MATH 4720 / MSSC 5720

Instructor: Mehdi Maadooliat

Chapter 11

Department of Mathematical and Statistical Sciences

REGRESSION

- A regression function describes how a response variable y changes as an explanatory variable x changes.
- We often use a regression line to predict the value of y for a given value of x.
- Example: How much should you pay for a house?
- What factors are important in determining a reasonable price?
 - Amenities
 - Location
 - Square footage
- To determine a price, you might consider a model of the form:

Price =
$$f$$
(square footage) + ϵ

EXAMPLE -AUSTRALIAN INSTITUTE OF SPORT

 Data on 102 male and 100 female athletes collected at the Australian Institute of Sport, (courtesy of Richard Telford and Ross Cunningham.)

		Gender	Bfat	Wt
•	1	female	19.75	78.9
•	2	female	21.30	74.4
•	3	female	19.88	69.1
•	4	female	23.66	74.9
•	5	female	17.64	64.6
		:	:	:
•	198	male	11.79	93.2
•	199	male	10.05	80.0
•	200	male	8.51	73.8
•	201	male	11.50	71.1
•	202	male	6.26	76.7

Australian Institute of Sport - Bfat vs Wt

Australian Institute of Sport - Wt vs Gender

Australian Institute of Sport - Bfat vs Gender

Australian Institute of Sport - Bfat vs Wt

REGRESSION LINE

- A regression line is a straight line that describes how a response variable y changes as an explanatory variable x changes.
- We often use a regression line to predict the value of y for a given value of x.
- Suppose that y is a response variable (plotted on the vertical axis) and x is an explanatory variable (plotted on the horizontal axis). A straight line relating y to x has an equation of the form

$$y = a + bx$$

• In this equation, b is the **slope**, the amount by which y changes when x increases by one unit. The number a is the intercept, the value of y when x = 0.

POPULATION REGRESSION LINE

follow a Normal distribution with standard deviation σ .

• We often assume that for any fixed value of x, the response y varies according to a Normal distribution. Additionally, we assume that repeated responses y are independent of each other. The mean response μ_y has a straight-line relationship with x given by a population regression line

$$\mu_y = \beta_0 + \beta_1 x$$

• The slope β_1 and intercept β_0 are unknown parameters. The standard deviation of y at a given x (call it σ) is assumed to be the same for all values of x. The value of σ is unknown. There are thus three population parameters that we must estimate from the data: β_0 , β_1 and σ .

LEAST SQUARES REGRESSION LINE

- The least-squares regression line of y on x is the line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.
- Residual: $\hat{e}_i = y_i \hat{y}_i$

Applet

SIMPLE LINEAR REGRESSION

The simplest model form to consider is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i is called the dependent variable or response.
- X_i is called the independent variable or predictor.
- $oldsymbol{\epsilon}_i$ is the random error term which is typically assumed to have
 - a Normal distribution with mean 0 and variance σ^2 .
 - We also assume that error terms are independent of each other.

LEAST SQUARES CRITERION

- If the simple linear model is appropriate then we need to estimate the values β_0 and β_1 .
- To determine the line that best fits our data, we choose the line that minimizes the sum of squared vertical deviations from our observed points to the line.
- In other words, we minimize

$$Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

LEAST SQUARES ESTIMATORS

Objective Function:

$$- Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

• Take the derivatives with respect to β_0 :

$$- \frac{dQ}{d\beta_0} = \sum_{i=1}^{n} \frac{d}{d\beta_0} (Y_i - \beta_0 - \beta_1 X_i)^2$$
$$= -2 \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)$$

Setting the derivative equal to zero:

$$- \sum_{i=1}^{n} Y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^{n} X_i = 0$$

$$- \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

• To estimate β_1 , likewise:

$$- \frac{dQ}{d\beta_1} = \sum_{i=1}^n \frac{d}{d\beta_1} (Y_i - \beta_0 - \beta_1 X_i)^2$$
$$= -2 \sum_{i=1}^n X_i (Y_i - \beta_0 - \beta_1 X_i)$$

