THORIUMFREIES OPTISCHES GLAS

Publication number: DE2652747

Publication date: 1977-06-08

Inventor:

ISHIBASHI KAZUFUMI (JP); ICHIMURA TAKEO (JP)

Applicant:

NIPPON KOGAKU KK

Classification:

- international:

C03C3/068; C03C3/15; C03C3/155; C03C3/253; C03C3/062; C03C3/12; (IPC1-7): C03C3/30; C03C3/12

- European:

C03C3/155

Application number: DE19762652747 19761119 Priority number(s): JP19750138725 19751120

Report a data error here

Also published as:

JP52063211 (A)

Abstract not available for DE2652747

Data supplied from the **esp@cenet** database - Worldwide

Offenlegungsschrift

26 52 747

(1) (2)

43)

20

Aktenzeichen:

P 26 52 747.9

Anmeldetag:

19. 11. 76

Offenlegungstag:

8. 6.77

30

Unionspriorität:

33 33

20. 11. 75 Japan 138725-75

Bezeichnung:

Thoriumfreies optisches Glas

1

Anmelder:

Nippon Kogaku K.K., Tokio

(4)

Vertreter:

Grünecker, A., Dipl.-Ing.; Kinkeldey, H., Dr.-Ing.;

Stockmair, W., Dr.-Ing. Ae.E.; Schumann, K., Dipl.-Phys. Dr.rer.nat.; Jakob, P., Dipl.-Ing.; Bezold, G., Dipl.-Chem. Dr.rer.nat.; Pat.-Anwälte,

8000 München

0

Erfinder:

Ishibashi, Kazufumi, Sagamihara, Kanagawa; Ichimura, Takeo,

Tokio (Japan)

Patentansprüche

- (1/ Thoriumfreies optisches Glas, im weschtlichen bestehend aus (Werte in Gewichtsprozent): B₂O₃ 2.35, Le₂O₅ 8-53, Y₂O₃ 2-29, TiO₂ 2-19, GeO₂ 0-31, ZrO₂ 0-8, Ta₂O₅ 0-37, Nb₂O₅ 0-21, Gd₂O₃ 0-24, WO₃ 0-16, SiO₂ 0-4 und RO 0-24, wobsi EO ein Bestandteil oder eine Kombination von zwei oder mehr Bestandteilen aus der Gruppe MgO, CaO, SrO, BaO, ZnO und FbO ist.
- 2. Optisches Glas nach Anspruch 1, g e k e n n z e i c h ne t durch die folgenden Gehalte (in Gewichtsprozent): E_2O_3 2-18, Y_2O_3 2-14, FiO_2 2-8 und GeO_2 9-31.
- 3. Optisches Glas nach Anspruch 2, gekennzeichnet durch folgende Gehalte (in Gewichtsprozent): La_2O_3 8-39, Y_2O_3 2-12, TiO_2 2-7, Ta_2O_5 7-37.
- 4. Optisches Glas nach Anspruch 3, gekennzeichnet durch folgende Gehalte (in Gewichtsprozent): GeO₂ 11-31, Ta₂O₅ 8-37, ZrO₂ 1-8, Nb₂O₅ O, RO O-5.
- 5. Optisches Glas nach Anspruch 4, g e k e n n z e i c h n e t durch folgende Gehalte (in Gewichtsprozent): La_2O_3 27-39, Ta_2O_5 11-37, Gd_2O_3 0 und WO_3 0.

1 Q.

- 6. Optisches Glas nach Anspruch 5, gekennzeichnet durch folgende Bestandteile (in Gewichtsprozent): Y203 2-10, SiO2 0, RO 0.
- 7. Optisches Glas nach Anspruch 5, g e k e n n z e i c h n e t durch folgonde Gehalte (in Gowichtsprozent): B_2O_3 13.53, $I_{20}O_3$ 37.91, $I_{20}O_3$ 9.70, $I_{20}O_3$ 36.02, $I_{20}O_3$ 16.09, $I_{20}O_5$ 15.69, $I_{20}O_3$ 810, 810, 0, Ea0 0.73.
- 8. Optisches Glas nach Anspruch 5, gekennzeichnet durch folgende Gehalte (in Gewichtsprozent): Be₂0₃ 14,59, La₂0₃ 32,88, Y₂0₃ 11,13, Ti0₂ 3,99, GeO₂ 18,48, Ta₂0₅ 13,89, Zro₂ 4,25, Sio₂ 0, Pao 0,79.
- 9. Thoriumfreies optisches Glas, gekennzeichnet durch folgende Bestandteile (in Gewichtsprozent): B₂0₃ etwa 24-35, La₂0₃ etwa 27-50, Y₂0₃ etwa 8-29 und TiO₂ etwa 9-19.

