Data-driven Intelligent Systems

Lecture 9 Neural Networks - Perceptron

http://www.informatik.uni-hamburg.de/WTM/

Overview

- Biological Background
- Perceptron
 - Perceptron Layer
 - Linear Separability
- Multilayer Perceptron (next lecture)

Why Learning? Some Quotes

- "Artificial Intelligence is realised only when a computer can 'discover' for itself new techniques for problem solving" Fogel (1966)
- "Intelligent agents must be able to change through the course of their interactions with the world" Luger (2002)
- "A machine or software tool would not be viewed as intelligent if it could not adapt to changes in its environment" Callan (2003)

What is Neural Learning?

- Modify and improve behaviour by past experience
- How does the brain learn?
 - Strengths of synaptic connections vary

- Hebb's rule
 - If two neurons connected by a synapse fire simultaneously then the synapse strengthens
 - If two neurons connected by a synapse do not fire simultaneously then the synapse weakens
 - → "fire together, wire together"

Learning Regression Problems

- Curve Fitting (with noise)
- Function Approximation
- Many other functions could fit the data

Learning Classification Problems

Computer versus Brain

- The von Neumann architecture uses a single processing unit
 - Floating Point Operations Per Second (typical today: 1 Tera FLOPS, 10¹²)
 - Absolute arithmetic precision

The **brain**

 Uses many but slow, unreliable processors acting in parallel but they produce robust learned behaviour

Overview

- Biological Background
 - Perceptron
 - Perceptron Layer
 - Linear Separability

A Real Neuron

3D-View of Neurons in the Brain

Shen, H. See-through brains clarify connections. Nature, vol. 496, pp. 151, Macmillan Publishers Limited, 11 April 2013. Video online

The Neuron

A Neuron's Firing

Sound: amplified action potentials ("spikes")

Noninvasive Inspections of the Brain

Computer tomography

Diffusion tensor imaging

Functional magnetic resonance imaging (fMRI)

Parallel Processing in the Brain

The human brain:

- Weight on average 1.4kg
- Contains around 10¹¹ neurons
 - In computational terms, 10¹¹ simple processors
 - Each takes a few milliseconds to do a computation
 - But the whole brain is very fast
 - Many different types
- Has about 10¹⁴ synapses
 - Highly connected
 - Things done massively in parallel
 - Robust to faults

Neuron Activity

Neuron Activity The Synapse

The Neuron

Overview

- Biological Background
- Perceptron
 - Perceptron Layer
 - Linear Separability

Perceptron Neuron

One neuron transforms (multiple) inputs {x_i} to one output y

- Typically, a data point x is presented as input vector/tuple
- x consists of the values $\{x_1, x_2, x_n\}$ of the data attributes
- Outputs of multiple neurons can be combined into a vector and presented as input to other neurons → neural network

Perceptron Neuron

Greatly simplified biological neurons

- Sum the inputs x_i each being weighted with weight w_i
- The total sum is h
- If h is more than some threshold θ
 - then neuron fires: y = 1,
 - else not: y = 0 (sometimes used: y = -1)

Perceptron Neuron

n input neurons

$$h = \sum_{j=1}^{n} w_j x_j \qquad \qquad y = \begin{cases} 1 & h \ge \theta \\ 0 & h < \theta \end{cases}$$

for some threshold θ

How biologically (un)realistic?

- The weight w_i can be positive or negative
- A unit can become inhibitory or excitatory, or both
- Use only a linear sum of inputs
- Use a continuous output instead of pulses (spike train)
- No refractory period

Some Terminology

Term	Typical Symbol	Alternate Term(s)
Input vector	X	input activation
Weights	\mathbf{W}_{ij}	synaptic weights, parameters
Inner activation	n h	net activation
 Activation func 	tion g	transfer function; threshold function
Output	У	(outer) activation; prediction
Target	t	teacher value
Error	Ε	cost

Weight Space: Represent a Unit with its Incoming Weights

Neural Networks

- Started by psychologists and neurobiologists as computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
- During supervised learning, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Overview

- Biological Background
- Perceptron
 - Perceptron Layer
 - Linear Separability

Perceptron Network

Updating the Weights

$$W_{ij} \leftarrow W_{ij} + \Delta W_{ij}$$

- We want to change the values of the weights
- Task: function approximation
 - We have training data: pairs of input vectors x and corresponding output vectors t (teacher/target values)
 - For each input x, aim is to minimize the error between the corresponding teacher values t and the network outputs y
 - This is supervised learning
- For systematic error minimization, define an always positive error function:

$$E = (t - y)^2$$

Gradient Descent

We differentiate *E* to obtain the gradient. The negative gradient is the direction of change.

An Error Function

square ensures that pos. and neg. errors don't cancel out

Sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{data} \sum_{i} (t_i - y_i)^2$$

- Let's assume linear neurons: $y_i = h_i = \sum_j w_{ij} x_j$ (no threshold function)
- Gradient descent: $\Rightarrow -\frac{\partial E}{\partial w_{ij}} = \sum_{data} (t_i y_i) \cdot x_j$
- Resulting rule for the weights:

$$\Delta w_{ij} = \eta \cdot (t_i - y_i) \cdot x_j$$
 change of weight teacher input learning rate output

How Did We Get That Gradient?

