Effectively Prefetching Remote Memory with Leap

Hasan Al Maruf and Mosharaf Chowdhury

Memory-Intensive Applications

Perform Great!

Perform Great Until Memory Runs Out

Perform Great Until Memory Runs Out

PageRank on PowerGraph

50% Less Memory Causes Slowdown of ...

PageRank on PowerGraph

Between a Rock and a Hard Place

Underallocation

Leads to severe performance loss

Overallocation

Leads to underutilization 30-40% in Google, Alibaba, and Facebook

Memory Disaggregation

Remote Memory Access

User-space Applications Memory Disaggregation Frameworks Infiniswap Remote Regions LegoOS (ATC'18) (NSDI'17) (OSDI'18) Remote Remote file Disaggregated memory paging abstraction OS Remote Memory

4KB page access latency local vs. remote

100 ns vs. 4 us

Remote Memory Access

4KB page access latency local vs. remote

100 ns vs. 4 µs

Latency requirement for preferable performance[1]

 $3 \mu s$

Existing frameworks can't achieve!

Remote Memory Access

[1] P.X. Gao et al. "Network requirements for resource disaggregation" OSDI'16.

Life of a Page

Where Does the Time Go?

Where Does the Time Go?

Design Goal

- I. Increase cache hit
 - faster path serves more page faults

- 2. Reduce the latency of the slow path
 - remove unnecessary block-layer operations for RDMA

Leap

Online remote memory prefetcher

Identifies memory access patterns to prefetch pages in a

- fast,
- cache-efficient, and
- resilient manner

without modifying any

- applications, or
- hardware

Life of a Page

Life of a Page w/ Leap

Life of a Page w/ Leap

Prefetching in Linux

Reads ahead pages sequentially

Based only on the last page access

too aggressive on seq: cache pollution

too conservative off seq: brings nothing

Does not distinguish between processes

Cannot detect thread-level access irregularities

Approach	Low Computational Complexity	Low Memory Overhead	Unmodified Application	HW/SW Independence	Temporal Locality	Spatial Locality	Low Cache Pollution
----------	------------------------------------	---------------------------	---------------------------	-----------------------	----------------------	---------------------	---------------------------

Approach	Low Computational Complexity	Low Memory Overhead	Unmodified Application	HW/SW Independence	Temporal Locality	Spatial Locality	Low Cache Pollution
Next N-Line	Yes	Yes	Yes	Yes	No	Yes	No
Stride	Yes	Yes	Yes	Yes	No	Yes	No

Approach	Low Computational Complexity	Low Memory Overhead	Unmodified Application	HW/SW Independence	Temporal Locality	Spatial Locality	Low Cache Pollution
Next N-Line	Yes	Yes	Yes	Yes	No	Yes	No
Stride	Yes	Yes	Yes	Yes	No	Yes	No
Instruction Prefetch	No	No	No	No	Yes	Yes	No

Approach	Low Computational Complexity	Low Memory Overhead	Unmodified Application	HW/SW Independence	Temporal Locality	Spatial Locality	Low Cache Pollution
Next N-Line	Yes	Yes	Yes	Yes	No	Yes	No
Stride	Yes	Yes	Yes	Yes	No	Yes	No
Instruction Prefetch	No	No	No	No	Yes	Yes	No
Linux Read-Ahead	Yes	Yes	Yes	Yes	Yes	Yes	No

Approach	Low Computational Complexity	Low Memory Overhead	Unmodified Application	HW/SW Independence	Temporal Locality	Spatial Locality	Low Cache Pollution
Next N-Line	Yes	Yes	Yes	Yes	No	Yes	No
Stride	Yes	Yes	Yes	Yes	No	Yes	No
Instruction Prefetch	No	No	No	No	Yes	Yes	No
Linux Read-Ahead	Yes	Yes	Yes	Yes	Yes	Yes	No
Leap	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Leap Prefetcher

Linear-time and constant memory space Get Prefetch Window Size Two main components: Trend detection Window Prefetch window size detection Size = 0? No Yes Trend Read only the Found? requested page No Yes Prefetch with Prefetch with Previous Trend Current Trend

Trend Detection

Flexible to short term irregularity

Identifies the majority element in access history

Regular trends can be found within recent accesses

Trend Detection Example

trend of -3

(a) at time t3

trend of -3 disappears, no major new trend

(b) at time t7

trend of +2 detected

(c) at time t8

trend of +2 detected among irregularities

(d) at time t15

Prefetch Window Size Detection

Cache hit indicates prefetch utilization

High cache hit: increase prefetch window aggressively

No cache hit trend availability: increase prefetch window gradually no trend: decrease prefetch window gradually

Gradual slow down helps during sudden changes

Evaluation

Deploy and evaluate over 56 Gbps InfiniBand network

Memory Disaggregation Frameworks

Disaggregated VMM: Infiniswap

Disaggregated VFS: Remote Regions

Lowers Remote Page Access Latency by...

Sequential Access

Stride Access

104X

Efficient Pattern Detection

Detects **29.70**% more sequential accesses

Detects most of the irregularity

Efficient Pattern Detection

Detects **29.70**% more sequential accesses

Detects most of the irregularity

During irregularities, doing nothing helps the most

Perform Great Even After Memory Runs Out

TPC-C on VoltDB

38X

Infiniswap

TPC-C on VoltDB

2X

Infiniswap + Leap

TPC-C on VoltDB

Perform Great Even After Memory Runs Out

TPC-C on VoltDB

Infiniswap

TPC-C on VoltDB

Infiniswap + Leap

TPC-C on VoltDB

2.4X

Benefit Breakdown of Leap's Components

Data path optimizations: single-µs latency till 95th percentile

Prefetcher: sub-µs latency till 85th percentile

Eager cache eviction: improves the 99th percentile latency by 22%

Future Work

- 1. Thread-specific prefetching for multiple concurrent streams
 - memory is managed at the process level
 - this requires significant changes in virtual memory subsystem

- 2. Optimized remote I/O interface
 - load balancing,
 - fault-tolerance,
 - data locality, and
 - application-specific isolation in remote memory

Lightweight and efficient data path for remote memory

source code available at https://github.com/SymbioticLab/leap

Online prefetcher with a leaner data path and eager cache eviction policy to improve

- cache hit,
- remote I/O latency, and
- application-level performance

without modifying any

- application, or
- hardware

Thank You!

source code available at https://github.com/SymbioticLab/leap