

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India **B. Tech. EXTC**

B. Tech. (Electronics and Telecommunication Engineering)

Syllabus (Semester V-VI)

INTEGRAL SECH NO.

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

2023 ITERATION: ELECTRONICS AND TELECOMMUNICATION ENGG.

Nomenclature of the Courses

Abbreviation	Course Category
BSESC	Basic Science & Engineering Science Courses
BSESEC	Basic Science & Engineering Science Elective Courses
SEC	Skill Enhancement Course
AEC	Ability Enhancement Course
HSSMC	Humanities and Social Science in Management Courses
CC	Cocurricular Courses
IKS	Indian Knowledge System
UHV	Universal Human Values
PCC	Program Core Courses
PEC	Program Elective Courses
OEC	Open Elective Courses
ELC	Experiential Learning Courses
MDM	Multidisciplinary Minor
СР	Community Project
НС	Honor Courses
DMC	Double Minor Course

Abbreviations

L	Lecture Hour	О	Other Work (Self Study)
T	Tutorial Hour	Е	Total Engagement in Hours
P	Laboratory Hour	С	Credit Assigned

STITUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

			SEM	V						
Sr. No	Course Category	Abbreviation Course Code Course Name				T	P	O	E	C
1	Experiential Learning	ELC	PR1	Mini Project I	0	0	2	4	6	1
2		PCC	EC301	Computer Communication Networks	3	0	2	5	10	4
3	Program Core	PCC	EC302	Control Systems	3	0	0	5	8	3
4	Courses	PCC	EC303	Digital Signal Processing	3	0	2	6	11	4
5		PCC	EC304	Microcontrollers	3	0	2	5	10	4
6	PCC		EC305	Mobile Wireless Communication	2	0	2	4	8	3
7	Multidisciplinary Minor	MDM	MDEC2X	MDM-II		Го	be def othe		by	4
				Total	14	0	10	29	50+	23

- Research internship of minimum 1 month for the "Honors by Research" for 3 credits HR31 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

STITUTE OF TECHNO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

			SEM '	VI						
Sr. No	Course Category	Abbreviation	Course Code	Course Name	L	Т	P	О	E	C
1	Program Core	PCC	EC306	Fundamentals of Antenna	3	0	2	5	10	4
2	Courses (8 credits)	PCC	EC307	Fundamental of Power Electronics	3	0	2	5	10	4
3	Multidisciplinary Minor	MDM	MDEC3X	MDM-III	To be defined by others			3		
4	Experiential Learning	ELC	PR3-I	Main Project Stage I	0	0	4	4	8	2
5	Program Elective Courses	PEC	EC3X1	PE-I	2	0	2	4	8	3
6	Program Elective Courses	PEC	EC3X2	PE-II	2	0	2	4	8	3
7	Skill Enhancement Course #	SEC	AS301	Internet of Things Laboratory	1	0	2	2	5	2
				Total	11	1	14	19	42+	21

No MSE and ESE exam

- Research internship of minimum 2 month for the "Honors by Research" for 6 credits HR32 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

STITUTE OF SECHNOLOGY

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

PROGRAM ELECTIVE COURSES

4 Electives are sufficient to specialize in a particular domain.

Track	PE-I	PE-II	PE-III	PE-IV
	(Sem VI)	(Sem VI)	(Sem VII)	(Sem VII)
Communication	EC311 Optical Fiber Communication	EC312: Error Coding and Cryptography	EC413: Microwave Communication	EC414: Space Communication on Technologies
	EC321: Cyber Security and Digital Forensic	EC322: Wireless Networks	EC423: Network Virtualization	EC424: Telecom Network Management
Embedded	EC331: Embedded Systems	EC332: Real Time Operating System	EC433: IoT Protocols	EC434: IoT Applications and Analytics
Signal Processing	EC341: Advanced Signal Processing	EC342: Speech and Audio Processing	EC443: Image and Video Processing	EC444: DSP based System Design
VLSI	EC351: Digital CMOS VLSI Design	EC352: Semiconductor Technologies	EC453: Analog CMOS VLSI Design	EC454: ASIC Verification

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India B. Tech. EXTC

Semester-V

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	,	ng Scheme s/week)			Credits Assigned					
Code		L	T	P	0	E	L	T	P	Total	
	Mini Project I	0	0	4	4	8	0	0	2	2	
ELC		Examination Scheme									
		Component		ISE	(%)	MSF	E (%)	ESE (%)		Total	
		Theory									
PR1		Labor	Laboratory					-	-		
		Self-S	Study	8	30	-	-	2	0	100	

Pre-requisit	te Course Codes, if any.	All the Courses till fourth Semester							
Course Obj	jective: A mini project serves as	s a platform for making a meaningful difference in the							
educational	educational experience, focused on addressing real-world problems. It involves applying scientific								
methods to u	nderstand, correct, and assess dec	isions surrounding a particular issue. By linking theoretical							
knowledge	with practical experiences, the p	project nurtures a scientific attitude among students for							
solving ever	yday challenges.								
Course Out	comes (CO): At the end of the co	ourse students will be able to							
PR1.1	Identify problems based on soci	etal/environmental issues.							
PR1.2	Apply engineering knowledge to	o propose innovative and sustainable solutions to							
	practical problems in a group.								
PR1.3	Analyze the results obtained usi	ng theoretical, experimental, or simulation methods and							
	draw appropriate conclusions.	-							
PR1.4	Apply self-learning skills in tear	mwork with following professional ethics, contributing to							
	the development of lifelong lear	ming habits.							
PR1.5	Document the findings and fost	er communication, organizational abilities, and personal							
	growth through discussions and	presentations.							
PR1.6	Apply project management prin	ciples during the project work.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PR1.1	1	3	3	1	1	3	3	1	1	1	1	1
PR1.2	3	2	3	2	3	1	1	1	3	1	1	1
PR1.3	2	2	2	3	2	1	1	1	1	1	1	1
PR1.4	2	2	2	2	2	2	2	3	3	2	2	3
PR1.5	2	1	1	1	1	1	1	1	1	3	1	1
PR1.6	1	1	1	1	1	1	1	1	1	1	3	1
PR1	1.83	1.83	2	1.67	1.67	1.5	1.5	1.33	1.67	1.5	1.5	1.33

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
PR1.1					2	3
PR1.2					3	2
PR1.3					3	2
PR1.4					2	3
PR1.5					2	3
PR1.6					2	3
PR1					2.33	2.67

Guidelines for Mini Project I:

- The orientation regarding Mini Project I implementation process and available hardware and software facilities with expertise of faculties shall be given in the last week of semester 4.
- Students must form a group of a minimum of 2 or maximum of 3 students.
- The Mini project topic must contain implementation in terms of Hardware and Software.
- Each group can approach the faculty having the same domain expertise from the department for discussion of the idea. Students can approach the faculty along with their proposed topic/idea or faculty may suggest a topic/idea.
- The details regarding group members, domain of interest and choice of guide based on discussion with him/her must be filled in a sheet shared by Project Co-Ordinator by each group within 1 week of completion of ESE of semester 4.
- For approval of the mentor, the group must write mail to the mentor regarding his/her permission keeping Project Co-Ordinator and HoD in CC. On the same mail mentor must reply for approval of mentoring the group for Mini Project 1.
- Each faculty from the department would be allowed to select 2 groups for Mini project guidance. Considering priority to choice of guide, tentative mentor allocation will be done 2 weeks before commencement date of semester 5.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

- The topic approval presentation shall be scheduled in the first week of Semester 5 in front of all the department faculties. Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with tentative mentor/head of department/domain experts. Students shall submit an implementation plan which will cover weekly activity of mini project along with objectives, motivation and references for the proposed title.
- Based on topic approval presentation the mentor and co-mentor would be allotted by Head of Department.
- A log book to be prepared by each group, wherein group can record weekly work progress, mentor/co-mentor can verify and record notes/comments.
- Faculty mentor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with mentor/ co-mentor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format given by department. Project report should contain project title, student details, certificate, and acknowledgements. Other sections of the report shall be introduction, necessity of project, objectives, hypothesis, plan, observations, analysis of results, conclusion, and references along with other sections related to technology. The report must be written in Latex and must include report of plagiarism check.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in semester 5 by all the groups of the students.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester for Main Project Stage 1. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project: (ISE: Through 2 Phases of Evaluation) and ESE

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

In Semester Evaluation:

- The review/ progress monitoring committee shall be constituted by Head of Department.
- The progress of mini project to be evaluated on continuous basis, with the help of two-phase evaluation in the semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- The phase 1 evaluation (during 6th week of semester) shall be done by mentor and co-mentor considering the factors like literature/market survey, formation of problem statement, block diagram, circuit diagram, flow chart, project planning, presentation skill along with attendance in terms of weekly meeting with mentor/co-mentor.
- The phase 2 evaluation (during 12th week of semester) shall be done by mentor and co-mentor considering the factors like demonstration of the work undertaken, project outcome with respect to scope defined, teamwork, ethics, submission of poster and project report (with plagiarism check) in prescribed format given by department.

End Semester Evaluation:

- The ESE shall be scheduled during the last week of semester in terms of exhibition.
- External experts from the other colleges shall be called for the evaluation.
- The exhibition will be conducted in 2 phases.
 - ✓ For phase 1 all groups will participate.
 - ✓ For phase 2 shortlisted groups will demonstrate the project once again to higher authorities and domain experts from the college.
- During the exhibition, the projects will be evaluated by an external examiner based on
 - ✓ Problem Definition/Idea/Originality/Novelty/Feasibility/Application in Society
 - ✓ Work Done (Survey/Design/Simulation/experimentation/Tools Usage/Budget Plan/ Execution Plan)
 - ✓ Presentation (Demo/Oral/Written) and Ethics (Attitude/Deadline/Distribution of Work)
 - ✓ Outcome of project (paper/ patent/winner of competition)
 - ✓ Knowledge/Question-Answer
- Each external examiner will evaluate 8 to 10 groups.
- The best 2 or 3 projects shortlisted by each examiner will be eligible for phase 2 evaluation. The ranking of shortlisted projects will be given by higher authorities and domain experts from the college.
- The prizes will be in terms of reimbursement of the hardware component expenses done for the projects as defined by the department reimbursement policy.

STITUTE OF TECHNOMINE OF TECHN

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

- Each group must write research proposal as per prescribed TIH of Nidhi Prayas proposal format for reimbursement of the hardware component used in project.
- The winning team of the exhibition will be eligible to take part in the AICTE Techfest and YUKTI ideation competition.
- The paper and patent publication of the project or prize obtained after participating in project competition will have weightage in In Semester Evaluation rubric.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	,		_	g Scheme /week)			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		3	-	2	5	10	3	-	1	4	
PCC	Computer Communication Networks	Examination Scheme									
icc		Comp	Component		ISE (%)		SE (%)	ES	SE	Total	
								6)			
EC301	Networks	Theory			20		20		0	100	
		Labor	ratory		80			2	0	100	

Pre-requisit	e Course Codes, if any.	Analog and Digital Communication
Course Obje	ective: The objective of the	course is to provide a fundamental understanding of Computer
Communicat	ion networks.	
Course Outo	comes (CO): At the end of	the course students will be able to
EC301.1	Apply Conceptual underst	tanding and functional aspects of computer communication and
	telecom networks.	
EC301.2	Design and configure sma	all/medium sized computer network that meets a specific need
	for communications.	
EC301.3	Understand the transport	and application layers in computer networks, enabling them to
	design, analyse, and troub	pleshoot network communication systems effectively.
EC301.4	Understand the principles	behind the modern network approaches such as NFV and IoT
	and security issues.	

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO8	PO9	PO10	PO11	PO12
EC301.1	3	3			3			2	3		3
EC301.2			2	2		2	2	3	3		3
EC301.3			3		3		3		3		3
EC301.4			2.5		3	2	3	3	3		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PEO1	PEO2	PEO3	PSO1	PSO2
EC301.1			2	2	
EC301.2		2		2	
EC301.3				3	
EC301.4	2				2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand√	Apply $$	Analyze√	Evaluate	Create	ı
----------	-------------	----------	----------	----------	--------	---

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Total Hrs.
1	1.1	Fundamental of Computer Networks: Basics of data communication and networking, Networking devices and their functionalities (Router, Switch, Hub, Bridge, Gateway, Modem), Network architectures: OSI Model – layer-wise functions. TCP/IP Protocol Suite and comparison with OSI, Delay types in the Internet: Processing, Queuing, Transmission, Propagation, Switching	1,4	08
		Techniques: Circuit, Packet, and Message Switching.		
2	2.1	IP Addressing and Subnetting: Working with IPv4 family: IP addressing schemes, subnet masks, network-id, host-id, Classful vs. classless addressing, Private and public IP addresses.	2	08
	2.2	Subnetting with Fixed and Variable Length Subnet Mask techniques, class less inter domain routing concepts		
3	3.1	Transport and Application Layer: Transport layer: Principles of congestion control, detection and avoidance mechanisms, max-min fairness algorithm	1,3,7	10
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTPs, FTP, SMTP, POP3, and DNS, peer-to-peer file sharing networks.		
4	4.1	Network Function Visualization: Introduction to NFV and its need in modern networks, NFV Architecture: Layers (Infrastructure, VNF, MANO).	6	06
	4.2	Hypervisors and Virtual Machines vs Containers, Key Components: VIM, VNF, NFVO – Functionality and Examples, NFV Deployment Models and Real-world Examples (e.g., 5G Core)		
5	5.1	Network Security Threats and attacks, symmetric and asymmetric cryptography: simple substitution cipher, mono alphabetic cipher, ploy-alphabetic cipher, zig-zag cipher, vernem cipher, Diffie-Hellman Key Exchange (DHKE).	5,8	10
	5.2	Secure Socket Layer (SSL), firewalls, proxy server, honeypots.		
6	Self– Study	Types of Networks, Transmission media, Network Topologies		*05
	ı	Total (*Not inc	luded)	42

Laboratory:

Sr. No.	Title of the Experiment
1.	Identify and observe the behavior of networking command line tools in Ubuntu/Windows OS

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	environment.
2.	To build and test straight through UTP ethernet network cables.
3.	Write a program in C/C++/Python/Java/Scilab to identify the IP address, Subnet mask, DNS
	server address and Hardware address of the client device.
4.	Building Networks by using Packet Tracer/GNS3
5.	Write a program in C/C++/Python/Java/Scilab to determine the administrator's requirement
	to define the number of subnets, host/subnet, customized subnet masks and valid subnet
	ranges for an IP addressing scheme.
6.	Examine Data Breaches and Scan for Malware Using the Microsoft Safety Scanner
7.	Hands-on experience on how to Write-Protect and Disable a USB Flash Drive
8.	Protocol Visualization with open source tools
9.	Network Reconnaissance using open source tools
10.	Web Reconnaissance Using a Web Browser/open source tools
11.	Cryptography using open source tools/Crypt tools and open SSL

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	TCP/IP protocol suit	4 th	Behrouz A.	McGraw Hill	2009
	-		Forouzan (Author)	Education	
2	Introducing Network	-	CCNA Discovery	-	-
	Design Concepts		Learning Guide		
3	Computer Networking: A	5th	J. F. Kurose and K. W.	Prentice	2009
	Top-Down Approach		Ross	Hall	
4	Data Communication and	4 th	B. Forouzan	McGraw Hill	2017
	Networking				
5	Information Security:	1 st	Deven Shah	Wiley	2007
	Principles and Practice				

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No. 1	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud		William Stallings	Addison-Wesley ISBN: 9780134175393	2015
2	Computer Networks	5 th	A. Tanenbaum	Pearson Education	2013
3	Data and Computer Communications	10 th	William Stallings	Pearson Education	2013

