

שאלה 1: חישוב ביטויי למדא

חשבו את הביטויים הבאים עד כמה שניתן (אם יש גזירה אינסופית הסבירו במילים למה):

1.
$$(\lambda z. z) (\lambda y. y y) (\lambda x. x a) =$$

$$(\lambda y. y y) (\lambda x. x a) =$$

$$(\lambda x. x a) (\lambda x. x a) =$$

2.
$$(\lambda x. \ \lambda y. \ x \ y \ y) (\lambda a. \ a) b$$

$$\begin{array}{c} P \rightarrow (\lambda y (\lambda a.a) yy) b = \\ (\lambda a.a) bb = \end{array}$$

(4 (1

3.
$$(((\lambda x. \lambda y. (x y))(\lambda y. y))w) \approx$$

$$(((\lambda x. \lambda y. (xy))(\lambda t.t)) w =$$

$$\nabla \rightarrow (\lambda y. ((\lambda t. t) y) \underline{\omega} =$$

$$\beta \sim (\lambda t.t) \omega =$$

גיזרו את הביטוי בסעיף 4 פעם אחת בעזרת call-by-value ופעם שנייה בעזרת call-by-name . האם קיבלתם את אותה תוצאה?

4. $(\lambda x. y)((\lambda y. yyy)(\lambda x. x x x))$

CBN:

$$(X \times X \times X) ((X \times X)) ((X \times X)) =$$

$$(X \times X \times X) ((X \times X)) ((X$$

c Bv:

Tiety est. 96 Low neily 9 N.S (16.4 0,16.4 8220 p. 16.6.

००० हे प्रतिष्ठ अर अर्ट १ र्महाम.

נתונות ההגדרות הבאות (שחלקן ראינו בתרגול):

tru = $\lambda t. \lambda f.$ t fls = $\lambda t. \lambda f.$ f test = $\lambda l. \lambda m. \lambda n.$ l m nor = $\lambda b. \lambda c.$ b tru c

1. כתבו חישוב עם אסטרטגיית call-by-value לביטוי:

test (or tru fls) a b

מאשר a, b הם ערכים כלשהם.

מניין שאני מפטם הם אם כוצא בעם הפלח. הפניה:

or tru fls =

(\lambda b. \lambda c. \lambda truc) tru fls =

(\lambda b. \lambda c. \lambda truc) tru fls =

(\lambda b. \lambda c. \lambda truc) tru fls =

(\lambda b. \lambda c. \lambda truc fls =

(\lambda b. \lambda c. \lambda truc fls =

(\lambda t. \lambda F. t) tru ps = tru

Hs is Equ

Ooth ye pe

כלת נושה את ב הבלרי, מלבי הבלרי הפניעי שחישה כבי:

test (tru) a b = test ($\lambda 1$. λm . λn . 1 m n) tru a b =

 β $(\lambda 1. \lambda m. \lambda n. 1 m n) tru a b =$

٥٥ در دول عر دولها ع

.nand כתבו ביטוי בתחשיב למדא עבור 2. ω

NAND:= \b. \c. ([bc Hs] Ms tru)

19'9 89 est cel. 30-161:

NAND tru tru =

NAND $\frac{1}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ tru tru = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ tru tru = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru)$ = $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru = [f]s$ $\frac{\beta}{2}\lambda b. \lambda c. ([b c Hs]] Ms tru = [f]s$

```
NAND PLS PLS =

NAND PLS PLS =

NAND PLS PLS PLS PLS PLS PLS PLS =

\{\lambda b. \lambda c. ([bc] Hs] Ms tru) \} Ms PLS =

\{\lambda b. \lambda c. ([bc] Hs] Ms tru) \} Ms PLS =

\{\lambda b. \lambda c. ([bc] Hs] Ms tru) =

Plo ([\{\frac{1}{2}\lambda t. \lambda f. \rangle \frac{1}{2}\lambda tru} = \frac{1}{2}\lambda tru = \frac{1
```

NAND tru
$$Ms =$$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru)\}$ tru $Ms =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru)\}$ tru $Ms =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru)\}$ tru $Ms =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms tru) =$
 $\{\lambda b. \lambda c. ([b c Ms] Ms t$

NAND PHS tru =

NAND PHS tru =

NAND
$$\{\lambda b. \lambda c. ([b c Ms] Ms tru)\} Ms tru =$$
 $\{\beta \rightarrow \{\lambda b. \lambda c. ([b c Ms] Ms tru)\} Ms tru =$
 $\{\beta \rightarrow \{\lambda b. \lambda c. ([b c Ms] Ms tru)\} =$

Phs $\{\{\lambda b. \lambda f. f\} tru Ms] Ms tru =$
 $\{\{\lambda b. \lambda f. f\} tru Ms] Ms tru =$
 $\{\{\lambda b. \lambda f. f\} tru Ms] Ms tru =$
 $\{\{\lambda b. \lambda f. f\} tru =$
 $\{\{\lambda b. \lambda f. f\} Ms tru =$
 $\{\{\lambda b. \lambda f. f\} Ms tru =$

