



## **Operations Research**

Vorlesung 10

Technische

Graphen und Netzwerke: Knotenorientiere Rundreisen – Traveling Salesman

## Wiederholung

- Neue Art der Modellierung: Graphentheorie
- Minimale Spannbäume
- Kürzeste Wege in Graphen
- Maximale Flüsse in Netzwerken
- Kantenorientiertes Rundreisen





## Überblick

- 1. Traveling Salesman Problem
- 2. Branch & Bound Verfahren: Zuordnung
- 3. Historie und Stand der Verfahrensentwicklung





## Überblick

- 1. Traveling Salesman Problem
- 2. Branch & Bound Verfahren: Zuordnung
- 3. Historie und Stand der Verfahrensentwicklung





#### Knotenorientierte Rundreisen

- Aufgabenstellungen
  - 1. Erstellen Sie eine distanzminimale Tour für ein Paketlieferfahrzeug in einer ländlichen Region!
  - 2. Bestimmen Sie die distanzminimale Führung einer Bohrmaschine durch die Bohrpositionen auf Leiterplatten!
- Beide Aufgabenstellungen fragen nach einer Kosten-, bzw. Distanz-minimalen Rundtour, bei der alle Knoten eines zusammenhängenden Netzwerkes durchlaufen werden müssen.
- Varianten knotenorientierter Rundreisen
  - Rückkehr zum Ausgangsknoten?
  - Wird jeder Knoten genau einmal besucht?





## **Traveling Salesman Problem (TSP)**

- Problem des Handlungsreisenden:
  Ein Handlungsreisender muss nacheinander eine fest vorgegebene Anzahl von Städten jeweils einmal besuchen. Am Ende der Reise muss er wieder zum Ursprungsort zurückkehren.
- Gesucht:
  Die Reihenfolge der Städte, welche die Reiseentfernung minimiert.
- Voraussetzung: Vollständiges Netzwerk N mit Knotenmenge V und Distanzmatrix D: N = (V, D).
- Komplexität:
  - *N* Städte  $\Rightarrow$  (*N* 1)! alternative Traveling Salesman Touren
  - Bsp.:  $N = 13 \Rightarrow \sim 500*10^6$  Alternativen
  - Ein Algorithmus mit polynomieller Laufzeit existiert nicht





### **Mitteldeutschland TSP**



Untersuchung Mitteldeutschland:  $N = 8 \Rightarrow 5040$  mögliche TSP-Touren



## Mitteldeutschland-TSP: Entfernungsmatrix (in km)

| $c_{ij}$ | BS  | HAL | HBS | KS  | MD  | NDH | STA | WR  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| BS       | 0   | 131 | 55  | 127 | 77  | 86  | 62  | 51  |
| HAL      | 131 | 0   | 78  | 172 | 76  | 82  | 103 | 91  |
| HBS      | 55  | 78  | 0   | 125 | 48  | 47  | 42  | 20  |
| KS       | 127 | 172 | 125 | 0   | 173 | 92  | 83  | 106 |
| MD       | 77  | 76  | 48  | 173 | 0   | 91  | 90  | 67  |
| NDH      | 86  | 82  | 47  | 92  | 91  | 0   | 30  | 37  |
| STA      | 62  | 103 | 42  | 83  | 90  | 30  | 0   | 23  |
| WR       | 51  | 91  | 20  | 106 | 67  | 37  | 23  | 0   |

Quelle: https://www.luftlinie.org/





## Traveling Salesman Problem: Modellformulierung

Das TSP als Zuordnungsproblem

$$x_{ij} = \begin{cases} 1, \text{ falls Stadt } j \text{ unmittelbar nach Stadt } i \text{ besucht wird } \\ 0, & \text{sonst } \end{cases}$$

Min

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

u.d.N. 
$$\sum_{j=1,j\neq i} x_{ij} = 1$$
$$\sum_{i=1,i\neq j} x_{ij} = 1$$

∀i

"jede Stadt wird genau einmal verlassen"

$$\sum_{i=1, i\neq j}^{n} x_{ij} = 1$$

 $\forall j$ 

"jede Stadt wird genau einmal angesteuert"

$$x_{ij} \in \{0,1\}$$





## Lösung des Zuordnungsproblems

Streckenlänge: 483 [km]





