$12n_{0135} \ (K12n_{0135})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 7.50785 \times 10^{65} u^{51} + 7.16783 \times 10^{66} u^{50} + \dots + 7.42713 \times 10^{65} b + 1.96991 \times 10^{66}, \\ & 5.02177 \times 10^{66} u^{51} + 4.81887 \times 10^{67} u^{50} + \dots + 1.48543 \times 10^{66} a + 4.88267 \times 10^{67}, \ u^{52} + 10 u^{51} + \dots + 42 u + 10 u^{51} + \dots + 42 u + 10 u^{51} + 10 u^{51} + \dots + 42 u + 10 u^{51} + 10 u^{51} + \dots + 42 u + 10 u^{51} + 10 u^{51} + 10 u^{51} + \dots + 42 u + 10 u^{51} +$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 66 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 7.51 \times 10^{65} u^{51} + 7.17 \times 10^{66} u^{50} + \dots + 7.43 \times 10^{65} b + 1.97 \times 10^{66}, \ 5.02 \times 10^{66} u^{51} + \\ 4.82 \times 10^{67} u^{50} + \dots + 1.49 \times 10^{66} a + 4.88 \times 10^{67}, \ u^{52} + 10 u^{51} + \dots + 42 u + 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.38070u^{51} - 32.4410u^{50} + \dots - 334.790u - 32.8705 \\ -1.01087u^{51} - 9.65087u^{50} + \dots - 83.4897u - 2.65231 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4.55808u^{51} - 43.5756u^{50} + \dots - 423.069u - 35.6566 \\ -0.649601u^{51} - 6.17332u^{50} + \dots - 52.5054u - 1.87796 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0984110u^{51} - 0.192798u^{50} + \dots + 107.102u + 18.1612 \\ -0.0523888u^{51} - 0.301105u^{50} + \dots + 24.7289u + 0.984872 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.75053u^{51} + 16.1107u^{50} + \dots + 66.9644u - 4.72365 \\ 0.445418u^{51} + 4.10330u^{50} + \dots + 21.4257u + 0.355988 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2.19594u^{51} + 20.2140u^{50} + \dots + 88.3901u - 4.36766 \\ 0.445418u^{51} + 4.10330u^{50} + \dots + 21.4257u + 0.355988 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.520552u^{51} - 4.34536u^{50} + \dots + 41.7074u + 19.0709 \\ -0.0705558u^{51} - 0.589302u^{50} + \dots + 8.55893u + 0.631584 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.281350u^{51} + 1.78079u^{50} + \dots - 103.579u - 19.6506 \\ -0.196558u^{51} - 1.93868u^{50} + \dots - 21.7903u - 0.947282 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.397552u^{51} 3.22353u^{50} + \cdots + 24.0213u + 12.7608$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{52} + 14u^{51} + \dots + 1402u + 1$
c_2, c_4	$u^{52} - 10u^{51} + \dots - 42u + 1$
c_{3}, c_{6}	$u^{52} + 6u^{51} + \dots - 384u + 256$
c_5,c_{11}	$u^{52} + 3u^{51} + \dots + 2u + 1$
c_7, c_8, c_{10}	$u^{52} + 8u^{51} + \dots + 5u + 1$
c_{9}, c_{12}	$u^{52} - 2u^{51} + \dots - 192u + 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{52} + 58y^{51} + \dots - 1883250y + 1$
c_2, c_4	$y^{52} - 14y^{51} + \dots - 1402y + 1$
c_{3}, c_{6}	$y^{52} - 54y^{51} + \dots - 6144000y + 65536$
c_5,c_{11}	$y^{52} + 11y^{51} + \dots - 2y + 1$
c_7, c_8, c_{10}	$y^{52} - 56y^{51} + \dots - 11y + 1$
