FT245RL USB-**パラレル変換モジュール**

1チップでUSB - 8ビットのパラレル双方向データ転送ができます。 クロック信号発生回路内蔵で、内部クリスタル不要 1Mバイト / 秒の転送レート(D2XX) 256バイト受信バッファ、128バイト送信バッファ内蔵 1 / O用に3 3Vレギュレータ内蔵 ビットバングモード、仮想COMポートに対応しています。 USBミニB端子

基板サイズ:34x19mm

FT245RLモジュール

FTDI社USB-8ビットパラレル変換IC使用

「VC++やVBは得意だけど、ハードは不得意」な方に最適 パソコンUSBから、8ビットI/Oを容易に作れます。 簡単製作で、電源もUSBから供給します。

特徴

- 1、1チップでUSB-8ビットパラレル双方向データ転送が出来ます。
- 2、クロック信号発生回路内蔵で、外部クリスタル等が不要です。
- 3、EEPROM内蔵で、外部EEPROM不要です。
- 4、1Mバイト/秒転送レート(D2XX)
- 5、300Kバイト/秒転送レート(VPC)
- 6、256バイト受信バッファ、128バイト送信バッファ内蔵
- 7、1/0用に3.3 Vレギュレータ内蔵
- 8、ビットバングモード (8ビットの I/Oとして使用するモード)、仮想 COMポートモード に対応しています。
- 9、 D2XXドライバ、 VCPドライバ共にFTD I 社サイトで、ロイヤリティフリーで、 入手、使用が出来ます。

FTD I 社サイト http://www.ftdichip.com/

10、秋月電子ホームページにて、VBを使用した ビットバングモードのサンプルソフト (ソースファイル) を公開しています。

部品表

番 号	種類	品名	数	備考
U 1	I C	FT245RL	1	
C1, 4, 5	セラミックコンデンサ	0. 1 μ F	3	
C2、3	セラミックコンデンサ	47pF	2	
C 6	セラミックコンデンサ	4. 7 µ F	1	
R 1	抵抗	10ΚΩ	1	
R 2	抵抗	4. 7 Κ Ω	1	
FB1	フェライトインダクタ	BLM21PG	1	
C N 1	コネクタ	U S B − ₹ = B	1	
J1、J2	ピンヘッダ	5ピン分	1	
ショートピン	ショートピン		2	
CN2	両オスピン	2 4ピン分(1 2×2)	1	

注 ビジュアルBASIC等のソフトは附属していません

■D2XX(ビットバングセード)とVCP(仮想COMモード)■ FTD | 社のD2XXドライバを使用した場合は、ユーザーのアプリケーションソフトは、 DLLベースのAP | を使用して、FT245RLに直接アクセスする事が出来、8ビットの 1/Oとして使用できます。

ビットバングモードの場合は8ビットデータバスのみを使用して、入力出力を行います。 (ビットバングモードは8ビットデータバスを各ビット毎に入力または出力に設定できます)

FTDI社の仮想COMポートドライバ(VCP)を使用した場合は、ユーザーのアプリケーションソフトは、標準的なCOMポートとしてアクセスできます。

仮想COMポートの場合、他の機器(マイコンCPU等)がFT245Rにアクセスする場合8ビットデータバスとWR端子TXE端子(送信時)、RD端子RXF端子(受信時)を使用しデータのやり取りを行います。

D2XXドライバ、VCPドライバはFTD I 社サイトからダウンロードできます

■DX2XXドライバアーキテクチャ

VC++や VBなどのアプリケーションからは、 FTD2XX. SYSを意識する事無く FTD2XX. DLLをアクセスするだけで、デバイスの制御が行えます。

■内蔵EEPROM■

FT245RLはEEPROMが内蔵 されています。FTDI社のEEPRO Mユーティリティ「Mprog」で書き 換えが出来ます。

「Mprog」は、FTDI社 トップページ→Resources→ Utiltiesでダウンロードできま す。

CN2ピンの説明

CN	2 ピンの記り]	
番号	名称	種別	機能
1	DBO	1/0	DATA Bit O
2	D B 1	1/0	DATA Bit 1
3	DB2	1/0	DATA Bit 2
4	D B 3	1/0	DATA Bit 3
5	DB4	1/0	DATA Bit 4
6	DB5	1/0	DATA Bit 5
7	DB6	1/0	DATA Bit 6
8	DB7	1/0	DATA Bit 7
9	GND	GND	GND
1 0	VIO	POWER	I/O(DB0-7,RD,WR,RXE,TXE)用電源 1.8V~5.25V 通常は、J1により、VCC又は、3.3Vを供給する
1 1	PWE#	OUT	外部パワーコントロール USBに接続されるとしになる パソコン側がサスペンドになると、Hになる。
1 2	RD#	IN	リードデータ COMモードで使用します。 Lの時、現在の受信FIFOバッファのデータが有効になる。 L→Hで受信FIFOバッファのデータがフェッチされる
1 3	SLD	GND	USBケーブルシールド
1 4	USB	OUT	USBバスよりの5V出力
1 5	VCC	POWER	電源入力 3.3V~5.25 V USBバスよりの5 Vを使用する場合は、J1をショート する事で、USBバスから5 Vが供給される。
1 6	PU2	CONT	リセット用抵抗端子
1 7	PU1	CONT	■リセット用抵抗回路(PU1, 2)■を参照してください
1 8	WR	IN	ライトデータ COMモードで使用します。 H→L で送信バッファにデータを書き込む
1 9	3 V 3	OUT	3.3V 電源出力
2 0	RST#	I N	リセット入力
2 1	VCC	POWER	15番ピンと同じ(15番ピンと接続されている)
2 2	TXE#	OUT	Txイネーブル 仮想COMモードで使用します。 Lで送信可 Hで送信禁止
2 3	RXF#	OUT	R x フィル 仮想COMモードで使用します。 L で受信データ有り H で受信データ読み出し禁止
2 4	GND	GND	GND

