1. Исходные данные для самолета Ил-76

 $m_{\text{пуст}}=86000$ кг, $m_{\text{топл}}=60000$ кг, $m_{\text{поле}}=34000$ кг При интегрировании по формулам (1) $m_{\text{к}}=120000$ кг, $m_{\text{н}}=180000$ кг.

2. Исследование характеристик транспортного самолета при выполнении эшелонирования

2.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной трактории и скоростного режима.

2.2. Расчетные формулы

$$q_{\text{\tiny Y}} = PCe, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny Y}}},$$
 (1)

$$P_{\Pi} = \frac{mg}{K} \tag{2}$$

$$P_{p}(M,H) = P_{p\,11} \frac{p_H}{p_{H=11}} \tag{3}$$

$$P_{\rm p}(M,H) = \bar{P}_0 m g \tilde{P}(H,M) \tag{4}$$

$$q_{\text{\tiny H}} = Ce\frac{mg}{K}, \; q_{\text{\tiny KM}} = \frac{mgCe}{3.6KV}, \; L_{\text{\tiny KC}} = \frac{3.6}{g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{KV}{Cem} \, dm, \; T_{\text{\tiny KC}} = \frac{1}{g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{K}{Cem} \, dm$$

 C_{ya}, C_{xa} из курсовой работы $\mathfrak{N}_{2}1$ по динамике полета.

3. Полученный результаты

3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 1 — Полученный параметры

$q_{ ext{km cp}}, \; rac{ ext{kr}}{ ext{km}}$	9.0784
L, M	4000
$m_{ m coж. ext{топл}}, \ ext{кг}$	36361.23
$t_{ m non.},$ мин	295

Рисунок 1 — График зависимости H(L) и V(L)

Рисунок 2 — График зависимости q(L) и m(L)

3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 2 — Полученный параметры

$q_{ ext{km cp}}, \; rac{ ext{kf}}{ ext{km}}$	8.51							
L, M	4000							
$m_{ m coж. ext{топл}}, \ ext{кг}$	34139.74							
$t_{ m пол.},$ мин	392							

Рисунок 3 — График зависимости H(L) и V(L)

Рисунок 4 — График зависимости q(L) и m(L)

3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м

Таблица 3 — Полученные параметры

$q_{ ext{km cp}}, rac{ ext{kr}}{ ext{km}}$	8.5619
L, M	4000
$m_{ m coж. ext{топл}}, \ ext{кг}$	34301.74
$t_{ m non.},$ мин	368

Рисунок 5 — График зависимости H(L) и V(L)

Рисунок 6 — График зависимости q(L) и q(L)

