

Test Report

Electromagnetic Compatibility

Test Report - Nr.: 07KFE007857-T-FCC-01

Date: 2008-01-16

Type: JA-80PB

Description: Wireless PIR motion/glass-break detector

Serial number: 0704223-004

Manufacturer: Jablotron s.r.o.

Customer: Jablotron s.r.o.

Address (Customer): Pod Skalkou 33

CZ 646601 Jablonec nad Nisou

Czech Republic

Test Laboratory: Intertek Deutschland GmbH,

Innovapark 20, D- 87600 Kaufbeuren

Deutschlang

FCC registration number: 90714

Compiled by: Marek Svoboda

Technical Leader

Approved by: J. Lehmann

Project Engineer

This test report consists of 20 pages. All measurement results exclusively refer to the equipment, which was tested. Reproduction of this report except in its entirety is not permitted without written approval of Intertek Deutschland GmbH.

Table of Contents

1. G	eneral description	. 4
1.1.	Product description	. 4
1.2.	Related submittal(s) Grants	. 4
1.3.	Test Methodology	. 4
1.4.	Test Facility	. 5
1.5.	List of exhibits	. 5
2. M	easurements And Test Specifications	. 6
3. D	escription Of EUT	. 7
3.1.	Configuration / Operating Conditions	. 7
3.2.	Major Subassemblies Or Internal Peripherals	. 7
3.3.	Peripheral Devices Used For Testing	. 7
3.4.	Supply- And Interconnecting Cables	. 8
4. Te	est Results - Overview	. 8
5. M	easurement results detailed	. 9
5.1.	Duty cycle and Averaging factor	. 9
5.2.	Bandwidth	12
5 5	Radiated Emission 30 MHz – 10 GHz	13 14
6. Te	est setup Photo documentation	18
7. E	UT Photo documentation	20
8. Te	echnical specification	20

8.1.	Block Diagram Of The EUT	20
8.2.	Circuit Diagram Of The Layout	20
8.3.	Instruction manual	20
8.4.	Product Labelling	20

1. General description

1.1. Product description

The JA-80PB is a component of Jablotron's Oasis 80 alarm system. It consists of two independent detectors which occupy two separate enrollment addresses in the control panel. The motion detector uses a PIR sensor. The glass-break detector uses the analysis of air pressure variations combined with the characteristic sound of glass breaking. The product is designed for internal use in buildings. The battery-powered detector communicates via OASIS radio protocol.

Battery types:

PIR sensor, Transmitter Lithium battery type CR14505 (AA 3.0V) GBS sensor Lithium battery type CR14250SL (1/2AA 3.0V)

Antenna type: Monopole type, Internal, soldered on the PCB.

Under normal operating conditions (no alarm state) the device transmits 30 ms data pulse to control unit once in 540 s (9 minutes).

In alarm state the device will transmit 3 data pulses.

1.2. Related submittal(s) Grants

This is application for certification of the transmitter. No related devices are present.

1.3. Test Methodology

The test setup and test was done according to: ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
The test setup and test was done according to: CISPR 22: 1998 + Corrigendum: 2003 + A1: 2000 + A2: 2003 and ANSI C63.4: 2003 Compliance with CISPR 22 is being used to demonstrate conformity with FCC DoC requirements. This conforms with FCC Part 15.109(g).

The test results detailed in this report apply only to the JA-80P with the test setup described. Any modification such as a change, addition to or inclusion of another device into this product will require an additional evaluation.

The support equipment listed as part of the emission tests is required to properly exercise and test the device under test.

1.4. Test Facility

The test site was semi-anechoic chamber Intertek Germany (PM KF 1150). Measurement distance EUT – Antenna was d = 3 m.

1.5. List of exhibits

Following exhibits are delivered as separate pdf files. The name of file corresponds with description of exhibit with extension **.pdf**

EXHIBIT 1	Test setup photo documentation
EXHIBIT 2	External Photos
EXHIBIT 3	Internal Photos
EXHIBIT 4	Operational description
EXHIBIT 5	Block diagram
EXHIBIT 6	Circuit diagram
EXHIBIT 7	Instruction manual
EXHIBIT 8	Product label
EXHIBIT 9	Confidentiality request

2. <u>Measurements And Test Specifications</u>

Emission - Requirements according to

FCC, Part 15, Class A, verification
FCC, Part 15, Class B, DoC
FCC, Part 15, Class B, certification

FCC, Part 15, intentional radiator, certification

3. <u>Description Of EUT</u>

3.1. Configuration / Operating Conditions

The device is battery operated. Battery types:

PIR sensor, Transmitter Lithium battery type CR14505 (AA 3.0V) GBS sensor Lithium battery type CR14250SL (1/2AA 3.0V)

The batteries delivered by producer were new.

There were two samples of the device delivered:

Sample 1: was modified by manufacturer to transmit continuously. This sample was used for measurement of bandwidth and field strength;

Sample 2: has normal operation as specified by manufacturer. It was used for measurement of the duty cycle.

The equipment under test (EUT) is placed on wooden table 0,8 m above ground plane.

At all interference frequencies the height of the antenna is scanned in the range 1 m to 4 m with horizontal and vertical polarization and the turntable is rotated in the range 0° to 360° to obtain the highest field strength.

Measurements in frequency range 30 MHz – 3 GHz were performed with bilog antenna HL 562, measurements in frequency range 3 GHz – 10 GHz were performed with horn antenna HF 906 with preamplifier.

