Bayesian Learning

Lecture 7 - Gibbs sampling

Department of Statistics Stockholm University

Lecture overview

- Monte Carlo simulation
- **■** Gibbs sampling
- Data augmentation
 - Mixture models
 - Probit regression
- **■** Regularized regression

Monte Carlo sampling

If $\theta^{(1)},...,\theta^{(m)}$ is an **iid sequence** from $p(\theta|\mathbf{y})$, then

$$\bar{\theta} = \frac{1}{m} \sum_{i=1}^{m} \theta^{(i)} \rightarrow \mathbb{E}(\theta | \mathbf{y})$$

$$\bar{\mathbf{g}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}(\theta^{(i)}) \rightarrow \mathbb{E}[\mathbf{g}(\theta) | \mathbf{y}]$$

for some function $g(\theta)$ of interest.

Central limit theorem

$$ar{ heta}_{1:m} \overset{ ext{appr}}{\sim} \mathcal{N}\left(\mathbb{E}(heta|oldsymbol{y}), rac{\mathbb{V}(heta|oldsymbol{y})}{m}
ight) \quad ext{for large } m$$

Monte Carlo sampling - convergence

Gibbs sampling

- **Sampling from multivariate distributions**, $p(X_1,...,X_p)$.
- Typically a posterior distribution: $p(\theta_1, \dots, \theta_p | \mathbf{y})$.
- Requirement: Easily sampled full conditional distributions:
 - $ightharpoonup p(\theta_1|\theta_2,\theta_3...,\theta_p,\mathbf{y})$
 - $ightharpoonup p(\theta_2|\theta_1,\theta_3,...,\theta_p,\mathbf{y})$

 - $\triangleright p(\theta_p|\theta_1,\theta_2,...,\theta_{p-1},\mathbf{y})$
- Gibbs sampling is a special case of Metropolis-Hastings.
- Metropolis-Hastings is a Markov Chain Monte Carlo (MCMC) algorithm.

The Gibbs sampling algorithm

Gibbs sampling

Input: initial values $\theta_2^{(0)}, \dots, \theta_p^{(0)}$ number of posterior draws m.

for *i* in 1:*m* **do**

$$\begin{vmatrix} \theta_1 \sim p\left(\theta_1 \mid \theta_2^{(i-1)}, \theta_3^{(i-1)}, \dots, \theta_p^{(i-1)}, \mathbf{y}\right) \\ \theta_2 \sim p\left(\theta_2 \mid \theta_1^{(i)}, \theta_3^{(i-1)}, \dots, \theta_p^{(i-1)}, \mathbf{y}\right) \\ \vdots \\ \theta_p \sim p\left(\theta_p \mid \theta_1^{(i)}, \theta_2^{(i)}, \dots, \theta_{p-1}^{(i)}, \mathbf{y}\right) \end{vmatrix}$$

end

Output: m autocorrelated draws for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^{\top}$ that converge in distribution to the joint posterior $p(\theta_1, \dots, \theta_p | \mathbf{y})$.

Gibbs sampling draws converge to the posterior

 \blacksquare Gibbs draws $\boldsymbol{\theta}^{(1)},...,\boldsymbol{\theta}^{(m)}$ are dependent, but

$$\begin{split} \bar{\boldsymbol{\theta}} &= \frac{1}{m} \sum_{t=1}^{m} \boldsymbol{\theta}^{(t)} \quad \rightarrow \quad \mathbb{E}(\boldsymbol{\theta}|\boldsymbol{y}) \\ \bar{\boldsymbol{g}}(\boldsymbol{\theta}) &= \frac{1}{m} \sum_{t=1}^{m} \boldsymbol{g}(\boldsymbol{\theta}^{(t)}) \quad \rightarrow \quad \mathbb{E}[\boldsymbol{g}(\boldsymbol{\theta})|\boldsymbol{y}] \end{split}$$

