# 3000788 Intro to Comp Molec Biol

Lecture 9: ChIP-seq and DNA motif discovery

Fall 2025





#### Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

# Today's agenda

- Epigenetics
- Chromatin immunoprecipitation technique
- Analysis of ChIP-seq data
- DNA motif discovery

# **Epigenetic mechanisms**

# **Epigenetics**

 Regulation of gene expression without changing the DNA sequence

#### Major mechanisms

- DNA methylation
- Chromatin accessibility
- Histone modification



#### **Transcription factor (TF)**

- TFs are proteins that binds to DNA segments called enhancer, repressor, or promoters
- [Activator, Promoter] TFs recruit and stabilize RNA polymerase
- [Repressor] TF-bound repressor blocks RNA polymerase from the promoter





https://jackwestin.com/resources/mcat-content/control-of-geneexpression-in-eukaryotes/dna-binding-proteins-transcription-factors

#### Histone and nucleosome



- Histone is a family of proteins that together form an octamer
- DNA wraps around histones for packaging
- A unit of DNA-histone is called nucleosome (~150bp)

#### Modification of histone tails



# Regulatory roles of histone tail modification



# **Chromatin immunoprecipitation (ChIP)**

# **Chromatin immunoprecipitation**



Selective enrichment of DNA segments via antibody pull-down

#### **Antibodies for histone modifications**



https://chromatinantibodies.com/background

- Specificity is important
- Study literature to find reliable Ab

#### Monoclonal histone modification antibodies

Abcam catalog

| Function        |                                                                        |                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| runction        | Rabbit monoclonal antibody                                             | Mouse monoclonal antibody                                                                                                                                                                                                                                    |
| Activation      | ab176877                                                               | -                                                                                                                                                                                                                                                            |
| Activation      | ab213224                                                               | -                                                                                                                                                                                                                                                            |
| Activation      | ab32129                                                                | -                                                                                                                                                                                                                                                            |
| Activation      | ab177178                                                               | -                                                                                                                                                                                                                                                            |
| Repression      | ab32521                                                                | ab1220                                                                                                                                                                                                                                                       |
| Repression      | ab176916                                                               | -                                                                                                                                                                                                                                                            |
| Repression      | ab192985                                                               | -                                                                                                                                                                                                                                                            |
| DNA damage      | ab81299                                                                | ab26350                                                                                                                                                                                                                                                      |
| DNA replication | ab177218                                                               | <u>ab14955</u>                                                                                                                                                                                                                                               |
|                 | Activation  Activation  Activation  Repression  Repression  DNA damage | Activation         ab213224           Activation         ab32129           Activation         ab177178           Repression         ab32521           Repression         ab176916           Repression         ab192985           DNA damage         ab81299 |

#### **ChIP-seq experiment setup**

- Need matched control to model the baseline read count per genomic segment
- Input control = no immunoprecipitation
- Peak calling = detection of high local read count in ChIP sample relative to control
- Single-end sequencing is good enough!



# **Analysis of ChIP-seq data**

#### **Overview**

- What's new:
  - Peak calling
  - Quality check
  - Peak annotation
  - Functional enrichment
  - Motif discovery



#### Peak calling (for TF)



 Clusters of forward and reverse reads surrounding the binding sites

- d = DNA fragment size

Peak height = read counts



epigenomics.readthedocs.io/en/latest/content/tutorials/expdesign/expdes-ChIPseq.html

Wilbanks, E.G. and Facciotti, M.T. PLoS ONE 5:e11471 (2010)

#### **Poisson distribution**



The probability that an event will occur k times within a certain time or space (with expectation =  $\lambda$ )

$$- P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

For ChIP-seq: The probability that we observe k reads a DNA segment (with expectation =  $\lambda$ , number of reads in the input control)

https://en.wikipedia.org/wiki/Poisson\_distribution

# Poisson model for peak calling

- Null Hypothesis: There is no peak. We expect the number of reads in ChIP sample to be the same as the input control ( $\lambda$  reads).
- P-value = P(observe ≥k reads in ChIP | expected λ reads) =  $\sum_{x=k}^{\infty} \frac{\lambda^x e^{-\lambda}}{x!}$
- Low p-value: Unlikely to observe k reads in ChIP sample by chance under the Null Hypothesis  $\rightarrow$  There is a peak in ChIP sample
- This is why we need the input control, with sufficient sequencing depth to estimate  $\lambda$

# Differential peak calling



- Comparing across experimental conditions, not with input control
- **Two-stage**: Peak calling → Compare height

#### Narrow and broad peaks



- [Narrow] TFs bind at precise locations
- [Broad] Histone modifications span a long DNA segment



