Homework 6

MAS4301

Carson Mulvey

- **NB 6.1** (c) For $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, there is only one element of order 2, namely (2,0). However, D, D', H, V, and R_{180} are all elements of order 2 in D_4 . The number of elements of any particular order is preserved by all isomorphisms, so D_4 cannot be isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_2$.
 - (d) In the case of p = 2, we know that D_4 has order $p^3 = 8$, but D_4 is clearly not abelian (for instance, $R_{90}H \neq HR_{90}$).
 - **9.6** Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL(2, \mathbb{R})$ and $B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, with $a, b, d \in \mathbb{R}$ and $ad \neq 0$, be an element of H. By the 2x2 matrix inversion formula, we have $A^{-1} = \frac{1}{0-1} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then

$$ABA^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & d \\ a & b \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} d & 0 \\ b & a \end{bmatrix},$$

but when $b \neq 0$, we see that $ABA^{-1} \notin H$. Thus it is *false* that $AHA^{-1} \subseteq H$ for all $A \in GL(2,\mathbb{R})$, so H is *not* a normal subgroup of $A \in GL(2,\mathbb{R})$.

9.12 Let G be an abelian group, and H be a normal subgroup of G. Let x and y be elements of G/H. We know that x = aH and y = bH for some $a, b \in G$. Then

$$xy = (aH)(bH)$$

 $= abH$
 $= baH$ (since G is abelian)
 $= (bH)(aH)$
 $= yx$,

so G/H is clearly also abelian.

- **9.14** $14 + \langle 8 \rangle$ has order 4.
- **9.18** $\mathbb{Z}_{60}/\langle 15 \rangle$ has order 15.
- **9.34** Since 5 and 7 are relatively prime, we know that there exists integers s and t such that 5s+7t=1. Let s and t be as such. Then for any $n \in \mathbb{Z}$, we have

$$n \cdot 1 = n(5s + 7t)$$
$$= 5ns + 7nt.$$

Moreover, $5ns \in H$ and $7nt \in K$, so $n = 5ns + 7nt \in HK$. Thus $\mathbb{Z} \subseteq HK$. Also, $HK \subseteq \mathbb{Z}$ is clear, since an element in HK is the sum of two integers. Thus $\mathbb{Z} = HK$.

Also, since \mathbb{Z} is abelian, H and K are normal subgroups. Additionally, $H \cap K = \{0\}$. Thus, by definition, $Z = H \times K$.