

第10章 控制单元的设计

计算机组成原理

第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

10.1 组合逻辑设计

一、组合逻辑控制单元框图

1. CU 外特性

2. 节拍信号

二、微操作的节拍安排

假设:采用同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

原则一 微操作的 先后顺序 不得随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

2. 取指周期 微操作的 节拍安排

3. 间址周期 微操作的 节拍安排

$$T_0$$
 Ad (IR) \longrightarrow MAR
 $1 \longrightarrow R$
 T_1 M (MAR) \longrightarrow MDR
 T_2 MDR \longrightarrow Ad (IR)

4. 执行周期微操作的节拍安排

① CLA
$$T_0$$

$$T_1$$

$$T_2 \quad 0 \longrightarrow AC$$
② COM T_0

$$T_1$$

$$T_2 \quad \overline{AC} \longrightarrow AC$$
③ SHR T_0

$$T_1$$

$$T_1$$

$$T_2 \quad L(AC) \longrightarrow R(AC)$$

$$AC_0 \longrightarrow AC_0$$

$$\bigcirc$$
 CSL T_0

$$T_1$$

$$T_2 \quad \mathbf{R}(\mathbf{AC}) \longrightarrow \mathbf{L}(\mathbf{AC}) \quad \mathbf{AC}_0 \longrightarrow \mathbf{AC}_n$$

$$AC_0 \longrightarrow AC_n$$

$$\bigcirc$$
 STP T_0

$$T_1$$

$$T_2 \quad 0 \longrightarrow G$$

6 ADD X
$$T_0$$
 Ad (IR) \longrightarrow MAR

$$1 \longrightarrow \mathbb{R}$$

$$T_1 \quad M(MAR) \longrightarrow MDR$$

$$T_2$$
 (AC) + (MDR) \longrightarrow AC

$$1 \longrightarrow W$$

$$T_1 \quad AC \longrightarrow MDR$$

$$T_2$$
 MDR \longrightarrow M (MAR)

8 LDA X
$$T_0$$
 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R

$$T_1 \qquad M (MAR) \longrightarrow MDR$$

$$T_2$$
 MDR \longrightarrow AC

$$T_0$$

$$T_1$$

$$T_2$$
 Ad (IR) \longrightarrow PC

$$T_0$$

$$T_1$$

$$T_2 \qquad A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$$

5. 中断周期 微操作的 节拍安排

$$T_0 \longrightarrow MAR$$

$$1 \longrightarrow W$$

硬件关中断

$$T_1$$
 PC \longrightarrow MDR

$$T_2 \qquad MDR \longrightarrow M (MAR)$$

向量地址 \longrightarrow PC

中断隐指令完成

节拍安排例子

- 设计指令的操作码,确定指令长度是固定的还是变长的。
- 确定机器周期、节拍和时钟周期,确定机器周期是固定的还是变长的。
- 根据指令功能和CPU的结构图,绘制每条指令的微操作 流程图并综合成一个总的流程图。
- 给微操作流程图安排时序,确定每条指令所需的机器周期及在各机器周期需完成的操作,排出微操作时间表。
- 根据操作时间表写出微操作的逻辑表达式,即微操作=周期•节拍•时钟脉冲•指令码•其他条件
- 根据微操作的表达式,画出组合逻辑电路

1. 列出操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	τ		PC→ MAR						
	T_0		1 → R						
	τ		$M(MAR) \longrightarrow MDR$						
FE	T_1		(PC) +1 →PC						
取指			$MDR \rightarrow IR$						
	T_2		OP(IR) →ID						
	12	/I	1→ IND						
		// ī	1→ EX						

间址特征

1. 列出操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			Ad (IR) \longrightarrow MAR						
	T_0		1→ R						
IND 间址	T_1		$M(MAR) \longrightarrow MDR$						
11171	T		MDR→ Ad (IR)						
	T_2	ĪŊD	1→ EX						

间址周期标志

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			Ad (IR) → MAR						
	$T_{\rm o}$		1 → R						
	·		$1 \longrightarrow W$						
EX	τ		$M(MAR) \longrightarrow MDR$						
执行	<i>T</i> ₁		AC→ MDR						
			(AC)+(MDR) →AC						
	τ		MDR→ M(MAR)						
	T_2		MDR → AC						
			0→ AC						

