Structures Algébriqes Structure de Groupe

MPSI 2

1 Définition

Définition 1.0.1

Soit (G, *) un magma.

On dit que (G,*) est un groupe si:

- \bullet * est associative
- * admet un élément neutre
- tout élément de G est symétrisable par *

Si de plus, * est commutative sur G, on dit que (G,*) est un groupe abélien.

Conséquences:

• Règle de simplification: $a * x = a * y \Rightarrow x = y$

Démonstration:

Soit a, x et y trois éléments de G tels que a * x = a * y

Notons a' le symétrique de a (car G est un groupe)

On a alors: a' * (a * x) = a' * (a * y)

Par associativité, on a: (a'*a)*x = (a'*a)*y

Par symétrie, on a: e * x = e * y

Par définition de l'élément neutre: x = y

• Résolution d'équations: $a * x = b \iff x = a' * b$

2 Sous-groupes

2.1 Définition et critères

Soit (G, *) un groupe.

Définition 2.1.1

Soit F un sous-ensemble de G

On dit que (F,*) est un sous-groupe de (G,*) si:

- $\forall (x,y) \in G \times G, (x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
- (F, *') est un groupe où *' est la loi induite de G sur F.

Remarques: Soit (F, *') un sous-groupe de (G, *)

- \bullet $e_G = e_F$
- F est non vide: $e \in F$

• Si x' et x'' sont les symétriques de $x \in F$ dans (G,*) et (F,*') respectivement, Alors x' = x''

Critères de sous-groupe

Soit F un sous-ensemble non vide de G.

- \bullet Critère 0: F est un sous-groupe de G ssi:
 - (1) $\forall (x,y) \in G \times G$, $(x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
 - (2) $e \in F$
 - $(3) \forall x \in G, (x \in F) \Rightarrow (x^-1 \in F)$
- Critère 1: F est un sous-groupe de G ssi:
 - (1) $\forall (x,y) \in G \times G$, $(x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
 - ② $\forall x \in G, (x \in F) \Rightarrow (x^-1 \in F)$
- Critère 2: F est un sous-groupe de G ssi:
 - ① $\forall (x,y) \in G \times G, \ (x \in F \text{ et } y \in F) \Rightarrow (x * y^{-1} \in F)$

Démonstration des critères de sous-groupe

 \bullet Critère 1: Soit F un sous-ensemble non vide de G vérifiant le critère 1.

D'après (2), $x^{-1} \in F$

D'après (1), $x * x^{-1} \in F$

Or $x*x^1 = e$, donc $e \in F$ On a vérifié le critère 0, donc (F,*) est un sous-groupe de (G,*).

- \bullet Critère 2: Soit F un sous-ensemble non vide de G vérifiant le critère 2.
 - F est non vide: Soit x un élément de F

D'après (1), $x * x^{-1} \in F \Rightarrow e \in F$

Le point ② du critère 0 est vérifié.

- D'après (1) avec e et x: $e * x^{-1} \in F \Rightarrow x^{-1} \in F$

Le pont (3) du critère 0 est vérifié.

– Soit x et y deux éléments de F. De plus, $y^{-1} \in F$ donc $x*(y^{-1})^{-1} \in F \to x*y \in F$

2.2 Propriétés des sous-groupes

Soit (G, *) un groupe.

Propriété 2.2.1

- Si F et H sont des sous-groupes de (G, *), Alors $F \cap H$ est un sous-groupe de (G, *).
- $Si(F_i)_{i \in I}$ est une famille de sous-groupes de (G, *), Alors $\bigcap_{i \in I} F_i$ est un sous-groupe de (G, *)

- $f \cap H$ est non vide: $e \in F \cap H$
- Montrer que $\forall (x,y) \in G \times G$, $(x \in F \cap H)$ et $(y \in F \cap H) \Rightarrow (x * y^{-1}) \in F \cap H$ Soit $(x,y) \in F \cap H$

x et y sont éléments de F et F est un groupe: $x * y^{-1} \in F$

De même, $x * y^{-1} \in H$

Donc $x * y^{-1} \in F \cap H$

Vrai pour tout (x,y) de $(F\cap H)^2$, donc on en déduit que $F\cap H$ est un sous-groupe de (G,*)

Définition 2.2.1

Soit (G, *) un groupe.

Soit B une partie non vide de G.

On appelle sous-groupe de g engendré par B le plus petit sous groupe de (G,*) contenant B, au sens de l'inclusion.

Justification: On munit $\mathcal{P}(G)$ de la relation d'inclusion: $(\mathcal{P}(G), \subset)$ est un ensemble ordonné.

Soit \mathcal{F} l'ensemble des groupes contenant B.

- \mathcal{F} est non vide car $G \in \mathcal{F}$
- D'après la propriété précédente, $H = \bigcap_{F \in \mathcal{F}} F$ est un sous-groupe de (G, *).

 $\forall f \in \mathcal{F}, \ b \subset F, \ \text{donc} \ B \subset H$

• Reste à montrer que H est le plus petit élément de \mathcal{F} Donc montrer que $\forall F \in \mathcal{F}, \ H \subset F$ Par définition de H, la proposition précédente est vraie.

Notation:

- $\bullet < B >$
- Si B est un singleton $b = \{b\}$, on écrit < b >

2.3 Morphismes de groupes

Soit (G, *) et (G', *') deux groupes. Soit $f: G \to G'$ une application.

