Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Дополнительные главы физики
Задание после лекции 08.05.2023
"Операторы, кубиты и что-то еще про квантовую механику"

Выполнил: Лопатенко Г. В., М32021

Преподаватель: Музыченко Я. Б.

Содержание

1	Операторы и их собственные функции	2
2	Совместно измеримые по Гейзенбергу величины	7
3	Сфера Блоха и две диаметральные точки	9
4	Физические реализации кубитов	10

1 Операторы и их собственные функции

Выписать операторы проекций \hat{L}_i и оператор квадрата орбитального углового момента \hat{L}^2 в декартовых и сферических координатах. Как выглядят собственные функции \hat{L}_z и \hat{L}^2 ? Какие квантовые числа определяют собственные функции оператора \hat{L}^2 ? Построить некоторые из собственных функций оператора \hat{L}^2 .

При погружении в математический аппарат релевантных тем можно погибнуть, но все же попытаем удачу, тем более мое последнее моделирование было тесно связано с поиском и построением (хоть и по рекуррентным полиномам Лежандра) угловых собственных функций уравнения Шредингера. Итак, начнем с оператора момента импульса:

$$\hat{L} = [\hat{r}, \ \hat{p}] = \hat{L}_x \vec{e_x} + \hat{L}_y \vec{e_y} + \hat{L}_z \vec{e_z}$$
$$\hat{L}^2 = \hat{L}_x^2 \vec{e_x} + \hat{L}_y^2 \vec{e_y} + \hat{L}_z^2 \vec{e_z}$$

Запишем в декартовой системе координат:

$$\hat{L}_{x} = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$$

$$\hat{L}_{y} = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right)$$

$$\hat{L}_{z} = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

Теперь при переходе в сферическую систему координат:

$$x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta$$
$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$$
$$\hat{L}_x = -i\hbar \left(\sin \theta \cos \phi \frac{\partial}{\partial \theta} + \frac{\cos \theta \cos \phi}{\sin \theta} \frac{\partial}{\partial \phi} \right)$$

Оператор \hat{L}_{y} выражается по некоммутирующим $[\hat{L}_{x},\hat{L}_{z}]=i\hbar\hat{L}_{y}$.

$$\hat{L}^{2} = -\hbar^{2} \left(\frac{\partial^{2}}{\partial \theta^{2}} + ctg\theta \frac{\partial}{\partial \theta} + ctg^{2}\theta \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial \phi^{2}} \right) = -\hbar^{2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}} \right)$$

И через оператор Лежандра: $\hat{L}^2 = -\hbar^2 \hat{\Lambda}$. Таким образом, решение уравнения на собственные значения оператора Лежандра определяет также собственные функции и значения оператора квадрата момента импульса:

$$(\hat{\Lambda} + \lambda \hat{I}) Y(\theta, \phi) = 0$$

Запишем решения в сферических координатах (для задач ротатора):

$$Y_{l,m} = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} \sin^{m} \theta \frac{d^{l+m} \sin^{2l} \theta}{(d\cos \theta)^{l+m}} P_{l}^{m}(\cos \theta) e^{im\phi}$$

Заметим, что в записи собственных функций участвуют квантовое орбитальное (азимутальное) число l и квантовое магнитное число m.

Построим проекции угловых собственных функций. Очевидно, что тела вращения относительно главной оси будут представлять собой форму орбиталей (можно ознакомиться в моделировании, ссылка в источниках).

Orbital geometrically probabilistic plot I = 1, m = 090°

Orbital geometrically probabilistic plot I = 2, m = 0 90°

Orbital geometrically probabilistic plot I = 3, m = 0 90°

Orbital geometrically probabilistic plot I = 3, m = 1 90°

Orbital geometrically probabilistic plot I=3, m=290°

В моделировании полиномы Лежандра задавались рекуррентно, строились проекции угловых функций и их трехмерные визуализации.

