第二章 线性规划与单纯形法

□ 线性规划问题及数学模型 □图解法 □单纯形法原理 □单纯形法计算步骤 □单纯形法进一步讨论 □ 线性规划建模应用举例

□线性规划问题及数学模型

□线性规划问题的提出——生产计划

例2-1 某工厂在计划期内要安排生产 I,II两种产品,已知生产单位产品所需的设备台时和原料A、B的消耗量如表

- 该工厂每生产一件产品 I 可获利2元,
- 每生产一件产品 II 可获利3元
- 问应如何安排生产计划能使该厂获利最多?

	I	П	
设备	1	2	8台时
原材料A	4	0	16kg
原材料B	0	4	12kg
利润	2	3	

> 建立数学模型

- 1. 设产品 I, II产量分别为 x_1 , x_2 , 称决策变量, 每生产一件产品可分别获取利润为 $2x_1$ 和 $3x_2$ 元
- 2. 可获取的总利润用z表示,它是变量x₁,x₂的函数,称为目标函数
- 3. x_1, x_2 的取值受到设备台时和原材料的限制,用于描述限制条件的数学表达式称为约束条件
- 4. 此例的数学模型可表示为:

$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

	Ι	П	
设备	1	2	8台时
原材料A	4	0	16kg
原材料B	0	4	12kg
利润	2	3	

□ 线性规划问题的提出——费用最少

例2-2 靠近某河流有两个化工厂(见图),流经第一个工厂的河流流量500万立方米/天;在两工厂之间有一支流、流量为200万立方米/天。第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米。从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。根据环保要求,河流中工业污水的含量不应大于0.2%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元/万立方米。

试问在满足环保要求的条件下,每厂各应处理多少污水,才能使总的

污水处理费用为最小?

决策变量

解:令x,y分别是第一和第二个化工厂每天处理的污水量,则

线性规划问题及数学模型

例2-2 建立数学模型

令 x, y 分别是第一和第二个化工厂每天处理的污水量

- (1) 第一到第二个工厂之间河流中污水含量 \leq 0.2% $(2-x)/500 \leq$ 0.2%
- (2) 流经第二个工厂后河流中的污水含量 \leq 0.2% [0.8(2-x)+(1.4-y)]/(500+200) \leq 0.2%
- (3)每个厂的污水处理量不超过污水排放量

$$x \le 2, y \le 1.4$$

(4) 目标:处理污水的总费用z=1000x+800y最小。

 $x, y \ge 0$

$$\min z = 1000x + 800y$$

$$\begin{cases} 2 - x \le 0.2\% * 500 \\ [0.8(2 - x) + (1.4 - y)] \le 0.2\% * 700 \\ x \le 2 \\ y \le 1.4 \end{cases}$$

故线性规划模型:

运筹学基础

约束条件

□ 什么是线性规划问题?

- ▶Programming规划问题
 - 生产和经营管理中经常提出如何合理安排,使人力、物力等 各种资源得到充分利用,获得最大的效益,这就是规划问题。
 - Linear Programming线性规划:约束条件参数关系是线性的
- ▶LP线性规划问题分类
 - 当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标——Min
 - 在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大) —— Max
- ▶LP线性规划问题特点——用数学语言描述
 - 决策变量(一组多个),用以表示问题的一个解决方案
 - 约束条件: 一组决策变量的线性不等式(或等式), 问题限制
 - 目标函数:决策变量的线性函数,根据实际求最大或最小

□ LP概念和模型的一般形式

 \triangleright LP定义:对于求取一组变量 x_j ($j=1,2,\cdots,n$),使之既满足线性约束条件,又使具有线性的目标函数取得极值的一类最优化问题。

目标函数 max (或min)
$$Z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

约束条件
$$s.t.$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq (=, \geq)b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq (=, \geq)b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq (=, \geq)b_m \\ x_1, x_2, \cdots, x_n \geq 0 \ (\leq 0, \exists \ \exists) \end{cases}$$

 x_{j} $(j = 1, 2, \dots, n)$ 称为决策变量 c_{j} $(j = 1, 2, \dots, n)$ 称为价值系数或目标函数系数 b_{i} $(i = 1, 2, \dots, m)$ 称为资源常数或约束右端常数 $a_{ij} \geq 0$ $(i = 1, \dots, m; j = 1, \dots, n)$ 称为技术系数或约束系数

□ LP模型的标准形式

标准型的主要特征:

$$\max Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

- ① 目标最大;
- ② 约束等式;
- ③ 变量非负;
- ④ 右端非负。

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_1, x_2, \dots, x_n \ge 0 \end{cases}$$

LP模型一般和标准形式是等价的,即他们之间是可互相转化!

□ LP线性规划标准化

把一般的LP化成标准型的过程称为线性规划问题的标准化

- 一般方法步骤:
- ✓目标函数标准化

min Z 等价于 max(-Z)

✓化约束为等式,加松弛变量、减剩余变量

$$a_{i1}x_1 + ... + a_{in}x_n \le b_i$$
 加上变量 $y_i \ge 0$ $a_{i1}x_1 + ... + a_{in}x_n + y_i = b_i$

$$a_{j1}x_1 + ... + a_{jn}x_n \ge b_j$$
 滅去变量 $y_j \ge 0$ $a_{j1}x_1 + ... + a_{jn}x_n - y_j = b_j$

✓变量非负化,若X_i(无符号约束),另构造两个非负变量做变换

$$x_{j}, x_{j} \ge 0$$
 $\Rightarrow x_{j} = x_{j} - x_{j}$ 代入原 LP

✓右端非负,系数取反

□LP线性规划标准化

▶标准化举例 例2-1续

$$\max z = 2x_1 + 3x_2 \qquad \max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

$$x_1 + 2x_2 + x_3 = 8$$

$$4x_1 + x_4 = 16$$

$$4x_2 + x_5 = 12$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

经济含义:给定一个生产方案(X_1 , X_2), 松弛变量 X_3 , X_4 , X_5 ——分别表示在这种生产方案下相应各资源的**剩余量**。

□ LP线性规划标准化

 $\min Z = x_1 + 2x_2 + 3x_3$

▶标准化举例 例3

$$s.t.\begin{cases} -2x_1 - x_2 + x_3 \le 9 \\ -3x_1 + x_2 + 2x_3 \ge 4 \\ 4x_1 - 2x_2 - 3x_3 = -6 \\ x_1 \le 0, x_2 \ge 0, x_3$$
取值无约束

LP模型标准型的矩阵和向量表示

≻矩阵表示

海洋表示
max
$$z = c$$
 x
 x_1
 x_2
 x_3
 x_4
 x_5
 x_5

(价值系数向量) (决策变量向量) (约束系数矩阵)

令P₁, P₂, ···, P_n分别为系数矩阵A的列向量, >列向量形式

$$\max z = c_1 x_1 + \dots + c_n x_n \qquad \max z = \sum_{j=1}^n c_j x_j$$

$$s.t. \begin{cases} P_1 x_1 + P_2 x_2 + \dots + P_n x_n = b \\ x_j \ge 0 \quad j = 1, 2, \dots n \end{cases} \xrightarrow{\text{gl}} s.t. \begin{cases} \sum_{j=1}^n P_j x_j = b \\ x_j \ge 0 \quad j = 1, 2, \dots n \end{cases}$$

 \triangleright 行向量形式 $\diamond a_1, a_2, \dots, a_m$ 分别为系数矩阵A的行向量, $\max z = c x$

$$s.t.\begin{cases} a_i x = b_i & i = 1, 2, \dots m \\ x \ge 0 \end{cases}$$

□图解法

□什么是图解法?

