GENG5503-Exam Appendix

Continuous State-Space Equations

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Transfer Function

$$G(s) = C(sI - A)^{-1}B + D$$

$$G(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

Controller canonical form

$$\dot{x}_c = A_c x_c + b_c u$$

$$y = c_c x_c$$

$$A_c = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, b_c = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } c_c = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$$

Observer canonical form

$$\dot{x}_o = A_o x_o + b_o u$$

$$y = c_o x_o$$

$$A_o = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix}, b_o = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \text{ and } c_o = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Controllability canonical form

$$\dot{x}_{co} = A_{co}x_{co} + b_{co}u$$
$$y = c_{co}x_{co}$$

$$A_{co} = \begin{bmatrix} 0 & 0 & -a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & -a_1 \end{bmatrix}, b_{co} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c_{co} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

Observability canonical form

$$\dot{x}_{ob} = A_{ob}x_{ob} + b_{ob}u$$
$$y = c_{ob}x_{ob}$$

$$A_{ob} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_3 & -a_2 & -a_1 \end{bmatrix}, c_{ob} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$b_{ob} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_2 & a_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Diagonal form

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ & & \ddots \\ 0 & 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

Markov Parameters

$$m_i = cA^{i-1}b, i = 1, 2, \dots$$

State-Transition Matrix

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} = \mathcal{L}^{-1} \left\{ (sI - A)^{-1} \right\}$$

Solution of non-homogeneous state equation

$$x(t) = e^{At}x(0) + e^{At} \int_0^t e^{-A\tau} Bu(\tau) d\tau$$

$$y(t) = Cx(t) = Ce^{At}x(0) + Ce^{At}\int_0^t e^{-A\tau}Bu(\tau)d\tau$$

Similarity Transformation

$$\dot{x} = Ax + bu
y = cx$$

$$\hat{x} = Px \text{ or } x = P^{-1}\hat{x}$$

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{b}u$$

$$y = \hat{c}\hat{x}$$

$$\hat{A} = PAP^{-1}$$

$$\hat{b} = Pb$$

$$\hat{c} = cP^{-1}$$

$$x = P\hat{x}$$

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{b}u$$

$$y = \hat{c}\hat{x}$$

$$\hat{A} = P^{-1}AP$$

$$\hat{b} = P^{-1}b$$

$$\hat{c} = cP$$

Discrete State-Space Equations

$$x(k+1) = Gx(k) + Hu(k)$$
$$y(k) = Cx(k) + Du(k)$$

Transfer Function

$$G(z) = C(xI - G)^{-1}H + D$$

State-transition matrix

$$\phi(k) = G^k$$

$$x(k) = \phi(k)x(0) + \sum_{j=0}^{k-1} \phi(k-j-1)Hu(j)$$

$$y(k) = C\phi(k)x(0) + C\sum_{j=0}^{k-1}\phi(k-j-1)Hu(j) + Du(k)$$

Computation of state-transition matrix

$$G^k = \phi(k) = Z^{-1} [(zI - G)^{-1}z]$$

Discretization

$$x((k+1)T) = G(T)x(kT) + H(T)u(kT)$$

where

$$G(T) = e^{AT} = I + AT + \frac{1}{2!}A^2T^2 + \dots$$

$$H(T) = \left(\int_0^T e^{At}dt\right)B$$

$$y(kT) = Cx(kT) + Du(kT)$$

Linearization Equations

 Consider a general nonlinear model with n state variables, m input variables, and r output variables

$$\begin{aligned} \dot{x}_1 &= f_1(x_1, \cdots, x_n, u_1, \cdots, u_m) \\ &\vdots \end{aligned} \qquad \text{Vector notation:} \\ \dot{x}_n &= f_n(x_1, \cdots, x_n, u_1, \cdots, u_m) \\ y_1 &= g_1(x_1, \cdots, x_n, u_1, \cdots, u_m) \\ \vdots \\ v_n &= g_n(x_1, \cdots, x_n, u_1, \cdots, u_m) \end{aligned} \qquad \mathbf{y} = \mathbf{g}(\mathbf{x}, \mathbf{u}) \\ \vdots \\ v_n &= g_n(x_1, \cdots, x_n, u_1, \cdots, u_m) \end{aligned}$$