Источники:

- Лопатенко, Жуйков. Квантово-механическое моделирование
- §3.8. Момент импульса в квантовой механике
- §3.9. Оператор квадрата момента импульса. Сферические функции.

2 Совместно измеримые по Гейзенбергу величины

Среди величин r, p, L, L^2 найти пары совместно измеримых. Для совместно неизмеримых записать соотношения неопределенностей.

К счастью математиков и несчастью физиков-практиков, не все величины, описывающие квантовый мир, могут быть совместно измеримыми. Для математического аппарата описания квантовой физики свойственен операторный анализ, поэтому вывод о совместной измеримости будем делать исключительно из факта коммутирумости или некоммутируемости операторов. Операторы коммутируют, если $[\hat{G}, \hat{L}] = \hat{G}\hat{L} - \hat{L}\hat{G} = 0$ Тогда коммутирующие операторы говорят о соизмеримости величин. Коммутатор записывается в виде $[\hat{G}, \hat{L}] = i\hat{K}$ и по неравенству для введенной нормы соотношение неопределенности представим в виде:

$$\langle \Delta \hat{G}^2 \rangle \langle \Delta \hat{L}^2 \rangle \ge \frac{\langle \hat{K} \rangle^2}{4}$$

1. Рассмотрим на примере некоммутирующих $\hat{r} = r$ и $\hat{p} = -i\hbar \frac{\partial}{\partial r}$:

$$[\hat{r}, \ \hat{p}]\phi(r) = r \left(-i\hbar \frac{\partial}{\partial r}\right)\phi(r) - \left(-i\hbar \frac{\partial}{\partial r}\right)r\phi(r)$$

$$[\hat{r}, \ \hat{p}]\phi(r) = -ri\hbar \frac{\partial \phi(r)}{\partial r} + i\hbar \left(\phi(r) + \frac{r\partial \phi(r)}{\partial r}\right) = i\hbar \phi(r) \neq 0$$

Для операторов координаты и импульса соотношение неопределенности:

$$\langle \Delta r \rangle^2 \langle \Delta p \rangle^2 \ge \frac{\hbar^2}{4} \longrightarrow \Delta r \Delta p \ge \frac{\hbar}{2}$$

2. Рассмотрим на примере коммутирующих $\hat{r} = r$ и $\hat{L} = [\hat{r}, \hat{p}]$:

$$[\hat{r},\ \hat{L}]\phi(r) = [\hat{r},\ [\hat{r},\ \hat{p}]]\phi = ri\hbar\phi - [\hat{r},\ \hat{p}]r\phi = ri\hbar\phi - \left(-ri\hbar\frac{\partial(r\phi)}{\partial r} + i\hbar\frac{\partial(r^2\phi)}{\partial r}\right)$$

$$[\hat{r},\;\hat{L}]\phi(r)=2ri\hbar\phi-2ri\hbar\phi+r^2i\hbar\phi'-r^2i\hbar\phi'=0,\;\;\text{ho}\;\;[\hat{r},\;\hat{L}_r]\phi(r)\neq0$$

Операторы координаты и полного момента импульса коммутирующие. Заметим, что для проекций это свойство не выполняется и $\Delta r \Delta L_r \geq \frac{\hbar}{2}$

- 3. Заметим, что для операторов $\hat{p} = -i\hbar \frac{\partial}{\partial r}$ и $\hat{L} = [\hat{r}, \, \hat{p}]$ исход будет тот же, то есть полный оператор \hat{L} коммутирует с оператором проекции импульса, но соотношение Гейзенберга выполнится для операторов проекции момента импульса и проекции импульса: $\hat{L}_r \hat{p}_r \geq \frac{\hbar}{2}$.
- 4. Будем рассматривать оператор квадрата момента импульса в сферической системе координат $\hat{L}^2 = -\hbar^2 \Lambda$ (где Λ оператор Лежандра) и оператор любой проекции момента импульса \hat{L}_r .

