Unit 5.2 The Greedy Method, II

Algorithms

EE3980

Apr. 30, 2020

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

1/3!

Tree Vertex Splitting Problem

Original tree $\,T\,$

$$d(T) = 10.$$

Tree with vertices splatted $\,T/X\,$

$$d(T/X) = 5.$$

Tree Vertex Splitting Problem – Definition

- T = (V, E, w) is weighted directed tree.
 - ullet V is the vertex set, E is the edge set, and w is weight function for the edges.
 - w(i,j) is defined if the edge $(i,j) \in E$; w(i,j) is undefined if $(i,j) \notin E$.
 - A source vertex is a vertex with in-degree 0.
 - A sink vertex is a vertex with out-degree 0.
 - For any path P in the tree, its delay, d(P), is defined to be the sum of the weights on the path.
 - The delay of the tree, d(T), is the maximum of all the path delays.
- T/X is the forest resulted from splitting every vertex u in $X \subseteq V$ into two nodes u^i and u^o such that all the edges $\langle i, u \rangle$ are replaced by $\langle i, u^i \rangle$ and all the edges $\langle u, j \rangle$ are replaced by $\langle u^o, j \rangle$.
- The Tree Vertex Splitting Problem (TVSP) is to find a set $X \subseteq V$ with minimum cardinality for which $d(T/X) \le \delta$ for some specified tolerance δ .
 - Note that a TVSP has solution only if the maximum edge weight is less than or equal to δ .
 - Any $X \subseteq V$ with $d(T/X) \le \delta$ is a feasible solution.
 - ullet The optimal solution is the feasible X with the minimum number of vertices.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

3/3

Tree Vertex Splitting Problem - Algorithm

Algorithm 5.2.1. TVS

```
// Find the minimum set X for vertex splitting.
    // Input: tree T, maximum edge weight \delta
    // Output: solution X.
 1 Algorithm TVS(T, \delta, X)
 2 {
          if (T \neq \emptyset) then {
 3
                d[T] := 0;
 4
                for each child v of T do \{
 5
 6
                     \mathsf{TVS}(v, \delta, X);
                     d[T] := \max(d[T], d[v] + w(T, v));
 7
 8
                if ((T \text{ is not the root}) \text{ and } (d(T) + w(parent(T), T) > \delta)) \text{ then } \{
 9
                     X := X \cup \{T\};
10
                     d[T] := 0;
11
                }
12
          }
13
14 }
```

• Note that d is a global array that stores the delay for each vertex.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II

Tree Vertex Splitting Problem – Algorithm II

Algorithm 5.2.2. TVS1

```
// Tree vertex splitting with tree stored in an array tree[1:n].
    // Input: root i, maximum edge weight \delta
    // Output: solution X.
 1 Algorithm TVS1(i, \delta, X)
 2 {
 3
           if (tree[i] \neq 0) then {
                  if (2 \times i > N) then d[i] := 0; //i is a leaf.
                  else {
 5
 6
                         TVS1(2 \times i, \delta, X);
                         d[i] := \max(d[i], d[2 \times i] + w[2 \times i]);
 7
 8
                         if (2 \times i + 1 \leq N) then {
 9
                                TVS1(2 \times i + 1, \delta, X);
10
                                d[i] := \max(d[i], d[2 \times i + 1] + w[2 \times i + 1]);
11
                  }
12
                  if ((i \neq 1) \text{ and } (d[i] + w[i] > \delta)) then {
13
                         X := X \cup \{i\};
14
                         d[i] := 0;
15
16
                  }
17
           }
18 }
```

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

5 / 35

Tree Vertex Splitting Problem – Complexity and Optimality

- ullet In this version the directed binary tree is stored in an array tree
- The weight is stored in array w and w[i] is the weight of the parent of vertex i to vertex i.
- Array d is still the delay of each vertex.
- The time complexity of Algorithm TVS is $\Theta(n)$.
 - ullet Every vertex of T is traversed once.

Theorem 5.2.3.

Algorithm TVS finds a minimum cardinality set X such that $d(T/X) \leq \delta$ on any tree T, provided that no edge of T has weight greater than δ .

• Proof please see textbook [Horowitz], pp. 225 - 226.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Minimum-Cost Spanning Trees

Definition 5.2.4.

