第6章 时序逻辑电路

Sequential Logic Circuits

- §6.1 概述 Introduction
- §6.2 同步时序电路分析 Sequential Logic Circuits Analysis
- §6.3 同步时序电路设计 Synchronous Sequential Circuit Design
- §6.4 计数器 Counter
- §6.5 寄存器 Register
- §6.6 序列信号发生器 Series Signal Generator

§ 6.1 概述 Introduction

时序电路结构

组合电路 + 存储电路(远忆元件)

W: 控制输入 — J, K, D, T

Q: 触发器输出 (状态)

外输入x 控制输入w外输出z 状态Q

输出方程

驱动方程

特征方程

Z = F(X, Q)

W = H(X, Q)

 $Q^{n+1} = G(W, Q^n)$

按照电路中输出变量是否和输入变量直接相关

时序电路 $\left\{ egin{array}{ll} & \begin{array}{ll} & \begin{array}{ll$

§6.2 同步时序电路分析 Sequential Logic Circuits Analysis

分析: 已知电路, 描述电路原理及功能

时序电路的分析炎骤

例1: 分析下图时序逻辑电路

1) 输入 X 输出 Z

控制输入 J₀, K₀, J₁, K₁ 状态 Q₁ (MSB), Q₀

2) 方程

$$Z = (X \oplus Q^{i}) \ \overline{Q_0^n}$$

输出方程
$$Z = (X \oplus Q^n) \overline{Q_0^n}$$
 驱动方程
$$\begin{cases} J_0 = X \oplus \overline{Q_1^n} \\ K_0 = 1 \end{cases} \begin{cases} J_1 = X \oplus Q_0^n \\ K_1 = 1 \end{cases}$$

$$\left\{ \begin{array}{l} Q_0^{n+1} = J_0 \overline{Q_0^n} + \overline{K_0} Q_0^n = (X \oplus \overline{Q_1^n}) \cdot \overline{Q_0^n} \\ Q_1^{n+1} = J_1 \overline{Q_1^n} + \overline{K_1} Q_1^n = (X \oplus Q_0^n) \cdot \overline{Q_1^n} \end{array} \right.$$

3) 状态表和状态图

已知: 输入 X, Q^n

求: 输出 Z, Qⁿ⁺¹

状态表

$$X = 0 \begin{cases} X & Q_1^n & Q_0^n & Q_1^{n+1} & Q_0^{n+1} & Z \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 6 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$X=1 \begin{cases} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$Q_1^{n+1} = (X \oplus Q_0^n) \cdot \overline{Q_1^n}$$

$$Q_0^{n+1} = (X \oplus \overline{Q_1^n}) \overline{Q_0^n}$$

$$Z = (X \oplus Q_1^n) \cdot \overline{Q_0^n}$$

$$X=1 \begin{cases} Q_1^{n+1} = \overline{Q_0^n} \cdot \overline{Q_1^n} \\ Q_0^{n+1} = \overline{Q_1^n} \cdot \overline{Q_0^n} \\ Z = \overline{Q_1^n} \cdot \overline{Q_0^n} \end{cases}$$

状态图

状态表

	0/0	
0/0 1/0	00 1/0 0i 1/1 1/0 0/0 0/1 10	

$X Q_1^n Q_0^n$	Q_1^{n+1}	Q_0^{n+1}	Z	
0 0 0	0	1	0	
0 0 1	1	0	0	
P 1 0	0	0	1	
0 1 1	0	0	0	
1 0 0	1	0	1	
1 0 1	0	0	0	
1 10	0	1	0	
1 1 1	0	0	0	

→ 对应 **- ^ CLK**

输出Z是原状态下的输出

每条转换线对应真值表的一行

4) 画波形图

状态表

$X = Q_1^n = Q_0^n$	Q_1^{n+1}	Q_0^{n+1}	Z
0 0 0	0	1	0
0 0 1	1	0	0
0 1 0	0	0	1
0 1 1	0	0	0
1 0 0	1	0	1
1 0 1	0	0	0
1 1 0	0	1	0
1 1 1	0	0	0