Kurzzyklen entstanden → keine gültige TSP Tour





# Einführung von Zyklusbedingungen (zur Verhinderung von Kurzzyklen)

- Hier: Bedingungen von Miller-Tucker-Zemlin; alternativ: Bedingungen von Dantzig-Fulkerson-Johnson
- Führe für jeden der n Knoten außer i = 1 eine reelle Hilfsvariable  $u_i$  ein  $u_i$ : "Nummer" der Stadt i auf der Rundreise
- Formulierung von  $(n-1) \cdot (n-2)$  Zyklusbedingungen:

$$u_i - u_j + n * x_{ij} \le n - 1$$
  $\forall i, j = 2, ..., n \text{ und } i \ne j$ 

#### Beispiel für Wirksamkeit:

8 Knoten, 3 Kurzzyklen:



Die drei Kurzzyklen  $\zeta_1$  = (BS-HBS-WR-BS),  $\zeta_2$  =(MD-HAL-MD) und  $\zeta_3$  =(KS-STA-NDH-KS) seien optimale Lösung des betrachteten Rundreiseproblems ohne Zyklusbedingungen.





## Funktionsweise der Zyklusbedingungen nach Miller-Tucker-Zemlin

**Idee:** Führe eine Hilfsvariable  $u_i$  ein, welche für jede Stadt außer dem Start- und Zielort innerhalb der Rundreise den Index der Stadt in der Tour bezeichnet

Diese Variablen müssen nun an die Kantenvariablen  $x_{ij}$  gekoppelt werden – dazu wird folgende Restriktion verwendet:

$$u_i - u_j + n \cdot x_{ij} \le n - 1$$
  $\forall i, j = 2, ..., n \text{ und } i \ne j$ 

**Fall 1:**  $x_{ij} = 0 \rightarrow j$  ist nicht direkter Nachfolger von i

Umformung ergibt:  $u_i - u_j \le n - 1$ 

Ist wahr für alle möglichen Belegungen von  $u_i$  und  $u_i$  da wir nur Werte  $\leq n$  haben!

**Fall 2:**  $x_{ij} = 1 \rightarrow j$  ist direkter Nachfolger von i

Umformung ergibt:  $u_i \ge u_{i+1}$ 

- → Der Index jedes Ortes j (außer Start- und Zielort) innerhalb der Tour muss um mindestens 1 größer sein als der seines Vorgängers
- $\rightarrow$  In Kurzzyklen ist diese Bedingung für mindestens ein  $x_{ij}$  verletzt!





# Einführung von Zyklusbedingungen (zur Verhinderung von Kurzzyklen)



$$x_{BS,HBS} = 1, x_{WR-BS} = 1, x_{HBS,WR} = 1$$

$$x_{MD,HAL} = 1, x_{HAL,MD} = 1$$

$$x_{KS,STA} = 1, x_{STA,NDH} = 1, x_{NDH,KS} = 1$$

$$(n-1) \cdot (n-2) = (8-1) \cdot (8-2) = 7 \cdot 6 = 42$$
 Zyklusbedingungen

Bsp.: für 
$$\zeta_1$$
:

$$u_{BS} - u_{HBS} + 8 x_{BS,HBS} \le 7$$

$$u_{HBS} - u_{WR} + 8 x_{HBS,WR} \le 7$$

$$u_{WR} - u_{BS} + 8 x_{WR,BS} \le 7$$

Für die oben angegebene Lösung ergibt die Addition der Restriktionen: 8 + 8 + 8 ≤ 7 + 7 + 7

→ Die Lösung verletzt die Zyklusbedingungen!





