Introduction to Logic, P. Suppes - exercises

Dominik Lenda

April 3, 2021

Exercise 5.

Let

N =New York is larger than Chicago

W =New York is north of Washington

C =Chicago is larger than New York

N, W are true and C is false.

Which of the following sentences are true?

- (a) $N \vee C$ is true
- (b) $N \wedge C$ is false
- (c) $-N \wedge -C$ is false
- (d) $N \leftrightarrow -W \lor C$ is false
- (e) $W \vee -C \rightarrow N$ is true
- (f) $(W \vee N) \rightarrow (W \rightarrow -C)$ is true
- (g) $(W \leftrightarrow -N) \leftrightarrow (N \leftrightarrow C)$ is true
- (h) $(W \to N) \to [(N \to -C) \to (-C \to W)]$ is true

Exercise 6.

Let

P =Jane Austen was contemporary of Beethoven

Q = Beethoven was a contemporary of Gauss

R = Gauss was a contemporary of Napoleon

S = Napoleon was a contemporary of Julius Caesar

P, Q, and R are true, and S is false.

Find the truth values of the following sentences:

- (a) $(P \wedge Q) \wedge R$ is true
- (b) $P \wedge (Q \wedge R)$ is true
- (c) $S \to P$ is true
- (d) $P \to S$ is false
- (e) $(P \wedge Q) \wedge (R \wedge S)$ is false
- (f) $P \wedge Q \leftrightarrow R \wedge -S$ is true
- (g) $(P \leftrightarrow Q) \rightarrow (S \leftrightarrow R)$ is false
- (h) $(-P \leftarrow Q) \leftarrow (S \leftarrow R)$ is true

- $\begin{array}{ll} \text{(i)} & (P \to -Q) \to (S \leftrightarrow R) \text{ is } true \\ \text{(j)} & (P \to Q)[(Q \to R) \to (R \to S)] \text{ is } false \\ \text{(k)} & P \to [Q \leftrightarrow (R \to S)] \text{ is } false \end{array}$

Exercise 7.

Let P be a sentence such that for any sentence Q the sentence $P \vee Q$ is true. What can be said about the truth value of P.

Answer: P is true

Exercise 8.

Let P be a sentence such that for any sentence Q the sentence $P \wedge Q$ is false. What can be said about the truth value of P.

Answer: P is false

Exercise 9.

If $P \leftrightarrow Q$ is true, what can be said about the truth value of $P \lor -Q$? Answer: $P \lor -Q$ is true