LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

CONTEXT-FREE GRAMMARS AND

LANGUAGES

○ Goal: Automaton that can recognize $\{a^nb^n|n \in \mathbb{N}\}$

- Goal: Automaton that can recognize $\{a^nb^n|n \in \mathbb{N}\}$
- Ideas:

- Goal: Automaton that can recognize $\{a^nb^n|n \in \mathbb{N}\}$
- Ideas:
 - \circ Each time we read an a, we read simultaneously an b

- Goal: Automaton that can recognize $\{a^n b^n | n \in \mathbb{N}\}$
- Ideas:
 - Each time we read an *a*, we read simultaneously an *b*
 - We have to ensure that all *as* are before the *bs*

- Goal: Automaton that can recognize $\{a^n b^n | n \in \mathbb{N}\}$
- O Ideas:
 - \circ Each time we read an a, we read simultaneously an b
 - We have to ensure that all as are before the bs
- \bigcirc Constructive Approach with rules: $S \rightarrow aSb|\varepsilon$

Definition

 \bigcirc $G = (V, \Sigma, S, P)$ grammar iff

- \bigcirc $G = (V, \Sigma, S, P)$ grammar iff
 - *V* finite set of variables

- \bigcirc $G = (V, \Sigma, S, P)$ grammar iff
 - *V* finite set of variables
 - Σ alphabet with $V \cap \Sigma = \emptyset$

- \bigcirc $G = (V, \Sigma, S, P)$ grammar iff
 - *V* finite set of variables
 - Σ alphabet with $V \cap \Sigma = \emptyset$
 - $S \in V$ start symbol

- \bigcirc $G = (V, \Sigma, S, P)$ grammar iff
 - *V* finite set of variables
 - Σ alphabet with $V \cap \Sigma = \emptyset$
 - $S \in V$ start symbol
 - $P \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma \cup \{\varepsilon\})^*$ production rules

- \bigcirc $G = (V, \Sigma, S, P)$ grammar iff
 - *V* finite set of variables
 - Σ alphabet with $V \cap \Sigma = \emptyset$
 - $S \in V$ start symbol
 - $P \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma \cup \{\varepsilon\})^*$ production rules
- \bigcirc *G* context-free: $P \subseteq V \times (V \cup \Sigma \cup \{\varepsilon\})^*$

A Grammar's Language

Definition

G context-free grammar, α , $\beta \in (V \cup \Sigma)^*$

 \bigcirc $\alpha \vdash \beta$ (β is derivable from α in one step) iff

$$\exists (A,\gamma) \in P: \alpha = \alpha_1 A \alpha_2 \wedge \beta = \alpha_1 \gamma \alpha_2$$

A Grammar's Language

Definition

G context-free grammar, α , $\beta \in (V \cup \Sigma)^*$

 \bigcirc $\alpha \vdash \beta$ (β is derivable from α in one step) iff

$$\exists (A,\gamma) \in P: \alpha = \alpha_1 A \alpha_2 \wedge \beta = \alpha_1 \gamma \alpha_2$$

○ ⊢* reflexive-transitive closure

A Grammar's Language

Definition

G context-free grammar, $\alpha, \beta \in (V \cup \Sigma)^*$

 \bigcirc $\alpha \vdash \beta$ (β is derivable from α in one step) iff

$$\exists (A,\gamma) \in P: \alpha = \alpha_1 A \alpha_2 \wedge \beta = \alpha_1 \gamma \alpha_2$$

- +* reflexive-transitive closure
- $\bigcirc L(G) = \{ w \in \Sigma^* \mid S \vdash^* w \}$

BALANCED PARANTHESIS

Motivation

 \bigcirc arithmetics: $(5+3) \cdot 2$, $(7+(8 \div 2)) \cdot 4$

Motivation

- \bigcirc arithmetics: $(5+3) \cdot 2$, $(7+(8 \div 2)) \cdot 4$
- programming languages:if (everything alright) { do a lot of stuff}

Motivation

- \bigcirc arithmetics: $(5+3) \cdot 2$, $(7+(8 \div 2)) \cdot 4$
- programming languages:if (everything alright) { do a lot of stuff}
- can we detect if something is not correct?

Balanced Parenthesis

informal:

 \bigcirc number of left parenthesis = number of right parenthesis

Balanced Parenthesis

informal:

- number of left parenthesis = number of right parenthesis
- the number of right parenthesis in every prefix is at most the number of left parenthesis

Balanced Parenthesis

informal:

- number of left parenthesis = number of right parenthesis
- the number of right parenthesis in every prefix is at most the number of left parenthesis

formal:

Definition (Balanced Parenthesis)

$$\Sigma_P = \Sigma \cup \{(,)\}$$

$$x \in \Sigma_p^*$$
 balanced iff

1.
$$|x|_{(} = |x|_{)}$$

2.
$$\forall y \in \text{Pref}(x) : |y|_{(} \ge |y|_{)}$$

Checking the Balanced Property

$$G_P = (\{S\}, \Sigma_P, S, P)$$
 with the productions P

$$S \to (S)|SS|\varepsilon$$

$$\forall a \in \Sigma: \, S \longrightarrow a$$

Checking the Balanced Property

Definition

$$G_P = (\{S\}, \Sigma_P, S, P)$$
 with the productions P

$$S \to (S)|SS|\varepsilon$$

$$\forall a \in \Sigma:\, S \longrightarrow a$$

Theorem

$$L(G_P) = \{x \in \Sigma_P | x \ balanced\}$$

$$\bigcirc$$
 Start: $S \vdash_G^0 x \Rightarrow$ no step \Rightarrow no parenthesis $\Rightarrow \sqrt{}$

- \bigcirc Start: $S \vdash_G^0 x \Rightarrow$ no step \Rightarrow no parenthesis $\Rightarrow \sqrt{}$
- \bigcirc Hypothesis: if $S \vdash_G^n x$ for an arbitrary but fixed $n \in \mathbb{N}$ then x is balanced

- \bigcirc Start: $S \vdash_G^0 x \Rightarrow$ no step \Rightarrow no parenthesis $\Rightarrow \sqrt{}$
- Hypothesis: if $S \vdash_G^n x$ for an arbitrary but fixed $n \in \mathbb{N}$ then x is balanced
- \bigcirc Step: Consider $S \vdash_G^{n+1} x$

- \bigcirc Start: $S \vdash_G^0 x \Rightarrow$ no step \Rightarrow no parenthesis $\Rightarrow \sqrt{}$
- Hypothesis: if $S \vdash_G^n x$ for an arbitrary but fixed $n \in \mathbb{N}$ then x is balanced
- Step: Consider $S \vdash_G^{n+1} x$
 - definition of derivation $\Rightarrow \exists z \in \Sigma_P^* : S \vdash_G^n z \vdash_G^1 x$

