

Trajectory planning





F = G + H

**F** is the total cost of the node.

**G** is the distance between the current node and the start node. **H** is the heuristic — estimated distance from the current node to the end node.

| 7 | 6 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |    | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 6 | 5 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |    | 18 | 19 | 20 | 21 |
| 5 | 4 | 3 | 4 | 5 | 6 | 7 | 8  | 9  |    | 17 | 18 | 19 | 20 |
| 4 | 3 | 2 | 3 | 4 | 5 | 6 | 7  | 8  |    | 16 | 17 | 18 | 19 |
| 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6  | 7  |    | 15 | 16 | 17 | 18 |
| 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5  | 6  |    | 14 | 15 | 16 | 17 |
| 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6  | 7  |    | 13 | 14 | 15 | 16 |
| 4 | 3 | 2 | 3 | 4 | 5 | 6 | 7  | 8  |    | 12 | 13 | 14 | 15 |
| 5 | 4 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 6 | 5 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 |



A\* steps

- 1. Add the starting square (or node) to the open list.
- 2. Repeat the following:
- 2.1. Look for the lowest **F** cost square on the **open list**. We refer to this as the **current square**. Put in on the **closed list**.
- 2.2. For each of the adjacent squares to the current square:
- •If it is not reachable or if it is on the closed list, ignore it. Otherwise do the following.
- •If it isn't on the open list, add it to the open list. Make the current square the parent of this square. Record the **F**, **G**, and **H** costs of the square.
- •If it is on the **open list** already, check to see if this path to that square is better, using **G** cost as the measure. A lower **G** cost means that this is a better path. If so, change the parent of the square to the **current square**, and recalculate the **G** and **F** scores of the square.
- 3. Stop when you:
- •Add the target square to the **closed list**, in which case the path has been found, or
- •Fail to find the target square, and the **open list** is empty. In this case, there is no path.

|    |   |   | - | اما | اما | 14-51 | امدا | 4 5 |
|----|---|---|---|-----|-----|-------|------|-----|
| 4_ | 5 | 6 | 7 | 8   | 9   | 17    | 18   | 19  |
| 3  | 4 | 5 | 6 | 7   | 8   | 16    | 17   | 18  |
| 2  | 3 | 4 | 5 | 6   | 7   | 15    | 16   | 17  |
| 1  | 2 | 3 | 4 | 5   | 6   | 14    | 15   | 16  |
| 2  | 3 | 4 | 5 | 6   | 7   | 13    | 14   | 15  |
| 3  | 4 | 5 | 6 | 7   | 8   | 12    | 13   | 14  |

4. Restore the path.

# A\* vs. Dijkstra's Algorithm





# A\* vs. Dijkstra's Algorithm









#### Cross Track Error



## Proportional control



### PD control



#### PID control



# Varying Kp



# Varying Ki



## Varying Kd



## PID control in simulated environment



# Kinematic bicycle model



## Kinematic bicycle model



$$u_1$$
 - acceleration

 $u_2$  - steering angle

$$\beta(u_2) = \arctan\left(\tan(u_2)\frac{l_r}{l_f + l_r}\right)$$

### Predictive model

$$x_{t+1} = x_t + v_t \cos(\psi_t)dt$$

$$y_{t+1} = y_t + v_t \sin(\psi_t)dt$$

$$\psi_{t+1} = \psi_t + \frac{v_t}{l_f}\delta_t dt$$

$$cte_{t+1} = f(x_t) - y_t + v_t \sin(e\psi_t)dt$$

$$e\psi_{t+1} = \psi_t + \frac{v_t}{l_f}\delta_t dt$$

$$e\psi_{t+1} = \psi_t + \psi_t des_t \frac{v_t}{l_f}\delta_t dt$$

$$v_{t+1} = v_t + a_t dt$$

## MPC cost function and constraints

- Cross-track error.
- Heading error.
- Speed cost.
- Steering cost.
- Acceleration cost.
- Steering rate change.
- Acceleration rate change (jerk).

$$J = \sum_{t=1}^{N} w_{cte} ||cte_t||^2 + w_{e\psi} ||e\psi_t||^2 + w_v ||v_t - v_{target}||^2$$

$$+\sum_{t=1}^{N-1} w_{\delta} ||\delta_{t}||^{2} + w_{a} ||a_{t}||^{2}$$

$$+ \sum_{t=2}^{N} w_{rate_{\delta}} ||\delta_{t} - \delta_{t-1}||^{2} + w_{rate_{a}} ||a_{t} - a_{t-1}||^{2}$$

#### Constraints:

$$\delta \in [-25^{\circ}, 25^{\circ}]$$
  
 $a \in [-1, 1]$ 

Solve for next N points with QP solver.

## MPC in simulated environment



## Prediction

#### Model-based

$$\mu_k^{(i)} = rac{\mu_{k-1}^{(i)} L_k^{(i)}}{\sum_{j=1}^M \mu_{k-1}^{(j)} L_k^{(j)}}$$

#### Data-driven



# Model based prediction



# Data-driven prediction, cluster trajectories



## TraPHic



## TraPHic



# Behavior



### Behavior with Finite State Machines



## Cost functions for FSM

| Class       | Position                    | Velocity                  | Acceleration                      |  |
|-------------|-----------------------------|---------------------------|-----------------------------------|--|
| Feasibility | Avoids<br>Collision?        |                           | Acceleration is feasible for car? |  |
| Safety      | Buffer<br>Distance          | Speed ~=<br>traffic speed |                                   |  |
| Legality    | Stays on Road?              | Speed < speed limit?      |                                   |  |
| Comfort     | Near center of current lane |                           | Low change in acceleration (jerk) |  |
| Efficiency  | Desired Lane                | Speed ~= speed limit      |                                   |  |

# Deep Reinforcement Learning for FSM



### Learned states



| Cluster ID | Dominating states | Description                          |  |  |  |  |
|------------|-------------------|--------------------------------------|--|--|--|--|
| 1          | 0,2,3,8,13        | without significant meaning          |  |  |  |  |
| 2          | 17, 21            | steady long distance car-following   |  |  |  |  |
| 3          | 7,13,20           | intermediate process                 |  |  |  |  |
| 4          | 4, 9, 10, 14      | steady medium distance car-following |  |  |  |  |
| 5          | 12, 15, 19        | intermediate process                 |  |  |  |  |
| 6          | 1,2,6,11,12,16    | steady short distance car-following  |  |  |  |  |
|            |                   |                                      |  |  |  |  |

### Homework

Create a PID controller for a simple robot.

 Write cost functions for FSM for lane changing behavior.