- $m{\theta}^{(1)},....,m{\theta}^{(m)}$ converges in distribution to posterior $p(m{\theta}|m{y})$.
- $\theta_j^{(1)},...,\theta_j^{(m)}$ converges to the marginal posterior of θ_j .
- Central limit theorem

$$ar{m{ heta}} \overset{ ext{approx}}{\sim} \mathcal{N}\left(\mathbb{E}(m{ heta}|m{y}), \mathbb{V}(ar{m{ heta}})
ight)$$
 for large m

Dependent draws for Gibbs are less efficient

- Dependent draws → less efficient than iid sampling.
- IID samples:

$$\mathrm{Var}(ar{ heta}) = rac{\sigma^2}{m}, \qquad ext{where } \sigma^2 = \mathbb{V}(heta|oldsymbol{y})$$

Autocorrelated samples:

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{m} \left(1 + 2 \sum_{k=1}^{\infty} \rho_k \right)$$

where ρ_k is the autocorrelation at lag k.

Inefficiency factor:

IF = 1 + 2
$$\sum_{k=1}^{\infty} \rho_k \approx 1 + 2 \sum_{k=1}^{K} \rho_k$$

Effective sample size (ESS): $\frac{m}{IF}$.

Gibbs sampling bivariate normal

Joint distribution

$$\left(\begin{array}{c} \theta_1 \\ \theta_2 \end{array}\right) \sim \textit{N}_2 \left[\left(\begin{array}{cc} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array}\right) \right]$$

Gibbs sampling from a bivariate normal

Input: initial value $\theta_2^{(0)}$ number of posterior draws m.

for i in 1:m do

$$\begin{aligned} & \theta_1^{(i)} \mid \theta_2 \sim N\Big(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} \big(\theta_2^{(i-1)} - \mu_2\big), \, \sigma_1^2 (1-\rho)^2 \Big) \\ & \theta_2^{(i)} \mid \theta_1 \sim N\Big(\mu_2 + \rho \frac{\sigma_2}{\sigma_1} \big(\theta_1^{(i)} - \mu_1\big), \, \sigma_2^2 (1-\rho)^2 \Big) \end{aligned}$$

end

Output: m autocorrelated draws for $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\top}$ that converge in distribution to the bivariate normal distribution $\boldsymbol{\theta} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and

$$\Sigma = egin{pmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

Gibbs sampling - Bivariate normal

Gibbs sampling - Bivariate normal

Direct sampling vs Gibbs sampling

Direct vs Gibbs sampling, bivariate normal $\rho = 0.9$

Gibbs is inefficient when parameters are correlated

Normal model with conditionally conjugate prior

Normal model with conditionally conjugate prior

$$\mu \sim \textit{N}(\mu_0, au_0^2)$$
 $\sigma^2 \sim \textit{Inv} - \chi^2(
u_0, \sigma_0^2)$

■ Full conditional posteriors

$$\mu|\sigma^2, x \sim N\left(\mu_n, \tau_n^2\right)$$

$$\sigma^2|\mu, x \sim Inv - \chi^2\left(\nu_n, \frac{\nu_0\sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{n + \nu_0}\right)$$

with μ_n and τ_n^2 defined the same as when σ^2 is known.

Gibbs sampling for AR processes

AR(p) process

$$\mathbf{x}_t = \mu + \phi_1(\mathbf{x}_{t-1} - \mu) + \dots + \phi_p(\mathbf{x}_{t-p} - \mu) + \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} \mathsf{N}(0, \sigma^2).$$

- Let $\phi = (\phi_1, ..., \phi_n)'$.
- Prior
 - $\mu \sim \text{Normal}$
 - $ightharpoonup \phi \sim \text{Multivariate Normal}$
 - $ightharpoonup \sigma^2 \sim \text{Scaled Inverse } \gamma^2.$
- The posterior can be simulated by Gibbs sampling:
 - $\mu | \phi, \sigma^2, x \sim \text{Normal}$
 - $\rightarrow \phi | \mu, \sigma^2, x \sim \text{Multivariate Normal}$
 - $\sigma^2 | \mu, \phi, x \sim \text{Scaled Inverse } \chi^2$