- \bigcirc Start: $S \vdash_G^0 x \Rightarrow$ no step \Rightarrow no parenthesis $\Rightarrow \sqrt{}$
- Hypothesis: if $S \vdash_G^n x$ for an arbitrary but fixed $n \in \mathbb{N}$ then x is balanced
- \bigcirc Step: Consider $S \vdash_G^{n+1} x$
 - $\bullet \ \ \text{definition of derivation} \Rightarrow \exists z \in \Sigma_P^* : S \vdash_G^n z \vdash_G^1 x$
 - hypothesis $\Rightarrow z$ balanced

case 1: second, third or fourth rule applied

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

o
$$z = z_1 S z_2$$
, $x = z_1(S) z_2$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - $z = z_1 S z_2, x = z_1(S) z_2$
 - o obviously first property is satisfies

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - o $z = z_1 S z_2, x = z_1(S) z_2$
 - obviously first property is satisfies
 - for the second property: $y \in Pref(x)$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - o $z = z_1 S z_2, x = z_1(S) z_2$
 - o obviously first property is satisfies
 - for the second property: $y \in Pref(x)$
 - case a: $|y| \le |z_1|$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - o $z = z_1 S z_2, x = z_1(S) z_2$
 - o obviously first property is satisfies
 - for the second property: $y \in Pref(x)$
 - case a: $|y| \le |z_1|$
 - hypothesis $\Rightarrow \sqrt{}$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - $o z = z_1 S z_2, x = z_1(S) z_2$
 - obviously first property is satisfies
 - for the second property: $y \in Pref(x)$
 - case a: $|y| \le |z_1|$
 - hypothesis $\Rightarrow \sqrt{}$
 - case b: $|y| \le |z_1| + 2$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied
 - o $z = z_1 S z_2, x = z_1(S) z_2$
 - obviously first property is satisfies
 - for the second property: $y \in Pref(x)$
 - case a: $|y| \le |z_1|$
 - hypothesis $\Rightarrow \sqrt{}$
 - case b: $|y| \le |z_1| + 2$
 - $|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)}$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

$$z = z_1 S z_2, x = z_1(S) z_2$$

- obviously first property is satisfies
- for the second property: $y \in Pref(x)$
- case a: $|y| \le |z_1|$
 - \circ hypothesis $\Rightarrow \sqrt{}$
- case b: $|y| \le |z_1| + 2$
 - $|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)}$
 - $\circ \Rightarrow |y|_{(} = |z_{1}|_{(} + 1 = |z_{1}|_{)} + 1 = |y|_{)} + 1 \Rightarrow \sqrt{}$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

$$o$$
 $z = z_1 S z_2, x = z_1(S) z_2$

- obviously first property is satisfies
- for the second property: $y \in Pref(x)$
- case a: $|y| \le |z_1|$
 - \circ hypothesis $\Rightarrow \sqrt{}$
- case b: $|y| \le |z_1| + 2$

$$|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)}$$

$$\circ \Rightarrow |y|_{(} = |z_1|_{(} + 1 = |z_1|_{)} + 1 = |y|_{)} + 1 \Rightarrow \sqrt{}$$

• case c: $|y| > |z_1| + 2$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

$$z = z_1 S z_2, x = z_1(S) z_2$$

- obviously first property is satisfies
- for the second property: $y \in Pref(x)$
- case a: $|y| \le |z_1|$
 - \circ hypothesis $\Rightarrow \sqrt{}$
- case b: $|y| \le |z_1| + 2$

$$|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)}$$

$$\circ \Rightarrow |y|_{(} = |z_1|_{(} + 1 = |z_1|_{)} + 1 = |y|_{)} + 1 \Rightarrow \sqrt{}$$

• case c:
$$|y| > |z_1| + 2$$

$$|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)} + 1$$

- case 1: second, third or fourth rule applied
 - no change in number or order of parenthesis $\Rightarrow x$ balanced
- case 2: first rule applied

$$o$$
 $z = z_1 S z_2, x = z_1(S) z_2$

- obviously first property is satisfies
- for the second property: $y \in Pref(x)$
- case a: $|y| \le |z_1|$
 - hypothesis $\Rightarrow \sqrt{}$
- case b: $|y| \le |z_1| + 2$

$$|y|_{(} = |z_1|_{(} + 1 \text{ and } |y|_{)} = |z_1|_{)}$$

$$\circ \Rightarrow |y|_{(} = |z_{1}|_{(} + 1 = |z_{1}|_{)} + 1 = |y|_{)} + 1 \Rightarrow \sqrt{}$$

• case c:
$$|y| > |z_1| + 2$$

$$|y|_{\ell} = |z_1|_{\ell} + 1 \text{ and } |y|_{\ell} = |z_1|_{\ell} + 1$$

$$\circ \Rightarrow |y|_{(} = |z_{1}|_{(} + 1 = |z_{1}|_{)} + 1 = |y|_{)} \Rightarrow \sqrt{}$$

$$\bigcirc$$
 Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \to \varepsilon$

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- O Step: 2 cases

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- O Step: 2 cases
- \bigcirc case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- Step: 2 cases
- case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz
 - $\circ |y|, |z| < |x| \Rightarrow S \vdash_G^* y \text{ and } S \vdash_G^* z$

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- Step: 2 cases
- \bigcirc case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz
 - $|y|, |z| < |x| \Rightarrow S \vdash_G^* y$ and $S \vdash_G^* z$
 - derivation for x: $S \vdash_G^1 SS \vdash_G^* yS \vdash_G^* yz = x$

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- O Step: 2 cases
- \bigcirc case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz
 - $|y|, |z| < |x| \Rightarrow S \vdash_G^* y$ and $S \vdash_G^* z$
 - derivation for x: $S \vdash_G^1 SS \vdash_G^* yS \vdash_G^* yz = x$
- \bigcirc case 2: x not splittable into two balanced parts

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- O Step: 2 cases
- \bigcirc case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz
 - $|y|, |z| < |x| \Rightarrow S \vdash_G^* y$ and $S \vdash_G^* z$
 - derivation for x: $S \vdash_G^1 SS \vdash_G^* yS \vdash_G^* yz = x$
- case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$

- \bigcirc Start: $x = \varepsilon \Rightarrow S \vdash x$ by production $S \rightarrow \varepsilon$
- Hypothesis: if x balanced with $|x| = n \in \mathbb{N}$ for n arbitrary but fixed then x is producible by G_P
- O Step: 2 cases
- case 1: $\exists y, z \in \Sigma^+$: y, z balanced and x = yz
 - $|y|, |z| < |x| \Rightarrow S \vdash_G^* y$ and $S \vdash_G^* z$
 - derivation for x: $S \vdash_G^1 SS \vdash_G^* yS \vdash_G^* yz = x$
- case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is *z* balanced?

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is *z* balanced?

