Arithmetic Combinatorics

Vincent Tran

April 1, 2024

1 3/19 - Elementary Methods

1.1 Inverse Theorems

We will look at sum sets, product sets, and a few times quotient sets.

The context for this will be G, an abelian group. We are interested in $\mathbb{Z}, \mathbb{Z}^d, \mathbb{R}^d, \mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}_2^n$. Let A, B, C be finite subsets of G. In addition, all sets will be non-empty.

Definition 1. Minkowski Sum

$$A + B = \{a + b | a \in A, b \in B\}.$$

$$A - B = \{a - b | a \in A, b \in B\}.$$

Clearly A + B is associative and commutative.

Similarly,

$$nA \coloneqq A + \dots + A$$

n times.

Property 1. $nA - mA \neq (n - m)A$ in general, i.e. the Minkowski sum doesn't distribute.

Question 1. When is A + A small?

Trivially, we have

$$|A| \le |A + A| \le |A|^2.$$

We are looking for when |A + A| is close to |A|.

Direct Problem: How small can |A + A| be?

Inverse: For which A is |A + A| small?

Example 1. Let $G = \mathbb{Z}$, A = [0, n-1]. Then $A + A = [0, 2n-2] \implies |A + A| = 2|A| - 1$.

By using affine transformations $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(x) = ax + b$, we have that $b, b + r, \dots, b + (n-1)r$ is a value for |A| s.t. |A + A| = 2|A| - 1.

Definition 2. Generalized Arithmetic Progressions: They are of the form $b + r_1x_1 + \cdots + r_dx_d$ where $x_i \in [0, n_i - 1]$, i.e. affinely transformed sums of A_i .

Theorem 2. $\forall A \subseteq \mathbb{Z}|A+A| \ge 2|A|-1$.

Proof. Proof 1: Induction. Let $A = \{a_1 < a_2 < \cdots < a_n\}$ and define $A' = A \setminus \{a_n\}$. By the induction hypothesis, $|A' + A'| \ge 2|A'| - 1 = 2n - 3$. By noticing that $2a_n, a_n + a_{n-1}$ are elements not in A' + A' but are in A + A, we have that $|A + A| \ge 2|A| - 1$.

Proof 2: Go bi. We can generalize this theorem to more variables: $|A + B| \ge |A| + |B| - 1$, in which case induction is ever simpler as only the largest element is needed.

Proof 3: Take two sets A, B, represent them as cicles with elements in descending order in them. Take |B| picks in A and |A| picks in B. Draw a bar connecting a pick in A to a pick in B. Do this for all picks in B. Then do this for all picks in A (above two steps). We then have found |A| + |B| - 1 distinct elements (?).

Theorem 3 (Cauchy-Davenport). For $G = \mathbb{Z}_p$, $|A + B| \ge \min(|A| + |B| - 1, p)$.

Definition 3 (e-transform). Fix an element $e \in A - B$. Then

$$A_{(e)} ::= A \cup (B + e)$$

$$B_{(e)} ::= B \cap (A - e).$$

See??

Figure 1: The e-transform

Lemma 4. 1. $|A_{(e)}| + |B_{(e)}| = |A| + |B|$

- 2. $|A_{(e)} \ge |A|$
- 3. $A_{(e)} + B_{(e)} \subseteq A + B$

Proof. For a), clearly $A_{(e)}$ contains |A| elements plus some. Then for any element $b \in B$, $b + e \in A$ or $\notin A$.

If $b + e \in A$, then $b \in A - e \implies b \in B_{(e)}$.

If $b + e \notin A$, then obviously $b + e \in A_{(e)}$ and not in A. Thus $|A_{(e)}| + |B_{(e)}| = |A| + |B|$.

- b) is truly trivial.
- c) If we take $a \in A_{(e)}$ and it falls in A, then we are done as $B_{(e)} \subseteq B$. So the only hard case is when $a \in B + e \setminus A$. By definition, $A_{(e)} + B_{(e)}$ consists of $a + b, b \in B_{(e)}$ and hence $b \in A \setminus e$. Thus $b = a' e \implies a + b = a + a' e = b' + a'$ for $b' \in B$ since $a \in B + e$.

