6 Linear	e Gleichungssysteme	
6.1 Ei	nführungsbeispiel: Lineares Gleichungssystem	2
	neare Gleichungssysteme – Gauß-Elimination	
	bsbarkeit Linearer Gleichungssysteme	
6.3.1	Beispiele	
<mark>6.3.2</mark>	Geometrische Veranschaulichung	15
<mark>6.3.3</mark>	Lösbarkeit linearer mxn-Gleichungssysteme	
6.4 De	eterminanten	
6.4.1	Zweireihige Determinanten	22
6.4.2	Dreireihige Determinanten	
6.4.3	n-reihige Determinanten	29
6.5 W	eitere Verfahren zur Lösung linearer Gleichungssysteme	32
6.5.1	Inverse Matrix	32
6.5.2	Cramersche Regel	33
6.5.3	Gauß-Jordan-Verfahren	35
6.6 Lö	bsbarkeit linearer nxn-Gleichungssysteme	36
6.7 W	eitere Aufgabenstellungen der Linearen Algebra	38
6.8 Ei	genwerte von Matrizen	39

6 Lineare Gleichungssysteme

In diesem Kapitel werden Antworten auf die folgenden Fragen gegeben:

Was ist ein Gleichungssystem?

Mehrere Gleichungen mit mehreren Variablen werden Gleichungssysteme genannt.

$$(1) 5x_1 + 3x_2 = 1$$

Beispiel: (2)
$$3x_1 + 4x_2 = 3$$

Was bedeutet linear?

Linear bedeutet, dass die in der Gleichung auftretenden Variablen nicht multipliziert, nicht dividiert und in keiner höheren Potenz als 1 auftreten sind.

Beispiel:
$$y = 2x_2 + 3x_1 + 2$$

Was gibt die Ordnung eines Gleichungssystems an?

Die **Ordnung** eines Gleichungssystems wird durch die Anzahl der voneinander unabhängigen Gleichungen bestimmt.

Idealfall: n Gleichungen bei n Unbekannten mit eindeutiger Lösung.

Wo gibt es Anwendungen?

Gleichungssysteme mit mehreren Variablen ergeben sich bei verschiedensten physikalischen, mathematischen, technischen und wirtschaftlichen Problemen.

Wann sind die Gleichungssysteme lösbar?

Die Lösbarkeit(eindeutige Lösung, keine Lösung, mehrere Lösungen) hängt hängt von den Gleichungen ab und kann anhand verschiedener Kriterien bestimmt werden.

6.1 Einführungsbeispiel: Lineares Gleichungssystem

Einfacher Fall: zwei Gleichungen mit 2 Unbekannten

$$(1) 5x_1 + 3x_2 = 1$$

$$(2) 3x_1 + 4x_2 = 3$$

$$(2) 3x_1 + 4x_2 = 3$$

Geometrische Interpretation:

Die beiden Gleichungen repräsentieren jeweils eine Gerade in der Ebene. Eine Lösung des Gleichungssystems ist der Schnittpunkt der beiden Geraden.

1. Lösen durch Einsetzen

• Auflösen der 2.Gleichung nach \mathcal{X}_2 und Einsetzen in die 1.Gleichung

$$(2) x_2 = \frac{3}{4} - \frac{3}{4} x_1$$

$$(1) 5x_1 + 3\left(\frac{3}{4} - \frac{3}{4} x_1\right) = 1$$

 \bullet Berechnen von \mathcal{X}_1 aus 1.Gleichung und anschließend durch Rückwärts-einsetzen Berechnung von \mathcal{X}_2 :

$$x_1 = -\frac{5}{11}$$
$$x_2 = \frac{12}{11}$$

2. Lösung durch Gleichsetzen

ullet Beide Gleichungen nach \mathcal{X}_2 auflösen

$$x_2 = \frac{1 - 5x_1}{3}$$
$$x_2 = \frac{3 - 3x_1}{4}$$

ullet Gleichsetzen und umformen zur Berechnung von \mathcal{X}_1 (anschließend durch Rückwärtseinsetzen Berechnung von \mathcal{X}_2):

$$\frac{1 - 5x_1}{3} = \frac{3 - 3x_1}{4}$$
$$x_1 = -\frac{5}{11}, \ x_2 = \frac{12}{11}$$

3. Lösen durch Addition und Subtraktion

Multiplikation der Gleichungen mit Konstanten:

$$\begin{vmatrix} 5x_1 + 3x_2 &= 1 & (\cdot 4) \\ 3x_1 + 4x_2 &= 3 & (\cdot 3) \end{vmatrix} \Rightarrow \begin{vmatrix} 20x_1 + 12x_2 &= 4 \\ 9x_1 + 12x_2 &= 9 \end{vmatrix}$$

• Elimination von \mathcal{X}_2 durch Subtraktion der Gleichungen, Berechnung von \mathcal{X}_1 (anschließend durch Rückwärtseinsetzen Berechnung von \mathcal{X}_2):

$$11x_1 + 0 = -5$$

$$x_1 = -\frac{5}{11}, \ x_2 = \frac{12}{11}$$

Die allgemeine Schreibweise für 2 Gleichungen lautet

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{vmatrix}$$

Unter Anwendung der obigen Lösungsansätze auf diese allgemeine Schreibweise für 2 Gleichungen ergibt sich die Lösung zu:

$$x_{1} = \frac{b_{1}a_{22} - b_{2}a_{12}}{a_{11}a_{22} - a_{21}a_{12}}$$
$$x_{2} = \frac{b_{2}a_{11} - b_{1}a_{21}}{a_{11}a_{22} - a_{21}a_{12}}$$

Nur lösbar, wenn $a_{11}a_{22} - a_{21}a_{12} \neq 0$.

6.2 Lineare Gleichungssysteme – Gauß-Elimination

In diesem Abschnitt wird ein mögliches Vorgehen zur Lösung eines linearen Gleichungssystems vorgestellt.

Definition 6.1: Allgemeines lineares mxn-Gleichungssystem

$$\begin{vmatrix}
a_{11}x_1 & a_{12}x_2 & \cdots & a_{1n}x_n & = & b_1 \\
a_{21}x_1 & a_{22}x_2 & \cdots & a_{2n}x_n & = & b_2 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m1}x_1 & a_{m2}x_2 & \cdots & a_{mn}x_n & = & b_m
\end{vmatrix}$$

mit m Gleichungen und n Variablen.

 a_{ij} bezeichnet den Koeffizienten in der i-ten Gleichung(Zeile) für die j-te Variable(Spalte), i=1,...,m, j=1,...,n.

