

ORAL HEC 2016

MATHÉMATIQUES

EXEMPLES DE SUJETS ET DE CORRIGES

Option économique

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

On appelle $m\acute{e}diane$ de X tout réel m qui vérifie les deux conditions : $P(X \le m) \ge \frac{1}{2}$ et $P(X \ge m) \ge \frac{1}{2}$. On suppose que X suit la loi exponentielle de paramètre $\lambda > 0$.

- 1. Question de cours : Définition et propriétés de la loi exponentielle.
- 2.a) Montrer que X admet une unique médiane m que l'on calculera.
- b) Soit M la fonction définie sur \mathbf{R} , à valeurs réelles, telle que : $\forall x \in \mathbf{R}$, M(x) = E(|X x|).

Étudier les variations de la fonction M sur $\mathbf R$ et montrer que m est l'unique point en lequel M atteint son minimum.

3. On suppose que le paramètre λ est inconnu. Soit α un réel vérifiant $0<\alpha<1.$

Pour n entier de \mathbb{N}^* , soit (X_1, X_2, \dots, X_n) un n-échantillon de variables aléatoires indépendantes et de même loi que X. On pose pour tout $n \in \mathbb{N}^*$: $Z_n = \min (X_1, X_2, \dots, X_n)$.

- a) Quelle est la loi de \mathbb{Z}_n ?
- b) Établir l'existence de deux réels c et d tels que : $P\left(\left[Z_n \leqslant \frac{c}{\lambda}\right]\right) = \frac{\alpha}{2}$ et $P\left(\left[Z_n \geqslant \frac{d}{\lambda}\right]\right) = \frac{\alpha}{2}$.
- c) En déduire un intervalle de confiance du paramètre m au niveau de confiance $1-\alpha$.

CORRIGÉ EXERCICE PRINCIPAL E 65

- 1. Cours.
- 2.a) On a : $\forall x \ge 0$, $P(X \le x) = 1 e^{-\lambda x}$ et les réels m vérifient : $1 e^{-\lambda m} \ge \frac{1}{2}$ et $e^{-\lambda m} \ge \frac{1}{2}$, donc $e^{-\lambda m} = \frac{1}{2}$

Par suite, l'équation $e^{-\lambda m} = \frac{1}{2}$ fournit l'unique solution : $m = \frac{1}{\lambda} \ln 2$.

b)
$$\forall x \in \mathbf{R}, \ M(x) = E(|X-x|) = \int_0^{+\infty} |u-x| \lambda e^{-\lambda u} du = \int_x^{+\infty} (u-x) \lambda e^{-\lambda u} du - \int_0^x (u-x) \lambda e^{-\lambda u} du.$$

Des calculs (peut-être un peu longs) mais sans difficulté conduisent à : $\forall x \in \mathbf{R}, \ M(x) = \frac{2}{\lambda} e^{-\lambda x} + x - \frac{1}{\lambda}$.

L'étude de la fonction M montre bien que $m=\frac{1}{\lambda}\,\ln 2$ est l'unique point en lequel M atteint son minimum.

- 3.a) Question classique : $Z_n \hookrightarrow \mathcal{E}(n\lambda)$.
- b) On note G_n la fonction de répartition de Z_n . On cherche c et d (qui sont non nuls) tels que $G_n\left(\frac{c}{\lambda}\right)=\frac{\alpha}{2}$

et
$$1 - G_n\left(\frac{d}{\lambda}\right) = \frac{\alpha}{2}$$
, c'est-à-dire $1 - e^{-n\lambda c/\lambda} = \frac{\alpha}{2}$ et $1 - e^{-n\lambda d/\lambda} = 1 - \frac{\alpha}{2}$, d'où :

$$c = -\frac{1}{n}\ln(1 - \alpha/2)$$
 et $d = -\frac{1}{n}\ln(\alpha/2)$.

c) On a:
$$P\left(\frac{c}{\lambda} \leqslant Z_n \leqslant \frac{d}{\lambda}\right) = 1 - \alpha \Longrightarrow P\left(\frac{Z_n}{d} \leqslant \frac{1}{\lambda} \leqslant \frac{Z_n}{c}\right) = 1 - \alpha$$
. Or, $m = \frac{\ln 2}{\lambda}$. Par suite,

$$P\left(\frac{\ln 2}{d}Z_n\leqslant m\leqslant \frac{\ln 2}{c}Z_n\right)=1-\alpha.$$

Avec les valeurs de c et d calculées précédemment, l'intervalle $\left[\frac{\ln 2}{d}Z_n, \frac{\ln 2}{c}Z_n\right]$ est un intervalle de confiance de la médiane m au niveau de confiance $1-\alpha$.

Soit E un \mathbf{R} -espace vectoriel de dimension n et f un endomorphisme de E admettant n valeurs propres distinctes. Montrer qu'un endomorphisme g de E vérifie $f \circ g = g \circ f$ si et sculement si les vecteurs propres de f sont des vecteurs propres de g.

CORRIGÉ EXERCICE SANS PRÉPARATION E 65

Soit (e_1, e_2, \ldots, e_n) une base de vecteurs propres pour f associés aux valeurs propres respectives $\lambda_1, \lambda_2, \ldots, \lambda_n$. Le sous-espace propre de f associé à λ_i est la droite engendrée par e_i .

- Si e_1, e_2, \ldots, e_n sont des vecteurs propres de g associés aux valeurs propres $\mu_1, \mu_2, \ldots, \mu_n$ (non nécessairement deux à deux distinctes), on a : $\forall i \in [\![1,n]\!]$, $f \circ g(e_i) = f(\mu_i e_i) = \mu_i \lambda_i e_i = g(\lambda_i e_i) = g \circ f(e_i)$. Donc, les endomorphismes $f \circ g$ et $g \circ f$ coïncident sur une base et sont donc égaux.
- Réciproquement, si $f \circ g = g \circ f$, on a : $\forall i \in [\![1,n]\!]$, $f \circ g(e_i) = g \circ f(e_i)$, soit $f(g(e_i)) = \lambda_i g(e_i)$. Ainsi, $g(e_i)$ est un vecteur propre de f associé à la valeur propre λ_i : le sous-espace propre étant la droite engendrée par e_i , le vecteur $g(e_i)$ est colinéaire à e_i et par suite, e_i est un vecteur propre de g.

