Canadian Hospital Re-admittance Challenge

Readmission of a patient generally indicates incorrect diagnosis or prescription. Predicting the readmission can help us prevent this.

EDA and Pre-processing:

Distribution and Proportion of Target Values:

Race: Since Asian and Hispanic have negligible data, we group them up with 'Other'.

Gender:

We drop all rows with Unknown/Invalid value as gender.

Age: We transform the ages of patients within the range of (a, b) into the average age, which is (a + b) / 2.

Weight:

We transform the weights of patients within the range of (a, b) into the average weight, which is (a + b) / 2.

Admission_type_id:

Distribution of Admission IDs

Discharge_disposition_id:

Admission_source_id:

We classify admission_source into three classes - referral, emergency, other.

Time_in_hospital and Payer_code:

Diag1, Diag2, Diag3:

- diag_1: The primary diagnosis (coded as first three digits of ICD9); 848 distinct values
- diag_2: Secondary diagnosis (coded as first three digits of ICD9); 923 distinct values
- diag_3: Additional secondary diagnosis (coded as first three digits of ICD9); 954 distinct values

We instead classify them as categorical values:

- Circulatory between 390 450 or 785
- Respiratory between 460 520 or 786
- Digestive between 520 580 or 787
- Diabetes between 250 251
- Injury between 800 999
- Muscoloskeletal between 710 740
- Genitourinary between 580 630 or 788
- Neoplasm between 140 240

Change: If there was a change in medication

The change column has 2 values, Yes or No. We have changed "ch" to "Yes".

max_glu_serum:

The column has 3 values, NULL \rightarrow 0 Norm \rightarrow 1 >200 and >300 \rightarrow 2

A1c test result:

 $\begin{array}{c} \text{NULL} \rightarrow 0 \\ \text{Norm} \rightarrow 1 \end{array}$

>7 and >8 \rightarrow 2

Feature Generation: Patient_id_frequency

We used the frequency of patient_id to create create a new feature, patient_id_frequency. We have considered the test and train data as dependent for this feature, and have added the frequency of the train data to the test data for the particular patient_id. This was the key insight to get the score of 0.7+.

Handling NULL Values:

Percentage of NULL Values in Columns:

```
race 2.272823
weight 96.841352
admission_source_id 6.846546
payer_code 39.556105
medical_specialty 49.033454
dtype: float64
```

- 'weight', 'payer_code', 'medical_specialty' were dropped.
- 'Race' and 'admission source id' were filled with mode values.

Dropping columns:

Dropped columns of some drugs as they were imbalanced.

repaglinide', 'nateglinide', 'chlorpropamide', 'acetohexamide', 'tolbutamide', 'acarbose', 'miglitol', 'troglitazone', 'tolazamide', 'examide', 'citoglipton', 'glyburide-metformin', 'glipizide-metformin', 'metformin-rosiglitazone', 'metformin-pioglitazone', 'glimepiride-pioglitazone' were dropped.

Encoding:

Dummy encoded the categorical columns 'race', 'gender', 'admission_source_id', 'diag_1', 'diag_2', 'diag_3', 'metformin', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed'.

Models Tried:

We first try Non neural ensembles:

Test-Train split is 20-80.

Random Forest:

Prediction on the training dataset:

		aining dataset:			
Accuracy:	0.69	01101986383	098		
0.4845200	16388	32104			
Classific	ation	Report:			
		precision	recall	f1-score	support
	0	0.45	0.02	0.04	1554
	1	0.61	0.61	0.61	4990
	2	0.74	0.88	0.80	7703
accur	асу			0.69	14247
macro	avg	0.60	0.50	0.48	14247
weighted	ava	0.66	0.69	0.65	14247

On the test dataset: 0.708

Feature Importance by the random forest classifier:

• frequency: 0.1120307343885143

enc_id: 0.07872950864227435patient id: 0.07744797173713146

• num_lab_procedures: 0.06349947714367646

num_medications: 0.05661497915647388

• time_in_hospital: 0.042745179263562756 • age: 0.035882631344346626

number_inpatient: 0.03441714319795621

discharge_disposition_id: 0.02953866182686755

num_procedures: 0.02933302844702797
number_diagnoses: 0.02896792148525359
admission type id: 0.020931401887635287

• number outpatient: 0.0141691206911626

• diag_2_Circulatory: 0.01151537238728194 • diag_3_Other: 0.011490357656518783

diag_3_Circulatory: 0.01147980906486234number emergency: 0.011287277968881834

- gender_Female: 0.011193961712651678
- diag 1 Circulatory: 0.01117442522108308
- gender_Male: 0.0110639885176475
- diag 2 Other: 0.010936823783497591
- A1Cresult: 0.01088053771243707
- diag 1 Other: 0.00943089459124816
- diag 3 Diabetes: 0.00896875287996946
- insulin_Steady: 0.008899971565210116
- race Caucasian: 0.008858597997484282
- race AfricanAmerican: 0.008232879612574753
- insulin No: 0.00797248029288315
- diag 1 Respiratory: 0.0077123441160436585
- diag_2_Diabetes: 0.007515202177789529
- admission_source_id_Emergency: 0.007498621191639368
- diag_2_Respiratory: 0.007418958901423863
- admission source id Referral: 0.00727921866395266
- change_No: 0.0072030506599767685
- change_Yes: 0.00720084962676118
- metformin No: 0.006812130760256965
- diag_1_Digestive: 0.00673525307728447
- diag 2 Genitourinary: 0.006672656931518185
- metformin Steady: 0.006630506310605617
- diag 3 Respiratory: 0.006389720974986572
- glipizide No: 0.006350754362968675
- diag 1 Diabetes: 0.005917147333625065
- insulin Down: 0.005901108424588778
- glipizide Steady: 0.005895859996528847
- diag 1 Injury: 0.005796439088684599
- insulin Up: 0.005731660194740521
- diag_3_Genitourinary: 0.00568575267915593
- glyburide_No: 0.005640622048135199
- glyburide_Steady: 0.005334835964549822
- diabetesMed Yes: 0.004679267738957148
- diag 1 Genitourinary: 0.004638364720728753
- diabetesMed No: 0.004526294167789058
- pioglitazone No: 0.00446233737227704
- pioglitazone Steady: 0.004376128702185501
- max glu serum: 0.004205576969335931
- diag 2 Digestive: 0.004150165455050339
- diag 3 Digestive: 0.0041224348034043234
- rosiglitazone No: 0.003935490001721713
- rosiglitazone_Steady: 0.003877527234807635
- glimepiride No: 0.0036439649038062425
- diag 1 Muscoloskeletal: 0.0036348744292445034
- admission_source_id_Other: 0.0035163467182060455
- race Other: 0.0034755931428602114
- glimepiride_Steady: 0.0033595902298634134 diag_1_Neoplasms: 0.003050487577261583

diag_2_Neoplasms: 0.0028837717872590824 • diag_2_Injury: 0.0025734511144516084

• diag 3 Neoplasms: 0.0023705315714694216

diag 3 Muscoloskeletal: 0.002322168966629193

• diag 3 Injury: 0.0023070206903689277

diag 2 Muscoloskeletal: 0.0019287527248025807

metformin_Up: 0.0010483374882502353

glipizide_Up: 0.001047405353112099

glyburide Up: 0.0009507636066328211

• glipizide_Down: 0.0008645475754104656

• glyburide_Down: 0.0007641883161276305

• metformin Down: 0.0006274946179293416

pioglitazone_Up: 0.00042217662933528464

• glimepiride Up: 0.0004119074836461238

glimepiride_Down: 0.00030063625249450665

• pioglitazone Down: 0.00019178417898271178

• rosiglitazone Up: 0.00018645191414185146

• rosiglitazone Down: 0.0001275819001258089

Random Forest with Random OverSampling:

Prediction on the training dataset:

