# Repaso de Álgebra Lineal 2 Lección 04

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019



#### Contenido

- Otras operaciones
- 2 Conceptos avanzados
  - Independencia Lineal
  - Sistemas de ecuaciones y espacios de la matriz
  - Forma cuadrática
  - Eigensistemas

#### Inversa de una matriz

ullet Una matriz cuadrada  $oldsymbol{A}$  es invertible (o no singular) si existe otra matriz  $oldsymbol{A}^{-1}$  tal que

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}$$

 $\mathbf{A}^{-1}$  es la matriz inversa de  $\mathbf{A}$ .

- Caso contrario, la matriz se dice singular (o no invertible)
- Una matriz es **ortogonal** si se cumple  $\mathbf{A}^{-1} = \mathbf{A}^T$ , es decir, si sus vectores (fila y columna) son ortonormales entre sí.
- Una matriz ortogonal no cambia la norma  $\ell_2$  de un vector:  $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$



## Propiedades de la inversión de matrices

Para las matrices invertibles cuadradas A y B se cumple:

$$(A^{-1})^{-1} = A$$

• 
$$(AB)^{-1} = B^{-1}A^{-1}$$

• 
$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$
 lo que se denota con  $\mathbf{A}^{-T}$ 

#### Determinante de una matriz

- La determinante de una matriz cuadrada es un valor escalar denotado como |A| o det A
- Interpretación: Sea  $\underline{\alpha}$  un vector con  $0 \le \alpha_i \le 1$ . Todos los vectores que cumplen esta condición conforman un hipercubo en el espacio n dimensional. La determinande indica el volumen de ese hipercubo transformado por la matriz  $\mathbf{A}$  (Ver vídeo de 3Blue1Brown)
- La determinante de una matriz 2 x 2 se calcula con

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$



## Determinante de una matriz

Para una matriz de mayor orden la determinante es

$$|\mathbf{A}| = \sum_{j=1}^n a_{fj} |\mathbf{A}_{fj}|$$

donde  $\mathbf{A}_{fj}$  es la matriz adjunta de  $a_{fj}$  dada por  $(-1)^{f+j}\mathbf{M}_{fj}$ , y  $\mathbf{M}_{fj}$  es el menor complementario de  $a_{fj}$ , es decir, una matriz  $(n-1)\times(n-1)$  obtenida eliminando la fila f y la columna j de la matriz  $\mathbf{A}$ .

## Propiedades de la determinante

Sea **A** una matriz cuadrada de  $n \times n$ 

- $|s\mathbf{A}| = s^n |\mathbf{A}|$
- |I| = 1
- Distributividad: |AB| = |A||B|
- $|\mathbf{I}| = 1 = |\mathbf{A}\mathbf{A}^{-1}| = |\mathbf{A}||\mathbf{A}^{-1}| \Rightarrow |\mathbf{A}^{-1}| = 1/|\mathbf{A}|$
- $|A| = |A^T|$
- $|\mathbf{A}| = \mathbf{0}$  solo si  $\mathbf{A}$  es singular

#### Traza de una matriz

 La traza de una matriz cuadrada es la suma de los elementos en su diagonal

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n a_{ii}$$

- Un escalar s (matrix  $1 \times 1$ ) tiene tr s = s
- tr(A + B) = trA + trB
- $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}\mathbf{A}$
- $\operatorname{tr} \mathbf{A} = \operatorname{tr} \mathbf{A}^T$
- Si AB es cuadrada entonces tr AB = tr BA



#### **Normas**

- Informalmente, la norma  $\|\underline{\mathbf{x}}\|$  es una medida de la *longitud* del vector  $\mathbf{x} \in \mathbb{R}^n$ .
- Formalmente, la norma es un operador  $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$  que satisface 4 propiedades:

  - $\|\underline{\mathbf{x}}\| = 0 \Leftrightarrow \underline{\mathbf{x}} = \underline{\mathbf{0}} \text{ (definitud)}$
  - $\forall \underline{\mathbf{x}} \in \mathbb{R}^n$ ,  $a \in \mathbb{R}$ ,  $||a\underline{\mathbf{x}}|| = |a|||\underline{\mathbf{x}}||$  (homogeneidad)

## Ejemplos de normas

• Normas  $\ell_p$ , de Minkowski o normas p para vectores  $\underline{\mathbf{x}} \in \mathbb{R}^n$ :

$$\|\underline{\mathbf{x}}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Casos particulares:

- Norma  $\ell_2$  o euclidiana:  $\|\underline{\mathbf{x}}\|_2 = \sqrt{\underline{\mathbf{x}}^T\underline{\mathbf{x}}} = \sqrt{\sum_{i=1}^n x_i^2}$
- Norma  $\ell_1$  o de bloques de ciudad:  $\|\underline{\mathbf{x}}\|_1 = \sum_{i=1}^n |x_i|$
- Norma  $\ell_\infty\colon \|\underline{\mathbf{x}}\|_\infty = \max_i |x_i|$
- Norma de Frobenius para matrices  $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \sqrt{\operatorname{tr}(\mathbf{A}^T\mathbf{A})}$$

## Independencia lineal

• El conjunto  $\{\underline{\mathbf{x}}_1,\underline{\mathbf{x}}_2,\ldots,\underline{\mathbf{x}}_m\}\subset\mathbb{R}^n$  es (linealmente) independiente si ningún vector puede expresarse como combinación lineal de los otros vectores. Este es el caso solo si

$$\sum_{i=1}^{m} \alpha_i \underline{\mathbf{x}}_i = \underline{\mathbf{0}} \quad \Leftrightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_m = 0$$

 Caso contrario se dice que los vectores son (linealmente) dependientes:

$$\underline{\mathbf{x}}_j = \sum_{i=1\dots m, i\neq j} \alpha_i \underline{\mathbf{x}}_i$$



## Ejemplo (Ejemplo de independencia lineal)

¿Dependientes o independientes?

$$\underline{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\underline{\mathbf{x}}_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$$

$$\underline{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \underline{\mathbf{x}}_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \qquad \underline{\mathbf{x}}_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

$$\underline{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \underline{\mathbf{x}}_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \qquad \underline{\mathbf{x}}_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

Dependientes, pues:  $\underline{\mathbf{x}}_3 = -2\underline{\mathbf{x}}_1 + \underline{\mathbf{x}}_2$ 

#### Bases

- Si  $\mathcal B$  es un conjunto generador de un espacio lineal  $\mathbb V$ ,  $\mathcal B$  es una **base** de  $\mathbb V$  si y solo si todos sus vectores son linealmente independientes.
- El número de vectores en la base  $n=|\mathcal{B}|$  es igual a la dimensión de  $\mathbb{V}$
- Un conjunto generador de V requiere al menos n vectores
- Un conjunto generador linealmente independiente puede tener a lo sumo n vectores.

## Sistemas de ecuaciones en notación matricial

(1)

Todo sistema de ecuaciones lineales se puede expresar de la forma

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

que representa a

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

o en forma tradicional

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$   
 $\vdots + \vdots + \vdots + \vdots + \vdots = \vdots$   
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$ 

## Sistemas de ecuaciones en notación matricial

 Si <u>b</u> está en el alcance columna de A entonces el sistema tiene solución:

$$\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}}$$

- El rango columna de A (rank) es el máximo número de columnas linealmente independientes, y es igual a la dimensión del alcance columna (range) de A.
- El espacio nulo de **A** es el conjunto de vectores  $\underline{z}$  tales que  $\underline{A}\underline{z} = \underline{0}$ . Su dimensión se llama nulidad.
- La nulidad más el rango es igual al número de columnas de A.
- De forma dual, para el sistema <u>x</u><sup>T</sup> A se define el espacio fila como la combinación lineal de las filas de A, que tiene su alcance y rango fila.



