

Hierarquia de memória Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- Categorização dos dispositivos de memória
 - ▶ Localização
 - Interna
 - Externa

- Categorização dos dispositivos de memória
 - Localização
 - Interna
 - Externa
 - Estrutura de armazenamento e endereçamento
 - ▶ Tamanho de palavra
 - ► Bloco de dados

- Categorização dos dispositivos de memória
 - Localização
 - Interna
 - Externa
 - Estrutura de armazenamento e endereçamento
 - ▶ Tamanho de palavra
 - Bloco de dados
 - Método de acesso
 - Sequencial
 - Direto
 - Aleatório
 - Associativo

- Categorização dos dispositivos de memória
 - Localização
 - Interna
 - Externa
 - Estrutura de armazenamento e endereçamento
 - ▶ Tamanho de palavra
 - ▶ Bloco de dados
 - Método de acesso
 - Sequencial
 - Direto
 - Aleatório
 - Associativo
 - Capacidade e desempenho
 - Latência
 - Taxa de transferência

- Localização da memória
 - Interna
 - São os dispositivos de memória que são diretamente acessados ou controlados pelo processador
 - Ex: registradores, cache, memória principal

- Localização da memória
 - Interna
 - São os dispositivos de memória que são diretamente acessados ou controlados pelo processador
 - Ex: registradores, cache, memória principal
 - Externa
 - O acesso é feito através de controladores de E/S para as unidades de armazenamento
 - Ex: discos SATA, mídias óticas ou magnéticas

- Estrutura de armazenamento da memória
 - Tamanho de palavra
 - Define quantos bytes s\u00e3o processados por vez, geralmente refletindo a capacidade da arquitetura
 - Ex: registradores múltiplos de 1 byte com 8, 16 ou 32 bits

- Estrutura de armazenamento da memória
 - Tamanho de palavra
 - Define quantos bytes s\u00e3o processados por vez, geralmente refletindo a capacidade da arquitetura
 - Ex: registradores múltiplos de 1 byte com 8, 16 ou 32 bits
 - Bloco de dados
 - São conjuntos de dados com tamanhos muito maiores que a palavra do sistema, sendo utilizados em dispositivos de memória externa
 - Ex: blocos múltiplos de 512 bytes com até 65.536 bytes

- Método de acesso da memória
 - Sequencial
 - Os dados estão em sequência na memória
 - Para obter o último elemento da sequência, todos os dados precisam ser acessados durante a busca
 - Ex: fita magnética

- Método de acesso da memória
 - Sequencial
 - Os dados estão em sequência na memória
 - Para obter o último elemento da sequência, todos os dados precisam ser acessados durante a busca
 - Ex: fita magnética
 - Direto
 - Cada bloco de dados possui um endereço físico único
 - Após este endereçamento, é feita a busca pelo bloco
 - Ex: unidade de disco

- Método de acesso da memória
 - Aleatório
 - Os dados são armazenados em endereços ou posições únicas da unidade de memória
 - O tempo de acesso é constante e é independente da última posição de memória acessada
 - Ex: memória principal

- Método de acesso da memória
 - Aleatório
 - Os dados são armazenados em endereços ou posições únicas da unidade de memória
 - O tempo de acesso é constante e é independente da última posição de memória acessada
 - Ex: memória principal
 - Associativo
 - É um tipo de acesso aleatório por indexação
 - O endereçamento é feito por associação do dado ao seu endereçamento na memória, eliminando ou reduzindo a necessidade de busca dos dados
 - Ex: memória cache

- Capacidade e desempenho da memória
 - Latência
 - É o tempo gasto para realizar uma operação de E/S
 - Este tempo é constante para o acesso aleatório

$$Lat$$
ência = $t_{busca} + t_{operac\~ao}$

- Capacidade e desempenho da memória
 - Latência
 - É o tempo gasto para realizar uma operação de E/S
 - Este tempo é constante para o acesso aleatório

$$Lat$$
ência = $t_{busca} + t_{operac$ ão}

- Taxa de transferência
 - É definida como a taxa com que os dados podem ser escritos ou lidos de uma unidade de memória
 - Em dispositivos de acesso randômico, a taxa depende somente de sua frequência de relógio
 - No acesso não aleatório, a taxa de transferência é influenciado pelo tempo de acesso de operação

Taxa de transferência =
$$\frac{\#bits}{Latência}$$

- Random-Access Memory (RAM)
 - Funcionamento eletrônico
 - Armazenamento volátil
 - Acesso aleatório

- A memória interna utiliza um sistema binário para armazenar os dados em unidades básicas (células)
 - São permitidas operações de escrita e leitura
 - É necessário controlar e selecionar as células para realizar as operações de acesso aos bits

