Equilibrium with Production and Endogenous Labor Supply

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

Readings

▶ GLS Chapter 11

Production and Labor Supply

- ► We continue working with a two period, optimizing, equilibrium model of the economy
- ► No uncertainty over future, although it would be straightforward to entertain this
- ► We augment the model with which we have been working along the following two dimensions:
 - 1. We model production and an investment decision
 - 2. Model endogenous labor supply
- ▶ The production side is very similar to the Solow model

Firm

▶ There exists a representative firm. The firm produces output using capital, K_t , and labor, N_t , according to the following production function:

$$Y_t = A_t F(K_t, N_t)$$

- ▶ A_t is exogenous productivity variable. Abstract from trend growth
- ▶ $F(\cdot)$ has the same properties as assumed in the Solow model increasing in both arguments, concave in both arguments, both inputs necessary. For example:

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}, \quad 0 < \alpha < 1$$

Capital Accumulation

- Slightly differently than the Solow model, we assume that the firm makes the capital accumulation decisions
- ► We assume that the firm must borrow from a financial intermediary in order to finance its investment
- "Equity" versus "debt" finance would be equivalent absent financial frictions, which we will model
- Furthermore, ownership of capital wouldn't make a difference absent financial frictions (i.e. firm makes capital accumulation decision vs. household owning capital and leasing it to firms)
- ▶ Current capital, K_t , is predetermined and hence exogenous. Capital accumulates according to:

$$K_{t+1} = I_t + (1 - \delta)K_t$$

Exactly same accumulation equation as in Solow model

Prices Relevant for the Firm

- Firm hires labor in a competitive market at (real) wage w_t (and w_{t+1} in the future)
- ▶ Firm borrows to finance investment at:

$$r_t^I = r_t + f_t$$

- $ightharpoonup r_t^I$ is the interest rate relevant for the firm, while r_t is the interest rate relevant for the household
- rackleft f is (an exogenous) variable representing a financial friction. We will refer to this as a credit spread
- ▶ During financial crises observed credit spreads rise significantly

Dividends

- ► The representative household owns the firm. The firm returns any difference between revenue and cost to the household each period in the form of a dividend
- Dividend is simply output (price normalized to one since model is real) less cost of labor in period t (since borrowing cost of investment is borne in future):

$$D_t = Y_t - w_t N_t$$

- ▶ Terminal condition for the firm: firm wants $K_{t+2} = 0$ (die with no capital). This implies $I_{t+1} = -(1-\delta)K_{t+1}$, which we can think of as the firm "liquidating" its remaining capital after production in t+1
- ▶ This is an additional source of revenue for the firm in t+1. In addition, firm has to pay interest plus principal on its borrowing for investment in t:

$$D_{t+1} = Y_{t+1} + (1 - \delta)K_{t+1} - W_{t+1}N_{t+1} - (1 + r_t^I)I_t$$

Firm Valuation and Problem

Value of the firm: PDV of flow of dividends:

$$V_t = D_t + \frac{1}{1 + r_t} D_{t+1}$$

Firm problem is to pick N_t and I_t to maximize V_t subject to accumulation equation:

$$\max_{N_t, I_t} V_t = D_t + \frac{1}{1 + r_t} D_{t+1}$$
s.t.

$$K_{t+1} = I_t + (1 - \delta)K_t$$

$$D_t = A_t F(K_t, N_t) - w_t N_t$$

$$D_{t+1} = A_{t+1} F(K_{t+1}, N_{t+1}) + (1 - \delta)K_{t+1} - w_{t+1}N_{t+1} - (1 + r_t^I)I_t$$

First Order Conditions

► Two first order conditions come out of firm problem:

$$w_{t} = A_{t}F_{N}(K_{t}, N_{t})$$

$$1 + r_{t}^{I} = A_{t+1}F_{K}(K_{t+1}, N_{t+1}) + (1 - \delta)$$

- ▶ Intuition: MB = MC
- Wage condition exactly same as Solow model expression for wage
- ▶ Investment condition can be re-written in terms of earlier notation by noting $R_{t+1} = A_{t+1}F_K(K_{t+1}, N_{t+1})$ and:

$$R_{t+1} = r_t^I + \delta = r_t + f_t + \delta$$

- ▶ Return on capital, R_{t+1} , closely related to real interest rate, r_t
- These FOC implicitly define labor and investment demand functions

Labor Demand

Labor FOC implicitly characterizes a downward-sloping labor demand curve:

$$N_t = N^d(w_t, A_t, K_t)$$

Investment Demand

Second first order condition implicitly defines a demand for K_{t+1} , which can be used in conjunction with the accumulation equation to get an investment demand curve:

$$I_t = I^d(r_t, A_{t+1}, f_t, K_t)$$

Household

- ▶ There exists a representative household. Households gets utility from consumption and leisure, where leisure is $L_t = 1 N_t$, with N_t labor and available time normalized to 1
- Lifetime utility:

$$U = u(C_t, 1 - N_t) + \beta u(C_{t+1}, 1 - N_{t+1})$$

Example flow utility functions:

$$u(C_t, 1 - N_t) = \ln C_t + \theta_t \ln(1 - N_t)$$

 $u(C_t, 1 - N_t) = \ln [C_t + \theta_t \ln(1 - N_t)]$

- ► Here, θ_t is an exogenous "labor supply shock" governing utility from leisure (equivalently, disutility from labor)
- Notation: u_C denotes marginal utility of consumption, u_L marginal utility of leisure (marginal utility of labor is $-u_L$)

