A STUDY OF ELEMENT INTERACTION IN THERMOACOUSTIC ENGINES

ANNUAL REPORT

Submitted by:

Richard Raspet and Henry E. Bass Physical Acoustics Research Group Department of Physics and Astronomy The University of Mississippi University, Mississippi 38677

Submitted to:

Office of Naval Research Physics Division ONR 312 800 North Quincy Street Arlington VA 22217-5660

PARGUM Report 93-04

November 1993

Qd-A 273 228

93-28656

03 11 33 182

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	13 Nov 1993	Annual 1 0	ct 92 - 30 Sep 93
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
A STUDY OF ELEMENT INT	ERACTION IN THERMOAC	OUSTIC ENGINES	PE 61153N
			G N00014-93-1-0077
			TA 3126962
6. AUTHOR(S)			
Richard Raspet and Hen	ry E. Bass		
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
			REPORT NUMBER
Dept. of Physics and A			PARGUM 93-04
The University of Miss University, MS 38677	ISSIPPI		PARGUM 93-04
University, MS 300//			
			<u> </u>
9. SPONSORING/MONITORING AGI	INCY NAME(S) AND ADDRESS(E	5)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Office of Naval Resear	ch		
Physics Division ONR 3			
800 North Quincy Stree			
Arlington VA 22217-56	60]
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public re	leace: distribution	unlimited	
Approved for public re	rease. distribution	dulimited.	
13. ABSTRACT (Maximum 200 word	s)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			s progressed rapidly in the
			and refrigerators is now
			ever, notable discrepancies
between theory and exp			
cies are typically att			
			nis may well be the case. ents in the engine are at
			illustrated, for example, by
Swift's observation th			
			ict. Additional element
interactions will aris	• •		
			ct centers on studies of
different thermoacoust	ic element geometrie:	s.	
14. SUBJECT TERMS			15. NUMBER OF PAGES
Thermoacoustics, Therm			
Refrigerator, Acoustic	: Heat Engine, Acoust	ic Amplifier	16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	TAN CECURITY CLASSIS	ICATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ZU. LIMITATION OF ABSTRACT
INCLASSIETED	INCLASSIFIED	INCLASSIFIED	į

TABLE OF CONTENTS

													Pa	ge
Brief Description of Project			٠	•					•		•			1
Brief Description of Approach Taken			•							•	•		•	1
Brief Description of Accomplishments		•			•		•					•	•	2
References							•					•		3
Publication/Patents/Presentation/Honors Re	por	t												6

Accesion	n For		
NTIS		A	1
DTIC Unanno			
Justific	ition		
Бу			
Di t ib	rtic /		
,	vallability	Codes	
Dist	Av.a. Sp. C		1
		,131	
101			

CTIC QUALITY INSPECTED 6

A STUDY OF ELEMENT INTERACTION IN THERMOACOUSTIC ENGINES

ANNUAL REPORT

Brief Description of Project

The physical understanding of thermoacoustic engines has progressed rapidly in the past five years. The general performance of prime movers and refrigerators is now reasonably well understood and documented. There are, however, notable discrepancies between theory and experiment, especially at large acoustic amplitudes. The discrepancies are typically attributed to non-linear terms not included in the theory. Acoustic streaming is often mentioned as the culprit and this may well be the case. There is evidence, however, that interactions between elements in the engine are at least partially responsible for the differences. This is illustrated, for example, by Swift's observation that the heat exchanger appears to be effective over larger acoustic displacements than simple geometric arguments predict. Additional element interactions will arise when a thermoacoustic prime mover and a refrigerator are placed in the same acoustic cavity. This three year project centers on studies of different thermoacoustic element geometries.

Brief Description of Approach Taken

The project concentrates on the analysis and measurement of individual elements in a thermoacoustically driven refrigerator and studies the interaction of the elements. The modular design of the UM helium-filled driver allows the addition of thermoacoustic elements to the basic thermoacoustic prime mover to build up to a thermoacoustic refrigerator driven by the prime mover. The impedance analysis and measurement techniques developed previously are applied to the investigation of an efficient thermoacoustic refrigerator.

Specifically, these techniques are used to design a system which will optimize the efficiency in the presence of non-linear interaction. At high ΔT , the prime mover will

generate sound of sufficient amplitude to generate harmonics. The refrigerator stack, however, will act as a frequency dependent absorber suppressing higher harmonics. A good refrigerator stack design and temperature gradient will minimize second harmonic generation. It should be more efficient to operate the refrigerator in this region than to apply devices in the resonator to suppress harmonics. This effort represents the main thrust of the proposed research.

The following goals were established for the three year duration of the project.

Year 1. Use the acoustics based theory to design refrigerator and muffler elements for use with the thermoacoustic prime mover. These elements will be constructed and then their impedance under load measured and compared to theory.

Year 2. The complete refrigerator system will be assembled and tested. The impedance technique will be used to measure the work and heat flow in the refrigerator. These values will then be compared to theory. Interactions between particular elements will be isolated using the modular design of the experiment.

