

LA3

Les documents ne sont pas autorisés. Le barème est seulement donné à titre indicatif. La qualité de la rédaction sera prise en compte dans la notation : soyez le plus clair et le plus concis possible!

Les langages considérés seront sur l'alphabet $\Sigma = \{a, b\}.$

Exercice 1 (3 points)

Soit $L_1 = \{a^n b a^{2n} \mid n \in \mathbb{N}\}.$

- 1. Donner une grammaire algébrique pour L_1 .
- 2. Donner un automate à pile (préciser le mode d'acceptation choisi) pour L_1 .
- 3. Démontrer que L_1 n'est pas reconnaissable.

Exercice 2 (3 points)

Soit L_2 l'ensemble des mots ayant un nombre pair de a et un nombre impair de b.

- 1. En calculant les résiduels, trouver un automate minimal pour L_2 .
- 2. Grâce à l'algorithme de Brzozowski-McCluskey, trouver une expression rationnelle pour L_2 .

Exercice 3 (5 points)

Pour cet exercice, il n'est pas nécessaire de dessiner les automates : donner leur table de transition suffit. Soit L_3 le langage décrit par l'expression rationnelle $e = (a+b)^*ab(a+b)^*b$.

- 1. Grâce à l'algorithme de Glushkov, donner un automate fini non déterministe pour L_3 .
- 2. Déterminiser l'automate obtenu à la question 1.
- 3. Grâce à l'algorithme de Moore, trouver un automate complet minimal pour L_3 (au préalable, ne pas oublier de compléter l'automate de la question 2 si nécessaire).
- 4. En appliquant la méthode utilisant le lemme d'Arden, trouver une expression rationnelle pour $^{c}L_{3}$ (le complémentaire du langage L_{3}).

Exercice 4 (4 points)

Soit L un langage reconnu par un automate fini déterministe $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$. Le but de cet exercice est de montrer que le langage

$$L' = \{vu \mid u, v \in \Sigma^* \text{ et } uv \in L\}$$

est reconnaissable. Pour tout état $q \in Q$, on note

$$G_q = \{ w \in \Sigma^* \mid \delta^*(q_0, w) = q \}$$

(en lisant w dans \mathcal{A} à partir de l'état q_0 on arrive dans l'état q) et

$$D_q = \{ w \in \Sigma^* \mid \delta^*(q, w) \in F \}$$

(en lisant w dans \mathcal{A} à partir de l'état q on arrive dans un état final).

- 1. Pour tout $q \in Q$, démontrer que G_q et D_q sont reconnaissables.
- 2. Pour tout $q \in Q$, démontrer que $D_q G_q \subseteq L'$.
- 3. Démontrer que pour tout $x \in L'$, il existe $q \in Q$ tel que $x \in D_qG_q$.
- 4. Conclure.

Exercice 5 (5 points)

On rappelle l'énoncé du lemme d'itération pour les langages algébriques : si $L \subseteq \Sigma^*$ est algébrique, alors il existe un entier N tel que pour tout mot $u \in L$ de taille $\geq N$, il existe $x, v, y, w, z \in \Sigma^*$ tels que

$$\begin{cases} u = xvywz \\ vw \neq \varepsilon \\ |vyw| \leq N \end{cases} \text{ et } \forall k \in \mathbb{N}, \ xv^kyw^kz \in L.$$

Soit $L = \{uu \mid u \in \Sigma^*\}$ l'ensemble des mots qui sont des carrés.

1. Démontrer grâce au lemme d'itération que L n'est pas algébrique. On pourra par exemple partir d'un mot de L de la forme $a^Nb^Na^Nb^N$.

Nous allons maintenant voir que le complémentaire de L, noté \bar{L} , est quant à lui algébrique. On propose la grammaire suivante G:

$$S \rightarrow A \mid B \mid AB \mid BA$$

$$A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$$

$$B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$$

- 2. Démontrer que les mots dérivés à partir de A sont tous les mots de longueur impaire ayant la lettre a au milieu.
- 3. Donner un résultat similaire pour B (sans démonstration).

Soit $v \in \Sigma^*$ un mot de longueur 2p-1 et $w \in \Sigma^*$ un mot de longueur 2q-1 (pour $p,q \ge 1$) tels que $A \to^* v$ et $B \to^* w$. On note $x = vw = x_1 \cdots x_{2n}$ de taille 2n = 2p + 2q - 2.

- 4. Montrer que $x_p \neq x_{n+p}$.
- 5. En déduire que x n'est pas un carré.

Soit $y \in \overline{L}$ de taille 2n. Il existe donc $p \leq n$ tel que $y_p \neq y_{n+p}$.

- 6. En décomposant y en y = vw avec v de taille 2p 1, montrer que y est engendré par G.
- 7. Conclure.