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is *z* balanced?

$$|z|_{(}=|x|_{(}-1=|x|_{)}-1=|z|_{)} \Rightarrow 1.$$

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is z balanced?
 - $|z|_{(} = |x|_{(} 1 = |x|_{)} 1 = |z|_{)} \Rightarrow 1.$
 - $u \in \operatorname{Pref}(z), x \text{ balanced} \Rightarrow |u|_{(-|u|_{)}} = |(u|_{(-1-|u|_{)}} \ge 0$

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is *z* balanced?

$$|z|_{(} = |x|_{(} - 1 = |x|_{)} - 1 = |z|_{)} \Rightarrow 1.$$

∘
$$u \in \text{Pref}(z)$$
, $x \text{ balanced} \Rightarrow |u|_{(-u|_{0})} = |(u|_{(-1-u|_{0})}) \ge 0$

 $\circ \Rightarrow z$ balanced

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - is *z* balanced?

$$|z|_{(}=|x|_{(}-1=|x|_{)}-1=|z|_{)}\Rightarrow 1.$$

∘
$$u \in \text{Pref}(z)$$
, $x \text{ balanced} \Rightarrow |u|_{(-u|_{0})} = |(u|_{(-1-u|_{0})}) \ge 0$

$$\circ \Rightarrow z$$
 balanced

$$\circ \Rightarrow S \vdash_G^* z$$

- Ind. Step, case 2: *x* not splittable into two balanced parts
 - first rule is the first $\Rightarrow x = (z) \Rightarrow |z| < |x|$
 - o is z balanced?

$$|z|_{0} = |x|_{0} - 1 = |x|_{0} - 1 = |z|_{0} \Rightarrow 1.$$

∘
$$u \in \text{Pref}(z)$$
, $x \text{ balanced} \Rightarrow |u|_{(-|u|_{)}} = |(u|_{(-1 - |u|_{)}}) \ge 0$

$$\circ \Rightarrow z$$
 balanced

$$\circ \Rightarrow S \vdash_C^* z$$

$$\begin{array}{c} \circ \ \, \Longrightarrow S \vdash_G^* z \\ \circ \ \, \Longrightarrow S \vdash_G^1 (S) \vdash_G^* (z) = x \end{array}$$

Normal Forms

Why normal forms?

- general grammar: everything is allowed
- \bigcirc \Rightarrow complicated to reason with it
- ofirst restriction: context-freedom
 - rule depends on one variable
 - rule does not depend on the variable's neighbours
- O the right-hand side may be as insane as we can imagine
 - $\circ A \rightarrow B \text{ and } B \rightarrow A$
 - \circ $A \rightarrow \varepsilon$

Chomsky and Greibach Normalform

Definition (Chomsky Normalform)

G context-free grammar; *G* in CNF iff $P \subseteq (V \times V^2) \cup (V \times \Sigma)$.

Chomsky and Greibach Normalform

Definition (Chomsky Normalform)

G context-free grammar; *G* in CNF iff $P \subseteq (V \times V^2) \cup (V \times \Sigma)$.

Definition (Greibach Normalform)

G context-free grammar; *G* in GNF iff $P \subseteq V \times \Sigma V^*$

Chomsky and Greibach Normalform

Definition (Chomsky Normalform)

G context-free grammar; *G* in CNF iff $P \subseteq (V \times V^2) \cup (V \times \Sigma)$.

Definition (Greibach Normalform)

G context-free grammar; *G* in GNF iff $P \subseteq V \times \Sigma V^*$

Notice: ε is not producible in CNF or GNF

What do we want?

we would like to work and prove with CFG in CNF or GNF, i.e. we'd like to have

Theorem

For all CFG G exists CNF G' and GNF G" with

$$L(G'')=L(G')=L(G)\backslash \{\varepsilon\}.$$

What do we want?

we would like to work and prove with CFG in CNF or GNF, i.e. we'd like to have

Theorem

For all CFG G exists CNF G' and GNF G" with

$$L(G'') = L(G') = L(G) \backslash \{\varepsilon\}.$$

○ can we prove that?

What do we want?

we would like to work and prove with CFG in CNF or GNF, i.e. we'd like to have

Theorem

For all CFG G exists CNF G' and GNF G" with

$$L(G'') = L(G') = L(G) \setminus \{\varepsilon\}.$$

- can we prove that?
- \bigcirc hope: in NFA the ε -transitions were not needed

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

$$\bigcirc \hat{P} := P$$

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

- $\bigcirc \hat{P} := P$
- while changes

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

- $\bigcirc \hat{P} := P$
- while changes
 - $\bullet \ A \to \alpha B\beta \in \hat{P} \land B \to \varepsilon \in \hat{P} \Rightarrow A \to \alpha\beta \in \hat{P}$

Getting rid of ε

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

Construction of *G*′:

- $\bigcirc \hat{P} := P$
- while changes
 - $\bullet \ A \to \alpha B\beta \in \hat{P} \land B \to \varepsilon \in \hat{P} \Rightarrow A \to \alpha\beta \in \hat{P}$
 - $\bullet \ A \to B \in \hat{P} \land B \to \gamma \in \hat{P} \Rightarrow A \to \gamma \in \hat{P}$

Getting rid of ε

Lemma

For all CFG G exists CFG G' without ε -production or unitproduction such that $L(G') = L(G) \setminus \{\varepsilon\}$.

Construction of *G*′:

- $\bigcirc \hat{P} := P$
- while changes
 - $\bullet \ A \to \alpha B\beta \in \hat{P} \land B \to \varepsilon \in \hat{P} \Rightarrow A \to \alpha\beta \in \hat{P}$
 - $\bullet \ A \to B \in \hat{P} \land B \to \gamma \in \hat{P} \Rightarrow A \to \gamma \in \hat{P}$
- \bigcirc for P' delete all ε -productions and unit-productions from \widehat{P}

Constructing a CNF

G context-free grammar without ε -productions or unit-productions

- 1. replace all $a \in \Sigma$ on right-hand sides by new variable A_a and introduce $A_a \to a$
- 2. for all $A \to B_1 \dots B_k$ introduce $A \to B_1 C$ and $C \to B_2 \dots B_k$ for fresh variable C

G grammar in CNF (for convenience)

G grammar in CNF (for convenience)

Definition

 $\bigcirc \alpha \rightarrow_G^L \beta$ leftmost derivation: derive β from α by always replacing the left-most variable

G grammar in CNF (for convenience)

- $\bigcirc \alpha \rightarrow_G^L \beta$ leftmost derivation: derive β from α by always replacing the left-most variable
- $\bigcirc R_{A,a} = \{ \beta \in N^* | A \to_G^L a\beta \} \text{ (regular over } N \text{)}$

G grammar in CNF (for convenience)

- $\bigcirc \alpha \rightarrow_G^L \beta$ leftmost derivation: derive β from α by always replacing the left-most variable
- $\bigcirc R_{A,a} = \{\beta \in N^* | A \to_G^L a\beta\} \text{ (regular over } N)$
- \bigcirc $G_{A,a}$ grammar with $L(G_{A,a}) = R_{A,a}$

