

# Fundamentals of Optimization

#### Exercise 3

#### Remarks

- All questions that are available in the STACK quiz are duly marked. Please solve those using STACK.
- We have added marks for each question. Please note that those are purely for illustrative purposes. The exercise set will not be marked.
- We can derive the inverse of a nonsingular matrix  $A \in \mathbb{R}^{2\times 2}$  in closed form:

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

### STACK Problems

# 1 Basic Solutions of Polyhedra in Standard Form (2 marks)

#### (1.1) STACK question

By using the enumeration algorithm presented in Section 13.2.5 of the lecture notes, determine the set of all basic solutions and basic feasible solutions of the following polyhedron:  $\mathcal{P} = \{x \in \mathbb{R}^4 : x_1 + 2x_2 - x_3 + 4x_4 = 10; 2x_1 + 3x_2 - 2x_3 - 2x_4 = 16; x \geq \mathbf{0}\}$ . For each basic solution and basic feasible solution, determine whether it is degenerate or nondegenerate. You can assume that the coefficient matrix A has full row rank.

[1 mark]

#### (1.2) STACK question

By using the enumeration algorithm presented in Section 13.2.5 of the lecture notes, determine the set of all basic solutions and basic feasible solutions of the following polyhedron:  $\mathcal{P} = \{x \in \mathbb{R}^3 : 3x_1 + 2x_2 + 4x_3 = 4; -x_1 + x_2 - 2x_3 = 2; x \geq \mathbf{0}\}$ . For each basic solution and basic feasible solution, determine whether it is degenerate or nondegenerate. You can assume that the coefficient matrix A has full row rank.

[1 mark]

### 2 Optimality Conditions and Degeneracy (3 marks)

#### (2.1) STACK question

Consider the following linear program in standard form

$$\min\{-x_1 - 4x_2 - x_3 + 2x_4 : x_1 + 4x_2 + x_3 = 8; x_1 + 2x_2 + x_4 = 4; x \ge \mathbf{0}\}\$$

and the vertices

- (a)  $\hat{x} = [4, 0, 4, 0]^T$ .
- (b)  $\hat{x} = [0, 2, 0, 0]^T$ ,
- (c)  $\hat{x} = [0, 0, 8, 4]^T$ .

You can assume that the coefficient matrix A has full row rank. For each vertex, decide whether the vertex is optimal or not, and whether it is degenerate or not.

[3 marks]

Write down a valid choice for the index set B, the reduced costs  $\bar{c}_j$ ,  $j \in \{1, ..., n\}$ , for that basis, and a "candidate" improving direction  $d \in \mathbb{R}^n$  if one exists. For the latter, if  $\bar{c} \not\geq \mathbf{0}$ , use  $d_{j^*} = 1$  and  $d_j = 0$ ,  $j \in N \setminus \{j^*\}$  to derive the direction, where  $j^* \in N$  is the index with the smallest reduced cost  $\bar{c}_j$ . Verify whether the candidate improving direction d is indeed an improving feasible direction at that vertex. If  $\bar{c} \geq \mathbf{0}$ , then enter  $d = \mathbf{0}$ .

If the vertex is degenerate, write down all possible choices of the indices for the index set B, together with the corresponding reduced costs  $\bar{c}$  and candidate improving directions.

### **Open Ended Problems**

### 3 Feasible Directions and Optimality Conditions (2.5 marks)

Consider the following linear programming problem (P) in standard form:

(P) 
$$\min\{c^T x : Ax = b, x \ge \mathbf{0}\},\$$

where  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ , and  $c \in \mathbb{R}^n$ .

Let  $\bar{x} \in \mathbb{R}^n$  be an optimal solution of (P) such that  $\bar{x}$  is not a vertex.

(3.1) Prove that there exists a feasible direction  $\bar{d} \in \mathbb{R}^n$  at  $\bar{x}$  such that  $\bar{d} \neq \mathbf{0}$  and  $c^T \bar{d} = 0$ .

[1.5 marks]

(3.2) Prove that (P) has an infinite number of optimal solutions.

[1 mark]

### 4 Reduced Costs and Optimality Conditions (2.5 marks)

Consider the following linear programming problem in standard form:

(P) 
$$\min\{c^T x : Ax = b, \quad x \ge \mathbf{0}\},\$$

where  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ , and  $c \in \mathbb{R}^n$ . Assume that A has full row rank. Let  $x^* \in \mathbb{R}^n$  be a vertex with the corresponding index sets B and N.

(4.1) Suppose that  $\bar{x} \in \mathbb{R}^n$  is a feasible solution of (P) such that  $\bar{x} \neq x^*$ . Prove that there exists an index  $k \in N$  such that  $\bar{x}_k > 0$ .

[1 mark]

(4.2) Consider the vertex  $x^*$  again. Suppose that reduced costs of all nonbasic variables are strictly positive, i.e.,

$$\bar{c}_j = c_j - c_B^T (A_B)^{-1} A^j > 0, \quad j \in N.$$

Prove, using (4.1), that  $x^*$  is the unique optimal solution.

[1.5 marks]