- ▶图解法就是用几何作图的方法分析并求出LP最优解的过程。
- ▶一般适用于模型中只有两个决策变量,只需建立平面直角坐标系。

▶求解的思路是:

- 1. 建立平面直角坐标系,标出坐标原点、坐标轴的指向和单位长度。
- 2. 对约束条件加以图解,找出可行域,即满足约束条件的解的集合。
- 3. 画出目标函数等值线。
- 4. 结合目标函数的要求,从可行域中找出最优解。

□ 图解法举例

▶例2-1 用图解法求最优生产计划

$$\max z = 2x_1 + 3x_2$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$4x_2 \le 12$$

$$x_1, x_2 \ge 0$$

目标函数线L(红线): $h = 2x_1 + 3x_2$

原点0到L的距离:
$$d = \frac{|0+0-h|}{\sqrt{4+9}} = \frac{h}{\sqrt{13}}$$
,

图 斜线阴影区域为LP的可行域(可行解集合)

即目标函数值与原点0到L的距离d成正比,故将直线L向远离原点0的方向平行移动,直至要脱离可行解域为止(图红色交点)。可见,该线性规划存在唯一最优解(4,2)

□ 图解法举例 (续)

▶例2-1 用图解法求最优生产计划

若将上图中目标函数变为
$$\max z = 2x_1 + 4x_2$$

$$\begin{aligned}
x_1 + 2x_2 &\leq 8 \\
4x_1 &\leq 16 \\
4x_2 &\leq 12 \\
x_1, x_2 &\geq 0
\end{aligned}$$

由图分析可知,该线性规划蓝色线段上的点都是最优解,存在无穷多最优解。

□ 图解法举例(续)

划出坐标系,约束条件5个,

$max z = 2x_1 + x_2$

$$s.t. \begin{cases}
5x_2 <= 15 \\
6x_1 + 2x_2 <= 24 \\
x_1 + x_2 <= 5 \\
x_1, x_2 >= 0
\end{cases}$$

5条直线围起来的多边形区域 OQ1Q2Q3Q4为问题可行域

□ 图解法举例(续)

 $z = 2x_1 + x_2$

(a)可行域有界 唯一最优解 (b)可行域有界 多个最优解 (c)可行域无界 唯一最优解

(d)可行域无界 多个最优解

(e)可行域无界 目标函数无界 无最优解

(f)可行域为空集 无可行解

□ 图解法总结

- ▶LP解的情况,总会出现为下述四种情况之一:
 - 1. 存在唯一最优解
 - 2. 存在无穷多最优解
 - 3. 存在可行解,但无最优解
 - 4. 不存在可行解
- ▶LP可行解域及最优解的几何特征:
 - 1. 可行解域F是(超)多面体且一定是凸集
 - 2. 若最优解存在,则一定可以在多面体的顶点取到。

二维决策变量

多维

□ 图解法作业习题

课后习题2.1(1)和(2)

更复杂的线性规划如何求解?

□单纯形法原理

□线性规划求解的里程碑——单纯形法

- ✓ 丹齐格Dantzig (1914-2005): 1941-1946年在美国五角大楼工作,常常被空军 要求去解实际的计划问题:分配人力、经 费、飞机和其他资源。以往做法是靠经验。
- ✓ 丹齐格给这些问题建立了线性规划LP (Linear Programming)模型,并在 1947年提出了著名的单纯形法(Simplex Method)。
 - *丹齐格的线性规划对偶理论和冯诺依曼的博弈论极小* 极大理论是一回事。

口线性规划求解的里程碑——单纯形法

单纯形法的思想

第一步:找到一个可行解(极点);

第二步: 计算该点的判据函数;

第三步: 若无法改进, 退出;

第四步: 否则选择一条棱,找到另一

可行解(极点);回到第二步。

基本认识:LP最优解一定可以在凸集极点上达到

迭代算法

□ 线性规划问题解的概念

▶线性规划问题

标准型
$$\max z = \sum_{j=1}^{n} c_j x_j$$
 $\max Z = CX$

$$s.t. \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & (i = 1, ..., m) \\ x_{j} \ge 0 & (j = 1, 2, ..., n) \end{cases} \quad \text{if } \quad s.t. \begin{cases} AX = b \\ X \ge 0 \end{cases}$$

可行解: 变量满足所有约束条件的一组值

可行解集: 所有可行解构成的集合

$$D = \{x \mid Ax = b, x \ge 0\}$$

可行域:可行解集构成n维空间的区域

最优解: 使得目标函数达到最优的可行解/**

最优值:最优解对应的目标函数值2**

LP目的: 求最优解和最优值

求解方法: 单纯形法

□ 线性规划问题的解的概念 (续)

▶基可行解(bfs)的定义

在矩阵A中取m个线性无关列 $P_{j_1}, P_{j_2}, ..., P_{j_m}$ 记它们构成的矩阵为: $B = (P_{j_1}, P_{j_2}, ..., P_{j_m})$

 $P_{j_1}, P_{j_2}, ..., P_{j_m}$ 称为(LP)的一个基,B为相应的基阵,构成B的列为相应基列或基向量与基向量 P_j 相对应的变量 X_j 称为基变量,否则称为非基变量

$$B = \left(P_{j_1}, P_{j_2},, P_{j_m}\right)$$
 基向量
$$X_B = \{x_j (j = 1, 2, \cdots, m)\}$$

非基变量: 其余变量

□ 线性规划问题的解的概念 (续)

▶基可行解(bfs-basic feasible solution)的定义

A的其他列称为相应的非基列或非基向量,并将所有非基列构成的矩阵记为N 将基列B和非基列N分别排列,系数矩阵可写成A=(B,N),相应地,变量写成 $\chi=\begin{pmatrix} \chi_B \\ \chi_N \end{pmatrix}$

令非基变量 $X_N=0$ 得 $BX_B=b$ 和唯一解 $X_B=B^{-1}b$,结合 $X_N=0$,称

$$X = (x_1, x_2, \dots, x_m, 0, \dots, 0)^T = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
为关于基*B*的基本解(基解)

- ◆ 基可行解bfs的个数有限,不超过C_n^m
- ◆ 由 $X_B \ge 0$ $X_N = 0$ 可知基可行解0分量的个数不少于(n-m),或者说其非0分量的个数不超过m

思考: bfs **有什么用?**

□ 线性规划问题的解的概念(续)

▶例2-1 的基可行解(bfs)

$$\max z = 2x_1 + 3x_2$$

其标准形式(*)
$$\begin{cases} x_1 + 2x_2 + x_3 &= 8\\ 4x_1 &+ x_4 &= 16\\ 4x_2 &+ x_5 = 12\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

(*)约束恒等变换得形式

 $2x_2 + x_3 - \frac{1}{4}x_4 = 4$

点〇

$$x_2 = x_4 = 0$$

得
$$x_1 = 4$$
, $x_3 = 4$, $x_5 = 12$

令
$$x_4 = x_5 = 0$$

得 $x_1 = 4, x_2 = 3, x_3 = -2$

$$s.t. \begin{cases} x_1 \end{cases}$$

$$\begin{cases} x_3 - \frac{1}{4}x_4 - \frac{1}{2}x_5 = -2 \\ + \frac{1}{4}x_4 - \frac{1}{2}x_5 = 4 \end{cases}$$

$$s.t. \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} + \frac{1}{4}x_4 = 4$$

会发现:这种方程组的基可行解对应凸集顶点!

