NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

FLYING HOUR COST ESTIMATING AT COMNAVAIRPAC

by

Paul J. Bourgeois

June 2002

Thesis Advisor:
Co-Advisor:

Lawrence R. Jones Gregory K. Mislick

Approved for public release; distribution is unlimited

Form Approved OMB No. REPORT DOCUMENTATION PAGE 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY 3. REPORT TYPE AND DATES COVERED 2. REPORT DATE (Leave blank) June 2002 Master's Thesis 4. TITLE AND SUBTITLE Flying Hour Cost Estimating at 5. FUNDING NUMBERS COMNAVAIRPAC 6. AUTHOR(S) Paul J. Bourgeois 8. PERFORMING PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the U.S. Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) This thesis researched the Tactical Air (TACAIR) portion of the Commander, Naval Air Forces Pacific (COMNAVAIRPAC) historical data to determine if there is a relationship between the dollars budgeted for the Flying Hour Program and the hours actually flown under the program. An analysis of the actual FHP execution of the budget for Fiscal Year's (FYs) 1999, 2000 and 2001 was undertaken for four Continental United States (CONUS) based Carrier Air Wings (CVWs). The COMNAVAIRPAC Comptroller and Flight Hour Program Manager have sought in the past to come up with a cost prediction model for air wings funded by COMNAVAIRPAC. The intention was to find a cost estimation method that can be applied to the Inter-Deployment Training Cycle (IDTC) and the Fuel, AVDLRs and Other Maintenance costs to better analyze and report projected versus actual flight hour (FH) performance. This, in turn, would help the execution of the Program Objectives Memorandum (POM), the budget and other resource reporting, including reconciliation to the OP-20 report from the Pentagon. 14. SUBJECT TERMS Flying Hour Program, Cost Estimation, 15. NUMBER OF PAGES Naval Aviation 277 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF

Unclassified NSN 7540-01-280-5500

REPORT

CLASSIFICATION OF

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

UL

ABSTRACT

CLASSIFICATION

Unclassified

OF ABSTRACT

CLASSIFICATION

Unclassified

OF THIS PAGE

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

FLYING HOUR COST ESTIMATING AT COMNAVAIRPAC

Paul. J. Bourgeois Lieutenant Commander, United States Navy B.S., Saint Joseph's University, 1989

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL June 2002

Author: Paul. J. Bourgeois

Approved by: Lawrence R. Jones

Thesis Advisor

Gregory K. Mislick

Co-Advisor

Douglas A. Brook, Dean, Ph.D.

Graduate School of Business and Public

Policy

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This thesis examined the Tactical Air (TACAIR) portion of the Commander, Naval Air Forces Pacific (COMNAVAIRPAC) historical flight hour data to determine the correlation between dollars budgeted for the Flying Hour Program and the hours actually flown under the program. An analysis of the actual FHP execution of the budget for Fiscal Years (FYs) 1999, 2000 and 2001 was undertaken for four Continental United States (CONUS) based Carrier Air Wings (CVWs).

The COMNAVAIRPAC Comptroller and Flight Hour Program Manager have used FH as a predictor of Fuel, AVDLR and Other Maintenance costs and have sought a more effective cost prediction model for air wings they fund. The intention has been to find a cost estimation method that could be applied to the Inter-Deployment Training Cycle (IDTC) and Fuel, AVDLRs and Other Maintenance costs to better analyze and report projected versus actual flight hour performance.

If such a model exists, COMNAVAIRPAC would have a more powerful tool for accounting and budget analysis, budget projection and execution as well as an ability to improve the formulation of the Program Objectives Memorandum (POM) and budget, the execution of the budget and other resource reporting, including reconciliation to the OP-20 report from the Pentagon. Such a model also could be used throughout the Pacific fleet and elsewhere in the Navy.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I.	INTRO	DDUCTION1
	A.	BACKGROUND1
	в.	OBJECTIVES AND SCOPEPLEASE CORRECT ALIGNMENT1
	C.	RESEARCH QUESTIONS2
		1. Primary Research Question
		2. Secondary Research Questions
	D.	METHODOLOGY
	E.	THESIS ORGANIZATION
II.	ידע.זק	G HOUR PROGRAM (FHP) OVERVIEW5
	A.	INTRODUCTION
	в.	FHP FUNDING
	c.	ASSUMPTIONS AND DEFINITIONS
	C.	1. IDTC
		2. Fiscal Years8
		3. Monthly Data9
		4. Negative Values
		5
		5. Regression Fundamentals
		a. F-statistic
		b. T -statistic
		c. Coefficient of Determination (R ² value)12
		d. Coefficient of Variation (CV)12
III.	ANAL	SIS OF FLIGHT HOUR PROGRAM DATA
	A.	TEST FOR A PREDICTIVE MODEL13
		1. Fuel
		2. AVDLRs
		3. Other Maintenance
		4. Total Costs
		5. Discussion
	B.	FISCAL YEARS (FYS)
		1. Fuel
		2. AVDLRs
		3. Other Maintenance24
		4. Total Costs24
		5. Discussion
	C.	IDTC25
		1. Fuel
		2. AVDLRs32
		3. Other Maintenance32
		4. Total Costs33
		5. Discussion
	D.	CARRIER AIR WINGS (CVWS)34

	1.	CVW 2 USS CONSTELLATION34
		a. Fuel
		b. AVDLRs52
		c. Other Maintenance53
		d. Total Costs53
		e. Discussion54
	2.	CVW 9 USS JOHN C STENNIS54
		a. Fuel
		b. AVDLRs72
		c. Other Maintenance
		d. Total Costs
	3.	CVW 11 USS CARL VINSON
		a. Fuel91
		b. AVDLRs92
		c. Other Maintenance92
		d. Total Costs92
		e. Discussion93
	4.	CVW 14 USS ABRAHAM LINCOLN93
		a. Fuel
		b. AVDLRs113
		c. Other Maintenance114
		d. Total Costs114
		e. Discussion114
	5.	Discussion
E.	-	/MODEL/SERIES (T/M/S) OF AIRCRAFT115
	1.	E-2C Hawkeye
		a. Fuel
		b. AVDLRs
		c. Other Maintenance
		d. Total Costs
	•	e. Discussion
	2.	EA-6B Prowler
		a. Fuel
		c. Other Maintenance
		d. Total Costs
		e. Discussion
	3.	FA-18A Hornet
	٥.	a. Fuel
		b. AVDLRs
		c. Other Maintenance
		d. Total Costs
		e. Discussion
	4.	FA-18C Hornet
	- •	a. Fuel
		b. AVDLRs

		c. Other Maintenance	.167
		d. Total Costs	.167
		e. Discussion	.168
	5.	FA-18E Super Hornet	.168
		a. Fuel	.170
		b. AVDLRs	.170
		c. Other Maintenance	.171
		d. Total Costs	.171
		e. Discussion	.171
	6.	HH-60H Seahawk	.172
		a. Fuel	.182
		b. AVDLRs	.182
		c. Other Maintenance	.183
		d. Total Costs	.183
		e. Discussion	.183
	7.	S-3B Viking	.184
		a. Fuel	.194
		b. AVDLRs	.194
		c. Other Maintenance	.195
		d. Total Costs	.195
		e. Discussion	
	8.	SH-60F Seahawk	.195
		a. Fuel	.205
		b. AVDLRs	.206
		c. Other Maintenance	.206
		d. Total Costs	.206
		e. Discussion	.207
T17 CONG	T TTG T ()	NS	200
Α.		ODUCTION	
в.		SUMMARIES	
	1.	Fuel	
	2.	AVDLRs	
	3.	Other Maintenance	
	4.	Total Costs	
-	5.	Overall	
c.		ARY RESEARCH QUESTION	
D.		NDARY RESEARCH QUESTIONS	
E.		S FOR FURTHER RESEARCH	
	1.	Commander, Naval Air Forces Atlantic (CNAL)	
	2.	Fuel Costs and Trailing Costs	
	3.	Shore-Based Comparison	
	4.	Joint Strike Fighter (JSF)	
	5.	Aircraft Expense	
	6.	Other Services	.218
APPENDIX.	SUM	MARY	.221

LIST	OF	REFERENCES	• • • • •	• • • •	• • • •	• • •	• • • •	• • • •	• • •	• • • •	• • • •	259
INITI	AL	DISTRIBUTION	LIST									261

LIST OF TABLES

Table	3.1.	Model as a Whole13
Table	3.2.	FY1999 Regression18
Table	3.3.	FY2000 Regression20
Table	3.4.	FY2001 Regression22
Table	3.5.	ITDC 1 Regression26
Table	3.6.	IDTC 2 Regression28
Table	3.7.	IDTC 3 Regression30
Table	3.8.	CVW 2 USS CONSTELLATION34
Table	3.9.	CVW 9 USS JOHN C STENNIS54
Table	3.10.	CVW 11 USS CARL VINSON74
Table	3.11.	CVW 14 USS ABRAHAM LINCOLN93
Table	3.12.	E-2C T/M/S116
Table	3.13.	EA-6B T/M/S128
Table	3.14.	FA-18A T/M/S139
Table	3.15.	FA-18C T/M/S143
Table	3.16.	FA-18E T/M/S168
Table	3.17.	HH-60H T/M/S172
Table	3.18.	S-3B T/M/S184
Table	3.19.	SH-60F T/M/S196
Table	3.20.	Comprehensive Summary of Cost Relationships. 214

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENTS

I would like to thank my wife Colleen for all her support during this thesis. Additionally, I would like to thank Professor Larry Jones and LTCOL Greg Mislick for their insight and quick turn around. Finally, thanks to Professor Dave Olwell for his expertise on statistics.

THIS PAGE INTENTIONALLY LEFT BLANK

I. INTRODUCTION

A. BACKGROUND

The purpose of this chapter is to introduce the reader to the basics of the Navy Flying Hour Program (FHP). The Navy and Marine Corps team use the FHP to support the dayto-day flight operations and maintenance associated with Naval Aviation. The FHP encompasses three cost aspects: Fuel, Aviation Depot Level Repairables (AVDLRs) and Other Maintenance. In this thesis I will compare the Fuel, AVDLR and Other Maintenance cost data for three Fiscal Years (FYs) (1999-2001) with the qoal of finding estimating relationship between these costs and the number of hours flown.

B. OBJECTIVES AND SCOPEPLEASE CORRECT ALIGNMENT

This thesis will examine the Tactical Air (TACAIR) portion of the Commander, Naval Air Forces Pacific (COMNAVAIRPAC) historical data to determine if there is a relationship between the dollars budgeted for the Flying Hour Program and the hours actually flown under program. An analysis of the actual FHP execution of the budget for Fiscal Year's (FYs) 1999, 2000 and 2001 will be undertaken for four Continental United States Carrier Air Wings (CVWs) based on the West Coast. Actual costs for specific air wings will be analyzed to determine possible differences between the air wings, and whether an improved methodology for predicting funding outlays for the Navy Flying Hour Program can be developed and implemented.

The COMNAVAIRPAC Comptroller and Flight Hour Program Manager have sought in the past to create a cost prediction

model for air wings funded by COMNAVAIRPAC. The intention is to find a cost estimation methodology that can be applied to the Inter-Deployment Training Cycle (IDTC) phases, which drive how much money is allotted to each squadron, and the Fuel, AVDLRs and Other Maintenance costs to better analyze and report "projected versus actual" flight hour performance. This, in turn, would help the execution of the Program Objectives Memorandum (POM), the budget and other resource reporting, including reconciliation to the OP-20 report from the Pentagon. If such a model existed, then COMNAVAIRPAC would have a more powerful tool for accounting and budget analysis, budget projection and execution, and an ability to improve fiscal resource justification throughout the Pacific Fleet and elsewhere in the Navy.

C. RESEARCH QUESTIONS

The following research questions are addressed in the thesis:

1. Primary Research Question

• Do cost estimating relationships exist between the various costs associated with the FHP and the hours actually flown and, if so, how accurately will they predict future costs for budget and readiness planning for COMNAVAIRPAC Air Wings?

2. Secondary Research Questions

The secondary research questions are:

- Are there other metrics and methods that will enable more accurate analysis and execution of the Navy flying hours than the system currently used by OPNAV and COMNAVAIRPAC?
- For what other purposes can predictive models and systems be used and is there relevant application of new FHP analysis methods within the Navy?

D. METHODOLOGY

The first step involved hands-on data collection with the operational staff at COMNAVAIRPAC.

Second, a statistical analysis of the flying hour program was conducted by analyzing selected air wings and determining whether there is a cost relationship between the costs incurred and the number of flying hours.

Third and finally, a review of data submitted from recent years was used to compare and contrast successes and shortfalls in FHP budgeting and execution. This work endeavors to find better ways for accounting, budgeting and executing Navy flight hour funding.

All data, material and reports came from COMNAVAIRPAC information systems, and provided the sole resources for this study.

E. THESIS ORGANIZATION

Chapter I provides an introduction, where the background, objectives and methodology of the thesis are explained.

Chapter II provides an overview of the Flying Hour Program and its execution at COMNAVAIRPAC. Assumptions about the nature of squadron deployments are explained, as is the methodology of the regression tools used in the thesis for comparison of costs.

Chapter III provides an analysis of the FHP execution during FYs 1999, 2000 and 2001 with overall trends compared to the IDTC and the OP-20 Budget from the Office of Financial Operations (FMO) under the Navy Comptroller.

Chapter IV provides conclusions, a summary of answers to the primary research questions, and recommended future areas of study.

II. FLYING HOUR PROGRAM (FHP) OVERVIEW

A. INTRODUCTION

Fiscal Year 2002 Navy Flying Hour Program (FHP) is part of the \$5.232 billion Air Operation portion of the Operations and Maintenance, Navy (O&M, N) annual appropriation account. Of that portion, Commander Naval Air Forces, Pacific (COMNAVAIRPAC) is responsible for over \$1.856 billion. The FHP is broken down into Fuel, Aviation Depot Level Repairables (AVDLRs) and Other Maintenance costs.

The FHP is traditionally priced using the most recent cost per flying hour figures recalculated annually. Taking repair parts as an example, prices can be reduced due to efficiencies from various engineering changes; however, more often, usage, the types of missions flown and inflation lead to increased prices.

This repricing each year, which adds significantly to the cost per flying hour, is a manifestation of the Department (of the Navy)'s aging aircraft inventory, which requires more maintenance per hour and is experiencing increased failure rates on major components. [Ref 1.]

Additionally, the FY 2003 budget incorporates a new method to forecast AVDLR cost per hour based on an analysis done by the Center for Naval Analyses (CNA). The CNA studied AVDLR data from FY 1992 to FY 1999, and through analysis of hours flown and aircraft age determined that AVDLR growth could be reforecast based on specific demand rates ranging from 3% to 34% per year. The resulting increase in cost per hour in FY 2003 is significant. [Ref 2]

B. FHP FUNDING

An excellent overview of the formulation of the FHP budget throughout the entire Planning, Programming and Budgeting System (PPBS) process can be found in a previous Naval Postgraduate School thesis written by Keating and Paulk [Ref 3].

