Семинар 3.

Модель множественной регрессии.

Матрицы: начало.

1. (Математическое ожидание квадратичной формы) Пусть y — случайный векторстолбец размерности $n \times 1$, A — детерминированная матрица размерности $n \times n$. Покажите, что справедливо следующее:

$$\mathbb{E}(y'Ay) = \operatorname{tr}(A\operatorname{Var}(y)) + \mathbb{E}(y')A\mathbb{E}(y).$$

- 2. Используя матрицы $P = X(X'X)^{-1}X'$ и $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$
 - (a) запишите TSS, RSS и ESS в матричной форме;
 - (b) вычислите $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$.

Примечание: $\vec{1}$ — вектор размерности $n \times 1$, состоящий из единиц.

- 3. Что происходит с TSS, RSS, ESS, R^2 при добавлении нового наблюдения? Если величина может изменяться только в одну сторону, то докажите это. Если возможны и рост, и падение, то приведите пример.
- 4. Рассмотрим классическую линейную модель регрессии

$$y = X\beta + \varepsilon$$
.

Найдите:

- (a) $Cov(e, \hat{\beta})$;
- (b) Cov(e, y);
- (c) $Cov(e, \hat{y})$.

Домашнее задание.

- 1. Рассчитайте $\mathbb{E}(RSS)$.
- 2. Посчитайте $Cov(\hat{\beta}, y)$, $Cov(\hat{\beta}, \hat{y})$.