1. 從表格一中可以看到, step 不變、將 Window size 增加到 30, 驗證損失與測試損失皆上升許多,而 Window size 不變、將 step 減少至 10, 測試損失相較原本的下降一些。如果繼續減少 step 至 5 甚至 3, 則觀察到三種損失皆下降非常多,由此可知 step 的值對模型的重要性應該比 Window size 的更高。

	Train loss	Validation loss	Test loss
Original (10, 15)	136.5631	159.3628	376.8634
Window size = 30, step = 15	108.9981	335.9499	440.8775
Window size = 10, step = 10	73.9757	148.4461	297.7568
Window size = 10, step = 5	9.3419	17.0860	22.1838
Window size = 10, step = 3	2.1729	4.9525	nan

表格一

圖一、Window size = 10, step = 3 所得到的預測曲線

- 2. (a) 根據表格二第二列的結果,可以看到加入'Volume'後的損失變得非常大;圖二的預測呈現一直線,與實際值存在不小的誤差,這可能是由於'Volume'的值域遠大於其他特徵所導致的。
 - (b) 根據表格二的實驗結果,最佳的特徵組合為'Open','High','Low',然而實際上沒有使用'Volume'的五個特徵組合所得到的損失之間差異非常小。選擇組合的方式是從原本使用的四個特徵中刪除一個,以此判斷哪個特徵相對較不重要。

Window size = 10, step = 5	Train loss	Validation loss	Test loss
'Open', 'High', 'Low', 'Close'	6.7046	10.1366	18.8439
'Open', 'High', 'Low', 'Close', 'Volume'	969.6949	803.4329	1138.2756
'High', 'Low', 'Close'	6.0424	12.6376	19.7423
'Open', 'High', 'Close'	8.0886	6.5993	20.2029
'Open', 'Low ', 'Close'	7.8790	11.6079	23.0873
'Open', 'High', 'Low '	6.9750	1.1934	17.3528

表格二

圖二、加入'Volume'的預測結果

3. 將特徵進行正規化後,由於損失的尺度改變無法直接進行比較,但以圖三和圖四來看,在30天附近進行正規化後預測的較好;然而如果特徵有包含'Volume',進行正規化後的預測效果會遠比沒有正規化的好,因為'Volume'的值域會變得其他特徵差不多。

Window size = 10, step = 15	Train loss	Validation loss	Test loss
w/o normalization	136.5631	159.3628	376.8634
w normalization	0.0022	0.0020	0.0102

表格三

圖三、沒有進行正規化的預測曲線

圖四、正規化之後的預測曲線

4. 我認為應該 window size 應該比 step size 大,因為 step size 比較大會造成中間時段的資訊沒被學到,且 step size 設得太大會減少訓練資料,提升過擬合的風險。

5.

- 6. (a) CNN: window size 通常是由 kernel size 決定,kernel size 越大,每次能看到的感受野也越寬廣。
 - (b) RNN: 經常用來處理時間序列的資料,透過設定 window size 的大小可以 決定一次要用多少個時間點來進行預測。
 - (c) Transformer: 傳統自注意力機制的計算時間複雜度與序列長度成平方關係,意味著模型的输入序列不能太長,為了解決上述問題,在 Longformer 中提出到了 Sliding window attention,設定的 window size **W** 限制了序列中每個 token 只看左右各 1/2*W 的 token。