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course		Tea	cheme (Hrs/week)			Credits Assigned				
(Category)	Course Name	L	T	P	O	E	L	T	P	Total
Code										
		3	0	0	5	08	3	0	0	3
PCC				F	Cxan	nination Sc	hei	ne		
	Control Systems	Comp	onent	ISE (%)	MSE (%))	ESE (%)	Total
		The	eory	20		20		60		100
EC302										

Pre-requisit	e Course Codes, if any.	MA101: Engineering Calculus					
		MA102: Differential Equations and Complex Analysis					
		EC102: Digital Systems					
		EC101: Basic Electrical Engineering					
		EC203: Signal, Network and System					
		MA203: Probability and Stochastic Processes					
Course Obje	ective: To develop a system for	or real life application by applying the concepts of control					
system theor	y and allied techniques for sys	stem performance evaluation.					
Course Out	comes (CO): At the End of th	e course students will be able to					
EC302.1	Classify different types of c	ontrol systems and formulate mathematical modeling of the					
EC302.1	given system.						
EC302.2	* * *	representation of the given control system and concept of					
2000212	•	ility using state variable models.					
EC302.3		eady state behavior of a given system for standard test inputs					
10002.0	and computation of steady s						
EC302.4	Analyze the stability of syste	ems in the time domain and frequency domain.					
EC302.5	Design compensators & con	trollers to enhance system performance.					
EC302.6	Use of computer simulation	platforms for analyzing practical control systems in time and					
EC302.0	frequency domain techniques with the emphasis on controller and compensator design.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC302.1	3							2	2	2		
EC302.2	3							2	2	2		
EC302.3	3							2	2	2		
EC302.4	3							2	2	2		
EC302.5	2		2					2	2	2		
EC302.6	2	2			3			2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC302.1		3				
EC302.2		3				
EC302.3		3				
EC302.4		3				
EC302.5		3				
EC302.6	2	3			2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	8		,		
Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to control system and system Modeling	1,2,5	08
1	1.1	Introduction to control system:	1,2,0	
	,	Definition of system, Notion of feedback, Open loop and closed		
		loop systems; Understanding the concept of feedback in control		
		systems and its impact on performance.		
	1.2	Dynamic Response:		
		Standard test signals; Transient and steady state behavior of first		
		and second order systems; Generalized error coefficients, steady		
		state errors in feedback control systems and their types.		
	1.3	Control System Modeling:		
		Types of models, Differential equation model, Impulse response		
		model, State variable model, Transfer function model, Modelling		
		of electrical and electromechanical systems.		
2	Title	Representation of Control System and State Space Analysis	1,3,5	10
	2.1	Block diagram representation of systems, Block diagram		
		reduction methods, closed loop transfer function, signal flow		
		graph. Mason's gain rule		
	2.2	State Space Analysis:		
		Concepts of state space, State equations, State transition matrix,		
		properties of state transition matrix, Solution of state equation of		
		LTI system		
	2.3	Controllability and Observability:		
		Concept of controllability and Observability, Controllability and		
		Observability analysis of LTI systems using Kalman approach.		

3 Title Time Domain System Stability Analysis	1,3,5	08
---	-------	----

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3.1	Concepts of Stability Concept of absolute, relative and robust		
3.2			
	constructing root-locus, Root-locus analysis of control systems.		
Title	Frequency Domain System Stability Analysis	1,2,5	08
4.1	Relation between time and frequency response		
4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode		
	plot; Stability analysis by using Gain and phase margins on the Bode plots		
4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins.		
Title	Compensators & Controllers	1,2,3,	08
5.1	Types of compensators: Lag, Lead, and Lag-Lead Compensation: Methods for improving system performance by modifying the system's frequency response, Design of lag, lead and lag-lead compensator using Bode plot and Root locus techniques	3	
5.2	Controllers: Concept of ON/OFF controllers, P, PI, PD and PID Controllers, tuning of PI and PID controllers based on desired system performance. Discrete time methods for PID controller implementation		
		1.5	
		•,5	
- Zuug	feedback Popov–Belevitch–Hautus (PBH) test in state space, Design of real-life applications of control systems. Advanced Control Systems: Introduction to Robust Control, Adaptive control and Model predictive control, Neuro- fuzzy controllers.		
		Total	42
	3.2 3.3 Title 4.1 4.2 4.3 Title 5.1	 Stability 3.2 Routh-Hurwitz stability criteria 3.3 Root Locus Analysis: Root-locus concepts; General rules for constructing root-locus, Root-locus analysis of control systems. Title Frequency Domain System Stability Analysis 4.1 Relation between time and frequency response 4.2 Bode Plot: Magnitude and phase plot, Method of plotting Bode plot; Stability analysis by using Gain and phase margins on the Bode plots 4.3 Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins. Title Compensators & Controllers 5.1 Types of compensators: Lag, Lead, and Lag-Lead Compensation: Methods for improving system performance by modifying the system's frequency response, Design of lag, lead and lag-lead compensator using Bode plot and Root locus techniques 5.2 Controllers: Concept of ON/OFF controllers, P, PI, PD and PID Controllers, tuning of PI and PID controllers based on desired system performance. 5.3 Discrete time methods for PID controller implementation Self-Study Examples on open loop and closed loop control system, Modeling of rotational mechanical systems, Pole placement using state feedback Popov—Belevitch—Hautus (PBH) test in state space, Design of real-life applications of control systems. Advanced Control Systems: Introduction to Robust Control, Adaptive control 	3.2 Routh-Hurwitz stability criteria 3.3 Root Locus Analysis: Root-locus concepts; General rules for constructing root-locus, Root-locus analysis of control systems. Title Frequency Domain System Stability Analysis 4.1 Relation between time and frequency response 4.2 Bode Plot: Magnitude and phase plot, Method of plotting Bode plot; Stability analysis by using Gain and phase margins on the Bode plots 4.3 Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins. Title Compensators & Controllers 5.1 Types of compensators: Lag, Lead, and Lag-Lead Compensation: Methods for improving system performance by modifying the system's frequency response, Design of lag, lead and lag-lead compensator using Bode plot and Root locus techniques 5.2 Controllers: Concept of ON/OFF controllers, P, PI, PD and PID Controllers, tuning of PI and PID controllers based on desired system performance. 5.3 Discrete time methods for PID controller implementation Self-Study of rotational mechanical systems, Pole placement using state feedback Popov—Belevitch—Hautus (PBH) test in state space, Design of real-life applications of control systems. Advanced Control Systems: Introduction to Robust Control, Adaptive control and Model predictive control, Neuro- fuzzy controllers.

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is a group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like MATLAB, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop SPIT/UG Syllabus/2025-26/pg. 17

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain the final input output relationship of the system. Hardware implementation is optional.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems Engineering	Fifth	I. J. Nagrath, M. Gopal	New Age International	2012
2	Modern Control Engineering	Fifth	Ogata. K	Prentice Hall	2010

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle and design	First	M. Gopal	Tata McGraw Hill	1998
2	Modern Control System	Eleventh	Richard C. Dorf and Robert H. Bishop	Pearson	2013
3	Control Systems Engineering	Sixth	Norman Nise John	Wiley & Sons	2011
4	Linear Control System	First	Constantine H.	Mcgraw-Hill	1975
5	Linear Feedback Control - Analysis and Design with MATLAB		Dingyü Xue, YangQuan Chen and Derek P. Atherton		2007

NPTEL Link:

 $\frac{https://www.google.com/url?q=https://onlinecourses.nptel.ac.in/noc25_ee15/preview\&sa=D\&source=editorswust=1744183318651808\&usg=AOvVaw0maJDPEUarSYTIP7U45a8i$

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course		Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	0	E	L	T	P	Total	
Code											
		3	0	2	5	10	3	0	1	4	
PCC				E	xamir	nation S	cher	ne			
icc	Digital Signal	Compo	nent	ISE (%)	MSE	,	ESE ((%)	Total	
	Processing					(%)					
EC303		Theor	ry	20		20		60)	100	
		Labora	tory	80				20		100	

Pre-requisit	e Course Codes, if any. Signals and Systems
Course Obje	ective: To develop mathematical foundation of system and design digital filters
Course Out	comes (CO): At the End of the course students will be able to
EC303.1	Classify and perform various operations on signals and systems
EC303.2	Apply DFT properties and illustrate FFT algorithms
EC303.3	Apply Z Transform on discrete time signals
EC303.4	Analyze LTI System using Z Transform
EC303.5	Design and Realize Digital filters
EC303.6	Analyze Multirate Signal Processing

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
EC303.1	2	1	3									
EC303.2	2	1	3									
EC303.3	2	1	3									
EC303.4	2	1	3									
EC303.5	2	1	3		2							
EC303.6	2	1	3									1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC303.1	3				3	
EC303.2	3				3	
EC303.3	3				3	
EC303.4	3				3	
EC303.5	3				3	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC303.6	3			1	3	1
---------	---	--	--	---	---	---

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	✓	Analyze	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Discrete Time Signals	6,7,8	08
	1.1	Sampling of Continuous Time Signal, Standard Discrete Time Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal, Exponential.		
	1.2	Classification of Signals: Deterministic and non-deterministic, Periodic and aperiodic, Symmetric (even) and Asymmetric (odd), Energy and Power, Causal and Anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution (Linear and Circular), Correlation.		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast Fourier Transform (DIT-FFT) and Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithms, Real and Complex Calculations using FFT, Linear and Circular Convolution using FFT.		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap Save Method.		
3	Title	Analysis of Discrete Time System using Z-Transform	1,4	08
	3.1	Z-Transform: Z-Transform of discrete time signals, Properties of Z-Transform, Relation between Z-Transform and DTFT, Inverse Z-Transform		
	3.2	Classification of Systems: Static and Dynamic, Time Variant and Time Invariant, Linear and Nonlinear, Causal and Non-causal, Stable and Unstable Systems.		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3.3	Analysis of Systems: Impulse Response, Transfer Function,		
	Differential Equation, Stability of Systems, Frequency Response		
	LTI systems as frequency-selective filters like; Low Pass, High		
	Pass, Band Pass, Minimum-phase, Maximum-phase, Mixed-phase		
	systems		
Title	Digital IIR Filter Design and Implementation	1,2	07
4.1	Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design.	ŕ	
4.2	Realization structures for IIR filters: Direct Form Realization, Lattice Form Realization.		
Title	Digital FIR Filter Design and Implementation	1,5	07
5.1	Concepts of Finite Impulse Response (FIR) filter: Linear Phase Concept, Symmetric and Anti-Symmetric FIR filter, Position of POLEs and ZEROs, FIR Filter Design using Window Method, FIR Filter Design using Frequency Sampling Method.		
5.2	Realization Structures for FIR filters: Linear Phase Realization, Frequency Sampling Realization, Lattice Realization.		
Self-	Multi-rate Signal Processing:	1,5	
Study	Down-sampling and Up-sampling by integer factors; Decimator and Interpolator, Sampling rate conversion by non-integer factor.	-,-	
<u> </u>	1	Total	42
	Title 4.1 4.2 Title 5.1 Self-	Differential Equation, Stability of Systems, Frequency Response LTI systems as frequency-selective filters like; Low Pass, High Pass, Band Pass, Minimum-phase, Maximum-phase, Mixed-phase systems Title Digital IIR Filter Design and Implementation 4.1 Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design. 4.2 Realization structures for IIR filters: Direct Form Realization, Lattice Form Realization. Title Digital FIR Filter Design and Implementation 5.1 Concepts of Finite Impulse Response (FIR) filter: Linear Phase Concept, Symmetric and Anti-Symmetric FIR filter, Position of POLEs and ZEROs, FIR Filter Design using Window Method, FIR Filter Design using Frequency Sampling Method. 5.2 Realization Structures for FIR filters: Linear Phase Realization, Frequency Sampling Realization, Lattice Realization. Self-Study Down-sampling and Up-sampling by integer factors; Decimator	Differential Equation, Stability of Systems, Frequency Response LTI systems as frequency-selective filters like; Low Pass, High Pass, Band Pass, Minimum-phase, Maximum-phase, Mixed-phase systems Title Digital IIR Filter Design and Implementation 4.1 Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design. 4.2 Realization structures for IIR filters: Direct Form Realization, Lattice Form Realization. Title Digital FIR Filter Design and Implementation 5.1 Concepts of Finite Impulse Response (FIR) filter: Linear Phase Concept, Symmetric and Anti-Symmetric FIR filter, Position of POLEs and ZEROs, FIR Filter Design using Window Method, FIR Filter Design using Frequency Sampling Method. 5.2 Realization Structures for FIR filters: Linear Phase Realization, Frequency Sampling Realization, Lattice Realization. Self-Study Down-sampling and Up-sampling by integer factors; Decimator and Interpolator, Sampling rate conversion by non-integer factor.

Laboratory Component

Laborato	ry Component
Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter Design using Windowing Method
8	Linear phase FIR Filter Design using Frequency Sampling Method
9	Multirate Signal Processing
10	Mini Project on Real Time Signal Processing

STITUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Text Books

Sr.	Title	Editio	Authors	Publisher	Year
No		n			
1	Digital Signal Processing: Principles, Algorithms and	4 th	J. Proakis, D. G. Manolakis, and D. Sharma	Pearson Education	2014
	Applications		Wallotakis, and D. Sharma	Education	
2	Digital Signal Processing	4 th	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	2 nd	S.Salivahanan, A Vallavaraj, C Gnanapriya	Tata McGraw Hill	2010

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	2 nd	Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab	Pearson	2002
2	Signals and Systems	3 rd	Simon Haykin and Barry Van Veen	John Wiley & Sons	2002
3	Theory and Applications of Digital Signal Processing	2 nd	L. R. Rabiner and B. Gold	Prentice-Hall	2006

NPTEL:

https://archive.nptel.ac.in/courses/108/101/108101174/

https://nptel.ac.in/courses/117102060

STITUTE OF A BCH NO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Т	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		3	0	2	5	10	3	0	1	4	
PCC	Microcontrollers	Examination Scheme									
rcc		Comp	IS	ISE (%)		MSE	E	SE (%)	Total		
							(%)				
EC304		The	ory		20		20		60	100	
		Laboratory		80					20	100	

Pre-requisite	Course Codes, if any.	Digital Systems, Computer Organization & Architecture						
Course Obje	Course Objective: To impart knowledge of microcontroller architecture, programming, and							
interfacing w	ith peripherals. The cours	e covers real-time constraints, debugging, and optimization						
techniques fo	r interfacing applications.							
Course Outc	omes (CO): At the End of	of the course students will be able to						
EC304.1	Illustrate the architectura	al features of 8, 16 and 32-bit microcontrollers.						
EC304.2	Comprehend 16- and 32	Comprehend 16- and 32-bit microcontrollers and classify various modes of operation.						
EC304.3	Examine the addressing classify them accordingly	modes used in 16- and 32-bit microcontrollers' instructions and ly.						
EC304.4	Analyze the given probl problem for 16- and 32-	em statement and apply the programming concepts to solve the bit microcontrollers						
EC304.5	Apply and utilize the int	regrated peripherals of 16- and 32-bit microcontrollers						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC304.1	3											
EC304.2	3											
EC304.3	3											
EC304.4		3			3			3		3		
EC304.5		3	3									

STITUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC304.1	1	1	1			
EC304.2	1	1	1			
EC304.3	1	1	1			
EC304.4	1	1	1			
EC304.5	1	1	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction of 8-bit Microcontroller - 8051	1	4
	1.1	Overview of 8051 Family of Controllers		
	1.2	Architecture of 8051 with block diagram schematic		
	1.3	Brief description of integrated components of 8051		
2	Title	PIC Microcontroller	2	10
	2.1	Microcontroller architecture and Programming model		
	2.2	Instruction set with addressing modes		
	2.3	Programming and Problem-solving approaches		
3	Title	PIC Integrated Peripherals		9
	3.1	I/O Ports with its interfacing and Interrupt Structure	-	
	3.2	Timers with its configuration		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	3.3	Data Converters (ADC and DAC), Serial I/O (SPI and I ² C)) protocol)		
4	Title	ARM7TDMI(ARMv4T) Architecture	3,4	10
	4.1	Features and advantages, ARM versions		
	4.2	Processor operating states, ARM core data flow model, operating modes, registers, program status registers, exceptions and pipelined architecture advantage		
	4.3	Instruction set with addressing modes		
5	Title	LPC2148 ARM7 Processor Programming and Interfacing	3,4	9
	5.1	Processor state changing (ARM \(\subseteq \text{THUMB} \)), Exceptions, interrupts and its handling,		
	5.2	Timer Programming, Watchdog Timer		
	5.3	ADC and Sensor Interfacing, SPI and I2C Peripheral Interface		
6	Self-	ARM-v7-M (Cortex-M3), Comparison of ARM-v&-A (Cortex		
	Stud	A8), ARM-v7-R (Cortex R4), ARM-v7-M (Cortex M3).		
	y	Application Case Study for PIC and ARM controllers		
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	LED Blinking and GPIO Control:
	This fundamental experiment involves setting up a simple program to control General
	Purpose Input/output (GPIO) pins to blink LEDs. It helps understand basic setup, I/O
	configuration, and timing in PIC18F microcontroller.
2	Button Input and Debouncing:
	Implement a circuit with buttons or switches to provide input to the PIC18F. Include
	debouncing logic to ensure reliable input readings.
3	PWM Control and Motor Control:
	Demonstrate Pulse Width Modulation (PWM) by controlling the speed of a DC motor or
	the brightness of an LED. This experiment can also explore using timers to generate PWM
	signals.
4	Analog-to-Digital Conversion (ADC):
	Use the built-in ADC on the PIC18F to measure analog signals, such as temperature or light
	intensity, and convert them to digital values. This experiment covers ADC configuration
	and data processing.
5	Serial Communication (UART):
	Set up a simple communication link using Universal Asynchronous Receiver-Transmitter
	(UART). Connect the PIC18F to a computer or another microcontroller to send and receive
	data, demonstrating basic serial communication.

