

## (B) BUNDESREPÜBLIK DEUTSCHLAND



# DEUTSCHES PATENT- UND MARKENAMT

# ® Offenlegungsschrift

### ® DE 101 26 344 A 1

② Aktenzeichen:

101 26 344.9

2 Anmeldetag:

30. 5.2001

43 Offenlegungstag:

24. 1.2002

### (5) Int. Cl.<sup>7</sup>: C 12 N 15/63

C 12 N 15/12 C 12 N 5/22 C 07 H 21/00 C 07 K 14/435 C 12 Q 1/68 A 61 K 48/00 A 01 K 67/00

66 Innere Priorität:

100 34 303. 1

14.07.2000

(1) Anmelder:

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 80539 München, DE

(4) Vertreter:

Weickmann, 81679 München

#### (72) Erfinder:

Grimm, Stefan, Dr., 81241 München, DE; Schönfeld, Nicole, 81375 München, DE; Braziulis, Erik, 82152 Planegg, DE; Cramer, Ursula, 81241 München, DE; Gewies, Andreas, 82152 Planegg, DE; Voß, Frank, 80992 München, DE; Mund, Thomas, 81475 München, DE; Albayrak, Timur, 80689 München, DE; Gille, Hendrik, 81371 München, DE; Klein, Matthias, 82152 Planegg, DE

#### Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Apoptose-induzierende DNA-Sequenzen
- Die Erfindung betrifft neue Apoptose-assoziierte und insbesondere Apoptose-induzierende Nukleinsäurese-quenzen, davon codierte Polypeptide und deren Verwendung zur Bereitstellung diagnostischer und therapeutischer Mittel. Zusätzlich betrifft die Erfindung Zellsysteme sowie transgene Tiere und deren Verwendung zur genetischen und/oder pharmakologischen Untersuchung von Apoptose-assoziierten Krankheiten.

#### Beschreibung

[0001] Die Erfindung betrifft neue Apoptose-assoziierte und insbesondere Apoptose-induzierende Nukleinsäuresequenzen, davon kodierte Polypeptide und deren Verwendung zur Bereitstellung diagnostischer und therapeutischer Mittel. Zusätzlich betrifft die Erfindung transgene Zellsysteme sowie Tiere und deren Verwendung zur genetischen und/oder pharmakologischen Untersuchung von Apoptose-assoziierten Krankheiten.

[0002] Apoptose ist das genetisch kodierte Selbstmordprogramm, welches in eukaryontischen Zellen unter bestimmten physiologischen oder pathologischen Bedingungen induziert wird. Die Induktion der Apoptose muss außerordentlich präzise reguliert sein, denn eine Hyperaktivität kann zu degenerativen Erkrankungen führen. Auf der anderen Seite kann eine verringerte Apoptose-Induktion zur Turnorprogression beitragen.

[0003] Verschiedene niedermolekulare Induktoren der Apoptose wurden bereits beschrieben. Eine wichtige Klasse sind Tumorcytostatika. Auf welche Weise diese Cytostatika oder andere Substanzen Apoptose induzieren können, ist in den meisten Fällen jedoch unbekannt.

[0004] Die Identifizierung von Apoptose-induzierenden Genen oder anderen dominanten Genen mit einer nicht-selektionierbaren Aktivität ist problematisch, da eine stabile rekombinante Expression solcher Gene in einer Zielzelle entweder gar nicht oder nur sehr schwer möglich ist. Daher ist es erforderlich, spezielle Screening-Verfahren zur Identifizierung solcher Gene zu verwenden. Hierzu wurden bereits verschiedene in vitro Verfahren entwickelt (King et al., Science 277 (1997), 973–974 und Lustig et al., Meth. Enzymol. 283 (1997), 83–99). Von anderen Arbeitsgruppen wurden transgene Mäuse erzeugt, die multiple Transgene enthalten, deren Funktionen durch Untersuchung des Phänotyps bestimmt wird (Simonet et al., Cell 89 (1997), 309–319 und Smith et al., Nat. Genet. 16 (1997), 28–36). Ein Nachteil bei den in vitro Verfahren besteht darin, dass die erhaltenen Ergebnisse nicht ohne weiteres mit komplex regulierten zellbiologischen Effekten korrelieren. Untersuchungen an transgenen Tiere wiederum sind sehr aufwendig und mühsam.

[0005] Grimm und Leder (J. Exp. Med. 185 (1997), 1137–1142) beschreiben ein Verfahren zur Identifizierung und Isolierung dominanter Apoptose-induzierender Nukleinsäuresequenzen. Hierbei werden kleine Plasmidpools entsprechend 20 Klonen aus normalisierten cDNA-Expressionsbibliotheken in die humane Nierenzellinie 293 transient eingeführt. Die Apoptoseinduzierende Aktivität einer Nukleinsäuresequenz wird manuell durch mikroskopische Inspektion auf für Apoptose charakteristische morphologische Merkmale bestimmt. Mit Hilfe dieses Verfahrens konnte das Apoptose-induzierende Adenin-nukelotid-Translokase-1-(ANT-1) Gen identifiziert werden. Das ANT-1-Gen gilt als ursächlich für die degenerative Herzkrankheit dilatorische Kardiomyopathie (DCM) (PCT/EP00/08812).

[0006] Ein Gegenstand der vorliegenden Erfindung sind neue Apoptose-assoziierte und insbesondere Apoptose-induzierende Nukleinsäuren umfassend:

- (a) die in Tabelle 1 gezeigten Nukleinsäuren der Klone 1-124, dazu komplementäre Nukleinsäuren oder Fragmente davon,
- 35 (b) den Sequenzen gemäß (a) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleinsäuren und
  - (c) mit den Sequenzen gemäß (a) oder/und (b) unter stringenten Bedingungen hybridisierende Nukleinsäuren.

[0007] Die erfindungsgemäßen Nukleinsäuren sind Apoptose-assoziierte Nukleinsäuren, d. h. Nukleinsäuren, die mit dem Auftreten apoptotischer Prozesse in einer Zelle, insbesondere in einer Säugerzelle, assoziiert sind. Vorzugsweise sind die Nukleinsäuren Apoptose-induzierende Nukleinsäuren, d. h. Nukleinsäuren, die apoptotische Prozesse hervorrufen oder/und fördern können. Besonders bevorzugt sind die erfindungsgemäßen Nukleinsäuren dominant Apoptose-induzierende Nukleinsäuren, die in der Lage sind, bei Expression in einer Zelle Apoptose zu induzieren und die für Apoptose charakteristischen Merkmale, wie etwa DNA-Fragmentierung, morphologische Besonderheiten etc., hervorzurufen. Die Nukleinsäuren können in doppelsträngiger oder einzelsträngiger Form, z. B. als DNA oder RNA, vorliegen. Die isolierten Nukleinsäuren können ihren zellulären Effekt durch Expression, insbesondere durch Überexpression in Zellen entfalten. Damit sind sie induzierbar und ihre Verwendung als therapeutisches Agens definiert.

[0008] Neben den in Tabelle 1 bzw. den entsprechenden Sequenzprotokollen gezeigten Nukleinsäuren oder Teilfragmenten davon mit einer Länge von vorzugsweise mindestens 15, besonders bevorzugt mindestens 20 und am meisten bevorzugt mindestens 25 Nukleotiden, werden auch Varianten dieser Sequenzen von der vorliegenden Erfindung erfaßt. Neben den Nukleinsäuren, die den Sequenzen gemäß (a) im Rahmen der Degeneration des genetischen Codes entsprechen und für ein Polypeptid mit der gleichen Aminosäuresequenz codieren, werden auch Nukleinsäuren erfasst, die mit den Sequenzen gemäß (a) oder/und (b) unter stringenten Bedingungen hybridisieren. Hybridisierung unter stringenten Bedingungen bedeutet im Rahmen der vorliegenden Anmeldung, dass nach Vorhybridisierung und Hybridisierung bei geeigneten Bedingungen und Waschen in 1 × SSC und 0,1% SDS bei 55°C, vorzugsweise bei 62°C und besonders bevorzugt bei 68°C und insbesondere in 0,2 × SSC und 0,1% SDS bei 55°C, vorzugsweise bei 62°C und besonders bevorzugt bei 68°C noch ein Hybridisierungssignal gefunden wird (siehe auch Sambrook et al., Molecular Cloning. A Laboratory Manual (1989), Cold Spring Harbor Laboratory Press, 1.101–1.104).

[0009] Die erfindungsgemäßen Apoptose-assoziierten Nukleinsäuren codieren vorzugsweise für ein Apoptose-assoziiertes Polypeptid oder ein funktionelles Fragment davon. Die Nukleinsäuren können von einem beliebigen Organismus stammen, wobei eukaryontische Organismen wie Nematoden, z. B. C. elegans, Arthropoden wie Drosophila, Cordata und Wirbeltiere, z. B. Säuger, bevorzugt sind. Besonders bevorzugt handelt es sich um Sequenzen von Säugern, z. B. von der Maus oder vom Menschen, wobei diese Sequenzen gegebenenfalls noch durch bekannte molekularbiologische Techniken, wie etwa ortsspezifische Mutagenese, PCR, Restriktionsspaltung und Ligation, verändert werden können.

[0010] Die erfindungsgemäßen Nukleinsäuren liegen vorzugsweise in operativer Verknüpfung mit einer Expressionskontrollsequenz vor, so dass sie in einer geeigneten Wirtszelle transkribiert und gegebenenfalls translatiert werden können. Expressionskontrollsequenzen umfassen üblicherweise einen Promotor und gegebenenfalls regulatorische Sequenzen wie Operatoren oder Enhancer. Weiterhin können auch Translations-Initiationssequenzen vorhanden sein. Geeignete

Expressionskontrollsequenzen für prokaryontische oder eukaryontische Wirtszellen sind dem Fachmann bekannt (siehe z. B. Sambrook et al., supra).

[0011] Ein weiterer Gegenstand der Erfindung ist ein rekombinanter Vektor, der eine erfindungsgemäße Nukleinsäure, vorzugsweise in operativer Verknüpfung mit einer Expressionskontrollsequenz enthält. Der rekombinante Vektor kann weiterhin noch übliche Elemente wie einen Replikationsursprung und ein Selektionsmarkergen enthalten. Beispiele für geeignete rekombinante Vektoren, z. B. Plasmide, Cosmide, Phagen, Viren etc., sind dem Fachmann bekannt (siehe z. B. Sambrook et al., supra).

[0012] Noch ein weiterer Gegenstand der Erfindung sind rekombinante Zellen, die mit einer erfindungsgemäßen Nukleinsäure oder einem erfindungsgemäßen Vektor transformiert oder transfiziert sein können. Die Transformation bzw. Transfektion kann nach bekannten Methoden erfolgen, z. B. durch Calciumphosphat-Copräzipitation, Lipofektion, Elektroporation, Partikelbeschuß oder virale Infektion. Die erfindungsgemäße Zelle kann die rekombinante Nukleinsäure in extrachromosomaler oder chromosomal integrierter Form enthalten.

10

[0013] Noch ein weiterer Gegenstand der Erfindung sind Apoptose-assoziierte Polypeptide, die von einer erfindungsgemäßen Nukleinsäure codiert sind. Apoptose-assoziierte Polypeptide können durch Expression der erfindungsgemäßen Apoptose-assoziierten Nukleinsäuren, durch chemische Synthese oder durch Kombinationen beider Methoden erhalten werden.

[0014] Noch ein weiterer Gegenstand der Erfindung ist eine pharmazeutische Zusammensetzung, die eine erfindungsgemäße Nukleinsäure, einen erfindungsgemäßen Vektor oder ein erfindungsgemäßes Polypeptid gegebenenfalls zusammen mit pharmazeutisch üblichen Träger- und Hilfsstoffen enthält. Die zuvor beschriebenen Nukleinsäuren, Vektoren, Zellen und Polypeptide können zur Herstellung eines diagnostischen oder therapeutischen Mittels eingesetzt werden, insbesondere eines Mittels zur Diagnose, Therapie oder Prävention von Apoptose-assoziierten Erkrankungen. Apoptose-assoziierte Erkrankungen können sich einerseits durch eine abnorm verringerte Apoptose und somit durch eine Hyper-proliferation auszeichnen, beispielsweise Tumorerkrankungen, Autoimmunerkrankungen und virale Infektionen (Thompson, Science 267 (1995), 1456–1462). Andererseits können Apoptose-assoziierte Erkrankungen sich auch durch eine abnorm erhöhte Apoptose und somit durch degenerative Erscheinungen auszeichnen, wie etwa die Alzheimer Krankheit, Huntington's Disease, Parkinsons Krankheit, Reperfusions-Schäden, Schlaganfall und Alkohol-Schädigungen der Leber (Thompson (1995), supra).

[0015] Die diagnostische Anwendung umfasst einen qualitativen oder/und quantitativen Nachweis der Apoptose-assoziierten Nukleinsäure, z. B. in Form eines Transkripts, oder des davon codierten Polypeptids in einer Probe, insbesondere einer Probe, die einem erkrankten Organismus, beispielsweise einem Patienten, entnommen wurde. Der Nachweis kann auf übliche Art und Weise, z. B. durch Nukleinsäure-Hybridisierung oder -Amplifikationsreaktionen wie etwa PCR oder durch Proteinnachweis über Antikörper, erfolgen. Dem Fachmann sind hierzu zahlreiche Techniken bekannt. Der Nachweis kann auch durch die Verwendung der isolierten Gene auf einem DNA-Chip erfolgen. Dadurch können mehrere, z. B. alle Gene gleichzeitig in einem Experiment untersucht werden.

[0016] Die therapeutische oder präventive Anwendung umfasst die Verabreichung eines Wirkstoffs an einen erkrankten Organismus in einer ausreichenden Dosierung, um die Apoptose-assoziierte Erkrankung zu lindern oder zu heilen bzw. um den Ausbruch einer Apoptose-assoziierten Krankheit zu verhindern. In einer Ausführungsform der Erfindung wird dabei eine Apoptose-assoziierte Nukleinsäure auf einem gentherapeutischen Vektor, z. B. einem Adenovirus, einem Retrovirus, einem Adeno-assoziierten Virus etc., verabreicht, um in einer erkrankten Zielzelle eine erhöhte Expression der Apoptose-assoziierten Nukleinsäure zu bewirken. Alternativ kann auch eine Antisense-Nukleinsäure, z. B. auf einem gentherapeutischen Vektor oder auch direkt, verabreicht werden, sofern eine Verringerung der Expression der Apoptose-assoziierten Nukleinsäure angestrebt wird. In einer weiteren Ausführungsform der Erfindung können Apoptose-assoziierte Polypeptide oder Modulatoren der Aktivität solcher Apoptose-assoziierter Polypeptide, z. B. Aktivatoren oder Inbibitoren, verabreicht werden. Die Verabreichung der Wirkstoffe erfolgt nach bekannten Methoden wie beispielsweise in der Gentherapie (Anderson, Nature 392 (1998), 25–30) oder der Proteintherapie (Schwarze et al., Science 285 (1999), 1569–1572) beschrieben.

[0017] Die erfindungsgemäßen Nukleinsäuren, Vektoren, Zellen und Polypeptide können schließlich auch zur Identifizierung von neuen Wirksubstanzen für die Therapie oder Prävention von Apoptose-assoziierten Erkrankungen eingesetzt werden. Denkbar ist hier der Einsatz in bekannten zellulären oder molekularen Screeningassays gegebenenfalls in einem Hochdurchsatzformat. Die Erfindung betrifft auch selbstverständlich die durch Anwendung solcher Screeningverfahren identifizierten Wirkstoffe bzw. davon abgeleitete Substanzen. Die durch den Screen identifizierten Wirksubstanzen sind in der Lage, Signalwege zu aktivieren oder zu inhibieren, die durch die Expression der Nukleinsäuren induziert werden.

[0018] Ein weiterer Gegenstand der vorliegenden Erfindung sind transgene nicht-humane Tiere, die (i) das Gen einer erfindungsgemäßen Nukleinsäure oder das ANT-1-Gen konstitutiv oder induzierbar überexprimieren, (ii) das endogene Gen einer erfindungsgemäßen Nukleinsäure oder das ANT-1-Gen in inaktivierter Form enthalten, (iii) das endogene Gen einer erfindungsgemäßen Nukleinsäure oder das ANT-1-Gen vollständig oder teilweise durch ein mutiertes Gen einer erfindungsgemäßen Nukleinsäure oder ein mutiertes ANT-1-Gen ersetzt enthalten, (iv) eine konditionale und gewebsspezifische Überexpression oder Unterexpression des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens aufweisen oder (v) einen konditionalen und gewebsspezifischen Knock-out des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens aufweisen.

[0019] Vorzugsweise kann das transgene Tier zusätzlich ein exogenes Gen einer erfindungsgemäßen Nukleinsäure oder ein exogenes ANT-1-Gen unter Kontrolle eines die Überexpression erlaubenden Promotors enthalten. Alternativ kann das endogene Gen einer erfindungsgemäßen Nukleinsäure oder das endogene ANT-1-Gen durch Aktivierung oder/ und Austausch des eigenen Promotors überexprimiert werden. Vorzugsweise weist der endogene Promotor des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens eine genetische Veränderung auf, die zu einer veränderten Expression des Gens führt. Die genetische Veränderung des endogenen Promotors umfasst dabei sowohl eine Mutation einzelner Basen als auch Deletions- und Insertionsmutationen.

[0020] Eine erste Ausführungsform betrifft ein transgenes Tier, das das Gen einer erfindungsgemäßen Nukleinsäure oder das ANT-1-Gen konstitutiv oder induzierbar überexprimiert. Gegebenenfalls kann das eingeführte Gen einer erfindungsgemäßen Nukleinsäure oder das eingeführte ANT-1-Gen zusätzliche Mutationen aufweisen.

[0021] Eine zweite Ausführungsform betrifft ein transgenes Tier, welches das endogene Gen einer erfindungsgemäßen Nukleinsäure oder das endogene ANT-1-Gen in inaktivierter Form enthält. Die Inaktivierung des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens erfolgt dabei vorzugsweise durch Einführung einer Knock-out-Mutation mittels homologer Rekombination oder durch Einführung eines Antisense-Konstrukts oder eines RNAi-Konstrukts.

[0022] Eine dritte Ausführungsform betrifft ein transgenes Tier, bei dem das endogene Gen einer erfindungsgemäßen Nukleinsäure oder das endogene ANT-1-Gen vollständig oder teilweise durch ein mutiertes Gen einer erfindungsgemä-Ben Nukleinsäure oder ein mutiertes ANT-1-Gen ersetzt ist.

[0023] Eine vierte Ausführungsform betrifft ein transgenes Tier, welches eine konditionale und gewebsspezifische Überexpression oder Unterexpression des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens aufweist. [0024] In einer fünften Ausführungsform weist das transgene Tier einen konditionalen und gewebsspezifischen Knock-out des Gens einer erfindungsgemäßen Nukleinsäure oder des ANT-1-Gens auf.

[0025] Vorzugsweise ist das transgene Tier ein Säugetier, wie etwa ein Nager, z. B. eine Maus. Mäuse haben gegenüber anderen Tieren zahlreiche Vorteile. Sie sind leicht zu halten und ihre Physiologie gilt als Modellsystem für die des Menschen. Die Herstellung solch Gen-manipulierter Tiere ist dem Fachmann hinreichend bekannt und wird nach üblichen Verfahren durchgeführt (Hogan, B., Beddington, R., Costantini, F. und Lacy, E. (1994), Manipulating the Mouse-Embryo; A Laboratory Manual, 2. Aufl., Could Spring Harbor Laboratory, Cold Spring Harbor, NY).

[0026] Die Erfindung betrifft weiterhin die Verwendung eines solchen transgenen Tiers zur genetischen und/oder pharmakologischen Untersuchung von Krankheiten, die mit übermäßiger oder verminderter bzw. fehlender Expression eines Gens einer erfindungsgemäßen Nukleinsäure oder eines ANT-1-Gens verbunden sind.

[0027] Die erfindungsgemäßen transgenen Tiere können als Modell für die mit dem Gen einer erfindungsgemäßen Nukleinsäure oder ANT-1-Gen verbundenen Krankheiten bei Menschen oder auch bei Nutztieren dienen. So kann beispielsweise die Auswirkung von Wirkstoffen oder Gentherapien auf den Krankheitsverlauf bestimmt werden. Ebenfalls können die Tiere zur Diagnose bzw. dem frühzeitigen Erkennen einer Krankheit von Nutzen sein.

[0028] So kann beispielsweise ein erfindungsgemäßes transgenes Tier, welches das ANT-1-Gen enthält als Modell für die degenerative Herzkrankheit dilatorische Kardiomyopathie (DCM) dienen. Diese degenerative Herzkrankheit ist mit übermäßiger Apoptose in den Herz-Zellen eines Patienten verbunden. Ein erstes Anzeichen, dass der Apoptose-Inducer ANT-1 eine wichtige Rolle bei der Induktion der Apoptose bei der DCM spielt, war die Beobachtung, dass sich bei einem Patienten im Verlauf der DCM bereits sehr früh das Expressionsmuster der ANT-1-Isoformen im Herzen verschiebt. Es kommt zu einer verstärkten Expression von ANT-1-mRNA und ANT-1-Protein (PCT/EP00/08812). Zu diesem Zweck kann das ANT-1-Gen unter Kontrolle des herzspezifischen α-Myosin Heavy Chain Promoters (Subramaniam, A. (1991), J. Biol. Chem. 266 (36), Seite 24613-24620) in transgenen Mäusen exprimiert werden. Dieser Promoter ist gut charakterisiert und wird erst zum Zeitpunkt der Geburt eingeschaltet. Das Expressionskonstrukt kann beispielsweise hergestellt werden, in dem das ANT-1-Gen in die Sall-Restriktionsschnittstelle des dritten nicht-kodierenden Exons des 5,5 kB umfassenden Promotors eingefügt wird. Die Herzen der so hergestellten erfindungsgemäßen transgenen Tiere sollten einige der hinsichtlich DCM-spezifischen zellulären Veränderungen, wie Fibrinisierung, Apoptose und Hypertrophie, oder Funktionsstörungen, wie linksventrikulärer Druck, enddiastolischer Druck, Kontraktilität, linksventrikuläre Ausstoßfraktion und linksventrikufärer Fülldruck aufweisen.

[0029] Alternativ oder zusätzlich können auch Zellkultursysteme, insbesondere humane Zellkultursysteme, für die Anwendungen eingesetzt werden, die für das transgene Tier beschrieben sind.

50

 [0030] Weiterhin soll die Erfindung durch das nachfolgende Beispiel n\u00e4her erl\u00e4utert werden.
 [0031] Das Sequenzprotokoll enth\u00e4lt die Sequenzen SEQ ID No. 1-225, welche die in Tabelle 1 aufgelisteten T7-Sequenzen, BGH-Sequenzen und internen Primer-Sequenzen der identifizierten Apoptose-induzierenden Gene der Klone 1-124 umfassen.

#### Beispiel

Isolation von Apoptose-induzierenden Genen

#### 1. Allgemeines

[0032] Apoptose-induzierende Gene wurden durch einen genetischen Screen in der humanen Zellinie HEK 293T gefunden (Grimm und Leder (1997), supra), der auf der iterativen Transfektion kleiner Expressionsplasmid-Pools aus einer normalisierten Genbibliothek beruht und der anschließenden mikroskopischen Bestimmung des programmierten Zelltodes durch den Phänotyp der apoptotischen Zellen. Die Transfektion von einzelnen Klonen aus einem positiven Plasmid-Pool erlaubt dann, das Apoptose-induzierende Gen zu bestimmen.

[0033] Dieser Screen wurde in einem 96-Well Format durchgeführt. Desweiteren wurde eine besonders effektive Art, die Plasmid-DNA zu reinigen, verwendet (Neudecker und Grimm, Biotechniques 28 (2000), 107-109).

#### 2. Experimentelle Protokolle

#### 2.1 Zellkultur und Transfektionen

[0034] Humane HEK 293T-Zellen wurden in DMEM ergänzt mit 5% fötalem Kälberserum (Sigma, Deisenhofen, Deutschland) in einer befeuchteten 5% CO<sub>2</sub>-Atmosphäre kultiviert. Für Transfektionen wurden die Zellen in 24-Loch-Platten gegeben und mit 2 µg Plasmid DNA nach der Calciumphosphat-Copräzipitationsmethode wie von Roussel et al.

(Mol. Cell. Biol. 4 (1984), 1999–2009) beschrieben transfiziert. Hierfür wurden 25 μl DNA Lösung mit 25 μl 2 × HBS-Puffer pH 6,9 (274 mM NaCl, 10 mM KCl, 40 mM Hepes, 1,4 mM Na<sub>2</sub>HPO<sub>4</sub>) bei 4°C in einer 96-Loch-Platte mit einem 12-Kanal-Pipettierautomaten (Eppendorf, Hamburg, Deutschland) vermischt. Nach Zugabe von 20 μl einer 0,25 M CaCl<sub>2</sub> Lösung (4°C) und Mischen wurden 38 μl nach Inkubation für 25 min bei Raumtemperatur auf die Zellen gegeben.

#### 2.2 Erzeugung einer normalisierten Bibliothek und cDNA Screening

10

15

25

45

50

55

[0035] Die Normalisierung und Konstruktion einer Nieren cDNA Bibliothek wurde wie von Grimm und Leder (J. Exp. Meth. 185 (1997), 1137-1142) und Sasaki et al. (Nucleic Acids Res. 22 (1994), 987-992) beschrieben durchgeführt. [0036] mRNA aus der Niere von 10 Wochen alten CD1 Mäusen wurde durch Assoziation abundanter mRNA Spezies mit kovalent an Latexbeads gekoppelten Antisense-cDNA-Molekülen und anschließende Abtrennung durch Zentrifugation normalisiert. Nach zwei Hybridisierungsrunden wurden 200 ng (von ursprünglich 2 µg) mRNA erhalten und zur Herstellung einer cDNA Bibliothek unter Verwendung eines cDNA Synthesekits (Gibco BRL, Gaithersburg, MD) verwendet. Nach Ligation eines BstXI Adaptors (Invitrogen, San Diego, CA) und einer Spaltung mit NotI wurden die cDNA Moleküle in einen modifizierten pcDNA3-Vektor (Invitrogen) unter Kontrolle des Cytomegalovirus (CMV) Promotors inseriert, in dem das Neomycinresistenzgen deletiert worden war. Die DNA wurde durch Elektroporation in E. coli SURE-Zellen (Stratagene, Corp. La Jolla, CA) eingeführt, die anschließend sofort eingefroren wurden. [0037] Durch Ausplattieren von Aliquots des Transiormationsansatzes auf Agar wurde gefunden, dass die Bibliothek etwa 2,5 × 10<sup>5</sup> Klone enthielt. Aliquots, die statistisch Einzelklone enthielten, wurden in Löchern von 96-Loch-Blöcken (Qiagen, Hilden, Deutschland) in 900 µl LB-Medium inokuliert und für 30 h unter Schütteln bei 300 Upm kultiviert. Nach Identifizierung eines positiven Pools wurde die DNA zur Bestätigung des Ergebnisses erneut transfiziert. Die verbleibende DNA wurde zur Transformation von Bakterien für eine Plasmidisolierung im großen Maßstab und zur Sequenzierung der insertierten DNA verwendet. Anhand der DNA-Sequenz wurde mit Hilfe des Computerprogramms "Blast" ein Sequenzvergleich mit kommerziellen Sequenzdatenbanken durchgeführt.

#### 2.3 Bestimmung der Apontose-induzierenden Nukleinsäuren

[0038] Die Apoptose-induzierende Aktivität der transfizierten Nukleinsäuren erfolgte durch mikroskopische Bestimmung des Zellphänotyps. Bei apoptotischen Zellen nimmt die optische Dichte der Zellen zu, da sich das Cytoplasma-Kernvolumen-Verhältnis verringert und durch den Abbau des Cytoskeletts bilden sich Blasen in der Cytoplasmamembran.

#### 2.4 Plasmidisolierung

[0039] 96-Loch-Blöcke mit Bakterien wurden für 5 min bei 3000 g (Sigma Zentrifugen, Osterode am Harz, Deutschland) zentrifugiert. Der Überstand wurde dekantiert und die Blöcke wurden für 2 bis 3 min umgedreht. Dann wurden 170 µl Puffer P1 (50 mM Tris-HCl/10 mM EDTA pH 8,0) zugegeben und die Bakterienpellets wurden durch vollständige Vortexbehandlung für 10 bis 20 min resuspendiert. Nach Zugabe von 170 µl Puffer P2 (200 mM NaOH, 1% SDS) wurde der Block mit Folie abgedichtet, durch Invertieren gemischt und für 5 min bei Raumtemperatur inkubiert. Die Lyse wurde durch Zugabe von 170 µl von 4°C kaltem Puffer P3 (3 M Kaliumacetat pH 5,5) beendet. Dann wurden 10 µl RNascA Lösung (1,7 mg/ml) zugegeben, für 5 min bei Raumtemperatur und dann bei -20°C inkubiert und erneut für 10 min bei 6000 Upm zentrifugiert. Der Überstand wurde in neue Blöcke dekantiert und 100 µl Puffer P4 (2,5% SDS in Isopropanol) wurden zugegeben. Der Block wurde einer Vortexbehandlung für 5 min unterzogen und zuerst für 15 min bei 4°C und dann für 15 min bei -20°C inkubiert.

[0040] Der Überstand nach Zentrifugation für 10 min bei 6000 Upm wurde in 96-Loch-Polyoxymethylen-Mikrotiterblöcke gegeben. 150 µl Siliciumoxidsuspension wurden zugegeben und für 20 min bei Raumtemperatur inkubiert. Die Platten wurden für 5 min bei 6000 Upm zentrifugiert. Der Überstand wurde sorgfältig dekantiert und 400 µl Aceton (-20°C) wurden zugegeben. Die Platten wurden erneut einer Vortexbehandlung (30 sec) unterzogen und für 3 min bei 6000 Upm zentrifugiert. Dieser Acetonwaschvorgang wurde einmal wiederholt. Die Platten wurden zuerst bei Raumtemperatur für 5 min und dann für 5 min in einer Vakuumkammer getrocknet. Die Pellets wurden in 75 µl Wasser (60°C) resuspendiert und bei 6000 Upm und 4°C 10 min zentrifugiert. Der Überstand wurde in einer 96-Loch-Mikrotiterplatte bei -20°C aufbewahrt.

#### 3. Ergebnisse

[0041] Die durch den genetischen Screen identifizierten Apoptose-induzierenden Gene (Klone 1-124) sind in der als Abbildung beigefügten Tabelle 1 (Seiten 1-125) aufgelistet:

Die Angaben in Tabelle 1 sind wie folgt definiert:

"T7-Sequenz": 5'-seitige Sequenz des Klons

"BGH-Sequenz": 3'-seitige Sequenz des Klons

"interner Primer": interne Sequenzen des Klons identifiziert unter Verwendung von Primern erhalten aus der T7-Sequenz (links) bzw. der BGH-Sequenz (rechts)

"Identität": Vergleich mit Sequenzen aus dem Computerprogramm "BLAST". Neben völlig identischen Sequenzen (Identität 100%) sind auch teilidentische Sequenzen (Identität von vorzugsweise ≥ 85%) angegeben, die allelische Varianten der konkret gezeigten Sequenz bzw. homologe Sequenzen aus anderen Spezies, insbesondere aus dem Menschen, zeigen

[0042] Derartige Varianten bzw. homologe Sequenzen werden selbstverständlich ebenfalls von der vorliegenden Erfindung erfaßt.

5

|    | _       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                           |                                                                                                                                                                                                                                                                  | <u> </u>                                                                                               |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 5  |         | SGTGTTCT<br>CTTTTCTC<br>CTTTTCTC<br>CTTTCAAAT<br>AAATGCTA<br>CGTTTTCA<br>AGGAGCC<br>GGCTGCC<br>TCTCCTTT<br>SACTGCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATAAACCA<br>CAGTACC<br>TTTGTAAA                                                                                                 | GCTAGAA<br>GCTAGA<br>CGCTAGA<br>AGAAGTT<br>ATTAAGCT                                                                                                                                                                                                              | CTINTGNTCAAATGAAGGTNAGAGCTACGCCCGGGGGGGGGGG                                                            |
| 10 |         | AGCTCATGITGGACAGTCGTGTGAGGAGCTATGGAGCACAGCAGTAATCGCCCAGAGGACTTCCCGCTTAACGTGTTCTC CTGTCACTCTTTCTAGGACAGCCCGACATCCAGGTGTCCGACGACGAGGAGGACTTCCCGCTTTTCTC AGGCATCTTTCTAGGACTGGTGGGGATCACTTTCACTGTCGACGACGAGGAGGAGGAGTGTTTCTCAGAT GGACCCAGCTCCTCGGACCCATCCTTCTGTCGGAGTGATGATACCAGAGGCAGGGGCCACTTTGAAT TCCTGCCAGCTCCTCGGACCCATCCTTCTGTCGGTCGGAGTGATCCTGCTGATCCGAGGTGTTTTCA GGACCCAGCTCCTCGGACACACCCTTCCGGAGGGGTCCCGGACTCGGACCAGATCCTTCCGGAGCCCATCTTTCAGGATCATCAGGGGGCCACCGTTTTTCAGGATCACCCTTCCGGAGCGCCTTTCAGGGGCCTCCTTTCAGGATCACCCTCCAGGGGGCCACCGTGGTGCCGGACTCCTTTCTCCTTTTCAGGATCACCCCTCAGTACACGCCATCTACCTTACCGTCAAGACGACTGCTTTTTTCTCCTTTTTCTCCTTTTTTTT | ATAGACATGICTAGITITITATTACTAGITATCATCCAAGIGAAATGICCCTGAGGCATAATATGAATCACAATAATAAACCAAAACCAAAAACCAAATAAAAACCAAATAAAAACCAAATAAAAAA | TTCCCACGCNGNTGNGGGCTTCTCTCTTCGTGGGCACTGGATATGACGCCCGGCTGGGCGGGGCTGGACTGGAGGCGCCGGCTAGAAAGGGGCCTACGAGGGGGCTTCTCTTCGTGGGCGCTGGATATGACGCCCGACTCTGATGCTGACCAGCTAGAAGGGGGACGGCTGGAGGTTTCTCCTCCTCCACCGCTAGAAGGCGGAGGTTTATCGCTGGAGGTTCTTCAGAAGTTTAAGCTTCAAAAGGGGGACGGAC | TCCCAGCCTNTTCTNTGNTCAAATGAAGGTNAGAGCTACGCCCGGGGGGGGGG                                                  |
| 15 |         | AGGACTTO<br>SGCAGGG<br>ACCAGGT<br>ACCAGGT<br>GCTGTGT<br>CCTCCTTA<br>CCTCCTAGT<br>MGAGAGTG<br>GAGTTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAATATGA<br>AATCCCAC<br>TGAGTGGC<br>TTGGTGAC                                                                                    | ACTCTGAT<br>GATATACG<br>TTATCGCT<br>SCCCNGAG                                                                                                                                                                                                                     | MGGGGGAG<br>AGAAACN<br>GGAAAACN<br>CACAGTAG<br>GATTTTAT<br>VACTCTGC                                    |
| 20 | į       | TCGCCCAGA<br>SACGACAACA<br>GATCAAATA<br>CACCTGATC<br>CCAGACTT<br>TATATCCT<br>SCGTTCGT<br>SCGTTCGT<br>AAGGGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTGAGGCA<br>GTAAAAGCA<br>CTTTACCT<br>GGCTGNGG                                                                                   | NTGNGGGCTTCTCTCCTTTCGTGGCACTGGATATGACGCCCGGGCCCGGCTCTGGAAGGGCCCGACTCTGGAAGGGCCCGACTCTGGAAGGGCCCGACTCTGGAAGAGGGCCCGACTCTGCAAGAGGACGGAC                                                                                                                            | TCTNTGNTCAAATGAAGGTNAGAGCTACGCCGGGGGGGGGG                                                              |
| 25 |         | GACAGTCGTGTGAGGAGCTATGGAGCACAGCAGTAATCGCC TACACACCCCAGTACCGCCGACATCCAGGTGTCCGACGACGACGACGACGACGACGACGACGACGACGACGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAATGTCC<br>GACAGAGA<br>GCAGCCCCCCCCCCCCCCCCCC                                                                                  | GGATATGA<br>GGATATGA<br>CCTCCACC<br>GTGATACT<br>AGGGNGGG<br>CAGCTAAGA                                                                                                                                                                                            | SCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                 |
| 30 | 1       | GGAGCACA<br>ATCCAGGI<br>CACTGTC<br>GTCGCGG<br>GGTCCCGG<br>GGTCCCGG<br>GCTCCAGGI<br>ATGCTGAGGI<br>ATGCTGAGGI<br>ATGCTGAGGI<br>ATGCTGAGGI<br>ATGCTGAGGI<br>ATGCTGAGGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCCAAGTG<br>ACTCTTCTC<br>CTTGGGG<br>AAGTCTGC                                                                                    | GGGCACT<br>GGGCACT<br>STTTCTCTC<br>CCTGNGAT<br>GTCATTN/                                                                                                                                                                                                          | AGCTACGC<br>CAGNATGC<br>CAGNATGC<br>TCGCTTGA<br>TCATTATC<br>CTACTTAT<br>NAGTCNAA                       |
| 35 | Tabelle | SGAGCTATI<br>CCGCCGAC<br>SATCACTT<br>TTCTGTCG<br>SAGGAGAG<br>CCACGGG<br>CCACGGG<br>CCATCTAC<br>CGACTCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGTTATCA<br>VAACCTGGA<br>TGTATCTCA<br>ACCTCCTA                                                                                  | TCCTTCG<br>TGCTTCG<br>TTCGTAGCC<br>ATTTAGGCC<br>TTGGTTTG                                                                                                                                                                                                         | AAGGTNAG<br>SACACGG<br>STACATTAC<br>STACCNACT<br>SATCCNACT<br>CCANATAA<br>GCCTGCTC                     |
| 40 |         | CCCAGTAC<br>ACCCATCC<br>ACCCATCC<br>ACCCATCC<br>ACCTACCT<br>ATCACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT<br>ACTACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TTATTACT<br>CCTTGAA<br>ACAATTCC<br>CTTTGGAC                                                                                     | SGCTTCTC<br>AGGAGGAC<br>SGACGGAC<br>AGGAGATC<br>CTCTGCTC                                                                                                                                                                                                         | VICAAATGA<br>STACAAATG<br>GCGTTCTG<br>TNACCNAT<br>CAGCACAT<br>SACTGTTTC<br>SAGNGAGA<br>CTACCTGA        |
| 45 |         | TGGACAGI<br>CGTACACA<br>CCTAGGAC<br>CTCTCGG<br>TTGTGCTC<br>ATCAGCCC<br>CGACGCC<br>CGACGCC<br>TGGGATATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TCTAGTTTT<br>FGCTGATA1<br>AAGACCTG<br>TTCTAATT                                                                                  | NGNTGNGC<br>STTGGAAG,<br>GCTAAGGG<br>AGCAGCTN<br>AAATTCCC                                                                                                                                                                                                        | NTTCTNTGI<br>ATTCATGAC<br>CTGTACCT<br>CGGNGGA<br>CGTGGGGC<br>CATGGGGC<br>CAGGCTTC<br>GGAAATTT          |
| 50 |         | AGCTCATGITG<br>CTGTCACTCCG<br>AGGCATCTTTC<br>GGACCCAGTT<br>TCCTGCCAGTT<br>CTGGCATCATI<br>CTGGGATGA<br>GCACCAAGTCC<br>CGTGGGCACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATAGACATGTC<br>AGATTGTTTTGC<br>AAAACCTTCAAC<br>ACTGTTTTCTTT                                                                     | TTCCCACGCNG<br>GGGACGGAGTT<br>GACTGCAATGC<br>AGGTGTCAAAG<br>GCCCTGGTTAAA                                                                                                                                                                                         | TCCCAGCCTNITI ATCTCCATGATT GCNACTCAGCTC CAGAGGGAGCA CACTNTAACTCG ACTATTCTAACA NAAGATCCAAAG GCCGTGCAGGG |
| 55 | +       | Z0Z0F0000&F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4444                                                                                                                            | F 0 0 4 0 4                                                                                                                                                                                                                                                      | F 4 0 0 0 4 2 0 0                                                                                      |
| 60 |         | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BGH-Sequenz                                                                                                                     | interner Primer<br>links                                                                                                                                                                                                                                         | interner Primer<br>rechts                                                                              |
| 65 |         | Klon #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                        |

| Contia | AAT                                     | AATTCGGATCCAT                                                                                                                | ATGCCCAAAGGTCCTTCTCAACTAACCGCAGCATCCTCTTTCCCAACTC                                                        | STOCITO              | TOTABOTA                               |                       | ATOTOTO              |                    | Ç           |    |   | Γ           |
|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----------------------|----------------------|--------------------|-------------|----|---|-------------|
|        | TCA(                                    | TCACACTCTGTTTCCTCTCATGTTGGACAGTCGTGTGAGGAGCTATGGAGCAC<br>AGCAGTAATCGCCCAGAGGACTTCCGGCTTAACGTGTTCTCTGTCACTCCGTACACCCC         | TCCTCTCATGTTGGACAGTCGTGAGGAGGAGCATGGTGACACCCCCCCC                                                        | GTTGGAC/<br>CTTCCCG( | AGTCGTGT<br>STTAACGT                   | GAGGAGC<br>GTTCTCTG   | TATGGAGG             | ACCCCAC            | ي و         |    |   |             |
| **     | AGT,                                    | AGTACCGCCGACATCCAGGTGTCCGACGACGACGAGGCAGGGCCCACTTTGCTTTTCTC<br>GGCATCTTTCTAGGACTGGTGGGGGATCACTTTCACTGTCATGGGCTGGATCAAATACCAA | CATCCAGGTGTCCGACGACGACAGGCAGGGCCCACTTTGCTTTTCTCA<br>AGGACTGGTGGGGATCACTTTCACTGTCATGGGCTGGATCAAATACCAA    | GTCCGAC(             | SACGACA/                               | AGGCAGGG<br>TGTCATGG  | GCCACTT<br>GCTGGAT(  | TGCTTTTC           | A A A       |    |   | <del></del> |
|        | GGT<br>ACA                              | GGTGTCTCCCACTTTGAATGGACCCAGCTCCTCGGACCCATCCTTCTGTCGGTCG                                                                      | CTTTGAATGGACCCAGCTCCTCGGACCCATCCTTCTGTCGGTCG                                                             | SACCCAGO<br>TGCAAATI | TCCTCGG<br>CAAAATG                     | ACCCATCC              | TTCTGTCC             | SGTCGGA            | 3TG         |    |   |             |
|        | ATA                                     | ATAACGAGGAGA(CTGACTCAATCAATCAATCAAATCAAA                                                                                     | AGGGTCCCGGACTCGGACCAGACTTCCGGAGGACAGTCGTTCGT                                                             | GACTCGG              | ACCAGAC                                | TTCCGGAG              | GACAGTC              | STICGITI           | TCA         |    |   |             |
|        | E C C C                                 | CCTTACGGTTCTC                                                                                                                | JASOCALIONOL I I CANGEGECCACCE I GET GCAGTATATCCCTCCT<br>I CAGGAGCCCCT GGGAATGAACGCCACCTACCTGCAACCCATGAT | CCTGGGA/             | CGGGGCC<br>\TGAACGC                    | CACCITACC             | GCAGTAT<br>TGCAACC   | ATCCCTC(<br>CATGAT | ۲.          |    |   |             |
|        | GAA                                     | GAATCCTTGCGG-<br>TACTACACCATCT                                                                                               | STCTCATACCTCCTAGTGGAGCAGCGGCTGCGCACCAAGTCCCCCTCAG                                                        | TCCTAGT              | SGAGCAG                                | сесстесс              | SCACCAAG             | TCCCCCT            | CAG         |    |   |             |
|        | - S                                     | TOCTEGECACTGGATATGACAGGCCGGACTCTGGTGGAGAGTGAGGGCTTCTCCCT                                                                     | MACCULCAAGACAATGCTGCGTTCGTGGAGAGTGAGGGCCTTCTCTCCCT<br>TGGATATGACAGGCCCGACTCTGATGCTGACCAGCTAGAAGGGAAGAG   | SACAATG(<br>SAGGCCCC | SACTOTEA                               | GTGGAGAC              | STGAGGG(             | STTCTCTC           | CT          |    |   |             |
|        | TTG                                     | TGGAAGAGGAG                                                                                                                  | GGACTGCGTATGTTCTCTCCTCCACCGTATGAGGAGATATACGCTCTA                                                         | <b>ATGTTTCT</b>      | стсстсс/                               | ACCGTATG/             | AGGAGATA             | TACGCTC            | کر<br>TA    |    |   |             |
|        | 2 0 V                                   | CCICGCIAGAGACTGCAATGCTAAGGGGACGGACATTTAAGCCCTGTGATGTGATACTTCGAGGTTTATCGCTGTGTGTTCAGAAGTTAGGTGTCAAAAGTTAAGTGTAAAAAAAA         | ACTGCAATGCTAAGGGGACGACATTTAAGCCCTGTGATGTGATACTTG                                                         | STAAGGGC<br>TCAGAAGI | SACGGACA                               | TTTAAGCC              | CTGTGATC             | STGATACT           | . J.        |    |   |             |
|        | GATC                                    | GATGTCATTCAAG                                                                                                                | GGTGGGAAAGAAGTGCCCCGAGACTGCTAAATTAAGCTGCCCTGGTTA                                                         | GAAGTGC              | CCCGAGA                                | CTGCTAAA              | TTAAGCTG             | GAICLIAC           | × ₽         |    |   |             |
|        | AAT<br>7001                             |                                                                                                                              | CTCTGGTTTTGAATTCTCTCAGCTAAGAAACCCTCTGCAGCTGGAGAG                                                         | <b>TGAATTCT</b>      | CTCAGCTA                               | 'AGAAACC              | STCTGCAG             | CTGGAGA            | <u> </u>    |    |   |             |
|        | 200                                     | I CGC I C I G I GATA<br>CCAGAAGAAAACA                                                                                        | AGAGTGATTTTGGAGCCCAGTGCCTTGGGTTTGATCTCTAGAG                                                              | TTGGAGC              | CCACGCAC                               | STGCCTTG(             | GGTTTGAT             | CTCTAGA            | (5)         |    |   |             |
|        | GTGC                                    | GTGCAGGAGAAATTCACCCATTCCCCATCCCCACCGATATCCATTTGAAGGATA                                                                       | AATTCACCC                                                                                                | ATTTCCC(             | SATCCCC                                | ACCCGATA              | ATCCATTT(            | SAAGGAT/           |             |    |   | ~~          |
|        | ATGA                                    | ICITAGITITGAA/<br>ATGAAAGGGAGGG                                                                                              | AAGATTGTCTTAGTTTTAAATCCGGCAGCCATGGCAGCTCTCAGACTG                                                         | TAGTTTTA             | WATCCGG                                | CAGCCATG              | SCAGCTC              | TCAGACT            | ري<br>ري (  |    |   |             |
|        | GCAC                                    | GCACGGCGCTGA                                                                                                                 | AACCTTCCGCAGCAGAGTGACTTATCTTAGACAAACTTGGGCTGTTAAT                                                        | CAGCAGAC             | 3TGACTTA                               | TCTTAGAC              | AACTTOOS             | 7711177            | 5           |    |   | •           |
|        | CTGG                                    | CTGGTCTCCCTGGAAGCCTTTGGATCTTGAAGAGTTTGTAAAAGAAATAAAATCCATTA                                                                  | SAAGCCTTT                                                                                                | GGATCTTC             | SAAGAGTT                               | TGTAAAAG              | AAATAAAA             | TCCATTA            |             |    |   |             |
|        | AGAA                                    | AGAAATAAATGAATAAGTAGAGTGGGATGAAACAGTGCCCCATGTTAGAATAGTGTTGGG                                                                 | TAAGTAGAG                                                                                                | TGGGATG              | SAAACAGT                               | GCCCCATG              | TTAGAATA             | AGTGTTGG           | ပ္သ         |    |   | -00         |
|        | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1GGCCGATCCTAC<br>ACCGAGTTACAGT                                                                                               | CTGTGGACGAGGTAACAGGAGGATAATGAATGTCACCATGTGCTGTCC                                                         | AGGTAAC              | AGGAGGA                                | TAATGAAT              | STCACCAT             | <b>СТССТ</b>       | ပ္ပ         |    |   |             |
|        | GTAA                                    | GTAATGTACATGGGTGAGCGCCTGCTCTGCTCTACCCTAGCCTGAAGGCTGAAGTCAAGGC                                                                | SGTGAGGGGCTGCTCCTCTTTGCTTTGCAGGGTGAAGGTTCAAGGC                                                           | CTGCTCC              | בייביביביביביביביביביביביביביביביביביב | ACCIONAL DECAM        | GGCTGAA              | STTCAAGC           | ပ္က ဗွ      |    |   |             |
|        | ACGA                                    | ACGAACTAGCTCAGCCGAGTGGCTTACAGAACGCAGGTACAGCTGAGTGGCTTATGGAAC                                                                 | GCCGAGTG                                                                                                 | GCTTACA              | 3AACGCAC                               | 3GTACAGC              | TGAGTGG              | TTATGGA            | ر<br>ا<br>ا |    |   |             |
|        | ACAG                                    | ACAGGTATGCCTC                                                                                                                | CTAATCTGTTCCACAGAGCCATGCTGCCGTGTCGCTTTGTAGTCATGA                                                         | CCACAGA              | GCCATGC                                | TGCCGTGT              | СССТТС               | TAGTCATG           | )<br>{      |    |   | _           |
|        | ATCA                                    | ATCATGAGGATGATCAGTCATCCCGTCTCCCCCACCCCCGCCCCGGGCGTAGCTCT                                                                     | TCAGTCATC                                                                                                | CCGTCTC              | CCCCACC                                | ນວວວວວວ               | ၁ငငဇဇဇငင             | STAGCTCT           |             |    |   |             |
|        | ACCA                                    |                                                                                                                              | AACAAAGAAAAGCTGGTAGCCTTCAGCTTCCTAAGTCTGAACGGTGTC<br>CCAAAGCTGCAGACTTTAGGAGGTGTCCAAAGAATTAGAAAGAA         | AGC1GGT<br>CAGACTTI  | AGCCTTC/<br>'AGGAGGT                   | AGCTTCCT/<br>GTCCAAAG | AAGTCTGA<br>AATTAGAA | ACGGTGT<br>AAGAAAA | o <b>\$</b> |    |   |             |
|        |                                         |                                                                                                                              |                                                                                                          |                      |                                        |                       |                      |                    |             |    |   | 7           |
|        |                                         |                                                                                                                              |                                                                                                          |                      |                                        |                       |                      |                    |             |    |   |             |
| 60     | 55                                      | 50                                                                                                                           | 45                                                                                                       | 40                   | 35                                     | 30                    | 25                   | 20                 | 15          | 10 | 5 |             |
|        |                                         |                                                                                                                              |                                                                                                          |                      |                                        |                       |                      | 1                  | 1           | ,  | ; |             |

|    |                                                                                                                               | T                                                                    |                                                                                                                          |                                                                                       | <del></del>                                                                                                 |                                                                                    |                                                                                                             |                                                                                                                 |                                                                                                             |                                                                 |
|----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 5  |                                                                                                                               |                                                                      |                                                                                                                          |                                                                                       |                                                                                                             |                                                                                    |                                                                                                             |                                                                                                                 |                                                                                                             |                                                                 |
| 10 |                                                                                                                               |                                                                      |                                                                                                                          |                                                                                       | 2 5'.                                                                                                       |                                                                                    | 5.                                                                                                          |                                                                                                                 | . ·                                                                                                         |                                                                 |
| 15 | 99 _ 4                                                                                                                        |                                                                      | lone                                                                                                                     |                                                                                       | .GE:58003                                                                                                   |                                                                                    | 3E:790665                                                                                                   |                                                                                                                 | :872487 5'                                                                                                  | 1                                                               |
| 20 | AGATACA<br>FACTCTC1<br>FATTGTGA<br>CTAGACA                                                                                    |                                                                      | lus cDNA c                                                                                                               |                                                                                       | clone IMA                                                                                                   | •                                                                                  | clone IMA(                                                                                                  |                                                                                                                 | ne IMAGE                                                                                                    |                                                                 |
| 25 | CCAAGAG<br>TTGCTTT<br>GGTTTAT                                                                                                 | S                                                                    | nos musca                                                                                                                |                                                                                       | ulus cDNA                                                                                                   |                                                                                    | lius cDNA                                                                                                   |                                                                                                                 | s cDNA clo                                                                                                  |                                                                 |
| 30 | SCTGCCC<br>IGTGGGA<br>CAATCTT<br>ICTAGTAA                                                                                     | kende EST                                                            | Iney mkia N                                                                                                              |                                                                                       | Mus musc                                                                                                    |                                                                                    | Mus muscı                                                                                                   |                                                                                                                 | ıs musculu                                                                                                  |                                                                 |
|    | AAGGTGG<br>GCTTATAT<br>AGCAAAA<br>SATGATAA                                                                                    | ontig abdec                                                          | mouse kid                                                                                                                |                                                                                       | id MPLRB1                                                                                                   |                                                                                    | MPLRB1                                                                                                      |                                                                                                                 | IPLRB1 M                                                                                                    |                                                                 |
| 35 | CAAGGTA<br>GTACTGT<br>GGATATC<br>ICACTTG(                                                                                     | olett das Co                                                         | .y1 Suganc                                                                                                               |                                                                                       | .r1 Barstea                                                                                                 | _                                                                                  | r1 Barsteac                                                                                                 | 52<br>283 (0%)                                                                                                  | Barstead N                                                                                                  |                                                                 |
| 40 | SGCCACT<br>GGTTTTG<br>TTTTCAA<br>SGACATT                                                                                      | nicht kom                                                            | 7 uc81e12                                                                                                                | xpect = 0.0                                                                           | 7 mq28c01                                                                                                   | (542), Expect = 0.0<br>2 (100%)<br>Is                                              | 8 vc94d05.                                                                                                  | pect = e-1;<br>, Gaps = 1/                                                                                      | /g82f08.r1                                                                                                  | pect = 0.0                                                      |
| 45 | GATCAAA(<br>TCTTGAA<br>STCCAGG<br>SCCTCAGG                                                                                    | ber jeweils                                                          | \986577.1 AA98657<br>IMAGE:1432078 5'.<br>-ength = 553                                                                   | its (546), E<br>/553 (99%)<br>Plus                                                    | 1 AA13759<br>556                                                                                            | its (542), E<br>/542 (100%<br>Plus                                                 | 1/AA38833(<br>503                                                                                           | ts (275), Ex<br>1283 (99%)<br>Plus                                                                              | A1098009 v                                                                                                  | s (459), Ex<br>467 (99%)                                        |
| 50 | GTTTTACAAAGGTCAAAGGCCACTCAAGGTAAAGGTGGCTGCCCCCAAGAGAGATACAGGAATTGTCAGGTCTGTCAGGGTTTTGGTTTTGGTACTGTGTTTTGTGGATTGCTTTTACTCTCTCT | verschiedene, aber jeweils nicht komplett das Contig abdeckende ESTs | >gb AA986577.1 AA986577 uc81e12.y1 Sugano mouse kidney mkia Mus musculus cDNA clone<br>IMAGE:1432078 5'.<br>Length = 553 | Score = 1082 bits (546), Expect = 0.0 Identities = 551/553 (99%) Strand = Plus / Plus | >gb AA137597.1 AA137597 mq28c01.r1 Barstead MPLRB1 Mus musculus cDNA clone IMAGE:580032 5'.<br>Length = 556 | Score = 1074 bits (542), Ex<br>Identities = 542/542 (100%)<br>Strand = Plus / Plus | >gb AA388338.1 AA388338 vc94d05.r1 Barstead MPLRB1 Mus musculus cDNA clone IMAGE:790665 5'.<br>Length = 503 | Score = 545 bits (275), Expect = e-152<br>Identities = 282/283 (99%), Gaps = 1/283 (0%)<br>Strand = Plus / Plus | >gb Al098009.1 Al098009 vg82f08.r1 Barstead MPLRB1 Mus musculus cDNA clone IMAGE:872487 5'.<br>Length = 467 | Score = 910 bits (459), Expect = 0.0 Identities = 465/467 (99%) |
| 55 | GT<br>  AAT<br>  GTC<br>  DTT<br>  TDT                                                                                        | vers                                                                 | q6<br>                                                                                                                   | Sco<br>Ider<br>Stra                                                                   | lq6<                                                                                                        | Sco<br>Iden<br>Stra                                                                | /g6<                                                                                                        | Scor<br>Iden<br>Stra                                                                                            | / q6<                                                                                                       | Scor                                                            |
| 60 |                                                                                                                               | ldentität                                                            |                                                                                                                          |                                                                                       |                                                                                                             |                                                                                    |                                                                                                             |                                                                                                                 |                                                                                                             |                                                                 |
| 65 |                                                                                                                               | ~                                                                    |                                                                                                                          |                                                                                       | <del></del>                                                                                                 |                                                                                    |                                                                                                             |                                                                                                                 |                                                                                                             |                                                                 |
|    |                                                                                                                               |                                                                      |                                                                                                                          | <del></del>                                                                           |                                                                                                             |                                                                                    |                                                                                                             |                                                                                                                 |                                                                                                             |                                                                 |

|         |               | Strand =                                                        | Strand = Plus / Plus                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                 |                                          |                                     |                                                 |                                         |                                   |                            |
|---------|---------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------|
|         |               | >gb AA98<br>IM<br>Len                                           | >gb AA986094.1 AA986094 uc81f01.x1 Sugano mouse kidney mkia Mus musculus cDNA clone<br>IMAGE:1432057 3'.<br>Length = 555                                                                                                           | 94 uc81f01.x1 §                                                                                                                                                                                                                                          | Sugano mous                     | e kidney mki:                            | a Mus muscul                        | us cDNA cloi                                    | e<br>e                                  |                                   |                            |
|         | -             | Score = 745 bits (<br>Identities = 376/37<br>Strand = Plus / Mi | Score = 745 bits (376), Exp<br>Identities = 376/376 (100%)<br>Strand = Plus / Minus                                                                                                                                                | (376), Expect = 0.0<br>(6 (100%)<br>nus                                                                                                                                                                                                                  |                                 |                                          |                                     |                                                 |                                         |                                   |                            |
|         | Eigenschaften | Vorhersage: 2TM-0                                               | le: 2TM-Dom. (C                                                                                                                                                                                                                    | Dom. (C-+N-Term.intracell.) 33% ER, 22% CM, 22% Vakuole, 11% Mito, 11% Golgi                                                                                                                                                                             | cell.) 33% EF                   | 3, 22% CM, 2                             | 2% Vakuole,                         | 11% Mito, 11                                    | % Golgi                                 |                                   |                            |
| Klon #2 | T7-Sequenz    | AGCTCGGCGCCC<br>AGGATCGGGAGC                                    | GCCCGCCTG<br>GCAGGAGAG                                                                                                                                                                                                             | SCCTGAGCGCCCGGCCCGACCCCGCCATGGGGTGCTGCTATAGCAGCGAAAACGAGGACTCGGACC                                                                                                                                                                                       | CCCGACCC                        | CGCCATGG<br>CCAGTAGCA                    | GGTGCTGC                            | TATAGCAG(<br>4AAGCCCT(                          | CGAAAAC<br>CAATGGA                      | GAGGACTC                          | CCAACT                     |
|         |               | GATGTGCTTAGC<br>GCTGTGCTTAGC                                    | AUCATAGOCTACOTTO AGOCTO GONO AGOCAGA GONO CONTROCTO CATOCTT GONA GONO AGOCTAGO ACCTO AGO ATO AGO ATO AGO ATO AGO AGO ATO AGO AGO AGO AGO AGO AGO AGO AGO AGO AG                                                                    | GCAGACTCCCAGAGATGAGCAGGCCCTGCTTTCCTCCATGCCAAGACAGCTAGCAACATCATT<br>GCAGACTCCCAGGGCATGGAACAGCATGAGTACATGGACCGGGCAAGGCAGTACAGTACCGCTTG<br>AGCAGTCTGACCCATTGGAAGAAGCTGCCACCGTTGCCATCTCTCACCAGCCAG                                                           | SATGAGCAC                       | SGCCCTGC1<br>AGCATGAG<br>AGCTGCCAC       | TTCCTCCA<br>TACATGGAC<br>CGTTGCCA   | CCTTGCCACCGGGGGGACCACCGGGGGGGACCACCGGGGGAACCACC | AGACAGI<br>SGCAGTA<br>SAGCCAG           | CTAGCAAC<br>CAGTACCC              | ATCATT<br>SGCTTG<br>AAGTGC |
|         |               | ATCCGCGTGGAT<br>TCGTCTTCACCCC                                   | ATCGGCGTGGATGCGAAAGAAGAGAGTTGTACAGTTTGGGATCCCATGAGAGGGTATGCCTATAGTGCACTTTCTCAG<br>ATCCGCGTGGATGCGAAAGAAGAGCTGGTTGTACAGTTTGGGATCCCATGAAGAGAGGGGGCCCTAGGACAGCTCTTCCC<br>TCGTCTTCACCCCGTCTCCACCCCACC                                  | GCGAAAGAAGAGCTGGTTGTAGGTTTGGGATGCTGCGTATGCCTATAGTGCACTTTCTCAG<br>GCGAAAGAAGAGGCTGGTTGTACAGTTTGGGATCCCATGAAGAGGGGGCCCTAGGACAGCTCTTCCC<br>SGTCTCCACCCCACCTCTTGTGGCCCCCAGCCTCACTGNGGCTCTCTACAGTACCTAACCTGCTACTA<br>AATGTGGAAGGAAAGAACAAGGCTGGAGGCCCCAACCAAC | GGTTGTAC,<br>TCTTCTGG           | AGTTTGGG/<br>CCCCCAGC                    | CAGGATAGA<br>VTCCCATGA<br>CTCACTGNC | CTGCGTATC<br>AGAGAGGG<br>SGCTCTCTA              | SCCTATA( SGCCCTA( ACAGTAC(              | GTGCACTT<br>GGACAGCT<br>CTAACCTG  | TCTCAG<br>CTTCCC<br>CTACTA |
|         | BGH-Sequenz   | CAAATGAATATAC<br>TACAAACTCAATT<br>AAGGGGACAGGA                  | CAAATGAATATACTTTCTTTATCGAGGGGTGACAAACAAA                                                                                                                                                                                           | TTTCTTTATCGAGGGGTGACAAACAAAACAAAAAGGGCAAACATGTAAAAACCCCAGGGTGCTAGAAA<br>CAGACTCAAGCTCGTCTAGACCTGGTCATAATCCCCAGTGAGGGGCCTGTGAAAAAGGCACCAAGTCAGGG                                                                                                          | SGTGACAAA<br>TCTAGACCC          | ACAAAAACA<br>STGGTCATA                   | AAAAGAGCA<br>ATCCCCAGT              | AACATGTA<br>GAGGTGC                             | AAAACCC<br>CTGTGAG                      | AGGGTGC<br>SCACCAAGT              | TAGAAA                     |
|         |               | TGAGGCCGATG TGAGGCCGATG ACATTCTTCTCGG                           | AGNGGTATCTCCATCTTCCCAATGACTGAGATCTGCCAGGCCCTGTCCTTTGGCCCAACCTNACCCTAACCAGAGCA TGAAGGCCGATGGCAATCGGTCCCTTCCCT                                                                                                                       | ATCTTCCCAATGACTGAAGATCTGCCAGGCCCTGTCCTTTGGCCCCAACCTNACCCTAACCAGAGCA<br>GCAATCGGTCCTCCCTTCCTTAGTCCTCACTTGCTCCGGCCTCCAGCCTTGTTCTTTCCCTCC<br>TGATTAGTAGCAGGTTAGGTACTGTAGAGAGAGAGAGAGA                                                                       | GAAGATCT( STTCCCTTC             | SCCAGGCC<br>SCTTAGTCC                    | CTGTCCTCT<br>TCACTTGCT              | TGGCCCCA                                        | ACCTNAC<br>SCAGCCTI                     | SCCTAACC/                         | AGAGCA<br>CCCTCC           |
|         |               | GAGACGC                                                         | GAGACGGGGTGAAGACGAGGGAAGAGCTGTCCTAGGGCCCCTCTTTCATGGGATCCCAAACTGTACAACCAGGTGGGTTC<br>TTTCGCATCCACGCGGATCTGAGAAGTGCACTATAGGCATACGCAGCTATCGGAACCAAACTGTACAACCAGCTCTTC                                                                 | SAGGGAAGAC                                                                                                                                                                                                                                               | SCTGTCCTA<br>TGCACTAT           | GGGCCCCT<br>AGGCATAC                     | CTCTTCATE                           | AGGATCCCA<br>GGATCCCA                           | AACTGT/                                 | ACAACCAGI                         | SGGGTG                     |
|         | Contig        | AGCTCGGCGCCG<br>AGGATCGGGAGG<br>ACCATAGCCTACC<br>GATGTCTGCCC    | AGCTCGGCCCCCCTGAGCGCCCCGGCCCGACCCCGCTGGGGTGCTGCTATAGCAGCGAAAACGAGGACTCGGACCAAACGAGGACTCGGACCAAACGAGGACCGAGCCCAATCGGACCTCGGACCAAAACGAGGAGCCGAGCCCAAAACGAGGAGCCGAGCCCAAAACGAAACGAAAACGAAGCCCAAAAACGAAGAGAGCCCAAAAACGAAGAGAAAACAAAAAA | SCCTGAGCGCCCGGCCCGACCCCGCCATGGGTGCTGCTATAGCAGCGAAAACGAGGACTCGGACCCAAGGAGGACCCCAAGGAGGACCCCAAGGAAAGGAAAGGAACGAGGACCCAAGTTCAGGAAGGCCTCAAAGGAAAGGAAGG                                                                                                       | CCGACCC<br>CTGGACCC<br>ATGAGCAG | CCCATGGCACGCACGCACGCACGCACGCACGCACGCACGC | SGTGCTGCI<br>CCCCTACC/<br>TTCCTCCAT | ATAGCAGC<br>WAGCCCTC<br>CCTTGCCA                | SAAAACC<br>SAATGGAC<br>AGACAGC          | SAGGACTO<br>GCCGAGCC<br>STAGCAACA | GGACC                      |
|         |               |                                                                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                 |                                          |                                     |                                                 | N S S S S S S S S S S S S S S S S S S S | 200                               | 5                          |
| 65      | 60            | 55                                                              | 45<br>50                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                       | 35                              | 30                                       | 25                                  | 20                                              | 15                                      | 10                                | 5                          |

| Klon #3 | T7-Sequenz    | AGTCTGGCTTC/<br>CCGCCGCTGCC<br>CTGGATTCTGG<br>TCACCATCTTTG<br>GTGCTGGGACC<br>CTCTTTATCAAC<br>ACCGGAAGCTG | AGTCTGGCTTCACGCTNCANNAGTGNCGAGCGCCTCACGGAGGAGGATTGCATATCATCGCGCCAGGTGCCGCCTCCAC CCGCCGCTGCCGCTTCACACAGCTGCCTGCCGTGTGGCTGCTTCTTCCTCGCCAGGTGCCGCTCCTA CCGCCGCTGCGCGCTTGGCTGCCTGCCGCTGTGGCTGTGGCCTTTTTCTCCAGAGAAGATCTGTGGGGCT TCACCATCTTTGGCTGGGGACTGTCTTCCTGGCTGTGTGGGTCGGTGTCAGAGCAACCTTGGCCAACACTGG GTGCTGGGACCTGAGCTCTGGGCACAAGAAGTGGATCATCCAGGTGCCCATCCTGGCAACTTGTGCTCAACTTCATC CTCTTTATCAACATCATCCGGGTGCTTGCCACTAAGCTTNGGGAGACAATGNGGGGGGGGGCTTNCCGTACC ACCGGAAGCTGCTNAGGGACCTTTGNCAAACTCAACCTTTTTAAACCTTTAAACCTTTAAACCTTTTAAACCTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTAAACCTTTTTT | VAGTGNCG,<br>STACGCTGC<br>TGTACTTAC<br>STGCCGGC,<br>GGCACAAG<br>GTGCTTGC(<br>SNTTGGTGC                       | AGCGCCTCAC<br>SCTGCCGTGTC<br>SACAGCCTCAT<br>TGTCTTCGTGC<br>AAGTGGATCA<br>CACTAAGCTTP<br>SCNGCGCCAC              | GGAGGAAGAGT<br>SGCTGTGACCTT<br>CTTCATGGCCT<br>SCTGTGTGGGT<br>TCCAGGTGCCC<br>IGGGAGACAA1                                           | ACGCTNCANNAGTGNCGAGCGCCTCACGGAGGAAGAGTTGCATATCATCGCGCAGGTGCCGCCTCCACACACA                                                                                              | CCCAGGTG<br>CCTGGCTA<br>AGAAGTATC<br>AACCTTGG<br>GTTGTGCT<br>3TGACACC/                | SCCGCCTCCAC<br>CCAACTACTA<br>STGTGGGGCT<br>CCAACACTGG<br>CAACTTCATC<br>AGGCANTAGT<br>TNCCGTACAC                                                    |
|---------|---------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|         | BGH-Seduenz   | CCCTTCTTTTTT<br>TNTNGGNCCATI<br>TGCAANAANGG,<br>TCCTTGGGAAC<br>TGGNAGNGGCC                               | 11 6 3 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCTNTTTTC<br>GCCCATGC<br>CGCAAACC<br>VACTGGNAN                                                               | CCTTTNGTNTT<br>CCAGCAGTCC/<br>CCANAGGCCTN<br>VGGTTTCGTTN<br>AGNAGGCGGN                                          | CCNGGNCCAGT<br>GCCCNTTGANC<br>INTAATCCANAC<br>ITAAANGGNTGG<br>AGNTAAGGGGA                                                         | TTTTTTTTTTTTCTNTTTTCCTTTNGTNTTCCNGGNCCAGTCCTGAANAGACAGCCAGCCAAANTTTGGNTNTCCATTNTTCCATTNTTCCAGNGCCGCCAGCCAAANTTTGGNTAGCCCATTNTTCCAGNGCCGCGCGCAAACCCANAGGCCGCGCGCGCGCGCG | AGCCAGCC<br>SACTGNTTC<br>CCATTAAGC<br>TGGCGNGC                                        | AAANTTTGGNT<br>CCATTNTTC<br>SAAGCCGTCG<br>SCCAGGCAGN                                                                                               |
|         | Identität     | emb X7893<br>pep<br>Len                                                                                  | emb X78936 MMPHRPR M.musculus mRNA for parathyroid hormone/parathyroid hormone related peptide receptor Length = 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culus mRNA                                                                                                   | for parathyroid I                                                                                               | normone/parathyn                                                                                                                  | oid hormone relate                                                                                                                                                     | - G                                                                                   |                                                                                                                                                    |
|         |               | Score = 8                                                                                                | Score = 878 bits (443), Expect = 0.0<br>Identities = 557/591 (94%), Positives = 557/591 (94%), Gaps = 7/591 (1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.0<br>tives = 557/5                                                                                       | .91 (94%), Gaps                                                                                                 | = 7/591 (1%)                                                                                                                      |                                                                                                                                                                        |                                                                                       |                                                                                                                                                    |
|         | Eigenschaften | DNA-Leiter                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                                 |                                                                                                                                   |                                                                                                                                                                        |                                                                                       |                                                                                                                                                    |
|         |               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                                 |                                                                                                                                   |                                                                                                                                                                        |                                                                                       |                                                                                                                                                    |
| Klon #4 | T7-Sequenz    | AGGCGCTGCCTTCCTTCGGCCCACCGGCCCACCGCCCACCGCCCACCGCCCACCGCCACCA                                            | AGGCGCTGCCTACCAGAGCGCAGCATGACGGCCATCGGCGCGCAGGCCCACAAGCTGTTGGGCCTTAAGAGGGCCCCACGCGCTGCCTTACCTACGCCAGCGCCTGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAGCATGA<br>ATCCGGAC,<br>GCCGGGC<br>GCCAGGCC<br>ATCTTCGGC<br>ATCTCCTNC<br>GCCTCCTNC<br>AAAGCTTA<br>AAGGGAANC | CGGCCATCGG<br>ACTCATCATC<br>ATCATCTTT<br>SCATATGCCCC<br>STTGGAGATGC<br>STGGTTGCCTT<br>ACCTGATGTT<br>CTTAGCCCTTC | CGCGCAGGCC<br>GGCGCACTGCC<br>GGCTGTGGTA<br>GGCTGGCTGT/<br>CATTGTCTCC<br>TATCCTCTCCCC<br>CTGGTGTGAAT<br>GACCCTCAGC/<br>NGATTTGCNCC | ACCAGAGCGCAGCATGACGGCCATCGGCGCGCGCACAAGCTGTTGGGCCTTAAGAGGCCCCACGGGCGCGCACGGGCGCGCGC                                                                                    | GGCCTTAAA<br>CCTTTCTTC<br>CGGCAACC<br>AGATGTCCC<br>TCACCTTCA<br>TCCTCTTCT<br>TCTCTTCT | SAGGCCCCAC AGTCTCCATC AGTGTGCAC AGTGTGGCCG ATCACCGCCG ATCATCCTGC ATCATCCTGC ATCATCCTGC ATCATCCTGC ATCATCCTGC ATCATCCTGC ATCATCTCTGC ATCATCTTGACACN |
| 65      | 60            | 55                                                                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                           | 30                                                                                                              | 25                                                                                                                                | 20                                                                                                                                                                     | 10                                                                                    | s                                                                                                                                                  |

| 5<br>10<br>15<br>20<br>25<br>30<br>40<br>45<br>50 | enz ACTITCAAATTGAGATTITAATAGCATGACTAACCTATCCAGCTCACTGTGCCGTCGTAGAGGCACCCTTCTGCCTTTG CCCTGGAGCTCAGCTGAAGAGACTTCCAGGGCATTGCTAGGCCTAAGTGCCTAAGAGGCAGTGTCATTGGTTG CCCTGGAGCTCAGCTGAAGAGACTTCCAGGGCATTGCTAGGCCAGGGTCCTTGGTTG TCCTATTCAATCTNAGCCAGAGGTCCTATATNAGAGAGGAAGGAAGTCCTGCTG GAGGGTCCCAGGGGTCAGTGAGTGAGGCCGCTGGCGGCATTGAGGAAGAAGAGGAGGCAGTG AATTNACACCAGAACATNAGGGTGAAGCCCAGGAGGTTGATCTTGAGCAGGATGATNAANGTNAAGGGCCCC CAGAGGAGAGAACATAAGGGCAGGAGGTTGATCTTGATCTTGAGCCGTGAGGGACATCTTTACACA CCTGGGACACAATGAGCCAGGAGGTGGCACCACTGCCATGCCCATGCCCATGCCCACTGCCCACTGCCCATGCCCACCGGGCCCATATGGCCCCTGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCCATGCCATGCCATGCCATGCCCATGCCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCCATGCATCATCATCATCATCATCATCATCATCATCATCATCATC | >emb AJZ72046.1 MMU272046 Mus musculus mRNA for calcium channel gamma 5 subunit (CACNG5 gene) Length = 636 Score = 1094 bits (552), Expect = 0.0 Identities = 605/623 (97%), Gaps = 2/623 (0%) Strand = Plus / Plus | AGCAGACTCAGGAAGAAACCATGGTGCTCTGGGGAAGACAAAGCAACATCAAGGCTGCCTGGGGGAAGATTGGTGG CCATGGTCAGTCAGTCATGGAACCATGGTCCTGGGGAAGATTGCTGC CCATGGTGCTGAATATGGAGCTGAAGGTCAGGTC |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60                                                | BGH-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Identität                                                                                                                                                                                                           | T7-Sequenz                                                                                                                                                      |
| 65                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     | Xion #5                                                                                                                                                         |

|         |              | Score = 910 bits Identities = 486/4              | bits (459), Expect = 0.0<br>86/494 (98%), Gaps = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (459), Expect = 0.0<br>94 (98%), Gaps = 1/494 (0%) | (%0                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                 |                      |                            |
|---------|--------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------|----------------------------|
|         |              | Strand = Plus / Pl                               | s / Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                 |                      |                            |
| Klon #6 | T7-Sequenz   | GGTACCGAGCTI<br>CTCCCGGCGGC<br>AGGCCCGCGCT       | <u>GGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAAAGGGGGCTTCGGACCCGGAAGTGGCGCCTTGGC</u><br>CTCCCGGCGGCGCGCGGGGATGGCGGAGCCGGAGCTGGTGCAGGAGCTCGGGGCGGCGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTAGTAAC<br>GGATGGCG<br>3GCCACCC                   | GGCCGCC<br>GGAGCCG<br>3CGCACCC    | AGTGTGCT(<br>GAGCTGGT)       | CGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAAAGGGGCTTCGGACCCGGAAGTGGCGCTTGGG<br>GCCGCGGGGGATGGCGGGAGCCGGAGCTGGTGCAGGAGCTCGGGGCGGCGCGCCGGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCTTCGGA<br>TCGGGGC(  | CCCGGAA                         | AGTGGCGC<br>SCGGCCGC | CTTGGG<br>SAGTCG<br>TCGGC  |
|         |              | GCGCAGGATGG <br>  CTGGGCGCGGG                    | GCGCAGGATGGACGGCGCCCGGGCCCCCGGGCTCCGGGGACAACGCCCCGACCACCGAGGCGCTGTTCGTGGCG<br>CTGGGCGCGGGCGTGACGGCTCTCAGTCACCCGCTGTGAAGCTGCTGAAGCTGCTGATCCAGGTGGGTCATGAGCCGATG<br>CCCCCCACCCTTGGGACCAATGTGCTGGGGAAGGATCTCTAACTAGCAAAAGCTAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                               | CCCGGGCG<br>SCTCTCAG1<br>ATGTGCTG(                 | SCCCGGG<br>TCACCCGC               | CTCCGGG(TGCTAC)              | ACGECEGECCCGGGCCCCCGGGCTCCGGGGACAACGCCCCGACCACCGAGGCGCTGTTCGTGGCG<br>ICGTGACGGCTCTCAGTCACCCGCTGCTCTACGTGAAGCTGCTGATCCAGGTGGGTCATGAGGCGCCGATG<br>IGGGACCAATGTGCTGGGGGAAGGTCCTCTACTGCCGAACGTTCTTAAACTTAAAACTTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAATGTAAAAATGTAAAATGTAAAAATGTAAAAAA | CCGACCAC<br>SCTGATCCA | AGGTGGG                         | GCTGTTC              | STGGCG<br>SCGATG           |
|         |              | GCAGGTGGATG<br>CGGCAGCATGA                       | GCAGGTGGATGGGAAGATAGGGCTCTTCCGGGGCCTGAGCCCCGCCTTATGTCCAACGCTTGTCCACGTGTGGACCCG<br>CGGCAGCATGAAGAAGGTTTTCCCTCCAGATGAGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GGGCTCTT                                           | CCGGGGC                           | CTGAGCCC                     | GGAAGATAGGGCTCTTCCGGGGCCTGAGCCCCCCCCTTATGTCCAACGCTTGTCCACTGTGACACGCGAGGAGAAGAAGATTTCCCTCCAGAAGATGAGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GTCCAAC(              | SCCTTGT(<br>ACATGAA(            | GCACTGTC<br>GACCTCAC | ACALIGE<br>ACCCG<br>TCAAGA |
|         |              | ATGCGATGC<br>GAGGGCTGC                           | AMELLE LE MAGGAGACATO FATGAGATGATGCAGTGTATCGCGAATGCTGGCCCATCCCTTACACGTGATCTCG<br>ATGCGATGCATGGTGCAGTTTGTGGGACGGGAGGCCAAGTACAGTGTGTGCTGAGTTCTATTGGGAGATCTTCAAGGAA<br>GAGGGCTGCTGGGATTCTTCGTTGGCTTAATCCCTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATGAGAT<br>TTGTGGGA(<br>SGTTGGCTT                | GATGATG(<br>SGGGAGG(<br>FAATCCCT( | CAGTGTGT,<br>CCAAGTAC/<br>CA | ATCGCGAAT<br>\GTGTGTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGCC(<br>TGAGTTCT, | SATCCCTT<br>ATTGGGA             | FACACGTG<br>GATCTTC/ | ATCTCG<br>AGGAA            |
|         | R2-Sequenz   | GACTTGAAC                                        | GAATTGAACTCAGGGGAATTCGGAGGGAGTCCAGCCCGCAGCCCACAGTTGTTCACTGcCATGAGATCTCCAACGAGCA<br>GGAAGGGGTAGGTCAGCATGCTCACTGCAATCCCCATCACAACTTGGTGAGTGGCCAGGGCCTGGCTAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rcggaggg)<br>GCTCACTG                              | AGTCCAGC<br>CAATCCCC              | CCGCAGC                      | SCACAGTTG<br>CTTGGTGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TTCACTGC<br>GCTCCGG   | SATGAGA1<br>ATGGCCA             | TCTCCAAC             | GAGCA                      |
|         |              | GC1G1CG1CCAC<br>  TGAGGGATTAAG<br>  TTGGCCTCCCGT | CACCAAGTAG(<br>AAGCCAACGA/<br>3GTCCACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SCATTGATG<br>AGAATCCCA<br>ACTGCACCA                | SAAGTGGG<br>GCAGCCC               | CCAGCAGG<br>CTCTTCCTT        | CAAGTAGGCATTGATGAAGTGGGCCAGCAGGTTACAGCCCCACAAGAAAACCACATCGCCCAGGAGG<br>CCAACGAAGAATCCCAGCAGCCCTCTTCCTTGAAGATCTTCCCAATAGAACTCAGCACACGCACTGTAC<br>CCCACAAACTGCATGCATGGATCAAGATCAGGTATAAAGAACTCAAAACTGCAATAGAACTCAGCACTGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                 | CCCAATAG              | AAACCAC<br>SAACTCAG             | ATCGCCC/<br>3CACACCA | GGAGG                      |
|         |              | ACTGCATCAT<br>CCATCTCATC                         | ACTGCATCATCATCATACGATGTCTCCTTCACACTTTCTTCACGAGGTCTTCATGGGCGTTGGTTTGGAAAACCTTGTTTGGAAAACCTGCTTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SATGTCTCC<br>VACCTTCTTC                            | STTCACAA(<br>SATGCTGC             | CGCGGGT                      | GTGAGGTC<br>ACAGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCATGTCC<br>CAAGGCG   | SECCAGO<br>STCCTTG1<br>TTGGACA1 | TTGGAAA<br>TAAGGCG   | CCTGCT                     |
|         | 4SP6-Sequenz | TAGATGCATGCT                                     | TAGATGCATGCTCGAGCGGCCGCCTTTTTTTTTTTTTTCCAAATCACCACAATACATTATTCGAGGAGAGGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CGCCCTT                                            | 11111111                          | TITITICC                     | AAATCACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCAATACA              | TTTATTCC                        | GGCAGGT<br>SAGGAGA   | GGGTC                      |
|         |              | ACACCTGGCGTC<br>CCACCCTTGTATA                    | GTCACCAGCAC<br>TATAAGAAAATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAGACAAGC<br>TAGTGTTGG                             | SAGATGAG<br>SGAACATAG             | GGGATGGT                     | ACCAGCACAGAGAGAGAGAGAGGGGATGGTCTGAGGAGACATGGCACCCAGCAGAGGAGGCACAGAGGGAAAATTAGAAGGGAAGAAGGCAAAGAAAATTAGTGGGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCGCACCC<br>AACATGAT  | TTCCTATT                        | STGACTGA<br>FCAGGAGA | ACCCTC<br>AGGCA            |
|         |              | AAGCAGGAAGTG<br>  CACTGAGTGACG                   | STGGGGGGCG<br>ACGTTTGCCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GGGGTGCT                                           | TCTGGCT<br>GCCTCTG                | GACTGGCA<br>CTGAGTAC         | GGGGGGGGGGGTGCTCTGGCTGACTGGCAGGATGAGCTGGGCTAGAGGTGCAGGGAAGCCTTGC<br>TTTGCCTCTGCAGCCTGCCTGAGTACAAGATGGACTCCAGTACAAGGTGCAGGAAGCCTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SCCCAGGI<br>GGGCTAG   | GIGAIGG                         | SCGCCCAA<br>AGGGAAGC | CTTGC                      |
|         |              | TGCCACCCC                                        | TGCCACCCCAACACTGCTCCCCCAGGCTTCCCCAGGTCCCAGCTCCACACTCCACCTCCACGCCCACTCTGGCAATATGGAATATGGACATGTGAAGCCAACTCTGGACATGTGAAATATGGAAATATGGACATGTGACCACTTCACACTCACCACCTCTGGACAATATGAAATATGAAATATGAAATATGGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAATATGAAAATATATGAAATATATGAAATATATGAAATATATATATATATATATATATATATATATATATATAT | CCCAGGCT                                           | TCCCCAG                           | STCCCAGG                     | TGACCCACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCCACCAC              | 3CCCACAT                        | TCTGGAC              | GACAC                      |
|         |              | GGCTAAGACCCC                                     | GGCTAAGACCCCATAATGTTTTGCCCCGCGCCCTTAGGTTACTCCAGGGCAAAGCATGACCCCGATGACAGCATGACCCCGATGACAAGCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIGGTCGG                                           | GCAGCTTA                          | GGTTACTC                     | CAGGGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GAGA I GA<br>AGCATGAC | ATGGGTC(<br>CCCGATG             | CTCACCAC             | GCGGA                      |
|         |              | GGGAATACGGAG                                     | 3AGGAGTCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCCGCAG                                            | CCCACAG1                          | TGTTCACT                     | GAGTCCAGCCCGCAGCCCACAGTTGTTCACTGCCATGAGATCTCCAACGAGGAGTTGAACAGG<br>GAGTCCAGCCCGCAGAGCCCACAGTTGTTCACTGCCATGAGATCTCCAACGAGGAGGGGGTAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGCAGTGG<br>TCTCCAAC  | ATCCAGG<br>GAGCAGC              | SACTTGAA<br>GAAGGGG  | CACAG                      |
|         |              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                 |                      |                            |
| 65      | 60           | 50                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                                                 | 35                                | 30                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                    | 15                              | 10                   | 5                          |

| GGTACGAGECTOGGATCCACTAGTAACGGCCGCCAGTGTGCGAAGGGGCCTTCGGACCGGAGGAGCGGGAGCCGGGAGCCGGGAGCCGGGAGCCGGGAGCCGGGGAGCCGGGGAGCCGGGGAGCCGGGGAGCCGGGGAGCCGGGGGCGCGCGGGGGCGCGGGGGCGCGGGGGCGCGGGG |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|         |             | Score = ;<br>Identities<br>Strand =                                                                                            | Score = 3382 bits (1706), Ex<br>Identities = 1733/1746 (99%)<br>Strand = Plus / Plus                                                                                                                                                                    | (1706), Expect = 0.0<br>746 (99%)<br>Is                                                                                                                                                                               |                                                                                                                  |                                                                                                |                                                                                             |                                                                                               |                                                                                                      |                                                                                         |                                                                                   |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|         |             | >gb AF15<br>  Len                                                                                                              | >gb AF151822.1 AF151822 Homo sapiens CGI-64 protein mRNA, complete cds<br>Length = 1734                                                                                                                                                                 | 22 Homo sapie                                                                                                                                                                                                         | ns CGI-64 prc                                                                                                    | tein mRNA,                                                                                     | complete cd:                                                                                | Ø                                                                                             |                                                                                                      |                                                                                         |                                                                                   |
|         |             | Score = 1166 bits<br>Identities = 879/97<br>Strand = Plus / Pl                                                                 |                                                                                                                                                                                                                                                         | (588), Expect = 0.0<br>′2 (90%), Gaps = 3/972 (0%)<br>us                                                                                                                                                              | 2 (0%)                                                                                                           |                                                                                                |                                                                                             |                                                                                               |                                                                                                      |                                                                                         |                                                                                   |
|         |             | >gb AF189289.1 A<br>Length = 197                                                                                               | <sup>=</sup> 189289.1 AF18928<br>Length = 1918                                                                                                                                                                                                          | F189289 Homo sapiens presenilin-associated protein mRNA, complete cds<br>18                                                                                                                                           | s-nilin-a                                                                                                        | associated pr                                                                                  | otein mRNA                                                                                  | , complete c                                                                                  | şp                                                                                                   |                                                                                         |                                                                                   |
|         |             | Score = 948 bits   Identities = 727/81                                                                                         |                                                                                                                                                                                                                                                         | 478), Expect = 0.0<br>0 (89%)<br>Is                                                                                                                                                                                   |                                                                                                                  |                                                                                                |                                                                                             |                                                                                               |                                                                                                      |                                                                                         |                                                                                   |
|         |             |                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                |                                                                                             |                                                                                               |                                                                                                      |                                                                                         |                                                                                   |
| Klon #7 | T7-Sequenz  | AGCTCCGCCCCT<br>ATGGAGGCCGTC<br>CTGGTTCTGTGTG<br>GGCATCGTGCTG<br>GGCAACTACCGG<br>AGGCCAAGGAGG<br>GGCCTGGGCGG<br>GCTCTTTGCCATGA | AGCTCCGCCCCTGCTACTGGACCATGGAGACTGTGGCCCAGTAGAGACCTTAGTGTGAGGCTTTCAGGGGCGCGCGC                                                                                                                                                                           | IGCTACTGGACCATGGAGACTGTGGCCCAGTAGAGACCTTAGTGTGAGGCTTTTCAGGGGCGGCGCCCCCCCC                                                                                                                                             | SGAGACTGT<br>TGTCTGTGC<br>TGTCCAAGE<br>TGCCCAAGE<br>AAAGGCTC<br>TGATAAGGC<br>GGACTCATI<br>SCCTGGGGC<br>GCTTCATGA | GGCCCAGT<br>SAGGATCTG<br>GCCTGGTG<br>GGAGCAAA<br>FAAGTATG<br>CATGAAGA<br>GGACTGGG<br>SACACTGGA | AGAGACCI<br>SAGGATTT<br>CCTGGTTC<br>GAGGAGG<br>TGCGAGGG<br>AAGATGGA<br>AAGAGGGG<br>VAGAGGGG | TAGTGTGTGF<br>TGAAAGGA<br>GGAGGAC<br>AGCGGGAC<br>CTGGTAGC<br>CTGGTAGC<br>CAGTNCA<br>MCCTGTCCA | GGCTTTCA<br>AATTTCA<br>AATTTCA<br>TATGTCT<br>AGACTGA<br>SCATGGC(<br>AATCCTG/<br>VATCCTG/<br>CTACTACC | AGGGGGCG<br>STCTGAGC<br>AGGACATC<br>TCTACCTG<br>GCCCCAGA<br>CATCGNTGAGGCAGN<br>ATCGCCTT | GCGGCC<br>AGGCAG<br>CCGCAGA<br>GCCGTG<br>AACAACC<br>GTGGCAT<br>CTNACCT<br>CTNACCT |
|         | BGH-Sequenz | CCCGAGCCACGC<br>GGGGGTCATGGA                                                                                                   | CCCGAGCCACGGCCCAATTITATTTACACTCATTGCAAAGNATGACAGGGTTAAACGACAGGTGCAGGGGCTAANAGGCT<br>GGGGGTCATGGAGACTGTAGAGGTAGACTACAGGGGTGCAGGANAAAAGGGAAAGGCGATGGTGGAGATGGACAGGCC<br>CCTNTTCCAGNGTCCCCCAGGCTCCTAGGCGTCCCGGGGCAGAGAGCAGGGTGAGGTTCAACGATTTAGAATTGAACTTGA | SCCCAATTITATITACACTCATTGCAAAGNATGACAGGGTTAAACGACAGGTGCAGGGGGCTAANAGGC<br>AGACTGTAGAGGTAGACTACAGGGGTGCAGGANAAAAGGGAAGGCGATGGTGAGGATGGACAGGCC<br>TCCCCCAGGCTCCTAGGCGTCCCGGGGCAGAGAGCAGGTGAGGCTACCTTCAGGATTTGAACACTTGGAA | SACTCATTGE<br>SACTACAGG                                                                                          | CAAAGNATC<br>GGTGCAGG                                                                          | SACAGGGT<br>SANAAAAGC<br>AGAGCAGC                                                           | TAAACGAC<br>3GAAGGCG                                                                          | AGGTGCA<br>ATGGTGA                                                                                   | GGGGCTA                                                                                 | ANAGGCT<br>CAGGCC                                                                 |
|         |             |                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                |                                                                                             |                                                                                               |                                                                                                      |                                                                                         |                                                                                   |
| 65      | 60          | 55                                                                                                                             | <b>45</b><br><b>50</b>                                                                                                                                                                                                                                  | 40                                                                                                                                                                                                                    | 35                                                                                                               | 30                                                                                             | 25                                                                                          | 20                                                                                            | 15                                                                                                   | 10                                                                                      | 5                                                                                 |

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                  |                   | The second secon | 4 4 5 5 4                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 5                      | AGACAGCCAGTCCAATGAGTCCAGGCCTGCCACGCCCAGGGCCATGCCACCAACGATGGCCATGCCTACCAGTC CATCTTTCTTCATGGCCTTATCAATCAGGCGTTCCAGCTCCTTGGCCTTGTTCTGGGGCTNAGTNTGNAACAGCCCT CATCTTTCTTCATGGCCTTATCATATTCCTTGAGCCGCTCTTGGCCCAGGTAGAAGACATAGTCCCGCTGTTC CTCTTTGCTCCCTTTGGGCAACAGNTCCTCCAGCAGCAGGATGCCTCTGCGGATGTCCTTTGAATTTGCTTCGAACCA GGCACCAGGCATATTCAAATTGCGTGCTCTTGGACAGAACCAGNTGCCTGCTGCTTAAAATTTTCAAAATTNT TCAGATCCTTCACAGACCAGCTCGTTCAGCACGGACCATGGCCCCCCTTAAAAGCCTTACACTAAGGNCTNTA CTGGGCCACAAGTTTCCATGGCTCGTTCAGGCCGCGCCCCCCTTGAAAGCCTTACACTAAGGNCTNTA |                                                                                                                                                                              |                   | AGAGGCA<br>GATCCAG<br>NTCCGAGA<br>AAGATCGT<br>SACCAGAA<br>TGCTTTCT<br>TCCCTACT<br>NTTGGGTT<br>GTGNCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTTACAAA<br>CGCCCCG<br>STAGAGTT<br>GCGTGCA<br>CCTNGNAT                                              |
| 10                     | SCCATGCCI<br>AGTNTGNAA<br>CATAGTCCI<br>AATTTGCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              |                   | CCATCATGA<br>SATCGGCA<br>GTTGGGCA<br>AGCAGAGG<br>ATCTGCAAC<br>GCCCTTGC<br>TGGCNGGI<br>TGGCNGGI<br>ACAATTTT<br>GGGAGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTTCCTTT<br>CTCCCCC<br>TACCAGGG<br>GTTCCACG                                                         |
| 15                     | SACCATGO<br>GGGGCTN/<br>GTAGAAGA<br>CCTCATTG<br>GACTGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |                   | GAGAGCGA<br>TTGGACCT<br>STTTCACCT<br>SACCTACGA<br>ACTTGGTCA<br>AAGAGGACA<br>AAGAGGACA<br>AGGGGCCCT<br>GGGGTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTTCCAGG<br>AGGCAGCC<br>SNGCTTTCC<br>GGCACAT<br>ATAATGAGA                                           |
| 20                     | ATGCCACC<br>SETTGTTCT<br>ACGCCCAG<br>GCGGATGT<br>CCTGCTNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e cds                                                                                                                                                                        |                   | AGCAAGCT<br>CATGGCCC<br>TCCTGCCC<br>AGCAGTGG<br>STGGGCCG<br>ACCTACATA<br>AACGCCCG<br>AAGGCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NETTCAGTO<br>NGTTTCTCA<br>NTGCTTNGC<br>CAGNGNGT<br>SCCGCCTG                                         |
| 25                     | CCAGGGCC<br>STTGGCCTG<br>AGTTGCCC/<br>SATGCCTCT<br>ACCAGNTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA, complet                                                                                                                                                                  |                   | GGCCTACG<br>CTGCACGT<br>AGAACGGT<br>CTACGGGC<br>STAGTGCAC<br>SATATTTGG<br>ATCCTCAA<br>STTAATTAT<br>SCCCTTGGN<br>GGGGGGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AACGTAATO<br>STACACGGI<br>ATCCCCACA<br>SGNGGGNG<br>SGCAGGGCO                                        |
| 30                     | AGACAGCCAGTCCAATGAGTCCAGCCAGGCCTGCCACGCCCAGGGCCATGCCACCAACGATGGCCATGCCTACCAGTC CATCTTTCTTCATGGCCTTATCAATCAGGCGTTCCAGCTCCTTGGCCTGGTTGTTCTGGGGCTNAGTNTGNAACAGCCCT CGCACATACTTTAGAGCCTTTTCATATTCCTTGAGCCGGCTGGTTGCCCAGGGTAGAAGACATAGTCCGGTTTC CTCTTTGCTCCCTTTGGGCAACAGNTCCTCCAGCAGCACGATGCCTCTGCGGATGTCCTCATTGAATTTGCTTCGAACCA GGCACAGGCATATTCAAATTGCGTGCTCTTGGACCAGAACCAGNTGCCTGCTCATAGAATTTCCTTTCAAAAATTTC TCAGATCCTTCACAGACCAGGCTCGTTCAGGACCGGAACCAGCCCCCCTTAGAAATTTCCTTTCAAAAATTTC TCAGATCCTTCACAGACCAGGCCAGG                             | >gb AF151893.1 AF151893 Homo sapiens CGI-135 protein mRNA, complete cds Length = 735 Score = 434 bits (219), Expect = e-119 Identities = 402/466 (86%) Strand = Plus / Minus |                   | AGATTGACTTGGGCACTGACATGGTTCCTGCCATCTCCCTGGCCTACGAGCAGCTGAGAGCGACATCATGAAGAGGCAACAGGAGGCAAAACCGAGAGAACCGAGAGAACCGAGAGAACCCCAGAGAACCCCAGAGAACCCCAGAGAACCCCAGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAAACCGAACCTGGAAACCGAACCTGGAAACCGAACCTGGAAACCGAACCATGGAAACCGAAACCGAAACCGAAACCGAAACCTGGAAACCAACACATTGAAACAACAACAACAACAACACTTGAAAACCTACTGCCCCGGGGAAACAACACTTACTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCGTTATAATAGCCATCTTTATTTGTAAAAATCCAGATATAAAACGTAATCTTTCAGTCTTTCCAGGTTTTTCCTTTTTTTACAAAAACGTAAAAAAAA |
| 35                     | GCCAGGCC<br>TCAGGCGT<br>TATTCCTTC<br>SNTCCTCCA<br>STGCTCTCC<br>CGTTCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | piens CGI-1                                                                                                                                                                  |                   | STTCCTGCC<br>AACTTGTGA<br>STTTGTGA<br>ACGATGTG<br>CTTTGTCA<br>CTTTGTCA<br>CGAGNCCT<br>CGAGGGTC<br>CGAGGGTC<br>SAAAAGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAAAAATCO<br>SCCGCTG<br>ATTCCAGG<br>CAAAGAGG<br>TCCTTCTCC                                           |
| 40                     | TGAGTCCA<br>SCTTATCAA'<br>SCCTTTCA<br>SGCCACAC<br>CCAATGCC<br>ACACCAGCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>•gb AF151893.1 AF151893 Homo sapie Length = 735 Score = 434 bits (219), Expect = e-119 Identities = 402/466 (86%) Strand = Plus / Minus</pre>                           |                   | GGCACTGACATGG<br>SCCCAAACGGACAA<br>GCTTCTCACTTAC<br>SACCGCTGGGTCAA<br>GCCATACAGCGTT<br>TTCCAGCAGGGAA<br>TCCAGCAGGGGAA<br>CCCGGGATGGGGG<br>TCTTTTGTGTATGA<br>GAGGACCCTACTTA<br>AACCCCAACCCC<br>CTTGGGNNGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTTTATTTG<br>NTAACCTT<br>ACATGCTTC<br>IGAAGTACA<br>AGTAGGTC<br>GGGAGTAGG                            |
| <b>45</b><br><b>50</b> | CAGTCCAA<br>CITCATGGC<br>ACTITAGA(<br>CICCCTTG<br>GGCATATT<br>CITCACAG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •gb AF151893.1 AF15189<br>Length = 735<br>Score = 434 bits (219), E)<br>Identities = 402/466 (86%)<br>Strand = Plus / Minus                                                  | poptose           | CTTGGGCA<br>AACCCCAA<br>GAGGCTC<br>GATGACCG<br>ACCTGCCA<br>TGTTTCA<br>TAATCTTT<br>ANGGAGG/<br>TGNAACCC<br>ACCCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTAGCCAT<br>GGCACGTA<br>TTACAGCTA<br>SCAAGACTI<br>GGGCTAGT                                          |
| 55                     | AGACAGCCAG<br>CATCTTTCTTC<br>CGCACATACTT<br>CTCTTTGCTCC<br>GCCACCAGGC<br>TCAGATCCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >gb AF151<br>Leng<br>Score = 4<br>Identities =<br>Strand = P                                                                                                                 | PI-FACS: Apoptose | AGATTGACTTG<br>GCCCAGAAACC<br>GCCCTGGGATC<br>GACCTGGGATC<br>GGAGTTCACCT<br>TATCCTACTGC<br>TATCCTACTGC<br>TCCCTTCTTAAT<br>GGGAGGAANGC<br>CAACACCTTGN<br>AACTTTTACCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCGTTATA<br>AACAAAA<br>CCCCCCG<br>CCGAGCTG<br>GGGCAGA                                               |
| 60                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | identität                                                                                                                                                                    | Eigenschaften     | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BGH-Sequenz                                                                                         |
| 65                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lde.                                                                                                                                                                         | Eig               | Klon #8 17-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88                                                                                                  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                              |                   | S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |

|         | Identität   | >ref NM_012504.1  Ratt<br>(Atp1a1), mRNA<br>Length = 3636                                                                                                 | 1  Rattus norvegicus ATPase, Na+K+ transporting, alpha 1 polypeptide<br>mRNA<br>336                                                      | gicus ATPa                         | se, Na+K+ tı           | ansporting, a         | alpha 1 poly         | oeptide             |                    |                       |                   |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|-----------------------|----------------------|---------------------|--------------------|-----------------------|-------------------|
|         |             | Score = 874 bits (441), Expect = 0.0<br>Identities = 528/556 (94%), Gaps = 1/556 (0%)<br>Strand = Plus / Plus                                             | (441), Expect = 0.0<br>i56 (94%), Gaps = 1<br>lus                                                                                        | = 0.0<br>3 = 1/556 (0 <sup>6</sup> | (%                     |                       |                      |                     |                    |                       |                   |
|         |             |                                                                                                                                                           |                                                                                                                                          |                                    |                        |                       |                      |                     |                    |                       |                   |
| Klon #8 | T7-Sequenz  | AGCCGGAGGCCGAGCCCAGTCGCCAGCTCCTGCTCTCTCT                                                                                                                  | GAGCCCAGT<br>GGCGGGGGAC<br>CTCTGCTGCT                                                                                                    | CGCCAGC                            | TCCTGCTC<br>CCCGCAG    | TGCTCCTC<br>CTACCGCC  | TCCCGCC<br>ATGCTGCC  | AGTGCTC<br>AGTGCTC  | SCGCTGC<br>TACACCG | SACGCCTCG<br>SGCCTGGC | SAGCACT<br>GGGGCT |
|         |             | ATGCCCCGGCGGCGCGCAGCTACCGGCAGCGCGCGCGCGC                                                                                                                  | GGTGCGCAG                                                                                                                                | CTACCGG(                           | CAGCGGC                | SACCCGTG              | CGTACCAT             | CCTGCGG             | GCCTTCC            | TGGAACA               | 460606            |
|         |             | GTGGGGGGGGGGCTGCACTGGGCCTACGACAGGGGGGATNGCGTAGCCCTCTTCATGGGCAATGAGCCGG                                                                                    | SECTECACGA                                                                                                                               | TCAACTGG                           | I I CCGAGA<br>3GCCTACG | CGAGACGC<br>ACAGGGGG  | SATNGCGT             | AGCCCTC'            | SIGGACC<br>TTCATGG | GGCGCAG(              | CCGGC             |
|         |             | CTACGTGTGGATCTGGGTGGGACTGCTCAAACTGGGCTGTCCCATGGCGTGCCTCAACTACAACATTCGTGCCAA<br>TGCTGCACTGCTTTCAATGCTGCGGGGGGGAAGGTGCTGCTGGCTNCCCAGATCTACAAGAAGCTGTGGAGGAG | TCTGGCTGGGACTGCTCAAACTGGGCTGTCCCATGGCGTGCCTCAACTACAACATTCGTGCCAAGTCTC<br>TTTCAATGCTGCGGGGGGAAGGTGCTGCTGGCCTNCCCAGATCTACAAGAAGCTGTGGAAGAA | SACTGCTC,<br>SCGGGGC(              | AAACTGGG<br>3AAGGTGC   | SCTGTCCC/             | TGGCGTG              | CCTCAAC             | FACAACA)           | TTCGTGCC/             | AGTCTC            |
|         | BGH-Sednenz | AGTGTTAATATAGTTTATTATGTCTTTAAAAAAATAAGGCCCTCTCCCAAGAAGCTTAGTTTGCAAGGACAAATGGCAGGT                                                                         | GTTTATTATG                                                                                                                               | TCTTTAAA                           | <b>AAAATAAG</b>        | <b>ЗСССТСТС</b>       | TCCAAGAA             | GCTTAGTI            | TTGCAAG            | GACAAATG              | SCAGGT            |
|         |             | GCACATTGAAAAATAATTGTTTCTAAAATATTTTTTTTTT                                                                                                                  | VATAATTGTTT<br>ATTTCCTAAA                                                                                                                | CTAAATCT                           | TTTACTT:               | SCAAAGGT<br>ATAGCCTTN | TCAGGTG1<br>JAATCAAG | AATTTAAA<br>TAAAGTT | AAAAAAA            | ACAAACAAA             | CTATCC            |
|         |             | TCTGCGAGGTCT                                                                                                                                              | TATCGAGITTCTTTCTGGAAATGTCATGAGCTAAACCACGGGAATATTCAGAGCTTNAGAGTTTTATC                                                                     | CTTTCTGG                           | AAATGTCA               | ТСАССТАА              | ACCACCAC             | GGAATAT             | TCAGAGC            | STTNAGAGT             | TTTATC            |
|         |             | ACTGTGGGATTGAAGCCCTCTTCCATCAGGGTCACTTTGCGGNGTTTAAAAGCCCAGGGATTCCAATGGTATCTTGATG                                                                           | SAAGCCCTCTTCCATCAGGGTCACTTTGCGGNGTTTAAAAGTCCCAGTGAAATACAAGGTATCTTTGATG                                                                   | TCCATCAG                           | GGGCACA                | TGCGGNG               | TTTAAAAG             | TCCCAGT             | AAATACA<br>SATCTCA | AGGTATCT              | TGATG             |
|         | Identität   | reflNM_011978.1  Mus musculus solute carrier family 27 (fatty acid transporter).                                                                          | Mus musculus solute carrier family 27 (fatty acid transporter)                                                                           | s solute carr                      | ier family 27          | (fatty acid to        | ansporter).          | AAGAGII             | 2011               | AI IGAACIC            | GIAGI             |
|         | ·           | member 2 (Sident) Length = 1872                                                                                                                           | member 2 (Slc27a2), mRNA<br>ength = 1872                                                                                                 | ¥.                                 |                        |                       |                      |                     |                    |                       | •                 |
|         |             | Score = 844 bits (426), E)   Identities = 430/432 (99%)   Strand = Phis / Phis                                                                            | (426), Expect = 0.0<br>32 (99%)                                                                                                          | 0.0                                |                        |                       |                      |                     |                    |                       | <del>~</del>      |
|         |             | >gb AF072757.1 A                                                                                                                                          | FO72757 Mus musculus fatty acid transport protein 2 mRNA, complete cds                                                                   | musculus fat                       | tty acid trans         | sport protein         | 2 mRNA, cc           | mplete cds          |                    |                       |                   |
|         |             | rengui = 107                                                                                                                                              | 7/                                                                                                                                       |                                    |                        |                       |                      |                     |                    |                       |                   |
|         |             |                                                                                                                                                           |                                                                                                                                          |                                    |                        |                       |                      |                     |                    |                       |                   |
| 65      | 60          | 50                                                                                                                                                        | 45                                                                                                                                       | 40                                 | 35                     | 30                    | 25                   | 20                  | 15                 | 10                    | 5                 |

| 65       | 60          | SCORE =                   | 844 bits (                                                                       | pect                                                                                                                                                                     | 40 0.0               | 35                   | 30                   | 25                    | 20                   | 15                   | 10                   | 5       |
|----------|-------------|---------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|---------|
|          |             | Strand =                  | ideniities = 430/432 (99%)<br>Strand = Plus / Plus                               | 32 (99%)<br>lus                                                                                                                                                          |                      |                      | •                    |                       |                      |                      |                      |         |
|          |             | >emb[AJ                   | >emb AJ223958.1 M<br>Length = 2238                                               | IMMAJ3958 Mus musculus mRNA for very-long-chain acyl-CoA synthetase (VLACS)<br>:38                                                                                       | lus musculu          | is mRNA fo           | r very-long-c        | hain acyl-Co:         | A synthetas          | e (VLACS)            |                      | 7 1 ·   |
|          |             | Score = Identities        | Score = 844 bits (426), E)<br>Identities = 430/432 (99%)<br>Strand = Plus / Plus | (426), Expect = 0.0<br>32 (99%)<br>us                                                                                                                                    | 0.0                  |                      |                      |                       |                      |                      |                      |         |
|          |             |                           |                                                                                  |                                                                                                                                                                          |                      |                      |                      |                       |                      |                      |                      |         |
| Klon #10 | T7-Sequenz  | AGCGC<br>TGGTCA           | AGCGCGGGAGGC<br>TGGTCACTGCGC                                                     | AGCGCGGGAGGCGCATGGCGGCATGGCGCTGGCGCGAGCATGGAAGCAGATGTCCTGGTTCTACTACCAGTACCTGC<br>TGGTCACTGCGCTCTACATGCTGGAGCCCTGGGAGCGAACCGTGTTCAATTCGATGCTGGTTTCCGNGGTGGGGATGGC         | SGGCATGC<br>TGGAGCC  | SCGCTGG(<br>CTGGGAG  | SGCGAGC/             | TGGAAGC/              | AGATGTCC<br>TCGATGCT | TGGTTCTA<br>GGTTTCCC | ACTACCAG<br>SNGGTGG( | TACCTGC |
| ·        |             | TGACCA                    | CCTGTACACTGG(<br>TGACCAGGATCC/                                                   | CCTGTACACTGGCTACGTCTTCATGCCCCAGCACATCATGGCTATTCTGCATTACTTTGAAATTGTACAGTGACGAAGATG<br>TGACCAGGATCCAGAGGTTCCTGGGGAAGATCTGCCTTGTGAAGTTGGAATGAGACCTCATCAGATGTAAGATGTGCTAC    | CATGCCC<br>STGGGGAA  | CAGCACA:<br>\GATCTGC | ICATGGCT<br>CTTGTGA  | ATTCTGCA:             | ITACTTTG/<br>GAGACCT | AATTGTA(<br>SATCAGAT | CAGTGAC(             | SAAGATG |
|          |             | GGATG                     | CCACGT                                                                           | GGATGTCCACGTGACCAACCTTATAAATACAAAGACTTTAAAAAAAA                                                                                                                          | TTATAAAT/            | ACAAAGAC             | TTTAAAAA             | AAACTTNA              | IGAGTAGA<br>TOTA     | ACAGGAA              | AAATCATC             | стевст  |
|          |             | CTTTGA                    | TATCAGE                                                                          | CATTGATATCAGTATTTCTTAACCTTTGTGACTGTTTCAATATTATCCAGTGAAGCTTTTCTTAATGTAACTTTGAGTACAT                                                                                       | ACCTITGE             | GACTGTT              | CICITALE<br>TCAATATT | TCCAGTG/              | AAGCTTT              | CTTAACA              | TAACTTG              | ATTTGTA |
| ·        |             | CTCAATTGCCTT              | TGCCTTC<br>TATTTCT                                                               | CTATTITIAAAACCTAAGGTCATTAGTTGGGCTTTACTGGTCTTGCTATCATATGGCATATACATCTGCC<br>TACTCTTGACCA                                                                                   | AACCTAAC<br>CA       | SGTCATTA             | стевес               | ттаствет              | сттестат             | CATATGG              | CATATACA             | тствсс  |
|          | BGH-Sequenz | ACATTITIC <br>  TACAAAGAG | ĔÞ                                                                               | 3AATTTAATGAGTTTACATNAAAAAAAGTAGTCATTTTACATNTAAGGAATAAAAAACCGTTTTAAAAAAAA<br>VAAGGATTTTAAGCAAGTTTACATTTCTTTTGGTTATGGTTCTGCACAATTCATCATTGATTG                              | AGTTTACA<br>TAAGCAAG | TITACAT              | WAGTAGT              | SATTTTACA<br>TTATGGTT | TNTAAGGACTGCACAA     | ATAAAAA              | CCGTTTTA             | AAAAAAA |
|          |             | ACAACG                    | ACAACGTGCAAAT                                                                    | TECATTINACAACGCCTGTTACAACATNAAATTAACTNTTGAGCGTATACAGGGTCAATACTGCCTNAG                                                                                                    | CAACGCCT             | GTTACAA              | CATNAAAT             | TAACTNTTC             | SAGCGTAT             | ACAGGGT(             | CAATACTG             | CCTNAG  |
|          |             | CAGGAA                    | AGGAATCATNAA                                                                     | GCCTTCTATGGAAATAAGCTCCACATAAGAATTTAATATNTAAAAGGGGGCGCCACCAATCATCAATNA<br>AAGTTGGTTGGAAATAAGTCCACATAAGAATTTAATATNTAAAAGGNGAAATGTTCCTTGTATTAATGTT                          | GGAAATAA             | NCACAGI<br>GTCCACA   | GIATNTNA<br>TAAGAATT | GCATATGT<br>TAATATNT≜ | CATACAAG             | CCGGCCA              | CCAATCA              | CCAATNA |
|          |             | AGCAAGATCTT               | ATCTITA                                                                          | ACTITITCATTACTAGAAACACTTTAATAGTTTTAGAGCAAAAGCTGTTAAGAGTCTAGGGAGCTAAAA                                                                                                    | TACTAAGA             | AACACTT              | TAATAGTT             | TAGAGCA               | WAGCTGT.             | TAAGAGTC             | TAGGGAG              | CTAAAA  |
|          |             | CCGTAC                    | TCCTGAC                                                                          | CCGTACTCCTGAGTTCAAGCAAGCAGATAAATCTTTTGTAAGTAGTTCTNAAAGTATCCTCCTCCCTCCCGTCCCCAAATTCTGT<br>ATTGNTTCTTACAAAACTTTGGTCAAGAGTNGAAATATATCCAGGCAGATGTATATGTCATATATGATAGCAAAAAAAA | AGCAGAT/<br>STCAAGAG | AATCTTT<br>INGAAATA  | TGTAAGTA             | GTTCTNAA              | AGTATCCT(            | CCTCCC               | STCCCCAP             | ATTCTGT |
|          | Contig      | AGCGCGGGAGG               | AGCGCGGGAGGC                                                                     | CGCATGGCGGCATGGCGCTGGCGCGAGCATGGAAGCAGATGTCCTGGTTCTACTACCAGTACCTGC                                                                                                       | SGCATGG              | CGCTGGC              | GCGAGCA              | TGGAAGCA              | GATGTCC              | GGTTCTA              | CTACCAG              | TACCTGC |
|          |             | CCTGTA                    | CCTGTACACTGGC                                                                    | SCTACGTCTTCATGCCCCAGCCACATCCTTTCTGCATTTCTTCAATTGTACATTGTACAGTGCGAAGATTGTACAGTGACGAAGATGCCAAAGATGCCAAAGAAAAAAAA                                                           | CATGCCC              | AGCACAT              | CATGGCT/             | VTTCTGCA1             | TACTTTGA             | AATTGTAC             | AGTGACG              | SANGGC  |
|          |             | ופאררא                    | GACCAGGAICCA                                                                     | AGAGGI I CC I GGGGAAGA I C I GCC I I G I GAAG I I GGAATGAGACCTCATCAGATGTAAGATGTGCTAC                                                                                     | I GGGGAA             | GAICIGO              | CIIGIGAA             | GTTGGAAT              | GAGACCT              | ATCAGAT              | GTAAGATC             | STGCTAC |

| ACTOCOTRAGACTCTTAACAGCTTTTGCTCTAAACTATTAAGGTTTTTGTTAAGGTTTTGTTAAGGTTTTGTTAAGGTTTTGTTAAGGTTTTGTTAAGGTTTTGTTAAGGTTTTGTTAAGGTTAACAAAAAAAA |
|----------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------|

