Ordinal and Multinomial Logistic Regression

A New Example Using Data From Multilevel Thinking

Andy Grogan-Kaylor

2023-10-15

Table of contents

1	The Data	1
2	Setup	2
3	Ordinal Logistic Regression	2
1	Multinomial Logistic Regression	4

1 The Data

Data are simulated data on parent behaviors and child outcomes from *Multilevel Thinking*.

use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multilevel-data
describe

Contains data from https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze > -multilevel-data/simulated_multilevel_data.dta

Observations: 3,000

Variables: 8 21 Apr 2023 12:38

Variable name	Storage type	Display format	Value label	Variable label
country	float	%9.0g		country id
HDI	float	%9.0g		Human Development Index
family	float	%9.0g		family id
id	str7	%9s		unique country family id
group	float	%9.0g		arbitrary group variable
physical_puni~	t float	%9.0g		physical punishment in past week
warmth	float	%9.0g		parental warmth in past week
outcome	float	%9.0g		beneficial outcome

Sorted by: country family

2 Setup

We need to create a categorical outcome variable for demonstration purposes.

```
* create an outcome_group variable

egen outcome_group = cut(outcome), group(3) // divide outcome into groups

label define outcome_group 0 "low" 1 "medium" 2 "high" // define value labels

label values outcome_group outcome_group // attach value labels

tabulate outcome_group
```

outcome_gro up	Freq.	Percent	Cum.
+			
low	1,000	33.33	33.33
medium	1,000	33.33	66.67
high	1,000	33.33	100.00
Total	3,000	100.00	

3 Ordinal Logistic Regression

Because the data are clustered by countries, we will use the , <code>cluster(country)</code> option in each model. The <code>brant</code> command can be installed by typing <code>findit brant</code>, and installing the Long & Freese <code>spost utilities</code>.

```
ologit outcome_group physical_punishment warmth HDI i.group, or cluster(country) // ordinal logit

brant // brant test

margins, at(warmth = (1(1)7)) // margins at different values of warmth

marginsplot, title("Predicted Probabilities From Ordinal Logit") ///
plot(_outcome, labels("low" "medium" "high")) // graph w/ manual labels

graph export myologit.png, replace

Iteration 0: Log pseudolikelihood = -3295.8369

Iteration 1: Log pseudolikelihood = -3157.4676

Iteration 2: Log pseudolikelihood = -3157.0335

Iteration 3: Log pseudolikelihood = -3157.0333

Ordered logistic regression

Number of obs = 3,000

Wald chi2(4) = 242.78
```

Prob > chi2 = 0.0000

outcome_group	 Odds ratio	Robust std. err.	z	P> z	[95% conf.	interval]
physical_punishment warmth HDI	. 7962002 1.282995 1.00389 1.322192	.0197074 .026044 .0058436 .0754851	-9.21 12.28 0.67 4.89	0.000 0.000 0.505 0.000	.7584964 1.232951 .9925017 1.182221	.8357781 1.335069 1.015409 1.478735
2.group /cut1 /cut2	+	.4096606	4.09	0.000	84939 .610776	.7564499

Note: Estimates are transformed only in the first equation to odds ratios.

Brant test of parallel regression assumption

_predict#_at |

	chi2	p>chi2	df
	1.98	0.739	4
İ	1.45	0.229	1
1	0.20	0.656	1
1	0.05	0.818	1
	0.18	0.672	1
	 -+ 	1.98 1.45 0.20 0.05	1.98 0.739

A significant test statistic provides evidence that the parallel regression assumption has been violated.

```
Predictive margins

Model VCE: Robust

1._predict: Pr(outcome_group==0), predict(pr outcome(0))
2._predict: Pr(outcome_group==1), predict(pr outcome(1))
3._predict: Pr(outcome_group==2), predict(pr outcome(2))

1._at: warmth = 1
2._at: warmth = 2
3._at: warmth = 3
4._at: warmth = 4
5._at: warmth = 5
6._at: warmth = 6
7._at: warmth = 7

Delta-method
| Margin std. err. z P>|z| [95% conf. interval]
```

1	1		.4715116	.0239632	19.68	0.000	.4245446	.5184785
1	2		.411902	.0219914	18.73	0.000	.3687996	.4550044
1	3		.3547047	.0204707	17.33	0.000	.3145829	.3948265
1	4		.3012864	.0194346	15.50	0.000	.2631953	.3393776
1	5		.2526558	.0187163	13.50	0.000	.2159724	.2893391
1	6		.2094156	.0180743	11.59	0.000	.1739907	.2448405
1	7		.1717793	.0173168	9.92	0.000	.137839	.2057196
2	1		.3210415	.0100789	31.85	0.000	.3012872	.3407958
2	2		.3376888	.0091914	36.74	0.000	.3196739	.3557037
2	3		.3465153	.0092644	37.40	0.000	.3283575	.3646731
2	4		.3467361	.010075	34.42	0.000	.3269895	.3664827
2	5		.3383307	.0114619	29.52	0.000	.3158658	.3607955
2	6		.3220464	.0133672	24.09	0.000	.2958472	.3482456
2	7		.2992734	.0156422	19.13	0.000	.2686153	.3299314
3	1		.207447	.0183764	11.29	0.000	.1714298	.2434641
3	2		.2504092	.0196723	12.73	0.000	.2118522	.2889661
3	3		.29878	.021223	14.08	0.000	.2571838	.3403763
3	4		.3519775	.0231631	15.20	0.000	.3065787	.3973762
3	5		.4090136	.0255026	16.04	0.000	.3590294	.4589977
3	6		.468538	.0280772	16.69	0.000	.4135078	.5235682
3	7		.5289473	.0305829	17.30	0.000	.469006	.5888886

