Logika dla informatyków Egzamin końcowy (część licencjacka) 31 stycznia 2013
Zadanie 1 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, równoważne formule $(p \lor q) \Rightarrow r$.
Zadanie 2 (2 punkty). Wpisz słowo "TAK" w prostokąty obok tych par formuł, które są równoważne. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.
(a) $p \Rightarrow (q \land r) i (p \Rightarrow q) \land (p \Rightarrow r)$
(b) $(p \land q) \Rightarrow r i (p \Rightarrow r) \land (q \Rightarrow r)$
Zadanie 3 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \neg q \lor r, p, \neg r \lor \neg p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.
Zadanie 4 (2 punkty). Jeśli istnieją takie zbiory A, B i $C,$ że $A \cup (B \cap C) \not\subseteq A \cup (C \setminus A)$
to w prostokąt poniżej wpisz przykład takich trzech zbiorów. W przeciwnym wypadku wpisz słowo "NIE".
Zadanie 5 (2 punkty). Jeśli równość $\bigcap_{t \in T} (A_t \setminus B_t) = \bigcap_{t \in T} A_t \setminus \bigcap_{t \in T} B_t$ zachodzi dla dowolnych
indeksowanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Numer indeksu:

Zadanie 6 (2 punkty). Jeśli istnieje taki 7-elementowy zbiór X , ze $\mathbb{N} \cup X = \mathbb{N}$ to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje. Jeśli istnieje taki 7-elementowy zbiór Y , że $\mathbb{N} \cap Y = \mathbb{N}$ to w prostokąt poniżej
wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje.
Zadanie 7 (2 punkty). Mówimy, że formuła ϕ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1 \dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla $i = 1, \dots, n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\exists n \Big((\forall k \ (k < n) \Rightarrow k \in X) \land n \not\in X \Big)$ to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 8 (2 punkty). Niech ϕ i ψ oznaczają formuły rachunku kwantyfikatorów, być może zawierające wolne wystąpienia zmiennej x . Jeśli formuła $(\forall x \phi \land \psi) \Rightarrow (\forall x \psi)$ jest prawem rachunku kwantyfikatorów, to w prostokąt poniżej wpisz dowód tej formuły w systemie naturalnej dedukcji. W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.
Zadanie 9 (2 punkty). Rozważmy relacje $R \subseteq A \times B$ i $S \subseteq B \times A$. W prostokąt poniżej wpisz formułę logiki I rzędu mówiącą, że relacja R nie jest relacją odwrotną do S . Formuła ta nie może zawierać symbolu negacji (ale może zawierać symbol \notin).
Zadanie 10 (2 punkty). Jeśli istnieje relacja równoważności na zbiorze {0,1,2,3,4,5,6,7,8,9} której każda klasa abstrakcji ma 4 elementy, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym razie wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

			Nume	er indeksu:			
która ma	a continuum kl	las abstrakcji,	nieje relacja róv to w prostokąt j	poniżej wpisz	dowolną tak	-	
ciwnym	przypadku wp	isz uzasadnie	nie, dlaczego tał	xa relacja nie i	stnieje.		
poniżej		taką bijekcj	nieje bijekcja <i>f</i> ę. W przeciwnyı				
Zadani	e 13 (2 punk	ty). Rozważ	my funkcje				
			$f : A^{B \times C} - g : B \times C - h : A \rightarrow B^C$	$\rightarrow A$,			
podanyc		eń, które są j	C. Wpisz słowopoprawne i słowojepoprawne.				
(f(g)))(b,c)		(h(a))(c)				
$h\Big((f(g$	$))(b)\Big)$		$\Big(h(g(b,c))\Big)(c)$				
Zadanie	e 14 (2 punk	ty). Wpisz w	v puste pola pon	iższej tabelki	moce odpov	wiednich zb	iorów.
N{0,1}	$\{1,2,3\}^{\{4,5\}}$	$\mathcal{P}(\mathbb{Q}) \times \mathbb{N}$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\mathbb{N} \times \{2013\}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{Q})^\mathbb{Q}$	$\mathbb{R}^{\mathbb{N}}$
stokąt p	` -	owolną taką i	nieje relacja częśc relację. W przec				_

Zadanie 16 (2 punkty). Jeśli istnieją takie liczby $n_1, \ldots, n_6 \in \mathbb{N}$, że diagram ich relacji podzielności (tj. diagram Hassego dla porządku $\langle \{n_1, \ldots, n_6\}, | \rangle$) ma postać taką jak na rysunku poniżej, to w prostokąt obok rysunku wpisz przykład takich liczb. W przeciwnym przypadku wpisz słowo "NIE".

Zadanie 17 (2 punkty). Poprzednikiem elementu x w zbiorze uporządkowanym $\langle X, \leq \rangle$ nazywamy taki element $y \in X$, że y < x oraz w zbiorze X nie istnieje taki element z, że y < z i z < x. Jeśli zbiór liczb parzystych ma w zbiorze uporządkowanym $\langle P(\mathbb{N}), \subseteq \rangle$ poprzednik, to w prostokąt poniżej wpisz dowolny taki poprzednik. W przeciwnym razie wpisz uzasadnienie, dlaczego poprzednik nie istnieje.