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              | _               |                                                                                        |                                                                       | -                                                                                                                                                             | _                                                                                |                                                                                                                                                                | <del></del>                                      | <del></del>                                  |                                                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|-----------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              |                 | GGCTGTCC<br>CNACGCAC<br>AGCTACACA                                                      | SGAATTCAG                                                             | AAGATCCCC<br>VGGGCGTTT                                                                                                                                        | CCTTGTGGA                                                                        | VAAATGGAG                                                                                                                                                      | W1299191                                         | TTNNAGAC                                     | TNGGTCAG                                                               | <b>AGNTGGNC</b>                                                                   | TCCCCAGC<br>ATGGTCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              |                 | AGTGGAAGT<br>SAATGATCCA                                                                | SACCAATGAC                                                            | CTGATGCTT,<br>GGTCTNGNN                                                                                                                                       | TNAACAGAA                                                                        | ACATTAAGGA                                                                                                                                                     | 2021 1000                                        | AAAANAAATA                                   | NAATAAGGGT                                                             | NGACAGGAT                                                                         | CCALTCACT<br>SAGAACCCC/<br>TGGCTTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              |                 | AGTGGCACC<br>AGAACATGA(                                                                | GGTGACATO                                                             | SAGGAACCG<br>SCCAGNGCG                                                                                                                                        | CTNACTGAG                                                                        | CTTTCCAGT/                                                                                                                                                     | TGGCTN                                           | CCTTTATATATATATATATATATATATATATATATATAT      | SGTTNGANT                                                              | IATNAATTNA                                                                        | CONTRACTOR SCENARIOS SCENA |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              | 100 4 0 0 1 1 L | TTAGTGCAN/                                                                             | GAACGCCTTT                                                            | SAGGCT1TTI<br>AGAACCAGGG                                                                                                                                      | <b>SCAAACTGAT</b> (                                                              | ATGGATTTTG(                                                                                                                                                    | CATGAAGCTG                                       | STTTTATACAA                                  | AAGNACCANG                                                             | ANCGCTACCN                                                                        | NGATGTAGCC<br>IATAGCCATAG<br>TAGAACTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |              | TOOKITOOO       | AACAGCTTAGCTACCCAAAATTTGATNAAACCTTTAGTGCANGGCACCAGTGGAATGTTTAGTGGCACCAGTGGAAGTCNACGCAC | SAGCAACGGGCAGNACGGCTTTTCCATGGAGATGAACGCCTTTGGTGACATGACCAATGAGGAATTCAG | GCAGGINGGINGAATGGCTGATGAGCAGGAGGAGGGGGGGGGTTTTTCAGGAACCGCTGATGCTTAAGATCCCC<br>AAGTCTGNGGACTGGAGAGAAAAGGGTTGNGTGACTCCTGTGAAGAACCAGGGCCAGNGCGGGTCTNGNNGGGCGTTTT | AGCGCATCGGGTTGCCTAGAAGGACAGATGTTCCTTAAGACCGGCAAACTGATCTNACTGAGTNAACAGAACCTTGTGGA | CIGITCICACGCICAAGGCAATCAGGGCTGTAACGGAGGCCTGATGGATTTTGCTTTCCAGTACATTAAGGAAAATGGAG<br>GTCTGNACTCGGAGGAGTCTTACCCCTATGAAGCAAAAGAACNGGATCTTGTNAATACAGACNGCAACTAGAAA | TCCGTGGATNTNCCTTAGCCAGGAGAAAGCCTCATGAAGCTGTGGCTN | TTACACACACACTGAGGTAAAATTTATTTAAGAGGTAAAGAAAG | GAATTNAAATNATGANTTGGATCCTNAATGATTNAAGNACCANGGTTNGANTNAATAAGGGTTNGGTCGG | TTTTAAGCTGAATTCCTTNGGACATAGAGNCCATAAGTCCTCATTANCGCTACCNATNAATTNANGACAGGATAGNTGGNC | GOSTINGECAGE CCACAGAGG INGNOCCEG ICTTNGGCTATTTNGATG INGATG TO AGCCTTCCATACCCCATTCACTTCCCCAGC<br>TGNTCTTGACAAGCCAATATTTATTCTTATTTGAATCTGNTCCTTNATAGCCATAGCCNANCAACAGAACCCCATGGTCGA<br>GGATCTTGCTGCTACAGTNGGGTTNATAGTAGATGCCTGAACTATAGAACTGGAGAGGAGGATGGCTTGCGTCCATAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35 | 2<br>19 (0%)<br>94 (0%)<br>97 (2%)<br>2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |              | CATOO           | TCCAAAATT<br>AANAGTGG                                                                  | ACGGCTTTT                                                             | CAGAAGCA                                                                                                                                                      | AGATGTTC                                                                         | SGCTGTAAC<br>CTATGAAG                                                                                                                                          | TTAGCCAG                                         | TTTTAAGA                                     | NTTGGATC                                                               | SAGNCCAT/                                                                         | NCCCGG IC<br>ITATTTGAA<br>ATAGTAGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 | Score = 444 bits (223), Expect = e-122   Identities = 296/319 (92%), Gaps = 2/319 (0%) Strand = Plus / Plus   Score = 331 bits (166), Expect = 5e-88   Identities = 264/294 (89%), Gaps = 2/294 (0%) Strand = Plus / Plus   Score = 213 bits (107), Expect = 1e-52   Identities = 177/197 (89%), Gaps = 5/197 (2%) Strand = Plus / Plus   Score = 62.3 bits (31), Expect = 5e-07   Identities = 41/43 (95%), Gaps = 1/43 (2%) Strand = Plus / Plus   Score = 58.3 bits (29) Expect = 7e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |              | CTTOTO          | STTAGCTAC<br>SGAATGAGG                                                                 | CGGGCAGN                                                              | 3AGAAAAGG                                                                                                                                                     | TAGAAGGAC                                                                        | GCAATCAG                                                                                                                                                       | GATNTNCC                                         | TAAAATTTA                                    | AAATNATGA                                                              | NGGACATA                                                                          | TATTTATTC:<br>TNGGGTTN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 45 | Score = 444 bits (223), Expect = e-1 Identities = 296/319 (92%), Gaps = 2 Strand = Plus / Plus Score = 331 bits (166), Expect = 5e-8 Identities = 264/294 (89%), Gaps = 2 Strand = Plus / Plus Score = 213 bits (107), Expect = 1e-1 Identities = 177/197 (89%), Gaps = 5 Strand = Plus / Plus Score = 62.3 bits (31), Expect = 5e-07 Identities = 41/43 (95%), Gaps = 1/43 Strand = Plus / Plus Strand = Plus / Plus Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Identities = 30/31 (96%)<br>Strand = Plus / Plus |              | TOVOVOL         | SGAACAGCCGTATGGCAC                                                                     | TACAGCAAC                                                             | SGACTGGA(                                                                                                                                                     | GGGTTGCC                                                                         | ACGC I CAAG<br>TCGGAGGAGAA                                                                                                                                     | <b>В</b>                                         | ACACTGAGC                                    | ACAGAATTN                                                              | GAATTCCTT                                                                         | ACAAGCCAA<br>STGCTACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | Score = 444 bit Identities = 296/<br>Strand = Plus / I Score = 331 bits Identities = 264/<br>Strand = Plus / I Score = 213 bits Identities = 177/<br>Identities = 177/<br>Strand = Plus / I Strand = Plus / I Strand = Plus / I Score = 62.3 bits Identities = 41/4/<br>Strand = Plus / I Strand = Plus / | Identities = 30/3<br>Strand = Plus /             | DNA-Leiter   | AGCGAGTTTCC     | TCTGCTTGGGA<br>AGAAGACTGTA                                                             | ACGGGGGAATA                                                           | AAGTCTGNGG/                                                                                                                                                   | AGCGCATC                                                                         | GTCTGNACTCG                                                                                                                                                    | TGACACAGGG                                       | TTACACAC/                                    | AAATGGCAACA                                                            | TTTTAAGC                                                                          | TGNTCTTGACA<br>GGATCTTGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | Beschreibung | 17-Seguenz      | )<br>)<br>)                                                                            | -                                                                     |                                                                                                                                                               |                                                                                  |                                                                                                                                                                |                                                  | BGH-Sequenz                                  |                                                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ш            | Klon #11        |                                                                                        |                                                                       |                                                                                                                                                               |                                                                                  |                                                                                                                                                                |                                                  | <b></b>                                      |                                                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          |              | ACAG                             | AAATAGGC<br>CAGGGAAG                                                            | ACAGAAATAGGCCCCACAGTCGCACAGCCTTCATGAGGGCTTTCTCTTGCTGAGGGATATCNACGAACCCTGTGTCATTAGGCCACAGGGAACTNGGCTGTGTATTAGAAANAGAAANAGGCCTTTGATTAGATAGAAAAAAAAAA                                                                                                                                                                                                                | GCACAGC                                   | SCTTCATG,                                  | NGGGCTTT                                   | CTCTTGC                                     | TGAGGGAT                        | ATCNACG                                    | AACCCTG                                      | ТСТСАТТА                                 |
|----------|--------------|----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------|
|          | Identität    | >ref N                           | M_009984.1  N<br>Length = 1374                                                  | >ref NM_009984.1  Mus musculus cathepsin L (Ctsl), mRNA<br>Length = 1374                                                                                                                                                                                                                                                                                          | is cathepsir                              | n L (Ctsl), m                              | SNA                                        |                                             | WI DAI DA                       | GGACI IC                                   | CCGNG                                        | N.                                       |
|          |              | Score<br>Identifi<br>Strand      | Score = 1277 bits (6<br>Identities = 701/726<br>Strand = Plus / Plus            | Score = 1277 bits (644), Expect = 0.0<br>Identities = 701/726 (96%), Gaps = 1/726 (0%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                    | = 0.0<br>s = 1/726 (0                     | (%)                                        |                                            |                                             |                                 |                                            |                                              |                                          |
|          |              | <br> -<br>  (dme<                | X06086.1 MMI<br>Length = 1374                                                   | >emb X06086.1 MMMEPR Mouse mRNA for major excreted protein (MEP)<br>Length = 1374                                                                                                                                                                                                                                                                                 | e mRNA for                                | r major excr                               | sted protein                               | (MEP)                                       |                                 |                                            |                                              |                                          |
|          |              | Score<br>Identiti<br>Strand      | Score = 1277 bits (6<br>Identities = 701/726<br>Strand = Plus / Plus            | Score = 1277 bits (644), Expect = 0.0<br>Identities = 701/726 (96%), Gaps = 1/726 (0%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                    | = 0.0<br>; = 1/726 (0                     | (%)                                        |                                            |                                             |                                 |                                            |                                              |                                          |
|          |              | >gb J0;                          | >gb J02583.1 MUSC<br>Length = 1276                                              | ISCPR Mouse cysteine proteinase mRNA, complete cds<br>276                                                                                                                                                                                                                                                                                                         | ysteine prof                              | teinase mRN                                | IA, complet                                | spo e                                       |                                 |                                            |                                              |                                          |
| ,        |              | Score<br>Identiti<br>Strand      | Score = 1277 bits (6<br>Identities = 702/726<br>Strand = Plus / Plus            | Score = 1277 bits (644), Expect = 0.0<br>Identities = 702/726 (96%), Gaps = 2/726 (0%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                    | = 0.0<br>= = 2/726 (0 <sup>0</sup>        | (%                                         |                                            |                                             |                                 |                                            |                                              | -                                        |
|          |              |                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                            |                                             |                                 |                                            |                                              |                                          |
|          | Beschreibung | DNA-Leiter                       | iter                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                            |                                             |                                 |                                            |                                              |                                          |
|          |              |                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                            |                                             |                                 |                                            |                                              |                                          |
| Klon #12 | T7-Sequenz   | AGATG<br>GACTG<br>TGCTG<br>GGAAC | AGATGGCTTCCAG<br>GACTGGCTCCGC<br>TGCTGCGGGAGTC<br>GGAACTCCTGTGT<br>TGACTCCTCTCC | AGATGGCTTCCAGCGGAGTGACTGNGAGCGCCGNCGGGTCGGCCAGCGAGGCCTNAGAGGTTCCAGACAACGTGGGA<br>GACTGGCTCCGCGGCGTCTTCCGCTTCGCCACCGATCGAAACGACTTCCGGAGGAACTTGATCCTTAATTTGGGACTCTT<br>TGCTGCGGGAGTCTGGCTGGCCAGGAACTTGAGTGACATTGATTTGATGGCCCCTNAGCCAGGGGTGTAGCCAGAAAT<br>GGAACTCCTGTGTATTCAGACTTTCCAAAGACAGCCTACTGTCTGNGACCACAAGATCCTACCTGAGTGGCAGAGGT<br>TGACTCCCTCTCCTTGCCTGAACCC | CTGNGAG<br>CGCTTCG<br>CAGGAAC<br>TTCCAAA( | CCCCGNC<br>CCACCGA<br>TTGAGTGA<br>GACAGCCT | GGGTCGG<br>TCGAAACC<br>ACATTGAT<br>ACTGTCT | CCAGCGA<br>SACTTCCG<br>TTGATGGC<br>SNGACCAC | GGCCTNA(<br>GAGGAACT<br>CCCTNAG | SAGGTTC(<br>TGATCCT<br>CCAGGGG<br>TACCTGA( | CAGACAAC<br>TAATTTGG<br>STGTAGCC<br>STGGCAGC | GTGGGA<br>GGACTCTT<br>AGAGAAT<br>CTGAAGT |
|          | BGH-Sequenz  | ATGNG                            | ATGNGCAGGCTTT<br>GTNGGGAACTGCA                                                  | ATGNGCAGGCTTTATTTGAAATCTTTTTCAAGAACCATTATTACTCTTNAGGACAAGGGCAAGGACCATCTTCTGCAGAAA<br>GTNGGGAACTGCACACAGAACCGTGCAGAGGCAACATNTTAGCCGACACTGGGGGANGGGGGGGACAACAAAAAAAAAA                                                                                                                                                                                              | CTTTTCA                                   | AGGCAACA                                   | TATTACT(                                   | STTNAGGA                                    | CAAGGGC,                        | AGGACC,                                    | ATCTTCTG                                     | CAGAAA                                   |
|          |              |                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                            |                                             | ;<br>;<br>;                     |                                            |                                              |                                          |
| 65       | 60           | 55                               | 50                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                | 40                                        | 35                                         | 30                                         | 2.5                                         | 20                              | 15                                         | 10                                           | 5                                        |

|    |                                                                                                                                                                                                                                                               |                                                                                   |                                                                                             |                                                                  |                                                                                             | <u> </u>                                                                                                              |                                                                                             |                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5  |                                                                                                                                                                                                                                                               |                                                                                   |                                                                                             |                                                                  |                                                                                             |                                                                                                                       |                                                                                             |                                                          |
| 10 |                                                                                                                                                                                                                                                               | H221)                                                                             |                                                                                             |                                                                  |                                                                                             |                                                                                                                       |                                                                                             |                                                          |
| 15 |                                                                                                                                                                                                                                                               | 1 HSM802233 Homo sapiens mRNA; cDNA DKFZp761H221 (from clone DKFZp761H221)<br>316 |                                                                                             |                                                                  |                                                                                             | nRNA,                                                                                                                 |                                                                                             |                                                          |
| 20 | 35.6<br>7.7<br>5.7 ★ T.7                                                                                                                                                                                                                                      | (from clon                                                                        |                                                                                             | nRNA                                                             |                                                                                             | in (OBTP) ı                                                                                                           |                                                                                             |                                                          |
| 25 | TCGGCCA<br>SGYGTC1<br>SCTYAATT<br>CGTGACAT<br>ACTCCTG<br>SATCCTG<br>SCCCCYC<br>GCACGGT<br>CTTGTCC1<br>GCACGGT                                                                                                                                                 | .Zp761H22                                                                         |                                                                                             | nor protein ı                                                    |                                                                                             | tumor prote                                                                                                           |                                                                                             |                                                          |
| 30 | GCCGGG<br>SGCTCCGC<br>VACTTGATG<br>GAACTTGA<br>GGAATGGA<br>ACCACAAC<br>TTGCCTCT<br>TGCTTGCC                                                                                                                                                                   | CDNA DKF                                                                          |                                                                                             | d breast tun                                                     |                                                                                             | ssed breast                                                                                                           |                                                                                             | Tplete cds.                                              |
| 35 | CCAGCGGAGTGACKGTGAGCGCCGCCGGGTCGGCCAGCGGGTCCAGCGGGTCCAGCGGGTCCAGCGGGGTCCAGCGGGGTCCAGCGGGGTCCAGGGGGTCCAGGGGGTCCAGGGGTCCAGGGGTCCAGGAGTTTCAGGTCGAAGCTTGAGTGACTTGAGTGACATTGGTGCGGGGGGTGTAGCCAGGGAACTTGAGTGAACTCCTGTGCTCAGGGGGTGTAGCCAGGAATGGAACTCCTGTGCTCAGGAAGGA | oiens mRNA                                                                        |                                                                                             | MTUM Homo sapiens over-expressed breast tumor protein mRNA<br>'4 |                                                                                             | over-expres                                                                                                           |                                                                                             | dogene, con                                              |
| 40 | AGTGACKG<br>ACCACCTC<br>ACTCTGC<br>AGTCTGC<br>AGCCTAC<br>CACCTCC<br>GTGTCGC<br>TCTCCC                                                                                                                                                                         | 33 Homo say                                                                       | t = 1e-48                                                                                   | o sapiens o                                                      | t = 1e-48                                                                                   | omo sapiens                                                                                                           | = 2e-47                                                                                     | Bak-3 pseu                                               |
| 45 | TGRKATGGCTTCCAGCGGAGTGACKGTGAGCGCCGCCGGGTCGGCCAGCCAGCCAGCCAGCCAGC                                                                                                                                                                                             |                                                                                   | Score = 199 bits (99), Expect = 1e-48<br>Identities = 148/165 (89%)<br>Strand = Plus / Plus | MTUM Hom<br>74                                                   | Score = 199 bits (99), Expect = 1e-48<br>Identities = 148/165 (89%)<br>Strand = Plus / Plus | >gb AF216754.1 AF216754 Homo sapiens over-expressed breast tumor protein (OBTP) mRNA,<br>complete cds<br>Length = 354 | Score = 195 bits (97), Expect = 2e-47<br>Identities = 146/163 (89%)<br>Strand = Plus / Plus | gb U16813 HSU16813 Human Bak-3 pseudogene, complete cds. |
| 50 | TGRKATGGCTTA<br>AGGCCTCAGG<br>GGCATCTTTG<br>GGGACTCTTTG<br>ATTTGATGGCG<br>TATTCAGACTTT<br>CTGAGTGGCAG<br>CTSTCTCCCCC<br>CTGTGTGCAGT<br>GAAGAAAAAAGGGAGAGAGAGAGAGAGAGAGAGAGA                                                                                   | >emb AL137721.1 H<br>Length = 3316                                                | Score = 199 bits (99<br>Identities = 148/165<br>Strand = Plus / Plus                        | >gb L34839.1 HU <br>Length = 57                                  | Score = 199 bits (99<br>Identities = 148/165<br>Strand = Plus / Plus                        | F216754.1 AF;<br>complete cds<br>Length = 354                                                                         | Score = 195 bits (9' Identities = 146/163                                                   | 6813JHSU16                                               |
| 55 | 16R<br>AGG<br>CGC<br>GGC<br>TATT<br>TATT<br>CTG<br>CTG<br>CTG                                                                                                                                                                                                 | vem.                                                                              | Scor<br>Ident<br>Strar                                                                      | >gp r                                                            | Score<br>Ident                                                                              | Ajdg<                                                                                                                 | Score<br>Identi                                                                             | gblU1                                                    |
| 60 | Contig                                                                                                                                                                                                                                                        | Identität                                                                         |                                                                                             |                                                                  |                                                                                             |                                                                                                                       |                                                                                             |                                                          |
| 65 | ·                                                                                                                                                                                                                                                             |                                                                                   |                                                                                             |                                                                  |                                                                                             |                                                                                                                       |                                                                                             |                                                          |

|          |            | Len                                                                                                          | Length = 5408                                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|----------|------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|
|          |            | Score = 69.9 bits (39 Identities = 56/63 (89 Strand = Plus / Plus                                            | Score = 69.9 bits (35), Expect = 3e-10<br>Identities = 56/63 (88%)<br>Strand = Plus / Plus                                                                                                                                                                                                     | = 3e-10                                                                                                                   |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|          |            | völlige Übe                                                                                                  | völlige Übereinstimmung mit folgenden ESTs:                                                                                                                                                                                                                                                    | Jenden ESTs:                                                                                                              |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|          |            | dbj C88895                                                                                                   | dbjjC88895 C88895 Mus musculus early blastocyst cDNA, clone 01B00051IK19<br>Length = 470                                                                                                                                                                                                       | ılus eariy blast                                                                                                          | ocyst cDNA, cl                                                                                          | one 01B000£                                                                         | 11K19                                                                                                                                                                                                                                                                |                                                                                     |                                                                                     |                                                             |
|          |            | Score = 613 bits (30 Identities = 330/339                                                                    | Score = 613 bits (309), Expect = e-174 Identities = 330/339 (97%) Strand = Plus / Plus                                                                                                                                                                                                         | = e-174                                                                                                                   |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|          |            | gb AA2687                                                                                                    | gbjAA268719JAA268719 va99h10.r1 Soares mouse NML Mus musculus cDNA clone 747619 5′<br>Length = 439                                                                                                                                                                                             | 10.r1 Soares n                                                                                                            | nouse NML Mu                                                                                            | s musculus c                                                                        | DNA clone 747                                                                                                                                                                                                                                                        | 519 5'                                                                              |                                                                                     |                                                             |
|          |            | Score = 599 bits<br>Identities = 328/33<br>Strand = Plus / Plu                                               | Score = 599 bits (302), Expect = e-169<br>Identities = 328/337 (97%), Gaps = 1/337 (0%)<br>Strand = Plus / Plus                                                                                                                                                                                | = e-169<br>ıs = 1/337 (0%                                                                                                 |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|          |            |                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
|          |            |                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                     |                                                             |
| Klon #13 | T7-Seduenz | TACCGAGCCCGG<br>CTGGTGGTGTTC<br>GCAGAGCTCCCC<br>AGAACTGGGAA<br>TGGCTAAACAGG<br>AAATGGAACGGG<br>CAGATGAAGGCGT | TACCGAGCCCGGATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGCTCGTCGTGGCGACGGGGCAGGGCCTTTCCAC CTGGTGGTGTTCGGCGCCTCTGGCTTCACCGGCCAGTTCGTGACGGAGGTGGCCCGGGAGCAGATAGCCTCGGA GCAGAGCTCCCGCCCTGGCCTTCACCGGCCCTCCGGAGGCTGCCCGGGAGCCCGGGAGCTGCCC AGAAACTGGGAAGACCATCACTATCATCTGAAGTTGGAGTTTTTATGGAGAATCCGTAGTAAAAAAAA | TAACGGCCG<br>GGCCTTCAC<br>GGCCCGTGC<br>TATCATCTG<br>STCCTCAACT<br>ACATCTGTGCA<br>ACATCTGTGCAACAACTGCAAACAACACACACACACACAC | CCAGTGTGC<br>CGGCCAGTT<br>3CGGGTCGC<br>AAGTTGGAG<br>GCGTAGGAC<br>3GGAACCTC,<br>GTGGCTTTG,<br>AGCTTCCTG, | TGGAAAGC<br>CGTGAGGA<br>TCCAAGGA<br>TCATAATCT<br>CGTATCGA<br>AGTTTCTGG<br>ACTCCATCA | SATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGCTCGTCATGGCGACGGGGCAGGGGCTTTCCACGGGCCTTTCCACGGGCCTTTCCACGGGCCTTTCCACGGAGGCCTCTGGGCGCCTCGGGAGGGCCTTTCCACGGAGGCCTCTGGGAGGCCCGGGAGGCCTCGGGAGGCTCGGGAGGCCTCGGGAGGCTCCCCGGGAGGCTGGCCCCGGGAGGCTGCCCCGGGGCCTTGGAGGCTGCCTCACTTGAGGAAAAAAAA | SACGGAGC<br>CCGGGAGC<br>CAAGTGCTG<br>TAATCCAGC<br>ACCTGTAG<br>TGCGAAGTA<br>AGGGGTTG | AGAGGCCT<br>SAGATAGG<br>SGAGAAGG<br>SCTCACTTG<br>TAAAAGCA<br>TTAAAAGCA<br>TTATACACC | CTCGGA<br>CTCGGA<br>CTGCCC<br>SATGAAA<br>TGTATTG<br>AAAGCTG |
|          |            |                                                                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                     | 8                                                                                   |                                                             |
| 65       | 60         | ss                                                                                                           | 45                                                                                                                                                                                                                                                                                             | 40                                                                                                                        | 30<br>35                                                                                                | 25                                                                                  | 20                                                                                                                                                                                                                                                                   | 15                                                                                  | 10                                                                                  | 5                                                           |

| 65 | 60          | 55                      | 50                                              | 45                                                                                                                                   | 40                    | 35                   | 30                    | 25                               | 20                   | 15                 | 10                                                                                                                                                                                              | 5           |
|----|-------------|-------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|----------------------------------|----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |             | CCAAT                   | CCAATTGTTGGTA<br>GGATCTGAtATAT                  | CCAATTGTTGGTACAAAGTTGAAAAGA<br>GGATCTGAIATATCTGGCIGGaGcAAAA                                                                          | AAAAGAAg<br>IGCAAAA   | GTGGCCA              | GTCAGCT/              | \TTGTAGA                         | GAGCTGA              | ACTCGTA            | TACAAAGTTGAAAAGAAgGTGGCCAGTCAGCTATTGTAGAGAGCTGAACTCGTATTCCATTCCTTTTTTG<br>TCTGGCtGGagcaAAA                                                                                                      | стттте      |
|    | BGH-Sequenz | ANGNC<br>NTATA<br>NNNTA | ANGNGNAATAANC<br>NTATATTGGAAAN<br>NNNTACTANCAAA | SNGANGGG<br>NNACCTNA                                                                                                                 | NTAAAAG/<br>TATTNNAA  | AGNAANNA<br>ACNNNNC  | ANTANAGI<br>TANNNTNA  | GAGAGAC                          | SGGAATGN<br>VANATACN | NAGGNNA            | NGNGANGGGNTAAAAGAGNAANNAANTANAGTGAGAGGGGAATGNAGGNNAAATATACNCCTNANCCTNANCCTNANCCTNANCCTNANCCTNANCCTNANAACNNAAACNNNNCTATAANAAACNNAAANANNAAAACNAAACNAANAAAACNAAAAAA                                | CTNANCC     |
|    |             | NCANA<br>NANTN          | NCANATAANNAAA<br>NANTNCNNAATTN                  | AANNNNCNAANANAANTNACANACAANANANCOOLO TANAACANAANNNNNNNCNAANAANAANAACAANAACAANAAN                                                     | NANAANTI              | ACANACA<br>INTACTAN  | ANANANCE              | AMINACAN<br>JAATTANN<br>JCACTATO | TCATNNA              | NCACCTA            | AANNNNCNAANANAAANTNACANACAANANANCNAATTANNTCATNNANCONANAAACNATTOTTAANCA<br>AANNNNCNAANANAAANTNACAANACAANANANCNAATTANNTCATNNANCACCTAANNNCNAAANNTNNNT<br>INNCNNNNATANTTATCNNTACTANTTATCTNANCACTATC | ANNTANCA    |
|    | Contig      | TACCC                   | TACCGAGCCCGG<br>AGAGGCCTTTCCA                   | TACCGAGCCCGGATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGCTCGTCGTGGCGACGGAGC                                                                     | TAACGGCC              | SCCAGTG              | TGCTGGA               | AGCTCG                           | TCATGGC              | 3ACGGAG            | 0.                                                                                                                                                                                              |             |
|    |             | GGTGC                   | SCCGGGA                                         | GGTGGCCCGGGAGCAGATAGCCTCGGAGCAGACTCCCGCCTGCCCTGGCCGTGGCGGGTCGC                                                                       | SCCTCGGA              | GCAGAGC              | TCCCGCCT              | GCCCTGC                          | 31106164<br>36CCGTG  | acecete<br>acecete | ည္သ                                                                                                                                                                                             |             |
|    |             | CATCT                   | TCCAAGGAGAAG(<br>CATCTGAAGTTGG                  | TCCAAGGAGAAGCTGCAGCAAGTGCTGGAGAAGGCTGCCCAGAAACTGGGAAGACCATCACTAT<br>CATCTGAAGTTGGAGTCATAATCTGTGATATCAGTAATCCAGCCTCACTTGATGAAATGGCTAA | AGTGCTGQ<br>TCTGTGA1  | SAGAAGGC<br>ATCAGTAA | TGCCCAG               | AAACTGG<br>TCACTTG               | SAAGACC,<br>ATGAAATG | ATCACTAT           |                                                                                                                                                                                                 |             |
|    |             | ACAGG                   | CAAAGCTT                                        | ACAGGCAAAGCTTGTCCTCAACTGCGTAGGACCGTATCGATTTTATGGAGAACCTGTAGTAAAA                                                                     | CTGCGTA               | GGACCGT/             | ATCGATTT              | ATGGAG/                          | ACCTGTA              | GTAAAA             |                                                                                                                                                                                                 |             |
|    |             | TGCAT                   | GCGAAGTA                                        | GCATGCGAAGTATCATGAGAACAAGTTGCAGAAGTTGTGGGGAACCTCAGTTTCTGGAACTAA<br>TGCATGCGAAGTATCATGAGAAAGCTGCAGAGGGGGGGTTTATATCATTGGAAGCAGTGGCTT   | AGTIGIAI<br>AAGCTGC   | TGACATC1<br>AGAGAAG0 | rGTGGGG6A<br>3GGGTTTA | ACCTCAG                          | TTTCTGG              | AACTAA             |                                                                                                                                                                                                 |             |
|    |             | TGACT                   | TGACTCCATCCCA                                   | SAGCAGATCTAGGAGTGCTATACACCAGGAACCAGATGAACGGTACTTTGACT                                                                                | AGGAGTG               | CTATACAC             | CAGGAAC               | CAGATGA                          | ACGGTACT             | TTGACT             |                                                                                                                                                                                                 |             |
|    |             | 08486<br>06446          | AGAAAGCI<br>SCCGGCAA:                           | GCTGTAGAAAGCTTCCTGACAATAAATACAGGACCTGAGGGGTTGTGTATTCATGAAGCCT<br>GGAAGCCGGCAATTTATGGTTTTGGCGATAAGGGTAGTTTAAGAAAACTACGGAAGTGTATATGATG | ATAAATAC<br>TTGGCGA   | AGGACCT<br>TAAGGGTA  | GAGGGGT<br>AGTTTAAGA  | TGTGTATT<br>VAAACTAC             | CATGATG              | GAACCT             |                                                                                                                                                                                                 |             |
|    |             | TCTGA                   | TCTGAAACCTGTC                                   | CCCAATTGTTGGTACAAAGTTGAAAAGAAGGTGGCCAGTCAGCTATTGTAGA                                                                                 | TGGTACAA              | AGTTGAA              | AGAAGGT               | GGCCAGT                          | CAGCTAT              | TGTAGA             |                                                                                                                                                                                                 |             |
|    |             | GAGCT                   | GAGCTGAACTCG1<br>GTTACTTACATGA                  | GAGCTGAACTCGTATTCCATTCCTTTTTTGGGATCTGATATATCTGTTGTGAAAAGGACTCAGC<br>GTTACTTACATGAAAATTTAGAAGAACTCACAAGTTCAGCTATCTCGTTATATATA         | CCTTTTTT              | SGGATCTO             | SATATATCT             | GTTGTGA                          | AAAGGAC              | TCAGC              |                                                                                                                                                                                                 |             |
|    |             | CATCA                   | CATCACCTCTGTG                                   | GATTAAGCTGATGTTTGCAGGACTGTTCTTTTTATTCTTTGTGAAGTTTAGC                                                                                 | SATGTTG               | CAGGACT              | STICTIFF              | ATTCTTT                          | STGAAGT              | TAGC               |                                                                                                                                                                                                 |             |
|    |             | ATTGG                   | AAGACAAC                                        | ATTGGAAGACAACTTCTCATAAAATTCCCATGGCTCTTTTCCTTTGGCTATTTTTCAAAACAAG                                                                     | VAATTCCC              | ATGGCTCT             | ттсстт                | GGCTATT                          | TTTCAAAA             | CAAG               |                                                                                                                                                                                                 |             |
|    | •           | GICCA                   | ACACAAAA                                        | GICCAACACAAAAACAGATGGATGAGACATCATTTACAATGACATTCTTTGGTCAAGGATACAG                                                                     | ATGAGAC/              | ATCATTTA(            | CAATGACA              | TTCTTTGC                         | STCAAGG/             | TACAG              |                                                                                                                                                                                                 |             |
|    | •           | GAGGC                   | GAGGCTGGCTACC                                   | CGTGGCTACTCCCATAGCCATGGTTCAGGCTGCCATGACTTTTCTGAGTGACG                                                                                | CCCATAG               | CCATGGT              | CAGGCTG               | CCATGAG                          | TTTCTG/              | SGACCA<br>AGTGACG  |                                                                                                                                                                                                 |             |
|    |             | CCTCT                   | GACCTTCC                                        | CCTCTGACCTTCCAAAAGGGGGGGGGTGTCTTTACACCTGGAGCAGCTTTCTCCAGAACAAAGTT                                                                    | GCGGTGT               | CTTTACAC             | CTGGAGC               | AGCTTTC                          | <b>CCAGAAC</b>       | AAAGTT             |                                                                                                                                                                                                 |             |
|    |             | GA   16<br>  GTTT       | GALIGACAGACIC                                   | GATTGAAGAGTAACCGAATCATAAAATGCACAAGTGTCACTTAGCAGCTCCGAAGTCTAAAC                                                                       | IGGCAI IC<br>FAAAATGC | ACAAACCO             | SIGICATT              | GCAGCT(                          | CGAAGTC              | TAAAC              |                                                                                                                                                                                                 |             |
|    |             | TCTATA                  | CTATAAGCCTATC                                   | TCTGACTGTATGTGGACTGTCAAGTTATAAAATAT                                                                                                  | TGTGGAC               | TGTCAAGI             | TATAAAT               | AT                               |                      | 5                  |                                                                                                                                                                                                 | <del></del> |
| i  | Identität   | >gb AF′                 | >gb AF151807.1 AF<br>Length = 2127              | F151807 Homo sapiens CGI-49 protein mRNA, complete cds                                                                               | o sapiens C           | GI-49 prote          | in mRNA, co           | emplete cds                      |                      |                    |                                                                                                                                                                                                 |             |
|    |             | Score =                 | Score = 1249 bits (6                            | (630). Expect = 0.0                                                                                                                  | 0.0                   |                      |                       |                                  |                      |                    |                                                                                                                                                                                                 |             |
|    |             |                         |                                                 |                                                                                                                                      |                       |                      |                       |                                  |                      |                    |                                                                                                                                                                                                 |             |

|          |             | Identities = 1130/1293 (87%), Gaps = 4/1293 (0%) Strand = Plus / Plus Score = 54.0 bits (27), Expect = 2e-04 Identities = 39/43 (90%) Strand = Plus / Plus                                                                                                                                                                                                                                                                       | 71293 (87%), Gaps = llus<br>(27), Expect = 2e-04<br>(90%)        | ips = 4/1293  <br>e-04                                   | (%0)                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                          |                                                         |                                               |                                                   |
|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
|          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                          |                                                         |                                               |                                                   |
| Klon #14 | T7-Sequenz  | AAAGGAAAAACACAGCTNAGCAGATCCAGGCCACTAAAGAGAGCTAGCTGCAAGCAGCAGGAGTCAAGAATCTGNGGTCA                                                                                                                                                                                                                                                                                                                                                 | SAGCTNAGCA                                                       | AGATCCAGG                                                | SCACTAAAGAGA                                                                                                                                                                                                                                                                                                                                                              | SCTAGCTGC,                                                     | AAGCAGG/                                                 | GCAGTCA                                                 | AGAATCTG                                      | SNGGTCA                                           |
|          |             | TINGCGGCCATGTTNGGAGGCTACAGCCTGTACTATTCAACCGCAAAACCTTCTCCTTTGTCATGCCTCTTGGCACTGTCGTACAGC                                                                                                                                                                                                                                                                                                                                          | TINGGAGGC                                                        | TACAGCCT                                                 | STACTATTICACE                                                                                                                                                                                                                                                                                                                                                             | GCAAAACC                                                       | SAAGGCIA                                                 | CGGCTACT<br>TGTCATG                                     | TATCGCAC                                      | TGTCATA<br>GGNGGA                                 |
| _        |             | TGAGATCGCTCTGGACAAGGACGATTNGGGGGCTNATNACAAGCAGCCAGTCGGCAGCCTACGCCATCAGCAAGTTNGNG<br>  AGCGGNGNTCTGTCAGATCAGATGAGCGCCCGCTGGCTCTTCTCCTCTGGGCTGCTCCTGGTNGGTCTGGTCAACGTAG                                                                                                                                                                                                                                                            | SGACAAGGA(<br>TCAGATCAG                                          | CGATTNGG<br>ATGAGCGC                                     | <b>GECTNATNACAA</b><br>CCGCTGGCTCTT                                                                                                                                                                                                                                                                                                                                       | SCAGCCAGT<br>CTCCTCTGG                                         | CGGCAGC                                                  | CTACGCC/<br>STGGTNGC                                    | ATCAGCAA(                                     | GTTNGNG                                           |
|          | 0           | TCTTCTTATGGNGCTCCACAGNGTCAGCCTTAGCTGCTCTTNGGTTNTCTTAATGGTCCTGGCACAGG                                                                                                                                                                                                                                                                                                                                                             | CTCCACAGN                                                        | IGTCAGCCT                                                | TAGCTGCTCTTN                                                                                                                                                                                                                                                                                                                                                              | GGTTNTCTT                                                      | AATGGTCC                                                 | TGGCACA                                                 | 99                                            |                                                   |
|          | BGH-Sequenz | NAGNATCAAANCTAGCTTNANNGATCTANACAAGNCGGNTNGCCCTCTATTCTTCCCTTTNGNCCCAGGGNATTCANG ANAGAGGAGGACTCCTCCTCCCTTAGGGACNGAGGNANNGGCAACAATTNGCCCCCNGCCAAGAAGACCTNGGGGN ACAGCAGAAACCACAGGCCATTAATACTCACTAGGAGATCAGGACCTAGGAGAAGAAGAGGGTATAGGAGACACTCTGA ANTNAGGAGNNGCCNGNCNGCCAGAAGGNAGAAACAGAAGCNGAAGGAGTCTAGAACCAACAACATCATCATTAAAATAGAA                                                                                                   | FAGCTTNANN TCCTCTCCT( ACAGGCCATT                                 | IGATCTANA<br>SCCTTAGG(<br>FAATACTCA<br>CAGAAGGN          | CAAGNCGGNTNK<br>SACNGAGGNANN<br>CTAGGAGATCAG                                                                                                                                                                                                                                                                                                                              | SCCCTCTATA<br>GGCAACAAT<br>GACCTAGGA                           | TTCTTCCC<br>TTNGCCC<br>GAAGAAG                           | TTTNGNCC<br>CCNGCCAA<br>AAGGGTAT                        | CCAGGGNA<br>AGAAGCCTI<br>TAGGAGAC             | ATTCANG<br>NGGGGN<br>ACTCTGA                      |
|          |             | GCANGGGAAGGGAGGNNGGGACCTNANTAGCCACNGGAAACTTGCAGCACCANGGAGGTTCAGAGAGACAAG                                                                                                                                                                                                                                                                                                                                                         | AGNNGGGA(                                                        | CTNANTAG                                                 | CCACNGGAAAC                                                                                                                                                                                                                                                                                                                                                               | TGCAGCAC                                                       | CANGGAG                                                  | TTCAGAG                                                 | AGACAG                                        | VOC. NA                                           |
|          | Ideniität   | gb AF080469 AF080469 Mus musculus putative glycogen storage disease type 1b protein<br>mRNA, complete cds<br>Length = 1923                                                                                                                                                                                                                                                                                                       | 0469 Mus mus<br>plete cds                                        | culus putativ                                            | e glycogen storage                                                                                                                                                                                                                                                                                                                                                        | disease type                                                   | 1b protein                                               |                                                         |                                               |                                                   |
|          |             | Score = 739 bits (373), Expect = 0.0 Identities = 436/460 (94%), Gaps = 2/460 (0%)                                                                                                                                                                                                                                                                                                                                               | (373), Expect = 0.0<br>60 (94%), Positives                       | 0.0<br>/es = 436/46(                                     | ) (94%), Gaps = 2/                                                                                                                                                                                                                                                                                                                                                        | 460 (0%)                                                       |                                                          |                                                         |                                               |                                                   |
|          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                          |                                                         |                                               |                                                   |
| Klon #15 | T7-Sequenz  | ATGGCTGCGCTCTTGCTGAGTGCTGCTCCTTTGGGAACCACAGCTAAGGAGGAGGAGGAGGGGGGTTCTGGAAGAAGAACA<br>CGAGTTCAAACCGTCCTCTGTCTCCCCATTTGACTATCTACAAATGGTCTCTTCCTATGGCACTGTCCGTTTGCCACGGAG<br>GCTCTGGAATAGCCTTGAGTGGAGGGGTCTCTTTTTGGCCTGTCGGCACTGGTGCTTCCTGGGAACTTTGAGTCGTAT<br>TTGATGTTTGTGAAGTCCCTGTGTTTGGGGCCAACACTGATCTACTCGGCTAAGTTTGTGCTTGTCTTCCCGCTCATGTAC<br>CACTCACTGAATGGGATCCGACACTTGCTATGGGACCTAGGAAAAGGCCTGGCAATACCCCAGGTCTGGCTGTCTGGAG | TGCTGAGTC<br>STCCTCTGTC<br>SCTTGAGTGG<br>AGTCCCTGT(<br>GGATCCGAC | SCTGCTCCT<br>TCCCCATT<br>SAGGGGTCI<br>STTTGGGG(ACTTGCTA' | CTTGCTGAGTGCTGCTCCTTTGGGAACCACAGCTAAGGAGGAGATGGAGCGGTTCTGGAAGAAGAACA SGTCCTCTGTCTCCCCATTTGACTATCTACAAATGGTCTCTTCCTATGGCACTGTCCGTTTGCCACGGG SGCTTGAGTGGAGGGGTCTCTTTTTGGCCTGTCGGCACTGGTGCTTCCTGGGAACTTTGAGTCGTAT AAGTCCCTGTGTTTGGGGCCCAACACTGATCTACTCGGCTAAGTTTGTGCTTGTCTTCCCGCTCATGTAC AGGTCCCTGTGTTTGGGGCCCAACACTGGAAAAGGCCTGGCAATACCCCAGGTCTGGCTTGTTGGGGGCTGGAGGGCTTGCTT | GCTAAGGAC<br>ATGGTCTCT<br>TGTCGGCAC<br>FACTCGGCTA<br>AAAGGCCTG | SGAGATGG<br>TCCTATGG<br>STGGTGCT<br>AAGTTTGT<br>AGCAATAC | AGCGGTT<br>SCACTGTO<br>TCCTGGG/<br>GCTTGTCT<br>CCCAGGTC | CTGGAAGA<br>CGTTTGCC<br>AACTTTGA(<br>TCCCGCTC | AGGACA<br>SACCGAG<br>GTCGTAT<br>SATGTAC<br>CTGGAG |
|          | Identität   | gblU31241 CGU31241 Cricetulus griseus integral membrane protein CII-3 mRNA, nuclear                                                                                                                                                                                                                                                                                                                                              | 41 Cricetulus                                                    | griseus integr                                           | al membrane prote                                                                                                                                                                                                                                                                                                                                                         | in CII-3 mRN/                                                  | A, nuclear                                               |                                                         |                                               |                                                   |
|          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                          |                                                         |                                               |                                                   |
| 65       | 60          | 50                                                                                                                                                                                                                                                                                                                                                                                                                               | 45                                                               | 40                                                       | 30                                                                                                                                                                                                                                                                                                                                                                        | 25                                                             | 20                                                       | 15                                                      | 10                                            | 5                                                 |

| Kon # 10 12 12 12 12 12 12 12 12 12 12 12 12 12 | T7-Sequenz   | gene enc<br>Length =<br>Score = 242 bit<br>Identities = 227,<br>gb S74803 S748<br>membran<br>nt)<br>Length =<br>Score = 186 bit<br>Identities = 214/<br>GGAGCTTGGG<br>TGCAGCGGCO<br>GCAGCTTTGGC<br>TGCAGCGCO<br>GCAGCTTTGGC<br>TGCAGCGCO | gene encoding mitochondrial protein, complete cds  Length = 1776  Score = 242 bits (122), Expect = 38-62  Identities = 227/265 (85%); Positives = 227/265 (85%)  gb S74803 S74803 CII-3=succinate-ubiquinone oxidoreductase complex II  membrane-intrinsic subunit [cattle, heart, mRNA, 1289  nt)  Length = 1289  Score = 186 bits (94), Expect = 16-45  Identities = 214/257 (83%)  CGAGCTCGGATCCACTAGTAACGGCCCAGTGTGCTGCTGCTGCTGTTGACTATGCCGCTGCTGGGGAC  GAAGCTTTGGGTCCAACTGGGCCTCCTGGGACACTGGGGGCTGCTGTTTAACTGCGGCTGCTGTGACTGTTTTGCATTTTGCCAGTTTTGTGATG  GCACACCTACCCGAAGGAAGGAAGTTTTGACTTTGCGATGTTTTGCATATTTGCCAACTTGTGATGATGATTAAATCGCAAGCTTTTGTGATGTTTGAATTTTGCCAACTTGTTTGT | rdrial protein,  t = 3e-62 sitives = 227/2 sitives = 214/2 sitives = 214/2 ACGGCCGC AACTGGGG ACCAGCTG ACGAGTTA ACCAAGTTA ACCAAGTTA ACCAAGTTA | complete cds complete cds 265 (85%) ne oxidoredu art, mRNA, 1; 27 (83%) CAGTGTGC CTCCCGCC CTCCGCATGG GAATGTGA GCCATTGG | ctase comp<br>289<br>TGGAAAG<br>GCTGCTG<br>CACAGCG<br>ATCTGCG | STGACAGAG CTGTTGACT TCCTGTCACGGGGGGGGGGGG          | SEGGAACA<br>TATGGCGC<br>SCGGCCTTTT<br>GCATATTC<br>ACAACTCA | Tage Control of the c | 5<br>CGGCGCCA<br>SAGGCTCG<br>GACCTACK<br>CCAGTTTG1 | AAGGG GGGAC SCCTT GGGATG                  |
|-------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
|                                                 |              | GCATCTCCTCT<br>CATGGACTTTT<br>GGAGCAGGAG<br>GGAACTACCTT<br>TTGTCCTCTCG                                                                                                                                                                   | GCATCTCCTCTTCCTCTGACTCTGGTGAGGTCGTTCTGGAGGTGACATGATGGACTCTGCACAGAGCTTCATAACCTCTT CATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCCAGAAATTCAGTATGCACCGCAGTT GGAGCAGGAGCCTACAAACTTGAGAGAATCATCTTTAAGCAAAATGTCCTATCTGCAGATGAGAAACTCACAAGCACACA GGAACTACCTTGAAGAGAAAGCGATGGCTTTTTAAGAAATGTCTATCTGCAGATGAGATGTTTAACCACACACA                                                                                                                                                                                                                                                                                                                                                    | STCTGGTGA<br>CCGATGACK<br>TGAGAGAAT<br>SAAAGCGAT<br>TTGCTCTGG                                                                                | GGTCGTTC<br>SGAAAAATA<br>TCATCTTTA<br>GGCTTTTT<br>ATCTGTTG                                                             | TGGAGTG,<br>GTTATATT<br>AGCAAAA1<br>AAGATGTC<br>FGCAGCTC      | ACATGATGG<br>TCCAGTCTA/<br>GTCCTATCT<br>TATCTCTTA  | ACTCTGC<br>GCCAGA<br>GCCAGATG<br>ACTCTGG                   | ACAGAGC<br>VATTCAGT<br>SAGAAACT<br>ATGGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTCATAAC<br>ATGCACCC<br>CACAAGCA<br>TTAACCACA      | SCAGTT<br>CACA<br>AACCC                   |
|                                                 | BGH-Sequenz  | CAGAACATAAT<br>ATAATCCAGAG<br>GACGGTGNGCA<br>CCAANTGCACT<br>NNCCAGGTNAA                                                                                                                                                                  | CAGAACATAATTATNGAAATAGATTITAANGATTTCAATTNAATACAACTGAAAANGTAGAGNCATTAAATAACATTTCTGCT ATAATCCAGAGGACGGTTTGGAGGCCATTTNCGGGCAGAAGCATCACACCCTAAGGNTTCGGNTATTAAGTNAGANGACT GACGGTGNGCANGNCAGGGGNGGAGCCACACNTGATCAGCTCATAGANNTCGGTGAANAGAGGAAANCANANCACAC CCAANTGCACTANCTAANTANTNACAGATATTAGNNTNAATCTCANNTACANCCAATGNCCATCTTAAANTGACTAGAAAN NNCCAGGTNAANCTTACANCNAAATANNGCCCTTCATNGANNTATGGTAAACCTNCTATNTNGCATTTTATAGCNGTNTTCC TTAANGGCCTATNNTTCNAANATGNCATNTNTA                                                                                                                                                                                                                          | GATTTTAAN<br>SAGGCCATT<br>SNGGAGCC,<br>TNACAGATA                                                                                             | SATTTCAAT<br>TNCGGGCA<br>ACACNTGAT<br>(TTAGNNTN<br>CCCTTCATA                                                           | TNAATAC<br>GAAGCAT<br>CAGCTCA<br>AATCTCAN<br>IGANNTAT         | VACTGAAAAN<br>CACACCCTA<br>TAGAANNTC<br>INTACANCC( | VGTAGAGI<br>AGGNTTC<br>GGTGAAN<br>CAATGNCI                 | NCATTAAA<br>GGNTATT<br>NGAGGAA<br>SATCTTAA<br>GCATTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NTAACATTT<br>AAGTNAGA<br>VANCANANC<br>ANTGACTA     | CTGCT<br>NGACT<br>SACAC<br>GAAAN<br>VTTCC |
|                                                 | 4SP6-Sequenz | TGCATGCTCGA                                                                                                                                                                                                                              | TGCATGCTCGAGCGGCCGCCTTTTTTTTTTTTTTTCAGAACATAATTATTCAAATAGATTTAATGATTTCAATTCAA<br>TACAACTGAAAATGTAGTGTCATTAAATAACATTTCTGCTATAATCCAGAGGACAGTTTGGAGGCCATTTCCGGGCAGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTTTTTTT                                                                                                                                     | CATTTCTGC                                                                                                              | TTCAGAA                                                       | CATAATTATT                                         | CAAATAG                                                    | ATTTTAAT<br>GGCCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GATTTCAA<br>TCCGGGCA                               | TTCAA                                     |

| Configer Control (Configer)  Configer Control (Configer)  Configer Control (Configer)  Configer Config |    |              | 240140                | 1000441000                  |                          |                   |                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             | ı |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|-----------------------|-----------------------------|--------------------------|-------------------|----------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---|
| CAACCCAATGTC ATTTGCATTTTA GTCCACGACTCI TCTTCAGTCTGA CCATAGATACTC CATAGATACTC CATAGATACTC CACAGCGTCGGAT CGAGCTCGGAT CGAGCTCGGAT CGAGCTCTCC GGAGTTATACGCA TTGATTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTTAAATCC TGAGTGACGAAA CAGCACCTACA TGTGAAATTATA GTCTCAGACTTATTAT TGTGAAATTTATT TGTGAAGCTTTATT TGTGAAGCTTTATT TTGTATTTTTATT CTCTTCGCATTAT TCATTAAAATCTAA GAGCATGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |              | CATAGA                | VTTGGCGAAG                  | AGAGGAAAA                | AAACCAAAA         | GACTGACGC                              | SGGGGCATG(       | SCAGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SGGGGCCAC/      | AATGATCAGCT | _ |
| ATTTGCATTTTA GTCCACGACTC TCTTCAGTCTGA CCATAGATACTC CATCAGCTCGGAT CATCAGCTCGGAT CTCTTCAAGGTA CTCTTCAAGGTA CTCTTCAAGGTA CTCTTCAAGGTA CTCTTCAAGGTA CTCTTCAAGGTA CTCTTCAAGGTA CACAGCGCTCCTG GAGTTATACGCA TTGATTTAAATC CACAGCGCTCTAC CACAGCGCTCTAC CACAGCGCTCTAC CACAGCGCTCTAC CACAGCGCTCTAC CACAGCGCTCTTA TGATTTTTTATT CTCTCTGGATTATTATT CTCTTTCGCA CATCTCGCATTA TTGTATTTTTATT CTCTTTCGCCA CATCTCGCATTA TTGTATTTTTATT CTCTTTCGCATTA TCCTTTCGCATTA TCCTTTCGCATTA TCCTTTCGCCA CACCTCCACTTAA TCCTTTCGCATTA TCCTTTCGCATTA TCCTTTCGCCA CACCTCCACTTAA TCCATTAAAATCTA GAGCATGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |              | CAACCC                |                             | TAAATGACT/               | 1GAAAATAC         | AGGTAAAG                               | TCACAGCAAA       | TAAAGTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCACAGAGT       | TTGGTAACTT  | _ |
| CONTIGUE CONTIGUE CONTIGUE CONTIGUE CONTIGUE CATCAGGATO CONTIGUE CATCAGGATO CONTIGUE CONTIGUE CATGAGGATO CONTIGUE CATGAGGATO CAGGAGGATO CAGGAGGATO CAGGAGGATO CAGGAGGATO CAGGAGGAAA CAGGAGGATTA TAGGAATTATT CATGAAAATCTAGGAATATTATT CATGAAAATCTAA GAGCATGAAAATCTAA GAGCATGAA GAGCATGAA CATCACATGAAAATCTAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA GAGCATGAA CATCACATGAAAATCTAA GAGCATGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |              | ATTTGCA               | _ ,                         | ATTICTTAAG               | GCCTATGTC         | CAÁTGAAAC                              | CATCTTAAAA       | AGCTCTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GAGGAATGG       | AAGTTTATGT  |   |
| CCATAGATACTO CATCACCGAGA CTCTTCAAGGTA CTCTTCAAGGTA CTATGGCGCTGC CAGGCTCCTG GAGTTATACGCA TTGATTTAAATCC TGAGTTAAATCC TGAGGACTACA TGAGTTTAATTA TGTCAGACTTTA TGTGAAGCTTTA TTGTATTTTTATT CTCTCTGGATTA TCATTAAAATCTAA TCATTAAAAATCTAA TCATTAAAAATCTAA TCATTAAAAATCTA GAGCATGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | <del>-</del> | TCTTCAC               |                             | AAAGCTTAG/<br>AACAATCAC/ | ATTTCTGAGT        | GAGCAAGG                               | TTCACCTTGC       | TGGGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>веесство</b> | CTCCTCATGT  |   |
| CONTIGUE CATCAGGATE CONTIGUE CONTIGUE COAGCCTCCCAAA CTATGGCGCTCTC CACAGCGTCTCTCAAGGTF TGATTTAAATCC TGAGCACTCTCCCAAA CAACTCATGCAAA CAACTCATGCAAA CAACTCATGTCT TGATTTAAATCT TGAGCACTTTT TGTGAACTCTCTTT TGTGAACTTTT TGTGAACTTTATT TTGTATTTTTATT CTCTCTGGATTTATT TTGTATTTTTATT CTCTCTGGATTATT TCATTAAAATCTAAT TCATTAAAAATCTAAT TCATTAAAAATCTAAT TCATTAAAAATCTAAT TCATTAAAAATCTAAT TCATTAAAAATCTAA GAGCATGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |              | CCATAGA               | TACTCAGCTT                  | CTCAGGGGG                | AGATACTG          | TTCTACAGO                              | TGTAGGAAC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CALICALAAA      | TCCAAGTCA   |   |
| CONTIGUE CGAGCTCGGATI GCGGCCCAAA CTATGGCGCTGCTG GAGTTATACGCA TTGATTTAAATCC TGAGCGTTGCAAA CCAGCGTTCTCCGAAA CCAGCGTTCTCCCAAA CCAGCGTTCTCCAAA CCAGCGTTCTCCAAA CCAGCGCTCCTTCCAAA CCAGCGCTCTTTAAATCC GCATGAAATTTAA GTTCCAGCTGTT TGTGCAGCTGTT TGTGCAGCTGTT TGTGCAGCTTTATT TGTGCAGCTTTATT TGTGTTTTTTTTT TGTGAAAATCTAAAA TCCTCTGGATTAT TCCTCTCTGGATTAT TCCTCTCTGGATTAT TCCTCTCTGGATTAT TCCTCTCTCTTAT TCCTCTCTCTTAT TCCTCTCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |              | CATCACC               | GAGAGGACA                   | AGGGTTGTG(               | STTAAAATCC        | ATCCAGAG                               | TAAGAGATA        | GACATCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAAAAGCCAT      | AGAGCAACAC  | _ |
| Contig GGAGCECAGGATCAGTAACGGCCCCAGTTGGTGCTGGAAGGTGACAGGGGGAACAAGGTGCTGTTGA CGAGCTCGGCAACTGGGGAACTTGGGTCTGTTGA CTATGGCCCAACTGGGGAACTGCGGCAACTGGGGCTCCCCGCGCTGCTGTTGA CTATGGCCTTGCCGGGCACTGCAGCGGCCCAACTGGCGCCCTTTCACTCGGAGAG GACGTTATACCGAGAGGGCTGCAGCGGACTGCCCTTTCACTCCCGTTCGTGGAGA GACGTTATACCGAGAGGAGTGCTGCAGCGGATTTTGCATTTTGCCACTTTCACCCGACCTTTCACCGGAGAGGCTTTCACCGGAGAGGATTTTTCACTTTTTCACTTCACCGAGAGAACTTTCACTGCACACACTGCACACACTGCACACACTTTTTTTCCCAACTGAACTGAGAACTGAACTGAGACACACTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |              | CTCTTCA               | AGGTAGTTCC                  | TETETECTT                | STGAGTTTC         | <b>TCATCTGCA</b>                       | SATAGGACAT       | TTGCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>A</b>        |             |   |
| GGGGGCGGCGCGGCGGGGGCTGCGGGGCCCAACTGGGGCCTCCCCCCCTGCTGCTGGGGGA  CTATGGGGCTGCCGGGGGCTGCGGGGCTGCACCTGCCCGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Contig       | CGAGCT(               | SGGATCCACT/                 | <b>AGTAACGGC</b> (       | SECCAGTET         | GCTGGAAAG                              | GTGACAGAG        | GGGAACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGATG           |             | Τ |
| CACAGOGTCCTGGCGGCGCCTGCAGCGCCCCTTGCACTTGACTCGGCGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |              | 929929                | CCAAAGGGGG                  | AGCTTTGGG                | TCCAGGCCC         | SAACTGGGG                              | CTCCCGCCG        | стестест                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IGTTGA          |             |   |
| CACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |              | CIAIGG                | SCIGGCCGG                   | AGGCTCGGG                | GACTGCAGC         | CGCCGAAG                               | <b>SCTTTGACT</b> | SGGTCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGAGA           |             |   |
| TIGATITIA MAGGACCAGGTGGAATCTGCGGGGCATATTGCCAGTTTTGCCAGCTTTTGCCAGCTTTGCTGAGGCCTAGGGCCTAGAGGCGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |              | CACAGC                | SICCIGICACO<br>1808: TESTOR | GGGCCTGT                 | CAGCTGACC         | TACCCCTTG                              | CACACCTACC       | CGAAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGAG            |             |   |
| TGAGGAGTATGCCAACCAGGATGCGTTGCCATTTGCTGAACCAGAGGAACCATTGCTGAACCAGACCAGAACCATTGCTGAACCAGAACCAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |              | GAGLIAL               | ACGCA GCCA                  | GAGAGGCTC                | SCAGGCTGT         | TTCAATTTG                              | CCAGTTTGT(       | SGATGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 299             |             |   |
| CARCITOTION CONTROL CONTROL CONTROL CONTROL CANDIDATE CARCITOTION CONTROL CARGINAL C |    |              | TGAGCAC               | TATE CTOTAL                 | AAGCIGGAA                | GCACCATC          | SCGTGCACA                              | GAAGCATATI       | CCCAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LGA             |             |   |
| GGAGTGACATGATGGACTCTGCACAGAGCTTCTTAACCCACATTTTATCTTCAAGC CGATGACGAAAATAGTTATTCCAGTCTTAAGCCAGAAATTCAGTATGCACCGCAGTTGGAG CAGGAGCCTACAAACTTGAGAAATTCATTTTAAGCCAGAAATTCAGTATTCCAGTTTTTAAGC CACAAGCACACAGGAACTCATCTTTAAGCCACACCCTTTTAAGCAAATTCTCTTTATCTTATCTTATCCTTATTAACCACACCCTTGTCCTCTTGCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |              | CAACTCA               | TGTCCCTGAT                  |                          | SCCAGGA C         | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 1 GC GAAC        | GAGACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAA             |             |   |
| CGATGACGGAAAATAGTTATATTCCAGTCTAAGCCAGAATTCAGTATGCAGTTGGAG CAGGAGCCTACAACTTGAGAAATCATCTTTAAGCAAAATTGCAGTATGCAG CAGGAGCCTACAACCTTGAAGAATCATCTTTAAGCAAATTGCTATCTCT CACAAGCACACAGGAACTTAACACACACCTTGAAGATGCTTTTAAGATGCTTTTTAACCAGAAGCAACCTTGCTTCGGTGATTGTTGTTGT TAACTCTGGAATTTTAACCACAACCCTTGTCCTCTGGAGTATCTTGTGT TGTGCAGCTGTTGCACACCCTTGAGAGAACCTTGCTCTCTTGTGATTGTTG ACTTGGAATTTTAGACAAAAGCTGAGACACAGTTCCCTCATGGTGATTGTTAG ACTTGGAATTTTAGACAAAAGCTGAGACAAAACTTCCATCCTTCATGAGATTTTTAAG GAATCTAAGCTTTTAAAAAGACTTGAGAGAACCTTAAAAACTTCCAAAAACTTAAGATCACCAAACTCAAGAACTTTAAAAACTTTAAAAAACTTTAAAAAACTTTAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |              | GGAGTG/               | ACATGATGGAC                 | TCTGCACAG                | AGCTTCATA         | ACCTOTOR                               | 1964C1C1GG1C     | 0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 | <u>.</u>        |             |   |
| CAGGAGCCTACAAACTTGAGGAATCATCTTTAAGCAAATGTCTATCTGCAGATGAGAAACT CACAAGCACACAGGAACTACCTTGAGGAAGGAGGATGAGAACT TAACTCTGGATGGATTTTAACCACAACCCTTGTCCTCTGGGTGTTTTTAAGCATGTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              | CGATGAC               |                             | TTATATTCCA               | GTCTAAGCC         | AGAAATTCA                              | GTATGCACC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ر<br>دور        |             |   |
| CACAAGCACACAGGAACTACCTTGAAGAGGAAGAAGCGATGGCTTTTTAAGATGTCTATCTCT TAACTCTGGATGGATTTTAACCACACCCTTGTCCTCTGGGTGATGTTTTAAGATGTCTTTTGTT TGTGCAGCTGTTGCTACAGCTGTAGAACAGTATGTTCCCCCTGAGAAGCTGAGTATCTATGGTG ACTTGCAATTATGAATGAACAAAAGCTGAGCAGTATCTTCTTTGTTAG ACTTGCAATTATGAATGAACAAAAGCTGAGCAGTATCTTCTTTGTTAG GATTCTAGGACTGAAGAACATGACTAAAACTTCCATTCCTTTTAAG GATTCTATGGACTTAATAGAAGATCGCTATAAAATTAAAGATGGACTTTTAA GATGTTTTTTAATTTGCTGTAACTTAATTTTAAATGATGGACATTGG TTGTAATTTTAATTTACTGTAACTTTAAGATGGACATTGGG TTGTAATTTTAATTTACTGTAACTATTAAGATGGACATTGGG TTGTAATTTTAATTTACTGTAACTATTAGTAGTGGACATTGGG TTGTAATTATTTACTTATTGACTTATTAGTTAGTAGTTGGTTTTTTAC CTCTCTTCGCCAAATTCTATGAGCTGATTGTTTTAGTTTTAAGATGGACATTGGT CATCTTCGCCAAATTCTATGAGCTGATTTTAGTTTTAAGATGGCCTCCAAACTG CATCTTCGCCAAATTCTATGAGCTGATTTTAGTTGGTTTTTTTCAGTTGGTTTTTTTC CATCTTAAAAATCTATTTGAGTTATTTAATGACAGTTGTATTTTTTCAGTTGTATTGAAATTGAAA TCATTAAAAATCTATTTGAATATTTAATGACACTACATTTTTCAGTTGTATTGAAATTGAAA TCATTAAAATCTATTTGAATATTTTAATGACACTACATTTTTCAGTTGTATTGAAATTGAAA TCATTAAAATCTATTTGAATAATTTTTTTTTCAGTTGTATTGAAATTGAAA TCATTAAAATCTATTTGAATAATTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              | CAGGAGC               |                             | GAGAGAATC                | ATCTTTAAGC        | AAAATGTCC                              | TATCTGCAG        | ATGAGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S E             |             |   |
| TAACTCTGGATGGATTTTAACCACAACCCTTGTCCTCTGGTGATGGTGTTGCTCTGGATGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |              | CACAAGC               | <b>ACACAGGAAC</b>           | TACCTTGAA                | SAGGAAGAA         | AGCGATGG                               | STITITAAGA:      | FGTCTATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 12            |             |   |
| TGTGCAGCTGTTGCTACAGCTGTAGAACAGTATGTTCCCCCTGAGAAGCTGAGTATCTATGGTG ACTTGGAATTTATGAATGAACAAAAGCTGAGCAGATACCTGCTTCTTGTTAGG GTCTCAGACTGAAGAACAGGAGGCAGGCCCTGCCCACCAGGTGAACCTTCACACAGGTGAACCTTCACACAGGAGAACTCCACTCACAGGAGCAACTCACACAGGTGAACTTTTAAAGATCGAGAACTCCATTCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |              | TAACTCT               | GGATGGATTT                  | <b>TAACCACAAC</b>        | CCTTGTCCT         | CTCGGTGA                               | GGTGTTGCT        | CTGGATCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T.S.            |             |   |
| ACTTGGAATTTATGAATGAACAAAAGCTGAGCAGATACCCAGCTCCTTCTCTTGTTAGGGTCCAGGGCCCCTGCCCAGGTGAACCTTGTTAGGGTCAGGGCCCCTGCCCACCAGGTGAACCTTGCTCACTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |              | TGTGCAG               |                             | AGCTGTAGA                | <b>ACAGTATGTI</b> | <b>TCCCCCTGA</b>                       | GAAGCTGAG        | TATCTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STG             |             |   |
| GTCTCAGACTGAAGACCTGAGGCCCCCTGCCCACCAAGGTGAACCTTCCACTCA GAAATCTAAGACATTAAAAGGCTTTTTAA GAAATCTAAGCTTTTTAAAAGGCTTTAAGAAATCCATTCCTCATAGAGCTTTTTAA GATGGTTTCATTGGACATAGGCCTTAAGAATCACTATAAAATTACCAAACTC TGTGAAGACTTTATTTGCTGTGACTTTACCTGTATTTTTTTAAGATTGGACATTTGG TTGTATTTTTATTTACTAATATCTGTAGCTACTTAGTTGCATTGGTTTTTTTC CTCTCTTCGCCAAATTCTATGAGCTGATCATTGTGGCCCCGCCCCTGCCATGCCTCAGGT CATCTCACTTAATAACGAAATGTTATTTAATGGCTGTTCTGCCCGGAAATGGCCTCCAAACTG TCCTCTGGATTATAGCAGAAATGTTATTTAATGACACTACATTTTCAGTTGTATTGAAA TCATTAAAAATCTATTTGAATATTATGTTCTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |              | ACTTGGA               |                             | SACAAAAGC                | TGAGCAGAT         | ACCCAGCT                               | CTTCTCTTG        | TGATTGTT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AG (            |             |   |
| GAAATCTAAGCTTTTTAAAAGAGTCGTGGACATAAACTTCCATTGCTCATAGGGCTTTTTAA GATGGTTTCATTGGACATAGGACTTTACCTATAAAATGCAAATAAAGTTACCAACTC TGTGAAGACTTTATTTGCTGTGACTTTACCTGTATTTTCTAGTCATTTAAGATGGACATTGGG TTGTATTTTACTAATATCTGTGGCTACTTAGTTGCATTTGGTTTTTTTC CTCTTCGCCAAATTCTATGAGCTGATCATTGTGGCCCCGCCCTGCCATGCCCCCGTCAGT CATCTCCACTTAATAAGCTGATCATTGTGGCCCCGGAAATGGCCTCCAAACTG CATCTCAGGATTATAAGACCTTAGGGTGTGATCTTGGCCCGGAAATGGCCTCCAAACTG TCCTCTGGATTATAGCAAATGTTATTTAATGACACTACATTTTCAGTTGAATTGAAA TCATTAAAAATCTATTTGAATATTATGTTCTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |              | GTCTCAG               | ACTGAAGAAC                  | ATGAGGAGG                | CAGGGCCCC         | STGCCCACC                              | AAGGTGAAC        | CTTGCTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTCA            |             |   |
| GATGGTTTCATTGGACATAGGCCTTAACATAAAATGCAAATAAAGTTACCAAACTC TGTGAAGACTTTATTTGCTGTGATTTTTCTAGTCATTTAAGATGGACATTGGG TTGTATTTTTACTAATATCTGTAGCTACTTAGTTAGTTGGTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |              | GAAATCT,              | <b>AAGCTITITIAA</b>         | AAGAGTCGT                | GGACACATA         | AACTTCCAT                              | TCCTCATAGA       | GCTTTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br>()         |             |   |
| TGTGAAGACTTTATTTGCTGTGACTTTACCTGTAGTTCTAGTCATTTAAGATGGACATTGGG TTGTATTTTTACTATATCTGTGCTACTTAGTTGCTTTGGTTTTTTTC CTCTCTTCGCCAAATTCTATGAGCTGATCATTGTGGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |              | GATGGTT               | TCATTGGACA:                 | <b>FAGGCCTTAA</b>        | GAAATCACT         | ATAAAATGC                              | AAATAAAGTI       | ACCAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ر ب             |             |   |
| TTGTATTITTACTAATATCTGTAGCTAGTTAGTTGCATTGGTTTTTTC CTCTCTTCGCCAAATTCTATGAGCTGATCATTGTGGCCCCCGCCCCTGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              | TGTGAAG               | ACTITATITEC                 | TGTGACTIT,               | <b>ACCTGTATTT</b> | TTCTAGTCA                              | TTTAAGATGC       | SACATTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) ტ             |             |   |
| CTCTCTTGGCCAAATTCTATGAGCTGATCATTGTGGCCCCGCCCTGCCATGCCCCCGTCAGT CATCTCACTTAATAACCGAAACCTTAGGGTGTGATGCTTCTGCCCGGGAAATGGCCTCCAAACTG TCCTCTGGATTATAGCAGAAATGTTATTTAATGACACTTTTCAGTTGTATTGAAA TCATTAAAATCTATTTGAATATTATGTTCTGAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |              | TTGTATT               | TTATTTACTA                  | <b>ATATCTGTA</b>         | SCTACTTAG         | <b>ITAGTTGCA</b>                       | пестиве          | TITITIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |             |   |
| CAICTCACTTAATAACCGAAACCTTAGGGTGTGATGCTTCTGCCCGGAAATGGCTCCCAAACTG TCCTCTGGATTATAGCAGAAATGTTATTTAATGACACTTTTCAGTTGTATTGAAA TCATTAAAATCTATTTGAATAATTATGTTCTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |              | CICICITI              | SECCAAATTCT                 | ATGAGCTGA                | TCATTGTGG         | ೦೦೦೦೦೦೦೦                               | STGCCATGCC       | SCCCGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGT             |             |   |
| TCCTCTGGATTATAGCAGAAATGTTATTTAATGACACTACATTTTCAGTTGTATTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |              | CATCTCA               | CTTAATAACCG                 | AAACCTTAG                | GGTGTGATG         | CTTCTGCCC                              | GGAAATGGC        | CTCCAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .TG             |             | _ |
| TCATTAAAATCTATTTGAATAATTATGTTCTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |              | rccrcrg               | GATTATAGCAC                 | SAAATGTTAT               | TTAATGACAC        | TACATTTTC                              | AGTTGTATTC       | SAATTGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٠               |             | _ |
| 2 2 3 3 4 4 5 5 5 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |              | TCATTAA/<br>  GAGCATG | CTA                         | ATAATTATGT               | TCTGAAAAA         | YAAAAAAA                               | VAAAAAGGGC       | <b>вессест</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               |             |   |
| 2<br>2<br>3<br>3<br>4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |              |                       |                             |                          |                   |                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             | _ |
| 2<br>2<br>3<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |              |                       |                             |                          |                   |                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             | 1 |
| 1 2 2 3 3 3 4 4 5 5 5 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              |                       |                             |                          |                   |                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             |   |
| 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 | 60           | 55                    | 45<br>50                    | 40                       | 35                | 30                                     | 25               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10              | 5           |   |

| 5 10 15 20 25 30 35 40 45 50 | >gb AF116911.1 AF116911 Mus musculus thymic dendritic cell-derived factor 1 mRNA, complete cds Length = 1513 | Score = 2533 bits (1278), Expect = 0.0<br>Identities = 1412/1459 (96%)<br>Strand = Plus / Plus | >ref[NM_004872.1  Homo sapiens mouse tropomyosin homolog (HSPC001) mRNA<br>Length = 1138 | Score = 1134 bits (572), Expect = 0.0<br>Identities = 888/992 (89%), Gaps = 1/992 (0%)<br>Strand = Plus / Plus | Score = 127 bits (64), Expect = 16-26<br>Identities = 92/100 (92%), Gaps = 1/100 (1%)<br>Strand = Plus / Plus | ung PI-FACS: Apoptose | AAAGGTACGAAGCTAGGGAAGATATTCGCGTGGCTAAATCTGCACGTGGAAGGAGCATTAACTTGGCCCTTTCTTATAGA GGACGCCAGAAGCCATTGGTCTGGAAGATCAGATC | ANTITITITITI<br>NGNNTTNNTTI<br>NGNNTTNNTTI<br>NTAANNTAAN<br>TAANGGGTCCN<br>ANTITNGGNTNN | gb/AF056031/AF056031 Rattus norvegicus kynurenine 3-hydroxylase mRNA, complete cds |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 60                           | Identitat                                                                                                    |                                                                                                |                                                                                          |                                                                                                                |                                                                                                               | Beschreibung          | T7-Sequenz                                                                                                           | BGH-Sequenz                                                                             | Identität                                                                          |
| 65                           |                                                                                                              |                                                                                                |                                                                                          |                                                                                                                |                                                                                                               |                       | Klon #17                                                                                                             | ·                                                                                       |                                                                                    |

|          |              |                        | Length = 1733                                   | 13                                                                                              |                          |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                      |          |
|----------|--------------|------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------|----------|
|          | 4,000        | Score  <br>  Identitie | Score = 468 bits (2<br>Identities = 342/376     | Score = 468 bits (236), Expect = e-130<br>Identities = 342/378 (90%), Positives = 342/378 (90%) | = e-130<br>tives = 342/  | '378 (90%)           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                      |          |
|          |              | emb Y1                 | 13153JHSKYNI<br>Length = 1999                   | NU3MO Hom<br>9                                                                                  | io sapiens n             | nRNA for ky          | /nurenine 3-         | emb Y13153 HSKYNU3MO Homo sapiens mRNA for kynurenine 3-monooxygenase<br>Length = 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | эге                    |                      |                      |          |
|          |              | Score :<br>Identitié   | = 222 bits (1<br>3s = 308/374                   | Score = 222 bits (112), Expect = 4e-56<br>Identities = 308/374 (82%), Positives = 308/374 (82%) | = 4e-56<br>tives = 308/. | 374 (82%)            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                      |          |
|          | Beschreibung | DNA-Leiter             | iter                                            |                                                                                                 |                          |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                      |          |
| Klon #18 | T7-Sequenz   | AAAGC                  | AAAGCGACTGCAC                                   | AGNGAAGO                                                                                        | CCTCTGT                  | TACCTGT              | STCGATCA             | ACAGNGAAGCCCTCTGTTACCTGTGTCGATCAAGACCTNAAACCCCAGAGGAACTTCGTCATCAACATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VACCCCAG               | AGGAACT              | тсетсат              | SACATG   |
|          |              | TCGGC                  | TCGGCAGCGCTA                                    | TTCGCCAA                                                                                        | CTGCACC                  | GNGCGTG              | ACCACATT             | ATTTCGCCACTGCACGNGCGTGACCACTTCACTGCCTGGGCAACCGGACTTTCCCTAAGCTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGCAACC                | GGACTT               | ACCGNGG(<br>TCCCTAAG | CTGCTG   |
|          |              | CGCTT                  | CGCTTCTACCTGG                                   | CAGGINGG<br>GCCAGNGC<br>TNGGAGTA                                                                | SCGAGAGN<br>SCGAGAAC     | GGICGAC<br>3GCCTCG(  | AGCCCTG(<br>3CAAGCTC | CONTINUED AND INCOME OF TAXABLE OF THE CONTINUE OF THE CONTINU | SATCACCC<br>GGCGGCC    | TGGGAAT              | SGNTAGGA<br>TATGGACC | GCCGAT   |
|          |              | GAGCA                  | GNGTAGA                                         | GAGCAGNGTAGAGTCCTGNGTGGAGATGCATGCGGAGTGAGAG                                                     | GTGGAG/                  | ATGGATGC             | GGAGTGA              | GAGCAGNGTAGAGTCCTGNGTGTGGAGATGGATGCGAGTGAGAG<br>GAGCAGNGTAGAGTCCTGNGTGTGGAGATGGATGCGGAGTGAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACALLIA<br>ACALLIA     | GCCGAG               | GINAIGIG             | CHICAGA  |
|          | BGH-Sequenz  | CAGNG<br>ACACC         | CAGNGTTCGATTT<br>ACACCGCATCCAT<br>CGCTGGTCCCACA | CTITATITT, NTCCACACACACACACACACACACACACACACACACACAC                                             | ACCTTCAT<br>ACAGGACT     | TCAAGGCA<br>TCTACACT | AGCCAAG<br>GCTCTCTC  | CAGNGTICGATITCTTTATTTTACCTTCATCAAGGCAAGCCAAGTACAGATGCTGTACATTAAAAACATAAATCCCCCTNTC<br>ACACCGCATCCATNTCCACACACAGAGCTCTACACTGCTCTCTGAAGCACATAACCTCGGCTAAAATGTACAAAAGAGCCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AACCTCGC               | AAAAACA              | STACAAAGO            | CCTNTC   |
|          |              | TGCCG                  | TGCCGAGGCCTTC                                   | TCGCCACT                                                                                        | GGCCCAG                  | SGTAGAAG<br>STAGAAG  | CGATCGGI             | TGCCGAGGCCTTCTCGCCACTGGCCCAGGTAGAACATCGGNTCCAAACCCCCCCANGGCTGAGGCTGAAGAGCTGAAGAGCTAGAAGCTAGAAGCTAGAAGAGCTAGAAGAGCTAGAAGAGCTAGAAGCTAGAAGAAGCTAGAAACCCCCCCANGGGTAGATGCTGAAGAGCCAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCCCANG                | GGTGATE              | SAAGCIG,<br>SCTGAGAG | CCAGGG   |
|          |              | GNCAC                  | GCACGGT                                         | SCAAGTTGG                                                                                       | SCGAAATA                 | GCGCTGC              | NACAGCAG<br>CGAGGGC  | GNCACGCACGGTGCAAGTTGGCGAAATAGCGCTGCCGAGGCAAGCCACGCCATGCAGGTTGCAGTGAATGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AAG I CCGC<br>3CATGCAG | SI IGCCC,<br>SGTGGTG | AGGCAGTC<br>GAATTTGA | ACACTC A |
| _        |              | GNAGT                  | CNGTTTCA<br>ACAGAGGG                            | GGAAGCTG                                                                                        | CAGCAAA<br>3CAAGCC       | ACTGCAG<br>GNTTTCAG  | SCATGTTG             | GNAGTCNGTTTCAGGAAGCTGCAGCAAAACTGCAGGCATGTTGATGACNAAGTCCTTGGNGATTGAGGCTTTGACGACAC<br>AGNTAACAGAGGGCTTACTTNGCAAGCCGNTTTCAGCACAATTGGCCGCNCGGAACTAGGGGAANCCGAGGTTTGGGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STCCTTGG<br>3GAACTAG   | NGATTGA<br>GGGAAN    | GGCTTGA(             | GACAC    |
|          |              | CCAAG                  | CCAAGCTTGGGGN<br>NTAGGTTAGCCCC                  | ACTCCCTTA<br>GAAGNGGG                                                                           | AAGGGGN                  | GGTCCGA              | AATNAAAT             | SINCTCCCTTAAAAGGGGGNGGTCCGAAATNAAATTTCCGANAAGGCCNGGNAANCCAAGNGGGGNCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGGCCNGC               | SNAANCC,             | AAGNGGG              | SNNCTT   |
|          |              | AGGGN                  | CCCGNGT                                         | GTACCCAC                                                                                        | AATTTG                   | VAAAGNCC             | CONTCGAT             | AGGENCCCENETTETACCCACTTTTGNAAAGNCCCNTCGATTGGGGCCAAACAANCTCCCATGGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AACAANCT               | CCCATGG              | SCNTCAAA             | GGGGG    |
|          |              | CGAGC                  | ASTEINAMACOCGG<br>CGAGCCCAAGGNT<br>CCCT         | GG I AAANU<br>CTGGCAAA                                                                          | GIICCCC                  | CCCATGG<br>3CNAAACC  | GNTGCNAA<br>ATTCCCN/ | ogge i Aaance i i CCCCCCATGGGNTGCNAACNGNAACAGGNAAGGNGNNTAAACNNGCNNCCCCN<br>NTCTGGCAAAGNGNGGGCNAAACCATTCCCNAANGGGATNAAAAAACTNGTCCCCCAGGGGGTCNAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGNAAGGI<br>IAAAAAACT  | NGNNTAA<br>'NGTCCC(  | ACNNGCN?<br>CCAGGGGG | CCCCN    |
|          | T7-Contig    | GCAAC,                 | <b>AATTCGAG</b>                                 | GCAACAATTCGAGCTGCTGTGACAGAGGGGAACAAGATGGCGGCGCCAAA                                              | ACAGAGG(                 | GGAACAA              | SATGGCGG             | CGCCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                      |                      |          |
|          |              |                        |                                                 |                                                                                                 |                          |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                      |          |
| 65       | 60           | 55                     | 50                                              | 45                                                                                              | 40                       | 35                   | 30                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                     | 15                   | 10                   | 5        |

| 5  |                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                  | ·                                                                         |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | 75                                                                                                               |                                                                           | '806 5'                                                                                                                                                             |                                                                                                      | <u>u</u>                                                                                                                                                    |
| 15 |                                                                                                                                                                                                      |                                                                                                                                                                                                                    | clone MT24                                                                                                       |                                                                           | IMAGE:737                                                                                                                                                           |                                                                                                      | is cDNA clon                                                                                                                                                |
| 20 | r r o                                                                                                                                                                                                | _                                                                                                                                                                                                                  | s cDNA                                                                                                           |                                                                           | VA clone                                                                                                                                                            |                                                                                                      | musculu                                                                                                                                                     |
| 25 | GGGGAAGCTTTGGGTCCAGGCCCAACTGGGGCTCCCGCCGCTGCTGTTGGCTATTGGCTTTTGGCGCCGCTGCTGCTGTTTTGGCGGCCCGCTGCGGGGCTCCGGGGCCCGCGCGCGCGCTTTTGACTGCGGGCCTGTCACCGGGCCCTGTCACCGGGCCTGTCGCTGCCTGTCACCGGGCCTGTCGACCTGCCTG | MAAPKGKL WVQAQLGLPP LLLLTMALAG GSGTAAAEAF<br>DSVLGDTASC HRACQLTYPL HTYPKEEELY ACQRGCRLFS ICQFVDDGLD<br>LNRTKLECES ACTEAYSQPD EQYACHLGCQ DQLPFAELRQ EQLMSLMPRM<br>HLLFPLTLVR SFWSDMMDSA QSFITSSWTF YLQADDGKIV IFQSK | >gb AW109849.1 AW109849 MT2475 mouse liver, dioxin treated Mus musculus cDNA clone MT2475<br>3'.<br>Length = 617 |                                                                           | >gb AA277327.1 AA277327 va81e12.r1 Soares mouse NML Mus musculus cDNA clone IMAGE:737806 5'<br>similar to WP:C02F5.3 CE00039 GTP-BINDING PROTEIN ;.<br>Length = 553 |                                                                                                      | >gb Al646762.1 Al646762 ub65e01.x1 Soares_mammary_gland_NMLMG Mus musculus cDNA clone<br>IMAGE:1382616 3' similar to WP:C41D11.5 CE08662<br>ENDONUCLEASE ;. |
| 30 | GGGGAAGCTTTGGGTCCAGGCCCAACTGGGGGCTCCCGCCGCCGCTGCTGCTTGCT                                                                                                                                             | MAAPKGKL WVQAQLGLPP LLLITMALAG GSGTAAAEAF<br>DSVLGDTASC HRACQLTYPL HTYPKEEELY ACQRGCRLFS ICQFY<br>LNRTKLECES ACTEAYSQPD EQYACHLGCQ DQLPFAELRQ EQLN<br>HLLFPLTLVR SFWSDMMDSA QSFITSSWTF YLQADDGKIV IFQSK            | lioxin treated                                                                                                   |                                                                           | A277327 va81e12.r1 Soares mouse NML Mus m<br>P:C02F5.3 CE00039 GTP-BINDING PROTEIN ;.                                                                               |                                                                                                      | mary_gland_<br>E08662                                                                                                                                       |
| 35 | CTGGGGC<br>GGGGACT<br>CCTGTCA(<br>SAGGGACT<br>CACGTTT(<br>AATCTGC(<br>CATCTTG(<br>ACTCATGT<br>TGAGGTC                                                                                                | 4G GSGTA<br>EELY ACQI<br>LGCQ DQI<br>WTF YLQA                                                                                                                                                                      | ouse liver, o                                                                                                    | (%0) 2                                                                    | soares mou<br>3TP-BINDIN                                                                                                                                            | (%0) 1                                                                                               | vares_mam<br>241D11.5 C                                                                                                                                     |
| 40 | SGGTCCAGGCCCAACTGGGGCTCCC<br>TGGCCGGAGGCTCGGGGACTGCAC<br>TGGCCGCAGCGTCCTGTCACCGG<br>CACCTACCCGAGGAGAGGA                                                                                              | LLLLTMAL<br>PL HTYPKEI<br>D EQYACH                                                                                                                                                                                 | MT2475 m                                                                                                         | .420), Expect = 0.0<br>7 (94%), Gaps = 2/517 (0%)<br>nus                  | a81e12.r1 §<br>CE00039 G                                                                                                                                            | 398), Expect = 0.0<br>4 (93%), Gaps = 5/514 (0%)<br>is                                               | 55e01.x1 Scillar to WP:C                                                                                                                                    |
| 45 | GGGTCCA<br>CTGGCCG<br>GGGAGAC<br>ACACCTAC<br>SGCTGTTT<br>SCAGCTG<br>GAGCAGT/<br>ACTGAGAC<br>CCCTCTG<br>CAGAGATAC                                                                                     | AAGLGLPP<br>RACQLTYF<br>STEAYSQP<br>WSDMMDS                                                                                                                                                                        | JAW109849                                                                                                        | (420), Expect = 0.0<br>17 (94%), Gaps = 2.<br>linus                       | AA277327 v<br>VP:C02F5.3<br>i3                                                                                                                                      | (398), Expe<br>14 (93%), G<br>us                                                                     | 646762.1 Al646762 ub65e01.x1 Soares_mammary_gl<br>IMAGE:1382616 3' similar to WP:C41D11.5 CE08662<br>ENDONUCLEASE ;.                                        |
| 50 | GGGGAAGCTTTC<br>TGACTATGGCGC<br>GACTCGGTCCTG<br>CTACCCCTTGCA<br>AGAGGCTGCAGG<br>TTTAAATCGGACG<br>CCCAACCTGATG<br>CCATTTGCTGAA<br>GCATCTCCTCTTT                                                       | MAAPKGKL WVQAQLGLPP LLLLTMALAG GSGTAAAEAF<br>DSVLGDTASC HRACQLTYPL HTYPKEEELY ACQRGCRL<br>LNRTKLECES ACTEAYSQPD EQYACHLGCQ DQLPFAEL<br>HLLFPLTLVR SFWSDMMDSA QSFITSSWTF YLQADDGKI                                  | \W109849.1 A<br>3'.<br>Length = 617                                                                              | Score = 833 bits (420<br>Identities = 489/517 (6<br>Strand = Plus / Minus | A277327.1 A.<br>similar to WF<br>Length = 553                                                                                                                       | Score = 789 bits (398), Expect = 0.0<br>Identities = 483/514 (93%), Gaps = 5<br>Strand = Plus / Plus | 1646762.1 Ali<br>IMAGE:138;<br>ENDONUCI                                                                                                                     |
| 55 | 666<br>040<br>040<br>040<br>040<br>040<br>060<br>060<br>060<br>060                                                                                                                                   | MAA<br>DSVI<br>LNRT<br>HLLF                                                                                                                                                                                        | /lq6<                                                                                                            | Scor<br>Ident<br>Strar                                                    | √lqb<                                                                                                                                                               | Score<br>Ident<br>Stran                                                                              | >gb A                                                                                                                                                       |
| 60 |                                                                                                                                                                                                      | möglicher ORF                                                                                                                                                                                                      | Identität                                                                                                        |                                                                           |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                             |
| 65 |                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                  |                                                                           |                                                                                                                                                                     |                                                                                                      |                                                                                                                                                             |

|          |              | Length = 529                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                               |                                          |                                     |                                  | i                    |                       |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------|----------------------|-----------------------|
|          |              | Score = 741 bits (374), Expect = 0.0 Identities = 425/449 (94%) Strand = Plus / Minus                                                                                                                         | xpect = 0.0<br>)                                                                                                                                                                                   |                                                               |                                          |                                     |                                  |                      |                       |
|          | Beschreibung | DNA-Leiter                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                               |                                          |                                     |                                  |                      |                       |
| Klon #19 | T7-Sequenz   | AAAGCTGGCTGGAATCCTGGTAGGAGCCGCAGTGNGNGGCCATGCC<br>CTGGAGCTATCTTCNGGNGTCCGNGTCCGGCACAGTAGCTGCCTTC<br>TTCCTGCTGGCCTCTGCAGNGGCAGGAGTTANGATGAACACAGCCA                                                            | IGAATCCTGGTAGGAGCCGCAGTGNGNGGCCATGCCTCAGATAGGTTNGGGCGCAGAAGGGTGCTGAC<br>TTCNGGNGTCCGNGTCCGGCACAGTAGCTGCCTTCATGCCCACCTTCCCCCTCTACTGNCTGNTNCGT<br>CTCTGCAGNGGCAGGAGTTANGATGAACACAGCCA                | SCAGTGNGNGGC<br>SGCACAGTAGCT(<br>TTANGATGAACAC                | CATGCCTCAG<br>3CCTTCATGCC<br>3AGCCA      | ATAGGTTNG<br>CACCTTCC               | SGCGCAG                          | 3AAGGGTC<br>TGNCTGN  | CTGAC                 |
|          | BGH-Sequenz  | AAAAATTATTTATTNGNGTGTATCACCGGGGGGGGGGGNATGTGTCCATGCGGAGCTCANAGGACAACTTTGTGAAGTCTGT TGTCACATGAGTTTCAGAAATTTAGGCCCGGAGGCAGGNGTCTTTACCCGCCGCCGTCGCCAGCCTGCCCTTTCCTCCTCCTCCTCCTCCTCCTCCTCCTCC                     | TGTATCACCGGG AAATTTAGGCCCC                                                                                                                                                                         | GGCGGGNATGT<br>GAGGCAGGNGT                                    | STCCATGCGG,<br>CTTTACCCGC(               | AGCTCANAG<br>SGTCGCCAG              | SGACAACTI<br>SCCCTGCC            | TTGTGAAG             | TCTGT                 |
|          | Identitat    | dbj AB005451 AB005451 Mus musculus mRNA for RST, complete cds<br>Length = 1779                                                                                                                                | ins musculus mRN                                                                                                                                                                                   | A for RST, comple                                             | spo ex                                   |                                     |                                  |                      |                       |
|          |              | Score = 305 bits (154), Expect = 2e-81 Identities = 185/199 (92%), Positives =                                                                                                                                | (154), Expect = 2e-81<br>99 (92%), Positives = 185/199 (92%)                                                                                                                                       | 39 (9 <b>2</b> %)                                             |                                          |                                     |                                  |                      |                       |
|          |              | LOCUS AB005451 1779 bp mRNA ROD DEFINITION Mus musculus mRNA for RST, complete cds. ACCESSION AB005451 NID 92696708 KEYWORDS RST; renal-specific transporter. SOURCE Mus musculus 8-week-old male kidney cDNA | AB005451 1779 bp mRNA ROD 17-DEC-1997 Mus musculus mRNA for RST, complete cds. 1 AB005451 396708 5 RST; renal-specific transporter. Mus musculus 8-week-old male kidney cDNA to mRNA, clone:K14D2. | ROD 17-D complete cds.                                        | 17-DEC-1997<br>o mRNA, clone:K14D)       | 8                                   |                                  |                      |                       |
|          | Beschreibung | DNA-Leiter                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                               |                                          |                                     |                                  |                      |                       |
|          |              |                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                               |                                          |                                     |                                  |                      |                       |
| Klon #20 | T7-Sequenz   | AAAGGGGACGGAGACCTTCAGCGTGGAATCTATATCCAAGAATGGAATCTGTCTG                                                                                                                                                       | AGACCTTCAGCGTGGAATCTATATCCAAGAATGGAATCTGTCTG                                                                                                                                                       | CTATATCCAAGA<br>GCGAGCTCTGGI<br>NTCTACAGGAACT<br>AGGACCATGACT | ATGGAATCTGT<br>VGGCATCCATT<br>TGGGCAGNGN | CTGGAGATO<br>CTGGACTTC<br>NGGACTTCC | GGGCCCAC<br>CATCGAGC<br>CACGCACT | CAGCCTCA<br>TCTTNAAC | GGGC<br>CAAG<br>GGNGA |
|          |              |                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                               |                                          |                                     |                                  |                      |                       |
| 65       | 60           | 45<br>50<br>55                                                                                                                                                                                                | 40                                                                                                                                                                                                 | 30                                                            | 25                                       | 20                                  | 15                               | 10                   | 5                     |

| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45 |             | gb AA109018 AA109018 mp37f03.r1 Barstead MPLRB1 Mus musculus cDNA clone 571421 5' similar to SW:ACY2_HUMAN P45381 ASPARTOACYLASE; Length = 535 Score = 622 bits (314), Expect = e-177 Identities = 340/352 (96%), Positives = 340/352 (96%) | AAAGGGCGGCGGCGGCAGCTCCCGCGGCTCNTGCTCTGCTC | 1.2 - 1 - 2 - 2 - 1 |
|---------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|
| 60                                                | BGH-Sequenz | Identität                                                                                                                                                                                                                                   | T7-Sequenz                                | BGH-Sequenz         |
| 65                                                |             | ·                                                                                                                                                                                                                                           | Klon #21                                  |                     |

|    |           | GTTG                          | GTTGAAGACACGGCGGATGTTCTCAGNGTCCACGGCGCAGGTAAAGTGAGGGTAGCAGTNGNGGCGCCCATNTCCACT<br>AGCAGTGCTGNTTTTCAGAAACTNATCCCTNATGAAGTNCTT                                                                                 | SCGGATGT1<br>TTCAGAAA                                  | CTCAGNG                           | GGCGGATGTTCTCAGNGTCCACGGCGCAG                                                       | GCAGGTA       | AAGTGAG       | SGTAGCAG     | TNGNGG | SCGCCCATI | VTCCACT |
|----|-----------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|---------------|---------------|--------------|--------|-----------|---------|
|    | Identität | emblY                         | emb Y00703 MMGTPAMU Mouse uncoupled S49 cells mRNA for stimulatory GTP-binding protein alpha subunit<br>Length = 1389                                                                                        | PAMU Mous                                              | e uncoupled                       | 1 S49 cells m                                                                       | RNA for stir  | nulatory GT   | P-binding pr | otein  |           |         |
|    |           | Score<br>Identit<br>Stranc    | Score = 276 bits (139), Expect = 5e-72<br>Identities = 242/277 (87%), Gaps = 6/277 (2%)<br>Strand = Plus / Plus                                                                                              | (139), Expect = 5e-72<br>:77 (87%), Gaps = 6/27<br>lus | = 5e-72<br>\$ = 6/277 (2°         | (%                                                                                  |               |               |              |        |           |         |
|    |           | gblM12                        | gb M12673 RATGNPAS Rat guanine nucleotide-binding protein G-s, alpha subunit mRNA<br>conplete cds.<br>Length = 1708                                                                                          | PAS Rat gual                                           | nine nucleot                      | ide-binding p                                                                       | rotein G-s, a | alpha subur   | it mRNA      |        |           |         |
|    |           | Score Strand Score : Identiti | Score = 266 bits (134), Expect = 5e-69<br>Identities = 224/255 (87%), Gaps = 5/255 (1%)<br>Strand = Plus / Plus<br>Score = 163 bits (82), Expect = 5e-38<br>Identities = 89/92 (96%)<br>Strand = Plus / Plus | 34), Expect = (87%), Gaps<br>(87%), Expect = 5<br>(6%) | = 5e-69<br>s = 5/255 (1'<br>ie-38 | (%                                                                                  |               |               |              |        |           |         |
|    |           | gb[M17                        | gbļM17525jRATBPGTPD Rat GTP-binding protein (G-alpha-8) mRNA, complete cds.<br>Length = 1738                                                                                                                 | STPD Rat GT                                            | P-binding p                       | rotein (G-alpl                                                                      | ıa-8) mRNA    | , complete    | .spo         |        |           |         |
|    | ·         | Score<br>Identiti<br>Strand   | Score = 266 bits (134), Expect = 5e-69<br>Identities = 224/255 (87%), Gaps = 5/255 (1%)<br>Strand = Plus / Plus                                                                                              | 34), Expect =<br>(87%), Gaps                           | : 5e-69<br> = 5/255 (1%           | (%                                                                                  |               | ·             |              |        |           |         |
|    |           | gb AF1                        | gb AF116268 AF1162<br>complete cds<br>Length = 2655                                                                                                                                                          | 268 Mus mu:<br>5                                       | sculus G-pr                       | 16268 Mus musculus G-protein XLAS (Xlas) mRNA, alternatively spliced,<br>cds<br>655 | (las) mRNA    | , alternative | ly spliced,  |        |           |         |
|    |           | Score                         | Score = 609 bits (30 Identities = 357/378                                                                                                                                                                    | (307), Expect = e-172<br>78 (94%), Gaps = 1/378 (0%)   | e-172<br>= 1/378 (09              | (9)                                                                                 |               |               |              |        |           |         |
| 65 | . 60      | 55                            | 50                                                                                                                                                                                                           | 45                                                     | 40                                | 35                                                                                  | 30            | 25            | 20           | 15     | 10        | 5       |

| 65       | 60         | 20<br>25<br>30<br>35<br>40<br>45                                                                                                                                                                                                | 5                                                                                                                    |
|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|          |            | Strand = Plus / Minus                                                                                                                                                                                                           |                                                                                                                      |
| Klon #22 | T7-Sequenz | AGCGGACGTTTGTGCCGGGACATGGCCGCTGCGGATGCCGGGTCCTTGAGCTGAGCGCTTGCTGCCGGAGGCCAACCTC TGCCGTCAACCGTCCGCGGGGCTGGGCCCAGGCCGGGGCCGAGGCTGTAA TGCCGTCAACCGTCCGCGGGGCTGGGCT                                                                 | SGAGCCAACCTC SAGGCAGCTATA CCGCCTCGCGC GGGGTTGACGA CCCTNAGCTGT TGGNGGTTACG GAAGTCCCTTAA NGACACCAAAG GCAGNTNTTCC TGGNA |
|          |            | CATTATGGAAG CATTATGGAAG TCATGCCCTG CGGCCTTTTC TACCTGGGNGC GNCCTTATTATC TGAGCTCAGNG ACTCCAGCTGT TCTTCTATTGNNC                                                                                                                    | ACTCTTGNGNG TCTTCACTTCTG SACAATTTCAGC STTGATATNGCC CATGGCGCTGA STGATGAGGG STCGCTGCAGA AGGCCTGCNCTTT TCCTGCNNCTTT     |
|          |            | 2. Sequenzierung: CATTATGGAAGTTTCTGATTNATTCCANACAAAATATTANATTTGCCACTAANAATCACCTNAAAGCAATCACTNTTGNGNG TNATGCCCCTGNGGCTGGCACGGCATGATGAAGGCANACCTGNGGGCCAAAAGGTGGCAGNTNTAATTCTTCTGCTGC TNATGCCCCTGNGGCTGCTCCTTGGCCTTCTTTTCTTTCTTTC | ACTNTTGNGNG CTTCACTTCTG ACAATTTCAGC ATGANATTGCC ATGACGCTGA IGGCGCTGA IGGACGCCTGA CGTTGAGNGGT CGTTGAGNGCT             |

|          |             | TGTNAANCTCCNCTTGGNANCTNTTTACCCTTTAGACCTTTCAAACANGGGCCGAATCCGNNAGGANCTTTGNGGGCAGG                                                                                                                                                                                             | NCTTGGNANC                                                                          | TNTTTACC                         | CTTTAGACCT                                             | TTCAAACA                         | NGGGCCGAAT                                                                                                                                                                                                                                                                      | CCGNNAGG                            | ANCTTTGN                          | GGGCAGG                       |
|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-------------------------------|
|          | Identität   | gb AF061026 AF061025 Mus musculus leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) mRNA, complete cds Length = 3480                                                                                                                                         | 31026/AF061026 Mus musculus<br>1 (Letm1) mRNA, complete cds<br>Length = 3480        | sculus leuci<br>te cds           | ne zipper-EF-ha                                        | and containi                     | ng transmembra                                                                                                                                                                                                                                                                  | ne protein                          |                                   |                               |
|          |             | Score = 549 bits (277), Expect = e-154<br>Identities = 336/360 (93%), Gaps = 1/360 (0%)<br>Strand = Plus / Minus                                                                                                                                                             | (277), Expect =<br>60 (93%), Gaps<br>linus                                          | = e-154<br>\$ = 1/360 (0°        | (%                                                     |                                  |                                                                                                                                                                                                                                                                                 |                                     |                                   |                               |
|          |             | Score = 283 bits (143), Ex<br>Identities = 157/164 (95%)<br>Strand = Plus / Minus                                                                                                                                                                                            | (143), Expect = 2e-74<br>64 (95%)<br>inus                                           | 2e-74                            |                                                        |                                  |                                                                                                                                                                                                                                                                                 |                                     |                                   |                               |
|          |             |                                                                                                                                                                                                                                                                              |                                                                                     |                                  |                                                        |                                  |                                                                                                                                                                                                                                                                                 |                                     |                                   |                               |
| Klon #23 | T7-Sequenz  | AAAGGGCGGCCATGGACCGCTTCGNGNGGACCAGNGGCCTCCTGGAGATCAACGAGACCCTGGTTATCCAGCAGCGCGCGGGGGGGG                                                                                                                                                                                      | ATGGACCGC<br>TACGACGGC<br>AGAATAATGA<br>NNNCAAAATN                                  | TTCGNGNC<br>GAGGAGA<br>GNGCTGN   | SGACCAGNGG<br>AGATAAAATTN<br>ATGGNNATTN(<br>ACCTGCACCC | CCTCCTG(<br>IGATGCCG<br>SCCTGTCT | SAGATCAACGA<br>GGACTCTTCTT<br>TAGATNGNGN<br>TTNACAAA                                                                                                                                                                                                                            | GACCCTGG<br>CTTAGTACA<br>ICATCGAGG  | TTATCCAG<br>ACACCGGC<br>SAGCAGGC  | CAGCGCG<br>TGATTNG<br>AGCTNNA |
|          | BGH-Sequenz | CNANCNCATTCTNGGNNAATTNGGGNTAATTTTTNANCTNAGNGTCNNGAGACCTTGNNAAAANGCAAGNTNATNGCCAT AAAGCATTTCAGGNNCAAAATTNTNAGTNCTGGGNCANAAANAAATTTGGANAAAACCGAANGCNTTCCANGGNGCNGTN TCGGAAAAGGGGNCCNATTTTNTTGNANGGNGCNCCNTTTNTTNACCCANANGGNCAGACNTTCCTNAGGNGCNAANTTTNGGANGTTCCTTTTCTNAGGGNGTTT | INGGNNAATTI<br>SGNNCAAAATT<br>GNCCNATTTTI                                           | AGGGNTA.<br>NTNAGTN.<br>NTTTGNAN | ATTITINANCTI<br>CTGGGNCANA<br>IGGNGCNCCN'              | NAGNGTCP<br>AANAAATT<br>TTTNTTNA | INGGNNAATTNGGGNTAATTTTNANCTNAGNGTCNNGAGACCTTGNNAAAANGCAAGNTNATNGCCATGNNCAAAATTNTNAGGAGGNTNATNGCCATGONCAAAATTNTNAGGAAAAACCGAAANGCATTTGGANAAAACCGAAANGCNTTCCANGGNGCNGTNGGNAAGGACCANANGGNCAGACCANANGGNTTCCTNAGGAAAACCGTTTCAAAGGACCANAAAGGACCANAATTTCCTAAAGAAACCGATTCAAAGAAAAAAAAAA | NNAAAANGC<br>CGAANGCNT<br>CAGACNTTC | CAAGNTNA<br>TTCCANGGI<br>CCNNANGC | TNGCCAT<br>NGCNGTN<br>CTNGGNA |
|          | Identität   | gb AA086895 AA086895 mk19c02.r1 Soares mouse p3NMF19.5 Mus musculus cDNA clone 493346 5' similar to WP:F17C11.8 CE05655; Length = 480                                                                                                                                        | 086895 AA086895 mk19c02.r1 Soal<br>similar to WP:F17C11.8 CE05655 ;<br>Length = 480 | 2.r1 Soares<br>=05655;           | mouse p3NMF                                            | 19.5 Mus mi                      | isculus cDNA ck                                                                                                                                                                                                                                                                 | ne 493346 5'                        |                                   |                               |
|          |             | Score = 353 bits (178), Expect = 9e-96 Identities = 250/281 (88%), Gaps = 1/281 (0%)                                                                                                                                                                                         | (178), Expect = 9e-96<br>81 (88%), Positives = 2                                    | 9e-96<br>ves = 250/2             | 81 (88%), Gaps                                         | = 1/281 (0%                      | (9                                                                                                                                                                                                                                                                              |                                     |                                   |                               |
|          |             | gb AA881548 AA881548 vx20b03.r1 Soares 2NbMT Mus musculus cDNA clone 1264973 5'<br>Length = 454                                                                                                                                                                              | 81548 vx20b03                                                                       | .r1 Soares                       | 2NbMT Mus mu                                           | sculus cDN                       | d clone 1264973                                                                                                                                                                                                                                                                 | ç.                                  |                                   |                               |
|          |             | Score = 331 bits (167), Expect = 3e-89<br>  Identities = 226/253 (89%), Positives = 226/253 (89%)                                                                                                                                                                            | (167), Expect = 3e-89<br>53 (89%), Positives = 2                                    | 3e-89<br>ves = 226/2             | 53 (89%)                                               | :                                |                                                                                                                                                                                                                                                                                 |                                     |                                   |                               |
|          |             |                                                                                                                                                                                                                                                                              |                                                                                     |                                  |                                                        |                                  |                                                                                                                                                                                                                                                                                 |                                     |                                   |                               |
| 65       | 60          | 50                                                                                                                                                                                                                                                                           | 45                                                                                  | 40                               | 30                                                     | 25                               | 20                                                                                                                                                                                                                                                                              | 15                                  | 10                                | 5                             |

|    |              | GGCAGGCTGNG<br>GCTTCGGNGAG<br>GGCTTACGTCTT<br>CCGCTGCTTGC<br>TCACGCTGAC/<br>TAGCCGCGAGG<br>GAACNAGGAGA            | GGCAGGCTGNGTCAAAGTCACCAAGTAITTCCTCTTCCTCTTCAACTNGCTGNTCTTTATCCTGGGNGCTGAGATCCTGG<br>GCTTCGGNGAGNGGATTCTTGCAGACAGAACAGCTTCATTTCCGTCCTACAAACCTCATCCGGCTCGCTGCAGGNGGG<br>GCCTTACGTCTTCATCGGAGNGGGCGCCATCACCATAGNGANGGGCTTCCTGGGCTGTATCGGAGCTGTCAATGAGGN<br>CCGCTGCTTGCTGGGTCTGTACTTNGTCTTCCTTCNGCTGATCCTNATCGCACAGGTGACCGTAGGGGTCCTCTTCTACT<br>TCAACGCTGACAAGCNGAAGAAGGAGATGGGGAACACAGNGATGGACATCATTCGCAACTACACTGCCAATGCCACGAG<br>TAGCCGCGAGGAGGCCTGGGACTACGTGCAGGCGCAGGTCAAGGGAGCACTACAACTGNACAGA<br>GAACNAGGAGGCTCATGGGCTTACCNAGACCATGCTCCTGCGGAGAAGGATCAAGGNAGAGGACACACCAGCCT | CAAGTATTTCC<br>CAGACAAGAAC<br>CAGACAAGAAC<br>SGCGCCTC<br>STTNGTCTTCC<br>AGGAGATGGG<br>ACTACGTGCAG<br>TACCNAGACCA<br>CGAGGCTGAT | TCAAAGTCACCAAGTATTTCCTCTTCCTCTTCAACTNGCTGNTCTTTATCCTGGGNGCTGAGATCCTGG NGGATTCTTGCAGGACAAGAACAGCTTCATTTCCGTCCTACCAACCTCATCCAGCTCGCGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                         | AACTNGCTGI<br>SCGTCCTACA<br>GGGCTTCCTI<br>CTNATCGCA(<br>TGGACATCA<br>AGNGCTGTGC<br>STCTGCGAG    | TCTTTATCCTC AACCTCATCCA SGGCTGTATCC SAGGTGACCG TCGCAACTAC SCTGNGTCAGG                  | SGGNGCTGAG<br>GCTCGCTGCA<br>SGAGCTGTCA/<br>TAGGCGTCT(<br>ACTGCCAATG<br>SCACTACAACT<br>GNAGAGGACN | ATCCTGG<br>AGGNGGG<br>ATGAGGN<br>CTTCTACT<br>CCACCAG<br>GNACAGA |
|----|--------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|    | BGH-Sednenz  | CATTATAAACC<br>CCCACCCTTA<br>CAGACCTGAG<br>CCCCAGGAGG                                                             | CATTATAAACCCTCCTTTAATAATTGATTCCAGAGATGAGNGNATGGAACCCCTCCCCCACCCTGCAAGGNACAGCCTCA<br>CCCACCCTTAGCGCAGAGGGACAGGGGGACAGCTGCCAAGAACACCAGTCCAGGATCCTCTCTCATCCAGGGTCTNGNGC<br>CAGACCTGAGGGACCCACACCCCTAAGTNGTCAGGTCCCTCACCAAGAGGAGCGCCACAGAGGCTACCTGGGCCAGTC<br>CCCCAGGAGGCCCCTCAGTTCAGT                                                                                                                                                                                                                                                                                            | NTGATTCCAG/<br>AGGGGACAGC<br>CCTAAGTNGTC<br>AGTTCCCTGCT                                                                        | AGATGAGNGNA<br>TGCCAAGAAAC<br>AGGTCCCTCA<br>GAACTGAGCTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGGAACCCC<br>ACCAGTCCA<br>CCAAGAGGA(<br>VGGGGGGGG                                               | TCCCCCACCC<br>SATCCTCCTCT<br>SCGCACCAGA(<br>GGAG                                       | TGCAAGGNAC/<br>CATCCAGGGT<br>3GCTACCTGG                                                          | AGCCTCA<br>CTNGNGC<br>3CCAGTC                                   |
|    | Identität    | dbj D14883 MUSC33<br>Length = 1657                                                                                | dbj D14883 MUSC33R2IA Mouse mRNA for C33/R2/IA4, complete cds<br>Length = 1657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mRNA for C33/F                                                                                                                 | 22/IA4, complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | spo                                                                                             |                                                                                        |                                                                                                  |                                                                 |
|    |              | Score = 91.7 bits<br>Identities = 52/55                                                                           | its (46), Expect = 3e-17<br>55 (94%), Positives = 52/55 (94%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e-17<br>s = 52/55 (94%)                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                                        |                                                                                                  |                                                                 |
|    |              | gb AF049882  Rattus<br>complete cds<br>Length = 1740                                                              | gb AF049882  Rattus norvegicus metastasis suppressor homolog (KAI1) mRNA,<br>complete cds<br>Length = 1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | netastasis suppr                                                                                                               | essor homolog (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (AI1) mRNA,                                                                                     |                                                                                        |                                                                                                  |                                                                 |
|    |              | Score = 69.9 bits Identities = 56/65                                                                              | ts (35), Expect = 1e-10<br>35 (86%), Positives = 56/65 (86%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e-10<br>; = 56/65 (86%)                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                                        |                                                                                                  |                                                                 |
|    | Bemerkungen: | Bisherige Daten ze proapoptotischen Atmungskette erzer Expression reagier. Die proapoptotisch noch durch C33 in v |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zierte Apoptose v<br>Mitochondrien fü<br>hit einem genetisi<br>333 ist nicht abh                                               | ligen: C33-induzierte Apoptose wird durch die Induktion von Sauerstoffradikalen vermittelt, die zur Aktivierung von Mitochondrien führen. Diese Sauerstoffradikale sind nicht durch die mitochondriale ugt, da Zellen mit einem genetischen Defekt in der Atmungskette immer noch mit Apoptose auf C33 en. en. e. Aktivität von C33 ist nicht abhängig von Substrat- oder Zell-Zell- Interaktion, da auch Suspensionszeller die Apoptose getrieben werden. Auch die schnelle Kinetik der Apoptose-Induktion von C33 unterscheidet | luktion von Sau<br>Prstoffradikale s<br>Pr Atmungskettt<br>st- oder Zell-Ze<br>e Kinetik der Av | erstoffradikalen ind nicht durch ca immer noch mi II- Interaktion, da oottose-Induktio | vermittelt, die zu<br>lie mitochondrial<br>t Apoptose auf C<br>n auch Suspensi                   | r<br>e<br>333<br>onszellen<br>scheidet                          |
|    |              | sich von der bisher<br>extrazellulärer Loop<br>notwendig ist.                                                     | sich von der bisher behaupteten proapoptotischen Effekten von C33. Desweitere wurde von uns gezeigt, daß ein extrazellulärer Loop in C33, der anscheinend für die Substrat-Interaktion verantwortlich ist, für die Apoptoseinduk notwendig ist.                                                                                                                                                                                                                                                                                                                               | oapoptotischen l<br>scheinend für di∈                                                                                          | behaupteten proapoptotischen Effekten von C33. Desweitere wurde von uns gezeigt, daß ein p in C33, der anscheinend für die Substrat-Interaktion verantwortlich ist, für die Apoptoseinduktion nicht                                                                                                                                                                                                                                                                                                                               | . Desweitere w<br>ction verantwon                                                               | urde von uns ge<br>ilich ist, für die A                                                | zeigt, daß ein<br>poptoseinduktion                                                               | n nicht                                                         |
| 65 | 60           | 50                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                              | 15                                                                                     | 10                                                                                               | 5                                                               |
| 5  | 0            |                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                               |                                                                                        | D                                                                                                | 5                                                               |

| Klon #26 | &<br>T7-Sequenz | % % %                                  |                                                                                | AAAGCGAC                                                     | ₽<br>ATGGCGG                | 32<br>SNTCTCTTA                                                                                                                                  | %<br>VAAGCTGG                 | LOLUSOS<br>25            | <sup>∞</sup><br>CTGCAGN | 15<br>GGNCAA(     | THE AND                                                                                                                                                                         | v<br>AGCTCTC |
|----------|-----------------|----------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          |                 | CCCAGCAC<br>CCCAGCAC<br>NNGTGCCC       | CGAAGCC(<br>ACATTCAC                                                           | SGGTGGT                                                      | CAAGCCCC                    | SCTTATGTC<br>SCACTCTG                                                                                                                            | STCAGCAT                      | TTCTCCAG                 | GTCTCCA                 | CTGGANG           | CTACTCCGAAGCCGGGTGGTCAGACCCGCTTATGTGTCTCAGCATTTCTCCAGGACCAGCCTACCCAAGGACGGAGTGGTA<br>CCCAGCACATTCACCTGTCACCAAGCCACCACTCTGGTTTCAAGGCTGCATCTCTCCACTGGANCAGTGAGGGGAAGN<br>NNGTGCCC                                     | AGTGGTA      |
|          | Identität       | gb U5098<br>pre<br>Lei                 | 987 BTU5098]<br>precursor QPs<br>Length = 1317                                 | 0987 Bos taurus succinate-<br>QPs3 mRNA, complete cds        | s succinate-<br>omplete cds | gb U50987 BTU50987 Bos taurus succinate-ubiquinone reductase membrane anchor subunit precursor QPs3 mRNA, complete cds<br>Length = 1317          | eductase n                    | embrane ar               | nchor subur             | Ħ                 |                                                                                                                                                                                                                     |              |
|          |                 | Score = 127 bits Identities = 120/1    |                                                                                | .(64), Expect = 1e-27<br>39 (86%), Positives = 120/139 (86%) | 1e-27<br>ives = 120/1       | (%98) 681                                                                                                                                        |                               |                          |                         |                   |                                                                                                                                                                                                                     |              |
|          |                 | dbj AB006<br>col<br>Lei                | 006202 AB006<br>complete cds<br>Length = 1313                                  | 202 Homo s                                                   | apiens mRI                  | dbj AB006202 AB006202 Homo sapiens mRNA for cytochrome b small subunit of complex II,<br>complete cds<br>Length = 1313                           | hrome b sm                    | all subunit c            | of complex I            | <del></del> -     |                                                                                                                                                                                                                     |              |
|          |                 | Score = 79.8 bits<br>Identities = 114/ |                                                                                | (40), Expect = 2e-13<br>39 (82%), Positives = 114/139 (82%)  | 2e-13<br>ives = 114/1       | 139 (82%)                                                                                                                                        |                               |                          |                         |                   |                                                                                                                                                                                                                     |              |
|          |                 |                                        |                                                                                | !                                                            |                             |                                                                                                                                                  |                               |                          |                         |                   |                                                                                                                                                                                                                     |              |
| Klon #27 | T7-Sequenz      | AAAGGCA<br>GGGGCA<br>TCTGCT(           | AGATCGAC<br>TNGAGGC<br>3GAGTATC                                                | SAGGGCC/<br>TACNGCT(<br>CCCGGNG                              | AAAGAGG<br>AAAGAGG          | AAAGGCAGATCGAGAGGGCCATGNGGGCCAACGAACAGGCGCTGO<br>GGGGCATNGAGGCTACNGCTGGACGTTTCACACAGAGGGTATTTCG<br>TCTGCTGGAGTATCCCCGGNGAAAGAGGAAAAAGGGGACCANCAT | CAGGCGC<br>GGTATTT<br>GACCANO | TGGCGTC<br>CGGCGCC<br>AT | TGGCCNG<br>TACTCTAT     | AGNGAGI<br>CGCTGC | AAAGGCAGATCGAGAGGGCCATGNGGGCCAACGAACAGGCGCTGGCGTCTGGCCNGAGNGAGNGAGTTCTCATNACTG<br>GGGGCATNGAGGCTACNGCTGGACGTTTCACACAGAGGTATTTCGGCGCCTACTCTATCGCTGCAGGNGNGCTCATCNG<br>TCTGCTGGAGTATCCCCGGNGAAAAGAGGAAAAAGGGGACCANCAT | ATNACTG      |
|          | Identität       | gb M3177                               | 775 MUSCYTE<br>Length = 677                                                    | B558 Mouse                                                   | cytochrom                   | gb M31775 MUSCYTB558 Mouse cytochrome beta-558 mRNA, 3' end.<br>Length = 677                                                                     | nRNA, 3' er                   | ğ.                       |                         |                   |                                                                                                                                                                                                                     |              |
|          |                 | Score = Identities                     | Score = 240 bits (121), Expect = 8e-62 Identities = 176/199 (88%), Positives = | 1), Expect =<br>88%), Positi                                 | 8e-62<br>ves = 176/1        | Score = 240 bits (121), Expect = 8e-62<br>Identities = 176/199 (88%), Positives = 176/199 (88%), Gaps = 9/199 (4%)                               | aps = 9/199                   | (4%)                     |                         |                   |                                                                                                                                                                                                                     |              |
| Klon #28 | T7-Sequenz      | AAAGCG<br>CTGCCA(                      | AAAGCGCGCAGACCGCTCCTCCGCTCCCTCCCTCCCTCC                                        | SECTCCTC                                                     | CGCTGCA                     | GAGTCGN                                                                                                                                          | TNCCNGA                       | GCTNGGN                  | CGACAAG                 | GCNGCC            | AAAGCGCGCAGACCGCTCCTCCGCTGCAGAGTCGNTTNCCNGAGCTNGGNCGACAAGGCNGCCTTCGCAGNCGGGANC<br>CTGCCAGCCGNGACCCCAGCCTTCG                                                                                                         | CGGGANC      |

