Lecture 1

Introduction to Statistics

-Dr. Umesh R A

Agenda of Lecture 1

- Why Statistics?
- Introduction to statistics
- Branches of Statistics
- Terminology
- Data
- Road Map
- Statistical Survey
- Frequency Distribution
- Diagrammatic and graphical representation

Learning Outcome

This session mainly designed to introduce you with fundamentals of statistics.

After this class, you can identify;

- Types of Data.
- You will know different terminology used during Stat/ML course.
- You can able to use and explain suitable Graphs/Diagrams.

Reference Books

Why Statistics?

- Data are everywhere!
- Statistical techniques are used to make many decisions that affect our lives.
- No matter what your career, you will make professional decisions based on data (information).
- An understanding of statistical methods will help you to make these decisions effectively.

Famous quote:

"In god we all trust, all others must bring data."

-W. Edward Deming

Distrust in Statistics

There are three kinds of lies: "lies, damned lies, and Statistics." (-B.Disraeli)

Branches of Statistics

- 1. Theoretical Statistics (Statistical Methods)
- 2. Applied Statistics

Statistical Methods

•Statistical methods are those procedures used in the collection, presentation, analysis and interpretation of data.

Applied Statistics

- Biostatistics
- Time Series
- Reliability Theory
- Epidemiology
- Demography
- Design of Experiment
- Actuarial Statistics

- Statistical QualityControl
- Operation Research
 - LPP
 - Assignment Problem
 - Transportation Problem
 - Inventory Problem
 - Replacement Theory
 - Queuing Theory
- etc...

Meaning of word: "Statistics"

Meanings;

Plural sense

Collection of numerical fact.

Singular sense

Science of studying statistical methods.

- •Statistics is the mathematical science that is involved with the collection, presentation, analysis and interpretation of data.
- •Statistician is one who's intention is to use sample information to make an inference about a population.

Statistical Investigation (Statistical Survey)

Stages of Statistical survey

1. Planning and Preparation

- Purpose
- Scope of the survey
- Preparation of Frame
- Type of the survey
- Type of data collected
- Statistical units to be used
- Degree of accuracy
- Statistical methods

2. Execution of the survey

- Collection of Data
- · Scrutiny, editing and presentation
- Analysis
- Interpretation

Important terms:

- Pilot Survey
- Census
- Sample Survey
- Sampling
- Sampling Frame
- Primary Data
- Secondary Data
- Sampling error
- Non-sampling Error

Population:

- A population is the totality of the observations.
- A population may be finite (small or large) or infinite.
- The characteristics of a population are called parameters

Sample:

- A sample is a subset of a population.
- A sample is usually of smaller size.
- The characteristics of a sample are called statistics.

Data

- Bases of Classification
 - -Qualitative,
 - -Quantitative,
 - -Spatial/Geographical,
 - -Temporal/Chronological/time

- Types of Classification
 - –One-way Classification
 - –Two-way Classification
 - -Multi-way Classification

Flavours of Data

- Qualitative / Categorical / Attribute
- Quantitative / Variable-
 - -Discrete
 - -Continuous

Data (based on Scale)

- Nominal
- Ordinal
- Interval
- Ratio

Q.1. Following data belongs to which data scale?

Ticket No: 22A5, 38A7, 41A62, 45A8,...

- A. Nominal Scale
- B. Ordinal Scale
- C. Interval Scale
- D. Ratio Scale

Q.1. Following data belongs to which data scale?

Ticket No: 22A5, 38A7, 41A62, 45A8,...

- A. Nominal Scale
- B. Ordinal Scale
- C. Interval Scale
- D. Ratio Scale

Q.2. Following data belongs to which data scale?

Weight of fruit (in gms): 42, 38, 41, 45,...

- A. Nominal Scale
- B. Ordinal Scale
- C. Interval Scale
- D. Ratio Scale

Q.2. Following data belongs to which data scale?

Weight of fruit (in gms): 42, 38, 41, 45,...

- A. Nominal Scale
- B. Ordinal Scale
- C. Interval Scale
- D. Ratio Scale

Different Terminologies

•Independent variable is called a predictor variable, controlled variable, explanatory variable, etc.

 Dependent variable is sometimes called a response variable, predicted variable, explained variable, output variable, etc.

Remember!

All you need to start your Journey is;

- 1. Plan
- 2. Road Map
- 3. Determination

Descriptive Statistics

Statistical Representation of Data

- •Massive volume of statistical data (raw *or* unorganized data). **(Situation)**
- •Difficult to examining and interpret the unorganized data. (**Problem**)
- Therefore, it should be organized. (Solution)

Tools: Classification, Tabulation and Graphic representation

Classification and Tabulation

Classification

Grouping of data according to their common characteristics.

Tabulation

- It is a systematic presentation of classified data in columns and rows.
- This sort of logical arrangement makes the data easy to understand, facilitates comparisons and provides an effective way of convey information to a reader.