Let G = (V, E) be an undirected connected graph. A sub-graph T = (V, E') with $E' \subseteq E$ is a spanning tree of G if and only if T is a tree.

Undirected graph G.

Spanning tree T_1 .

Spanning tree T_2 .

Spanning tree T_3 .

- Notes
 - Spanning tree is not unique.
 - Spanning trees have n-1 edges (n=|V|.)

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

7/3

Minimum-Cost Spanning Tree, Example

- In addition, there is a cost function associated with each edge, $w: E \to \mathbb{R}$.
- The cost of a tree is the sum of the costs of the tree edges.
- ullet A feasible solution of the minimum-cost spanning tree of a undirected graph G is any spanning tree T of G.
- The optimal solution is a spanning tree with the minimum cost.

An undirected graph, G.

Minimum-cost spanning tree, T.

Minimum-Cost Spanning Tree, Generic Algorithm

- Using the greedy methodology, let T be a subset of a spanning tree, at each step an edge (u,v) is added to T to maintain the feasibility of the solution.
- An edge, (u, v), is safe to a set of edges T if $T \cup \{(u, v)\}$ is still a subset of a spanning tree.
- The generic algorithm for the minimum-cost spanning tree then is:

Algorithm 5.2.5. Generic minimum-cost spanning tree

```
// Given a graph G(V,E) with cost function w find minimum cost spanning tree. 

// Input: V,E,n,w 

// Output: minimum cost tree T. 

1 Algorithm MCST(V,E,n,w,T) 

2 { 

3  T:=\emptyset; 

4  while (|T|< n-1) do { 

5  select an edge (u,v)\in E { 

6   if (u,v) is safe to T then T:=T\cup (u,v); 

7  E:=E-\{(u,v)\}; 

8  } 

9  } 

10 }
```

The key is in line 5, how to select an edge.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

9/3

Minimum-Cost Spanning Tree, Prim's Algorithm

Algorithm 5.2.6. Prim

```
// Given a graph G(V, E) with cost function w find minimum cost spanning tree.
   // Input: V, E, n, w
   // Output: minimum cost tree T and mincost.
 1 Algorithm Prim(V, E, n, w, T)
 2 {
 3
         Find edge (k, \ell) \in E with the minimum cost;
         mincost := w[k, \ell]; // mincost set to minimum edge cost.
 4
          T[1,1] := k; // Add (k,\ell) to spanning tree.
          T[1,2] := \ell;
         for i := 1 to n do // Init near array for every vertices.
               if (w[i,\ell] < w[i,k]) then near[i] := \ell;
               else near[i] := k;
 9
10
         near[k] := near[\ell] := 0; // Vertices already in the spanning tree.
         for i := 2 to (n-1) do \{
11
               Find j such that near[j] \neq 0 and w[j, near[j]] is minimum;
12
13
               T[i, 1] := j; // Add minimum cost near edge to tree.
14
               T[i,2] := near[j];
               mincost := mincost + w[j, near[j]]; // Update mincost.
15
               near[j] := 0; // Reset near array for selected vertex.
16
17
               for k := 1 to n do // update near array for the other unselected vertices.
18
                     if ((near[k] \neq 0) and (w[k, near[k]] > w[k, j])) then near[k] := j;
19
20
         return mincost;
21 }
```

Minimum-Cost Spanning Tree, Prim's Algorithm II

- In Algorithm Prim
 - 1. The edge with the minimum cost is first selected as the initial tree
 - 2. The array near keeps the node already selected in the tree with the smallest single-edge cost for each node
 - 3. Among the all the **near** edges, the minimum is selected and the node added to the tree
 - 4. Array near is then updated and go back to step 3 until all nodes have been selected
- The time complexity is dominated by
 - Finding the minimum-cost edge on line 3, $\mathcal{O}(|E|) \approx \mathcal{O}(n^2)$
 - Loop on lines 7-9, $\mathcal{O}(n)$
 - Loop on lines 11-19
 - Inner loops line 12 and lines 17-18
 - Complexity $\mathcal{O}(n^2)$
 - Overall complexity is $\mathcal{O}(n^2)$
- The time complexity can be improved to $\mathcal{O}((n+|E|)\lg n)$
 - If the non-selected vertices are stored in a red-black tree

