Amendments to the claims

This listing of the claims replaces all other listings of the claims pending in the present application. Please cancel claims 2-6, 13-17, 42-44, 47-50, and 52-79, and reinstate and amend claim 1, and amend claims 23, 24, 28, 30, 32, 34, 36, and 40 as follows:

1. (Reinstated and currently amended)

A compound of the formula:

$$R^{5}$$
 R^{6}
 N
 R^{2}
 N
 N
 R^{3}
 R^{4}

or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, wherein:

X is Nor CR14;

 R^1 is selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_6 alkynyl, cyano, halo, C_1 - C_6 haloalkyl, OR^7 , C_1 - C_6 alkyl- OR^7 ; C_1 - C_6 cyanoalkyl, NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 ;

 R^2 is H_7 ; C_4 - C_6 -alkyl which optionally forms a C_3 - C_6 -aminocarbocycle or a C_2 - C_5 aminoheterocycle with A or B, each of which is optionally substituted with R^7 , C_3 - C_{10} eycloalkyl, or $(C_3$ - C_{10} cycloalkyl) C_4 - C_6 alkyl; or

 R^2 and R^6 jointly with the 2 nitrogen atoms to which they are bound, form a C_2 - C_5 aminoheterocycle optionally substituted with R^7 , or

R²-and-A jointly form a C₃-C₆-aminocarbocycle or a C₂-C₅-aminoe heterocycle optionally substituted at with R⁷:

A represents an alkyl chain of 1,2, or 3 carbon atoms which is optionally mono- or di-substituted at each carbon with substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl,

OR⁷, C₁-C₆ alkyl-OR⁷; C₁-C₆ cyanoalkyl, NR⁸R⁹, and C₁-C₆ alkyl-NR⁸R⁹, or

A and B jointly form a C₃-C₆ carbocycle, optionally substituted at each atom with R⁷;

B represents an alkyl chain of 1,2 or 3 carbons atoms, which is optionally mono- or disubstituted at each carbon with substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷; C₁-C₆ cyanoalkyl, NR⁸R⁹, and C₁-C₆ alkyl-NR⁸R⁹, or

B and R²-jointly form a C₃-C₆-aminocarbocycle, which is optionally substituted at each atom with R⁷, or

B and R^6 jointly form a C_3 - C_6 aminocarbocycle, which is optionally substituted at each atom with R^7 ;

R³ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷, C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹;

R⁴ is selected from aryl or heteroaryl, each of which is substituted with 1 to 5 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, C₁-C₆ alkyl-OR⁷, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, C₁-C₆ alkyl-CONR⁸R⁹, COOR⁷, C₁-C₆ alkyl-COOR⁷, CN, C₁-C₆ alkyl-CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the pyrazole is substituted;

R⁵ is selected from:

C₁-C₆ alkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, each of which is substituted with 1 to 5 groups independently selected at each occurrence from halo, C₁-C₂

haloalkyl, oxo, OR⁷, cyano, NR⁸R⁹, CONR⁸R⁹, COOR⁷, SO₂NR⁸R⁹, SO₂R⁷, NR¹¹COR¹², NR¹¹SO₂R⁷;

Aryl(C₁-C₆)alkyl, heteroaryl(C₁-C₆)alkyl, aryl(C₅-C₈)cycloalkyl, or heteroaryl(C₅-C₈)cycloalkyl, each of which is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein any 2 adjacent substituents may be take together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

C₃-C₁₀ cycloalkyl or C₂-C₉ heterocycloalkyl containing one, two, or three O, S, or N atoms, each of which is optionally substituted with 1 to 6 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, oxo, halogen, C₁-C₆ haloalkyl, OR⁷, NR⁸R⁹, (with the proviso that when two OR⁷ or NR⁸R⁹ substituents are geminally located on the same carbon R⁷ is not H and the geminally located OR⁷ or NR⁸R⁹ substitutuents can be taken together to form a C₂-C₄ ketal, oxazoline, oxazolidine, imidazoline, or imidazolidine heterocycle), C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, oxo, hydroximino, C₁-C₆ alkoximino, SO₂NR⁸R⁹, SO₂R⁷, heterocycloalkyl, aryl, heteroaryl, where aryl or heteroaryl is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

aryl or heteroaryl, optionally substituted with 1 to 5 substituents independently selected at each occurrence from halogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein any 2 adjacent substituents may be taken together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl

- 3- or 4-piperidinyl, 3-pyrrolidinyl, 3- or 4- tetrahydropyranyl, 3-tetrahydrofuranyl, 3- or 4-tetrahydropyranyl, 3- or 4-(1,1-dioxo) tetrahydrothiopyranyl, 1-azabicyclo[4.4.0]decyl, 8-azabicyclo[3.2.1]octanyl, norbornyl, quinuclidinyl, indolin-2-one-3-yl, 2-(methoximino)-perhydroazepin-6-yl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from R⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, CN, COOR⁷ SO₂NR⁸R⁹, and SO₂R⁷;
- R⁶ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₄ alkenyl, aryl(C₁-C₆)alkyl, heteroaryl(C₁-C₆)alkyl each of which is optionally substituted with 1 to 5 substituents independently from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, and SO₂R⁷;
- R⁷ is independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, or heterocycloalkyl, C₁-C₈ alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl each optionally substituted with 1 to 5 substituents independently selected from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR¹³, CN, SO₂NR⁸R⁹, and SO₂R¹³, with the proviso that when R⁷ is SO₂R¹³, R¹³ cannot be H;
- R^8 and R^9 are independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_6 alkenyl, C_3 - C_{10} cycloalkenyl, C_2 - C_6 alkynyl, heterocycloalkyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl, or R^8 and R^9 , taken together, can form a C_3 - C_6 aminocarbocycle or a C_2 - C_5 aminoheterocycle each of which is optionally substituted with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, or heterocycloalkyl, C_1 - C_8 alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl;

