CGraph documentation

Bruno Kim Medeiros Cesar May 26, 2013

Abstract

Contents

- 1 sorting
- 2 list
- 3 set
- 4 graph
- 5 graph_metric

5.1 Constants

These constants are hard-coded to protect some numeric processes of hanging. They can be redefined during compilation, passing a flag such as <code>-DGRAPH_METRIC_TOLERANCE=1E-3</code>.

5.1.1 GRAPH_METRIC_TOLERANCE

Error tolerance for numeric methods.

5.1.2 GRAPH_METRIC_MAX_ITERATIONS

Maximum number of iterations for numeric methods.

5.2 Component identification and extraction

5.2.1 graph_undirected_components

Label vertices' components treating edges as undirected.

Preconditions label must have dimension n.

Postconditions label[i] is the component ID of vertex v_i .

Return Number of components

For directed graphs, considers adjacencies as incidences. Labels start from 0 and are sequential with step 1. Component IDs are not ordered according to size.

5.2.2 graph_directed_components

Label vertices' components treating edges as directed. NOT IMPLEMENTED YET.

Preconditions label must have dimension n.

Postconditions label[i] is the component ID of vertex v_i .

Return Number of components

For undirected graphs, simply call graph_undirected_components. For directed graphs, two vertices v_i and v_j are in the same component if and only if

$$d(v_i, v_j) \neq \infty$$
$$d(v_i, v_i) \neq \infty$$

where d(u, v) is the geodesic distance between them. In other words, they are in the same component if they are mutually reachable.

Labels start from 0 and are sequential with step 1. Component IDs are not ordered according to size.

5.2.3 graph_num_components

Extract number of components from label vector.

Preconditions

n > 0

label must have dimension n.

label must contain sequential IDs starting from 0.

Return Number of components

5.2.4 graph_components

Map components to vertices from label vector.

Preconditions

n > 0

label must have dimension n.

label must contain sequential IDs starting from 0.

comp must have size num_comp and all sets should be already initialized.

graph_num_components(g) == num_comp

Postconditions

If v_i is in component c_j , then

label[i] == j and

set_contains(comp[j], i) is true.

Return Number of components

5.2.5 graph_components

Creates a new graph from g's largest component.

The guarantee of vertices' order ID is the same as graph_subset. If two or more components have the same maximum size, one will be chosen in an undefined way.

Return A new graph isomorphic to g's largest component.

Memory deallocation

```
graph_t *largest = graph_components(g);
delete_graph(largest);
```

5.3 Degree metrics

5.3.1 graph_degree

List all vertices' degrees.

Preconditions degree must have dimension n.

Postconditions degree [i] is the degree of vertex v_i .

The degree of a directed graph's vertex is defined as the sum of incoming and outgoing edges.

5.3.2 graph_directed_degree

List all vertices' incoming and outgoing degrees.

Preconditions

g must be directed. in_degree must have dimension n. out_degree must have dimension n.

Postconditions

in_degree[i] is the number of incoming edges to vertex v_i . out_degree[i] is the number of outgoing edges from vertex v_i .

5.4 Clustering metrics

5.4.1 graph_clustering

List all vertices' local clustering.

Preconditions

```
g must be undirected. clustering must have dimension n.
```

Postconditions clustering[i] is the local clustering coefficient of vertex v_i .

The local clustering coefficient is only defined for undirected graphs, and gives the ratio of edges between a vertex' neighbors and all possible edges. Formally,

$$C_i = \frac{e_i}{\binom{k_i}{2}} = \frac{2e_i}{k_i(k_i - 1)}$$

where

 C_i is the local clustering coefficient of vertex v_i .

 e_i is the number of edges between v_i 's neighbors.

 k_i is the degree of v_i .

If a vertex v_i has 0 or 1 adjacents, $C_i = 0$ by definition.

5.4.2 graph_num_triplets

Counts number of triplets and triangles (6 * number of closed triplets).

$\mathbf{5.4.3} \quad \mathtt{graph_transitivity}$

Compute the ratio between number of triangles and number of triplets.

