

Disparity, diversity, and duplications in the Caryophyllales

Stephen A. Smith¹, Joseph W. Brown¹, Ya Yang², Riva Bruenn³, Chloe P. Drummond³, Samuel F. Brockington⁴, Joseph F. Walker¹, Noah Last², Norman A. Douglas³ and Michael J. Moore³

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103, USA; Department of Plant Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St Paul, MN 55108, USA; ³Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH 44074-1097, USA; ⁴Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK

Author for correspondence: Stephen A. Smith Tel: +1 734 615 5510 Email: eebsmith@umich.edu

Received: 30 May 2017 Accepted: 28 July 2017

New Phytologist (2017) doi: 10.1111/nph.14772

Key words: Caryophyllales, climatic occupancy, diversification rates, duplications, phylogenomics.

Summary

- The role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates.
- Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification
- Thirteen putative WGDs and 27 diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were associated with shifts to colder climatic occupancy.
- · While we find that many diversification shifts occur after WGDs, it is difficult to consider diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic occupancy, or rate of evolution.

Introduction

Understanding the causes and correlates of diversification within flowering plants has been a central goal of evolutionary biologists. Genomic and transcriptomic data have reinvigorated hypotheses associating whole genome duplication (WGD) with lineage diversification rate increases (e.g. Levin, 1983, 2002; Barker et al., 2009, 2016; Estep et al., 2014; Soltis et al., 2014; Edger et al., 2015; Puttick et al., 2015; Tank et al., 2015; Huang et al., 2016; McKain et al., 2016; Laurent et al., 2017). It is not selfevident why WGDs would be associated with increases in lineage diversification. One hypothesis suggests that the additional genetic material provides a basis to generate new adaptations (Edger et al., 2015), although this itself assumes a co-occurrence of adaptation and lineage proliferation (Levin, 1983). The apparent lack of precise co-occurrence of adaptation and lineage proliferation has been explained by the potential of a lag model (Schranz et al., 2012; Tank et al., 2015) where diversification may follow WGD events. In the absence of overwhelming correlative signal, we are often unable to discern true ancient WGD events from aneuploidy without advanced genomic information such as synteny mapping (Dohm et al., 2012). Because it is often difficult to distinguish the two, for simplicity we will define WGD broadly to include putative ancient WGD events (paleopolyploidy) and ancient aneuploidy events. WGD events are thought to be a common occurrence and have been associated with an estimated 15% of angiosperm speciation events (Wood et al., 2009). However, whether speciation by WGD is correlated with higher diversification rates remains highly debated (Mayrose et al., 2011; Estep et al., 2014; Soltis et al., 2014; Tank et al., 2015; Kellogg, 2016). Analyses based on recent WGD events have concluded that immediate extinction rates are higher for polyploid plants (Mayrose et al., 2011; Arrigo & Barker, 2012). This may result from small initial population sizes and an increased dependence on selfing. Alternatively, despite the disadvantages of WGD, others have suggested that polyploids may be superior colonizers (Soltis & Soltis, 2000).

Indeed, extreme environments are associated with high amounts of WGD, with up to 87% of species restricted to areas that were glaciated during the last ice age consisting of polyploids (Brochmann et al., 2004). However, in the example from Arctic plants, the high amount of WGD has occurred post-glaciation, representing a microevolutionary period, whereas previous studies often focus at much deeper macroevolutionary timescales (Mayrose et al., 2011; Soltis et al., 2014; Tank et al., 2015). From the perspective of a short timescale, polyploidy has the disadvantages of higher error rates in mitosis (Storchová *et al.*, 2006) and masking of deleterious mutations, allowing them to accumulate to higher frequencies in a population (Otto & Whitton, 2000). A suite of advantages may also arise, however, including gain of asexuality (Miller & Venable, 2000) and varying effects of heterosis (Comai, 2005). The net role played by these advantages and disadvantages on the macroevolutionary scale is difficult to determine from either the purely short-term or purely long-term timescales previously used.

The long-term consequence of WGD is a central question in macroevolution and comparative genomics. However, with a suite of advantages and disadvantages, much debate surrounds the importance and patterns of correlation of WGD (Comai, 2005). While polyploidization events can cause instant speciation, there is no reason to assume that these singular speciation events in themselves would influence large-scale diversification rate shifts when considering lineage survivorship. Instead, there may be other factors, such as the increase in genetic material, perhaps increasing genetic diversity or enabling adaptation, that cause long-term shifts in rates of diversification. Adaptations need not be associated with shifts in the tempo of diversification and those adaptations and shifts in diversification may not co-occur on the same branch (i.e. there may be a lag time; Donoghue, 2005; Smith et al., 2011; Schranz et al., 2012; Donoghue & Sanderson, 2015; Tank et al., 2015; Dodsworth et al., 2016). In the broader context of plant evolution, there are several possible outcomes of WGD in relation to the evolution and diversification of clades: no relationship between WGD and speciation rate or habitat shift/adaptation; WGD coincides with an increase of speciation rate, with or without a lag time; WGD promotes dispersal and habitat shifts, which has a mixed relationship with speciation rate; and a mixture (some association, some not), similar to the previous hypothesis but without explicitly promoting dispersal or habitat shift or speciation (e.g. adaptation could be more prominent than dispersal and habitat shift). Here, we contribute to this discussion on diversification and WGDs with an in-depth examination of the intersection of diversification and WGDs happening at a range of scales within the hyperdiverse Caryophyllales.

The Caryophyllales comprise c. 12 500 species in 39 families (Thulin et al., 2016; APG IV: Chase et al., 2016), representing c. 6% of extant angiosperm species diversity. The estimated crown age of Caryophyllales is c. 67–121 million yr ago (Ma; Bell et al., 2010; Moore et al., 2010). Species of the Caryophyllales exhibit extreme life-history diversity, ranging from tropical trees to temperate annual herbs, and from desert succulents (e.g. Cactaceae) to a diverse array of carnivorous plants (e.g. the sundews Drosera and pitcher plants Nepenthes). Such extraordinary diversity makes Caryophyllales a particularly useful system for investigating the relationship between WGD vs diversification and climate occupancy evolution. Our previous analyses using 62 transcriptomes representing 60 species across the Caryophyllales identified 13 well-supported ancient WGD events (Yang et al., 2015). We have since nearly tripled the taxon sampling and assembled a dataset comprising high-coverage transcriptomes and genomes from 169 species across the Caryophyllales (Yang et al., 2017), providing even greater power for resolving the number and phylogenetic

locations of WGD events. Moreover, the growth in the number of plant taxa on GenBank that are represented by traditional targeted sequences (e.g. *rbc*L, *mat*K, ITS, etc.) and the growth of publicly available collections data (e.g. GBIF, iDigBio) provide excellent opportunities to apply phylogenetic and climate diversification approaches at fine scales in Caryophyllales.

By examining WGDs and diversification within the Caryophyllales, we present an important example. Not only does the dataset examined have a high density of transcriptomic sampling, the diversification of the bulk of Caryophyllales occurred during a time frame intermediate to that of most published studies that have probed a link between WGD and macroevolution. This time frame, between 10 and 100 Ma, is important for angiosperms, as much of the diversification that has led to the modern flora occurred during this period and most modern angiosperm families appeared by this time. Discussion of speciation rates, climate occupancy shifts, and WGDs would be flawed without accurate mappings of WGD events within this timescale. We compiled a dataset with extensive and precise mapping of WGD combined with a species-level phylogeny. The megaphylogeny approach has been used extensively in the past to combine data from many gene regions and across broad taxonomic groups to address evolutionary questions (Smith et al., 2009). Here, we use this approach to help inform analyses from phylogenomic studies, and provide a broad context in which to examine these genomic phenomena. With half of the species sampled, this represents one of the largest and most exhaustive studies of WGDs, diversification rate, and adaptive shifts.

Materials and Methods

Sanger sequencing and assembly

A total of 248 new matK sequences were included in this study (Table 1). To generate these sequences, leaf samples were collected in silica in the field or from cultivated material, or were collected from herbarium sheets. DNA was isolated using either the Nucleon Phytopure kit (GE Healthcare Life Sciences, Pittsburgh, PA, USA), using the 0.1 g protocol and following the manufacturer's instructions, or the Doyle & Doyle (1987) protocol, with the addition of 1% PVP-40. An c. 950 bp region in the middle of the matK gene was amplified and sequenced using custom-designed primers (Table 2). PCRs were performed in 12.5 μl volumes with 0.5 µl of 5 mM primer for both primers, 5-20 ng of DNA template, 0.1 µl of GoTaq (Promega), 6.25 µl of Failsafe Premix B (Epicentre, Madison, WI, USA), and 4.7 µl of sterile, deionized water. Reactions were run on a Bio-Rad PTC 200 thermocycler (Bio-Rad) at Oberlin College. Individual PCRs were cleaned in 16.5 µl reactions containing 10 U of Exonuclease I (Affymetrix; ThermoFisher Scientific, Waltham, MA, USA), 2 U of shrimp alkaline phosphatase (Affymetrix), 8 µl of PCR product, and 8.5 µl of sterile, deionized water. Sanger sequencing of the resulting cleaned PCRs was conducted by Neogenomics (formerly SeqWright; Houston, TX, USA) using an ABI 3730xl automated sequencer (Applied Biosystems, ThermoFisher Scientific). The resulting forward and reverse sequences for each

