Phase 2: Innovation

Name: P.Kaviyalaxmi

Register Number: 312621243017

College Name : Thangavelu Engineering College

Project 3: Future Sales Prediction

Objective:

The objective is to create a tool that enables the company to optimize inventory management and make informed business decisions based on datadriven sales predictions In this part we understand the problem statement and we created a document on what have we understood and we proceeded ahead with solving the problem. The problem is to develop a predictive model that uses historical sales data to forecast future sales for a retail company.

Code:

The code should be run in jupyter or collab.

#Data Source utilize the dataset

import pandas as pd

data=pd.read_csv(r'Sales.csv') data

TV	Radio	Newspaper	Sales	Total_Spent
230.1	37.8	69.2	22.1	337.1
44.5	39.3	45.1	10.4	128.9
17.2	45.9	69.3	12.0	132.4
151.5	41.3	58.5	16.5	251.3
180.8	10.8	58.4	17.9	250.0
(332)	***	V-555-0		5336
38.2	3.7	13.8	7.6	55.7
94.2	4.9	8.1	14.0	107.2
177.0	9.3	6.4	14.8	192.7
283.6	42.0	66.2	25.5	391.8
232.1	8.6	8.7	18.4	249.4
	230.1 44.5 17.2 151.5 180.8 38.2 94.2 177.0 283.6	230.1 37.8 44.5 39.3 17.2 45.9 151.5 41.3 180.8 10.8 38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	230.1 37.8 69.2 44.5 39.3 45.1 17.2 45.9 69.3 151.5 41.3 58.5 180.8 10.8 58.4 38.2 3.7 13.8 94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2	44.5 39.3 45.1 10.4 17.2 45.9 69.3 12.0 151.5 41.3 58.5 16.5 180.8 10.8 58.4 17.9 38.2 3.7 13.8 7.6 94.2 4.9 8.1 14.0 177.0 9.3 6.4 14.8 283.6 42.0 66.2 25.5

200 rows × 5 columns

#Data Preprocessing #describe()

method

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import StandardScaler, LabelEncoder print(data.describe())

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

#to check any missing values print(data.isnull().sum())

```
TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64
```

#if missing values are their then use this code

data.fillna(data.mean(), inplace=True)

#to remove duplicate values data

= data.drop_duplicates()

#Categorical column labelencoder

= LabelEncoder()

data['class']=labelencoder.fit_transform(data['Sales']) data.tail(5)

	TV	Radio	Newspaper	Sales	class
195	38.2	3.7	13.8	7.6	14
196	94.2	4.9	8.1	14.0	52
197	177.0	9.3	6.4	14.8	56
198	283.6	42.0	66.2	25.5	118
199	232.1	8.6	8.7	18.4	84

#Feature Engineering

data['Total_Spent'] = data['TV'] + data['Radio'] + data['Newspaper']
print(data)

	TV	Radio	Newspaper	Sales	Total_Spent
0	230.1	37.8	69.2	22.1	337.1
1	44.5	39.3	45.1	10.4	128.9
2	17.2	45.9	69.3	12.0	132.4
3	151.5	41.3	58.5	16.5	251.3
4	180.8	10.8	58.4	17.9	250.0
195	38.2	3.7	13.8	7.6	55.7
196	94.2	4.9	8.1	14.0	107.2
197	177.0	9.3	6.4	14.8	192.7
198	283.6	42.0	66.2	25.5	391.8
199	232.1	8.6	8.7	18.4	249.4

[200 rows x 5 columns]

#Model Selection

from statsmodels.tsa.arima.model import ARIMA from itertools import product import itertools p = 1 # Example value d = 1 # Example value q = 1 # Example value model = ARIMA(y, order=(p, d, q)) # Create the ARIMA model model_fit = model.fit() # Fit the model to the data print(model_fit.summary()) # Summary of the model

SARIMAX Results

Dep. Varia	ble:	Sal	les No	. Observations	5:	200
Model:		ARIMA(1, 1,	1) Lo	g Likelihood		-616.270
Date:	Sa	it, 30 Sep 20)23 AI	C		1238.541
Time:		08:39:	18 BI	C		1248.421
Sample:			0 HQ	IC		1242.539
		- 2	200			
Covariance	Type:	(ppg			
=======	coef	std err		z P> z	[0.025	0.975]
ar.L1	-0.0125	0.081	-0.15	4 0.878	-0.171	0.146
ma.L1	-0.9999	3.737	-0.26	8 0.789	-8.324	6.324
sigma2	27.9129	104.167	0.26	8 0.789	-176.251	232.077
====== Ljung-Box	(L1) (Q):		0.00	Jarque-Bera	======== a (JB):	
Prob(Q):			0.95	Prob(JB):		
Heterosked	lasticity (H):		1.02	Skew:		-1
Prob(H) (t	:wo-sided):		0.95	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#Model training

train_size = int(len(data) * 0.8)
train, test = data['Sales'][:train_size], data['Sales'][train_size:]
Initialize and fit the ARIMA model on the training data
model = ARIMA(train, order=order) model fit = model.fit()

Print the summary of the model

print(model_fit.summary())

SARTMAX Results

Dep. Variabl	e:	Sa.	les No.	Observations:		160
Model:		ARIMA(2, 1,	2) Log	Likelihood		-492.777
Date:	Sa	t, 30 Sep 20	323 AIC			995.554
Γime:		11:33	:08 BIC			1010.898
Sample:			0 HQIC			1001.785
		- 1	160			
Covariance T	ype:	(opg			
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.7420	2.110	-0.352	0.725	-4.878	3.394
ar.L2	-0.0002	0.123	-0.001	0.999	-0.242	0.242
ma.L1	-0.2499	2.115	-0.118	0.906	-4.396	3.896
na.L2	-0.7060	2.049	-0.345	0.730	-4.721	3.309
sigma2	28.2650	4.001	7.064	0.000	20.423	36.107
Ljung-Box (L	1) (Q):		0.00	Jarque-Bera	 (JB):	3
Prob(Q):			0.96	Prob(JB):		e
Heteroskedas	ticity (H):		1.25	Skew:		-0
Prob(H) (two	-sided):		0.42	Kurtosis:		2

#model evaluation

Make predictions on the test set predictions

= model fit.forecast(len(test))

Calculate MAE, MSE, RMSE

mae = mean_absolute_error(test, predictions)

mse = mean squared error(test, predictions)

rmse = math.sqrt(mse) #Print the output

print(f'Mean Absolute Error (MAE): {mae}')

print(f'Mean Squared Error (MSE): {mse}') print(f'Root

Mean Squared Error (RMSE): {rmse}')

Mean Absolute Error (MAE): 4.589596699334463 Mean Squared Error (MSE): 29.66771325808453 Root Mean Squared Error (RMSE): 5.446807620807305