Классификация композиций по музыкальным инструментам

Николай Стулов

МФТИ

6 марта 2017 г.

Содержание

- 📵 Цели и задачи
- 2 Используемые методы
- Используемые признаки
 - MonoLoader, ZeroCrossingRate, Energy
 - Spectrum, Windowing
 - Centroid, CentralMoments
 - MFCC
- Практический эксперимент
 - Предварительная работа с данными
 - Оценка качества

- LogisticRegression
- RandomForest
- Multi-label RandomForest
- XGBoost
- Тестирование
- Выводы и результаты
- Приложение
 - Об алгоритмах
 - Preprocessing
 - LogisticRegression
 - RandomForest
 - XGBoost
 - Список источников

Цели и задачи

- Цель работы построить эффективную модель распознавания музыкальных инструментов, работая с различными признаками и алгоритмами.
- Почему машинное обучение? Объем данных велик, при том, что их структура в пространстве признаков не очевидна.
- Прикладное применение распознавание голоса.

Используемые методы

- Данные IRMAS (Dataset for Instrument Recognition in Musical Audio Signals)
- Язык Python
- Библиотеки Essentia, scikit-learn и XGBoost

Используемые признаки,

MonoLoader, ZeroCrossingRate, Energy

[0.04724265	0.05383465	0.06166265	0.06964324	0.07571642	0.07896665
0.07866146	0.0746025	0.06825465	0.06016725	0.05041658	0.04054384
0.03155614	0.02429273	0.01892148	0.01399274	0.00967437	0.00633259
0.00274667	-0.00027467	-0.00282296	-0.0069277	-0.0117954	-0.01745659
-0.02659688	-0.03881954	-0.05377362	-0.07271035	-0.09361553	-0.11378826
-0.13139744	-0.14300974	-0.14664143	-0.14194158	-0.12822351	-0.10718101
-0.08163701	-0.0535905	-0.02644429	-0.00265511	0.01777703	0.0339671
0.0450911	0.05165258	0.05334635	0.05020295	0.04330577	0.03323466
0.02064577	0.00622578	-0.00973541	-0.02624592	-0.04161199	-0.05482651
-0.06537065	-0.0728019	-0.07673879	-0.07710502	-0.07438887	-0.06953642
-0.06346324	-0.05742057	-0.05323954	-0.05223243	-0.05421613	-0.05882443
-0.06640828	-0.07599109	-0.08606219	-0.09677419	-0.10805078	-0.11893064
-0.12929167	-0.138493	-0.14406262	-0.14291817	-0.13235877	-0.11197241
-0.08478042	-0.05439924	-0.02433851	0.0013123	0.02064577	0.03411969
0.04177984	0.0446791	0.04486221	0.04289377	0.03904843	0.03456221
0.03035066	0.02804651	0.02949614	0.03460799	0.0426954	0.05327006
0.06483657	0.0757622	0.08479568	0.09091464	l	

Рис. 1: Представление после открытия wav-файла экстрактором MonoLoader

Рис. 2: Графическая интерпретация массива выше

Используемые признаки

Spectrum, Windowing

Рис. 3: Окно Хэмминга и его спектральное разложение

$$w(n) = \frac{25}{46} - \frac{21}{46} \cos\left(\frac{2\pi n}{N-1}\right) \approx 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$$

Используемые признаки

Centroid, CentralMoments

• Спектральный центроид — «центр масс» спектра (здесь x(n) — средняя амплитуда, а f(n) — главная частота):

$$C = \frac{\sum_{n=1}^{N-1} f(n)x(n)}{\sum_{n=1}^{N-1} x(n)}$$

• *п*-ый центральный момент — статистическая характеристика:

$$\mu_n = \mathbb{E}[(X - \mathbb{E}(X))^n] = \int_{-\infty}^{\infty} x^n f(x) dx$$