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

6	GPIO (LED/LCD) and Interrupts:
	This experiment focuses on setting up GPIO and handling interrupts on the ARM
	microcontroller. It includes GPIO based, emphasizing interrupt-driven programming.
7	PWM and Servo Control:
	Implement PWM to control servo motors, exploring different duty cycles to set servo
	angles on the ARM microcontroller. This experiment can also cover generating different
	frequencies for PWM.
8	I2C / SPI Communication:
	Set up communication between the ARM microcontroller and an I2C / SPI -based sensor or
	peripheral (like a temperature sensor or an OLED display). This experiment demonstrates
	configuring and using the I2C /SPI bus.
9	Analog-to-Digital Conversion (ADC) and Sensor Integration: This experiment
	demonstrates the use of Analog-to-Digital Conversion (ADC) to read analog signals from
	sensors and process them digitally on the ARM microcontroller.
10	Real-Time Clock (RTC) and Timers:
	Use the built-in RTC on the ARM microcontroller to create a real-time clock that keeps
	track of date and time. This experiment can also cover configuring timers for specific time
	intervals.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	The 8051 Microcontroller	Second	Muhammad Ali	Pearson	2006
	and Embedded Systems:		Mazidi, Janice G.		
	Using Assembly and C		Mazidi and R. D.		
			McKinlay		
2	Fundamentals of	Fourth	Ramesh Gaonkar	Penram	2007
	Microcontrollers and			International	
	Applications in Embedded			Publishing	
	Systems (with PIC18			Pvt. Ltd	
	microcontroller family)				
3	ARM System Developer"s	First	Andrew N. Sloss,	Elsevier Inc	2004
	Guide Designing and		Dominic Sysmes	Morgan	
	Optimizing System Software		and Chris Wright	Kaufmann	
4	ARM Architecture ,Reference	Second	David Seal	Addison	2001
	Manual			Wesley	

STITUTE OF SECHNOSING

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	PIC Microcontroller: An Introduction to Software & Hardware Interfacing	Second	Han- Way Huang	Cengage Learning	2005
2	ARM System-on-Chip Architecture	Second	Steve Furber	Addison- Wesley	2000

MOOC Course (NPTEL): -

https://onlinecourses.nptel.ac.in/noc25 ee49/preview

HIVA WE CHANGE OF THE CHANGE O

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course		Teach	ing Sc	heme	(Hrs/v	week)		Credi	ts Ass	igned
(Category) Code	Course Name	L	T	P	О	E	L	T	P	Total
		2	-	2	2	6	2	-	1	3
PCC	Mobile Wireless Communication	Examination Scheme								
		Comp	onent	ISE	(%)	N	1SE	F	ESE	Total
						(%)	(%)	
EC305		The	ory	2	0	2	20	(60	100
		Labor	atory	8	0		-	2	0	100

Pre-requis	site Course Codes, if any.	EC307: Computer Communication Network, Analog &			
		Digital Communication.			
		an in-depth understanding of wireless channel			
characteris	tics, including multipath, fadin	g, and propagation effects. Students will explore cellular			
system des	sign, multiple access techniques	s (TDMA, CDMA, OFDM), antenna diversity, MIMO, and			
	± •	ludes computer simulations of wireless systems and an			
overview o	of emerging technologies such a	as LTE and IEEE 802.11.			
Course O	utcomes (CO): At the end of the	he course students will be able to			
EC305.1	Demonstrate the ability to discuss wireless communication concepts, system capacity				
EC303.1	and grade of service provided.				
EC305.2	Evaluate various path loss, fading and multipath effects.				
EC305.3	Analyze architecture and protocols of 3G,4G and 5G systems.				
EC305.4	Analyze and Compare short-	range wireless communication technologies.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8	PO9	PO 10	PO 11	PO 12
EC305.1	2		2									
EC305.2			2	2	2				2	2		
EC305.3	3				2				2	2		2
EC305.4	2	2										

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC305.1		2				
EC305.2	2	2	2		2	
EC305.3	2	2	2		2	
EC305.4		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand√	Apply √	Analyze√	Evaluate	Create	
----------------------	---------	----------	----------	--------	--

Theory Component

Modu le No.	Unit No.	Topics	Re f.	H rs
1	Title	Introduction to mobile communication	1	6
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	8
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor Propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading channels- Clarks model,2-day Rayleigh fading model, Saleh and Valenzuel indoor model.		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio- Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.		
		5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	6
	4.1	Bluetooth: concepts of Piconet, scatter net etc., protocol stack, link types, security, network connection establishments, usage models,		
	4.2	Wifi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self- Study	Rayleigh fading model, Saleh and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications, 5G Channel Structure.	2,3	4*
		Total (* Not Inclu		28

Laboratory Components:

Laborat	ory Components.
Sr. No.	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commands ii] Python scripting.
2	Channel Allocation Techniques.
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: i] Free-space Propagation Path Loss Model ii] Indoor Propagation Model - Okumura Model etc
6	Wireless Path Loss Computations: Outdoor Propagation Model - Hata Model etc

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, WiFi Network simulation using NS-3, Omnet++
10	Virtual Lab.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Wireless	Third	Theodore	Prentice Hall	2010
	Communications		S.	of India, PTR	
			Rappaport	publication	
2	Wireless	Second	Andreas Molisch	Wiley	2010
	Communications				
3	Wireless	First	Vijay Garg	Pearson	2001
	Network			Education	
	Evolution				
	2G-3G				
4	4 G Roadmap and	Second	Young Kyun Kim	Artech house	2005
	Emerging		and		
	Communication		Ramjee		
	Technologies		Prasad		

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	TMH	2017
2	Mobile Communication	Second	C.Y Lee	Wiley	1995

MOOC Course Link: Introduction to Wireless and Cellular Communications by Prof. R. David Koilpillai (IIT Madras)

Link: https://onlinecourses.nptel.ac.in/noc20_ee61/preview

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India B. Tech. EXTC

Semester-VI

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course		Teaching Scheme (Hrs/week) C				Cı	redits Assigned			
(Category)	Course Name	L	T	P	0	\mathbf{E}	L	T	P	Total
Code										
		3	0	2	6	11	3	0	1	4
PCC	Fundamentals of			E	xamir	ation	Schem	e		
	Antenna	Compo	nent	ISE	(%)	MS	E (%)	ES	E (%)	Total
EC306		Theo	ry	2	20		20		60	100
		Labora	tory	8	80				20	100

Pre-requisit	te Course Codes, if any.	EC201: Electromagnetic Wave Engineering		
Course Obj	ective: The objective of the	ne course is to prepare the students to apply fundamental		
antenna para	meters to analyse simple a	antenna configurations and ultimately design an antenna for the		
desired spec	ifications/application.			
Course Out	comes (CO): At the end of	f the course students will be able to		
EC306.1	Interpret and calculate the	ne fundamental parameters of Antenna.		
EC306.2	Analyze basic wire and l	oop antennas		
EC306.3 Design antennas for the given specifications				
EC306.4	Select an antenna based	on the intended application		

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	3	2										
EC306.2	3	3		2	3							
EC306.3	3		2		3							
EC306.4	3											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)696

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC306.1		2				-
EC306.2		2			2	2
EC306.3	1	2			2	2
EC306.4	1	2			2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply ✓	Analyze✓	Evaluate	Create
---------------------	----------------	----------	-----------------	--------

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1	Title	Fundamental Concepts	1	10
	1.1	Introduction, types of Antennas, Radiation mechanism		
	1.2	Antenna Parameters: Steradian concept, Power intensity Radiation		
		pattern, co-polar and cross-polar pattern, Radiation power density,		
		Radiation Intensity, Gain, Directivity, HPBW, FNBW, front-to-back		
		ratio, Beam efficiency, Bandwidth, Polarization, Input Impedance,		
		Reflection coefficient, Return loss, VSWR, Antenna Efficiency,		
		Effective Aperture, Communication link and Friis transmission		
		equation.		
2	Title	Radiation from wires and loops	1	08
	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated		•
		power, Radiation resistance, Directivity, Effective area, Current		
		distribution in thin wire antennas, Short dipole, Finite-length dipole:		
		Radiated power, Radiation resistance, Directivity, Effective area, Half-		
		wave dipole and its properties, Vertical and Horizontal electric dipole,		
		Folded dipole antenna, Design of Yagi-Uda Antenna		
3	Title	Design of broadband, frequency independent and aperture	1, 2	07
		antennas		
	3.1	Design of Helix antenna, Log-periodic dipole array, reflector and horn antennas		
4	Title	Antenna Arrays	1,3	10
	4.1	Introduction, Two-element array, Example problems, Pattern		
		multiplication concept, N-element array, Uniform array, Array factor,		
		Broad-side and end-fire arrays, Phased array, Directivity and pattern		
		characteristic of linear uniform array, non-uniform array, Binomial		
		array, Dolph-Chebyshev array concept, Design principle of Chebyshev		
		array and examples, Planar arrays		
5	Title	Microstrip Antennas		
	5.1	Introduction: Rectangular and circular patch antenna, feeding	1,4	07
		techniques, design examples, parametric study of microstrip patch.		
	5.2	Circularly polarized microstrip antennas, Axial Ratio, Quality factor		
6 (Self	6.1	Current and Next-generation Antennas	5	06*
Study)				

SPIT/UG Syllabus/2025-26/ pg. 34

STATUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Fractal antennas, Smart Antennas, Vivaldi Antennas, Ultra-wideband						
antennas, Dielectric Resonator antenna, Artificial Magnetic						
Conductors/High-Impedance Surfaces, Metamaterial based antennas,						
Reconfigurable antennas						
,	Total	42				

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Laborat	bry Component, if any. (Minimum 10 Laboratory experiments are expected)
Sr.	Title of the Experiment
No.	
1	Design a Dipole Antenna using CAD tool
2	Design a monopole Antenna using CAD tool
3	Design a Horn Antenna using CAD tool
4	Design a Helical Antenna using CAD tool
5	Design a Microstrip Patch Antenna using CAD tool
6	To calculate and infer various fundamental parameters of antenna like Radiation pattern,
	Radiation power density, Radiation Intensity, Gain, Directivity, HPBW and FNBW using
	MATLAB/Scilab.
7	To analyse the effects of finite ground and antenna height on antenna performance using
	NEC tool
8	To design a Pyramidal Horn Antenna in E-plane and H-plane
9	To show Pattern Multiplication phenomena in an Antenna using two infinitesimal dipoles.
10	To design Array factor pattern of <i>N</i> -element of uniform amplitude of Broadside Array.
11	To design Array factor pattern of N-element of uniform amplitude of End-fire Array
12	To design Array factor pattern of N-element of non-uniform amplitude of Broadside / End-
	fire Array using Binomial Array method.
13	To design Array factor pattern of N-element of non-uniform amplitude of Broadside /End-
	fire Array using DolphTschebyscheff Array method.

Text Books:

Sr. No.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis and Design	Constantine A. Balanis	Third	Wiley	2012

STITUTE OF THE CHANGE OF THE C

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books/NPTEL courses:

Sr. No.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave Propagation	J.D. Kraus, R.J. Marhefka, and A.S. Khan	Fourth	McGraw Hill	2011
2	Antenna Theory: Analysis and Design	Warren L. Stutzman, Gary A. Thiele	Third	John Wiley & Sons, Inc.	2012
3	NOC: Antennas https://nptel.ac.in/courses/ 108101092	Girish Kumar	-	NPTEL	2022
4	Broadband Microstrip antennas	Girish Kumar and K.P. Ray	First	Artech House	2003
5	Frontiers in Antennas: Next Generation Design & Engineering	Frank Gross	First	Mcgraw Hill	2011

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
		3	0	2	4	9	3	0	1	4
PCC	Fundamentals of]	Exam	inati	on Schei	heme		
	Power Electronics	Component		ISE (%)		MS	SE (%)	ES	E (%)	Total
EC307		Theo	ory	2	0		20		60	100
		Labo	oratory	8	0				20	100

Pre-requisite Course Codes, if any.		EC102 (Basic Electrical Engineering), Signal, EC203 (Network and Systems), EC302 (Control Systems)			
	Course Objective To equip students with the knowledge and skills to understand, analyze, and des				
power elec	etronic circuits and systems.				
Course O	utcomes (CO): At the end of	of the course students will be able to			
EC307.1	Select Power semiconducto	or switches with gate driving circuits for a specific application			
EC307.2	Analyze various single / th	ree phase AC-DC power converter circuits.			
EC307.3	Illustrate the operating prin	nciple and construct specified DC-DC converter.			
EC307.4	Analyze various single/ thr	ree phase DC-AC power converter circuits			
EC307.5	Design AC-AC converter a	and matrix converter for ac-to-ac power conversion applications			
EC307.6	Simulate and implement a	given power electronics system catering to specific application			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1		3										
EC307.2		3										
EC307.3			3	2								
EC307.4			3									
EC307.5					3							
EC307.6					3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC307.1						
EC307.2	2					
EC307.3	3				3	
EC307.4	2					
EC307.5	2				3	
EC307.6	3					