## Sistemas de ecuaciones en notación matricial

• Para  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , se cumple que el rango columna y el rango fila son siempre iguales, y se denota con rg  $\mathbf{A}$ 



# Propiedades del rango

- Para  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\operatorname{rg}(\mathbf{A}) \leq \min(m,n)$ . Si  $\operatorname{rg}(\mathbf{A}) = \min(m,n)$  entonces se dice que  $\mathbf{A}$  tiene **rango completo**.
- Solo las matrices de rango completo son invertibles
- $rg(\mathbf{A}) = rg(\mathbf{A}^T)$
- $rg(AB) \le min(rg(A), rg(B))$
- $\bullet \ \operatorname{rg}(\mathbf{A} + \mathbf{B}) \leq \operatorname{rg}(\mathbf{A}) + \operatorname{rg}(\mathbf{B})$

## Forma cuadrática y matrices (semi)definidas positivas

 La forma cuadrática es la expresión escalar <u>x</u><sup>T</sup>A<u>x</u>, calculada con:

$$\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} = \sum_{i=1}^n x_i (\mathbf{A} \underline{\mathbf{x}})_i = \sum_{i=1}^n x_i \left( \sum_{j=1}^n a_{ij} x_j \right) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

• Como la forma cuadrática es escalar y  $s = s^T$  entonces

$$\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} = (\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}})^T = \underline{\mathbf{x}}^T \mathbf{A}^T \underline{\mathbf{x}}$$

Como los tres términos anteriores son iguales, entonces

$$\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} = \frac{1}{2} \left( (\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}})^T + \underline{\mathbf{x}}^T \mathbf{A}^T \underline{\mathbf{x}} \right) = \underline{\mathbf{x}}^T \left( \frac{1}{2} (\mathbf{A} + \mathbf{A}^T) \right) \underline{\mathbf{x}}$$

es decir, ¡valor solo depende de la componente simétrica de A!

19 / 35

# Positividad o negatividad (semi)definida

La matriz simétrica  $\mathbf{A} \in \mathbb{S}^n$  es

• positiva definida si  $\forall \underline{\mathbf{x}} \in \mathbb{R}^n \setminus \underline{\mathbf{0}} \quad \underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} > 0$ .

Notación:  $\mathbf{A} \succ 0$  (o  $\mathbf{A} > 0$ )

Todas las matrices positivas definidas:  $\mathbb{S}_{++}^n$ 

• positiva semidefinida si  $\forall \underline{\mathbf{x}} \in \mathbb{R}^n$   $\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} \geq 0$ .

Notación:  $\mathbf{A} \succeq 0$  (o  $\mathbf{A} \ge 0$ )

Todas las matrices positivas definidas:  $\mathbb{S}^n_+$ 

• negativa definida si  $\forall \underline{\mathbf{x}} \in \mathbb{R}^n \setminus \underline{\mathbf{0}} \quad \underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} < 0$ .

Notación:  $\mathbf{A} \prec 0$  (o  $\mathbf{A} < 0$ )

Todas las matrices negativas definidas:  $\mathbb{S}_{--}^n$ 

• negativa semidefinida si  $\forall \underline{\mathbf{x}} \in \mathbb{R}^n$   $\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} \leq 0$ .

