

COVARIANCE

Definition

The *covariance* between two random variables which are each integrable and whose product is integrable is the expectation of their product less the product of their expectation.

Notation

Let f and g be two integrable random variables with fg integrable. Denote the covariance of f with g by cov(f,g). We defined it:

$$cov(f, g) = \mathbf{E}(fg) - \mathbf{E}(f)\mathbf{E}(g).$$

Properties

Prop. 1. Covariance is symmetric and billinear. ¹

Prop. 2. The covariance of a random variable with itself is its variance.

 ${\it Proof.}$ Let f be a square-integrable real-valued random variable, then

$$\operatorname{cov}(f,f) = \mathsf{E}(ff) - \mathsf{E}(f)\mathsf{E}(f) = \mathsf{E}(f^2) - (\mathsf{E}(f))^2 = \operatorname{var}(f).$$

П

Prop. 3. The variance of a sum of integrable real-valued random variables whose pairwise products are integrable is the double sum of the pairwise covariances.

¹Future editions will include an account.

Proof. Let f_1, \ldots, f_n be integrable random variables with $f_i f_j$ integrable for all $i, j = 1, \ldots, n$. Using the billinearity,

$$\operatorname{var}\left(\sum_{i=1}^{n} f_i\right) = \operatorname{cov}\left(\sum_{i=1}^{n} f_i, \sum_{i=1}^{n} f_i\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(f_i, f_j)$$

