11 Критерии: основные понятия

- 1. Пусть $X_i \sim Bern(\theta)$, для $H_0: \theta = 1/2$ и $H_1: \theta = \theta_1$, где а) $\theta_1 = 1/3$, б) $\theta_1 = 2/3$. Рассмотрим критерий $\{\sum_{i=1}^n X_i > C\}$, n = 10. Построить графики вероятностей ошибки I рода, ошибки II рода и мощности критерия в зависимости от C. Для какой альтернативы осмысленно использовать этот критерий?
- 2. График ЭФР p-value.
 - (а) Генерируем выборку, находим значение статистики критерия T ($T = X_{(1)}$ или $T = X_{(n)}$). Находим функцию распределения $F_T(x)$ нашей статистики.Вычисляем $p-value=1-F_T(T)$, для критических множеств вида $\{T>C\}$, $p-value=F_T(T)$ для критических множеств вида $\{T< C\}$. Повторяем $m \geq 100$ раз. Получился массив p_1, \ldots, p_m , упорядочиваем его по возрастанию.
 - (b) Строим график: по оси Ox значения p_1, \ldots, p_m , по оси Oy числа $1/m, 2/m, \ldots, 1$. Иными словами, мы строим график эмпирической функции распределения p-value.

Мы знаем, что если F(x) непрерывна, то $F_T(T) \sim R[0,1]$. Значит, при гипотезе точки должны быть близки к прямой y=x. При альтернативе мы ожидаем увидеть отклонение от этой прямой. Посмотрим как это работает на синтетическом наборе данных: пусть $X_i \sim \mathcal{N}(\theta,1), \ H_0: \theta=0, \ H_1: \theta=\theta_1$. Постройте а) критерий Неймана-Пирсона для $\theta_1>0$ б) для $\theta_1<0$ в) асимптотический критерий |MED-1/2|>C. Рассчитайте для них ф.р. статистик критерия, найдите p-value критериев.

- (a) Построить графики p-value всех трех критериев, выбирая данные a) при верной нулевой гипотезе б) при каждой из альтернатив ($\theta_1 = -1$ и $\theta_1 = 1$). Построить их на одном графике. В какую сторону отклоняются графики от прямой y = x?
- (b) Как влияет размер выборки на отклонение от y = x?
- (с) Какой критерий самый лучший?
- 3. $X_1, \ldots, X_n \sim Bern(\theta), H_0: \theta = 1/2, H_1: \theta = 1/3$. При каких n можно построить критическое множество вида $\{\sum_{i=1}^n X_i < C\}$ так, чтобы вероятности ошибок первого и второго рода не превышали 0.05? Построить графики вероятностей ошибок первого и второго рода (как функции от C) для разных n.
- 4. * Построить в предыдущей задаче рандомизированный критерий Неймана-Пирсона уровня значимости 0.05. Эмпирически исследовать вероятность ошибки I рода критерия и убедиться, что она действительно 0.05.