For a brief overview, the Assistant Chief of Naval Operations (CNO) for Air Warfare (N-78) is responsible for formulating the annual funding required for each aircraft type/model/series (T/M/S). The primary budget tool utilized is the Operational Plan (OP-20).

Throughout the year, the N-78 staff works closely with their counterparts at the Major Claimant level (Commander in Chief, Pacific Fleet (CINCPACFLT) in this case) and the Air Type Commander (TYCOM) level (Commander, Naval Air Forces, Pacific (COMNAVAIRPAC) in this case) to monitor flying hours flown. COMNAVAIRPAC hands out quarterly grants to each squadron under his command based on the upcoming requirements.

On a monthly basis, Fiscal Year To Date (FYTD) feedback from the squadrons executing the collected, analyzed and fed back up the chain of command to assess how costs for Fuel, AVDLRs and Other Maintenance are tracking relative to the OP-20. At the end of the FY, COMNAVAIRPAC certifies the obligations and these figures are used to cost out the year's requirements. Additionally, other variables, such as an inflation factor, an aircraftaging factor and other program change factors are added into the cost calculation. These data points are also used to justify future annual funding requirements.

C. ASSUMPTIONS AND DEFINITIONS

The volume of raw data available made certain assumptions a requirement in order to estimate a cost relationship.

1. IDTC

There are three distinct phases that a carrier air wing passes through in a normal two-year rotation.

The Inter-Deployment Training Cycle (IDTC) is Phase 1, also known as the "workup period", and typically encompasses the 12 months prior to a deployment. The deployment itself is Phase 2, and typically lasts six months. The final phase, the Pre-IDTC cycle or Phase 3, is the six months following the return from deployment. The carrier air wing then returns to Phase 1 and the process is repeated.

Phase 1 is characterized by various fleet exercises and carrier qualifications (CQs) that are used for the pilots to gain proficiency in flying the certain T/M/S of aircraft, as well as preparing the aircraft for deployment from a maintenance perspective.

Phase 2, the deployment itself, requires hours, days or weeks on station, and much in-transit time between areas of operation. Flying is now typically geared towards completing a mission and less toward training requirements. Long hours of uninterrupted flight common on deployment missions often result in less wear and tear on the aircraft than does the constant pounding associated with numerous CQs required in phase 1. Fuel costs are typically higher because of the increased amount of flying, but AVDLR and Other Maintenance costs can be either lower or higher

depending on the amount of hours flown due to real world contingencies, age of the aircraft, and time and quantity of parts available for repair.

Phase 3 is associated with service members taking leave after the deployment, and high turnover of personnel as they rotate from their squadrons after a deployment. Fuel costs are typically the lowest during this phase, and maintenance and AVDLR costs are often high as more time is devoted to maintenance throughout this stand-down period. Additionally, maintenance is often deferred to phase 3 from phase 2 because of the less hectic schedule and increased time for repairs.

For this thesis, the data was sorted based on these three phases. Since the deployment and return dates are set, (and the other phase dates/lengths are more fluid), dates were used as the basis deployment establishing what phase each carrier air wing was in at any date Establishing the moment. οf deployment determined the start of phase 2, and counting back a 12month period established phase one of the IDTC cycle. The pre-IDTC period was then established as the time frame from return from the previous deployment and the start of the IDTC period. The desire for this analysis was to have approximately 18 months between the end of one deployment and the start of another. While this was not always the exact case, the method described above approximated this desire.

2. Fiscal Years

The data used comprised the complete reported Fuel, AVDLR and Other Maintenance costs of Fiscal Years (FYs)

1999-2001. For ease of understanding and the sorting of data for this thesis, the conventional definition of a Fiscal Year (month 1 was October while month September of the following year) was used. This was done to determine if relationship there was а between the disbursement of money quarterly basis on and the а execution and obligation of that money throughout the year. Typically, fuel costs are expected to decrease at the end of a FY due to minimal funds remaining to be spent. money is especially tight, maintenance and AVDLR costs will probably be deferred until the next fiscal year when the new appropriation is made available.

Additionally, first quarter data for FY 2002 were purposefully not included because of the change in mission that came after the attacks on September 11, 2001. The previous three FYs were typical of peacetime operations and flying throughout the three phases. First quarter FY 2002 flying hours have been considerably different and the thesis author, along with the COMNAVAIRPAC Comptroller and Flying Hour Program manager, decided that since Operation Enduring Freedom and Operation Noble Eagle have not had enough data associated with them, and costs would be dramatically higher, they would be excluded from this analysis. The areas for further study at the end of this thesis will address this new mission cost estimation.

3. Monthly Data

The raw monthly data for each of the air wings was reported in Fiscal Year To Date (FYTD) format. To determine the cost for each of the variables, current month FYTD cost data (in millions of dollars) was subtracted from the previous month's FYTD cost data to arrive at the costs for

the current month. That number was then divided by the current month FYTD flying hours minus the previous month FYTD flying hours. That final number was multiplied by 1000 (for ease of understanding) to arrive at a monthly cost per flight hour.

4. Negative Values

Occasionally, since the Flying Hour Cost Report (FHCR) is reported in FYTD dollars, there is the opportunity for credits received from previous month's AVDLR submissions to be returned to the squadron. Those credits could easily be more than the current month's AVDLR debit submissions, resulting in a negative value for the month (and possibly subsequent months). Because of this phenomenon, log-linear regression was not available for cost calculation and simple linear regression only was performed.

5. Regression Fundamentals

After analyzing the data using Microsoft Excel, it was determined that simple linear regression would be the best method to establish whether there were any relationships between the hours flown and the costs incurred. In the cost estimating relationships outlined in the following chapter, the F-statistic and T-statistic significance, the Coefficient of Determination (\mathbb{R}^2) value, and Coefficient of Variation (CV), were all considered when deciding if the given cost equation was a good predictor of future costs.

a. F-statistic

The F-statistic significance indicates whether the cost estimating model developed for this analysis is preferred to the sample mean. Used primarily for the regression of multiple variables against a single, dependent variable (dollars per flying hour in this case),

the F-statistic would equal the T-statistic when assessing a single variable equation. If there is wide variation among the variables, then the F-statistic will be correspondingly large, so a small F-statistic, approaching zero, is preferred.

b. T-statistic

The T-statistic tests the marginal contribution of the independent variable on the reduction of the unexplained variation. In other words, it tests the strength of the relationship between Y (cost) and X (the independent variable). If there is wide variation among the data, then the T-statistic will be correspondingly large, so a small T-statistic, approaching zero is preferred.

A brief word about hypothesis testing is also required to understand F- and T-statistic significance testing. In order to see if there is a relationship between two variables, you must come up with two arguments. The first is called the null hypothesis that supports prediction that the contributions of the slopes of independent variables are equal to zero. The other, or alternate, hypothesis describes all other outcomes (in this case, the slopes of the independent variables are not equal to zero). The goal then is to determine whether the null hypothesis is rejected or not. If the F- and T-statistic significances were within our confidence interval of 95 percent, then we would reject the null hypothesis that the slopes of the variables are equal to zero, and conclude via the alternate hypothesis that the slopes of the independent variables are not equal to zero and are thus significant. This means that the prediction model is good and is preferred to using the simple mean.

c. Coefficient of Determination $(R^2 \text{ value})$

The Coefficient of Determination (R^2) is the percentage of total variation explained by the regression model. Since the model is better when variation can be explained, higher values for R^2 are desired with 100 percent as the maximum.

d. Coefficient of Variation (CV)

The Coefficient of Variation (CV) is the "average" percent estimating error expected when predicting subsequent observations within the representative populations. It is calculated by dividing the standard error by the mean. Since it is the amount of error you expect to be "off" when estimating future costs, the lower the CV the better.

The next chapter provides methods for estimating cost relationships in the FHP derived from analysis of data from the OP-20. This analysis is intended to improve the ability of COMNAVAIRPAC budget staff to predict future costs for programming, budgeting and execution.

III. ANALYSIS OF FLIGHT HOUR PROGRAM DATA

A. TEST FOR A PREDICTIVE MODEL

To provide answers to the question, "Are flying hours a good predictor of total costs incurred by COMNAVAIRPAC?", regression and analysis of variance of the cost prediction model were used. In this section, and in the following sections, all mean values and values in the regression are in dollars per hour. The results of this regression and analysis of variance are intended to enable the FHP staff to gain a macro perspective of the costs associated with the FHP.

Table 3.1 shows the regression analysis for each of the costs analyzed: Fuel, Aviation Depot Level Repairables (AVDLRs), Other Maintenance and Total costs.

Table 3.1. Model as a Whole

SUMMARY OUTPUT		Mean	\$ 0.701105
Master Data	Fuel as Y	Std Dev	\$ 1.041178
Regression S	tatistics	CV	1.485052199
Multiple R	0.801460913	_	
R Square	0.642339595		
Adjusted R Square	0.642038027		
Standard Error	96.71155612		
Observations	1188		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	19922106.69	19922106.69	2129.994682	4.666E-267
Residual	1186	11092806.35	9353.125087		
Total	1187	31014913.05			
•					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-28.93840894	4.846568603	-5.9709067	3.1134E-09	-38.44721427
X Variable 1	0.834463658	0.018080822	46.15186542	4.666E-267	0.798989691

SUMMARY OUTPUT Master Data	AVDLR as Y	Mean Std Dev	\$ 2.312540 \$ 3.363206		
Regression St	atistics	CV	1.454334224		
Multiple R	0.550570703	•			
R Square	0.303128099				
Adjusted R Square	0.302540517				
Standard Error	436.0576365				
Observations	1188				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	98094740.81	98094740.81	515.8909758	4.1007E-95
Residual	1186	225513467.1	190146.2623		
Total	1187	323608207.9			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	100.7185137	21.85243765	4.609028767	4.48323E-06	57.84476274

X Variable 1	1.851666027	0.081523665	22.71323349	4.1007E-95	1.691719327
SUMMARY OUTPUT		Mean	\$ 0.951899		
Master Data	Maint as Y	Std Dev	\$ 2.085140		
Regression St	atistics	CV	2.190506739		
Multiple R	0.37115389				
R Square	0.13775521				
Adjusted R Square	0.137028191				
Standard Error	300.9902077				
Observations	1188				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	17165911.8	17165911.8	189.4794622	4.18723E-40
Residual	1186	107445794.7	90595.10512		
Total	1187	124611706.5			
	0 (": (0(1.00-1	5 ./ .	/ · · · · · · · · · · · · · · · · · · ·
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	39.26739441	15.08371645	2.603297041	0.009348437	9.673647756
X Variable 1	0.774592406	0.056271976	13.76515391	4.18723E-40	0.664188674

SUMMARY OUTPUT Master Data	Total as Y	Mean Std Dev	\$ 0.701105 \$ 1.041178	\$ 2.312540 \$ 3.363206	\$ 0.951899 \$ 2.085140
Regression St	atistics	cv	1.485052199	1.454334224	2.190506739
Multiple R	0.680442327	-			
R Square	0.463001761				
Adjusted R Square	0.46254898				
Standard Error	578.868202				
Observations	1188	•			
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	342652462.6	342652462.6	1022.573349	2.5439E-162
Residual	1186	397414836.7	335088.3952		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	111.0474992	29.00919565	3.828010282	0.000135929	54.13242864
X Variable 1	3.460722092	0.108222981	31.97770081	2.5439E-162	3.248392227

740067299.4

1187

1. Fuel

Total

For the entire data set, Fuel costs have both an F-statistic and a T-statistic significances approaching zero. This implies that the regression equation is significant to over 99% and is preferred to the simple mean of the data. However, the Coefficient of Determination (R^2) has a value of .642. This means that flying hours explain only 64.2 percent of the variation of fuel costs across all Type/Model/Series (T/M/S) of aircraft.

The Coefficient of Variation (CV) shows a similar story. While the mean cost for fuel for all aircraft, for all years, is approximately \$701.11 per flying hour, the standard deviation is approximately \$1041.18. These two numbers combine to give us a CV of 1.4850 or 148.50 percent.

In other words, by using the mean equation, you can expect be off as much as 148.50 percent on your estimation. The regression slope, and therefore the cost, of \$834.46 per flight hour only explain 64.2 percent of the costs.

2. AVDLRs

AVDLRs show a similar pattern. The F- and T-statistic significance show values that approach zero but the R^2 value is only .303; thus 30.3 percent of the variation of AVDLR costs are explained by Flying Hours across all T/M/S.

The mean for all the data is approximately \$2312.54 per flying hour with a variation of \$3363.21. This gives a CV of 1.4543 or 145.43 percent error when using the mean as the predictor.

The regression slope is \$1,851.66 per FH across all T/M/S. Explained variation accounts for only 30.3 percent of AVDLR costs.

3. Other Maintenance

Maintenance versus flying hour regression, like the two previous, shows F- and T-statistic significance approaching zero, but with an R^2 value of only 13.7 percent.

The mean for Other Maintenance is \$951.90 per Flying Hour with a variation of \$2085.14. These combine to give a very high CV of 2.1905 or 219.05 percent.

The regression slope is \$774.59 per FH across all T/M/S. Explained variation accounts for only 13.7 percent of Other Maintenance costs.

4. Total Costs

For total costs, which are simply the addition of all the previous costs per month, the analysis also shows similar patterns. F- and T-statistic significances approach zero with only 46.3 percent of the variation of costs defined as measured by the \mathbb{R}^2 .

The arithmetic mean of the data is \$3965.54 per FH with a variation of \$5083.51. The CV 1.2819, or 128.19 percent, is the error expected when using the mean.

The regression equation, with a slope of \$3,460.72 per FH, therefore may be expected to predict 46.3 percent of the total costs incurred per month.

5. Discussion

The bottom line for the test as a whole is that Flying Hours can be expected to predict, on average, just under half of the total costs incurred by COMNAVAIRPAC. This is a bit misleading however because the model as a whole takes into account different T/M/S of aircraft, each of which burn fuel at a different rate, and each of which have different AVDLR and maintenance costs associated with them. Additionally, within each of the T/M/S of aircraft, aircraft age plays an important factor in the cost and amount of AVDLRs and Other Maintenance. To take this model as a whole is analogous to comparing eight different types of automobiles, differing in age, condition and driving style, and trying to treat them as equivalent.

In subsequent sections, comparisons will be drawn in an attempt to isolate the factors that will explain this variation. Specifically, are FH a good predictor of costs for specific Fiscal Years? Are FH accurate predictors across Inter-Deployment Training Cycles (IDTC)? Are FH better at predicting costs for different Carrier Air Wings (CVWs)? Are FH a good predictor for individual T/M/S?

