Bildbearbeitung

2D Post Processing, Bildmanipulation

2D Post Processing

Workflow

Erstellen von Assets

Objekte, Texturen; Skyboxen (Beleuchtung; HDR)

Komposition der Szene (3D Modeller, Game Engine)

- Posen, Animationen; Lichtquellen, Betrachter
- = Computergrafik

Post Processing (2D Bildbearbeitung)

= Ästhetik

Believable Visuals

Oft wird das Post Processing in einem Bildbearbeitungsprogramm durchgeführt.

Beispiele:

- "Aufhübschen" von Fotografien
- Photorealistische Darstellung von Computergrafik oder Animationen
- Computergrafik in ästhetische Bilder verwandeln

Nicht geeignet für:

Echtzeit-Rendering (Games)

CG Post Processing

Ausgangspunkt: Komposition der Szene

- Szene, Posen, Animationen arrangieren
- Licht und Schatten
 - → Konsistentes Ausleuchten aller Objekte
- Mehrere Bilder erzeugen (Ein- / Ausblenden von Inhalten)
 - → Separierung erleichtert das Post Processing
- Hohe Auflösung

Rendering

Berechnung der Winkel Berechnung des Farborts des Pixels (Näherung)

Rendering

Raytracing

- Strahlverfolgung
 - Verdeckungsberechnung
 - Streuung und Reflektion an Oberflächen (physikalisch)
- Berechnung der Lichtverteilung
- Bildsynthese:
 - Path Tracing
 - Photon Mapping
 - Particle Tracing
- Alternative (historisch): Radiosity
 - o Finite Elemente Verfahren
 - o Indirekte, diffuse Beleuchtung

(Quelle: Wikipedia)

Beispiel: Dragons Lair

Hardware:

- i5, 7. Gen
- 16 GB Hauptspeicher
- GTX 1060, 6GB

Bild:

- 1280 x 960
- Rechenzeit: ca. 30 min

Beispiel: Dragons Lair

"Cineastisches" Post Processing

- Farbabgleich
 - Intensitäten anpassen (Histogramm)
 - Schatten und Glanzlichter
- Rauschen beaufschlagen
- Bluring
- Nachbelichten, Abwedeln

Rendering (Wiederholung)

Definitionen

Rendern

Erzeugen eines Bildes aus einem virtuellen räumlichen Modell (Szene).

Anforderungen

- Harte Echtzeit (ca. > 30 fps)
- Weiche Echtzeit (ca. < 30 fps)
- Offline

Modellbeschreibung

- Geometrie (Raumkoordinaten, Normalen)
- Materialeigenschaften

Szene

- Modelle
- Hintergrund (Skybox)
- Lichtquellen
- Betrachter (Kamera)

Rendering Pipeline Schritte

Anwendung

- Logik (Kollision, Animation ...)
- Interaktion

Geometrie

- Modellbeschreibung
- Transformation, Zuschnitt
- Beleuchtungsmodelle, Shader (3D)

Rasterung

- Berechnung Farbwert pro Pixel
- Verdeckungsberechnung
- Postprocessing (2D)

(Quelle: Wikipedia)

Geometrieschritt

- Transformation (homogene Koordinaten) längs Sichtbereich (z-Achse)
- Frustum: near/far clipping plane;
 Zentralprojektion, Fluchtpunkt
- Aussehen auf Basis von
 Materialeigenschaften, Texturen und Beleuchtung

- Transformation Frustum in Würfel (vgl.
 Bildschirmkoordinaten x/y)
- Zuschnitt: Clipping, Culling

Geometrieschritt

- Shading
 - Flat Shading: Farbe pro Dreieck aus Eck-Vertices
 - Gouraud Shading: Interpolation zwischen Vertices
 - Phong Shading: Interpolation auf Basis Normalenvektoren
- Mapping (uv map)
 - Texture Mapping ("bekleben")
 - Bump Mapping (Normalenvektoren) (+ Blinn-Phong = Struktur)
 - Reflection Mapping (auf Basis Skybox)

Geometrieschritt

- Beleuchtungsmodelle
 - Lambert (Winkel zu Lichtquelle)
 - Phong (Winkel zu Lichtquelle, Winkel zu Betrachter)
 - Blinn-Phong (Halfway Vektor)
- Oberflächenbeschaffenheit (rau vs. glatt)
 - Bidirektionale Reflektanzverteilungsfunktion (BRDF)
 - Reflektionskegel
 - Photorealistisch: Sub Surface BRDF

Beleuchtung (hier: Unity)

