Selection

Warm up

定义 3.1 选择问题

• 输入: n 个各不相同的元素组成的全序集 $\langle a_1, a_2, \ldots, a_n \rangle$, 参数 $k, 1 \leq k \leq n$

• 输出: 阶为 k 的元素

Lower bound of Finding Max

即 k=n 的情况,遍历即可

任意基于比较的算法,在 n 个元素中寻找最大元素时,进行的比较次数不会少于 n-1 次

Proof: 一个数不是 Max \iff 在至少一次比较中它是 loser, 而找出 Max 即为排除 n-1 个 loser, 但一次比较最多得出一个 loser, 故至少需要 n-1 次比较

Finding max and min

strategy:

- 将元素配对,两两比较 (元素个数为奇数个时最后一个元素不比较)
- 比较后的元素分为 larger 和 smaller 两个集合,在 larger 中 Find Max,在 smaller 中 Find Min(元素个数为奇数个时最后一个元素加入 larger 和 smaller)

比较次数:

• 偶数:
$$\frac{n}{2} + 2\left(\frac{n}{2} - 1\right) = \frac{3n}{2} - 2$$

• 奇数:
$$\frac{n-1}{2} + 2\left(\frac{n-1}{2} + 1 - 1\right) = \left\lceil \frac{3n}{2} \right\rceil - 2$$

如何得到下界? Adversary argument

Adversary argument

基于决策树可以得出 Find Max 的一个下界 $\lceil \log n \rceil$,但这个下界太过宽松,需要更精确的下界

Adversary argument

对手论证

对手论证,一般用于给出问题的下界。

若用 P 表示所讨论的问题,I 表示问题的输入,A 表示解决问题的基于比较运算的算法,T(A,I) 表示对于输入 I,算法 A 的计算时间复杂性,那么函数

$$U(n) = \min{\{\max{\{T(A,I)\}}, \text{ for each } I\}}, \text{ for each } A\}$$

表示问题 P 在输入大小为 n 时在最坏情况下的时间下界,它是问题所固有的。

对手论证的基本思想是对每一个 A 构造一个输入特殊的输入 I' , 使 T(A,I') 尽量地大,然后在所有 A 的集合上,求 T(A,I') 的尽量小的下界作为 f(n)。

Adversary argument 思想:构造一个特殊的合法输入使得算法的代价尽可能大,最终得到算法代价的下界

Adversary argument 关键:面向问题,即对于解决问题 P 的一切算法 A,有一套通用的策略 去构造输入使得 A 的代价尽可能大

Lower bound of Finding max and min

Unit of information

In <u>information theory</u>, units of information are also used to measure the <u>entropy</u> of random variables and <u>information</u> contained in messages.

对于 Find max and min 问题, unit of information 为

- 某元素在某次比较中输给其他元素
- 某元素在某次比较中胜过其他元素
- x 若为 max $\iff x$ 以外的元素均在某次比较中输给别的元素
- x 若为 min $\iff x$ 以外的元素均在某次比较中胜过别的元素

则任意算法必须至少获得 2n-2 个 unit of information 才能确定 max 和 min

Adversary strategy: 使得算法每一次比较获得尽可能少的 unit of information

对于 Find max and min (N 为位置, W 为胜出, L 为失败)

Status of keys	Adversary response	New status	Units of information
N, N	x > y	W, L	2
W, N or WL, N	x > y	W, L or WL, L	1
L, N	x < y	L, W	1
W, W	x > y	W, WL	1
L, L	x > y	WL, L	1
W, L or WL, L, or W, WL	x > y	no change	0
WL, WL	consistent with assigned values	no change	0

策略: 让胜利过的元素一直胜利, 让失败过的元素一直失败

仅当 N, N 的情况可以通过一次比较得到 2 个 unit of information,这样的比较最多可以进行 $\left\lfloor \frac{n}{2} \right\rfloor$ 次,其余情况均可给出 adversary response 使得每次比较最多获得 1 个 unit of information,故下界是

$$rac{n}{2}+n-2=rac{3n}{2}-2\quad ext{(for even }n ext{)}$$

Lower bound of Finding the 2^{nd} Largest Key

BF 解法: 进行两次 Find Max, 比较次数为 2n-3

优化思路:败给 Max 以外元素的不可能是 2^{nd} Largest,建立胜者树,则在 Max 的上升路径上的败者均是 2^{nd} Largest 的候选。败者最多为 $\lceil \log n \rceil$ 个,即上升路径长度的最大值。

比较次数为
$$(n-1)+(\lceil \log n \rceil -1)=n+\lceil \log n \rceil -2$$

可以使用 adversary argument 证明算法下界为 $n + \lceil \log n \rceil - 2$

为每个 key 定义一个 weight 函数, 初始值为 1

case	Adversary reply	Updating of weights
w(x) > w(y)	x > y	w(x) := w(x) + w(y); w(y) = 0
w(x) = w(y) > 0	x > y	w(x) := w(x) + w(y); w(y) = 0
w(y) > w(x)	y > x	w(y) := w(x) + w(y); w(x) = 0
w(x) = w(y) = 0	consistent with previous replies	no change

Adversary strategy: 保证每次比较, weight 的增长不超过一倍

- weight 的和总为 n
- 令 x 为 max, 则结束时 w(x) = n
- $w_k(x) \leqslant 2w_{k-1}(x)$
- 令 K 为 x 打败的之前未曾被击败的元素数量, $n=w_K(x)\leqslant 2^Kw_0(x)=2^K$
- $K \geqslant \lceil \log n \rceil$

