PHY 301

Quantum Mechanics

by Pascal Grange*

Chongfeng Ling

2021-2022

^{*}https://www.xjtlu.edu.cn/en/departments/academic-departments/mathematical-sciences/staff/pascal-grange

Contents

1 Introduction

Quantum: quantities can vary by discrete amounts.

Mechanics: study of motion.

1.1 Franklin's Oil-Drop Experiment

Spilled a spoonful $(2 \ ml)$ of oil on the surface of a lake and extended to about 2000 m^2 , but not more. This experiment shows the **existent** and **size** of atoms.

$$V = Sh$$

$$h = \frac{V}{S} \sim \frac{2 \times 10^{-6}}{2 \times 10^{3}} \text{ m} \sim 10^{-9} \text{ m}$$

Atomic and molecular scales are **nanometric**

1.2 From Classical Mechanics to Quantum Mechanics

In classical mechanics, position is a function of time. **Deterministic**.

In quantum mechanics, the position of a particle is a random variable. **Probabilistic**.

2 Wave Function

2.1 Definition in 1-D space

Definition 2.1 (Wave Function). For a small particle living in a **one-dimensional space**, the wave function Ψ is a complex-valued function of space and time:

$$\Psi: \mathbf{R} \times \mathbf{R} \to \mathbb{C}$$

$$(x,t) \mapsto \Psi(x,t) \in \mathbf{C}$$

Remark 2.1. $|\Psi(x,t)|^2$ is the p.d.f. of finding the particle in position x at time t.

Remark 2.2. $\int_a^b |\Psi(x,t)|^2 dx$ is the c.d.f of finding the particle between position [a,b] at time t.

Remark 2.3. Integration is over space, t is a parameter.

2.2 Mean and variance of the position

These two statistics are expressed as integrals over the entire space. They are **deterministic** functions of time. Given wave function Ψ , then we have:

$$\langle x \rangle(t) = \int_{-\infty}^{+\infty} x |\Psi(x,t)|^2 dx$$
$$\langle Var(x) \rangle(t) = \int_{-\infty}^{+\infty} (x - \langle x \rangle(t))^2 |\Psi(x,t)|^2 dx$$
$$[\Psi] = \frac{1}{\sqrt{L}}$$

2.3 Example: probability density of position for classical object

...

3 The Schrödinger equation

One dimension's Schrödinger equation for wave wave function Ψ ($x \in \mathbf{R}$ is a space coordinate, t is time, V is a **real-valued potential**) is

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) + V(x)\Psi(x,t)$$
(1)

Complex conjugate form is

$$-i\hbar \frac{\partial \Psi^*}{\partial t}(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi^*(x,t) + V(x)\Psi^*(x,t)$$
(2)

Planck constant \hbar is

$$h = \frac{h}{2\pi} \simeq 1.05 \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

Assumption 3.1. Ψ and all its derivatives are smooth and go to zero when |x| goes to infinity, faster than any negative power of x.

3.1 Normalization

Due to its definition, the wave function has to be normalized at all time. That is, for all t, we have

$$\int_{-\infty}^{\infty} \Psi^*(x,t)\Psi(x,t)dx = 1$$
(3)

Remark 3.1. Not all solutions of the Schrödinger equation are wave function.

Theorem 3.1. A normalized wave function stays normalized.

Proof. For a normalized wave function at time t = 0:

$$\int_{-\infty}^{\infty} \Psi^*(x,0)\Psi(x,0)dx = 1$$

consider t > 0:

$$\begin{split} &\frac{d}{dt} \left(\int_{-\infty}^{\infty} \Psi^*(x,t) \Psi(x,t) dx \right) \\ &= \int_{-\infty}^{+\infty} \frac{\partial \Psi^*(x,t)}{\partial t} \Psi(x,t) dx + \int_{-\infty}^{+\infty} \Psi^*(x,t) \frac{\partial \Psi(x,t)}{\partial t} dx \\ &= \frac{1}{i\hbar} \int_{-\infty}^{+\infty} \left(+ \frac{\hbar^2}{2m} \frac{\partial^2 \Psi^*(x,t)}{\partial x^2} - V(x) \Psi^*(x,t) \right) \Psi(x,t) dx + \\ &\frac{1}{i\hbar} \int_{-\infty}^{+\infty} \Psi^*(x,t) \left(- \frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x) \Psi(x,t) \right) dx \\ &= \frac{\hbar}{2mi} \left(\left[\Psi \frac{\partial}{\partial x} \Psi^* \right]_{-\infty}^{+\infty} - \int \frac{\partial}{\partial x} \Psi^* \frac{\partial}{\partial x} \Psi dx \right. \\ &- \left[\Psi^* \frac{\partial}{\partial x} \Psi \right]_{-\infty}^{+\infty} + \int \frac{\partial}{\partial x} \Psi \frac{\partial}{\partial x} \Psi^* dx \right) \\ &= 0 \end{split}$$

by Assumption ??. Hence, Ψ is normalized at all time.