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Module	Unit	Topics	Ref.	Hrs.	
No.	No. Title	Power Semiconductor Devices	1	8	
T	1.1	Principle of operation, constructional features, characteristics, and specifications according to data sheets of Power Devices viz; Power Diode, SCR and Thyristor Family, MOSFET, IGBT and Wide Bandgap devices such as Ga-As and Silicon Carbide devices; Packaging of multiple devices and common type of power modules. Gate driving circuits for different devices and topologies	-	Š	
2			2,3	8	
2	2.1 Analysis and Design of Single phase and three phase uncontrolled rectifiers with filters, Introduction to Single phase and three phase Controlled Rectifiers using SCRs, Different topologies of phase-controlled rectifiers operation and analysis with resistive load, Performance parameters of ac to dc converters: ripple factor, power factor, distortion factor and efficiency,				
	2.2	Introduction to single phase PWM rectifier using Power MOSFETs and IGBTs.			
3	Title	DC to DC Converters	2,3	8	
	3.1 Primary non-isolated DC to DC converters such as Buck, Boost and Buck Boost converter. Synchronous primary Converter, Isolated converters such as push pull, fly back, forward, half bridge and full bridge converter, design of active and passive components for all the converters, generation of different PWM waveforms for DC-to-DC converters				
	3.2	Introduction to the design of magnetic components for SMPS			
		circuits			
4	Title	DC to AC converter	3	8	
	4.1				
	4.2	Voltage source inverters: Principle of operation and analysis of: Single phase Half bridge, full bridge inverters and three phase bridge inverters with resistive load PWM techniques: Sinusoidal PWM and Space Vector PWM			
5	Title	AC to AC converters	3	6	
J	11116	AC WAC CONTROLLS	7	U	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	5.1	AC voltage controllers, phase-controlled converters using SCR, concept of single-phase bidirectional ac switches using MOSFETs / IGBTs, Primary single phase		
	5.2	Matrix converters with buck, boost and buck boost operation using bidirectional switches		
6	Title	Power Electronics Applications	1,3	4
	6.1	 Analysis and Design of single-phase power factor correction circuits using DC to DC boost converters and Totem pole topology Design of LLC resonant DC to DC converters for telecom power supplies/ EV battery charging applications / server rack supplies 		
Self- Study		Protection and loss computation for PE devices, study of snubber circuits, heat sinks and cooling methods. Different isolated and non-isolated methods for measurement of voltage and currents in PE circuits, EMI EMC consideration, harmonic standards like IEEE 519-1994/2014 and IEC 61000, generalized safety consideration in PE circuits. PCB implementation. Design of single-phase pure sine wave inverter for PV -solar and domestic applications.		6*
Total (*n	ot inclu	ided)		42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Operation and characteristics of an SCR, Power MOSFETs /IGBT
2a	Demonstration of SCR firing circuits
2b	Demonstration of MOSFET/IGBT Gate Driver Circuits
3	Single phase Line Commuted Full/Semi-converter using SCRs
4	Design and Verification of Diode Rectifier Circuits and its output side performance indices
5	Design and Demonstration of a DC-DC Buck-Converter in CCM Mode
6	Design and Demonstration of a DC-DC Boost Converter in CCM Mode
7	Design and Demonstration of a DC-DC Buck-Boost Converter/Fly back Converter in CCM Mode
8	Demonstration of PWM three Phase bridge Voltage Source inverter with R Load, 120 degree and 180-degree conduction mode (Part-1)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	_, _, _,
9	Demonstration of PWM three phase bridge Voltage Source inverter with Sinusoidal Pulse
	width Modulation (Part-2)
1	AC-AC Buck-Boost PWM Voltage Controller with bidirectional switches
1	To measure Harmonics and Power Quality Indices at the SPIT Electrical feeder for 24 hours
	using Fluke/Hikoi/Yokogawa Power Quality Analyzer and to make a consolidated report on
	the same.
1	Demonstration of PWM three phase bridge Voltage Source inverter with Sinusoidal Pulse
	width Modulation (Part-2)
1	LAB-Course Project
	- Boost Converter /Bridgeless Totem-pole Power Factor Correction in Single Phase PWM
	Inverter
	- Half Bridge LLC Resonant Converter
	Half Bridge LLC Resonant Converter

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Power Electronics:	Ned Mohan,	3rd	John Wiley	2003
	converters, Application	Undeland and		and sons	
	and design	Robbin			
2	Power Electronics	Rashid M.H	4th	Pearson	2004
	Circuits, Devices and			Education	
	Applications				
3	First course in power	Ned Mohan	2nd	John Wiley	2012
	electronics			and sons	

Reference Books/NPTEL courses:

Sr. No.	Title	Authors	Edition	Publisher	Year
1	Electric Machinery	A.E. Fitzerald, Charles Kignsley, Jr. Stephen D Umans	6	Mc Graw Hill	2017
2	Design of magnetic components for Switched Mode Power Converters	L. Umamand, S R Bhat	1	New Age International Pvt. Ltd.	2009

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3	Electric Motor Drives, Modeling, Analysis, and Control	R Krishnan	1	Pearson	2001
4	Electrical Machinery	P S Bimbhra	6	Khanna Publishers	2007
5	Power Electronics	Vedam Subrahmanyam	2	New Age International Pvt. Ltd.	2006
6	Simulation of Power Electronic Circuits	M. B. Patil, V. Ramanarayanan, V T Ranganathan	1	Narosa	2009
7	Power Electronics	Vedam Subrahmanyam	2	New Age International Pvt. Ltd.	2006
8	Internet Resources: Application notes from Manufacturers like Infineon, Texas Instruments, ST Microelectronics, Microchips, Semikron and others .NPTEL Videos of FPE (L. Umanand)				

TITUTE OF THE CH

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)						Credits Assigned			
Code	Course Name	L	P	0	E	L	T	P	Total		
	0	0	4	4	4	0	0	2	2		
ELC		Examination Scheme									
		Component		ISE	ISE (%) MS		MSE (%)		2 (%)	Total	
	Main Project Stage 1	The	eory						-		
PR3-I		Laboratory									
		Self-Study		8	80			20		100	

Pre-requisite Course Codes, if any.	All the Courses till fourth Semester

Course Objective: Main Project Stage 1 provides an opportunity to create a significant impact on the educational experience by tackling real-world problems. This phase involves using scientific methods to analyze, correct, and evaluate decisions related to a specific issue. By connecting theoretical knowledge with practical application, it encourages students to develop a scientific mindset, helping them address everyday challenges more effectively.

everyday (challenges more effectively.
Course O	utcomes (CO): At the end of the course students will be able to
PR3-I.1	Identify problems based on societal/environmental issues.
PR3-I.2	Apply engineering knowledge to propose innovative and sustainable solutions to practical
	problems in a group.
PR3-I.3	Analyze the results obtained using theoretical, experimental, or simulation methods and
	draw appropriate conclusions.
PR3-I.4	Apply self-learning skills in teamwork with following professional ethics, contributing to
	the development of lifelong learning habits.
PR3-I.5	Document the findings and foster communication, organizational abilities, and personal
	growth through discussions and presentations.
PR3-I.6	Apply project management principles during the project work.

STITUTE OF TECHNO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PR3-I.1	1	3	3	1	1	3	3	1	1	1	1	1
PR3-I.2	3	2	3	2	3	1	1	1	3	1	1	1
PR3-I.3	2	2	2	3	2	1	1	1	1	1	1	1
PR3-I.4	2	2	2	2	2	2	2	3	3	2	2	3
PR3-I.5	2	1	1	1	1	1	1	1	1	3	1	1
PR3-I.6	1	1	1	1	1	1	1	1	1	1	3	1
PR3-I	1.83	1.83	2	1.67	1.67	1.5	1.5	1.33	1.67	1.5	1.5	1.33

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
PR3-I.1					2	3
PR3-I.2					3	2
PR3-I.3					3	2
PR3-I.4					2	3
PR3-I.5					2	3
PR3-I.6					2	3
PR3-I					2.33	2.67

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Guidelines for Main Project Stage I:

- The orientation regarding Main Project stage I implementation process and available hardware and software facilities with expertise of faculties shall be given in the last week of semester 5.
- Students must form a group of a minimum of 2 or maximum of 3 students.
- The Main project topic must contain implementation in terms of Hardware and Software.
- Each group can approach the faculty having the same domain expertise from the department for discussion of the idea. Students can approach the faculty along with their proposed topic/idea or faculty may suggest a topic/idea.
- The details regarding group members, domain of interest and choice of guide based on discussion with him/her must be filled in a sheet shared by Project Co-Ordinator by each group within 1 week of completion of ESE of semester 5.
- For approval of the mentor, the group must write mail to the mentor regarding his/her permission keeping Project Co-Ordinator and HoD in CC. On the same mail mentor must reply for approval of mentoring the group for Main Project Stage 1.
- Each faculty from the department would be allowed to select 2 groups for Main Project guidance. Considering priority to choice of guide, tentative mentor allocation will be done 2 weeks before commencement date of semester 6.
- The topic approval presentation shall be scheduled in the first week of Semester 6 in front of all the department faculties. Students should do survey and identify needs, which shall be converted into problem statement for main project in consultation with tentative mentor/head of department/domain experts. Students shall submit an implementation plan which will cover weekly activity of main project along with objectives, motivation and references for the proposed title.
- The main project topic can be the extension of the mini project done in semester 5 based on mentor's recommendation. Students must justify the improvements/modifications required in the problem statement for extension of the mini project during topic approval presentation.
- Based on topic approval presentation the mentor and co-mentor would be allotted by Head of Department.
- A log book to be prepared by each group, wherein group can record weekly work progress, mentor/co-mentor can verify and record notes/comments.

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

- Faculty mentor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with mentor/ co-mentor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format given by department. Project report should contain project title, student details, certificate, and acknowledgements. Other sections of the report shall be introduction, necessity of project, objectives, hypothesis, plan, observations, analysis of results, conclusion, and references along with other sections related to technology. The report must be written in Latex and must include report of plagiarism check.

Guidelines for Assessment of Main Project Stage I: (ISE: Through 2 Phases of Evaluation) and ESE

In Semester Evaluation:

- The review/ progress monitoring committee shall be constituted by Head of Department.
- The progress of mini project to be evaluated on continuous basis, with the help of two phase evaluation in the semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- The phase 1 evaluation (during 6th week of semester) shall be done by mentor and co-mentor considering the factors like literature/market survey, formation of problem statement, project planning, references along with attendance in terms of weekly meeting with mentor/co-mentor.
- The phase 2 evaluation (during 12th week of semester) shall be done by mentor and co-mentor considering the factors like methodology used, hardware and software design, presentation skills, attendance in terms of weekly meeting with mentor/co-mentor, project report(with plagiarism check) in prescribed format given by department.

End Semester Evaluation:

- The ESE shall be scheduled during the last week of semester.
- External experts from the other colleges shall be called for the evaluation.
- The projects will be evaluated by an external examiner based on
 - ✓ Problem Definition/Idea/Originality/Novelty/Feasibility/Application in Society

STITUTE OF TECHNO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

- ✓ Work Done (Survey/Design/Simulation/experimentation/Tools Usage/Budget Plan/Execution Plan)
- ✓ Presentation (Demo/Oral/Written) and Ethics (Attitude/Deadline/Distribution of Work)
- ✓ Knowledge/Question-Answer

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					(Credits Assigned			
Code	Course Name	L T P O E L T P						Total			
		2	0	1	5	10	2	0	1	3	
PEC		Examination Scheme									
	Optical Fiber Communication	Comp	onent	ISE	(%)	MSF	E (%)	ESE	2 (%)	Total	
	Communication	The	eory	2	20	2	20	6	50	100	
EC311		Labor	ratory	8	30		-	2	20	100	

Pre-requi	site Course Codes, if any.	AS101: Engineering Physics				
		EC201: Electromagnetic Wave Engineering				
Course O	bjective: The objective of the	course is to provide an understanding of usage of optical fiber				
for commi	unication.					
Course Outcomes (CO): At the end of the course students will be able to						
EC311.1	1.1 Understand the Fundamentals of Optical Communication Systems					
EC311.2	Analyze the Propagation of I	Light in Optical Fibers				
EC311.3	Examine Optical Componen	ts and Devices				
EC311.4	EC311.4 Evaluate Optical Network Performance and Losses					
EC311.5	Explore Optical Network Ar	chitectures and Technologies				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
EC311.1	2	2										
EC311.2	2	2	2									
EC311.3				2	2							
EC311.4					2	2						
EC311.5				2		2						

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
EC311.1	2	2		2	
EC311.2	2	2		2	
EC311.3	2	2			2
EC311.4			2		
EC311.5			2		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply✓	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Optical communication fundamentals	1,2	10
	1.1	Block diagram of Optical Communication system, advantages, loss and bandwidth window, ray theory transmission, total internal reflection, acceptance angle, numerical aperture, skew rays and meridional rays		
	1.2	EM waves, modes in planar guide, phase and group velocities, types of fiber according to refractive index profile and mode transmission.		
	1.3	Couplers, Isolators, circulators, multiplexers, filters, fiber gratings, Fabry Perot filters, arrayed waveguide grating, switches and wavelength converters		
2	Title	Optical communication Components	1,2	8
	2.1	Sources (LED, LASER), Detectors (PIN, APD) and Amplifiers		
3	Title	Optical Networks and losses in the system	1,2,	10
	3.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted, and dispersion flattened fibers, and nonlinear effects Measurements of attenuation, dispersion and OTDR Optical Networks: Link budget, SONET, SDH, WDM, DWDM	3	
4	Self-	Review of latest optical fiber application and research	1,2,	
	Study		3	
				28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
	Setup of Optical fiber communication link and measurement of Bit Error Rate (BER) and Eye pattern analysis A) Setup of analog fiber optic communication link B) Setup of digital fiber

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	optic communication link C) Measurement of Bit Error Rate D) Study and measurement of Eye
	pattern
2	Measurement of Numerical Aperture (NA) of optical fiber
3	Measurement of Losses in Optical Fiber
4	Study characteristics of LED and Photodetector in optical fiber communication link.
5	To verify Brewster's law and to find Brewster's angle Michelson's Interferometer- Refractive
	index of glass plate: To determine the refractive index of a thin glass plate.
6	To verify the Brewster's law and to find the Brewster's angle
7	Analysis of Speech using Cepstral and Linear Prediction methods To Demonstrate the working
'	of LASER using Phet virtual Lab
8	Measure propagation loss in plastic fiber and to measure the bending loss
9	Hands-On Speech Analysis and Signal Processing Techniques Plotting optical link power
	budget.
10	Mini project on optical network.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Optical Fiber	Fourth	John M.	Prentice Hall	2013
	Communication		Senior	of India	
				Publication	
2	Optical Fiber Communication	Third	Gred Keiser	Mc-Graw Hill Publication	2012
3	Optical Networks: A Practical Perspective	Third	Rajiv Ramaswamy and Kumar N. Sivarajan	Elsevier Publication	2010

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code	Course Name	L	T	P	O	Е	L	T	P	Total
	Cyber Security and	2	-	2	3	7	2	-	1	3
PEC		Examinatio				n Scheme				
PEC		Component		ISE (%)		M	SE (%)	E	SE	Total
	Digital Forensics							(%)	
EC 321		The	eory		20		20		60	100
		Labor	atory		80				20	100

Pre-requisite C	Course Codes, if any.	EC302-: Computer communication Networks					
Course Objective: The objective of the course is to provide a fundamental understanding							
Computer Communication networks.							
Course Outcon	Course Outcomes (CO): At the end of the course students will be able to						
EC321.1	Identify different cybercrimes, cyber threats, and security vulnerabilities.						
EC321.2	Perform cyber risk assess	sments, vulnerability analysis, and penetration testing for					
	security evaluation.						
EC321.3	Apply forensic technique	s to collect and analyze digital evidence using appropriate					
	tools						
EC321.4	Analyze digital forensic	artifacts from various sources and generate investigative					
	reports.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC321.1	3			3				2				
EC321.2		2			3			2				
EC321.3			3					2				
EC321.4				3				2				

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
EC321.1	3	M		2	3
EC321.2		3		2	
EC321.3	3		3		3
EC321.4		2		3	

