Thermal analysis

Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Code_Aster: main features for thermics

Frequently used as a prerequisite to a mechanical calculation

A simple example: pipe in thermal equilibrium

- Infinite pipe
- Load : a temperature field on each side

We want to know the temperature field in the thickness of the pipe

A simple example: pipe in thermal equilibrium

```
DEBUT();
mymesh=LIRE MAILLAGE();
mymodl=AFFE MODELE(
                       MAILLAGE= mymesh,
          AFFE= F(
                       TOUT='OUI',
                       PHENOMENE='THERMIQUE',
                       MODELISATION='AXIS',),);
thmat =DEFI MATERIAU(THER= F(LAMBDA=6,),);
mymat=AFFE MATERIAU( MAILLAGE= mymesh,
          AFFE= F(
                       TOUT='OUI',
                       MATER=thmat,),);
myload=AFFE CHAR THER ( MODELE= mymod1,
          TEMP IMPO= ( F (GROUP NO= 'SEXTERI',
                                   TEMP=15,),
                                 F(GROUP NO='SINTERI',
                                   TEMP=4\overline{0},),);
resuth=THER LINEAIRE ( MODELE= mymod1,
          CHAM MATER= mymat,
          EXCIT= F(CHARGE= myload,),);
IMPR RESU(
                       FORMAT='MED',
          RESU= F(RESULTAT= resuth,),);
FIN();
```


What is the problem to be solved?

AFFE_MODELE (... PHENOMENE = `THERMIQUE' ...)
 Heat equation :
$$\rho C \dot{T} - \lambda \varDelta T - s = 0$$

Linear (THER_LINEAIRE)
OR

Non-linear (THER NON LINE)

If: Material parameters depend on T AND/OR

Non linear boundary conditions (flux(T))

Temperature dependence?

AND

Stationnary
OR
Transient

Time dependence?

Available finite elements

```
AFFE_MODELE ( ... PHENOMENE = 'THERMIQUE'
... MODELISATION = 'XXXX' ...)
```

```
3D / AXIS / PLAN
3D_DIAG / AXIS_DIAG / PLAN_DIAG
```

- * regularization during heat shock
- * splitting of quadratic elements in 2D
- * splitting not avalaible in 3D

Example of a sudden cooling:

COQUE / COQUE_PLAN / COQUE_AXIS (linear)

- * thermal shell "thin" structural elements
- * temperature field in the thickness: 3 degrees of freedom (Tsup, Tinf and Tmiddle)

Material behavior

DEFI_MATERIAU

At least these two characteristics:

Thermal conductivity	λ
Heat capacity	$ ho C_{_P}$

3 main materials:

THER	Linear isotropic
THER_ORTH	Linear orthotropic (definition of λ in 3 directions)
THER_NL	Non-linear behaviour : one has to define $ ho C_{\scriptscriptstyle P}(T)$ or $eta(T)$ and $\lambda(T)$

+ other specific materials

- * For concrete : drying, hydratation ... etc
- * For metals: metallurgical transformations, hardness ... etc

Boundary conditions and loadings (1)

```
▶ AFFE CHAR THER (...)
```

- ▶ AFFE CHAR THER F (...)
- Boundary conditions (Dirichlet)

Imposed temperatures function of time and space	TEMP_IMPO
Linear relationships between the nodal temperatures	LIAISON_DDL LIAISON_GROUP LIAISON_MAIL

Boundary conditions and loadings (2)

Loadings (Neumann)

Natural convection (Fourier law)	ECHANGE	$\lambda(T)\frac{dT}{dn} = h(t)\cdot (Text - T)$
Heat exchange between walls	ECHANGE_PAROI	$\lambda_1 \frac{dT_1}{dn_1} = h(T_2 - T_1)$
Normal imposed flux : constant or function of time and space	FLUX_REP	$\lambda(T)\frac{dT}{dn} = f(t,x)$
Non linear normal flux : function of the temperature Non-linear only	FLUX_NL RAYONNEMENT	$\lambda(T)\frac{dT}{dn} = f(T)$
Heat source	SOURCE	S(x,t)

Is the problem well defined?

