Advancing real time outbreak analysis

Jonathan Dushoff, McMaster University

http://lalashan.mcmaster.ca/DushoffLab

EDCTP-TDR-CIHR Noguchi Memorial Institute of Medical Research (NMIMR); University of Ghana School of Public Health February 2016

Dynamic modeling

Connects scales

Yellow fever in Panama

endemic equilibrium

2009 pandemic Alberta

Goals

- Quickly make transparent predictions
 - Including responses to intervention scenarios
- Be realistic about uncertainty
 - Investigate how uncertainty can be reduces
- Be open about calculations
 - And open to people who want to use our machinery but change our assumptions

The CDC and the West African outbreak

Standard disease model

Disease model including post-death transmission

Disease model including post-death transmission

Scenarios

- Different assumptions produce identical fits
- More after-death transmission ⇒
 - ▶ Higher \mathcal{R}_0
 - Larger epidemics
 - Larger importance of safe burials

Subclinical infection

- Does Ebola virus produce subclinical infection?
 - Infection that does not present as Ebola virus disease
- Can subclinically infected individuals pass infection to others?
- Is subclinical infection immunizing?
- What are the dynamic effects?

Subclinical infection dynamics

Subclinical infection dynamics

- Effects visible late in epidemic
- Or in future epidemics

How do we measure invading epidemics?

- Strength
- Speed
- Danger

How do we measure invading epidemics?

- Strength − R
- ► Speed *r*
- ▶ Danger α

Life cycle

- ► The link between r and R is the generation distribution G
 - Interval between "index" infection and resulting infection
- What is the effect of a fast G?
 - It depends!

Generations and \mathcal{R}

Generations and \mathcal{R}

Fitting to Ebola

NIH Ebola Contest

Reporting, response and behaviour

- What are the factors that contribute to uncertainty?
- What do we need to
 - measure
 - model
- to reduce uncertainty?

Reporting process

- ► How does case ascertainment and communication change as a disease spreads?
- How do these changes affect the public?

Behaviour change

Behaviour change

- How do we measure behaviour change?
- How do we predict behaviour change?

Tools and pipelines

Tools and pipelines

Vaccination trials: ethics and practice

Vaccine trials

Vaccine trials

Trial start date

Thanks

- Organizers
- Audience
- Collaborators: Steve Bellan, David Champredon, Joshua Weitz
- ► Funders: CIHR, NSERC