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP	
	τ		$PC \longrightarrow MAR$	1	1	1	1	1	1	
	T_0		1 → R	1	1	1	1	1	1	
	_	τ		$M(MAR) \longrightarrow MDR$	1	1	1	1	1	1
FE	T_1		(PC) +1→ PC	1	1	1	1	1	1	
取指			$MDR \rightarrow IR$	1	1	1	1	1	1	
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	
	T_2	I	1→ IND			1	1	1	1	
		Ī	1→ EX	1	1	1	1	1	1	

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP		
	τ		$Ad(IR) \longrightarrow MAR$			1	1	1	1		
	T_0		1 → R			1	1	1	1		
IND 间址	T_1		$M(MAR) \longrightarrow MDR$			1	1	1	1		
	_	T	т		MDR→ Ad (IR)			1	1	1	1
	T_2	IND	1→ EX			1	1	1	1		

1. 列出操作时间表

教材P402

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			Ad (IR) → MAR			1	1	1	
	$T_{\rm o}$		1→ R			1		1	
			$1 \longrightarrow W$				1		
EX	τ		$M(MAR) \longrightarrow MDR$			1		1	
执行	T_1		$AC \longrightarrow MDR$				1		
			(AC)+(MDR)→AC			1			
	T_2		$MDR \rightarrow M(MAR)$				1		
	2		MDR → AC					1	
			0→ AC	1					

2. 写出微操作命令的最简表达式

$$M (MAR) \longrightarrow MDR$$

$$= FE \cdot T_1 + IND \cdot T_1 (ADD + STA + LDA + JMP + BAN)$$

$$+ EX \cdot T_1 (ADD + LDA)$$

$$= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN)$$

$$+ EX (ADD + LDA) \}$$

3. 画出逻辑图

- 特点
- ▶ 思路清晰,简单明了
- > 庞杂,调试困难,修改困难
- ➤ 速度快 (RISC)

微操作控制信号序列

1 基本原理

- 将控制器看成产生固定时序控制信号的逻辑电路
- 輸入信号:指令译码,时钟信号,反馈信号
- 輸出信号:功能部件控制信号序列
- 设计目标: 最少元件, 最快速度
- 理论基础: 布尔代数
- 组成器件: 门电路, 触发器

机器指令字 → 控制器信号序列

2

单总线结构CPU

- 1. LOAD R0,6#
- 2. MOVE R1,10
- 3. ADD R0,R1
- 4. STORE R0, (R2)
- 5. JMP 1000

#	指令	指令功能
1	LOAD R0,6#	Mem[6] → R0
2	MOVE R1,10	10 → R1
3	ADD RO,R1	(R0) + (R1) → R0
4	STORE RO,(R2)	(R0) → Mem[(R2)]
5	JMP 1000	1000 → PC

取指令数据通路

$Mem[PC++] \rightarrow IR$

节拍	数据通路	控制信号
T1	(PC)→AR, (PC)→X	PC _{out} , AR _{in} , X _{in}
T2	(X)+1→Z	+1, Read
T3	$(Z)\rightarrow PC$, $Mem[AR]\rightarrow DR$	Z _{out} , PC _{in} , DRE _{in} , Read
T4	(DR)→IR	DR _{out} IR _{in}

LOAD指令执行数据通路

LOAD R0,6#

$Mem[IR_A] \rightarrow Reg$

节拍	数据通路	控制信号
T1	(IR _A)→AR	IR _{out} , AR _{in}
T2		Read
Т3	Mem[AR]→DR	DRE _{in} ,Read
T4	(DR)→R0	DR _{out} , R0 _{in}

MOVE指令执行数据通路

MOVE R1,10

 $(IR_A) \rightarrow Reg$

节拍	数据通路	控制信号
T1	$(IR_A) \rightarrow R[1]$	IR _{out} , R1 _{in}
T2		
Т3		
Т4		

ADD指令执行数据通路

ADD RO,R1

 $(R0)+(R1) \rightarrow R0$

节拍	数据通路	控制信号
T1	(R0)→X	R0 _{out} , X _{in}
T2	(X)+(R1)→Z	R1 _{out} ,ADD
Т3	(Z)→R0	Z _{out} ,R0 _{in}
T4		

STORE指令 数据通路

STORE RO,(R2)

 $(R0) \rightarrow Mem[R2]$

节拍	数据通路	控制信号
T1	(R2)→AR	R2 _{out} , AR _{in}
T2	(R0)→DR	R0 _{out} , DR _{in}
Т3	(DR) →Mem[AR]	DRE _{out} , Write
T4		

