APPUNTI DI ALGEBRA

MANUEL DEODATO

Indice

1	Teoria dei gruppi			3
	1.1	Il grup	opo degli automorfismi	3
	1.2	Azioni di gruppo		4
		1.2.1	Azione di coniugio	6
		1.2.2	Formula delle classi	7
	1.3	3 I p-gruppi		8
	1.4	Teoremi di Cauchy e Cayley		9
	1.5	5 Commutatore e gruppo derivato		11
	1.6	6 Gruppi liberi		12
	1.7	Gruppi diedrali		15
		1.7.1	Sottogruppi di D_n	16
		1.7.2	Centro, quozienti e automorfismi di D_n	19
	1.8	Permutazioni		20
	1.9	I teoremi di omomorfismo		26
	1.10	Grupp	26	
	1.11	Prodot	28	
	1.12	Ancora	32	
	1.13	Il teore	34	
	1.14	Il teore	36	
	1.15	.15 Esercizi e complementi		
		1.15.1	Complementi di teoria	36
		1.15.2	Esercizi	37

1 Teoria dei gruppi

1.1 Il gruppo degli automorfismi

Lemma 1.0.1. Siano H, G due gruppi ciclici; un omomorfismo $\varphi : G \to H$ è univocamente determinato da come agisce su un generatore di G.

Dimostrazione. Sia $g_0 \in G$ tale che $\langle g_0 \rangle = G$ e sia $\varphi(g_0) = \overline{h} \in H$. Per $g \in G$ generico, per cui $g_0^k = g$ per qualche intero k, si ha:

$$\varphi(g) = \varphi(g_0^k) = \varphi(g_0)^k = \overline{h}^k$$

Cioè tutti gli elementi di Im φ sono esprimibili come potenze di \overline{h} .

Osservazione 1.1. Non ogni scelta di $\overline{h} \in H$ è ammissibile, ma bisogna rispettare l'ordine di g_0 . Se $g_0^n = e_G$, allora $e_H = \varphi(g_0^n) = \varphi(g_0)^n = \overline{h}^n$. Questa condizione, impone che ord $(\overline{h}) \mid \operatorname{ord}(g_0)$.

Definizione 1.1 (Gruppo degli automorfismi). Sia G un gruppo; si definisce il gruppo dei suoi automorfismi come

$$\operatorname{Aut}(G) = \{ f : G \to G \mid f \text{ è un isomorfismo di gruppi} \}$$

Esempio 1.1. Si calcola $Aut(\mathbb{Z})$.

Svolgimento. Il gruppo $(\mathbb{Z}, +)$ è ciclico, quindi un omomorfismo è determinato in base a come agisce su un generatore. Prendendo, per esempio 1, si definisce $q_a : \mathbb{Z} \to \mathbb{Z}$ tale che $q_a(1) = a$; perché $\langle q_a(1) \rangle = \mathbb{Z}^1$, è necessario che a sia un generatore di \mathbb{Z} , perciò sono ammessi $a = \pm 1$. In questo caso, $\operatorname{Aut}(\mathbb{Z}) = \{ \pm \operatorname{Id}_{\mathbb{Z}} \} \cong (\mathbb{Z}/2\mathbb{Z}, +)$.

Teorema 1.1. Aut $(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^*$.

Dimostrazione. ($\mathbb{Z}/m\mathbb{Z}, +$) è ciclico, quindi si stabilisce l'azione di $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ su un generatore. Preso, allora, $\overline{k} \in \mathbb{Z}/m\mathbb{Z}$ tale che $\gcd(k, m) = 1$ e scelto $f(\overline{k}) = \overline{a}$, si ha che $\langle f(\overline{k}) \rangle = \langle \overline{a} \rangle = \mathbb{Z}/m\mathbb{Z} \iff \gcd(a, m) = 1 \iff \overline{a} \in (\mathbb{Z}/m\mathbb{Z})^*$.

Definizione 1.2 (Automorfismo interno). Sia G un gruppo; si definisce $\phi_g: G \to G$, $\forall g \in G$, come $\phi_g(x) = gxg^{-1}$ ed è detto automorfismo interno. L'insieme di questi automorfismi, al variare di $g \in G$, forma il gruppo

$$\operatorname{Int}(G) = \{ \phi_q : G \to G \mid g \in G \in \phi_q \text{ automorfismo interno} \}$$

Proposizione 1.1. Sia G un gruppo; allora $\operatorname{Int}(G) \triangleleft \operatorname{Aut}(G)$ e $\operatorname{Int}(G) \cong G/Z(G)$.

 $^{^{1}}$ Richiesto dal fatto che q_a sia suriettivo.

Dimostrazione. Int(G) è un sottogruppo di Aut(G) perché $\mathrm{Id}(x) = exe^{-1} = x \Rightarrow \mathrm{Id} \in \mathrm{Int}(G)$. Inoltre, $\phi_g \circ \phi_h(x) = ghxh^{-1}g^{-1} = \phi_{gh}(x) \in \mathrm{Int}(G)$ e $\phi_{g^{-1}} \circ \phi_g(x) = x \Rightarrow \phi_g^{-1} = \phi_{g^{-1}} \in \mathrm{Int}(G)$.

È un sottogruppo normale perché $\forall f \in \text{Aut}(G)$, si ha

$$f \circ \phi_g \circ f^{-1}(x) = f(gf^{-1}(x)g^{-1}) = f(g)xf(g)^{-1} \in \text{Int}(G)$$

Per finire, si definisce $\Phi: G \to \operatorname{Int}(G)$. Questo è un omomorfismo perché $\Phi(gh) = \phi_{gh} = \phi_g \circ \phi_h = \Phi(g)\Phi(h)$. È, inoltre, suriettivo perché ogni automorfismo interno è associato ad un elemento di G, cioè $\forall \phi_g \in \operatorname{Int}(G), \ \exists g \in G : \Phi(g) = \phi_g$. Allora, la tesi deriva dal I teorema di omomorfismo, visto che $\operatorname{Ker} \Phi = Z(G)$.

Osservazione 1.2. $H \triangleleft G \iff \phi_g(H) = H, \ \forall \phi_g \in \operatorname{Int}(G).$

Dimostrazione. Per ogni elemento di $\operatorname{Int}(G)$, si ha $\phi_g(H) = H \iff gHg^{-1} = H \iff H \lhd G$.

Definizione 1.3 (Sottogruppo caratteristico). Sia G un gruppo e H < G. Si dice che H è caratteristico se è invariante per automorfismo, cioè $\forall f \in \text{Aut}(G), \ f(H) = H$.

Corollario 1.1.1. Sia G un gruppo; per la proposizione 1.1 e l'osservazione 1.2 se H è caratteristico, allora $H \triangleleft G$.

Il viceversa è falso, cioè normale \neq caratteristico; infatti, in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il sottogruppo $\langle (1,0) \rangle$ è normale, ma non caratteristico perché l'automorfismo che scambia le coordinate è tale per cui $\langle (1,0) \rangle \mapsto \langle (0,1) \rangle \neq \langle (1,0) \rangle$.

1.2 Azioni di gruppo

Definizione 1.4 (Azione). Sia G un gruppo; un'azione di G su un insieme X è un omomorfismo

$$\gamma: \begin{array}{ccc} G & \longrightarrow & S(X) = \{f: X \to X \mid f \text{ biettiva}\} \\ g & \longmapsto & \psi_g: \psi_g(x) = g \cdot x \end{array}$$

Più concretamente, si definisce azione la mappa $\gamma: G \times X \to X$ tale che

(a). $e \cdot x = x$, per $e \in G$ e $x \in X$;

(b).
$$h \cdot (g \cdot x) = (hg) \cdot x$$
, per $g, h \in G$ e $x \in X$.

Si verifica che una mappa $\gamma: G \times X \to X$, con G gruppo e X insieme generico, che soddisfi le proprietà (a) e (b), è tale che $\gamma(g)(x) = \psi_q(x)$ (cioè a g fissato) è biettiva.

Dimostrazione. Per l'iniettività, si ha $\psi_g(x) = \psi_g(y) \iff g \cdot x = g \cdot y \iff x = y$, visto che si può applicare l'azione inversa $\gamma(g^{-1})$ ad entrambi i lati. Per la suriettività,

invece, si nota che $\forall x \in X$, si trova anche una $y \in X : y = g^{-1} \cdot x$ dovuta all'azione di $\gamma(g^{-1})$, per cui $\psi_g(y) = g \cdot \left(g^{-1} \cdot x\right) = (gg^{-1}) \cdot x = x$.

Esempio 1.2. Sia $G=\{z\in\mathbb{C}^*\mid |z|=1\}\cong S^1$ la circonferenza unitaria e $X=\mathbb{R}^2$. Un'azione di G su X è una rotazione definita da $\gamma(z)=R(\arg z)$. Questa è un omomorfismo perché $\gamma(zw)=R(\arg zw)=R(\arg z+\arg w)=R(\arg z)R(\arg w)=\gamma(z)\gamma(w)$.

Un'azione γ di G su X definisce, proprio su X, una relazione di equivalenza definita da

$$x \sim_{\gamma} y \iff x = \psi_q(y) = g \cdot y, \text{ con } x, y \in X$$
 (1.2.1)

La relazione di equivalenza è ben definita perché le ψ_g sono mappe biettive.

Definizione 1.5 (Orbita). Sia $\gamma: G \to S(X)$ un'azione di G gruppo su X. Dato $x \in X$, la sua classe di equivalenza rispetto alla relazione \sim_{γ} è detta orbita ed è indicata con $Orb(x) = \{g \cdot x \mid g \in G\}$.

Ricordando che una relazione di equivalenza fornisce una partizione dell'insieme su cui è definita, si ha:

$$X = \bigsqcup_{x \in R} \operatorname{Orb}(x) \tag{1.2.2}$$

con R insieme dei rappresentati di tutte le orbite. Se, poi, X ha cardinalità finita, allora:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| \tag{1.2.3}$$

Definizione 1.6 (Stabilizzatore). Sia $\gamma: G \to S(X)$ un'azione di G su X; allora per ogni $x \in X$, si definisce l'insieme

$$Stab(x) = \{ g \in G \mid g \cdot x = x \} < G$$

Lemma 1.1.1. Sia G un gruppo che agisce su un insieme X e sia $x \in X$ un suo elemento. Dati anche $g \cdot x, h \cdot x \in \text{Orb}(x)$ tali che $g \cdot x = h \cdot x$, allora g e h appartengono alla stessa classe di $G/\operatorname{Stab}(x)$.

Dimostrazione. Se $g \cdot x$, $h \cdot x \in Orb(x)$ sono uguali, allora $x = h^{-1}g \cdot x$, cioè $h^{-1}g \in G$ lascia invariato x, quindi è in Stab(x). Da questo segue che $h Stab(x) = hh^{-1}g Stab(x) = g Stab(x)$.

Teorema 1.2 (Teorema di orbita-stabilizzatore). Esiste una mappa biettiva Γ : $\operatorname{Orb}(x) \to G/\operatorname{Stab}(x)$ tale che $\Gamma(g \cdot x) = g\operatorname{Stab}(x)$.

Dimostrazione. Γ è iniettiva come diretta conseguenza del lemma 1.1.1 ed è suriettiva perché $\forall g \operatorname{Stab}(x) \in G/\operatorname{Stab}(x), \exists g \cdot x \in \operatorname{Orb}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$. Segue che $|\operatorname{Orb}(x)| = |G|/|\operatorname{Stab}(x)|$.

Osservazione 1.3. Si osserva che, per il teorema di orbita-stabilizzatore, la cardinalità di un'orbita indica il numero di classi laterali dello stabilizzatore nel gruppo che compie l'azione, cioè il teorema di orbita-stabilizzatore si può riscrivere come $|\operatorname{Orb}(x)| = |G|$ Stab|G| Stab|G|

1.2.1 Azione di coniugio

Un caso notevole di azione è il coniugio: per X = G, si definisce $\gamma : G \to \text{Int}(G) \subset S(G)$. Le orbite indotte da questa azione sono dette *classi di coniugio* e si indicano con cl(x), mentre lo stabilizzatore è detto *centralizzatore* e si indica con:

$$Z(x) = \left\{ g \in G \mid g \cdot x = gxg^{-1} = x \right\}$$
 (1.2.4)

Come conseguenza del teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |\operatorname{cl}(x)||Z(x)|, \ \forall x \in G \tag{1.2.5}$$

Proposizione 1.2. Sia G un gruppo e γ l'azione di coniugio su di esso; allora

$$\bigcap_{x \in G} Z(x) = Z(G)$$

Dimostrazione. Si ha $g \in Z(x), \ \forall x \iff gxg^{-1} = x, \ \forall x \in G \iff g \in Z(G).$

Osservazione 1.4 (Centro di un sottogruppo). Sia G un gruppo e H < G; allora il centro di H è definito come

$$\bigcap_{x\in H} Z(x) = Z(H)$$

Si considera, ora, l'azione di coniugio di un gruppo G su $X = \{H \subseteq G \mid H < G\}$ e $\gamma(g) = \psi_g$ tale che $\psi_g(H) = gHg^{-1}$. Questa è un'azione ed è ben definita.

Dimostrazione. Per dimostrare che è un'azione, si deve mostrare che la mappa $g \xrightarrow{\gamma} \psi_g$ è un omomorfismo e che $\psi_g : X \to X$ sia biettiva.

Si nota che $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo perché $\psi_{g_1g_2}(H) = g_1g_2Hg_2^{-1}g_1^{-1} = \psi_{g_1} \circ \psi_{g_2}(H)$, cioè $g_1g_2 \mapsto \psi_{g_1}\psi_{g_2}$. Inoltre, $\psi_g: X \to X$ è biettiva perché $\exists \psi_g^{-1} = \psi_{g^{-1}}: \psi_{g^{-1}} \circ \psi_g(H) = H$.

Per mostrare che è ben definita, si fa vedere che effettivamente $\forall g, \psi_g$ mappa un sottogruppo di G in un altro sottogruppo, cioè che $gHg^{-1} < G$. Intanto, $e \in gHg^{-1}$

perché
$$H < G \Rightarrow e \in H \Rightarrow geg^{-1} = e$$
; poi, $(ghg^{-1})(gh'g^{-1}) = ghh'g^{-1} \in gHg^{-1}$ e $h^{-1} \in H \Rightarrow \exists (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}$ elemento inverso.

Lo stabilizzatore di questa azione è detto normalizzatore, in quanto è definito come tutti elementi di G rispetto a cui H è normale:

$$N_G(H) = \text{Stab}(H) = \{ g \in G \mid gHg^{-1} = H \}$$
 (1.2.6)

Infine, l'orbita è l'insieme (classe di equivalenza) di tutti i coniugati di un sottogruppo di G:

$$Orb(H) = \{gHg^{-1} \mid g \in G\}$$
 (1.2.7)

Per il teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |N_G(H)||\operatorname{Orb}(H)| \tag{1.2.8}$$

da cui si ricava anche che $H \triangleleft G \iff N_G(H) = G \iff \mathrm{Orb}(H) = \{H\}.$

1.2.2 Formula delle classi

Si ricorda che le orbite definite da un'azione di un gruppo G su un insieme X formano una partizione di X stesso, in quanto sono delle classi di equivalenza. Se $|X| < \infty$, si ha:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| = \sum_{x \in R} \frac{|G|}{|\operatorname{Stab}(x)|} = \sum_{x \in R'} 1 + \sum_{x \in R \setminus R'} \frac{|G|}{|\operatorname{Stab}(x)|}$$
(1.2.9)

con R insieme dei rappresentanti delle orbite e R' insieme dei rappresentati delle orbite tali che $Orb(x) = \{x\}$, cioè degli elementi invarianti sotto l'azione di G.

