Predicting Photometric Redshifts using Machine Learning methods

ASTRON-3705 Class Project

PhD Candidate (III Year)

Department of Physics and Astronomy

University of Pittsburgh

Ali Beheshti

PhD Student (II Year)

Department of Physics and Astronomy

University of Pittsburgh

Jeffrey Newman

Professor

Department of Physics and Astronomy

University of Pittsburgh

Motivations

What is Photometric Redshift?

Predicting redshift of a galaxy using its colors, magnitude and some other properties like (morphology, light profile, dust and axis ratio)

Next generation surveys like Euclid, LSST, SKA will rely on Photo-z rather than spectroscopic redshifts.

Expensive to obtain spectra (and then redshift from it) for billions of galaxies.

Machine Learning to rescue!

Already existing spectroscopic + photometric data of millions of galaxies can be leveraged to train an ML Model that could make predictions for new photometric data

Data

DESI

- ~14,000 deg^2
- 0<z<3.5
- >50 millions spectra

Legacy Surveys (Imaging)

• DECaLS, MzLS, BASS, WISE

BGS sample

- ~80,000 objects
- Z spec, Magnitudes, MorphType, Shape,
 - PhotSys, EBV, Sersic, etc.

Machine Learning

- Regression
- Classification
- Clustering
- Dimensionality reduction
- Supervised
- Unsupervised

- Random forest
- K-nearest neighbour
 - Unweighted (Uniform)
 - Weighted (Distance)
- Gradient Boosting
 - XgBoost
 - CatBoost
- Neural Networks
 - MLP Regressor
 - Keras based ANN
- Gaussian processes
 - KISS GP + LOVE sampling algorithm

Diagnostics for Analysis

- Different training samples (keeping same test set)
 Scaling relations
 - a. NMAD vs Training set size
 - b. Outlier fraction vs Training set size
- 2. Different Features
 - a. Colors + Magnitude only
 - b. Colors + Magnitude + Half light radius
 - c. Colors + Magnitude + Categorical
 - d. ALL
- Different Scalars
 - a. Standard Scalar
 - b. MinMax Scalar
- 4. Different Hyperparameters
 - a. Layers
 - b. Estimators
 - c. Neighbours
 - d. Depths
 - e. Weights (uniform, distance etc.)

Metrics Used

1. NMAD (Normalized Median Absolute Deviation)

$$\sigma_{NMAD} = 1.48 \text{ x median } \frac{|Z_{phot} - Z_{spec}|}{1 + Z_{spec}}$$

2. Bias Bias = median

3.

Outliers
$$\frac{z_{phot} - z_{spec}}{1 + z_{spec}} > 0.15$$

4. RMSE (Root Mean Square Error)

$$\sqrt{\frac{1}{n} \sum \left(\frac{z_{phot} - z_{spec}}{1 + z_{spec}}\right)^2}$$

Random Forest

What is RF?

How it works?

MinMaxScalar

NMAD = 0.0255 Outliers = 0.672 %

StandardScalar

NMAD = 0.0254 Outliers = 0.717 %

Random Forest: What we found for DESI BGS sample?

J. Newman + 2020 White Paper

0.1 million simulated LSST galaxies in 0 < z < 4

Table 1: Random Forest					
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All	
NMAD	0.0283	0.0271	0.0274	0.0250	
15% Outliers	1.165 %	1.133 %	1.017 %	0.863 %	

Random Forest: What we found for DESI BGS sample?

R. Zhou + 2021 2.7 million DESI LRG galaxies in 0.4 < z < 0.9

KNN - Weighted and Unweighted

What is KNN?

How it works?

KNN Uniform

NMAD = 0.0386 Outliers = 0.872 %

KNN Distance

NMAD = 0.0368 Outliers = 0.872%

KNN- unweighted vs weighted:

What we found for DESI BGS sample?

Table 2: Unweighted KNN					
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All	
NMAD	0.0289	0.0286	0.0296	0.0323	
15% Outliers	1.088 %	0.998 %	1.165%	1.107 %	

	Tabl	₹ 3: Weighted KNN	\	
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All
NMAD	0.0286	0.0281	0.0290	0.0320
15% Outliers	1.101 %	0.991 %	1.191 %	1.088 %

80/20 train test split, 10 neighbours

Z. Gomes+2018 also found improved performance with size information in training

KNN- unweighted vs weighted:

What we found for DESI BGS sample?

