1.

 $\forall x (P\left(x\right) \vee Q(x))$

 $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x)$

$$:: \forall x (\neg R(x) \to P(x))$$

	Steps	Reason
1	$\forall x (P(x) \lor Q(x))$	Premise
2	$\forall x((\neg P(x) \land Q(x)) \rightarrow R(x)$	Premise
3	$P(c) \vee Q(c)$	Universal instantiation on 1
4	$(\neg P(c) \land Q(c)) \to R(c)$	Universal instantiation on 2
5	$\neg (\neg P(c) \land Q(c)) \lor R(c)$	Conditional disjunction equivalence on 4
6	$(P(c) \lor \neg Q(c)) \lor R(c)$	1st De Morgan's Law on 5
7	$\neg Q(c) \lor (P(c) \lor R(c))$	1st Associativity Law on 6
8	$P(c) \vee (P(c) \vee R(c))$	Resolution on 3 and 7
9	$P(c) \vee R(c)$	1st Idempotent Law on 8
10	$R(c) \vee P(c)$	1st Commutativity Law on 9
11	$\neg R(c) \rightarrow P(c)$	Conditional disjunction equivalence on 10
12	$\forall x(\neg R(x) \rightarrow P(x))$	Universal generalization on 11

Therefore, $\forall x (\neg R(x) \rightarrow P(x))$ is true, if the premises $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x))$ are true.

2.

If *n* is even, then $(n+3)^2$ is odd.

If n is even, then, by definition, there exists an integer k such that n = 2k.

We substitute this value of n into the expression $(n + 3)^2$ as follows:

$$(n+3)^2 = (2k+3)^2$$

 $=4k^2+12k+9$ (expanding the term)

= $2(2k^2 + 6k + 4) + 1$ (factorizing 2 out of the terms with k)

$$= 2t + 1$$
, where $t = 2k^2 + 6k + 4$

t is an integer because the product of integers is an integer, and the sum of integers is an integer.

An odd number, r, can be expressed in the form 2k + 1, where k is an integer.

Therefore, $(n+3)^2$ is an odd number.

```
3.
```

```
grandfather(X, Z) :-
father(X, Y), (mother(Y, Z); father(Y, Z)).
```

This rule is saying that X is the grandfather of Z if:

X is the father of some person Y and

Y is the mother or father of some Z

The , operator is used to combine two conditions, so the first condition is that X is the father of Y, and the second condition is that Y is either the mother or father of Z.

The; operator is used to combine two possibilities: either Z is the mother of Y, or Z is the father of Y. So, the rule reads as follows: X is the grandfather of Z if there exists some person Y, who is the child of X and the parent of Z.