A inversa: Simplex & Dualidade II

Alexandre Checoli Choueiri

29/01/2023

Conteúdo

1 Obtendo a solução dual pelo quadro ótimo primal

Exemplo

3 Primal factivel - dual infactivel

Objetivos

Ferramentas e objetivos

Agora possuímos todas as ferramentas para mostrar que ao encontrarmos a solução ótima do primal, automaticamente encontramos a solução ótima do dual. Considere o par primal dual, com o primal escrito na forma padrão:

Primal

$$\begin{aligned} \min \ \mathbf{z} &= \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &> 0 \end{aligned}$$

Dual

$$\mathbf{max} \ \mathbf{z} = \pi^T \mathbf{b}$$

$$\mathbf{A}^T \pi \leq \mathbf{c}$$

$$\pi \text{ irrestrito}$$

Da mesma forma que fizemos antes, podemos particionar os problemas em relação às variáveis básicas e não básicas do problema original:

Primal

$$\begin{aligned} \min \, \mathbf{z} &= \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N \\ \mathbf{B} \mathbf{x}_B &+ \mathbf{N} \mathbf{x}_N = \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

Dual

$$\mathbf{B}^T \pi \leq \mathbf{c}_B$$

$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$

$$\pi \text{ irrestrito}$$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal (x_B) implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\max \mathbf{v} = \pi^T \mathbf{b}$$
 $\mathbf{B}^T \pi \leq \mathbf{c}_B$ $\mathbf{N}^T \pi \leq \mathbf{c}_N$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal (x_B) implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
 $\mathbf{B}^T \pi \leq \mathbf{c}_B$ $\mathbf{N}^T \pi \leq \mathbf{c}_N$

De forma que:

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ \mathbf{B}^T \pi &= \mathbf{c}_B \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal (x_B) implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
 $\mathbf{B}^T \pi \leq \mathbf{c}_B$ $\mathbf{N}^T \pi \leq \mathbf{c}_N$

De forma que:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$

$$\mathbf{B}^T \pi = \mathbf{c}_B$$

$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$

Aplicando a transposta em ambos os lados (lembre-se que $(AB)^T = B^T A^T$):

$$\max \mathbf{v} = \pi^T \mathbf{b}$$

$$\pi^T \mathbf{B} = \mathbf{c}_B^T$$

$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$

$$\mathbf{max} \ \mathbf{v} = \mathbf{\pi}^T \mathbf{b}$$
$$\mathbf{\pi}^T \mathbf{B} = \mathbf{c}_B^T$$
$$\mathbf{N}^T \mathbf{\pi} \le \mathbf{c}_N$$

Como podemos derivar uma solução genérica para π ? (como isolar π).

$$\mathbf{max} \ \mathbf{v} = \mathbf{\pi}^T \mathbf{b}$$
$$\mathbf{\pi}^T \mathbf{B} = \mathbf{c}_B^T$$
$$\mathbf{N}^T \mathbf{\pi} \le \mathbf{c}_N$$

Como podemos derivar uma solução genérica para π ? (como isolar π). Multiplicando ambos os lados da igualdade por B^{-1} :

$$\mathbf{max} \ \mathbf{v} = \boldsymbol{\pi}^T \mathbf{b}$$

$$\boldsymbol{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

$$\mathbf{N}^T \boldsymbol{\pi} \leq \mathbf{c}_N$$

Chegamos então ao modelo equivalente:

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Chegamos então ao modelo equivalente:

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Que nos fornece uma forma também genérica de calcular os valores duais, em função da inversa da base primal:

$$\boldsymbol{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

Se olharmos a tabela genérica do Simplex, percebemos que esse mesmo termo aparece na linha da função objetivo, abaixo das variáveis não básicas. Analisando o termo da tabela com mais cuidado, distinguimos um caso em que o cálculo fica simplificado.

$$\boldsymbol{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

\mathbf{x}_B	×N	-z
0	$ (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}) $ $ \mathbf{B}^{-1} \mathbf{N} $	$-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
I	$B^{-1}N$	$B^{-1}b$

Embora o termo esteja em função dos coeficientes não básicos, podemos usá-lo para analisar quaisquer termos da função objetivo, básicos e não básicos, de forma que \mathbf{c}_N^T são os coeficientes que queremos atualizar na fo (c_i^T) , e N a submatriz composta pelas colunas referentes a esses coeficientes (A_i) .

DADOS NÃO BÁSICOS

$$\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}$$

QUAISQUER VALORES

$$\mathbf{c}_{i}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} A_{i}$$

Lembrando que \mathbf{c}_N^T e \mathbf{N} são coletadas da matriz original. O que acontece se usarmos os dados das variáveis de folga para esse cálculo?

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

	x_1	x_2	x_3	x_4	x_5	-Z
$\overline{ m VB}$	-1	-2	0	0	0	0
	1	1	1	0	0	6
	1	-1	0	1	0	4
	-1	1	0	0	1	4

Sempre os coeficientes das variáveis de folga (no inicio do quadro) são nulas.

De forma que $c_N^T = 0$.

Ainda, a submatriz composta pelas colunas das variáveis de folga no inicio do Simplex também sempre será a **identidade** (I) (no Simplex Fase I será a matriz das var. artificiais).

Ou seja, no caso das variáveis de folga:

- 1. $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

Ou seja, no caso das variáveis de folga:

- 1. $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

O que faz o termo ficar:

$$\underbrace{\mathbf{c}_{N}^{T}}_{0} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \underbrace{\mathbf{N}}_{I} = -\mathbf{c}_{B}^{T} \mathbf{B}^{-1} = -\pi^{T}$$

Ou seja, no caso das variáveis de folga:

- 1. $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

O que faz o termo ficar:

$$\underbrace{\mathbf{c}_{N}^{T}}_{0} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \underbrace{\mathbf{N}}_{I} = -\mathbf{c}_{B}^{T} \mathbf{B}^{-1} = -\pi^{T}$$

Que é exatamente o negativo da expressão que encontramos para o problema dual:

$$\boldsymbol{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

(lembre do negativo)!

Retomando o caminho da conclusão

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\mathbf{B}^T \pi \leq \mathbf{c}_B \\ &\mathbf{N}^T \pi \leq \mathbf{c}_N \\ &\pi \text{ irrestrito} \end{aligned}$$

Partimos da definição do problema dual, considerando os termos separados em básicos e não básicos.

Retomando o caminho da conclusão

Com isso chegamos a uma expressão para a solução dual na otimalidade primal.

Retomando o caminho da conclusão

Percebemos que a expressão da solução dual está contida na própria tabela genérica do Simplex.

Retomando o caminho da conclusão

E que ao considerarmos somente os termos acima da matriz identidade inicial, os custos atualizados na função objetivo são **exatamente iguais ao negativo da solução dual**.

Conclusão

Os termos da função objetivo referentes a matriz identidade inicial (ou variáveis de folga ou artificiais), representam o negativo da solução do problema dual, de forma que ao resolvermos o primal pela tabela Simplex, automáticamente encontramos também a solução do dual (o seu negativo!).

Conclusão

Os termos da função objetivo referentes a matriz identidade inicial (ou variáveis de folga ou artificiais), representam o negativo da solução do problema dual, de forma que ao resolvermos o primal pela tabela Simplex, automáticamente encontramos também a solução do dual (o seu negativo!).

Atenção

Como no caso da inversa, os valores duais estão acima da matriz identidade original. Se usarmos variáveis artificiais e quisermos coletar o valor dual:

- 1. Não remover as colunas artificiais ao final da fase I.
- 2. Ao resubstituir a função objetivo original, inicializar os coef. das variáveis artificiais = 0 (não usar esse valores como variáveis para entrar na base).
- 3. No final da otimização, os valores duais são os coef. das variáveis artificiais.

Exemplo

Considere o seguinte par primal-dual de PLs:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

min
$$v=6\pi_1+4\pi_2+4\pi_3$$
 $\pi_1+\pi_2-\pi_3\geq 1$ $\pi_1-\pi_2+\pi_3\geq 2$ $\pi_1,\pi_2\geq 0$

Exemplo

	x_1	x_2	x_3	x_4	x_5	-z		x_1	x_2	x_3	x_4	x_5	-z
$\overline{ m VB}$	-1	-2	0	0	0	0	$\overline{ m VB}$	0	0	3/2	0	1/2	11
	1	1	1	0	0	6	x_1	1	0	1/2	0	-1/2	1
	1	-1	0	1	0	4	x_4	0	0	0	1	1	8
	-1	1	0	0	1	4	x_2	0	1	1/2	0	1/2	5

O quadro inicial e o quadro ótimo para o problema primal são mostrados acima.

Exemplo

		x_1	x_2	x_3	x_4	x_5	-Z		x_1	x_2	x_3	x_4	x_5	-Z
7	VВ	-1	-2	0	0	0	0	$\overline{ m VB}$	0	0	3/2	0	1/2	11
		1	1	1	0	O	6	x_1	1	0	1/2	0	-1/2	1
		1	-1	O	1	0	4	x_4	0	0	0	1	1	8
		-1	1	0	0	1	4	x_2	0	1	1/2	0	1/2	5

Verificando os elementos acima da identidade no quadro inicial.

Exemplo

										$-\pi_1$	$-\pi_2$	$-\pi_3$	
	x_1	x_2	x_3	x_4	x_5	-Z		x_1	x_2	x_3	x_4	x_5	-Z
$\overline{\mathrm{VB}}$	-1	-2	0	0	0	0	$\overline{ m VB}$	0	0	3/2	0	1/2	11
	1	1	1	0	0							-1/2	1
	1	-1	0	1	0	4	x_4	0	0	O	1	1	8
	-1	1	0	0	1	4	x_2	0	1	1/2		1/2	5

Sabemos que na otimalidade eles são o negativo da solução dual, ou seja, $-\pi$.

Exemplo

Lembrando que para deixar o problema na forma padrão fizemos

$$\max z = -\min z$$

Assim, temos que, para voltar à função original, multiplicamos os termos novamente por -1, o que gera:

1.
$$-\pi_1 = -3/2 \rightarrow \pi_1 = 3/2$$

2.
$$-\pi_2 = -0 \rightarrow \pi_2 = 0$$

3.
$$-\pi_3 = -1/2 \rightarrow \pi_3 = 1/2$$

Exemplo

Substituindo as soluções primal-dual $x^T = (x_1, x_2) = (1,5)$ e $\pi^T = (\pi_1, \pi_2, \pi_3) = (1.5, 0, 0.5)$ nos modelos, temos:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min \, v &= 6\pi_1 + 4\pi_2 + 4\pi_3 \\ \pi_1 + \pi_2 - \pi_3 &\geq 1 \\ \pi_1 - \pi_2 + \pi_3 &\geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Exemplo

Substituindo as soluções primal-dual $x^T = (x_1, x_2) = (1, 5)$ e $\pi^T = (\pi_1, \pi_2, \pi_3) = (1.5, 0, 0.5)$ nos modelos, temos:

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11$$

$$1 + 5 \le 6 \Rightarrow 6 \le 6$$

$$1 - 5 \le 4 \Rightarrow -4 \le 4$$

$$-1 + 5 \le 4 \Rightarrow 4 \le 4$$

$$x_1, x_2 \ge 0$$

min
$$v = 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11$$

 $1.5 + 0 - 0.5 \ge 1 \Rightarrow 1 \ge 1$
 $1.5 - 0 + 0.5 \ge 2 \Rightarrow 2 \ge 2$
 $\pi_1, \pi_2 > 0$

Exemplo

Vemos que todas as restrições são satisfeitas, e z=v, o que, pelo teorema fraco da dualidade garante que as soluções x e π são ótimas para seus respectivos problemas.

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11\sqrt{1 + 5} \le 6 \Rightarrow 6 \le 6\sqrt{1 - 5} \le 4 \Rightarrow -4 \le 4\sqrt{1 + 5} \le 4 \Rightarrow 4 \le 4\sqrt{1 + 5} \le 4 \Rightarrow 4 \le 4\sqrt{1 + 5} \le 6$$

$$\begin{aligned} & \text{min } \ \textit{v} = 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ & 1.5 + 0 - 0.5 \geq 1 \Rightarrow 1 \geq 1 \checkmark \\ & 1.5 - 0 + 0.5 \geq 2 \Rightarrow 2 \geq 2 \checkmark \\ & \pi_1, \pi_2 \geq 0 \end{aligned}$$

Exemplo

Vemos que todas as restrições são satisfeitas, e z=v, o que, pelo teorema fraco da dualidade garante que as soluções x e π são ótimas para seus respectivos problemas.