Teorema 1.3 (Formula delle classi). Sia $\gamma: G \to S(G)$ l'azione di coniugio di un gruppo G su un insieme X; allora:

$$|G| = Z(G) + \sum_{x \in R \backslash Z(G)} \frac{|G|}{|Z(x)|}$$

Dimostrazione. Segue per quanto appena detto e dall'osservazione che

$$R' = \{x \in R \mid \operatorname{Orb}(x) = x\} = \{x \in R \mid gxg^{-1} = x\} = Z(G)$$

Visto che ogni orbita del genere contiene un solo elemento, i rappresentanti delle orbite sono esattamente tutti gli elementi di Z(G), cioè un elemento $x \in Z(G)$ non può essere contenuto in nessun'altra orbita, se non nel singoletto $\{x\}$. Perciò, la relazione in eq. 1.2.9, avendo X = G, conferma la tesi.

1.3 I p-gruppi

Definizione 1.7 (p-gruppo). Sia $p \in \mathbb{Z}$ un numero primo; allora si dice che G è p-gruppo se $|G| = p^n$, per qualche $n \in \mathbb{N}$.

Proposizione 1.3. Il centro di un *p*-gruppo è non-banale.

Dimostrazione. Per la formula delle classi, si ha:

$$p^{n} = |Z(G)| + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Se $|Z(G)| = p^n$, la tesi è verificata, altrimenti $\exists x \in R \setminus Z(G)$, quindi tale che $Z(x) \subsetneq G$; allora, per $k_x \in \mathbb{N}$, si ha $|G|/|Z(x)| = p^{k_x}$, con almeno un $k_x > 0$, da cui:

$$|Z(G)| = p^n - \sum_{x \in R \setminus Z(G)} p^{k_x} \implies p \mid |Z(G)|$$

Visto che $e \in Z(G)$, deve risultare $|Z(G)| \ge 1$, pertanto $|Z(G)| = p^s$, per qualche intero s > 1.

Lemma 1.3.1. Vale G/Z(G) ciclico \iff G è abeliano.

Dimostrazione. Sia G/Z(G) ciclico e sia $x_0Z(G)$ il suo generatore. Date due classi laterali distinte $xZ(G), yZ(G) \in G/Z(G)$ e visto che $x_0Z(G)$ genera, si avrà $x_0^mZ(G) = xZ(G)$ e $x_0^nZ(G) = yZ(G)$, ossia, per $z, w \in Z(G), x = x_0^mz, y = x_0^nw$. Allora:

$$xy = x_0^m z x_0^n w = x_0^m x_0^n z w = x_0^n w x_0^m z = yx$$

Essendo questo valido per $x, y \in G$ generiche, si è dimostrata l'implicazione verso destra. Per l'implicazione inversa, sia G abeliano; allora Z(G) = G e $G/Z(G) = \{e\}$, che è ovviamente ciclico.

Proposizione 1.4. Un gruppo di ordine p^2 è abeliano.

Dimostrazione. Sia G un p-gruppo tale che $|G|=p^2$. Per mostrare che è abeliano, si fa vedere che Z(G)=G, ossia $|Z(G)|=p^2$. Per la proposizione 1.3, si può avere solamente |Z(G)|=p, oppure $|Z(G)|=p^2$. Se, per assurdo, fosse |Z(G)|=p, allora |G|/|Z(G)|=p, quindi G/Z(G) avrebbe ordine primo e, quindi, sarebbe ciclico; per il lemma precedente (1.3.1), però, questo è assurdo perché risulterebbe anche abeliano al contempo, ma senza avere |Z(G)|=|G|. Quindi deve essere $|Z(G)|=p^2=|G|\Rightarrow Z(G)=G$, da cui G è abeliano.

1.4 Teoremi di Cauchy e Cayley

Lemma 1.3.2 (Teorema di Cauchy abeliano). Sia p un primo e G un gruppo abeliano finito; se $p \mid |G|$, allora $\exists x \in G : \operatorname{ord}(x) = p$.

Dimostrazione. Sia |G| = pn; si procede per induzione su n. Il passo base è ovvio: se |G| = p, allora è ciclico e, quindi, contiene un elemento di ordine p.

Per il passo induttivo, si suppone che la tesi sia vera per ogni m < n e si dimostra per n.

Sia, allora |G| = pn; sia, poi $y \in G$, $y \neq e$ tale che $\langle y \rangle = H < G$: per Lagrange, |G| = |G/H||H|. Allora, se $p \mid |G| \Rightarrow p \mid |H|$, oppure $p \mid |G/H|$.

- Se $p \mid |H|$, allora può essere |G| = |H|, caso in cui $G = \langle y \rangle$ sarebbe ciclico e, quindi, avrebbe un elemento di ordine p^1 , oppure può essere |H| = pm < pn, caso in cui l'elemento di ordine p è presente per ipotesi induttiva.
- Se p | |G/H|, invece, allora |G/H| = pm' < pn perché H contiene almeno due elementi, cioè y ed e; per ipotesi induttiva, allora, esiste zH ∈ G/H il cui ordine è p. Considerando la proiezione π_H : G → G/H tale che x → xH e ricordando che è un omomorfismo, si ha che, per questo motivo, ord(zH) | ord(z) ⇒ ord(z) = pk; se k = n, allora G è ciclico e zⁿ ha ordine p, altrimenti, se k < n, si ha la tesi per induzione.

Teorema 1.4 (Teorema di Cauchy). Sia p un numero primo e G un gruppo finito; se $p \mid |G|$, allora esiste $x \in G$: ord(x) = p.

Dimostrazione. Sia |G|=pn, con p primo e $n\in\mathbb{N}$; si procede per induzione su n. Se $n=1, |G|=p\Rightarrow G$ è ciclico, quindi $\exists x\in G: \langle x\rangle=G$ e $\mathrm{ord}(x)=p$.

Per il passo induttivo, si assume che la tesi sia valida per ogni m < n e si dimostra per n.

Si nota che se $\exists H < G$ tale che $p \mid |H|$, allora $|H| = pm, \ m < n \Rightarrow \exists x \in H$ tale che ord(x) = p per ipotesi induttiva. Si assume, dunque, che non esista alcun sottogruppo di G il cui ordine sia divisibile per p. Per la formula delle classi

$$pn - \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|} = |Z(G)|$$

Ora, visto che $Z(x) < G \Rightarrow p$ non divide |Z(x)|, quindi si ha la certezza che, essendo $p \mid |G| = |Z(x)||G|/|Z(x)|$, p divide |G|/|Z(x)|. Allora $p \mid |Z(G)|$, per cui Z(G) = G;

¹In questo caso, l'elemento di ordine p sarebbe proprio $y^{p^{n-1}} \in G$; infatti, $(y^{p^{n-1}})^p = y^{p^n} = e$, visto che $|G| = p^n$.

infatti, se così non fosse, sarebbe un sottogruppo proprio di G e p non lo potrebbe dividere, il che è assurdo.

Da questo, segue che G è abeliano, quindi la tesi segue dal teorema di Cauchy per gruppi abeliani (lemma 1.3.2).

Proposizione 1.5. Siano H, K < G; allora $HK < G \iff HK = KH \text{ e } |HK| = |H||K|/|H \cap K|$.

Dimostrazione. Per la prima parte, è sufficiente osservare che per $hk \in HK$, l'elemento neutro $(hk)^{-1} = k^{-1}h^{-1}$ sta in HK se e solo se HK = KH, e, allo stesso modo, il prodotto è chiuso cioè $hkh'k' = hh''k''k' \in HK$ solamente se HK = KH così da poter trovare un elemento di HK che sia uguale a $kh' \in KH$ che compare in tale prodotto.

La seconda parte, invece, si verifica considerando l'applicazione $\gamma: H \times K \to HK$ tale che $\gamma((h,k)) = hk$, che è evidentemente suriettiva; inoltre, se $s \in H \cap K$, allora $(hs,s^{-1}k) \in H \times K \Rightarrow \gamma((hs,s^{-1}k)) = hk$, il che vuol dire che $\forall hk \in HK$, si trovano $|H \cap K|$ coppie in $H \times K$ che hanno immagine hk, da cui la tesi.

Esempio 1.3 (Classificazione dei gruppi di ordine 6). Sia G un gruppo di ordine 6; per Cauchy, allora, esistono $x, y \in G$ tali che ord(x) = 2 e ord(y) = 3. Se G è abeliano, poi, si ha ord $(xy) = 6^1$, quindi $G = \langle xy \rangle \cong \mathbb{Z}/6\mathbb{Z}$.

Se, invece, G non è abeliano, si considera il sottogruppo $\langle x, y \rangle$ e si considera anche l'insieme $\langle x \rangle \langle y \rangle$ che, in generale, non è un sottogruppo.

Applicando la proposizione precedente (1.5), si ha che $|\langle x,y\rangle| = (3\cdot 2)/1 = 6^2$, da cui $G = \langle x\rangle\langle y\rangle$, con $\langle x\rangle = \{e,x\}$ e $\langle y\rangle = \{e,y,y^2\}$, quindi $G = \{e,x,y,xy,y^2,xy^2\}$.

Per finire, si mostra che $G \cong S_3$. Per farlo, si definisce $\phi: G \to S_3 = \{e, \tau, \rho, \tau\rho, \tau^2, \rho\tau^2\}$ tale che $\phi(x) = \rho$ e $\phi(y) = \tau$, con $\tau = (1, 2, 3)$ e $\rho = (1, 2)$. Questa mappa è suriettiva per costruzione, quindi è biettiva per questioni di cardinalità; inoltre, è un omomorfismo, da cui segue la tesi.

Teorema 1.5 (Teorema di Cayley). Sia G un gruppo; allora G è isomorfo a un sottogruppo di S(G). In particolare, se |G| = n, allora G è isomorfo a un sottogruppo di S_n .

Dimostrazione. Si definisce l'azione

$$\phi: \begin{array}{ccc} G & \longrightarrow & S(G) \\ g & \longmapsto & \gamma_g \end{array}, \ \ \text{tale che } \gamma_g(x) = g \cdot x = gx$$

Questa è ben definita perché $\gamma: G \to G$ è biettiva, infatti $\gamma_g(x) = \gamma_g(y) \iff gx = gy \iff x = y \in \forall y \in G, \ \exists \gamma_g(g^{-1}y) = y$, il che mostra che è rispettivamente iniettiva e suriettiva. Inoltre, ϕ è un omomorfismo (ovvio) ed è anche iniettiva perché Ker $\phi =$

 $⁽x) \cap (y)e$ perché sono generati da elementi diversi, altrimenti avrebbero stesso ordine.

²Come già accennato, l'intersezione è solo l'unità perché i due elementi hanno ordini diversi, quindi generano gruppi disgiunti.

 $\{g \in G \mid \phi_g = \phi_e\} = \{g \in G \mid gx = x\} = \{e\}$. Da questo, segue che S(G) contiene una copia isomorfa a G.

1.5 Commutatore e gruppo derivato

Definizione 1.8. Sia G un gruppo e $S \subset G$ un suo sottoinsieme; allora $\langle S \rangle$ è il più piccolo sottogruppo di G contenente anche S.

Proposizione 1.6. Dato G un gruppo e $S \subset G$ un suo sottoinsieme, vale la relazione

$$\langle S \rangle = \left\{ s_1 s_2 \dots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \right\} = X$$

$$con S^{-1} = \{ s^{-1} \mid s \in S \}.$$

Dimostrazione. Per definizione

$$\langle S \rangle = \bigcap_{\substack{H < G \\ S \subset H}} H$$

Questa scrittura è ben definita perché l'intersezione di gruppi è ancora un gruppo e, in questo modo, si ha il gruppo più piccolo contenente S; se così non fosse, ne esisterebbe uno più piccolo ancora, che, però, farebbe parte dell'intersezione e sarebbe assurdo.

Ora, per quanto detto sopra, S è contenuto in tutti i gruppi la cui intersezione genera $\langle S \rangle$, quindi anche S^{-1} deve essere contenuto in tali sottogruppi di G. Segue che $S, S^{-1} \subset H \Rightarrow X \subset H, \ \forall H < G \in S \subset H, \ \text{quindi} \ X \subset \bigcap H = \langle S \rangle.$

Allo stesso tempo, X è evidentemente un sottogruppo di G e contiene S per costruzione, quindi $X \supset \langle S \rangle$, da cui la tesi.

Definizione 1.9 (Commutatore). Sia G un gruppo; dati $g, h \in G$, il loro commutatore è definito come

$$[g,h] = ghg^{-1}h^{-1}$$

Definizione 1.10 (Gruppo derivato). Dato un gruppo G, si definisce gruppo dei commutatori, o derivato di G, il gruppo

$$G' = \langle [g, h] \mid g, h \in G \rangle = [G : G]$$

Ora si caratterizza il gruppo derivato. Intanto, si ricorda che $\langle S \rangle$ è abeliano $\iff \forall s_1, s_2 \in S, \ s_1s_2 = s_2s_1, \ \langle S \rangle$ è normale $\iff \forall g \in G, \forall s \in S, \ gsg^{-1} \in \langle S \rangle$ e, infine, $\langle S \rangle$ è caratteristico $\iff \forall f \in \operatorname{Aut}(G), \ \forall s \in S$ si ha $f(s) \in S$. Applicando queste alla definizione di commutatore, si ottiene la seguente.

Proposizione 1.7 (Proprietà del derivato). Sia G un gruppo e G' il suo derivato; allora:

(a).
$$G' = \{e\} \iff G \text{ è abeliano};$$

- (b). $G' \triangleleft G$;
- (c). G' è caratteristico in G;
- (d). dato $H \triangleleft G$, se G/H è abeliano, allora $G' \subset H$.

Dimostrazione. La (a) è immediata perché $G' = \{e\} \iff \forall g_1, g_2 \in G, [g_1, g_2] = e$, cioè g_1 e g_2 commutano, da cui G abeliano.

Per la (b), $\forall x \in G, \ \forall g, h \in G$, si ha

$$\begin{split} x[g,h]x^{-1} &= xghg^{-1}h^{-1}x^{-1} = xgx^{-1}xhx^{-1}xg^{-1}x^{-1}xh^{-1}x^{-1} \\ &= [xgx^{-1},xhx^{-1}] \in G' \end{split}$$

Per la (c), si nota che $\forall f \in \text{Aut}(G), \ \forall g, h \in G$, si ha:

$$f([g,h]) = f(ghg^{-1}h^{-1}) = f(g)f(h)f(g)^{-1}f(h)^{-1} = [f(g), f(h)] \in G'$$

Infine, per la (d), se $H \triangleleft G$ e G/H è abeliano, si ha $\forall x, y \in G$

$$xHyH = yHxH \Rightarrow xyH = yxH \implies x^{-1}y^{-1}xy \in H \Rightarrow [x,y] \in H$$

da cui
$$H \supset G'$$
.

Corollario 1.5.1. Sia G un gruppo e G' il suo derivato; allora G/G' è sempre abeliano ed è chiamato *abelianizzazione* di G, nel senso che è il più grande quoziente abeliano di G.

Dimostrazione. Si mostra che G/G' è sempre abeliano. Siano, quindi $gG', hG' \in G/G'$ due classi laterali; allora si osserva che

$$(gG')(hG') = ghG' = hg[g^{-1}, h^{-1}]G' = hgG'$$

visto che $g^{-1}h^{-1}gh = [g^{-1}, h^{-1}] \in G'$. Allora, dalla proprietà (d) della precedente proposizione (1.7), si ha $G' \subset H = G'$, cioè in questo caso si ha l'inclusione nell'insieme più piccolo, ovvero proprio G'. Questo vuol dire che G/G' è il quoziente con più elementi che sia abeliano perché ottenuto tramite quoziente con G', che è l'insieme più piccolo che soddisfa la proprietà 1 .

