

PT-MESS: a Problem-Transformation approach for Multi-Event Survival analySis

Michela Venturini^{1,2}, **Felipe Kenji Nakano**^{1,2}, and Celine Vens^{1,2}

Michela.venturini@kuleuven.be

1 KU Leuven, Campus KULAK, Department of Public Health and Primary Care, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

2 Itec, imec research group at KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

- Survival analysis
- PT-MESS
- Experiments
- Conclusions

- Survival analysis
- PT-MESS
- Experiments
- Conclusions

Survival analysis (SA)

- The value of interest is time to (one or multiple) event
- Part of the population does not experience the event during follow up
 - Right censoring:
 - have not (yet) experienced the relevant outcome
 - are lost to follow-up during the study period

Censoring as data scarcity

Patient	Х	T (days)	δ	
1	0.5	10	1	
2	4.0	6	0	
3	1.2	15	1	
4	2.6	17	0	

The patient does experience the event during follow-up after ten days

The patient is lost to follow-up after 17 days:

- The patient might experience the event after the follow-up
- The patient might never experience the event

Multi-event survival analysis

- Existing standard approaches mainly deal with specific settings namely (semi-) competing risk or repeated events
 - Assumptions regarding order and exclusivity of events
 - Competing: Time to death due to cardiac arrest or cancer
 - Semi-competing: Diagnose of ICU-AW, diagnose of sepsis or death
 - Repeated: Time to (re)admission to ICU

- Survival analysis
- PT-MESS
- Experiments
- Conclusions

PT-MESS

- Encode multi-event SA as a multi-target regression task
 - Multi-target regression: regression with several targets
- Transform the typical SA outcome (time information + censoring into a single continuous value)
 - Take into account censored observations
 - Take into account survival distribution of the population in the encoding

Survival curve estimate

- We base our approach on the use of the Kaplan-Meier estimate of the survival curve per each event
- Probability of not having experienced the event of interest k up to the time t
 - d = number of events k at t
 - r = number of patients at risk of event k
 - at time t

$$\hat{S}_k(t) = \prod_{j:t_i < t} (1 - \frac{d_k^{(j)}}{r_k^{(j)}})$$

PT-MESS encoding

• Given observation i with time to event k (or censoring) encoded as o_k we define the following quantity:

$$\frac{\int_{t=0}^{o_k^{(i)}} \hat{s}_k}{\int_{t=0}^{\inf} \hat{s}_k} \xrightarrow{\text{Restricted mean survival time, restricted to time } o_k}$$

$$\frac{\int_{t=0}^{inf} \hat{s}_k}{\int_{t=0}^{inf} \hat{s}_k} \xrightarrow{\text{Expected time-to-event } k}$$
for the entire population

- It expresses how early the observation i experience the event k (or is censored) w.r.t. the population distribution
 - Takes into account the censoring distribution

PT-MESS encoding cont'd

Multi-event SA

Patient	Х	o ₁	δ1	o ₂	$\boldsymbol{\delta}_2$
1	0.5	10	1	6	0
2	4.0	6	0	3	0
3	1.2	15	1	10	1
4	2.6	17	0	5	0
	•••	•••	•••	•••	•••

Multi-target regression

Patient	Х	E ₁	E_2
1	0.5	0.6	0.6
2	4.0	0.3	0.3
3	1.2	0.8	1
4	2.6	1	0.5
•••		•••	•••

- Survival analysis
- PT-MESS
- Experiments
- Conclusions

Comparison methods

- Random Survival Forest-independent (RSFi)
- Inverse Probability of Censoring Weighting-independent (IPCWi)
 - Converts to binary classification
 - Removes censored data
- PT-MESS-independent (PT-MESSi)
 - Random Forest Regressor variance as heuristic
- PT-MESS
 - Multi-target Random Forest Regressor

Datasets

Dataset (Setting)	Features	Instances	Events	Event (censoring rate)
MIMIC (S)	13801	3822	3	1 (.87), 2 (.91), and 3 (.92)
ADNI (S)	1917	1024	2	1 (0.82) and 2 (0.99)
CIBMTR (S)	9651	30	2	1 (0.82) and 2 (0.62)
ScrData (S)	2000	4	2	1 (0.34) and 2 (0.50)
Synthetic (I)	5000	15	2	1 (0.70) and 2 (0.71)

Characteristics of the datasets employed where semi-competing datasets are represented using (S) and independent as (I). The terminal event in each dataset highlighted in bold.

Evaluation metric

- Harrell's concordance index (C-index)
 - Most used metric in SA
 - Estimates how well the predicted score ranks observations according to their true time-to-event
 - i,l = 1, ..., N pair of observations in the sample
 - r_irisk score, t_i observed time-to-event

$$C = \frac{\sum_{i,l} I(T_i > T_l) \times I(r_l > r_i) \times \Delta_l}{\sum_{i,l} (T_i > T_l) \times \Delta_l}$$

Results

Events time distribution

Events time distribution

- Survival analysis
- PT-MESS
- Experiments
- Conclusions

Conclusions & future work

- New problem transformation approach to address multi-event survival analysis, where data scarcity is present as right-censored outcomes
- Decent results, especially when events are correlated according to Kaplanmeier
- Future work
 - Mathematical formulation instead of visual cues
 - Hybrid approaches, where global and local methods may be used in cooperation

Questions?

