Introduction to Machine Learning

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2014

- What is Machine Learning?
- 2 Learning Tasks
- 3 ML vs. Al vs. Data Mining
- About This Course
- FAQ

- What is Machine Learning?
- 2 Learning Tasks
- 3 ML vs. Al vs. Data Mining
- About This Course
- 5 FAQ

A Priori and Posteriori Knowledge

- To solve a problem, we need an algorithm
 - E.g., sorting (input: a set of numbers, output: their ordered list)
 - The algorithms we learn so far assume the a priori knowledge about the problem
- For some tasks, however, we do not have the a priori knowledge
 - E.g., to tell if an email is spam or not
 - The correct answer varies in time and from person to person
- This course introduces an another type of algorithms
 - Takes example data as the additional input
 - Observe the *posteriori knowledge* from example data
 - Use this knowledge to solve the problem

General Machine Learning Steps

- Data collection and preprocessing (e.g., integration, cleaning, etc.)
- Model development
 - Assume a model that represents the posteriori knowledge we want to discover. The model has parameters
 - Define an objective that measures "how good the model with a particular combination of parameters can explain the data"
- Training: employ an algorithm that optimizes the objective by finding the best (or good enough) parameters
- Testing: evaluate the model performance on hold-out data
- Using the model

How to Use the Learned Models?

- Predictive models
 - Approximate the unknown a priori knowledge
 - For making predictions when seeing new data
- Descriptive models
 - Gain insights to the data

- What is Machine Learning?
- 2 Learning Tasks
- 3 ML vs. Al vs. Data Mining
- About This Course
- 5 FAQ

Example Learning Tasks

- Classification
- Regression
- Clustering
- Learning association rules
- And more...

Classification

Examples

Is email x a spam? Will customer x like this video? Does image x contain John's face or not?

- Experience: $\{x^{(1)}, r^{(1)}\}, \{x^{(2)}, r^{(2)}\}, \cdots$
 - $\mathbf{x}^{(t)} = [x_1^{(t)}, x_2^{(t)}, \cdots]^{\top}$ is a vector, whose each component $x_i^{(t)}$ denotes an attribute
 - $r^{(t)} \in \{true, false\}$ is the label
- A model (predictive): $f(x|\theta): \mathcal{I} \to \{true, false\}$
 - ullet J and ${\mathcal R}$ are spaces of ${m x}^{(t)}$ and $r^{(t)}$ respectively
- Parameters: θ
- Objective: $\arg_{\theta} \min \sum_{t} I(f(x^{(t)}|\theta), r^{(t)})$, where I(a, b) equals 1 if $a \neq b$; 0 otherwise

Regression

Examples

Given the history of x in stock market, what is x's price tomorrow? How much chance the video x will be popular?

- ullet A generalization of the classification problem where ${\mathcal R}$ is continuous
- Both classification and regression are called *supervised learning* problems where each example $x^{(t)}$ has supervised output $r^{(t)}$
 - An ML algorithm learns the mapping

Clustering

- What if there is no supervised output $r^{(t)}$?
 - ullet Well, we can still learn the regularities in ${\mathfrak I}$

Example

What books are bought together frequently?

- Experience: $x^{(1)}$, $x^{(2)}$, ...
 - Each attribute $x_i^{(t)} \in \{true, false\}$ of $\mathbf{x}^{(t)}$ indicates whether $\mathbf{x}^{(t)}$ participated in the transaction i or not
- A model (predictive): a collection of groups, i.e., $\{G_k\}_{k=1}^K$
- Parameters: K, G_1 , \cdots , and G_K
- Objective: $\arg_{K,G_1,\cdots,G_K} \max \prod_{t=1}^N \sum_{k=1}^K P(\mathbf{x}^{(t)}|G_k) P(G_k)$
- We cluster the books into groups without knowing what the groups are in advance
- Clustering is also useful to image compression
 - Identifies pixels with similar color and store them as a group

Learning Association Rules

Examples

Customers who buy books $\{A, B\}$ also buy E, or users clicking/watching video P also click/watch $\{Q, R\}$, etc.

- Input: transactions of items bought together, i.e., $\{A, E, G\}, \{B, G\}, \cdots$
- Model (descriptive): $\{(X_k,Y_k): P(X_k,Y_k) \geqslant \sup_{min} \text{ and } P(Y_k|X_k) \geqslant conf_{min}\}_{k=1}^K$
 - X_k and Y_k are sets of items
 - sup_{min} (minimum support) and conf_{min} (minimum confidence) are user-specified constants
- Parameters: K, (X_1, Y_1) , (X_2, Y_2) , \cdots , and (X_K, Y_K)
- Objective: $\arg_{K,(X_1,Y_1),\cdots,(X_K,Y_K)} \max K$ such that $P(X_k,Y_k) \geqslant \sup_{min} A$ and $P(Y_k|X_k) \geqslant conf_{min}$ for any $1 \leqslant k \leqslant K$

- ML vs. Al vs. Data Mining

ML vs. Al vs. Data Mining

- Al emulates human brains (e.g., playing chess)
 - ML is a branch of Al that emulates the "learning" tasks
- Data Mining (DM) overlaps ML a lot
 - Named differently by different groups of people
 - Arguably, ML pays more attention on theoretical aspects of models;
 - while DM cares more about practical aspects (e.g., data integration, scalability, etc.)

- ML vs. Al vs. Data Mining
- **About This Course**

Target Audience

- Presents a consistent treatment of some selected machine learning problems and solutions
 - We go deep! So this is not a motivating course

Caution!

This course is highly theoretical

- You will not learn how to write a complete, intelligent system
- But you will have chances to try out individual ML algorithms using Matlab and R

Topics Covered (Incomplete)

Steps\ Tasks	Classification	Regression	Clustering	Semi-Sup.	Time Series
Data Prep.	Imputation, Dim. Reduction (PCA, LLE, ISOMAP)				
Model & Train.	SVM	Reg. LS	Spectral	Manifold Reg.	Tensor Dec.
	ML/MAP	Bayesian	EM	Bayesian	RW, HMM
Testing	Cross Validation, ROC/AUC, Entropy/Purity				

- We focus on geometry methods
 - Heavily rely on calculus, linear algebra, and optimization
- Statistic methods will be covered only if time allows

Grading

- Midterm exam: 30%
- Final exam: 30%
- Assignments (& presentations): 30%
 - You may be assigned extra readings in order to follow up the next lecture or to do your homework
- High-performance rewards: 10%

Information

- Tue: 10:10am ~ 12:00pm (by TAs)
- Thu: 9:00am ~ 12:00pm

The class may end late

In addition, the course may end late, in between 12:00pm to 12:30pm.

 More information can be found in my web page: http://www.cs.nthu.edu.tw/~shwu/

- What is Machine Learning?
- 2 Learning Tasks
- 3 ML vs. Al vs. Data Mining
- About This Course
- 5 FAQ

FAQ

- Q: Do I need to write programs in this course?
 A: Yes, using Matlab or R. Prepare them yourself
- Q: Do we need to come to the class?A: No, as long as you can pass
- Q: Is this a light-loading class or heavy-loading class?
 A: Should be very heavy to most students. Our experience tells us that 2 to 6 hours per week is a must. Reserve your time, or you will have high chance to fail!
- Q: How often will the assignments be given?
 A: Every 1 to 3 weeks (tentatively)
- Q: I am not good in math. Can I take this course?
 A: This course tries to be self-content in math. So, hard-working pays off. Evaluate yourself in the prerequisite exam

TODO

- Assigned Reading: Appendices A and B, except those sections marked
 **
- Register your seat in the next class