Formação Cientista de Dados

Machine Learning

• Loss Function/Cost Function: diferença entre a previsão e o valor real

Root Mean Squared Error (RMSE)

Independente de Escala

• O desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424

$$RMSE = \sqrt{\frac{\sum_{I=1}^{N} (p_i - t_i)^2}{N}}$$

RMSE =
$$\sqrt{\frac{15,083}{7}}$$

Calculada a Loss Function...

- É preciso atualizar os pesos da RNA...
- Backprogation

Ajustando os Pesos

- Learning Rate: taxa de aprendizado
- Como ajustar os pesos? Aumentar, diminuir? Em quanto?
- Lembrando que podemos ter muitos pesos para ajustar!

Força Bruta...

 $1.000 \times 1.000 \times ... \times 1.000 = 1.000^{25} = 10^{75} \text{ combinações}$

Sunway TaihuLight: o super computador mais rápido do mundo

93 PFLOPS

 93×10^{15}

 $10^{75}/(93 \times 10^{15})$

 $= 1,08 \times 10^{58}$. segundos

 $= 3,42 \times 10^{50}$ anos

Stochastic Gradient Descent

