ПРИЈЕМНИ ИСПИТ ЗА УПИС НА МАТЕМАТИЧКИ Φ АКУЛТЕТ

Београд, 28.06.2023. Време за рад је 180 минута.

1. Број $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{6}-\sqrt{24}-\sqrt{48}+\sqrt{108}}$ једнак је:
(A) $-\frac{2-\sqrt{2}}{3}$; (B) $-\frac{2+\sqrt{2}}{3}$; (C) $\frac{2-\sqrt{2}}{3}$; (D) $\frac{2+\sqrt{2}}{3}$; (E) $\frac{2}{3}$; (N) не знам.
2. Скуп вредности реалног параметра a , тако да једначина $ x - x-1 + x-2 =a$ има тачно два реална решења је: (A) $(2,\infty);$ (B) $[2,\infty);$ (C) $(0,1)\cup\{2\};$ (D) $\{1\}\cup(2,\infty);$ (E) $\{1\}\cup[2,\infty);$ (N) не знам.
3. Аца, Бане и Влада су поделили чоколаду у односу 11 : 8 : 6. Колики је проценат чоколаде добио Аца?
(A) 11% ; (B) 24% ; (C) 32% ; (D) 44% ; (E) 55% ; (N) не знам.
4. Скуп решења неједначине $\frac{ 2x-1 +x+1}{x^2-x} \le 1$ је:
(A) $(-\infty, -\sqrt{2}] \cup (0, \frac{1}{2}] \cup [4, \infty);$ (B) $(-\infty, 0) \cup (0, 1) \cup [4, \infty);$ (C) $[\frac{1}{2}, 1) \cup [4, \infty);$
$(\mathbf{D})(-\infty, -\sqrt{2}] \cup (0,1) \cup [4,\infty);$ (E) ниједан од понуђених одговора; (N) не знам.
5. Ако су $a,b \in \mathbb{R}$ и ако за решења x_1 и x_2 квадратне једначине $x^2 + ax + b = 0$ важи $x_1 < 0$, $x_2 > 0$ и $\frac{1}{x_1} + \frac{1}{x_1x_2} + \frac{1}{x_2} = -1$, онда x_1 припада интервалу:
$x_2 > 0$ и $\frac{1}{x_1} + \frac{1}{x_1 x_2} + \frac{1}{x_2} = -1$, онда x_1 припада интервалу: (A) $(-\infty, -5)$; (B) $[-5, -4]$; (C) $(-4, -2)$; (D) $[-2, -1]$; (E) $(-1, 0)$; (N) не знам.
6. Скуп решења неједначине $\sqrt[3]{x^2-1} \geqslant x-1$ је: (A) $[0,3];$ (B) $[1,3];$ (C) $(-\infty,-1];$ (D) $(-\infty,-1] \cup [1,3];$ (E) $(-\infty,0] \cup [1,3];$ (N) не знам.
7. Скуп решења неједначине $\frac{5 \cdot 3^x}{3^x - 2^x} \geqslant 9 + \frac{2^x}{3^{x-2}}$ је:
(A) $(-\infty,0) \cup [1,\infty)$; (B) $(0,1]$; (C) $(0,1)$; (D) $[-1,0) \cup (0,1]$; (E) $[0,1]$; (N) не знам.
8. Број решења неједначине $\log_{\frac{1}{2}}(2^x-1)\cdot\log_{\frac{1}{2}}(2^{x-1}-\frac{1}{2})\leqslant 2$ у скупу природних бројева је: (A) 0; (B) 1; (C) 2; (D) 3; (E) већи од 3; (N) не знам.
9. Дужина полупречника описаног круга једнакокраког троугла, дужине основице 6, а крака
5, припада интервалу: (A) $(0,1);$ (B) $[1,2];$ (C) $(2,3);$ (D) $[3,4];$ (E) $(4,\infty);$ (N) не знам.
10. У праву зарубљену кружну купу уписана је лопта површине P , а угао који изводница те зарубљене купе образује са равни којој припада већа основа је 60° . Онда је површина омотача те зарубљене купе једнака:

(A) $\frac{4\sqrt{3}P}{3}$; (B) $\frac{3\sqrt{3}P}{2}$; (C) $\frac{3P}{2}$; (D) $\frac{4P}{3}$; (E) $\frac{4\sqrt{3}P}{2}$; (N) не знам.

