71741 計台

Part II

인공지능: 튜링 테스트에서 딥러닝까지

4. 결정 트리

- 4.1 결정트리의 형태
- 4.2 결정트리 학습 알고리즘
- 4.3 결정트리를 이용한 회귀

4.1 결정트리의 형태

- ❖ 결정트리(decision tree)
 - 트리 형태로 의사결정 지식을 되었다 것
 - H부 노트(internal node): H尼 红
 - · 社性(edge): 其好 城
 - 吐啶 生三(terminal node): 毕素(class), 如玉城

Day 날짜	Outlook 조망	Temperature 기온	Humidity 습도	Wind 바람	PlayTennis 테니스 여부
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

IF outlook = Sunny AND Humidity = High THEN Answer = No

Outlook 조망	Temperature 기온	Humidity 습도	Wind 바람	PlayTennis 테니스 여부
Sunny	Hot	Mild	Weak	?
Rain	Hot	High	Weak	?

4.2 결정트리 학습 알고리즘

- ❖ 결정 트리 (decision tree) 알고리즘
 - 또 데이터를 달랐산 하나의 노드로 구성된 트리에서 시작
 - 반복적인 노드 분할 과정
 - 1 분할 속성(spliting attribute) 선택
 - 2. 自然如此对对 对旦트리(subtree)量似성
 - 3. 데이터를 살았네 따라 분배

- ❖ 결정 트리 (decision tree)
 - 1221 E21

Day 날짜	Outlook 조망	Temperature 기온	Humidity 습도	Wind 바람	PlayTennis 테니스 여부					
Day1	Sunny	Hot	High	Weak	No	-				
Day2	Sunny	Hot	High	Strong	No					
Day3	Overcast	Hot	High	Weak	Yes					
Day4	Rain	Mild	High	Weak	Yes					
Day5	Rain	Cool	Normal	Weak	Yes					
Day6	Rain	Cool	Normal	Strong	No					
Day7	Overcast	Cool	Normal	Strong	Yes					
Day8	Sunny	Mild	High	Weak	No					
Day9	Sunny	Cool	Normal	Weak	Yes					
Day10	Rain	Mild	Normal	Weak	Yes					
Day11	Sunny	Mild	Normal	Strong	Yes					
Day12	Overcast	Mild	High	Strong	Yes		Outlook			
Day13	Overcast	Hot	Normal	Weak	Yes		Outlook			
Day14	Rain	Mild	High	Strong	No	_				
						Sunny	Overcas	Rai n		_
					Humi	dity	Yes		Wind	
				Hig	H	Mild		We	eak .	Strong
				No		Ye	S	Yes		No

- ❖ 결정 트리 (decision tree)
 - 学校起 美到

- - 어떤 속성을 선택하는 것이 효율적인가
 - 분할한 결과가 가능하면 동질적인(pure) 것으로 만드는 속성 선택
 - 엔트로피(Entropy)
 - 동질적인 정도 측정 가능 척도
 - 원래 정보량(amount of information) 측정 목적의 척도

$$I = -\sum_{c} p(c) \log_2 p(c)$$

- p(c) : 부류 c에 속하는 것의 비율
- 2개 부류가 있는 경우 엔트로피

- ❖ 엔트로피의 특성
 - 似极好是特色旅

- ❖ 정보 이득 (information gain)
 - $IG = I I_{res}$
 - I_{res} : 특정 속성으로 **분할한 후**의 각 **부분집합**의 **정보량**의 **가중평균**

$$I_{res} = -\sum_{v} p(v) \sum_{c} p(c|v) \log_2 p(c|v)$$

$$IG = I - I_{res}(A) = -\sum_{c} p(c) \log_2 p(c) + \sum_{v} p(v) \sum_{c} p(c|v) \log_2 p(c|v)$$

