GATE EC 2010 - Selected Questions

AI25BTECH11003 - Bhavesh Gaikwad

ELECTRONICS AND COMMUNICATION ENGINEERING

- 1) The eigenvalues of a skew-symmetric matrix are
 - a) always zero

c) either zero or pure imaginary

b) always pure imaginary

- d) always real
- 2) The trigonometric Fourier series for the waveform f(t) shown below contains

Fig. 2: Waveform

- a) only cosine terms and zero value for the dc c) only cosine terms and a negative value for the de component component
- b) only cosine terms and a positive value for the d) only sine terms and a negative value for the dc dc component component
- 3) A function n(x) satisfies the differential equation $\frac{d^2n(x)}{dx^2} = \frac{n(x)}{L^2}$ where L is a constant. The boundary conditions are: n(0) = K and $n(\infty) = 0$. The solution to this equation is

a)
$$n(x) = K \exp(x/L)$$

c)
$$n(x) = K \exp(-x/L)$$

b)
$$n(x) = K \exp(-x/L)$$

d)
$$n(x) = K \exp(-x/L)$$

4) For the two-port network shown below, the short-circuit admittance parameter matrix is

a)
$$S = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

b) $S = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$

c)
$$S = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$

b)
$$S = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$

c)
$$S = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$

d) $S = \begin{pmatrix} 2 & -0.5 \\ -0.5 & 2 \end{pmatrix}$

- 5) For a parallel RLC circuit, which one of the following statements is NOT correct?
 - a) The bandwidth of the circuit decreases if R is c) At resonance, input impedance is a real quanincreased tity
 - b) The bandwidth of the circuit remains same if d) At resonance, the magnitude of input L is increased impedance attains its minimum value
- 6) At room temperature, a possible value for the mobility of electrons in the inversion layer of a silicon n-channel MOSFET is

- a) $450 \text{ cm}^2/\text{V-s}$
- b) $1350 \text{ cm}^2/\text{V-s}$

- c) $1800 \text{ cm}^2/\text{V-s}$
- d) $3600 \text{ cm}^2/\text{V-s}$
- 7) Thin gate oxide in a CMOS process is preferably grown using
 - a) wet oxidation

c) epitaxial deposition

b) dry oxidation

- d) ion implantation
- 8) In the silicon BJT circuit shown below, assume that the emitter area of transistor Q_1 is half that of transistor Q_2 . The value of current I_0 is approximately
 - a) 0.5 mA

c) 9.3 mA

b) $2 \mu A$

- d) 15 mA
- 9) The amplifier circuit shown below uses a silicon transistor. The capacitors C_E and C_C can be assumed to be short at signal frequency and the effect of output resistance r_o can be ignored. If C_B is disconnected from the circuit, which one of the following statements is TRUE?
 - a) The input resistance R_i increases and the mag- c) Both input resistance R_i and the magnitude of nitude of voltage gain A_v decreases
- voltage gain A_v decrease
 - b) The input resistance R_i decreases and the mag-d) Both input resistance R_i and the magnitude of nitude of voltage gain A_v increases
- voltage gain A_v increase
- 10) Assuming the OP-AMP to be ideal, the voltage gain of the amplifier shown below is
 - a) $-\frac{R_2}{R_1}$ b) $-\frac{R_2}{R_2}$

- c) $\left(\frac{R_2}{R_1}\right) \left(\frac{R_3}{R}\right)$ d) $\left(\frac{R}{R}\right) \left(\frac{R_3}{R}\right)$
- 11) Match the logic gates in Column A with their equivalents in Column B.

Column-A	Column-B
1. AND GATE	P. XOR GATE
2. OR GATE	Q. XNOR GATE
3. NOT GATE	R. NAND GATE

TABLE 11: Table-1

a) P-2, Q-4, R-1, S-3

c) P-2, Q-4, R-3, S-1

b) P-4, Q-2, R-1, S-3

- d) P-4, Q-2, R-3, S-1
- 12) For the output F to be 1 in the logic circuit shown, the input combination should be
 - a) A = 1, B = 1, C = 0

c) A = 0, B = 1, C = 0

b) A = 1, B = 0, C = 0

- d) A = 0, B = 0, C = 1
- 13) In the circuit shown, the device connected to Y_5 can have address in the range
 - a) 2000-20FF

c) 2000-2EFF

b) 2000-2DFF

d) FD00-FDFF

14)	Consider the transform X	(~	$-5^2 \pm 4^{-1}$	∟ 3։	· n /	~	< m	The inverse	z_transform	r[n]	ic
14)	Consider the transform A	(~) — りん 十 4ん -	⊤ ∂.	, U <	121	$<\infty$.	THE HIVEISE	z-u ansioni	$\mathcal{L}[H]$	15