Least Outlier Fraction with: N = 20 (Uniform) N = 30 (Distance Weighting)

XGBoost (Extreme Gradient Boosting)

What is XGBoost?

How it works?

Squared Loss

NMAD = 0.0284 Outliers = 0.791 %

Pseudo-Huber Loss

NMAD = 0.0368 Outliers = 0.872%

XGB: What we found for DESI BGS sample?

Table 4: XGB					
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All	
NMAD	0.0359	0.0353	0.0353	0.0328	
15% Outliers	1.449 %	1.223 %	1.178 %	1.204 %	

CatBoost (Categorical Gradient Boosting)

Estimators = 40 NMAD = 0.0297 Outliers = 0.835 %

What is CatBoost?

How it works?

Much Faster prediction than XGB but takes longer to train.

Utilizes Categorical information in decision trees

CATB: What we found for DESI BGS sample?

Table 6: CATB				
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All
NMAD	0.0299	0.0290	0.0273	0.0248
15% Outliers	1.281 %	1.185 %	1.114 %	0.927 %
				\

Optimal Estimators = 40
More Accurate than XGBoost

MLP NN

(Multi-Layer Perceptron Neural Network)

What is MLP?

Feedforward ANN
Can distinguish data that is not linearly
separable (can learn a non-linear function
approximator)

How it works?

Utilizes supervised learning technique called backpropagation for training

Random State = 2

NMAD = 0.0283 Outliers = 0.737 %

Max iterations = 50

NMAD = 0.0283 Outliers = 0.685 %

MLP: What we found for DESI BGS sample?

Table 5: MLP					
	Col. & Mag.	Col., Mag. & HLR	Col., Mag.'s & Cat.	All	
NMAD	0.0329	0.0300	0.0319	0.0308	
15% Outliers	1.185 %	1.140 %	0.933 %	1.062 %	

Optimal Iterations = 50

Random States

Performance

Keras NN

Why Keras NN?

High level API compared to Pytorch and build over Tensorflow Easier to Use and Implement Cons: Can be slower than Pytorch

Our Test

2 Hidden Layers
Sequential Model
Rectified Linear Unit (Relu) Activation Function
L2 kernel regularizer

Batch Size = 200

NMAD = 0.0304 Outliers = 0.717 %

Epochs = 40

NMAD = 0.0258 Outliers = 0.678 %

Units = 60

NMAD = 0.0267 Outliers = 0.659 %

KERAS: What we found for DESI BGS sample?

Optimal Parameters
Batch Size = 200
Epochs = 40
Units = 60

GPR

(Gaussian Process Regression)

What is GPR?

Nonparametric, Non-linear Bayesian approach to regression that provides well-calibrated posterior distributions.

How it works?

Uses Kernels for calculating marginal likelihood + posterior mean (we used KISS)

Needs algorithms for fast posterior sampling and covariance matrix calculations (we used LOVE)

Grid = 100 Training iterations = 30

> NMAD = 0.0343 Outliers = 1.070 %

Grid = 200 Training iterations = 30

> NMAD = 0.0337 Outliers = 1.011 %

GPR: What we found for DESI BGS sample?

Optimal Params
Training Iterations = 30
Grid Size = 200

* Need to figure out reading covariance matrix to get confidence intervals

Conclusions

- RF & CatBoost performs best with ALL features included in Training Set.
- KNN (both) performed best with Colors + Mags + Half Light Radius Info.
- XGB has mixed results:
 NMAD -> ALL features
 Least Outlier % -> Colors + Mags +
 Categorical Info.
- MLP has mixed results.
 NMAD -> Color + Mag + HLR
 Least Outlier % -> Color + Mag +
 Categorical Info.
- KERAS performs best in scaling.

Future Work

- Compare our hyperparameters with scikit learn model optimization routines-
 - 1. Exhaustive Grid Search
 - 2. Randomized Parameter Optimization

Also perform CV extensively for each parameter

- Re-run the scaling relations and different feature-set test with optimized model
- Quantify the computational efficiency of each method (time, GPUs, complexity)
- Obtain confidence intervals for GPR and test that with different kernels.

THANK YOU!