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

11/3

Minimum-Cost Spanning Tree, Prim's Algorithm Example

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Kruskal's Algorithm – High Level

- A different approach to finding the minimum-cost spanning tree
- High level description of the algorithm

Algorithm 5.2.7. Kruskal's Algorithm

```
// Given a graph G(V, E) with cost function w find minimum cost spanning tree.
   // Input: V, E, n, w
   // Output: minimum cost tree T.
 1 Algorithm KruskalH(V, E, n, w, T)
 2 {
         T := \emptyset;
 3
         while ((T \text{ has less than } (n-1) \text{ edges }) \text{ and } (E \neq \emptyset)) do {
 4
              Find the edge (u, v) \in E with the minimum cost ;
 5
              Delete(u, v) from E;
 6
              if (u, v) does not create a cycle in T then T := T \cup (u, v);
 7
              else discard (u, v);
 8
 9
         }
10 }
```

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

13/3

Kruskal's Algorithm - Example

Apr. 30, 2020

Algorithms (EE3980) Unit 5.2

Unit 5.2 The Greedy Method, II

Kruskal's Algorithm

Algorithm 5.2.8. Kruskal's Algorithm

```
// Given a graph G(V, E) with cost function w find minimum cost spanning tree.
   // Input: V, E, n, w
   // Output: minimum cost tree T and mincost.
 1 Algorithm Kruskal (V, E, n, w, T)
 2 {
 3
         Construct a min heap from the edge costs using Heapity;
         for i := 1 to n do parent[i] := -1; // Enable cycle checking
 4
 5
         i := 0;
 6
         mincost := 0;
 7
         while ((i < n-1)) and (i < n-1) and (i < n-1) do (i < n-1)
               delete a minimum cost edge (u, v) from the heap;
 8
 9
               Adjust the heap ;
               j := Find(u); // using parent array
10
               k := \operatorname{Find}(v);
11
12
               if (j \neq k) then {
13
                     i := i + 1;
                     T[i, 1] := u;
14
                     T[i, 2] := v;
15
16
                     mincost := mincost + w[u, v];
17
                     Union(j, k); // modify parent array
               }
18
19
20
         if (i \neq n-1) then write("No spanning tree");
21
         else return mincost;
22 }
```

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

15 / 3

Kruskal's Algorithm – Complexity and Optimality

- The time complexity of Kruskal algorithm is dominated by the while loop, lines 7-19, $\mathcal{O}(|E|)$
 - Line 8 finding minimum cost edge, $\mathcal{O}(1)$
 - Line 9 Adjust the heap, $\mathcal{O}(\lg |E|)$
 - Overall complexity $\mathcal{O}(|E| \lg |E|)$.

Theorem 5.2.9.

Kruskal's algorithm (Algorithm 5.2.8) generates a minimum-cost spanning tree for every undirected connected graph G.

Proof please see textbook [Horowitz], p. 244.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Minimum-Cost Spanning Tree, Properties

- A different approach to prove Kruskal's algorithm.
- We define the following terms.
 - A cut (S, V S) of an undirected graph G = (V, E) is a partition of V, i.e., $S \in V$.
 - An edge $(u, v) \in E$ is said to cross the cut (S, V S) if one of its end points is in S and the other in V S.
 - ullet A cut is said to respect a set T of edges if no edges in T crosses the cut.
 - An edge is said to be a light edge crossing a cut if its cost is the minimum of any edge crossing the cut.

Theorem 5.2.10.

Let G=(V,E) be a connected, undirected graph with a cost function w defined on E. Let T be a subset of E that is subset of a spanning tree of G, let (S,V-S) be any cut of G that respects T, and let (u,v) be a light edge crossing (S,V-S). Then, edge (u,v) is safe for T.

• Proof please see textbook [Cormen], pp. 627-628.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

17/3

Minimum-Cost Spanning Tree, Properties, II

Corollary 5.2.11.

Let G = (V, E) be a connect, undirected graph with cost function w defined on E. Let T be a subset of E that is included in a minimum spanning tree of G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_T = (V, T)$. If (u, v) is a light edge connecting C to some other component in G_T , then (u, v) is safe for T.

