Отчет по лабораторной работе №1

Цель работы: провести исследования характеристик средних значений для разных распределений и оценить полученные результаты

Ход работы:

- 0. Предварительно был скачан пакет Python 3.6.9 и библиотека Numpy для работы с выборками и средними значениями
- 1. Были сгенерированы выборки по 100 значений из следующих распределений:

• Нормальное распределение:
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x)^2}{2}}$$

• Равномерное распределение:
$$f(x) = \frac{1}{2\sqrt{3}} npu|x| \le \sqrt{3}, f(x) = 0 npu|x| > \sqrt{3}$$

• Распределение Лапласа:
$$f(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|x|}$$

• Распределение Коши:
$$f(x) = \frac{1}{\pi(1+x^2)}$$

• Смесь нормальных распределений:
$$f(x) = 0.9*(\frac{1}{\sqrt{2\pi}}e^{-\frac{(x)^2}{2}}) + 0.1*(\frac{1}{3\sqrt{2\pi}}e^{-\frac{(x)^2}{18}})$$

- 2. Для каждого набора случайных значений были вычислены характеристики:
 - Выборочное среднее \bar{x}
 - Выборочная медиана *med x*
 - Полусумма экстремальных значений z_r
 - Усеченное среднее z_{tr}
- 3. По методу Монте-Карло шаги 1-2 были повторены 1000 раз, значения характеристик складывались для дальнейшего вычисления первого и второго моментов и дисперсии
- 4. По полученным данным были построены следующие таблицы:

Выборочное среднее						
	Нормальное	Равномерное	Лапласа	Коши	Смесь	
$\overline{Z_m}$	0.0014750068	-0.0017458202	-0.0065202704	-1.4063125655	0.0027801135	
$\overline{Z_m^2}$	0.0096904574	0.0101644889	0.0094361156	6465.38227304	0.0178518230	
D	0.0096882818	0.0101614410	0.0093936017	6463.40455801	0.0178440940	

Выборочная медиана						
	Нормальное	Равномерное	Лапласа	Коши	Смесь	
$\overline{Z_m}$	0.0016857178	0.0016573069	-0.0022523457	0.0075161858	0.0035665318	
$\overline{Z_m^2}$	0.0148553824	0.0289911755	0.0057810968	0.0265887129	0.0168676380	
D	0.0148525408	0.0289884288	0.0057760237	0.0265322198	0.0168549179	

Полусумма экстремальных значений						
Нормальное Равномерное Лапласа Коши Смесь						
$\overline{Z_m}$	-0.0069894735	0.0002325265	-0.0343980066	-69.642434559	-0.003798885	
$\overline{Z_m^2}$	0.0956778099	0.0006216627	0.3791443122	16079036.7892	1.3497255666	
D	0.0956289571	0.0006216086	0.3779610894	16074186.7205	1.3497111351	

Усеченное среднее						
	Нормальное	Равномерное	Лапласа	Коши	Смесь	
$\overline{Z_m}$	0.0020432284	-0.0018448266	-0.0051064559	0.0026514768	0.0034908680	
$\overline{Z_m^2}$	0.0098167221	0.0120845837	0.0079936755	0.0984363656	0.0132714226	
D	0.0098125473	0.0120811803	0.0079675996	0.0984293352	0.0132592365	

Анализ полученных результатов:

Нормальное распределение						
	Среднее Медиана Экстремальные Усеченное					
D	0.01	0.01	0.09	0.01		

Равномерное распределение					
	Среднее Медиана Экстремальные Усеченное				
D	0.01	0.03	0.00	0.01	

Распределение Лапласа						
	Среднее Медиана Экстремальные Усеченное					
D	0.01	0.01	0.37	0.01		

Распределение Коши					
	Среднее Медиана Экстремальные Усеченное				
D	6463.40	0.03	16074186.72	0.10	

Смесь распределений					
	Среднее Медиана Экстремальные Усеченное				
D	0.02	0.02	1.35	0.01	

Вывод: для нормального и равномерного распределений все средние характеристики находятся в окрестностях нуля (с точностью в два разряда), что соотносится с их математическим ожиданием и медианой.

Распределение Лапласа также имеет приближенные к нулю среднее, медиану и усеченное среднее, при этом дисперсия полусуммы лежит в окрестности значения 0,4.

Распределение Коши имеет аномальные значения среднего и полусуммы экстремальных значений, что вполне соответствует его поведению — распределение не имеет мат. ожидания и дисперсии и, как говорят, обладает «тяжелыми хвостами». При этом значение усеченного среднего приближено к нулю (что соответствует оси симметрии), выборочная медиана находится там же.

Для смесь нормальных распределений средние характеристики имеют большую погрешность, но также приближены к нулевому значению.