11. Збир свих решења једначине $4\cos x \cos 2x = \cos 3x$ која припадају интервалу $[0, 2\pi]$ је: (A) 2π ; (B) 3π ; (C) 4π ; (D) 5π ; (E) 6π ; (N) не знам.
12. Нека је AB дужа основица једнакокраког трапеза $ABCD$. Ако дијагонала дели трапез на два једнакокрака троугла, онда вредност $\frac{AB}{CD}$ припада интервалу: (A) $(1,\sqrt{2});$ (B) $[\sqrt{2},\sqrt{3});$ (C) $[\sqrt{3},2);$ (D) $[2,\sqrt{5});$ (E) $[\sqrt{5},\infty);$ (N) не знам.
13. Тачка кружнице $(x-5)^2 + (y-4)^2 = 4$ која је најближа кружници $(x-1)^2 + (y-1)^2 = 1$ има x координату једнаку: (A) 2,8; (B) 3,4; (C) 4; (D) 3,8; (E) 6,6; (N) не знам.
14. Странице правоуглог троугла представљају три узастопна члана аритметичке прогресије корака d . Површина тог троугла је: (A) $\frac{9d^2}{2}$; (B) $6d^2$; (C) $12d^2$; (D) d^2 ; (E) $15d^2$; (N) не знам.
15. Нека је n непаран природан број који је дељив са 3. Онда за број $n^2 + 3$ важи: (A) дељив је са 3 и 4, а није са 9; (B) дељив је са 2 и 9, а није са 4; (C) дељив је са 2 и 9, а није са 4 и 9; (E) није тачно ниједно од наведених тврђења; (N) не знам.
16. Имагинарни део комплексног броја $\frac{5(1+i)^{24}}{(1+i)^{20}+(1-i)^{18}}$, где је $i^2=-1$, је: (A) -6 ; (B) -4 ; (C) -2 ; (D) 8 ; (E) 16 ; (N) не знам.
17. Остатак при дељењу полинома $x^{2024} + x^{2023} + 1$ са $x^3 - x^2 + x - 1$ једнак је: (A) $-x^2 - x + 5$; (B) $x^2 - x + 3$; (C) $-x^2 + x + 3$; (D) $-x^2 + 4$; (E) $x^2 + 2$; (N) не знам.
18. Скуп вредности реалног параметра a , за које једначина $ x^3 - 3x^2 + 2x = a$ има највећи могући број решења, је: (A) $(0, \frac{2\sqrt{3}}{9});$ (B) $(0, \frac{2\sqrt{3}}{9}];$ (C) $\{0\};$ (D) $(\frac{2\sqrt{3}}{9}, \infty);$ (E) $[\frac{2\sqrt{3}}{9}, \infty);$ (N) не знам.
19. Ученик игра игру у којој баца новчић (који има две различите стране) и након сваког бацања бележи добијени резултат, а игра се завршава у моменту у ком се по четврти пут појави једна од страна новчића. Исход игре представља добијени низ резултата. Колико има могућих исхода описане игре?
(A) 35; (B) 56; (C) 70; (D) 112; (E) 117; (N) не знам. 20. Број рационалних чланова у развоју бинома $(\sqrt{2} + \sqrt[3]{3})^{2023}$ је: (A) 0; (B) 337; (C) 338; (D) 675; (E) 1687; (N) не знам.