- R¹² is selected from H, aryl, heteroaryl, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, optionally substituted with OR⁷, NR⁸R⁹, C₃-C₆ aminocarbocycle, or C₂-C₅ aminoheterocycle;
- R¹³ is independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, with the proviso that when R⁷ is SO₂R¹³, R¹³ cannot be H; and
- R¹⁴ is H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, halo, or CN₇; and wherein

R⁵ is phenyl, naphthyl, 2-,3-, or 4-pyridyl, 2-, 4- or 5-pyrimidinyl, triazinyl, 1-, 2- or 4-imidazolyl, 2-, 4-, or 5-oxazolyl, isoxazolyl, indolyl, pyrazolyl, quinolyl, isoquinolyl, 2-, 4-, or 5-thiazolyl, benzothiadiazolyl, 1-, 3- or 4-pyrazolyl, 1-, 3- or 4-triazolyl, 2-triazinyl, 2-pyrazinyl, 2-, or 3-furanyl, 2-, or 3-benzothienyl, or 1-, 2- or 5-tetrazolyl each of which is optionally substituted with 1 to 5 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein 2 adjacent substituents may be taken together to form a cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring.

- 2. (canceled)
- 3-6. (canceled)
- (original) A compound according to claim 1, wherein;X is CH,

 R^1 is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, or (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl; and R^6 is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, or (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl.

8. (original) A compound according to claim 1, wherein:

```
X is CH; R^{1} \text{ is } C_{1}\text{-}C_{6} \text{ alkyl}; R^{2} \text{ is H or } C_{1}\text{-}C_{6} \text{ alkyl}; R^{3} \text{ is } C_{1}\text{-}C_{6} \text{ alkyl}, \text{ trifluoromethyl, or } C_{1}\text{-}C_{6} \text{alkyl-O } C_{1}\text{-}C_{6} \text{alkyl}; \text{ and} R^{6} \text{ is H, } C_{1}\text{-}C_{6} \text{ alkyl, } C_{3}\text{-}C_{10} \text{ cycloalkyl, or } (C_{3}\text{-}C_{10} \text{ cycloalkyl)} C_{1}\text{-}C_{6} \text{ alkyl.}
```

9. (original) A compound according to claim 1, wherein;

X is CH:

 R^1 is C_1 - C_6 alkyl;

 R^2 is H or C_1 - C_6 alkyl;

R³ is C₁-C₆ alkyl, trifluoromethyl, or C₁-C₆alkyl-O C₁-C₆alkyl;

 R^4 is phenyl, mono, di, or trisubstituted with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_6 alkenyl, halogen, C_1 - C_6 haloalkyl, trifluromethylsulfonyl, OR^7 , C_1 - C_6 alkyl- OR^7 , NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 , $CONR^8R^9$, C_1 - C_6 alkyl- $CONR^8R^9$, $COOR^7$, C_1 - C_6 alkyl- $COOR^7$, C_1 - C_6 alkyl-CN, $SO_2NR^8R^9$, SO_2R^7 , aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the pyrazole is substituted,

 R^6 is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, or (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl; and R^7 , R^8 , and R^9 are as defined in claim 1.

10. (original) A compound according to claim 1, wherein:

X is CH;

 R^1 is C_1 - C_6 alkyl;

 R^2 is H or C_1 - C_6 alkyl;

 R^3 is $C_1\hbox{-} C_6$ alkyl, trifluoromethyl, or $C_1\hbox{-} C_6 alkyl\hbox{-} O$ $C_1\hbox{-} C_6 alkyl;$

R⁴ is phenyl, mono, di, or trisubstituted with C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, C₁-C₆ alkyl-OR⁷, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, C₁-C₆ alkyl-CONR⁸R⁹, COOR⁷, C₁-C₆ alkyl-COOR⁷, CN, C₁-C₆ alkyl-CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the pyrazole is substituted,

R⁵ is

- C₁-C₆ alkyl, C₃-C₁₀cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, each of which is substituted with 1 to 5 groups independently selected at each occurrence from halo, C₁-C₂ haloalkyl, OR⁷, cyano, NR⁸R⁹, CONR⁸R⁹, COOR⁷, SO₂NR⁸R⁹, SO₂R⁷, NR¹¹COR¹², NR¹¹SO₂R⁷; or
 - 3- or 4-piperidinyl, 3-pyrrolidinyl, 3- or 4- tetrahydropyranyl, 3-tetrahydrofuranyl, 3- or 4-tetrahydropyranyl, 3- or 4-(1,1-dioxo) tetrahydrothiopyranyl, 1-azabicyclo[4.4.0]decyl, 8-azabicyclo[3.2.1]octanyl, norbornyl, quinuclidinyl, indolin-2-one-3-yl, 2-(methoximino)-perhydroazepin-6-yl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from R⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, CN, COOR⁷ SO₂NR⁸R⁹, and SO₂R⁷;

R⁶ is H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, or (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl; and

 R^7 , R^8 , R^9 , R^{11} , and R^{12} are as defined in claim 1.

- 11. (original) A method for treating eating disorders and cardiovascular disorders comprising administering to a patient suffering from an eating disorder or cardiovascular disorder a compound according to claim 1.
- 12. (original) A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.

13-17. (canceled)

- 18. (original) A compound according to any one of claim I wherein in an assay of NPY binding the compound exhibits an K_i of 1 micromolar or less.
- 19. (original) A compound according to any one of claim 1 wherein in an assay of NPY binding the compound exhibits an K_i of 100 nanomolar or less.