即 Max 胜利路径上的败者数下界为 $\lceil \log n \rceil$

具体实现:建立大小为 2n-1 的堆结构,在最后 n 个位置放入输入元素,根据堆偏序特性即可追踪 Max 的败者

Finding the Median

Strategy: D&C

Find median 可等价为选择阶为 k 的元素的特殊情况 $(k=rac{n}{2})$

选择阶为 k 的元素 x 对应一种偏序关系:有 k-1 个元素比 x 小,有 n-k 个元素比 x 大于是可以将输入基于某个 pivot 划分为左半部分,pivot,右半部分,进行递归的处理

- 若左半部分元素个数为 k-1 , 返回 pivot
- 若左半部分元素个数大于 k-1 , 在左半部分递归地寻找阶为 k 的元素
- 若左半部分元素个数小于 k-1 ,在右半部分递归地寻找阶为 $k-n_1-1$ 的元素 $(n_1$ 为 左半部分元素个数)

Algorithm

```
1 Element select(Set S, int k)
2   if |S| <= 5
3     return direct solution
4   else
5     Constructing the subset S_1, S_2  // Key issue
6     Processing one of S_1, S_2</pre>
```

Key issue: 划分的方法

Expected linear time: 类似快排,选择 pivot 后划分为两部分

易得在最坏情况下,每次划分中其中一部分为空,算法的最坏情况时间复杂度为 $O(n^2)$

而平均情况下可证得算法平均情况时间复杂度为O(n) (证明见课本 8.1.2 节)

Worst-case linear time

关键: 使得每次划分即使在最坏情况下也不会太不平均

划分思路:将所有元素按 5 个一组划分,共 $\left\lceil \frac{n}{5} \right\rceil$ 组,对于每组,找出其中的中位数,并且将 5 个元素划分为 2 个大于中位数,2 个小于中位数。如下图

递归找出所有中位数的中位数,记为 m^* ,将 m^* 作为 pivot 划分元素,即

Let
$$S_1 = C \cup \{x | x \in A \cup D \text{ and } x < m^*\}$$

Let $S_2 = B \cup \{x | x \in A \cup D \text{ and } x > m^*\}$

之后的处理思路同上

• 如果 $k=|S_1|+1$,返回 m^*

- 如果 $k \leq |S_1|$, 返回 select (S_1, k)
- 如果 $k > |S_1| + 1$, 返回 $select(S_2, k |S_1| 1)$

Analysis

分析为何在最坏情况下仍是线性时间

首先假设 n = 5(2r + 1)

则

$$W(n) \leqslant 6\left(rac{n}{5}
ight) + W\left(rac{n}{5}
ight) + 4r + W(7r+2)$$

• $6\left(\frac{n}{5}\right)$ 为在 5 个数中寻找中位数所需要的比较次数

5个元素中寻找中位数最多只用比较6次

设五个元素为 a, b, c, d, e

首先将 a,b,c 排序,至多需要 3 次排序,设排序后为 s < m < l

比较 d,e , 不失一般性, 设 d>e , 比较 d,m

- 。 若 d>m , e,m 中较大者为中位数
- \circ 若 d < m , d,s 中较大者为中位数
- $W\left(\frac{n}{5}\right)$ 为递归寻找 m^* 的代价
- 4r 为比较 m^* 与 $A \cup D$ 中元素的代价
- W(7r+2) 为最坏情况,即 $A\cup D$ 中所有元素均划分在同一子集

Note:
$$r$$
 is about $n/10$, and $0.7n+2$ is about $0.7n$, so
$$W(n) \leqslant 1.6n + W(0.2n) + W(0.7n)$$

根据递归树易得 row sums 为 $1.6n, 1.6(0.9)n, 1.6(0.81)n, 1.6(0.729)n, \ldots$,为递减的几何级数,故

$$W(n) = \Theta(n)$$

Lower bound of Finding median

Relation to median

显然任意选择算法必须知道其余所有元素和 median 的关系 (否则可构造出反例)

故可定义寻找 median 中的 **crucial comparison** ,即建立起某元素与 median 的大小关系的 比较

- Crucial comparison for x: the first comparison where x>y, for some $y\geqslant median$, or x< y for some $y\leqslant median$
- Non-crucial comparison: the comparison between x and y where x>median and y< median, or vise versa

Adversary strategy

定义一个 key 为

L: 其值大于 medianS: 其值小于 median

• N: 未参加比较

则

Comparands	Adversary's action
N,N	one L, the other S
L,N or N,L	change N to S
S, N or N, S	change N to L

其余情况保持不变

则至少可以分配 $\frac{n-1}{2}$ 个 L 或 S,使得进行的比较均为 Non-crucial comparison。在此之后,若已经有 $\frac{n-1}{2}$ 个 L,之后为 key 分配的值必须小于 median,反之同理,最后一个被分配的值是 median

Lower bound

基于 adversary strategy 可以确保算法至少要做 $\frac{n-1}{2}$ 次 Non-crucial comparison,且至少需要 n-1 次 crucial comparison 以确定其他元素和 median 的关系,故任何寻找中位数的算法至少需要进行 $\frac{3n}{2}-\frac{3}{2}$ 次比较 (n 为奇数)