□凸集及其顶点

▶凸集的概念

凸集——设K是n维欧氏空间的一个点集,若任意两点X^{(1) ∈}K,X⁽²⁾ ∈K的连线上的一切点:

$$\alpha X^{(1)} + (1-\alpha) X^{(2)} \in K$$

(0<\a<1),则称K为凸集。

凸集几何意义: 由两点连线, 线上所有点都在集合区域内。

□凸集及其顶点

▶凸集顶点的概念

设K是凸集, $X \in K$; 若K中不存在两个不同的点 $X^{(1)} \in K$, $X^{(2)} \in K$ 使 $X = \alpha X^{(1)} + (1 - \alpha) X^{(2)}$ (0 $< \alpha < 1$)

则称X为K的一个顶点(也称为极点或角点)。

- □ 基本定理(基可行解与凸集顶点之间关系)
 - ▶ 定理1: 若线性规划LP问题存在可行解,则该问题的可行解集(即可行域)是凸集。
 - ▶ 定理2: 线性规划LP问题的基可行解x对应线性规划问题可行域(凸集)的顶点。
 - ▶ 定理3: 若线性规划LP问题有最优解,一定存在一个基可行解(可行域顶点)是最优解。
 - ▶结论1:最优的可行解X*是可行域F的一个顶点当且仅当是(LP)的一个bfs。
 - ▶结论2:线性规划(LP)最优解必能在某个bfs上取到(若存在)。 几何上,若(LP)存在最优解,则必在可行域的顶点上达到。

若顶点数目有限可采用"枚举法"找所有bfs,然后比较,必然能找到最优解。但当n,m较大时,这种办法是行不通的——新思路单纯形法。

运筹学基础

□ "单纯形法" 求解思路

- \rightarrow 线性方程组 Ax = b
- ■一般线性规划问题:如果线性方程组的变量数n大于方程个数m,有不定的解,可从线性方程组中找出一个个的单纯形,每个单纯形可求得一组解,然后再判断是否使目标函数值是否增大,决定下一步选择的单纯形。
- ■这个算法过程就是迭代,直到目标函数取得最大值(最优解)为止。

□ 单纯形方法引例——用单纯形法思想求解LP问题

号例2.1
$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 2x_1 + 3x_2$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 &= 8 \\ 4x_1 &+ x_4 &= 16 \\ 4x_2 &+ x_5 = 12 \end{cases}$$

 $(P_3P_4P_5) = I_1x_3, x_4, x_5$ 是基变量; x_1, x_2 非基变量,用非基变

量表示基变量和目标函数。

基可行解 → 约束右端 (0,0,8,16,12), 即 O (0,0) 目标函数值 → 目标函数中的常数项

含义: 不生产任何产品,工时和材料都剩余,利润为 Z⁽⁰⁾=0 初始基本可行解是否最优解?是否可以生产某种产品使目标提高?

□ 单纯形方法引例 (续)

目标函数: $\max z = 2x_1 + 3x_2$

- ✓ 考虑当 X_1 (或 X_2)增加一个单位时,会使目标增加2(或3)单位
- ✓ 若将x_i变为非零基变量——引入变量,最多增加多少? (满足约束)
- ✓ 策略是保持其他非基变量不变,考察 x_t 增加对其他基变量的影响:

$$\begin{cases} x_1 + x_3 = 8 \\ 4x_1 + x_4 = 16 \end{cases}$$
 所有变量要求非负 $x_1 \le 4$

令 $x_1 = 4$,得新解: $x_1 = 4$, $x_2 = 0$, $x_3 = 4$, $x_4 = 0$, $x_5 = 12$, 即A(4,0) x_1 入基, x_4 出基;($P_3P_1P_5$)构成新基

通过方程的恒等变换(高斯消去法)化为用非基变量表示基变量和目标函数,转step(2)

□ 单纯形方法引例 (续)

Step (2)
$$z = 8 + 3x_2 - (1/2)x_4$$

$$s.t.\begin{cases} 2x_2 + x_3 - (1/4)x_4 &= 4\\ x_1 &+ (1/4)x_4 &= 4\\ 4x_2 &+ x_5 = 12 \end{cases}$$

 $(P_3P_1P_5) = I, x_3, x_1, x_5$ 是基变量; x_4, x_2 是非基变量,

用非基变量表示基变量和目标函数。

基可行解 → 约束右端(4,0,4,0,12),即 A(4,0) 目标函数值 → 目标函数中的常数项

- ✓ 目标函数中非基变量X2系数>0,让X2增加,可使目标值增加;
- ✓ 策略保持其他非基变量不变,考察X2增加对其他变量的影响:

$$\begin{cases} 2x_2 + x_3 = 4 \\ 4x_2 + x_5 = 12 \end{cases}$$
 所有变量要求非负 $x_2 \le 2$

让 $x_2 = 2$,得新解: $x_1 = 4$, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$, $x_5 = 4$, 即B(4,2)

 x_2 入基, x_3 出基; $(P_2P_1P_5)$ 构成新基

通过方程的恒等变换(高斯消去法)化为用非基变量表示基变量和目标函数,转step(3)

典式

□ 单纯形方法引例 (续)

Step (3)
$$z = 14 - (3/2)x_3 - (1/8)x_4$$

$$x_2 + (1/2)x_3 - (1/8)x_4 = 2$$

$$+ (1/4)x_4 = 4$$

$$-2x_3 + (1/2)x_4 + x_5 = 4$$

 $(P_1P_2P_5) = I_1x_2, x_1, x_5$ 是基变量; x_4, x_5 非基变量,

用非基变量表示基变量和目标函数。

基可行解 → 约束右端 (4,2,0,0,4), 即 B (4,2) 目标函数值 → 目标函数中的常数项

- ✓ 典式形式下,目标函数中非基变量X3、 X4系数(称为检验数)<0
- ✓ 非基变量的增加,只能使目标函数更小,所以当前基可行解<mark>bfs</mark>是最优解!
- ✓ 单纯形法是从一个bfs转换到某个相邻的bfs的过程,即从一个bfs的典式转换 到相邻bfs的典式,目标函数z不断增大,直到检验数<0

为了简化写法,可把上述运算用表格形式给出 ——单纯形表

单纯形法原理

] 单纯形方法引例——单纯形表

□ 线性规划的典式

给定 $\max z = cx$

$$s.t.$$
 $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$ $(A为m \times n$ 矩阵且 $rank(A) = m$,即 A 行满秩)

典式定义:不妨设基 $B=\{P_1, \dots, P_m\}$ 为(LP)的一个(线性无关)可行基,经过方程组的恒等变换可得到关于基B的典式:

$$\begin{cases} x_1 & + \beta_{1m+1}x_{m+1} + \beta_{1m+2}x_{m+2} + \dots + \beta_{1k}x_k + \dots + \beta_{1n}x_n = \alpha_1 \\ x_2 & + \beta_{2m+1}x_{m+1} + \beta_{2m+2}x_{m+2} + \dots + \beta_{2k}x_k + \dots + \beta_{2n}x_n = \alpha_2 \\ \dots & \dots & \dots \\ x_m + \beta_{mm+1}x_{m+1} + \beta_{mm+2}x_{m+2} + \dots + \beta_{mk}x_k + \dots + \beta_{mn}x_n = \alpha_m \\ \\ \hline{ 目标函数} \ z = z_0 + \lambda_{m+1}x_{m+1} + \dots + \lambda_n x_n \end{cases}$$

注1 给定某个基B后,相应典式与原来LP是等价的,即约束方程组是同解的

单纯形法原理

□ 线性规划的典式

注2 关于基B的典式可用矩阵描述

$$\begin{cases} x_1 & + \beta_{1m+1} x_{m+1} + \beta_{1m+2} x_{m+2} + \dots + \beta_{1k} x_k + \dots + \beta_{1n} x_n = \alpha_1 \\ x_2 & + \beta_{2m+1} x_{m+1} + \beta_{2m+2} x_{m+2} + \dots + \beta_{2k} x_k + \dots + \beta_{2n} x_n = \alpha_2 \\ \dots & \dots & \dots \\ x_m + \beta_{mm+1} x_{m+1} + \beta_{mm+2} x_{m+2} + \dots + \beta_{mk} x_k + \dots + \beta_{mn} x_n = \alpha_m \\ \hline{ 目标函数} \ z = z_0 + \lambda_{m+1} x_{m+1} + \dots + \lambda_n x_n \end{cases}$$

典式约束:
$$Ax = b$$
 化为 $(B, N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = b$ 化为 $Bx_B + Nx_N = b$

左乘 B^{-1} (方程组行的恒等变换)得到关于B的典式 $Ix_B + B^{-1}Nx_N = B^{-1}b$

目标函数:
$$Z = c'x = (c_B, c_N) {x_B \choose x_N} = c_B x_B + c_N x_N = c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N$$

$$= c_B B^{-1}b + (c_N - c_B B^{-1}N) x_N = z_0 + \lambda_{m+1} x_{m+1} + \dots + \lambda_n x_n$$

