DeepVoice

Extracting meaningful signal representation for Speaker Recognition using deep architectures

Rémi Hutin, Raphaël Truffet Supervisors : Guillaume Gravier and Vedran Vukotić

Computer science department ENS Rennes

Linkmedia project IRISA

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- Discussion
- Results
- 6 Further work

Outline

- Signal representation for speaker recognition
- Deep learning
- Methods
- Discussion
- Results
- 6 Further work

Question

Can we do better than i-vectors?

Outline

- 1 Signal representation for speaker recognition
- 2 Deep learning
- Methods
- 4 Discussion
- 6 Results
- 6 Further work

Deep neural networks are interesting because :

Non-linear feature extraction

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation
- They bring out unsuspected features

Deep neural networks are interesting because :

- Non-linear feature extraction
- They naturally generate several level of representation
- They bring out unsuspected features
- There is a multitude of architectures

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Formal neuron

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Neural network

Neural network

Neural network

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

encoder

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

$$x_{latent} = encoder(x_{input})$$

 $x_{output} = decoder(x_{latent}) \simeq x_{input}$

G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

Danger: Learning the identity

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions:

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions :

Compressing 1 : $size(x_{latent}) < size(x_{input})$

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

Danger: Learning the identity

Several solutions :

Compressing
1
: Adding noise 2 : $size(x_{latent}) < size(x_{input})$ $x_{input} = objective + noise$

^{1.} G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507

^{2.} P.Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1096 - 1103, ACM, 2008.

New representation

New representation

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- 4 Discussion
- 6 Results
- 6 Further work

Filtering out non-speaker noise

 Filter out non-speaker dependant features

$$M = m + Tw$$

Filtering out non-speaker noise

- Filter out non-speaker dependant features (noise)
- Need to denoise the signal

$$M = noise + s_{speaker}$$

Filtering out non-speaker noise

- Filter out non-speaker dependant features (noise)
- Need to denoise the signal
- Same speaker, different signals
- Same signal, different non-speaker dependant noise

$$M_1 = noise_1 + s_{speaker}$$

 $M_2 = noise_2 + s_{speaker}$
 $s_{speaker} = encode(M)$

Processed data

- Raw data: 15308 numeric sound files from BFMTV with labeled speakers
- Pre-processed data : 3 678 470 pairs (v_1, v_2) of supervectors spoken by the same person
- Input : Supervector v₁ of length 2304
- Output : Supervector v₂ of length 2304

Processed data

- Raw data: 15308 numeric sound files from BFMTV with labeled speakers
- Pre-processed data : 3 678 470 pairs (v_1, v_2) of supervectors spoken by the same person
- Input : Supervector v₁ of length 2304
- Output : Supervector v₂ of length 2304

$$\begin{bmatrix} v_1^{0,0} \\ v_1^{0,1} \\ \dots \\ v_1^{0,255} \\ v_1^{1,0} \\ \dots \\ v_1^{N,255} \end{bmatrix} \begin{bmatrix} v_2^{0,0} \\ v_2^{0,1} \\ \dots \\ v_2^{0,255} \\ v_2^{1,0} \\ \dots \\ v_2^{N,255} \end{bmatrix}$$

New representation

Intermediate vector evaluation

Preliminary evaluation with cosine similarity

Threshold t

 $distance \leq t$ same speaker

distance > t different speakers

Outline

- 1) Signal representation for speaker recognition
- 2 Deep learning
- Methods
- 4 Discussion
- 6 Results
- 6 Further work

Goals

Numeric signals represented by i-vectors for speaker recognition tasks. We seek to offer an alternative with deep neural networks.

What does it mean to improve on i-vectors?

Better compression

• Better results on angular threshold

• State-of-the-art results for speaker recognition

Goals and expected issues

Numeric signals represented by i-vectors for speaker recognition tasks. We seek to offer an alternative with deep neural networks.

What does it mean to improve on i-vectors?

- Better compression
 - Compression size
 - Hyperparameters
 - Compromise with results
- Better results on angular threshold
 - Optimization method
 - Compromise with compression
- State-of-the-art results for speaker recognition
 - Different training sets
 - More complicated evaluation methods

Outline

- 1 Signal representation for speaker recognition
- Deep learning
- Methods
- 4 Discussion
- Results
- 6 Further work

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors from the same speaker

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors from different speakers

Repartition histograms

Figure – Repartition of the cosine distance between deep vectors

Outline

- 1) Signal representation for speaker recognition
- 2 Deep learning
- Methods
- Discussion
- 6 Results
- 6 Further work

plop