**DNA-binding protein** 

# Calling of broad peaks



- Call individual peaks
- Merge adjacent peaks into broader areas
- What is the range (in bp) for merging adjacent peaks?
  - Optimized by known data
  - Visual inspection

# Calling of broad peaks



- Call individual peaks
- Score each DNA segment with the number of observed peaks
- Identify the **start** and **end** of high-density segments

#### **BED file format**

| track type | =n; Peak name=" | Somite narrow | Peak" |          |      |         |     |
|------------|-----------------|---------------|-------|----------|------|---------|-----|
| chr14      | 93429597        | 93429897 .    | 971   | . 6.1409 | 9 -1 | 0.1492  | 150 |
| chr2       | 217436588       | 217436888 .   | 1000  | . 6.1482 | 5 -1 | 0.14907 | 150 |
| chr2       | 63964529        | 63964829 .    | 1000  | . 6.1495 | 5 -1 | 0.14903 | 150 |
| chr9       | 115258329       | 115258629 .   | 954   | . 6.1725 | 7 -1 | 0.14984 | 150 |
| chr9       | 20692737        | 20693037 .    | 1000  | . 6.1817 | 8 -1 | 0.14996 | 150 |
| chr10      | 3828442         | 3828742 .     | 1000  | . 6.2027 | 6 -1 | 0.15    | 150 |
| chr3       | 4763989         | 4764289 .     | 732   | . 6.2884 | 2 -1 | 0.15822 | 150 |
| chr6       | 143037411       | 143037711 .   | 887   | . 6.3270 | 4 -1 | 0.16192 | 150 |
| chrX       | 55138332        | 55138632 .    | 1000  | . 6.3555 | 9 -1 | 0.16467 | 150 |
| chr8       | 126231677       | 126231977 .   | 1000  | . 6.3614 | 1 -1 | 0.16485 | 150 |
| chr2       | 120245492       | 120245792 .   | 1000  | . 6.398  | 3 -1 | 0.16748 | 150 |

- Tabular file with 3 requires columns:
  - Sequence (chromosome/scaffold/contig) name
  - Start position
  - End position
- Designate genomic regions (ChIP peaks, exomes, etc.)

#### Quality check of called peaks: ChIPQC

Table 1. Summary of ChIP-seq filtering and quality metrics.

| ID           | Tissue | Factor | Condition | Replicate | Reads   | Dup% | ReadL | FragL | RelCC | SSD  | RiP% | RiBL% |
|--------------|--------|--------|-----------|-----------|---------|------|-------|-------|-------|------|------|-------|
| Nanog.Rep1   |        | Nanog  |           | 1         | 969186  | 0    | 36    | 121   | 1.4   | 2    | 4.1  | 2.9   |
| Nanog.Rep2   |        | Nanog  |           | 2         | 2283248 | 0    | 36    | 136   | 2.7   | 1.9  | 6.5  | 1.5   |
| Pou5f1.Rep1  |        | Pou5f1 |           | 1         | 1085316 | 0    | 36    | 164   | 2.3   | 2.6  | 3.9  | 3.2   |
| Pou5f1.Rep2  |        | Pou5f1 |           | 2         | 1995385 | 0    | 36    | 151   | 5.8   | 3    | 0.92 | 2.6   |
| Nanog-Input1 | NA     | NA     | NA        | NA        | 4080970 | 0    | 36    | 73    | 0.2   | 4.3  | NA   | 5.2   |
| Nanog-Inputa | NA     | NA     | NA        | NA        | 1817134 | 0    | 50    | 104   | 0.64  | 0.01 | NA   | 0.56  |

TTTT

- **RiP%:** Percentage of reads in peak
- **SSD**: Variance of coverage across the genome
- **RiBL%:** Percentage of reads mapped to regions known to have artificially high read counts (microsatellite, mobile element, repeats, ribosomal DNA)
- **ReICC**: Consistency of the DNA fragment sizes

# Visualization with Integrative Genomic Viewer



Tripodi, I. et al. Preprint DOI:10.1101/531517

BAM or BED file from ChIP-seq analysis can be uploaded into IGV

#### Relative visualization



- Summarization of peak location relative to the **transcription start site** (TSS) of the nearest gene

#### **Annotation of ChIP peaks**



- With no other evidence, peaks are mapped to the nearest genes and transcription start sites (TSS)
- Functional annotation of the genes are transferred to ChIP peaks

# Functional enrichment analysis

# Hypergeometric distribution



- Null Hypothesis: No association between ChIP peaks and kinases
- What is the probability of observing k out of n ChIP peaks being near kinase genes?
- Given total *N* genes, *K* of which are kinases