|               | BGH-Sequenz  | AAGATAANGGTTTT AAAAACAATCACTG TCAAGAACAAATTA GAATACCTCTAATN                                                                    | AAGATAANGGTTTTTAATTGAGTTATNGAGATGAAGACAGNGAAGCCCTGTTNGCTACTTACATGAAAAGAAGATTTTA AAAAACAATCACTGCACAAAATACAAAGGGGCAGGGNANGCNGAGGCATNGAATTCCTCCCCCACGNTTTTTCTNGACTTC TCAAGAACAAATTAAAAGTCTCCACAGCAAATTNGNTCTCAAAAANGCCGAANGGNGAAACAGTTACNGGCTTCCCGCTTCN GAATACCTCTAATNGTTNCCCGGCGCTGCAGCCNGTAGGNCTCCTTGNCGTGACAGTCGNNAGATGAAGAAGCCCAGGTNGTCCAGAAGAAGAAGCCCAGGGTNGTCCAAGAAGAAGCCCAGG                  | AGATGAAGAGACA<br>GGGCAGGGNANG<br>AATTNGNTCTCAA<br>SCAGCCNGTAGGN                    | SNGAGGCCTG<br>SNGAGGCATNG<br>ANGCCGAANG<br>CTCCTTGNCGT                   | TTNGCTACTT<br>AATTCCTCCC<br>GNGAAACAGT<br>GACACAGTCC              | ACATGAAAAG<br>CACGNTTTTT<br>TACNGGCTTC                            | AAGATTTTA<br>CTNGACTTC<br>CCGCTTCN<br>SAAGCCCAG            |
|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|
|               | Identität    | gb U76253 MMU7625<br>Length = 1790                                                                                             | gb U76253 MMU76253 Mus musculus E25B protein mRNA, complete cds<br>Length = 1790                                                                                                                                                                                                                                                                                                                  | B protein mRNA, cor                                                                | plete cds                                                                |                                                                   |                                                                   |                                                            |
|               |              | Score = 117 bits (59   Identities = 88/99 (88                                                                                  | Score = 117 bits (59), Expect = 4e-25<br>Identities = 88/99 (88%), Positives = 88/99 (88%),                                                                                                                                                                                                                                                                                                       | (88%), Gaps = 1/99 (1%)                                                            | (1%)                                                                     |                                                                   |                                                                   |                                                            |
|               | Beschreibung | DNA-Leiter                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                          |                                                                   |                                                                   |                                                            |
|               |              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                          |                                                                   |                                                                   |                                                            |
| Klon #29      | T7-Sequenz   | AAAGAGCGGCTGC<br>TGGCGCGCAGTAG<br>CCTGTGCGCGCTC<br>GCAGGACTTGACCC<br>GGAGCCTGAGTGC                                             | AAAGAGCGGCTGCTGTCGGAAGCACCGGGCGAGCTATCTGTTACAGTCCGGCCCGGGGATGGCTCGGGACGCGGAGGCTGGGAGGGA                                                                                                                                                                                                                                                                                                           | SGGCGAGCTATCTC<br>CGGNGGCTGCCG<br>TCGGCACCCAGGC<br>SGGCGGAGGTCTA                   | STTACAGTCCGG<br>SCGCTGCTGCT<br>STTTGCGGACCT<br>GGGCCGCTGT<br>AGCAGCGCCGG | SCCCGGGGAT<br>GCTGCAGCTG<br>GCTGTCGGA<br>SACTGCTACC<br>AGCTGACCGC | GGCTCGGGA<br>SCTGCGGTGG<br>GCAGCAGCTC<br>TCCGGACCTG               | CGCGGAGC<br>SAGGTGCGC<br>STTGGAGGT<br>CCGGATCT<br>SCGCAGCG |
| - <del></del> |              | CTCGGCCCGTGCG<br>CATCGGGAATACCT<br>CTCTGAGTTTTTCA<br>ACACAGAGGACTTC<br>CTTCCACCAAAAAA                                          | CTCGGCCCGTGCGCCTCTGCCAGACCTGCTACCCGCTCTTCCAACAGGTCGCAATCAAGATGGACAACATCAGCCGAAAACATCGGAAAACATCGGAAAACATCGGAAAACATCGGAAATGCGAGAATGCTCCATGGNACATCGGGAATACCTCCGAGGGCCCGCGCTGGAGGCGGAAGTCTCTCTGGCAAACAATGCTGAAATGCTTCAACAACAACAACAACAACAACAACAACAACAACAAC                                                                                                                                             | TGCTACCCGCTCTT<br>SCTGAGGCGGAAG<br>SGAGGCGAACTGC<br>CAAGACTTTGGCC<br>GCAGAAACTTGTA | CCAACAGGTCC<br>TCTCCTGACGG<br>SCAAATTGCCT,<br>TGCTTTGAGCA                | SCAATCAAGAT<br>CAGACAGAAT<br>AACAAACAATC<br>TAACCTGCAG            | GGACAACATC<br>GCAGATAGTT<br>SGTGAGGATT<br>GGGCACACA<br>SCCTNCTGTA | SAGCCGAAA<br>CTCATGGN<br>TGTCAAACA<br>FACAGNCTC            |
|               | BGH-Sednenz  | CCTTGTTATTTCCTCAGGAANTATGTNCAGGAGGCCAGACCCTGTAGTAGTAGTAGTAGTAGAGTAGAGAGTAGAGAGTAGAGAGTAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG | CCTTGITAITICCTITAITGNAAAGCATAAGGAAAAACAGGITITCTTGNGCACACACACATAACCCTATGNGCCTAAGGATT CAGAANTAIGINCATTITITAATATGACCACAAGATGAAATTNITTGGCACATTTTCAAATATTTCTAATGCAACCTNTA GAGAGCCAGACCAGACAGAGAAGGAGCTGGCTTGAAAGGGCTCTCCAGCTTNITAGCCAAAAGCAGNGGTT TGTNCACACAGACCTGAAAGGNACCGAGGAGTGGCTACTCACAGCTTCACTCACTCANTTTGCNCATGTAA ATAAGNTTTACATGTACTGATGAAGATGGNTTCCAATGACCTNAACCATGNGCTTCAAATGACAGGAACAGTGAAA | AGGAAAAAACAGG<br>CACAAGATGAAAT<br>GANGGCTGGCTTC<br>AGGAGTCGCTACT<br>GNTTCCAATGACC  | TTTCTTGNGC<br>INTTGGCACA<br>TTAAAGGCTC<br>CACAGTTTAAAT                   | ACACACATAA<br>TTTCAAATAT<br>TCCAGCTINI<br>ATGTCACTTC              | CCCTATGNGC<br>ATTICTAATGO<br>TAGCCAAAAG<br>ACTCANTTG              | CTAAGGATT<br>SAACCTNTA<br>SCAGNGGTT<br>CNCATGTAA           |
|               |              | CNCAATGAACCCCGG<br>AGACTAGCCTGCTNT<br>NACAGGTTTTNAAGG                                                                          | CNCAATGAACCCCGGCACATNTAGGGGATCACAGCGNCGNCTGATTGTCACATACCCGGGGTGACACTCTGGGACTA<br>AGACTAGCCTGCTNTCACACTCTGCANATGTGGNAAACATACAAAAATACCCAAACACTCCTGCCTTCCTGTAGGGCAAA<br>NACAGGTTTTNAAGG                                                                                                                                                                                                              | ATCACAGCGNCGN<br>ATGTGGNAAACATA                                                    | CTGATTGTCAC<br>CAAAAATACC                                                | ATACCCGGGC<br>SAAACACTCC                                          | STGACACACT(<br>IGCCTTCCTG                                         | STGGGACTA<br>TAGGGCAAA                                     |
|               | Identität    | keine vollständigen Treffer                                                                                                    | reffer                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                                                                          |                                                                   |                                                                   |                                                            |
|               |              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                          |                                                                   |                                                                   |                                                            |
| 65            | 60           | 50                                                                                                                             | 40<br>45                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>35                                                                           | 25                                                                       | 15<br>20                                                          | 10                                                                | 5                                                          |

|    |           | TCGGCC<br>GGCAAA<br>GCTAGT                   | STCTGNGAGN<br>VAGGGAACCTC                                                                                                             | SCGCCCCCTC<br>SCGCCCCCCCCCCCCCCCCCCCCCCCCCC                                                               | SAGGAGGCC<br>SGCCACTCT             | SGNGAAGTA<br>CTGGTTCTC | GACAGAGCT<br>TTCTATATGA                | GGAGCCC<br>GAGCGGACT            | GNGGAGTC<br>ACCTCCCCC             | TCGGCGTCTGNGAGNGCGGCCCCTGAGGAGGCGGNGAAGTAGACAGAGCTGGAGCCCGNGGAGTCACTCCTCTCTCT<br>GGCAAAAGGGAACCTGCGCCGCCGGCCACTCTCTGGTTCTCTATATGAGAGGGGACCTCCCCGACAATCTCCCAAAAGACTGGTCAGAAAAAAAA |
|----|-----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|----------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |           | GGTCCAGCACC<br>AAACTGTGTCAC<br>GCGCTGGGNCC   | AGCACCTTCTC<br>TGTCACCTGG                                                                                                             | CTGCCCTTCC<br>CGNCCACGC<br>CCATCGCTGG                                                                     | TGNGAGAG<br>ICTGAAGCC<br>CTGTAAAGC | GCTGGGCA<br>TGCGCATA(  | GTATGGCAGI<br>STCCAGGGA(<br>GAATCCAAGI | CATCTCCA<br>SNTGGGCA<br>GCCGGNG | GCTTCACC<br>AGACTGTG,<br>GCAGTACC | GGTCCAGCACCTTCTCCTGCCCTTCCTGNGAGGGCTGGGCAGTATGGCAGCATCTCCAGCTTCACCTGGGATAGCCCGAAACTGTGTCACCTGGGGATAGCCCGGAAACTGTGTCACCTGGGCACACGGGATAGCCCGGCCGG                                  |
|    |           | NAACCC                                       | NAACCGGCGCGGGGAGCCGCCAGGGCCCCCAGTCTAGACATAGTGTACCCAGCCACCAGCCACC<br>GCTTCGCGCCTTTCCAGCACACTGGCGGCCGGTACTAGTGGANCCGAGCTTNGGNACCAAGCTTG | GCCGCCCAGI<br>GCACACTGG(                                                                                  | SGCCCCCA(                          | STCTAGACA<br>\CTAGTGGA | TAGTGTACCC<br>NCCGAGCTT                | AGCCACC<br>NGGNACC              | AGCCACCA<br>AAGCTTG               | NAACCGGCGCGGGAGCCGCCCAGGGCCCCCAGTCTAGACATAGTGTACCCAGCCACCAGCCACCATGGCAGCAGCAG<br>GCTTCGCGCCTTTCCAGCACACTGGCGGCCGGTACTAGTGGANCCGAGCTTNGGNACCAAGCTTG                               |
|    | Identität | gb A1115883 A111<br>5', mRNA s<br>Length = 5 | 15883[AI115883 ue96a12.y1 Suganc<br>5', mRNA sequence [Mus musculus]<br>Length = 540                                                  | 5883 ue96a12.y1 Sugano mouse embryo mewa Mus musculus cDNA clone 1498942<br>sequence [Mus musculus]<br>40 | ano mouse er<br>us]                | nbryo mewa h           | Aus musculus (                         | SDNA clone                      | 1498942                           |                                                                                                                                                                                  |
|    |           | Score = Identities                           | Score = 731 bits (369), Expect = 0.0<br>Identities = 393/403 (97%), Positives = 393/403 (97%)                                         | Expect = 0.0<br>6), Positives = 3                                                                         | 193/403 (97%)                      | <u>-</u>               |                                        |                                 |                                   |                                                                                                                                                                                  |
|    |           | gb AA052396 AA0<br>Length = 40               | )52396 AA052396<br>Length = 405                                                                                                       | 352396 mb67c07.r1 Soares mouse p3NMF19.5 Mus musculus cDNA clone 334476 5'<br>05                          | ares mouse p                       | 33NMF19.5 M            | ıs musculus cl                         | ONA clone                       | 334476 5'                         |                                                                                                                                                                                  |
|    |           | Score = Identities                           | Score = 660 bits (333), Expect = 0.0<br>Identities = 380/394 (96%), Positives = 380/394 (96%), Gaps = 4/394 (1%)                      | Expect = 0.0<br>6), Positives = 3                                                                         | 180/394 (96%                       | ), Gaps = 4/3(         | 14 (1%)                                |                                 |                                   |                                                                                                                                                                                  |
|    |           | gbjAA777                                     | gb AA777720 AA777720 zj06a08.s1 Soares fetal liver spleen 1NFLS S1 Homo sapiens cDNA<br>clone 449462 3'<br>Length = 453               | zj06a08.s1 Soa                                                                                            | ıres fetal liver                   | spleen 1NFL            | 3 S1 Homo saț                          | oiens cDNA                      |                                   |                                                                                                                                                                                  |
|    |           | Score = 589 bits<br>Identities = 398/4       | Score = 589 bits (297), Expect = e-166 Identities = 398/435 (91%), Positives = 3                                                      | (297), Expect = e-166<br>35 (91%), Positives = 398/435 (91%), Gaps = 4/435 (0%)                           | 198/435 (91%                       | ), Gaps = 4/43         | (%0) 51                                |                                 |                                   |                                                                                                                                                                                  |
|    |           | gb AA960116 AA9<br>1381574 3'<br>Length = 41 | )60116 AA960116<br>1381574 3'<br>Length = 416                                                                                         | i60116 ub54e08.s1 Soares mouse mammary gland NMLMG Mus musculus cDNA clone<br>I6                          | ares mouse n                       | nammary glan           | d NMLMG Mus                            | s musculus                      | cDNA clone                        |                                                                                                                                                                                  |
|    |           | Score =                                      | 543 bits (274), E                                                                                                                     | Expect = e-153                                                                                            |                                    |                        |                                        |                                 |                                   |                                                                                                                                                                                  |
|    |           |                                              |                                                                                                                                       |                                                                                                           |                                    |                        |                                        |                                 |                                   |                                                                                                                                                                                  |
| 65 | 60        | 55                                           | 45<br>50                                                                                                                              | 40                                                                                                        | 35                                 | 30                     | 25                                     | 20                              | 15                                | 5                                                                                                                                                                                |

| Klon #32 | T7-Sequenz | AAAGAAGGAACTAAACATGGGCCAGCGATGCTCTGACACCAGAGGAATNGCTTTCGAAGACGTCAGAGNGCCTAAAGGAA AATGTGTTAATCGGNGAAGGGCANTTTTCAAGATCGCAANGGGTGCTTTNGATAGAACCAGACCTACAGTCGCAGCTGG AATGTGTTAATCGGNGAAGGCANTTTTCAAGATCGCAANGGGTGCTTTNGATAGGAAGCCTACAGATTGGAAAAGCTGCTA GNGGAGCACCAAGGAGTTTCATTTCTGCTCGCAGAAATGGCNATGAAGGTNGAACTCGCTAGGCTCAGTTACCAGAGAG CAGCCTGGGAGGNNGACTCCGGTCGCAGAAATGCCTCGATTACCAAAAGGCCTTTGCTGGAAGACATTGCCAA TCAGCTGGCAGGNNGACTCCGGTCGCAGAATTTTCGGNGGCTANGGATTNAACACAGAGTACCCTGTGGAAGACTNANGNNG NCCGCCANGATCTATNANGGTC | TAAACATGGGCCAGCGATGCTCTGACACCAGAGGAATNGCTTTCGAAGACGTCAGAGNGCCTAAGGAA<br>SGGNGAAGGAGCANTTTTCAAGATCGCAANGGGTGCTTTNGATAGAACCAGACCTACAGTCGCAGCTGG<br>STAGCCCAGAGACTCTGGACGAAGCCACGAAGTATGCCCTGGATAGGAAGACATTTGGAAAGCTGCTA<br>AAGGAGTTTCATTTCTGCTCGCAGAAATGGCNATGAAGGTNGAACTCGCTAGGCTCAGTTACCAGAGAG<br>SGNNGACTCCGCTCGCTCGCAGAATTACTATGCCTCGATTGCAAAGGCCTTTGCTGGAGACATTGCCAA | SAGCGATGCI<br>SANTTITCAA<br>GCTCTGGAC<br>TTCTGCTCGC<br>TCGCCGGAA<br>STCGCCGGAA<br>SAGATTITCG | CTGACACCAG<br>SATCGCAANG(<br>GAAGCCACGA<br>AGAAATGGCN<br>CACTTACTATG               | AGGAATNGC<br>SGTGCTTTNG<br>AGTATGCCC<br>ATGAAGGTN(<br>STCTCGATTG                          | TTTCGAA<br>ATAGAAC<br>FGGATAG<br>SAACTCG<br>CAAAGGC                                   | GACGTCA<br>SCAGACCT<br>GAAGACA<br>CTAGGCT<br>SCTTTGCT<br>CCTGTGG   | GAGNGCCT<br>ACAGTCG(<br>TTTGGAAA<br>CAGTTACO<br>GGAGACA<br>AGAAGCTN | TAAGGAA<br>CAGCTGG<br>GCTGCTA<br>AGAGAG<br>TTGCCAA          |
|----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|
|          | Identität  | gb U07159 MMU07159 Mus musculus medium-chain acyl-CoA dehydrogenase mRNA, complete cds.  Length = 1846  Score = 799 bits (403), Expect = 0.0 Identities = 461/488 (94%). Positives = 461/488 (94%)                                                                                                                                                                                                                                                                                                                     | 17159 Mus musculus medium-chain a<br>1846<br>(403), Expect = 0.0<br>88 (94%), Positives = 461/488 (94%)                                                                                                                                                                                                                                                                 | lus medium-ch.<br>0<br>s = 461/488 (9                                                        | ain acyl-CoA del                                                                   | nydrogenase m                                                                             | RNA, com                                                                              | plete cds.                                                         |                                                                     | ·                                                           |
|          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                    |                                                                                           |                                                                                       |                                                                    |                                                                     |                                                             |
| Klon #33 | T7-Sequenz | AAAGCGTCGCCATCGCCACCATGGNGAACTTNANAGTAGATCCGNGCCATCATGGACAAGAAAGCCAACATCGTCGACAACATCGTCGTCGCCAACATCGTCGTCGTCGCCGCAACATCGTTGATAAAGGGNGAGGNGA                                                                                                                                                                                                                                                                                                                                                                            | ATCCGCCACCATGGNGAACTTNANAGTAGATCAGATCCGNGCCATCATGGACAAGAAAGCCAACATCGGGCCACCACCATCGGGCCAACATCGGGGCCCACCATCGGGCCGCGCGCG                                                                                                                                                                                                                                                   | TGGNGAACTT<br>CCAGGAGCT<br>CTTAGGCCC                                                         | NANAGTAGAT<br>CAAGGCACGT<br>GNTGGCACTC<br>3CNGGCTTCC                               | CAGATCCGN(<br>GCCCGCTAC)<br>SGCCCCAACA                                                    | SCCATCA<br>CTGGCCC<br>VTTCTNAC                                                        | TGGACAA(<br>AAAAAGTN<br>CGACATN<br>GGGCGCT                         | GAAAGCCA<br>TGAGNGG<br>IACCAAGG(<br>INTCTNNG                        | ACATCG<br>GACGTTG<br>GNGTGCA<br>AGNANAN                     |
|          | Identität  | gb M76131 MUSEF2 Mouse elongation factor 2 (ef-2) mRNA, 3' end.<br>Length = 1179                                                                                                                                                                                                                                                                                                                                                                                                                                       | EF2 Mouse elonga<br>179                                                                                                                                                                                                                                                                                                                                                 | tion factor 2 (er                                                                            | <sup>-</sup> -2) mRNA, 3' en                                                       | ن                                                                                         |                                                                                       |                                                                    |                                                                     |                                                             |
|          |            | Score = 309 bits (156), E) Identities = 207/231 (89%) Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                                                                                                                                             | (156), Expect = 2e-82<br>31 (89%)<br>lus                                                                                                                                                                                                                                                                                                                                | e-82                                                                                         |                                                                                    | İ                                                                                         |                                                                                       |                                                                    | į                                                                   |                                                             |
|          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                    |                                                                                           |                                                                                       |                                                                    |                                                                     |                                                             |
| Klon #34 | T7-Sequenz | AAAGGCCAGCTCCTGCTCTCTCCCGCCTGCCGCCGCGCTGCACGCCTCGAGCACTCCCTCGGCCCCGGCGGCGCGCGGCGGCGGCGGCGCGCCCCGGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                  | CCTGCTCTGCTCCTCCCGCCTGCCGCCGCGCTGCACGCCTCGAGCACTCCCTCGGCCCCGGCGGN<br>SCCGCAGCTACCGCCATGCTGCCAGNGCTCTACACCGGCCTGGCGGGGGGTGCTGCTGCTGCTGCT<br>SCCGCCAGCTACCTCCTCCAAGATGNGCGNACTTCCTGNGGCTGGCCAACATGGCCCGGCGGGGGGG<br>AGCGGCGACCCGNGCGTACCATCCTGCGGGCCTTCCTGGAACAAGCGCGCAAGAGCCCACACACA                                                                                     | CTCTCCCGC<br>GCCATGCTG<br>STCCTCCAAG<br>GNGCGTACC<br>GCGCTCACCT<br>AGGCATTGCC<br>SCATGNCGAC  | CTGCCGCCGC<br>CCAGNGCTCT.<br>ATGNGCGGNA<br>ATCCTGCGGG<br>ACGCCCAGGA<br>STAGCCCTCTT | GCTGCACGC<br>ACACCGGCC<br>CTTCCTGNG<br>CCTTCCTGG,<br>GGACCGGCG<br>NATGGGCAA<br>AACATTCGTN | CTCGAGO<br>TGGCGCC<br>GCTGGCC<br>AACAAGO<br>AACAAGO<br>AACAAGO<br>TGAGCAAA<br>TGAGCCG | CACTCCCT<br>SACTGCTC<br>SACATGG<br>GCGCAAG<br>GCAAGNGC<br>ACAAGNGC | TCGGCCCC<br>SCTGCTGC<br>SCCCGCGCGAACCCCACACACACACACACACACACACACA    | GGCGGN<br>CTCTGCT<br>GGNGCG<br>ACAAGCC<br>SGCTGCA<br>CTGGCT |
|          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                            |                                                                                    |                                                                                           |                                                                                       |                                                                    |                                                                     |                                                             |
| 65       | 60         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                           | 30                                                                                 | 25                                                                                        | 20                                                                                    | 15                                                                 | 10                                                                  | 5                                                           |

| 65       | 60          | 55                              | 50                                               | 45                                                                                        | 40                       | 35          | 30                    | 25                   | 20                   | 15      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  |
|----------|-------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|-------------|-----------------------|----------------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          | Identität   | gb[AF072757[AFI<br>Length = 1   | 72757 AF0727<br>Length = 1872                    | 072757 Mus musculus fatty acid transport protein 2 mRNA, complete cds                     | sculus fatty             | acid trans  | oort protein 2        | mRNA, co             | mplete cds           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | Score ≈ Identities              | 579 bits (2:<br>s = 356/383                      | Score = 579 bits (292), Expect = $e-163$ Identities = 356/383 (92%). Gaps = 1/383 (0%)    | = e-163<br>3 = 1/383 (09 | <b>%</b>    |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | Strand =                        | Strand = Plus / Plus<br>Score = 58.0 bits (29    | Strand = Plus / Plus<br>Score = 58.0 bits (29), Expect = 2e-06                            | ;e-06                    |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | Identitie:<br>Strand =          | Identities = 31/32 (96%)<br>Strand = Plus / Plus | (%9                                                                                       |                          |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             |                                 |                                                  |                                                                                           |                          |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Klon #35 | 17-Sequenz  | AAAGCC                          | CCACTT(                                          | SCCTACTT(                                                                                 | ၁၁၁၁၁၁                   | SAGGAGG     | STTGGAGA              | STITITI              | STGGGACC             | CAAGCA  | AAAGCCTCCACTTGCCTACTTGGGGCGCGAGGAGGTTGGAGGTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SACGCTG            |
|          |             | AGATT                           | AGC1GAA<br>TCCGCCC                               | ATTGAAGC<br>TATGTACA(                                                                     | TCACACAT<br>3ACACTGG     | CCTGGA      | AATGCTAG<br>FATGTTGGN | SCACCCAT<br>VGATGGAT | ACCAGAAC<br>ACGTGATC | CCAAGC  | CLIGCLIAAGCLIGAAATTIGAAGCTCACACATCCTGGAAAATGCTAGCACCCATACCAGAACCCAAGCCTGGAGACCTGATTG<br>AGATTTTCCGCCCTATGTACAGACACTGGGCCATCTATGTTGGNGATGGATACGTGATCCACCTGGCTCCTCCAAGTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTGATTG<br>AAGTGAA |
|          |             | ATCGC/                          | AGGAGCTG                                         | GGGCAGC                                                                                   | CAGCATCA                 | TGTCTGC     | STTTGACTG             | SACAAGGC             | CATAGTGA             | AGAAAG  | ATCGCAGGAGCTGGGGCAGCCAGCATCATGTCTGCTTTGACTGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FGCCATG            |
|          |             | GCGGGCTGAG/                     | SSGAAGG<br>CTGAGAGA                              | ACTGGNGG                                                                                  | GGCAGGA                  | GGTGCT      | TACAGGC               | rgaccag(             | GAGAACT              | STGAGC  | SOACONO INCLARO CONTRACONO CALONO CONTRACONO | ATGAACT            |
|          | Ng.,        | ACGCTA                          | VTGGAGTT                                         | CCTCGGAG                                                                                  | TGATCAG                  | STCAGAG     | ATGCGGN               | SAAGGCG(<br>AAGCAAT  | STAGGCAT(            | CGCTGG  | ACGCTATGGAGTTCCTCGGAGTGATCAGGTCAGAGATGCGGNCAAGGCGGTAGGCATCGCTGGAGTGGGCTTGGCGGC<br>CTTGGGCCTCGTTGGAGTCATGCTCTCTCCAGAAACAAGAAACAAGAAACAAAGAATGAACTGAATGACTGAATGCCCAGTTTTTGGGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | reeceec            |
|          |             | TTCTTTTGCTAG                    | TGCTAGAG                                         | зесттес,                                                                                  | AGTTTGAT                 | TATAGA      | гстаттес              | TTTATAA              | TAGGGTTA             | TTTTCAC | TTCTTTTGCTAGAGGGTTTGGAGTTTGATTTATAGATTCTATTGCTTTATAATTAGGGTTATTTTCACAACATACANTAAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NTAAACC            |
|          | BGH-Sequenz | CTNGAC                          | SGNTAATA                                         | GTATGNNG                                                                                  | TGAAAATA                 | NANNTA      | TTATAAAG              | CANTAGA              | ANTTATAAA            | TCAAAC  | CTNGAGGNTAATAGTATGNNGTGAAAATANANNTAATTATAAAGCANTAGAANTTATAAATCAAAACTCCAAAANCCTNTAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TNTAGCA            |
|          |             | AAAGAA<br>GNNCC/                | AAAGAAGAGCCCA<br>GNNCCAAGGANGN                   | CAAAAACNGNGNAGNCATTCAGCTNATTGNTTCTGTCTNANNG<br>GNCAAGCNCACACNAGNGNNGACTACTCGACTAGCCCGCATT | GNAGNCA'<br>ACACNAGN     | TTCAGCT     | NATTGNTT<br>TACTCGAC  | CTGTCTNA<br>TAGCCCG  | NNGNNTCN             | IGGAGAC | AAAGAAGACCCCAAAAACNGNGNGNGACTTCAGCTNATTGNTTCTGTCTNANNGNNTCNGGAGAGAGCANGACTTCANTGN<br>GNNCCAAGGANGNCAAGCNCACACNAGNGNNGACTACTCGACTAGCCCGCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CANTGN             |
|          | Identität   | emb X76                         | 76453 RNHRE<br>Lenath = 966                      | emb X76453 RNHREV107 R.norvegicus (Sprague Dawley) H-rev107 mRNA<br>Length = 966          | vegicus (Spr             | ague Daw    | ley) H-rev10          | 7 mRNA               |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | i<br>                           |                                                  |                                                                                           | !                        |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | Score =                         | Score = 745 bits (37                             | Score = 745 bits (376), Expect = 0.0<br>Identities = 646/603 (00%), Gans = 4/603 (0%)     | : 0.0<br>: - 1/602 /00   |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | Strand =                        | Strand = Plus / Plus                             | (a0 /a), Gap:                                                                             | (O) 6000 - 0             | <b>(</b> 0  |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             |                                 |                                                  |                                                                                           |                          |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             | emb X92814 HSH<br>  Length = 10 | 2814 HSHRE\<br>Length = 1070                     | REV107 H.sapiens mRNA for rat HREV107-like protein 370                                    | iens mRNA                | for rat HRE | EV107-like pr         | otein                |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |             |                                 |                                                  |                                                                                           |                          |             |                       |                      |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |

|          |              | Score = 323 bits (163), Expect = 3e-86<br>  Identities = 334/389 (85%), Gaps = 2/389 (0%)<br>  Strand = Plus / Plus                                                                                               | (163), Expect = 3e-86<br>89 (85%), Gaps = 2/38<br>lus                                                                                                           | e-86<br>: 2/389 (0%)                   |                               |                         |                     |                      |                      |       |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------|---------------------|----------------------|----------------------|-------|
|          | Beschreibung | PI-FACS: Apoptose                                                                                                                                                                                                 |                                                                                                                                                                 |                                        |                               |                         |                     |                      |                      |       |
|          |              |                                                                                                                                                                                                                   |                                                                                                                                                                 |                                        |                               |                         |                     |                      |                      |       |
| Klon #36 | BGH-Sequenz  | GGGCACAGTCT                                                                                                                                                                                                       | TATTITATATAANGAGATCAGTTGTCTGGAAAGGGATATGGTGTCCAGAGTGAGATAGGGGGACCCTGG                                                                                           | NGAGATCAG<br>AGGAAAACTG                | TGTCTGGAAA<br>AGATCAGGCC      | GGGATATGG<br>AGGTATGAT  | TGTCCAG,            | AGTGAGA1             | TAGGGGACO<br>NGNGNGG | SCTGG |
|          |              | GGGGTNAACCTC/                                                                                                                                                                                                     | CAGCAGGGCAGGCACTGNGACCCTGATCTTCTCAGGAAAGCCACGTGCTTCTCATAATAGG                                                                                                   | GCACTGNGA                              | CCCTGATCTT                    | TCAGANTTC               | AGGAAAG             | CCACGTG(             | CTTCTCATA            | ATAGG |
|          |              | CAGCCTCATTAATGAACACAGGGTACACAATGGAGTCCCCCTCATACAGTACGTCTTCTCCGCTGAAAAGCTTGAAGATG                                                                                                                                  | GAACACAGGC                                                                                                                                                      | TACACAATG                              | SAGTCCCCCT                    | SATACAGTAC              | <b>GTCTTCT</b>      | CGCTGAA              | MAGCTTGA             | AGATG |
|          |              | GEGGEGGGAGECCACAGGCTCAAAGTCATGGNCCTGCAGNTGAGGGNGCACAGAGNCAGCCAGGTCACCATCCNCA<br>  GTGCGTGGGAAGTCCACACAGTGCCCAAGTTCCTGTANATATCCAATCTCAAAGGCGGGTAAAGTCCATCCATGCTTTCATTCA                                            | CTNAGNGGCT                                                                                                                                                      | CAAAGTCATC                             | GNCCTGCAG                     | VTGAGGGNG<br>ATCTCAAAGG | CACAGAGN            | NCAGCCAG<br>GTCCATG  | SGTCACCAT            | CCNCA |
|          |              | CTCGATGAAGTCCNNAATGGATGCACCACAGAGCTNGCATCCGNNAGAACAGGCGGCCGCAGCACGCCCCTGAGGCT<br>GCGGGCCCATCTCCNGACAGATTCCATTCTTGGNNATAGATTCCCCTTTTCCAGCACACACACACACACACACAC                                                      | CCNGACAGAT                                                                                                                                                      | SCACCAGAG                              | CTNGCATCCG                    | NNAGAACAG               | GNCGGCC             | CGCAGCA              |                      | AGGCT |
|          | Identitat    | >gb aW107362.1 aN<br> MAGE:2192<br> ASPARTOAC                                                                                                                                                                     | N107362.1 AW107362 um15a04.x1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2192334 3' similar to SW:ACY2_HUMAN P45381                                 | a04.x1 Sugano<br>SW:ACY2_HU            | mouse kidney r<br>MAN P45381  | nkia Mus musc           | ulus cDNA           | clone                |                      | 2     |
|          |              | Lengtn = 649<br>                                                                                                                                                                                                  |                                                                                                                                                                 |                                        |                               |                         |                     |                      |                      | _     |
|          | ·            | Score = 930 bits (469), Expect = 0.0 Identities = 557/595 (93%), Gaps = 1/595 (0%)                                                                                                                                | (469), Expect = 0.0<br>95 (93%), Gaps = 1/                                                                                                                      | .0<br>1/595 (0%)                       |                               |                         |                     |                      |                      |       |
|          |              |                                                                                                                                                                                                                   |                                                                                                                                                                 |                                        |                               |                         |                     |                      |                      |       |
| Klon #37 | T7-Sequenz   | AAAGCTGCATNGNGGCGTTACCCATGTTTCNGCTNAACCTTCTAGGCATGNGGAGCTGGGTATGCAAAAAAGNGCTTTCCC<br>TACTTCCNGAAGCGGNTCGCCANGATATACAATNGGAAGATGGCGAGCCTAAAGCGGNAGCTCTTCAGCAATCTGCAGG<br>AGNNCGCCGGNCCCTCGGGGAAGCTAANTCAGCTGNNGGAG | SNGGCGTTACCCATGTTTCNGCTNAACCTTCT<br>SCGGNTCGCCANGATATACAATNGGAAGATGC<br>CCCTCGGGGAAGCTAANTCAGCTGNNGGAG                                                          | CATGTTTCNG<br>VGATATACAA<br>VGCTAANTCA | CTNAACCTTCT<br>INGGAAGATGG    | AGGCATGNG<br>3CGAGCCTA/ | GAGCTGG<br>AAGCGGNA | SGTATGCA<br>AGCTCTTC | AAAAGNGC<br>AGCAATCT | TTCCC |
|          | BGH-Sednenz  | NGGCAAATATAGAAACNATTTATCAAATGAATATAAANGTATTGATCAACATTTAAAAATATAAANTTCTGCAAAATCATCTTGA AAAATATAAANTTCTGCAAAATGAAATGAAAAAAAAAAAA                                                                                    | SAAACNATTTATCAAATGAATATAAANGTATTGATCAACATTTAAAATATAANTTCTGCAAAATCATCTTGA<br>NGTTTAGATCCATACATACAAATGCAGCTGAAACCCTTGGGCCACCCAGACTTGCTCTGTATAAAA                  | SAAATGAATA<br>TACATACAAA               | TAAANGTATTG<br>TGCAGCTGAA     | ATCAACATTT<br>ACCCTTGGG | AAAATATA            | AGACTTG              | CAAAATCAT            | CTTGA |
|          |              | ACAATGATATCCATGGNTTNGTTTCAGGACCAGNGGAATTTTNCTTCTTCTTCANTACAGGGTTTATTTGTGTAGCCCTGG<br>NGGCCCTGNAACNCNATTTGTAGATCAGNCTGT                                                                                            | TGGNTTNGTT                                                                                                                                                      | TCAGGACCAG<br>SATCAGNCTG               | NGGAATTTIN                    | сттсттс                 | ANTACAGO            | SGTTTATT             | TGTGTAGC             | CTGG  |
|          | Identität    | gb Al315920 Al315920 uj27f11.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:1921197 5' similar to TR:Q14521 Q14521 GIANT LARVAE HOMOLOGUE: mRNA sequence (Mus musculus)                                | 15920 Al315920 uj27f11.y1 Sugano mouse kidney mkia Mus<br>IMAGE:1921197 5' similar to TR:Q14521 Q14521 GIANT<br>LARVAE HOMOLOGUE : mRNA sequence [Mus misculus] | ugano mouse l<br>TR:Q14521 Q1          | didney mkia Mus<br>4521 GIANT | musculus cDN            | VA clone            |                      |                      |       |
|          |              | Length = 689                                                                                                                                                                                                      |                                                                                                                                                                 |                                        |                               | _                       |                     |                      |                      |       |
|          |              |                                                                                                                                                                                                                   |                                                                                                                                                                 |                                        |                               |                         |                     |                      |                      |       |
| 65       | 60           | 50                                                                                                                                                                                                                | 45                                                                                                                                                              | 35<br>40                               | 30                            | 25                      | 20                  | 15                   | 10                   | 5     |

| 5  | ·                                                                                           | ,                                                                                                                   |                                                                                              |                                                                                                                                                                                                             |                                                                           |                                                                                                 |                                                                                         |                                             |
|----|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|
| 10 |                                                                                             |                                                                                                                     |                                                                                              |                                                                                                                                                                                                             |                                                                           |                                                                                                 |                                                                                         |                                             |
| 15 |                                                                                             | ē.                                                                                                                  |                                                                                              | Hsc70t                                                                                                                                                                                                      |                                                                           |                                                                                                 |                                                                                         |                                             |
| 20 |                                                                                             | 15072 uj23e11.x1 Sugano mouse kidney mkia Mus musculus cDNA clone<br>10812 3', mRNA sequence [Mus musculus]<br>38   |                                                                                              | HC213L3 Mus musculus major histocompatibility locus class III regions Hsc70t ital cds; smRNP, G7A, NG23, MutS homolog, CLCP, 325, and NG26 genes, complete cds; and unknown 135545                          |                                                                           |                                                                                                 |                                                                                         |                                             |
| 25 |                                                                                             | Mus muscul                                                                                                          |                                                                                              | ity locus clas<br>SLCP,<br>town                                                                                                                                                                             |                                                                           |                                                                                                 |                                                                                         |                                             |
| 30 |                                                                                             | kidney mkia<br>nusculus]                                                                                            |                                                                                              | 09905 MMHC213L3 Mus musculus major histocompatibility locu<br>gene, partial cds; smRNP, G7A, NG23, MutS homolog, CLCP,<br>NG24, NG25, and NG26 genes, complete cds; and unknown<br>genes<br>Length = 135545 |                                                                           |                                                                                                 |                                                                                         |                                             |
| 35 |                                                                                             | ano mouse<br>nce [Mus n                                                                                             |                                                                                              | us major his<br>NG23, Mut<br>complete c                                                                                                                                                                     |                                                                           |                                                                                                 |                                                                                         |                                             |
| 40 | ct = 5e-47                                                                                  | e11.x1 Suga<br>IRNA seque                                                                                           | ect = e-105                                                                                  | nus muscult<br>RNP, G7A,<br>326 genes,                                                                                                                                                                      | st = 0.014<br>st = 0.054                                                  | x = 0.21                                                                                        | # # 3.3                                                                                 |                                             |
| 45 | Score = 190 bits (96), Expect = 5e-47<br>Identities = 144/164 (87%)<br>Strand = Plus / Plus | 315072 Al315072 uj23e11.x1 Sugano mouse kidney ml<br>IMAGE:1920812 3', mRNA sequence [Mus musculus]<br>Length ≈ 538 | Score = 385 bits (194), Expect = e-105<br>Identities = 220/232 (94%)<br>Strand = Plus / Plus | rHC213L3 N<br>dial cds; sm<br>G25, and NC<br>135545                                                                                                                                                         | (22), Expect = 0.014<br>(82%)<br>linus<br>(21), Expect = 0.054<br>(96%)   | lus<br>(20), Expect = 0.21<br>(88%)<br>inus                                                     | (18), Expect = 3.3 (80%)<br>lus<br>(18), Expect = 3.3                                   | (80%)                                       |
| 50 | re = 190 bit<br>tities = 144/<br>nd = Plus / F                                              | gb Al315072 Al3150<br>IMAGE:19208<br>Length ≈ 538                                                                   | Score = 385 bits (19<br>Identities = 220/232<br>Strand = Plus / Plus                         | gb AF109905 MMH<br>gene, parti<br>NG24, NG<br>genes<br>Length = 1                                                                                                                                           | Score = 44.1 bits Identities = 47/57 Strand = Plus / Mi Score = 42.1 bits | Strand = Plus / Plus<br>Score = 40.1 bits (20<br>Identities = 31/35 (80<br>Strand = Plus / Minu | Score = 36.2 bits (18 Identities = 46/57 (80 Strand = Plus / Plus Score = 36.2 bits (18 | Identities = 46/57 (<br>Strand = Plus / Plu |
| 55 | Scol<br>Iden<br>Stra                                                                        | Aldg —                                                                                                              | Scor<br>Ideni<br>Strar                                                                       | gb[Af                                                                                                                                                                                                       | Score Identi                                                              | Stran<br>Score<br>Identi                                                                        | Score<br>Stran<br>Score                                                                 | Stran                                       |
| 60 |                                                                                             |                                                                                                                     |                                                                                              |                                                                                                                                                                                                             |                                                                           |                                                                                                 |                                                                                         |                                             |
| 65 |                                                                                             |                                                                                                                     |                                                                                              |                                                                                                                                                                                                             |                                                                           |                                                                                                 |                                                                                         |                                             |

|          |             | gb AF110520 MIN<br>NADH ox<br>BING1, ta<br>1,3-galac<br>Length =                                                                                               |                                                                                                     | us musculus r<br>NG29, KIFC1,<br>S-like, KE2, Bl<br>se, and RPS1;                                                  | IHC425018 Mus musculus major histocompatibility complex region NG27, NG28, RPS28, idoreductase, NG29, KIFC1, <u>Fas-binding protein,</u> apasin, RalGDS-like, KE2, BING4, beta tosyl transferase, and RPS18 genes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tibility complex<br>oteln,                                                                                           | region NG27, N                                                                                                 | IG28, RPS2                                                                                |                                                                              |                                                                                              |
|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|          |             | Score = 44.1 bits Identities = 47/57 Strand = Plus / PScore = 36.2 bits Identities = 46/57 Strand = Plus / Pl                                                  | 44.1 bits (22), Expect = 0.014 = 47/57 (82%) Plus / Plus 86.2 bits (18), Expect = 3.3 = 46/57 (80%) | . 0.014<br>3.3                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                                                                |                                                                                           |                                                                              |                                                                                              |
|          |             |                                                                                                                                                                |                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                                                                |                                                                                           |                                                                              |                                                                                              |
| Klon #38 | T7-Sequenz  | AAAGGTGGAGCA<br>ACCATGAAGCACATTA<br>AGGCCACCATTA<br>GACCCCAGGG<br>GGACCTCGGGG<br>TACTTCCGGGTA<br>GTGCCACTCTTCA<br>GAAACATCTTCA<br>GCCCTACCTATG<br>ATGGCTCTTCGG | 26 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                            | ITTGGTGCC<br>SGAGATTCC<br>AGACCTTT<br>GAAAGATGA<br>GCTGGGGC<br>CAAGCGCCT<br>CCAAGCGCCT<br>CCAGGTTATTC<br>AGGTTAAGC | TIGGITGIGITITGGTGCGGTACGGCGGCCACTCAGITGCAGGCAGGCAGGTGCCATCCTGTGGAAGA CTACGAGGTGGTTTGGTGCGGTACGGCGGCGCGCGGGGAGAGCTGTGCTGCTCCTGGCAAGGTAGAGCTC TCTGAAATCAAGACTTTTCACCAAGACACCCCCCAGTGCTACTCCTGCCCCCCAGTCCCTCCGCCTG SGAATCCAGAAGATGAAGATGTTTACAGAAGCTTCCTGTGGGCACCACACACTCTACTTCCGGCCCTGTCCTGCAGCCCTTTTCATCTACTTCCTGCTCTTC SCCAGATCAGCTGGGTGACGGTCTTTCCTGACGGAGTATGCCGGGCCCTTTTCATCTACCTGCTCTTC ACCCTTCATTTATGGCCGCAAATACGACTTTACGTCCAGTCGGCATTCTCTCACGGAACCATGCCTTTGC ACCCTTCATTTATGGCCGCAAATACGACTCTCTTCGTGCACCGATTCTTCACGGGAACCATGCCTTTGC ACACTACATCAGCGCCTGCTGGACTTTCTTCGTGCACCACCCTTTGCAGCGCCTCTTACACGCCCTTTGCGGGAACCTTCACACGCCACGCCTTTCGCGGGAACCTTCACACGCCACGCCTTTCGCGGGAACCTTCACACGCCACGGGAACCTTCACACGCCACGCCTTTCGCGCCTTTCGCGCCTTTCACTCGCCCCACCACGCCTTTCGCCACGCCTTTCGCGCCTTTCACTCGCCCTTTCGCCTTCACTGGCCTGCCT | CCACTCAGTTI<br>CCACCGCAG<br>CACCGCAC<br>AGAAGCTTC<br>GACGGAGTA<br>TACGTCCAG<br>CTCTTCGTGC<br>GCATGGATG<br>GCATGGATGC | GCAGCAGAGG<br>AGCTGTGTGT<br>STGGGGCAG<br>TGCCGGGCCC<br>TGGCATTCTC<br>SACCGATTCTC<br>3CTTATTACAT<br>3ATCTGCCAGC | AGGTGCCA<br>CCCCCCA<br>CCCCCCA<br>CACAGCCA<br>CTTTTCAT<br>GTGGTGCA<br>TCACGGA<br>TTGGGAA( | ACCATGO<br>ACACTCT,<br>TOTACCTC<br>ACCTCGC<br>ACCTCGC<br>ACCATGC<br>CCTCTCTC | GGAAGA<br>SAGCCTC<br>SCGCCTG<br>ACTTCCG<br>SCTCTTC<br>CCTGCAT<br>SCTTTGC<br>ACACAC<br>ACACAC |
|          | BGH-Sequenz | GGGTAAGCAGG<br>GTATTACTGGGC<br>GGAACTCCTTCA<br>CCACTGGGACAC<br>CAGGAACAGCCA<br>AAGAGCCATGTG                                                                    | GGGTAAGCAGGTTTTATTGTTGCTGCTGGAGAGCCATGGCCAGCCA                                                      | GCTGCTGG/<br>SAGGAGCTG<br>SGNGTTTG/<br>AGATGGCA/<br>SGTTCTTGG/<br>GTTCCCAAC                                        | TITIATTGTTGCTGCTGGAGAGCCATGGCCAGCCACATNAGGACAGGGGGCAGNGAGGGGTGGAGA<br>SAGAGCCGTGAGGAGCTGCTCAGAGCAGGAATAATGGGCATGCGCAGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAGCCACAC<br>SAAGGGAATA<br>GATAGTCAT<br>GGAGCCCAC<br>SATCTTCCTG                                                      | ATNAGGACAGO<br>ATGGGCATGC<br>STGGGTGAAGO<br>CTNATAAGTGI<br>GTTTTCGACCO                                         | GGGCAGN<br>SGCAGGG<br>CCCACCAG<br>TAGTTGGG<br>CAGCAGGG                                    | GAGGGG<br>SCGGGTA<br>SGGAGAA<br>SACAGGAI<br>CCGAAGC                          | TGGAGA<br>GTCGC<br>GAGGG<br>CACCAA<br>STCCCG                                                 |
|          | Identität   | gb S45663<br>Len                                                                                                                                               | gb S45663 S45663 SC2=synaptic glycoprotein [rats, brain, mRNA, 1178 nt] Length = :1178              | s glycoprotein                                                                                                     | [rats, brain, mRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IA, 1178 nt]                                                                                                         |                                                                                                                |                                                                                           |                                                                              |                                                                                              |
| 65       | 60          | 55                                                                                                                                                             | 45<br>50                                                                                            | 40                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                   | 20                                                                                                             | 15                                                                                        | 10                                                                           | 5                                                                                            |
| 5        | )           | 5                                                                                                                                                              |                                                                                                     | )                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                    | )                                                                                                              | 5                                                                                         | )                                                                            | i                                                                                            |

| 5 10 15 20 25 30 35 40 45 50 55 - | Score = 650 bits (328), Expect = 0.0 Identities = 450/490 (91%), Gaps = 6/490 (1%) | AAAGCGCTGGAGCTACAGCCGTTACTGCCGCCGCCGCCGCCGCCGCCGAGGCGTTNGATCGTTGGCAATGTCAGG CTTTGATAACTTAAACAGCGGTTTCTACCAGACGAGTTACAGCGCCGCCGCCGAGGCAATCTNAGCAGTCCTATGACTATGGAGG AAGNGGAGGACCCTACAGCAAGNAGTATGCTGGCTGAGACTACTCGCAGCAAGGCCGATTNGTCCCTCCAGACATGATG CAGCCACAGNAGACATACACTGGGCAGATTTACCAGCCAACTCAGGCCTATCCTCCAACACACANCTNAGCCATTCTATGG AGACAGCTTNGAGGAGGCCCCTCTGTTAGAAGAGTTGGGTATCATTTTGACCACATTNGGCAAAAAAAACCTAACGG | gb AA763399 AA763399 vw53h02.r1 Soares mommary gland NMLMG Mus musculus cDNA clone 1247571 5' similar to WP:F32D8.4 CE05783 LACTATE DEHYDROGENASE; Length = 635 | Score = 668 bits (337), Expect = 0.0 Identities = 370/383 (96%), Gaps = 1/383 (0%) Strand = Plus / Plus | AAATGGCCTATGATGCAGAACTCTCCTTTNTCCTGCGCACGGGTACACGGTACGGAGNGGACCTNACCTGTTCAGNG NGGAGTCGCCGCAAGAGCTGCCAGCCTGCACCGACAGTNGCAGGCGTACGGACTCGGCCTGCTGAGGCGTACAA GAAGNGTCTACAGCCTGCACGNGGAACGGCCGNCCCTGCAGCCTGTTGNGCACATCGACAGGGCTTCACCCTGNGG GCAGCTGAGCCTGCACGNGGAACGGCCGNCCCTGCAGCCCTTCGAGAACTTCAGATGTCATCAGATGATGGCA CGAGCTGAGCCTGGAGCCGAGCC | GNGCTNANANGNTGNTNATTATTNAANANGAANGAANGGANANAGGACNAGGANAAAACCCCAAATGCCCCACGGNGNTT AAGGGGAAGNGAACNNAAAGGNTNCTCTTCTTNCTCTTGCCACTGACCCANAANANTCCANNTGNANANATCTNANGGNG GNNAANGGGCCTCNNNNNAGGCCTGGCANNTNTGCTGNNGGNTGGGGACGGGATCCNCANAGGGNNANGNCCANGCT NGNAAAGGTTCTGNGTACNCNAAAAATNTNTTTTAAAAAGGCNCNGGNGGANGANANCNNTANGAANGCTNNCCAACNC AANCCNNACTTGCTNNCCCAGGNCTGAGNTNTGNTTCCTNAGGCTGNNCTCTGAGGCCC | gb U00677 U00677 Mus musculus syntrophin-1 gene, complete cds<br>Length = 2109 |
|-----------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 60                                |                                                                                    | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                        | Identität                                                                                                                                                       |                                                                                                         | T7-Sequenz                                                                                                                                                                                                                                                                                                                              | BGH-Sequenz                                                                                                                                                                                                                                                                                                                                                                                 | Identität                                                                      |
| 65                                |                                                                                    | Klon #39                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |                                                                                                         | Klon #40                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |

|          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                          |             |                   |            |                     |             |                 | •     |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-------------------|------------|---------------------|-------------|-----------------|-------|
|          |              | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .(316), Expect = e-178<br>.26 (92%), Gaps = 1/426 (0%)<br>lus                                                     | = e-178<br>s = 1/426 (0° | (%          |                   |            |                     |             |                 |       |
|          | Beschreibung | DNA-Leiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                          |             |                   |            |                     |             |                 |       |
|          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                          |             |                   |            |                     |             |                 |       |
| Klon #41 | T7-Sequenz   | AGGCTGTGCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AGCGGGCACGCGCGGACCCTTNACCGGCCGCGGAGCCGCTATGGGCCCCGCCAGGCCCCTGGCGTG                                                | GCGCGGA                  | CCCTTNAC    | 2000000           | GGAGCCG    | CTATGGG             | SCGCCAC     | <u>зессстве</u> | SCGTG |
|          |              | GCGCGGCGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NGGACCGGC I CCNAGCCAGGATTGAAATTCCAAGATGGATGATCAGGACCCTGGGGGCCATTAGCCCCC                                           | CCNAGCC                  | AGGATTG.    | AAATTCCAA         | GATGGAT    | SATCAGGA            | \cccTggc    | SGCATTAG        | 00000 |
|          | ·            | CAGUAAA   GGCCCGGGGGCCGGGGGC   GNGGACACCTCCTCTTCATGACACCCCTGNATGNGGTGAAGGTCC<br>  GCCTTCAGTCTCAGAGACCCTCGGCAACCAGCGAATTGACAACTCCTCCAGATTGACAACTCCTCAAAACTCTAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAGAGACCE<br>TAGAGACCET                                                                                           | GAGCCGG                  | GGC I GNC   | SGACACCTC         | CCTCTTC    | ATGACACC            | CCTGNAT     | GNGGTGAAG       | SGTCC |
|          |              | TCCTCCGCTCTACAGTCCCCAGGGAAGTGCCTCCTATACTGNAATGGAGTCCTGGAGCCCTGTACCTGTACCTGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACAGTCCCCA                                                                                                        | GGGAAGT                  | SCCTCCT/    | TACTGNAA          | TGGAGTC    | SALICIGE<br>STGGAGG | CCTGTAC     | CCIACACCA       | AAICA |
|          |              | GTACCCGNTGTGCCACCTGNTTTCAGGACCCCACACGGTTCACTGGCACCTTGGATGCCTTNGNGAAGATTGNGCGGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCCACCTGNT                                                                                                        | TTCAGGA                  | CCCACAC     | CGTTCACT          | GGCACCT    | TGGATGC             | STTNGNG/    | AAGATTGNG(      | CGGCA |
|          |              | IGAGEGIACITAGES ACTION NO INVINING STATES AND ACCOMPANCE AND ACTION ACTION AND ACTION ACTIO | GGACCCIGIN<br>ACTCAAGGCC                                                                                          | INANNGGC                 | CTCCNAG     | CCACCCTG          | GNGATGA    | CCGNGCC,            | AGCTACTO    | SCTATCTACT      | TCACT |
|          |              | GCCGGAATGGGCACCGTGACGTTGCAGCCCCTTGNAGCTGCGTGCGAGCCCAAGCTGCAGCTCAGCATGTGTCATACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CACCGTGACA                                                                                                        | 4GTTGCAG                 | CCCCTTG     | NAGCTCGT          | GCGGACC    | AAGCTGC/            | GGCTCAG     | SCATGTGTC/      | ATACC |
|          | BGH-Sequenz  | NNNCNTTINNCNCACAGAAGACCATCATNTTTAGACGAATGAATGAATGANGCCAAGATACTGCCTGCCCCAAGAATGCTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NCACAGAAGACCATCATNTTTAGACAAGGAATGAATGANGC                                                                         | CCATCATA                 | TTTAGAC     | 166616C1C         | ATCCNC!    | ATACATA.            |             |                 | COTO  |
|          |              | WINDOWN THE STANDARD AND THE PROPERTY OF THE | *ACAAACATG                                                                                                        | NGGATNCA                 | AAAAAGG     | GCGATCAT          | CAGATTTG   | NTCTTCAC            | O I GOOT GO | SCCCAAGN D      | 2000  |
|          |              | GCAATCCTGGNAAGGGAAACAGCAGGAATCCAGGTCTGAGGACAGCCTGGGAGACNGGACTGGNAGGNAAGGCACTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AAGGGAAACA                                                                                                        | GCAGGAA                  | TCCAGGT(    | TGAGGAC/          | AGCCTGGC   | SAGACNGC            | SACTGGNA    | AGGNAAGGC       | ACTTG |
|          |              | NCTCAGTCTCCTGATCCCACCCGTGCAAGAGCCGNNNGCTCCCCGACTTTCA<br>  GCCTCTGNAAGAAGCTTTTGCCAAACTCNNAAGTGCTGANCATGATGGCCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GATCCCACCCGTGCAAGAGCCGNNNGCTCCCCGACTTTCAGCGGCCCAGAGGCTGCTNCTGGTNGA<br>  AAGCTTTTGCCAAACTCNNAAGTGCTGANCATGATGGCCAG | CGTGCAAC                 | SAGCCGNI    | NGCTCCC(TGANCATE) | CGACTITC   | AGCGGCC             | CAGAGGC     | TGCTNCTGG       | TNGA  |
|          | Identität    | gb AC003043 AC003043 Homo sapiens chromosome 17, clone HRPC1067M6, complete sequence [Homo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03043 Homo s                                                                                                      | apiens chro              | mosome 17   | , clone HRP(      | C1067M6, c | omplete seq         | luence [Hon | u<br>Qu         |       |
|          |              | sapiens <br>  Length = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139488                                                                                                            |                          |             |                   |            |                     |             |                 |       |
|          |              | <br>  Score = 133 bits (67), Expect = 5e-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (67), Expect = £                                                                                                  | je-29                    |             |                   |            |                     |             |                 |       |
|          |              | Identities = 112/128 (87%)<br>  Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 (87%)<br>us                                                                                                    |                          |             |                   |            |                     |             |                 |       |
|          |              | gb AA109006 AA109006 ml63d04.r1 Stratagene mouse testis (#937308) Mus musculus cDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09006 ml63d04                                                                                                     | 1.r1 Stratage            | ine mouse ( | estis (#93730)    | J8) Mus mu | sculus cDN/         | ~           |                 |       |
|          |              | PROTEIN;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 5 SIIIIII IO WY. C 10C 10. 1 CEU 1488 CARRIER                                                                  |                          | . 7 CEU 148 | י ראדא היי        |            |                     |             |                 |       |
|          |              | re engin – or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                          |             |                   | İ          |                     |             |                 |       |
|          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                          |             |                   |            |                     |             |                 |       |
| 65       | 60           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                | 40                       | 35          | 30                | 25         | 20                  | 15          | 10              | 5     |

| 65            | 60          | 55                             | 50                                                                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                       | 35                                        | 30                                                          | 25                                         | 20                                        | 15                                           | 10                                          | 5                                    |
|---------------|-------------|--------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------|
|               | **          | Scor<br>Ident<br>Strar         | Score = 860 bits<br>Identities = 493/51<br>Strand = Plus             | Score = 860 bits (434), Expect = 0.0<br>Identities = 493/516 (95%), Gaps = 3/516 (0%)<br>Strand = Plus                                                                                                                                                                                                                                                                                                              | = 0.0<br>s = 3/516 (C                                    | (%(                                       |                                                             |                                            |                                           |                                              |                                             |                                      |
|               |             | gb A <sup>6</sup>              | gb AA985996 AA9<br>3' similar to<br>Length = 71                      | \985996 uc73c10.x1 Sugano mouse liver mlia Mus musculus cDNA clone 1431282<br>to TR:O14589 O14589 SIMILARITY TO Q09461 ;<br>711                                                                                                                                                                                                                                                                                     | 10.x1 Sugan<br>ک14589 SIM⊩                               | o mouse liv<br>ILARITY T(                 | er mlia Mus<br>O Q09461 ;                                   | musculus cC                                | NA clone 1                                | 431282                                       |                                             |                                      |
|               |             | Score<br>Ident<br>Stran        | Score = 553 bits (2)<br>Identities = 328/352<br>Strand = Plus / Plus | Score = 553 bits (279), Expect = e-156 Identities = 328/352 (93%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                           | = e-156                                                  |                                           |                                                             |                                            |                                           |                                              |                                             |                                      |
| Klon #42      | T7-Seguenz  | 000                            | CTTCACTT(                                                            | VOLUCION                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | O E O E O                                 | 3, 10000                                                    |                                            |                                           |                                              |                                             |                                      |
| 177<br># HOIN | Zuenbec-71  | GCGC<br>CGGI<br>ATTN           | ACTICACTT<br>SAGGCGGC<br>TATGCCCAC<br>GGCTTAGG<br>CAGACTC            | AAAGCTTCGCCCTCCAGCCGCGGAGNCTGCAGCGCAACTTCCAGATAGCGGAGNGGCCTCAGCTGCGAGCCGA<br>GCGGAGGCGGCATGCTTNCTCAGGACACCCGCAGATCACCTTTTCCCCGCGACTTCGCCATGGCTGAGNGCTGAGTAC<br>CGGTATGCCCACGGCCGATGNGTATCCCTCCACCCTATGCTGACCTCGGCAAAGCTGCCAGAGACATTTTCAACAAAGG<br>ATTNGGCTTAGGGCTGNNGAAGCTGGATGNGAAGACGAAGTCATGCAGCGGGGGGGATTTTCAACATCTGGCTCATCT<br>AATACAGACACTGGTAAAGTTAGCGGGACCTNGGAGACCAAGTACAAATGGNGAGAGTTGGGTCTGACTTTCACAGAAA | NGCCGCGC<br>TCAGGACA<br>NGTATCCC<br>AGCTGGAT<br>AGCGGGGA | SAGNCTGC<br>CCCGCAG<br>TCCACCC<br>GNGAAGA | SAGCGCAA(<br>SATCACCTT<br>STATGCTGA<br>CGAAGTCA<br>GACCAAGT | TTCCAGA<br>TTCCCCGC<br>CCTCGGC,<br>TGCAGCG | ragggag<br>Gacttcg<br>Aaagctgc<br>Gngtgga | SNGGCCTC<br>SCATGGC1<br>SCAGAGAC<br>ATTTTCAA | AGCTGCG<br>FGAGNGCT<br>ATTTTCAN<br>CATCTGGC | AGCCGA<br>GAGTAC<br>CAAAGG<br>TCATCT |
|               |             | 0400<br>0400<br>0400           | GTGGAACACCGA<br>CACCCACCTTTT(<br>GTC                                 | GTGGAACACCGANAACACTCTGGGGACAGAGATTGCANTTTGAAGACCAGATTTGTCAAGGATAGAAACTTGACTTTNGA<br>CACCCACCTTTTCACCGAACACAGGNNNAAGGANANNGTGGTNAATAATCAAGTCCTGCTTTACCAAGNAGGGNGNAGNT<br>GTC                                                                                                                                                                                                                                         | TGGGGACA<br>CAGGNNN                                      | NGAGATTG<br>AAGGANA                       | SCANTTTGA<br>NNGTGGTN                                       | AGACCAG/<br>AATAATCA                       | AGTCCTGC                                  | GGATAGA                                      | AACTTGAC<br>AGNAGGGN                        | TTTNGA                               |
|               | BGH-Sednenz | CGGI<br>NACC<br>CATC           | CGGTTTTCATAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                              | CGGTTTTCATAAACGTCTATTTCATCATTGGTGGGTAGCACATTTAACAGTTAAATACATTTAAATAATGTATAGGAGGCCG<br>NACCACGGCAGCACTGATAACCATCCAACTAGGAACCAGCCAACAGTGACTGTCTAAATATTTAAAATACAGCTCTNGCTT<br>CATCATCCTTTGATGTGATCACCTTCTGGGGGAAGGAAGG                                                                                                                                                                                                 | CATCATTO<br>SCATCCAA<br>SCTTCTGG<br>STTCTTT              | SGTGGGT<br>CTAGGAA<br>GGGAAGC             | AGCACATT<br>CCAGCCAAI<br>3AAGGGGAAI<br>YTTAAGCCT            | CACAGTT/<br>CAGTGACT<br>SCCTGCTG           | AATACATT<br>GTCTAAAT                      | TAAATAAA<br>ATTTAAAA<br>GGAAATAT             | GTATAGG,<br>TACAGCTC<br>ATTAAGGC            | AGGCCG<br>TNGCTT<br>CCAAATC          |
|               |             | CATTA<br>ATTA<br>CAGC<br>TTCTC | CATTAAAGCTCTT<br>ATTAAACTAGAGT<br>CAGCNGGNACCT<br>TTCTGTCCCATTA      | CATTAAAAGCTCTTCCCGTCTACCAGAGCAGACAGTGTAAGCTTCACACCAGGCCTCAGAGTCTGAGTATAGCCCACTCCAAAAACAGATTAAACTTCAGAGTTTTAGCTGAGTATAGCCCACTCCAAAACAAAC                                                                                                                                                                                                                                                                             | CCAGAGCA<br>TTTGCAGA<br>AGCGAGGN<br>GTGTGNAG             | GACAGTC<br>GATAGAA<br>VTTACTGA            | STAAGCTTC<br>GCAGTAGG<br>NGTGTCAA                           | ACACCAGG<br>ATCCAACT<br>AATCTTNA           | SCCTCAGA<br>GGTATTTA<br>CATACTTT          | GTCTGAG<br>GCTGCAA<br>CTGATNAA               | TATAGCCC<br>TGCCAAAA                        | ACTCCA<br>CGAGTG<br>TCCAAA           |
|               | Identität   | gplu3                          | 0838 MMU30<br>encoding mil<br>Length = 166                           | gb U30838 MMU30838 Mus musculus voltage dependent anion channel 2 mRNA, nuclear gene encoding mitochondrial protein, complete cds<br>Length = 1662                                                                                                                                                                                                                                                                  | sculus voltag<br>otein, compl                            | ete cds                                   | nt anion char                                               | nel 2 mRN                                  | , nuclear ge                              | ane                                          |                                             |                                      |
|               |             | Score                          | Score = 763 bits (3<br>Identities = 466/49                           | Score = 763 bits (385), Expect = 0.0 Identities = 466/494 (94%), Gaps = 3/494 (0%)                                                                                                                                                                                                                                                                                                                                  | = 0.0<br>s = 3/494 (0 <sup>c</sup>                       | (%                                        |                                                             |                                            |                                           |                                              |                                             |                                      |

|          |              | gbjL08666jHUMPOF<br>Length = 1464                                                                         | rius<br>PORIN Homo sal<br>1464                           | piens porin (Į           | Strand = Plus / Plus<br>gb]L08666JHUMPORIN Homo sapiens porin (por) mRNA, complete cds and truncated cds.<br>Length = 1464                                                 | ste cds and trur         | cated cds.              |                      |                         |                 |
|----------|--------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|----------------------|-------------------------|-----------------|
|          |              | Score = 280 bits (141), Expect = 3e-73 Identities = 252/291 (86%), Gaps = 1/291 (0%) Strand = Plus / Plus | ; (141), Expect = 3e-73<br>291 (86%), Gaps = 1/29<br>lus | : 3e-73<br>; = 1/291 (0% |                                                                                                                                                                            |                          |                         |                      |                         |                 |
|          | Beschreibung | DNA-Leiter                                                                                                |                                                          |                          |                                                                                                                                                                            |                          |                         |                      |                         |                 |
|          |              |                                                                                                           |                                                          |                          |                                                                                                                                                                            |                          |                         |                      | :                       |                 |
| Klon #43 | T7-Sequenz   | AAAGGGAGGAG                                                                                               | 3GAAGCCCGG,                                              | AGCGGAGC                 | AAAGGGAGGAGGAAGCCCGGAAGCGGAGCGGGGCNTCTGGGGGGGGGG                                                                                                                           | GGGGGGTGG                | ACCCCCCC                | CGCCTGCT             | GCTGCCA                 | ၁၁၅၁၁           |
|          |              | GGCGCCGCTGC                                                                                               | STECTECTECT                                              | receection recee         | GGCGCCGCTGCTGCTGCTGCTGCTGCGGGAGGGTCGGCGGGGGGGG                                                                                                                             | adegaege<br>3CGGGACGG    | SAGIGAGACO              | CCCGGGGC             | CAAGCGG                 | ACATC           |
|          |              | GACAGCATCAT(<br>  GAGGACTCTGC                                                                             | CCAACGGCTG                                               | CTGGAAGT<br>GGGAGATC     | GACAGCATCATCCAACGGCTGCTGGAAGTGAGGGGTCCAAGCCAGGCAAGAATGTCCAGCTCCAGGAGAACGAGCATCC<br>GAGGACTCTGCCTGAAGTCTCGGGGAGATCTTCCTCAGTCAG                                              | AGCCAGGCAA               | GAATGTCCA<br>TAGAACTTGA | GCTCCAGC<br>AAGCACCA | SAGAACG<br>CTCAAGA      | AGATCC          |
|          |              | GGNGACATCCA                                                                                               | CGGGCAGTAC                                               | TATGATTT                 | GGNGACATCCACGGGCAGTACTATGATTTGCTCCGTCTGTTTGAATACGGNGGCTTTCCTCCAGAGAGCAACTATTGTT                                                                                            | TGAATACGGN               | GGCTTTCCT               | CCAGAGAG             | SCAACTAT                | TTGTT           |
|          |              | TCTCGGGGACT                                                                                               | ATGTGGACAG                                               | GGGCAAGC                 | TCTCGGGGACTATGTGGACAGGGGCAAGCAGTCCCTGGAGCAATCTGCCTCTTGCTGGCCTACAAAATCAAGTATCCG                                                                                             | ACAATCTGCC               | TCTTGCTGG               | CCTACAAA             | ATCAAGT                 | ATCCG           |
|          |              | AGATACAACATT                                                                                              | TAAGCTGTGGA                                              | WAACGTTC                 | OTTO CAGAGGGAAACGITCACAGGGCCCAGCATTOAATAGGATCTACGGATTTTATGATGATGTGTAAAAGA<br>AAGCTGTGGGAAAACGITCACAGACTGTITTAACTGCTTGCCGATAGCAGCCATCGTGNACNAGAAGATA                        | CATCAATAGE<br>AACTGCTTGC | CGATAGCAG               | SCATCGTE             | I GAG I G I.<br>SNACNAG | AAAAGA<br>AGATA |
|          |              | TTCTGCTGCATC                                                                                              | SGAGGGTTATC<br>TCTTTTG                                   | SACCAGATO                | TTCTGCTGCATGGAGGGTTATCACCAGATCTTCAATCTATGGAGCAGAATCGGCCGAAATATGAGACCAACTGATNTACCA<br>GATCAAGGNCTTCTTTTG                                                                    | AGCAGAATC                | 3GCCGAAAT,              | ATGAGACC.            | AACTGATI                | NTACCA          |
|          | BGH-Sednenz  | AAGTTAACAAGG                                                                                              | STTGCATTTAN.                                             | TAAGTCTG,                | AAGTTAACAAGCTTGCATTTAATAAGTCTGAAACCATTCTCAGCACATGGCATTGTACACGGGCATCTGTGCAAACAGATT                                                                                          | SCACATGGCA               | TTGTACACG               | GGCATCTG             | TGCAAAC                 | AGATT           |
|          |              | CATTIATAAGCC                                                                                              | CGNAGI I AA<br>TCAATGTCAC                                | CGNAGAAT                 | CATTITATAGGCCTCAATGTCGCGNAGGTCATAGATACTGTGGGTTCTGTATAAACCGGNGGACGGNAAGTTAGTTCCTTTN<br>GATTTATAAGCCTCAATGTCACCGNAGAATAAAGAATGTAGCCAAAGAAAGCATTATCGGTCACTCGTATAGGACAGAGATT   | GTICTGTATA               | AACCGGNGG<br>ATTATCGGT  | CACTCGTA             | STTAGTTC                | CTTTN           |
|          |              | GTTTCTATAATT                                                                                              | TGAAGCTTTCI                                              | GAATGGAC                 | TGAAGCTTTCTGAATGGACGGNTTCAGGCCTGATCCAACTGTAAAAAGATCACTCAGTGAATAGACTATA                                                                                                     | TGATCCAACT               | GTAAAAAGA               | TCACTCAG             | TGAATAG                 | ACTATA          |
|          |              | IGGGAACIGIA<br>  GCTTCTGAGGC                                                                              | CAAAGIGICAI<br>CCCACGGAGG                                | I AACI I NC              | I GEGAACTETACAAA GIGTOATTAACTTINCATCATTAATAGCTTACTCAGCACTATACCACTATTGCTAGTTAAAATAACCT<br>GCTTCTGAGGCCCCAGGGAGGGAGGGGGGGCTGTGCACGCAGGCTTCGATGCCCTGGCCACCTCATCCCCAGGGGGGGTGC | TACTCAGCA <br> GCCTCGATG | CTATACCACT              | CCTCATCC             | STTAAAAT                | ACCT            |
|          |              | CATACAGTCCA                                                                                               | CAGAAACTTT                                               | GGCTTTAG                 | CATACAGTCCAACAGAAACTTTGGCTTTAGGAAGGAATCACAGACNTTGAAAAGAATGGCTTTAATCATTATTAAATGTGCA                                                                                         | GACNTTGAA                | AGAATGGCT               | TTAATCAT             | TATTAAAT                | GTGCA           |
|          |              | GNGGGAAGGAG<br>  TAGTTTGTCATG                                                                             | STGTGCTTCAGATAGTCTGGGCAGG<br>SACAAGACAATGAGGGAAAGCAGNC   | SATAGTCTG<br>GAGGGAAA    | GNGGGAAGGAGTGTGCTTCAGATAGTCTGGGCAGGGCTGGCGGCAGGCA                                                                                                                          | CGGCAGGCA                | GGTCACTCC               | TGCTGCAC             | AGCTGCA                 | GACAC           |
|          | Identität    | abiM27071iMUSD                                                                                            | MS2M1A Mus m                                             | - Include profe          | SSM1A Mils misculus proteip phosphatase type 1 (dis2m1) mRNA complete                                                                                                      | n 4 (dis2m1) p           | telamos ANAr            | 1                    |                         |                 |
|          |              | cds.                                                                                                      |                                                          |                          |                                                                                                                                                                            | · (11117515) - 2d        |                         | 2                    |                         |                 |
|          |              |                                                                                                           |                                                          |                          |                                                                                                                                                                            |                          |                         |                      |                         |                 |
| 65       | 60           | 50                                                                                                        | 45                                                       | 40                       | 30<br>35                                                                                                                                                                   | 25                       | 20                      | 15                   | 10                      | 5               |



|          |             | Identitie<br>Strand                                                                   | Identities = 166/207<br>Strand = Plus / Plus                                                                                          | .07 (80%)<br>lus                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                                                                                            |                                                                                                      |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                |                                                                              |
|----------|-------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|          |             | gbJM602                                                                               | gb M60215 MZEZMP<br>Length = 1644                                                                                                     | MPP1 Z.mays protein phosphatase-1 (ZmPP1) mRNA, complete cds. 344                                                                                                                                                                                                                                                                           | protein phos                                                                               | sphatase-1 (                                                                                               | ZmPP1) mF                                                                                            | RNA, comple                                                                     | ite cds.                                                                                                  |                                                                                                   |                                                                                                |                                                                              |
|          |             | Score = Identitie                                                                     | Score = 83.8 bits (4;<br>Identities = 122/146<br>Strand = Plus / Plus                                                                 | Score = 83.8 bits (42), Expect = 5e-14<br>Identities = 122/146 (83%), Gaps = 2/146 (1%)<br>Strand = Plus / Plus                                                                                                                                                                                                                             | 5e-14<br>s = 2/146 (1º                                                                     | (%                                                                                                         |                                                                                                      |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                |                                                                              |
| •        |             | 0000 qb                                                                               | )63 CELF56(<br>Length = 35(                                                                                                           | gb U00063 CELF56C9 Caenorhabditis elegans cosmid F56C9<br>Length = 35028                                                                                                                                                                                                                                                                    | ıbditis elegar                                                                             | ns cosmid F                                                                                                | 56C9                                                                                                 |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                |                                                                              |
|          |             | Score = Identitie                                                                     | Score = 58.0 bits (28 Identities = 103/127 Strand = Plus / Plus                                                                       | Score = 58.0 bits (29), Expect = 3e-06<br>Identities = 103/127 (81%), Gaps = 1/127 (0%)<br>Strand = Plus / Plus                                                                                                                                                                                                                             | 3e-06<br>s = 1/127 (0%                                                                     | (%                                                                                                         |                                                                                                      |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                | <del></del>                                                                  |
|          |             | Score = Identitie                                                                     | Score = 44.1 bits (22<br>Identities = 43/50 (86<br>Strand = Plus / Plus                                                               | (22), Expect = 0.042<br>(86%)<br>us                                                                                                                                                                                                                                                                                                         | 0.042                                                                                      |                                                                                                            |                                                                                                      |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                |                                                                              |
|          |             |                                                                                       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                                                                                            |                                                                                                      |                                                                                 |                                                                                                           |                                                                                                   |                                                                                                |                                                                              |
| Kion #44 | T7-Sequenz  | AAAGA/<br>AGGCC<br>TAGCTT<br>CTGNG(<br>CTGNG(<br>GCTGC)<br>TAGGG/<br>ACGGG(<br>TGGCCC | AAAGAAGAAGAGG<br>AGGCCTCCGCCAT<br>TAGCTTTGCCTACT<br>CTGNGGACCTGC<br>GCTGCTGGCAGGC<br>TAGGGAAAGGCTG<br>ACGGGCCTGGGCA<br>TACCCCTCCATACC | AAAGAAGAAGAAGAGGGGCTAAGCTGAGTATAGAGGTGCTCCAGACCAGCCTGCAGAAGGAACTGACTCTAAACAAAGGCC AAAGAAGAAGAAGAGGCCTGAGCTGAG                                                                                                                                                                                                                               | SCTGAGTA<br>STGCGCTG<br>SGTCATGG<br>TTGNGTGA<br>CCTATTC<br>CACCATGG<br>ACAGTGCA<br>CAGTGCA | TAGAGGTG<br>ACCCCACG<br>SACCTGCAC<br>STICCTAG<br>VATGCCAT<br>AACTGCAT<br>ICCCGGGTI<br>SGCTGNCC<br>SGACCTGA | CTCCAGA<br>SCTTCGCCC<br>SGCCTTC<br>TCATCAAT<br>VATACCGA<br>CTTCCTG<br>GGGCAGC<br>CCGTGGC<br>AGAGCAGG | CCAGCCTC<br>SCCTCTTC<br>SGCGTCAG<br>TCCATGGC<br>TACACCGG<br>ATAGTGAG<br>CGCCAGC | SCAGAAGG<br>CTCTGCCT<br>CATGTACC<br>SCCGCCGG<br>TACAATCA<br>AGAGCTG1<br>SCCCACTG4<br>SCCACTG4<br>SCCACTG4 | AACTGAC<br>CTCTATG<br>STTATCCA<br>SCCTGCAC<br>TCGCCAC<br>AACCCAC<br>TCCCCAC<br>TCCCCAC<br>GAAGCAA | TCTAAACA<br>CTGNGGTTT<br>GGTGATTT<br>CAGTTGGC<br>ATCCTGG<br>CAATGATTC<br>TGACTGCC<br>SCTGCCAGA | AAGGCC<br>TGCCAC<br>TCGGCG<br>CTCCCT<br>CTGTAC<br>CGGCAG<br>GAGTTC<br>AGACCT |
|          | BGH-Sequenz | CAAGGI<br>ACCACT<br>GGTCTA<br>TCCCCC                                                  | CAAGGTAGAAGAAA<br>ACCACTGAGCTGGA<br>GGTCTATTGAAGTG<br>TCCCCTCCTCATA                                                                   | CAAGGTAGAAGAAATTTATTTAATTGTCTGGGATTCTTTGCAATGTCCTGGAGGNGGAAGGGACAGGAGCTGGAGGAGGTG<br>ACCACTGAGCTGGAAGATGGCTGAGGAAGAGCTCATTCTGCTTAAGAAGCTGCACACAGTTAGAGCTTTNGTTCCTAGTA<br>GGTCTATTGAAGTGACCTTTGGGGAGGCATTTCTCTGAATGGCAGGCTCCGCATTTAGATGGCCCAGTCCCTCCACTCAC<br>TCCCCCTCCTCATAGATGGNGGGACCTGCAGAACCCCACTCCCTTTAGNGCTGAGAGACGCCTCTCCATTTCAAGATC | ATTGTCTG<br>TGAGGAAC<br>SGGAGGCA<br>SGACCTGC                                               | GGATTCTT<br>3AGCTCAT<br>ATTCTCTG                                                                           | TGCAATG<br>TCTGCTTA<br>AATGGCA(                                                                      | TCCTGGAG<br>AGAAGCTC<br>GGCTCCGC                                                | GNGGAAG(SCACACACACACACACACACACACACACACACACACACA                                                           | GGACAGC<br>TTAGAGC<br>GGCCCA(                                                                     | SAGCTGGA<br>TTTNGTTC<br>GTCCCTCC                                                               | SGAGTG<br>CTAGTA<br>ACTCAC                                                   |
| ,        |             |                                                                                       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                                                            | 3                                                                                                          | 3                                                                                                    | 2                                                                               | 2                                                                                                         | 1                                                                                                 | 1                                                                                              |                                                                              |
| 65       | 60          | 55                                                                                    | 50                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                          | 40                                                                                         | 35                                                                                                         | 30                                                                                                   | 25                                                                              | 20                                                                                                        | 15                                                                                                | 10                                                                                             | 5                                                                            |

| 5 10 15 20 25 30 35 40 45 50 | CGTTCTTCTTCTTGAGACCTGGAGNGGNATCATCTGCTTCTGCTGNTCCAGCTGCTGANGCTTCTGCTTTCCTCTG CTCCTGCTCTTCAGGTCTGCACTGTATCAGGCAGGCTGGCCCAAGGTCTCTGGCAGCGCAGGGCAGTGACAGCGCTG GCGCCACGGGGGACAGCGCCCGAAGATGAAGAGAGGTATGGAGGGGTANGAACTCGGCAGTCATGTATCAGTGGGCT CACTATGCTGCCCACCGGGCCATGGNGCTGCCCATGCCCAGGCCCGNCTGCCGAATCATTGNG | identitât gb U52842 MMU52842 Mus musculus kidney-specific transport protein mRNA, complete cds<br>Length = 2161 | Score = 1501 bits (757), Expect = 0.0 Identities = 769/775 (99%) Strand = Plus / Plus | dbj AB004559 AB004559 Rattus norvegicus mRNA for multispecific organic anion transporter, complete cds<br>Length = 2221 | Score = 1124 bits (567), Expect = 0.0 Identities = 706/754 (93%) Strand = Plus / Plus |   | T7-Sequenz AAAGACGNTACCCTGGAGTTCACCAGCATCGACGCTCACAAAGGCGTGGCCCCATCAAGACGNGGNGATTNGGAAATAC TNGGTTATNGCATGATCCAGNGGCTCAGCGGCTGTCTTCCTNGGGAAGATAACTTGAAGATCCTAACTTAGGGAT TCCAAAATTAGATACAGAGACAACTGTCGCAGCTTTGANGGAGAAAATGCTTTCCTGAGAAAAATAAGCCAGGTGAGAGATCG CTAAGTAGGAGTCTGNGAAACTACTGGAATACACGGAAAAACCTCTTTTCTATCAAAACTACGTGATTTACAAG | GACTAAAAGCTNTAGGAAGTNAAGACTNACGGCAAACTGGNTTTTAGNGCTGAGGANAACGGAAGTGNGAANCNAAGAC CAGCCTCAAAGNNGCTTTAANAAANAANAANAAAAGCNCNGNCGAGCGCNTGTNCNAGTGACATNTGAGNGCTCTANT CCACNCANCGTT | BGH-Sequenz ATGAACCTGAGATTTATTTTTTTTGTCAAAGTAACGAGNCTCTTATATGGAAAGCGGCTGTATATCTCTGAAGGAGCAGTTT AGAGAGCTGCTTCTGAATTCACCCAGAATTGCTACTGACCCTGAGCCCCACATTTCCTTTCAGCTCTCCAGTCTCGGGTTN GGCCAGAGAGGAGAGTCCACTCATGTCAAACATTCACCTCAAACATTCACATTCCAATTCAAACATTCAAACAATTCAACAA | CTGGAAGCAAGGGCAAGAGAGACTCCAGTAGGTTNGGGCTTCTACTATAAATTCTCTTGAGAGCACAGAAGGGGG NOTGCGTGTCTGCGGCACAGAGGGGG NOTGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | GAGCAGCCCTGGGATGCTGCTGAGAGCCTGGAGCACAGAGGGCCCATGTGCAGGAAGGNCTCCTGAGGCTCTGT<br>CAGCTTCATGATCAGCAGGGAGACAGCTGNACCCCAGCAGCACACAAAGGCCACTGNNAAGAAACGCACTCGCTGGCCCC |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60                           |                                                                                                                                                                                                                                                                                                          | Identität                                                                                                       |                                                                                       |                                                                                                                         |                                                                                       | 寸 |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             | BGH-Sequ                                                                                                                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                |
| 65                           |                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                       |                                                                                                                         |                                                                                       |   | Klon #45                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                 |                                                                                                                                                                |

|          | Identität    | ACAGT                                          | ACAGTGTGAATCACTGCCCACTGCTNACTCTCCAGAAGGCCCGNCGACTTTACANACTTCTTATATNACATC                                                      | STGCCCAC                                                 | TGCTNAC                                               | TCTCCAG,                                    | AGGCCC                                        | NCGACTT                                                                                                                                                                    | FACANACT                           | тсттатат                                   | NACATC                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|----------|--------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|          |              |                                                | oozozlar oooz<br>cds<br>Length = 1651                                                                                         | 232 Mus Mt.<br>1                                         | isculus serii                                         | ne/tnreonin                                 | e protein kin                                 | rouzoz ivius musculus serine/inreonine protein kinase 51PK(s) mKNA, complete<br>651                                                                                        | mKNA, co                           | nplete                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              | Score = Identitie                              | Score = 640 bits (323), Expect = 0.0<br> dentities = 379/401 (94%), Gaps = 2/401 (0%)<br>Strand = Plus / Plus                 | 23), Expect                                              | = 0.0<br>s = 2/401 (0                                 | (%)                                         |                                               |                                                                                                                                                                            |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              | gbjAF08                                        | gb AF080253 AF080253 Mus musculus serine/threonine protein kinase 51PK(L) mRNA, complete<br>cds <sup>.</sup><br>Length = 1743 | 1253 Mus mı<br>3                                         | ısculus seri                                          | ne/threonin                                 | e protein kin                                 | iase 51PK(L                                                                                                                                                                | ) mRNA, co                         | mplete                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              | Score = Identitie                              | Score = 640 bits (323), Expect = 0.0<br>Identities = 379/401 (94%), Gaps = 2/401 (0%)<br>Strand = Plus / Plus                 | (323), Expect = 0.0<br>01 (94%), Gaps = 2<br>us          | = 0.0<br>3 = 2/401 (0                                 | (%                                          |                                               |                                                                                                                                                                            |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              | dbj AB00                                       | dbj AB000449 AB000<<br>Length = 1662                                                                                          | 300449 Homo sapiens mRNA for VRK1, complete cds<br>662   | apiens mRI                                            | NA for VRK                                  | 1, complete                                   | cds                                                                                                                                                                        |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              | Score = Identitie:                             | Score = 222 bits (112), Expect = 5e-56<br>Identities = 268/322 (83%), Gaps = 1/322 (0%)<br>Strand = Plus / Plus               | (112), Expect = 5e-56<br>22 (83%), Gaps = 1/32<br>us     | : 5e-56<br>: = 1/322 (0 <sup>6</sup>                  | (%                                          |                                               |                                                                                                                                                                            |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          | Beschreibung | DNA-Lei                                        | DNA-Leiter, PI-FACS: Apoptose                                                                                                 | . Apoptose                                               |                                                       |                                             |                                               |                                                                                                                                                                            |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|          |              |                                                |                                                                                                                               |                                                          |                                                       |                                             |                                               |                                                                                                                                                                            |                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| Klon #46 | T7-Sequenz   | CTATTT<br>CTATTT<br>CCCAG/<br>TCTGAA<br>GACGAI | AAAGCTGCGGCAGG<br>CTATTTGGCATTGC<br>CCCAGATCCTATAG<br>TCTGAAGAAAAGGA<br>GACGATGATGATGA                                        | SCATTCTC<br>CTCCTCCC<br>CCACATG(<br>TGACTTTA<br>CGATGGA( | GGAGGAA<br>TCCCGGN<br>SCTGGNG(<br>AGCAAGA<br>SACCATG( | ANNAGGC<br>JGAAAGTC<br>CCTGACCI<br>AACTCTTC | AAGGACTA<br>SACTGATTC<br>SATCTCAG<br>SCAAGCAA | VACTACGAI<br>STGGCAGC<br>AAGCAGAA<br>TTCNAATG                                                                                                                              | NCATGAGA TCAGAGG TCTCCTTC AAAGCCAT | TNGGCAG<br>AGAAGAAC<br>SCGCCACA<br>GACCACA | AAAGCTGCGGCAGGCATTCTCGGAGGAAANNAGCCAAGGACTAACTACGANCATGAGATNGGCAGTGATTNGCTTTNGC<br>CTATTTGGCATTGCCTCCTCCCTCCCGGNGAAAGTGACTGATTCTGGCAGCTCAGAGGAGAAGAAGCTTTACAGCCTGCA<br>CCCAGATCCTATAGCCACATGGCTGGNGCCTGACCCATCTCAGAAGCAGAATCTCCTTGCGCCACAGAATGCTGNGTCC<br>TCTGAAGAAAGGATGACTTTAAGCAAGAACTCTTCCAAGCAATTCNAATGAAAGCCATGACCAATGGACGACGATGAT<br>GACGATGATGATGACGATGAGAACCATGCAGAAGAACGATTCTGNGGACTCGGATGAATCTGACGAATCTCACCATT | SCCTGCA<br>SNGTCC<br>SGATGAT<br>ACCATT |
|          |              | CCCCG/<br>GNATGA                               | CCCGATGAGTCTGNT<br>CCCCGACGGCCTG/<br>GNATGANACCANGC                                                                           | GAGACCT<br>AGGNTGAT<br>NATCCCN                           | TCACTGC1<br>AGCTTNG<br>TGGAATNC                       | ragtacac<br>GCTTATG<br>CCACCN1              | AAGCAGA(<br>3GNCTGAN<br>7ATTGNAG(             | INTGAGACCTTCACTGCTAGTACACAAGCAGACACTTTCACTCCAATGGTCCCCTGAGGNTGATGGAGNTGAGNNAGTTGAGNNAGTTGAGNATGCCAAGNTGAATGGANNAGTTGAAAGNTGAAGCCNTTGAATGGCNATGTTGNAGGNNAACCCTTAACCCNTTCTTT | STCCAATC<br>AGNTCTAG<br>TTAACCCN   | STCCCCTAINNAGTTT                           | CCGATGAGTCTGNTGAGACCTTCACTGCTAGTACACAAGCAGACACTTTCACTCCAATGGTCCCCTNCAGTNCGATGTCC<br>CCCCGACGGCCTGAGGNTGATAGCTTNGGCTTATGGGNCTGANNGTCCCAAGNTCTAGNNAGTTTTCCCAGGNTTTCCT<br>GNATGANACCANGCNATCCCNTGGAATNCCCACCNTATTGNAGGNNAACCCTTAACCCNTTCTTT                                                                                                                                                                                  | ATGTCC<br>ITTTCCT                      |
| 6        | 6            | 5                                              |                                                                                                                               | 4                                                        | 4                                                     | 3                                           | 3                                             | 2                                                                                                                                                                          | 2                                  | - 1                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 65       | 60           | 55                                             | 50                                                                                                                            | 45                                                       | 40                                                    | 35                                          | 30                                            | 2.5                                                                                                                                                                        | 20                                 | 15                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      |

| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40 | ACATGTACATGATTTTGGAATAATTTAATACTTTAACCTCAAGATACAACTATATTCTAAGGCCATTATTTTAAAGGAACGGA TCCTTACAAGACCAAAAAAACCCATATAGCACGAGGTTGGTT                                                          | gbjJ04806 MUSOSP Mus musculus osteopontin mRNA, complete cds.<br>Length = 1385 | bits (388), Expect = 0.0<br>38/458 (95%), Gaps = 3/458 (0%)<br>7 Plus | MMPONTIN Mouse mRNA for minopontin<br>= 1328 | Score = 724 bits (365), Expect = 0.0<br>Identities = 408/425 (96%), Gaps = 3/425 (0%)<br>Strand = Plus / Plus | emb X16151 MMETA1 Mouse mRNA for early T-lymphocyte activation 1 protein (ETa-1) Length = 1535 | Score = 718 bits (362), Expect = 0.0 Identities = 408/426 (95%), Gaps = 3/426 (0%) Strand = Plus / Plus | 8177 Eta-1/Op (Eta-1b)≂early T-lymphocyte activator-1 [mice, C3H/HeJ,<br>. mRNA, 1087 nt]<br>= 1087 |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 50                                          | ACATGTACATGATT TCCTTACAAGACCA TCAGTAGCAAGGCC CAGACGGNGGGTN ATTAGGTTTCCTTT AGAAGGGAACTTT AGAAGGGAACTTT AGAAGCGAACTTT AGAAGCGAACTTT AGAAGCGAACTTT AGAAGCGAACTTT AGAAGCGAACTTT AGAAGCCCATG | gb J04806 MUSOSP<br>Length = 1385                                              | Score = 769 bits (38 Identities = 438458 (Strand = Plus / Plus        | emb X13986 MMPOh<br>Length = 1328            | Score = 724 bits (36 Identities = 408/425 Strand = Plus / Plus                                                | emb X16151 MMETA<br>Length = 1535                                                              | Score = 718 bits (36 Identities = 408/426 Strand = Plus / Plus                                          | gb S78177 S78177 E<br>spleen, mRNA<br>Length = 1087                                                 |
| 60                                          | BGH-Sequenz                                                                                                                                                                             | Identität                                                                      |                                                                       |                                              |                                                                                                               |                                                                                                |                                                                                                         |                                                                                                     |
| 65                                          |                                                                                                                                                                                         |                                                                                |                                                                       |                                              |                                                                                                               |                                                                                                |                                                                                                         |                                                                                                     |

|          |              | Score = 682 bits (344), Expect = 0.0 Identities = 356/362 (98%) Strand = Plus / Plus                                                                                                     | 344), Expect = 0.0<br>2 (98%)<br>s                                                                                                           | 0                                      |                            |               |                        |                        |                       |        |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|---------------|------------------------|------------------------|-----------------------|--------|
|          | Beschreibung | DNA-Leiter                                                                                                                                                                               |                                                                                                                                              |                                        |                            |               |                        |                        |                       |        |
|          |              |                                                                                                                                                                                          |                                                                                                                                              |                                        |                            |               |                        |                        |                       |        |
| Klon #47 | T7-Sequenz   | AAAGGAGCAACGCGGGTCTTCCCGCTGTTGCTTNTCGCGGCCACGGCCGAGCATACGTCCCCGGCCTGAGGTGGNGGT                                                                                                           | <u>SCGGGTCTTCCCGCTGTTGCTTNTCGCGGCCACGGCCGAGCATACGTCCCCGGCCTGAGGTGGNGGT</u>                                                                   | SCTGTTGCTTI                            | NTCGCGGCC,                 | ACGGCCGAC     | SCATACGTC              | CCCGGCC                | TGAGGTGG              | NGGT   |
|          |              | GGCTTCTTCGGAC                                                                                                                                                                            | AGCCGGAGGAGCGGGTTACTCGAACGCTGATTTGGCCGGCGTCCCGCTGACTGGTATGAACCCCCTG                                                                          | COCCUTACTOR                            | SACGCTGAT                  | TTGCCCGG      | SECCECT                | GACTGGT/               | ATGAACCC              | SCTG   |
|          |              | TCTCCTTATTTAA                                                                                                                                                                            | AATGTGGATCCACGCTATCTCGTTCAGGATACTGATGAATTTATTT                                                                                               | CGCTATCTCGI                            | TCAGGATAC                  | TGATGAATT     | TATTTGCC               | AACTGGAG<br>FOOOGGAG   | SCTAATAAA             | 200    |
|          |              | GAGGCAGGA I I GAACHAGCH I CHILACCA I I GGAGGA I GH I GCA I GACAGGGCCGCA I I CGGGGCCAA I GAACGG I CHI<br>CGTTTAGGATTGAAGGAAACCCAGAGCATGGCCTGGTCCAAACCAAGAAATGTACAGATTTTGAATATGGTGACTAGGCA | AACTAGCTTIC<br>AGGAAACCCA                                                                                                                    | I I ACCALLGG,<br>SAGCATGGCCI           | AGGATGTTGC<br>FGGTCCAAAC   | CAAGAAATC     | GGCCGCAL               | I CGGGGCA<br>TTGAATATG | SGTGACTAC             | SGCA . |
|          |              | AGGAGCACTTTGGGCTANTACTCTAGGCTCCCTGGCTTTGCTCTATAGNGCT                                                                                                                                     | <b>3GCTANTACTC</b>                                                                                                                           | TAGGCTCCCTC                            | <b>ЗССТТЕСТС</b>           | TATAGNGCT     | _                      |                        |                       |        |
| İ        | BGH-Sequenz  | CTGTTTTCACCCTTTATTTGGAAAACAGGGCAACATTTAAGTTTTAGATTTTTAAATGAATTAACATGGTAATAAAAAGTAT<br>  GGCCTGAATTNGGAGAGTAAGNGGTTTTCCAGT                                                                | TTATTTGGAAA<br>3AGAGTAAGNG                                                                                                                   | ACAGGGCAAC,                            | ATTTAAGTTTI                | AGATTITI      | AAATGAATT              | AACATGGT               | rataaaaa(             | STAT   |
|          | Identität    | dbj AB006451 AB00<br>Length = 110                                                                                                                                                        | 106451 Rattus norvegicus mRNA for Tim23, complete cds                                                                                        | vegicus mRNA fo                        | or Tim23, comp             | lete cds      |                        |                        |                       |        |
|          |              | <br>  Score = 791 bits (3                                                                                                                                                                | (399), Expect = 0.0                                                                                                                          | C                                      |                            |               |                        |                        |                       |        |
|          |              | Identities = 492/523<br>Strand = Plus / Plus                                                                                                                                             | 23 (94%), Gaps = 1/523 (0%)<br>us                                                                                                            | 1/523 (0%)                             |                            |               |                        |                        | •                     |        |
|          |              | gb AF030162 AF030162 Homo sapiens inner mitochondrial membrane translocase Tim23 (TIM23) mRNA, nuclear gene encoding mitochondrial protein.                                              | 330162 AF030162 Homo sapiens inner mitochondrial mRNA, nuclear gene encoding mitochondrial protein.                                          | ens inner mitocho<br>a mitochondrial p | ondrial membra<br>protein. | ne translocas | e Tim23 (TIM;          | 23)                    |                       |        |
|          |              | complete cds<br>Length = 841                                                                                                                                                             |                                                                                                                                              |                                        |                            |               |                        |                        |                       |        |
|          |              | Score = 484 bits (244), E) Identities = 384/431 (89%) Strand = Plus / Plus                                                                                                               | .244), Expect = e-135<br>11 (89%)<br>1s                                                                                                      | 135                                    |                            |               |                        |                        |                       |        |
|          |              |                                                                                                                                                                                          |                                                                                                                                              |                                        |                            |               |                        |                        |                       |        |
| Klon #48 | T7-Sequenz   | AAAGGCCTCCGCACTNCCAAGTCATTTGNCGCTACNNGNCTATNAGNGCANAGCAGGGTGTCANGGACCNAGTTGCT NNAGGCNGNNAAGAGCCNGCTGCAAGGTNAATCCTACAGTACGTGNAAACTCTGATGGAAGNGATNCCCAAGATCTGNC                            | SCACTNCCAAGTCATTTGNCGGCTACNNGNCTATNAGNGCANAGCAGGGTGTCANGGACCNAGTTGCT<br>AGAGCCNGCTGCAAGGTNAATCCTACAGTACGTGNAAACTCTGATGGAAGNGATNCCCAAGATCTGNC | CATTTGNCGG(                            | CTACNNGNCT<br>CTACAGTACC   | ATNAGNGC,     | ANAGCAGGC<br>STGATGGAA | STGTCANG               | GACCNAGT<br>CCAAGATCT | GCT    |
|          |              |                                                                                                                                                                                          |                                                                                                                                              |                                        |                            |               |                        |                        | !                     |        |
| 65       | 60           | 50<br>55                                                                                                                                                                                 | 40                                                                                                                                           | 35                                     | 30                         | 25            | 20                     | 15                     | 10                    |        |

| 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50 | GNCTTCCGCNACATGAGTACGGCTCACCTGGCATCCTGGAGATCTTCCACCNCCAGCTGAAGGGACATTGAGGAGATGC ACNAGCTGAAAACCGTATGCTTCCAGAACCTGCGGCAGGTGGGAAATGCTGCCCTCTTCNGCCNGCTTATANGAGCANA ACNAGCTGAAAAACCGTATGCTTTAGAACCTGCGGCAGGTGGGAAATGCTGCCCTTCNGCCTNNGAATCATGNANAAGA GCGNNAGAGAGTTTAGAATNCCNAAATNAACAGACTNCAATCCANTTTTCCAGAATNTCTTACCTNNGAATCCNTGNATTGAA ANGGCTGNGGACCCCNAGCAAANCGCAACTGCNCGANACGGNGNCTNGCTGNCCAANGNANCGCCTCATGNNGCGGC ATGNCCATGTTTGAAGTTCNCCTNACNCNCCNCANCTTCTGGCNTGATCCCCNATCNGGCGCNGNCCCCTCACCNA GCNNTTGGTGNNATNCNNGCNCNANAGANGCCTTGNGCTTCNCANCCTCTAGCTAGCCCCCNGCCCCTNNGTATNNCTT CACTNC | AATACAATTAGTTGGTATTATGCTCGTACAGGATGANCGACCCCANTNTCCCNTCNTANCTGCTGTAATATTCGGCATGAA  AATACTTGTTAATACCGTAANGGCAACAACTAGTAACCGTATTCTCAGACTTCCCAATGCCAAAGGCATATACAATTTTAGT  ATAGAAAAATAAGTAAAGTTAAAGGTTTCAGATCAAAAGTAGGTTCCAAANGGAAAATAGCCCCTAAAAA  ATAGAAAAATAAGTTTACATAAAGACAAACATGCCTTTCAGATGCTGNGAGCTTAGCCTCAGCTACNGGCTAGGG  ACTGGAGGANGGGNGGCTGGAAGCAGCGTCACTCAGTTACTGGGATGCTCTCGCCCATCACCTCAGGTTTCAAGTACTTGTC  CAGGATAGTGATTCATCGTTGAGAATCTGGAACTTGCGGATCCTCTCCCACCATCTTCTTCAATGGCACATTTTTGAT  GATCTCATCTTTGCCATCATGAACTTTGAACTTTGAAAATCCAACACACAC | gb AF072697 AF072697 Mus musculus SHYC (Shyc) mRNA, complete cds  Length = 4112  Score = 983 bits (496), Expect = 0.0 Identities = 551/571 (96%), Gaps = 2/571 (0%)  dbj D38549 HUMHA1025A Human mRNA for KIAA0068 gene, partial cds  Length = 4379  Score = 289 bits (146), Expect = 3e-76 Identities = 254/293 (86%) | 1 Q G G F   |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 60                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BGH-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Identität                                                                                                                                                                                                                                                                                                              | BGH-Sequenz |
| 65                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        | Klon #49    |

|          | Identität   | gb U07971 RNU07971<br>amidinotransfe<br>Length = 2260                                                                                                                                   | 971 RNU07971 Rattus norvegicus Spr<br>amidinotransferase mRNA, partial cds.<br>Length = 2260    | rvegicus Spi<br>partial cds                              | gb U07971 RNU07971 Rattus norvegicus Sprague-Dawley L-arginine:glycine<br>amidinotransferase mRNA, partial cds.<br>Length = 2260                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inine:glycine                                           |                                                          |                                                            |                                                                |                                                |
|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|
|          |             | Score = 198 bits (100), Expect = 5e-49<br>Identities = 212/247 (85%), Gaps = 16/247 (6%)<br>Score = 85.7 bits (43), Expect = 6e-15<br>Identities = 49/51 (96%)<br>Strand = Plus / Minus | (100), Expect = 5e-49<br>47 (85%), Gaps = 16/2<br>(43), Expect = 6e-15<br>(96%)<br>inus         | : 5e-49<br>5 = 16/247 (6<br>3e-15                        | (%5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                       |                                                          |                                                            |                                                                |                                                |
|          |             |                                                                                                                                                                                         |                                                                                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                          |                                                            |                                                                |                                                |
| Klon #50 | T7-Sequenz  |                                                                                                                                                                                         | TCAGGNGGTC ANCGAGCGO GCTCCTGCTG AAGCTCTTACI GCACCGANG                                           | CCTTTTAT<br>CGTCTTTA<br>TNACTCCI<br>CCTCTACT<br>NNTGANAC | AAAGGCTGCTGTCAGGNGGTCCCTTTTATGGATGGGCTCCTGNGGNCGCTGCGCAGNGGNTGNTCGACTTCCGNAGNGNCTCGGCTGCTGCGCAGNGGNTGNTCGACTTCCGNAGNGNCTCGGGCCTGTCGGGCCANCGAGCCCTGCGCTGCTCGGGCCANCGAGCGCCTGCGCTGTCGGGCCTGTCGGCTGNAGCTGTTANCNAGCTGCTGCTGCGCTGNGCNGTAACGACCCTGANAGAATACTCTTGCGGTATGTGAAAGCTCTTACCCTGTACTCCGACCGCTACCCCTATCCCAGGTTGAAAGCTCTTACCCTATCCCAGGTTGAAAGCTCTTACCCAGGTTGAAAGCTCTATCCCAGGTTGAAAGCTCTATGCCCAGGGTTGAAAAGCTTATACCCTATACCCCAGGGNNNATACAGTGCNTNAACTACAGGNTGNNNANCCTAATGACAGTGCGAACTTTAAAAAGCTCGCTTATAAAAAGCTCGCCTATACCCCAGGGNNNATACAGTGCNTNAACTACAGGNTGNNNANCCTAATGACAATTGACAGGTGCGAACTNTNAGACTCGCTCT | GNGGNCGC<br>GGCTGTGG<br>CCTGCGCT<br>CCTGCGCT<br>AGGGNNA | TGCGCAGI<br>CCGCTGTC<br>GNGCNGT/<br>INGGNGGC<br>TACAGTGC | NGGNTGNT<br>GGCCGCCN<br>AACGACCCT<br>TGNACCCT<br>NTNACTAC/ | CGACTTCCC<br>NGAGAGCCC<br>TGANAGAAT<br>ATCCCACACA<br>AGGNTGNNI | SNAGNG<br>STGCGC<br>ACTCTT<br>STTGAA<br>NANCCT |
|          | BGH-Sequenz | CTNNATNGNCTTCCAGNACNGNANNTNCCN<br>ACNGAAGGANCTNATCANNNCGANNNATGC<br>GACGGNANCGAGGCGGACACATNAGNAGT                                                                                       | TCCAGNACNG<br>TNATCANNNC<br>GGCGGACAC,                                                          | NANNTNCC<br>GANNNATC<br>ATNAGNAG                         | CTNNATNGNCTTCCAGNACNGNANNTNCCNAGCCTCAAACCANNAANGNAANACNACGNTGNANAGNGANGNNCAGNAG<br>ACNGAAGGANCTNATCANNNCGANNNATGGANGANNTAGNTANCACAANANGGNCNGNTNACGNNGGAGCTGNAGGAN<br>GACGGNANCGAGGCGGACACATNAGNAGT                                                                                                                                                                                                                                                                                                                                                                                                  | ANNAANGN,<br>ANCACAAN,                                  | AANACNAC<br>ANGGNCNG                                     | GNTGNANA                                                   | GNGANGNN                                                       | CAGNAG                                         |
|          | Identität   | dbj AU035342 AU<br>mRNA seq<br>Length = 7                                                                                                                                               | 035342 AU035342 AU035342 Su<br>mRNA sequence [Mus musculus]<br>Length = 718                     | 342 Sugano<br>sculus]                                    | dbj AU035342 AU035342 AU035342 Sugano mouse brain mncb Mus musculus cDNA clone MNCb-0343,<br>mRNA sequence [Mus musculus]<br>Length = 718                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mus musculu                                             | s cDNA clon                                              | e MNCb-034                                                 | ,<br>513,                                                      |                                                |
|          |             | Score = 345 bits (174), Expect = 3e-93<br>Identities = 286/327 (87%), Gaps = 4/327 (1%)<br>Strand = Plus / Plus                                                                         | (174), Expect =<br>27 (87%), Gaps<br>us                                                         | : 3e-93<br>; = 4/327 (1%                                 | (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                          |                                                            |                                                                | -/                                             |
|          |             | gbjAl286459JAl2864<br>IMAGE:18884<br>sequence [Mt<br>Length = 456                                                                                                                       | 86459 Al286459 ui77d03.y<br>IMAGE:1888421 5' similar<br>sequence [Mus musculus]<br>Length = 456 | 1 Sugano m<br>to WP:T06E                                 | gb Al286459 Al286459 ui77d03.y1 Sugano mouse liver mlia Mus musculus cDNA clone<br>IMAGE:1888421 5' similar to WP:T06D8.9 CE02330 ;, mRNA<br>sequence [Mus musculus]<br>Length = 456                                                                                                                                                                                                                                                                                                                                                                                                                | musculus cD<br>NA                                       | NA clone                                                 |                                                            |                                                                |                                                |
|          |             | Score = 345 bits (174), Expect = 3e-93<br>Identities = 286/327 (87%), Gaps = 4/327 (1%)                                                                                                 | (174), Expect = 3e-93<br>27 (87%), Gaps = 4/32                                                  | 3e-93<br>= 4/327 (19                                     | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                          |                                                            |                                                                | - 00                                           |
| 6:       | 60          | S(<br>S:                                                                                                                                                                                | 4:                                                                                              | 41                                                       | 3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2:                                                      | 20                                                       | 1:                                                         | 10                                                             | :                                              |
| 5        |             |                                                                                                                                                                                         | 5                                                                                               | n                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                       | 0                                                        | 5                                                          | n                                                              | 5                                              |

|                                                       | AAGNTGCNTAATTTCATTNGGGACTACCAACAAAGTTNAAATCAAGNCTTTAACATTAANGGTCATTTTTAGTNAANGGAAA   GTTAAAAAAGTCCTTAAGTNAANGGAAA   GTTAAAAAAGTCCTTAAGTTTGCTTCTTGAACTTGCCCTTCTAAAAAGTCCTAGTTTGCAAGTTTGCAAATTGCAAGTTTGCAAATGATTGTTGCAAATGATTGTTGCAAATGATTGTTGCAAATGATTGTTGCAAAAAAAA |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | CTCCTTTCANCCTTCTTTATAACCCTCAGNCACANTGCACACTGACNAGGTAAGGCCCNAAAGAANCANCAGATCCCNGN ATNCTCAGGCTCTCCGNTTTTNAAAAACCTT                                                                                                                                                   |
| Identität                                             | emb AJ010953 HSA010953 Homo sapiens mRNA for putative Ca2+-transporting ATPase, partial Length = 2175                                                                                                                                                              |
|                                                       | Score = 208 bits (105), Expect = 6e-52<br>Identities = 311/390 (79%)<br>Strand = Plus / Plus                                                                                                                                                                       |
| Konvention für Bewertung<br>- negativ/+ und -/++ schw | Konvention für Bewertung des phänotypischen 'Zelltod-Effektes':<br>- negativ ./+ und ./++ schwach positiv ++ stark positiv +++ sehr stark positiv                                                                                                                  |

| 5  |             |                                                                                                                        |                                                   |            |
|----|-------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------|
| 10 |             |                                                                                                                        |                                                   |            |
| 15 |             |                                                                                                                        |                                                   |            |
| 20 |             |                                                                                                                        |                                                   |            |
| 25 |             | 27-APR-1997                                                                                                            |                                                   |            |
| 30 |             |                                                                                                                        | 1                                                 |            |
| 35 |             | ROC<br>UCPH) mRI                                                                                                       |                                                   |            |
| 40 |             | bp mRNA<br>n homolog (                                                                                                 |                                                   |            |
| 45 |             | #6<br>U94593<br>LOCUS MMU94593 1396 bp mRNA ROD<br>Mus musculus uncoupling protein homolog (UCPH) mRNA<br>+++ nach 24h |                                                   |            |
| 50 |             | MMU94 isculus uncc                                                                                                     |                                                   |            |
| 55 | .n.         | #6<br>U94593 '<br>LOCUS MI<br>Mus musculus<br>+++ nach 24h                                                             |                                                   | n.d.       |
| 60 |             | Nummer:                                                                                                                |                                                   |            |
| 65 | BGH-Sequenz | Laufende Klon Nummer: ACCESS No.: Definition:                                                                          | Klon #54                                          | T7-Sequenz |
|    |             | E P A                                                                                                                  | \ <sub>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </sub> | 1          |

| BGH-Sequenz:                                         | GCCAGCCTAACACTTCTATGACAAACCGANGAAATTATAAAAACTTTTCAAATATTTGCTCCTCAGACCCCCTATCCACACACA                                                                                                                                                        | CTTCTATGACAAACCGANGAAAATTATAAAAACTTTTCAAATATATTGCTCCTCAGACCCCCTATCCACACACA                                                                                                                   | VACCGANGAAA<br>TACTGCCACTA<br>ATCAGCTTACTA<br>SAACACTTATTA<br>SETTCTATTCCA<br>SACACCTTAGA(<br>STTCACCTATGA | ATTATAAAAA<br>ATATTAATAG<br>AATTCTCCTA<br>ATTATACCC<br>ACTGCTAATT<br>SGCTTCATGA<br>ACTACCAAAA | CTTTTCAAATAI<br>CTAGCCAAAAC<br>ATCATAACCTT<br>GATGAGGGAAC<br>GCCCTCATCTT/<br>NTCTAACAACTT/<br>NTCTAACAACTT/<br>NTCTACATGTTGA | ATTGCTCCTCAC<br>CACCTAAAAAAA<br>TCAGCAACTGA<br>CAAACTGAAACGA<br>ATCCAAAACCA<br>ACTATGGTTGGCACTGA | GACCCCTAT<br>GATATAACN<br>ACTAATTATA<br>CCTAAACGC<br>CTAGGAACC<br>CATGCATAAT | CCACAC<br>MGTACTA<br>TTTTATA<br>MGGGATT<br>CCTAAAC<br>AGCATTT<br>AATTCT |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: | #7 M27315.1 GI:343181 Rattus norvegicus mitochondrial cytochrome c oxidase subunits and III, and ATPase subunit 6 genes, complete cds, and Asn-, Cys-, Tyr-, Ser-, Asp-, Lys-, Gly-, Arg-tRNA genes. RATMTCYTOC 7632 bp DNA ROD 29-MAY-1996 | 81 mitochondrial cytochrome c oxidase subunits I, II and ATPase subunit 6 genes, complete cds, and Trp-, Ala-, ys-, Tyr-, Ser-, Asp-, Lys-, Gly-, Arg-tRNA genes. 632 bp DNA ROD 29-MAY-1996 | tochrome c oxic<br>unit 6 genes, con<br>ip-, Lys-, Gly-, Ar<br>ROD 29-                                     | dase subunits<br>plete cds, and<br>g-tRNA genes<br>MAY-1996                                   | i, II<br>I Trp-, Ala-,                                                                                                       |                                                                                                  |                                                                              |                                                                         |
|                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                            |                                                                                               |                                                                                                                              |                                                                                                  |                                                                              |                                                                         |
| 60<br>65                                             | 50<br>55                                                                                                                                                                                                                                    | 45                                                                                                                                                                                           | <b>35</b>                                                                                                  | 30                                                                                            | 25                                                                                                                           | L5                                                                                               |                                                                              | 5                                                                       |

| 5  |          | GGATTGGCGGGGTTCTTTTTTTAGACCACATAAATCAATTCTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |          | GGATTGGCGGGGGTTCTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15 |          | SGTGGCAZ<br>GCTTCCG<br>SGCTTGC<br>SGAACCAC<br>SCGATGAC<br>ATGCCTGC<br>SCATCTTCT<br>SGTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 |          | SCCTCAAT( STCTTTGGA CCTGCTCAAT( SAATGCAC GCGGTAC( GCGGTAC( GCGGTAC( SCCTGCT TCTTTCT CACCACC SCCTGGC TCTTTCT A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25 |          | TTTGGGAG<br>CATGTCTG<br>AGCCCCAC<br>AGCCCCAC<br>TCGNNNC<br>TCTGNNNC<br>TCTTCGGC<br>TTCTTCTT<br>TTCTTCCC<br>AATTCCCAC<br>ATTCCCAC<br>ATGTATAA<br>TGCCCACT<br>ATGTATAA<br>TGCCCACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30 |          | GGATTGGCGGGGTTCTTTTGACCACATAAATCAATTCTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35 |          | TAGATCAA<br>TCTTATTG<br>TGGGGGGG<br>TAGGGGGCACC<br>ACGGCACCT<br>TGTTAGGGGGGGGG<br>TCTTAGGC<br>TCTTANCA<br>TCTTANCA<br>TGA CAGA<br>GGG CCT<br>GGG CCGA<br>GGG CCGA<br>GGG CCGA<br>GGG CCGA<br>GGG CCGA<br>GGG CCGA<br>GGG CCGG<br>ATT TTATT<br>NGGA CCAG<br>GGG CCG<br>GGG CCG<br>GGG CCG<br>GGG CCG<br>ATT TTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40 |          | TGACCACA<br>SACAGCAG<br>TGGATCT<br>CTGCTGG<br>CTGCTGG<br>ATCTTATT<br>SAGGGAG<br>ATAACATA<br>ATCTTCTG<br>T AGCCTG<br>S CATGATC<br>S CATGATC<br>CCCTGGG<br>C CCTGGG<br>C CCCTGGG<br>C TACCCA<br>A GAGGC<br>A GACTACA<br>A GAGGC<br>T CCCAGGG<br>C TACCCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 45 |          | GGATTGGCGGGGTTCTCTTTGACC  ATCTCATCCCGTTCTCATCTTGGAT  AGGTGCAAATGTTCTCATCTTGGAT  GGGTGCCTTTCTGGCTCCCTGCTTA  GGGTGCCTTTCTGGCTCCCTGCTC  ACACTCTGATGCTGCAACCGATCTC  CCTTCTATGCTTCCATTGCACCTTTC  GCATATGCTTCCATTGCACCTTTC  GCATATCATGCTTCATTCATTCCATCTTC  GCCTGGAACCATGATCGTGCTCTC  NTGGAANCCG AGGTCTCTCTC  NTCGAANCCG AGGTCTCATGCAC  NTCGAANCCG AGGTTGCAC  CTTCTGGGGA ACCTTTGCAG  AGATTCTTAC AGCCTGCAC  CATTTCTTAC AGCCTGGANC CATG  GGTCTCATGT TTCTTTCTGG TACT  GGTCTCATGT TTCTTTCTGG TACT  GGTCTCATGT TTCTTTCTGG TACT  GGTCTCATGT TCTTTCTGG TACT  GGCATCTCCT GGATTGACCATATT CACA  ATTCTTTGAATGCT TCGGGACAT  AGGCCGCCCTGAAGG  GTTCTAGAATGCT TCGAGGAAGG  GTTCTAGAATGCT GTCAATT  AGGGCGGCCC CTCAAATCCT  AGGGCGCCC CTCAATT CACA  ATTGCTTAGAATGCT GTCAA  AGGGCGGCCC CTCAAATCCT  AGGGCGCCC CTCAAATCCT  AGGGCCCCTGAACCATAT  AGGGCGCCC CTCAAATCCT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  AGGCCCCTCAATT  ACCAA  ATTAGCTACCT  AGGCCCTCCT  AGGCCCTCT  AGGCCTCT  AGCCCTCT  AGCCCTCT  AGCCCTCT  AGCCCTCT  AGCCCT  AGCCCT  AGCCCT  AGCCCT  AGCCCT  AGCCCC  AGCCC  AGCCC  AGCCC  AGCCC  AGCCC  AGCCC  AGCCC  AGCCC  AGCC  AGCC  AGCC  AGCC  AGCC  AGCC |
| 50 |          | GGATTGGCGGG<br>ATCTCATCCCGT<br>AGGTGCAAATGT<br>GGGTGCCTTTCT<br>ACACTCTGAGG<br>GCATATGCTTCC<br>AAAACCCAGGG<br>CTTCTATGTGGG<br>GGCAGCTGGCTT<br>GCCTGGAACCCT<br>TCTCTGGGGA AC<br>CATTTCTTAC AG<br>GGTCTCATGT TT<br>GGGATCTCCT GG<br>GGCATCTCCT GG<br>GGCATCTCCT GG<br>GGCATCTCT TC<br>TCGGAGTTT TC<br>TCGGAGTTT TC<br>TCGGGGCT TC<br>GGCATCTCT TC<br>TGGGATTCT TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55 |          | AGGG AAAAA AAAAA AAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 60 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 65 | Klon #55 | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Gesamt-Sequenz<br>zusammengesetzt (aus T7<br>und BGH) | GGATTGGCGGGC<br>AGCGGGACTTTA<br>GCTTCCGTTGGT<br>CACAATGCAGG<br>CTGGGGTACAGG<br>AACGCCACTTATTT<br>ACCCAGAGCATC<br>TTCTTCTTCTTCT<br>TTGGCATGGAAG<br>CCTGGCCATCTTC<br>GTCTCATGTTTCT<br>GAGCCTCAATGG<br>ATCTGCAGCATTC<br>CAGGGACNCTAC<br>TATTCCTGTGAT<br>TATTCCTGTGAT<br>TATTCCTGTGAT | GGATTGGCGGGGTTCTTTTGACCACATAAATCAATTCTTTTTTTGGGAGCCTCAATGGTGGCAACTGC AGCGGGACTTTATCTCATCCCGTTCTGCAAGACAGCAGTCTTATTGATCATCACCATGTCTGCTTTTGGA AGCGGGACTTTATCTCATCCCGTTCTGCAAATGTTCTCATCTTGGATCTCTGGGGGGACAAAGGAGCCC CACAAATGCGAGCCTTGCATTCGCCTTTGGGTGCCTTCTGGCTCCTGGGGGGCCAAAGTTGGC CACAAATGCAGGCCTTGCAGTTTCGCCTTTGGGTTCCGCTTCTGCTGAGCGGCTAAGTTGGC CTGGGGTACAGCCCTCAGAACCACCGAGTCCGATGACTTTGTGCTTCTGCTGAAGCTGATTGCTTCCTCC AACGGCACCTCAGACCCTGCTTTTTGCAGTTCCGATGCTTTGCTGTGAGCGAAAAA ACCGCAGAGCATTCTTGTTTTTTTTTT |   |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:   | #13 AL080317.11 GI:5 AL080317.11 GI:5 Human DNA seque Contains the g NARK (nitrite of the REV3L of the Polym of DNA polym                                                                                                                                                         | AL080317.11 GI:5830430 Human DNA sequence from clone RP5-1112D6 on chromosome 6q21-22.2. Human DNA sequence from clone RP5-1112D6 on chromosome 6q21-22.2. Contains the gene for a PUTATIVE novel protein similar to bacterial NARK (nitrite extrusion protein, nitrite facilitator), the 3' end of the REV3L gene for REV3 (yeast homolog)-like, catalytic subunit of DNA polymerase zeta (EC 2.7.7.7, POLZ), ESTs, STSs, GSSs and a putative CpG island, complete sequence.                                |   |
| rocns                                                 | HSJ1112D6 13530                                                                                                                                                                                                                                                                   | 135305 bp DNA PRI 21-FEB-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Effekt                                                | +                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 60<br>65                                              | 50                                                                                                                                                                                                                                                                                | 10<br>15<br>20<br>25<br>30<br>35<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 |

