ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .

- ▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .
- ▶ Proof: As *S* is infinite, it is non-empty. So there exists some $x_1 \in S$.

- ▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .
- ▶ Proof: As *S* is infinite, it is non-empty. So there exists some $x_1 \in S$.
- Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.

- ▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .
- ▶ Proof: As *S* is infinite, it is non-empty. So there exists some $x_1 \in S$.
- Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.

- ▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .
- ▶ Proof: As *S* is infinite, it is non-empty. So there exists some $x_1 \in S$.
- Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.
- For every n, after choosing distinct elements x_1, x_2, \ldots, x_n in S, we can choose $x_{n+1} \in S \setminus \{x_1, x_2, \ldots, x_n\}$ in S.

- ▶ Theorem 13.1: Let S be any infinite set. Then S contains a countably infinite set, that is, there exists a subset T of S, such that T is equipotent to \mathbb{N} .
- ▶ Proof: As *S* is infinite, it is non-empty. So there exists some $x_1 \in S$.
- Now consider $S \setminus \{x_1\}$. If $S \setminus \{x_1\}$ is empty, then $S = \{x_1\}$ and this would mean that S is finite. Therefore $S \setminus \{x_1\}$ is non-empty. Choose any $x_2 \in S \setminus \{x_1\}$.
- Now we can see that $S \setminus \{x_1, x_2\}$ is non-empty.
- For every n, after choosing distinct elements $x_1, x_2, ..., x_n$ in S, we can choose $x_{n+1} \in S \setminus \{x_1, x_2, ..., x_n\}$ in S.
- Then by mathematical induction we have a sequence $\{x_1, x_2, \ldots\}$ of distinct elements in S. Clearly $T = \{x_n : n \in \mathbb{N}\}$ is equipotent with \mathbb{N} .

▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \bigcup F$ is equipotent with S.

- ▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \bigcup F$ is equipotent with S.
- ▶ Proof: This is an exercise. Here are the suggested steps:

- ▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S.
- Proof: This is an exercise. Here are the suggested steps:
- ▶ Step 1: $S \cup F = S \cup (F \setminus (S \cap F))$. Since F is finite, $F \setminus (S \cap F)$ is also finite. Note that S and $F \setminus (S \cap F)$ are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by $F \setminus (S \cap F)$.

- ▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S.
- Proof: This is an exercise. Here are the suggested steps:
- Step 1: S ∪ F = S ∪ (F \ (S ∩ F)). Since F is finite, F \ (S ∩ F) is also finite. Note that S and F \ (S ∩ F) are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by F \ (S ∩ F).
- Step 2: Using the previous theorem, choose a subset T of S, which is equipotent with \mathbb{N} .

- ▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S.
- Proof: This is an exercise. Here are the suggested steps:
- Step 1: S ∪ F = S ∪ (F \ (S ∩ F)). Since F is finite, F \ (S ∩ F) is also finite. Note that S and F \ (S ∩ F) are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by F \ (S ∩ F).
- Step 2: Using the previous theorem, choose a subset T of S, which is equipotent with \mathbb{N} .
- Step 3: Show that $T \bigcup F$ is equipotent with \mathbb{N} , and hence it is equipotent with T.

- ▶ Theorem 13.2: Let S be an infinite set and let F be a finite set. Then $S \cup F$ is equipotent with S.
- Proof: This is an exercise. Here are the suggested steps:
- Step 1: S ∪ F = S ∪ (F \ (S ∩ F)). Since F is finite, F \ (S ∩ F) is also finite. Note that S and F \ (S ∩ F) are disjoint. Consequently, it suffices to prove the Theorem when S and F are disjoint (Otherwise, we can replace F by F \ (S ∩ F).
- Step 2: Using the previous theorem, choose a subset T of S, which is equipotent with \mathbb{N} .
- Step 3: Show that $T \bigcup F$ is equipotent with \mathbb{N} , and hence it is equipotent with T.
- ► Conclude that *S* \ \ \ *F* is equipotent with *S*.

