EXPERIMENTAL RESULTS EXPERIENCE LEVEL CLASSIFICATION

Author: Turcu Ciprian-Stelian

INTRODUCTION

Purpose of the Study:

- Build a custom from scratch model to asses performance on the selected dataset
- Evaluate and compare the custom built model against other more complex models directly accessible through libraries.

Models Used:

- From scratch: Custom ordinal regression model (cmodelv3).
- Library-based: builtinModel and builtinv2.

Key Questions:

- How does our from scratch model and library-based models compare in performance?
- What insights do the results provide about feature importance and improvements?

Turcu Ciprian-Stelian | 2025 Page 1

SCRATCH MODEL (CMODELV3)

Framework:

Built on Ordinal Regression

Key Features:

- Cumulative thresholds (θ) .
- Negative Log-Likelihood optimization.
- Gradient-based L-BFGS-B algorithm.

Hyperparameter Tuning:

• Grid Search (Bounds: Ib, ub, Standardization).

ANALYSIS RESULTS

Scratch Model (cmodelv3)

- Cross-Validation Accuracy: 0.8725 (CI: ±0.04622).
- Test Accuracy: 0.8769.
- Metrics:
 - Precision: 0.8769, Recall: 0.8769, F1-Score: 0.8769.
 - O AUC: 0.9721, AUPRC: 0.9534.
- Confusion Matrix:
 - High accuracy for all classes, with minor misclassifications between Beginner and Intermediate levels.
- LIME key features:
 - Workout Frequency (days per week): The most important feature across all classes.
 - **Fat Percentage**: A critical determinant for class separations.

BUILTINMODEL (LIBRARY BASED)

Framework:

Built on Ordered Logistic Regression (Statsmodels - OrderedModel).

Key Features:

• Log-Likelihood with multiple solver options: bfgs, newton, lbfgs.

Challanges:

• Numerical issues with the newton solver.

ANALYSIS RESULTS

builtinModel (Library based)

- Cross-Validation Accuracy: 0.8643 (CI: ±0.04527).
- Test Accuracy: 0.8821.
- Metrics:
 - Precision: 0.8821, Recall: 0.8821, F1-Score: 0.8820.
- Confusion Matrix:
 - High accuracy across all classes, with minor misclassifications between Beginner and Intermediate levels.
- LIME key features:
 - Session Duration (hours): A dominant factor influencing predictions.
 - Height (m): Strongly associated with distinctions between categories.

BUILTINV2 (LIBRARY BASED)

Framework:

Multiclass Logistic Regression (Scikit-learn).

Key Features:

- Regularization Strength (C): Best = 0.01.
- Solver: lbfgs.

Hyperparameter Tuning:

• Grid Search - combinations of C and Solver

ANALYSIS RESULTS

builtinv2 (Library based)

- Cross-Validation Accuracy: 0.8730 (CI: ±0.04440).
- Test Accuracy: 0.8872.
- Metrics:
 - Precision, Recall, F1-Score: 0.8872.
 - O AUC: 0.9752, AUPRC: 0.9587.
- Confusion Matrix:
 - Highest accuracy among all models, with minimal misclassifications.
- LIME key features:
 - Workout Frequency (days per week): A critical feature for predictions.
 - Session Duration (hours): Strongly associated with intermediate and expert classifications.

COMPARATIVE ANALYSIS

Model	CV Acccuracy	Final Test Accuracy	Precision	Recall	F 1	AUC	AUPRC
cmodelv3	0.8725	0.8769	0.8769	0.8769	0.8769	0.9721	0.9534
builtinModel	0.8643	0.8821	0.8821	0.8821	0.8820	N/A	N/A
builtinv2	0.8730	0.8872	0.8872	0.8872	0.8872	0.9752	0.9587

Turcu Ciprian-Stelian | 2025

CONCLUSIONS & FUTURE WORK

Key Takeaways:

- Best Accuracy: Builtinv2 (0.8872).
- Best Explainability: cmodelv3 (LIME results).

Future Directions:

- Reducing misclassifications.
- Enhancing threshold optimization for scratch models.
- Exploring hybrid models combining custom and library-based approaches.

THANK YOU