Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[3]\{8\}(7)}$

Correct

- $a^{[3]\{7\}(8)}$
- $a^{[8]\{7\}(3)}$
- $a^{[8]\{3\}(7)}$

1/1 points

2

Which of these statements about mini-batch gradient descent do you agree with?

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, Optimization algorithms algorithm processes all mini-batches at the 10/10 points (100%) same time (vectorization). Quiz, 10 questions Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent. Correct points 3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between? If the mini-batch size is 1, you end up having to process the entire training set before making any progress. **Un-selected** is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than minibatch gradient descent. **Un-selected** is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

10/10 points (100%)

Quiz, 10 questions

Correct

1/1 points

4.

Suppose your learning algorithm's cost ${\cal J}$, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

- Whether you're using batch gradient descent or minibatch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Quiz, 10 questions

- Whether you're using batch gradient descent or minibatch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0 = 0$, $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igotimes v_2 = 7.5$$
 , $v_2^{corrected} = 10$

Correct

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 10$

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 7.5$

$$igcup v_2 = 7.5$$
 ,

Optimization algorithms $v_2^{corrected} = 7.5$

10/10 points (100%)

Quiz, 10 questions

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

- $\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$
- $lpha=e^tlpha_0$

Correct

- $lpha=0.95^tlpha_0$
- $lpha = rac{1}{1+2*t}\,lpha_0$

1/1 points 7.

You use an exponentially weighted average on the London Optimization algorithms to track the

10/10 points (100%)

Quiz, 10 questions

temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

igspace Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a Optimization algorithms.

10/10 points (100%)

Quiz, 10 questions

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1/1 points

3.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

Optimization	on alg	(1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (large β)	10/10 points (100%)
		(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent	
	~	1/1 points	
	excessi small v Which	se batch gradient descent in a deep network is taking ively long to find a value of the parameters that achieves value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$ of the following techniques could help find parameter that attain a small value for \mathcal{J} ? (Check all that apply)	
	Corre	Try tuning the learning rate $lpha$	
	Corre	Try using Adam	
	Corre	Try better random initialization for the weights	
	Corre	Try mini-batch gradient descent	

	Try initializing all the weights to zer	c
		_

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

~	1 / 1 points			
10. Which	of the following statements about Adam is False?			
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.			
	Adam should be used with batch gradient computations, not with mini-batches.			
Correct				
	Adam combines the advantages of RMSProp and momentum			
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, ,)			