G grammar in CNF (for convenience)

- $\bigcirc \alpha \rightarrow_G^L \beta$ leftmost derivation: derive β from α by always replacing the left-most variable
- $\bigcirc R_{A,a} = \{\beta \in N^* | A \to_G^L a\beta\} \text{ (regular over } N)$
- \bigcirc $G_{A,a}$ grammar with $L(G_{A,a}) = R_{A,a}$
- \bigcirc w.l.o.g. $T_{A,a}$ start symbol of $G_{A,a}$

G grammar in CNF (for convenience)

- $\bigcirc \alpha \rightarrow_G^L \beta$ leftmost derivation: derive β from α by always replacing the left-most variable
- $\bigcirc R_{A,a} = \{\beta \in N^* | A \to_G^L a\beta\} \text{ (regular over } N)$
- \bigcirc $G_{A,a}$ grammar with $L(G_{A,a}) = R_{A,a}$
- \bigcirc w.l.o.g. $T_{A,a}$ start symbol of $G_{A,a}$
- \bigcirc w.l.o.g. variables of $G_{A,a}$ and G disjoint (renaming)

Properties

- \bigcirc $G_{A,a}$ strongly right-linear, i.e. all productions of form
 - $X \to BY$ for X, Y non-terminals of $G_{A,a}, B \in N$
 - $\circ X \to \varepsilon$

Constructing G₁

- \bigcirc take all non-terminals and productions from $G_{A,a}$ and G
- \bigcirc *S* start symbol of G_1
- $\bigcirc \Rightarrow$ production in G_1 of form
 - $\circ X \to b$
 - $\circ X \to \varepsilon$
 - \circ $X \rightarrow BY$

Constructing G₂

 \bigcirc replace every $X \to BY$ by $X \to bT_{B,b}Y$

Constructing G₂

 \bigcirc replace every $X \to BY$ by $X \to bT_{B,b}Y$

Constructing G₃

 \odot get rid of arepsilon-transitions by known mechanism

Correctness of Construction

Lemma

 $\forall X \in N \forall x \in \Sigma^* : (X \to_{G_1}^* x \Leftrightarrow X \to_{G_2}^* x)$

Correctness of Construction

<u>Lemma</u>

$$\forall X \in N \forall x \in \Sigma^* : (X \to_{G_1}^* x \Leftrightarrow X \to_{G_2}^* x)$$

Theorem

 G_3 is in GNF and $L(G_3) = L(G)$ holds.

Correctness of Construction

Lemma

$$\forall X \in N \forall x \in \Sigma^* : (X \to_{G_1}^* x \Leftrightarrow X \to_{G_2}^* x)$$

Theorem

 G_3 is in GNF and $L(G_3) = L(G)$ holds.

having in mind that ε is not producible we are able to use CNF in GNF or CNF whenever we want

PUSHDOWN AUTOMATA

How to transform Grammars in Automata?

 $\, \bigcirc \,$ let's try it with the idea of a memory

How to transform Grammars in Automata?

- let's try it with the idea of a memory
- everything as simple as possible:
 - Automaton: only reading from left to right
 - Memory: stack (last-in-first-out)

How to transform Grammars in Automata?

- O let's try it with the idea of a memory
- everything as simple as possible:
 - Automaton: only reading from left to right
 - Memory: stack (last-in-first-out)
- we have access to:
 - o 1 letter of the word
 - top element of the stack
 - o state the machine is in

$$\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F) \text{ PDA iff}$$

Definition

$$\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F) \text{ PDA iff}$$

 \bigcirc *Q* finite set of states, q_0 initial state

Definition

 $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ PDA iff

- \bigcirc *Q* finite set of states, q_0 initial state
- \bigcirc Σ input alphabet, Γ stack alphabet

Definition

 $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ PDA iff

- \bigcirc *Q* finite set of states, q_0 initial state
- \bigcirc Σ input alphabet, Γ stack alphabet
- ⊥ inital stack symbol

Definition

 $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ PDA iff

- \bigcirc *Q* finite set of states, q_0 initial state
- \bigcirc Σ input alphabet, Γ stack alphabet
- ⊥ inital stack symbol
- \bigcirc $F \subseteq Q$ final states

$$\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$
 PDA iff

- \bigcirc *Q* finite set of states, q_0 initial state
- \bigcirc Σ input alphabet, Γ stack alphabet
- ⊥ inital stack symbol
- \bigcirc $F \subseteq Q$ final states
- $\bigcirc \Delta \subseteq (Q \times \Sigma \cup \{\varepsilon\} \cup \Gamma) \times (Q \times \Gamma^*)$

Definition

$$\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$
 PDA iff

- \bigcirc *Q* finite set of states, q_0 initial state
- \bigcirc Σ input alphabet, Γ stack alphabet
- ⊥ inital stack symbol
- \bigcirc $F \subseteq Q$ final states
- $\bigcirc \ \Delta \subseteq (Q \times \Sigma \cup \{\varepsilon\} \cup \Gamma) \times (Q \times \Gamma^*)$

Notice: PDAs are non-deterministic!

Explanations

- \bigcirc $((p,a,\alpha),(q,\beta)) \in \Delta$:
 - I am in *p*,
 - I read *a*,
 - α is on the stack,
 - I go to *q*, and
 - \circ I write β on the stack

Configurations of a PDA

informal: what is the current state of the machine?

Configurations of a PDA

informal: what is the current state of the machine?

Definition

- \bigcirc start configuration (q_0, w, \bot)
- \bigcirc next configuration relation
 - 1 step: $\xrightarrow{1}$ defined by

$$\begin{split} ((p,a,\alpha),(q,\gamma)) \in \Delta \Longrightarrow \\ \forall y \in \Sigma^* \forall \beta \in \Gamma^* : (p,ay,\alpha\beta) \xrightarrow[\alpha]{1} (q,y,\gamma\beta) \end{split}$$

 $\bigcirc C \xrightarrow{n} D, C \xrightarrow{*} D$ as usual

What could it mean that PDA *accepts* word *w*?

What could it mean that PDA accepts word w?

○ PDA is in final state

What could it mean that PDA *accepts* word *w*?

