calculadora para obtener $\alpha \approx 56.7^{\circ} \approx 0.989$ rad, $\beta \approx 97.9^{\circ} \approx 1.71$ rad y $\gamma = 34.5^{\circ} \approx 0.602$ rad. En la figura 4.23 se presenta un esbozo del vector, junto con los ángulos α , β y γ .

©EJEMPLO 4.3.5 Cálculo de un vector en R³ dados su magnitud y cosenos directores

Encuentre un vector v de magnitud 7 cuyos cosenos directores son $\frac{1}{\sqrt{6}}$, $\frac{1}{\sqrt{3}}$ y $\frac{1}{\sqrt{2}}$.

SOLUCIÓN Sea $\mathbf{u} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}\right)$. Entonces \mathbf{u} es un vector unitario ya que $|\mathbf{u}| = 1$. Así, la dirección de \mathbf{v} está dada por \mathbf{u} y $\mathbf{v} = |\mathbf{v}|$ $\mathbf{u} = 7\mathbf{u} = \left(\frac{7}{\sqrt{6}}, \frac{7}{\sqrt{3}}, \frac{7}{\sqrt{2}}\right)$.

Nota. Este problema se puede resolver porque $\left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 1$.

Es interesante observar que si \mathbf{v} en \mathbb{R}^2 es un vector unitario, se puede escribir $\mathbf{v} = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$, donde θ es la dirección de \mathbf{v} , y entonces $\cos \theta$ y sen θ son los cosenos directores de \mathbf{v} .

En este caso, $\alpha = \theta$ y se define β como el ángulo que forma \mathbf{v} con el eje y (vea la figura 4.24). Por lo tanto, $\beta = \left(\frac{\pi}{2}\right) - \alpha$, de manera que cos $\beta = \cos\left(\frac{\pi}{2-\alpha}\right) = \sin\alpha$ y \mathbf{v} se puede escribir en la forma de "cosenos directores"

$$\mathbf{v} = \cos \alpha \mathbf{i} + \cos \beta \mathbf{j}$$

En la sección 4.1 se observó que cualquier vector en el plano se puede escribir en términos de los vectores base \mathbf{i} y \mathbf{j} . Para extender esta idea a \mathbb{R}^3 se define

$$\mathbf{i} = (1, 0, 0)$$
 $\mathbf{j} = (0, 1, 0)$ $\mathbf{k} = (0, 0, 1)$ (4.3.7)

Aquí, **i**, **j** y **k** son vectores unitarios. El vector **i** está sobre el eje x, **j** sobre el eje y y **k** sobre el eje z. En la figura 4.25 se puede ver un bosquejo. Si $\mathbf{v} = (x, y, z)$ es cualquier vector en \mathbb{R}^3 , entonces

$$\mathbf{v} = (x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

Esto es, cualquier vector \mathbf{v} en \mathbb{R}^3 se puede escribir de manera única en términos de los vectores \mathbf{i} , \mathbf{j} y \mathbf{k} .

La definición de producto escalar en \mathbb{R}^3 es la definición que se presentó en la sección 2.2. Observe que $\mathbf{i} \cdot \mathbf{i} = 1$, $\mathbf{j} \cdot \mathbf{j} = 1$, $\mathbf{k} \cdot \mathbf{k} = 1$, $\mathbf{i} \cdot \mathbf{j} = 0$, $\mathbf{j} \cdot \mathbf{k} = 0$ e $\mathbf{i} \cdot \mathbf{k} = 0$.

Figura 4.23

Los cosenos directores de (4, -1, 6) son cos α , cos β y cos γ .

Figura 4.24

Si
$$\beta = \frac{\pi}{2} - \theta = \frac{\pi}{2} - \alpha$$

y **v** es un vector unitario, entonces $\mathbf{v} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} = \cos \alpha \mathbf{i} + \cos \beta \mathbf{j}$.

Figura 4.25

Los vectores base \mathbf{i} , \mathbf{j} y \mathbf{k} en \mathbb{R}^3 .

Teorema 4.3.2

Si φ denota el ángulo positivo más pequeño entre dos vectores ${\bf u}$ y ${\bf v}$ diferentes de cero, se tiene

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{\mathbf{u}}{|\mathbf{u}|} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$
(4.3.8)

Demostración

La prueba es casi idéntica a la prueba del teorema 4.2.2 y se deja al lector como ejercicio (vea el problema 53 de esta sección).