Exam 1 Prep

Last Modified: 2019/09/25

1

2

Contents

L	Material outline:
2	Past exam problems 2.1 Limit evaluation (including Squeeze) 2.2 Continuity 2.3 Using IVT 2.4 Using limit definition of derivative (maybe make tangent left) 2.5 Take derivatives
1	Material outline:
	• Prior knowledge
	 Evaluation of trig functions at special angles
	 Sketching graph of sin/cos with transformations
	• Sided limits, limits, continuity
	• Sided continuity?
	• Evaluating limits
	- Direct substitution
	- Simplification
	* Factorization
	* Multiplying by the conjugate
	* Combining fractions
	- Squeeze Theorem
	- Trig limits:
	$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$

- Using the limit definition of derivative
- Average velocity and instantaneous velocity
- "Derivative is the slope of tangent line"
- The process of finding the tangent line
- Derivative properties:
 - Power rule
 - Product rule
 - Quotient rule
 - Chain rule
 - Trig derivatives
- Using IVT to find a root / to show a solution to an equation exists.

2 Past exam problems

2.1 Limit evaluation (including Squeeze)

- 1. $\lim_{\theta \to 0} \frac{\sin(\theta)}{2\theta}$
- $2. \lim_{\theta \to \pi} \frac{\cos \theta}{\theta}$
- $3. \lim_{\theta \to 1} \frac{1 \sqrt{x}}{1 x}$
- 4. $\lim_{\theta \to 0} \frac{\cos \theta}{\theta 3}$
- 5. $\lim_{x \to 1} \left(\frac{1}{x-1} \frac{1}{x^2 x} \right)$
- 6. $\lim_{x \to 3} \frac{x^2 5x + 6}{x 3}$
- 7. $\lim_{x \to 0} x^2 \sin\left(\frac{5}{x}\right)$
- 8. $\lim_{\theta \to 0} \theta^2 \sin\left(\frac{1}{\theta}\right)$
- 9. $\lim_{x \to 2} \frac{x-2}{x^2-4}$

- 10. $\lim_{t \to 2} \frac{\sqrt{2+t}-2}{t-2}$
- 11. $\lim_{x \to \pi} \sin x$
- 12. $\lim_{x \to 3} \frac{x-3}{x^2 5x + 6}$
- 13. $\lim_{t \to 3} \frac{\sqrt{t+6}-3}{3-t}$
- 14. $\lim_{x \to 2} (x-2)^2 \cos\left(\frac{\pi}{x-2}\right)$
- 15. $\lim_{x \to 5} \frac{x-5}{x^2-25}$
- 16. $\lim_{x \to 4} \frac{2 \sqrt{x}}{x 4}$
- 17. $\lim_{\theta \to 0} \tan(\theta) + \theta + 1$
- 18. $\lim_{\theta \to 0} \frac{3\sin\theta}{7\theta}$
- 19. $\lim_{x \to 5} \frac{x^2 4x 5}{x 5}$
- 20. $\lim_{t\to 9} \frac{3-\sqrt{t}}{9-t}$
- 21. Find $\lim_{x\to 1} h(x)$, where $4x 1 \le h(x) \le 2x^2 + 1$ for all x.
- 22. $\lim_{\theta \to 0} \frac{\cos \theta}{\theta^2 + 3}$
- 23. $\lim_{w \to 3} \frac{w^2 2w 3}{w 3}$
- 24. $\lim_{t \to 1} \left(\frac{1}{t^2 t} \frac{1}{t 1} \right)$
- 25. Find $\lim_{x\to 1} h(x)$, where $-2x^4 + 5 \le h(x) \le 11 8x$ for all x.
- 26. $\lim_{x \to 1} \frac{\sin(x-1)}{x^2 1}$
- 27. $\lim_{x \to 3} \frac{x^2 + x 12}{x^2 x 6}$

28.
$$\lim_{\theta \to 0} \frac{\cos \theta - \cos^2 \theta}{\theta}$$

$$29. \lim_{x \to 0} 5x^2 \cos\left(\frac{2}{x}\right)$$

2.2 Continuity

1

1. Is
$$q(x) = \begin{cases} 4 & x = 2\\ \frac{x^2 - 4}{x - 2} & x \neq 2 \end{cases}$$
 continuous?

2. Find a constant c that makes the following function continuous:

$$q(x) = \begin{cases} 3 & x > 2\\ x + c & x \le 2. \end{cases}$$

2.3 Using IVT

1. Show there is a root of $f(x) = x^3 + 2x - 1$ in the interval (0,1).

2. Show there is a root of $x^5 + x - 1 = 0$ in the interval (0, 1).

3. Show there is a root of $3x^7 - 2^x = 0$ in the interval (0, 1).

4. Show there is a root of $3x^7 + x - 2 = 0$ in the interval (0, 1).

5. Let $f(x) = x^4 + 2x - 1$. Show there is a point c between -1 and 1 such that f(c) = 0.

6. Show that $2\sin x = \cos 4x$ has a solution on the interval $[0, \frac{\pi}{4}]$

7. Show $2e^t=t^4$ has a solution on the interval [-1,0]

2.4 Using limit definition of derivative (maybe make tangent line)

1. Let $v(x) = x^2$. Find v'(3).

2. Let $f(x) = \sqrt{x}$. Find f'(4).

3. Let $z(t) = 3t^2 + t$. Find z'(1).

4. Let $g(x) = x^2 + 8$. Find g'(3)

5. Let $z(t) = \frac{7}{t}$. Find z'(1).

6. Let $g(x) = x^2 + 3x$. Find g'(2).

7. Let $f(x) = \sqrt{x+3}$. Find f'(1).

¹Shows up on older exams. May not be as relevant

2.5 Take derivatives

1.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{5}{x^3} + \sqrt{x} \right)$$

$$2. \ \frac{\mathrm{d}}{\mathrm{d}x} \left(5x^3 + 3\sqrt{x} + \frac{2}{x} \right)$$

3.
$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \cdot \cos\theta \right)$$

4.
$$\frac{\mathrm{d}}{\mathrm{d}\theta}\tan\left(2\theta^7\right)$$

$$5. \frac{\mathrm{d}}{\mathrm{d}x} \frac{x^2 - 2}{x - 1}$$

6.
$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{x^5 + 4}{3x^2 + 9}$$

7.
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos(\sec(x))$$

8.
$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{3x^2 + 2}{x^8 + x^4}$$

9.
$$k(x) = 5x^2 - 9\sqrt{x} + 3$$

10.
$$v(\theta) = \cos(\tan(\theta))$$

11.
$$p(t) = \frac{\sin(3t)}{2x^2 + 7}$$

12.
$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\sqrt{x}}{\cos x}$$

13.
$$h(x) = \frac{x^3}{(3x^2+4)^5}$$

$$14. \ \frac{\mathrm{d}}{\mathrm{d}x} \frac{\tan x}{x^8 + x^4}$$

15.
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(\cos(\tan(x)))$$

16.
$$v(x) = \frac{\cos x}{x^2 + 1}$$

17.
$$h(x) = \left(\sin(\sqrt{x})\right)^5$$

18.
$$p(x) = (\tan(x) + x)^3$$

19.
$$f(x) = \frac{1}{x^2} + \sqrt[3]{x}$$

20.
$$g(x) = (2x^{2/3} - 3x^2)(x^{-1/2} + 5x^{3/7})$$