

NP-C: Conjunto independiente

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Conjunto independiente

Sea

Un grafo G=(V,E)

Un valor k

Determinar

Si existe un conjunto independiente de nodos de como mucho tamaño K

(Problema conocido como "Independent Set")

Definiciones

Un conjunto de nodos C ⊆ V es independiente si

No existe a,b \in C tal que existe eje (a,b) \in E

El tamaño del conjunto independiente

Corresponde a la cantidad de nodos dentro del conjunto C

Ejemplo

¿Conjunto independiente es "NP"?

Dado

G=(V,E)

k tamaño del conjunto

T certitifcado = subconjunto de nodos

Puedo verificar (en tiempo polinomial)

$$|T| = k$$

 $\forall a,b \in T, !\exists (a,b) \in E$

 \Rightarrow INDEPENDENT-SET \in NP

¿Conjunto independiente es "P"?

No se conoce algoritmo

3SAT

Es una variante de SAT

Karp probó en 1972 SAT ≤_p 3SAT ⇒ 3sat ∈ NP-C

Dado

 $X=\{x_1,...x_n\}$ conjunto de n Variables booleanas = $\{0,1\}$

k clausulas booleanas $Ti = (t_{i1} \lor t_{i2} \lor t_{i3})$

Con cada $t_{ij} \in X \cup \overline{X} \cup \{1\}$

Determinar

Si existe asignación de variables tal que $T_1 \wedge T_2 \wedge ... \wedge T_k = 1$

Ejemplo

Sea la expresión

$$E = (X_{1} \lor X_{2} \lor X_{3}) \land (\overline{X}_{1} \lor \overline{X}_{2} \lor \overline{X}_{4}) \land (\overline{X}_{2} \lor \overline{X}_{3} \lor X_{4}) \land (X_{1} \lor \overline{X}_{2} \lor X_{3})$$

La asignación

$$X1 = 0$$
 $X2 = 0$ $X3 = 0$ $X4 = 0$, Genera E=0

$$X1 = 1$$
 $X2 = 0$ $X3 = 0$ $X4 = 1$, Genera E=1

Reducción de 3SAT a INDEPENDENT-SET

Por cada clausula Ti = $(t_{i1} \lor t_{i2} \lor t_{i3})$

Se crearan 3 vértices conectados entre si

Por cada
$$t_{ij} = x_a$$
, $t_{kl} = x_a$

Crear un eje entre t_{ij} y t_{kl}

El grafo resultante G

Corresponde a una instancia del problema INDEPENDENT-SET

Con k=numeros de clausulas en la expresión

Ejemplo

Sea la expresión

$$\mathsf{E} = (\mathsf{X}_1 \lor \mathsf{X}_2 \lor \mathsf{X}_3) \land (\overline{\mathsf{X}}_1 \lor \overline{\mathsf{X}}_2 \lor \overline{\mathsf{X}}_4) \land (\overline{\mathsf{X}}_2 \lor \overline{\mathsf{X}}_3 \lor \mathsf{X}_4) \land (\overline{\mathsf{X}}_1 \lor \overline{\mathsf{X}}_2 \lor \mathsf{X}_3)$$

La reducimos polinomialmente a:

k=4

Ejemplo (cont.)

Si resuelvo

Entonces resuelvo 3SAT

$$X_1 = 1 \qquad \overline{X}_2 = 1 \rightarrow X_2 = 0$$

$$X_1 = 1$$
 $\overline{X}_2 = 1 \rightarrow X_2 = 0$ $X_4 = 1$ $X_3 = 0$ (en este caso es indistinto 0 o 1)

INDEPENDENT-SET es NP-C

Como

INDEPENDENT-SET ∈ NP

Y 3SAT ≤_p INDEPENDENT-SET NP

Entonces

INDEPENDENT-SET ∈ NP-C

Presentación realizada en Junio de 2020