1.6 Gruppi liberi

Si definisce l'insieme $S = \{x_1, x_2, x_3, \ldots\}$ di simboli arbitrari, che può essere finito o infinito, e si definisce parola una qualunque loro concatenazione, in cui sono ammesse ripetizioni. L'insieme delle parole ottenibili a partire dagli elementi di S si indica con W.

¹Per controposizione, se $G' \not\subset H \implies G/H$ non abeliano.

Le concatenazioni dello stesso simbolo si possono esprimere in notazione esponenziale: $x_1x_1 \dots x_1 = x_1^n$.

Per arrivare alla costruzione di un gruppo, servono degli inversi ed un elemento neutro; l'elemento neutro si indica con 1 ed è tale per cui

$$1 \cdot \prod_{i} x_i^{a_i} = \prod_{i} x_i^{a_i} \cdot 1 = \prod_{i} x_i^{a_i}$$

L'insieme degli elementi inversi, invece, si indica con S^{-1} e si definisce $S' = S \cup S^{-1}$. Indicando, ora, con W' l'insieme delle parole che si possono costruire in S', si nota la possibilità di trovare una sequenza della forma ... xx^{-1} ..., oppure ... $x^{-1}x$...; questo indica che la parola può essere opportunamente ridotta cancellando tali simboli, cioè usando la definizione $x^{-1}x = xx^{-1} = 1$.

Definizione 1.11 (Parola ridotta). Una parola di W' si dice ridotta se non è possibile operare ulteriori cancellazioni.

A partire da una stessa parola, o dalle sue cancellazioni, è possibile operare la riduzione cancellando i termini in ordine diverso, ma giungendo sempre allo stesso risultato. Alla luce di questo, si ha la seguente definizione.

Definizione 1.12 (Parole equivalenti). Due parole $w, w' \in W'$ si dicono *equivalenti*, e si scrive $w \sim w'$, se hanno la stessa forma ridotta w_0 .

Osservazione 1.5. Si può dimostrare che \sim è una relazione di equivalenza.

Proposizione 1.8. Sia F l'insieme delle classi di equivalenza di parole in W'; allora F è un gruppo rispetto alla legge di composizione indotta W'.

Dimostrazione. La concatenazione di parole di W' è associativa e la legge di composizione indotta da questa tra le parole che rappresentano una classe di equivalenza sarà altrettanto associativa. Inoltre, la classe dell'elemento neutro 1 è l'identità e la classe della parola inversa di w è l'inversa della classe di w.

Definizione 1.13 (Gruppo libero). Si definisce gruppo libero sull'insieme S il gruppo F con la composizione indotta da W'.

Si indica con F_1 il gruppo libero su $S = \{x\}$, cioè è il gruppo generato da un singolo simbolo e da tutte le sue concatenazioni, quindi da tutte le sue potenze. Questo si sa caratterizzare bene perché, evidentemente, $F_1 \cong \mathbb{Z}$; infatti basta definire $\phi : \mathbb{Z} \to F_1$, con $\phi(k) = x^k$.

Proposizione 1.9 (Proprietà universale). Sia F_S il gruppo libero su un insieme S e sia G un gruppo; ogni applicazione tra insiemi $f:S\to G$ si estende in modo unico ad un omomorfismo di gruppi $\varphi:F_S\to G$.

Dimostrazione. Indicando con $\tilde{x} = f(x)$, per $x \in S$, allora φ mappa una parola di S' nel corrispondente prodotto in G.

Si nota che f associa un simbolo ad un elemento di G; allora la mappa φ associa, a ciascuna parola composta dai simboli di S', la loro immagine tramite f: se $w = x_1 \cdots x_n$, allora $\varphi(w) = f(x_1) \dots f(x_n) = \widetilde{x}_1 \cdots \widetilde{x}_n$, con $\varphi(x^{-1}) = f(x)^{-1} = \widetilde{x}^{-1}$.

Due parole equivalenti di S', allora, vengono mappate nell'analogo prodotto in G, per cui risulteranno avere stessa immagine attraverso φ ; questo perché se w e w' si riducono a w_0 , allora la loro immagine tramite φ andrà in due elementi il cui prodotto si ridurrà al prodotto degli elementi immagine di w_0 .

Infine:

$$ww' = x_1 \cdots x_n x_1' \cdots x_n' \longmapsto \widetilde{x}_1 \cdots \widetilde{x}_n \widetilde{x}_1' \cdots \widetilde{x}_n' = \varphi(w) \varphi(w')$$

il che prova che φ è un omomorfismo. L'unicità deriva dal fatto che φ è univocamente determinato da come f mappa gli elementi di S in quelli di G; se, infatti, si avesse $\varphi(w) = \varphi(w')$, allora si avrebbe $f(x_i) = f(x_i')$, $\forall i$.

Teorema 1.6 (Presentazione di un gruppo). Sia G un gruppo generato da n elementi g_1, \ldots, g_n e sia F_n il gruppo libero su un insieme di n elementi; allora $F_n/\operatorname{Ker} \varphi \cong G$, con $F_n \xrightarrow{\varphi} G$.

Dimostrazione. Per la precedente proposizione, esiste un omomorfismo $\varphi: F_n \to G$ tale che a ciascun $x_i \in F_n$ è associato il relativo generatore $g_i \in G$; visto che $\{g_1, \ldots, g_n\} \subset \text{Im } \varphi < G$, allora $\text{Im } \varphi = G$, essendo che $\text{Im } \varphi$ contiene tutti i generatori di G ed ogni loro potenza. Per il I teorema di omomorfismo, allora, $F_n/\text{Ker } \varphi \cong G$.

Osservazione 1.6. Il nucleo dell'omomorfismo φ definito sopra è composto da tutte quelle relazioni che mappano i generatori nell'elemento neutro.

Esempio 1.4. Si ha
$$\mathbb{Z}/n\mathbb{Z} = \langle x \mid (x,n) = 1 \text{ e } x^n = 0 \rangle \cong F_1/\langle x^n \rangle$$
.

Corollario 1.6.1. Sia $H = \langle x_1, \dots, x_n \mid R \rangle$ un grupo, con R insieme delle relazioni che mappano i generatori nell'elemento neutro e sia K un altro gruppo; allora

$$\operatorname{Hom}(H,K) \longleftrightarrow \{f: \{x_1,\ldots,x_n\} \to K \mid f(x_1),\ldots,f(x_n) \text{ rispettano } R\}$$

Cioè ogni omomorfismo tra H e K deve rispettare le relazioni di R.

Dimostrazione. Bisogna dimostrare solamente la freccia verso destra della biezione perché quella verso sinistra è già stata dimostrata con il precedente teorema.

Sia $\{w_1, \ldots, w_m\}$ l'insieme delle parole che in H si traducono nelle r_i ; per il teorema precedente $H \cong F_n/\langle w_1, \ldots, w_m \rangle_N$, dove il pedice N indica la chiusura normale in modo che $\langle w_1, \ldots, w_m \rangle_N \triangleleft F_n$. La dimostrazione è ultimata dal seguente diagramma:

dove \tilde{f} è l'unico omomorfismo, π è la proiezione sul quoziente e $f = \pi \circ \tilde{f}$ è l'omomorfismo da F_n in K che rispetta le relazioni w_1, \ldots, w_m . Si nota che l'esistenza e l'unicità di \tilde{f} sono garantite dal I teorema di omomorfismo¹.

1.7 Gruppi diedrali

Definizione 1.14 (Gruppo diedrale). Per $n \in \mathbb{N}$, si considera un n-agono regolare nel piano; l'insieme di tutte le isometrie del piano che mandano l'n-agono in se stesso è indicato con D_n ed è noto col nome di gruppo diedrale.

Proposizione 1.10. Per $n \in \mathbb{N}$, il gruppo diedrale D_n ha cardinalità $|D_n| = 2n$.

Dimostrazione. Un'isometria è univocamente determinata dall'immagine di un vertice e di un lato adiacente al vertice stesso; allora, l'immagine può essere pari a n possibili vertici, con due, conseguenti, possibilità per il lato, da cui 2n possibili isometrie.

Proposizione 1.11. Sia ρ una rotazione che sottende un lato² e σ una simmetria (riflessione) dell'*n*-agono regolare; allora $\rho^n = e$, $\sigma^2 = e$ e $\sigma \rho \sigma = \rho^{-1}$.

Dimostrazione. Visto che ρ manda un lato dell'n-agono regolare nella posizione del successivo, impiegherà n iterazioni a far tornare il lato di partenza nella posizione originale; similmente, se σ è una riflessione, sarà sufficiente riapplicarla per far tornare l'n-agono nella posizione originale.

Per l'ultima, si nota che, componendo una rotazione e una riflessione, si ottiene una riflessione; applicando la seconda proprietà, si ottiene $\sigma \rho \sigma \rho = e \Rightarrow \sigma \rho \sigma = \rho^{-1}$.

Osservazione 1.7. Ponendo l'n-agono regolare nel piano \mathbb{R}^2 , gli elementi di D_n si possono mettere in relazione con $GL_2(\mathbb{R})$, visto che si possono vedere come applicazioni lineari da \mathbb{R}^2 in se stesso, cioè possono essere rappresentate tramite matrici³:

$$\rho \stackrel{\gamma}{\longmapsto} \begin{pmatrix} \cos(2k\pi/n) & \sin(2k\pi/n) \\ -\sin(2k\pi/n) & \cos(2k\pi/n) \end{pmatrix} = M_{\rho} \qquad \sigma \stackrel{\gamma}{\longmapsto} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = M_{\sigma}$$

Per l'unicità, basta osservare che $\widetilde{f}_1(h) = \widetilde{f}(\pi(x)) = f(x) = \widetilde{f}_2(\pi(x)) = \widetilde{f}_2(h)$, quindi $\widetilde{f}_1 = \widetilde{f}_2 = \widetilde{f}$.

²Cioè che manda un lato nel successivo.

 $^{^3}$ Le riflessioni così definite devono essere rispetto ad un asse opportuno, cioè che sia un asse di simmetria per l'*n*-agono in questione. Nella matrice delle riflessioni, l'angolo θ è l'angolo dell'asse rispetto a cui si riflette ed è preso con riferimento all'asse x.

Si nota, inoltre, che indicando con \mathbb{D}_n il gruppo generato da queste matrici, allora la mappa $\gamma:\langle \rho,\sigma\rangle\to\mathbb{D}_n$ è un omomorfismo di gruppi; infatti, dati due elementi $s_1,s_2\in\langle \rho,\sigma\rangle$:

$$\gamma(s_1 s_2)v = M_{s_1 s_2}v = (s_1 s_2)(v) = s_1(s_2(v)) = M_{s_1}M_{s_2}v = \gamma(s_1)\gamma(s_2)v$$

con $v \in \mathbb{R}^2$ e s(v) è l'applicazione della rotazione o riflessione $s \in \langle \rho, \sigma \rangle$ a tale vettore di \mathbb{R}^2 . Conseguentemente, si ha $M_\rho^n = \mathrm{Id} = M_\sigma^2$ e $M_\sigma M_\rho M_\sigma = M_\rho^{-1}$.

Essendo γ un omomorfismo, si vede anche che ρ e σ , come elementi di D_n , non sono legati da alcuna relazione perché, altrimenti, lo sarebbero anche le loro matrici associate, cosa che sarebbe assurda.

Proposizione 1.12. Tutti gli elementi di D_n si scrivono come $\sigma \rho^i$, oppure ρ^i , con $i \in \{0, \dots, n-1\}$.

Dimostrazione. Sia $g \in D_n$; allora g sarà una generica composizione di riflessioni e rotazioni del tipo $g = \rho^{a_1} \sigma^{b_1} \dots \rho^{a_k} \sigma^{b_k}$, dove $a_i \in \mathbb{Z}$ e $b_j \in \{0,1\}$. Usando le relazioni $\sigma^2 = \rho^n = e$, si riscalano gli esponenti per scrivere $g = \rho^{c_1} \sigma \dots \rho^{c_m} \sigma$, dove si sono anche, eventualmente, uniti esponenti di rotazioni consecutive (quindi $m \le k$). Ora, utilizzando la relazione $\rho \sigma = \sigma \rho^{-1}$, è possibile spostare tutte le σ verso l'estrema sinistra, cioè come primo termine della parola; così facendo, si vede che tale parola diventa o una potenza di ρ , oppure un termine del tipo $\sigma \rho^d$, che è esattamente quello che si voleva dimostrare. \square

Grazie alla precedente proposizione, è possibile definire $\rho^{[i]} = \rho^i$, con $[i] \in \mathbb{Z}/n\mathbb{Z}$, visto che $\rho^n = e$.

Inoltre, se $\rho, \sigma \in D_n$, allora $\langle \rho, \sigma \rangle < D_n$; però, per quanto detto finora, si ha $|\langle \rho, \sigma \rangle| = 2n$ perché $\rho^n = e = \sigma^2$, quindi, per ragioni di cardinalità, segue che $D_n = \langle \rho, \sigma \rangle$.

1.7.1 Sottogruppi di D_n

Numero di elementi di ordine k. Sia ρ una rotazione in D_n ; si considera $\langle \rho \rangle \cong C_n < D_n^{-1}$.

Essendo C_n ciclico, vi sono $\phi(k)$ elementi di ordine k, se $k \mid n$. Oltre alle n rotazioni ρ^i , in D_n sono presenti anche le n riflessioni $\sigma \rho^i$; osservando che $\sigma \rho^i \sigma \rho^i = \rho^{-i} \rho^i = e$, si conclude che se n è pari, vi sono n+1 elementi di ordine 2 (cioè le n riflessioni e $\rho^{n/2}$),

 $^{^{1}}$ Qui, con C_{n} si indica un generico gruppo ciclico di ordine n.

mentre se n è dispari, vi sono n elementi di ordine 2. Ricapitolando:

$$\# \{ \text{elementi di ordine } k \} = \begin{cases} n+1 &, \text{ se } k=2 \text{ e } n \text{ pari} \\ n &, \text{ se } k=2 \text{ e } n \text{ dispari} \\ \phi(k) &, \text{ se } k \mid n \\ 0 &, \text{ altrimenti} \end{cases} \tag{1.7.1}$$

visto che le n riflessioni sono tutte di ordine 2 e l'esistenza di $\rho^{n/2}$ dipende dalla parità di n.

I sottogruppi. Nel punto precedente, si è notato che C_n è uno dei sottogruppi. Inoltre, i sottogruppi di C_n sono noti: ne esiste uno per ogni divisore dell'ordine del gruppo, cioè n in questo caso, per cui se $H < D_n$ e $H < C_n$, allora H è l'unico sottogruppo di ordine |H|. Se, invece $H < D_n$ e $H \nleq C_n$, allora H contiene almeno una riflessione τ .

Proposizione 1.13. Per $H < D_n$ e $H \cap C_n \neq H$ (cioè H contiene almeno una riflessione), si ha $H = (H \cap C_n) \bigsqcup (\tau H \cap C_n)$ ed esiste una mappa biettiva tra $(H \cap C_n)$ e $(\tau H \cap C_n)^1$.

