Theory and Practice of Data Cleaning

What is Data Quality? How can we improve it?

Data Quality (DQ) and Data Cleaning in Context

- Data Cleaning/Wrangling
 - A much needed, underappreciated phase before data analysis can begin
 - Low-quality data causes significant costs (whether we clean data or not)
 - Apply early in the data life-cycle (and apply often, as needed..)
- Data Errors
 - Many different types: quantitative (outliers) and qualitative:
 - Syntax / format errors (pattern violations)
 - Semantic / schema errors (integrity constraints)
- Data Quality
 - ... what is data quality?
 - "Even though quality cannot be defined, you know what it is."

- Robert Pirsig

Data Quality Defined

- Data Quality as Fitness for Use / Fitness for Purpose:
 - Data are of **high-quality** if they are **fit for use** in their uses (by customers) in operations, decision-making, and planning.
 - They are fit for use when they are *free of defects* and possess the features needed to complete the operation, make the decision, or complete the plan.

Redman, Thomas C. **Data Quality Management Past, Present, and Future: Towards a Management System for Data**. In Handbook of Data Quality, 15–40. Springer, 2013.

Data Quality: Fitness for Use

• Where this comes from:

- What do you want to do with the data?
- What are the *questions* you're trying to answer?
- Do you even need this table / column / field?
 - e.g. analyzing census data per region, state, county, ..

Where this gets tricky:

- If you don't (yet) know what you want to ask of the data ...
- Interesting challenge for:
 - digital archivists (e.g., digital librarians) and research data librarians
 - data curators (e.g., at a natural history museum)

Pillars of Data Quality

Organizational

• Data quality objectives for the organization; strategies to establish roles, processes, policies, standards required to manage and ensure DQ objectives are met.

Architectural

 Technology landscape to deploy DQ management processes, standards, policies.

Computational

- IT tools and computational techniques required to meet DQ objectives
 - syntax and format normalization,
 - integrity constraints,
 - provenance,
 - duplicate detection, ...

Readings: [Sad13] Sadiq, S. Research and Practice in Data Quality Management. Handbook of Data Quality, 2013.

Common Phases, Steps in DQ Management

Context Reconstruction

- collect context information on organizational processes, services, data management procedures, quality issues, costs
- (skip if context info is available from previous analyses)

Assessment/Measurement

- measures DQ along relevant dimensions
- assess DQ by comparing with reference values
- enable diagnosis of DQ: find causes of poor DQ

Improvement

 concerns the selection of the steps, strategies, and techniques for reaching new data quality targets

Readings: [BCF+09] Batini et al. Methodologies for Data Quality Assessment and Improvement. ACM Computing Surveys, 2009.

Dimensions of Data Quality

Redman, Thomas C. Data Quality Management Past, Present, and Future: Towards a Management System for Data. In Handbook of Data Quality, 15–40. Springer, 2013.

Dimensions of Data Quality

Accuracy

- extent to which data are correct, reliable correspond to ground truth
- often focus on syntax and patterns (e.g. regex matching for dates)

Completeness

• degree to which a dataset includes necessary information about relevant objects

Consistency

- satisfaction or violation of schema or semantic rules
- in relational databases: integrity constraints (ICs), often in the form of denials

Timeliness (also: Currency, Volatility)

- data change over time
- answers questions such as:
 - what is the delay between change in the world and in the database?
 - how long data is valid in the real world?
 - is the data still appropriate?

Readings: [BCF+09] Batini et al. Methodologies for Data Quality Assessment and Improvement. ACM Computing Surveys, 2009.

Summary

- Data Quality: Fitness for Use
- Pillars of Data Quality:
 - Organizational, Architectural, Computational
- Data Quality Management Phases:
 - Context Reconstruction, Assessment (Measurement), Improvement
- Data Quality Dimensions:
 - Accuracy, Completeness, Consistency, Timeliness