	1/200 -xc 200
	6/Am 2000 yn720
	Maind = 16-10-10-([bc fis] \$15 eva)
Mond -	hand tru fis eru) fru for
B -0	16. 1c. (Ib c fis] fis fru) fru for (tru fis fis] fis tru)
tru o	(I(Nb. Nc. b) F15 F153 F15 EV4)
B -0	(E+153 +15 tru)
fly to	([\lambda \lambda \lambda \c.
	hand tru fra
nand -	([try fry fis] fis try) try try ([try fry fis] fis try)
tru -s	(Ltru fru fis] fis tru) (L(Nb. Nc. b) tru fis] fis tru)
β ->	([tra] fis tra) ([x5. xc.b] fis tra)
P -P	\$15 +

בתרגול ראינו את ההגדרות הבאות למספרים טבעיים ופעולות אריתמטיות:

$$\begin{split} c_0 &= \lambda s. \, \lambda z. \quad z \\ c_1 &= \lambda s. \, \lambda z. \quad s \ z \\ c_2 &= \lambda s. \, \lambda z. \quad s \ (s \ z) \\ c_3 &= \lambda s. \, \lambda z. \quad s \ (s \ s \ z)) \\ \dots \\ succ &= \lambda n. \quad \lambda s. \quad \lambda z. \quad s \ (n \ s \ z) \\ plus &= \lambda m. \quad \lambda n. \quad \lambda s. \quad \lambda z. \quad m \ s \ (n \ s \ z) \\ times &= \lambda m. \, \lambda n. \quad m \ (plus \ n) \ c_0 \\ \text{iszero} &= \lambda m. \quad m \ (\lambda x. \ fls) \ tru \end{split}$$

 $?c_{_1}$ האם התוצאה היא succ $c_{_0}$ השבו את .1

Succ .)
$$(\lambda n.\lambda s.\lambda z.s(nsz))(\lambda s.\lambda z.z) =$$

$$\beta \rightarrow (\lambda n.\lambda s.\lambda z.s(nsz))(\lambda s.\lambda z.z) =$$

$$(\lambda S. \lambda Z. S(\lambda S. \lambda Z. Z) S Z) =$$

०००० क्ष प्रथम अर १० ४६ १०४०म.

Succ .7
$$(\lambda n.\lambda s.\lambda z.s(nsz))(\lambda s.\lambda z.z) =$$

$$\beta \rightarrow (\lambda n.\lambda s.\lambda z.s(nsz))(\lambda s.\lambda z.z) =$$

$$(\lambda S. \lambda Z. S(\lambda S. \lambda Z. Z) S Z) =$$

אם P-reduction 86 פיל של נוסצים כלל מסילטטטים קרב ביינן בפיר שם אפטען ציון ביין בחישוב וכשל ויסצי.

०००० की पार्वमा अर १० ४७ १० १० १०

(3(3

3. הגדירות פונקציית isodd, שתקבל מספר טבעי כפי שקודדנו בהגדרת השאלה ותחזיר tru אם המספר הוא אי-זוגי ו-fls אם המספר זוגי.

isodd:= \n.n not Pls | bloom isodd No 7182)

Existance the orth iggs of ton 1-214 lines the existence of the class of the contract of the class of the contract of the cont

(4/3

.4 חשבו ע"י רדוקציית בטא את:

isodd 4 isodd 5

isodd u = (\lambda n. n not Ms) cu

Cy not $MS = \lambda S. \lambda Z. S(S(S(SZ)))$ not $MS = \lambda S. \lambda Z. S(S(S(SZ)))$

not (not (not (not Ms))) =

not (not (not (not Ms))) =

not (not (not (tru))) =

not (not (not (tru))) =

not (tru) =

MS

not tru =

(\lambda b. b Als tru) tru =

tru Als tru =

(\lambda t. \lambda f t) Als tru = fls

not Als =

(\lambda b. b Als tru) Als =

Als Als tru =

(\lambda t. \lambda f f) Als tru = tru

בכל אחת מהקביעות הבאות, קיבעו מהו הטיפוס של T כך שהקביעה מתקיימת. הוכיחו תוך שימוש בכללי הגזירה:

- 1. f:Bool → Bool ⊢ (f (if true then false else true)):T
- 2. $f:Bool \rightarrow Bool \vdash (\lambda x: Bool. f (if x then false else true)):T$
- 3. $\vdash (\lambda x: Bool. \ \lambda y: T. \ y \ x): Bool \rightarrow T \rightarrow Bool \rightarrow Bool$

שאלה 5: Simply Types Lambda Calculus

השלימו את החסר בהוכחה הבאה.

למת ההתקדמות

עבן או שהוא ערך או או משתנים חופשיים אז או שהוא ערך או די א מקיים ל געור איזשהו T, עבור איזשהו ל מקיים t אם t שיש s שיש s שיש

הוכחה

באינדוקציה על הגזירה של t: t: t: t: t: באינדוקציה על הגזירה של ביירה של

- 1. כלל T-TRUE: ראינו בכיתה, אין צורך לכתוב.
- 2. כלל T-FALSE: ראינו בכיתה, אין צורך לכתוב.
- 3. כלל T-VAR: ראינו בכיתה, אין צורך לכתוב.
- 4. כלל T-ABS: ראינו בכיתה, אין צורך לכתוב.
- 5. כלל T-APP: ראינו בכיתה, אין צורך לכתוב.
 - 6. כלל T-IF: השלימו.

