

86.03 – DISPOSITIVOS SEMICONDUCTORES Evaluación Parcial 23 de junio de 2022

Nombre y apellido:		Tema 1	
Padrón:	Turno:	N° de examen:	
- Es condición nocesaria	nara anrobar al parcial que al mor	ace al 60 % do cada problema está correctamente	

- Es condición necesaria para aprobar el parcial que al menos el 60 % de cada problema esté correctamente planteado.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación:

Datos generales: $q = 1,602 \times 10^{-19} \,\mathrm{C}$; $m_0 = 9,109 \times 10^{-31} \,\mathrm{kg}$; $k = 1,381 \times 10^{-23} \,\mathrm{J/K}$; $h = 6,626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$; $\varepsilon_0 = 8,85 \times 10^{-12} \,\mathrm{F/m}$; $\varepsilon_r(\mathrm{Si}) = 11,7$; $\varepsilon_r(\mathrm{SiO}_2) = 3,9$.

1)

- a) Se tiene el circuito de la figura 1 donde R_1 , R_2 y R_3 son resistencias fabricadas con distintos materiales semiconductores intrínsecos. Inicialmente $R_1 = R_2 = R_3$ pero, pasado un tiempo y como consecuencia del efecto Joule, esta igualdad deja de cumplirse. Sabiendo que la relación que existe entre las energías de brecha de los materiales es $E_{g1} < E_{g2} < E_{g3}$, determinar por cuál resistencia circulará la menor intensidad de corriente y explicar por qué no son necesarios más datos para predecir este fenómeno.
- b) Graficar la curva de salida $(I_D \text{ vs } V_{DS})$ y la recta de carga del circuito de la figura 2 $(\mu_p C'_{ox} W/L = 1 \text{ mA/V}^2; V_T = -1 \text{ V}; \lambda = 0,11 \text{ V}^{-1}; R_{G1} = 2 \text{ k}\Omega; R_{G2} = 2,5 \text{ k}\Omega; R_D = 2 \text{ k}\Omega; V_{DD} = 5 \text{ V})$ indicando los valores de $I_{D\text{sat}}, V_{DS\text{sat}}, I_{DQ}, V_{DSQ}$, y la intersección con abscisa y la ordenada al origen de la recta de carga.

Figura 1

Figura 2

2) Se tiene un diodo de **juntura PN simétrico** basado en silicio del cual se conocen los siguientes datos: $A = 0.1 \,\mathrm{mm}^2$; $W_p = 10 \,\mathrm{\mu m} \gg x_p$; $W_n = 10 \,\mathrm{\mu m} \gg x_n$; $C_{j0} = 76 \,\mathrm{pF}$; $\tau_T = 20 \,\mathrm{ns}$ y $V_{D(\mathrm{ON})} = 0.7 \,\mathrm{V}$. Además, se sabe que las movilidades pueden estimarse como $\mu_n \approx 1400 \,\mathrm{cm}^2/\mathrm{Vs}$ y $\mu_p \approx 485 \,\mathrm{cm}^2/\mathrm{Vs}$ dentro de las zonas de interés en todo el dispositivo. Se realizan dos mediciones de la curva I-V del diodo a temperatura ambiente $(T=300 \,\mathrm{K})$ y se presentan en la siguiente tabla:

$V_D[V]$	-1,2	0,65
$I_D[A]$	6.5×10^{-15}	516×10^{-6}

- a) Determinar el valor de la corriente I_0 , las concentraciones N_A y N_D y el valor de ϕ_B .
- b) Dicho diodo se **polariza en directa** mediante una fuente de 5 V y una resistencia de 470 Ω. Obtener los valores de polarización, dibujar y calcular el modelo de pequeña señal del mismo. Indicar y justificar cuál es el efecto capacitivo que predomina en esta condición.