Accuracy: 0.6908822910086334 F1 Macro: 0.5104639139993035

Classification Report:

	precision	recall	f1-score	support
0	0.41	0.07	0.11	1554
1	0.60	0.63	0.62	4990
2	0.75	0.85	0.80	7703
accuracy			0.69	14247
macro avg	0.59	0.52	0.51	14247
weighted avg	0.66	0.69	0.66	14247

On the test dataset: 0.704

Random Forest with Boosting:

Accuracy: 0.6912332420860532 F1 Macro: 0.48593510705841503

Classification Report:

	precision	recall	f1-score	support
0	0.44	0.02	0.04	1554
1	0.61	0.62	0.61	4990
2	0.74	0.87	0.80	7703
accuracy			0.69	14247
macro avg	0.60	0.50	0.49	14247
weighted avg	0.66	0.69	0.65	14247

On the test data: 0.708

Random Forest with bagging:

Accuracy: 0.6929178072576683 F1 Macro: 0.4791334928025015

Classification Report:

	precision	recall	f1-score	support
0	0.59	0.01	0.02	1554
1	0.61	0.61	0.61	4990
2	0.74	0.88	0.80	7703
accuracy			0.69	14247
macro avg	0.65	0.50	0.48	14247
weighted avg	0.68	0.69	0.65	14247

On the test data: 0.709

lightGBM (without hyperparameter optimization):

Prediction on the training dataset:

Classifica		47799536744 Report:			
		precision	recall	f1-score	support
	0	0.57	0.07	0.13	1554
	1	0.64	0.61	0.62	4990
	2	0.74	0.89	0.81	7703
accura	асу			0.70	14247
macro a	avg	0.65	0.53	0.52	14247
weighted a		0.69	0.70	0.67	14247

On the test dataset: 0.725

lightGBM (with hyperparameter optimization):

Prediction on the training dataset:

Accuracy: 0.70548 Classification Re		973		
571	cision	recall	f1-score	support
0	0.59	0.07	0.12	1554
1	0.63	0.62	0.62	4990
2	0.74	0.89	0.81	7703
accuracy			0.71	14247
macro avg	0.66	0.53	0.52	14247
weighted avg	0.69	0.71	0.67	14247
Confusion Matrix: [[106 957 491] [57 3070 1863] [17 811 6875]	1			

On the test dataset: 0.728

lightGBM (with hyperparameter optimization) and oversampling:

Prediction on the training dataset:

Accuracy (wit Classificatio				2773
	precision	recall	f1-score	support
0	0.26	0.44	0.32	1554
1	0.61	0.45	0.52	4990
2	0.78	0.80	0.79	7703
accuracy			0.64	14247
macro avg	0.55	0.57	0.55	14247
weighted avg	0.67	0.64	0.65	14247

On the test dataset: 0.644

lightGBM (with hyperparameter optimization) and bagging:

Prediction on the training dataset:

On the test dataset: 0.728 same as before

lightGBM (with hyperparameter optimization) and bagging and boosting:

Prediction on the training dataset:

On the test dataset: 0.728 same as before

We then tried different pre processing. For that we again tried a few ensembles:

Random Forest with boosting:

Prediction on training dataset:

Accuracy: 0.698694553621561 F1 Macro: 0.49049040296773244

Classification Report:

	precision	recall	f1-score	support
0	0.59	0.01	0.03	1710
1	0.60	0.67	0.63	4989
2	0.76	0.88	0.81	7549
accuracy			0.70	14248
macro avg	0.65	0.52	0.49	14248
weighted avg	0.68	0.70	0.66	14248

On the test dataset: **0.702** which is a bit less compared to 0.708 by our previous pre processing.