- 20. (original) A compound according to any one of claim 1 wherein in an assay of NPY binding the compound exhibits an K_i of 100 nanomolar 10 nanomolar or less.
- 21. (original) A method for treating obesity or bulimia nervosa which comprises administering an effective amount of a compound according to claim 1 to a patient in need thereof.
- 22. (original) A method for treating hypertension which comprises administering an effective amount of a compound according to claim 1 to a patient in need thereof.
- 23. (currently amended) A compound in accordance with formula I

$$R^5$$
 R^6
 R^6
 R^8
 R^8

wherein:

X is N-or CR¹⁴;

R¹ is selected from H, C₁-C₆ alkyl, C₃-C₆ ycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷; C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹;

 R^2 is $H_{\overline{\tau}}$;

C₁-C₆-alkyl which optionally forms a C₃-C₆-aminocarbocycle or a C₂-C₅-aminoheterocycle with A or B, each optionally substituted at each occurrence with R⁷,

C₃-C₁₀ cycloalkyl, or

(C3-C10-cycloalkyl) C1-C6-alkyl;

or R²-and R⁶ jointly form with the 2 nitrogen atoms to which they are bound form a C₂-C₅ aminoheterocycle optionally substituted at each occurrence with R²:

A is $(CH_2)_m$, where m is 1,2 or 3 and is optionally mono- or di-substituted on each occurrence with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $(C_3$ - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, cyano, halo, C_1 - C_6 haloalkyl, OR^7 , C_1 - C_6 alkyl- OR^7 ; C_1 - C_6 cyanoalkyl, NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 , or A and B jointly form a C_3 - C_6 carbocycle, optionally substituted at each occurrence with R^7 , ;

or, A and R²-jointly form a C₃-C₆-aminocarbocycle or a C₂-C₅-aminoheterocycle optionally substituted at each occurrence with R²;

aminoheterocycle optionally substituted at each occurrence with R7;

B is (CH₂)_n, where n is 1,2 or 3 and is optionally mono- or di-substituted on each occurrence with C₁-C₆ alkyl, C₃-C₁₀- cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR7; C₁-C₆ cyanoalkyl, NR⁸R⁹, and C₁-C₆ alkyl-NR⁸R⁹;

or, as mentioned above, B and A jointly form a C_3 - C_6 carbocycle, optionally substituted at each occurrence with R^7

or, as mentioned above, B and R² jointly form a C₁-C₆ aminocarbocycle or a C₂-C₅ aminoheterocycle optionally substituted at each occurrence with R⁷;

R³ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ akynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷, C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹;

 R^4 is selected from aryl or heteroaryl, each of which is substituted with 1 to 5 substituents independently selected from C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, halogen, C_1 - C_6 haloalkyl, trifluromethylsulfonyl, OR^7 , C_1 - C_6 alkyl- OR^7 , NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 , $CONR^8R^9$, C_1 -

C₆ alkyl-CONR⁸R⁹, COOR⁷, C₁-C₆ alkyl-COOR⁷, CN, C₁-C₆ alkyl-CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the pyrazole is substituted;

R⁵ is selected from:

C₁-C₆ alkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, each of which is substituted with 1 to 5 groups independently selected at each occurrence from halo, C₁-C₂ haloalkyl, oxo, OR⁷, cyano, NR⁸R⁹, CONR⁸R⁹, COOR⁷, SO₂NR⁸R⁹, SO₂R⁷, NR¹¹CO R¹², N R¹¹SO₂R⁷;

Aryl(C₁-C₆)alkyl, heteroaryl(C₁-C₆)alkyl, aryl(C₅-C₈)cycloalkyl, or heteroaryl(C₅-C₈)cycloalkyl, where aryl is phenyl or naphthyl, and heteroaryl is 2-, 3- or 4-pyridyl, 2-, 4-, or 5-pyrimimidinyl, triazinyl, 1-, 2-, or 4-imidazolyl 2-, 4-, or 5-oxazolyl, isoxazolyl indolyl, pyrazolyl, quinolyl, isoquinolyl, 2-, 4-, or 5-thiazolyl, benzothiadiazolyl, 1-, 3- or 4-pyrazolyl, 1-, 3- or 4-triazolyl, 2-triazinyl, 2-pyrazinyl, 2-, or 3-furanyl, 2-, or 3-thienyl, 2-, or 3-benzothienyl, or 1-, 2- or 5-tetrazolyl, each of which is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluoromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR₇, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR₇, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein any 2 adjacent substituents may be take together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

C₃-C₁₀ cycloalkyl optionally substituted with 1 to 6 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, OR⁷, NR⁸R⁹, (with the proviso that when two OR⁷ or NR⁸R⁹ substituents are geminally located on the same carbon R⁷ is not H and the geminally located OR⁷ or NR⁸R⁹ substitutents can be taken together to form a C₂-C₄ ketal, oxazoline, oxazolidine, imidazoline, or imidazolidine heterocycle), C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, oxo, is hydroximino, C₁-C₆ alkoximino, SO₂NR⁸R⁹, SO₂R⁷, heterocycloalkyl, aryl, heteroaryl, where aryl or heteroaryl is optionally

substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

- aryl or heteroaryl, optionally substituted with 1 to 5 substituents independently selected at each occurrence from halogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein any 2 adjacent substituents may be taken together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring; or
- 3- or 4-piperidinyl, 3-pyrrolidinyl, 3- or 4-tetrahydropyranyl, 3-tetrahydrofuranyl, 3- or 4-tetrahydropyranyl, 3- or 4-(1,1-dioxo) tetrahydrothiopyranyl, 1-azabicyclo[4.4.0]decyl, 8-azabicyclo[3.2.1]octanyl, norbornyl, quinuclidinyl, indolin-2-one-3-yl, 2-(methoximino)-perhydroazepin-6-yl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from R⁷, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, CN, COOR⁷ SO₂NR⁸R⁹, and SO₂R⁷;
- R⁶ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₄ alkenyl, aryl(C₁-C₆)alkyl, heteroaryl(C₁-C₆) alkyl each of which is optionally substituted with 1 to 5 substituents independently from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, and SO₂R⁷;
- or R⁶ and R² jointly form with the two nitrogens to which they are bound a C₂-C₅ aminocarbocycle optionally substituted at each occurrence by R²;

R⁷ is independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-

C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₃ haloalkyl, or heterocycloalkyl, C₁-C₈ alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl each optionally substituted with 1 to 5 substituents independently selected from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR¹³, CN, SO₂NR⁸R⁹, and SO₂ R¹³, with the proviso that when R⁷ is SO₂ R¹³, R¹³ cannot be H;

R⁸ and R⁹ are independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₆ alkenyl, C₃-C₁₀ cycloalkenyl, C₂-C₆ alkynyl, heterocycloalkyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl, or R⁸ and R⁹, taken together, can form a C₃-C₆ aminocarbocycle or a C₂-C₅ aminoheterocycle each of which is optionally substituted with C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₃ haloalkyl, or heterocycloalkyl, C₁-C₈ alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl;

R¹¹ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl;

R¹² is selected from H, aryl, heteroaryl, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, optionally substituted with O R⁷, NR⁸R⁹, C₃-C₆ aminocarbocycle, or C₂-C₅ aminoheterocycle;

 R^{13} is independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, with the proviso that when R^7 is R^{13} , R^{13} cannot be H; and

 R^{14} is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, halo, or CN_7 -

or a pharmaceutically acceptable salt, hydrate or prodrug thereof.

