Note on Modular Forms

Lei

November 14, 2024

1 Hecke Operators

Thoughout this section, we fix the following data:

- a group Ω ;
- a submonoid $\Delta \subset \Omega$;
- a nonempty collection \mathscr{X} of subgroups of Ω , in which all members are commensurable 1 to each other, and

$$\Gamma \subset \Delta \subset \tilde{\Gamma} := \{ g \in \Omega \mid g\Gamma g^{-1} \approx \Gamma \}, \ \forall \Gamma \in \mathscr{X};$$

- a commutative ring \mathbb{K}
- a left K-module M with a right Δ -action $(m, \delta) \mapsto m\delta$, i.e, a monoid homomorphism

$$\Delta \to \operatorname{End}_{\mathbb{K}}(M) \quad \delta \mapsto m \mapsto m\delta.$$

1.1 Commensurability

Recall that two subgroups $\Gamma, \Gamma' < \Omega$ are commensurable if both $[\Gamma : \Gamma \cap \Gamma']$ and $[\Gamma' : \Gamma \cap \Gamma']$ are finite, and this is an equivalence relation.

Lemma 1.1. $\tilde{\Gamma}$ is a group and depends only on the commensurable class of Γ .

Proposition 1.1. Let $\alpha \in \tilde{\Gamma}$ and $\Gamma \approx \Gamma'$. Then there is a bijection

$$\Gamma' \cap (\alpha^{-1}\Gamma\alpha) \backslash \Gamma' \longleftrightarrow \Gamma \backslash \Gamma\alpha\Gamma'$$
$$\Gamma''^{2}x \longleftrightarrow \Gamma\alpha x$$

and $\Gamma \backslash \Gamma \alpha \Gamma'$ is finite.

Proof. The map

$$\Gamma' \to \Gamma \backslash \Gamma \alpha \Gamma' \quad x \mapsto \Gamma \alpha x$$

is clearly surjective. Now $\forall x, y \in \Gamma'$,

$$\Gamma \alpha x = \Gamma \alpha y \iff \exists g \in \Gamma, g \alpha x = \alpha y$$

 $\iff \exists g' \in \Gamma'', g' x = y;$

so injective.

By definitions and the last lemma, $\Gamma' \cap (\alpha^{-1}\Gamma\alpha) \approx \Gamma'$, giving finiteness.

¹Write $\Gamma \approx \Gamma'$ if Γ is commensurable to Γ' .

²Of course, $\Gamma'' = \Gamma' \cap (\alpha^{-1}\Gamma\alpha)$.

1.2 Double Coset Algebra

1.2.1 Double Cosets and Convolution

Recall that the \mathbb{K} -module $\mathcal{F}(\Omega,\mathbb{K})$ of all functions $\Omega \to \mathbb{K}$ admits a \mathbb{K} -linear left Ω -action

$$(\gamma f)(z) := f(\gamma^{-1}z)$$

and a right Ω -action

$$(f\gamma)(z) := f(z\gamma).$$

Def-Theorem 1. Let $\Gamma, \Gamma' \in \mathscr{X}$. Define $\mathcal{H}(\Gamma \backslash \Delta / \Gamma')$ to be the \mathbb{K} -module³ consists of functions $f : \Omega \to \mathbb{K}$ such that:

- supp $f \subset \Delta$ and $\Gamma \setminus \text{supp } f/\Gamma'$ is a finite set,
- f is left- Γ -invariant and right- Γ' -invariant.

Then $\mathcal{H}(\Gamma \setminus \Delta/\Gamma')$ is a free K-module, with a basis given by the double cosets in $\Gamma \setminus \Delta/\Gamma'$, i.e.,

$$[\Gamma \gamma \Gamma'] := \mathbf{1}_{\Gamma \gamma \Gamma'}, \ \gamma \in \Delta.$$

We thus identify $\mathcal{H}(\Gamma \setminus \Delta/\Gamma')$ with the free module $\mathbb{Z}[\Gamma \setminus \Delta/\Gamma']$ generated by $\Gamma \setminus \Delta/\Gamma'$, and we identify the function $[\Gamma \gamma \Gamma'] := \mathbf{1}_{\Gamma \gamma \Gamma'}$ with the double coset $\Gamma \gamma \Gamma'$.