□ 线性规划的典式

 $\begin{cases} x_1 & + \beta_{1m+1}x_{m+1} + \beta_{1m+2}x_{m+2} + \dots + \beta_{1k}x_k + \dots + \beta_{1n}x_n = \alpha_1 \\ x_2 & + \beta_{2m+1}x_{m+1} + \beta_{2m+2}x_{m+2} + \dots + \beta_{2k}x_k + \dots + \beta_{2n}x_n = \alpha_2 \\ & \dots & \dots & \dots \\ x_m + \beta_{mm+1}x_{m+1} + \beta_{mm+2}x_{m+2} + \dots + \beta_{mk}x_k + \dots + \beta_{mn}x_n = \alpha_m \\ \\ \exists$ 哲函数 $z = z_0 + \lambda_{m+1}x_{m+1} + \dots + \lambda_n x_n \end{cases}$

注3 经恒等变换后,原系数矩阵A中前m个变量的系数列向量 P_1 , …, P_m 变换为典式(*)中单位矩阵I的各列;而A中非基变量 x_k 的系数列向量 P_k 经过恒等

变换后变换为典式(*)中对应的列
$$(\beta_{1k},\beta_{2k},\cdots,\beta_{mk})^T$$
, $k=m+1,...,n$

因为 P_1 , …, P_m 是基B的线性无关列,故非基变量系数列 P_k 可由它们线性表出:

$$P_{k} = \beta_{1k}P_{1} + \beta_{2k}P_{2} + \dots + \beta_{mk}P_{m}$$

$$(\beta_{1k}, \beta_{2k}, \dots \beta_{mk})^{T} = \beta_{1K}(1, 0, \dots 0)^{T} + \beta_{2K}(0, 1, \dots 0)^{T} + \dots + \beta_{mk}(0, 0, \dots 1)^{T}$$

$$B^{-1}P_{k} \qquad B^{-1}P_{1} \qquad B^{-1}P_{2} \qquad B^{-1}P_{m}$$

□ 单纯形方法--典式作业

补充作业: $\max Z = 2x_1 + 3x_2 + 3x_3 + 0x_4 + 0x_5$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 = 3\\ x_1 + 4x_2 + 7x_3 + x_5 = 9\\ x_1 \sim x_5 \ge 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 4 & 7 & 0 & 1 \end{pmatrix} \qquad k$$

$$X_B = \{p4, p5\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 = 3 \\ x_1 + 4x_2 + 7x_3 + x_5 = 9 \\ x_1 \sim x_5 \ge 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 4 & 7 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \qquad C = (2,3,3,0,0)$$

$$X_B = \{p4, p5\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

初始基可行解bfs(0,0,0,3,9),要求写出后续典式,单纯形求解

作业习题: 2.2(1)、2.3(1)

□单纯形法计算步骤

□单纯形方法基本流程

▶解决三个基本问题:

不失一般性,以下均针对LP可行基 $B=\{P_1, \dots, P_m\}$,并在已知其典式情况下进行讨论:

1. 给定基可行解bfs是最优解的判定

在基 $B = \{P_1, \dots, P_m\}$ 的典式(*)中: 若存在某非基变量 $x_k (k \in \{m+1, \dots n\})$ 的系数 $\lambda_k > 0$,则直观地可知,非基变量 x_k 的增加使目标函数增加,因此有以下结论:

定理1. 在可行基 $B = \{P_1, \dots, P_m\}$ 的典式(*)中,若目标函数中非基变量系数满足 $\lambda_k < 0$ ($k=m+1, \dots n$),则关于基B可行解必是最优解。(证明略····)

注: 典式 (*) 中,系数 λ_k ($k=m+1,\cdots n$)用来判断bfs的最优性,称为检验数。

单纯形法计算步骤

□ 单纯形算法基础

 $+\beta_{1m+1}x_{m+1} + \beta_{1m+2}x_{m+2} + \dots + \beta_{1k}x_k + \dots + \beta_{1n}x_n = \alpha_1$ $+ \beta_{2m+1} x_{m+1} + \beta_{2m+2} x_{m+2} + \dots + \beta_{2k} x_k + \dots + \beta_{2n} x_n = \alpha_2$ $x_m + \beta_{mm+1} x_{m+1} + \beta_{mm+2} x_{m+2} + \dots + \beta_{mk} x_k + \dots + \beta_{mn} x_n = \alpha_m$ 目标函数 $z = z_0 + \lambda_{m+1} x_{m+1} + \cdots + \lambda_n x_n$

2. 一个bfs到另一个bfs的旋转变换(改进),已知可行基 $B = (P_1, P_2, \dots, P_m)$

思考:对检验数>0的非基变量 X_k ,在其他非基变量不变(=0)的前提下, X_k

最大可取多少?

多少?

典式的约束条件:
$$\begin{cases} x_1 + \beta_{1k} x_k = \alpha_1 \\ x_2 + \beta_{2k} x_k = \alpha_2 \\ \dots \\ x_m + \beta_{mk} x_k = \alpha_m \end{cases}$$

 $\rightarrow \theta$ 的范围:

由此可知
$$x_k$$
增加的范围是: $\theta \leq \min \left\{ \frac{\alpha_i}{\beta_{ik}} : \beta_{ik} > 0 \right\}$

定理2. 设对应于基 $B=(P_1,P_2,\cdots,P_m)$ 基bfs为 x_{B_r} 找个入基变量

$$x_k (k \in \{m+1, \cdots n\})$$
是非基变量且 $\lambda_k > 0$

(1) $B' = B \cup \{P_k\} \setminus \{P_l\}$ 是一个新的基, x_l 对应的 $\{P_l\}$ 出基变量

(2) 关于新基的bfs
$$x_i^* = \begin{cases} \theta_0 & i = k \\ \alpha_i - \beta_{ik} \theta_0 & i = 1, 2, \cdots m \\ 0 & i = m+1, \cdots n, i \neq k \end{cases}$$

且若确定 θ_0 时有多于一行同时达到最小值,则新bfs x_i^* 是退化的

(3) 新bfs x_i^* 的目标函数值为 $z(x) = z_0 + \lambda_k \theta_0$,单调不减(若基变量>0

,z增大)

注1: 上述从一个bfs变到另一个bfs的方式称为旋转变换, x_k, p_k 称为入基变量和入基列, x_l, p_l 称为出基变量和出基列,单纯形中 p_k 和 p_l 相交元素为旋转元。

注2: 给定(LP)的一个bfs,若其0分量的个数恰好为n-m个(或其非0分量的个数恰为m个),则称为非退化的bfs;若其0分量的个数多于n-m(即此时存在某个基变量的取值为0),称为退化的bfs。

注3: 若现行bfs x非退化,在单纯形迭代时必有 θ_0 >0

注4: 若非基变量 \mathbf{x}_k 满足 $\lambda_k > 0$,且它在典式中系数列各分量均有 $\beta_{ik} \leq 0$,此时取 $\mathbf{M} > \mathbf{0}$ 并令 $x_k = M > 0$, $x_i = \alpha_i - \beta_{ik} M$ (基变量),其目标函数值 $= \mathbf{z}_0 + \lambda_k M \to \infty$ 。显然,无论 \mathbf{M} 多大,总能保证上述解为可行解,而目标值无上界。

定理3. 设对应于基 $B = (P_1, P_2, \cdots, P_m)$ 基bfs为x, 其目标函数值为 Z_0 , 若在典式的目标函数中,非基变量 \mathbf{x}_k 的系数 $\lambda_k > 0$,且 \mathbf{x}_k 在典式中系数列 \mathbf{P}_k 各分量均满足 $\beta_{ik} \leq 0 (i \in \{1,2,\cdots m\})$,则(LP)无最优解(目标函数无上界)。

例(退化) $\max z = 2x$,

$$s.t.\begin{cases} x_1 + x_2 + x_3 \le 4 \\ x_1 & \le 2 \\ x_3 \le 3 \\ 3x_2 + x_3 \le 6 \\ x_1, x_2, x_3 \ge 0 \end{cases} \Rightarrow s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 \\ x_1 & + x_5 \\ x_3 & + x_6 \\ 3x_2 + x_3 & + x_7 = 6 \\ x_1, x_2, \dots, x_7 \ge 0 \end{cases}$$