B. FISCAL YEARS (FYS)

The goal of this analysis is to determine whether there is a relationship between FH and FY. In other words,

between each of the FYs, are FH a good predictor of actual costs? The actual regressions for each FY are shown in Tables 3.2-3.4.

Table 3.2. FY1999 Regression.

FY 1999 REGRESSION

SUMMARY OUTPUT		Mean	0.702174173
FY 99 SUMMARY	Fuel as Y	STDV	0.714967481
Regression S	tatistics	CV	1.018219566
Multiple R	0.8629742	8	
R Square	0.74472460	8	
Adjusted R Square	0.74407670	1	
Standard Error	79.7313585	4	
Observations	39	6	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	7307036.924	7307036.924	1149.43118	7.0519E-119
Residual	394	2504693.277	6357.089534		
Total	395	9811730.201			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-36.48143595	6.919364214	-5.272368215	2.22484E-07	-50.08493835
X Variable 1	0.867678587	0.025592776	33.90326208	7.0519E-119	0.81736307

SUMMARY OUTPUT		Mean	1.978689141
FY 99 SUMMARY	AVDLR as Y	STDV	2.119635271
Regression S	tatistics	CV	1.071232073
Multiple R	0.571152981	_	
R Square	0.326215728	3	
Adjusted R Square	0.324505616	;	
Standard Error	384.0701455	;	
Observations	396	;	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	28138526.35	28138526.35	190.756897	1.15755E-35
Residual	394	58118891.41	147509.8767		
Total	395	86257417.76			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	60.83445227	33.33094117	1.825164551	0.068733143	-4.694333877
X Variable 1	1.702703009	0.123281747	13.811477	1.15755E-35	1.460330519

SUMMARY OUTPUT		Mean	0.922365677		
FY 99 SUMMARY	Maint as Y	STDV	1.167548939		
Regression S	tatistics	CV	1.265820019		
Multiple R	0.551854849				
R Square	0.304543775				
Adjusted R Square	0.302778658				
Standard Error	214.9974346				
Observations	396				
ANOVA	df	SS	MS	F	Significance F
Regression	1	7975220.607	7975220.607	172.5345794	6.1203E-33
Residual	394	18212215.37	46223.89688	172.0010701	0.12002 00
Total	395	26187435.98			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	3.500988952	18.6582241	0.187637845	0.85125715	-33.18116684
X Variable 1	0.906482828	0.069011506	13.13524189	6.1203E-33	0.770805884

SUMMARY OUTPUT		Mean	3.603228991
FY 99 SUMMARY	Total as Y	STDV	3.259506485
Regression St	atistics	CV	0.904607088
Multiple R	0.758754213	_	
R Square	0.575707956		
Adjusted R Square	0.574631072		
Standard Error	468.4710363		
Observations	396		
-		•	
ANOVA			
	df	SS	MS

7110 771					
	df	SS	MS	F	Significance F
Regression	1	117327294.1	117327294.1	534.6056743	2.36044E-75
Residual	394	86469254.05	219465.1118		
Total	395	203796548.1			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	27.85400527	40.65554361	0.685121949	0.493669833	-52.07498351
X Variable 1	3.476864424	0.150373384	23.12154135	2.36044E-75	3.181229648

Table 3.3. FY2000 Regression.

FY 2000 REGRESSIO SUMMARY OUTPUT	N	Mean	0.532619024
FY 00 Summary	Fuel as Y	STDV	0.560883769
Regression S	Statistics	CV	1.05306747
Multiple R	0.82284783	38	
R Square	0.67707856	64	

 Multiple R
 0.822847838

 R Square
 0.677078564

 Adjusted R Square
 0.676258967

 Standard Error
 68.80014562

 Observations
 396

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3910363.464	3910363.464	826.1110127	9.5534E-99
Residual	394	1864983.254	4733.460037		
Total	395	5775346.719			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-19.87071484	5.835851563	-3.404938358	0.000729771	-31.34402629
X Variable 1	0.627847401	0.021844137	28.74214697	9.5534E-99	0.584901725

	SUMMARY OUTPUT		Mean	2.326165196
FY 00 Summary		AVDLR as Y	STDV	2.744584637
Regression Statistics			CV	1.179875205
	Multiple R	0.499587649	-	
	R Square	0.249587819		
	Adjusted R Square	0.24768322		
	Standard Error	512.3516631		
	Observations	396	_	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	34399809.23	34399809.23	131.0447823	2.16842E-26
Residual	394	103426665.3	262504.2266		
Total	395	137826474.5			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	99.83171287	43.45933031	2.297129573	0.022135019	14.39046633
X Variable 1	1.862188132	0.16267233	11.4474793	2.16842E-26	1.542373571

SUMMARY OUTPUT FY 00 Summary Regression St Multiple R R Square Adjusted R Square Standard Error Observations	Maint as Y tatistics 0.22141912 0.049026426 0.046612788 451.7238599 396	Mean STDV CV	0.894633693 2.146469172 2.399271554		
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	4144804.713	4144804.713	20.31224902	8.68428E-06
Residual	394	80397451.58	204054.4456		
Total	395	84542256.3			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	54.97448247	38.31668335	1.43474011	0.152154432	-20.35629611
X Variable 1	0.646394383	0.143422923	4.50691125	8.68428E-06	0.364424247
SUMMARY OUTPUT FY 00 Summary Regression St Multiple R R Square	Total as Y tatistics 0.568114568 0.322754162	Mean STDV CV	3.753417913 4.059434105 1.081530008		
Adjusted R Square	0.321035264				
Standard Error	720.9069065				
Observations	396				
ANOVA		1			
	df	SS	MS	F	Significance F
Regression	1	97584333.53	97584333.53	187.7680638	3.19329E-35
Residual	394	204764466.5	519706.7678		
Total	395	302348800			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
 					
Intercent	134 0354905	61 1 <u>/</u> 066269	2 206643088	N N27015156	14 71/05722
Intercept X Variable 1	134.9354805 3.136429916	61.14966268 0.228888896	2.206643088 13.70284875	0.027915156 3.19329E-35	14.71495783 2.686433278

Table 3.4. FY2001 Regression.

FΥ	2001	REGRESSION	
~		DV OUTDUT	

SUMMARY OUTPUT		Mean	0.864847877
FY 01 Summary	Fuel as Y	STDV	0.865135864
Regression St	atistics	CV	1.000332991
Multiple R	0.80735843	3	
R Square	0.651827634	4	
Adjusted R Square	0.650943948	3	
Standard Error	112.4611283	3	
Observations	396	<u> </u>	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	9329096.05	9329096.05	737.62341	2.68994E-92
Residual	394	4983117.121	12647.50538		
Total	395	14312213.17			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-33.9978619	10.00676983	-3.39748615	0.000749352	-53.67121815
X Variable 1	1.019366586	0.03753298	27.1592233	2.68994E-92	0.945576572

	Mean	2.633670776
AVDLR as Y	STDV	2.234111106
atistics	CV	0.848287921
0.614216891	_	
0.377262389	1	
0.375681837		
388.3991643		
396	<u> </u>	
	atistics 0.614216891 0.377262389 0.375681837 388.3991643	AVDLR as Y STDV

	df	SS	MS	F	Significance F
Regression	1	36007354.13	36007354.13	238.6902264	1.95842E-42
Residual	394	59436440.86	150853.9108		
Total	395	95443794.99			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	138.8386897	34.55968382	4.017359952	7.04994E-05	70.89418979
X Variable 1	2.002655356	0.129625038	15.44960279	1.95842E-42	1.747811924

SUMMARY OUTPUT		Mean	1.037502393
FY 01 Summary	Maint as Y	STDV	0.844399874
Regression Sta	atistics	CV	0.813877519
Multiple R	0.625858469)	
R Square	0.391698823	3	
Adjusted R Square	0.390154912	2	
Standard Error	145.0869861		
Observations	396	6	
		_	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5340559.413	5340559.413	253.7054709	1.8929E-44
Residual	394	8293792.016	21050.23354		
Total	395	13634351.43			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	58.57853869	12.90981245	4.537520503	7.56875E-06	33.19778707
X Variable 1	0.771265645	0.048421593	15.92813457	1.8929E-44	0.676068568

SUMMARY OUTPUT		Mean	4.536021046
FY 01 Summary	Total as Y	STDV	3.420598788
Regression St	atistics	CV	0.754096763
Multiple R	0.759860622	<u>.</u>	
R Square	0.577388165	5	
Adjusted R Square	0.576315546	6	
Standard Error	489.8847682	2	
Observations	396	<u> </u>	
	•	_	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	129184472.7	129184472.7	538.297601	1.07867E-75
Residual	394	94554911.92	239987.0861		
Total	395	223739384.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	163.4193665	43.58985357	3.749023067	0.000204115	77.72151065
X Variable 1	3.793287587	0.163495027	23.20124137	1.07867E-75	3.471855599

1. Fuel

For all three FY, both Fuel F- and T-statistic significance approach zero. The average R^2 value is approximately .6912 or 69.12 percent, again across all T/M/S.

The mean across all three FY is \$699.88 per FH and the average standard deviation is \$713.66 for a CV of 1.0238 or an error of 102.38 percent if the simple mean is used.

The average regression slope of \$838.27 per FH accounts for an average of 69.12 percent of all fuel costs.

AVDLRs

For each FY, the F- and T-statistic significances again approach zero. The average R^2 value is approximately .3176 or 31.76 percent across all T/M/S.

The mean for the three years is \$2312.84 per FH with a standard deviation of \$2366.11 and a CV of 1.032 or a 103.2 percent error using the simple mean.

The average regression slope is \$1855.80 per FH but reflects only 31.76 percent of all AVDLR costs.

3. Other Maintenance

The F- and T-statistic significances approach zero but the average R^2 value shows that FH predict only .2484 or 24.84 percent of the Other Maintenance costs.

The mean across the three years is \$951.50 per FH with a standard deviation of \$1386.14 for a CV of 1.493 or an error of 149.3 percent.

The average regression slope is \$774.71 per FH but that explains only 24.84 percent of all Other Maintenance costs.

4. Total Costs

As with the previous costs, both the F- and T-statistic significance approach zero. The average R^2 value, and hence the portion of the total costs explained by FH, is .4919 or 49.19 percent.

The mean across the three FYs is \$3964.22 per FH with a standard deviation of \$3579.85. This gives a CV of .9134 or an error of 91.34 percent using the simple mean.

The average regression slope is \$3468.86 per FH, which explains 49.19 percent of the costs.

5. Discussion

A closer look at tables 3.1-3.3 shows some striking differences. For example, the statistics for FY 2000 were quite different than the other two years in almost every category. Specifically, from 1999-2001, the R² for FH as a predictor for AVDLRs went from 32.62 percent to 24.96 percent back up to 37.72 percent. For Other Maintenance, the numbers are even more dramatic with the values plunging from 30.45 percent to 4.90 percent before bouncing back up to 39.17 percent. Numbers that change this dramatically are a primary reason that FH is not the best predictor when it comes to FY costs as a whole.

Additionally, aircraft age, and the fact the regressions were run using all types if T/M/S together, also explain the wide variation. While certain T/M/S of aircraft may be more efficient than others, older ones will cost more in AVDLRs and Other Maintenance, which skews the overall results.

The next comparison will determine if FH are a good predictor of cost throughout the three IDTC statuses.

C. IDTC

The goal of this comparison is to determine if flying hours are a good predictor of costs, across T/M/S of aircraft, throughout the different IDTC statuses. The actual regression outputs are shown in Tables 3.5-3.7.

Table 3.5. ITDC 1 Regression

IDTC 1 REGRESSION

SUMMARY OUTPUT		Mean	0.702492186
IDTC 1 Summary	Fuel as Y	Std Dev	0.715877223
Regression St	atistics	CV	1.019053645
Multiple R	0.777283674	_	
R Square	0.604169909		
Adjusted R Square	0.603338333		
Standard Error	102.8574329		
Observations	478		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	7686499.452	7686499.452	726.5361665	7.56539E-98
Residual	476	5035914.12	10579.65151		
Total	477	12722413.57			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coemicients	Standard Enrol	เ Stat	r-value	Lower 95%
Intercept	-32.8647876	8.571431847	-3.83422376	0.00014289	-49.70729767
X Variable 1	0.846552319	0.031406908	26.95433484	7.56539E-98	0.78483904

SUMMARY OUTPUT		Mean	\$ 2.158347
IDTC 1 Summary	AVDLR as Y	Std Dev	\$ 2.088249
Regression Statistics		CV	0.967522152
Multiple R	0.527174604	_	

R Square 0.527174604
R Square 0.277913063
Adjusted R Square 0.276396074
Standard Error 405.2468874
Observations 478

	df	SS	MS	F	Significance F
Regression	1	30086093.53	30086093.53	183.2004034	1.52378E-35
Residual	476	78171118.91	164225.0397		
Total	477	108257212.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	110.3044633	33.77049161	3.266297232	0.001168287	43.94684009
X Variable 1	1.67483645	0.123739738	13.53515436	1.52378E-35	1.431692969

SUMMARY OUTPUT		Mean	0.968103149
IDTC 1 Summary	Maint as Y	Std Dev	0.794512962
Regression St	atistics	CV	0.820690401
Multiple R	0.582948886	_	
R Square	0.339829403		
Adjusted R Square	0.33844249		
Standard Error	147.4252283		
Observations	478	_	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5325438.165	5325438.165	245.0257508	7.47654E-45
Residual	476	10345478.22	21734.19793		
Total	477	15670916.38			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	60.10453063	12.28540574	4.892352106	1.36571E-06	35.96421506
X Variable 1	0.704639811	0.045015421	15.6532984	7.47654E-45	0.616186366

SUMMARY OUTPUT		Mean	3.828942458
IDTC 1 Summary	Total as Y	Std Dev	3.017240821
Regression S	tatistics	CV	0.788008923
Multiple R	0.702785063	-	
R Square	0.493906845		
Adjusted R Square	0.492843624		
Standard Error	490.1939423		
Observations	478		

	df	SS	MS	F	Significance F
Regression	1	111623957.1	111623957.1	464.5383085	2.09899E-72
Residual	476	114378088.1	240290.1011		
Total	477	226002045.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	137.5442063	40.8493956	3.367105052	0.000821178	57.27682874
X Variable 1	3.22602858	0.149677818	21.55315078	2.09899E-72	2.931917841

Table 3.6. IDTC 2 Regression

IDTC 2 REGRESSION

SUMMARY OUTPUT		Mean	0.687980668
IDTC 2	Fuel as Y	Std Dev	0.689913665
Regression St	CV	1.002809668	
Multiple R	0.810669887	.	
R Square	0.657185665		
Adjusted R Square	0.656233403	i	
Standard Error	105.0270557		
Observations	362	<u>.</u>	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	7612617.175	7612617.175	690.1311157	1.05836E-85
Residual	360	3971045.676	11030.68243		
Total	361	11583662.85			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	115.0141959	7.818107584	14.71125777	1.08519E-38	99.63931578
X Variable 1	0.808583264	0.030779315	26.2703467	1.05836E-85	0.748053492