Table 1 Voucher information and GenBank accession numbers for newly reported plastid matK sequences; families follow APG IV (Chase et al., 2016)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accessior number	
Achatocarpaceae	Achatocarpus gracilis H.Walter	Silvia H. Salas Morales <i>et al</i> . 5608 (TEX)	Mexico: Oaxaca	KY952292	
Achatocarpaceae	Phaulothamnus spinescens A.Gray	Michael J. Moore et al. 976 (OC)	USA: Texas	KY952477	
Achatocarpaceae	Phaulothamnus spinescens A.Gray	William R. Carr 27176 (TEX)	USA: Texas	KY952478	
Amaranthaceae	Allenrolfea occidentalis (S.Watson) Kuntze	Michael J. Moore 474 (OC)	USA: Texas	KY952314	
Amaranthaceae	Alternanthera caracasana Kunth	Michael J. Moore 1808 (OC)	USA: Texas	KY952319	
Amaranthaceae	Amaranthus cruentus L.	Michael J. Moore 356 (OC)	USA: Ohio (cultivated)	KY952320	
Amaranthaceae	Amaranthus sp.	Michael J. Moore 1801 (OC)	USA: Texas	KY952321	
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2186 (OC)	USA: Ohio	KY952322	
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2187 (OC)	USA: Illinois	KY952323	
Amaranthaceae	Atriplex prosopidum I.M.Johnst.	Hilda Flores Olvera <i>et al</i> . 1658 (MEXU)	Mexico: Coahuila	KY952340	
Amaranthaceae	Atriplex sp.	Michael J. Moore 1689 (OC)	USA: Texas	KY952338	
Amaranthaceae	Atriplex sp.	Michael J. Moore 1699 (OC)	USA: Texas	KY952339	
Amaranthaceae	Celosia argentea L. var. plumosa	Michael J. Moore 359 (OC)	USA: Ohio (cultivated)	KY952359	
Amaranthaceae	Charpentiera ovata Gaudich. var. ovata	Flora K. Samis 7 (Lyon Arboretum living collection, accession 2011.0034)	USA: Hawaii	KY952360	
Amaranthaceae	Charpentiera tomentosa Sohmer var. maakuaensis Sohmer	Flora K. Samis 6 (Lyon Arboretum living collection, accession 88.0141)	USA: Hawaii	KY952361	
Amaranthaceae	Chenopodium album L.	Michael J. Moore 344 (OC)	USA: Ohio	KY952362	
Amaranthaceae	Gossypianthus lanuginosus (Poir.) Moq.	Michael J. Moore 1807 (OC)	USA: Texas	KY952408	
Amaranthaceae	Guilleminea densa (Humb. & Bonpl. ex Schult.) Moq.	Michael J. Moore et al. 2445 (OC)	Mexico: Chihuahua	KY952412	
Amaranthaceae	Kali tragus (L.) Scop.	Michael J. Moore 453 (OC)	USA: Texas	KY952506	
Amaranthaceae	Nototrichium divaricatum D.H.Lorence	Flora K. Samis 3 (Lyon Arboretum living collection, accession 96.0036 #3)	USA: Hawaii	KY952468	
Amaranthaceae	Nototrichium humile Hillebr.	Flora K. Samis 2 (Lyon Arboretum living collection, accession 2001-0254)	USA: Hawaii	KY952469	
Amaranthaceae	Suaeda jacoensis I.M.Johnst.	Hilda Flores Olvera <i>et al.</i> 1662 (MEXU)	Mexico: Coahuila	KY952514	
Amaranthaceae	Suaeda jacoensis I.M.Johnst.	Michael J. Moore et al. 2617 (OC)	Mexico: Nuevo Leon	KY952515	
Amaranthaceae	Suaeda mexicana (Standl.) Standl.	Hilda Flores Olvera et al. 1654 (MEXU)	Mexico: Coahuila	KY952516	
Amaranthaceae	<i>Tidestromia lanuginosa</i> (Nutt.) Standl.	Michael J. Moore 1128 (OC)	USA: Texas	KY952521	
Amaranthaceae	Zuckia brandegeei (A.Gray) S.L.Welsh & Stutz var. plummeri (Stutz & S.C. Sand.) Dorn	Joseph L. M. Charboneau 9672 (RM)	USA: Colorado	KY952528	
Cactaceae	Leuenbergeria quisqueyana (Alain) Lodé	Flora K. Samis 11 (Lyon Arboretum living collection, accession 2000.0281)	USA: Hawaii	KY952473	
Caryophyllaceae	Moehringia macrophylla (Hook.) Fenzl	Arianna Goodman 1 (OC)	USA: Oregon	KY952464	
Caryophyllaceae	Paronychia lundellorum Torr. & A.Gray	William R. Carr 17607 (MEXU)	USA: Texas	KY952472	
Caryophyllaceae	Saponaria officinalis L.	Michael J. Moore et al. 1819 (OC)	USA: Indiana	KY952507	
Caryophyllaceae	Schiedea kaalae Wawra	Flora K. Samis 5 (Lyon Arboretum living collection, accession 92.0513)	USA: Hawaii	KY952509	
Caryophyllaceae	Spergularia salina J.Presl & C.Presl	Michael J. Moore 1693 (OC)	USA: Texas	KY952512	
Didiereaceae	Alluaudia ascendens (Drake) Drake	Michael J. Moore 1645	USA (cultivated)	KY952318	
Dioncophyllaceae	Triphyophyllum peltatum (Hutch. & Dalziel) Airy Shaw	Carel C. H. Jongkind <i>et al.</i> 7136 (WAG)	Liberia	KY952524	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accessior number	
Droseraceae	<i>Drosera burmannii</i> Vahl cv. Pilliga Red	Michael J. Moore 1814 (OC)	USA (cultivated)	KY952400	
Droseraceae	Drosera peltata Thunb.	Michael J. Moore 1817 (OC)	Australia: Tasmania (cultivated)	KY952401	
Droseraceae	Drosera regia Stephens	Michael J. Moore 1812 (OC)	USA (cultivated)	KY952402	
Drosophyllaceae	Drosophyllum lusitanicum (L.) Link	Michael J. Moore 1816 (OC)	USA (cultivated)	KY952403	
Frankeniaceae	Frankenia gypsophila I.M.Johnst.	Michael J. Moore et al. 1880 (OC)	Mexico: Nuevo Leon	KY952406	
Microteaceae	Microtea debilis Sw.	Manuel Rimachi 11128 (TEX)	Peru: Loreto	KY952415	
Montiaceae	Claytonia sibirica L.	Arianna Goodman 2 (OC)	USA: Oregon	KY952363	
Montiaceae	Phemeranthus parviflorus (Nutt.) Kiger	Michael J. Moore et al. 2214 (OC)	USA: New Mexico	KY952479	
Nyctaginaceae	Abronia angustifolia Greene	Michael J. Moore et al. 2063 (OC)	Mexico: Coahuila	KY952281	
Nyctaginaceae	Abronia angustifolia Greene	Michael J. Moore et al. 896 (OC)	USA: New Mexico	KY952282	
Nyctaginaceae	Abronia bigelovii Heimerl	Michael J. Moore <i>et al.</i> 704 (OC)	USA: New Mexico	KY952283	
Nyctaginaceae	Abronia elliptica A.Nelson	Norman A. Douglas 2039 (DUKE)	United States: Arizona	KY952284	
, ,		=	USA: Texas		
Nyctaginaceae	Abronia fragrans Nutt. ex Hook.	Billie L. Turner 20-22 (SRSC)	USA: Texas	KY952285	
Nyctaginaceae	Abronia fragrans Nutt. ex Hook.	Glenn Kroh et al. 3021 (TEX)		KY952286	
Nyctaginaceae	Abronia macrocarpa L.A.Galloway	Steve L. Orzell et al. 6492 (TEX)	USA: Texas	KY952287	
Nyctaginaceae	Abronia mellifera Douglas ex Hook.	N. Elizabeth Saunders BP 19 (SIU)	USA: Wyoming	KY952288	
Nyctaginaceae	Abronia mellifera Douglas ex Hook.	N. Elizabeth Saunders BP 20 (SIU)	USA: Wyoming	KY952289	
Nyctaginaceae	Abronia nana S.Watson var. nana	Robert C. Sivinski <i>et al</i> . 3108 (NMC)	USA: Arizona	KY952290	
Nyctaginaceae	Abronia umbellata Lam.	N. Elizabeth Saunders LU 45 (SIU)	USA: California	KY952291	
Nyctaginaceae	Acleisanthes acutifolia Standl.	James Henrickson <i>et al</i> . 22916 (TEX)	Mexico: Coahuila	KY952293	
Nyctaginaceae	Acleisanthes angustifolia (Torr.) R.A.Levin	Michael J. Moore 460 (OC)	USA: Texas	KY952294	
Nyctaginaceae	Acleisanthes cf. purpusiana (Heimerl) R.A.Levin	James Henrickson 23026 (TEX)	Mexico: Coahuila	KY952309	
Nyctaginaceae	Acleisanthes chenopodioides (A.Gray) R.A.Levin	Michael J. Moore et al. 733 (OC)	USA: Texas	KY952295	
Nyctaginaceae	Acleisanthes crassifolia A.Gray	Michael J. Moore et al. 569 (OC)	USA: Texas	KY952296	
Nyctaginaceae	Acleisanthes diffusa (A.Gray) R.A.Levin var. diffusa	Michael J. Moore et al. 624 (OC)	USA: Texas	KY952297	
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 870 (OC)	USA: New Mexico	KY952298	
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 903 (OC)	USA: Texas	KY952299	
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. megaphylla (B.A.Fowler & B.L.Turner) Spellenb. & J.Poole	Alfred T. Richardson 1666 (TEX)	Mexico: Chihuahua	KY952300	
Nyctaginaceae	Acleisanthes longiflora A.Gray	Michael J. Moore 435 (OC)	USA: Texas	KY952301	
Nyctaginaceae	Acleisanthes longiflora A.Gray	Michael J. Moore et al. 571 (OC)	USA: Texas	KY952302	
Nyctaginaceae	Acleisanthes nana I.M.Johnst.	Jackie Smith et al. 798 (TEX)	Mexico: San Luis Potosi	KY952303	
Nyctaginaceae	Acleisanthes obtusa (Choisy) Standl.	Michael J. Moore et al. 984 (OC)	USA: Texas	KY952304	
Nyctaginaceae	Acleisanthes palmeri (Hemsley) R.A.Levin	George S. Hinton 28620 (TEX)	MexicoNuevo Leon	KY952305	
Nyctaginaceae	Acleisanthes parvifolia (Torr.) R.A.Levin	Michael J. Moore 452 (OC)	USA: Texas	KY952306	
Nyctaginaceae	Acleisanthes purpusiana (Heimerl) R.A.Levin	James Henrickson 22709 (TEX)	Mexico: Coahuila	KY952307	
Nyctaginaceae	Acleisanthes purpusiana (Heimerl) R.A.Levin	Billie L. Turner 6205 (TEX)	Mexico: Coahuila	KY952308	
Nyctaginaceae	Acleisanthes undulata (B.A.Fowler & B.L.Turner) R.A.Levin	James Henrickson 23195 (TEX)	Mexico: Coahuila	KY952310	
Nyctaginaceae	Acleisanthes wrightii (A.Gray) Benth. & Hook.	Michael J. Moore et al. 620 (OC)	USA: Texas	KY952311	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accession number KY952315	
Nyctaginaceae	Allionia choisyi Standl.	Norman A. Douglas 2187 (DUKE)	Mexico: Coahuila		
Nyctaginaceae	Allionia incarnata L.	Michael J. Moore et al. 1352 (OC)	Mexico: Nuevo Leon	KY952316	
Nyctaginaceae	Allionia sp.	Michael J. Moore 424 (OC)	USA: Texas	KY952317	
, ,					
Nyctaginaceae	Andradea floribunda Allemão	André M. Amorim 2294 (NY)	Brazil	KY952324	
Nyctaginaceae	Andradea floribunda Allemão	Jacquelyn Ann Kallunki 701 (NY)	Brazil	KY952325	
Nyctaginaceae	Anulocaulis annulatus (Coville) Standl.	Richard W. Spellenberg 3162 (NMC)	USA: California	KY952326	
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	James Henrickson <i>et al</i> . 23103 (TEX)	Mexico: Coahuila	KY952327	
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	Michael J. Moore et al. 611 (OC)	USA: Texas	KY952328	
Nyctaginaceae	Anulocaulis hintoniorum B.L.Turner	Patricia Hernández Ledesma 52 (MEXU)	Mexico: Coahuila	KY952329	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. gypsogenus (Waterf.) Spellenb. & T.Wootten	Michael J. Moore 402 (OC)	USA: New Mexico	KY952330	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. howardii Spellenb. & T.Wootten	Thomas Wootten <i>et al.</i> s.n. (NMC)	USA: New Mexico	KY952331	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. lasianthus I.M.John- ston	Michael J. Moore et al. 610 (OC)	USA: Texas	KY952332	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore 493 (OC)	USA: Texas	KY952333	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore et al. 825 (OC)	USA: Nevada	KY952334	
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore <i>et al.</i> 853 (OC)	USA: Arizona	KY952335	
Nyctaginaceae	Anulocaulis reflexus I.M.Johnst.	Michael J. Moore et al. 242 (TEX)	Mexico: Chihuahua	KY952336	
Nyctaginaceae	Anulocaulis reflexus I.M.Johnst.	Michael J. Moore 483 (OC)	USA: Texas	KY952337	
Nyctaginaceae	Boerhavia anisophylla Torr.	Norman A. Douglas 2194 (DUKE)	Mexico: Durango	KY952341	
Nyctaginaceae	Boerhavia ciliata Brandegee	Norman A. Douglas 2145 (DUKE)	USA: Texas	KY952342	
Nyctaginaceae	Boerhavia coccinea Mill.	Michael J. Moore 366 (OC)	USA: New Mexico	KY952343	
Nyctaginaceae	Boerhavia coulteri (Hook.f.) S.Watson var. palmeri (S.Watson) Spellenb.	Richard W. Spellenberg 13273 (NMC)	USA: Arizona	KY952344	
Nyctaginaceae	Boerhavia dominii Meikle & Hew- son	H. Smyth 42 (NY)	Australia: South Australia	KY952345	
Nyctaginaceae	Boerhavia gracillima Heimerl	Richard W. Spellenberg 12447 (NMC)	USA: Texas	KY952347	
Nyctaginaceae	Boerhavia intermedia M.E.Jones	Richard W. Spellenberg 13279 (NMC)	USA: Arizona	KY952348	
Nyctaginaceae	Boerhavia lateriflora Standl.	Norman A. Douglas 2161 (DUKE)	Mexico: Sonora	KY952349	
Nyctaginaceae	Boerhavia linearifolia A.Gray	Michael J. Moore et al. 581 (OC)	USA: Texas	KY952350	
Nyctaginaceae	Boerhavia purpurascens A.Gray	Richard W. Spellenberg 13261 USA: Arizona (NMC)		KY952351	
Nyctaginaceae	Boerhavia repens L.	J. S. Rose 2	USA: Hawaii	KY952352	
Nyctaginaceae	Boerhavia repens L.	Richard W. Spellenberg 7183 Yemen: Sana (NMC)		KY952353	
Nyctaginaceae	Boerhavia sp.	Erin Tripp <i>et al</i> . 4090 (OC)	Namibia	KY952346	
Nyctaginaceae	Boerhavia torreyana (S.Watson) Standl.	Michael J. Moore et al. 633 (OC)	USA: Texas	KY952354	
Nyctaginaceae	Bougainvillea campanulata Heimerl	Michael Nee 51257 (TEX)	Bolivia: Santa Cruz	KY952355	
Nyctaginaceae	Bougainvillea glabra Choisy	Michael J. Moore 538 (OC)	USA: Ohio (cultivated)	KY952356	
Nyctaginaceae	Bougainvillea spinosa (Cav.) Heimerl	J. Saunders <i>et al.</i> 3371 (TEX)	Argentina: San Juan	KY952357	
Nyctaginaceae	Bougainvillea stipitata Griseb.	Michael Nee 50723 (TEX)	Bolivia: Santa Cruz	KY952358	
Nyctaginaceae	Colignonia glomerata Griseb.	Michael Nee 52523 (NY)	Bolivia	KY952364	
Nyctaginaceae	Colignonia scandens Benth.	Martin Grantham 63 (SFBG living collection, accession 1996-0202)	Ecuador	KY952365	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accessior number	
