Assignment - 13:-Let consider a sample dataset have one input (xia) and one output (Y:9) and number of samples 4. Develop a sample linear regression model using ADAGRAD Optimizer. sample (i) x:9 0.4 3.8 0.8 4.6 * Do manual calculations first samples.

step!
$$[X,Y]$$
, epochs = g , $m=1$, $c=1$, $Gm=G_c=0$, $q=01$, $g=101$, g

step4:-
$$g_{m} = -(y_{1} - mx_{1} - c)(x_{1})$$
 $= -(3.8 - [1.0191)(0.4) - (1.0191)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c)$
 $g_{m} = -0.904$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0199)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4) - (1.0919)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 - (1.0919)(0.4)$
 $g_{c} = -(y_{1} - mx_{1} - c) = -(3.8 -$

```
m = 1.0999 + 0.089
         = 1.0999 + 0.07165
steps:-sample=sample+1=3
stepa:- it (sample >ng)
       True: go to step 10.
 step10; iter = iter+1 = 1+1
step 11:- if (iter > epochs)
       false: go to step 3.
step3: Sample =1
step4:- gm=-(y:-mx:-c)(xi)
            = -(3.4 -(1.1889)(0.2) - 1.17155)(0.2)
            =-(3.4-0.2377-1.17155)(0.2)
        9m = -0.398
          gc = - (y: -mx: -c)
              =-(3.4-(1.1889)(0.2)-(17155)
                = - (3.4-0.2377-1.17155)
             gc = -1.990+5
```

Step 5:-
$$G_{m} = G_{m} + (g_{m})^{2}$$

= 1.0108 + $(-0.398)^{2}$
 $G_{m} = 1.1692$
 $G_{c} = G_{c} + (g_{c})^{2}$

= 9.948 + $(-1.99075)^{2}$
 $G_{m} = -0$
 $G_{m} = -0$
 $G_{m} = -0$
 $G_{m} + E$

= -0.1
 $G_{m} + E$

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

= -0.036

steps: sample = sample +1

= 1+1

= 2

steps:
$$\frac{1}{2}$$
 = $\frac{1}{2}$ = $\frac{1}{2$

$$\Delta C = \frac{-9}{\sqrt{Gc+E}}$$

$$= \frac{-611}{\sqrt{[18.259]+10^3}}$$

$$= \frac{-61}{\sqrt{[18.259]+10^3}}$$

$$= \frac{-61}{\sqrt{[18.259]+10^3}}$$

$$= \frac{1.2249+0.0610}{-1.22485+0.0487}$$

$$= \frac{1.22485+0.0487}{c=1.22485+0.0487}$$

$$= \frac{1.22485+0.0487}{c=1.22485+0.0487}$$

$$= \frac{1.22485+0.0487}{c=1.2435}$$

$$= \frac{1.2859}{c=1.2735}$$
Step 1: - if (iter > epoch3)
$$= \frac{3.2}{3.2}$$
Thue: go to next step.

Step 1: - if (iter > epoch3)
$$= \frac{3.2}{3.2}$$
Thue: go to next step.

Step 2: - print on $\frac{1}{5}$ $\frac{$