

CLAIMS

1. A plasma processing apparatus comprising:

an RF generator operable to output RF power;

an impedance matching network operable to receive the RF

5 power;

a plasma chamber operable to receive an output from the impedance matching network;

a storing unit operable to store information relating to an S parameter of the impedance matching network; and

10 a control unit operable to control an operating condition for the plasma chamber, based on the information relating to the S parameter.

2. The plasma processing apparatus of Claim 1, wherein

15 the information relating to the S parameter of the impedance matching network is at least one of the S parameter of the impedance matching network and a power transmission efficiency of the impedance matching network which is calculated based on the S parameter.

20

3. The plasma processing apparatus of Claim 1, wherein

the impedance matching network is an automatic impedance

matching network which, when impedance mismatch occurs between the impedance matching network and the plasma chamber, detects the impedance mismatch, and adjusts a variable capacitor included in the impedance matching network, to achieve impedance 5 match between the impedance matching network and the plasma chamber.

4. The plasma processing apparatus of Claim 1, wherein
the S parameter of the impedance matching network is
10 measured using an RF network analyzer.

5. A control method for a plasma processing apparatus in which
RF power is supplied by an RF generator to a plasma chamber
through an impedance matching network so that plasma processing
15 is performed in the plasma chamber, wherein
a power transmission efficiency from the RF generator to
the plasma chamber is calculated based on an S parameter of
the impedance matching network, and
a control unit of the plasma processing apparatus controls
20 the plasma chamber in reference to the power transmission
efficiency.

6. The control method of Claim 5, wherein
the S parameter of the impedance matching network is S₂₁
which is a forward transmission parameter.

5 7. The control method of one of Claims 5 and 6, wherein
the RF power supplied by the RF generator is controlled
in reference to the power transmission efficiency.

8. An evaluation method for a plasma processing apparatus in
10 which RF power is supplied by an RF generator to a plasma chamber
through an impedance matching network so that plasma processing
is performed in the plasma chamber, wherein
an RF network analyzer is used to measure an S parameter
of the impedance matching network, and
15 a power transmission efficiency from the RF generator to
the plasma chamber is calculated based on the measured S
parameter.

9. The evaluation method of Claim 8, wherein
20 the S parameter of the impedance matching network is S₂₁
which is a forward transmission parameter.

10. The evaluation method of one of Claims 8 and 9, wherein
an amount of power the plasma chamber receives is obtained
based on the power transmission efficiency.

5 11. The evaluation method of one of Claims 8 and 9, wherein
when η , RL and Rm respectively denote the power
transmission efficiency, a real resistance in the plasma chamber,
and a real resistance in the impedance matching network,
 $Rm = (RL/\eta) - RL$.

10

12. An evaluation method for a plasma processing apparatus in
which RF power is supplied by an RF generator to a plasma chamber
through an impedance matching network so that plasma processing
is performed in the plasma chamber, wherein

15 an RF network analyzer is used to measure an S parameter
of the impedance matching network, and
a matching impedance is obtained using a matching network
function of the RF network analyzer.

20 13. An evaluation method for an impedance matching network,
wherein
an S parameter of an impedance matching network is measured,

and converted into a power transmission efficiency η of the impedance matching network, and

when R_L and R_m respectively denote a real resistance in a load and a real resistance in the impedance matching network,

5 $R_m = (R_L/\eta) - R_L$.