Exo01-Huile pour moteur.

Préparation à l'ECE

L'huile utilisée dans les moteurs de voitures permet de limiter les frottements entre les pièces.

Une des grandeurs caractéristiques d'une huile pour moteur est sa viscosité η.

Un groupe d'élèves dispose d'un bidon d'huile dont l'étiquette a été arrachée.

L'objectif de cet exercice est de déterminer la viscosité de l'huile contenue dans le bidon.

A Protocole de mesure de la viscosité

On filme la chute d'une bille de rayon R dans un tube vertical rempli de l'huile à analyser.

Les positions de la bille sont repérées sur un axe vertical (Oz) orienté vers le bas, muni d'un vecteur unitaire \vec{u} . L'intervalle de temps entre deux images consécutives est $\tau = 400$ ms.

B Résultats et données utiles

- Concernant la bille: rayon R = 2,00 cm; masse m = 35,5 g; volume V = 33,5 cm³.
- Concernant les forces :

Lors de sa chute dans l'huile, la bille est soumise à :

- la poussée d'Archimède $\vec{F}_p = -(\rho_{\text{huile}} \times V_{\text{bille}} \times g) \vec{u}$;
- la force de frottement $\vec{f} = -(6\pi \times \eta \times R \times v) \vec{u}$.

- Concernant l'huile :
- masse volumique $\rho = 920 \text{ kg} \cdot \text{m}^{-3}$;
- viscosité de quelques huiles témoins à 20 °C :

	Huile 1	Huile 2	Huile 3
η (Pa·s)	0,088	0,290	0,700

Donnée

Intensité de la pesanteur : $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

- **1.** APP Montrer que la bille atteint une vitesse de valeur constante v_{ℓ} .
- 2. RÉA Déterminer la valeur de cette vitesse v_é.
- 3. ANA-RAIS Par application de la deuxième loi de Newton, montrer que la viscosité de la bille s'exprime par la relation :

$$\eta = \frac{(m - \rho \times V) \times g}{6\pi \times R \times v_{\ell}}$$

4. VAL Identifier l'huile moteur étudiée.

Exo02

Une poulie

Un bloc de masse m=10,0 kg est posé sur un plan incliné d'angle $\alpha=20,0^\circ$ avec l'horizontale. Le bloc est tiré en ligne droite à l'aide d'un contrepoids par l'intermédiaire d'une poulie. Le bloc avance à vitesse constante de norme $v_0=0,20~\text{m}\cdot\text{s}^{-1}$.

On étudie le système {bloc} dans le référentiel terrestre supposé galiléen et on néglige toute action de l'air. On suppose que le bloc subit des frottements de norme constante de la part du plan incliné et que la tension du fil est une force constante de norme F = 100 N.

Bloc tiré par l'intermédiaire d'une poulie.

- 📵 Faire le bilan des forces s'appliquant sur le bloc.
- Sans souci d'échelle, représenter les forces s'appliquant sur le bloc, que l'on matérialisera par un point matériel.
- C En utilisant une des lois de Newton que l'on énoncera, déterminer la norme de chacune des forces.

Donnée

Norme du champ de pesanteur terrestre : $g = 9,81 \text{ N} \cdot \text{kg}^{-1}$

La Logan au banc d'essai

La Dacia Logan est conçue par le constructeur français Renault.

L'exercice détaille certains tests routiers effectués par les essayeurs d'un magazine automobile.

Donnée

Norme du champ de pesanteur : $q = 9.81 \text{ m} \cdot \text{s}^2$

A. Mesures de reprises

Le test consiste à faire passer la voiture, en pleine accélération et sur le deuxième rapport de la boîte de vitesses, de 30 km·h⁻¹ à 70 km·h⁻¹ sur une portion de circuit rectiligne et horizontale.

On mesure alors le temps nécessaire à cette accélération, ce qui donne une bonne indication de la capacité du véhicule à s'insérer et à évoluer dans le trafic routier.