24. (currently amended) A compound in accordance with formula I

$$R^{5}$$
 R^{6}
 N
 R^{2}
 R^{1}
 N
 N
 R^{2}
 R^{3}

or a pharmaceutically acceptable salt, hydrate or prodrug thereof wherein: X is $\frac{N}{N}$ or CR^{14} ;

R¹ is selected from H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷; C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹;

R² is H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl or (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, wherein each alkyl or cycloalkyl group may be optionally substituted with 1 to 3 R^{7a} groups;

R² may optionally join with R⁵ and the two and the 2 nitrogen atoms to which they are bound to form a 6 to 10 membered heterocyclic ring optionally substituted at each carbon with R^{7(a)} or R² and A may optionally join to form a 3 to 8 membered heterocyclic ring optionally substituted at each carbon with R7a; or

or R²-and B optionally join to form a 4 to 10 membered heterocyclic ring optionally substituted at each carbon with R²-or

A represents an alkyl chain of 1, 2 or 3 carbon atoms which is optionally mono- or disubstituted at each carbon with substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo,

 C_1 - C_6 haloalkyl, OR^7 , C_1 - C_6 alkyl- OR^7 ; C_1 - C_6 cyanoalkyl, NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 , or A and B jointly form a C_3 - C_6 carbocycle, optionally substituted at each occurrence with R^{7a} ;

B represents an alkyl chain of 1, 2 or 3 carbons atoms, which is optionally mono- or disubstituted at each carbon with substituents independently selected from

B represents an alkyl chain of 1,2 or 3 carbons atoms, which is optionally mono- or disubstituted at each carbon with substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR7; C₁-C₆ cyanoalkyl, NR⁸R⁹, and C₁-C₆ alkyl-NR⁸R⁹, of:

B and R⁵ may jointly form a 4 to 7 membered heterocyclic ring, which is optionally substituted at each atom with R^{7a}:

R³ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR7, C₁-C₆ alkyl-OR⁷, C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ allyl-NR⁸R⁹;

R⁴ is selected from aryl or heteroaryl, each of which is substituted with 1 to 5 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, C₁-C₆ alkyl-OR⁷, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, C₁-C₆ alkyl-CONR⁸R⁹, COOR⁷, C₁-C₆ alkyl-COOR⁷, CN, C₁-C₆ alkyl-CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl)-, C₂-C₄ alkynyl wherein at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the pyrazole is substituted;

R⁵ is selected from:

C₁-C₆ alkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, each of which is substituted with 1 to 5 groups independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀, cycloalkyl,

C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆, alkenyl, halogen, C₁-C₆ haloalkyl, OR⁷, NR⁸R⁹, (with the proviso that when two OR⁷ or NR⁸R⁹ substituents are geminally located on the same carbon R⁷ is not H and the geminally located OR⁷ or NR⁸R⁹ substitutuents can be taken together to form a C₂-C₄ ketal, oxazoline, oxazolidine, imidazoline, or imidazolidine heterocycle), C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CO NR⁸R⁹, COOR⁷, CN, oxo, hydroximino, C₁-C₆ alkoximino, SO₂NR⁸R⁹, SO₂R⁷, heterocycloalkyl, aryl, heteroaryl, where aryl or heteroaryl is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀, cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring; with the proviso that C₁-C₆ alkyl group is substituted with a C₁-C₆ alkyl group to give a C₇-C₁₀ alkyl group

Aryl(C₁-C₆) alkyl, heteroaryl(C₁-C₆)alkyl, aryl(C₅-C₈)cycloalkyl, or heteroaryl(C₅-C₈)cycloalkyl, each of which is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluoromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), wherein any 2 adjacent substituents may be taken together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkenyl, or a 3 to 10 membered mono- or bicyclic heterocycle containing 1-3 O, S or N atoms, each of which is optionally substituted with 1 to 6 substituents independently selected from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, OR⁷, NR⁸R⁹, (with the proviso that when two OR⁷ or NR⁸R⁹ substituents are geminally located on the same carbon R⁷ is not H and the geminally located OR⁷ or NR⁸R⁹ substitutents can be taken together to form a C₂-C₄ ketal,

oxazoline, oxazolidine, imidazoline, or imidazolidine heterocycle), C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, oxo, hydroximino, C₁-C₆ alkoximino, SO₂NR⁸R⁹, SO₂R⁷, COR⁷, heterocycloalkyl, aryl, C₁-C₆ alkylaryl, heteroaryl, C₁-C₆ alkylheteroaryl where aryl or heteroaryl is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR7, NR⁸R⁹, C₁-C₆ alkyl-OR7, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring; or

aryl or heteroaryl, optionally substituted with 1 to 5 substituents independently selected at each occurrence from halogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethiylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl)-, wherein any 2 adjacent substituents may be taken together to form a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

R⁶ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₄ alkenyl, aryl(C₁-C₆)alky- l, heteroaryl(C₁-C₆)alkyl each of which is optionally substituted with 1 to 5 substituents independently from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, and SO₂R⁷;

R⁷ is independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₃ haloalkyl, or heterocycloalkyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl each optionally substituted with 1 to 5 substituents independently selected from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR¹³, CN, SO₂NR⁸R⁹, and SO₂R¹³;

