Hash Tables: Hash Functions

Michael Levin

Higher School of Economics

Data Structures http://bit.ly/algospecialization

Outline

1 Chain Length for Universal Family

2 Universal Family for Integers

Math Used

- Probabilities
- Expectation and linearity

Reminder: Universal Family

Definition

Let U be the universe — the set of all possible keys. A set of hash functions $\mathcal{H}:U\to\{0,1,\ldots,m-1\}$ with cardinality m is called a universal family if for any two keys $x,y\in U, x\neq y$ the probability

$$Pr[h(x) = h(y)] \leq \frac{1}{m}$$

Reminder: Meaning of Probability

The probability

$$Pr[h(x) = h(y)]$$

is taken over the random choice of a hash function h from the set \mathcal{H} .

Reminder: Reformulation

Equivalent definition: for any two keys $x, y \in U, x \neq y$ at most $\frac{1}{m}$ of all hash functions $h \in \mathcal{H}$ produce a collision h(x) = h(y).

Reminder: Load Factor

Definition

Let T be a hash table of size m which stores n keys. $\alpha = \frac{n}{m}$ is called the load factor of this hash table.

Linearity of Expectation

Lemma

For any finite list of random variables X_1, X_2, \ldots, X_k and $Y = X_1 + X_2 + \cdots + X_k$, $E(Y) = E(X_1) + E(X_2) + \cdots + E(X_k)$.

Theorem

Suppose h is selected at random from a universal family \mathcal{H} and is used to hash n keys into hash table T of size m giving load factor α . Then for any key k the expected length $E[n_{h(k)}]$ of the chain in T to which k is hashed is at most $1 + \alpha$.

■ Fix key *k*

- Fix key k
- For any other key *I*, define random variable

$$X_{kl} = \begin{cases} 1, & \text{if } h(k) = h(l) \\ 0, & \text{otherwise} \end{cases}$$

- Fix key k
- For any other key *I*, define random variable

$$X_{kl} = \begin{cases} 1, & \text{if } h(k) = h(l) \\ 0, & \text{otherwise} \end{cases}$$

• $E(X_{kl}) = 0 + 1 \times Pr[h(k) = h(l)] \le \frac{1}{m}$

Number of collisions $Y_k = \sum_{l \neq k, l \in T} X_{kl}$

- Number of collisions $Y_k = \sum_{l \neq k, l \in T} X_{kl}$
- Chain length $n_{h(k)} = 1 + Y_k$

- Number of collisions $Y_k = \sum_{l \neq k, l \in T} X_{kl}$
- Chain length $n_{h(k)} = 1 + Y_k$
- $E(Y_k) = \sum_{l \neq k, l \in T} E(X_{kl})$

- Number of collisions $Y_k = \sum_{l \neq k, l \in T} X_{kl}$
- Chain length $n_{h(k)} = 1 + Y_k$

$$E(Y_k) = \sum_{l \neq k, l \in T} E(X_{kl}) \le \sum_{l \neq k, l \in T} \frac{1}{m} \le$$

$$\le \frac{n}{m} = \alpha$$

- Number of collisions $Y_k = \sum_{k} X_{kl}$ $l \neq k, l \in T$
- Chain length $n_{h(k)} = 1 + Y_k$
- $E(Y_k) = \sum_{l \neq k, l \in T} E(X_{kl}) \leq \sum_{l \neq k, l \in T} \frac{1}{m} \leq$

$$E(n_{h(k)}) = 1 + E(Y_k) \le 1 + \alpha$$

Corollary

Corollary

Using universal hashing and chaining scheme in a hash table of size m, it takes expected time $\Theta(n)$ to perform n operations of insertion, deletion, and search if there are O(m) insertion operations. Thus, operations with the hash table run in amortized O(1)time on average.

Proof

O(m) insertions, so $n = O(m), \alpha = O(1)$

- O(m) insertions, so $n = O(m), \alpha = O(1)$
- $1 + \alpha = O(1)$

- O(m) insertions, so $n = O(m), \alpha = O(1)$
- $1 + \alpha = O(1)$
- Expected running time of each operation is O(1)

- O(m) insertions, so $n = O(m), \alpha = O(1)$
- $1 + \alpha = O(1)$
- Expected running time of each operation is O(1)
- Expected running time of n operations is $\Theta(n)$

Conclusion

- Proven upper bound $1 + \alpha$ on the expected chain length
- Proven O(1) amortized expected running time for operations with a hash table using universal family and chaining

Outline

① Chain Length for Universal Family

2 Universal Family for Integers

Math Used

- Properties of prime numbers
- Properties of modulo arithmetics
- One-to-one correspondence
- Upper integral part [a] properties
- Probabilities

Theorem

Set of functions

Set of functions
$$\mathcal{H}_p = \left\{ h_p^{a,b}(x) = ((ax+b) \bmod p) \bmod p \right\}$$

 $a, b: 1 \le a \le p-1, 0 \le b \le p-1$

and prime p is a universal family for $U = \{0, 1, \dots, p-1\}.$

Lemma

For a fixed hash function $h=h_{\scriptscriptstyle D}^{a,b}$ from ${\cal H}_{\scriptscriptstyle D}$ and keys $x, y \in U, x \neq y$ the values