■ **정보이득이 클 수록** 우수한 분할 속성

❖ 학습 데이터의 예

■ 부류(class) 정보가 있는 데이터

		부류		
	Pattern	Outline	Dot	Shape
1	수직	점선	무	삼각형
2	수직	점선	유	삼각형
3	대각선	점선	무	사각형
4	수평	점선	무	사각형
5	수평	실선	무	사각형
6	수평	실선	유	삼각형
7	수직	실선	무	사각형
8	수직	점선	무	삼각형
9	대각선	실선	유	사각형
10	수평	실선	무	사각형
11	수직	실선	유	사각형
12	대각선	점선	유	사각형
13	대각선	실선	무	사각형
14	수평	점선	유	삼각형

❖ 엔트로피 계산

- 9 □ (사각형)
- 5 Δ (1/27+7/2)
- 부류별 확률(class probability)

$$p(\Box) = \frac{9}{14}$$

$$p(\Delta) = \frac{5}{14}$$

• 엔트로피(entropy)

$$I = -\sum_{c} p(c) \log_2 p(c)$$

$$I = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.940 \text{ bits}$$

❖ 데이터 집합 분할과 정보이득

$$I_{res}(Pattern) = \sum p(v)I(v) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.694$$

 $IG(Pattern) = I - I_{res}(Pattern) = 0.940 - 0.694 = 0.246$

※ 데이터 집합 분할과 정보이득

※ 데이터 집합 분할과 정보이득

❖ 속성별 정보 이득

- IG(Pattern) = 0.246
- IG(Outline) = 0.151
- $\bullet \quad IG(Dot) = 0.048$

❖ 분할속성 선택

- 정보이득이 큰 것 선택
 - Pattern 선택

❖ 최종 결정트리

❖ 정보이득(information gain) 척도의 단점

$$\mathit{IG} = \mathit{I} - \mathit{I}_{res}(A) = -\sum_{c} \! p(c) \mathrm{log}_2 p(c) + \sum_{v} \! p(v) \sum_{c} \! p(c|v) \mathrm{log}_2 p(c|v)$$

- 속성값이 많은 것 선호
 - 叫, 对她, 0是言
- 속성값이 많으면 데이터세를 많은 부분집합으로 분할
 - 자유부모하다 동질적인 경향
- ❖ 개선 척도
 - 정보이득비(information gain ratio)
 - 지니지수(Gini index)

- 정보이득 비(information gain ratio) 척도
 - 정보이득(information gain) 척도를 개선한 것
 - 속성값이 많은 속성에 대해 불이익

$$GainRatio(A) = \frac{IG(A)}{I(A)} = \frac{I - I_{res}(A)}{I(A)}$$

- *I(A)*
 - 속성 A의 속성값을 부류(class)로 간주하여 계산한 엔트로피
 - 속성값이 많을 수록 커지는 경향

$$I(A) = -\sum_{v} p(v) \log_2(p(v))$$

❖ 정보이득 비

 $GainRatio(Pattern) = \frac{IG(Pattern)}{I(Pattern)} = \frac{0.940 - 0.694}{1.58} = 0.156$

❖ 정보이득 vs 정보이득 비

속성	속성의 개수	정보이득	정보이득비
Patte m	3	0.247	0.156
o u Hine	2	0.152	0.152
Dot	2	0.048	0.049

☆ 지니 지수(Gini index)

- 데이터 집합에 대한 **지니 값**
 - *i*, *j*가 부류(class)를 나타낼 때

$$Gini = \sum_{i \neq j} p(i)p(j)$$

$$Gini = \frac{9}{14} \times \frac{5}{14} = 0.230$$

속성 A에 대한 지니 지수값 가중평균

$$Gini(A) = \sum_{v} p(v) \sum_{i \neq j} p(i|v)p(j|v)$$

지니 지수 이득 (gini index gain)

$$GiniGain(A) = Gini - Gini(A)$$

❖ 분할속성 평가 척도 비교

속성	정보이득	정보이득비	지니이득
Patte m	0.247	0.156	0.058
0 u Hine	0.152	0.152	0.046
Dot	0.048	0.049	0.015

