Gramáticas LR

Clase 28

IIC 2223

Prof. Cristian Riveros

Bottom-up parsing (recordatorio)

$$E \rightarrow E + E \mid E * E \mid n$$

Top-down parsing

Bottom-up parsing

Prefijos viables, reducibles y handles (recordatorio)

Sea $G = (V, \Sigma, P, S)$ una gramática y G' su gramática aumentada.

Definiciones

- $\alpha \in (V \cup \Sigma)^*$ es un **prefijo viable** de \mathcal{G} ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha\beta w$ tal que $\beta \in (V \cup \Sigma)^*$ y $w \in \Sigma^*$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es reducible a $\alpha \cdot X$ ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha Xw \underset{m}{\Longrightarrow} \alpha \beta w$ con $w \in \Sigma^*$. En cuyo caso, decimos que $X \to \beta$ es un handle de $\alpha \beta$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es un prefijo reducible ssi $\alpha \cdot \beta$ es un prefijo viable y existe X tal que $\alpha \cdot \beta$ es reducible a $\alpha \cdot X$.

Prefijos viables y prefijos reducibles representan **configuraciones válidas** del apilador bottom-up.

Autómata característico (recordatorio)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El autómata característico de G es un ϵ -NFA:

$$\mathsf{char}[\mathcal{G}] \ = \ (\underbrace{\mathsf{Items}_{\mathcal{G}} \cup \big\{ [S' \to .S], [S' \to S.] \big\}}_{Q_0}, V \cup \Sigma, \Delta_0, \underbrace{[S' \to .S]}_{I_0}, \underbrace{\{[X \to \alpha.]\}}_{F_0})$$

Dos tipos de transiciones en Δ_0 :

Bajar:
$$[X \to \alpha.Y\beta] \stackrel{\epsilon}{\to} [Y \to .\gamma]$$
 para cada $X \to \alpha Y\beta \in Q_0$ y $Y \to \gamma \in P$
Avanzar: $[X \to \alpha.Y\beta] \stackrel{Y}{\to} [X \to \alpha Y.\beta]$ $Y \in V \cup \Sigma$

char[G] navega por un árbol de derivación.

Autómata característico y prefijos reducibles (recordatorio)

Teorema

- 1. $[S' \rightarrow .S] \stackrel{\gamma}{\rightarrow} [X \rightarrow \alpha.\beta]$ si, y solo si, γ es un prefijo viable de \mathcal{G} .
- 2. $\mathcal{L}(\mathsf{char}[\mathcal{G}]) = \{ \gamma \mid \gamma \text{ es un prefijo reducible de } \mathcal{G} \}$

 $\mathsf{char}[\mathcal{G}] \mathsf{\ sirve\ para\ } \mathbf{identificar} \mathsf{\ las\ } \mathsf{configuraciones\ } \mathsf{viables\ } \mathsf{del\ } \mathsf{bottom-up\ PDA}$

LR parser (recordatorio)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El LR-autómata apilador de \mathcal{G} (LR-PDA) es un PDA alternativo:

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Tres tipos de transiciones en $\Delta_1 \subseteq Q_1^+ \times \Sigma \times Q_1^*$ para $C, C_1, \dots, C_n \in Q_0^{\text{det}}$:

Shift:
$$C \stackrel{a}{\to} C \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha.] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$$
 si $[S' \to S.] \in q$

¿qué representa el stack del LR-PDA?

Definición LR-PDA

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Proposición

Si
$$(I_0^{\text{det}}, uv) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (I_0^{\text{det}} C_1 \dots C_n, v)$$
, entonces existe $\gamma_1 \dots \gamma_n \in (V \cup \Sigma)^*$:

$$I_0^{\text{det}} \stackrel{\gamma_1}{\rightarrow} C_1 \stackrel{\gamma_2}{\rightarrow} \dots \stackrel{\gamma_n}{\rightarrow} C_n$$

es una **ejecución** de char $[\mathcal{G}]^{\text{det}}$ sobre $\gamma_1 \dots \gamma_n$.

El stack $I_0^{\text{det}} C_1 \dots C_n$ de una configuración cualquiera corresponde a una **ejecución** de la determinización char [G].

Relación entre LR-PDA y bottom-up PDA

Sea $\mathcal G$ una gramática libre de contexto.

Teorema

Sea $\gamma = \gamma_1 \dots \gamma_n \in (V \cup \Sigma)^*$ y $I_0^{\text{det}} \stackrel{\gamma_1}{\to} C_1 \stackrel{\gamma_2}{\to} \dots \stackrel{\gamma_n}{\to} C_n$ la ejecución de $\text{det}[\mathcal{G}]$ sobre γ . Para todo $u, v \in \Sigma^*$:

$$\blacksquare \ (\$, \mathit{uv}) \ \vdash^*_{\mathcal{P}_{\uparrow}} \ (\$\gamma, \mathit{v}) \ \vdash^*_{\mathcal{P}_{\uparrow}} \ (\$S', \epsilon)$$
 si, y solo si,

$$C_n \neq \emptyset \text{ y } (I_0^{\text{det}}, uv) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (I_0^{\text{det}} C_1 \dots C_n, v) \vdash_{\mathsf{LR}[\mathcal{G}]}^* (f, \epsilon).$$

En particular, $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathsf{LR}[\mathcal{G}])$.

En otras palabras, LR[\mathcal{G}] simula a \mathcal{P}_{\uparrow} llevando solo **configuraciones viables**.

(NO haremos esta demostración en clases)

Outline

¿cómo usar LR-Parser?

Gramáticas LR

Algunas conclusiones sobre LR

Outline

¿cómo usar LR-Parser?

Gramáticas LR

Algunas conclusiones sobre LR

LR parser y su uso

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto cualquiera.

Definición

El LR-autómata apilador de \mathcal{G} (LR-PDA) es un PDA alternativo:

$$\mathsf{LR}[\mathcal{G}] \ = \ (\underbrace{Q_0^{\mathsf{det}} \cup \{f\}}_{Q_1}, \Sigma, \Delta_1, \underbrace{J_0^{\mathsf{det}}}_{I_1}, \underbrace{\{f\}}_{F_1})$$

Tres tipos de transiciones en $\Delta_1 \subseteq Q_1^+ \times \Sigma \times Q_1^*$ para $C, C_1, \dots, C_n \in Q_0^{\text{det}}$:

Shift:
$$C \stackrel{a}{\to} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C \ C_1 \dots C_n \overset{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$$
 si $[S' \to S.] \in q$

¿dónde esta el no-determinismo en el LR-PDA?

Determinación de conflictos en LR-PDA

Definición

Para un estado $C \in Q_0^{\text{det}}$ decimos que:

- 1. C tiene un conflicto **Shift-Reduce** si existen $[X \rightarrow \alpha.a\beta]$ y $[Y \rightarrow \gamma.]$ en C, simultáneamente.
- 2. C tiene un conflicto Reduce-Reduce si existen $[Y_1 \rightarrow \gamma_1]$ y $[Y_2 \rightarrow \gamma_2]$ distintos en C.

Determinación de conflictos en LR-PDA

Definición

Para un estado $C \in Q_0^{\text{det}}$ decimos que:

- 1. C tiene un conflicto **Shift-Reduce** si existen $[X \rightarrow \alpha.a\beta]$ y $[Y \rightarrow \gamma.]$ en C, simultáneamente.
- 2. C tiene un conflicto Reduce-Reduce si existen $[Y_1 \rightarrow \gamma_1.]$ y $[Y_2 \rightarrow \gamma_2.]$ distintos en C.

Decimos que *C* es **libre de conflictos** si **NO tiene** un conflicto Shift-Reduce o Reduce-Reduce.

Notar que...

Si C es libre de conflictos para todo $C \in Q_0^{\text{det}}$, entonces $\text{LR}[\mathcal{G}]$ es un autómata apilador determinista.

Determinación de conflictos en LR-PDA

Notar que...

Si C es libre de conflictos para todo $C \in Q_0^{\text{det}}$, entonces $\mathsf{LR}[\mathcal{G}]$ es un autómata apilador determinista.

Shift:
$$C \stackrel{a}{\rightarrow} C \cdot \Delta_0^{\text{det}}(C, a)$$
 si $\Delta_0^{\text{det}}(C, a) \neq \emptyset$

Reduce:
$$C C_1 \dots C_n \stackrel{\epsilon}{\to} C \cdot \Delta_0^{\text{det}}(C, X)$$
 si $[X \to \alpha] \in C_n$ y $n = |\alpha|$

Término:
$$I_0^{\text{det}} C \stackrel{\epsilon}{\to} f$$
 $\text{si } [S' \to S.] \in q$

Por lo tanto, podemos usar $LR[\mathcal{G}]$ para hacer **parsing** y encontrar una **derivación por la derecha (invertida)** de \mathcal{G} para cada input.

Outline

¿cómo usar LR-Parser?

Gramáticas LR

Algunas conclusiones sobre LR

Definición gramáticas LR(k)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 0$.

Intuición

Intuitivamente, \mathcal{G} es una gramática LR(k) si para toda derivación:

$$v \iff_{rm} \alpha_n \iff_{rm} \alpha_{n-1} \iff_{rm} \cdots \iff_{rm} \alpha_1 \iff_{rm} S'$$

podemos para cada α_i :

- 1. localizar el **handle** y
- 2. determinar la regla en P a ocupar

mirando a lo más k símbolos "a la derecha del handle".

Para cada $\alpha_i = \gamma \beta w$, la regla $X \to \beta$ tal que $\alpha_{i-1} = \gamma X w$ esta únicamente determinado por $\gamma \beta$ y $w|_k$.

Definición gramáticas LR(k)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 0$.

Definición

Decimos que \mathcal{G} es una gramática LR(k) si para todas derivaciones:

$$\quad \square \quad \alpha \beta v_1 \iff_{rm} \alpha X v_1 \iff_{rm}^{\star} S'$$

$$| v_1|_k = |v_2|_k$$

entonces se cumple que
$$\alpha = \alpha'$$
, $X = Y$ y $v_2 = v_2'$. $(\alpha X v_2 = \alpha' Y v_2')$

Notar que la elección de $X \to \beta$ depende de $\alpha \cdot \beta \cdot v_1|_k$.

$$\begin{array}{c} \underbrace{\times}_{\square} \\ \cong \alpha \beta v_1 \iff \alpha X v_1 \iff S' \\ \cong \alpha \beta v_2 \iff \alpha' Y v_2' \iff S' \\ \cong v_1|_k = v_2|_k \\ \end{array} \right) \quad \text{entonces} \quad \alpha X v_2 = \alpha' Y v_2'.$$

Ejemplo 1

$$\mathcal{G}_1: \quad S \rightarrow aXc \quad X \rightarrow Xbb \mid b \quad \mathcal{L}(\mathcal{G}_1) = \{ab^{2n+1}c \mid n \geq 0\}$$

Todas las **posibles** derivaciones por la derecha de G_1 son:

$$S \quad aXc \quad aXb^{2n}c \quad abb^{2n}c$$

$$\underbrace{a \quad Xbb \quad b^{2n}c}_{\alpha \quad \beta} \quad \xleftarrow{c}_{v_1} \quad \xleftarrow{c}_{rm} \quad \underbrace{a}_{\alpha} \quad X \quad \underbrace{b^{2n}c}_{v_1} \quad \xleftarrow{c}_{rm} \quad S'}_{c}$$

$$\underbrace{a \quad Xbb \quad b^{2m}c}_{\alpha \quad \beta} \quad \xleftarrow{c}_{v_2} \quad \xleftarrow{c}_{rm} \quad \underbrace{a}_{\alpha'} \quad X \quad \underbrace{b^{2m}c}_{v_2'} \quad \xleftarrow{c}_{rm} \quad S'}_{c}$$
entonces $\alpha Xv_2 = \alpha' Xv_2'$.

Ejemplo 1

$$\mathcal{G}_1: \quad S \rightarrow aXc \quad X \rightarrow Xbb \mid b \quad \mathcal{L}(\mathcal{G}_1) = \{ab^{2n+1}c \mid n \geq 0\}$$

Todas las **posibles** derivaciones por la derecha de G_1 son: . . .

Como la elección de β no depende v_1 o v_2 , entonces \mathcal{G}_1 es LR(0).

Ejemplo 2

$$\mathcal{G}_2: \quad S \rightarrow aXc \quad X \rightarrow bbX \mid b \quad \mathcal{L}(\mathcal{G}_2) = \{ab^{2n+1}c \mid n \geq 0\}$$

Todas las **posibles** derivaciones por la derecha de G_2 son:

$$S \quad aXc \quad ab^{2n}Xc \quad ab^{2n}bc$$

$$\bullet \quad \underbrace{ab^{2n} \ b}_{\alpha} \ v_1 \ \stackrel{\leftarrow}{\leftarrow} \ \underbrace{ab^{2n}}_{\alpha} \ Xv_1 \ \stackrel{\leftarrow}{\leftarrow} \ S'$$

$$\bullet \quad \underbrace{ab^{2n} \ b}_{\alpha} \ v_2 \ \stackrel{\leftarrow}{\leftarrow} \ \underbrace{ab^{2m}}_{\alpha'} \ Xv_2' \ \stackrel{\leftarrow}{\leftarrow} \ S'$$

Ejemplo 2

$$\mathcal{G}_2: \quad S \rightarrow aXc \quad X \rightarrow bbX \mid b \quad \mathcal{L}(\mathcal{G}_2) = \{ab^{2n+1}c \mid n \geq 0\}$$

Todas las **posibles** derivaciones por la derecha de \mathcal{G}_2 son: . . .

$$\underbrace{ab^{2n} \ b}_{\alpha} \ v_1 \ \stackrel{\longleftarrow}{\longleftarrow} \ \underbrace{ab^{2n} \ Xv_1}_{m} \ \stackrel{\star}{\longleftarrow} \ S'$$

$$\underbrace{ab^{2n} \ b}_{\alpha} \ v_2 \ \stackrel{\longleftarrow}{\longleftarrow} \ \underbrace{ab^{2m} \ Xv_2'}_{m} \ \stackrel{\star}{\longleftarrow} \ S'$$

$$\underbrace{ab^{2n} \ b}_{\alpha} \ v_2 \ \stackrel{\longleftarrow}{\longleftarrow} \ \underbrace{ab^{2m} \ Xv_2'}_{m} \ \stackrel{\star}{\longleftarrow} \ S'$$

Como la elección de β depende si $v_1|_1 = v_2|_1 = c$, entonces \mathcal{G}_2 es LR(1).