Def-Theorem 2 (Convolution). Let $\Gamma, \Gamma', \Gamma'' \in \mathcal{X}$. We define an convolution operator

$$*: \mathcal{H}(\Gamma \backslash \Delta / \Gamma') \times \mathcal{H}(\Gamma' \backslash \Delta / \Gamma'') \to \mathcal{H}(\Gamma \backslash \Delta / \Gamma'')$$

via

$$(\alpha * \beta)(x) := \sum_{h \in \Gamma' \setminus \Omega} \alpha(xh^{-1})\beta(h) = \sum_{\Omega/\Gamma'} \alpha(h)\beta(h^{-1}x).$$

The above equation is well-defined and holds. Moreover,

- this convolution operator * is distributive and associative,
- $1_{\Gamma} \in \mathcal{H}(\Gamma \setminus \Delta/\Gamma)$ is both a left and right *identity* for *.

In particular, the operator * makes

$$\mathcal{H}_{\Delta}(\Gamma) := \mathcal{H}(\Gamma \backslash \Delta / \Gamma)$$

a K-algebra.

We then give a formula of *. For $\alpha, \beta, \gamma \in \Delta$, write

$$[\Gamma\alpha\Gamma']*[\Gamma'\beta\Gamma''] = \sum_{\gamma\in\Delta\backslash\Gamma/\Gamma''} m(\alpha,\beta;\gamma)[\Gamma\gamma\Gamma''].$$

Apply RHS to γ , one checks $(\lceil \Gamma \alpha \Gamma' \rceil * \lceil \Gamma' \beta \Gamma'' \rceil) (\gamma) = m(\alpha, \beta; \gamma)$. To determine these quantities, write

$$\Gamma \alpha \Gamma' = \bigsqcup_{a \in A} \Gamma a, \ \Gamma' \beta \Gamma'' = \bigsqcup_{b \in B} \Gamma' b.$$

Then

$$\begin{split} m(\alpha,\beta;\gamma) &= \left(\left[\Gamma \alpha \Gamma' \right] * \left[\Gamma' \beta \Gamma'' \right] \right) (\gamma) \\ &= \sum_{h \in \Gamma' \backslash \Omega} \left[\Gamma \alpha \Gamma' \right] (\gamma h^{-1}) \cdot \left[\Gamma' \beta \Gamma'' \right] (h) \\ &= \sum_{h \in \Gamma' \backslash (\Gamma' \beta \Gamma'')} \left[\Gamma \alpha \Gamma' \right] (\gamma h^{-1}) = \sum_{b \in B} \left[\Gamma \alpha \Gamma' \right] (\gamma b^{-1}). \end{split}$$

 $^{^3}A$ K-submodule of $\mathcal{F}(\Omega, \mathbb{K})$

Note that

$$[\Gamma \alpha \Gamma'](x) = \begin{cases} 1, & \exists a \in A, x \in \Gamma a \\ 0, & \text{otherwise} \end{cases} = \#\{a \in A \mid \Gamma x = \Gamma a\},$$

SO

$$m(\alpha, \beta; \gamma) = \# \{(a, b) \in A \times B \mid \Gamma \gamma = \Gamma ab \}.$$

Considering right cosets rather than left cosets gives a similar formula.

The following is a useful result in computation.

Proposition 1.2. If $\alpha, \gamma \in \Delta$, and γ normalises Γ , then

$$[\Gamma \alpha \Gamma] * [\Gamma \gamma \Gamma] = [\Gamma \alpha \gamma \Gamma],$$

$$[\Gamma \gamma \Gamma] * [\Gamma \alpha \Gamma] = [\Gamma \gamma \alpha \Gamma].$$

Proof. Write $\Gamma \alpha \Gamma = \bigsqcup_{a \in A} \Gamma a$. As $\Gamma \gamma \Gamma = \Gamma \gamma$ and

$$\Gamma\alpha\gamma\Gamma=\Gamma\alpha\Gamma\gamma=\bigsqcup_{a\in A}\Gamma a\gamma,$$

the structure constants

$$m(\alpha, \gamma; \delta) = \# \left\{ a \in A \mid \Gamma \delta = \Gamma a \gamma \right\} = \begin{cases} 1, & \delta \in \Gamma \alpha \gamma \Gamma, \\ 0, & \delta \notin \Gamma \alpha \gamma \Gamma. \end{cases}$$

1.2.2 Commutativity

An **anti involution** of a monoid Δ is a map $\tau : \Delta \to \Delta$ s.t.

$$\tau(xy) = \tau(y)\tau(x), \quad \tau(1) = 1, \quad \tau^2 := \tau \circ \tau = \mathrm{id}.$$

Theorem 3. Let $\Gamma \in \mathscr{X}$. If there *exists* an anti involution $\tau : \Delta \to \Delta$ that stabilises every double coset of Γ , then $\mathcal{H}(\Gamma \setminus \Delta/\Gamma)$ is a commutative \mathbb{K} -algebra.