Dimostrazione. Si considera

$$H \xrightarrow{\gamma} \operatorname{GL}_2(\mathbb{R}) \xrightarrow{\det} \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$$

dove γ è l'omomorfismo che a ρ e σ associa le relative matrici, mentre le matrici di $\mathrm{GL}_2(\mathbb{R})$ sono mappate a $\{\pm 1\}$ tramite il determinante: $\det M_\rho = 1$ e $\det M_\sigma = -1$. La mappa $\varphi = \gamma \circ \det$ è un omomorfismo suriettivo, infatti γ è un omomorfismo e per il teorema di Binet per cui $\det(M_\rho^i M_\sigma^j) = \det(M_\rho)^i \det(M_\sigma)^j = 1^i (-1)^j = 1 \iff j = 0$. La suriettività è assicurata dal fatto che almeno una riflessione stia in H.

Considerando, quindi, $\varphi: H \to \mathbb{Z}/2\mathbb{Z}$, il suo kernel è $H \cap C_n$; per il I teorema di omomorfismo, allora, $H/(H \cap C_n) \cong \mathbb{Z}/2\mathbb{Z}$, da cui $|H|/|H \cap C_n| = |\mathbb{Z}/2\mathbb{Z}| = 2$.

Poi, $\tau H \cap C_n$ e $H \cap C_n$ sono disgiunti perché se $h \in H \cap C_n$ non potrebbe stare anche in $\tau H \cap C_n$, altrimenti sarebbe una rotazione e una riflessione allo stesso tempo.

Rimane da mostrare solo che i due insiemi hanno stessa cardinalità, quindi l'esistenza di una mappa biettiva che li colleghi. Sia, allora

$$\psi: \begin{array}{ccc} H \cap C_n & \longrightarrow & \tau H \cap C_n \\ h & \longmapsto & \tau h \end{array}$$

questa è biettiva perché $\tau h_1 = \tau h_2 \iff h_1 = h_2 \in \forall \tau h \in \tau H \cap C_n$, si ha $\psi(h) = \tau h$. \square

¹Per $\tau H \cap C_n$, si intende $\tau (H \cap C_n)$.

Si osserva che, per qualche $m, H \cap C_n = \langle \rho^m \rangle = \{e, \rho^m, \rho^{2m}, \dots, \rho^{n-m}\}$, con $m \mid n$; se $\tau = \sigma \rho^i$, allora $\tau H \cap C_n = \{\sigma \rho^i, \sigma \rho^{i+m}, \dots, \sigma \rho^{i+n-m}\}$ e si sa che l'unione dei due restituisce tutto H. Allora H è composto da m rotazioni e m simmetrie; in particolare $H = \langle \rho^m, \tau \rangle \cong D_m$, quindi, se $m \mid n$, si hanno dei sottogruppi della forma $\mathbb{Z}/m\mathbb{Z}$ e D_m .

Sottogruppi normali. Per lo studio dei sottogruppi normali, si considerano le due seguenti proposizioni.

Proposizione 1.14. Sia H < G un sottogruppo tale che [G : H] = 2; allora $H \triangleleft G$.

Dimostrazione. Si considerano gli insiemi $\{H, gH\}$ e $\{H, Hg\}$ delle classi laterali, rispettivamente, sinistre e destre di H in G, con $g \notin H$. Ora, $\forall x \in H$, si ha direttamente xH = H = Hx; si mostra che lo stesso vale anche per elementi non in H. Se $y \in G \setminus H$, allora $yH \neq H \neq Hy$; visto che entrambe le classi laterali formano una partizione di G, allora deve valere $yH = G \setminus H = Hy$, pertanto yH = Hy, $\forall y \in G \setminus H$. Si conclude che gH = Hg, $\forall g \in G$, quindi $H \triangleleft G$.

Proposizione 1.15. Siano $H \triangleleft G$ e $K \triangleleft H$, con K caratteristico in H; allora $K \triangleleft G$.

Dimostrazione. Si considera, per $g \in G$, $\phi_g : G \to G$ con $\phi_g(x) = gxg^{-1}$; per definizione, si ha $\phi_g(H) = H$, quindi $\phi_g|_H$ è un automorfismo e, allora, $\phi_g|_H(K) = K$, $\forall g \in G \Rightarrow gKg^{-1} = K$, pertanto $K \lhd G$.

L'indice di C_n in D_n è 2, quindi $C_n \triangleleft D_n$ per la prima proposizione. Per G ciclico di ordine n, esiste un unico H, con $|H| = m \mid n$; visto che ogni sottogruppo di un gruppo ciclico è caratteristico, allora, nel caso di D_n , ogni sottogruppo di $\langle \rho \rangle \cong C_n$ è caratteristico, quindi normale.

Se n è pari, allora $\langle \rho^2 \rangle < C_n$ ha n/2 elementi; considerando $H < D_n$ e $H \not\subset C_n$, con $H \cap C_n = \langle \rho^2 \rangle$, si ha

$$H = \langle \rho^2 \rangle \sqcup \tau \langle \rho^2 \rangle$$

quindi $[D_n: H] = 2$, per cui $H \triangleleft D_n$. Di sottogruppi di questa forma, se ne trovano due: $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$; tuttavia non si sa se siano tutti i sottogruppi normali, quindi si cerca di caratterizzarli meglio.

Si sa che $H \triangleleft G \iff gHg^{-1} = H$, $\forall g \in G$, quindi per ogni elemento di un sottogruppo normale, devono figurare anche tutti i suoi coniugati. Per la proposizione 1.12, per capire come sono fatti i coniugati di D_n , è sufficiente studiare quali siano quelli di ρ^i e $\sigma \rho^i$. Si nota che:

$$\rho^{j}\rho^{i}\rho^{-j}=\rho^{i} \qquad \quad \sigma\rho^{j}\rho^{i}\rho^{-j}\sigma=\sigma\rho^{i}\sigma=\rho^{-i}$$

quindi l'insieme dei coniugati di ρ^i è $\{\rho^i, \rho^{-i}\}$; in particolare, se $i \in \{0, n/2\}$, tale insieme diventa $\{e\}$, oppure $\{\rho^{n/2}\}$ rispettivamente. Poi, si nota che:

$$\rho^i \sigma \rho^j \rho^{-i} = \sigma \rho^{-i} \rho^j \rho^{-i} = \sigma \rho^{j-2i} \qquad \sigma \rho^i \sigma \rho^j \rho^{-i} \sigma = \rho^{-i} \rho^j \rho^{-i} \sigma = \sigma \rho^{2i-j}$$

quindi se n è pari, allora $\sigma \rho^s \sim \sigma \rho^t \iff s \equiv t \pmod 2$, quindi le riflessioni di spezzano in due classi di coniugio; se n è dispari, invece, le riflessioni sono tutte coniugate¹. Ricapitolando:

- se n è dispari e se un sottogruppo contiene una riflessione, allora, per essere normale, le deve contenere tutte e tutte le riflessioni generano D_n , infatti σ e $\sigma\rho$ sono dati, dai quali si ottiene $\rho = (\sigma)(\sigma\rho)$, quindi $H \triangleleft D_n \Rightarrow H = D_n$, mentre se non contiene alcuna riflessione, allora è un sottogruppo di C_n ;
- se n è pari, oltre ai sottogruppi di C_n , si considerano gli $H \triangleleft D_n$ che sono tali che $\sigma \rho^i \in H$, per cui $\sigma \rho^{i+2} \in H$ e $\rho^2 \in H$, pertanto, se $H \neq D_n$, devono essere della forma $\langle \rho^2, \sigma \rangle$, o $\langle \rho^2, \sigma \rho \rangle$.

Sottogruppi caratteristici. Usando quanto visto per i sottogruppi normali, si conclude che i possibili sottogruppi caratteristici sono i sottogruppi di C_n e $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Mentre si sa già che i sottogruppi di C_n sono caratteristici, si osserva che, per gli altri due, la mappa $\tau: D_n \to D_n$ tale che $\tau(\rho) = \rho$ e $\tau(\sigma) = \sigma \rho$ è un automorfismo che scambia $\langle \rho^2, \sigma \rangle$ con $\langle \rho^2, \sigma \rho \rangle$ e viceversa, quindi non sono caratteristici.

1.7.2 Centro, quozienti e automorfismi di D_n

Il centro. Si cercano tutti gli elementi $\tau \in D_n$ tale che $\forall \rho \in D_n$, $\rho \tau \rho^{-1} = \tau$. Dal precedente studio dei coniugi nei sottogruppi normali, si conclude che $Z(D_n) = \{e\}$ se n è dispari e $Z(D_n) = \{e, \rho^{n/2}\} \cong \mathbb{Z}/2\mathbb{Z}$ se n è pari.

Quozienti. Si sa che i quozienti sono in corrispondenza biunivoca con i sottogruppi normali, il che vuol dire che esiste un quoziente per ciascun $H \triangleleft G$. A meno di un automorfismo, i quozienti si ottengono come segue. Per quanto visto precedentemente, i sottogruppi normali sono i sottogruppi di C_n e, se n è pari, anche quelli della forma $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Sia, $\langle \rho^m \rangle < C_n$, con $m \mid n$, per cui $|D_n/\langle \rho^m \rangle| = 2n/(n/m) = 2m$.

Proposizione 1.16. Si ha $D_n/\langle \rho^m \rangle \cong D_m$.

 $^{^{1}}$ Questo è dato dal fatto che, visto che i compare con un 2 davanti all'esponente, se n è pari, allora, variando i, si ottengono solo permutazioni pari perché l'esponente fa salti di due andando di pari in pari; se n è dispari, l'esponente non può fare salti di due in due: arrivato ad un certo punto, aumentando di 2, si finisce in un numero dispari e si raggiungono tutte le riflessioni. Questo permette di concludere che, quando n è pari, le riflessioni si dividono in due classi diverse, mentre quando n è dispari, sono tutte coniugate fra loro.

Dimostrazione. Si considera

$$\begin{array}{cccc}
D_n & \longrightarrow & D_{n/m} \\
\gamma : & \sigma & \longmapsto & \tau \\
\rho & \longmapsto & \epsilon
\end{array}$$

dove $D_n = \langle \sigma, \rho \mid \rho^n = \sigma^2 = e, \sigma \rho \sigma = \rho^{-1} \rangle$ e $D_m = \langle \tau, \epsilon \mid \epsilon^m = \tau^2 = e, \tau \epsilon \tau = \epsilon^{-1} \rangle$. Per verificare che si tratta di un omomorfismo ben definito, si mostra che soddisfa

Si nota che questo è suriettivo e il suo nucleo è $\langle \rho^m \rangle$, quindi si ha la tesi per il I teorema di omomorfismo.

Nel caso di n pari, poi, vi sono gli altri due sottogruppi citati sopra, che hanno indice 2 e, quindi, i cui quozienti sono isomorfi a $\mathbb{Z}/2\mathbb{Z}$.

Gli automorfismi. Si studia $\operatorname{Aut}(D_n)$. Per farlo, si cerca di calcolarne la cardinalità. Per definire un automorfismo in D_n , lo si definisce sui generatori, che si sanno essere ρ e σ . L'immagine di questi generatori deve essere un altro generatore: ad esempio, l'immagine di ρ , che ha ordine n, deve avere come immagine un elemento di ordine n; questi sono della forma ρ^i , con $\gcd(i,n)=1$, quindi ci sono $\phi(n)$ possibili scelte. Poi, σ ha ordine 2 e deve avere, come immagine, un altro elemento di ordine 2 che, insieme al ρ^i scelto prima, generi D_n ; ci sono n riflessioni della forma $\sigma \rho^j$, quindi un totale di n scelte possibili. Si nota che se n è pari, anche $\rho^{n/2}$ ha ordine 2, ma la coppia ρ^i , $\rho^{n/2}$ non genera D_n .

Sia, allora

$$\begin{array}{cccc}
D_n & \longrightarrow & D_n \\
\gamma : & \rho^h & \longmapsto & \rho^{ih} \\
\sigma \rho^k & \longmapsto & \sigma \rho^j \rho^{ik}
\end{array}$$

con gcd(i, n) = 1 e j qualsiasi; γ è ben definita e

$$\gamma\left((\rho^s)(\sigma\rho^t)\right) = \gamma(\sigma\rho^{t-s}) = \sigma\rho^j\rho^{i(t-s)} = \sigma\rho^{-is}\rho^j\rho^{it} = \rho^{is}\sigma\rho^j\rho^{it} = \gamma(\rho^s)\gamma(\sigma\rho^t)$$

per cui è un omomorfismo. Inoltre, è biettiva per costruzione, quindi si ha $|\operatorname{Aut}(D_n)| = n\phi(n)$; da un punto di vista insiemistico, esiste una biezione tra $\operatorname{Aut}(D_n)$ e $\mathbb{Z}/n\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})^*$.

Esercizio 1.1. Studiare D_4 (risultati a pagina 19) e D_6 .

1.8 Permutazioni

Definizione 1.15 (Permutazione). Sia X un insieme; una mappa $f: X \to X$ è detta permutazione se è biettiva. Le permutazioni formano un gruppo rispetto alla

composizione tra funzioni ed è indicato con

$$S(X) = \{ f : X \to X \mid f \text{ è biettiva} \}$$

Se $X = \{1, ..., n\}$, allora il gruppo delle permutazioni si indica con S_n e $|S_n| = n!$.

Una permutazione di S_n può essere rappresentata tramite cicli, i quali sono disgiunti e, quindi, commutano fra loro.

Ogni k-ciclo (ciclo di lunghezza k) ha k scritture diverse, tutte equivalenti fra loro, dovute alla possibilità di scegliere uno fra i k elementi del ciclo come primo elemento; dopo questa scelta, tutti gli altri sono univocamente determinati.

Proposizione 1.17. I cicli di una permutazione di S_n sono orbite degli elementi di $X = \{1, ..., n\}$ formate dall'azione indotta da tale permutazione.

Dimostrazione. Sia $\sigma \in S_n$ e sia $\langle \sigma \rangle$ il sottogruppo ciclico generato da σ . Si considera l'azione di $\langle \sigma \rangle$ su X secondo la legge $\sigma^k \cdot x = \sigma^k(x)$; l'orbita di ciascun elemento di X è della forma

$$\operatorname{Orb}(x) = \left\{ \sigma^k(x) \mid k \in \mathbb{Z} \right\}$$

Si nota che $|X| < \infty \Rightarrow |\operatorname{Orb}(x)| < \infty$, $\forall x$. Sia, poi, $m \ge 1$ il più piccolo intero tale che $\sigma^m(x) = x^1$; allora gli elementi

$$x, \ \sigma(x), \ \sigma^2(x), \ldots, \ \sigma^{m-1}(x)$$

sono tutti distinti (per definizione di m) e formano $\mathrm{Orb}(x)$. Facendo agire σ su $\mathrm{Orb}(x) \subset X$, si nota che

$$x \mapsto \sigma(x), \ \sigma(x) \mapsto \sigma^2(x), \dots, \ \sigma^{m-1}(x) \mapsto \sigma^m(x) = x$$

L'azione di σ ristretta a Orb(x), allora, si può vedere come la permutazione

$$\begin{pmatrix} x & \sigma(x) & \sigma^2(x) & \cdots & \sigma^{m-1}(x) \end{pmatrix}$$

che è un m-ciclo. Se O_1, \ldots, O_r sono le orbite non banali (cioè di lunghezza > 1), σ agisce su ciascuna O_i come un m_i -ciclo, chiamato c_i per ogni orbita, con $|O_i| = m_i$, mentre su quelle banali agisce come l'identità. Visto che le orbite partizionano X, ciascun ciclo c_i è disgiunto dagli altri e la loro composizione restituisce proprio σ , visto che per definizione sono la restrizione di σ a partizioni di X.

Corollario 1.6.2. Il gruppo S_n è generato dai cicli.