Nyctaginaceae	Commicarpus ambiguus Meikle	Mats Thulin 11015 (UPS)	Somalia: Sanaag	KY952366	
Nyctaginaceae	Commicarpus arabicus Meikle	Mats Thulin et al. 9294 (UPS)	Yemen: Taizz	KY952367	
Nyctaginaceae	Commicarpus arabicus Meikle	Richard W. Spellenberg 7217 (NMC)	Yemen: Ibb	KY952368	
Nyctaginaceae	Commicarpus arabicus Meikle	Richard W. Spellenberg 7297 (NMC)	Yemen: Ibb	KY952369	
Nyctaginaceae	Commicarpus australis (Meikle) Govaerts	Richard W. Spellenberg <i>et al.</i> 9469 (NMC)	Australia: Western Australia	KY952370	
Nyctaginaceae	Commicarpus boissieri (Heimerl) Cufod.	Mats Thulin 11423 (UPS)	Oman: Dhofar	KY952371	
Nyctaginaceae	Commicarpus boissieri (Heimerl) Cufod.	Carl J. Rothfels et al. 4331	Oman: Ash Sharqiyah	KY952373	
Nyctaginaceae	Commicarpus brandegeei Standl.	Patricia Hernández Ledesma 55 (MEXU)	Mexico: Baja California Sur	KY952372	
Nyctaginaceae	Commicarpus coctoris N.A.Harri- man	Richard W. Spellenberg et al. 12883 (NMC)	Mexico: Oaxaca	KY952374	
Nyctaginaceae	Commicarpus commersonii (Baill.) Cavaco	Mats Thulin <i>et al.</i> 11836 (UPS)	Madagascar: Toliara	KY952380	
Nyctaginaceae	Commicarpus decipiens Meikle	Erin Tripp et al. 4127 (NMC)	Namibia	KY952375	
Nyctaginaceae	Commicarpus grandiflorus (A.Rich.) Standl.	Mats Thulin <i>et al.</i> 9311 (UPS)	Yemen: Taizz	KY952376	
Nyctaginaceae	Commicarpus greenwayi Meikle	Mats Thulin 606 (UPS)	Tanzania: Iringa	KY952377	
Nyctaginaceae	Commicarpus helenae (Roem. & Schult.) Meikle	Richard W. Spellenberg et al. 7504 (NMC)	Yemen: Dhamar	KY952378	
Nyctaginaceae	Commicarpus hiranensis Thulin	Mats Thulin et al. 11225 (UPS)	Ethiopia: Harerge	KY952379	
Nyctaginaceae	Commicarpus mistus Thulin	Mats Thulin et al. 9786 (UPS)	Yemen: Mahrah	KY952381	
Nyctaginaceae	Commicarpus parviflorus Thulin	Mats Thulin 6318 (UPS)	Somalia: Banaadir	KY952382	
Nyctaginaceae	Commicarpus pedunculosus (A.Rich.) Cufod.	Mats Thulin 1301 (UPS)	Ethiopia: Arussi	KY952383	
Nyctaginaceae	Commicarpus plumbagineus (Cav.) Standl.	Mats Thulin 10747 (UPS)	Somalia: Togdheer	KY952384	
Nyctaginaceae	Commicarpus plumbagineus (Cav.) Standl.	Mats Thulin et al. 11330 (UPS)	Ethiopia: Harerge	KY952385	
Nyctaginaceae	Commicarpus plumbagineus (Cav.) Standl.	Richard W. Spellenberg <i>et al.</i> 7374 (NMC)	Yemen: Ta'izz	KY952386	
Nyctaginaceae	Commicarpus praetermissus N.A.Harriman	Richard W. Spellenberg <i>et al.</i> Mexico: Michoacán 12905 (NMC)		KY952387	
Nyctaginaceae	Commicarpus reniformis (Chiov.) Cufod.	Mats Thulin 4200 (UPS)	Somalia: Sool	KY952388	
Nyctaginaceae	Commicarpus reniformis (Chiov.) Cufod.	Mats Thulin et al. 8337 (UPS)	Yemen: Hadramaut	KY952389	
Nyctaginaceae	Commicarpus scandens (L.) Standl.	Michael J. Moore 1127 (OC)	USA: Texas	KY952390	
Nyctaginaceae	Commicarpus scandens (L.) Standl.	Richard W. Spellenberg <i>et al.</i> 12887 (NMC)	Mexico: Puebla	KY952391	
Nyctaginaceae	Commicarpus sinuatus Meikle	Mats Thulin 10737 (UPS)	Somalia: Woqooyi Galbeed	KY952392	
Nyctaginaceae	Commicarpus sinuatus Meikle	Richard W. Spellenberg 7144 (NMC)	Yemen: Sana'a	KY952393	
Nyctaginaceae	Commicarpus sinuatus Meikle	Richard W. Spellenberg 7506 (NMC)	Yemen: Dhamar	KY952394	
Nyctaginaceae	Commicarpus squarrosus (Heimerl) Standl. var. squarrosus	Erin Tripp et al. 4049 (NMC)	Namibia	KY952395	
Nyctaginaceae	Commicarpus stenocarpus (Chiov.) Cufod.	Mats Thulin et al. 8062 (UPS)	Yemen: Hadramaut	KY952396	
Nyctaginaceae	Cuscatlania vulcanicola Standl.	José L. Linares 12938 (MEXU)	El Salvador: Sonsonate	KY952397	
Nyctaginaceae	Cuscatlania vulcanicola Standl.	José L. Linares 13440 (MEXU)	El Salvador: Sonsonate	KY952398	
Nyctaginaceae	Cyphomeris gypsophiloides (M.Martens & Galeotti) Standl.	Michael J. Moore et al. 582 (OC)	USA: Texas	KY952399	
Nyctaginaceae	<i>Grajalesia fasciculata</i> (Standl.) Miranda	José L. Linares 13416 (MEXU)	El Salvador: Sonsonate	KY952409	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accession number	
Nyctaginaceae	Guapira discolor (Spreng.) Little	Richard W. Spellenberg 13294 (NMC)	USA: Florida	KY952410	
Nyctaginaceae	Guapira eggersiana (Heimerl) Lun- dell	Scott A. Mori 25542/40 (NY)	French Guiana	KY952411	
Nyctaginaceae	Mirabilis albida (Walter) Heimerl	Norman A. Douglas 2035 (DUKE)	USA: Arizona	KY952416	
Nyctaginaceae	Mirabilis albida (Walter) Heimerl	William R. Carr 11075 (TEX)	USA: Texas	KY952417	
Nyctaginaceae	Mirabilis alipes (S.Watson) Pilz	Arnold Tiehm 13461 (TEX)	USA: Nevada	KY952418	
Nyctaginaceae	Mirabilis bigelovii A.Gray var. retrorsa (A. Heller) Munz	James D. Morefield <i>et al.</i> 3780 (TEX)	USA: California	KY952419	
Nyctaginaceae	<i>Mirabilis</i> cf. <i>glabrifolia</i> (Ortega) I.M.Johnst.	Michael J. Moore et al. 1244 (OC)	Mexico: San Luis Potosi	KY952428	
Nyctaginaceae	Mirabilis cf. nesomii B.L.Turner	George S. Hinton 25567 (TEX)	Mexico: Nuevo Leon	KY952449	
Nyctaginaceae	Mirabilis coccinea (Torr.) Benth. & Hook.f.	Norman A. Douglas 2133 (DUKE)	USA: Arizona	KY952420	
Nyctaginaceae	Mirabilis coccinea (Torr.) Benth. & Hook.f.	Steven P. McLaughlin <i>et al.</i> 9354 (ARIZ)	USA: Arizona	KY952421	
Nyctaginaceae	Mirabilis comata (Small) Standl.	Norman A. Douglas 2084 (DUKE)	USA: Arizona	KY952422	
Nyctaginaceae	<i>Mirabilis decumbens</i> (Nutt.) Daniels	Richard W. Spellenberg <i>et al</i> . 4073 (TEX)	Mexico: Zacatecas	KY952423	
Nyctaginaceae	Mirabilis donahooiana Le Duc	Alice Le Duc et al. 247 (TEX)	Mexico: Michoacán	KY952424	
Nyctaginaceae	Mirabilis exserta Brandegee	Pedro Tenorio 10586 (MEXU)	Mexico	KY952425	
Nyctaginaceae	Mirabilis gigantea (Standl.) Shin- ners	J. Quayle et al. 752 (TEX)	USA: Texas	KY952426	
Nyctaginaceae	Mirabilis glabra (S.Watson) Standl.	Michael J. Moore et al. 674 (OC)	USA: New Mexico	KY952446	
Nyctaginaceae	<i>Mirabilis glabrifolia</i> (Ortega) I.M.Johnst.	Guy Nesom et al. 7654 (TEX)	Mexico: Coahuila	KY952427	
Nyctaginaceae	<i>Mirabilis glabrifolia</i> (Ortega) I.M.Johnst.	Michael J. Moore et al. 1325 (OC)	Mexico: Nuevo Leon	KY952429	
Nyctaginaceae	Mirabilis gracilis (Standl.) LeDuc	Alice Le Duc et al. 71 (TEX)	Mexico: Jalisco	KY952430	
Nyctaginaceae	Mirabilis grandiflora (Standl.) Standl.	EDL 1863 (MEXU)	Mexico	KY952431	
Nyctaginaceae	Mirabilis greenei S.Watson	George E. Pilz 998 (TEX)	USA: California	KY952432	
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al.</i> 32449 (F)	China: Xizang (Tibet)	KY952433	
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al.</i> 41198 (F)	China: Xizang (Tibet)	KY952434	
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al.</i> 41435 (F)	China: Xizang (Tibet)	KY952435	
Nyctaginaceae	Mirabilis hintoniorum Le Duc	Patricia Hernández Ledesma 118 (MEXU)	Mexico: Michoacán	KY952436	
Nyctaginaceae	Mirabilis jalapa L.	Michael J. Moore s.n.	USA (cultivated)	KY952437	
Nyctaginaceae	Mirabilis laevis (Benth.) Curran	Andrew C. Sanders <i>et al.</i> 29410 (TEX)	USA: California	KY952438	
Nyctaginaceae	Mirabilis latifolia (A.Gray) Diggs, Lipscomb & O'Kennon	Victor L. Cory 24549 (GH)	USA: Texas	KY952439	
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl	Billie L. Turner 21-854 (TEX)	USA: Texas	KY952440	
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl var. decipiens (Standl.) S.L.Welsh	Michael J. Moore et al. 1984 (OC)	Mexico: Coahuila	KY952441	
Nyctaginaceae	Mirabilis longiflora L.	Michael J. Moore et al. 1230 (OC)	Mexico: San Luis Potosi	KY952442	
Nyctaginaceae	Mirabilis longiflora L. var. wrightiana (A.Gray ex Britton & Kearney) Kearney & Peebles	Alice Le Duc 185 (TEX)	USA: New Mexico	KY952443	
Nyctaginaceae	Mirabilis melanotricha (Standl.) Spellenb.	Michael J. Moore et al. 1191 (OC)	Mexico: San Luis Potosi	KY952444	
Nyctaginaceae	Mirabilis melanotricha (Standl.) Spellenb.	Norman A. Douglas 2067 (DUKE)	USA: New Mexico	KY952445	
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Michael J. Moore 1110 (OC)	USA: Texas	KY952447	
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Norman A. Douglas 2037 (DUKE)	USA: Arizona	KY952448	
Nyctaginaceae	Mirabilis nesomii B.L.Turner	Michael J. Moore et al. 2179 (NMC)	Mexico: Nuevo Leon	KY952450	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accessior number	
Nyctaginaceae	Mirabilis nesomii B.L.Turner	Michael J. Moore et al. 2643 (NMC)	Mexico: Nuevo Leon	KY952451	
Nyctaginaceae	Mirabilis nyctaginea (Michx.) MacMill.	William R. Carr 14590 (TEX)	USA: Texas	KY952452	
Nyctaginaceae	Mirabilis oligantha (Standl.) Standl.	José L. Panero 2816 (MEXU)	Mexico: Baja California	KY952453	
Nyctaginaceae	Mirabilis oxybaphoides (A.Gray) A.Gray	George S. Hinton 25572 (TEX)	Mexico: Nuevo Leon	KY952454	
Nyctaginaceae	Mirabilis polonii Le Duc	Alice Le Duc 259 (MEXU)	Mexico: Nuevo Leon	KY952455	
Nyctaginaceae	Mirabilis pringlei Weath.	Alice Le Duc <i>et al</i> . 63 (TEX)	Mexico: Jalisco	KY952456	
Nyctaginaceae	Mirabilis pudica Barneby	Arnold Tiehm 10971 (TEX)	USA: Nevada	KY952457	
Nyctaginaceae	Mirabilis texensis (J.M.Coult.) B.L.Turner	Billie L. Turner 22-417 (TEX)	USA: Texas	KY952458	
Nyctaginaceae	Mirabilis triflora Benth.	Ramón Cuevas G. <i>et al.</i> 3415 (MEXU)	Mexico: Jalisco	KY952459	
Nyctaginaceae	Mirabilis urbani Heimerl	Mark Fishbein et al. 5107 (MEXU)	Mexico: Michoacan	KY952460	
Nyctaginaceae	Mirabilis violacea (L.) Heimerl	Patricia Hernández Ledesma 63 (MEXU)	Mexico: Distrito Federal	KY952461	
Nyctaginaceae	Mirabilis viscosa Cav.	Michael J. Moore <i>et al.</i> 1824 (NMC)	Mexico: San Luis Potosi	KY952462	
Nyctaginaceae	Mirabilis viscosa Cav.	Patricia Hernández Ledesma 13 (MEXU)	Mexico	KY952463	
Nyctaginaceae	Neea belizensis Donn.Sm.	Cyrus L. Lundell 17692 (TEX)	Guatemala: Petén	KY952465	
Nyctaginaceae	Neea cauliflora Poepp. & Endl.	Schanke S15106 (NY)	Peru	KY952466	
Nyctaginaceae	Neea psychotrioides Donn.Sm.	Robert L. Wilbur 63654	Costa Rica: Heredia	KY952467	
Nyctaginaceae	Nyctaginia capitata Choisy	Michael J. Moore et al. 617 (OC)	USA: Texas	KY952470	
Nyctaginaceae	Okenia hypogaea Schltdl. & Cham.	Thomas R. Van Devender et al. 92- 1069 (NMC)	Mexico: Sonora	KY952471	
Nyctaginaceae	Pisonia aculeata L.	C. Martínez 1209 (TEX)	Mexico: Oaxaca	KY952483	
Nyctaginaceae	<i>Pisonia brunoniana</i> Endl.	J. S. Rose 3	USA: Hawaii	KY952484	
Nyctaginaceae	Pisonia capitata (S.Watson) Standl.	Ana L. Reina Guerrero et al. 2000- 193 (NMC)	Mexico: Sonora	KY952485	
Nyctaginaceae	Pisonia capitata (S.Watson) Standl.	Thomas R. Van Devender <i>et al.</i> 2003-17 (TEX)	USA: Arizona	KY952486	
Nyctaginaceae	Pisonia macranthocarpa (Donn.Sm.) Donn.Sm.	Dennis E. Breedlove <i>et al.</i> 30361 Mexico: Chiapas (TEX)		KY952487	
Nyctaginaceae	Pisonia sandwicensis Hillebr.	Flora K. Samis 1 (Lyon Arboretum living collection)	USA: Hawaii	KY952488	
Nyctaginaceae	Pisonia sylvatica Standl.	José L. Linares 13403 (MEXU)	El Salvador: Sonsonate	KY952489	
Nyctaginaceae	Pisonia umbellifera (J.R.Forst. & G.Forst.) Seem.	Flora K. Samis 12 (Lyon Arboretum living collection, accession 68.0453)	USA: Hawaii	KY952490	
Nyctaginaceae	Pisonia zapallo Griseb.	Israel G. Vargas et al. 2001 (TEX)	Bolivia: Santa Cruz	KY952491	
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	Alice Le Duc et al. 231 (NMC)	Mexico: Oaxaca	KY952492	
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	William R. Anderson 13522 (NY)	Mexico: Oaxaca	KY952493	
Nyctaginaceae	Ramisia brasiliensis Oliv.	Jomar G. Jardim 1507 (NY)	Brazil	KY952495	
Nyctaginaceae	Reichenbachia hirsuta Spreng.	Michael Nee 47813 (NY)	Bolivia	KY952496	
Nyctaginaceae	Reichenbachia paraguayensis (D.Parodi) Dugand & Daniel	Maria Maguidaura Hatschbach 49218 (NY)	Brazil	KY952497	
Nyctaginaceae	Salpianthus arenarius Bonpl.	Richard W. Spellenberg 12903 (NMC)	Mexico: Michoacán	KY952503	
Nyctaginaceae	Salpianthus macrodontus Standl.	Thomas R. Van Devender <i>et al.</i> 91-894 (NMC)	Mexico: Sonora	KY952504	
Nyctaginaceae	Salpianthus purpurascens (Cav. ex Lag.) Hook. & Arn.	Richard W. Spellenberg <i>et al.</i> 12885 (NMC)	Mexico: Oaxaca	KY952505	
Nyctaginaceae	<i>Tripterocalyx carneus</i> (Greene) L.A.Galloway	Norman A. Douglas 2060 (DUKE)	USA: New Mexico	KY952525	
Nyctaginaceae	Tripterocalyx crux-maltae (Kellogg) Standl.	Arnold Tiehm et al. 12213 (TEX)	USA: Nevada	KY952526	