5.5 Geodesic distance metrics

- 5.5.1 Definitions
- 5.5.2 graph_geodesic_distance
- 5.5.3 graph_geodesic_vertex
- 5.5.4 graph_geodesic_all
- 5.5.5 graph_geodesic_distribution
- 5.6 Centrality measures
- 5.6.1 graph_betweenness
- 5.6.2 graph_eigenvector
- 5.6.3 graph_pagerank
- 5.6.4 graph_kcore
- 5.7 Correlation measures
- 5.7.1 graph_degree_matrix
- 5.7.2 graph_neighbor_degree_vertex
- 5.7.3 graph_neighbor_degree_all
- 5.7.4 graph_knn
- 5.7.5 graph_assortativity

6 graph_layout

- 6.1 Types
- 6.1.1 coord_t

Euclidean coordinates in 2D.

6.1.2 box_t

Box (rectangle) definition in 2D, given by its SW and NE vertices in a positively oriented world frame, such as the screen. Images may have a negatively oriented frame, with y pointing down. It is necessary that box.sw.y < box.ne.y and box.sw.x < box.ne.x.

6.1.3 color_t

Array with 4 colors between 0 and 255, inclusive: red (R), green (G), blue (B) and alpha (A). A=0 means totally transparent, and A=255 means totally opaque.

6.1.4 circle_style_t

SVG circle style.

radius Circle radius in pixels.

width Stroke width in pixels. This is added to the radius for total size.

fill Color of the fill.

stroke Color of the stroke.

6.1.5 path_style_t

SVG path style.

type Path type.

from, to Path origin and destination.

control Control point

width Stroke width in pixels.

color Stroke color.

For style.type == GRAPH_STRAIGHT, draws a straight line from origin to destination.

For style.type == GRAPH_PARABOLA, draws a parabola from origin to destination using the control point.

For style.type == GRAPH_CIRCULAR, draws the arc of a circle from origin to destination using the control point as the circle center.

6.2 Layout

6.2.1 graph_layout_random

Place points uniformly inside specified box.

Preconditions

box must be a valid box. p must have dimension n.

Postconditions p[i] is a random coordinate inside box.

6.2.2 graph_layout_random_wout_overlap

Place points with specified radius uniformly avoiding overlap with probability t.

Preconditions

radius must be positive. t must be a valid probability $(0 \ge t \ge 1)$. p must have dimension n.

Postconditions p[i] is a random coordinate.

The algorithm determines a box with size l such that, if n points with radius r are thrown within it, will not have any collision with probability t. The formula is derived in Math Exchange.

$$l = \frac{nr}{2} \sqrt{\frac{2\pi}{-\log(1-t)}}$$

6.3 Printing

6.3.1 graph_print_svg

Prints graph as SVG to file, using vertex coordinates given in p and with a style for each point and edge.

Preconditions

p must have dimension n. point_style must have dimension n. edge_style must have dimension m.

Postconditions filename is a valid SVG file.

Edges are ordered according to vertices' order. In undirected graphs, an edge E_{ij} is considered only if i < j. In directed graphs, mutual edges will superimpose if edge_style.type == GRAPH_STRAIGHT.

6.3.2 graph_print_svg_one_style

Prints graph as SVG to file, using vertex coordinates given in p and with a single style for all points and edges.

Preconditions

p must have dimension n.

Postconditions filename is a valid SVG file.

The edge style type is ignored, using only GRAPH_STRAIGHT.

6.3.3 graph_print_svg_some_styles

Prints graph as SVG to file, using vertex coordinates given in **p** and with a number of styles given. The mapping vertex—style is given in **ps**, and the mapping edge—style is given in **es**.

Preconditions

p must have dimension n.

ps must have dimension n.

es must have dimension m.

point_style must have dimension num_point_style.

edge_style must have dimension num_edge_style.

Postconditions filename is a valid SVG file.

This function tries to avoid extensive memory utilization one just some styles are desired. If vertex v_i should have style S_j , then ps[i] = j. Ditto for edges.

Edge order is based on vertices order. In undirected edges, edge E_{ij} is considered only if i < j.