Tugas Responsi 4 Kalkulus Kelompok 4

Kelompok 4:

1. Lutfi Syahreza Lubis	G1401211003
2. Arfiah Kania Sektiaruni	G1401211023
3. Nazuwa Aulia	G1401211033
4. Hakim Zoelva Mahesa	G1401211039
5. Zafira Ilma Fitri	G1401211054
6. Indra Maulana	G1401211042
7. Pingkan Febbe Fiorela Kereh	G1401211087
8. Jonathan Hizkia Burju Simanjuntak	G1401211104
9. Megawati Roito Panjaitan	G1401211106

IPB University Departemen Statistika 2022 1.

Seometrik Series
$$r = \frac{1}{4} \times 1 \quad \text{(konvergen)}$$

$$S = \frac{a}{1-r}$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}$$

Menggunahan Uji Kedivergenan

lim an : lim
$$\frac{k^2-5}{k+2}$$
 $\lim_{k\to 0} \frac{k^2-5}{k+2}$
 $\lim_{k\to 0} \frac{k^2-5}{k+2}$
 $\lim_{k\to 0} \frac{k^2-5}{k+2}$
 $\lim_{k\to 0} \frac{k^2-5}{k^2+2k}$
 $\lim_{k\to 0} \frac{k^2-5}{k^2+2k}$
 $\lim_{k\to 0} \frac{k^2-5}{k^2+2k}$
 $\lim_{k\to 0} \frac{k^2-5}{k^2+2k}$

3.

3)
$$\infty$$

=\frac{7}{2}
\times_{k=1} 3k

=\frac{2}{3} \times_{k=1} 4 \times_{k=1} 4

5.

5)
$$\sum_{k=0}^{\infty} \frac{1}{k+3}$$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{b+3} \frac{1}{k+3} dk \text{ misal: } u = k+3$
 $\int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b \to \infty} \int_{0}^{\infty} \frac{1}{k+3} dk \Rightarrow \lim_{b$

	Tgl
Tukel Pekan 4	
~	
6. \(\frac{2}{2}\)	
K= 1 TK-2	
- 20	, b 2
J 2 dk	$\lim_{b\to \infty} \int_{1}^{b} \frac{2}{2k-3} dk$, misal, $2k-3=4$
	dk
1	b-200 - 1 M 2dk = du
-	b-yos -1 U
-	lim 5 1 du
	b-> 00 -1 Bu
	ah - 2
=	box (hlul) 2b-3
	6-300
	= lim In 12b-31 - In 1-11
	b+oo (
	= ∞ (divergen)
korena (°	2 dx divergen, Z 2/2k-3 juga diverger
1 21	k-3

$$\sum_{k=1}^{\infty} \frac{k}{k^2 + 3}$$

Jawab:

 $Misalkan: f(x) = \frac{x}{x^2 + 3}$

Pada $[1, \infty)$ fungsi f bersifat kontinu, positif, taknaik?

$$\begin{split} \frac{df(x)}{dx} &= \frac{\frac{d}{dx}(x) \times (x^2 + 3) - (x) \times \frac{d}{dx}(x^2 + 3)}{(x^2 + 3)^2} \\ \frac{df(x)}{dx} &= \frac{(x^2 + 3) - x(2x)}{(x^2 + 3)^2} \\ \frac{df(x)}{dx} &= -\frac{x^2 - 3}{(x^2 + 3)^2} < 0 (fungsi\ turun\ pada\ x > 1) \end{split}$$

 \therefore Karena f tidak memenuhi syarat teorema maka deret tersebut divergen

Menghitung integral tak-wajar berikut:

$$\int_{1}^{\infty} \frac{x}{x^2 + 3} \ dx$$

misalkan: $u = x^2 + 3 \leftrightarrow du = 2x dx \leftrightarrow dx = \frac{du}{2x}$. Sehingga integral dituliskan:

$$\begin{split} \int_4^\infty \frac{1}{2u} \ du \ &= \frac{1}{2} \int_4^\infty \frac{1}{u} \ du = \frac{1}{2} \lim_{b \to \infty} \int_4^b \frac{1}{u} \ du \ &= \frac{1}{2} \lim_{b \to \infty} (\ln u) \Big|_4^b) \\ &= \frac{1}{2} \lim_{b \to \infty} \ln b - \lim_{b \to \infty} \ln 4 \\ &= \infty \ (divergen) \end{split}$$

8).
$$\int_{0}^{\infty} \frac{3}{3x^{2}+1} dx$$

$$Misalton: U = \sqrt{2x}, du = \sqrt{2} dx, dx = du$$

$$\int_{0}^{\infty} \frac{3}{3x^{2}+1} dx$$

$$= 3 \int_{0}^{\infty} \frac{dx}{4x}$$

$$= 3 \int_{0}^{$$