Table 1 (Continued)

Family	Taxon	Voucher specimen (Herbarium acronym)	Collection locality	NCBI accession number
Nyctaginaceae	Tripterocalyx micranthus (Torr.) Hook.	B. MacLeod et al. 751 (TEX)	USA: Colorado	KY952527
Phytolaccaceae	Agdestis clematidea Moc. & Sessé ex DC.	George S. Hinton 25023 (TEX)	Mexico: Tamaulipas	KY952313
Phytolaccaceae	Gallesia integrifolia (Spreng.) Harms	Michael Nee et al. 50072 (TEX)	Bolivia: Santa Cruz	KY952407
Phytolaccaceae	Hilleria latifolia (Lam.) H.Walter	Michael Nee 33807 (TEX)	Bolivia: Santa Cruz	KY952413
Phytolaccaceae	Petiveria alliacea L.	Lucas C. Majure 4132 (FLAS)	USA: Florida	KY952476
Phytolaccaceae	Phytolacca americana L.	Michael J. Moore 342 (OC)	USA: Ohio	KY952480
Phytolaccaceae	Phytolacca icosandra L.	Mark H. Mayfield et al. 1001 (TEX)	Mexico: Guerrero	KY952481
Phytolaccaceae	Phytolacca octandra L.	Juan A. Encina et al. 1545 (TEX)	Mexico: Nuevo Leon	KY952482
Phytolaccaceae	Rivina humilis L.	Michael J. Moore 1129 (OC)	USA: Texas	KY952499
Phytolaccaceae	Seguieria aculeata Jacq.	Elsa Zardini et al. 22101 (TEX)	Paraguay	KY952510
Phytolaccaceae	Seguieria paraguariensis Morong	Michael Nee 48735 (TEX)	Bolivia: Santa Cruz	KY952511
Phytolaccaceae	Trichostigma octandrum (L.) H.Walter	Michael Nee 47094 (TEX)	Bolivia: Santa Cruz	KY952522
Phytolaccaceae	Trichostigma peruvianum (Moq.) H.Walter	Flora K. Samis 10 (Lyon Arboretum living collection, accession 94.0377)	USA: Hawaii	KY952523
Plumbaginaceae	Aegialitis annulata R.Br.	Christopher T. Martine 4043 (OC)	Australia: Western Australia	KY952312
Plumbaginaceae	Limonium limbatum Small	Michael J. Moore et al. 694 (OC)	USA: New Mexico	KY952414
Plumbaginaceae	Plumbago scandens L.	Michael J. Moore et al. 1828 (OC)	Mexico: San Luis Potosi	KY952494
Polygonaceae	Eriogonum longifolium Nutt. var. longifolium	Michael J. Moore 1796 (OC)	USA: Texas	KY952404
Polygonaceae	Eriogonum rotundifolium Benth.	Michael J. Moore 1769 (OC)	USA: New Mexico	KY952405
Polygonaceae	Persicaria odorata LaLlave	Flora K. Samis 9 (Lyon Arboretum living collection, accession 88.0439)	USA: Hawaii	KY952475
Polygonaceae	Persicaria sp.	Michael J. Moore 1177	USA: Ohio	KY952474
Polygonaceae	Reynoutria japonica (Houtt.) Ronse Decr.	Michael J. Moore 2188 (OC)	USA: Ohio	KY952498
Polygonaceae	Rumex albescens Hillebr.	Flora K. Samis 4 (Lyon Arboretum living collection, accession 2008- 0119)	USA: Hawaii	KY952500
Polygonaceae	Rumex sp.	Michael J. Moore 1800 (OC)	USA: Texas	KY952501
Polygonaceae	Rumex sp.	Michael J. Moore 1805 (OC)	USA: Texas	KY952502
Sarcobataceae	Sarcobatus vermiculatus (Hook.) Torr.	Michael J. Moore et al. 813 (OC)	USA: Utah	KY952508
Stegnospermataceae	Stegnosperma cubense A.Rich.	Silvia H. Salas Morales 2649 (NY)	Mexico: Oaxaca	KY952513
Talinaceae	Talinum cf. aurantiacum Engelm.	Michael J. Moore et al. 1985 (OC)	Mexico: Coahuila	KY952517
Talinaceae	Talinum fruticosum (L.) Juss.	Flora K. Samis 8 (Lyon Arboretum living collection, accession 2012.0008)	USA: Hawaii	KY952518
Talinaceae	<i>Talinum paniculatum</i> (Jacq.) Gaertn.	Michael J. Moore 1789 (OC)	USA (cultivated)	KY952520
Talinaceae	Talinum sp.	Michael J. Moore et al. 1974 (MEXU)	Mexico: Coahuila	KY952519