- direkte Beleuchtung
 - Realtime Lighting
 - Shading: Lambert, Blinn-Phong
- indirekte Beleuchtung (Global Illumination, bounced lighting)
 - Dynamische Objekte: Lightprobes, Reflection Probes
 - Statische Objekte: baked lighting
- Schatten

Computergrafik

Raytracing

Globale Beleuchtung

- direkte Beleuchtung + indirekte Beleuchtung
- Rendergleichung

$$L(x,\,ec{\omega}) = L_e(x,\,ec{\omega}) + \int_\Omega f_r(x,\,ec{\omega}',\,ec{\omega})\,L(x,\,ec{\omega}')\,(ec{\omega}'\cdotec{n})\,dec{\omega}'$$

L(x,w): Energiefluss von Punkt x der Oberfläche in Richtung w

L_e: Eigenemission

f_r: Streuungsterm (BRDF), winkelabhängig

L(x,w'): Energiefluss aus Richtung w' auf x \rightarrow direkt + indirekt (Photon Mapping)

w*n: Skalarprodukt von Einfallswinkel und Normalenvektor (vgl. Lambert)

Omega: Halbraumwinkel über Fläche

Monte Carlo Integration

Raytracing

- Annäherung des Integrals durch Monte Carlo Simulation (MC Raytracing)
- Lichtstrahlen werden an Oberflächen reflektiert, gestreut, gebrochen oder absorbiert
- Daraus ein zufälliger neuer Strahl
 Oder: Speichern in Photon Map (falls diffus reflektierende Oberfläche)
- Sukzessive Bildkonstruktion mit immer kleinerer Varianz
 I.d.R. von Bildebene zu Lichtquelle, alternativ: Light Ray Tracing

Light Tracing / Particle Tracing

beliesige Strahlen

Romplexe Haterialien

Sub-Surface Scattering

Realistische Lichtverteilung in der Szene

Path Tracing

2D Post Processing

Workflow: "Cineastisch"

Farbanpassung, Rauschen

Farben/Werte

Konstrast (Untergrenze) und Helligkeit (Obergrenze) über Verschieben der Histogrammgrenzen anpassen.

Farben/Kurven

Abhängigkeit Farbkanal zu Farbwert anpassen.

Farben/Sättigung

Farbsättigung reduzieren oder erhöhen, je nach gewünschtem Effekt. Hier: 50%

Farbe/Farbabgleich

Schatten und Glanzlichter anpassen, je nach Farbstich korrigieren

Filter/Rauschen/HSV Rauschen

Bildrauschen beaufschlagen.

Workflow: "Cineastisch"

Weichzeichnen, Überblenden

Filter/Weichzeichner/Gaußscher Weichzeichner

0,5% Bildgröße

Filter/Rauschen/HSV Rauschen

Bildrauschen beaufschlagen.

Ebenenmaske hinzufügen (Rechtsklick)

Volle Deckkraft; anschließend bearbeiten, bspw. Schärfentiefe

Kamera-Effekte

Vignette, Aufheller (ggf. Farbstich)

Beispiel: Believable Visuals

Bildmanipulation

"Lügen mit Bildern"

"Traue keinem Bild, dass Du nicht selbst gefälscht hast!"

- Optische Täuschungen: Illusionen, Wahrnehmungs- und Kognitionsphänomene
- Lügen mit Fotographien: Bildretusche
- Lügen mit CGI / Bildsynthese

Bilder sind schneller als Gedanken: Präattentive Wahrnehmung.

Bill Gates: "Wer die Bilder beherrscht, beherrscht die Köpfe."

Links

http://www.rhetorik.ch/Bildmanipulation/Bildmanipulation.html

Bildübermalung

Stalin hatte fast 1.000 Leute beschäftigt, um Dissidenten aus Bildern zu tilgen.

(Vgl. "1984")

Quelle: www.kamerabild.se

Bildübermalung

Quelle: www.kamerabild.se

Fehler

- Übergänge
- Licht und Schatten
- Über-Kontrastierung
- Harte Kanten
- Artefakte
- ...

Fehler

Quelle: PopSugar

Fotomontage

Quelle: Spiegel vom 10. Juli 2008

Fotomontage

Quelle: Spiegel vom 10. Juli 2008

Challenge accepted ...

Quelle: Flickr

Lügen mit Bildausschnitten

Ursula Dahmen:
"X für U - Bilder, die lügen"

Mutierte Katze?

Quelle: www.rhetorik.ch

Beispiel: Des Menschen bester Freund

Hausaufgabe

Selbst ausprobieren!

