Math 644 - Homework 2 - Due Friday, Sept. 21, 2012

1. (Evans, Problem 1 in Chapter 2) Write down an explicit formula for a function u which solves the initial-value problem:

$$\partial_t u + b \cdot \nabla u + cu = 0$$
, in $\mathbb{R}^n \times (0, +\infty)$,
 $u|_{t=0} = g(x)$, on $\mathbb{R}^n_x \times \{t = 0\}$.

Here, $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

- 2. (Evans, Problem 2 in Chapter 2) Prove that Laplace's equation $\Delta u = 0$ is rotationally invariant, i.e. if $\mathcal{O} \in O(n)$ is an orthogonal $n \times n$ matrix, and if $v = u \circ \mathcal{O}$, then $\Delta v = 0$. We recall that this was a useful insight when we were looking for a fundamental solution of the Laplace operator on \mathbb{R}^n .
- 3. (A vanishing theorem) Suppose that $u \in L^2(\mathbb{R}^n) \cap C^2(\mathbb{R}^n)$ solves $\Delta u = 0$. Show that u is identically equal to zero. (HINT: Use the Mean value property).
- 4. (Evans, Problem 3 in Chapter 2) (A mean value formula for the Poisson equation on B(0,r).) Modify the proof of the mean-value formulas to show that for $n \geq 3$ and $u \in C^2(B(0,r)) \cap C(\overline{B(0,r)})$ we have

$$u(0) = \oint_{\partial B(0,r)} g(y)dS(y) + \frac{1}{n(n-2)\alpha(n)} \int_{B(0,r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f(x)dx,$$

whenever

$$\begin{cases}
-\Delta u = f, \text{ in } B(0, r) \\
u = g, \text{ on } \partial B(0, r).
\end{cases}$$

5. (A specific class of harmonic functions) Find all polynomials

$$P(x,y) = \sum_{k=0}^{n} C_k x^k y^{n-k}$$

(for $x, y \in \mathbb{R}$ and $C_k \in \mathbb{C}$) which are homogeneous of degree n and which are harmonic in \mathbb{R}^2 e.g. $\Delta P = 0$.