Zadanie 18 (2 punkty). Jeśli istnieje taki porządek mocy continuum, w którym każdy element ma poprzednik, to w prostokąt poniżej wpisz dowolny taki porządek. W przeciwnym razie wpisz uzasadnienie, dlaczego taki porządek nie istnieje.

Zadanie 19 (2 punkty). W poniższej tabeli \leq_{lex} oznacza leksykograficzne rozszerzenie standardowego porządku w zbiorze liczb naturalnych, \leq jest porządkiem na funkcjach zadanym wzorem $f \leq g \stackrel{\text{df}}{\Leftrightarrow} \forall x \ f(x) \leq g(x)$, natomiast \sqsubseteq jest porządkiem na parach liczb zadanym wzorem $\langle a,b\rangle \sqsubseteq \langle c,d\rangle \stackrel{\text{df}}{\Leftrightarrow} a \leq c \land b \leq d$. Wpisz słowo "TAK" w te pola tabeli, które odpowiadają parom porządków izomorficznych. W pozostałe pola wpisz słowo "NIE".

	$\langle \mathbb{N} \times \{0,1\}, \leq_{lex} \rangle$	$\langle \{0,1\} \times \mathbb{N}, \leq_{lex} \rangle$	$\langle \mathbb{N}^{\{0,1\}}, \preceq \rangle$	$\langle \{0\}^*, \leq_{lex} \rangle$	$\langle \{0,1\}^*, \leq_{lex} \rangle$
$\langle \mathbb{N}, \leq angle$					
$\langle \mathbb{N} \times \mathbb{N}, \sqsubseteq \rangle$					

Zadanie 20 (2 punkty). W tym zadaniu x, y, z są zmiennymi, natomiast f symbolem funkcyjnym. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

(a) $f(f(x,y),z) \stackrel{?}{=} f(z,x)$	

(b)
$$f(f(x,y),y) \stackrel{?}{=} f(z,x)$$

	Numer indeksu:	
Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

31 stycznia 2013

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 21. Rozważmy dowolny niepusty zbiór A i relację binarną $R \subseteq A \times A$. Niech $I_A = \{\langle a, a \rangle \mid a \in A\}$. Mówimy, że R jest relacją funkcyjnq jeśli $RR^{-1} \subseteq I_A$. Mówimy, że R jest relacją calkowitq jeśli $(A \times A)R = A \times A$.

(a) Udowodnij, że R jest relacją funkcyjną wtedy i tylko wtedy, gdy dla wszystkich $x,y_1,y_2\in A$ zachodzi implikacja

$$\langle x, y_1 \rangle \in R \land \langle x, y_2 \rangle \in R \Rightarrow y_1 = y_2.$$

- (b) Udowodnij, że R jest relacją całkowitą wtedy i tylko wtedy, gdy dla wszystkich $x \in A$ istnieje takie $y \in A$, że $\langle x, y \rangle \in R$.
- (c) Udowodnij, że istnieje dokładnie jedna funkcyjna, całkowita, symetryczna i przechodnia relacja na zbiorze A.

Zadanie 22. Mówimy, że liczba $d \in \mathbb{N}$ jest dzielnikiem liczby $x \in \mathbb{N}$ jeśli istnieje taka liczba $k \in \mathbb{N}$, że dk = x. Mówimy, że d jest wspólnym dzielnikiem liczb x i y jeśli d jest dzielnikiem x oraz d jest dzielnikiem y. Mówimy, że d jest największym wspólnym dzielnikiem liczb x i y (piszemy wtedy d = gcd(x, y)), jeśli d jest wspólnym dzielnikiem x i y oraz dla każdego wspólnego dzielnika d' liczb x i y zachodzi nierówność $d' \leq d$.

Udowodnij, że dla dowolnych liczb naturalnych x i y, jeśli x>y i y>0 to $\gcd(x,y)=\gcd(x-y,y).$

Zadanie 23. Niech $t \in T(\Sigma, V)$ będzie termem nad sygnaturą Σ i zbiorem zmiennych V i niech $x \in V$. Przez $\{x/t\}: V \to T(\Sigma, V)$ oznaczamy takie podstawienie, że $\{x/t\}(x) = t$ oraz $\{x/t\}(y) = y$ dla wszystkich zmiennych $y \in V$ różnych od x.

- (a) Niech θ będzie takim podstawieniem, że $\theta(x) = \theta(t)$. Udowodnij, że $\theta(x/t) = \theta$.
- (b) Niech θ i σ będą takimi podstawieniami, że dla wszystkich zmiennych v występujących w termie t zachodzi równość $\theta(v) = \sigma(v)$. Udowodnij, że $\theta(t) = \sigma(t)$.
- (c) Dla instancji problemu unifikacji S i podstawienia θ przez $\theta(S)$ oznaczamy zbiór równań $\{\theta(s) \stackrel{?}{=} \theta(t) \mid s \stackrel{?}{=} t \in S\}$. Udowodnij, że jeśli θ jest unifikatorem zbioru $S \cup \{x = t\}$ to istnieje taki unifikator σ zbioru $\{x/t\}(S)$, że $\sigma(x) = x$ oraz $\theta = \sigma\{x/t\}$.