Data augmentation - Mixture distributions

- Let $N(x|\mu, \sigma^2)$ denote the **PDF** of $x \sim N(\mu, \sigma^2)$.
- Two-component mixture of normals [MoN(2)]

$$p(x) = \omega \cdot N(x|\mu_1, \sigma_1^2) + (1 - \omega) \cdot N(x|\mu_2, \sigma_2^2)$$

- Simulate from a MoN(2):
 - ▶ Simulate a membership indicator $Z \in \{1,2\}$: $Z \sim Bern(\pi)$.
 - ▶ If Z = 1, simulate x from $N(\mu_1, \sigma_1^2)$
 - ▶ If Z = 2, simulate x from $N(\mu_2, \sigma_2^2)$.

Illustration of mixture of normals

Data augmentation - Mixture distributions

K-component mixture of normals

$$p(x) = \sum_{k=1}^{K} \omega_k N(x|\mu_k, \sigma_k^2)$$

Indicators: $Z_i = k$ if observation x_i comes from component k.

```
Simulating data from a mixture of normals
   Input: the number of simulated data observations n
            mixture weights \omega = (\omega_1, \dots, \omega_K)
            mixture component means \mu_{1:K} = (\mu_1, \dots, \mu_K)
            mixture component variances \sigma_{1,K}^2 = (\sigma_1^2, \dots, \sigma_K^2)
   for i in 1:n do
       // Simulate component allocation variable
       Draw z_i \sim \text{Cat}(\omega_1, \dots, \omega_K)
       // Simulate from selected mixture component
       Draw x_i|z_i \sim N(\mu_{z_i}, \sigma_{z_i}^2)
   end
   Output: n iid observations \mathbf{x} = (x_1, \dots, x_n) from the
              mixture of normals model
              p(x) = \sum_{k=1}^{K} \omega_k \cdot N(x|\mu_k, \sigma_k^2).
                   Mattias Villani
                                           Gibbs sampling
```

Fish length data with known yearly cohorts

Fish length data - fit with known yearly cohorts

Likelihood for a mixture and data augmentation

- The likelihood is a product of sums. Messy to work with.
- Assume that we know where each observation comes from

 $z_i = k$ if x_i came from mixture component k.

- Given $z_1, ..., z_n$ it is easy to estimate the means $\mu_1, ..., \mu_K$, the variances $\sigma_1^2, ..., \sigma_K^2$ and the mixture proportions $\omega_1, ..., \omega_K$: just split up the data in K groups according to $z_1, ..., z_n$.
- But we do **not** know $z_1, ..., z_n!$
- **Data augmentation**: add $z_1, ..., z_n$ as unknown parameters, and update them in separate Gibbs step.

Gibbs sampling for mixture distributions

```
for j in 1:m do
     // Update component parameters
     for k in 1:K do
          Set \mathbf{x}_k = \{x_i \text{ such that } z_i^{(j-1)} = k\}
          Draw (\sigma_k^2)^{(j)}|\mathbf{x}_k \sim \text{ScaledInv} - \chi^2(\nu_{n,k}, \sigma_{n,k}^2)
          Draw \mu_k^{(j)} | (\sigma_k^2)^{(j)}, \mathbf{x}_k \sim N(\mu_{nk}, \tau_{nk}^2)
     end
     // Update component weights
     Set n_k = |\mathbf{x}_k|, number of obs in component k
     Draw \omega^{(j)} \sim \text{Dirichlet}(\alpha_1 + n_1, \dots, \alpha_K + n_K)
     // Update mixture allocations
     for i in 1:n do
           for k in \tau:K do
             \tilde{\omega}_k \propto \omega_k^{(j)} \cdot N(x_i | \mu_k^{(j)}, \sigma_k^{(j)})
           normalize \tilde{\omega}_1, \dots, \tilde{\omega}_K to sum to one
          simulate allocation z_i^{(j)} \sim \text{Cat}(\tilde{\omega}_1, \dots, \tilde{\omega}_K)
     end
```