Proof: Cauchy-Davenport. If |B|=1 then we are trivially done. We then use induction on the size of B and the e-transform to see that $B_{(e)}=B \forall e \in A \setminus B$. Hence $\forall e \in A-B, \ B+e \subseteq A \implies B+A-B \subseteq A$, i.e. $A+(B-B)\subseteq A$.

As $|B| \ge 2$, we can let $d = b_1 - b_2$ and see that A + d = A + (B - B) = A and the same is true for all multiples of d (equality is true since $|A| \le |A + (B - B)|$). Since $A = \mathbb{Z}_p$ and we are done (this is the min).

Theorem 5 (Vosper). For $A, B \subseteq \mathbb{Z}$ and |A + B| = |A| + |B| - 1, then A, B are a.p. (arithmetic progressions) with the same step.

Proof. (Proof from Tao, not class)

First we handle three cases:

A or B are arithmetic progressions: WLOG say A is. Then $A = \{a, a + v, \dots, a + nv\}$. So then |B| + n = |A| + |B| - 1 = |A + B| by hypothesis.

WLOG let $A = \{a, a + v, ..., a + (n - 1)v\} + \{0, v\}$ with v positive. So $|A + B| = |\{a, ..., a + (n - 1)v\} + B + \{0, v\}| \ge n - 1 + |B + \{0, v\}|$ by Cauchy-Davenport. By Cauchy-Davenport again, we have that $|B + \{0, v\}| \ge |B| + 1$ and from above $(|B| + n \ge n - 1 + |B + \{0, v\}|)$ we have that $|B| + 1 = |B + \{0, v\}|$.

The largest element of B (say b_n) plus v isn't in B, so this is the only element of $B + \{0, v\}$ that isn't in B, giving us that $B \setminus \{b_n\} + v \subseteq B$. Hence B is an arithmetic progression.

If |A+B| is an arithmetic progression, then let $C=-(\mathbb{Z}_p\setminus (A+B))$. Notice that |C|=p-|A+B|=p+1-|A|-|B|. It follows that C is an arithmetic progression with the same step because the step is

an additive generator in \mathbb{Z}_p . As such if we continue out the progression and reversed it (by negating), we would get the later half that isn't in -(A+B).

Next we can see that $C+B \subseteq (\mathbb{Z}_p \setminus A)$ because if C+B intersected -A at say -a=c+b, then -(a+b) would be in -(A+B) but also C, a contradiction. Hence $p-|A| \ge |C+B| \ge |C|+|B|-1=p-|A|$ by Cauchy-Davenport. So |C+B|=p-|A|=|C|+|B|-1. By the work before, this gives us that B is an arithmetic progression of the same step as C. Similarly for A.

Now to prove this for when none of them are arithmetic progressions. We use induction. For |B| = 2, we have that B is an arithmetic progression and we are done.

|B| > 2: We have two cases:

 $1 < |B_{(e)}| < |B|$ for some $e \in A - B$: By the lemma and starting hypothesis, $|A_{(e)} + B_{(e)}| = |A_{(e)}| + |B_{(e)}| - 1$ and by the inductive hypothesis $B_{(e)}$ and $A_{(e)}$ are arithmetic progressions with the same step. Hence $A + B = A_{(e)} + B_{(e)}$ is an arithmetic progression, reducing us back into the previous case.

 $|B_{(e)}| = |B|$ or $1 \,\forall e \in A - B$. Let $E \subseteq A - B$ be the set of e s.t. $|B_{(e)}| = |B|$. Then $B + E \subseteq A$ and by Cauchy-Davenport, we have that $|B| + |E| - 1 \le |A| \iff |E| \le |A| - |B| + 1$. Since $|A - B| \ge |A| + |B| - 1$ by Cauchy-Davenport, by pidgeonhole principle there are at least 2|B| - 2 values of e. By pidgeonhole again, we have e, e' s.t. $B_{(e)} = B_{(e')} = \{b\}$.

Since |A+B| = |A| + |B| - 1, $A+B = A_{(e)} + b = A_{(e')} + b$ and thus $A \cup (B+e) = A \cup (B+e')$. As $|B_{(e)}| = 1$, $A \cap B + e = b + e$ and similarly for e', B+e and B+e' differ by at most one element (use the fact that $A \cup (B+e) = A \cup (B+e')$). Hence B is an arithmetic sequence of e' - e.

$2 \quad 3/21/24$

Let $A \subseteq G$ be non-empty and finite.

Definition 4. Sym₁(A) := $\{x|x+A=A\}$. This is clearly a subgroup of G.

Theorem 6 (Kneser (53)). Let $A, B \subseteq G, G = \text{Sym}_1(A+B)$. Then $|A+B| \ge |A+H| + |B+H| - |H|$.

Proof. Proof 1: Induction on 4 parameters.

Proof 2: For \mathbb{Z} , |H| = 1 because H has to be 0 by ordering A. Then the statement is $|A + B| \ge |A| + |B| - 1$, done by Cauchy-Davenport.

For \mathbb{Z}_p , H=0 or \mathbb{Z}_p as the only subgroups of \mathbb{Z}_p . This is trivial.

At this point, we know a lot about when |A| = n, |A + A| = 2n - 1 (by Vosper's), and now we can get information about |A + A| = 2n - 1 + b, $b \le n - 1$:

Theorem 7 (Freiman's 3k-3). For $A \subseteq \mathbb{Z}$ and |A+A|=2n-1+b for $b \le n-1$, then A is a subset of an n+b term arithmetic progression.

Example 2. We can generate examples by letting $A = \{0, \dots, n-2, n-1+b\} \subset \{0, 1, \dots, n+b\}$. Notice that |A+A| = 2n+b-1 because of three cases:

$$\begin{cases} [0, n-2] + [0, n-2] = [0, 2n-2] \\ [0, n-2] + \{n-1+b\} = [2n-2, 2n-2+b] \\ \{n-1+b\} + \{n-1+b\} = \{2n-2+2b\} \end{cases}.$$

This is 2n-1+b elements.

2.1 Digression into Some Combinatorics

This is a treasured result in combinatorics, and will use a similar technique as the e-transform.

Definition 5. $[n] := \{1, \dots, n\}.$

Definition 6. $\Delta \subseteq \mathcal{P}([n])$ is an ideal if $\forall F \in \Delta, G \subseteq F \implies G \in \Delta$.

Definition 7.

$$\binom{[n]}{k}\coloneqq\{F\subseteq[n]||F|=k\}.$$

Definition 8. The shadow of $\mathcal{F} = \Delta \cap \binom{[n]}{k}$ to be $\partial \mathcal{F} := \{G \in \binom{[n]}{k} | \exists F \in \mathcal{F}, |F \setminus G| = 1\}$. Intuitively, the shadow compacts sets, much like the e-transform.

Theorem 8 (Kruskal-Katoma). Let $|\mathcal{F}| = m$ and find x s.t. $m = {x \choose k}$. Then

$$|\partial \mathcal{F}| \ge \binom{x}{k-1}.$$

An equivalent statement is that given $\{i_1 < i_2 < \dots < i_k\} \in {[n] \choose k}$, we can view it as the string $[i_k, \dots, i_1]$ and order the ${[n] \choose k}$ lexicographically. Then let $\mathcal{R}(m,k)$ be the m smallest elements in this ordering. The equivalent statement is that $|\partial(\mathcal{F})| \geq |\partial(\mathcal{R}(m,k))|$.

Definition 9.

$$S_{ij}: \mathcal{P}([n]) \longrightarrow \mathcal{P}([n])$$

$$S_{ij}(A) = \begin{cases} A \setminus \{j\} \cup \{i\} & \text{if } j \in A \text{ and } i \notin A \\ A & \text{else} \end{cases}.$$

$$S_{ij}: \mathcal{P}(\mathcal{P}([n])) \longrightarrow \mathcal{P}(\mathcal{P}([n]))$$

$$S_{ij}(\mathcal{H}) := \{S_{ij}(H), \forall i, j\}.$$

Intuitively, this is trying to get G through the "wall" using S_{ij} . This is analogous to the e-transform from before.

Lemma 9. For $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\partial(S_{ij}(\mathcal{F})) \subseteq S_{ij}(\partial \mathcal{F})$, then $|\partial(S_{ij}\mathcal{F})| \leq |S_{ij}(\partial(\mathcal{F}))|$.

Proof. For $G \in \partial(S_{ij}(\mathcal{F}))$, we have that $G + \ell \in S_{ij}(\mathcal{F})$ for some ℓ . If this is true up to k - 1, then when $G \cup i \setminus j \in \partial(\mathcal{F})$, then we can just swap i, j and find that $G \in S_{ij}(\partial \mathcal{F})$. Let G' be a preimage of $G + \ell$.