- R^{7a} is independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₃ haloalkyl, or heterocycloalkyl, C₁-C₈ alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl each optionally substituted with 1 to 5 substituents independently selected from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR¹³, CN, SO₂NR⁸R⁹, and SO₂R¹³, with the proviso that when R^{7a} is SO₂R¹³, R¹³ cannot be H;
- R^8 and R^9 are independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_6 alkenyl, C_3 - C_{10} cycloalkenyl, C_2 - C_6 alkynyl, heterocycloalkyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl, or R^8 and R^9 taken together, can form a C_3 - C_6 aminocarbocycle or a C_2 - C_5 aminoheterocycle each of which is optionally substituted with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_8 alkanoyl, or heterocycloalkyl, C_1 - C_8 alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl;
- R^{11} is selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl;
- R¹² is selected from H, aryl, heteroaryl, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, optionally substituted with OR⁷, NR⁸R⁹, C₃-C₆ aminocarbocycle, or C₂-C₅ aminoheterocycle;
- R^{13} is independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $(C_3$ - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, with the proviso that when R^7 is for SO_2 R^{13} , R^{13} cannot be H; and
- R^{14} is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, halo, or CN.
- 25. (original) A compound according to claim 24, wherein R¹⁴ is H, C₁-C₄ alkyl, F or Cl.

26. (original) A compound according to claim 25, wherein

R' is H, C₁-C₄ alkyl, (C₃-C₆ cycloalkyl) C₁-C₂ alkyl, where the alkyl and cycloalkyl groups are optionally substituted with 1-3 fluorines.

R³ is H, C₁-C₄ alkyl, (C₃-C₆ cycloalkyl) C₁-C₂ alkyl, where the alkyl and cycloalkyl groups are optionally substituted with 1-3 fluorines.

A is CH₂, optionally substituted with one or two of the following: F, CF₃, or C₁-C₃ alkyl;

B is a 1, 2 or 3 carbon chain, optionally substituted with one or two of the following: F, CF_3 , or C_1 - C_3 alkyl.

27. A Compound according to claim-26, wherein

R⁴-is phenyl, substituted with 2 or 3 substituents independently selected from C₁-C₃ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, (C₃-C₅ cycloakyl) C₁-C₂ alkyl, C₂-C₆ alkenyl, F, Cl, C C₁-C₂ fluoroalkyl, OR⁷, C₁-C₃ alkyl-OR⁷, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, CONR⁸R⁹, CONR⁸R⁹, Coordinate of the phenyl ring is minimally 2,4 disubstituted.

27. (original) A Compound according to claim 26, wherein

 R^2 is H;

 R^6 is H;

R⁴ is phenyl, substituted with 2 or 3 substituents independently selected from C₁-C₃ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₂-C₄ alkenyl, F, Cl, CF₃, CHF₂, CH₂CF₃, OMe, OCF₃, OEt, OPr, OiPr, C₂-C₄ alkyl OH, C₂-C₆ alkynyl, wherein the phenyl ring is minimally 2,4 di-substituted.

28. (currently amended) A Compound according to claim 27, wherein

A is CH₂;

B is CH₂;

B and R₅ form a 5 to 7 membered heterocyclic ring, substituted on carbon with R^{7a}.

 R^{7a} is independently selected at each occurrence from H, C_1 - C_3 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_1 - C_2 alkyl, C_1 - C_2 fluoroalkyl, heterocycloalkyl, C_1 - C_4 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_2 arylalkyl or C_1 - C_2 heteroarylalkyl each optionally substituted with 1 to 3 substituents independently selected from F, Cl, CF_3 , OR^{13} , NR^8R^9 , C_1 - C_2 alkyl- OR^{13} , C_1 - C_2 alkyl- NR^8R^9 , $CONR^8R^9$, $COOR^{13}$, and CN; R^8 is H, C_1 - C_3 alkyl, CF_3 or CH_2CF_3 : R^9 is H or C_1 - C_3 alkyl, R^8 or R^9 or R^9 or R^9 or R^9 is H, R^9 alkyl, R^9 or R^9

29. (original) A Compound according to claim 27, wherein

A is CH₂, optionally substituted with one or two of the following: F, CF₃, or methyl, ethyl, isopropyl;

B is CH₂, optionally substituted with one or two of the following: F, CF₃, methyl, ethyl, or Isopropyl.

30. (currently amended) A Compound according to claim 29, wherein

 R^5 is C_1 - C_7 , alkyl, C_3 - C_6 cycloalkyl, or C_3 - C_6 cycloalkyl C_1 - C_2 alkyl, substituted with F, CF_3 , OR^7 or NR^8R^9 ;

A is CBH₂, optionally substituted with methyl;

B is CH₂, optionally substituted with methyl;

X is N-or CH.

31. (original) A compound according to claim 30, wherein

R⁷ is H, C₁-C₃ alkyl, CF₃ or CH₂CF₃;

R⁸ is H, C₁-C₃ alkyl, CF₃ or CH₂CF₃,

R⁹ is H or C₁-C₃ alkyl or N R⁸R⁹ taken together to form a pyrrolidine, piperidine or morpholine ring.

32. (currently amended) A Compound according to claim 29, wherein

R⁵ is 3- or 4-tetrahydropyranyl, 3-tetrahydrofluranyl, 3- or 4-tetrahydrothiopyranyl, 3- or 4-cyclhexenyl, or 3-cyclopentenyl, optionally substituted with 1 or 2 substituents selected from C₁-C₃ alkyl;

A is CH₂, optionally substituted with methyl;

B is CH₂ optionally substituted with methyl; and

X is Nor CH.

33. (original) A Compound according to claim 29, wherein

R⁵ is 3- or 4-piperidinyl or 3-pyrrolidinyl, optionally substituted on 1 or 2 carbons with C₁-C₃ alkyl, and one substituent on nitrogen from H, C₁-C₆, alkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₁-C₂ alkyl, C₁-C₄ alkenyl, C₁-C₃ fluoroalkyl, C₂-C₄ alkyl-OR⁷, C₂-C₄ alkyl-NR⁸R⁹, heterocycloalkyl, CO- C₁-C₄ alkyl, aryl, C₁-C₃, alkylaryl, heteroaryl, C₁-C₃ alkylheteroaryl where aryl or heteroaryl is optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₃ alkyl, F, Cl, C₁-C₂ fluoroalkyl, OR⁷, NR⁸R⁹, C₁-C₂ alkyl-OR⁷, C₁-C₂ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3 -, 4-, or 5 -(2-oxo-1,3-oxazolidinyl).

