TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC

BÁO CÁO PHƯƠNG PHÁP SỐ

<u>Chủ đề</u>: TÍNH GẦN ĐÚNG TÍCH PHÂN XÁC ĐỊNH BẰNG PHƯƠNG PHÁP HÌNH THANG VÀ PHƯƠNG PHÁP SIMPSON

Giảng viên hướng dẫn: Hà Thị Ngọc Yến

Sinh viên thực hiện:

Võ Thùy Phương
 Nguyễn Hải Long
 20185394
 20185378

I. CƠ SỞ LÝ THUYẾT:

1.1. Đặt vấn đề:

• Bài toán: Cho hàm f(x) liên tục trên đoạn [a, b]

Tính
$$I = \int_a^b f(x) dx$$

Theo công thức Newton-Lepnit, giả sử F(x) là nguyên hàm của f(x) thì:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Tuy nhiên trong trường hợp nguyên hàm F(x) của hàm f(x) không tìm được hoặc là hàm số phức tạp thì không thể tìm chinh xác tích phân xác định

- Cần tìm gần đúng tích phân xác định
- PP đơn giản nhất là tính các giá trị của hàm f(x) tại một số điểm $x_i \in [a,b]$; $i = \overline{0,n}$

Từ bảng số ta xây dựng đa thức nội suy $g(x) \approx f(x)$ thì $I = \int_a^b g(x) dx$

1.2. Tính gần đúng tích phân xác định bằng đa thức nội suy Lagrange:

• Giả sử $y_i = f(x_i)$ $và a = x_0 < x_1 < \dots < x_n = b$

Ta xây dựng được công thức nội suy Lagrange:

$$P_n(x) = \sum_{i=0}^n \frac{w_{n-1}(x)}{(x-x_i)w'_{n+1}(x_i)} y_i$$

trong đó $w_{n+1} = \prod_{i=0}^{n} (x - x_i)$

Thay hàm f bởi đa thức nội suy $P_n(x)$ ta được $I = \int_a^b P_n(x) dx + R_n(x)$

Bổ qua sai số: $I \approx \int_a^b P_n(x) dx = \sum_{i=0}^n A_i y_i$

trong đó
$$A_i = \int_a^b \frac{w_{n-1}(x)}{(x-x_i)w'_{n+1}(x_i)} dx$$

1.3. Công thức hình thang và công thức Simpson:

Ta chia đoạn [a,b] thanh n phần bằng nhau bước h = (b-a)/n. Do đó ta tìm đa thức nội suy P_n(x) với các mốc x_i cách đều bước h

$$va \ x = x_0 + h.t$$
 $(x_i = a + h.i)$

nên
$$A_i = (b-a) H_i$$
 với $H_i = \frac{1}{n} \frac{(-1)^{n-i}}{i!(n-i)!} \int_0^n \frac{\prod_{j=0}^n (t-j)}{t-i} dt$

- $I \approx \sum_{i=0}^{n} A_i y_i = (b a) \sum_{i=0}^{n} H_i y_i$
- Khi n = 1 ta có: $H_0 = \frac{1}{2}$, $H_1 = \frac{1}{2}$ $\mathbf{I} = \int_a^b f(x) dx \approx \frac{b-a}{2} (y_0 + y_1) \quad \text{là công thức hình thang}$
- Khi n = 2 ta có: $H_0 = \frac{1}{6}$, $H_1 = \frac{2}{3}$, $H_2 = \frac{1}{6}$

I =
$$\int_a^b f(x)dx \approx \frac{b-a}{6}(y_0 + 4y_1 + y_2)$$
 là công thức Simpson

1.4. Sai số của công thức hình thang và công thức Simpson:

Sai số của công thức hình thang:
 Khi n = 1 ta có 2 mốc nội suy x₀ = a, x₁ = b, h = b-a. Từ sai số của đa thức nội suy Lagrange:

$$R_n(x) = f(x) - P_n(x) = \frac{f''(\varepsilon)}{2!} (x - x_0)(x - x_1) \le \frac{M_2}{2} h^2 t (1 - t)$$

trong đó x - $x_0 = ht$, $M_2 = max |f''(x)|$

$$=> |I - I^*| = |\frac{h}{2}(y_0 - y_1) - I^*| \le \int_a^b |R_n(x)| dx \le \frac{M_2}{12} h^3 \int_0^1 t(1 - t) \le \frac{M_2}{12} h^3$$
 (I* là giá trị tính đúng của I)

• Sai số của công thức Simpson:

Khi n = 2 đoạn [a, b] được chia làm 2 đoạn h =
$$\frac{b-a}{2}$$
, các mốc là $x_0 = a$, $x_1 = \frac{b-a}{2}$, $x_2 = b$.
$$= |I - I^*| = |\frac{h}{3}[y_0 + 4y_1 + y_2] - I^*| \le \frac{M_4}{90}h^5$$
 trong đó $M_4 = \max|f^{(4)}(x)|$

• Từ 2 công thức đánh giá sai số ta thấy n căng lớn độ chính xác căng cao, song công thức căng phức tạp. Để được h nhỏ mà công thức tính không quá phức tạp ta sẽ khắc phục theo công thức hình thang tổng quát và công tức Simpson tổng quát dưới đây.