取基 $B_1 = (P_4, P_5, P_6, P_7)$,有基解 $x_1 = (0,0,0,4,2,3,6) \ge 0$,则 x_1 是该问题的一个非退化bfs 取基 $B_2 = (P_2, P_5, P_6, P_7)$,有基解 $x_2 = (0,4,0,0,2,3,-6)$,则 $x_2 \ge 0$ 不成立,故 x_2 不是bfs 取基 $B_3 = (P_1, P_2, P_4, P_6)$,有基解 $x_3 = (2,2,0,0,0,3,0) \ge 0$,则 x_3 是该问题的一个退化bfs 取基 $B_4 = (P_1, P_2, P_3, P_6)$,有基解 $x_4 = (2,2,0,0,0,3,0) \ge 0$,则 x_4 是该问题的一个退化bfs (图中: x_1 对应原点, x_3 对应点A, x_4 也对应点A)

□ 单纯形表与旋转变换—方程组恒等变形

- ✓ 由分析可知: 判定一个bfs是否是最优解,或不是最优解时如何改进得到更好的bfs,都可通过bfs的典式进行。bfs的典式之间的转换(即旋转变换)就是约束方程组的恒等变换。而单纯形表是典式的一种简单表示。
- ✓ 对应于基 $B = (P_1, P_2, \dots, P_m)$,目标函数 $-z_0 = -z + \lambda_{m+1} x_{m+1} + \dots + \lambda_n x_n$
- ✓ 即将-z看成独立的基变量,它总在基中(省略-z所在列),放入典式单纯形表

		-z	X1	X2		Xm	Xm+1	•••	Xk	•••	Xn
		•••	•••				•••		•••		•••
X_1	α_1	0	1	0		0	β_{1m+1}		β_{1k}		β_{1n}
•••		•••	•••						•••		•••
X_l	α_{l}	<mark>0</mark>	0	0	1	0	β_{lm+1}		eta_{lk}		β_{ln}
X_m	α_{m}		0	0	0	1	β_{mm+1}		β_{mk}		eta_{mn}
-z	-Z0	-1	0	0	0	0	λ_{m+1}		λ_k		λ_n

											,	
			X1	X2	•••	Xm	Xm+1	•••	Xk	•••	Xn	θ
	•••		•••		•••		•••				•••	•••
出基变量	X_1	α_{1}	1	0		0	β_{1m+1}		eta_{1k}		eta_{1n}	
(出基行)			•••						•••			α_l
	X_l	α_{l}	0	0	1	0	β_{lm+1}		β_{lk}		β_{ln}	eta_{lk}
	X_m	α_{m}	0	0	0	1	β_{mm+1}		eta_{mk}		$\widehat{eta_{mn}}$	
目标函数行 (检验数)	-z	-Z0	0	0	0	0	λ_{m+1}		λ_k		λ_n	

入基和出基变量的选取:

(1)当 $\lambda_{\iota} > 0$ 时, x_{ι} 为入基变量

$$(2) 当 \theta_{0} = \min \left\{ \frac{\alpha_{i}}{\beta_{ik}} : \beta_{ik} > 0 \right\} = \frac{\alpha_{i}}{\beta_{ik}}, \quad \text{即最小值在基变量} x_{i} \quad \text{行取到,} \quad x_{i} \quad \text{行成为出基行}$$

新基典式可由恒等变换:

 $(1)x_l$ 行同除以旋转元 β_{lk} ,将旋转元化为1,并第1列中将基变量 x_l 换成 x_k

(2)利用旋转元将 x_{k} 列其他各行系数均化为零,即

 $\begin{cases} \hat{\mathfrak{g}}_{i}$ 行: 第i行減去第 l 行 × $oldsymbol{eta}_{lk}$ / 月标函数:目标函数行减去第 l 行 × $oldsymbol{\lambda}_{k}$ / $oldsymbol{eta}_{lk}$

例
$$\max z = -4x_1 + 8x_3 \rightarrow -z$$
用非基变量表示 $-8+12x_3-4x_4$

$$s.t.$$
 $\begin{cases} x_1 + x_3 \ge 2 \\ x_2 + 2x_3 \ge 5 \Rightarrow$ 标准型 $s.t.$ $\begin{cases} x_1 + x_3 - x_4 = 2 \\ x_2 + 2x_3 - x_5 = 5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$

		X1	X2	Х3	X4	Х5
X1	2	1	0	1	-1	0
X2	5	0	_1	2	0	-1
-Z	8	0	0	12	-4	0
Х3	2	1	0	1	-1	0
X2	1	-2	1	0	2 *	- 1
-Z	-16	-12	0	0	8	0
Х3	5/2	0	1/2	1	0	-1/2
Х4	1/2	-1	1/2	0	1	-1/2
-Z	-20	-4	-4	0	0	4

第一个bfs表需要满足:

- 基变量对应列构成单位阵
- 目标函数行基变量系数=0

旋转元

没有最优解

运筹学基础

□ 单纯形算法总结

▶ 定理1-3提供了单纯形法的理论基础和计算过程,但遗留了两个问题:

0

- ✓ 初始的bfs基可行解如何寻找?
- ✓ 退化情况下,能保证单纯形法不进入循环(是否能在有限步内 得到最优解)吗? ——
- ▶ 作业习题:
 - 2.4 (1) 和 (2)

□单纯形法的进一步讨论

□ 初始bfs的求法

- ▶ 问题:线性规划化为标准形时,若约束条件构成的系数矩阵中不存在 单位矩阵,如何构造初始可行基?
- ▶ 即若线性规划问题(LP) 无明显的bfs, 如何寻找初始bfs呢? 思路:

- ✓ 构造一个辅助问题(LP'):
- a) (LP') 有一个明显的bfs
- b) (LP') 最优解能导出原问题的一个bfs。

□ 初始bfs的求法——增加人工变量

由原(LP)的约束条件:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

增加 \mathbf{m} 个非负"人造变量",其系数构成单位阵, $x_{n+1}, \cdots, x_{n+m} \geq 0$

做出一个"显然的bfs":

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\ \dots & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n + x_{n+m} = b_m \end{cases}$$

但当这些"人造变量"值不为0时,相应的解并非原(LP)的解:只有当这些"人造变量"都=0时,相应的解才是原(LP)的解。为此目的,就要将"人造变量" x_{n+1},\cdots,x_{n+m} 踢出基

□ 初始bfs的求法——新目标函数

- ✓ 故考虑构造新的目标函数: "人造变量"的系数尽可能小(<0),使得目标达到最大时,"人造变量" x_{n+1}, \cdots, x_{n+m} 必取0(非基变量)
- ✓ 构造新的目标函数两种方法:

$$a) \max H = -x_{n+1} - x_{n+2} - \dots - x_{n+m} - -$$
 两阶段法 $b) \max H' = cx - Mx_{n+1} - Mx_{n+2} - \dots - Mx_{n+m} - -$ 大 M 法 $(M > 0$ 为充分大的正数)

原问题变成 $\mathbf{LP'}$: s.t. a , x_1 -

$$s.t.\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ \dots & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n + x_{n+m} = b_m \\ x_1, x_2, \dots x_n, x_{n+1}, \dots x_{n+m} \ge 0 \end{cases}$$

两阶段法: maxH要等于零

- ✓ 利用"人造变量法"求原(LP)的一个初始bfs---第一阶段;
- ✓ 利用得到的初始bfs,求解原(LP)的最优解---第二阶段。

□ 两阶段法

$$\max H = -x_{n+1} - x_{n+2} - \dots - x_{n+m}$$

易见(LP')初始bfs为:

$$egin{aligned} x_1 &= \cdots = x_n = 0 \ & x_{n+1} = b_1 \ & x_{n+2} = b_2 \ & \cdots \ & x_{n+m} = b_m \end{aligned}$$
 ,目标函数值为 $H = -b_1 - b_2 - \cdots - b_m$