- A memória interna utiliza um sistema binário para armazenar os dados em unidades básicas (células)
 - São permitidas operações de escrita e leitura
 - É necessário controlar e selecionar as células para realizar as operações de acesso aos bits

Cada bit é armazenado individualmente (Em 4 GB existem 34.359.738.368 células)

- Principais tipos de memória interna
 - Registrador
 - É definido pela arquitetura e opera na mesma frequência de relógio do processador
 - Por possuir o maior custo e velocidade, apresenta a menor capacidade de armazenamento

- Principais tipos de memória interna
 - Registrador
 - É definido pela arquitetura e opera na mesma frequência de relógio do processador
 - Por possuir o maior custo e velocidade, apresenta a menor capacidade de armazenamento
 - Memória cache
 - Está embarcada no processador e armazena os últimos valores acessados da memória
 - Static RAM (SRAM)

- Principais tipos de memória interna
 - Registrador
 - É definido pela arquitetura e opera na mesma frequência de relógio do processador
 - Por possuir o maior custo e velocidade, apresenta a menor capacidade de armazenamento
 - Memória cache
 - Está embarcada no processador e armazena os últimos valores acessados da memória
 - Static RAM (SRAM)
 - Memória principal
 - Os código e dados das aplicações ficam armazenados nesta memória
 - Dynamic RAM (DRAM)

- Memória cache
 - Utiliza os mesmos elementos lógicos do processador (transistores) para armazenar os valores binários 0 e 1

- Memória cache
 - Utiliza os mesmos elementos lógicos do processador (transistores) para armazenar os valores binários 0 e 1

Cada célula utiliza 6 transistores

- Memória cache
 - Utiliza os mesmos elementos lógicos do processador (transistores) para armazenar os valores binários 0 e 1

- Memória cache
 - Utiliza os mesmos elementos lógicos do processador (transistores) para armazenar os valores binários 0 e 1

- Memória principal
 - A tecnologia dinâmica de armazenamento utiliza capacitores para armazenar o valor binário 0 (descarregado) ou 1 (carregado) da célula
 - Como existe uma tendência natural de perder a carga, o capacitor precisa ser periodicamente recarregado para manter seu estado

- Memória principal
 - A tecnologia dinâmica de armazenamento utiliza capacitores para armazenar o valor binário 0 (descarregado) ou 1 (carregado) da célula
 - Como existe uma tendência natural de perder a carga, o capacitor precisa ser periodicamente recarregado para manter seu estado

Cada célula utiliza 1 transistor e 1 capacitor

Comparativo SRAM x DRAM

Característica	SRAM	DRAM
Área e custo de cada célula	↑	+
Desempenho das operações	↑	+
Consumo de potência	+	↑
Densidade de armazenamento	+	†

- O que acontece caso alguma célula de memória tenha seu valor invertido ou esteja defeituosa?
 - Corrupção dos dados
 - ► Falha do sistema

- O que acontece caso alguma célula de memória tenha seu valor invertido ou esteja defeituosa?
 - Corrupção dos dados
 - Falha do sistema

Saldo Bancário

- O que acontece caso alguma célula de memória tenha seu valor invertido ou esteja defeituosa?
 - Corrupção dos dados
 - Falha do sistema

O que pode causar erros na memória?

- O que pode causar erros na memória?
 - Defeito de fabricação/falha do dispositivo

- O que pode causar erros na memória?
 - Defeito de fabricação/falha do dispositivo
 - Interferência elétrica/magnética/térmica

- O que pode causar erros na memória?
 - Defeito de fabricação/falha do dispositivo
 - Interferência elétrica/magnética/térmica
 - Radiação artificial (raio-x) e natural (cósmica)

- O que pode causar erros na memória?
 - Defeito de fabricação/falha do dispositivo
 - Interferência elétrica/magnética/térmica
 - Radiação artificial (raio-x) e natural (cósmica)
- Correção e detecção de erros na memória
 - Checagem em software (checksum)
 - Memória com correção de erro (ECC)

- Memória com correção de erro
 - Armazenamento extra para código de checagem K que é gerado a partir do dado de tamanho M
 - Componentes adicionais de comparação e correção

- Código de Hamming
 - Permite a correção de erros simples em bits em palavras de dados de tamanho M
 - É necessária uma palavra de síndrome K com valor entre 0 para indicar ausência de erros até 2^K – 1 para indicar que bit apresenta erro

$$2^{K} - 1 > M + K$$

- Código de Hamming
 - Permite a correção de erros simples em bits em palavras de dados de tamanho M
 - É necessária uma palavra de síndrome K com valor entre 0 para indicar ausência de erros até 2^K – 1 para indicar que bit apresenta erro

$$2^K - 1 \ge M + K$$

A correção de erro pode ser aplicada tanto nos bits de dados (M) como na palavra de síndrome (K)