c_9,c_{12}	$y^{52} - 42y^{51} + \dots + 4096y + 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.936589 + 0.362367I		
a = -0.132979 + 0.482589I	-1.82480 - 1.05655I	-2.50386 + 1.55405I
b = 0.197306 + 0.774360I		
u = 0.936589 - 0.362367I		
a = -0.132979 - 0.482589I	-1.82480 + 1.05655I	-2.50386 - 1.55405I
b = 0.197306 - 0.774360I		
u = 1.01183		
a = -0.483216	-0.760272	181.970
b = 5.14944		
u = -0.559950 + 0.773669I		
a = -0.737013 + 0.263694I	2.51889 - 0.64898I	4.15765 - 0.18218I
b = -0.240844 + 0.206423I		
u = -0.559950 - 0.773669I		
a = -0.737013 - 0.263694I	2.51889 + 0.64898I	4.15765 + 0.18218I
b = -0.240844 - 0.206423I		
u = 0.559290 + 0.772342I		
a = -1.39670 + 1.62328I	0.23912 - 3.31860I	6.89920 + 8.86972I
b = 0.48402 + 1.50336I		
u = 0.559290 - 0.772342I		
a = -1.39670 - 1.62328I	0.23912 + 3.31860I	6.89920 - 8.86972I
b = 0.48402 - 1.50336I		
u = 1.048670 + 0.109728I		
a = -1.11061 - 1.03411I	-0.279878 - 0.575640I	9.6300 - 22.9731I
b = -4.91550 + 0.99875I		
u = 1.048670 - 0.109728I		
a = -1.11061 + 1.03411I	-0.279878 + 0.575640I	9.6300 + 22.9731I
b = -4.91550 - 0.99875I		
u = -0.885811 + 0.275583I		
a = -0.543684 - 0.920606I	0.98837 + 7.05447I	10.8678 - 11.9178I
b = -0.464994 - 0.146107I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.885811 - 0.275583I		
a = -0.543684 + 0.920606I	0.98837 - 7.05447I	10.8678 + 11.9178I
b = -0.464994 + 0.146107I		
u = 0.591648 + 0.563249I		
a = -1.253030 + 0.325457I	8.16733 - 1.74753I	11.46085 - 2.28011I
b = 0.97832 + 1.31538I		
u = 0.591648 - 0.563249I		
a = -1.253030 - 0.325457I	8.16733 + 1.74753I	11.46085 + 2.28011I
b = 0.97832 - 1.31538I		
u = 1.20718		
a = 0.627019	6.40671	22.8380
b = -1.27287		
u = -1.038340 + 0.632822I		
a = 0.235533 - 0.357978I	1.02907 + 5.96168I	0
b = -0.020097 - 0.228430I		
u = -1.038340 - 0.632822I		
a = 0.235533 + 0.357978I	1.02907 - 5.96168I	0
b = -0.020097 + 0.228430I		
u = 1.267370 + 0.221888I		
a = 0.809757 + 0.387823I	-2.35126 - 1.18530I	0
b = 1.55628 + 0.73822I $u = 1.267370 - 0.221888I$		
	0.95106 + 1.105907	0
a = 0.809757 - 0.387823I	-2.35126 + 1.18530I	0
b = 1.55628 - 0.73822I $u = -0.786110 + 1.048790I$		
a = -0.21713 - 1.56663I	14.7382 - 0.7846I	0
	14.7362 - 0.78407	U
b = 0.70420 - 1.92030I $u = -0.786110 - 1.048790I$		
a = -0.780110 - 1.048750I $a = -0.21713 + 1.56663I$	14.7382 + 0.7846I	0
a = -0.21713 + 1.90003I $b = 0.70420 + 1.92030I$	14.1302 + 0.10401	U
0 - 0.10420 + 1.920301		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.682528 $a = 1.55752$ $b = 0.428312$	5.57235	20.0660
u = -0.930489 + 0.946751I $a = 1.69913 + 0.93383I$ $b = 0.39846 + 1.91824I$	6.81089 + 3.11557I	0
u = -0.930489 - 0.946751I $a = 1.69913 - 0.93383I$ $b = 0.39846 - 1.91824I$	6.81089 - 3.11557I	0
u = -0.638336 + 0.175622I $a = 0.52839 + 1.50233I$ $b = 0.636738 + 0.330921I$	-3.01505 + 2.93991I	8.02854 - 4.94099I
u = -0.638336 - 0.175622I $a = 0.52839 - 1.50233I$ $b = 0.636738 - 0.330921I$	-3.01505 - 2.93991I	8.02854 + 4.94099I