1.3 The Action of Double Coset Algebras

We consider the action of $\mathcal{H}(\Gamma \setminus \Delta/\Gamma)$ on

$$M^{\Gamma} = \{ m \in M \mid m\gamma = m, \forall \gamma \in \Gamma \}.$$

Def-Theorem 4. For $f \in \mathcal{H}(\Gamma \backslash \Delta / \Gamma')$, define

$$f: M^{\Gamma} \longrightarrow M^{\Gamma'}$$

$$m \longmapsto mf := \sum_{\delta \in \Gamma \setminus \Delta} f(\delta) m \delta.$$

This action is well-defined. Moreover, it is comptatible with convolution.

- If $f \in \mathcal{H}(\Gamma \backslash \Delta / \Gamma')$, $f' \in \mathcal{H}(\Gamma' \backslash \Delta / \Gamma'')$, then m(f * f') = (mf)f'.
- In case $\Gamma' = \Gamma$, $m\mathbf{1}_{\Gamma} = m$.

In particular, M^{Γ} admits a right $\mathcal{H}(\Gamma \backslash \Delta / \Gamma)$ -module, with action of a basis given by

$$\Gamma \gamma \Gamma = \bigsqcup_{i=1}^n \Gamma \gamma_i \implies m[\Gamma \gamma \Gamma] = \sum_{i=1}^n \gamma_i.$$

Corollary 1.1. If γ normalises Γ , then $m[\Gamma \gamma \Gamma] = m\gamma$.

2 Hecke Operators for $\Gamma_0(N)$ and $\Gamma_1(N)$

We specialise our discussion in the last section to the case of modular forms. Let

- $\Omega := \mathrm{GL}(2,\mathbb{Q})^+,$
- $\mathbb{K} := \mathbb{Z}$,
- $\mathscr{X} = \text{congruence subgroups},$

Lemma 2.1. Any two congruence subgroups are commensurable.

Proof. Note that $\Gamma(N) \cap \Gamma(N') = \Gamma(\operatorname{lcm}(N, N'))$.

Lemma 2.2. If Γ is a discrete subgroup of $SL(2,\mathbb{Z})$, then in $GL(2,\mathbb{Q})^+$, the group $\tilde{\Gamma} = GL(2,\mathbb{Q})^+$.

Proof.

Fix a weight k and consider all the modular forms

$$M := \bigcup_{\Gamma \in \mathscr{X}} M_k(\Gamma) = \sum_{\Gamma} M_k(\Gamma)$$

and its C-subspace

$$S := \bigcup_{\Gamma \in \mathscr{X}} S_k(\Gamma) = \sum_{\Gamma} S_k(\Gamma).$$

• Note that we can write $\bigcup = \sum$, because

$$M_k(\Gamma) + M_k(\Gamma') \subset M_k(\Gamma \cap \Gamma').$$

Define $M \circlearrowleft \mathrm{GL}(2,\mathbb{R})^+$ by

$$f|_k \gamma(z) := (\det \gamma)^{k-1} j(\gamma, z)^{-k} f(\gamma z).$$

Lemma 2.3. For all $\Gamma \in \mathcal{X}$ and $\gamma \in GL(2, \mathbb{R})^+$,

$$f \in M_k(\Gamma) \implies f|_k \gamma \in M_k(\Gamma \cap \gamma^{-1} \Gamma \gamma).$$

It remains true for S_k .

Proof. Just don't forget to check the cusps!

It is now straightforward to check that we defined an action on M which stabilises S.

Lemma 2.4. $M^{\Gamma} = M_k(\Gamma), S^{\Gamma} = S_k(\Gamma).$

Now we go to the case of $\Gamma_0(N)$ and $\Gamma_1(N)$.

