PATENT SPECIFICATION

1 536 429 (11)

(22) Filed 25 March 1975 (21) Application No. 12420/75

(23) Complete Specification Filed 26 Feb. 1976

(44) Complete Specification published 20 Dec. 1978

(51) INT CL2 C09B 29/08

10

15

20

25

30

35

40

(52) Index at acceptance C4P 122 1A1B2 1F1 1F2

(72) Inventors VIOLET BOYD, BRIAN RIBBONS FISHWICK and DAVID JOHN WATSON

10

20

25

30

35 .

40

(54) DISPERSE MONOAZO DYESTUFFS

(71) We, IMPERIAL CHEMICAL INDUSTRIES LIMITED, Imperial Chemical House, Millbank, London SW1P 3JF, a British Company, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to disperse monoazo dyestuffs which are valuable for colouring synthetic textile materials, in particular aromatic polyester textile

In British Application No. 26808/72 (Ser. No. 1,413,322) there are described and claimed the disperse monoazo dyestuffs of the formula:-

wherein U is hydrogen, chlorine, bromine, cyano, lower alkyl, lower alkoxy or a group of the formula —CONT'T', —COOT' or —SO₂T';

V is hydrogen, chlorine, bromine, cyano or lower alkoxycarbonyl;

W is hydrogen, cyano nitro thiceyano ablarine horning or a group of the

W is hydrogen, cyano, nitro, thiocyano, chlorine, bromine or a group of the formula —SO₂NT¹T², —COOT³ or —SO₂T³; 15

Q is hydrogen, chlorine, bromine, lower alkoxy or a —COOT³ group; R is cyano lower alkyl;

represents a lower alkylene radical;

X is cyano, lower alkoxy, lower alkoxy lower alkoxy lower alkoxy lower alkoxy lower alkoxy, chlorine, bromine, lower alkoxycarbonyl, lower alkycarbonyl, optionally substituted phenoxy carbonyl or optionally substituted

Y is lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted phenoxycarbonyl, phenyl lower alkoxycarbonyl, lower alkylsulphonyl, optionally substituted phenylsulphonyl or Noptionally substituted aminocarbonyl;

T¹ is hydrogen or alkyl; T² is hydrogen, alkyl, phenyl, phenylalkyl or cycloalkyl; and T³ is alkyl, phenyl, phenylalkyl or cycloalkyl.

The said Application also describes and claims a process for the manufacture

of the said dyestuffs and their use for colouring synthetic textile materials.

It has now been found that the dyestuffs of the above formula wherein U is lower alkoxycarbonyl, W is nitro, Q is hydrogen and V is hydrogen or nitro are particularly valuable for colouring aromatic polyester textile materials as, when such dystuffs are applied by aqueous colouration processes, any unfixed dyestuff on the surface of the textile material can be readily removed by treatment in a warm aqueous solution of an alkali which does not contain a reducing agent (such

as sodium hydrosulphite). According to the present invention, there are provided the disperse monoazo dyestuffs of the formula:-