u = -0.770546 + 1.105190I $a = -1.71258 - 1.50608I$ $b = -0.37064 - 2.04621I$	7.28875 - 2.86108I	0
u = -0.770546 - 1.105190I $a = -1.71258 + 1.50608I$ $b = -0.37064 + 2.04621I$	7.28875 + 2.86108I	0
u = -0.989587 + 0.918401I $a = 0.45156 + 1.89777I$ $b = -0.78553 + 2.38078I$	6.62010 + 3.75962I	0
u = -0.989587 - 0.918401I $a = 0.45156 - 1.89777I$ $b = -0.78553 - 2.38078I$	6.62010 - 3.75962I	0
u = -0.875232 + 1.046570I $a = 1.123190 - 0.374810I$ $b = 0.481797 - 0.298623I$	9.30042 + 0.19617I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.875232 - 1.046570I		
a = 1.123190 + 0.374810I	9.30042 - 0.19617I	0
b = 0.481797 + 0.298623I		
u = 0.331898 + 0.536708I		
a = 1.10257 - 1.85668I	2.07038 - 1.52953I	7.08674 + 4.40429I
b = -0.014867 - 1.287660I		
u = 0.331898 - 0.536708I		
a = 1.10257 + 1.85668I	2.07038 + 1.52953I	7.08674 - 4.40429I
b = -0.014867 + 1.287660I		
u = -1.07831 + 0.92955I		
a = -0.621833 + 0.528081I	8.63174 + 7.01563I	0
b = -0.098379 + 0.481486I		
u = -1.07831 - 0.92955I		
a = -0.621833 - 0.528081I	8.63174 - 7.01563I	0
b = -0.098379 - 0.481486I		
u = -1.12261 + 0.87557I		
a = -1.29753 - 0.66665I	13.6500 + 7.8231I	0
b = -0.29203 - 1.83559I		
u = -1.12261 - 0.87557I		
a = -1.29753 + 0.66665I	13.6500 - 7.8231I	0
b = -0.29203 + 1.83559I		
u = 0.67896 + 1.25719I		
a = 1.47889 - 1.24770I	7.15465 - 5.75608I	0
b = 0.27488 - 1.48136I		
u = 0.67896 - 1.25719I		
a = 1.47889 + 1.24770I	7.15465 + 5.75608I	0
b = 0.27488 + 1.48136I		
u = -1.14863 + 0.89049I		
a = -0.81470 - 1.85316I	6.05959 + 10.09710I	0
b = 0.45931 - 2.66963I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.14863 - 0.89049I		
a = -0.81470 + 1.85316I	6.05959 - 10.09710I	0
b = 0.45931 + 2.66963I		
u = -0.69380 + 1.36099I		
a = 1.30611 + 1.75718I	15.0358 - 7.1240I	0
b = 0.30103 + 2.05635I		
u = -0.69380 - 1.36099I		
a = 1.30611 - 1.75718I	15.0358 + 7.1240I	0
b = 0.30103 - 2.05635I		
u = -0.419666 + 0.131585I		
a = -1.25630 + 1.76003I	0.61020 + 1.37415I	10.26914 - 1.41740I
b = -0.824846 + 0.597324I		
u = -0.419666 - 0.131585I		
a = -1.25630 - 1.76003I	0.61020 - 1.37415I	10.26914 + 1.41740I
b = -0.824846 - 0.597324I		
u = -1.28851 + 0.90075I		
a = 0.95078 + 1.61316I	13.0011 + 15.0944I	0
b = -0.13690 + 2.61915I		
u = -1.28851 - 0.90075I		
a = 0.95078 - 1.61316I	13.0011 - 15.0944I	0
b = -0.13690 - 2.61915I		
u = 0.413751 + 0.078624I		
a = 2.08417 - 1.70106I	0.524938 + 0.113527I	8.64384 - 0.42173I
b = -1.50990 + 0.03857I		
u = 0.413751 - 0.078624I		
a = 2.08417 + 1.70106I	0.524938 - 0.113527I	8.64384 + 0.42173I
b = -1.50990 - 0.03857I		
u = 1.64301 + 0.52942I		
a = -0.919697 - 0.977859I	3.67025 - 2.14792I	0
b = -1.16522 - 1.43890I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.64301 - 0.52942I		
a = -0.919697 + 0.977859I	3.67025 + 2.14792I	0
b = -1.16522 + 1.43890I		
u = -0.0269946		
a = -24.2139	0.823260	12.0980
b = -0.570054		