1.5. Công thức hình thang và công thức Simpson tổng quát

Ý tưởng: chia đoạn [a,b] thanh các đoạn nhỏ rồi áp dụng công thức hình thang hay Simpson trên các đoạn nhỏ đó.

• Công thức hình thang tổng quát:

Chia đoạn [a, b] thanh n đoạn có độ dài
$$\frac{a-b}{n}$$
 bởi các điểm chia $x_0 = a$, $x_i = a + ih$, $x_n = b$ và $y_i = f(x_i)$, $i = \overline{0,n}$
$$I = \int_a^b f(x) dx = \int_{x_0}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx + \dots + \int_{x_{n-1}}^{x_n} f(x) dx$$

$$\approx \frac{h}{2} [(y_0 + y_1) + (y_1 + y_2) + (y_{n-1} + y_n)]$$

$$I \approx \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

- Sai số của công thức hình thang tổng quát:

$$|I - I^*| \le \frac{M_{21}}{12}h^3 + \frac{M_{22}}{12}h^3 + \dots + \frac{M_{23}}{12}h^3$$

$$v \acute{o} i \, M_{2j} = max |\mathbf{f}''(\mathbf{x})| \quad (\mathbf{x} \in [x_j, x_{j+1}])$$

Đặt $M_2 = max M_{2j} \approx max |f'(x)| \quad (x \in [a,b]), \text{ ta được:}$

$$=> |\mathbf{I} - \mathbf{I}^*| \le \frac{M_2}{12} (\underbrace{h^3 + h^3 \dots + h^3}_{n \, l \, an}) = \frac{M_2}{12} nh. \, h^2 = \frac{M_2}{12} (b - a) h^2$$

• Công thức Simpson tổng quát:

Chia đoạn [a, b] thành n = 2m đoạn bằng nhau có độ dài h = $\frac{b-a}{2m}$ bởi các điểm chia $x_0 = a, x_i = a + ih, x_{2m} = b.$

Tương tự áp dụng công thức Simpson với các đoạn

 $[x_0, x_2], ..., [x_{2m-2}, x_{2m}]$ ta được:

$$I \approx \, \frac{{}^{h}}{3} \big[(y_0 + y_{2m}) + 4 (y_1 + y_3 + \cdots + y_{2m-1}) + 2 (y_2 + y_4 + \cdots + y_{2m-2}) \big]$$

- Sai số của công thức Simpson tổng quát:

$$|I - I^*| \le \frac{M_4}{90} h^4 m h = \frac{M_4}{180} h^4 (a-b)$$
 với $M_4 = max |f^{(4)}(x)|$

II. THUẬT TOÁN

2.1. Công thức hình thang:

Input: Nhập hàm f(x), a, b, epsilon (e) là sai số

Output: Giá trị tích phân I gần đúng

Bước 1: Tính $M_2 = max | f''(x) | (x \in [a,b])$

Bước 2: Tính n =
$$\left[\sqrt{\frac{M_2(b-a)}{12e}} \right] + 1$$

Tính
$$h = \frac{b-a}{n}$$

Bước 3: Cho i=0 đến n thì $x_i = a + ih \ và y_i = f(x_i)$

Bước 4: Tính:
$$I = \frac{h}{2}((y_0 + y_n) + 2\sum_{i=1}^{n-1} y_i)$$

2.2. Công thức Simpson:

Input: Nhập hàm f(x), a, b, epsilon (e) là sai số

Output: Giá trị tích phân I gần đúng

Bước 1: Tính $M_4 = max |f''(x)| (x \in [a,b])$

Bước 2: Tính m =
$$\left[\sqrt[4]{\frac{M_4(b-a)}{180e}} \right] + 1$$

Tính
$$h = \frac{b-a}{2m}$$

Bước 3: Cho i=0 đến 2m thì $x_i = a + ih$ và $y_i = f(x_i)$

Bước 4: Tính:
$$I = \frac{h}{3}((y_0 + y_{2m}) + 4\sum_{i=1}^{m} y_{2i-1} + 2\sum_{i=1}^{m-1} y_{2i})$$

III. KẾT QUẢ

1. Tính $\int_0^1 \frac{1}{1+x} dx$ với sai số cho trước $\varepsilon < 0.0001$

• Công thức hình thang:

	BẢNG GIÁ TRỊ (Hình Thang)		
$I = \int_{a}^{b} f(x) dx$	i	X	Υ
Nhập giá trị	0	0	1
a = 0	1	0,024390243902439	0,976190476190476
	2	0,048780487804878	0,953488372093023
b = 1	3	0,073170731707317	0,931818181818182
n =	4	0,097560975609756	0,91111111111111
	5	0,121951219512195	0,891304347826087
h = 0,024390	6	0,146341463414634	0,872340425531915
e = 0,0001	7	0,170731707317073	0,854166666666667
	8	0,195121951219512	0,836734693877551
	9	0,219512195121951	0,82
PP Hình Thang	10	0,24390243902439	0,803921568627451
	11	0,268292682926829	0,788461538461538
PP Simpson	12	0,292682926829268	0,773584905660377
Kết Quả	13	0,317073170731707	0,759259259259
Net Qua	14	0,341463414634146	0,745454545454545
0,69318435804587	15	0,365853658536585	0,732142857142857
Sai Số	16	0,390243902439024	0,719298245614035
Sai So	17	0,414634146341463	0,706896551724138
0,00009914733294	18	0,439024390243902	0,694915254237288
0.61.16	19	0,463414634146341	0,683333333333333
Số bước chạy	20	0,48780487804878	0,672131147540984
41	21	0,51219512195122	0,661290322580645
	22	0,536585365853659	0,650793650793651
	23	0,560975609756098	0,640625

• • •

• Công thức Simpson:

i

0

3 4

5

6 7

8

$I = \int_{a}^{\infty} f(x) dx$	I =	$\int_a^b f(x) dx$
---------------------------------	-----	--------------------

Nhập giá trị

BẢNG GIÁ TRỊ (Simpson)

Χ

0	
0,125	
0,25	
0,375	
0,5	
0,625	
0,75	
0,875	
1	

Y

1
0,8888888888888
0,8
0,727272727272727
0,66666666666667
0,615384615384615
0,571428571428571
0,533333333333333
0,5

PP Hình Thang

PP Simpson

Kết Quả

0,69315453065453

Sai Số

0,00003255208333

Số bước chạy

8

2. Tính $\int_0^1 e^{-x^2} dx$ với sai số cho trước $\varepsilon < 0.00001$

• Công thức hình thang:

-			
1 - Cb cc > 1		BẢNG GIÁ TRỊ (Hình Thang)
$I = \int_{a}^{b} f(x) dx$	i	X	Υ
Nhập giá trị	0	0	1
a = 0	1	0,012658227848101	0,999839782104004
a - 0	2	0,025316455696202	0,99935928241821
b = 1	3	0,037974683544303	0,998558962702516
n =	4	0,050632911392405	0,997439591735018
	5	0,063291139240506	0,996002244081341
h = 0,012658	6	0,075949367088607	0,994248298375567
e = 0,00001	7	0,088607594936708	0,992179435116612
	8	0,10126582278481	0,989797633984974
	9	0,113924050632911	0,987105170685858
PP Hình Thang	10	0,126582278481013	0,984104613325723
	11	0,139240506329114	0,980798818330324
PP Simpson	12	0,151898734177215	0,977190925913333
Kết Quả	13	0,164556962025316	0,973284355105603
Net Qua	14	0,177215189873418	0,969082798356088
0,74681430849458	15	0,189873417721519	0,964590215716352
Sai Số	16	0,20253164556962	0,959810828621484
	17	0,215189873417722	0,954749113281101
0,00000982426537	18	0,227848101265823	0,9494097936949
0″	19	0,240506329113924	0,943797834308035
Số bước chạy	20	0,253164556962025	0,937918432322271
79	21	0,265822784810127	0,931777009679604
	22	0,278481012658228	0,925379204735624
	23	0,291139240506329	0,918730863640519

• • •

• Công thức Simpson:

$I = \int_{a}^{b} f(x) dx$	BẢNG GIÁ TRỊ (Simpson)		
$I - J_a I(x) dx$	i	X	Υ
Nhập giá trị	0	0	1
a = 0	1	0,1	0,990049833749168
	2	0,2	0,960789439152323
b = 1	3	0,3	0,913931185271228
n =	4	0,4	0,852143788966211
h = 0,1	5	0,5	0,778800783071405
11 - 0,1	6	0,6	0,697676326071031
e = 0,00001	7	0,7	0,612626394184416
	8	0,8	0,527292424043049
	9	0,9	0,444858066222941
PP Hình Thang	10	1	0,367879441171442
PP Simpson Kết Quả 0,74682494825444:			
Sai Số			
0,00000666666667			
Số bước chạy			
10			

Nhận xét: Tốc độ hội tụ của phương pháp Simpson nhanh hơn phương pháp hình thang. Tuy nhiên phương pháp Simpson yêu cầu số khoảng chia chẵn trong khi phương pháp hình thang thì không cần. Vì vậy trong lúc tìm giá trị gần đúng của I thì chúng ta nên chọn 1 trong 2 phương pháp phù hợp nhất với yêu cầu đề bài.