Elements of the linearization matrices

$$A_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{\mathbf{x}_s, \mathbf{u}_s} \qquad B_{ij} = \frac{\partial f_i}{\partial u_j} \bigg|_{\mathbf{x}_s, \mathbf{u}_s} \qquad \mathbf{x} = \mathbf{A} \, \overline{\mathbf{x}} + \mathbf{B} \, \overline{\mathbf{u}}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \overline{\mathbf{x}} + \mathbf{D} \, \overline{\mathbf{u}}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \overline{\mathbf{x}} + \mathbf{B} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \overline{\mathbf{x}} + \mathbf{B} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \overline{\mathbf{x}} + \mathbf{B} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{B} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{B} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

$$\nabla \mathbf{y} = \mathbf{C} \, \mathbf{x} + \mathbf{D} \, \mathbf{u}$$

Taylor's Series

$$f(x) = f(x_s) + \frac{\partial f}{\partial x}\Big|_{x_s} \left(x - x_s\right) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}\Big|_{x_s} \left(x - x_s\right)^2 + \text{high order terms}$$

Controllability and Observability

$$C = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix} \qquad \mathcal{O} = \begin{bmatrix} C & CA \\ CA & \vdots \\ CA^{n-1} \end{bmatrix}$$

Hankel matrix

$$M[1, n-1] = \begin{bmatrix} h_1 & h_2 & \dots & h_n \\ h_2 & h_2 & \dots & h_{n+1} \\ \vdots & & & \vdots \\ h_n & h_{n+1} & \dots & h_{2n-1} \end{bmatrix} = \mathcal{OC}$$

Non-controllable decomposition

$$\bar{A} = T^{-1}AT = \begin{bmatrix} \bar{A}_c & \bar{A}_{c\bar{c}} \\ 0 & \bar{A}_{\bar{c}} \end{bmatrix}$$

$$\bar{b} = T^{-1}b = \begin{bmatrix} \bar{b}_c \\ 0 \end{bmatrix}$$

$$\bar{c} = cT = \begin{bmatrix} \bar{c}_c & \bar{c}_{\bar{c}} \end{bmatrix}$$

Non-observable decomposition

$$\bar{A} = TAT^{-1} = \begin{bmatrix} \bar{A}_o & 0 \\ \bar{A}_{\bar{o}o} & \bar{A}_{\bar{o}} \end{bmatrix}$$

$$\bar{b} = Tb = \begin{bmatrix} \bar{b}_o \\ \bar{b}_{\bar{o}} \end{bmatrix}$$

$$\bar{c} = cT^{-1} = \begin{bmatrix} \bar{c}_o & 0 \end{bmatrix}$$

Lyapunov Stability

Sylvester's Criterion

A quadratic form $v(x) = x^T P x$ is positive definite if all the successive principal minors of P are positive; that is

$$p_{11} > 0,$$
 $\begin{vmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{vmatrix} > 0, \dots, \begin{vmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{12} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{1n} & p_{2n} & \dots & p_{nn} \end{vmatrix} > 0$

$$A^T P + P A = -Q$$

Solution unique if and only if

$$\lambda_i + \lambda_i \neq 0, \forall i, j$$

$$G^T P G - P = -Q$$

Solution unique if and only if

$$\lambda_i[G].\lambda_j[G^T] \neq 1 \ \forall i,j$$

Routh Table

Write the polynomial in s in the following form:

$$a_0 s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n = 0$$

where the coefficients are real numbers.

where the coefficients b_1 , b_2 , and so on are computed as follows:

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}$$

$$b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1}$$
: :