Case one is that $G' + \ell \in \mathcal{F}$. The only case is $G \cup i \setminus j \notin \partial(\mathcal{F})$. If $i = \ell$, then $G' \cup \ell - j \in \partial(\mathcal{F})$, a contradiction.

If $i \neq \ell$: $G' \cup i \notin \mathcal{F}$ (otherwise $G' \in \partial \mathcal{F}$, completing the proof), which implies $G' \cup i \setminus j \setminus \ell \notin \mathcal{F}$ because otherwise $G' \cup i \setminus j \in \partial(\mathcal{F})$ which completes it with a swap. But $G' + \ell \in \mathcal{F} \implies$ we can shift and have $G \cup \ell = G' \setminus j \cup i \cup \ell \in S_{ij}(\mathcal{F})$. This then implies that $G \setminus j \cup i \in \partial(S_{ij}(\mathcal{F})) \implies G \in S_{ij}(\partial(S_{ij}(\mathcal{F})))$. If $G' \cup \ell \notin \mathcal{F}$: Then $G \cup \ell \in S_{ij}(\mathcal{F}) \implies G \cup \ell \cup j \setminus i \in \mathcal{F}$.

Proof. (Krushkal-Katoma) By the Lemma, we can assume no more shifts can be done. However, this doesn't trivialize the problem like the e-transform case: $\{\{1,2\},\{1,3\},\{1,4\}\}$ and $\{\{1,2\},\{2,3\},\{1,3\}\}$ are both extremal and we can't shift in.

Define $\mathcal{F}(1) = \{F | 1 \in F\}$, $F(0) = \{F | 1 \notin F\}$. Assume this is true for smaller sets. We just need to show that $|\partial(F(0))| \leq |F(1)|$.

Take $G \in \partial(F(0))$. Then S_{e_1} doesn't affect G by assumption, so $G \cup \{1\} \in F(1)$ for an arbitrary element $e \in G$.

3 Doubling Constant

Definition 10.

$$\delta[A] = \frac{|A+A|}{|A|}.$$

We have dealt with $\delta[A] \leq 2$, the 3k-3 theorem gives us $\delta[A] \leq 3$. In general, we need generalized arithmetic progressions.

This is Freiman's Theorem and the Polynomial Freiman-Rusza conjecture, which was solved recently in characteristic 2 by Gowers, Green, Manners, Tao.

How to construct sets with small doubling constants?

For A an arithmetic progression, we are done. Define A, B as independent if $|A+B| = |A| \cdot |B|$. Then

$$\delta[A+B] = \frac{|A+B+A+B|}{|A+B|} = \frac{|(A+A)+(B+B)|}{|A|\cdot |B|} \le \frac{|A+A|}{|A|} \cdot \frac{|B+B|}{|B|} \le \delta[A] \cdot \delta[B].$$

3/26/244

Now we look to generalized arithmetic progressions (gap) of rank $d: A_1 + \cdots + A_d$ with A_i being ap.

Definition 11. A gap is **proper** if $|A_1 + \cdots + A_d| = |A_1| \cdot |A_2| \cdots |A_d|$

P is a proper ap $\implies \delta[P] \leq 2^d$ with $d = \operatorname{rank}(P)$. Now suppose $B \subseteq A$ and let $\mu = \frac{|B|}{|A|}$. Then $\delta[B] = \frac{|B+B|}{|B|} \leq \frac{|A+A|}{|B|} = \mu^{-1}\delta[A]$.

There are two cases for the group:

- Torsion Free (e.g. $\mathbb{Z}, \mathbb{Z}_p^d, \mathbb{R}^d$)
- Forsion (e.g. \mathbb{Z}_2^n)

Theorem 10 (Freiman (Torsion Free)). Fix an integer k. Then \exists constants d, μ (depending on k only) s.t. $\forall A \subseteq \mathbb{Z}$ and $\delta[A] = k$, then there exists a property gap P s.t. $\operatorname{rank}(P) \le d$, $A \subseteq P$, and $\frac{|P|}{|A|} \le \mu^{-1}$.

Corollary 1. $\delta[A] \leq \mu^{-1}2^d$

The point of this is that $\exists \mu^{-1}, d \leq k^{o(1)}$.

