# Short Course on Deep Learning and Convolutional Neural Network

Day 1: Machine Learning Basics Introduction to Image Processing

Type of Machine Learning Systems

### Type of Machine Learning Systems

Supervised Learning
Unsupervised Learning
Semi-supervised Learning
Reinforcement Learning

Depending on whether the system is trained with human supervision

Whether System can learn on the fly

Batch and Online Learning

Instance-based and Model-based Learning

Comparing data points or detect patterns in training data to build a predictive model

# Supervised Learning

(Object + Desired Output Label)



# Supervised Learning

### **House Price prediction**

#### Feature:

Size of the house

#### To Predict:

- Price of the house

**Regression Task** 



### Supervised Learning

### Important Algorithms:

- K-Nearest Neighbours
- Logistic regression
- Support Vector Machines (SVMs)
- Neural Networks (\*some of them can be unsupervised)

### Supervised Learning Examples



### Unsupervised Learning



# Unsupervised Learning

### Important Algorithms:

- k-means
- Expectation Maximization

- A Support Vector Machine is a very powerful and versatile Machine Learning model, capable of performing linear or non-linear classification, regression, and also outlier detection.
- Defined by a separating hyperplane
- Suitable for small or medium sized datasets

#### Reference and Pre-Reading:

Theory: <a href="https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72">https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-coding-edd8f1cf8f2d</a>
<a href="mailto:learning-101/chapter-2-svm-support-vector-machine-coding-edd8f1cf8f2d">learning-101/chapter-2-svm-support-vector-machine-coding-edd8f1cf8f2d</a>