- ✓ 情况1: (LP') 最优目标函数值<0,则原(LP) 无可行解。因为: 若(LP)有可行解,则该可行解加上 $x_{n+1}=x_{n+2}=\cdots=x_{n+m}=0$ 必为(LP')的可行解,其目标函数值为0,与(LP')的最优目标函数值<0矛盾。
- ✓ 情况2: 在(LP')最优bfs解中,所有人造变量 x_{n+1} ,…, x_{n+m} 都是非基变量。此时在此最优bfs解单纯形表中去掉相应的列,便得到原(LP)的一个初始bfs,可进一步用单纯形法求解了,故称为"两阶段法"。
- ✓ 情况3: 在(LP')最优bfs解中,目标函数值 $\max H = 0$,但还至少存在一个人造变量仍为基变量,但这些仍在基中的人造变量的取值都是0,即是退化情况。

□ 两阶段法举例

例:用两阶段法求解线性规划问题

$$\max z = -3x_1 - 2x_2 - x_4 \qquad \max H = -x_5 - x_6$$

$$\begin{cases} x_1 + x_2 + x_3 &= 3 \\ 2x_1 &+ 5x_3 &= 15 \\ 2x_1 + 4x_2 + x_3 + x_4 &= 11 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$s.t. \begin{cases} x_1 + x_2 + x_3 &+ (x_5) = 3 \\ 2x_1 &+ 5x_3 &+ (x_6) = 15 \\ 2x_1 + 4x_2 + x_3 + x_4 &= 11 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

解:第一阶段:因为第三个约束中 x_4 可作为一个明显的基变量,故只需在第一和第二个约束中分别增加"人造变量" x_5 和 x_6 ,并构造相应的目标函数H,辅助问题(LP))

□ 两阶段法举例

第一阶段:

$$\max H = -x_5 - x_6$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_5 = 3\\ 2x_1 + 5x_3 + x_6 = 15\\ 2x_1 + 4x_2 + x_3 + x_4 = 11\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

强行"旋转变换" 将人造变量X6换出

此时人造变量为非基变量,可直接去掉 ,得到原问题的bfs

'n	11 1 1 1								
		b	X1	X2	Х3	X4	X5	Х6	θ
	X5	3	1	1	Y	0		0	
	Х6	15	2	0	5	0	0		
	Х4	11	2	4	1	\bigcirc	0	0	
	-H	0	0	0	0	0	√ −1	-1	
	Х5	3	1	1	1	0	1	0	3
	Х6	15	2	0	5	0	0	1	3
	Х4	11	2	4	1	1	0	0	11
	-H	18	3	1	6	0	0	0	
	Х3	3	1	1	1	0	1	0	3
	Х6	0	-3	-5	0	0	-5	1	0
	Х4	8	1	3	0	1	-1	0	8
	-H	0	-3	-5	0	0	-6	0	
	Х3	3	0	-2/3	1	0	-2/3	1/3	
	X1	0	1	5/3	0	0	5/3	/ 1	
	Х4	8	0	4/3	0	1	-8/3/	1/3	
	-H	0	0	0	0	0	<u>-</u> 1	-1	

□ 两阶段法举例

第二阶段:

原问题 $\max z = -3x_1 - 2x_2 - x_4$

$$s.t.\begin{cases} x_1 + x_2 + x_3 &= 3\\ 2x_1 &+ 5x_3 &= 15\\ 2x_1 + 4x_2 + x_3 + x_4 &= 11\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

通过第一阶段得到的bfs,将原问题目标函数为

$$\max z = -3x_1 - 2x_2 - x_4$$

原问题目标函数化为用非基变量x2表示:

$$z = -3x_1 - 2x_2 - x_4$$

$$= -3\left(-\frac{5}{3}x_2\right) - 2x_2 - \left(8 - \frac{4}{3}x_2\right) = -8 + \frac{13}{3}x_2$$

	b	X1	X2	Х3	Х4	θ
Х3	3	0	-2/3	1	0	_
X1	0	1	5/3	0	0	0
Х4	8	0	4/3	0	1	2/3
-Z	8	0	13/3	0	0	
Х3	3	2/5	0	1	0	
X2	9	3/5	1	0	0	
Х4	/8	-4/5	0	0	1	
-Z	8	-13/5	0	0	0	

检验数均小于等于0, 得到最优解!

□大M法举例

例:用大M法求解线性规划问题

$$\max z = 3x_1 - x_2 - x_3 \qquad \max H' = 3x_1 - x_2 - x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$

$$s.t. \begin{cases} x_1 - 2x_2 + x_3 & \leq 11 \\ -4x_1 + x_2 + 2x_3 & \geq 3 \\ -2x_1 & + x_3 & = 1 \\ x_1, x_2, x_3 \geq 0 \end{cases} \qquad \text{标准化} \qquad \begin{cases} x_1 - 2x_2 + x_3 + x_4 & = 11 \\ -4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3 \\ -2x_1 & + x_3 + x_7 & = 1 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0 \end{cases}$$

解:因为第一个约束中松弛变量 x_4 可作为一个明显的基变量,故只需在第二和第三个约束中分别增加"人造变量" x_6 和 x_7 ,并构造相应的目标函数H',辅助问题(LP') x_6 和 x_7 出基后(等于0),剩下就是原问题的解。

单纯形法进一步讨论

С	j	3	-1	-1	0	0	-M	-M	θ
XB	b	X1	X2	Х3	Х4	Х5	Х6	X7	
X4	11	1	-2	1	1	0	0	0	11
Х6	3	-4	1	2	0	-1	1	0	3/2
Х7	1	-2	0	1	0	0	0	1	1
-H'	4M	3-6M	M-1	3M-1	0	-м	0	0	
Х4	10	3	-2	0	1	0	0	-1	_
Х6	1	0	1	0	0	-1	1	-2	1
Х3	1	-2	0	1	0	0	0	1	-
-H'	M+1	1	M-1	0	0	-M	0	1-3M	
X4	12	3	0	0	1	-2	2	-5	4
X2	1	0	1	0	0	-1	1	-2	_
Х3	1	-2	0	1	0	0	0	1	_
-H'	2	1	0	0	0	-1	1-M	-1-M	
X1	4	1	0	0	1/3	-2/3	_	_	
X2	1	0	1	0	0	-1	_	_	_
Х3	9	0	0	1	2/3	-4/3	-	-	_
-H'	-2	0	0	0	-1/3	-1/3	-	-	1 1

□线性规划建模应用举例

建立线性规划模型的假设条件:

(1) 比例性假设: Proportionality assumption 每个活动对

于目标函数值的贡献是与活动量 x_j 成比例的,在目标函数中通过 $c_j x_j$ 表示;

每个活动对于约束的作用也是与活动量 x_j 成比例的,在目标函数中通过 $a_{ij}x_j$ 表示

(2) 可加性假设: Additivity assumption

<u>每个函数</u>都是各自活动的单独贡献的总和。 (目标函数和每个约束条件左边函数)

建立线性规划模型的假设条件:

- (3) 可分割性假设: Divisibility assumption
 决策变量的取值可取满足约束条件的任意值,即可以用小数方式表示活动量或级别。
- (4) <u>确定性假设: Certainty assumption</u> 被赋予线性规划模型的每个参数值都被假设为已知常量。

参数小的不确定性(扰动)——灵敏度分析

参数不确定性因素太大 ——参数作为随机变量

例1: 合理利用线材问题:

现要做100套钢架,每套需用长为2.9m,2.1m 和1.5m的元钢各一根。已知原料长7.4m,问应如何下料,使用的原材料最省?

