"乐孕安" 优生优育产品

染色体解析:助力新一代试管婴儿技术

张洋

乐土精准医疗

2017年7月17日

目 录

1 产品概览

2 查因

产品概览

本产品包括两个阶段

- 查因通过高精度的全基因组测序,大数据的分析,检测样本的染色体异常情况,并给出异常断点的验证策略,零假阳性。最终给出临床表征的遗传学解释。
- 助孕 新一代试管婴儿技术,充分利用第一阶段的检测结果 "PCR 引物 对",完美阻断亲代结构异常向子代遗传。再配合 PGS 剔除自发突 变产生的不良胚胎。
 - 最终提高植入成功率,降低出生缺陷,给家庭一个健康的宝宝。

"乐孕安"第一阶段

查因

定义

A prime number is a number that has exactly two divisors.

例

• 2 is prime (two divisors: 1 and 2).

"乐孕安"第一阶段

查因

定义

A prime number is a number that has exactly two divisors.

例

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).

"乐孕安"第一阶段

查因

定义

A prime number is a number that has exactly two divisors.

例

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

Suppose p were the largest prime number.

• But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- Suppose p were the largest prime number.
- 2 Let q be the product of the first p numbers.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- Suppose p were the largest prime number.
- ② Let q be the product of the first p numbers.
- **③** Then q + 1 is not divisible by any of them.
- But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

5 / 9

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- **1** Suppose *p* were the largest prime number.
- ② Let q be the product of the first p numbers.
- **3** Then q+1 is not divisible by any of them.
- But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

What's Still To Do?

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

What's Still To Do?

- Answered Questions
 - How many primes are there?
- Open Questions
 - Is every even number the sum of two primes?

What's Still To Do?

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?[1]

8 / 9

[Goldbach, 1742] Christian Goldbach.

A problem we should try to solve before the ISPN ' 43 deadline, Letter to Leonhard Euler, 1742.


```
int main (void)
₹
std::vector<bool> is prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
}
return 0;
```

```
int main (void)
₹
std::vector<bool> is prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
}
return 0;
```

Note the use of std::.

9 / 9

```
^^Iint main (void)
^^I{
^^I std::vector<bool> is_prime (100, true);
^{1} for (int i = 2; i < 100; i++)
^^T
^^I return 0;
^^I}
```

```
^^Iint main (void)
^^I{
^^I std::vector<bool> is_prime (100, true);
^{1} for (int i = 2; i < 100; i++)
^^I if (is_prime[i])
^^I {
^^I
^^I
^^T
^^I }
^^I return 0;
^^I}
```

```
^^Iint main (void)
^^I{
^^I std::vector<bool> is_prime (100, true);
^{1} for (int i = 2; i < 100; i++)
^^I if (is_prime[i])
^^T {
^^I std::cout << i << " ";
^{1} for (int j = i; j < 100;
^^I is_prime [j] = false, j+=i);
^^I }
^^I return 0;
^^I}
```

```
^^Iint main (void)
^^I{
^^I std::vector<bool> is_prime (100, true);
^{1} for (int i = 2; i < 100; i++)
^^I if (is_prime[i])
^^T {
^^I std::cout << i << " ";
^{1} for (int j = i; j < 100;
^^I is_prime [j] = false, j+=i);
^^I }
^^I return 0;
^^I}
```

Note the use of std::.