JMP指令数据通路

JMP 1000

 $(IR_A) \rightarrow PC$

节拍	数据通路	控制信号
T1	(IR _A)→PC	IR _{out} , PC _{in}
T2		
Т3		
T4		

3

单总线结构CPU指令周期

节拍	控制信号(4 cycles)		
T1	PC _{out} , AR _{in} , X _{in}		
T2	+1, Read		
Т3	Z _{out} , PC _{in} , DRE _{in,} Read		
T4	DR _{out} , IR _{in}		

- 定长指令周期:传统三级时序
 - ◆2个机器周期,8个时钟周期、慢、设计简单
- 变长指令周期: 现代时序
 - 时钟周期数可变,快,设计复杂

节拍	LOAD (4 cycles)	MOVE (1 cycles)	ADD (3 cycles)	STORE (3 cycles)	JMP (1 cycles)
T5	IR _{out} , AR _{in}	IR _{out} , R1 _{in}	R0 _{out} , X _{in}	R2 _{out} , AR _{in}	IR _{out} , PC _{in}
Т6	Read		R1 _{out} ,ADD	R0 _{out} , DR _{in}	
T7	DRE _{in} , Read		Z _{out} ,R0 _{in}	DRE _{out} , Write	
T8	DR _{out} , R0 _{in}				

4

定长指令周期时序产生器 传统三级时序

固定2个机器周期,8个时钟节拍

构建时序产生器 输出: M_{IF}, M_{EX} , T1, T2, T3, T4

5 付序产生器状态机

6 硬布线控制器基本架构

时序产生器循环产生周期电位、节拍电位, 供控制器对信号进行时间调制

7

单总线CPU控制信号生成

节拍	控制信号
TI	PCout ARin Kin
T2	+1 Read
Т3	Z _{out} , PC _{in} , DRE _{in} Read
T4	DR _{out} , IR _{in}

$$C_n = \sum_{m,i,k,j} (I_m \cdot M_i \cdot T_k \cdot B_j)$$

Read = $M_{IF} \cdot (T2+T3) + LOAD \cdot M_{EX} \cdot (T2+T3)$

AR_{in} = M_{IF} • T1 + (LOAD+STORE) • M_{EX} • T1

2.0	
执	
銲	
띪	
向	
期	
,,,,	
Me	١
-	•

取指令周期

节拍	LOAD	MOVE	ADD	STORE	JMP
T1	IR _{out} AR _{in}	IR _{out} , R1 _{in}	RO _{out} , X _{in}	R2 _{out} AR _{in}	IR _{out} , PC _{in}
T2	Read		R1 _{out} ,ADD	RO _{out} , DR _{in}	
Т3	DRE _{in} Read		Z _{out} ,R0 _{in}	DRE _{out} , Write	
T4	DR _{out} , RO _{in}				

8 固定指令周期硬布线控制器设计过程

- 1. 设计三级时序产生器: 所有指令固定机器周期数,节拍数,
- 2. 列出所有机器指令的指令周期流程图,明确每个节拍的控制信号;
- 3. 找出产生同一微操作控制信号的条件;
- 4. 写出各微操作控制信号的布尔表达式; $C_n = \sum_i \left(M_i \cdot T_k \cdot B_j \cdot \sum_m I_m \right)$
- 5. 化简各表达式;
- 利用组合逻辑电路实现。

【2016统考真题】单周期处理器中所有指令的指令周期为一个时钟周期。下列关于单周期处理器的叙述中,错误的是()。

- **可以采用单总线结构数据通路**
- **D** 处理器时钟频率较低
- **在指令执行过程中控制信号不变**
- □ 每条指令的CPI为1

10.2 微程序设计

一、微程序设计思想的产生

1951 英国剑桥大学教授 Wilkes

完成 一条机器指令 微操作命令 n 微指令n. 00010010 一条机器指令对应一个微程序 存入 ROM 存储逻辑

微指令的格式

微指令:

控制字段

下址字段

- *控制字段:操作控制,发出各种控制信号
- ❖ 下址字段: 顺序控制,指出下条微指令地址,以 控制微指令序列的执行顺序

二、微程序控制单元框图及工作原理

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

 \mathbf{M}

M+1

M+2

P

P+1

P+2

K

K+1

K+2

微程序控制单元框图及工作原理

	M+1
	M+2
	$\times \times \times$
: 转执行周期微	程序
: 转取指周期微	程序
	P+1
	P+2
	M
	K+1
	K+2
	M
•	