В этот раз не будем представлять выкладки, так как они (опять же не совсем честно и строго) содержатся в лекционном материале, где доказывается, что:

$$[\hat{L}_z, \hat{L}^2] = [\hat{L}_v, \hat{L}^2] = [\hat{L}_x, \hat{L}^2] = 0$$

Получается, что любой из операторов проекции момента импульса коммутирует с оператором квадрата момента импульса, а значит эти величины совместно измеримы. Тем не менее между собой любая пара операторов проекции момента импульса не коммутирует.

Источники:

- Wikipedia: Коммутатор операторов (алгебра)
- Формальное доказательство $[\hat{L}_i,~\hat{L}_j] \neq 0$
- Формальное доказательство $[\hat{L^2},\,\hat{L_i}]=0$

3 Сфера Блоха и две диаметральные точки

Показать, что любые две диаметрально противоположные точки на Q-сфере соответсвуют двум ортогональным состояниям.

Ответственные студенты еще в симуляциях *IBM Quantum* убедились, что любое суперпозиционное состояние на Q-сфере можно представить:

$$\chi = \cos\left(\frac{\theta}{2}\right) |0> + \sin\left(\frac{\theta}{2}\right) e^{i\phi} |1>$$

Тогда достаточно очевидно, что диаметрально противоположная точка:

$$\chi' = \cos\left(\frac{\pi - \theta}{2}\right) \left|0 > +\sin\left(\frac{\pi - \theta}{2}\right)e^{i(\pi - \phi)}\right|1 >$$

Будем работать со скалярным произведением в стандартном базисе:

$$\left(\chi,\,\chi'\right) = \cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\pi-\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)e^{i\phi}\sin\left(\frac{\pi-\theta}{2}\right)e^{i(\pi-\phi)}$$
, при $e^{i\pi} = -1$

$$\left(\chi, \chi'\right) = \cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\pi - \theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\sin\left(\frac{\pi - \theta}{2}\right) = \cos\left(\frac{\theta}{2} + \frac{\pi - \theta}{2}\right) = 0$$

Оказалось, что скалярное произведение обнуляется для любых выбранных углов (θ, ϕ) , задающих положение точки на сфере, то есть диаметрально противоположные состояния суперпозиции действительно ортогональны.

Рис. 1: Сфера Блоха

4 Физические реализации кубитов

Перечислить преимущества и недостатки физ. реализаций кубитов.

Для анализа физических реализациий двухуровневой квантовой системы необходимо обратить внимание на требования DiVincenzo:

- 1. управляемость (по набору квантовых гейтовых операций)
- 2. масштабируемость (по взаимодействию между кубитами)
- 3. считываемость
- 4. независимость от окружения

Первые модели кубитов на основе атомных систем как раз были достаточно хорошо изолированы от окружающей среды, захват и манипуляция атомов высокоточно осуществлялась при помощи дорогостоящих и высокотехничных лазерных установок для оптической накачки и лазерного охлаждения, однако глобальным минусом таких систем являлась пара запись-считывание ввиду слабого взаимодействия атомов друг с другом.

С развитием теоретической базы становилось понятно, что очень перпективны твердотельные системы, выступающие в роли кубитов: например, спины в твердых телах и сверхпроводящие контура микронных размеров (для фазовых, потоковых и зарядовых кубитов). Твердотельные системы имеют массу преимуществ над нейтральными атомами и ионами в ловушках: хорошо отработанная технология изготовления наноструктур и мезоструктур. Контроль над кубитами (манипуляция) в таком случае производится на основе электромагнитных схем управления или оптически. Недостастком твердотельных систем является малое значение характеристики времени декогеренции (фазовой релаксации).

Источники:

• Диссертация на соискание ученой степени КФМН Денисенко М.В. "Амплитудная спектроскопия и мониторинг состояний сверхпроводниковых кубитов"