outline

- Voltage transfer characteristic (VTC)
- nMOS inverters
 - Resistive load inverter
 - Saturated enhancement load inverter
 - Depletion load inverter
- CMOS inverter
 - CMOS VTC
 - Comparison of CMOS and MOS inverters
- Combinational CMOS logic gates (static)
- Ratioed Logic

(material developed by Prof. Cezhou Zhao with slides from other sources)

CMOS inverter

1.

$$V_{OL} = 0$$
 $V_{th} = V_{DD}/2$

 $V_{OH} = V_{DD}$

If $V_{T0n} = -V_{T0p}$

$$\frac{(W/L)_n}{(W/L)_p} = \frac{\mu_p}{\mu_n}$$

2. Ratioless

$$V_{IL} = \frac{1}{8} (3 V_{DD} + 2 V_{T0})$$

$$V_{IH} = \frac{1}{8} (5 V_{DD} - 2 V_{T0})$$

nMOS inverter

Recall

$$V_{th} = V_{T0,n} - \frac{1}{k_n R_L} + \sqrt{\left(V_{T0,n} - \frac{1}{k_n R_L}\right)^2 + \frac{2 V_{DD}}{k_n R_L}} - V_{T0,n}^2$$

$$V_{IH} = V_{T0,n} + 2\sqrt{\frac{2}{3}\frac{V_{DD}}{k_n R_L}} - \frac{1}{k_n R_L}$$

2. Ratioed

$$V_{\text{OL}} = V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}} - \sqrt{\left(V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}}\right)^2 - \frac{2}{k_{\text{n}}R_{\text{L}}}} V_{\text{DD}}$$

$$\longrightarrow$$
 $V_{OH} = V_{DD}$

$$k_n = C_{ox} \mu_n \left(\frac{W}{L}\right)_{r}$$

3.

$$P_{DC} = \frac{V_{DD}}{2} \frac{V_{DD} - V_{OL}}{R_L}$$

k_nR_L

Ratioed Inverters

Resistive load

Depletion load NMOS Pseudo-NMOS

This logic style is called ratioed because care must be taken in scaling the impedances properly.

Note that full complementary CMOS is ratioless, since the output signal do not depend on the size of the transistors.

$$k_n R_L$$

$$k_n = C_{ox} \mu_n \left(\frac{W}{L}\right)_{n,Driver}$$

Resistive load

Depletion load NMOS Pseudo-NMOS

$$R_L = \frac{V_{DD} - V_{out}}{I_L}$$

$$R_{L} = \frac{V_{DD} - V_{out}}{I_{Dn}} \propto \frac{V_{DD} - V_{out}}{(W/L)_{n,Load}}$$

$$R_{L} = \frac{V_{DD} - V_{out}}{I_{Dp}} \propto \frac{V_{DD} - V_{out}}{(W/L)_{p,Load}}$$

$$R_L \uparrow \longrightarrow (W/L)_{Load}$$

Static Power Consumption

 However, static power consumption makes it impossible to use in large circuits (except in address decoders when majority of outputs are high). A minimum sized gate consumes 1mW!

$$P_{DC} = \left(\frac{V_{DD}}{2}\right)I_{stat} = \frac{V_{DD}}{2} \frac{V_{DD} - V_{OL}}{R_L}$$

 $V_{OL} \neq 0$

Wasted energy ...

Should be avoided in almost all cases, but could help reducing energy in others (e.g. sense amps)

Pseudo-nMOS Inverter

$$V_{\text{out}} = V_{\overline{\text{DSn}}} = V_{\overline{\text{DSp}}} + V_{\overline{\text{DD}}}$$

$$V_{OH} = V_{DD}$$

$$V_{OL} > 0$$

$$P_{DC} > 0$$

Pseudo-NMOS VTC

Nominal device:

$$\frac{W}{-} = \frac{0.5\mu}{L_n} = 2$$

$$\frac{0.5\mu}{0.25\mu} = 2$$

$$R_L \uparrow \longrightarrow (W/L)_{Load}$$

Ratioed Logic

Here, the logic function is built in the PDN and used in combination with a SIMPLE load device.

Ratioed Logic

Here, the logic function is built in the PDN and used in combination with a SIMPLE load device.

Pseudo-NMOS NAND Gate

$$\uparrow_{k_n} = C_{ox} \mu_n (W/L)_{n,Driver}$$

$$\downarrow_{n_1} \longrightarrow (W/L)_{Load}$$

$$\downarrow_{n_2} \longrightarrow (W/L)_{Load}$$

CMOS NAND Gate

Comparison of CMOS and MOS

CMOS	MOS
Zero static power dissipation $V_{ol} = 0$	Power is dissipated with output "0" Vol ≠ 0
Power dissipated during logic transition	Power dissipated during logic transition
Requires 2N devices for N	Require N+1 devices for N
inputs Process more complex	inputs Maybe nMOS process only
CMOS encourages regular layout styles Ratioless	Depletion, load and different driver transistors create irregularity in layout Ratioed