SUMMARY OUTPUT		Mean	2.62156310
IDTC 2	AVDLR as Y	Std Dev	2.288002845
Regression St	atistics	cv	0.872762833

regression	วเฉแจแบง
Multiple R	0.555128582
R Square	0.308167742
Adjusted R Square	0.306245986
Standard Error	496.3571367
Observations	362

	df	SS	MS	F	Significance F
Regression	1	39507305.55	39507305.55	160.3573497	1.19285E-30
Residual	360	88693346.57	246370.4072		
Total	361	128200652.1			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	201.7965309	46.08039208	4.379227733	1.56353E-05	111.176071
X Variable 1	1.846782503	0.145838207	12.66322825	1.19285E-30	1.559981007

SUMMARY OUTPUT		Mean	0.914336266
IDTC 2	Maint as Y	Std Dev	1.156186363
Regression S	tatistics	CV	1.264508918
Multiple R	0.479968353	_	
R Square	0.23036962		
Adjusted R Square	0.228231758		
Standard Error	264.549077		
Observations	362		

ANOVA

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	7541504.681	7541504.681	107.7570029	2.94545E-22
Residual	360	25195037.1	69986.21415		
Total	361	32736541.78			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	27.98907186	24.55998774	1.139620759	0.255202017	-20.30993959

0.077729039 10.38060706

2.94545E-22

0.65401477

SUMMARY OUTPUT		Mean	4.223880041
IDTC 2	Total as Y	Std Dev	3.333590706
Regression St	atistics	CV	0.789224759

0.806874607

Regression Statistics		
Multiple R	0.715389387	
R Square	0.511781976	
Adjusted R Square	0.510425815	
Standard Error	607.8757829	
Observations	362	

	df	SS	MS	F	Significance F
Regression	1	139445133.4	139445133.4	377.37548	5.22749E-58
Residual	360	133024668.3	369512.9674		
Total	361	272469801.7			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	198.8015237	56.43346764	3.522759314	0.000482052	87.82098383
X Variable 1	3.469594549	0.178604291	19.42615453	5.22749E-58	3.118356154

Table 3.7. IDTC 3 Regression

IDTC 3 REGRESSION

SUMMARY OUTPUT		Mean	0.720392108
IDTC 3 SUMMARY	Fuel as Y	Std Dev	0.805828924
Regression St	tatistics	CV	1.118597657
Multiple R	0.818733202	_	
R Square	0.670324057		
Adjusted R Square	0.669371236		
Standard Error	74.98390231		
Observations	348		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3955575.908	3955575.908	703.5154616	2.22551E-85
Residual	346	1945414.62	5622.585606		
Total	347	5900990.528			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-35.1155883	6.990436586	-5.023375561	8.15208E-07	-48.86470024
X Variable 1	0.937384786	0.035341183	26.52386589	2.22551E-85	0.867874124

SUMMARY OUTPUT		Mean	2.093738641
IDTC 3 SUMMARY	AVDLR as Y	Std Dev	2.695501712
Regression Statistics		CV	1.287410787
Multiple R	0.44673916	_	
R Square	0.199575878		
Adjusted R Square	0.197262513		
Standard Error	390.8240259		
Observations	348		

	df	SS	MS	F	Significance F
Regression	1	13177301.6	13177301.6	86.27083027	1.78465E-18
Residual	346	52849223.06	152743.4193		
Total	347	66026524.66			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	61.95312777	36.4348945	1.700378954	0.089958253	-9.708697167
X Variable 1	1.710906522	0.184201979	9.288209207	1.78465E-18	1.348609603

SUMMARY OUTPUT		Mean	0.983408558
IDTC 3 SUMMARY	Maint as Y	Std Dev	2.867959326
Regression S	tatistics	CV	2.916345708
Multiple R	0.202430529	_	
R Square	0.040978119		
Adjusted R Square	0.03820638		
Standard Error	455.1649415		
Observations	348		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3062930.987	3062930.987	14.78426043	0.00014345
Residual	346	71682592.89	207175.124		
Total	347	74745523.88			
Total		1 +1 +3323.00			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	25.65723653	42.4331298	0.604651051	0.545807182	-57.80219326
X Variable 1	0.82486266	0.214526942	3.845030615	0.00014345	0.402921211

SUMMARY OUTPUT		Mean	3.797539306
IDTC 3 SUMMARY	Total as Y	Std Dev	4.683387533
Regression St	atistics	CV	1.233269008
Multiple R	0.521952876	5	
R Square	0.272434805	5	
Adjusted R Square	0.270332015	5	
Standard Error	647.4073283	}	
Observations	348	3	

ANOVA

	df	SS	MS	F	Significance F
Regression	1	54302771.44	54302771.44	129.5587571	1.03521E-25
Residual	346	145021142.1	419136.2488		
Total	347	199323913.5			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	52.494776	60.35508602	0.869765573	0.385031504	-66.21438093
X Variable 1	3.473153968	0.305134033	11.38238802	1.03521E-25	2.873002328

1. Fuel

As expected, FH are a relatively good predictor of fuel costs. The F- and T-statistic significances both approach zero and the ${\rm R}^2$ value is .6439 or 64.39 percent.

The average across all three IDTC statuses is approximately \$703.62 per FH with a standard deviation of

\$737.21. This gives a CV of 1.0468 or an expected error of 104.68 percent of the simple mean is used as a predictor.

The regression equation has a slope of \$864.17 per FH across all T/M/S, meaning that cost per FH will predict over 64 percent of the fuel costs. Looking at each of the statuses, FH prediction of fuel costs is relatively consistent.

2. AVDLRs

Both the F- and T-statistic significances approach zero, but the inherent variability of AVDLR costs leads to an average R^2 value of only .2618 or 26.18 percent across all aircraft types across all three IDTC statuses.

The simple mean of AVDLR costs is \$2291.21 per FH with a standard deviation of \$2357.25. This gives a CV of 1.043 or an expected error of 104.3 percent by using the simple mean to predict costs.

The average regression slope gives a value of \$1,184.19 per FH but this predicts just over one-quarter of all AVDLR costs. As discussed in the previous chapter, AVDLR costs are often highly variable with negative values per FH common if a high dollar value item is returned for a credit by the squadron.

3. Other Maintenance

Other Maintenance follows the pattern noted above. The F- and T-statistic significances approach zero across all IDTC statuses while the average R^2 value is .2037 or 20.37 percent.

The simple mean of the Other Maintenance costs is \$955.28 per FH with a standard deviation of \$1606.22 and a

CV of 1.667 or an expected error of 166.7 percent by using the simple mean.

The regression slope averages \$778.79 per FH although this only predicts one-fifth of all Other Maintenance costs. There is, however, a wide variation between the three statuses. FH predict approximately 33 percent of Other Maintenance costs in IDTC 1, the workup to deployment, then decrease to just over 23 percent during the deployment and drop to less than 5 percent in the stand-down phase of IDTC 3.

4. Total Costs

Total costs, as expected by the costs it encompasses, have F- and T-statistic significances that approach zero across all IDTC statuses. The average R^2 value, across all statuses, is .4260 or 42.60 percent.

The simple mean, again across all statuses, is \$3950.12 per FH. The Standard deviation is \$3678.07 and the CV, the error expected by using the mean, is .9368 or 93.68 percent.

The average regression slope is \$3389.59 per FH that predicts 42.60 percent of the total costs. This however, shows less of a variation across the three statuses. Specifically, the R² and slopes (cost) of the three statuses are 49.39 percent and \$3226.02 per FH for IDTC 1, 51.18 percent and \$3469.59 per FH for IDTC 2 and 27.24 percent and \$3473.15 per FH for IDTC 3.

5. Discussion

In addition to the differences explained above between the statuses, the reasons FH are not as good a predictor are the same as for FY model and for the model as a whole. While FH are a good predictor for some costs, because of the mix of aircraft and how much each type is flying within each of the IDTC cycles, FH do not provide an accurate means for cost estimating.

The next comparison will test whether FH are a good predictor of costs for specific carrier air wings (CVW)

D. CARRIER AIR WINGS (CVWS)

The goal of this comparison is to determine if FH are a good predictor of costs for each of the four CVWs across all FYs and IDTC statuses.

1. CVW 2 USS CONSTELLATION

Table 3.8 shows the individual regression statistics for each of the squadrons onboard CVW 2.

Table 3.8. CVW 2 USS CONSTELLATION

Fuel

CVW 2 CONNIE REGRESSION

SUMMARY OUTPUT

E-2C VAW 116	Fuel as Y					
Regression Statistics						
Multiple R	0.853985449					
R Square	0.729291147					
Adjusted R Square	0.721329122					
Standard Error	14.82525869					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	20131.77006	20131.77006	91.59618824	3.54588E-11
Residual		34	7472.802036	219.7882952		
Total		35	27604.5721			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.479899923	5.570146351	1.522383684	0.137160426	-2.839991977
X Variable 1	0.293960533	0.030714986	9.570589754	3.54588E-11	0.231540212

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

EA-6B VAQ 131	Fuel as Y					
Regression Statistics						
Multiple R	0.870258103					
R Square	0.757349166					
Adjusted R Square	0.750212377					
Standard Error	33.24317723					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	117273.0798	117273.0798	106.1190322	5.42329E-12
Residual		34	37573.70031	1105.108833		
Total		35	154846.7801			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-8.22113931	14.88970487	-0.552135813	0.584466784	-38.48064039
X Variable 1	1.014556692	0.098487175	10.30140924	5.42329E-12	0.814406803

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

 FA-18C VFA 137
 Fuel as Y

 Regression Statistics

 Multiple R
 0.815841893

 R Square
 0.665597995

 Adjusted R Square
 0.655762642

 Standard Error
 88.39341296

ANOVA

Observations

	df		SS	MS	F	Significance F
Regression		1	528763.97	528763.97	67.67403148	1.34307E-09
Residual		34	265655.4455	7813.395455		
Total		35	794419.4155			

36

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	54.08673067	40.22196047	1.344706475	0.187622628	-27.65407394
X Variable 1	0.835198311	0.101526306	8.226422763	1.34307E-09	0.62887217

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VFA 151	Fuel as Y					
Regression Statistics						
Multiple R	0.820930662					
R Square	0.673927152					
Adjusted R Square	0.664336774					
Standard Error	84.3015001					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	499399.1968	499399.1968	70.27117802	8.69735E-10
Residual	3	34	241629.2592	7106.742919		
Total	3	35	741028.456			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.90172485	39.94319912	0.748606158	0.459242309	-51.2725689
X Variable 1	0.888314248	0.105968799	8.382790587	8.69735E-10	0.67295988

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VMFA 323 Fuel as Y

Regression Statistics

Multiple R

D. Square 0. 201523703

R Square 0.291523792
Adjusted R Square 0.270686257
Standard Error 150.3080369
Observations 36

	df		SS	MS	F	Significance F
Regression		1	316076.3902	316076.3902	13.9903201	0.000676901
Residual		34	768145.2024	22592.50595		
Total		35	1084221.593			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	51.72206507	84.73570371	0.610392819	0.545660388	-120.4814904
X Variable 1	0.781589514	0.208960837	3.740363632	0.000676901	0.35693028

SUMMARY OUTPUT

HH-60H HS 2	Fuel as Y				
Regression Statistics					
Multiple R	0.905416573				
R Square	0.819779171				
Adjusted R Square	0.814478559				
Standard Error	4.078861397				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	2573.052873	2573.052873	154.6574391	3.32835E-14
Residual		34	565.6617502	16.6371103		
Total		35	3138.714624			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.036017207	1.308680237	0.79165038	0.434053056	-1.623539272
X Variable 1	0.123153905	0.009902909	12.43613441	3.32835E-14	0.103028786

SUMMARY OUTPUT

S-3B VS 38 Fuel as Y					
Regression Statistics					
Multiple R	0.667517426				
R Square	0.445579514				
Adjusted R Square	0.429273029				
Standard Error	64.4566494				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	113527.3017	113527.3017	27.32529526	8.70691E-06
Residual	34	141258.4281	4154.659651		
Total	35	254785.7298			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	32.84294029	23.08866304	1.422470423	0.164000069	-14.07883757
X Variable 1	0.324212761	0.062022272	5.227360257	8.70691E-06	0.198168422

SUMMARY OUTPUT

SH-60F HS 2	Fuel as Y				
Regression Statistics					
Multiple R	0.864707785				
R Square	0.747719554				
Adjusted R Square	0.74029954				
Standard Error	5.502936828				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	3051.568468	3051.568468	100.770651	1.05724E-11
Residual		34	1029.598667	30.28231373		
Total		35	4081.167135			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.544997841	2.270213738	-0.240064551	0.811721746	-5.158624213
X Variable 1	0.128303945	0.01278124	10.0384586	1.05724E-11	0.102329358

SUMMARY OUTPUT		Mean	\$ 0.706688
CVW 2 Connie	Fuel as Y	STD DEV	\$ 0.698431
Regression Sta	tistics	CV	0.988316683
Multiple R	0.7774021	<u> </u>	
R Square	0.6043540)4	
Adjusted R Square	0.60297066	33	
Standard Error	110.936474	19	
Observations	28	38	

	df	SS	MS	F	Significance F
Regression	1	5376497.533	5376497.533	436.868496	1.57258E-59
Residual	286	3519773.819	12306.90147		
Total	287	8896271.352			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-40.53871458	12.33678555	-3.28600302	0.001142858	-64.82111154
X Variable 1	0.867504299	0.041504604	20.90139938	1.57258E-59	0.785811117

AVDLR

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

E-2C VAW 116	AVDLR as Y
Regression Sta	atistics
Multiple R	0.265210195
R Square	0.070336447
Adjusted R Square	0.042993402
Standard Error	491.4546421
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	621298.6709	621298.6709	2.572370624	0.117995106
Residual		34	8211940.618	241527.6652		
Total		35	8833239.289			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	330.0635607	184.6493433	1.787515486	0.082771462	-45.18880682
X Variable 1	1.633045399	1.018196237	1.603861161	0.117995106	-0.436176953

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT EA-6B VAQ 131

EA-6B VAQ 131	AVDLR as Y
Regression S	Statistics
Multiple R	0.125424213
R Square	0.015731233
Adjusted R Square	-0.013217848
Standard Error	341.0487829
Observations	36

7 11 10 17 1						
	df		SS	MS	F	Significance F
Regression		1	63206.39052	63206.39052	0.543410445	0.466079683
Residual		34	3954685.26	116314.2724		
Total		35	4017891.65			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	323.9788464	152.75663	2.120882389	0.04130487	13.54022785
X Variable 1	0.744830838	1.010400746	0.737163785	0.466079683	-1.308549181

