04-02 Visualisation des séries temporelles

Été 2021

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Objets "ts"
- 2. Graphiques
- 3. Décomposition d'une séries temporelle
- 4. Graphiques de saison
- 5. Autocorrélations
- 6. Exemple Série Google
- 7. Références

Objets "ts"

Objets "ts"

Permet de fabriquer des séries temporelles

```
mydata <- c(1,2,3,2,1) # Les données
mydata <- as.ts(mydata) # Objet "série temporelle"
mydata <- ts(mydata) # Équivalent</pre>
```

Datation

■ **Dater** une série temporelle

```
# Dater une série temporelle annuelle qui débute en 2020
mydata <- ts(mydata, start=2020)

# Dater une série temporelle trimestrielle débutant en mars 2020
mydata <- ts(mydata, start=c(2020,3), frequency=4)

# Dater une série temporelle mensuelle débutant en août 2020
mydata <- ts(mydata, start=c(2020,8), frequency=12)</pre>
```

Question

Soit la ligne de code suivante:

```
x \leftarrow ts(c(299,7,92,4,58), start=2015)
```

S'agit-il d'une série annuelle, trimestrielle ou mensuelle?

Objets et fonctions ts

Type de données	Fréquence	Exemple de "start"
Annuel	1	1998
Trimestriel	4	c(1998,3)
Journalier	7 ou 365.25	1 ou c(1998,280)
Hebdomadaire	52.18	c(1998,22)
Horaire	24 ou 168 ou 8.766	1
Demi-horaire	48 ou 336 ou 17.532	1

Afficher une série temporelle avec ggplot2

```
library(ggplot2)
library(fpp2)
airline <- read.table("../../data/airline49.dat")
airline <- ts(airline, start=c(1949,1), frequency=12)
autoplot(airline) +
   ggtitle("Nombre mensuel de passagers sur les vols aériens internationaux") +
   xlab("Temps") +
   ylab("Nombre de passagers (en milliers)")</pre>
```

Nombre mensuel de passagers sur les vols aériens internationaux

Autre manière de faire sans ggplot2

```
plot.ts(airline, main="Nombre mensuel de passagers sur les vols aériens internationaux",
xlab="Temps", ylab="Nombre de passagers (en milliers)", col="blue")
```

Nombre mensuel de passagers sur les vols aériens internationaux

Décomposition d'une série temporelle

Décomposition d'une série temporelle

- La décomposition classique d'une série temporelle se décline en quatre composantes
 - La tendance (trend)
 - La saisonnalité (season)
 - Le cycle
 - La partie résiduelle
- La décomposition peut être additive ou multiplicative

La tendance

■ La **tendance** est le comportement à long terme de la série

La saisonnalité

 La saisonnalité ou partie saisonnière apparaît lorsqu'un facteur saisonnier survient par exemple chaque année de manière similaire

Le cycle

Le **cycle** apparaît lorsque la série montre des périodes de croissance et décroissance qui reviennent de façon non régulière.

Ne pas confondre saisonnalité et cycle!

Solar activity over the past 11 sunspot cycles

La partie résiduelle

■ La partie résiduelle, ou résidu, est ce qu'il reste après avoir ôté de la série initiale les précédentes composantes (tendance, saisonnalité et cycle)

Décomposition sous R

 Pour décomposer une série, utiliser la fonction decompose avec comme argument type les valeurs additive ou multiplicative

```
# Décomposition de la série "airline"
airline %>% decompose(type="multiplicative") %>%
  autoplot() + xlab("Temps") +
  ggtitle("Décomposition multiplicative de la série airline")
```

■ La fonction **ggseasonplot** permet de montrer la série temporelle découpée sur chaque saison pour mieux en appréhender les caractéristiques

```
# Graphe de saison
ggseasonplot(airline, year.labels=TRUE, year.labels.left=TRUE) +
  ylab("Nombre de passagers par milliers") +
  xlab("Mois") +
  ggtitle("Graphe de saison : série airline")
```


Il est possible de changer l'axe horizontal pour un axe de "rotation"

```
# Graphe polaire de saison
ggseasonplot(airline, polar=TRUE) +
  ylab("Nombre de passagers par milliers") +
  xlab("Mois") +
  ggtitle("Graphe polaire de saison : série airline")
```


 On peut aussi tracer la série sur chaque saison séparément en regroupant toutes les données d'une même saison sur le même sous-graphique

```
# Sous-série saisonnière
ggsubseriesplot(airline) +
  ylab("Nombre de passagers en milliers") + xlab("Mois")+
  ggtitle("sous séries saisonnières: airline")
```


Autocorrélations

Autocorrélations

L'autocorrélation mesure le degré de dépendance linéaire qu'il y a entre deux variables du processus $(X_t)_{t \in 1, \dots, T}$; elle est définie par :

$$ho(\mathsf{k}) = rac{\sum\limits_{t=\mathsf{k}+1}^\mathsf{T} (\mathsf{X}_\mathsf{t} - ar{\mathsf{X}}) (\mathsf{X}_\mathsf{t-\mathsf{k}} - ar{\mathsf{X}})}{\sum\limits_{t=1}^\mathsf{T} (\mathsf{X}_\mathsf{t} - ar{\mathsf{X}})^2}$$

 En R, la fonction pour obtenir l'autocorrélation est ggAcf ou plus simplement acf

Autocorrélations

Corrélogramme

autocorrelations (statistiquement) significativement différentes de zéro

Exemple: bruit blanc

■ Un **bruit blanc** est une suite de variables **i.i.d.**..

Exemple: bruit blanc

Exemple: bruit blanc

Test de Ljung et Box

- Le test de Ljung et Box est un test bâti à partir de la valeur des h premières autocorrélations
- Si la p-value est très petite, cela signifie que l'on rejette le fait que le processus soit un bruit blanc

```
#Test de Ljung et Box
Box.test(y, lag=24, fitdf=0, type="Lj")
```

 Donc, on ne rejette pas le fait que la série y soit un bruit blanc


```
data: y
X-squared = 13.353, df = 24, p-value = 0.9599
```

Box-Ljung test

Autre exemple

Box-Ljung test

data: cochon
X-squared = 42.815, df = 24, p-value = 0.01044

On rejette le fait que la série soit un bruit blanc

Tendance et saisonnalité sur les ACF

Tendance et saisonnalité sur les ACF

Exemple Série Google

Série Google

Cotation journalière de Google (fin: 6 déc. 2013)

Question

La série Google présente t-elle une tendance et/ou une saisonnalité et/ou des cycles ?

Corrélogramme de l'action Google

Série différenciée

■ Pour "retirer" la tendance, il faut **différencier** la série

```
# Série différenciée
googdiff <- diff(goog, differences=1)
autoplot(googdiff) +
   ggtitle("Série Google différenciée") +
   xlab("Jour") + ylab("Écarts de la série Google")</pre>
```

Série différenciée

Corrélogramme de la série Google différenciée

En résumé

- Initialement, la série présente une tendance linéaire croissante
- Cela est corroboré par l'examen du corrélogramme où les autocorrélations successives décroissent lentement
- Après avoir différencié la série : $Y_t = X_t X_{t-1}$, la série différenciée Y_t ne présente plus de tendance, et le corrélogramme correspondant est quasiment celui d'un bruit blanc!

Pull de https://github.com/mswawola-cegep/420-a58-sf.git
04-02-TP

Références

Références

[1] Cours "R et la prévision de séries temporelles" de Michel Carbon - Université Laval