ADL HW1 Report

B04705026 資管四 林彥廷

Q1: Data Usage

- 1. Tokenization
 - Spacy tokenizer.
 - To speed up the pipeline, except for tokenizer, all the other function (ner, dependency parsing, etc...) are disabled.
 - If a sentence is empty or all words are discarded by tokenizer, the sentence is padded with "OOV".
- 2. Number of negative samples
 - # Positive : # Negative = 1:4
- 3. Truncation length of the utterances and the options.
 - Max number of tokens in conversation: 300
 - Max number of tokens in options: 50
 - Utterances are all concatenated
 - Did **NOT** include speaker information.
 - If "max number of tokens" not exceeded or the <u>last</u> "max number of tokens" were taken.
- 4. Pre-trained embedding
 - <u>FastText</u> official <u>pre-trained word embedding</u> on <u>Common Crawl</u> with 2M word vectors and 300 dimension.

Q2: RNN w/o attention

- 1. RNN w/o Attention Model Design
 - Context and option passed through seperated rnn layers.
 - To product fixed length output of rnn, max pooling on last gru output along gru dimension is needed.
 - In my experiments, max pooling performed better than avg pooling on rnn at the cost of longer convergence time.
 - Last hidden state of rnn is concatenated to capture whole sentence information.

BS = Batch Size

ML = max length of contexts/options in mini-batch

E = Embedding Dimension (300 with fasttext embedding)

	Layer	Output Dimension			
Layer	Dimension	Context	Option	Dropout	Note
Input		BS x ML	BS x ML	х	Padded into fixed length
Embedding	300	BS x ML x E	BS x ML x E	0	Weight Freezed
Bi-GRU #1	256	BS x ML x 512	BS x ML x 512	0.2	Ignore hidden
Bi-GRU #2	256	BS x ML x 512	BS x ML x 512	0	
Max Pool		BS x 512	BS x 512	0	Pooling along GRU dimension
GRU #2 Hidden		BS x 512	BS x 512	0	Hidden state of last gru layer
Concat		BS x 1024	BS x 1024	0.2	Concat hidden and output after pooling
Bi-Linear	(1024, 1024)	BS x 1 (logit)		0	

2. Model Performance

Metrics \ Dataset	Training	Validation	Public LB	Private LB
Recall @ 10	1	0.3586	0.7233	0.74
Recall @ 5	1	0.3246	X	X
Recall @ 1	0.8159	0.2954	X	X
Loss (BCE)	0.2484	0.1464	Х	Х

3. Loss function

■ Binary Cross Entropy

4. Optimization Algorithm, learning rate, batch size

Optimiz er	Learning Rate		# Epoch converges to best val recall	Convergence time
Adam*	1e-3	100	5 epochs	~30min

^{*} all the other optimizer parameters were set as default. (without Amsgrad)

• Q3: RNN w/ Attention

1. RNN w/ Attention Model Design

Built upon rnn w/o attention with the following differences.

- Context and option passed through independent rnn layers.
- Attention mechanism was applied on the outputs of second rnn layer.
- Option-aware context and context-aware option went through the downstream rnn and bi-linear layers to calculate logits.
- Scaled Inner-product attention was adopt.

BS = Batch Size

ML = max length of contexts/options in mini-batch

E = Embedding Dimension (300 with fasttext embedding)

	Layer	Output Dimension				
Layer	Dimension	Context	Option	Dropout	Note	
Input		BS x ML	BS x ML	Х	Padded into fixed length	
Embedding	300	BS x ML x E	BS x ML x E	0	Weight Freezed	
Bi-GRU #1	256	BS x ML x 512	BS x ML x 512	0.2	Ignore hidden	
Bi-GRU #2	256	BS x ML x 512	BS x ML x 512	0.2		
Attention					Scaled inner product Both way were attended	
Bi-GRU #3	256	BS x ML x 512	BS x ML x 512	0		
Max Pool		BS x 512	BS x 512	0	Pooling along GRU dimension	
GRU #3 Hidden		BS x 512	BS x 512	0	Hidden state of last gru layer	
Concat		BS x 1024	BS x 1024	0.2	Concat hidden and output after pooling	
Bi-Linear	(1024, 1024)	BS x 1	BS x 1 (logit)			

2. Model Performance

Metrics \ Dataset	Training	Validation	Public LB	Private LB
Recall @ 10	1	0.4866	0.77	0.7833
Recall @ 5	1	0.4524	Х	Х
Recall @ 1	0.8556	0.4302	Х	Х
Loss (BCE)	0.2142	0.1234	Х	Х

3. Loss function

■ Binary Cross Entropy

4. Optimization Algorithm, learning rate, batch size

Optimiz er	Learning Rate		# Epoch converges to best val recall	Convergence time
Adam*	1e-3	128	5 epochs	~100min

^{*} all the other optimizer parameters were set as default. (without Amsgrad)

Q4: Best model

1. RNN w/ Attention Model Design

Built upon rnn w/ attention with the following differences.

- ONLY Option-aware context went through the downstream rnn and linear layers to calculate logits.
- <u>Tri-linear attention function</u> was adopt.