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11\sqrt{1 + 5 \le 6} \Rightarrow 6 \le 6\sqrt{1 - 5 \le 4} \Rightarrow -4 \le 4\sqrt{1 + 5 \le 4} \Rightarrow 4 \le 4\sqrt{1$$

min
$$v = 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11\sqrt{1.5 + 0 - 0.5} \ge 1 \Rightarrow 1 \ge 1\sqrt{1.5 - 0 + 0.5} \ge 2 \Rightarrow 2 \ge 2\sqrt{\pi_1, \pi_2} \ge 0$$

As soluções são factíveis, mas como podemos garantir que são ótimas?

Solução dual pelo quadro primal

Exemplo

Vemos que todas as restrições são satisfeitas, e z=v, o que, pelo teorema fraco da dualidade garante que as soluções x e π são ótimas para seus respectivos problemas.

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11\sqrt{1 + 5 \le 6} \Rightarrow 6 \le 6\sqrt{1 - 5 \le 4} \Rightarrow -4 \le 4\sqrt{1 + 5 \le 4} \Rightarrow 4 \le 4\sqrt{1$$

min
$$v = 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11\sqrt{1.5 + 0 - 0.5} \ge 1 \Rightarrow 1 \ge 1\sqrt{1.5 - 0 + 0.5} \ge 2 \Rightarrow 2 \ge 2\sqrt{\pi_1, \pi_2} \ge 0$$

As soluções são factíveis, mas como podemos garantir que são ótimas?

Pelo teorema fraco da dualidade parte 2, se Z = V para o par primal dual, então as soluções para ambos os problemas são ótimas.

Objetivos

Ferramentas e objetivos

Agora que sabemos que ao final do quadro Simplex, além de obtermos a solução ótima do primal, obtemos também a solução ótima do dual, podemos investigar o que ocorre com essa solução iteração a iteração. O que mostramos é que, **no quadro final primal (ótimo)** a solução dual é factível e ótima, **mas não sabemos nas iterações intermediárias**. Seja novamente o par primal-dual:

Agora que sabemos que ao final do quadro Simplex, além de obtermos a solução ótima do primal, obtemos também a solução ótima do dual, podemos investigar o que ocorre com essa solução iteração a iteração. O que mostramos é que, no quadro final primal (ótimo) a solução dual é factível e ótima, mas não sabemos nas iterações intermediárias. Seja novamente o par primal-dual:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

min
$$v=6\pi_1+4\pi_2+4\pi_3$$
 $\pi_1+\pi_2-\pi_3\geq 1$ $\pi_1-\pi_2+\pi_3\geq 2$ $\pi_1,\pi_2\geq 0$

Podemos analisar a cada iteração do Simplex, o que ocorre com a solução dual.

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	-z
VB	-1	-2	0	0	0	0
<i>X</i> 3	1	1	1	0	0	6
<i>X</i> 4	1	-1	0	1	0	4
<i>X</i> ₅	-1	1	0	0	1	4

min
$$v=6\pi_1+4\pi_2+4\pi_3$$
 $\pi_1+\pi_2-\pi_3\geq 1$ $\pi_1-\pi_2+\pi_3\geq 2$ $\pi_1,\pi_2\geq 0$

Na primeira iteração, a solução dual é factível?

Solução atual $\pi=(0,0,0)$

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	-z
VB	-1	-2	0	0	0	0
<i>X</i> 3	1	1	1	0	0	6
<i>X</i> ₄	1	-1	0	1	0	4
<i>x</i> ₅	-1	1	0	0	1	4

Não, nenhuma restrição dual é satisfeita.

$$\begin{aligned} &\text{min } \ \textit{v} = 6 \cdot 0 + 4 \cdot 0 + 4 \cdot 0 \Rightarrow 0 \\ &0 + 0 - 0 \geq 1 \Rightarrow 0 \geq 1 \ \textit{X} \\ &0 - 0 + 0 \geq 2 \Rightarrow 0 \geq 2 \ \textit{X} \\ &\pi_1, \pi_2 \geq 0 \end{aligned}$$

Solução atual $\pi=(0,0,2)$

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	-z
VB	-3	0	0	0	2	8
<i>X</i> 3	2	0	1	0	-1	2
<i>X</i> 4	0	0	0	1	1	8
<i>x</i> ₂	-1	1	0	0	1	4

Na segunda iteração a solução ainda é dual infactível, porém uma restrição é satisfeita.