| 5  |          | TGCAATGGCGGACGTGTCTGAGAGGACGCTGCAGGTGCTGGTGCTAGTGGCTTTCGCCTCTGGGGTGGGT                                                                                                                                                                                                                                |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |          | TGCAATGGCGGACGTGTCTGAGAGGACGCTGCAGGTGTCCGTGCTGGTGCCTTTCGCCTCTGGAGTGGTCCTGGGCTGG TGCAATGGCGGACGTGTCTGAGAGGACGCTGCAGGTCGGGACGCTCTGGGCTGGCAAAAA GCAGGGTCGGCGCGCGCGCGCGCGCGCGGGTTCTCACCCCCAACGCCAACAAAA GCTGGACCTGGCCTGAGCAGCCTGCAGGCCCGGGTTCTCACCCCTAGCCCCAACGCCACGCCCGGATCGT GGGACCCGCGCGCGCGCGCGCCGCGC |
| 15 |          | CCTCTGGA<br>SGGGCTGG<br>AGCCCAA<br>TCAGAAAG<br>ATTTTTGCCC                                                                                                                                                                                                                                             |
| 20 |          | SGCTTTCG<br>STECAGGTC<br>CACTCCCT<br>SGCTTGCT<br>SGCTTGCT<br>GCC<br>SCC<br>SCAC<br>C<br>TT<br>TT<br>TT                                                                                                                                                                                                |
| 25 |          | STECTAGTO<br>SCGGAGGC<br>SCGGAGGC<br>SCGGACATO<br>ACAAAAGA<br>CCCTAGG<br>C GTCCTTC<br>TGTCTTCT<br>TGTCTTCT<br>TGTCTTCT<br>TGTCTTCT<br>TGTCTTCT<br>TGTCTTCT<br>TGTCTTCT<br>SCAGAGAC<br>SCAGAGAC<br>SCAGAGAC<br>TGTCAAC<br>SCAGAGAC<br>TGTCAAC                                                          |
| 30 |          | ACGTGTCTGAGAGGACGCTGCAGGTGTCCGTGCTAGTGG  ICCGTGGAGGCGTTACCTAGACTGGAGGAAGCGGAGGCT  CCTGAGCACGCCTGCAGCCCGAGTCCGCCGGGTTCTC/ CCTGAGCACGCCTGCAGAGTCCCCCCGCGGTTCTC/ CGTGAGCAGCCTGCAGAGTCCTCCCCCCGGGTTGCAAAAAAAA                                                                                             |
| 35 |          | ACGCTGCA<br>CCTAGACT<br>GCAGCCCC<br>CCTTGCAC<br>AGATGTTT<br>AGAGACTT<br>CGNCTC AG<br>SCGCG G<br>SCGCG G<br>SCGCG G<br>SCGCG G<br>SCGCG G<br>SCGCG G<br>AGAAA AGAA<br>ATT CAGA<br>ATT CAGA<br>ATGC AAGAA<br>ATGC AAGAA                                                                                 |
| 40 |          | TGAGAGG<br>AGGCGTTA<br>AGGCGTTA<br>SAGGCGCT<br>GCATCTTG<br>CTGAAAGC<br>CTGAAAGC<br>ST AGGAAT<br>C TCCTCAC<br>T ATGAAT<br>C TCCTCAC<br>C TAGAAT<br>C TAGAAAT<br>AGGAAAAT                                                                                                                               |
| 45 |          | GACGTGTO<br>SGCCTGAGG<br>GCCTGAGG<br>SCGCCCCAGG<br>TTTGGAGC<br>GGCCAGG<br>GGCCAGG<br>GTTTCAGCT<br>TTGCTGCAC<br>TTGCTGCAG<br>STCTTTTC<br>STCATTTT<br>GAATTAAGG<br>GTAAAAAAAAAAAAAAAAAAAA                                                                                                               |
| 50 |          | TGCAATGGCGGACGTGTCTGAGAGGACGCTGCAGGTGTCCGTGCTAGTGGCT CAAGCGGATCGGACGTGTGTGAGACTGGAGGAAGCGGAGGCTGCAGAGCGGAGCCTGCAGACTGGAGGAAGCGGAGCTGCAGAGCGGAGCCTGCAGAGCCGGGAGCCTGCAGAGCCGGAGTCCGCCGGGTTCTCACTGGACCTGGAGCCTGGAGCCTGCACGGCTTGCAAGAAAAAAAA                                                              |
| 55 |          | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                              |
| 60 |          | ii                                                                                                                                                                                                                                                                                                    |
| 65 | Klon #56 | T7-Sequenz                                                                                                                                                                                                                                                                                            |

|                                                                                                                                                                  |         |         |          | GATAGITITGAACITCCGATTCCCCTGCCTCCCCAGGGCTGTGATTGCAGGTGTGCGCTTTTGAACAACAACCCCGGGCCTTTTTCCTCTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                  |         |         |          | SGGACTGA<br>AGAACAAA<br>AGAATATTA<br>CTCTCTAC<br>SGACACAG<br>SAGTTCAC<br>STGAAATA<br>ACAACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 |
|                                                                                                                                                                  |         |         |          | SATAGITHTGAACITICCGATICCCCTGCCCAGGGGCTGTGATTGCAGGTGTGCGCTTGGGACCTGAGG  STITGTCGGTGGGGCAGCAGCTCTGCGACTGATTAGGTCCCAGGCCTTCTCTTTTAAAAGAACAACATTGCT  WATGTCGGTGCTTTGAGTTTTAAATCTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 |
|                                                                                                                                                                  |         |         |          | TGCAGGTG AAAACATTA AAAACATTA CCTTGTTTA SCACACTGC SAAAGGGT TCAAGTCA TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT TCTAAGTTGT | 20 |
| clone                                                                                                                                                            |         |         |          | GCTGTGAT<br>CCAGCCAC<br>TCTTTCAT<br>AAATGATG<br>GAGCCTAG<br>ATCTCAAG<br>ACCTGTGG<br>AAGCAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 |
| s musculus cDNA<br>ce<br>20-OCT-1999                                                                                                                             |         |         |          | CCCCAGG<br>ATTAGGTC<br>ATTAGGTC<br>SGTTTTAC,<br>STATCTTG<br>AAAATGTC,<br>TAGAAAAT<br>ATTGAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |
| #20 (EST) AW106096.1 GI:6076832 um23a10.y1 Sugano mouse embryo mewa Mus musculus cDNA clone IMAGE:2225370 5', mRNA sequence AW106096 539 bp mRNA EST 20-OCT-1999 |         |         |          | TICCGATTCCCCTGCCTCCCCAGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 |
| 176832<br>To mouse embryo mewa Mus n<br>12225370 5', mRNA sequence<br>bp mRNA EST 20                                                                             |         | •       |          | TTCCCCTG<br>NGCACTCTC<br>TGAGTTTCAC<br>CTTTTCAC<br>TGAGATTC<br>TAAGATTA<br>STTAACAC<br>CNAAGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 |
| GI:6076832<br>ugano mouse er<br>AGE:2225370 5'<br>539 bp mRNA                                                                                                    |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 |
| #20 (EST) AW106096.1 GI:6076832 um23a10.y1 Sugano mou: IMAGE:22253                                                                                               |         |         |          | GATAGTTTTGAAC<br>CTTTGTCGGTGCT<br>AAATGTGCCATTG<br>TATTCTGGTTCTA<br>TATTCTGGTTCTA<br>CCTGATATCTTGAC<br>AAACAAGAATGTC<br>TTTTATACTACTA<br>ACAAAAGTGCTCA<br>TTCTTTGTATTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 |
|                                                                                                                                                                  | ‡       | <u></u> |          | GATE COST COST COST COST COST COST COST COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:                                                                                                    |         | ,       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 |
| Laufende Klor<br>ACCESS No.:<br>Definition:<br>LOCUS:                                                                                                            | Effekt: |         | Klon #57 | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65 |

|    | <del></del>  |                                                                                                                                                                                                                                        |
|----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |              |                                                                                                                                                                                                                                        |
| 10 |              |                                                                                                                                                                                                                                        |
| 15 |              |                                                                                                                                                                                                                                        |
| 20 |              |                                                                                                                                                                                                                                        |
| 25 |              |                                                                                                                                                                                                                                        |
| 30 |              | ۷۲-2000                                                                                                                                                                                                                                |
| 35 |              | #21<br>EST mit geringer Homologie zu humanem In <b>tegrin</b><br>NM_000210.1 GI:4557674<br>Homo sapiens integrin, alpha 6 (ITGA6) mRNA.<br>Homo sapiens integrin, alpha 6 (ITGA6) mRNA.<br>NM_000210 5611 bp mRNA PRI 15-MAY-2000<br>+ |
| 40 |              | zu humanerr<br>6 (ITGA6) π<br>NA Pi                                                                                                                                                                                                    |
| 45 | ı            | Homologie 2<br>1:4557674<br>tegrin, alpha<br>111 bp mRI                                                                                                                                                                                |
| 50 |              | mit geringer<br>000210.1 G<br>o sapiens in<br>000210 56                                                                                                                                                                                |
| 55 | p. c         |                                                                                                                                                                                                                                        |
| 60 | ž            | Nummer:                                                                                                                                                                                                                                |
| 65 | BGH-Sequenz: | Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: Effekt:                                                                                                                                                                           |

| Klon #58 T7-Sequenz BGH-Sequenz: ACCESS No.: Definition: LOCUS: Effekt: | GCAANGGCGG AAGCGAATCGC GCTGGACCTGC GCTGAACANCT NNTTAAANTAC, CTCTAACANTAAGA AACGGACCATT TGCNAGATNTT ATATGTGAAAG, GCNCCTCAATG n.d. #23 Maus EST-Klon AW106096.1 GI: um23a10.y1 Suga IMAG AW106096 534 | 10 X X 0 F 3 X F F 6 0 1 | GAGGACGCT<br>GCGTTACCTAC<br>GCGCTGCAAA<br>ATGTCCAANA<br>CONGAAAGCA<br>ATTCTAGACN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>ANAATGTANN<br>BOCTGAC<br>GCTGAC | GACTGGAGT<br>GACTGGAGT<br>GCCCGAGTC<br>TGCACGGCT<br>ATGAANATAC<br>ATGAANATAC<br>ATGAANATAC<br>ATGAANATAC<br>ATGAANATAC<br>ATGAANATAC<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG<br>AAAAAGGG | CCGTGCTAGI<br>GAAGCGGAGC<br>CGNCGGNNT<br>TTGCAAGAACA<br>CGNAGCNCTG<br>CTGATGGAAT<br>AAACCTAGGA<br>WAACTACTAT<br>SCGGCCGCT<br>SCGGCCGCT | AGEIGICIGAGAGGACGCTGCAGGAGGCTAGOTAGNGGCTTTCGCCTCTGGAGTACTGGAAAACTGGAAAACTGGAAAACTGGAAAACTGGAAAACTGGAAACTGGAAAACTGGAAACTGGAAACTGCGAGCCGGATCGTTGTCTTAGCGCGCGC | TCTGGAGT<br>AGCTGGTA<br>AGCCCAGG<br>CAGAAAGA<br>ATTTTGC<br>ATTTTGC<br>AGGCTGA<br>TGCCTGA<br>TGCCTGA<br>TGCCTGA | GGTCCTG<br>ACNACTO<br>AANTAGT<br>SAGGCATTAAN<br>STACCATT<br>SAGGCAG<br>SCCTATTC | GGCTGGC<br>AGAAAA<br>AGAAAAA<br>GGATCGT<br>TTGTCTT<br>VAATCTAT<br>TTGCAAC<br>TTACNAA<br>GGGAATAT<br>TATAGTG |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 60<br>65                                                                | 55                                                                                                                                                                                                  | 45                       | 40                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                               | 2.5<br>30                                                                                                                              | 20                                                                                                                                                          | 15                                                                                                             | 10                                                                              | s                                                                                                           |

|    |          |                                                                                                                                                                                                                                                                                  |              | <del></del>                                                                                                                                        |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |          | AGGGCGCCGCTCGAGCATGCATCTAGAGGGCCCTATTCTATAGNGGCACCTAAATGCTTAGAGCTCGCTTGATCAAGCC TCGACTGNGCCTTTTAAGTTTGCCAGCCATCTGGTGNTTNCCCCTCCCCGGGCCTTTCCTTGGAAGGNGCCAC TTCCCAATTGNNCCTTTCCTAAAAAAATGNGGGAAAATGGCAATCGCAATTGNCTTGGGTAAGGNGGCAATTCTA GGGGGGGAT                                  |              |                                                                                                                                                    |
| 10 |          | AGGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCTATTCTATAGNGGCACCTAAATGCTTAGAGCTCGCTTGATCAAGCCCTTCGACCCTTGGAAGGNGCCA( TCGACTGNGCCTTTTAAGTTTGCCAGCCATCTGGTGNTTNCCCCTCCCCGGGCCTTTTCCTTGGAAGGNGCCA( TTCCCAATTGNNCCTTTCCTAAAAAAAATGNGGGAAAATGGCAATCGCAATTGNCTTGGGTAAGGNGGCAATTCTAATTCTT GGGGGGGGAT |              |                                                                                                                                                    |
| 15 |          | SCTTAGAG(<br>TCCTTGAC(<br>GGTAAGGN                                                                                                                                                                                                                                               |              |                                                                                                                                                    |
| 20 |          | ACCTAAATG<br>SGGGCCTT<br>TTGNCTTG                                                                                                                                                                                                                                                |              | ·                                                                                                                                                  |
| 25 |          | TAGNGGC/<br>CCTCCCCC                                                                                                                                                                                                                                                             |              |                                                                                                                                                    |
| 30 |          | CTATTCTA<br>TGNTTNCC<br>VAAATGGC                                                                                                                                                                                                                                                 |              | lypeptide 1<br>NN-2000                                                                                                                             |
| 35 |          | GAGGGCC<br>CCATCTGG<br>ATGNGGGA                                                                                                                                                                                                                                                  |              | unit VI a, po<br>D 04-JA                                                                                                                           |
| 40 |          | TGCATCTA<br>TGCCAGC<br>AAAAAAA                                                                                                                                                                                                                                                   |              | xidase, sub                                                                                                                                        |
| 45 |          | TCGAGCA<br>TTTTAAGT<br>ICCTTTCC1                                                                                                                                                                                                                                                 |              | 6680987<br>ochrome c o<br>mRNA.<br>1 bp mRN                                                                                                        |
| 50 |          | SCGGCCGC<br>ACTGNGCC<br>CCATTGNN<br>GGGGAT                                                                                                                                                                                                                                       |              | #25 NM_007748.1 GI:6680987 Mus musculus cytochrome c oxidase, subunit VI a, polypeptide 1 (Cox6a1), mRNA. NM_007748 531 bp mRNA ROD 04-JAN-2000 ++ |
| 55 |          | A66<br>17.66,0                                                                                                                                                                                                                                                                   | р<br>с       | #25<br>NM_0<br>NM_0<br>++                                                                                                                          |
| 60 | i        |                                                                                                                                                                                                                                                                                  | ii           | Nummer:                                                                                                                                            |
| 65 | Klon #59 | T7-Sequenz                                                                                                                                                                                                                                                                       | BGH-Sequenz: | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt:                                                                           |

| Klon #60     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz   | GCATCCCTCCATGGCCTCTGCATTGGCTTCTGCTTTCTGACGTTCCAGTCCTGACTTCCTTGGNGATGAACAG GCATCCCTCCATGCATGAAACCCTTTCCTCTCCACCTTGTTTCTTGGTCATGATGNNTGTGCAGGAATAGAACCC CAGTATGGAAATTGGTAACAGAGAGAGTGGGGTATTCCTGTGACAACCTGATCTTTTTGGGGAGGACTGTGGATGGA                                                                                                                                                                                                                                                                                                                                                                    |
| BGH-Sequenz: | GACCTGGCTT TNGCNCGCNN TNCANCCCTA GTCCCCGGG TTCTCACTCC CTAAGCCCAT CGCAGNCCGG NTNGTGGANC CGCGCGTCCC AGGNTTCGTC CTAAGCCCAT CGCAGNCCGG NTNGTGGANC CGCGCGTCCC AGGNTTCGTC CTTNCNCGGC CTNCAAGAAC ATGGCTTGCT TCAGAAAGAA AATAGTTTTG TCTTCTCTAA NAACTTACNT TCAGCTTGTC GAAGATGAAA ATAAAAAAA AAATTTACCN NCTTTNAATC TTTTTCCTCC TCNCAAAAGN AACCAGTATT TTTGCCTNCC ATTCANTTTG CNNCANTAAG ANNTTTGGAG CCTGAAACCN NAGNCTTTNT NANGGANTNT CNCCTTGGTT CAGCCTGNAG GCAAATCTGA TCAACGGACC TTTATGAGTC ATTTTCCTA GACATATTCA GAAAACCTAG GAGCTGTGTC AAATGCCTGA ATTAAGCATT ACAAATGCAA GATNTTTGCN CTCTTGAAGA ATGTAGAGA TAAAAAAAA ANAA |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 5<br>10<br>15<br>20<br>25<br>30<br>40<br>45 | 03.1 GI:3402732                      | Mus musculus cione UMGC:mabsaubs from 14D1-D2 (T-Ceil Receptor<br>Alpha Locus), complete sequence. | 33 40638 bp DNA ROD 07-AUG-1998 |         |  |
|---------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|---------|--|
| 45                                          | GI:3402732                           | us cione Uwoc.:massau<br>Alpha Locus), complete                                                    | 40638 bp DNA                    |         |  |
| 55                                          | #26<br>AC005403.1 GI:34              | Mus muscul                                                                                         | AC005403<br>                    | ‡       |  |
| 60                                          | Laufende Klon Nummer:<br>ACCESS No.: |                                                                                                    |                                 |         |  |
| 65                                          | Laufende Klon<br>ACCESS No.:         |                                                                                                    | rocns:                          | Effekt: |  |

| Klon #61     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz   | GCCGCTGNAGGANGGGACCCAATNCTCTATTANCATCTGNNCTGATTCTTNGGGCCCCNGAANTTTATATTATTCCTC CNAGGATNTGGAATTATTACACATGTCGTACTTACTACTACTNCGGANNAANANAACCTTNCNGCTATANANNANTNTGTATGAG CNAGGATNTGGAATTATTACACACATGTCGTACTTACTACTACTACTACTACTATTACAGTANGNTTAGNTGTANAACACGGAN CANTANTGTCNATNGNCTNTCTAGGCCTTTATNGNNTGAGCCCACCACACGAN CNTACTTTACATCANCCCGNTNTNATNATCNGCANTTNCTACCGGANTCAAANTNTTTANCTGATCTNGTAGCCTACACGGA GGTNNNNTTAACTCGATCTNCCAGCTATACNANTGAGCCTTTANGCTTTATTTACNGTNGGNGGTCTAANNGNA ANTTGCNTNANCCNANNTNATCCCCTTGANCATNNCNCATTCACNGAACCANNCTANNCAGTATCCNCCATTTNCCNCTNTT GNNCCTATCANNTGGGGAGTCAGNTGCTTTCNTATCCAGNNACNNTGTNTTCATCTNGAANNTCCCNNTTNNTNT CCNTNANGGCTTNCCACCCCTTNTTATAGGACCNCCNTCNNACCNCCATTTCCTC CCNTNANGGCNTCTCTCCANCNTTNNTCCCTTTCCCTTTCCCC |
| BGH-Sequenz: | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TTGACAGTNTGCGNAAAACCTCCCATCCTTATGTANCTGACAGGNGCTTTTNCGCGNANTNACAAAAGCCACCTTGAACCC

| Laufende Klon Nummer:      | 439                                                                               |
|----------------------------|-----------------------------------------------------------------------------------|
| ACCESS No.:<br>Definition: | L07095.1 GI:3150274 Mus domesticus strain NZB/B1NJ mitochondrion genome, complete |
| rocus:                     | LOCUS MUSMTHYPA 16303 bp DNA circular ROD 22-MAY-1998                             |
| Effekt:                    | ‡                                                                                 |
|                            |                                                                                   |
|                            |                                                                                   |
|                            |                                                                                   |
| Klon #62                   |                                                                                   |
| T7-Sequenz                 | GCAAACATGGNCAGGAGCATCTTGGCAGCNTTAAGCCTTCANAGAATTATCAACCANGGNCATNAGAGNCGACTCTGNCTC |
| ·                          | NGAAGGCTNGCACCTTTCACTTGCCCAGAGGANGCTCTGACNAAGGGGGGTGCATCAACCANCTCCNGTGTAAGCNGNCTA |
|                            | / AGGAGTCCGAGGCACCCCANCAGCTGCTGCTGTGTCACTGCCACCTCATTGANAAGTCANAAGTCANGATGTACA     |

| TGTCANTNCTAGGTCGCCTTCOAGCTTGCCTNGAGNNAAANTCNNGTCCNTTGAAACCCCCNNTGGCANGCCCAACCCCAACCCCCAACCCCCAACCCCCAACCCCCAACCCC | 5    |
|-------------------------------------------------------------------------------------------------------------------|------|
| GGCANGCC<br>ATTTNAANI<br>ATNNCCAAA<br>CCTNNCCN                                                                    | 10   |
| CCCCCNNT<br>CCCCCNNT<br>TTANNNTT<br>SAATTNNTTI<br>TANGNTTIC                                                       | 15   |
| CCNTTGAAA<br>TTTCNNACC<br>NCTCTTTCC                                                                               | 20   |
| ANTONGE<br>NNTGNCCA<br>NACCNCON<br>SNCAAACNO                                                                      | 25   |
| AANTTANAN<br>CTTANANAG<br>TTCTNNCTC                                                                               | 35   |
| AGCTTGCC1<br>AGCTTGCC1<br>IGACNNCNN<br>VINTAAACNC<br>INNTNTAAAT                                                   | 40   |
| TCACCTTCN<br>GATNCTCAG<br>CCCCAAACI<br>AANTCTCAA                                                                  | 45   |
| SAAGCTTNA<br>SAAGCTTNA<br>TCTTNTTCC<br>AGGTCCCCC                                                                  | . 50 |
| TGTCA<br>NNNTC<br>ATTAC<br>NACCA<br>TGNNC                                                                         | 55   |
|                                                                                                                   |      |

60

|    |             |                                                                                                                                                                    | <del>```````````````````````</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | ·           | ·                                                                                                                                                                  | GTTTTGTTTGAAACGGCAACACTTCGGTCANGATATCTTCTACCAGACCCCAAGGCCGTATGGAGATAGAATANAAAGAATGC TTCGCCTCAGNITAAACATTGACCCTGAAGCACAGGNGGAGGAACCNGAAGAAGAGACCTGAAAGAAT GCANAAGACTCAGAGGATGAGGNAGAAGAGATGGATGCAGGNACAGAANAAGAAGAGAGAGAGAGAGAAT CTACNGANAAGGATGAANTTATACTCTCGCTATGAATCCCGNGTGGAGAGAAATGNGAAGTTNTGAAGTCATTTC TTTTGAGAGACTTGNTTTGNATGCTTCCCCNNGCCTCCTTCTCCCCTGCNCTGTNAAATGNTTGAGATTNTGGGTCACAGG AAGAAGTGNNTTTTTTANCTGNANTNTTTTTNNCATTCCTCTGAATGTANATTNNGTNCTATTTAACTGACTATTGGCGTCN NAATCTTGTCNTGTGTNTNAACCCTCCCCANNCATCCCCANCTCCCCNACNTNCCCTCCNCCCTCCNCCCTCTCTONN CTCCCCTCCNNGNNCNCNCCCCCNCATCTTCNTNNACNNGNGNCTNCCCNCCNNNTNTNTNCTNCCCTCCTCTTAN ANNNGGGGNCCCCCTNAATTCCNTATTANCNTGNCCCCCCN |
| 10 |             |                                                                                                                                                                    | TAGAATAN<br>AGACACC<br>GGAAACAN<br>AGTTNTG<br>GATTNTGC<br>CTGACTA1<br>CCNCCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15 |             |                                                                                                                                                                    | ATGGAGA<br>SAGCCTGA<br>AGAGNGA<br>VAATGNGA<br>TGNTTGG<br>CTATTTAA<br>CCNCCCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 |             |                                                                                                                                                                    | CAAGGCG1 NGAAGAAG GAANAAGA GGAGAGGGI ICTGTNAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25 |             | ete cds.                                                                                                                                                           | SCAGACAC<br>SAGGNACA<br>SAGGNACA<br>CCCCGONGT<br>CCCCTGCN<br>GAATGTAN<br>GAATGTAN<br>GAATGTAN<br>GROCTNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30 |             | #48<br>Selenoprotein P<br>NM_009155.1 GI:7110716<br>Mus musculus selenoprotein P, plasma, 1 (Sepp1), mRNA complete cds.<br>Sepp1 2075 bp mRNA ROD 04-JAN-2000<br>+ | ATCTTCTAG<br>GGNGGAG(<br>GGNGGAGG<br>ATGGAG<br>SCTATGTA<br>TCCCCANO<br>TCCCCANO<br>TNNACNNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35 |             | 1 (Sepp1), mRNA<br>04-JAN-2000                                                                                                                                     | STCANGAT<br>SAAGCACA<br>VAGAAGAG<br>TTTTNNCA<br>TTTTNNCA<br>CCCNNCA<br>CATCTTCN<br>TANCNTGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 |             | P, plasma, 1<br>ROD                                                                                                                                                | CACTTCG<br>GATGACCT<br>GATGAGG<br>IGTAANTT<br>INATGCTTC<br>TGNANTNI<br>AACCCTCC<br>ICCCCNCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 45 |             | P<br>SI:7110716<br>elenoprotein<br>i bp mRNA                                                                                                                       | GTTTTGTTTGAAACGGCAACACTTCGGTCANGATATCTTCTACTTCGCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50 |             | #48<br>Selenoprotein P<br>NM_009155.1 GI:7110716<br>Mus musculus selenoprotei<br>Sepp1 2075 bp mRN                                                                 | GTTTGTTTGAA<br>TTCGCCTCAGNT<br>GCANAAGACTCA<br>CTACNGANAAGG<br>TTTTGAGAGACT<br>AAGAAGTGNNTT<br>NAATCTTGTCNTG<br>CTCCCCTCCNNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 55 | n.d         | #48<br>Selenc<br>NM_0C<br>Mus m<br>Sepp1                                                                                                                           | P S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 | :21         | n Nummer:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 65 | BGH-Sequenz | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt:                                                                                           | Klon #63<br>T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|              |                                                                                                                                                              | _   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|              |                                                                                                                                                              | s   |
|              |                                                                                                                                                              | 10  |
|              |                                                                                                                                                              | 15  |
|              |                                                                                                                                                              |     |
|              | embrane                                                                                                                                                      | 2.5 |
|              | #51 ER Transmembranprotein J03297.1 Gl:193094 Mouse ERp99 mRNA encoding an endoplasmic reticulum transmembrane protein. MUSERPX 2759 bp mRNA ROD 12-JUN-1993 | 30  |
|              | oplasmic retic                                                                                                                                               | 35  |
|              | ding an endc                                                                                                                                                 |     |
|              | membranprotein<br>Gl:193094<br>tp99 mRNA encoding an<br>protein.<br>X 2759 bp mRNA                                                                           | 45  |
| vi           | #51<br>CR Transmerr<br>J03297.1 GI:1<br>Mouse ERp99<br>pro<br>MUSERPX<br>+                                                                                   | 50  |
| n.<br>G      |                                                                                                                                                              | 55  |
| enz:         | Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: Bemerkung:                                                                                              |     |
| BGH-Sequenz: | Laufende Klon<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Bemerkung:<br>Effekt:                                                                               | 65  |

| 60                                   | 55                                                         | 50                                                                                                                | 45                                                                                                              | 40                                                                    | 35                                                                                  | 30                                                                  | 2.5                                                                     | 20                                                                                 | 15                                                                              | 10                                                                 | 5                                                                     |
|--------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|
| Klon #64                             |                                                            |                                                                                                                   |                                                                                                                 |                                                                       |                                                                                     |                                                                     |                                                                         |                                                                                    |                                                                                 |                                                                    |                                                                       |
| T7-Sequenz                           | GGAA<br>AGGCI<br>TACAC<br>GATGC<br>AGTCA<br>TGGGV          | GGAAAGGACGCG<br>AGGCCGGGCCGC<br>TACACCCCCCAAC<br>GATGGCCCCCAAC<br>AGTCACGGAGGAG<br>TGGGAAACAAGCC<br>TTATGGCCATCG( | GGAAAGGACGCGGNCCCCGGGGTGCGCCGGGTCGCGGCGGNCCCCGCAGGCAGCCATGGCGGCGGGGGGGGGCCCAGGGCGGCCGCGCGCG                     | SGETGCGC<br>AAGGCGC<br>CTGTTCGA<br>CTCATCG<br>CTGGACAT<br>AAACTCTT    | CGGGTCG<br>RAGGTGAG<br>RGCCGCCG<br>GCCTCGCC<br>ACCTTTA<br>ACCTTTA<br>CGCCTAGG       | CGGCGGN<br>CCGCCCA<br>CTGCAGC<br>ATCAACC<br>TGTGCCC<br>TTAGGGG      | ICCCCGCAG<br>GTGCCGCC<br>STTTACTGG<br>STGGTCACC<br>TGGGACTC<br>AACTATTT | SGCAGCCA<br>SCINCTGCC<br>ACCTGGCT<br>ACACTAGT<br>TITTATCTA<br>SATCATGG<br>SGTTGTTT | TGGCGGC<br>SGCGGCTG<br>TGCTCCAA<br>TGCTCATC<br>CCAGTCAC<br>TTGTGACT             | GGGCGC<br>GGAGGATC<br>TTCTACT<br>TTCTACT<br>TTCGATG                | CGGGGCC<br>CGCTCTG<br>CGCTCTG<br>CCCTAC<br>CCATTGA<br>CACAGTA<br>SGGA |
| BGH-Sequenz                          | TTTTTTT<br>TTTCATG<br>TTCATG<br>AGAACT<br>AGAATT<br>CACCAA | CTTTTTGTTTNGGT<br>TTTCATGAAACAGC<br>AGAACTTGAACCTG<br>AAGAAGTAAAGTN1<br>AGNATTGGTNTAAA                            | CTITITIGITINGGTGCCACTATAGAATAGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCCTTTTTTTT                                          | gAATAGGC<br>TNGGTTAA<br>GAGATGGC<br>CTTGTTGA<br>CTCAAATGA<br>ACCTGGCC | SCCCTCTAC<br>NTGGCTG/<br>NAAATGTTC<br>CATGAAGI<br>CATGAAGI<br>VANAAATG/<br>CAANAAAN | SATGCATO<br>VAAATTTT<br>SGAAAGNO<br>INTTGAAN<br>VCCATTGA<br>ACAGNGT | ICTATAgAATAGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCCTTTTTTTT                    | GGCCGCC<br>FACTAAA<br>CCATGTTA<br>ATGAAGGN<br>NGACAAC<br>NATAGTTC                  | CTTTTTTT<br>ATTAAACA<br>TTNTGATC<br>IGTNTTGA<br>ATATTCATI<br>ACTTTTCC<br>TGTTTT | TTTTTTTT<br>ATGNTTC,<br>SAGTNTT<br>AATTTGC,<br>NTATAAA,<br>STCATGG | TTTTTTT<br>TATCTCC<br>GAANAA<br>AGGCCCA<br>NTATTAA<br>SAGCTAT         |
| Laufende Klon Nummer:                | #6/3                                                       |                                                                                                                   |                                                                                                                 |                                                                       |                                                                                     |                                                                     |                                                                         |                                                                                    |                                                                                 | •                                                                  |                                                                       |
| ACCESS No.:<br>Definition:<br>LOCUS: | AF047431<br>Homo sapi<br>AF047431                          | AF047431.1 GI:5514630<br>Homo sapiens AAPT1-lik<br>AF047431 1122 bp n                                             | AF047431.1 GI:5514630<br>Homo sapiens AAPT1-like protein mRNA, partial cds.<br>AF047431 1122 bp mRNA PRI 17-JUI | nRNA, parti                                                           | al cds.<br>17-JUL-1999                                                              |                                                                     |                                                                         |                                                                                    |                                                                                 |                                                                    |                                                                       |
| Effekt                               | ‡                                                          |                                                                                                                   |                                                                                                                 |                                                                       |                                                                                     |                                                                     |                                                                         |                                                                                    |                                                                                 |                                                                    | _0 <u>;</u> _                                                         |
|                                      |                                                            |                                                                                                                   |                                                                                                                 |                                                                       | •                                                                                   |                                                                     | •                                                                       |                                                                                    |                                                                                 |                                                                    |                                                                       |
| •                                    |                                                            |                                                                                                                   |                                                                                                                 |                                                                       |                                                                                     |                                                                     |                                                                         |                                                                                    |                                                                                 |                                                                    |                                                                       |

Konvention für Bewertung des phänotypischen 'Zelltod-Effektes': - negativ, -/+ und -/++ schwach positiv, + positiv, ++ stark positiv, +++ sehr stark positiv

| Klon #65                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz                                                    | TGCTGGAAAGGGGAGATCCTGAGACCAGTGGCCTCGGAGGCTCTTCATGCAGCTCATTCCGCAGCAGTTGCTGACCACTGAAAGAGCCTTTG CACCCTCGTGCCACTGTTCCGGAATTCACGGTACAGTTCCACTTCACTAAGGACATGGAGAGAGCCTTTG CACCCTCGTGCACTGTTCCGGGGCTGCGTGCACTTCTCCTACAAGGCATCGTGTGAGGTGCTGTGCTCC TGTACTCCTCGGAGAAGAAGATCTTCATCGGCCTCATCCCGCACGAGCAACTTTGTCAACGGCATCGTCGCGTCA TGCCCAACCAGCAGGAGATCTTCATCGGCCTCATCCGCAGGAGCAGCATTTGTCAACGGCATCGTCGCGTCA TCGCCAACCAGCAGGCAGGCAAGCCTGGAGCAGGAGCAGCAGCGAGGGATGGGTGGCTAGAGGATGC CTGGGCTGGG |
| BGH-Sequenz:                                                  | GCCNGCTTCTCNGCATTTAGGTGACACTATAGAATAGGGCCCTCTAGATGCATGC                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: | UI-3<br>U79287<br>Human clone 23867 mRNA sequence 1396 bp<br>HSU79287                                                                                                                                                                                                                                                                                                                                                                                                         |
| Effekt:                                                       | ++ (schnell), starkes Laddering                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 60                                                            | 55                                                                             | 50                                                                                                                     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                              | 35                                                                   | 30                                                                                                                                    | 25                                                                    | 20                                                                          | 15                                                                              | 10                                                                   | 5                                                                  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Klon #66                                                      |                                                                                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                      |                                                                                                                                       |                                                                       |                                                                             |                                                                                 |                                                                      |                                                                    |
| T7-Sequenz                                                    | ATGGN<br>AGCAG<br>TACCC<br>ACCTC<br>ATGTG<br>CTGCC<br>NCNCC                    | ATCGNCCCCCTTG<br>AGCAGAGAGGTG(<br>TACCCACCTTATC(<br>ACCTCAGGGGTAC<br>ATGTGGTGGAAGA<br>CTGCCTCTGGAAGA<br>NCNCCTGNNCCCA  | ATCGNCCCCTTGGTNNCCGGCTCGGACCCTNTCAACGCCCGCCGGTGTGTGCTGGAAGCAGCGGGCGGCTGCTTCGTGG AGCAGAGAGGTGCATCACCAGGTTCCCGATGAACCCAGCCCCCCCTATNCGNGCCCCGGGCCAACAGCCCCA TACCCACCTTATCCACAACAGCCAATGGGGCCCAATGGGGGCCTATGGGAGCCCCACCTCCTCAGGGGTACCCCTACCCACC ACCTCAGGGGTACCCCTATCAAGGATACCCACAGTACGGCTGGCAGGGTGGACCTCAGGAGCCTCCTAAGACCACAGTGT ATGTGGTGGAAGACCAAACGNAGAGACGACCTGCGCCCACCTGCCTNANAGCCTGCTNGACTGCTCTGNGTNGCTG CTGCCTCTGGGAAACGNACCTGNTCANCTGATGAGCCCAGCTTCCGNTTGNCCGCTCTGNGCTCCTAATNCNT NCNCCTGNNCCCATCTCTCCTGCTTNCTCTNCAGNTGCCTANCCTCCTCTCCCTCTCCACNTTTA | SCTCGGA(<br>SGTTCCCC<br>SCATGG(<br>AGGATGCI<br>AGGAGACC<br>CTGNTCAI<br>GCTTNCT( | CCCTNTCA<br>SATGAACC<br>SGCCAATC<br>CCACAGTA<br>SACCTGCG<br>NCTGATGA | ACGCCCG<br>CAGAGAA(<br>SGGGCCTA<br>ACGGCTGC<br>SCCCATCC)                                                                              | CCA <u>GTGTG</u> CCTCCACC TGGGAGCC SCAGGGTGC SCAGGGTGC TCTCCCC CTCCTC | STGGAAA(<br>SGTATNCG<br>SCCACCTC<br>SACCTCAC<br>JANAGCCT<br>TTGNCCG         | SCAGCGA(<br>SNGCCCCG<br>SCTCAGGG<br>SGAGCCTC<br>GCTNGAC<br>CTCTGNG(<br>STCNTTTA | SCGGCTGG<br>GGCCAAC<br>GTACCCC<br>CTAAGAC<br>TGCTCTGI                | STTCGTGG<br>AGCCCCA<br>FACCCACC<br>SACAGTGT<br>AGTNGCTG<br>NATNCNT |
| BGH-Sequenz:                                                  | CCTTTTTT<br>CACATATT<br>ATTTAGCA<br>TCACTAAT<br>GGCCAGG<br>CCCAGAG<br>TTCCACCA | SCTTTTTTTTTT<br>SACATATTGCCATT<br>ATTTAGCACATTTT<br>ICACTAATCTAAAA<br>SGCCAGGCACACT<br>SCCAGAGGCACACT<br>TCCACCACATACA | CCTITITITITITITITITITITITITITICCAGATITIGGACAGATTTGAAACATAAAGGGGTATGACCAGAGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAGATITI<br>STETATAA<br>SAGTAAGA<br>GACAGAA<br>GTGGCAC<br>GAGCAGT<br>TTAGGAG    | GGACAGA<br>TTTAAACA<br>VAATGAGT<br>AGTAGAGG<br>XAGAGCGG<br>CCCAGCAG  | TTTATTGA<br>TTATAAAT,<br>TTTGAACA<br>STGTCTGC<br>SCCAAGCG<br>GCTGTGA(AGGTCCA(AGGTCCA(AGGTCCA(AGGTCAAGCAAGCAAGCAAGCAAGCAAGCAAGCAAGCAAG | AACATAAAG<br>ATATATTC<br>TTAAAAAG<br>GCAGAGCT<br>GAAGAGCT<br>GGAGGGTG | GGTATGA<br>ATAACTAA<br>ATCAAGTC<br>AGCCACT<br>AGCCTCA<br>GGCCTCA<br>GATGGGC | GCGGGGGG<br>GCCTTTG(<br>ACTGAACI<br>TTATAGCA<br>TCAGGTG,<br>CCAGGTC             | GATCTAGI<br>SCCAAAAA<br>AAATAGO<br>ATCAGGTG<br>ATCAGGTG<br>GTCTTTGAI | AGTGTGT<br>AGTAAATT<br>AGTAACCC<br>SAGATGG<br>SAGATGT<br>TTTGGTC   |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: | UI-5<br>C88489,<br>ESTs di                                                     | UI-5<br>C88489, AA073437, A1048028<br>ESTs dbj/C88489, gb/AA0734                                                       | ', A1048028<br>gb/AA073437, gb/A1048028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gb/AI0480;                                                                      | 28                                                                   |                                                                                                                                       |                                                                       |                                                                             |                                                                                 |                                                                      |                                                                    |
| Effekt:                                                       | + (langs:                                                                      | am), schwa                                                                                                             | + (langsam), schwaches Laddering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>ā</u>                                                                        |                                                                      |                                                                                                                                       |                                                                       |                                                                             |                                                                                 |                                                                      |                                                                    |
|                                                               |                                                                                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                      |                                                                                                                                       |                                                                       |                                                                             |                                                                                 |                                                                      |                                                                    |

| T7-Sequenz CTGGAAAGGNGCGGACTGCTGCTGCTGCCATGGAGGCTGGAGGCTGGATCACTNTGTTAGACTGGGGGCCTGGGGTGGGTGGATCGGGGGGGGG                                                 | Klon #67                                                       |                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nummer:                                                                                                                                                   | T7-Sequenz                                                     | CTGGAAAGGNGCGGAGCCTGCTGCCATGGAGGCTGGNGGCTGGGTACACTNTGTCTAGACTGGGGGCCCTGGGCGGGGCG                                                                                                                                                                                                                                     |
| Nummer: UI-6 AK001441 homolog zu Homo sapiens cDNA FLJ10579 fis, clone NT2RP2003446 und ESTs, z.B. Al663355 und AU080732 +++ (schnell), starkes Laddering | BGH-Sequenz:                                                   | TTIGAAAGCCCGTTCTAGCATTTAGGTNCACTATAGAATTNTGACCTCTATATGCATGCTCGAGCGCCGCCGACGGACTG GACGCCCGCTCTCTCAGGAGTNCACTATAGGATTNTGACCTCTATATGCATGCTCGCAGCTCACTTCGTCTCAGCATCT CAACTCTCCTTGTCGGAGTCCCGCTCGTAATCAGACTCCCCATCGTTGTTGTGACTCCTCCTCTCTCGCACTCTCGCGCTTGTG AGTGCGGCCCTTGAGGGGGGGGTGTGTATATCAGACTGGGGACCTCCCCGGACACTCTCTCT |
|                                                                                                                                                           | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>Effekt: | oldg zu Homo sapiens cDNA FLJ10579 fis, clone NT2RP2003446 ESTs, z.B. Al663355 und AU080732 (schnell), starkes Laddering                                                                                                                                                                                             |

| 16 IGIGIGORAMAGCGCTGGGTCTGAGTGACCAAAGGCAGTAGCNCTCGGGAGATCACCCGGTGNCCCTNGATCACCATACACACACACACACACACACACACACACACA |
|-----------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------|

| Klon #69                                                     |                                                                                                                                          |                                                                                                     |                                                                                                   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                 |                                                                                           |                                                                                      |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| T7-Sequenz                                                   | GTGTGCTGGAA<br>CCTGTGGAGCT<br>GTGCCGAGGAA<br>CAGTCAGACAAA<br>AGTTCAGGAGA<br>AACTTCAGGAGA<br>CCAAGAAGAACTA<br>GAAAGTAAACTA<br>AGAAGTAAGAC |                                                                                                     | TATTCGTCA<br>STGGGGGTC<br>SGCAAAGA<br>SATGGAGGG<br>GCGAAAGG<br>GCGAAAGG<br>TCACTGTTT<br>SGGCTGAAA | CTGCCAGGC ACAGCCTCT AGAGCCATA AGAGCCATA AGAGCAAG AGAGAAATCT GGTCAAATCC GGTCAAATCC GGTCAAATCC CTTTTGCTG | AGGCAGCATCTATTCGTCACTGCCAGGCTGAACTGGAGGCTTTCAGAGTCCCTGAGGAAGAGCATCT TTCTCTGTTCCTGGGGGTCACTGCCAGGCTTAGAGGCAGAGAGATTGAGGTCCCTGAGGAGGCATCT AGGCAGTGAAGGGGGTCACAGGCTTTAGAGGCCAGGAGAGAGA                                                                                                                                                                                                                                                            | GGCTTTCAGA<br>AGGAAGAAGA<br>GTCACAGAGC<br>GACAAAGAAG<br>CAGGAGAGAAGAAG<br>SAATGAAATAA<br>SAATGAAATAA<br>TGGCAATGCC<br>TAGTCTAAAG | ATCCCTG, TTGAGCTG ATTGAGCTG ATTGAGCGGGGGGGGGGGGG                                | AGGAAGA<br>GGCTACO<br>AGGACTCT<br>CTGAGAACA<br>AGAAACA<br>ACAGCTG<br>SAGAGAAC<br>GGTTTTAC | SCATCT<br>AGCAA<br>ATCTTG<br>SGAACT<br>TTGCTA<br>AAGGT<br>SAGATG<br>SCAGGA<br>ATTTAT |
| BGH-Sequenz:                                                 | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                   | TITITITITITITITITITITITITITITITITITITI                                                              | TTTTTTTTT<br>GCGTTTTAA<br>GCGTTTTAA<br>GTTCTGNI<br>CACTGAAAI<br>GNAATGAA(<br>AACCGNGGT            | TTTTATTTA<br>CAAGAGCTC<br>TGATTTACTT<br>TTGACAGGA<br>TTGACACAGA<br>TATTAAACTA                          | THITTITITITITITITITITITITITITITITATCTGCATGCCTTTTATTATCAATCAAACATTTTCCTCATACAT ACCCACTTGNGCGTTTTAACAAGAGCTCTTTTTAACAATTTTTCTGAATCAACTGGGATACATATGC SATTTGGCCATGTTTCTGNTTGATTTACTTACATCTTTTCTAGAAATAATTTCACTATATTCTGACTGGCCTC TTAGATAACATCACTGAAATTTGACAGGATTTATGGACGCCAGACCCTTATATTCTTCAATCATTGGTTTGN AAATATAATAGGNAATGAACTGACACAGAATTAGACTCCGAGGAAGCAGTATCTGACAATTTAGCTATTAA ACTTTCTTTGTAACGGNGGTTATTAAAACTAGAATGNGTACTTAAAAATCACAGCAAAAAAAAAA | TTTATTATCA<br>FATCTGTAGTC<br>GAAATAATTT<br>CAGACCCTTA<br>AGGAAGCAGT<br>TAAAAATCACA<br>STACTTAGTGA                                | ATCAAACA<br>STACAACTC<br>CACTATAT<br>TATTCTTCA<br>ATCTGACA<br>AGCAAAAAAAGCCGAGG | TTTCCTC<br>SGGATACA<br>TCTGACTG<br>VATCATTGC<br>VATTTAGCT<br>GTTTGGTA                     | ATACAT<br>TATGC<br>GCCTC<br>STTTGN<br>TATTAA<br>TCAAA                                |
| Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: Effekt: | UI-10<br>U44731<br>Mus musculus pu<br>MMU44731<br>-/+                                                                                    | UI-10<br>U44731<br>Mus musculus putative purine nucleotide binding protein mRNA,<br>MMU44731<br>-/+ | leotide binding                                                                                   | g protein mRN/                                                                                         | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                 |                                                                                           |                                                                                      |
| 60                                                           | . 50                                                                                                                                     | 45                                                                                                  | 40                                                                                                | 30                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                               | 15                                                                              | 10                                                                                        | 5                                                                                    |

| 5  |          | TCGCACCANCCTTGGACCGAGCTCGGATTCCCTAGTAACGGCCCCCAGTGTGCTGGAAAGAACGCCTCTGGGGAGCATG GCATCGTGGTTTTCTCTTTGGGATCCATGGTCTCGAAGAAGAAGAACGCCTCTGGGGAATTGCTGAAGCCAAGAACTGCCAAGCCATGGTTTGGGCAAGAATTGCTGAAGTGGC GAATTCCTCAGACGGTCCTGTGGCCCTACCGGGAACTTCATCACAAACTCTTGCAAAGAACACACAATTCTTGTCAAATGGC TACCCCAAAATGATCTGCTTGGTCATCCAAAGACTCGGGCATTCATCACACACA                                                                               | TITITITITIAGEGATACAÁTTTATATGAÁTTTÁTTGATAAGITCITGGITTGGGAACAATAGÁAGATGTACATTGCCTTAGA ACATACITTGGITTTCATCAAATTCCGGCACAAGCAACAATTATCTCAAACACAGGGCCATCAGTGTCACACAGCCCTCATCT CTTCTCCCAAAGCTCCAAAGGTCTTGCTACCCATAATGCATGAACAATGAAGAATGACTAACACTGGAGAAGGCCACGG CAGTCTGAGAATCCAGGGGAAAACCATCAGCTGGCGGGAGCAGGGGGAAACTGTGGGCTGTCACTGAAAGCCAGAGTG CCAGACTTTCTGTAAATTACCAACAGATGGCAGGGGGGGG                                  |                                                                          |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 10 |          | CCTCTGGG<br>ATTCTTGTC<br>GTATTTATC<br>GTATTTATC<br>GTGACACT<br>TCACAAC<br>CTGTGTTC<br>TCAGTACC<br>TCAGTACC                                                                                                                                                                                                                                                                                                                 | ATGTACTTG TGTCACAG TGGAGAAG ACTGACAAG ATCACATAI AATGTATG ATACTTCT                                                                                                                                                                                                                                                                                                                                                |                                                                          |
| 15 |          | AAGAACGC<br>GGAAATTG<br>GGAACACA<br>GTCCCATG<br>SAGCCGCA<br>AACTGTCA<br>ACCTGGTA<br>STTGTGCCT<br>TGGGGGAA                                                                                                                                                                                                                                                                                                                  | MTAGAGG<br>SCCATCAG<br>SCCATCAC<br>ACTAACACT<br>SGCTGTC<br>VAAAGCAC/<br>TGAATGTAT                                                                                                                                                                                                                                                                                                                                |                                                                          |
| 20 |          | GTGCTGGA<br>MAAGCCAT<br>ICTTGCAAA<br>CACTCTGG<br>MACATGCC<br>GCCCTTAA<br>ATGACCTC<br>CTTTAAATG<br>TTGAGAAG                                                                                                                                                                                                                                                                                                                 | GGGACACACA<br>VACACAGG<br>SAAGAATG<br>VAACTGTG<br>SATACTGG<br>VAATGTGCT<br>SATCAGATA                                                                                                                                                                                                                                                                                                                             |                                                                          |
| 25 | ,        | TGGACCGAGCTCGGATTCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGAAGGACGCCTCTGGGGAGCATG  TCTCTTTGGGATCCATGGTCTCAGAGATTCCGGAGAAGAAGCCATGGAAATTGCTGAGGCTTTGGGCCA  TCTCTTTGGGATCCTGGGAACTAGACCATCGAATCTTGCAAAGAACACAATTCTTGTCAAATGGC  ATCTGCTTGGTCATCCAAAGACTCGGGCATTCATCACACACTCTGGCTCCCATGGTATTTATGAAGGAAT  ATCTGCTTGGTCATCCAAAGACTCGGGCATTCATCACACACTCTGGCTCCCATGGTATTTATGAAGGAAT  TCCGATGGTGATGATGCCCTATTTGGCGATCAGATGCCCATGGCTCATCACACACA | GATACAATTTATATGAATTTATTGATAAGTTCTTGGTTTGGGAACACAATAGAAGATGTACTTGCCTTAGA TTTCATCAAATTCCGGCACAAGCAACAATTATCTCAAACACAGGGCCATCAGTGTCACAGCCTCATCT CTCCAAAGGTCTTGCTACCCATAATGCATGAACACAATGAAGAATGACTAACACTGGAGAAGGCCACGG CCAGGGGAGAAAACCATCAGCTGGCGGGAGCAGGGGAAACTGTGGGGCTGTCACTGAAAGCAGAGG TAAATTACCAACAGAGAGTGTTGTCTAGACTGAAGGAAATGGAAAGCACATCACATATACTAGAA GGTGTGGCCAGCAATAGATTGTTATTATTATTTTAAAATGCTGAAATGTATATATA |                                                                          |
| 30 |          | GTAACGG<br>AGAGATTC<br>AGAGCAT<br>TGGGGCAT<br>TTTGGCGA<br>TTTGGCGA<br>AGGACCC<br>AGAATCC/<br>AGTGTTNG                                                                                                                                                                                                                                                                                                                      | SATAGETTC<br>AACAATTA'<br>AATGCATG'<br>AATGCATG'<br>AGTGCATG'<br>AGTTGTCTA<br>TTATTATTA                                                                                                                                                                                                                                                                                                                          | 6) mRNA                                                                  |
| 35 |          | SATTCCCTA<br>ATGGTCTCA<br>STACACCGC<br>SCAAAGACT<br>TGCCCTA<br>ATGACTCC<br>GCCTTCAC<br>GCCTTCAC<br>GCCTTCAC<br>GCACACCCT<br>TGTGTTGACACACT                                                                                                                                                                                                                                                                                 | AATTTATTG<br>GCACAAGO<br>CTACCCATA<br>CATCAGCT<br>TGGCAAGA<br>NTAGATTG<br>AACACTTG                                                                                                                                                                                                                                                                                                                               | P glucuronosyltransferase (UGT1-06) mRNA                                 |
| 40 |          | GAGCTCGC<br>GGGATCC/<br>TGTGGCATC<br>TGTCATGA<br>TCCTTGAA<br>CCTCTCCA<br>AGGGGGC/<br>SNAGTGAACTT                                                                                                                                                                                                                                                                                                                           | NTTATATAGE AAATTCCGE GGGTCTTGC GGGAAAAC CCAACAGA GCCACCAGA ATGGATCTTGC                                                                                                                                                                                                                                                                                                                                           | osyltransfera                                                            |
| 45 |          | CTTGGACO<br>TTTCTCTTT<br>SACGGTCC<br>GATCTGCATG<br>CCTGAATG<br>ATCATGCGA<br>SAGGCACA<br>SCTTCCTCC<br>AAAGGGGC                                                                                                                                                                                                                                                                                                              | STGATACAA<br>STTTTCATCA<br>GCTCCAAA<br>ATCCAGGG<br>GTAAATTA<br>GGGGTGTG<br>AAAACAAT                                                                                                                                                                                                                                                                                                                              | DP glucuron                                                              |
| 50 |          | TCGCACCANCCTTGGACCGAGCTCGGATTCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGAAGAACGCCTCTGGGGGAGCATG  GCATCGTGGTTTTCTCTTTGGGATCCATGGTCTCAGAGATTCCGGAGAAGAAGCCATGGAAATTGCTGAGGCTTTGGGCCA  GCATCGTGGTTTTCTCTTTGGGATCCATGGTCTCAGAGATTCCTGGAATCTTGCAAAGAACACAATTCTTGTCAAATGGC  GAATTCCTCAGACGGTCCTGTGGCCCTAACACGCGCATTCATCACACACA                                                                                                               | TITTITITIAGTGATACAATTTATGATTTATTGATAAGTTCTTGGTTTGGGAACACAATAGAAGATGTACTTGCCTTAGA ACATACTTTGGTTTCATCAAATTCCGGCACAAGCAACAATTATCTCAAACACAGGGCCATCAGTGTCTCACAGCGCTCATCT CTTCTCCCAAAGGTCTTGCTACCCATAATGCATGAACACAATGAAGAATGACTAACACTGGAGAAGGCACGG CAGTCTGAGAATCCAGGGGAAAACCATCAGCTGGCGGGAGCAGGGGGAAACTGTGGGGGAAATCAGAAACCATGAAAGCAGGGGGGGG                                                                            | UI-12<br>U16818<br>Mus musculus UD<br>MMU16818 ·                         |
| 55 |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                      | E & P & S S E P                                                                                                                                                                                                                                                                                                                                                                                                  | U1-12<br>U168<br>Mus r<br>MMU-                                           |
| 60 |          |                                                                                                                                                                                                                                                                                                                                                                                                                            | .z.                                                                                                                                                                                                                                                                                                                                                                                                              | on Nummer:                                                               |
| 65 | Klon #70 | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                 | BGH-Sequenz.                                                                                                                                                                                                                                                                                                                                                                                                     | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt: |

|          |                                                                                                                                                                                                                                                                                                                           | - |    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|          | CGCTTTCA STCCTGAT ATAAGCATC AGACATCCT AAAGAAAG TGGGGCC ATCACAAG GGATTTTA VAGCAACG                                                                                                                                                                                                                                         |   | :  |
|          | GCCA <u>GIGIG</u> CTGGAAAGAAGCAGACATGGCTCAATTTGCACAGGTCATGGGCTGAAGTGGGCGACTTTGGTCGCTTTCA GGTGCGGTTGATGGCCAAGTCCCAATTTCCTGGCTTTCATTTTTGGCCAAGTCTTCATGGTCCTTGAT GGGGCTTGATGGCCATCCTGGGTTAAGAACCACTTTCAAGTGCCCCTGAGCAGTTCATGGTCCTTGAT GAGGCTCACCACGGCCGGGCCTGGGTTAAGAACCACACTTTCAAGTGCCCCTGAGGCCTGGAAGACATCCT CCCAACGACACGAC |   | 10 |
|          | SAAGTGGGC<br>TTTGGCCAA(<br>CCGCTGAGC<br>GACAGTGCC<br>SAACCGGCC<br>CATGGCTGG<br>CAGGTGCTTG<br>TTGGCTACT(<br>TTGGCTACT(                                                                                                                                                                                                     |   | 13 |
|          | STCATGGCTG<br>ATCTTCATA-<br>ACCTAAGTG<br>CCACCTCCT<br>CTATCCTGAG<br>GTCGGTGT<br>STCCTGATGC<br>CGCTTTGTC<br>GAACAAG                                                                                                                                                                                                        |   | 20 |
|          | TTGCACAGG<br>CTGGCTGCA<br>ACACTTTCA<br>ATGTTCCGG<br>GGCTGGGA<br>GGCTCCCA<br>GACCTCCCA<br>TTGGCCCTA<br>TTGGCCCTA<br>TGGTCTCGA                                                                                                                                                                                              |   | 30 |
|          | ATGGCTCAAT<br>ICCCAATTC<br>STTAAGAACC<br>TCCTGCCTCA<br>CTGTGACTCA<br>CTGAAGAAA<br>ATTGGCCGCA<br>GGGCTCTAC<br>SGGTGGGGCAAACTGC                                                                                                                                                                                             | - | 3: |
|          | SAAGCAGAC<br>SATGGGCAT<br>STGTCCTGGC<br>AGACCCGAG<br>SACACAGGC<br>TCGAAAGAA<br>TCGAAGAA<br>TTCANAGTC<br>TTTCANAGTC                                                                                                                                                                                                        |   | 40 |
|          | ECTGGAAAGA<br>FGACCATCCTG<br>CCACTGTTCAC<br>SACAGCGGGC<br>SCTTCAATGAC<br>GGGCCTGTCT<br>AGCCTTCGTC<br>AATGTCCTGA<br>AATGTCCTGA                                                                                                                                                                                             |   | 45 |
|          | GCCA <u>GTGTG</u> CTK GGTGCGGTTGAK GGGGCTCACCAC CCCAACGACACACACACACACACACACACACAC                                                                                                                                                                                                                                         |   | 50 |
|          | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                   |   | 60 |
| NOT #7.1 | T7-Sequenz                                                                                                                                                                                                                                                                                                                |   | 6  |
| 2        | - 41                                                                                                                                                                                                                                                                                                                      | · |    |

| 5  | TITITITITITINTNGATATTAGNTANGTITITATTATTATCTNTATGAGGAAGGGGTATCCCAGACAGGGACTGNTGAGGNNACATCCTAGACTGATATAGNNACATCCTAGAGACACGGAACACGGAACACGGAACACCGAACATGAACACCGAACATGGAANAGGGAAGGAACTGACTGAACCCTGAACACCGGAANAGGGAAGGAACTGACCCTGTGAACACCGGAACACGGAACACGGAACTGATCCTGATCCTGTGAACACACGAACACGAACTGATCTGATCTGATCCTGTGAGCACACACA |                                                                                       |              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|
| 10 | AGGGAGA<br>GGGGAGCA<br>CGGGAGCA<br>CANCAGCO<br>NCTNNGNI<br>YGGGTCT<br>SGACTGTT<br>CCTGATNA<br>TCATAGGC                                                                                                                                                                                                                |                                                                                       |              |
| 15 | CCCAGACA<br>STACTGGG<br>AGGGAGTA<br>TGGNCCT<br>INGTCTTGI<br>CNGGCCC<br>SNCTGGTC<br>CTGTTTGC                                                                                                                                                                                                                           |                                                                                       |              |
| 20 | AGGGGTAT<br>ANCCGTG<br>CTGCAAAA<br>IGATAGGC<br>AGCCTNCA<br>AGCCTNCA<br>GGGAATC<br>CGGCATGC<br>GNCAANA                                                                                                                                                                                                                 |                                                                                       |              |
| 25 | ATGAGGACTC<br>TCTGGGCT<br>TCTGGCTCT<br>CTTCCCAA<br>CTTCCCAA<br>SGNTGTNC<br>ATGACNAT<br>SCAACCGAA                                                                                                                                                                                                                      |                                                                                       |              |
| 30 | ITTATCTIVI<br>NAGCGGC<br>TACTCCC<br>CGCTGCC<br>INNAAGAT<br>ANCTGGAC<br>GGCNAAGG<br>GGAAGATGC                                                                                                                                                                                                                          | 'L3) mRNA.                                                                            |              |
| 35 | TATTATTTA<br>AAGACTGA<br>GTCCCTGA<br>SCCATGTG<br>ICTCANACA<br>SNTCNAGG<br>GNGAGGC<br>ACCCTGTA<br>SAGATGGT                                                                                                                                                                                                             | ike 3 (ORC1                                                                           |              |
| 40 | NTANGTTT<br>GGCNGAG<br>GGCNCAC<br>TANAGAT<br>CANCNACN<br>AGCCCTG<br>STNCAATG<br>GCCACCG<br>ACACATANC                                                                                                                                                                                                                  | transporter-l                                                                         |              |
| 45 | SATATTAGI<br>SAGAGAN<br>ANAGGGA<br>CTGTGNGC<br>CTTCACAA<br>TGCAAGG,<br>TGCAAGG,<br>TGCAAGG,<br>TGGATGAT<br>CTAGTGNA                                                                                                                                                                                                   | UI-14<br>VM_004256<br>Homo sapiens organic cationic transporter-like 3 (ORCTL3) mRNA. |              |
| 50 | TITITITITITINING GNNACAATCCTA GANAAGTGTGGA GCTGATCTGATC NAANTNCGANCT TNNGAGGGACC AGAGCGNACAGT ATCACAANGGGT NGANGAGCTNAG                                                                                                                                                                                               | 4256<br>apiens orga                                                                   |              |
| 55 | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                | UI-14<br>NM_004256<br>Homo sapier                                                     | <del>‡</del> |
| 60 |                                                                                                                                                                                                                                                                                                                       | Nummer                                                                                |              |
| 65 | BGH-Sequenz:                                                                                                                                                                                                                                                                                                          | Laufende Klon Nummer.<br>ACCESS No.:<br>Definition:<br>LOCUS:                         | Effekt:      |

| 7 14 1651                                           |                                                                                                                                                                                                               |                                                                        |                                                                                                                                            |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| T7-Sequenz                                          | GGAAAGGGAGC,<br>CGAGGCGTCGC<br>TGCCCAAGGTGC<br>AGCCCCACCGA<br>TTGCCTTTGGCA<br>TTGCCTTTGGCA<br>GAGAGCCGACGG<br>CGGGCCACTGGC<br>CTGCTGTGCCCA                                                                    | GGAAAGGGAGCAGCAAACGGCCGGCGGCAGGCCCGCGGGGGG                             | SCCGCCGCGC<br>SACCGCGC<br>STCATTGA<br>SGCAGCCAT<br>SATAGCTTTG<br>AGCACCAGT<br>VGCACCAGT<br>VGCACCAGT<br>VGCACCAGT<br>VAGCTCCC              | AGGCGCCA<br>TTCTGCCA<br>GGAGCTTC<br>TTTGAGAAT<br>AGATTCCC<br>CTCGGCAT<br>CTCGGCAT<br>STGGGGCGG                                               | SCECEGE<br>CTGCTGCT<br>CAGAAGA<br>GTGGACC<br>ACGTTCCC<br>SGGTACGC<br>SAAGGGGAI<br>TCCTGCAC                                                   | GGGGGGCC<br>CGGTAGAGA<br>SACCAGGAA<br>AGCACCTGT<br>TCCTGGAGC<br>SGCCCGGC<br>CCTCCAGCA                                                                                                                                    | AGCAAACGGCCGGCGGCGGCGCGCGGGGGGGGGGCGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GCGGCGG<br>CGCCTGCC<br>TGGCTCAG<br>CACAGGGA<br>ATGATGGC<br>SCCGCCTI<br>(TGGCATCA<br>GCCTGGGC                                       | TGGCCATG<br>GCGCCTCC<br>CCCCCTCC<br>ATACAGCCA<br>AGGGACC<br>CACTGCCC<br>CACTGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 A A C C C C C C C C C C C C C C C C C |
| BGH-Sequenz:                                        | THITITITICE TECTGGAGCAGT CCTCCCAGGCGC CAACGTCCATTI NACGGACTGAAG CAAGCCTGCCCG GCGGCAAGC CAGGAGTTTGCTI CACCGGCCAAAG TGGCATGCTGNNI NACTTTTACCCA NCTGGGGATTNC CACCGGCAAAG CGGAACCCCCNI GGCCCCTTTTNC TINNTAAANNCGG | THITITITICGCTHITIGAGINGTAITITIAAATAGCTTTCCAGATAACACATTTCCCTTAAAAAAAAAA | AGTCACA AGTCACA AGTAGGNGT SGGTCTGCCC SCAGTAATAA CTGCTGGCC GGCCCGCC TTCTCATTGC TTCTCATTGC GGAATGGNC TNNNGGAAN TNNNGGAAN CCNGGCAAN AANGGGAAA | ATTTTAAAT SGTCACCC TGGCGACA ATTTAAAAT AGGNACTGG AGGNACTGC TGGGCTGC TGGGCTGC TGGGCTGC TGGGCTGC TGGGCTGC TGGGCTGC TGGCCTGC TGGCCAAAA GGNCCAAAA | AGCTTTCC<br>GTTCTGC1<br>GTTCTGC1<br>CATAAAAA<br>ACCCCCG<br>STCGCCGA<br>AACTGGGA<br>AAANTTCTI<br>ACCGGGA<br>AAANTTCTI<br>ACCGGGA<br>AAACCACCO | NCGE I CCCAG I CACA  TIGITA SE I CCCAG I CACA  TIGITA SE I CCCAG I CACA  TIGITA SE I CCCAG I CACA  TIGITA SE I CACACATTITA SE I CACACATA ACCACATA TOC  TIGITA SE I CACACACATA SE I CACACACACACACACACACACACACACACACACACAC | TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TIGNICAGICACA  TICAGICACA  TICAGICA  TICA | TTAAAAAAA<br>TGGGNGCI<br>TGGGNGCI<br>TGGGGCCAI<br>GCGGCCAI<br>GCGAAANCC<br>GCAAANCC<br>GCAAANCC<br>GCCCNCG<br>GGGGCCC<br>ACCCANTIN | MAAAATTG<br>MAAAATTG<br>TGGGCCG<br>STGGGCAG<br>STGGCAAG<br>SCCATGGCA<br>AGGAAACC<br>AGGAAACC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGGCAAGC<br>AGG | 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition: | UI-15<br>AK000559<br>Homo sapiens cDN/                                                                                                                                                                        | 18 cDNA FLJ20552 fi                                                    | FLJ20552 fis, clone KAT11732.                                                                                                              | 1732.                                                                                                                                        | AACONO.                                                                                                                                      | SCNANGI I I                                                                                                                                                                                                              | NNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>-</del>                             |
| Effekt:                                             | + (moderat schnell),                                                                                                                                                                                          | chnell), kein Laddering (?)                                            | (?) Bu                                                                                                                                     |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                 |
|                                                     |                                                                                                                                                                                                               |                                                                        |                                                                                                                                            |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 60                                                  | 55                                                                                                                                                                                                            | 45                                                                     | 40                                                                                                                                         | 35                                                                                                                                           | 30                                                                                                                                           | 25                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |

| 5  |          | A <u>GTGTG</u> CTGGAAAGCGGGCCTGAGCCGAGCTGCGCGACGTCATGGACACTCCGGGAAGCAGGCTGAGGCTATGG<br>CGCTGCTGCTGGAAAGCGGAGCGAAGGTGAAGAACTCGCAGTCCTTCTTCTCCGGCCTCTTTGGAGGCTCATCCAAATA<br>GAGGAAGCATGCGAGCTCTATGCCAGAGCGGCGAACATGTTCAAGATGGCCAAGAACTGGAGCGCTGCTGGGAACGCTTT<br>CTGCCAGGCTGCCCCAACTACACTAC               | TITITITITITITITITCATGCAAAAGTGGCAGGTTTNATTGTCCTTTTTGGGCCAGCTGNAGCTTNAGGTCGATAGACCTGG<br>ATGCATGAAGAGAAGCAGGGCAGG                                                   |                                                               |                                               |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|
| 10 |          | A <u>GTGTG</u> CTGGAAAGCGGGCCTGAGCCGAGCAGCTGCGCGACGTCATGGACAACTCCGGGAAGCAGCTGAGGCTATGG<br>CGCTGCTGCTGGAAAGCGGAGCGCAAGGTGAAGAACTCGCAGTCCTTCTTCCGGCCTCTTTGGAGCCTCAGAAATA<br>CACGAGCATGCGAGATCTATGCCAGAGCGGCGAACATGTTCAAGATGGCCAAGAACTGGAGCGCTGCTGGGAACGCTT<br>CTGCCAGGCTGCCCCAACTACACCTACAGCTCCAAAGCAAGC | AGGTCGAT.<br>STCTAACCT<br>NTCAGAGC<br>AGATGNTN                                                                                                                    |                                                               |                                               |
| 15 |          | CGGGAAGC<br>CTCTTTGG<br>CTGTTGAGG<br>SCTTTGNGG<br>ATACAGACA<br>TAGAGAAG                                                                                                                                                                                                                                | SNAGCTTN/<br>SGGCTGGG<br>SAGNAAGT<br>IGNTNAGG                                                                                                                     |                                                               |                                               |
| 20 |          | SACAACTCC<br>CCTCCGGC<br>SCCAAGAA(<br>GCCACCTG<br>TGAGATCT/<br>ACAAGTGT(                                                                                                                                                                                                                               | GCCAGCTG<br>CCAGGGAC<br>CCAGGGAC<br>ACNCTGCT                                                                                                                      |                                                               |                                               |
| 25 |          | CGTCATGG<br>STCCTTCT<br>CAAGATGG<br>ACGATGCA<br>AGAGCAATI<br>CAGAACTC                                                                                                                                                                                                                                  | CTTTTGG<br>ACCCCAGG<br>ACCCCCAGG<br>ACCTTAG1                                                                                                                      |                                                               |                                               |
| 30 |          | STECECEA<br>VACTCECA<br>VACATETT<br>VACCAAGO<br>STCTGATGA<br>TCTATGAGA<br>CCAACAGG                                                                                                                                                                                                                     | TNATTGTC<br>SCCAAGGC<br>SAGAGGTIV<br>TGGAAACA                                                                                                                     | mRNA for alpha-soluble NSF attachment protein                 |                                               |
| 35 |          | CGAGCAGG<br>GGTGAAGA<br>SAGCGGCC<br>SAGCTCCA<br>SATTAACTG<br>GCTGAGA1<br>MANAAGAGT                                                                                                                                                                                                                     | GGCAGGTT<br>SGGCAGGC<br>SCAGGGGC<br>AGGAGATA<br>ANT                                                                                                               | le NSF attaci                                                 | ering                                         |
| 40 |          | SCCTGAGC<br>GAGCGCAA<br>STATGCCAC<br>FACACCTAC<br>AAGAGGC<br>TTCCATC<br>TTCCAAGG                                                                                                                                                                                                                       | GCAAAGT<br>GGTGCGCA(<br>GGAGGCT(<br>GCACAGGT<br>GCACACAG                                                                                                          | alpha-solubl                                                  | p, kein Ladd                                  |
| 45 |          | A <u>GTGTG</u> CTGGAAAGCGGGCCTGAGCCGAGC/<br>CGCTGCTGGCTGAAGCGGAGCGCAAGGTGA<br>GAGGAAGCATGCGAGATCTATGCCAGAGCGG<br>CTGCCAGGCTGCCCAACTACACCTACAGCTC<br>TNAAGAAAGCTGACCCCCAAGAGGCATTAAC<br>TCGCAGCCAAGCACCANATCTCCATCGCTGAC<br>GAGCAATCTGCAGCACCANAAGGANAAGA                                               | TITITITITITITITITICATGCAAAAGTGGC<br>ATGCATGAGGAGAGCAGGTGCGCAGGG<br>GGCATTGNAGGAACAGGGAAGGCTCCAA<br>TNCTTATCTCTGCTAGGGGACAAGGTAGG<br>TGANCTNCGGTACNTNAAGCACACAGANT | is mRNA for                                                   | Effekt: ++ , grosser Phänotyp, kein Laddering |
| 50 |          | A <u>GTGTGCTGGAA</u><br>CGCTGCTGGCTG<br>GAGGAAGCATGC<br>CTGCCAGGCTGC<br>TNAAGAAAGCTG<br>TCGCAGCCAAGC<br>GAGCAATCTGCA                                                                                                                                                                                   | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                            | UI-18<br>X89968<br>Rattus norvegicus<br>RNSNAPGEN             | kt: ++ , gros                                 |
| 55 |          | A C C S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                | E A S N 5                                                                                                                                                         |                                                               | Effe                                          |
| 60 |          |                                                                                                                                                                                                                                                                                                        | .;<br>JZ:                                                                                                                                                         | on Nummer:                                                    |                                               |
| 65 | Klon #73 | T7-Sequenz                                                                                                                                                                                                                                                                                             | BGH-Sequenz:                                                                                                                                                      | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: | Bemerkung:                                    |

| Klon #74                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz                                                               | AAAGTTGTICTICTCGTGGTTCCCAGTGGCGAGAGGAGGAGGCCCNGAGCGGAGCG                                                                                                                                                                                                                                                                                                                                |
| BGH-Sequenz:                                                             | TITITITITAACAAGCTIGCATITAATAACAACCATTCTCAGCACATGGCATTGTACAGGGCATCTGTGCAACAGGACAACAGGACATTTTAAAAAAAGTCTGAAACCATTCTCAGCACATGTAAAAACAGGAACAACAGAAAACCAGGGCAAGGTGGTGAAAACAGGAACAATGTAAAAAAAGAAAAGAAAAGAAAAGCAAAAGAAAACCGGTGGTGGTGGTGGTGTTTTAAAATGTCATTGAATGGACGGTTCAATGGACAGGTTCAATGAGACAGTTTAAAATTTGAATGGACGCTTTAAAATTTGAATGGACGGTTTAAAATTTGAATGGACGCTTTAAAATTTGAATGGACACTTAAAATTTGAAAGAAA |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt: | UI-20<br>D85137<br>Mouse mRNA for PP1gamma (protein phosphatase1gamma)<br>MUSPIM1K                                                                                                                                                                                                                                                                                                      |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |

| 5  |          | GCGCCAGTGTGCTGGAAAGNGAGACTCGGCGATACTGCACTTCCTCAGAGCTTGCTGCCACTACTGCAAGAAGTACAA CATCCAGTGTGTGCTGGAAAGNGAGACTCGGCGAATCTCCTCAGGAGACTTCCATTGCTGCTCAGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |          | GCGCCAGTGTGCTGGAAAGNGAGACTCGGCGATACTGCACTTCCTCAGAGCTTGCTGCCCCACTACTGCAAGAAGTACAA CATCCAGTGTGCTGGAAAGNGAGACTCGGCGAATTCCTCAGAGCTTCCATGCTGCTGCTCCAGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15 |          | GCCCACTA<br>GACTICCA<br>SCITCATCI<br>GATAGCTGA<br>SAGGNGTA<br>TTGTTGGT<br>TTGTTGGT<br>STGGAAAA<br>SCACCTCA<br>GGAACAGA<br>GGACCTCA<br>TGGAAACC<br>TTCATGNC<br>CGAAATNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20 |          | AGCTTGCT<br>SAGGTTGCT<br>SAGGTTNGT<br>SAGCTCTCC<br>STCGGCC<br>STCGGCC<br>TAACAAAC<br>AGNGTATC<br>AGNGTATC<br>AGAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SAGCCAAC<br>SA                                                                                                                                                   |
| 25 |          | TTCCTCAG<br>SCGTGGGG<br>TGNGGCG/<br>TGNGGCG/<br>CCCCGAGG<br>GGGAGTG<br>GGGAGTTAG<br>GTGGTTAG<br>ATATGTTA<br>ATATGTTA<br>ATGTAAAC/<br>AGCTGGC/<br>ATGTAAAC/<br>ATGTAAAC/<br>ATGTAAAC/<br>ATGTAAAC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAACC/<br>ATGTAAC                                                                                                                                                                                                                     |
| 30 |          | TACTGCAC<br>SACCCCAGG<br>SACCCCAGG<br>SACCTGAT<br>SCACACAGA<br>SCACACACA<br>AATCACA<br>CANGCAT<br>TNTGCAGT<br>GAGAACG<br>GAGAACG<br>GAGAACG<br>GAGAACG<br>GAGAACG<br>GAGAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35 |          | CCTGGCGA<br>CCTGGAGC<br>CCTGGAGAC<br>CCTGGACAT<br>CCGCACACA<br>CTGGCGCT<br>CTTTTNATAN<br>GGCCAGN<br>GGCCAGN<br>GGACTTTG<br>GGCCAGN<br>GGCCAGN<br>GGCCAGN<br>GGCCAGN<br>GGCCAGN<br>GGCCCCC<br>CCTGGGAGCCC<br>CCTGGGAGCCC<br>CCTGGGAGCCC<br>CCTGGGAGCCC<br>CCTGGGAGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40 |          | AGNGAGA<br>CTTCTATG<br>CTTCTATG<br>TGTTCCTCA<br>TGCAGAAC<br>GCTGACTG<br>GCTGACTG<br>GCTGACTG<br>ATCTTTCT<br>ATCTTTCT<br>ATCCTTAT<br>ATCCTTAT<br>ATCCTGN<br>GGNATTTG<br>GGGNCTGC<br>ACCCCA<br>GGGNCTGC<br>ACCCCA<br>GGGNCTGC<br>ACCCCA<br>GGGNCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45 |          | GCCGCCAGTGTGGAAAGNGAGACTO CATCCAGTGCTGGAAAGNGAGACTO CATCCAGTACCAGGAGAGCTTCTATGCCT GCATCTATCTCACCCTGCTGTTCCTCATTG GCATCTATCTCACCCTGCTGTTCCTCATTG GCATCTTGGCAGACTGCAGACCGG CCTGGTCCCTTGGCAGCTCCCTTG AACCACAACATTCAAAATGCTGCACTGGGA CTGACATTGGGAAGGTGCGGCAGCGGGATCTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 |          | GCCGCCAGTGTG<br>CATCCAGTACCAG<br>GCATCTATCTCAG<br>GGNGGACTCTGG<br>CCTGGTCCTTG<br>CCTGGTTGCAAT<br>AACCACACAT<br>TTTTTTTGAAACC<br>TTTTTTTTGAAGG<br>CCTGNANNGGTC<br>CATACTGGAAGG<br>CCTGNANNGGTC<br>CATACTGGAAGG<br>AGTACTTCCTTC<br>CATACTGGAAGG<br>AGTACTGGAAGG<br>AGTACTTCCCTT<br>TNGGCTTTCTTCC<br>TTGCCACGCT<br>TTGGCACAGC<br>AGTACTTCCCTT<br>TNGGCTTTCTTCC<br>TTGGCACGCTC<br>CATACTGGAAGGG<br>AGTACTTCCCTT<br>TNGGCTTTCTTCC<br>TTGGCACGCCC<br>CATACTGGAAGGG<br>AGTACTTCCCTT<br>TNGGCTTTCTTCC<br>TTGGCACGCCC<br>GCTGCAGGCAGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 55 |          | GCCG<br>  CATCG<br>  GCATCG<br>  GCATCG<br>  AAACC<br>  AACC<br>  
| 60 |          | :2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 65 | Klon #75 | T7-Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: | UI-25<br>NM_001089<br>Homo sapier                                                                                             | UI-25<br>NM_001089<br>Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 3 (ABCA3) mRNA                                                                                                                                                                                                                                                                                                                                                      | mily A (ABC1), m                                                                                                                                        | ember 3 (ABCA                                                                                                  | 3) mRNA                                                                                                                             |                                                                                   |                                                                                                                     |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Effekt:                                                       | +                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                |                                                                                                                                     |                                                                                   |                                                                                                                     |
| Klon #76                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                |                                                                                                                                     |                                                                                   |                                                                                                                     |
| T7-Sequenz                                                    | CGNCACCCCTT<br>TTCTTCACCGGCT<br>GAAGCCTGGAGA<br>GTGGGGGGCGGC<br>CCGCCTGGTCAC<br>AGGGGTGCTTGA<br>AATGTGTTTCCGC<br>TGCCTGAAACAC | CGNCACCCCTTGGTACCGAGCTCGGATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGGATCATCCGTCTCGCCTCCAGGAACGTTCTTCACCGCTCTCGGCTCTCGCCTCCAGGAACCTTCACCCCTCAGGAACCTTCACCGGCTGAGAACCTTCACCGGAACCTTCACCGGAACCTTCACCGGAACCTTCACCGGAGAACCTTCACCGGAGAGCCTTCACCGGAGCCTTCGTTCCTCGCTTCGCTTCGCTTCGCTCGC                                                                                                                                                                                     | CCCTAGTAACK CATCTCAGTGAC CGACCTCCGGACGGCTCACG CGGGGTAGCAACTGATGGAGG TGTTCTGGAGG CGAATTGAACACAACAACAACAACAACAACAAAATATGAACAACAACAACAACAACAACAACAACACACAC | GCCGCCAGT<br>CACGAGCTAA<br>CTGAAGTGGA<br>TGGTACTTTGG<br>CTACCCTGGAC<br>ACTGTTGGCC<br>TTTTGTTTGT<br>STCAAGTTAGC | STECTGGAAAGGA<br>SATAGCACGTGAAA<br>AGAAGCGTAGCGA<br>TACTTTGGATGAC<br>STCCACCGGCTG<br>SATTCCTAGACCC<br>TCGGAGCCAAGG<br>CCTGCCTTTGCCT | TCATCCGT<br>ACTGACCT<br>(GGCCTTC)<br>TGAAGGG/<br>TGAAGCGC<br>SCTTTGA(<br>CCTCCCTC | CTGGCCTCCAG<br>CAGGAAGAAC<br>STGTCCTCGCT<br>VAGCTTGGTAC<br>SNGGTGCTCTT<br>SCTACGTGATA<br>GTAGCTCTTAA<br>GTAGCTCTTAA |
| BGH-Sequenz:                                                  | TTTTTTTTTTTGT CCANGGAGGCAA AGGGAGGCCTTG TCAAAAGCGGGT( CGCTTCACAGCC( CCCTTCACACGCC( CCCTTCACACGCC( TCAGTTCACACGCTAC            | TITITITITITIGGGNGGCCACATAGITICATATITIGITICAAATAGAAATAGAAAGAGAAGGCAGGGTAATCCCAGAGC CCANGGAGGCAAAGGCAGGGCTAACTTGACTTCAATGCCAGTCTAGGCTACAAAGAGGCAAAGGCCATTAAGAGCTACG AGGGAGGCCATGGCAAAAACAAAAACCTTCAAAACATTTTTGGCAGAGTTCCGGAAACACATTTATCAGGTAGG TCAAAAGCGGGTCTAGGAATCGGCCAACAGTACCCATCAGTTTCTAACAATGAGGCCGTNAAGCACCCTTAAGAGCACCAC CGCTTCACAGGGTGGAATCGGCTAGTGCTACTCCGGCTGGACTTCCGGGTAGTGACCAGGCGGGGTACCAAGGTT CCCTTCAGTCATCCAAAGTACCAAGGTACTCCGGCTGCCCCCCCC | TGTTCATATTTG AAACCTTCAGA AGTACCCTTCAGA AGTACCCATCA TAGTGCTACCC TAGTGCTACCC STCCGGAGGTC STCCGGAGGTC                                                      | TTCAAATAGAA<br>AGTCTAGGCT<br>ACACTTTTGG<br>GTTTCTAACAA<br>SGGCTGGACT<br>SCGCCTGCAC                             | ATAATCAAGAAAGA<br>ACAAAGAGTGTTTN<br>CAGAGTTCCGGAA<br>TGAGGGCGTNAAG<br>CCGGGTAGTGAC<br>ACAAGCCCGGCC                                  | GCAGGGTA<br>VAGGCCATT<br>VACACTTT<br>SCACCCCT<br>SAGGCGGC<br>CCCCACAG<br>GCTTCGTT | ATCCCAGAGC TAAGAGCTACG ATCACGTAGG AAGAGCACCAC STACCAAGCTT CGAGGACACG CTTCCTGAGG                                     |
| 60                                                            | 55                                                                                                                            | 40<br>45<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                      | 25                                                                                                             | 20                                                                                                                                  | 10                                                                                | 5                                                                                                                   |

| 5  |                                                               |         |  |
|----|---------------------------------------------------------------|---------|--|
| 10 |                                                               |         |  |
| 15 |                                                               |         |  |
| 20 |                                                               |         |  |
| 25 |                                                               |         |  |
| 30 |                                                               |         |  |
| 35 | AV141103                                                      |         |  |
| 40 | .1930239, Al666299, AV141103                                  |         |  |
| 45 | ⋖                                                             |         |  |
| 50 | UI-26<br>ESTs Al315969,<br>mouse ESTs                         |         |  |
| 55 | UI-26<br>ESTs<br>mouse                                        | <u></u> |  |
| 60 | Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: |         |  |
| 65 | Laufende Klon<br>ACCESS No.:<br>Definition:<br>LOCUS:         | Effekt: |  |

| T7-Sequenz | TTCACCCCGCTTGGTACCGAGCTCGGATCCCTAGTAACGGCCGAGTGTGTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | GGGGATCTCCTTTTCCTCACGAACCGAGTTGAAGATCCTATACGCGTGGGGGAGATCGTTGTTTTCAGGATAACAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | GAGATTCCTATAGTGCACCGAGTCCTGAAGATCCATGAAAAGCAAGATGGGCATATCAAGTTTTTAACCAAAAGGAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | ATGCTGTTGATGACCGAGGTCTCTATAAACAAGGACAACACTGGCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | TTGTTCCTTACATTGGAATTGTGACGATCCTCATGACTATCCTAAATTTAAGTATGCAGTACTGTTTCTGCTCGGTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | ATTIGTGCTGGTCCATCGTGAGAAGTCGGACTCCCTGTTCCTAGGAAGCTGCTGTGTTGTTGTTACTCAATGTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | AGTAGATCCTGATCTGTGATTTGCGGAGGACACACACGTTGGCACTTCTTGGTAGCCCTGCTTTGCCACTTCTTGCTAGCCTTGCTAGCACTTCTTGCTAGCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | GTGTTTCCACCACACAGAGGCTGTGTGCATGTGCACCGTGGAGTGCACCACCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | TTCATATGTTGTCATTGTCACTCTTTCACATTTTTCATCACTCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | TTETATTTEANOCOMACCTETATORIC COCCOCAGIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | CONTRACTOR OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF THE ANALYSIS OF |
|            | IGNCGGICCTTACAGTAGGAATGGCNCATANTGAGGCGCATAAGTAAGTAGGCATAAGTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                               | CTIGGNITCAAAATGCAACGGCTTTGGCTCAACCTTTTAATATTACAGAACTNIGTAGGCNCTTTTAAAGAGGCCTTTTAAAAAATTTCACTGAAGGCCNCTTTTAAAGAGGGCCTTTGGCTCAAAAAGAGGGAACGAAAAAAAA |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS: | UI-27<br>AB025405<br>Mus musculus mRNA for sid2895p (Mouse microsomal signal peptidase)                                                           |
| Effekt:                                                       | + (moderat schnell)                                                                                                                               |
|                                                               |                                                                                                                                                   |

| Klon #79                                                                 |                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz                                                               | AAAGTTCTCTCACGTGGGTTGGCTTGTGCCAAACACCCCGGCTGTCAAAGAGGGCGGAAAACTGGACATGT CTGACCTGAAAGCCGAGAAAGCTGGTCATGTGCCAAAACCCCGGCCTCCTGCTGCTGCTTCATCCTG CTGACCTGAAAGCCGAGAAGCTGGTGATGTTCCAGAGGGTACTACCAGCCCGGCCTCCTGCTGCTTCCTTC |
| BGH-Sequenz:                                                             | TITITITITITITITITITITITITITITITITITITI                                                                                                                                                                              |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt: | UI-29 NM_009127 Mus musculus stearoyl-Coenzyme A desaturase 1 (Scd1) + (langsam)                                                                                                                                    |
|                                                                          |                                                                                                                                                                                                                     |

| Klon #81                                             |                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                             |                                                                                                                                       |                                                                                                                          |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz                                           | AAAGCGCTCCT<br>TGGGAGCGCG<br>GCGCTGCTCGG<br>ACAAAGTAAAA<br>AGAAGAGAAAT<br>GCTTAATGGG<br>GACTATCTCATG<br>TCGACAAACA<br>ACCTTCGTCTG<br>CCGAGCACTG<br>ATGCTATGGNC | AAAGCGCTCCTCGAGGGTCGGCCACGTCTCTTCCCGGTCTCTGGCTCTGGAGTGCTTTCCCCCCCGGGGGGGG                                                                                                                          | GGTCCCGCC<br>CGGGCGAGA<br>ATAACCTGGG<br>AGAAGAAGG<br>ATTCCATATTT<br>SCTGGGAGAT<br>ATTCTTGGGGG<br>NCTTGAAGG<br>CTAGGTNGG<br>GCTTCNTTNA   | ACGTCTCT<br>TGAGCACC<br>TGAGCACC<br>TCCTGGTTAA<br>ACCTGTCAA<br>GGTGGTAG<br>TGGCCCTT<br>AAAGCAGA<br>GGTAATCTC                 | CCCGGTCT<br>TGCTTTGCA<br>TACAGGACA<br>CAGAGTCAC<br>TGGTAGGG<br>AGTGGTGGT<br>TCACGAGCT<br>TTCTGAAT<br>ACTATGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICGAGGGTCGGTCCCCCCCCCCCGCGTCTCTCTGGCTCTGGAGTGCTTTCCCCCCCGCGGAGGGGGCGCAGGGGGCCCCCGCCGCGGGGGG      | SAGTGCTTT<br>SATCGTCTT<br>SAGATGAA<br>CAGAAGAA<br>TTCCCGTC<br>GTATATCC<br>SGCTGGTG<br>SGCTGGTG<br>SGAACCCTC | TCCCCCCG<br>GCAGAAC<br>GCAGAATA<br>GCATTT<br>TCGTCTTA<br>CTGTAC<br>STTCACAT<br>GATTCACAT<br>GNTTAATG                                  | CGGAGGG<br>TGTGCACC<br>GTGGAAAA<br>SAGAGACA<br>GTTTTACT<br>CATCCAAG<br>SATGTCAAT<br>GGCCCACC<br>CAGACTTA                 |
| BGH-Sequenz:                                         | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                         |                                                                                                                                                                                                    | GGTAAAAGAA<br>AATATGCAAA<br>TTTTTAAAAA<br>TGTATATGGG<br>AGTGAGTGC,<br>ICCATAGCTG<br>GAAATTCAGA<br>GGAAGTCGGT<br>GGAGGGGCA<br>GGGGGGGGCA | ACATGACAA<br>AAAAATCAA<br>ACACAACAC<br>ACTTATTAC<br>AGAAATAAC<br>AATTCTGCT<br>GAAGGGGC<br>ATTCTGCT<br>GAAGGGGC<br>ATTGCCCTGG | AACTITATT ACATITCC CTAATTACA TGAAATACT TAAAGAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACCT ACAAACT ACAAACT AAAACT  AAAACT AAA | IIIIIIIITITGGTAAAAGAACATGACAAAACTTTATTTTAGCTTTTGGGCCAATGCTTATCCTTATGTTCAGAAATTTTGGTAAAAATTTTTTTT | SCCAATGC<br>STAAAAATT<br>CATAAAACT<br>CATAAACTA<br>CAAAAAAAAAA                                              | TTATCCTTA<br>TGCCCAT<br>ATTTTTCTC<br>SATGTTTGA<br>SATGTTGA<br>TGTAAGTCI<br>STGGTGGG<br>CGAATTGA<br>AGAAGTCC<br>AACCANTTCA<br>AGGGCCTN | TGTTCAG<br>TGTCGAA<br>SCTAATGT<br>NGGTTACA<br>NGTTAAGC<br>GATGTGA<br>CCAAGAA<br>CCAAGAA<br>CCAAGGA<br>CCAAGTA<br>CCAATTA |
| Laurende Klon Nummer: ACCESS No.: Definition: LOCUS: | VI-31 AF070626 und Homo sapiens clo Homo sapiens mF + (langsam)                                                                                                | UI-31<br>AF070626 und AB020980 (sind prinzipiell identisch)<br>Homo sapiens clone 24483 unknown mRNA (AF070626), bzw.<br>Homo sapiens mRNA for putative membrane protein (AB020980)<br>+ (langsam) | AB020980 (sind prinzipiell identisch)<br>ine 24483 unknown mRNA (AF070626), bzw.<br>RNA for putative membrane protein (AB02096          | lidentisch)<br>AF070626), b<br>protein (AB02                                                                                 | zw.<br>0980)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                                             |                                                                                                                                       |                                                                                                                          |
| 60<br>65                                             | 55                                                                                                                                                             | 45                                                                                                                                                                                                 | 40                                                                                                                                      | 35                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                               | 15                                                                                                          | 10                                                                                                                                    | 5                                                                                                                        |

| 65                                                                       | 55                                    | 50                                                                                     | 45                                                                            | 40                                                                                         | 35                                                                                        | 30                                                                                                     | 25                                                                                             | 20                                                                                      | 15                                                                             | 10                                                                     | 5                                                            |
|--------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
| Klon #82                                                                 | ŀ                                     |                                                                                        |                                                                               |                                                                                            |                                                                                           |                                                                                                        |                                                                                                |                                                                                         |                                                                                |                                                                        |                                                              |
| T7-Sequenz                                                               | F8888F8                               | TTTCGCCCCCCNTTTGGTACCGAGCTNGGATCCTNTAGTAACGGCCGCCCAGTGTGCTGGAAAGGCCGACATGGGGAGGCGCGCGC | VITTGGTACCGAGCTNGGATCCTNTAGTAACGGCCGCCAGTGTGCTGGAAAGGCGACATGGGGAGGCGCCGCGCGCG | AGCTNGG<br>CTGTGGT<br>GTGCGGG<br>SCTTNACC<br>CCCCAGAC<br>SGAGCAGC<br>SATCCTGC<br>STGAAGGA  | ATCCTNTA<br>CCGGGTC<br>TGGGCGTC<br>AGCTGCC/<br>CCAAAAGC<br>AGCAGCA<br>CCCAGCA<br>CGGCTCAC | GGTAACGG<br>GGCCCGA<br>GGCGGGC<br>ATGAGCG/<br>SAGCAGTA<br>GCCCCCA/<br>CCCCCCA/<br>CCCCCCA/<br>TTTCATAG | CCGCCAGT<br>GGGGGACT<br>GGCGGGACT<br>AGCGCCTCC<br>GGAACCCC<br>NAACAGCC<br>SCCGATGC<br>GGTTGNAT | GTGCTG<br>CAGCGC<br>CAGCGC<br>CGCCCC<br>CGCCCC<br>ATCTTCC<br>CAGACA<br>CTGAGC<br>ATCGAG | GAAAGGC<br>CCGCAGC<br>CCGCACTG<br>CCGACTG<br>AGAAAAAG<br>AGACTCCAG<br>AGTCTGCA | GACATGGG<br>AACCACC<br>TTCGCTGT<br>GAGAAGA<br>CTGGGGCAG<br>NGGGCCAG    | GAGGCG<br>GCGCGG<br>CGGCGCG<br>ATGGCAG<br>AGGCCA<br>AGGCCC   |
| BGH-Sequenz:                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CGAACECNAGITCTAGCAITITAGGTGACACTATAGAATAGGGCCCTCTAGATGCCATGCTCGAGCGGCCGCCCTTTTTTTT     | ICTAGCATITIAGGTGACACTATAGAATAGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCCTTTTTTTT        | GGTGACAC<br>AAACAAA<br>TGTCGGC<br>TGGCATAC<br>TTCTGGCC<br>TGTCCCAG<br>TTNCTTCT<br>NCAGNNAA | TATAGAA<br>GCCTGCGC<br>GGCCGCCGC<br>SAGCCGC<br>CACTGGC<br>GGAGTCCT<br>CCTTTNTC            | TAGGGCC<br>STTGGAAT<br>SCTCGGNC<br>SCTGTCT<br>GGAAGAT<br>STGGGGCC                                      | TTCTAGATG<br>VTCCAATCT<br>SCTGTAGGC<br>SGCATCGGC<br>SGGCTGNN<br>GGGGTTCC<br>SGAGGCGC           | CATGCT<br>SCACAG<br>SCACAG<br>TAGGGGG<br>GATGCT<br>TACTGCT                              | CGAGCGG<br>NGCTGTCC<br>AGTGAGCC<br>SGNGCTGC<br>SCTGCTTTG<br>ATGGNAGA           | CCGCCCTT<br>CCTTCACAG<br>STCCTTCAG<br>SGCCAGGA<br>STCTGCTC<br>GTCTGGGG | TTTTTTT<br>MAAGGCA<br>SGGTCTG<br>TCCGGG<br>CCCACCA<br>AGAGGG |
| Laufende Klon Nummer:<br>ACCESS No.:<br>Definition:<br>LOCUS:<br>Effekt: |                                       | 39<br>sapiens clor<br>2989<br>gsam), Ladde                                             | le DT1P1E11 mf                                                                | RNA, CAG n                                                                                 | epeat region                                                                              | n (partielle                                                                                           | Homologie)                                                                                     |                                                                                         |                                                                                |                                                                        |                                                              |
|                                                                          | $\frac{1}{2}$                         |                                                                                        |                                                                               |                                                                                            |                                                                                           | -                                                                                                      |                                                                                                |                                                                                         |                                                                                |                                                                        |                                                              |

| Klon #83                                                     |                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T7-Sequenz                                                   | ANCGACCCCCCCNTINGACCGAGCTCGGATCCTCTAGTAACGGCCGCCAGTGTGCTGGAAAGGCTGATTGCTGAGGTGG  GAGTGGGCCCCANCGCCCCGGNGGCCGCAGCTCACGCGCCCATGGCCGCCTCCCCCCCCTCCTCCCGAGCATT  TCGAGAAGCTGCACCGAGATCTTCCGCGGCCTCCTTGAAGACCTTACAAGGGGTGCCGGAGCGGCTGCTGGGGGACCGCGGG  GACAGAAGAAGAAGAAGAAGATGTTCCGTAGAGATTTTGATGAAAAGCAACAGGAAGCAATTGAAACTTGCAGAGATTGCAGAGATTTGAAGATTTGAAGATTTGAAGATTTCCGTAACCCATGATGTCTAAGCTGCGAAACTACCGGAAGGAA |
| BGH-Sequenz:                                                 | TITITITITITITITITITAAGITTGAAGGAGTCATAAACAACATTTATTACCTTAGTATATCTGGTCTTGTTGTTGCTGTTCTGTTGTTGCTGTTCTTGTTG                                                                                                                                                                                                                                                                                                    |
| Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: Effekt: | UI-54 AF035208 Mus musculus putative v-SNARE Vti1b mRNA (soluble NSF attachment protein receptor) + (langsam), kein Laddering (?)                                                                                                                                                                                                                                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                            |

| 5  |          | TNTGACGCCGTTCTAGCATTNAGGTGACACTATAGAATAGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCCTTTTTTTT                                                                                                                                             | TTCCANCCCCCCTTGGACCGAGCTCGGATCCTCTAGTAACGTCCGCCAGTGTGCTGGAAAGGGGGTTGCCATGGGGATTGT FGGCTCTGATGTTGCAAGCAAGCTGCTGATCCTTCTGGATGACCAGTAACGTTGCCATTGTGACTGGAGGA AGGTCGTCTGATTTTGATAACTTGAAGAAATCCATCGCTTACACCCTAACCAGTAACATTCCGGAAATCACCCCCTTCTTGA FATTTATTATTATTGCAAACATTCCACTGCGCACTGTGACCATCCTCTCCTGCATTGCGAAACCGCACTGGTTCCTGC CATCTCCCTGGCCTACGAGCTGAGGCGACATCATGAAGAGGGCAGCCCAAAACCGGACAAACTTGTGA ACGAGCGTCTGATCAGCATGGCCTATGGACAGATCGGTATGATCCAGGACCCTGGGACAAACTTGTGA ACGAGCGTCTGATCAGCATGGCCTATGGGCAGATCGGTATGAGTCCAGGAGGCCTTCTTCACTTTGNGATTC FGGGCTGAGGAACGGTTTCCTGCCTTTCACCTGTTGGGAGAGCCTGGGATCACGGTACTGGGAGGCTACGGGACAACGGTTCTTTGTCAGTTC FGTGGTAGGGCTACGGGCGACTTGGTCATCTGC FGTGGTAGGGCATCGGGAGAGCGAGAGAGAGGAGATCGTACACCGTACAGGACTTTGTCAGTAT FGTGGTAGNGCAGTGGGCCGACTTGGTCATCTGC |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |          | GCCGCCC<br>STTCCGGG<br>GGCAGCC<br>IGCTTTCCT<br>SACAATGTT<br>AATGAGCT<br>AATGAGCT<br>ATCAAGATC                                                                                                                                | TGCCATG<br>GACTGGAC<br>VATCACCCC<br>CTGACATG<br>CGGACAA<br>ACTTACTT<br>SGTCACCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 |          | OTCGAGCG<br>OTTTCAGTC<br>MGTTTCTCA<br>GCTTTGGN<br>NGTGTGGC<br>SGCCTGAT/<br>TTTGAGGG(                                                                                                                                         | AAAGGGG<br>TCCATTGT<br>TTCCGGA<br>TTGGGCA<br>CCCCAAA<br>CCCCCAAA<br>ACCGCTGC<br>ACCGCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20 |          | SATGCATGO<br>AACGTAATO<br>STCCCGO<br>SCCCCACA<br>SGGTGCAG<br>AGGCCCC<br>SATGTAGGI                                                                                                                                            | TGTGCTGG<br>AACTTTGCC<br>SCAGTAACA<br>TGCATTGAC<br>GCCCAGAAA<br>SCCCAGAAA<br>CCTGGGAC<br>TTCACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25 |          | SCCCTCTAN<br>AGATATAA<br>CGTCCCC<br>GTCTGCAT<br>BTAGGGGT<br>AGCCGCC,<br>AGACCGCC,                                                                                                                                            | TTCCANCCCCCCTTGGACCGAGCTCGGATCCTCTAGTAACGTCCGCCAGTGTGCTGGAAAGGGGGTTGCCATGGGGATTGT TGGANCCCCCCTTGGAAGCAGCTGGGATCCTCTTCTGGATGACATTTGCCTCCATTGTGACTGGAGGAAACGGAAGGGAAACCGCAGAAGGGAAACCAGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30 |          | GAATAGGC<br>TAAAATCC<br>SCCGCTGT<br>TCCAGGAC<br>GAGGGGG<br>CTCCACCC<br>AAGGCACA                                                                                                                                              | TAGTAACG<br>SACTCTTCT<br>ATCGCTTAC<br>SACTGTGA<br>CATCATGA<br>CGGCATCG<br>GGGCATCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35 |          | SACACTATA TTATTGI AAACCTTG( TGCTTCAT STACACAAA SGTCTCCT (GTAGGGG                                                                                                                                                             | ITGGACCGAGCTCGGATCCTCT/ GTCCAAGCAAGCTGGAAATCCAT TTTGATAACTTGAAGAAATCCAT AAACATTCCACTGCCCTGGGG/ CTACGAGCAAGCTGAGACGGC/ ATGGCATGGCCTATGGACAGATC SGTTCCTGCCTTTCACCTGTTG SCAGCGGCGACTTCGCCGGTTG GTGGCCGACTTGGTTGGCGAGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 |          | NTTNAGGTC TAGCCATC SCACGTATA CAGCTACA SACTTGAAC AGTAGTACA AGTAGTACA AGTAGGATACA AGTAGGAT | CGAGCTC(<br>GCAAGCTC<br>TAACTTGA/<br>TCCACTGC<br>GCAAGCTG<br>TGGCCTAT<br>TGGCCTTT<br>STGGACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 45 |          | STTCTAGCA<br>CGTTATAA'<br>CGTCAAAAGC<br>CCCGTTA<br>GGTCCAAC<br>AGNGGGCT<br>CAAAGATG<br>CCGGGGGC<br>TGGA                                                                                                                      | CCTTGGAC<br>GTGTCCAA<br>ATTTTGA<br>GCAAACAT<br>GCCTACGA<br>GGCTACGCA<br>GGGTTTCC<br>GGCAGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 |          | TNTGACGCCGTT<br>TTTTTTTTCCG<br>TTTTACAAAACA<br>CGCCCCCCCCC<br>GGCCCGCCCCCC<br>GGCAGGGCAG<br>GTGCAGGGCAG<br>TCGTCATACACA<br>TGCCCCCATCCC                                                                                      | TTCCANCCCCCC TGGCTCTGATGT AGGTCGTCTGAT TATTTATTGC CATCTCCCTGGC CATCTCCCTGGC ACGAGCGTCTGA TGGCTGAGAACG GACACGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55 |          | *                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 60 |          |                                                                                                                                                                                                                              | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65 | Klon #84 | T7-Sequenz                                                                                                                                                                                                                   | BGH-Sequenz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: | UI-60 = UI-56<br>NM_012504<br>Rattus norvegicus ATPase, Na+K+ transporting, alpha 1 polypeptide (Atp1a1), mRNA.                                                                                                                                                                                                                        |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effekt:                                              | + (langsam)                                                                                                                                                                                                                                                                                                                            |
| Klon #85                                             |                                                                                                                                                                                                                                                                                                                                        |
| T7-Sequenz                                           | TTCGNCCCNCTTGGTACCGAGCTCGGATCCTTAGTAACGGCCGCCAGTGTGCTGGAAAGGTCTGCGGCCCTCGCAGAACT TCCAGCAGCACATGTTGGCCAGAGTATCCGGAGGTTCACGACCTCCGTCGTCGCAGCCACTATGAGGAGGTC CGGGGAAGAATTTGCCATTTTCAGTGGAAAACAAGTGGCGGTTGCTGGCTATGATGACGGTGTACTTTGGATCTGGGTTTG CCGCACCTTTCTTTATAGTAAGACACCAGCTACTTAAAAAATAAGGATATTAATTCATCCCTTTAACAGAATGAAAAGATTTAAAAAAAA |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
| 45 |  |
| 50 |  |
| 55 |  |
| 60 |  |

| 9 8 BGH-Sequenz:                     | 55                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 6 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1                      | CTTTATG                                                                  | CATTAGTT                                                                | TATTTACA                                                | 25                                                                     | <sup>5</sup><br>TAGTATAA                                        | 5<br>GAGTTCA/                                                       | 5<br>AGAGTTTA                                            | ~<br>ATCCAATT                                                    |
|--------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
|                                      | 450 E 50 LONGATION CONTRANCTION CANDELLINGUIN TRANGEGATGA TRANGEGA TO THAT THE STREET TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE AND ANGEAN CONTROLLING THE THANGE AND ANGEAN CONTROLLINGUE TO THE THANGE CONTROLLINGUE TO THE THANGE TO THE THANGE TO THE TOTAL TO THE TOTAL TO THE TOTAL THANGE TO THE TOTAL TO THE TOTAL THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THANGE TO THE TOTAL THANGE TO THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THE THANGE TO THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE TO THE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANGE THANG | I AAACI I I<br>GGCAACCC<br>GGACCTCC<br>AGTTCTGC<br>ACCTCCCAC | AGATCA<br>AGATCA<br>AGATCA<br>AGAGGCO<br>BAGGGCO<br>SNGAGTCC<br>CGTACACO | IGITAAAGG<br>AAGTACACC<br>GGCTGCGA<br>GCAGACCT<br>STATTAATT<br>SCCTACCG | SGATGAA'<br>SGTCATC/<br>ACGGACC/<br>TTCCAGC<br>TCGATAAC | TTAAATATK<br>ATAGCCAG<br>ACGGAGGI<br>ACACTGGC<br>SCCAGTAA<br>SCGTCAATI | CCTTATTT<br>CAACCGC<br>CGTGAAC<br>CGCCGTT<br>GCAGNGG<br>GGGGCGG | TTAAGTAC<br>SACTTGTT<br>CTCCGGA<br>ACTAGTGO<br>STTCTCTA<br>AGTTGTTV | SCTGGTGT<br>TTCCACTG<br>TACTCTGG<br>GATCCGAG<br>GTTAGCCA | CTTACTAT<br>AAAATGG<br>CCCAACA<br>SCTCGGTA<br>AGAGAGC<br>TTGGAAA |
| Laufende Klon Nummer                 | 1.61                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                                          |                                                                         |                                                         |                                                                        |                                                                 |                                                                     |                                                          |                                                                  |
| ACCESS No.:<br>Definition:<br>LOCUS: | <del></del>                              | NM_007749<br>Mus musculus cytochrome c oxidase subunit VIIc (Cox7c), mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hrome c oxida                                                | ase subunit                                                              | VIIc (Cox7c)                                                            | , mRNA                                                  |                                                                        |                                                                 |                                                                     |                                                          |                                                                  |
| Effekt:                              | ++/-                                     | -/++ (moderat schnell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a                                                           |                                                                          |                                                                         |                                                         |                                                                        |                                                                 |                                                                     |                                                          |                                                                  |
|                                      | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                          |                                                                         |                                                         |                                                                        |                                                                 |                                                                     |                                                          |                                                                  |

| T7-Sequenz                                                   | TTCCGCCCCCCCNTGGTACCGAGCTCGGATCCANTAGTAACGGCCGCCAGTGTGTGCTGGAAAGATGAATTCAAAGGTGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BGH-Sequenz:                                                 | TITITITITITITITICTGAATITITTAAAAAAAAACTTAGGACGTGGGGCCACCACAGGGAAGGGGAAGGGCCGCAGCTCCTC AATGCTACATACGGGAGGGTGGACTGGCCAGTTCATAGAGGCCACCACATAGGCGTCGCTGGTGCGCACTTGGCTGGAGGA CATGGGTGTGACACTGGAATCATTGAAAGTGTGCCATTCGCCTGTAACCGGACTTCGGCAGTAGGCTGTATAGNGGCCTC CCATGGNGGTTCCGGAGTGATTGGACACAGCATACAGGTTGTAAACCAGCATGGTTGGNGTTTTCTGAAGCAAATTCTCTCA AGTCCAGGTCTCTTAGNGGGAAATTCACAAATGTTGNGAGCTTGCTGGTTCGTATCCTGGATTCTGAAGCAAATTCTCAGGT GGAGCACCAAGATTCTGGGAAATTCACAAATGTTTTTATGCTTCGTATCCTGGATTCTGAGAATCGCTTCAGGT GGAGCACCAAGATCTTTGGGAAACCTCTTGGTAAGCAACCTCTTTTATGCATTCTGGCTCGGCAGCGGCAGCAGGTTG GCATGGGCAACGAGAAA |
| Laufende Klon Nummer: ACCESS No.: Definition: LOCUS: Effekt: | UI-64 AF079565 Mus musculus ubiquilin-specific protease UBP41 (Ubp41) mRNA + (langsam) in 293T, ++ (schnell) in Helas, Laddering (293T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|          |                  | 000000                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                  |                                                        |                                                       |                                                 |               |
|----------|------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|---------------|
|          |                  | GAAGAACHI<br>GAAGAACAGC<br>TTGNGGAGGG                     | CCAAAAACH HGCCA HGAGGGCCGG<br>GAAGAACAGCGTCATCAGNGGCTGC<br>TTGNGGAGGGNATGCTGCTTTCNCTC                                    | CCAAAAACH HIGCLAH IGAGGGCCGATGTTTCATGTACTGAGNGNCTGGTAGAGTCTTACCGGGGAAAGTCGGACTG<br>GAAGAACAGCGTCATCAGNGGCTGCATCACTGNCGGAGCCATCGGCTTCCGAGCTGNAGTAAAGGCCGGGGGCCATAGG<br>TTGNGGAGGGNATGCTGCTTTCNCTGCTGCNATCGNTTNTTACCTACGNNGAAGGAAANAGCCTNCTAAGGAAAGAGGA<br>CNCCAGCCNCTTNAGAGCTGCTGTG                                                                                 | TCATGTACTG<br>NCGGAGCCAT<br>TCGNTTNTTAC               | AGNGNCTG(<br>CGGCTTCC(<br>SCTACGNNG              | STAGAGTCTTA<br>SAGCTGNAGT,<br>4AGGAAANAG               | CCGGGGGAAA<br>VAAGGCCGG(<br>CCTNCTAAGC                | GTCGGACT<br>GGCCATAGG<br>SAAAGAGGA              | 00            |
|          | BGH-<br>Sequenz  | TACTTGCACAC                                               | CAGAAGGAAGA                                                                                                              | THITTITITITITITITITITITITITITITITITITIT                                                                                                                                                                                                                                                                                                                            | SCTCGATGGC,<br>SNTATGGGCA                             | ATAAGTTTAC<br>AACACTGCC                          | TTTGCCCTGC<br>ACTTCCCTATT                              | CCTGGGACT                                             | CATGATGGA<br>GGAGCTGA                           | 9             |
|          |                  | GACAATNTGCC<br>GAGCGATCGA                                 | CATACCACCTN( GCAGCGAGGN)                                                                                                 | GACAATNTGCCATACCACCTNCCCTGAAAACCTGGTTGGAATTCAAGTGGAAAAGTGCCTCCTGATCTGTTTACTGCAAGGA<br>GAGCGATCGAGCAGCGAGGNGNGTCCTTNACACCTGGTTAGAATTCAAGTGGAAAAGTATGGTTGTTCCAANGGCTGCAGA<br>AAGTGTAACAAAACTGAAGAAGAAAAAAAAAA                                                                                                                                                        | AANGCG AAC<br>TGGTTGGAAT<br>CCATNAACTG                | AGTCCACAC<br>TCAAGTGG/<br>TAGAGGGA'              | ACTGCCTCCT(<br>AAAGTATGGT                              | SATCTGTTTA<br>TGTTCCAANC<br>TCACCCCTG                 | CTGCAAGGA<br>SGCTGCAGA<br>AAGCAGTCC             | 4 1 ()        |
|          |                  | TAGGTAATAAT<br>CGATGGCTCCC<br>NCTTAGTACAT                 | CGATTGCAGC/<br>GCCAGTGATGN<br>GCCAGTGATGN<br>GAAAACATGGC                                                                 | TAGGTAATAATCGATTGCAGCAGCAGCAGCINIGAAGGNGGCIGGCGTCCTCTNTCCTTCCCGGCTGNTTCCTTCACCG<br>TAGGTAATAATCGATTGCAGCAGAGAAAGCAGNAAACCNTNCACAACCTATGGCCCCGGGCTTTACTCCAGCTNGGAAGC<br>CGATGGCTCCGCCAGTGATGNAGCCACTGATGACGCTGNTCTTCCAGNCCCGACTTTCCCCGGTAAGACTNTACCAGAC<br>NCTTAGTACATGAAAACATGGCGCCCACAATGGCAAAGTTTTTGGCATAGGACATTCCTCTCTGNCCCATGNCTTTCNGG                         | GAAGGNGGC<br>VAAACCNTNCA<br>ACGCTGNTCT<br>SCAAAGTTTTT | TGGCGTCC1<br>CAACCTATG<br>TCCAGNCCC<br>3GCATAGGA | CINTCCTTCC GCCCGGCC GACTTTCCCC                         | CGGCTGNTT                                             | CCTTCACCG<br>CTNGGAAG(<br>NTACCAGAC             | ()            |
|          | Gesamt-<br>cDNA, | siehe<br>LOCUS AF22                                       | F223950 1062 bp                                                                                                          | mRNA B                                                                                                                                                                                                                                                                                                                                                             | ROD 27-14N-2000                                       | -2000                                            |                                                        |                                                       |                                                 | $\top$        |
|          | EST-Cluster      | NOI<br>SION                                               | Mus musculus TIM2<br>, nuclear gene for n<br>AF223950                                                                    | 2 preprotein trar<br>itochondrial pro                                                                                                                                                                                                                                                                                                                              | slocase (Tim22)<br>uct.                               | mRNA, comp                                       | ete                                                    |                                                       |                                                 |               |
|          | Motive           | 1                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                  |                                                        |                                                       |                                                 | Т             |
|          |                  |                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                  |                                                        |                                                       |                                                 | $\overline{}$ |
| Klon #89 | T7-Sequenz       | AAGGCCGGGAI<br>ACGGNGAAGNK<br>AAAATGGAGGA<br>GGCTATGGCGI  | GGGATGCGGCC<br>GAGGAACGGNT<br>ACTGTACAAAG                                                                                | AAGGCCGGGAGGATGCGGCCGGAGCCCGGAGGNTGCTGCTGCCGCCGCCCGATGCGGNCGAACGGCTGCGTNAAGAACGGNGAAGNAGGAACGGCTGCGTNAAGAAACGGNGAAGNGAGGAACGGCTTTGAGGAGCACCGCCCCCCCGCCGCCGCCGCCAGATTCATCATGAAGAAAAAAAA                                                                                                                                                                             | GNTGCTGCTC<br>AGCACCGCCA<br>AGCTTTTGAA                | ACCGCCGCC<br>ACCGNCGCC<br>AGAACACCC              | CGATGCGGNC<br>GCTGCCGGCC<br>ATGCTGNCNC                 | GAACGGCTG<br>SAGATTCATC<br>SCTGNGCTCA                 | CGTNAAGA<br>ATGTAACAN<br>ACATATGNN              |               |
|          |                  | GAGAGANAANA<br>ANAGACAACTG<br>CTGGTCATTCA<br>CACTNNATCATI | GAAAGANAANAACAAAAGGACTTTGCG<br>ANAGACAACTGGANTCGACCTATCTGT<br>CTGGTCATTCAAGTACANANNNAATAT<br>CACTNNATCATNTCANGNNGCCCCTNG | GAAAGANAANAACAAAAGGACTITIGCGNCCTTGTATCANGNTTTTGAAANCTTCTATNCAAGGAACCTCTACATGAGAATC ANAGACAACTGGANTCGACCTATCTGTANTGNGCCTGNAGCCAAGGTGGATATCATGGNGAGAAAATCTNATGACTATAA CTGGTCATTCAAGTACANANNNAATATNNTTANAGGTGTCATAAACATGGNTTCCTACACCTATCTTGTNTTTGCGAGGNA CACTNNATCATNTCANGNNGCCCCTNCTGAANTCCTCACNGAGTATTNCAGCAGCCCTGNGCAANCNCTCGCANNNNANT NCTAACCTNTACANGCATNCCTNAACT | TATCANGNTT<br>CCTGNAGCCA<br>GGTGTCATAA<br>CCTCACNGAG  | TTGAAANCT<br>AGGTGGAT/<br>ACATGGNTT<br>TATTNCAGC | CTATNCAAGE<br>NTCATGGNGAC<br>CCTACACCTA'<br>AGCCCTGNGC | AACCTCTAC,<br>SAAAATCTNA:<br>FCTTGTNTTT(<br>AANCNCTCG | ATGAGAATC<br>TGACTATAA<br>GCGAGGNA<br>CANNNNANT |               |
|          | BGH-<br>Sequenz  | AGCTTCAGAAATGGGGGGGAATT                                   | TTTTTTTAGE TETCTTCACA TATCCCCTCTA GGCACCAGCCC                                                                            | TITITITITITITITITITITITITAGCAGTTTGGNTTTTTACTATTTACAAAATGCCATTTGGAGTGAAGGTGGCCACCTTCAGTAGCTTCAGAAAGGCCACCTTCAGTAGCTTCAGAAATGTTCAGAAATGTTTCAGAAATGTTTCAGAAAAGGCCACACACTGTCCTGGGAGGGA                                                                                                                                                                                 | TTTACTATTTA<br>STGAAGNGNG<br>SAAAGGCTCAC              | CAAAATGCC<br>GTTCCTGGA<br>STCTTCTGTC             | ATTTGGAGTG<br>ATTGGCTCAG,<br>TCTTCATAGG                | AAGGTGGCC<br>AAAGGCCACA<br>TAGTCTCATC                 | ACCTTCAGT<br>ACACTGTCC<br>AAAGGGCC              | 1             |
|          |                  |                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                  |                                                        |                                                       |                                                 | 7             |
| 65       | 55               | 50                                                        | 40                                                                                                                       | 35                                                                                                                                                                                                                                                                                                                                                                 | 30                                                    | 25                                               | 15                                                     | 10                                                    | 5                                               |               |