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT FA-18C VFA 137

FA-18C VFA 137	AVDLR as Y				
Regression Statistics					
Multiple R	0.313013014				
R Square	0.097977147				
Adjusted R Square	0.071447063				
Standard Error	395.0243168				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	576280.3715	576280.3715	3.693058322	0.063053332
Residual		34	5305503.169	156044.2109		
Total		35	5881783.541			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	515.7977341	179.7492813	2.869539896	0.007019582	150.503484
X Variable 1	0.871917901	0.453714345	1.921733156	0.063053332	-0.05013998

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VFA 151 AVDLR as Y

Regression Statistics

Regression Statistics	
Multiple R	0.247978181
R Square	0.061493178
Adjusted R Square	0.033890036
Standard Error	386.6505191
Observations	36

	df		SS	MS	F	Significance F
Regression		1	333047.0705	333047.0705	2.227760108	0.144772211
Residual		34	5082953.212	149498.6239		
Total		35	5416000.283			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	472.1578858	183.200283	2.577277055	0.014468384	99.85036124
X Variable 1	0.725430009	0.486028018	1.492568293	0.144772211	-0.262297113

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT FA-18C VMFA 323

FA-18C VMFA 323	AVDLR as Y				
Regression Statistics					
Multiple R	0.308342353				
R Square	0.095075006				
Adjusted R Square	0.068459565				
Standard Error	429.2728204				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	658263.0543	658263.0543	3.572174756	0.067305277
Residual	3	34	6265355.246	184275.1543		
Total	3	35	6923618.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	329.8352487	242.0012613	1.362948469	0.181857853	-161.9701627
X Variable 1	1.127930749	0.596782511	1.890019777	0.067305277	-0.084876436

SUMMARY OUTPUT HH-60H HS 2

HH-60H HS 2	AVDLR as Y
Regression S	Statistics
Multiple R	0.329435951
R Square	0.108528046
Adjusted R Square	0.082308282
Standard Error	93.78989862
Observations	36

	df	SS	MS	F	Significance F
Regression	1	36410.39136	36410.39136	4.139169528	0.049760776
Residual	34	299082.5328	8796.545083		
Total	35	335492.9242			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	70.35235498	30.09197294	2.337911015	0.025413572	9.198148393
X Variable 1	0.463272485	0.227708845	2.034494907	0.049760776	0.00051274

SUMMARY OUTPUT

S-3B VS 38	AVDLR as Y
Regression Stat	istics
Multiple R	0.357662055
R Square	0.127922146
Adjusted R Square	0.102272797
Standard Error	623.1496673
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1936663.333	1936663.333	4.98734481	0.032221823
Residual		34	13202727.27	388315.5078		
Total		35	15139390.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	526.9985031	223.2150263	2.360945461	0.024102033	73.37128961
X Variable 1	1.339081505	0.599614759	2.233236398	0.032221823	0.120518504

SUMMARY OUTPUT SH-60F HS 2

SH-60F HS 2	AVDLR as Y
Regression St	atistics
Multiple R	0.248105278
R Square	0.061556229
Adjusted R Square	0.033954941
Standard Error	193.837752
Observations	36

	df		SS	MS	F	Significance F
Regression		1	83795.24894	83795.24894	2.230194121	0.144559697
Residual		34	1277484.519	37573.07408		
Total		35	1361279.768			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	462.0102113	79.96695969	5.777513777	1.67541E-06	299.4979034
X Variable 1	-0.672338761	0.450211741	-1.493383448	0.144559697	-1.587278498

SUMMARY OUTPUT	Mean	2.380083964			
CVW 2 Connie	AVDLR as Y	STD DEV	1.929133569		
Regression Statisti	cs	CV	0.810531728		
Multiple R	0.488712908	-			
R Square	0.238840307				
Adjusted R Square	0.236178909				
Standard Error	425.0083558				
Observations	288				
ANOVA					
ANOVA	.,,		140		0: ::: =
	df	SS	MS	F	Significance F
Regression	1	16210365.53	16210365.53	89.74243949	1.0732E-18
Residual	286	51660781.32	180632.1025		
Total	287	67871146.85			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	220.2579686	47.26341762	4.660220943	4.84844E-06	127.2297593
X Variable 1	1.506323717	0.159008148	9.473248624	1.0732E-18	1.193349243

Other Maintenance

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

E-2C VAW 116	Maint as Y						
Regression Statistics							
Multiple R	0.186054671						
R Square	0.03461634						
Adjusted R Square	0.006222703						
Standard Error	204.6256682						
Observations	36						

	df		SS	MS	F	Significance F
Regression		1	51048.19002	51048.19002	1.219158377	0.277279173
Residual		34	1423636.579	41871.66409		
Total		35	1474684.769			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	119.655014	76.88195823	1.556347116	0.128886066	-36.58782082
X Variable 1	0.468099546	0.423943672	1.104155051	0.277279173	-0.393457086

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT FA-6R VAO 131

EA-6B VAQ 131	Maint as Y						
Regression Statistics							
Multiple R	0.265256971						
R Square	0.070361261						
Adjusted R Square	0.043018945						
Standard Error	103.1687331						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	27390.15639	27390.15639	2.573346792	0.117927865
Residual		34	361888.7747	10643.78749		
Total		35	389278.9311			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	131.0011677	46.2095418	2.834937603	0.007661595	37.0921418
X Variable 1	0.490314131	0.305650599	1.60416545	0.117927865	-0.130842213

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VFA 137	Maint as Y						
Regression Statistics							
Multiple R	0.093123806						
R Square	0.008672043						
Adjusted R Square	-0.020484661						
Standard Error	590.9495045						
Observations	36						

	df		SS	MS	F	Significance F
Regression		1	103868.4719	103868.4719	0.297428785	0.589059078
Residual		34	11873524.77	349221.3169		
Total		35	11977393.25			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	254.0223201	268.9017973	0.944665758	0.351494741	-292.4515218
X Variable 1	0.370169431	0.678748766	0.545370319	0.589059078	-1.009213115

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VFA 151	Maint as Y
Regression Sta	tistics
Multiple R	0.066105449
R Square	0.00436993
Adjusted R Square	-0.024913307
Standard Error	597.5196732
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	53279.46449	53279.46449	0.149229757	0.701679502
Residual	34	12139011.84	357029.7599		
Total	35	12192291.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	253.4118803	283.1129608	0.895091061	0.377031689	-321.9425016
X Variable 1	0.290150039	0.75109508	0.386302676	0.701679502	-1.236257809

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VMFA 323 Maint as			
Regression St	atistics		
Multiple R	0.342561762		
R Square	0.117348561		
Adjusted R Square	0.091388224		
Standard Error	1056.725479		
Observations	36		

	df	SS	MS	F	Significance F
Regression		1 5047679.914	5047679.914	4.52030199	0.04083742
Residual	34	4 37966737.06	1116668.737		
Total	3	5 43014416.97			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-796.2548119	595.7258102	-1.336612915	0.190225031	-2006.914523
X Variable 1	3.123407146	1.469078066	2.126100184	0.04083742	0.137883274

SUMMARY OUTPUT

HH-60H HS 2	Maint as Y						
Regression Statistics							
Multiple R	0.071888685						
R Square	0.005167983						
Adjusted R Square	-0.024091782						
Standard Error	323.1448361						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	18443.55715	18443.55715	0.176624215	0.676934818
Residual		34	3550367.894	104422.5851		
Total		35	3568811.451			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	121.3885788	103.6792427	1.170808887	0.249816338	-89.31285452
X Variable 1	-0.329720672	0.784550771	-0.420266838	0.676934818	-1.92411862

SUMMARY OUTPUT S-3B VS 38

S-3B VS 38 Maint as				
Regression S	tatistics			
Multiple R	0.188699246			
R Square	0.035607405			
Adjusted R Square	0.007242917			
Standard Error	465.7984373			
Observations	36			

	df		SS	MS	F	Significance F
Regression		1	272371.3566	272371.3566	1.255351597	0.270384924
Residual		34	7376918.263	216968.1842		
Total		35	7649289.619			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-13.31843058	166.8511048	-0.07982225	0.936846617	-352.4004494
X Variable 1	0.502181447	0.448206318	1.12042474	0.270384924	-0.408682783

SUMMARY OUTPUT

SH-60F HS 2

Regression S	Statistics				
Multiple R	0.018920292				
R Square	0.000357977				
Adjusted R Square	-0.029043259				
Standard Error	305.0755677				
Observations	36				
ANOVA	df	SS	MS	F	Significance F
ANOVA Regression	<i>df</i> 1	SS 1133.195703	<i>MS</i> 1133.195703	<i>F</i> 0.012175591	Significance F 0.912786072
	<i>df</i> 1 34			<i>F</i> 0.012175591	

Standard Error

125.8576587

0.708575089

t Stat

1.069711194

0.110343062

P-value

0.912786072

0.29228502

Lower 95%

-121.1420214

-1.361810543

SUMMARY OUTPUT		Mean	0.9615788	
CVW 2 Connie	Maint as Y	STD DEV	2.189200747	
Regression S	tatistics	CV	2.276673266	

Coefficients

134.6313463

0.078186345

Maint as Y

Regression Statis	tics
Multiple R	0.231419785
R Square	0.053555117
Adjusted R Square	0.050245869
Standard Error	537.8120522
Observations	288

ANOVA

Intercept

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	4680936.388	4680936.388	16.18347117	7.36458E-05
Residual	286	82723155.81	289241.8035		
Total	287	87404092.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	38.34953349	59.80784913	0.641212383	0.521898203	-79.36978071
X Variable 1	0.809446743	0.201211334	4.022868525	7.36458E-05	0.413404073

Total Costs

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT F-2C VAW 116

SUMMART OUTFUT						
E-2C VAW 116	Total as Y					
Regression Statistics						
Multiple R	0.331152137					
R Square	0.109661738					
Adjusted R Square	0.083475318					
Standard Error	564.9201902					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1336451.48	1336451.48	4.187733179	0.048512343
Residual	3	34	10850583.93	319134.8213		
Total	3	35	12187035.41			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	458.1984746	212.2518199	2.158749333	0.038017388	26.85116257
X Variable 1	2.395105479	1.170402236	2.046395167	0.048512343	0.016563524

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

EA-6B VAQ 131

EA-6B VAQ 131	Total as Y
Regression St	tatistics
Multiple R	0.367221169
R Square	0.134851387
Adjusted R Square	0.10940584
Standard Error	329.8571978
Observations	36

	df		SS	MS	F	Significance F
Regression		1	576627.7641	576627.7641	5.299606437	0.027581744
Residual	3	34	3699396.212	108805.7709		
Total	3	35	4276023.976			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	446.7588748	147.7438901	3.023873775	0.004723876	146.5073626
X Variable 1	2.249701661	0.97724424	2.302087409	0.027581744	0.263703724

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT FA-18C VFA 137

FA-18C VFA 137	Total as Y				
Regression Statistics					
Multiple R	0.394933451				
R Square	0.155972431				
Adjusted R Square	0.131148091				
Standard Error	721.5268156				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	3270958.836	3270958.836	6.283044361	0.017135634
Residual		34	17700432.15	520600.9456		
Total		35	20971390.99			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	823.9067848	328.3188428	2.509471518	0.017019029	156.6830577
X Variable 1	2.077285643	0.828726367	2.50660016	0.017135634	0.393112141

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT

FA-18C VFA 151	Total as Y
Regression St	atistics
Multiple R	0.318431226
R Square	0.101398445
Adjusted R Square	0.074968988
Standard Error	773.2654401
Observations	36

	df		SS	MS	F	Significance F
Regression		1	2294036.107	2294036.107	3.836569308	0.058389605
Residual		34	20329940.99	597939.4409		
Total		35	22623977.1			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	755.4714909	366.3836992	2.061968075	0.046920169	10.89071931
X Variable 1	1.903894296	0.972011288	1.95871624	0.058389605	-0.07146901

CVW 2 CONNIE REGRESSION SUMMARY OUTPUT EA 18C VMEA 323

FA-18C VMFA 323	Total as Y				
Regression Statistics					
Multiple R	0.467102413				
R Square	0.218184664				
Adjusted R Square	0.195190096				
Standard Error	1175.272282				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	13106174.36	13106174.36	9.488530405	0.004077404
Residual		34	46963007.88	1381264.938		
Total		35	60069182.24			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-414.6974981	662.5562143	-0.625905379	0.535556459	-1761.172842
X Variable 1	5.032927409	1.633883886	3.080345825	0.004077404	1.712478034

SUMMARY OUTPUT HH-60H HS 2

HH-60H HS 2	Total as Y
Regression S	tatistics
Multiple R	0.060398666
R Square	0.003647999
Adjusted R Square	-0.025656472
Standard Error	299.6755445
Observations	36

	df		SS	MS	F	Significance F
Regression		1	11179.52674	11179.52674	0.124486086	0.726397029
Residual		34	3053384.687	89805.43197		
Total		35	3064564.214			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	192.7769509	96.14924963	2.004976135	0.052979667	-2.621705279
X Variable 1	0.256705718	0.727570591	0.352825858	0.726397029	-1.221894649

SUMMARY OUTPUT

S-3B VS 38	Total as Y				
Regression Statistics					
Multiple R	0.407317247				
R Square	0.165907339				
Adjusted R Square	0.141375202				
Standard Error	865.3828068				
Observations	36				
	·				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5064618.546	5064618.546	6.76285718	0.013677437
Residual	34	25462171.68	748887.4022		
Total	35	30526790.22			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	546.5230128	309.9840314	1.76306828	0.086875959	-83.43991884
X Variable 1	2.165475712	0.832699318	2.6005494	0.013677437	0.473228207

SUMMARY OUTPUT

SH-60F HS 2 Total as Y

Regression Statistics					
Multiple R	0.108270503				
R Square	0.011722502				
Adjusted R Square	-0.017344483				
Standard Error	315.8319517				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	40228.37083	40228.37083	0.403292659	0.529644558
Residual		34	3391493.939	99749.82174		
Total		35	3431722.31			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	596.0965598	130.2951602	4.574970848	6.06743E-05	331.3051098
X Variable 1	-0.465848471	0.733558098	-0.635053272	0.529644558	-1.956616909

	Mean	0.706687791	2.380083964	0.9615788	4.048350556
Total as Y	STD DEV	0.698431334	1.929133569	2.189200747	3.487468084
cs	cv	0.988316683	0.810531728	2.276673266	0.861454075
0.571296651	_				
0.326379863					
0.324024548					
722.7948533					
288					
	_				
	0.571296651 0.326379863 0.324024548 722.7948533	Total as Y STD DEV	Total as Y STD DEV 0.698431334 CS CV 0.988316683 0.571296651 0.326379863 0.324024548 722.7948533	Total as Y CV 0.698431334 1.929133569 CV 0.988316683 0.810531728 0.326379863 0.324024548 722.7948533	Total as Y CV 0.698431334 1.929133569 2.189200747 CS 0.571296651

<u>ANO</u>VA

	df	SS	MS	F	Significance F
Regression	1	72394309.62	72394309.62	138.5716308	2.38128E-26
Residual	286	149415666.4	522432.3999		
Total	287	221809976			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	218.0687875	80.37901969	2.713006309	0.007071891	59.85940177
X Variable 1	3.183274759	0.27041885	11.7716452	2.38128E-26	2.651011485

a. Fuel

While it is expected that FH would approximate fuel costs relatively well, the F- and T-statistic significances approach zero but the R^2 value is .6044, meaning only 60.44 percent of the fuel costs were explained by FH.