Résultat du test donné par le magazine :

« passage de 30 km·h $^{-1}$ à 70 km·h $^{-1}$ en 5,4 s »

Le vecteur accélération est supposé constant pendant tout le mouvement ; sa norme est notée a_i .

Le schéma ci-dessous donne les différentes conventions utilisées. L'origine des temps est choisie à l'instant où le centre de masse G du véhicule passe au point O avec la vitesse $v_0=30~{\rm km\cdot h^{-1}}$.

- **1.1.** Donner la relation entre le vecteur accélération \vec{a}_1 et le vecteur vitesse \vec{v} du centre de masse G du véhicule. En déduire l'équation horaire de la vitesse du centre de masse du véhicule v(t) en fonction de a_1 , v_0 et t.
- **1.2.** En utilisant le résultat du test d'accélération, montrer que la norme de l'accélération du véhicule en unité SI est $a_1 = 2,1 \text{ m} \cdot \text{s}^{-2}$.
- **2.1.** Établir l'équation horaire de la position x(t) du centre de masse G en fonction des grandeurs de l'énoncé.
- **2.2.** En déduire la distance *D* parcourue par la Logan quand elle passe de 30 km·h⁻¹ à 70 km·h⁻¹ en 5,4 s.

B. Virage sur une trajectoire circulaire

Un second test consiste à faire décrire à la voiture une trajectoire circulaire de rayon $R=50\,$ m. Ce test donne une bonne indication de la tenue de route du véhicule. Une chronophotographie représentant les positions successives du centre de masse G de la Logan pendant ce test (en vue de dessus) est disponible à l'adresse hatier-clic.fr/pct310.

La durée τ = 1,00 s sépare deux positions successives du centre de masse G.

- 1.1. Exprimer les normes des vitesses v_3 et v_5 du centre de masse G aux points G_3 et G_5 en fonction des distances G_2G_4 , G_4G_6 et de la durée τ .
- **1.2.** En utilisant le document, montrer que ces vitesses v_3 et v_5 ont la même valeur d'environ 40 km·h⁻¹.
- **1.3.** Représenter les vecteurs vitesse \vec{v}_3 et \vec{v}_5 sur le document (échelle : 1 cm pour 2 m·s⁻¹).
- **1.4.** Représenter le vecteur $\Delta \vec{v}_4 = \vec{v}_5 \vec{v}_3$.
- 2.1. Donner l'expression du vecteur accélération \vec{a}_4 au point G_4 , en fonction de $\Delta \vec{v}_4$ et τ .
- **2.2.** Calculer la valeur de a_4 en unité SI.
- **3.1.** Le constructeur qualifie cette accélération de « latérale ». Quel autre qualificatif utiliserait-on plutôt en physique ?
- **3.2.** Peut-on considérer que, pour les passagers de la voiture, l'effet de cette accélération est négligeable devant celui de l'accélération de la pesanteur?

Adapté du sujet de Bac Liban, 2006.

DES CLÉS POUR RÉUSSIR

A.1.1. Revoir le cours 1 p. 294.

Ne pas oublier de tenir compte des conditions initiales.

Primitive d'une fonction du temps p. 20

- **A.1.2.** Attention aux unités : les vitesses sont données en kilomètres par heure.
- **B.1.3.** Le vecteur vitesse est tangent à la trajectoire, ce qui peut se traduire par un vecteur \overrightarrow{v}_3 parallèle à (G_2G_4) , par exemple.
- **B.1.1.** et B.2.1. Attention l'écart de temps entre les positions choisies est 2τ .

Échelle : 1,0 cm pour 10 m

Exo01

Préparation à l'ECE

- **1.** Le pointage montre qu'au bout de 3,2 s environ, les espaces parcourus à intervalles de temps réguliers restent constants. Le mouvement est alors uniforme, la bille atteint donc une vitesse limite de valeur v_ℓ constante.
- **2.** Avec l'échelle mentionnée, on mesure pour les trois derniers intervalles de temps une distance parcourue d = 0,20 m.

On a donc $v_{\ell} = \frac{d}{3\tau}$ donc $v_{\ell} = \frac{0.20 \text{ m}}{3 \times 0.400 \text{ s}}$ soit $v_{\ell} = 0.17 \text{ m} \cdot \text{s}^{-1}$.

