Encoders

- An encoder is a multiplexer without its single output line
- It is a combinational logic function that has 2^n (or fewer) input lines and n output lines,
- The n output lines generate the binary code for the possibl $\mathbf{2^n}$ input lines.
- Let us take the case of an octal-to-binary encoder. Such an encoder would have eight input lines,

Table 8.8 Truth table of an encoder.

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	O	O	1
0	0	1	O	O	0	0	0	O	1	0
0	0	0	1	0	0	0	0	0	1	1
0	O	0	0	1	0	0	0	1	O	O
0	O	0	0	0	1	0	0	1	O	1
0	0	0	O	0	0	1	0	1	1	0
0	0	O	0	0	0	O	1	1	1	1

Types of Encoder

- Octal to binary Encoder
- Decimal to BCD Encoder
- Priority Encoder

Octal to binary Encoder

$$B_2 = O_4 + O_5 + O_6 + O_7$$

$$B_1 = O_2 + O_3 + O_6 + O_7$$

$$B_0 = O_1 + O_3 + O_5 + O_7$$

Inputs	Decimal Equivalent	Outputs Binary Bits			
octal Digits		B ₂	B ₁	B ₀	
	0	0	0	0	
00	1	0	0	1	
	2	0	1	0	
02	3	0	1	1	
0,	4	1	0	0	
04	5	1	0	1	
05	6	1	1	0	
07	7	1	1	1	

$$B_2 = O_4 + O_5 + O_6 + O_7$$

$$B_1 = O_2 + O_3 + O_6 + O_7$$

$$B_0 = O_1 + O_3 + O_5 + O_7$$

8-to-3 Binary Encoder

At any one time, only one input line has a value of 1.

		Oı	ıtpu	ts						
$\overline{I_0}$	I 1	I 2	I 3	Ι 4	I 5	I 6	I 7	\mathbf{y}_2	y_1	y_0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	_1	1	1	1

Decimal to BCD Encoder

Decimal	Binary	BCE)		
		Α	В	С	D
0	0000 0000	0	0	0	0
1	0000 0001	0	0	0	1
2	0000 0010	0	0	1	0
3	0000 0011	0	0	1	1
4	0000 0100	0	1	0	0
5	0000 0101	0	1	0	1
6	0000 0110	0	1	1	0
7	0000 0111	0	1	1	1
8	0000 1000	1	0	0	0
9	0000 1001	1	0	0	1

8-to-3 Priority Encoder

- What if more than one input line has a value of 1?
- Ignore "lower priority" inputs.
- Idle indicates that no input is a 1.
- Note that polarity of Idle is opposite from Table 4-8 in Mano

Inputs								Outputs			
I_0	I 1	I 2	I 3	Ι 4	I 5	Ι 6	I 7	y_2	y ₁	y_0	Idle
0	0	0	0	0	0	0	0	X	X	X	1
1	0	0	0	0	0	0	0	0	0	0	0
X	1	0	0	0	0	0	0	0	0	1	0
X	X	1	0	0	0	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1	0
X	X	X	X	1	0	0	0	1	0	0	0
X	X	X	X	X	1	0	0	1	0	1	0
X	X	X	X	X	X	1	0	1	1	0	0
X	X	X	X	X	X	X	_1	1	1	1	0

Priority Encoder (8 to 3 encoder)

- Assign priorities to the inputs
- When more than one input are asserted, the output generates the code of the input with the highest priority
- Priority Encoder:

Encoder

$$Y0 = 11 + 13 + 15 + 17$$

 $Y1 = 12 + 13 + 16 + 17$
 $Y2 = 14 + 15 + 16 + 17$

Binary Decoder

Black box with n input lines and 2ⁿ output lines

• Only one output is a 1 for any given input

2-to-4 Binary Decoder

Truth Table:

X	Y	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- From truth table, circuit for 2x4 decoder is:
- Note: Each output is a 2-variable minterm (X'Y', X'Y, XY' or XY)

3-to-8 Binary Decoder

Truth Table:

X	y	Z	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$	$\mathbf{F_4}$	\mathbf{F}_{5}	$\mathbf{F_6}$	\mathbf{F}_7
0			1							
0	0	1	0	1	0	0	0	0	0	0
			0					0		0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0			0	1

Implementing Functions Using Decoders

- Any n-variable logic function can be implemented using a single n-to-2ⁿ decoder to generate the minterms
 - OR gate forms the sum.
 - The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.

- Any combinational circuit with n inputs and m outputs can be implemented with an n-to- 2^n decoder with m OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Implementing Functions Using Decoders

• Example: Full adder

$$S(x, y, z) = \Sigma (1,2,4,7)$$

 $C(x, y, z) = \Sigma (3,5,6,7)$

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
_1	1	1	1	1

Standard MSI Binary Decoders Example

74138 (3-to-8 decoder)

- (a) Logic circuit.
- (b) Package pin configuration.
- (c) Function table.

	Inp	uts			Outputs							
Er	able		Selec	ct	1							
Gl	<u>G2</u> *	C	В	A	10	Y 1	7.5	1'3	1.1	¥5	16	17
Н	L	L	L	L	L	н	Н	Н	Н	Н	Н	Н
H	L	L	L	Н	Н	L	H	H	H	H	H	H
H	L	L	H	L	Н	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	Н	H	H	H	L	H	H	H
H	L	Н	L	H	Н	H	H	H	H	L	H	H
H	L	H	H	L	Н	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L
×	H	×	×	×	Н	H	H	H	H	H	H	H
L	×	×	×	×	H	H	H	H	H	H	H	H
				$\overline{G2}$	* = 6	$\overline{G2A}$	$+\bar{G}$	$\overline{2B}$				
						(c)						