Course: MS 101

EE Lectures 6 and 7 : Op Amp Circuits

Sample Questions – Set 1 (April 2, 2023)

1.	 (A) A signal is a deterministic waveform. [T/F] (B) Distortion is a disturbance related to the signal. [T/F] (C) Noise is always a random waveform. [T/F] (D) Total number of conductors needed for 6 differential signals is (E) Total number of conductors needed for 8 single-ended signals is
2.	A signal with source resistance R_S is connected to load resistance R_L . For representing this signal, the Thevenin representation (voltage with a series resistance) is preferred if $R_S >> R_L$. [T/F]
3.	(A) The two supply voltages in a dual-supply amplifier have to be equal. [T/F] (B) For an ideal current amplifier, input resistance R_i is and output resistance R_o is
4.	The key features of an op amp are: (A) direct-coupled (dc) high-gain voltage amplifier, (B) differential input and differential output, (C) very high voltage gain, (D) very high input resistance (E) very low output resistance.
5.	(A) The circuit ground of an op amp is connected through the supply. [T/F](B) Minimum number of pins needed for six op amps on a single IC is
6.	(A) In an ideal op amp, there is no effect of the voltage common to the two input terminals, i.e. $(v2 + v1)/2$, on the output. It is known as 'virtual short'. [T/F].
7.	An ideal op amp has finite output voltage with zero differential voltage because it has (A) infinite differential voltage gain. (B) infinite input resistances for the two inputs. (C) infinite common-mode rejection ratio. (D) dual supply voltages.

- 8. The circuit in the figure has a load resistance R_L (not shown in the figure) connected between the amplifier output and ground, and the output current i_o flows into this load. $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$. $R_L = 500 \Omega$.
 - (A) For $v_{in} = 100 \text{ mV}$, $i_{2} = \underline{\hspace{1cm}} \text{mA}$.
 - (B) For $v_{in} = -100 \text{ mV}$, $v_o = ___\text{mV}$.
 - (C) Current gain $A_i = \underline{\hspace{1cm}}$.
 - (D) Power gain $A_p = \underline{\hspace{1cm}}$.

- 9. The circuit in the figure has a load resistance R_L (not shown in the figure) connected between the amplifier output and ground, and the output current i_0 flows into this load. $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$. $R_3 = 1 \text{ M}\Omega$. $R_L = 500 \Omega$.
 - (A) For $v_{in} = 100 \text{ mV}$, $i_2 = ___ \text{mA}$.
 - (B) For $v_{in} = -100 \text{ mV}$, $v_o = __ \text{mV}$.
 - (C) Current gain $A_i = \underline{\hspace{1cm}}$.
 - (D) Power gain $A_p = \underline{\hspace{1cm}}$.

- 10. In the circuit of Q.9, $R_1 = \infty$, $R_2 = 0$, $R_3 = 1 \text{ M}\Omega$, $R_L = 500 \Omega$.
 - (A) For $v_{in} = 100 \text{ mV}$, $i_{2} = \text{____} \text{ mA}$.
 - (B) For $v_{in} = -100 \text{ mV}$, $v_o = __ \text{mV}$.
 - (C) Current gain $A_i = \underline{\hspace{1cm}}$.
 - (D) Power gain $A_p = \underline{\hspace{1cm}}$.
- 11. The circuit in the figure has a load resistance R_L (not shown in the figure) connected between the amplifier output and ground, and the output current i_0 flows into this load. $R_1 = R_3 = 10 \text{ k}\Omega$, $R_2 = R_4 = 100 \text{ k}\Omega$, $R_L = 500 \Omega$.
 - (A) $R_{in1} = \underline{\hspace{1cm}} k\Omega$, $R_{in2} = \underline{\hspace{1cm}} k\Omega$.

___ mA.

- (B) For $v_1 = 100 \text{ mV}$ and $v_2 = 100 \text{ mV}$, $i_1 = \underline{\qquad} \text{mA}$, $i_3 = \underline{\qquad} \text{mA}$, $v_o = \underline{\qquad} \text{mV}$, $i_{o = 100 \text{ mV}}$
- (C)) For $v_1 = 100 \text{ mV}$ and $v_2 = -100 \text{ mV}$, $i_1 =$ ___ mA. $i_3 =$ ___ mA, $v_o =$ ___ mV, $i_0 =$ ___ mA.

12. The circuit in the figure has a load resistance R_L (not shown in the figure) connected between the amplifier output and ground, and the output current i_o flows into this load. $R_1 = R_L = 500 \ \Omega$.

For this circuit,

(A) $R_{in1} =$ ____k Ω .

(B) For $i_{in} = 1$ mA, $v_o =$ ____ V, $i_{o} =$ ___ mA.

13. The circuit in the figure has the output current i_o flowing in the load resistance R_2 . $R_1 = 10 \text{ k}\Omega$. $R_2 = 1 \text{ k}\Omega$.

(A) $R_{in1} = \underline{\hspace{1cm}} k\Omega$.

(B) For $v_{in} = 1 \text{ V}$, $i_{0} = \underline{\hspace{1cm}} \text{mA}$, $v_x = \text{mV}$.

14. The circuit in the figure has $R_1 = 47 \text{ k}\Omega$. $R_2 = 47 \text{ k}\Omega$, $R_3 = 22 \text{ k}\Omega$.

(A) For S = closed and v_{in} = 1 V, v_o =

___V.

(B) For S = open and $v_{in} = -1$ V, $v_o =$ ___V.

- 15. In a practical op amp,
 - (A) Input offset voltage may cause output saturation in high-gain direct-coupled circuits. [T/F]

(B) Typical value of input offset voltage: ____ mV.

(C) Input bias currents can reduce the common-mode rejection ratio. [T/F]

(D) Typical value of differential gain at dc: ____.

- 16. For the AC amplifier in the figure, C1 is selected for the voltage gain nearly constant above 100 Hz. $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 1 \text{ M}\Omega$,
 - (A) $C_1 >>$ ___ nF.
 - (B) Voltage gain at dc = ____
 - (C) Voltage gain at high frequency = ____.
 - (D) Input resistance at high frequency = ____.
 - (E) For $v_{in} = 1 + 0.1 \cos(10^5 t) \text{ V}$, $v_o = _$

- 17. For the AC amplifier in the figure, C1 is selected for the voltage gain is nearly constant above 100 Hz. $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}$.
 - (A) $C_1 >>$ ___ nF.
 - (B) Voltage gain at dc = ____
 - (C) Voltage gain at high frequency = ____.
 - (D) Input resistance at high
 - frequency = ____.
 - (E) For $v_{in} = 1 + 0.1 \cos(10^5 t) \text{ V}, v_o = \underline{\hspace{1cm}}$