Solução atual $\pi=(1.5,0,0.5)$

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	-Z
VB	0	0	3/2	0	1/2	11
x_1	1	0	1/2	0	-1/2	1
<i>X</i> 4	0	0	0	1	1	8
<i>x</i> ₂	0	1	1/2	0	1 /2	5

$$\begin{aligned} \min \ v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ 1.5 + 0 - 0.5 &\geq 1 \Rightarrow 1 \geq 1 \checkmark \\ 1.5 - 0 + 0.5 &\geq 2 \Rightarrow 2 \geq 2 \checkmark \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Somente na última iteração (ou seja, na otimalidade primal) a solução dual é factível.

Percebemos que para cada solução básica factível do primal, a solução correspondente do dual é infactível (exceto na otimalidade primal). Mas **por quê isso ocorre**? Para entender temos que recorrer novamente à tabela genérica Simplex.

Considere a tabela genérica, bem como o modelo dual com separação de variáveis básicas e não básicas.

\mathbf{x}_{B}	×N	-z
0	$ (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}) $ $ \mathbf{B}^{-1} \mathbf{N} $	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$B^{-1}N$	$B^{-1}b$

$$ext{max v} = \pi^T \mathbf{b}$$
 $extbf{B}^T \pi \leq \mathbf{c}_B$ $extbf{N}^T \pi \leq \mathbf{c}_N$ π irrestrito

Novamente, pelo **teorema das folgas complementares**, as variáveis com valores > 0 no primal implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade. Multiplicando a primeira inequação pela inversa da base (B^{-1}) e aplicando a transposta:

\mathbf{x}_B	×N	-z
0	$(\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}) \\ \mathbf{B}^{-1} \mathbf{N}$	$-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{b}$
ı	$B^{-1}N$	$B^{-1}b$

$$\mathbf{max} \ \mathbf{v} = \mathbf{\pi}^T \mathbf{b}$$

$$\mathbf{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

$$\mathbf{N}^T \mathbf{\pi} \le \mathbf{c}_N$$

$$\mathbf{\pi} \ \text{irrestrito}$$

Aplicando a transposta em ambos os lados da inequação, e movendo o termo para a direita.

\mathbf{x}_{B}	×N	-z
0	$ (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}) $ $ \mathbf{B}^{-1} \mathbf{N} $	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$B^{-1}N$	$B^{-1}b$

$$\begin{aligned} \mathsf{max} \ \mathsf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \pi^T \mathbf{N} \\ \pi \ \mathsf{irrestrito} \end{aligned}$$

Substituindo a solução π^T da primeira equação na inequação, ficamos com:

\mathbf{x}_B	×N	-z
0	$ (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N}) $ $ \mathbf{B}^{-1} \mathbf{N} $	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$B^{-1}N$	$\mathbf{B}^{-1}\mathbf{b}$

$$\mathbf{max} \ \mathbf{v} = \mathbf{\pi}^T \mathbf{b}$$

$$\mathbf{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

$$\pi \ \text{irrestrito}$$

Note que o termo que define a restrição de factibilidade do dual, é exatamente o mesmo que define os custos na função objetivo da tabela Simplex referentes às variáveis não básicas.

\mathbf{x}_B	×N	-z
0	$ \frac{(\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N})}{\mathbf{B}^{-1} \mathbf{N}} $	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
1	$B^{-1}N$	$B^{-1}b$

$$\begin{aligned} \mathsf{max} \ \mathsf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \pi \ \text{irrestrito} \end{aligned}$$

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o custo das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos das variáveis não básicas. Ou seja, enquanto:

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o custo das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos das variáveis não básicas. Ou seja, enquanto:

$$\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N} < 0$$

O método continua,

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o custo das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos das variáveis não básicas. Ou seja, enquanto:

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} < 0$$

O método continua, quando

$$\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N} \geq 0$$

Estamos na solução ótima.

Conclusão

O custo das variáveis não básicas na função objetivo é justamente o critério de factibilidade do problema dual. O critério só é atingido quando o a solução ótima do primal é encontrada. Ou seja, no método Simplex, a cada iteração temos uma solução primal factível e dual infactível, somente quando chegamos na otimalidade primal a solução dual é factível (e ótima).

Objetivos

Ferramentas e objetivos

Próximos passos

As três conclusões que chegamos nos possibilitam entender 3 aplicações: o algoritmo Simplex Revisado (não estudaremos), a Análise de sensibilidade e o algoritmo Dual-Simplex.

Objetivos

Ferramentas e objetivos

