Screening Program for Silicosis

Javier Mancilla Galindo

INTRODUCTION

Silicosis is a pulmonary disease caused by exposure to silica dust, which commonly occurs at the workplace.

Employees at high risk in the Netherlands work in:

- Construction
- Ceramic Tile industry
- Artificial stone benchtop industry

A health surveilance program for silicosis is being developed for these industries. Thus, it is important to evaluate the cost-effectiveness of screening strategies for silicosis.

Alternatives

Diagnostic methods being considered include:

- Diagnostic prediction model
- Individual cumulative exposure
- Chest X-Ray (CXR)
- High-resolution chest computed tomography (HRCT)
- Lung function tests

However, no method is perfect and without cons (costs, availability, low participation rates, ratidation).

To compare the cost-effectiveness of screening strategies for silicosis.

Due to time constrains, not all methods will be compared. The following three have been selected:

- Diagnostic prediction model
- HRCT
- CXR

Diagnostic Prediction Model

Predictor	Value	Score	Beta
Age	greater/equal 40 years	1.0	0.72
Smoking habit	Current smoker	1.0	0.70
Job title	High exposure job title	1.5	1.14
Work duration in construction	greater/equal 15 years	1.5	1.00
industry			
Self-related health	Feeling unhealthy	1.25	0.84
Standardized residual FEV1 $$	lower/equal -1.0	1.25	0.91

Cost: 92 EUR / worker

Table 4 The diagnostic accuracy across different cut-off points for referral for chest x ray investigation

Referral cut-off	Number of workers (%)* per sum score category	Number of workers with chest x ray ILO profusion category $\ge 1/1$ (n = 37) n (%)†	Number of workers without chest x ray ILO profusion category $\ge 1/1$ (n = 1254) n [%]‡	Sensitivity (%)	Specificity	NPV (%)
Sum scores ≥2	1065 (82.5)	37 (3.5)	1028 (96.5)	100.0	18.0	100.0
Sum scores ≥3	684 (53.0)	37 (5.4)	647 (94.6)	100.0	48.4	100.0
Sum score ≥3.75	567 (43.9)	33 (5.8)	534 (94.2)	89.2	57.4	99.4
Sum score ≥4.0	494 (38.3)	31 (6.3)	463 (93.7)	83.8	63.1	99/2
Sum score ≥4.25	293 (22.7)	22 (7.5)	271 (92.5)	59.5	78.4	78.5
Sum scores ≥4.75	270 (20.9)	21 (7.8)	249 (92.2)	56.8	80.1	98.4
Sum scores ≥5.25	119 (9.2)	13 (10.9)	106 (89.1)	35.1	91.5	98.0

^{*}Proportion of all workers (n = 1291).

[†]Proportion of workers with positive x ray within the sum score category. ‡Proportion of workers with negative x ray within the sum score category.

Diagnostic Imaging studies

CXR

Sensitivity: 0.76 (95%CI: 0.63-0.86)

Specificity: 0.89 (95%CI: 0.77-0.95)

Cost: 92 EUR / worker

HRCT

Reference test

Cost: 1600 EUR / worker

Source:

- Sensitivity and specificity from a systematic review of the literature (Durairaj, 2024)
- · Costs: Consulted with occupational health referral center

Model

Markov cohort (deterministic) model, cohort size 1000

Five strategies compared:

- CXR to all workers (baseline)
- HRCT to all workers
- Prediction model stratification followed by HRCT in high-risk participants at 3 cutoffs:
 - 3.75 points
 - 4.25 points
 - 5.25 points

Model

Effectiveness: QALY (utilities are approximates based on own judgement, not literature-based)

Costs: Costs of tests consulted with providers, all other costs assumed.

Probability of death: Own judgement, not based on literature.

WTP: 80,000 EUR per QALY assumed for a high-severity disease in the Netherlands.

Prevalence: Approximately 10%, modeled with beta distribution for low prevalences.

Single screening strategy

Duration: 10 years. It is assumed that transition between stages in follow-up is negligible due to slow progression of silicosis.

Probabilistic sensitivity analyses

Results

Strategy	Cost (EUR/worker)	Effectiveness (QALY/1000 worker)	ICER	Notes
Cutoff 5.25	1057.13	9.38		
Cutoff 4.25	1342.66	9.42	6516.8	Cost Saving
Cutoff 3.75	1766.45	9.48	7946.38	Cost Saving
CXR	1819.63	9.41		Strongly Dominated (Baseline)
HRCT	2590.13	9.49	47992.6	

Threshold analysis varying prevalence

HRCT superior effectiveness above 0,01

Probabilistic Sensitivity Analysis

Discussion

- High uncertainty does not allow to conclude which strategy is the best.
- However, HRCT seems to be the most effective strategy and costly.
 - Cost-effectiveness within WTP margin
 - However, screening all workers with HRCT logistically challenging and may have other unintended consecuences (i.e., working time loss, pressure on healthcare system).
- Risk stratification followed by HRCT good alternative under resource constrains.

Discussion

- Reliable sources of data are needed to improve this model.
- Future work:
 - Incorporate individual cumulative exposure in modelling as tunnel states or at the individual level with microsimulation
 - Include other consequences from exposure (i.e., mesothelioma, lung cancer)
 - Model misclassification of prediction model as this was developed with CXR as the reference test.
 - Use better costs estimates for the societal perspective and literature-based survival rates and QoL utilities.

THANKS