| Gesamt- cDNA, EST-Cluster Motive T7-Sequenz BGH- Sequenz | ster        | GNGTCAAGTP CACCACCGG GCCACCCGGG GCCACCCGGCG ATCACAGGCC ATCACAGGCC CCTCCCNATG LOCUS NM DEFINITION N CSPT AGCGGATCTT CTAGGAGGG GATGGCCTGG GTAGGAGGG TCCATTACAC GCTCTGCAAA CGTCTACAAA CGTCCATGTTA CGAGGGAACCACCCCCAAA CGCCCCCCCCCC | COCACCACTACACCATGTTCGGCTTCAGGATTCTGGCTCTGGACTCAGTGACTCGGGGTTGTGACTCGGGGTATTCGGCTAAGGGCAAATGC GCACCACACTACACT | STTCCGCT<br>CTTTGCC/<br>GGACCGT<br>TGAANGC<br>B8 bp mR<br>Serine palm<br>Serine palm<br>CCGTAGC<br>CCGTAGC<br>TCCATGA<br>TTCCATGA<br>TTCAAGT<br>CCTCTGC<br>GGGTATGC<br>TATGAAGT<br>CCTCTGC<br>GGGTATGC<br>TATGAAGT<br>CCTCTGC | TCGGCCTC AGACTGG AGCNNAGC NA Ricyltransfera TTCGGCCT AGTATTTC AGACTGC CGNGGTTC CTTCAAAG CAACACC CGACCTG AGACTCGA AGAGTCGT AGTTATTTATTTATTTATTTATTTATTTATTTATTTA | AGGCAAAAT CTCTTTCC ATGAACCCC SAGCCATCC SAGCCATCC SAGCCATCC CTCTTTTTITI ROD 25-J RSE, long chiz TCTGTGGGGC GCCCCCC GCACTGAAG TCCCCCCCCCC | AATCTGGCTCT CCAAAGGCGC CCCAATTCCTTC TCCTGCCCCAT TCTGTGNGAATG TCTGTGNGAATG TCTGTGNGAATG TCTGCCCCAT TTTGAATGTTC GGCGCAACCC GGCGAACCC GGCGAACCC GGCGAACCC AAAGGCTTTC AAAGGCATTC AAAGGCATTC AAAGGATCCTTC GNAAGCTGTTC CCCCTACACT TCGCTGAACAT TTCGCTGAACAT TTCGCTTCTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCAACAT TCAACATTCCTTTCACAT TCAACATTCTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCCTTTCACAT TCAACATTCAACAT TCAACA | GGACICA<br>CAATTTC<br>CAATTTC<br>GATGNAC<br>STNTGCGC<br>CCAT<br>TTGCCCAC<br>GNGGGGI<br>STCAACGC<br>CCCACC<br>GNGGGGI<br>STCAACCCAC<br>STCAACCCACC<br>CCCACC<br>CCCACC<br>CCCACC<br>TCCCCCC<br>TCCCCCC<br>TCCCCCC<br>STCAACCCACC<br>TCCCCCCCCCC | SGCCGCC<br>SGCCGCCC<br>TTCATNGA<br>AGGTAGN<br>SCCACCCC<br>CTTAAGT<br>TTGATNGC<br>3AGGAAAA<br>GCTCCTAT<br>GTTCGCT<br>CTTAAGCAAAA<br>GCTCCTATAGCAAAAGC<br>AGCACCTATAGCAAAAGC<br>CTTCAAAAGC<br>ACACCTGAAAGC | TACCTGGI<br>ATACCTGGI<br>AGGTGATAA<br>CTATCNGC<br>CTGCAGCT<br>CGCGCCC<br>GGGGGCT<br>CGCTATTTA<br>CGCTACTA<br>CGCACCTACC<br>CGCACCTACC<br>CGCACCTACC<br>CGCACCTACC<br>CGCACCTACC<br>CGCACCTACC<br>CGCACCTACCACC<br>CGCACCTACCACC<br>CGCACCTACCACCACCACCACCACCACCACCACCCTACCACC | SGAAATCC<br>ATCAAAG<br>AGTTCTCA<br>TCTGTTCT<br>TCCCTTCTT<br>SGTGCAC<br>NGGAAGA<br>ATGCATC<br>ATGCAAGG<br>SCTAAAGT<br>TTAAATC<br>TTAAATC<br>ATGAATC<br>ATGAATC |
|----------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | o 3 ≼ 3 F G | GGGCGCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                | GGGGGGGGGGGGGGTTCTTTTATT CAGCACAGGGGGGGGGG                                                                   | ACACACCI<br>STCAGCAG<br>TTGTACAT<br>TGGNGTAC<br>AACAGCTI                                                                                                                                                                      | CTGAAGCC<br>GGNGGGA<br>TCACTTCG<br>CGGATCT<br>CCCTCAAC                                                                                                          | CAGCCTC<br>GACGATCC<br>GGGCTTG<br>GTCTCATC<br>GTCTCATC                                                                                  | TGCAGGAC<br>SCACAGAA(<br>GGAACCAC<br>CACAGAGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTGAGAC<br>SACTCCAC<br>AAATTTG1<br>SAGCAACG<br>GGCTGGG                                                                                                                                                                                         | GCGGAGC<br>SCTATGTA/<br>ACAAAGC<br>ACCTTGT/                                                                                                                                                              | TGCCTTTC' ACCTGCCA( TTCAACAG) AGAACGCA TCNNAACT                                                                                                                                                                                                                               | CTTTATT AAATGTC ACGTTCA TTAAGCC TTAGCAG                                                                                                                       |
| Gesamt-                                                  | 12,         | Rattensequenz:                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                               |

| ter LOCUS RATMPT 1263 bp mRNA ROD 27-APR-1993 DEFINITION Rat mitochondrial proton/phosphate symporter mRNA, complete cds. ACCESSION M23984 Humane Sequenz: LOCUS SSMPCP 1330 bp mRNA PR! 01-JUN-1992 DEFINITION H.sapiens mRNA for mitochondrial phosphate carrier protein. ACCESSION X60036 |        | AGGCACTGCTGGCGACATGGCCGACACCGGGCTATCCCCGCTCGTCCATCGAGGATGACTTCAACTACGGCAG CTGCGNGGCGTCGGCCAGCGNGCACATCCGCATGGCCTTTTCTCAGAAAAGTCTACAGTATCCTCTCTGCAAGTCCTC CTGCGNGGCGTCGGCCAGCGNGCACATCCGCATGGCTTTTTCCAAGATTTTGTCCATGAAAAGCCTCTTTTGAATTGAG GAGNTAGCTACAGNGACCTCTGGGCTNGATCTTTGCATGTTGCATTTGTCCATGAAGCCTCTATCTA | TITITITITITITITITITAAAAGATCACATATGCTTTTAATATTAACATTTAAGTTTAATTTCAAGCGTCTTTCATAATAGAACT  GTCTCGAACACTGCTCGGNTACTTTTATTAACTGCTTCCAGAACCTTCAACAGGTGCAGGAGGGTTGATGATATCCA  GTCTCTGAACACTGCTCGGGTACTCTTCGGGAGAGCTTCAACAGGGGAGGGTGTTGATGATGATGAAC  TGTAGAGACGGGCGCCTAGAGAGCCAAGACCAGGTCTGTGCATCAGCGAGTGTTTTAAAACAGATCCTG  CCAAGCACAAAAAAACAAAAAAAAAA | 20<br>20<br>20<br>20<br>20<br>20<br>30<br>40<br>40 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| cDNA,<br>EST-Cluster                                                                                                                                                                                                                                                                         | Motive | T7-Sequenz                                                                                                                                                                                                                                                                                                   | BGH-<br>Sequenz                                                                                                                                                                                                                                                                                                                                | 55                                                 |
|                                                                                                                                                                                                                                                                                              |        | <b>人</b> Son#91                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                | 65                                                 |

| AATACAGGGAACGGAACGGTCACTGTAGTCAGGAGGACTTGCAGAGGAGGATTCTGAGAACGAGACTTTTTTGAGAAAGG   CAATACAGGAACAGGAACGGTCACTGTAGTCAGGAGGACTTGCAGAGGAGGATTCTTGAGAACTTTTTTTGAGAAAGG   CAATACAGGGAACGTCACTGTCACCGCCACGCCAGGCTGCCGTAGTTGAAGA   CAATACAGGAACTGTCACAGGTCACTGTAGTCAGAGGACTTGCAGAGAGACACATTTTTTTT |            |                  |                                                |                                      | П           |   | 0:0-5                                                                                                                      | Ţ <u>``</u>     | Ϊ       |                   | 15.411                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------------------------------------|--------------------------------------|-------------|---|----------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------------|-----------------------------------|
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | SAGAAAGG   |                  |                                                |                                      |             |   | ACGCCGAA<br>CCCGTGTCC<br>SAAAAGTAT<br>GCCAAATGG<br>GCCAGATGA<br>GCTGAGCA<br>SGCTGAGCA<br>STTTGACGT<br>CTNACCAG<br>TTTTTATA |                 |         |                   |                                   |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | SACTITICIO |                  |                                                |                                      |             |   | SAGGATTCA<br>GETGGCGGC<br>SCGACGTTC<br>SCAGGAATG<br>SAGGATTCCC<br>AGATTCCC<br>SCTACAGCC<br>GATGTGTA                        |                 |         |                   |                                   |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | TACTGTAG   |                  |                                                |                                      |             |   | AAGTTGC<br>GGATGCG<br>GATGGACGT<br>TGGACGTC<br>SCTGCTCC<br>AACGAGCC<br>CAGTCCGA<br>CTAAGAAC<br>CTAAGAAC                    |                 |         |                   | гтс<br>Этв                        |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | GAGAGGA    | YAGA             |                                                |                                      |             |   | CAACATGE<br>GCACGAGI<br>GTTAAGTC<br>SGAGACTC<br>STGGATAT<br>CCGTGGGA<br>SGNCGAAC<br>ACGGTCTT<br>ACGGTCTT<br>ACGGTCTT       |                 |         |                   | AGTACCCA<br>ACACTA<br>TAGAGTTO    |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | 4CTTGCAG   | 100100           | DEC-1999<br>ste cds.                           | AAY-2000<br>cds.                     |             |   | CAGAAGGG<br>GAATGAGT<br>CGGGTGTG<br>CACCAGT<br>AGACCAGT<br>AGTCTGACC<br>AATGCCGA<br>ATGCCGA<br>TTTAAAGCT                   |                 |         |                   | TACTTGTT,<br>SCATCAAC(<br>ATGAGGG |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | CAGGAGG    | 19179            | PRI 04-[<br>RNA, comple                        | PRI 18-N<br>A, complete              |             |   | GGGCCATT( CTTCTTGA CTTCTTGA TTCCATGGCAC AATTCGAAC AGGGCCA GGGATCAA GGGATCAA GGGATCAA CTGCCAG AACTGGAT CATAAATC             |                 |         |                   | TCTCTGTACA<br>CCCAATAC            |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | ACTGTAGT   | 24779746         | RNA<br>sin (S1R) mF                            | RNA<br>protein mRN                   |             |   | AATTAATA<br>SGGGTGAA<br>TGACCAAG<br>SGCTGACA<br>CGCTCCTC<br>CCCCTTC<br>CCNAGAATI<br>CCNAGAATI                              |                 |         |                   | GAACCAAG<br>TTGCCAGT<br>AGTAAAAA  |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | AGAGGTC    | 2225             | 1325 bp ml<br>ns S1R prote<br>omolog)          | 1325 bp ml<br>ns CGI-119 p           |             |   | AGGCCAA<br>GAATCAAG<br>GGCAAAG<br>GGCCTTTG<br>CCGCTTTG<br>AACATGGA<br>GACATGTC<br>AGTTTCTC                                 |                 |         |                   | AAGAAGTT<br>TGCACCGC<br>TAATTCTA  |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | AACAGGNC   | enzen:           | F113127 Homo sapie<br>AF113127<br>Vpoxvirus-Hc | -151877 1<br>Homo sapier<br>AF151877 |             |   | SGCCGAAA<br>DGCCAGAA<br>TGACGATG<br>SAAGATCT<br>TGAGCAGC<br>TCGATCTCA<br>STCCCAGA<br>GTTTTAGA<br>SAAATTCCA                 |                 | 1.86545 | _                 | CCCACCG,<br>CATTITAA<br>CAGTCTGA  |
| Gesamt- cDNA, EST-Cluster T7-Sequenz T7-Sequenz Gesamt- cDNA, EST-Cluster                                                                                                                                                                                                                 | AATACAGG   | lumane Sequ      |                                                | _                                    |             |   | GAAGAAAA<br>ATGCCATCI<br>GACTGCAG<br>AATCTGGA<br>AGAGACAA<br>GCGGGCCI<br>GCTCTCTGG<br>TANGCTGAACTI                         | Ġ.              |         | ST-Assembly       |                                   |
|                                                                                                                                                                                                                                                                                           | ٩٠         |                  | -                                              | A C C                                | $\parallel$ | ᅥ |                                                                                                                            | <u>c</u>        | -       |                   | 40 A                              |
|                                                                                                                                                                                                                                                                                           |            | Gesamt-<br>cDNA. | EST-Clu                                        | . <b>-</b>                           | Motive      |   | T7-Sequi                                                                                                                   | BGH-<br>Sequenz | Gesamt- | cDNA,<br>EST-Clus |                                   |
| (Jou#92                                                                                                                                                                                                                                                                                   |            |                  |                                                |                                      |             |   |                                                                                                                            |                 |         |                   |                                   |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                     |            |                  |                                                |                                      |             |   | \lon#92                                                                                                                    |                 |         |                   |                                   |

|          |                  | TCGATTTTTC<br>AAAATACACA<br>ACTGGAATTT<br>TCTGGCACAA<br>GACTGGTTCG<br>CTTGCTCAGO<br>ATGTTGAGATT<br>TGGGGAGTGC<br>TCCAGAGTCT<br>ATACTTTTCAA | CCTAGATTTATE TCATCATAGG TCATCATAGG CTCAGGGTTAT TTCTGGGACAT SGCCGTCAGG CGAAGCCACGG STCAGGGTCGT CGAACTGGTCGT CGAACTGGTCGT CGAACTGGTCGT CGAACTGGTCCT CGAACTGCTCCT | TAGAGCAAA<br>TAGAAAGAG<br>CTGGTGAGG<br>CTCTCTAAA<br>TTGATCCCG<br>CTCGTTCCC<br>CTCGTTCCC<br>CGTGCTGC<br>CGTGCTGCT<br>TTCGAATTTG | TCGATTITICCTAGATTTATGTAGAGCAAATGAACCAGTTCTGTTAAAAGGCCAGCTATA AAAATACACATCATCATAAGCTAGAAAGGCCTTTAAAAGTGGAGAAA ACTGGAATTCTCAGCGTTATCTGGTGAGGGCTGTAGGATCTTAGAAGACCGTTCGGCAT TCTGGCAATTCTCGGCGATCTCTTAAAACACAGAGAGCCGTCCAAAGGGAAATCTCG GACTGGTTCGGCCGTCAGATTCTTTAGAAGCCGGCAGTCTTGGGAAATCTCG GACTGGTTCGGCCGTCAGATTCCTGAAACCGGAACCGGTCTGGGACAGTTCAT CTTGCTCAGCCGAAGCCGCTCGTTCCCAAGGCGGACCGTTTCCTGGGACAGTTC TGGGAATCGAGGCCGCTCATCTGCCATTTCCTGGACCATTTCCAGCGTCTTCCAGTTC TGGGAATCGAAGTCGAGCTCGTCGTCGTTTCCAAAGCGGAGATTCTTCCAGAGTCTTCCAAACGCGCAATCCAAACCGCACCATCGAATTCTCCAAAACCGCAATCCAATCCAATCCAATCCAACCACACCCCCATCGAATTCTCCAACCCCCCATCGAATTTCTCCAACCCCCCATCGACTCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAACCCCCAACCCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAACCCCCC | TGTTAAAAGG<br>GTTAGAAGGT<br>GTTAGAAGGT<br>ACGTCAAGG<br>CTGGCCTG<br>SCAGCATATC<br>SCATTGCTG<br>GGAGATCTT<br>CCATGGACTT | SCAGCTAT<br>SGAGAAAA<br>CGTTCGG<br>GGAAATCT<br>AGGCAGC<br>CACCTGG<br>CGTCTGG     | AT TCC ATC ATC ATC ATC ATC ACG ACG                                               |                                                                                     |                                                                                                             |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|          | Motive           |                                                                                                                                            |                                                                                                                                                                |                                                                                                                                | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2015                                                                                                                  |                                                                                  |                                                                                  |                                                                                     |                                                                                                             |
|          |                  |                                                                                                                                            |                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                  |                                                                                  |                                                                                     |                                                                                                             |
| Klon #93 | T7-Sequenz       | AGCGGACGC<br>CTGCGGCTCC<br>ACGCGTCCA<br>AAATGATGTT<br>AGATGNGTGA<br>CACT                                                                   | SCCCAGNAGCC<br>GGCTTCTGCCAT<br>AGACCNACAT(<br>NGGAGACACC<br>ACAACTATCAG                                                                                        | GNGCTGCA(<br>FGANGATCC/<br>CATGAAGTC1<br>CTTCTAAGGA                                                                            | AGCGGACGCCCAGNAGCCGNGCTGCAGAGAGNTNCATCGNGCGACCGCTGCCGCAGGCGCTTTGCTCCGAGTAGCC<br>CTGCGGCTCCGGCTTCTGCCATGANGATCCACGGCTTTCAGAGCAGCCACCAGGACTTCTCCTTCGGGCCTTTGGAAGCTG<br>ACGGCGTCCAAGACCNACATCATGAAGTCTGCGNATGTGGAAAAGTTAGCTGACGAGGTGNACATGCCATCCCTCCCTG<br>AAATGATGTTNGGAGACAACGTTCTAAGGATCCAGCATGGCTTTGGACTTTGNAATAGAGTTCAATGCTACGGACGCCACTG<br>AGATGNGTGAACAACTATCAGNGCANGCTCAAAGTAGCTTGNGCTGAAGAGGAGGCCAGNAAAGTAGGANGGAGGGCGAA<br>CACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGNGCGACC<br>AGCAGCCACC<br>AAAGTTAGC<br>TCTGGCTTTC<br>NGCTGAAGA                                                       | GCTGCCG<br>SAGGACTT<br>TGACGAG<br>SNAATAGA<br>GAGGCAG                            | CAGGCGCT<br>CTCCTTCG<br>CTGNACAT<br>GTTCAATG                                     | TGCTCCGA<br>GGCCTTGG<br>GCCATCCC<br>GTACGGAC                                        | GTAGCC<br>AAGCTG<br>TCCCTG<br>GCACTG                                                                        |
|          | Sequenz          | AATACAATCTT<br>AATACAATCTT<br>TCTCCACAATT<br>AAAANTACTTG<br>TNACATGTNAC<br>AGTCAGCATCC<br>AGACGATGCT<br>ACATCTCTCTC                        | TITITITITITITITAAAATGGCATATGTCATATTTAGAAAATGGCATATGTCATATTTAGAAAATGAATG                                                                                        | SATATGTCAT<br>STCTCCTCC<br>ATTATCAAN<br>SACACACACA<br>AAGTGCGAA<br>SAGCAGGTCC<br>IGCAGACCA<br>IGCAGACCA                        | TITITITITITITITAAAATGGCATATGTCATATTTAGAAATGGCCAAGGACACCCTGNNTACTCNTCACAGGGGATACACT AATACAATCTTCAGATGCACTCCTCCTCCCCACCGNCCACCTCTTTAATTTTTTTTTAAAAAAAGNCNNTTATTTTAATT TCTCCACAATTTTTAACAATGAATTATCAANATAAGNAATCTAACANTACTCAGAGACAAAGACATTTAAATGAAAGATTTA AAAANTACTTGTGTGTACANACACACACACACTNTGTTGCCCAGAAACTCCCAACTAATGACTAATACAAGACTTTGTAGG TNACATGTNACANCTCTCCGTAAGTGCGACACACACACACAAACACCCAACTAATGACAGACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCAAGGACA<br>CCTCTTTAAT<br>ACANTACTCA<br>SAAACTCCAA<br>NGCTCAGTG<br>NGCTCAGTG                                         | CACCTGN<br>TITITITA<br>AGAGACAA<br>CTAATGAC<br>SCCAGAGA<br>ACAGCCTI<br>(CACATCA) | NTACTCNT<br>AAAGNCN<br>AGACATT<br>TAATACAA<br>SCCAGAGT,<br>FACAGTCAC<br>CTGCTGAC | CACAGGGA<br>NTTATTTTA<br>NATGAAA<br>GATTAATTT<br>GACACATNA<br>SCCTCCTCA<br>GTAAGCTC | TACACT TTTTAAT AGATTTA TGTAGG AGCATGC CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA CAGTGA |
|          | Gesamt-<br>cDNA, | aus humaner ge                                                                                                                             | nomischer DNA                                                                                                                                                  | (PAC 69E11 o                                                                                                                   | aus humaner genomischer DNA (PAC 69E11 on chromosome 1q23-24);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123-24):                                                                                                              |                                                                                  |                                                                                  |                                                                                     |                                                                                                             |
|          | EST-Cluster      | gene corr                                                                                                                                  | complement(1621537678)<br>/gene="dJ69E11.3"<br>complement(join(16:<br>2511125242,317333                                                                        | 37678)<br>.3"<br>join(1656516<br>173331832,33                                                                                  | plement(1621537678)<br>/gene="dJ69E11.3"<br>complement(join(1656516708,1763017692,1996920064,<br>2511125242,3173331832,3253032709,3743037533))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .,1996920064<br>037533))                                                                                              |                                                                                  |                                                                                  |                                                                                     |                                                                                                             |
|          |                  |                                                                                                                                            |                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                  |                                                                                  |                                                                                     |                                                                                                             |
| 65       | 55<br>60         | 50                                                                                                                                         | 45                                                                                                                                                             | 35<br>40                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                    | 20                                                                               | 15                                                                               | 10                                                                                  | 5                                                                                                           |

| 65       | 55<br>60        | 50         | 45                                                                                                         | 40                                                                                    | 35                                                                                                   | 30                                      | 25                                                                                                                                                                                                                                                     | 20                                          | 15                                             | 10                      | 5       |
|----------|-----------------|------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-------------------------|---------|
|          |                 |            | /gene="dJ69E11.3"<br>/note="match: prote<br>/codon_start=1<br>/evidence=experim                            | gene="dJ69E11.3"<br>hote="match: proteins (<br>codon_start=1<br>evidence=experimental | gene="dJ69E11.3"<br>Inote="match: proteins Q12199 P34274"<br>'codon_start=1<br>evidence=experimental | 274"                                    |                                                                                                                                                                                                                                                        |                                             |                                                |                         |         |
|          | -               |            | /product="dJ69E11.3 (Yea predicted proteins LIKE)" /protein id="CAA16171.1"                                | J69E11.3 (Y oteins LIKE)                                                              | east YPR03)"<br>                                                                                     | 7W and w                                | product="d.l69E11.3 (Yeast YPR037W and worm C02C2.6 predicted proteins LIKE)" protein id="CAA16171.1"                                                                                                                                                  |                                             |                                                |                         |         |
|          |                 |            | /db_xref="Gl:4165247"<br>/db_xref="SPTREMBL:075663"                                                        | 1:4165247"<br>TREMBL:C                                                                | 775663"                                                                                              |                                         |                                                                                                                                                                                                                                                        |                                             |                                                |                         |         |
|          |                 |            | LPEMMFGD<br>EVIKPYDW<br>HDHGVSSL                                                                           | MVLRIQHG<br>NVLRIQHG<br>TYTTDYKG<br>SVKIRVMP                                          | SSHRUFCF<br>SSGFGIEFN<br>TLLGESLKL<br>SSFFLLLRF                                                      | GPWKLT<br>ATDALRC<br>KVVPTTE<br>FLRIDGV | rransiaton="vinvilhgf-QSSHRDFCFGPWKLTASKTHIMKSADVEKLADELHMPS<br>LPEMMFGDNVLRIQHGSGFGIEFNATDALRCVNNYQGMLKVACAEEWQESRTEGEHSK<br>EVIKPYDWTYTTDYKGTLLGESLKLKVVPTTDHIDTEKLKAREQIKFFEEVLLFEDEL<br>HDHGVSSLSVKIRVMPSSFFLLLRFFLRIDGVLIRMNDTRLYHEADKTYMLREYTSRE | OVEKLADE<br>VACAEEW<br>EQIKFFEE<br>HEADKTYI | :LHMPS<br>/QESRTEGE<br>:VLLFEDEL<br>//LREYTSRI | HSK                     |         |
|          | Motive          |            | SKISSLMHV                                                                                                  | PPSLFTEF                                                                              | NEISOYLPI                                                                                            | KEAVCE                                  | SKISSLMHVPPSLFTEPNEISQYLPIKEAVCEKLIFPERIDPNPADSQKSTQVE"                                                                                                                                                                                                | ADSOKST                                     | QVE"                                           |                         |         |
|          |                 |            |                                                                                                            |                                                                                       |                                                                                                      |                                         |                                                                                                                                                                                                                                                        |                                             |                                                | ŀ                       |         |
| Klon #94 | T7-Sequenz      | GGCCGCAG   | GGGCCGCAGCAGCGCGCGAGCGCCCAGGACCTGCCAGCTTCCGCCGTCGCCATGGGACAGAACGAAACGAAGCAAAGCAGAAACGAAACGAAACGAAACGAAAAAA | AGCGCCC/                                                                              | AGGACCTG                                                                                             | CCAGCT                                  | CAGGCGCGAGGCGCCCAGGCTGCCAGCTGAGCCTTCCGCCGTCGCCATGGGACAGAACGANCTGANG<br>GAGGACTTCGCCGACNANTTCCTTCGAGTCACNAAGCAGTACCTCCTCATGGGGACAGAACGANCTGAAGAAGAAGAAGAAGAAAGAAAGAAAGAAAAAAAAAA                                                                        | SCCGTCG                                     | CATGGGA                                        | CAGAACGAN               | CTGANG  |
|          |                 | TCAGCACCT  | TNCTGGAGGA                                                                                                 | ATGGCATC<br>ATCATCCT                                                                  | CGCATGTC                                                                                             | GICAAC                                  | INCTGGAGGATGGCATCCGCATGTGGNTCCAGAGGAGNGAGCAGTGTGACTATATCGACACCACCTGGNG<br>SCTGNTGGCCTCATCCTTCGCGTACCTCAACCTGCNACAAT                                                                                                                                    | GCAGTG1                                     | GACTATA1                                       | CGACACCAC               | CTGGNG  |
|          | BGH-<br>Sequenz | AGGNAGGGG  |                                                                                                            | GGACACA                                                                               | CTCCAATI                                                                                             | TTCAGG                                  | THITTCCAAAGATHTTATCTCCAATTTTCAGGTGTCTCGCAAATAAAGTTCTCAAAACATCTGNGCCTTTACCA                                                                                                                                                                             | TAAAGTT                                     | CTCAAAAC                                       | ATCTGNGCC               | TTTACCA |
|          |                 | TCANCCAGG  | TCANCCAGGGAGGNING TO A TO A TO A TO A TO A TO A TO A TO                                                    | NATCAGN                                                                               | SNGTTACC,                                                                                            | ACTCTTT<br>TOTONY                       | TTCTTCTCA                                                                                                                                                                                                                                              | TNCATGG                                     | ACACACC                                        | CCAGGGCC                | AGAGCC  |
|          |                 | CGGGATNGA  | GGGGATNGACTCANANGGCGTNGAANNACACNCTGNTGNCAANNCAGCCNGNNTACTGNGGAGCNTGNATTTATACAC                             | CGTNGAAN                                                                              | INACACNO                                                                                             | GNTGNC                                  | AGAAGICGIA<br>AANNCAGCC                                                                                                                                                                                                                                | NGNNTAC                                     | TGNGAGN                                        | SCNTGNATTI<br>CNCNAGNTG | ATACAC  |
|          |                 | NCNCACCATN | I NNC I CI ACAANTNNANGGNNACTATCNNCNNCNCNNNNTNCCCCCTNNCTNNNTCTNNNCNCCNNNCTNTTCNTTCTA<br>NCNCACCATNNNNCCN    | NNACTATO                                                                              | CNNCNNCN                                                                                             | CNNNNT                                  | ACCCCCTINA                                                                                                                                                                                                                                             | CTNNNTC                                     | JUNNUNC                                        | CNNNCTNTT               | CNTTCTA |
|          | Gesamt-         | LOCUS NIV  | NM_011512 278                                                                                              | 2781 bp mRNA                                                                          | NA R.                                                                                                | 1                                       | 25-JAN-2000                                                                                                                                                                                                                                            |                                             |                                                |                         |         |
|          | EST-Cluster     | ACCESSION  | DEFINITION Mus musculus surfeit gene 4 (Surf4), mRNA<br>ACCESSION NM_011512                                | surfeit gene                                                                          | 4 (Surf4), m.                                                                                        | RNA<br>A                                |                                                                                                                                                                                                                                                        |                                             |                                                |                         |         |
|          | Motive          |            |                                                                                                            |                                                                                       |                                                                                                      |                                         |                                                                                                                                                                                                                                                        |                                             |                                                |                         |         |
|          |                 |            |                                                                                                            |                                                                                       |                                                                                                      |                                         |                                                                                                                                                                                                                                                        |                                             |                                                |                         | Ī       |
| Klon #95 | T7-Sequenz      | AGCTTCTTCA | GNCGGNACG                                                                                                  | GGGTCAG                                                                               | CGAGCGG                                                                                              | NTGCTTC                                 | GNCGGNACGGGGTCAGCGAGCGGNTGCTTCGTGGAGCAGAGGGGGCATNACNAGGTTCCCGATGAAC                                                                                                                                                                                    | AGAGGT                                      | SCATNACN.                                      | AGGTTCCCG               | ATGAAC  |
|          |                 |            |                                                                                                            |                                                                                       |                                                                                                      |                                         |                                                                                                                                                                                                                                                        |                                             | )                                              |                         |         |

|    |                                 | CCAGAGAACI<br>TGGGGCCTA<br>GTACGGCTG<br>GGGCCCATC<br>GATGAGCCC/<br>AAAGNGGCT/                                                                                            | NCTCCACCGT,<br>TGGGAGCCC<br>GCAGGGNGG/<br>CACCTGCCTC,<br>AGCTCTTCCGN                                                                                               | ATCCGGGCC<br>ACCTCCTCA<br>ACCTCAGGAC<br>ACAGCCTGC<br>STTGGCCGC                                                                                   | CCAGAGAACNCTCCACCGTATCCGGGCCCGGGCCAACAGCCCATACCCACCTTATCCANAACAGCCCAAGGGGGCCAA TGGGGCCTATGGGAGCCCCACCTCCTCAGGGGTACCCCTACCCANCTCAGGGGTACCCANA TGGGGCCTATGGGAGCCCCACCTCCTCAGGGGTACCCCTACCANCTCAGGGGTACCCCANA GTACGGCTGGCAGGGNGGACCTCAGGAGCCTCCTAAGACCACAGNGTATGTGGNGGAAGACACAAAGAAGAACGACCT GGGCCCATCCACCTGCCTCACAGCCTGCTGNACTGCTCTGTGNNGCTGCTCTGGGACCTCTGGCTCACCTGATCANCT GATGAGCCCAGCTCTTCCGCTTGGCCGCTCTGTGCCTCCGATAAGNGTGCCNGGCCCCATCTCTTCTGATNGCTAT AAAGNGGCTAGCTTGCGCNAGACCTCTACTTTCTGTCCTA                                                                                       | AGCCCCATACK TACCCACCANC CCACAGNGTA GTGNNGCTGC TCCGATAGNIA                                                          | CCACCTTATC<br>STCAGGGGT<br>FGTGGNGGA<br>FGCCTCTGG<br>GTGCCNGGG             | CANAACAG<br>ACCCTATC<br>AGACCAAA<br>SGACATCCT                            | SCCAAAGGG<br>CAAGGATACC<br>GAAGAGACG<br>TCACCTGATC                          | GCCAA<br>CCANA<br>SACCT<br>SANCT                |
|----|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|
|    | BGH-<br>Sequenz                 | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                   | THITITITITITITITITITIGATITI TIGCCATTACCTTGAGGTGTAT GCACATTTTTAAAGATCAGT CTAATCTAAAACTCCATAGGA CCAGGCACACTTATCGGAGG CCAGAGGCACACTATCGGAGG TCCACACACATATCGGAGGTGCAAA | TTGGACAGA TAATTTAAAC TAAGAAATGA ACAGAAAGT 3TGGCACAGA AGAGCAGTCAGGAGA                                                                             | THITITITITITITITITITICATITIGGACAGATITATIGAAACATAAAGGGTATGAGCAGAGAGATCTAGNAGNGTGTCACATA TTGCCATTACCTTGAGTGTATAAATTTAAACATTATAAATATATTTCATAACTAAGCCATTGGCCAAAAAAAGTAATTTA TTGCCATTACCTTGAGTGTATAAAATGAGTTTTAAAAAGATCAAGTCACTGAACTAAATAGCAGTAACCCTCA CTAATCTAAAACTCCATAGGACAGAAATGAGTTTTGAACATTAAAAGTCACTGAGCGGG CCAGGCACACTTATCGGAGGTGGCAAAGAGGGTGTCTGCGCAGAAGAGAGCTCATCATCAGGNGATCAGGAGAGAGTGTC CCAGGCACACTTATCGGAGGTGGCCAGAGCGGCCAAGCGGAAGAGCTCGGCTCATCAGGNGATCAGGTGAGCATGTC TTCCACCAGAGGCAGAACAGAGGCTCTTAGGAGGCTCTTGANAGGGGG TTCCACCACATACAGTGCGGTCTTAGGAGGCTCCTGAGGNCCCCTGAGGTGAGG | ATAAAGGGTAT ATATTCATAAC TAAAAAGATC CGCAGGCTA SGGAAGACCTC                                                           | GAGCAGAG<br>STAAGCCTTT<br>AGTCACTGA<br>GCCACTTTA<br>SGGCTCATC<br>SNATGGGCC | AGATCTAGA<br>TGGCCAAAA<br>AACTAAATA<br>TGGCAATC/<br>AGGNCGC<br>CCAGGNCGC | NAGNGTGTC<br>AAAGTAAATT<br>GCAGTAACC<br>AGAAGAAT<br>AGGTGAGCA<br>CCTCTTCTTT | ACATA<br>ATTTA<br>CTCA<br>GGGG<br>ATGTC<br>GNTC |
|    | Gesamt-<br>cDNA,<br>EST-Cluster | Mouse UniGene: Mm.27841<br>Human UniGene: Hs.100132<br>EST-Cluster: Mm27841                                                                                              | e: Mm.27841<br>le: Hs. 100132 (humanes Homolog)<br>//m27841                                                                                                        | numanes Homo                                                                                                                                     | olog)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                            |                                                                          |                                                                             |                                                 |
|    |                                 | TTTTATACTAA<br>TCAGACCCTT<br>CATCCTGAG<br>GTCGGATTTT<br>GAGCAGAGAG<br>ATTTAGCACAT<br>TTAAAAGATC<br>AAACTCCATAC<br>AAACTCCATAC<br>AAACTCCATAC<br>GCCAAGCGGA<br>GCCAAGCGGA | AAAATGTGAGTCCCAAATTCCGCATTTGT ACCACAAACGGGGCCGCCCCCCCCCC                                                                                                           | STCCCAAATT<br>GGGCCGCTT<br>TGGCCGTT<br>ATTGAACAT<br>GTGTCACAT<br>TAGTAAGA<br>VACTAAATAGA<br>VACTAAATAGA<br>GCCAGGCAC<br>CTCATCAGGI<br>SACCAGGCTG | TTTTATACTAAAAAATGTGAGTCCCAAATTCCGCATTTGTACAACAACGAGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAACAACGAGG<br>CGAGAAGGG<br>SCTGCAGATA<br>CTTGAGTGATT<br>VACA<br>VACA<br>VACA<br>VACA<br>VACA<br>VACA<br>VACA<br>V | SGGGAGCGC<br>AGCITGCGC<br>CTCCAGAGI<br>AATTTAA<br>AGCG<br>SAGGCA<br>SAGGCG | o                                                                        |                                                                             |                                                 |
|    |                                 | СТВССАВССЕ                                                                                                                                                               | STACTGTGGG                                                                                                                                                         | ATCCTTGAT                                                                                                                                        | CTGCCAGCCGTACTGTGGGTATCCTTGATAGGGGTACCCCTGAGGTGGTGGTAGGGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TGAGGTGGT                                                                                                          | SGGTAGGGG                                                                  | 3TA                                                                      |                                                                             |                                                 |
| 65 | 55<br>60                        | 50                                                                                                                                                                       | 45                                                                                                                                                                 | 40                                                                                                                                               | 30<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                 | 20                                                                         | 15                                                                       | 10                                                                          | 5                                               |

| 5<br>10<br>15<br>20 | CCCCTGAGGAGGTGGGGCTCCCATAGGCCCCATTGGCTGTTGTGGATA AGGTGGGTATGGGGCTCCCATAGGCCCCATTGGCCTGTTGTGGATA AGGTGGGTATGGGGCTGTTGGCCCGGGGCCCGGATCCTCG GGTTCATCGGGAACCTGGTGATGCCCCGGATACGGTGGAGGCCTCCTGAC CCCGTCCCGAACCTGGACCGCACCGC |                |                                           | GPGPTAPYPP YPQQPMGPMG PMGAPPPQGY PYPPPQGYPY QGYPQYGWQG<br>YVVEDQRRDD LGPSTCLTAC WTALCCCCLW DMLT |                             | GCGCAAGTCTACT SAGTCGGAGA SCACCATACCAGGC GGTCCAGGACCTATG CCCACAGTAC TGTGG TTGC                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30                  | SGCCCCATTGGCCCCA<br>SGCCCCGATCGCAA<br>CCGCCCCCACGAA<br>CCGCCCTCACCCACG<br>SCCCCCTCACCCACG<br>TGCCACCCCCACGC<br>SAAACTCTGCATCACG<br>GTATCTATAGTTTCACG<br>GTATCTATAGTTTCACG<br>GTATCTATAGTTTCACG                         |                | 31320E342D54 CRC64.                       | GPMG PMGAPPPQGY F<br>.TAC WTALCCCCLW DN                                                         | (6o                         | AGGCAATCTGAGACAG<br>CAGACCGACCGTTAT<br>ATGAACCAAGAGCAA<br>TATCCACCACAAGGA<br>GTACCCCTACCAAGGA<br>STCCTAAAACCACGTG<br>GACCATCCACCT<br>GATCAAAACCAGTG<br>GATCAAAACCAGTG<br>GATCAGATCA                                                                                                                                                                                                                                                                                               |
| 40                  | CCCCTGAGGAGGTGGGGCTCCCATAGGCCCCATTGGCCCCATTGGCTGTTGTGGATA AGGTGGGTATGGGCCCGGGGCCCCGGATACGGTGGAGGGTTCTCTG GGTTCATCGGGAACCTGGTGATGCACCTCTCTGCTCCACGAAGCAGCCGCTCGCT                                                       | ther ORF:      | 104 AA; 11402 MW; A53B91320E342D54 CRC64. | •                                                                                               | 4s.100132 (humanes Homolog) | GTCAGGCGCCCGGTTGCATTCCGAACAGGCAATCTGAGACAGGTGCGGCAAGTCTACT GCGGGCTGGTCCGGGCTTCCGAACAGGCAATCTGAGACAGGTGCGGCAAGTCTACT GCGGGCTGGTCCGGGCTCCGGGTTCAGACCCGTTATCCAGTCGGTTCGTGGAGA GCGGCCCAACGGCCCCATACCCACATGAACCCTCCACAGGACCTATG GCGGGACCCTACCCACCTTATCCACCACAATGGGTCCAGGACCTATG GGGGGACCCTACCCACCTCCTCAAAGGGTACCCACAGTAC TAGAAGACCAAAGAAGAGTGAGGCTCCTAAAACCACAGTGTATGTGG TAGAAGACCAAAGAAGAGGTTGAGGACCATCCTTCTCT TGGGACTGCTGCTGCTGGACCAGCCTCTTGTTGCTGCTTCC TGGCACTGCTGCCACAGACCAGCCCAGC |
| 50                  | CCCCTGAGG AGGTGGGTA GGTTCATCGG CCGGTCCCGG GTCGCGAGC GGAAGCCCG CGGTGTCATA CCCTTAGCTC ACCCGGCCC GCTTGGTACA TAGGTTCGGC                                                                                                    | Wahrscheinlich | SEQUENCE                                  | MNPENPPPYP                                                                                      | EST-Cluster: H              | GTCAGGCGCC<br>GCGGGCTGG<br>GGAGAGGTGC<br>CCTGGCCAA<br>GGCGGACCC<br>GGCTGGCAGG<br>TAGAAGACCA<br>GCCTCACAGG<br>TGGCACATG<br>TGCCACTCT<br>TGCCACTCT<br>TGCCACTCT                                                                                                                                                                                                                                                                                                                     |
| 55                  |                                                                                                                                                                                                                        |                |                                           |                                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 60                  |                                                                                                                                                                                                                        |                |                                           |                                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                                                                                                                                                                                                                        |                |                                           |                                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 65                  |                                                                                                                                                                                                                        |                |                                           |                                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|          |                                         | ATTGATCTTTAAAGATGTGCTAAATGACTTTTTTGGCCAAAGGCTTA GTTGTGAAAAATATATTTTAAATTATACATTCAAGGTAGTGGCCAAATGTAACA CATCAATCATGGAATGATTTCTCTGCTAACAGCCGCCTGTATGTTTCAATAA ATTTGTCCAAAGAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AAAGATGTGCTAAATGACTTTTTTGGCCAAAGGCTTA<br>AATATAATTTTTAAATTATACATTCAAGGTAGTGGCCAAATGTAACA<br>FGGAATGATTTCTCTGCTAACAGCCGCCTGTATGTTTCAATAA<br>AAGCTCAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GACTTTTTGC<br>FATACATTCAA<br>ICTAACAGCCG<br>AAAAAAAAAAAAAAAAAAAAAAAAAAAAA | SCCAAAGGC<br>GGTAGTGGC<br>SCCTGTATGT | TA<br>CAAATGTAACA<br>TTCAATAA<br>4AAAAAAAA |                          |                        |                   |
|----------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|--------------------------|------------------------|-------------------|
|          |                                         | Wahrscheinlicher ORF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JRF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                      |                                            |                          |                        |                   |
|          |                                         | SEQUENCE 97 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97 AA; 10631 MW; 93A64A2482B41F5B CRC64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \64A2482B41F                                                              | 3B CRC64.                            |                                            |                          |                        |                   |
|          |                                         | MNQENPPPYP GP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P GPGPTAPYPP YPPQPMGPGP MGGPYPPPQG YPYQGYPQYG WQGGPQEPPK<br>RDELGPSTCL TACWTALCCC CLWDMLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PMGPGP MGC                                                                | SPYPPPQG Y                           | РҮQGҮРQҮG W                                | QGGPQEPPK                |                        |                   |
|          | Motive                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                      |                                            |                          |                        |                   |
| Klon #96 | T7-Sequenz                              | GNGTGGCCTGCCTGGGCCTGACCTGGTNTCCCAACCTGGAGNCCAGAAGGNGGCTTTCTGCAAGGAAGGAAGGAAGGAAGGAAGGAAGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CTCGCTGGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTGACCTGGT                                                                | NTCCCAACC                            | TGGAGNCCACA                                | TTTOOONOOV               | O POSTOLI              | 0010              |
|          |                                         | AGGAAGGACGTGNTCTGCGACGGANTCTAGCAGGCGGANTTGAGCTGGGCCTGGCCCTGGGCACAGAGTCACNG NAGCTATNGANGGACTCCGCAGATGNGGACTCAGCTGAGGAGGGGNGNNGTGGANGCCGNCANCTNAGACNCNANCCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INTCTGCGACGGAGGATCGCAGATCCGCAGGATCCGCAGGATCCGCAGGATCAGGATCAGGAGATCAGGAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAG | ANTCTAGCAGC<br>GNGGACTCAG                                                 | SCAGGGGAN<br>SCTGAGGAGG              | TTGAGCTGGGC                                | CTGGCCCTGC<br>NGCCGNCANC | SGCACAGAG<br>STNAGACNC | TCACNG            |
|          | BGH-<br>Sequenz                         | GCATCAAAGATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTAAAGTCACTCAGTTTATTANAAGCCATGGGAAATCTGAGAGAAACGTTCCAAGCACTTGNTGCTCCTGAAAGAGAGGGCATTGAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTATTANAAGC<br>TCGGCATCAG                                                 | CATGGGAA                             | TCTGAGGGAAA                                | ACGTTCCAAGC              | ACTTGNTG               | STCCTGA           |
|          |                                         | ACTCANNICCTGTCCTGCCCCTGGACCTCCACATCCCAGGCCCTTGGGAAGCCCCTGTTTACCNACACAGACTTGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | сстессссств                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SACCTCCACA                                                                | rccagecc<br>TCCCAGGCC                | STIGGGAAGCC                                | CCTGTTTACC               | VACACAGAC              | TTGAGG            |
| <i>x</i> | *************************************** | FILICUIGCAGAGGCCCATTCCACAAACTGGGAGCCCTGGGCCGAGGCCGAAGTACCACAGGGGTTGGACATCCTGATGTA<br>  AGGCCAGACAGCGGNTCAGGNGGNCGCGATCCCCTGTCACTACACTCACTACACCAGGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I I ICC I GCAGAGGCCCATTCCACAAACTGGGAGCCCTGGGCCGAGCCGAAGTACCACAGGGCTTGGACATCCTGATGTA<br>\GGCCAGACAGCGGGNTCAGGNGGNCGCGATCCCCTGTCACTACACTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AACTGGGAGCA<br>AGGGGATGGG                                                 | CTGGGCCC                             | AGCCGAAGTAC                                | CACAGGGCTT               | GGACATCC               | TGATGTA           |
|          |                                         | CCTGGCAGACCTCCAAGGCCAGCAGAGGACATGCCCCACTGGGTACTAAGACCACGGCATTGCCATGGNCCAGTGCAG<br>GGGCCAGTAGTGACAAAAAGCCAGCAGGGGCCACTAATCCGGCAACAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCAAGGCCAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAGGACATGC                                                                | CCCACTGG                             | STACTAAGACC                                | ACGGCATTGCC              | ACAGAGGA               | GTGCAG            |
|          |                                         | GCGNAGCACAGGGCCTCTNAATCCTGTTACCTGAAGTGTCTGGCCCTTGGTCCTGAACCCGNTGCCCATGTNTGNAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GGCCTCTNAATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTGTTACCTG,                                                               | AAGTGTCTG                            | SCTTGGTCCT                                 | GAACCCGNTG               | CCCATGIN               | CICGAA<br>ITGNAGT |
|          |                                         | CSCSTIMMENTERSTITATION OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF TH | GCAGCCNNNGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GI I GGCNACT<br>GCCCAAGNNN                                                | ITAGGCGCT<br>INCT                    | STCCCGTGCCT                                | TCTAGTTGTGA              | <b>GGNNAGCA</b>        | стевст (          |
|          | Gesamt-                                 | UniGene: Hs.133494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                      |                                            |                          |                        |                   |
|          | EST-Cluster                             | Mm.31778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                      |                                            |                          |                        |                   |
|          | Motive                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                      |                                            |                          |                        |                   |
| 700      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                      |                                            |                          |                        |                   |
| Kion #8/ | 1/-Sednenz                              | AGATGGAGCAGNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>AGNGTTTCCAACANGGACGACATNAAGACCTCACTCAAGAAAGTTGTGAAGGAGACATCGTATGAGATGAT</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SACGACATNA                                                                | 4GACCTCAC                            | CAAGAAAGTTC                                | TGAAGGAGAC               | ATCGTATG/              | AGATGAT           |
|          |                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                      |                                            |                          |                        |                   |
| 65       | 55                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                        | 30                                   | 20                                         | 15                       | 10                     | 5                 |

| BATECAGA GO CATA TO CONTRICA CONTRICATION OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CACGTGATCTCGATGCGATGCAGGATTCTTCGNTGGCTGGAATCTTCGATGCGGCTGCTGGGATTCTTCGATGCTGGGAATCTTCAAGGAAGAGGGCTGCTGGGATTCTTCGNTGGCTGGAACCTGCTGGCCACTTCATNAATGCCTAGTGGTGAACCTGGTGAACCTGGCCGCTTTTGGCTGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ATGCGATGCATGGNGCAGNITTGNGGNACGG AAGAGGGCTGCTGGATTCTTCGNTGGCT SCTGGCCACTTCATNAATGCCTACTTGGTG CNAGGTTCCCAGTTTAGCCAGGCCCTGGCC CCTACCCCCTTTCTGCTCCCCGCTGNNGATCTC CCTACCCCCTTTCTGCTCCCCTGGCC CCTACCCCCTTTCTGCTCCCCGCTGNNGATCTTAGCCACAGCACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TGGNGCAGNTTGNGGNACGG TGCTGGGATTCTTCGNTGGCT TGCTGGGATTCTTCGNTGGCT TTCTATNAATGCCTACTTGGTG AGTTTAGCCAGGCCCTGGCC TTCTGCTCGCTGNNGATCTC AGGAGCACAGCAGCAGATNAG AAAATTAGTGTTGNGAACATA NNGCGGCGGTGCTTCTGGCT GCCTCTGCAGCCTGCTCTG GCTCTGCAGCCTGCTCTG AAAATTAGTGTTGNAG AAAATTAGTGTTGNAG AAAATTAGTGTTGNAG AAAATTAGTGTTCCCCAG AAAATTAGTGTTCCCCAG AAAATTAGTGTTCACGTCTCTTG AGGAGTCATGGCTGCTCTTTCACGTCTTTTCACGTCTCTTTTCACGTCTTCTTTTCACGTCTTTTCACGTCTTTTTCACGTCTTTTTTTCACGTCTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SINTGNGGNACGG TTCTTCGNTGGCT TGCCTACTTGGTG CAGGCCCTGGCC GCTGNNGATCTC GCTGNNGATCTC AGATGTCGNTCTA AGATGTCGCTCTGGCT AGCCTGCCTCTGGCT AGCCTGCCTCTC AGCCTGCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          |                                 | COTOTOTOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTOCOCOTO                                                                                               |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                    |                                                              |
|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|          |                                 | ACAACGACGATG ACAACGACGATG TGGNGTCAGGAC CCTGAGGGGCCN AAGGATGANTNT NAGTNTCNTCACI GACAGCTTGGAN GTCTGCNTTNCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATORING INTERPRETATION OF INCURS AND AND AND AND AND AND AND AND AND AND                                 | GCTGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                              | IGCI CI ACAAG<br>CCTCAAGNGG<br>AACGGTAAGG<br>GATGCATCAG<br>SGCACAGCAG<br>SGGAGGAGG<br>GAGCNTATCTV                              | ACACGACCAGCCCGGTGCTGTGTGTGTGTGTGTGTTCCGCGGGGACCAGCCCGGTGCTAGTGCCGGGGACCAGCCCGGTGCTAGTGGCG ACACGACGATGANGAACCACCCCGCTGCCCGCTCCAAGNGGCGCGACTTCACCCCTGCCGAGCTGAGGCGTTTNGA TGGNGTCAGGACCCGCGCCTTCTATGGCCATCAACGGTAAGGTGTTCGACGTGACCAAAGGCCGCANGTTCTACGGG CCTGAGGGGCCNTATGGGGTCTTTGCCGAAAGAGATGCATCAGGGGGCCTTGCNCATTTTGCCTGGANANAGAAGCACTG AAGGATGANTNTGACGACCTTTCTGNCCTCACCCTGCAGAGGAGAGACCTGANTCACTTTC NAGTNTCNTCACNTGGGAAAACTGCTGAAGGAAGGGAGGAGGAGCCTACTGTATTTGCANCTCTCANTTCACTTTC GACAGCTTGGANGANTGANTGNNNCATTCGGTGGAGGAGCCTACTGTGTTTTTGCANCNTCNTTTTGTANCNTTCNN GTCTGCNTTNCNACATGGNGATTTNNNTATTANACAGTTTTGCNCTTTGCTGA | SACCAGCCGG<br>TGCCGAGCTGAAAGGCCGCA<br>TTGCCTGGAN<br>TTGCTGGAAN<br>TGGCAACTC<br>SATGATGAAGAACANCNTTTTTTTTTTTTTTTTTTTTTTTT | GTGCTAGTG<br>SAGGCGTTT<br>NNGTTCTACC<br>JANAGAAGC<br>ICANTTCACT<br>TCANTACACT                      | NGA<br>NGA<br>ACTG<br>TTC<br>TGA                             |
|          | BGH-<br>Sequenz                 | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                    |                                                              |
|          | Gesamt-                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M_016783 1786 bp                                                                                         | MRNA                                                                                                                                                | ROD 15-JUN-2000                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                    |                                                              |
|          | cDNA,<br>EST-Cluster            | DEFINITION Mus I<br>(Pgrmc-ACCESSION NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                              | erone receptor n                                                                                                                                    | nembrane comp                                                                                                                  | onent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                    |                                                              |
|          | Motive                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                    | T                                                            |
| Klon #99 | T7-Sequenz<br>BGH-<br>Sequenz   | AGCTCGAAAGCGACATGGCGGTTCTT AAGCCGGGTGGTCAGACCCGCTTATA ATTCACCTGTCACAAGCCCACCACTC GCTCTTGGGGCTGATCCCTGCTGGGCCACAGTCACTTGACATTGACATCCTTGACATTGACATTTGACATTTGACATTTGACATTTGACATTTGACATTTGACATTTGACATAATGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGAGATTAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAGATTAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAGAATAGAAAAAA | ACATGGCGGTTC CAGACCCGCTTA CAAGCCCCCCCCCC                                                                 | CTCTTAAAGCT<br>ATGTGTCCAGC,<br>TCTGGTTCCAAA<br>GGTGCTTGCAAA<br>TTTGCTGGCGCCATTG<br>AAGCCCATTGAGCAAATTCATGAGCAAAACCCATTGAGCCAAAAACCCATTGAGCCAAAAAAAA | GGGCGTTCTC ATTTCTCCAGG AGGCTGCATC CCCTGCTCTG SACTACGTTCATC TTTGATTGTGT GTGGGCAGAA ATTCGTGAGTC TTCGTGAGTC TTCGTGAGTC TCATGGTGCC | AGCTCGAAAGCGACATGGCGGTTCTCTTAAAGCTGGGCGTTCTCTGCAGTGGCCAAGGAGCTCGAGGCTCCTCCTACTCCGGAAGCGAAAGCGACATGGCGCTTCTTAAAGCTGGCCATTCTCCAGGACCGCTTCCCAGCGCTACCCAGCGCTACCCAGCGCTACCCAGCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAGCTCGAGC<br>GGACGGTGT<br>GGAGGGGT<br>CTGGCTGCAC<br>SCGAGGCTG<br>SCTTACCAA<br>TGGTTATTT<br>ACTGAGTGT<br>CTTAAGGAGA      | TCTCCTACT<br>GGTACCCAG<br>GGTACCCAC<br>SCCCTCACC<br>GCGGGCAC<br>GCGGTTCA<br>GGGAATTTA<br>SGCCAGCTG | SCG<br>CCAC<br>TCT<br>CTG<br>CTG<br>SGC<br>TGC<br>CCT<br>CTC |
|          | Gesamt-<br>cDNA,<br>EST-Cluster | Humane Sequenz:  LOCUS NM_003002 1313 bp mRNA PRI 19-MAR-1999  DEFINITION Homo sapiens succinate dehydrogenase complex, subunit D, integral membrane protein (SDHD) mRNA.  ACCESSION NM_003002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | equenz:  NM_003002 1313 bp mRNA  N Homo sapiens succinate dehyd membrane protein (SDHD) mRNA N NM_003002 | mRNA PI<br>te dehydrogenas<br>)} mRNA.                                                                                                              | PRI 19-MAR-1999<br>ase complex, subunit E                                                                                      | 999<br>nit D, integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                                                                    |                                                              |
| 65       | 55                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                                                                       | 35                                                                                                                                                  | 30                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                       | 5                                                                                                  |                                                              |

| 10 15 20 25 30 35 40 45 |        | uenz AGCTAGGATCTTTAGCTTCAACTCCTACTGCTNCTTCTAACCCAGCAGCCCCGGATAATGCAGCCCAGGAGGAGCTCATG ATCACCCTGATCACAGGATTGGCGTCCCTCACGTCGAGAACCTCCATGGGCATCATCGGTGGNGGGGGGCCGGTAATTTN GAAAACAGGTGGGNTTGNAACCTAATCTTTGCNNCTTAAGGAATGACCGGGGGCTTNGACCTTTAATNA | n.d.            |                  | uster   Humane Sequenz: | LOCUS HSU95822 2176 bp mRNA PRI 30-JUL-1997<br>DEFINITION <i>Human</i> putative transmembrane GTPase mRNA, partial cds.<br>ACCESSION U95822 |        | - | AGCTGCGCCCNTGTACCCTAGGTCTAGAGTGNACCCGCGGGAAAGAAGCTAGGCCGGGTCCGCAGGTGTGGTG CACTTCGCACAAAGCAGCGCGCGCGCGCGCGCGCGCGCGC |
|-------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--------------------------------------------------------------------------------------------------------------------|
| 60                      | Motive | T7-Sequenz                                                                                                                                                                                                                                   | BGH-<br>Sequenz | Gesamt-<br>cDNA, | EST-Cluster             | ·                                                                                                                                           | Motive |   | T7-Sequenz BGH- Sequenz Gesamt- cDNA, EST-Cluster                                                                  |
| 65                      |        | Klon #100                                                                                                                                                                                                                                    |                 |                  |                         |                                                                                                                                             |        |   | Klon #101                                                                                                          |

|            | Motivo                          |                                                                                                                                           |                                                                                                                                     |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                              |                                                                                             |                                                                                                               |                                                                                      |
|------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|            | DARROW                          |                                                                                                                                           |                                                                                                                                     |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                              |                                                                                             |                                                                                                               |                                                                                      |
| Klon #102  | T7-Sequenz                      | AGGTTTCCTO<br>CTGCATTGGG<br>AGGATCAAAT<br>CGGATGATGA<br>AAAGGACACC<br>ACCAGATTGA<br>CTACGGCACC<br>GATAGCTCCT.<br>CCGTGCTGNN<br>ANGAGAAGTA | GCCGCCGGC<br>SACGAGGAT/<br>CAAGAAGATG<br>SAGCAACAGC<br>SAGACTTACAA/<br>CCAGAGTTAGA/<br>CCAGATGATTAGA/<br>ACTTGGATGA/<br>TTCTGGNACT/ | CAAGATGAA<br>AGCAGGGCA<br>AGAGAGGG<br>SAGACACC<br>STTGATGC/<br>SACCAGCTG<br>ATGAGGAC<br>GCAGCTTC<br>GNACTGCCC | AGGITTCCTCGCCGCCGCCGGCCAAGATGAACCGNTTCTTCGGAAAAGCGAAACCCCAAGGCTCCGCCCCTAGCTTGACGGAACAAAAGCTTCCTCGCCGCCGCCGCCCCCCTAGCTTGAAAAAAAA                                                                                                                                                                                                                                                        | SAAAAGCGAA<br>SAAAAAGATT<br>CATGGTCAAA<br>CCTTTAACAT<br>GTAAAGGAA<br>GGAGTTAGAT<br>ITCCGGAAGC<br>TTCCGGAAGC | ACCCAGGI<br>CCCGGCT<br>(CAGAAAG<br>GGAGCAAG<br>TGAAGAAG<br>ATGAGGAT<br>SCGCTGGG<br>STGTTCCCA | CTCCGCC/<br>SCTGAGA<br>SCTAATTA<br>SCTAATTA<br>CCAGGAA<br>CCAGGAA<br>CTGACAC,               | ACCTAGCT<br>SAACTAGTC<br>(GTTTTAAA(<br>CACCATCC)<br>AGGAAGTA<br>GCCCTGGC<br>CTTCTGGC<br>AAAAAACA/<br>GTGATGTG | FGACGGA<br>SAAATATA<br>SCAAAG<br>AGTCACT<br>AAAATTG<br>SCCGCAG<br>TGATGAA<br>AGGATGG |
|            | BGH-<br>Sequenz                 | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                    | TITITITITITI TCATTATCAT TCATTCCAACAC TCAGCACACAC TCAGCACACAC ATGAAACAAG TAAAGACAGI TAAAGACAGI AAGAAAGAAAA                           | TITITITITI TACAAGICA STANATCGT SACAGACAA SAGACTGTA TCCAAAAG GAAACCTAA                                         | TITITITITITITITITITITITITITITITITITITI                                                                                                                                                                                                                                                                                                                                                 | ATATTNATTG GAGGGAACC TCACATGAC/ CATACTATCA TAGAATTCAG TANCGGAAA                                             | AGTATAAAN<br>ATGGAATC,<br>ACAGTCCC<br>GCAGTCCT,<br>3TCTTTCCT,<br>AAATAAAAA<br>ACTATTCCTI     | VAAATGNC<br>AAAATAGT<br>TNTATCAA<br>AATCTTGG<br>STCCTTGG<br>AAGAGAAA<br>TNCNGGA<br>TAGTCCCA | CTATNCAT<br>AAGAGGC(G<br>AAGAGCC(G<br>TCAATCAC)<br>STITAATTIC<br>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA               | TAAATAT<br>ATACCGA<br>CATGACT<br>TITATCT<br>SAGATTA<br>AANGAAT<br>NANAGC<br>CTCTTGN  |
|            | Gesamt-<br>cDNA,<br>EST-Cluster |                                                                                                                                           | nz:<br>161525 1197 b<br>Iomo sapiens HS<br>AF161525                                                                                 | 1197 bp mRNA<br>ans HSPC177 mRNA                                                                              | PRI 01-FI                                                                                                                                                                                                                                                                                                                                                                              | 01-FEB-2000<br>ds.                                                                                          |                                                                                              |                                                                                             |                                                                                                               |                                                                                      |
|            | Bemerkun-<br>gen:               | Das Gen enthält<br>sind proapoptotis<br>135 mit Bcl-2-Ge<br>Domäne notwen                                                                 | t eine BH3-Domé<br>isch und haben o<br>enfamilienmitglie<br>ndig.                                                                   | ane, die in vie<br>die evolutiv ko<br>dern interagie                                                          | Das Gen enthält eine BH3-Domäne, die in vielen BcI-2-ähnlichen Genen vorkommt. Gene mit solchen "BH3-only"-Domänen sind proapoptotisch und haben die evolutiv konservierte Funktion, Apoptose zu induzieren. Unsere Versuche zeigen, daß CGI-135 mit BcI-2-Genfamilienmitgliedern interagieren kann. Für die effiziente Apoptose-Induktion durch CGI-135 ist die BH3-Domäne notwendig. | n Genen vorkor<br>n, Apoptose zu<br>effiziente Apopt                                                        | nmt. Gene m<br>induzieren. L<br>tose-Induktior                                               | iit solchen "I<br>Jnsere Vers<br>n durch CGI                                                | BH3-only"-Do<br>suche zeigen<br>I-135 ist die f                                                               | omänen<br>daß CGI-<br>3H3-                                                           |
| 65         | 55                              | 50                                                                                                                                        | 45                                                                                                                                  | 40                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                          | 20                                                                                           | 15                                                                                          | 10                                                                                                            | 5                                                                                    |
| <b>3</b> 5 |                                 | i0                                                                                                                                        | 15                                                                                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        | :5                                                                                                          | .0                                                                                           | .5                                                                                          | 0                                                                                                             |                                                                                      |

| 5  |                                                 | TCCTNCGC<br>CCCCTTCC<br>CCCCTTCC<br>CANNNNTCT<br>CTNTCCAA<br>CNTTTCTCT<br>CTNTCATC<br>TTTANTINT<br>VINTTCTNA<br>ATAATCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | TATGCGCN<br>INNNAAGNC<br>INCTCTNTT<br>NNCNCCCC<br>CCTCCCTN<br>CATTCNC<br>INCTCANTN<br>SAANNCTCT<br>ATNTTCCAC<br>ANACCCCN<br>NNNTCCCC<br>ANACCCCN                              |
|----|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 |                                                 | AAANCTNNATCTCATCTACACNNGCNNTNGATCCACTANNAACGGGNCGCCAGAGACGCTGNAAAAGGTCCGCTCCTNCCTNCCTNATCTCACTCACTCACTCACTCACTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | TIATNAACCNCTNTCNCCACGCTTGGACCCACTANCAACGGNCGCCAGTGTGCNTGGAAAGNACGAANGGCTTATGCGCN AGGTNCCACNCTNTCNCNCNCNCNCNCNCNCNCNCNCNCNCNC                                                  |
| 15 |                                                 | CGCTGNA<br>ACTANNAN<br>ACTANNAC<br>CATINNAC<br>CATINCON<br>INTCCTNT<br>TINCONNCA<br>TINCONCA<br>TONACTCC<br>TINCONCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | SAAAGNAC<br>NINNNCGGN<br>ATNCNNC<br>CCTCACN<br>VITATTCATA<br>ACTTCTNC<br>ACTCTTC<br>CTCCTCT<br>CTCCTCT<br>CTCCTCT<br>TCCCTCT<br>TCCCTCT                                       |
| 20 |                                                 | SCCAGAGA<br>GNCANCNT<br>ATCTATNT<br>ATCTATNT<br>CCNCCNNC<br>CNCCNCCT<br>TCANATC<br>TANNOCNTI<br>CNCNTNTCT<br>NNTCNCCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | IGTGCNTG<br>CCNNTTTTT<br>INANNCCCN<br>INNCNTACI<br>SCTCTCNT<br>CCTTATNNN<br>CTCTTCN<br>CTCCTTCN<br>CTCCTTCN<br>CTCCTCC<br>CTCCTTCN<br>COTCCCTC<br>COCCTCCCCTC<br>COCCCTCCCCTC |
| 25 |                                                 | ACGGGNC<br>ATTNTANCC<br>NCNTNTCTC<br>NNTNNCAA<br>CONTACANI<br>STNTCTCC<br>CACTANCT<br>AANTTCNAC<br>SCNCNTNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | SNCGCCAG<br>AGGNAGGG<br>INCNCNITY<br>CNCCCCC<br>SCCTCCT<br>TATCCCT<br>TATCCAT<br>TATCCAT<br>TANCTCAT<br>TANCTON<br>TANCTON<br>TOCNINCA<br>CACNITACA<br>TOCNINCA<br>CACNITACA  |
| 30 |                                                 | STCATCTACACNINGCNNTNGATCCACTANNA GTGCCCTGANCTCNNNNGACAGGCTTCCN TATNTNNTACTCNCNNNCTNCTCCCTCTTTN TICTTTACCACTCCNTCTCNNANTATNTNN STCATTTCCACTCCNTCTCNNANTATNTNN STCATTTCCCCNTTTNCCTACTCCCTATTCCTC TATCTTTCCCCNNNTCTNNNCNNNNCTATT ACNNANNTCTNANNCCNCNNTCTTTCCTC NNCNANNNTCTNTNNNCTATCACCTCTTCCTC TANCCTNCCAACTCCCGTCCTTCCTCC TANCANNNCAACTCCCGTCCTTCCTCCCC ACAACNNNCACNTTTATNTCTTCTTCCCC ACAACNNNCACNCTTTATNTCTTCTTCCTCN ACAACNNNCACNCTTTATNTCTTCTTACCCCN ACAACNNNCACNCTTTATNTCTTCTTACCTCN ACAACNNNCACNCTTTATNTCTTCTTACCTCN ACAACNNNCACNCTTTATNTCTTCTTACCTCN ACAACNNNCACNCTTTATNTCTTCTTACCTCN ACAACNNNCACNCTTTATNTCTTCTTACCTCN ACAACNNNCACNCTTTATNTCTTACTTACTTACTTACTTA |                                | ANCAACGG<br>COCCNNN<br>COCCNNNCTTT<br>CONTNNACC<br>ANNNCTTAT<br>ACATCTCTC<br>TCANTAGT<br>TCANTAGT<br>TCANTAGT<br>CONATCCNT                                                    |
| 35 |                                                 | INTINGATO<br>NINIGACAA<br>NINIGACAA<br>NININGTUCT<br>TATCTCNIAN<br>CTACTCCC<br>TATCCCIO<br>CTATCACC<br>CCATCACC<br>CCATCACC<br>CCGTCCTC<br>TATNITCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | atenbänken                     | GACCCACT<br>AANNNGNC<br>AANNNGNC<br>CANTATCH<br>CONTROCOT<br>CONTROCOT<br>COCCCCTC<br>ANCOTCC<br>CONTROCOT<br>CONTROCOT<br>CONTROCOT<br>CONTROCOT                             |
| 40 |                                                 | ACACNNGC<br>TGANCTCNC<br>INTACTCNC<br>TCCACTCCI<br>CONTTTNC<br>CCCCNNTO<br>VINNINTNNNN<br>NNTCTNNNN<br>TCTNTNNN<br>NCCAACTC<br>INCCTCNTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Sequenzen in den Datenbänken | CACGCTTG<br>SGGNGNCTN<br>CNCNNTTN<br>TTCNNCTN<br>TCCANCCT<br>NNTACNCT<br>NNTACNCT<br>CATCTATC<br>CANCNCTT<br>CANCNCTT<br>CANCNCTT<br>CANCNCTT                                 |
| 45 |                                                 | ATCTCATCT<br>ACGTGCCC<br>INTTATNTN<br>INTCTTTA<br>ACCTCNTTT<br>ACCTCNTTT<br>CCNCANTNI<br>STTANCCTI<br>INTCNNNN<br>ATTANCCTI<br>ANNCTNTAN<br>TCACAACN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gen Sequen                     | NCTNTCNO<br>SNCNNTTG<br>SNCNNTTG<br>SNCONCCAN<br>NCONCCAN<br>NCTCTCT<br>NCTCTCT<br>NCTCTCTA<br>CACTCCTA<br>CACTCCTA<br>NTTNTNCN                                               |
| 50 |                                                 | AAANCTNNATC TGNAGAGNACC TNCNNNATTNT CTNNTTATNNN NNNACCNTNCC CNCTCANCNN NCNNNAACCT ANNNTACTTT NCNCTTCTT NCNCTCTT NCNCTNTCCTT TCCTCCTT TCCTCCTT TCCTCCTT TCCTCTT NCNCTNTCTT NCNCTNTCTT NCNCTNTCTT TCCTCTT NCNCTNTCTT TCCTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                          | Keine homologer                | TTATNAACCNC AGGTNCCACNC GAANGNGTCNC TTNCTCCCCNC CNNNACTCCCC TNCCNNTTTNC ATANTCTCCCAC CCTACTNANC CCTACTNACNT CCCTCTTCNT CCCTCTCCNT                                             |
| 55 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | 13. 3. 23 23 33 3                                                                                                                                                             |
| 60 |                                                 | 77-<br>Sequenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 11                                                                                                                                                                            |
|    | en,                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                                                                                                               |
| 65 | Klon<br>Name,<br>Bezeichnug (Gen,<br>Datenbank) | Klon #103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | Klon #104                                                                                                                                                                     |

| CATC<br>TTNCT<br>SATCN                                                                                                                                                                                     |                                                   |                                                                                     |   | GGCA<br>NNCT<br>TTCA<br>CCCC<br>CAAC<br>CAAC<br>CAAC<br>CAAC<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CONTCT<br>CCTCAN<br>CCTNATC                                                                                                                                                                                |                                                   | i                                                                                   |   | AAGATT<br>CCCCCT<br>CCCCCT<br>CCCCCT<br>TCTTCC<br>NNACNC<br>CCNNCN<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC<br>TCNTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5    |
| VCATNC<br>PACCCTC<br>GNTCTC                                                                                                                                                                                |                                                   | i                                                                                   |   | ACT 1CG<br>CCTCCC<br>CCTCTN<br>CCTCCC<br>CCTCTN<br>AATCCNC<br>TTCNNC<br>TTCNNC<br>CCNTTC<br>CCNTTC<br>CCNTCTT<br>CCNTCTT<br>CCNTCTC<br>TCTCCA<br>TCTCCA<br>TCTCCA<br>TCTCCA<br>TCTCCA<br>TCTCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10   |
| VCNCTCI<br>CACTNCT<br>INTCTCT                                                                                                                                                                              |                                                   |                                                                                     |   | STITCLE<br>SOCTOCO<br>SOCTOCO<br>SOLUCTO<br>SOLUCTO<br>SOLUCTO<br>SOCTOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCO<br>NOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCOLOCOLOCOLOCOLOCOLOCO<br>NOCOLOCOLOCOLOCOLOCOLOCOLOCOLOCOLOCOLOCO                                   | 15   |
| CNTCCCI<br>CGNACAC<br>NNTNTNTN                                                                                                                                                                             |                                                   |                                                                                     |   | SAAAGI C<br>SCGCCAC<br>INCTANC<br>SCTUCN<br>SCTUCN<br>INCTANC<br>TCCNAT<br>TCCNAT<br>TCCCTA<br>ACCTACA<br>TCCCTA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNCCTACA<br>ICNC | 20   |
| CTCTNTC                                                                                                                                                                                                    |                                                   |                                                                                     |   | TGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| CTCNCC<br>ICTACNC<br>NCTCGNI                                                                                                                                                                               | ₹                                                 |                                                                                     |   | NUNTCOTAGE  COCAGENCE  NUNNTGN  NUNNTGN  CONTINI  NUCTOTAGE  CONTINI  COCATO  CONTINI  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO  COCATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25   |
| CTTNNT<br>NTTTNC)<br>TNTACTI                                                                                                                                                                               | culus cDN                                         |                                                                                     |   | ACAGECCE<br>ACAGECCE<br>STACGET<br>SONCCATI<br>CONCOC<br>CONCOC<br>CONCOC<br>CONTCTI<br>COCTOC<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACCTCT<br>TACT                                                                                                                                                                        | 30   |
| ACTCATA<br>ITCCNTC<br>NCNNCN<br>TNTCTNC                                                                                                                                                                    | Mus mus                                           |                                                                                     |   | AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAGI AGITAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35   |
| CACTNTCTCTNNTCTCTCCACCACCGTCTACTCATACTTNNTCTCNCCCTCTNTCNTCCCNCNCTCNCATNCTCNTCTCATC NTCTCANTCCCTCTANNTNTNCATTTCTNNTCCNTCNTTTNCTCTACNCNCTCCCGNACACACTNCTACCCTCCTCANTTNCT CCCACNNCTACCANCNCTNTCTCCTCNNTNCNNTN | .30119 Mn.30119 EST01349 Mus musculus cDNA<br>659 | 2                                                                                   |   | COTGCTTCCCTGCCTCTACTNGACGCCTCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| CCACCA<br>TNTNCA<br>CTNTCTC<br>NATCNC                                                                                                                                                                      | n.30119 E                                         | (pect = 1.                                                                          |   | TACTOR<br>TACTOR<br>NNCCCC<br>ACCOUNT<br>TACCCT<br>CTNCCT<br>TACCONT<br>TACCONT<br>TACCONT<br>TACCONT<br>TACCONT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT<br>TACCOCT                                                                                                                                                                         | 40   |
| INTCTCT<br>STCTANN<br>SCANCNO<br>VTNTTCA                                                                                                                                                                   | .30119 Mr<br>659                                  | Score = 34.2 bits (17), Expect = 1.2 Identities = 21/23 (91%) Strand = Plus / Minus |   | SCOOL STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45   |
| VTCTCTN<br>CANTCCC<br>CNNCTAC                                                                                                                                                                              | >ug AW682500.<br>Length =                         | Score = 34.2 bi<br>Identities = 21/2<br>Strand = Ptus /                             |   | CCTGCTTCCC<br>GAGGNGNGNG<br>GAGGNCTCC<br>CCTTACCNCTC<br>CCTCNCCATTC<br>CCCTCNCTCC<br>CCTCNCTCCAN<br>TNNNCTATTNCN<br>TNNNCTATTNCN<br>TNNNCTATTNCN<br>TNNNCTATTNCN<br>TCTCACCTCT<br>CCCNCCTTCCT<br>CCCNCCTCCT<br>CCCNCCTCCT<br>TCATCTCTCT<br>TCATCTCTCT<br>TCATCTCTCT<br>TCATCTCTCT<br>TCATCTCTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50   |
| CACTI<br>NTCTC<br>NCTCA                                                                                                                                                                                    | >ug A                                             | Score<br>Identi<br>Stran                                                            |   | CCTG<br>CCTG<br>CCTG<br>CCTG<br>CCCTG<br>CNATC<br>CCCCC<br>CTNCT<br>CACCC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC<br>CACNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 55 |
|                                                                                                                                                                                                            |                                                   |                                                                                     |   | ·<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                            |                                                   |                                                                                     | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 60 |
|                                                                                                                                                                                                            |                                                   |                                                                                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65   |
|                                                                                                                                                                                                            |                                                   |                                                                                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |

| 5 10 15 20 25 30 35 40 45 50 | lk:   >emb X98475.1 MMVASP M.musculus VASP gene<br>Length = 2261 | Score = 192 bits (97), Expect = 3e-46<br>Identities = 131/145 (90%)<br>Strand = Plus / Plus | NNCCGNCCCCTTCNACCGGCTCGGATCCACTAGTAACGGCCGCCAGNGTGCTGGAAGGGCCACGAGGCCCCCTTCNACCGNCCCCCTTCNACCGCCGCCCCTTCAATCGGAACGGCCAGAGGGCCACAGAGGCCCCCCTTTCAATCGGAACAGCAGCAGCAGCGCGCCCCAATCGAATCATCAATCGCCCACTCGGCGCCCAGCAGCAGCAGCAGCCGCCCCAATCAAT | <del></del> |
|------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 60                           | Datenbank:                                                       | W. T. T.                                                                                    | <b>L</b>                                                                                                                                                                                                                              | Datenbank   |
| 65                           |                                                                  |                                                                                             | Klon #106                                                                                                                                                                                                                             |             |

| Klon #107 |    | ACCGINGNCAGCCINCTINGGINANGENTIGGAACACTAGCAACGGACGCNGGACGACGNGGAAAGINANGGACAAGININAAGAAGINANGCACAACINGNINACTOCCCNCTINGGAACAAGINAAGAAAGAAAAGAANAAAGAANAAAGAAAAAAAAA               | CCCNCTNGGNANGCNTGGAACACTAGCAACGGACGCNAGACGACGCNGGAAGGNANGGAAGAAGNNAAGA CCCCTATCCCCCNCCAGNANAATNGNAGGAACACGACGAGNAAAGGAGNAAAGGAGNAAGAGAGNAAGAGAGNAAGAGAGNAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA | NTGGAACACTA CCAGNANNAATH GNACCONACAGA GGATCNAAAGA GGATCNAAAGA NGCCNNAGNNA ATATCTCTCTCACA ATATCTCTCTCACA ATATCTCTCTC | GCAACGGA( AGNAGGANN AACAAANCA ANACNGAAC ANACNGAAC ANACNGACC ANACOCTNNC ACNGACCTC ACNGACCTC ACNGACCTC ACNACCANNI ACNCCANNI ACNCCANNI ANTANCACC ACNACCAC ACNCCACAC ACNCCACAC ACNCCACAC ACNCCACAC ACCNACACAC ACCNACACAC ACCNACACAC ACCCNACACAC ACCCNACACAC ACCCNACACAC ACCCNACACAC ACCCNACACAC ACCCNACACACAC | GCGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG   | GCNGGAAAG GNAAAAGAAAAAAAAAAAAAAAAAAAAAAA | SNANGGACAA<br>GAANAGAAG<br>SNNCCAAGTG<br>SAANTAAGAA<br>SAANTAAGAA<br>SAAACCNNTN<br>NANNCACNT<br>NCTACACNN<br>NCTACACNN<br>STATACCAC<br>CANNGGNAN<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA<br>SCTCTANANA | GNNAAGA<br>NGCNAGG<br>SAAGACN<br>GATNACA<br>CANGAAN<br>NCNNNCN<br>CCTAACC<br>ITNNANAG<br>STACANAC<br>SNGTAAC<br>NTATANN<br>NACANAC<br>TANCACN<br>TANCACN<br>TANCACN<br>TANCACN<br>TANCACN<br>TANCACN<br>TANCACN<br>TANCACN |
|-----------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |    | => >gb BE226644.1 BE226644 ia23h11.y1 Mouse E10 5 12 5 Pancreas cDNA Library Mus musculus cDNA 5' similar to SW:NUML_BOVIN Q01321 NADH-UBIQUINONE OXIDOREDUCTASE MLRQ SUBUNIT;. | BE226644.1 BE226644 ia23h11.y1 Mouse E10 5 12 5 Pancre                                                                                                                                           | I.y1 Mouse E10 5<br>201321 NADH-UE<br>BUNIT ;                                                                       | 12 5 Pancrea                                                                                                                                                                                                                                                                                              | s cDNA Library h                         | Aus musculus c                           | SDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |
|           |    | Score = 38.2 bits (19), E Identities = 29/33 (87%) Strand = Plus / Plus                                                                                                         | (19), Expect = 9.9<br>(87%)<br>us                                                                                                                                                                |                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 12:7                                                                                                                                                                                                                     |
| Klon #108 |    | TTTCCCCCCNTCNC<br>CAGCGGGCTTGTCC<br>CTGGAGACCGAGAG                                                                                                                              | CNCCGGCTNGGATCCCTNGTAACGGCCGCCAGTGTGCTGGAAAGCCGNAAGCGCAGAGAGGCAGAGAGGAGGAGGAGGAGGAGGAGGA                                                                                                         | CCTNGTAACGG                                                                                                         | CCCCCAGTI<br>CGCCATGG/<br>AGNGGGCTC                                                                                                                                                                                                                                                                       | STGCTGGAAAG<br>NTCGCGATGAG<br>CCTGCTGGCC | SCCGNAAGCG<br>GAACCTCTG1<br>4GCTATGGCT   | CCGCGAGGA<br>CCGCGAGG<br>GGTACATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GAGGAG<br>CCGGCG<br>TCTTCAG                                                                                                                                                                                                |
| 65        | 55 | 50                                                                                                                                                                              | 40                                                                                                                                                                                               | 35                                                                                                                  | 30                                                                                                                                                                                                                                                                                                        | 20                                       | 15                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                          |

| CTG AGA ATGI GCA TCA TCA CTNI CTNI CNT CNT | CTGCATCCTACATTGTCATCCAGAGGCTCTCCCTTCGACTGAGGGCTNTGAGGCAGAGACAGCTNGACCAGGCTNGACCAGGCGGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCTTTAGGAGAACTTGAGAAGGAAG | SATCCAGAGG                                                                                                                                                                             | CTCTACATTGTCATCCAGAGGCTCTCCCTTCGACTGAGGGCTNTGAGGCAGAGACAGCTNGACCAAGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACTGAGGGC <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rntgaggc<br>otcotoc                                                                                                                                                                                           | AGAGACA                                                                                                                                                                                          | GCTNGAC                                                                                                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٢             |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                            | CINCINCTON GACCINNACNCANGGNCCCATCATNIGNCNNCTTNNAACT CNTTANCCNNN >gb AF157317.1 AF157317 Homo sapiens AD-015 protein mRNA, complete cds Length = 1209 | iTGNNGTTA<br>AGGAAAAACT<br>TACAAAAGAA<br>ACAAAAAGCC<br>ICANGGNCCC<br>ICANGGNCCC                                                                                                        | AGACTGNTCTGGAACCTGATGTTGNNGTTAAGCGGCAAGAGGCTTTAGCAGCTGCTCGTTTGAGAATGCANGAAGATCTAA ATGCCCAAGTNGAAAAACATAAGGAAAAACTAAGACAGCTTNAAGAAGAAGAAGAAGACAGAAGATTGAAATGTGGGACA ATGCCCAAGGAAGGCAGAAGTTACAAAAGAAATTCAGGAAGGCCTCAGGAAGAAGATGGTCCTGGACGTTCTACTTCATCTG GCATGCAAGGAAGGCAAATCTGAAAAAGAAATTCAGGAAGGCCTCAGGAAGAAGATGGTCCTGGACGAATCTACTTCATCTG TCATCCCCAAAGGAAATCTGAAAAAGCCTTTGCNAGGAGGGGNTATNACCCTCTGACGGNTNAAGGGNNNTNNACC CTNCTNCTGNNGACCTNNACNCAAAAGCCTTTGCNAGGAGGGGGNGCTTNNNACC CNTTANCCNNN >gb AF157317.1 AF157317 Homo sapiens AD-015 protein mRNA, complete cds Length = 1209 | GCTTTAGCAG AAGAAGAGA/ CCTCAGGAAG SGNGGNTATN/ NCTTNNAACT V, complete cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGENTOS<br>AAGATGGI<br>ACCCTCTG<br>TNNNACTC                                                                                                                                                                   | TTTGAGAA<br>SAGAAGA1<br>FCCTGGAC<br>ACGGNTN<br>TTTGNNN                                                                                                                                           | TGCANGA<br>TGAAATG<br>CTTCTAC'<br>AAGGGNN<br>SNNGNNCI                                                                                                 | AGATCTAA<br>TGGGACA<br>TCATCTG<br>NTNNACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| Scor Iden Strain                           | Score = 327 bits (165), Expect = 4e-87 Identities = 386/463 (83%)<br>Strand = Plus / Plus                                                            | - 4e-87                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                            |                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{}$ |
| 3 3 3 3 3 2 3 5 7 2 3 5 7 5 2 7 5          | CGCCCCCCTTGGTACCGGCTTGGATCCCTNGTAACGGCCGCCCGGTGTGGGAAGGGCATGACCCAGGAGAGATGATGGACAGACA                                                                | GGATCCCTN TAAAGGTAC CCAGAGAAG CCCATCTAA GCONNGNNG SNGAGGCCGC NNCCCCTTCT TTTCCCNNNC CNNNCCTCTCT CONNNCTCTCT CONNNCTTNCN CCCTCTCT CONNNCTTNCN CCCTCTCT CCCNNNCTTNCN CCCTCTCT CCCNNNNNNNN | GGTACCGGCTTGGATCCCTNGTAACGGCCGCCGTGTGCTGGAAAGGCATGACCAAGAAGATGATGGACA TGTCCATATGCTTAATGCTACAATGTGTGCCCCGGACCACTCCGCGCCATCCTGGAGAACTACCAGG SCATCGCTGAGAGAGTTGAGGGAGTTCACCCCCGGACCTCCTCGCGCCATCCTGGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                      | CAGTGTGCA<br>CCACCCGA<br>SATGCCGCA<br>AGCANCATGA<br>AGCANCATGA<br>AGCANCATC<br>CONCCTACC<br>NCNCCTNCNC<br>NCNCTCCTNI<br>COTTCTTCNI<br>STCTTCTTCNI<br>STCTTCTTCNI<br>STCTTCTTCNI<br>STCTTCTCTC<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCNI<br>STCTTCTCTCNI<br>STCTTCNI<br>STCTTCTCTCNI<br>STCTTCTCTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI<br>STCTTCNI | SGAAAGGC<br>CATCTGC<br>GGGCTCCA<br>AGGCAGN<br>CCAGACTT<br>NCCTCTNC<br>STNCTTTCC<br>CTCCTCCT<br>ACNTCCTN<br>NCTCTNCT<br>STCNCNCN<br>STCNCNCN<br>STCNCNCN<br>STCNCNCN<br>STCNCNCNCN<br>STCNCNCNCNCN<br>STCNCNCN | ATGACCA<br>AGAGAGA<br>AAAAAGAA<br>ACTTACT<br>AAAAAGAA<br>ACTTACT<br>ANTNCCAG<br>COCCTT<br>ANNNNCT<br>CCNNCNO<br>CCNNCNO<br>CCNNCNO<br>CCNNCNO<br>CCNNCNO<br>CCNNCNO<br>CCNCO<br>CCCTCT<br>CCCTCT | AGAGAAC<br>GGAGAAA<br>GGAGAAA<br>AGCGAAA<br>AGCGAAA<br>AGNCTGC<br>CTCCTGC<br>CNNNCNN<br>CNCTCT<br>CNNCTCT<br>CNCTT<br>CNCTCCC<br>CTCCCCT<br>TTCNTCCCC | SATGGACA TTACCAGG TTGNGAA GAGGTCC TGNGNTC CCTNCNN CCTNCNN CCTNCCN TCCNTCC TCCNTCC CCTNCCN CCTNCCN TTTCCCC CCTCCC CCCC CCTCCC CCCC CCTCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC | <del></del>   |
| Datenbank   >gb N                          | >gb M88136.1 CRUSTSTA Cricet<br>Length = 598                                                                                                         | ulus griseus se                                                                                                                                                                        | RUSTSTA Cricetulus griseus seryl tRNA synthetase mRNA, partial cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se mRNA, part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ial cds                                                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×             |

|           |    | Score = 375 bit<br>Identities = 257/<br>Strand = Plus / I                                                                                                                                                                                                                                                                                    | bits (189), Expect = e-101<br>i7/281 (91%), Gaps = 1/281 (0%)<br>/ Plus                                                                                                                                                                                                                                                   | = e-101<br>s = 1/281 (0%)                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Klon #110 | L  | CCNNACTNCAC AAAAGCAACTG TTNCCNANTNC NCATATCCCNA CNTCNCTCCTT CTTNTTNNGNN TCNTCNACCTA CATNCATTCCTC CATNCACTT NTTNNCCTTNA CTCTCNCCTTT NTTNNCCTTCTC CTTTTCTCTC CTTTTNNTCCTC NNNNCTCTNNA ATTANNNTCTCT TANNCTCTCCC TCTTTNACTCTC TCTTTTNACTCT TANNCTCTTCCTC TCTTTTNACTCTCTC TCTTTTNACTCTT TCTTTTTNACTCTCTC TCTTTTNACTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT | CCNINACTINCACAACCTCTTTCNACCGCGCCTATNCNCANCCACCTANINITANACTGGGACAGGACGAAAAACACTCACTNT TAACAACTGGACACTGACTNT TAACAACTGGACAACTGACTNT TAACAACTGACTNT TAACAACTGACTACTACTACTACTACTACTACTACTACTACTACTACTA                                                                                                                        | NACCGCGCC GANNNACTA ANTCHANTANN TCNCCATIC TCNCCATIC TCTNTTTCNC TCTNTTTCN NNACNCTCAT STNNNTANAC TCTCNTNATN TNAACNIT TCTCCTCCC TCATCNC TCTCCTCCC TCTCCTCCC TCTCCTCCC TCTCCTCC | CARCITCTITCNACCGCGCCTATNCNCANCCACCTANNNTANACTGGGGACACGNACAGATGNCGCTATNACTTCNACCGCACTANNACTTCTANNNTGTANACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTANNACTTCTCTANNACTTCTCTANNACTTCTCTANNACTTCTCTCCTANNACTTCCTANNACTTCTCTCTC | ACCTANNNTA<br>TNCANCCAAT<br>TNCANCCAAT<br>TNCANCTANN<br>TCCTCCCCAN<br>CCTCCCCCAN<br>CCCCCCTN<br>CCCCCCTN<br>ANTNTTCANTA<br>NNCNTCTTNA<br>NNCNTCTTNA<br>TCCNCNTCTCANTA<br>TATCTANTATATA<br>ANTNTTCANTA<br>NNCNTCTCANTA<br>TATCTANTATATATATATATATATATATATATATATATAT | NACTGGGA<br>ANCTITININCC<br>ANCTITININ<br>COCCONTICC<br>CCTCNTNC<br>INTATCC<br>SCACCNCNC<br>TNCANANATI<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNN<br>TCTCNCNNNNNNNN | CACGNACO<br>TONTONAAC<br>COCTATO<br>CONNTINIA<br>COCTATO<br>NTCTACO<br>TOTACO<br>TOTACO<br>TOTACO<br>TOTACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCACO<br>STCAC | AGATGNCC<br>CCCTNCTC<br>CCTNCTC<br>CCCTNCTC<br>ACNCANC<br>CCCCTATN<br>ACANNNNC<br>CCCCTANT<br>CCNCTCT<br>CCCCTANT<br>CCNCTCT<br>CCCCTANT<br>CCCCTANT<br>CCCCTANT<br>CCCCTCT<br>CCCCTANT<br>CCCCTCT<br>CCCCTANT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCTCT<br>CCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCTCT<br>CCT | SCATGNG<br>CTCACTNT<br>CTATNNA<br>UNTCTACT<br>CTTCTCCC<br>CNTANNAT<br>ATNTCTC<br>CTTCANT<br>CTTCANT<br>CTTCANT<br>CTTCANT<br>TCTCTCNC<br>CTTCANT<br>TCTCTCNC<br>CTTCANT<br>TCTCTCNC<br>CTTCANT<br>TCTCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTCNC<br>TCTC |
| Klon #111 | 11 | Keine homologen AGGCAATGGCG GCAAGCGAATC AAGCTGGACCT GTGGGAGCCGC TTCTCTAACAACA                                                                                                                                                                                                                                                                | Keine homologen Sequenzen in den Datenbänken  AGGCAATGGCGGACGTGTCTGAGAGGACGCTGCAGGTGTCCGTGCTTTCGCCTCTGGAGTGGTCCTGGGCTG  AAGCTGGACTGGCCTGAGGAGGCGTTACCTAGAGCTGGAGGCTGCAGGACTGCAGAAA  AAGCTGGACCTGGCCTGAGCAGCGCTGCAGGCCCGAGGCCTGCAGGACCTGCAGAAA  AAGCTGGACCTGGCCTGAGCACCGCGCTGCAGGCCCGAGGCCTGCAGGCCTCTCAGTGCTTCTCAGAAAAAAAA | AGAGGACGC<br>SACATACCT<br>CGCGCTGCA<br>GAGTCGTCCC<br>CTTGTCGAAG                                                                                                             | Sequenzen in den Datenbanken  Sequenzen in den Datenbanken  Sequenzen in den Datenbanken  Seduenzen in den Datenbanken  Seduenzen in den Datenbanken  SEGACETETCTGAGAGGAGCGTGTCCGTGCTAGTGGCTTTCGCCTCTGGAGTGGTCCTGGAAA  SEGCTGCGAGGAGCGTTAGCTGGAGGAAGCGGAGGCTGCAGGACAAGCAAG                                                                                     | CGTGCTAGTC<br>GCCGGGTTCT<br>GCCAGGACAT                                                                                                                                                                                                                            | GCTTTCGC<br>TGCAGGAC<br>TCACTCCCT<br>GGCTTCCT                                                                                                                                                                                                                                                                                                                                                                      | CTCTGGAC<br>AAGCCCA<br>AGCCCA<br>TCAGAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STGGTCC1<br>SCAACGAC<br>ACGCAGCC<br>SAAAATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IGGGCTG<br>TCAGAAA<br>SCGGATC<br>TTTTGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 65        | 60 | 50                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 65        | 60       | 55                | 50                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                        | 40                                                                                            | 35                                                                                   | 30                                                                                     | 25                                                                                           | 20                                                                                                      | 15                                                                                         |                                                                                      | 5                                                                     |
|-----------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|           |          | ^                 | ug AW106096.<br>Length =                                                                                                                   | >ug AW106096.27359 №1m.27359 um23a10.y1 Mus musculus cDNA, 5' end<br>Length = 539                                                                                                                                                                                                                                                         | 359 um23a10                                                                                   | ).y1 Mus mus                                                                         | culus cDN                                                                              | A, 5' end                                                                                    |                                                                                                         |                                                                                            |                                                                                      |                                                                       |
|           |          |                   | Score = 803 bits (405), E:<br>Identities = 408/409 (99%)<br>Strand = Plus / Plus                                                           | ts (405), Expect = 0.0<br>/409 (99%)<br>Plus                                                                                                                                                                                                                                                                                              | x = 0.0                                                                                       |                                                                                      |                                                                                        |                                                                                              |                                                                                                         |                                                                                            |                                                                                      |                                                                       |
|           |          | $\  \cdot \ $     |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                      |                                                                                        |                                                                                              |                                                                                                         |                                                                                            |                                                                                      |                                                                       |
| Klon #112 | <u> </u> | <u> </u>          | TAGTAACGGCCG<br>CTTCTCTTAAGCA<br>GGGAATATTTGAA<br>GCGCCCCGGCCAATATTGAAGC<br>GGGCTCGTAGG<br>GGGCATCCTCCT<br>=> >gb Al413025.1<br>RBRDZ28.3' | TAGTAACGGCCGCCAGTGTGCTGGAAAGGGACTTTGTTCAGATCTTTTTTTGATCGTGCATCAGCTGCTGGTTCATTATAGC CTTCTCTTAAGCACCAGTGTGTGCTGGAAAAATGAATCTTGGAACAAATTCAGACATCATCAGTAAGTCTTTGGGGACACA CTTCTCTTAAGCACTGAATAAGCAAAAATGAATCTTGGAAGCACAAATTCAGACATCATCAGTAGCTGCCGCGGGACACA GGGAATATTTGAACTTGATTTTAATCTGATGTTCTACAAAACCCGCTCTCCCCCCATTACGTTGCTGTCCCGCGCGGGGGGGG | SCTGGAAAA<br>AGACAAAAA<br>GACAACATG<br>GGAACATG<br>GCCGCCG<br>GCCCGCG<br>SCCCGGCC<br>SCCCGGGC | SGGACTTG<br>ATGAATCTI<br>GTCTTCTAC<br>GTCTGAGTCG<br>GGCAGCGG<br>GGCAGCCG<br>CGCCGCCG | STTCAGAT<br>TGGAAGA<br>SAAAACC<br>STGTCCA<br>STGTCCA<br>TCGTAGC<br>CCGCCGG             | CTTTTCT<br>ACAAATTC,<br>ACAAATTC,<br>GGTGTGGTC<br>ACGAAGTT<br>CGCCGCC<br>CCCGCCGC            | SATCGTGC<br>GACATTACA<br>SCCATTACA<br>GCCTGG<br>SCCCTCC<br>SCCGCCC<br>SCCCTCGC<br>SCCCTCGC<br>SCTCCTCGC | ATCAGCTC<br>CAGTAAG<br>STTGCTGT<br>IGGAAGC/<br>AGAGGC/<br>AGAGGC/<br>CGCCCG(               | SCTGGTTCA<br>TCTTTGGG<br>CCCCGCGG<br>(CTCCGCGGA<br>CCTTACACC<br>CAGCCCCGG            | ACTCCA<br>GCCCAG<br>STCGCAG<br>CCCCCG<br>GCCCCG<br>ACTCCA<br>GCCAGC   |
|           |          | ច ភ ខ្            | Score = 819 bits (413 Identities = 451/463 (9 Strand = Plus / Minus                                                                        | Score = 819 bits (413), Expect = 0.0<br>Identities = 451/463 (97%), Gaps = 3/463 (0%)<br>Strand = Plus / Minus                                                                                                                                                                                                                            | : = 0.0<br>ps = 3/463 (0                                                                      | (%)                                                                                  |                                                                                        |                                                                                              |                                                                                                         |                                                                                            |                                                                                      |                                                                       |
|           |          |                   |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                      |                                                                                        |                                                                                              |                                                                                                         |                                                                                            |                                                                                      |                                                                       |
| Klon #113 | <u> </u> | <u>\$99999999</u> | AGGCGACGCGC<br>CCTACATC<br>GTACATCAATC<br>GTACACCAGG<br>GTGCGACCAGG<br>GGTGCACCGG<br>GGTGCACCGG<br>GGTGCACCGG                              | AGGCGACGCGCGCATGGAGGCCGGCTGAGGAGCGCCGCCTCTCTCGGTAAGGACTGNGTCTGTGTCCCCAGGCATCACACGCGCGCGCGCGCAGCGCGCTGGCAGCGCGCTGGCAGCGCGCGC                                                                                                                                                                                                               | GCCGGCTG<br>SCTGTCCA<br>AGCAGTGC<br>TGAAACGA<br>TGGNGGC<br>STGGNGGA<br>AGCCTGGA<br>CCTGCAAAT  | AGGAGCGC<br>SCCATGGAC<br>SCAGGGTG<br>CGGCGTGA<br>ACTGCTCAC<br>GCTCTGTCA<br>GAAGCTGCC | SCGCCGC<br>SGGAGAC<br>SCTTGCTC<br>ACGCCCC<br>TTCAGTC<br>(GTACCGC<br>AGCAGGC<br>AGCTGGG | CTCTCTCG<br>SGAGAGCC<br>SGAGACCC<br>SACCTTCC<br>SGTGATAG<br>TGTCAGGC<br>CATGGCCC<br>GACCAATC | GTAAGGAC<br>CAGCTCAA<br>TCAGAACA<br>ACGTACAG<br>ATGCTCAA<br>ATGCTCAA<br>AGGAATGGI                       | TGNGTCT<br>SAGGCTGA<br>TCTCTGAT<br>INGACCCA<br>ATGTAGTA<br>GATGGAC<br>NTTATGTC<br>CGAGTTCA | GTGTCCCC<br>ACGTGGAAG<br>GTGGATGC<br>GCTAGNGG<br>AAGACTATI<br>GAGACTCA<br>GGGGAGCCAT | AGGCAT<br>CCTTCAA<br>CCTCCAG<br>CCGGGA<br>GCTGCT<br>TGAGAT<br>CTTCAAA |

|           |           | ACTCTCCTTCTGGCANAAAGTCAAGCTTGNNCTGGNNCCTGNGCTTNCTTGNCNGACCCAATCANNNNNNNGNCNACNNNNNNNNNN                                                                                                                                                                                                                 | NAAAGTCAAGCTT                                                                                                                                                                                                                                | GNNCTGGNNCC                                                                                                                | renectinctie                                                                                               | NCNGACCCAATC                                                                                                                 | ANNNNNGNC                                                                                        | NACNNN                                                             | $\overline{}$   |
|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|
|           | Datenbank | >emb AL022328.21 HS402G11 Human DNA sequence from clone RP3-402G11 on chromosome 22q13.31-13.33 Contains the MAPK12 gene for mitogen activated protein kinase 12 (SAPK3), the MAPK11 gene for mitogen activated protein kinase 11 (PRKM11), gene KIAA0315, the gene for a novel protei> Length = 177241 | L022328.21 HS402G11 Human DNA sequence from clone RI Contains the MAPK12 gene for mitogen activated protein kinase 12 (SAPK3), the MAPK11 gene for mitogen activated protein kinase 11 (PRKM11), gene KIAA0315, the gene for a novel protei> | A sequence from c<br>ngen activated prot<br>sne for mitogen ac<br>KIAA0315, the ger                                        | lone RP3-402G11<br>ein<br>ivated<br>e for a                                                                | on chromosome 22                                                                                                             | 2q13.31-13.33                                                                                    |                                                                    |                 |
|           |           | Score = 121 bits (61), Expect = 4e-25 Identities = 124/144 (86%), Gaps = 1/144 (0%) Strand = Plus / Plus                                                                                                                                                                                                | Expect = 4e-25<br>%), Gaps = 1/144 (C                                                                                                                                                                                                        | (%(                                                                                                                        |                                                                                                            |                                                                                                                              |                                                                                                  |                                                                    |                 |
|           |           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                            |                                                                                                                              |                                                                                                  |                                                                    | _               |
| Klon #114 | 77        | CTTGTAACGGCCGCCAGTGTGCTGGAAAGTGACCGGCTACCAGTGCAGAGCATCCCAGGCCCCAACCTTTCCTGGACAGTGTGTGAACGGCCCCAACCTTTCTGGAACGTTTCTGCTGGAAACGTTTCTGGAAACGTTTGTGGAAACGTTGGAAAGAGAGAG                                                                                                                                      | CCGCCAGTGTGCTGGAAAGTGACCGGCTACCAGTGCAGAGCATCCCAGGCCCCAACCTTTCCTGGACAGT CCTGAGAGACCCCGGAACGTTTCTACCTTACCT                                                                                                                                     | AGTGACCGGCTA<br>CGTTTCTACCTI<br>TGGAGCTACACT<br>AGACCCCCCGG<br>CCGGTCAGAGG<br>CCGGTCAGAAGG<br>ACAGAATAAAAGG<br>STCCTTTTGGA | CCAGTGCAGAGA<br>ACCTTGGGAGA<br>GTTAGCAGCAAA<br>GAGCGTGGGGC<br>CGAAGCTCTCCC<br>GATGCCTGCTGC<br>TATGTGCCACGT | CATCCCAGGCCC<br>AAGAGCCTCTGG<br>TCCAGATGCTAC<br>GAGAAGAGGATG<br>TTCTGGACATTC<br>TTCTGGACATTC<br>TGGTTTTGCCA<br>ATTCCAGAAAGTC | CAACCTTTCC<br>CTGAATGGCA<br>CACGATAAAC<br>AGGAGCTGCT<br>GAATACTATCA<br>WGAACTTTGT<br>TAGCAATTAGT | TGGACAGT GCTGTGG ATTGAGGA GGGGAAC GGGGAAC GAGGCTG GGGGAACC GGGGAAC |                 |
|           | Datenbank | >dbj AK000823.1 AK000823 Homo sapiens cDNA FLJ20816 fis, clone ADSE00693<br>Length = 1538                                                                                                                                                                                                               | 823 Homo sapiens                                                                                                                                                                                                                             | cDNA FLJ20816 fi                                                                                                           | s, clone ADSE006                                                                                           | 93                                                                                                                           |                                                                                                  |                                                                    | <del></del>     |
|           |           | Score = 363 bits (183), E)<br>Identities = 306/347 (88%)<br>Strand = Plus / Plus                                                                                                                                                                                                                        | ts (183), Expect = 6e-98<br>/347 (88%)<br>Plus                                                                                                                                                                                               |                                                                                                                            |                                                                                                            |                                                                                                                              |                                                                                                  |                                                                    | <del>~~~~</del> |
|           |           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                            |                                                                                                                              |                                                                                                  |                                                                    | _               |
| Klon #115 | 11        | CCCANACCTCTNTCGNCACGAGCTCGGATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGCCCGTCCNNAGCGCTCCGGCCGGCTCCGGGCTCCGGGGCTCCGGGGCTCCGGGGCTCCGGGGCTCCGGGGCTCGCGGGGCTCGGGGCTCGGGGCTGGGGCTGGGGCTGGGGCTGGGGGG                                                                                                                     | VCACGAGCTCGGA<br>TGCAGTNGAGCCC                                                                                                                                                                                                               | TCCCTAGTAACC<br>SGCTNGNACTA                                                                                                | SGCCGCCAGTGT<br>TGNAGNGCCTG                                                                                | GCTGGAAAGCCC<br>GCCATGGACCTG                                                                                                 | SGTCCNNAGCO                                                                                      | SCTCCGG I                                                          | حــــــ         |
|           |           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                            |                                                                                                                              |                                                                                                  |                                                                    |                 |
| 65        | 55<br>60  | 50                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                           | 30                                                                                                                         | 25                                                                                                         | 15                                                                                                                           | 10                                                                                               | 5                                                                  |                 |

| 65        | 55<br>60  | 50                                                                    | 45                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                | 35                                                                                                    | 30                                                                                                              | 20                                                                                                      |                                                                                  | 15                                                                                  | 10                                                                          | 5                                                                                   |
|-----------|-----------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|           | Datenbank | AGCTGGCGCTCTA AGCGTTGCCTATG GCTTCCTACAGGA ATTGCTGAGACCC CTCACTGGACTGG | AGCTGGCGCTCTACCTGGAGCACCAGGTTCGCGTTCTTCGGCTCGGCGNGGGCGTTGTCGTCACTGGGATTC AGCGTTGCCTATGCTACTACCTGAGTAGCATTGCCAAGAAACCCCAGTTAGNGATNGGAGGGGAGAGTTTCAGCNC GCTTCCTACAGGACCACTGTCCTGAGTAGCATTGCCAAGAAACCCCAGGNCTGGNCT                                                                                                                                  | CACCAGGI<br>STACCTGAC<br>STCCGNGGT<br>STTNCAAAC<br>CAATCCTAC<br>GAGAAAGI<br>GCCTGTAC<br>STTAAAAAT | TCGCGTCGC<br>STAGCATTGC<br>GACAGAAAC<br>CCCCGGTGC<br>GTGCTTCAT<br>CTCTTGACA<br>CCTGGGGCI<br>CGGGTCCAA | SCTTCTTCG<br>CTATGAAAC<br>CTATTACCC<br>CTATTACCC<br>AATGATCCAT<br>ATGATCCAT<br>CCACCGGA<br>CTATTAC<br>AAANCCCCA | GCTCGGG<br>CCCAGTTA<br>CCCAGACI<br>AACGAACI<br>CCTCAGTG<br>CTTACTGC<br>TGCCANCY<br>TGCCANCY<br>TTCTTGAN | CGNGGG<br>CGNGGG<br>CGGGAAAT<br>CCAGAAT<br>CAGAAT<br>CTGNGCG<br>CGCGTA<br>CGCCTA | STTGTCA<br>SGAGGG<br>TGGGAGA<br>ACTGCAT<br>NTACTAT<br>NGGATAC<br>AACACTG<br>TCAATGG | CTGATCT<br>SAGAGTT<br>AGCCGAG<br>SACGGAG<br>CTTGCTC'<br>SAGGAGCT<br>SGGAGGG | GGGATTC<br>CCAGCNC<br>SACAGAT<br>GACAGAT<br>TGCCTG<br>SNGGNTT<br>TGGAGGC<br>AAATGCT |
|           |           | Score = 456 bit<br>Identities = 531,<br>Strand = Plus /               | bits (230), Expect = e-126<br>31/634 (83%), Gaps = 4/634 (0%)<br>s / Plus                                                                                                                                                                                                                                                                        | = e-126<br>s = 4/634 (0°                                                                          | (%)                                                                                                   |                                                                                                                 |                                                                                                         |                                                                                  |                                                                                     |                                                                             |                                                                                     |
|           |           |                                                                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                                                                                                       |                                                                                                                 |                                                                                                         |                                                                                  |                                                                                     |                                                                             |                                                                                     |
| Klon #116 | 4         | TTCGACCCCCT<br>GTCAACATGC<br>CGACCAGGAG<br>AGATCCGTAAG<br>GCGCGCCTTA  | TTCGACCCCCTTGGTACCGAGCTCGGATCCCTAGTAACGGCCGCCAGTGTGCTGGAAAGGGGCGCAGCCGGCCTAGCGAGGGCCCTAGCGAGGGCCCTAGCGAGGGCCCTAGCGAGGCCCTAGCGAGGCCTAGCGCTCTCGAGAAGCTCGCGTCTCGAGAGGCTCGCCGGAGGCCTAGCGGAGGCTTGGAGGAGGTTGGGAGGTTTGCAGGTTTGGAGGTTTACCCTGGCCAAACGTGAGGTTTGGAGGGTCAAGTTTACCCTGGCCAAAGCTAGGGCGGAGGCTAAGGCCGGCGCCTAGAGGTTTGGAGGCATGCCTGGCCAAGGCGGCGCGCGC | AGCTGGATO<br>AAGCTGGG<br>TGGAGAG<br>GAGCTGTT<br>SGGTGCTG                                          | CCTAGTAAC<br>TTTGTCGCA<br>IATGGACTCC<br>GACGCTGG/<br>GACGCAGGG                                        | GGCCGCC<br>AAACCTATG<br>GGAACAAA<br>CGAGAAGC<br>AAGAAGC                                                         | AGTGTGCT<br>TGACCCC<br>CGTGAGG<br>SATCCCCG                                                              | GGAAAGG<br>ACGGAGA<br>TTTGGAG<br>GCGTCTC                                         | SECECA<br>CCCTTC<br>GGTCAA<br>STTTGAAC                                              | SCCGGCC<br>SAGAAGT(<br>GTTTACCC<br>SGCAATG(                                 | ragcgag<br>secerct<br>regecca<br>retect<br>saggatt                                  |
|           |           | CAACGTCACAT<br>TTCTCCCTCCG<br>CTGGAGCTGG                              | IOTTGEAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCCAAATCTATTGACCCATGCCCGTGTGCTCATCCATC                                                                                                                                                                                                                                                                      | ACCCAGGT<br>AAAGCAGG<br>SGNGGCGG<br>SAAGAGGAAAAA                                                  | CTTTAAGCT<br>GGTGAACA:<br>CCGTCCAGC<br>TTAATTCTTG                                                     | SGGCCTGG<br>TCCCATCCT<br>SCCGAGTG/<br>GCTGAACT                                                                  | CCAAATCT<br>TTATTGTT<br>VAGAGGAA<br>GGAGGAT                                                             | ATTCACC<br>CGCCTGC<br>GAATGCC<br>IGTCTAGG                                        | ATGCCCC<br>SACTCGC<br>SAAGAAAO<br>TTTCCAO                                           | STGTGCTC<br>AGAAGCA<br>GGCCAGG<br>GCTGAAA                                   | ATCCGC<br>CATCGAC<br>GCGGGG<br>ATAAAA                                               |
|           |           | GCACCTAAATG                                                           | TECTAGAGCTTGCTGACAAGCCTTGACTGNGNCTTCTAGTGNCNGNCN                                                                                                                                                                                                                                                                                                 | CTGACAAG                                                                                          | ссттелсте                                                                                             | NGNCTTCT,                                                                                                       | AGTGNCNC                                                                                                | NON                                                                              |                                                                                     |                                                                             |                                                                                     |
|           | Datenbank | >emb X66370.1  <br>  Length = 6                                       | .1 RNRPS9 R.norvegicus mRNA for ribosomal protein S9<br>= 688                                                                                                                                                                                                                                                                                    | egicus mRN                                                                                        | A for ribosoma                                                                                        | l protein S9                                                                                                    |                                                                                                         |                                                                                  |                                                                                     |                                                                             |                                                                                     |
|           |           | Score = 932 bits                                                      | bits (470), Expect = 0.0                                                                                                                                                                                                                                                                                                                         | = 0.0                                                                                             |                                                                                                       |                                                                                                                 |                                                                                                         |                                                                                  |                                                                                     |                                                                             |                                                                                     |

|              |    | Identities = 577/613 (94%)<br>  Strand = Plus / Plus                                                                                                                                                                        | 3 (94%)<br>IS                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |
|--------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Klon #117 T  | 44 | TNNGNCCCCCTTNTACCGGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAAGCGGCGGGCG                                                                                                                                                          | TINTACCGGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAAAGCGGCGGCTCTGAGCGCCCGGAGACATCATGGCGGAGGCGCGCTTGTGCGAGCCCCCCTCGGAGGACGAGGAGCGGAGGCGCGCTTGTCATGGCGGAGGCGCGCCCCCCCC | SATCCACTAGTA<br>GGTCTGCGAG<br>AGCCGCGGAG<br>ACCCGCGCGCG<br>TACNCTCTCAN<br>CCTTTTCTCTC<br>CNNNNNNCCCI<br>CONTROCTCTC<br>TTCNCCTCTCC<br>CONTROCTCTCC<br>TTCNCCTCCC<br>TTCNCCTCCCC<br>TTCNCCTCCCC<br>TTCNCCTCCCCC<br>TTCNCCTCCCCC<br>TTCNCCTCCCCCCCC | AACGGCCGC<br>CCCCCCCCCC<br>GGTCGCGCCC<br>GGTCGCGCGGT<br>TTTACNNTNAT<br>VICCTCCNNNTCC<br>CCCTCTTCTN<br>CCNNNNNTCC<br>CCNNNNNTCC<br>CCNNNNNTCC<br>ATNTCCTCNN<br>TACNTNTCTCC<br>TCNNNNNCCC | AGTGTGCTGGA<br>CCTCGGAGGAC<br>CCTCGGAGGAC<br>GGGAGCGCCG!<br>GTCCGGAGGAG<br>ATTNTTNNCGA<br>ATTNTTNNCGA<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCNNN<br>CTTCTCTCCTCTCTCT | AGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                           | CTCTGAGCGG<br>GAGCGGGAG<br>GGCGGGAGA<br>NTNCCCTTCN<br>NTNCCTTCAN<br>NTNCCTCCTAN<br>NTNCCTCCTAN<br>NTNCCTCCTAN<br>NTNCCTCCTAN<br>NTNCCTCCTAN<br>NTCTCTTNCN<br>NCTNNNNCTCCTAN<br>NCTNNNNCTCCTAN<br>NCTNNNNCTCCTTAN<br>NCTNNNNCTCCTTAN<br>NCTNTCCTTCCTAN<br>NCTNNNNCTCCTTAN<br>NCTNNNNCTCCTTCCTAN | CCGGAG<br>CCGCT<br>GGGGCG<br>GGCCC<br>INNTCN<br>CCCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>CCTNC<br>TCCCN<br>TCCCN |
| Klon #118 T7 |    | *gb BE161116.1 BE161116 PM3-HT0424-170200-001-b11 HT0424 Homo sapiens cDNA.  Length = 132  Score = 75.8 bits (38), Expect = 3e-11  Identities = 38/38 (100%)  Strand = Plus / Minus  CCCCCTTCTTGGTACCGAGGTCGCGGGGGGGGGGGGGG | BE161116 PM3-HT0424-170200-001-b11 HT0424 Homo sapiens cDNA.  32  (38), Expect = 3e-11  (100%)  Illinus  GGGGGGGGGGGGGGGGGGGGGGGGTGTGCCGAAA  GGGGGGGGGG        | 424-170200-001  1  ATCCCTAGTAA GGCGGGAGG ATCGTGCCGC NCACAGAGAAT( TTCACGCGCG GCCCGCGCGCGCCCCCCCCCCCCCCCCC                                                                                                                                          | -b11 HT0424 H<br>-b11 HT0424 H<br>CGGCCGCCA<br>CGGCGGTGG<br>SGCTCAGCCC<br>ACAGGGATAC<br>ACAGGGATAC                                                                                      | omo sapiens cDN/ SIGTGCTGGAAA CCATGCGAAGC CTCCACAGCCC AGCCAGTTGCC AGCCAGTTGCCGAGCCCGGGGCCGGGGCCGGGGGGGGGG                                                                                                                                                                                          | GGGAGCAGC<br>SCGTCGCCGC<br>AAGGTGCGAC<br>CCCACCGACC<br>TTTGGCATC | AAACGGCCG<br>SAGCCCGGAC<br>STCTGGCTTC<br>AGAACCGGC<br>TTCGACGGCATA                                                                                                                                                                                                                             | GCGGC<br>SGTAC<br>ATTGA<br>AGCCA<br>GCTTT                                                                                                                                            |
| 60           | 33 | 50                                                                                                                                                                                                                          | 40                                                                                                                                                             | 35                                                                                                                                                                                                                                                | 30                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                 | 15                                                               | 10                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                    |