# Einführung von Zyklusbedingungen (zur Verhinderung von Kurzzyklen)



$$x_{BS,HBS} = 1, x_{WR-BS} = 1, x_{HBS,WR} = 1$$

$$x_{MD,HAL} = 1, x_{HAL,MD} = 1$$

$$x_{KS,STA} = 1, x_{STA,NDH} = 1, x_{NDH,KS} = 1$$

$$(n-1) \cdot (n-2) = (8-1) \cdot (8-2) = 7 \cdot 6 = 42$$
 Zyklusbedingungen

Bsp.: für 
$$\zeta_1 : u_{BS} - u_{HBS} + 8 x_{BS-HBS} \le 7$$

$$u_{HBS} - u_{WR} + 8 x_{HBS-WR} \le 7$$

$$u_{WR} - u_{RS} + 8 x_{WR-RS} \le 7$$

für 
$$\zeta_2$$
:  $u_{MD} - u_{HAL} + 8 x_{MD-HAL} \le 7$ 

$$u_{HAL} - u_{MD} + 8 x_{HAL-MD} \le 7$$

für 
$$\zeta_3$$
:  $u_{KS} - u_{STA} + 8 x_{KS-STA} \le 7$ 

$$u_{STA} - u_{NDH} + 8 x_{STA-NDH} \le 7$$

$$u_{NDH} - u_{KS} + 8 x_{NDH-KS} \le 7$$





## Lösung nach Einführung der Kurzzyklusbedingungen

Streckenlänge: 508 [km]

(mit Kurzzyklen: 483 [km])



Aber: Für große Instanzen nicht effizient lösbar!





#### Untere Schranken für das TSP

- Das Traveling Salesman Problem weist Ähnlichkeiten zu einigen bereits betrachteten einfacheren Problemstellungen auf, für die ein exaktes Lösungsverfahren mit polynomialer Laufzeit angegeben werden kann.
- Diese Problemstellungen können als Relaxation des TSP betrachtet werden, die in Branch and Bound Algorithmen Verwendung finden können.
- Relaxationen vereinfachen das zu lösende Problem und führen daher zu optimistischen Zielfunktionswerten (→Untere Schranken bei Minimierung).
- Untere Schranken für das TSP werden durch eine Relaxationen als Zuordnungsproblem erreicht





## Überblick

- 1. Traveling Salesman Problem
- 2. Branch & Bound Verfahren: Zuordnung
- 3. Historie und Stand der Verfahrensentwicklung





#### **Branch and Bound: Schritte**

- Obere Schranken sind durch die jeweils besten bekannten ganzzahligen Lösungen von Teilproblemen gegeben.
- Untere Schranken werden durch Lösung vereinfachter Probleme gewonnen.
- Im Optimum (min) gilt: "größte untere Schranke = kleinste obere Schranke".

#### Drei wesentliche Schritte sind auszugestalten:

- a) Relaxation: Wie entwerfe ich ein einfacher zu lösendes Problem?
- b) Separation: Wie generiere ich die folgenden Teilprobleme?
- c) Auslotung: In welchem Teilproblem wird das Verfahren fortgesetzt?





## Relaxation durch das Zuordnungsproblem

TSP mit Zyklusbedingungen (Miller-Tucker-Zemlin)

Relaxation des TSP als Zuordnungsproblem

Min

u.d.N.

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

$$\sum_{i=1, i\neq i}^{n} x_{ij} = 1 \qquad \forall i$$

$$\sum_{i=1,i\neq i}^{n} x_{ij} = 1 \qquad \forall j$$

$$u_i - u_j + n \cdot x_{ij} \le n - 1 \quad \forall i, j = 2, ..., n \text{ und } i \ne j$$

$$x_{ij} \in \{0,1\} \qquad \forall i,j$$

$$u_i \ge 0$$
  $\forall i$ 

Min

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

u.d.N.

$$\sum_{j=1, j \neq i}^{n} x_{ij} = 1 \qquad \forall$$

$$\sum_{i=1, i \neq j}^{n} x_{ij} = 1 \qquad \forall j$$

$$x_{ij} \in \{0,1\}$$
  $\forall i,j$ 





## Separation über Vermeidung von Kurzzyklen

- Die Relaxation über das Zuordnungsproblem lässt Kurzzyklen zu, ist dafür schnell zu berechnen.
- Die Verzweigung vermeidet Kurzzyklen, indem weitere Teilprobleme im Entscheidungsbaum einzelne, in Kurzzyklen involvierte Kanten schrittweise verboten werden.
- Die bestehenden Kurzzyklen sollen so sukzessive zu einer Rundreise vereinigt werden.
- Um den Baum klein zu halten, werden zunächst nur die Kanten der kleinsten Kurzzyklen (gemessen in der Anzahl von Kanten) verboten.