For a stationnary calculation : YES

For a transient calculation : NO

A condition is missing: the temperature at the initial time

Defined in THER_LINEAIRE or THER_NON_LINE with ETAT_INIT 4 possibilities:

Résults of a stationnary calculation	STATIONNAIRE = 'OUI'
A constant temperature	$VALE = T_0$
A known temperature field	CHAM_NO = for example, created with CREA_CHAMP
The result of another thermal calculation	A result concept (EVOL_THER = resu) + chosen time (NUME_ORDRE or INST)

Solving methods

▶ Linear thermics : **THER LINEAIRE**

▶ Non-linear thermics : **THER_NON_LINE**

Newton method for non-linéarities Enthalpy formulation $\beta(T)$

Numerically easier to handle phase changes

Precautions for use in thermics

 \blacktriangleright Time discretization with the θ -méthode.

$$\frac{\rho C}{\lambda . \Delta t} (T_{n+1} - T_n) = \theta \Delta T_{n+1} + (1 - \theta) \Delta T_n$$

- θ = 0.57, good compromise and the default value
- Ability to change θ with PARM THETA
- Beware to inconsistent refinements in time and space.
 - Respect the time and distance characteristics of the material

$$\Delta t \le \frac{\rho C(\Delta x)^2}{(6\theta)\lambda}$$

- Drive the non-linear convergence, if necessary.
 - Frequency of updating the tangent matrix
 - Linear search criteria
 - Convergence criteria (number of iterations, residues ...)

NEWTON

CONVERGENCE

Post-processing options

- What's the result of THER_LINEAIRE / THER_NON_LINE ?
 - By default : only the nodal temperatures
- How to get the thermal fluxes?
 - With CALC CHAMP
 - FLUX ELGA
 - FLUX ELNO
 - FLUX NOEU

Metallurgy

- Possibilities :
 - Compute in moving frame (welding): **THER_NON_LINE_MO**
 - With forced convection (welding) AFFE_CHAR_THER (...CONVECTION...)
 - Calculate the hardness, the metallurgical transformations CALC_META

Thermo-hydration and drying

Common use : chained calculation :

Thermic and hydration calculation of concrete

Water concentration field

Mechanical calculation of concrete shrinkage

Stresses field

Displacements, strains ...

And mechanics?

How to take into account the temperature field in the mechanical calculation?

```
In AFFE_MATERIAU (...

AFFE_VARC=_F( NOM_VARC = 'TEMP',

EVOL = EVOTH,

VALE_REF = 20.)
```

- The mesh to be used in mechanics must be different from that used for thermics. For two main reasons:
 - A linear mesh is better in thermics, while rather quadratic in mechanics
 - Areas of interest are different => the refined areas are different
- One must project the temperature field on the mesh used for mechanics

```
■ PROJ_CHAMP ( ... )
```


And mechanics?

Example of the cylinder

```
DEBUT()

thmesh=LIRE_MAILLAGE()

thmodl=AFFE_MODELE(...)

thmater=DEFI_MATERIAU(...)

fthmater=AFFE_MATERIAU(...)

thload=AFFE_CHAR_THER(...)

thresu=THER_LINEAIRE(...)
```


We want to make a mechanical calculation with a different mesh

And mechanics?

Mechanical calculation of the expansion of the cylinder

```
mymodl=AFFE MODELE( MAILLAGE=mymesh,
           AFFE= F( TOUT='OUI',
                      PHENOMENE='MECANIQUE',
                      MODELISATION='AXIS',),)
                                                                   Temperature field
                                                                   + reference value
steel=DEFI MATERIAU( ELAS= F( E=2.1e11,
                      NU=0.\overline{2}
                      ALPHA=12e-6,),
                                                             Déplacement 0
mymat=AFFE MATERIAU( MAILLAGE=mymesh,
                                                                0.0003
           AFFE= F( TOUT='OUI',
                     MATER=steel,),
           AFFE VARC= F(TOUT='OUI',
                      NOM VARC='TEMP',
                                                                0.0002
                      EVOL=projres,
                      VALE REF=20,),)
mecload=AFFE CHAR MECA (MODELE=MODME,
                                                                0.0001
           DDL IMPO = F (GROUP NO='FACEB',
                      DX=0,
                      DY = 0, ), )
                                                                2.e-05
mecres=MECA STATIQUE (MODELE=mymod1,
           CHAM MATER=mymat,
           EXCIT= F(CHARGE= mecload,),)
                                                                -8.e-05
IMPR RESU(...)
```


FIN()