Fish length data - mixture of normals fit

Illustration of mixture Poissons

Fitting a mixture Poissons to the eBay bidders

Data augmentation - Probit regression

Probit regression:

$$\Pr(y_i = 1 \mid \boldsymbol{x}_i) = \Phi(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$$

Random utility formulation:

$$u_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, 1)$$

 $y_i = \begin{cases} 1 & \text{if } u_i > 0 \\ 0 & \text{if } u_i \leq 0 \end{cases}$

- Check: $\Pr(y_i = 1 \mid \mathbf{x}_i) = \Pr(u_i > 0) = 1 \Pr(u_i \leq 0) = 1 \Pr(u_i \mathbf{x}_i^{\top} \boldsymbol{\beta}) \leq -\mathbf{x}_i^{\top} \boldsymbol{\beta}) = 1 \Phi(-\mathbf{x}_i^{\top} \boldsymbol{\beta}) = \Phi(\mathbf{x}_i^{\top} \boldsymbol{\beta}).$
- Given $\mathbf{u} = (u_1, ..., u_n)$, $\boldsymbol{\beta}$ can be analyzed by linear regression.
- \blacksquare u is not observed. Gibbs sampling to the rescue!¹

¹Albert and Chib (1993). Bayesian Analysis of Binary and Polychotomous Response Data. *JASA*.

Latent utility formulation of Probit regression

Gibbs sampling for the Probit regression

Random utility formulation:

$$u_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, 1)$$

 $y_i = \begin{cases} 1 & \text{if } u_i > 0 \\ 0 & \text{if } u_i \leq 0 \end{cases}$

- Simulate from **joint posterior** $p(\mathbf{u}, \beta | \mathbf{y})$ by iterating between
 - $ightharpoonup p(\beta|\mathbf{u},\mathbf{y})$ which is multivariate normal (linear regression)
 - \triangleright $p(u_i|\beta, y)$, i = 1, ..., n, independently.
- The **full conditional** posterior distribution of u_i

$$\begin{split} p(u_i|\boldsymbol{\beta}, \boldsymbol{y}) &\propto p(y_i|\boldsymbol{\beta}, u_i) p(u_i|\boldsymbol{\beta}) \\ &= \begin{cases} N(u_i|x_i^{\top}\boldsymbol{\beta}, 1) & \text{truncated to } u_i \in (-\infty, 0] \text{ if } y_i = 0 \\ N(u_i|x_i^{\top}\boldsymbol{\beta}, 1) & \text{truncated to } u_i \in (0, \infty) \text{ if } y_i = 1 \end{cases} \end{split}$$

lacksquare Histogram of eta-draws approximates marginal posterior of eta.

Conditional posterior for latent utility u_i

Direct sampling L2-regularized regression

Recap: The joint posterior of β , σ^2 and λ is

$$\begin{split} \beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X} &\sim \mathcal{N} \left(\mu_n, \Omega_n^{-1} \right) \\ \sigma^2 | \lambda, \mathbf{y}, \mathbf{X} &\sim \mathit{Inv} - \chi^2 \left(\nu_n, \sigma_n^2 \right) \\ \rho(\lambda | \mathbf{y}, \mathbf{X}) &\propto \sqrt{\frac{|\Omega_0|}{|X'X + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2} \right)^{-\nu_n/2} \cdot \rho(\lambda) \end{split}$$

This is the conditional-marginal decomposition

$$p(\beta, \sigma^2, \lambda | \mathbf{y}, \mathbf{X}) = p(\beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X}) p(\sigma^2 | \lambda, \mathbf{y}, \mathbf{X}) p(\lambda | \mathbf{y}, \mathbf{X})$$

- **Gibbs sampling** can instead be used:
 - ▶ Sample $\beta[\sigma^2, \lambda, \mathbf{y}, \mathbf{X}]$ from Normal
 - ▶ Sample $\sigma^2|\beta,\lambda,\mathbf{y},\mathbf{X}$ from Inv- χ^2
 - ▶ Sample $\lambda | \beta, \sigma^2, \mathbf{y}, \mathbf{X}$ from Gamma
- lacksquare λ is easy to simulate conditional on eta and σ^2 .