Bharatiya Sardar Patel II

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand ✓	Apply ✓	Analyze ✓	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref	Total Hrs.			
1	1.1	Fundamentals of Cybersecurity: Introduction to Cybersecurity, Tenets of Security (CIA Triad), cybercrime and its classifications: phishing, DoS/DDoS, Ransomware, Malware, SQL Injection, etc.	1,3	8			
	1.2	Identity and Access Management (IAM), Multi-Factor Authentication, Biometric Security, cryptographic techniques: Hash Functions, Digital Signatures, PKI, and their applications, Intrusion Detection and Prevention: IDS, IPS, Honeypots, Firewalls					
2	2.1	1,3	06				
	2.2	attack surface analysis. Vulnerability Assessment (VA) & Penetration Testing (PT): Network VAPT, Web VAPT, Cloud VAPT.					
3	Fundamentals of Digital Forensics:		4,5, 6	06			
	3.1						
	3.2	Types of Digital Evidence (Volatile vs. Non-Volatile), methods of Evidence Collection (Live vs. Dead Acquisition), chain of custody and data integrity challenges in handling encrypted and deleted data.					
4		Advanced Digital Forensics Techniques:	4,5,	08			
	4.1	Disk imaging techniques (FTK imager/Encase/Autopsy), memory forensics (ramp dump analysis using volatility), file hashing and integrity verification, best practices for data preservation, file system forensics (NTFS, FAT, ext3/4, linux artifacts), windows forensics (registry, event logs, prefetch, LNK files)	6				

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	4.2	Cloud Forensics (Data Acquisition Challenges in SaaS, PaaS, IaaS), antiforensics techniques.		
5	Self Study	Cybersecurity and Digital Forensic Standards.	2	4*
	•	Total (*Not inclu	ıded)	28

Laboratory:

Laburat	or y.
Sr. No.	Title of the Experiment
1.	Network and Web Server Vulnerability Scanning (Nmap, Nikto, OpenVAS)
2.	To provide confidentiality using OpenPuff: a professional steganography tool
3.	Find Last Connected USB on your system (USB Forensics)
4.	To determine the security of web servers and your local web browser using digital certificates
5.	Live Forensics Case Investigation using Autopsy
6.	Recover Deleted Files using Forensics Tools
7.	View Last Activity of Workstation
8.	File Signature Analysis
9.	Extracting Browser Artifacts
10.	Extract Exchangeable image file format (EXIF) Data from Image Files using Exif-reader Software
11.	Capturing a RAM Memory Using Redline
12.	Windows Forensics Analysis
13.	Web Browser Forensics

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Security in Computing	5 th	Charles Pfleeger Shari Pfleeger Jonathan Margulies	PrenticeHal 1	2015
2	Effective Cybersecurity Understanding and Using Standards and Best Practices	1 st	William Stallings	Addison Wesley	2019
3	Cybersecurity – Attack and Defense Strategies	2 nd	Yuri Diogenes Erdal Ozkaya	Packt Publications	2019
4	Digital Forensics with Kali Linux Second Edition	2 nd	Shiva V. N. Parasram	Packt Publications	2020

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Digital Forensics and Incident Response	2 nd	Gerard Johansen	Packt Publications	2020
2	A Practical Guide to Digital Forensics Investigations	2 nd	Darren R. Hayes	Pearson	2020

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					(Credits Assigned				
Code		L	T	P	O	E	L	T	P	Total		
	Embedded Systems	3			5	8	3			3		
PEC					Examination Scheme							
		Comp	onent	IS	E (%)	N	1SE (%	SE (%) ESE (%) Tota				
EC221		The	eory		20	20 20 60		60	100			
EC331		Laboratory										

Pre-requisit	e Course Codes, if any. EC206: - Computer Architecture and Organization							
	EC306: - Microcontrollers							
	Course Objective: To empower the students in system design skills using modeling practices and							
learn key cor	ncepts in reliability of embedded systems with respect to Industrial standards.							
Course Outo	comes (CO): After successful completion of the course, student will be able to							
EC331.1	Discuss design metrics of embedded system to design real time applications to match							
	recent trends in technology.							
EC331.2	Analyze the reliability of embedded system with respect to fault detection and fault							
EC551.2	tolerance							
EC331.3	Apply the industry standards for assessment of embedded product							
EC331.4	Analyze the given embedded application with respect to security							
EC331.5	Choose suitable criteria for selection of embedded application.							
EC331.6	Demonstrate hardware and software skills based on embedded case studies.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
EC331.1	2	2	2									
EC331.2	2	2	2									
EC331.3	2	2	2									
EC331.4	2	2	2									
EC331.5	2	2	2									
EC331.6	2	2	2	2	2							

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC331.1		1				
EC331.2	1		1			
EC331.3	1		1			
EC331.4	1	1	1			
EC331.5		1	1			
EC331.6	1		1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Jnderstand √	Apply	Analyze	Evaluate	Create
----------	---------------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics				
1	Title	Fundamentals of Embedded System		12		
	1.1	Introduction to Embedded Systems, Characteristics of Embedded System, Design Process, Design Metrics and optimization of various parameters of embedded system. Design trade-offs due to process compatibility, thermal considerations, etc. Real time System's requirements, real time issues, interrupt latency	1,2			
	1.2					
·	1.3	Technological aspects of embedded systems: Embedded microcontroller cores, embedded memories, interfacing between analog and digital blocks, signal conditioning, digital signal processing, sub system interfacing, interfacing with external systems and user interfacing. Introduction to real time programming languages and operating systems for embedded systems.	1,5			

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

2	Title	Reliable Embedded System		08
	2.1	Reliable Embedded System: Single-program, real-time embedded systems, TT vs. ET architectures, Modeling system timing characteristics, basic tick lists, determining the required tick interval, short tasks, importance of task offsets, task sequence initialization, task jitter, response times, importance of WCET/BCET information, challenges with WCET/BCET measurements, TTC scheduler, Fault-tolerance Techniques	3	
3	Title	Industry Standards		06
	3.1	Introduction to IEC 61508 standard: Organizing and managing the life-cycle, Requirements involving the specification, Requirements for design and development, Integration and test, Operations and maintenance, Validation, Modifications, acquired sub-systems, Organizing and managing the software engineering	6,7	
	3.2	Introduction to IEC 60601 standard: Protection of radio services, Protection of the Public Mains network, Immunity, Electrostatic Discharge, Radiated RF electromagnetic fields, Electrical fast transients and bursts.	8	
	3.3	Introduction to IEC 26262: Introduction of ISO/DIS 26262 (ISO 26262), Parts of ISO 26262, ASIL Levels, Product Development System Level, Product Development Software Level, Fitting software tools into ISO 26262 process	9	
4	Title	Security in Network Embedded System		08
	4.1	Networked Embedded System: Network Fundamentals, Layers and Protocols. Network Architectures, Network Components-Bridges, Routers, Switches, Distributed Embedded Architectures, Elements of Protocol Design, High Level Protocol Design Languages, Network Based Design, Internet-Enabled Systems: Protocols for industrial and control applications, Internetworking Protocols. Wireless Applications: Blue-tooth	10	
5	Title	Case Studies *		
	5.1	Embedded Control Applications: Introduction, Open-loop and Closed Loop Control Systems Examples: Speed Control. PID Controllers: Software Coding of a PID Controller, PID tuning. Fuzzy Logic Controller Application Examples: Washing Machine, Auto-focusing digital camera and Air-conditioner	1,2	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	5.2 Automotive Embedded Systems: Automotive Architectures,			
		embedded communication, embedded software and development		
		processes, Verification, Testing and Timing Analysis		
	5.3	Embedded systems in Healthcare domain.		
6	Self	Simulation-Based Exploration:		
	Study	Students will simulate real-time embedded control systems (e.g.,		
		temperature monitoring, motor speed control) using platforms		
		like MATLAB/Simulink, Proteus, or Tinkercad to better		
		understand timing, task scheduling, and control loop dynamics.		
		Mini Project (Design + Prototype):		
	Students are encouraged to build a mini project such as a smart			
		irrigation controller, PID-based fan system, or Bluetooth-based		
		home automation using low-cost microcontrollers and evaluate		
		system reliability and performance.		
		Exploration of Industry Standards:		
		Students can explore and present short reports on additional		
		standards like:		
		• IEC 62304 (Medical device software lifecycle)		
		• ISO/IEC 27001 (Information Security)		
		ISO/TS 16949 (Automotive industry quality)		
			Total	42

^{*} Students are supposed to do some experiments/mini-projects as per instructions of teacher and requires individual efforts of students

Text Books

I CHU	BOOKS				
Sr. No.	Title	Edition	Author	Publisher	Year
1	Embedded System: Architecture, Programming and Design	2nd edition	Rajkamal	Tata McGraw-Hill	2011
2	The Engineering of Reliable systems: LPC1769	-	Pont M. J	SafeTTy Systems	2014
3	Security in Embedded Devices	2010th edition	Gebotys, Catherine H.	Springer	2010
4	Functional Safety, A Straightforward Guide to applying IEC 61508 and Related Standards	2nd edition	David Smith	Elsevier	2004
5	IEC 61508: IEC standard for the functional safety for electrical, electronics and programmable electronics equipment	-	-	https://www.iec.ch/safety	-

STITUTE OF SECHNOSING

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

6	IEC 60601: IEC standard on Medical Electric Equipment	-	-	https://www.iec.ch/safety	-
7	IEC 26262: IEC standard on Road vehicles	-	-	https://www.iec.ch/safety	
8	Embedded Systems Handbook: Networked Embedded Systems	2nd edition	Richard Zurawski	CRC Press	2009

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Introduction to Embedded Systems	2nd edition	Shibu K. V	Tata McGraw- Hill	2017
2	Embedded Microcomputer Systems: Real time Interfacing	3rd edition	Jonathan W. Valvano	Cengage Learning	2012

Online Learning Material

NPTEL Course:

Embedded Systems - IIT Kharagpur (Prof. D. Mukhopadhyay): https://nptel.ac.in/courses/108105057

NPTEL Course:

Secure Systems Engineering: IIIT Bangalore (Prof. Ashish Choudhury):

https://nptel.ac.in/courses/106106221

Courseera Course: https://www.coursera.org/learn/iot-connectivity-

security?specialization=embedded-systems-security

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course		Teaching Scheme (Hrs/week)						Credits Assigned			
(Category)	Course Name	\mathbf{L}	T	P	O	E	L	T	P	Total	
Code											
		2	0	2	5	10	2	0	1	3	
PEC		Examination Scheme									
	Advanced Signal Processing	Compo	ISE (%) MSE (%		MSE (%)	ESE (%)		Total			
EC341	Trocessing	Theory		20		20		60		100	
		Laboratory		80			20		100		

Pre-requisite Course Codes, if any.		Signals and Systems			
Course Objective: To develop mathematical foundation of system and design digital filters					
Course Outcomes (CO): At the End of the course students will be able to					
EC341.1	Explain the fundamentals and need for adaptive signal processing.				
EC341.2	Analyze and apply multirate signal processing techniques.				
EC341.3	Estimate the power spectral density of signals using parametric methods.				
EC341.4	4 Apply Discrete Cosine Transform (DCT) and Wavelet Transform.				
EC341.5	EC341.5 Explore advanced applications of signal processing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC341.1	2	1	3									
EC341.2	2	1	3									
EC341.3	2	1	3									
EC341.4	2	1	3									
EC341.5	2	1	3		2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC341.1	3				3	
EC341.2	3				3	
EC341.3	3				3	
EC341.4	3				3	
EC341.5	3				3	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Adaptive Signal Processing	1,3	06
	1.1	Concept of Adaptive Filter, Minimum MSE Criterion, LMS	,	
		Algorithms		
	1.2	Steepest descent search and the LMS algorithm.		
	1.3	Weiner Filter and Kalman filter		
2	Title	Multi-rate Signal processing	1	06
	2.1	Sampling rate reduction: decimation by integer factors, Sampling rate increase: interpolation by integer factors		
	2.2	Sampling rate conversion by non-integer factors, Multistage approach		
		to sampling rate conversion		
	2.3	Polyphase decomposition		
3	Title	Power Spectrum Estimation	1	06
	3.1	Non-parametric Methods for Power Spectrum Estimation - Bartlett Method, Welch Method, Blackman & Tukey Methods.		
	3.2	Parametric Methods for Power Spectrum Estimation: Yule and Walker methods for the AR Model Parameters, Burg Method for the AR Model parameters, Unconstrained least-squares method for the AR Model parameters, Sequential estimation methods for the AR Model parameters.		
	3.3	ARMA Model for Power Spectrum Estimation.		
4	Title	Transform Techniques	1,4	06
	4.1	Discrete Cosine Transform: Forward and Inverse DCT, Properties of DCT		
	4.2	Wavelet Transform: Introduction to continuous and discrete wavelet transform, Haar Scaling functions, Haar wavelet functions, Signal decomposition, Relation with filter banks, Frequency response		
5	Title	Applications of DSP	3	04
	5.1	Applications of adaptive filters: Noise cancellation, echo-cancellation and equalization. Fast adaptive algorithms. Frequency domain analysis of adaptive filters.		
	5.2	Channel Equalization, Active Noise Control, Echo Cancellation		
	5.3	Signal Compression: Sub-band coding, Vector Quantization, DCT and Wavelet based Signal Compression		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

6	Self	Linear prediction and Optimum Linear Filters: Random signals,	1,5	04
	Study	Correlation Functions and Power Spectra, Representation of a		
		Stationary Random Process. Forward and Backward Linear		
		Prediction.		
			Total	28

Laboratory Component

Laborator	ry Component
Sr. No.	Title of the Experiment
1	Implementation of LMS / RLS algorithm
2	Implementation of LMS / RLS algorithm
3	Implementation of signal decimation and interpolation using rational factor
4	Design and analyze polyphase filter structures
5	Implementation of multirate filter banks
6	analyze signal energy compaction using DCT coefficients
7	Implementation of implement Autoregressive (AR) model-based spectral estimation
8	Apply multilevel wavelet decomposition for denoising a noisy signal.
9	Apply spectral estimation techniques to analyze real-world EEG/ECG signals.
10	Noise cancellation using adaptive filtering (LMS/RLS) in speech signals.

Text Books

	**				
Sr.	Title E		Authors	Publisher	Year
No.					
1	Digital Signal Processing:	4 th	J. Proakis, D. G.	Pearson	20 14
	Principles, Algorithms and Applications		Manolakis, and D. Sharma	Education	
2	Digital Signal Processing	2 nd	S.Salivahanan, A Vallavaraj, C Gnanapriya	Tata McGraw Hill	2010
3	Adaptive Signal Processing	1st	Bernard Widrow and Samual Stearns	Person	2002

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Multirate Digital Signal	1 st	N. J. Fliege	John Wiley and	1999
	Processing: Multirate Systems -			Sons Ltd	
	Filter Banks – Wavelets				
2	Signals and Systems	3 rd	Simon Haykin and	John Wiley &	2002
			Barry Van Veen	Sons	
3	Theory and Applications of Digital	2 nd	L. R. Rabiner and B. Gold	Prentice Hall	2006
	Signal Processing				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

4	A Wavelet Tour of Signal	3 rd	Stephane Mallat	Academic Press	1998
	Processing				

NPTEL:

1) Introduction to Adaptive Signal Processing by Prof. Mrutyunjoy Chakraborty

weblink: https://onlinecourses.nptel.ac.in/noc23 ee138/preview

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme Course Name (Hrs/week)					C	Credits	s Assig	ned
Code		L	T	P	O	E	L	T	P	Total
	Digital CMOS VLSI Design	2	0	1	4	7	2	0	1	3
PEC		Examination					1 Scheme			
		Comp	ISE	(%)	MSF	E (%)	ESE	(%)	Total	
EC351		Theory		2	20	2	20	6	50	100
		Laboratory		8	30		-	2	20	100

Pre-requisite Course Codes, if any.	EC101: Digital Systems and Microprocessors
	EC102: Basic Electrical Engineering
	AS101: Engineering Physics
	EC202: Electronic Devices & Circuits
	EC207: Mixed Signal Integrated Circuits

Course Objective: The objective of this course is to provide a strong foundation in Digital CMOS VLSI Design, aligning with the evolving Industry 4.0 trends in the Indian semiconductor industry. This course will equip students with fundamental of MOSFET technologies, models, analysis of MOSFET-based digital logic circuits and memory architectures, preparing them for advanced studies and industry applications in semiconductor and chip design.