3.2 Linear momentum

We can not know actual position of a particle, hence we use the expectation of position $\langle x \rangle(t)$ instead.

$$\boxed{\langle x \rangle(t) = \int_{-\infty}^{+\infty} \Psi^*(x, t) x \Psi(x, t) dx} \tag{4}$$

the velocity of a particle is

$$\boxed{\langle V \rangle = \frac{d\langle x \rangle}{dt}} \tag{5}$$

the average linear momentum is

$$\left| \langle p \rangle = \int_{-\infty}^{+\infty} \Psi^*(x,t) \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi(x,t) dx \right| \tag{6}$$

Proof.

$$\begin{split} \langle p \rangle &= m \frac{d \langle x \rangle}{dt} \\ &= m \int_{-\infty}^{\infty} \frac{d \Psi^*(x,t)}{dt} x \Psi + \Psi^*(x,t) x \frac{d \Psi(x,t)}{dt} dx \\ &= \frac{m}{i\hbar} \int_{-\infty}^{\infty} (\frac{\hbar^2}{2m} \frac{\partial^2 \Psi^*(x,t)}{\partial x^2} - V(x) \Psi^*(x,t)) x \Psi(x,t) + (-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x) \Psi(x,t)) x \Psi^*(x,t) dx \\ &= \frac{\hbar}{2i} \int_{-\infty}^{\infty} \frac{\partial^2 \Psi^*(x,t)}{\partial x^2} x \Psi(x,t) - \frac{\partial^2 \Psi(x,t)}{\partial x^2} x \Psi^*(x,t) dx \\ &= \frac{\hbar}{2i} \int_{-\infty}^{\infty} x \frac{\partial}{\partial x} (\frac{\partial \Psi^*(x,t)}{\partial x} \Psi(x,t) - \frac{\partial \Psi(x,t)}{\partial x} \Psi^*(x,t)) dx \\ &= \frac{\hbar}{2i} ([x(\frac{\partial \Psi^*(x,t)}{\partial x} \Psi(x,t) - \frac{\partial \Psi(x,t)}{\partial x} \Psi^*(x,t))]_{-\infty}^{+\infty} - \int_{-\infty}^{\infty} \frac{\partial \Psi^*(x,t)}{\partial x} \Psi(x,t) - \frac{\partial \Psi(x,t)}{\partial x} \Psi^*(x,t) dx \\ &= \frac{\hbar}{i} \int_{-\infty}^{\infty} \frac{\partial \Psi(x,t)}{\partial x} \Psi^*(x,t) dx \\ &= \int_{-\infty}^{\infty} \Psi^*(x,t) (-i\hbar \frac{\partial}{\partial x}) \Psi(x,t) dx \end{split}$$

3.3 From the Schrödinger equation to the Newton law

Ehrenfest's theorem

$$\frac{d\langle p\rangle}{dt} = -\langle V'(x)\rangle \tag{7}$$

obey classical laws?

$$Proof.$$
 ...

3.4 Correspondence principle

 \hbar to 0?

Energy = kinetic energy + potential energy

Position operator ...

Linear-momentum operator ...

Hamiltonian operator ...

3.5 Separable solutions: time-independent solutions

Consider one kind of solutions of Schrödinger equation in the form:

$$\Psi(x,t) := \psi(x)\phi(t)$$

the Schrödinger equation becomes:

$$i\hbar\psi(x)\phi'(t) = -\frac{\hbar^2}{2m}\psi''(x)\phi(t) + V(x)\psi(x)\phi(t)$$
(8)

$$i\hbar \frac{\phi'(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\psi''(x)}{\psi(x)} + V(x) \tag{9}$$

Eq.?? is satisfied for all values of the independent variables x and t, hence there exists a constant number E that Eq.?? = E for both sides. We have

$$i\hbar \frac{\phi'(t)}{\phi(t)} = E \tag{10}$$

$$-\frac{\hbar^2}{2m}\frac{\psi''(x)}{\psi(x)} + V(x) = E$$
 (11)

Time-dependent factor Eq.??

$$\phi'(t) = \frac{E\phi(t)}{i\hbar}$$

$$\phi(t) = \phi(0)e^{\frac{E}{i\hbar}t}$$
(12)

Space-dependent factor Eq.??

$$-\frac{\hbar^2}{2m}\psi''(x) + V(x)\psi(x) = E\psi(x)$$

$$\hat{H}\psi(x) = E\psi(x)$$
(13)

Eq.?? is called the *time-independent Schrödinger equation*.

There are reasons about why introduce time-independent Schrödinger equation: 1. 2.

Remark 3.2. E is a constant number.

Remark 3.3. E is a real number.

Remark 3.4. $\exp(-\frac{iEt}{\hbar})^* = \exp(\frac{iEt}{\hbar})$ when $E \in R$

$$Proof.$$
 ...

Remark 3.5. $E \ge min(V(x))$

$$Proof.$$
 ...

3.6 Example: the infinite square well

Suppose

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

then $\psi(x) = 0$ when $x \notin [0, a]$. When $x \in [0, a]$, we have time-independent Schrödinger $\psi(x)$ satisfied

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$
(14)

where

$$k \equiv \frac{\sqrt{2mE}}{\hbar} \tag{15}$$

Eq.?? is the classical simple harmonic oscillator equation with general solution

$$\psi(x) = A\sin kx + B\cos kx \tag{16}$$

where A and B are constant.

Continuity of $\psi(x)$ requires boundary condition

$$\psi(0) = \psi(a) = 0$$

by $\psi(0) = 0$, we have B = 0, $\psi(x) = A \sin kx$

by $\psi(a) = 0$, we have trivial (non-normalizable) solution A = 0 or $\sin kx = 0$,

 $ka=0,\pm\pi,\pm2\pi,\pm3\pi,\ldots,\,k\leq0$ is useless. Hence the distinct solutions are

$$k_n = \frac{n\pi}{a}$$
, with $n = 1, 2, 3, ...$

According to Eq.??, the corresponding values of E is

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

To find A, we normalize $\Psi(x,t)$

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1$$

$$\int_{-\infty}^{\infty} \psi(x)^2 dx = 1$$

$$\int_{-\infty}^{\infty} |A|^2 \sin^2(kx) dx = 1$$

$$|A|^2 = \frac{2}{a}$$

$$A = \sqrt{\frac{2}{a}}$$

Finally, we have solutions of time-independent Schrödinger Eq.??

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

with corresponding energy

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

Consequence I if the wave function at t = 0 is a normalized eigenfunction $\psi(x)$ (ie. n = 1), we integrate the Schrödinger equation by introducing a phase factor, we have

$$\Psi(x,t) = \exp(-\frac{iEt}{\hbar})\psi(x), \forall x, \forall t.$$

 $|\Psi(x,t)|^2$ and then $\langle x \rangle$ are independent on time t. The wave function is stationary.

Consequence II If the wave function at t = 0 is a sum of eigenfunction $\psi(x)$ with $c_n \in \mathbb{C}$, we integrate the Schrödinger equation by introducing phase factors, we have

$$\Psi(x,t) = A \exp{-\frac{iE_1 t}{\hbar}} \psi_1(x) + B \exp{-\frac{iE_2 t}{\hbar}} \psi_2(x), A \in \mathbb{C}, \forall x, \forall t$$

if $E_1 \neq E_2$, then $|\Psi(x,t)|^2$ and then $\langle x \rangle$ are dependent on time t. The wave function is a periodic function of time.

3.7 The free particle: time-dependent solutions

When V(x) = 0, we have

$$i\hbar \frac{\phi'(t)}{\phi(t)} = E$$
$$-\frac{\hbar^2}{2m} \frac{\psi''(x)}{\psi(x)} = E$$

by Eq.??, Eq.??. let $k \equiv \frac{\sqrt{2mE}}{\hbar} > 0$, we get general solution

$$\Psi(x,t) = Ae^{ik\left(x - \frac{\hbar k}{2m}t\right)} + Be^{-ik\left(x + \frac{\hbar k}{2m}t\right)}$$

let $k \equiv \pm \frac{\sqrt{2mE}}{\hbar}$ the solution becomes

$$\Psi_k(x,t) = Ae^{i\left(kx - \frac{\hbar k^2}{2m}t\right)} \tag{17}$$

Eq.?? has a space period λ and a time period T.