Year 3. Streaming and turbulence effects will be measured and theory developed to describe the performance degradation at high operating amplitudes.

Brief Description of Accomplishments

The acoustic impedance approach to the analysis of thermoacoustic prime movers developed in previous years has been tested experimentally and the results published in a letter, "Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover." ¹

A single stack longitudinal mode thermoacoustic engine has been constructed and used to investigate the onset of acoustic oscillations. This work has been reported in the article, "Stability Analysis of a Helium Filled Thermoacoustic Engine." The physics of the optimum location of the stack and the minimum temperature for onset are analyzed using an extended short stack approximation.

The system has been extended by the addition of a second stack to investigate element interactions in a thermally driven refrigerator. Figure 1 illustrates this system. The onset-temperature differences of the prime mover stack versus the temperature differences in the refrigerator stack are plotted in Fig. 2. If the two-stack system was linear, this plot would be linear. The system is being modified to achieve higher temperature differences. Jim Belcher will investigate this system in detail for his Ph.D. research.

A separate line of inquiry applicable to low standing wave ratio devices has involved the contribution of traveling waves to the thermoacoustic effect. A theoretical paper has demonstrated that gains displayed by Ceperley's traveling wave engine are thermoacoustic and not due to a Stirling cycle.³ Cooperative experimental work with Anthony Atchley of the Naval Postgraduate School built and tested a thermoacoustic muffler based on the theoretical work. This work has been presented to the Acoustical Society of America⁴ and is being written up for publication by John Kordomenos, a Ph.D. student. John's Ph.D. work will involve non-linear effects in thermoacoustics.

References

- 1. W. Pat Arnott, Henry E. Bass and Richard Raspet, "Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover," J. Acoust. Soc. Am. 92 (6), 3432-3434 (1992).
- 2. W. Patrick Arnott, James R. Belcher, Richard Raspet and Henry E. Bass, "Stability analysis of a helium filled thermoacoustic engine," submitted to J. Acoust. Soc. Am., Aug. 1993.
- 3. Richard Raspet, Henry E. Bass and John Kordomenos, "Thermoacoustics of traveling waves: Theoretical analysis for an inviscid ideal gas," J. Acoust. Soc. Am. 94 (4), 2232-2239 (1993).
- 4. John N. Kordomenos, Anthony A. Atchley, Richard Raspet and Henry E. Bass, "Thermoacoustic termination for a traveling wave tube," J. Acoust. Soc. Am. 94 (3), 1773 (1993).

Figure 1

Figure 2

OFFICE OF NAVAL RESEARCH PUBLICATION/PATENTS/PRESENTATION/HONORS REPORT for 1 Oct 92 through 30 Sept 93

R&T Number: TA 3126962
Contract/Grant Number: N00014-93-1-0077
Contract/Grant Title: A Study of Element Interaction in Thermoacoustic Engine
Principal Investigator: Richard Raspet and Henry E. Bass
Mailing Address: Dept. of Physics and Astronomy The University of Mississippi University, MS 38677
Phone Number (with Area Code): 601-232-5905
E-Mail Address: pabass@sparc.ncpa.olemiss.edu
a. Number of Papers Submitted to Referred Journal but not yet published:
b. Number of Papers Published in Referred Journals: 2 (list attached)
c. Number of Books or Chapters Submitted but not yet Published:
d. Number of Books or Chapters Published: O (list attached)
e. Number of Printed Technical Report & Non-Referred Papers:
f. Number of Patents Filed:
g. Number of Patents Granted: C (list attached)
h. Number of Invited Presentations at Workshops or Prof. Society Meetings:
i. Number of Presentation at Workshop or Prof. Society Meetings: 2
j. Honors/Awards/Prizes for Contract/Grant Employees: (list attached, this might Include Scientific Soc. Awards/Offices, Promotions, Faculty Award/Offices etc.)
k. Total number of Graduate Students and Post-Docs Supported at least 25%, this year on this contract,grant: Grad Students 3 and Post Docs 1
[Grad Student Female
How many of each are females or minorities?][Grad Student Minority
(These 6 numbers are for ONR's EEO/Minority][Reports; minorities Include Blacks, Aleuts][Grad Student Asian e/n Amindians, etc and those of Hispanic or][
Asian extraction/nationality. This Asians][Post-Doc Female are singled out to facilitate meeting the][
varying report semantics re "under-][Post-Doc Minority O represented")
][Post-Doc Asian e/n

P³H REPORT CONTINUED

Papers Published in Referr d Journals

- 1. W. Pat Arnott, Henry E. Bass and Richard Raspet, "Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover," J. Acoust. Soc. Am. 92 (6), 3432-3434 (1992).
- 3. Richard Raspet, Henry E. Bass and John Kordomenos, "Thermoacoustics of traveling waves: Theoretical analysis for an inviscid ideal gas," J. Acoust. Soc. Am. 94 (4), 2232-2239 (1993).