- Proof please see textbook [Cormen], pp. 629.
- Algorithm Prim can be shown to be a special case of Theorem (5.2.10), and it also returns an optimal solution.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Matroid Theory and Greedy Method

- Matroid theory explains why greedy method solves the maximum/minimum subset problems.
 - The theory was developed by Hassler Whitney, American Mathematician, in 1935 by generalizing the structure of linear independence in vector space
 - Jack Edmonds, American Computer Scientist, applied to greedy algorithms
 - Reference: Bernhard Korte and Jens Vygen, Combinatorial Optimization theory and algorithms, 4th edition, Springer, 2008.
- The concept of independence system is generalized from vector space.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

19/35

Independent Systems

Definition 5.2.12. Independence System

Let S be a finite set and $\mathcal{I}=\{X\colon X\subseteq S\}$, then the set system (S,\mathcal{I}) is an independence system if

(M1) $\emptyset \in \mathcal{I}$;

(M2) If $Y \in \mathcal{I}$ and $X \subseteq Y$ then $X \in \mathcal{I}$.

The elements of \mathcal{I} are called independent, the elements of $2^S \setminus \mathcal{I}$ dependent. Minimal dependent sets are called circuits, maximal independent sets are called bases. For $X \subseteq S$, the maximal independent subsets of X are called bases of X.

 \bullet The set ${\cal I}$ can be defined by its property, instead of listing all elements.

Definition 5.2.13.

Let (S, \mathcal{I}) be an independence system. For $X \subseteq S$ we define the rank of X by

$$r(X) = \max\{|Y|: Y \subseteq X, Y \in \mathcal{I}\}.$$

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Examples of Independence Systems

• Example M1:

Let S_V be the set of columns of a matrix \mathbf{A} and $\mathcal{I}_V = \{X \subseteq S_V : \text{the column vectors in } X \text{ are linearly indepdent}\}$, then the set system (S_V, \mathcal{I}_V) is an independence system.

- (1) It is apparent $\emptyset \in \mathcal{I}$.
- (2) If $Y \in \mathcal{I}$ then any subset $X \subseteq Y$ also contains independent column vectors.
- Example M2:

Given a undirected graph G(V,E), let $S_G=E$, the set of all edges, and $\mathcal{I}_G=\{Y\colon Y\subseteq E \text{ and } Y \text{ is a forest}\}$, then the set system (S_G,\mathcal{I}_G) is an independence system.

- (1) It is apparent $\emptyset \in \mathcal{I}$.
- (2) If $Y \in \mathcal{I}$, then Y is a forest, and any subset $X \subseteq Y$ is also a forest.
- Example M3:

Given any finite set S_U , let k be an integer, $k \leq |S_U|$, and $\mathcal{I} = \{Y : Y \subseteq S_U \text{ and } |Y| \leq k\}$, then the set system (S_U, \mathcal{I}_U) is an independence system.

- (1) It is apparent $\emptyset \in \mathcal{I}$.
- (2) If $Y \in \mathcal{I}$, then $|Y| \leq k$. Any $X \subseteq Y$ has $|X| \leq |Y| \leq k$.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

21/3

Matroid

Definition 5.2.14. Matroid

An independence system (S, \mathcal{I}) is a matroid if

(M3) If $X, Y \in \mathcal{I}$ and |X| > |Y|, then there is an $x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{I}$.

- Vector Matroid: The independence system (S_V, \mathcal{I}_V) in Example M1 is a matroid.
 - (M3) property is observed (S_V, \mathcal{I}_V) .
- Graphic Matroid: The independence system (S_G, \mathcal{I}_G) in Example M2 is a matroid.
 - (M3) property is observed. If |X| > |Y| and for every $x \in X$ either $x \in Y$ or $Y \cup \{x\}$ forms a cycle. In either case, both vertices of the edge x belong to the same connected component in Y. The number of such edge cannot exceed |Y| while maintaining a forest perperty, thus $|X| \le |Y|$. This contradicts to the assumption |X| > |Y|.
- Uniform Matroid: The independence system (S_U, \mathcal{I}_U) in Example M3 is a matroid.
 - (M3) property is observed. If |X| > |Y| then there is an $x \in X \setminus Y$ and then $|Y \cup \{x\}| = |Y| + 1 \le |X| \le k$.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Matroid, II

Theorem 5.2.15.