reaction were trimmed and *de novo* assembled using default parameters of the Geneious assembler in Geneious versions 5–7 (Biomatters, Auckland, New Zealand).

Molecular data for phylogenetic reconstruction

Nucleotide data from the nuclear ribosomal internal transcribed spacers (ITS) and *phyC* gene, and the plastid loci *matK*, *ndhF*, *rbcL*, *trnH-psbA* spacer, and *trnL-trnF* spacer were used to

reconstruct the phylogeny. These data were gathered first using PHLAWD (Smith & Donoghue, 2008; Smith et al., 2009) and then curated and combined with newly sequenced matK data for 124 additional species. This yielded the following sampling: ITS 2969 species, matK 2270 species, ndhF 417 species, phyC 172 species, rbcL 947 species, trnH-psbA 240 species, and trnL-trnF 1996 species. We used matK, rbcL, and ndhF sequences from Aextoxicon, Apium, Berberidopsis, Campanula, Clethra, Coffea, Echinops, Helwingia, Ilex, Ipomoea, Lamium, Lonicera, Nyssa,

Table 2 List of primers used to amplify the *matK* sequences newly reported here; within each primer name, the number indicates the approximate position of the primer in nucleotides downstream from the start of *matK*

Primer name	Sequence $(5' \rightarrow 3')$	Notes
matK.300F.Car	TTG CAG TCA TTG TGG AAA TTC C	Works broadly across most of Caryophyllales, but generally fails in Caryophyllaceae and Frankeniaceae
matK.1350R.Car	GCC AAA GTT CTA GCA CAA GAA AG	Works broadly across most of Caryophyllales
matK.210F.Car	TTC GGC TAA TGA TTC TCA CCA A	Designed specifically for Caryophyllaceae
matK.1345R.Car	GAG CCA AAG TTC TAG CAC AAG AA	Designed specifically for Caryophyllaceae
matK.1355R.Car	TGT GTT TAC GAG CTA AAG TTC TAG	Designed specifically for Caryophyllaceae
matK.300F.Fra	TCG CTG TCT TTG CTG AAA TTC C	Designed specifically for Frankeniaceae

Polysoma, Primula, Santalum, Valeriana, and Viburnum to represent outgroups.

Phylogenetic reconstruction

We conducted phylogenetic analyses with RAXML v.7.2.8 (Stamatakis, 2014) using the full analysis command, -f a, which conducts a rapid bootstrap and then a full maximum likelihood (ML) search. The combined bootstrap and ML search allows for a more thorough ML analysis where the initial rapid bootstrap results prime the ML analysis. However, we did not use the rapid bootstrap trees from this analysis and instead we conducted a full bootstrap, generating the bootstrap dataset using phyx (Brown et al., 2017) and then conducting individual ML runs on each constructed bootstrap dataset. This allowed us to conduct the SH-like approximate likelihood ratio test (SH-aLRT; Guindon et al., 2010) on the resulting bootstrap set. We conducted bootstraps within gene regions and we retained the individual bootstrap alignments to conduct additional analyses bootstrapped alignments contained the same number of genespecific sites as the empirical alignment). On each of the resulting trees of the bootstrap and the ML tree, we conducted SH-aLRTs as implemented in RAxML. These analyses calculate support for each edge while also finding the NNI-optimal topology. RAXML completed the likelihood search for each of these bootstrap replicates; however, the SH-aLRT analyses often resulted in an improved ML topology. The trees that resulted from the SHaLRT, ML, and bootstrap samples, were used for further analyses. Because several deep relationships within Caryophyllales are hard to resolve without large amounts of molecular data that are unavailable for most of the taxa included in this analysis (Yang et al., 2015), for all phylogenetic analyses we applied the following topological constraint: (Droseraceae, (Microtea, (Stegnospermataceae, Limeaceae, (Lophiocarpaceae, (Barbeuiaceae, Aizoaceae))))) as per previous analyses (Brockington et al., 2009; Yang et al., 2015).

Divergence time estimation

Few tractable options for divergence time estimation exist for datasets of the size presented here. We use the penalized likelihood approach (Sanderson, 2003) as implemented in the program TREEPL (Smith & O'Meara, 2012), which can handle large-scale phylogenies. The early fossil record of the Caryophyllales is

sparse with only a few known records (Arakaki et al., 2011; Friis et al., 2011): fossil pollen has been ascribed to Amaranthaceae (Chenopodipollis) from the Paleocene of Texas (Nichols & Traverse, 1971); a putative fossil infructescence from within the Phytolaccaceae in the Campanian has also been reported (Cevallos-Ferriz et al., 2008), but this phylogenetic position has been disputed (S. Manchester, pers. comm.) and hence we excluded it; Jordan & Macphail (2003) describe a middle to late Eocene inflorescence from the species Caryophylloflora paleogenica, ascribed to Caryophyllaceae; pollen from Argentina within the Nyctaginaceae has been reported from the middle Eocene (Zetter et al., 1999); and fossil pollen and seeds of Aldrovanda (Degreef, 1997). The penalized likelihood method performs better when a calibration is used at the root. For this calibration, and because there is no fossil record for the earliest Caryophyllales, we use a secondary calibration from the comprehensive angiosperm divergence time analyses of Bell et al. (2010). We attached several other secondary calibrations to major clades where fossils are not available (Ocampo & Columbus, 2010; Arakaki et al., 2011; Schuster et al., 2013; Valente et al., 2014; see Supporting Information Table S1 for detail on placement and calibrations). We conducted a priming analysis to determine the best optimization parameter values. We then performed a cross-validation analysis using the random cross-validation setting to determine the optimal smoothing parameter value.

Climate occupancy analyses

We downloaded 6592 700 georeferenced occurrences for the Caryophyllales from GBIF (accessed on 6 January 2015; http:// gbif.org). After removing samples present in living collections, and therefore not necessarily representative of native climates, and removing samples whose localities were over water, 6009 552 samples remained. We extracted bioclimatic values for each coordinate using the 2.5 arcminute resolution data from WorldClim (http://worldclim.org). We only included taxa that had at least three samples in these analyses to reduce potential errors and to have the minimum number of samples required to calculate mean and variance. The resulting overlap of the taxa represented in both the geographic and genetic data was 2843 taxa. We conducted principal component analyses (PCA) on these extracted values. With both the bioclimatic values and the first two axes of the PCA, we conducted ancestral state reconstruction analyses.

