

Balandžio 26–30 d., Palanga

network • LT

Kompiuterių tinklas

Vidurinės mokyklos kompiuterių klasėje N kompiuterių yra kabeliais sujungti į bendrą tinklą. Kiekvienas kabelis jungia du skirtingus kompiuterius. Kai kurie kompiuteriai gali būti nesujungti kabeliu tiesiogiai, tačiau tarp bet kurių dviejų kompiuterių galima persiųsti pranešimą tiesiogiai arba per tarpinius kabeliais sujungtus kompiuterius. Pranešimai visada pasirenka trumpiausią kelią, t. y. pakeliui aplanko mažiausią galimą skaičių kompiuterių (neskaičiuojant pranešima siunčiančio ir gaunančio kompiuterių).

Adomas ir Bilas, kurie klasėje naudojasi skirtingais kompiuteriais a ir b, norėtų rasti trumpiausią kelią tarp savo kompiuterių. Jie nežino, kaip išvedžioti kabeliai, bet gali siųsti pranešimus tarp kiekvienos kompiuterių poros ir suskaičiuoti, kiek tarpinių kompiuterių siunčiami pranešimai aplanko.

Adomas ir Bilas nelabai gaudosi kompiuteriuose, tad prašo jūsų pagalbos, kad netektų siųsti per daug pranešimu.

Užduotis

Raskite trumpiausią kelią tarp kompiuterių a ir b siųsdami ne daugiau negu leistiną skaičių pranešimų.

Realizacija

Jums reikia realizuoti viena procedūra findRoute(N, a, b), kurios argumentai yra:

- \bullet N klasėje esančių kompiuterių skaičius (jie sunumeruoti nuo 1 iki N)
- a, b Adomo ir Bilo kompiuterių numeriai ($a \neq b$ ir $1 \leq a, b \leq N$)

Jūsų procedūra findRoute gali kviesti funkciją ping(i, j), kurios argumentai yra dviejų skirtingų kompiuterių numeriai $(i \neq j \text{ ir } 1 \leq i, j \leq N)$, o grąžinama reikšmė – tarpinių kompiuterių skaičius pranešimui keliaujant iš kompiuterio i į kompiuterį j.

Jūsų procedūra findRoute turi įvardinti trumpiausią kelią, kuriuo keliaus pranešimas, išsiųstas iš kompiuterio a į kompiuterį b. Tai turi būti atliekama pakartotinai kviečiant procedūrą travelTo(k) su vieninteliu argumentu – kompiuterio, į kurį turi keliauti pranešimas kitu ėjimu $(1 \le k \le N)$, numeriu. Pranešimas kelionę pradeda kompiuteryje a ir, kai tik iškviečiama procedūra travelTo(k), jis persikelia į kompiuterį k.

Papildomai prie standartinių reikalavimų (laiko ir atminties ribojimai, jokių vykdymo klaidų), jūsų sprendimas turėtų tenkinti šiuos papildomus reikalavimus:

- procedūrai findRoute baigus darbą pranešimas turėtų būti kompiuteryje b,
- pranešimo kelyje visi gretimi kompiuteriai privalo būti tiesiogiai sujungti kabeliu,
- tai turi būti trumpiausias galimas kelias,
- funkcijos ping iškvietimų skaičius neturi viršyti M (žr. skyrių Vertinimas),

Balandžio 26–30 d., Palanga

network • LT

• funkcija ping ir procedūra travelTo privalo būti kviečiamos tik su leistinomis argumentų reikšmėmis.

Pavyzdys

Tarkime, kad duotas kompiuterių tinklas atrodo taip, kaip pavaizduotas diagromoje žemiau (taškai žymi kompiuterius, o atkarpos – kabelius). Iš viso tinkle yra N=4 kompiuteriai, o Adomas ir Bilas naudojasi kompiuteriais a = 1 ir b = 4.

Pirmiausiai bus iškviesta procedūra

findRoute(4, 1, 4).

Vienas galimas jos elgesys galėtų būti toks::

kviečiama funkcija ping(1, 4), kuri grąžina 1, kviečiama funkcija ping(1, 2), kuri grąžina 0, kviečiama funkcija ping(2, 4), kuri grąžina 0.

Šios informacijos pakanka, kad rastume trumpiausią kelią $1 \to 2 \to 4$ iš kompiuterio 1 į kompiuterį 4. Rastas kelias turėtų būti įvardintas tokiu būdu:

> kviečiama procedūra travelTo(2), kviečiama procedūra travelTo(4), procedūra findRoute baigia darbą.

Vertinimas

Visose užduočių grupėse galioja apribojimas $2 \le N \le 1000$.

Použduotis 1 (25 taškai): tarp bet kurių dviejų kompiuterių yra lygiai vienas trumpiausias kelias; M negali viršyti 2N.

Použduotis 2 (25 taškai): M negali viršyti N^2 .

Použduotis 3 (25 taškai): M negali viršyti 4N.

Použduotis 4 (25 taškai): M negali viršyti 2N.

Ribojimai

Laiko limitas: 1 s.

Atminties limitas: 64 MB.

Balandžio 26–30 d., Palanga

network • LT

Eksperimentavimas

Jūsų kompiuteryje esantis pavyzdinis vertintojas nuskaitys duomenis iš standartinės įvesties. Pirmoje eilutėje turėtų būti keturi sveikieji skaičiai N,a,b,M. Kitose N eilučių turėtų būti po N sveikųjų skaičių, apibūdinančių kabelių išdėstymą: j-asis skaičius i-ojoje eilutėje $(i \neq j)$ žymi tarpinių kompiuterių, kuriuos aplankys pranešimas keliaudamas iš kompiuterio i į kompiuterį j, skaičių. Jeigu i=j, gali būti nurodytos bet kokios reikšmės.

Žemiau pateikta įvestis nusako anksčiau pateiktą pavyzdį, kai iškvietimų skaičius M apribotas iki 100: