Analyzing Weather and Climate Change with ClimateWins

James Nanthikattu

Introduction

- ClimateWins wants to use machine learning to help guess the effects of climate change in Europe and maybe the whole world.
- It is using hurricane data from NOAA (USA), typhoon data from JMA (Japan), global temperatures, and other weather info.

Hypothesis

- HOW WELL IT GUESSES DEPENDS ON THE LOCATION AND CLIMATE OF EACH PLACE.

- MACHINE LEARNING CAN FIND SIGNS OF CLIMATE CHANGE AND ITS BAD EFFECTS.

Data Set Info

- The data came from the European Climate Assessment & Dataset Project.

- It includes info from 18 weather stations across Europe.

- It covers a long time, from the late 1800s to 2022.

- Data includes temperature, wind, snow, sunlight, and more.

Data Bias & Accuracy

- Older data might have mistakes since it was collected by hand.
- Big areas have more data, which can make small places seem less important.
- Since the data covers over 200 years, old info might not match today's weather.
- All the data needs to be in the same format for fair use.

Data Optimization

- We used something called Gradient
 Descent to make the data better.
- Gradient Descent changes model settings to make errors smaller.
- It keeps adjusting until the model gets closer to the best result.

Method 1: K-Nearest Neighbor (KNN)

- KNN guesses weather by looking at nearby data points and grouping them.
- It had an average accuracy of 89%.
- To improve, the model needs to include more different weather types and places.

Weather Station	Accurate predictions		False positive	False negative	Accuracy rate
Basel	3917	961	421	439	85%
Belgrade	3252	1544	524	418	84%
Budapest	3424	1462	476	376	85%
Debilt	4320	723	317	378	88%
Desseldorf	4164	810	343	421	87%
Heathrow	4138	744	432	424	85%
Kassel	4563	614	252	309	90%
Ljubljana	3740	1180	455	363	86%
Maastricht	4253	824	309	352	88%
Madrid	2750	2261	418	309	87%
Munchenb	4237	792	309	400	88%
Oslo	4637	512	242	347	90%
Sonnblick	5738	0	0	0	100%
Stockholm	4483	607	283	365	89%
Valentia	5404	74	50	202	96%
				Average	88%

Method 2: Decision Tree

- A decision tree uses questions to make predictions.
- The data goes through the tree based on answers.
- Accuracy was about 64%.
- It is hard to understand because the tree has too many parts.

Method 3: Artificial Neural Network (ANN)

- ANN works like a brain. It learns patterns from data.
 - It has layers of fake "neurons" that adjust to get better.
- We changed the size and number of steps in the layers.
- Best accuracy was 64%.
- The confusion matrix showed how many times the model was right or wrong.

Algorithm Recap

- Decision Tree is too hard to understand.
- KNN gave the best results, with 89% average accuracy.
- ANN is more powerful and works better for big and messy data.
- Even though KNN had higher accuracy, ANN is better for complex weather patterns.

Summary

- Machine learning can help predict weather.
 Some models reached 89% accuracy.
- Accuracy changes depending on the location and weather in the area.
- For example, Sonnblick predicted 5738 bad weather days. Madrid only predicted 2799.
- It also helps spot signs of climate change.

Next Steps

- Try other types of machine learning that don't need labeled data.
- Add more kinds of data.
- Keep testing and adjusting the models to improve them.
- Use more weather stations to get better results.

Thank You

For any questions, please contact:

James.t.Nanthikattu@gmail.com

Check out the full project on GitHub: https://github.com/jamestnanthikattu