Современное распознавание речи

21.11.2024

Не забудьте отметиться и оставить отзыв!

О чем поговорим (в рамках 2ух занятий)

- Введение в ЦОС, как представлен звук в памяти компьютера
- Распознавание речи ASR (какую задачу решаем, как оцениваем качество решения)
- Архитектуры моделей для решения задачи ASR (рассмотрим основные подходы, подробнее поговорим про SOTA решения)
- SSL в задаче ASR
- Применение LM для улучшения качества распознавания

Чего не будет на занятиях:

- TTS (text-to-speech)
- KWS (keyword spotting)
- VQE (voice quality enhancement)

План занятия

- Вспоминаем СТС
- Seq2seq для задачи ASR
- Listen Attend and Spell
- Whisper
- LM rescoring
- SSL in ASR
- Further reading

Вспомним стс

CTC

L = min - log(P(Y|X))

Иными словами - максимизируем Р(гипотезы|спектрограммы)

CTC Loss

P(привет) = P(|прииивееет|) + P(|||||привет) + P(приивет||||) + ...

CTC Loss

$$\mathcal{L}(X,R) = -\log \sum_{C \in B^{-1}(R)} P(C|X) = -\log \sum_{C \in B^{-1}(R)} \prod_{t=1}^T p(c_t|X)$$
 спека GT гипотеза для которых R = B(C)

$$|V| = 7$$
, seq len = 12, possible paths = $7^{12} \sim 14B$

Как считать СТС лосс эффективно

CTC Loss summary

- контекстно независимые предсказания
- можем предсказывать параллельно для каждого hidden
- не склонен к бредогенерации
- len(text) > len(encoder hiddens) никогда не предскажем корректную гипотезу

Вспомним постановку задачи ASR

Постановка задачи ASR

Постановка задачи ASR

Постановка задачи ASR

sequence to sequence modelling

Sequence to sequence learning with NN

Sequence to sequence learning with NN

LAS

Listen Attend and Spell

<u>Listen Attend and Spell</u>

$$P(\mathbf{y}|\mathbf{x}) = \prod_{i} P(y_i|\mathbf{x}, y_{< i})$$

Теперь декодер контекстно зависимый

Какой здесь лосс?

<u>Listen Attend and Spell</u>

$$P(\mathbf{y}|\mathbf{x}) = \prod_{i} P(y_i|\mathbf{x}, y_{< i})$$

Оптимизируется кросс энтропия

$$L_{CE} = \sum CE_{i}$$

Teacher forcing VS Autoregressive Predictions

GT: <sos> я есть грут

GT: <sos> я есть грут

Хорошо, а где трансформеры?

Whisper

Основные идеи:

- Хотим получить супер классную модель, которая работает в zero-shot режиме одинаково хорошо на разных доменах
- Чем больше данных из разных доменов, тем будет лучше генерализация модели
- Сложно собрать большой сет данных, давайте собирать weakly supervised data (680K hours up to 3M hours)
- Растим модель, растим датасет
- Обучаем модель в мультитаск режиме (сразу несколько задач), это помогает сделать ее устойчивой к доменному сдвигу

Whisper

Transformer

Decoder Blocks

Learned

Positional Encoding

Whisper Token format

Model	Layers	Width	Heads	Parameters
Tiny	4	384	6	39M
Base	6	512	8	74 M
Small	12	768	12	244M
Medium	24	1024	16	769M
Large	32	1280	20	1550M

Table 1. Architecture details of the Whisper model family.

Whisper Results

Figure 2. Zero-shot Whisper models close the gap to human robustness. Despite matching or outperforming a human on LibriSpeech dev-clean, supervised LibriSpeech models make roughly twice as many errors as a human on other datasets demonstrating their brittleness and lack of robustness. The estimated robustness frontier of zero-shot Whisper models, however, includes the 95% confidence interval for this particular human.

Dataset	wav2vec 2.0 Large (no LM)	Whisper Large V2	RER (%)
LibriSpeech Clean	2.7	2.7	0.0
Artie	24.5	6.2	74.7
Common Voice	29.9	9.0	69.9
Fleurs En	14.6	4.4	69.9
Tedlium	10.5	4.0	61.9
CHiME6	65.8	25.5	61.2
VoxPopuli En	17.9	7.3	59.2
CORAAL	35.6	16.2	54.5
AMI IHM	37.0	16.9	54.3
Switchboard	28.3	13.8	51.2
CallHome	34.8	17.6	49.4
WSJ	7.7	3.9	49.4
AMI SDM1	67.6	36.4	46.2
LibriSpeech Other	6.2	5.2	16.1
Average	29.3	12.8	55.2

Table 2. Detailed comparison of effective robustness across various datasets. Although both models perform within 0.1% of each other on LibriSpeech, a zero-shot Whisper model performs much better on other datasets than expected for its LibriSpeech performance and makes 55.2% less errors on average. Results reported in word error rate (WER) for both models after applying our text normalizer.

the smallest zero-shot Whisper model, which has only 39

А как улучшить ASR без такого огромного количества данных?

Как насчет дистилляции моделей?

Hard distillation

Distillation by embeddings

teacher hiddens

student hiddens

Loss = CE + L2(student hiddens - teacher hiddens)

student hiddens - teacher hiddens = error vector = zero vector

student << teacher

Можем ли как то использовать языковую модель (LM)?

Second pass rescoring

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \log P(\mathbf{y}|\mathbf{x}) + \lambda \log P_{LM}(\mathbf{y}) + \gamma \mathrm{len}(\mathbf{y})$$

First Pass Rescoring

$$y_i^* = argmax_{y_i} P_{ASR}(y_i | x, y_{< i}) + \lambda P_{LM}(y_i | y_{< i})$$

Self-supervised learning

Self-supervised Learning

Self-Supervised Learning (или unsupervised) - режим обучения моделей, при котором задача обучения не требует дополнительной разметки и формируется исходя из внутренней структуры самих объектов, либо из базовых знаний об объектах.

Wav2Vec2.0

Wav2Vec2.0

Picking codewords in differentiable way (Gumbel softmax)

Wav2Vec2.0

$$\mathcal{L} = \mathcal{L}_m + \alpha \mathcal{L}_d$$

$$\mathcal{L}_{m} = -\log \frac{\exp(sim(\mathbf{c}_{t}, \mathbf{q}_{t})/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_{t}} \exp(sim(\mathbf{c}_{t}, \tilde{\mathbf{q}})/\kappa)}$$

$$\mathcal{L}_{d} = \frac{1}{GV} \sum_{g=1}^{G} -H(\bar{p}_{g}) = \frac{1}{GV} \sum_{g=1}^{G} \sum_{v=1}^{V} \bar{p}_{g,v} \log \bar{p}_{g,v}$$

Дополнительно по теме

- Gumbel softmax
- MLM task (BERT)
- Product quantization
- Contrastive loss

Что сейчас в тренде?

Что еще посмотреть

- https://web.stanford.edu/~jurafsky/slp3/
- rnn-t
- librispeech leaderboard
- hf leader board
- decoder Ilm https://arxiv.org/pdf/2402.08846v1

Спасибо за внимание!