EESTech Challenge REU DS CLUB & MISIS

DATA SCIENCE CLUB

EESTech

Мы провели исследование и выявили следующие проблемы

Тракторный завод ежедневно собирает тысячи данных различного характера. Аналитикам приходится проделывать большую работу для их изучения

Необходимо решение способное своевременно уведомить о потенциальных неисправностях в работе машины на предприятии

Решение должно иметь возможность легко интегрироваться в существующую систему управления предприятиями

Аналитика

EESTech

В ходе выполнения задачи был осуществлен EDA предоставленных данных

В результате его выполнения было принято решение об удалении некоторого количества признаков

Также был произведены манипуляции над данными: созданы новые признаки, заполнены пропуски

EESTech

Binary classification

Изначально идея состояла в том, чтобы решать задачу классификации путём прогнозирования бинарной метрики, сломается ли трактор на основе предоставленных логов или нет

Regression

После общения с судьями мы поняли, что важнее всего решить задачу предсказания времени поломки определенного узла

Forecasting

Решая задачу регрессии мы столкнулись с множеством вызовов, в итоге используя прогнозирование ключевых показателей определённых узлов техники

Prediction

Поскольку у нас осталось немного времени в конце хакатона, мы решили попробовать реализовать изначальную идею с классфикацией и обучили модель, которая на основе логов предсказывала сломается трактор или нет

Регрессия

EESTech

Сначала данные распределялись по узлам, затем с помощью ИИ определялся ключевой признак для прогнозирования на заданный период.

Модель временных рядов Prophet была обучена на 5 признаках, каждый из которых отвечал за определенный узел, после чего по предсказаниям определялось наличие аномалий и время их возникновения.

Классификация

EESTech

- Уникальный подход: Объединение датасетов «Problem» и «Anomaly» в один единый набор данных.
- Разделение объединенного датасета на меньшие подмножества для детализированной обработки.
- Применение TSFresh для извлечения временных признаков из каждого подмножества.
- Объединение извлеченных временных признаков с исходными таргетами в финальный датасет.
- Обучение модели CatBoost на подготовленном датасете.

Решение

EESTech

٥	log(336804182)	[26-03-202	16-06-01] 01.	06-01.07.c	5V 8.2MB		×	
Получить предсказания		19						
Reques	t successful!							
	ds	engine	transmission	hydraulics	brake	electric		
0	2023-06-08 10:37:2-	82,204	1,153.3106	0	790.488	4 27.7748		
1	2023-06-08 10:37:5	82.2036	1,153.2751	0	790.489	8 27.7747		
2	2023-06-08 10:38:2	82.2032	1,153.2391	0	790.490	7 27.7746		
3	2023-06-08 10:38:5	82.2027	1,153.2026	0	790.491	27,7745		
4	2023-06-08 10:39:2	82.2023	1,153.1656	0	790.49	27,7745		
5	2023-06-08 10:39:5	82.2018	1,153.1282	0	790.490	27.7744		
6	2023-06-08 10:40:2	82.2013	1,153.0903	0	790.489	3 27.7743		
7	2023-06-08 10:40:5	\$ 82.2008	1,153.0519	0	790.487	5 27.7742		
8	2023-06-08 10:41:2-	82.2003	1,153.0131	0	790.485	5 27.7741		
9	2023-06-08 10:41:5	82.1997	1,152.9738	0	790.482	9 27,774		

	transmission h	ydraulics	electric	engine		brake		
0	Аномалий нет А	номалий не	Аномалий не	т Анома	ий нет	10 hours		

Решение

EESTech

Визуализация

За основу инструмента прототипирования интерфейсов был выбран фреймворк Streamlit

Арихитектура

Наше решение легко интегрируемо в любой ваш сервис за счет микросервисной архитектуры.

Backend

Были использованы следующие технологии: Python, Docker, FastAPI.

Artificial intelligence

Использование передовых средств искусственного интеллекта в решении задачи

Команда

EESTech

Александр Иванов

@lild1tz

Алексей Вашкевич

DS

@gasboy04

Андрей Кадомцев

MLOps

@Avenircs

Pou

Moral support

@Itstimetodrinkwater

REU DS CLUB & MISIS