Electrical Engineering (Circuits)

Power

- 1. A current 10,000 μA can be felt by humans. How many milliamps (mA) is this?
 - (A) 10.0

(C) 100.0

(B) 1.0

(D) 0.1

- 2. A voltage of 10 MV is equal to:
 - (A) 10,000 GV

(C) 0.001 GV

(B) 0.01 GV

(D) 1,000 GV

- 3. 10^{-2} seconds is equal to:
 - (A) 10 ms

(C) 1 ms

(B) 10^2 ms

(D) 0.1 ms

4. What is I if $R_1 = 40 \text{ k}\Omega$?

(A) -0.3 mA

(C) -4.8 mA

(B) 4.8 mA

(D) 0.3 mA

5. What is I if $R_1 = 40 \text{ k}\Omega$?

(A) 0.3 mA

(C) -4.8 mA

(B) -0.3 mA

(D) 4.8 mA

6. What is I if $R_1 = 40 \text{ k}\Omega$?

- (A) -0.3 mA
- (B) -4.8 mA

- (C) 4.8 mA
- (D) 0.3 mA

7. What are I and V?

- (A) -1A, -10V
- (B) 1A, 10V

- (C) 1A, -10V
- (D) -1A, 10V
- 8. What is the power absorbed by R_1 if $R_1 = 10 \text{ k}\Omega$?

- (A) -14.4 mW
- (B) -12.2 mW

- (C) 14.4 mW
- (D) 12.2 mW

9. What is V_S if I = 2A?

- (A) -20 V
- (B) 5 V

- (C) -5 V
- (D) 20 V

10. What is V_S if $R_1 = 10 \text{ k}\Omega$?

(A) 6 V

(C) -6 V

(B) -0.6 V

- (D) 0.6 V
- 11. **T** or **F**: According to the *passive sign convention*, a positive power is associated with a component that is absorbing energy.
- 12. What is V_0 ?

(A) $\frac{3}{2}$ V

(C) 2.5 V

(B) $\frac{3}{4}$ V

(D) 4.5 V

13. What are V_1 and V_2 ?

(A) 8V, -2V

(C) -8V, 2V

(B) 8V, 2V

(D) -8V, -2V

14. What are V_1 and V_2 ?

- (A) 6V, 2V
- (B) 4V, -2V

- (C) 4V, 2V
- (D) -6V, 2V
- 15. If the power supplied by the voltage source is 60 W, how much power is dissipated by R_1 if $R_2 = 1 \Omega$?

- (A) 35 W
- (B) 45 W

- (C) 55 W
- (D) 25 W

16. What is I_1 ?

- (A) 7.5 mA
- (B) 5 mA

- (C) 10 mA
- $(D)~2.5~\mathrm{mA}$

17. What are I_1 and I_2 ?

- (A) -4 mA, 8 mA
- (B) -8 mA, 4 mA

- (C) 4 mA, 8 mA
- (D) -8 mA, 4 mA

18. What is R_{EQ} for the three resistors?

- (A) 19 Ω
- (B) 21 Ω

- (C) 9 Ω
- (D) 18Ω

19. What is V_3 ?

- (A) $-\frac{30}{7}$ V (B) $\frac{30}{7}$ V

20. What is R_{EQ} for the three resistors below?

- $(A)~\tfrac{36}{11}~k\Omega$
- (B) 11 kΩ

- (C) $1 \text{ k}\Omega$
- (D) $\frac{11}{36}$ k Ω

21. What is I_2 ?

(A) 2 mA

(C) 6 mA

(B) 8 mA

(D) 4 mA

22. What is R_{ab} ?

(A) $6 \text{ k}\Omega$

(C) 9 kΩ

(B) $15 \text{ k}\Omega$

- (D) $12 \text{ k}\Omega$
- 23. What resistor value would need to be added, in series, to two parallel 10 Ω resistors to make an overall resistance of 15 Ω ?
 - (A) 25Ω

(C) 7.5Ω

(B) 10Ω

- (D) 5Ω
- 24. T or F: Three resistors in series will have a larger overall resistance than any of the individual resistors.
- 25. T or F: Three resistors in parallel will have a larger overall resistance than any of the individual resistors.
- 26. Find R_{ab} .

(A) $15 \text{ k}\Omega$

(C) $12 \text{ k}\Omega$

(B) 9 kΩ

(D) $6 \text{ k}\Omega$

27. What is I_1 ?

- (A) 4 A
- (B) 8 A

- (C) 6 A
- (D) 2 A

28. What is I_2 ?

- (A) 2 A
- (B) 8 A

- (C) 6 A
- (D) 4 A

29. What is V_1 ?

- (A) 1 V
- (B) 2 V

- (C) 5 V
- (D) 4 V

30. What is V_2 ?

- (A) 2 V
- (B) 4 V

- (C) 1 V
- (D) 5 V