- 1. Како је $\sqrt{3}-\sqrt{6}-\sqrt{24}-\sqrt{48}+\sqrt{108}=\sqrt{3}-\sqrt{6}-\sqrt{4\cdot 6}-\sqrt{16\cdot 3}+\sqrt{36\cdot 3}=\sqrt{3}-\sqrt{6}-2\sqrt{6}-4\sqrt{3}+6\sqrt{3}=3\sqrt{3}-3\sqrt{6},$ следи $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{6}-\sqrt{24}-\sqrt{48}+\sqrt{108}}=\frac{1}{3}\cdot\frac{\sqrt{6}}{\sqrt{3}-\sqrt{6}}\cdot\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}+\sqrt{6}}=-\frac{3\sqrt{2}+6}{9}=-\frac{2+\sqrt{2}}{3}$.
- 2. Важи f(x) = |x| |x-1| + |x-2| = $\begin{cases}
 (-x) + (x-1) (x-2) = -x + 1, & \text{ако je } x \in (-\infty, 0) \\
 x + (x-1) (x-2) = x + 1, & \text{ако je } x \in [0, 1) \\
 x (x-1) (x-2) = -x + 3, & \text{ако je } x \in [1, 2) \\
 x (x-1) + (x-2) = x 1, & \text{ако je } x \in [2, \infty)
 \end{cases}$

следи да је на $(-\infty,0)$ једначина f(x)=a еквивалентна са -x+1=a, односно x=1-a, па има решење ако и само ако је $a\in(1,\infty)$. Аналогно, на [0,1) једначина f(x)=a је еквивалентна са x=a-1 и има решење ако и само ако је $a\in[1,2)$, на [1,2) са x=3-a и има решење ако и само ако је $a\in[1,2)$, а на $[2,\infty)$ са x=a+1 и има решење ако и само ако је $a\in[1,\infty)$. Из претходних закључака следи да f(x)=a има два решења ако и само ако је $a\in\{1\}\cup(2,\infty)$

- 3. Проценат чоколаде који је добио Аца је $\frac{11}{11+8+6} = \frac{11}{25} = 44\%$.
- **4.** Неједначина је дефинисана за $x \notin \{0,1\}$. Ако је $x \in (-\infty,0) \cup (0,\frac{1}{2})$, еквивалентна је са $\frac{2-x}{x^2-x} = \frac{1-2x+x+1}{x^2-x} \leqslant 1$, тј. са $\frac{2-x^2}{x(x-1)} \leqslant 0$, па је у овом случају решење $x \in (-\infty,-\sqrt{2}] \cup (0,\frac{1}{2})$, а ако је $x \in [\frac{1}{2},1) \cup (1,\infty)$, еквивалентна је са $\frac{3x}{x^2-x} = \frac{2x-1+x+1}{x^2-x} \leqslant 1$, тј. са $\frac{4x-x^2}{x(x-1)} \leqslant 0$, односно са $\frac{4-x}{x-1} \leqslant 0$. па је у овом случају решење $x \in [\frac{1}{2},1) \cup [4,\infty)$. Дакле, решење наведене неједначине је $x \in (-\infty,-\sqrt{2}] \cup (0,1) \cup [4,\infty)$.
- **5.** По Виетовим правилима је $x_1+x_2=-a$ и $x_1x_2=b$, а из наведених услова следи $b\neq 0$ и да је израз $\frac{1}{x_1}+\frac{1}{x_1x_2}+\frac{1}{x_2}$ добро дефинисан и једнак $\frac{x_1+x_2+1}{x_1x_2}=\frac{1-a}{b}$. Из наведеног услова следи $\frac{1-a}{b}=-1$, тј. 1-a+b=0, а како је лева страна последње једнакости једнака вредности уочене квадратне функције у тачки -1, следи да је $x_1=-1$.
- **6.** Наведена неједначина је еквивалентна са $x^2-1\geqslant (x-1)^3$, тј. са $(x-1)((x-1)^2-(x+1))=(x-1)(x^2-3x)=x(x-1)(x-3)\leqslant 0$, па јој је решење $x\in (-\infty,0]\cup [1,3].$
- 7. Неједначина је дефинисана ако је $3^x \neq 2^x$, тј. за $x \neq 0$. Ако је $t = \frac{2^x}{3^x}$ за $x \neq 0$, онда је $t \in (0,1) \cup (1,\infty)$, неједначина је еквивалентна са $\frac{5}{1-t} \geqslant 9+9t$, тј. са $9t+9+\frac{5}{t-1} \leqslant 0$, односно са $\frac{(3t-2)(3t+2)}{t-1} = \frac{9t^2-4}{t-1} \leqslant 0$. Међутим, како је t>0, последње значи да је $t \in [\frac{2}{3},1)$, па како је $t = (\frac{2}{3})^x$ (и пошто је $\frac{2}{3} < 1$, функција $(\frac{2}{3})^x$ је опадајућа), следи $x \in (0,1]$.
- 8. Због дефинисаности неједначине мора бити $2^x-1>0$ и $2^{x-1}-\frac{1}{2}>0$, тј. x>0. Како је $\log_{\frac{1}{2}}(2^{x-1}-\frac{1}{2})=\log_{\frac{1}{2}}\frac{2^x-1}{2}=\log_{\frac{1}{2}}(2^x-1)+1$, ако је $t=\log_{\frac{1}{2}}(2^x-1)$, следи $t(t+1)\leqslant 2$, тј. $t\in [-2,1]$, односно $-2\leqslant\log_{\frac{1}{2}}(2^x-1)\leqslant 1$. Како је функција $\log_{\frac{1}{2}}x$ опадајућа на $(0,\infty)$, из добијеног следи $\frac{1}{2}\leqslant 2^x-1\leqslant 4$, тј. $\frac{3}{2}\leqslant 2^x\leqslant 5$, одакле је $x\in [\log_2\frac{3}{2},\log_25]$, а природни бројеви који припадају овом скупу су 1 и 2.
- 9. Ако је уочени троугао ABC, при чему је BC=6 и CA=AB=5, ако је A' подножје нормале из A на BC, онда је $A'C=\frac{BC}{2}=3$ и $\triangle AA'C$ је правоугли, па по Питагориној теореми следи

