicitamente uma propriedade térmica decisiva em transmissão de calor, a condutibilidade (ou condutividade) térmica, k [W.m⁻¹.K⁻¹]
- A condutibilidade térmica de um material mede a facilidade com que esse material conduz o calor. A lei de Fourier, $\overrightarrow{q''} = -k\overrightarrow{\nabla}T$, mostra que, para um dado gradiente de temperatura, o fluxo de calor será tanto maior quanto maior for a condutibilidade térmica

CONDUTIBILIDADE TÉRMICA DE DIFERENTES ESTADOS DE AGREGAÇÃO DA MATÉRIA EM CONDIÇÃO AMBIENTE

• Regra geral $k_{solido} > k_{liquido} > k_{gas}$

FIGURE 2.4 Range of thermal conductivity for various states of matter at normal temperatures and pressure.

VARIAÇÃO DA CONDUTIBILIDADE TÉRMICA COM A TEMPERATURA

OUTRAS PROPRIEDADES TÉRMICAS IMPORTANTES

- Massa específica (ou densidade): ρ (kg.m⁻³)
- Calor específico: c_P (J.kg⁻¹.K⁻¹)
- Combinações de propriedades:
 - Capacidade calorífica volumétrica: p.c_p (J.m⁻³.K⁻¹): capacidade de armazenamento de energia térmica por unidade de volume de uma dada substância
 - Difusividade térmica: α=k.ρ⁻¹c_P⁻¹ (m².s⁻¹): capacidade de uma substância de conduzir o calor face à sua capacidade de armazenamento de energia térmica
 - Outras...

7.3 A EQUAÇÃO DA DIFUSÃO DO CALOR

PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA I

Para o volume de controle representado na figura, a variação da energia nele contida, ΔE_{st} , é igual à diferença entre a energia que entra no volume de controle, E_{in} , a energia que sai do volume de controle, E_{out} , e a energia que é "gerada" no seio do volume de controle, E_{a} .

PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA II

Se derivarmos cada um dos termos da equação anterior em ordem ao tempo, passaremos a ter **taxas** de acumulação de energia, \dot{E}_{st} , **taxas** de entrada e de saída de energia (\dot{E}_{IN} , \dot{E}_{OUT}) e **taxas** de "geração" de energia, \dot{E}_{G} .

Para o volume de controle representado na figura, o princípio da conservação de energia está representado na equação abaixo

$$\dot{E}_{\rm st} = \frac{dE_{\rm st}}{dt} = \dot{E}_{\rm in} - \dot{E}_{\rm out} + \dot{E}_{\rm g}$$

PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA APLICADO À CONDUÇÃO DE CALOR

 Potência calorífica transferida para o volume de controle por condução:

$$q_x = -k \, dy \, dz \, \frac{\partial T}{\partial x}$$
$$q_y = -k \, dx \, dz \, \frac{\partial T}{\partial y}$$
$$q_z = -k \, dx \, dy \, \frac{\partial T}{\partial z}$$

 Potência calorífica que emerge do volume de controle por condução (desenvolvimento em série de Taylor, considerando apenas os dois primeiros termos):

$$q_{x+dx} = q_x + \frac{\partial q_x}{\partial x} dx$$
$$q_{y+dy} = q_y + \frac{\partial q_y}{\partial y} dy$$
$$q_{z+dz} = q_z + \frac{\partial q_z}{\partial z} dz$$

 q_{x} q_{y} q_{y}

Variação da energia armazenada no volume de controle por unidade de tempo

$$\dot{E}_{\rm st} = \rho \, c_p \frac{\partial T}{\partial t} \, dx \, dy \, dz$$

• Potência calorífica "gerada" no interior do volume de controle: f(x) =

$$\dot{E}_g = \dot{q} \, dx \, dy \, dz$$

$$f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!} (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2}) = 0$$

