

Shahjalal University of Science & Technology, Sylhet Department of Biochemistry and Molecular Biology 2nd Year 1st Semester B. Sc. (Hons) Final Examination, 2015

Course No: BMB-221 Course Title: Enzymology-I

Credit: 2.0 Total Marks: 50 Time: 2 Hours

Instructions:

- Number in the right side indicates the marks of the question.
- Marks for each question are same.
- Answer any two (2) questions from each Part (A and B)...

Part-A

1.	a) b)	What is enzyme? Write down the general properties of enzyme that make it different from chemical catalysts. Why enzymes are so large? Write down some common features of active sites.	1+4 4.5
		Identify the class of the following enzymes-	0.5X6
	c)		
		(i) Kinase (ii) Epimerase (iii) Catalase	=3.0
		(iv) Pyruvate carboxylase (v) Ribonuclease (vi) Fumarase	
		(V) Tyravace earooxylasse (V) rasonaerouse (VI) Tamarase	
2.	a)	What is enzyme assay? What are the different methods of enzyme assay, explain with example.	4.5
	b)	How could we determine the activity of Pyruvate Kinase? Explain the reaction setup and preconditions of the assay method.	4
	c)	Write down the factors affecting an enzyme assay?	4
3.	a)	How does enzyme-substrate binding energy contribute towards the reaction specificity and enhanced catalysis efficiency?	3+3
	b)	Elaborate the Lock and Key model of enzyme kinetics. Why this model could not able to	2+2+
	,	explain the actual enzyme kinetics? What is the modern model of enzyme kinetics?	2.5
		explain the actual chaythe kineties: what is the modell model of chaythe kineties!	4.5

Part-B

4.	a)	catalyzed reaction. Explain the reasons behind the observed pattern.	4
	b)	Derive the Lineweaver-Burk plot equation from Michaelis-Menten equation and draw the graph. What are the major advantages and drawbacks of Lineweaver-Burk plot.	4.5
	c)	Define $K_{\rm m}$ and $k_{\rm cat}$. Write their significance in relation with substrate concentration.	4
5.	a);	Relation between Reaction Velocity and Substrate Concentration using Michaelis-Menten Equation. (a) At what substrate concentration would an enzyme with a $K_{\rm m}$ of 0.006 M operate at one-quarter of its maximum rate? (b) Determine the fraction of $V_{\rm max}$ that would be obtained at the following substrate concentrations: $0.5K_{\rm m}$, $2K_{\rm m}$, and $10K_{\rm m}$.	2+3
	b)	Write down the differences among the competitive, non-competitive and uncompetitive inhibitor.	3.5
	c)	The $K_{\rm m}$ of a reaction is 5 mM. After using of an inhibitor of 10 mM, the apparent $K_{\rm m}$ is 20 mM, without any change in $V_{\rm max}$. What type of inhibitor is this and calculates $K_{\rm I}$ for the inhibitor?	4
6.	a)	Write down the role/significance of enzyme in the following medical complications (Any three)- (i) Myasthenia Gravis (ii) Hemolytic Anemia (iii) Treatment of Alcoholism (iv) Methanol toxicity	3X3= 9.0
	b)	Elaborate the statement "Chymotrypsin is not a peptidase at all, but an acyl group transferase".	3.5