Budget Constraints

► Household faces two flow budget constraints, conceptually the same as before, but now income is partly endogenous:

$$C_t + S_t \le w_t N_t + D_t$$

 $C_{t+1} + S_{t+1} - S_t \le w_{t+1} N_{t+1} + D_{t+1} + D_{t+1}' + r_t S_t$

- ▶ Household takes D_t , D_{t+1} , and D_{t+1}^I (dividend from financial intermediary) as given (ownership different than management)
- ▶ Terminal condition: $S_{t+1} = 0$. Gives rise to IBC:

$$C_t + \frac{C_{t+1}}{1 + r_t} = w_t N_t + D_t + \frac{w_{t+1} N_{t+1} + D_{t+1} + D_{t+1}^I}{1 + r_t}$$

First Order Conditions

Do the optimization in the usual way. The following first order conditions emerge:

$$u_C(C_t, 1 - N_t) = \beta(1 + r_t)u_C(C_{t+1}, 1 - N_{t+1})$$

This is the usual Euler equation, only looks different to accommodate utility from leisure

$$u_L(C_t, 1 - N_t) = w_t u_C(C_t, 1 - N_t)$$

$$u_L(C_{t+1}, 1 - N_{t+1}) = w_{t+1} u_C(C_{t+1}, 1 - N_{t+1})$$

Discussion and intuition

Optimal Decision Rules

- Can go from first order conditions to optimal decision rules
- ► Cutting a few corners, we get the same consumption function as before:

$$C_t = C^d(Y_t, Y_{t+1}, r_t)$$

► Or, if there were government spending, with Ricardian Equivalence we'd have:

$$C_t = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t)$$

Labor Supply

- First order condition for N_t can be characterized by an indifference curve / budget line diagram similar to the two period consumption case:
- ► Things are complicated for a few reasons:
 - Competing income and substitution effects of w_t
 - Non-wage income and expectations about future income (including through an interest rate channel) can affect current labor supply
- We will sweep most of this stuff under rug: substitution effect dominates and other things (other than exogenous variable θ_t) are ignored
- ► Can be motivated explicitly with preference specification due to Greenwood, Hercowitz, and Huffman (1988):

$$u(C_t, 1 - N_t) = \ln \left[C_t + \theta_t \ln(1 - N_t) \right]$$

Labor Supply Curve

▶ Labor supply function under these assumptions:

$$N_t = N^s(w_t, \theta_t)$$

Financial Intermediary

- Will not go into great detail
- ▶ In period t, takes in deposits, S_t , from household; issues loans in amount I_t to firm
- ▶ Pays r_t for deposits, and earns $r_t^I = r_t + f_t$ on loans
- f_t is exogenous, and $f_t > 0$ means intermediary earns profit in t+1, which is returned to household as dividend:

$$D_{t+1}^I = (r_t + f_t)I_t - r_tS_t$$

Market-Clearing

- Market-clearing requires $S_t = I_t$ (i.e. funds taken in by financial intermediary equal funds distributed to firm for investment)
- ► This implies:

$$Y_t = C_t + I_t$$

▶ If there were a government levying (lump sum) taxes on household period *t* resource constraint would just be:

$$Y_t = C_t + I_t + G_t$$

▶ Can show that period t + 1 constraint is the same:

$$Y_{t+1} = C_{t+1} + I_{t+1}$$

Equilibrium

► The following conditions must all hold in period *t* in equilibrium:

$$C_{t} = C^{d}(Y_{t}, Y_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t}$$

- ▶ Endogenous: C_t , N_t , Y_t , I_t , w_t , and r_t
- ▶ Exogenous: A_t , A_{t+1} , K_t , f_t , θ_t . Will talk about Y_{t+1} and K_{t+1} later
- ► Four optimal decision rules, two resource constraints: income = production and income = expenditure

Competitive Equilibrium

- ► There are now *two* prices $-r_t$ (intertemporal price of goods) and w_t (price of labor)
- Different ways to think about what the markets are. One is clear – market for labor, which w_t adjusts to clear (i.e. labor supply = demand)
- ▶ Can think about either market for goods (i.e. $Y_t = C_t + I_t$) or a loanable funds market $S_t = I_t$ as being the other market, which r_t adjusts to clear. We will focus on market for goods
- Endowment economy special case of this if N_t and I_t are held fixed
- Will be possible to do some consumption smoothing in equilibrium here, however. Suppose household wants to increase S_t . It can do this if r_t falls to incentivize more I_t (whereas in endowment economy $I_t = 0$, so S_t must remain fixed at 0).