Notación:  $\mathbf{A} \leq 0$  (o  $\mathbf{A} \geq 0$ )

Todas las matrices positivas definidas:  $\mathbb{S}^n_-$ 

indefinida en cualquier otro caso

# Características de matrices (semi)definidas

- Si  $\mathbf{A} \in \mathbb{S}^n_{++}$  entonces  $-\mathbf{A} \in \mathbb{S}^n_{--}$
- Si  $\mathbf{A} \in \mathbb{S}^n_+$  entonces  $-\mathbf{A} \in \mathbb{S}^n_-$
- Todas las matrices positivas (o negativas) definidas son de rango completo
- ullet Sea  ${f A} \in {
  m I\!R}^{m imes n}$  una matriz cualquiera
  - A<sup>T</sup>A se denomina matriz de Gram
  - A<sup>T</sup>A es siempre positiva semidefinida
  - si  $m \ge n$  y **A** es de rango completo entonces  $\mathbf{A}^T \mathbf{A}$  es positiva definida

Independencia Lineal Sistemas de ecuaciones y espacios de la matriz Forma cuadrática Eigensistemas

# Eigensistemas

## Eigenvalores y eigenvectores

- También llamados vectores propios, autovectores, o vectores característicos
- Dada un matriz cuadrada  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , se dice que  $\lambda \in \mathbb{C}$  es un eigenvalor de **A** y  $\mathbf{x} \in \mathbb{C}^n$  es su correspondiente eigenvector si

$$\mathbf{A}\underline{\mathbf{x}} = \lambda\underline{\mathbf{x}}, \quad \underline{\mathbf{x}} \neq \underline{\mathbf{0}}$$

- Interpretación: transformación de eigenvector x con A solo cambia su magnitud con un factor x (Ver vídeo de 3Blue1Brown)
- Cualquier escalamiento de un eigenvector es también eigenvector:

$$\mathbf{A}(c\mathbf{\underline{x}}) = c(\mathbf{A}\mathbf{\underline{x}}) = c\lambda\mathbf{\underline{x}} = \lambda(c\mathbf{\underline{x}})$$

 $\Rightarrow$  se usan eigenvectores normalizados ( $\|\underline{\mathbf{x}}\|_2 = 1$ )

Multiplicando por matriz identidad no modifica nada:

$$\mathbf{A}\underline{\mathbf{x}} = \lambda \mathbf{I}\underline{\mathbf{x}}$$
$$(\mathbf{A} - \lambda \mathbf{I})\underline{\mathbf{x}} = \underline{\mathbf{0}}$$

que tiene la solución trivial  $\underline{\mathbf{x}} = \underline{\mathbf{0}}$ .

• Otras soluciones con  $\underline{\mathbf{x}} \neq 0$  posibles solo si  $\mathbf{A} - \lambda \mathbf{I}$  es singular (tiene nulidad mayor que cero), por lo que

$$\det |\mathbf{A} - \lambda \mathbf{I}| = 0$$

Puesto que

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}$$

• La ecuación det  $|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$  es entonces

$$\det \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = \underline{\mathbf{0}}$$

que produce un **polinomio** de orden n en términos de  $\lambda$ .

- Existen por tanto n soluciones (posiblemente complejas)
- Problema: ecuación mal condicionada (se usan otros métodos de cálculo de  $\lambda$ )

• Para cada uno de los eigenvalores  $\lambda_i$  se plantea un sistema de ecuaciones para encontrar el eigenvector correspondiente

$$(\mathbf{A} - \lambda_i \mathbf{I}) \underline{\mathbf{x}}_i = \underline{\mathbf{0}}$$

- Nótese que soluciones  $\lambda$  pueden ser complejas o tener multiplicidad mayor a 1. Esto implica que puede que
  - no existan eigenvectores
  - existan menos eigenvectores que la dimensión del espacio
  - nunca van a existir más eigenvectores que la dimensión del espacio



## Propiedades de eigenvalores y eigenvectores

• tr 
$$\mathbf{A} = \sum_{i}^{n} \lambda_{i}$$

$$\bullet |\mathbf{A}| = \prod_{i=1}^n \lambda_i$$

• 
$$\operatorname{rg} \mathbf{A} = |\{\lambda \mid \lambda \neq 0\}|$$

• Si 
$$\exists \mathbf{A}^{-1} \Rightarrow \mathbf{A}^{-1} \mathbf{x}_i = (1/\lambda_i) \mathbf{\underline{x}}_i$$

