

Home / algorithms / data structures

LEETCODE 12 weeks study plan DSA

Nick Updated: February 25, 2022 · 5 min read

YOUTUBE CHANNEL Subscribe

Data Structure - LLDs - (1 Week)

List of data structures

- Lists
 - Design Linked List
 - Design Skiplist
- Stacks

- Implement Stack using Queues
- Design a Stack With Increment Operation
- LRU Cache
- Min Stack
- Max Stack

- Dinner Plate Stacks
- Implement Queue using Stacks
- Queue
 - Design Circular Queue
- Hashtable

- Design HashMap
- Design HashSet
- BST
- Binary Search Tree Iterator
- Serialize and Deserialize BST
- Red Black Tree
 - Find Median from Data Stream
 - Count of Range Sum
- Heaps
 - Design Twitter
 - Kth Largest Element in a Stream
- Fibonacci Heaps
 - Fibonacci Heaps
- Disjoint Sets
 - Review of two popular approaches, Disjoint Sets and DFS
- Tries (PrefixTree, suffixTree)
 - Implement Trie (Prefix Tree)
 - Add and Search Word Data structure design

- Interval Trees/Segment Tree
 - Lazy Dynamic Segment Tree A general template
 - A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
- Other Tree Data Structures(Graphs)
 - Serialize and Deserialize N-ary Tree
 - Encode N-ary Tree to Binary Tree

Algorithms - Analysis Time and Space - (3 Weeks)

- Sorting 2 Days
 - Selection Sort Merge Sorted Array
 - Bubble Sort Sort Colors
 - Insertion Sort Insertion Sort List
 - Merge Sort <u>Sort an Array</u>
 - Quick Sort
 - Kth Largest Element in an Array
 - K Closest Points to Origin
 - Counting Sort <u>Relative Sort Array</u>
 - Tree sort Convert Sorted List to Binary Search Tree
 - Bucket Sort <u>Top K Frequent Elements</u>
 - Radix Sort Maximum Gap
 - Topological sort Covered in Graphs
- Divide-and-Conquer

- 2 Days

- The maximum-subarray problem Maximum Subarray
- Strassen's algorithm for matrix multiplication <u>Divide and Conquer | Set 5</u>
 (<u>Strassen's Matrix Multiplication</u>)
- The substitution method for solving recurrences
- The recursion-tree method for solving recurrences
- The master method for solving recurrences

- Dynamic Programming
- 2 Days
- Rod cutting <u>Integer Break</u>
- Dynamic Programming for the confused : Rod cutting problem
- Matrix-chain multiplication <u>Burst Balloons</u>
- Elements of dynamic programming
- Longest common subsequence <u>Longest Common Subsequence</u>
- Optimal binary search trees
 - Unique Binary Search Trees
 - Unique Binary Search Trees II
- Greedy Algorithms

- 2 Days

- An activity-selection problem Minimum Number of Arrows to Burst Balloons
- Elements of the greedy strategy
- Huffman codes Construct Huffman Tree, Google | Onsite | Software Engineer |
 Huffman Coding Algorithm, Minimum Cost Tree From Leaf Values
- Matroids and greedy methods Matroid intersection in simple words
- A task-scheduling problem as a matroid <u>Task Scheduler</u>
- Graph Algorithms

- 6 Days

Leetcode Pattern 1 | DFS + BFS == 25% of the problems

- N-ary Tree Preorder Traversal
- N-ary Tree Postorder Traversal
- N-ary Tree Level Order Traversal
- BFS
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Web Crawler Multithreaded
- Web Crawler
- <u>Cut Off Trees for Golf Event</u>
- Course Schedule
- DFS
- Binary Tree Postorder Traversal

- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- <u>Is Graph Bipartite?</u>
- Remove Invalid Parentheses
- Construct Binary Tree from Preorder and Inorder Traversal
- Topological Sort Topological Sort
- Strongly Connected Components SCC <u>Course Schedule</u>, <u>Facebook | Minimum number of people to spread a message</u>, <u>Airbnb | Cover all vertices with the least number of vertices</u>, <u>Critical Connections in a Network</u>
- Minimum spanning Tree Prim's Algorithm
 - Cheapest Flights Within K Stops
 - Minimum Height Trees
 - Number of Operations to Make Network Connected
 - Connecting Cities With Minimum Cost
- Shortest Path Algos -
 - Bellman-Ford <u>Network Delay Time</u>, <u>https://leetcode.com/problems/get-watched-videos-by-your-friends/</u>
 - Dijkstra's algorithm
 - Reachable Nodes In Subdivided Graph
 - Shortest Path Visiting All Nodes
 - Floyd-Warshall
 - Find the City With the Smallest Number of Neighbors at a Threshold
 <u>Distance</u>
 - Evaluate Division
 - Johnson's algorithm
 - All-pairs shortest paths Johnson's algorithm for sparse graphs -GeeksforGeeks
 - Johnson's algorithm
 - The Ford-Fulkerson method
 - Google | Onsite | Network flow for the matrix with given row and column sums
 - Ford-Fulkerson Algorithm for Maximum Flow Problem
- Number-Theoretic Algorithms