Course Out	comes (CO): At the end of the course students will be able to							
EC351.1 Analyze MOSFET technologies and MOSFET models.								
EC351.2	Analyze MOSFET based Inverter circuits.							
EC351.3	Design MOSFET based logic circuits with different design styles.							
EC351.4	Analyze MOSFET based semiconductor memories.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC351.1	3	2		2	1							
EC351.2	3	2		2	2							
EC351.3	3	2	2	2	2							
EC351.4	3	2		2	2							

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC351.1	2		2		1	
EC351.2	2		2		1	
EC351.3	2		2		1	
EC351.4	2		2		1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand✓	Apply✓	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Technology Trend		04
	1.1	Technology Comparison: Comparison of BJT, NMOS and CMOS technology	1	
	1.2	MOSFET Scaling: Types of scaling, MOSFET capacitances		
2	Title	MOSFET Inverters		08
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter, comparison of all types of MOS inverters, design of CMOS inverters, CMOS Latch-up	1	
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter		
3	Title	MOS Circuit Design Styles		10
	3.1	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, Domino, NORA, Zipper, C ² MOS	1,7	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder using above design styles		
4	Title	Semiconductor Memories		06
	4.1	1,2		
	4.2	Peripheral Circuits: Sense amplifier, decoder	1,2,3	
5	Self Stud	Data path design for 1 Bit adder circuit, Partial-product generation, partial-product accumulation, final addition, barrel shifter, CMOS	5,6	4*
	y	clocking styles, Clock generation, stabilization and distribution		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Total (*Not Included) 2	8

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr.	Experiment Details
No.	
1	To analyze NMOS and PMOS Transistor characteristics.
2	To simulate Resistive Load Inverter and CMOS Inverter, verify the VTC. Compare both
	the topologies. Comment on the Noise Margins.
3	Implement CMOS NAND, NOR, AND, OR using Static CMOS Logic.
4	Design and Implement AB+CD bar using different CMOS Logic styles.
5	Simulate Pseudo NMOS Inverter and comment on the result.
6	Simulate 6 Transistor SRAM and check the read and write stability
7	Design and Implement given equation using Pseudo NMOS.
8	Design and Implement given equation using Domino Logic and C ² MOS Logic
9	Simulate Clocked JK and D Flip Flop using Static CMOS Logic.
10	Simulate 1 T DRAM and analyze the capacitor refresh logic.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	CMOS Digital Integrated Circuits Analysis and Design	Third	Sung-Mo Kang and Yusuf Leblebici	Tata McGraw Hill	2017
2	Digital Integrated Circuits: A Design Perspective	Second	Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic	Pearson Education	2009
3	Introduction to VLSI Circuits and Systems	Student Edition	John P. Uyemura	Wiley	2013

Reference Books

terer c	IICC DOOKS				
Sr.	Title	Title Edition		Publisher	Year
No.					
1	VLSI Design	First	Debaprasad Das	Oxford	2010
2	CMOS VLSI Design: A	Third	Neil H. E. Weste,	Pearson	2013
	Circuits and Systems		David Harris and	Education	
	Perspective		Ayan Banerjee		

Online Resources:

1. CMOS Digital VLSI Design, By Prof. Sudeb Dasgupta, IIT Roorkee

Link: - https://onlinecourses.nptel.ac.in/noc21_ee09/preview

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week) Credits Assigned							ned		
Code		L	T	P	0	E	L	T	P	Total	
		3	0	2	5	10	3	0	1	4	
PEC	Error Coding and cryptography	Examination Sch						heme			
	ci yptogi apny	Comp	onent	ISE	(%)	MSF	E (%)	ESE	2 (%)	Total	
EC312		Theory		neory 20		20		60		100	
		Laboratory		80		-	-	2	20	100	

Pre-requis	ite Course Codes, if any.	Analog and Digital communication					
Course Ob	jective:						
Course Outcomes (CO): At the end of the course students will be able to							
EC312.1	C312.1 Apply Galois field concepts to various error correction techniques.						
EC312.2	Analyze encoding and decoding of various source	codes and error correction codes.					
EC312.3	Estimate various performance parameters of error	correction coding algorithms.					
EC312.4	Examine various encryption and encryption techn	iques and cryptography algorithms.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3											
EC312.2	3		2		2							
EC312.3	3		2	2	2				2	2		
EC312.4	3	3			1							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC312.1		2				
EC312.2		2	2			

SPIT/UG Syllabus/2025-26/pg. 66

HIVE ON THE OWN THE OW

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC312.3	2	2	3	
EC312.4	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand $\sqrt{}$ Apply $\sqrt{}$ Analyze $\sqrt{}$ Evaluate Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.				
1	Title	Introduction to Finite Field	1,2	6				
	1.1	Groups, Fields, Binary Field Arithmetic, Construction of Galois	1,2	U				
		Field GF (2), Basic Properties of Galois Field GF(2 ⁿ),						
		Computations Using Galois Field GF(2 ⁿ) Arithmetic, Vector						
		Spaces						
	1.2	Types of Codes, Modulation and Demodulation, Maximum						
		Likelihood Decoding, Types of Errors, Error Control Strategies	_					
	1.3	Review of Shannon's Channel capacity, Discrete memoryless						
		channels and capacity, Examples of channel capacity, symmetric						
		channels, AWGN channel, fading channels, Channel coding						
	FT14 . 3	theorem						
2	Title	Cyclic Codes	1,2	6				
	2.1	Introduction, Generator and Parity check Polynomials,						
		Systematic Cyclic codes - Encoding and decoding using						
		Feedback shift register circuits and polynomial method.	_					
	2.2	Generator matrix for Cyclic codes, Syndrome computation and						
		Error detection, Meggitt decoder.						
	2.2	Cyclic Hamming codes, Shortened cyclic codes, BCH/Reed						
		Solomon codes						
3		LDPC Codes	1,2	4				
	3.1	Low Density Parity Check (LDPC) Codes: Low-Density Parity	<u> </u>					
		Check Codes, Different Systematic Forms of a Block Code						
		Description of LDPC Codes, Construction of LDPC Codes:						
		Regular LDPC Codes, Irregular LDPC Codes						

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3.2	Decoding of LDPC Codes: The Tanner Graph, The Sum-		
	Product Algorithm for LDPC Codes: An Example, Bit flipping		
	algorithm		
Title	Convolution Codes	1,2	6
4.1	Encoding and decoding: polynomial and time domain		
	method, generator matrix, transfer function matrix,		
	structural properties and distance properties of		
	convolutional codes, stack's algorithm and fano's algorithm		
	for sequential decoding of convolutional codes		
4.2	Introduction to Turbo coding, Construction Methods for Turbo		
		_	
4.3			
Title		1,2	6
5.1			
	arithmetic		
5.2	Overview of various types of ciphers		
Self	DES, IDEA, RSA, RC-4 Symmetric (Secret Key)		6
Study			
	Cryptography algorithms		
	Cryptography argorithms		
	Title 4.1 4.2 4.3 Title 5.1 5.2 Self	Product Algorithm for LDPC Codes: An Example, Bit flipping algorithm Title Convolution Codes 4.1 Encoding and decoding: polynomial and time domain method, generator matrix, transfer function matrix, structural properties and distance properties of convolutional codes, stack's algorithm and fano's algorithm for sequential decoding of convolutional codes 4.2 Introduction to Turbo coding, Construction Methods for Turbo Codes 4.3 Interleaver, Block Interleaver, Convolutional Interleaver, Random Interleaver, Linear Interleaver, Code Concatenation Methods, Turbo Code Performance as a Function of Size and Type of Interleaver. Title Introduction to cryptography 5.1 Cryptography Algorithms: Introduction, modular arithmetic 5.2 Overview of various types of ciphers Self Study DES, IDEA, RSA, RC-4 Symmetric (Secret Key) Cryptography & asymmetric (Public-Key)	Product Algorithm for LDPC Codes: An Example, Bit flipping algorithm Title Convolution Codes 4.1 Encoding and decoding: polynomial and time domain method, generator matrix, transfer function matrix, structural properties and distance properties of convolutional codes, stack's algorithm and fano's algorithm for sequential decoding of convolutional codes 4.2 Introduction to Turbo coding, Construction Methods for Turbo Codes 4.3 Interleaver, Block Interleaver, Convolutional Interleaver, Random Interleaver, Linear Interleaver, Code Concatenation Methods, Turbo Code Performance as a Function of Size and Type of Interleaver. Title Introduction to cryptography 5.1 Cryptography Algorithms: Introduction, modular arithmetic 5.2 Overview of various types of ciphers DES, IDEA, RSA, RC-4 Symmetric (Secret Key) Cryptography & asymmetric (Public-Key)

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment						
2	Single error correction by rectangular parity						
3	Encoding and decoding of cyclic codes using polynomial division						
4	BER performance of cyclic codes for a coded and uncoded BPSK and QPSK communication system in AWGN channel						
5	Bit flipping algorithm/ sum product algorithm for LDPC codes						
6	ECC applications to QR codes and ISBN						
7	Stack's algorithm for decoding of convolutional codes						
8	BER performance of convolutional codes and turbo codes in OFDM system with and without AWGN channel						

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

9	Generation of cipher output using various techniques
10	Case study: IDEA, DES, RSA, RC-4 algorithms

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Error Control Coding:	2nd	Shu Lin and	Pearson	2004
	Fundamentals and	Edition	Daniel		
	Applications		Costello		
2	Essentials of Error-Control	First	Patrick Guy	Wiley	2006
	Coding		Farrell		
3	Information theory coding	Third	Ranjan Bose	Prentice Hall	1995
	and cryptography				
4	Digital communication	fourth	Simon Haykin	John wiley	2014
	systems				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		2	0	2	4	7	2	0	1	3
EC		Examination Scheme								
	Wireless Networks	Component		ISE (%)		MSE (%)		ESE (%)		Total
			Theory		20		30		00	150
322	322		Laboratory		30			20		100

Pre-requi	site Course Codes, if any.	Mobile and Wireless Communication, Computer						
1	•	Communication Networks						
Course O	bjective:							
Course O	Course Outcomes (CO): At the end of the course students will be able to							
EC322.1	Describe the fundamental	principles of wireless communication, including signal						
	propagation, modulation, MAC protocols, and WLAN technologies.							
EC322.2	Analyze the architectures and protocols of cellular networks and Personal Area networks							
	such as CDMA, UMTS, LoR	such as CDMA, UMTS, LoRa, Telemetry and M2M along with their operational procedures.						
EC322.3	Design and simulate wireles	s networks including Mobile IP, ad hoc networks, and wireless						
	sensor networks using appropriate tools (e.g., NS-3, Cooja).							
EC322.4	Evaluate and implement sec	curity mechanisms to counter threats in wireless networks, and						
	understand emerging technol	logies such as Wi-Fi 6/7 and IoT security.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	3	2										
EC322.2	2	3	2									
EC322.3		2	3	2								
EC322.4			2		2	3						

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1	2			2		
EC322.2		2				2

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC322.3		2		2	
EC322.4	1		2	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember √	Understand✓	Apply✓	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics		Hrs.
1	Title	Wireless Communication Fundamentals	1,2	06
2	1.1	Characteristics of Wireless Communication, Comparison with Wired		
		Communication, Frequency band, spectrum allocation.		
	1.2	Wireless Transmission Techniques: Signal propagation, path loss,		
		fading, interference, Modulation techniques (ASK, FSK, PSK,		
		QAM) Multiplexing: FDM, TDM, CDM		
	1.3	MAC and WLAN Technologies: MAC mechanisms in wireless		
		networks, IEEE 802.11 architecture, protocols, services,		
		CSMA/CA, DCF, PCF, RTS/CTS mechanism, WLAN		
_		deployment, hotspots, roaming.		
2	Title	Cellular Networks and Personal Area Network Technologies	1,2	06
	2.1	Digital Cellular Technology:2.5G TDMA Evolution Path, GPRS		
		Technology, Edge Technology, 2.5G CDMA one cellular		
		technology, UMTS Technology, W-CDMA Air Interface, TD-		
	2.2	SCDMA Technology, CDMA2000 Cellular Technology.		
	2.2	LoRa and LPWAN Technologies: LoRa physical layer: chirp		
		spread spectrum modulation.LoRaWAN protocol architecture:		
		Classes A, B, C.Link budget analysis and coverage. Applications: smart cities, agriculture, logistics, environmental monitoring		
		smart cities, agriculture, logistics, environmental monitoring		
	2.2	Telemetry and M2M Communication: Fundamentals of telemetry		
		systems. Wireless M-Bus, Sigfox, NB-IoT overview. Applications		
		in industrial monitoring, smart metering, remote sensing		
3	Title	Mobile IP and Transport Layer in Wireless Networks	1,2	06
	3.1	Mobile IP: Basic concepts, motivation, Entities: Home Agent,		
		Foreign Agent, Mobile Node, Registration, tunneling, route		
		optimization		
	3.2	Network Protocols and Configuration: DHCP operation in wireless		
		networks, Routing protocols in mobile environments, Proactive vs		
		reactive routing		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

		By Teem Ent C		
	3.3	Wireless Transport Layer: Issues with TCP over wireless:		
		congestion, error rates, TCP variants for wireless: Snoop, Freeze-		
		TCP, TCP Westwood, UDP performance in mobile networks		
4	Title	Ad Hoc Networks and Wireless Sensor Networks	1,2	06
	4.1	Ad Hoc Networks: Characteristics, design challenges, Applications		
		in disaster recovery, military, vehicular networks.		
	4.2	Routing in Ad Hoc Networks: Reactive protocols: AODV, DSR		
		Proactive protocols: DSDV, OLSR, Hybrid protocols (ZRP)		
	4.3	Wireless Sensor Networks (WSNs): Node architecture, network		
		topology, Data aggregation, cluster formation, Energy-efficient		
		protocols (LEACH, PEGASIS)		
5	Title	Wireless Network Security and Emerging Technologies	1,2,	04
	5.1	Wireless Network Security and Attacks: Security requirements and	3	
		threats, WEP, WPA, WPA2: weaknesses and improvements,		
		mechanisms and encryption techniques.		
	5.2	Emerging Trends: Wi-Fi 6 and Wi-Fi 7, mm-Wave		
		communication and beam forming.		
6	Self	Authentication mechanisms (EAP, RADIUS), Eavesdropping,		06*
	Study	spoofing, denial of service, Man-in-the-middle attacks, Defense,		
		Edge computing, IoT over wireless, Blockchain for secure wireless		
		networking.		
1				20
		Excluding Self Study Topics 1	l'otal	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implementation and Analysis of Various Wireless Modulation Techniques in GNU Radio and
	Pluto SDR.
2	Wireless Topology Simulation in NS-3/OMNET++.
3	Wireshark Analysis of Wireless Packets.
4	Mobile IP Simulation./ LTE, 5G Network simulation in NS-3
5	ADOC Routing Protocol Simulation in NS-3/OMNET++.
6	WSN Simulation in COOJA.
7	WiFi Coverage and Heat Mapping using LoRa WAN Gateway.
8	Wireless Security Lab. (WEP/WPA Simulation)
9	IOT Device Integration over WiFi.(Cloud Platform)
10	Bluetooth based Communication between devices (using TerMux).

