Design of a Simple CS Amplifier

Emmanuel Jesus R. Estallo

Electrical and Electronics Engineering Institute
University of the Philippines - Diliman
Quezon City, Philippines
emmanuel.estallo@eee.upd.edu.ph

I. CS AMPLIFIER

The desired specs are as follows:

- $|A_v| > 40$ at $V_{DS} = V_{DD}/2 = 0.9V$
- Output swing: 400mV
- Unity-gain frequency: $f_u = 100MHz$, $C_L = 5pF$
- $V^* = 200mV$

A. Selecting I_D

The transconductance can be obtained from:

$$g_m = 2\pi f_u C_L$$

this gives us

$$g_m = 3.14 \ mS$$

The current can be obtained from:

$$V^* = 2 \cdot \left(\frac{g_m}{I_D}\right)^{-1}$$

and a V^{*} of $200 \; mV$ corresponds to a g_m/I_D of 10.

Thus,

$$I_D=314\;\mu A$$

B. Choosing the length

To find the appropriate length, I did a DC sweep on VGS and checked if the intrinsic gain at V^* is > 40.

Fig. 1. Schematic diagram

At the minimum length, the intrinsic gain is lower than what is desired. We select $L=0.30\mu m$ since it satisfies the specifications. $L=0.25\mu m$ also meets the specifications, however, for a greater swing, the larger length is selected.

Fig. 2. Intrinsic gain

The V^* vs I_D plot for a transistor with $W=1\mu m, L=0.30\mu m$ is shown below.

Fig. 3. I_D vs V^* , $W = 1\mu m$

C. Scaling the width

A python script is used to calculate the scale factor k_W to achieve the required I_D . The width is multiplied to the scaling factor. This also scales I_D . For this activity, $k_W=21$. To check, a MEAS directive is used.

Fig. 4. I_D vs V^* , $W=21\mu m$