The mean of all the data is \$706.69 per FH with a standard deviation of 698.43 and a CV or expected error of .9883 or 98.83 percent by using the mean as a predictor.

The regression slope, for all seven squadrons and eight T/M/S of aircraft, is \$867.50 per FH and explains 60.44 percent of all fuel costs. As will be shown throughout the CVW comparison, the reason that fuel costs, and costs in general, are not as accurate as expected is because of the mix of T/M/S of aircraft. For example, the fuel R² throughout the seven squadrons ranges from a low of 29.15 percent for the FA-18C of the VMFA 323 squadron to a high of 81.97 for the HH-60 of the HS 2 squadron.

b. AVDLRS

Again, as expected, analysis of AVDLRs tells a similar story. The F- and T-statistic significance both approach zero, but the comparison as a whole only has an \mathbb{R}^2 value of .2388 meaning the FH explain only 23.88 percent of the AVDLR costs.

The mean of the AVDLR data is \$2380.08 per FH across all T/M/S of aircraft, with a standard deviation of \$1929.13 for a CV, and therefore an expected error of the mean, of .8105 or 81.05 percent.

The regression equation slope is \$1506.32 per FH, although again this explains 23.88 percent of the AVDLR costs. The explanation for this result is twofold. As noted before, the age, maintenance required and credits available from AVDLRs, across all T/M/S of aircraft, explains a portion of the variance, while the other portion is inherent in the mix of the squadrons.

c. Other Maintenance

With F- and T-statistic significance approaching zero, the \mbox{R}^2 value for the carrier as a whole is a mere .0535 or 5.35 percent.

The mean of the data is \$961.58 per FH with a large standard deviation of \$2189.20. This gives a CV of 2.2766 or 227.66 percent expected error when using the mean as a predictor of Other Maintenance costs, which is not good.

The regression equation gives a cost slope of \$809.45 though this only explains 5.35 percent of the costs.

d. Total Costs

While fuel costs are relatively well predicted by FH, the total FH cost equation suffers from the lack of adequate prediction for AVDLRs and Other Maintenance. The F-and T-statistic significances both approach zero but the \mathbb{R}^2 value is only .3264 or 32.64 percent.

The mean of the total cost data is \$4048.35 per FH, and has a standard deviation of \$3487.46 and a CV of .8615 for an expected error of 86.15 percent.

The regression equation slope is \$3183.27 per FH although this explains almost one-third of the total costs.

e. Discussion

The lack of adequacy of FH as a cost predictor is more apparent for certain costs. The overall lack of correlation between FH and AVDLRs and Other Maintenance drags down the overall efficacy across all comparisons. One possible use, however, is a comparison between CVWs or between different squadrons.

2. CVW 9 USS JOHN C STENNIS

Table 3.9 shows the individual regression statistics for each of the squadrons onboard CVW 9.

Table 3.9. CVW 9 USS JOHN C STENNIS

Fuel

CVW 9 STENNIS REGRESSION

SUMMARY OUTPUT

E-2C VAW 112	Fuel as Y				
Regression Statistics					
Multiple R	0.880471642				
R Square	0.775230312				
Adjusted R Square	0.768619439				
Standard Error	13.28602802				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	20699.61412	20699.61412	117.2659486	1.46016E-12
Residual	34	6001.630383	176.5185407		
Total	35	26701.2445			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	10.90333001	3.972239366	2.744882422	0.009599171	2.830773675
X Variable 1	0.261080991	0.02410956	10.82894033	1.46016E-12	0.212084502

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

EA-6B VAQ 138	Fuel as Y				
Regression Statistics					
Multiple R	0.954206572				
R Square	0.910510181				
Adjusted R Square	0.907878128				
Standard Error	26.51139353				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	243139.3259	243139.3259	345.9314884	2.14951E-19
Residual		34	23897.03556	702.853987		
Total		35	267036.3614			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	11.92220464	7.43763225	1.602956995	0.118195091	-3.192872728
X Variable 1	0.812551488	0.043687364	18.59923354	2.14951E-19	0.723768141

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT FA-18C VEA 146

FA-18C VFA 146	Fuel as Y							
Regression Statis	Regression Statistics							
Multiple R	0.747068703							
R Square	0.558111647							
Adjusted R Square	0.54511493							
Standard Error	92.291206							
Observations	36							

	df		SS	MS	F	Significance F
Regression		1	365770.0062	365770.0062	42.94251217	1.66287E-07
Residual		34	289600.668	8517.666705		
Total		35	655370.6741			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	102.4505111	36.94801948	2.772828221	0.008953785	27.36315074
X Variable 1	0.613610618	0.093637356	6.553053653	1.66287E-07	0.423316741

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

FA-18C VFA 147	Fuel as Y						
Regression Statistics							
Multiple R	0.741315121						
R Square	0.549548109						
Adjusted R Square	0.536299524						
Standard Error	89.82430778						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	334675.5443	334675.5443	41.47975861	2.32071E-07
Residual		34	274325.8131	8068.406268		
Total		35	609001.3575			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	119.3080878	35.54507704	3.356529165	0.001954011	47.07184757
X Variable 1	0.583163925	0.090546682	6.440478135	2.32071E-07	0.399151049

CVW 9 STENNIS REGRESSION

Fuel as Y
cs
0.153801576
0.023654925
-0.005061107
181.8029527
36

	df		SS	MS	F	Significance F
Regression		1	27226.95111	27226.95111	0.823753261	0.370473357
Residual		34	1123778.663	33052.3136		
Total		35	1151005.614			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	270.5031174	114.0147386	2.37252763	0.023465993	38.7974433
X Variable 1	0.222900009	0.245590472	0.907608539	0.370473357	-0.27619955

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

HH-60H HS 8	Fuel as Y
Regression Sta	atistics
Multiple R	0.852827789
R Square	0.727315237
Adjusted R Square	0.719295097
Standard Error	3.90907311
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1385.760948	1385.760948	90.68610149	4.01757E-11
Residual		34	519.5489877	15.28085258		
Total		35	1905.309935			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.392031783	1.122548909	1.24006337	0.223442297	-0.889260574
X Variable 1	0.094542527	0.009927887	9.522925049	4.01757E-11	0.074366646

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT S.3R VS 33

S-3B VS 33	Fuel as Y
Regression St	atistics
Multiple R	0.785013357
R Square	0.616245971
Adjusted R Square	0.604959087
Standard Error	28.84356625
Observations	36

	df		SS	MS	F	Significance F
Regression		1	45423.2258	45423.2258	54.59841826	1.44478E-08
Residual		34	28286.34467	831.9513137		
Total		35	73709.57046			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	20.71030874	10.48542164	1.975152689	0.05641484	-0.598617808
X Variable 1	0.283730286	0.038398624	7.389074249	1.44478E-08	0.205694944

SUMMARY OUTPUT

SH-60F HS 8 Fuel as Y			
Regression Statis	stics		
Multiple R	0.77162448		
R Square	0.595404339		
Adjusted R Square	0.583504466		
Standard Error	5.737814847		
Observations	36		

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1647.262267	1647.262267	50.03451455	3.60662E-08
Residual		34	1119.365653	32.92251921		
Total		35	2766.62792			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	2.42866771	2.150782827	1.12920174	0.266717065	-1.942246008
X Variable 1	0.106389532	0.015040562	7.073507938	3.60662E-08	0.075823453

 CVW 9 STENNIS REGRESSION
 Mean
 \$ 0.68740

 SUMMARY OUTPUT
 STD DEV
 \$ 0.72826

 CVW 9 STENNIS
 Fuel as Y
 CV
 1.059442777

Regression Statistics						
Multiple R	0.787313874					
R Square	0.619863136					
Adjusted R Square	0.618533986					
Standard Error	106.7665722					
Observations	288					

	df	SS	MS	F	Significance F
Regression	1	5316091.577	5316091.577	466.360602	5.10185E-62
Residual	286	3260142.869	11399.10094		
Total	287	8576234.446			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-23.60534204	10.69484738	-2.207169602	0.028096329	-44.65592515
X Variable 1	0.786846559	0.036435868	21.59538381	5.10185E-62	0.715130129

AVDLR

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT E-2C VAW 112

SUMMARY OUTPUT					
E-2C VAW 112 AVDLR as Y					
Regression St	tatistics				
Multiple R	0.479402615				
R Square	0.229826867				
Adjusted R Square	0.207174716				
Standard Error	392.5810897				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1563687.996	1563687.996	10.14591805	0.003092628
Residual	;	34	5240077.009	154119.912		
Total	;	35	6803765.005			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	237.753585	117.3733832	2.02561755	0.05071032	-0.777671825	476.2848419
X Variable 1	2.269181215	0.712399334	3.185265773	0.003092628	0.821412532	3.716949898

CVW 9 STENNIS REGRESSION

SUMMARY OUTPUT FA-6B VAO 138

SOMMAN COLL OF							
EA-6B VAQ 138	AVDLR as Y						
Regression Statistics							
Multiple R	0.33325379						
R Square	0.111058089						
Adjusted R Square	0.084912738						
Standard Error	225.8468821						
Observations	36						

	df		SS	MS	F	Significance F
Regression		1	216662.5886	216662.5886	4.247718509	0.047017851
Residual		34	1734231.681	51006.81415		
Total		35	1950894.27			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	130.7122191	63.3601569	2.0630034	0.046815964	1.948972764
X Variable 1	0.767035121	0.372166592	2.060999396	0.047017851	0.010702105

SUMMARY OUTPUT FA-18C VFA 146

FA-18C VFA 146	AVDLR as Y							
Regression Statis	Regression Statistics							
Multiple R	0.362354521							
R Square	0.131300799							
Adjusted R Square	0.105750822							
Standard Error	440.4351507							
Observations	36							

ANOVA

	df		SS	MS	F	Significance F
Regression		1	996875.2341	996875.2341	5.138979226	0.029870064
Residual		34	6595426.148	193983.122		
Total		35	7592301.382			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	458.3656593	176.3245626	2.59955648	0.013710352	100.0312707
X Variable 1	1.012999486	0.446859293	2.266931676	0.029870064	0.104872738

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

FA-18C VFA 147 AVDLR as Y

Regression Statistics	
Multiple R	0.4776795
R Square	0.228177705
Adjusted R Square	0.205477049
Standard Error	415.8695142
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1738397.047	1738397.047	10.05159092	0.0032167
Residual		34	5880213.398	172947.4529		
Total		35	7618610.445			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	313.5815002	164.5669673	1.905494798	0.065200613	-20.85859575
X Variable 1	1.3290862	0.419213969	3.170424407	0.0032167	0.477141473

SUMMARY OUTPUT FA-18C VMFA 314

FA-18C VMFA 314	AVDLR as Y
Regression Stati	stics
Multiple R	0.207089114
R Square	0.042885901
Adjusted R Square	0.014735486
Standard Error	533.5167081
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	433636.4617	433636.4617	1.523455393	0.225560725
Residual		34	9677762.647	284640.0779		
Total		35	10111399.11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	255.6847464	334.586249	0.764181873	0.450030039	-424.2758741
X Variable 1	0.889556376	0.720706776	1.234283352	0.225560725	-0.575095051

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

HH-60H HS 8 AVDLR as Y

Regression Statistics	
Multiple R	0.481361281
R Square	0.231708683
Adjusted R Square	0.20911188
Standard Error	113.6474861
Observations	36

	df		SS	MS	F	Significance F
Regression		1	132438.7179	132438.7179	10.25404693	0.002956672
Residual		34	439135.5373	12915.7511		
Total		35	571574.2552			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	75.79910197	32.63557828	2.322591048	0.026321224	9.475670793
X Variable 1	0.924252281	0.288630938	3.202194081	0.002956672	0.337684028

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT S-38 VS 33

S-3B VS 33	AVDLR as Y						
Regression Statistics							
Multiple R	0.452074252						
R Square	0.204371129						
Adjusted R Square	0.18097028						
Standard Error	388.8111872						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1320278.14	1320278.14	8.733492022	0.005639971
Residual		34	5139920.736	151174.1393		
Total		35	6460198.876			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	272.3229518	141.3434525	1.926675392	0.06241203	-14.9213147
X Variable 1	1.529675903	0.517613341	2.955248217	0.005639971	0.477759724

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT SH-60F HS 8

SH-60F HS 8	AVDLR as Y
Regression Statist	ics
Multiple R	0.295250724
R Square	0.08717299
Adjusted R Square	0.060325137
Standard Error	172.2772984
Observations	36

	df	SS	MS	F	Significance F
Regression	1	96367.03215	96367.03215	3.246925909	0.08043033
Residual	34	1009101.897	29679.46755		
Total	35	1105468.929			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	115.6977108	64.57703234	1.791623222	0.082098165	-15.53852238
X Variable 1	0.813732695	0.45159131	1.801922837	0.08043033	-0.104010663

CVW 9 STENNIS REGRESSION		Mean	\$	2.14366
SUMMARY OUTPUT		STD DEV	\$	1.92681
CVW 9 STENNIS	AVDLR as Y	CV	0.8	98845101

Regression Statistics	S
Multiple R	0.544183302
R Square	0.296135467
Adjusted R Square	0.293674402
Standard Error	384.3815985
Observations	288

ANOVA

	df	SS	MS	F	Significance F
Regression	1	17778395.01	17778395.01	120.3281874	1.3337E-23
Residual	286	42256274.98	147749.2132		
Total	287	60034669.99			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	167.2781318	38.50364816	4.344474869	1.94132E-05	91.49170707
X Variable 1	1.438931431	0.131176613	10.96942056	1.3337E-23	1.180737546

Other Maintenance

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

SUMMARY OUTPUT	
E-2C VAW 112	Maint as Y
Regression S	tatistics
Multiple R	0.035631323
R Square	0.001269591
Adjusted R Square	-0.028104833
Standard Error	298.8221346
Observations	36

	df		SS	MS	F	Significance F
Regression		1	3859.402373	3859.402373	0.043220972	0.836550066
Residual		34	3036018.717	89294.66815		
Total		35	3039878.12			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	241.8512699	89.34145288	2.70704429	0.010542165	60.28771212
X Variable 1	0.112733803	0.542259154	0.207896542	0.836550066	-0.989268661

