Bài 3. Đường thẳng và mặt phẳng song song.

A. Lý thuyết.

I. Vị trí tương đối của đường thẳng và mặt phẳng.

Cho đường thẳng d và mặt phẳng (α) . Tùy theo số điểm chung của d và (α) , ta có ba trường hợp sau:

- d và (α) không có điểm chung. Khi đó ta nói d song song với (α) hay (α) song song với d và kí hiệu là d // (α) hay (α) // d.

- d và (α) chỉ *có một điểm chung duy nhất* M. Khi đó ta nói d và (α) *cắt nhau* tại điểm M và kí hiệu d \cap (α) = M.

- d và (α) có từ *hai điểm chung trở lên*. Khi đó, d *nằm trong* (α) hay (α) *chứa* d và kí hiệu d \subset (α).

II. Tính chất

- Định lí. Nếu đường thẳng d không nằm trong mặt phẳng (α) và d song song với đường thẳng d' nằm trong (α) thì d song song với (α) .

Ta có:
$$\frac{d//d'}{d' \subset (\alpha), d \not\subset (\alpha)} \Rightarrow d // (\alpha).$$

- Định lí. Cho đường thẳng a song song với mặt phẳng (α) . Nếu mặt phẳng (β) chứa a và cắt (α) theo giao tuyến b thì b song song với a.

- Hệ quả. Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Định lí. Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
- **Ví dụ 1.** Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O, O₁ lần lượt là tâm của ABCD và ABEF, gọi M là trung điểm của CD. Chứng minh:
- a) OO_1 // mp (BEC).
- b) OO_1 // mp (AFD)

Lời giải.

a) Xét tam giác ACE có O; O₁ lần lượt là trung điểm của AC; AE (tính chất hình hình hành).

Suy ra OO₁ là đường trung bình trong tam giác ACE và OO₁ // EC.

Mà EC thuộc mp (BEC) nên OO_1 // mp (BEC) (đpcm).

b) Tương tự; OO₁ là đường trung bình của tam giác BFD nên OO₁ // FD.

Mà FD nằm trong mp(AFD)

Suy ra: OO_1 // mp (AFD) (đpcm).

Ví dụ 2. Cho tứ diện ABCD. Gọi H là một điểm nằm trong tam giác ABC và (α) là mặt phẳng đi qua H song song với AB và CD. Thiết diện của tứ diện cắt bởi mp (α) là hình gì?

Lời giải:

- + Qua H kẻ đường thẳng song song AB và đường thẳng này cắt BC, AC lần lượt tại M, N.
- + Từ N kẻ NP song song với CD (P∈ AD)

Từ P kẻ PQ song song với AB (Q∈BD).

+ Ta có: MN // PQ // AB

Suy ra 4 điểm M; N; P và Q đồng phẳng.

Suy ra thiết diện của tứ diện cắt bởi mp (α) là tứ giác MNPQ.

+ Ta chứng minh MNPQ là hình bình hành.

Trước tiên, ta chứng minh PN // QM.

$$Ta \ c\acute{o}: \begin{cases} PN \ /\!/ \ CD \\ PN \subset mp(MNPQ), \ CD \subset mp(BCD) \\ QM = mp(MNPQ) \cap mp(BCD) \end{cases}$$

Suy ra: QM // PN // CD

Lại có: PQ // MN

Do đó, tứ giác MNPQ là hình bình hành.

B. Bài tập tự luyện

Bài 1. Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, Q thuộc cạnh AB sao cho AQ = 2QB. Gọi P là trung điểm của AB. Chứng minh: GQ // mp (BCD). **Lời giải:**

Gọi M là trung điểm của BD.

Vì G là trọng tâm tam giác ABD nên $\frac{AG}{AM} = \frac{2}{3}$ (1)

Điểm Q thuộc AB thỏa mãn: AQ = 2QB nên $\frac{AQ}{AB} = \frac{2}{3}$ (2).

Từ (1) và (2) suy ra $\frac{AG}{AM} = \frac{AQ}{AB} = \frac{2}{3}$.

Suy ra, GQ // BD (định lí Ta-let đảo)

Mặt khác BD nằm trong mặt phẳng (BCD).

Do đó, GQ // mp(BCD) (đpcm).

Bài 2. Cho tứ diện ABCD. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, CD, AD, BC, AC, BD. Chứng minh:

- a) P, R, Q, S đồng phẳng
- b) P, M, N, Q đồng phẳng.
- c) M, R, N, S đồng phẳng.

Lời giải:

a) Tam giác ABD có PS là đường trung bình nên PS // AB. (1)

Tam giác ABC có RQ là đường trung bình nên RQ // AB (2).

Từ (1) và (2) suy ra PS // RQ nên 4 điểm P, R, Q, S đồng phẳng (đpcm).

b) Tương tư ý a, ta có được PM // NQ // BD

Suy ra 4 điểm P, M, N, Q đồng phẳng.

c) Ta có NR // AD // MS suy ra M, R, N, S đồng phẳng.

Bài 3. Cho tứ diện ABCD, lấy điểm M trên cạnh AB sao cho: $\frac{AM}{AB} = \frac{1}{4}$. Trên cạnh

AC lấy điểm N sao cho MN // mp(BCD) . Tính tỉ số $\frac{AN}{NC}$?

Lời giải:

- Từ MN // mp(BCD) ta chứng minh MN // BC.

Thật vậy, giả sử MN cắt BC tại P.

 $M\grave{a}$ BC \subset mp(BCD)

⇒ Đường thẳng MN cắt mp(BCD) tại P (mâu thuẫn với MN // mp(BCD)). Vậy MN // BC.

- Xét tam giác ABC có: MN // BC

$$\Rightarrow \frac{AM}{AB} = \frac{AN}{AC} = \frac{1}{4} \text{ (dinh lí Ta-let)}.$$

$$\Rightarrow \frac{AN}{NC} = \frac{1}{3}$$
.

Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Tìm giao tuyến của mp(IBC) và mp(SAD) và chứng minh giao tuyến đó song song với mp(SBC).

Lời giải:

- Ta tìm giao tuyến của mp(IBC) và mp(SAD).

Ta có:
$$\begin{cases} I \in (IBC) \cap (SAD) \\ BC // AD \\ BC \subset (IBC); AD \subset (SAD) \end{cases}$$

Suy ra: $(IBC) \cap (SAD) = Ix // BC // AD$ (1)

- Lại có: BC ⊂ (SBC) (2)

Từ (1) và (2) suy ra: Ix // mp(SBC).