- 3. La bille est soumise :
- à son poids \vec{P} ;
- à la poussée d'Archimède \vec{F}_{p} ;
- à la force de frottement \vec{f} .

D'après la deuxième loi de Newton appliquée au système dans un référentiel terrestre supposé galiléen, $\Sigma \vec{F} = m\vec{a}$. Soit $\vec{P} + \vec{f} + \vec{F}_p = m\vec{a}$.

On projette les vecteurs force sur l'axe vertical (Oz) orienté vers le bas. On obtient alors : $P-f-F_{\rm p}=m\times a$.

En remplaçant les valeurs des forces par leur expression, on obtient : $m \times g - 6\pi \times \eta \times R \times v - \rho \times g \times V = m \times a$

Or
$$\vec{a} = \frac{d\vec{v}}{dt}$$
.

Quand la vitesse limite est atteinte, $\vec{v} = \overrightarrow{cste}$.

On a donc
$$\vec{a} = \frac{d\vec{v}}{dt} = \vec{0}$$
.

On en déduit :

$$m \times g - 6\pi \times \eta \times R \times v_{\ell} - \rho \times g \times V = 0$$

et donc
$$\eta = \frac{(m - \rho \times V) \times g}{6\pi \times R \times v_{\ell}}$$
.

$$\eta = \frac{\left(35,5 \times 10^{-3} \text{ kg} - 920 \text{ kg} \cdot \text{m}^{-3} \times 33,5 \times 10^{-6} \text{ m}^{3}\right) \times 9,81 \text{ m} \cdot \text{s}^{-2}}{6\pi \times 2,00 \times 10^{-2} \text{ m} \times 0,17 \text{ m} \cdot \text{s}^{-2}}$$

 $\eta = 0.72 \, \text{Pa} \cdot \text{s}$

Aux incertitudes de mesure près sur la valeur de la vitesse limite, on peut conclure que l'huile utilisée est de l'huile de type 3.

Exo02

a Le système est soumis à :

- son poids P, vertical et orienté vers le bas, de norme P = mg;
- la réaction normale du support \vec{N} , perpendiculaire au plan et orientée vers le haut ;
- la tension du fil \tilde{F} , parallèle au support et orientée vers le haut de la pente, de norme F = 100 N;
- la force de frottement du support \widetilde{f} , parallèle au support, dans le sens opposé à celui du mouvement donc vers le bas.

E Le mouvement du bloc est rectiligne et uniforme. D'après la première loi de Newton, la somme vectorielle des forces appliquées au système est nulle :

$$\vec{p} + \vec{F} + \vec{f} + \vec{N} = \vec{0}$$

On projette chaque force sur les axes \vec{i} et \vec{j} . Leurs coordonnées sont :

$$\vec{f} \begin{pmatrix} -f \\ 0 \end{pmatrix} \qquad \vec{F} \begin{pmatrix} F \\ 0 \end{pmatrix} \qquad \vec{N} \begin{pmatrix} 0 \\ N \end{pmatrix} \qquad \vec{p} \begin{pmatrix} -\rho \sin \alpha \\ -\rho \cos \alpha \end{pmatrix}$$

Selon l'axe (0x), la première loi de Newton devient :

$$-f + F - P\sin\alpha = 0$$
 soit $f = F - P\sin\alpha$

Selon l'axe (0y), la première loi de Newton devient :

$$N - P\cos\alpha = 0$$
 soit $N = P\cos\alpha$

Numériquement, les normes des forces valent :

$$P = mg = 10,0 \times 9,81 = 98,1 \text{ N}$$

$$f = F - P \sin \alpha = 100 - 98,1 \times \sin(20,0^{\circ}) = 66,4 \text{ N}$$

$$N = P\cos\alpha = 98,1 \times \cos(20,0^{\circ}) = 92,2 \text{ N}$$

Aide n°

Dans le bilan des forces, donner la direction, le sens de chaque force et si possible sa norme.