NOTA BREVE SOBRE O DESENVOLVIMENTO EM SÉRIE DE TAYLOR

Exemplo:

$$f(x) = x^2$$

$$f'(x) = 2x$$

$$f''(x) = 2$$

Desenvolvimento em série de Taylor:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

$$f(x) = a^2 + 2a(x - a) + \frac{2}{2!}(x - a)^2$$

$$f(x) = a^2 + 2ax - 2a^2 + x^2 - 2ax + a^2 = \dots = x^2$$

PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA

Combinando todos os termos numa equação da conservação de energia, vem

$$q_x + q_y + q_z + \dot{q} \, dx \, dy \, dz - q_{x+dx} - q_{y+dy} - q_{z+dz} = \rho c_p \frac{\partial T}{\partial t} \, dx \, dy \, dz$$

Atendendo às definições dos fluxos de calor que emergem do volume de controle, a equação acima reduz-se a:

$$-\frac{\partial q_x}{\partial x}dx - \frac{\partial q_y}{\partial y}dy - \frac{\partial q_z}{\partial z}dz + \dot{q}\,dx\,dy\,dz = \rho c_p \frac{\partial T}{\partial t}dx\,dy\,dz$$

PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA

Atendendo à lei de Fourier

$$q_x = -k \, dy \, dz \, \frac{\partial T}{\partial x}$$

$$q_y = -k \, dx \, dz \, \frac{\partial T}{\partial y}$$

$$q_z = -k \, dx \, dy \, \frac{\partial T}{\partial z}$$

Substituindo todos estes valores na equação da conservação da energia e simplificando, virá:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

Transferência líquida de energia por condução

"Geração" de energia térmica

Variação da energia térmica armazenada

EQUAÇÃO DA DIFUSÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

- A equação da difusão de calor, que traduz o princípio da conservação da energia térmica na presença de transferência de calor por condução, é uma equação diferencial que pode ser resolvida por métodos analíticos, numéricos ou gráficos e cuja utilidade reside...
 - ...no conhecimento da distribuição de temperaturas T=T(x,y,z,t) no seio do volume de controle
 - ...no cálculo dos fluxos de calor em qualquer direção (x, y ou z) com recurso à lei de Fourier

DISTRIBUIÇÕES DE TEMPERATURA

FLUXOS DE CALOR

7.4 FORMAS SIMPLIFICADAS DA EQUAÇÃO DA DIFUSÃO DO CALOR

FORMAS SIMPLIFICADAS DA EQUAÇÃO DA DIFUSÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

Condutibilidade térmica constante, k=cte:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

FORMAS SIMPLIFICADAS DA EQUAÇÃO DA DIFUSÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

Regime permanente (ou estacionário)

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = 0$$

FORMAS SIMPLIFICADAS DA EQUAÇÃO DA DIFUSÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

 Condução unidimensional em regime permanente, sem geração de calor

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$$

7.5 A EQUAÇÃO DA DIFUSÃO DO CALOR EM COORDENADAS NÃO CARTESIANAS

EQUAÇÃO DA DIFUSÃO DE CALOR EM COORDENADAS CILÍNDRICAS

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + q = \rho c_p \frac{\partial T}{\partial t}$$

EQUAÇÃO DA DIFUSÃO DE CALOR EM COORDENADAS ESFÉRICAS

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(kr^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{\mathbf{i}}{q} = \rho c_p \frac{\partial T}{\partial t}$$

7.6 CONDIÇÕES INICIAIS E DE FRONTEIRA REQUERIDAS PARA RESOLVER A EQUAÇÃO DA DIFUSÃO DE CALOR

SOLUÇÃO DA EQUAÇÃO DA DIFUSÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

- Equação diferencial cuja solução é do tipo T=T(x,y,z,t)
- A solução da equação da difusão permite calcular a distribuição de temperaturas no interior de um corpo em função do espaço e do tempo
- Conhecendo-se a distribuição de temperaturas, a lei de Fourier permite calcular **o fluxo de calor** em cada uma das direções, q_X , q_Y e q_Z
- A solução da equação da difusão depende de condições...
 - ...iniciais
 - ...de fronteira

DE QUANTAS CONDIÇÕES INICIAIS OU DE FRONTEIRA NECESSITAMOS?