¹Questo esiste per forza, altrimenti si avrebbero orbite di infiniti elementi a partire da un insieme finito.

Dimostrazione. Il teorema precedente mostra come ciascuna permutazione $\sigma \in S_n$ si possa scrivere come composizione di un numero finito di cicli disgiunti, pertanto combinando l'insieme di tutti i possibili cicli, si ottiene S_n .

Numero di k-cicli di S_n . Si cerca quanti k-cicli, con $k \leq n$, sono contenuti in S_n . Visto che un ciclo è una sequenza di k numeri, il problema si riduce a trovare quanti k numeri possono essere estratti da un insieme di n numeri, che si sa essere dato da $\binom{n}{k}$. Queste, però, non sono tutte perché i k numeri si possono scambiare in k! modi diversi; allo stesso tempo, è possibile costruire k k-cicli equivalenti, quindi il numero totale ammonta a $\binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$.

Numero di permutazioni di S_{12} sono composizione di 2 3-cicli e 3 2-cicli disgiunti. Dal punto precedente, si sa che in S_{12} si trovano $\binom{12}{3}\frac{3!}{3}$; fissato il primo 3-ciclo, restano 12-3 elementi liberi per gli altri cicli¹, quindi, per il secondo 3-ciclo, si hanno $\binom{9}{3}\frac{3!}{3}$ scelte possibili. Continuando così per tutti i cicli rimanenti, si ottengono

$$\binom{12}{3} \frac{3!}{3} \binom{9}{3} \frac{3!}{3} \binom{6}{3} \frac{2!}{2} \binom{4}{3} \frac{2!}{2} \binom{2}{3} \frac{2!}{2}$$

possibili permutazioni, dove si è modificata la formula per scegliere due 3-cicli e tre 2-cicli. Però se ne sono contati troppi: prendendo d'esempio i due 3-cicli, essendo disgiunti, questi possono commutare senza alterare la permutazione, però col conto precedente si sono considerati distinti. Per risolvere, si deve dividere per tutti i possibili modi di commutare i 3-cicli, cioè 2! in questo caso. Lo stesso si deve fare per i tre 2-cicli, i cui modi di permutarle sono 3!. Complessivamente, si hanno un totale di

$$\binom{12}{3}\frac{3!}{3}\binom{9}{3}\frac{3!}{3}\binom{6}{3}\frac{2!}{2}\binom{4}{3}\frac{2!}{2}\binom{2}{3}\frac{2!}{2}\frac{1}{3!2!}$$

possibili permutazioni.

Ordine di una permutazione di S_n . Un k-ciclo ha ordine k; infatti per $\sigma = (a_1 \cdots a_k)$, si ha

$$\sigma^s(a_i) = a_i \quad \text{con } j \equiv s + i \pmod{k} \text{ e } j < k$$

quindi $\sigma^s(a_i) = a_{i+s} = a_i \iff s+i \equiv i \pmod{k} \iff s \equiv 0 \pmod{k}$.

Se la permutazione è formata da ℓ cicli disgiunti σ_i , invece, il suo ordine è

$$\operatorname{ord}(\sigma) = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_\ell))$$

perché è il più piccolo numero tale che ogni ciclo torni al punto di partenza. Si nota, infatti, che se m è tale che $\sigma^m=e$, allora

$$e = \sigma^m = \sigma_1^m \cdots \sigma_\ell^m \implies \sigma_i^m = e, \ \forall i = 1, \dots, \ell$$

¹I tre scelti vanno rimossi affinché gli altri cicli siano disgiunti.

quindi $\operatorname{ord}(\sigma_i) \mid m, \ \forall i \ e, \ \operatorname{quindi}, \ m = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_\ell)).$

Definizione 1.16 (Trasposizione). Sia $\tau \in S_n$; se τ è della forma (a_i, a_j) , cioè è un 2-ciclo, allora si dice *trasposizione*.

Proposizione 1.18. Tutte le permutazioni di S_n si scrivono come composizione di trasposizioni.

Dimostrazione. Per il corollario 1.6.2, è sufficiente mostrare che vale per un k-ciclo generico. A questo proposito, si osserva che:

$$(1,\ldots,k) = (1,k)(1,k-1)\cdots(1,2)$$

Osservazione 1.8. La decomposizione in trasposizioni non è unica: per esempio:

$$(12) = (12)(34)(34) = (12)(34)(35)(67)(34)(35)(67)$$

Proposizione 1.19. L'applicazione

$$S_n \longrightarrow \{\pm 1\} = \mathbb{Z}^*$$

$$sgn: \qquad \qquad \sigma \longmapsto sgn \sigma = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

è un omomorfismo di gruppi. Inoltre, se σ è una trasposizione, si ha sgn $\sigma=-1$.

Dimostrazione. È un omomorfismo perché:

$$\operatorname{sgn}(\sigma\tau) = \prod_{1 \le i < j \le n} \frac{\sigma\tau(i) - \sigma\tau(j)}{i - j} = \prod_{1 \le i < j \le n} \frac{\sigma\tau(i) - \sigma\tau(j)}{\tau(i) - \tau(j)} \prod_{1 \le i < j \le n} \frac{\tau(i) - \tau(j)}{i - j} = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$$

dove si è moltiplicato sopra e sotto per $\tau(i) - \tau(j)$ e si sono separate le produttorie¹.

Sia $\sigma = (a, b)$ una trasposizione; allora

$$\operatorname{sgn} \sigma = \prod_{1 \le i \le j \le n} \frac{t(i) - t(j)}{i - j}$$

Se $\{i,j\} \cap \{a,b\} = \emptyset$, allora

$$\frac{\sigma(i) - \sigma(j)}{i - j} = \frac{i - j}{i - j} = 1$$

 $^{^1}$ La prima produttoria restituisce il sgn σ perché al massimo applicare prima τ altera l'ordine dell'insieme, quindi non è garantito che $\tau(i)<\tau(j)$ se i< j; questo, però, non importa perché se $\tau(i)>\tau(j),$ allora l'espressione si può riscrivere come $\frac{\sigma\tau(j)-\sigma\tau(i)}{\tau(j)-\tau(i)}.$ Prendendo $a=\tau(i)$ e $b=\tau(j),$ si potrebbe anche riscrivere la produttoria come $\prod_{1\leq a< b\leq n}\frac{\sigma(a)-\sigma(b)}{a-b}.$

mentre se $\{i, j\} \cap \{a, b\} = \{i, a\}$, si trova

$$\begin{cases} \frac{\sigma(i) - \sigma(a)}{i - a} = \frac{i - b}{i - a} &, \text{ se } i < a \\ \\ \frac{\sigma(a) - \sigma(i)}{a - i} = \frac{b - i}{a - i} = \frac{i - b}{i - a} &, \text{ se } a < i \end{cases}$$

Lo stesso vale per l'intersezione $\{i, j\} \cap \{a, b\} = \{i, b\}$:

$$\frac{\sigma(i) - \sigma(b)}{i - b} = \frac{\sigma(b) - \sigma(i)}{b - i} = \frac{i - a}{i - b}$$

I fattori delle due intersezioni non vuote si semplificano a 1, quindi rimane unicamente il caso in cui $\{i,j\} \cap \{a,b\} = \{a,b\}$; assumendo senza perdita di generalità che a < b, si trova:

$$\frac{\sigma(a) - \sigma(b)}{a - b} = \frac{b - a}{a - b} = -1$$

pertanto, nella produttoria, si ha un unico fattore pari a -1, il che implica che sgn $\sigma=-1$.

Corollario 1.6.3. La mappa $\operatorname{sgn} \sigma$ restituisce la parità di trasposizioni presenti in σ , quando decomposta in prodotto di trasposizioni.

Nucleo del segno. Si nota che

$$Ker(sgn) = \{ \sigma \in S_n \mid sgn \sigma = 1 \} = A_n \tag{1.8.1}$$

ed è noto come gruppo alterno. Alcune sue caratteristiche sono:

- (a). $A_n \triangleleft S_n$;
- (b). $S_n/A_n \cong \{\pm 1\}.$

Visto che $S_n/A_n \cong \{\pm 1\}$, per il teorema di Lagrange, si ha:

$$2 = |S_n/A_n| = \frac{S_n}{A_n} \implies |A_n| = \frac{|S_n|}{|S_n/A_n|} = \frac{n!}{2}$$

Teorema 1.7. Due permutazioni di S_n sono coniugate se e solo se hanno lo stesso tipo di decomposizione in cicli disgiunti.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

• (\Rightarrow) Siano $\sigma, \tau \in S_n$; si considerano $\sigma = (a_1, \dots, a_k)$ e $\tau \sigma \tau^{-1}$. Si nota che, se $\tau(a_i) = b_i \Rightarrow \tau \sigma \tau^{-1}(b_i) = \tau \sigma(a_i) = \tau(a_{i+1}) = b_{i+1}$; inoltre, se $x \neq b_i$ per ogni i:

$$\tau^{-1}(x) \neq a_i \implies \tau \sigma \tau^{-1}(x) = \tau \sigma (\tau^{-1}(x)) = \tau \tau^{-1}(x) = x$$

pertanto il coniugato di un k-ciclo è ancora un k-ciclo. Se la permutazione è composizione di cicli disgiunti, invece, si può scrivere

$$\sigma = \sigma_1 \dots \sigma_k \implies \tau \sigma \tau^{-1} = \tau \sigma_1 \tau^{-1} \dots \tau \sigma_k \tau^{-1}$$

quindi ci si può ricondurre al caso precedente.

• (\Leftarrow) Siano $\sigma = (a_1, \ldots, a_k)$ e $\rho = (b_1, \ldots, b_k)$ due k-cicli; si può prendere, allora, τ tale che $\tau(a_i) = b_i$, da cui $\tau \sigma \tau^{-1} = \rho$. Nel caso di più cicli disgiunti, si mappa ciclo con ciclo:

$$\sigma = (x_{11} \dots x_{1k_1}) \quad \cdots \quad (x_{r1} \dots x_{rk_r})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\rho = (y_{11} \dots y_{1k_1}) \quad \cdots \quad (y_{r1} \dots y_{rk_r})$$

con $\tau(x_{ij}) = y_{ij}$, quindi vale $\tau \sigma \tau^{-1} = \rho$.

Quanto al centralizzatore di $\sigma \in S_n$, si sa dal teorema orbita-stabilizzatore che

$$|Z(\sigma)||\operatorname{cl}(\sigma)| = n! \tag{1.8.2}$$

Per il teorema precedente, si sa calcolare $|cl(\sigma)|$, quindi è possibile ottenere $|Z(\sigma)|$.

Esempio 1.5. Sia $\sigma = (1234)(56) \in S_{10}$; il numero possibile di permutazioni coniugate sono tutte quelle che si scrivono come un 4-ciclo e un 2-ciclo in S_{10} , numero ottenuto come

$$|\operatorname{cl}(\sigma)| = {10 \choose 4} \frac{4!}{4} {6 \choose 2} = \frac{10!}{192} \implies |Z(\sigma)| = 192 = 4!8$$

Sia

$$H = \text{Sym}(7, 8, 9, 10) = \{h \in S_{10} \mid h(i) = i, \forall i \notin \{7, 8, 9, 10\}\} \cong S_4$$

e sia $K = \langle (1234), (56) \rangle$; allora $H, K < Z(\sigma), H \cap K = \{e\}$ e $HK = Z(\sigma)$, per cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

Dimostrazione. Si ha $H < Z(\sigma)$ perché ogni permutazione di H modifica solo l'insieme $\{7, 8, 9, 10\}$, quindi commuta con σ . Inoltre, $H \cong S_4 \Rightarrow |H| = 4!$.

Si ha $K < Z(\sigma)$ perché ogni elemento di K è della forma $(1234)^j(56)^k$, quindi commuta sempre con σ . Visto che (1234) ha ordine 4 e (56) ha ordine 2 e i due cicli sono disgiunti, si ha $|K| = 4 \cdot 2 = 8$. Si nota, in particolare, che $\langle (1234) \rangle \cong C_4 \cong \mathbb{Z}/4\mathbb{Z}$, cioè è isomorfo a un gruppo ciclico di ordine 4; analogamente $\langle (56) \rangle \cong C_2 \cong \mathbb{Z}/2\mathbb{Z}$.

Evidentemente la loro intersezione è banale perché le permutazioni di H agiscono esclusivamente su $\{7, 8, 9, 10\}$, mentre quelle di K su $\{1, 2, 3, 4, 5, 6\}$, quindi deve essere $H \cap K = \{e\}$.

Visto che $H, K < Z(\sigma)$ e |HK| = |H||K| = 192 (essendo $|H \cap K| = 1$), si ha $HK = Z(\sigma)$. Sempre perché $H \cap K$ è banale, si ha $HK \cong H \times K$, da cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

1.9 I teoremi di omomorfismo

Prova

1.10 Gruppi di Sylow e prodotti diretti

Definizione 1.17 (Gruppo di Sylow). Sia G un gruppo finito con $|G| = p^m n$, con p primo e gcd(p, n) = 1; se H < G e $|H| = p^m$, allora H è detto p-Sylow di G.

Esempio 1.6. Si considera il gruppo diedrale D_7 ; si ha $|D_7| = 14 = 7 \cdot 2$, con $|\langle \rho \rangle| = 7$; allora $\langle \rho \rangle$ è un 7-Sylow di D_7 ed è unico. Tuttavia, i p-Sylow non sono unici; per esempio, i $\langle \rho^i \sigma \rangle \subset D_7$ sono sette 2-Sylow.

Lemma 1.7.1. Siano $H, K \triangleleft G$, con $H \cap K = \{e\}$; allora $hk = kh, \ \forall h \in H, \ \forall k \in K$.

Dimostrazione. Si ha $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1}$; visto che K è normale, allora $hkh^{-1} \in K$, quindi $hkh^{-1}k^{-1} \in K$. Allo stesso tempo, $hkh^{-1}k^{-1} = h(kh^{-1}k^{-1})$ e, siccome anche H è normale, si ha $kh^{-1}k^{-1} \Rightarrow hkh^{-1}k^{-1} \in H$. Allora, visto che $hkh^{-1}k^{-1} \in H \cap K$ e visto che $H \cap K = \{e\}$ per assunzione, si ha $hkh^{-1}k^{-1} = e \Rightarrow hk = kh$.

Teorema 1.8. Sia G un gruppo e siano $H, K \triangleleft G$; se HK = G e $H \cap K = \{e\}$, allora $G \cong H \times K$.

Dimostrazione. Sia $\phi: H \times K \to G$ tale che $\phi((h,k)) = hk$; allora ϕ è un omomorfismo per il lemma precedente (1.7.1), è iniettiva per la seconda ipotesi ed è suriettiva per la prima.

Corollario 1.8.1. In un prodotto diretto, i fattori commutano fra loro.

Osservazione 1.9. Sia $G = H \times K$; per il teorema precedente (1.8), $Z(H \times K) \cong Z(H) \times Z(K)$, visto che $Z(H) \times \{e_K\}$ e $\{e_h\} \times Z_K$ sono sottogruppi normali di $Z(H \times K)$. Conseguentemente, ricordando la proposizione 1.1, si trova:

$$\operatorname{Int}(H \times K) \cong (H \times K)/Z(H \times K) \cong H/Z(H) \times K/Z(K) \cong \operatorname{Int}(H) \times \operatorname{Int}(K)$$

dove il penultimo isomorfismo è ottenuto definendo

$$\gamma: \begin{array}{ccc} H \times K & \longrightarrow & H/Z(H) \times K/Z(K) \\ (h,k) & \longmapsto & (h+Z(H),k+Z(K)) \end{array}$$

e dal I teorema di omomorfismo.