The coefficients c_1 , c_2 , and so on are computed as follows:

$$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1}$$

$$c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1}$$

$$\vdots \qquad \vdots$$

Bass Gura's formula for Controller Design

$$k = \left[(\alpha_1 - a_1) \ (\alpha_2 - a_2) \ \dots \ (\alpha_n - a_n) \right] W^{-1} M^{-1}$$

$$M = \begin{bmatrix} b & Ab & \dots & A^{n-1}b \end{bmatrix}$$

$$W = \begin{bmatrix} 1 & a_1 & a_2 & \dots & a_{n-1} \\ 0 & 1 & a_1 & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where a_i 's are the coefficient of the characteristic polynomial

$$|sI - A| = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

If the desired pole locations are $\mu_1, \mu_2, \ldots, \mu_n$. Then the desired characteristic equation becomes

$$\prod_{i=1}^{n} (s - \mu_i) = s^n + \alpha_1 s^{n-1} + \ldots + \alpha_{n-1} s + \alpha_n = \alpha(s)$$

Ackermann's formula for Controller Design

$$k = \begin{bmatrix} 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} b & Ab & \dots & A^{n-1}b \end{bmatrix}^{-1} \alpha(A)$$

Direct Method for Controller Design

$$|sI - A + bk| = \prod_{i=1}^{n} (s - \mu_i) = \alpha(s)$$

Bass Gura's Formula for Observer Design

$$l = (W\mathcal{O})^{-1} \begin{bmatrix} \alpha_1 - a_1 \\ \alpha_2 - a_2 \\ \vdots \\ \alpha_n - a_n \end{bmatrix}$$

where

$$\mathcal{O} = \begin{bmatrix} c \\ cA \\ \vdots \\ cA^{n-1} \end{bmatrix} \text{ and } W = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-2} & a_{n-3} & \dots & 1 & 0 \\ a_{n-1} & a_{n-2} & \dots & a_1 & 1 \end{bmatrix}$$

$$|sI - A| = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

If the desired pole locations are $\mu_1, \mu_2, \ldots, \mu_n$. Then the desired characteristic equation becomes

$$(s - \mu_1)(s - \mu_2)\dots(s - \mu_n) = s^n + \alpha_1 s^{n-1}\dots\alpha_{n-1} s + \alpha_n = \alpha(s)$$

Ackermann's Formula for Observer Design

$$l = \alpha(A) \begin{bmatrix} c \\ cA \\ \vdots \\ cA^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Direct Method for Observer Design

$$|sI - A + lc| = \prod_{i=1}^{n} (s - \mu_i) = \alpha(s)$$

Reduced Order Observer Equations

$$\begin{bmatrix} \dot{x}_m \\ \dot{x}_u \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_m \\ x_u \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$

$$y = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} x_m \\ x_u \end{bmatrix}$$

$$\dot{z} = Dz + Fy + Gu$$

$$\hat{x}_u = z + Ly$$

where

$$D = A_{22} - LA_{12}$$

$$F = DL + A_{21} - LA_{11}$$

$$G = B_2 - LB_1$$

ZOH Transfer Function

$$G_h(s) = \frac{1 - e^{-Ts}}{s}$$

$$X(z) = \mathcal{Z}\left\{X(s)\right\} = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$

Impulse Function

$$\int_{-\epsilon}^{\epsilon} \delta(t)dt = 1$$
 where ϵ is a small positive number

$$\int_{-\infty}^{\infty} \phi(t)\delta(t)dt = \phi(0)$$
 where $\phi(t)$ is a regular continuous function

Z-Transform Shifting Theorems

$$Z_U \{x(k-k_0)\} = x(-k_0) + x(-k_0+1)z^{-1} + \dots + x(-1)z^{-k_0+1} + z^{-k_0}X_U(z)$$

$$Z_U \{x(k+k_0)\} = z^{k_0}X_U(z) - x(0)z^{k_0} - x(1)z^{k_0-1} - \dots - x(k_0-1)z$$

Laplace Transforms

f(t)	F(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$
$e^{-at}u(t)$	$\frac{1}{s+a}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$

Eigenvalues of a $n \times n$ **matrix A** are the roots of the characteristic equation:

$$|\lambda I - A| = 0$$

Eigenvectors of a $n \times n$ matrix: Any non zero vector x_i such that

$$Ax_i = \lambda x_i$$

is said to be an eigenvector associated with an eigenvalue λ_i of A where A is a $n \times n$ matrix.

