Московский физико-технический институт

Поиск максимального разреза

Проект по сложности вычислений

Автор: Седова Анна

Contents

1	\mathcal{NP}	-полнота	3
2	Апі	троксимационный алгоритмы для решения задачи	4
2	2.1	Наивный алгоритм	4
	2.2	Алгоритм Геманса и Вильямсона. Описание алгоритма	4
	2.3	Алгоритм Геманса и Вильямсона. Оценка работы	5
	2.4	Сравнение наивного алгоритма и алгоритма Геманса и Вильямсона	6
3	Лиз	гература	7

Chapter 1

\mathcal{NP} -полнота

Задача MAXCUT

Рассмотрим задачу MAXCUT = (G, k) | в неориентированном взвешенном графе G есть разрез размера не меньше k. Покажем, что она является \mathcal{NP} -полной.

$MAXCUT \in \mathcal{NP}$

Proof. В качестве сертификата рассмотрим номера вершин, входящие в разрез, а верификатор проверит, что размер этого разреза не меньше k. Так как для проверки размера разреза достаточно посчитать сумму весов ребер внутри разреза и сравнивать с k, то верификатор будет работать за полиномиальное время.

MAXCUT является \mathcal{NP} -трудной

Proof. 1) PARTITION

PARTITION = $\{(c_1,c_2,\ldots,c_n)\in Z^n|$ существует разбиение на два множества S_1 $S_2:$ $\sum_{i\in S_1}c_i=\sum_{j\in S_2}c_j\}$

 $YTB(6/\partial)$ PARTITION является \mathcal{NP} -полной задачей.

2) Покажем, что PARTITION \leq_p MAXCUT

Построим полный граф на
 n вершинах, пусть вес ребра между і-й и ј-й вершинами будет равен $c_i c_j$. Будем искать разрез размера не меньше $k = \frac{1}{4} \sum_{i=1}^n c_i^2$.

Обозначим вершины одной доли при таком разрезе S_1 , а при втором S_2 . Пусть такой разрез существует. Тогда его вес $\leq \sum_{i \in S_1, j \in S_2} c_i c_j = \sum_{i \in S_1} c_i * \sum_{j \in S_2} c_j \leq (\frac{1}{2} \sum_{i=0}^n c_i)^2 = \frac{1}{4} \sum_{i=1}^n c_i^2$, то есть ровно $\frac{1}{4} \sum_{i=1}^n c_i^2$. Тогда в неравенстве $\sum_{i \in S_1} c_i * \sum_{j \in S_2} c_j \leq (\frac{1}{2} \sum_{i=0}^n c_i)^2$ достигается равенство, то есть $\sum_{i \in S_1} c_i = \sum_{j \in S_2} c_j = \frac{1}{2} \sum_{i=0}^n c_i$, то есть разбиение существует.

Пусть такого разреза не существует. Покажем от противного, что и разбиения не существует. Если бы разбиение существовало, то существовал бы разрез мощности $\leq (\frac{1}{2}\sum_{i=0}^n c_i)^2 = \frac{1}{4}\sum_{i=1}^n c_i^2$, то есть разрез искомого размера. Противоречие, следовательно, разбиения не существует.

Так как PARTITION является \mathcal{NP} -трудной, то и MAXCUT является \mathcal{NP} -трудной.

Задача поиска

Так как задача является \mathcal{NP} -полной, то задача поиска будет иметь такую же сложность.

3

Chapter 2

Аппроксимационный алгоритмы для решения задачи

Так как MAXCUT - \mathcal{NP} -полная, то неизвестно, существуюет ли алгоритм, решающий задачу за полином. Поэтому здесь будет рассматриваться алгоритм, решающий задачу приближенно.

2.1 Наивный алгоритм

Рассмотрим самый простой аппроксимационный алгоритм. Случайно распределим вершины по долям. Оценим E (мощность разреза) = $\sum_{i=0,j=0}^{n,n} w_{i,j}*P(i$ и j в разных долях) = $\sum_{i=0,j=0}^{n,n} w_{i,j}*$ $0.5 \geq 0.5*$ мощность максимального разреза. Таким образом, наивный алгоритм дает аппроксимационный коэффицент 50

2.2 Алгоритм Геманса и Вильямсона. Описание алгоритма

На входе дается граф G=(V,E) размера n и c матрицей весов W. Хотим найти максимальный разрез c большой точностью.

Сведение к задаче оптимизации

Рассмотрим разрез W, при котором вершины поделены на множесва S_1 и S_2 Пусть $x_i=1$, если $x_i\in S_1$ и $x_i=-1$, если $x_i\in S_2$ при i=1...n. Тогда мощность этого разреза будет равна $|W|=\frac{1}{8}\sum_{i=0,j=0}^{n,n}w_{i,j}*(x_i-x_j)^2=\frac{1}{8}\sum_{i=0,j=0}^{n,n}w_{i,j}*(x_i^2+x_j^2-2x_ix_j)$. Заметим, что $x_i^2=1$, то есть $|W|=\frac{1}{8}\sum_{i=0,j=0}^{n,n}w_{i,j}*(2-2x_ix_j)=\frac{1}{4}\sum_{i=0,j=0}^{n,n}w_{i,j}*(1-x_ix_j)$ (1)

Таким образом, поиск максимального разреза сводится к следующей задаче оптимизации $\max_{x_i \in Z} \frac{1}{4} \sum_{i=0,j=0}^{n,n} w_{i,j} * (1-x_ix_j)$, где $x_i^2 = 1$, что эквивалентно $\min_{x_i \in Z} \sum_{i=0,j=0}^{n,n} w_{i,j} * (x_ix_j)$ (2), где $x_i^2 = 1$. Хотелось бы приблизить эту задачу оптимизации задачей, которая может быть решена за полиномиальное время. Сделаем это следующим образом.

