Devoir à la maison n° 08

À rendre le 1^{er} décembre

I. Borne supérieure dans Q.

Dans tout ce problème, on pourra utiliser sans démonstration le résultat connu suivant :

$$\forall x \in \mathbb{Q}, \ x^2 \neq 2.$$

Soit

$$A = \left\{ x \in \mathbb{Q}_+^* \mid x^2 < 2 \right\} \text{ et } B = \left\{ x \in \mathbb{Q}_+^* \mid x^2 > 2 \right\}.$$

On désire montrer par l'absurde que A ne possède pas de borne supérieure dans \mathbb{Q} . Supposons donc qu'une telle borne supérieure existe et notons la α ($\alpha \in \mathbb{Q}$). On pose $\beta = \frac{2}{\alpha}$.

- 1) Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$, $x \mapsto \frac{2}{x}$. Montrer que f(A) = B et que f(B) = A.
- 2) Montrer que β est la borne inférieure de B dans \mathbb{Q} .
- 3) a) Montrer que $\alpha^2 \leq 2$ et en déduire que $\beta^2 \geq 2$.
 - **b)** En déduire une comparaison de α et de β .
- 4) a) Soit $a \in A$ et $b \in B$, montrer que $a \leq b$.
 - b) Retrouver la comparaison entre α et β précédemment obtenue.
- 5) En utilisant $\gamma = \frac{\alpha + \beta}{2}$, déduire une contradiction des questions précédentes.
- 6) L'ensemble ordonné (\mathbb{Q}, \leq) possède-t-il donc la propriété de la borne supérieure?

II. Une équation sur les entiers.

Résoudre en $(n,x,y,z)\in (\mathbb{N}^*)^4$ l'équation $n^x+n^y=n^z.$

— FIN —