- ❖ 결정트리 알고리즘
 - ID3 알고리즘
 - 범주형(categorical) 속성값을 갖는 데이터에 대한 결제되지 학습
 - 071. PlayTennis, 157+77/147+79 =741
 - C4.5 알고리즘
 - 好好会好放此分别的会好放置块的时间早时怪好到 对
 - 10% 升位社 安卫记
 - C5.0 알고리즘
 - · C4.5毫 개位社 经卫司管
 - CART 알고리즘
 - 수시청 속성을 갖는 데이터에 대해 전황

4.3 결정트리를 이용한 회귀

- ❖ 회귀(regression)를 위한 결정트리
 - 출력값이 수치값

표 4.5 도형 면적에 대한 데이터

		속성			
	Pattern	Outline	Dot	Area	
1	수직	점선	무	25	
2	수직	점선	유	30	
3	대각선	점선	무	46	
4	수평	점선	무	45	
5	수평	실선	무	52	
6	수평	실선	유	23	
7	수직	실선	무	43	
8	수직	점선	무	35	
9	대각선	실선	유	38	
10	수평	실선	무	46	
11	수직	실선	유	48	
12	대각선	점선	유	52	
13	대각선	실선	무	44	
14	수평	점선	유	30	

결정트리를 이용한 회귀

❖ 회귀(regression)를 위한 결정트리

결정트리를 이용한 회귀

- ☼ 회귀 (regression)를 위한 결정트리
 - 분류를 위한 결정트리와 차이점
 - 단말노드가 부류(class)가 아닌 수치값(numerical value)임
 - 해당 조건을 만족하는 것들이 가지는 대표값
 - 분할 속성 선택
 - 표준편차 축소(reduction of standard deviation) SDR를 최대로 하는 속성 선택

$$SDR(A) = SD - SD(A)$$

$$-$$
 표준편차 $SD = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i - m)^2}$ $m : 평균$

-SD(A)

» 속성 A를 기준으로 **분할 후**의 **부분 집합별 표준표차**의 **가중평균**

결정트리를 이용한 회귀

❖ 회귀(regression)를 위한 결정트리

62 44

30

		Area의 표준편차	개수
	수평	12,15	5
Pattern	수직	9.36	5
	대각선	5.77	4
			14

$$SD(Pattern) = \frac{5}{14} \times 12.15 + \frac{5}{14} \times 9.36 + \frac{4}{14} \times 5.77 = 9.05$$

$$SDR(Pattern) = SD - SD(Pattern) = 9.67 - 9.05 = 0.61$$

5. 앙상블 분류기

- ❖ 앙상블 분류기 (ensemble classifier)
 - 주어진 학습 데이터 제하에 대해서 여러 개의 서로 다른 분류기를 반된, 이들 분위의 반정 결과를 투표 방식(voting method)이나 가중치 투표 방식(weighted voting method)의 결합
 - 붓스트랩(bootstrap)
 - 구에지 학급 데이터 제하에서 복원추출(resampling with replacement)하여 다수의 학습데이터 집합을 만들어내는 기법

- ・ 眦る(bagging, bootstrap agg, ego-111g,
- 부스팅(boosting)

5.1 배깅 알고리즘

- * 聞る(bagging, bootstrap aggregating)
 - 보스트랩을 통해 여러 개의 학습 데이터 집합을 반된, 각 학습 데이터 제故學 분류기를 반들어, 이들이 투표나 가중치 투표를 하여 책을 반처을 하는 기법

- 랜덤 포리스트(random forest) 설과를
 - 뚊걘 결정트리를 사랑하는 1847년 기법

5.2 부스팅 알고리즘

- ❖ 부스팅(boosting)
 - Kithal 밝게 순차적의 만들어 가는 앙상블 분류기 생성 Ut의
 - ! 서학도에 따라 학습 데이터에 가중치를 변경해가던서 ! 휴기 생성

■ 에이다부스트(AdaBoost)

부스팅 알고리즘

⋄ 에이다부스트(AdaBoost)