- Código de Hamming
 - Considerando palavras de dados com *M* de 8 bits

$$2^K - 1 \ge 8 + K$$

- Para satisfazer a inequação é preciso que K possua pelo menos 4 bits
- A palavra com correção de erro possui 12 bits, onde os bits de K_i são posicionados pela fórmula 2ⁱ

- Código de Hamming
 - Calculando o código de correção K
 - Cada bit K_i é calculado a partir do dado M_j que possui a posição i com bit igual a 1

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

- Código de Hamming
 - Calculando o código de correção K
 - Cada bit K_i é calculado a partir do dado M_j que possui a posição i com bit igual a 1

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

$$K_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$$

- Código de Hamming
 - Calculando o código de correção K
 - Cada bit K_i é calculado a partir do dado M_j que possui a posição i com bit igual a 1

$$\begin{array}{lcl} K_0 & = & M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6 \\ K_1 & = & M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6 \\ K_2 & = & M_1 \oplus M_2 \oplus M_3 \oplus M_7 \end{array}$$

- Código de Hamming
 - Calculando o código de correção K
 - Cada bit K_i é calculado a partir do dado M_j que possui a posição i com bit igual a 1

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

$$K_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$$

$$K_2 = M_1 \oplus M_2 \oplus M_3 \oplus M_7$$

$$K_3 = M_4 \oplus M_5 \oplus M_6 \oplus M_7$$

- Exemplo de uso do código de Hamming
 - ▶ Palavra de dado M é 133 (10000101)
 - O código de correção K é 1001

1	0	0	0	1	0	1	0	0	1	0	1
M_7	M ₆	<i>M</i> ₅	M_4	<i>K</i> ₃	<i>M</i> ₃	M_2	M_1	K ₂	M_0	<i>K</i> ₁	K ₀
1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

$$K_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$$

$$K_2 = M_1 \oplus M_2 \oplus M_3 \oplus M_7$$

$$K_3 = M_4 \oplus M_5 \oplus M_6 \oplus M_7$$

- Exemplo de uso do código de Hamming
 - Invertendo o bit 5 da palavra de dado M
 - ▶ O novo código de correção K' é 0011

1	0	1	0	1	0	1	0	0	1	0	1
M_7	<i>M</i> ₆	<i>M</i> ₅	M_4	<i>K</i> ₃	<i>M</i> ₃	M_2	M_1	<i>K</i> ₂	M_0	<i>K</i> ₁	<i>K</i> ₀
1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

$$K_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$$

$$K_2 = M_1 \oplus M_2 \oplus M_3 \oplus M_7$$

$$K_3 = M_4 \oplus M_5 \oplus M_6 \oplus M_7$$

- Exemplo de uso do código de Hamming
 - Invertendo o bit 5 da palavra de dado M
 - ▶ O novo código de correção K' é 0011

1	0	1	0	1	0	1	0	0	1	0	1
M_7	M ₆	<i>M</i> ₅	M_4	<i>K</i> ₃	<i>M</i> ₃	M_2	M_1	<i>K</i> ₂	M_0	<i>K</i> ₁	K ₀
1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001

$$K_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$$

$$K_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$$

$$K_2 = M_1 \oplus M_2 \oplus M_3 \oplus M_7$$

$$K_3 = M_4 \oplus M_5 \oplus M_6 \oplus M_7$$

 $K \oplus K' = 1001 \oplus 0011 = 1010$ é a posição do bit com erro

- Custo da correção de erro na memória
 - Correção de erro simples de bit

# Bits	# Bits	Aumento de células		
de dados	de correção			
8	4	50%		
16	5	31,25%		
32	6	18,75%		
64	7	10,94%		
128	8	6,25%		

- Dispositivos de grande capacidade de armazenamento n\u00e3o vol\u00e1til
 - Mecânicos
 - Discos e fitas magnéticas (HDD, DAT, ...)
 - Mídias óticas (CD, DVD, ...)
 - Eletrônicos
 - Discos de estado sólido (SSD)
 - ► Mídias removíveis (USB, SD, ...)