SUMMARY OUTPUT FA-6B VAO 138

EA-6B VAQ 138	Maint as Y					
Regression Statistics						
Multiple R	0.547838628					
R Square	0.300127162					
Adjusted R Square	0.279542667					
Standard Error	58.20597875					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	49396.96569	49396.96569	14.58025365	0.000543163
Residual	3	34	115189.8227	3387.935963		
Total	3	35	164586.7884			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	64.43386458	16.32938171	3.945885136	0.000378051	31.24859007
X Variable 1	0.366246449	0.095915961	3.818409833	0.000543163	0.171321892

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

 FA-18C VFA 146
 Maint as Y

 Regression Statistics

 Multiple R
 0.203564572

 R Square
 0.041438535

 Adjusted R Square
 0.013245551

 Standard Error
 231.7598838

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	78947.77098	78947.77098	1.469817262	0.233731922
Residual		34	1826229.888	53712.64375		
Total		35	1905177.659			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	255.5371259	92.78314884	2.754132933	0.009380889	66.979205
X Variable 1	0.285074754	0.23514031	1.212360203	0.233731922	-0.192787536

SUMMARY OUTPUT

FA-18C VFA 147	Maint as Y					
Regression Statistics						
Multiple R	0.248232551					
R Square	0.061619399					
Adjusted R Square	0.03401997					
Standard Error	253.4419173					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	143408.2863	143408.2863	2.232633082	0.144347118
Residual		34	2183915.385	64232.80543		
Total		35	2327323.671			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	202.2250691	100.2914768	2.016373431	0.051715905	-1.59159994
X Variable 1	0.381738343	0.255480117	1.494199813	0.144347118	-0.137459381

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

FA-18C VMFA 314	Maint as Y					
Regression Statistics						
Multiple R	0.236381254					
R Square	0.055876097					
Adjusted R Square	0.028107747					
Standard Error	397.7426979					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	318332.0901	318332.0901	2.012222451	0.165138502
Residual		34	5378774.627	158199.2537		
Total		35	5697106.717			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	81.82994242	249.4378064	0.328057497	0.744879961	-425.0883369
X Variable 1	0.762168141	0.537294996	1.41852827	0.165138502	-0.329745947

SUMMARY OUTPUT
HH-60H HS 8

RЛ	21	nt	26	v

1111 0011110 0	manit as i					
Regression Statistics						
Multiple R	0.344367921					
R Square	0.118589265					
Adjusted R Square	0.09266542					
Standard Error	89.14119396					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	36349.86908	36349.86908	4.574524496	0.039717988
Residual	;	34	270169.1837	7946.152461		
Total	;	35	306519.0528			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.396871939	25.59822934	0.328025498	0.744903941	-43.6249549
X Variable 1	0.484210801	0.226392218	2.138813806	0.039717988	0.024126762

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

S-3B VS 33 Maint as Y

Regression Statistics					
Multiple R	0.49158261				
R Square	0.241653463				
Adjusted R Square	0.219349153				
Standard Error	73.35782922				
Observations	36				

	df		SS	MS	F	Significance F
Regression		1	58303.84199	58303.84199	10.83438418	0.002328345
Residual	;	34	182966.6177	5381.371108		
Total	;	35	241270.4597			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	110.7301304	26.6675682	4.152239514	0.000208866	56.53514699
X Variable 1	0.321451381	0.097659204	3.291562574	0.002328345	0.12298413

SUMMARY OUTPUT

SH-60F HS 8 Maint as Y						
Regression Statistics						
Multiple R	0.166343363					
R Square	0.027670114					
Adjusted R Square	-0.000927824					
Standard Error	50.72413869					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	2489.462552	2489.462552	0.967556278	0.33223869
Residual	3	84	87479.90035	2572.938245		
Total	3	5	89969.3629			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	63.00204547	19.01361569	3.313522609	0.00219473	24.36175477
X Variable 1	0.13078873	0.132963428	0.983644386	0.33223869	-0.13942529

 CVW 9 STENNIS REGRESSION
 Mean
 \$ 0.95434

 SUMMARY OUTPUT
 STD DEV
 \$ 1.07324

 CVW 9 STENNIS
 Maint as Y
 CV
 1.124589417

 Regression Statistics

 Multiple R
 0.460444589

 R Square
 0.21200922

 Adjusted R Square
 0.209254007

 Standard Error
 226.5353714

 Observations
 288

	df	SS	MS	F	Significance F
Regression	1	3948859.578	3948859.578	76.94840902	1.61171E-16
Residual	286	14677026.51	51318.27451		
Total	287	18625886.09			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	65.5569686	22.6921327	2.888973438	0.004160577	20.89222413
X Variable 1	0.678156094	0.077308963	8.772024226	1.61171E-16	0.525989477

Total Costs

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

E-2C VAW 112	Total as Y						
Regression Statistics							
Multiple R	0.437290005						
R Square	0.191222549						
Adjusted R Square	0.167434976						
Standard Error	513.6980141						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	2121313.021	2121313.021	8.038758545	0.007655165
Residual		34	8972112.09	263885.6497		
Total		35	11093425.11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	490.5081849	153.5847637	3.193729464	0.003023926	178.3865974
X Variable 1	2.642996009	0.932184796	2.835270454	0.007655165	0.748569821

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

EA-6B VAQ 138	Total as	Ϋ́
Regression Statistics	3	

 Multiple R
 0.637448885

 R Square
 0.406341081

 Adjusted R Square
 0.388880525

 Standard Error
 244.7743835

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	1394326.825	1394326.825	23.2719434	2.90068E-05
Residual		34	2037092.959	59914.49881		
Total		35	3431419.784			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	207.0682883	68.67016803	3.01540384	0.004828818	67.51380812
X Variable 1	1.945833057	0.403356678	4.824100268	2.90068E-05	1.126114202

SUMMARY OUTPUT

FA-18C VFA 146	Total as Y
Regression Statis	tics
Multiple R	0.466195032
R Square	0.217337808
Adjusted R Square	0.194318331
Standard Error	613.2076396
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression		1 3550217.475	3550217.475	9.441474916	0.004159763
Residual	3	12784802.71	376023.6092		
Total	3	16335020.19			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	816.3532963	245.4925967	3.325368289	0.002125734	317.4526425
X Variable 1	1.911684858	0.622151823	3.072698312	0.004159763	0.647321061

CVW 9 STENNIS REGRESSION

SUMMARY OUTPUT FA-18C VFA 147

FA-18C VFA 147	Total as Y
Regression Stati	stics
Multiple R	0.548870838
R Square	0.301259197
Adjusted R Square	0.280707997
Standard Error	594.3756456
Observations	36

	df		SS	MS	F	Significance F
Regression		1	5178752.295	5178752.295	14.65895889	0.000527569
Residual		34	12011601.87	353282.4081		
Total		35	17190354.17			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	635.114657	235.2050201	2.700259785	0.010720089	157.1208606
X Variable 1	2.293988468	0.599155661	3.828701985	0.000527569	1.076358466

SUMMARY OUTPUT

FA-18C VMFA 314	Total as Y					
Regression Statis	Regression Statistics					
Multiple R	0.291456237					
R Square	0.084946738					
Adjusted R Square	0.058033407					
Standard Error	781.1134006					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1925783.352	1925783.352	3.15630709	0.084583385
Residual	34	20744696.92	610138.1446		
Total	35	22670480.27			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	608.0178063	489.8624519	1.241201084	0.223027072	-387.5018176
X Variable 1	1.874624526	1.055175428	1.776599868	0.084583385	-0.269748535

CVW 9 STENNIS REGRESSION

SUMMARY OUTPUT HH-60H HS 8

HH-60H HS 8	Total as Y
Regression Stat	tistics
Multiple R	0.568740249
R Square	0.32346547
Adjusted R Square	0.303567396
Standard Error	146.7807546
Observations	36

	df		SS	MS	F	Significance F
Regression		1	350231.4227	350231.4227	16.25611925	0.000295507
Residual		34	732516.0569	21544.58991		
Total		35	1082747.48			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	85.58800569	42.15029271	2.030543567	0.050181481	-0.071638942
X Variable 1	1.503005609	0.372779622	4.031887802	0.000295507	0.745426768

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

S-3B VS 33	Total as Y						
Regression Statistics							
Multiple R	0.538720022						
R Square	0.290219262						
Adjusted R Square	0.269343358						
Standard Error	430.0923585						
Observations	36						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	2571605.781	2571605.781	13.90211704	0.00069974
Residual	34	6289300.853	184979.4368		
Total	35	8860906.634			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	403.763391	156.3502822	2.582428284	0.014289765	86.02159723
X Variable 1	2.13485757	0.572569797	3.728554283	0.00069974	0.971256508

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT

 SH-60F HS 8
 Total as Y

 Regression Statistics

 Multiple R
 0.328288485

 R Square
 0.10777333

 Adjusted R Square
 0.081531369

 Standard Error
 197.8294248

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	160729.9437	160729.9437	4.106908398	0.05060975
Residual		34	1330640.364	39136.4813		
Total		35	1491370.308			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	181.128424	74.15508182	2.442562526	0.01993381	30.42726513
X Variable 1	1.050910957	0.518571222	2.026550863	0.05060975	-0.002951869

CVW 9 STENNIS REGRESSION SUMMARY OUTPUT CVW 9 STENNIS	Total as Y	Mean STD DEV CV	\$ 0.68740 \$ 0.72826 1.059442777	\$ 2.14366 \$ 1.92681 0.898845101	\$ 0.95434 \$ 1.07324 1.124589417	\$ 3.78540 \$ 3.06930 0.810825705
Regression Statistics	S					
Multiple R	0.689434318	-				
R Square	0.475319678					
Adjusted R Square	0.473485132					
Standard Error	528.6453359					
Observations	288	-				
ANOVA						
	df	SS	MS	F	Significance F	!
Regression	1	72407884.91	72407884.91	259.0938186	6.00051E-42	•
Residual	286	79927244.86	279465.8911			
Total	287	152335129.8				i
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	•

52.95460057 3.951115788 9.80593E-05

0.180409012 16.09639148

6.00051E-42

104.9996388

a. Fuel

209.2297583

2.903934084

Intercept

X Variable 1

As expected, FH approximate fuel costs relatively well. The F- and T-statistic significances approach zero and the R^2 value is .6198, meaning 61.98 percent of the fuel costs were explained by FH.

The mean of all the data is \$687.40 per FH with a standard deviation of \$728.26 and a CV or expected error of 1.059 or 105.9 percent by using the mean as a predictor.

The regression slope, for all seven squadrons and eight T/M/S of aircraft, is \$786.85 per FH and explains 61.98 percent of all fuel costs.

b. AVDLRs

The total AVDLR costs for CVW 9 have a near zero F- and T-statistic significances, and have an ${\ensuremath{R}}^2$ value of .2961 or 29.61 percent.

The mean of the data is \$2143.66 with a standard deviation of \$1926.81 and a CV of .8988 or 89.88 percent.

The regression slope has a value of \$1438.93 per FH though this explains only 29.61 percent.

c. Other Maintenance

The F- and T-statistic significances both approach zero, but the R^2 value shows only .2120 or 21.2 percent of the Other Maintenance costs as approximated by the regression equation.

The mean value is \$954.34 per FH with a standard deviation of \$1073.24 for a CV of 1.124 or 112.4 percent expected error.

The regression slope is \$678.16 per FH and explains only 21.2 percent of the costs.

d. Total Costs

The \mbox{R}^2 value for all the costs is .4753 or 47.53 percent while both the F- and T-statistic significances approach zero.

The overall mean is \$3785.40 with a standard deviation of \$3069.30 and a CV or expected error of .8108 or 81.08 percent.

The regression slope is \$2903.93 but explains less than one-half of the total costs.

3. CVW 11 USS CARL VINSON

Table 3.10 shows the individual regression statistics for each of the squadrons onboard CVW 11.

Table 3.10. CVW 11 USS CARL VINSON

Fuel

CVW 11 VINSON REGRESSION

SUMMARY OUTPUT E-2C VAW 117

E-2C VAW 117	Fuel as Y						
Regression Statistics							
Multiple R	0.898027688						
R Square	0.806453728						
Adjusted R Square	0.800761191						
Standard Error	12.23077469						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	21192.46592	21192.46592	141.6685867	1.12774E-13
Residual		34	5086.122886	149.5918496		
Total		35	26278.5888			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-2.046277624	5.016296966	-0.407925934	0.685885529	-12.24061289
X Variable 1	0.353476553	0.029697769	11.90246137	1.12774E-13	0.293123464

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

EA-6B VAQ 135	Fuel as Y					
Regression Statistics						
Multiple R	0.858708814					
R Square	0.737380828					
Adjusted R Square	0.729656734					
Standard Error	29.52282139					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	83207.03542	83207.03542	95.46503376	2.10625E-11
Residual		34	29634.29743	871.5969831		
Total		35	112841.3328			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-3.179560621	12.82380739	-0.247942013	0.805670631	-29.24065565
X Variable 1	0.916283047	0.093779408	9.770620951	2.10625E-11	0.725700485

FA-18A VFA 97	Fuel as Y					
Regression Statistics						
Multiple R	0.885754689					
R Square	0.784561369					
Adjusted R Square	0.778224939					
Standard Error	60.01908596					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	446026.8582	446026.8582	123.8175644	7.0622E-13
Residual		34	122477.8831	3602.290679		
Total		35	568504.7413			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-33.95208518	31.80293065	-1.067577248	0.293233107	-98.58337389
X Variable 1	1.106286103	0.099420588	11.12733411	7.0622E-13	0.904239291

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

FA-18C VFA 22 Fuel as Y

Regression Statistics

Multiple R
R Square 0.734397503

Adjusted P Square 0.736585666

 R Square
 0.734397503

 Adjusted R Square
 0.726585665

 Standard Error
 66.93978734

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	421256.4959	421256.4959	94.01084457	2.55696E-11
Residual		34	152351.7944	4480.935129		
Total		35	573608.2903			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-8.981071459	34.89422732	-0.257379863	0.798436902	-79.89462674
X Variable 1	0.983485187	0.101432901	9.695918964	2.55696E-11	0.777348867

FA-18C VFA 94	Fuel as Y					
Regression Statistics						
Multiple R	0.62166602					
R Square	0.38646864					
Adjusted R Square	0.3684236					
Standard Error	113.630989					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	276534.9216	276534.9216	21.41689019	5.19035E-05
Residual		34	439008.0564	12912.00166		
Total		35	715542.978			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	45.76514489	64.87549758	0.705430349	0.48534779	-86.0776422
X Variable 1	0.829357821	0.179210619	4.627838608	5.19035E-05	0.465158264

CVW 11 VINSON REGRESSION SUMMARY OUTPUT HH-60H HS 6

SOMMAN OUT OF						
HH-60H HS 6	Fuel as Y					
Regression Statistics						
Multiple R	0.881975189					
R Square	0.777880235					
Adjusted R Square	0.7713473					
Standard Error	3.863882074					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	1777.67422	1777.67422	119.0705742	1.19166E-12
Residual		34	507.6058791	14.92958468		
Total		35	2285.280099			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.096115315	0.990190819	-0.097067468	0.923242762	-2.108423848
X Variable 1	0.135242101	0.012393948	10.9119464	1.19166E-12	0.110054584

