

中国科学院近代物理研究所

A=104-107核反应堆裂变产物的β衰变

全吸收谱学研究

报告人: 帅鹏

Outline

• 全吸收谱仪的研究领域和应用

· 模块化全吸收谱仪(MTAS)

· A=104,105,107的β衰变全吸收谱学

• 总结和展望

β衰变相关的物理和技术

核物理

核结构: 衰变强度,形变

$$B(GT)^{\beta} = \frac{K}{\lambda^2} \frac{I_{\beta}(E)}{f(Q_{\beta} - E, Z)T_{1/2}}$$

核天体r过程: T_{1/2}, β_{xn}, β-oslo

β 衰变电子能谱: 形状因子

Q_β 半衰期T_{1/2} β缓发中子P_n 真实β衰变分支比I_β 核反应堆

核反应堆: 中微子反常

反应堆安全: 衰变热

超越标准模型: Sterile neutrino

核反应堆 β 衰变热

Reactor science: decay heat and antineutrino flux

Mass distribution of ²³⁵U fission products:

Decay heat:

β decay heat

$$I(E_{\mathbf{b}}) = \sum Y_i \times I_i(E_{\mathbf{b}})$$

γ decay heat

$$I(E_{\it g}) = \sum_{\it i = all \ fission \atop fragments} Y_i \times I_i(E_{\it g})$$

Decay heat is the energy released by the β decay of fission yield products.

Decay heat is ~8% of the energy output of a nuclear reactor while it is running.

Decay heat is 100% of the energy release after shutdown or accidental loss of cooling.

Improved knowledge of decay heat can improve fuel assembly design, future reactor design, and reactor safety.

核反应堆中微子反常

Reactor antineutrino anomaly

Ratio of the measured reactor antineutrino spectrum to the antineutrino flux prediction.

0.953 \pm 0.014 (exp.) \pm 0.023 (model).

Daya Bay collaboration (An et al., PRL 116, 061801, 2016; An, et al., PRL 123, 111801, 2019)

M. Estienne, et al., PRL123, 022502 (2019)

Summation method: The calculated flux obtained now lies only 1.9% above that detected in the Daya Bay experiment

SM: A. A. Sonzogni, et al, PRC 91, 011301(R) (2015) Huber-Mueller: Huber, PRC 84, 024617 (2011), T. A. Mueller *et al.*, PRC 83, 054615 (2011).

Lorenzo Perisse, et al, arxiv:2304.14992 (2023)

真实I₈: 两大挑战

N-RICH PARENT (Z,N)

1. Pandemonium Effect

低探测效率的高纯锗探测器 可能系统性地低估β衰变中 布居到高激发态的几率

 $\gamma \uparrow \colon oldsymbol{eta}^- \downarrow$, $\overline{oldsymbol{v}}_e \downarrow$

2. 基态-基态跃迁

没有与β符合的γ, 电子探测效率对探测器的尺寸和结构非常敏感可能低估, 也可能高估

⁹²Rb:

C.M. Baglin, NDS 66, 347 (1992):

51(2)%

ENSDF 2007: 50(18)%

Rasco et al, PRL 117, 092501 (2016): 91(3)%

大量远离β稳定线的丰中子核素缺乏β衰变数据;即使是β稳定线附近的核素也有必要重新测量或评估

国家上已有的全吸收谱仪

已经由实验证实的衰变数据不可靠的核素

Isotope
76 Ga
$^{84}{ m Br},^{85}{ m Br}$
$^{86}{ m Br},^{'}{}^{91}{ m Rb}$
⁸⁷ Br, ⁸⁸ Br, ⁹⁴ Rb
⁸⁹ Kr, ⁸⁹ Rb, ⁹⁰ Kr, ⁹⁰ Rb, ⁹⁰ Rb ^m , ⁹² Rb
93Rb, ¹³⁹ Xe
$^{94}\mathrm{Kr}$
$^{94}{\rm Sr}$
95 Rb, 137 I
^{96}Y , ^{96}Y ^m
$^{98}\mathrm{Nb}$
$^{142}\mathrm{Cs}$
100 Nb, 100 Nb ^m , 102 Nb, 102 Nb ^m
101 Nb, 105 Mo, 106 Tc, 107 Tc
$^{100}{ m Tc}$
$^{102}\mathrm{Tc},\ ^{104}\mathrm{Tc},\ ^{105}\mathrm{Tc}$
$^{101}{ m Zr},^{102}{ m Zr},^{109}{ m Tc}$
103 Mo, 103 Tc, 140 Cs
¹⁰³ Nb, ¹⁰⁴ Nb ^m
137 Xe
_

- Q_β较大的裂变产物大部分 都由TAGS技术重新测量
- 大部分受Pandemonium 效应影响,小部分是基态 分支比不准,如⁹²Rb
- ➤ 总体降低IBD产额6-8%
- ▶ 仍有许多核素需要重新评估

Lorenzo Perisse, et al, arxiv:2304.14992

模块化全吸收谱仪(MTAS)

1吨重Nal闪烁体, 分成19个模块, 可以同时探测 β,γ, n

γ探测效率:~99%

β探测效率: ~30% (5MeV) n探测效率: ~15% (<2MeV)

MTAS测量什么?

