

BOD: Problem 3

Previous Problem Problem List Next Problem

(25 points) Complete the table below for the transfer function with $\omega_1=3 l r u d/s$, $\omega_2=150 k r u d/s$ and $\omega_3=905 k r u d/s$:

$$H(s) = \frac{0.4(s+\omega_2)}{(s+\omega_1)(s+\omega_3)}$$

Note1: For the phase value, assume a continuous phase characteristic for the Bode plot

Note2: In this problem, you may only submit numerical answers. (i.e. if 4 is the correct answer, 4 will be marked as correct, but 2+2 will be marked as incorrect.)

Frequency	Magnitude (dB)		Phase (degrees)	
	Approx	Exact	Approx	Exact
$0.1\omega_1$				
ω_{l}				
$(\omega_1\omega_3)^{1/3}$				
ω ₂				
$(\omega_2\omega_3)^{1/2}$				
salg.				
10ω,				

BOD: Problem 4

(25 points) (25 p

- break like LHS for A
$$T0s(s-\omega_0)$$
 RHS we have $H(s) = \frac{70s(s-\omega_0)}{(s+\omega_1)(s^2+2\zeta\omega_2s+\omega_2^2)}$

Note 2: In this problem, you may only submit numerical answers. (i.e. If 4 is the correct answer, 4 will be marked as correct, but 2+2 will be marked as incorrect.)

Frequency	Magnitude Char Approx		Phase Char Approx	
	Value (dB)	Slope (dB/dec)	Value (Å")	Slope (Á"/dec)
$0.1\omega_1$	-29.33	20	270	0
ω_1	-59.58	20	nc	-45
$(\omega_1\omega_2)^{1/2}$	-59.33	0	199.67	-45
ω_2	-59.33	٥		-270
$(\omega_2\omega_3)^{1/2}$	-78.67	-48	-,	-45
ω	-9802	-uo		-45
$10\omega_0$	-118.02	-20	1	-45

-> 557.1K, 55710K, 4,5K,450K,