Forecasting Emergency Medical Service Call Arrival Rates

David S. Matteson* Mathew W. McLean Dawn B. Woodard Shane G. Henderson

School of Operations Research and Information Engineering Cornell University

May 9, 2011

SUPPLEMENTAL MATERIALS

Additional Tables: Tables 1 & 2

KEY WORDS: Ambulance planning; Dynamic factor model; Non-homogeneous Poisson process; Integer-valued time series; Smoothing splines.

Short title: Forecasting EMS Call Arrival Rates

 $^{^*}Address$ for Correspondence: School of Operations Research and Information Engineering, Cornell University, 282 Rhodes Hall, Ithaca, NY 14853, dm484@cornell.edu

SUPPLEMENTAL MATERIALS: TABLES 1 & 2

		Fit to	2007	Fit to 2008		
k		α	β	α	β	
3	Estimate	0.0594	0.8093	0.0559	0.8232	
	Standard Error	0.0089	0.0402	0.0075	0.0316	
4	Estimate	0.0553	0.8280	0.0542	0.8306	
	Standard Error	0.0088	0.0387	0.0074	0.3130	
5	Estimate	0.0551	0.8311	0.0537	0.8336	
	Standard Error	0.0088	0.0376	0.0073	0.0298	

Table 1: Parameter estimates and corresponding approximate standard error for IntGARCH model with K=3,4,5 from fitting 2007 and 2008 data separately.

			Mean Average Cost Per Hour		Mean % Served Immediately			Mean Servers Per Hour				
Train.			q		q		q					
Set	θ	ν	Model	2	5	10	2	5	10	2	5	10
2008	0.8	<u>2</u> 3	SP	$50.5_{(0.2)}$	$62.6_{(0.5)}$	$79.7_{(1.0)}$	$68.7_{(0.6)}$	$73.6_{(0.6)}$	$76.5_{(0.6)}$	40.2	41.1	41.7
			FM	$49.5_{(0.3)}$	$60.2_{(0.6)}$	$74.9_{(1.1)}$	$70.3_{(0.7)}$	75.7 _(0.6)	78.8(0.6)	39.8	40.7	41.3
			IG	48.3 _(0.2)	$57.1_{(0.5)}$	69.3(1.0)	74.3(0.7)	$79.3_{(0.6)}$	$82.0_{(0.5)}$	40.1	41.0	41.6
	0.8	$\frac{2}{3}$	SP	$49.4_{(0.2)}$	60.1 _(0.4)	75.1 _(0.8)	$71.6_{(0.5)}$	76.1 _(0.5)	$78.8_{(0.4)}$	40.2	41.1	41.7
2007			FM	$47.8_{(0.2)}$	$56.0_{(0.4)}$	$67.1_{(0.8)}$	$76.9_{(0.5)}$	81.2 _(0.5)	$83.6_{(0.5)}$	40.6	41.5	42.0
			IG	47.2(0.2)	$54.7_{(0.4)}$	64.9(0.8)	$78.0_{(0.5)}$	82.3 _(0.5)	84.7 _(0.4)	40.3	41.2	41.8
	0.9	$\frac{2}{3}$	SP	$50.9_{(0.2)}$	$60.5_{(0.5)}$	73.1 _(0.9)	$76.0_{(0.5)}$	81.5 _(0.5)	84.5 _(0.4)	41.6	42.9	43.8
2008			FM	$49.5_{(0.2)}$	$57.4_{(0.5)}$	$67.3_{(0.9)}$	$78.4_{(0.6)}$	84.2 _(0.5)	$87.1_{(0.4)}$	41.3	42.6	43.4
			IG	48.4 _(0.2)	$54.9_{(0.4)}$	$62.7_{(0.8)}$	81.7 _(0.5)	86.9(0.4)	$89.6_{(0.4)}$	41.5	42.8	43.6
	0.9	$\frac{2}{3}$	SP	$49.8_{(0.2)}$	58.5(0.4)	$69.6_{(0.7)}$	$78.3_{(0.4)}$	83.3 _(0.4)	86.0 _(0.4)	41.7	43.0	43.8
2007			FM	$48.2_{(0.2)}$	$54.5_{(0.4)}$	$62.0_{(0.7)}$	$83.3_{(0.5)}$	87.8 _(0.4)	$90.2_{(0.3)}$	42.0	43.3	44.2
			IG	$47.6_{(0.2)}$	$53.2_{(0.4)}$	$59.9_{(0.6)}$	84.3 _(0.4)	88.8 _(0.4)	$91.1_{(0.3)}$	41.8	43.1	43.9
	0.8	1	SP	$36.2_{(0.2)}$	$45.0_{(0.4)}$	57.1 _(0.7)	$73.8_{(0.4)}$	78.7 _(0.4)	81.4 _(0.4)	28.0	28.8	29.2
2008			FM	$35.2_{(0.2)}$	$42.8_{(0.4)}$	$53.1_{(0.8)}$	$75.8_{(0.5)}$	$80.7_{(0.5)}$	$83.4_{(0.4)}$	27.8	28.5	29.0
			IG	$34.2_{(0.2)}$	$40.5_{(0.4)}$	48.7 _(0.7)	$78.9_{(0.5)}$	83.4 _(0.4)	$85.9_{(0.4)}$	27.9	28.7	29.2
	0.8	1	SP	$35.2_{(0.2)}$	43.1 _(0.5)	53.8(0.9)	$76.3_{(0.6)}$	80.8(0.5)	83.2 _(0.5)	31.7	32.5	33.1
2007			FM	$33.8_{(0.2)}$	$39.6_{(0.4)}$	$47.3_{(0.8)}$	$81.1_{(0.5)}$	85.1 _(0.5)	$87.2_{(0.4)}$	32.0	32.8	33.3
			IG	$33.3_{(0.2)}$	38.7 _(0.4)	45.7 _(0.7)	$81.9_{(0.5)}$	85.8(0.4)	$87.9_{(0.4)}$	31.8	32.6	33.2
	0.9	1	SP	$36.1_{(0.1)}$	42.6(0.3)	50.7 _(0.6)	81.7 _(0.4)	86.4(0.3)	89.0(0.3)	29.3	30.3	31.0
2008			FM	$34.9_{(0.2)}$	$40.1_{(0.4)}$	$46.3_{(0.7)}$	$83.8_{(0.4)}$	88.7 _(0.4)	91.1 _(0.3)	29.0	30.1	30.8
			IG	34.1 _(0.2)	$38.3_{(0.3)}$	43.1 _(0.6)	$86.4_{(0.4)}$	$90.7_{(0.3)}$	$92.8_{(0.3)}$	29.2	30.3	30.9
2007	0.9	1	SP	$35.4_{(0.2)}$	41.3(0.4)	48.6(0.7)	$83.3_{0.5)}$	87.7 _{0.4)}	$90.0_{0.3)}$	33.2	34.3	35.1
			FM	$34.0_{(0.2)}$	$38.1_{(0.3)}$	42.8(0.6)	$87.5_{(0.4)}$	91.3 _(0.3)	$93.2_{(0.3)}$	33.4	34.6	35.4
			IG	$33.5_{(0.1)}$	37.2 _(0.3)	41.4 _(0.5)	88.3 _(0.4)	$92.0_{(0.3)}$	93.8(0.3)	33.3	34.4	35.2

Table 2: Mean average cost per hour, mean percentage served immediately, and mean number of servers used for 100 simulations for each forecasting method for different values of q. Standard errors in parentheses.