Конспект по курсу

Методы оптимизаций

Contributors: Андрей Степанов Лектор: Мусатов Д.В.

МФТИ

Последнее обновление: 3 мая 2015 г.

Содержание

1	Вводная лекция	2
	1.1 Базовые определения	2
	1.2 Линейное программирование	2
2	Потрачено	4
3	Потрачено	4
4	Выпуклые оптимизации	4

Оценка за зачет:

- 1. 40% от оценки за 2 контрольные работы (не переписываются)
- 2. 30% от оценки за 2 домашние задания
- 3. 30% от оценки индивидуальный проект, например:
 - (а) Теоретический (реферат)
 - (b) Теоретико-программистский (анализ времени работы, скорости сходимости)
 - (с) Практический (нужно самому найти данные для применения)

1 Вводная лекция

1.1 Базовые определения

Определение 1.1 (общая задача оптимизации). Пусть $f: X \mapsto \mathbb{R}$. Нужно найти точку экстремума, т.е. минимума или максимума (локального или глобального) (строго или нестрогого).

Определение 1.2 (задача условной оптимизации). Пусть $f: Y \mapsto \mathbb{R}, X \subset Y$. Нужно минимизировать f на X.

Замечание. Часто Х задается условиями вида:

$$\begin{cases} g_1(x) \le 0, \\ g_2(x) \le 0, \\ \dots \\ g_k(x) \le 0, \\ g_{k+1}(x) = 0, \\ \dots \\ g_n(x) = 0. \end{cases}$$

Замечание. Методы оптимизации можно условно разделить на аналитические и численные. Например, градиентный спуск — численный метод, метод Лагранжа — аналитический. Широкий класс численных методов — это итеративные алгоритмы. Можно условно разделить итеративные методы на точные и приближённые.

1.2 Линейное программирование

Определение 1.3. Задача линейного программирования — минимизация линейной функции на многограннике.

Более строго: пусть дана линейная функция $f: \mathbb{R}^n \mapsto \mathbb{R}$, имеющая вид

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \alpha_i x_i$$

. Пусть также дана система линейных уравнений и неравенств: $A_1x \leq b_1$, $A_2x = b_2$. Задача стоит в нахождении минимума f на множестве, на котором выполнена система уравнений.

Определение 1.4. Систему линейных уравнений и неравенств $A_1x \leq b_1$, $A_2x \leq b_2$ назовём системой ограничений.

Определение 1.5. Ограничения со знаком неравенства будем называть уравнениями-неравенствами.

Определение 1.6. Ограничения со знаком равенства будем называть уравнениямиравенствами.

Пример. Производственная задача: даны товары g_1, \ldots, g_n и ресурсы $r_1, \ldots r_m$. Ресурсов ограниченное число. Ресурсов i-того типа: ω_i . На производство g_i необходимо $c_{i,j}$ ресурсов r_i . p_i – цена g_i . Нужно максимизировать прибыль.

Обозначим x_i – сколько товаров g_i было произведено. Тогда есть следующая задача максимизации:

$$\max \sum_{i=0}^{n} p_i x_i$$

$$\begin{cases} x_1 \ge 0 \\ \dots \\ x_n \ge 0 \\ \sum_{j=1}^{n} x_j c_{j,1} \le \omega_1 \\ \dots \\ \sum_{j=1}^{n} x_j c_{j,m} \le \omega_m \end{cases}$$

$$\left| \begin{array}{c} \dots \\ \sum_{i=1}^{n} x_i c_{i,m} < \omega_m \end{array} \right|$$

Замечание. Сначала считаем, что уравнений-равенств нет.

Определение 1.7. Грань k-той размерности – это множество точек, в которой ровно n-k неравенств обратились в равенство, а остальные неравенства верны.

Утверждение 1.1. Если минимум достигается, то он достигается на какой-то грани.

Утверждение 1.2. Если минимум достигается во внутренней точке грани, то он достигается на всей грани.

Следствие. Если минимум достигается, то есть вершина многогранника, в которой он достигается.

Следствие. Есть экспоненциальный алгоритм решения задачи линейного программирования – простой перебор всех вершин.

Замечание. Есть симплекс метод.

