# Experience Live: https://soundsigns.xyz



## SoundSigns: Speech To Sign Language Translator

Students: Ahmad Ataba & Waseem Saleem

Supervisor: Dr. Reuven Cohen







## Background: The Problem Digital Exclusion

430M+ deaf/hard-of-hearing individuals lack access to spoken content

Subtitles Fall Short

Require English literacy; miss sign language's visual grammar

Interpreter Gap

Professionals unavailable for everyday content (vlogs, tutorials, social media)

## Technical Barriers

Real-time motion capture systems are costly and impractical

#### Our Solution

#### Core Workflow:

## Voice Input Browser-based speech recognition (Web Speech API)

ISL Gloss Conversion GPT-3.5 translates English → simplified ISL structure Video Assembly

186 pre-rendered signs matched to gloss tokens Seamless stitching of letters/digits/words

3D avatar performs sign sequence with gloss highlighting

Backend Flask/Python (ChatGPT API integration) Dataset

Curated ISL videos (JS-Coderr)

Key Technologies:

React.js + Tailwind CSS

Frontend

#### Architecture And Dataflow



#### 1. Voice Input Processing

- · Frontend records user's speech via browser microphone
- Converts speech to text using Web Speech API

#### 2. Text Translation

- Transcribed text sent to backend server
- ChatGPT processes text into structured ISL gloss

#### 3. Sign Language Generation

- Frontend splits gloss into individual sign components Matches each component with pre-rendered videos
- Stitches videos into seamless sequence
- 4. Output Display
- Presents fluid sign language animation to user
- Highlights gloss tokens in sync with video playback

### Results

#### Performance Highlights:

Output

- 3-5 sec latency end-to-end processing
- ▼ 100% video matching for 150+ core signs
- Cross-browser support: Chrome, Firefox, Safari (Desktop & Mobile)

#### User Impact:

- Real-time accessibility for digital content
- Downloadable videos for offline learning and sharing
- Educational transparency:
- Gloss text display shows ISL syntax
- Frame-synchronized highlighting teaches sign timing

#### Translation Examples:

| English Input            | ChatGPT Gloss Output    | Issue Type              | Native ISL Expectation |
|--------------------------|-------------------------|-------------------------|------------------------|
| "What is your name?"     | NAME YOU WHAT           | Word Order Error        | YOU NAME WHAT          |
| "I don't understand"     | UNDERSTAND NOT ME       | Negation Placement      | UNDERSTAND ME NOT      |
| "She walks despite rain" | RAIN SHE WALK CONTINUE  | Redundant Sign          | RAIN WALK SHE          |
| "I ate breakfast"        | BREAKFAST EAT ME        | Missing Time Marker     | PAST EAT BREAKFAST ME  |
| "Riochemistry"           | R-I-O-C-H-F-M-I-S-T-R-V | Fingerspelling Fallback | (No single sign)       |

## Development Challenges



Failed: Real-time tools (Kalidokit, SignAvatars) Adopted: Pre-rendered video library



Dataset Scarcity:

Lacks non-manual markers (facial expressions)

Translation Limitations:

ChatGPT simplifies complex grammar

API Constraints:

Securing OpenAI keys

Web Speech API noise sensitivity

#### Future Work

Expand Dataset

500+ signs to reduce fingerspelling

Improve Translation

Dedicated ISL model training

Enhance Expressiveness Add facial animation tracks

> Mobile Optimization Offline-capable PWA