Используемые признаки Mel-frequency Cepstrum Coefficients

Рис. 4: Шкала частот Мела

Практический эксперимент

Рис. 5: Двумерные срезы в пространстве признаков

Оценка качества

Точность (accuracy):

$$accuracy = \frac{\sum\limits_{k=1}^{n} [a(x_k) = y_k]}{n}$$

• Кросс-энтропия (logloss):

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log p_{ij}$$

Практический эксперимент

LogisticRegression

LogisticRegression

ullet Параметры: lpha=0.6

• Точность: 0.665

Кросс-энтропия: 0.834

Практический эксперимент

RandomForest

RandomForest

- Параметры: 43 дерева, максимальная глубина 12, не более 3 объектов в листьях
- Точность: 0.765
- Кросс-энтропия: 0.625

Практический эксперимент Multilabel RandomForest

В процессе разработки был опробован подход с множеством ответов на основании One-Vs-Rest RandomForest со следующими результатами:

- Точность (строгая): 0.668
- Точность (толерантная): 0.846

Анализ результатов показал, что в большинстве случаев алгоритм предсказывает ровно одну метку в ответе, поэтому был сделан вывод о том, что гипотеза не верна.

Практический эксперимент XGBoost

XGBoost.

• Параметры: 40 деревьев, максимальная глубина 15

• Точность: 0.787

Кросс-энтропия: 0.531

Практический эксперимент

Тестирование

Истинные метки

- Фортепиано + труба (0 и 2)
- Фортепиано (0)
- Электрогитара (-)
- Фортепиано + труба (0 и 2)
- Фортепиано + скрипка (0 и 1)

Предсказанные метки

- [1, 1, 1, 1, 1]
- [2, 2, 1, 2, 1]
- [1, 1, 1, 1, 1]
- [0, 2, 2, 2, 2]
- [1, 0, 0, 2, 1]

Выводы и результаты

- Проведена работа с различными признаками, характеризующими временной ряд
- Обучены три высокоуровневых алгоритма и проведен сравнительный анализ их качества
- Получено качество, более чем вдвое превышающее случайный выбор класса
- Проверена гипотеза о затененности одних инструментов другими

Об алгоритмах

Preprocessing

- Масштабирование данных влияет на качество некоторых алгоритмов. Выполнено вычитанием среднего по столбцу и делением на стандартное отклонение
- Стратификация отложенной выборки гарантия того, что в отложенной выборке в равной степени присутствуют все классы

Об алгоритмах

LogisticRegression

В случае многоклассовой классификации функция распределения и оптимизируемый функционал принимают следующий вид

$$h_w = softmax = \frac{1}{\sum\limits_{k=1}^{m} \exp\left(-w_k^T x\right)}$$

$$L(x, y, w) = -\sum_{i=1}^{n} \sum_{k=1}^{m} \left[\left[y_i = k \right] \log \frac{\exp \left(w_k^T x_i \right)}{\sum\limits_{j=1}^{m} \exp \left(-w_j^T x_i \right)} \right] + \alpha \sum_{k=1}^{n} \left| w_k \right|$$

Об алгоритмах

RandomForest

Композиция алгоритмов, обучение независимо, базовый алгоритм — решающее дерево. Ответ берется как среднее ответов базовых алгоритмов. Для хорошей работы необходима независимость обучения базовых алгоритмов.

Об алгоритмах ^{XGBoost}

Композиция алгоритмов, обучение последовательное. Каждый следующий базовый алгоритм пытается приблизить результат предыдущего к верному ответу.

$$s = \left(-\frac{\partial L}{\partial z}|_{z=a_{N-1}(x_i)}\right)_{i=1}^{\ell}$$

$$b_N(x) = \underset{b}{\operatorname{argmin}} \sum_{i=1}^{\ell} (b(x_i) - s_i)^2$$

Список источников

- [1] «A Large Set of Audio Features for Sound Description», Geoffroy Peeters, 2004
- [2] MTG Workshops
- [3] Essentia Algorithms Reference
- [4] Coursera.org
- [5] Machinelearning.ru
- [6] Wikipedia.org