- Dispositivos mecânicos
 - Tanto as mídias magnéticas como óticas dependem de componentes mecânicos para acessar os dados
 - O leitor é posicionado no setor para escrever ou ler os dados, utilizando movimentos de rotação da mídia

$$t_{acesso} = t_{busca} + t_{rota ilde{cao}} + t_{E/S}$$

- Dispositivos mecânicos
 - Tanto as mídias magnéticas como óticas dependem de componentes mecânicos para acessar os dados
 - O leitor é posicionado no setor para escrever ou ler os dados, utilizando movimentos de rotação da mídia

$$t_{acesso} = t_{busca} + t_{rota ilde{cao}} + t_{E/S}$$

▶ O tempo médio de rotação é de $\frac{1}{2 \times RPS}$ que é o tempo para posicionamento no extremo oposto da mídia

- Dispositivos mecânicos
 - Tanto as mídias magnéticas como óticas dependem de componentes mecânicos para acessar os dados
 - O leitor é posicionado no setor para escrever ou ler os dados, utilizando movimentos de rotação da mídia

$$t_{acesso} = t_{busca} + t_{rota ilde{cao}} + t_{E/S}$$

- ▶ O tempo médio de rotação é de $\frac{1}{2 \times RPS}$ que é o tempo para posicionamento no extremo oposto da mídia
- ▶ A operação de E/S depende do número de bytes transferidos B e da quantidade de bytes N por trilha, com um tempo definido por $\frac{B}{N \times RPS}$ segundos

- Transferência sequencial de 16 MB do disco rígido
 - Tempo de busca médio de 4 ms
 - ▶ Disco com rotação de 15.000 RPM = 250 RPS
 - Com 512 bytes por setor e 1000 setores por trilha, serão acessadas 32 trilhas (500 KB) adjacentes do disco

- Transferência sequencial de 16 MB do disco rígido
 - Tempo de busca médio de 4 ms
 - Disco com rotação de 15.000 RPM = 250 RPS
 - Com 512 bytes por setor e 1000 setores por trilha, serão acessadas 32 trilhas (500 KB) adjacentes do disco

$$t_{busca} = 4 \times 10^{-3} s$$

 $t_{rotação} = \frac{1}{2 \times 250} \approx 2 \times 10^{-3} s$
 $t_{E/S} = \frac{500000}{512000 \times 250} \approx 4 \times 10^{-3} s$

- Transferência sequencial de 16 MB do disco rígido
 - Tempo de busca médio de 4 ms
 - ▶ Disco com rotação de 15.000 RPM = 250 RPS
 - Com 512 bytes por setor e 1000 setores por trilha, serão acessadas 32 trilhas (500 KB) adjacentes do disco

$$t_{busca} = 4 \times 10^{-3} s$$
 $t_{rotação} = \frac{1}{2 \times 250} \approx 2 \times 10^{-3} s$
 $t_{E/S} = \frac{500000}{512000 \times 250} \approx 4 \times 10^{-3} s$

$$t_{acesso} = t_{busca} + 32 \times \left(t_{rotação} + t_{E/S}\right)$$

= $4 \times 10^{-3} + 32 \times \left(2 \times 10^{-3} + 4 \times 10^{-3}\right) s$
= 196 ms

- ► Transferência sequencial de 16 MB do disco rígido
 - Tempo de busca médio de 4 ms
 - ▶ Disco com rotação de 15.000 RPM = 250 RPS
 - Com 512 bytes por setor e 1000 setores por trilha, serão acessadas 32 trilhas (500 KB) adjacentes do disco

$$\begin{array}{rcl} t_{busca} & = & 4 \times 10^{-3} \ s \\ t_{rotação} & = & \frac{1}{2 \times 250} \approx 2 \times 10^{-3} \ s \\ t_{E/S} & = & \frac{500000}{512000 \times 250} \approx 4 \times 10^{-3} \ s \end{array}$$

$$t_{acesso} = t_{busca} + 32 \times \left(t_{rotação} + t_{E/S}\right)$$

= $4 \times 10^{-3} + 32 \times \left(2 \times 10^{-3} + 4 \times 10^{-3}\right) s$
= 196 ms

Qual o tempo de acesso para o disco fragmentado?

- Transferência de 16 MB do disco rígido
 - Dados aleatoriamente fragmentados no disco
 - As informações estão armazenadas em 10 setores por trilha, necessitando de 3.125 acessos em trilhas diferentes para leitura completa dos dados

- Transferência de 16 MB do disco rígido
 - Dados aleatoriamente fragmentados no disco
 - As informações estão armazenadas em 10 setores por trilha, necessitando de 3.125 acessos em trilhas diferentes para leitura completa dos dados

$$t_{busca} = 4 \times 10^{-3} s$$

 $t_{rotação} = \frac{1}{2 \times 250} \approx 2 \times 10^{-3} s$
 $t_{E/S} = \frac{5120}{512000 \times 250} = 0,04 \times 10^{-3} s$