Eq.?? is not normalizable.

4 de Broglie Waves

 $E < V_0$ and $\hat{H}\psi = E\psi$. V is constant on three pieces of R with function

$$V(x) = \begin{cases} -V_0 & \text{for } -a \le x \le a \\ 0 & \text{for } |x| > a \end{cases}$$

The solutions of the time-independent Schrödinger equation is

$$\psi(x) = \begin{cases} e^{ikx} + Ae^{-ikx} & \text{for } x < -a \\ Be^{iqx} + Ce^{-iqx} & \text{for } -a < x \le a \\ De^{ikx} & \text{for } x > a \end{cases}$$

When x < 0,

$$\frac{d^2\psi(x)}{dx^2} = -k^2\psi(x)$$
$$\psi(x) = 1$$

when 0 < x <= a,

$$\frac{d^2\psi(x)}{dx^2} = \frac{2m}{\hbar^2}(V_0 - E)\psi(x)$$
 (18)

$$\frac{d^2\psi(x)}{dx^2} = \mathcal{K}^2\psi(x) \tag{19}$$

$$\psi(x) = B \tag{20}$$

as

$$\mathcal{K} = \frac{\sqrt{2m(V_0 - E)}}{\hbar}, \mathcal{K} > 0$$
(21)

when x > a,

$$\frac{d^2\psi(x)}{dx^2} = -k^2\psi(x)$$

$$\psi(x) = A\sin(kx) + iB\cos(kx)$$

WAVE PERIOD

4.1 The tunnel effect

ss

5 Uncertainty Principle

5.1 Hilbert space $L^2(\mathbf{R})$

Definition 5.1 (Inner product). For a pair of functions f and g of functions of one real variable with complex values, i.e., $f, g : \mathbf{R} \longrightarrow \mathbf{C}$. The inner product of f and g is

$$\langle f \mid g \rangle = \int_{-\infty}^{+\infty} f^*(x)g(x)dx$$

Property 5.1. $\langle f \mid g \rangle = \langle g \mid f \rangle^*$

$$Proof.$$
 ...

Property 5.2. The inner product is C-linear on the right and anti-C-linear on the left. For functions f, g, h and complex numbers λ, μ , we have

$$\langle f \mid \lambda g + \mu h \rangle = \lambda \langle f \mid g \rangle + \mu \langle f \mid h \rangle$$

$$\langle \lambda f + \mu g \mid h \rangle = \lambda^* \langle f \mid h \rangle + \mu^* \langle g \mid h \rangle$$

Proof. ...

Definition 5.2 (Hilbert space). The space of square-integrable functions, denoted by $L^2(\mathbf{R})$, is the set of functions that have finite inner-product with themselves:

$$L^2(\mathbf{R}) = \{f: \mathbf{R} \longrightarrow \mathbf{C}, \langle f \mid f \rangle < \infty\}$$

at any time t. The square root of the inner product of $f \in L^2(\mathbf{R})$ with itself denoted by

$$||f|| = \sqrt{\langle f \mid f \rangle}$$

is called the $L^2(\mathbf{R})$ -norm of f.

Remark 5.1. The wave function of a particle $\Psi(x,t) \in L^2(\mathbf{R})$.

5.2 Hermitian operators

Definition 5.3 (Hermitian operator). Consider an operator Q acts on a function of x, if $\langle f \mid Qg \rangle = \langle Qf \mid g \rangle$ for any functions f, g in the Hilbert space and vanish at infinity, then Q i called Hermitian operator.

Remark 5.2. Hamiltonian operator \hat{H} is a Hermitian operator.
<i>Proof.</i>
Remark 5.3. Linear momentum p is a Hermitian operator.
Proof.
Remark 5.4. Position x is a Hermitian operator. $(x \in \mathbf{R})$
Proof.
5.3 The Heisenberg uncertainty principle
Theorem 5.1 (The Schwarz inequality in $L^2(\mathbf{R})$). For any two functions f, g in $L^2(\mathbf{R})$ the
following inequality is satisfied:
$ f g \ge \langle f \mid g \rangle $
Proof.
Definition 5.4 (Commutator). For two operators x and p , their commutator is
[x,p] := xp - px.
Theorem 5.2 (The Heisenberg uncertainty principle).
$\sigma_x \sigma_p \geq rac{\hbar}{2}$
Proof.