Statistica per la ricerca sperimentale e tecnologica

Corso di Laurea in Informatica, Università di Roma "Tor Vergata"

Anno accademico: 2006-2007 Titolare del corso: Claudio Macci Preappello del 22 Dicembre 2006

Esercizio 1. Si lancia due volte una moneta. La probabilità di avere testa in ogni lancio è $\frac{5}{7}$. Sia X la variabile aleatoria che conta il numero di teste ottenute.

- D1) Trovare la densità discreta di X.
- D2) Calcolare la probabilità di ottenere la sequenza (croce, testa).

Esercizio 2. Un'urna ha 4 palline con i numeri 0, 1, 2 e 3. Si estraggono a caso 2 palline in blocco e consideriamo le seguenti variabili aleatorie: X è il massimo tra i due numeri estratti; Y è il minimo tra i due numeri estratti; Z è il prodotto tra i due numeri estratti.

- D3) Trovare la densità discreta di X.
- D4) Trovare la densità congiunta di (Y, Z).

Esercizio 3. Si lancia un dado equo. In generale, se esce $k \in \{1, ..., 6\}$, si mettono k palline bianche e 6-k palline nere in un'urna inizialmente vuota. Poi si estrae una pallina a caso dall'urna. D5) Calcolare la probabilità di estrarre una pallina bianca.

D6) Per ogni $k \in \{1, ..., 6\}$, calcolare la probabilità che sia uscito il numero k nel lancio del dado sapendo che è stata estratta una pallina bianca.

Esercizio 4. Sia X una variabile aleatoria con densità $f_X(t) = ct$ per $0 < t < \frac{6}{5}$ e $f_X(t) = 0$ altrimenti. Inoltre sia (X_n) una successione di variabili aleatorie indipendenti e tutte con la stessa distribuzione di X. Infine poniamo $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$.

- D7) Verificare che $c = \frac{25}{18}$.
- D8) Trovare la densità discreta di Y = [X] dove $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$ è la parte intera di x.
- D9) Trovare il valore di m per cui si ha $\lim_{n\to\infty} P(|\overline{X}_n m| \ge \varepsilon) = 0$ per ogni $\varepsilon > 0$.

Esercizio 5. In generale l'evento n-simo di un processo di Poisson di intensità $\lambda = 4$ accade all'istante aleatorio T_n .

- D10) Calcolare $P(T_1 > 10)$.
- D11) Calcolare $\mathbb{E}[T_5]$.

Esercizio 6. Sia X una variabile aleatoria normale con media $\mu = 9$ e varianza $\sigma^2 = 144$. D12) Calcolare P(X > 6).

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

D1) La variabile aleatoria X ha distribuzione binomiale con parametri n=2 (numero dei lanci di moneta) e $p=\frac{5}{7}$ (probabilità che esca testa in ogni lancio). Quindi $p_X(k)=\binom{2}{k}\binom{5}{7}k(1-\frac{5}{7})^{2-k}$ per $k \in \{0, 1, 2\}$, da cui $p_X(0) = \frac{4}{49}$, $p_X(1) = \frac{20}{49}$ e $p_X(2) = \frac{25}{49}$. D2) Con notazioni ovvie la probabilità richiesta è $P(T_1^c \cap T_2) = P(T_1^c)P(T_2) = (1 - \frac{5}{7})\frac{5}{7} = \frac{10}{49}$.

Esercizio 2. Consideriamo l'insieme Ω costituito dai sottoinsiemi di $\{0,1,2,3\}$ di 2 elementi (in tutto sono $\binom{4}{2} = 6$); quindi $\Omega = \{\{0,1\}, \{0,2\}, \{0,3\}, \{1,2\}, \{1,3\}, \{2,3\}\}\}$. Ogni punto di Ω ha probabilità $\frac{1}{6}$.

D3) Si ha $\{X = 1\} = \{\{0,1\}\}, \{X = 2\} = \{\{0,2\},\{1,2\}\} \in \{X = 3\} = \{\{0,3\},\{1,3\},\{2,3\}\}.$ Opindia $\{X = 1\} = \{\{0,1\}\}, \{X = 2\} = \{\{0,2\},\{1,2\}\} \in \{X = 3\} = \{\{0,3\},\{1,3\},\{2,3\}\}.$ Quindi $p_X(1) = \frac{1}{6}$, $p_X(2) = \frac{2}{6}$ e $p_X(3) = \frac{3}{6}$.

D4) Si ha $p_{(Y,Z)}(0,0) = P(\{\{0,1\},\{0,2\},\{0,3\}\}) = \frac{3}{6}, p_{(Y,Z)}(1,2) = P(\{\{1,2\}\}) = \frac{1}{6}, p_{(Y,Z)}(1,3) = \frac{1}{6}$ $P(\{\{1,3\}\}) = \frac{1}{6} e p_{(Y,Z)}(2,6) = P(\{\{2,3\}\}) = \frac{1}{6}.$

Esercizio 3. Sia B l'evento "estratta pallina bianca" e, per $k \in \{1, \dots, 6\}$, sia E_k l'evento "esce k nel lancio del dado".

