Einführung in die Mathematik für Informatiker

Prof. Dr. Ulrike Baumann Institut für Algebra

15.10.2018

Zusammenfassung

- $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ ist die Menge aller komplexen Zahlen.
- Komplexe Zahlen kann man durch
 - kartesische Koordinaten: z = a + bi bzw.
 - Polarkoordinaten: $z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$

beschreiben und diese Darstellungen ineinander umrechnen.

- Rechenoperationen f
 ür komplexe Zahlen
 - \bullet +, -, \cdot , : in kartesischen Koordinaten
 - ·, : in Polarkoordinaten

2. Vorlesung

- Beispiel: "Komplexe Uhr"
- Potenzieren komplexer Zahlen:
 Satz von MOIVRE Formel von MOIVRE
- Berechnung *n*-ter Wurzeln komplexer Zahlen:
 - Gesucht: alle Lösungen von $x^n = 1$ in \mathbb{C} (n-te Einheitswurzeln)
 - Gesucht: alle Lösungen von $x^n = z_0$ in \mathbb{C}
- Ausblick: Lösbarkeit von Gleichungen der Form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$ in \mathbb{C}
 - Satz von GAUSS Fundamentalsatz der Algebra
 - n = 2 (Lösen von quadratischen Gleichungen)

Potenzieren in $\mathbb C$

Sei $z \in \mathbb{C}$.

$$z = r e^{i\varphi}$$

$$z^{2} = r^{2} e^{i2\varphi}$$

$$z^{3} = r^{3} e^{i3\varphi}$$

$$\vdots \qquad \vdots$$

Satz von MOIVRE:

Für
$$n \in \mathbb{N}$$
 gilt: $z^n = r^n e^{i n\varphi}$

Formel von MOIVRE – Sonderfall r = 1:

$$z^n = e^{i n\varphi}$$

Diese Zahlen z^n liegen auf dem Einheitskreis.

Der Einheitskreis ist ein Kreis um 0 mit dem Radius 1.

n-te Einheitswurzeln

Die Lösungen der Gleichung $z^n = 1$ in $\mathbb C$ für eine natürliche Zahl $n \geq 1$ heißen n-te Einheitswurzeln.

Die Lösungen dieser Gleichung sind:

$$z_k = e^{i\frac{2\pi k}{n}}$$
 $(k = 0, 1, ..., n-1)$

Probe:
$$(z_k)^n = (e^{i\frac{2\pi k}{n}})^n = e^{i2\pi k} = 1$$

Geometrische Interpretation der *n*-ten Einheitswurzeln

Die Lösungen der Gleichung $z^n = 1$ in \mathbb{C} bilden die Eckpunkte eines regulären n-Ecks, das dem Einheitskreis einbeschrieben ist.

Beispiel: n = 6

Berechnung n-ter Wurzeln in \mathbb{C}

Berechnen aller Lösungen von $z^n = r_0 e^{i \varphi_0}$ in \mathbb{C} :

Ansatz:
$$z = r e^{i \varphi}$$

Einsetzen in die gegebene Gleichung:

$$(r e^{i \varphi})^n = r_0 e^{i \varphi_0}$$

 $r^n (e^{i \varphi})^n = r_0 e^{i \varphi_0}$
 $r^n e^{i n\varphi} = r_0 e^{i \varphi_0}$

$$z_k = \sqrt[n]{r_0} e^{irac{arphi_0 + 2\pi k}{n}} \qquad (k = 0, 1, \dots, n-1)$$

Probe:

$$(z_k)^n = \left(\sqrt[n]{r_0} e^{i\frac{\varphi_0 + 2\pi k}{n}}\right)^n = \left(\sqrt[n]{r_0}\right)^n \left(e^{i\frac{\varphi_0 + 2\pi k}{n}}\right)^n$$
$$= r_0 e^{i(\varphi_0 + 2\pi k)} = r_0 e^{i\varphi_0} \cdot e^{i2\pi k} = r_0 e^{i\varphi_0} \cdot 1 = r_0 e^{i\varphi_0}$$

Ulrike Baumann Lineare Algebra

Zusammenhang zu den *n*-ten Einheitswurzeln

Man erhält alle Lösungen von

$$z^n = a + bi = r(\cos \varphi + i \sin \varphi) = r e^{i\varphi}$$

in \mathbb{C} ,

wenn man eine feste Lösung z_0 dieser Gleichung

mit

allen n-ten Einheitswurzeln w_k multipliziert:

$$z_k = z_0 \cdot w_k$$
 $(k = 0, 1, \dots, n-1)$

Probe:

$$(z_k)^n = (z_0 \cdot w_k)^n = (z_0)^n \cdot (w_k)^n = r e^{i\varphi} \cdot 1 = r e^{i\varphi}$$

Ulrike Baumann

Lösbarkeit von Gleichungen in $\mathbb C$

- In $\mathbb C$ ist die Gleichung $x^2=-1$ lösbar; Lösungen: $\pm i$
- In $\mathbb C$ sind alle Gleichungen $x^2=z_0$ ($z_0\in\mathbb C$) lösbar.
- In \mathbb{C} sind alle Gleichungen $ax^2 + bx + c = 0$ ($a, b, c \in \mathbb{C}, a \neq 0$) lösbar.
- Fundamentalsatz der Algebra In C sind alle Gleichungen

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

mit $a_0, a_1, \ldots, a_n \in \mathbb{C}, \ a_n \neq 0$ lösbar.