We also compared ancestral states and Brownian motion rates of evolution between sister clades (comparing duplicated lineages with their sisters) for mean annual precipitation, mean annual temperature, and principal component axis 1. We calculated ancestral states for continuous characters using a single rate model and compared sister lineages. We also calculated and compared estimates of independent Brownian motion rates for sister lineages.

Diversification analyses

To map diversification rate shifts, we conducted MEDUSA (Alfaro et al., 2009; Pennell et al., 2014) analyses on the ML tree and the bootstrap trees. MEDUSA is far more computationally tractable than some other diversification estimation methods. Furthermore, we required the ability to feasibly integrate over the phylogenetic uncertainty within the phylogenetic dataset because of both the nature of the larger phylogenetic dataset and the inherent biological uncertainty within the Caryophyllales. MEDUSA fits a birth-death model of diversification (with parameters r, net diversification (birth-death), and ε, relative extinction (death/birth)) before using stepwise Akaike information criterion (Burnham & Anderson, 2002) to identify shifts in rates of diversification. These complementary analyses accommodate topological and branch length uncertainty. We employed a birth-death model for 97 chronograms generated from nonparametric bootstrapping of the original matrix, inferring ML trees in RAxML, and estimating divergence times in treePL using the temporal constraints described earlier. We discarded three trees based on poor fossil placement resulting from phylogenetic uncertainty causing fossil placements to conflict.

Whole genome duplication identification

To identify WGDs (procedure described later), we generated a tree based on transcriptomic data. For this tree, we used 178 ingroup datasets (175 transcriptomes, three genomes) representing 169 species in 27 families and 40 outgroup genomes (Tables S1, S2 in Yang *et al.*, 2017). We mapped putative WGD events using multiple strategies: gene tree topology, plotting synonymous distance, and chromosome counts (Yang *et al.*, 2015, 2017). For gene tree topology analyses, we performed two alternative strategies for mapping duplication events from gene trees to the species tree: mapping to the most recent common ancestor (MRCA), or mapping to the species tree only when gene tree and species tree topologies are compatible.

To conduct synonymous distance analyses, we performed the following procedure. For all ingroup Caryophyllales transcriptome datasets, we calculated the distribution of paralog synonymous distance following the same procedure as Yang *et al.* (2015). We reduced highly similar peptide sequences with CD-HIT (-c 0.99 -n 5) (Li & Godzik, 2006). We also carried out an all-by-all Blastp within each taxon using an E-value cutoff of 10 and -max_target_seq set to 20. Resulting hits with pident < 20% or niden < 50 amino acids were removed. We removed sequences

with 10 or more hits to avoid overrepresentation of gene families that experienced multiple recent duplications. We used the remaining paralog pairs and their corresponding coding sequence to calculate synonymous substitution rate (K_s) values using the pipeline https://github.com/tanghaibao/bio-pipeline/tree/master/ synonymous_calculation (accessed 29 November 2014). The pipeline first carries out pairwise protein alignment using default parameters in ClustalW (Larkin et al., 2007), back-translates the alignment to a codon alignment using PAL2NAL (Suyama et al., 2006), and calculates the K_s using yn00 as part of the PAML package (Yang, 2007), with Nei-Gojobori correction for multiple substitutions (Nei & Gojobori, 1986). We obtained chromosome counts from the Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il accessed 5 October 2015). When multiple counts were reported from different authors or different plants, we erred on the conservative estimate and recorded the lowest number. For species that were not available in the database, we found counts from the literature (e.g. Jepson eFlora http://ucje ps.berkeley.edu/eflora/ and Flora of North America http://flo ranorthamerica.org) or by a consensus from species of the same genera.

Results and discussion

Phylogenetic results

Phylogenetic analyses showed strong support based on bootstrap and SH-aLRT values for the monophyly of most Caryophyllales families (see Fig. S1). We found strong support for the carnivoclade, including Droseraceae, Ancistrocladaceae, Nepenthaceae, Drosophyllaceae, and Dioncophyllaceae. There was also strong support for this clade as sister to a clade including Frankeniaceae, Tamaricaceae, Plumbaginaceae, and Polygonaceae. However, relationships among the families showed more varied support. There was weak support for the placement of other families relative to other early diverging Caryophyllales (see Fig. S1). There was strong support for Caryophyllaceae as sister to Amaranthaceae. There was very weak support for Aizoaceae as sister to Phytolaccaceae + Nyctaginaceae. As with previously published analyses, there was no support for the monophyly of Phytolaccaceae in the traditional sense (i.e. including Phytolaccaceae sensu stricto, Petiveriaceae, and Agdestis; APG IV) and very weak support for the placement of Sarcobataceae. There was also weak support for the relationships among Limeaceae, Molluginaceae, and the Portulacineae. Many of these relationships have been found to be strongly supported but conflicting in different analyses (Brockington et al., 2009; Soltis et al., 2011; Smith et al., 2015; Yang et al., 2015; Walker et al., 2017). Here, we focused less on the systematic resolution within the Caryophyllales and instead examined the potential relationship of diversification and climate occupancy shifts to WGDs. Therefore, we placed more emphasis on including more taxa over that of more gene regions (i.e. transcriptomes) at the cost of more missing data. Confident resolution of many of the systematic relationships will require genomic and transcriptomic sampling, as well as more thorough taxon sampling (Yang et al., 2017).

Climate occupancy reconstruction results

We performed climate occupancy ancestral reconstruction analyses on the phylogeny of 2843 taxa that included taxa with at least three sampled geographic coordinates (Figs 1-3). We conducted these analyses for visualization and for comparison with diversification and WGD results (see later). Results for individual bioclimatic variables and principal components can be found in Figs S2-S4. Bioclimatic variable 1 (mean annual temperature, Fig. 1) showed that there are several strong phylogenetic patterns of clades with preferences for colder or warmer regions. For example, Polygonaceae, Caryophyllaceae, and Montiaceae each are dominated by taxa with preferences for cold environments, although each also contains early-diverging taxa with preferences for warm environments. By contrast, taxa inhabiting warm environments predominate in Cactaceae, Amaranthaceae, Aizoaceae, the carnivorous clade (Droseraceae, Drosophyllaceae, Nepenthaceae, Ancistrocladaceae, Dioncophyllaceae), and the phytolaccoid clade (Nyctaginaceae, Phytolaccaceae, Petiveriaceae, Sarcobataceae, and Agdestis). Bioclimatic

variable 12 (mean annual precipitation) showed a comparatively consistent pattern of relatively dry to intermediately wet clades throughout the group. Indeed, only a few clades inhabiting wet ecosystems (in this case, the wet tropics) exist in the Caryophyllales, specifically small groups within the carnivorous clade, the phytolaccoids, early-diverging Polygonaceae, and other small groups throughout the Caryophyllales. The principal component loadings are presented in Figs 2 and S5. Principal component 1 (PCA1) showed significant differentiation throughout the Caryophyllales, as, for example, early-diverging Polygonaceae vs the rest of Polygonaceae, early diverging Caryophyllaceae vs the rest of Caryophyllaceae, phytolaccoids vs Aizoaceae, and Portulacineae + relatives vs Cactaceae, to name a few. These results generally reflect the extensive ecological diversification throughout the group. They also reflect significant diversification in the temperate regions of the world, especially within the Caryophyllaceae and Polygonaceae, contrasted with extensive diversification in the succulent lineages (especially Aizoaceae and Cactaceae) found in relatively dry and warm environments.

Fig. 1 Chronogram of the Caryophyllales with putative whole genome duplications mapped along with identified diversification shifts. Diversification analyses were performed on the maximum likelihood tree as well as the bootstrap tree set and those shifts that were identified in both groups are shown. The branches are colored based on Bioclim variable 1 (mean annual temperature). The numbers next to duplications correspond to the numbers in Table 3 and the letters next to diversification shifts correspond to Table 4.

Fig. 2 The chronograms and mapping of diversification and whole genome duplications are as in Fig. 1 (see key for details). The branches in (a) are colored based on Bioclim variable 12 (mean annual precipitation), and those in (b) are based on the principal component analyses (PCA) axis 1.

Fig. 3 Summary of whole genome duplication (WGD) events (with numbers corresponding to those in Table 3), distributions for climatic variables calculated between left and right clades (MAT, mean annual temperature; MAP, mean annual precipitation; PCA1, principal component axis 1), distributions for the rate of climatic variables calculated between left and right clades, and diversification shifts. Numbers along branches denote WGDs, with the numbers corresponding to those in Fig. 1 and Table 3. Numbers inside clades denote the number of diversification rate shifts. Estimated (est.) species numbers are listed beside clade names. Box plots show the values estimated (ancestral values are listed in the top rows, rates in the bottom rows) for both the left and right clades across bootstrap samples. Clades shaded grey denote a WGD; (b–d) have nested WGDs.

Table 3 Summary of whole genome duplication (WGD) events at identified clades with distance to diversification shift in the maximum likelihood (ML) and bootstrap (BS) tree sets and climate occupancy information

No.	Putative WGD	Distance to diversification shift in nodes ML (BS)	Subtending species (sister)	Mean annual temperature (°C) (sister)	Mean annual precipitation (mm) (sister)
1	Tribe Nyctagineae within the Nyctaginaceae	0 (0)	123 (40)	17.49 (20.08)	482.9 (997.08)
2	Phytolaccoid clade	6 (6)	182 (407)	19.64 (18.36)	1007.58 (452.47)
3	Claytonia	na	38 (15)	5.28 (7.25)	790.5 (970.36)
4	Portulacineae	1 (1)	1600 (38)	16.19 (19.35)	699.87 (736.42)
5	Amaranthus	0 (0)	28 (1)	16.27 (27.09)	797.74 (117.63)
6	Tribe Gomphrenoideae within Amaranthaceae	7 (7)	172 (41)	17.91 (16.65)	871.95 (1289.5)
7	in Caryophyllaceae (Alsinoideae+Caryophylloideae sensu Greenberg and Donoghue 2011)	9 (9)	793 (13)	11.44 (12.06)	761.43 (720.00)
8	Polygonaceae	13 (13)	670 (70)	16.3. (16.89)	1084.17 (794.28)
9	Plumbaginaceae	na	70 (670)	16.89 (16.3)	794.28 (1084.17)
10	Droseraceae	8 (na)	67 (108)	16.3 (19.08)	1280.57 (1491.72)
11	Nepenthaceae	4 (na)	89 (19)	22.52 (20.05)	2170.5 (1611.63)
12	Ancistrocladaceae	0 (na)	15 (3)	24.17 (25.6)	1899.13 (2882.4)
13	Tamaricaceae	na	19 (3)	14.09 (16.21)	568.32 (469.61)

Numbers correspond to those in Figs 1 and 2. Entries with 'na' suggest no significant shift near node.

