Planiranje i implementacija visoke dostupnosti za datotečne servise i aplikacije

Module Overview

- Planiranje i implementacija Storage Spaces
- Planiranje i implementacija DFS
- Planiranje i implementacija NLB

Planiranje i implementacija Storage Spaces

- Što su Storage Spaces?
- > Storage Pool konfiguracijske opcije
- ➤ Što je Clustered Storage Space?
- Zahtjevi za implementaciju Clustered Storage Spaces
- Konfiguracija klasteriranog Storage Space
- Preporuke za implementaciju Storage Spaces

Što su Storage Spaces?

Komponente Storage Spaces uključuju:

- Fizičke diskove
- Storage pool
- Virtualne diskove

Nove mogućnosti u Windows Server 2012 R2

- Slojevi
- Write-back cache
- Parity space podrška za failover klaster
- Dvostruki pariteti
- Automatsko rekreiranje storage spaces iz slobodnog prostora storage pool

Storage Pool konfiguracijske opcije

Raspored spremišta podataka:

- Jednostavni (simple):
 - Bolje performanse, nema redundancije, slično kao RAID 0
- Zrcaljenje (mirror):
 - Sporije performanse, redundantnost kopiranjem podataka, slično kao RAID 1
- Paritet (parity):
 - Bolje performanse, redundantnost pomoću pariteta, slično kao RAID 5

Tip provizioniranja:

- Thin:
 - Fleksibilno
- Fixed:
 - Bolje performanse

Što je Clustered Storage Space?

- Visoka dostupnost omogućena putem failover klastera
- Unificirano upravljanje putem CSV imenskog prostora
- Otpornost na greške putem storage spaces
- Spremište podataka na JBOD

Visoko dostupni dijeljeni direktoriji

CSV imenski prostor

Clustered pools

Poslužitelji

Dijeljeni SAS

Zahtjevi za implementaciju Clustered Storage Spaces

Da bi zadovoljili klaster storage space uvjete okruženje mora:

- Koristiti samo SAS diskove
- Imati barem tri diska s kapacitetom od minimalno 4 GB svaki
- Imati dedicirane diskove
- Diskovi ne smiju biti formatirani s ReFS
- Proći failover klaster validacijske testove

Konfiguracija klasteriranog Storage Space

Da bi implementirali klasterirani storage space:

- 1. Kreirajmo failover klaster
- 2. Dodajmo File Services ulogu na sve čvorove klastera
- Kreirajmo novi storage pool iz Failover Cluster Manager konzole
- Kreirajmo virtualne diskove u storage pool

Preporuke za implementaciju Storage Spaces

- Kreirajmo storage pools ovisno o tipu i brzini diska
- Odaberimo odgovarajući raspored spremišta podataka ovisno o rasporedu fizičkih diskova
- Koristimo fiksno provizioniranje
- Koristimo hardverski RAID za klasterirani Storage Spaces

Planiranje i implementacija DFS

- > Pregled DFS komponenti
- Scenariji za korištenje DFS
- Preporuke za dizajn dostupnosti DFS imenskog prostora
- Preporuke za konfiguraciju preusmjerenja
- > Preporuke za optimizaciju DFS imenskog prostora
- > Preporuke za implementaciju DFS imenskog prostora
- Preporuke za dizajn DFS replikacije

Pregled DFS komponenti

Poslužiteljske uloge:

- DFS imenski prostor
- DFS replikacija

Promjene dodane u Windows Server 2012:

- Windows PowerShell za DFS imenski prostor
- Svjesnost o lokaciji za DirectAccess klijente
- WMI za DFS imenski prostor
- Replikacija za deduplicirane volumene

Promjene dodane u Windows Server 2012 R2:

- Windows PowerShell za DFS imenski prostor
- WMI za DFS replikaciju
- Promjene u replikaciji

Scenariji za korištenje DFS

Preporuke za dizajn dostupnosti DFS imenskog prostora

- Povećajmo dostupnost domenskog imenskog prostora povećanjem broja poslužitelja koji ga repliciraju
- Povećajmo dostupnost samostojećeg imenskog prostora korištenjem failover klastera
- Povećajmo dostupnost direktorija korištenjem više ciljanih direktorija
- U domeni koja ima funkcionalni nivo niži od Windows Server 2008, koristimo samostojeći imenski prostor ako ima više od 5,000 direktorija
- U domeni koja ima funkcionalni nivo Windows Server 2008 ili noviji, možemo imati do 300,000 direktorija u domenskom imenskom

prostoru

Preporuke za konfiguraciju preusmjerenja

Što imati na umu:

- Najjeftinije preusmjerenje
 - Cijena veze lokacije određuje preusmjerenje
- Nasumično preusmjerenje
 - Bilo koji ciljani direktorij izvan lokalne lokacije je dobar
- Isključimo preusmjerenja van klijentove lokacije
 - Klijenti nikada ne koriste ciljani direktorij van svoje lokacije