Techniques for Data Representation

Data Array:

- simplest ways to present data.
- It arranges values in ascending or descending order.
- A minimum, maximum and repeated values are easily determined.

```
Data Array
67 72 75 85 88 89 89 90 99 100
```


Frequency Distribution:

A frequency distribution is a tabular arrangement of data whereby the data is grouped into different intervals, and then the number of observations that belong to each interval is determined.

C.I.	Frequency
0 – 2	20
3 – 5 6 – 8	14 15
9 – 11	2
12 – 14	1
Total	52

Stem-and-Leaf Display:

- •A clear disadvantage of frequency table is that the identity of individual observations is lost in grouping process.
- •To overcome this drawback, John Tukey (1977) introduced this technique.

Stem	Leaves
6	7
7	2 5
8	5899
9	0 4 9

Guidelines for Frequency Tables

- 1. Be sure that the classes are not **overlapping**.
- 2. Include all classes, even if the **frequency is 0**.
- 3. Try to use the same width for all classes.
- 4. Select convenient numbers for class limits.
- 5. Use between 5 and 20 classes.
- 6. The sum of the class frequencies must **equal** the number of original data values.

Constructing a Frequency Table

- 1. Decide on the number of classes.
- Determine the class width by dividing the range by the number of classes (range = highest score - lowest score) and round up

class width
$$\approx$$
 round up of $\frac{\text{range}}{\text{number of classes}}$

3. Select for the **first lower limit** either the lowest score or a convenient value slightly less than the lowest score.

[cont...]

- 4. Add the **class width** to the starting point to get the second lower class limit, add the width to the second lower limit to get the third, and so on.
- 5. List the lower class limits in a vertical column and enter the upper class limits.
- 6. Represent each score in the appropriate class and count them to find the total frequency for each class.
 Aes

Sturge's Rule

Used to determining the desirable number of classes/groups.

$$K = 1 + [3.2 \times log(N)]$$

K- No. of classes

N- No. of observations

Example:

Make a frequency distribution from the following set of measurements for a particular sample:

2.5	5.9	3.2	1.4	7.0	4.3	8.9	0.7	4.2	9.9
3.4	4.6	5.0	6.4	1.1	9.2	7.7	0.9	4.0	2.3
5.6	2.2	3.1	4.7	5.5	6.6	1.9	3.9	6.1	5.2
8.2	3.3	2.2	5.8	4.1	3.8	1.2	6.8	9.5	0.8

Solution:

- By scanning the data, we find that the
 - -Minimum value = 0.7 and Maximum value = 9.9
 - -Range = 9.9 0.7 = 9.2
- Suppose we decide to take 10 classes, then
 - -Size or width of equal class interval = 9.2/10 = 0.92
 - -So use h = 1
- Therefore, we can create the following 10 classes.

Raw Discrete Data

2	2	5	1	2	6	3	3	4	2
4	0	5	7	7	5	6	6	8	10
7	2	2	10	5	8	2	5	4	2
6	2	6	1	7	2	7	2	3	8
1	5	2	5	2	14	2	2	6	3
1	7								

C.I.	Frequency
0 – 2 3 – 5	20 14
5 – 5 6 – 8	15
9 – 11	2
12 – 14	1
Total	52

Lower Class Limits

are the smallest numbers that can actually belong to different classes

	C.I.	Frequency
Lower Class	0 - 2	20
Limits	3 - 5	14
	6 - 8	15
	9 - 11	2
	12 - 14	1

Upper Class Limits

are the smallest numbers that can actually belong to different classes

	C.I.	Frequency
Upper Class Limits	0-2	20
Limits	3-5	14
	6 - 8	15
	9 - 11	2
	12 - 14	1

Class Midpoints / Class Mark

are midpoints of the classes.

Class Width

It is the difference between two consecutive lower class limits or two consecutive class

boundaries	C.I.	Frequency
Class Width	3 0-2	20
Oldoo VVIdiii	3 3 - 5	14
	3 6 - 8	15
	3 9 - 11	2
	3 12 - 14	1

Relative Frequency Table

C.I.	Frequency
0.0	20
0 - 2	20
3 - 5	14
6 - 8	15
9 - 11	2
12 - 14	1
Total	52

Total frequency = 52

C.I.	Relative Frequency
0 - 2	38.5%
3 - 5	26.9%
6 - 8	28.8%
9 - 11	3.8%
12 - 14	1.9%
	100

Relative Frequency = Class Frequency
Sum of all Frequencies

Frequency Density

 Note: Frequency density is useful when classes are of unequal widths.

Frequency Density = Class Frequency
Class Width

Cumulative Frequency Table

C.I.	Frequency
0 - 2	20
3 - 5	14
6 - 8	15
9 - 11	2
12 - 14	1

C.I.	Cumulative Frequency
Less than 3	20
Less than 6	34
Less than 9	49
Less than 12	51
Less than 15	52

Cumulative Frequencies

Frequency Tables

C.I. Frequency		Relative requency	C.I.	Cumulative Frequency
0-2 20 3-5 14 6-8 15 9-11 2 12-14 1	0 - 2 3 - 5 6 - 8 9 - 11 12 - 14	38.5% 26.9% 28.8% 3.8% 1.9%	Less than 3 Less than 6 Less than 9 Less than 1 Less than 1	_

Few more concepts

- Marginal Frequency Distribution
- Conditional Frequency Distribution

•Q.1 calculate frequency densities for the following data.