| 65 | 60        | 50                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                     | 35                                                                                                   | 30                                                                                                           | 25                                                     | 20                                                                                       | 15                                                                                      | 10                                                                                          | 5                                                                       |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|    | Datenbank | CTACGCTGGA TGGGGCGTCC AATCNGTTTGA ANGAACACNG AAANTGCCCT TGNCNTAAGA CTTAANCCTTC ANTCCCCNCC GGCCCANTT >dbjjAK000559 Length = | CTACGCTGGAAGGGATCATCCAGCAGCTCGTGAATGGCATCATCTCTCCGGCTGCTGTGCCCAGCCTGGGCCTTGGTCCC TGGGGCGTCCTGCAACCCAATGGACTACGCCTGGGGGGCCAACGGCCTGGACACCATCACGCCAGCTCT TGGGGCGTCCTGCAACCCCAATGGACTACGCCTGGGGCCAACGGCCTGGACACCATCACCCCAGTCACAG AATCNGTTGAGAACACCCGGCCCCCAGTTGCAGAANGAGAATTCAGGCTNTTCCCCCCGGTCCCAGTCACAGAAAACACACAGTGGCTTCANGACCTTTCANGGCNTTGATTCCCCAGTCACAGGCTTNAAAGACTCCCTTGNAAACTTGCTTGNAAACACAGAAAACACACAGCAATCCCCCAGCTTTGANCCTTGTCCANTTGAAACACACAAAACGCCCCCAATCCCCCAGCTTTGAAACATTTCCACAAAACGCCCCCAAGAAAAAACGCCCCCAAGAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAGCAGCT<br>ACCCAATGC<br>GNCCCCCC<br>IGGCNTTGA<br>IGACAGAAA<br>ACACAATTGAAAA<br>AAAACGCCI<br>ATTCANGGI | CGTGAATG<br>SACTACGCC<br>(ACTTGCAGA<br>GANAAGCTG<br>CNCAGCCCC<br>(GAACCCCCC<br>(GAACCCCCCCCCCCCCCCCC | SCATCATO<br>TGGGGGG<br>ACAANGAG<br>TGGTGTN<br>TGGTGTN<br>TGGTGTN<br>TGGTGCN<br>CAAGNAA<br>CCCCNGC<br>GGGNTCC | TCTCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                 | TGCTGTGTG<br>CCTGGACA<br>AGGCTNT<br>TNGANCN<br>TNGANCN<br>GACCGGG<br>GCCNNCTT<br>AAAGGTT | CCCAGCC<br>CCCATCAT<br>TCCCCNO<br>CTGGGTN<br>ANCATNAK<br>GCAAGGT<br>GCNAACC<br>TCCCTGGK | TGGGGCCT<br>CACGCCAG<br>GGTCCCAC<br>ANAAATN1<br>SAGCTTGN<br>NTTCCTCC<br>CCCCGGG<br>SGCCGAAA | TGGTCCCT<br>SCTCCTT<br>STCACAG<br>GCCGGC<br>CCGGGC<br>CCGGGC<br>GCTGNGN |
|    |           | Score = 547 bi<br>Identities = 527<br>Strand = Plus /                                                                      | bits (276), Expect = e-153<br>27/610 (86%), Gaps = 7/610 (1%)<br>s / Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = e-153<br>os = 7/610 (1                                                                               | (%)                                                                                                  |                                                                                                              |                                                        |                                                                                          |                                                                                         |                                                                                             |                                                                         |
|    |           | ATCAAGTATCC<br>GATCATTACAC<br>NCNCNATAAG<br>GCGCCTAAGG<br>CAGGTGCAGA                                                       | ATCAAGTATCCCCTGAAAGTCAGTGAGACTATAAACGATGCTGNGCTCTGNGCGGNGGGGGATCGTCATCGCCATCCTGGC GATCATTACAGGGGAATTCTACCGGATCTATTACCTCAAGGAAGTCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGCANAGE TNAGCGTC TNAGCGTC TNAGCGTC AGCANAGE TO TO TO TO TO TO TO TO TO TO TO TO TO T                  | TATAAACGA<br>TATTACCTCA<br>TNNGNTGTG<br>TGTGACCCT                                                    | ATGCTGNG<br>AGGAGAA<br>CCAATTAC<br>GATTTCAC                                                                  | CTCTGNG<br>GTCCCGC<br>3CAAGTCC<br>3TCAGATC<br>TCCTTCTT | CCACCAC<br>TCCACCAC<br>TTCANNGN<br>AATTGCTC                                              | GATCGTC<br>TCAGAAC<br>ICATCGCC<br>CGAGGGC                                               | ATCGCCAT<br>CCGTATG<br>AAAGTGT<br>TACATTC/                                                  | CCTGGC<br>GGCAGC<br>SCATCGG<br>AGANCTA<br>ATGTTCA                       |
|    | Datenbank | ACTTGCCCAGG<br>TTTGCCCAGG<br>CCCGCCCTG                                                                                     | ACTITICATE INCIPATION OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP OF THE CONTROP | TACACGC<br>GGCCTGCT<br>GGAGATCC                                                                        | SATTGTCACC<br>SATTGTCACC<br>GCATAGTGT<br>STGTCTCCCC<br>dic acid phosy                                | CACCIGG<br>SGGTATCT<br>TCTTCGT<br>GTGGACAT                                                                   | GACGGGGG<br>GACTACA/<br>STCCGACC<br>FCATCGAC           | CCGACTO<br>GCATCAT<br>TCTTCAAG<br>AGGAACA/                                               | CTCGCC<br>CCTAGCG<br>SACTAAGA<br>ATCACCAT                                               | ATGTCCTC<br>ATGTCCTC<br>CGAGCCT<br>AACATGGT                                                 | SCAGITC<br>GCAGGA<br>CTCNCTG<br>GTAG                                    |
|    |           | and trans Length = ' Score = 535 bit Identities = 470                                                                      | and translated products Length = 1362 Score = 535 bits (270), Expect = e-149 Identities = 470/537 (87%), Gaps = 4/537 (0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = e-149<br>)s = 4/537 (0'                                                                              | (%                                                                                                   |                                                                                                              |                                                        |                                                                                          | ,                                                                                       |                                                                                             |                                                                         |

|                 |                                                                                                                                                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           | ···                                                                                                                          | _  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|
|                 | GGGAAGCTGAAGCAGTTCGATGCCTACCCTAAGACTCTGGAGGACTTCCGGGTCAAGACCTGCGGGGGTGCACGGTG ACCATCGTCAGTGCCTTCTCATGCTCCTGCTTTTCCTATTCTCCACTACGGAGGTGCATCCTGAG CTCTACGTGGACAAGTCTCGGGGGGATAAACTGAAGATCAACATGCATG | CCTATCACAATTCATATTTATTGCCCTGGGCTGGGCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           | CTGGAAAGGGGCGTTGAGCAGCTGGGACCGGAGTTGTGCTCACCGGGGTCGGGCCAGGTCGCTGCTGCTCTGGCCAT<br>GGCCGAGGCACGCGCATCTCGCTGGTACTTTGGGGGGCTGGCT | 5  |
|                 | CGGGGGTG<br>CGGAGGTG<br>ATGCCTTGI<br>VAGAAACGA<br>GTGTTTGACACAGTTGTG                                                                                                                              | ACAGGCTG<br>CCTAGGTCA<br>CCCCATGA<br>AGCTCATA<br>SANAACTGG<br>CATGGAGG<br>STGCTTGA1<br>AGCTCTTNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           | CTGGAAAGGGGCGTTGAGCAGCTGGGACCGGAGTTGTGCTCACCGGGGTCGGGCCAGGTCGCTGCTGCTCTGGCCAT<br>GGCCGAAGGCACGCCATCTCGCTGGTACTTTGGGGGGCTGGCT | 10 |
|                 | GGGAAGCTGAAGCAGTTCGATGCCTACCCTAAGACTCTGGAGGACTTCCGGGGTCAAGACCTGCGGGGGCACATGGAAGCTGCAGGAGCCTGCGGGGGGAGCATGGTGTGTGT                                                                                 | GGTAGTTG<br>AAACATGCC<br>AAACATGCCG<br>TGGTCACGG<br>TGGAACAT<br>AATGACAG<br>CTGTTGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           | CCAGGTCG<br>CCGCTTGC                                                                                                         | 15 |
|                 | TCCGGGTC<br>GCAGTATTA<br>ATGTTCTTT<br>GGAACACA<br>GAAAGTCG<br>GACATCAA                                                                                                                            | SAGGATATG<br>GCCANTGT<br>GCCANTGT<br>TCACCATCA<br>CTCGNGCC<br>ACAAGTAC<br>CCTCCCCG<br>ACATGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           | 366TCGGG<br>CTGCGGAG                                                                                                         | 20 |
|                 | GGAGGACT<br>TCGGAGTT<br>CAACATCG<br>SCTGGATGG<br>GAGCTTGG<br>SAGTCAGAA                                                                                                                            | SCONNACAGE  SCAGGE  SCAGGE  SCACCTT  SCACCTT  SCACCTT  SCACCTT  SCACCT                                                                                                                                                             | SCTCACCG<br>CTGGCTTC                                                                                                         | 25 |
|                 | FAAGACTCT<br>CTTTTCCTA<br>ACTGAAGAT<br>ACGGCAGAAGGCAGAAGGCAGAGAGGCAGGCAGGCAGCAG                                                                                                                   | TGGGCTGG<br>CTGTGGGG<br>CGAGTCAA<br>STGTTTCTC<br>GCCCATTG<br>TGNGGGCA<br>SCAAGTCC<br>SCAAGTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           | GGAGTTGT<br>TGGGGGG                                                                                                          | 30 |
|                 | SCCTACCC<br>TECTCCTG<br>SGCGATAA<br>SGCCGGG<br>AGAGGCTG<br>AGAGGCTG                                                                                                                               | CCCTGGGG<br>AGGACAAG<br>AAGACCTG<br>VAGGCCTG<br>ACCCAGGA<br>ATGTACAC<br>(GGGGGTT(<br>AAAGCTNTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lete cds<br>e-98                                                                                                                                          | CTGGGACC<br>CTGGTACT                                                                                                         | 35 |
|                 | AGTTCGATO<br>SCCTTCTCA<br>(GTCTCGGC<br>ATGGACGTO<br>GTGAGCTC<br>SCCTGTGAG<br>GCCGTCGA                                                                                                             | ATTCATATTTATTGCCCTGGGC<br>SAGAAGAGGGCAGGACAAG<br>SCGAGCGGAGTGGTAGATGAG<br>SCGAGCTGGTCACACAGGA<br>SNAGGCCCTGGTCACCCAGGA<br>CCCGTCCACCTTCATGTACAC<br>STTGGTGGCCAAGGGTT<br>TATTGTCAAGGCCAAAGCTNTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Human calcineurin B mRNA, complete cds<br>Length = 2548<br>Score = 363 bits (183), Expect = 6e-98<br>Identities = 291/329 (88%)<br>gb   M30773.1   HUMCNR | TTGAGCAGG<br>GCATCTCG                                                                                                        | 40 |
| Plus / Plus     | GCTGAAGC<br>SGTCAGTGC<br>SGTGGACA/<br>TCGATGCC/<br>GCGTCCCOAGTC                                                                                                                                   | ACCAATTCA<br>SAGGAGAAC<br>SAGCCGAGA<br>GTCAGGAA<br>SCCCCCG<br>SACGTTGG<br>TGATATTG<br>SAAGTTTCC<br>GAAGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Human calcineurin B mRN<br>Length = 2548<br>Score = 363 bits (183), E)<br>Identities = 291/329 (88%)<br>gb   M30773.1   HUMCNR                            | AGGGGCG<br>AGGCACGC                                                                                                          | 45 |
| Strand = Plus / |                                                                                                                                                                                                   | CCTATCACA<br>ACCCACAGG<br>TGGATGGCC<br>ACACCTGTC<br>GACCCCGC<br>CAGCACCTC<br>CAGCACCTC<br>CAGCACCTC<br>ACTGTTGA<br>ACTGGAAG<br>CTGGCTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Human calcine<br>Length = 2548<br>Score = 363 t<br>Identities = 29<br>gb   M307773.1                                                                      | CTGGAA<br>GGCCGA                                                                                                             | -  |
|                 | T7-Sequenz                                                                                                                                                                                        | BGH-<br>Sednenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gesamt-<br>cDNA,<br>EST-Cluster<br>Motive                                                                                                                 | T7-Sequenz                                                                                                                   | 55 |
|                 | Kion # 120                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              | 60 |
|                 | Klon                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | Klon #121                                                                                                                    | 65 |

| 65        | 55<br>60                        | 50                                                                                     | 45                                                                                                                                                                                                                                       | 40                                                                                              | 35                                                                                         | 30                                                                 | 25                                                                     | 20                                                                                       | 15                                                              | 10                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                 | TGATGGCTTG ATCTACGAGA GCATCAGTGG GCCCCCGAG CTCTTCTCTGG AGCAACTGGG                      | TGATGGCTTCCTGGCGCTCTACAACGGCCTGAGTGCCTCGCTGTGCAGGCAG                                                                                                                                                                                     | OTACAACGC<br>SACTACATG<br>SAGGCTTCC<br>SAGCTACT<br>TGGCGTCC<br>OTGGGTACC                        | SCCTGAGT<br>SACCAAGG<br>STGGGGAC<br>CTCATGCC<br>SAGCGTG(<br>SAGCGTGA                       | SCCTCGC<br>ACTCCCAC<br>CCCAGCAC<br>CTGGATGC<br>SGCCCTC<br>CAACATAT | retecage<br>segecto<br>sattregto<br>storetaco<br>cetcacies<br>torccaci | CAGATGAC<br>CCCCCTC<br>CATGTCA<br>CGTGTAGO<br>CGGCCAC<br>TTGTCTC<br>CTCCAAGC             | CCTACTCT<br>TACACA<br>SGATGCA<br>CCGTGAA<br>SCTGTCCI<br>CAGTTTC | CTGACTCG<br>AGGTGTTG<br>GAACGACA<br>(GAAGGCCT<br>GCTATGAC<br>ATTGCCGG  | STTCGCA<br>STGGGCG<br>GAGGAG<br>GAGGAG<br>CAGGCCA<br>SGGATGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ·         | Sequenz                         | TGCAGGGAA( GCTGCCACCI AAACAGGCT AAACGATGAA GGCGTGTGAA GGAGCTAGCA GTGATCTGCA AGTGCTTGTG | TGCAGGGAAGACAGAAAGGCCTCCCAGGCCACTTGGTTTATTAGATCCTGAAGAGGGTGTAGGCAGTGCCCCTTGGGCCCCTGGGCCCCTGGGCCCCAACCCCAACCCCAACCCCAACCCCAACCCAACCCCAACCCC                                                                                               | GCCTCCCA<br>AGGACCTG<br>SCCTGAGGC<br>GCCCCAGC<br>AGGAGGTGC<br>YGTCCCT<br>YTAGTCATT<br>CACAGAGGC | GGCCACTT<br>TGGGAGG<br>SATGGTGA<br>TGTGCCA<br>TGGTGAC<br>CCTCCTGAA<br>CTCCTGAA<br>GCCAGCGC | GGTTTATT CACAGGGC GGGGGGGGGGGGGGGGGGGGGG                           | AGATCCTG CCGACCTG TCCCACCCCCCCCCCCCCCCCC                               | AAGAGAG<br>CGTTTTGA<br>ATACAGGA<br>CTGGGGA<br>CAGGAGG<br>CTTGGAG<br>AACACAGG<br>CCATACCG | STGTAGG<br>TACCACACACACACACACACACACACACACACACACACA              | CAGTGCCC AACCCCATI STCCTGGGAC AAAAACTGAC AAAAACTGAC ACTGCCAAA CTTGCCAG | CTGGGCC TGAGGG AGGGCAC AGGGCAC AGGGCAC AGGGCAC AGGGCAC AGGGCAC AGGCCAC AGGGCAC AGGCCAC |
|           | Gesamt-<br>cDNA,<br>EST-Cluster | Mus musculus<br>Length = 2021<br>Score = 1404 b<br>Identities = 753<br>ref NM_01377    | Mus musculus solute carrier family 25 (mitochondrial carrier;adenine nucleotide translocator), member 10 (Slc25a10),mRNA Score = 1404 bits (708), Expect = 0.0 Identities = 753/768 (98%) ref   NM_013770.1   gb   AF188712.1   AF188712 | amily 25 (mitr<br>ct = 0.0<br>1712.1   AF18                                                     | ochondrial co                                                                              | arrier; adenir                                                     | ne nucleotide                                                          | translocato                                                                              | member ()                                                       | 10 (Sic25a10                                                           | )),mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                 | Mus musculus<br>Length = 2021<br>Score = 1404 b<br>Identities = 753                    | Mus musculus mitochondrial dicarboxylate carrier mRNA, complete cds; nuclear gene for mitochondrial product<br>Length = 2021<br>Score = 1404 bits (708), Expect = 0.0<br>Identities = 753/768 (98%)                                      | dicarboxylate<br>ct = 0.0                                                                       | carrier mRN                                                                                | A, complete                                                        | ods; nuclear                                                           | rgene for m                                                                              | iitochondria                                                    | il product                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Klon #122 | T7-Sequenz                      | ATGCACCACC                                                                             | ACCAGTCTGTTCTGCACAGCGGCTACTTTCACCCACTGCTTCGGAGGCTGGCAGACTGCTGCCTCCACCGTCA                                                                                                                                                                | TGCACAGC                                                                                        | GGCTACTT                                                                                   | TCACCCAC                                                           | тесттее                                                                | AGCTGGC                                                                                  | AGACTGC                                                         | TGCCTCCA                                                               | CCGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|           |            | GCCAGGTATC<br>GCCAGGTATC<br>GCGTCCCCAC                                                                           | GTGCCTCCAACCTCATCTATCCCATCTTTGTCACGGATGTTCCTGATGATGTCCAGCCTATCGCCAGCCTCCCAGGAGTG<br>GCCAGGTATGGCGTAAACCAGCTAGAAGAGATGCTGAGACCTCTGGTGGAAGCTGGCCTGCGCTGTGTCTTGATCTTTG<br>GCGTCCCCAGCAGAGTTCCCAAGGATGAACAGGGCT                                                                                                                                                                                                  | CCATCTTTGT<br>SCTAGAAGAG<br>AAGGATGAAC                                                     | CACGGATGTTC<br>ATGCTGAGACC<br>AGGCT                                                      | CTGATGATG<br>TCTGGTGG∕                                                                     | TCCAGCC<br>VAGCTGGC                                              | TATCGCCA<br>CTGCGCT                                               | GCCTCCCA<br>GTGTCCTG                                                     | GGAGTG<br>ATCTTTG                                                   |
|-----------|------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|
|           |            | ref NM_008525<br>Length =                                                                                        | ref NM_008525.1  Mus musculus delta-aminolevulinate dehydratase (Lv), mRNA<br>Length = 1080                                                                                                                                                                                                                                                                                                                  | delta-aminole                                                                              | ulinate dehydrata                                                                        | ise (Lv), mRN.                                                                             | A                                                                |                                                                   |                                                                          |                                                                     |
|           |            | Score = 543 bits (274), Exp<br>  Identities = 274/274 (100%)<br>  Strand = Plus / Plus                           | Score = 543 bits (274), Expect = e-152<br>Identities = 274/274 (100%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                | = e-152                                                                                    |                                                                                          |                                                                                            |                                                                  |                                                                   |                                                                          |                                                                     |
|           |            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                                          |                                                                                            |                                                                  |                                                                   |                                                                          |                                                                     |
| Klon #123 | T7-Sequenz | TTCGCCCACG ACCAAGAAGG AGCCTGCCTG CTGACACTGA CAGACCTGCCCG                                                         | TTCGCCCACGCCTTGGTACCGGCTCGGATCCCTTGTAACGGCCGCCAGTGTGCTGGAAAGCAACCGCAACCTGACCTTG ACCAAGAAGGAACCTGTTGGGGTCTGTGTATTGTCATCCCTGGAACTTCCCTTAATGATGCTGCTGTCCTGGAAGACAGC ACCAAGAAGGAACCTGCTGGGAACACCGTNTTGATCAAGCCTGCCCAGGTGACCCCACTCACAGGCTTGAAGTTTGCAGAG CTGACACTGAAGGCTGGCATTCCCAAGGGTGTGGTCAACATCCTCCCAGGATCNGGCTCGCTGGTTGGCCAGAGACTCT CAGACCACCTGATGTGAGGAAAATAGGGTTNACAGGCTCCACGGAGGTGGNAAAAACACATCATGAANAACTG | SGCTCGGATC SGCTCTGTGT ACACCGTNTT CCCAAGGGT AAATAGGGT CCTGCAGGT                             | CCTTGTAACGG<br>ATTGTCATCCCC<br>GATCAAGCCTG<br>STGGTCAACAT(<br>NACAGGCTCC)                | CCGCCAGTC<br>STGGAACTAN<br>CCCAGGTGA<br>SCTCCCAGG<br>ACGGAGGTG                             | TGCCTTAA<br>ACCCCACT<br>ATCNGGC<br>GNAAAAC                       | AAGCAACC<br>TGATGCTG<br>CACAGCC<br>TCGCTGGI<br>ACATCATG           | CGCAACCT<br>STCCTGGAA<br>TTGAAGTTT<br>TTGGCCAGAAAAAAAAAAAAA              | SACCTTG<br>GACAGC<br>GCAGAG<br>AGACTCT<br>TGCCCT                    |
|           |            | gb M59861.1 RAT10 <br>complete cds<br>Length = 3109                                                              | gb M59861.1 RAT10HCO Rattus norvegicus 10-formyltetrahydrofolate dehydrogenase mRNA complete cds<br>Length = 3109                                                                                                                                                                                                                                                                                            | norvegicus 10-                                                                             | formyltetrahydrof                                                                        | olate dehydroc                                                                             | Jenase mRI                                                       | Å,                                                                |                                                                          |                                                                     |
|           |            | Score = 555 bil<br>Identities = 343<br>Strand = Plus /                                                           | Score = 555 bits (280), Expect = e-156<br>Identities = 343/367 (93%)<br>Strand = Plus / Plus                                                                                                                                                                                                                                                                                                                 | · e-156                                                                                    |                                                                                          |                                                                                            |                                                                  |                                                                   |                                                                          | ·                                                                   |
|           |            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                                          |                                                                                            |                                                                  |                                                                   |                                                                          |                                                                     |
| Klon #124 | T7-Sequenz | GGGGGTGCGN<br>NGANTNTACNN<br>CGNAGGTGCA<br>NAGCAGTTGA1<br>GACCTCGGNC<br>CAAATGCGGTA<br>NGCGCCCTGN<br>AGCTCTNCTNN | GGGGGTGCGNGGNGGNGGCCGTCCCCNGCCTNCCCTNCGNGCGCCGGGTTTCGCCCCCCGCGGGNGTCNNNCCCCNNNNCCCCNNNNTNTACNNCNCGAGGGCGCGCGCGCGCGCGCGCGCGCGCGCGCG                                                                                                                                                                                                                                                                           | CGTCCCNG<br>INTGAGGGCO<br>TANTAGCAAA<br>NTNGGTCTG<br>GAGTCNGGT<br>TTCCTGAGAA<br>NNCCTANAGA | CCTNCCCTNCC<br>GCTGCNGTGAC<br>TATTCANACNA'<br>ANAGATGGGC(<br>ITANATCCCCG,<br>NCCNNCNNGAC | SNGCGCCGG<br>SCCTTGAAGC<br>FAACTTTGAA<br>SAGTGCCGT<br>AATCCNGAG<br>SNNNCGGAN<br>CCTTGTAAAC | CTTTCGC<br>CCTATGGC<br>TCCGAAN<br>TCGGAAN<br>TTGGCNGA<br>AGAGNTC | CCCCCCC<br>GCGGGCC<br>GTGGANA<br>3GACAGTC<br>ANATGGGC<br>TNTTTTNT | GNGTCNNN<br>CCNGNTGG/<br>ANGGTTCC/<br>CGATGGCCI<br>CCCNTGAC<br>TTGCGAAGC | CCCCNN<br>AGCCGC<br>ATGTGAA<br>TCCGAT<br>SGCGTA<br>SGCGTA<br>CTNGTG |
| 6:        |            |                                                                                                                  | 4:                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                         | 30                                                                                       | 2:                                                                                         | 20                                                               | 15                                                                | 10                                                                       |                                                                     |
| 65        | 55<br>60   | 50                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                           | 35<br>40                                                                                   | 30                                                                                       | 25                                                                                         | 20                                                               | 15                                                                | 10                                                                       | 5                                                                   |

| 50<br>55<br>60 | TGATCNTCNAANNTTTAACCANCCTNATGGCCATGTTNGCNANAAATTGNACCTCTAANGTTAAAGTTCCNNCNATTNCCT NNANNCCTTNTAANCTTTNNNNGNAATAAATNGATTTGGNCCTTTTAAATGGGCCTTNGGGTCCNGNNNCCGGNANNTT TGNGNTGCNNTCCNAAAAACCCNCATGGNNTTNGNAACNTTCCNCNNNNCCCNNTNNTTTTNTAACNTAANTGGTNCT CCTNCTCNCNCTTCTTTANNC | BGH- TGCAGGGAAGACAGAAAGGCNTCCCAGGCCACTTGGTTTATTAGATCCTGAAGAGGTGTAGGCAGTGCCCCTGGGGNC Sequenz GCTGCCACCTCCTGGGGGAGCACCTGTGGGAGGCCCACAGGGCCGAACCTCGTTTTGATACACACAC             | Gesamt- Length = 4712  CDNA, Length = 4712  EST-Cluster Score = 333 bits (168), Expect = 7e-89 Identities = 320/380 (84%), Gaps = 4/380 (1%) emb   X00525.1   MMRNA02 Identities = 320/380 (84%), Gaps = 4/380 (1%) emb   X00525.1   MMRNA02 Hydrolagus colliei internal transcribed spacer 1, partial sequence; 5.8S ribos complete sequence; and 28S ribosomal RNA gene, partial-sequence Length = 4463 Score = 218 bits (110), Expect = 3e-54 Identities = 249/300 (83%), Gaps = 3/300 (1%) Strand = Plus / Plus gb   AF061799.1   AF061799 | Squalus acanthias internal transcribed spacer 2; and 28S ribosomal RNA gene, partial sequence Length = 3650 Score = 216 bits (109), Expect = 1e-53 Identities = 229/274 (83%), Gaps = 2/274 (0%) gb   AF061800.1   AF061800 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35<br>40       | CANCCTNATGO<br>NNNGNAATAA/<br>ACCCNCATGGN<br>TTANNC                                                                                                                                                                                                                    | SACAGAAAGGCNTCCCAGGCCACTTG<br>TCCTGGGGAGGACCTGTGGGAGGC<br>TCCTTCGAAGCCTGAGGGATGGNGAG<br>TCCATCACTGCCCCAGCTCTGCCAGG<br>SGCACAGACAGNTNCTGGNGACG<br>SCTNNATATAGNANGTGCNCTNGNNA | ct = 7e-89<br>aps = 4/380 (1%<br>nscribed spacer<br>ribosomal RNA get<br>ct = 3e-54<br>aps = 3/300 (1%                                                                                                                                                                                                                                                                                                                                                                                                                                         | nscribed spacer<br>ct = 1e-53<br>aps = 2/274 (0%                                                                                                                                                                            |
| 30             | SCCATGTTNGCN,<br>ATNGATTTGGNC(<br>UNTTNGNAACNTT                                                                                                                                                                                                                        | SACAGAAAGGCNTCCCAGGCCACTTGGTTTATTAGATCCTGAAGAGAGGTGTAGGCAGTGCCCCTGGGNC TCCTGGGGGAGGACCTGTGGGAGGCACAGGGCCGTTTTGATACACACAC                                                    | somal RNA  s (168), Expect = 7e-89  380 (84%), Gaps = 4/380 (1%) emb   X00525.1   MMRNA02  iel internal transcribed spacer 1, partial sequence; S.8S ribosomal RNA gene and internal transcribed spacer 2, nnce; and 28S ribosomal RNA gene, partial-sequence  s (110), Expect = 3e-54  300 (83%), Gaps = 3/300 (1%)  Plus  AF061799                                                                                                                                                                                                           | 2; and 28S ribosor                                                                                                                                                                                                          |
| 25             | ANAAATTGNA<br>STITTAAAT<br>CCNCNNNNC                                                                                                                                                                                                                                   | TAGATCCTG<br>SCCGAACCT<br>ATGCCTGCC<br>CACCTGGCC<br>TCTGNTGA                                                                                                                | MMRNA02<br>5.8S ribosom<br>nce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nal RNA gene                                                                                                                                                                                                                |
| 20             | CCTCTAAN<br>3GGCCTTN<br>CCCNNTNN                                                                                                                                                                                                                                       | AAGAGAGAGAGATTTGA<br>CGTTTTGA<br>ATACAGGA<br>CCTGGGGA<br>CCTGGGGA                                                                                                           | al RNA gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | partial sequ                                                                                                                                                                                                                |
| 15             | IGTTAAAG<br>GGGTCCN<br>INTTTINT                                                                                                                                                                                                                                        | STGTAGG<br>TACACACA<br>VAGCCAGG<br>AGCCAGG<br>TTTCAGC                                                                                                                       | and intern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ence                                                                                                                                                                                                                        |
| 10             | TTCCNNCNAT<br>IGNNNCCGGN,<br>AACNTAANTGO                                                                                                                                                                                                                               | CAGTGCCCCT<br>VACCCCATTG<br>STCCTGGGAG<br>CAAGGGAGGG<br>ANANCTGANC                                                                                                          | al transcribed sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| 5              | NCCT                                                                                                                                                                                                                                                                   | GGGNC<br>AGGG<br>GCACA<br>CACA<br>TTANA<br>NNGN                                                                                                                             | icer 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                             |

### SEQUENZPROTOKOLL

| <110> Max-Planck-Gesellschaft zur Förderung der Wissensc          |        |
|-------------------------------------------------------------------|--------|
| <120> Apoptose-induzierende DNA-Sequenzen                         | 5      |
| <130> 22837pde_dr                                                 |        |
| <140> 10034303.1                                                  | 10     |
| <141> 2000-07-14                                                  |        |
| <160> 225                                                         | 15     |
| <170> PatentIn Ver. 2.1                                           |        |
| <210> 1                                                           | 20     |
| <211> 845                                                         |        |
| <212> DNA                                                         |        |
| <213> Mouse                                                       | 25     |
| <400> 1                                                           |        |
| agctcatgtt ggacagtcgt gtgaggagct atggagcaca gcagtaatcg cccagaggac | 60     |
| ttcccgctta acgtgttctc tgtcactccg tacacaccca gtaccgccga catccaggtg |        |
| tccgacgacg acaaggcagg ggccactttg cttttctcag gcatctttct aggactggtg |        |
| gggatcactt tcactgtcat gggctggatc aaataccaag gtgtctccca ctttgaatgg | 240    |
| acccagetee teggacecat cettetgteg gteggagtga catteateet gategetgtg | 300    |
| tgcaaattca aaatgctatc ctgccagttg tgctcagata acgaggagag ggtcccggac | 360    |
| tcggaccaga cttccggagg acagtcgttc gttttcactg gcatcaatca gcccatcacc | 420    |
| ttccacgggg ccaccgtggt gcagtatatc cctcctctt acggttctca ggagcccctg  | 480    |
| ggaatgaacg ccacctacct gcaacccatg atgaatcctt gcggtctcat acctcctagt | 540 40 |
| ggagcagcgg ctgccgcacc aagtccccct cagtactaca ccatctaccc tcaagacaat | 600    |
| gctgcgttcg tngagagtga gggcttctct cctttcgtgg gcactggata tgacaggccc |        |
| gactctgatg ctgaccagct agaagggacg gagttggaag aggaggactg cgtatgttct |        |
| cttctccacc gnatgaggag aatacgctct acctcgctng agactgcaan ctaagggacg |        |
| gcatttaagc ccctgngatg ngaacttgng ngnnaaccnt gggtctttan aagtaggngn |        |
| aaacn                                                             | 845    |
|                                                                   | 50     |
| <210> 2                                                           |        |
| <211> 400                                                         |        |
| <212> DNA                                                         |        |
| <213> Mouse                                                       | 55     |
|                                                                   |        |
| <400> 2                                                           |        |
| atagacatgt ctagtttttt attactagtt atcatccaag tgaaatgtcc ctgaggcata |        |
| atatgaatca caataataaa ccaagattgt tttgctgata tccttgaaaa acctggactc |        |
| ttctgacaga gagtaaaagc aatcccacat ataagcacag taccaaaacc ttcaagacct |        |
| gacaatteet gtatetetet tgggggeage cacetttace ttgagtggee tttgatettt | 65     |

```
gtaaaactgt tttctttcta attctttgga cacctcctaa agtctgcagc tttgggctgn 300
   ggttggtgac accgttcaga cttaggaagc tgaaggctac cagcttttct ttgttcaaat 360
  gaaggtgaga gctacgcccg gnggcgggnt aganngagac
                                                                     400
   <210> 3
(211> 460
   <212> DNA
   <213> Mouse
15 <400> 3
   ttcccacqcn gntgngggct tctctccttt cgtgggcact ggatatgaca ggcccgactc 60
   tgatgctgac cagctagaag ggacggagtt ggaagaggag gactgcgtat gtttctctcc 120
  tccaccgtat gaggagatat acgctctacc tcgctagaga ctgcaatgct aaggggacgg 180
   acatttaagc cctgngatgt gatacttgga gagtttatcg ctgagttctt cagaagttag 240
   qtqtcaaaqc aqctnaqqaq atcttacaqa tqtcattnaa qqnqqqaaaq aaqtqcccnq 300
   agactgctaa attaagctgc cctggttaaa ttcccctctg ctctggtttt gaattctctc 360
25 agctaagaaa ccctctgcag ctggagagtc gctctgagat agagagattt nggagcccac 420
   gcagngcctn gggctngatc tctagagcca gaagaaaaca
                                                                      460
^{30} <210> 4
   <211> 713
   <212> DNA
   <213> Mouse
35
   <400> 4
   teccageetn ttetntgnte aaatgaaggt nagagetaeg eeegggggeg gagggngggg 60
40 gagacgggat gactgatcat ctccatgatt catgactaca aagcgacacg gcagnatggc 120
   tetgnggaac agateagagg catacetgtg ttecataage nacteagetg tacetgegtt 180
   ctgtaagcca ctcggctgag ctagttcgng cctgggaatc acagcctggg ggngggcaga 240
   gggagcaggc gctnaccnat gtacattacg ccttgaactt canccttgca aaggaaaacn 300
45 atcangagca ggggtcactn taacteggng gacagcacat ggngacattc attatectcc 360
   tgntaceteg tecacagtag gateggeeac ceaacactat tetaacatgg ggeactgttt 420
   catcenactc tacttattca tttatttctt aatggatttt atttctttaa caaactcttn 480
   aagatccaaa ggcttccagn gagaccanat aanagtcnaa gttgtctaan ataagtnact 540
   ctgctgcgga aggttcagng ccgtgcaggg aaatttctac ctgagcctgc tctcttccct 600
   gettgettge cageeteeet ttnateante tnagagetge catggetgee eggatttaaa 660
   actaanacaa totttnaaaa ctaagatnto otttaaatgg atattoogca tgg.
                                                                     713
55
   <210> 5
   <211> 2269
60 <212> DNA
   <213> Mouse
   <400> 5
   aatteggate catgeecaaa ggteettete taactaaceg gageatggtg tteececaete 60
```

```
tcacactctg tttcctctca tgttggacag tcqtgtgaqg agctatggag cacaqcagta 120
ategeceaga ggaetteeeg ettaaegtgt tetetgteac teegtacaca eecagtaceg 180
ccgacatcca ggtgtccgac gacgacaagg caggggccac tttgcttttc tcaggcatct 240
                                                                             5
ttctaggact ggtggggatc actttcactg tcatgggctg gatcaaatac caaqqtqtct 300
cccactttga atggacccag ctcctcggac ccatccttct gtcggtcgga gtgacattca 360
tectgatege tgtgtgcaaa tteaaaatge tateetgeea gttgtgetea gataacgagg 420
agagggtccc ggactcggac cagacttccg qaqqacaqtc qttcqttttc actqqcatca 480
                                                                             10
atcagcccat caccttccac ggggccaccg tggtgcaqta tatccctcct ccttacqqtt 540
ctcaggagcc cctgggaatg aacgccacct acctgcaacc catgatgaat ccttgcggtc 600
teatacetee tagtggagea geggetgege accaagteee ceteagtact acaceateta 660
                                                                             15
ccctcaagac aatgctgcgt tcgtggaqag tqaqqqcttc tctcctttcq tqqqcactqq 720
atatgacagg cccgactctg atgctgacca gctagaaggg acggagttgg aagaggagga 780
ctgcgtatgt ttctctcctc caccgtatga ggagatatac gctctacctc gctagagact 840
20
gtgttcttca gaagttaggt gtcaaagcag ctcaggagat cttacagatg tcattcaagg 960
tgggaaagaa gtgccccgag actgctaaat taagctgccc tggttaaatt cccctctgct 1020
ctggttttga attctctcag ctaagaaacc ctctgcagct ggagagtcgc tctgtgatag 1080
agtgattttg gagcccacgc agtgccttgg gtttgatctc tagagccaga agaaaacaaa 1140
                                                                             25
aacaaaaaca aaaacaaaac aagacctctc tacataaagt gcaggaggaa aattcaccca 1200
tttccccatc ccccacccga tatccatttg aaggatatct tagttttgaa agattqtctt 1260
agttttaaat ccggcagcca tggcagctct cagactgatg aaagggaggc tggcaagcaa 1320
                                                                             30
gcagggaaga gagcaggetc aggtagaaat tteeetgeac ggcgetgaac etteegcage 1380
agagtgactt atcttagaca acttgggctg ttatctggtc tccctggaag cctttggatc 1440
ttgaagagtt tgtaaaagaa ataaaatcca ttaagaaata aatgaataag tagagtggga 1500
tgaaacagtg ccccatgtta gaatagtgtt gggtggccga tcctactgtg gacgaggtaa 1560
                                                                             35
caggaggata atgaatgtca ccatgtgctg tccaccgagt tacaqtgacc cctqctcctg 1620
atggttttcc tttgcaaggc tgaagttcaa ggcgtaatgt acatgggtga gcgcctgctc 1680
cctctgccca cccccaggct gtgattccca ggcacgaact agctcagccg agtggcttac 1740
agaacgcagg tacagctgag tggcttatgg aacacaggta tgcctctaat ctgttccaca 1800
                                                                             40
gagecatget geogtgtege tttgtagtea tgaateatgg agatgateag teateeegte 1860
tececeacee ecegeeeeeg ggegtagete teacetteat ttgaacaaag aaaagetggt 1920
agocttoago ttootaagto tqaacqqtqt caccaaccac agoccaaago tqcaqacttt 1980
                                                                             45
aggaggtgtc caaagaatta gaaagaaaac agttttacaa agatcaaaqq ccactcaaqq 2040
taaaggtggc tgcccccaag agagatacag gaattgtcag gtcttgaagg ttttggtact 2100
gtgcttatat gtgggattgc ttttactctc tgtcagaaga gtccaggttt ttcaaqgata 2160
tcagcaaaac aatcttggtt tattattgtg attcatatta tgcctcaggg acatttcact 2220
                                                                             50
tggatgataa ctagtaataa aaaactagac atgtctaaaa aaaaaaaaa
                                                                 2269
<210> 6
                                                                             55
<211> 694
<212> DNA
<213> Mouse
                                                                             60
<400> 6
ageteggege egeetgageg eeeggeeega eeeegeeatg gggtgetget atageagega 60
aaacgaggac tcggaccagg atcgggagga gaggaagctg ctgctggacc ccagtagcac 120
                                                                             65
```

ccctaccaaa gccctcaatg gagccgagcc caactaccat agcctacctt cagctcgcac 180

```
agatgagcag gccctgcttt cctccatcct tgccaagaca gctagcaaca tcattgatgt 240
   gtotgocgca gactoccagg gcatggaaca gcatgagtac atggaccggq caaqqcaqta 300
   cagtacccgc ttggctgtgc ttagcagcag tctgacccat tggaagaagc tgccaccqtt 360
   gecatetete accagecage eccaecaagt getggecagt gagectatee cetteteta 420
   cttgcagcag gtctccagga tagctgcgta tgcctatagt gcactttctc agatccgcgt 480
   ggatgcgaaa gaagagctgg ttgtacagtt tgggatccca tgaagagagg ggccctagga 540
10 cagetettee etegtettea eccegtetee acceeacete ttetggeece cageeteact 600
   gnggctctct acagtaccta acctgctact aatcacggag aagaatgtgg agggaaagaa 660
   caaggetgga ggeeggagea agtqaqqaet aaqe
                                                                     694
15
   <210> 7
   <211> 625
   <212> DNA
   <213> Mouse
   <400> 7
25 caaatgaata tactttcttt atcgaggggt gacaaacaaa aacaaaaaga gcaaacatgt 60
   aaaaacccag ggtgctagaa atacaaactc aattcagact caagctcgtc tagaccctgg 120
   tcataatccc cagtgaggtg cctgtgagca ccaagtcagg gaaggggaca ggagtgaatc 180
   ggaggccaag agaaagaggg caggaaggga tctcctaggt ctcccggngt cacccctaca 240
  gnggtatete catetteeca atgactgaag atetgecagg ecetgteete ttggececaa 300
   cetnacecta accagageat gaaggeegat ggeaateggt cetecettee ettgettagt 360
   cctcacttgc tccggcctcc agccttgttc tttccctcca cattcttctc cgtgattagt 420
   agcaggttag gtactgtaga gagccacagt gaggctgggg gccagaanag gtggggtgga 480
   gacggggtga agacgaggga agagctgtcc tagggcccct ctcttcatgg gatcccaaac 540
   tgtacaacca gctcttcttt cgcatccacg cggatctgag aaagtgcact ataggcatac 600
   gcagctatcc tggagacctg ctgca
                                                                     625
40
   <210> 8
   <211> 1047
45 <212> DNA
   <213> Mouse
   <400> 8
   ageteggege egeetgageg eeeggeeega eeeegeeatg gggtgetget atageagega 60
   aaacgaggac tcggaccagg atcgggagga gaggaagctg ctgctggacc ccaqtagcac 120
   ccctaccaaa gccctcaatg gagccgagcc caactaccat agcctacctt cagctcgcac 180
55 agatgagcag gccctgcttt cctccatcct tgccaagaca gctagcaaca tcattgatgt 240
   gtctgccgca gactcccagg gcatggaaca gcatgagtac atggaccggg caaggcagta 300
   cagtaccogc ttggctgtgc ttagcagcag tctgacccat tggaagaagc tgccaccgtt 360
   gecatetete accagecage cecaecaagt getggeeagt gageetatee cettetetga 420
60 cttgcagcag gtctccagga tagctgcgta tgcctatagt gcactttctc agatccgcgt 480
   ggatgcgaaa gaagagctgg ttgtacagtt tgggatccca tgaagagagg ggccctagga 540
   cagetettee etegtettea eccegtetee accecacete ttetggeece eageeteact 600
   gtggctctct acagtaccta acctgctact aatcacggag aagaatgtgg agggaaagaa 660
   caaggctgga ggccggagca agtgaggact aagcaaggga agggaggacc gattgccatc 720
```

| ggccttcatg ctctggttag ggtnaggttg gggccaagag gacagggcct ggcagatctt 780 cagtcattgg gaagatggag ataccnctgt aggggtgacn ccgggagacc taggagatcc 840 cttcctgccc tctttctctt ggcctccgat tcactcctgt ccccttccct gacttggtgc 900 tcacaggcac ctcactgggg attatgacca gggtctagac gagcttgagt ctgaattgag 960 tttgtatttc tagcaccctg ggttttaca tgtttgctct ttttgttttt gtttgtcacc 1020 cctcgataaa gaaagtatat tcatttg 1047 | 5  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <210> 9 <211> 637 <212> DNA <213> Mouse                                                                                                                                                                                                                                                                                                                                                          | 15 |
| <400> 9  agtctggctt cacgctncan nagtgncgag cgcctcacgg aggaagagtt gcatatcate 60 gcgcaggtgc cgcctccacc cgccgctgcc gccgttggct acgctggctg ccgtgtggct 120 gtgaccttct tcctctactt cctggctacc aactactact ggattctggt ggagggactg 180                                                                                                                                                                        | 20 |
| tacttacaca gcctcatctt catggccttt ttctcagaga agaagtatct gtggggcttc 240 accatctttg gctggggtct gccggctgtc ttcgtggctg tgtgggtcgg tgtcagagca 300 accttggcca acactgggtg ctgggacctg agctctgggc acaagaagtg gatcatccag 360 gtgcccatcc tggcatctgt tgtgctcaac ttcatcctct ttatcaacat catccgggtg 420                                                                                                          | 25 |
| cttgccacta agcttnggga gacaaatgng ggccggngtg acaccaggca ntagtaccgg 480 aagctgctna cgtcacnttg gtgccngcgc cactcttttt gtcactacac ccgtcttnat 540 ggccttnccg tacacccgag gtcttnaggg acactttgnc anatccagat cactatnaga 600 ntgcttcttt aaacttcctt ttcangggat ttttttt 637                                                                                                                                   | 30 |
| <210> 10<br><211> 385                                                                                                                                                                                                                                                                                                                                                                            | 35 |
| <212> DNA<br><213> Mouse<br><400> 10                                                                                                                                                                                                                                                                                                                                                             | 45 |
| content tittett tittetnitt teetingin ticenggnee agteetgaan 60 agacageeag ceaaantig gnithinggn ceainigtee ainigeeeat geeageagte 120 cageeentig angeeeagte anatgaetgn ticeeattni teetgeaana anggaggngg 180                                                                                                                                                                                         | 50 |
| ccgcgcaaac ccanaggect nntaatccan acccgagcag gagccattaa ggaagccgtc 240 gtccttggga actgncanag naactggnan ggtttcgttn taaanggntg gagcncccgg 300 nttggcgngg ccaggcagnt ggnagnggcc antggnggng gnaggaagna ggcggnagnt 360 aaggggaagg ntgagtcctg nacgg 385                                                                                                                                                | 55 |
| <210> 11<br><211> 746<br><212> DNA                                                                                                                                                                                                                                                                                                                                                               | 60 |
| <213> Mouse <400> 11                                                                                                                                                                                                                                                                                                                                                                             | 65 |

```
aggogotgoo taccagagog cagcatgacq qocatoggoq cqcaqqooca caaqotqttq 60
   ggccttaaga ggccccaccg gtctttcttt gagtccttca tccggacact catcatcgtg 120
   tgcactgccc tggctgtggt cctttcttca gtctccatct gcgatggcca ctggctccta 180
   gtggaggatc atctctttgg gctgtggtac ttctqcacca tcggcaacca cagtgaacca 240
   cactgtctga gagacctgag ccaggcccat atgcccgggc tggctgtagg catggcccta 300
   gcacgcagtg tggccgccat ggcagtggtg gctgccatct tcggcttgga gatgctcatt 360
10 gtgtcccagg tgtgtgaaga tgtccgctca cggcgcaagt gggccatcgg ttcctacctc 420
   ctnetggttg cetttatect etectetggg ggeeteetea cetteateat cetgeteaag 480
   aatcagatca accttctggg cttcaccctg atgttctggt gtgaattcac tgnctncttc 540
   ctcttcttnc tnaatgccgc cagcgggctt tacatnaaaa gcttacttag cccttggacc 600
15 ctcagcaggg accetggett neanaaagng aggttatgat gggaettttt ttattntagg 660
   gaanctnttg netggngatt tgeneceee eceneceeaa tgnneetttg acaentteee 720
   tctttatggg taatttnaag tttttt
                                                                      746
20
   <210> 12
   <211> 614
25 <212> DNA
  <213> Mouse
   <400> 12
^{30} actticaaat tgagattita atagcatgac taacctatcc agctcactgt gccgtcgtac 60
   agaggeacce ttetgeettt geeetggage teagetgaag agaetteeag ggeattgeta 120
   gagetaagtg eetaagagge agtgteaagg teattggttg teetatteaa tetnageeag 180
   aggtoctata tnagagaagt occatoataa octogottto tgtaagcoag ggtocotgot 240
   ggagggtccc agggctgagt gaggctgttg atgtgaaggc cgctggcggc attgaggaaq 300
   aagaggaagg aggcagtgaa ttnacaccag aacatnaggg tgaagcccag gaggttgatc 360
   tgattcttga gcaggatgat naangtnagg aggcccccag aggagaggat aaaggcaacc 420
40 aggaggaggt aggaaccgat ggcccacttg cgccgtgagc ggacatcttt acacacctgq 480
   gacacaatqa gcatcttcaa gccgaagatg gcagccacca ctgccatggc ggccacactg 540
   cgtgctaggc ccatgcctac agccagcccg ggcatatggg cctggctcag gtctctcaga 600
   cagtgtggtc actg
                                                                      614
45
   <210> 13
   <211> 640
   <212> DNA
   <213> Mouse
55 <400> 13
   agcagactca ggaagaaacc atggtgctct ctggqqaaqa caaaaqcaac atcaaqqctq 60
   cctgggggaa gattggtggc catggtgctg aatatggagc tgaagccctg gaaaggatgt 120
   ttgctagett ecceaceace aagacetact teceteaett tgatgtaage caeggetetg 180
60 cccaggtcaa gggtcacggc aagaaggtcg ccgatgctct ggccaatgct gcaggccacc 240
   tegatgaeet geeeggtgee etgtetgete tgagegaeet geatgeeeae aagetgegtg 300
   tggatcccgt caacttcaag ctcctgagcc actgcctgct ggtgaccttg gctagccacc 360
   accetgeega ttteaccec geggtgeatg cetetetgga caaatteett geetetgtga 420
   gcaccgtgct gacctccaag taccgtaagc tgccttntgc ggggcttgcc ttctggccat 480
```

| gcccttcttc tctccttgca cctgtacctc tttggttttg aataaagcct gagt<br>aaaaaaaaa aaaaanaggg cggncgttng agcatgcatc tagaggggcc ctat<br>gtgnnaccta aaaatgctta gagntttgnt gntcagccct |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <210> 14<br><211> 817<br><212> DNA<br><213> Mouse                                                                                                                        | 10                |
| <400> 14                                                                                                                                                                 | 15                |
| ggtaccgage teggateeae tagtaaegge egeeagtgtg etggaaaggg gett                                                                                                              | cggacc 60         |
| cggaagtggc gccttgggct cccggcggcg ccgcggggat ggcgggagcc ggag                                                                                                              |                   |
| caggageteg gggeggegeg eeggeeggag tegaggeeeg egetegggae eege                                                                                                              | cacccg 180        |
| cgcaccgcgc gcaccctcgc catcctcggc ccgcggctca gccgtcggcg cgca                                                                                                              | ggatgg 240        |
| acggcggccc gggcgccccg ggctccgggg acaacgcccc gaccaccgag gcgc                                                                                                              | tgttcg 300        |
| tggcgctggg cgcgggcgtg acggctctca gtcacccgct gctctacgtg aagc                                                                                                              |                   |
| tccaggtggg tcatgagccg atgccccca cccttgggac caatgtgctg ggga                                                                                                               |                   |
| toctotacet geogagette tteacetatg ceaagtacat tgtgeaggtg gatg                                                                                                              |                   |
| tagggetett ceggggeetg ageeceegee ttatgteeaa egeettgtee actg                                                                                                              |                   |
| gcggcagcat gaagaaggtt ttccctccag atgagatgga gcaggtttcc aaca acatgaagac ctcactcaag aaagttgtga aggagacatc gtatgagatg atga                                                  | 20                |
| gtgtatcgcg aatgctggcc catccettac acgtgatete gatgcgatgc atgg                                                                                                              |                   |
| ttgtgggacg ggaggccaag tacagtgtgt gctgagttct attgggagat cttc                                                                                                              |                   |
| gagggctgct gggattcttc gttggcttaa tccctca                                                                                                                                 | 817               |
|                                                                                                                                                                          | 35                |
|                                                                                                                                                                          |                   |
| <210> 15                                                                                                                                                                 |                   |
| <211> 634                                                                                                                                                                | 40                |
| <212> DNA<br><213> Mouse                                                                                                                                                 |                   |
| V2137 Mouse                                                                                                                                                              |                   |
| <400> 15                                                                                                                                                                 | 45                |
| gacttgaact caggggaatt cggagggagt ccagcccgca gcccacagtt gttc                                                                                                              | actgcc 60         |
| atgagatete caacgageag gaaggggtag gteageatge teactgeaat eeee                                                                                                              |                   |
| aacttggtgt agctccggat ggccagggcc tggctaaagc tgtcgtccac caag                                                                                                              | taggca 180 50     |
| ttgatgaagt gggccagcag gttacagccc cacaagaaaa ccacatcgcc cagg                                                                                                              | aggtga 240        |
| gggattaagc caacgaagaa toocagcagc cootottoot tgaagatott coca                                                                                                              |                   |
| ctcagcacac cactgtactt ggcctcccgt cccacaaact gcaccatgca tcgc                                                                                                              |                   |
| atcacgtgta agggatgggc cagcattcgc gatacacact gcatcatcat ctca                                                                                                              |                   |
| gtctccttca caactttctt gagtgaggtc ttcatgtcgt ccttgtttgg aaac                                                                                                              |                   |
| catctcatct ggagggaaaa ccttcttcat gctgccgcgg gtcacagtgg acaa ggacataagg cgggggctca ggccccggaa gagccctatc ttcccatcca cctg                                                  |                   |
| gtacttggca taggttgtag aagctcggca ggta                                                                                                                                    | 634 <sup>60</sup> |
| J                                                                                                                                                                        |                   |
|                                                                                                                                                                          |                   |
| <210 16                                                                                                                                                                  |                   |
| <210> 16                                                                                                                                                                 | 65                |

<212> DNA

```
<213> Mouse
  <400> 16
   tagatgcatg ctcgagcggc cgcccttttt ttttttttt tttccaaatc accaccaata 60
   catttattcg aggagatggg tctatcttac cacgagggga ggactagatg tcgqcctatg 120
10 taacetgtge gtattegeac ceageacagt gaetgaacee teacacetgg cgteaceage 180
   acagacaagc agatgagggg atggtctgag gagaacatga tttcctattc aggaqaaggc 240
   accaccettg tataagaaaa ttagtgttgg gaacatageg ceageeteee atggeeeagg 300
   tgtgatggcg cccaatttac aaagcaggaa gtggggggcg ggggtgcttc tggctgactg 360
15 gcaggatgag ctgggctaga ggtgcaggga agccttgcca ctgagtgacg tttgcctctg 420
   cagcctgcct ctgcctgagt acaagatgga ctccagtacc tctaggcagg aaggqgatgc 480
   caccccaaca ctgctcccc aggcttcccc aggtcccagg tgacccacct ccaccagccc 540
   tgggcatctg agatgatggg tcctcaccag gggtaggcta agaccccata aatgtttggt 660
   cgggcagctt aggttactcc agggcaaagc atgaccccga tgacacccqq cggaaaaqca 720
   ggctggagcc gcggaagagc tggccctgca cactcaggta cttccagcag tggatccagg 780
25 acttgaacac aggggaatac ggaggagtoc agcccgcagc ccacagttgt tcactgccat 840
   gagateteca acgageagga aggggtaggt cageatgete actgeaatee
                                                                 890
<sup>30</sup> <210> 17
   <211> 1836
   <212> DNA
   <213> Mouse
   <400> 17
   ggtaccgagc tcggatccac tagtaacggc cgccagtgtg ctggaaaggg gcttcggacc 60
40 cggaagtggc gccttgggct cccggcggcg ccgcggggat ggcgggagcc ggagctggtg 120
   caggageteg gggeggege ceggeeggag tegaggeeg egetegggae cegeeaceeg 180
   egeacegege geaceetege cateetegge eegeggetea geegteggeg egeaggatgg 240
   acggcggccc gggcgccccg ggctccgggg acaacgcccc gaccaccgaq qcqctqttcq 300
45 tggcgctggg cgcgggcgtg acggctctca gtcacccgct gctctacgtg aagctgctga 360
   tecaggtggg teatgageeg atgeceecca ecettgggae caatgtgetg gggaggaagg 420
   tectetacet geegagette tteacetatg ecaagtacat tgtgcaggtg gatgggaaga 480
   tagggetett eeggggeetg ageeeegge ttatgteeaa egeettgtee aetgtgaeee 540
   gcggcagcat gaagaaggtt ttccctccag atgagatgga gcaggtttcc aacaaggacg 600
   acatgaagac ctcactcaag aaagttgtga aggagacatc gtatgagatg atgatgcagt 660
   55 ttgtgggacg ggaggccaag tacagtggtg tgctgagttc tattgggaag atcttcaagg 780
   aagaggggct gctgggattc ttcgttggct taatccctca cctcctgggc gatgtggttt 840
   tettgtgggg etgtaacetg etggeecaet teatcaatge etaettggtg gaegaeaget 900
   ttagccaggc cctggccatc cggagctaca ccaagtttqt gatqqqqatt qcaqtqaqca 960
^{60} tgctgaccta ccccttcctg ctcgttggag atctcatggc agtgaacaac tgtgggctgc 1020
```

gggctggact ccctccgtat tcccctgtgt tcaagtcctg gatccactgc tggaagtacc 1080 tgagtgtgca gggccagctc ttccgcggct ccagcctgct tttccgccgg gtgtcatcgg 1140 ggtcatgctt tgccctggag taacctaagc tgcccaacca aacatttatg gggtcttagc 1200 ctacccctgg tgaggaccca tcatctcaga tgcccaaggg tgactccagc ccagcctggc 1260

| ttcatgtcca             | tatttgccat | gtgtctgtcc | agatgtgggc | tggtggaggt | gggtcacctg | 1320 |     |
|------------------------|------------|------------|------------|------------|------------|------|-----|
|                        |            |            |            |            | cctagaggta |      |     |
|                        |            |            |            |            | actcagtggc |      |     |
|                        |            |            |            |            | cacccccgcc |      | 5   |
|                        |            |            |            |            | ggctggcgct |      |     |
|                        |            |            |            |            | aggaaatcat |      |     |
|                        |            |            |            |            | gtgtgagggt |      | 10  |
|                        |            |            |            |            | tagtcctccc |      | 10  |
|                        |            |            |            |            |            |      |     |
|                        |            |            |            | ggiggigaci | tggaaaaaaa |      |     |
| aaaaaaaaa              | agggeggeeg | cccgageatg | Catcta     |            |            | 1836 | 15  |
|                        |            |            |            |            |            |      |     |
| -010- 10               |            |            |            |            |            |      |     |
| <210> 18               |            |            |            |            |            |      |     |
| <211> 747              |            |            |            |            |            |      | 20  |
| <212> DNA              |            |            |            |            |            |      |     |
| <213> Mouse            | :          |            |            |            |            |      |     |
|                        |            |            |            |            |            |      |     |
| <400> 18               |            |            |            |            |            |      | 25  |
| agctccgccc             | ctgctactgg | accatggaga | ctgtggccca | gtagagacct | tagtgtgagg | 60   |     |
| ctttcagggg             | cggcggccat | ggaggccgtg | ctgaacgagc | tggtgtctgt | ggaggatctg | 120  |     |
| aagaattttg             | aaaggaaatt | tcagtctgag | caggcagctg | gttctgtgtc | caagagcacg | 180  |     |
| caatttgaat             | atgcctggtg | cctggttcga | agcaaataca | atgaggacat | ccgcagaggc | 240  | 30  |
| atcgtgctgc             | tggaggagct | gttgcccaaa | gggagcaaag | aggaacagcg | ggactatgtc | 300  |     |
|                        |            |            |            |            | aaagtatgtg |      |     |
|                        |            |            |            |            | acgcctgatt |      | ~ * |
|                        | •          |            |            |            | catggccctg |      | 35  |
|                        |            |            |            |            | aatcctgaag |      |     |
|                        |            |            |            |            | tggaagaggg |      |     |
|                        |            |            |            |            | cctttacage |      | 40  |
|                        |            |            |            |            | atteetttge |      | *** |
| aatgagtgnn             |            |            | occagegcc  | caaccccncc | accectige  | 747  |     |
| aacgagegiii.           |            | cggcccc    |            |            |            | 747  |     |
|                        |            |            |            |            |            |      | 45  |
| <210> 19               |            |            |            |            |            |      |     |
| <211> 761              |            |            |            |            |            |      |     |
| <211> 701<br><212> DNA |            |            |            |            |            |      |     |
| <213> Mouse            |            |            |            |            |            |      | 50  |
| <2137 Mouse            | :          |            |            |            |            |      |     |
| <400> 19               |            |            |            |            |            |      |     |
|                        |            |            |            |            |            |      |     |
|                        |            |            |            |            | ttaaacgaca |      | 55  |
|                        |            |            |            |            | caggggtgca |      |     |
|                        |            |            |            |            | ccccaggct  |      |     |
|                        |            |            |            |            | cttggagaca |      | 60  |
|                        |            |            |            |            | aacgatggcc |      | 60  |
|                        |            |            |            |            | ctccttggcc |      |     |
|                        |            |            |            |            | cttttcatat |      |     |
|                        |            |            |            |            | ttcctctttg |      | 65  |
| ctccctttgg             | gcaacagntc | ctccagcagc | acgatgcctc | tgcggatgtc | ctcattgaat | 540  |     |
|                        |            |            |            |            |            |      |     |

```
ttgcttcgaa ccaggcacca ggcatattca aattgcgtgc tcttggacac agaaccagnt 600
   geotgetnag actgaaattt cettteaaaa ttntteagat cetteacaga caceageteg 660 .
   ttcagcacgg nctccatggc cgccgcccnt gaaagcctta cactaaggnc tntactgggc 720
   cacaagtttc catggtccag agcanggqcc ggagcttnna n
                                                                     761
(210> 20
   <211> 901
   <212> DNA
   <213> Mouse
15
   <400> 20
   agattgactt gggcactgac atggttcctg ccatctccct ggcctacgag caagctgaga 60
   gcgacatcat gaagaggcag cccagaaacc ccaaaacqga caaacttgtq aacqaqcqtc 120
   tgatcagcat ggcctatgga cagatcggta tgatccaggc cctgggaggc ttcttcactt 180
   actitigigat tetiggetgag aacggtitee tgecettiea cetqtiqqqe ateeqaqaqa 240
   cctgggatga ccgctgggtc aacgatgtgg aggacagcta cgggcagcag tggacctacq 300
25 agcagaggaa gatcgtggag ttcacctgcc atacagcgtt ctttgtcagt attgtggtag 360
   tgcagtgggc cgacttggtc atctgcaaga ccagaaggaa ttctgtcttc cagcaggaa 420
   tgaagaacaa gatcttgata.tttggcctct ttgaagagac agcccttgct gctttcttat 480
   cctactgccc cgggatgggg gcagncctta ggatgtatcc ctcaaaccta catgqtgggt 540
30 ctgtgccttt ccctacttcc cttcttaatc ttttgtgtat gacgagggtg cgggaagctt 600
   aattattaag gegggngeee ettggenggn ttgggttggg aggaanggag gaeeetaett 660
   acttaggece cacttgeece ttggnaegee egggggggaa acaattttgt gnecaacaae 720
   accttgnaac cccaaccccc ttaccccccc tttttttggg gggacctttc aaagggtttt 780
   tgggaggcct tngggaaact ttttacccct tgggnngggg aaaaggcacc ccaaaaccnt 840
   ttgttggggg gattgccaaa accnttcctt ggaaatggaa aanaattgtt ancttntaac 900
   С
                                                                      901
40
   <210> 21
   <211> 472
45 <212> DNA
   <213> Mouse
   <400> 21
   ccgttataat agccatcttt atttgtaaaa atccagatat aaaacgtaat ctttcagtct 60
   ttccaggttt tcctttttta caaaaacaaa aaggcacqta taaaccttqc ccqctqtcqt 120
   ccccqtacac ggnqtttctc aggcagccct ccccccgcc ccgcccccg ttacagctac 180
55 atgetteatt ecaggaegte tgeatececa catgettngg ngettteeta ecagggtaga 240
   gttccgagct ccaagacttg aagtacacaa agagggggta ggggngggng cagngngtgg 300
   cacaatgttc cacggegtgc agggeagagg gctagtagta ggtctccttc tccacccagc 360
   cgcagggcgc cgcctgataa tgagcttccg cacctngnat acacaaagat qagaaqqqaq 420
60 taggggaagg cacagaacca ccatgtaggt ttgaggggat acatnctaag gg
                                                                     472
   <210> 22
   <211> 621
```

<212> DNA

| <213> Mouse                                                           |    |  |
|-----------------------------------------------------------------------|----|--|
|                                                                       | 5  |  |
| <400> 22                                                              |    |  |
| agcoggaggo ogagocoagt ogcoagotoo tgototgoto ototocogoo tgoogcogog 60  |    |  |
| ctgcacgcct cgagcactcc ctcggccccg gcggggaccg gggaccccgc agctaccgcc 120 |    |  |
| atgctgccag tgctctacac cggcctggcg gggctgctgc tgctgcctct gctgctcacc 180 | 10 |  |
| tgctgctgcc cctacctcct ccaagatgtg cggtacttcc tgcggctggc caacatggcc 240 |    |  |
| cggcgggtgc gcagctaccg gcagcggcga cccgtgcgta ccatcctgcg ggccttcctg 300 |    |  |
| gaacaagcgc gcaagacccc acacaagccc ttcctgctgt tccgagacga gacgctcacc 360 |    |  |
| tacgcccagg tggaccggcg cagcaaccaa gtggcgcggg cgctgcacga tcaactgggc 420 | 15 |  |
| ctacgacagg gggatngcgt agccctcttc atgggcaatg agccggccta cgtgtggatc 480 |    |  |
| tggctgggac tgctcaaact gggctgtccc atggcgtgcc tcaactacaa cattcgtgcc 540 |    |  |
| aagtetetge tgeactgett teaatgetge ggggegaagg tgetgetgge etneceagat 600 | 20 |  |
| ctacaagaag ctgtggagga g 621                                           | 20 |  |
|                                                                       |    |  |
|                                                                       |    |  |
| <210> 23                                                              | 25 |  |
| <211> 571                                                             |    |  |
| <212> DNA                                                             |    |  |
| <213> Mouse                                                           |    |  |
|                                                                       | 30 |  |
| <400> 23                                                              |    |  |
| agtgttaata tagtttatta tgtctttaaa aaaataaggc cctctctcca agaagcttag 60  |    |  |
| tttgcaagga caaatggcag gtgcacattg aaaaataatt gtttctaaat ctttttactt 120 | 26 |  |
| gcaaaggttc aggtgtaatt taaaaaaaaa acaaacaaac tatcctttta atgaataatt 180 | 35 |  |
| tcctaaaaat aaaatcgcac cttatagcct tnaatcaagt taaagttgga ttctacgtat 240 |    |  |
| gaagtggctc tgcgaggtct atcgagtttc tttctggaaa tgtcatgagc taaaccacca 300 |    |  |
| gggaatattc agagcttnag agttttatca attatggcat tataaatgtt ctcagtcatg 360 | 40 |  |
| ggcacaaatg ttttctctgc atcatccatg aaatacaagg tatctttgat gactgtggga 420 |    |  |
| ttgaagccct cttccatcag ggtcactttg cggngtttaa aagtcccagt gatctcaatg 480 |    |  |
| gtatcttgta tcctcaggaa ccgaggcctc gcgtaactgg gcaggtactc cgcgatgtgt 540 |    |  |
| tgaaagagtt tctttccatt gaactcgtag t 571                                | 45 |  |
|                                                                       |    |  |
|                                                                       |    |  |
| <210> 24                                                              |    |  |
| <211> 673                                                             | 50 |  |
| <212> DNA                                                             |    |  |
| <213> Mouse                                                           |    |  |
|                                                                       | 55 |  |
| <400> 24                                                              | 33 |  |
| agegegggag gegeatggeg ggeatggege tggegegage atggaageag atgteetggt 60  |    |  |
| tetactacea gtacetgetg gteactgege tetacatget ggagecetgg gagegaaceg 120 |    |  |
| tgttcaattc gatgetggtt teegnggtgg ggatggeeet gtacactgge tacgtettca 180 | 60 |  |
| tgccccagca catcatggct attctgcatt actttgaaat tgtacagtga cgaagatgtg 240 |    |  |
| accaggatee agaggtteet ggggaagate tgcettgtga agttggaatg agaceteate 300 |    |  |
| agatgtaaga tgtgctacgg atgtccacgt gaccaacctt ataaatacaa agactttaaa 360 |    |  |
|                                                                       | 65 |  |
| aaaaacttna tgagtagaac aggaaaaatc atcctggctc atgtgttgng ttctttcttt 420 |    |  |

```
ttgattttaa cagaggctct tatatagtag cttttatcta ttttaacatt gtagtcattt 480
   gtactttgat atcagtattt tcttaacctt tgtgactgtt tcaatattat ccagtqaaag 540
   cttttcttaa tgtaactttg agtacatctc aattgccttc tatttttaaa acctaaqqtc 600
   attagttggg ctttactggt cttgctatca tatggcatat acatctgcct ggatatattt 660
   ctactcttga cca
                                                                     673
10
   <210> 25
   <211> 654
   <212> DNA
15 <213> Mouse
   <400> 25
   acatttttct ttgaatttaa tgagtttaca tnaaaaaaaa gtagtcattt tacatntaag 60
   gaataaaaac cgttttaaaa aaaatacaaa gagtgaaagg atttttaagc aagtttacat 120
   ttcttttggt tatggttctg cacaattcat ctcattgngt ctttatnaca acgtgcaaat 180
   gcatttnaca acgcctgtta caacatnaaa ttaactnttg agcqtataca gggtcaatac 240
25 tgcctnagag gatctgataa gccttctatg aaaagctnca cagtgtatnt nagcatatgt 300
   catacaagcc ggccaccaat caccaatnac aggaatcatn aaagttggtt ggaaataagt 360
   ccacataaga atttaatatn taaaaggnga aatgttcctt gtattaatgt tagcaagatc 420
   tttacttttt cattactaag aaacacttta atagttttag agcaaaagct gttaagagtc 480
30 tagggageta aaacegtaet eetgagttea ageaageaga taaatetttt gtaagtagtt 540
   ctnaaagtat cctccctccc gtccccaaat tctgtattgn ttcttacaaa actttggtca 600
   agagtngaaa tatatccagg cagatgtata tgccatatga tagcaagaac agta
35
   <210> 26
   <211> 1282
40 <212> DNA
   <213> Mouse
   <400> 26
45 agcgcgggag gcgcatggcg ggcatggcgc tggcgcgagc atggaagcag atgtcctggt 60
   tctactacca gtacctgctg gtcactgcgc tctacatgct ggagccctgg gagcgaaccg 120
   tgttcaattc gatgctggtt tccgtggtgg ggatggccct gtacactgqc tacqtcttca 180
   tgccccagca catcatggct attctgcatt actttgaaat tgtacagtga cgaagatgtg 240
   accaggatcc agaggttcct ggggaagatc tgccttgtga agttggaatg agacctcatc 300
   agatgtaaga tgtgctacgg atgtccacgt gaccaacctt ataaatacaa agactttaaa 360
   aaaaacttca tgagtagaac aggaaaaatc atcctggctc atgtgttgwg ttctttcttt 420
55 ttgattttaa cagaggctct tatatagtag cttttatcta ttttaacatt gtagtcattt 480
   gtactttgat atcagtattt tcttaacctt tgtgactgtt tcaatattat ccagtgaaag 540
   cttttcttaa tgtaactttg agtacatctc aattgccttc tatttttaaa acctaaggtc 600
   attagttggg ctttactgkt cttgctatca tatggcatat acatctgcct ggatatattt 660
60 ctactcttga ccaaagtttt gtaagaamca atacagaatt tggggacggg agggaggata 720
   ctttgagaac tacttacaaa agatttatct gcttgcttga actcaggagt acggttttag 780
   ctccctagac tcttaacagc ttttgctcta aaactattaa agtgtttctt agtaatgaaa 840
   aagtaaagat cttgctaaca ttaatacaag gaacatttca ccttttagat attaaattct 900
   tatgtggact tatttccaac caactttnat gattcctqtq attqqtqatt qqtqqccqqc 960
```

| ttgtatgaca tatgctraga tacactgtgg agcttttcat agaaggctta tcagatcct traggcagta ttgaccctgt atacgctcaa ragttaattt ratgttgtaa caggcgttg raaatgcatt tgcacgttgt gataaagacn caatgagatg aattgtgcag aaccataac aaaagaaatg taaacttgct taaaaatcct ttcactcttt gtattttttt taaaacggt tttattcctt aratgtaaaa tgactacttt tttttratgt aaactcatta aattcaaag aaaatgtaaa aaaaaaaanc cn | t 1080<br>c 1140<br>t 1200 | 5  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|
| <210> 27<br><211> 774<br><212> DNA                                                                                                                                                                                                                                                                                                                            |                            | 15 |
| <213> Mouse<br><400> 27                                                                                                                                                                                                                                                                                                                                       |                            | 20 |
| agcgagtttg cagacttctt gtgcgcagct agccgcctna ggtgttngaa ccatgaatc<br>tttactcctt tnggctgtcc tctgcttggg aacagcctta gctactccaa aatttgatn<br>aacctttagt gcanagtggc accagtggaa gtcnacgcac agaagactgt atggcacga                                                                                                                                                      | a 120<br>a 180             |    |
| tgaggaanag tggagganag cgatatggga gaagaacatg agaatgatcc agctacaca cggggaatac agcaacgggc agnacggctt ttccatggag atgaacgcct ttggtgaca gaccaatgag gaattcaggc aggnggngaa tggctatcgc caccagaagc acaagaagg gaggcttttt caggaaccgc tgatgcttaa gatccccaag tctgnggact ggagagaaa                                                                                           | t 300<br>g 360             | 25 |
| gggttgngtg actcctgtga agaaccaggg ccagngcggg tctngnnggg cgtttagcg<br>atcgggttgc ctagaaggac agatgttcct taagaccggc aaactgatct nactgagtn<br>acagaacctt gtggactgtt ctcacgctca aggcaatcag ggctgtaacg gaggcctga                                                                                                                                                      | tc 480<br>a 540<br>t 600   | 30 |
| ggattttget ttecagtaca ttaaggaaaa tggaggtetg nacteggagg agtettace ctatgaagea aaggaengga tettgtnaat acagagnega gttegetgtg getaatgae cagggtteeg tggatntnee ttagecagga gaaageetea tgaagetgtg getn                                                                                                                                                                 |                            | 35 |
| <210> 28<br><211> 723                                                                                                                                                                                                                                                                                                                                         |                            | 40 |
| <212> DNA<br><213> Mouse<br><400> 28                                                                                                                                                                                                                                                                                                                          |                            | 45 |
| ttacacacac actgagctaa aatttatttt taagaggtaa agaaagtttt atacaacct tatataaaan aaatattnna gactnagaat taagcactaa gttttcaata ttataaagn gtttataana ggagtttaa gtagnggtaa catttaaccc atgtaaaaat ggcaacaga ttnaaatnat ganttggatc ctnaatgatt naagnaccan ggttngantn aataagggt                                                                                            | t 120<br>a 180             | 50 |
| nggtcagttt taagctgaat toottnggac atagagnoca taagtootca ttanogota<br>cnatnaattn angacaggat agntggnogo ggnggcaagt coacagaggt ngnocoggt<br>ttnggctatt tngatgtago ottocataco coattcactt coccagotgn tottgacaa                                                                                                                                                      | c 300<br>c 360<br>g 420    | 55 |
| ccaatattta ttettatttg aatetgntee ttnatageea tageenanea acagaacee atggtegagg atettgetge tacagtnggg ttnatagtag atgeetgaae tatagaaet gagagaegga tggettgegt ccatageaae agaaatagge eccaeagteg cacageett atgaggett tetettgetg agggataten acgaaeeetg tgteattage cacagggaa                                                                                            | g 540<br>c 600             | 60 |
| tnggctctgt atttacnaga ancggccttt gcttcanagg gngtaaggac ttctccgngccn                                                                                                                                                                                                                                                                                           | 720<br>723                 | 65 |

```
<210> 29
   <211> 341
   <212> DNA
   <213> Mouse
   <400> 29
10 agatggcttc cagcggagtg actgngagcg ccgncgggtc ggccagcgag gcctnagagg 60
   ttccagacaa cgtgggagac tggctccgcg gcgtcttccg cttcgccacc gatcgaaacg 120
   acttccggag gaacttgatc cttaatttgg gactctttgc tgcgggagtc tggctggcca 180
   ggaacttgag tgacattgat ttgatggccc ctnagccagg ggtgtagcca gagaatggaa 240
15 ctcctgtgta ttcagacttt ccaaagacag cctactgtct gngaccacaa gatcctacct 300
   gagtggcagc tgaagttgac teceteteet tgeetgaace e
                                                                      341
   <210> 30
   <211> 156
   <212> DNA
25 <213> Mouse
   <400> 30
   atgngcaggc tttatttgaa atctttttca agaaccatta ttactcttna ggacaagggc 60
30 aaggaccatc ttctgcagaa agtngggaac tgcacacaga accgtgcaga ggcaacatnt 120
   tagccgacac tgggggangg gggggcagag gggggg
                                                                      156
   <210> 31
   <211> 513
   <212> DNA
40 <213> Mouse
   <400> 31
   tgrkatggct tccagcggag tgackgtgag cgccgcggg tcggccagcg aggcctcaga 60
45 ggttccagac aacgtgggag actggctccg cggygtcttc cgcttcgcca ccgatcgaaa 120
   egaetteegg aggaaettga teetyaattt gggaetettt getgegggag tetggetgge 180
   caggaacttg agtgacattg atttgatggc ccctcagcca ggggtgtagc cagagaatgg 240
   aactcctgtg tattcagact ttccaaagac agcctactgt ctgtgaccac aagatcctac 300
   ctgagtggca gctgaagttg actccctctc cttgcctgaa cccccccyca ctstctcccc 360
   catececcag tgtcggctra gatgttgcct ctgcacggtt ctgtgtgcag ttcccaactt 420
   tetgeagaag atggteettg eeettgteet gaagagtart aatggttett gaaaaagatt 480
55 tcaaataaag cctgcacata aaaaaaaaag aga
                                                                      513
   <210> 32
60 <211> 826
   <212> DNA
   <213> Mouse
```

144

65

| <400> 32    |             |            |                     |                    |            |     |     |
|-------------|-------------|------------|---------------------|--------------------|------------|-----|-----|
| taccgagccc  | ggatccctag  | taacggccgc | cagtgtgctg          | gaaagctcgt         | catggcgacg | 60  |     |
| gagcagaggc  | ctttccacct  | ggtggtgttc | ggcgcctctg          | gcttcaccgg         | ccagttcgtg | 120 | _   |
| acggaggagg  | tggcccggga  | gcagatagcc | tcggagcaga          | gctcccgcct         | gccctgggcc | 180 | 5   |
| gtggcgggtc  | gctccaagga  | gaagctgcag | caagtgctgg          | agaaggctgc         | ccagaaactg | 240 |     |
| ggaagaccat  | cactatcatc  | tgaagttgga | gtcataatct          | gtgatatcag         | taatccagcc | 300 |     |
| tcacttgatg  | aaatggctaa  | acaggcaaag | cttgtcctca          | actgcgtagg         | accgtatcga | 360 | 10  |
| ttttatggag  | aacctgtagt  | aaaagcatgt | attgaaaatg          | gaacaagttg         | tattgacatc | 420 |     |
| tgtggggaac  | ctcagtttct  | ggaactaatg | catgcgaagt          | atcatgagaa         | agctgcagag | 480 |     |
|             |             |            |                     |                    | tctaggagtg |     |     |
| ctatacacca  | ggaaccagat  | gaacggtact | ttgactgctg          | tagaaagctt         | cctgacaata | 600 | 15  |
|             |             |            |                     |                    | aatttatggt |     |     |
| tttggcgata  | agggtagttt  | aagaaaacta | cggagtgtat          | catgtctgaa         | acctgtccca | 720 |     |
| attgttggta  | caaagttgaa  | aagaaggtgg | ccagtcagct          | attgtagaga         | gctgaactcg | 780 |     |
| tattccattc  | cttttttggg  | atctgatata | tctggctgga          | gcaaaa             |            | 826 | 20  |
|             |             |            |                     |                    |            |     |     |
|             |             |            |                     |                    |            |     |     |
| <210> 33    |             |            |                     |                    |            |     | 2.5 |
| <211> 374   |             |            |                     |                    |            |     |     |
| <212> DNA   |             |            |                     |                    |            |     |     |
| <213> Mouse | •           |            |                     |                    |            |     |     |
|             |             |            |                     |                    |            |     | 30  |
| <400> 33    |             |            |                     |                    |            |     |     |
| angngnaata  | angnganggg  | ntaaaagagn | aannaantan          | agtgagagag         | ggaatgnagg | 60  |     |
| nnaaatatac  | ncctnanccn  | tatattggaa | ${\tt annnacctna}$  | tattnnaaac         | nnnnctannn | 120 | 35  |
| tnatnnanat  | nanatacnna  | tnaatnanac | nnaannanna          | nnntactanc         | aaacaacnan | 180 | 0.5 |
| nnnaatnnnn  | naannnaaan  | ctttannaca | ${\tt naatcnannc}$  | nnanaaacna         | tttcttaanc | 240 |     |
| ancanataan  | naaannnncn  | aananaantn | acanacaana          | nancnaatta         | nntcatnnan | 300 |     |
| cacctaannn  | cnaaanntnn  | ntnantnonn | $\verb"aattnncnnn"$ | natanttatc         | nntactantt | 360 | 40  |
| atctnancac  | tatc        |            |                     |                    |            | 374 |     |
|             |             |            |                     |                    |            |     |     |
|             |             |            |                     |                    |            |     | 45  |
| <210> 34    |             |            |                     |                    |            |     | 45  |
| <211> 1455  |             |            |                     |                    |            |     |     |
| <212> DNA   |             |            |                     |                    |            |     |     |
| <213> Mouse | 2           |            |                     |                    |            |     | 50  |
| <100> 34    |             |            |                     |                    |            |     |     |
| <400> 34    | aget occtor | taacaaca== | opatate:            | ~~~~ <del>~~</del> | ant        | 60  |     |
|             |             |            |                     |                    | catggcgacg |     |     |
|             |             |            |                     |                    | ccagttcgtg |     | 55  |
|             |             |            |                     |                    | gccctgggcc |     |     |
|             |             |            |                     |                    | ccagaaactg |     |     |
|             |             |            |                     |                    | taatccagcc |     | 60  |
|             |             | •          |                     |                    | accgtatcga |     |     |
|             |             |            |                     |                    | tattgacatc |     |     |
|             |             |            |                     |                    | agctgcagag |     |     |
| aaygyyttt   |             | aaycaycyyc | rrryacteca          | Leecaycaga         | tctaggagtg | J4U | 65  |
|             |             |            |                     |                    |            |     |     |

```
ctatacacca ggaaccagat gaacggtact ttgactgctg tagaaagctt cctgacaata 600
   aatacaggac ctgaggggtt gtgtattcat gatggaacct ggaagccggc aatttatggt 660
   tttggcgata agggtagttt aagaaaacta cggagtgtat catgtctgaa acctgtccca 720
  attgttggta caaagttgaa aagaaggtgg ccagtcagct attgtagaga gctgaactcg 780
   tattccattc cttttttggg atctgatata tctgttgtga aaaggactca gcgttactta 840
   catgaaaatt tagaggactc accagttcag tatgctgctt atgtgacggt gggaggcatc 900
10 acctetgtga ttaagetgat gtttgeagga etgttetttt tattetttgt gaagtttage 960
   attggaagac aactteteat aaaatteesa tggetetttt eetttggeta ttttteaaaa 1020
   caaggtccaa cacaaaaaca gatggatgag acatcattta caatgacatt ctttqqtcaa 1080
   ggatacagee atggeaettg tgttgaaaag aacaaaceaa atateegaat etgeaeteaa 1140
15 gtgaagggac cagaggctgg ctacgtggct actcccatag ccatggttca ggctgccatg 1200
   acttttctga gtgacgcctc tgaccttcca aaagggggcg gtgtctttac acctggagca 1260
   gctttctcca gaacaaagtt gattgacaga ctcaacaaac atggcattga atttaagtgt 1320
   cattagcage teegaagtet aaacgtttga agactaaceg aatcataaaa tgcacaaace 1380
   gegtetgtat ttggatatgt gaaattette tataageeta tetgaetgta tgtggaetgt 1440
   caagttataa aatat
                                                                      1455
2.5
   <210> 35
   <211> 464
   <212> DNA
30 <213> Mouse
   <400> 35
   aaaggaaaaa cacagctnag cagatccagg cactaaagag agctagctgc aagcaggagc 60
   agtcaagaat ctgnggtcag aagtactgga gngggccagc agggccagct ttttctacca 120
   tggcagccca aggctacggc tactatcgca ctgtcatatt ngcggccatg ttnggaggct 180
   acageetgta etattteaae egeaaaaeet teteetttgt eatgeeetee ttggnggatg 240
40 agategetet ggacaaggac gattngggge tnatnacaag cagecagteg geagectacg 300
   ccatcagcaa gttngngagc ggngntctgt cagatcagat gagcgcccgc tggctcttct 360
   cctctgggct gctcctggtn ggtctggtca acgtagtctt cttatggngc tccacagnqt 420
   cagcettage tgetettngg ttntettaat ggteetggea cagg
                                                                      464
45
   <210> 36
   <211> 388
   <212> DNA
   <213> Mouse
<sub>55</sub> <400> 36
   nagnateaaa netagettna nngatetana caagneggnt ngeeetetat attetteeet 60
   ttngncccag ggnattcang anagaggagg actcctctcc tcccttaggg acngaggnan 120
   nggcaacaat ttngcccccn gccaagaagc ctnggggnac agcagaaacc acaggccatt 180
60 aatactcact aggagatcag gacctaggag aagaagaagg gtataggaga cactctgaan 240
   tnaggagnng cengnengee agaaggnaga aacagaagen gaaggagtet agaaccaaac 300
   atcatcattt taaatagagc angggaaggg agnngggacc tnantagcca cnqqaaactt 360
   gcagcaccan ggaggttcag agagacag
                                                                      388
```

| <210> 37     |           |            |            |            |            |     |     |
|--------------|-----------|------------|------------|------------|------------|-----|-----|
| <211> 453    |           |            |            |            |            |     |     |
| <212> DNA    |           |            |            |            |            |     |     |
| <213> Mouse  |           |            |            |            |            |     | 5   |
|              |           |            |            |            |            |     |     |
| <400> 37     |           |            |            |            |            |     |     |
| atggctgcgc t | cttactaaa | tactactcct | ttgggaacca | cagctaagga | ggagatggag | 60  | 10  |
| cggttctgga a |           |            |            |            |            |     |     |
| aaatggtctc t |           |            |            |            |            |     |     |
| ggaggggtct c |           |            |            |            |            |     |     |
| ttgatgtttg t |           |            |            |            |            |     | 15  |
|              |           |            |            |            |            |     |     |
| cttgtcttcc c |           |            |            |            |            |     |     |
| ggaaaaggcc t |           |            |            | tggeggtegt | ggttettget |     |     |
| gtgttgtcct c | eggeggget | ggeegeeetg | cga        |            |            | 453 | 20  |
|              |           |            |            |            |            |     |     |
| (010) 20     |           |            |            |            |            |     |     |
| <210> 38     |           |            |            |            |            |     |     |
| <211> 888    |           |            |            | •          |            |     | 2.5 |
| <212> DNA    |           |            |            |            |            |     |     |
| <213> Mouse  |           |            |            |            |            |     |     |
|              |           |            |            |            |            |     | 30  |
| <400> 38     |           |            |            | _          |            |     |     |
| cgagctcgga t |           |            |            |            |            |     |     |
| gatggcggcg c |           |            |            |            |            |     |     |
| gctgttgact a |           |            |            |            |            |     | 35  |
| ggtcctggga g |           |            |            |            |            |     |     |
| ctacccgaag g | aagaggagt | tatacgcatg | ccagagaggc | tgcaggctgt | tttcaatttg | 300 |     |
| ccagtttgtg g |           |            |            |            |            |     |     |
| cacagaagca t |           |            |            |            |            |     | 40  |
| gttgccattt g |           |            |            |            |            |     |     |
| cctcttccct c |           |            |            |            |            |     |     |
| cttcataacc t |           |            |            |            |            |     | 45  |
| ccagtctaag c | cagaaattc | agtatgcacc | gcagttggag | caggagccta | caaacttgag | 660 | 45  |
| agaatcatct t | taagcaaaa | tgtcctatct | gcagatgaga | aactcacaag | cacacaggaa | 720 |     |
| ctaccttgaa g | aggaagaaa | gcgatggctt | tttaagatgt | ctatctctta | actctggatg | 780 |     |
| gattttaacc a | caacccttg | tcctctcggt | gatggtgttg | ctctggatct | gttgtgcagc | 840 | 50  |
| tgttgctaca g | ctgtagaac | agtatgttcc | ccctgagaag | ctgagtat   |            | 888 |     |
|              |           |            |            |            |            |     |     |
|              |           | •          |            |            |            |     |     |
| <210> 39     |           |            |            |            |            |     | 55  |
| <211> 440    |           |            |            |            |            |     |     |
| <212> DNA    |           |            |            |            | •          |     |     |
| <213> Mouse  |           |            |            |            |            |     |     |
|              |           |            |            |            |            |     | 60  |
| <400> 39     |           |            |            |            |            |     |     |
| cagaacataa t | tatngaaat | agattttaan | gatttcaatt | naatacaact | gaaaangtag | 60  |     |
| agncattaaa t | aacatttct | gctataatcc | agaggacagt | ttggaggcca | tttncgggca | 120 | 65  |
|              |           |            |            |            |            |     | 65  |

```
gaagcatcac accctaaggn ttcgqntatt aagtnagang actgacggtg ngcangncag 180
    gggnggagcc acacntgatc agctcataga anntcggtga anagaggaaa ncanancaca 240
    cccaantgca ctanctaant antnacagat attagnntna atctcannta cancccaatg 300
    nccatcttaa antgactaga aannnccagg tnaancttac ancnaaatan ngcccttcat 360
    nganntatgg taacctncta tntngcattt tatagengtn tteettaang geetatnntt 420
    cnanatonca cncatntnta
                                                                    440
 10
    <210> 40
    <211> 875
 15 <212> DNA
    <213> Mouse
    <400> 40
    tgcatgctcg agcggccgcc ctttttttt ttttttttt tcagaacata attattcaaa 60
    tagattttaa tgatttcaat tcaatacaac tgaaaatgta gtgtcattaa ataacatttc 120
    tgctataatc cagaggacag tttggaggcc atttccgggc agaagcatca caccctaagg 180
 agctcataga atttggcgaa gagaggaaaa aaaccaaaac caatgcaact aactaagtag 300
    ctacagatat tagtaaaata aaaatacaac ccaatgtcca tcttaaatga ctagaaaaat 360
    acaggtaaag tcacagcaaa taaagtcttc acagagtttg gtaactttat ttgcatttta 420
 ^{30} tagtgatttc ttaaggccta tgtccaatga aaccatctta aaaagctcta tgaggaatgg 480
    aagtttatgt gtccacgact cttttaaaaa gcttagattt ctgagtgagc aaggttcacc 540
    ttggtgggca ggggccctgc ctcctcatgt tcttcagtct gagacctaac aatcacaaga 600
    gaaggagctg ggtatctgct cagcttttgt tcattcataa attccaagtc accatagata 660
    ctcagcttct cagggggaac atactgttct acagctgtag caacagctgc acaacagatc 720
    cagagcaaca ccatcaccga gaggacaagg gttgtggtta aaatccatcc agagttaaga 780
    gatagacatc ttaaaaagcc atcgctttct tcctcttcaa ggtagttcct gtgtgcttgt 840
 40 gagtttctca tctgcagata ggacattttg cttaa
                                                                    875
    <210> 41
 45 <211> 1545
    <212> DNA
    <213> Mouse
. 50
    <400> 41
    cgagetegga tecaetagta aeggeegeea gtgtgetgga aaggtgaeag aggggaacaa 60
    gatggcggcg ccaaagggga agctttgggt ccaggcccaa ctggggctcc cgccgctgct 120
 55 getgttgaet atggegetgg eeggaggete ggggaetgea geggeegaag cetttgaete 180
    ggtcctggga gacacagcgt cctgtcaccg ggcctgtcag ctgacctacc ccttgcacac 240
    ctacccgaag gaagaggagt tatacgcatg ccagagaggc tgcaggctgt tttcaatttg 300
    ccagtttqtq qatqatqqqc ttqatttaaa tcqqaccaaq ctqqaatqtq aatctqcqtq 360
 60 cacagaagca tattcccaac ctgatgagca gtatgcttgt catcttggct gccaggatca 420
    gttgccattt gctgaactga gacaagaaca actcatgtcc ctgatgccaa gaatgcatct 480
    cctcttccct ctgactctgg tgaggtcgtt ctggagtgac atgatggact ctgcacaqaq 540
    cttcataacc tcttcatgga ctttttatct tcaagccgat gacggaaaaa tagttatatt 600
    ccagtctaag ccagaaattc agtatgcacc gcagttggag caggagccta caaacttgag 660
```

| agaatcatct  | ttaagcaaaa         | tgtcctatct        | gcagatgaga | aactcacaag | cacacaggaa | 720  |    |
|-------------|--------------------|-------------------|------------|------------|------------|------|----|
| ctaccttgaa  | gaggaagaaa         | gcgatggctt        | tttaagatgt | ctatctctta | actctggatg | 780  |    |
| gattttaacc  | acaacccttg         | tcctctcggt        | gatggtgttg | ctctggatct | gttgtgcagc | 840  |    |
| tgttgctaca  | gctgtagaac         | agtatgttcc        | ccctgagaag | ctgagtatct | atggtgactt | 900  | 5  |
| ggaatttatg  | aatgaacaaa         | agctgagcag        | atacccagct | ccttctcttg | tgattgttag | 960  |    |
| gtctcagact  | gaagaacatg         | aggaggcagg        | gcccctgccc | accaaggtga | accttgctca | 1020 |    |
| ctcagaaatc  | taagcttttt         | aaaagagtcg        | tggacacata | aacttccatt | cctcatagag | 1080 | 10 |
| ctttttaaga  | tggtttcatt         | ggacataggc        | cttaagaaat | cactataaaa | tgcaaataaa | 1140 |    |
| gttaccaaac  | tctgtgaaga         | ctttatttgc        | tgtgacttta | cctgtatttt | tctagtcatt | 1200 |    |
| taagatggac  | ${\tt attgggttgt}$ | ${\tt attttattt}$ | tactaatatc | tgtagctact | tagttagttg | 1260 |    |
| cattggtttt  | ggttttttc          | ctctcttcgc        | caaattctat | gagctgatca | ttgtggcccc | 1320 | 15 |
| gcccctgcca  | tgccccccgt         | cagtcatctc        | acttaataac | cgaaacctta | gggtgtgatg | 1380 |    |
| cttctgcccg  | gaaatggcct         | ccaaactgtc        | ctctggatta | tagcagaaat | gttatttaat | 1440 |    |
| gacactacat  | tttcagttgt         | attgaattga        | aatcattaaa | atctatttga | ataattatgt | 1500 | 20 |
| tctgaaaaaa  | aaaaaaaaa.         | aaaagggcgg        | ccgctcgagc | atgca      |            | 1545 | 20 |
|             |                    |                   |            |            |            |      |    |
|             |                    |                   |            |            |            |      |    |
| <210> 42    |                    |                   |            |            |            |      | 25 |
| <211> 384   |                    |                   |            |            |            |      |    |
| <212> DNA   |                    |                   |            |            |            |      |    |
| <213> Mouse | · ·                |                   |            |            |            |      |    |
|             |                    |                   |            |            |            |      | 30 |
| <400> 42    |                    |                   |            |            |            |      |    |
| aaaggtacga  | agctagggaa         | gatattcgcg        | tggctaaatc | tgcacgtgga | aggagcatta | 60   |    |
|             | ttcttataga         |                   |            |            |            |      | 25 |
|             | aggtgtgccc         |                   |            |            |            |      | 35 |
|             | ctatgggaac         |                   |            |            |            |      |    |
|             | gctgactgcc         |                   |            |            |            |      |    |
|             | angcattccg         |                   |            |            |            |      | 40 |
|             | cacatgtgac         |                   |            |            |            | 384  |    |
|             |                    |                   | ,          |            |            |      |    |
|             |                    |                   |            |            |            |      |    |
| <210> 43    |                    |                   |            |            |            |      | 45 |
| <211> 488   |                    |                   |            |            |            |      |    |
| <212> DNA   |                    |                   |            |            |            |      |    |
| <213> Mouse | •                  |                   |            |            |            |      | 50 |
|             |                    |                   |            |            |            |      | 50 |
| <400> 43    |                    |                   |            |            |            |      |    |
| anttttttt   | tttttttt           | tttttttt          | tttttttt   | ttttttttn  | aaaanggnan | 60   |    |
| aangntttng  | naaantttng         | nnggnnnggg        | naaanaaacc | nagggncnna | ngncggnaaa | 120  | 55 |
| aaaagnnttt  | tnccnnaggg         | nnnnannnnt        | naccngnaaa | nnaangnntt | tnntttncnt | 180  |    |
| acccctnaaa  | aanaaanngg         | naaancccan        | ggnngntttn | ganannangg | naaannccaa | 240  |    |
| ntngnttaan  | nttaanttcc         | nngggttngg        | nttttnnagg | naannaanan | gggnnntntn | 300  |    |
| aaaanngnan  | nangaaaana         | antttaangg        | gtccnannna | cccnnttngg | aaaaannaa  | 360  | 60 |
| atngnaangg  | gnanttgggc         | nntggncttn        | gnngacnaag | tnaantttng | gntnngnccg | 420  |    |
| gggggnannn  | anggnncccc         | ttttgnaagn        | ntnaangggn | naaaangggg | ncccannntt | 480  |    |
| tnggaaaa    |                    |                   |            |            |            | 488  |    |
|             |                    |                   |            |            |            |      | 65 |

```
<210> 44
   <211> 520
   <212> DNA
   <213> Mouse
   <400> 44
10 aaagcgactg cacagngaag ccctctgtta cctgtgtcga tcaagacctn aaaccccaga 60
   ggaacttcgt catcaacatg acttgcaggt ttngctggca gcttcctgaa acaqactacg 120
   agtgttcaaa ttccaccacc tgcatgaccg nggctngccc tcggcagcgc tatttcgcca 180
   actgcaccgn gcgtgaccac attcactgcc tgggcaaccg gactttccct aagctgctqt 240
15 actgcaactg gacaggnggc tacaagnggt cgacagccct ggctctnagc atcaccctng 300
   gggggntagg agccgatcgc ttctacctgg gccagnggcg agaaggcctc ggcaagctct 360
   tcagctttgg cggcctggga atatggaccc taatcgatgt ctngctgatn ggaqtaqqct 420
   atgngggacc agcggatggc tctttgtaca tttagccgag gttatgtgct tcagagagca 480
   gngtagagtc ctgngtgtgg agatggatgc ggagtgagag
                                                                     520
25 <210> 45
   <211> 1033
   <212> DNA
   <213> Mouse
30
   <400> 45
   cagngttcga tttctttatt ttaccttcat caaggcaagc caagtacaga tgctgtacat 60
taaaaacata aatccccctn tcacaccgca tccatntcca cacacaggac tctacactgc 120
   tototgaago acataacoto ggotaaatgt acaaagagoo atocgotggt cocacatago 180
   caantccaat cagcaagaca tcgattaggg tccatattcc caggccgcca aagctgaaga 240
   gettgeegag geettetege caetggeeca ggtagaageg ateggnteea aaceeecean 300
40 gggtgatget gagagecagg getgtegace acttgnagee acetgtecag ttgcagnaca 360
   gcagcttagg gaaagtccgg ttgcccaggc agtgaatgtg gncacgcacg gtgcaagttg 420
   gcgaaatagc gctgccgagg gcaagccacg gcatgcaggt ggtggaattt gaacactcgn 480
   agtengttte aggaagetge ageaaaaetg caggeatgtt gatgaenaag teettggnga 540
45 ttgaggettg acgacacagn taacagaggg ettacttngc aageegnttt cagcacaatt 600
   ggccgcncgg aactagggga anccgaggtt tgggacccaa gcttggggnc tcccttaaaq 660
   gggnggtccg aaatnaaatt tccganaagg ccnggnaanc caagnggggn ncttntaggt 720
   tagccccgaa gnggcntctg cttaanntag gacctttcca ccggaaacgc ctaacggccc 780
   aattggggnn aaaagggncc cgngttgtac ccacaatttt gnaaagnccc ntcgattggg 840
   gccaaacaan ctcccatggc ntcaaanggg ggaatgnaaa cccggggtaa ancgttcccc 900
   cccatgggnt gcnaacngna acaggnaagg ngnntaaacn ngcnnccccn cgagcccaaq 960
55 gntctggcaa agngngggcn aaaccattcc cnaangggat naaaaaactn gtcccccagg 1020
   ggtcnaaacc cct
                                                                     1033
60 <210> 46
   <211> 586
   <212> DNA
   <213> Mouse
```

| <400> 46                                          |                         |
|---------------------------------------------------|-------------------------|
| gcaacaattc gagctgctgt gacagagggg aacaagatgg cgg   | gegecaaa ggggaagett 60  |
| tgggtccagg cccaactggg gctcccgccg ctgctgctgt tga   | actatggc gctggccgga 120 |
| ggctcgggga ctgcagcggc cgaagccttt gactcggtcc tgg   | ggagacac agcgtcctgt 180 |
| caccgggcct gtcagctgac ctaccccttg cacacctacc cga   | aaggaaga ggagttatac 240 |
| gcatgccaga gaggctgcag gctgttttca atttgccagt ttg   |                         |
| ttaaatcgga ccaagctgga atgtgaatct gcgtgcacag aag   |                         |
| gagcagtatg cttgtcatct tggctgccag gatcagttgc cat   |                         |
| gaacaactca tgtccctgat gccaagaatg catctcctct tcc   |                         |
| tcgttctgga gtgacatgat ggactctgca cagagettca taa   |                         |
| tatcttcaag ccgatgacgg aaaaatagtt atattccagt cta   |                         |
| tatettead cegatyacyg addataget atattecage eta     | aage 300                |
| ·                                                 |                         |
| 1010: 47                                          |                         |
| <210> 47                                          | 2                       |
| <211> 183                                         |                         |
| <212> PRT                                         |                         |
| <213> Mouse                                       |                         |
|                                                   | 2                       |
| <400> 47                                          |                         |
| Met Ala Ala Pro Lys Gly Lys Leu Trp Val Gln Ala   | a Gln Leu Gly Leu       |
| 1 5 10                                            | 15                      |
|                                                   | 3                       |
| Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly       | y Gly Ser Gly Thr       |
| 20 25                                             | 30                      |
|                                                   | 3                       |
| Ala Ala Ala Glu Ala Phe Asp Ser Val Leu Gly Asp   |                         |
| 35 40                                             | 45                      |
|                                                   |                         |
| His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr   | r Tyr Pro Lys Glu 4     |
| 50 55 60                                          | -                       |
|                                                   |                         |
| Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg Leu   | u Phe Ser Ile Cvs       |
| 65 70 75                                          | 80                      |
|                                                   |                         |
| Gln Phe Val Asp Asp Gly Leu Asp Leu Asn Arg Thi   | r Lys Leu Glu Cys       |
| 85 90                                             | 95                      |
|                                                   | 5                       |
| Glu Ser Ala Cys Thr Glu Ala Tyr Ser Gln Pro Asp   | n Glu Gln Tur Ala       |
| 100 105                                           | 110                     |
| 100                                               |                         |
| Cur Hig Iou Cly Cur Cla Aga Cla Iou Dao Pho Al-   | 5 Clu Iou Ama Cla       |
| Cys His Leu Gly Cys Gln Asp Gln Leu Pro Phe Ala   | -                       |
| . 115 120                                         | 125                     |
| Glas Glas Tan Mak Gas Tan Will Burgar Mill Burgar |                         |
| Glu Gln Leu Met Ser Leu Met Pro Arg Met His Leu   |                         |
| 130 135 140                                       | U                       |
|                                                   |                         |
| Thr Leu Val Arg Ser Phe Trp Ser Asp Met Met Asp   | p Ser Ala Gln Ser       |

|    | 145                                               | 15                  | 0                        | . 155              |                                        | 160            |            |
|----|---------------------------------------------------|---------------------|--------------------------|--------------------|----------------------------------------|----------------|------------|
| 5  | Phe Ile Thr                                       | r Ser Ser Tı<br>165 | p Thr Phe T              | fyr Leu Gln<br>170 | Ala Asp Asp                            | Gly Lys<br>175 |            |
| 10 | Ile Val Ile                                       | e Phe Gln Se<br>180 | er Lys                   |                    |                                        |                |            |
| 15 | <210> 48 <211> 203 <212> DNA <213> Mouse          | <u>.</u>            |                          |                    |                                        |                |            |
| 20 | 12137 11045                                       | -                   |                          |                    |                                        |                |            |
| 25 | gcgcagaagg<br>cttcatgccc                          | gtgctgacct          | ggagctatct<br>tctactgnct | tcnggngtcc         | catgeeteag<br>gngteeggea<br>etgetggeet | cagtagctgc     | 120        |
| 30 |                                                   |                     |                          |                    |                                        |                |            |
| 35 | <210> 49<br><211> 187<br><212> DNA<br><213> Mouse | e                   |                          |                    |                                        |                |            |
| 40 | gacaactttg<br>tctttacccg                          | tgaagtctgt          | tgtcacatga               | gtttcagaaa         | tgtccatgcg<br>tttaggcccg<br>cctcctctc  | gaggcaggng     | 120<br>180 |
| 45 | tcctcta                                           |                     |                          |                    |                                        |                | 187        |
| 50 | <210> 50<br><211> 391<br><212> DNA<br><213> Mouse | <del>2</del>        |                          | •                  |                                        |                |            |
| 55 | <400> 50                                          |                     |                          |                    |                                        |                |            |
|    | gggcccacag                                        | cctcagggcg          | tgctgcgggc               | cgacctgttc         | aatggaatct<br>tcccggatgc<br>atggacttac | gagctctggn     | 120        |
| 60 |                                                   |                     |                          |                    | cgcactgcgg                             |                |            |
|    | acccatcttc                                        | aagcttttca          | gcggagaaga               | ngtactgtat         | gagccactga<br>nagggggact               |                | 360        |
| 65 | cccctgnnnt                                        | cattnntgag          | gctgccctat               | τ                  |                                        |                | 391        |

| 210> 51                                                               |     |
|-----------------------------------------------------------------------|-----|
| 2211> 726                                                             |     |
| 2212> DNA                                                             |     |
| 2213> Mouse                                                           | 5   |
| · · · · · · · · · · · · · · · · · · ·                                 |     |
| 400× 51                                                               |     |
| (400> 51                                                              |     |
|                                                                       | 10  |
| tgagatagg ggaccctggg cttgggaccc attgttcaga taggaaaact gagatcaggc 120  |     |
| aggtatgat tngggttagg gagtctgggn ggagcggggg gtcaacctna gcagggcagg 180  |     |
| actgngace etgatettet cagaetteag gaatgeeaeg tgetteteat aataggeage 240  |     |
| tnattaatg aacacagggt acacaatgga gtccccctca tacagtacgt cttctccgct 300  | 15  |
| paaaagettg aagatgggtt caccaggeet nagnggetea aagteatggt eetgeagttg 360 |     |
| gggtgcaca gtgccagcca ggtcaccatc cgcagngcgt gggaagtcca cactgcccaa 420  |     |
| rttcctgtag atatccatct caaaggcggg taagtccatg cettggttga agagetegat 480 | ••  |
| gaagtccaga atggatgcca ccagagctcg catccgggag aacaggtcgg cccgcagcac 540 | 20  |
| pocotgaggo tgtgggccca totocagaca gattocatto ttgnatatag attocangot 600 |     |
| gaaggtctnc gtcccctttc cagcacactg gcggccgata ctagaggatc cgagctnngt 660 |     |
|                                                                       | 25  |
|                                                                       | 2.5 |
| etgnta 726                                                            |     |
|                                                                       |     |
|                                                                       | 30  |
| 2210> 52                                                              | 50  |
| 2211> 663                                                             |     |
| 2212> DNA                                                             |     |
| 2213> Mouse                                                           | 35  |
|                                                                       |     |
| 3400> 52                                                              |     |
| aagggegge ggeageaget eeegeggete ntgetetget eegeetegge eeeggagega 60   |     |
| gggcggaga gccgcgcgct ngccttagtc cgagccgtca ccctccccgc gntccccgct 120  | 40  |
| tneeggeee geeegaggee gneegeeeeg teeeegeege neegnageen ggeegtgeee 180  |     |
| geognegne atgngetgee teggeaacag tnaganeega gganeagegn anetgaggag 240  |     |
| langegeage gegaggneaa caaanagate tgagaageag etgeagaagg acaageaggt 300 |     |
|                                                                       | 45  |
| gtgaagcan atgaggatcc tgcatgntaa tgngtntaan nganagggcg gtaanaggac 420  |     |
| ccgcaggot gcaaggagca acanttgatg gtnanaaggo cactanagng enngachttn 480  |     |
|                                                                       |     |
|                                                                       | 50  |
| ectgennagn tgnccaacce tgenannnag tteanagntg nnetacatte tgngenteat 600 |     |
| aacngtgcn cnnacttttc actttccacc tnnnttntat naagccatnn ccaaggcttc 660  |     |
| int 663                                                               |     |
|                                                                       | 55  |
|                                                                       |     |
| 2210> 53                                                              |     |
| 2211> 527                                                             |     |
| 2212> DNA                                                             | 60  |
| 2213> Mouse                                                           |     |
|                                                                       |     |
| ×400> 53                                                              |     |
|                                                                       | 65  |

```
gctcattttt aatttttatt gattttttaa tgctgcacaa cacaatattt atttcatttt 60
   gaatttcatt tatttcttta tttctgtngc tgcttttatt ttatttactg aaagtgagag 120
   ggaactttng nggccttttt tttctttttc ttctqtaqqc cqccttaaqc ttactaaatt 180
   tggaacatct aagcaagctg aagggaagag gggtttttca gaatcactgg gggaaaaagg 240
   aaaggnngcg gagttgatca tgccctatgg ngggngacca actgcttgta caattacgtt 300
   tcactcttaa ttaatngngc ttaaggctga attaaatttg ggngntccct tcttagagca 360
10 getetgnatt ggeggagatg catgegetgg atgatgteac ggeagtegtt gaagacaegg 420
   cggatgttct cagngtccac ggcgcaggta aagtgagggt agcagtngng gcgcccatnt 480
   ccactagcag tgctgntttt cagaaactna tccctnatga agtnctt
                                                                      527
15
   <210> 54
   <211> 855
   <212> DNA
   <213> Mouse
   <400> 54
25 ageggaegtt tgtgeeggga eatggeeget geggatgeeg ggteettgag etgagegett 60
   getgeeggag ceaacetetg eegteaaceg teegegeggg etgggeeeag gegeegggae 120
   ggccaagatc cgccgaggaa gctgaggcag ctatagaacg ccgccgcqqc qqqcqcatqq 180
   egtecatett geteaggage tgeeggggee gggggeetge eegeetegeg eeaceteggg 240
30 ccgnctcccc gcggggtagt ctgagggatc gagcttgtct cagctgtacc aggaccctgg 300
   ggttgacgag ccgtgagagt gttctgtctc gttgctgtac tccagcccac cctgtgtacc 360
   tetgetteaa aggtgageee etnagetgtt ggaeteagag geetgagtge eaggqeaeeg 420
   cagcaagaac aacatggaca cctgcctctg caaggctggn ggttacggga cctcagtacc 480
   ttcctgtgcg cggctggcac tcatcatctt cgctaggaga ggactctgtg atagagaagt 540
   cccttaagtc cttaaaagac aagaataana agctgganga gggcggnccc gtgtacagcc 600
   cggncgcgca ggtggtggtg aggaaatccc tngggcagaa ggtactggat gagctgaggc 660
40 actactacca tggctttccg cctgctctgg gatngacacc aaagancgct tgnccggatg 720
   ctctggcgca tncttnatgg gncatacgct taccccgncc gggagccnca ggcagnttnt 780
   teengaattg tgeeggaeet nttneegeta agnggeeett tettgggggn neenggnggg 840
   ggcccnttaa tggna
                                                                      855
45
   <210> 55
   <211> 722
50
   <212> DNA
   <213> Mouse
<sub>55</sub> <400> 55
   cattatggaa gtttctgatt nattccagac aaaatattan atttgccant aagaatcacc 60
  tcaaagcaat cactettgng ngteatgeee etgnggetgg caeggeatga tgaaggeaga 120
   cctgngggcc agaagctggc agetctaatt cttcacttct gcggcctctt tctcaqcctt 180
60 ctccttggcc ttctctttct cttctatctt ttcttctttc tctagngngg ccacaatttc 240
   agctacctgg gnggnagaga tctgaacatc ttctttgttc accaagtcga ttaccttgac 300
   aaggtcatcg atgttgatat ngccgncctt attatcatcc agggctgagg tcaaactqat 360
   gagettgage tetggaatgn getngatttg etteatggeg etgatgaget eagnganget 420
   gatgacactc teceetgnag gagngetetg getggggeec agnttgeeat cetgatgaga 480
```

| cagcctcttg<br>tccttctttg                 | ctcgctgcag<br>aactcctgta               | aatcttctat<br>nnncctcacn               | gnnctttctc<br>tgaggcctgg               | ctcacccgnc<br>ncgccctctt               | ctenctntga<br>tnttnnangg<br>ttgagcaggc<br>tectgennet                | 600<br>660        | 5        |
|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------|-------------------|----------|
| <210> 56 <211> 814 <212> DNA <213> Mouse | <b>,</b>                               |                                        |                                        |                                        |                                                                     |                   | 10       |
| tnaaagcaat                               | cactnttgng                             | ngtnatgccc                             | ctgnggctgg                             | cacggcatga                             | aanaatcacc<br>tgaaggcana<br>tntnagcctt                              | 120               | 20       |
| agctacctgg<br>aaggtcatcg<br>gagcttgngc   | gnggnanana<br>atgttganat<br>tntggaatgn | tctgaacatn<br>tgccgncctt<br>gcttgatttg | ttctttgttc<br>attatcatcc<br>cttnatggcg | accaagtcga<br>agggctgagg<br>ctgatgagct | ccacaatttc<br>ttaccttgac<br>tcaaactgat<br>cagtgatgct<br>cctgttgagn  | 300<br>360<br>420 | 25       |
| ggtctccanc<br>cagcctcttg<br>cttcttgatc   | tgtgtgatca<br>ctcgctgcaa<br>tcctgtaagt | ggccatcgat<br>attcttctat<br>cctcactgta | ctgcccganc<br>gnacttctcc<br>gncctggacg | atctgctgca<br>tcacccgtct<br>ncctctttga | ctcgcttgagn<br>ctcgctttga<br>ttgaaagttc<br>gcagntccag<br>aggcgtactg | 540<br>600<br>660 | 30<br>35 |
|                                          | _                                      | gnanctnttt<br>caggaanana               | _                                      | cctttcaaac                             | angggccgaa                                                          | 780<br>814        | 40       |
| <211> 290<br><212> DNA<br><213> Mouse    | 2                                      |                                        |                                        |                                        |                                                                     |                   | 45       |
| tggttatcca<br>ccgggactct                 | gcagcgcggn<br>tcttcttagt               | gngcgcgtct<br>acacaccggc               | acgacggcga<br>tgattnggag               | ggagaagata<br>agaccagaag               | aacgagaccc<br>aaattngatg<br>aataatgagn                              | 120<br>180        | 50       |
| _                                        |                                        | gntcacetge                             |                                        |                                        | gctnnaatcg                                                          | 290               | 55       |
| <211> 317<br><212> DNA<br><213> Mouse    | è                                      |                                        |                                        |                                        |                                                                     |                   | 60       |
| <400> 58                                 |                                        |                                        |                                        |                                        |                                                                     |                   |          |

```
cnanchcatt ctnggnnaat tngggntaat ttttnanctn agngtcnnga gaccttqnna 60
   aaangcaagn tnatngccat aaagcatttc aggnncaaaa ttntnagtnc tgggncanaa 120
   anaaatttgg anaaaaccga angcnttcca nggnqcnqtn tcqqaaaaqq qqnccnattt 180
  tntttgnang gngcnccntt tnttnaccca nanggncaga cnttcccnna ngctnggnaa 240
   nnttttngga ngtnaaggnc connttttng aancogttte naqqqccqnq qccncnattt 300
   ccttttcctn gggngtt
10
   <210> 59
   <211> 457
15 <212> DNA
   <213> Mouse
   <400> 59
   aaagngggga tootggagao agttotggng cagagttoca gtacototao atocatoatt 60
   gtcagcatgg tctcctccgg ctngtnggag gngagctccg ccattccgat catcatgggc 120
   tocaacatog gaacototgt caccaacaco attgnggood tgatgcaggc aggggacagg 180
25 actgactina ggcgggcttt ngcaggggcg accgngcatg actgttttaa ctggctgtcn 240
   gttetggnee taetgeeeen ggaggetgee aegggetaee taeaceatgt caeegggetn 300
   gaggnngctt cettnaacat cenaggngge egngatgeee eegacettet caaaqteate 360
   acagageest thanaagast cateateeag etggacaagt etgnqatnac cageatngce 420
30 gagggggatn agtncctgag gaatcacagt ctcantc
   <210> 60
   <211> 756
   <212> DNA
   <213> Mouse
40
   <400> 60
   agggcgccag ctgaagacgc gggacttaaa gngcgtagcc agaacccagg caccaqnqtg 60
   tocattgtcc agaactcatc tgaaaaactg ccacaggaat tgcttctctg ctccaggctg 120
45 gteactgaac aggttgctcc aggacctgca gaatgggggc aggctgngtc aaagtcacca 180
   agtatttcct cttcctcttc aactngctgn tctttatcct gggngctgag atcctgggct 240
   teggngagng gattettgea gacaagaaca getteattte egteetacaa aceteateea 300
   getegetgea ggnggggget taegtettea teggagnggg egecateace atagngangg 360
   gcttcctggg ctgtatcgga gctgtcaatg aggnccgctg cttgctgggt ctgtacttng 420
   tetteetten getgateetn ategeaeagg tgacegtagg ggteetette taetteaaeg 480
   ctgacaagcn gaagaaggag atggggaaca cagngatgga catcattcgc aactacactg 540
55 ccaatgccac cagtagccgc gaggaggcct gggactacgt gcaggcgcag gtcaagngct 600
  gtggctgngt cagccactac aactgnacag agaacnagga gctcatgggc tttaccnaga 660
   ccacttaccc atgetectge gagaaggate aaggnagagg acnaecaget cattgtgaag 720
   aaaggattct tgcgaggctg ataacagcac tgtngc
                                                                      756
60
   <210> 61
   <211> 292
   <212> DNA
```

#### <213> Mouse

| 00> 61                                                              | _  |
|---------------------------------------------------------------------|----|
| ttataaac cctcctttaa taattgattc cagagatgag ngnatggaac ccctccccca 60  | 5  |
| ctgcaagg nacagcetca eccaecetta gegcagagga caggggacag etgecaagaa 120 |    |
| accagtcc agatcetect etcatecagg gtetngngee agacetgagg gacceaeace 180 |    |
| taagtngt caggtccctc accaagagga gcgcaccaga ggctacctgg gccagtcccc 240 | 10 |
| ggaggccc ctcagttcag ttccctgctg aactgagctn gggggggggg ag 292         |    |
|                                                                     |    |
| 10. 60                                                              | 15 |
| 10> 62                                                              | 13 |
| 11> 244<br>12> DNA                                                  |    |
| 12> DNA<br>13> Mouse                                                |    |
| 132 Mouse                                                           | 20 |
| 00> 62                                                              |    |
| aggagece tngaaagega catggeggnt etettaaage tgggegntet etgeagnggn 60  |    |
| aggagete gageteteet acteegaage egggtggtea gaeeegetta tgtgteagea 120 | 25 |
| tctccagg accagectae ccaaggaegg agtggtaeee ageaeattea eetgteaeea 180 |    |
| ccaccact ctggtttcaa ggctgcatct ctccactgga ncagtgagag ggaagnnngt 240 |    |
| CC 244                                                              |    |
|                                                                     | 30 |
| 10. 62                                                              |    |
| 10> 63<br>11> 202                                                   |    |
| 11> 202<br>12> DNA                                                  | 35 |
| 13> Mouse                                                           |    |
| 13> Monze                                                           |    |
| 00> 63                                                              | 40 |
| aggcagat cgagagggcc atgngggcca acgaacaggc gctggcgtct ggccngagng 60  |    |
| ngagttct catnactggg ggcatngagg ctacngctgg acgtttcaca cagaggtatt 120 |    |
| ggcgccta ctctatcgct gcaggngngc tcatcngtct gctggagtat ccccggngaa 180 |    |
| aggaaaaa ggggaccanc at 202                                          | 45 |
|                                                                     |    |
|                                                                     |    |
| 10> 64                                                              | 50 |
| 11> 103                                                             |    |
| 12> DNA                                                             |    |
| 13> Mouse                                                           |    |
| 00> 64                                                              | 55 |
| agegegea gacegeteet eegetgeaga gtegnttnee ngagetnggn egacaaggen 60  |    |
| cttcgcag ncggganect gccagccgng accccagcct tcg 103                   |    |
|                                                                     | 60 |
| ·                                                                   |    |
| 10> 65                                                              |    |
| 11> 371                                                             | 65 |
| 12> DNA                                                             |    |