- PDA is in final state
- stack is empty

Definition

 \mathcal{A} accepts w by final state: $\exists q \in F \exists \gamma \in \Gamma^* : (q_0, w, \bot) \xrightarrow{*}_{\mathcal{A}} (q, \varepsilon, \gamma)$

Definition

 $\mathcal A$ accepts w by final state: $\exists q \in F \exists \gamma \in \Gamma^*: (q_0, w, \bot) \stackrel{*}{\underset{\mathcal A}{\longrightarrow}} (q, \varepsilon, \gamma)$

Definition

 \mathcal{A} accepts w by empty stack: $\exists q \in Q : (q_0, w, \bot) \xrightarrow{*}_{\mathcal{A}} (q, \varepsilon, \varepsilon)$

Technical Remarks about PDAs

 \bigcirc determistic variant possible (see later)

Technical Remarks about PDAs

- determistic variant possible (see later)
- $\bigcirc\ \bot$ only for defining start configuration

Technical Remarks about PDAs

- determistic variant possible (see later)
- \bigcirc \bot only for defining start configuration
- PDA can be stuck, if stack symbol does not match any transition

Technical Remarks about PDAs

- determistic variant possible (see later)
- PDA can be stuck, if stack symbol does not match any transition
- the infinitly short time between popping and pushing does not count as empty stack

PDAs and CFGs

PDAs and CFGs

Did we do the right thing, i.e. do we have an automata-model being equivalent to context-free grammars?

PDAs and CFGs

Did we do the right thing, i.e. do we have an automata-model being equivalent to context-free grammars?

Let's try to prove it.

$CFG \rightarrow PDA$

Given: CFG $G = (V, \Sigma, P, S)$ w.l.o.g. in GNF

- PDA $\mathcal{A} = (\{q\}, \Sigma, V, \Delta, q, S, \emptyset)$ with acceptance by empty stack and
- $\bigcirc ((q, c, A), (q, B_1B_2 \dots B_k)) \in \Delta \text{ iff } A \rightarrow cB_1B_2 \dots B_k \text{ in } P$

$CFG \rightarrow PDA$

Given: CFG $G = (V, \Sigma, P, S)$ w.l.o.g. in GNF

- PDA $\mathcal{A} = (\{q\}, \Sigma, V, \Delta, q, S, \emptyset)$ with acceptance by empty stack and
- $\bigcirc ((q,c,A),(q,B_1B_2...B_k)) \in \Delta \text{ iff } A \to cB_1B_2...B_k \text{ in } P$

Plan: Prove that leftmost derivation corresponds to accepting computation in $\ensuremath{\mathcal{A}}$

Proof

Lemma

 $\forall z, y \in \Sigma^* \forall \gamma \in N^* \forall A \in N$:

$$A \xrightarrow[G,L]{n} z\gamma \Leftrightarrow (q,zy,A) \xrightarrow[sa]{n} (q,y,\gamma)$$

Proof

Lemma

 $\forall z, y \in \Sigma^* \forall \gamma \in N^* \forall A \in N$:

$$A \xrightarrow[G,L]{n} z\gamma \Leftrightarrow (q,zy,A) \xrightarrow[\mathcal{A}]{n} (q,y,\gamma)$$

Proof (induction on *n*):

$$\cap n = 0 \Rightarrow$$

$$A \xrightarrow{0}_{G} z\gamma \Leftrightarrow A = z\gamma \Leftrightarrow z = \varepsilon \wedge \gamma = A$$
$$\Leftrightarrow (q, zy, A) = (q, y, \gamma)$$
$$\Leftrightarrow (q, zy, A) \xrightarrow{0}_{\mathcal{A}} (q, y, \gamma)$$

$$\bigcirc A \xrightarrow{n+1} z\gamma$$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- \bigcirc assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- \bigcirc left-most derivation \Rightarrow before B only $u \in \Sigma^*$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- \bigcirc left-most derivation \Rightarrow before B only $u \in \Sigma^*$

$$\bigcirc \Rightarrow A \xrightarrow{n} uB\alpha \xrightarrow{1} uc\beta\alpha = z\gamma \Rightarrow z = uc, \gamma = \beta\alpha$$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- \bigcirc left-most derivation \Rightarrow before B only $u \in \Sigma^*$
- $\bigcirc \Rightarrow A \xrightarrow{n} uB\alpha \xrightarrow{1} uc\beta\alpha = z\gamma \Rightarrow z = uc, \gamma = \beta\alpha$
- $\bigcirc \text{ IH} \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha)$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- left-most derivation \Rightarrow before B only $u \in \Sigma^*$

$$\bigcirc \Rightarrow A \xrightarrow{n} uB\alpha \xrightarrow{1} uc\beta\alpha = z\gamma \Rightarrow z = uc, \gamma = \beta\alpha$$

- $\bigcirc \text{ IH} \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha)$
- definition of $\mathcal{A} \Rightarrow ((q, c, B), (q, \beta)) \in \Delta$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- left-most derivation \Rightarrow before B only $u \in \Sigma^*$

$$\bigcirc \Rightarrow A \xrightarrow{n} uB\alpha \xrightarrow{1} uc\beta\alpha = z\gamma \Rightarrow z = uc, \gamma = \beta\alpha$$

$$\bigcirc \text{ IH} \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha)$$

○ definition of
$$\mathcal{A} \Rightarrow ((q, c, B), (q, \beta)) \in \Delta$$

$$\bigcirc \Rightarrow (q, cy, B\alpha) \xrightarrow{1} (q, y, \beta\alpha)$$

- $\bigcirc A \xrightarrow{n+1} z\gamma$
- assume: $B \to c\beta$ was last production applied $(c \in \Sigma \cup \{\varepsilon\}, \beta \in V^*)$
- \bigcirc left-most derivation \Rightarrow before B only $u \in \Sigma^*$

$$\bigcirc \Rightarrow A \xrightarrow[G,L]{n} uB\alpha \xrightarrow[G,L]{1} uc\beta\alpha = z\gamma \Rightarrow z = uc, \gamma = \beta\alpha$$

$$\bigcirc \text{ IH} \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha)$$

○ definition of
$$\mathcal{A} \Rightarrow ((q, c, B), (q, \beta)) \in \Delta$$

$$\bigcirc \Rightarrow (q,cy,B\alpha) \xrightarrow[\mathcal{A}]{1} (q,y,\beta\alpha)$$

$$\bigcirc \Rightarrow (q,zy,A) = (q,ucy,A) \xrightarrow[sq]{n+1} (q,y,\beta\alpha) = (q,y,\gamma)$$

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

Proof: Induction Step, \Leftarrow

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

○ assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken

- $\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$
- assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken
- $\bigcirc \Rightarrow z = uc, u \in \Sigma^*, \gamma = \beta\alpha, \alpha \in \Gamma^*$

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

- assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken
- $\bigcirc \Rightarrow z = uc, u \in \Sigma^*, \gamma = \beta\alpha, \alpha \in \Gamma^*$
- $\bigcirc \Rightarrow (q,ucy,A) \xrightarrow{n} (q,cy,B\alpha) \xrightarrow{1} (q,y,\beta\alpha)$

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

- assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken
- $\bigcirc \Rightarrow z = uc, u \in \Sigma^*, \gamma = \beta\alpha, \alpha \in \Gamma^*$
- $\bigcirc \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha) \xrightarrow{1} (q, y, \beta\alpha)$
- \bigcirc IH $\Rightarrow A \xrightarrow{n} uB\alpha$