Teorema 1.9. Sia

$$\phi: \begin{array}{ccc} \operatorname{Aut}(H) \times \operatorname{Aut}(K) & \longrightarrow & \operatorname{Aut}(H \times K) \\ (f,g) & \longmapsto & \gamma = (f,g) \end{array}$$

Allora ϕ è un omomorfismo iniettivo, mentre è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Dimostrazione. Intanto, γ è ben definita perché $\forall (f,g) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, si ha $f(h) \in H$, $\forall h \in H$ e $g(k) \in K$, $\forall k \in K$, quindi $\gamma((h,k)) = (f(h),g(k)) \in H \times K$.

Poi, ϕ è ben definita perché γ è un automorfismo; infatti è un omomorfismo:

$$\gamma((h,k)(h',k')) = (f(hh'), g(kk')) = (f(h)f(h'), g(k)g(k')) = \gamma((h,k))\gamma(h',k')$$

È anche iniettiva perché

$$\operatorname{Ker} \gamma = \{(h, k) \in H \times K \mid \gamma((h, k)) = (e_H, e_K)\} = \{(h, k) \in \operatorname{Ker} f \times \operatorname{Ker} g\}$$
$$= \{(e_H, e_K)\}$$

ed è suriettiva perché $\forall (h,k) \in H \times K$, $\exists ! (h_0,k_0) \in H \times K : ((f(h_0),g(k_0)) = (h,k)$, dove si è usato, in tutte le dimostrazioni, che sia f che g sono automorfismi. Segue che γ è effettivamente un automorfismo di $H \times K$.

Ora si verifica che ϕ è un omomorfismo ed è sempre iniettivo; la prima vale perché

$$\phi((f,q)(\varphi,\psi)) = \phi(f \circ \varphi, q \circ \psi) = (f \circ \varphi, q \circ \psi) = (f,q) \circ (\varphi,\psi) = \phi((f,q)) \circ \phi((\varphi,\psi))$$

mentre è iniettivo perché $\phi((f,g)) = \mathrm{Id}_{H \times K} \iff f = \mathrm{Id}_H \in g = \mathrm{Id}_K.$

Ora si dimostra che ϕ è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

• (\Leftarrow) Si assume che $H \times \{e_K\}$ e $\{e_H\} \times K$ siano caratteristici in $H \times K$ e si mostra che ϕ è suriettivo. Per farlo, si considerano, $\forall \gamma \in \operatorname{Aut}(H \times K)$, le mappe $f: H \to H$ e $g: K \to K$ tali che

$$f(h) = \pi_H \gamma(h, e_K)$$
 $g(k) = \pi_K \gamma(e_H, k)$

e si dimostra che $f \in Aut(H)$, $g \in Aut(K)$ e $\gamma = \phi(f,g)$. Si nota che, sia f che g sono composizioni di due omomorfismi, quindi sono, a loro volta, omomorfismi;

inoltre

$$\operatorname{Ker} f = \{ h \in H \mid \pi_H \gamma(h, e_K) = e_H \} = \{ h \in H \mid \pi_H(h', e_K) = e_H \}$$
$$= \{ h \in H \mid e_H = h' = \gamma(h) \} = \{ e_H \}$$

Lo stesso vale per g, quindi entrambe le mappe sono omomorfismi iniettivi. Usando il fato che γ è suriettiva, si ha che $\forall h' \in H$, $\exists h \in H : \gamma(h, e_K) = (h', e_K)$, quindi $f(h) = \pi_H \gamma(h, e_K) = \pi_H(h', e_K) = h'$ e lo stesso si può ripetere per g quindi f e g sono automorfismi. Per concludere, si nota che

$$\phi(f,g)((h,k)) = (\pi_H \gamma((h,e_K)), \pi_K \gamma((e_H,k))) = (h',k') = \gamma(h,k)$$

• (\Rightarrow) Sia ϕ anche suriettivo, quindi è un isomorfismo; si mostra che $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Se ϕ è suriettivo, significa che ogni automorfismo di $\operatorname{Aut}(H \times K)$ è della forma $(f,g): f \in \operatorname{Aut}(H), \ g \in \operatorname{Aut}(K)$, ma allora, per $\psi \in \operatorname{Aut}(H \times K)$, si ha:

$$\psi(H \times \{e_K\}) = f(H) \times \{e_K\} = H \times \{e_K\}$$

perché f è un automorfismo di H e $\{e_K\} \xrightarrow{g} \{e_K\}$ perché g è un automorfismo di K.

Proposizione 1.20. Sia $G = H \times K$, con |H| = n e |K| = m; se gcd(n, m) = 1, allora H e K sono caratteristici in G.

Dimostrazione. Sia $f \in \text{Aut}(H \times K)$, con $f(h, e_K) = (h', k')$; visto che ord $((h, e_K)) = \text{ord}(h) \mid n$, deve essere ord $((h', k')) = \text{mcm}(\text{ord}(h'), \text{ord}(k')) \mid n$, visto che f è automorfismo e, in particolare ord $(k') \mid n$. Per ipotesi, deve essere ord $(k') \mid m$, ma, visto che gcd(n, m) = 1, deve essere $k' = e_K$, da cui $f(H \times \{e_K\}) \subset H \times \{e_K\}$. Lo stesso procedimento si può applicare a $f(e_H, k)$.

1.11 Prodotto semidiretto

Definizione 1.18 (Prodotto semidiretto). Siano H, K dei gruppi e $\gamma : K \to \operatorname{Aut}(H)$ un omomorfismo tale che $\gamma(k) = \gamma_k \in \operatorname{Aut}(H)$, dove $\gamma_k : H \to H$ mappa $h \mapsto h' \in H$; si chiama prodotto semidiretto di H e K via γ il prodotto cartesiano $H \times K$ con l'operazione definita da

$$(h,k)*(h',k') = (h\gamma_k(h'),kk')$$

e si indica con $(H \times K, *) = H \rtimes_{\gamma} K$.

Proposizione 1.21. Dati due gruppi H, K; il loro prodotto semidiretto $H \rtimes_{\gamma} K$ è un gruppo.

Dimostrazione. La chiusura dell'operazione deriva direttamente dal fatto che sono due gruppi. Tale operazione è associativa:

$$(a,b) [(c,d)(e,f)] = (a,b)(c\gamma_d(e),df) = (a\gamma_b(c\gamma_d(e)),bdf) = (a\gamma_b(c)\gamma_b(\gamma_d(e)),bdf)$$
$$= (a\gamma_b(c)\gamma_{bd}(e),bdf) = (a\gamma_b(c),bd)(e,f) = [(a,b)(c,d)](e,f)$$

L'elemento neutro è (e_H, e_K) :

$$(a,b)(e_H, e_K) = (a\gamma_b(e_H), be_K) = (a,b)$$

perché γ_b è un automorfismo. Infine, l'elemento inverso è dato da 1:

$$(a,b)(\gamma_{b^{-1}}(a^{-1}),b^{-1}) = (a\gamma_b \circ \gamma_{b^{-1}}(a^{-1}),e_K) = (aa^{-1},e_K) = (e_H,e_K)$$

Osservazione 1.10. Il prodotto semidiretto è un caso particolare di prodotto diretto: scegliendo $\gamma(K) = \mathrm{Id}_H \in \mathrm{Aut}(H)$, si ha, infatti, $(h,k)(h',k') = (h\,\mathrm{Id}_H(h'),kk') = (hh',kk')$, $\forall k \in K$.

Esempio 1.7. Si studia $\mathbb{Z}/7\mathbb{Z} \rtimes_{\gamma} \mathbb{Z}/7\mathbb{Z}$, con $\gamma : \mathbb{Z}/7\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/7\mathbb{Z}) \cong (\mathbb{Z}/7\mathbb{Z})^* \cong \mathbb{Z}/6\mathbb{Z}$. Per questione di ordine, si ha $\gamma([1]_7) = [0]_6$, visto che $\gamma([1]_7)$, in quanto elemento di $\mathbb{Z}/6\mathbb{Z}$, deve avere $\operatorname{ord}(\gamma([1]_7)) \mid 6$ e, come immagine di $[1]_7$, che ha $\operatorname{ord}([1]_7) = 7$, deve essere tale che $\operatorname{ord}(\gamma([1]_7)) \mid 7$; l'unico elemento che divide sia 6, che 7 è 1, per cui γ deve mappare $[1]_7$ in $[0]_6$. Visto che $[1]_7$ genera $\mathbb{Z}/7\mathbb{Z}$, significa che $\gamma(\mathbb{Z}/7\mathbb{Z}) = \{[0]_6\}$, cioè è l'omomorfismo banale. In sostanza, $\mathbb{Z}/7\mathbb{Z} \rtimes_{\gamma} \mathbb{Z}/7\mathbb{Z} = \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Proposizione 1.22. Siano H, K due gruppi; si considera il loro prodotto semidiretto $H \rtimes_{\gamma} K$. Dati $\overline{H} = H \times \{e_K\}$ e $\overline{K} = \{e_H\} \times K$, per i quali si sa che $\overline{K}, \overline{H} \lhd H \times K$, vale $\overline{H} \lhd H \rtimes_{\gamma} K$ sempre e $\overline{K} \lhd H \rtimes_{\gamma} K \iff$ il prodotto è diretto.

Dimostrazione. Si ha sempre $\overline{H} \triangleleft H \rtimes_{\gamma} K$ perché $\pi_K : H \rtimes_{\gamma} K \to K$ tale che $\pi_K((h,k)) = k$ è un omomorfismo e $H = \operatorname{Ker} \pi_K$.

Per \overline{K} , si assume prima che sia normale e si mostra che γ deve essere per forza banale. A questo scopo, si osserva che $\forall (e_H, k) \in \overline{K}$ ed un elemento generico $(h, e_K) \in \overline{H} \triangleleft H \rtimes_{\gamma} K$:

$$(h, e_K)(e_H, k)(h, e_K)^{-1} = (h\gamma_{e_K}(e_H), e_K k)(h, e_K)^{-1} = (h\gamma_k(h^{-1}), k)$$

Il fatto che \overline{K} sia normale, implica che $\forall k$, $(h\gamma_k(h^{-1}), k) = (e_H, k)$, cioè $\forall k$, $\gamma_k(h^{-1}) = h^{-1}$, pertanto γ deve essere l'omomorfismo banale e, quindi, il prodotto è diretto.

¹Questo si può ottenere imponendo che $(a,b)(x,y)=(e_H,e_K)$, risolvendo per x e y.

Per l'implicazione inversa, cioè assumendo che il prodotto sia diretto, è possibile seguire la stessa dimostrazione fatta per \overline{H} .

Osservazione 1.11. Sia G un gruppo e H, K < G, con $H \triangleleft G$; allora HK < G.

Teorema 1.10 (Teorema di scomposizione semidiretta). Sia G un gruppo e siano $H \triangleleft G$ e K < G due sottogruppi; se HK = G e $H \cap K = \{e_G\}$, allora $G \cong H \rtimes_{\gamma} K$, con $\gamma : K \to \operatorname{Aut}(H)$ e $\gamma(k) = khk^{-1}$.

Dimostrazione. Prima si dimostra la buona definizione del prodotto semidiretto definito nella tesi.

• $\gamma(k) = \gamma_k$ è un automorfismo di H.

La mappa $\gamma(k): H \to H$ è ben definita, visto che $H \lhd G$; infatti, $\forall k \in K, \ \forall h \in H$, si ha $khk^{-1} \in H$. Poi, γ_k è un omomorfismo perché

$$\gamma_k(h_1h_2) = k(h_1h_2)k^{-1} = (kh_1k^{-1})(kh_2k^{-1}) = \gamma_k(h_1)\gamma_k(h_2)$$

Infine, è biettiva perché ha inversa $\gamma(k)^{-1} = \gamma(k^{-1}) = \gamma_{k-1}$; infatti $\gamma_{k-1} \circ \gamma_k = \gamma_{e_K} = \mathrm{Id}_H$.

• $\gamma: K \to \operatorname{Aut}(H)$ è un omomorfismo.

Dati $k_1, k_2 \in K$ e $h \in H$:

$$\gamma(k_1k_2)(h) = (k_1k_2)h(k_1k_2)^{-1} = k_1(k_2hk_2^{-1})k_1^{-1} = (\gamma_{k_1} \circ \gamma_{k_2})(h)$$

Ora si introduce il prodotto semidiretto dei gruppi $H \rtimes_{\gamma} K$ con la legge $(h,k)(h',k') = (hkh'k^{-1},kk')$. Si dimostra che $G \cong H \rtimes_{\gamma} K$. Per farlo, si introduce $F: H \rtimes_{\gamma} K \to G$ tale che $F(h,k) = hk \in G$ e si mostra che è un isomorfismo di gruppi.

• F è un omomorfismo.

Siano $(h, k), (h', k') \in H \times K$; si osserva che:

$$F((h,k)(h',k')) = F((hkh'k^{-1},kk')) = hkh'k^{-1}kk' = (hk)(h'k')$$
$$= F(h,k)F(h',k')$$

• F è biettivo.

Per la suriettività, si nota che, essendo HK = G per ipotesi, allora ogni $g \in G$ si scrive come g = hk, con $h \in H$ e $k \in K$. Ne consegue che F(h,k) = hk è suriettivo.

Per l'iniettività, sia $(h, k) \in \text{Ker } F$; allora $F(h, k) = hk = e_G \iff hk = e_G \iff h = k^{-1}$, ma visto che $H \cap K = \{e_G\}$, deve essere $h = k = e_H$, quindi Ker $F = \{(e_G, e_G)\}$.

Allora $F: H \rtimes_{\gamma} K \to G$ è un isomorfismo di gruppi, per cui $G \cong H \rtimes_{\gamma} K$.

Esempio 1.8. Si ha $S_n \cong A_n \rtimes_{\gamma} \langle (1,2) \rangle$, con $\gamma_{(1,2)}(\sigma) = (1,2)\sigma(1,2)$, poi $D_n \cong \langle \rho \rangle \rtimes_{\gamma} \langle \sigma \rangle$, con $\gamma_{\sigma}(\rho) = \sigma \rho \sigma^{-1} = \rho^{-1}$.

Esempio 1.9 (Classificazione dei gruppi di ordine pq.). Si considera prima il caso p=q, da cui $|G|=p^2$, per il quale si sa che le uniche possibilità sono $G\cong \mathbb{Z}/p\mathbb{Z}\times \mathbb{Z}/p\mathbb{Z}$, oppure $G\cong \mathbb{Z}/p^2\mathbb{Z}$.

Si assume, ora, q > p e |G| = pq; per Cauchy, esistono due sottogruppi H, K < G di ordine q e p rispettivamente; usando la proposizione 1.24, si sa anche che $H \triangleleft G^1$

Inoltre, si sa anche che H è caratteristico perché è l'unico sottogruppo di ordine q. Infatti, se esistesse H' < G tale che |H'| = q, si avrebbe $|HH'| = |H||H'|/|H \cap H'| = q^2/|H \cap H'|$. Visto che $|H \cap H'|$ può essere 1, oppure q, quindi |HH'| è q, o q^2 , ma non può essere q^2 perché sarebbe maggiore di |G|, quindi $|H \cap H'| = q \Rightarrow H = H'$.

Usando il teorema di scomposizione (1.10), si conclude che $G = H \rtimes_{\gamma} K$ perché, per una questione di ordine, $H \cap K = \{e_G\}$ e $|HK| = |H||K|/|H \cap K| = |H||K| = pq$, quindi $G = HK^2$.