• Los eigenvalores de  $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_n)$  son  $\lambda_i = d_i$ 

## Expresión simultánea

• Todos los eigenvectores se expresan simultáneamente con

$$AX = X\Lambda$$

con

$$\mathbf{X} \in {
m I\!R}^{n imes n} = egin{bmatrix} \mathbf{\underline{x}}_1 & \mathbf{\underline{x}}_n \ & \cdots & \end{bmatrix}$$
 $\mathbf{\Lambda} = {
m diag}(\lambda_1, \dots, \lambda_n) = egin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$ 

# Diagonalización

 Si los eigenvectores de A son linealmente independientes, entonces X es invertible. En ese caso:

$$\mathbf{AX} = \mathbf{X} \mathbf{\Lambda}$$
 $\mathbf{AXX}^{-1} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$ 
 $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$ 

• En ese caso, la matriz se denomina diagonalizable:

$$\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{\Lambda}$$
  $\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{X}^{-1}\mathbf{X}\mathbf{\Lambda}$   $\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{\Lambda}$ 



Con matrices **simétricas**  $\mathbf{A} \in \mathbb{S}^n$ :

- Todos los eigenvalores son reales
- Los eigenvectores de  ${\bf A}$  son ortonormales, y por tanto  ${\bf X}$  es ortogonal, esto es  ${\bf X}^{-1}={\bf X}^T$  (en este caso denotamos esta matrix de eigenvectores con  ${\bf U}$ )
- Se cumple entonces  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$
- Nótese para la forma cuadrática que

$$\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} = \underline{\mathbf{x}}^T \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T \underline{\mathbf{x}} = \underline{\mathbf{y}}^T \mathbf{\Lambda} \underline{\mathbf{y}} = \sum_{i=1}^n \lambda_i y_i^2$$

$$\mathsf{con}\ \underline{\mathbf{y}} = \mathbf{U}^T\underline{\mathbf{x}}$$



- Lo anterior implica que la definitud de **A** depende solo de los signos de  $\lambda_i$ :
  - Si  $\lambda_i > 0 \Rightarrow \mathbf{A}$  es definida positiva
  - Si  $\lambda_i \geq 0 \Rightarrow \mathbf{A}$  es semidefinida positiva
  - Si  $\lambda_i < 0 \Rightarrow \mathbf{A}$  es definida negativa
  - Si  $\lambda_i \leq 0 \Rightarrow$  **A** es semidefinida negativa

# Optimización de términos cuadráticos

• Sea  $\mathbf{A} \in \mathbb{S}^n$ . Si buscamos

$$\max_{\underline{\mathbf{x}} \in \mathbb{R}^n} \underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}}, \quad \text{sujeto a } \|\underline{\mathbf{x}}\|_2^2 = 1$$

- Si los eigenvalores están ordenados  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ , la solución es el eigenvector  $\underline{\mathbf{x}}_1$  y el valor máximo de la forma cuadrática es  $\lambda_1$
- Si buscamos

$$\min_{\underline{\mathbf{x}} \in \mathbb{R}^n} \underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}}, \qquad \text{sujeto a } \|\underline{\mathbf{x}}\|_2^2 = 1$$

• Si los eigenvalores están ordenados  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ , la solución es el eigenvector  $\underline{\mathbf{x}}_n$  y el valor mínimo de la forma cuadrática es  $\lambda_n$ 

Independencia Lineal Sistemas de ecuaciones y espacios de la matriz Forma cuadrática Eigensistemas

#### Resumen

- Otras operaciones
- 2 Conceptos avanzados
  - Independencia Lineal
  - Sistemas de ecuaciones y espacios de la matriz
  - Forma cuadrática
  - Eigensistemas

Independencia Lineal Sistemas de ecuaciones y espacios de la matriz Forma cuadrática Eigensistemas

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux



Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017–2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica