

Matemáticas III

Grau em Robótica

Exemplos 5

Números complexos

[Revisado: janeiro de 2021]

1 Definição e propriedades algébricas

- 1.1. Escreve os números dados na forma a + ib.
 - a) $2i^3 3i^2 + 5i$.
 - b) i^{8} .
 - c) (5-9i)+(2-4i).
 - d) i(5+7i).
 - e) (2-3i)(4+i).
 - $f) (2+3i)^2.$
 - $g) \frac{2}{i}$
 - $h) \frac{2-4i}{3+5i}.$
 - (3-i)(2+3i)1+i.
 - $j) \frac{(5-4i)-(3+7i)}{(4+2i)+(2-3i)}.$
 - k) i(1-i)(2-i)(2+6i).
 - l) $(3+6i) + (4-i)(3+5i) + \frac{1}{2-i}$.

$$m) \left(\frac{i}{3-i}\right) \left(\frac{1}{2+3i}\right).$$

- 1.2. Determina as expressões dadas.
 - \nearrow Re $\left(\frac{1}{z}\right)$.
 - b) $\text{Im} (2z + 4\bar{z} 4i)$.
 - c) |z-1-3i|.
- 1.3. Resolve as seguintes equações.
 - a) 2z = i(2+9i).
 - b) $z^2 = i$.
 - $c) \ z + 2\bar{z} = \frac{2-i}{1+3i}.$
- 1.4. Determina qual dos números complexos, $z_1 = 10 + 8i$ e $z_2 = 11 6i$, está mais próximo à origem.

2 O plano complexo

21. Demonstra que para todos os números complexos z no círculo $x^2+y^2=4$ se satisfaz $|z+6+8i|\leq 12$.

3 Forma polar

- 3.1. Escreve os seguintes números complexos em forma polar.
 - a) 2.
 - b) -3i.
 - (2) 1 + i.
 - $d) -\sqrt{3} + i.$
 - $e) \ \frac{3}{-1+i}.$
- 3.2. Escreve os seguintes números complexos dados em forma polar na forma a+ib.
 - a) $5\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$.

b)
$$6\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$$
.

3.3. Calcula z_1z_2 e $\frac{z_1}{z_2}$ e escreve os resultados na forma a+ib para

$$z_1 = 2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right),$$

$$z_2 = 4\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right).$$

4 Potências e raízes

4.1. Calcula as seguintes potências.

a)
$$(1+i\sqrt{3})^9$$
.

b)
$$\left(\frac{1}{2} + \frac{1}{2}i\right)^{10}$$
.

c)
$$\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)^{12}$$

4.2. Calcula todas as raízes seguintes e representa-as sobre a correspondente circunferência centrada na origem.

a)
$$(8)^{1/3}$$
.

$$b)$$
 $(i)^{1/2}$.

c)
$$(-1+i\sqrt{3})^{1/2}$$
.

4.3. Determina todas as soluções da equação $z^4+1=0$ e representa-as graficamente.

4.4. Expressa o seguinte número complexo primeiro em forma polar e logo na forma a+ib.

$$z = \left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)^{12} \left[2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right]^5$$

4.5. Se $z_1 = -1$ e $z_2 = 5i$, verifica que

$$\operatorname{Arg}\,\left(z_{1}z_{2}\right)\neq\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right).$$

5 Topologia do plano complexo

- 5.1. Representa graficamente os seguintes conjuntos no plano complexo.
 - a) $\operatorname{Re}(z) = 5$.
 - b) $\text{Im}(\bar{z} + 3i) = 6.$
 - |z-3i|=2.
 - d) |z 4 + 3i| = 5.
- 5.2. Representa graficamente os seguintes conjuntos no plano complexo determina se cada um desses conjuntos é um domínio.
 - a) $\operatorname{Re}(z) < -1$.
 - **b)** Im (z) > 3.
 - c) 2 < Re(z-1) < 4.
 - d) $\operatorname{Re}(z^2) > 0$.
 - $e) \ 0 \le \arg z \le \frac{2\pi}{3}.$
 - f) |z-i| > 1.
 - |g| 2 < |z i| < 3.
- 5.3. Descreve o conjunto de pontos no plano complexo que satisfaz |z+1| = |z-i|.
- 5.4. Descreve o conjunto de pontos no plano complexo que satisfaz $z^2 + \bar{z}^2 = 2$.