a)
$$5\delta[n+2] + 3\delta[n] + 4\delta[n-1]$$

c)
$$5u[n+2] + 3u[n] + 4u[n-1]$$

b)
$$5\delta[n-2] + 3\delta[n] + 4\delta[n+1]$$

c)
$$5u[n+2] + 3u[n] + 4u[n-1]$$

d) $5u[n-2] + 3u[n] + 4u[n+1]$

15) Two discrete time systems with impulse responses $h_1[n] = \delta[n-1]$ and $h_2[n] = \delta[n-2]$ are connected in cascade. The overall impulse response of the cascaded system is

a)
$$\delta[n-1] + \delta[n-2]$$

b) $\delta[n-4]$

c)
$$\delta[n-3]$$

b)
$$\delta[n-4]$$

c)
$$\delta[n-3]$$

d) $\delta[n-1]\delta[n-2]$

- 16) For an N-point FFT algorithm with $N=2^m$, which one of the following statements is TRUE?
 - a) It is not possible to construct a signal flow c) In-place computation requires storage of only graph with both input and output in normal
 - 2N node data
 - b) The number of butterflies in the m^{th} stage is N/m
- d) Computation of a butterfly requires only one complex multiplication
- 17) The transfer function Y(s)/R(s) of the system shown is

a)
$$\frac{1}{s+1}$$

b) $\frac{1}{s+1} \cdot \frac{1}{s+3}$

c)
$$\frac{2}{s+1}$$

d) $\frac{2}{s+1} \cdot \frac{1}{s+3}$

a) $\frac{1}{s+1}$ b) $\frac{1}{s+1} \cdot \frac{1}{s+3}$ c) $\frac{2}{s+1}$ d) $\frac{2}{s+1} \cdot \frac{1}{s+3}$ 18) A system with the transfer function $Y(s)/X(s) = \frac{s}{s+p}$ has an output $y(t) = \cos(2t - \pi/3)$ for the input signal $x(t) = p \cos 2t$. Then, the system parameter p is

a)
$$\sqrt{3}/2$$

$$\sqrt{3}$$

d)
$$2/\sqrt{3}$$

19) For the asymptotic Bode magnitude plot shown below, the system transfer function can be

a)
$$\frac{10s+1}{0.1s+1}$$

b) $\frac{100s+1}{0.1s+1}$

c)
$$\frac{100s}{10s+1}$$

d) $\frac{10s+1}{0.1s+1}$

b)
$$\frac{100s+1}{0.1s+1}$$

d)
$$\frac{10s+1}{0.1s+1}$$

20) Suppose that the modulating signal is $m(t) = 2\cos(2\pi t)$ and the carrier signal $c(t) = A\cos(2\pi f_c t)$. Which one of the following is a conventional AM signal without over-modulation?

a)
$$x(t) = Am(t)\cos(2\pi f_c t)$$

d)
$$x(t) = A\cos(2\pi f_c t)\cos(2\pi f_c t) + A\sin(2\pi f_c t)\sin(2\pi f_c t)$$

b)
$$x(t) = A[1 + m(t)] \cos(2\pi f_c t)$$

$$A\sin(2\pi f_c t)\sin(2\pi f_c t)$$

- c) $x(t) = A\cos(2\pi f_c t) + m(t)\cos(2\pi f_c t)$
- 21) Consider an angle modulated signal $x(t) = 6\cos[2\times10^6\pi t + 2\sin(8000\pi t) + 4\cos(8000\pi t)]$ V. The average power of x(t) is

22) If the scattering matrix [S] of a two port network

$$[S] = \begin{pmatrix} 0.2\angle 0^{\circ} & 0.9\angle 90^{\circ} \\ 0.9\angle 90^{\circ} & 0.1\angle 90^{\circ} \end{pmatrix}$$