PATENTANWALTE

.43.

2652747

A. GRÜDECKER

H. KINKELD'IY

W. STOCKMAIR DRUMC AREAINCE

K. SCHUMANN DRIBER ICH -15-7 JONS

P. H. JAKOB

D49- PRI

G. BEZOLD DRIFTERN - LOG CORM

NIPPON LOGARU K.K. 2-3 Marunouchi, 3-Chome, Chipoda-ku, Tokyo,

JAPAN

8 MÜNCHEN 22 MAXIMILIANSTRASSE 43

19. November 1376 P 11 046/64-hu

Thoriumfreies optisches Glas

Die Erfindung betrifft ein thoriumfreies optisches Glas mit hohem Brechungsindex und geringerer optischer Dispersion.

Die meisten bekannten optischen Gläser mit hohem Brechungsindex und geringerer Farbzerstreuung enthalten im allgemeinen Thoriumoxid als Bestandteil zum Erhöhen der Brechungsindices und zur Frniedrigung der Dispersion. Jedoch ist Thorium ein radioaktives Element, das für Menschen schädlich ist.

Es ist ein optisches Glas mit hohem Brechungsindex und geringer optischer Dispersion bekannt, das thoriumfrei ist, z.B. ein ternäres System E203-La203-Y203. Ein solches System weist jedoch hohe Verflüssigungstemperatur auf und besitzt deshalb den Nachteil der Entglasung. Die Neigung zur Entglasung erlaubt keine nennenswerte Erhöhung der Menge an La203 und Y203. Daher

.4

war es nicht möglich, einen beständigen Vorrat an optischen Gläsern mit hohem Brechungsindex zu erreichen, die frei von gefährlichem Thorium sind.

Ein Zweck der Erfindung ist daher ein optisches Glas mit hohem Brechungsindex und niedriger optischer Disperion, das thoriumfrei und gegenüber Entglasung stabilisiert ist. Es wird insbesondere ein quaternäres System B₂O₃-Ia₂O₃-Y₂O₃-TiO₂ zur Verfügung gestellt, das thoriumfrei ist, einen Brechungsindex (nd) im Bereich von 1,79 bis 1,93 und eine Abbé-Zahl (vd) im Bereich von 30 bis 41 besitzt.

Andere Zwecke und Aufgaben der Erfindung werden aus der folgenden Beschreibung deutlich.

Im Gegensatz zum ternären System B₂O₃-La₂O₃-Y₂O₃ sind im quaternären System B₂O₃-La₂O₃-Y₂O₃-TiO₂ gemäß der Erfindung 2 bis 19 Gew.-% TiO₂ anwesend. Aufgrund der Anwesenheit von TiO₂ ist die Verflüssigungstemperatur dieses Systems beträchtlich niedriger als diejenige des ternären Systems. Deshalb wurde die nachteilige Neigung zur Entglasung beträchtlich vermindert; gleichzeitig wird ein optisches Glas mit hohem Brechungsindex und geringerer Dispersion erhalten. Im Vergleich zum ternären System weist das erfindungsgemäße quaternäre System einen breiteren Glasflußbereich auf, der wiederum einen entsprechend breiteren Bereich des Brechungsindex ermöglicht.

Wie bekannt, ist B₂O₃ ein Vernetzungsbildner für Glas. TiO₂ ist ein Bestandteil, der die Eigenschaft besitzt, Glas einen hohen Brechnungsindex zu verleihen. Durch Vermindern des B₂O₃-Gehalts auf das äußerste Maß in Anwesenheit von TiO₂ wird das Glas hochbrechend. Tatsächlich werden mit dem erfindungsgemäßen quater-

4 S.

nären System B_2O_3 - La_2O_3 - Y_2O_3 -TiO₂ optische Gläser erhalten, die auf stabile Weise einen Brechungsindex (nd) im Bereich von 1,75 bis 1,93 besitzen, während bei einem ternären System B_2O_3 - La_2O_3 - Y_2O_3 lediglich ein Brechungsindex (nd) im Bereich von 1,715 bis 1,76 erreicht werden kann.