On suppose que toutes les variables aléatoires qui interviennent dans l'exercice sont définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Question de cours : Loi uniforme sur un intervalle [a,b]; définition, propriétés.
- 2. Pour tout x réel, on note |x| la partie entière de x.
- a) Pour n entier de \mathbb{N}^* , montrer que pour tout x réel, on a : $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n} = x$.
- b) Établir pour tout $(x, y) \in \mathbb{R}^2$, l'équivalence suivante : $\lfloor y \rfloor \leqslant x \Longleftrightarrow y < \lfloor x \rfloor + 1$.
- c) Soit α et β deux réels vérifiant $0 \le \alpha \le \beta \le 1$ et soit $N_n(\alpha, \beta)$ le nombre d'entiers k qui vérifient $\alpha < \frac{k}{n} \le \beta$. Exprimer $N_n(\alpha, \beta)$ en fonction de $\lfloor n \alpha \rfloor$ et $\lfloor n \beta \rfloor$.
- 3. Pour tout entier $n \ge 1$, on note Y_n la variable aléatoire discrète dont la loi est donnée par :

$$\forall k \in \llbracket 0, n-1
rbracket, \ P\Big(Y_n = rac{k}{n}\Big) = rac{1}{n}$$

Soit Z une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1]. Pour tout entier $n\geqslant 1$, on définit la variable aléatoire Z_n par : $Z_n=\frac{\lfloor n\,Z\rfloor}{n}\cdot \text{Soit }\alpha$ et β deux réels vérifiant $0\leqslant \alpha\leqslant \beta\leqslant 1$.

- a) Montrer que $\lim_{n \to +\infty} P(\alpha < Y_n \leq \beta) = \beta \alpha$.
- b) Comparer les fonctions de répartition respectives de Y_n et Z_n . Conclusion.

CORRIGÉ EXERCICE PRINCIPAL E 82

- 1. Cours.
- 2.a) Par définition, $\lfloor nx \rfloor \leqslant nx < \lfloor nx \rfloor + 1 \Longrightarrow x 1/n < \frac{\lfloor nx \rfloor}{n} \leqslant x \Longrightarrow \lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n} = x$.
- b) $\bullet \lfloor y \rfloor \leqslant x \Longrightarrow \lfloor y \rfloor \leqslant \lfloor x \rfloor \Longrightarrow y < \lfloor y \rfloor + 1 \leqslant \lfloor x \rfloor + 1$.
 - $y < \lfloor x \rfloor + 1 \Longrightarrow \lfloor y \rfloor \leqslant \lfloor x \rfloor \leqslant x$.
- c) $\forall x > 0$, le nombre d'entiers $k \in]0, x]$ est [x]. Or, $\{k \in \mathbb{N}; n\alpha < k \leq n\beta\} = \{k; 0 < k \leq n\beta\}/\{k; 0 < k \leq n\alpha\}$ Donc, $N_n(\alpha, \beta) = [n\beta] - [n\alpha]$.

3.a) On a :
$$[\alpha < Y_n \leqslant \beta] = \bigcup_{n\alpha < k \leqslant n\beta} \left[Y_n = \frac{k}{n} \right] \Longrightarrow P(\alpha < Y_n \leqslant \beta) = \sum_{n\alpha < k \leqslant n\beta} P\left(Y_n = \frac{k}{n} \right) = \frac{1}{n} N_n(\alpha, \beta).$$

Par suite,
$$\lim_{n \to +\infty} P(\alpha < Y_n \leq \beta) = \lim_{n \to +\infty} \frac{\lfloor n\beta \rfloor - \lfloor n\alpha \rfloor}{n} = \beta - \alpha$$
.

b) On a:
$$P(Y_n \leqslant x) = \begin{cases} \frac{0}{\lfloor nx \rfloor} & \text{si } x < 0 \\ \frac{\lfloor nx \rfloor}{n} + \frac{1}{n} & \text{si } 0 \leqslant x < 1 \end{cases}$$
. D'autre part, $[Z_n \leqslant x] = \left[\frac{\lfloor nZ \rfloor}{n} \leqslant x\right] = \left[\lfloor nZ \rfloor \leqslant nx\right]$.

D'après 2.b), on a :
$$[Z_n \leqslant x] = [nZ < \lfloor nx \rfloor + 1] = \left[Z < \frac{\lfloor nx \rfloor}{n} + \frac{1}{n}\right] \Longrightarrow P(Z_n \leqslant x) = P\left(Z < \frac{\lfloor nx \rfloor}{n} + \frac{1}{n}\right)$$
.

Par suite,
$$P(Z_n \leqslant x) = \left\{ egin{array}{ll} 0 & ext{si } x < 0 \\ rac{\lfloor nx \rfloor}{n} + rac{1}{n} & ext{si } 0 \leqslant x < 1 \\ 1 & ext{si } x \geqslant 1 \end{array}
ight.$$

Les variables aléatoires Y_n et Z_n ont la même fonction de répartition, donc elles ont la même loi.

Soit x réel et M(x) la matrice de $\mathcal{M}_2(\mathbf{R})$ définie par : $M(x) = \begin{pmatrix} x & -1 \\ 2x & 2x \end{pmatrix}$.

Pour quelles valeurs de x la matrice M(x) est-elle diagonalisable?

CORRIGÉ EXERCICE SANS PRÉPARATION E 82

Le réel λ est valeur propre de M(x) ssi la matrice $A(\lambda)=M(x)-\lambda I=\begin{pmatrix} x-\lambda & -1\\ 2x & 2x-\lambda \end{pmatrix}$ n'est pas inversible c'est-à-dire ssi $P(\lambda)=(x-\lambda)(2x-\lambda)+2x=\lambda^2-3x\lambda+2x^2+2x=0$. Son discriminant est $\Delta=x(x-8)$.

