In-Class Exercise Solution

Step 1:
$$T = 10$$
, $N = 2$, $y = 6\%$, $R = 6\%$, $F = $100,000$, $C = $3,000$ (= $6\% \times $100,000/2$).

Step 2: For the annuity value can be calculated by
$$PV_A(r;t) = \frac{1}{r} \Big[1 - \frac{1}{(1+r)^t} \Big]$$
,

which is
$$PV_A(3\%; 20) = \frac{1}{0.03} \times \left[1 - \frac{1}{(1+0.03)^{20}}\right] = 14.8775$$
.

Step 3: For the face value, the discount factor is $DF(r;t) = \frac{1}{(1+r)^t}$,

which is
$$DF(3\%; 20) = \frac{1}{(1+0.03)^{20}} = 0.5537$$
.

Step 4: Bond value =
$$C \times PV_A(r;t) + F \times DF(r;t)$$

= $\$3,000 \times 14.8775 + \$100,000 \times 0.5537$
= $\$100,000$.

The bond is now valued at par. We have: a bond trades at par if its yield equals its coupon rate.