Recurrence is  $T(n) \leq T(5n) + T(n-5n) + cn$  $\frac{Cn}{T(n) \Rightarrow} \Rightarrow \frac{Cn}{T(n-In)} \xrightarrow{T(Jn-Jn)} \frac{C(n-Jn)}{T(n-N^{4})} \xrightarrow{T(n^{4})} \frac{Cn}{T(n^{4})}$ We keep opening like this. Seum in each row is cn. Let H(n) denote height of tree, then the time complenity will be  $Cn \cdot H(n)$ . Observe that H(n) = 1 + H(n-In).

we can verify that  $H(n) \leq 25n$  as below.

Assume  $H(R) \leq 2\sqrt{R} \forall R \leq n_{H}$ .

Then,

$$H^{2}(n) = \left(1 + H(n-\overline{n})\right)^{2}$$

$$\leq \left(1 + 2 \sqrt{n-\sqrt{n}}\right)^{2}$$

$$= 1 + 4(n-\overline{n}) + 4 \sqrt{n-\overline{n}}$$

$$= 4n + 4(\sqrt{n-\overline{n}} - \sqrt{n} + \frac{1}{4})$$

$$\leq 4n$$
This shows  $H(n) \leq 2\sqrt{n}$ ,
and thus time-complexity is  $O(n\overline{n})$ .

Or (a) We have  $n$  intervals  $I_{1} \dots I_{n}$ .

Task is  $I_{1} \dots I_{n} = I_{1} + I_{2} + I_{3} + I_{4} + I_{4} + I_{5} + I_{5$ 

NOTE: Internals in S need not be Disjoint!

- COMPUTE-OPT  $(J := (I_1 I_n))$ ① Let  $I_{\alpha} = [S_{\alpha}, t_{\alpha}]$  be interval with least finish time.
  - Q Z = overlap (Ix)
- 3 Let  $I_{\beta} = [s_{\beta}, t_{\beta}]$  be interval in Z with largest finish time.
- 4) Let J\* = J \ Those intervals in J whose \ Finish Time \le tp
- 5 Return & IB V COMPUTE-OPT (J\*).

## CORRECTNESS

Proof: Part 1: OPT(
$$J$$
)  $\leq$  OPT( $J$ \*) + 1

Part 2: OPT( $J$ )  $\geq$  OPT( $J$ \*) + 1

Q3:

We have n jobs  $J_1$  --  $J_n$  8. to FT.  $(J_1) \in -- \in FT(J_n)$ .

COMPUTE-OPT (Ji -- Jn)

- $\int S = \emptyset$
- $\bigcirc$   $\propto = \varnothing$
- 3 For i=1 ton:

 $\mathcal{L}(s_i \geqslant \alpha)$ :

→ Add Ji=[si,ti] to set S

→ Set  $\alpha = t_i$ 

4) Return (S)

## Main Idia:

In above algo we are ileratively adding to 5 jobs with earliest FINISH-TIME while ensuring that jobs in 5 are NON-OVERLAPPING.

04:

(a) We will dispeare the claim. Consider the geath Kn.

<u>CLAIM 1</u>: | VCopt (Kn) | = n-1 Proof: There are MCz edges. Any VC(Kn) should have n-1 vertices, otherwise we will have uncovered edges. CLAIM 2: | DS opt (Kn) = 1 Perof: Take any verten x in Kn. Then fry is dominating set as entire set V/Sry is adjacent to r. Now, 2-appear algo to compute Verten-cover will return a set "S" of size > n-1.

It can't be a 2-approximation of DSopt (Kn). We will study the case where vertices in T > 3. Consider an aelsitrary non-leaf mode "r" to be root of T. he will use notation "C" to denote the set of uncovered vertices in T. Intially C will be entire verten-set.

## COVER (C)

- O  $\mathcal{L}(C=\emptyset)$  then Return  $\emptyset$
- ② x ← A node in C of manimum depth.
- 3) y Parent (x, T)
- B C' ← C \ {y and neighbors of y g
- 6) Return & yy V COVER(C')

## Correctness Proof:

Take an instance of Cover(c).

Exchange hemma: Let x be a node in "C" of manimum depth, and let y = Parent(x, T).

CLAIM: If S is opt sol" to COVER(C), then (S\2)Ufyg
is also on opt sol".

Intuition for correctness: Similar to correctness of job Scheduling Covered in hecture 2.

Implementation: Can be implemented in linear time by & canning tree in BOTTOM-UP mamer.

| 10 1                |
|---------------------|
| $/ \setminus I_{-}$ |
| ( YZ                |
|                     |
|                     |
|                     |

- (a) ALGO ( I, --- In)
  - (1) Sort intervals according to start time in  $O(n\log n)$  time, so that S.T. (II)  $\leq \cdots \leq S.T.$  (In).
- 3 Initialize array "LEC" of size n.
- (4) For i = 1 to nLet C = Gntervals in range  $J_i$  ...  $J_{i-1}$   $I_{C} | \leq \alpha 1$ overlapping with  $J_i$ .

  Set LE(i) to be any integer in set  $g_1, ..., g_1 \mid g_1 \mid LEC(J) \mid Jec \mid g_2 \mid g_3 \mid g_4 \mid g_4 \mid g_5 \mid g_6 \mid g_6$
- 5 Return LEC

homme: Opt-sol(I1--- In) = a

Proof: Part 1. Opt-sol  $(I_1 - - I_m) \leq \alpha$ Part 2. Opt-sol  $(I_1 - - I_m) \geq \alpha$ 

| Q5(b) |      |        |        |       |      |    |     |          |
|-------|------|--------|--------|-------|------|----|-----|----------|
|       | Tust | Inclem | ent fi | inish | tine | of | all | lectures |
|       | by   | 30 n   | nivute |       |      | Ъ  |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |
|       |      |        |        |       |      |    |     |          |