- Equação diferencial de 2ª ordem em termos das coordenadas espaciais x, y e z: duas condições de fronteira para cada coordenada espacial
- Equação diferencial de la ordem em termos da coordenada temporal t: uma condição inicial
- Ao todo: 6 (seis) condições de fronteira e I (uma) condição inicial

- Exemplo de condições de fronteira:
 - Especificação da temperatura constante à superfície

$$T(0,t) = T_s$$

Sabendo que a temperatura na superfície de uma parede se mantém constante e igual a T_s ...

- Exemplo de condições de fronteira:
 - Especificação do fluxo de calor constante à superfície

$$-k\frac{\partial T}{\partial x}|_{x=0} = q_s''$$

A superfície de uma parede está sujeita a um fluxo de radiação q"s...

- Exemplo de condições de fronteira:
 - Fronteira adiabática

$$\left| \frac{\partial T}{\partial x} \right|_{x=0} = 0$$

A superfície em x=0 encontra-se isolada adiabaticamente...

- Exemplo de condições de fronteira:
 - Fronteira exposta à convecção

$$-k\frac{\partial T}{\partial x}|_{x=0} = h\left[T_{\infty} - T(0,t)\right]$$

Uma superfície encontra-se sujeita a um fluxo convetivo $q''=h(T_{\infty}-T_S)...$

- Exemplo de condições iniciais:
 - T(x,y,z,t) = T para t=0
 - Outras...

7.7 EXEMPLOS DE SOLUÇÕES DA EQUAÇÃO DA DIFUSÃO DE CALOR

CASOS PARTICULARES DA SOLUÇÃO DA EQUAÇÃO DE CALOR: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE SEM GERAÇÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right$$

- Regime permanente: não há variações de temperatura ao longo do tempo
- Condução unidimensional: a temperatura no volume de controle não varia com y ou z
- Ausência de geração de calor

CASOS PARTICULARES DA SOLUÇÃO DA EQUAÇÃO DE CALOR: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE SEM GERAÇÃO DE CALOR

$$\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$$

$$\frac{d}{dx} (q''_x) = 0$$

$$q''_x = Cte.$$

A resolução da equação requer duas condições de fronteira.

O fluxo de calor é constante na direcção x.

CASOS PARTICULARES DA SOLUÇÃO DA EQUAÇÃO DE CALOR: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE SEM GERAÇÃO DE CALOR

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$$

• Se a condutibilidade k for constante, então:

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0 \Leftrightarrow k\frac{d}{dx}\left(\frac{dT}{dx}\right) = 0 \Leftrightarrow \left(\frac{d^2T}{dx_2}\right) = 0$$

• Integrando:

$$T(x) = C_1.x + C_2$$

• O valor das constantes de integração C_1 e C_2 é determinado a partir das (duas) condições de fronteira

CASOS PARTICULARES DA SOLUÇÃO DA EQUAÇÃO DE CALOR: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE – DISTRIBUIÇÃO DE TEMPERATURAS

$$\frac{d}{dx} \left(k \, \frac{dT}{dx} \right) = 0$$

T(x) =
$$(T_{s2} - T_{s1}) \cdot \frac{x}{L} + T_{s1}$$
 quação da difusão

$$T(x) = C_1.x + C_2$$

Solução geral

Mas qual o valor das constantes C_1 e C_2 ?

Condições de fronteira (exemplo)

Determinação das constantes de integração. Solução particular

CASOS PARTICULARES DA SOLUÇÃO DA EQUAÇÃO DE CALOR: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE – CÁLCULO DO FLUXO DE CALOR

Uma vez que

$$T(x) = (T_{s2} - T_{s1}) \cdot \frac{x}{L} + T_{s1}$$

Então:

$$q''_{x} = -k\frac{dT}{dx} = \frac{q_{x}}{A} \Leftrightarrow q_{x} = -kA \cdot \frac{dT}{dx} = \frac{kA}{L} (T_{s1} - T_{s2})$$

O calor transferido será tanto maior quanto:

- -Maior for a condutibilidade térmica, k;
- -Maior for a área perpendicular ao fluxo de calor, A;
- -Maior for a diferença de temperatura T_{S1} - T_{S2} ;
- -Menor for a espessura da parede, L