CI	frequency
0-30	60
30-40	60
40-60	20

•Q.1 calculate frequency densities for the following data.

CI	frequency	Frequency Density
0-30	60	2
30-40	60	6
40-60	20	1

Diagrammatic and Graphical representation

 Visual representations to be useful in highlighting information.

 Graphs: histogram, frequency curve, frequency polygons, Ogive, etc.

Diagram: Dot Plot, bar chart, Pie-diagrams, etc.

Why Visual Representation?

- They are attractive
- They gives Birds eye view of the data
- They can be easily understood by common man
- They provides way of comparison of various characteristics
- Impression is long lasting

Diagrams

- •One Dimensional:
 - -Simple Bar Diagram
 - -Multiple Bar Diagram
 - -Subdivided Bar Diagram
 - —Percentage Bar Diagram
- Two Dimensional
 - -Pie diagram
- Three Dimensional

Graphs

- Histogram
- Frequency Curve
- Frequency Polygon
- Ogive
- Time series Graph (Historigram)
- Box plot
- Scatter Plot

Diagrams

Bar Diagram

Items	Food	Cloth	Traveling	Savings	Others
Expenditure	2500	1500	500	2000	750

Multiple bar Diagram

	Expenditure			
Items	Jan	Feb	March	April
Food	2500	3000	4000	4500
Cloth	1500	1000	3000	500
Travling	500	600	800	700
Savings	2000	3000	2000	5000
Others	750	1000	1200	2000

Sub-divided Bar Diagram

	Expenditure			
Items	Jan	Feb	March	April
Food	2500	3000	4000	4500
Cloth	1500	1000	3000	500
Travling	500	600	800	700
Savings	2000	3000	2000	5000
Others	750	1000	1200	2000

Percentage Bar Diagram

	Expenditure			
Items	Jan	Feb	March	April
Food	2500	3000	4000	4500
Cloth	1500	1000	3000	500
Travling	500	600	800	700
Savings	2000	3000	2000	5000
Others	750	1000	1200	2000

Pie Diagram

Items	Food	Cloth	Traveling	Savings	Others
Expenditure	2500	1500	500	2000	750

Graphs

Histogram

FIGURE 3.7 Histogram—Executive Incomes for the Sunrunner Corporation

Frequency Polygon

Less than Ogive

FIGURE 3.9 Ogive—Executive Incomes (frequencies)

Historigram

FIGURE 3.13 Time Series Graph—Corporate Revenue, Flightcraft Corp.

Box Plot

Scatter Plot

Example:

The local ice cream shop keeps track of how much ice cream they sell versus the noon temperature on that day. Here are their figures for the last 12 days:

Ice Cream Sales vs Temperature			
Temperature °C	Ice Cream Sales		
14.2°	\$215		
16.4°	\$325		
11.9°	\$185		
15.2°	\$332		
18.5°	\$406		
22.1°	\$522		
19.4°	\$412		
25.1°	\$614		
23.4°	\$544		
18.1°	\$421		
22.6°	\$445		
17.2°	\$408		

- Q.1. A Histogram contains a set of
- A. Adjacent rectangles
- B. Non Adjacent Rectangles
- C. Adjacent squares
- D. Adjacent triangles

- Q.1. A Histogram contains a set of
- A. Adjacent rectangles
- B. Non Adjacent Rectangles
- C. Adjacent squares
- D. Adjacent triangles

- Q.2. A circle in which sectors represents various quantities is called
- A. Histogram
- B. Frequency Polygon
- C. Pie Chart
- D. Component Bar chart

- Q.2. A circle in which sectors represents various quantities is called
- A. Histogram
- B. Frequency Polygon
- C. Pie Chart
- D. Component Bar chart

- Q.3. When data are arranged at regular interval of time, the classification is called:
- A. Qualitative
- B. Quantitative
- C. Chronological
- D. Geographical

- Q.3. When data are arranged at regular interval of time, the classification is called:
- A. Qualitative
- B. Quantitative
- C. Chronological
- D. Geographical

Next Lecture

- Topic: Descriptive Statistics I
 - -Measures of Central Tendency (AM, Weighted Mean, GM, HM, Median, Mode)
 - -Measures of Partition (Quartiles, Deciles, Percentiles)
- Where you will find reference to study
 - -Book: Statistics Class-11, Chapter1, pp.81-165
- Background material to study
 - –Book: Business Statistics, Chapter1, pp.10-41
- We will have MCQ test on this lecture.
- And will have recap of the lecture 1.
- Discussion on Assignment 1 (If needed).