对应 STA 操作的微程序

3.工作原理

控存

主存 **LDA** X 用户程序 **ADD STA** Z **STP**

		
\mathbf{M}		M+1
M+1		M+2
M+2		$\times \times \times$
	•	
P		P+1
P+1		P+2
P+2		M
	•	
Q		Q+1
Q+1		Q+2
Q+2		M
	•	
K		K+1
K+1		K+2
K+2		M
	•	-

取指周期 微程序

对应 LDA 操 作的微程序

对应 ADD 操 作的微程序

对应 STA 操 作的微程序

₩₄

3. 工作原理

(1) 取指阶段 执行 取指周期微程序

 $M \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令(控制信号)

形成下条微指令地址 M+1

至CPU内部和系统总线的控制信号

控制存储器CM

形成部件

CMAR

地址译码

 $Ad(CMDR) \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令(控制信号)_{M+1}

形成下条微指令地址 M+2

 $Ad(CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令 (控制信号)M+2

(2) 执行阶段 执行 LDA 微程序

OP(**IR**)→微地址形成部件→**CMAR** (**P**→**CMAR**)

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 P+1

 $Ad(CMDR) \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 P+2

 $Ad(CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 M

 $Ad (CMDR) \longrightarrow CMAR$

至CPU内部和系统总线的控制信号

 $(\mathbf{M} \longrightarrow \mathbf{CMAR})$

(3) 取指阶段 执行取指微程序

$M \longrightarrow CMAR$

•

全部微指令存在 CM 中,程序执行过程中 只需读出

- 关键 → 微指令的操作控制字段如何形成微操作命令
 - > 微指令的 后续地址如何形成

三、微指令的编码方式(控制方式)

1. 直接编码(直接控制)方式

在微指令的操作控制字段中,

每一位代表一个微操作命令

速度最快

某位为"1"表示该控制信号有效

三、微指令的编码方式(控制方式)

2.字段直接编码方式

将微指令的控制字段分成若干"段",

每段经译码后发出控制信号

每个字段中的命令是 互斥 的

缩短了微指令字长,增加了译码时间

三、微指令的编码方式(控制方式)

3. 字段间接编码方式

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

四、微指令序列地址的形成

- 1. 微指令的 下地址字段 指出 (断定方式)
- 2. 根据机器指令的操作码形成:根据机器指令的操作码,由微地址形成部件形成对应该机器指令微程序的首地址。
- 3. 增量计数器 (顺序地址)

$$(CMAR) + 1 \longrightarrow CMAR$$

4. 分支转移 (转移指令)

操作控制字段 转移方式 转移地址

转移方式 指明判别条件

转移地址 指明转移成功后的去向

四、微指令序列地址的形成

5. 通过测试网络

6. 由硬件产生微程序入口地址

加电后,第一条微指令地址 由专门 硬件 产生中断周期 由 硬件 产生中断周期微程序首地址

四、微指令序列地址的形成

7. 后续微指令地址形成方式原理图

五、微指令格式

- 1. 水平型微指令 教材P411 P407图10.7
 - 一次能定义并执行多个并行操作
- 如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码
- 2. 垂直型微指令 教材P411 表10.2

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

3. 两种微指令格式的比较

- (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强
- (2) 水平型微指令执行一条机器指令所要的 微指令数目少,速度快
- (3) 水平型微指令 用较短的微程序结构换取较长的 微指令结构
- (4) 水平型微指令与机器指令 差别大

【2012统考真题】某计算机的控制器采用微程序控制方式,微指令中的操作控制字段采用字段直接编码法,共有33个微命令,构成5个互斥类,分别包含7、3、12、5和6个微命令,则操作控制字段至少有()。

- **A** 5位
- **B** 6位
- (15位
- 33位

六、静态微程序设计和动态微程序设计

静态 微程序无须改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令, 有利于仿真,采用 EPROM

七、毫微程序设计

1. 毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微程序

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

2. 毫微程序控制存储器的基本组成

八、串行微程序控制和并行微程序控制

串行 微程序控制

取第i条微指令 执行第i条微指令 取第i+1条微指令 执行第i+1条微指令

并行 微程序控制

取第 : 条微指令	执行第 i 条微指令		_
	取第 i+1 条微指令	执行第 i+1 条微指令	
·		取第 i+2 条微指令	执行第 i+2 条微指令

九、微程序设计举例

1. 写出对应机器指令的微操作及节拍安排

假设 CPU 结构与组合逻辑相同(非总线方式)