then the network is

b) lossless but not reciprocal	d) neither lossless nor reciprocal			
23) A transmission line has a characteristic impedance of 50Ω and a resistance of $0.1~\Omega/m$. If the line is distortionless, the attenuation constant (in Np/m) is				
a) 50b) 5	c) 0.014 d) 0.002			
24) Consider the pulse shape $s(t)$ as shown. The impulse response $h(t)$ of the filter matched to this pulse is				
a) h(t) diagram Ab) h(t) diagram B	c) h(t) diagram Cd) h(t) diagram D			
25) The electric field component of a time harmonic plane EM wave traveling in a nonmagnetic lossless dielectric medium has an amplitude of 1 V/m. If the relative permittivity of the medium is 4, the magnitude of the time-average power density vector (in W/m²) is				
a) $\frac{1}{80}$	c) 120π			
a) $\frac{1}{30\pi}$ b) $\frac{1}{60\pi}$	c) 120π d) $\frac{1}{240\pi}$			
26) If $y = x^x$, then y has a				
a) maximum at $x = e$ b) minimum at $x = e$	c) maximum at $x=e^{1/e}$ d) minimum at $x=e^{1/e}$			
27) A fair coin is tossed independently four times. The probability of the event "the number of times heads show up is more than the number of times tails show up" is				
a) 1/16b) 1/8	c) 1/4 d) 5/16			
28) If $\mathbf{A} = xy \ \hat{i} + x \ \hat{j}$, then $\int \mathbf{A} \cdot d\mathbf{l}$ over the path shown in the figure is				
a) 0 b) $1/\sqrt{3}$	c) $2/\sqrt{3}$ d) 1			
29) The residues of a complex function $X(z) = \frac{z}{1-z^2} = \frac{z}{(z-1)(-z-1)}$ at its poles are				
a) $1/2$ and $1/2$ b) $1/2$ and $-1/2$	c) 1 and $1/2$ d) $5, -1$ and $1/2$			
30) Consider a differential equation $\frac{dy(x)}{dx} - y(x) = x$ with the initial condition $y(0) = 0$. Using Euler's first order method with a step size of 0.1, the value of $y(0.3)$ is				
a) 0.01b) 0.031	c) 0.0631 d) 0.1			
31) Given $F(s) = \frac{3s+1}{s^2+s}$, $f(t) = \mathcal{L}^{-1}\{F(s)\}$ and $F(s) = \frac{4}{s^2} + \frac{(K-3)}{s}$, $\lim_{t\to\infty} f(t) = 1$, then the value of K is				

c) not lossless but reciprocal

a) lossless and reciprocal

	a) 1 b) 2	c) d)		
32)	2) In the circuit shown, the switch S is open for a long time and is closed at $t=0$. The current $i(t)$ for $t\geq 0$ is			
	a) $i(t) = 1.5 - 0.125e^{-1000t}$ A b) $i(t) = 1.5e^{-0.125t - 1000t}$ A		$i(t) = 0.5 - 0.5e^{-1000t} \text{ A}$ i(t) = 0.375 A	
33)	The current I in the circuit shown is			
	a) $-j1$ A b) $j1$ A		0 A 2 A	
34)	4) In the circuit shown, the power supplied by the voltage source is			
	a) 0 W b) 5 W		10 W 100 W	
35)	In a uniformly doped BJT, assume that N_e , N_b and atoms/cm ³ , respectively. If the emitter injection of the following conditions is TRUE?			
	a) $N_b N_c$ b) $N_e \gg N_b$ and $N_b > N_c$		$N_e N_b$ and $N_b < N_c$ $N_e < N_b < N_c$	
36)	Compared to a p-n junction with $N_A=N_D=10$ TRUE for a p-n junction with $N_A=N_D=10^{20}/c$			
	a) Reverse breakdown voltage is lower and depletion capacitance is lowerb) Reverse breakdown voltage is higher and depletion capacitance is lower		tion capacitance is higher	
37)	Assuming that all flip-flops are in reset condition circuit shown is	init	ially, the count sequence observed at Q_A in the	
	a) 0010111b) 0001011		0101011 0110100	
38)	The transfer characteristic for the precision rectificand practical diodes)	ier	circuit shown below is (assume ideal OP-AMP	
	a) plot Ab) plot B		plot C plot D	
39)	The Boolean function realized by the logic circui	t sh	nown is	
	a) $F = \sum m(0, 1, 3, 5, 9, 10, 14)$ b) $F = \sum m(2, 3, 5, 7, 8, 12, 13)$	c) d)	$F = \sum_{i=1}^{n} m(1, 2, 4, 5, 11, 14, 15)$ $F = \sum_{i=1}^{n} m(2, 3, 5, 7, 8, 9, 12)$	

40) For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

41) A continuous time LTI system is described by

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = 2\frac{dx(t)}{dt} + 4x(t)$$

