Double-Operand Math Instructions Examples

Line nr.	Assembly	Machine Code			
		${\tt aooooodddiiiijjjjxxxxxxxxxxxxx}$			
1.	FADD r1, r2, r3	000101000000100011000000000000000			
2.	FSUB r1, r2, #5	1001100000010000000000000000101			

From left to right, bit 'a' defines the addressing mode. In line 1, the second source r3 is a register. For register addressing a=0. The next five 'o' bits are the FADD opcode.

Bits 'dddd', 'iiii', 'jjjjj', are the addresses for the r1, r2, and r3 registers respectively. The rest are don't cares in this case, so I just made them zero.

In line 2, the # symbol indicates to the assembler that immediate addressing should be used instead, so the 'a' bit is set to 1. Also, the encoding format therefore changes, the last 18 bits after when r1 and r2 are encoded are used to represent the 18 bit binary value of 5.

On the tables below, line 1 of the above code corresponds to an r-type Double-Operand ALU instruction, and line 2 corresponds to an i-type instruction.

		30	25	21	17	13	0		
Double-Operand	r-type:	0 opcode	rd	rs1	rs2	0			
\mathbf{ALU}	i-type:	1 opcode	rd	rs		18-bit immediate			
Single-Operand	EXP:	0 opcode	rd			22-bit immediate			
\mathbf{ALU}		0 opcode	rd		0				
Load, Store, Move		0 opcode	rd	rs		0			
Branching	В:	0 opcode	rd			22-bit immediate			
g		0 opcode				0			
No-Operation and Halt		0 opcode				0			