Es ist bekannt, daß TiO₂ dem Glas eine hohe Dispersion verleiht. Dagegen gibt Y₂O₃ dem Glas niedrige Dispersion. Es wäre daher zu erwarten, daß bei Vorliegen beider Bestandteile als Haupt-komponenten in der Glasrezeptur sich ihre Wirkungen gegenseitig aufheben würden. Erfindungsgemäß werden jedoch die beiden Komponenten TiO₂ und Y₂O₃ aufeinander angepaßt so verwendet, daß ein Glas mit geringer optischer Dispersion und hohem Brechungs-index erhalten wird, das gegen Entglasung stabilisiert ist.

Wie oben ausgeführt, verleiht Y₂O₃ dem Glas niedrige Dispersion. Durch Erhöhen des Y₂O₃-Gehalts im Glas auf eine beträchtliche Menge wird ein niedrig streuendes Glas ohne wesentliche Erniedrigung der Abbé-Zahl (Yd) erhalten. Trotz der Anwesenheit einer beträchtlichen Y₂O₃-Menge wird der Brechungsindex nicht verringert, da weder TiO₂ noch Y₂O₃ diese optische Eigenschaft des Glases beeinflußt.

Das System B₂O₃-La₂O₃-Y₂O₃-TiO₂ als solches weist als quaternäres System einen breiten Glasflußbereich auf, wie oben erwähnt. Gemäß der vorliegenden Erfindung wird jedoch der Zusatz oder Einschluß anderer Bestandteile nicht ausgeschlossen. Das erfindungsgemäße optische Glas kann zusätzlich zu den vier Komponenten des quaternären Systems Komponenten aus der folgenden Gruppe enthalten: GeO₂, ZrO₂, Ta₂O₅, Nb₂O₅, Gd₂O₃, WO₃, SiO₂ und RO, wobei RO ein Zusatz oder eine Kombination von zwei oder mehr Zusätzen wie MgO, CaO, SrO, BaO, ZnO oder PbO ist. Diese

°6.

zusätzlichen Bestandteile beeinflussen im allgemeinen die optische Eigenschaft des Glases unter Erhöhung des Brechungsindex' ohne wesentliche Verringerung der Abbé-Zahl. Wenn nun eine verhältnismäßig große Menge dieser zusätzlichen Bestandteile zugesetzt wird, werden auf dieselbe Art wie mit dem einfachen quaternären System hochbrechende und gering streuende Gläser erhalten. Optische Gläser, die die zusätzlichen Komponenten enthalten, weisen auch gute Stabilität auf und sind für die Produktion im industriellen Maßstab geeignet.

Die erfindungsgemäßen optischen Gläser besitzen nicht nur hohen Brechungsindex und niedrige Dispersion, sondern weisen auch ausgezeichnete chemische Beständigkeit auf; TiO₂ verleiht Glas gute chemische Haltbarkeit. Die ausgezeichnete chemische Beständigkeit führt dazu, daß das Polieren des Glases sehr einfach ist und die erniedrigte Entglasbarkeit macht ferner Preßarbeiten an dem Glas sehr leicht. Das erfindungsgemäße optische Glas ist bezüglich chemischer Beständigkeit und Verarbeitbarkeit bekanntem Glas überlegen.

Zur Verdeutlichung der vorliegenden Erfindung werden die Bereiche für die Zusammensetzung des Glases im folgenden durch einen ersten bis sechsten Bereich für die Zusammensetzung des Glases auf Gewichtsprozentbasis angegeben:

Der erste Bereich der Zusammensetzung ist wie folgt:

^B 2 ^O 3	2	-	35
La ₂ 0 ₃	8	a	53
Y203	2		29
TiO ₂	2	***	19

. 4.