 $AA'=\sqrt{CA^2-A'C^2}=4$, што је дужина висине која одговара основици BC. Како је уочени троугао једнакокрак и оштроугли (важи $CA^2+AB^2=50>36=BC^2$), центар описаног круга O припада дужи AA' и $\triangle OA'C$ је правоугли, катета A'C=3 и OA'=AA'-OA=4-R, а хипотенузе OC=R, при чему је R дужина полупречника описаног круга, те из Питагорине теореме следи $(4-R)^2+9=R^2$, одакле је $R=\frac{25}{8}$.

Друго решење. Као у првом решењу, висина која одговара основици је дужине 4, па је површина троугла $\triangle ABC$ једнака $P=\frac{4\cdot 6}{2}=12$, а полупречник описаног круга $R=\frac{AB\cdot BC\cdot CA}{4P}=\frac{25}{8}$.

 $Tpe\hbar e$ решење. Ако је α угао код темена A троугла ABC, на основу косинусне теореме је $BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos \alpha$, па је $\cos \alpha = \frac{7}{25}$ и $\sin \alpha = \sqrt{1 - (\frac{7}{25})^2} = \frac{24}{25}$, а по синусној теореми је $2R=\frac{BC}{\sin\alpha},$ одакле је $R=\frac{6}{2\cdot\frac{24}{5\pi}}=\frac{25}{8}$.

10. Ако су $r_1 > r_2$ полупречници основа, s изводница, а h висина уочене зарубљене купе, њен осни пресек је једнакокраки трапез ABCD, основа $AB=2r_1$ и $CD=2r_2$, крака BC=DA=s и

висине h. По условима задатка, тај трапез је тангентан (полупречника уписаног круга једнаког $\frac{h}{2}$, што је једнако полупречнику уписане сфере R) и важи $\triangleleft ABC = 60^{\circ}$. Из тангентности следи $2(r_1+r_2) = AB+CD = BC+DA = 2s$, тј. $s = r_1 + r_2$. Ако је E подножје нормале из C

 $(r_1 + r_2)s\pi = s^2\pi = \frac{16R^2\pi}{3} = \frac{4P}{3}$.