Prendendo $H = \langle x \rangle$ e $K = \langle y \rangle$, si ha

$$\gamma: \langle y \rangle \longrightarrow \operatorname{Aut}(\langle x \rangle), \ \gamma(y)(x) = \gamma_y(x) = yxy^{-1} = x^{\ell}$$

Visto che γ è un omomorfismo, deve valere $\operatorname{ord}(\gamma_y) \mid \operatorname{ord}(y)$, cioè $\operatorname{ord}(\gamma_y) \in \{1, p\}$ (visto che p è primo), quindi se $p \nmid (q-1)^3$, allora $\operatorname{ord}(\gamma_y) = 1$ e $\gamma_y = \operatorname{Id}_H$, quindi $G \cong \mathbb{Z}/(pq)\mathbb{Z}$. Se, invece, $p \mid (q-1)$, allora esiste un sottogruppo di ordine p in $\mathbb{Z}/(q-1)\mathbb{Z}$, il quale ha p-1 elementi di ordine p (sempre perché p è primo), quindi ci sono p-1 possibili omomorfismi γ che generano gruppi $H \rtimes_{\gamma} K$ diversi a seconda di dove mandano p; l'idea è di dimostrare che questi sono tutti isomorfi tra loro.

Siano, allora γ, γ' due omomorfismi tali che $\gamma_y(x) = x^{\ell}$ e $\gamma_y'(x) = x^{\ell'}$, con ℓ, ℓ' coprimi con q^4 ; si ha:

$$(\gamma_y)^p = \operatorname{Id} \implies x^{\ell^p} = x \implies \ell^p = 1$$

quindi $\operatorname{ord}(\ell) = \operatorname{ord}(\ell') = p$, per cui $\exists r \in \mathbb{N}$ tale che $\ell' = \ell^r$, con 0 < r < p-1. Questo significa che $\gamma'_y = \gamma_{y^r}$, infatti $\gamma_{y^r}(x) = (\gamma_y(x))^r = x^{\ell^r} = x^{\ell'}$. Per conclude, si nota che $\psi : H \rtimes_{\gamma} K \longrightarrow H \rtimes_{\gamma'} K$ tale che $\psi((x,y)) = (x,y^r)$ è un isomorfismo (facile verifica), quindi ogni prodotto semidiretto genera gruppi isomorfi.

Se ne conclude che, nel caso $p \mid q-1$, ci sono solo due possibili gruppi distinti di ordine pq, a meno di isomorfismi.

¹Perché [G:H] = |G/H| = |G|/|H| = qp/q = p.

²Si ricorda che $H \triangleleft G$ implica che HK è un gruppo).

 $^{^3}$ La richiesta deriva dal fatto che $|\operatorname{Aut}(\langle x\rangle)| = |\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})| = |(\mathbb{Z}/q\mathbb{Z})^*| = q - 1$. La richiesta $p \mid q - 1$, invece, è legata alla necessità che $\operatorname{ord}(\gamma_y) \mid \operatorname{ord}(y) = p$, cioè che in $(\mathbb{Z}/q\mathbb{Z})^* \cong \mathbb{Z}/(q-1)\mathbb{Z}$ esista un sottogruppo di ordine almeno p, cosa che è verificata se e solo se $p \mid q - 1$.

⁴Perché le mappe γ_y e γ_y' sono automorfismi di $\mathbb{Z}/q\mathbb{Z}$, quindi devono mappare un generatore (x in questo caso) in un altro generatore.

Osservazione 1.12. Si riassume e si dà un'idea qualitativa dei risultati sulla classificazione dei gruppi di ordine pq. Nel caso in cui $p \nmid q-1$, l'unico gruppo possibile di ordine pq a meno di isomorfismi è $G \cong \mathbb{Z}/pq\mathbb{Z}$ perché non esistono automorfismi di ordine p in $\operatorname{Aut}(H) \cong \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$. Se, invece, $p \mid q-1$, si hanno due possibilità: $G \cong \mathbb{Z}/pq\mathbb{Z}$, oppure G è isomorfo a un gruppo non-abeliano relativo ad un prodotto semidiretto non banale. Tale gruppo non-abeliano è unico a meno di isomorfismo perché $\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/(q-1)\mathbb{Z}$ è ciclico, quindi tutti gli elementi di ordine p generano lo stesso sottogruppo, pertanto inducono lo stesso prodotto semidiretto.

1.12 Ancora sulle permutazioni

Per il teorema delle classi, si sa che $|Z_{S_n}(\sigma)||\operatorname{Cl}_{S_n}(\sigma)|=n!$; analogamente, se $\sigma\in A_n$, allora $|Z_{A_n}(\sigma)||\operatorname{Cl}_{A_n}(\sigma)|=n!/2$, con

$$Z_{A_n}(\sigma) = \{ \rho \in A_n \mid \rho \sigma \rho^{-1} = \sigma \} = Z_{S_n}(\sigma) \cap A_n$$

Osservazione 1.13. Dalla formula delle classi, appare che, passando da S_n ad A_n , una classe di coniugio può rimanere uguale, oppure scindersi in due di uguale grandezza. La seconda eventualità è relativa a quando il centralizzatore di S_n del rappresentante è interamente contenuto in A_n ; in questo caso, infatti, il centralizzatore di A_n coincide con quello di A_n , quindi, per la formula delle classi:

$$|\operatorname{Cl}_{A_n}(\sigma)||Z_{A_n}(\sigma)| = |\operatorname{Cl}_{A_n}(\sigma)||Z_{S_n}(\sigma)| = |\operatorname{Cl}_{A_n}(\sigma)|\frac{n!}{|\operatorname{Cl}_{S_n}(\sigma)|} = \frac{n!}{2}$$

$$\implies |\operatorname{Cl}_{A_n}(\sigma)| = \frac{|\operatorname{Cl}_{S_n}(\sigma)|}{2}$$

Nella prima eventualità, invece, è l'ordine della classe a rimanere invariato nel passaggio da S_n ad A_n .

Lemma 1.10.1. Sia $H < S_n$; allora $|H \cap A_n| = |H|$, se $H \subset A_n$, altrimenti $|H \cap A_n| = H/2$.

Dimostrazione. Si considera il seguente diagramma:

$$H \xrightarrow{\phi} S_n(\mathbb{R}) \xrightarrow{\psi} S_n/A_n \cong \{\pm 1\}$$

con ψ omomorfismo suriettivo e $S_n/A_n \cong \{\pm 1\}$ per il I teorema di omomorfismo applicato all'omomorfismo suriettivo $S_n \xrightarrow{\text{sgn}} \{\pm 1\}$, dove $\text{Ker sgn} = A_n$.

Ora, considerando la mappa $\gamma: H \to S_n/A_n \cong \{\pm 1\}$, si nota che se $H \cap A_n = H$, allora H contiene unicamente permutazioni pari e γ è l'applicazione banale perché Ker $\gamma = H$. Se, invece, $H \not\subset A_n$, significa che H contiene almeno una permutazione dispari, per cui il

quoziente H/A_n ha indice $2 e \gamma$ è un omomorfismo suriettivo, pertanto $H/\operatorname{Ker} \gamma \cong \{\pm 1\}$. Si osserva che $\operatorname{Ker} \gamma = H \cap A_n$, quindi: nel primo caso, si ottiene $H \cap A_n = H$, quindi $|H \cap A_n| = |H|$; nel secondo caso, si ha $H/H \cap A_n \cong \{\pm 1\}$, quindi $|H| = 2|H \cap A_n|$. \square

Esercizio 1.2. I 3-cicli sono tutti coniugati in A_n , con $n \geq 5$.

Svolgimento. Dato $\sigma = (a, b, c) \in S_5$ un 3-ciclo, per $n \geq 5$ si ha $(d, e) \in Z_{S_n}(\sigma)/Z_{A_n}(\sigma)$, con $d, e \notin \{a, b, c\}$; per il lemma precedente, quindi, $|\operatorname{Cl}_{A_n}(\sigma)| = |\operatorname{Cl}_{S_n}(\sigma)|$.

Se, al contrario, si considera n = 3, per esempio, $A_3 = \langle (1,2,3) \rangle = \{ \mathrm{Id}, (1,2,3), (1,3,2) \};$ se, per assurdo, $\mathrm{Cl}_{A_n}(1,2,3) = \{ (1,2,3), (1,3,2) \},$ si avrebbe $|\mathrm{Cl}_{A_n}(1,2,3)| = 2 \nmid 3 = |A_3|^1$, quindi $\mathrm{Cl}_{A_n}(1,2,3) = \{ (1,2,3) \}.$

Infine, per
$$n = 4$$
, si ha $|A_4| = 12$ e $|\text{Cl}_{S_4}(a, b, c)| = {4 \choose 3} 2! = 8 \nmid 12$.

Esercizio 1.3. I 5-cicli non sono tutti coniugati in A_5 .

Svolgimento. Le classi di coniugio di un 5-ciclo di S_5 sono 4!; se $\text{Cl}_{A_5}(\sigma)$ avesse stessa cardinalità, con σ un 5-ciclo, allora, per la formula delle classi:

$$|Z_{A_5}(\sigma)| = \frac{|A_5|}{|\operatorname{Cl}_{A_5}(\sigma)|} = \frac{5!/2}{4!} = \frac{5}{2}$$

che è assurdo, quindi tale classe di equivalenza si scinde in due.

Esercizio 1.4. A_4 non contiene sottogruppi di ordine 6.

Svolgimento. Poniamo caso che $\exists H < A_4$ con |H| = 6, allora $H \lhd A_4^2$ e $\exists \sigma \in H$ con $\operatorname{ord}(\sigma) = 2$ e $\sigma = (a,b)(c,d)$. Si nota che $\operatorname{Cl}_{S_4}(\sigma) = \{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} = \operatorname{Cl}_{A_4}(\sigma)$; inoltre, $K = \{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} \lhd S_4$, ma se H è normale e $\sigma \in H$, allora $\operatorname{Cl}_{A_4}(\sigma) \subset H$, quindi $K \lhd H$, il che è assurdo perché $|K| = 4 \nmid 6 = |H|$.

Proposizione 1.23. Per ogni $n \geq 5$, A_n è semplice, cioè non ha sottogruppi normali non-banali.

Dimostrazione. Si procede per induzione su n. Per il passo base, si considera n=5. In questo caso, $|A_5|=60$; considerando $H \triangleleft A_5$, se H contiene un 3-ciclo, li contiene tutti, ma visto che questi generano A_n , allora $H=A_n$. Se contiene un 2×2 -ciclo, invece, per coniugio, contiene un 3-ciclo³ e ci si ritrova nel caso precedente. Se H contiene un 5-ciclo, ancora per coniugio, contiene un 3-ciclo⁴ e, nuovamente, si è nel primo caso. Allora H è banale.

Ora si assume che la tesi sia vera $\forall m < n$ e si dimostra per n. Si considera, allora, per $n \ge 6$, $A_n \supset G_i = \{\sigma \in A_n \mid \sigma(i) = 1\} \cong A_{n-1}$, dove ogni G_i è coniugato di qualche altro.

¹Il fatto che l'ordine della classe di coniugio debba dividere l'ordine del gruppo è diretta conseguenza della formula delle classi.

²Si avrebbe $[A_4:H]=2$, quindi risulterebbe $H \triangleleft A_4$.

³Per esempio, ((1,2)(3,4))((1,5)(3,4)) = (1,5,2).

⁴Per esempio, (1, 2, 3, 4, 5)(1, 5, 3, 4, 2) = (3, 4, 5).

Sia, ora, $N \triangleleft A_n$, per cui $N \cap G_i \triangleleft G_i$; per induzione, dunque, si ha, per ogni i, $N \cap G_i = G_i$, oppure $N \cap G_i = \{e\}$. Se $\forall i, N \cap G_i = G_i$, allora per un certo i, G_i contiene un 3-ciclo, pertanto $N = A_n$.

Se, al contrario, $\forall i, \ N \cap G_i = \{e\}$, allora N è il sottogruppo degli elementi che non fissano alcun elemento. Siano $\sigma, \tau \in N$; se $\sigma(i) = \tau(i) \implies \sigma\tau^{-1}(i) = i \implies \sigma = \tau$. Allora si scrive σ come prodotto di cicli disgiunti di lunghezze r_1, \ldots, r_k decrescenti: $\sigma = C_1 \cdots C_k$. Si assume $r_i \geq 3$ per un certo i, quindi $C_i = (i_1, i_2, i_3, \ldots)$; prendendo $\rho = (i_3, j, k)$ tale che $j, k \notin \{i_1, i_2, i_3\}$, si ha $\rho\sigma\rho^{-1} = \tau$ e $\sigma(i_1) = \tau(i_1) = i_2$, ma $\sigma \neq \tau$ che è assurdo.

Si considera, ora, $\forall i, r_i = 2$, quindi $\sigma = (i, j)(k, l) \dots$ è prodotto di trasposizioni; scegliendo $\rho = (\ell, p, q)$, con $p, q \notin \{i, j, k\}$, si ha che $\tau = \rho \sigma \rho^{-1}$ e σ sono distinti, ma $\sigma(i) = \tau(i) = j$, il che è assurdo.

Si conclude che N è banale, pertanto A_n è semplice.

Sottogruppi normali di S_n . Per n=4, si hanno A_4 e $\langle (1,2)(3,4), (1,3)(2,4) \rangle$. Per n=5, S_n ha un solo sottogruppo normale, cioè A_5 ; infatti, se $H \triangleleft S_n$ e $|H| \nmid |A_n|$, allora $H \cap A_n \triangleleft A_n$, però A_n è semplice, quindi $H \cap A_n = \{e\}$. Questo implica che H è generato da una trasposizione, quindi non è normale.

1.13 Il teorema di Sylow

Teorema 1.11 (Teorema di Sylow). Sia G un gruppo finito e p un numero primo tale che $|G| = p^n m$, con gcd(m, p) = 1; allora:

- (a). esistenza: $\forall \alpha \in \mathbb{N} : 0 \le \alpha \le n, \exists H < G \text{ con } |H| = p^{\alpha};$
- (b). *inclusione*: ogni p-gruppo di G è contenuto in un p-Sylow¹;
- (c). coniugio: due qualsiasi p-Sylow sono coniugati;
- (d). *numero*: indicando con n_p il numero di p-Sylow di G, si ha che $n_p \mid |G|$ e $n_p \equiv 1 \pmod{p}$.

Dimostrazione. Si divide la dimostrazione nei vari punti.

(a). Si fissa $0 \le \alpha \le n$. Sia $\mathcal{M} = \{M \subset G \mid |M| = p^{\alpha}\}$; allora

$$|\mathcal{M}| = \binom{p^n m}{p^{\alpha}} = \frac{(p^n m)!}{p^{\alpha}! (p^n m - p^{\alpha})!} = \frac{p^n m \prod_{i=1}^{p^{\alpha-1}} (p^n m - i)}{p^{\alpha} \prod_{i=1}^{p^{\alpha-1}} (p^{\alpha} - i)} = p^{n-\alpha} m \prod_{i=1}^{p^{\alpha-1}} \frac{p^n m - i}{p^{\alpha} - i}$$

 $^{^1}$ Si intende che se H < G con $|H| = p^{\alpha}$, con $0 \le \alpha \le n$, allora H è contenuto in un sottogruppo di G di ordine $p^{\alpha+1}$.