34. (currently amended) A Compound according to claim 33, wherein

 R^5 is 3- or 4-piperidinyl or 3-pyrrolidinyl, optionally substituted on nitrogen with H, C_1 - C_3 alkyl, CH_2CF_3 , acetyl, pyridyl, benzyl, methylenepyridyl, pyrimidinyl, or pyrazinyl, where the aryl or heteroaryl group is optionally substituted with 1 to 2 substituents independently selected at each occurrence from C_1 - C_{37} alkyl, F, Cl, CF_3 , OR^7 , NR^8R^9 .

 R^7 is H, C_1 - C_2 , alkyl_{$\bar{7}$} CF₃ or CH₂CF₃ $= \frac{1}{2}$

 R^8 is H, C_1 - C_2 alkyl, CF_3 or CH_2CF_{37} ;

 R^9 is H or C_1 - C_2 alkyl-;

A is CH₂, optionally substituted methyl;

B is CH₂, optionally substituted with methyl;

X is Nor CH.

35. (original) A compound according to claim 29, wherein

R⁵ is C₁-C₂ arylalkyl, C₁-C₂ heteroarylalkyl, C₃-C₄ arylcycloalkyl, or C₃-C₄ heteroarylcycloalkyl, where aryl is phenyl or naphthyl, and heteroaryl is 2-, 3-, or 4-pyridyl, 2-, 4- or 5 pyrimidinyl, triazinyl, 1-, 2- or 4-imidazolyl, 2-, 4-, or 5-oxazolyl, isoxazolyl, indolyl, pyrazolyl, quinolyl, isoquinolyl, 2-, 4-, or 5-thiazolyl, benzothiadiazolyl, 1-, 3- or 4 pyrazolyl, 1-, 3- or 4-triazolyl, 2-triazinyl, 2-pyr, zinyl, 2-, or 3-furanyl, 2-, or 3-thienyl, 2-, or 3-benzothienyl, or 1-, 2- or 5-tetrazolyl, each of which is optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₃ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, (C₃-C₆ cycloalkyl) C₁-C₂ alkyl, C₁-C₆ alkenyl, F, Cl, C₁-C₂ fluoroalkyl, OR⁷, NR⁸R⁹, C₁-C₂ alkyl-OR⁷, C₁-C₂ alkyl-NR⁸R⁹or CN.

36. (Currently amended) A compound according to claim 35, wherein

R⁵ is phenethyl, pyridinylethyl, or 2-tetrahydonaphthylenyl, each of which is optionally substituted with 1 to 2 substituents independently selected at each occurrence from C₁-C₂ alkyl, F, Cl, CF₃ OR⁷, NR⁸R⁹.;

 R^7 is H, C_1 - C_2 alkyl, CF_3 or CH_2CF_{37} ;

 R^8 is H, C_1 - C_2 alkyl, CF_3 or CH_2CF_{37} ;

 R^9 is H or C_1 - C_2 alkyl-;

A is CH₂, optionally substituted with methyl;

B is CH₂, optionally substituted with methyl;

X is Nor CH.

- 37. (original) A compound according to claim 28, where the structure is [3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-(6-methyl-piperidin-2-ylmethyl)-amine.
- 38. (original) A compound according to claim 31, where the compound is selected from the group consisting of:

2-{2-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5--dimethyl-pyrazolo[1,5-a]pyrimidin-7-ylamino]-ethylamino}-butan-1-ol;

- N-{2-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-ylamino]-ethyl}-N'-methyl-cyclohexane-1,4-diamine;
- N-{2-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrim-idin-7-ylamino]-ethyl}-N'-ethyl-cyclohexane-1,4-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-(4-morpholin-4-yl-cyclohexyl)-ethane-1,2-diamine;
- 4-{2-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrim-idin-7-ylamino]-ethylaminol} -cyclohexanol;
- 3-{2-[3-(2,6-dichloro-4-methox- y-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-ylamino]-ethylamino}-pro- pane-1,2-diol;
- N-{2-[3(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazol- o [1,5-a]pyrimidin-7-ylamino]-ethyl}-N'-isobutyl-cyclohexane-1,4-diamine;
- N-{2-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[l 1,5-a]pyrimidin-7-ylamino]-ethyl}-N'-isobutyl-cyclohexane-1,4-diamine;
- 4-{2-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimi-din-7-ylamino]-1-methyl-ethylamino}-cyclohexanol;
- 2-{2-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-ylamino}-cyclohexanol;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazo to [1,5-a]pyrimidin-7-yl]-N'-(4,4,4-trifluoro-butyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin- -7-yl]-N'- (2,2,2-trifluoro-ethyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-(2-trifluoromethyl-cyclohexyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5 -a]pyrimidin-7-yl]-N'-(4-trifluoromethyl-cyclohexyl)-ethane 1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-(2,2-difluoro-ethyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'- (2-fluoro-1-methyl-ethyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazoto [1,5-a]pyrimidin-7-yl]-N'- (2-fluoro-cyclohexyl)-ethane-1,2-diamine.