- Si $x \in]0, 8[$, le polynôme $P(\lambda)$ est toujours strictement positif et la matrice $A(\lambda)$ est inversible, donc M n'est pas diagonalisable.
- Si x=0, alors $M=\begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$ n'est pas diagonalisable (0 est l'unique valeur propre).
- Si x=8, alors $M=\begin{pmatrix} 8 & -1 \\ 16 & 16 \end{pmatrix} \Longrightarrow P(\lambda)=(\lambda-1)^2$. Donc, M n'a qu'une valeur propre $\lambda=12$ et ne peut être diagonalisable.
- Si $x \notin]0,8[$, le polynôme $P(\lambda)$ admet deux racines distinctes λ_1 et λ_2 , donc M admet deux valeurs propres distinctes et est diagonalisable.

Pour tout entier naturel n, on note $\mathbf{R}_n[X]$ l'espace vectoriel des polynômes à cœfficients réels de degré inférieur ou égal à n.

On définit l'application φ de $\mathbf{R}_n[X]$ par : $\forall P \in \mathbf{R}_n[X], \ \varphi(P)(X) = P(X+1) - P(X)$.

On pose
$$H_0(X)=1$$
 et pour tout $k\in \llbracket 1,n \rrbracket,\ H_k(X)=rac{X(X-1)(X-2)\cdots(X-k+1)}{k!}$

On note $\mathcal{B} = (1, X, X^2, \dots, X^n)$ la base canonique de $\mathbf{R}_n[X]$.

- 1. Question de cours : Définition de deux matrices semblables.
- 2.a) Montrer que φ est un endomorphisme non bijectif de $\mathbf{R}_n[X]$.
- b) Justifier que la famille $\mathcal{B}' = (H_0, H_1, \dots, H_n)$ est une base de $\mathbf{R}_n[X]$.
- c) Déterminer la matrice M' de φ dans la base \mathcal{B}' .
- d) L'endomorphisme φ est-il diagonalisable?
- 3. Dans cette question, p est un entier fixé supérieur ou égal à 1. Pour tout $i \in [0, p]$, soit f_i l'application

de
$$\mathbf{R}_p[X]$$
 dans \mathbf{R} définie par : $\forall Q \in \mathbf{R}_p[X], \ f_i(Q) = \sum_{k=0}^i (-1)^{i-k} \binom{i}{k} Q(k).$

- a) Justifier que pour tout $i \in \llbracket 0, p
 rbracket$, l'application f_i est linéaire
- b) Soit $(i,j) \in \llbracket 0,p
 rbracket^2$. Établir la relation : $f_i(H_j) = \left\{egin{array}{ll} 1 & ext{si } i=j \\ 0 & ext{si } i
 eq j \end{array}
 ight.$
- c) Soit a_0, a_1, \ldots, a_p les réels vérifiant : $X^p = a_0 H_0 + a_1 H_1 + \cdots + a_p H_p$.

Déduire de la question précédente, la relation : $\forall i \in \llbracket 0, p \rrbracket, \ a_i = \sum_{k=0}^i (-1)^{i-k} \binom{i}{k} k^p$

CORRIGÉ EXERCICE PRINCIPAL E 83

- 1. Cours.
- 2.a) L'application φ est clairement un endomorphisme de $\mathbf{R}_n[X]$. La linéarité est évidente ainsi que le fait que le degré de $\varphi(P)$ est inférieur au degré de P. Cet endomorphisme n'est pas injectif (donc non bijectif) car son noyau est formé des polynômes constants.
- b) La famille (H_0, H_1, \ldots, H_n) est une base de $\mathbf{R}_n[X]$ car c'est une famille de polynômes de degrés échelonnés.
- c) Un calcul immédiat donne : $\varphi(H_k)(X) = H_k(X+1) II_k(X) = H_{k-1}(X)$.

La matrice M' de φ dans la base \mathcal{B}' est donc une matrice triangulaire supérieure dont les éléments diagonaux sont tous nuls et les éléments de la sur-diagonale sont égaux à 1, les autres éléments étant nuls.

- d) La matrice triangulaire M' n'admet que la valeur propre 0; par suite, elle n'est pas diagonalisable.
- 3.a) Soit Q et R deux polynômes de $\mathbf{R}_p[X]$ et α un réel. On a :

$$f_i(\alpha Q + R) = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} (\alpha Q + R)(k) = \alpha \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} Q(k) + \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} R(k) = \alpha f_i(Q) + f_i(R).$$

b) Remarquons que si $j \in [0, p]$, $H_j(j) = 1$ et pour tout $k \in [0, j]$, $H_j(k) = 0$.

On a alors :
$$\forall i \in [0, p]$$
, $f_i(H_i) = \sum_{k=0}^{i} (-1)^{i-k} {i \choose k} H_i(k) = H_i(i) = 1$.

De plus,
$$\forall j \in [0, p], \ f_i(H_j) = \sum_{k=0}^{i} (-1)^{i-k} {i \choose k} H_j(k) = \sum_{k=j}^{i} (-1)^{i-k} {i \choose k} H_j(k) = \sum_{k=j}^{i} (-1)^{i-k} {i \choose k} \frac{1}{j!} \prod_{\ell=0}^{j-1} (k-\ell),$$

soit encore,
$$\forall j \in [0, p]$$
, $f_i(H_j) = \sum_{k=j}^{i} (-1)^{i-k} \binom{i}{k} \binom{k}{j} = \sum_{k=j}^{i} (-1)^{i-k} \binom{i}{k} \binom{i-j}{k-j} = \binom{i}{j} \sum_{k=0}^{i-j} (-1)^{i-k-j} \binom{i-j}{k}$ soit encore, $\forall j \in [0, p]$, $f_i(H_j) = \binom{i}{j} (-1)^{i-j} \sum_{k=0}^{i-j} (-1)^k \binom{i-j}{k} = 0$ d'après la formule du binôme.

c) On a: $f_i(X^p) = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} k^p = a_0 f_i(H_0) + a_1 f_i(H_1) + \dots + a_p f_i(H_p) = a_i$.