- 2 Days
- The Chinese remainder theorem Check If It Is a Good Array

- Greatest common divisor
 - Greatest Common Divisor of Strings
 - X of a Kind in a Deck of Cards
 - Google | OA Summer Intern 2020 | Greatest Common Divisor
- Powers of an element
 - <u>Pow(x, n)</u>
 - Sort Integers by The Power Value
- The RSA public-key cryptosystem
 - Keys and Rooms
 - Shortest Path to Get All Keys
- Integer factorization
 - Largest Component Size by Common Factor
 - Minimum Factorization
 - 2 Keys Keyboard
 - Bulb Switcher
- String Matching

- 2 Day

- The Rabin-Karp algorithm
 - Implement strStr()
 - Binary String With Substrings Representing 1 To N
 - Shortest Palindrome
 - Find All Anagrams in a String
- String matching with finite automata
- The Knuth-Morris-Pratt algorithm
 - Shortest Palindrome
 - Rotate String
 - KMP Algorithm for Pattern Searching
- Approximation Algorithms

- 3 Days

- The vertex-cover problem
 - Binary Tree Cameras
 - <u>Vertex Cover Problem-2</u>
 - <u>Vertex Cover Problem</u>
- The traveling-salesman problem Find the Shortest Superstring

- The set-covering problem
 - Video Stitching
 - Set Intersection Size At Least Two
 - Non-overlapping Intervals
- Randomization and linear programming
- The subset-sum problem
 - Partition Equal Subset Sum
 - Partition to K Equal Sum Subsets
- Randomized Algorithms

- 1 Day

- Quick Sort
- Min Cut <u>Palindrome Partitioning II</u>

Concepts Problems and Maths - (1 Week)

- Matrix Operations
- Linear Programming
- Polynomials DFT, FFT
- Computational Geometry
 - Line-segment properties
 - Determining whether any pair of segments intersects
 - Finding the convex hull <u>Erect the Fence</u>, <u>The Skyline Problem</u>
 - Finding the closest pair of points K Closest Points to Origin
- GCD and LCM
 - X of a Kind in a Deck of Cards
 - Greatest Common Divisor of Strings
 - Nth Magical Number
 - Ugly Number III
- Prime Factorization and Divisors
 - Largest Component Size by Common Factor
 - 2 Keys Keyboard
- Fibonacci Numbers
 - Length of Longest Fibonacci Subsequence
 - Split Array into Fibonacci Sequence

- Find the Minimum Number of Fibonacci Numbers Whose Sum Is K
- Catalan Numbers <u>Unique Binary Search Trees</u>
- Modular Arithmetic
- Euler Totient Function
- nCr Computations
- Set Theory
- Factorial
 - Last Substring in Lexicographical Order
 - Snakes and Ladders
 - Factor Combinations
 - Path With Maximum Minimum Value
 - Number of Closed Islands
- Prime numbers and Primality Tests
 - Prime Arrangements
 - K-th Smallest Prime Fraction
- Sieve Algorithms
 - Count Primes
- Divisibility and Large Numbers
- Series
- Number Digit
- Triangles
 - <u>Triangle</u>
 - Valid Triangle Number

Networks - (1 Week) Leetcode

- Network Topology, OSI Architecture
- TCP/IP models
- TCP and UDP
- Firewall, DNS, Domains, workgroups
- Protocols i.e ICMP

Operating System Tutorial Shared Memory Systems

- Cache
- Multithreading
 - Producers-consumers problem
 - Dining philosophers problem
 - Cigarette smokers problem
 - Readers-writers problem
 - Web Crawler Multithreaded
- Scheduling algorithms
- Deadlock
- Virtual Memory
- Mutex and semaphore
- Kernels
- Paging

Software Design Principles - (2 weeks)

<u>System Design Primer</u>

Start learning about Theory of Distributed Systems?

Challenges with distributed systems

Microservices Design Guide - Platform Engineer

<u>Cloud design patterns - Azure Architecture Center</u>

Design patterns for microservices | Azure Blog and Updates

TO READ:

Domain Driven Design (DDD) | Bounded Context (BC) | Polyglot Persistence (PP) | Command and Query Responsibility Segregation (CQRS) | Command Query Separation (CQS) | Event-Sourcing (ES) | CAP Theorem | Eventual Consistency | Twelve-Factor App | SOLID Principles |

Just some things to focus on.

- Load balancer
- API gateway
- Microservices Scale Cube Concept, MVC READ
- Database Sharding

 SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem

Leadership Principles - LPs - (1 Week)
TO BE UPDATED

Leetcode solutions: watch here

Resume and Miscellaneous
#ADD WHATEVER YOU HAVE PUT IN RESUME

- Algos you have mentioned
- Project work and related references to read
- Achievements and information about it

REFERENCES Introduction to Algorithms - Cormen Leetcode

Youtube channel

You may like these posts —