Probability and Measure

George Lee Girton College

October 8, 2015

1 Measures

1.1 Definitions

Let E be a set. A σ -algebra \mathcal{E} on E is a collection of subsets of E s.t.

$$\forall n \in \mathbb{N} \ A_n \in \mathcal{E} \implies \bigcup_{\mathbb{N}} A_n \in \mathcal{E},$$
$$A \in \mathcal{E} \implies A^c \in \mathcal{E}$$

Pair (E, \mathcal{E}) a measurable space, \mathcal{E} the collection of measurable sets. $\mu: (E, \mathcal{E}) \to [0, \infty]$ called a measure if for all disjoint $\{A_n\}_{\mathbb{N}} \subset \mathcal{E}$ we have that

$$\mu(\bigcup_{\mathbb{N}} A_n) = \sum_{\mathbb{N}} \mu(A_n).$$

ie, countable additivity. (E, \mathcal{E}, μ) a measure space.

1.2 Discrete measure theory

Given $f:E\to [0,\infty]$ can do measure theory on measurable space $(E,2^E)$ via $\mu(A)=\sum_A f(a).$

1.3 Generated σ - algebras

Let $\mathcal{A} \subset 2^E$. Define

$$\sigma(\mathcal{A}) = \bigcap \{ \sigma \ algebras \supseteq \mathcal{A} \}$$

Then (easy to check) $\sigma(A)$ a σ -algebra.

1.4 π -systems and d-systems

Let $\emptyset \in \mathcal{A} \subseteq 2^E$. Have \mathcal{A} a π -system if $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$. We say that $E \in \mathcal{A} \subseteq 2^E$ is a d-system if

$$A, B \in \mathcal{A}, A \subseteq B \implies B \backslash A \in \mathcal{A},$$
$$(A_n)_{\mathbb{N}} \in \mathcal{A}^{\mathbb{N}}, A_1 \subseteq A_2 \subseteq \dots \implies \bigcup_{\mathbb{N}} A_n \in \mathcal{A}$$

Note then that \mathcal{A} both of these $\implies A$ a σ -algebra.

Lemma 1.1. Dynkin's π system lemma: Let A ba a π -system. Then any d-system containing A also contains $\sigma(A)$.

Proof. Let $\mathcal{D} = \bigcap \{d\text{-system} s \supseteq \mathcal{A}\}$. Then \mathcal{D} a d-system. We show \mathcal{D} also a π system and thus a σ -algebra as required. Consider

$$\mathcal{D}' = \{ B \in \mathcal{D} : \forall A \in \mathcal{A} : B \cap A \in \mathcal{D} \} \subseteq \mathcal{D}$$

Then $\mathcal{D} \subseteq \mathcal{D}'$ (\mathcal{A} a d-system). Check \mathcal{D}' a d-system: have $E \in \mathcal{D}'$, and let $B, C \in \mathcal{D}'$, $B \subseteq C$, then given $A \in \mathcal{A}$ we have

$$(C \backslash B) \cap A = (C \cap A) \backslash (B \cap A) \in \mathcal{D} \implies C \backslash B \in \mathcal{D}'$$

Write $B_n \uparrow B$ if $B_1 \subseteq B_2 \subseteq ...$ and $B = \bigcup_{\mathbb{N}} B_n$. Let $(B_n)_{\mathbb{N}} \in \mathcal{D}'^{\mathbb{N}}$ be increasing, then $B_n \cap A \uparrow B \cap A$. Thus $B \cap A \in \mathcal{D} \implies B \in \mathcal{D}' \implies B \in \mathcal{D}' \implies \mathcal{D} = \mathcal{D}'$. Then let

$$\mathcal{D}'' = \{ B \in \mathcal{D} : \forall A \in \mathcal{A} : B \cap A \in \mathcal{D} \} \subseteq \mathcal{D}$$

 $A, A' \in \mathcal{A} \implies A \cup A' \in \mathcal{D}$ and thus $\mathcal{A} \subseteq \mathcal{D}''$. Check \mathcal{D}'' a d-system, like with \mathcal{D}' . Then $\mathcal{D}'' = \mathcal{D} \implies \mathcal{D}$ a π -system.

1.5 Set functions and properties

Let $\emptyset \in \mathcal{A} \subseteq 2^E$. We call any $\mu : \mathcal{A} \to [0, \infty]$ with $\mu(\emptyset) = 0$ a set function. Let μ be such a function.

- $(A, B \in \mathcal{A}, A \subseteq B \implies \mu(A) \le \mu(B)) \implies \mu \text{ increasing.}$
- $(A, B, A \dot{\cup} B \in \mathcal{A} \implies \mu(A \cup B) = \mu(A) + \mu(B)) \implies \mu \ additive.$
- $(A_1, A_2, ..., \dot{\bigcup}_{\mathbb{N}} A_n \in \mathcal{A} \implies \mu(\bigcup_{\mathbb{N}} A_n) = \sum_{\mathbb{N}} \mu(A_n)) \implies \mu \text{ countably additive.}$

1.6 Construction of measures

Let $\mathcal{A} \subseteq 2^E$. Say \mathcal{A} a ring on E if

- $\emptyset \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies B \setminus A, A \cup B \in \mathcal{A}$

Say \mathcal{A} an algebra on E if

- $\bullet \ \emptyset \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies A^c, A \cup B \in \mathcal{A}$

Theorem 1.2. Carathéodory's extention theorem: Let A a ring on E and μ a countably additive set function on A. Then can extend μ to a measure on $\sigma(A)$.