Les variables aléatoires de cet exercice sont supposées définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soit Z une variable aléatoire qui suit la loi uniforme sur l'intervalle [0,1] et pour tout entier $n\geqslant 1$, on note Y_n une variable aléatoire à valeurs dans $\left\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n}\right\}$ telle que $\forall\,k\in [\![0,n-1]\!],\;P\left(Y_n=\frac{k}{n}\right)=\frac{1}{n}.$ Soit f une fonction définie et continue sur [0,1]. Montrer que $\lim_{n\to+\infty} E\left(f(Y_n)\right)=E\left(f(Z)\right).$

CORRIGÉ EXERCICE SANS PRÉPARATION E 83

On sait que (transfert) $E(f(Y_n)) = \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) P\left(Y_n = \frac{k}{n}\right) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$, et d'après les "sommes de Riemann" et la continuité de f sur [0,1]: $\lim_{n \to +\infty} E(f(Y_n)) = \int_0^1 f(t) dt = E(f(Z))$.

Toutes les variables aléatoires qui interviennent dans l'exercice sont supposées définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

1. Question de cours : Définition et propriétés de la covariance de deux variables aléatoires discrètes.

Soit p, q et r des réels fixés de l'intervalle]0,1[tels que p+q+r=1. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires à valeurs dans $\{-1,0,1\}$, indépendantes et de même loi donnée par :

$$\forall n \in \mathbb{N}^*, \ P(X_n = 1) = p, \ P(X_n = -1) = q, \ P(X_n = 0) = r.$$

On pose pour tout entier $n \geqslant 1: Y_n = \prod_{k=1}^n X_k$.

- 2.a) Pour tout entier $n \ge 1$, préciser $Y_n(\Omega)$ et calculer $P(Y_n = 0)$.
- b) Pour tout entier $n \ge 1$, calculer $E(X_n)$ et $E(Y_n)$.
- 3. On pose pour tout entier $n \ge 1$: $p_n = P(Y_n = 1)$.
- a) Calculer p_1 et p_2 .
- b) Établir une relation de récurrence entre p_{n+1} et p_n .
- c) En déduire que pour tout entier $n \ge 1$, on a : $p_n = \frac{(p+q)^n + (p-q)^n}{2}$
- d) Pouvait-on à l'aide de la question 2, trouver directement la loi de Y_n ?
- 4.a) Établir l'inégalité : $(p+q)^n > (p-q)^{2n}$. Calculer $V(Y_n)$.
- b) Calculer la covariance $Cov(Y_n, Y_{n+1})$ des deux variables aléatoires Y_n et Y_{n+1} .

CORRIGÉ DE L'EXERCICE PRINCIPAL E 85

- 1. Cours.
- 2.a) $Y_n(\Omega) = \{-1, 0, 1\}$. Par indépendance et incompatibilité : $P(Y_n \neq 0) = (p+q)^n \Longrightarrow P(Y_n = 0) = 1 (p+q)^n$.
- b) On a : $E(X_n) = p q$ et par indépendance du produit de variables aléatoires, $E(Y_n) = (p q)^n$.

3.a) On a clairement :
$$p_1 = p = \frac{(p+q) + (p-q)}{2}$$
 et $p_2 = p^2 + q^2 = \frac{(p+q)^2 + (p-q)^2}{2}$.

- b) On a: $p_{n+1} = P(Y_{n+1} = 1) = P([Y_{n+1} = 1] \cap [Y_n = 1]) + P([Y_{n+1} = 1] \cap [Y_n = -1]) + P([Y_{n+1} = 1] \cap [Y_n = 0])$.
- $\text{Or, } [Y_{n+1}=1] \cap [Y_n=0] = \emptyset \Longrightarrow P\big([Y_{n+1}=1] \cap [Y_n=0]\big) = 0, \ [Y_{n+1}=1] \cap [Y_n=1] = [X_{n+1}=1] \cap [Y_n=1] = [X_n=1] \cap [X_n=1] = [X_n=1] \cap [X_n=1] = [X_n=1] \cap [X_n=1] = [X_n=1] \cap [X_n=1] \cap [X_n=1] = [X_n=1] \cap [X_n=1$
- et $[Y_{n+1}=1]\cap [Y_n=-1]=[X_{n+1}=-1]\cap [Y_n=-1]$. D'après le lemme des coalitions, X_{n+1} et Y_n sont

indépendantes
$$\Longrightarrow p_{n+1} = P(X_{n+1} = 1)P(Y_n = 1) + P(X_{n+1} = -1)P(Y_n = -1) = p p_n + q P(Y_n = -1).$$

Or, $P(Y_n = -1) = 1 - p_n - P(Y_n = 0) = -p_n + (p+q)^n \Longrightarrow p_{n+1} = (p-q)p_n + q(p+q)^n.$

Or,
$$P(Y_n = -1) = 1 - p_n - P(Y_n = 0) = -p_n + (p+q)^n \Longrightarrow p_{n+1} = (p-q)p_n + q(p+q)^n$$
.

c) Les valeurs initiales p_1 et p_2 , l'hypothèse de récurrence $p_n=\frac{(p+q)^n+(p-q)^n}{2}$ pour un certain n et la

relation de récurrence de la question b) $\Longrightarrow \forall n \in \mathbb{N}^*, \ p_n = \frac{(p+q)^n + (p-q)^n}{2}$

d) Puisque $P(Y_n = 0) = 1 - (p+q)^n$ et que $E(Y_n) = P(Y_n = 1) - P(Y_n = -1) = (p-q)^n$, on a les équations

suivantes:
$$\begin{cases} P(Y_n = 1) + P(Y_n = -1) = (p+q)^n \\ P(Y_n = 1) - P(Y_n = -1) = (p-q)^n \end{cases} \implies \begin{cases} P(Y_n = 1) = \frac{(p+q)^n + (p-q)^n}{2} \\ P(Y_n = -1) = \frac{(p+q)^n - (p-q)^n}{2} \end{cases}$$

4.a) Puisque 0 et <math>0 < q < 1, on a : $0 \le (p-q)^2 = p^2 + q^2 - 2pq < p^2 + q^2$

1. Question de cours : Fonctions équivalentes au voisinage de $+\infty$.

Pour tout entier naturel n, soit f_n la fonction définie sur \mathbf{R}_+ par : $\forall x \geqslant 0$, $f_n(x) = \int_0^1 t^n e^{-tx} dt$.