 $\text{II. } I_2^u = \langle 3a^7 - a^6 - 4a^5 + 3a^4 + 6a^3 - 2a^2 + b - 3a + 4, \ a^8 - a^7 - a^6 + 2a^5 + a^4 - 2a^3 + 2a - 1, \ u - 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3a^{7} + a^{6} + 4a^{5} - 3a^{4} - 6a^{3} + 2a^{2} + 3a - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3a^{7} + a^{6} + 4a^{5} - 3a^{4} - 6a^{3} + 2a^{2} + 2a - 4 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2a^{7} + a^{6} + 3a^{5} - 3a^{4} - 4a^{3} + 3a^{2} + 2a - 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{4} \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{4} \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2a^{7} + a^{6} + 3a^{5} - 3a^{4} - 4a^{3} + 3a^{2} + 2a - 4 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2a^{7} + 3a^{5} - a^{4} - 4a^{3} + 2a - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-36a^7 + 15a^6 + 42a^5 45a^4 62a^3 + 34a^2 + 20a 57$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_3, c_6	u^8
<i>C</i> ₄	$(u+1)^8$
<i>C</i> ₅	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c_{7}, c_{8}	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
<i>c</i> ₉	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_{10}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_{11}	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_{12}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_{3}, c_{6}	y^8
c_5, c_{11}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_7, c_8, c_{10}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_9, c_{12}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.570868 + 0.730671I	-0.604279 - 1.131230I	2.08624 + 1.57496I
b = 1.80990 - 0.33963I		
u = 1.00000		
a = 0.570868 - 0.730671I	-0.604279 + 1.131230I	2.08624 - 1.57496I
b = 1.80990 + 0.33963I		
u = 1.00000		
a = -0.855237 + 0.665892I	-3.80435 - 2.57849I	-1.05479 + 2.41352I
b = -1.043770 + 0.152194I		
u = 1.00000		
a = -0.855237 - 0.665892I	-3.80435 + 2.57849I	-1.05479 - 2.41352I
b = -1.043770 - 0.152194I		
u = 1.00000		
a = -1.09818	4.85780	7.27590
b = -0.155540		
u = 1.00000		
a = 1.031810 + 0.655470I	0.73474 + 6.44354I	6.38151 - 0.59069I
b = 0.759875 + 0.104398I		
u = 1.00000		
a = 1.031810 - 0.655470I	0.73474 - 6.44354I	6.38151 + 0.59069I
b = 0.759875 - 0.104398I		
u = 1.00000		
a = 0.603304	-0.799899	-49.1020
b = -2.89645		

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - u^{4} + u^{3} + u^{2} - u - 1 \\ u^{4} + u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - u^{4} + u^{3} + u^{2} - u - 1 \\ u^{4} + u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{5} - 3u^{3} + 2u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{5} + 3u^{3} - 2u \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - u^{4} - 2u^{3} + u^{2} + u - 1 \\ u^{5} + u^{4} - u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^5 + 7u^4 + u^3 6u^2 5u + 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$