11. Једначина је еквивалентна са $4\cos x(2\cos^2 x - 1) = 4\cos^3 x - 3\cos x$, тј. са $4\cos^3 x - \cos x = 0$, односно са $\cos x(2\cos x-1)(2\cos x+1)=0$, па је $\cos x=0 \lor \cos x=\frac{1}{2}\lor \cos x=-\frac{1}{2}$, односно $x=\frac{\pi}{2}+k\pi\lor x=\frac{\pi}{3}+2k\pi\lor x=-\frac{\pi}{3}+2k\pi\lor x=\frac{2\pi}{3}+2k\pi\lor x=-\frac{2\pi}{3}+2k\pi$, где је $k\in\mathbb{Z}$. Интервалу $[0,2\pi]$ припадају решења $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{\pi}{3}$, $\frac{5\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, а њихов збир је 6π .

12. Нека је α оштар унутрашњи угао уоченог трапеза. Како је угао код темена D трапеза $180^{\circ} - \alpha > 90^{\circ}$, а $\triangle ACD$ једнакокраки, следи да је AC основица тог једнакокраког троугла и

важи AC > CD = DA, а ако је $\triangleleft DAC = \varphi$, углови $\triangle ACD$ су $\varphi, \varphi, 180^{\circ} - \alpha$. Како је и $\triangle ABC$ једнакокраки, из претходног следи да је BC основица тог троугла и да је AB = AC, а углови тог троугла су $\alpha - \varphi, \alpha, \alpha$. Како је збир углова троугла 180° , следи $\alpha=2\varphi$ и $3\alpha-\varphi=180^\circ,$ па је $\varphi=36^\circ$ и $\alpha=72^\circ.$ Како је BC=CD, на основу синусне теореме у $\triangle ABC$ следи $\frac{AB}{CD}=\frac{AB}{BC}=\frac{\sin \triangleleft BCA}{\sin \triangleleft CAB}=\frac{\sin \upbeta^\circ}{\sin 36^\circ}=2\cos 36^\circ.$

Пошто је функција $\cos x$ строго опадајућа на $(0^\circ, 90^\circ)$ и $30^\circ < 36^\circ < 45^\circ$, следи $\frac{\sqrt{2}}{2} < \cos 36^\circ < \frac{\sqrt{3}}{2}$, па је $\sqrt{2} < \frac{AB}{CD} < \sqrt{3}$.

Друго решење. Као и у првом решењу, углови између крака и веће основице су 72°, а угао између дијагонала и основица 36°. Ако је E пресек дијагонала, онда је $\triangle ABE \sim \triangle ACD \sim CDE$ (у питању су једнакокраки троуглови, чији је угао на основици 36°), а притом је AB = AC, па је $\triangle ABE \cong \triangle ACD$. Следи CE = AC - AE = AB - CD и $\frac{AB}{CD} = \frac{AC}{CD} = \frac{CD}{CE} = \frac{CD}{AB-CD}$, па важи $\left(\frac{AB}{CD}\right)^2 - \frac{AB}{CD} - 1 = 0$, а како је $\frac{AB}{CD} > 0$, следи $\frac{AB}{CD} = \frac{1+\sqrt{5}}{2} \in [\sqrt{2},\sqrt{3})$.

13. Како је растојање центара наведених кружница $(\sqrt{(5-1)^2+(4-1)^2}=5)$ веће од збира њихових полупречника (1+2=3), оне се не секу, па тражена најближа тачка припада правој

која садржи центре кружница, тј. тачке (5,4) и (1,1). Следи да њене координате (x,y) задовољавају $y-1=\frac{4-1}{5-1}(x-1)=\frac{3}{4}(x-1)$ и $(x-5)^2+(y-4)^2=4$. Заменом, следи да x координата задовољава $(x-5)^2+(\frac{3}{4}x-\frac{15}{4})^2=4$, односно $16(x-5)^2+9(x-5)^2=64$, тј. $(x-5)^2=\frac{64}{25}$, па је $x\in\{\frac{17}{5},\frac{33}{5}\}$. Међутим, тачка $(\frac{33}{5},\frac{26}{5})$ је на већем распојску следината задовољава $(x-5)^2+9(x-5)^2=64$, тј. $(x-5)^2=\frac{64}{25}$ је на већем растојању од друге кружнице у односу на тачку $(\frac{17}{5},\frac{14}{5})$ (то је најудаљенија тачка прве кружнице у односу на другу), па је тражена тачка $(\frac{17}{5}, \frac{14}{5})$.