解: 所有合理的下料方式列举如下:

按照余料长短对各种下料方案的变量编号。

下料根数	方 案								
长度(m)	1	2	3	4	5	6	7	8	
2. 9	2	1	1	1	0	0	0	0	
2. 1	0	2	1	0	3	2	1	0	
1. 5	1	0	1	3	0	2	3	4	
合计长	7.3	7.1	6.5	7.4	6.3	7.2	6.6	6	
余料长	0.1	0.3	0.9	0	1.1	0.2	0.8	1.4	
变量编号	x_2	x_4	x_6	x_1	x_7	x_3	x_5	x_8	

决策变量: 8种方式使用的原料(7.4m)根数;

约束:各种元钢数量 ≥100

问题归结为如下线性规划:

变量取整数

若仅选取余料长小于0.9m的套裁下料方案:

下料根数	方案					
长度(m)	I	II	III	IV	V	
2.9	1	2	0	1	0	
2.1	0	0	2	2	1	
1.5	3	1	2	0	3	
合计长	7.4	7.3	7.2	7.1	6.6	
余料长	0	0.1	0.2	0.3	0.8	
变量编号	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	

设按 | 方案下料的原材料(7.4m)根数为 x_1 , || 方案为 x_2 , || 方案为 x_3 , || 方案为 x_4 , || 方案为 x_5 。

问题归结为如下线性规划:

$$\min z = 0x_1 + 0.1x_2 + 0.2x_3 + 0.3x_4 + 0.8x_5$$

$$\begin{cases} x_1 + 2x_2 & + x_4 \ge 100 \\ 2x_3 + 2x_4 + x_5 \ge 100 \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + 2x_3 & + 3x_5 \ge 100 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

变量取整数

• 最优下料方案:

I方案:30根; II方案:10根; IV方案:50根 共需90根原材料可以制造100套钢架。

• 其他最优方案:

II方案:40根; III方案:30根; IV方案:20根 共需90根原材料可以制造100套钢架。

问题:求解线性规划的最优解是分数解时, 如何能得到整数最优解呢?

例2. 连续投资问题

现有资金10万, 考虑5年内下列项目投资, 已知:

- ▶ 项目A: 从第1年到第4年每年年初需要投资, 并于次年末回 收本利115%;
- ▶ 项目B: 第3年初需要投资,第5年末能回收本利125%, 但规 定最大投资额不超过4万元;
- ▶ 项目C, 第2年初需要投资, 第5年末能回收本利140%, 但规定 最大投资额不超过3万元;
- ▶ 项目D, 5年内每年初可购买公债,于当年末归还,并加利息 6%。

问每年如何投资,使第5年末拥有资金本利总额最大?

解: (1) 确定决策变量,以 x_{iA} , x_{iB} , x_{iC} , x_{iD} (i=1,2,..., 5) 分别表示第 i 年初给项目A, B, C, D 的投资额

项目	第一年	第二年	第三年	第四年	第五年
A	x_{1A}	x_{2A}	x_{3A}	x_{4A}	/
В	/	/	x_{3B}	/	/
С	/	x_{2C}	/	/	/
D	x_{1D}	x_{2D}	x_{3D}	x_{4D}	x_{5D}

(2) 每年投资额=手中拥有的全部资金额

理由: 项目D 每年均可投资、且当年末即回收本息.

第1年初: 100000元, 故

$$x_{1A} + x_{1D} = 100000$$

第2年初:第1年项目A的投资要到第2年末才回收。

故第2年初资金=项目D在第1年回收的本息

$$x_{1D}(1+6\%)$$
, $x_{2A}+x_{2C}+x_{2D}=1.06x_{1D}$

第3年初: 从项目A第1年投资、项目D第2年投资中回收的本利

总和: $x_{1A}(1+15\%)$ 及 $x_{2D}(1+6\%)$ 。 故第3年投资:

$$x_{3A} + x_{3B} + x_{3D} = 1.15x_{1A} + 1.06x_{2D}$$

第4年初: 类似以上分析, 可得

$$x_{4A} + x_{4D} = 1.15x_{2A} + 1.06x_{3D}$$

第5年初: x_{5D} =1.15 x_{3A} +1.06 x_{4D}

此外,对项目B、C的投资有限额的规定:

$$x_{3B} \le 40000$$

$$x_{2C} \le 30000$$

(3) 目标函数:要求在第5年末拥有最多资金额。 与第5年末

资金有关的变量是: $x_{4A}, x_{3B}, x_{2C}, x_{5D}$ 故目标函数为:

$$\max z = 1.15x_{4A} + 1.25x_{2B} + 1.4x_{2C} + 1.06x_{5D}$$

$$\begin{cases} x_{1A} + x_{1D} &= 100000 \\ x_{2A} + x_{2C} + x_{2D} & -1.06x_{1D} = 0 \\ x_{3A} + x_{3B} + x_{3D} - 1.15x_{1A} - 1.06x_{2D} = 0 \\ x_{4A} + x_{4D} - 1.15x_{2A} - 1.06x_{3D} = 0 \\ x_{5D} - 1.15x_{3A} - 1.06x_{4D} = 0 \end{cases}$$

$$x_{3B} \le 40000$$

$$x_{2C} \le 30000$$

$$x_{1A}, x_{1B}, x_{1C}, x_{1D} \ge 0, i = 1, 2, \dots, 5$$

运筹学基础

例3. 人力资源分配的问题

某公交线路每天各时间段内所需司机和乘务员数如下:

班次	时间	所需人数
1	06: 00 10: 00	60
2	10: 00——14: 00	70
3	14: 0018: 00	60
4	18: 00-22: 00	50
5	22: 00 02: 00	20
6	02: 0006: 00	30

司机和乘务员可连续工作八小时,问如何安排,既能满足工作需要,又配备最少司机和乘务人员?

解:设 x_i 表示第i班次时开始上班的人员数。

结束时段		1	2	3	4	5	6
开工时段		6;00- 10:00	10:00- 14:00	14:00- 18:00	18:00- 22:00	22:00- 2:00	2:00- 6:00
1	6:00-10:00	x_1	x_1				
2	10:00-14:00		x_2	x_2			
3	14:00-18:00			x_3	x_3		
4	18:00-22:00				x_4	x_4	
5	22:00-2:00					x_5	x_5
6	2:00-6:00	x_6					x_6
每段	每段需要的总数		70	60	50	20	30

运筹学基础

线性规划模型

min
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

$$\begin{cases} x_1 + x_6 \ge 60 \\ x_1 + x_2 \ge 70 \\ x_2 + x_3 \ge 60 \end{cases}$$
s.t.
$$\begin{cases} x_3 + x_4 \ge 50 \\ x_4 + x_5 \ge 20 \\ x_5 + x_6 \ge 30 \\ x_j \ge 0$$
且取整 $j = 1, 2, \dots, 6$

结束时段		1	2	3	4	5	6
 开工时段		6;00- 10:00	10:00- 14:00	14:00- 18:00	18:00- 22:00	22:00- 2:00	2:00- 6:00
1	6:00-10:00	x_1	x_1				
2	10:00-14:00		x_2	x_2			
3	14:00-18:00			x_3	x_3		
4	18:00-22:00				<i>x</i> ₄	<i>x</i> ₄	
5	22:00-2:00					<i>x</i> ₅	<i>x</i> ₅
6	2:00-6:00	<i>x</i> ₆					<i>x</i> ₆
每段需要的总数		60	70	60	50	20	30

□LP单纯形法的程序实现

- □ Matlab编程实现
 - ▶ 利用Matlab函数
 - ▶ 自编程序. m文件

□ Mat lab求解LP问题

▶LP问题的数学描述

$$\max z = c'x \\ s.t. \begin{cases} Ax = b & \text{## } c' = (c_1, c_2, ... c_n), x = \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & ... & a_{mn} \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

▶ Matlab函数求解LP问题的标准形式

$$\min z = f^T x$$
 区别:
$$A \cdot x \leq b \qquad \checkmark \text{ 极小化目标函数}$$
 $S.t. \begin{cases} A \cdot x \leq b \qquad \checkmark \text{ LP有不等式约束m1个,等式约束m2个,} \\ lb \leq x \leq ub \end{cases}$

区别:

- ✓ f, x, 1b和ub均为n维列向量, b为m1维列向量, beq为m2维列向量,A为m1 X n维矩阵,Aeq为 m2 X n维矩阵

□ Mat lab求解LP问题

▶自带函数命令详解

$$x = linprog(f, A, b)$$

$$\Rightarrow \begin{cases} \min z = f^{T} x \\ s.t. A \cdot x \le b \end{cases}$$

