Discussion of "The Origins and Effects of Uncertainty Shocks" Bianchi, Kung and Tirskikh

Hikaru Saijo (UC Santa Cruz)

15th Workshop on Methods and Applications for DSGE Models October 2018

Introduction

- Key questions in the uncertainty shock literature
 - "Which" uncertainty shocks?
 - TFP, preference, economic policy, financial . . .
 - Propagation mechanism?
 - Precautionary savings, real options, nominal rigidity . . .

 This paper: Tackles both questions by estimating a MS-DSGE model that allows for a tractable decomposition of propagation channels

Introduction

- Uncertainty shock propagates through "expectational wedges"
 - Related to the confidence shock literature (Angeletos et al, Ilut & Schneider, . . .)
 - \bullet Difference: wedges are moments of endog. variables \longrightarrow policy variant
- ullet Resulting solution linear \longrightarrow Kalman filter
- Main findings
 - Uncertainty shocks important & recessionary
 - Demand- and supply-side uncertainty shocks have different real & nominal implications
 - Uncertainty shocks co-move before but not after the Great Recession

Simple model without capital

Compared to Bianchi et al,

- No capital, no EZ, no habit, TFP shock in levels
- AR(1) uncertainty shocks
- Solution still linear

$$\begin{split} \tilde{y}_t &= E_t[\tilde{y}_{t+1}] - \gamma^{-1}\tilde{\beta}_t - \gamma^{-1}\tilde{r}_{f,t} - \underbrace{\frac{1}{2}\gamma^{-1}Var_t[\tilde{m}_{t+1}]}_{\text{Precautionary motive}} \\ \tilde{r}_t &= \tilde{r}_{f,t} + E_t[\tilde{\pi}_{t+1}] - \left(\underbrace{\frac{1}{2}Var_t[\tilde{\pi}_{t+1}] - Cov_t[\tilde{m}_{t+1}, \tilde{\pi}_{t+1}]}_{\text{Inflation risk premium}}\right) \\ \tilde{\pi}_t &= \beta E_t[\tilde{\pi}_{t+1}] + \kappa \tilde{m}c_t + \underbrace{\frac{1}{2}\beta\left(2Cov_t[\tilde{m}_{t+1} + \tilde{y}_{t+1}, \tilde{\pi}_{t+1}] + 3Var_t[\tilde{\pi}_{t+1}]\right)}_{\text{Inflation risk premium}} \end{split}$$

Nominal pricing bias

Discount factor uncertainty shock: wedges

Discount factor uncertainty shock: decomposition

Comparison with 3rd-order perturbation

TFP uncertainty shock: wedges

TFP uncertainty shock: decomposition

Discount factor uncertainty shock: policy change

Discount factor uncertainty shock: policy change

TFP uncertainty shock: policy change

TFP uncertainty shock: policy change

Conclusion

- Exciting and ambitious paper that furthers our understanding on the role of time-varying uncertainty in business cycles
- Attractive alternative to higher-order methods
- Uncertainty shocks propagates through expectation wedges that are policy variant
 - √ Precautionary motive effect contractionary & deflationary
 - ✓ Inflation risk channel has little impact
 - Nominal pricing bias likely depends on the details of the model, parameters and shocks