Reinforcement Learning with a Corrupted Reward Channel

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, Shane Legg

IJCAI 2017 and arXiv (slides adapted from Tom's IJCAI talk)

Motivation

- Want to give RL agents good incentives
- Reward functions are hard to specify correctly (complex preferences, sensory errors, software bugs, etc)
- Reward gaming can lead to undesirable / dangerous behavior
- Want to build agents robust to reward misspecification

Examples

RL agent takes control of reward signal (wireheading)

CoastRunners agent goes around in a circle to hit the same targets (misspecified reward function)

RL agent shortcuts reward sensor (sensory error)

Corrupt reward formalization

 Reinforcement Learning is traditionally modeled with Markov Decision Process (MDP):

$$\langle S, A, T, R \rangle$$

• This fails to model situations where there is a difference between

reward

0.5

loop

useful trajectories

- True reward $\dot{R}(s)$
- Observed reward $\hat{R}(s)$
- Can be modeled with Corrupt Reward MDP:

$$\mu = \langle S, A, T, \dot{R}, \hat{R} \rangle$$

Performance measure

- $G_t(\mu, \pi, s_0)$ = expected cumulative true reward of π in μ
- The reward π loses by not knowing the environment μ is the worst-case regret

$$Reg(\mathcal{M}, \pi, s_0, t) = \max_{\mu \in \mathcal{M}, \pi'} [\dot{G}_t(\mu, \pi', s_0) - \dot{G}_t(\mu, \pi, s_0)]$$

• Sublinear regret if π ultimately learns μ :

Regret / $t \rightarrow 0$

No Free Lunch

Theorem (NFL):

Without assumptions about the relationship between true and observed reward, all agents suffer high regret:

$$\operatorname{Reg}(\mathcal{M}, \pi, s_0, t) \ge \frac{1}{2} \max_{\check{\pi}} \operatorname{Reg}(\mathcal{M}, \check{\pi}, s_0, t).$$

- Unsurprising, since no connection between true and observed reward
- We need to pay for the "lunch" (performance) by making assumptions

Simplifying assumptions

- Limited reward corruption
 - Known safe states $S^{\mathrm{safe}} \subseteq S$ not corrupt, $\dot{R}(s) = \hat{R}(s)$
 - At most q states are corrupt
- "Easy" environment
 - Communicating (ergodic)
 - Agent can choose to stay in any state

- Many high-reward states: r < 1/k in at most 1/k states

reward

Are these sufficient?

Agents

Given a prior *b* over a class *M* of CRMDPs:

CR agent maximizes true reward:

$$\pi_{b,t}^{\mathrm{CR}} = rg\max_{\pi} \mathbb{E}_b^{\pi} \left[\sum_{i=0}^{t} \dot{R}(s_i) \right]$$

RL agent maximizes observed reward:

$$\pi_{b,t}^{\mathrm{RL}} = rg \max_{\pi} \mathbb{E}_b^{\pi} \left[\sum_{i=0}^{t} \hat{R}(s_i) \right]$$

CR and RL high regret

- **Theorem:** There exist classes *M* that
 - satisfy the simplifying assumptions, and
 - make both the CR and the RL agent suffer nearmaximal regret

Good intentions of the CR agent are not enough

Avoiding Over-Optimization

- Quantilizing agent π^{δ} randomly picks a state with reward above threshold δ and stays there
- **Theorem:** For q corrupt states, exists δ s.t. π^{δ} has average regret at most $1 \left(1 \sqrt{q/|\mathcal{S}|}\right)^2$ (using all the simplifying assumptions)

Experiments

http://aslanides.io/aixijs/demo.html

Richer Information

Reward Observation Graphs

RL:

 Only observing a state's reward from that state

Decoupled RL:

- Cross-checking reward info between states
- Inverse RL, Learning Values from Stories, Semi-supervised RL

Learning True Reward

Safe state

Majority vote

Decoupled RL

CRMDP with decoupled feedback is a tuple $\langle S, A, T, \dot{R}, \{\hat{R}_s\}_{s \in S} \rangle$ where

- $\langle \mathcal{S}, \mathcal{A}, T, \dot{R} \rangle$ is an MDP, and
- $\{\hat{R}_s\}_{s\in\mathcal{S}}$ is a collection of observed reward functions $\hat{R}_s:\mathcal{S}\to[0,1]$ $\{\#\}$

 $\hat{R}_s(s')$ is the reward the agent observes for state s' from state s (may be blank)

RL is the special case where $\hat{R}_s(s')$ is blank unless s = s'.

Adapting Simplifying Assumptions

- A state s is corrupt if exists s' such that $\hat{R}_s(s') \neq \dot{R}(s')$ and $\hat{R}_s(s') \neq \#$
- Simplifying assumptions:
 - States in $\mathcal{S}^{\mathrm{safe}}$ are never corrupt
 - At most q states overall are corrupt
 - Not assuming easy environment

Minimal example

- $S = \{s1, s2\}$
- Reward either 0 or 1
- Represent \dot{R} , \hat{R}_{s_1} , \hat{R}_{s_2} with reward pairs
- Both states observe themselves & each other
- q = 1 (at most 1 corrupt state)

	\hat{R}_{s_1}	\hat{R}_{s_2}	\dot{R} possibilities
Decoupled RL	(0,1)	(0,1)	(0,1)
RL	(0, #)	(#, 1)	(0,0), (0,1), (1,1)

Decoupled RL Theorem

- Let $\mathcal{S}_{s'}^{\mathrm{obs}}$ be the states observing s'
- If for each s', either
 - $\mathcal{S}_{s'}^{ ext{obs}}igcap \mathcal{S}^{ ext{safe}}
 eq \emptyset$, or
 - $|\mathcal{S}_{s'}^{\text{obs}}| > 2q$

then

- $-\dot{R}$ is learnable, and
- CR agent has sublinear regret

Takeaways

- Model imperfect/corrupt reward by CRMDP
- No Free Lunch
- Even under simplifying assumptions, RL agents have near-maximal regret
- Richer information is key (Decoupled RL)

- Implementing decoupled RL
- Weakening assumptions
- POMDP case
- Infinite state space
- Non-stationary corruption
- your research?

Thank you!

Co-authors:

Questions?