(Cours 2 p. 320

Aide n° 2

Utiliser un système d'axes limitant les projections. On peut par exemple définir des axes parallèle et perpendiculaire au plan incliné.

(▶) Cours 3c p. 323

Aide n° 3

Utiliser la première loi de Newton puisque l'énoncé dit que le système est en mouvement rectiligne et uniforme.

Aide n° 4

Projeter chaque force selon les axes (0x) et (0y). Utiliser les formules de trigonométrie.

A. 1.1.
$$\vec{a}_1 = \frac{d\vec{v}}{dt}(t)$$

L'accélération de la voiture se fait selon un axe unique (ici, (Ox)). Cela implique que :

$$\vec{a}(t) = a_x(t)\vec{i}$$
 et $\vec{v}(t) = v_x(t)\vec{i}$

Ainsi,
$$a_x(t) = \frac{dv_x}{dt}(t)$$
.

Le mouvement étant dirigé selon (Ox), v_x est positif à tout moment du mouvement.

La voiture accélérant, le vecteur accélération est dirigé aussi selon (0x), a_x est donc positif à tout

moment. En norme, $a_1(t) = \frac{dv}{dt}(t)$ or a_1 est constante : $v(t) = a_1t + k$ avec k une constante.

Or à t = 0, on a $v(t = 0) = k = v_0$. Ainsi, $v(t) = a_1t + v_0$. 1.2. À $t = t_1 = 5,4$ s, $v(t_1) = v_A$.

Soit $v(t_1) = a_1t_1 + v_0 = v_A$.

Ainsi,
$$a_1 = \frac{v_A - v_0}{t_1} = \frac{\frac{70}{3.6} - \frac{30}{3.6}}{5.4} = 2.1 \text{ m·s}^{-2}.$$

2.1.
$$v_x(t) = \frac{dx}{dt}(t) = a_1 t + v_0$$

$$x(t) = \frac{1}{2}a_1t^2 + v_0t + k' \text{ avec } k' \text{ une constante.}$$

Or à
$$t = 0$$
, $x(0) = k' = 0$. Ainsi, $x(t) = \frac{1}{2}a_1t^2 + v_0t$.

correspond à
$$x(t_1)$$
: $x(t_1) = \frac{1}{2}a_1t_1^2 + v_0t_1 = D$

$$D = \frac{1}{2} \times 2.1 \times 5.4^2 + \frac{30}{3.6} \times 5.4 = 76 \text{ m}$$

B. 1.1. Les normes des vitesses sont :

$$v_3 = \frac{G_2G_4}{2\tau}$$
 et $v_5 = \frac{G_4G_6}{2\tau}$

1.2. G_2G_4 et G_4G_6 sont égales à 21 m (2,1 cm sur la

figure). Donc
$$v_3 = v_5 = \frac{21}{2 \times 1,00} = 11 \text{ m} \cdot \text{s}^{-1} = 40 \text{ km} \cdot \text{h}^{-1}$$
.

- 1.3. En tenant compte de l'échelle proposée, les vecteurs auront une taille de 5,5 cm.
- 1.4. Sur le schéma, la variation du vecteur vitesse au point 4 mesure 2,5 cm. Ainsi, $\Delta v_4 = 5.0 \text{ m} \cdot \text{s}^{-1}$.

- 2.1. On peut calculer le vecteur accélération approchée : $\vec{a}_4 = \frac{\Delta \vec{v}_4}{2\tau}$
- 2.2. En norme : $a_4 = \frac{\Delta v_4}{2\tau} = \frac{5.0}{2 \times 1.00} = 2.5 \text{ m} \cdot \text{s}^{-2}$
- 3.1. En physique, on utilise plutôt le terme d'accélération radiale.

(On peut même ajouter centripète car le sens de l'accélération est orienté vers le centre du cercle.)

3.2. Comparons la valeur de l'accélération obtenue et l'accélération de pesanteur : $\frac{a_4}{g} = \frac{2,5}{9,81} = 0,26$ Cette accélération est donc négligeable devant l'accélération de pesanteur.