GeO ₂	0 - 31
Zr0 ₂	0 - 8
Ta ₂ 0 ₅	0 - 37
Nb205	0 - 21
Gd ₂ O ₃	0 - 24
wo ₃	0 - 16
SiO ₂	0 - 4
RO	0 - 24

RO hat die oben angegebene Bedeutung.

B₂O₃ unter 2 % läßt Glas entglasen und ein B₂O₃-Gehalt über 35 % verursacht eine Auftrennung der Schmelze in zwei flüssige Phasen. Ebenso ergibt ein La₂O₃-Gehalt unter 8 % die Trennung der Schmelze in zwei flüssige Phasen. Wenn der La₂O₃-Gehalt 53 % überschreitet, kann das Glas entglasen. Y₂O₃ unter 2 % oder über 29 % läßt das Glas entglasbar werden. Dasselbe gilt für einen TiO₂-Gehalt unter 2 % oder über 19 %. Wenn GeO₂ zu mehr als 31 % vorliegt, erhöht sich der Schmelzpunkt des Ansatzes, weshalb es Schwierigkeiten beim Schmelzen gibt.

Wenn ZrO₂, Ta₂O₅, Nb₂O₅, Gd₂O₃ und RO 8 %, 37 %, 21 %, 24 %, bzw. 24 % überschreiten, wird das Glas in einem unerwünschten Maß entglasbar. Ein WO₃-Gehalt über 16 % kann eine Auftrennung der Schmelze in zwei flüssige Phasen verursachen. Ein SiO₂-Gehalt über 4 % ist ungeeignet. Beim Schmelzen bleibt SiO₂ ungeschmolzen und man benötigt daher zur vollständigen Schmelze des Ansatzes längere Zeit.

4 B.

(2) Durch weitere Einengung der Gehalte an B₂O₃, T₂O₃, TiO₂ und GeO₂, wie unten angegeben, wird ein zweiter Bereichfür die Zusammensetzung erreicht, der die Erzeugung eines optischen Glases mit verbesserter Entglasungsstabilität gegenüber der ersten Zusammensetzung ermöglicht. Für die unten nicht aufgeführten Bestandteile kann der erste Bereich der Zusammensetzung verwendet werden.

B ₂ O ₃	2	***	18
^y 2 ⁰ 3	2	-	14
TiO ₂	2	-	8
GeO ₂	9		31

(3) Durch weitere Einschränkung des zweiten Bereichs der Zusammensetzung auf den unten angegebenen Bereich wird eine Rezeptur erhalten, die die Erzeugung eines optischen Glases ermöglicht, das beständiger gegen Entglasung ist als die zweite Zusammensetzung. Für die unten nicht angeführten Bestandteile kann der zweite Bereich der Zusammensetzung verwendet werden.

La ₂ 0 ₃	_	8	a.	39
Y2 ⁰ 3		2	**	12
TiO ₂		2	-	17
Ta ₂ 0 ₅		7	en-	37

9.

(4) Durch weitere Einschränkung des dritten Bereichs der Zusammensetzung auf den unten angegebenen Bereich wird eine Rezeptur erhalten, die die Herstellung eines optischen Glases ermöglicht, das beständiger gegen Entglasung ist als die dritte Zusammensetzung. Die unten nicht aufgeführten Bestandteile können wie im dritten Bereich der Zusammensetzung eingesetzt werden.

GeO ₂	11	-	31
Ta ₂ 0 ₅	. 8	•	37
Zr0 ₂	i		8
Nb ₂ 0 ₅		0	
RO	0	_	. 5

(5) Durch weiteres Einschränken des vierten Bereichs der Zusammensetzung auf den unten wiedergegebenen Bereich wird eine Rezeptur erhalten, die die Erzeugung eines optischen Glases ermöglicht, das noch beständiger gegen Entglasung ist als die vierte Zusammensetzung.

La ₂ 0 ₃	27 - 39
Ta205	11 - 37
Gd_2O_3	.0
wo ₃	0

· 10 ·

(6) Durch weitere Einschränkung des fünften Bereichs auf den unten angegebenen Bereich wird eine Rezeptur erhalten, die die Erzeugung eines optischen Glases mit noch besserer Entglasungsbeständigkeit ermöglicht als die fünfte Zusammensetzung. Die nicht aufgeführten Komponenten können gemäß der fünften Zusammensetzung eingesetzt werden.

