Aula 1

SEL-614 MICROPROCESSADORES E APLICAÇÕES

80C51

Prof: Adilson Gonzaga

HISTÓRICO

Microprocessador

• Circuito integrado ("chip") capaz de executar instruções.

1971

Intel Corporation lançou no mercado o microprocessador 4004 (3.000 transistores)

HISTÓRICO

Microprocessador

O microprocessador é um dispositivo lógico programável em um único chip de silício, concebido sob a tecnologia VLSI (circuito integrado em alta escala).

Age sob o controle de um programa armazenado em memória, executando operações aritméticas, lógica booleana, tomadas de decisão, além de entrada e saída de dados, permitindo a comunicação com outros dispositivos periféricos.

Microprocessador:

- •parte principal de um microcomputador
- •executa instruções

Unidades básicas de um Microprocessador:

Unidade Lógica Aritmética (ULA) - responsável pela realização das operações lógicas e aritméticas.

- •Unidade de Controle (UC) responsável pela decodificação e execução das instruções, fornecendo os sinais de temporização adequados para as diversas partes do processador e do próprio computador.
- •Registradores armazenamento da Informação Binária (dados, endereços e instruções).

ARQUITETURA DE MICROCOMPUTADORES

MICROPROCESSADORES E MICROCONTROLADORES

Microcomputador: computador digital com velocidade e recursos limitados, e tipicamente é constituído por:

- unidade central de processamento CPU;
- memória;
- circuitos de entrada e saída.

Suas aplicações são também limitadas quando comparadas às de um computador de maior porte.

MICROPROCESSADORES E MICROCONTROLADORES

Microprocessador: geralmente implementado em um único componente.

- unidade central de processamento CPU;
- Máquina sequencial de uso geral, cujo comportamento no tempo é determinado por um programa externo colocado em memória.

Associado a Cl's periféricos, ele pode gerar:

- microcomputadores e controles lógicos de uso específicos
- microcomputadores de uso geral

MICROPROCESSADORES E MICROCONTROLADORES

1976 - 1º microcontrolador — Intel 8048 1980 — Intel 8051

Microcontroladores: possuem em um único componente:

- a unidade central de processamento
- memória (ROM e RAM);
- periféricos dedicados (serial, paralela, timer, etc...).

Os microcontroladores apresentam:

- · menor desempenho que os microprocessadores,
- custo muito baixo (alguns dólares tipicamente),
- destinados a aplicações onde as dimensões, custo, tamanho e consumo do produto são muito importantes.

Microcomtrolador 8051

- O 8051 é membro da família MCS-51, e constitui o núcleo de todos os dispositivos MCS-51
- É um sistema de um *chip* único, que além do microprocessador de 8 bits pode conter:
 - . Memória de Programa e Memória de Dados
 - . Portas de I/O
 - . Comunicação Serial
 - . Contadores/ "Timers"
 - . Lógica para Controle de Interrupção
 - . etc ...

Configuração dos pinos do 8051

Diagrama em Blocos do 8051

Organização da memória da família MCS-51

• Memórias de dados e de programas separadas.

Memória de Programa

- Mapeamento de memória de programa externa
- Mapeamento completo (64 Kb externo)

Memória de Dados Interna (RAM Interna)

- •O endereçamento é feito com 8 bits
- •Chips com 128 bytes de RAM não possuem a área I (Apenas Endereçamento Indireto)

Área A: 128 bytes inferiores (00h a 7Fh), acessíveis por endereçamento direto e indireto (existe em toda a família MCS-51)

Área D: SFR (special function register) acessível por endereçamento direto (80h a FFh) também existe em todos os membros da família MCS-51

Área I : 128 bytes superiores (80h a FFh acessível somente por endereçamento indireto, só existe nos chips de 256 bytes de RAM interna (8032,8052,...)).

Memória de Dados Interna (RAM Interna)

Exemplos:

a. Escrever 0AAh no endereço 80h da RAM Interna (área D)

MOV 80h,#0AAh

b. Escrever 0AAh no endereço 80h da RAM (área I de um microcontrolador com 256 bytes de RAM interna)

MOV *R0,*#80h

MOV @R0,#0AAh

Memória de Dados Externa

Acesso através de endereço de 16 bits

- espaço de endereço de 64K bytes
- espaço todo é indiretamente endereçável pelo ponteiro de dados DPTR.

Instruções:

MOVX A,@DPTR MOVX @DPTR,A

Memória de Dados Externa

Acesso através de endereço de 16 bits

Exemplo:

a. Armazenar 3Fh na posição 34CBh da memória externa:

MOV DPTR,#34CBh MOV A,#3Fh MOVX @DPTR,a

b. Ler o conteúdo da posição 13F4h da memória externa :

MOV DPTR,#13F4h MOVX A,@DPTR

Programação de Microprocessadores

Microprocessadores são
 'Máquinas de Estado
 Seqüenciais Síncronas'
 que operam mediante a
 execução de uma
 seqüência de códigos
 binários armazenados em
 memória.

- As ordens ou comandos compreendidos por um determinado Microprocessador, são **INSTRUÇÕES** seqüencialmente armazenadas na Memória.
- Ao conjunto de Instruções compreendidos por um determinado Microprocessador dá-se o nome de "INSTRUCTION SET".
- Cada Microprocessador tem seu próprio Instruction Set que é em geral, diferente do Instruction Set de outro Microprocessador de fabricantes diferentes.