■J1、J2について■

J1で、VCCへの電源供給を設定し、J2でVCCIOへの電源供給を設定します。 それぞれジャンパーピン(ショートピン)で設定します。

1、J1

1 \ 0		
1-2間ジャンパ	2-3間ジャンパ	VCCIOの電源(I/Oピンの電源)
有り(ショート)	無し(オープン)	3 V 3 O U T からの3. 3 V が供給される
無し(オープン)	有り(ショート)	VCCからの供給される

2、J2

ジャンパーピン (ショートピン)	VCCの電源設定
有り(ショート)	USBバスからVCCに5Vが供給される
無し(オープン)	V C C に外部から電源を供給する(3.3V-5V)

■リセット用抵抗回路 (PU1, 2) ■

FT245Rには、内部リセット回路が内蔵されています。通常はこの機能をそのまま使用します。その場合はRST#ピンは無接続です。

外部電源を使用する場合、USBに接続された時にリセットをかけるために、PU1, 2回路を使用します。

PU1, 2回路を使用したリセットを行う場合は、 PU1をRST#端子(21番ピン)に、PU1をUSB端子(14番ピン)にそれぞれ接続してください。

■外部電源供給で、接続例■

外部電源供給

■FT245R内部ブロック図■

■内部クロック■

FT245Rには内部クロック用として、内部に12MHz発生回路、48MHz生成回路(12MHz×4)を内蔵しています。

FT245Rには、OSC入力及び出力ピンが有りますので、IC単体ならば外部から12MHzを供給する事も可能ですが、このボードは、OSCピンが外部に出ていませんので内部発振回路のみになります。

■VCP(仮想COMモード) リード、ライト タイムチャート■

Time	Description	Min	Max	Unit
T1	RD Active Pulse Width	50		ns
T2	RD to RD Pre-Charge Time	50 + T6		ns
T3	RD Active to Valid Data*	20	50	ns
T4	Valid Data Hold Time from RD Inactive*	0		ns
T5	RD Inactive to RXF#	0	25	ns
T6	RXF Inactive After RD Cycle	80		ns

Time	Description	Min	Max	Unit
T7	WR Active Pulse Width	50		ns
T8	WR to RD Pre-Charge Time	50		ns
T9	Data Setup Time before WR Inactive	20		ns
T10	Data Hold Time from WR Inactive	0		ns
T11	WR Inactive to TXE#	5	25	ns
T12	TXE Inactive After WR Cycle	80		ns

■/○仕様■

I/O=5V時

Parameter	Description	Min	Тур	Max	Units	Conditions
Voh	Output Voltage High	3.2	4.1	4.9	٧	I source = 2mA
Vol	Output Voltage Low	0.3	0.4	0.6	٧	I sink = 2mA
Vin	Input Switching Threshold	1.3	1.6	1.9	٧	14
VHys	Input Switching Hysteresis	50	55	60	m∨	8.x

I/O=3.3V時

Parameter	Description	Min	Тур	Max	Units	Conditions
Voh	Output Voltage High	2.2	2.7	3.2	٧	I source = 1mA
Vol	Output Voltage Low	0.3	0.4	0.5	٧	1 sink = 2mA
Vin	Input Switching Threshold	1.0	1.2	1.5	V	4.6
VHys	Input Switching Hysteresis	20	25	30	mV	15

■実際の使用例■(秋月電子ホームページのサンプルソフトを動作させる。)

サンプルソフトは、D2XXビットバングモードでLED、スイッチを使用し、基板の出力をパソコンから コントロールし、また基板の入力をパソコンに表示させます。(LED、スイッチ等は各自ご用意ください)

1、用意する物

使用例ソフト FT232RL_SAMPLE.ZIP 秋月電子通商ホームページより

USBドライバ CDM2.00.00.ZIP

FTDI社ホームページより

LED8本、抵抗 $1K\Omega4$ 本、抵抗 $100K\Omega4$ 本、タクトスイッチ4個

2、使用例の回路図

LEDフラッシュ回路図

入力出力回路図

3、デバイスドライバの認識

1、で用意したFTDI社ホームページの CDM2.00.00.ZIPをあらかじめ解凍しておきます。

基板をUSBケーブルで接続すると、「新しいハードが発見されました」が出でますので、画面の 指示にしたがい、CDM2.00.00.ZIPを解凍したフォルダを指定してください。

「新しいハードが発見されました」は、2回出ます(D2XXビットバングモードとVCP仮想COMモード) ので、デバイスドライバのインストールは、2回行ってください。

4、使用例ソフトのインストール

1、で用意した秋月電子ホームページの FT232RL_SAMPLE.ZIP内の「SETUP」を実行し、ソフトをインストールしてください。

5、動作

LEDフラッシュ回路図又は、入力出力回路図にしたがい、部品を接続します。 ソフトを起動すると下記の画面になります。

基板をパソコンUSBに接続し、①を押すと通信が開始されます。

●LEDフラッシュ回路で接続した場合は、④を押すと、8個のLEDが順に点灯します。 ④をもう一度押すと、停止します。

基板をUSBから切り離す前に、③を押し、通信を解除します。

- ●入力出力回路で接続した場合は、「①を押す」後、⑥出力4~7にチェックをいれると、そのLEDが 点灯します。また、接続したタクトスイッチを押すと、⑥入力に表示されます。
- ⑥は、タクトスイッチを押すとLo(画面表示黒丸)、タクトスイッチを押していないとHi(画面表示赤丸)になります。
- 注意 入力出力回路接続時に、「④LEDフラッシュスイッチ」を押さないでください。