LEAST SQUARES ESTIMATORS

• Setting the derivative $\frac{dQ}{d\beta_1}$ equal to zero and plugging in $\hat{\beta}_0$:

$$- \sum_{i=1}^{n} X_i Y_i - (\overline{Y} - \hat{\beta}_1 \overline{X}) n \overline{X} - \hat{\beta}_1 \sum_{i=1}^{n} X_i^2 = 0$$

$$- \hat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i - n\overline{X}.\overline{Y}}{\sum_{i=1}^n X_i^2 - n\overline{X}^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Letting

$$- S_{xy} = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$- S_{xx} = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

- We have:
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

• How about error variance σ^2 ?

- Use the sum of squared deviations of the points from the regression line:

$$- \hat{\sigma}^2 = MSE = \frac{SS_E}{df_E} = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$$

- where
$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$$
 and

- n is the # of pairs (X_i, Y_i)

LEAST SQUARES ESTIMATORS

- For n pairs of (X_i, Y_i) s, where i = 1, ..., n
- If $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, where ϵ_i s are independent $N(0, \sigma^2)$
- Let's define $\overline{X} = 1/n \sum_i X_i$ and $\overline{Y} = 1/n \sum_i Y_i$
 - $S_{xx} = \sum_{i=1}^{n} (X_i \overline{X})^2$
 - $S_{xy} = \sum_{i=1}^{n} (X_i \overline{X})(Y_i \overline{Y})$
- We can estimate the regression coefficients as:
 - $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$
 - $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X}$
- Furthermore, let's define the predicted value, $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - $SS_E = \sum_{i=1}^n (Y_i \widehat{Y}_i)^2$ and $S_{yy} = \sum_{i=1}^n (Y_i \overline{Y})^2$
- We have the following:
 - $\hat{\sigma}^2 = \frac{SS_E}{n-2}$
 - $r_{XY} = \frac{s_{xy}}{\sqrt{s_{xx} s_{yy}}}, \quad r_{XY} \text{ is correlation coefficient (were discussed in chapter 3)}$

MARQUETTE UNIVERSITY Be The Difference.

RELATIONSHIPS BETWEEN 2 NUMERIC VARIABLES

- Correlation or r: measures the direction and strength of the linear relationship between two numeric variables
 - General Properties
 - It must be between -1 and 1, or $(-1 \le r \le 1)$.
 - If *r* is negative, the relationship is negative.
 - If r = -1, there is a perfect negative linear relationship (extreme case).
 - If *r* is positive, the relationship is positive.
 - If r = 1, there is a perfect positive linear relationship (extreme case).
 - If r is 0, there is no **linear** relationship.
 - r measures the strength of the linear relationship.
 - If explanatory and response are switched, r remains the same.
 - r has no units of measurement associated with it
 - Scale changes do not affect r
- Correlation Applet

INFERENCE

- Interpretation of the parameters for $Y = \beta_0 + \beta_1 X_i$
- Often times, inference for the slope parameter, β_1 , is most important.
- β_1 tells us the expected change in Y per unit change in X.

Note that

- β_0 is the expected value of y when x=0
- β_1 is the expected rate of change,

-
$$\beta_0 = E(y|x=0)$$
, and $\beta_1 = \frac{d}{dx}E(y|x)$

INFERENCE CONT'D

- In practice, it may be of interest to estimate β_0 and β_1 . Estimation of β_1 is more important.
 - If we conclude that β_1 equals 0, then we are concluding that there is no linear relationship between Y and X.
 - If we conclude that β_1 equals 0, then it makes no sense to use our linear model with X to predict Y.

• The Confidence intervals of β_0 and β_1 are given by

$$- \hat{\beta}_1 \pm t_{\alpha/2} se(\hat{\beta}_1) \qquad (df = n-2)$$

• where
$$se(\hat{\beta}_1) = \sqrt{\frac{MSE}{S_{\chi\chi}}}$$

$$- \hat{\beta}_0 \pm t_{\alpha/2} se(\hat{\beta}_0) \qquad \text{(df = n-2)}$$

• where
$$se(\hat{\beta}_0) = \sqrt{MSE\left(\frac{1}{n} + \frac{\overline{X}^2}{S_{xx}}\right)}$$

BOOK EXAMPLE 11.2:

 Data from a sample of 10 pharmacies are used to examine the relation between prescription sales volume and the percentage of prescription ingredients purchased directly from the supplier.