THUTE OF TECHNO

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communications	2 nd	William	Pearson	2005
	and Networks		Stallings		
2	Ad Hoc Wireless Networks: Architectures and Protocols	2 nd	C. Siva Ram Murthy & B.S. Manoj,	Pearson	2004

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless	2 nd	Theodore S.	Pearson	2002
	Communications:		Rappaport		
	Principles and				
	Practice				
2.	Wireless Sensor	1 st	Kazem	Wiley	2007
	Networks:		Sohraby,		
	Technology,		Daniel Minoli,		
	Protocols, and		Taieb Znati		
	Applications				
3.	Security in Wireless	1 st	Yan Zhang,	Auerbach	2006
	Mesh Networks		Jun Zheng,	Publications	
			Honglin Hu	(Taylor &	
			_	Francis)	

THAT WALL STORY

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	T	P	0	E	L	T	P	Total	
		2	0	2	4	7	2	0	1	3	
PEC		Examination Scheme									
rec	Real Time	Comp	onent	IS	E (%)) M	SE	ESE		Total	
	Operating System					(%)	(%)			
EC332		The	eory		20		20	60		100	
		Labor	ratory		80			20		100	

Pre-requisit	e Course Codes, if any.	Computer Organization & Architecture, Microcontrollers					
Course Obj	Course Objective: The objective of this course is to provide students with a deep understanding of						
Real-Time O	perating Systems, their des	ign, functionality, and application in real-time embedded					
systems.							
Course Out	comes (CO): At the End of	the course students will be able to					
EC332.1	Comprehend the key con	cepts of RTOS that includes task, task states, process and					
EC332.1	shared data						
EC332.2	Illustrate Inter-process Communication techniques.						
EC332.3	Analyze various scheduling	ng algorithms used in real-time environments					
F. C. 2.2. 4	1						
EC332.4	System (RTOS), including	g resource management and real-time constraints.					
EC222 5		plication that meet real time requirements using appropriate					
EC332.5	RTOS.						
EC332.4 EC332.5	System (RTOS), including	mechanisms, and capabilities of a Real-Time Operating gresource management and real-time constraints. plication that meet real time requirements using appropriate					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC332.1	3											
EC332.2	3											
EC332.3		3			3							
EC332.4	3	3			3							
EC332.5		3			3							

ETHUTE SECHOLOGICAL STREET

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC332.1	1	1	1			
EC332.2	1	1	1			
EC332.3	1	1	1			
EC332.4	1	1	1			
EC332.5	1	1	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze✓	Evaluate	Create
---------------------	-------	----------	----------	--------

Theory Component

Modu	Unit	Topics	Ref.	Hrs.
le No.	No.	•		
1	Title Real Time Operating System Concepts		1,2	06
	1.1	Tasks and Task States, Task and Data		
	1.2	Concept of Semaphores		
	1.3	Shared Data and Inter-process Communication		
	1.4	Signal functions, Semaphore functions, Message Queue functions,		
		mailbox functions, Pipe functions, Socket functions, RPC		
		functions		
2	Title	Functionalities of RTOS	2,3	06
	2.1	Process Management, Timer and Event Functions		
	2.2	Memory Management, Strategy: Static and Dynamic, Memory Protection		
	2.3	I/O Management, Interrupt routines in RTOS environment and its handling		
3	Title	Real Time Task Scheduling	2,4	06
	3.1	Schedulability Problem: Classification, schedulability test,		
	3.2	Static and Dynamic Scheduling,		
4	Title	Types of RTOS and Examples	3,4	06

SPIT/UG Syllabus/2025-26/pg. 75

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	4.1	RTOS VxWorks		
	4.2	RTOS mCOS		
	4.3	POSIX Standards and RTLinux	5	
5	Title	RTOS Application Domains	2,3	04
	5.1	Embedded RTOS for VOIP		
	5.2	RTOS for Control Systems		
6	Self	RTOS tools and technologies, RTOS Development environments,		
	Study	Debugging tools.		
	•		Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment						
1	Implement multitasking by creating multiple tasks and scheduling them using an RTOS.						
	Implementation:						
	Use FreeRTOS or an equivalent RTOS.						
	Create tasks with different priorities.						
	Implement Round-Robin and Priority-based scheduling.						
	Observe task execution order.						
2	Implement message queue-based communication between two tasks.						
	Implementation:						
	• Create two tasks: Task A (Sender) and Task B (Receiver).						
	 Use FreeRTOS message queues to send and receive messages. 						
	Display received messages via serial monitor (UART/printf).						
3	Use binary and counting semaphores for task synchronization.						
	Implementation:						
	• Create two tasks: Task 1 (Producer) and Task 2 (Consumer).						
	• Implement binary semaphore for mutual exclusion.						
	• Implement counting semaphore for resource management.						
	 Observe task execution sequence using debugging tools or LED toggling. 						
4	Demonstrate the use of software timers in RTOS for periodic task execution.						
	Implementation:						
	Create a timer task that executes at fixed intervals.						
	Implement periodic event triggering using RTOS timer APIs.						
	Measure execution time using an oscilloscope or system logs.						
5	Implement external interrupt-driven task execution in an RTOS.						
	Implementation:						
	• Configure an external hardware interrupt (e.g., button press).						
	• Use an ISR (Interrupt Service Routine) to trigger an RTOS task.						
	Measure response time and analyze latency using an oscilloscope or software						
	logs.						
6	Configure and use a Real-Time Clock (RTC) in an RTOS environment.						

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	Implementation:							
	• Initialize the RTC module on an embedded board (e.g., STM32, ESP32).							
	• Fetch current time and date from the RTC.							
	• Display the formatted time via UART or an LCD screen.							
7	Implement dynamic memory allocation using RTOS heap management.							
	Implementation:							
	• Allocate and deallocate memory dynamically using pvPortMalloc() and							
	vPortFree().							
	Observe the impact on heap memory using debugging tools .							
	• Compare different memory management schemes (Heap 1, Heap 2, Heap 4 in							
	FreeRTOS).							
8	Implement a real-time data acquisition and logging system.							
	Implementation:							
	• Interface sensors (temperature, pressure, etc.) with an embedded system.							
	 Use RTOS tasks for data acquisition, processing, and storage. 							
	• Log data to an SD card or transmit it via UART.							

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Embedded / Real-Time Systems: Concepts, Design and Programming Black Book	First	Dr. K.V.K. Prasad	Dreamtech Press	2003
2	Real-Time Systems: Theory and Practice	First	Rajib Mall	Prentice Hall	2009
3	Embedded System: Architecture, Programming and Design	Second	Rajkamal	Tata McGraw- Hill	2011
4	Introduction to Embedded Systems	Second	Shibu K. V	Tata McGraw- Hill	2017

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	An Embedded software	Second	David Simon	Pearson	2007
	premier			Education	

STITUTE OF TECHNOOF

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

2	Real–Time systems –	Second	Hermann	Springer	2011			
	Design Principles for		Kopetz					
	distributed Embedded							
	Applications							
3	Micro C OS II reference r	nanual, programi	ners manual					
4	VX works Programmers manual.							
5	POSIX, issue 7. IEEE 1003.1-2008.							

MOOC Course (NPTEL):-

https://onlinecourses.nptel.ac.in/noc20_cs16/preview

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		2	0	1	5	10	2	0	1	3
PEC	Speech and Audio Processing	Examination Scheme								
		Component		ISE	ISE (%) N		MSE (%)		2 (%)	Total
	rrocessing	The	eory	2	20	2	20	6	50	100
EC342		Labor	ratory	8	30		-	2	20	100

Pre-requi	Pre-requisite Course Codes, if any Digital Signal Processing						
Course O	Course Objective: To help students understand how speech is produced and perceived, and to enable						
them to an	nalyze speech signals using time and frequency domain methods. The course also aims to						
introduce	speech processing models such as linear prediction, and to develop skills in building and						
evaluating	systems for speech modeling and synthesis.						
Course O	utcomes (CO): At the end of the course students will be able to						
EC342.1	Understand the Mechanisms of Speech Production						
EC342.2	Analyze Human Auditory Perception in Speech Processing						
EC342.3	EC342.3 Apply Time and Frequency Domain Techniques for Speech Analysis						
EC342.4	42.4 Explore Linear Predictive Analysis and Speech Processing Models						
EC342.5	Develop and Evaluate Speech Modeling and Synthesis Techniques						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC342.1	2											
EC342.2		2										
EC342.3			2									
EC342.4					2							
EC342.5				2								

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
EC342.1	2	2		2	
EC342.2	2	2		2	
EC342.3	2	2			2
EC342.4			2		
EC342.5			2		

SPIT/UG Syllabus/2025-26/ pg. 79

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand✓	Apply✓	Analyze√	Evaluate	Create
· I					

Theory Component

Module	Unit	Topics	Ref.	Hrs.		
No.	No. Title	Mechanics of speech	1,2	6		
1	1.1					
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis:				
		Critical Band Structure, Absolute Threshold of Hearing, Simultaneous				
		Masking, Temporal Masking, Quantization Noise Shaping, MPEG				
		psycho-acoustic model.				
2	Title	Time domain methods for speech processing	1,2	6		
	2.1	Time domain parameters of Speech signal – Methods for extracting				
		the parameters Energy, Average Magnitude, zero crossing Rate –				
		Silence Discrimination using ZCR and energy				
	2.2	Short Time Auto Correlation Function – Pitch period estimation				
		using Auto Correlation Function.				
3	Title	Frequency domain method for speech processing	1,2	6		
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering				
		interpretations.				
	3.2	Sampling rates - Spectrographic displays - Pitch and formant				
		extraction - Analysis by Synthesis - Analysis synthesis systems:				
		Phase vocoder, Channel Vocoder.				
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech,				
		Formant and Pitch Estimation, Homomorphic Vocoders, Speech				
4	Title	coding, speech enhancement.	1,2,	4		
4	4.1	Linear predictive analysis, synthesis of speech Basic Principles of linear predictive analysis – Auto correlation	3	4		
	4.1	method – Covariance metho	3			
	4.2	Solution of LPC equations – Cholesky method – Durbin's				
	7.4	Recursive algorithm.				
	4.3	Application of LPC parameters – Pitch detection using LPC				
		parameters – Formant analysis – VELP – CELP, Speech synthesis:				
		basics of articulatory, source-filter, and concatenative synthesis –				
		VOIP.				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

5	Title	Speech modeling and synthesis	1,2,	6
	5.1	Speech Modeling: Hidden Markov Models: Markov Processes,	3	
		HMMs – Evaluation, Optimal State Sequence – Viterbi Search,		
		Baum-Welch Parameter Re-estimation		
	5.2	Speech Synthesis: Text-to-Speech Synthesis: Concatenative and		
		waveform synthesis methods, subword units for TTS, intelligibility		
		and naturalness – role of prosody		
6	Self	Audio compression methods, Audio quality analysis, Spatial Audio		
	Study	Perception and rendering, Speaker identification and verification		
	·			28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Applying and Analyzing Speech Production Techniques
2	Analysis of speech signal with Formant Frequency Estimation
3	Practical Analysis of Speech Signals and Short-Time Spectrum
4	Spectrographic and Pitch Detection Analysis for Speech Processing
5	Emotion Recognition from Speech and extract features related to prosody, pitch, and energy to identify emotions in speech recordings
6	Implement MFCC extraction to capture spectral features important for speech recognition tasks.
7	Analysis of Speech using Cepstral and Linear Prediction methods
8	Implement Speech-to-Text Conversion and Advanced Analysis Techniques
9	Hands-On Speech Analysis and Signal Processing Techniques
10	Mini-Project: Speech Signal Analysis and Text Conversion

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications:	Second	Douglas	IEEE Press,	1999
	Human & Machine		O'Shaughness	Hardcover 2/e,	
			у	ISBN:	

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

				0780334493.	
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson	2004
	_			Education	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech and Audio	Second	Ben Gold and	John Wiley	2011
	Signal Processing		Nelson	and Sons Inc.,	
			Morgan	Singapore	
2.	Digital Processing of	First	L.R.Rabiner	Prentice Hall	1979
	Speech Signals		and		
			R.W.Schaffer		
3.	Discrete-Time	First	Thomas F.	Pearson	2002
	Speech Signal		Quatieri		
	Processing: Principles				
	and Practice				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Sch (Hrs/week)		eme			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		02		02	4	8	2		1	3
PEC	Semiconductor	Examination Scheme								
	Technologies	Component		ISE MS		E E		SE	Total	
				(%)	(%))	(%)	
EC352		The	ory	20)	20			60	100
		Labor	atory	80)			2	0	100

Pre-requisite Course Codes	AS101: Engineering Physics
	EC101: Digital Systems and Microprocessors
	EC102: Basic Electrical Engineering
	EC202: Electronic Devices
	EC207: Mixed Signal Integrated Circuits
	EC304: Digital CMOS VLSI Design

Course Objective: This course aims to develop a foundational understanding of the science, technology, and practical considerations involved in semiconductor device fabrication and layout design. It emphasizes the essential knowledge and design principles required for working in cleanroom environments and modern semiconductor labs. The course introduces the basics of integrated circuits, MEMS devices, and display technologies, highlighting their growing significance in India's semiconductor ecosystem. By connecting core concepts with practical exposure, the course prepares students to contribute effectively as skilled professionals supporting India's goal of building a strong domestic semiconductor and MEMS industry.

COLLIE DATE DA	domestic semiconductor and williams medstry:						
Course Ou	Course Outcomes: After successful completion of the course, student will be able to						
EC352.1	Discuss integrated circuit fabrication processes and use modern/open-source tools for process						
	simulation.						
F.G252.2	Apply the sequence of fabrication processes and design rules for layout design and						
EC352.2	characterization of a given semiconductor device/MOS circuit.						
F.C252.2	Discuss fundamental principles of MEMS devices including physical operation and						
EC352.3	mathematical modeling.						
F.G252.4	Apply various fabrication processes, choose suitable materials for MEMS device FEM						
EC352.4	modeling, fabrication and characterization.						
F.C252.5	Illustrate fundamental principles and fabrication process steps for semiconductor memories						
EC352.5	and displays.						