Analytical temperature field

Here we know the analytical formula of the temperature field in the thickness of the cylinder

```
(X):
```

```
DEBUT();
   Thermic calculation
                                                            memesh=LIRE MAILLAGE()
    esh=LIRE MAILLAGE ()
     1=AFFE MODEL (.
                                                            T0 = FORMULE (VALE='40-log(X/20)*(40-15)/log(21/20)',
       DEFI MATERIAU
                                                                        NOM PARA=('X',),
    mater AFFF MATERIAU
                                                            fT0 = CREA CHAMP
                                                                                     TYPE CHAM='NOEU TEMP F',
     ad=AFFT CHAR THER(...)
                                                                         OPERATION='AFFE'.
   esu=THER INEAIRE (...)
                                                                        MAILLAGE= memesh,
   Projection
                                                                        AFFE= F(
                                                                                    TOUT='OUI',
      n=LIRE MAILLAGE ()
                                                                                    NOM CMP='TEMP',
                                                                                    VAL\overline{E} F = TO,),)
   od12=AFFE MODELN(...)
  esproj=PROJ CHAMP (
                                                             thresu=CREA RESU (OPERATION='AFFE',
                                                                  ESU='EVOL THER',
// Mechanic calculation
                                                            NOM CHAM='TEMP',
memodl=AFFE MODELE(...)
                                                            AFFE= F(CHAM GD = fT0,
steel=DEFI MATERIAU (...)
                                                            INST=0,),)
memat=AFFE MATERIAU ( MAILLAGE=memesh,
            AFFE= F(
                     TOUT='OUI',
                        MATER=steel,),
            AFFE VARC= F(TOUT='OUI',
                        NOM VARC='TEMP',
                        EVOL= resproj,
                        VALE REF=20,),)
meload=AFFE CHAR MECA(...)
meresu=MECA STATIQUE (...)
IMPR RESU(...)
FIN()
```


Example of use

Laser treatment of a disc in linear thermics

Text = 20°C

Example of use (2)

Model and material definitions

```
DEBUT ( )
mymesh = LIRE MAILLAGE ()
# Definition of the model
mymodl = AFFE MODELE (MAILLAGE = mymesh ,
                 AFFE = F( TOUT = 'OUI',
                      PHENOMENE = 'THERMIQUE',
                      MODELISATION = 'AXIS', )
# Definition of the thermal properties of the material
steel = DEFI MATERIAU ( THER = F ( RHO CP = 3.6e6,
                                   LAMBDA = 14, ) )
# ssignment of the material on the finite element model
mymat= AFFE MATERIAU (MAILLAGE= mymesh,
                 AFFE= F ( TOUT = 'OUI',
                 MATER = steel , ) )
```


Example of use (3)

Definition of data needed for the loadings definition

"mathematical" definition of the F(R) formula

```
A = 5e6

S = 0.0138

F = FORMULE (NOM_PARA='X', VALE="(A + EXP(-X**2/S**2))")
```

Interpretation of the F(R) formula and transformation in a function # (tabulation X; F(X))

Definition of the abscissa for tabulation

```
LISTR=DEFI_LIST_REEL(DEBUT = 0.,

INTERVALLE=_F( JUSQU_A = 0.04, NOMBRE = 100, ) ,)
```

Calculation (and tabulation) of the formula for the 'LISTR' values of the ladius

Temperature of the outside

```
T EXT = DEFI CONSTANTE ( VALE=20., )
```

Coefficient for exchange by convection

```
H = DEFI_CONSTANTE(VALE=5,)
```

eepr

Creation of a flux

function of X (=R) in order to represent

the heat due to the

laser

Example of use (4)

Definition of two loadings

Exchange condition on the edge (during heating)

```
thload1 = AFFE_CHAR_THER_F( MODELE=mymod1,
FLUX_REP = F( GROUP_MA = 'LBC', FLUN = FF,),
ECHANGE = F( GROUP_MA = ('BAS', 'HAUT', 'COTE',),
COEF_H = H,
TEMP_EXT = T_EXT, ) )
```


Exchange condition on the edge (during the free cooling): convection everywhere

```
thload2 = AFFE_CHAR_THER_F ( MODELE = mymod1,
ECHANGE=_F( GROUP_MA = ('LBC', 'HAUT', 'COTE', 'BAS',),
COEF_H = H,
TEMP_EXT = T_EXT, ),)
```


Example of use (5)

Calculation

```
# Definition of time steps
```

```
LISTT = DEFI_LIST_REEL( DEBUT=0., INTERVALLE=_F( JUSQU_A = 150., NOMBRE = 300, ) )
```

Calculation for the heating phase

Calculation for the cooling phase

FIN ()

Results

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about Code_Aster training materials. Do not hesitate to share with us your comments on the Code_Aster forum dedicated thread.