We really want d to be tight to k.

But we can always find a crazy set |X| = k and $\delta[X] = k$ s.t. d has to be k.

Conjecture 11 (Polynomial Freiman-Rusza Conjecture). For $A \subseteq P + X$ with $|X| \le k^{O(1)}$, rank $(A) \le k^{O(1)}$ $O(\log K)$.

Theorem 12 (Gowers, Green, Manners, Tao (23)). $\forall A \subseteq \mathbb{Z}_2^n$ with $\delta[A] = k, \exists H \subseteq \mathbb{Z}_2^n$ s.t. $\exists X(|X| \le n)$ $k^{O(1)}$) s.t. $A \subseteq H + X$, then $|H| < k^{O(1)}|A|$.

Some History:

- 1. Freiman's Proof (didn't draw much attention)
- 2. Rusza's Proof which brought in analysis \rightarrow more attention
- 3. Sanders proved quasi-polynomial Freiman Rusza
- 4. Recent GGMT polynomial FR conjection in characteristic 2 (promised in general as well)

In this class 1, 2, and 4 will be discussed.

Let $A \subseteq \mathbb{R}^d$ (under addition). Freiman's can still apply here.

Lemma 13 (Freiman Dimension Reduction Lemma). Let $k = \delta[A], d = \text{rk}(\text{Span}(A))$. Then $|A + A| \geq 1$ $(d+1)|A| - d(d+1)/2 \implies \delta[A] \ge d+1, d \le k-1.$

This is obviously false in char $\neq 0$.

Proof. We do induction on |A|. This is easily true for |A| = 1.

Then for |A| > 1, take the convex hull of A. Take a point $a \in A$. So $A' = A \setminus \{a\} \implies |A' + A'| \ge 1$ (d'+1)|A'|-d'(d'+1)/2 by induction hypothesis.

If $\operatorname{rk}(A') = d$, then $a \in A$ has d neighbors, a_1, \ldots, a_d . The midpoints $\frac{a+a_1}{2}, \ldots, \frac{a+a_d}{2}$ are not in A'because otherwise $a \in A'$, a contradiction of the number of neighbors (?). Hence $a+a_1, \ldots, a+a_d \notin A'+A'$ (separate them by a hyperplane, Minkowski sum of a convex set is convex).

So $|A+A| \ge |A'+A'| + d+1 \ge (d+1)(|A'|+1) - d(d+1)/2$, completing the induction in this case. If rk(A') = d - 1, then a is outside the d - 1 dimensional hyperplane A' is in, which implies that $a+A', a+a \notin A'+A' \implies |A+A|=|A'+A'|+|A'|+1$, which by induction once again completes the

We want $A \subseteq P$ s.t. A is dense in P. We can't find a gap in A, A + A, but strangely we can in

Lemma 14 (Bogolubov). $\forall A \subseteq \mathbb{Z}, \exists P \subseteq 2A - 2A \text{ s.t. } P \text{ is a proper gap and dense in } 2A - 2A, i.e.$

$$|P| \ge \frac{|2A - 2A|}{\exp(k^{O(1)})}.$$

Can apply for $k = |A|^{o(1)}$ as well.

Lemma 15 (Rusza Covering Lemma). $\forall A, B \subseteq G, \exists X \subseteq B \text{ s.t.}$

- 1. $|X| \le |A + B|/|A|$
- 2. So $B \subseteq A A + X$.

See Figure 2.

Figure 2: Rusza Covering Lemma

Proof. 1) is trivial. We are looking for the set $X = \{b_1, \ldots, b_a\}$ that has the maximal number of translates that are pairwise disjoint.

2) Fix an element $a+b \in A+B$. Then A+b has to intersect an element $x \in X$ s.t. $A+x \cap A+b \neq \emptyset$. Hence there is $a_1+b=a_2+x \iff b=a_2+x-a_1 \implies \forall b \in B, \exists x \in X \text{ s.t. } b \in A-A+X$. \square

$5 \quad 3/28/24$

Thus far we have been looking to cover A with a GAP, and now we are covering a GAP with 2A - 2A. First we prove Freiman:

Proof. Let A=P and B=2A-2A in the Lemma 15 $\to X$ s.t. $|X| \le \frac{|P+2A-2A|}{|P|}$. Because $P \subseteq 2A-2A$,

$$|X| \leq \frac{|P+2A-2A|}{|P|} \leq \frac{|4A-4A|}{|P|} \leq \frac{|4A-4A|}{|A|} \exp(k^{O(1)}.$$

