The NeuroML ecosystem for standardised multi-scale modelling in neuroscience

Ankur Sinha Silver Lab Department of Neuroscience, Physiology, & Pharmacology University College London

2024-02-26

An understanding of the brain

- ~86B neurons
- ~100T synapses
- also ~85B glia

¹Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience **3**, 31 (2009)

¹von Bartheld, C. S. et al. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology 524, 3865–3895. ISSN: 1096-9861 (June 2016)

An understanding of the brain

- specialised circuits
- different neuronal types
- synaptic connections
- complex sub-cellular processes

¹Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience 3, 31 (2009)

¹von Bartheld, C. S. et al. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology 524, 3865–3895. ISSN: 1096-9861 (June 2016)

Experiments provide a window into the brain

Multiple scales of experiments/data sources go here

Models test & unify experimental results; generate hypotheses

¹ Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8 (eds Latham, P. et al.) e43299. ISSN: 2050-084X (2019)

¹ Schirner, M. et al. Learning how network structure shapes decision-making for bio-inspired computing. Nature Communications 14. ISSN: 2041-1723 (May 2023)

¹Yao, H. K. et al. Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. Cell Reports 38. ISSN: 2211-1247. https://doi.org/10.1016/j.celrep.2021.110232 (Jan. 2022)

¹ Mäki-Marttunen, T. et al. A unified computational model for cortical post-synaptic plasticity. eLife 9 (eds Shouval, H. Z. et al.) e55714. ISSN: 2050-084X. https://doi.org/10.7554/eLife.55714 (July 2020)

Models test & unify experimental results; generate hypotheses

Murray, J. M. Local online learning in recurrent networks with random reedback. eLife 8 (eds. Latinam, P. et al.) e43299. ISSN: 2050-084X (2019)

¹ Schirner, M. et al. Learning how network structure shapes decision-making for bio-inspired computing. Nature Communications 14. ISSN: 2041-1723 (May 2023)

¹ Yao, H. K. *et al.* Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. *Cell Reports* **38**. ISSN: 2211-1247. https://doi.org/10.1016/j.celrep.2021.110232 (Jan. 2022)

¹ Mäki-Marttunen, T. et al. A unified computational model for cortical post-synaptic plasticity. eLife 9 (eds Shouval, H. Z. et al.) e55714. ISSN: 2050-084X. https://doi.org/10.7554/eLife.55714 (July 2020)

A *mechanistic* understanding of the brain requires biophysically detailed modelling

The model life cycle

Computational modelling software ecosystem is fragmented

- many specialist tools:
 - simulation: NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE
 - fitting: BluePyOpt, NeuroTune, SciUnit

Computational modelling software ecosystem is fragmented

- · many specialist tools:
 - simulation: NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE
 - fitting: BluePyOpt, NeuroTune, SciUnit
- but:
 - different APIs, syntax
 - not well defined model descriptions
 - custom machine readable internal representations
 - ad-hoc utilities

Makes computational neuroscience not FAIR (Findable, Accessible, Interoperable, Reusable)

Standards enable FAIR neuroscience

COMBINE

¹Abrams, M. B. et al. A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics 20, 25–36. ISSN: 1559-0089. https://doi.org/10.1007/s12021-020-09509-0 (2022): https://incf.org

¹COmputational Modeling in Blology NEtwork (COMBINE): https://co.mbine.org/

Standards enable FAIR neuroscience

¹ Abrams, M. B. et al. A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics 20, 25–36. ISSN: 1559-0089. https://doi.org/10.1007/s12021-020-09509-0 (2022): https://incf.org

¹COmputational Modeling in Blology NEtwork (COMBINE): https://co.mbine.org/

NeuroML ecosystem supports all stages of the model cycle

- standard/specification
- software ecosystem

NeuroML ecosystem supports all stages of the model cycle

NeuroML provides a set of curated model elements

NeuroML is a modular, structured and hierarchical language

NeuroML: software ecosystem

NeuroML: software ecosystem: core tools

• Figure 4

NeuroML: create models

- Figure 5
- Code example

NeuroML: validate models

• Figure 6

NeuroML: visualise models

- Figure 7
- Figure 8
- Figure 9

NeuroML: simulate models

• Example simulation: neuron/netpyne

NeuroML: fit models

- Figure from docs
- Mention inspyred

NeuroML: share and re-use models

• GitHub, OSBv1, OSBv2, NeuroML-DB

NeuroML: the standard

• Schema, component types

NeuroML: the APIs

• Python API

NeuroML: LEMS

• LEMS, advantages

NeuroML: Documentation

• Jupyterbook

NeuroML: projects

• GSoC, Outreachy, good computer science students

But, too many standards?

• XKCD here.