Pharmacy	Sales Volume, y (in \$1,000)	% of Ingredients Purchased Directly, x
1	25	10
2	55	18
3	50	25
4	75	40
5	110	50
6	138	63
7	90	42
8	60	30
9	10	5
10	100	55

BOOK EXAMPLE 11.2 CONT'D

Be The Difference.

	= 1/ F = 00.0	у	x	$y - \overline{y}$	$x - \overline{x}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
•	$\overline{X} = \frac{1}{n} \sum_{i} X_i = 33.8$	25	10	-46.3	-23.8	1,101.94	566.44
	= 1/ =	55	18	-16.3	-15.8	257.54	249.64
•	$\overline{Y} = \frac{1}{n} \sum_{i} Y_{i} = 71.3$	50	25	-21.3	-8.8	187.44	77.44
	— v	75	40	3.7	6.2	22.94	38.44
	$S_{xx} = \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 = 3407$	110	50	38.7	16.2	626.94	262.44
•	$S_{xx} = \sum_{i=1}^{n} (X_i - X_i) = 340$	7.0 ₁₃₈	63	66.7	29.2	1,947.64	852.64
		90	42	18.7	8.2	153.34	67.24
•	$S_{xy} = \sum_{i} (X_i - \overline{X})(Y_i - \overline{Y}) =$	6714.6 60	30	-11.3	-3.8	42.94	14.44
	$\Delta xy = \Delta t(-t $	10	5	-61.3	-28.8	1,765.44	829.44
	_	100	55	28.7	21.2	608.44	449.44
	o S 6714.6	Totals 713	338	0	0	6,714.60	3,407.60
•	$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{6714.6}{3407.6} = 1.97$	Means 71.3	33.8				
	$3\chi\chi$ 3407.6						

- $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X} = 71.3 1.97(33.8) = 4.70$
- Prediction formula for X: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = 4.70 + 1.97(X)$
- ➤ In R: summary(Im(y ~ x, data=exmp11.2))

Confidence Intervals:

$$- \hat{\beta}_0 \pm t_{\alpha/2} se(\hat{\beta}_0) \qquad \text{(df = 8)}$$

- $4.70 \pm 2.306 (5.95)$
- $\hat{\beta}_1 \pm t_{\alpha/2} se(\hat{\beta}_1) \qquad \text{(df = 8)}$
 - $1.97 \pm 2.306 (0.\overline{15})$

Regression Analysis: Sales Volume versus % of ingerdients

The regression equation is Sales Volume = 4.70 + 1.97 % of ingerdients

Predictor Coef SE Coef T (4.698 5.952 0.79 (0.1545) (2.75)

T-statistics and p-value for testing

$$H_0: \beta_1 = 0$$
 vs $H_a: \beta_1 \neq 0$

HYPOTHESIS TESTING

- $H_0: \beta_1 = 0$ (This means that y does not depend on x)
- H_a : $\beta_1 \neq 0$ (This means that y depends on x)

• T.S.
$$t = \frac{\widehat{\beta}_1}{se(\widehat{\beta}_1)}$$

• Reject H_0 in favor of H_a if $|t| > t_{\alpha/2}$ (df = n-2)

- H_0 : $\beta_0 = 0$ (This means that E(y|x=0) = 0)
- H_a : $\beta_0 \neq 0$ (This means that $E(y|x=0) \neq 0$)

• T.S.
$$t = \frac{\widehat{\beta}_0}{se(\widehat{\beta}_0)}$$

• Reject H_0 in favor of H_a if $|t| > t_{\alpha/2}$ (df = n-2)

BACK TO EXAMPLE 11.2

 Suppose, we want to test if the Sale volume depend on the % of ingredients:

Minitab Output

Regression Analysis: Sales Volume versus % of ingerdients

The regression equation is Sales Volume = 4.70 + 1.97 % of ingerdients

Predictor Coef SE Coef T P
Constant 4.698 5.952 0.79 0.453
% of ingerdients 1.9705 0.1545 12.75 0.000

- $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- **T.S.** T = 12.75 with p-value = 0.000
- Conclusion: Is p-value < 0.05? Yes. We reject H_0 in favor of H_a . We have sufficient evidence to conclude that the Sale volume depend on the % of ingredients.