Auch in Matrixschreibweise darstellbar:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$
Koeffizientenmatrix rechte Seite

 $\Leftrightarrow A\underline{x} = \underline{b}$

Definition 6.2:

Ein Tupel $(x_1,x_2,...,x_n)$ heißt **Lösung** (Lösungsvektor $\underline{x}=(x_1,x_2,...,x_n)^T$) des **linearen** mxn-**Gleichungssystems** $A\underline{x}=\underline{b}$

wenn es alle m linearen Gleichungen erfüllt.

Ein lineares Gleichungssystem heißt **homogen**, wenn alle rechten Seiten gleich Null sind.

Bemerkung: Ein lineares Gleichungssystem kann keine Lösung, eine Lösung oder unendlich viele haben (Beispiele, mehr später).

Definition 6.3:

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten dessen Koeffizienten eine obere Dreiecksmatrix bilden, heißt ein **gestaffeltes lineares Gleichungssystem**.

Gestaffelte lineare Gleichungssysteme können sukzessiv durch Rückwärtssubstitution gelöst werden:

$$x_i = \frac{1}{a_{ii}}(b_i - \sum_{k=i+1}^n a_{ik} \cdot x_k), i = n,..,1$$

Treten bei der Rückwärtssubstitution freie Variablen auf, weisen wir diesen Parameter zu und bestimmen die Lösung in Abhängigkeit von diesen Parametern.

Definition 6.4:

Die **erweiterte Koeffizientenmatrix** des linearen Gleichungssystems bezeichnet eine Matrix der nachfolgend dargestellten Form:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Idee des Gauß-Eliminationsverfahrens:

Das Verfahren besteht darin, durch wiederholtes Anwenden elementarer Zeilenumformungen die erweiterte Koeffizientenmatrix in ein gestaffeltes System umwandeln.

Grundlage des Verfahrens:

Elementare Zeilenumformungen für die erweiterte Koeffizientenmatrix verändern die Lösung des linearen Gleichungssystems nicht. Elementare Zeilenumformungen sind:

- Addition eines Vielfachen einer Zeile zu einer anderen Zeile
- Multiplikation einer Zeile mit einer reellen Zahl $\lambda \neq 0$
- Vertauschen von zwei Zeilen

Durchführung der Gauß-Elimination:

Liegt die erweiterte Koeffizientenmatrix eines linearen Gleichungssystems mit m Gleichungen und n Unbekannten vor, dann bestimmt die Gauß-Elimination die Lösungen in folgenden Schritten:

- 1. Wir bestimmen die am **weitesten links liegende Spalte**, die von Null verschiedene Werte enthält.
- 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte eine Null, dann vertauschen wir die erste Zeile mit einer geeigneten anderen Zeile.
- 3. Ist α das erste Element der in Schritt 1 gefundenen Spalte, dann dividieren wir die erste Zeile durch α , um die **führende 1** zu erzeugen.
- 4. Wir addieren jeweils die mit einer passenden Variablen multiplizierte erste Zeile zu den übrigen Zeilen, um unterhalb der führenden Eins Nullen zu erzeugen.
- 5. Wir werden die ersten vier Schritte auf den Teil der Matrix an, den wir durch Streichen der ersten Zeile erhalten, und **wiederholen** dieses Verfahren, bis wir die erweiterte Koeffizientenmatrix eines gestaffelten Systems erhalten haben.
- 6. Wir lösen das gestaffelte System durch Rückwärtssubstitution.

1. Beispiel:

Lineares Gleichungssystem mit 4 Unbekannten und 4 Gleichungen

$$\begin{array}{rcl}
 x_1 & -x_2 & = & 5 \\
 -x_1 & +2x_2 & -x_3 & = & 0 \\
 & -x_2 & +2x_3 & -x_4 & = & 1 \\
 & & -x_3 & +2x_4 & = & 0
 \end{array}$$

Erweiterte Koeffizientenmatrix des linearen Gleichungssystems

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 5 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 1 \\
0 & 0 & -1 & 2 & 0
\end{pmatrix}$$

- zu 1. 1.Spalte
- zu 2. Element ist 1, kein Vertauschen notwendig
- zu 3. Division durch α =1 kann entfallen
- zu 4. Addition der 1.Zeile zur 2.Zeile

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 5 \\
0 & \boxed{1} & -1 & 0 & \boxed{5} \\
0 & -1 & 2 & -1 & 1 \\
0 & \boxed{0} & -1 & 2 & \boxed{0}
\end{pmatrix}$$

- zu 5. Betrachtung der Untermatrix mit gestrichener 1.Zeile
- zu 1. 2. Spalte (neue 1. Spalte hat ja nur Nullen)
- zu 2. Element ist 1, kein Vertauschen notwendig
- zu 3. Division durch α =1 kann entfallen
- zu 4. Addition der 2.Zeile zur 3.Zeile

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 5 \\
0 & 1 & -1 & 0 & 5 \\
0 & 0 & \boxed{1} & -1 & \boxed{6} \\
0 & 0 & \boxed{-1} & 2 & \boxed{0}
\end{pmatrix}$$

- zu 5. Betrachtung der Untermatrix mit gestrichener 1. und 2. Zeile
- zu 1. 3. Spalte (neue 1. und 2. Spalte hat ja nur Nullen)
- zu 2. Element ist 1, kein Vertauschen notwendig
- zu 3. Division durch α =1 kann entfallen
- zu 4. Addition der 3. Zeile zur 4. Zeile

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 5 \\
0 & 1 & -1 & 0 & 5 \\
0 & 0 & 1 & -1 & 6 \\
0 & 0 & 0 & \boxed{1} & \boxed{6}
\end{pmatrix}$$