- How to derive the term $E = \frac{1}{2} (t w \cdot x)^2$ with respect to w?
- Chain rule: $d/dw f(g(w)) = df/dg \cdot dg/dw$ where we have:
 - $g(w) = (t w \cdot x)$
 - $f(g) = \frac{1}{2} g^2$
- Derivative of nth power: $d/dg g^n = n \cdot g^{n-1}$ (here, n=2)
 - $d/dg \frac{1}{2} g^2 = g$
 - $d/dw (t w \cdot x) = -x$
- Together: $-d/dw E = g \cdot x = (t w \cdot x) \cdot x$

Perceptron Algorithm

- Initialization: set all weights to small positive and negative random numbers
- For #iterations
 - Chose a new data point (x, t)
 - Compute the output activation y_i of each neuron i

$$h_i = \sum_{j=1}^n w_{ij} x_j \qquad y_i = \begin{cases} 1 & h_i \ge \theta \\ 0 & h_i < \theta \end{cases}$$

Update each of the weights according to

$$\Delta w_{ij} = \eta \cdot (t_i - y_i) \cdot x_j$$
$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

Perceptron Network

31

all outputs are 1

Obstacle Avoidance with the Perceptron: Behaviour we Want

Training data

LS	RS	LM	RM	
0	0	1	1	
0	1	-1	1	
1	0	1	-1	
1	1	X	X	

Assume initial weights are 0.

We will see:

No update if target = actual output

$$\Delta w_{ij} = \eta \cdot (t_i - y_i) \cdot x_j$$
$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$w_{11} = 0 + 0.3 \cdot (1 - 1) \cdot 0 = 0$$

$$w_{21} = 0 + 0.3 \cdot (1 - 1) \cdot 0 = 0$$

And the same for w_{12} , w_{22}

LS	RS	LM	RM	
0	0	1	1	
0	1	-1	1	
1	0	1	-1	
1	1	X	X	

 w_{12} : the robot turns left by reversing the left motor

We will see: No update if input = 0

$$\Delta w_{ij} = \eta \cdot (t_i - y_i) \cdot x_j$$
$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$w_{11} = 0 + 0.3 \cdot (-1 - 1) \cdot 0 = 0$$

$$w_{21} = 0 + 0.3 \cdot (1 - 1) \cdot 0 = 0$$

$$w_{12} = 0 + 0.3 \cdot (-1 - 1) \cdot 1 = -0.6$$

$$w_{22} = 0 + 0.3 \cdot (1 - 1) \cdot 1 = 0$$

Obstacle Avoidance with the Perceptron

LS	RS	LM	RM	
0	0	1	1	
0	1	-1	1	
1	0	1	-1	
1	1	X	X	

Obstacle Avoidance with the Perceptron

$$\Delta w_{ij} = \eta \cdot (t_i - y_i) \cdot x_j$$
$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$w_{11} = 0 + 0.3 \cdot (1 - 1) \cdot 1 = 0$$

$$w_{21} = 0 + 0.3 \cdot (-1 - 1) \cdot 1 = -0.6$$

$$w_{12} = -0.6 + 0.3 \cdot (1 - 1) \cdot 0 = -0.6$$

$$w_{22} = 0 + 0.3 \cdot (-1 - 1) \cdot 0 = 0$$

Obstacle Avoidance with the Perceptron

Obstacle Avoidance with a Mindstorm Vehicle

Overview

- Biological Background
- Perceptron
 - Perceptron Layer
 - Linear Separability

Linear Separability

Outputs are:

$$y_i = \operatorname{sign}(h_i)$$
, where $h_i = \sum_{j=1}^n w_{ij} x_j = |w_i| \cdot |x| \cdot \cos(w_i, x)$

dot product

Positive output +1 if:

$$w_i \cdot x > 0$$

Negative output -1 if:

$$w_i \cdot x < 0$$

• Output = 0 if $w_i \cdot x = 0$

The region in input space where x yield positive output y is a half-plane.

Bias b

An extra input – adds to (b > 0) or subtracts from (b < 0) the net input

 $y = sign\left[b + \sum_{j=1}^{n} w_j x_j\right]$

- If b < 0, acts like a positive threshold $\Theta = -b$
 - the weighted input must be larger than Θ for the neuron to activate

Perceptron with Bias

The n-dimensional input vector \mathbf{x} is mapped into a variable y by means of the dot product with weights \mathbf{w} and addition of bias b, and a nonlinear function mapping

Linear Separability

Linear Separability

The Binary AND Function

Limitations of the Perceptron

Linear Separability?

Exclusive Or (XOR) function

x_1	x_2	Out
0	0	0
0	1	1
1	0	1
1	1	0

Limitations of the Perceptron

Limitations of the Perceptron

Ways around the problem:

1. Use a more complex input set,

e.g.
$$\mathbf{x} = (x_1, x_2, x_3)$$

with $x_3 = x_1 \cdot x_2$

2. Use a more complex network.

Perceptrons – Early Successes(?)

Overview

- Biological Background
- Perceptron
 - Perceptron Network
 - Linear Separability

