CS6109 – GRAPH THEORY

Module - 2

Presented By

Dr. S. Muthurajkumar,
Assistant Professor,
Dept. of CT, MIT Campus,
Anna University, Chennai.

Module - 2

- ➤ Edge Graphs and Traversability
- **➤** Eccentricity Sequences and Sets
- **≻**Isometry

Edge Graphs

- ➤ Definition: Let G(V, E) be a graph with $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$.
- The edge graph L(G) of G has the vertex set E and two vertices e_i and e_j are adjacent in L(G) if and only if the corresponding edges e_i and e_j of G are adjacent in G.
- ➤L(G) is the edge graph of G. A graph G is an edge graph if it is isomorphic to the edge graph L(H) of some graph H.

Observations Edge Graphs

- 1. A graph G is connected if and only if L(G) is connected.
- 2. If H is a subgraph of G, then L(H) is a subgraph of L(G).
- 3. The edges incident at a vertex of G form a maximal complete subgraph of L(G).
- 4. In G, if e = uv is an edge, then the degree of e in L(G) is the number of edges of G adjacent to e in G. Clearly, $d_{L(G)}(e) = d_{G}(u) + d_{G}(v) 2$.
- 5. For n > 1, $L^n(G) = L(L^{n-1}(G))$ and $L^0(G) = G$.

Theorem 9.1 The number of edges m' in L(G) when G has degree sequence $[d_i]_1^n$ is given by

$$m' = \frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 \right) - m.$$

Proof Let $[d_i]_1^n$ be the degree sequence of the graph G and let L(G) the edge graph of G, have m' edges.

As the degree of the vertex v_i in G is d_i , there are d_i edges incident on v_i . From these d_i edges, any two are adjacent at v_i in G. Hence the number of edges contributed by v_i to L(G) is $\binom{d_i}{2}$.

Thus,
$$m' = \sum_{i=1}^{n} {d_i \choose 2} = \sum_{i=1}^{n} \frac{d_i (d_i - 1)}{2} = \frac{1}{2} \sum_{i=1}^{n} (d_i^2 - d_i)$$

$$= \frac{1}{2} \sum_{i=1}^{n} d_i^2 - \frac{1}{2} \sum_{i=1}^{n} d_i$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 \right) - m.$$

Theorem 9.1 The number of edges m' in L(G) when G has degree sequence $[d_i]_1^n$ is given by

$$m' = \frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 \right) - m.$$

Proof:

We know that
$$m = \frac{1}{2} \left(\sum_{i=1}^{n} d_i \right)$$

Therefore
$$m' = \frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 \right) - \frac{1}{2} \left(\sum_{i=1}^{n} d_i \right)$$

$$m' = \frac{1}{2}(1^2 + 2^2 + 2^2 + 2^2 + 3^2) - \frac{1}{2}(1 + 2 + 2 + 2 + 3)$$

$$= 11 - 5$$

= 6 (Number of edges in L(G).

Theorem 9.2 The edge graph of a graph *G* is a path if and only if *G* is a path.

Proof Let *G* be a graph with *n* vertices. Assume *G* is a path P_n . Then L(G) is the path P_{n-1} with n-1 vertices.

Conversely, let L(G) be a path. Then no vertex of G has degree greater than two. For, if G has a vertex v of degree greater than two, the edges incident to v form a complete subgraph of L(G) with at least three vertices. Therefore G is either a cycle or a path. But G cannot be a cycle, since the edge graph of a cycle is a cycle.

Theorem 9.3 A connected graph is isomorphic to its edge graph if and only if it is a cycle.

Proof Let *G* be a connected graph with *n* vertices, *m* edges and with degree sequence $[d_i]_1^n$. Let L(G) be the edge graph of *G*. The number of vertices in L(G) is *m*. The number of edges m' in L(G) is given by

$$m' = \frac{1}{2} \left(\sum_{i=1}^n d_i^2 \right) - m.$$

Clearly, L(G) is connected and $L(C_n) = C_n$.