- zu 5. Betrachtung der Untermatrix mit gestrichener 1. ,2., 3. Zeile,fertig
- zu 6. Rückwärtssubstitution ergibt die Lösung

$$x_4 = 6$$
, $x_3 = 12$, $x_2 = 17$, $x_1 = 22$

2.Beispiel

Lineares Gleichungssystem mit 2 Variablen und 2 Gleichungen

$$5x_1 + 3x_2 = 1$$

$$3x_1 + 4x_2 = 3$$

Erweiterte Koeffizientenmatrix:

$$\begin{pmatrix} 5 & 3 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$

- zu 1. 1.Spalte
- zu 2. Element ist 5, kein Vertauschen notwendig
- zu 3. Division durch α =5
- zu 4. Addition der mit (-3) multiplizierten 1.Zeile zur 2.Zeile

$$\begin{pmatrix} 1 & \frac{3}{5} & \frac{1}{5} \\ 3 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{3}{5} & \frac{1}{5} \\ 3 + (-3) & 4 + \frac{3 \cdot (-3)}{5} & 3 + \frac{1 \cdot (-3)}{5} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{3}{5} & \frac{1}{5} \\ 0 & \frac{11}{5} & \frac{12}{5} \end{pmatrix}$$

- zu 5. Betrachtung der Untermatrix mit gestrichener 1. Zeile, fertig
- zu 6. Rückwärtssubstitution ergibt die Lösung

$$\frac{11}{5}x_2 = \frac{12}{5} \implies x_2 = \frac{12}{11}$$
$$x_1 + \frac{3}{5} \cdot \frac{12}{11} = \frac{1}{5} \implies x_1 = \frac{1}{5} - \frac{36}{55} \implies x_1 = -\frac{5}{11}$$

6.3 Lösbarkeit Linearer Gleichungssysteme

Ein lineares Gleichungssystem mit m Gleichungen und n Variablen hat im allgemeinen die Form

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\cdots + \cdots + \cdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m}$$

Es gibt drei Lösungsmöglichkeiten

- Das Gleichungssystem hat genau eine Lösung.
- Das Gleichungsystem ist inkonsistent (nicht lösbar).
- Das Gleichungssystem hat unendlich viele Lösungen.

Aus der Anzahl der Gleichungen und Unbekannten kann noch nicht geschlossen werden, wie viele Lösungen ein Gleichungssystem besitzt.

6.3.1 Beispiele

Die nachfolgenden 3 Beispiele veranschaulichen die 3 verschiedenen Lösungsmöglichkeiten für ein lineares Gleichungssystem.

Beispiel: "Genau eine Lösung"

Gegeben ist folgendes Gleichungssystem:

$$\begin{array}{c|cccc}
1 & -0.2 & -0.2 & 7.0 \\
-0.4 & 0.8 & -0.1 & 12.5 \\
0 & -0.5 & 0.9 & 16.5
\end{array}$$

Das Gleichungssystem nach der Umformung:

Aus der dritten Zeile erhalten wir direkt:

$$0,775 \cdot x_3 = 27,125 \quad \Rightarrow \qquad x_3 = 35$$

Die Lösungen für die restlichen Variablen können durch Rücksubstitution berechnet werden.

$$x_2 - 0.25 \cdot 35 = 21.25 \quad \Rightarrow \quad x_2 = 30$$

$$x_1 - 0.2 \cdot 30 - 0.2 \cdot 35 = 7 \implies x_1 = 20$$

Die Lösungsmenge besteht daher nur aus einem einzigen Punkt:

$$L = \left\{ \left(\begin{array}{c} 20\\30\\35 \end{array} \right) \right\}$$

Beispiel: "keine Lösung"

Gegeben ist folgendes Gleichungssystem:

$$\begin{pmatrix}
3 & 4 & 5 & | 1 \\
1 & 1 & -1 & | 2 \\
5 & 6 & 3 & | 4
\end{pmatrix}$$

Gleichungssystem nach Umformung:

Aus der dritten Zeile erhalten wir mit 0 = -3 einen Widerspruch. Das Gleichungssystem ist inkonsitent:

$$L = \emptyset$$

Beispiel: "unendlich viele Lösung"

Gegeben ist folgendes Gleichungssystem:

Gleichungssystem nach Umformung:

Das Gleichungssystem hat unendlich viele Lösungen.

Dieses kann man allgemein daran erkennen, dass nach Erreichen der Staffelform mehr Variablen als Gleichungen übrig bleiben.

Aus der dritten Zeile erhalten wir direkt:

$$x_4 = -6$$

Durch Rücksubstitution erhalten wir:

$$2 \cdot x_2 - 6 \cdot x_3 + 8 \cdot (-6) = 2$$

Die Gleichung enthält zwei Variablen, so dass eine Variable frei gewählt wern kann. Dieses soll durch den Parameter λ beschrieben werden:

$$x_3=\lambda \\$$

Insgesamt ergibt sich damit:

$$x_2 - 3 \cdot \lambda + 4 \cdot (-6) = 1 \Rightarrow \boxed{x_2 = 25 + 3 \cdot \lambda}$$

$$2 \cdot x_1 + 8 \cdot (25 + 3 \cdot \lambda) + 10 \cdot \lambda + 10 \cdot (-6) = 0$$

$$\Rightarrow \qquad x_1 = -70 - 17 \cdot \lambda$$

Jede Belegung des Parameters λ liefert eine gültige Lösung:

$$L = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -70 \\ 25 \\ 0 \\ -6 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -17 \\ 3 \\ 1 \\ 0 \end{pmatrix} : \lambda \in \mathbb{R} \right\}$$

6.3.2 Geometrische Veranschaulichung

Eindeutige Lösung:

Beispiel 1 Geometrische Interpretation (n=2 Geraden):

Keine Lösung:

Beispiel 2 Geometrische Interpretation (n=2 Geraden):

Schnittpunktberechnung

"x – Wert mit gleichem y – Wert?" 2x = 2x - 2 0 = -2 Widerspruch! \Rightarrow kein Schnittpunkt

Unendlich viele Lösungen:

Beispiel 3 Geometrische Interpretation (n=2 Geraden):

$$\begin{pmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{pmatrix}$$

 \downarrow Gauß – Elimination

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

RangA = 1 und $RangA \mid b = 1$

 $RangA = RangA \mid b$

⇒ unendlich viele Lösungen

$$x_2 = \lambda$$

$$x_1 = 1 - \lambda$$

Schnittpunktberechnung

" $x-Wert\ mit\ gleichem\ y-Wert$?"

$$-x + 1 = \frac{1}{2}(-2x + 2)$$

0 = 0 stets wahr!