(1) 取指阶段微操作分析

3条微指令

$$T_0 \quad PC \longrightarrow MAR$$

$$1 \longrightarrow \mathbb{R}$$

$$T_1 \quad M(MAR) \longrightarrow MDR \quad (PC) + 1 \longrightarrow PC$$

$$(PC) + 1 \longrightarrow PC$$

$$T_2 \quad \text{MDR} \longrightarrow \text{IR}$$

还需考虑如何读出这3条微指令?

$$Ad (CMDR) \longrightarrow CMAR$$

数材P415

(2) 取指阶段的微操作及节拍安排

考虑到需要 形成后续微指令的地址

$$T_0$$
 PC \longrightarrow MAR $1 \longrightarrow R$
 T_1 Ad (CMDR) \longrightarrow CMAR

 T_2 M (MAR) \longrightarrow MDR (PC)+1 \longrightarrow PC

 T_3 Ad (CMDR) \longrightarrow CMAR

 T_4 MDR \longrightarrow IR OP(IR) \longrightarrow 微地址形成部件

 T_5 OP(IR) \longrightarrow 微地址形成部件 \longrightarrow CMAR

(3) 执行阶段的微操作及节拍安排

考虑到需形成后续微指令的地址

• 非访存指令

取指微程序的入口地址 M 由微指令下地址字段指出

- ① CLA 指令 $T_0 \quad 0 \longrightarrow AC$ $T_1 \quad Ad (CMDR) \longrightarrow CMAR$
- ② COM 指令 $T_0 \quad \overline{AC} \longrightarrow AC$ $T_1 \quad Ad (CMDR) \longrightarrow CMAR$

③ SHR 指令

$$T_0$$
 L(AC) \longrightarrow R(AC) AC₀ \longrightarrow AC₀

$$T_1$$
 Ad(CMDR) \longrightarrow CMAR

④ CSL 指令

$$T_0$$
 $R(AC) \longrightarrow L(AC)$ $AC_0 \longrightarrow AC_n$

$$T_1$$
 $Ad(CMDR) \longrightarrow CMAR$

⑤ STP 指令

$$T_0$$
 0 \longrightarrow G
$$T_1$$
 Ad (CMDR) \longrightarrow CMAR


```
⑥ ADD 指令
T_0 \quad \text{Ad (IR)} \longrightarrow \text{MAR} \quad 1 \longrightarrow \text{R}
T_1 \quad \text{Ad (CMDR)} \longrightarrow \text{CMAR}
T_2 \quad \text{M (MAR)} \longrightarrow \text{MDR}
T_3 \quad \text{Ad (CMDR)} \longrightarrow \text{CMAR}
T_4 \quad (\text{AC}) + (\text{MDR}) \longrightarrow \text{AC}
T_5 \quad \text{Ad (CMDR)} \longrightarrow \text{CMAR}
```

⑦ STA 指令

$$T_0$$
 Ad (IR) \longrightarrow MAR 1 \longrightarrow W

 T_1 Ad (CMDR) \longrightarrow CMAR

 T_2 AC \longrightarrow MDR

 T_3 Ad (CMDR) \longrightarrow CMAR

 T_4 MDR \longrightarrow M (MAR)

 T_5 Ad (CMDR) \longrightarrow CMAR

⑧ LDA 指令

$$T_0$$
 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

$$T_2 \qquad M (MAR) \longrightarrow MDR$$

$$T_3$$
 Ad (CMDR) \longrightarrow CMAR

$$T_{\Delta}$$
 MDR \longrightarrow AC

$$T_5$$
 Ad (CMDR) \longrightarrow CMAR

• 转移类指令

⑨ JMP指令

$$T_0$$
 Ad (IR) \longrightarrow PC

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

⑩ BAN 指令

$$T_0 \qquad A_0 \cdot Ad (IR) + \overline{A_0} \cdot (PC) \longrightarrow PC$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

2. 确定微指令格式

- (1) 微指令的编码方式 采用直接控制
- (2) 后续微指令的地址形成方式 由机器指令的操作码通过微地址形成部件形成 由微指令的下地址字段直接给出
- (3) 微指令字长 由 20 个微操作 确定 操作控制字段 最少 20 位 由 38 条微指令 确定微指令的 下地址字段 为 6 位

微指令字长 可取 20 + 6 = 26 位

(4) 微指令字长的确定

38条微指令中有19条

是用于形成后续微指令地址 —— CMAR

若用 Ad (CMDR) 直接送控存地址线

则省去了输至CMAR的时间,省去了CMAR 教材P417

同理 OP(IR) → 微地址形成部件 → 控存地址线 教材P418 **图**10.16

可省去19条微指令,2个微操作

$$38 - 19 = 19$$
 $20 - 2 = 18$

下地址字段最少取5位

操作控制字段最少取 18 位

(SA)