Let (S,\mathcal{I}) be an independence system. Then the following statements are equivalent:

(M3) If $X, Y \in \mathcal{I}$ and |X| > |Y|, then there is an $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathcal{I}$.

(M3') If $X, Y \in \mathcal{I}$ and |X| = |Y+1|, then there is an $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathcal{I}$.

(M3") For each $X \subseteq S$, all bases of X have the same cardinality.

Proof. It is easy to see (M3) \Leftrightarrow (M3') and (M3) \Rightarrow (M3"). To prove (M3") \Rightarrow (M3), let $X, Y \in \mathcal{I}$ and |X| > |Y|. By (M3"), Y cannot be a basis of $X \cup Y$. So there must be an $x \in (X \cup Y) \setminus Y = X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{I}$.

- Thus, an independence system can also be shown to be a matroid using either property (M3') or (M3").
- For the graphic matroid, it is known that a spanning tree of a connect graph G(V,E) has |V|-1 edges. Thus, the rank $r(S_G)=|S_G|-1$ if G is connected.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

23 / 3!

Weighted Matroid and Optimization Problems

Definition 5.2.16. Weighted Matroid

A matroid (S, \mathcal{I}) is weighted if it is associated with a weight function $w: S \to \mathbb{R}^+$. The weight function w extends to subsets of S by summation:

$$w(X) = \sum_{x \in X} w(x)$$
 for any $X \subseteq S$. (5.1)

- Maximization problem of independence systems Given an independence system (S,\mathcal{I}) and the weight function $w:S\to\mathbb{R}^+$, find an $X\in\mathcal{I}$ such that $w(X)=\sum_{x}w(x)$ is maximum.
- A corresponding minimization can be formulated
 - Solution algorithms can also be derived.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Greedy Algorithms

Two types of algorithms possible
 The first one is

Algorithm 5.2.17. Best-In Greedy Algorithm

```
// Given (S, \mathcal{I}) and w: S \to \mathbb{R} find X \in \mathcal{I} such that w(X) is maximum.
    // Input: (S, \mathcal{I}) and w.
    // Output: X
 1 Algorithm Best-In-Greedy (S, \mathcal{I}, w)
          Sort S into nonincreasing order by w;
 3
          X := \emptyset; // Initialize to empty set.
 4
          for each x \in S in order do \{ / / \text{Try all elements.} \}
 5
                if (X \cup \{x\} \in \mathcal{I}) then \{// Maintain independence then add.
 6
 7
                      X := X \cup \{x\};
 8
 9
          return X;
10
11 }
```

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

25 / 3

Greedy Algorithms, II

Theorem 5.2.18.

The best-in greedy algorithm (5.2.17) solves the independence system (S, \mathcal{I}) maximization problem correctly if (S, \mathcal{I}) is a matroid.

Proof. By induction. The first x in the ordered S with $\{x\} \in \mathcal{I}$ is apparently the solution for any $X \subset S$ with r(X) = 1. Suppose the best solution has been found for any $X \subset S$ and r(X) = k and k < r(S), then there is a $Y \in \mathcal{I}$ such that r(Y) = r(X) + 1, further more there is $x \in S$ with $Y = X \cup \{x\}$ and x is in the remaining S. The x with largest w(x) is apparently the choice, which would be picked first by the algorithm. Hence, this Y is the solution for r(X) + 1. By induction, the theorem is proven. \Box

- Note that the maximization problem is defined for independence systems, and the algorithm works if the system is a matroid.
- The graph minimum spanning tree problem can be formulated as a minimization problem for a matroid system.
- The Kruskal's Algorithm is a best-in greedy algorithm.

Greedy Algorithms, III

Alternative solution

Algorithm 5.2.19. Worst Out Greedy Algorithm

```
// Given (S, \mathcal{I}) and w: S \to \mathbb{R} find a basis X of S such that w(X) is maximum.
    // Input: (S, \mathcal{I}) and w.
    // Output: X
 1 Algorithm Worst-Out-Greedy (S, \mathcal{I}, w)
 2 {
 3
          Sort S into nondecreasing order by w;
          X := S; // Initialize to entire set.
          for each x \in S in order do \{ / / \text{Try all elements.} \}
                if (r(X \setminus \{x\}) = r(X)) then \{//\text{ rank unchanged}.
                     X := X \setminus \{x\};
 7
 8
 9
10
          return X;
11 }
```

 This algorithm can generate optimal solution if the given system is a matroid, and the proof is similar to the best-in greedy algorithm.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

27/3

Job Sequencing with Deadlines

- Given a set of n jobs to be processed on one machine.
 - Each job takes 1 time unit to process.
 - Associated with job i, $1 \le i \le n$, there is a deadline d_i and profit p_i .
 - If job i is completed by d_i then p_i is earned.
- A feasible solution is a subset J of jobs that each job in J can be completed by its deadline.
 - The value of the subset J is $\sum_{i \in I} p_i$.
- An optimal solution is a feasible solution with the maximum value.

- Example, n=4, $\{p_1,p_2,p_3,p_4\}=\{100,10,15,27\},\\ \{d_1,d_2,d_3,d_4\}=\{2,1,2,1\}.$
- Feasible solutions are

	X4X		
000	Feasible	Processing	
\$ 11 h	solution	sequence	Value
69	$\{1, 2\}$	2,1	110
2	$\{1, 3\}$	1,3 or 3,1	115
3	$\{1,4\}$	4,1	127
4	$\{2, 3\}$	2,3	25
5	${\{3,4\}}$	4,3	42
6	{1}	1	100
7	{2}	2	10
8	$\{3\}$	3	15
9	$\{4\}$	4	27

• Solution 3 is optimal.

Job Sequencing with Deadlines – Algorithm

Applying greedy method to job sequencing problem

Alrogithm 5.2.20. Job Sequencing – Greedy Method

```
// Solve job scheduling problem with jobs sorted in non-increasing profit.

// Input: int n, deadline d[1:n], profit p[1:n]

// Output: Optimal sequence J[1:k].

1 Algorithm JSgreedy(n, d, p, J)

2 {

3    J := \{1\}; // init to highest profit job

4    for i := 2 to n do \{ // check every job

5        if (J \cup \{i\} is feasible ) then

6    J := J \cup \{i\};

7    }

8 }
```

Example

```
Ordered sequency: \{1,4,3,2\}, p=\{100,27,15,10\}, step 1: J=\{1\}, p=100, step 2: J=\{1,4\}, p=127, step 3: reject job 3, not feasible, step 4: reject job 2, not feasible.
```

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

29/3

Job Sequencing with Deadlines – Algorithm Optimality

• Optimality of the algorithm follows from the following theorem.

Theorem 5.2.21.

Given a job sequencing problem Algorithm JSgreedy (Algorithm 5.2.20) generates an optimal solution.

- Note that there can be groups of jobs that only some of them can be selected as $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, and $\{3,4\}$ in the example. Follows the algorithm, $\{1,4\}$ are selected. The only possibility that this solution is not optimal is that $P\{1,4\}$ is smaller than $P\{2,3\}$. But, job 4 has higher profit than either job 2 or 3. Thus, the selection by JSgreedy is the optimal solution.
- Unit execution time of each job is an important factor.

Job Sequencing with Deadlines - Algorithm

Alrogithm 5.2.22. Job Sequencing

```
// Solve job scheduling problem with jobs sorted in non-increasing profit.
   // Input: int n, deadline d[1:n], profit p[1:n]
   // Output: Optimal sequence J[1:k].
 1 Algorithm JS(n, d, p, J)
          d[0] := J[0] := 0; // to facilitate while loop stopping
 3
          J[1] := 1; k := 1; // init to highest profit job
          for i := 2 to n do \{ / / \text{ check every job } \}
 6
                r := k;
 7
                while ((d[J[r]] > d[i]) and (d[J[r]] \neq r)) do // find time slot job i fits
 8
                      r := r - 1;
                if ((d[J[r]] \leq d[i]) and (d[i] > r)) then \{// \text{ insert } i \text{ into } J\}
 9
10
                      for q:=k to (r+1) step -1 do J[q+1]:=J[q]; // move jobs to make room
                      J[r+1] := i; // assign job
11
12
                      k := k + 1;
                }
13
14
          }
15 }
```