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC352.1	3	1		2	3							
EC352.2	3	1	3	2	3							
EC352.3	3	3		2	3							
EC352.4	3	3	3	2	3							
EC352.5	3	1		2	1							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO 3	PEO4	PSO1	PSO2
EC352.1	3				3	
EC352.2	3		3		3	
EC352.3	3				3	
EC352.4	3		3		3	
EC352.5	3				3	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√ Understand√	Apply√	Analyze√	Evaluate√	Create
-----------------------	--------	----------	-----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Environment and Crystal Growth for VLSI Technology	1,3	04
	1.1	Environment: Semiconductor technology trend, clean rooms		
	1.2	Semiconductor Substrate: Phase diagram and solid solubility, Crystal structure, Crystal defects, Czochralski growth, Bridgman growth of GaAs, Float Zone growth, Wafer Preparation and specifications.		
2	Title	Fabrication Processes Part 1	1,3	06
	2.1	Cleaning of Silicon wafer, Deposition: Evaporation, Sputtering and Chemical Vapor Deposition.		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

		D. ICH. EXIC		
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid		
	2.2	Phase Epitaxy, Evaluation of epitaxial layers		
	2.3	Silicon Oxidation: Thermal oxidation process, Kinetics of growth,		
		Properties of Silicon Dioxide, Oxide Quality, high κ and low κ		
	2.4	dielectrics.		
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient,		
		diffusion equation, impurity behavior, diffusion systems, problems in		
	2.5	diffusion, evaluation of diffused layers.		
	2,5	Ion Implantation : Penetration range, ion implantation systems, process considerations, implantation damage and annealing.		
3	Title	Fabrication Processes Part 2	1,3	06
	3.1	Etching: Wet chemical etching, dry physical etching, dry chemical	_,=	
	3.2	Lithography: Photoreactive materials, Pattern generation and mask		
		making, pattern transfer, Electron beam, Ion beam and X-ray		
		lithography.		
	3.3	Device Isolation, Contacts and Metallization: Junction and oxide	2	
		isolation, LOCOS, trench isolation, Schottky contacts, Ohmic		
		contacts, Metallization		
	3.4	CMOS Process Flow: N well, P-well and Twin tub		
	3.5	Design rules, Layout of MOS based circuits (gates and combinational		
		logic), Buried and Butting Contact.		
4	Title	Introduction to MEMS, MEMS Materials Properties, Fabrication	3	08
	4.1	Introduction to MEMS Technology, Difference between ICT &		
		MEMS Technology, Difference between ICs and MEMS Devices and		
		Real-world Sensors/Actuators examples with brief description, Bulk,		
		Surface & LIGA Micromachining		
	4.2	Architecture, working and basic quantitative behavior of MEMS		
		devices like Cantilever, Microheaters, Accelerometers, and		
	1.2	Pressure Sensors		
	4.3	Materials (e.g. Si, SiO2, SiN, SU8, PMMA); Important properties:		
		Young modulus, Poisson's ratio, density, piezoresistive coefficients,		
	4.4	TCR, Thermal Conductivity, Material Structure.		
	4.4	Understanding steps involved and materials used in Fabricating		
		MEMS Cantilevers, Micro-heaters, Accelerometers,		
5	Title	Pressure Sensors, Thermal Inkjet Printer Heads, and DMD Semiconductor Memories and Display		
3		1 V		
	5.1	Memory: SRAM, DRAM, MRAM, Flash: Working Principle,	4	04
	5.2	structures and fabrication steps of one/two memory structures Display: A MOLED/OLED: Working Principle, structures, februation		U 4
	5.2	Display: AMOLED/OLED: Working Principle, structures, fabrication	5	
		steps		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

6		Integrated circuit packages, package reliability, die, wire & wafer bonding, dicing, and packaging of MEMS devices, Characterization of IC using Automated Test Equipment (ATE), Characterization of	,	04*			
	y	MEMS devices for stiffness and Resonant frequency, TCR.					
	Total (*Not included)						

ISE Evaluation:

- 1) Fault identification and correction of a given CMOS circuit Layout: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)
- 2) Case Study of MEMS device fabrication and characterization: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)
- 3) Visit to CEN Lab, IIT Bombay and Report on visit (CO1-CO5) (10 Marks)

Each Experiment carries 05 Marks. Any 08 Experiments covering all COs.

Rubrics: Performance (3.5M), Oral Questions based on Experiment (0.5) and Documentation (01)

Sr.	Topics	CO
No.	1	
1	Aim: Use Nano hub platform to simulate and analyze the Oxidation process for various	CO1
	process parameters and wafer specifications.	
	Problem Statement: Simulate the oxidation process with Deal - Groove model for	
	different conditions (e.g. Oxidation type, orientation, time, temperature, thickness etc.) and	
	comment on the results obtained.	
2	Aim: Use Nano hub platform to simulate and analyze the diffusion process for various	CO1
	given conditions.	
	Problem Statement: Simulate the diffusion process for various given conditions. Such as	
	e.g. Source, time, temperature, dopant etc. and comment on the results obtained.	
3	Aim: Use Virtual Hall Effect Experimental set-up for the measurement of semiconductor	CO1
	material parameter measurements.	
	Problem Statement: Use Hall Effect Experimental set-up available at Vlab to determine	
	various parameters of semiconductor material like Hall's coefficient, carrier density,	
	mobility. Compare these values with calculated values. Also study the dependence of Hall	
	voltage on the magnetic field and the current passing through the probe.	
4	Aim: To use Industry graded VLSI CAD tools to draw layout and analyze CMOS Inverter	CO2
	circuit.	
	Problem Statement: Draw and simulate CMOS Inverter. Carry out static as well as	
	transient simulation. Analyze CMOS Inverter for	
	i) (W/L) PMOS> (W/L) NMOS ii) (W/L) PMOS = (W/L) NMOS iii) (W/L) PMOS < (W/L)	
	NMOS. Do parasitic extraction. Feed these parasitic in circuit simulator and do the	
	layout versus schematic verification.	
5	Aim: To use Industry graded VLSI CAD tools to draw layout and analyze MOS based	CO2

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	D. ICH, EXIC	,
	circuit.	
	Problem Statement: Draw and simulate layout for the following circuits. Size them with	
	respect to reference inverter.	
	i: CMOS NAND ii: CMOS NOR iii. 6T SRAM cell for high reliability and lowest area.	
	iv. A given flipflop (SR, D, T, JK). v. Half adder. vi. Logic equation using Static CMOS,	
	dynamic logic, transmission gate. (Any one problem statement for a group of students)	
5	Aim: To analyze MEMS cantilever in Sugar Tool using Nano hub platform. Problem Statement: Choose proper dimensions of MEMS cantilever modelled in Sugar. Choose the proper co-ordinate and node for applying a point contact load (force). a) Observe and tabulate the maximum displacement at free end of the cantilever for at least two different values of point contact load, verify one of the readings with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained. b) Observe and tabulate the maximum displacement of the cantilever for at least two different values of point contact force applied on cantilever, verify one of the readings with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained.	CO3 - CO4
6	Aim: To model and analyze MEMS cantilever in COMSOL Multiphysics.	CO3
	Problem Statement: For the given dimensions and material create MEMS cantilever	_
	model in COMSOL	CO4
	a) Observe the dependence of resonance frequency of the cantilever on material.	
	b) For the cantilever model analyze dependence of fundamental resonance frequency on	
	varying length (given range), plot the result and also compare the result with analytical	
	expression of resonance frequency.	
7	Aim: To analyze MEMS capacitive pressure sensor in COMSOL Multiphysics.	CO3
	Problem Statement: For the given dimensions, model MEMS capacitive pressure sensor	_
	in COMSOL.	CO4
	a) Observe, plot changes in pressure sensor diaphragm displacement and capacitance at	
	constant temperature (room temperature) and varying applied pressure (given range) and	
	compare it with given analytical expressions of diaphragm displacement and capacitance	
	of sensor.	
	b) Observe, plot the change in pressure sensor diaphragm displacement and capacitance for	
	fixed value of applied pressure and varying temperature to analyze the effect of package	
	stress.	
8	Aim: To evaluate the static and dynamic performance of the MEMS micro-heater using	CO3
	FEM tool.	-
	Problem Statement: For the given model of the MEMS micro-heater,	CO4
	a) Measure the temperature of the heated membrane for the input excitation voltage and	
	compare it with the given analytical expression.	
	b) To plot the temperature response of heated membrane to standard test voltages like	
	square, Ramp, and sinusoidal.	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

9	9) Aim: To model and analyze MEMS electrostatically actuated microcantilever in	CO3
	COMSOL.	-
	Problem Statement: For the given model of electrostatically actuated micro-cantilever in	CO4
	COMSOL.	
	a) To plot tip displacement of the microcantilever for different values of applied voltage.	
	b) To plot shape of the microcantilever displacement for different values of applied voltage.	
	c) To plot capacitance of the micro-cantilever different values of applied voltage.	
10	Aim: To model and analyze Piezo-resistive Pressure Sensor in MEMS Design and	CO3
	Simulation FEM Tool.	-
	Problem Statement: Choose the proper substrate; define the process flow and Layout of	CO4
	Piezo-resistive pressure sensor in MEMS Design and Simulation FEM Tool.	
	a) Create its 3- D Layout.	
	b) Observe the change in resistance of piezo-resistance for given input pressure. Compare	
	this reading with the given analytical expression of the change in resistance of the piezo-	
	resistance.	
11	Aim: To analyze the operation of semiconductor memory using NI Tool.	CO5
	Problem Statement: Using Multisim configure a word generator, observe the reading and	
	writing of a 2-bit code on a RAM chip, and design, construct and simulate the writing and	
	reading of a 4-bit code on a RAM chip	
12	Aim: Develop and test low-cost self-made OLEDs.	CO5
	Problem Statement: Develop and test the low-cost standard-OLED on ITO2 glass with	
	three individually controllable emission spots using the process steps described.	
	WG. 1 . 1	

^{*}Student has to perform any one experiment from 8, 9 and 10 as per the allotment by the faculty.

Text Books:

Sr.	Title	Edition	Authors	Publishers	Year
No.		Luition	Tutions	1 ublishers	1041
1	Silicon VLSI Technology	Indian	James D. Plummer,	Pearson	2000
		Edition,	Michael D. Deal and		
		First	Peter B. Griffin		
2	Fundamentals of Semiconductor	First	G. S. May and S. M.	Wiley	2011
	Fabrication		Sze		
3	Micro Electro Mechanical System	e-book	J. Allen	CRC Press	2005
	Design				
4	Semiconductor Memories	-	A.K. Sharma	IEEE	2022
	Technology, Testing and Reliability				
5	Frontiers in Electrical Engineering	-	Shuming	Bentham	2015
	Vol. 1: Active-Matrix Organic Light-		Chen, Jianning	Books	
	Emitting Display Technologies		Yu, YibinJiang,		
			Rongsheng Chen, Tsz		
			Kin Ho		

Reference Books:

STITUTE OF TECHNOMINE OF TECHN

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Sr.	Title	Edition	Authors	Publishers	Year
No.					
1	The Science and Engineering of	Second	Stephen A.	Oxford	2001
	Microelectronic Fabrication	Edition	Campbell	University Press	
2	VLSI Fabrication Principles	Student	Sorab K.	Wiley	2008
		Edition	Gandhi		
3	An Introduction to	Second	N. Maluf,	Artech House	2004
	Microelectromechanical Systems		K Williams	Inc	
	Engineering				
4	Practical MEMS	First	Ville	Small Gear	2009
			Kaajakari	Publishing	
5	Microsystem Design	m Design First S. Senturia Springer		2005	
6	Fundamentals of Microfabrication	Second	M. Madou	CRC Press	2002

References:

- [1] www.nanohub.org
- [2] www.vlab.com
- [3] www.microwind.com
- [4] ICMT Laboratory Manual
- [5] https://www.sciencedirect.com/science/article/pii/S0187893X13731902

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
		L	T	P	o	E	L	Т	P	Total
	Internet of Things Laboratory	1	-	2	2	5	1	_	1	2
SEC		Examination Scheme								
		Comp	onent	IS	E (%))	MSE (%)		SE %)	Total
AS301		Theory		Theory 20)				20
A5301		Laboratory			80			,	20	100

Pre-requisit	e Course Codes	EC101: Digital Systems and Microprocessors						
		EC205: Computer Organization & Architecture						
	EC306: Embedded System							
Course Obje	Course Objective: This hands-on course provides a structured introduction to the fundamental							
concepts, tec	hnologies, data communica	tion protocols, analytics, security, and practical applications						
of the Interne	et of Things (IoT).							
Course Outo	comes (CO): After success	ful completion of the course, student will be able to						
AS301.1	Identify the key challenge	es and opportunities in IoT development and deployment.						
AS301.2	Acquire real world signals and perform remote process monitoring utilizing the concept of IoT							
AS301.3	Apply appropriate communication protocols for IoT devices.							
AS301.4	Evaluate security risks an	d apply relevant measures to protect IoT systems						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
AS301.1	1											
AS301.2			2	2	3							
AS301.3			2	2	3							
AS301.4				2	3							

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS301.1	1					
AS301.2	1	1	1		2	
AS301.3		1				
AS301.4				1		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember √	Understand✓	Apply✓	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of IOT Systems:	1,2	05
	1.1	Evolution of Internet of Things, Enabling Technologies, IoT Architectures: M2M, IoT configurations, IoT architecture and components, IoT Network Layers and Communication Models, Gateways, Fog computing, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors and Actuators: Types, Selection Criteria, and Integration, Power Management and Energy Efficiency in IoT Devices.		
2	Title	Functionality based IoT Protocol Organization:	3	06
	2.1	Connectivity Protocols: 6LoWPAN, Lora WAN, NB-IoT Communication/Transport Protocols: WIFI, Bluetooth, Zigbee, Z-wave, NFC Data Protocols: MQTT, CoAP, WebSocket, AMQP, HTTP/HTTPS, RESTful APIs Device Management: JSON-LD, Web Thing Model, Multilayer Framework Interoperability and Standardization Challenges in IoT		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

3	Title	Security, trust, and privacy issues in IoT	3	03
	3.1	IoT security challenges and vulnerabilities, Authentication and access control in IoT, Distributed Denial of service (DDoS), Privacy considerations and regulation		
4	Self- study	 IoT Applications and Case Studies: Smart Homes: Home Automation, Smart Lighting, Smart Security Systems Smart Cities: IoT for Traffic Management, Waste Management, and Public Safety Healthcare IoT: Remote Patient Monitoring, Wearable Health Devices Industrial IoT (IIoT): Smart Manufacturing, Predictive Maintenance, Digital Twins Agriculture IoT: Smart Irrigation, Precision Farming, IoT-Enabled Drones Retail and Supply Chain IoT: Smart Inventory Management, RFID, Asset Tracking Automotive IoT: Connected Vehicles, Telematics, V2X Communication Energy and Environment: Smart Grid, Renewable Energy Monitoring, Environmental Sensing 	1,2	04*
			Total	14

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Internet of Things: Architecture and Design Principles	First edition	Raj Kamal	McGraw Hill Education	2017
2	Internet of Things, A Hands-on Approach		Vijay Madisetti, ArshdeepBahga	UniversityPress	2015.
3	The Internet of Things: Enabling Technologies, Platforms and Use Cases	-	Pethuru Raj and Anupama C. Raman	CRC Press	2017

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Suggested List of Laboratory Experiments:

- **1.** Getting started with IoT development board in the IDE and GPIO Interfacing and programming
- **2.** IoT Sensor Integration: Design and implement a small-scale IoT system that includes sensors such as temperature, humidity, and light sensors. Collect data from these sensors and transmit it wirelessly to a central hub or cloud platform for analysis and visualization.
- **3.** Design and implement a weather station on display module and mobile phone using the IoT based microcontroller with WEBSOCKET API that can collect data from various sensors to monitor and display real-time weather conditions
- **4.** Communication Protocols: Implement a simple IoT system using different communication protocols (e.g., MQTT, CoAP) on IoT based microcontroller. Set up a MOSQUITTO broker on laptop/PC to handle the communication of IoT based microcontroller to laptop. Develop programs on IoT devices to publish and subscribe to sensor data using the chosen protocol.
- **5.** Implement an MQTT-based communication between two devices, with one device acting as a sender and the other as a receiver. Implement a MQTT broker on single board computer to facilitate data exchange between the devices.
- **6.** Implement a SMTP protocol to send data from IoT based microcontroller devices to email.
- **7.** Integrate the Blynk protocol with a microcontroller to capture sensor data and display it on a mobile application in real-time.
- **8.** Implementation of Bluetooth or Zigbee Communication in IoT-Based Remote Monitoring and Control Systems
- **9.** Develop AWS IoT Core's message broker feature to securely transmit and receive messages to and from a microcontroller board running MicroPython. AWS IoT Core enables devices to connect to the cloud securely and easily.
- **10.** IoT Application Development:
 - Choose an IoT application domain (e.g., smart home, healthcare, agriculture).
 - Develop a prototype application using appropriate hardware components, sensors, and actuators
 - Integrate the application with cloud services or a mobile app for remote monitoring and control.

Online Resources:

- 1. NPTEL Lecture series: Introduction to Internet of Things by Prof. Sudip Misra, IIT Kharagpur https://onlinecourses.nptel.ac.in/noc24_cs35/preview
- 2. NPTEL Lecture series: Foundation of Cloud IoT Edge ML By Prof. Rajiv Misra, IIT Patna https://onlinecourses.nptel.ac.in/noc24_cs26/preview