т, то	нн												Н	, м											
		7000	7250	7500	7750	8000	8 250	8 500	8750	9000	9250	9500	9750	10000	10 2 50	10500	10750	11000	11250	11500	11750	12000	12250	12500	12750
100.0	M	0.464	0.471	0.478	0.485	0.489	0.497	0.5	0.5	0.506	0.513	0.522	0.53	0.538	0.548	0.552	0.562	0.559	0.572	0.585	0.598	0.6	0.6	0.6	0.6
	q_{km}	9.262	9.116	8.974	8.836	8.38	8.245	8.114	7.993	7.881	7.772	7.666	7.562	7.46	7.343	7.225	7.109	6.619	6.599	6.578	6.557	6.54	6.536	6.545	6.567
	V	144.91	146.604	148.282	149.943	150.663	152.602	152.992	152.459	153.747	155.323	157.486	159.327	161.148	163.547	164.137	166.495	164.991	168.78	172.616	176.452	177.042	177.042	177.042	177.042
110.0	M	0.487	0.495	0.5	0.5	0.5	0.508	0.516	0.524	0.532	0.54	0.549	0.553	0.562	0.572	0.583	0.575	0.581	0.594	0.6	0.6	0.6	0.6	0.6	0.616
	q_{km}	9.733	9.584	9.438	9.302	8.862	8.734	8.61	8.489	8.371	8.256	8.143	8.034	7.929	7.803	7.674	7.575	7.182	7.171	7.161	7.163	7.178	7.208	7.251	7.302
	V	152.093	154.074	155.106	154.58	154.053	155.98	157.888	159.777	161.647	163.498	165.632	166.241	168.337	170.709	173.355	170.346	171.484	175.271	177.042	177.042	177.042	177.042	177.042	181.763
120.0	M	0.5	0.503	0.511	0.52	0.524	0.532	0.54	0.549	0.554	0.563	0.573	0.577	0.571	0.581	0.591	0.6	0.6	0.6	0.6	0.6	0.602	0.619	0.635	
	q_{km}	10.176	10.038	9.903	9.771	9.348	9.214	9.084	8.956	8.834	8.715	8.598	8.483	8.401	8.317	8.236	8.157	7.784	7.792	7.812	7.847	7.897	7.954	8.011	.
	V	156.153	156.564	158.519	160.763	161.447	163.349	165.231	167.4	168.332	170.462	172.873	173.456	171.033	173.395	175.734	177.752	177.092	177.042	177.042	177.042	177.632	182.648	187.369	
130.0	M	0.518	0.527	0.536	0.545	0.547	0.554	0.563	0.569	0.56	0.569	0.578	0.586	0.596	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.602	•	•	
	q_{km}	10.626	10.483	10.344	10.207	9.807	9.668	9.533	9.402	9.293	9.207	9.127	9.053	8.983	8.898	8.825	8.763	8.452	8.494	8.549	8.621	8.709	•	•	.
	V	161.774	164.034	166.274	168.493	168.534	170.104	172.269	173.498	170.155	172.279	174.381	176.161	178.521	179.066	178.41	177.752	177.092	177.042	177.042	177.042	177.632			
140.0	M	0.541	0.55	0.556	0.555	0.552	0.557	0.565	0.574	0.582	0.591	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.605					
	q_{km}	11.041	10.894	10.753	10.62	10.259	10.15	10.049	9.953	9.863	9.779	9.7	9.631	9.576	9.511	9.472	9.49	9.36	9.44	9.534					.
	V	168.957	171.193	172.478	171.584	170.074	171.025	172.881	175.023	176.84	178.94	181.018	180.37	179.719	179.066	178.41	177.752	177.092	177.042	178.517					
150.0	M	0.537	0.546	0.55	0.56	0.569	0.577	0.586	0.595	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.606	0.606							.
	q_{km}	11.487	11.374	11.265	11.165	10.818	10.71	10.61	10.515	10.427	10.352	10.292	10.246	10.226	10.24	10.276	10.331	10.379	•	•	•	•	•	•	.
	V	167.708	169.948	170.617	173.13	175.312	177.166	179.307	181.426	182.309	181.665	181.018	180.37	179,719	179.066	178.41	179.53	178.863							
160.0	M	0.55	0.557	0.568	0.579	0.588	0.597	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.607	0.619									.
	q_{km}	12.029	11.924	11.82	11.716	11.369	11.263	11.165	11.083	11.016	10.965	10.949	10.977	11.026	11.077	11.138	÷	÷	÷	•	•	•	•	•	-
	V	171.768	173.372	176.201	179.004	181.166	183,307	183.59	182.951	182.309	181.665	18 1.0 18	180.37	179.719	181.155	184.06									
170.0	M	0.564	0.575	0.587	0.598	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.605	0.619	•	•	•		•	•	•	•	•	•	.
	q_{km}	12.58	12.473	12.365	12.258	11.917	11.826	11.75	11.691	11.678	11.699	11.741	11.806	11.881											.
	V	1.76.14	178.975	182.095	184.878	184.863	184.228	183.59	182.951	182.309	181.665	181.018	181.873	18 5.41	•	•	÷	÷	÷	÷	÷	÷	÷	÷	-
180.0	M	0.582	0.594	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.602	0.615	0.628												.]
	q_{km}	13.122	13.011	12.902	12.808	12.495	12.426	12.413	12.425	12.459	12.516	12.587	12.667	•	•	•	•		•	•	•	•	•	•	.
	V	181.762	184.889	186.127	185.496	184.863	184.228	183.59	182.951	18 2.3 09	18 2.27	18 5.544	188.787												
190.0	M	0.589	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.61	0.623														. 7
	q_{km}	13.663	13.566	13.48	13.413	13.159	13,158	13.181	13.228	13.294	13.37	•	•	•	•	•	•			•					-
	V	183.948	186.756	186.127	185.496	184.863	184.228	183.59	182.951	18 5.3 4 7	188.629														

Таблица 4 — $q_{km}\left[\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}\right],V\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$

Рисунок 7 — График изменения q_{km}

Рисунок 8 — График изменения q_{km}

Рисунок 9 — График изменения q_{km}