⇒ auf der ganzen Geraden gleiche Werte

Unendlich viele Lösungen

Eine eindeutige Lösung

6.3.3 Lösbarkeit linearer mxn-Gleichungssysteme

Definitionen 6.5: Linearkombination, lineare Unabhängigkeit

Die nachfolgend dargestellte Summe von n Vektoren

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + ... + \lambda_n \underline{v}_n \quad mit \quad \lambda_1, ..., \lambda_n \in \mathbb{R}$$

heißt eine **Linearkombination** der Vektoren $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$.

Vektoren heißen von einander **linear unabhängig**, wenn sich kein Vektor als Linearkombination der anderen Vektoren darstellen lässt. Das bedeutet, wenn aus $\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + ... + \lambda_n \underline{v}_n = 0 \implies \lambda_1 = 0, \lambda_2 = 0, ..., \lambda_n = 0$, sind die Vektoren $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ linear unabhängig.

Definitionen 5.6: Rang

Der **Spaltenrang** einer Matrix A ist die maximale Anzahl linear unabhängiger Spalten der Matrix.

Der **Zeilenrang** einer Matrix A ist die maximale Anzahl linear unabhängiger Zeilen der Matrix.

Der Zeilenrang ist immer gleich dem Spaltenrang und wird **Rang der Matrix** genannt. (Schreibweise: Rang(A) oder Rg(A))

Satz 10.1:

- a) Der Rang r einer mxn-Matrix A ist höchstens gleich der kleineren der beiden Zahlen m und n.
- b) Elementare Umformungen einer mxn-Matrix A

Vertauschen von Zeile bzw. Spalten,

Multiplikation einer Zeile bzw. Spalte mit einer Zahl,

Addition eines Vielfachen einer anderen Zeile oder Spalte

überführen die Matrix A in eine ranggleiche Matrix B.

- c) Rangbestimmung mit Hilfe elementarer Umformungen:
- Die Matrix wird mit Hilfe elementarer Umformungen in Staffelform gebracht.
- Der Rang von A ist gleich der Anzahl r der nicht-verschwindenden Zeilen.

Satz 6.2: Lösbarkeit eines linearen mxn-Gleichungssystems

(a) Ein lineares mxn-Gleichungssystem $A\underline{x} = \underline{b}$ ist dann und nur dann lösbar, wenn der Rang der Koeffizientenmatrix A mit dem Rang der erweiterten Koeffizientenmatrix A|b übereinstimmt:

$$Rg(A) = Rg(A|b) = r$$

(b) Im Falle der Lösbarkeit besitzt das lineare System die folgende Lösungsmenge:

für r = n: genau eine Lösung

für r < n: unendlich viele Lösungen,

wobei n - r der insgesamt n Unbekannten

frei wählbare Parameter sind.

(c) Die allgemeine Lösung des inhomogenen linearen Gleichungssystems \underline{x}_{inh} lässt sich darstellen in der Form

$$\underline{x}_{inh} = \underline{x}_{si} + \underline{x}_{hom}$$

mit einer speziellen Lösung \underline{x}_{si} des inhomogenen LGS

und der allgemeinen Lösung \underline{x}_{hom} des homogenen LGS

6.4 Determinanten

Was sagen die Determinanten aus?

- Am Gleichungssystem mit 2 Unbekannten und 2 Variablen (siehe Abschnitt 10.1) erkennt man, dass das Gleichungssystem eine Lösung besitzt, wenn die Determinante ungleich Null ist.
- Einer Matrix wird ein Skalarwert zugewiesen, der die Matrix charakterisiert und im Falle einer Koeffizientenmatrix Aussagen zur Lösbarkeit des linearen Gleichungssystems liefert.

Schreibweise von Determinanten

- $s = \det A$ oder
- Kennzeichnung, dass die Determinante gebildet werden soll, wird auch durch senkrechte Striche angedeutet. Zwischen den Strichen werden die Matrix-Elemente platziert.

oder abkürzend wird auch $|a_{ik}|$ geschrieben.

6.4.1 Zweireihige Determinanten

Definitionen 6.7: 2-reihige Determinante

Unter der Determinante einer 2-reihigen, quadratischen Matrix A=(a_{ik}) versteht man die Zahl

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Der Wert einer 2-reihigen Determinante ist gleich dem Produkt der beiden Hauptdiagonalelemente minus dem Produkt der beiden Nebendiagonalelemente.

Beispiel:

$$A = \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix}$$

$$s = \det(A) = \det A = \begin{vmatrix} a_{ik} \end{vmatrix} = \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = 4 \cdot 9 - 6 \cdot 7 = -6$$

Satz 6.3: Eigenschaften und Rechenregeln 2-reihiger Determinanten

1. Der Wert einer 2-reihigen Determinante ändert sich beim Transponieren nicht:

$$\det A^T = \det A$$

Beweis:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\det A^{T} = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12} = \det A$$

Folgerung: Alle für Zeilen bewiesenen Determinanteneigenschaften gelten sinngemäß auch für Spalten.

2. Beim Vertauschen der beiden Zeilen (Spalten) ändert eine 2-reihige Determinante ihr Vorzeichen:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = - \begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix}$$

Beweis:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\det A^* = \begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = a_{21}a_{12} - a_{22}a_{11} = -\det A$$

3. Werden Elemente einer beliebigen Zeile (oder Spalte) einer 2-reihigen Determinante mit einem reellen Skalar λ multipliziert, so multipliziert sich die Determinante um λ :

$$\begin{vmatrix} \lambda a_{11} & \lambda a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Beweis:

$$\det A = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \lambda a_{11} a_{22} - \lambda a_{12} a_{21} = \lambda \det A = \lambda \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

4. Eine 2-reihige Determinante wird mit einem reellen Skalar λ multipliziert, indem man die Elemente einer beliebigen Zeile (oder Spalte) mit λ multipliziert.

Beweis: direkte Folgerung aus 3..

5. Besitzen die Elemente einer Zeile (oder Spalte) einer 2-reihigen Determinante einen gemeinsamen Faktor λ , so darf dieser vor die Determinante gezogen werden.

Beweis: direkte Folgerung aus 3...