### **B&B Verfahren am Mitteldeutschland Problem I**

- Obere Schranke durch Heuristik
  - → Vorlesung 11
  - Bester Nachfolger mit Startknoten BS
  - Tour BS-WR-HBS-STA-NDH-HAL-MD-KS-BS
  - Länge = 601
- Untere Schranke durch Zuordnungsproblem:
  - drei Kurzzyklen
    - BS-WR-HBS-BS
    - MD-HAL-MD
    - KS-STA-NDH-KS
  - Länge = 487

#### Obere Schranke: 601

BS-WR-HBS-STA-NDH-HAL-MD-KS-BS

#### Untere Schranke: 487

- BS-HBS-WR-BS
- MD-HAL-MD
- KS-STA-NDH-KS





#### **B&B Verfahren am Mitteldeutschland Problem II**

#### Schritt I:

- Auswahl des kürzesten Zyklus: MD-HAL-MD
- Da noch unbekannt ist, ob man MD-HAL oder HAL-MD zur Erreichung der optimalen Lösung ausschließt, zerlegt man das Gesamtproblem in zwei Teilprobleme
- Separation bezüglich MD-HAL-MD:
  - MD-HAL = 0
  - HAL-MD = 0
- Da die Distanzmatrix symmetrisch ist, wird hier nur der linke Zweig vorgestellt







### **B&B Verfahren am Mitteldeutschland Problem III**

- Schritt II:
  - Auswahl des kürzesten Zyklus: KS-STA-NDH-KS
  - Separation bezüglich KS-STA-NDH-KS:
    - KS-STA = 0
    - STA-NDH = 0
    - NDH-KS = 0
- Da die Distanzmatrix symmetrisch ist, entstehen hier zunächst die kleine Tour in umgekehrter Reihenfolge.
- Wir wählen für den nächsten Schritt beispielhaft den linken Zweig.







#### **B&B Verfahren am Mitteldeutschland Problem IV**

- Schritt III:
  - Auswahl des kürzesten Zyklus: KS-NDH-STA-KS
  - Separation bezüglich KS-NDH-STA-KS:
    - KS-NDH = 0
    - NDH-STA = 0
    - STA-KS = 0
- Neue unzulässige Lösung gefunden:
  - BS-HBS-WR-STA-KS-NDH-HAL-MD-BS
  - Länge = 508
  - Neue obere Schranke







#### **B&B Verfahren am Mitteldeutschland Problem V**

- Neue unzulässige Lösung gefunden:
  - BS-HBS-WR-STA-KS-NDH-HAL-MD-BS
  - Länge = 508
  - Neue obere Schranke
- Somit sind die anderen Blätter aus Schritt III ausgelotet und müssen nicht weiter betrachtet werden.
- Theoretisch müssten noch die Blätter aus Schritt II weiter separiert werden.
   Da die optimale Lösung aber bereits bekannt ist, wird an dieser Stelle darauf verzichtet.







#### **B&B Verfahren am Mitteldeutschland Problem V**

- Neue unzulässige Lösung gefunden:
  - BS-HBS-WR-STA-KS-NDH-HAL-MD-BS
  - Länge = 508
  - Neue obere Schranke
- Somit sind die anderen Blätter aus Schritt III ausgelotet und müssen nicht weiter betrachtet werden.
- Theoretisch müssten noch die Blätter aus Schritt II weiter separiert werden.
   Da die optimale Lösung aber bereits bekannt ist, wird an dieser Stelle darauf verzichtet.







### **B&B Verfahren am Mitteldeutschland Problem VI**





Operations Research | Vorlesung 10 - Graphen und Netzwerke: Knotenorientiere Rundreisen - Traveling Salesman | Seite 27



# Branch and Bound für TSP: Übersicht des Algorithmus

- 0. Initialisierung: Obere Schranke  $\overline{z} = \infty$  (Alternativ: Bestimmung über Eröffnungsverfahren)
- 1. Bilde für das als Zuordnungsproblem relaxierte Ausgangsproblem  $P_0$  die Lösung  $x^0$  mit Wert  $\underline{z}_0$

Wenn  $x^0$  keinen Kurzzyklus enthält, so ist  $x^0$  optimal. Knoten 0 ist ausgelotet  $\rightarrow$  Ende Setze  $z=z_0$  (untere Schranke) und  $x=x^0$ 

2. Wähle einen nicht ausgeloteten Blattknoten kFühre eine Separation bezüglich des kleinsten Kurzzyklus in  $\underline{x}^k$  durch: Bilde für jede Kante im Kurzzyklus jeweils einen neuen B&B-Knoten i mit Problem  $P_i$  durch ein Verbot der Kante (Variable = 0)

Bilde die Lsg  $x^i$  des als Zuordnungsproblem relaxierten TSP mit Wert  $\underline{z}_i$ 

Wenn  $P_i$  unlösbar ist: i ist ausgelotet: Gehe zu 3.