- Transferência de 16 MB do disco rígido
 - Dados aleatoriamente fragmentados no disco
 - As informações estão armazenadas em 10 setores por trilha, necessitando de 3.125 acessos em trilhas diferentes para leitura completa dos dados

$$t_{busca} = 4 \times 10^{-3} s$$

 $t_{rotação} = \frac{1}{2 \times 250} \approx 2 \times 10^{-3} s$
 $t_{E/S} = \frac{5120}{512000 \times 250} = 0,04 \times 10^{-3} s$

$$t_{acesso} = 3125 \times \left(t_{busca} + t_{rotação} + t_{E/s}\right)$$

= $3125 \times \left(4 \times 10^{-3} + 2 \times 10^{-3} + 0,04 \times 10^{-3}\right) s$
= $18,875 s$

- ▶ Transferência de 16 MB do disco rígido
 - Dados aleatoriamente fragmentados no disco
 - As informações estão armazenadas em 10 setores por trilha, necessitando de 3.125 acessos em trilhas diferentes para leitura completa dos dados

$$t_{busca} = 4 \times 10^{-3} s$$

 $t_{rotação} = \frac{1}{2 \times 250} \approx 2 \times 10^{-3} s$
 $t_{E/S} = \frac{5120}{512000 \times 250} = 0,04 \times 10^{-3} s$

$$t_{acesso} = 3125 \times \left(t_{busca} + t_{rotação} + t_{E/S}\right)$$

= $3125 \times \left(4 \times 10^{-3} + 2 \times 10^{-3} + 0,04 \times 10^{-3}\right) s$
= $18,875 s$

Transferência cerca de 100x mais lenta!

- Redundant Array of Independent Disks (RAID)
 - Técnicas para aumentar o desempenho e redundância utilizando múltiplos discos

Nível	Categoria	# Discos	Descrição			
0	Divisão	N	Sem redundância			
1	Espelhamento	2N	Redundância dos dados			
2	Acesso	N + logN	Redundância com Hamming			
3	paralelo	N + 1	Paridade com bits intercalado			
4	Acesso	N + 1	Paridade com blocos			
4	ACESSO	11 + 1	intercalados			
5	independente	N + 1	Paridade distribuída com blocos			
3	i ildependenie	INTI	intercalados			
6	dos discos	N + 2	Paridade dupla distribuída com			
	aos discos	IN T Z	blocos intercalados			

- Redundant Array of Independent Disks (RAID)
 - Nível 0 (dados divididos nos discos)

- Redundant Array of Independent Disks (RAID)
 - ► Nível 1 (redundância com espelhamento nos discos)

- Redundant Array of Independent Disks (RAID)
 - ► Nível 2 (redundância por código de Hamming)

- Redundant Array of Independent Disks (RAID)
 - ► Níveis 3 e 4 (paridade de bits e de blocos)

- Redundant Array of Independent Disks (RAID)
 - ► Nível 5 (paridade distribuída de blocos)

- Redundant Array of Independent Disks (RAID)
 - Nível 6 (paridade dupla distribuída de blocos)

- O que é hierarquia de memória?
 - Vários tipos de memória com diferentes tamanhos e velocidades de acesso

▶ Tempo de acesso e custo por GB típicos de diferentes tecnologias de armazenamento

Tipo	Capacidade	Custo	Latência
SRAM	2 KiB <-> 32 MBit	~US\$ 5k / GiB	~I ns
DRAM	1<-> 32 GiB	~US\$ 3 / GiB	~10 ns
Flash	64 <-> 1.000 GiB	~US\$ 0,10 / GiB	~l Ms

- Qual o propósito da hierarquia de memória?
 - Abstrair e combinar as tecnologias que estão sendo utilizadas e reduzir as limitações associadas
 - Otimizar a relação entre desempenho e custo das tecnologias de armazenamento

- Qual o propósito da hierarquia de memória?
 - Combinar diferentes tecnologias de armazenamento para maximizar o desempenho e reduzir o custo total
 - Considerando que o dado está disponível na cache em 90% dos acessos a memória

Sistema C

Cache de 16 MiB (SRAM) Memória de 32 GiB (DRAM) Disco de 256 GB (Flash)

US\$ 80 + US\$ 96 + US\$
$$2560 = US$ 20160$$

1,2 GP x | ns + 0,8 GP x | 0 ns = 15,2 s

- Fluxo de dados na hierarquia de memória
 - A medida que os dados vão sendo acessados, eles são armazenados nos níveis mais altos

Para reduzir a latência são utilizadas técnicas para maximizar a disponibilidade dos dados nos níveis mais altos da hierarquia