- 2.a) Montrer que pour tout entier naturel n, la fonction f_n est décroissante sur \mathbf{R}_+ .
- b) Étudier la suite $(f_n(0))_{n\geqslant 0}$. En déduire pour tout réel $x\geqslant 0$ fixé, la limite de la suite $(f_n(x))_{n\geqslant 0}$.
- 3.a) Soit x un réel strictement positif. Établir pour tout entier $n \ge 1$, la relation : $f_{n+1}(x) = \frac{n+1}{x} f_n(x) \frac{e^{-x}}{x}$
- b) Expliciter les fonctions f_0 et f_1 .
- c) Montrer que pour tout entier naturel n, $f_n(x)$ est équivalent à $\frac{n!}{x^{n+1}}$ lorsque x tend vers $+\infty$.
- 4.a) Montrer que pour tout entier naturel n et tout réel x > 0, on a : $f_n(x) = \frac{1}{x^{n+1}} \int_0^x u^n e^{-u} du$.
- b) En déduire que la fonction f_n est dérivable sur \mathbf{R}_+^* et déterminer sa dérivée f_n' .
- c) Comparer pour tout réel $y \ge 0$, les deux réels y et $1 e^{-y}$.

En déduire que pour tout entier naturel n, la fonction f_n est continue en 0.

CORRIGÉ EXERCICE PRINCIPAL E 86

- 1.Cours.
- 2.a) Pour $0 \le x \le y$, la croissance de l'exponentielle et les bornes "bien rangées" $\Longrightarrow f_n(x) \ge f_n(y)$.
- b) Le calcul donne $f_n(0) = \frac{1}{n+1}$ et la décroissance de f_n sur $\mathbf{R}_+ \Longrightarrow 0 \leqslant f_n(x) \leqslant f_n(0) = \frac{1}{n+1}$.

Par encadrement, on a : $\lim_{n\to+\infty} f_n(x) = 0$.

- 3.a) Une IPP $\Longrightarrow f_{n+1}(x) = \left[-\frac{1}{x} e^{-tx} t^{n+1} \right]_0^1 \int_0^1 -\frac{1}{x} e^{-tx} (n+1) t^n dt = \frac{n+1}{x} f_n(x) \frac{e^{-x}}{x} dt$
- b) On a pour tout $x \ge 0$, $f_0(x) = \frac{1 e^{-x}}{x}$ et $f_1(x) = \frac{1 e^{-x} x e^{-x}}{x^2}$.
- c) Puisque $\lim_{x \to +\infty} (1 e^{-x} = 1$, on a bien $f_0(x) = \frac{1 e^{-x}}{x}$ équivalent à $\frac{1}{x} = \frac{0!}{x^{0+1}}$ lorsque x tend vers $+\infty$.

Soit un entier n tel que $f_n(x)$ est équivalent à $\frac{n!}{x^{n+1}}$ lorsque x tend vers $+\infty$.

À l'aide de la question 3.a), on a : $\frac{x^{n+2}}{(n+1)!} f_{n+1}(x) = \frac{x^{n+1}}{n!} f_n(x) - \frac{x^{n+1}e^{-x}}{(n+1)!}$. Le second membre tend vers 1 lorsque x tend vers $+\infty$ d'après l'hypothèse de récurrence.

- 4.a) Le changement de variable linéaire $u=tx\Longrightarrow f_n(x)=\frac{1}{x^{n+1}}\int_0^x u^n\,\mathrm{e}^{-u}\,\mathrm{d}u$. Le théorème fondamental de l'intégration permet de dire que $x\longmapsto \int_0^x u^n\,\mathrm{e}^{-u}\,\mathrm{d}u$ est dérivable sur \mathbf{R}_+^* et finalement, on obtient :
- $\forall x > 0, \ f_n'(x) = -\frac{n+1}{x^{n+2}} \int_0^x u^n e^{-u} du + \frac{1}{x^{n+1}} x^n e^{-x} = -\frac{n+1}{x} f_n(x) + \frac{e^{-x}}{x} = -f_{n+1}(x).$
- b) Un argument de convexité, par exemple, montre que $\forall y \geqslant 0$, on a : $0 \leqslant 1 e^{-y} \leqslant y$.
- On a: $0 \le |f_n(0) f_n(x)| = \left| \int_0^1 t^n \, \mathrm{d}t \int_0^1 t^n \, \mathrm{e}^{-tx} \, \mathrm{d}t \right| = \int_0^1 t^n (1 \mathrm{e}^{-tx}) \, \mathrm{d}t \le \int_0^1 t^n tx \, \mathrm{d}t = \frac{x}{n+2}$ qui tend vers 0 lorsque x tend vers 0. Par encadrement, on a: $\lim_{x \to 0} f_n(x) = f_n(0)$ et f_n est continue en 0.

Soit c et r deux réels strictement positifs.

- Soit c et r deux reels strictement posses.

 1. Justifier que la fonction f définie sur \mathbf{R} par $f(x) = \begin{cases} \frac{r \, c^r}{x^{r+1}} & \text{si } x > c \\ 0 & \text{sinon} \end{cases}$ est une densité de probabilité.
- 2. Soit X une variable aléatoire de densité f. Identifier la loi de la variable aléatoire $Y = \ln X \ln c$.
- 3. Compléter les lignes du code Scilab suivant pour que V soit un vecteur ligne contenant cent réalisations de la loi de la variable aléatoire X.

```
c=input("c=")
r=input("r=")
U=grand(?,?,?,?)
V=c*exp(U)
```