Conversely, let $G \cong L(G)$.

Then G and L(G) have the same number of vertices and edges.

So,
$$n = m$$
 and $m = \frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 \right) - m$.

Therefore, $n = m$ and $\sum_{i=1}^{n} d_i^2 = 4m$.

Thus, variance
$$\left(\sum_{i=1}^{n} d_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} d_i \right)^2 \right)$$

Because
$$Var = \frac{1}{N} \sum_{i} f_i x_i^2 - \left(\frac{1}{N} \sum_{i} f_i x_i\right)^2$$
 and we have $f_i = 1$

$$= \frac{1}{n} 4m - \frac{1}{n^2} (2m)^2 = \frac{4m}{m} - \frac{4m^2}{m^2} = 4 - 4 = 0.$$

Therefore the d_i 's are equal and G is regular of degree d, say.

So
$$nd = 2m$$
 implies that $d = \frac{2m}{n} = \frac{2m}{m} = 2$.

Thus G is a 2-regular connected graph, that is, C_n .

$$\left(\sum_{i=1}^n d_i^2\right) = \mathbf{4} \, m$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}d_{i}\right)^{2} = \frac{1}{n^{2}}\left(\sum_{i=1}^{n}d_{i}\right)^{2}$$

$$m = \frac{1}{2} \left(\sum_{i=1}^{n} d_i \right)$$

$$-\left(\sum_{i=1}^{n} d_i\right) = 2n$$

Edge Graphs and Traversability

Theorem 9.10 If G is Eulerian, then L(G) is both Eulerian and Hamiltonian.

Proof Let *G* be Eulerian and let $\{e_1, e_2, ..., e_m\}$ be the edge sequence of an Euler line in *G*. Let the edge e_i in *G* be represented by the vertex v_i in L(G), $1 \le i \le m$. Then $v_1v_2...v_mv_1$ is a Hamiltonian cycle of L(G). Now, if $e = u_iu_j \in E(G)$ and the vertex v in L(G) represents the edge e, then $d_{L(G)}(v) = d_G(u_i) + d_G(u_j) - 2$, which is obviously even and greater than or equal to two, since both $d_G(u_i)$ and $d_G(u_j)$ are even (and ≥ 2). Thus in L(G) every vertex is of even degree (≥ 2). Hence L(G) is Eulerian.

Edge Graphs and Traversability

L(G) is both Eulerian and Hamiltonian, but G is not Eulerian.

Dominating walk

• A dominating walk of a graph G is a closed walk W in G (which can be just a single vertex) such that every edge of G not in W is incident with W. For example, the walk v_1 v_2 v_3 v_4 in the graph is the dominating walk.

Corollary 9.1 The edge graph of a Hamiltonian graph is Hamiltonian.

Proof Let G be a Hamiltonian graph with Hamiltonian cycle C. Then C is a dominating walk of G, and hence, L(G) is Hamiltonian.

We note that the converse of Corollary 9.1 is not true in general. To see this, consider the graph G as shown in Figure 9.16. Clearly L(G) is Hamiltonian but G is not.

Fig. 9.16

Eccentricity Sequences and Sets

Eccentricity of a vertex: Let G be a connected graph. The eccentricity of a vertex v in G is the distance of the vertex u farthest from v. It is denoted by e(v). That is, $e(v) = \max\{d(u, v) : u \in V\}$.

The minimum eccentricity is called the *radius* of G and the maximum eccentricity is called the *diameter* of G. The radius is denoted by r and diameter by d.

Therefore, $r = \min\{e(v) : v \in V\}$ and $d = \max\{e(v) : v \in V\}$.

Definition: A positive sequence $[e_i]_1^n$ is called an *eccentricity sequence* if it is an eccentricity sequence of some graph. The graph is said to realise the sequence. A set of positive integers is called an *eccentricity set* if it is an eccentricity set of some graph. The graph is said to realise the set. (The set of distinct eccentricities in a graph is called the eccentricity set of that graph.)

Theorem 9.18 If uv is an edge of a connected graph G, then $|e(u) - e(v)| \le 1$.