Da questo, si osserva che $p^{n-\alpha} \mid |\mathcal{M}|$ e, per $i = 1, ..., p^{\alpha-1}$, definendo $v_p(n) := \max\{k \in \mathbb{N} \mid p^k \text{ divide } n\}$, si ha che:

$$v_p(p^n m - i) = v_p(p^{\alpha} - i) = v_p(i) \implies v_p\left(\frac{p^n m - i}{p^{\alpha} - i}\right) = v_p(p^n m - i) - v_p(p^{\alpha} - i) = 0$$

essendo $i \leq p^{\alpha-1}$ e $\alpha \leq n$. Visto che v_p conta l'esponente massimo per cui è possibile dividere il suo input, si conclude che $p^{n-\alpha}$ divide esattamente $|\mathcal{M}|$ e $n-\alpha$ è il massimo esponente con cui p può divide $|\mathcal{M}|^1$.

Ora si considera l'azione di G su \mathcal{M} data da $\phi: G \to S(\mathcal{M})$, con $\phi(g)(M) = \phi_g(M) = gM$; per il teorema delle classi:

$$|\mathcal{M}| = \sum_{M_i \in R} |\operatorname{Orb}(M_i)| = \sum_{M_i \in R} \frac{|G|}{|\operatorname{Stab}(M_i)|}$$

con R insieme dei rappresentanti delle orbite. Il fatto che $p^{n-\alpha}\mid\mid |\mathcal{M}|^2$ implica che $\exists i$ tale per cui

$$p^{n-\alpha+1} \nmid |\operatorname{Orb}(M_i)| = \frac{|G|}{|\operatorname{Stab}(M_i)|} = \frac{p^n m}{|\operatorname{Stab}(M_i)|}$$

Ne segue anche che $p^{\alpha} \mid |\operatorname{Stab}(M_i)| = t^3$, per cui $t \geq p^{\alpha}$; si vuole mostrare che $|\operatorname{Stab}(M_i)| = p^{\alpha}$.

D'altra parte, la mappa $\operatorname{Stab}(M_i) \longrightarrow M_i$ tale che $\operatorname{Stab}(M_i) \ni y \longmapsto yx$, per $x \in M_i$, è iniettiva perché $yx = y_1x \iff y = y_1$, quindi $\operatorname{Stab}(M_i) \le |M_i| = p^{\alpha}$, da cui $|\operatorname{Stab}(M_i)| = p^{\alpha}$. Essendo $\operatorname{Stab}(M_i) < G$, significa che in G esiste un sottogruppo di ordine p^{α} .

(b). Sia S un p-Sylow di G, con $|S| = p^n$ e sia H < G un sottogruppo con $|H| = p^{\alpha}$. Si nota che $|G/S| = |G|/|S| = p^n m/p^n = m$.

Si considera l'azione di H su G/S=X definita da

$$\varphi: \begin{array}{ccc} H & \longrightarrow & S(X) \\ h & \longmapsto & \varphi_h \end{array}, \text{ con } \varphi_h(gS) = hgS$$

Per la formula delle classi:

$$m = |X| = \sum_{g \in R} |\operatorname{Orb}(gS)| = \sum_{g \in R} \frac{|H|}{|\operatorname{Stab}(gS)|} = \sum_{g \in R} p^{a_g}$$

Per vederlo più chiaramente, si assume che qualche potenza di p divida i, altrimenti $p^n m - i$ e $p^{\alpha} - i$ non sarebbero divisibili per alcuna potenza di i e si avrebbe la tesi. Allora, si può scrivere $i = p^s j$, con gcd(p,j) = 1, da cui $p^n m - i = p^s (p^{n-s} m - j)$ e $p^{\alpha} - i = p^s (p^{\alpha-s} - j)$. Il loro rapporto semplifica p^s e rimane il rapporto di due termini non divisibili per alcuna potenza di p perché (j,p) = 1.

²La notazione || si usa per indicare divisione esatta, cioè nessun esponente maggiore è divisore.

³Il fatto che $p^{n-\alpha} \mid p^n m/|\operatorname{Stab}(M_i)|$ implica che $p^{\alpha} \mid |\operatorname{Stab}(M_i)|$, cosa che si vede scrivendo $p^n m/|\operatorname{Stab}(M_i)| = p^{n-\alpha}k$, per qualche intero k.

dove R è l'insieme dei rappresentanti delle classi di G/S e a_g è un esponente dipendente dal g in R. Visto che $p \nmid m^1$, deve esistere un $g \in R$ tale che $a_g = 0$, per cui $\mathrm{Orb}(gS) = \{gS\} \Rightarrow \mathrm{Stab}(gS) = H$. Questo significa anche che $\forall h \in H$, $hgS = gS \Rightarrow H \subset gSg^{-1}$, ma gSg^{-1} è un p-Sylow perché $|gSg^{-1}| = |S|$, quindi H è contenuto in un p-Sylow.

- (c). Quanto riportato in (b) dimostra anche la parte sul congiugio; infatti, se H è un p-Sylow con $|H|=p^n$, allora è un p-gruppo, allora $H \subset gSg^{-1}$ e, visto che hanno stessa cardinalità, segue che $H=gSg^{-1}$.
- (d). Sia S un p-Sylow; allora $n_p = [G:N_G(S)] \mid |G|$. Si considera, ora, l'azione di S sull'insieme dei coniugati di S in G, Y, definita da $\phi:S\to S(Y)$, con $\phi(g)(xSx^{-1}) = \gamma_g(xSx^{-1}) = gxSx^{-1}g^{-1}$; si vuole dimostrare che Orb(S) è l'unica orbita banale di questa azione.

Sia, allora, $H \in Y$ con $\mathrm{Orb}(H) = \{H\}$, pertanto $S = \mathrm{Stab}(H) = \{s \in S \mid sHs^{-1} = H\}$. Questo, però, è equivalente a richiedere che $S \subset N_G(H) \iff SH = HS < G$. Si ha $|HS| = |H||S|/|H \cap S| = p^np^n/|H \cap S|$, ma visto che HS < G, allora $|HS| \mid |G| = p^nm$, per cui deve essere $|H \cap S| = p^n$, per cui H = S.

Per finire, si nota che

$$|Y| = n_p = \sum_{H \in R} |\operatorname{Orb}(H)| = \operatorname{Orb}(S) + \sum_{H \in R \setminus \{S\}} \operatorname{Orb}(H) = 1 + \sum_{H \in R \setminus \{S\}} \frac{|S|}{|\operatorname{Stab}(H)|}$$

da cui $n_p = 1 + \ell p^k$, che implica $n_p \equiv 1 \pmod{p}$, con R insieme dei rappresentanti delle orbite.

Da fare:

- rivedere dimostrazione del teorema di Sylow e completare con lemma pagina 70;
- aggiungere nota sull'uguaglianza $n_p = [G : N_G(S)] \mid |G|$.

1.14 Il teorema di struttura per gruppi abeliani finiti

1.15 Esercizi e complementi

1.15.1 Complementi di teoria

Di seguito, un criterio importante per stabilire se un sottogruppo è normale.

¹Questo è per assunzione, cioè $|G| = p^n m$ con (p, m) = 1.

Proposizione 1.24. Sia G un gruppo di ordine n e sia p il più piccolo primo che divide n; se H < G e [G:H] = p, allora $H \lhd G$.

Dimostrazione. L'insieme delle classi laterali è $G/H = \{g_1H, \ldots, g_pH\}$, visto che [G:H] = p. Si definisce l'azione $\gamma: G \to S(G/H)$ con $\gamma(g) = \pi_g$ e $\pi_G(g_iH) = gg_iH$, che consiste nella permutazione di tutte le classi di equivalenza. Il nucleo di questo omomorfismo (è facile vedere che è un omomorfismo perché consiste nella moltiplicazione per g) è dato da:

$$\operatorname{Ker} \gamma = \{ g \in G \mid \forall i, \ gg_i H = g_i H \} = \left\{ g \in G \mid g \in \bigcap_{x \in G} \operatorname{Stab}(xH) \right\}$$

Si nota che $g \in \text{Stab}(xH) \Rightarrow gxH = xH \Rightarrow x^{-1}gxH = H$, che è vero se e solo se $x^{-1}gx \in H$, ossia $g \in xHx^{-1}$. Pertanto, il nucleo si può scrivere come:

$$\operatorname{Ker} \gamma = \left\{ g \in G \mid g \in \bigcap_{x \in G} x H x^{-1} \right\} \stackrel{\operatorname{def}}{=} H_G$$

L'azione definita sopra consiste nella permutazione delle classi di equivalenza: ogni π_g moltiplica ciascuna classe per g, rimappando ciascuna classe in un'altra (in modo univoco, visto che è un automorfismo). Allora $\gamma: G \to \mathcal{S}_p(G/H) \subset S(G/H)$, con $\mathcal{S}_p(G/H) \cong S_p$; qui $\mathcal{S}_p(G/H)$ è l'insieme degli automorfismi π_g , mentre S_p è l'insieme delle permutazioni su $\{1,\ldots,p\}$.

Per il I teorema di omomorfismo, $G/H_G \longrightarrow S_p$ è iniettiva¹, cioè $G/H_G \hookrightarrow S_p$; pertanto |G/H| | p! per Lagrange. Allora ci sono due possibilità: o |G/H| = 1, oppure |G/H| = p, visto che |G/H| deve dividere sia n (che ha come primo più piccolo p), che p! (che ha come primo più grande p).

Per finire, basta osservare che, essendo $H \in G/H$, si ha in particolare $g \in \operatorname{Ker} \gamma \Rightarrow gH = H \iff g \in H \Rightarrow H_G \subset H$, da cui $|G/H_G| \geq p$; questo permette di escludere |G/H| = 1 come possibilità e concludere che |G/H| = p, con $H = H_G$, il che vuol dire che H è il nucleo di un omomorfismo, quindi è normale.

1.15.2 Esercizi

Esercizio 1.5. Studiare $\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Svolgimento. Si nota che $\mathbb{Z}/20\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, quindi:

$$\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/5\mathbb{Z})$$
$$\cong \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$$

 $^{^{1}}$ Non è detto che sia suriettiva, in generale sarà un isomorfismo se ristretta a un sottoinsieme di S_{p} .

dove si è usato che $(\mathbb{Z}/5\mathbb{Z})^*$ è ciclico di ordine 4, quindi isomorfo a $\mathbb{Z}/4\mathbb{Z}$. Rimane da studiare $\operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Il gruppo $G_2 = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ha, come generatori, $\langle (a,0), (0,b) \rangle$, con ord((a,0)) = 4 e ord((0,b)) = 2; per studiare gli automorfismi di G_2 , è necessario e sufficiente stabilire come si comportano su questi elementi, cioè imporre che vengano mandati in altri elementi di ordine 4 e 2 rispettivamente.

Concretamente, siano (1,0) e (0,1) i generatori di ordine 4 e 2 rispettivamente; il primo, allora, può essere mandato in un elemento di $\{(1,0),(3,0),(1,1),(3,1)\}$, mentre il secondo in un elemento di $\{(0,1),(2,0),(2,1)\}$.

Ora, considerando $u \in \{(1,0), (3,0), (1,1), (3,1)\}$, $\langle u \rangle$ è un gruppo ciclico di ordine 4, pertanto contiene un elemento di ordine 2, che è proprio u^2 ; evidentemente, il gruppo $\langle u, u^2 \rangle \neq G_2$ perché ha ordine 4, quindi, fissato u, si deve rimuovere dalla lista degli elementi di ordine 2 quello corrispondente a u^2 .

A questo punto, le possibili scelte sono 4 dall'insieme degli elementi di ordine 4 e 2 da quelli di ordine 2, per un totale di 8 automorfismi.

Si è dimostrato che $|\operatorname{Aut}(G_2)|=8$; ora si mostra che $\operatorname{Aut}(G_2)\cong D_4$. Per farlo, si cercano due elementi $\alpha,\Gamma\in\operatorname{Aut}(G_2)$ tali che $\operatorname{ord}(\Gamma)=4$, $\operatorname{ord}(\alpha)=2$ e $\alpha\Gamma\alpha=\Gamma^{-1}$. Si prendono $\alpha((1,0))=(1,0),\ \alpha(0,1)=(2,1)$ e $\Gamma((0,1))=(2,1)$ e $\Gamma((1,0))=(1,1)$; si osserva che:

$$\alpha((x,y)) = \alpha(x(1,0) + y(0,1)) = x(1,0) + y(2,1) = (2y + x, y)$$

$$\Gamma((x,y)) = \Gamma(x(1,0) + y(0,1)) = x(1,1) + y(2,1) = (2y + x, x + y)$$

da cui si può verificare l'ordine di ciascun automorfismo e, conseguentemente, che $\alpha\Gamma\alpha=\Gamma^{-1}$.

Esercizio 1.6. Sia $\rho = (1234)(56) \in S_{10}$; calcolare $Z(\rho)$ e

$$N(\langle \rho \rangle) = \{ \tau \in S_{10} \mid \tau \rho \tau^{-1} \in \langle \rho \rangle \}$$

Svolgimento. Si nota, intanto, che $|Z(\rho)| = |S_{10}|/|\operatorname{cl}(\rho)| = 8 \cdot 4!$. Si considerano, poi, $H = \langle (1234), (56) \rangle \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ e $K = S_{\{7,8,9,10\}} \cong S_4$; per il teorema 1.8, visto che questi due sottogruppi sono normali, con $HK = Z(\rho)$ e hanno intersezione banale, si ha $Z(\rho) \cong \mathbb{Z}/4\mathbb{Z} \times Z/2\mathbb{Z} \times S_4$.

Per $N(\langle \rho \rangle)$, visto che $\langle \rho \rangle = \{ \mathrm{Id}, \rho, \rho^2, \rho^{-1} \}$, si ha

$$N(\langle \rho \rangle) = \left\{ \tau \in S_{10} \mid \tau \rho \tau^{-1} = \rho \text{ o } \tau \rho \tau^{-1} = \rho^{-1} \right\}$$
$$= Z(\rho) \cup \left\{ \tau \in S_{10} \mid \tau \rho \tau^{-1} = \rho^{-1} \right\} = Z(\rho) \times G_{-1}$$

cioè è necessario che l'immagine sotto coniugio di un generatore, in questo caso ρ , sia ancora un generatore. Allora è sufficiente caratterizzare G_{-1} . Si nota che $\rho^{-1} = \rho^3 = (56)(2341)$, quindi una possibilità è $\tau_0 = (24)$, oppure $\tau_1 = (1,4)(2,3)(5,6)$; per trovarle

tutte, si osserva che

$$\tau_1^{-1}\tau_0\rho\tau_0^{-1}\tau_1 = \tau_1^{-1}\rho^{-1}\tau_1 = \rho \implies \tau_1^{-1}\tau_0 \in Z(\rho) \iff \tau_0 \in \tau_1 Z(\rho)$$

perciò $\tau \in G_{-1} \iff \tau \in \tau_0 Z(\rho)$. Ne consegue che $|N(\langle \rho \rangle)| = 2|Z(\rho)|$; in generale:

$$N_{S_n}(\langle \rho \rangle) = \left\{ \tau \in S_n \mid \tau \rho \tau^{-1} = \rho^k, \operatorname{gcd}(\operatorname{ord}(\rho), k) = 1 \right\}$$

$$\Rightarrow |N_{S_n}(\langle \rho \rangle)| = |\{k \in \mathbb{Z} \mid \operatorname{gcd}(k, \operatorname{ord}(\rho)) = 1\}||Z_{S_n}(\rho)| = \phi(\operatorname{ord}(\rho))|Z_{S_n}(\rho)|$$
(1.15.1)

cioè è il centralizzatore per il numero di equazioni della forma $\tau \rho \tau^{-1} = \rho^k$.

Osservazione 1.14. Si nota che il coniugio non cambia la forma della permutazione, quindi l'equazione $\tau \rho \tau^{-1} = \rho^k$ ha soluzione se e solo se k è coprimo con $\operatorname{ord}(\rho)$.