Exercise 8. Prove that all the roots of the equation $z^6 - 5z^2 + 10 = 0$ lie in the annulus 1 < |z| < 2.

Proof. Let C_1 be the circle |z| = 1 and C_2 the circle |z| = 2. Consider f(z) = 10 which has no zeros inside and on C_1 , and $h(z) = z^6 - 5z^2$. Then on C_1

$$|h(z)| = |z^6 - 5z^2| \le |z|^6 + 5|z|^2 = 1 + 5 = 6$$

which is strictly less than |f(z)| = 10. Therefore $z^6 - 5z^2 + 10$ has no roots inside and on C_1 . Now consider $f(z) = z^6$ which clearly has 6 zeros strictly inside C_2 , and $h(z) = -5z^2 + 10$. Then on C_2

$$|h(z)| = |-5z^2 + 10| \le 5|z|^2 + 10 = 5 \cdot 4 + 10 = 30$$

which is strictly less than $|f(z)| = |z|^6 = 2^6 = 64$. Therefore $z^6 - 5z^2 + 10$ has six roots strictly inside C_2 thus has all six roots in the region 1 < |z| < 2.

1