- 6. Eine 2-reihige Determinante besitzt den Wert *Null*, wenn sie (mindestens) eine der folgenden Bedingungen erfüllt:
- a) Alle Elemente einer Zeile (oder Spalte) sind Null.
- b) Beide Zeilen (oder Spalten) stimmen überein.
- c) Die Zeilen (oder Spalten) sind zueinander proportional.

Beweis:

a)
$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ 0 & 0 \end{vmatrix} = a_{11}0 - a_{12}0 = 0$$

b)
$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{vmatrix} = a_{11}a_{12} - a_{12}a_{11} = 0$$

c)
$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ c \cdot a_{11} & c \cdot a_{12} \end{vmatrix} = c \cdot \begin{vmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{vmatrix} = c \cdot 0 = 0$$

7. Der Wert einer 2-reihigen Determinante ändert sich nicht, wenn man zu einer Zeile (oder Spalte) ein beliebiges Vielfaches der anderen Zeile (bzw. anderen Spalte) elementweise addiert.

Beweis:

$$\det A = \begin{vmatrix} a_{11} + c \cdot a_{21} & a_{12} + c \cdot a_{22} \\ a_{21} & a_{22} \end{vmatrix} = (a_{11} + c \cdot a_{21}) a_{22} - (a_{12} + c \cdot a_{22}) a_{21}$$
$$= a_{11}a_{22} + c \cdot a_{21}a_{22} - a_{12}a_{21} - c \cdot a_{22}a_{21} = a_{11}a_{22} - a_{12}a_{21}$$

8. Multiplikationstheorem für Determinanten:

Für zwei 2-reihige Matrizen A und B gilt stets

$$\det(A \cdot B) = (\det A) \cdot (\det B)$$

Beweis:

$$\det (A \cdot B) = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{vmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{vmatrix}$$

$$= (a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22}) - (a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})$$

$$= a_{11}b_{11}a_{21}b_{12} + a_{11}b_{11}a_{22}b_{22} + a_{12}b_{21}a_{21}b_{12} + a_{12}b_{21}a_{22}b_{22} - a_{11}b_{12}a_{21}b_{11}$$

$$-a_{11}b_{12}a_{22}b_{21} - a_{12}b_{22}a_{21}b_{11} - a_{12}b_{22}a_{22}b_{21}$$

$$(\det A) \cdot (\det B) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{vmatrix} = (a_{11}a_{22} - a_{12}a_{21})(b_{11}b_{22} - b_{12}b_{21})$$

Bemerkung: Die Determinante eines Matrizenproduktes lässt sich direkt aus den Determinanten der einzelnen Faktoren berechnen, d.h. die Matrizenmultiplikation kann entfallen.

9. Die Determinante einer 2-reihigen Dreiecksmatrix A besitzt den Wert

$$\det A = a_{11} \cdot a_{22}$$

d.h. die Determinante einer Dreiecksmatrix ist gleich dem Produkt der Hauptdiagonalelemente.

Bemerkung:

- Dieses gilt ebenfalls für eine Diagonalmatrix, die ein Sonderfall der Dreiecksmatrix ist.
- Insbesondere gilt für die Einheitsmatrix $\det I = 1$ und die Nullmatrix $\det (0) = 0$

6.4.2 Dreireihige Determinanten

3-reihige Determinanten erhält man bei der Untersuchung der Lösbarkeit eines linearen Gleichungssystems mit 3 Gleichungen und 3 Unbekannten, d.h. einer 3x3-Koeffizientenmatrix.

Entsprechend dem Gleichungssystem mit 2 Unbekannten und 2 Variablen gilt auch hier, dass das Gleichungssystem eine Lösung besitzt, wenn die Determinante der 3-reihigen Koeffizientenmatrix des Gleichungssystems ungleich Null ist. (Beweis später)

Definition 6.8: 3-reihige Determinante

Unter der Determinante einer 3-reihigen, quadratischen Matrix $A=(a_{ik})$ versteht man die Zahl

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

Berechnung der 3-reihigen Determinante (Sarrus-Regel):

Die Spalten 1 und 2 der Determinante werden noch mal rechts neben die Determinante gesetzt. Den Determinantenwert erhält man dann, indem man die drei Hauptdiagonalprodukte addiert und die drei Nebendiagonalprodukte davon subtrahiert.

Achtung: Diese Sarrus-Regel gilt nur für 3-reihige Determinanten!

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \\ & & & & & & & & & \\ & = \mathbf{a}_{11} \mathbf{a}_{22} \mathbf{a}_{33} + \mathbf{a}_{12} \mathbf{a}_{23} \mathbf{a}_{31} + \mathbf{a}_{13} \mathbf{a}_{21} \mathbf{a}_{32} - a_{13} a_{22} a_{31} - a_{23} a_{32} a_{11} - a_{33} a_{12} a_{21} \end{vmatrix}$$

Beispiel:

$$\det A = \begin{vmatrix} 1 & -2 & 7 & 1 & -2 \\ 0 & 3 & 2 & 0 & 3 \\ 5 & -1 & 4 & 5 & -1 \end{vmatrix}$$

$$= 1 \cdot 3 \cdot 4 + (-2) \cdot 2 \cdot 5 + 7 \cdot 0 \cdot (-1) - 7 \cdot 3 \cdot 5 - 1 \cdot 2 \cdot (-1) - (-2) \cdot 0 \cdot 4$$

$$= 12 - 20 + 0 - 105 + 2 + 0 = -111$$

Rechenregeln für 3-reihigen Determinante

Für 3-reihige Determinanten gelten die gleichen Rechenregeln wie für 2-reihige Determinanten.

Unterdeterminante/ algebraisches Komplement Definitionen 6.9:

1. Durch Streichen der i-ten Zeile und k-ten Spalte einer 3-reihigen Determinante entsteht eine 2-reihige Unterdeterminante Dik (i, k =1, 2, 3) bezeichnet wird.

(**Bemerkung**: Eine 3-reihige Determinante hat 9 Unterdeterminanten.)