_	1,536,429	2.
	wherein	
	L ¹ represents optionally substituted lower alkyl;	
	L ² represents optionally substituted lower alkyl or optionally substituted amino,	
5	V ⁱ is hydrogen or nitro	
	Z is hydrogen or lower alkovy.	5
	K' is lower alkyl or cyano lower alkyl-	-
	A and A' each independently represent laws all all	
	A 19 CYGIIO, IUWCE NIKOXV IOWAE Alkovy lowan allacas. I 11 11	
10	alkoxy lower alkoxy, chlorine, bromine, lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted above.	
	alkylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted phenoxycarbonyl, optionally substituted	10
	phenylcarbonyl, optionally substituted phenoxy, hydroxymethyl or lower alkyl carbonyloxymethyl.	
	Throughout this Specification the torms "to the state of	
15	Throughout this Specification the terms "lower alkyl" "lower alkoxy" and "lower alkylene" are used to denote alkyl, alkoxy and alkylene radicals respectively containing from 1 to 4 carbon atoms.	
	respectively containing from 1 to 4 carbon atoms.	15
	As examples of the lower alkylene radicals represented to A.	
0.2		
20		
	cyanoethyl. As examples of the lower alkyl radicals represented by L^1 , L^2 and R^1	20
	alkoxy represented by Z there may be mentioned ethoxy and, preferably, methoxy. As examples of substituted lower alkyl radicals represented by L ¹ and L ² there	
25	may be mentioned hydroxy lower alkyl such as β -hydroxyethyl, chloro lower alkyl such as β -chloroethyl, cyano lower alkyl such as β -hydroxyethyl, chloro lower alkyl	. 05
		25
	alkyl such as β -ethoxyethyl and γ -methoxyptonyl, phenyl lower alkyl such as benzyl and β -phenylethyl, and phenoxyl lower alkyl such as benzyl	
30		
50		30
	It is however preferred that L^1 is lower alkyl. It is also preferred that L^2 is lower alkyl, in particular methyl.	•
	As specific examples of the groups represented by Viahaman 1	
35		35
		55
	methoxycarbonyl, ethoxycarbonyl and n-butoxycarbonyl, lower alkoxycarbonyl such as a acetyl and propionyl optionally whether the second such as acetyl and propionyl optionally whether the second such as a cetyl and propionyl optionally whether the second such as a cetyl and propionyl optionally whether the second such as a cetyl and propionyl optionally such as a cetyl and propionally such as a cetyl and propional such as a cetyl and propional such as a cetyl and propional such as a cetyl and cetyl	•
	as acetyl and propionyl, optionally substituted phenoxycarbonyl such as phenoxycarbonyl itself, p-methylphenoxycarbonyl and m-chlorophenoxycarbonyl, optionally substituted phenoxycarbonyl and m-chlorophenoxycarbonyl,	
40	optionally substituted phenylcarbonyl such as homeonic ophenoxycarbonyl,	
		40
	At 15 HUWEVEL DIELETTED that X' is evano lower alleans to the	
45	alkoxy, lower alkoxycarbonyl, lower alkylcarbonyl, hydroxymethyl or lower alkylcarbonyloxymethyl.	
45		45
	A preferred class of the dyestuffs of the invention comprises the dyestuffs of the formula:—	
	T ANTAGAN	
	COOL3 NHCOCH3	
	C ₂ N - N = N - N - N	
	$O_2N \xrightarrow{\text{COOL}^3} N + \text{COOCH}_3$ $O_2N \xrightarrow{\text{COOL}^3} N + \text{COOCH}_3$ $C_2H_4 \cdot C_2O - C_2H_4 - X^2$	
	wherein Bl has the	
50	wherein R ¹ has the meaning stated; L ³ is lower alkyl	
-	Z' is hydrogen or methoxy; and	50
	X ² is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxy lower alkoxy, lower	
_		
5	The dyestuffs of the present invention can be able to the	
		55
	1,413,322) and comprises diazotising an amine of the formula:—	
	,cooL'	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30

35

40

45

50

and coupling the resulting diazo compound with a coupling component of the formula:-

wherein A, A¹, L¹, L², R¹, V¹, X¹ and Z have the meanings stated.

As specific examples of the said amines there may be mentioned the methyl, ethyl, n-propyl, iso-propyl, isobutyl, sec-butyl and n-butyl esters of 2-amino-5-nitrobenzoic acid and of 2-amino-3:5-dinitrobenzoic acid.

nitrobenzoic acid and of 2-amino-3:5-dinitrobenzoic acid.