The eigenvectors are obtained by solving homogeneous algebraic equations of the form:

$$[A - \lambda_i I] x_i = 0$$

Determinants

$$det(A) = |A| = \sum_{i=1}^{n} a_{ij} C_{ij}$$

(cofactor expansion along the j-th column)

$$det(A) = |A| = \sum_{j=1}^{n} a_{ij} C_{ij}$$

(cofactor expansion along the *i*-th row)

Minors and Cofactors: If A is a square matrix, then the minor of entry a_{ij} is denoted by M_{ij} and is defined to be determinant of the submatrix that remains after the i-th row and j-th column are deleted from A. The number $(-1)^{i+j}M_{ij}$ is denoted by C_{ij} and is called the **cofactor of entry** a_{ij} .

Matrix of Cofactors and Adjoint

If A is any $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$\begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}$$

is called the matrix of cofactors of A. The transpose of this matrix is called the adjoint of A and is denoted by adj(A).

Inverse of a Matrix

If A is an $n \times n$ matrix, then its inverse is given by the following formula:

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

Cayley-Hamilton Theorem states that every square matrix satisfies its own characteristic equation. If

$$|\lambda I - A| = \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0$$

is the characteristic equation then from Cayley Hamilton theorem we have

$$A^n + a_1 A^{n-1} + \ldots + a_{n-1} A + a_n I = 0$$

Rank of a matrix

A matrix A is called of rank m if the maximum number of linearly independent rows (or columns) is m. Hence, if there exists a $m \times m$ submatrix M of A such that $|M| \neq 0$, and the determinant of every $r \times r$ submatrix (where $r \geq m+1$) of A is zero, then the rank of A is m.

Table of Laplace and Z-transforms

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	-	_	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1
2.	-	_	$ \begin{array}{ccc} \delta_0(n-k) \\ 1 & n=k \\ 0 & n \neq k \end{array} $	z^{-k}
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e ^{-akT}	$\frac{1}{1-e^{-a\tau}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{\left(1-z^{-1}\right)^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2 z^{-1} \left(1 + z^{-1}\right)}{\left(1 - z^{-1}\right)^3}$
7.	$\frac{6}{s^4}$	t³	$(kT)^3$	$\frac{T^3 z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4}$
8.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{\left(1 - e^{-aT}\right)z^{-1}}{\left(1 - z^{-1}\right)\left(1 - e^{-aT}z^{-1}\right)}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{\left(e^{-aT}-e^{-bT}\right)\!z^{-1}}{\left(1-e^{-aT}z^{-1}\right)\!\left(1-e^{-bT}z^{-1}\right)}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
12.	$\frac{2}{(s+a)^3}$	t ² e ^{-at}	$(kT)^2e^{-akT}$	$\frac{T^{2}e^{-aT}\left(1+e^{-aT}z^{-1}\right)z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^{3}}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{T^{2}e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^{3}}$ $\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^{2}(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2 + \omega^2}$	sin <i>ost</i>	sin <i>okT</i>	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos at	cos wkT	$\frac{1 - z^{-1}\cos\omega T}{1 - 2z^{-1}\cos\omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin <i>ωt</i>	e ^{-akT} sin <i>\oldobkT</i>	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	e ^{-at} cos <i>o</i> t	e ^{-akT} cos <i>a</i> kT	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	_	-	a^k	$\frac{1}{1-az^{-1}}$ $\frac{z^{-1}}{z^{-1}}$
19.	-	-	a^{k-1} k = 1, 2, 3,	$1-az^{-1}$
20.	-	-	ka ^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.	-	_	k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	-	-	k³a ^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.	-	-	k^4a^{k-1}	$\frac{z^{-1}\left(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3}\right)}{\left(1-az^{-1}\right)^5}$
24.	-	-	$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$

x(t) = 0 for t < 0x(kT) = x(k) = 0 for k < 0

Unless otherwise noted, k = 0, 1, 2, 3, ...