Основные теоремы дифференциального исчисления служат теоретической базой для приложения дифференциального исчисления к изучению функций. Они связаны с именами французских математиков П. Ферма (1601-1665), М. Ролля (1652-1719), Ж. Л. Лагранжа (1736-1813), Г. Лопиталя (1661-1704), О. Коши (1789-1857) и английского математика Б. Тейлора (1685-1731).

## §1. Определение экстремума. Теорема Ферма

**Определение 1.1.** Точка  $x_0$  называется *точкой максимума (минимума)* функции y = f(x), если f(x) определена на некоторой окрестности  $U(x_0)$  и для  $\forall x \in U(x_0)$  справедливо неравенство  $f(x) \leq f(x_0)$  ( $f(x) \geq f(x_0)$ ). Значение  $f(x_0)$  называют *максимумом (минимумом)* данной функции.

Если для всех x на некоторой проколотой окрестности  $U(x_0)$  верно строгое неравенство  $f(x) < f(x_0)$  ( $f(x) > f(x_0)$ ), то точка  $x_0$  называется точкой строгого максимума (строгого минимума) функции y = f(x).

Функцию y = f(x) обычно предполагают непрерывной в точке в точке  $x_0$ .

Точки максимума и минимума объединяют общим термином – *точки* экстремума.

Замечание 1.1. Утверждение: функция f(x) имеет в точке  $x_0$  строгий экстремум равносильно следующему: приращение  $\Delta f(x_0)$  сохраняет знак на



Рис. 1.1. К понятию экстремума функции

некоторой окрестности  $U(x_0)$ , а именно,  $\Delta f(x_0) < 0$  для  $\forall x \in U(x_0)$  в случае строгого максимума, и  $\Delta f(x_0) > 0$  в случае строгого минимума.

Замечание 1.2. Понятие экстремума функции f(x) в определении 1.1 отнесено к окрест-ности точки  $x_0$ , поэтому его называют локальным экстремумом. На промежутке [a, b] функ-ция f(x) может иметь несколько локальных экстремумов

(рис.1.1,  $x_0$ ,  $x_2$  – точки локального максимума, а  $x_1$  – локального минимума).

**Теорема Ферма.** Если функция y = f(x) дифференцируема в точке  $x_0$  и имеет в этой точке экстремум, то её производная  $f'(x_0) = 0$ .

▶ Функция y = f(x) дифференцируема в точке  $x_0$ , поэтому она определена на некоторой окрестности  $U(x_0)$ . Пусть, для определённости, в точке  $x_0$  эта функция имеет максимум, поэтому её приращение  $\Delta f(x_0) \le 0$  для  $\forall x \in U(x_0)$ . Для односторонних производных функции f(x) в точке  $x_0$  имеем:

$$f'_{-}(x_0) = \lim_{\Delta x \to -0} \frac{\Delta f(x_0)}{\Delta x} \ge 0, \quad f'_{+}(x_0) = \lim_{\Delta x \to +0} \frac{\Delta f(x_0)}{\Delta x} \le 0.$$

Так как  $\exists f'(x_0)$ , то  $f'_-(x_0) = f'_+(x_0)$ , а это возможно только, если  $f'_-(x_0) = f'_+(x_0) = 0$ . Поскольку  $f'_-(x_0) = f'_+(x_0) = f'_-(x_0)$ , то получаем  $f'_-(x_0) = 0$ .

## Геометрическая интерпретация теоремы Ферма

Пусть в точке  $x_0$  функция y = f(x) дифференцируема и имеет экстремум. Из геометрического смысла производной (§2 главы 1) и теоремы Ферма следует, что в точке  $(x_0, f(x_0))$  касательная T к графику  $\Gamma$  этой функции параллельна оси Ox (рис. 1.1).