39. (original) A compound of claim 32, where the compound is selected from the group consisting of N-[3-(2,6-dichloro-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N'-(tetrahydro-pyran-4-yl)-ethane-1,2-diamine; N-[3-(2,4-dichloro-6-methoxy-phenyl)-2,5dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yll-N'-(tetrahydro-pyran -4-yl)-ethane-1,2-diamine; N-[3-(2,6-dichlork)-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimid- in-7-yl]-N'-(tetrahydro-pyran-4-yl)-ethane-1,2-diamine; N1-[3-(2,6-Dichloro-phenyl)-2,5-dimethyl-pyrazo to [1,5-a]pyrimidin-7-yl]-N2&-(tetrahydro-pyran -4-yl)-propane-1,2-diamine; N-[3-(2,6dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N-(2-methyltetrahydro-ftiran-3-yl)-ethane-1,2-dia- mine; N-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5dimethyl-pyrazolo[1,5-a]pyri- midin-7-yl]-N'-(tetrahydro-pyran -4-yl)-ethane-1,2-diamine; 3,5dichloro-4-{2,5-dimethyl-7-[2-(tetrahydro-pyran-4-ylamino)-ethylamino-]-pyrazolo [1,5apyrimidin-3-yl}-benzonitrile; N-[3-(2,6-dichloro-4-propo-xy-phenyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7-yl]-N'-(tetrahydro-pyra- n-4-yl)-ethane-1,2-diamine; 2-(3,5dichloro-4-(2,5-dimethyl-7-[2-(tetrahyd-ro-pyran-4-ylamino)-ethylamino]-pyrazolo [1,5a]pyrimidin-3-yl} -phenyl)-propan -2-ol; N-[3-(2,6-dichloro-4-cyclopent-1-enyl-phenyl)-2,5dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N-(tetrahydro-pyran-4-yl)-ethane-1-,2-diamine; N-[8-(2,6-dichloro-4-ethoxy-phenyl)-2,7-dimethyl-pyrazolo [1,5-a] [1,3,5]triazin-4-yl]-N'-(tetrahydro-pyran-4-yl)-ethane-1,2-diamin- e; (3.5-dichloro-4-(2,5-dimethyl-7-[2-(tetrahydropyran-4-ylamino)-ethylam- ino]-pyrazolo[1,5-a]pyrimidin-3-yl}-phenyl)-methanol; N-[3-(2,6dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N-(2-methyltetrahydro-furan -3-yl)-ethane-1,2-diamine; N-[5-tert-butyl-3-(2,6-dichloro-4-methoxy-phenyl) -2-methyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'-(tetrahydro-pyran-4-yl)-e- thane-1,2-diamine; N-[3-(2,6-dichloro-4-ethoxy-phenyl)-5-ethyl-2-methyl-py-razolo[1,5-a]pyrimidin-7-yl]-N-(tetrahydro-pyran-4-yl)-ethane-1,2-diamine; N-cyclohex-3-enyl-N'-[3-(2,6-dichloro-4-methoxyphenyl)-2,5-dimethyl-pyra- zolo[1,5-a]pyrimidin-7-yl]-ethane -1,2-diamine; N-cyclohex-3-enyl-N'-[8-(2-,6-dichloro-4-ethoxy-phenyl)-2,7-dimethyl-pyrazolo[1,5-a][1,3,5]triazin-4-- yl]ethane-1,2-diamine; N-cyclopent-3-enyl-N'-[3-(2,6-dichloro-4-methoxy-p-henyl)-2,5 dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-ethane-1,2-diamine.

40. (currently amended) A compound of claim 34 where the structure is selected from the group consisting of

- N [3 (2,6 dichloro phenyl) 2,5 dimethyl pyrazolo[1,5 a]pyrimidin-7 yl] N'-(1 ethyl-piperidin-5-a]pyrimidin-7-yl] N'-(2,2,6,6 tetramethyl-piperidin-4-yl) ethane-1,2diamine;
- N-[3-(2,6-dichloro-phenyl)-2,5-dimethyi-pyrazolo[1,5-a]pyrimidin-7-yl]-N'-19 piperidin-4-yl-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-phenyl)-2,- 5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N-(1-ethyl-piperidin-3-yl)-ethane-1,2-diamine;
- N-(1benzyl-pyrrolidin-3-yl)-N'-[3-(2,6-dichloro-phenyl)-2,5-dimethyl-pyrazolo [1,5a]pyrimidin-7-yl]-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N'-pyrimidin-2-yl-ethane-1,2-diamine;
- N-(1-benzylpiperidin-4-yl)-N'-[3 -(2,4-dichloro-6-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-ethane-1,2-diamine;
- N-(1-benzyl-piperidin-4-yl)-N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-ethane-1,2-diamine;
- N-[3(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N'- (1'-methyl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5 dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'- (1-ethyl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl] -N'- (1-isopropyl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'- (2,2,6,6-tetramethyl-piperidin-4-yl)-ethane-1,2- diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]- pyrimidin-7-yl]-N'-(1-ethyl-piperidin-3-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazo to [1,5-a] pyrimidin-7-yl]-N'-piperidin-4-yl-ethanel, 2-diamine;
- N²(1-Benzyl-piperidin-4-yl)-N'-[3-(2,6-dichloro-phenyl) -2,5-dimethyl-pyrazolo[1,5-ajpyrimidin-7-yl]-propane-1,2-diamine;
- N-[3-(2,6-Dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N'- (1-pyridin-3-ylmethyl-piperidin -4-yl)-ethane-1,2-diamine;