Then $2A-2A\subseteq P-P+X$. WLOG, we can assume $0\in A$ (shift). Hence $A\subseteq 2A-2A\subseteq P-P+X$. So now all we need to do is to bound $\frac{|4A-4A|}{|A|}$. In the non-commutative case, this can be very large. In the torsion case, this can't be bounded, by letting $P=\mathbb{Z}_p$, which leads to P-P being a gap, but may not be proper. To fix this, we introduce a new tool:

5.1 Properization

Theorem 16. For any gap P of rank d, there exists a proper gap of rank d s.t. $P \subseteq Q$ and $|Q| \le |P| \cdot d^{O(d^3)}$.

Inuitively, rank $(P) \leq K^{O(1)}$, roughly K.

5.2 Plünecke-Rusza Inequalities

Theorem 17. $A, B \subseteq G$ s.t. |A+B| = K|A|. Then $|\pm B \pm B \pm B \pm ... \pm B|$ $(h \text{ times}) \leq K^h|A|$.

Corollary 2. Suppose B = A. Then $k = \delta[A]$. The inequality then becomes

$$|kA - \ell A| \le K^{k+\ell} |A|.$$

The above Corollary then gives an upper bound on $\frac{|4A-4A|}{|A|},$ proving Freidman's Theorem. Now let $\sigma[A]=\frac{|A-A|}{|A|}.$ Corollary 3. Then with k = l = 1, $\sigma[A] \leq \delta[A]^2$.

Now this result is going to be very useful, especially in its generalized form for Gower's Theorem.

Lemma 18 (Rusza Triangle Inequality). Let G be an ablian group.

Combinatorial Form:

$$|A - C| \le \frac{|A - B| \cdot |B - C|}{|B|}.$$

Proof. We WTS that $|B| \cdot |A - C| \le |A - B| \cdot |B - C|$. We prove it by finding an injective function $B \times (A - C) \mapsto (A - B) \times (B - C)$

 $\forall x \in A - C$ (arbitrary but fixed), represent it as $x = a_x - c_x, a_x \in A, c_x \in C$. Then map

$$(b,x)\mapsto (a_x-b,b-c_x).$$

Then say you're given $(a_x - b, b - c_x)$. Then you can recover a unique $x = a_x - b + b - c_x$ and from there recover a_x, c_x . This then gives b.

Lemma 19 (Alternative Statement Rusza Triangle Inequality).

$$\frac{|A-C|}{|A|^{\frac{1}{2}}|C|^{\frac{1}{2}}} \leq \frac{|A-B|}{|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}} \cdot \frac{|B-C|}{|B|^{\frac{1}{2}}|C|^{\frac{1}{2}}}.$$

Definition 12 (Rusza's Distance).

$$d(A, C) = \ln \frac{|A - C|}{|A|^{\frac{1}{2}}|C|^{\frac{1}{2}}}.$$

We can check that it is almost a metric (semimetric). Since $|A - C| \ge \max(|A|, |C|)$, the fraction in the RHS is at least 1, showing that the RHS is non-negative. Clearly it is symmetric. By the Rusza Triangle Inequality, we have $d(A, C) \le d(A, B) + d(B, C)$. But it violates positive definitiness (take A, C part of the same subgroup).

From this we have that $d(A, -A) = \ln \delta[A]$ and that $d(A, A) = \ln \sigma[A]$. Hence $\ln \sigma = d(A, A) \le d(A, -A) + d(A, -A) = 2 \ln \delta[A]$

Now we return to the Plünecke-Rusza Inequalities 17.

Theorem 20. With $K = \frac{|A+B|}{|A|}, |\pm B \pm B \pm \cdots \pm B| \leq K^h |A|$.

Big Names: Petridis, Julia Walls, Jim Gowers

It began as a very complicated proof in 2016, but it was seriously streamlined.

Proof. (Petridis')

Consider a simple case: We prove that if $|A + B| \le K|A|$, then $|hB| \le K^h|A|$.

If we decrease the RHS, then this inequality becomes stricter. So we can let A be the smallest such set. Note that we have B fixed the entire time.