 $r = (ax + b) \mod p$

and $s = (ay + b) \mod p$

are different

$$r = s \Rightarrow (ax + b) \equiv (ay + b) \mod p \Rightarrow$$

$$r = s \Rightarrow (ax + b) \equiv (ay + b) \mod p \Rightarrow$$

$$a(x-y) \equiv 0 \mod p \Rightarrow p \text{ divides } a(x-y)$$

$$r = s \Rightarrow (ax + b) \equiv (ay + b) \mod p \Rightarrow$$

$$a(x-y) \equiv 0 \mod p \Rightarrow p \text{ divides } a(x-y)$$

$$1 \le a \le p-1 \Rightarrow p$$
 divides $(x-y)$

$$r = s \Rightarrow (ax + b) \equiv (ay + b) \mod p \Rightarrow$$

$$a(x-y) \equiv 0 \mod p \Rightarrow p \text{ divides } a(x-y)$$

$$1 \le a \le p-1 \Rightarrow p$$
 divides $(x-y)$

$$0 \le x, y < p, p \text{ divides } (x - y) \Rightarrow x = y$$

Corollary

There are no collisions for

$$h(x) = (ax + b) \mod p,$$

before taking the value mod m.

Lemma

For fixed keys $x \neq y$, there is one-to-one correspondence between pairs

correspondence between pairs
$$(a,b), 1 \le a \le p-1, 0 \le b \le p-1$$
 and

 $(r, s), 0 \le r, s \le p - 1, r \ne s$

Different (a, b) generate different (r, s):

Different (a, b) generate different (r, s):

$$a = ((r-s)((x-y)^{-1} \bmod p) \bmod p,$$

 $b = (r - ax) \mod p$

Different (a, b) generate different (r, s):

 $b = (r - ax) \mod p$

$$((a,b)) \text{ generate afficient } (r,b).$$

$$a = ((r - s)((x - v)^{-1} \mod p) \mod p$$

$$a = ((r - s)((x - y)^{-1} \mod p) \mod p,$$

 $r = r', s = s' \Rightarrow a = a', b = b'$

- Different (a, b) generate different (r, s)
- p(p-1) total pairs (a,b)
- p(p-1) total pairs (r,s)
- Thus one-to-one correspondence

Corollary

If x and y, $x \neq y$ are some keys, any $h \in \mathcal{H}_p$ is chosen at random with equal probability

is chosen at random with equal probability
$$\frac{1}{p(p-1)}$$
, then each pair of values $(r,s)=((ax+b) \bmod p, (ay+b) \bmod p)$

happen with equal probability $\frac{1}{p(p-1)}$.

There is one-to-one correspondence between (a, b) and (r, s)

- There is one-to-one correspondence between (a, b) and (r, s)
- Probability of any pair (a, b) is $\frac{1}{p(p-1)}$

- There is one-to-one correspondence
- between (a, b) and (r, s)
- Probability of any pair (a, b) is $\frac{1}{p(p-1)}$ ■ So probability of any (r, s) is $\frac{1}{p(p-1)}$

$$Pr[h(x) = h(y)] = Pr[r \mod m = s \mod m]$$

Proof

$$Pr[h(x) = h(y)] = Pr[r \mod m = s \mod m]$$

Each pair (r, s) has probability $\frac{1}{p(p-1)}$

Proof

For each $r \in [0, p-1]$, there are at most $\lceil \frac{p}{m} \rceil - 1$ such s that $s \neq r$ and $r \mod m = s \mod m$:

Proof

For each $r \in [0, p-1]$, there are at most $\lceil \frac{p}{m} \rceil - 1$ such s that $s \neq r$ and $r \mod m = s \mod m$:

$$\check{0}, 1, \ldots, \check{m}, \ldots, 2\check{m}, \ldots, (\lceil \frac{p}{m} \rceil - 1)m, \ldots$$

$$Pr[r \bmod m = s \bmod m] \leq \sum_{r=0}^{p-1} \frac{\lceil \frac{p}{m} \rceil - 1}{p(p-1)} =$$

$$\frac{\lceil \frac{p}{m} \rceil - 1}{(p-1)} \le \frac{\frac{p+m-1}{m} - 1}{(p-1)} = \frac{p-1}{m(p-1)} = \frac{1}{m}$$

$$Pr[r \mod m = s \mod m] \le \sum_{r=0}^{p-1} \frac{\lceil \frac{p}{m} \rceil - 1}{p(p-1)} = \frac{\lceil \frac{p}{m} \rceil - 1}{(p-1)} \le \frac{\frac{p+m-1}{m} - 1}{(p-1)} = \frac{p-1}{m(p-1)} = \frac{1}{m}$$

$$Pr[h(x) = h(y)] \leq \frac{1}{m}$$

Conclusion

- Proven universal family for integers
- $\begin{tabular}{l} \end{tabular} \begin{tabular}{l} \end{tabular} \b$
- Proven O(1) amortized expected running time of hash table operations