- N-[3-(2,6-Dichloro-4-methoxyphenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin- -7-yl]- N'-(1-pyridin-4-ylmethyl-piperidin4-yl)-ethane-1,2-diamine;
- 3,5-Dichloro-4-12,5-dimethyl-7-[2-(1-phenyl-pyrrolidin -3-ylamino)-ethylamino]-pyrazolo[1,5-a]pyrimidin-3-yl]-phenol;
- N-[3-(2,6-2,5dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]-N'-(1-pyridin -2-ylmethyl-piperidin-4-yl)-ethane-1,2-diamine;
- 3,5-dichloro-4-(2,5-dimethyl-7-[2-(1-pyrimidin-2-yl-piperidin-4-ylamino)-ethylamino]-pyrazolo [1,5-a]pyrimidin-3-yl }-benzonitrile;
- N-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5 a]pyrimidin-7-yl]-N'- (1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine-;
- N-[3-(2,6dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]-N'- (1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N-(1-benzyl-piperidin-4-yl)-N'-[3(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimet- hyl-pyrazolo 1,5-a]pyrimidin-7-yl]-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-phenyl)-5-ethyl-2-methyl-pyrazolo[1,5-a]pyrimidin-7-yl-]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-phenyl)-5isopropyl-2-methyl-pyrazoto [1,5-a]pyrimidin-7-yl]-N-(1 pyrimidin-2-yl-piperidin-4-yl)ethane-1,2-diamine;
- N-[3-(2,4-dichloro-phenyl)-5-isopropyl-2-methyl-pyrazolo [1,5a]pyrimidin-7-yl]-N'-(1 pyrimidin -2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N'-[3-(2,6-dichloro-4-ethoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]p- yrimidin-7-yl]-N²-(1 -pyrimidin -2-yl-piperidin-4-yl)-propane-1,2-diamine;
- N'-[3-(2,6-dichloro-4-methoxy-phenyl)-5isopropyl-2-methyl-pyrazoto [1,5-a]pyrimidin-7-yl]-N²-(1-pyrimidin-2-yl-piperidin-4-yl)propane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-5-ethyl-2-methylpyrazoto [1,5-a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N'-[3-(2,6-dichloro-4-methoxy-phenyl)-2-methyl-5-propyl-pyrazolo[1,- 5-a]pyrimidin-7-yl]-N²-(1-pyrimidin-2-yl-piperidin-4-yl)-propane-1,2-diamine;
- N'-[3-(2,6-dichloro-4methoxy-phenyl)-5-ethyl-2-methyl-pyrazoto [1,5-a]pyrimidin-7-yl]-N²-(1-pyrimidin-2-ylpiperidin-4-yl)-propane-1,2-diamine;

- N-[3-(2,6-dichloro-phenyl)-2-methyl-5-propylpyrazoto [1,5-a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N'-[3-(2,6-dichloro-phenyl)-2-methyl-5-propyl-pyrazolo[1,5-a]pyrimid- in-7-yl]-N²-(1-pyrimidin-2-yl-piperidin-4-yl)-propane-1,2-diamine;
- N'-[3-(2,6-dichloro-phenyl)-5-ethyl 2-methyl-pyrazolo[-1,5-a]pyrimidin-7-yl]-N²-(1-pyrimidin-2-yl-piperidin-4-yl)-propanel,2-diamine;
- N-[5-ethyl-2-methyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N'-[5-ethyl-2-methyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidin-7-yl]-N²-(1-pyrimidin-2-yl-piperidin -4-yl)-propane-1,2-diamine;
- N-[3-(2,6dichloro-4-ethynyl-phenyl)-2,5-dimethylpyrazolo [1,5-a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[2-methyl-5 -propyl-3 -(2,4,6-trimethyl-phenyl)-pyrazo to [1,5-a]pyrimidin-7-yl]-N'- (1 pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[2,5-dimethyl-3-(2,4,6-trimethylphenyl)-pyrazolo [1,5-a]pyrimidin-7-yl]-N'-(-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N'-[3-(2,6-Dimethyl-phenyl)-5-ethyl-2-methyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]-N'-(1 pyrimidin-2-yl-piperidin-4-yl)-propane-1,2-diamine;
- N-[3 -(2,6-dimethyl-phenyl) -2-methyl-5-propyl-pyrazolo [1,5 -a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane -1,2-diamine;
- N'-[3-(2,6-Dimethyl-phenyl)-2-methyl-5-propyl-pyrazolo[1,5-- a]pyrimidin-7-yl]-NZ- (1-pyrimidin-2-yl-piperidin-4-yl)-propane-1,2-diamine;
- N'-[3-(2,6dimethyl-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidin-7-yl]-N- .sup.2-(1-pyrimidin-2-ylpiperidin-4-yl)-propane-1,2-diamine;
- N-[3-(2,4-dimethyl-phenyl)-5-ethyl-2-methyl-pyrazolo[1,5-a]pyrimidin-7-yl-]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine;
- N-[3-(2,4-dimethyl-phenyl)-2-methyl-5-propyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'-(1-pyrimidin-2-yl-piperidin-4-yl)-ethane-1,2-diamine; and
- 1-[4-(1{[3-(2,6-dichloro-4-methoxyphenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-ylamino]-methyl] -propylamino)piperidin-1-yl]-ethanone.
- 41. (original) A compound of claim 37 where the structure is selected from the group consisting of

- N-[2,5 -dimethyl-3-(2,4,6-trimethylphenyl)-pyrazolo [1,5-a]pyrimidin-7-yl]-N'-[2-(4-methoxy-phenyl)-ethyl]-ethane-1,2diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-[2-(4-methoxy-phenyl)-ethyl]-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-[2-(3-ethoxy-4-methoxy-phenyl)-ethyl]-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-[2-(4-ethoxy-3-methoxy-phenyl)-ethyl]ethane-1,2-diamine;
- N-[3-(2-,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,a]pyrimid in-7-yl]-N'- (1,2,3,4-tetrahydro-naphthalen-2-yl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-(2-pyridin-2-yl-ethyl)-ethane-1,2-diamine;
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]pyrimidi- n-7-yl]- N'-(2-pyridin-3-yl-ethyl)-ethane-1,2-diamine; and
- N-[3-(2,6-dichloro-4-methoxy-phenyl)-2,5-dimethyl-pyrazolo [1,5-a]pyrimidin-7-yl]-N'- (2-pyridin4-yl-ethyl)-ethane-1,2-diamine.

42-44. (canceled)

- 45. (original) A pharmaceutical composition which comprises a therapeutically effective amount of compound of claim 24 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent.
- 46. (original) A pharmaceutical composition for the treatment of obesity which comprises a therapeutically effective amount of compound of claim 24 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent.

47-50. (canceled)

51. (original) A pharmaceutical composition according to claim 24 for the treatment of

disorders or disease states caused by eating disorders, of obesity, bulimia nervosa, diabetes, dislipidemia, hypertension, memory loss, epileptic seizures, migraine, sleep disorders, pain, sexual/reproductive disorders, depression, anxiety, cerebral hemorrhage, shock, congestive heart failure, nasal congestion or diarrhea.

52-79. (canceled)