Preporuke za optimizaciju DFS imenskog prostora

Preporuke za optimizaciju DFS imenskog prostora uključuju:

- · Isključivanje preusmjerena prilikom održavanja poslužitelja
- Uključivanje failback opcije kada imamo više poslužitelja
- Smanjivanje caching intervala za preusmjerenja u okruženjima gdje često dodajemo poslužitelje imenskog prostora
- Korištenje polling postavki za imenski prostor radi skalabilnosti i smanjivanja opterećenja prema PDC emulatoru

Preporuke za implementaciju DFS imenskog prostora

- Koristimo DFS imenski prostor za kreiranje unificirane hijerarhije direktorija
- Koristimo više ciljanih direktorija da bi povećali dostupnost pojedinih direktorija
- Koristimo metodu najmanjeg troška za uređivanje preusmjerenja prema ciljanim direktorijima
- Za više od 16 poslužitelja koristimo način rada koji favorizira skalabilnost
- Definirajmo primarni poslužitelj korištenjem prioriteta na ciljanim direktorijima da bi smanjili replikacijske konflikte
- Uključimo access-based enumeration

Preporuke za dizajn DFS replikacije

- Koristimo mesh replikacijsku topologiju za manje od deset članova
- Koristimo kontrolu propusnosti mreže da replikacija ne bi preopteretila WAN veze
- Koristimo cross-file RDC da bi smanjili replikacijski promet
- Koristimo replikacijske filtere da bi onemogućili replikaciju neželjenih datoteka
- Koristimo replicirane direktorije koji se mogu samo čitati da bi onemogućili modifikaciju sadržaja
- Odredimo veličinu Staging Conflict and Deleted direktorija ispravno
- Koristimo više malih direktorija da bi pojednostavili ponovno pokretanje

 Algeb

Planiranje i implementacija NLB

- > NLB scenariji
- > Preporuke za konfiguraciju NLB mrežnih postavki
- Preporuke za konfiguraciju Port pravila
- Preporuke za konfiguraciju spremišta podataka za NLB klaster
- Preporuke za implementaciju NLB na virtualnim računalima
- Upravljanje NLB komponentama u VMM

NLB Scenarios

NLB scenariji:

- Online Responders u Windows PKI okruženju
- Standardne IIS web aplikacije
- FTP poslužitelji
- Service Manager Self-Service Portal
- Configuration Manager management points i software update points
- Operations Manager upravljački poslužitelj
- Service Manager upravljački poslužitelj

Preporuke za konfiguraciju NLB mrežnih postavki

- Unikast način rada radi na svim hardverskim platformama
- Unikast način rada ne omogućava zaustavljanje opterećenja portova na preklopniku
- Multikast podržava jedan mrežni adapter
- Multikast način rada omogućava zaustavljanje opterećenja portova na preklopniku korištenjem statičnih ARP unosa
- IGMP multikast omogućava korištenje IGMP prisluškivanja
- Povezani usmjernici možda neće podržavati mapiranje unikast IP adrese s multikast MAC adresama

Preporuke za konfiguraciju Port pravila

- Kreirajmo odvojena port pravila za svaki host
- Kreirajmo odvojena port pravila za svaki uzastopni raspon portova
- Izbjegavajmo korištenje pravila koja otvaraju i UDP i TCP portove
- Koristimo Single Host za filtriranje kada radimo održavanje poslužitelja iz klastera
- Za opcije afiniteta:
 - Koristimo None ako aplikacije ne zahtjeva upravljanje stanjem
 - Koristimo Single ako aplikacije zahtjeva upravljanje stanjem i svi klijenti su lokalni
 - Koristimo Network ako aplikacije zahtjeva upravljanje stanjem i svi klijenti su iza proxy poslužitelja

eno računarstvo

Preporuke za konfiguraciju spremišta podataka za NLB klaster

- Koristimo DFS Replication za replikaciju podataka među čvorovima NLB klastera
- Koristimo failover clustering s ulogom datotečnog poslužitelja za spremanje podataka van čvorova NLB klastera
- Koristimo DFS Replication i DFS namespaces za repliciranje podataka između različitih skupova poslužitelja

Preporuke za implementaciju NLB na virtualnim računalima

- Koristimo odvojene virtualne mreže za javne i privatne NLB mreže
- Omogućimo spoofing MAC adresa
- Koristimo VMM za upravljanje s NLB pomoću servisnih predložaka

Upravljanje NLB komponentama u VMM

- Kreirajmo VIP predložak
- Kreirajmo logičku mrežu
- Kreirajmo statični skup IP adresa
- Konfigurirajmo fizički mrežni adapter na hostu da koristi logičku mrežu