- N개의 학습 데이터 d_i에 대한 **초기 가중치** w_i
 - $w_i = \frac{1}{N'}$ 가중치의 합 : 1
- lacktriangle 학습 오류값 ϵ
 - 잘못 분류한 학습데이터의 가중치의 합으로 표현
 - 값이 0.5미만인 분류기들만을 사용

■ 학습

- 오류값이 0.5미만인 분류기가 학습되는 경우
- 분류기 신뢰도 : α

$$- \alpha = 0.5 \ln(\frac{1-\epsilon}{\epsilon})$$

- 잘못 판정한 학습 데이터의 가중치는 증대
 - $w_i \leftarrow w_i e^{\alpha}$
- 제대로 판정한 학습 데이터의 가중치는 축소

$$- w_i \leftarrow w_i e^{-\alpha}$$

• 가중치의 합이 1이 되도록 정규화

6. k-근접이웃 알고리즘

- ❖ k-근접이웃 (k-nearest neighbor, KNN) 알고리즘
 - (입력, 결과)가 있는데이터들이 주어지 상황에서, 새로 이렇에 대한 결과를 추정한 때 결과를 아는 최근접한 k개의 데이터에 대한 결과정별 이용하는 비행

- 褐의(query)와 데이터간의 거리 계산
- 호행 근접이웃 탐색
- 전에 방 Knthg 부터 결과 불추정

k-근접이웃 알고리즘

❖ k-nearest neighbor (KNN) 알고리즘 - cont.

- 데이터간의 거리 계산
 - 수치 데이터의 734
 - 유클리디언 거리(Euclidian distance)

$$X = (x_1, x_2, ..., x_n) Y = (y_1, y_2, ..., y_n)$$

$$d = (x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2$$

$$- \frac{65}{2} \frac{10}{2} = \frac{1}{2} \frac{1}{2}$$

- 범주형 데이터가 달라고 기수
 - 용분이터 특성에 맞춰 개발

k-근접이웃 알고리즘

❖ k-nearest neighbor (KNN) 알고리즘 - cont.

- 출행인 근접 이웃 탐색
 - 데이터의 가수가 닿아지던 게사사가 증가 문제
 - · 색인(indexing) 가원구조 사용
 - R-EZI, K-d EZI =

k-근접이웃 알고리즘

❖ k-nearest neighbor (KNN) 알고리즘 - cont.

- 성관성 서비오 부터 결과를 추정하는 비비
 - 분류
 - 對이 범주형 広
 - 다수결 투표(majority voting): 개가 않는 따 선택
 - 회귀분석
 - 经印制放放
 - 탱균: 최근정 K7H의 탱균城
 - 가중합(weighted sum): 거리에 생네하하는 가중체 사용

k-근접이웃 알고리즘

- ❖ k-nearest neighbor (KNN) 알고리즘 cont.
 - 특징
 - 학습단계에서는 얼얼에 학습이 얼어나지 않고 데이터만 저장
 - 학습에이터가 크던 메모리 문제
 - 게으른 학습(lazy learning)
 - 내용은 데이터가 구에게면 제한된 데이터를 이용하다 학습
 - 一个1201201234年级是

7. 군집화 알고리즘

- ❖ 군집화(clustering) 알고리즘
 - 데이터를 유나라 갯들게리 모우는 것
 - 군집 간의 유사도(similarity)는 크게, 군집 내의 유사도는 작게
- ❖ 계층적 군집화 (hierarchical clustering)
 - 己化和 理叶十 己儿童이 知识对处于无意 攻至 补气 汉
 - 병합형(agglomerative) 계층적 군집화
 - 각 데이터가 하나의 군자를 구성하는 상태에서 시자하다, 가게이에 있는 군자들을 걸쳐하는 과정을 생각하다 기계층지수인 군자 건성
 - 분리형(divisive) 계층적 군집화
 - 空气 HID 巨量 至記記 己们们什么对的一个特别的 WHEBOR 己们是 是的知识 磁水 网络对此 子交量 攻至至 子份
- ❖ 분할 군집화 (partitioning clustering)
 - 개충적 구조를 만들지 않고 전체 데이터를 유나한 것들께의 나누어서 묶는 것
 - 예 K-means 알고리즘