Définition 2.3.1

- f est un homomorphisme de groupes si: $\forall (x,y) \in \overline{G \times G}, \ f(x*y) = f(x)*'f(y)$
- f est un endomorphisme de groupes si:
 - f est un homomorphisme de groupes et que (G,*)=(G',*')
- f est un isomorphisme de groupes si: f est un homomorphisme de groupes bijectif de G sur G'
- f est un automorphisme de groupes si: f est un endomorphisme de groupes bijectif de G sur G'

Remarques: Soit f un homomorphisme de groupes de G dans G'

ullet Soit e et e' les éléments neutres de G et G' respectivement.

Alors f(e * e) = f(e) *' f(e)

En utilisant le symétrique de f(e) a gauche, on obtient:

$$f(e)^{-1} *' f(e) = f(e)^{-1} *' f(e) *' f'(e)$$

 $\iff e' = f(e)$

• Soit x un élément de G.

 $f(x * x^{-1}) = f(x) *' f(x^{-1})$

Par ailleurs, $f(x * x^{-1}) = f(e) = e'$

Donc $f(x) *' f(x^{-1}) = e$

On en déduit que $f(x^{-1}) = f(x)^{-1}$

Propriété 2.3.1

• Si F est un sous-groupe de (G,*) et si f est un homomorphisme de groupes de G dans G',

Alors f(F) est un sous-groupe de (G', *')

• Si H' est un sous-groupe de (G', *') et si f est un homomorphisme de groupes de G dans G',

Alors $f^{-1} < H' > est un sous-groupe de (G,*)$

• 1^{er} point: Montrer que f(F) est un sous-groupe de (G', *')Donc montrer que $\forall (x', y') \in f(F), \ x' *' y'^{-1} \in f(F)$

F non vide, donc f(F) non vide.

Soit x' et y' deux éléments de f(F).

Donc $\exists (x,y) \in F$, f(x) = x' et f(y) = y'. Soit x et y deux tels éléments. $x' *' (y')^{-1} = f(x) *' f(y)^{-1}$ $= f(x * y^{-1})$

Or, F est un groupe, donc $x * y^{-1} \in F$, donc $x' *' (y')^{-1} \in f(F)$

Cela étant vrai pour tout x' et y' de f(F), on en conclut que f(F) est un sous-groupe de (G', *').

- 2ème point: Montrer que $f^{-1} < H' >$ est un sous-groupe de (g, *).
 - $-\ f$ est un homomorphisme de groupes donc f(e)=e'

De plus, $e' \in H'$ car H' est un sous-groupe de (G, *)

Donc $e \in f^{-1} < H' >$, donc $f^{-1} < H' >$ est non vide.

– Montrer que $\forall (x,y) \in G \times G$, $(x \in f^{-1} < H' > \text{ et } x \in f^{-1} < H' >) \Rightarrow x * y^{-1} \in f^{-1} < H' > \text{Soit } x \text{ et } y \text{ deux éléments de } f^{-1} < H' >.$

Donc montrons que $x * y^{-1} \in f^{-1} < H' >$

Donc montrons que $f(x * y^{-1}) \in H'$

 $f(x * y^{-1}) = f(x) * f(y)^{-1}$ car f est un homomorphisme de groupes.

Or: $-f(x) \in H' \text{ car } x \in f^{-1} < H' >$

- $f(y) \in H' \text{ car } y \in f^{-1} < H' > .$
- De plus, H' est un sous-groupe donc $f(y)^{-1} \in H'$

Sachant H' un sous-groupe, $f(x * y^{-1}) \in H'$

Ce raisonnement étant valable pour tout x, y de $f^{-1} < H' >$, on en déduit que $f^{-1} < H' >$ est un sous-groupe de (G, *) d'après la critère 2.

Corollaire 2.3.1

- L'image f(G) est un sous-groupe de (G', *')
- $f^{-1} < \{e\} > est un sous-groupe de (G,*)$. On l'appelle le <u>noyau de f</u>

Notation: $\ker(f) = f^{-1} < \{e\} >$

Propriété 2.3.2

Soit f un homomorphisme de groupes de (G, *) dans (G', *'). Alors f est injective si et seulement si $\ker(f) = \{e\}$

```
① Supposons f injective.
   Montrer que ker(f) = \{e\}
   -\ker(f) est un sous-groupe de (G,*), donc \{e\} \subset \ker(f)
   - montrer que \ker(f) \subset \{e\}
      Donc montrer que \forall x \in G, \ x \in \ker(f) \Rightarrow x = e
      Soit x un élément de \ker(f)
      Montrer que x = e
      x \in \ker(f), donc f(x) = e'
      f est un homomorphisme, donc f(e) = e'
      D'où f(x) = f(e)
      Donc, sachant f injective, x = e
   Donc ker(f) = \{e\}
② Supposons que ker(f) = \{e\}
   Montrer que \forall (x,y) \in G \times G, \ f(x) = f(y) \Rightarrow x = y
   Soit x et y deux éléments de G tels que f(x) = f(y)
   f(x) = f(y) \iff f(x) *' f(y)^{-1} = e'
                  \iff f(x * y^{-1}) = e'
   Or, ker(f) = \{e\}
   Donc x * y^{-1} = e
   Donc x = y
   Ce raisonnement étant valable pour tout x et y de G, f est injective.
```