▶ Theorem 13.3: Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S.

- ▶ Theorem 13.3: Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S.
- ▶ Proof: Like before, it suffices to prove the result when C is disjoint from S.

- ▶ Theorem 13.3: Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S.
- ▶ Proof: Like before, it suffices to prove the result when C is disjoint from S.
- ▶ By Theorem 13.1, there exists a countably infinite subset *T* of *S*.
- ▶ Clearly $T \cup C$ is equipotent with T.

- ▶ Theorem 13.3: Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S.
- ▶ Proof: Like before, it suffices to prove the result when C is disjoint from S.
- ▶ By Theorem 13.1, there exists a countably infinite subset T of S.
- ▶ Clearly $T \cup C$ is equipotent with T.
- ▶ If $f: T \to T \bigcup C$ is a bijection, $\tilde{f}: S \to S \bigcup C$ defined by

$$(\tilde{f})(x) = \begin{cases} f(x) & x \in T; \\ x & x \in S \setminus T \end{cases}$$

is seen to be a bijection from S to $S \bigcup C$ and this completes the proof.

- ▶ Theorem 13.3: Let S be an uncountable set. Let C be a countable set. Then $S \cup C$ is equipotent with S.
- ▶ Proof: Like before, it suffices to prove the result when C is disjoint from S.
- ▶ By Theorem 13.1, there exists a countably infinite subset T of S.
- ▶ Clearly $T \cup C$ is equipotent with T.
- ▶ If $f: T \to T \bigcup C$ is a bijection, $\tilde{f}: S \to S \bigcup C$ defined by

$$(\tilde{f})(x) = \begin{cases} f(x) & x \in T; \\ x & x \in S \setminus T \end{cases}$$

is seen to be a bijection from S to $S \bigcup C$ and this completes the proof.

▶ Corollary 13.4: If S is an uncountable set and $T \subset S$ is countable then S is equipotent with $S \setminus T$.

► Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let B be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let 𝔻 be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

Let B_0 be the set of binary sequences which terminate with sequence of just 1's.

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let B be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- Let B_0 be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let B be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B₀ be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- ▶ Consider the map $f:[0,1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \ldots),$$

where $0.b_1b_2b_3...$ is the binary expansion of x, using the first option. We have seen that f is a bijection. Therefore [0,1) and A are equipotent.

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let B be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B₀ be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- ▶ Consider the map $f:[0,1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \ldots),$$

where $0.b_1b_2b_3...$ is the binary expansion of x, using the first option. We have seen that f is a bijection. Therefore [0,1) and A are equipotent.

Now $\mathbb{B} = A \bigcup B_0$. A is uncountable and B_0 is countable. Hence \mathbb{B} is equipotent with A.

- ▶ Theorem 13.5: The set of real numbers in [0,1) is in bijection with binary sequences.
- ▶ Proof: Let B be the set of binary sequences:

$$\mathbb{B} = \{(w_1, w_2, \dots,) : w_j \in \{0, 1\}, j \in \mathbb{N}\}.$$

- ▶ Let B₀ be the set of binary sequences which terminate with sequence of just 1's.
- ▶ Clearly B_0 is an infinite set. Since B_0 is countable union of finite sets (Why?) it is countably infinite. Take $A = \mathbb{B} \setminus B_0$.
- ▶ Consider the map $f:[0,1) \rightarrow A$ defined by

$$f(x) = (b_1, b_2, b_3, \ldots),$$

where $0.b_1b_2b_3...$ is the binary expansion of x, using the first option. We have seen that f is a bijection. Therefore [0,1) and A are equipotent.

- Now $\mathbb{B} = A \bigcup B_0$. A is uncountable and B_0 is countable. Hence \mathbb{B} is equipotent with A.

▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- Proof: (i) [0,1) is equipotent with (0,1): This is clear, as $\{0\}$ is countable and (0,1) is uncountable.

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0} is countable and (0,1) is uncountable.
- (ii) (0,1) is equipotent with [0,1]. This is clear, as $\{0,1\}$ is countable and (0,1) is uncountable.

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0} is countable and (0,1) is uncountable.
- (ii) (0,1) is equipotent with [0,1]. This is clear, as $\{0,1\}$ is countable and (0,1) is uncountable.
- ▶ (iii) [0,1] is equipotent with [a,b] for any a,b in $\mathbb R$ with a < b: Consider the map $g: [0,1] \to [a,b]$ defined by

$$g(x) = a + x(b - a), x \in [0, 1]$$

Then g is a bijection.

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0} is countable and (0,1) is uncountable.
- (ii) (0,1) is equipotent with [0,1]. This is clear, as $\{0,1\}$ is countable and (0,1) is uncountable.
- ▶ (iii) [0,1] is equipotent with [a,b] for any a,b in $\mathbb R$ with a < b: Consider the map $g: [0,1] \to [a,b]$ defined by

$$g(x) = a + x(b - a), x \in [0, 1]$$

Then g is a bijection.

 \blacktriangleright (iv) (0,1) is equipotent with $(1,\infty)$:

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0} is countable and (0,1) is uncountable.
- (ii) (0,1) is equipotent with [0,1]. This is clear, as $\{0,1\}$ is countable and (0,1) is uncountable.
- ▶ (iii) [0,1] is equipotent with [a,b] for any a,b in $\mathbb R$ with a < b: Consider the map $g: [0,1] \to [a,b]$ defined by

$$g(x) = a + x(b - a), x \in [0, 1]$$

Then g is a bijection.

- \blacktriangleright (iv) (0,1) is equipotent with $(1,\infty)$:
- Consider the map $h:(0,1)\to(1,\infty)$ defined by $h(x)=\frac{1}{x},\ x\in(0,1).$ Then it is easily seen that h is a bijection.

- ▶ Theorem 13.6: Any two sub-intervals of \mathbb{R} are equipotent.
- ▶ Proof: (i) [0,1) is equipotent with (0,1): This is clear, as {0} is countable and (0,1) is uncountable.
- (ii) (0,1) is equipotent with [0,1]. This is clear, as $\{0,1\}$ is countable and (0,1) is uncountable.
- ▶ (iii) [0,1] is equipotent with [a,b] for any a,b in $\mathbb R$ with a < b: Consider the map $g: [0,1] \to [a,b]$ defined by

$$g(x) = a + x(b - a), x \in [0, 1]$$

Then g is a bijection.

- \blacktriangleright (iv) (0,1) is equipotent with $(1,\infty)$:
- Consider the map $h:(0,1)\to(1,\infty)$ defined by $h(x)=\frac{1}{x},\ x\in(0,1).$ Then it is easily seen that h is a bijection.
- (v) It is an exercise to cover all the remaining cases.

▶ Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.

- Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0,1] \times [0,1]$ is equipotent with \mathbb{R} .

- Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0,1] \times [0,1]$ is equipotent with \mathbb{R} .
- ightharpoonup Show that the space of real valued functions on $\mathbb N$:

$$F = \{f | f : \mathbb{N} \to \mathbb{R}\}$$

is equipotent with \mathbb{R} .

- Show that $\mathbb{R} \times \mathbb{R}$ is equipotent with \mathbb{R} . More generally, show that \mathbb{R}^n is equipotent with \mathbb{R} for any $n \in \mathbb{N}$.
- ▶ Show that $[0,1] \times [0,1]$ is equipotent with \mathbb{R} .
- ightharpoonup Show that the space of real valued functions on $\mathbb N$:

$$F = \{f | f : \mathbb{N} \to \mathbb{R}\}$$

is equipotent with \mathbb{R} .

► END OF LECTURE 13