2. Die mit dem Vorzeichenfaktor (-1)i+k versehene Unterdeterminante Dik wird als algebraisches Komplement Aik des Elementes aik in der Determinante bezeichnet.

$$A_{ik} = \left(-1\right)^{i+k} D_{ik}$$

Das Vorzeichen $(-1)^{i+k}$ entspricht dem Schachbrettmuster - + -

Beispiel:
$$Zu \det A = \begin{vmatrix} 1 & -2 & 7 \\ 0 & 3 & 2 \\ 5 & -1 & 4 \end{vmatrix}$$
 ist

 $D_{23} = \begin{vmatrix} 1 & -2 \\ 5 & -1 \end{vmatrix}$ die Unterdeterminate, die durch Streichen der 2. Zeile und 3. Spalte entsteht

und
$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -2 \\ 5 & -1 \end{vmatrix} =$$
(-1) $\begin{vmatrix} 1 & -2 \\ 5 & -1 \end{vmatrix}$ das zugehörige Algebraische Komplement

Satz 6.4: Laplacescher Entwicklungssatz für 3-reihige Determinanten

Eine 3-reihige Determinante läßt sich nach jeder der 3 Zeilen oder Spalten wie folgt entwickeln:

Entwicklung nach der i-ten Zeile:

$$\det A = \sum_{k=1}^{3} a_{ik} A_{ik} \quad (i = 1, 2 oder 3)$$

Entwicklung nach der k-ten Spalte:

$$\det A = \sum_{i=1}^{3} a_{ik} A_{ik} \quad (k = 1, 2 oder 3)$$

mit

 $A_{ik} = (-1)^{i+k} D_{ik}$ Algebraisches Komplement von a_{ik} und

 D_{ik} : 2-reihige Unterdeterminante von det A

Bemerkung: Man wählt sich zur Entwicklung diejenige Zeile oder Spalte aus, die die meisten Nullen hat, da so viele Summanden aufgrund der Multiplikation mit a_{ik} wegfallen.

Beispiel:

$$\det A = \begin{vmatrix} 1 & -2 & 7 \\ 0 & 3 & 2 \\ 5 & -1 & 4 \end{vmatrix}$$

Entwicklung nach der 2.Zeile

$$= (-1) \cdot 0 \cdot \begin{vmatrix} -2 & 7 \\ -1 & 4 \end{vmatrix} + (+1) \cdot 3 \cdot \begin{vmatrix} 1 & 7 \\ 5 & 4 \end{vmatrix} + (-1) \cdot 2 \cdot \begin{vmatrix} 1 & -2 \\ 5 & -1 \end{vmatrix}$$

$$= 0 + 3(1 \cdot 4 - 7 \cdot 5) - 2(1 \cdot (-1) - (-2) \cdot 5) = 3 \cdot (-31) - 2 \cdot 9 = -111$$

6.4.3 n-reihige Determinanten

Der Determinantenbegriff, der für 2x2- und 3x3-Matrizen in den vorangegangenen Abschnitten eingeführt wurde, wird hier für nxn-Matrizen verallgemeinert.

Definitionen 6.10: n-reihige Determinante

Einer nxn-Matrix A=(a_{ik}) ordnet die **n-reihige Determinante** mittels einer bestimmten Rechenvorschrift eine Zahl zu:

$$\det A = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

Satz 6.5: Laplacescher Entwicklungssatz für n-reihige Determinanten Eine n-reihige Determinante lässt sich nach jeder beliebigen der n Zeilen oder Spalten wie folgt entwickeln:

Entwicklung nach der i-ten Zeile:

$$\det A = \sum_{k=1}^{n} a_{ik} A_{ik} \quad (i = 1, ..., n)$$

Entwicklung nach der k-ten Spalte:

$$\det A = \sum_{i=1}^{n} a_{ik} A_{ik} \quad (k = 1, ..., n)$$

mit

$$A_{ik} = (-1)^{i+k} D_{ik}$$
 Algebraisches Komplement von a_{ik} und $D_{ik} : (n-1)$ – reihige Unterdeterminante von $\det A$

Bemerkung: Man wählt sich zur Entwicklung diejenige Zeile oder Spalte aus, die die meisten Nullen hat, da so viele Summanden aufgrund der Multiplikation mit a_{ik} wegfallen.

Satz 6.6: Eigenschaften und Rechenregeln n-reihiger Determinanten

- 1. Der Wert einer n-reihigen Determinante ändert sich beim **Transponieren** nicht.
- 2. Beim **Vertauschen zweier Zeilen** (oder Spalten) ändert eine n-reihige Determinante ihr Vorzeichen:
- 3. Werden Elemente einer beliebigen Zeile (oder Spalte) einer n-reihigen Determinante mit einem **reellen Skalar** λ **multipliziert**, so multipliziert sich die Determinante mit λ .
- 4. Eine n-reihige Determinante wird mit einem reellen Skalar λ multipliziert, indem man die Elemente einer beliebigen Zeile (oder Spalte) mit λ multipliziert.
- 5. Besitzen die Elemente einer Zeile (oder Spalte) einer n-reihigen Determinante einen **gemeinsamen Faktor** λ , so darf dieser vor die Determinante gezogen werden.
- 6. Eine n-reihige Determinante besitzt den **Wert Null**, wenn sie (mindestens) eine der folgenden Bedingungen erfüllt:
 - (a) Alle Elemente einer Zeile (oder Spalte) sind Null.
 - (b) Zwei Zeilen (oder Spalten) stimmen überein.
 - (c) Zwei Zeilen (oder Spalten) sind zueinander proportional.
 - (d) Eine Zeile (oder Spalte) ist als Linearkombination der übrigen Zeilen (oder Spalten) darstellbar.
- 7. Der Wert einer n-reihigen Determinante ändert sich nicht, wenn man zu einer Zeile (oder Spalte) ein **beliebiges Vielfaches der anderen Zeile** (bzw. anderen Spalte) elementweise **addiert**.
- 8. Multiplikationstheorem für Determinanten:

Für zwei n-reihige Matrizen A und B gilt stets

$$\det(A \cdot B) = (\det A) \cdot (\det B)$$

9. Die **Determinante einer n -reihigen Dreiecksmatrix A** besitzt den Wert

$$\det A = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn} ,$$

d.h. die Determinante einer Dreiecksmatrix ist gleich dem Produkt der Hauptdiagonalelemente.

