Jinwoo Kim Coms 321 2/1/2018 Prof. G.M. Prabhu

1. - (a)

Program 1, Time on M2 is faster than M1 by 100%.

Program 2, Time on Mi is faster than M2 by 33%

2. MIPS: Millions of Instructions per seconds

 $MIPS_{M1} = \frac{200 \times 10^4}{10} = \frac{40^6}{5} = 32$ (x106)

3. CRM = 200 MHZ (RMZ = 300 MHZ

MIPS = clock Parte => CPIXIO6 = clock Rate
MIPS

CPIMI = clock Rate = 200 MHZ = 200 X 104 = 10

CPIMZ = 300MHZ = 300×19/42 = 150 = 9.315.

4. $CPI_{P2} = CPI_{P1}$ $CR_{M1} = 200MMR$ $CR_{M2} = 300MMR$ $CPI_{M1} = 10$ $CPI_{M2} = 9.375$ Instruction $Count = MIPS \times (Exec. Time \times 10^6)$

 $MIPS_{MI} = \frac{\text{clock rote}}{\text{CPI} \times 10^6} = \frac{200 \times 10^6}{1.0 \times 10^6} = 20$ $44.700 = \frac{300 \times 10^6}{100 \times 10^6} = \frac{200 \times 10^6}{100 \times 10^6$

MIPSM2 = 300 × 106 = 32

IC = MIPS x (Exec. Time m × 106) = 20 x (3 x 106) = 60 x 106

IC (M2 = MIPS m x (Exec. Time m x x 106) = 32 x (4 x 106) = 128 x 106

Program	Time on MI	Time on MZ	(ost IVI	cost MZ	
1	10 sec	5 sec	\$10,000	\$15,000	
2	3 sec	4 sec		,	

Busically, machine M2 is faster than M1 by darble.

Mowever, M2 is more expensive than M1 by 50% but not double.

Thus it is

Thus, it is obvious to buy M2 to run thousands times.

We can colculate this using, Costme \$15,000 = \$7,500

which is less than \$10,000. So that buying M2 is more benealit.

6.

peak MIPS_{M1} =
$$\frac{500 \times 10^6}{1 \times 10^6} = \frac{500}{1 \times 10^6}$$

Peak MIPS_{M2} = $\frac{750 \times 10^6}{2 \times 10^6} = 375$

7.
$$CPI_{M_1} = \frac{(1+2+3+4)}{4} = 2.7$$
 $CPI_{M_2} = \frac{(2+2+4+4)}{4} = 3.$

$$MZPS_{MI} = 500$$

$$MZPS_{MZ} = 375$$

$$M = \frac{500 \times 10^6}{2.5} = 200 \times 10^6 \, \text{MZ} = \frac{150 \times 10^6}{3} = 250 \times 10^6$$

$$CR_{M1} = 500 \times 10^6$$
 $CR_{M2} = 750 \times 10^6$
 $CP_{JM1} = 2.5$
 $CP_{JM2} = 3$

IJ MI has 625×106 Hz clock Route, it will have some performance

FP x
$$30 \times 2 = 60$$
 cycles
FP + $20 \times 2 = 40$ cycles

FP
$$\star$$
 | 10% 0.1 × 300 = 30 mil
FP + 15% 0.15 × 300 = 45 mil
FP \div 5% 0.05 × 300 = 15 mil
Int. 10% 0.7 × 300 = 210 mil

The floating point instructions on MNFP need to be emulated by integer instructions

$$FP \times | 30 \times 30 = 900 \text{ mil}$$
 $FP + | 45 \times 20 = 900 \text{ mil}$
 $FP \div | 15 \times 50 = 950 \text{ mil}$
 $Jrt.$

Total number of integer instr. needed for program P on MNFP

= 900 + 900 + 950 + 210 = 2960 mil instructions

a-(c)

Exec. Time ICMNFP =
$$\frac{106}{54.3\times10^6} = \frac{50.7845ecs}{54.3\times10^6}$$