<213> Mouse

```
<400> 65
   aagataangg tttttaattg agttatngag atgaagagac agngaagccc tgttngctac 60
   ttacatgaaa agaagatttt aaaaaacaat cactgcacaa aatacaaagg ggcagggnan 120
   gengaggeat ngaatteete eccaegnttt ttetngaett etcaagaaca aattaaagte 180
10 tecacageaa attngntete aaaangeega anggngaaac agttaengge tteeegette 240
   ngaatacete taatngttne eeggegetge ageengtagg neteettgne gtgacacagt 300
   cgnnagatga agaagcccag gtngtccacg ttctcgangc ngacgccgat caccatgtqc 360
   tcanggatac g
                                                                      371
15
   <210> 66
   <211> 790
   <212> DNA
   <213> Mouse
25 <400> 66
   aaagagegge tgetgtegga ageaceggge gagetatetg ttacagteeg geeeggggat 60
   ggctcgggac gcggagctgg cgcgcagtag cgggtggccg nggcggnggc tgccggcgct 120
   getgetgetg cagetgetge ggtggaggtg egecetgtge gegeteeeet teaccageag 180
   teggeaceca ggetttgegg acetgetgte ggageageag etgttggagg tgeaggaett 240
   gaccetgtet ttgetgeagg geggaggtet agggeegetg teactgetae etceggaeet 300
   gccggatctg gagcctgagt gccgggagct gctgatggac ttcgccaata gcagcqccqa 360
   gctgaccgcc tgtatggngc gcagcgctcg gcccgtqcqc ctctqccaqa cctqctaccc 420
   gctcttccaa caggtcgcaa tcaagatgga caacatcagc cqaaacatcg qqaatacctc 480
   cgagggcccg cgctgaggcg gaagtctcct gacggcagac agaatgcaga tagttctcat 540
   ggnctctgag tttttcaaca gcacgtggca ggaggcgaac tgcgcaaatt gcctaacaaa 600
40 caatggtgag gatttgtcaa acaacacaga ggacttcctc agtctgttta acaagacttt 660
   ggcctgcttt gagcataacc tgcaggggca cacatacagn ctccttccac caaaaaatta 720
   ctccgaagtg tgcagaaact tgtaaagagg catataaaaa cctgagcctn ctgtacagtc 780
   aaatgnanac
                                                                      790
45
   <210> 67
   <211> 581
   <212> DNA
   <213> Mouse
55 <400> 67
   ccttgttatt tcctttattg naaagcataa ggaaaaaaca ggttttcttg ngcacacaca 60
   taaccetatg ngcctaagga ttcagaanta tgtncatttt tttaatatga ccacaagatg 120
   aaattntttg gcacattttc aaatatattt ctaatgcaac ctntagagag ccagaccctg 180
^{60} atcaggaaca gaganggctg gcttgttaaa gggctctcca gcttnttagc caaaagcagn 240
   ggtttgtnca cacagtactg aaaggnaccc gaggagtcgc tactcacagt ttaaatatgt 300
   cacttcactc antttgcnca tgtaaataag ntttacatgt actgatgaag atggnttcca 360
   atgaccetna accatgnget teaaateaag acaggaacaa tgacagenea atgaacceeg 420
   gcacatntag gggatcacag cgncgnctga ttgtcacata cccggggtga cacactctgg 480
```

| gactaagact  | agcctgctnt | cacactctgc | anatgtggna | aacatacaaa   | aaatacccaa | 540   |
|-------------|------------|------------|------------|--------------|------------|-------|
| acactcctgc  | cttcctgtag | ggcaaanaca | ggttttnaag | g            |            | 581   |
|             |            |            |            |              |            | _     |
|             |            |            |            |              |            | S     |
| <210> 68    |            |            |            |              |            |       |
| <211> 414   |            |            |            |              |            |       |
| <212> DNA   |            |            |            |              |            | 10    |
| <213> Mouse | <u>.</u>   |            |            |              |            | 10    |
|             | •          |            |            |              |            |       |
| <400> 68    |            |            |            |              |            |       |
|             | agestastas | taccataana | actaanaact | gggt agact a | tatatagaat | 60 15 |
|             | agcctgctgc |            |            |              |            |       |
|             | ggcggctccc |            |            |              |            |       |
|             | ngcgtccttt |            |            |              |            |       |
|             | cccaactccc |            |            |              |            | 20    |
|             | gctatcccag |            |            |              |            |       |
| ggaagggcag  | gagaaggngc | tggaccgcct | ggactttgag | ctgaccagtc   | ttatggcgct | 360   |
| gcggcgcgag  | gnggaggagc | ttcagagaag | cctgcaagga | ctagctgncg   | agat       | 414   |
|             |            |            |            |              |            | 25    |
|             |            |            |            |              |            | •     |
| <210> 69    |            |            |            |              |            |       |
| <211> 772   |            |            |            |              |            |       |
| <212> DNA   |            |            |            |              |            | 30    |
| <213> Mouse | 9          |            |            |              |            |       |
|             |            |            |            |              |            |       |
| <400> 69    |            |            |            |              |            | 24    |
| gacggactgg  | acgccgcctc | cacatccagg | tccagagagt | ccttcctccc   | catcctcacq | 60    |
|             | tcacttcgtc |            |            |              |            |       |
|             | cgtnggctgn |            |            |              |            |       |
|             | cggngaagta |            |            |              |            |       |
|             | tgcgccgccg |            |            |              |            |       |
|             | ccccagctag |            |            |              |            |       |
|             | gactggtcag |            |            |              |            |       |
|             | tgggcagtat |            |            |              |            | 49    |
|             | gnccacgctc |            |            |              |            |       |
|             |            |            |            |              |            |       |
|             | ggcgctgggn |            |            |              |            |       |
|             | cagtaccaag |            |            |              |            | 3(    |
|             | tagtgtaccc |            |            |              |            |       |
| ccagcacact  | ggcggccggt | actagtggan | ccgagcting | gnaccaaget   | tg         | 772   |
|             |            |            |            |              |            |       |
|             |            |            |            |              |            | 5:    |
| <210> 70    |            |            |            |              |            |       |
| <211> 421   |            |            |            |              |            |       |
| <212> DNA   |            |            |            |              |            |       |
| <213> Mouse | €          |            |            |              |            | 66    |
|             |            |            |            |              |            |       |
| <400> 70    |            |            |            |              |            |       |
| aaaggcttgc  | cntncaggcc | atgcggctgg | aggtntgcat | cgaggcgttt   | cccatgtttc | 60    |
| toctoaacct  | tctaggcatg | nagaactaga | tatqcaaaaa | anactttece   | tacttcctga | 120   |

```
agcggttcgc catgatatac aatnggaaga tggcgagcct aaaqcggqaq ctcttcaqca 180
   atctgcagga gttcgccggc ccctngggga agctaactct gctggaggng ggctgcgqca 240
   ccggggccaa cttcaagttc tatcccccg ggagcagggt cactngtatc gaccctaanc 300
   ccaactttga gaagntcttg ttcaagagcg tcgcanagaa ccggcagctg cagtncqagc 360
   gettngaggn ggcageegnn gaggacatge accaggtgac eganggette tgaggacegt 420
                                                                      421
10
   <210> 71
   <211> 571
15 <212> DNA
   <213> Mouse
   <400> 71
   ggcaaatata gaaaccattt atcaaangaa tataaangta ttgatcaaca tttaaaatat 60
   aacttctgca aaatcatntt gaaaaatata catttgttta gatccataca tacaaatgca 120
   getgaaacce ttgggcccac ccagacttgc tctctgtatg aacacaanga tatccanggt 180
25 tttgtttcag gaccagngga atttttcttc ttcttcaata cagggttnat tngngnagcc 240
   ctggcggncc tggaactcca tctgtagatc aggctgtact nacagagatc cacctacctc 300
   tgccacctga gagctgggat tgaggctntg ccaccaacca ctcaggacca gngatatttg 360
   accagaagaa teeeteece eeegnaceee gagteettgg naactaetet egggeattac 420
30 ttttagggnc ccctacatac tgnacccatt tccctaacta tagnggcctt ctactgccta 480
   cggnaatnat attcagcaaa gtntgtgcta gataagatgg naaattaaac agagaattcc 540
   catctgnnct gngcngnnct gngatgacgc t
                                                                      571
35
   <210> 72
   <211> 506
40 <212> DNA
   <213> Mouse
   <400> 72
45 aaagaaggaa ctaaacatgg gccagcgatg ctctgacacc agaggaatng ctttcgaaga 60
   cgtcagagng cctaaggaaa atgtgttaat cggngaagga gcanttttca agatcgcaan 120
   gggtgctttn gatagaacca gacctacagt cgcagctqgc gctqncqqqc tagcccaqaq 180
   agetetggae gaageeacga agtatgeeet ggataggaag acatttggaa agetgetagn 240
   ggagcaccaa ggagtttcat ttctgctcgc agaaatggcn atgaaggtng aactcgctag 300
   gctcagttac cagagagcag cctgggaggn ngactccggt cgccggaaca cttactatgc 360
   ctcgattgca aaggcctttg ctggagacat tgccaatcag ctagccactn acgccgngca 420
55 gatttteggn ggetanggat tnaacacaga gtaccetgtg gagaagetna ngnngneege 480
   cangatetat canatetatn anggte
                                                                      506
60 <210> 73
   <211> 333
   <212> DNA
   <213> Mouse
```

| <400> 73               |            |            |            |            |            |     |    |
|------------------------|------------|------------|------------|------------|------------|-----|----|
| aaagcgtcgc             | cateegeeae | catggngaac | ttnanagtag | atcagatccg | ngccatcatg | 60  |    |
| gacaagaaag             | ccaacatcga | taagggngag | gngtctgccc | gccaggagct | caaggcacgt | 120 | 5  |
| gcccgctacc             | tggccgaaaa | gtntgagngg | gacgttgctg | aagcccgnaa | gatenggnge | 180 | ,  |
| ttaggccctg :           | ntggcactgg | ccccaacatt | ctnaccgaca | tnaccaaggg | ngtgcagtac | 240 |    |
| cngaatgnga             | tcaaggacag | cgnggaggcn | ggcttccagn | ggnctnctna | ggngggcgct | 300 |    |
| ntctnngagn             |            |            |            |            |            | 333 | 10 |
| , ,                    | •          | ,          |            |            |            |     |    |
|                        |            |            |            |            | ·          |     |    |
| <210> 74               |            |            |            |            |            |     |    |
| <211> 596              |            |            |            |            |            |     | 15 |
| <212> DNA              |            |            |            |            |            |     |    |
| <213> Mouse            |            |            |            |            |            |     |    |
| \Z13> Mouse            |            |            |            |            |            |     |    |
| <400> 74               |            |            |            |            |            |     | 20 |
|                        | tostastata | atactataca | acatacasa  | aggetageag | cataanaana | 60  |    |
| aaaggccagc             |            |            |            |            |            |     |    |
| teceteggee             |            |            |            |            |            |     |    |
| caccggcctg             |            |            |            |            |            |     | 25 |
| cctccaagat             |            |            |            |            |            |     |    |
| ccggcagcgg             |            |            |            |            |            |     |    |
| cccacacaag             |            |            |            |            |            |     | 30 |
| gcgnagcaan             |            |            | -          |            |            |     | 50 |
| cgtagccctc             | ttnatgggca | atgagccggc | ctacgngngg | atctggctgc | nactgctnaa | 480 |    |
| actgggcngc             | ccatgncgag | ccttanctac | aacattcgtn | cnaagtctct | gctgtactgc | 540 |    |
| tttcaatgct             | ncggngccna | angngcagnt | tncctcccag | nnntacatga | agctnc     | 596 | 35 |
|                        |            |            |            |            |            |     |    |
|                        |            |            |            |            |            |     |    |
| <210> 75               |            |            |            |            |            |     |    |
| <211> 728 <sub>.</sub> |            |            |            |            |            |     | 40 |
| <212> DNA              |            |            |            |            |            |     |    |
| <213> Mouse            |            |            |            |            |            |     |    |
|                        |            |            |            |            |            |     |    |
| <400> 75               |            |            |            |            |            |     | 45 |
| aaagcctcca             | cttgcctact | tggggcgcga | ggaggttgga | gagtttttt  | ctgggaccca | 60  |    |
| agcaaaggca             | tccacgctgc | tgctaagctg | aaattgaagc | tcacacatcc | tggaaaatgc | 120 |    |
| tagcacccat             | accagaaccc | aagcctggag | acctgattga | gattttccgc | cctatgtaca | 180 | 50 |
| gacactgggc             | catctatgtt | ggngatggat | acgtgatcca | cctggctcct | ccaagtgaaa | 240 |    |
| tcgcaggagc             | tggggcagcc | agcatcatgt | ctgctttgac | tgacaaggcc | atagtgaaga | 300 |    |
| aagaactgct             | gtgccatgtg | gccgggaagg | acaagtacca | ggtcaataac | aaacatgacg | 360 |    |
| aggagtacac             | cccactgcct | ctgagcaaga | tcatccagcg | ggctgagaga | ctggnggggc | 420 | 55 |
| aggaggtgct             | ctacaggctg | accagcgaga | actgtgagca | ctttgtgaat | gaactacgct | 480 |    |
| atggagttcc             |            |            |            |            |            |     |    |
| tgggcttggc             |            |            |            |            |            |     |    |
| aatgagctga             |            |            |            |            |            |     | 60 |
| atttatagat             |            |            |            |            |            |     |    |
| gaaaggaa               |            | . 33       | -          |            |            | 728 |    |
| J J J J = -            |            |            |            |            |            |     |    |
|                        |            |            |            |            |            |     | 65 |

```
<210> 76
  <211> 214
  <212> DNA
  <213> Mouse
  <400> 76
10 ctngaggnta atagtatgnn gtgaaaatan anntaattat aaagcantag aanttataaa 60
   tcaaactcca aanccintag caaaagaaga gcccaaaaac ngngnagnca ticagcinat 120
  tgnttctgtc tnanngnntc nggagagcan gacttcantg ngnnccaagg angncaagcn 180
  cacacnagng nngactactc gactageceg catt
                                                                      214
15
  <210> 77
  <211> 629
20
   <212> DNA
  <213> Mouse
25 <400> 77
   ggggcacagt ctattttata taangagatc agttgtctgg aaagggatat ggtgtccaga 60
  gtgagatagg ggaccctggg ctngggaccc attgttcaga taggaaaact gagatcaggc 120
   caggtatgat tngggttagg gagncngngn ggagcggggg gtnaacctca gcagggcagg 180
  cactgngacc ctgatettet cagantteag gaaagccacg tgetteteat aataggcage 240
  ctcattaatg aacacagggt acacaatgga gtccccctca tacagtacgt cttctccgct 300
  gaaaagcttg aagatgggtt cancaggnct nagnggctca aagtcatggn cctgcagntg 360
  agggngcaca gagncagcca ggtcaccatc cncagtgcgt gggaagtcca cactgcccaa 420
   gttcctgtan atatccatct caaaggcggg taagtccatg ccttggttga agagctcgat 480
   gaagteenna atggatgeea eeagagetng cateegnnag aacaggnegg eeegeageae 540
   gcccctgagg ctgcgggccc atctccngac agattccatt cttggnnata gattcccct 600
40 ttccagcaca ctgncggccn gnnactagt
                                                                       629
  <210> 78
<sup>45</sup> <211> 200
   <212> DNA
   <213> Mouse
50
   <400> 78
  aaagctgcat ngnggcgtta cccatgtttc ngctnaacct tctaggcatg nggagctggg 60
   tatgcaaaaa gngctttccc tacttccnga agcggntcgc cangatatac aatnggaaga 120
55 tggcgagcct aaagcggnag ctcttcaqca atctgcagga gnncgccqqn ccctcqqqqa 180
   agctaantca gctgnnggag
                                                                       200
60 <210> 79
   <211> 278
   <212> DNA
   <213> Mouse
```

| <400> 79                                              |                    |
|-------------------------------------------------------|--------------------|
| nggcaaatat agaaacnatt tatcaaatga atataaangt attgatca  | aac atttaaaata 60  |
| taanttctgc aaaatcatct tgaaaaatat acattngttt agatccat  | cac atacaaatgc 120 |
| agctgaaacc cttgggccca cccagacttg ctctctgtat gaanacaa  |                    |
| nttngtttca ggaccagngg aattttnctt cttcttcant acagggtt  | ta tttgtgtagc 240  |
| cctggnggcc ctgnaacncn atttgtagat cagnctgt             | 278                |
|                                                       | 10                 |
| •                                                     |                    |
| <210> 80                                              |                    |
| <211> 805                                             |                    |
| <212> DNA                                             | 15                 |
| <213> Mouse                                           |                    |
|                                                       |                    |
| <400> 80                                              | •                  |
| aaaggtggag ctgggtggtg tttggtgcgg tacggcggcc actcagt   | tgc agcagagcag 60  |
| gtgccatcct gtggaagaac catgaagcac tacgaggtgg agattcg   |                    |
| agggagaagc tgtgcttcct ggacaaggta gagcctcagg ccaccat   |                    |
| accetttca ccaagacaca cccgcagtgg tatcetgecc gccagtc    |                    |
| cccaagggga agtccctgaa agatgaagat gtcttacaga agcttcc   |                    |
| gccacactet aetteeggga ceteggggee cagateaget gggtgaeg  |                    |
| gagtatgccg ggcccctttt catctacctg ctcttctact tccgggta  |                    |
| ggccgcaaat acgactttac gtccagtcgg catacggtgg tgcacct   | 30                 |
| cactegitics actacateaa gegeotgetg gagactetet tegigeae |                    |
|                                                       |                    |
| ggaaccatgc ctttgcgaaa catcttcaaa aactgcacct actattgc  |                    |
| tggatggett attacateaa ceaccetete tacacacece etaceta   |                    |
| gttaagctgg cactggccgt ttttgtgatc tgccagcttg ggaactt   | _                  |
| getetteggg acetteggee tgetgggten aaaaceagga agateea   | •                  |
| accecttcac tggctggtcc tgtgg                           | 805                |
|                                                       | 40                 |
| 1010. 01                                              |                    |
| <210> 81                                              |                    |
| <211> 489                                             | 45                 |
| <212> DNA                                             |                    |
| <213> Mouse                                           |                    |
|                                                       |                    |
| <400> 81                                              | 50                 |
| gggtaagcag gttttattgt tgctgctgga gagccatggc cagccac   |                    |
| ggcagngagg ggtggagagt attactgggc agagccgtga ggagctg   |                    |
| gggaataatg ggcatgcgca ggggcgggta gtcgcggaac tccttca   | <del>-</del>       |
| tttgcccttg gcccagatag tcatctgggt gaagcccacc agggaga   |                    |
| gacacactga gtcaagatgg caaagccaat ccaggagccc acctnata  |                    |
| acaggacacc aacaggaaca gccaggtgaa ggggttcttg gnggggt   |                    |
| ggttttcgac ccagcaggcc gaaggtcccg aagagccatg tggatgg   | 40                 |
| ctggcagatc acaaaaacgg ccagngccag cttaacctgc tgaactc   | cat aggtagggg 480  |
| ngtgtagag                                             | 489                |
|                                                       |                    |
| 4010- 00                                              | 65                 |
| <210> 82                                              |                    |

```
<211> 465
   <212> DNA
   <213> Mouse
   <400> 82
   aaagegetgg agetacagee gttactgeeg eegeegeege egeegeege qaggegttng 60
10 ategttggca atgtcaggct ttgataactt aaacageggt ttctaccaga cgagttacag 120
   catcgacgag caatctnagc agtcctatga ctatggagga agnggaggac cctacagcaa 180
   gnagtatget ggetgagact actegeagea aggeegattn gteeeteeag acatgatgea 240
   gecacagnag acatacaetg ggeagattta ecagecaaet eaggeetate etecaaeaae 300
^{15} anctnagcca ttctatggag acagcttnga ggaggagccc cctctgttag aagagttggg 360
   tatcaatttt gaccacattn ggcaaaaaac actaacggag ctacaccccc ctgagggcag 420
   ntgacggcag catcatgaat gatnacggac ttgngcaggn cccag
                                                                      465
20
   <210> 83
   <211> 505
25 <212> DNA
   <213> Mouse
   <400> 83
^{30} aaatggccct atgatgcaga actctccttt ntcctgcgca cgggtacacg gtacggagng 60
   gacactnacc tgttcagngn ggagtcgccg caagagetgg cagectggac ccgacagtng 120
   gaggatggct gncatcgggc tgctgaaggc gtacaagaag ngtctacagc ctgcacgngg 180
aacggccgnc cctgcagcct gtctgngcac atcgacaagg gcttcaccct gngggcagct 240
   gageetggag cageeegage catgetgete egacageeet tegagaaact teagatgtea 300
   tcagatgatg gcacgagtct ccttttcctg gacttngggg gngctgaagg agagatccag 360
   ctggacctgc actcgagtcc caaaacgatg gtcctnnatn atccactctt tcctgtccnc 420
40 naaggneacc enetngnege neanggeeta gangeetgne eegntgnace agnneettga 480
   aagcaggcaa tctgatncat cctcg
                                                                      505
45 <210> 84
 <211> 375
   <212> DNA
   <213> Mouse
   <400> 84
   gngctnanan gntgntnatt attnaanang aanganggga nanaggacna gganaaaacc 60
55 caaatgcccc acggngntta aggggaagng aacnnaaagg ntnctcttct tnctcttgcc 120
   actgaccean aananteean ntgnananat etnanggngg nnaangggee tennnnagge 180
   ctggcanntn tgctgnnggn tggggacggg atcencanag ggnnangncc cangctngna 240
   aaggtttctg ngtachchaa aaatntnttt taaaaaggch chggnggang nhanchntan 300
60 gaangetnne caacneaane ennacttget nneceaggne tgagntntgn tteetnagge 360
   tgnnctctga ggccc
                                                                      375
```

<sup>65</sup> <210> 85

| 9                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| aaqcqqqcac                                                | gcgcggaccc                                                                                                                                                             | ttnaccggcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gcggagccgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tatgggcccg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | coacacogcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | agorggeren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ocgongngae                                                | ccagggcgcc                                                                                                                                                             | ggcgcccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                      | ۷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | 4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| gtngagcctc                                                | tgnaagaagc                                                                                                                                                             | * * ÷ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | - 9 9 9-                                                                                                                                                               | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           | - 5 5 50                                                                                                                                                               | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360<br>367                                                                                                                                                                                                                                                                                                                                                                                               | 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | - 5 5 5                                                                                                                                                                | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          | 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          | 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e                                                         |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                        | ttttgccaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctcnnaagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctgancatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 367                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| е                                                         | agccgcggag                                                                                                                                                             | nctgcagcgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aacttccaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tagcggagng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul><li>367</li><li>60</li></ul>                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e<br>ttcgccctcc                                           | agccgcggag<br>ggaggcggca                                                                                                                                               | nctgcagcgc<br>gcgttnctca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aacttccaga<br>ggacacccgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tagcggagng<br>agatcacctt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 367<br>60<br>120                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e<br>ttcgccctcc<br>cgagccgagc                             | agecgeggag<br>ggaggeggea<br>getgagnget                                                                                                                                 | nctgcagcgc<br>gcgttnctca<br>gagtaccggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aacttccaga<br>ggacacccgc<br>atgcccacgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tagcggagng<br>agatcacctt<br>ccgatgngta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 367<br>60<br>120<br>180                                                                                                                                                                                                                                                                                                                                                                                  | 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ttcgccctcc<br>cgagccgagc<br>cttcgccatg                    | agccgcggag<br>ggaggcggca<br>gctgagngct<br>ctcggcaaag                                                                                                                   | nctgcagcgc<br>gcgttnctca<br>gagtaccggt<br>ctgccagaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aacttccaga<br>ggacacccgc<br>atgcccacgg<br>cattttcaac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tagcggagng<br>agatcacctt<br>ccgatgngta<br>aaaggattng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60<br>120<br>180<br>240                                                                                                                                                                                                                                                                                                                                                                                  | 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e<br>ttcgccctcc<br>cgagccgagc<br>cttcgccatg<br>ctatgctgac | ageegeggag<br>ggaggeggea<br>getgagnget<br>eteggeaaäg<br>gatgngaaga                                                                                                     | nctgcagcgc<br>gcgttnctca<br>gagtaccggt<br>ctgccagaga<br>cgaagtcatg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aacttccaga<br>ggacacccgc<br>atgcccacgg<br>cattttcaac<br>cagcggngtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tagcggagng<br>agatcacctt<br>ccgatgngta<br>aaaggattng<br>gaattttcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>120<br>180<br>240<br>300                                                                                                                                                                                                                                                                                                                                                                           | 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | aagcgggcac ggcgtggcgc aggaccetgg acacctccct cctcggcaac catcctccgc ccttaccgacca catggtggct gtgcggacca ctgcngngac  cncacagaag aagntcctcg tgntcttgaa aggtctgagg atcccaccg | aagcgggcac gcgcggaccc ggcgtggcgc ggcgcaagga aggaccctgg ggcgcaagga acacctccct cttcatgaca cctcggcaac cagcgaattg catcctccgc tctacagtcc ccttacgaca cttacgaca actcaaggcc catggtggct gntgccctcg gtgcggacca agctgcagc ctgcngngac tcagggtgct ctgcngagac tcagggtgct aggtctgag accatcatnt aagntcctcg gnccaagcta tgntcttgaa ttcgaaggc acggcctgggacca ggtctgagg acagcctggg acagcctggg accaccc gnccaccc gnccaagcta tgntcttgaa ttcgaaggccaggccaggtctgagg acagcctggg acagcctggg acagcctggg acagcctggg acagcctggg acagcccg tgcaagagcc | aagcgggcac gcgcggaccc ttnaccggcc ggcgtggcgc ggcgcaagga ccggctcena aggaccetgg ggcgattagc ccccttcagc acacctccct cttcatgaca cccctgnatg cctcggcaac cagcgaattg acaactccct catcctccgc tctacagtcc ccagggaagt ccctgtacct gtgcccaaat ggtacccgnt tcactggcac cttggatgcc ttngngaaga nnannggcct ccnagccacc ctggngatga cttacgacca actcaaggcc ttcctgtgtg catggtggct gntgccctcg cccgaatggg gtgcggacca agctgcaggc tcagcatgtg ctgcngngac tcagggtgct ggcgctct  cncacagaag accatcatnt ttagacaagg aagntcctcg gnccaagcta taacaaacat tgntcttgaa ttcggnaggc ggnagagggg aggtctgagg acagcctggg agacnggacc acagcacgc gnnngctccc gnnngctccc | aagcgggcac gcgcggaccc ttnaccggcc gcggagccgc ggcgtggcgc ggcgcaagga ccggctccna gccaggattg aggaccctgg gggcattagc ccccttcagc aaatggtggc acacctccct cttcatgaca cccctgnatg nggtgaaggt cctcggcaac cagcgaattg acaactccct ccaggaattg acaactccct gtgccaaat ggtacccgnt gtgccaaat ggtacccgnt gtgccacctg tcactggcac cttggatgcc ttngngaaga ttgngcggca nnannggcct ccnagccacc ctggngatga ccgngccagc cttacgacca actcaaggcc ttcctgtgtg gcagtccttg catggtggct gntgccctcg cccgaatggg caccgtgaca gtgcggacca agctgcagc tcagcatgtg tcataccggc accggacca gtgcggacca agctgcagc tcagcatgtg tcataccggc ctgcngngac tcagggtgct ggcgctct  ccccacagaag accatcatnt ttagacaagg aatgaatggn aagntcctcg gnccaagcta taacaaacat gnggatncaa tgntcttgaa ttcggnaggc ggnagagggg caatcctggn aggtctgagg acagcctggg agacnggact ggnaggnaag accatcatgg tgcaagacc gnnngctccc cgactttcag | aagegggcae gegegaace ttnaceggee geggageege tatgggeeeg ggegtggee ggegaaaga ceeggeteena geeaggattg aaatteeaag aggaceetgg gggeatage eeetteage aaatggtgge eeeteege caceteece etteatgea eeetggaagt geeteetaa eeggaagt geeteetaa eeetggaage eeetggaae eeggaattg acaaeteee eeggaagt geeteetaa eeetggaage eeetggaae eetggaage eetggaaggagggaagt geeteetaa etteaggagee eetggaaggaggaggaggaggaggaggaggaggaggaggagg | aagegggcac gegegacce ttnaceggce geggageege tatgggeege 60 ggegtggege ggegeatage cecetteage aaatggtgge ctcaggagee 180 acacetecet etteatgaca eccetgnatg nggtgaaggt eegeetteca 240 ectegeaac cagegaattg acaaeteect ecaggaagt gactetee 300 eatecteege tetacagtee ecagggaagt geeteetata etgnaatgga 360 ecetgtacet gtgeceaaat ggtaceegnt gtgeeacetg nttteaggae 480 ennannggeet eenageace ettegtgg geagteette 540 ectaggacea acteagee tteetgtgg geagteettg acetetgae 540 ectaggacea acteaggee tteetgtgg geagteettg acetetgae 600 eatggtgget gntgeeeteg ecegaatggg eaceegtgaea gttgeagee 660 gtgeggacea agetgeagge teageatgg teatacegtg agetgeett 720 ettgengngae teagggteet gggegetet 758  encacagaag aceateatnt ttagacaagg aatgaatggn geeaagatae 60 aagnteeteg gnecaageta taacaaacat gnggatneaa aaaagggega 120 etgntettgaa tteggnagge ggnagagggg eacettteag eggeeetagg ggnaggnaag geaettgne 240 ateceaceeg tgeaagagee gnnngetee egaettteag eggeeetagg 300 |

```
cagagattgc antitgaaga ccagatttgt caaggataga aacttgactt tngacaccca 480
   ccttttcacc gaacacaggn nnaagganan ngtggtnaat aatcaagtcc tgctttacca 540
   agnagggngn agntgtc
                                                                     557
   <210> 88
10 <211> 636
   <212> DNA
   <213> Mouse
15 <400> 88
   cggttttcat aaacgtctat ttcatcattg gtgggtagca catttaacag ttaaatacat 60
   ttaaataatg tataggaggc cgnaccacgg cagcactgat aaccatccaa ctaggaacca 120
   gccaacagtg actgtctaaa tatttaaaat acagctctnq cttcatcatc ctttqatqtq 180
   atcaccttct gggggaagga aggggagcct gctggtcgca tggaaatata ttaaggccaa 240
   atcttctgat attcgttccc agaggtttct tttaactgga ttaaqcctcc aattccaagg 300
   caageccaag tttgnggeet ccageattaa agetetteee gtetaccaga gcagacagtg 360
25 taagetteae accaggeete agagtetgag tatageeeae tecaattaaa etagagttgt 420
   tgacctttgc agagatagaa gcagtaggat ccaactggta tttagctgca atgccaaaac 480
   gagtgcagen ggnacetgat gtecaagega ggnttaetga ngtgteaaaa tettnacata 540
   ctttctgatn aatttgatcc tccaaattct gtcccattat ttacatttgt gtgnagctgq 600
30 aagtccccag tcctgtagcc gacngcanag ntactc
                                                                     636
   <210> 89
   <211> 808
   <212> DNA
   <213> Mouse
40
   <400> 89
  aaagggagga ggaagcccgg agcggagcgg ggcntctggg gggggtggac ccgccgcggc 60
   tgctgctgcc accgccgccg ccgccaccac cgctcgtggg gctcgtggcg tgaggaagga 120
45 ggacgagtga gaccccgggg cgagcggcg gcggcgccgc tgctgctgct gctgctgcgg 180
  gagggtcggc ggcgggacgg cgatggcgga tatcgacaaa ctcaacatcg acagcatcat 240
  ccaacggctg ctggaagtga gagggtccaa gccaggcaag aatgtccagc tccaggagaa 300
   cgagatccga ggactctgcc tgaagtctcg ggagatcttc ctcagtcagc ctatcctttt 360
   agaacttgaa gcaccactca agatatgtgg ngacatccac gggcagtact atgatttgct 420
  ccgtctgttt gaatacggng gctttcctcc agagagcaac tatttgtttc tcggggacta 480
   tgtggacagg ggcaagcagt ccctggagac aatctgcctc ttgctggcct acaaaatcaa 540
55 gtatccggag aacttettte ttetcagagg gaaccacgag tgcgccagca tcaataggat 600
   ctacggattt tatgatgagt gtaaaagaag atacaacatt aagctgtgga aaacgttcac 660
   agactgtttt aactgcttgc cgatagcagc catcgtgnac nagaagatat tctgctgcat 720
   ggagggttat caccagatet teaatetatg gageagaate ggeegaaata tgagaceaae 780
60 tgatntacca gatcaaggnc ttcttttg
                                                                     808
   <210> 90
   <211> 680
```

<212> DNA

<213> Mouse <400> 90 aagttaacaa gcttgcattt aataagtctg aaaccattct cagcacatgg cattgtacac 60 gggcatctgt gcaaacagat tcatttaaca ggtcgnagtt taaaaaagtc atagatactg 120 ngagttctgt ataaaccggn ggacggnaag ttagttcctt tngatttata agcctcaatg 180 10 tcaccgnaga ataaaqaatg tagccaaaga aagcattatc ggtcactcgt ataggacaga 240 gttgtttcta taatttgaag ctttctgaat ggacggnttc aggcctgatc caactgtaaa 300 aagatcactc agtgaataga ctatatggga actgtacaaa gtgtcattaa cttncatcat 360 15 taatagetta eteageacta taccactatt getagttaaa ataacetget tetgaggeec 420 cacggaggga ggcggcctgt gcacgcagcc tcgatgccct ggccacctca tccccagggc 480 gtgccataca gtccaacaga aactttggct ttaggaagga atcacagacn ttgaaaagaa 540 tggctttaat cattattaaa tgtgcagngg gaaggagtgt gcttcagata gtctqqqcaq 600 20 ggctggcggc aggcaggtca ctcctgctgc acagctgcag acactagttt gtcatgacaa 660 gacaatgagg gaaagcagnc 680 25 <210> 91 <211> 785 <212> DNA 30 <213> Mouse <400> 91 aaagaagaag agggggctaa gctgagtata gaggtgctcc agaccagcct qcagaaqgaa 60 35 ctgactctaa acaaaggcca ggcctccgcc atggagctgc tgcgctgccc cacgcttcgg 120 egectettee tetgeetete tatgetgngg tttgecacta getttgeeta etaeqqqetq 180 gtcatggacc tgcagggctt tggggtcagc atgtacctta tccaggtgat tttcggcgct 240 gnggacctgc ctgccaagtt tgngtgcttc ctagtcatca attccatggg ccgccggcct 300 40 gcacagttgg cetecetget getggcagge atetgtatee tagtgaatgg cataataceg 360 aggggccata caatcattcg cacatccctg gctgtactag ggaaaggctg tctggcttcc 420 tettteaact geatetteet gtacacegga gagetgtace ceacaatgat teggeagaeg 480 45 ggcctgggca tgggcagcac catggcccgg gtgggcagca tagtgagccc actgataagc 540 atgactgccg agttctaccc ctccatacct ctcttcatct tcqqcqctqn ccccqtqqcc 600 gccagcgctg tcactgccct gctgccagag accttgggcc agccgctgcc tgatacagtg 660 caggacctga agagcaggag cagaggaaag cagaagcaac agcagctgga acagcanaag 720 50 cagatgatac cactecaggt ctcaacacaa gagaagaacn gactetgaaa atggaqagge 780 gtcac 785 55 <210> 92 <211> 620 <212> DNA 60 <213> Mouse <400> 92 caaggtagaa gaaatttatt taattgtctg ggattctttg caatgtcctg gaggnggaag 60 65 ggacaggagc tggaggagtg accactgagc tggaagatgg ctgaggaaga gctcattctg 120

```
cttaagaagc tgcacacagt tagagctttn gttcctagta ggtctattga agtgaccttt 180
   ggggaggcat ttctctgaat ggcaggctcc gcatttagat ggcccagtcc ctccactcac 240
   tececeteet catagatggn gggacetgea gaaceceaet ecetttagng etgagngaeg 300
   cttctgctgn tccagctgct gangcttctg ctttcctctg ctcctgctct tcaggtcctg 420
   cactgtatea ggcagegget ggcccaaggt ctctggcaqc agggcagtga cagcqctgqc 480
10 ggccacgggg acagcgccga agatgaagag aggtatggag gggtangaac tcgqcagtca 540
   tgcttatcag tgggctcact atgctgccca cccgggccat ggngctgccc atgcccaggc 600
   ccgnctgccg aatcattqng
                                                                   620
15
   <210> 93
   <211> 491
   <212> DNA
   <213> Mouse
   <400> 93
25 aaagacgnta ccctggagtt caccagcatc gacgctcaca aaggcgtggc cccatcaaga 60
   cgnggngatt nggaaatact nggttatngc atgatecagn ggeteagegg etgtetteet 120
   ngggaagata acttgaaaga tcctaactac gttagggatt ccaaaattag atacagagac 180
   aactgtcgca gctttgangg agaaatgctt tcctgagaaa aataagccag gtgagatcgc 240
^{30} taagtacatg gagtetgnga aactactgga atacaccgaa aaacctetet atcaaaacet 300
   acgtgatatc cttttacaag gactaaaagc tntaggaagt naagactnac ggcaaactgg 360
   nttttagngc tgagganaac ggaagtgnga ancnaagacc agcctcaaag nnqctttaan 420
   aaanaancan aanaaagcnc ngncgagcgc ntgtncnagt gacatntgag ngctctantc 480
   cacncancgt t
                                                                   491
40 <210> 94
   <211> 628
   <212> DNA
   <213> Mouse
45
   <400> 94
   atgaacctga gatttatttt ttcttgtcaa agtaacgagn ctcttatatg gaaagcggct 60
   gtatatctct gaaggagcag ttagagagct gcttctgaat tcacccagaa ttgctactga 120
   ccctgagccc acatttcctt tcagctctcc agtctcgggt tnggccagag gagagtccac 180
   tcatgtgaaa cattcactcc ctgacattcc cattctaggg tctnaaagaa cggnggagga 240
   gctggaagca agggcaagag gagactccag taggttnggg cttctactat aaattctctt 300
55 ctgagagcac agnagagggg nctgcgtgtc tgcgncacgg ngaggctcac gctttatctg 360
   ctggaacttg cactgngtcc agccataaaa gccacaqtng agcagcccct gggatgctgc 420
   tgagagagcc tggagcacag agagggccat gtgcaggaag gnctcctgag gctctgtcag 480
   cttcatgatc agcagggaga cagctgnacc ccagcagcac acaaaggcca ctgnnaagaa 540
60 acgcactogo tggcccacag tgtgaatcac tgcccactgo tnactotoca gaaggcccgn 600
   cgactttaca nacttcttat atnacatc
                                                                   628
   <210> 95
```

```
<211> 622
<212> DNA
<213> Mouse
                                                                                5
<400> 95
aaagctgcgg caggcattct cggaggaaan nagccaagga ctaactacga ncatgagatn 60
ggcagtgatt ngctttngcc tatttggcat tgcctcctcc ctcccggnga aagtgactga 120
                                                                               10
ttctggcagc tcagaggaga agaagcttta cagcctgcac ccagatccta tagccacatg 180
gctggngcct gacccatctc agaagcagaa tctccttgcg ccacagaatg ctgngtcctc 240
tgaagaaaag gatgacttta agcaagaaac tcttccaagc aattcnaatg aaagccatga 300
                                                                               15
ccacatggac gacgatgatg acgatgatga tgacgatgga gaccatgcag agaacgagga 360
ttctgnggac tcggatgaat ctgacgaatc tcaccattcc gatgagtctg ntgagacctt 420
cactgctagt acacaagcag acactttcac tccaatcgtc ccctncagtn cgatgtcccc 480
ccgacggcct gaggntgata gcttnggctt atgggnctga nngtcccaag ntctagnnag 540
                                                                               20
ttttcccagg ntttcctgna tganaccang cnatccentg gaatneecac entattgnag 600
gnnaaccett aaccenttet tt
                                                                   622
                                                                               25
<210> 96
<211> 653
<212> DNA
                                                                               30
<213> Mouse
<400> 96
acatgtacat gattttggaa taatttaata ctttaacctc aagatacaac tatattctaa 60
                                                                               35
gaccattatt ttaaaggaac ggatccttac aagaccaaaa taacccatat agcacgaggt 120
tggtttagcc tttcttcttc tttcaacaaa cgtgcacnac atgtttcagt agcaaggccq 180
atgccatgga tatgagaget gngatttgca gggaccaace acatntagaa ceggggagge 240
caatcagacg gngggtnggg ngccattcta cgtaaatcag caggtgacat nacaacacgc 300
                                                                               40
tgggtgcagc ctcgcaactg tccattaggt ttccttttc ttgatgatca gaggncctac 360
gttgncgcca gtctcttcgt tgngctttat gtgagcccca tcgcagaagg ggaacttttt 420
agacctccag catnggcagt acacggcctt atcccccaga tcctccatgt cgaaggcatg 480
                                                                               45
caccaccttc ggnttgactt tctggatctg aagattcacc atagctttgg agcgattctc 540
tttagcgtag aacttcttgn aagccaggna accgagagcg gctgtgccag cagcaaaggt 600
gacgggccgc gaccactcaa cttncacagc ggagnttgnn gctgaggccc atg
                                                                               50
<210> 97
<211> 529
<212> DNA
                                                                               55
<213> Mouse
<400> 97
                                                                               60
aaaggagcaa cgcgggtctt cccgctgttg cttntcgcgg ccacqqccqa qcatacqtcc 60
ccggcctgag gtggnggtgg cgagcccacc gccgtttgct gcgacctcat ggaaggtqqc 120
ggaggaagta gcaacaaatc caccagcggg ttagctggct tcttcggagc cggaggagcg 180
ggttactcga acgctgattt ggccggcgtc ccgctgactg gtatgaaccc cctqtctcct 240
                                                                               65
tatttaaatg tggatccacg ctatctcgtt caggatactg atgaatttat tttgccaact 300
```

```
ggagctaata aaacccgagg cagatttgaa ctagctttct ttaccattgg aggatgttgc 360
   atgacagggg ccgcattcgg ggcaatgaac ggtcttcgtt taggattgaa ggaaacccag 420
   agcatggcct ggtccaaacc aagaaatgta cagattttga atatggtgac taggcaagga 480
   gcactttggg ctantactct aggctccctg gctttgctct atagngctt
                                                                     529
10 <210> 98
   <211> 116
   <212> DNA
   <213> Mouse
15
   <400> 98
   ctgttttcac cctttatttg gaaaacaggg caacatttaa gttttagatt ttttaaatga 60
   attaacatgg taataaaaag tatggcctga attnggagag taagnggttt tccaqt
   <210> 99
25 <211> 717
   <212> DNA
   <213> Mouse
30 <400> 99
   aaagggeete egeaetneea agteatttgn eggetaenng netatnagng canageaggg 60
   tgtcanggac cnagttgctn naggengnna agageenget geaaggtnaa teetacagta 120
  cgtgnaaact ctgatggaag ngatncccaa gatctgncgn cttccgcnac atgagtacgg 180
   ctcacctggc atcctggaga tcttccaccn ccagctgaag gacattgagg agaatgcacn 240
   agctgaaaac cgtatgcttc cagaacctgc ggcaggtggg aaatgctgcc ctcttcngcc 300
   ngcttatang agcanagnet gnetttagaa naantetgtg accnqttqea tgcaqetent 360
40 ttccagaatn tcttacctnn gaatccntgn anaagagggn nagagagtnt gaatnccnaa 420
   atnaacagac tncaatccaa ntattgcccc antgtaccct ngccccaatg nttgaaangg 480
   etgnggacce enageaaane geaactgene ganaeggngn etngetgnee aangnanege 540
   ctcatgnngc ggcatgncca tgtttgaagt tenectnach encheencan ettetggent 600
45 gateceenat enggegengn ecceeteace nagennttgg tgnnatnenn genenanaga 660
   ngecttgngc ttencanect ctagetaace ecengeeect nngtatnnet teactne
                                                                     717
50
   <210> 100
   <211> 662
   <212> DNA
55 <213> Mouse
  <400> 100
  aatacaatta gttggtatta tgctcgtaca ggatgancga ccccantntc ccntcntanc 60
60 tgctgtaata ttcggcatga aaatacttgt taataccgta anggcaacaa ctagtaaccg 120
  tattctcaga cttcccaatt ccaaaggcat atacaatttt agtatagaaa aataagtaaa 180
  ttttataaag ttaagctttc agatcaaaag taggttcaga cataanggaa aatagcccct 240
  aaaaatttca atatagttta cataaagaca aacatgccat cagttactgg gatgctgnga 300
  gcttagccct cagctacngg ctagggactg gaggangggn ggctggaagc agcgtacatg 360
```

| ctccacaggn gngctctcgc catcaccaga tttcaagtac ttgtccagga tagtgatgat 420 ttcatcgttg agaatctgga acttgcggat cctctccacc atcttcttca atggcacatt 480 tttgatgatc tcatctttgc catcatgntt ctgaactttg agangatgat agcagaaatc 540 caacacagca aagcgccgct gntgtccaag angtacaatg atcatgcagc cagcccagag 600 gangcccatc tccaaaanca cngctccact tgtaaaactc gnggggcccc ctaccgnnaa 660 at 662 | 5  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <211> 385<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                                                                | 15 |
| <400> 101  aatctggaac acaaaagttt attagagtaa aaatacatat ataatatcca acattaaaat 60 tatctcatgt cacatgtttt acctgcatta gtttttccaa aaaaatgctt taaaactcta 120 tgccttaaat aattttgcat atatgtaaac aaatcttaga ttaccgaaga tgccattata 180 cctgttagat attgaacatn aacctttagg aatgggaact acaagtttca ctctattaca 240                                                                    | 20 |
| ctaagcgcta ctctgaagga aggagggaag gacggaagga aggacagaag gaaggataac 300<br>ccacttgaga tgaggtaaga gtaagagttt agtaccaaat gttgacacaa gaatgttaaa 360<br>ggcattcatg gaaagtcact ccgct 385                                                                                                                                                                                    | 30 |
| <210> 102<br><211> 425<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                                                   | 35 |
| <400> 102  aaaggetget gteaggnggt ceettttatg gatgggetee tgnggneget gegeagnggn 60  tgntggatt gegnagngga nataggggga nagaggggg tatttangna gatgggangg 120                                                                                                                                                                                                                 | 40 |
| tgntegaett cegnagngne netegggeea negagegeeg tetttanena getgeeangg 120 etgtggeege tgteggeege engagageee tgegetgtee getgnagete etgetgtnae 180 teetgntgnn ageegeeetg egetgngeng taacgaeeet ganagaatae tettgeggta 240 tgtgaaaget ettaceetet acteegaeeg etacaceaee teennggngg etgnaeeeta 300 teecacagtt gaagegtgna ggaggeaeeg angnntgana egneetatae eecagggnnn 360        | 45 |
| atacagtgcn tnactacagg ntgnnnance tacctatgae agtgegaact ntnagaeteg 420<br>ectet 425                                                                                                                                                                                                                                                                                   | 50 |
| <210> 103 <211> 186 <212> DNA <213> Mouse                                                                                                                                                                                                                                                                                                                            | 55 |
| <400> 103 ctnnatngnc ttccagnacn gnanntnccn agcctcaaac cannaangna anacnacgnt 60 gnanagngan gnncagnaga cngaagganc tnatcannnc gannnatgga nganntagnt 120 ancacaanan ggncngntna cgnnggagct gnaggangac ggnancgagg cggacacatn 180                                                                                                                                           | 65 |

```
agnagt
                                                                     186
   <210> 104
   <211> 501
   <212> DNA
10 <213> Mouse
   <400> 104
   aaagcctgtg tacgccacca teggetttng gtategneaa caeggeette antgnggagt 60
15 cgctgnttgt ngtagagcga gctggacgac ggaccctgca cctcattggc ctggctggca 120
   tggcaggetg agetgngete atgaceateg ecetggeett getggaaegg etgeettgga 180
   tgtcctatct gagcatcgng gccatctttg gctaagnggc cttctttgaa gtaggccctq 240
   gtectattee atggeteatt gtggeegage tgnteageea ggggeecegt cetgetgeta 300
   tngcngaggc tgncttctcc aactggacct caaacttcat tgtgggcatg ngcttccagt 360
   ntgnggagca actgngcggn ccctacgtcc ttcatcatct tcacggagct cctcqnqctc 420
   ttcttcatct tcanctactt caaagtccct gagaccaaag gcctgaacct tcnatgagan 480
25 cgcttccgnc ttccggcagg c
                                                                     501
   <210> 105
30 <211> 410
   <212> DNA
   <213> Mouse
   <400> 105
   aaagcttacc cagcagggng agagatttnt atcaacaaga gaaggcacgg angggctcag 60
   cgggactcag agntntngcc tnggngncng gtccggaacn ggggcagctg accttccttg 120
40 gccnggacgg aatcatngac cctcctcgaa cnggngngaa ggaagctgnc acaanantca 180
   tngcctcagg agtctccatt aaaatgatca ctgqaqattc tcagqaqacn qcaantqcca 240
   tegetagaeg nengggattg taetetaaga ettnacagte egagnetggg gaagaagtng 300
   atacaangga ggngcagcac ctttcacaga tagagccaaa ggnngtagta ttttacagag 360
45 caagencaag acacaagatg aaaattatta agtetetaca gaagaacggg
                                                                     410
   <210> 106
   <211> 605
   <212> DNA
  <213> Mouse
55
   <400> 106
   gcctttaaan gattgagttn atttgtgngt tagtaagaaa gccctataac cataaatagt 60
  ncaatattta aaagtaaaaa aaatatttat atccatctaa gacagacagt gtattngtnc 120
60 attagaattc tttaagtgca gaaggtggnt caggnttngc ctttngnatt ttttaattca 180
   gtacttgccc atatgttgaa gttcactnaa ttgnaaaagc caattnaaat caaggaatgt 240
   gttattnaaa gntgcntaat ttcattnggg actaccaaca aagttnaaat caagncttta 300
   acattaangg tcatttttag tnaanggaaa gttaaaaagt ccttaagtct tcattatctt 360
   cttgaacttg cccttctaaa tgattctnag actgcantnc ctagtttgcn aattaaaaaa 420
```

| aaatgcnnta tgcatca<br>ggaccttctc ccggctc<br>naggtaaggc ccnaaag<br>acctt                                                                                        | ctt tcanccttct                                                                           | ttataaccct                                                        | cagncacant                                                                       | gcacactgac                                                                       | 540                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|
| <210> 107<br><211> 573<br><212> DNA<br><213> Mouse                                                                                                             |                                                                                          |                                                                   |                                                                                  |                                                                                  | 10                                           |
|                                                                                                                                                                |                                                                                          |                                                                   |                                                                                  |                                                                                  | 15                                           |
| <pre>&lt;400&gt; 107 gcttgacctt ggaggcc tcctctgtct cgtcttg ggaggtagca ggaaatc ccactgtgaa gttcctg ctctggatac cgccaag ccgcagccag cgccag agggtccacg cagcctc</pre> | ccg attgaaggtc aga atcatggttg ggg gctgggacag gtc cggctgcaga tac cgtggcgttc tac aatggctgg | cccgtttctc gtttcaaggc ctgcctgcat tccaagggga tgggtaccat acgccggcct | caatttetet<br>cacagatgtg<br>tgcagatete<br>gagtcaaggg<br>cctaaccatg<br>gcagegecag | ccatcttctg<br>cccccaacag<br>atcactttcc<br>ctagtgcgca<br>gtgcgcactg<br>atgagctttg | 120<br>180<br>240<br>300<br>360<br>25<br>420 |
| cctccgtccg cattggc<br>atgcaggcat cgngagc<br>gcccnagcct acagatg                                                                                                 | cgc ttctggcagg                                                                           | tagcaccaca                                                        | _                                                                                | <del>-</del>                                                                     |                                              |
| <210> 108<br><211> 635<br><212> DNA<br><213> Mouse                                                                                                             |                                                                                          |                                                                   |                                                                                  |                                                                                  | 35                                           |
| <400> 108                                                                                                                                                      |                                                                                          |                                                                   |                                                                                  |                                                                                  | 40                                           |
| gccagcctaa cacttct<br>ctcctcagac cccctat<br>attaatagct agccaaa<br>tctcaatact aatcagc                                                                           | cca caccattaat<br>acc acctaaaaaa<br>tta caaattctcc                                       | tattttaaca<br>agataataac<br>taatcataac                            | gcctgattac<br>ngtactacaa<br>cttttcagca                                           | tgccactaat<br>aaactctaca<br>actgaactaa                                           | 120<br>180<br>240                            |
| ttatattta tattta gagggaacca aactgaa gttctattcc actgcta tcataatttt atcattc                                                                                      | cgc ctaaacgcag<br>att gccctcatct<br>aca acacacacct                                       | ggatttattt<br>taatccaaaa<br>tagacgcttc                            | cctattttat<br>ccatgtagga<br>atgatctaac                                           | accctaatcg<br>accctaaacc<br>aacttactat                                           | 360<br>420<br>480                            |
| ggttggcatg cataata<br>taccaaaagc ccatgtt<br>taaaattagg tagttac                                                                                                 | gaa gctccaattg                                                                           | ctgggtcaat                                                        |                                                                                  | _                                                                                |                                              |
| <210> 109<br><211> 793<br><212> DNA                                                                                                                            |                                                                                          |                                                                   |                                                                                  |                                                                                  | 60                                           |
| <213> Mouse                                                                                                                                                    |                                                                                          |                                                                   |                                                                                  |                                                                                  | 65                                           |

```
<400> 109
   ggattggcgg ggttctcttt gaccacataa atcaattctt tcttttggga qcctcaatqq 60
   tggcaactgc agcgggactt tatctcatcc cgttctgcaa gacagcagtc ttattgatca 120
   tcaccatgtc tgtctttgga gcttccgttg gtgttgtgga tacaggtgca aatgttctca 180
   tettggatet etggggggae aaaggageee cacaaatgea ggeettgeae tteagttteg 240
   cettgggtge etttetgget eccetgetgg etaagttgge etggggtaca geacetgete 300
10 agaaccacac cgagtccgac cttgacactc tgatqctgaa ccqatcctcc aacqqcacct 360
   cagacteegt gtttgeggta eeegatgaca tgaatetget gngggeatat getteeattg 420
   gcacctttat tttagtagtt tctgtctttc tgnnnqqtct gttttqtaaq aaacattcaa 480
   ggcagaaaaa acccagagca tctgctgagg gagctcgaag ggctaaatat cacagggccc 540
15 tgctatgcct gctcttcctc ttcttcttct tctatgtggg agccgagata acatacggct 600
   cttacatatt ctccttcgcc accacccatg ttggcatgga agagagcgag gcaqctqqct 660
   tgaattccat cttctgggga acctttgcag cctgcagggg cctggccatc ttctttgcqa 720
   cattettaca geetggaace atgategtge tgageaacat tggeageetg gneteatgtt 780
   tctttctggt act
                                                                     793
25 <210> 110
   <211> 724
   <212> DNA
   <213> Mouse
30
   <400> 110
   aaatatcaca gggccntgnt agcctgctnt tccctcttct tcttcttcta ntggaanccq 60
  aagntaccat nncgnttett ancagtttet cettteggee neenacceag tggeatggaa 120
   gagagcgagg cagctggctt gaattcccat cttctgggga acctttgcag cctgcagggg 180
   cctggccatc ttctttgcga catttcttac agcctgganc catgatcgtg ctgagcaaca 240
   ttggcagcct ggtctcatgt ttctttctgg tactttttga caagagccct ctttgtctct 300
40 ggatcgcgac ttctgtgtat ggagcctcaa tggcagccac gtttcccagc ggcatctcct 360
   ggattgagca gtacnccncc ttaactggga aatctgcagc attctttgta attggctctg 420
   ccctgggaga tatggccatt ccagcggtga tcggaattct tcagggacnc tacccagatc 480
   tgccagtagt tctgtacaca tgtctgggct cagccatatt cacagctatt ttatttcctg 540
45 tgatgtataa attagctacc ttgcccctga agagagagga ccagaaagct ttgcccacta 600
   gttctagact gtgaggaaga gactacatga gaacttaaaa aaaaaaaaa agggcggccg 660
  ctcgagcatg catctagagg gccctattct atagtgtcac ctaaatgcta gagenennet 720
  gtca
                                                                     724
50
   <210> 111
55 <211> 1243
   <212> DNA
  <213> Mouse
60 <400> 111
  ggattggcgg ggttctcttt gaccacataa atcaattctt tcttttggga gcctcaatgg 60
  tggcaactgc agcgggactt tatctcatcc cgttctqcaa gacaqcaqtc ttattqatca 120
  tcaccatgtc tgtctttgga gcttccgttg gtgttgtgga tacaggtgca aatgttctca 180
   tettggatet etggggggae aaaggageee cacaaatgea ggeettgeae tteagttteg 240
```

|             |            |                   |            |            | gcacctgctc |      |     |
|-------------|------------|-------------------|------------|------------|------------|------|-----|
| agaaccacac  | cgagtccgac | cttgacactc        | tgatgctgaa | ccgatcctcc | aacggcacct | 360  |     |
| cagactccgt  | gtttgcggta | cccgatgaca        | tgaatctgct | gngggcatat | gcttccattg | 420  | 5   |
| gcacctttat  | tttagtagtt | tctgtctttc        | tgnnnggtct | gttttgtaag | aaacattcaa | 480  | ,   |
| ggcagaaaaa  | acccagagca | tctgctgagg        | gagctcgaag | ggctaaatat | cacagggccc | 540  |     |
| tgctatgcct  | gctcttcctc | ttcttcttct        | tctatgtggg | agccgagata | acatacggct | 600  |     |
| cttacatatt  | ctccttcgcc | accacccatg        | ttggcatgga | agagagcgag | gcagctggct | 660  | 10  |
| tgaattccat  | cttctgggga | acctttgcag        | cctgcagggg | cctggccatc | ttctttgcga | 720  |     |
| cattcttaca  | gcctggaacc | atgatcgtgc        | tgagcaacat | tggcagcctg | gtctcatgtt | 780  |     |
| tctttctggt  | actttttgac | aagagccctc        | tttgtctctg | gatcgcgact | tctgtgtatg | 840  |     |
|             |            |                   |            |            | tacncencet |      | 15  |
|             |            |                   |            |            | atggccattc |      |     |
|             |            |                   |            |            | ctgtacacat |      |     |
|             |            |                   |            |            | ttagctacct |      |     |
|             |            |                   |            |            | tgaggaagag |      | 20  |
|             |            |                   |            |            | atctagaggg |      |     |
|             | tagtgtcacc |                   |            |            |            | 1243 |     |
|             | 2 2        | 3 3               | , ,        |            |            |      | 25  |
|             |            |                   |            |            |            |      | 2., |
| <210> 112   |            |                   |            |            |            |      |     |
| <211> 528   |            | •                 |            |            |            |      |     |
| <212> DNA   |            |                   |            |            |            |      | 30  |
| <213> Mouse | •          |                   |            |            |            |      |     |
|             |            |                   |            |            |            |      |     |
| <400> 112   |            |                   |            |            |            |      |     |
| tgcaatggcg  | gacgtgtctg | agaggacgct        | gcaggtgtcc | gtgctagtgg | ctttcgcctc | 60   | 35  |
|             |            |                   |            |            | actggaggaa |      |     |
|             | •          |                   |            |            | cctgagcacg |      |     |
|             |            |                   |            |            | cggatcgtgg |      | 40  |
|             |            |                   |            |            | tgcttcagaa |      | 4() |
|             |            |                   |            |            | gaaaataaaa |      |     |
|             |            |                   |            |            | aaaaaaatta |      |     |
|             |            |                   |            |            | taccattcag |      | 45  |
|             | taagagattt |                   |            |            | caccacccag | 528  |     |
|             |            | 55-50-5 <b>5-</b> | agoagagaco | ccccgacy.  |            | 320  |     |
|             |            |                   |            |            |            |      |     |
| <210> 113   |            |                   |            |            |            |      | 50  |
| <211> 646   |            |                   |            |            |            |      |     |
| <212> DNA   |            |                   |            |            |            |      |     |
| <213> Mouse | <b>:</b>   |                   |            |            |            |      | 55  |
|             |            |                   |            |            |            |      | 33  |
| <400> 113   |            |                   |            |            |            |      |     |
|             | gaccaaacta | gcaacgnete        | agaaaaagct | ggacctggcc | tgagcacgcg | 60   |     |
|             |            |                   |            |            | ggatcgtggg |      | 60  |
|             |            |                   |            |            | gcttcagaaa |      |     |
|             |            |                   |            |            | aaaataaaaa |      |     |
|             |            |                   |            |            | aaaaaattaa |      |     |
|             |            |                   |            |            | accattcagt |      | 65  |
|             |            |                   |            |            | u          |      |     |

```
ttgctgcagt aagagatttg gagcctgaaa qcaqagactt tntqatqqaa tctcnccttq 420
   gtacagcctg gaggcagatn tgatcaacgg accattatga gtcatttttc tagacatatt 480
   cagaaaacct aggagctgtg tcaaatgcct gaattaagca ttacaaatgc aagatatttg 540
   cnctttgaag aatgtagaga gtaaaaaaac taaaattaaa aaaaataatg catgtgatat 600
   aacggaatat atatgtgaaa gagaaaaaaa aaaaaaaa aaaaaa
                                                                      646
10
   <210> 114
   <211> 792
   <212> DNA
<sup>15</sup> <213> Mouse
   <400> 114
   gatagttttg aactteegat teeectgeet eeccaceea gggetgtgat tgeaggtgtq 60
   cgcttgggac tgaccccagg ctttgtcggt gctagggcag cactctgcga ctgaattagg 120
   teccageeac ttetetgtet tttaaaagaa caaaacattg etaaatgtge cattgttget 180
   ttgagtttta attcttttt ttttctttct ttcataaaac attacagtct taagatatta 240
25 aagactttta ttetggttet atttetgtet ttteacteaa aactggtttt acaaatgatg 300
   cettgtttac agaaagetet etaccaeagg geetagteat gtgtaaagte teagtttete 360
   tetggagtat ettggageet ageacaetgg etttaaagga cacagetaag aagetgatat 420
   cttgacagtg tttgtagacc tttgttataa aaatgaatgt cctggaaagg gttgggaggg 480
   agttcaacaa caaagaaaca agaatgtcat gtttaaattt aatagttgtc taaaatgtca 540
   tctcaagtca agtcactggt ctgtttgcat ttgataggtt tttatactaa ctagcattat 600
   aagattattt cataattaga aaatacctgt ggatatttgt ataaaagtgt gaaataaatt 660
   ttttacaaaa gtgctcatcg cttgttaaca cagcatcatg tatgtgaaag caaactctaa 720
   gattataaat gacaacctga gttgcctttc tttgtatttc atcaagccna agtaaagctt 780
   tcantattta aa
40
   <210> 115
   <211> 837
   <212> DNA
45 <213> Mouse
   <400> 115
   gcaanggcgg acgtgtctga gaggacgctg caggagtccg tgctaqnqqc tttcqcctct 60
   ggagtggtcc tgggctggca agcgaatcgg ctgcggaggc gttacctaga ctggaggaag 120
   eggaggetge aggacaaget ggtaacnact cagaaaaage tggacetgge engageaege 180
   getgeageee gagteegneg gnnteteact ecctaageee aacgeageee ggategtggg 240
55 ageogogoga cocangagto gnoottgcac ggottgcaag aacatggotn gottcagaaa 300
   gaaantagtt ttgtcttctc taacanctaa ctttcnnctt gtccaanatg aanatacgna 360
   genetggana ganntaattt ettgenettt annaatetat nnttaaanta eananattna 420
   ncatettnga ntetttntne tneteacaaa aganageage atttttgeet accatteagt 480
60 tngctgcant aagagatntg gagccngaaa gcagagactt tctgatggaa tctcaccttg 540
   gacagcctgg aggcagatct gatcaacgga ccattntgag tcattattct agacntattc 600
   agaaaaccta ggagctgngt naaatgcctg anttaagcct tacnaatgcn agatntttgc 660
   actntgaana atgtanngng taaanaaact actattagtc caaataatgc atgngatnta 720
   acggaatata tatgtgaaag agaaaaaan nnannnaaaa aaaaagggcg gcccgctcga 780
```

| gcatgcatct a                        | agagggccta | ttctatagtg                            | gcncctcaat | gctanagctt | cgctgac    | 837 |    |
|-------------------------------------|------------|---------------------------------------|------------|------------|------------|-----|----|
| <210> 116<br><211> 252<br><212> DNA |            |                                       |            |            |            |     | 5  |
| <213> Mouse                         |            |                                       |            |            |            |     | 10 |
| <400> 116                           |            |                                       |            | -1         |            |     |    |
| agggcggccg c                        |            |                                       |            |            | _          |     | 15 |
| ccctcccc                            |            |                                       |            |            |            |     |    |
| taaaaaaaat g                        |            |                                       |            |            |            |     |    |
| cttgggggg a                         |            | , , , , , , , , , , , , , , , , , , , |            | 55555-     |            | 252 |    |
| 333333                              |            |                                       |            |            |            |     | 20 |
|                                     |            |                                       | •          |            |            |     |    |
| <210> 117                           |            |                                       |            |            |            |     |    |
| <211> 869                           |            |                                       |            |            |            |     | 25 |
| <212> DNA                           |            |                                       |            |            |            |     |    |
| <213> Mouse                         |            |                                       |            |            |            |     |    |
| <400> 117                           |            |                                       |            |            |            |     | 30 |
| gcatccctcc a                        | atggcctctg | cattogcttc                            | tgctttctga | cctacttaaa | ttccagtcct | 60  |    |
| gacttccttg g                        |            |                                       |            |            | -          |     |    |
| aacttgtttc t                        |            |                                       |            |            |            |     | 25 |
| taccagcaga q                        |            |                                       |            |            |            |     | 35 |
| ggactttgga a                        | actttgggct | taaagatcca                            | tccgntgnta | agagctctgt | cagatgttgt | 300 |    |
| gtaggagctt g                        | ggaagataat | gttgagaaca                            | ctgnagaana | tggaggnctg | gtntgngaaa | 360 |    |
| tttnagaggg a                        | aaaantaaag | actctttcag                            | ggccattgct | gttttgaatg | tgaagattct | 420 | 40 |
| gtagnnctgg a                        |            |                                       |            |            |            |     |    |
| angcanaaac t                        |            |                                       |            |            |            |     |    |
| ncggtgatta a                        |            |                                       |            |            |            |     | 45 |
| ntgaaagcac a                        |            |                                       |            |            |            |     | 73 |
| aannanggac t                        |            |                                       |            |            |            |     |    |
| anggccnttt a                        |            |                                       |            |            |            |     |    |
| cttgcccaaa t                        |            |                                       | cegneceena | aagggcacna | ggccincaaa | 869 | 50 |
| occycoddd (                         | egeunaggg  | conceeggg                             |            |            |            | 009 |    |
| <210> 118                           |            |                                       |            |            |            |     |    |
| <211> 584                           |            |                                       |            |            |            |     | 55 |
| <212> DNA                           |            |                                       |            |            |            |     |    |
| <213> Mouse                         |            |                                       |            |            |            |     |    |
|                                     |            |                                       |            |            |            |     | 60 |
| <400> 118                           |            |                                       |            |            |            |     |    |
| gacctggctt t                        |            |                                       |            |            | -          |     |    |
| cgcagnccgg r                        |            |                                       |            |            | _          |     | 65 |
| atggcttgct t                        | cagaaagaa  | aatagttttg                            | tcttctctaa | naacttacnt | tcagcttgtc | 180 |    |

```
gaagatgaaa ataaaaagcc ctggagagga ataatttctt qcnctttatq aatctatttt 240
   taaaataaaa aaatttaccn nctttnaatc tttttcctcc tcncaaaagn aaccagtatt 300
   tttgcctncc attcantttg cnncantaag anntttggag cctgaaaccn nagnctttnt 360
   nanggantnt cnccttggtt cagcctgnag gcaaatctga tcaacqgacc tttatgagtc 420
   atttttccta gacatattca gaaaacctag gagctgtgtc aaatgcctga attaagcatt 480
   acaaatgcaa gatntttgcn ctcttgaaga atgtagagag taaaagaact anaattaaaa 540
   anaataango ntgtgatata acggaatata tatntnaaaa anaa
                                                                     584
   <210> 119
15 <211> 698
   <212> DNA
   <213> Mouse
   <400> 119
   gccgctgnag gangggaccc aatnotetat tancatetgn netgattett ngggcaccen 60
   gaantttata tnentateet eenaggatnt ggaattatta cacatgtegt acttactact 120
25 neggannaan anaacettne ngetatanan nantntgtat gagcantant gtenatngne 180
   tntctaggcc tttatngnnt gagcccacca catatttaca gtangnttag ntgtanacac 240
   acganentae tttacatean eccgntntna tnatengean ttnetacegg nnteaaantn 300
   tttanctgac tngtaaccct acacggaggt nnnnttaact cgatctncca gctatacnan 360
30 tgagccttta ngctttatnt tcttatttac ngtngqngqt ctaanngnaa nttqcntnan 420
   conanntnat occottgane atnucecatt caengaacca nuctanneag tateeneeat 480
   ttnccnctnt tgnncctatc anntggggag tcagntgcnc tgctattcnt atccagnnac 540
   nntgtnttca tctngaannt cccnnttnnt ntnttcanng ccttnccacc ccttnttata 600
   ggacencent ennachenen caagnenten actititenet inneteanta tetneenina 660
   nggcntctct cancnccntt nntccntttc tctttccc
40
   <210> 120
   <211> 753
   <212> DNA
45 <213> Mouse
   <400> 120
   gcaaacatgg ncaggagcat cttggcagcn ttaagccttc anagaattat caaccanggn 60
   catnagagne gactetgnet entteagget tgeaceacea ceaeaggent aggggeeage 120
   acaggcaggg tcacttanag agctgagaca ccacagcaag ngaaggctng cacctttcac 180
   ttgcccagag gangctctga cnaagggggt gcatcaacca nctccngtgt aagcngncta 240
55 aggagteega ggeageeece aneagetget getgteactg cegecacete atatttgana 300
   agteanggte tgeantatge ttgacagtnt gegnaaaace teccateett atgtanetga 360
   caggngcttt tncgcgnant nacaaaagcc accttgaacc ctgtcantnc taggtcacct 420
   tenagettge etngaennaa antenngtee nttgaaacee eenntggean geecaaacee 480
60 cannntgaag ettnagatne teaggaenne nnaanttana nnntgneeat ttennaeett 540
   annnttaatt tnaannctaa ggncattact cttnttcccc ccaaacntnt aacnccttan 600
   anagnacene ennetettte caattnnttn tnnccaaatn gtntntnnae caggteecee 660
   aanteteaan ntntaaattt etnnetgnea aacnettana nantangntt teeetnneen 720
   aacaanttnt gnncanactn tntncggngn ccc
                                                                      753
```

| <210> 121<br><211> 690<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                      | S                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <400> 121 gttttgtttg aaacggcaac acttcggtca ngatatette taccagacae caaggcgtat ggagatagaa tanaaagaat gcttcgccte agnttaaaca ttgaccetga agcacaggng gaggaagaac engaagaaga geetgaagae aceteagaag acgeanaaga eteagageag                                                                                                                         | 120                             |
| gatgaggnag aagagatgga tgcaggnaca gaanaagaag agngaggaaa canataagga atctacngan aaggatgaat tgtaanttat actctcgcta tgaatcccgn gtggagaggn aatgngaagt tntgaagtca tttcttttga gagacttgnt ttgnatgctt ccccnngcct ccttctcccc tgcnctgtna aatgnttggg attntgggtc acaggaagaa gtgnnttttt                                                                 | 240<br>300 <sup>15</sup><br>360 |
| tanctgnant nttttnnca ttcctcctga atgtanattn ngtnctattt aactgactat tggcgtcnna atcttgtcnt gtgtntnaac cctccccann catccccanc tccccnacnt nccctccncc cctccnccct ctctctcnnc tcccctccnn gnncncnccc cncncatctt cntnnacnng ngnctncccn ccnnntntnc tncccnntgc nctctctana nnnggggncc                                                                  | 540<br>600<br>660               |
| <pre><cctnaattc <210="" cntattancn="" tgnccccccn=""> 122 &lt;211&gt; 558</cctnaattc></pre>                                                                                                                                                                                                                                              | 690 25                          |
| <212> DNA<br><213> Mouse<br><400> 122                                                                                                                                                                                                                                                                                                   | 35                              |
| ggaaaggacg cggnccccg ggctgcgcg ggtcgcggcg gnccccgcag gcagccatgg<br>cggcgggcgc cggggccagg ccggcgccgc gctgggtaaa ggcgctaggt gagccgctca<br>gtgccgcgcn nctgcggcgg ctggaggagc accgctacac cgcggtggga gagtcgctgt<br>tcgagccgcc gctgcagctt tactggacct ggctgctcca atggatcccg ctctggatgg                                                          | 120<br>180 40<br>240            |
| ccccaacac catcacctc ateggeeteg ccatcaacct ggtcaccaca ctagtgetea tettetactg ccctacagte aeggaggagg caccatactg gacatacett ttatgtgece tgggactett tatetaccag teaetggatg ccattgatgg gaaacaagec agaaggacaa actettgete tecettaggg gaactatttg ateatggttg tgactetett tecacagtat ttatggecat eggegettee attgetgtte gectaggaac acateetgae tggttgtttt | 360<br>420<br>480               |
| <210> 123                                                                                                                                                                                                                                                                                                                               | 558 50                          |
| <211> 568 <212> DNA <213> Mouse <400> 123                                                                                                                                                                                                                                                                                               | 55                              |
| ctttttgttt nggtgccact atagaatagg gccctctaga tgcatgctcg agcggccgcc ctttttttt tttttttt tttttttt tttttttt                                                                                                                                                                                                                                  | 60                              |

```
gctgaaaatt ttataacatt taactaaaaa ttaaacatgn ttcatatctc ctttcatgaa 180
   acagcagcag caagagatgg caaatgttcg aaagnctntt caatccatgt tattntqatq 240
   agtntttgaa naaagaactt gaacctgttc cggngcttgt tgacatgaag tnttgaanat 300
   gtttaaatga aggngtnttg aaatttgcag gcccaaagaa gtaaagtntn tcatcatatc 360
   aaatgaanaa atgaccattg ntntccncag aacaacatat tcatntataa aattattaaa 420
   gnattggtnt aaaaanaaaa nacctggccc aanaaanaca gngtnttgaa nanatagttc 480
10 acttttcgtc atgggagcta tcaccaattt ttgngcaact ttagcaaaga cncntccaaa 540
   cnttaaagtn taaaggcang gntgtttt
15 <210> 124
   <211> 451
   <212> DNA
   <213> Mouse
   <400> 124
   tgctggaaag gggagatcct gagaacagac cagtggcctc ggaggctctt catgcaqctc 60
25 attocgcago agttgctgac caccetegtg coactgttcc ggaattcacg cctggtacag 120
   ttccacttca ctaaggacat ggagactctg aagagcettt geeggateat ggacaatgge 180
   ttcgcgggct gcgtgcactt ctcctacaag gcatcgtgtg aggtgcgtgt gctcatgctc 240
   ctgtactcct cggagaagaa gatcttcatc ggcctcatcc cgcacgacca gagcaacttt 300
30 gtcaacggca tecgtegegt categecaac cageageagg teetgeageg aageetggag 360
   tcccagacga ggccccagtg gagactggtc a
                                                                   451
35
   <210> 125
   <211> 718
40 <212> DNA
   <213> Mouse
   <400> 125
45 gccngcttct cngcatttag gtgacactat agaatagggc cctctagatg catgctcgag 60
   cggccgccct ttttttttt tttttttt tttgggttaa aaggctttat tagggaaaca 120
   tacaggggca aggaccatcc ttgggagacc tnaggacgct qtcctccaqq ttqctqqqca 180
   ggtacagtcg ccaggagccc ctgctnagaa gcagctgacc agtctccact ggggcctcgt 240
   ctgggactgt ggcccgccca gcccaggcat cctctagcca cccatccctc gctgctgctg 300
   ctcctgctcc aggcttcgct gcaggacctg ctgctggttg gcgatgacgc gacggatgcc 360
   gttgacaaag ttgctctggt cgngcgggat gaggccgatg aagatcttct tctccqagga 420
55 gtacaggage atgageacac geacettaca egatgeettg tagganaagt geacqeagee 480
   cgcgaagccn ttgtccatga tccggcaaag gctnttnaga gtctccatgt ccttagtgaa 540
   gtggaactgt accaggcgtg aattnoggaa cagnggcacg agggtggtca gcaactgctg 600
   eggaatgage tgeatgaaga geettegagg eeactggtet gtteteagga teteceettt 660
60 ccagcacact ggcggccggt actagtggat ncgagctcgg taccaagctt gggtcttc
   <210> 126
   <211> 544
```

<212> DNA

| 2213> Mouse                                                                                                                                 |     |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <400> 126                                                                                                                                   | 5   |
| ategneecce ttggtnneeg geteggaeee tnteaaegee egeeagtgtg etggaaagea 60                                                                        |     |
| gcgagcggct gcttcgtgga gcagagaggt gcatcaccag gttcccgatg aacccagaga 120                                                                       |     |
| accetecace gtatnegnge ecegggeeaa cageeceata eceacettat ecacaacage 180                                                                       | 10  |
| caatggggcc aatgggggcct atgggagccc cacctcctca ggggtacccc tacccaccac 240                                                                      |     |
| ctcaggggta cccctatcaa ggatacccac agtacggctg gcagggtgga cctcaggagc 300                                                                       |     |
| etectaagac cacagtgtat gtggtggaag accaaacgna gagacgacet gcgcccatcc 360                                                                       |     |
| acctgcctna nagcctgctn gactgctctg ngtngctgct gcctctggga catgctnacc 420                                                                       | 15  |
| gntcanctg atgageceag etetteegnt tgneegetet gngeeanete enathentne 480                                                                        |     |
| acctgnacce atetetecty ettaetetae agatgeetan ecteeteete tecaeneten 540                                                                       |     |
| tta 544                                                                                                                                     |     |
| J44                                                                                                                                         | 20  |
|                                                                                                                                             |     |
| <210> 127                                                                                                                                   |     |
| 3210 127 3211 598                                                                                                                           | 2.5 |
| 2212> DNA                                                                                                                                   | 2.1 |
| (213> Mouse                                                                                                                                 |     |
| 12137 House                                                                                                                                 |     |
| <400> 127                                                                                                                                   | 30  |
| ectititit tittitit ticcagatit tggacagati tattgaaaca taaagggtat 60                                                                           |     |
| pagcagagag atctagtagt gtgtcacata ttgccattac cttgagtgta taatttaaac 120                                                                       |     |
| attataaata tatattteat aactaageet ttggeeaaaa aagtaaatta tttageecat 180                                                                       |     |
| ttttaaaga toagtaagaa atgagttttg aacattaaaa agatoaagto actgaactaa 240                                                                        | 35  |
| atagcagtaa ccetcactaa tetaaaacte cataggacag aaagtagagg tgtetgegea 300                                                                       |     |
|                                                                                                                                             |     |
| pagetageca etttatagea ateagaagag atggggeeag geaeaettat eggaggtgge 360 acagagegge caageggaag agetgggete ateaggtgat eaggtgagea tgteeeagag 420 | 40  |
| pcagcagcaa cacagagcag tecagcagge tgtgaggcag gtggatggge ccaggtegte 480                                                                       | 417 |
| cttetttgg tettecacea catacactgt ggtettagga ggeteetgag gtecaceetg 540                                                                        |     |
|                                                                                                                                             |     |
| cageegtae tgtgggtate ettgataggg gtneecetga ggtngnggna gggggtne 598                                                                          | 45  |
|                                                                                                                                             |     |
| <210> 128                                                                                                                                   |     |
| 2213 668                                                                                                                                    |     |
| 2212> DNA                                                                                                                                   | 50  |
| 2213> Mouse                                                                                                                                 |     |
| 1000                                                                                                                                        |     |
| <400> 128                                                                                                                                   | 55  |
| etggaaaggn geggageetg etgetgeeat ggaggetggn ggetgggtae actntgteta 60                                                                        | 33  |
| jactgggggc cctgggcggc tnnngngccg ggtngggacn gttacttggt actgccgccg 120                                                                       |     |
| geettggatt cetgtgegte etttacagee agegatggan aeggaeeeag egeentggee 180                                                                       |     |
| ggagtcacag tetgeenaac teeetggact atgegeagge tteagagegt ggacgneagn 240                                                                       | 60  |
| ngacacagnt togggotate coaggitgaag eignagatge tgecatactg cocagcetet 300                                                                      |     |
| cacaggaagg gtanganaag gtgctggacc gcctggactt tgcgctgacc agtcttatgg 360                                                                       |     |
| egetgengeg egaggnggag gagettnaga gaageetgea aggaetaget ggngagattg 420                                                                       |     |
| cgntgagga ccgctctcat atataagaga accananaga ggnccnggcg gcgcacgntc 480                                                                        | 65  |
|                                                                                                                                             |     |

```
cctttatgcc agagagaga gngactccac gggctncagc tctgtctact tcaccgnctc 540
   ctcaggggcc ngcactcaca gacgccnana gnnagggagg ctatncnnca gcccaaccgc 600
   ggagtntgat tacnagengn actnenacaa ggaanagtgg anatgentga ngaccaaann 660
   gaagetnn
  <210> 129
   <211> 695
   <212> DNA
   <213> Mouse
15
   <400> 129
   tttgaaagcc cgttctagca tttaggtnca ctatagaatt ntgacctcta tatgcatgct 60
   cgagcggccg ccgacggact ggacgccgcc tncacatcca ggtccagaqa qtccttcctc 120
   cccatcctca cggtctcgca gctcacttcg tcctcagcat ctccactctc cttgtcggag 180
   tecegetegt aateagacte egegttgget gttgtatage eteeeteget eteggegtet 240
   gtgagtgcgg cccctgagga ggcggtgaag tagacagagc tggagcccgt ggagtcactc 300
25 ctctctctgg caaaagggaa cctgcgccgc cgggccactc tctggttctc ttctatatga 360
   gagoggacct coccgacaat ctccccagct agtccttgca ggcttctctq aagctcctcc 420
   acctegegee geagegeeat aagactggte agcacaaagt ceaggeggte cagcacette 480
   tectgeeett eetgtgagag getgggeagt atggeageat etceagette acetgggata 540
30 gcccgaaact gtgtcacctg gcgtccacgc tctgaagcct gcgcatagtc cagggagttg 600
   ggcagactgt gactccggcc atggcgctgg gtccgtttcc atcgctggct gtaaaggacg 660
   cacaggaatc caaggccggc ggcagtacca agtaa
                                                                     695
35
   <210> 130
   <211> 597
40 <212> DNA
   <213> Mouse
   <400> 130
45 gtgtgctgga aagcgctggg tctgagtgac caaaggcagt agcnctcgcg gagatcaccc 60
   gctgnccctn gatcaccatg tcggccttcg acactaaccc cttcgcggac ccagtggacg 120
   taaacccctt ccaggatccc tctgtgaccc agctgaccaa tgctcctcag agtggcctgg 180
   etgagtteaa teeettetea gagacaaatg cagegacaac agtteetgee acacaagete 240
   ctgggccctc ccagccagca gttctccagc cctcagtgga accagcacag ccaacgcccc 300
   aggetgttge agetgeggee caggeagget tgettegaea geaggaagaa etagaeagga 360
   aagctgccga gctggaacgc aaggagcgag agttgcagaa cactgcagcg aatttgcatg 420
55 tgcgagacaa caactggccg ccactccct catggngccc tgtgaaaccc tgcttctatc 480
   aggacttoto cacggagato cotgotgact accaggagat tigcaagatg ctitactato 540
   totggatgnt gentteageg etetgtttet aaacetnett gegtneetgg eetntnt
60
   <210> 131
   <211> 595
   <212> DNA
   <213> Mouse
```

|             |            |            |            |            |            | •             |     |
|-------------|------------|------------|------------|------------|------------|---------------|-----|
| <400> 131   |            |            |            |            |            |               |     |
| tttttttt    | ttttttnaa  | gtccttgtcc | cttcctctcc | ttccctcttg | tagaggagaa | 60            |     |
|             |            |            |            |            | gtgctggtgt |               | _   |
|             |            |            |            |            | agagaggcca |               | 5   |
| gggctcaggg  | aaggagagtc | gggaagccta | attcccctga | aaggctcctc | gggcagcaga | 240           |     |
|             |            |            |            |            | cttcctgggc |               |     |
|             |            |            |            |            | ggaggaagag |               | 10  |
| tgaaagccca  | gcacagaggg | taaagaagcc | agccactacc | atcatgatga | tggtcacagc | 420           |     |
| taagggccca  | tttttcatcg | tagatagggc | tgcaagccaa | ccactggtcc | ccaagttagg | 480           |     |
| caagccaatc  | aactggatga | agtagatccc | tatttgacaa | aaaaatacaa | aaaagaacac | 540           |     |
| gaagaagctg  | aaagagttgt | cagacctgaa | agccttgtag | atgggtcggt | ccaac      | 595           | 15  |
|             |            |            |            |            |            |               |     |
|             |            |            |            |            |            |               |     |
| <210> 132   |            |            |            |            |            |               | 20  |
| <211> 829   |            |            |            |            |            |               |     |
| <212> DNA   |            |            |            |            |            |               |     |
| <213> Mouse | •          |            |            |            |            | •             |     |
|             |            |            |            |            |            |               | 2.5 |
| <400> 132   |            |            |            |            |            |               |     |
|             |            |            |            |            | ggctttcaga |               |     |
|             |            |            |            |            | acagcctcta |               | 30  |
|             |            |            |            |            | agggagtgaa |               | 50  |
|             |            |            |            |            | actctatctt |               |     |
|             |            |            |            |            | ggacaaagaa |               |     |
|             |            |            |            |            | aagagcaagt |               | 35  |
|             |            |            |            |            | agaagatgga |               |     |
|             |            |            |            |            | agctgaaggt |               |     |
|             |            |            |            |            | agaatgaaat |               |     |
|             |            |            |            |            | ttggtcaaat |               | 40  |
|             |            |            |            |            | aaactatttg |               |     |
|             |            |            |            |            | ctgggaagga |               |     |
|             |            |            |            |            | tttttaagtn |               | 45  |
| cacattctag  | tttaataacc | acngttacca | agaaagtaag | actttcatt  |            | 829           | ••  |
|             |            |            |            |            |            |               |     |
| <210> 133   |            |            |            |            |            |               |     |
| <211> 592   |            |            |            |            |            |               | 50  |
| <211> 532   |            |            |            |            |            |               |     |
| <213> Mouse |            |            |            |            |            |               |     |
| (ZIS) Nouse | •          |            |            |            |            |               | 55  |
| <400> 133   |            |            |            |            |            |               | 33  |
| tttttttt    | tttttttt   | tttttttt   | tttttttat  | tttaatctgc | atgcctttta | 60            |     |
|             |            |            |            |            | qcqttttaac |               |     |
|             |            |            | _          | -          | ccaatgngtc |               | 60  |
|             |            | •          |            | -          | atttcactat |               |     |
|             |            | _          |            | -          | acaggattta |               |     |
|             | -          |            | -          |            | taaatataat |               |     |
| JJ J9       |            |            |            |            |            | - <del></del> | 65  |

```
aggnaatgaa ctgacacaga attagactcc gaggaagcag tatctgacaa tttaqctatt 420
   aatggaagtt cttactttct ttgtaaccgn ggttattaaa ctagaatgng tacttaaaaa 480
   tcacagcaaa aagtttggta tcaaaataac agaagcctgg attttataaa ttccttccca 540
   gaaactcttt agactaacta cttagtgagc cgaggaattt cagccccaca cc
10 <210> 134
   <211> 874
   <212> DNA
   <213> Mouse
15
   <400> 134
   tegeaceane ettggacega geteggatte cetagtaaeg geegeeagtg tgetggaaag 60
  aacgcctctg gggagcatgg catcgtggtt ttctctttgg gatccatggt ctcaqaqatt 120
  ccggagaaga aagccatgga aattgctgag gctttgggca gaattcctca gacggtcctg 180
   tggcgctaca ccggaactag accatcgaat cttgcaaaga acacaattct tgtcaaatgg 240
   ctaccccaaa atgatctgct tggtcatcca aagactcggg cattcatcac acactctggc 300
25 toccatggta tttatgaagg aatatgcaat ggagttocga tggtgatgat gcccctattt 360
   ggcgatcaga tggacaatgc caagcgcatg gaaactcqqq gaqctqqqqt gaccctqaat 420
   gtccttgaaa tgactgctga tgatttggaa aatgccctta aaactgtcat caacaacaag 480
   agctacaagg agaacatcat gegeetetee ageetteaca aggaceqtee tataqaqeet 540
30 ctggacctgg ctgtgttctg ggtggaatac gtgatgaggc acaagggggc accacacctg 600
   cgcccggccg cccatgacct cacctggtat cagtaccact ccttggatgt gattggcttc 660
   ctcctggcca ttgtgttgac agtggtcttc attgncttta aatgttgtgc ctatggctgc 720
  cggaaatgct ttgggggaaa ggggcnagtg aagaaatcac acaaatccaa gacccattga 780
   gaagtggggg gaagtgaang agaagtatta gttcattatc tgacagttga actttggnaa 840
   caagtgttng anccataatg gtttgttagg ggaa
                                                                   874
40
   <210> 135
  <211> 588
   <212> DNA
<sup>45</sup> <213> Mouse
   <400> 135
   tttttttttt agtgatacaa tttatatgaa tttattgata agttcttggt ttgggaacac 60
   aatagaagat gtacttgcct tagaacatac tttggttttc atcaaattcc ggcacaagca 120
  acaattatta teteaaacae agggeeatea gtgteacage etcatetett etceeaaage 180
   tccaaaggtc ttgctaccca taatgcatga acacaatgaa gaatgactaa cactggagaa 240
55 ggccacggca gtctgagaat ccaggggaga aaaccatcag ctggcgggag caggggaaac 300
   tgtggggctg tcactgaaag cagagtgcca gactttctgt aaattaccaa cagatggcaa 360
   gggtgtggcc agcaattaga ttgttattat tattattttt aaatgtgctg aatgtataat 480
60 gtatggtgaa ttatttccct aacaaaaca atatggatct aacacttgtt tccaagtttc 540
   aactgatcag ataatgaact aatacttctc cttcacttcc ccccactt
                                                                   588
```

<sup>65</sup> <210> 136

```
<211> 832
<212> DNA
<213> Mouse
<400> 136
gccagtgtgc tggaaagaga agcagacatg gctcaatttg cacaggtcat ggctgaagtg 60
ggcgactttg gtcgctttca ggtgcggttg accatcctga tgggcattcc caatttcctg 120
                                                                               10
getgeattet teatatttgg ceaagtette atggteettg atgaggetea ceaetgttea 180
gtgtcctggg ttaagaacca cactttcaac ctaagtgccg ctgagcagct ggctataagc 240
atecceaacg acacageggg cagaceegag teetgeetea tgtteeggee aceteetgae 300
                                                                               15
agtgccagcc tggaagacat cctgagccac cgcttcaatg agacacaggc ctgtgactca 360
ggctgggact atcctgagaa ccggcctcag tccctaaaga aagagtttga cctggtgtgt 420
gatcgaaaga acctgaagaa gacctcccag tcggtgttca tggctggtct ccttgttggg 480
geoctggtet tigggeeigt eigigaeigg attggeegea gaeeeteeet eeigaigeag 540
                                                                               20
gtgcttctgt caggcatcac aagcatggcc acagccttcg tgtccagctt tgagctctac 600
ttggccctac gctttgtctt ggctactgcc aatgctggat ttttactaag taccaatgtc 660
ctgatttcan agtgggtggg gccatcttgg agaacacaag ccgtggnctt tqgcccanag 720
caacgttgcc cttgggcaga tggtgttagc aggactggcc tatggtgtcc gaaacttgga 780
                                                                               25
gacttettea gatacangga ecegaceege ttactgntet tettetattt et
                                                                   832
                                                                               30
<210> 137
<211> 813
<212> DNA
<213> Mouse
                                                                               35
<400> 137
tttttttttt ntngatatta gntangtttt attatttntt atctntatga ggaaggggta 60
teccagacag ggagactgnt gaggnnacaa tectagagag antgtengag aagactgana 120
                                                                               40
gcgaccctga ctcanccgtg gtactggggt gcagttngtg tatganaagt gtggaanagg 180
gaagggtact gtccctgata ctccctctgg gctctgcaaa agggagtagg gagcatgaac 240
acggctgatc tgatcctgtg ngctanagat gccatgtgcg ctgcctctgc tcttgatagg 300
                                                                               45
etggneetea neageeaeag teanaantne ganetettea eaacanenae neteanaetn 360
naagatette ecaaageetn eangtetten etnngnnntg engatnngag ggaeeetgea 420
aggagecect gntenaggan etggaggntg tnetneaggg tenggeeetg ggteteagga 480
agtagagcgn acagtangcc tgctncaatg gngaggctgc naaagatgac natgggaatc 540
                                                                               50
gnctggtgga ctgttctagt agcatcacaa ngggtgtgat gatgccaccg accctgtaga 600
agatgctnac caaccccatg cetgtttgcc tgatnatgga tggtnganga getnagetag 660
tgnacacata ngagatggtg aangccgcaa ccgagncaan atttcncnat cataggcagn 720
ananaggene accgngggan gaacteetgg gatgnaaaat ataatgeegn ceatganeee 780
                                                                               55
gnctgggacn gcantcnaca gnttgttttc nna
                                                                   813
                                                                               60
<210> 138
<211> 739
<212> DNA
<213> Mouse
                                                                               65
```

```
<400> 138
   cggcggtggc catggccgag gcgtcgccgc agcccggacg gtacttctgc cactgctgct 120
   eggtagagat egtgeegege etgeeggatt acatetgeec aaqqtqegag tetgqettea 180
   ttgaggaget tecagaagag accaggaaca cagagaatgg etcageece tecacageee 240
   ccaccgacca gaaccggcag ccatttgaga atgtggacca gcacctgttc acgctgccac 300
10 agggatacag ceagtttgce tttggcatet tegaegatag etttgagatt eccaegttee 360
   ctcctggagc ccaggccgat gatggcaggg accctgagag ccgacggqag agaqaqcacc 420
   agtotoggca toggtacggg gcccggcagc cccqtqcccg cctcactqcc cqccqqqca 480
   ctggccggca tgaaggtgtc cctacgctgg aagggatcat ccaqcaqctc qtqaatqqca 540
^{15} tcatctctcc ggctgctgtg cccagcctgg gccttggtcc ctggggcgtc ctgcactcga 600
   acceaatgga ctacgcctgg ggggccaacg gcctggacac catcatcacg ccagctcctt 660
   aatengtttg agaacacecg gneeeccae ttgeagacaa ngagaagaat teaggetntt 720
   ccccncggtc ccagtcaca
   <210> 139
25 <211> 1260
   <212> DNA
   <213> Mouse
<sup>30</sup> <400> 139
   tttttttttt tctgcttttt tgagtaggng tattttaaat agctttccag ataacacaca 60
   tttcccttaa aaaaaaaaa ttgtctgctg gagcagtttg ttcctqqqtc tqctqqtcac 120
   ccttgnggtc ccgaggccgg cgctggttgg gngctgggcc cggcctccca gggcgtgtgg 180
   cgggctgggc ctggcgacag ttctgctgan tctccacaga ccatgcatgg ccgnacgtgg 240
   ctcaaacgtc catttatttc aaagcagtaa taatttaaaa tcataaaaac ccttctgccg 300
   ttgaacattt ggagggtgag gttaanacgg actgaaggtg cctgcctgct ggggacatgg 360
40 gacccacgtg cacacctcca aacaggagcg qccatggcca agtccaagcc tgcccgnagc 420
   ctggggcccg ccaggnactg ccggccgcca cgggcagcac ctctagtcca cagccatggc 480
   gggcgggcag gcggncggtg ctggggcacc tggggtgggt gggatgacca aaccccgggg 540
   gggatggnca ggtgggactc aggagtttgc ttqnqqqcqt tctcattqct qqqcnaaact 600
  ggaggaggat gaangaccaa ngactaanga ggaaacctac accqqqcaaa qccttqqqqq 660
   gaatggncgg cttgggtnct gtccnagtga ggctntttac ggcaaanccg ggcaagcntg 720
   gcatgctgnn ttcagccang ggcacgaatc cncntgtcgt ggnaaaaggt gggntgcaag 780
   ggcnaanttn gccggnanac tttttaccca gggggaataa anncttnttt taacnnactg 840
   ggncaactta aagcccttgg agcccenegn tggttcctnc tggggnettn gggaccentn 900
   nnggaanaaa ccttgaaant tctcccttgn nntgcanctt ggggggcccc ngggttttcn 960
   aancggaatg ngggactttc natnaaanaa ggggnnccag centtgeeee ecaggeggaa 1020
55 acceaning nitraagice ggaaceeen ngggeeaagg eceanning caaaaacegg 1080
   gaaaaaagcn ttncaaaatn tnggagaacc ttcccgcngg cccctttttn cccaaggncc 1140
   enggeaangn geacegnint inggeeetee caaceaanng gittiteteg neinaggett 1200
   nntaaannog getneeggna angggaaana aannntaaac enegenangt ttttnttnne 1260
60
   <210> 140
   <211> 591
   <212> DNA
```

<213> Mouse

```
<400> 140
                                                                               5
agtgtgctgg aaagcgggcc tgagccgagc agctgcgcga cgtcatqqac aactccqqqa 60
agcaggetga ggctatggeg etgetggetg aageggageg caaqqtqaaq aacteqeaqt 120
ccttettete eggeetettt ggaggeteat ecaaaataga ggaageatge gagatetatg 180
ccagagcggc gaacatgttc aagatggcca agaactggag cgctgctggg aacgctttct 240
                                                                               10
gccaggctgc ccaactacac ctacagctcc aaagcaagca cgatgcagcc acctgctttg 300
nggacgctgg caatgctttn aagaaagctg acccccaaga ggccattaac tqtctgatga 360
gagcaattga gatctataca gacatgggca gattnacaat cgcaqccaag caccanatct 420
                                                                               15
ccatcgctga gatctatgag acagaactgg tggatgtaga gaaggccatc gnccactatg 480
agcaatetge agaetaetae aaagganaag agteeaaeag etnanceaae aagtgtetge 540
tnaaggnggc tnctacnccn nacagetgga geagneecan aaggetaten a
                                                                   591
                                                                               20
<210> 141
<211> 351
<212> DNA
                                                                               25
<213> Mouse
<400> 141
                                                                               30
ttttttttt ttttttcat gcaaaagtgg caggtttnat tgtccttttt gggccagctg 60
nagcttnagg tcgatagacc tggatgcatg gagagaagca ggtgcgcagg gcagggccaa 120
ggcaccccat gagctccagg gctgggtcta acctgagagg ttggcattgn aggaacaagg 180
gaaggctcca ggggcagagg ttacccccag ccagggagag naagtntcag agctaccngn 240
                                                                               35
gtncttatct ctgctagggg acaaggtagg agatatggaa acagncttag tacnctgctq 300
ntnaggagat gntnccannc cttganctnc ggtacntnaa gcacacagan t
                                                                               40
<210> 142
<211> 928
<212> DNA
                                                                               45
<213> Mouse
<400> 142
aaagttgttc ttctcgtggt tcccagtggc gagaggagga ggaagcccng agcggagcgg 60
                                                                               50
ggcggctggg gggggtggac ccgccgcggc tgctgctgcc accgccgccg ccgccaccac 120
cgctcgtggg gctcgtggcg tgaggaagga ggacgagtga gaccccgggg cgagcgggcg 180
gcggcgccgc tgctgctgct gctgctgcgg gagggncggc ggcgggacgg cgatggcgga 240
tategacaaa eteaacateg acageateat eeaaeggetg etggaagtga gagggtecaa 300
                                                                               55
gccaggcaag aatgtccagc tccaggagaa cgagatccga ggactctgcc tgaagtctcg 360
ggagatette eteagteage etateetttt agaaettgaa geaceaetea agatatgtgg 420
ngacatccac gggcagtact atgatttgct ccgtctgttt gaatacggtg gctttcctcc 480
                                                                               60
agagagcaac tatttgnttc tcggggacta tgtggacagg ggcaagcagt ccctqqaqac 540
aatetgnete ttgetggeta caaaateaag tateeggaga aettetttet teteagaggg 600
aaccacgagt gcgccagcat caataggatc taccgatttt atgatgagtg taaaagaaga 660
tncaccatta agcttgtggn aaacgttcac agactggttt aactgcttgc cgatagcaag 720
                                                                               65
ccatcntgga cnaagaagan aatctgctgt catggaggtt atcaccngaa cttcaatcta 780
```

```
tggagengaa tteegeggaa atattagace anttgangta cengaacaag ggeettettt 840
   gggaaccntt gggggcctga nccccataaa gaggcnttaa gcttgggtgg aaaatgcccg 900
   aggagnggcc ttccaattgg tgccaaat
                                                                     928
   <210> 143
10 <211> 1017
   <212> DNA
   <213> Mouse
15 <400> 143
   tttttttttt aacaagettg catttaataa gtctgaaacc attctcagca catggcattg 60
   tacacgggca tctgtgcaaa cagattcatt taacaggtcg tagtttaaaa aagtcataga 120
   tactgtgagt tctgtataaa ccggtggacg gcaagttagt tccttttgat ttataaqcct 180
   caatgtcacc gcagaataaa gaatgtagcc aaagaaagca ttatcggtca ctcgtatagg 240
   acagtgttgt ttctataatt tgaagctttc tgaatggacg ggttcaggcc tgatccaacc 300
   cgtggtggng tgacaggtct cgtggcgntg ggcttctttt tctctgcagg ctttaaaatc 360
25 tggaaggaac acatgagggt ctcatccaca ctcatcatgg cgcctgcatt gtcaaactcg 420
   ccacagtagt ngggtgcaga aaacagagtg actaactgcc tctttgcaaa aaactcatag 480
   ccatcttcaa ccacctgatg ggctctacat ataagatcca aatcatgctt atggagaaat 540
   tttgcaacca cttctgcacc aaatgtgaaa ggacacttct tctgncaatt ttcaccccaq 600
   nctaagacat cttttaatcg gggtcaggac cnccaaagga tcccaaagga agaactttga 660
   tctggtacat caagttgggc ctcanaaatt cgnccggaan ctggnttcca tagaattgaa 720
   gaactggggg aanaaacctt ccatgacagg cngaaaaatc ttnttngtcc ccccaanggc 780
   ttgntaattg ggcaaggcng gttnaaaaca gtcnttgtga accgtttttc cncaqcttna 840
   aagggtggga aacttctttt tccccttcat cattaaaaaa acccnaggaa acctaatgga 900
   agcttgggcg ccaaatcggg ggtncccttt ttgggaaaaa aaggaagntt tttccgggaa 960
   acctttggat tttttagggn ccccccaagn ngggcaaaat tqqnttnccn qqqnnct
                                                                     1017
40
   <210> 144
   <211> 831
45 <212> DNA
   <213> Mouse
   <400> 144
   geogecaging tycingaaag ngagacingg egatacinca ettecteaga getingen 60
   cactactgca agaagtacaa catccagtac caggagagct tctatgcctg gagcacccca 120
   ggcgtgggca agttngtgac ttccatggct gcctcagggg gcatctatct caccctqctq 180
55 ttoctcattg agaccaacct gctgnggcga ctgagaacct tcatctgtgc cttccggagg 240
   aggnggacte tggcagaact gcagaaccgg acatcagage tgcccgagga ccangatgta 300
   getgangaga ggageegaat cetggteeet agettggaet ceatgetega cacaccactq 360
   attatcaacg agetetecaa ggngtatgae cagegageae egeteettge egnggaeagg 420
60 atctcccttg cggtccagaa aggggagtgc ttcggcctgt tgggtttcaa tggagctgga 480
   aaaaccacaa cattcaaaat gctgactggg gaggagacca tcacctcagg ggacgccttt 540
   gttggtggtt acagcatcag ttctgacatt gggaaggtgc ggcagcggat gggctactgc 600
   ccccagtttg atgcactgct tgatcacatg actggcaggg agatgctggt tatgtatgca 660
   cggctccgag gcatcccana gcggctcatc aatgcctgtg tggagaatac tctgcggggt 720
```

| aacccgcacg                                                                                                                                            | ccaacaaact                                                                                                                                                           | agtcaagact                                                                                                                                                                                                                                                    | tacagtggtg                                                                                                                                                                                                                                                                                                        | gtaacaaacg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ctggcattgc                                                                                                                                            | ctcattggaa                                                                                                                                                           | agcctgcngt                                                                                                                                                                                                                                                    | tatcttctgg                                                                                                                                                                                                                                                                                                        | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                       |                                                                                                                                                                      | •                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5   |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10  |
| е                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| tgtcccctta                                                                                                                                            | tcctttattt                                                                                                                                                           | ttnatanaat                                                                                                                                                                                                                                                    | cacaatatgt                                                                                                                                                                                                                                                                                                        | ttaagngtat                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30  |
|                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                               | 990000009                                                                                                                                                                                                                                                                                                         | ooucoucug                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       |                                                                                                                                                                      | aaaactooga                                                                                                                                                                                                                                                    | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacaaanta                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                       | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 780<br>811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35  |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35  |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35  |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| ttaaaaatga<br>ngccccttnc                                                                                                                              | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35  |
| ttaaaaatga                                                                                                                                            | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| ttaaaaatga<br>ngccccttnc                                                                                                                              | nngaaaggag                                                                                                                                                           |                                                                                                                                                                                                                                                               | gggaaaggac                                                                                                                                                                                                                                                                                                        | ccacgggnta                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| ttaaaaatga<br>ngccccttnc<br>e                                                                                                                         | nngaaaggag<br>acgcccnggg                                                                                                                                             | g .                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| ttaaaaatga ngccccttnc e ttggtaccga                                                                                                                    | nngaaaggag<br>acgccenggg                                                                                                                                             | g .                                                                                                                                                                                                                                                           | ccgccagtgt                                                                                                                                                                                                                                                                                                        | gctggaaagg                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag                                                                                                       | nngaaaggag<br>acgcccnggg<br>gctcggatcc<br>ttcttcaccg                                                                                                                 | g<br>ctagtaacgg<br>gctgagctgg                                                                                                                                                                                                                                 | ccgccagtgt<br>gtacggacat                                                                                                                                                                                                                                                                                          | gctggaaagg<br>ctcagtgacc                                                                                                                                                                                                                                                                                                                                                                                                                                         | 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg                                                                                            | nngaaaggag<br>acgccenggg<br>geteggatec<br>ttetteaceg<br>aaactgacet                                                                                                   | g<br>ctagtaacgg<br>gctgagctgg<br>caggaagaac                                                                                                                                                                                                                   | ccgccagtgt<br>gtacggacat<br>gaagcctgga                                                                                                                                                                                                                                                                            | gctggaaagg<br>ctcagtgacc<br>gacccggagt                                                                                                                                                                                                                                                                                                                                                                                                                           | 811<br>60<br>120<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact                                                                                 | nngaaaggag<br>acgccenggg<br>geteggatee<br>ttetteaceg<br>aaactgacet<br>gaagtggaag                                                                                     | g<br>ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg                                                                                                                                                                                                     | ccgccagtgt<br>gtacggacat<br>gaagcctgga<br>aggccttcgt                                                                                                                                                                                                                                                              | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg                                                                                                                                                                                                                                                                                                                                                                                                             | 811<br>60<br>120<br>180<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt                                                                      | nngaaaggag acgcccnggg  gctcggatcc ttcttcaccg aaactgacct gaagtggaag gcaggcgggg                                                                                        | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt                                                                                                                                                                                            | ccgccagtgt<br>gtacggacat<br>gaagcctgga<br>aggccttcgt<br>actttggtac                                                                                                                                                                                                                                                | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac                                                                                                                                                                                                                                                                                                                                                                                               | 811<br>60<br>120<br>180<br>240<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc                                                           | nngaaaggag acgcccnggg  gctcggatcc ttcttcaccg aaactgacct gaagtggaag gcaggcgggg gcctggtcac                                                                             | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag                                                                                                                                                                              | ccgccagtgt<br>gtacggacat<br>gaagcctgga<br>aggccttcgt<br>actttggtac<br>tccagccgga                                                                                                                                                                                                                                  | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac                                                                                                                                                                                                                                                                                                                                                                                 | 811<br>60<br>120<br>180<br>240<br>300<br>360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40  |
| ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt                                                | nngaaaggag acgcccnggg  geteggatec ttetteaceg aaactgacet gaagtggaag geaggegggg gectggteac gaageggngg                                                                  | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg                                                                                                                                                                | ccgccagtgt<br>gtacggacat<br>gaagcctgga<br>aggccttcgt<br>actttggtac<br>tccagccgga<br>ggtgcttgac                                                                                                                                                                                                                    | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg                                                                                                                                                                                                                                                                                                                                                                   | 811<br>60<br>120<br>180<br>240<br>300<br>360<br>420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40  |
| ttaaaaatga ngcccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg                                      | nngaaaggag acgccenggg  geteggatee ttetteaceg aaactgacet gaagtggaag geaggeggg gectggteac gaageggngg ttggccgatt                                                        | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg                                                                                                                                                  | ccgccagtgt<br>gtacggacat<br>gaagcctgga<br>aggccttcgt<br>actttggtac<br>tccagccgga<br>ggtgcttgac<br>cttttgacct                                                                                                                                                                                                      | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa                                                                                                                                                                                                                                                                                                                                                     | 811<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40  |
| e  ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atggtactg gaactctgcc                        | nngaaaggag acgccenggg  geteggatec ttetteaceg aaactgacet gaagtggaag geaggeggg gectggteac gaageggngg ttggccgatt aaaaagtgtt                                             | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg                                                                                                                                                  | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct                                                                                                                                                                                                                                     | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag                                                                                                                                                                                                                                                                                                                                       | 811<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40  |
| ttaaaaatga ngcccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg gaactctgcc tagctcttaa                | nngaaaggag acgcccnggg  gctcggatcc ttcttcaccg aaactgacct gaagtggaag gcaggcgggg gcctggtcac gaagcggngg ttggccgatt aaaaagtgtt tggcctgaaa                                 | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg<br>ctggaggttt                                                                                                                                    | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct ttgtttgttt                                                                                                                                                                                                                          | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag<br>ggcattgaag                                                                                                                                                                                                                                                                                                                         | 811<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40  |
| e  ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg gaactctgcc tagctcttaa cctgcctttg | nngaaaggag<br>acgccenggg<br>geteggatee<br>ttetteaceg<br>aaactgacet<br>gaagtggaag<br>geetggteac<br>gaageggngg<br>ttggeegatt<br>aaaaagtgt<br>teggeetgaaa<br>cetecetggg | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg<br>ctggaggtt<br>cactctttgt                                                                                                                       | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct ttgtttgtt agcctagact                                                                                                                                                                                                                | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag<br>ggcattgaag                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400 |
| ttaaaaatga ngcccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg gaactctgcc tagctcttaa                | nngaaaggag<br>acgccenggg<br>geteggatee<br>ttetteaceg<br>aaactgacet<br>gaagtggaag<br>geetggteac<br>gaageggngg<br>ttggeegatt<br>aaaaagtgt<br>teggeetgaaa<br>cetecetggg | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg<br>ctggaggtt<br>cactctttgt                                                                                                                       | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct ttgtttgtt agcctagact                                                                                                                                                                                                                | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag<br>ggcattgaag                                                                                                                                                                                                                                                                                                                         | 811<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40  |
| e  ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg gaactctgcc tagctcttaa cctgcctttg | nngaaaggag<br>acgccenggg<br>geteggatee<br>ttetteaceg<br>aaactgacet<br>gaagtggaag<br>geetggteac<br>gaageggngg<br>ttggeegatt<br>aaaaagtgt<br>teggeetgaaa<br>cetecetggg | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg<br>ctggaggtt<br>cactctttgt                                                                                                                       | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct ttgtttgtt agcctagact                                                                                                                                                                                                                | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag<br>ggcattgaag                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400 |
| e  ttaaaaatga ngccccttnc  e  ttggtaccga tcgcctccag atagcacgtg cctccggact ggcttgttgt cttggtaccc acccggctgt atgggtactg gaactctgcc tagctcttaa cctgcctttg | nngaaaggag<br>acgccenggg<br>geteggatee<br>ttetteaceg<br>aaactgacet<br>gaagtggaag<br>geetggteac<br>gaageggngg<br>ttggeegatt<br>aaaaagtgt<br>teggeetgaaa<br>cetecetggg | ctagtaacgg<br>gctgagctgg<br>caggaagaac<br>aagcgtagcg<br>ctcacgtggt<br>tacccggaag<br>tgctcttagg<br>cctagacccg<br>ctggaggtt<br>cactctttgt                                                                                                                       | ccgccagtgt gtacggacat gaagccttcgt actttggtac tccagccgga ggtgcttgac cttttgacct ttgtttgtt agcctagact                                                                                                                                                                                                                | gctggaaagg<br>ctcagtgacc<br>gacccggagt<br>gtcctcgctg<br>tttggatgac<br>gtagcactac<br>gccctcattg<br>acgtgataaa<br>cggagccaag<br>ggcattgaag                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45  |
|                                                                                                                                                       | e  tgtccctta tgacactact cacanagcta gatgctctgn ggaaggaaca cacctagtca ctggcagcct aggggagctt ctggaaagaa aaagactaag ctgacttcag                                           | e  tgtcccctta tcctttattt tgacactact cagccctgna cacanagcta ggaacagagg gatgctctgn gggatgacat tgacatcca tagcagcat ttgacatcca cacctagtca tagccagtat ctggcagcct ggaagtcctc aggggagctt agngtcatat ctggaaagaa gctcaatccg aaagactaag gcctgtctgt ctgacttcag gagtggaaac | tgtccctta tcctttattt ttnatanaat tgacactact cagcctgna nnggtcctg cacanagcta ggaacagagg atgngcttca ggaaggaaca ttgacatcca aggatgcctn cacctagtca tagccagtat cttcccttca ggaaggagctt aggaggagctt agngtcatat gtaaacatag ctggaagga gctcaatccg ccaggctagc aaagactaag gcctgtctgt gtgcacagca ctgacttcag gagtggaaac ctgcatgctg | e  tgtccctta tcctttattt ttnatanaat cacaatatgt tgacactact cagcctgna nnggtcctg acaatcctgn cacanagcta ggaacagagg atgngcttca agtctggcca ggaaggaaca ttgacatcca aggatgcctn tgcagttgca cacctagtca tagccagtat cttcccttca tgaaggnatt ctggcagcct ggaagtcctc atgcagtct atgcgctcag acacctgtng aggggagctt agngtcatat gtaaacatag acaggtccct ctggaaagaa gctcaatccg ccaggctagc tgcagaacca aaagactaag gcctgtctgt gtgcacagca ggatgggnc ctgacttcag gagtggaaac ctgcatgctg actcctgcct | e  tgtccctta tcctttattt ttnatanaat cacaatatgt ttaagngtat tgacactact cagccctgna nnggtcctg acaatcctgn ggccagngac cacanagcta ggaacagagg atgngcttca agtctggcca cagctctct gatgctctgn gggatgacat ctgcctgag atcagatcag ccgggtccac ggaaggaaca ttgacatcca aggatgctn tgcagttgca ttgggagcca cacctagtca tagccagtat cttcccttca tgaaggnatt tgcaactttg ctggcagcct ggaagtcctc attgctgtn aaccctgtng gctttctcc aggggagctt agngtcatat gtaaacatag acaggtccct ggggncctc ctggaaagaa gctcaatccg ccaggctagc tgcagaacca gctgggacag aaaagactaag gcctgtctgt gtgcacagca ggatgggnc tgggactgng ctgacttcag gagtggaaac ctgcatgctg actcctgct gcaggcactg |     |

```
<212> DNA
   <213> Mouse
   <400> 147
   tttttttttt ttgtggnggc cacatagttt gttcatattt gttcaaatag aaataatcaa 60
   gaaaggcagg gtaatcccag agcccangga ggcaaaggca gggctaactt gacttcaatg 120
10 ccagtctagg ctacaaagag tgtttnaggc cattaagagc tacgagggag gccttggctc 180
   cgaaacaaac aaaaaccttc agaacacttt ttggcagagt tccggaaaca catttatcac 240
   gtaggtcaaa agcgggtcta ggaatcggcc aacagtaccc atcagtttct aacaatgagg 300
   gegtnaagea eeeetaagag eaceaeeget teacageegg gtggaeteea qqqtaqtqet 360
15 actccggctg gacttccggg tagtgaccag gcgggtacca agcttccctt cagtcatcca 420
   aagtaccaaa gtaccacgtg agccccgcct gcacaacaag ccccgcccc cacagcgagg 480
   acacgaaggc ctcgctacgc ttcttccact tcagtccgga ggtcgctgtc gcactccggg 540
   tetecagget tegttettee tgaggteagt tteaegtget atgttagete gnggneaetg 600
   agat
                                                                     604
25 <210> 148
   <211> 872
   <212> DNA
   <213> Mouse
30
   <400> 148
   ttcaccccgc ttggtaccga gctcggatcc ctagtaacgg ccgccaqtgt qctqqaaaqa 60
  tggagcctgc gtttcacaga ggggatctcc ttttcctcac gaaccgagtt gaagatccta 120
   tacgcgtggg ggagatcgtt gttttcagga tagaaggaag agagattcct atagtgcacc 180
   gagtcctgaa gatccatgaa aagcaagatg ggcatatcaa gtttttaacc aaagqagata 240
   ataatgctgt tgatgaccga ggtctctata aacaaggaca acactggctg gagaagaaag 300
40 atgttgtggg gagagcaaga gggtttgttc cttacattgg aattgtgacg atcctcatga 360
   atgactatec taaatttaag tatgeagtae tgtttetget eggtttattt gtgetggtee 420
   atcgtgagta agaagtcgga ctccctgttc ctaggaagct gctgtqcttg ttgttactga 480
   atgttggagt agatcctgat ctgtgattgc ggattttcgg aggacacaca cgttggcact 540
45 tettggtage eetggtttge attgetttgt gtttecaeae cagaggetgt gtgggegggt 600
   gcatgtgcac cgtggagtgc acacaagggg actgtcaatc acagggtttc atatgttgtc 660
   attgtcactc tttcacattt ttgtcatcag tgaatttttt atattaaaag gttgagccaa 720
  agcccccagt gtttgtattt tgaagccnag cttcacttta aaagtgccta cagagttctg 780
   taaatgaaaa cacagctctg catgagttca aacctgncgg tccttcttac agtaggaatg 840
   geneatantg aggegggeat aagtettact tt
                                                                     872
55
   <210> 149
   <211> 813
   <212> DNA
60 <213> Mouse
   <400> 149
   tttttttttt tcaatgngca aagtctttta tttaaaattt tgaaaagtta anacttatga 60
   ccgcctcaat atgngccatt cctactgtaa ggaggaacga caggtttgaa ctcatgcana 120
```

| gctgngtttt c   | atttacaga  | actntgtagg | cncttttaaa                          | gngaagcttg         | gnttcaaaat  | 180 |     |
|----------------|------------|------------|-------------------------------------|--------------------|-------------|-----|-----|
| acaaacactg g   | gggctttgg  | ctcaaccttt | taatataaaa                          | aattcactga         | tgtncaaaaa  | 240 |     |
| tgtgaaanag t   | gacaatgac  | aacatatgaa | accctgngat                          | tgacagtccc         | cttgngngca  | 300 |     |
| ctccacggng c   | acatgcacc  | cgcccacaca | gcctntggng                          | nggaaacaca         | aagcaatgca  | 360 | 5   |
| aaccagggnt a   | ccaanaagt  | gccaacgtgt | gngtcctccg                          | aaaatccgca         | atcacagatc  | 420 |     |
| aggatctact c   | caacattca  | gtaacaacaa | gcacagcagc                          | ttcctaggaa         | cagggagtcc  | 480 |     |
| gacttnttac to  |            |            |                                     |                    |             |     | 10  |
| aaatttagga t   |            |            |                                     |                    |             |     | ,   |
| tgctntcccc a   |            |            |                                     |                    |             |     |     |
| gtcatcaaca g   |            | _          |                                     |                    |             |     |     |
| atgggatctt t   |            |            | · · · · · · · · · · · · · · · · · · | •                  | -           |     | 15  |
| cgatnttccc c   |            |            |                                     |                    | ocyadadacaa | 813 |     |
| oguerre coco o | accongrac  | agggacecce | cac                                 |                    |             | 013 |     |
|                |            |            |                                     |                    |             | •   |     |
| <210> 150      |            |            |                                     |                    |             |     | 20  |
| <211> 707      |            |            |                                     |                    |             |     |     |
|                |            |            |                                     |                    |             | •   |     |
| <212> DNA      |            |            |                                     |                    |             |     |     |
| <213> Mouse    |            |            |                                     |                    |             |     | 2.5 |
| .400> 150      |            |            |                                     |                    |             |     |     |
| <400> 150      |            |            |                                     |                    |             |     |     |
| caccenettg g   |            |            |                                     |                    |             |     | 30  |
| ttgcttcttt t   |            |            | -                                   |                    | = =         |     | 30  |
| tnacgcnnaa g   |            |            | _                                   | = -                | =           |     |     |
| ngtgacngaa g   | cncnanccn  | tgggcnntac | nngtnnence                          | nnnnggntna         | tcttncaggc  | 240 |     |
| nnncnataan g   |            |            |                                     | -                  | _           |     | 35  |
| ccggatgaag g   | aggtcctct  | ccatctggct | ${\tt ctaaggntnn}$                  | gcnatattcn         | agcgtntatg  | 360 |     |
| ntgcttnagn t   | tctgatgaa  | gattntaaaa | gaagagtagc                          | tgncgagctg         | gcnttggagc  | 420 |     |
| aagcnaaaaa g   | gagncactg  | caccaganac | nccttangca                          | agcaagggga         | cctataaaag  | 480 |     |
| agaaagggct g   | catccaatg  | agcagctgac | tagagctgtc                          | ctttnggaaa         | gaatatctag  | 540 | 40  |
| cnaanaggag c   | ncatgaang  | cnaancntct | ggctcnncnn                          | ctggaagaga         | nagatngagn  | 600 |     |
| gatgccggaa n   | cagnintgnt | ggagannnga | ggctnaagtt                          | accctganaa         | catgcaagct  | 660 |     |
| ccttcaacgn to  | nattccaca  | ggtggaacat | ttttctttc                           | ctagnac            |             | 707 |     |
|                |            |            |                                     |                    |             |     | 45  |
|                |            |            |                                     |                    |             |     |     |
| <210> 151      |            |            |                                     |                    |             |     |     |
| <211> 607      |            |            |                                     |                    |             |     |     |
| <212> DNA      |            |            |                                     |                    |             |     | 50  |
| <213> Mouse    |            |            |                                     |                    |             |     |     |
|                |            | •          |                                     |                    |             |     |     |
| <400> 151      |            |            |                                     |                    |             |     | 55  |
| ttttttttt t    | tttttttnt  | tntattnttt | ttctagncta                          | aatggtacct         | ttattaggtg  | 60  |     |
| ccaggnangg a   |            |            |                                     |                    |             |     |     |
| ttgncaaaaa a   |            |            | -                                   | <del>-</del>       | -           |     |     |
| tntttnctnc n   |            | _          |                                     |                    |             |     | 60  |
| tcnaangaaa a   |            | =          |                                     | _                  | _           |     |     |
| cccatagetn to  |            |            |                                     |                    |             |     |     |
| tgtcaaagng g   |            | _          | _                                   |                    |             |     |     |
| tgccaggang c   |            |            |                                     |                    |             |     | 65  |
| -goodgang c    |            | gcanacyaa  | ~44.141111444                       | g.i.c.i.giic c cii | J.mcmenaeli | 100 |     |

```
canttggggg antgttaaca ggttaacagt gncgtttgac tctgncannn gntttaaagn 540
   angggtttta ancngntgnt natggcacgt tctgaattan tggngtccat nttccagngc 600
   ctgtntg
                                                                     607
   <210> 152
10 <211> 754
   <212> DNA
   <213> Mouse
15 <400> 152
   aaagttette teteaegtgg gttggetget tgtgegeaaa caeeeggetg teaaagagaa 60
   gggcggaaaa ctggacatgt ctgacctgaa agccgagaag ctggtgatgt tccagaggag 120
   gtactacaag cccggcctcc tgctgatgtg cttcatcctg ccacgctggt gccctgggac 180
   tgctggggcg agacttttgt aaacagcctg ttcgttagca ccttcttgcg atacactctg 240
   gngctcaaac gccacctggc tggtgaacag tgccgcgcat ctctatggat atcgccccta 300
   cgacaagaac attcantccc gggagaaata tcctgggttc cctqggtqcc qnqqqcqann 360
25 ggcttncaca actaccacca cacctttcct tcgactactc tgccanngag taccgctggc 420
   acatcaactt naccacgttc ttcatcgact gcatggctgc ctggcctgct tacgaccgna 480
   agaaagtttc taaagctact gtnttaccnn gattangaga actgnagacn ggagtcacan 540
   gagtagetga getttggget tttgagatee tgttttaaeg gtttetqnea gaganttaan 600
30 attotgtgan taactaacac tggatattgn tnaatanggg ggtaangatg ctttaacccc 660
   aatennggne egnattettt ataaaangag aaannetttt tnataceeen ttgagggggn 720
   aaaanaattt nntttnncct ngggntaanc cntg
                                                                     754
35
   <210> 153
   <211> 797
40 <212> DNA
   <213> Mouse
   <400> 153
45 ttttttttt tttttttt tttttttcc tntntgnana aaaggttcaa attnatngtn 60
   atnattaaaa gengtnggge aaaatngnan angeattnan nanggggget naaaaanana 120
   naaggnntng gggcanggta aatcctagnt aaanaaaana ttnattacct caaaanggga 180
   tcaaagnttt ntcatttnan aanaanacng nnccggaana ggtaaaaggc atnattaacn 240
   ccccganagc aanatccagn ngttagtnaa tcancanaan attaaatntt ngccaaaaaa 300
   cgttngaaan aggaantnaa aancccaang ntaagntant ntngggantc ccgtctccag 360
   ttntntaaan cenggntaaa anagnaneet taaaaanttt tttenggneg aaageeagge 420
55 ccagggcagc catgcagtcg atgaaaaacg nggggaagtn gangngccan nggnactnan 480
   tggcagagna gtcnaagggg aaggggnggg ggaagttggg gaagccntcg cccacggnac 540
   ccagggaaac caggatattn tcccggnatt gaangttctt gtcgaagggg cganatccat 600
   anagatgene ggeaetgtte necacecagg gggegttgag enccagaggg tategeaaga 660
60 aggggctanc gaacaggctg tttacaaaag tttcgcccca nnagtaccag ggcccancgt 720
   gggcaggatg aagcacatta ncaggaggcc ggcttggaaa acctcctttg gaaaatacca 780
   gttttcgggt tnnaggc
                                                                     797
```

