

Exercise 10A

Question 7:

Given: ABCD is a quadrilateral and BD is one of

its diagonals.

AL_BD and CM_BD

To Prove: area (quad. ABCD)

$$= \frac{1}{2} \times BD \times (AL + CM)$$

Proof:

Area of \triangle BAD = $\frac{1}{2} \times BD \times AL$

Area of \triangle CBD = $\frac{1}{2} \times BD \times CM$

: Area of quard. ABCD = Area of \triangle ABD + Area of \triangle CBD

$$= \frac{1}{2} \times BD \times AL + \frac{1}{2} \times BD \times CM$$

: Area of quard. ABCD = $\frac{1}{2} \times BD[AL + CM]$

Question 8:

Area of
$$\triangle BAD = \frac{1}{2} \times BD \times AL$$

$$= \left(\frac{1}{2} \times 14 \times 8\right) \text{ cm}^2 = 56 \text{ cm}^2$$
Area of $\triangle CBD = \frac{1}{2} \times BD \times CM$

$$= \left(\frac{1}{2} \times 14 \times 6\right) \text{ cm}^2 = 42 \text{ cm}^2$$

$$\therefore$$
 area of quad. ABCD = Area of \triangle ABD + Area of \triangle CBD = $(56+42)$ cm² = 98 cm²

****** END ******