Linear Regression (CR)

- We are given this insurance csv dataset.

- We want to do some LR on this dataset.

- For example. Can we predict now much a person has to pay for his/her insurance basen on their BMI?

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

How to look at dataset

	C	in put	F)_	Fcature	s, var	iable, d	Limensio	un, attrib	ite taget	authort,
			age	sex	bmi	children	smoker	region	charges	
		0	19	female	27.900	0	yes	southwest	16884.92400	
		1	18	male	33.770	1	no	southeast	1725.55230	. h
2 Gbservations	1	2	28	male	33.000	3	no	southeast	4449.46200	1 1th observation
= 6/261 ratons	+	3	33	male	22.705	0	no	northwest	21984.47061	
Sam ples		4	32	male	28.880	0	no	northwest	3866.85520	

Revision of Linear Algebra

Contine

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array}$$

Now when we see a dathset, lets imagine it vectors and matrices

	X	% 2	X 3	Xy	Xs	- X.b	<u> </u>
	age	sex		children	smoker	region	charges
0	19	^{fe} male	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	rorthwest	21984.47061
4	32	male	28.880	0	no	rorthwest	3866.85520
	U		<u></u>	V.			

Xi: the ith feature/ attributes of the dataset.xiis a cal vector

3 : a col vector of the target output

But how many rows of observation [samples do with the cols = 6 to a 15 to a 15

- We have 6 features.

Obseivation/samples de we have?

X = 15 a 1338 × 6 matrix

Our intuitor y Charges Age XI 9 & Charges 7 BMX3 y Charges BMI X3

1	X.	1/2	X 3	Xy	X5	X6	<u>9</u>
	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

X: feature 5 /attributer, independent variable
y: target output, dependant variable

Linear Regression with one variable

= Linear regression is to find a linear line that fits the dataset.

= We can make predictions for unseen abscruction. For example

what is the insurance charges for a person with SMI = 31?

How do we find the best line (red) that fils the data?

> C'intercept m:slope

- do our job Cfor one variable) is to some

for mand c.

How do we find the best

y=mx+c

Two methods

A) Solve using equation B) Use gradient descent

A) Solve using equation

Ordinary Least Square method (from

 $\mathsf{C}_{\prime} \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x};$

 $\underline{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$

y=mx+C

y = 130 -1 81 x

what is this?

From our dataset

\	*3	y
index	BMI	Charges
1 2	19 23	
1	Xi = 25	1 y:=20,000
N = 13'38	-	

$$\bar{x}$$
: averge . of $x = \frac{1}{N} \sum_{i=1}^{N} x_i$
 $\bar{y} = x_i$
of $y = -\frac{1}{N} \sum_{i=1}^{N} y_i$

3.) Use gradient Descent h(x) (gradient of the cost function) Cost function h(x) = mx+c N=1338 $J(m,c) = \frac{1}{2H} \sum_{i=1}^{\infty} (h(x^{i}) - y^{i})^{\frac{2}{3}}$ - The cost function calculates the distance 25 30 miles to behave our predictions h(x) and the original data. Du then we need to find the values of m and c that minimites the cost function J

m=5, c=0 Yields the lame st error/cost function

How do we find t	the best m	and c fl	nat minimite
the cost function?			
J(m,c) = 1 5	_ (\(\(\x'\)	-yi) ~	
	<u></u>		Joses like?
	lont know)	Lincher	

find the best in and c that minimites cost function? Let's just imagne our cost function looks like d: learning rate/step = 1/4 Update using gradient desout DUWN THE GRADIENT OF THE COST FUNCTION =

Prock Dr We define the COH J(m/c) M-

- (2) We find the best value of m and c which minimites cost fineron J.
 - 3) This is done by going down the gradient of J Mrw = Mad - of June

Cnew =