As specific examples of the said coupling components there may be mentioned 2-(methoxy or ethoxy)-5-acetylamino-N-(methyl, ethyl, n-propyl, isopropyl, n-butyl or  $\beta$ -cyanoethyl)-N- $[\beta$ - $[\beta']$ -[cyano, methoxy, ethoxy or phenoxylethoxy-carbonyl)ethyl]aniline, 3-acetylamino-N-(methyl, ethyl, n-butyl, cyanomethyl, cyanopropyl, cyanobutyl or  $\beta$ -cyanoethyl)-N- $[\beta$ - $[\beta']$ -[cyano, methoxy, methoxy, ethoxy or phenoxylethoxycarbonyl)ethyl]aniline, 3-(acetylamino, propionylamino, n- or iso-butyrylamino)-N-(methyl, ethyl or  $\beta$ -cyanoethyl)-N- $[\beta$ - $[\beta']$ -[chloro, bromo, methoxycarbonyl, acetyl, benzoyl, phenoxycarbonyl, hydroxymethyl or acetoxymethyl]ethoxycarbonyl)ethyl]aniline and 3-(acetylamino or propionylamino)-N-(methyl, ethyl, or  $\beta$ -cyanoethyl)-N- $[\beta$ - $[\beta']$ -[ $\beta''$ -methoxyethoxylethoxy-

amino)-N-(methyl, ethyl or  $\beta$ -cyanoethyl)-N-[ $\beta$ -[ $\beta(\beta'$ - $\beta''$ -methoxyethoxy]ethoxy-

carbonyl)ethyl]aniline. The azo dyestuffs of the present invention are valuable for colouring synthetic textile materials, in particular aromatic polyester textile materials, by aqueous dyeing, padding or printing processes using the techniques which are conventionally employed in colouring synthetic textile materials. The said dyestuffs are particularly valuable for colouring aromatic polyester textile materials as any unfixed dyestuff can readily be removed from the surface of the textile material by

treatment for a few minutes in a warm aqueous solution of an alkali, such as an aqueous solution of sodium carbonate, of pH in the range of 8 to 12. The resulting scarlet to blue colourations have excellent fastness to the tests conventionally applied to such textile materials.

The invention is illustrated but not limited by the following Examples in which

the parts and percentages are by weight.

Example 1. A solution of 3.92 parts of methyl 2-amino-5-nitrobenzoate in a mixture of 60 parts of acetic acid and 5 parts of a concentrated aqueous solution of hydrochloric acid is cooled to 5°—10°C, 12 parts of a 14% aqueous solution of sodium nitrite are added, and the mixture stirred for 10 minutes at 5°—10°C. The resulting solution of the diazo compound is added to a stirred mixture of 6.66 parts of 3-acetylamino-N- $(\beta$ -cyanoethyl)-N- $[\beta$ - $(\beta'$ -methoxyethoxycarbonyl)ethyllaniline, 500 parts of water and 10 parts of acetone at 0°-10°C, sodium acetate is added until the mixture is no longer acid to Congo Red, and the mixture is stirred for 4 hours at 5°C. The

precipitated dyestuff is then filtered off, washed with water and dried.

An aqueous dispersion of the dyestuff is prepared in conventional manner, and the resulting dispersion is then incorporated into a print paste which is applied to a woven aromatic polyester textile material after which the textile material is dried and then steamed to fix the dyestuff. The printed textile material is then treated in a warm aqueous solution of sodium of sodium carbonate of pH 11 to remove any unfixed dyestuff from the surface of the textile material, and the print is then rinsed in water and dried. A bright red print is obtained which has excellent fastness to

light, to rubbing and to wet and to dry heat treatments.

The following Table gives further Examples of the dyestuffs of the invention of the formula:-

$$o_2N - \bigvee_{i}^{cool_i} N = N - \bigvee_{i}^{NHCOL_i} N \stackrel{R^i}{\sim} O_{-C^i-C^i-X^i}$$

the symbols of which have the values given in the respective columns of the Table, the shades obtained when the said dyestuffs are applied to an aromatic polyester textile material being given in the last column of the Table.

and coupling the resulting diazo compound with the appropriate coupling component of the formula:—