CORRIGÉ EXERCICE SANS PRÉPARATION E 86

1. La fonction f est continue sur $\mathbb{R}\setminus\{c\}$, positive et $\int_{-\infty}^{+\infty} \frac{r\,c^r}{x^{r+1}}\,\mathrm{d}x = 1$ 2. $F_X(x) = 0$ si $x \le c$ ct $F_X(x) = 1 - \left(\frac{c}{x}\right)^r$ si x > c. Or, $X(\Omega) =]c, +\infty[\Longrightarrow Y(\Omega) = \mathbf{R}_+^*$. $\forall y \in \mathbf{R}_+^*, \ P(Y \leqslant y) = P(X \leqslant c \, \mathrm{e}^y) = 1 - \left(\frac{c}{c \, \mathrm{e}^y}\right)^r = 1 - \mathrm{e}^{-ry}, \ \mathrm{donc} \ Y \hookrightarrow \mathcal{E}(r).$ 3.c=input("c=") r=input("r=") U=grand(1,n,"exp",1/r) car E(Y) = 1/r. V=c*exp(U)

Toutes les variables aléatoires qui interviennent dans l'exercice sont supposées définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

1. Question de cours : Convergence en loi d'une suite de variables aléatoires.

Dans tout l'exercice, X désigne une variable aléatoire suivant la loi exponentielle de paramètre $\lambda > 0$.

2.a) On pose : T = |X| (partie entière de X). Montrer que la loi de T est donnée par :

$$\forall k \in \mathbb{N}, \ P(T=k) = (1 - e^{-\lambda})(e^{-\lambda})^k$$

- b) Quelle est la loi de T+1? En déduire l'espérance et la variance de T.
- 3. On pose : Z = X |X|.

Montrer que Z est une variable aléatoire à densité et déterminer une densité de Z.

4. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes telles que, pour tout $n\in \mathbf{N}^*, X_n$ suit une loi exponentielle de paramètre $\frac{\lambda}{n}$. On pose pour tout $n\in \mathbf{N}^*: Z_n=X_n-\lfloor X_n\rfloor$.

Montrer que la suite de variables aléatoires $(Z_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire dont on précisera la loi.

CORRIGÉ EXERCICE PRINCIPAL E 88

1. Cours.

2.a)
$$T(\Omega) = \mathbf{N} \Longrightarrow \forall k \in \mathbf{N}, \ [T = k] = [k \leqslant X < k+1] \Longrightarrow P(T = k) = e^{-\lambda k} - e^{-\lambda(k+1)} = (1 - e^{-\lambda})(e^{-\lambda})^k$$
.

b)
$$T+1$$
 suit la loi géométrique (classique) de paramètre $1-e^{-\lambda} \Longrightarrow E(T+1) = \frac{1}{1-e^{-\lambda}} \Longrightarrow E(T) = \frac{e^{-\lambda}}{1-e^{-\lambda}}$

On a:
$$V(T+1) = V(T) = \frac{e^{-\lambda}}{(1-e^{-\lambda})^2}$$
.

3.
$$Z(\Omega) = [0, 1[$$
, donc, $F_Z(z) = 0$ si $z < 0$ et $F_Z(z) = 1$ si $z \geqslant 1$. D'autre part, $\{T = k\}_{k \in \mathbb{N}}$ est un sce, d'où,

$$\forall z \in [0,1[, F_Z(z) = \sum_{k=0}^{+\infty} P([Z \leqslant z] \cap [T=k]) = \sum_{k=0}^{+\infty} P(k \leqslant X \leqslant k+z) = \sum_{k=0}^{+\infty} (F_X(k+z) - F_X(k)), \text{ soit encore,}$$

$$\forall z \in [0,1[, F_Z(z) = \sum_{k=0}^{+\infty} (e^{-\lambda k} - e^{-\lambda(k+z)}) = (1 - e^{-\lambda z}) \sum_{k=0}^{+\infty} (e^{-\lambda})^k = \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}$$

La fonction F_Z est continue sur \mathbb{R} , de classe C^1 sur \mathbb{R} sauf éventuellement en 0 et 1. Donc, Z est une variable aléatoire réelle à densité.

Une densité
$$f_Z$$
 de Z est par exemple : $f_Z(z) = \frac{\lambda e^{-\lambda z}}{1 - e^{-\lambda}}$ si $0 \leqslant z \leqslant 1$ et $f_Z(z) = 0$ sinon.

4. D'après la question 3,
$$F_{Z_n}(z) = 0$$
 si $z < 0$, $F_{Z_n}(z) = 1$ si $z > 1$ et $F_{Z_n}(z) = \frac{1 - e^{-\frac{\lambda z}{n}}}{1 - e^{-\frac{\lambda}{n}}}$ si $0 \le z \le 1$.

On sait que $1 - e^{-u}$ est équivalent à u lorsque u tend vers 0. Par suite, pour $z \neq 0$, $\frac{1 - e^{-\frac{\lambda z}{n}}}{1 - e^{-\frac{\lambda}{n}}}$ est équivalent

à z lorsque n tend vers $+\infty \Longrightarrow \lim_{n \to +\infty} F_{Z_n}(z) = z$.

En conséquence, la suite $(Z_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire suivant la loi uniforme sur [0,1].

Soit E un espace vectoriel de dimension 3 et f un endomorphisme de E tel que $f^4 = f^2$ et $rg(f^2) = 1$. Montrer que le spectre de f est $\{0\}$ ou $\{0,1\}$ ou $\{-1,0\}$.

CORRIGÉ DE L'EXERCICE SANS PRÉPARATION E 88

Le polynôme $X^4-X^2=X^2(X^2-1)$ est annulateur de $f\Longrightarrow \mathrm{Sp}(f)\subset \{-1,0,1\}.$

- Si 0 n'est pas valeur propre de $f \Longrightarrow f$ est bijective $\Longrightarrow f^2 = \mathrm{id}$ est bijective $\Longleftrightarrow \mathrm{rg}(f^2) = 3$, ce qui est contraire à l'hypothèse.
- Si 1 et -1 sont valeurs propres de $f \Longrightarrow f$ est diagonalisable $\Longrightarrow f^2$ est diagonalisable et semblable à la matrice $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Longrightarrow \operatorname{rg}(f^2) = 2$, ce qui est contraire à l'hypothèse.

Bilan : le spectre de f est $\{0\}$ ou $\{0,1\}$ ou $\{-1,0\}$.

