THE CALCULUS OF COMPUTATION:

Decision Procedures with Applications to Verification

by Aaron Bradley Zohar Manna

Springer 2007

Part I: FOUNDATIONS

1. Propositional Logic(PL)

Propositional Logic(PL)

PL Syntax

```
truth symbols \top ("true") and \bot ("false")
Atom
           propositional variables P, Q, R, P_1, Q_1, R_1, \cdots
Literal
           atom \alpha or its negation \neg \alpha
           literal or application of a
Formula
           logical connective to formulae F, F_1, F_2
            \neg F "not"
                                            (negation)
            F_1 \wedge F_2 "and" (conjunction)
            F_1 \vee F_2 "or"
                              (disjunction)
            F_1 \rightarrow F_2 "implies" (implication)
            F_1 \leftrightarrow F_2 "if and only if" (iff)
```

Example:

```
formula F:(P \land Q) \rightarrow (\top \lor \neg Q) atoms: P,Q,\top literal: \neg Q subformulas: P \land Q, \quad \top \lor \neg Q abbreviation F:P \land Q \rightarrow \top \lor \neg Q
```

PL Semantics (meaning)

Sentence
$$F$$
 + Interpretation I = Truth value (true, false)

Interpretation

$$I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}, \cdots \}$$

Evaluation of F under I:

ration of
$$F$$
 under I :

 $\begin{array}{c|cccc}
F & \neg F \\
\hline
0 & 1 \\
1 & 0
\end{array}$
where 0 corresponds to value false true

F_1	F_2	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Example:

$$F: P \ \land \ Q \ \rightarrow \ P \ \lor \ \neg Q$$
$$I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}\}$$

Р	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1
			_		

$$1 = \mathsf{true}$$
 $0 = \mathsf{false}$

F evaluates to true under I

Inductive Definition of PL's Semantics

```
I \models F if F evaluates to true under I \not\models F false
```

Base Case:

Inductive Case:

$$I \models \neg F$$
 iff $I \not\models F$
 $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$
 $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$
 $I \models F_1 \to F_2$ iff, if $I \models F_1$ then $I \models F_2$
 $I \models F_1 \leftrightarrow F_2$ iff, $I \models F_1$ and $I \models F_2$,
or $I \not\models F_1$ and $I \not\models F_2$

Note:

$$I \not\models F_1 o F_2$$
 iff $I \models F_1$ and $I \not\models F_2$

Example:

$$F: P \land Q \rightarrow P \lor \neg Q$$

$$I: \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}$$
1.
$$I \models P \qquad \mathsf{since} \ I[P] = \mathsf{true}$$
2.
$$I \not\models Q \qquad \mathsf{since} \ I[Q] = \mathsf{false}$$
3.
$$I \models \neg Q \qquad \mathsf{by} \ 2 \ \mathsf{and} \ \neg$$
4.
$$I \not\models P \land Q \qquad \mathsf{by} \ 2 \ \mathsf{and} \ \land$$
5.
$$I \models P \lor \neg Q \qquad \mathsf{by} \ 1 \ \mathsf{and} \ \lor$$
6.
$$I \models F \qquad \mathsf{by} \ 4 \ \mathsf{and} \ \rightarrow \ \mathsf{Why?}$$

Thus, F is true under I.

Satisfiability and Validity

F <u>satisfiable</u> iff there exists an interpretation I such that $I \models F$. F <u>valid</u> iff for all interpretations I, $I \models F$.

F is valid iff $\neg F$ is unsatisfiable

Method 1: Truth Tables

Example $F: P \land Q \rightarrow P \lor \neg Q$

PQ	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0 0	0	1	1	1
0 1	0	0	0	1
1 0	0	1	1	1
1 1	1	0	1	1

Thus F is valid.

Example	F : P	\vee Q	$\rightarrow P$	\wedge	Q
---------	-------	----------	-----------------	----------	---

PQ	$P \lor Q$	$P \wedge Q$	F	
0 0	0	0	1	← satisfying <i>I</i>
0 1	1	0	0	← falsifying <i>I</i>
1 0	1	0	0	
1 1	1	1	1	

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument

Proof rules

Example 1: Prove

$$F: P \land Q \rightarrow P \lor \neg Q$$
 is valid.

Let's assume that F is not valid and that I is a falsifying interpretation.

1.	1	$\not\models$	$P \land Q \rightarrow P \lor \neg Q$	assumption
2.	1	=	$P \wedge Q$	1 and $ ightarrow$
3.	1	$\not\models$	$P \vee \neg Q$	1 and $ ightarrow$
4.	1	=	P	2 and ∧
5.	1	$\not\models$	P	3 and \lor
6.	1	=	\perp	4 and 5 are contradictory

Thus *F* is valid.

Example 2: Prove

$$F: (P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R)$$
 is valid.

Let's assume that F is not valid.

