

Instituto Superior Técnico LEEC Sinais e Sistemas

Relatório Laboratório Sinais e Sistemas

Aluno: Henrique Machado 103202 Aluno: Miguel Neves 103462

> Janeiro 2023

Conteúdo

1	Sinais Sinusoidais	1
2	Notas Musicais	1
3	Impulso e Degrau Unitários	1
4	Sistemas	3
5	Série de Fourier	5
6	Resposta em Frequência	6
7	Filtragem	7
8	Amostragem	8

1 Sinais Sinusoidais

- Q1: As sinusoidais com frequência mais altas correspondem aos sons mais graves, inversamente, as sinusoidais com frequência mais baixa correspondem aos sons mais graves.
- Q2: A frequência minima que nós conseguimos ouvir foi 55hz e a frequência máxima que conseguimos ouvir foi 18000hz.

2 Notas Musicais

• Q3:

 Mi_4 : 329.63hz

 $Fá_4^{\#}: 370.00hz$

 Sol_4 : 392.00hz

 Si_4 : 493.89hz

Dó₅: 554.37hz

3 Impulso e Degrau Unitários

• Q4: Com base na definição de degrau unitário, u(at+b) pode ser escrito como $u(\pm t-t_0)$ uma vez que: $t_0=\frac{b}{|a|}$, onde temos que

$$\begin{cases} a > 0, & t > 0 \\ a < 0, & t < 0 \end{cases}$$

Caso a < 0, verifica-se uma inversão no tempo do gráfico de u(t).

• Q5:
$$\delta(at) = \frac{1}{\Delta}[u(at) - u(at - \Delta)] \in \delta(at) = \lim_{\Delta \to 0} \delta_{\Delta}(at)$$
, com $a > 0$

Para $\delta(t)$

 $Para\delta(at)$

Área =
$$\frac{1}{\Delta} \times \Delta = 1$$

$$\text{Área} = \frac{1}{\Delta} \times \frac{\Delta}{a} = \frac{1}{a}$$

Logo, $\delta(at) = \frac{1}{a}\delta(t)$, com a > 0.

• Q6: Não se verifica nenhuma mudança no gráfico de $\delta(at)$ em relação ao gráfico de $\delta(t)$. No entanto, pelo que foi concluído previamente, o que deveria acontecer seria uma redução da área do impulso devido ao produto pelo termo $\frac{1}{a}$ (sendo a>1) transformação esta que não é visível no visor.

Sistemas 4

• Q7: O sistema apresentado é linear:

$$x_1(t) \to y_1(t) = x_1(t) + 0.5x_1(t - 0.25)$$

$$x_2(t) \to y_2(t) = x_2(t) + 0.5x_2(t - 0.25)$$

$$x_3(t) \to \text{Combinação linear de } x_1(t) \text{ e } x_2(t) : x_3(t) = ax_1(t) + bx_2(t)$$

$$y_3(t) = x_3(t) + 0.5x_3(t + 0.25)$$

$$= ax_1(t) + bx_2(t) + 0.5(ax_1(t - 0.25) + bx_2(t - 0.25))$$

$$= ax_1(t) + bx_2(t) + 0.5ax_1(t - 0.25) + 0.5bx_2(t - 0.25)$$

$$= a(x_1(t) + 0.5x_1(t - 0.25)) + b(x_2(t) + 0.5x_2(t - 0.25))$$

$$= ay_1(t) + by_2(t) \to \text{é linear.}$$
 E é invariante no tempo:

$$y_1(t) = x_1(t) + 0.5x_1(t - 0.25)$$

$$x_2(t) = x_1(t - t_0) \rightarrow y_2(t) = x_2(t) + 0.5x_2(t - 0.25)$$

$$= x_1(t - t_0) + 0.5x_1(t - t_0 - 0.25)$$

$$y_1(t - t_0) = x_1(t - t_0) + 0.5x_1(t - t_0 - 0.25)$$

$$\log y_2(t) = y_1(t - t_0) \rightarrow \text{\'e invariante no tempo.}$$

• Q8: Resposta do sistema ao impulso unitário: $\delta(t)y(t) = \delta(t) + 0.5\delta(t - t)$ 0.25)

• Q9: O sistema apresentado (y(t)) possui memória visto que não depende apenas do valor de x(t) mas sim de x(t) e de (t-0.25). Para além disso é um sistema causal uma vez que o seu output depende apenas dos valores do presente x(t) e do passado x(t-0.25). Em relação à sua estabilidade, pode-se afirmar que é um sistema estável, visto que não é possível encontrar nenhum input limitado que provocasse um output não limitado:

Sendo a, b números arbitrários que verificam as condições

$$\begin{cases} |x(t)| < a \\ |x(t - 0.25)| < b \end{cases}$$

Então: -a - 0.5b < y(t) < at + 0.5b, o que representa um output limitado.

- Q10: O efeito produzido pelo sistema é um eco (prolongamento do som).
- Q11: $x_2(t) = \cos(44t)$, que pode ser escrito como

$$x_{2}(t) = \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t}$$

$$y_{2}(t) = x_{2}(t) + 0.5x_{2}(t - 0.25) =$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{2}\left(\frac{1}{2}e^{j44t - 0.25} + \frac{1}{2}e^{-j44t + 0.25}\right)$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{4}e^{j44t - 11} + \frac{1}{4}e^{-j44t + 11}$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{4}e^{11}e^{j44t} + \frac{e^{11}}{4}e^{-j44t}$$

$$= \frac{2e^{11} + 1}{4e^{11}}e^{j44t} + \frac{2 + e^{11}}{4}e^{-j44t}$$

5 Série de Fourier

6 Resposta em Frequência

7 Filtragem

• **Q23**: Sendo que um filtro passa-baixo apenas deixa passar as frequências baixas e rejeita as frequências mais altas, logo este não reproduz bem as zonas de variação rápida do sinal *p*, mas reproduz bem as zonas de variação lenta.

Por sua vez o filtro passa-alto, como é o inverso do filtro passa-baixo, reproduz bem as zonas de variação rápida do sinal p, mas não reproduz bem as zonas de variação lenta.

8 Amostragem