β s in MTAS

β探测效率: ~30% (5MeV)

γs in MTAS

γ探测效率: ~99%

Neutrons in MTAS

n探测效率: ~15% (<2MeV)

MTAS装置

MTAS@CAR I BU

MTAS at CARIBU:

- commissioning run with A = 104 and 105 beams of 252 Cf fission products of refractory elements using ANL's Multi-Reflection Time of Flight spectrometer (MRTOF), Nov. 2019.
- first part of the main experiment on A = 106 and 107 with MRTOF, Feb.-Mar. 2020.
- A = 99, 101, 102 and 132 in Jun. 2021
- ¹⁰⁶Rh and ¹⁴⁴Pr in Sep. 2021

Decays of isotopes marked by green and red ovals were studied during the experiments with MTAS at CARIBU.

Assessment of fission product decay data for decay heat calculations 2007 NEA Yoshida and Nichols

10	106 and 107 with MR IOF, FebMar. 2020.											
	¹⁰¹ Рd	¹⁰² Рd	¹⁰³ Pd e- capture	¹⁰⁴ Pd Stable	¹⁰⁵ Pd Stable	¹⁰⁶ Pd _{Stable}	¹⁰⁷ Рd	¹⁰⁸ Pd _{Stable}	¹⁰⁹ Рd	¹¹⁰ Рd	¹¹¹ Рd	¹¹² Рd
	¹⁰⁰ Rh	101Rh e- capture	¹⁰² Rh	¹⁰³ Rh _{Stable}	¹⁰⁴ Rh	105Rh	106Rh _{β-}	107Rh β-	¹⁰⁸ Rh	¹⁰⁹ Rh	¹¹⁰ Rh _{β-}	¹¹¹ Rh
	99Ru Stable	¹⁰⁰ Ru _{Stable}	¹⁰¹ Ru Stable	¹⁰² Ru Stable	¹⁰³ Ru _{β-}	¹⁰⁴ Ru	105 Ru	106Ru	107Ru	¹⁰⁸ Ru	¹⁰⁹ Ru _{β-}	¹¹⁰ Ru
	⁹⁸ Τc	⁹⁹ Τc	¹⁰⁰ Тс	101 T C β-	102 Тс	¹⁰³ Tc	(104 T C)	105 T C	106 T C	107 T C	¹⁰⁸ Тс	¹⁰⁹ Тс
	97Mo Stable	⁹⁸ Мо	⁹⁹ Μο	¹⁰⁰ Мо	101 Мо	102 Мо	¹⁰³ Mo	104 Мо	105 M O	106 Мо	107 Мо	¹⁰⁸ Мо
	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	99Nb	¹⁰⁰ Nb	101 Nb	102Nb	¹⁰³ Nb	¹⁰⁴ Nb	¹⁰⁵ Nb	106 Nb	¹⁰⁷ Nb
	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr β-	⁹⁸ Zr β-	99 Zr β-	¹⁰⁰ Zr	101 Zr β-	(102 Zr)	¹⁰³ Zr	¹⁰⁴ Zr	¹⁰⁵ Zr	¹⁰⁶ Zr
	⁹⁴ Υ _β -	⁹⁵ Υ β-	⁹⁶ Υ _{β-}	⁹⁷ Υ _{β-}	⁹⁸ Y _{β-}	⁹⁹ Y β-	100 Y β-	101 Y β-	102 Y	103 Y β-	104 Υ β-	105 Y β-

ENSDF vs. MTAS

88Rb: MTAS response function generated with Geant4

Comparison of simulated nuclear data with

MTAS experimental spectrum

Decay Path

88Rb: MTAS response function generated with Geant4

An example of "decay path"

MTAS vs. Center响应函数

响应函数矩阵和解谱算法

1-D MTAS response functions (88Rb)

d; from the experimental data: total MTAS spectrum

 R_{ia} is normalized to the 1M events in geant4 sim for each decay path

L.B. Lucy, Astron. J. 79 (1974) 745.

P. Shuai et al. Phys. Rev. C 105, 054312 (2022)

A=107衰变链

A=104,105,107的β衰变能谱

Total MTAS Energy (keV)

Preliminary

Pandemonium Effect 普遍存在!

24.4% excess of v flux at energy 8-8.5MeV reported by Daya Bay Daya Bay collaboration, Phys. Rev. Lett. 129, 041801 (2022)

This work: the excess increase to 28.5% (to be submitted)

Decay Heat

β decay heat	MTAS (MeV)	γ decay heat	ENSDF (MeV)	MTAS (MeV)
¹⁰⁷ Rh	0.462	¹⁰⁷ Rh	0.308	0.184 ↓
¹⁰⁷ Ru	0.995	¹⁰⁷ Ru	0.382	0.341 ↓
¹⁰⁷ Tc	1.05	¹⁰⁷ Tc	0.553	2.2(1) ↑
¹⁰⁷ Mo	1.8	¹⁰⁷ Mo	N/A	1.9(1)

Cumulative fission yield of ²³⁸U and ²³⁹Pu

¹⁰⁷Tc: 1.45(33)% 2.42(77)%

¹⁰⁷Mo: 1.38(32)% 0.59(38)%

¹⁰⁷Tc: MTAS: $E_v = 2.2(1)$ MeV

Algora: $E_v = 1.822(450)$ MeV.

A. Algora, PRL 105, 202501 (2010)

- · β衰变在核物理, 反应堆物理和中微子物理中起到关键作用。
- •全吸收谱仪可以克服Pandemonium效应,得到真实的 β 衰变分支比 I_g
- ·A=104,105,107的β衰变链中都发现Pandemonium效应的影响, 104Nb导致中微子能谱在8-8.5MeV的理论计算和实验值相差更多。
- 更多Pandemonium free的核数据需要用TAS重新测量

MTAS Collaboration March 2020 at Argonne National Laboratory

National Nuclear Data Center