1. Question de cours : Définition et propriétés de la fonction de répartition d'une variable aléatoire à densité. Pour tout $n \in \mathbb{N}$, soit f_n la fonction définie par :

$$\forall x \in \mathbf{R}, \ f_n(x) = \begin{cases} x^n \exp\left(-\frac{x^2}{2}\right) & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}.$$

- 2.a) Établir la convergence de l'intégrale $\int_0^{+\infty} f_n(x) dx$. On pose : $\forall n \in \mathbb{N}, \ I_n = \int_0^{+\infty} f_n(x) dx$.
- b) Déterminer pour tout $n \in \mathbb{N}$, une relation entre I_n et I_{n+2}
- c) Calculer I_0 et I_1 .
- 3.a) Montrer que f_1 est une densité de probabilité.
- b) Tracer la courbe représentative de f_1 dans le plan rapporté à un repère orthogonal.

Dans la suite, on note X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) admettant f_1 pour densité.

- c) Déterminer la fonction de répartition F de X.
- d) Justifier l'existence de l'espérance E(X) et de la variance V(X) de X. Calculer E(X) et V(X).
- 4. On pose : $Y = X^2$.
- a) Montrer que Y est une variable aléatoire à densité.
- b) Quelle est la loi de Y?

CORRIGÉ EXERCICE PRINCIPAL E 89

- 1. Cours.
- 2.a) On a : $0 \le x^2 f_n(x) = x^{n+2} \exp(-x^2/2)$ qui tend vers 0 lorsque x tend vers $+\infty$, donc $f_n(x)$ est négligeable devant $1/x^2$ et la règle de Riemann permet de conclure à la convergence de $\int_0^{+\infty} f_n(x) \, \mathrm{d}x$.
- b) On dérive x^{n+1} et on intègre $x \exp(-x^2/2)$ en $-\exp(x^2/2)$. Une IPP sur [0,A] et un passage à la limite lorsque A tend vers $+\infty \Longrightarrow \forall n \in \mathbb{N}, \ I_{n+2} = (n+1)I_n$.
- c) Par référence à la loi normale centrée réduite et à la parité de $x \mapsto \exp(-x^2/2)$ sur \mathbf{R} , on a : $I_0 = \sqrt{\frac{\pi}{2}}$. Une primitive de $x \mapsto x \exp(-x^2/2)$ est $x \mapsto -\exp(-x^2/2) \Longrightarrow I_1 = 1$.
- 3.a) On a : $f_1 \geqslant 0$, continue sur \mathbf{R} et $\int_0^{+\infty} f_1(x) \, \mathrm{d}x = I_1 = 1 \Longrightarrow f_1$ est une densité de probabilité.
- b) On a: $f'(x) = (1 x^2) \exp(-x^2/2)$ et $f''(x) = x(x^2 3) \exp(-x^2/2)$.

La fonction f_1 est nulle sur \mathbf{R}_- , croissante et concave sur [0,1] et prenant ses valeurs dans $[0,1/\sqrt{c}]$, puis décroît sur $[1,+\infty[$ en restant concave sur $[1,\sqrt{3}]$ puis convexe au-delà de $\sqrt{3}$.

- c) F(x) = 0 si x < 0 et $F(x) = 1 \exp(-x^2/2)$ si $x \ge 0$.
- d) La justication de l'existence de E(X) et $E(X^2)$ a été établie en 2.a).

La relation de récurrence de 2.b) $\Longrightarrow I_2 = \sqrt{\frac{\pi}{2}}$ et $I_3 = 2 \Longrightarrow E(X) = I_2 = \sqrt{\frac{\pi}{2}}$ et $V(X) = 2 - \pi/2$.

4.a)b) On trouve classiquement : G(x) = 0 si x < 0 et $G(x) = 1 - \exp(-x/2)$ si $x \ge 0$.

La fonction de répartition G de Y est de classe C^1 sur \mathbb{R} , donc Y est à densité et plus précisément, on reconnaît en Y une variable aléatoire qui suit la loi exponentielle de paramètre 1/2.

Soit f l'endomorphisme de \mathbf{R}^3 dont la matrice A dans la base canonique de \mathbf{R}^3 est : $A = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Déterminer une base de $\operatorname{Ker} f$ et une base de $\operatorname{Im} f$.
- 2. On admet sans démonstration que $A^3=0$. Soit $M\in\mathcal{M}_3(\mathbf{R})$ définie par $M=\begin{pmatrix}0&1&1\\0&1&2\\1&-1&2\end{pmatrix}$.
- a) Quelles sont les valeurs propres de M? La matrice M est-elle diagonalisable?
- b) Justifier que M est inversible et exprimer M^{-1} en fonction de A et I (matrice identité de $M \in \mathcal{M}_3(\mathbf{R})$).

CORRIGÉ DE L'EXERCICE SANS PRÉPARATION E 89

1. Les deux premières colonnes de A sont opposées : le rang de A est égal à 2.

On a: Im f = Vect((-1,0,1),(1,2,1)) et Ker f = Vect((1,1,0)).

2.a) On a : M = A + I. La matrice A est nilpotente et sa seule valeur propre est 0, donc la seule valeur propre de M est 1. Or, M n'est pas semblable (égale) à I, donc M n'est pas diagonalisable.

b) Le réel 0 n'est pas valeur propre de M, donc M est inversible.

On utilise l'identité remarquable : $A^3 + I^3 = (A+I)(A^2-A+I) \Longrightarrow M(A^2-A+I) = I \Longrightarrow M^{-1} = A^2-A+I$.