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

- assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken
- $\bigcirc \Rightarrow z = uc, u \in \Sigma^*, \gamma = \beta\alpha, \alpha \in \Gamma^*$
- $\bigcirc \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha) \xrightarrow{1} (q, y, \beta\alpha)$
- \bigcirc IH $\Rightarrow A \xrightarrow{n} uB\alpha$
- \bigcirc $B \rightarrow c\beta$ production in G

$$\bigcirc (q, zy, A) \xrightarrow{n+1} (q, y, \gamma)$$

- assume $((q, c, B), (q, \beta)) \in \Delta$ last transition taken
- $\bigcirc \Rightarrow z = uc, u \in \Sigma^*, \gamma = \beta\alpha, \alpha \in \Gamma^*$
- $\bigcirc \Rightarrow (q, ucy, A) \xrightarrow{n} (q, cy, B\alpha) \xrightarrow{1} (q, y, \beta\alpha)$
- \bigcirc IH $\Rightarrow A \xrightarrow{n} uB\alpha$
- \bigcirc $B \rightarrow c\beta$ production in G
- $\bigcirc \Rightarrow A \xrightarrow{n} uB\alpha \xrightarrow{1} uc\beta\alpha = z\gamma$

Proof: last step

Thus we proved

Theorem

$$L(\mathcal{A}) = L(G)$$

SIMULATING PDAS BY CFGS

Idea of the Construction

Two steps:

Idea of the Construction

Two steps:

1. every PDA can be simutated by PDA with one state

Idea of the Construction

Two steps:

- 1. every PDA can be simutated by PDA with one state
- 2. every PDA with one state is equivalent to CFG

○ Construction from CFG→PDA is invertible:

○ Construction from CFG→PDA is invertible:

• given
$$\mathcal{A} = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \emptyset)$$

- Construction from CFG→PDA is invertible:
 - given $\mathcal{A} = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \emptyset)$
 - set $G = (\Gamma, \Sigma, P, \bot)$ where P contains production

- Construction from CFG→PDA is invertible:
 - given $\mathcal{A} = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \emptyset)$
 - set $G = (\Gamma, \Sigma, P, \bot)$ where P contains production
 - $A \rightarrow cB_1 \dots B_k$ for all $((q, c, A), (q, B_1 \dots B_k)) \in \Delta$

- Construction from CFG→PDA is invertible:
 - given $\mathcal{A} = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \emptyset)$
 - set $G = (\Gamma, \Sigma, P, \bot)$ where P contains production
 - ∘ $A \rightarrow cB_1 \dots B_k$ for all $((q, c, A), (q, B_1 \dots B_k)) \in \Delta$
- Proof is analogous

 $Idea: \ keep \ some \ state-information \ on \ the \ stack$

Idea: keep some state-information on the stack

$$\bigcirc$$
 w.l.o.g. $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, \{q_f\})$

Idea: keep some state-information on the stack

$$\bigcirc$$
 w.l.o.g. $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, \{q_f\})$

$$\bigcirc \ \Gamma' := Q \times \Gamma \times Q$$

Idea: keep some state-information on the stack

$$\bigcirc$$
 w.l.o.g. $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, \{q_f\})$

$$\bigcirc \Gamma' := Q \times \Gamma \times Q$$

$$\bigcirc \ \mathcal{A}' = (\{q\}, \Sigma, \Gamma', \Delta', q, (q_0, \bot, t), \emptyset)$$

ad Step (1): Defining Δ'

$$((p_1, c, A), (p_2, \varepsilon)) \in \Delta \Rightarrow$$
$$((q, c, (p_1, A, p_2)), (q, \varepsilon)) \in \Delta'.$$

ad Step (1): Defining Δ'

$$\bigcirc \ ((p_1,c,A),(p_2,\varepsilon))\in \Delta \Rightarrow$$

$$((q,c,(p_1,A,p_2)),(q,\varepsilon))\in\Delta'.$$

$$\bigcirc ((p_1, c, A), (p_2, B_1 \dots B_k)) \in \Delta \Rightarrow$$

$$((q, c, (p_1, A, q_{k+1})), (q, (q_1, B_1, q_2) \dots (q_k B_k q_{k+1}))) \in \Delta'$$

ad Step (1): Defining Δ'

$$\bigcirc \ ((p_1,c,A),(p_2,\varepsilon)) \in \Delta \Longrightarrow$$

$$((q,c,(p_1,A,p_2)),(q,\varepsilon)) \in \Delta'.$$

$$\bigcirc ((p_1, c, A), (p_2, B_1 \dots B_k)) \in \Delta \Rightarrow$$
$$((q, c, (p_1, A, q_{k+1})), (q, (q_1, B_1, q_2) \dots (q_k B_k q_{k+1}))) \in \Delta'$$

Intuition: \mathcal{A}' simulates \mathcal{A} by guessing in what state \mathcal{A} will be and saving those guesses on the stack

Lemma

$$(p_1, x, B_1 \dots B_k) \xrightarrow{n} (p_2, \varepsilon, \varepsilon) \Leftrightarrow$$

$$\exists q_1, \dots, q_k : p_1 = q_1, p_2 = q_k \land$$

$$(q, x, (q_1, B_1, q_2) \dots (q_k, B_k, q_k)) \xrightarrow{n} (q, \varepsilon, \varepsilon)$$

Theorem

 $L(\mathcal{A}') = L(\mathcal{A})$

Theorem

$$L(\mathcal{A}') = L(\mathcal{A})$$

Proof: $\forall x \in \Sigma^*$:

$$x \in L(\mathcal{A}') \Leftrightarrow (q, x, (q_0, \bot, q_f)) \xrightarrow{n} (q, \varepsilon, \varepsilon)$$
$$\Leftrightarrow (q_0, x, \bot) \xrightarrow{*}_{\mathcal{A}} (q_f, \varepsilon, \varepsilon)$$
$$\Leftrightarrow x \in L(\mathcal{A})$$

DETERMINISTIC PUSHDOWN AU-

TOMATA

Deterministic Pushdown Automata

Definition

 $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, q_0, F)$ DPDA iff

- $\bigcirc Q, \Sigma, \Gamma, \bot, q_0, F$ as in PDA
- ¬ right endmarker (end of the word)
- $\bigcirc \ \delta: Q \times (\Sigma \cup \{\exists, \varepsilon\}) \times \Gamma \to Q \times \Gamma^*$
- $\, \bigcirc \,$ acceptance only by final state

Configuration, Acceptance by DPDA

Definition

- start configuration: $(q_0, x \dashv, \bot)$
- \bigcirc \mathscr{A} accepts $x: (q_0, x \dashv, \bot) \xrightarrow{*}_{\mathscr{A}} (q_f, \varepsilon, \beta)$
- O language deterministic context-free: accepted by DPDA

Lemma

If L is a deterministic context-free language, then $\Sigma^* \backslash L$ is as well.

Lemma

If L is a deterministic context-free language, then $\Sigma^* \backslash L$ is as well.