Neural Networks

Neural Networks Experiments with old Preprocessing:

- First run with 3 layers and scaling: 0.552 (hidden layer1: 64, layer2: 32, layer3: 16 neurons, 64 batch size)
- Dropping enc id with 3 layers and scaling: 0.549
- Weighted loss function inversely proportional to frequency of target variables: 0.555
- Weighted loss function: [10, 6, 2] as weights: 0.566 (not dropped enc_id)

- Weighted loss function: [12, 7, 1] as weights: 0.575 (not dropped enc_id)
- Same thing with dropped enc id: 0.572
- Implementing xavier initialisation: 0.568
- Adding four layers: 0.565
- 20 epochs (for 3 layers with base accuracy 0.569): 0.571
- 2 Layers, 15 epochs: 0.567
- 4 layers, 5 epochs, 512 batch size: 0.563
- Removed weights from last: 0.571
- Removed normalization: 0.544
- 15 epochs: 0.555

New Preprocessing

Model- NN with 4 layers, 5 epochs to measure accuracy

Dropping columns:

- 'Enc_id', 'patient_id': 0.71
- 'patient_id', 'enc_id', 'readmission_id', 'repaglinide', 'nateglinide', 'chlorpropamide', 'acetohexamide', 'tolbutamide', 'acarbose', 'miglitol', 'troglitazone', 'tolazamide', 'examide', 'citoglipton', 'glyburide-metformin', 'glipizide-metformin', 'metformin-rosiglitazone', 'metformin-pioglitazone', 'glimepiride-pioglitazone': 0.717
- 'patient_id', 'enc_id', 'readmission_id', 'repaglinide', 'nateglinide', 'chlorpropamide', 'acetohexamide', 'tolbutamide', 'acarbose', 'miglitol', 'troglitazone', 'tolazamide', 'examide', 'citoglipton', 'glyburide-metformin', 'glipizide-metformin', 'metformin-rosiglitazone', 'metformin-pioglitazone', 'glimepiride-pioglitazone', 'weight', 'payer_code', 'medical_specialty': 0.7
- Keeping 'medical specialty': 0.704
- Keeping 'payer code': 0.71
- Deciding to not drop any columns with high null values.
- Keeping 'end_id' : 0.535
- Keeping 'patient id': 0.54

Final Dropped: 'patient_id', 'enc_id', 'readmission_id', 'repaglinide', 'nateglinide', 'chlorpropamide', 'acetohexamide', 'tolbutamide', 'acarbose', 'miglitol', 'troglitazone', 'tolazamide', 'examide', 'citoglipton', 'glyburide-metformin', 'glipizide-metformin', 'metformin-rosiglitazone', 'metformin-pioglitazone', 'glimepiride-pioglitazone': 0.717

Other Preprocessing:

NULL Values:

Replaced all NULL Values with 'most frequent' or mode.

Removing any of the columns with high percentage of NULL values was leading to decreased accuracy.

One-Hot Encoding:

New Neural Network Experiments:

Baseline: NN with 4 layers, 5 epochs, 512 batch size, 1

- 4 layers
- 5 epochs
- 512 batch size
- 1e-3 learning rate
- No data normalization
- ReLU for all hidden layers
- Cross Entropy Loss with no weights
- Adam Optimisation
- model = ANN(
 in_dim = in_dim,
 hidden_dim_1 = in_dim // 2,
 hidden_dim_2 = in_dim // 4,
 hidden_dim_3 = in_dim // 8,
 hidden_dim_4 = 3
).to(device)

Layers:

).to(device): 0.71 -> sticking to old one but doesn't make a meaningful difference

• 3 layers: 0.676, sticking to the old 4 hidden layer system. • 5 layers instead of 4: 0.711 -> doesn't matter

Batch Size:

- 64 size batches instead of 512: 0.699 -> worse
- 1024 size batch: 0.714 -> same

Learning Rate:

- Learning Rate 1e-4 instead of 1e-3: 0.576
- Learning Rate 5e-2: 0.687

Data Normalization:

Normalizing Data: 0.702

Activation Functions:

- Sigmoid in the last layer instead of ReLU: 0.711
- LeakyReLU all the layers: 0.716

Loss Functions:

- Weighted loss function: [12, 7, 1] as weights: 0.55
- Multi Margin Loss instead of Cross Entropy Loss: 0.711

Optimisation:

RMSProp instead of Adam: 0.621

Dropout:

- 0.2 dropout instead of 0.3: 0.629
- 0.4 dropout instead of 0.3: 0.714
- 0.5 dropout: 0.713

```
== EPOCH 1 STARTED =======
               | 112/112 [00:26<00:00, 4.24it/s]
           RAIN EVALUATION STARTED ======
               || 112/112 [00:12<00:00, 8.65it/s]
           EST EVALUATION STARTED ======
               | 28/28 [00:03<00:00, 7.51it/s]
END OF 1 EPOCH
 Time taken: 50.544
                        Train acc: 0.69625 | Train f1: 0.48251 |
               0.967
 Train Loss:
              0.969 | Test acc: 0.68866 | Test f1: 0.47701
| Test Loss:
         EPOCH 2 STARTED ======
               || 112/112 [00:25<00:00, 4.41it/s]
          TRAIN EVALUATION STARTED ======
               || 112/112 [00:12<00:00, 8.66it/s]
          TEST EVALUATION STARTED ==:
               | 28/28 [00:02<00:00, 11.03it/s]
END OF 2 EPOCH
| Time taken: 49.217
              0.919 | Train acc: 0.69516 | Train f1: 0.48002
0.925 | Test acc: 0.68276 | Test f1: 0.47083
 Train Loss:
                        Train acc: 0.69516 | Train f1: 0.48002
 Test Loss:
      === EPOCH 3 STARTED ===
               || 112/112 [00:25<00:00, 4.36it/s]
          TRAIN EVALUATION STARTED ======
          | 112/112 [00:13<00:00, 8.54it/s]
TEST EVALUATION STARTED =======
               || 28/28 [00:02<00:00, 11.08it/s]
END OF 3 EPOCH
 Time taken: 50.298
 Train Loss:
              0.858 | Train acc: 0.71659 | Train f1: 0.48817
                      | Test acc: 0.70768 | Test f1: 0.48095
 Test Loss:
             0.865
     ==== EPOCH 4 STARTED ==
         TRAIN EVALUATION STARTED ========
              | 112/112 [00:13<00:00, 8.20it/s]
          TEST EVALUATION STARTED ======
               | 28/28 [00:02<00:00, 9.81it/s]
END OF 4 EPOCH
 Time taken: 51.879
                        Train acc: 0.71127 | Train f1: 0.48877 |
              0.856 |
 Train Loss:
 Test Loss:
              0.866 | Test acc: 0.70010 | Test f1: 0.47974
 ====== EPOCH 5 STARTED =======
```

Epochs:

• 10 epochs instead of 5: 0.709

Conclusion:

Nothing we tried beats our baseline model. A lot of things are equivalent, some are worse.

SVM:

On running the SVM model with our existing pre processing (with mapping and dummy encoding) we got really less predicted value.

• First we run the dataset on sklearn svm (kernel = rgb, C=1). accuracy = 0.551

Weighted SVM giving more priority to least weights.

SVM is not that good with imbalanced dataset Our dataset is imbalanced. Trying out
 Weighted svm. Accuracy = 0.557

Grid Search

• We tried running grid search but it took way too long. We decided to stop it.

We then decided to change our pre processing. We decided to do similar pre processing as what we did for neural networks.

On the train data set:

Accuracy: 0.6 0.41336029311		301		
Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.00	0.00	0.00	1710
1	0.61	0.39	0.48	4989
2	0.64	0.94	0.76	7549
accuracy			0.63	14248
macro avg	0.42	0.44	0.41	14248
eighted avg	0.55	0.63	0.57	14248

Inference:

We can see that our model is not able to classify 0 correctly. The reason to this is that 0 is very few in number and SVM are not well dealt with imbalanced dataset. Yet the accuracy has increased.

On the test data set we got:

• When kernel = poly: **0.644**

• When kernel = rbf: **0.665**

This took us more than 3 hours to train+test.

To tackle the imbalance nature of dataset, we decided to go for weighted SVM with the pre processing. However it took more than 3 hours to train so we decided to terminate it.