• Uma seqüência de Instruções do Instruction Set, armazenadas na memória e que realiza alguma operação, recebe o nome de **PROGRAMA**.

- Cada Instrução do Microprocessador é um código binário formada em geral por um ou mais Bytes.
- A cada código binário equivalente a uma Instrução está associado um **Mnemônico** para facilitar a compreensão da função que a Instrução executa.
- Ao conjunto de Instruções e seus Mnemônicos equivalentes dá-se o nome de LINGUAGEM ASSEMBLY.

- Para a documentação lógica de um Programa em Assembly utiliza-se um **Fluxograma ou Diagrama de Blocos.**
- Cada bloco do Fluxograma equivale a um sub-conjunto do Instruction Set do Microprocessador.

• O Fluxograma é uma forma de se implementar logicamente um programa, antes que o mesmo seja codificado na Linguagem Assembly do Microprocessador.

• Linhas de Fluxo do Programa

• Bloco de Processo

- Mostram a sequência de execução das Instruções.
- Cada Bloco do Fluxograma possui apenas uma linha de Fluxo de Entrada e uma ou duas de saída
- Equivalem às Instruções que realizam alguma operação do tipo:
- Movimento de Dados
- Operação Aritmética
- Operação Lógica

• Bloco de Decisão

- Equivale às Instruções que decidem sobre o Fluxo do Programa.
- Se a função dentro do bloco for Verdadeira(V) o programa continua abaixo, se for Falsa(F) o programa muda o fluxo.

• Processo Pré-definido

- Equivale às Instruções que mandam executar uma Sub-rotina armazenada em outro lugar da Memória.
- Observe que quando a sub-rotina termina, o fluxo do programa continua normalmente.

Bloco de Início de Programa

Início

- O Bloco de Início de Programa não equivale a uma Instrução específica do Instruction SET.
- O Bloco de FIM equivale a uma instrução que termina o Programa. É chamado de FIM LÓGICO do Programa.

• Bloco de Fim de Programa

Exemplo de Fluxograma de um Programa de Microprocessador

• O programa ao lado deve Ler um Dado da memória, verificar se é igual a zero. Se não for zero, continua em LOOP. Se for zero para o programa.

• Para Codificar um Programa escrito através de um Fluxograma, deve-se escolher o Microprocessador, ou seja, conhecer seu Conjunto de Instruções.

• Os Microcontroladores da família MCS-51 serão os dispositivos a serem aplicados nesta disciplina.

• Instruções equivalentes ao Bloco de Processo

• Instruções Aritméticas

SUBB	A, direct	ADD	A, Rn
INC	Α	DEC	Α
DA	A		

• Instruções equivalentes ao Bloco de Processo

• Instruções Lógicas

ANL	A, Rn	ORL	A, direct
XRL	A, #data	a	
CLR	Α	CPL	Α
RL	Α	SWAP	A

• Instruções equivalentes ao Bloco de Processo

• Instruções de Transferência de Dados

MOV A, Rn MOVC A, @A+DPTR

MOVX A,@DPTR

PUSH direct

POP direct

XCH A, Rn

• Instruções equivalentes ao Bloco de Decisão

• Instruções de Desvio

• Instruções equivalentes ao Bloco de Processo Prédefinido

• Instruções de Sub-Rotina

LCALL	addr16	ACALL	addr11
RET			
RETI			

 Instruções equivalentes a Mudança de Fluxo

- 1. Endereçamento Imediato
 - Opera sobre o dado localizado na própria instrução

• Identificado através do sinal

#

• Exemplo:

ADD A,#30h

O dado 30h é somado ao Registrador A

1. Endereçamento Imediato

ADD A,#30h

Registrador A

ADD A,#30h

2. Endereçamento Direto

• Opera sobre o dado cujo endereço está na instrução

• Exemplo:

ADD A,30h

O dado armazenado no endereço 30h é somado ao Registrador A

2. Endereçamento Direto

ADD A,30h

Registrador A

ADD A,30h

3. Endereçamento Indireto

 Opera sobre o dado cujo endereço está armazenado em um Registrador apontado na instrução

• Identificado através do sinal

(a)

• Exemplo:

ADD A,@R0

O dado armazenado no endereço apontado pelo Registrador R0 é somado ao Registrador A

3. Endereçamento Indireto

Registrador A

ADD A,@R0

Exemplo de um Programa Assembly do 8051

ORG 0

LOOP:

MOV A,30H

CJNE A,#00,LOOP

AQUI: SJMP AQUI

Exemplo de um Programa Assembly do 8051

Mnemônicos (Programa Assembly)

Exemplo de um Programa Assembly do 8051

Memória de Programa

00	E5
01	30
02	B4
03	00
04	FB
05	80
06	FE
	<u> </u>

Endereço

Addr	Opcodes	ASC	Label	Disassembly
0000	E5 30	åO	LOOP	MOV A,30h
0002	B4 00 FB	Ίů		CJNE A,#00h,LOOP
0005	80 FE	€þ	AQUI	SJMP AQUI