Bemerkungen zu n-reihigen Determinanten:

- (1)Der Wert einer n-reihigen Determinante ist unabhängig von der Zeile oder Spalte nach der entwickelt wird.
- (2)Im Allgemeinen entwickelt man nach derjenigen **Zeile oder Spalte**, **die die meisten Nullen enthält**, da diese Elemente keinen Beitrag zum Determinantenwert leisten.
- (3)Spezialfall: Der Wert einer **1-reihigen Determinante** $A = (a) \implies \det A = a$ entspricht dem Wert des einzigen Matrixelementes.
- (4)Durch Entwicklung nach den Elementen einer Zeile oder Spalte lässt sich die **Ordnung einer Determinante um 1 reduzieren**. Beispielsweise lässt sich eine 4-reihige Determinante aus vier 3-reihigen Determinanten berechnen.
- (5) Für eine invertierbare nxn-Matrix A ist

$$\det\left(A^{-1}\right) = \frac{1}{\det A}.$$

Beweis:

Aus
$$A^{-1} \cdot A = I$$
 und $\det(I) = 1$
folgt $1 = \det I = \det \left(A^{-1} \cdot A \right) = \det \left(A^{-1} \right) \cdot \det \left(A \right)$
und damit die Behauptung.

6.5 Weitere Verfahren zur Lösung linearer Gleichungssysteme

6.5.1 Inverse Matrix

nach Definition 5.3 ist:

Ist A eine quadratische Matrix und gibt es eine Matrix B mit AB = I = BA,

so ist A **invertierbar** und $B = A^{-1}$ heißt die **Inverse** zu A.

- Eine Matrix mit einer Inversen ist regulär.
- Eine n-reihige, quadratische Matrix A ist regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Andernfalls nennt man sie singulär.
- Folgerung: Eine Inverse A^{-1} einer Matrix A existiert nur dann, wenn A regulär ist, d.h. wenn $\det A \neq 0$.

Satz 6.7: Berechnung der inversen Matrix unter Verwendung von Unterdeterminanten:

Zu jeder regulären n-reihigen Matrix A gibt es genau eine inverse Matrix A^{-1} mit:

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

Dabei bedeuten:

 $A_{ik} = (-1)^{i+k} D_{ik}$ Algebraisches Komplement von a_{ik} in det A und D_{ik} : (n-1)-reihige Unterdeterminante von det A (in det A wird die i - teZeile und k - te Spalte gestrichen)

Bemerkung:

Die Matrix

$$\begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = A_{adj}$$

wird die zu A adjungierte Matrix genannt.

$$A_{adj} = (A_{ik})^{T} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{T}$$

- Beispiel: siehe Vorlesung
- In der Praxis ist die Berechnung der inversen Matrix auf diesem Wege mit hohem Rechenaufwand verbunden (Später praktikableres Verfahren basierend auf Gauß-Elimination "Gauß-Jordan-Verfahren")

6.5.2 Cramersche Regel

Ein lineares nxn-Gleichungssystem $\mathbf{A}\mathbf{x} = \mathbf{b}$ (Schreibweise auch $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ oder $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$) besitzt genau eine Lösung, wenn die Koeffizientenmatrix A regulär ist.

Dann existiert auch die inverse Matrix A⁻¹ und die Lösung läßt sich wie folgt berechnen:

$$\underline{x} = A^{-1} \cdot \underline{b} = \frac{1}{\det A} A_{adj} \cdot \underline{b}$$

Herleitung der Cramerschen Regel:

$$\underline{x} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \qquad x_1 = \frac{A_{11}b_1 + A_{21}b_2 + \cdots + A_{n1}b_n}{\det A}$$

$$x_2 = \frac{A_{12}b_1 + A_{22}b_2 + \cdots + A_{n2}b_n}{\det A}$$

$$\Rightarrow \vdots$$

$$x_n = \frac{A_{1n}b_1 + A_{2n}b_2 + \cdots + A_{nn}b_n}{\det A}$$

Die obige Lösung erhält man durch Anwendung der Cramerschen Regel.

Satz 6.8: Cramerschen Regel:

Ein lineares nxn-Gleichungssystem $A\underline{x} = \underline{b}$ mit regulärer Koeffizientenmatrix A besitzt die eindeutige Lösung

$$x_i = \frac{C_i}{\det A}, \ i = 1, 2, ..., n$$

 $mit \ C_i = Hilfs determinante, die aus der Determinante von A hervorgeht, in dem man die i - te Spalte durch die rechte Seite b ersetzt.$

Bemerkung:

- Die Cramersche Regel darf nur angewendet werden, wenn $\det A \neq 0$ ist.
- Zur Lösung eines linearen nxn-Gleichungssystems müssen mit der Cramerschen Regel insgesamt (n+1) n-reihige Determinanten gerechnet werden.

Beispiel: siehe Vorlesung

6.5.3 Gauß-Jordan-Verfahren

Ein weiteres Verfahren zur Berechnung einer inversen Matrix ist das Gauß-Jordan-Verfahren, dass auf elementaren Zeilenumformungen einer Matrix beruht.

Satz 6.9: Gauß-Jordan-Verfahren:

Zu jeder regulären nxn-Matrix A gibt es genau eine inverse Matrix A⁻¹, die wie folgt schrittweise berechnet werden kann:

(1)Mit der Matrix A und der Einheitsmatrix I wird eine neue nx2n-Matrix

A | I erstellt:

$$A|I = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix}$$

- (2)Diese Matrix A | **I** wird mit Hilfe elementarer Zeilenumformungen so umgeformt, dass die Einheitsmatrix **I** den ursprünglichen Platz der Matrix A einnimmt.
- (3)Die gesuchte inverse Matrix A⁻¹ befindet sich dann an dem ursprünglichen Platz der Einheitsmatrix.

$$I | B = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & 1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} = I | A^{-1}$$

Beispiel: siehe Vorlesung

6.6 Lösbarkeit linearer nxn-Gleichungssysteme

Eigenschaften des Ranges einer Matrix

- Der Rang einer mxn-Matrix gibt die maximale Anzahl linear unabhängiger Zeilen(Spalten) an. (vgl. Definition 5.7)
- Der Rang einer mxn-Matrix entspricht der höchsten Ordnung r aller von Null verschiedenen Unterdeterminanten von A.
- Für eine reguläre nxn-Matrix A gilt: $\det A \neq 0$, d.h. r = n
- Für eine singuläre nxn-Matrix A gilt: $\det A = 0$, d.h. r < n

6.7 Weitere Aufgabenstellungen der Linearen Algebra

Eine wesentliche Aufgabenstellungen der Linearen Algebra ist die **Lösung von linearen Gleichungssystemen**, die in der vorhergehenden Kapiteln genauer beschrieben wurde. Zwei weitere Aufgabenstellungen sind **die lineare Ausgleichsrechnung** und **das Eigenwertproblem**, das im nachfolgenden kurz beschrieben wird. Auf die lineare Ausgleichsrechnung wird hier nicht näher eingegangen. Es wird in diesem Zusammenhang auf die Vorlesung "Numerik und Stochastik" verwiesen.

