Modelling and Identification

Prof. Dr. Ping Zhang
Institute for Automatic Control
WS 2017/18

Electrical systems

 \triangleright Resistor: u(t) = Ri(t),

 \triangleright Capacitor: $i(t) = C \frac{du}{dt}$

> Inductor: $u(t) = L \frac{di}{dt}$

> Kirchhoff voltage law: The sum of voltages along an arbitrary closed path in the circuit is 0.

$$\sum_{j} u_j(t) = 0$$

Kirchhoff current law: The sum of the currents at a node is 0.

$$\sum_{j} i_j(t) = 0$$

Electrical systems

Example: Input: u_r , Output: u_c

Kirchhoff voltage law:
$$L\frac{di}{dt} + Ri + u_c = u_r$$

Capacitor:

$$i = C \frac{du_c}{dt}$$

$$LC\frac{d^2u_c}{dt^2} + RC\frac{du_c}{dt} + u_c = u_r$$

Electrical systems

Example: Input: u_i , Output: u_o

Kirchhoff current law:

$$\frac{u_i}{R_1} + \frac{u_o}{R_2} = 0$$

$$u_0 = -\frac{R_2}{R_1} u_i$$

Electromagnetic systems

Law of motors: A wire in a magnetic field that carries a current will have a force exerted on it

$$F(t) = Bli$$

B: flux density of the magnetic field

l: length of the conductor

> Law of generators: A voltage will be induced in a wire that moves relative to the magnetic field

$$e(t) = Blv$$

Electromagnetic systems

DC motor:

- Often used as actuator in control systems
- > Torque exerted on the rotor:

$$M(t) = k_I i_a$$

➤ The voltage induced:

$$e(t) = k_E n$$

Electromagnetic systems

Model of DC motor:

Kirchhoff voltage law

$$u_i(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + k_E n(t)$$

Torque balance

$$J\frac{dn}{dt} = k_I i_a - M_b$$

The behaviour of a thermal system is described by

- > Temperature *T*
- > Heat flow rate q

Element laws:

> Thermal resistence

The heat flow rate from a body of temperature T_1 to a body of temperature T_2 is

$$q(t) = \frac{1}{R}(T_1(t) - T_2(t))$$

R: Thermal resistance of the path between two bodies. Unit: $K \cdot s/J$

> Thermal capacitance

The rate of temperature change is related to the instantaneous net heat flow rate into the body by

$$\frac{dT}{dt} = \frac{1}{C}(q_{in}(t) - q_{out}(t))$$

C: Thermal capacitance of the object. Unit: I/K.

For an object with mass m and specific heat c_p , the heat capacitance is

$$C = mc_p$$

Assumptions: The thermal gradients within the object is not too big. Otherwise, a distributed parameter model is needed.

Example 1: electrically heated stirred tank

Consider the temperature change of the liquid in the tank

$$\frac{dT}{dt} = \frac{1}{C}(q_{in}(t) - q_{out}(t))$$

$$C = mc_p = \rho V c_p$$

The heat flow rate entering the tank

$$q_{in}(t) = q_{heater} + \rho Q c_p T_i(t)$$

Q: volume flow rate

 q_{heater} : heat rate of

the heater

The heat flow rate leaving the tank

$$q_{out}(t) = \rho Q c_p T(t) + \frac{1}{R} \left(T(t) - T_a(t) \right)$$

Example 1: electrically heated stirred tank

Total model:

$$\rho V c_p \frac{dT}{dt} = \rho Q c_p (T_i(t) - T(t)) - \frac{1}{R} (T(t) - T_a(t)) + q_{heater}$$

Example 2: tank with heater for batch processing (Close, 2002)

Consider the temperature change of the liquid in the tank

$$\frac{dT}{dt} = \frac{1}{C_L} (q_{HL}(t) - q_{La}(t))$$

Consider the temperature change of the heating element

$$\frac{dT_H}{dt} = \frac{1}{C_H} (q_{heater}(t) - q_{HL}(t))$$

Heat flow from liquid to atmosphere

$$q_{La}(t) = \frac{1}{R_{La}}(T - T_a)$$

Heat flow from heating element to liquid

$$q_{HL}(t) = \frac{1}{R_{HL}}(T_H - T)$$

Example 2: tank with heater for batch processing (Close, 2002)

Total model:

$$\frac{dT_H}{dt} = \frac{1}{C_H} \left(q_{heater}(t) - \frac{1}{R_{HL}} (T_H - T) \right)$$

$$\frac{dT}{dt} = \frac{1}{C_L} \left(\frac{1}{R_{HL}} (T_H - T) - \frac{1}{R_{La}} (T - T_a) \right)$$

Example: fluid system

 Q_1 : volume flow rate

 A_{12} , A_{20} : cross section of the pipelines

 A_1, A_2 : cross section of the tanks

Example: fluid system

Mass balance for Tank 1

$$A_1 \dot{h}_1 = Q_1 - Q_{12}$$

Example: fluid system

Mass balance for Tank 1

Mass balance for Tank 2

$$A_1 \dot{h}_1 = Q_1 - Q_{12}$$

$$A_2 \dot{h}_2 = Q_{12} - Q_{20}$$

Coupling between two subsystems?

Example: fluid system

Mass balance for Tank 1

Mass balance for Tank 2

Torricelli's law

Torricelli's law

$$A_1 \dot{h}_1 = Q_1 - Q_{12}$$

$$A_2 \dot{h}_2 = Q_{12} - Q_{20}$$

$$Q_{12} = aA_{12}sgn(h_1 - h_2)\sqrt{2g|h_1 - h_2|}$$

$$Q_{2o} = aA_{2o}\sqrt{2gh_2}$$

Example: fluid system

System model

$$\begin{cases} A_1 \dot{h}_1 = Q_1 - aA_{12} sgn(h_1 - h_2) \sqrt{2g|h_1 - h_2|} \\ A_2 \dot{h}_2 = aA_{12} sgn(h_1 - h_2) \sqrt{2g|h_1 - h_2|} - aA_{20} \sqrt{2gh_2} \end{cases}$$