# Hypergeometric distribution



- P(N, K, n, k) = 
$$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$

- P-value = sum of P(N, K, n, x) for  $x \ge k$
- Low p-value: Reject Null Hypothesis, there is an association between ChIP peaks and kinases

#### Functional enrichment analysis for ChIP peaks



Step 2: Associate genomic regions with genes via regulatory domains

Genomic region associated with nearby gene
Ignored distal genomic region

- **20,000** total genes
- 200 genes linked to cholesterol metabolism
- 1,000 total peaks identified
- **700** peaks are within 1kb of some genes
- 100 are near genes linked to cholesterol metabolism
- Expectation: 200 x 700 / 20,000 = 7 peaks linked to cholesterol metabolism
- 100 / 7 = 14-fold enrichment!

McLean et al. Nat Biotech, 28(5):495-501 (2010)

#### **Binomial distribution**



 The probability that an event with probability p will happen k times out of n trials

- 
$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- P-value = sum of P(x) for  $x \ge k$
- How can we use this for ChIP analysis?

#### Binomial model for functional enrichment



- Annotate genome segments according to the functions of nearby genes
- 0.0001 of the genome linked to cholesterol metabolism
- Out of 1,000 ChIP peaks, 50 fall in the regions linked to cholesterol metabolism
- **Expectation**: 0.0001 x 1,000 < 1 peak

#### Limitation of ChIP peak analysis

- Epigenetics can affect genes very far away from ChIP peak locations
  - Depend on distance in 3D, not distance on the genome sequence
- Epigenetics does not necessarily affect the nearest gene
- Interpret together with other omics data
  - With transcriptomics: Does increase in gene expression coincide with more TF binding or activating histone markers?
  - With genomics: Does disease-specific mutations disrupt epigenetics?

# **DNA** motif

#### **DNA** motifs











- Patterns of DNA sequence recognized by proteins or other molecules
- DNA binding motifs
- Similar concept to

  Position-Specific Scoring

  Matrix (PSSM)

#### Discovery of DNA binding motifs from ChIP data



- If TF recognize specific DNA motifs, every ChIP peak should contain at least 1 occurrence of those patterns!
- Is there an algorithm to find common DNA patterns shared by a collection of DNA segments? How to test for statistical significance?

# Motif discovery algorithm sketch



- Guess a motif (fixed length)
- Find the best match in each sequence (ChIP peak)
- Update motif's PSSM
- Find (possibly better) match in each sequence
- Repeat the two steps
- Same idea as PSI-BLAST

#### Issue of sampling algorithm



- Final answer depend on the initial guess!

- Smart guess:
  - Compare sequences beforehand and identify matching DNA patterns
- Brute force:
  - Try multiple guesses
  - Select the best final motifs

# An example of sampling strategy



- Generate diverse guesses (hot sampling)
- For each guess, let the algorithm converge to a local best motif (cold sampling)
- A general approach in Al and physics simulation

#### One-stop service for DNA motif analysis

- Motif discovery from your DNA sequences
- Search for known motifs in your DNA sequences
- Test if your DNA sequences contain some motifs more frequently than in the genomic background



#### **Scoring of motifs**

...CC**ACGT**AGC...

. . . CC**ACGTGT**C . . .

https://cs.rice.edu/~ogilvie/comp571/pssm/

- Given a PSSM, a DNA sequence can be scored according to the probability

- P(CCACGTAGC | PSSM) = 
$$\frac{15}{47} \cdot \frac{20}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{3}{47} \cdot \frac{18}{47} \cdot \frac{20}{47} = 0.001412$$

- Log-odd = 
$$\operatorname{Log}\left(\frac{p}{1-p}\right)$$
 = -2.85

- P(CCACGTGTC| PSSM) = 
$$\frac{15}{47} \cdot \frac{20}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{47}{47} \cdot \frac{43}{47} \cdot \frac{28}{47} \cdot \frac{20}{47} = 0.031498$$

- Log-odd = 
$$\operatorname{Log}\left(\frac{p}{1-p}\right) = -1.49$$

#### **Enrichment of a motif**

Your DNA sequences
(ChIP-seq peaks)

# of motif occurrence
# of sequence with motif
Distribution of log-odd scores

Background DNA sequences
(Random genomic segments)

# of motif occurrence
# of sequence with motif
Distribution of log-odd scores

- **Null Hypothesis**: Your DNA sequences are not associated with the motif. Expect the same occurrence as random genomic segments
- Caution: The difference in DNA k-mers can bias motif occurrence!
  - Select from the same genome, or generated

# Any question?

- See you next time