Друго решење. Нека су A(1,1) и B(5,4) центри датих кругова и T(a,b) тражена тачка. Као и у првом решењу, Т припада правој АВ и важи AB = 5 и TB = 2, па је AT = 3. Ако су T'(a, 1)

и B'(5,1) пројекције T и B на праву y=1, онда је AT'=a-1, AB'=4 и важи $\triangle ATT'\sim\triangle ABB'$, па је $\frac{AT}{AB}=\frac{AT'}{AB'}$, тј. $\frac{3}{5}=\frac{a-1}{4}$, одакле је $a=\frac{17}{5}=3,4$.

14. Без умањења општости нека је d>0. Ако је a најмања страница троугла, друге две су a+d и a+2d, па је на основу Питагорине теореме $a^2+(a+d)^2=(a+2d)^2$, односно $a^2-2ad-3d^2=0$, тј. (a+d)(a-3d)=0. Како је a>0, следи a=3d, па су катете уоченог троугла 3d и 4d, а његова површина $\frac{3d\cdot 4d}{2}=6d^2$.

15. Како је n непаран, онда је 2k+1 за неко $k \in \mathbb{N}_0$, па је $n^2+3=(2k+1)^2+3=4(k^2+k+1)$, па $4 \mid n^2+3$. Како је n дељив са 3, следи да је n^2 дељив са 9, па број n^2+3 даје остатак 3 при дељењу са 9, те је дељив са 3, а није са 9.

16. Како је $(1+i)^2=2i$ и $(1-i)^2=-2i$, следи $\frac{5(1+i)^{24}}{(1+i)^{20}+(1-i)^{18}}=\frac{5(2i)^{12}}{(2i)^{10}+(-2i)^9}=\frac{5\cdot 2^{12}}{-2^{10}-2^9i}=-\frac{5\cdot 2^3}{2+i}\cdot \frac{2-i}{2-i}=-\frac{5\cdot 8\cdot (2-i)}{5}=-16+8i$, па је имагинарни део овог броја једнак 8.

17. Како је степен полинома $q(x)=x^3-x^2+x-1$ једнак 3, остатак при дељењу $p(x)=x^{2024}+x^{2023}+1$ са q(x) је полином степена највише 2, па је $p(x)=k(x)q(x)+ax^2+bx+c$, где је k(x) количник у уоченом дељењу. Притом, како су p(x) и q(x) реални полиноми, важи $a,b,c\in\mathbb{R}$. Пошто је $q(x)=(x-1)(x^2+1)$, заменом x=1 у добијену везу следи a+b+c=p(1)=3, а заменом x=i следи a+b+c=p(i)=2-i, а како су $a,b,c\in\mathbb{R}$, следи a+b+c=2 и b=-1. Из добијених веза следи $a=1,\ b=-1,\ c=3$, тј. остатак у уоченом дељењу је x^2-x+3 .

18. Нека је $f(x)=x^3-3x^2+2x=x(x-1)(x-2)$ и g(x)=|f(x)|. Следи да једначина g(x)=a нема решења ако је a<0, а има 3 решења ако је a=0. Како је $f(x)=(x-1)((x-1)^2-1)$, следи f(1-x)=-f(1+x), одакле је |g(1-x)|=|g(1+x)|, па је у случају a>0 број решења уочене једначине на $\mathbb R$ дупло већи од броја њених решења на $(1,\infty)$, те ћемо у наставку посматрати случај a>0 и $x\in(1,\infty)$. На (1,2) је g(x)=-f(x), а на $(2,\infty)$ је g(x)=f(x), па како је $f'(x)=3x^2-6x+2$, следи да f строго опада на $(1,1+\frac{\sqrt{3}}{3})$, а строго расте на $(1+\frac{\sqrt{3}}{3},\infty)$. Да-