c_2, c_6	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_3, c_4	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_{7}, c_{8}	$(u+1)^6$
c_9,c_{12}	u^6
c_{10}	$(u-1)^{6}$
c_{11}	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_{11}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$
c_2, c_3, c_4 c_6	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_7, c_8, c_{10}	$(y-1)^6$
c_9, c_{12}	y^6

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -1.00126 - 1.15863I	-0.245672 - 0.924305I	5.17126 + 7.13914I
b = -2.68739 + 0.76772I		
u = 1.002190 - 0.295542I		
a = -1.00126 + 1.15863I	-0.245672 + 0.924305I	5.17126 - 7.13914I
b = -2.68739 - 0.76772I		
u = -0.428243 + 0.664531I		
a = 0.001257 - 1.158630I	3.53554 - 0.92430I	13.12292 + 1.33143I
b = 0.346225 - 0.393823I		
u = -0.428243 - 0.664531I		
a = 0.001257 + 1.158630I	3.53554 + 0.92430I	13.12292 - 1.33143I
b = 0.346225 + 0.393823I		
u = -1.073950 + 0.558752I		
a = -0.500000 + 0.260139I	1.64493 + 5.69302I	11.70582 - 2.69056I
b = -0.658836 - 0.177500I		
u = -1.073950 - 0.558752I		
a = -0.500000 - 0.260139I	1.64493 - 5.69302I	11.70582 + 2.69056I
b = -0.658836 + 0.177500I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^8(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)$ $\cdot (u^{52} + 14u^{51} + \dots + 1402u + 1)$
c_2	$((u-1)^8)(u^6+u^5+\cdots+u+1)(u^{52}-10u^{51}+\cdots-42u+1)$
c_3	$u^{8}(u^{6} - u^{5} + \dots - u + 1)(u^{52} + 6u^{51} + \dots - 384u + 256)$
C4	$((u+1)^8)(u^6-u^5+\cdots-u+1)(u^{52}-10u^{51}+\cdots-42u+1)$
c_5	$(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{52} + 3u^{51} + \dots + 2u + 1)$
<i>c</i> ₆	$u^{8}(u^{6} + u^{5} + \dots + u + 1)(u^{52} + 6u^{51} + \dots - 384u + 256)$
c_7, c_8	$((u+1)^6)(u^8 - u^7 + \dots - 2u - 1)(u^{52} + 8u^{51} + \dots + 5u + 1)$
<i>c</i> ₉	$u^{6}(u^{8} + u^{7} + \dots - 2u - 1)(u^{52} - 2u^{51} + \dots - 192u + 64)$
c_{10}	$((u-1)^6)(u^8+u^7+\cdots+2u-1)(u^{52}+8u^{51}+\cdots+5u+1)$
c ₁₁	$(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)$ $\cdot (u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{52} + 3u^{51} + \dots + 2u + 1)$
c_{12}	$u^{6}(u^{8} - u^{7} + \dots + 2u - 1)(u^{52} - 2u^{51} + \dots - 192u + 64)$
-	19

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^8(y^6+y^5+5y^4+6y^2+3y+1)$ $\cdot (y^{52}+58y^{51}+\cdots -1883250y+1)$
c_2, c_4	$(y-1)^{8}(y^{6}-3y^{5}+5y^{4}-4y^{3}+2y^{2}-y+1)$ $\cdot (y^{52}-14y^{51}+\cdots -1402y+1)$
c_3, c_6	$y^{8}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)$ $\cdot (y^{52} - 54y^{51} + \dots - 6144000y + 65536)$
c_5,c_{11}	$(y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)$ $\cdot (y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{52} + 11y^{51} + \dots - 2y + 1)$
c_7, c_8, c_{10}	$(y-1)^{6}(y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{52}-56y^{51}+\cdots-11y+1)$
c_9, c_{12}	$y^{6}(y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{52} - 42y^{51} + \dots + 4096y + 4096)$