5

	_																
Shade	Violet	<i>i.</i> 2	Red	Scarlet	Bluish-red	Red	•	•		Bluish-red	Red	•			Rubine	Red	
Χı	methoxy	2	cyano	β-methoxy- ethoxy		n-butoxy	methoxy	cyano	methoxy	phenoxy	bromine	chlorine	methoxy - carbonyl	methoxy		phenoxy- carbonyl	benzoyl
A¹	ethylene	2	methylene	ethylene	:	:	trimethylene	methylene	ethylene	trimethylene	ethylene	ŝ	2	tetramethylene	ethylene	:	methylene
A	ethylene	. 2	•	2.	=	trime thy lene	ethylene	trimethylene	β-methyl- ethylene	ethylene	•	•		•		:	
R¹	ethy1		β-cyanoethyl	cyanomethy!	y-cyanopropyl	β-cyanoethy1	2		•	y-cyanopropyl	$\beta$ -cyanoethyl		•	:	s-cyanobutyl	β-cyanoethyl	
2	methoxy	ethoxy	hydrogen		•	:	:	:		. :	•	2		•	:	•	
Ľ,	methy1	:	•			β-chloro	ethyl	methyl	amino	methyl	ethyl	methyl		•		a	
٨١	hydrogen	2	:	•	ç,	:	:	•	2	:	:	:	2	•	:	:	•
L'	methyl			2			:			:	:	•	2	<b>2</b>	:	÷	
Example	2	۳	4	S	9	7	<b>∞</b>	6	10	11	12	13	14	15	16	17	18

													-				
Shade	Red	Rubine	Red	•		•	Bluish-red	Rubine	•		•	:	<b>:</b>				
X,	acetyl	2	ethoxy	$\beta$ -( $\beta'$ -methoxy-ethoxy)	cyano	methoxy	•	:	:	•	cyano	β-nethoxy- ethoxy	methoxy- carbonyl	ethoxycarbonyl	acetyl	methoxy	÷
. A	methylene		ethylene	:		:	î	•			methylene	ethylene	methylene	2	2	ethylene	
V	ethylene		=	<b>.</b>	2			ethylene	:		•	6		•	•	**	
R¹	$\beta$ -cyanoethy!	ethyl	β-cyanoethyl		:		methyl	ethyl	n-propyl	n-butyl	ethyl	6				$\beta$ -cyanoethyl	**
<b>Z</b>	hydrogen				<b>a</b>	•		•	:	•	:	•	:	•	•	methoxy	ethoxy
Ľ²	n <del>b</del> utyl	methyl	2	•		ethylamino	methy!		:	:	:	:	<b>s</b>		•	•	"
, V¹	hydrogen	٠.	2	•		\$	:		٠.	•	:		:	:	:	*	•
,1	methyl	:	:	2	:	<b>č</b> .		:	•			:		•		:	:
Example	19	20	21	22	23	24	25	56.	27	28	29	30	31	32	33	34	35

	T						-											
Shade	Rubine		:	•	Red	Rubine	Violet	Red		2	Rubine	2		Red	Violet	Red	:	=
,X	cyano	β-methoxy- ethoxy	methoxycarbonyl	acetyl	methoxy	:		2		hydroxymethy1	<b>.</b>	ę.	=	acetyloxymethyl	•	hydroxymethyl	methoxy	<b>:</b> .
A¹	methylene	ethylone	methylene	ŕ	ethylene.	:			:	methylene		•		:		ethylene	•	•
A	ethylene		•	•		2	2	:		:	<b>s</b>	<b>2</b>			2	ethylene	:	*
R¹	ethyl		:	33	$\beta$ -cyanoethyl	:	ethyl	$\beta$ -cyanoethyl	2	:	ethyl	β-cyanoethy!	ethyl	$\beta$ -cyanoethyl	ethyl	\(\beta\)-cyanoethyl	:	:
Z	methoxy	:	•	•	hydrogen	methoxy	ĉ	hydrogen		· ·	•	ethoxy	methoxy	hydrogen	methoxy	hydrogen	•	•
Ľ,	methyl			:		:	:	:	:	•	•	:	•	•		methyl	benzyl	phenoxy- methyl
V¹	hydrogen	:		:	:		:	:		6.			2		:	•	:	:
17	methyl	:	. :		ethyl	2		n-propyl	n-butyl	methy!	:					methyl	. :	<b>.</b>
Example	36	37	. 88	3.9	40	41	42	43	44	45	46	47	. 48	49	20	. 13	52	53