Table 4 Summary of diversification shifts with rough correspondence to included taxa

No.	Family	Diversification shift	Mean shift (ML)	Mean shift (BS)
a	Cactaceae	Echinops	1.7957	2.2008
b	Cactaceae	within <i>Gymnocalycium</i>	6.9152	
С	Cactaceae	Gymnocalycium	-0.001	0.0555
d	Cactaceae	Hylocereus+Selenicereus	0.1175	
e	Cactaceae	Rhipsalis+Schlumbergera+Echinocereus+relatives	0.0514	
f	Cactaceae	Stenocactus	-0.057	-0.019
g	Anacampserotaceae	Anacampseros	0.2624	
ĥ	Portulacaceae	Portulaca	0.0427	0.0447
i	Montiaceae	Montiopsis	0.9418	
j	Montiaceae	Montiaceae	0.0325	
k	Aizoaceae	Drosanthemum+Delosperma+Hereroa+relatives	0.1469	
1	Nyctaginaceae	Boerhavia		0.0747
m	Nyctaginaceae	Commicarpus	0.9642	
n	Nyctaginaceae	Tribe Nyctagineae	0.0484	0.0485
0	Nyctaginaceae	Abronia+Tripterocalyx		-0.084
р	Nyctag.+Aizo+Cact.+relatives	Nyctag.+Aizo+Cact.+relatives	0.0168	0.019
r	Amaranthaceae	Salicornia	0.2732	0.1649
S	Amaranthaceae	Suaeda clade 1	0.1027	
t	Amaranthaceae	Suaeda clade 2	-0.036	-0.028
u	Amaranthaceae	Atriplex	0.0384	
V	Amaranthaceae	Corispermum	0.1186	
W	Amaranthaceae	Froelichia+Gomphrena+relatives	0.0217	0.0132
X	Amaranthaceae	Amaranthus	0.335	0.2049
y	Caryophyllaceae	Dianthus	0.0662	0.0409
Z	Caryophyllaceae	Cerastium	0.7137	
aa	Caryophyllaceae	within <i>Arenaria</i>	0.4606	0.425
bb	Caryophyllaceae	within Moehringia	1.0971	0.995
СС	Caryophyllaceae	Schiedea	0.2339	0.2767
dd	Polygonaceae	within <i>Fagopyrum</i>	-0.04	-0.034
ee	Polygonaceae	Eriogonum+relatives	0.0432	0.0364
ff	Nepenthaceae	within Nepenthes	0.042	
gg	Ancistrocladaceae	Ancistrocladus	0.1426	
hh	Droseraceae	within <i>Drosera 1</i>	0.2237	0.2076
ii	Droseraceae	within <i>Drosera</i> 2		0.1622

Letters correspond to those shown in Figs 1 and 2.

Diversification

Significant shifts in diversification were detected in most major clades (Table 4; Fig. 1). The results from diversification analyses on the ML tree and bootstrap tree set were generally congruent with each other. However, there were discrepancies (Fig. 1). The bootstrap set recovered many shifts in Polygonaceae, the carnivorous clade, Caryophyllaceae, some shifts within Cactaceae, phytolaccoids, and Amaranthaceae. Disagreements over the existence and placement of shifts are primarily within Portulacineae, Aizoaceae, and Amaranthaceae. Overall, MEDUSA detected 27 increases in diversification rate using the ML tree and 16 increases using the bootstrap trees. Given the relative lack of support of some of the branches in the phylogeny, we find the MEDUSA results on the set of bootstrapped trees to be the most conservative, whereas the ML results are suggestive but not definitive of diversification shifts.

Duplications, diversification, and climate occupancy

Whole genome duplication analyses showed 13 putative WGDs that could be mapped to clades (i.e. involve more than one taxon in the dataset; Table 3; Figs 1-3). Many of these were found in early diverging lineages as opposed to nested deep within families, although there are WGDs identified in Amaranthus and Claytonia. We also found evidence of nested WGDs within the phytolaccoids and Portulacineae. In addition to these deeper WGDs, there were several more recent WGDs that were present in K_s plots but could not be mapped to a clade (Yang et al., 2017). By sampling more extensively, Yang et al. (2017) and Walker et al. (2017) found additional WGD events within the Caryophyllales. We will surely find additional WGDs events in other lineages as more effort is placed on denser taxon sampling using genomes and transcriptomes. We did not explore WGDs that could only be mapped to terminal branches as we could not verify these phylogenetically. Further discussion of specific results related to the WGDs themselves can be found in Yang et al. (2017) and Walker et al. (2017).

To better examine whether WGDs coincide with diversification rate shifts, increases and decreases, or notable changes in climate tolerance, we mapped WGDs onto the large phylogenies and summarized the number of species and climate occupancy information for each clade (Tables 3, 4; Figs 1-3). Some WGD events were associated with synchronous diversification events. For example, within Nyctaginaceae, a WGD event occurs on the same branch (leading to Tribe Nyctagineae; Douglas & Spellenberg, 2010) as an increase in diversification rate in both the ML tree and the bootstrapped dataset (Fig. 1, dup: 1 div: n). These events were also associated with a shift in life history and occupancy from an ancestral woody habit in the tropics to the largely herbaceous, arid-adapted temperate Nyctagineae. This was also the case for Amaranthus (Fig. 1, dup: 5 div: x). Other coincident diversification and WGD events in the Droseraceae and Nepenthaceae were only supported by the ML tree. Although these correlated events may, in fact, be accurate, we will reserve

more comments for when these are more confidently resolved. Other than these simultaneous shifts and one diversification shift at the base of the MRCA of Nyctaginaceae + Cactaceae, all other shifts in diversification occured more recently than WGD events. Several authors have suggested that this lagging pattern may be common at the broader angiosperm scale (Schranz et al., 2012; Tank et al., 2015), although the expected distance of the diversification shift from the WGD event was not specified (this is discussed more later on). In the results presented here, some diversification events occur shortly after the WGD event, such as within the Amaranthaceae (dup: 6) and Portulacineae (dup: 4). For others, it is difficult to determine whether the diversification events that occur after the WGD events are significantly close to the WGD to warrant suggestion of an association (e.g. dup: 7, dup: 10, dup: 8). More description of a model that would generate a null expectation would be necessary to determine what is 'close enough' (see discussion later).

Many of the other inferred lineage diversification rate shifts were associated with very recent, rapid radiations within genera such as those documented within Commicarpus (Nyctaginaceae), Dianthus (Caryophyllaceae), Cerastium (Caryophyllaceae), Arenaria (Caryophyllaceae), and Salicornia (Amaranthaceae), to name a few (Table 4). Although polyploids were reported in these clades, we were unable to pinpoint the phylogenetic location of any WGD with our current taxon sampling (e.g. Dianthus; Carolin, 1954; Weiss et al., 2002). Increased sampling of transcriptomes and genomes will shed more light in these areas. While we only find a few WGDs that coincide well with diversification rate shifts, it is important to note that the uncertainty in the phylogenies makes it difficult to map anything but the strongest diversification signals. This discrepancy can be seen in the difference between the number of events supported by the ML analyses and those supported by the bootstrap analyses. It is possible that additional sequence data will improve phylogenetic resolution and confidence, and that, consequently, additional diversification events will emerge.

Equally interesting to the few WGD events associated directly with diversification are the WGD events associated with general shifts in climate tolerance. WGDs in the Polygonaceae, Caryophyllaceae, Montiaceae, and the Tribe Nyctagineae appear to be associated with movement into colder environments (Figs 1, 2, S2, S3). Species arising after the WGD within the Amaranthaceae occupy wetter environments than the sister clade. The WGDs within the carnivorous plants were also associated with shifts in environment as Nepenthaceae are found in very wet environments and the Droseraceae are found in somewhat drier environments, at least comparatively. However, in these cases, perhaps the development of the wide array of morphologies associated with carnivory, apart from *Drosophyllum*, is more obviously associated with the WGD (Walker *et al.*, 2017).

While these qualitative assessments suggest potential correlations of shift in the climate occupied and WGDs, more specific and direct comparisons are necessary to quantify the extent of the shifts. For many of the clades experiencing WGD, a direct comparison with a sister clade is difficult because the sister may consist of a single species, another clade with WGD, or another

complication. For example, there are WGDs at the base of both Polygonaceae and Plumbaginaceae as well as Nepenthaceae and Droseraceae. However, we made a direct comparison of five duplicated lineages (see Fig. 3) in both values (i.e. ancestral states between sister clades) and variances (rate of Brownian motion) of climatic variables. In each case, the duplicated lineage occupied a colder mean annual temperature. This was also the case with the nested WGDs of Portulacineae and the Tribe Nyctagineae.

Of course, we do not suggest that all WGDs are associated with a shift to a colder climate. While such a pattern may exist in some clades (e.g. Caryophyllaceae), we emphasize that we observed a shift in the climate occupied rather than the direction of the shift. This, too, may only be the case with the examples shown here. Mean annual precipitation did not exhibit a clear pattern with some clades occupying a higher precipitation and some occupying lower precipitation. Perhaps the best summary of climatic occupancy is the principal components of all the climatic variables. Here, while the shift in units is less easily interpreted, duplicated clades occupied different climatic spaces than did sister lineages. This supports the hypothesis that WGD events are associated with adaptations. Here, many of these adaptations are associated with shifts in climatic occupancy. This necessitates further examination within the Caryophyllales as more data are gathered. This also suggests further examination with other angiosperm clades in order to investigate how general these results are.

The rates of climate occupancy evolution show more complicated patterns. While some clades, such as the Portulacineae, showed significant increase in a rate of climate occupancy evolution as compared with the sister clade (e.g. MAT), no clear pattern emerged across all comparisons. There were other shifts in rate such as with MAT and MAP in the Nyctaginaceae and Montiaceae, but these were not as strong as the pattern of climate occupancy itself discussed earlier.

We suggest caution with any overinterpretation of the results presented here. With each of the patterns presented, it is important to consider them in the context of uncertainty, both inherent in the biological processes that generate the phylogeny and in the analyses associated with large-scale datasets. Large phylogenies and datasets allow for broad examinations, but uncertainty makes precise mapping of weaker signals difficult. Furthermore, large datasets often have poor overlap because of a lack of data availability, and many of these clades require genomic datasets for accurate resolution (e.g. Arakaki et al., 2011; Yang et al., 2015; Walker et al., 2017). The comparisons of sister clades for climatic occupancy analyses and diversification analyses assume accurate identification of relationships that may differ between datasets. Additionally, large geographic datasets often contain extensive uncertainty and data cleanliness challenges because of the enormous size of the datasets. Furthermore, the biological reality of nested WGDs complicates analyses and interpretations. Focused studies with increased taxon sampling will contribute greatly to our understanding of the patterns presented (as suggested by Edwards et al., 2015). Increasing taxon sampling may help, but additional sequence data and specimen data for phylogenetic analyses, WGD mapping analyses, and climate occupancy characterization will improve our precision in these investigations. Hence, the results presented here will, we hope, contribute to a growing discussion but they will surely not be the last word.