2 Потрачено

3 Потрачено

4 Выпуклые оптимизации

Определение 4.1. $M\subset \mathbb{R}^n$ — выпукло, если $\forall x,y\in M: \forall \alpha\in (0,1): \alpha x+(1-\alpha)y\in M$

Пример.

- 1. Шар выпуклое множество
- 2. Плоскость
- 3. Симплекс

Утверждение 4.1. Если M – выпукло, а $x_1, \dots, x_m \in M$, то $\alpha_1 x_1 + \dots + \alpha_m x_m \in M$, если $\alpha_i \geq 0, \sum_{i=1}^n \alpha_i = 1$

Доказательство. Доказываем индукцией по т.

База: m = 2.

Переход: m>2. Рассмотрим $y_1=\frac{\alpha_1}{1-\alpha_m}x_1+\cdots+\frac{\alpha_{m-1}}{1-\alpha_m}x_{m-1},y_2=x_m$ $y_1\in M$ по предположению индукции, $y_m\in M$. Тогда $(1-\alpha_m)y_1+\alpha_my_2\in M$.

Утверждение 4.2. Пересечение выпуклых множеств – выпукло

Доказательство. Пусть $\beta \in (0,1)$. Пусть $\{A_i: i \in I\}$ — набор выпуклых множеств. Пусть $x,y \in \cap A_i$. Тогда $\forall i \in I: x,y \in A_i$. Поскольку A_i — выпуклые, то $\forall i \in I: \beta x + (1-\beta)y \in A_i$. Значит, $\beta x + (1-\beta)y \in \cap A_i$

Определение 4.2. Выпуклая оболочка множества $A - \langle A \rangle$ — наименьшее по включению выпуклое множество, содержащее A.

3 aмечание. Заметим, что $\langle A \rangle$ — это пересечение всех выпуклых множеств, содержащих множество A

Утверждение 4.3. $\langle A \rangle = \{\alpha_1x_1+\cdots+\alpha_mx_m: \sum \alpha_i=1, \alpha_i\geq 0, x_1,\cdots,x_m\in A\}=B$

Доказательство. Заметим, что B выпукло. Значит, $\langle A \rangle \subset B$. Но кроме того, $\langle A \rangle \supset B$.

Утверждение 4.4. Если M – выпуклое, то \overline{M} – выпукло, IntM – выпуклое.

Доказательство. Пусть $x, y \in \overline{M}$. Кроме того, $x, y \in \overline{M} \setminus M$. Пусть $x_n \to x$, $y_n \to y$. Тогда $\alpha x_n + (1-\alpha)y_n \in M$. Но тогда и $\alpha x + (1-\alpha)y \in M$.

Пусть $x,y\in IntM.$ $\langle U_{\varepsilon}(x)\cup U_{\varepsilon}(y)\rangle\supset$ отрезок [x,y]. Тогда любая точка отрезка — внутренняя.

Теорема 4.5 (Теорема об отделимости). Для замкнутого выпуклого M и точки $x \notin M$ $\exists z : \forall y \in M : (y,z) > (x,z)$

Доказательство. Пусть $y_0\in M, |y_0-x|=\min_{y\in M}|y-x|$. То есть точка y_0 — ближайшая из M к точке x. Тогда $\forall y\in M:|y_0-x|\leq |y-x|$. Возьмем $t=\alpha y+(1-\alpha)y_0$. Тогда $|y_0-x|^2\leq |\alpha y+(1-\alpha)y_0-x|^2=(\alpha y+(1-\alpha)y_0-x)$ тогда $\alpha y+(1-\alpha)y_0-x=\alpha y$

Теорема 4.6. Если $M_1, M_2 - \partial в a$ замкнутых выпуклых не пересекающихся множества. Тогда их можно отделить друг от друга гиперплоскостью. То есть $\exists z : \forall y_1 \in M_1, y_2 \in M_2 : (y_1, z) < (y_2, z)$

Доказательство. Пусть y_1^* — ближайшая к M_2 точка из $M_1,\ y_2^*$ — ближайшая к M_1 точка из M_2 . Найдется $z:(y_1^*,z)<(y_2,z)$

Рассмотрим M_1-M_2 – разность Минковского. $0\not\in M_1-M_2$. Тогда $\exists z:(0,z)\leq (y_1-y_2,z).$ Тогда $(y_1,z)<(y_2,z)$