Proof. Will write up later \Box

1.7 Uniqueness of measures

Theorem 1.3. Uniqueness of extention:srlgxdfkghdfg

Proof. shtghfghcfgh

1.8 Borel sets and measures

Let (E, τ) a topological space. Then the Borel σ -algebra on E is defined by $\mathcal{B}(E) = \sigma(\tau)$. For $E = \mathbb{R}$ we may write $\mathcal{B}(E) = \mathcal{B}$. A corresponding measure on such a space is called a Borel measure. If further all compact sets have a finite measure we say it is a Radon measure.

1.9 Probability measures, finite and σ -finite measures.

For (E, \mathcal{E}, μ) a measure space, we say μ is a probability measure if $\mu(E) = 1$, and tend to write instead $(\Omega, \mathcal{F}, \mathbb{P})$. $\mu(E) < \infty \implies \mu$ a finite measure, and finally if there is a countable collection of measurable sets of finite measure which cover E then we say the space is σ -finite.

1.10 Lebesgue measure

- 1.11 Existence of a non-Lebesgue-measurable subset of \mathbb{R}
- 1.12 Independence
- 1.13 Borel-Cantelli lemmas

2 Measurable functions and Random Variables

2.1 Measurable functions

Let $(E, \mathcal{E}), (F, \mathcal{F})$ be measurable spaces. We say $f: E \to F$ is measurable if $U \in \mathcal{F} \implies f^{-1}U \in \mathcal{E}$.

- $(G, \mathcal{G}) = (\mathbb{R}, \mathcal{B}) \implies f$ is a measurable function on E
- $(G,\mathcal{G}) = ([0,\infty],\mathcal{B}([0,\infty])) \implies f$ is a non-negative measurable function on E

note neither definitions are more strict than the other. Now seeing as inverse images preserve union and complementation, to show that a function is measurable it is sufficient to show that the inverse images of a collection of sets generating the σ -algebra are measurable. For example in the case where f is a measurable function on E it suffices to show that the collection $\{f^{-1}(-\infty,x]:x\in\mathbb{R}\}=\{\{f(\omega)\leq x\}:x\in\mathbb{R}\}\subseteq\mathcal{F}.$ Note that if the measures are Borel and the function is continuous it immediately follows it is measurable.

rtdhcyfujnyfgjhcvn

Theorem 2.1. Monotone Class theorem: Let (E, \mathcal{E}) be a measurable space and let \mathcal{A} be a π -system with $\sigma(\mathcal{A}) = \mathcal{E}$. Let \mathbb{V} be an \mathbb{R} -vector space of bounded $f: E \to \mathbb{R}$ such that the following hold:

- $x \mapsto 1 \in \mathbb{V}$
- $(f_n)_{\mathbb{N}} \in \mathbb{V}^{\mathbb{N}}$ with $0 \leq f_n \uparrow f \implies f \in \mathbb{V}$

then $\{bounded\ measurable\ functions\}\subseteq \mathbb{V}.$

Proof. Let $\mathcal{D} = \{A \in \mathcal{E} : 1_A \in \mathbb{V}\}$. Then we have $\mathcal{A} \subseteq \mathcal{D}$ a d-system $\Longrightarrow \mathcal{D} = \mathcal{E}$. Thus all finite linear combinations of indicator functions are contained in \mathbb{V} , in particular given a nonnegative bounded measurable f the series $(x \mapsto 2^{-n}\lfloor 2^n f(x)\rfloor)_{\mathbb{N}}$ is contained in \mathcal{A} and converges from below to f so $f \in \mathbb{V}$. Then for an arbitrary bounded measurable function, decompose into positive and negative components both of which are in \mathbb{V} to see that $f \in \mathbb{V}$.

2.2 Image measures

Just like with topologies, you can get induced measures using inverse images!

Lemma 2.2. Let $g: \mathbb{R} \to \mathbb{R}$ nonconstant, right continuous and non-decreasing, and extend to $\pm \infty$ via limits, and write $I = (g(-\infty), g(\infty))$. Define $f: I \to \mathbb{R}$ by $f(x) = \inf\{y \in \mathbb{R} : x \leq g(y)\}$. Then f is left continuous and non-decreasing.

Proof. Let $x \in I$ and $J_x = \{y \in \mathbb{R} : x \leq g(y)\}$. Have $\emptyset \subset J_x \subset \mathbb{R}$. g nondecreasing $\Longrightarrow J_x = [x', \infty]$ for some x'. g right-continuous means that $y_n \in J_x, y_n \downarrow y \Longrightarrow y \in J_x$. Thus we have $J_x = [f(x), \infty)$ and $x \leq g(y)$ exactly when $f(x) \leq y$. Given $x \leq x'$ have $J_x \supseteq J_{x'}$ so that $f(x) \leq f(x')$. For $x_n \uparrow x$ have $J_x = \bigcup_{\mathbb{N}} J_{x_n}$ and so $f(x_n) \to f(x)$. Thus f is left-continuous and non-decreasing as required.

erkuysrfgsieugfskufgsdfugsdk...

2.3 Random variables

For $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, (E, \mathcal{E}) a measurable space, a measurable $X: \Omega \to E$ called a random variable in E, which is interpreted as a state of a system influenced by chance. Where E isn't mentioned we assume $E = \mathbb{R}$. blah blah blah

2.4 Rademacher functions

Blaaaaahhhh

 ${\bf 2.5} \quad {\bf Convergence\ of\ measurable\ functions\ and\ Random\ Variables}$