Soluções

1.1 a)
$$3 + 3i$$
.

b) 1.

c)
$$7 - 13i$$
.

d) -7 + 5i.

e)
$$11 - 10i$$
.

f) -5 + 12i.

g)
$$-2i$$
.

h)
$$-\frac{7}{17} - \frac{11}{17}i$$
.

i) 8 - i.

j)
$$\frac{23}{37} - \frac{64}{37}i$$
.

k) 20i.

l)
$$\frac{102}{5} + \frac{116}{5}i$$
.

m)
$$\frac{7}{130} + \frac{9}{130}i$$
.

1.2 a)
$$\operatorname{Re}\left(\frac{1}{z}\right) = \frac{x}{x^2 + y^2}$$
.

b)
$$\operatorname{Im}(2z + 4\bar{z} - 4i) = -2y - 4$$
.

c)
$$|z - 1 - 3i| = \sqrt{(x - 1)^2 + (y - 3)^2}$$
.

1.3 a)
$$z = -\frac{9}{2} + i$$
.

b)
$$z_1 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, z_2 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

c)
$$z = -\frac{1}{30} + i\frac{7}{10}$$
.

$$1.4 \ z_2 = 11 - 6i$$

2.1 Satisfaz-se.

b)
$$3\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$
.

c)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \operatorname{sen} \frac{\pi}{4}\right)$$
.

d)
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
.

e)
$$\frac{3\sqrt{2}}{2} \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$
.

3.2 a)
$$-\frac{5\sqrt{3}}{2} - i\frac{5}{2}$$
.

b)
$$5.5433 + 2.2961i$$
.

3.3 a)
$$z_1 z_2 = 8i$$
.

b)
$$\frac{z_1}{z_2} = \frac{\sqrt{2}}{4} - i\frac{\sqrt{2}}{4}$$
.

- 4.1 a) -512.
 - b) $\frac{i}{32}$.
 - c) -i.
- 4.2 a) $w_0 = 2$, $w_1 = -1 + \sqrt{3}i$, $w_2 = -1 \sqrt{3}i$.

b)
$$w_0 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, w_1 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

c)
$$w_0 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{6}}{2}, w_1 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{6}}{2}.$$

Figura 1: Exemplo 4.2

4.3
$$w_0 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, w_1 = -1 + i, w_2 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{6}}{2}, w_3 = 1 - i.$$

Figura 2: Exemplo 4.3

4.4
$$z = 32 \left(\cos \frac{13\pi}{6} + i \operatorname{sen} \frac{13\pi}{6}\right), z = 16\sqrt{3} + 16i.$$

4.5 Verifica-se.

5.1 a)
$$x = 5$$
.

b)
$$y = -3$$
.

c)
$$x^2 + (y-3)^2 = 2^2$$
.

d)
$$(x-4)^2 + (y+3)^2 = 5^2$$
.

Figura 3: Exemplo 5.1

- 5.2 a) x < -1 (é domínio).
 - b) y > 3 (é domínio).
 - c) 3 < x < 5 (é domínio).
 - d) $x^2 y^2 > 0$ (não é domínio).
- e) $0 \le \arg z \le \frac{2\pi}{3}$ (não é domínio).
- f) $x^2 + (y-1)^2 > 1$ (é domínio).
- g) $2^2 < x^2 + (y-1)^2 < 3^2$ (é domínio).

Figura 4: Exemplo 5.2

5.3 y = -x.

Figura 5: Exemplo 5.3

 $5.4 \ x^2 - y^2 = 1.$

Figura 6: Exemplo 5.4