Variables that uniquely identify margins: warmth

file

/Users/agrogan/Desktop/GitHub/newstuff/categorical/ordinal-multinomial-logistic-regression > -2/myologit.png saved as PNG format

Figure 1: marginsplot from ologit

4 Multinomial Logistic Regression

Because the *Brant* test was insignificant, the results below are likely to look similar. Imagine, however, if the *Brant* test were statistically significant, suggesting that we should estimate separate regression coefficients for each value of the outcome. Imagine, in addition, if we were estimating an outcome

that were truly multinomial in nature, such as *post-secondary* education pursued: *none*, *vocational*, *university*. For heuristic purposes, we will relabel the outcome accordingly.

```
label define outcome_group2 0 "none" 1 "vocational" 2 "university" // define value labels

label values outcome_group outcome_group2 // attach NEW value labels

tabulate outcome_group

mlogit outcome_group physical_punishment warmth HDI i.group, rr cluster(country)

margins, at(warmth = (1(1)7)) // margins at different values of warmth

marginsplot, title("Predicted Probabilities From Multinomial Logit") ///
plot(_outcome, labels("none" "vocational" "university")) // graph w/ manual labels

graph export mymlogit.png, replace
```

outcome_gro up	Freq.	Percent	Cum.
none vocational university	1,000 1,000 1,000	33.33 33.33 33.33	33.33 66.67 100.00
Total	3,000	100.00	

Iteration 0: Log pseudolikelihood = -3295.8369
Iteration 1: Log pseudolikelihood = -3159.3121
Iteration 2: Log pseudolikelihood = -3157.2541
Iteration 3: Log pseudolikelihood = -3157.2532
Iteration 4: Log pseudolikelihood = -3157.2532

Multinomial logistic regression

Number of obs = 3,000 Wald chi2(8) = 216.92 Prob > chi2 = 0.0000 Pseudo R2 = 0.0420

Log pseudolikelihood = -3157.2532

(Std. err. adjusted for 30 clusters in country)

outcome_group	 RRR	Robust std. err.	z	P> z	[95% conf.	interval]
none	(base outco	ome)				
vocational	l					
physical_punishment	.8284144	.0268834	-5.80	0.000	.7773647	.8828166
warmth	1.172042	.0323704	5.75	0.000	1.110284	1.237235
HDI	1.003045	.0039244	0.78	0.437	.9953822	1.010766
2.group	1.244621	.1034633	2.63	0.008	1.057495	1.46486
_cons	.7248303	.2045156	-1.14	0.254	.4169312	1.26011

Note: _cons estimates baseline relative risk for each outcome.

Predictive margins Number of obs = 3,000 Model VCE: Robust

nodel Vol. nobust

- 1._predict: Pr(outcome_group==none), predict(pr outcome(0))
- 2._predict: Pr(outcome_group==vocational), predict(pr outcome(1))
- 3._predict: Pr(outcome_group==university), predict(pr outcome(2))
- 1._at: warmth = 1
- 2._at: warmth = 2
- 3._at: warmth = 3
- 4._at: warmth = 4
- 5._at: warmth = 5
- $6._{at: warmth = 6}$
- $7._{at: warmth = 7}$

	 Margin	Delta-method		 P> z	[95% conf.	interval]
	۰ ۱					
_predict#_at 1 1	ı İ .4655491	.0256453	18.15	0.000	.4152852	.515813
1 2	.4108856	.0235268	18.24	0.000	.3667338	.4550374
1 3	.3566849	.020455	17.44	0.000	.3165938	.3967761
1 4	.3043247	.020455	15.62	0.000	.2661507	.3424986
1 5						
	.2551027	.0192162	13.28	0.000	.2174397	.2927657
1 6	.210102	.0191257	10.99	0.000	.1726162	. 2475877
1 7	.170087	.0187808	9.06	0.000	.1332774	.2068966
2 1	.3312655	.0149681	22.13	0.000	.3019286	.3606025
2 2	.3403628	.010943	31.10	0.000	.318915	.3618106
2 3	.3438888	.0090929	37.82	0.000	.3260671	.3617104
2 4	.3414688	.010569	32.31	0.000	.3207539	.3621838
2 5	.3331582	.014179	23.50	0.000	.3053679	.3609485
2 6	.3194468	.0184628	17.30	0.000	.2832603	.3556333
2 7	.301194	.0227261	13.25	0.000	.2566517	.3457363
3 1	.2031854	.0183179	11.09	0.000	.1672829	. 2390879
3 2	.2487516	.0194812	12.77	0.000	.2105691	.2869341
3 3	.2994263	.0210267	14.24	0.000	.2582148	.3406379
3 4	.3542065	.0231943	15.27	0.000	.3087464	.3996666
3 5	.4117391	.0260214	15.82	0.000	.3607381	.4627401
3 6	.4704512	.0292975	16.06	0.000	.4130291	.5278733
3 7	.528719	.0326555	16.19	0.000	.4647153	.5927227

Variables that uniquely identify margins: warmth

file

/Users/agrogan/Desktop/GitHub/newstuff/categorical/ordinal-multinomial-logistic-regression > -2/mymlogit.png saved as PNG format

Figure 2: marginsplot from mlogit