Lemma

If L is a deterministic context-free language, then $\Sigma^* \backslash L$ is as well.

Proof:

○ A DPDA for L

Lemma

If L is a deterministic context-free language, then $\Sigma^* \backslash L$ is as well.

- A DPDA for L
- \bigcirc we have to construct \mathscr{A}' for $\Sigma^* \setminus L$

Lemma

If L *is a deterministic context-free language, then* $\Sigma^* \backslash L$ *is as well.*

- A DPDA for L
- \bigcirc we have to construct \mathcal{A}' for $\Sigma^* \setminus L$
- \bigcirc problem: switching *F* and *Q**F* is not possible

Lemma

If L *is a deterministic context-free language, then* $\Sigma^* \setminus L$ *is as well.*

- A DPDA for L
- \bigcirc we have to construct \mathcal{A}' for $\Sigma^* \setminus L$
- \bigcirc problem: switching *F* and *Q**F* is not possible
 - DPDAs have to scan the complete input

Lemma

If L *is a deterministic context-free language, then* $\Sigma^* \backslash L$ *is as well.*

- A DPDA for L
- \bigcirc we have to construct \mathcal{A}' for $\Sigma^* \setminus L$
- \bigcirc problem: switching *F* and *Q**F* is not possible
 - DPDAs have to scan the complete input
 - \Rightarrow may loop infinitely on not accepted inputs

$$\bigcirc$$
 $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- o new transitions:

•
$$\delta(p', a, A) = (q', \beta)$$
 for $\delta(p, a, A) = (q, \beta)$

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- new transitions:
 - $\delta(p', a, A) = (q', \beta)$ for $\delta(p, a, A) = (q, \beta)$
 - replace $\delta(p, \dashv, A) = (q, \beta)$ by $\delta(p, \dashv, A) = (q', \beta)$

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- o new transitions:
 - $\delta(p', a, A) = (q', \beta)$ for $\delta(p, a, A) = (q, \beta)$
 - replace $\delta(p, \dashv, A) = (q, \beta)$ by $\delta(p, \dashv, A) = (q', \beta)$
- O we switch to the primed version if we saw the endmarker

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- o new transitions:
 - $\delta(p', a, A) = (q', \beta)$ for $\delta(p, a, A) = (q, \beta)$
 - replace $\delta(p, A, A) = (q, \beta)$ by $\delta(p, A, A) = (q', \beta)$
- O we switch to the primed version if we saw the endmarker
- $\bigcirc \ F' = \{q' | \ q \in F\}$

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- o new transitions:
 - $\delta(p', a, A) = (q', \beta)$ for $\delta(p, a, A) = (q, \beta)$
 - replace $\delta(p, A, A) = (q, \beta)$ by $\delta(p, A, A) = (q', \beta)$
- O we switch to the primed version if we saw the endmarker
- $\bigcirc F' = \{q' | q \in F\}$
- $\bigcirc \mathcal{A}' = (Q \cup Q', \Sigma, \Gamma, \delta', \bot, \dashv, q_0, F')$

- \bigcirc $Q' = \{q' | q \in Q\}$ (disjoint duplication of Q)
- o new transitions:
 - $\delta(p', a, A) = (q', \beta)$ for $\delta(p, a, A) = (q, \beta)$
 - replace $\delta(p, A, A) = (q, \beta)$ by $\delta(p, A, A) = (q', \beta)$
- O we switch to the primed version if we saw the endmarker
- $\bigcirc \ F' = \{q' | \ q \in F\}$
- $\bigcirc \ \mathcal{A}' = (Q \cup Q', \Sigma, \Gamma, \delta', \bot, \dashv, q_0, F')$
- $\bigcirc L(\mathcal{A}') = \Sigma^* \backslash L$ and \mathcal{A}' is DPDA

Stopping the machine:

Stopping the machine:

 $\, \bigcirc \,$ we are only in primed states if we saw \dashv

Stopping the machine:

- we are only in primed states if we saw ¬
- $\bigcirc \ \Rightarrow$ we can rest in a final state and stop doing funny things

Stopping the machine:

- we are only in primed states if we saw +
- \bigcirc \Rightarrow we can rest in a final state and stop doing funny things
- redefine $\delta(p', \varepsilon, A) = (p', A)$ if the image was (q', β) for $p' \in F'$

- new states
 - $r \in Q' \backslash F'$: move to the end, don't change the stack

- new states
 - $r \in Q' \backslash F'$: move to the end, don't change the stack
 - $r' \in Q' \backslash F'$: reject

new states

- $r \in Q' \backslash F'$: move to the end, don't change the stack
- $r' \in Q' \backslash F'$: reject
- $\delta(r, a, A) = (r, A)$ for $a \in \Sigma, A \in \Gamma$

new states

- $r \in Q' \backslash F'$: move to the end, don't change the stack
- $r' \in Q' \backslash F'$: reject
- $\delta(r, a, A) = (r, A)$ for $a \in \Sigma, A \in \Gamma$
- $\delta(r, \vdash, A) = (r', A)$ for $A \in \Gamma$

new states

- $r \in Q' \backslash F'$: move to the end, don't change the stack
- $r' \in Q' \backslash F'$: reject
- $\delta(r, a, A) = (r, A)$ for $a \in \Sigma, A \in \Gamma$
- δ(r, ⊢, A) = (r', A)for A ∈ Γ
- $\delta(r', \varepsilon, A) = (r', A)$ for $A \in \Gamma$

Proof: Getting rid of Spurious Loops

- new states
 - $r \in Q' \backslash F'$: move to the end, don't change the stack
 - $r' \in Q' \backslash F'$: reject
 - $\delta(r, a, A) = (r, A)$ for $a \in \Sigma, A \in \Gamma$
 - $\delta(r, \vdash, A) = (r', A)$ for $A \in \Gamma$
 - $\delta(r', \varepsilon, A) = (r', A)$ for $A \in \Gamma$
- \bigcirc replace $\delta(p, \varepsilon, A) = (q, \beta)$ by $\delta(p, \varepsilon, A) = (r, A)$

Proof: Getting rid of Spurious Loops

- new states
 - $r \in Q' \backslash F'$: move to the end, don't change the stack
 - $r' \in Q' \backslash F'$: reject
 - $\delta(r, a, A) = (r, A)$ for $a \in \Sigma, A \in \Gamma$
 - $\delta(r, \vdash, A) = (r', A)$ for $A \in \Gamma$
 - $\delta(r', \varepsilon, A) = (r', A)$ for $A \in \Gamma$
- \bigcirc replace $\delta(p, \varepsilon, A) = (q, \beta)$ by $\delta(p, \varepsilon, A) = (r, A)$
- \bigcirc replace $\delta(p', \varepsilon, A) = (q, \beta)$ by $\delta(p, \varepsilon, A) = (r', A)$

DPDA - (N)PDA

 $\, \bigcirc \,$ DFAs and NFAs are equivalent, have the same power

DPDA - (N)PDA

- O DFAs and NFAs are equivalent, have the same power
- does this hold for pushdown automata as well?