													_					
Shade	Violet	10101	:		Red	•	•				•	â · â	:	Reddish-blue	Violet	Greenish-blue	Rubine	Greenish-blue
X,	ethoxycarhonyl	crient caroning t	acciyi	propionyloxy- methyl	propylcarbonyloxy methyl	methoxy		. * .		- -	=	: :				•	hydroxymethyl	
Α1	methylene			•	:	:		:					•			:	methylene	:
A	ethylene			£		*				2	:					â.	•	
R1	ethyl	<i>:</i>	•	•	β-cyanoethyl								:		ethyl		cyanoethyl	ethyl
Z	methoxy	ethoxy		•	hydrogen	:	2		:	:		:		methoxy		methoxy		methoxy
L²	methyl			£	•	· <b>2</b> .	<b>:</b>	:		:	:	:	:	:		•		:
. V1	hydrogen		,	2			. 2		nitro		hydrogen	:	:	nitro	:	•	•	•
L,	methyl	:	:	:	<b>£</b>	eta-methoxy ethoxy	$\beta$ -chloro ethyl	eta-cyano ethyl	methy!	ethy!	isopropyl	$\beta$ -methyl- $n$ -propyl	a-methyl- n-propyl	methyl	2	: -		:
Example	54	55	. 99	ļ	57	28.	59	09	61	. 62	63	. 64	59		63	00 0	60 6	

## WHAT WE CLAIM IS:-

1. Disperse monoazo dyestuffs of the formula:-

wherein L¹ represents optionally substituted lower alkyl; L² represents optionally substituted lower alkyl or optionally substituted 5 amino Vi is hydrogen or nitro; Z is hydrogen or lower alkoxy; 10 R1 is lower alkyl or cyano lower alkyl; 10 A and A' each independently represent lower alkylene; and X' is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxy lower alkoxy lower alkoxy, chlorine, bromine, lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted phenoxy, hydroxymethyl or lower alkyl 15 15 carbonyloxymethyl. 2. Disperse monoazo dyestuffs as claimed in Claim 1 wherein A and A1 each represent ethylene. 3. Disperse monoazo dyestuffs as claimed in Claim 1 or Claim 2 wherein R1 is 20  $\beta$ -cyanoethyl. 20 4. Disperse monoazo dyestuffs as claimed in any one of the preceding claims wherein L¹ and L² are lower alkyl. 5. Disperse monoazo dyestuffs as claimed in Claim 4 wherein L2 is methyl. 6. Disperse monoazo dyestuffs as claimed in any one of the preceding claims wherein X' is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxy-25 25 carbonyl, lower alkylcarbonyl, hydroxymethyl or lower alkylcarbonyloxymethyl. 7. Disperse monoazo dyestuffs as claimed in Claim 1 of the formula: -N = N - R'

C₂H₄.C.o-c₂H₄-x² wherein R1 is as defined in Claim 1, L3 is lower alkyl, Z1 is hydrogen or methoxy and 30 X2 is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxycarbonyl, lower 30 alkylcarbonyl, hydroxymethyl or lower alkylcarbonyloxy methyl. 8. Disperse monoazo dyestuffs according to Claim 1 as hereinbefore described with reference to any one of Examples 1 to 70. 9. Process for the manufacture of disperse monoazo dyestuffs as claimed in 35 Claim 1 which comprises diazotising an amine of the formula:-35 and coupling the resulting diazo compound with a coupling component of the formula:

wherein A, A¹, L¹, L², R¹, V¹, X¹ and Z as defined in Claim 1.

10. Process as claimed in Claim 9 as hereinbefore described with reference to any one of Examples 1 to 70.

11. Process for the colouration of synthetic textile materials which comprises applying a dyestuff as claimed in Claim 1 by an aqueous dyeing, padding or printing process.

45

10

12. Process as claimed in Claim 11 wherein the synthetic textile material is an aromatic polyester textile material.

13. Process as claimed in Claim 12 wherein the coloured material is subsequently treated with an aqueous solution of an alkali of pH from 8 to 12.

## D. VINCENT, Agent for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.