Wenn  $x^i$  keinen Kurzzyklus enthält und  $\underline{z}_i \leq \overline{z}$ : Setze  $\overline{z} = \underline{z}_i$  und  $\overline{z} = x^i$ 

Wenn  $x^i$  keinen Kurzzyklus enthält oder  $\underline{z}_i \geq \overline{z}$ : i ist ausgelotet: Gehe zu 3.

3. Wenn alle noch nicht alle Blattknoten ausgelotet sind, gehe zu 2.

Falls  $\overline{z} > -\infty$ , so ist  $\overline{x}$  die optimale Lösung





#### Resümee zu Branch & Bound Verfahren

- Die Komponenten des Branch & Bound Algorithmus werden problemadäquat ausgestaltet→ Beispiel TSP
- Zur Erlangung scharfer unterer Schranken im Rahmen der Relaxation wird z.T. ein erheblicher Aufwand getrieben
- Bessere Schranken gewährleisten kleinen Entscheidungsbaum
- Die Separation "repariert" die jeweils aufgefundene Relaxation in Richtung einer zu bildenden Tour
  → Verbot von Kanten
- TSP Problemstellungen von einigen hundert Knoten lösbar
- Weitere Verbesserung über dynamische Generierung zusätzlicher (teils redundanter)
  Nebenbedingungen
  - Nebenbedingungen "schneiden" Ebenen im konvexen Polyeder des Suchraumes
    - → Schnittebenenverfahren (nicht behandelt)





## Überblick

- 1. Traveling Salesman Problem
- 2. Branch & Bound Verfahren: Zuordnung
- 3. Historie und Stand der Verfahrensentwicklung



### 33 Städte TSP durch die USA

- Wettbewerbsauschreibung von Proctor & Gamble 1962
- Gesucht ist eine Tour durch 33 Städte in den USA
- Gewinner: Gerald Thompson von der Carnegie Mellon University



Quelle: http://www.tsp.gatech.edu/





## Leiterplattenbestückung mit 3038 Knoten







Deutschland TSP mit 15112 Städten

Applegate, Bixby, Chvátal, und Cook (2001)

15 112 Städte

Länge der optimalen Tour:1,573,084 Einheiten (ca. 66,000 km)









## Schweden TSP mit 24978 Städten

- Applegate, Bixby, Chvátal, und Cook (2004)
- 24 978 Städte
- Länge der optimalen Tour: 855,597 Einheiten (ca. 72,500 km)









## 85900 Knoten TSP zur Produktion von Computerchips

- Applegate, Bixby, Chvátal, und Cook (2006)
- 85 900 Knoten
- Rechenzeit: 136 CPU Jahre (skaliert auf 2,4 GHZ)
- Größte bisher gelöste TSP Instanz







Quelle: http://www.tsp.gatech.edu/

## 85900 Knoten TSP zur Produktion von Computerchips

- Applegate, Bixby, Chvátal, und Cook (2006)
- 85 900 Knoten
- Rechenzeit: 136 CPU Jahre (skaliert auf 2,4 GHZ)
- Größte bisher gelöste TSP Instanz



Quelle: http://www.tsp.gatech.edu/





## Beobachtungen

- Einige Problemstellungen können mit auf Graphen formulierten Methoden effizient gelöst werden.
  - Minimal spannende Bäume, Kürzeste Wege
- Für andere Problemstellungen ermöglicht die Graphentheorie Lösungsmethoden, die eine Alternative zum LP darstellen
  - Dynamisches Losgrößenmodell, Max. Flüsse / Min. Schnitte
- Wieder andere Problemstellungen können durch geschickte Kombination von graphentheoretischen Verfahren gelöst werden.
  - Kantenorientierte Rundreise
- Letztlich gibt es Problemstellungen, für die auch die Graphentheorie keine überzeugenden Verfahren bereitstellt.
  - Knotenorientierte Rundreise