Рассмотрим вместо x_i векторы $y_i \in R^n$ и запишем аналогичную задачу оптимизации: $min_{y_i \in R^n} \sum_{i=0,j=0}^{n,n} w_{i,j} * < y_i, y_j >$ (3), где $< y_i, y_i > = 1$, что эквивалентно $min_{U \in S_n^+, U_0} < W$, U>, где $U_{i,i} = 1$ для всех і $U_{i,i} = 1$ дл

- (1) матрица Грама положительно полуопределена
- (2) если $U \in S_n^+,$ то $\exists X: U = X^TX$, то есть U-матрица скалярных произведений столбцов в X

Эта задача является задачей полуопределенного программирования и может быть решена за полиномиальное время. Притом заметим, что если все y_i имеют вид $(\pm 1, 0, ...0)$, то множество

значений (3) совпадает с множеством значений (2), поэтому минимум функции (3) <= (2), то есть максимум функции (1) не больше аналогичной для y_i . (4)

Получение разбиения из решения задачи оптимизации

Сначала получим векторы назад из матрицы скалярных произведений, то есть найдем $X:X^TX=U$. Это разложение может быть найдено за полиномиальное время.

Теперь мы хотим восстановить из матрицы X разрез. Рассмотрим столбцы этой матрицы $y_1, ..., y_n$. Хотелось бы, чтобы алгоритм работал так, чтобы находящиеся "далеко" друг от друга векторы оказались в разных группах разреза. Для этого проведем через 0 случайную плоскость (выбранную из равномерного распределения плоскостей), и вершины, соответствующие номерам векторов в одной полуплоскости, отнесем при разрезе в первую долю, а остальные - во вторую.

Чтобы провести случайную плоскость, случайно и равномерно выберем $r \in S^{n-1}$ и построим плоскость, заданную уравнением $\langle r, x \rangle = 0$. Тогда, если $\langle r, y_i \rangle \geq 0$, то і-ю вершина в первой доле разреза, иначе во второй.

2.3 Алгоритм Геманса и Вильямсона. Оценка работы

<u>Лемма 1</u> Вероятность того, что случайная гиперплоскость H : < r, x > = 0 разделит вектора y_i и $y_j \, \frac{\theta_{ij}}{2\pi}$ where θ_{ij} - угол между векторами y_i и y_j .

Proof. Пусть $J_{i,j}=$ поверхность, образованная векторами y_i и y_j (плоскость или прямая). Р(H разделит і и j) = P(< $r,y_i>\geq 0$ и < $r,y_j>< 0$) + P(< $r,y_j>\geq 0$ и < $r,y_i>< 0$) = $P(H\cup J_{i,j} \ y_i \ y_j)=\frac{\theta_{i,j}}{2\pi}$

Лемма 2(б/д)
$$\frac{4}{\pi} \frac{\theta_{ij}}{(2sin(\theta_{ij}/2)^2)} > \alpha \approx 0.87856r0 \le \theta_{ij} \le \pi$$

E (мощность разреза) = $\sum_{i=0,j=0}^{n,n} w_{i,j} * P(i$ и j в разных долях) = $\sum_{i=0,j=0}^{n,n} w_{i,j} * \frac{\theta_{ij}}{4\pi} = \sum_{i=0,j=0}^{n,n} w_{i,j} * * \frac{4}{\pi} \frac{\theta_{ij}}{(2sin(\theta_{ij}/2)^2} \frac{\langle y_i - y_j, y_i - y_j \rangle}{8} \ge \alpha \sum_{i=0,j=0}^{n,n} w_{i,j} \frac{\langle y_i - y_j, y_i - y_j \rangle}{8}$, что не меньше $\alpha *$ мощность максимального разреза (по соображению (4)). Таким образом, алгоритм Геманса и Вильямсона даёт аппроксимационный коэффициент около 87%

2.4 Сравнение наивного алгоритма и алгоритма Геманса и Вильямсона

Данный график визуализирует отношение ответа на задачу и реально полученного. На нем наглядно наблюдается, что аппроксимационный коэффицент 0,87 сильно лучше коэффицента 0,5. Так же на нем видно, что дисперсия алгоритма Геманса и Вильямсона достаточно маленькая, особенно по сравнению с наивным алгоритмом. Это говорит о том, что алгоритма Геманса и Вильямсона довольно точно приближает максимальный разрез.

Chapter 3

Литература

- 1. Wikipedia
- Michel X. Goemans and David P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM (JACM), 42, 1115–1145, 1995.
- 3. UNIVERSITY OF WISCONSIN-MADISON Lectures Notes
- 4. Richard M. Karp (1972). "Reducibility Among Combinatorial Problems". In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum. pp. 85–103.