Die Formulierung der 3 wichtigen Aufgabenstellungen der Linearen Algebra kann wie folgt dargestellt werden:

(1) Lineare Gleichungssysteme

Gegeben ist eine Matrix $A \in \mathbb{R}^{m \times n}$ und ein Vektor $\underline{b} \in \mathbb{R}^m$.

Finden Sie einen Vektor $\underline{x} \in \mathbb{R}^n$, der die Vektorgleichung $A\underline{x} = \underline{b}$ erfüllt.

(2) Lineare Ausgleichsrechnung

• Ersatzaufgabe zur Berechnung einer Näherungslösung, wenn $A\underline{x} = \underline{b}$ unlösbar ist.

Gegeben ist eine Matrix $A \in \mathbb{R}^{m \times n}$ und ein Vektor $\underline{b} \in \mathbb{R}^m$.

Finden Sie einen Vektor $\underline{x} \in \mathbb{R}^n$, der die lineare Ausgleichsaufgabe

$$\overline{ \begin{array}{c|c} Minimiere & \underline{b} - A\underline{x} \end{array} |}$$
 löst.

(3) Eigenwertproblem

Gegeben ist eine quadratische Matrix $A \in \mathbb{R}^{n \times n}$.

Finden Sie n Zahlen λ und Vektoren $\underline{x} \in \mathbb{R}^n$, so dass gilt $A\underline{x} = \lambda \underline{x}$.

6.8 Eigenwerte von Matrizen

Dieses Kapitel behandelt die Problematik, zu einer gegebenen Matrix diejenigen Vektoren zu finden, die durch Anwendung der Matrix A fix bleiben oder nur ihre Länge ändern, d.h. es sollen Lösungen der Gleichung $A\underline{x} = \lambda \underline{x}$ bzw. des homogenen linearen Gleichungssystems $(A - \lambda I)\underline{x} = \underline{0}$ gefunden werden.

Einschub:

• Jede Matrix $A \in \mathbb{R}^{mxn}$ definiert eine **lineare Abbildung** $f : \mathbb{R}^n \to \mathbb{R}^m$ durch die Vorschrift

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\underline{x} \to A\underline{x} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

• Eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ heißt **linear**, wenn für alle $\underline{x_1}, \underline{x_2} \in \mathbb{R}^n$ und für alle $\lambda \in \mathbb{R}$ gilt:

1.
$$f(\underline{x_1} + \underline{x_2}) = f(\underline{x_1}) + f(\underline{x_2})$$

2.
$$f(\lambda \underline{x_1}) = \lambda f(\underline{x_1})$$

Definitionen 6.11: Eigenwert, Eigenvektor

Gegeben sei das homogene lineare Gleichungssystem

$$(A - \lambda I)\underline{x} = \underline{0}$$

mit einer quadratischen nxn-Koeffizientenmatrix mit reellen Elementen.

Reelle Zahlen $\lambda \in \mathbb{R}$, für die das LGS $(A - \lambda I)\underline{x} = \underline{0}$ nicht triviale Lösungen besitzt, heißen **Eigenwerte von A** (oder charakteristische Werte).

Ist $\lambda \in \mathbb{R}$ ein Eigenwert von A, dann werden die nicht trivialen Lösungen \underline{x} des LGS $(A - \lambda I)\underline{x} = \underline{0}$ Eigenvektoren von A zum Eigenwert λ genannt.

Satz 6.10:

Das lineare Gleichungssystem $(A - \lambda I)\underline{x} = \underline{0}$ hat nicht triviale Lösungen \underline{x} genau dann, wenn $\lambda \in \mathbb{R}$ eine Lösung der charakteristischen Gleichung ist:

$$\det(A - \lambda I) = 0$$

ist.

 $\det(A-\lambda I)$ wird auch **charakteristisches Polynom** genannt.

Satz 6.11:

Das charakteristische Polynom $\det (A - \lambda I)$ einer nxn-Matrix hat stets die Form

$$(-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_0$$

d.h. es ist ein Polynom in λ vom Grad n.

Die Nullstellen dieses Polynoms sind die Eigenwerte der Matrix.

Satz 6.12:

Eine nxn-Matrix A ist genau dann invertierbar, wenn $\lambda = 0$ kein Eigenwert von A ist.

Eigenschaften der Eigenwerte und Eigenvektoren:

- (1) Ist ein Eigenwert λ eine einfache Nullstelle des charakteristischen Polynoms $\det(A-\lambda I)$, so gehört zu λ genau ein genormter Eigenvektor.
- (2)Die zu verschiedenen Eigenwerten gehörigen Eigenvektoren sind stets linear unabhängig.
 - Beim Auftreten mehrfacher Eigenwerte kann die Gesamtanzahl linear unabhängiger Eigenvektoren kleiner als n sein.
- (3)Die Determinante einer quadratischen Matrix ist gleich dem Produkt ihrer Eigenwerte.

(vorausgesetzt, dass das charakteristische Polynom $p(\lambda)$ n-ten Grades genau n reelle Nullstellen hat, die nicht alle verschieden sein müssen)

(4)Für symmetrische Matrizen sind sämtliche Eigenwerte reell und es gibt n linear unabhängige Eigenvektoren.

Vorgehensweise zur Berechnung von Eigenwerten und Eigenvektoren einer nxn-Matrix A:

1. Aufstellen der charakteristischen Gleichung

$$|A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$

Die Lösungen $\lambda_1, \lambda_2, ... \lambda_n$ dieser Gleichung sind die Eigenwerte von A.

2. Für jedes λ_k , k = 1,...,n löst man das lineare Gleichungssystem

$$\begin{pmatrix} a_{11} - \lambda_k & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda_k & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda_k \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Jeder Lösungsvektor \underline{x} ist dann ein Eigenvektor von A zum Eigenwert λ_k .