

Advanced Manoeuvre Problems - 1

Problem No. 01

Consider an **elliptic** orbit with perigee of **400 km** altitude and apogee of **6000 km** altitude. Calculate $\Delta V \& \phi$ required to change ω by 60°. ($R_E = 6378$ km, $\mu = 3.986 \times 10^{14}$).

Solution No. 01

Argument of **perigee** change solution is as given **below**.

$$\alpha = 60^{\circ}; \quad \delta = 30^{\circ}; \quad r_p = 6,778km; \quad r_a = 12,378km$$
 $a = 9,578km; \quad V = 8,717.8m/s; \quad e = 0.292$

$$\cos^2 \phi = \frac{\left[1 + e \cos \delta\right]^2}{\left[1 + e^2 + 2e \cos \delta\right]} = 0.9866; \quad \cos \phi = 0.9933$$
 $\phi = 6.65^{\circ}; \quad \Delta V = 2V \sin \phi = 2,019.1m/s$

Problem No. 02

Initial orbit is **defined as,** $a_1 = 5R_E$ & $e_1 = 0.7$. The final orbit is to be $a_2 = 10R_E$ & $e_2 = 0.3$. Determine β_2 , ΔV , & γ . Also determine propellant **required** if m_0 is **1000 kg** & I_{sp} is **200s.**

 $R_E = 6378 km; \quad \mu = 3.986 \times 10^{14} m^3 / s^2$

Solution No. 02

Single impulse orbit change manoeuvre **solution** is as follows.

$$V_{a1} = 1.485 km / s$$
; $V_2 = 2.9078 km / s$, $\beta_2 = 15.23^{\circ}$

$$V_{a1} = 1.485 km / s;$$
 $V_2 = 2.9078 km / s,$ $\beta_2 = 15.23^{\circ}$
 $\Delta V = 1.526 km / s;$ $\gamma = 30.87^{\circ};$ $m_{prop} = 540.1 kg$