Theorem

There exists languages recognizable by a PDA but not by a DPDA.

Theorem

There exists languages recognizable by a PDA but not by a DPDA.

Proof:

Theorem

There exists languages recognizable by a PDA but not by a DPDA.

Proof:

 \bigcirc $L = \{ww | w \in \Sigma^*\}$ not context-free.

Theorem

There exists languages recognizable by a PDA but not by a DPDA.

Proof:

- \bigcirc $L = \{ww | w \in \Sigma^*\}$ not context-free.
- $\bigcirc \overline{L} = \Sigma^* \backslash L$ context-free

Theorem

There exists languages recognizable by a PDA but not by a DPDA.

Proof:

- \bigcirc $L = \{ww | w \in \Sigma^*\}$ not context-free.
- $\bigcirc \overline{L} = \Sigma^* \backslash L$ context-free
- \bigcirc DPDA closed under complement \Rightarrow *L* recognizable by DPDA \Rightarrow Contradiction

THE COCKE-YOUNGER-KASAMI ALGORITHM

Membership-Problem

Definition

Given a language L over Σ^* and a word $w \in \Sigma^*$, decide whether $w \in L$ or not.

Membership-Problem

Definition

Given a language L over Σ^* and a word $w \in \Sigma^*$, decide whether $w \in L$ or not.

- problem is in general hard to solve
- we can't build all paths in an automaton or all derivations in a grammar

Given context-free grammar *G* (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

Given context-free grammar G (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

Given context-free grammar G (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

Given context-free grammar *G* (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

$$w \langle i, j \rangle = w[i+1...j]$$

$$(aabbab \langle 1, 4 \rangle = aabbab[2, ..., 4] = abb)$$

$$\bigcirc T_{ij} \subseteq V$$
 generating $w \langle i, j \rangle$

Given context-free grammar *G* (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

Some Preliminaries:

$$w \langle i, j \rangle = w[i+1...j]$$

$$(aabbab \langle 1, 4 \rangle = aabbab[2, ..., 4] = abb)$$

 $\bigcirc T_{ij} \subseteq V$ generating $w \langle i, j \rangle$

•
$$A \rightarrow a \in P \Rightarrow aabbab \langle 0, 1 \rangle$$
, $aabbab \langle 1, 2 \rangle$, $aabbab \langle 4, 5 \rangle$ producible $\Rightarrow T_{01} = T_{12} = T_{45} = \{A\}$

Given context-free grammar *G* (w.l.o.g. in CNF) the CYK-algorithm decides *efficiently* whether a word is producible or not.

$$w \langle i, j \rangle = w[i+1...j]$$

$$(aabbab \langle 1, 4 \rangle = aabbab[2, ..., 4] = abb)$$

- $\bigcirc T_{ij} \subseteq V$ generating $w \langle i, j \rangle$
 - o $A \rightarrow a \in P \Rightarrow aabbab \langle 0, 1 \rangle$, $aabbab \langle 1, 2 \rangle$, $aabbab \langle 4, 5 \rangle$ producible $\Rightarrow T_{01} = T_{12} = T_{45} = \{A\}$
- by this we get easily all factors of length 1

 \bigcirc consider w's factors of length 2

- consider *w*'s factors of length 2
- $\bigcirc w[i \dots i+1] = w[i]w[i+1] = w\langle i-1,i \rangle w\langle i,i+1 \rangle$

- consider *w*'s factors of length 2
- $\bigcirc w[i \dots i+1] = w[i]w[i+1] = w\langle i-1, i \rangle w\langle i, i+1 \rangle$
- look-up productions for $w \langle i-1, i \rangle$ and $w \langle i, i+1 \rangle$ in $T_{i-1,i}$ resp. $T_{i,i+1}$

- consider w's factors of length 2
- $\bigcirc w[i \dots i+1] = w[i]w[i+1] = w\langle i-1,i \rangle w\langle i,i+1 \rangle$
- look-up productions for $w \langle i-1,i \rangle$ and $w \langle i,i+1 \rangle$ in $T_{i-1,i}$ resp. $T_{i,i+1}$
- for all $X \in T_{i-1,i}$ and for all $Y \in T_{i,i+1}$ check if there is a production with right-hand side XY

- \bigcirc consider w's factors of length 2
- $\bigcirc w[i \dots i+1] = w[i]w[i+1] = w\langle i-1,i \rangle w\langle i,i+1 \rangle$
- look-up productions for $w \langle i-1, i \rangle$ and $w \langle i, i+1 \rangle$ in $T_{i-1,i}$ resp. $T_{i,i+1}$
- for all $X \in T_{i-1,i}$ and for all $Y \in T_{i,i+1}$ check if there is a production with right-hand side XY
- \bigcirc update $T_{i-1,i+1}$ by the corresponding left-hand side

in general:

 \bigcirc given a factor x of w of length k

- \bigcirc given a factor x of w of length k
- \bigcirc decompose x into two parts in all possible ways

- \bigcirc given a factor x of w of length k
- \bigcirc decompose x into two parts in all possible ways
- lookup the corresponding sets and see if a combination gives the right-hand side of a production

- \bigcirc given a factor x of w of length k
- \bigcirc decompose x into two parts in all possible ways
- lookup the corresponding sets and see if a combination gives the right-hand side of a production
- \bigcirc if so, take the left-hand side into the set corresponding to x

- \bigcirc given a factor x of w of length k
- \bigcirc decompose x into two parts in all possible ways
- lookup the corresponding sets and see if a combination gives the right-hand side of a production
- \bigcirc if so, take the left-hand side into the set corresponding to *x*
- \bigcirc if *S* is in $T_{0,n}$ for |w| = n then $w \in L$

CFLs are closed under

union

CFLs are closed under

- union
- concatenation

CFLs are closed under

- union
- concatenation
- star

CFLs are closed under

- union
- concatenation
- star

CFLs are not closed under intersection!

 But... the intersection of a regular language and a contex-free one is context-free

DCFLs are closed under intersection.

DCFLs are closed under intersection.

DCFLs are not closed under

union

DCFLs are closed under intersection.

DCFLs are not closed under

- union
- reversal

THE CHOMSKY-SCHÜTZENBERGER THEOREM

The Language $PAREN_n$

Definition

 $PAREN_n$ (Dyck language) is generated by the grammar

$$S \to [{}_1S]_1| \dots |[{}_nS]_n|SS|\varepsilon$$

(*n* different kinds of parenthesis)

The Chomsky-Schützenberger-Theorem

Theorem (Chomsky-Schützenberger)

For every CFL A there exists an $n \in \mathbb{N}_0$, a regular language R, and a homomorphism h with

$$\mathcal{A} = h(\text{PAREN}_n \cap R).$$