군집화 알고리즘

❖ 계층적 군집화와 덴드로그램(dendrogram)

❖ k-means 알고리즘

- 是相对 0至卫司管
- 군집화 과정
 - 1. 군집의 중심 위치 선정
 - 2. 권장을 만화 군집 재구성
 - 3. 권발 평균 위치 털제
 - 4. 권 명균 위한 군집 중심 조정
 - 5. 수건값 때까지 2-4 과정 반복

군집화 알고리즘: K-means 알고리즘

❖ k-means 알고리즘

i 번째 클러스터의 중심을 μ_i, 클러스터에 속하는 점의 집합 S_i을 라고 할 때,
 전체 분산

$$V = \sum_{i=1}^{k} \sum_{j \in S_i} |x_j - \mu_i|^2$$

• 분산값 V을 최소화하는 S_i 를 찾는 것이 알고리즘의 목표

■ 과정

- 1. 우선 초기의 μ, 를 임의로 설정
- 2. 다음 두 단계를 클러스터가 변하지 않을 때까지 반복
 - I. 클러스터 설정: 각 점에 대해, 그 점에서 가장 가까운 클러스터를 찾아 배당한다.
 - II. 클러스터 중심 재조정: μ_i를 각 클러스터에 있는 점들의 평균값으로 재설정해준다.

■ 특성

- 군집의 개수 k는 미리 지정
- 초기 군집 위치에 민감

군집화 알고리즘: K-means 알고리즘

• 초기 중심값에 대해 민감한 군집화 결과

8. 단순 베이즈 분류기

- ❖ 단순 베이즈 분류기(naïve Bayes classifier)
 - 부류(class) 결정지식을 조건부 확률(conditional probability)로 결정
 - $P(c|x_1,x_2,\cdots,x_n)$: 속성값에 대한 부류의 조건부 확률
 - c : 부류 - x₁ : 속성값
 - 베이즈 정리 (Bayes theorem)

■ 가능도(likelihood)의 조건부 독립(conditional independence) 가정

$$P(x_1, x_2, \dots, x_n | c) = P(x_1 | c) P(x_2 | c) \dots P(x_n | c)$$

$$P(c|x_1, x_2, \dots, x_n) = \frac{P(x_1 | c) P(x_2 | c) \dots P(x_n | c) P(c)}{P(x_1, x_2, \dots, x_n)}$$

단순 베이즈 분류기

❖ 단순 베이즈 분류기 - cont.

	속성			부류
	Pattern	Outline	Dot	Shape
1	수직	점선	무	삼각형
2	수직	점선	유	삼각형
3	대각선	점선	무	사각형
4	수평	점선	무	사각형
5	수평	실선	무	사각형
6	수평	실선	유	삼각형
7	수직	실선	무	사각형
8	수직	점선	무	삼각형
9	대각선	실선	유	사각형
10	수평	실선	무	사각형
11	수직	실선	유	사각형
12	대각선	점선	유	사각형
13	대각선	실선	무	사각형
14	수평	점선	유	삼각형

$$P(\text{삼각형}) = \frac{5}{14} \qquad P(\text{사각형}) = \frac{9}{14}$$

$$P(\text{수직|삼각형}) = \frac{3}{5}$$

$$P(\text{수평|삼각형}) = \frac{2}{5}$$

$$P(\text{대각선|삼각형}) = \frac{1}{5}$$

$$P(\text{점선|삼각형}) = \frac{4}{5}$$

$$P(\text{실선|삼각형}) = \frac{1}{5}$$

$$P(\text{유|삼각형}) = \frac{3}{5}$$

$$P(\text{P|삼각형}) = \frac{2}{5}$$

$$P(\text{주직,점선, 무}) = \frac{2}{14}$$

P(삼각형|수직,점선,무)

$$= \frac{P(\neg A|A \lor B) P(A \lor B) P(\neg A \lor B) P(\neg A$$