What emerges from these analyses of WGD, diversification, and climate occupancy? It would appear that, perhaps not unexpectedly, the patterns are complex and mixed. Some WGDs are associated directly with diversification events, some are associated with shifts in climate tolerance, others are coincident with shifts in rates of climate occupancy evolution, and still others are associated with known adaptations (carnivory, habit shifts associated with montane habitats, etc.). Some diversification shifts follow WGD events. However, it is unclear whether these events are linked or correlated and, if so, if they are correlated more with diversification than an additional adaptation or other evolutionary pattern or process. As data increase in these groups and as confidence increases in the phylogenetic relationships as well as the placement of both diversification and WGD events, we will be able to better address these questions. However, at least for the Caryophyllales, it does not appear as though diversification is tightly linked with WGD. Instead, for the clades that can be tested, we find shifts in climate occupancy correspond well to WGD.

Suggestions for moving forward

Whole genome duplications are almost certainly among the dominant processes that contribute to major evolutionary events within plant lineages. This may be in the form of increased diversification, development of novel traits, adaptation to new environments, and many other events (e.g. Schubert & Vu, 2016; Clavijo et al., 2017). However, for several reasons, these events (i.e. WGDs and other evolutionary events) may not occur simultaneously. In fact, there may be little to no expectation that the events will occur simultaneously (e.g. Donoghue, 2005; Schranz et al., 2012; Donoghue & Sanderson, 2015; Tank et al., 2015; Dodsworth et al., 2016). In any case, more precise expectations and null models need to be developed to allow for reasonable tests of the correlations among these events. For example, there may be shifts in diversification that follow a WGD, but is it close enough, or frequent enough, to infer that the two events are related? Is correlation possible or identifiable if, as is expected, intervening lineages have become extinct? These questions would benefit from simulation studies where the true correlation pattern is known. Furthermore, more precise connections should be made to the biology of speciation and genome WGDs to better determine why, specifically, WGDs would be expected to correspond with any diversification pattern instead of adaptations, which may or may not correspond with increases or decreases in speciation. While still challenging, investigating the fate of and patterns of selection within individual genes (e.g. subfunctionalization and neofunctionalization) may shed light on the genomic basis of post-WGD and possibly allow for more concrete expectations for diversification. With the availability of genomes and transcriptomes, this is now beginning to become a possibility (e.g. Brockington et al., 2015; Walker et al., 2017). Only when these suggestions are linked to more specific biological hypotheses

will we be able to better understand the ultimate impact of WGD in plant evolution.

Acknowledgements

We thank Caroline Parins-Fukuchi for discussion of the project and comments on the manuscript. We thank Gregory Stull, Oscar Vargas, Ning Wang, Sonia Ahluwalia, Jordan Shore, Lijun Zhao, Alex Taylorm, and Drew Larson for helpful comments on the manuscript. The authors thank Hilda Flores, Helga Ochoterena, Tom Wendt and the staff at the Plant Resources Center at the University of Texas at Austin, the Lyon Arboretum, David Anderson, John Brittnacher, Anna Brunner, Joseph Charboneau, Arianna Goodman, Heather-Rose Kates, Patricia Herrnández Ledesma, Lucas Majure, Nidia Mendoza, Michael Powell, Rick Ree, Carl Rothfels, Flora Samis, Jeffrey Sanders, Elizabeth Saunders, Rich Spellenberg, Greg Stull, Mats Thulin, Erin Tripp, and Sophia Weinmann for help with obtaining material. We thank the Cambridge University Botanic Gardens for growing material for this study. This work was supported by NSF DEB awards 1352907 and 1354048.

Author contributions

S.A.S., J.F.W., Y.Y., M.J.M., and S.F.B. designed the research. C.P.D, R.B., N.L., and N.A.D. collected data. S.A.S., J.W.B., and Y.Y. analyzed the data. S.A.S. led the writing. All authors read and contributed to the manuscript.

References

- Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. *Proceedings of the National Academy of Sciences, USA* 106: 13410–13414.
- Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. *Proceedings of the National Academy of Sciences, USA* 108: 8379–8384.
- Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plants genomes. Current Opinion in Plant Biology 15: 140–146.
- Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. *American Journal of Botany* 103: 1139–1145.
- Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the *Cleome* transcriptome elucidate the history of genome duplications in *Arabidopsis* and other Brassicales. *Genome Biology and Evolution* 1: 391–399.
- Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97: 1296–1303.
- Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004. Polyploidy in arctic plants. *Biological Journal of the Linnean Society* 82: 521–536.
- Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627–643.
- Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. 2015. Lineage-specific gene radiations

- underlie the evolution of novel betalain pigmentation in Caryophyllales. *New Phytologist* **207**: 1170–1180.
- Brown JW, Walker JF, Smith SA. 2017. phyx: phylogenetic tools for Unix. *Bioinformatics* 33: 1886–1888.
- Burnham KP, Anderson DR. 2002. Model selection and multimodel inference. New York, NY, USA: Springer.
- Carolin RC. 1954. Stomatal size, density and morphology in the genus *Dianthus*. Kew Bulletin 9: 251–258.
- Cevallos-Ferriz SRS, Estrada-Ruiz E, Perez-Hernandez BR. 2008.

 Phytolaccaceae infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. *American Journal of Botany* 95: 77–83.
- Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.
- Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. *Genome Research* 27: 885–896.
- Comai L. 2005. The advantages and disadvantages of being polyploid. *Nature Review Genetics* 6: 836–846.
- Degreef JD. 1997. Fossil Aldrovanda. Carnivorous Plant Newsletter 26: 93–97.
 Dodsworth S, Chase M, Leitch A. 2016. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms. Botanical Journal of the Linnean Society 180: 1095–8339.
- Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. 2012. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (*Beta vulgaris*). *The Plant Journal* 70: 528–540.
- Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. *Paleobiology* 31: 77–93.
- Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. *New Phytologist* 207: 260–274.
- Douglas N, Spellenberg R. 2010. A new tribal classification of Nyctaginaceae. *Taxon* 59: 905–910.
- **Doyle JJ, Doyle JL. 1987.** A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* **19**: 11–15.
- Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences, USA 112: 8362–8366.
- Edwards EJ, de Vos JM, Donoghue MJ. 2015. Doubtful pathways to cold tolerance in plants. *Nature* 521: E5–E6.
- Eric Schranz M, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. *Current Opinion in Plant Biology* 15: 147–153.
- Estep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG, Hodkinson TR, Layton DJ, Malcomber ST, Pasquet R, Kellogg EA. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. *Proceedings of the National Academy of Sciences, USA* 111: 15149–15154.
- Friis EM, Crane P, Pedersen KR. 2011. Early flowers and angiosperm evolution. Cambridge, UK: Cambridge University Press.
- Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010.
 New algorithms and methods to estimate maximum-likelihood phylogenies:
 assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.
- Huang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H. 2016. Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. *Molecular Biology and Evolution* 33: 2820–2835.
- Jordan GJ, Macphail MK. 2003. A middle-late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. American Journal of Botany 90: 761–768.
- Kellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested? *Current opinion in plant biology* 30: 25–32.

- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics (Oxford England) 23: 2947–2948.
- Laurent S, Salamin N, Robinson-Rechavi M. 2017. No evidence for the radiation time lag model after whole genome duplications in Teleostei. *PLoS ONE* 12: e0176384.
- Levin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1–25.
- Levin DA. 2002. The role of chromosomal change in plant evolution. New York, NY, USA: Oxford University Press.
- Li Weizhong, Godzik Adam. 2006. Cd-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics Applications Note* 22: 1658–59.
- Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333: 1257.
- McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens-Mack JH. 2016. A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. *Genome Biology and Evolution* 8: 1150–1164.
- Miller JS, Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants. Science 289: 2335–2338.
- Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. *Proceedings of the National Academy of Sciences, USA* 107: 4623–4628.
- Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Molecular Biology* and Evolution 3: 418–426.
- Nichols DJ, Traverse A. 1971. Palynology, petrology, and depositional environments of some early Tertiary lignites in Texas. *Geoscience and Man* 3: 37–48.
- Ocampo G, Columbus T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. *American Journal of Botany* 97: 1827–1847.
- Otto SP, Whitton J. 2000. Polyploid incidence and evolution. *Annual Review of Genetics* 34: 401–437.
- Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. *Bioinformatics* 30: 2216–2218.
- Puttick MN, Clark J, Donoghue P. 2015. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proceedings of the Royal Society of London B: Biological sciences 282: 20152289.
- Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. *Bioinformatics* 19: 301–302.
- Schranz E, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. *Current Opinion in Plant Biology* 15: 147–153.
- Schubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Sciences 21: 749–757.
- Schuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-pacific *Muehlenbeckia*. *PLoS ONE* 8: e61261.
- Smith SA, Beaulieu JM, Donoghue MJ. 2009. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37.
- Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. *American Journal of Botany* 98: 404–414.
- Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. *Science* 322: 86–89.
- Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150.
- Smith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. *Bioinformatics* 28: 2689–2690.

- Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb's legacy. *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 369: 20130351.
- Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704–730.
- Soltis PS, Soltis DS. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051–7057
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. *Bioinformatics* 30: 1312–1313.
- Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O'toole E, Pellman D. 2006. Genome-wide genetic analysis of polyploidy in yeast. *Nature* 443: 541.
- Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. *Nucleic Acids Research* 34: W609–W612.
- Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. *New Phytologist* 207: 454–467.
- Thulin M, Moore AJ, El-Seedi H, Larsson A, Christin P-A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. *Taxon* 65: 775–793.
- Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). *Botanical Journal of the Linnean Society* 174: 110–129.
- Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. *American Journal of Botany* 104: 858–867.
- Weiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in *Dianthus* sect. *Plumaria* (Caryophyllaceae). *New Phytologist* 156: 85–94.
- Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. *Proceedings of the National Academy of Sciences*, USA 106: 13875–13879.
- Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution* 24: 1586–1591.
- Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA. 2017. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. bioRxiv doi: 10.1101/143529.
- Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution 32: 2001–2014.
- Zetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F. 1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt 56: 439–460.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

- Fig. S1 The cladogram with support mapped for the bootstrap replicates described in the Materials and Methods section.
- **Fig. S2** The chronograms and mapping of temperature variables (bioclimatic variables 2–11) that are not presented in Fig. 1.

- **Fig. S3** The chronograms and mapping of precipitation variables (bioclimatic variables 13–19) that are not presented in Fig. 2.
- **Fig. S4** The chronograms and mapping of PCA axis 2 on the broader Caryophyllales.
- Fig. S5 Principal component loadings for bioclimatic variables.

Table S1 Calibrations used for divergence time analysis

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

About New Phytologist

- New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a **not-for-profit organization** dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews.
- Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication 'as ready' via *Early View* our average time to decision is <26 days. There are **no page or colour charges** and a PDF version will be provided for each article.
- The journal is available online at Wiley Online Library. Visit **www.newphytologist.com** to search the articles and register for table of contents email alerts.
- If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)
- For submission instructions, subscription and all the latest information visit www.newphytologist.com