$^{Y_{2}O_{3}}$		2	-	10
SiO ₂			0	
RO	 •		0	

Das erfindungsgemäße optische Glas kann folgendermaßen hergestellt werden: Als Ausgangsmaterial für die Glaskomponenten werden die entsprechenden Oxide, Carbonate, Nitrate usw. verwendet. Jedes Ausgangsmaterial wird gewogen, um ein richtiges Verhältnis der Bestandteile, wie gewünscht, herzustellen. Das gewogene Ausgangsmaterial wird sorgfältig gemischt und ergibt einen Glasansatz. Der vorbereitete Glasansatz wird in einen Platintiegel gegeben und in einen auf 1200 bis 1400°C geheizten elektrischen Ofen gesetzt. Nach dem Schmelzen und Läutern wird das geschmolzene Glas gerührt und homogenisiert. Dann wird das geschmolzene Glas in eine Eisenform gegossen und zur Glasbildung getempert. Einige Beispiele für das erfindungsgemäße Glas werden in der folgenden Tabelle mit den Werten für die Zusammensetzung (Gew.-%), den Brechungsindex (nd) und die Abbè-Zahl (yd) gegeben:

Ø	ŧ
Н	l
-1	l
9	ļ
끚	ł
===	ĺ
	\$

· -	• 111 ,	0
9	73,87 32,70 4,96 4,13 16,50 - 7,72	7,8790
6	74,42 27,51 4,45 2,97 11,85 1,84 56,96	1,8578
ω	75,45 32,55 8,64 4,22 19,57 7,94	1,8638
2	15,82 46,67 13,78 4,92 18,81	1,8499
· w	16,40 52,94 3,26 7,89 19,51	1,8653 37,2
īU.	29,29 49,85 8,64 12,22	1,8481
4	20,46 28,87 17,96 12,71	1,8407
W	23,78 49,46 8,67 18,19	7,9134
N	24,75 27,10 28,18 9,97	1,7954
genera	24,72 38,56 17,81 18,91	1,9034
	B203 1203 1203 1203 1200 1200 13203 Nb203	nd Vd

An	
112	_

. [1								. 11	≪								Z C
<u>7</u>	14,59	32,88	11,13	3,99	18,48	4,23	13,89		ì	i	Queen Control	ı	ı	0,70	1	1	1,8639	37.7
17	15,53	37,91	9,70	3,22	16,09	12, 12,	15,69	ı	ı	i	ı	1	i	0,73	1	\$	1,8757	78,0
16	12,76	35,33	7,94	3,36	13,41	2,08	16,35	ı	1	ν, π, ω,	ı	ı	ł	4,92	l	. f	1,8507	100 100 101
15	14,44	34,04	5,16	4,30	17,17	1,62	8,04		15,23	*		ı	ı	1	1	_ 4	1,8701	34,3
74	17,19	38,24	2,32	96,9	16,70	3,96	14,63	ı	ı	ı		1	1	1			1,8731	34,8
. 21	14,40	8,34	10,32	6,05	17,12	2,33	16,70	23,74	1	9	· ·	1	Î	1	ance	1	1,8773	34,8
12	2,69	56,23	9,27	3,08	30,75	2,99	14,99	1.	ĵ	1	. 1	·		į	į	8	1,9275	35,2
	16,02	33,02	5,73	2,44	9,91	2	8,92	1		****	7,47	2,04	3,77	5,59	2,96	8,13	1,8317	38,0
	B ₂ 0 ₃ -	La203	Y203	Ti02	GeO2	$Zr0_2$	Ta205	Gd203	wo ₃	Sio2	MgO	CaO	Sro	BaO	ZnO	Pb0	ಗಿದೆ	<i>ਮ</i> ਰ

. 13.

Aus dem Vorstehenden ist ersichtlich, daß man erfindungsgemäß ein optisches Glas mit hohem Brechungsindex und niedriger Dispersion erhält, insbesondere ein optisches Glas mit einem Brechungsindex (nd) im Bereich von 1,79 bis 1,93 und einer Abbé-Zahl (vd) im Bereich von 30 bis 41, das auf stabile Weise im industriellen Maßstab erzeugt werden kann.