3.2. Major Subassemblies Or Internal Peripherals

Device	Manufacturer	Туре	SN	FCC ID
none				

3.3. Peripheral Devices Used For Testing

Device	Manufacturer	Туре	SN	FCC ID
none				

3.4.	3.4. Supply- And Interconnecting Cables				
Line		Length	shielded	non shielded	Shield on GND / PE
none					

4. Test Results - Overview

	required	passed	passed with modification	not passed
Bandwidth	< 2.17 MHz, 0.25 % f _{op}	\boxtimes		
Duty cycle	< 2 s in 1 hour			
Emission				
30 MHz - 3000 MHz	FCC 15.231			
3 GHz – 10 GHz	FCC 15.231			

5. Measurement results detailed

5.1. Duty cycle and Averaging factor

The averaging factor was measured by means of the measuring receiver/spectrum analyzer ESIB 26 in "Analyzer mode".

- Fig. 1 shows the length of single data pulse in 100 ms window.
- Fig. 2 demonstrates the duty cycle under normal operation in 600 s window system integrity check (1 pulse 30 ms).

Fig. 3 displays transmission after activating to alarm state (3 pulses each 30 ms).

Fig.1

15.JAN.2008 17:39:16

Date:

Date: 15.JAN.2008 18:08:48

Fig .2

Fig. 3

Total transmission time in period T = 100 ms is t = 31,06 ms.

The pulse is transmitted once in 541.47 s, that is once in 9.02 minutes

The Averaging factor is:

20* log (31,06/100) = -10,155 dB.

The measured peak values are to be reduced by averaging factor to obtain average values.

Transmission time in 1 hour period is: t = int(60/9.02) * 31,06 = 6 * 31,06 = 186,3 ms

5.2. Bandwidth

The measured 20 dB bandwidth is shown on Fig. 3

Fig .3

The BW is 99 kHz, operating frequency f = 868.5 MHz.

5.3. Radiated Emission 30 MHz - 10 GHz

Data was measured for worst case configuration which resulted in highest emission levels. A sample calculation, configuration photographs and data tables of emissions are included.

The detector used was PEAK.

5.3.1. Field strength calculation

The field strength is calculated by adding the reading on the measuring receiver to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitation and average factors (when the specified limit is related to average detector and measurements are made with peak detector.

A sample of calculation is included below:

$$E = RR + AF + CF - AG + PD + AV$$

Where

E field strength in dBμV/m

RR receiver reading including preamplifier in dBµV

CF cable attenuation factor in dB

AF antenna factor in dB/m

AG amplifier gain in dB

PD pulse desensitization in dB

AV average factor in dB

Example:

Asssume that measured values and factors are as follows:

```
RR = 60 \text{ dB}\mu\text{V}
```

CF = 1.2 dB

 $AF = 12.6 \, dB/m$

AG = 20 dB

PD = 0 dB

AV = -10 dB

Then

$$E = 60 + 1.2 + 12.6 - 20 + 0.10 = 43.8 \, dB\mu V/m$$

The radiated emission tables which follow the graphical presentation of results were created by the EMC 32 software by Rohde-Schwarz. The data of field strength (peak detector) include the components given above with the exception of PD and AV.

5.3.2. Normative references

Limits equivalent:	FCC, Part 15.231, Part 15.209 where		
	appropriate		
Methods of Measurement equivalent:	ANSI C63.4, CISPR 22		

Test requirement

Class	В
Distance Antenna – EUT	3 m
Frequency range	30 MHz - 10000 MHz

Place of measurement

\triangleright	Semi anechoic chambe	r Intertek Germany	PM KF 1150.
Г	Open Area Test Site		

Measurement devices

Measurement device	Manufacturer	Туре	SN	Asset No.	Last Calibr.at ion	Inter- val
□ Test receiver, 20Hz- 26GHz	ESIB26	Rohde & Schwarz	100150	PM KF 0948	07-03	1
Antenna, 30-3000 MHz	HL562	Rohde & Schwarz	100354	PM KF 1123	07-03	2
⊠ Horn antenna, 1-18 GHz	Rohde & Schwarz	HF906	100188	PM KF 0947	07-05	2
	Bonn	BLMA0118 -4A	35352	PM KF 0946	07-05	2

5.3.3.1 Radiated Emission 30 MHz – 3 GHz

5.3.3.2 Radiated Emission 3 GHz – 10 GHz

5.3.3.3 Radiated Emission: table 30 MHz - 10 GHz

Measurements based on a measurement time of 10 ms unless otherwise noted. Measurement bandwidth is 120 kHz bellow 1 MHz, and 1 MHz above 1000 MHz.

Frequency	MaxPeak E	Averaging factor	Average value E	Limit Average	Margin average	Limit peak	Margin peak
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dB)
868,48	84,8	-10,15	74,65	82	-7,35	102	-17,2
1737,2	45,3	-10,15	35,15	62	-26,85	82	-36,7
2605,5	52,9	-10,15	42,75	62	-19,25	82	-29,1
3474,1	47,5	-10,15	37,35	62	-24,65	82	-34,5
*)4342,6	40,5	-10,15	30,35	53,9	-23,55	73,9	-33,4
5210,7	47,9	-10,15	37,75	62	-24,25	82	-34,1
6079,2	41,9	-10,15	31,75	62	-30,25	82	-40,1
6947,7	41,5	-10,15	31,35	62	-30,65	82	-40,5
7816,2	44,3	-10,15	34,15	62	-27,85	82	-37,7

^{*)} Frequencies governed by 15.209

6. Test setup Photo documentation

EXHIBIT 1

Fig. 1 Front view

Fig. 2 Rear view

7. EUT Photo documentation

External Photos : EXHIBIT 2 Internal Photos : EXHIBIT 3

8. Technical specification

Operational description: EXHIBIT 4

8.1. Block Diagram Of The EUT

EXHIBIT 5

8.2. Circuit Diagram Of The Layout

EXHIBIT 6

8.3. <u>Instruction manual</u>

EXHIBIT 7

8.4. Product Labelling

EXHIBIT 8