D5) Per la formula delle probabilità totali è $P(B) = \sum_{k=1}^{6} P(B|E_k) P(E_k) = \sum_{k=1}^{6} \frac{k}{6} \frac{1}{6} = \sum_{k=1}^{6} \frac{k}{36} = \frac{1+2+3+4+5+6}{36} = \frac{21}{36} = \frac{7}{12}$.

D6) Per la formula di Bayes e per il valore di P(B) calcolato prima, si ha $P(E_k|B) = \frac{P(B|E_k)P(E_k)}{P(B)} =$ $\frac{\frac{k}{6}\frac{1}{6}}{\frac{7}{12}} = \frac{k}{36}\frac{12}{7} = \frac{k}{21}$ per ogni $k \in \{1, \dots, 6\}$.

Esercizio 4.

Esercizio 4. D7) Si ha $1 = c \int_0^{6/5} t dt = c \left[\frac{t^2}{2} \right]_{t=0}^{t=6/5} = c \frac{(6/5)^2 - 0^2}{2} = \frac{c}{2} \frac{36}{25} = c \frac{18}{25}$, da cui $c = \frac{25}{18}$. D8) Si ha $p_Y(0) = \int_0^1 \frac{25}{18} t dt = \left[\frac{25}{18} \frac{t^2}{2} \right]_{t=0}^{t=1} = \frac{25}{36} (1^2 - 0^2) = \frac{25}{36} \text{ e } p_Y(1) = \int_1^{6/5} \frac{25}{18} t dt = \left[\frac{25}{18} \frac{t^2}{2} \right]_{t=1}^{t=6/5} = \frac{25}{36} ((6/5)^2 - 1^2) = \frac{25}{36} \left(\frac{36}{25} - 1 \right) = 1 - \frac{25}{36} = \frac{11}{36}$. D9) Si ha $m = \mathbb{E}[X] = \int_0^{6/5} t \frac{25}{18} t dt = \frac{25}{18} \int_0^{6/5} t^2 dt = \frac{25}{18} \left[\frac{t^3}{3} \right]_{t=0}^{t=6/5} = \frac{25}{18} \frac{(6/5)^3 - 0^3}{3} = \frac{25}{18 \cdot 3} \frac{216}{125} = \frac{4}{5}$.

Esercizio 5.

D10) Si ha $P(T_1 > 10) = 1 - F_{T_1}(10) = 1 - (1 - e^{-4.10}) = e^{-40}$.

D11) In generale si ha $\mathbb{E}[T_n] = \frac{n}{\lambda}$; quindi $\mathbb{E}[T_5] = \frac{5}{4}$.

Esercizio 6.

D12) La v.a. $Z_X = \frac{X-9}{\sqrt{144}}$ è la standardizzata di X e si ha $P(X > 6) = P(\frac{X-9}{\sqrt{144}} > \frac{6-9}{\sqrt{144}}) = P(Z_X > -3/12) = 1 - \Phi(-3/12) = 1 - (1 - \Phi(3/12)) = \Phi(3/12) = \Phi(0.25) = 0.59871.$

Commenti.

D1) Si ha $p_X(0) + p_X(1) + p_X(2) = \frac{4+20+25}{49} = 1$ in accordo con la teoria. D1-D2) Si ha anche $P(T_1)P(T_2^c) = \frac{5}{7}(1-\frac{5}{7}) = \frac{10}{49}$ e quindi $P(T_1^c \cap T_2) + P(T_1 \cap T_2^c) = \frac{10}{49} + \frac{10}{49} = \frac{20}{49} = p_X(1)$; questo è in accordo con il fatto che $\{X = 1\} = (T_1^c \cap T_2) \cup (T_1 \cap T_2^c)$, e che tale unione è disgiunta, cioè $(T_1^c \cap T_2) \cap (T_1 \cap T_2^c) = \emptyset$.

D3) Si ha $p_X(1) + p_X(2) + p_X(3) = \frac{1+2+3}{6} = 1$ in accordo con la teoria. D4) Si ha $p_{(Y,Z)}(0,0) + p_{(Y,Z)}(1,2) + p_{(Y,Z)}(1,3) + p_{(Y,Z)}(2,6) = \frac{3+1+1+1}{6} = 1$ in accordo con la

D6) Si ha $\sum_{k=1}^{6} P(E_k|B) = \frac{1+2+3+4+5+6}{21} = 1$ in accordo con la teoria. D8) Si ha $p_Y(0) + p_Y(1) = \frac{25+11}{36} = 1$ in accordo con la teoria.