ASSUMPTIONS

 For both confidence interval and hypothesis testing problems, we make assumptions on the model

•
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, ..., n$$

- Assumption 1: y and x are linearly related. If not, some transformation is needed.
 - -y and x are linearly related can be checked through scatter plot.

HOW TO CHECK THE ASSUMPTIONS

- Assumption 2: The error terms ϵ_i , $i=1,2,\ldots,n$ are independent and identically distributed as normal.
 - Second assumption that errors are independent and identically distributed can be checked through the normal probability plot of the residual, and the residual plots.

• Assumption 3: $Var(\epsilon_i) = constant$

4 DATASETS WITH THE SAME LEAST SQUARES REGRESSION LINE

4 Scatterplot with same Regression Estimates:

• Source: Sheather, S.J. (2009) A Modern Approach to Regression with R, Springer, New York

хЗ

x4

REGRESSION ANALYSIS USING ANOVA

• Note that there is variation in *y*:

- some of it is due to regression: SS_{Reg}
- and some due to error: SS_E

•
$$SS_{Total} = SSReg + SS_E$$

 $df_{Total} = df_{Reg} + df_E$

• If Regression is significant, then

$$F = \frac{SS_{Reg}/df_{Reg}}{SS_{E}/df_{E}} > F_{\alpha}(df_{1} = 1, df_{2} = n - 2)$$

• R Output:

Source	DF	SS	MS	F-ratio
Regression/	egression/ 1		$MS_{Reg} = SS_{Reg}/1$	F = MS _{Reg} /MSE
Explained				J
Residual/Error	n-2	SS _E	$MSE = SS_E/(n-2)$	
/Unexplained				
	n-1 =	SST =		
Total	df _{Reg} + df _E	SS _{Reg} + SS _E		

COEFFICIENT OF DETERMINATION

- One way to answer the question of reliability is through a coefficient of determination (R^2)
- R^2 = Proportion of Variability in Y due to Regression $= \frac{SS_{Rea}}{SS_{Tot}} = 1 \frac{SS_E}{SS_{Tot}}$
- Reminder: $SS_{Total} = SS_{Reg} + SS_E$
- ullet R is also the correlation in simple linear regression.
- If $R^2 \approx 1$, then most of the variability can be attributed to Regression. In this case, prediction is reliable.
- If $R^2 \approx 0$, then most of the variability is due to error. In this case prediction is not reliable.

PREDICTION

- Probably the most important objective of regression is to predict *Y* for a given *X*.
- Based on the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, Y can be predicted as

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

- Back to Example 11.2: Suppose we want to predict sale volume for a pharmacy that purchases 15% of its prescription ingredients directly from the supplier.
- Prediction formula for X:

$$-\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = 4.70 + 1.97(X)$$

$$-\hat{Y} = 4.70 + 1.97(15) = 34.26$$

CONFIDENCE INTERVAL AND PREDICTION INTERVAL

- 100% Confidence Interval of $E(y|x^*) = \beta_0 + \beta_1 x^*$
 - $E(\widehat{y|x^*}) \pm t_{\alpha/2} * se(E(\widehat{y|x^*}))$, where
 - $E(\widehat{y|x^*}) = \hat{\beta}_0 + \hat{\beta}_1 x^*$
 - $se(\widehat{E(y|x)}) = \sqrt{MSE\left\{\frac{1}{n} + \frac{(x^* \overline{x})^2}{S_{xx}}\right\}}$
- 100% Prediction Interval of $y = \beta_0 + \beta_1 x^* + \epsilon$

$$-\hat{y} \pm t_{\alpha/2} * se(\hat{y}),$$

where

$$\bullet \ \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x^*$$

•
$$se(\hat{y}) = \sqrt{MSE\left\{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}\right\}}$$

- Main Difference:
 - the confidence interval $E(y \mid x)$ provides the interval of the average of y, while
 - the prediction interval of y provides the interval of the individual y.