#### Komplexität von Optimierungsproblemen

- Elementarschritten der Berechnung ←→ Größe der Eingabedaten.
- Der Rechenaufwand R(n) eines Algorithmus zur Lösung eines Optimierungsproblems ist von der (Größen-)Ordnung f(n), wenn er für hinreichend großes n proportional zur Funktion f(n) ist.
- Gilt  $R(n) \le c \cdot f(n)$  mit  $c \in IR^+$
- Komplexitätsklasse O(f(n)) gibt den Rechenaufwand zur Größe n an:
  - falls f(n) Polynom von n: Rechenaufwand polynomial (Klasse P)
  - sonst: Rechenaufwand exponentiell (Klasse NP)
- Beispiel: Algorithmus benötigt zur Lösung eines Problems der Größe n genau  $2n^2 + 5n + 50$  Elementarschritte
  - $\Rightarrow$  Ordnung  $f(n) = n^2$  bzw.  $O(n^2)$





## Beispiel zur Zeit-Komplexitätsfunktion

- Betrachtet werden Problemgrößen von n = {10, 20, ..., 60}
- Unterschiedliche Optimierungsprobleme sind beschrieben durch die Komplexitäten n, n², n³, n⁵, 2n
- Der Laufzeitbedarf eines Elementarschrittes beträgt 0.000001 Sekunden

|                       | n = 10   | n = 20   | n = 30       | n = 40      | n = 50      | n = 60        |
|-----------------------|----------|----------|--------------|-------------|-------------|---------------|
| n                     | .00001 s | .00002 s | .00003 s     | .00004 s    | .00005 s    | .00006 s      |
| n²                    | .0001 s  | .0004 s  | .0009 s      | .0016 s     | .0025 s     | .0036 s       |
| n³                    | .001 s   | .008 s   | .027 s       | .064 s      | .125 s      | .216 s        |
| n <sup>5</sup>        | .1 s     | 3.2 s    | 24.3s        | 1.7 Minuten | 5.2 Minuten | 13.0 Minuten  |
| <b>2</b> <sup>n</sup> | .001 s   | 1.0 s    | 17.9 Minuten | 12.7 Tage   | 35.7 Jahre  | 386 Jahrhund. |





## Einsatzgebiete heuristischer Verfahren

- 1. Effizient lösbare Probleme:
  - Probleme, die mit polynomialem Aufwand lösbar sind, gehören zur Klasse P ("effizient lösbar")
  - Beispiele: Kürzeste Wege Probleme, Spannende Bäume, lineare Zuordnungsprobleme, Transportprobleme
- 2. NP-schwere Probleme:
  - Probleme, für die man bislang keinen Algorithmus kennt, der auch das am schwierigsten zu lösende Problem desselben Typs mit polynomialen Aufwand löst, gehören zur Klasse der NPschweren Probleme

#### Optimale Lösung von NP-schweren Problemen

Beispiele: Rucksack-Probleme, Traveling Salesman Probleme, Tourenplanungsprobleme, quadratische Zuordnungsprobleme (Foliensatz 10)

Rucksackproblem: Optimal lösbar bis ca. 100.000 Binärvariablen

Traveling Salesman Problem: Optimal lösbar bis ca. 2.000 Knoten/Städte

Quadratische Zuordnungsproblem: Optimal lösbar bis ca. 20 Maschinen





## Zusammenfassung

- Knotenorientierte Rundreisen: Traveling Salesman Problem
  - Gegeben: Vollständiges Netzwerk N mit Knotenmenge V und Distanzmatrix D: N = (V, D)
  - Gesucht: Reihenfolge der Städte (als Tour), welche die Reiseentfernung minimiert
  - Es existiert kein Algorithmus mit polynomieller Laufzeit zur Bestimmung einer optimalen Lösung
- TSP als Zuordnungsproblem mit Zyklusbedingungen
- Branch and Bound für das TSP:
  - Relaxation durch Lösung des Zuordnungsproblems
  - Separation über Vermeidung von Kurzzyklen
- Komplexitätstheorie und Einsatzgebiete heuristischer Verfahren