2.1 The Algebras

We consider these monoids:

$$\begin{split} \Delta(N) &:= \left. \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| \det A > 0, \ (a,N) = 1, \ N \mid c \right\} \\ &= \left. \left\{ A \in \operatorname{GL}(2,\mathbb{Q})^+ \cap \operatorname{M}_2(\mathbb{Z}) \middle| A \bmod N \in \begin{pmatrix} (\mathbb{Z}/N\mathbb{Z})^\times & * \\ & * \end{pmatrix} \right\}, \\ \Delta^\circ(N) &:= \left. \left\{ A \in \Delta(N) \mid (\det A, N) = 1 \right\}, \\ \Delta_1(N) &:= \left. \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta^1(N) \middle| a \equiv 1 \pmod N \right\} \right. \\ &= \left. \left\{ A \in \operatorname{GL}(2,\mathbb{Q})^+ \cap \operatorname{M}_2(\mathbb{Z}) \middle| A \bmod N \in \begin{pmatrix} 1 & * \\ & * \end{pmatrix} \right\}. \end{split}$$

Define

$$\mathcal{H}_i(N) := \mathcal{H}_{\Delta(N)}(\Gamma_i(N)), \quad \mathcal{H}_i^{\circ}(N) := \mathcal{H}_{\Delta^{\circ}(N)}(\Gamma_i(N)), \qquad i = 0, 1$$

and $\mathcal{H}_1(N) := \mathcal{H}_{\Delta_1(N)}(\Gamma_1(N)).$

Proposition 2.1. All the algebras mentioned above are commutative.

Proof. Check that

$$A = \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \mapsto \begin{pmatrix} a & c \\ bN & d \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & \\ & N \end{pmatrix}^{-1} A \begin{pmatrix} 1 & \\ & N \end{pmatrix} \end{pmatrix}^{\mathsf{t}}$$

verifies the conditions of Theorem 3.

We are particularly interested in $\mathcal{H}_0(N)$ and $\mathcal{H}_1(N)$.

2.2 Product Formula for $\mathcal{H}_0(N)$

Theorem 5 (coset representative of $\mathcal{H}_0(N)$). $\Gamma_0(N)\backslash\Delta(N)/\Gamma_0(N)$ admits coset representative given by

$$\begin{pmatrix} u & \\ & v \end{pmatrix}, \quad u \mid v, \ (u, N) = 1.$$

The double coset of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ correspond to

$$\begin{pmatrix} u \\ v \end{pmatrix}$$
, where $\begin{cases} uv = ad - bc \\ u = (a, b, c, d). \end{cases}$

Proposition 2.2.

$$\Gamma_0(N)\begin{pmatrix} u \\ v \end{pmatrix}\Gamma_0(N) = \bigsqcup_{g \in M_{u,uv}} \Gamma_0(N)g,$$

where

$$M_{u,n} = \left\{ \begin{pmatrix} a & b \\ & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) \middle| \begin{array}{c} u = (a,b,d) \\ n = ad \\ (a,N) = 1 \\ b \text{ permutes a representative of } \mathbb{Z}/d\mathbb{Z} \end{array} \right\}.$$

In particular,

$$\Gamma_0(N)\begin{pmatrix} 1 & \\ & n \end{pmatrix}\Gamma_0(N) = \bigsqcup_{g \in M_{1,n}} \Gamma_0(N)g$$

and

$$M_{1,n} = \left\{ \begin{pmatrix} a & b \\ & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) \middle| \begin{array}{c} (a,b,d) = 1 \\ ad = n \\ (a,N) = 1 \\ b \text{ permutes a representative of } \mathbb{Z}/d\mathbb{Z} \end{array} \right\}.$$

Proposition 2.3 (multiplication formula). Write $[A] := [\Gamma_0(N)A\Gamma_0(N)]$. Let $n, m \in \mathbb{Z}$, p be a prime.

• If (n, m) = 1, then

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & n \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \\ & m \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & \\ & nm \end{pmatrix} \end{bmatrix}.$$

• If $p \mid N$, then

$$\left[\begin{pmatrix}1&\\&p\end{pmatrix}\right]\left[\begin{pmatrix}1&\\&p^r\end{pmatrix}\right]=\left[\begin{pmatrix}1&\\&p^{r+1}\end{pmatrix}\right].$$

• If $p \nmid N$, then

$$\begin{bmatrix} \begin{pmatrix} 1 & \\ & p \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^r \end{pmatrix} \end{bmatrix} = \begin{cases} \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^2 \end{pmatrix} \end{bmatrix} + (p+1) \begin{bmatrix} \begin{pmatrix} p \\ & p \end{pmatrix} \end{bmatrix}, & r = 1, \\ \begin{bmatrix} \begin{pmatrix} 1 & \\ & p^{r+1} \end{pmatrix} \end{bmatrix} + p \begin{bmatrix} \begin{pmatrix} p & \\ & p \end{pmatrix} \begin{pmatrix} 1 & \\ & p^{r-1} \end{pmatrix} \end{bmatrix}, & r \geq 2.$$

Proof. Note that $\operatorname{diag}(u, u)$ lies in the centre of $\operatorname{GL}(2, \mathbb{Q})^+$, so

$$\begin{bmatrix} \begin{pmatrix} u & \\ & v \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} u & \\ & u \end{pmatrix} \begin{pmatrix} 1 & \\ & v/u \end{pmatrix} \end{bmatrix},$$

and thus we need only to prove the formula for diag(1, n).