Orange

Apple

SVM finds the best line or hyper-plane which will fairly separates the classes

Example: Using sklearn for SVM classification (Partial code snippet)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load iris()
# Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
v = iris.target
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (svm.SVC(kernel='linear', C=C),
          svm.LinearSVC(C=C),
          svm.SVC(kernel='rbf', gamma=0.7, C=C),
          svm.SVC(kernel='poly', degree=3, C=C))
models = (clf.fit(X, y) for clf in models)
```

**Reference:** <a href="https://scikit-learn.org/stable/auto\_examples/svm/plot\_iris.html#sphx-glr-auto-examples-svm-plot-iris-py">https://en.wikipedia.org/wiki/Iris flower data set</a>

**SVM Parameters:** Kernel, Gamma, Regularization (C)







### Example: Using sklearn for SVM classification



#### Iris flower data set



Reference: <a href="https://scikit-learn.org/stable/auto">https://scikit-learn.org/stable/auto</a> examples/svm/plot iris svc.html https://en.wikipedia.org/wiki/Iris flower data set

# K-Nearest Neighbour (KNN)

• A simple supervised learning algorithm.

Can be used for both classification and regression

 Non-parametric: doesn't make any assumption on the data distribution

Training data is retained to make future predictions

### K-Nearest Neighbour (KNN)

#### How does it work?

- Computes distance between the new sample and all training samples
- Distance measure: Euclidean, Manhattan etc.
- Picks 'k' entries in the training set which are closest to the new sample
- Majority voting decides the class of the new sample

# K-Nearest Neighbour (KNN)



### **Evaluation Metrics**

#### Precision & Recall

What are the "correct" cells?

- *TN*: (Number of True Negatives), i.e., patients who did *not* have cancer whom we correctly diagnosed as *not* having cancer.
- TP: (Number of True Positives), i.e., patients who did have cancer whom we correctly diagnosed as having cancer

**Precision: TP/Cancer Diagnoses** 

**Diagnoses (Predicted)** 



**Recall: TP/Cancer True States** 

### **Evaluation Metrics**

### Precision & Recall

what are the "error" cells:

- FN: (Number of False Negatives), i.e., patients who did have cancer whom we incorrectly diagnosed as *not* having cancer
- FP: (Number of False Positives), i.e., patients who did not have cancer whom we incorrectly diagnosed as having cancer

**Precision: TP/Cancer Diagnoses** 

**Diagnoses (Predicted)** 



**Recall: TP/Cancer True States** 

Precision=
$$(TP)/(TP+FP)$$

Recall = 
$$(TP)/(TP+FN)$$

Reference: <a href="https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall">https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall</a>

### **Evaluation Metrics**

### Intersection over Union (IoU):

Intersection over Union is a metric used for the evaluation of an object detector, i.e. how good is the predicted bounding box for an object detected closely matches





### What is a digital image?

- Digital images are made of picture elements called Pixels.
- It is an array, or a matrix of *Pixels* arranges in *columns* and *rows*.
- Each *Pixel* has its own *intensity* value, or *brightness*

- Intensity values in digital images are defined by bits
- For a standard 8 bits image, a pixel can have  $2^8 = 256 (0 255)$  values.
- Black & White images have a single 8-bits intensity range.

Image dimension =  $5 \times 5$ f(2, 3) = 170 (Pixel/intensity value)

Hence, an image may be defined as a 2D function f(x, y), where, x and y are spatial co-ordinates, and the amplitude of f at (x, y) is the intensity or Gray level of the image at that point/pixel.

| 170 | 170 | 55  | 170 | 170 |
|-----|-----|-----|-----|-----|
| 170 | 55  | 170 | 55  | 170 |
| 170 | 55  | 170 | 55  | 170 |
| 55  | 140 | 140 | 140 | 55  |
| 55  | 170 | 170 | 170 | 55  |

5 X 5 Gray scale image (8 bit)

Image dimension = 5 X 5 X 3 No. of Channels = 3

Since, RGB image contains 3 X 8-bits of intensities, they are referred to as 24-bit colour images.

So, 24-bit colour depth

- = 8 X 8 X 8 bits
- = 256 X 256 X 256 colours
- = ~16 million colours



5 X 5 X 3 colour image (24 bit)

# Image Thresholding

- Easiest method for image segmentation!
- Converts gray-scale image into a binary image If f(x,y) > Threshold, then f(x,y) = 0 else f(x,y) = 255

Binary Image (8-bit) has only two possible values of pixel intensity (0 and 1, or B & W)



# Image Thresholding



Thresholding

Original Image

**Binary Image** 

### Image Thresholding methods

### - Histogram shape:

Peaks, valleys and curvature of the histogram are analysed.

### - Clustering based:

The <sup>1</sup>Otsu method, very good for bimodal distribution

### - Adaptive thresholding:

Instead of a single threshold, have thresholds for different regions in the image



### **Edge Detection**

### What is an edge?

- The points/pixels in an image where brightness/intensities changes sharply
- A simple and fundamental tools in image processing and computer vision, useful in feature detection/extraction



| 100 | 100 | 100 | 0 | 0 | 0 |
|-----|-----|-----|---|---|---|
| 100 | 100 | 100 | 0 | 0 | 0 |
| 100 | 100 | 100 | 0 | 0 | 0 |
| 100 | 100 | 100 | 0 | 0 | 0 |
| 100 | 100 | 100 | 0 | 0 | 0 |
| 100 | 100 | 100 | 0 | 0 | 0 |



| 0 | 300 | 300 | 0 |
|---|-----|-----|---|
| 0 | 300 | 300 | 0 |
| 0 | 300 | 300 | 0 |
| 0 | 300 | 300 | 0 |

4 X 4 dimension matrix



6 X 6 dimension image

**Vertical Edge detector** 



| 100 | 100 | 100 | 100 | 100 | 100 |
|-----|-----|-----|-----|-----|-----|
| 100 | 100 | 100 | 100 | 100 | 100 |
| 100 | 100 | 100 | 100 | 100 | 100 |
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |

|     |          |           |             | <u> </u> |
|-----|----------|-----------|-------------|----------|
| 1   | 1        | 1         |             |          |
| 0   | 0        | 0         |             |          |
| -1  | -1       | -1        |             |          |
| 3 2 | X 3 filt | er/Ker    | nel         |          |
|     | 0 -1     | 0 0 -1 -1 | 0 0 0 -1 -1 | 0 0 0    |

| 0   | 0   | 0   | 0   |
|-----|-----|-----|-----|
| 300 | 300 | 300 | 300 |
| 300 | 300 | 300 | 300 |
| 0   | 0   | 0   | 0   |

4 X 4 dimension matrix

6 X 6 dimension image

**Horizontal Edge detector** 



# Sobel edge detection



3 X 3 filter/Kernel For Vertical edges

| 1  | 1  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -1 | -1 |

3 X 3 filter/Kernel For Horizontal edges

**Prewitt Filters** 

| 1  | 2  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

3 X 3 filter/Kernel For Horizontal edges

| 1 | 0 | -1 |
|---|---|----|
| 2 | 0 | -2 |
| 1 | 0 | -1 |

3 X 3 filter/Kernel For Vertical edges

**Sobel Filters** 

# Sobel edge detection





### Convolutions in CNN

 Convolutions are very important operation in a Convolutional Neural Networks (CNN)

 Filters weights are not fixed, but learned during the training operations of a CNN for a specific task!

Multiple filters are used in CNNs