

Politechnika Wrocławska

Dr inż. Radosław Michalski Katedra Inteligencji Obliczeniowej, Wydział Informatyki i Zarządzania Politechnika Wrocławska Wersja 1.1, wiosna 2018

Źródła i licencja

Najbardziej aktualna wersja tego wykładu znajduje się tu: https://github.com/rmhere/lecture-comp-arch-org

Opublikowany jest on na licencji Creative Commons Attribution NonCommercial ShareAlike license 4.0 (CC BY-NC-SA 4.0).

Zawartość tego wykładu

Liczby zmiennoprzecinkowe

Zaawansowane architektury

Liczby zmiennoprzecinkowe

Flagi warunków

- ustawianie flag w zależności od wyniku porównań
 - ▶ c.eq.d \$f0 \$f2
 - Jeśli zawartość rejestrów \$f0 i \$f2 są identyczna, ustaw flagę 0 na true.
 - ▶ c.eq, c.lt, c.le
- Branching w zależności od statusu flag
 - ▶ bclt label
 - ► Skocz do label gdy flaga 0 == true
 - ▶ bclt, bclf

Liczby zmiennoprzecinkowe

Konwersja, przenoszenie

Konwersja:

- cvt.x.w \$fd \$fs I. całkowita do zmiennoprzecinkowej
- cvt.w.x \$fd \$fs I. zmiennoprzecinkowa do całkowitej
- cvt.s.d \$fd \$fs I. podwójnej precyzji do pojedynczej
- cvt.d.s \$fd \$fs I. pojedynczej precyzji do podwójnej

Przenoszenie:

- ▶ mfc0, mfc1 przenoszenie z koprocesora 0 lub 1
- ▶ mtc0, mtc1 przenoszenie do koprocesora 0 lub 1

W jaki sposób zwiększać wydajność systemu?

pomysły?

Optymalizacja

- szybkość
- ► zużycie energii
- cena
- niezawodność

Minimalizacja tranzystorów

- ▶ tranzystory co 2-3 lata zmniejszają rozmiary o ok. 30%
- dzięki temu:
 - działają szybciej
 - ▶ można ich umieścić więcej w układzie
- jednak zwiększa to zużycie energii
- ▶ inne problemy (np. ścieżki artykuł)

Głębokie potokowanie

- zamiast typowych pięciu etapów potokowania więcej
- przykładowo, procesor Pentium 4 miał od 20 do 31 etapów
- hazard potokowania będzie częściej występował
- znowu problem zużycia energii
- powrót do mniejszej liczby etapów

Przewidywanie rozgałęzień

- problem rozgałęzień w potokowaniu
- przewidywanie rozgałęzień jednobitowe i dwubitowe

Przewidywanie rozgałęzień - przykład

```
add $s1, $0, $0
addi $s0, $0, 0
addi $t0, $0, 10

for:
    beq $s0, $t0, done
    add $s1, $s1, $s0
    addi $s0, $s0, 1
    j for
done:
```


Przewidywanie rozgałęzień - jednobitowe a dwubitowe

Enormator, CC-BY-SA-3.0

Superskalar

- zwielokrotnienie szyny danych
- ▶ wiele jednostek wykonawczych
- zależności

Superskalar - potoki

IF	ID	EX	MEM	WB				
IF	ID	EX	MEM	WB				
<i>i t</i>	IF	ID	EX	MEM	WB			
	IF	ID	EX	MEM	WB			
· · ·		IF	ID	EX	MEM	WB		
		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB
				IF	ID	EX	MEM	WB

Amit6, CC-BY-SA-3.0

Tranzystor

Wideo

AT&T Tech Channel - The Transistor: a 1953 documentary, anticipating its coming impact on technology

MegaProcessor

Wideo

Computerphile - MegaProcessor

Slajd końcowy

Źródła i polecane materiały

- Katherine Boursac, "Graphene could Buttress Next-gen Computing Chip Wiring", IEEE Spectrum (artykuł)
- ▶ David Harris and Sarah L. Harris, "Digital Design and Computer Architecture", Morgan Kaufmann (książka)

Slajd końcowy

Pytania? Komentarze?

Jeśli masz pomysł jak poprawić lub wzbogacić te wykłady, proszę zgłoś to jako issue w tym repozytorium:

https://github.com/rmhere/lecture-comp-arch-org