

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores 3 Cuatrimestre 2024

Proyecto No.3

TIPO

Individual

Valor del trabajo en la nota

Este trabajo en todas sus partes constituye un 4.0% de la nota final.

OBJETIVO

Aplicar los conocimientos adquiridos en el diseño de contadores síncronos utilizando Flip-Flops JK.

DESARROLLO

Diseñe un contador síncrono que realice la secuencia binaria de los siguientes números decimales: 0, 3, 19, 6, 9, 36, 44, 17, 60, 29 y 14.

Restricciones

• Utilice un Numeric Output de 8 bits para desplegar la salida del contador en formato decimal.

Nota: recuerde que el diseño de un contador síncrono conlleva crear la tabla de estado siguiente, basarse en la tabla de transición para crear los mapas de Karnaugh para cada una de las entradas J y K de los Flip-Flops, simplificar las ecuaciones y construir el circuito.

La solución presentada debe contener:

- a) Tabla de estado siguiente, donde se muestran a la izquierda los términos con su valor actual y a la derecha los valores siguientes.
- b) Mapas de Karnaugh para la simplificación de las ecuaciones de cada entrada J y K de los diferentes flip-flops, con la indicación clara de las agrupaciones establecidas para la simplificación y la explicación del término resultante de cada agrupación.
- c) Ecuaciones simplificadas para cada entrada de cada Flip-Flop JK.
- d) Circuito generado en Digital Works debe cumplir con lo siguiente:
 - i. Las salidas Q de los Flip-Flops deben de ir conectadas de tal forma que muestren los valores de la secuencia en decimal.

ENTREGABLES

La solución del ejercicio debe incluir dos archivos:

• El documento con la solución del proyecto. Incluyendo: tabla de estado siguiente, tabla de transición, mapas de Karnaugh para cada una de las entradas de cada Flip-Flop JK indicando las

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores 3 Cuatrimestre 2024

agrupaciones formadas, explicación de la obtención de cada término de las ecuaciones simplificadas, cada una de las ecuaciones para las entradas JK de los Flip-flops.

• El archivo con extensión DWM generado por Digital Works, correspondiente al circuito correspondiente a lo solicitado.

Si la plataforma solo permite un archivo, se generará un archivo comprimido (.ZIP) con los dos archivos.

Antes de crear el trabajo escrito lea el documento "Lineamientos para trabajos escritos - Ingeniería Informática" que se encuentra en la pestaña de inicio del curso en la plataforma.

GUÍA DE EVALUACIÓN

Rubo por calificar	Detalle	Porcentaje
Documento con la explicación de la solución		50%
Portada	1%	
Índice	1%	
Introducción	1%	
Marco teórico (no menos de una página, no menos de 5 definiciones y cada definición con su cita bibliográfica)	10%	
Desarrollo		
Tabla de estado siguiente	11%	
Mapas de Karnaugh con la indicación clara de todos los grupos	16%	
formados		
Explicación de la agrupación de términos adyacentes y su resultado	8%	
Conclusión	1%	
Bibliografía en formato APA	1%	
Circuito en Digital Works de la ecuación simplificada		50%
Utilización del Numeric Output para el despliegue de la salida del contador en decimal	5%	
El circuito corresponde a las ecuaciones simplificadas correctas y al desarrollo escrito presentado.	45%	
TOTAL:	100%	100%