Proof Let w be an eccentric vertex of u (i.e., w is the farthest vertex from u). Then by the triangle inequality for the metric d (distance), we have

$$d(u, w) \le d(u, v) + d(v, w)$$

so that
$$e(u) \le d(u, v) + d(v, w)$$
. (9.18.1)

But u and v are adjacent, therefore d(u, v) = 1.

Also,
$$e(v) \ge d(v, w)$$
 so that $d(v, w) \le e(v)$.

Thus, from (9.18.1) we have

$$e(u) \le 1 + d(v, w)$$
 so that $e(u) \le 1 + e(v)$.

Therefore,
$$e(u) - e(v) \le 1$$
. (9.18.2)

Similarly, by considering an eccentric vertex of v, we have

$$e(v) - e(u) \le 1. \tag{9.18.3}$$

From (9.18.2) and (9.18.3) it follows that

$$|e(u) - e(v)| \le 1.$$

Note The above result shows that the eccentricities of two adjacent vertices are either equal or differ by 1 as $|e(u) - e(v)| \le 1$ gives |e(u) - e(v)| = 0 or |e(u) - e(v)| = 1.

Isometry

Let G_1 and G_2 be connected graphs with vertex sets V_1 and V_2 respectively. Then G_2 is said to be *isometric* from G_1 if for each $v \in V_1$, there is a one-one map $\phi_v : V_1 \to V_2$ such that ϕ_v preserves distances from v, that is $d_{G_2}(u,v) = d_{G_1}(\phi_v(v),\phi_v(u))$ for every $u \in V_1$.

Two graphs G_1 and G_2 are said to be *isometric* if they are isometric from each other.

Theorem 9.23 If G_1 and G_2 are k-regular graphs of order n, where $k \ge n - 1/2$, then G_1 and G_2 are isometric.

Proof Since G_1 is a k-regular graph with $k \ge n - 1/2$, $d(G_1) \le 2$. Let $u \in V(G_1)$ and $v \in V(G_2)$ be any two vertices and define

$$\phi_u: V(G_1) \to V(G_2)$$
 by $\phi_u(u) = v$.

For i = 1, 2, ..., k, let $u_i \in N_1(u)$ and $v_i \in N_1(v)$ and define $\phi_u(u_i) = v_i$.

For i = k + 1, ..., n - 1, let $u_i \in N_2(u)$ and $v_i \in N_2(v)$ and again let $\phi_u(u_i) = v_i$.

The neighbourhoods are in the appropriate graphs. Then ϕ_u is an isometry of G_2 from G_1 at u. Since u and v are arbitrary, it is easily seen that G_2 is isometric from G_1 , and G_1 is isometric from G_2 .

Theorem 9.24 A necessary condition for two graphs to be isometric is that they have the same degree set and the same eccentricity set.

Proof Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be isometric graphs. As G_2 is isometric from G_1 , let ϕ_v be the one-one mapping from $V(G_1)$ to $V(G_2)$. Therefore, $d(v|G_1) = d(\Phi_v(v)|G_2)$. Also ϕ_v has the property of preserving distance, therefore $e(v|G_1) = e(\phi_v(v)|G_2)$. So the eccentricity set of G_1 is included in the eccentricity set of G_2 .

Again, as G_1 is isometric from G_2 , therefore, the degree set and eccentricity set of G_2 are included respectively in the degree set and eccentricity set of G_1 .

Hence the degree sets are equal in G_1 and G_2 and the eccentricity sets are equal in G_1 and G_2 .

REFERENCES:

- 1. Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science", Prentice-Hall of India Pvt. Ltd, 2003.
- 2. S. Pirzada, "An Introduction to Graph theory", University Press, 2012.
- 3. Frank Harary, "Graph Theory", Narosa Publishing House, 2001.
- 4. West D. B., "Introduction to Graph Theory", 2nd Edition, Pearson Education, 2001.
- 5. Diestel R, "Graph Theory", 5th Edition, Springer, 2017.

Thank you.