Assuming zero initial conditions, the response y(t) of the above system for the input $x(t) = e^t u(t)$ is given by

a)
$$(-e^t)u(t)$$

c)
$$(e^t + e^{-t})u(t)$$

a)
$$(-e^t)u(t)$$

b) $(e^t - e^{-t})u(t)$

c)
$$(e^t + e^{-t})u(t)$$

d) $(e^t + e^t)u(t)$

42) The transfer function of a discrete time LTI system is given by

$$H(z) = \frac{1}{\left(1 - \frac{z^{-1}}{2}\right)} - \frac{3}{4} \cdot \frac{1}{\left(1 - \frac{z^{-1}}{2}\right)}$$

Consider the following statements: S1: The system is stable and causal for ROC: |z| > 2. S2: The system is stable but not causal for ROC: $|z| < \frac{1}{2}$. S3: The system is neither stable nor causal for ROC: $\frac{1}{2} < |z| < 2$. Which one of the following statements is valid?

a) Both S1 and S2 are true

c) Both S1 and S3 are true

b) Both S2 and S3 are true

- d) S1, S2 and S3 are all true
- 43) The Nyquist sampling rate for the signal $s(t) = \frac{\sin(500\pi t)}{\pi t} \cdot \frac{\sin(700\pi t)}{\pi t}$ is given by

b) 600 Hz

- d) 1400 Hz
- 44) A unity negative feedback closed loop system has a plant with the transfer function $G(s) = \frac{s+2}{s^2+2s}$ and a controller $G_c(s)$ in the feedforward path. For a unit step input, the transfer function of the controller that gives minimum steady state error is

a)
$$G_c(s) = \frac{s+1}{s+2}$$

b) $G_c(s) = \frac{s+2}{s+1}$

c)
$$G_c(s) = \frac{(s+1)(s+4)}{(s+2)(s+3)}$$

d) $G_c(s) = 1 + \frac{2}{s} + \frac{3}{s^2}$

b)
$$G_c(s) = \frac{s+2}{s+1}$$

d)
$$G_c(s) = 1 + \frac{2}{s} + \frac{3}{s^2}$$

45) X(t) is a stationary process with the power spectral density $S_X(f) > 0$ for all f. The process is passed through a system shown below:

$$X(t) \xrightarrow{d/dt} \text{Delay} = 0.5 \text{ ms } \rightarrow Y(t)$$

Let $S_Y(f)$ be the power spectral density of Y(t). Which one of the following statements is correct?

a)
$$S_Y(f) > 0$$
 for all f

b)
$$S_Y(f) = 0$$
 for $f > 1$ kHz

d) $S_Y(f) = 0$ for $f = (2n+1)f_0$, $f_0 = 1$ kHz, n

c)
$$S_Y(f) = 0$$
 for $f = nf_0, f_0 = 2$ kHz, n any

any integer

46) A plane wave having the electric field component $E = 24\cos(3 \times 10^8 t - \beta y) \hat{a}_x$ V/m and traveling in free space is incident normally on a lossless medium with $\mu_r = 4$ and $\epsilon_r = 96$ which occupies the region $y \ge 0$. The reflected magnetic field component is given by

a)
$$\frac{1}{10\pi}\cos(3 \times 10^8 t + \beta y) \ \hat{a}_z \ \text{A/m}$$

b) $\frac{1}{20\pi}\cos(3 \times 10^8 t + \beta y) \ \hat{a}_z \ \text{A/m}$

c)
$$-\frac{1}{20\pi}\cos(3 \times 10^8 t + \beta y) \ \hat{a}_z \text{ A/m}$$

d) $\frac{1}{10\pi}\cos(3 \times 10^8 t + \beta y) \ \hat{a}_y \text{ A/m}$

b)
$$\frac{1}{20\pi}\cos(3\times10^8t + \beta y) \hat{a}_z$$
 A/m

d)
$$\frac{1}{10\pi} \cos(3 \times 10^8 t + \beta y) \hat{a}_y$$
 A/m

47) In the circuit shown, all the transmission line sections are lossless. The Voltage Standing Wave Ratio (VSWR) on the 60 Ω line is

a) 1.00

c) 2.50

b) 1.64

d) 3.00

48) Common Data: Consider the common emitter amplifier shown below with the following circuit parameters: $\beta=100,\ g_m=0.3861$ A/V, $r_o=\infty,\ r_\pi=259$ $\Omega,\ R_B=1$ k $\Omega,\ R_1=93$ k $\Omega,$ $R_E=250~\Omega,~R_C=1~{\rm k}\Omega,~C_1=\infty$ and $C_2=4.7~\mu{\rm F}.$ The resistance seen by the source V_s is

a) 258 Ω

c) 93 k Ω

b) 1258 Ω

d) $1 \text{ k}\Omega$

49) The lower cut-off frequency due to C_2 is

a) 33.9 Hz

c) 13.6 Hz

b) 27.1 Hz

d) 16.9 Hz

50) Common Data: The signal flow graph of a system is shown below. The state variable representation of the system can be

a)
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$
, $y = \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$ c) $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$, $y = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$ b) $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$, $y = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$ d) $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$, $y = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$

c)
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u, \ y = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$$

b)
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u, \ y = \begin{bmatrix} 0 & 0.5 \end{bmatrix} x$$

d)
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u, \ y = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} x$$

