Example: Brazil Model

	Means	Log Yields	Production / 1000
GDDs / 1000	2.946	0.018*	0.716
	(0.931)	(0.008)	(0.450)
KDDs / 1000	0.149	-0.140***	-2.828
	(0.146)	(0.042)	(1.821)
Frosts	0.944	0.005***	0.036^{**}
	(3.499)	(0.001)	(0.014)
Precip. (m)	1.421	-0.045^{*}	0.882
	(0.719)	(0.021)	(0.646)
$Precip.^2$	2.538	0.015***	-0.265
	(2.439)	(0.004)	(0.163)
State cubic trends		Yes	Yes
\mathbb{R}^2		0.138	0.950
$Adj. R^2$		0.136	0.950
Num. obs.		42582	42600

 $^{^{***}}p < 0.001,\ ^{**}p < 0.01,\ ^*p < 0.05$

Motivation

Preparing the global analysis.

- Want to give each variety in each country its own parameters: $\gamma_{i\nu}$
- Want to partially pool across countries for a given variety: $\gamma_{i\nu} \sim \mathcal{N}(\gamma_{\nu}, \tau_{\gamma_{\nu}})$
- Want to partially pool variety hyperparameters $\gamma_{m{v}} \sim \mathcal{N}(\gamma, au_{\gamma})$
- Want to do this for every parameter $\gamma, \kappa, \phi, \pi, \psi$
- Full-Bayes is too slow to simultaneously perform the regression

Terminology Note: Traditionally, "Hierarchical linear modeling" and "multilevel modeling" describe model substitutions where data only exists at lowest level.

The Model

Pooled:

$$\log y_{it} = \alpha_i + beta_v + \gamma g_{it} + \kappa k_{it} + \phi f_{it} + \pi p_{it} + \psi p_{it}^2 + \epsilon_{it}$$

Unpooled:

$$\log y_{ivt} = \alpha_i + \beta_v + \gamma_{iv}g_{it} + \kappa_{iv}k_{it} + \phi_{iv}f_{it} + \pi_{iv}p_{it} + \psi_{iv}p_{it}^2 + \epsilon_{ivt}$$

Partial-pooling relationships:

$$\gamma_{iv} = \gamma_v + \epsilon_{iv}$$

$$\gamma_a = \gamma_c + \epsilon_a$$

$$\gamma_r = \gamma_c + \epsilon_r$$
:

The Model

Time for an R Package!

summary (model)

```
Many use cases:
               Partial pooling y \sim f \mid f - ...
  Partial pooling to multiple y \sim f \mid f > g
 Pairwise coefficient relation y ~ a + b | a - b
                                  v ~ f | fa == fb
                                  y ~ f | y ~ g | f - g
               Multilevel data
         Smoothness criteria
                                  ???
   model \leftarrow hierlm(logyield \sim 0 + region + variety + regionvariety:gdd1000)
                  regionvariety:gdd1000 > variety:gdd1000
                  varietvarabica:gdd1000 == varietvcombined:gdd1000
                  varietyrobusta:gdd1000 == varietycombined:gdd1000,
                  data, ratios=c(.1, .1, .1)
```

Pooling Effects