(5) 省去了 CMAR 的控制存储器

考虑留有一定的余量

取操作控制字段 下地址字段

(6) 定义微指令操作控制字段每一位的微操作

0 1 2 ... 23 24 ... 29

3. 编写微指令码点

微程序	微指令					微	指令	> (_	二进位	制代	码)					
名称	地址 (八进制)				操作	下	地址	上字具								
PC	→MAR	0	1	2	3	4	•••	10	•••	23	24	25	26	27	28	29
 取指	00	1	1		M(MAI	R)→l	MDR			0	0	0	0	0	1
40.7日	01			1	1			ME	R→	IR		0	0	0	1	0
	02	1-	→R			1					×	×	×	×	×	X
CLA	03	PC	+1-	→PC			Ad(IR)	→ MA	R	0	0	0	0	0	0
СОМ	04			1	→R						0	0	0	0	0	0
	10		1								0	0	1	0	0	1
ADD	11			1_	N	1(MA	AR)	<mark>→MD</mark>	R		0	0	1	0	1	0
	12			4							0	0	0	0	0	0
	16		1/					1,			0	0	1	1	1	1
LDA	17			1~		A	d(IR	<u>)</u> →N	IAR		0	1	0	0	0	0
	20				M	(MA	R)→	MDF	2		0	0	0	0	0	0

微程序控制器组成原理框图

2

微指令格式

- 一条微指令对应一个时钟周期
- 微指令操作控制字段的信号在该时钟周期内有效
- 指令需要多少时钟周期就包括多少微指令

3 取指令数据通路

$Mem[PC++] \rightarrow IR$

- 4个时钟周期
- 四条微指令

节拍	数据通路	控制信号
T1	$(PC)\rightarrow AR, (PC)\rightarrow X$	PC _{out} , AR _{in} , X _{in}
T2	(X)+1→Z	+1, Read
T3	$(Z)\rightarrow PC$, Mem[AR] $\rightarrow DR$	Z _{out} , PC _{in} , DRE _{in} , Read
T4	(DR)→IR	DR _{out} , IR _{in}

取指令微程序

节拍	取指令数据通路	控制信号
T1	(PC)→AR, (PC)→X	PC _{out} , AR _{in} , X _{in}
T2	(X)+1→Z	+1, Read
T3	$(Z)\rightarrow PC$, $Mem[AR]\rightarrow DR$	Z _{out} , PC _{in} , DRE _{in} , Read
T4	(DR)→IR	DR _{out} , IR _{in}

6 LOAD指令微程序

节拍	取指令数据通路	控制信号
T1	(IR _A)→AR,	IR _{out} , AR _{in}
T2		Read
T3	Mem[AR]→DR	DRE _{in} ,Read
T4	(DR)→R0	DR _{out} , R0 _{in}

MOVE指令微程序

节拍	数据通路	控制信号
T1	$(IR_A) \rightarrow R[0]$	IR _{out} , R1 _{in}
T2		
T3		
T4		

ADD指令微程序

节拍	数据通路	控制信号
T1	(R2)→AR	R2 _{out} , AR _{in}
T2	(R0)→DR	R0 _{out} , DR _{in}
Т3	(DR) →Mem[AR]	DRE _{out} , Write
T4		

9 STORE指令微程序

JMP指令微程序

节拍	数据通路	控制信号
T1	(IR _A)→PC	IR _{out} , PC _{in}
T2		
Т3		
T4		

单总线CPU微程序

她址	4									操	作	空制	字	设								-	-	顺序	辞	制字	字段		
000	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	取指令微程序
010	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	1	4人は くかれまげ
011	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	X	X	X	X	
100	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	
101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	LOAD微程序
110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	1	LUADIMET
111	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
000	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MOVE微程序
001	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
010	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	ADD 微程序
011	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
100	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	
101	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	STORE微程序
110	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
111	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	JMP 微程序

【2009统考真题】相对于微程序控制器,硬布线控制器的特点是()。

- A 指令执行速度慢,指令功能的修改和扩展容易
- **B** 指令执行速度慢,指令功能的修改和扩展难
- 1 指令执行速度快,指令功能的修改和扩展难

提交

Thank You!

Computer Architecture Research Institute - Computer Organization