5) 电路功能

X=0, M-3 加法计数: Z=1, 进位输出;

X=1, M-3 减法计数: Z=1, 借位输出。

状态图主循环:模3加减双向计数器

例2: 分析下图时序逻辑电路

 1)
 输入
 无
 控制输入
 D₀, D₁, D₂

 输出
 Z₂, Z₁, Z₀
 状态
 Q₂, Q₁, Q₀

2) 方程

输出方程
$$Z_2 = Q_2^n, Z_1 = Q_1^n, Z_0 = Q_0^n$$

驱动方程
$$D_2 = Q_1^n, D_1 = Q_0^n, D_0 = Q_1^n + Q_0^n$$

特征方程
$$Q_2^{n+1} = D_2 = Q_1^n, Q_1^{n+1} = D_1 = Q_0^n, Q_0^{n+1} = D_0 = \overline{Q_1^n + Q_0^n}$$

3) 状态表和状态图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0, 0
1	1	0	1	0	B
1	1	1	1	1	0

$$Q_2^{n+1} = D_2 = Q_1^n$$

$$Q_1^{n+1} = D_1 = Q_0^n$$

$$Q_0^{n+1} = D_0 = \overline{Q_1^n + Q_0^n}$$

4) 画波形图

5) 电路功能

- 在CLK作用下,把宽度为T的脉冲以三次分配给 Q_0,Q_1 和 Q_2 各端,因此该电路是一个脉冲分配器
- 每经过三个时钟周期循环一次

例 3. 分析下图时序电路

无外输入, 无外输出

$$\begin{cases} J_3 = Q_2^{\text{n}} & \begin{cases} J_2 = Q_1^{\text{n}} \\ K_3 = \overline{Q_2^{\text{n}} \oplus Q_1^{\text{n}}} \end{cases} \begin{cases} J_1 = Q_2^{\text{n}} + Q_3^{\text{n}} \\ K_2 = \overline{Q_3^{\text{n}}} \end{cases}$$
$$K_1 = \overline{Q_2^{\text{n}} + \overline{Q_3^{\text{n}}}} = \overline{Q_2^{\text{n}} Q_3^{\text{n}}}$$

$$Q_{3}^{n+1} = J_{3}\overline{Q_{3}^{n}} + \overline{K}_{3}Q_{3}^{n} = Q_{2}^{n}\overline{Q_{3}^{n}} + (Q_{2}^{n} \oplus Q_{1}^{n})Q_{3}^{n}$$

$$Q_{2}^{n+1} = J_{2}\overline{Q_{2}^{n}} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q_{2}^{n}} + Q_{3}^{n}Q_{2}^{n}$$

$$Q_{1}^{n+1} = J_{1}\overline{Q_{1}^{n}} + \overline{K}_{1}Q_{1}^{n} = (Q_{2}^{n} + Q_{3}^{n})\overline{Q_{1}^{n}} + Q_{2}^{n}Q_{3}^{n}Q_{1}^{n}$$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	I
0	1	1	1	0	B
1	0	0	0	6	1
1	0	1	1\	1	$\overline{0}$
1	1	0	D'	1	1
1	1	1	0	1	1

$$Q_{3}^{n+1}$$
 Q_{2}^{n} $Q_{3}^{n} = 0,$
 Q_{2}^{n} Q_{2}^{n} $Q_{3}^{n} = 1,$
 Q_{2}^{n+1} Q_{2}^{n} $Q_{2}^{n} = 0,$
 Q_{2}^{n} $Q_{2}^{n} = 0,$
 $Q_{2}^{n} = 1,$
 Q_{2}^{n+1} Q_{2}^{n} $Q_{2}^{n} = 1,$
 Q_{2}^{n+1} Q_{2}^{n} $Q_{2}^{n} = 0,$
 $Q_{2}^{n} = 1,$

000 孤立状态