65

| <210> 154<br><211> 686   |           |            |            |            |            |     |    |
|--------------------------|-----------|------------|------------|------------|------------|-----|----|
| <212> DNA<br><213> Mouse |           |            |            |            |            |     | 5  |
| <400> 154                |           |            |            |            |            |     |    |
| aaagcagctg a             | tctcataca | aacaccccag | acctccagca | gctccaggag | tcaaaaacac | 60  | 10 |
| cagcagtgga c             |           |            |            |            |            |     |    |
| ctgggtctgc to            |           |            |            |            |            |     |    |
| ccctggatgc a             | aggcctcat | tgctgtcgct | gtgntcttgg | tccttgttgc | aatcgtcttc | 240 | 15 |
| gccgtcaacc a             |           |            |            |            | -          |     | 15 |
| ggaaacaagg c             |           |            |            |            |            |     |    |
| ggttttaggt c             |           |            |            |            |            |     |    |
| gtccgcagca ca            |           |            |            |            |            |     | 20 |
| catagagttg a             |           |            |            |            |            |     |    |
| getgaettee to            |           |            |            |            |            |     |    |
| gcacaccaat g             |           |            | ctnggcttnt | acccagtctg | aggagccttt |     |    |
| nnnaaggngg t             | taactnctt | cccttc     |            |            |            | 686 | 25 |
|                          |           |            |            |            |            |     |    |
| <210> 155                |           |            |            |            |            |     |    |
| <211> 297                |           |            |            |            |            | •   | 30 |
| <212> DNA                |           |            |            |            |            |     |    |
| <213> Mouse              |           |            |            |            |            |     |    |
|                          |           |            |            |            |            |     |    |
| <400> 155                |           |            |            |            |            |     | 35 |
| ttttttttt t              | ttttttcc  | anaagtataa | aaagtcttna | tttcacagaa | ataagagcca | 60  |    |
| nttccatagt to            |           |            |            |            |            |     |    |
| cagaactggg ta            |           |            |            |            |            |     | 40 |
| gctgagtcct g             | gcctgagat | gactgtgatt | ctagagaggt | gagggagtca | gcttgtttca | 240 |    |
| gtagattcct g             | tagagcagn | ggctggntga | nanggtgggg | annaacnnta | ngnnccc    | 297 |    |
|                          |           |            |            |            |            |     |    |
|                          |           |            |            |            |            |     | 45 |
| <210> 156                |           |            |            |            |            |     |    |
| <211> 919                |           |            |            |            |            |     |    |
| <212> DNA                |           |            |            |            |            |     | 50 |
| <213> Mouse              |           |            |            |            |            |     |    |
| <400> 156                |           |            |            |            |            |     |    |
| aaagcgctcc to            | cgagggtcg | atcccaccac | atctcttccc | aatctctcta | gctctggagt | 60  | 55 |
| gctttcccc c              |           |            |            |            |            |     |    |
| gcagacacgc to            |           |            |            |            |            |     |    |
| acctgggtcc to            |           |            |            |            |            |     |    |
| caaagtaaaa a             |           |            |            |            |            |     | 60 |
| aagaagaaga t             |           |            |            |            |            |     |    |
| gtacggatga a             |           |            |            | •          |            |     |    |
| aattccatat t             |           |            |            |            |            |     | ,. |
| caaggactat c             |           |            |            |            |            |     | 65 |
|                          |           |            |            |            |            |     |    |

```
ctgtatatcc tctgtaccat gtcaattcga caaaacatcc agaagattct tggcctcgcc 600
   ccttcacgag ctgccaccaa gcaggctggt ggatttcttg gcccaccacc ttcqtctqqq 660
   aagttttnct tgaaggaaag cagaattctg aatttcctgn catacttttt agacattcac 720
   atcagactta ccgagcacct ggccacaatc taggtngggg taatctcact atggatatga 780
   accaatgaga accetgntta etaaagggaa aatgetatgg neaceggatg gettenttna 840.
   gtaataagtg gccccnntnt gggtaccatt tggaaggntt aatgtaaccc ccaaccatca 900
   anctttcttg cttnncttg
                                                                     919
   <210> 157
15 <211> 972
   <212> DNA
   <213> Mouse
   <400> 157
   ttttttttt tttttttt ttggtaaaag aacatgacaa aactttattt tagctttttg 60
   ggccaatgct tatccttatg ttcagattac agaaaatact ctttttaata tgcaaaaaaa 120
25 tcaaacattt ctctaactga aacatctaaa aatttggctc attgtcgaac acaaagtgac 180
   atatttggct ttttaaaaaa cacaacaact aattacagtg aagttgttac ataaactatt 240
   tttctcctaa tgttcatgga cagtctgctt ctgtgtatat ggcacataca ctgaaatact 300
   caagtgagac aagaaagatg atgtttgngg ttacataagc catccaaatg taaccagtga 360
^{30} gtgcacttat tactaaagaa gccatccgtg accatagcac tatcccatta gttaagcagt 420
   gttctcattt gatcatatcc atagctgaga aataacacaa acctagaatg tggccaggtg 480
   ctctgtaagt ctgatgtgaa tgtctaaaaa gtatgacagg aaattcagaa ttctqctttc 540
   cttcaggaaa acttcccaga cggaggtggt gggccaagaa atccaccagc ctgcttqqtq 600
   gcagctcgtg aaggggcgag gccaagaatc ttctggatgt tntgtcgaat tgacatggta 660
   cagaggatat acaggaagat gaaggagcag tccgtggngc atctccccag canggttccc 720
   gatgagaaag teentggatg taaagaacag angantgaaa gggggagent ttgeeceae 780
40 ttttaccctt caaataatgg gaattaaacc anttcccaat tanggcggta aaaaccaaaa 840
   ggcccaattg gggaaacatg ggaatttcat cccgnancca tttggncagg gcctnctaaa 900
   tggggggncc tttnaaantc ccctttcttg ggcccttnta aaacttnent tctnttgggg 960
   gggccnaccc aa
                                                                      972
45
   <210> 158
   <211> 685
   <212> DNA
   <213> Mouse
55 <400> 158
   tttcgccccc cntttggtac cgagctngga tcctntagta acggccgcca gtgtgctgga 60
   aaggegacat ggggaggege ggaggegaca ceggaagtgg etgtggteeg ggteggeeeg 120
   agggggacte agegeeegea geaaceaeee gegeggegge ggteagaget nanaeeegtg 180
60 cgggtgggcg tggcgggcgc cgggacacag ctccgactgt tcgctgtcgg cgcggggcgg 240
   cgccgcgtcg ctcgccttna ccagctgcca tgagcgagcg cctccgcccc agaaaaagga 300
   gaagaaatgg cagtgatgat gacaaccacc ctcctccca gaccaaaagg agcagtagga 360
   accccatctt ccaggactcc tgggacacag agtcttcaag cagcgacagt ggtgggagca 420
   gcagcagcag cagcatnaac agcccagaca gggccagngg gccagagagc agcctgagcc 480
```

| acaccatece eggatectge eccageace eccageegat geetgageag tetgeactat 540 geeaaggee ttaetteeac atnaaceaga ecctgaagga ggeteactt catageetae 600 ageacegagg eeggeegeeg acatgatget ecteeggeag nttettgeet tetgtgaagg 660 gaeageactg tgeagattgn atatt 685                                                                                                                                                                                   | 5  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <210> 159 <211> 610 <212> DNA <213> Mouse                                                                                                                                                                                                                                                                                                                                                                                        | 10 |
| <400> 159                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 |
| cgaacgcnag ttctagcatt taggtgacac tatagaatag ggccctctag atgcatgctc 60 gagcggccgc ccttttttt ttttttttc tgtgtgcaac ttttaaaaac aaatcattaa 120 gttgaaatat ccaatctgca cagngctgtc ccttcacaga aggcaagaaa ctgccggagg 180 agcatcatgt cggcggccgg cctcggngct gtaggctatg aaagtgagcc tccttcaggg 240 tctggttgat gtggaagtaa gggccttggc atagngcaga ctgctcaggc atcggctggg 300 gggngctggg gcaggatccg gggatggngn ggctcaggct gctctctggc ccactggccc 360 | 20 |
| tgtctgggct gnngatgctg ctgctgctgc tgctcccacc actgtcgctg cttgaagact 420 ctgtgtccca ggagtcctgg aagatggggt tcctactgct ccttttggtc tggggagagg 480 gngggntgnc atcatcactg ccattnettc tcctttntct ggggcggagg cgctcgctca 540 tggnagntgn ngaaggcnan cgannegnnn ccgcccnnnc cnncagnnaa cagnennngc 600                                                                                                                                          | 30 |
| tgngnccgnn 610                                                                                                                                                                                                                                                                                                                                                                                                                   | 35 |
| <210> 160<br><211> 684<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                                                                                                               | 40 |
| <400> 160                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| ancgacccc centingace gageteggat cetetagtaa eggeegeeag tgtgetggaa 60 aggetgattg etgaggtggg agtgggeeca negeeeggng geegeagete aegegeaace 120 tgegeeatgg eegeeteege egeeteetee gageattteg agaagetgea egagatette 180                                                                                                                                                                                                                  | 45 |
| cgcggcctcc ttgaagactt acaaggggtg ccggagcggc tgctggggac cgcggggaca 240 gaagagaaga agaagctggt cagagatttt gatgaaaagc aacaggaagc aaatgaaacg 300 ttggcagaga tggaggaaga actacgatat gcacccctga ctttccgtaa ccccatgatg 360 tctaagctgc gaaactaccg gaaggacctt gctaaactcc accgtgaggt gagaagtaca 420                                                                                                                                          | 50 |
| cctctgacag ccgcacctgg aggccgagga gacctgaagt atggcacgta tgccttggag 480 aacgagcatt tgaatcgact acagtctcaa agagcattac tcctacaagg cactgaaagc 540 ctgaaccggg ctacccaaag cattgagcgt tctcatcgga ttgccacaga aactgatcaa 600 attggtacag aaatcataga agagttgtng gagcaacgag accagttgna acgtactaag 660                                                                                                                                          | 55 |
| agcagactgg taaatacaaa tgaa 684                                                                                                                                                                                                                                                                                                                                                                                                   | 60 |
| <210> 161<br><211> 585                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 |

<213> Mouse

```
<400> 161
   tttttttttt tttttttt taagtttgaa ggagtcataa acaacattta ttaccttagt 60
   atatcatact ggtcttgttg ctgttccttc acattttcga ggttttccat tgccctccct 120
   cccatagtet gacaagacaa tacattettg aactgttage ccacagcage aacacatate 180
10 cctatgtaaa accattcatt cagagtaaga tgctggtcca caaggctttc cctacagaag 240
   ttcaatggtg tcgaaagaat ttgtaataca ccagaccgac caggatggct agctccagca 300
   agatgatgac ggagagcagc aacttgttgg ttatcacttt tctggacatt qaqcqaaqaa 360
   tetteegget tittgeteaaa titteatitg tatttaceag tetgetetta gtaegtteea 420
15 actggtctcg ttgctccccc aactcttcta tgatttctgt accaatttga tcagtttctg 480
   tggcaatccg atgagaacgc tcaatgcttt gggtagcccg gttcaggctt tcagtqcctt 540
   gtaggagtaa tgctctttga gactgtagtc gattcaaatg ctcgt
                                                                     585
20
   <210> 162
   <211> 662
25 <212> DNA
   <213> Mouse
   <400> 162
^{30} thtgacgccg ttctagcatt naggtgacac tatagaatag ggccctctag atgcatgctc 60
   gagcggccgc ccttttttt ttttttttt ttccgttata atagccatct ttatttgtaa 120
   aaatccagat ataaaacgta atctttcagt ctttccaggt tttccttttt tacaaaaaca 180
aaaaggcacg tataaacctt gcccgctgtc gtccccgtac acggngtttc tcaggcagcc 240
   ctccccccg ccccgcccc cgttacagct acatgcttca ttccaggacg tctgcatccc 300
   cacatgettt ggngetttee taccagggta gagtteegag etecaagaet tgaagtacae 360
   aaagaggggg taggggtggg tgcagngtgt ggcacaatgt tccacggcgt gcagggcagn 420
40 gggctagtag taggtctcct tctccaccca gccgccaggg cgccgcctga taatgagctt 480
   ccgcacctcg tcatacacaa agatgagaag ggagtagggg aaggcacaga accaccatgt 540
   aggtttgagg ggatacatcc taaaggctgc ccccatcccg gggcagtagg ataagaaagc 600
   agcaaggget gtetetteaa agaggeeaaa tateaagate ttggtettea tteeetgetg 660
45
   <210> 163
   <211> 681
   <212> DNA
   <213> Mouse
55
   <400> 163
   ttccancccc ccttggaccg agctcggatc ctctagtaac gtccqccagt gtgctggaaa 60
   ggggttgcca tggggattgt tggctctgat gtgtccaagc aagctgctga catgatcctt 120
60 ctggatgaca actttgcctc cattgtgact ggagtagagg aaggtcgtct gatttttgat 180
   aacttgaaga aatccatcgc ttacacccta accagtaaca ttccggaaat cacccccttc 240
   ttgatattta ttattgcaaa cattccactg cccctgggga ctgtgaccat cctctgcatt 300
   gacttgggca ctgacatggt tcctgccatc tccctggcct acgagcaagc tgagagcgac 360
   atcatgaaga ggcagcccag aaaccccaaa acggacaaac ttgtgaacga gcgtctgatc 420
```

| agcatggcct atggacagat cggtatgatc caggccctgg gaggcttctt cactgngattctgg ctgagaacgg tttcctgccc tttcacctgt tgggcatccg agaggatgaccgct gggtcaacga tgtggaggac agctacgggc agcagtggac ctacaggaagatcg tggagttcac ctgccataca gcgttctttg tcagtattgt ggtatgggccgact tggtcatctg c                                                    | gacctgg 540<br>gagcag 600<br>gngcag 660<br>681 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| <210> 164<br><211> 683<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                     | 10                                             |
| <400> 164 ttcgncccnc ttggtaccga gctcggatcc ttagtaacgg ccgccagtgt gctg tctgcggccc tcgcagaact tccagcagcg acatgttggg ccagagtatc cgga                                                                                                                                                                                      | 20                                             |
| cgacctecgt ggtccgtcgc agccactatg aggagggtcc ggggaagaat ttgccagtggaaaa caagtggcgg ttgctggcta tgatgaccgt gtactttgga tctgccgcaccttt ctttatagta agacaccagc tacttaaaaa ataaggatat ttaaccctttaaacag aatgaagaaa gtttaagagg tgatctgaaa attggattaa actc                                                                         | gggtttg 240<br>attcatc 300 25                  |
| tottatacta gaaaaaattg taaataaact aatgacataa agattcaaaa aaaaaaaaaggg cggccgctcg agcatgcatc tagagggccc tattctatag tgtcatgctagagc tcgctgatca gcctcgactg tgccttctag ttgccagcca tctggccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc cttt                                                                              | cacctaa 480<br>gttgttt 540 30<br>ccctaat 600   |
| aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg ggggaagangcagga cagcaagggn gac                                                                                                                                                                                                                                  | ggagagn 660<br>683 <sub>35</sub>               |
| <210> 165 <211> 587 <212> DNA <213> Mouse                                                                                                                                                                                                                                                                              | 40                                             |
| <400> 165 ttttttttt tttttttt gaatotttat gtoattagtt tatttacaat tttt                                                                                                                                                                                                                                                     | 45<br>Etctagt 60                               |
| ataagagttc aagagtttaa tccaattttc agatcacctc ttaaactttc ttca<br>taaagggatg aattaaatat ccttatttt taagtagctg gtgtcttact ataa<br>gtgcggcaaa cccagatcca aagtacacgg tcatcatagc cagcaaccgc cact<br>ccactgaaaa tggcaaattc ttccccggac cctcctcata gnggctgcga cgga<br>aggtcgtgaa cctccggata ctctggccca acatgtcgct gctggaagtt ctgc | aagaaag 180 50<br>ttgtttt 240<br>accacgg 300   |
| cgcagacett tecageacae tggeggeegt tactagtgga tecgageteg gtag<br>tgggtetece tatagngagt egtattaatt tegataagee agtaageagn gggt<br>gttageeaga gagetetget tatatagace teceacegta caegeetaee geeg<br>gteaatgggg eggagttgtt aegacatttt ggaaagteee gttgatt                                                                       | ccaagct 420 ss                                 |
| <210> 166                                                                                                                                                                                                                                                                                                              | 60                                             |
| <211> 684<br><212> DNA                                                                                                                                                                                                                                                                                                 | 65                                             |

<213> Mouse

```
<400> 166
   ttccgccccc ccntggtacc gagctcggat ccantagtaa cggccqccag tqtqctqqaa 60
   agatgaattc aaagagtgcc cagggtctgg ctggtcttcg aaaccttggg aacacgtgct 120
   tcatgaactc aattettcag tgcctgagca acaccegaga getgagagat tactgcctce 180
10 agaggetgta catgegggae eteggeeaca ecageagege teacaeggee eteatggaag 240
   agtttgcaaa actaatccag accatatgga cgtcgtcccc caatgatgtg gtgagcccat 300
   ctgagttcaa gacccagatc cagagatatg cgccacgctt catgggctat aatcagcagg 360
   atgeteagga atteettegt tteettetgg atggteteea caatgaggtg aaccgggtgg 420
15 cagcaaggcc taaggccagc cctgagaccc ttgatcatct ccctgatgaa gaaaaggggc 480
   gacagatgtg gaggaagtat ctggaaaggg aagacagtcg gattggggat ctcttcqttq 540
   ggcagetgaa gageteeete acatgeaceg attgtggeta etgetetaea gtettegate 600
   cettetggga tetetegttg cecategeaa agagaggtta ceetgaggtg aegttaatgg 660
   attgtatgag gctcttcacc aaac
                                                                      684
25 <210> 167
   <211> 584
   <212> DNA
   <213> Mouse
30
   <400> 167
   tttttttt ttttctgaat tttttaaaaa aaacttagga cgtggggcca ccacagggaa 60
  gagggaaggg ccgcagctcc tcaatgctac atacgggagg gtggactggc cagttcatag 120
   aagagcaaat aggcgtcgct ggtgcgcact tggctggagg acatgggtgt gacactggaa 180
   tcattgaaag tgtgccattc gcctgtaacc ggacttcggc agtaggctgt atagnggcct 240
   cccatggngg ttccggagtg attggacaca gcatacaggt tgtaaacagc atggttgqng 300
40 ttttctgaag caaattetet caagtecagg tetettagng ggaaatteac aaatgttgng 360
   agettgetgg ttegtateet ggattetgag aategettea ggtggageae caagatettt 420
   gggaacctct ggacagagaa cttttttatg catcgctttc tggctcggca gcggcagcaa 480
   gttggcttct catcaccatc caatatgtcc tctttggtga agagcctcat acaatccatt 540
45 aacgtcacct cagggtaacc tctctttgcg atgggcaacg agan
                                                                     584
   <210> 168
   <211> 735
   <212> DNA
   <213> Mouse
55
   <400> 168
   agggcgcctg agtgaaaagn gnggcaccat ggcctctgnq ctgtcctacg aaagtctggt 60
   acacgccgng gccggagccg ngggaagngn gactgccatg acagngttct tccccttgga 120
60 tactgctaga cttcggcttc aggtcgatga gaaaagaaag tcaaaaacga cgcatgcagn 180
   gctcctggag atanttaagg aagaaggcct cctggcacca taccgaggat ggtttccagc 240
   tatttccagt ctctgctgct ccaattttqt ctatttttac acttttaata qcctcaaaqc 300
   agngngggtc aaaggtcagc gttcttctac aggaaaagat ctcgnggnng ngttngtagc 360
   aggagnggtg aatgngctgc tgacgactcc gctctggnng gtaaacacca gactgaagct 420
```

| gcagggggca  | aaatttcgga               | atgaagacnt         | tataccaact  | aactanaaag | gcattatcgn | 480        |    |
|-------------|--------------------------|--------------------|-------------|------------|------------|------------|----|
| tgcattccac  | cagattattc               | gngntgaagg         | natcttgnct  | ctgnggaatg | gcaccttccc | 540        |    |
| ctcccttgct  | gatgnacttc               | aaccctgcca         | tccaattcat  | gntctatnnn | ggcttaaaac | 600        | 5  |
| ggcagcttct  | accgaaacgn               | ctgannctct         | ctttctctgc  | ntnngtccnt | catttgncgc | 660        | 3  |
| actanncaaa  | gctnattgtc               | nccacagenn         | ccctatcccc  | tncagancgg | tncctgtcna | 720        |    |
| ttctgaggcn  | tncac                    |                    |             |            |            | 735        |    |
|             |                          |                    |             |            |            |            | 10 |
|             |                          |                    |             |            |            |            |    |
| <210> 169   |                          |                    |             |            |            |            |    |
| <211> 773   |                          |                    |             |            |            |            |    |
| <212> DNA   |                          |                    |             |            |            |            | 15 |
| <213> Mouse | 2                        |                    |             |            |            |            |    |
|             |                          |                    |             |            |            |            |    |
| <400> 169   |                          |                    |             |            |            |            | 20 |
| tttttttt    | tttttcaggg               | tttcaatatt         | ttcatatcag  | tctaacctct | accccaaat  | 60         | 20 |
| acaaccaaac  | accataaaaa               | caccaaaaaa         | ccccataaag  | gtgacaggct | tagctggcta | 120        |    |
| tactccctgc  | ttagcctttg               | atgcctttac         | agccaatgac  | tggaatgtct | gnggngngga | 180        |    |
| tgggaccaac  | gggaaaggag               | aactgttcct         | cttctccctg  | tgcagcacct | gcgtctccac | 240        | 25 |
| actgtcctgn  | gggcgggcct               | ${\tt cagngcttat}$ | gtgtgctctt  | caggcccatt | acggngaagg | 300        |    |
| tagcagctgt  | cagtttctcg               | tacacaagga         | acatgagggc  | ggctgtgagc | actgtctgca | 360        |    |
| gcagcttagc  | ttccaggcct               | ttgtagagtc         | ccattattcc  | aaagcgcttg | actcgctggt | 420        |    |
| gaagaagaga  | gagaacattc               | cgaagacttc         | ccagggtcct  | gttttctggg | ttcagtctat | 480        | 30 |
| gacgtccaaa  | cctcagaatt               | gactgtaccg         | tctgcatggg  | ataggtgact | gnggnggcaa | 540        |    |
| tcgctntggc  | tattgcgcca               | atgatgaaca         | catncagaga  | agagagcttc | atccgnttct | 600        |    |
| ttagaagctg  | ccgttttaag               | ccttcataga         | acatgaattg  | natggcaggg | ttgaagacca | 660        | 35 |
| acagcaagga  | ggggaaggtg               | ccattccaca         | gagccaagat  | cccttcatct | cgaataatct | 720        |    |
| ggtgnaatgc  | atcgataatg               | cctttgtagt         | tagctggnat  | aatggcttca | att        | 773        |    |
|             |                          |                    |             |            |            |            |    |
|             |                          |                    |             |            |            |            | 40 |
| <210> 170   |                          |                    |             |            |            |            |    |
| <211> 656   |                          |                    |             |            |            |            |    |
| <212> DNA   |                          |                    |             |            |            |            | 45 |
| <213> Mouse | Э                        | •                  |             |            |            |            | 43 |
|             |                          |                    |             |            |            |            |    |
| <400> 170   |                          |                    |             |            |            |            |    |
|             | ctacggtcat               |                    |             |            |            |            | 50 |
|             | ctgccgaagc               |                    |             |            |            |            |    |
|             | agccccggct               |                    |             |            |            |            |    |
|             | agcagaagat               |                    |             |            |            |            |    |
|             | taggagggtt               |                    |             |            |            |            | 55 |
|             | taggetttga               |                    |             |            |            |            |    |
|             | tgggacagag<br>tgtactgagn |                    |             |            |            |            |    |
|             |                          |                    |             |            |            |            | 60 |
|             | agnggctgca               |                    |             |            | -          |            |    |
|             | ggttgnggag<br>nagcctncta |                    |             |            |            | 656        |    |
| 94499444    | goodineta                | aggaaagagg         | - Checageen | ccinagagee | goody      | <b>550</b> |    |
|             |                          |                    |             |            |            |            | 65 |

```
<210> 171
   <211> 755
   <212> DNA
   <213> Mouse
   <400> 171
10 ttttttttt ttttttttt ttttttttt tttttgcctc gatggcataa gtttactttg 60
   ccctgccctg ggactcatga tggatacttg cacacagaag gaagaagagc ttcccggnta 120
   tgggcaaaca ctgccacttc cctattcaaa gctggggagc tgagccaggt cagaactgag 180
   cctggttcaa agcttaangc gtaacagtcc acacactgcc tcctgatctg tttactgcaa 240
15 ggagacaatn tgccatacca cctnccctga aaaacctggt tggaattcaa gtggaaaagt 300
   atggttgttc caanggctgc agagagcgat cgagcagcga ggngngtcct tnacaccatn 360
   aactgtagag ggatgcactt ggcttcaccc ctgaagcagt ccaagtgtgt agaaactgnt 420
   ccacagagca getntgaagg nggctggcgt cctctntcct tcccggctgn ttccttcacc 480
   gtaggtaata atcgattgca gcagagaaag cagnaaaccn tncacaacct atggccccgg 540
   cetttactee ageinggaag cegaiggete egceagigat gnageeacig atgacgeign 600
   tottocagno cogactttoc coggtaagac tntaccagac nottagtaca tgaaaacatg 660
25 gegeceacaa tggcaaagtt tttggcatag gacatteete tetgneecat gnetttengg 720
   acttettttg cagatgntge eeggaaaggg enett
                                                                      755
<sup>30</sup> <210> 172
   <211> 664
   <212> DNA
  <213> Mouse
   <400> 172
   aaggccggga ggatgcggcc ggagcccgga ggntgctgct gccgccgccc gatgcggncg 60
40 aacggctgcg tnaagaacgg ngaagngagg aacggntact tgaggagcag caccgccacc 120
   gncqcqqctq ccqqccagat tcatcatqta acanaaaatq gaggactqta caaaagaccq 180
   tttaatgaag cttttgaaga aacacccatg ctgncngctg ngctcacata tgnnggctat 240
   ggcgtactca ccctctttgg atatcttcga qatttcttga ggcattgnag aattgaaaag 300
45 ngccaccatg caacagaaag anaanaacaa aaggactttg cgnccttgta tcangntttt 360
   gaaancttct atncaaggaa cctctacatg agaatcanag acaactggan tcgacctatc 420
   tgtantgngc ctgnagccaa ggtggatatc atggngagaa aatctnatga ctataactgg 480
   tcattcaagt acanannnaa tatnnttana ggtgtcataa acatggnttc ctacacctat 540
   cttgtntttg cgaggnacac tnnatcatnt cangnngccc ctnctgaant cctcacngag 600
   tattncagca gccctgngca anchetegca nnnnantnet aacethtaca ngcatneetn 660
   aact
                                                                      664
55
   <210> 173
   <211> 778
60 <212> DNA
   <213> Mouse
   <400> 173
   tttttttttt tttttttt ttagcagttt ggntttttta ctatttacaa aatgccattt 60
```

```
ggagtgaagg tggccacctt cagtagcttc agaaatgtct ttcacatgaa qngqtcactg 120
aagngnggtt cetggaattg geteagaaag gecacacact gteetgggag gaattateee 180
cctctaggga gcaccagaaa ggctcagtct tctgtctctt cataggtagt ctcatcaaag 240
ggcctgtcca gtagaggcac caqccqqnqq cgagagtact ttaqctqcag caqatcccca 300
acttcatcta tctccttcaa agcagngtca agtatttctt tggtatgagc tgctgacagg 360
caaaatetgg ctetggacte aatgateggg gtageaggaa ateceaecac aactacacea 420
atgttccgct tcagcatctc tcttccaaag gcgccaattt tggccggcat gtagagcatc 480
                                                                               10
aaaggcacca ccggggagtc ttcattgcca tagatgatga accccatttc cttcaggcgt 540
ctcctgaaat acctggngtt ctcagccaac tgctgtatac attctttgcc aagactggag 600
ccatcctgcc ccatgatgna cttcatngag gtgataatct gttccatcac aggcggtgac 660
                                                                               15
ateggaccqt ggcatacaca gcactqtqng aatqtntqcq caqqtaqnct atcnqctcct 720
tettectece natgnatece tettgaange acennagetn tittnitgaat giteceat
                                                                               20
<210> 174
<211> 779
<212> DNA
<213> Mouse
                                                                               25
<400> 174
agcggatett egggeeggga ggacattegg cetetgtgag eegcaacett geeeagegag 60
                                                                               30
eggttgggng ttegecatet taggaggatg ttetegteeg tagegeacet ggegegggeg 120
aaccccttca acgcgccaca cctgcagctg gtgcacgatg gcctgtcggg tccccqcagt 180
cccccagete egeceeggeg ttecegeeae etggeegeeg eegeegngga agagtacagt 240
tgngaatttg geteeatgaa gtattatgea etgagngget ttggnggggt ettaagttga 300
                                                                               35
gggctgacac acactgctgn ngttcccctg gacttagtaa agngccgcat gcaggnggac 360
cctcaqaaqt acaaaqqcat atttaatqqa ttctccatta cactqaaaqa aqatqqcqtt 420
cgnggttngg ctaaaggatg ggccccaact ttgatnggct attccatgca agggctctgc 480
aaattegget tttatgaagt etteaaagee ttatatagea acataettgg tgaggaaaae 540
                                                                               40
acctacctgt ggcgcacatc actgtattta gcttcttctg ccagagctga attcttcgct 600
gacattgccc tggctcctat ggaagctgct aaagttcgaa ttnaaaccca gcctgggtat 660
gccaacacct tgaggnaagc tgttcncaaa atgtataaag aggaangctt aaatgcgtct 720
                                                                               45
acaagggcga tgctcctctg tggatgagac agatccccta caccatgatg aagttcgct 779
<210> 175
                                                                               50
<211> 754
<212> DNA
<213> Mouse
                                                                               55
<400> 175
ttttttttt tttttcagga atagatgggt ttatttagca ttaagtttga aactcttgct 60
ttaagcaagg gtactacagt aattatatca ggaacagaca tttcctacac tgtcaaatat 120
                                                                               60
ataaaagttc ctttgcactt tcaacactga tcaacaagca gattcagtcc atgttacttt 180
gatgtateta eteagttaac ecaagettet tetteagaga etetggeate teagggggag 240
gagggcgagg gagcctgaag tagaccttca cagagtcgta gatgaaccac tgtagngcag 300
tcagagtgcc aatcatgatg attcgggcga agagcccctt ccacacacct ctgaagccca 360
                                                                               65
gcctctgcag gacctgagac gcggagctgc ctttctcttt attcagcaca gagaccacag 420
```

```
agtcagcagg gngggagacg atcgcacaga agactccagc tatgtaacct qccacaaatq 480
   teacaaceag etgetetgee tttgtacatt caettegggg ettgggaace acaaatttgt 540
   acaaagcttc aacagtacgt tcaaagcagg cgaacttcat catggngtac gggatctgtc 600
   teatecacag aggageaacg ceettgtaga acgeatttaa geetteetet ttateatttt 660
   gggaacaget teceteaagg tgttggcata accaggetgg gttttgaatt ennaacttta 720
   gcagettnea taggageeag ggeaatgtea gegn
                                                                     754
10
   <210> 176
   <211> 826
15 <212> DNA
   <213> Mouse
   <400> 176
   aggcactgct ggcgacatgg ccgacacgga cccgggctat ccccgctcgt ccatcgagga 60
   tgacttcaac tacggcagct gcgnggcgtc ggccagcgng cacatccqca tqqcctttct 120
   cagaaaagtc tacagtatcc tctctctgca agtcctcctg actacagnga cctctgccct 180
25 gttcctgtat ttccaagctc tgcggacatt tgtccatgaa agccctgcct taattgagga 240
   gntagctctg ggatctctgg gctngatctt tgcactgact ctgcacagac acacgcatcc 300
   tetgaacete tatetaetet ttgeatttae aetgteagaa teeetggeeg aggeagetgn 360
   ngatacette tatgatgtat atetggttet geaagegttt ataatgaeta etgeagtett 420
30 tottggottg actgcctata ototacaato aaagagagat ttoaccaaat toggagcagg 480
   gtngataget ggnnatgagg atnntgaget tggeaggatt ettgaagetg antttttaca 540
   gagagacgat ggagctggnc ttggcctctc taggcgccct cctcttctgt gggntcatca 600
   totatgatac acactogetg atgcacagac tototocoga agagtacgtg aacgctgnca 660
   tcagteteta catggatate atcaacetet tnetgeacet ggtgaagttt etggaageaq 720
   ntaaataaaa agtaaccgag cagtngttca nagacaggtc tattatgaaa ggangctttg 780
   gaattnaact ttaaatggtt aataattaaa ngccaaatgt gaactt
                                                                     826
40
   <210> 177
   <211> 775
45 <212> DNA
   <213> Mouse
   <400> 177
   tttttttttt tttttttt aaagatcaca tatgctttta atattaacat ttaagtttaa 60
   ttcaagcgtc tttcataata gaactgtctc tgaacactgc tcggntactt tttattaact 120
  gcttccagaa acttcaacag gtgcaggaag aggttgatga tatccatgta gagactgatg 180
55 gcagcgatca cgtactcttc gggagagagt ctgtgcatca gcgagtgtgt atcatagatg 240
   atgaacccac agaagaggag ggcgcctaga gaggccaaga ccagctccat cgtctcactq 300
   taaaaaaaaca gettnaagaa teetgeeaag cacaaaatee acaaaccagn aaacaaccet 360
  gctccgaatt tggtgaaatc tctctttgat tgtagagtat aggcagtcaa gccaagaaag 420
60 actgcagtag tcattataaa cgcttgcaga accagatata cntcatagaa ggtaacaaca 480
   gctgccacgg ccagggattc tgacagtgta aatgcaaaga gtagatagag gttcagagga 540
  tgcgtgtgtc tgtgcagagt cagngcaaag atcaagccca gagatcccag agcaaacacc 600
   acanttaagg cagggctttc atggacanat gtccgcagag cttggaaata caggaacagg 660
   ncagaggtca ctgtagtcag gaggacttgc agagagagga tactgtagac ttttctgaga 720
```

| aaggccatgc                    | ggatgtgcac | gctggccgac | gccacgcagc | tgccgtagtt | gaaga      | 775 |    |
|-------------------------------|------------|------------|------------|------------|------------|-----|----|
| <210> 178 <211> 803 <212> DNA |            |            |            |            |            |     | 5  |
| <213> Mouse                   | <b>:</b>   |            |            |            |            |     | 10 |
| <400> 178                     |            | •          |            |            |            |     |    |
| agaagaaaag                    | gccgaaaagg | ccaaaattaa | taaggccatt | cagaagggca | acatggaagt | 60  |    |
|                               |            |            |            |            | acttcttgag |     | 15 |
|                               |            |            |            |            | cgatgggcaa |     |    |
|                               |            |            |            |            | aaagtatgaa |     |    |
|                               | •          |            |            |            | ctctggacgt |     | 20 |
|                               |            |            |            |            | ctccccagaa |     |    |
|                               |            |            |            |            | tcaacatgga |     |    |
|                               |            |            |            |            | agcaagatga |     |    |
|                               |            |            |            |            | agtccgagat |     | 25 |
|                               |            |            |            |            | cagaatgccg |     |    |
|                               |            |            |            |            | agttttctcc |     |    |
|                               |            |            |            |            | tttatagctg |     | 30 |
|                               |            |            | ataaatctag | gaaaaaatcg | acngactnta |     | 50 |
| gccctcatgn                    | nttccgtttt | tac        |            |            |            | 803 |    |
|                               |            |            |            |            |            |     |    |
| <210> 179                     |            |            |            |            |            |     | 35 |
| <211> 815                     |            |            |            |            |            |     |    |
| <211> 015                     |            |            |            |            |            |     |    |
| <213> Mouse                   |            |            |            |            |            |     | 40 |
| 12137 110430                  | •          |            |            |            |            |     | 40 |
| <400> 179                     |            |            |            |            |            |     |    |
| aagagtattt                    | cccaccgaag | aagttgaacc | aagtgtttac | atacttgtta | gtacccattc | 60  |    |
| cttctccttt                    | cattttaatg | caccgcttgc | cagtctctgt | accatcaacc | acactaaaaa | 120 | 45 |
| taacttcagt                    | ctgataattc | taagtaaaaa | cggaatacat | gagggctaga | gttctgtcga | 180 |    |
|                               |            |            |            |            | gctataaaaa |     |    |
| tacacatcat                    | cataagctag | aaagagcttt | aaaatccagt | tagaagtgga | gaaaaactgg | 300 | 50 |
| aatttctcag                    | cgttatctgg | tgagggctgt | aggttcttag | aagaccgttc | ggcattctgg | 360 | 50 |
| cacaattctg                    | ggacatctct | ctaaaacaca | gagagcacgt | caaagggaaa | tctcggactg | 420 |    |
| gttcggccgt                    | cagacttgat | cccgaaggcg | ggccagtctc | tgggacagtt | catcttgctc | 480 |    |
| agccgaagcc                    | acgctcgttc | ccacggaacc | ggtctggccc | tgaggcagct | ccatgttgag | 540 | 55 |
| atcgaggccc                    | gcctcatctg | ccatttcctg | gagcagcata | tccacctggt | tctggggagt | 600 |    |
| ggtcagcgtc                    | gtcgtgctgc | tcattgtgtc | ttccatttgc | tgcgtctgga | cgtccagagt | 660 |    |
| ctcgaactgg                    | tgttcgaatt | tgtccatcaa | agcggagatc | ttctccagat | tcatactttt | 720 | 4. |
| caacgtcgcg                    | tccatcgact | tacaccacac | ccgccatgga | cttggtcact | ttgcccatcg | 780 | 60 |
| tcactgcagt                    | ctggacacgg | gccgccaccg | catcc      |            |            | 815 |    |
|                               |            | •          |            |            |            |     |    |
| Z210> 190                     |            |            |            |            |            |     | 65 |
| <210> 180                     |            |            |            |            |            |     |    |

```
<211> 397
   <212> DNA
   <213> Mouse
   <400> 180
   ageggaegeg cecagnagee gngetgeaga gagntneate gngegaeege tgeegeagge 60
10 gettgeteeg agtageeetg eggeteeget tetgeeatga ngateeaegg ettteaqage 120
   agccaccagg acttctcctt cgggccttgg aagctgacgg cgtccaagac cnacatcatq 180
   aagtetgegn atgtggaaaa gttagetgae gagetgnaea tgeeateeet eeetgaaatg 240
   atgttnggag acaacgttct aaggatccag catggctctg gctttgnaat agagttcaat 300
15 gctacggacg cactgagatg ngtgaacaac tatcagngca ngctcaaagt agcttgngct 360
   gaagagaggc agnaaagtag ganggagggc gaacact
                                                                      397
   <210> 181
   <211> 686
   <212> DNA
25 <213> Mouse
   <400> 181
   tttttttttt tttttaaaat ggcatatgtc atatttagaa atggccaagg acacacctgn 60
  ntactentea cagggataca etaatacaat etteagatge acaeteetee teeceaeegn 120
   ccacctcttt aattttttt aaaaagnenn ttattttatt ttaattctcc acaattttta 180
   acaatgaatt atcaanataa gnaatctaac antactcaga gacaaagaca tttaaatgaa 240
   aagatttaaa aantacttgt gtgtacanac acacacactn tgttgcccaq aaactccaac 300
   taatgactaa tacaagatta attttgtagg tnacatgtna canctctccg taagtgcgaa 360
   caaacaccan aaagcccaca gccaagagcc agagtagcac atnagcatgc agtcagcatc 420
   ctatggcgnc cagcaggtcc caggcatcgg ngctcagtga cagccttaca gtcagcctcc 480
40 tcacagtgaa gacgatgctt naggccggnt gcagaccatg tcccctcatg agacccanac 540
   acatcactgc tgacgtaagc tccagagcac atctctctct gnagcaggaa cttgaaaaca 600
   gacaggataa anaggagttg tgtggaacct gcctgcagca atcttttatt ntccnttang 660
   gctacagnaa natctgcgca tangen
                                                                      686
45
   <210> 182
   <211> 272
   <212> PRT
   <213> Mouse
55 <400> 182
   Met Met Ile His Gly Phe Gln Ser Ser His Arg Asp Phe Cys Phe Gly
     1
                                        10
60 Pro Trp Lys Leu Thr Ala Ser Lys Thr His Ile Met Lys Ser Ala Asp
                20
                                    25
                                                         30
   Val Glu Lys Leu Ala Asp Glu Leu His Met Pro Ser Leu Pro Glu Met
                                40
                                                     45
```

| Met        | Phe<br>50  | Gly        | Asp        | Asn        | Val        | Leu<br>55  | Arg        | Ile        | Gln        | His        | Gly<br>60  | Ser        | Gly        | Phe        | Gly        |  |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|------------|
| Ile<br>65  | Glu        | Phe        | Asn        | Ala        | Thr<br>70  | Asp        | Ala        | Leu        | Arg        | Cys<br>75  | Val        | Asn        | Asn        | Tyr        | Gln<br>80  |  | 5          |
| Gly        | Met        | Leu        | Lys        | Val<br>85  | Ala        | Суѕ        | Ala        | Glu        | Glu<br>90  | Trp        | Gln        | Glu        | Ser        | Thr<br>95  | Arg        |  | 10         |
| Glu        | Gly        | Glu        | His<br>100 | Ser        | Lys        | Glu        | Val        | Ile<br>105 | Lys        | Pro        | Tyr        | Asp        | Trp<br>110 | Thr        | Tyr        |  | 15         |
| Thr        | Thr        | Asp<br>115 | Tyr        | Lys        | Gly        | Thr        | Leu<br>120 | Leu        | Gly        | Glu        | Ser        | Leu<br>125 | Lys        | Leu        | Lys        |  | 20         |
| Val        | Val<br>130 | Pro        | Thr        | Thr        | Asp        | His<br>135 | Ile        | Asp        | Thr        | Glu        | Lys<br>140 | Leu        | Lys        | Ala        | Arg        |  | 2.         |
| Glu<br>145 | Gln        | Ile        | Lys        | Phe        | Phe<br>150 | Glu        | Glu        | Val        | Leu        | Leu<br>155 | Phe        | Glu        | Asp        | Glu        | Leu<br>160 |  | _          |
| His        | Asp        | His        | Gly        | Val<br>165 | Ser        | Ser        | Leu        | Ser        | Val<br>170 | Lys        | Ile        | Arg        | Val        | Met<br>175 | Pro        |  | 30         |
| Ser        | Ser        | Phe        | Phe<br>180 | Leu        | Leu        | Leu        | Arg        | Phe<br>185 | Phe        | Leu        | Arg        | Ile        | Asp<br>190 | Gly        | Val        |  | 33         |
| Leu        | Ile        | Arg<br>195 | Met        | Asn        | Asp        | Thr        | Arg<br>200 | Leu        | Tyr        | His        | Glu        | Ala<br>205 | Asp        | Lys        | Thr        |  | 41         |
| Tyr        | Met<br>210 | Leu        | Arg        | Glu        | Tyr        | Thr<br>215 | Ser        | Arg        | Glu        | Ser        | Lys<br>220 | Ile        | Ser        | Ser        | Leu        |  | 4:         |
| Met<br>225 | His        | Val        | Pro        | Pro        | Ser<br>230 | Leu        | Phe        | Thr        | Glu        | Pro<br>235 | Asn        | Glu        | Ile        | Ser        | Gln<br>240 |  | 5          |
| Tyr        | Leu        | Pro        | Ile        | Lys<br>245 | Glu        | Ala        | Val        | Cys        | Glu<br>250 | Lys        | Leu        | Ile        | Phe        | Pro<br>255 | Glu        |  | <i>J</i> . |
| Arg        | Ile        | Asp        | Pro<br>260 | Asn        | Pro        | Ala        | Asp        | Ser<br>265 | Gln        | Lys        | Ser        | Thr        | Gln<br>270 | Val        | Glu        |  | 5          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  | 6          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |            |

```
<210> 183
   <211> 288
   <212> DNA
   <213> Mouse
   <400> 183
10 gggccgcagc aggcgcgagc gcccaggacc tgccagctga gccttccgcc gtcqccatqg 60
   gacagaacga nctgangggc acggccgagg acttcgccga cnanttcctt cgagtcacna 120
   agcagtacct geeteatgtg gegegeetet geetgateag caeettnetg gaggatggea 180
   teegeatgtg gnteeagagg agngageagt gtgactatat egacaceace tgqnqetgtg 240
15 nctacctgnt ggcctcatcc ttcgcgtacc tcaacctgct gcnacaat
   <210> 184
   <211> 496
   <212> DNA
   <213> Mouse
25
   <400> 184
   ttttttttt ntttttccaa agattttatc tccaattttc aggtgtctgc aaataaagtt 60
   ctcaaaacat ctgngccttt accaaggnag gggaagggag aaggacacac aaacgccggc 120
30 agnttgntga ctttgccctg aaccaggcca gggccctgcg cctcanccag ggaggnnagg 180
   natcagngng ttaccactct tttttcttct catneatgga cacaccenct gntccaagag 240
   ccaccatcag gagcaggcct ccaatcactg acatggtctg naagaagtcg tatttcagga 300
   agtnntgcnt gnatttatac accgggatng actcanangg cgtngaanna cacnctgntg 360
   ncaanncage engnntactg ngagnenena gntgeengen tnnetetaca antnnanggn 420
   nactatenne nnenennnnt nececeetnn etnnntetnn neneennnet nttentteta 480
   ncncaccatn nnnccn
                                                                      496
40
   <210> 185
   <211> 514
45 <212> DNA
   <213> Mouse
   <400> 185
   agettettea gneggnaegg ggteagegag eggntgette gtggageaga gaggtgeatn 60
   achaggited egatgaaced agagaachet ceacegtate egggeeeegg gecaacagee 120
   ccatacccac cttatccana acagccaaag gggccaatgg ggcctatggg agccccacct 180
55 cctcaggggt acccctaccc accanctcag gggtacccct atcaaggata cccanagtac 240
   ggctggcagg gnggacctca ggagcctcct aagaccacag ngtatgtggn ggaagaccaa 300
   agaagagacg acctgggccc atccacctgc ctcacagect getgnactgc tetgtgnngc 360
   tgctgcctct gggacatgct cacctgatca nctgatgagc ccaqctcttc cgcttggccg 420
60 ctctgtgcca cctccgataa gngtgccngg ccccatctct tctgatngct ataaagnggc 480
   tagetetgeg nagacacete taetttetgt ceta
                                                                      514
```

65 <210> 186

```
<211> 584
<212> DNA
<213> Mouse
                                                                                5
<400> 186
ttttttttt tttttttga ttttggacag atttattgaa acataaaggg tatgagcaga 60
gagatctagn agngtgtcac atattgccat taccttgagt gtataattta aacattataa 120
                                                                               10
atatatattt cataactaag cctttggcca aaaaagtaaa ttatttagca catttttaa 180
agatcagtaa gaaatgagtt ttgaacatta aaaagatcaa gtcactgaac taaatagcag 240
taaccetcac taatetaaaa etecatagga cagaaagtag aggtgtetge geagagetag 300
                                                                               15
ccactttata gcaatcagaa gagatggggc caggcacact tatcggaggt ggcacagagc 360
ggccaagcgg aagagctggg ctcatcaggn gatcaggtga gcatgtccca gaggcagnag 420
caacacagag cagtccagca ggctgtgagg caggtgnatg ggcccaggnc gcctcttctt 480
tgntcttcca ccacatacac tgcggtctta ggaggctcct gaggnccacc ctgccagccg 540
                                                                               20
nactgaggnt atccttgana ggggtncccc ctgaggtggt ggaa
                                                                   584
<210> 187
                                                                               25
<211> 1359
<212> DNA
<213> Mouse
                                                                               30
<400> 187
ttttatacta aaaaatgtga gtcccaaatt ccgcatttgt acaacaacga gggggagcgc 60
teagaceeet accetaaaeg ggacegeaee eccaeegaae gagaagagga gettgegete 120
                                                                               35
catccctgag ggtcaactta tggccagttc accgtaaccg ctgcagatac ctccagagta 180
gtcggatttt ggacagattt attgaaacat aaagggtatg agcagagaga tctagtagtg 240
tgtcacatat tgccattacc ttgagtgtat aatttaaaca ttataaatat atatttcata 300
actaagcett tggccaaaaa agtaaattat ttagcacatt ttttaaagat cagtaagaaa 360
                                                                               40
tgagttttga acattaaaaa gatcaagtca ctgaactaaa tagcagtaac cctcactaat 420
ctaaaactcc ataggacaga aagtagaggt gtctgcgcag agctagccac tttatagcaa 480
tcagaagaga tggggccagg cacacttatc ggaggtggca cagagcggcc aagcggaaga 540
                                                                               45
gctgggctca tcaggtgatc aggtgagcat gtcccagagg cagcagcaac acagagcagt 600
ccagcagget gtgaggcagg tggatgggcc caggtcgtct cttctttggt cttccaccac 660
atacactgtg gtcttaggag gctcctgagg tccaccctgc cagccgtact gtgggtatcc 720
ttgatagggg tacccctgag gtggtgggta ggggtacccc tgaggaggtg gggctcccat 780
                                                                               50
aggccccatt ggccccattg gctgttgtgg ataaggtggg tatggggctg ttggcccggg 840
gcccggatac ggtggagggt tctctgggtt catcgggaac ctggtgatgc acctctctgc 900
tecaegaage ageegetege tgaeecegte eegaetgaag aagaetggae eggaetaege 960
caacagegee geacetgteg egageeacta gageegeage ggegegeetg aegteaceeg 1020
                                                                               55
agectectge getggaagee eggagteace egateteeet ggeaacgege gaqqqqeqq 1080
caccaagcga gggcggtgtc atagcgcgag cccgccccca aaactctgca tcacgttggg 1140
gacttaagcc tgtcccttag ctccttgtgg tccccgatct gtatctatag tttcactccg 1200
                                                                               60
ggtccttgcg agcacccggc cccacgtcgc taggaccgga gattgggaaa aagggtaggg 1260
gggctgagga ccagcttggt acacatcatg tagggctgct gctgctgctg ctgcctgacc 1320
tetteteege tgetaggtte gggeegagge etgtteega
                                                                   1359
```

65

```
<210> 188
   <211> 104
   <212> PRT
   <213> Mouse
   <400> 188
10 Met Asn Pro Glu Asn Pro Pro Pro Tyr Pro Gly Pro Gly Pro Thr Ala
                                        10
   Pro Tyr Pro Pro Tyr Pro Gln Gln Pro Met Gly Pro Met Gly Pro Met
15
                20
                                    25
   Gly Ala Pro Pro Pro Gln Gly Tyr Pro Tyr Pro Pro Pro Gln Gly Tyr
                                40
20
   Pro Tyr Gln Gly Tyr Pro Gln Tyr Gly Trp Gln Gly Gly Pro Gln Glu
                            55
                                                 60
   Pro Pro Lys Thr Thr Val Tyr Val Glu Asp Gln Arg Asp Asp
    65
                        70
                                            75
                                                                 80
  Leu Gly Pro Ser Thr Cys Leu Thr Ala Cys Trp Thr Ala Thr Cys Cys
                    85
                                        90
                                                             95
   Cys Cys Leu Trp Asp Met Leu Thr
               100
40
   <210> 189
   <211> 855
   <212> DNA
<sup>45</sup> <213> Mouse
   <400> 189
   gtcaggcgcc cggttgcatt ccgaacaggc aatctgagac aggtgcggca agtctactgc 60
   gggctggtcc gggctcctca ggttcagacc cgaccgttat ccagtcggtt cgtggagagg 120
   agaggtgcac tttacaggtc cccgatgaac caagagaacc ctccaccata tccaggccct 180
   ggtccaacgg ccccataccc accttatcca ccacaaccaa tgggtccagg acctatgggg 240
55 ggaccctacc cacctcctca agggtacccc taccaaggat acccacagta cggctgqcag 300
   ggtggacete aggageetee taaaaceaca gtgtatgtgg tagaagacea aagaagagat 360
   gagetaggae catecacetg ceteacagee tgetggaegg etetetgttg etgetgtete 420
   tgggacatgc tcacctgacc agaccagccc agccgtcctg tcctgccagc tctgctgcca 480
60 cctctgacag gtgtgcctgc ccccatctct tctgattgct gttaacaaat gactagcttt 540
   gcacagacac ctctaccttc agcactatgg gattctagat taatgggggt tgctactgtt 600
   taattcagtg acttgatctt tttaatgtcc aaaatccatt tcttattgat ctttaaagat 660
   gtgctaaatg acttttttgg ccaaaggctt agttgtgaaa aatataattt ttaaattata 720
   cattcaaggt agtggccaaa tgtaacacat caatcatgga atgatttctc tgctaacagc 780
```

| cgcctgtatg tttcaataaa tttgtccaaa gctcaaaaaa aaaaaaaaaa                                                                                                                                                                     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 055                                                                                                                                                                                                                        | 5   |
| <210> 190                                                                                                                                                                                                                  | 10  |
| <400> 190 Met Asn Gln Glu Asn Pro Pro Pro Tyr Pro Gly Pro Gly Pro Thr Ala 1 5 10 15                                                                                                                                        | 15  |
| Pro Tyr Pro Pro Tyr Pro Pro Gln Pro Met Gly Pro Gly Pro Met Gly 20 25 30                                                                                                                                                   | 20  |
| Gly Pro Tyr Pro Pro Pro Gln Gly Tyr Pro Tyr Gln Gly Tyr Pro Gln 35 40 45                                                                                                                                                   | 2.5 |
| Tyr Gly Trp Gln Gly Pro Gln Glu Pro Pro Lys Thr Thr Val Tyr 50 55 60                                                                                                                                                       | 30  |
| Val Val Glu Asp Gln Arg Arg Asp Glu Leu Gly Pro Ser Thr Cys Leu 65 70 75 80                                                                                                                                                | 35  |
| Thr Ala Cys Trp Thr Ala Leu Cys Cys Cys Leu Trp Asp Met Leu 85 90 95                                                                                                                                                       | 33  |
| Thr                                                                                                                                                                                                                        | 40  |
| <210> 191                                                                                                                                                                                                                  | 45  |
| <211> 233<br><212> DNA<br><213> Mouse                                                                                                                                                                                      | 50  |
| <400> 191 gngtggccct gcctcgctgg ggcctgacct ggtntcccaa cctggagncc agaaggnggc 60 tttctgcgga gccgnggagg aaggacgtgn tctgcgacgg antctagcag gcaggggant 120 tgagctgggc ctggccctgg gcacagagtc acngnagcta tnganggact ccgcagatgn 180 | 55  |
| ggactcagct gaggaggng nngtggangc cgncanctna gacncnancc tcn 233                                                                                                                                                              | 60  |
| <210> 192<br><211> 748<br><212> DNA                                                                                                                                                                                        | 65  |

<213> Mouse

```
<400> 192
   ttttttttt tttaaaqtca ctcagtttat tanaaqccat qqqaaatctq aqaqaaacqt 60
   tecaageact tgntgeteet gageateaaa gatggagtgg gnggettegg cateagteee 120
   ccattggcag ccacagggcc tttgntcgng ctgcgtgaag actcanntcc tgtcctgccc 180
10 cctggacctc cacateccag geeettggga ageeetgtt tacenacaca gaettgaggt 240
   ttcctgcaga ggcccattcc acaaactggg agccctgggc cgagccgaag taccacaggg 300
   cttggacatc ctgatgtaag gccagacagc ggntcaggng gncgcgatcc cctgtcacta 360
   cactcaccag gccagcagga aacagaggag ctatatcctg gcagacctcc aaggccagca 420
15 gaggacatgc cccactgggt actaagacca cggcattgcc atggnccagt gcaggggcca 480
   gtagtgacac aaaagccagc aggggccact catccgggca cacnangqnc agcactccca 540
   atggtteteg aageegnage acagggeete tnaateetgt taeetgaagt gtetggeett 600
   ggtcctgaac ccgntgcccc atgtntgnag tcgccttana ctcagtttac ttcaatcttq 660
   genactttag gegetgteec gtgeetteta gttgtgaggn nageaetgge tteetgentt 720
   cagageagee nnnqnqeeca agnnnnet
                                                                      748
25
   <210> 193
   <211> 483
   <212> DNA
<sup>30</sup> <213> Mouse
   <400> 193
   agatggagca gngtttccaa canggacgac atnaagacct cactcaagaa agttgtgaag 60
   gagacatcgt atgagatgat gatgcagtgt gtatcgcgaa tgctggccca tcccttacac 120
   gtgatctcga tgcgatgcat ggngcagntt gnggnacggg aggccaagta cagaggngtg 180
   ctgagttcta tngggaagat cttcaaggaa gaggggctgc tqggattctt cqntqqctta 240
40 atcoctcacc teetgggega ngaggnttte ttgnggnget gtaacetget ggeecaette 300
   atnaatgcct acttggtgga cgacagcgtg agtgacaccc cagggggnct ggnaaacgac 360
   cagaatcnag gttcccagtt tagccaggcc ctggccatcc ggagctacac caagtttqcg 420
   atggngatng cagegageat getgacetae eccetttetg eteqetgnng ateteatqqc 480
   agt
                                                                      483
   <210> 194
   <211> 608
  <212> DNA
   <213> Mouse
55
   <400> 194
   ttttttttt ttttaccacc aatacattta ttcnnggaga tgggtctatc ttaccacgag 60
   gggaggacta gatgtcgntc tatgnaacct gtgcgtattc gcacccagca cagtgactga 120
60 acceteacae etggegteae eageacagae aageagatna ggnnatggte tgaggagaae 180
   atgatttcct attcaggaga aggcaccacc cttgtataag aaaattagtg ttgngaacat 240
   agcgccagnc tcccatggcc caggtgtgat ggcgcccaat ttacaaagca ggaagtgggn 300
   ngcggcggtg cttctggctg actggcagga tgagctgngc tagaggngca gggaagcctt 360
   gccactgagt gacgtttgcc tctgcagcct gcctctgcct gagtacaaga tggactccag 420
```

| tacctctagg cagnaagggn<br>caggtgacct acntccacna<br>agccagcntg gncttgnagt<br>agngctan                                       | gcccanatnt                                           | gnacagacnc                                           | atnnccaaat                                           | atggacatga                                           | 540                      | 5  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------|----|
| <210> 195<br><211> 762<br><212> DNA                                                                                       |                                                      |                                                      |                                                      |                                                      |                          | 10 |
| <213> Mouse                                                                                                               |                                                      |                                                      |                                                      |                                                      |                          | 15 |
| <pre>&lt;400&gt; 195 agggcggagg aagcggactg agatcatggc tgccgaggat ggcgggctgc tgcacgagat gcntcttcct gctctacaag</pre>        | gtggtggcga<br>tttcacgtcc<br>atcgttccgc               | ctggcgccga<br>tcctctcaac<br>ggggaccagc               | ccctgagcga<br>cctgctcctc<br>ccggtgctag               | gctagagggc<br>ctgggcctct<br>tggcgacaac               | 120<br>180<br>240        | 20 |
| gacgatgang aaccaccccg<br>tgaggcgttt ngatggngtc<br>cgacgtgacc aaaggccgca<br>aagagatgca tcaggggcct                          | aggacccgcg<br>ngttctacgg                             | cnttctcatg<br>gcctgagggg                             | gccatcaacg<br>ccntatgggg                             | gtaaggtgtt<br>tctttgccgg                             | 360<br>420               | 25 |
| ntgacgacct ttctgncctc<br>nttcactttc nagtntcntc<br>gtactcagat gatgaaganc<br>tggagcntat ctatntttgt                          | accctgcaca<br>acntgggaaa<br>anaagatgag               | gcaggaganc<br>actgctgaag<br>acagcttgga               | ctgantgact<br>gaaggggagg<br>ngantgantg               | ggnactctca<br>agcctactgt<br>nnncattcgg               | 540<br>600<br>660        | 30 |
| cnacatggng atttnnntat                                                                                                     | tanacagttt                                           | tgcncttgct                                           | ga                                                   |                                                      | 762                      | 35 |
| <210> 196<br><211> 822<br><212> DNA<br><213> Mouse                                                                        |                                                      |                                                      |                                                      |                                                      |                          | 40 |
| <400> 196                                                                                                                 |                                                      |                                                      |                                                      |                                                      |                          | 45 |
| agetegaaag egacatggeg<br>etegagetet eetaeteega<br>aggaceagee tacceaagga<br>actetggtte eaaggetgea<br>tettgggget gateeetget | agccgggtgg<br>cggtgtggta<br>tctctccact<br>gggtacttga | tcagacccgc<br>cccagcacat<br>ggaccagtga<br>atccctgctc | ttatgtgtca<br>tcacctgtca<br>gagggttgtc<br>tgnggnggac | gcatttetee<br>ccaagecace<br>agngttetge<br>tactetetgg | 120<br>180<br>240<br>300 | 50 |
| atggggacac cetgcegaag<br>ttgctgggct ttgctacttc<br>tgtggaagct ctgacctggg<br>caatgccgtt cacctcgcag                          | gctgccaggg<br>aattaccacg<br>tgcagcactt               | caggeetett<br>atgteggeat<br>tgattgtgtg               | ggcactctca<br>ctgcagagcg<br>cctccttgcc               | gctttgacct<br>gntgccatgc<br>tctgctttac               | 420<br>480<br>540        | 55 |
| tcttctaatt acatggttat ggttcgacca ttcgtgagtc cctcgcggtg agactgaaca ggagagccag ctgantgctg                                   | tttcagaatt<br>tgtgttccat<br>tttcatgagc               | tatttgttga<br>actccactga<br>tcatggtgcc               | ggaagaggtt<br>gtgtgggcac<br>tttgaccacc               | tgaggagtta<br>tagctcacag                             | 660<br>720               | 60 |
|                                                                                                                           |                                                      |                                                      |                                                      |                                                      |                          | 65 |

```
<210> 197
   <211> 227
   <212> DNA
   <213> Mouse
   <400> 197
10 agetaggate tttagettea acteetactg etnettetaa eccageagee eeggataatg 60
   cageccagga ggageteatg atcaccetga teacaggatt ggegteete acgtegagaa 120
   cctccatggg catcatcggt ggngggggcc ggtaatttng aaaacaggtg ggnttgnaac 180
   ctaatctttg cnncttaagg aatgaccggg gcttngacct ttaatna
                                                                      227
15
   <210> 198
   <211> 789
   <212> DNA
   <213> Mouse
25 <400> 198
   agetgegeee ntgtacceta ggtetagagt gnaccegeee egggaaagaa getaggeegg 60
   gteegeagea teageeatea ettegeacaa ageagegeag eteegggaee geegaggaee 120
   acageggege ggeageggeg eggegaeact cagtgeaceg tatgeceetg egeeeetgee 180
   gaggcaaccg gagcgccccg agagaccgcg ccgccgcggg gtccaggtgc agttagcgag 240
   cctagcccgc agcgcgcagt cgcgggagag cggggagegg caagcaacag ggagcgggac 300
   ggcggcgagg cgctcgcggg cccctcctgc tgcccgcgcc cqqcqagctc atgqcqqcca 360
   teegeaagaa getggnggng gngggegaeg gegegtgegg caagaegtge etgetgateq 420
   tgttcagtaa agacgaattc cccgaggtgt acgtgcccac cgtgttcgag aactatgtgg 480
   cggacatcga ggtggacggc aagcaggtgg agctggcgct gngggacacg gcaggccaqg 540
   aggactacga tegittacgg eegeteteet ateeggacae egaegteate ettatgtget 600
40 teteggtgga cageeeggae tetetegaga acateeeega gaagtgggtg eeegaggtaa 660
   agcacttctg ccccaatgtg cccatcatcc tggtggccaa caaaaaagac ctgntcagcg 720
   acnagcatgt cegaeggage tggeeegeat gaageaggag ceagtnenge aeggattgae 780
   ggncgctcc
                                                                     789
45
   <210> 199
   <211> 791
   <212> DNA
   <213> Mouse
55 <400> 199
   aggtttcctc gccgccggcc aagatgaacc gnttcttcgg aaaagcgaaa cccaaggctc 60
   cgccacctag cttgacggac tgcattggga cggnggatag cagggcagaa tccattgaca 120
   aaaagatttc ccggctggat gctgaactag tgaaatataa ggatcaaatc aagaagatga 180
60 gagagggtcc tgctaagaac atggtcaaac agaaagccct gagagtttta aagcaaaagc 240
   ggatgtatga gcaacagcga gacaacctgg cccaacagtc ctttaacatg gagcaagcta 300
   attacaccat ccagtcacta aaggacacca agaccacggt tgatqccatg aagttggqaq 360
   taaaggaaat gaagaaggca tataaggaag taaaaattga ccagattgag gacttacaag 420
```

| accagetgga  | ggatatgatg | gaagatgcaa | atgagatoca | ggaagcctg    | ggccgcagct | 480 |    |
|-------------|------------|------------|------------|--------------|------------|-----|----|
|             |            |            |            | <del>-</del> | ctgggcgatq |     |    |
|             |            |            | -          |              | cctgcaattc |     |    |
|             |            |            |            | _            | tgaatttgna |     | 5  |
|             |            |            |            |              | aaacaacang |     |    |
|             |            |            |            |              | ggnttctttc |     |    |
| ctttctttga  |            | addtagtttt | cegaretyce | aaccagacta   | ggnttette  |     |    |
| cccccccga   |            |            |            |              |            | 791 | 10 |
|             |            |            |            |              |            |     |    |
| <210> 200   |            |            |            |              |            |     |    |
| <210> 200   |            |            |            |              |            |     | 15 |
| <211> 752   |            |            |            |              |            |     | 13 |
| <212> DNA   | •          |            |            |              |            |     |    |
| <213> Mouse | !          |            |            |              |            |     |    |
| <400> 000   |            |            |            |              |            |     | 20 |
| <400> 200   |            |            |            |              |            |     |    |
|             |            |            |            | -            | nattgagtat |     |    |
| _           |            | -          |            |              | aagtcaggct |     |    |
|             |            |            |            |              | agacagttca |     | 25 |
|             |            | -          | _          |              | atcaaaagag |     |    |
| gccatgactt  |            |            |            |              |            |     |    |
| gcagtcccaa  | tctcatcaat | cacttttatc | ttatcaatgt | atcagcncac   | tgagactgta | 360 |    |
| cttacnctac  | catagaattc | agagtctcat | ctccttggtt | taatttcaga   | ttattgttaa | 420 | 30 |
| tgaatgaaaa  | caagtcatac | aaagtcaagg | gtacttttca | attagtcttt   | cctaagagaa | 480 |    |
| aaaaaaaaa   | angaatcaag | ttttagtaaa | gacagtttcc | caaaagcaat   | gaattcctta | 540 |    |
| ncggaaaaaa  | taaaaatncn | ggagcagtgt | ananagcttt | ttcttcaaag   | aaaggaaaga | 600 | 35 |
| aacctaaatc  | tggttggcag | atcgggaact | atttcctagt | cccagaatac   | ttctcttgnt | 660 | 55 |
| gtttcacatn  | acgggctgga | atgttntang | gtttacgaag | cgggaaattt   | gnggnagncc | 720 |    |
| aaattcatcc  | cccagcacgc | catncttgtt | ta         |              |            | 752 |    |
|             |            |            |            |              |            |     | 40 |
|             |            |            |            |              |            |     |    |
| <210> 201   | •          |            |            |              |            |     |    |
| <211> 1026  |            |            |            | •            |            |     |    |
| <212> DNA   |            |            |            |              |            |     | 45 |
| <213> Mouse |            |            |            |              |            |     |    |
|             |            |            |            |              |            |     |    |
| <400> 201   |            |            |            |              |            |     | 50 |
| aaanctnnat  | ctcatctaca | cnngcnntng | atccactann | aacgggncgc   | cagagacgct | 60  | 50 |
| gnaaaggtcc  |            |            |            |              |            |     |    |
| ttntanccgn  | cancntttan | nantcenten | tantnetene | ctncnnnatt   | nttatntnnt | 180 |    |
| actenennne  | tnetecetet | ntncntntct | ctncntnnnc | ctactcttcc   | tntnncccct | 240 | 55 |
|             |            |            |            |              | caaatctatn |     |    |
| tctntnnccn  | nnnenecean | nnntctnnna | contractor | tttcnntttn   | cctactccct | 360 |    |
| anttcctcnt  |            |            |            |              |            |     |    |
|             |            |            |            |              | cncnactanc |     | 60 |
|             |            |            |            |              | tentacantn |     |    |
|             |            |            |            |              | ntctnannct |     |    |
|             |            |            |            |              | catcheneth |     |    |
| tccttnncna  |            |            |            | •            |            |     | 65 |
|             |            |            |            |              |            |     |    |

```
cntattnntt tantinttic ctcntntntc nnnntctntn nnctatcacc tcttcctcna 780
   nttcnacncn thtcttncnn catctnnnta anthttctna nactctccta ttancctncc 840
   aactcccgtc ctcnttctcc cccncntncn ntcnccntcn actccttcaa tnatataatc 900
   cetneaccen nnnetntann cetentttat ntettettae caenaatcaa ntnaattett 960
   nttcnatnct nncncncctt tcaacnengc tatttcacaa ennncaenen ttennntnct 1020
   acnetn
10
   <210> 202
   <211> 1353
15 <212> DNA
   <213> Mouse
   <400> 202
   ttatnaaccn ctntcnccac gcttggaccc actancaacg gncgccagtg tgcntqgaaa 60
   gnacgaangg cttatgcgcn aggtnecacn cnnnttgggn gncnaannng nentnenaga 120
   ggnagggccn nttttnnnnc ggngnncnna nnnnaagncg aangngtcnn cntancncnn 180
25 ttnnncnccc acgcccnnnn cncnntnnan ncccnatnen ncannannet enetetnttt 240
   tneteccene neetnetten netnenttat ennennettt encetetetn nentaeneta 300
   cccttccttc ntnnncnccc connnacton concoannea ctnnnccant ccttcntnna 360
   cetateccee eteccennee teaenctaea ntetecteee introcuree etitettett 420
   ccancetett neteencent nneceeetee teetetentn tatteatnnt aenntteatt 480
   cnncnatten tttnennaec tnnnttetnn entecaeann nettatneec atetettatn 540
   nnacttetne nanteteetn nteteeteta entnnanete tennnntaen etntntetan 600
   acatetetet eteaethten eteaenetat eteteetena ntneteantn atantetece 660
   actectanne netetecece eteteantag ttanetetnt etecttenet entatagent 720
   atchcaanne teteentaen eteneetegt catetatean ceteteacet ninteanact 780
   ntcatanate netecteine teccatnath ticeacetea ethaentint nenthninet 840
40 tentatecte enateentte entneannee tetetecete teaacennte neatetecee 900
   ctettenntn nnnnteanen entenenea ttntnentee aenteacene teeetatntn 960
   ttetetnnac teanacceen accateceen anntanetne ecceteantn caaenentet 1020
   ntennactee eteteneten actetnatet netennntea nteaetntet etnntetete 1080
45 caccaccgte tacteatact thintetence etethtente concidence athetentet 1140
   catchtetea ntecetetan ntntneattt etnnteente ntttneteta eneneteeeg 1200
   nacacactne taccetecte antinetece aennetacea nenetntete etenninenn 1260
   entitactine teginaence intitute tetigitetee thateatenn etennaenen 1320
   tnttcanatc nccanntatn tctncancta ccc
                                                                     1353
55 <210> 203
   <211> 1684
   <212> DNA
   <213> Mouse
60
   <400> 203
   tacncaccnc ttgtaccggc tcggatcact aqtaacggcc gccaqngtgc tgqaaagtct 60
   ttctgtactt cctgcctggc acctgctttc cctgcctcta ctngaccaag agttacacaa 120
   gaangegtte teeceegeea geteecaett ggaagatttn acgaggngng nggeteenng 180
```

```
chtattnntt tantinttic etentninte nnnnteinin nnetateace tetteetena 780
  nttcnacncn tntcttncnn catctnnnta antnttctna nactctccta ttancctncc 840
  aactcccgtc ctcnttctcc cccncntncn ntencenten actccttcaa tnatataatc 900
  cctncaccon nnnctntann cctcntttat ntcttcttac cacnaatcaa ntnaattctt 960
  nttcnatnct nncncncctt tcaacnengc tatttcacaa ennncacnen ttennntnct 1020
  acnetn
10
  <210> 202
  <211> 1353
15 <212> DNA
   <213> Mouse
  <400> 202
   ttatnaacen etnteneeae gettggaeee actaneaaeg gnegeeagtg tgentqgaaa 60
   gnacgaangg cttatgcgcn aggtnccacn cnnnttgggn gncnaannng ncntncnaga 120
   ggnagggccn nttttnnnnc ggngnncnna nnnnaagncg aangngtcnn cntancncnn 180
25 ttnnncnccc acgcccnnnn cncnntnnan ncccnatnen ncannannet enetetnttt 240
   tneteccene neetnetten netnenttat ennennettt encetetetn nentaeneta 300
   cccttccttc ntnnncnccc ccnnnactcn ccnccannca ctnnnccant ccttcntnna 360
   cetatecece eteccennee teaenetaca ntetectece tntncennee ettettett 420
  ccancetett neteencent nneceetee teetetentn tatteatnnt aenntteatt 480
   chnchatten tttnehnace thnnttethn entecaeann nettathece atetettath 540
  nnacttetne nanteteetn nteteeteta entnnanete tennnntaen etntntetan 600
  acatetetet eteaetnten eteaenetat eteteetena ntneteantn atantetece 660
   actectanne netetecece eteteantag transfernt etecttenet entatagent 720
   atencaanne teteentaen eteneetegt catetatean ceteteacet ninteanaet 780
   ntcatanate netectetne teccatnatn ttecacetea etnaenttnt nentnntnet 840
40 tentatecte enateentte entneannee tetetecete teaacennte neatetecee 900
   ctettenntn nnnnteanen enteneneea ttntnentee aenteacene teeetatntn 960
   ttetetnnae teanaceen accateeen anntanetne ecceteantn caaenentet 1020
  ntennactee eteteneten actetnatet netennntea nteaetntet etnntetete 1080
45 caccaccgtc tactcatact tnntctcncc ctctntcntc ccncnctcnc atnctcntct 1140
  catchtetea ntecetetan ntntneattt etnnteente ntttneteta eneneteeeg 1200
  nacacactnc taccetecte antinetece aennetacea nenetntete etenninenn 1260
  entitactine teginaence intitute tetgitetee thateatenn etennaenen 1320
   tnttcanatc nccanntatn tctncancta ccc
                                                                     1353
55 <210> 203
   <211> 1684
   <212> DNA
   <213> Mouse
60
   <400> 203
   tacncacene ttgtacegge teggateact agtaaeggee geeagngtge tggaaagtet 60
   ttetgtaett cetgeetgge acetgettte cetgeeteta etngaceaag agttacaeaa 120
   gaangegtte teeceegeea geteecaett ggaagatttn aegaggngng nggeteenng 180
```

| gcgccatggc         | cacacctacg         | ctnnntgntg         | ${\tt atnnnctanc}$ | ggaggcccca | ccccctnnc  | 240  |    |
|--------------------|--------------------|--------------------|--------------------|------------|------------|------|----|
| tccttaccnc         | tcntctnnnn         | cccccccc           | cnntttcncc         | atnttcncnc | ccccctncn  | 300  |    |
| tcntcttctc         | ccctcnttct         | ncntcnccca         | ttccnnctna         | cnnncntctn | cattccnncn | 360  | ,  |
| nccctctctc         | tenenectet         | cccntctcct         | ntattctttc         | ttcaccctcn | cctccnancc | 420  | 5  |
| ntcctctctc         | ntncctantt         | cnncccctnt         | ${\tt ntccncatnc}$ | tctaactcnn | cctcacactc | 480  |    |
| tcccctcnat         | ccatcannnc         | tenetnecte         | ctntctacaa         | ntcncncncc | tcnntntcnc | 540  |    |
| nctanctcnc         | tncctctnnn         | acncncttca         | cccnntctnt         | cnnnttccct | cnactcccct | 600  | 10 |
| ctctctcctc         | cnttnctctn         | ntcnnttnct         | nccnatccnc         | cnncncccct | nantctccnn | 660  |    |
| ccnntacctt         | ccncttccca         | tectnetece         | tcnnntccca         | ntctccnatn | concettenn | 720  |    |
| ctcntcccaa         | ${\tt cnnnctattn}$ | cnnnencete         | ${\tt cnntnncttc}$ | nccttcncct | tnnattttc  | 780  |    |
| ${\tt nntntctttc}$ | cctcctncac         | ncnnctcntn         | cnnttnntnt         | cttnncncna | tncctttncc | 840  | 15 |
| ${\tt tcnnnntctc}$ | nctctccntc         | tncntcctcc         | nctctcntct         | cnnttcntca | tccncncnnc | 900  |    |
| ctncctnccc         | ncntntctct         | cnctcncnan         | contoinnet         | cttatnccnc | acantanatc | 960  |    |
| ccacacctct         | nnnnttcccn         | ccttcntcnc         | nentetneen         | ncnnnccttn | nctcttccnc | 1020 | 20 |
| ${\tt ctccnanctn}$ | actacannct         | ${\tt cnttctttcc}$ | nnatchaact         | nctcatctct | nnccctccct | 1080 | 20 |
| ${\tt cttttcntcc}$ | accttacctc         | ncccttcnct         | ttctccctnc         | taccacnnct | tnctcctncc | 1140 |    |
| ntnctnccat         | ncctntcctn         | nnannnntnn         | ctcttctcct         | ctctnctcat | acntcnnttc | 1200 |    |
| accatntcnt         | ctcttcnctt         | actcactcac         | tctnttacnt         | nntncntact | cctctctctc | 1260 | 25 |
| tntactncca         | nctctccncn         | cncttcctca         | tctccatcnt         | ccntcatcat | ntcnctnncn | 1320 |    |
| acacttctnt         | ctctntctcc         | tctancctcn         | ntctnctctc         | ncatacttcc | nttctctnct | 1380 |    |
| cnctaatccc         | ${\tt acnctntctc}$ | nnactctcnc         | tctntccnnt         | tctcctnttc | acctctatcc | 1440 |    |
| ncnnttnnnc         | cctctnactc         | nnctcnctnc         | ntcctcactn         | ctnncntctc | tenentetnn | 1500 | 30 |
| ntntccctcn         | ntncntcatc         | tccntcatna         | ccnncttacn         | ccatntaccc | tccntcctnc | 1560 |    |
| tctctcantc         | ttccccctc          | ncacanactc         | cncttnntcc         | tncnccccct | cntctntntc | 1620 |    |
| tcnntcancn         | atctctaaac         | taccnctncc         | natctcacan         | acntcctctc | tntccntctc | 1680 | 35 |
| ngnc               |                    |                    |                    |            |            | 1684 |    |
|                    |                    |                    |                    |            |            |      |    |
|                    |                    |                    |                    | •          |            |      |    |
| <210> 204          |                    |                    |                    |            |            |      | 40 |
| <211> 1455         |                    |                    |                    |            |            |      |    |
| <212> DNA          |                    |                    |                    |            |            |      |    |
| <213> Mouse        | 9                  |                    |                    |            |            |      | 45 |
|                    |                    |                    |                    |            |            |      | 45 |
| <400> 204          |                    |                    |                    |            |            |      |    |
| nnccgncccc         | cttcnaccgg         | ctcggatcca         | ctagtaacgg         | ccgccagngt | gctggaaagg | 60   |    |
|                    |                    |                    | acnatgcgcg         |            |            |      | 50 |
|                    |                    |                    | ttttgggagg         |            |            |      |    |
|                    |                    |                    | agngactngc         |            |            |      |    |
| <del>-</del>       |                    |                    | gtacctcggg         | -          |            |      |    |
|                    |                    |                    | ccattcggcc         |            |            |      | 55 |
|                    |                    |                    | aactgggcan         |            |            |      |    |
|                    |                    |                    | nagagncagg         |            |            |      |    |
|                    |                    |                    | cncncctctn         |            |            |      | 60 |
|                    |                    |                    | cctttnnccn         |            |            |      | 50 |
|                    |                    |                    | nncetntenc         |            |            |      |    |
|                    |                    |                    | ctnncncttt         |            |            |      |    |
|                    |                    |                    | tenetetene         |            |            |      | 65 |
|                    | n+n++n+na+         | an an acat an      | DEDATES            | nnctcctnct | ctnontotto |      |    |
| ntctctcntt         | nenececnee         | CHCHCCCCC          | nencencenc         | mercence   | Cenencece  | 040  |    |

```
<210> 206
<211> 731
<212> DNA
                                                                               5
<213> Mouse
<400> 206
tttccccccn tcnccggctn ggatccctng taacggccgc cagtgtgctg gaaagccgna 60
                                                                               10
agegeagage agagaggage agegggettg tegnnggngg eggnggegga ggeegeeatg 120
gatcgcgatg aggaacctct gtccgcgagg ccggcgctgg agaccgagag cctgcgattc 180
ctgcacgtga cagngggctc cctgctggcc agctatggct ggtacatcct cttcagctgc 240
                                                                               15
atcctactct acattgtcat ccagaggctc tcccttcqac tgaqggctnt qaggcagaga 300
cagetngace aageegagae tgntetggaa eetgatgttg nngttaageg geaaqagget 360
ttagcagetg etegtttgag aatgcangaa qatetaaatg eecaagtnga aaaacataag 420
gaaaaactaa gacagcttna agaagagaaa agaagacaga agattgaaat gtgggacagc 480
                                                                               20
atgcaagaag gcagaagtta caaaagaaat tcaggaaggc ctcaggaaga agatggtcct 540
ggaccttcta cttcatctgt catccccaaa ggaaaatctg acaaaaagcc tttgcnagga 600
ggnggntatn accetetgae ggntnaaggg nnntnnaece tnetnetgnn gaeetnnaen 660
canggneeca teathtghen netthnaact thnnactett tgnnngnngn nenetettnn 720
                                                                               25
cnttanconn n
                                                                  731
                                                                               30
<210> 207
<211> 1213
<212> DNA
<213> Mouse
                                                                               35
<400> 207
egececectt ggtacegget tggateeetn gtaaeggeeg eeagtgtget ggaaaggeat 60
gaccaagaag atgatggaca aggnggagtt tgtccatatg cttaatgcta caatqtqtqc 120
                                                                               40
taccaccegg accatetgeg ceateetgga gaactaceag geagagaagg geategetgn 180
gccagagaag ttgagggagt tcatgccgcc agggctccaa gagctgatcc cgnttgngaa 240
geetgnaeee attgaeeagg ageeatetaa gaageagnag aageancatg aaggeagnaa 300
                                                                               45
aaagaaagcg aaagaggtcc ccctqgagaa ccagctqcaq aqcnnqnnqq tnactqaqqc 360
ctgagcactn ccagacttac ttactaagnc tgctgngntc ccaggccttg ccctgncaca 420
gngaggccgc gnannactcc tcnncctgcc ncctctncnt nccaqctcct gccqannccn 480
netgegeega engngtaenn neeeettete etnenaenen neneetnene tnettteeen 540
                                                                               50
tetecneech enceenenne ecceetteee tteeneneee ttteeennne ntneettent 600
concident contexts continue intertains teneteent neteration 660
nennnecect ectennecte tenetteeth thenteethn nnnnethenn etetentnee 720
nnenncenet neteteette etenteteet eteentenen nnntetttet tennetetne 780
                                                                               55
thethnanen anengenen techenenet meneneteen anenanetta entetaenee 840
nnnenttete etectectee teenneneen entnteenee necennnnee netectennn 900
ecenetnana antattatet eteneeteet etenaetate ececenaeet taeceeteen 960
                                                                               60
tectnntnet eccenteetn ectetennnt nettennete etntteteae ntttnetenn 1020
ennnenette eteeneeett teeceetten eteeceneen nttteteete tetneeteac 1080
tectettete tinetectne tieteeneee teteeteeet neeteeennn tinetiteen 1140
```

65

```
contestente tetecetece tecenentte tenninetnn tettienete tettetteni 1200
   ccctccnnt ccc
                                                                     1213
5
   <210> 208
   <211> 1456
10 <212> DNA
   <213> Mouse
   <400> 208
15 connactnea caacetettt enacegegee tatneneane caectannnt anactgggae 60
   acgnacagat gncgcatgng aaaagcaact gacatacnnc cgannnacta anaccttcta 120
   gtncanccaa tttttntncc tnntnaacaa naacactcac tntttnccna ntnctactnn 180
   ntgtantona natntnnnan ottotnngnt otantanott ttnnotocan nootnotoct 240
   atnnancata tecenateth etecaetenn thtanntace caeteeteet eneceanene 300
   tttcccncta tccanacten ntctactent enetceette nnencantte nccatnttnt 360
   ctcctnatcn ntttnnntcc ctcntnccnn ntnnacncan ccttctcccc ttnttnncnn 420
25 nettnentet thnenceate ecethteeen etenettean thintatece ecinthnece 480
   nccentanna ttentenace taactacten tetettnttt entecannnn encenecece 540
   tnetetnact enteentene ettatnatnt etceatneae tnnannntee eactnnaene 600
   teattnntat atcentenne tettecacen enetnetnet acannnnete nectactete 660
   ncetttacna thetacethn ntanacthne ntennannth theattethe aanaethtet 720
   aaccccctan tetetenent tnnencetne tnnnnntant etentnatnt ttetanneet 780
   tectntenat nantteteat etaentennn ntnententt ttnnteatte etentnaate 840
   tectnatnnt aanttatent eccaanennn tnateaatnt aetnntetna neactetetn 900
   cctcctntcc nccacncnan tctactnaac nntncctcnc actntnntnt tcanttncan 960
   anathaenth nthcentate tteantetee nactetetae neactettht canateeact 1020
   teatectenn entettnate tenennntta ttancentae etetntente ntatnntnee 1080
40 ttcanttccc taccettcac tettetaenn etcenentet cetencance teacetetet 1140
   ceteteneae thinneteth nataeneent anteatenet ecaentetae ntantintin 1200
   tatacactnn acnnettcan teactnntta cateattann nteteteene tatneceaet 1260
   tantecetea etataetate tatetetean eetnattine teeteennet atetnentan 1320
45 neteteactt tteteatnat etecanentn tetnnaenea natetenten atetnatnae 1380
   teteteetnt ceateneten tetntetnea tetanentat teaeneegae tnetneetea 1440
   ntncacanat tannnn
                                                                      1456
50
   <210> 209
   <211> 427
55 <212> DNA
   <213> Mouse
   <400> 209
60 aggcaatggc ggacgtgtct gagaggacgc tgcaggtgtc cgtgctagtg gctttcgcct 60
   ctggagtggt cctgggctgg caagcgaatc ggctgcggag gcgttaccta gactggagga 120
   agcggagget geaggacaag etggcaacga etcagaaaaa getggaeetg geetgageae 180
   gegetgeage cegagteege egggttetea etecetaage ceaacgeage eeggategtg 240
   ggagccgcgc gacccaggag tcgtccttgc acggcttgca agaacatggc ttgcttcaga 300
```

| aagaaaatag ttttgtcttc tctaacaact tactttcagc ttgtcgaaga tgaaaataaa 30<br>aagcactgga gagaaataat ttcttgcact ttatgaatct atttttaaaa ţaaaaaaatt 42<br>aaacatc                                                                                                                                                                                                                                                                      | •                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <210> 210<br><211> 558<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                                                                                                           | 10                                |
| <400> 210                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                |
| tagtaacggc cgccagtgtg ctggaaaggg actttgttca gatcttttc tgatcgtgca 66 tcagctgctg gttcattata gccttctctt aagcactgaa taagacaaaa aatgaatctt 12 ggaagaacaa attcagacat catcagtaag tctttgggga cacagggaat atttgaactt 12 gatttaatct gatgtcttct acaaaacccg ctctcccgca ttacgttgct gtccccgcag 20 tcgcaggcgc ccccggcctg gctgcggaac atgttgaagt cgtgtccagt gtggtcgccc 36 tggtggaagc actccgcgca cagcgacatg caggggaga tgccgcacgt ccggcagcgg 36  | 20<br>30<br>40<br>00              |
| taggecacga agttggcogt ceagaceagg cegeagageg eegeggggte gtaggeeege 4: aeggeegege agaacteete gtageegeeg eegeeggeea gaaggeaett acaceactee 4: agggeateet eeteegeete geeegggeeg eegeegeege egeeegee                                                                                                                                                                                                                               | 30<br>40<br>58                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                |
| <210> 211<br><211> 807<br><212> DNA<br><213> Mouse                                                                                                                                                                                                                                                                                                                                                                           | 35                                |
| <400> 211                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                |
| aggegaegeg egeatggagg eeggetgagg agegeegeeg eetetetegg taaggaetgn 66 gtetgtgtee eeaggeatee tacateaate aggaagetge tgteeageea tggagggaga 12 ggagaageea geteaagagg etgaegtgga acetgtggta acageaggea eeteagaage 12 agtgeeaagg gtgettgetg gagaeeetea gaacatetet gatgtggatg eetteaaett 2 geteetggag atgaaaetga aacgaeggeg tgaaegeeee aacetteeae gtaeagngae 36 eeagetagng geegaggatg ggageagggt gtatgtggng ggeaetgete aetteagtga 36 | 0<br>20<br>30<br>40 <sup>45</sup> |
| tgatagcaag agagatgtag taaagactat ccgggaggtg caaccggatg tggtcgtggn 45<br>ggagctctgt cagtaccggg gtgtccatgc tcaagatgga cgagaggacg ctgctgcgag 45<br>aggccatgga ggtcagcctg gagaagctgc agcaggctgt caggcagaat ggnttatgtc 5                                                                                                                                                                                                          | 20<br>30<br>40                    |
| tggactcatg agatgttgct gentgnaggt gtetgeteac atcactgage agetgggeat 6 ggeceetggt gnegagttea gggaggeett caaagaggee ageaaggtae cattetgeaa 6 attecacetg ggngacegae caateceagn encetttaag aggneeattn etgeactete 7 ettetggean aaagteaage ttgnnetggn neetgngett nettgnenga eccaateann 7 nnnngnenae nnnnnnnnne ttnaant                                                                                                                | 55<br>20                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                |
| <210> 212<br><211> 672                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |

<213> Mouse

```
<400> 212
   cttgtaacgg ccgccagtgt gctggaaagt gaccggctac cagtgcagag catcccagge 60
   cccaaccttt cctggacagt tggacctctt cctgagagac cccggaacgt tttctacctt 120
   accettggga gaagageete tggetgaatg geagetgtgg atgaettaea gtttgaagaa 180
10 tttggcgatg gagctacact gttagcagca aatccagatg ctaccacgat aaacattgag 240
   gaccccagtg tatettttgg ccaccaaccc agaccccccg ggagcgtggg gcgagaagag 300
   gatgaggagc tgctggggaa caacgactct gacgagaccg agttacttgc cggtcaqaag 360
   cgaagetete cettetggae attegaatae tateagaeat tetttgatgt ggaeaettae 420
15 caggictitg acagaataaa agggicccig cigccggitc ciggaaagaa cittgigagg 480
   ctgtacatcc gcagcaatcc agatttctat ggtccctttt ggatatgtgc cacgttgqtc 540
   tttqccatag caattaqtqq qaacctttct aacttcctaa tccatctqqq agaqaagaca 600
   taccattatg tgcccgaatt ccagaaagtg tctatcgcag cgactgtcat ctatgcctat 660
   gcctggctgg tc
                                                                      672
25 <210> 213
   <211> 876
   <212> DNA
   <213> Mouse
30
   <400> 213
   cccanacete thtcgncacg ageteggate cetagtaacg geogecagtg tgctggaaag 60
   cccgtccnna gegeteegge gagetggeet tngetgeagt ngageeggge tngnactatq 120
   nagngcetgg ccatggacct gcgggtgctg ncccggqagc tqqcqctcta cctqqaqcac 180
   caggiting toggetiett caggiting gnaggetigt cantigatett aggaticage 240
   gttgcctatg cttgctacta cctgagtagc attgccaaga aaccccagtt agngatngga 300
40 ggggagagtt tcagcncgct tcctacagga ccactgtccc gnggtgacag aaacctatta 360
   cccgacggnc tggngctggg agagccgagg acagacattg ctgagaccct tnatnacttn 420
   caaacccccg gtgcaataca ggaacgaact cattaaaact gcagacggag gacagatctc 480
   actggactgg tttgataaca ataacagtgc gtactatgng gatgccagca ccagaccnta 540
  ctatcttgct cttgcctggc ctnactgnaa caagcaagga atcctacatc cttcatatga 600
   tocatotoag tgaagaattn ggatacaggt gngnggnttt taataacana ggagtagcan 660
   gagaaagtot ottgacacca coggacttac tgctgngcga acactgaaga acttggaggc 720
   cgnngtccac cacgtgcaca gcctgtaccc tggggcntcc tttnctqqca ncnqqcqtat 780
   caatggggag ggaaatgctg cttttngnan ttacttnggg ttaaaaattg ggtccaaaaa 840
   neceentett ganggentne etgenaeenn tttece
                                                                      876
55
   <210> 214
   <211> 858
   <212> DNA
<sup>60</sup> <213> Mouse
   <400> 214
   ttcgaccccc ttggtaccga gctcggatcc ctagtaacgg ccgccagtgt gctggaaagg 60
   gcgcagccgg cctagcgagg tcaacatgcc ggtcgccaga agctgggttt gtcgcaaaac 120
```

| ctatgtgacc ccacggagac ccttcgagaa gtcgcgtctc gaccaggagc taaagtt | gat 180     |
|----------------------------------------------------------------|-------------|
| tggagagtat ggactccgga acaaacgtga ggtttggagg gtcaagttta ccctgg  |             |
| gatccgtaag gcggcccggg agctgttgac gctggacgag aaggatcccc ggcgtct | gtt 300     |
| tgaaggcaat gctctcctgc ggcggcttgt tcgcattggg gtgctggacg agggcaa | 3           |
| gaagetggat tacateetgg gaetgaagat tgaggattte ttggagagge ggetgea |             |
| ccaggtcttt aagctgggcc tggccaaatc tattcaccat gcccgtgtgc tcatccg |             |
| acgtcacatt agggtccgca agcaggtggt gaacatccca tcctttattg ttcgcct |             |
| ctcgcagaag cacatcgact tctccctccg ttctccttat ggnggcggcc gtccagg | -           |
| agtgaagagg aagaatgcca agaaaggcca gggcggggct ggagctggtg atgatga |             |
| agaggattaa ttcttggctg aactggagga ttgtctagtt ttccagctga aaaataa | · ·         |
| agaattgata cttggaaaaa aaaaaaaaaa aaaaagggcn gccngctcga gcatgca |             |
|                                                                | 100         |
| agagggccct attctatagg ggcacctaaa tgctagaget tgctgacaag cettgac | -           |
| gnettetagt gnengnen                                            | 858         |
|                                                                | 20          |
|                                                                |             |
| <210> 215                                                      |             |
| <211> 1239                                                     |             |
| <212> DNA                                                      | 2.5         |
| <213> Mouse                                                    |             |
|                                                                |             |
| <400> 215                                                      | 20          |
| tnngnccccc ttntaccggc tcggatccac tagtaacggc cgccagtgtg ctggaaa |             |
| gcggctctga gcgccggagc cgccccggga catcatggcg gaggtctgcg agcccac | cccg 120    |
| cccctcggag gacgaggacg aggagcggga gccgctgctg cctcgcgttg cctgggg | ccca 180    |
| gccgcggagg gtcgcgccg ggagcgccgn gagaatgcag gcggacgagg gcgcgg   | atgt 240 35 |
| cctccgcgag cccgctaccg acgagccgcc ggcggtgtcc ggngaagggt cganctr |             |
| gagettgtee nnngagetgg atntngacee nenetaenet eteantttae nntnata | attn 360    |
| tttnncgatt cacnattntt ctccttcntg nctntncnnc cnntcnccnc cntncnc | ctct 420    |
| ntctgncntc ctnnntccct ntnntcctcc ctctnttntn tnccctcanc ccccnnr | nnnc 480 40 |
| enenetteec nenentetee ettetetene eteeneecen entnntnnet eetenne | enne 540    |
| enntenennn ntenntnetn etnecetnet ecennneten nnnnnecene eetette | entn 600    |
| teneteennn cenenteten neetneecee etneentete nennntnnne enennte | encc 660    |
| etetetecen cettetnte ttetenennt cetnetneen anthtetnee cetnace  | etcn 720 45 |
| ncentetenn thnennettt tenneetete cennnnntee titeteanee ettetni | tcct 780    |
| nnnectetnn nenetnnnte teeneteest ecenneenst ettenestnn estetet | tect 840    |
| ntetnttnte teentntent eetennenee etntteeene atetetteee titetni | tect 900    |
| ctcenttnec tneccaegte tteentnnan ceetnnnann nnnteettet ettnent | cnt 960     |
| coccetene nnnenettet nntnetenne ennnntaent nteteccene nntecet  | tttc 1020   |
| ttetnennet nnnnetennt ttenectent ennneteett teatnetete eteenne |             |
| tectenneth etetetetet atencetene intecatene netethiett enenthe |             |
| ctcctccncn cetcnnctct cnnnnnccct ctntnnnnct cntccctcat ctnctci |             |
| teettetnnn enentegten etnteentte netnnntne                     | 1239        |
|                                                                |             |
|                                                                | 60          |
| <210> 216                                                      |             |
| <211> 1261                                                     |             |
| <212> DNA                                                      |             |
| <213> Mouse                                                    | 65          |
| 7210° 11049C                                                   |             |

```
<400> 216
   cccccttctt ggtaccgagc tcggatccct agtaacggcc gccagtgtqc tqqaaaqgga 60
  gcagcaaacg gccggcggca ggcgccgcgc ggggggcggg cggcgcgqaq qcqqcqqtqq 120
   ccatggccga ggcgtcgccg cagcccggac ggtacttctg ccactgctgc tcggtagaga 180
   tegtgeegeg cetgeeggat tacatetgee caaggtgega gtetggette attgaggage 240
   ttccagaaga gaccaggaac acagagaatg gctcagcccc ctccacagcc cccaccgacc 300
10 agaaccggca gccatttgag aatgtggacc agcacctgtt cacgctgcca cagggataca 360
   gecagtttgc ctttggcate ttegaegata getttgagat teecaegtte ceteetggag 420
   eccaggeega tgatggeagg gaceetgaga geegaeggga gagagageae eagtetegge 480
   ateggtaegg ggeeeggeag eeeegtgeee geeteactge eegeegggee actggeegge 540
15 atgaaggtgt ccctacgctg gaagggatca tccagcagct cgtgaatggc atcatctctc 600
   cggctgctgt gcccagcctg ggccttggtc cctggggcgt cctgcactcg aacccaatgg 660
   actacgeetg gggggccaae ggcetggaca ceateateae gceageteet taatengttt 720
   gagaacaccc ggncccccca cttgcagaca angagaagaa ttcaggctnt tccccncggt 780
   cccagtcaca gangaacacn gtgggcttca nggcnttgag tgcccaatgg tgtnaagnaa 840
   gactatteen etgggtnana aatntgeegg caaantgeee ttgnaacene ttgtteeeng 900
   anaagetgea tegnneeent gettnganen aneatnacag ettgneeggg etgnentaag 960
25 ancestennt ggacagaaac neageseeca atsecceage tittgaceggg gaaqqtintt 1020
   cctcgccnng nettaancet tetecantte necaenattg gaaceeeca agnaaaatnt 1080
   ggngccnnct tgcnaacccc ccggggntgn gantccccnc cccggggccc aaaacgccnc 1140
   tttcccccc cngcttgggn aaaaaggttt ccctggggcc gaaacntggg ggcccanttt 1200
30 gnnnnntttn attcanggcc nettttgggg nteenggnen nteennggnn gnttttttt 1260
   n
                                                                     1261
   <210> 217
   <211> 804
   <212> DNA
40 <213> Mouse
   <400> 217
   atggcggctc tgcccttcct catcatcgag acaagcacca ttaagcctta ccgtcgaggg 60
45 ttttactgca atgacgagag catcaagtat cccctgaaag tcagtgagac tataaacgat 120
   getgngetet gngeggnggg gategteate gecateetgg egateattae aggggaatte 180
   taccggatct attacctcaa ggagaagtcc cgctccacca ctcagaaccc gtatgtggca 240
   genenenata ageaagtggn atgenteett tnngntgtge caattageaa gteetteann 300
   gncategeca aagtgteeat egggegeeta aggeeteact teetnagegt etgtgaceet 360
   gatttcagtc agatcaattg ctccgagggc tacattcaga nctacaggtg cagaggagaa 420
   gneageanag tacaggagge caggaagtee ttettetegg gecaegeete etteteeatg 480
55 ttcactatgc tgtatctggt gctctacctt caggcccgct tcacctggcg cggggcccga 540
   ctgctccgcc ccctcctgca gttcactttg ctcatgatgg ccttctacac gggattgtca 600
   egggtatetg actacaagca teatectage gatgteetgg eaggatttge eeaaggaget 660
   ctggtggcct gctgcatagt gttcttcgtg tccgacctct tcaagactaa gacgagcctc 720
60 tenetgeecg eccetgegat caggagggag atectgtete eegtggacat categacagg 780
   aacaatcacc ataacatggt gtag
                                                                     804
```

65

```
<210> 218
<211> 541
<212> DNA
                                                                                5
<213> Mouse
<400> 218
gggaagetga agcagttega tgeetaeeet aagaetetgg aggaetteeg ggteaagaee 60
                                                                               10
tgcgggggtg ccacggtgac catcgtcagt ggccttctca tgctcctgct tttcctatcg 120
gagttgcagt attatctcac tacggaggtg catcctgagc tctacgtgga caagtctcgg 180
ggggataaac tgaagatcaa catcgatgtt cttttcccgc acatgccttg ngcctacttg 240
                                                                               15
agcatcgatg ccatggacgt ggccggggag cagcagctgg atgtggaaca caacctgttc 300
aagaaacgac tagacaagga tggcgtcccc gtgagctcag aggctgaacg gcacgagctt 360
gggaaagtcg aggtgacagt gtttgacccc aactccttgg accccaatcg ctgtgagagc 420
tgctacggcg ctgagtcaga agacatcaag tgctgtaaca gttgtgaaga tgtgcgggag 480
                                                                               20
geotategee gtegaggetg ggeetteaag aacceggaca ceattgagea gtgteggega 540
g
                                                                   541
                                                                               25
<210> 219
<211> 742
<212> DNA
                                                                               30
<213> Mouse
<400> 219
cctatcacaa ttcatattta ttgccctggg ctgggctggc tgaggagagg atatgggtag 60
                                                                               35
ttgacaggct ggagggtaaa cccacaggag aagagagggc aggacaagct gtggggaagg 120
gagagageta egttgtette eetaggteaa ttttettetg gatggeeega geggagtggt 180
agatgagega gtcaatgagg ceggecantg taaacatgee eccaatgatg gegeacacae 240
ctgtcaggaa gtgggtgaaa gacctgtgtt tctccgtcag cttcaccatc attggtgaga 300
                                                                               40
geteatacag cacaaagace eeeggnagge eetggteace eaggageeea ttggeaacet 360
tetegngeet ggteaeggan aactggttag teeteageac eteceegtee acetteatgt 420
acactgnggg caccaentte acaaagtact ggaacateat ggaggettgg ggtgeagtea 480
                                                                               45
egttggtgtg gnetaggggg tteaegatte etggatagte etceeegaat gaeaggtget 540
tgatgtagtg tgncatgttg atattgtcaa ggccaaagct ntgcaagtca tgaacatgca 600
catgagactg ttggaagete ttnccagggg caaagtggaa gtttccagee acettgttga 660
cctccaagaa gccnnacacc tggcagcctt cattcttctg ctcctgcatc ttctggctga 720
                                                                               50
agccctttcg ccgacactgt tn
                                                                   742
<210> 220
                                                                               55
<211> 777
<212> DNA
<213> Mouse
                                                                               60
<400> 220
ctggaaaggg gcgttgagca gctgggaccg gagttgtgct caccggggtc gggccaggtc 60
gctgctgctc tggccatggc cgaggcacgc gcatctcgct ggtactttgg ggggctggct 120
                                                                               65
teetgeggag eegettgetg caegeaceeg etggaeetge teaaggtgea tetacagaee 180
```

```
caacaggagg tgaagctgcg catgactgga atggcactgc aggtggtgcg aactgatggc 240
   ttcctggcgc tctacaacgg cctgagtgcc tcgctgtgca ggcagatgac ctactctctg 300
  actoggttog caatotacga gaccatgogg gactacatga ccaaggacto ccaggggcct 360
  ctccccttct acaacaaggt gttgctgggc ggcatcagtg gtttaactgg aggcttcgtq 420
   gggaccccag cagatttggt caatgtcagg atgcagaacg acatgaagct gcccccgagc 480
   caacgacgca actactctca tgccctggat ggtctgtacc gtgtagcccg tgaaqaaggc 540
10 ctgaggaage tettetetgg ageaactatg gegteeagee gtggggeeet egteactgtg 600
   ggccagetgt cetgetatga ccaggecaag caactggtee teagcactgg gtacetgagt 660
   gacaacatat teacecaett tgteteeagt tteattgeeg geggatgtge cacatttetg 720
   tgccagecce tegatgtget gaagaetege etgatgaaet eeaagggega gtaecae
15
   <210> 221
   <211> 777
  <212> DNA
   <213> Mouse
25 <400> 221
   tgcagggaag acagaaaggc ctcccaggcc acttggttta ttagatcctg aagagaggtg 60
  taggcagtgc ccctgggccg ctgccacctc ctgggggagg acctgtggga ggcacagggc 120
  cgaacctcgt tttgatacac acaaccccat ttgagggaaa acaggctgct tcgaagcctg 180
  agggatggtg aggggtgatg cctgccatac aggaagccag gtcctgggag ggcacaaacg 240
   atgaatccat cactgeecca getetgeeag catgeecace tggeeetggg gaageeagge 300
  aagggagggc acaggcgtgt gagggacaca gacagttcct ggtgacggca qtagctgctq 360
  agcaggaggg ttcagcaaaa ctgaccatta gagcagccaa ggctgcatat aggaggtgcg 420
  ctcgggaacc ccaggcactt tctctggact ccacggtcat ggcttctgct ggtgatctgc 480
  actgcctgcc tgtcccctct cctgaaggca ctaccttcca gaacacagca cggtggtccc 540
  tettgtgaca aagtgettgt gtgtgtgete tagteatttg gtaageagaa getgeeacgg 600
40 gccataccct gccacactac ccaagttctg ggcnggaaac tgctccctgc acaqaggcc 660
  agegggagea ggaaacgaac teaacttege tgggettgee aggeanggea eggtageage 720
   cagggaggtt gggacagtga cancagncag gcagactttt ttgnggaata atngnac
                                                                     777
45
  <210> 222
   <211> 274
   <212> DNA
   <213> Mouse
  <400> 222
55 atgcaccacc agtctgttct gcacagcggc tactttcacc cactgcttcg gagctggcag 60
  actgctgcct ccaccgtcag tgcctccaac ctcatctatc ccatctttgt cacggatgtt 120
  cetgatgatg tecageetat egecageete ecaggagtgg ecaggtatgg egtaaaceag 180
   ctagaagaga tgctgagacc tctggtggaa gctggcctgc gctgtgtcct gatctttggc 240
  gtececagea gagtteceaa ggatgaacag gget
                                                                      274
   <210> 223
   <211> 467
```

<212> DNA <213> Mouse

5 <400> 223 ttcgcccacg ccttggtacc ggctcggatc ccttgtaacg gccgccagtg tgctggaaag 60 caaccgcaac ctgaccttga ccaagaagga acctgttggg gtctgtggta ttgtcatccc 120 ctggaactat cccttaatga tgctgtcctg gaagacagca gcctgcctgg ctgccqqgaa 180 10 caccgtnttg atcaagcctg cccaggtgac cccactcaca gccttgaagt ttgcagagct 240 gacactgaag gctggcattc ccaagggtgt ggtcaacatc ctcccaggat cnggctcgct 300 ggttggccag agactctcag accaccctga tgtgaggaaa atagggttna caggctccac 360 15 ggaggtggna aaacacatca tgaanagctg tgccctgngt aatgtnaaga aggnctncct 420 gcagctgnnn ntaaagncac ccttntcatc nntcctgctg nnncctn 467 20 <210> 224 <211> 894 <212> DNA <213> Mouse 25 <400> 224 gggggtgcgn ggnggnggcc cgtccccngc ctnccctncg ngcgccqqqt ttcqccccq 60 30 eggngtennn eccennngan tntacnnene gacgagtntg agggeegetg engtgageet 120 tgaagcctat ggcgcgggcc cngntggagc cgccgnaggt gcatatcttg ntggtantag 180 caaatattca nacnataact ttgaatgccn aagtgganaa nggttccatg tgaanagcag 240 ttgatcatgg gtnanntngg tcctganaga tgggcgagtg ccgttccgaa nggacagtcg 300 35 atggcctccg atgacctcgg ncgatcanaa agggagtcng gtttanatcc ccgaatccng 360 agttggcnga natgggcgcc ntgaggcgta caaatgcggt aacnngaccg attcctgaga 420 ancennenng agnnneggan agagntetnt tttntttgeg aagggeattn gegeeetgna 480 atggnttcag nncctanaga gggntccntg ccttgtaaag cgtcgcnqtt ccnqangnqt 540 40 ttetngtgag etetnetnng ecettgnaaa teeegtgnna nagggtgtaa attetntgte 600 negggenena aennatattn ettatgeatg atentenaan ntttaacean eetnatggee 660 atgttngcna naaattgnac ctctaangtt aaagttccnn cnattncctn nannccttnt 720 45 aanctttnnn ngnaataaat ngatttggnc ctttttaaat gggccttngg gtccngnnnc 780 eggnannttt gngntgennt eenaaaaace encatggnnt tngnaaentt eenennnee 840 continuent tentaaceta antggenete etnetenene teetteett anne 50 <210> 225 <211> 506 <212> DNA 55 <213> Mouse <400> 225 60 tgcagggaag acagaaaggc ntcccaggcc acttggttta ttagatcctg aagagaggtg 60 taggcagtgc ccctgggncg ctgccacctc ctgggggagg acctgtggga ggcacagggc 120 cgaacctcgt tttgatacac acaaccccat ttgagggaaa acaggctgct tcgaagcctg 180 agggatggng aggggtgatg cctgccatac aggaagccag gtcctgggag ggcacaaacg 240 65 atgaatccat cactgcccca gctctgccag catgcccacc tggccctggg gaagccaggc 300

| aagggagggc | acaggcgtnt | gagggacaca | gacagntnct | ggngacggna | gnatctgntg | 360 |
|------------|------------|------------|------------|------------|------------|-----|
| agcaggaggt | ttcagcanan | ctgancatta | nagcanncaa | ggctnnatat | agnangtgcn | 420 |
| ctngnnaacc | tnanncnntt | tntctgnact | nnangnnctg | ncttctgnng | nngatcngnn | 480 |
| ctnnntnctn | tnccntntnn | ntnagg     |            |            |            | 506 |

#### Patentansprüche

1. Apoptose-assoziierte Nukleinsäuren umfassend:

5

10

15

25

40

45

50

55

60

- (a) die in Tabelle 1 gezeigten Nukleinsäuren der Klone 1-124, dazu komplementäre Nukleinsäuren oder Fragmente davon,
- (b) den Sequenzen gemäß (a) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleinsäuren und
- (c) mit den Sequenzen gemäß (a) oder/und (b) unter stringenten Bedingungen hybridisierende Nukleinsäuren.
- 2. Nukleinsäuren nach Anspruch 1, dadurch gekennzeichnet, dass sie nach Expression in einer Zelle Apoptose induzieren.
- 3. Nukleinsäuren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie für ein Apoptose-assoziiertes Polypeptid codieren.
- Nukleinsäuren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie von einem eukaryontischen Organismus stammen.
  - 5. Nukleinsäuren nach Anspruch 4, dadurch gekennzeichnet, dass sie von einem Säuger stammen.
  - 6. Nukleinsäuren nach Anspruch 5, dadurch gekennzeichnet, dass sie von humanem Ursprung sind.
  - 7. Nukleinsäuren nach Anspruch 1, dadurch gekennzeichnet, dass die Teilfragmente eine Länge von mindestens 15 Nukleotiden aufweisen.
    - 8. Nukleinsäuren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie in operativer Verknüpfung mit einer Expressionkontrollsequenz sind.
    - 9. Nukleinsäuren nach Anspruch 8, dadurch gekennzeichnet, dass die Expressionkontrollsequenz eine heterologe Expressionkontrollsequenz ist.
- 10. Rekombinanter Vektor, dadurch gekennzeichnet, dass er eine Nukleinsäure nach einem der Ansprüche 1 bis 9
  - 11. Rekombinante Zelle, dadurch gekennzeichnet, dass sie mit einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder einem Vektor nach Anspruch 8 transformiert oder transfiziert ist.
  - 12. Polypeptid, dadurch gekennzeichnet, dass es von einer Nukleinsäure nach Anspruch 1 codiert ist.
- 13. Pharmazeutische Zusammensetzung umfassend eine Nukleinsäure nach einem der Ansprüche 1 bis 9, einen Vektor nach Ansprüch 10 oder ein Polypeptid nach Ansprüch 12, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger- und Hilfsstoffen.
  - 14. Verwendung einer Nukleinsäure nach einem der Ansprüche 1 bis 9, eines Vektors nach Anspruch 10, einer Zelle nach Anspruch 11 oder eines Polypeptids nach Anspruch 12 zur Herstellung eines diagnostischen oder therapeutischen Mittels.
  - 15. Verwendung nach Anspruch 14 zur Diagnose, Therapie oder Prävention von Apoptose-assoziierten Erkrankungen
  - 16. Verwendung einer Nukleinsäure nach einem der Ansprüche 1 bis 9, eines Vektors nach Anspruch 10, einer Zelle nach Anspruch 11 oder eines Polypeptids nach Anspruch 12 zur Identifizierung von Wirksubstanzen für die Therapie oder Prävention von Apoptose-assoziierten Erkrankungen.
  - 17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, dass die Identifizierung in einem Hochdurchsatz-Verfahren erfolgt.
  - 18. Verwendung nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Wirksubstanzen Signalwege aktivieren oder inhibieren, die durch die Expression der Nukleinsäure induziert werden.
  - 19. Transgenes nicht-humanes Tier,
    - (i) welches das Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen konstitutiv oder induzierbar überexprimiert,
    - (ii) welches das endogene Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen in inaktivierter Form enthält.
    - (iii) bei dem das endogene Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen vollständig oder teilweise duch ein mutiertes Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder ein mutiertes ANT-1-Gen ersetzt ist,
    - (iv) welches eine konditionale und gewebsspezifische Über- oder Unterexpression des Gens einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder des ANT-1-Gens aufweist oder
    - (v) welches einen konditionalen und gewebsspezifischen Knock-out des Gens einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder des ANT-1-Gens aufweist.
    - 20. Transgenes Tier nach Anspruch 19, dadurch gekennzeichnet, dass der endogene Promotor des Gens einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder des ANT-1-Gens eine genetische Veränderung aufweist, die zu einer veränderten Expression des Gens führt.
- 21. Transgenes Tier nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass es ein Nager, insbesondere eine Mans ist
  - 22. Verwendung eines transgenen Tiers nach einem der Ansprüche 19 bis 21 zur genetischen und/oder pharmakologischen Untersuchung von apoptotischen Prozessen, insbesondere von Krankheiten, die mit erhöhter oder ver-

minderter Apoptose assoziiert sind.

#### 23. Zellkultur

- (i) welche das Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen konstitutiv oder induzierbar überexprimiert,
- (ii) welche das endogene Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen in inaktivierter Form enthält,
- (iii) bei der das endogene Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder das ANT-1-Gen vollständig oder teilweise duch ein mutiertes Gen einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder ein mutiertes ANT-1-Gen ersetzt ist,
- (iv) welche eine konditionale und gewebsspezifische Über- oder Unterexpression des Gens einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder des ANT-1-Gens aufweist oder
- (v) welche einen konditionalen und gewebsspezifischen Knock-out des Gens einer Nukleinsäure nach einem der Ansprüche 1 bis 9 oder des ANT-1-Gens aufweist.
- 24. Zellkultur nach Anspruch 23, dadurch gekennzeichnet, dass sie aus humanen Zellen besteht.
- 25. Verwendung einer Zellkultur nach Anspruch 23 oder 24 zur genetischen und/oder pharmakologischen Untersuchung von apoptotischen Prozessen, insbesondere von Krankheiten, die mit erhöhter oder verminderter Apoptose assoziiert sind.

20

25

30

35

40

45

50

55

60

65