WLOG, $\forall A' \subset A, |A' + B| \ge K|A'|$.

Lemma 21. Under all these assumptions, $|A+B+C| \le K|A+C|$ for an arbitrary C.

This implies this case because $|hB| \le |A+hB| \le K|A+(h-1)B| \le K^2|A+(h-2)B| \le \cdots$ (let C=(h-1)B in the lemma). This leads to $|hB| \le K^{h-1}|A+B| \le K^h|A|$ (definition of K).

Proof. (Lemma)

We do induction on C. Suppose it is true up to |C| and we have $C' = C \cup \{x\}$. Then $|A + B + C| \le K|A + C|$. We want $|A + B + C'| \le K|A + C'|$.

We have $A+B+C'\subseteq (A+B+C)\cup (A+B+\{x\})$, $A+C'\subseteq (A+C)\cup (A+x)$ by definition. Suppose for a second that this (RHS) was a disjoint unions. Then because $|A+B+C|\le K|A+C|$, $|A+B+x|\le |A+x|$, completing the proof.

By PIE (principle of inclusion exclusion), we have a W s.t.

$$W + x = (A + C) \cap (A + x).$$

This is a proper subset, because otherwise we are done (nothing else is added on both sides, i.e. $A+C'=(A+C)\cup(A+x)\subseteq(A+C)\cap(A+x)$). So $W=(A+C-x)\cap A$.

Next $(A+B+C)\cap (A+B+x)\supseteq W+x+B$ (we are supposing the LHS is small). By more PIE, we have that all we need to prove is that $|W+x+B|\ge K|W+x|$ and that $|W+B|\ge K|W|, W\subsetneq A$. Then double induction on A and then top down.

We are still focused on Lemma 14, i.e. that $\exists P \subseteq 2A - 2A$ s.t. $|P| \ge |A| \exp(-K^{O(1)})$. The reason this is better than what we have before is that we can prove this for

- 1. $A' \subseteq A$, $\frac{|A|}{|A'| \le \exp(K^{O(1)})}$, Lemma 14 for $A' \implies$ BR lemma for A
- 2. BR Lemma is invariant under Freiman isomorphisms of order 8

Definition 13. Let G, H be abelian groups, $A \subseteq G, B \subseteq H$. A **Freiman Homomorphism** of order k is defined by

$$(G,A) \overrightarrow{\upharpoonright} \phi (H,B)$$

s.t. $\phi: A \to B$ is a bijection between A, B s.t.

$$a_1 + \dots + a_k = a'_1 + \dots + a'_k \implies \phi(a_1) + \dots + \phi(a_k) = \phi(a'_1) + \dots + \phi(a'_k).$$

An example is an injective homomorphism that maps $a_i \mapsto a'_i$. They are almost as good as homomorphisms, and they are indistinguishable up to k-tuples.

Definition 14. A **Freiman isomorphism** is a Freiman homorphism whose inverse is a Freiman homomorphism.

Proposition 22. If we have a Freiman isomorphism of order 8: $(G, A) \to (H, B)$, then BR lemma for A is equivalent to BR lemma for B.

Proof. Clearly we have a Freiman homomorphism $(G, 2A - 2A) \to (H, 2B - 2B)$ of order 2. We have injectivity is because ϕ is bijective and well-defined. Now suppose we have a proper gap $P \subseteq 2A - 2A$. Then $\phi(P)$ is a proper gap or subgroup of H.

For d = 2, the gap is just a grid, and this grid is then translated into a wiggly grid. But we want it to be a full grid, and we have this by generating the right grid by the images of the terms on the LHS.

We have the relation that $a_1 + a_4 = a_2 + a_3 \rightarrow b_1 + b_4 = b_2 + b_3$. As another example, $a_1 + a_5 = 2a_2 \rightarrow b_1 + b_5 = 2b_2$. Simply repeat this.

Figure 3: Grid with d=2

We will complete this proof on Tuesday.

Now we will use basic Fourier analysis to reduce BR Lemma in \mathbb{Z} to BR Lemma in \mathbb{Z}_p where p > 16|8A - 8A|. By Chebyshev's theorem (?), we have $p \leq K^{O(1)}$ (also use Rusza Triangle inequality 17).

Proof. We have
$$(\mathbb{Z},A) \xrightarrow{k} (\mathbb{Z}_N,B)$$
.