Text Mining

How can we analyze text?

- Unsupervised
 - The documents are not labeled or classified
 - Look for clusters/groups of like documents
- Supervised
 - The documents are labeled
 - Develop prediction method to predict label from text (and possibly other information)

Both approaches require us to transform the text into a quantitative form that we can analyze

Modified Tweets

- Get Out to VOTE and we will win! Poll
- We are winning and the press is refusing to report it
- Media in the tank for Clinton but Trump will win!
- Dems are making phony polls to suppress the Trump. We are going to WIN!

Drop Stop Words (the, in, and, is, are..)

- Get Out to VOTE and we will win! Poll
- We are winning and the press is refusing to report it
- Media in the tank for Clinton but Trump will win!
- Dems are making phony polls to suppress the Trump. We are going to WIN!

Drop Stop Words (the, in, and, is, are..)

- Get Out VOTE we win! Poll
- We winning press refusing report
- Media tank Clinton Trump win!
- Dems making phony polls suppress Trump. We going WIN!

Stem Words (winning to win; polls to poll; are to is)

- Get Out VOTE we win! Poll
- We winning press refusing report
- Media tank Clinton Trump win!
- Dems making phony polls suppress Trump. We going WIN!

Stem Words (winning to win; polls to poll; are to is)

- Get Out VOTE we win! Poll
- We win press refus report
- Media tank Clinton Trump win!
- Dems mak phony poll suppress Trump. We go WIN!

Drop Punctuation Convert to lower case

- Get Out VOTE we win! Poll
- We win press refus report
- Media tank Clinton Trump win!
- Dems mak phony poll suppress Trump. We go WIN!

Bag of words

- Unique words across all documents
- clinton dems get go mak media out phony poll press refus report suppress tank trump vote we win

Drop Punctuation Convert to lower case

- get out vote we win poll
- we win press refus report
- media tank clinton trump win
- dems mak phony poll suppress trump we go win

Each Document is a word vector

	Α	В	С	D	NumDocs
clinton	0	0	1	0	1
dems	0	0	0	1	1
get	1	0	0	0	1
go	0	0	0	1	1
trump	0	0	1	1	2
vote	1	0	0	1	2
we	1	1	0	1	3
win	1	1	1	1	4
TOTAL	6	5	5	9	

What information do we lose with Word Vectors?

- Placement / juxtaposition of words
 - E.g., "damn" alone is typically a negative word, but "damn good" is a positive phrase; bigrams can help
- Meaning through punctuation
 - use of exclamation point can distinguish between authors
- Small words
 - Some analyses focus on small words to identify authors

Similarity between documents

- **Term frequency**: number of the words in a document are this term (nt of n)
- **Document frequency**: number of the documents that contain this term (Nd of N)
- Normalized vector:

V = nt/n * N/Nd) (term freq - inverse doc freq)
Or

$$V = nt/n * log((1+N)/ Nd)$$

Similarity between documents

- Do documents use the same terms?
- Don't care about common terms
- Want to control for the length of the document

	Α	В	С	D	InvDocFrq
clinton	0	0	1/5	0	4
dems	0	0	0	1/9	4
get	1/6	0	0	0	4
go	0	0	0	1/9	4
trump	0	0	2/5	1/9	2
vote	1/6	0	0	1/9	2
we	1/6	1/5	0	1/9	4/3
win	1/6	1/5	1/5	1/9	1
TOTAL	6	5	5	9	

tf-idf (log2)

	Α	В	С	D	Log(idf)
clinton	0	0	2/5	0	4 -> 2
dems	0	0	0	2/9	4 -> 2
get	2/6	0	0	0	4 -> 2
go	0	0	0	2/9	4 -> 2
trump	0	0	2/5	1/9	2 -> 1
vote	1/6	0	0	1/9	2 -> 1
we	2/30	2/25	0	2/45	4/3 -> 0.4
win	1/20	3/50	3/50	1/30	1 -> 0.3
TOTAL	6	5	5	9	

Dissimilarity Matrix

	A	В	С	D
Α	0	1.80	2.10	1.44
В	1.80	0	1.65	1.30
С	2.10	1.65	0	1.61
D	1.44	1.30	1.61	0

Distance between documents

- Dist(V, W) = ½(KL(V, AVG) + KL(W, AVG))
- where: KL stands for Kulback-Leibler measure
 KL(V, AVG) = sum(log(V/AVG) * AVG)
- and V = TF* IDF

Multi-dimensional Scaling

- Information visualization technique for highdimensional data.
- Consider the matrix of dis-similarities above for the four documents.
- Assign locations in 2 dimensions so that the distances between documents is roughly preserved.

Example

	A	В	С
Α	0	3	4
В	3	0	5
С	4	5	0

Could represent as a triangle in two dimensions

MDS

- Doesn't produce unique representations of the data,
- Does give you the opportunity to compare objects (documents in our case)
- Look for clusters and gaps

Our Documents

Hierarchical clustering

- Build a binary tree that successively merges similar groups.
- This implies that we need a metric or measure of similarity between groups of points.
- There are various algorithms that can be used to create the binary tree.

Agglomerative Clustering

- 1. Start with each point in its own group.
- 2. Merge the two most similar groups.
- 3. Repeat step 2 until all groups have been merged into one
- Note that the similarity between two groups being merged at any stage must, by design, be decreasing because we merge less and less similar groups.

- Single linkage tends to result in chaining, where you successively add on one point to a group
- Complete linkage tends not to merge close groups when one point in one group is far from the other group.

Measure of similarity between groups

- Single linkage: smallest distance between any point in one group and a point in the other group.
- Complete linkage: largest distance between any point in one group and a point in the other group.
- Average linkage: average distance between each point in one group and every point in the other group

Dendrogram

- Useful visualization of the clustering process.
- Typically the tree is drawn such that the heights of the branches proportional to the dissimilarity between the two groups.
- This visual helps you see where a good place to "cut" the tree might be and create clusters

Complete linkage

Single linkage

Dendrogram

- Different definitions of similarity can give very different trees.
- The algorithm imposes a hierarchy on a set of data, even if there isn't one.

Your Turn

State of the Union addresses

State of the union speeches

- Use readLines() to read in the speeches
- Return value: character vector with one element/character string per line in the file
- Regular expressions to find ***
- Use *** to identify the date of the speech
- Use regular expressions to extract the year
- Use regular expressions to extract the month
- Use *** to extract the name of the president

State of the union speeches

- Chop the speeches up into a list there is one element for each speech.
- Each element is a character vector.
- Each element of the vector is a character string corresponding to a sentence in the speech

Word Vectors

- Eliminate apostrophes, numbers, and the phrase: (Applause.) from the text.
- Make all the characters lower case.
- Split the sentences up where there are blanks and punctuation
- Drop any empty words that resulted from this split
- Load the library Rstem and use the function wordStem() to stem words

- Find the bag of words
- Create a word vector for each speech
- Normalize the word vectors to get term frequencies

Analysis

- Exploratory analysis of the data:
 - Number of sentences, long words, political party
- Multidimensional scaling
- Hierarchical clustering