BS = Batch Size

ML = max length of contexts/options in mini-batch

E = Embedding Dimension (300 with fasttext embedding)

_	Layer	Output D	imension		
Layer	Dimension	Context	Option	Dropout	Note
Input		BS x ML	BS x ML	х	Padded into fixed length
Embedding	300	BS x ML x E	BS x ML x E	0	Weight Freezed
Bi-GRU #1	256	BS x ML x 512	BS x ML x 512	0.2	Ignore hidden
Bi-GRU #2	256	BS x ML x 512	BS x ML x 512	0.2	
Attention					Tri-linear attention
Bi-GRU #3	256	BS x ML x 512	Х	0	
Max Pool		BS x 512	Х	0	Pooling along GRU dimension
GRU #3 Hidden		BS x 512	Х	0	Hidden state of last gru layer
Concat		BS x 1024	Х	0.2	Concat hidden and output after pooling
Linear	(1024, 1)	BS x 1	(logit)	0	

2. Model Performance

Metrics \ Dataset	Training	Validation	Public LB	Private LB
Recall @ 10	1	0.4878	0.7933	0.8042
Recall @ 5	1	0.4572	Х	X
Recall @ 1	0.8544	0.4336	Х	X
Loss (BCE)	0.2138	0.1606	Х	Х

3. Loss function

■ Binary Cross Entropy

4. Optimization Algorithm, learning rate, batch size

Optimiz er	Learning Rate		# Epoch converges to best val recall	Convergence time
Adam*	1e-3	128	6 epochs	~120min

^{*} all the other optimizer parameters were set as default. (without Amsgrad)

5. Reason for Better Performance

Metric	Main	Recall @ 1	Recall @ 10		
Comparison	Difference	Training	Validation (relative)	Public LB	Private LB
w/o Attention		0.8159	0.3586	0.7233	0.74
w/ Attention	Attention	0.8556	0.4866 (+35%)	0.77	0.7833
Best	Tri-linear func.	0.8544	0.4878 (+0.24%)	0.7933	0.8042

w/ attention vs. w/o attention

Attention mechanism hugely improved model performance since attention function interacted between context and option to incorporate *bi-directional* information and attended to useful features.

Best vs. w/ attention

The main reason for improvement was better attention flow. Tri-linear attention function were first adopt in <u>Bi-Daf</u>, a question answering (<u>SQuAD 1</u>) model which was similar to our task (handing context and query relation).

Q5: Compare GRU and LSTM model

	Common Configuration						
Hard	ware	GPU		Nvidia Tesl	a P100		
		CUDA		10.0			
		CuDNN		7.4			
Trair	ning	Base Model		RNN w/o A	ttention		
		Batch Size		512			
		# RNN Layers		2			
		Positive: Nega	ative	1:4			
			Difference				
RNN	Memory	Training Inference		Recall@10			
Туре	Usage	Speed (sec/batch)	Speed (sec/batch)	Validation	Public LB	Private LB	
LSTM	11.2G	0.9708	2.86	0.3094	0.7133	0.6942	
GRU	16.6G	0.9900	2.33	0.3496	0.6933	0.7442	

1. Recall@10 score

Both model passed baseline score. GRU model outperformed LSTM model on validation set and private leaderboard. In my experience in HW1, GRU model usually **performed better** on validation set and **converged much faster** (2~3 epoch faster).

2. Required GPU Memory Usage

Surprisingly, GRU consumed more gpu memory even with less parameters!

I found an <u>issues</u> on Pytorch github regarding the same observation. It was not caused by bugs or memory leaks. Instead, <u>"GRU has to store 6"</u> values per input value for LSTM just 4 is enough" seemed to be an reasonable explanation supported by the fact that the memory usage ratio in our case was close to 6:4.

No significant difference on GPU utilization rate.

3. Training & Testing Speed

Both by a little margin, LSTM was faster on training and GRU was faster on inference.

Q6: Visualize the attention weights

1. Take one example in the validation set and visualize the attention weights (after softmax).

Applying softmax to attention weight matrix **row by row**. Padding token were discarded.

The figure is presented below.

Original figure was too long to fit, so only a little arrangement was made.

2. Describe your findings. (1%)

The option sentence is "Does it support postscript?".

The "Does", "it" and "?" are clearly *common stopwords* of <u>little value for semantics understanding</u>, and the **none of context tokens paid much attention to these common words**.

On the other hand, "support" and "postscript" are supportive keywords and are strongly attended by context tokens like "os", "oem", "error".

In sum, the attention model <u>did learn some critical relationship between keywords and even proprietaries</u> and pay less attention to the unrelated words and stopwords.

Q7: Compare training result with different settings

Base architecture is rnn w/attention with only one layer encoding rnn and no dropout.

- 1. different reasonable loss functions. (1%)
 - Cross entropy calculates loss with all samples logits, while binary cross entropy treats all samples independently.
 - Convergence time of BCE is shorter.

Loss \ Recall@10	Training (@1)	Validation	#Epoch converges
Binary Cross Entropy	0.7223	0.4302	2
Cross Entropy	0.5622	0.2284	3

- 2. different number of negative samples. (1%)
 - Larger number of negative samples linearly increase training time.
 - Higher positive sample ratio handle the *class imbalance problem* better

#Negative \ Recall@10	Training (@1)	Validation	Train Time /Epoch
4	0.7223	0.4302	22min
9	0.4478	0.4048	42min

- 3. different number of utterances in a dialog.
 - Training time increase linearly with number of tokens
 - About 80%+ context length are within 150 tokens.
 - Lower context length reduced noise and decrease training time and GPU memory usage.

Max Context Length \ Recall@10	Training (@1)	Validation	Train Time /Epoch
300	0.7223	0.4302	22min
150	0.7596	0.4448	14min