1.
$$I \not\models F$$
assumption2. $I \models (P \rightarrow Q) \land (Q \rightarrow R)$ 1 and \rightarrow 3. $I \not\models P \rightarrow R$ 1 and \rightarrow 4. $I \models P$ 3 and \rightarrow 5. $I \not\models R$ 3 and \rightarrow 6. $I \models P \rightarrow Q$ 2 and of \land 7. $I \models Q \rightarrow R$ 2 and of \land

Two cases from 6

8a.
$$I \not\models P$$
 6 and \rightarrow 9a. $I \models \bot$ 4 and 8a are contradictory

and

8b.
$$I \models Q$$
 6 and \rightarrow

Two cases from 7

9ba.
$$I \not\models Q$$
 7 and \rightarrow 10ba. $I \not\models \bot$ 8b and 9ba are contradictory

and

9bb.
$$I \models R$$
 7 and \rightarrow 10bb. $I \models \bot$ 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

Example 3: Is

$$F: P \lor Q \rightarrow P \land Q$$
 valid?

Let's assume that F is not valid.

2.
$$I \models P \lor Q$$
 1 and \rightarrow

3.
$$I \not\models P \land Q$$
 1 and \rightarrow

Two options

4a.
$$I \models P$$
 2 and \vee 4b. $I \models Q$ 2 and \vee 5a. $I \not\models Q$ 3 and \wedge 5b. $I \not\models P$ 3 and \wedge

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:

$$\overline{I_1: \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}} \qquad I_2: \{Q \mapsto \mathsf{true}, \ P \mapsto \mathsf{false}\}$$

We have to derive a contradiction in both cases for F to be valid.

Equivalence

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all interpretations I, $I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \leftrightarrow F_2$ is valid.

$$F_1 \xrightarrow{\text{implies}} F_2 (F_1 \Rightarrow F_2)$$
iff for all interpretations $I, I \models F_1 \rightarrow F_2$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only \neg , \land , \lor)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_1 \Leftrightarrow F_1 \qquad \neg \top \Leftrightarrow \bot \qquad \neg \bot \Leftrightarrow \top \\
\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\
\neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2$$
De Morgan's Law
$$F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2 \\
F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$$
The Convert $F_1 \leftarrow (F_1 \land F_2) \land (F_2 \rightarrow F_1)$

Example: Convert $F: \neg(P \rightarrow \neg(P \land Q))$ to NNF

F''' is equivalent to $F(F''' \Leftrightarrow F)$ and is in NNF,

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$\bigvee_{i} \bigwedge_{i} \ell_{i,j}$$
 for literals $\ell_{i,j}$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$\begin{array}{ccccc} (F_1 \ \lor \ F_2) \ \land \ F_3 & \Leftrightarrow & (F_1 \ \land \ F_3) \ \lor \ (F_2 \ \land \ F_3) \\ F_1 \ \land \ (F_2 \ \lor \ F_3) & \Leftrightarrow & (F_1 \ \land \ F_2) \ \lor \ (F_1 \ \land \ F_3) \end{array} \right\} dist$$

Example: Convert

$$F: (Q_1 \lor \neg \neg Q_2) \land (\neg R_1 \to R_2) ext{ into DNF}$$

$$F': (Q_1 \lor Q_2) \land (R_1 \lor R_2) ext{ in NNF}$$

$$F'': (Q_1 \land (R_1 \lor R_2)) \lor (Q_2 \land (R_1 \lor R_2)) ext{ dist}$$

 $F''': (Q_1 \wedge R_1) \vee (Q_1 \wedge R_2) \vee (Q_2 \wedge R_1) \vee (Q_2 \wedge R_2)$ dist

F''' is equivalent to $F(F''' \Leftrightarrow F)$ and is in DNF,

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

 $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

In book, <u>efficient conversion</u> of F to F' where

F' is in CNF and

F' and F are equisatisfiable (F is satisfiable iff F' is satisfiable)

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F = 
let F' = \text{BCP } F in
if F' = \top then true
else if F' = \bot then false
else
let P = \text{CHOOSE } \text{vars}(F') in
\left(\text{DPLL } F'\{P \mapsto \top\}\right) \vee \left(\text{DPLL } F'\{P \mapsto \bot\}\right)
```

Don't CHOOSE only-positive or only-negative variables for splitting.

Boolean Constraint Propagation (BCP)

Based on unit resolution

$$\frac{\ell \quad C[\neg \ell]}{C[\bot]} \leftarrow \text{clause} \qquad \text{where } \ell = P \text{ or } \ell = \neg P$$

throughout

Example:

$$F: \ (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

Branching on Q

$$F\{Q \mapsto \top\}: (R) \land (\neg R) \land (P \lor \neg R)$$

By unit resolution

$$R \qquad (\neg R)$$

$$F\{Q \mapsto \top\} = \bot \Rightarrow \mathsf{false}$$

On the other branch

$$\begin{array}{lll} F\{Q \mapsto \bot\} : \ (\neg P \lor R) \\ F\{Q \mapsto \bot, \ R \mapsto \top, \ P \mapsto \bot\} \ = \ \top \ \Rightarrow \ \mathsf{true} \end{array}$$

F is satisfiable with satisfying interpretation

$$I: \{P \mapsto \mathsf{false}, \ Q \mapsto \mathsf{false}, \ R \mapsto \mathsf{true}\}$$