51) The transfer function of the system is

a)
$$\frac{s+1}{s^2+1}$$

b) $\frac{s+1}{s^2+1}$

c)
$$\frac{4}{s+1}$$

$$s^2 + 1$$

c)
$$\frac{4}{s+1}$$

d) $\frac{2}{s^2+s+1}$

52) Linked Answer: The silicon sample with unit cross-sectional area shown below is in thermal equilibrium. The following information is given: T = 300 K, electronic charge $= 1.6 \times 10^{-19}$ C, thermal voltage = 26 mV and electron mobility = 1350 cm²/V-s. The magnitude of the electric field at $x = 0.5 \ \mu \text{m}$ is

a) 1 kV/cm

c) 10 kV/cm

b) 5 kV/cm

d) 26 kV/cm

53)	The magnitude of the electron drift current density at $x=0.5~\mu\mathrm{m}$ is			
	a) $2.16 \times 10^{-1} \text{ A/cm}^2$ b) $1.08 \times 10^0 \text{ A/cm}^2$	c) $4.32 \times 10^0 \text{ A/cm}^2$ d) $6.48 \times 10^2 \text{ A/cm}^2$		
54)	and cutoff frequency 1 MHz. Let Y represent the $b_k = 0$, $Y = a + N$ if transmitted bit $b_k = 1$ when sample has a probability density function, $p_N(n)$	below. The additive channel noise $n(t)$ is white W/Hz. The low-pass filter is ideal with unity gain e random variable $y(t)$. $Y=N$ if transmitted bit re N represents the noise sample value. The noise $0.5ae^{-a n }$ (This has mean zero and variance e and threshold z is set to $a/2=10$ V. The value		
	 a) 10 b) 10² 	c) 1.414×10^{-1} d) 2×10^{0}		
55)	The probability of bit error is			
	a) $0.5e^{-1}$ b) $0.5e^{-2}$	c) $0.5e^{-7}$ d) $0.5e^{-10}$		
56)	Which of the following options is the closest in r	meaning to the word below: Circuitous		
	a) cyclicb) indirect	c) confusing d) crooked		
57)	The question below consists of a pair of related pair that best expresses the relation in the original Unemployed: Worker	* *		
	a) fallow: landb) unaware: sleeper	c) wit: jester d) renovated: house		
58)	Choose the most appropriate word from the option If we manage to our natural resources, w	<u> </u>		
	a) upholdb) restrain	c) cherishd) conserve		
59)	Choose the most appropriate word from the option His rather casual remarks on politics his la			
	a) maskedb) belied	c) betrayedd) suppressed		
60)	25 persons are in a room. 15 of them play hocke both hockey and football. Then the number of pe			
	a) 2 b) 17	c) 13 d) 3		
61)	Modern warfare has changed from large scale clash Chemical agents that do their work silently appear	nes of armies to suppression of civilian populations. to be suited to such warfare; and regretfully, there		

exist people in military establishments who think that chemical agents are useful tools for their cause.

Which of the following statements best sums up the meaning of the above passage:

	nemical agents are useful in modern warfare. se of chemical agents in warfare would be	d)	People in military establishments like to use chemical agents in war.
62) If 13	37 + 276 = 435 how much is $731 + 672$?		
a) 53b) 14			1623 1513
unsk	· · · · · · · · · · · · · · · · · · ·		-skilled workers can build a wall in 25 days; 10 am has 2 skilled, 6 semi-skilled and 5 unskilled
a) 20b) 18	00 days 8 days		16 days 15 days
64) Given digits 2, 2, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?			
a) 50b) 51			52 54
65) Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (ie. brothers and sisters). All were born on 1 January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts: (i) Hari's age + Gita's age ¿ Irfan's age + Saira's age. (ii) The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest. (iii) There are no twins. In what order were they born (oldest first)?			
a) HS b) SC			IGSH IHSG

undesirable.

a) Modern warfare has resulted in civil strife.