Ejemplo 3

$$\mathcal{G}_3: \quad S \rightarrow aXc \quad X \rightarrow bXb \mid b \quad \mathcal{L}(\mathcal{G}_3) = \{ab^{2n+1}c \mid n \geq 0\}$$

Para cualquier $k \ge 0$ y n > k tenemos:

$$\underbrace{ab^{n}}_{\alpha} \underbrace{b}_{\beta} \underbrace{b^{n}c}_{v_{1}} \xleftarrow{c_{m}} \underbrace{ab^{n}}_{\alpha} X \underbrace{b^{n}c}_{v_{1}} \overset{\star}{\underset{m}{\leftarrow}} S'$$

$$\underbrace{ab^{n}}_{\alpha} \underbrace{b}_{\beta} \underbrace{b^{n+2}c}_{v_{2}} \underset{m}{\longleftarrow} \underbrace{ab^{n+1}}_{\alpha'} X \underbrace{b^{n+1}c}_{v_{2}'} \overset{\star}{\underset{m}{\leftarrow}} S'$$

$$\underbrace{v_{1}|_{k} = v_{2}|_{k}}$$

$$pero \alpha Xv_{2} \neq \alpha' Xv_{2}'$$

Como esto se cumple para todo k, entonces \mathcal{G}_3 NO es LR(k) para todo k.

Ejemplo 4

Todas las **posibles** derivaciones por la derecha de \mathcal{G}_4 son:

$$S$$
 X a^naXbb^n a^na0bb^n Y a^naYbbb^{2n} a^na1bbb^{2n}

Ejemplo 4

Todas las **posibles** derivaciones por la derecha de \mathcal{G}_4 son:

$$S \quad \underset{\beta}{X} \quad a^{n}\underbrace{aXbb^{n}} \quad a^{n}\underbrace{a0bb^{n}} \quad \underset{\beta}{Y} \quad a^{n}\underbrace{aYbbb^{2n}} \quad a^{n}\underbrace{a1bb}_{\beta}b^{2n}$$

Como la elección de β no depende del sufijo, entonces \mathcal{G}_4 es LR(0).

Ejemplo 4

Todas las **posibles** derivaciones por la derecha de \mathcal{G}_4 son:

$$S$$
 X a^naXbb^n a^na0bb^n Y a^naYbbb^{2n} a^na1bbb^{2n}

Como la elección de β no depende del sufijo, entonces \mathcal{G}_4 es LR(0).

¿es G_4 una gramática LL(k)?

Outline

¿cómo usar LR-Parser?

Gramáticas LR

Algunas conclusiones sobre LR

Sobre gramáticas LR(k)

Es posible demostrar que . . .

- Toda gramática LL(k) es una gramática LR(k).
- Existe un lenguaje libre de contexto L, tal que para toda gramática \mathcal{G} con $\mathcal{L}(\mathcal{G}) = L$, se cumple que \mathcal{G} **NO** es LR(k) para todo $k \ge 0$.

¿a qué corresponden las gramáticas LR(0)?

Sobre gramáticas LR(0) y estados libres de conflicto

Teorema

 $\mathcal G$ es una gramática LR(0) si, y solo si, la determinización del autómata característico de $\mathcal G$ tiene solo estados libres de conflicto.

Demostración (sketch)

- (\Rightarrow) Por **contrapositivo**: suponemos que \mathcal{G} tiene un estado con conflicto y llegamos a que \mathcal{G} no puede ser LR(0).
- (←) **Directo**: suponemos que \mathcal{G} tiene solo estados libres de conflicto y demostramos que \mathcal{G} es LR(0).

Sobre gramáticas LR(0) y estados libres de conflicto

Teorema

 \mathcal{G} es una gramática LR(0) si, y solo si, la determinización del autómata característico de \mathcal{G} tiene solo estados libres de conflicto.

Para toda gramática LR(0) existe un autómata apilador determinista que define el mismo lenguaje.

Es posible demostrar que . . .

Para todo autómata apilador determinista existe una gramática LR(0) que define el mismo lenguaje y, por lo tanto, son equivalentes.

FIN ... :)