- Line 3 creates a stopping condition for the while loop on line 7.
- The worst-case time complexity of JS algorithm is $\mathcal{O}(n^2)$.
 - Outer loop, lines 5–14
 - Inner loops, lines 7-8 and line 10.
- The space complexity of JS algorithm is $\mathcal{O}(n)$ for arrays J, p, and d.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 202

31/3

Job Sequencing with Deadlines – Algorithm correctness

Theorem 5.2.23.

Given a job sequencing problem Algorithm JS (Algorithm 5.2.22) correctly generates the optimal solution.

- Proof can be found in textbook [Horowitz] pp. 230 232.
- Example: n=5, Jobs={A, B, C, D, E}, $p[]=\{20,15,10,5,1\}$, and $d[]=\{2,2,1,3,3)\}$. Then, the execution sequence of the algorithm is as following.

i	d[i]	action	$J[\]$	d[J[]]	p[J[]]	k
1	2	init to A	$\{A\}$	{2}	{20}	1
2	2	accepting B	$\{A,B\}$	$\{2, 2\}$	$\{20, 15\}$	2
3	1	rejecting C	$\{A,B\}$	$\{2, 2\}$	$\{20, 15\}$	2
4	3	accepting D	$\{A, B, D\}$	$\{2, 2, 3\}$	$\{20, 15, 5\}$	3
5	3	rejecting E	$\{A, B, D\}$	$\{2, 2, 3\}$	$\{20, 15, 5\}$	3

Job Sequencing with Deadlines - Matroid Formulation

ullet The job sequencing with deadline can be shown to be a matroid. The set ${\mathcal S}$ contains all the jobs, and a set A of jobs are independent if there is a schedule such that all jobs in A are done before their deadlines.

Lemma 5.2.25.

For any set of jobs A, the following statements are equivalent.

- 1. The set A is independent.
- 2. Let $N_t(A)$ denote the number of jobs completed before time t, then for $t = 0, 1, 2, \ldots, n$, we have $N_t(A) \leq t$.
- 3. If the tasks in A are scheduled in order of monotonically increasing deadlines, the all jobs in A are completed before their deadlines.

Theorem <u>5.2.26</u>.

If S is a set of unit-time jobs with deadlines, and \mathcal{I} is the set of all independent sets of tasks, then the corresponding system (S, \mathcal{I}) is a matroid.

• Since the job sequencing problem is a matroid, the greedy algorithm can be applied and it results in an optimal solution.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Apr. 30, 2020

33/3

Container-Loading Problem and Matroid

- Container loading problem
 - n containers with weight $w_i > 0$, $1 \le i \le n$
 - ullet Capacity c
 - Find $x_i \in \{0,1\}$, $1 \le i \le n$ such that

Maximize:
$$\sum_{i=1}^{n} x_i,$$
 Subject to:
$$\sum_{i=1}^{n} x_i \cdot w_i \le c.$$

- Example: n=8, $(w_1,\ldots,w_8)=(100,200,50,90,150,50,20,80)$, c=400. Let $S=\{w_i:1\leq i\leq 8\}$, $\mathcal{I}=\{T\subseteq S:\sum_{t_i\in T}w(t_i)\leq c\}$.
 - It can be shown that (S, \mathcal{I}) is an independence system. Since if $T \in \mathcal{I}$, any subset of T has total weight less than c.
 - But (S, \mathcal{I}) is not matroid.
 - Example, $T_1 = \{100, 50, 50\} \in \mathcal{I}$, $T_2 = \{200\} \in \mathcal{I}$, $|T_1| > |T_2|$ but there is no $t \in T_1$ such that $T_2 \cup \{t\} \in \mathcal{I}$.
 - Greedy method still works for this problem.
 - Madroid is a necessary but not a sufficient condition for greedy method.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II

Summary

- Tree vertex splitting problem.
- Minimum-cost spanning tree problem.
- The theory of Matroid.
- Job sequencing with deadlines.

Algorithms (EE3980)

Unit 5.2 The Greedy Method, II