Betting Strategy for the game *Tichu*

Eric Yang (iameric@stanford.edu)

The card game Tichu

...

52 cards plus dragon, phoenix, mahjong and dog 4 players on two teams (like in bridge) players competing to get rid of their hands

rand Tichii

Bet 200pt to go out first after looking at the first 8 cards

...

Bet 100pt to go out first after looking at all 14 cards

Strong cards and patterns:

dragon, phoenix 4 of a kind (bomb) royal flush (bomb) long straights

Guiding Questions

- How well can we predict Grand Tichu and Tichu success rate from the hand?
- How do we develop a good betting strategy from the fitted model?

Dataset

15000 matches from onlinetichu.com

- First 8 cards / All 14 cards
- Grand Tichu / Tichu bets
- order of players going out (whether the bets are made.)

Features

hand: number of cards of each value patterns: pairs, threes, fours, royal flush, straights, leftover singletons

Problem

Predict probability of going out first with the first 8 cards/14 cards hand.

 $P_{grand}(8 \ cards, patterns)$ $P_{tichu}(14 \ cards, patterns)$

Models

- Logistic Regression
 - Naive Bayes
- AdaBoost
- Random Forest

Logistic Regression preferred because it has well calibrated (prediction = probability) results, which we need for betting strategies.

Simulations for a betting Strategy

Expected score:

- Grand Tichu: $200 * (2P_{Grand} 1)$
 - Tichu: $100 * (2P_{Tichu} 1)$

Strategy (When $P_*>0.5$)

- Call Grand: $P_{Grand} > 0.5P_{Tichu} + 0.25$
- Call Tichu: $P_{Grand} < 0.5P_{Tichu} + 0.25$

Simplified index for Grand: (coeffs from Log Reg)

2*#ace+5*#dragon + 5*#phoenix+4*#bomb ≥

ROC on validation set

Logistic Regression					- raw hand (area = 0.785) - Compressed hand (area = 0.791) - Minimal pattern (area = 0.827) - Full pattern (area = 0.837) - hand + pattern (area = 0.837)	0 02 04 0.6 0.8 10 False Positive Rate				
	10	0.8	9.0	0.4	0.2	0.0 70.0				
THE POSITIVE NATE										

Feature/Model comparison

area under ROC

Rand Forest	0.783	0.802	0.827	0.837	0.835
Ada Boost	0.786	0.804	0.82	0.832	0.833
Naive Bayes	0.783	0.789	0.827	0.74	8.0
Log Reg	0.785	0.791	0.827	0.834	0.837
	Raw Hand	Compressed	Minimal Pattern (7 features)	Full Pattern (13 patterns)	Full Pattern +

Discussion

Specifying patterns as features improves the accuracy significantly. With the fitted model plus

simulations, we obtained a useful

- criteria for when to call Grand Tichu.
 With a larger dataset, it might be
 possible for the models to learn the
 useful patterns directly from the
- Some game mechanics are not considered, such as cards being passed between players, and points that are not from bets.
- An alternative approach is to solve the regression problem to predict the points for each game directly.