Hough Transform

Yih-Lon Lin (林義隆)

Associate Professor,

Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology

EM1000

Line Detection

Line

$$y = ax + b$$

Example

$$y=a*x+b$$
 $y=2*x-3$

$$(1,0) \rightarrow b = -a$$

$$(1,1) \quad \rightarrow \quad b=-a+1$$

$$(2,1) \rightarrow b = -2a + 1$$

$$(4,1) \rightarrow b = -4a + 1$$

$$(3,2) \rightarrow b = -3a + 2.$$

國立雲林科技大學

$$= \frac{y - r\sin\theta}{x - r\cos\theta} \qquad -\frac{1}{\tan\theta} = -\frac{\cos\theta}{\sin\theta}$$

$$\frac{y - r\sin\theta}{x - r\cos\theta} = -\frac{\cos\theta}{\sin\theta}$$

$$y\sin\theta - r\sin^2\theta = -x\cos\theta + r\cos^2\theta$$

$$y \sin \theta + x \cos \theta = r \sin^2 \theta + r \cos^2 \theta$$
$$= r(\sin^2 \theta + \cos^2 \theta)$$
$$= r.$$

-45°	0°	45°	90°
1.4	2	1.4	0
0	1	1.4	1
0.7	2	2.1	1
-1.4	1	2.8	3
-0.7	2	3.5	3
0.7	4	4.9	3
-0.7	3	4.9	4
	$ \begin{array}{c} 1.4 \\ 0 \\ 0.7 \\ -1.4 \\ -0.7 \\ 0.7 \end{array} $	$ \begin{array}{cccc} 1.4 & 2 \\ 0 & 1 \\ 0.7 & 2 \\ -1.4 & 1 \\ -0.7 & 2 \\ 0.7 & 4 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	-1.4	-0.7	0	0.7	1	1.4	2	2.1	2.8	3	3.5	4	4.9
-45°	1	2	1	2		1							38
0°					2	(3)		1		1	
45°						2		1	1		1		2
90°			1		2					3		2	

• Circle

https://fnsautoglass.com/traffic-

sign-recognition/

https://www.pathpartnertech.com/understandingtraffic-sign-recognition-system-used-in-adas-advancedriver-assistance-system/

Detection

- Blurring
- Colour-based detection
- Shape-based detection
- Cropped and Extract features
- Separation
- Recognition
 - Tesseract
 - SVM

https://www.design-reuse.com/articles/41154/traffic-sign-recognition-tsr-system.html

Circle Detection

https://www.codingame.com/playgrounds/38470/how-to-detect-circles-in-images

Circle Detection

$$(x-a)^2 + (y-b)^2 = r^2$$
 (1)

Electric Fence

- https://www.youtube.com/watch?v=AiW1QwiUFpc
- https://youtu.be/-OKa_QHDjko