 $f'(x)=3x^2-6x+2$, следи да f строго опада на кле, пошто је f(2)=0, $\lim_{x\to\infty}f(x)=\infty$ и f је непрекидна и строго расте на $(2,\infty)$, следи да једначина g(x)=a>0 на овом интервалу има тачно једно решење, а, како је g(x)=-f(x) за $x\in(1,2)$, следи да је g непрекидна и строго расте на $\left(1,1+\frac{\sqrt{3}}{3}\right)$, а непрекидна је и строго опада на $\left(1+\frac{\sqrt{3}}{3},2\right)$, па уочена једначина на интервалу $\left(1,2\right)$ нема решења ако је $a>g\left(1+\frac{\sqrt{3}}{3}\right)=\left|f\left(1+\frac{\sqrt{3}}{3}\right)\right|=\frac{2\sqrt{3}}{9}$, има једно

чина на интервалу (1,2) нема решења ако је $a>g\left(1+\frac{\sqrt{3}}{3}\right)=\left|f\left(1+\frac{\sqrt{3}}{3}\right)\right|=\frac{2\sqrt{3}}{9}$, има једно решење ако је $a=\frac{2\sqrt{3}}{9}$, а два решења ако је $a\in\left(0,\frac{2\sqrt{3}}{9}\right)$. Дакле, највећи могући број решења наведене једначине је 6 и постиже се за $a\in\left(0,\frac{2\sqrt{3}}{9}\right)$.

19. Нека су стране новчића глава и писмо, а нека је дужина исхода број бацања који је извршен у њему. Онда дужина исхода мора бити најмање 4 (иначе се не може десити да се једна од страна појави 4 пута), а највише 7 (у 7 бацања бар једна од страна се појављује 4 пута). Ако се игра завршила појављивањем главе по четврти пут и ако је дужина исхода те игре k, по претходном је $k \in \{4,5,6,7\}$, а у првих k-1 бацања се 3 пута појавила глава и k-4 пута писмо, а притом је могући било који такав распоред резултата у првих k-1 бацања, па таквих исхода има $\binom{k-1}{3}$. Дакле, могућих исхода у којима је 4 пута пала глава има $\binom{3}{3} + \binom{4}{3} + \binom{5}{3} + \binom{6}{3}$, а, по симетрији, једнак је број исхода у којима је 4 пута пало писмо, те је укопан број могућих исхода игре $2 \cdot \binom{3}{3} + \binom{4}{3} + \binom{5}{3} + \binom{6}{3} = 70$.

Друго решење. Уз нотацију из првог решења, приметимо да могућих исхода у којима је 4 пута пала глава има колико низова резултата дужине 7 у којима се 4 пута појављује глава. Заиста, уколико је исход дужине k < 7, уколико га "допунимо" додавањем 7-k резултата падања писма на местима $k+1,\ldots,7$, добија се низ дужине 7, који на тачно 4 места има за резултат падање главе. Обрнуто, ако се "обришу" појављивања писма након четвртог падања главе, добија се исход игре описане у задатку. Дакле, могућих исхода игре у којима 4 пута падне глава има $\binom{7}{4}$, по симетрији је толики и број исхода игре у којима 4 пута падне писмо, па је тражени број $2 \cdot \binom{7}{4} = 70$.

20. Општи члан развоја уоченог бинома је $\binom{2023}{n} \cdot 2^{\frac{2023-n}{2}} \cdot 3^{\frac{n}{3}}$, где је $0 \leqslant n \leqslant 2023$. Како су 2 и 3 узајамно прости, следи да је уочени члан рационалан ако и само ако $2 \mid 2023-n$ и $3 \mid n$, тј. ако и само ако је n=6k+3 за неко $k \in \mathbb{Z}$, а у скупу $\{0,1,\ldots,2023\}$ таквих бројева има 337 (важи $3=6\cdot 0+3$ и $2019=6\cdot 336+3$).