Amendments to the Claims:

This listing will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

33. (Previously Presented) A compound useful in an imaging element represented by the following structure:

$$\begin{array}{c|c} & & & \\ & & & \\ R_6 & & \\ \hline & & \\ R_7 & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline \end{array}$$

wherein:

w is 1 or 2;

t is 0, 1 or 2;

Z is OH or NR₂R₃, where R₂ and R₃ are independently hydrogen or a substituted or unsubstituted alkyl group or R₂ and R₃ are connected to form a ring;

 R_5 , R_6 , R_7 , and R_8 are independently hydrogen, halogen, hydroxy, amino, alkoxy, carbonamido, sulfonamido, alkylsulfonamido or alkyl, or R_5 can connect with R_3 or R_6 and/or R_8 can connect to R_2 or R_7 to form a ring;

T is a substituted or unsubstituted alkyl group, cycloalkyl group, aryl, or heterocyclic group, an inorganic monovalent electron withdrawing group, or an inorganic divalent electron withdrawing group capped with at least one organic group; or T is joined with W, C^* or R_{12} to form a ring; when T is an aryl group, it can also combine with W, C^* or R_{12} to form a ring;

R₁₂ is hydrogen, or a substituted or unsubstituted alkyl, cycloalkyl, aryl or heterocyclic group;

C* is a tetrahedral carbon; and

W is a monovalent electron withdrawing group, a divalent electron withdrawing group, an aryl group substituted with one to seven electron withdrawing groups, or a substituted or unsubstituted heteroaromatic group; when W is a divalent electron withdrawing group, an aryl group, or a heteroaromatic group, it can combine with C*, R₁₂, or T to form a ring; when w is 2, the two W groups can form a ring; and C* may be attached to one or two hydrogen atoms or to one hydrogen atom and one substituted or unsubstituted alkyl group that is not an electron withdrawing group or an aryl group that is not substituted with an electron-withdrawing group;

wherein a single blocked developing group is present.

34. (Previously Presented) The compound of claim 33 wherein when W is a divalent electron withdrawing group, it is selected from the group consisting of $-SO_2R_{13}$, $-OSO_2R_{13}$, $-NR_{13}(SO_2R_{14})$, $-CO_2R_{13}$, $-COR_{13}$, $-NR_{13}(COR_{14})$, wherein R_{13} and R_{14} are independently substituted or unsubstituted alkyl, aryl, or heterocyclic group having 1 to 8 carbon atoms

35. (Previously Presented) A compound useful in an imaging element represented by the following structure:

$$\begin{array}{c|c} & & & & \\ & & & \\ R_6 & & & \\ \hline & & & \\ R_7 & & \\ \hline & & \\ R_8 & & \\ \hline \end{array}$$

wherein:

w is 1 or 2; t is 0, 1 or 2; Z is OH or NR₂R₃, where R₂ and R₃ are independently hydrogen or a substituted or unsubstituted alkyl group or R₂ and R₃ are connected to form a ring;

R₅, R₆, R₇, and R₈ are independently hydrogen, halogen, hydroxy, amino, alkoxy, carbonamido, sulfonamido, alkylsulfonamido or alkyl, or R₅ can connect with R₃ or R₆ and/or R₈ can connect to R₂ or R₇ to form a ring;

T is a substituted or unsubstituted alkyl group, cycloalkyl group, aryl, or heterocyclic group, an inorganic monovalent electron withdrawing group, or an inorganic divalent electron withdrawing group capped with at least one organic group; or T is joined with W, C* or R₁₂ to form a ring; when T is an aryl group, it can also combine with W, C* or R₁₂ to form a ring;

R₁₂ is hydrogen, or a substituted or unsubstituted alkyl, cycloalkyl, aryl or heterocyclic group;

C* is a tetrahedral carbon; and

W is a monovalent electron withdrawing group, a divalent electron withdrawing group, an aryl group substituted with one to seven electron withdrawing groups, or a substituted or unsubstituted heteroaromatic group; when W is a divalent electron withdrawing group, an aryl group, or a heteroaromatic group, it can combine with C*, R₁₂, or T to form a ring; when w is 2, the two W groups can form a ring; and C* may be attached to one or two hydrogen atoms or to one hydrogen atom and one substituted or unsubstituted alkyl group that is not an electron withdrawing group or an aryl group that is not substituted with an electron-withdrawing group;

wherein when W is a divalent electron withdrawing group, it is selected from the group consisting of $-SO_2R_{13}$, $-OSO_2R_{13}$, $-NR_{13}(SO_2R_{14})$, $-CO_2R_{13}$, $-COR_{13}$, $-NR_{13}(COR_{14})$, wherein R_{13} and R_{14} are independently substituted or unsubstituted alkyl, aryl, or heterocyclic group having 1 to 8 carbon atoms.

36. (Previously Presented) A compound according to claim 35 wherein W is a monovalent electron withdrawing group selected from the group consisting of halogen, -NO₂, -CN, and a halogenated alkyl group.

- 37. (Previously Presented) A compound according to claim 35 wherein W is an aryl group or an aryl group substituted with one to seven electron withdrawing groups.
- 38. (Previously Presented) A compound according to claim 35 wherein W is a substituted or unsubstituted heteroaromatic group.