To be continued....

2.3 From Γ_0 to Γ_1

Recall that

$$\Gamma_0(N) \to (\mathbb{Z}/N\mathbb{Z})^{\times} \quad \begin{pmatrix} * & * \\ & d \end{pmatrix} \mapsto \bar{d}$$

induces a group isomorphism

$$\Gamma_0(N)/\Gamma_1(N) \simeq (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

Definition 1 (diamond operator). For $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$, define

$$\langle d \rangle := [\Gamma_1(N) \gamma_d \Gamma_1(N)],$$

where $\gamma_d \in \Gamma_0(N)$ is any lift of d.

- The operator $\langle d \rangle$ is independent to the choice of γ_d , because the γ_d 's differ by an element in $\Gamma_1(N)$.
- $\langle d \rangle \langle d' \rangle = \langle dd' \rangle$.

2.4 Another Basis

Definition 2 (operator T(n)). Let $n \in \mathbb{Z}_{>1}$ and consider

$$\Delta^n(N) := \{ A \in \Delta(N) \mid \det A = n \}.$$

Write $\Gamma_0(N) \setminus \Delta^n(N) / \Gamma_0(N) = \bigsqcup_i \Gamma_0(N) g_i \Gamma_0(N)$, we define

$$T(n) := \sum_{i} [\Gamma_0(N)g_i\Gamma_0(N)].$$

By Theorem 5, we may take g_i 's to be

$$\begin{pmatrix} u \\ n/u \end{pmatrix} \text{ with } \begin{cases} (u, N) = 1, \\ u^2 \mid n, \end{cases}$$

vielding

$$T(n) = \sum_{u} \begin{bmatrix} \begin{pmatrix} u & \\ & n/u \end{pmatrix} \end{bmatrix}$$
$$= \sum_{u} \begin{bmatrix} \begin{pmatrix} u & \\ & u \end{pmatrix} \begin{pmatrix} 1 & \\ & n/u^2 \end{pmatrix} \end{bmatrix}.$$

as the representative g_i 's, which in turn shows that $\Gamma_0(N)\backslash\Delta^n(N)/\Gamma_0(N)$ is a finite set and T(n) is well-defined. In particular, for p prime,

$$T(p) = \left[\begin{pmatrix} 1 & \\ & p \end{pmatrix} \right].$$

2.5 Hecke Algebra

Define

$$\mathbb{T}_i(N) := \operatorname{im} \left(\mathcal{H}_i(N) \to \operatorname{End}_{\mathbb{C}}(M_k(N)) \right) \tag{1}$$

$$T_n := \text{image of } T(n) \in \mathcal{H}_i(N)$$
 (2)

for i = 0, 1.

3 Group Cohomology

Recall that for a group G and a G-mod M, we define

$$H^{1}(G, M) = \frac{Z^{1}(G, M)}{B^{1}(G, M)} = \frac{\{f : G \to M \mid f(ab) = af(b) + f(a)\}}{\{g \mapsto gm - m \mid m \in M\}}.$$

We apply this construction to:

- G = a congruence subgroup $\Gamma < \mathrm{SL}_2(\mathbb{Z})$,
- $M = V_n(R)$ as follows. Let R be a ring, $n \in \mathbb{Z}_{\geq 1}$. Define

 $R[X,Y]_n := \{\text{homogeneous polynomials of degree } n\},$

a free R-module of rank n+1. The monoid $M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})^+$ acts on $R[X,Y]_n$ by

$$\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} P\right)(X,Y) := P\left(\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P(aX + cY, bX + dY);$$

this is the *left* action on $R[X,Y] \hookrightarrow \{\text{function } R \times R \to R\}$ induced by the *right* action on $R \times R$. $\rightsquigarrow V_n(R) := R[X,Y]_n$ with its $\mathrm{SL}_2(\mathbb{Z})$ -action.