Toutes les variables aléatoires utilisées dans cet exercice sont supposées définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Question de cours : loi faible des grands nombres
 - Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) . de loi uniforme sur [0, 1].
- 2. Pour tout $n \in \mathbb{N}^*$, on note U_n la variable aléatoire $\min\{X_1, X_2, \dots, X_n\}$.
 - a) Calculer la fonction de répartition de U_n .
 - b) Démontrer que, pour tout $\varepsilon > 0$, la probabilité $P([U_n \ge \varepsilon])$ tend vers 0 quand n tend vers l'infini.
- 3. Compléter la deuxième ligne du code Scilab suivant pour que la fonction "minu" simule la variable U_k pour la valeur k du paramètre.

function u=minu(k)
 x= ...
 u=min(x)
endfunction

4. Soit $p \in]0,1[$ et Z une variable aléatoire telle que, pour tout réel x:

$$P([Z \le x]) = \sum_{k=1}^{+\infty} p(1-p)^{k-1} P([U_k \le x])$$

(on admet qu'il existe une telle variable aléatoire et qu'elle possède une densité).

- a) Justifier, pour tout $x \in [0, 1]$, l'égalité : $P([Z \le x]) = 1 \frac{p(1-x)}{p + (1-p)x}$
- b) En déduire une densité de Z.
- a) Justifier que la fonction Scilab suivante fournit une simulation de la variable aléatoire Z
 de la question précédente.

function z=geomin(p)
 z=minu(grand(1,1,'geom',p))
endfunction

b) De quel nombre réel les instructions suivantes fournissent-elles une valeur approchée et pourquoi ?

p=0.5;
R=[];
for k=1:10000
 R=[R,geomin(p)]
end;
disp(mean(R))

CORRIGÉ EXERCICE PRINCIPAL E 90

1 Cours

2.a)
$$\forall x \in [0, 1[, P(U_n \leq x) = 1 - P(U_n > x) = 1 - P(\bigcap_{i=1}^n (X_i > x)) = 1 - (1-x)^n$$
 par indépendance des X_i .

$$\forall x < 0, P(U_n \leqslant x) = 0 \text{ et } \forall x > 1, P(U_n \leqslant x) = 1.$$

b)
$$P(U_n \ge \varepsilon) = (1 - \varepsilon)^n \Longrightarrow \lim_{n \to +\infty} P(U_n \ge \varepsilon) = 0 \text{ car } 0 < 1 - \varepsilon < 1.$$

3. On peut utiliser x=grand(1,n,'def') ou x=rand(1,n).

4.a)
$$\forall x \in [0,1], \ P(Z \le x) = \sum_{k=1}^{+\infty} pq^{k-1} (1-(1-x))^k = \sum_{k=1}^{+\infty} pq^{k-1} - \sum_{k=1}^{+\infty} pq^{k-1} (1-x)^k$$
, soit encore,

$$P(Z \leqslant x) = 1 - p(1-x) \sum_{k=1}^{+\infty} (q(1-x))^{k-1} = 1 - p(1-x) \frac{1}{1 - q(1-x)} = 1 - \frac{p(1-x)}{p + qx} \text{ (avec } q = 1 - p).$$

b) Par dérivation, on en déduit : $\forall x \in [0, 1], \ f_Z(x) = \frac{p}{(p+qx)^2}$

5.a) Si N est une variable aléatoire qui suit une loi géométrique de paramètre p, alors Z est la variable aléatoire définie par : si [N=k] est réalisé, alors $Z=U_k$ et $P(U_k\leqslant x)=P_{[N=k]}(Z\leqslant x)$.

La commande grand(1,1,'geom',p) génère une valeur prise par une variable aléatoire de loi géométrique de paramètre p.

b) Dans le programme, R est un vecteur ligne qui contient 10000 réalisations de Z pour la valeur p du paramètre et on affiche la moyenne de ces valeurs. Le résultat affiché est donc une valeur approchée de l'espérance de Z.

On a:
$$E(Z) = \int_0^1 \frac{px}{(p+qx)^2} dx = \frac{p}{q} \left(\int_0^1 \frac{dx}{p+qx} - \int_0^1 \frac{p dx}{(p+qx)^2} \right) = -\frac{p}{q^2} \ln p - \frac{p}{q}$$

Pour p = 1/2, on a $E(Z) = 2 \ln 2 - 1$.

Pour tout $n \in \mathbb{N}$, soit f_n la fonction définie sur l'intervalle [0,1] par :

$$\forall x \in [0,1], \ f_n(x) = \int_0^x e^{nt^2} dt - \int_0^1 e^{-nt^2} dt.$$

- 1. Montrer que la fonction f_n est strictement monotone sur [0,1].
- 2.a) Établir l'existence d'un unique réel de [0, 1], noté c_n , tel que $\int_0^{c_n} e^{nt^2} dt = \int_0^1 e^{-nt^2} dt$.
- 3.a) Montrer que la suite $(c_n)_{n\in\mathbb{N}}$ est convergente.

CORRIGÉ EXERCICE SANS PRÉPARATION 90

- 1. Le théorème fondamental du calcul intégral (continuité des intégrandes) permet de dire que f_n est dérivable et on a : $f'_n(x) = e^{nx^2} + e^{-nx^2} > 0 \Longrightarrow f_n$ est strictement croissante sur [0, 1].
- 2.a) La fonction f_n continue et strictement croissante sur [0,1] réalise une bijection de [0,1] sur $[f_n(0),f_n(1)]$.

Il est clair que $f_n(0) = -\int_0^1 e^{-nt^2} dt \le 0$ et $f_n(1) = \int_0^1 e^{nt^2} dt \ge 0$. Par suite, l'équation $f_n(x) = 0$ admet une unique solution $c_n \in [0, 1]$, c'est-à-dire : $\int_0^{c_n} e^{nt^2} dt - \int_0^1 e^{-nt^2} dt = 0$.

b) On a:
$$f_{n+1}(c_{n+1}) = 0$$
 et $f_{n+1}(c_n) = \int_0^{c_n} e^{(n+1)t^2} dt - \int_{c_n}^1 e^{-(n+1)t^2} \ge 0 = f_n(c_n) = f_{n+1}(c_{n+1})$ par

croissance de la fonction exponentielle. Donc, $0 = f_{n+1}(c_{n+1}) \le f_{n+1}(c_n)$ et puisque f_{n+1} est strictement croissante sur [0, 1], on a : $c_{n+1} \le c_n$. La suite $(c_n)_{n \in \mathbb{N}}$ est décroissante et minorée par 0, donc elle est convergente.