▶LP求解带入参数

$$f = [-1; -1]$$

$$\max z = x_1 + x_2 \qquad A = [1 \quad -2; 1 \quad 2]$$

$$s.t.\begin{cases} x_1 - 2x_2 \le 4 & b = [4; 8] \\ x_1 + 2x_2 \le 8 \Rightarrow & lb = [0; 0] \\ x_1, x_2 \ge 0 & ub = [Inf; Inf] \end{cases}$$

$$[x, fval] = linprog(f, A, b, [], [], lb, ub)$$

无此项约束, 矩阵为空 运筹学基础

口作业习题

```
第2章习题(P55):
```

- 2.1 (用<mark>图解法</mark>求解LP), (1)和(2)选一;
- 2.2 LP化标准型,列初始单纯形表(1)
- 2. 3 找LP的初始基可行解, (1)和(2)选一(选做);
- 2.4 用单纯形法求解LP 2.1, (1)和(2)选一;
- 2.6 用单纯形法中的大M和两阶段法求解, (1)和(2)选一;
- 2.9 LP建模

□LP单纯形法补充解释和总结

□ 单纯形方法引例 (续) 补充作业

号例
$$\max Z = 2x_1 + 3x_2 + 3x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 3 \\ x_1 + 4x_2 + 7x_3 + x_5 = 9 \\ x_1 \sim x_5 \ge 0 \end{cases}$$

初始基本可行解 $X^{(0)}=(0,0,0,3,9)$ 当 x_2 作为引入(入基)变量(x_1x_3 不变),为使新解 $X^{(1)}$ 仍为基可行解,必须使

$$\begin{cases} x_1 = 0 \\ x_2 > 0 \\ x_3 = 0 \\ x_4 = 3 - x_2 \ge 0 \\ x_5 = 9 - 4x_2 \ge 0 \end{cases}$$
 (1-1)

且使x4或x5中有一个等于零——退出变量

1.初始基本可行解的确定(观察法);

$$\max Z = \sum_{j=1}^{n} c_j x_j$$

加入松弛变量

$$\max Z = \sum_{j=1}^{n} c_j x_j + \sum_{j=n+1}^{n+m} 0 x_j$$

$$s.t. \begin{cases} \sum_{j=1}^{n} x_{j} p_{j} \leq b \\ x_{j} \geq 0 \qquad j = 1, 2, \dots, n \end{cases}$$

$$\overline{j=1} \qquad \overline{j=n+1}$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\
\vdots \qquad \vdots \qquad \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m \\
x_1, x_2, \dots, x_{n+m} \ge 0
\end{cases}$$

1.初始基本可行解的确定(观察法); $\max Z = \sum_{j=1}^{n} c_j x_j + \sum_{j=n+1}^{n} 0 x_j$

基本可行解 $X = (0,0,\cdots,0,b_1,b_2,\cdots,b_m)$ 令 $x_1=x_2=\dots=x_n=0$, 可得 $x_{n+i}=b_i$ ($i=1,2,\dots,m$)

2.从约束中解出基变量;

$$\max Z = \sum_{j=1}^{n} c_{j} x_{j} + \sum_{j=n+1}^{n+m} 0 x_{j}$$

$$s.t.\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m \\ x_1, x_2, \dots, x_{n+m} \ge 0 \end{cases}$$

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$$
 $i = 1, 2, \dots, m$

基变量与非基变量关系式

3.代入目标函数消去基变量,得到非基变量 x_i 的检验数 σ_i ;

$$Z = \sum_{j=1}^{n} c_{j} x_{j} + \sum_{i=1}^{m} c_{n+i} x_{n+i}$$

$$x_{n+i} = b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \qquad i = 1, 2, \dots, m$$

$$Z = \sum_{j=1}^{n} c_{j} x_{j} + \sum_{i=1}^{m} c_{n+i} \left(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \right)$$

$$= \sum_{i=1}^{m} c_{n+i} b_{i} + \sum_{j=1}^{n} c_{j} x_{j} - \sum_{i=1}^{m} \sum_{j=1}^{n} c_{n+i} a_{ij} x_{j}$$

$$= \sum_{i=1}^{m} c_{n+i} b_i + \sum_{j=1}^{n} (c_j - \sum_{i=1}^{m} c_{n+i} a_{ij}) x_j$$

3.代入目标消去基变量,得到非基变量 x_i 的检验数 σ_i ;

$$Z = \sum_{j=1}^{n} c_{j} x_{j} + \sum_{i=1}^{m} c_{n+i} \left(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \right)$$

$$= \sum_{i=1}^{m} c_{n+i} b_{i} + \sum_{j=1}^{n} c_{j} x_{j} - \sum_{i=1}^{m} \sum_{j=1}^{n} c_{n+i} a_{ij} x_{j}$$

$$= \sum_{i=1}^{m} c_{n+i} b_{i} + \sum_{j=1}^{n} (c_{j} - \sum_{i=1}^{m} c_{n+i} a_{ij}) x_{j}$$

$$= \sum_{i=1}^{m} c_{n+i} b_{i} + \sum_{j=1}^{n} (c_{j} - \sum_{i=1}^{m} c_{n+i} a_{ij}) x_{j}$$

$$\Rightarrow Z_0 = \sum_{i=1}^m c_{n+i} b_i$$
 $Z_j = \sum_{i=1}^m c_{n+i} a_{ij}$

$$Z = Z_0 + \sum_{j=1}^n (c_j - z_j) x_j$$
 检验数 (目标函数中非基变量系数)

设
$$\sigma_j = c_j - z_j$$
 $Z = Z_0 + \sum_{j=1}^n \sigma_j x_j$

4.判断最优;

最优性判别定理: 若 $X^{(0)} = (0,0,\cdots,0,b'_1,b'_2,\cdots,b'_m)$

是对应于基B的基本可行解, σ_j 是用非基变量表示的目标函数的表达式中非基变量 x_j 的检验数,若对于一 切非基变量的 $j=n+1,\ldots,n+m$,均有 $\sigma_j \le 0$,则当前基本可行解 $X^{(0)}$ 为最优解。

对于任意可行解
$$\mathbf{X}$$
, $Z=Z_0+\sum_{j=1}^n \boldsymbol{\sigma}_j x_j \leq Z_0$

对于基本可行解 X^0 , $Z=Z_0$

特例:若又存在某个非基变量的检验数 $\sigma_i=0$,则线性规划问题有无穷多最优解。

5.没有有限最优解的判断;

无最优解判别定理: 若
$$X^{(0)} = (0,0,\dots,0,b'_1,b'_2,\dots,b'_m)$$

是对应于B的基本可行解,有一个非基变量 x_k 的检验数 $\sigma_k > 0$,且对i=1,2,...

...,m 均有 $a_{ik} \leq 0$,则问题没有有限最优解(无界解或称无最优解)。 证明略

$$x_{n+i} = b_i - \sum_{j=1}^{n} a'_{ij} x_j$$
 $i = 1, 2, \dots, m$

$$x_{n+i} = b_i - a'_{ik} x_k$$
 $i = 1, 2, \dots, m$

$$Z = Z_0 + \sigma_k x_k \rightarrow \infty$$

非基变量 x_k 随便取值>0,物理意义任意生产某产品,利润无穷大

6.改进目标

若初始基可行解X(0)不是最优解及不能判别无界时,需要找一个新的基可行解,从原可行解基中换一个列向量(保证线性独立),得到一个新的可行基,称为基变换。为了换基,先要确定换入非基变量,再确定换出基变量,让它们相应的系数列向量进行对换,就得到一个新的基可行解。

若 $\sigma_k > 0$,则选 x_k 进基(σ_k 含义:计算增加单位 x_k 所创增的净经济价值); 用最小比值法确定 x_k 的最大值 θ ,使基变量 x_i 取0值,其它基变量非负;

$$x_{n+i} = b'_i - a'_{ik} x_k \ge 0$$
 $i = 1, 2, \dots, m$

$$x_k = \min\left\{\frac{b_i}{a_{ik}} \middle| a_{ik} > 0\right\} = \frac{b_l}{a_{lk}} = \theta$$

即 x_l 出基,目标改善 σ_{k_l} $x_k = \theta$,换基过程 若 θ 不存在,则 $Z \rightarrow \infty$,没有有限最优解。