BACK TO BOOK EXAMPLE 11.2:

- Suppose we want to obtain the Confidence and Prediction intervals of sale volume for a pharmacy that purchases 15% of its prescription ingredients directly from the supplier.
- In R:
 - \rightarrow new <- data.frame(x = 15)
 - predict(model, new, interval=c("confidence"))

1 34.25502 24.86499 43.64505

predict(model, new, interval=c("prediction"))

fit lwr upr 1 34.25502 11.42996 57.08008

- Prediction band in R using ggplot:
 - pred.int <- predict(model, interval = "prediction")</p>
 - mydata <- cbind(exmp11.2, pred.int)</p>
 - # 2. Regression line + confidence intervals
 - library("ggplot2")
 - p <- ggplot(mydata, aes(x, y)) + geom point() + stat smooth(method = lm)</p>
 - #3. Add prediction intervals
 - p + geom_line(aes(y = lwr), color = "red", linetype = "dashed")+
 geom_line(aes(y = upr), color = "red", linetype = "dashed")

INFLUENTIAL POINTS -BAD LEVERAGE POINTS

- An observation is influential for a statistical calculation if removing it would markedly change the result of the calculation.
- Points that are outliers in the x direction are often influential for the least-squares regression line.

Applet

Figure 3.5 A plot showing a bad leverage point

EXTRAPOLATION VS INTERPOLATION

GOING BACK TO AIS DATA

• Wrong Analysis:

- Fail to Reject
 - $H_0: \beta_1 = 0$
- $R^2 \approx 0$,
 - Most of the variability is due to Error

Regression Analysis: Wt versus Bfat

The regression equation is Wt = 75.0 - 0.000 Bfat

Regression Model is

NOT significant

Analysis of Variance							
Source	DF	SS	MS	F	↓ P		
Regression	1	0.0	0.0	0.00	0.998		
Residual Error	200	38978.2	194.9				
Total	201	38978.2					

MODEL ASSUMPTIONS (WRONG ANALYSIS)

- The error terms ϵ_i , $i=1,2,\ldots,n$ are NOT independent
- $Var(\epsilon_i)$ is NOT constant—

GOING BACK TO AIS DATA

- Correct Analysis for "Gender=Female"
- Reject

$$- H_0: \beta_1 = 0$$

• $R^2 \approx 53\%$,

- 53% of the variability is due to Model ____

Regression Analysis: Wt_F versus Bfat_F

The regression equation is Wt_F = 41.4 + 1.45 Bfat_F

S = 7.55769 R-Sq = 52.5%

Regression Model is significant

significant

• $F = T^2$

Analysis	of	Vari	Lanc	е			1
							ı
Source			DF	SS	MS	F	▼ P
Regressio	n		1	6197.9	6197.9	108.51 (0.	.000
Residual	Eri	cor	98	5597.6	57.1		
Total			99	11795.6			

R-Sq(adj)

= 52.1%

MODEL ASSUMPTIONS

• The error terms ϵ_i , $i=1,2,\ldots,n$ are independent

• $Var(\epsilon_i)$ is constant

CAUTIONS ABOUT REGRESSION

- Regression is a powerful tool for describing the relationship between two variables. When you use these tools, you must be aware of their limitations.
- Regression lines describe only linear relationships. You can do
 the calculations for any relationship between two quantitative
 variables, but the results are useful only if the scatterplot
 shows a linear pattern.
- Least-squares regression lines are not resistant. Always plot your data and look for observations that may be influential.
- Beware extrapolation. Extrapolation is the use of a regression line for prediction far outside the range of values of the explanatory variable \boldsymbol{x} that you used to obtain the line. Such predictions are often not accurate.