10강. CPU의 내부 구성 - 레지스터

- 레지스터는 CPU 내부의 작은 임시저장장치입니다.
- 예를 들어, 프로그램 속 명령어, 데이터는 실행 전후로 레지스터에 저장됩니다.
- CPU 내부에는 다양한 레지스터들이 있고, 각기 다른 역할을 가집니다.

반드시 알아야 할 레지스터

• CPU의 종류마다 레지스터의 종류는 다릅니다.

1. 프로그램 카운터

메모리에서 가져올 명령어의 주소 (메모리에서 읽어 들일 명령어의 주소)

2. 명령어 레지스터

해석할 명령어, 방금 메모리에서 읽어 들인 명령어, 제어장치가 해석

3. 메모리 주소 레지스터

메모리의 주소, CPU가 읽어 들이고자 하는 주소를 주소 버스로 보낼 때 거치는 레지스터

4. 메모리 버퍼 레지스터

메모리와 주고받을 값 (데이터와 명령어)

예시

순차적인 실행 흐름이 끊기는 경우

특정 메모리 주소로 실행 흐름을 이동하는 명령어 실행시

- JUMP, CONDITIONAL JUMP, CALL, RET
- 인터럽트 발생

5. 플래그 레지스터

연산 결과 또는 CPU 상태에 대한 부가적인 정보

6. 범용 레지스터

다양하고 일반적인 상황에서 자유롭게 사용

7. 스택 포인터

• 주소 지정에 사용, 스택의 꼭대기 가리킴

8. 베이스 레지스터

• 주소 지정에 사용, 기준 주소 저장

특정 레지스터를 이용한 주소 지정 방식

스택 주소 지정 방식

스택과 스택 포인터를 이용한 주소 지정 방식입니다.

스택 포인터는 스택의 꼭대기를 가리키는 레지스터입니다.

즉, 스택이 어디까지 차 있는 지에 대한 표시입니다.

변위 주소 지정 방식

오퍼랜드 필드의 값(변위)과 특정 레지스터의 값을 더하여 유효 주소 얻기

• 특정 레지스터 : 프로그램 카운터, 베이스 레지스터

상대 주소 지정 방식

오퍼랜드 필드의 값(변위)과 프로그램 카운터의 값을 더하여 유효 주소 얻기

베이스 레지스터 주소 지정 방식

오퍼랜드 필드의 값(변위)과 베이스 레지스터의 값을 더하여 유효 주소 얻기

