Matrix Algebra Review Assignment 1 Points – 30

1.1

Vector Operations

$$\mathbf{u} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$

- a. Find $u^t = transpose(u)$. (Include the correct orientation as row or column.) (2 pts.)
- b. Find v^t = transpose(v). (Include the correct orientation as row or column.) (2 pts.)
- c. Find u v (inner product). (2 pts.)
- d. Find v x u (outer product). (2 pts.)

1.2

Matrix Operations

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

- a. Find $B^t = transpose(B)$. (2 pts.)
- b. Find A B. (2 pts.)
- c. Find A C. (2 pts.)
- d. Find C A. (2 pts.)

1.3

Quadratic Form

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

a. Find b^t A b. (5 pts.)

1.4

Solution of a set of linear equations

$$x + y - z = 0$$

 $x - y + z = 2$
 $2x - 3y + z = -1$

a. Solve for x, y and z (9 pts.)