Gibbs sampling for L2-regularized regression

Prior:

$$eta | \sigma^2, \lambda \sim N\left(\mathbf{0}, rac{\sigma^2}{\lambda} I_k
ight) \ \sigma^2 \sim \operatorname{Inv} - \chi^2\left(
u_0, \sigma_0^2
ight) \ \lambda^{-1} \sim \operatorname{Inv} - \chi^2\left(\omega_0, \psi_0^2
ight).$$

By Bayes' theorem

$$p\left(\lambda|\boldsymbol{\beta},\sigma^2,\mathbf{y}\right)\propto p\left(\mathbf{y}|\boldsymbol{\beta},\sigma^2,\lambda\right)p\left(\lambda|\boldsymbol{\beta},\sigma^2\right)$$

 ρ $(\mathbf{y}|\boldsymbol{\beta}, \sigma^2, \lambda)$ does not depend on λ once we condition on $\boldsymbol{\beta}$:

$$p\left(\lambda|\boldsymbol{\beta},\sigma^2,\mathbf{y}\right)\propto p\left(\lambda|\boldsymbol{\beta},\sigma^2\right)$$

So using Bayes' theorem once more

$$p(\lambda|\beta,\sigma^2,\mathbf{y}) \propto p(\lambda|\beta,\sigma^2) \propto p(\beta|\sigma^2,\lambda) p(\lambda)$$

In conditional posterior for λ , the β_1, \ldots, β_p act like "data".

Gibbs sampling for L2-regularized regression

Gibbs sampling linear regression - L2 regularization prior

The posterior for the linear regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \varepsilon, \ \varepsilon \sim N(\mathbf{0}, \sigma^2 I_n),$$
 (12.16)

with hierarchical L2 regularization prior

$$\beta | \sigma^2, \psi^2 \sim N(\mathbf{0}, \sigma^2 \psi^2 I_p)$$

$$\sigma^2 \sim \text{Inv} - \chi^2(\nu_0, \tau_0^2)$$

$$\psi^2 \sim \text{Inv} - \chi^2(\omega_0, \psi_0^2).$$

can be sampled by a two-block Gibbs sampler:

$$\begin{split} \mathsf{Block1}: \ \pmb{\beta}|\sigma^2, \pmb{\psi}^2, \pmb{\mathbf{y}} \sim N\big(\hat{\pmb{\beta}}_{L_2}, \sigma^2(\mathbf{X}^{\top}\mathbf{X} + \pmb{\psi}^{-2}I_p)^{-1}\big) \\ \sigma^2|\pmb{\psi}^2, \pmb{\mathbf{y}} \sim \mathsf{Inv} - \chi^2(\tau_n^2, \nu_n) \end{split}$$

Block2:
$$\psi^2 | \boldsymbol{\beta}, \sigma^2, \mathbf{y} \sim \text{Inv} - \chi^2(\omega_n, \psi_n^2)$$
,

where $\hat{\boldsymbol{\beta}}_{L_2}$ is the ridge estimator

$$\hat{\boldsymbol{\beta}}_{L_2} = (\mathbf{X}^{\top}\mathbf{X} + \psi^{-2}I_p)^{-1}\mathbf{X}^{\top}\mathbf{y} = (\mathbf{X}^{\top}\mathbf{X} + \lambda I_p)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

The hyperparameters ν_n and τ_n^2 are given in Figure 5.3. Finally, $\omega_n = \omega_0 + p$ and $\psi_n^2 = \left(\sum_{i=1}^p (\beta_i/\sigma)^2 + \omega_0 \psi_0^2\right)/\omega_n$.

Mattias Villani Gibbs sampling

Improving the efficiency of the Gibbs sampler

■ **Efficient blocking**. Correlated parameters should ideally be included in the same updating block.

Reparametrization. Convergence can improve dramatically in alternative parametrizations.

- Data augmentation.
 - Augment with latent variables to make full conditional posteriors more easily sampled (Probit, Mixture models).
 - ▶ But typically increases the autocorrelation between draws.