MAR	0 1 2007
187.47	MORNING

Form PTO-1449 IRSY. 7.801 U.S. Department of Commerce Patent and Trademark Office	ATTORNEY DOCKET NO.	2713-1-015PCT/US
·	SERIAL NO.	10/537,188
LIST OF DOCUMENTARY INFORMATION	APPLICANT	Niall GORMLEY et al.
CITED BY APPLICANT (Use several sheets if necessary)	FILING DATE	June 2, 2005
	GROUP	1634

U.S. PATENT DOCUMENTS

EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS	SUB- CLASS	FILING DATE IF APPROPRIATE
Oct	AA	5,942,391	8-24-99	Zhang et al.			
	AB	2002/0142309 A1	10-3-02	Dattagupta			
V	AC	2002/0110826 A1	8-15-02	Dattagupta			

FOREIGN PATENT DOCUMENTS

		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUB- CLASS	TRANSLATION YES NO
ast	ВА	WO 00/18957	4-6-00	PCT			
	BB	WO 98/44151	10-8-98	PCT			
	вс	WO 94/03624	2-17-94	PCT _			
	BD	WO 00/47767	8-17-00	PCT			
	BE	WO 02/50305 A1	6-27-02	PCT			
\	BF	EP 0 745 690	12-4-96	Europe			

OTHER PRIOR ART (Including Author, Title, Date, Pertinent Pages, Etc.)

041	CA	Dubiley et al., Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers, Nucleic Acids Research, 27:e19 (1999)
V	СВ	Adessi et al., Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms, Nucleic Acids Research, 28:e87 (2000)

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Form PTO-1449 IRSY. 7.801 U.S. Department of Commerce Patent and Trademark Office	ATTORNEY DOCKET NO.	2713-1-015PCT/US
	SERIAL NO.	10/537,188
LIST OF DOCUMENTARY INFORMATION	APPLICANT	Niall GORMLEY et al.
CITED BY APPLICANT (Use several sheets if necessary)	FILING DATE	June 2, 2005
·	GROUP	1634

CD Walter and Strunk, Strand displacement amplification as an in vitro model for rolling-circle replication: Deletion formation and evolution during serial transfer, Proceedings of the National Academy of Sciences USA, 91:7937-7941 (1994) CE Walker et al., Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria; Nucleic Acids Research, 22:2670-2677 (1994) CF Lizardi et al., Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nature Genetics, 19:225-232 (1998) CG Westin et al., Anchored multiplex amplification on a microelectronic chip array; Nature Biotechnology, 18:199-204 (2000)	at	СС	Walker et al., Strand displacement amplification - an isothermal, in vitro DNA amplification technique, Nucleic Acids Research, 20:1691-1696 (1992)
sequences from Mycobacterium tuberculosis and other mycobacteria; Nucleic Acids Research, 22:2670-2677 (1994) CF Lizardi et al., Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nature Genetics, 19:225-232 (1998) CG Westin et al., Anchored multiplex amplification on a microelectronic chip array; Nature		CD	replication: Deletion formation and evolution during serial transfer, Proceedings of the
amplification, Nature Genetics, 19:225-232 (1998) CG Westin et al., Anchored multiplex amplification on a microelectronic chip array; Nature		CE	sequences from Mycobacterium tuberculosis and other mycobacteria; Nucleic Acids
Westin et al., Anchored multiplex amplification on a microelectronic chip array; Nature Biotechnology, 18:199-204 (2000)		CF	Lizardi et al., Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nature Genetics, 19:225-232 (1998)
	V	CG	Westin et al., Anchored multiplex amplification on a microelectronic chip array; Nature Biotechnology, 18:199-204 (2000)
		_	
			·

DATE CONSIDERED: EXAMINER *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.