Note that $V_n(R) \simeq \operatorname{Sym}^n R^2$, where R^2 is equipped with the standard $\operatorname{SL}_2(\mathbb{Z})$ -action.

We will show that $H^1(\Gamma, V_n(\mathbb{C}))$ "resembles" a space of modular forms. It has an integral structure

$$H^1(\Gamma, V_n(\mathbb{Z})) \hookrightarrow H^1(\Gamma, V_n(\mathbb{C})),$$

which could give rise to the \mathbb{Z} -lattice we used in the last section.

Proposition 3.1. If S is flat over R, then as S-modules,

$$H^1(\Gamma, V_n(S)) \simeq H^1(\Gamma, V_n(R)) \otimes_R S.$$

Proof. Flatness of $R \to S$ yields an exact sequence

$$0 \to B^1_R \otimes_R S \to Z^1_R \otimes_R S \to H^1_R \otimes_R S \to 0.$$

• $B_R^1 \otimes_R S \simeq B_S^1$. For $P \in V_n(R)$, define $\alpha_P \in B_R^1$ by

$$\alpha_P(g) := gP - P, \quad g \in \Gamma.$$

The embedding $B_R^1 \hookrightarrow C_R^1$ gives an embedding $B_R^1 \otimes_R S \hookrightarrow C_R^1 \otimes_R S$. As symmetric powers are preserved by base change, $V_n(R) \otimes_R S \simeq V_n(S)$ as S-modules. Since $R \to S$ is flat,

$$C_R^1 \otimes_R S = \left(\prod_{\Gamma} V_n(R)\right) \otimes_R S \simeq \prod_{\Gamma} \left(V_n(R) \otimes_R S\right) \simeq C_S^1.$$

Finally, the image of $B^1_R\otimes S\to C^1_R\otimes_R S\simeq C^1_S$ is the set of finite sum

$$\sum_{i} s_i \alpha_{P_i} = \alpha_{\sum_{i} s_i P_i}, \quad s_i \in S, P_i \in V_n(R),$$

which is exactly B_S^1 .

• $Z_R^1 \otimes_R S \simeq Z_S^1$.

Again, this is equivalent to $\operatorname{im}(Z_R^1 \otimes_R S \to C_S^1) = Z_S^1$. Let $f \in Z_S^1$. Since Γ is finitely generated, the cocycle f is determined by its values on a finite set of generators $\{g_1, \ldots, g_r\}$ of Γ . Now for $g \in \Gamma$, write

$$f(g) = \sum_{i=0}^{n} s_i(g) X^i Y^{n-i}.$$

3.1 The Eichler-Shimura map

Define the space of anti-holomorphic cusp forms

$$\overline{S_k(\Gamma)} := \{ z \mapsto \overline{f(z)} \mid f \in S_k(\Gamma) \}.$$

Definition 3. For $n \geq 0$, $u, v \in \mathcal{H}$, $f \in M_{n+2}(\Gamma)$, define

$$I_f(u,v) := \int_u^v f(z)(Xz + Y)^n dz$$
$$I_{\bar{f}}(u,v) := \int_u^v \overline{f(z)}(X\bar{z} + Y)^n dz.$$

These integrals are in $V_n(\mathbb{C})$.

Lemma 3.1. Let $f \in M_{n+2}(\Gamma)$ or $S_{n+2}(\Gamma)$, $u, v, w \in \mathcal{H}$.

- $I_f(u, w) = I_f(u, v) + I_f(v, w)$.
- If $\gamma \in M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})^+$, then

$$I_f(\gamma u, \gamma v) = (\det g)^{-n} \gamma I_{f|_{n+2}\gamma}(u, v).$$

In particular, if $\gamma \in \Gamma$, then

$$I_f(\gamma u, \gamma v) = \gamma I_f(u, v).$$

Proof. The first identity is a part of definition of integral. We compute the second.

$$I_f(\gamma u, \gamma v) =$$

Theorem 6. The map

$$M_{n+2}(\Gamma) \oplus \overline{S_{n+2}(\Gamma)} \longrightarrow H^1(\Gamma, V_n(\mathbb{C}))$$

$$(f,\bar{g}) \longmapsto (\gamma \mapsto I_f(a,\gamma a) + I_{\bar{g}}(b,\gamma b))$$

where $a, b \in \mathcal{H}$ are arbitarily chosen, is a well-defined isomorphism, called the **Eichler-Shimura map**.

It won't be proved in this course that this is an isomorphism.

Proof that this is well defined. \Box