S-3B VS 29	Fuel as Y							
Regression St	Regression Statistics							
Multiple R	0.949914846							
R Square	0.902338215							
Adjusted R Square	0.899465809							
Standard Error	21.31073711							
Observations	36							

ANOVA

	df		SS	MS	F	Significance F
Regression		1	142666.0217	142666.0217	314.1402664	9.53555E-19
Residual		34	15441.01555	454.1475163		
Total		35	158107.0373			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-26.82566791	8.397008141	-3.194669752	0.003016384	-43.89043039
X Variable 1	0.517588822	0.029202705	17.72400255	9.53555E-19	0.458241824

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

 SH-60F HS 6
 Fuel as Y

 Regression Statistics

 Multiple R
 0.888367751

 R Square
 0.789197261

 Adjusted R Square
 0.78299718

 Standard Error
 5.113655624

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	3328.520159	3328.520159	127.2882269	4.86567E-13
Residual		34	889.0821106	26.14947384		
Total		35	4217.602269			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	0.740244942	1.91039208	0.387483255	0.700813626	-3.142136323
X Variable 1	0.129523756	0.011480355	11.28220842	4.86567E-13	0.106192883

CVW 11 VINSON	Fuel as Y	cv	0.995346446
SUMMARY OUTPUT		STD DEV	\$ 0.719255
CVW 11 VINSON REGRESSION		Mean	\$ 0.722618

Regression Statistics						
Multiple R	0.835222516					
R Square	0.697596652					
Adjusted R Square	0.696539297					
Standard Error	85.51502771					
Observations	288					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4824682.142	4824682.142	659.7567239	2.98406E-76
Residual	286	2091466.51	7312.819964		
Total	287	6916148.651			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-52.94365873	9.567616929	-5.533630696	7.09069E-08	-71.7755231
X Variable 1	0.967922937	0.037683295	25.68572997	2.98406E-76	0.893751207

AVDLR

CVW 11 VINSON REGRESSION SUMMARY OUTPUT E-2C VAW 117

E-2C VAW 117	AVDLR as Y
Regression St	tatistics
Multiple R	0.361264123
R Square	0.130511767
Adjusted R Square	0.104938583
Standard Error	536.2379305

ANOVA

Observations

	df		SS	MS	F	Significance F
Regression		1	1467506.173	1467506.173	5.103461891	0.030403574
Residual		34	9776738.017	287551.1181		
Total		35	11244244.19			

36

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-11.94913904	219.9311795	-0.054331264	0.956989242	-458.9027772
X Variable 1	2.941438912	1.302049201	2.259084304	0.030403574	0.295358312

CVW 11 VINSON REGRESSION SUMMARY OUTPUT FA-6B VAO 135

EA-6B VAQ 135	AVDLR as Y
Regression Statis	tics
Multiple R	0.454404965
R Square	0.206483872
Adjusted R Square	0.183145162
Standard Error	203.4128086
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	366071.4726	366071.4726	8.847270258	0.005368233
Residual		34	1406810.203	41376.77068		
Total		35	1772881.676			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	61.19680467	88.35628013	0.692614091	0.493255642	-118.3646425
X Variable 1	1.921907891	0.646141928	2.974436124	0.005368233	0.608790369

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

FA-18A VFA 97 AVDLR as Y

Regression Statistics	
Multiple R	0.440747279
R Square	0.194258164
Adjusted R Square	0.170559875
Standard Error	534.0495812
Observations	36

df	SS	MS	Г	Significance F
1	2337897.361	2337897.361	8.197138689	0.007135754
34	9697104.475	285208.9551		
35	12035001.84			
		34 9697104.475	34 9697104.475 285208.9551	34 9697104.475 285208.9551

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	176.1786083	282.9823467	0.622578088	0.537715332	-398.9103341
X Variable 1	2.532792851	0.884643988	2.863064563	0.007135754	0.734981146

CVW 11 VINSON REGRESSION SUMMARY OUTPUT FA-18C VFA 22

FA-18C VFA 22	AVDLR as Y
Regression Statis	tics
Multiple R	0.313707844
R Square	0.098412612
Adjusted R Square	0.071895335
Standard Error	639.1835268
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1516257.609	1516257.609	3.711263974	0.06243933
Residual		34	13890889.75	408555.5809		
Total		35	15407147.36			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	238.3813085	333.1922041	0.715446837	0.479217679	-438.7462738
X Variable 1	1.865868421	0.968545642	1.926464112	0.06243933	-0.10245185

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

FA-18C VFA 94 AVDLR as Y

Regression Statistics	
Multiple R	0.254951014
R Square	0.065000019
Adjusted R Square	0.03750002
Standard Error	653.3681831
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1009013.01	1009013.01	2.363637122	0.133447651
Residual		34	14514259.41	426889.9826		
Total		35	15523272.42			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	314.8758016	373.0283997	0.844106781	0.404509982	-443.2086173
X Variable 1	1.584219431	1.030445281	1.537412476	0.133447651	-0.509895957

CVW 11 VINSON REGRESSION SUMMARY OUTPUT HH-60H HS 6

HH-60H HS 6	AVDLR as Y
Regression Statist	ics
Multiple R	0.413516248
R Square	0.170995688
Adjusted R Square	0.146613208
Standard Error	124.3147966
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	108380.9447	108380.9447	7.01305565	0.012180423
Residual	;	34	525441.734	15454.16865		
Total	;	35	633822.6787			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	56.57983116	31.85795215	1.776003394	0.084683354	-8.163274639
X Variable 1	1.055996039	0.3987573	2.648217448	0.012180423	0.245624238

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

S-3B VS 29 AVDLR as Y

Regression Statistics	
Multiple R	0.669540234
R Square	0.448284124
Adjusted R Square	0.432057187
Standard Error	370.9468169
Observations	36

	df		SS	MS	F	Significance F
Regression		1	3801369.557	3801369.557	27.62592287	7.99074E-06
Residual		34	4678452.392	137601.5409		
Total		35	8479821.949			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-34.51474583	146.1631019	-0.23613857	0.814741927	-331.553712
X Variable 1	2.671742871	0.508318905	5.256036802	7.99074E-06	1.638715246

CVW 11 VINSON REGRESSION SUMMARY OUTPUT SH-60F HS 6

SH-60F HS 6	AVDLR as Y					
Regression Statistics						
Multiple R	0.375254455					
R Square	0.140815906					
Adjusted R Square	0.115545786					
Standard Error	127.9371939					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	91209.07379	91209.07379	5.572427201	0.024121303
Residual		34	556509.4701	16367.92559		
Total		35	647718.5439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	114.0161298	47.79559283	2.385494624	0.022771984	16.88386249
X Variable 1	0.678020549	0.287223953	2.360598907	0.024121303	0.094311632

 CVW 11 VINSON REGRESSION
 Mean
 \$ 2.547401

 SUMMARY OUTPUT
 STD DEV
 \$ 2.620357

 CVW 11 VINSON
 AVDLR as Y
 CV
 1.028639211

Regression Statistics	
Multiple R	0.599546782
R Square	0.359456344
Adjusted R Square	0.357216681
Standard Error	453.4200836
Observations	288

	df	SS	MS	F	Significance F
Regression	1	32996278.25	32996278.25	160.4957187	1.69581E-29
Residual	286	58798674.86	205589.7722		
Total	287	91794953.11			
•					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	3.481008917	50.72967623	0.068618788	0.945341013	-96.36980969
X Variable 1	2.531272535	0.199805381	12.66869049	1.69581E-29	2.137997191

Other Maintenance

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

SOMMAN COLL OF					
E-2C VAW 117	Maint as Y				
Regression Statistics					
Multiple R	0.341712302				

 R Square
 0.116767297

 Adjusted R Square
 0.090789865

 Standard Error
 98.55919016

 Observations
 36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	43663.57143	43663.57143	4.494951426	0.041372659
Residual		34	330273.0748	9713.913965		
Total		35	373936.6463			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	57.52998381	40.4228006	1.423206283	0.163788249	-24.61897678
X Variable 1	0.507375501	0.239313386	2.120130049	0.041372659	0.021032506

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

EA-6B VAQ 135 Maint as Y

Regression Statistics	
Multiple R	0.344292018
R Square	0.118536993
Adjusted R Square	0.092611611
Standard Error	112.5270013
Observations	36

	df		SS	MS	F	Significance F
Regression		1	57895.15557	57895.15557	4.572237004	0.039764526
Residual		34	430519.0846	12662.32602		
Total		35	488414.2401			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	65.78192468	48.87827526	1.345831545	0.187263057	-33.55061655
X Variable 1	0.764312108	0.357442651	2.138278982	0.039764526	0.03790172

FA-18A VFA 97	Maint as Y							
Regression Stati	Regression Statistics							
Multiple R	0.531956614							
R Square	0.282977839							
Adjusted R Square	0.261888952							
Standard Error	149.3637432							
Observations	36							

ANOVA

	df		SS	MS	F	Significance F
Regression		1	299356.8105	299356.8105	13.41833917	0.000840512
Residual		34	758523.9447	22309.52779		
Total		35	1057880.755			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	57.31224798	79.1449035	0.724143254	0.473931444	-103.5294419
X Variable 1	0.906319915	0.247418483	3.663105126	0.000840512	0.403505391

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

SOMMAN COLL OL	
FA-18C VFA 22	Maint as Y
Regression Sta	ntistics
Multiple R	0.126630899
R Square	0.016035385
Adjusted R Square	-0.012904751
Standard Error	184.5207978
Observations	36

	df		SS	MS	F	Significance F
Regression		1	18865.54965	18865.54965	0.55408809	0.461766195
Residual		34	1157629.444	34047.92483		
Total		35	1176494.994			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	296.4991871	96.18660173	3.082541454	0.004054045	101.0246224
X Variable 1	0.208127395	0.279601722	0.744370936	0.461766195	-0.360091295

CVW 11 VINSON REGRESSION

SUMMARY OUTPUT FA-18C VFA 94

M	ai	nt	2	е.	v	

1 A-10C VI A 34	Maiii as i				
Regression Statistics					
Multiple R	0.26077299				
R Square	0.068002552				
Adjusted R Square	0.040590863				
Standard Error	180.4833569				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	80809.74352	80809.74352	2.480786604	0.124505054
Residual		34	1107524.233	32574.24213		
Total		35	1188333.976			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	224.9317847	103.0436124	2.182879457	0.036045703	15.52210681
X Variable 1	0.448331049	0.284645363	1.575051302	0.124505054	-0.130137546

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

HH-60H HS 6 Maint as Y

Regression Statistic	S
Multiple R	0.421975862
R Square	0.178063628
Adjusted R Square	0.153889029
Standard Error	97.08763184
Observations	36

	df		SS	MS	F	Significance F
Regression		1	69429.45431	69429.45431	7.365732389	0.010362902
Residual	3	34	320484.2807	9426.008256		
Total	3	35	389913.735			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-12.22774078	24.88049062	-0.49145899	0.626259658	-62.790948
X Variable 1	0.845196517	0.311422316	2.713988281	0.010362902	0.21231064

S-3B VS 29 Maint as Y				
Regression Stati	stics			
Multiple R	0.363714761			
R Square	0.132288427			
Adjusted R Square	0.106767499			
Standard Error	114.8940417			
Observations	36			

ANOVA

	df		SS	MS	F	Significance F
Regression		1	68425.88063	68425.88063	5.183527194	0.029215322
Residual		34	448821.7876	13200.64081		
Total		35	517247.6682			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	71.21184792	45.27136711	1.572999723	0.124979587	-20.79057886
X Variable 1	0.358455139	0.157442552	2.276736084	0.029215322	0.038493588

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

SH-60F HS 6	Maint as Y					
Regression Statistics						
Multiple R	0.022321968					
R Square	0.00049827					
Adjusted R Square	-0.028898839					
Standard Error	53.48700306					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	48.49052235	48.49052235	0.016949634	0.897182731
Residual		34	97269.22288	2860.859497		
Total		35	97317.71341			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	74.70331668	19.98201572	3.738527571	0.000680404	34.09500164
X Variable 1	0.015633358	0.120080392	0.130190761	0.897182731	-0.2283992

CVW 11 VINSON REGRESSION		Mean	\$ 0.959012
SUMMARY OUTPUT		STD DEV	\$ 0.854851
CVW 11 VINSON	Maint as Y	CV	0.891386908

Regression Statistics				
Multiple R	0.614264583			
R Square	0.377320978			
Adjusted R Square	0.375143779			
Standard Error	145.8439955			
Observations	288			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3686293.05	3686293.05	173.3056615	2.8997E-31
Residual	286	6083354.712	21270.47102		
Total	287	9769647.762			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	24.37821979	16.31735986	1.494005158	0.136276706	-7.739109959
X Variable 1	0.846060378	0.064268029	13.16456082	2.8997E-31	0.719562127

Total Costs

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

E-2C VAW 117	Total as Y
Regression	Statistics
Multiple R	0.432720532
R Square	0.187247059
Adjusted R Square	0.163342561
Standard Error	559.5099273
Observations	36

	df		SS	MS	F	Significance F
Regression		1	2452172.205	2452172.205	7.833130687	0.008391048
Residual		34	10643746.2	313051.3588		
Total		35	13095918.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	43.53456714	229.4758935	0.18971303	0.850662092	-422.816251
X Variable 1	3.802290966	1.358556365	2.798773068	0.008391048	1.041374067

CVW 11 VINSON REGRESSION SUMMARY OUTPUT FA-6R VAO 135

EA-6B VAQ 135	Total as Y
Regression Statis	tics
Multiple R	0.558354413
R Square	0.31175965
Adjusted R Square	0.291517287
Standard Error	288.9850553
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1286202.827	1286202.827	15.40134649	0.000401893
Residual	3	34	2839420.315	83512.36221		
Total	3	35	4125623.142			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	123.7991687	125.5262374	0.986241373	0.330981503	-131.3006704
X Variable 1	3.602503045	0.91796265	3.924454929	0.000401893	1.736979717

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

FA-18A VFA 97 Total as Y

Regression Statistics	3
Multiple R	0.613730495
R Square	0.37666512
Adjusted R Square	0.358331741
Standard Error	605.3807422
Observations	36

	df		SS	MS	F	Significance F
Regression		1	7529568.634	7529568.634	20.54531922	6.87285E-05
Residual		34	12460518.66	366485.843		
Total		35	19990087.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	199.5387711	320.779323	0.622043744	0.538062459	-452.3628183
X Variable 1	4.545398869	1.002802835	4.532694477	6.87285E-05	2.507459654

CVW 11 VINSON REGRESSION SUMMARY OUTPUT FA-18C VFA 22

FA-18C VFA 22	Total as Y				
Regression Statistics					
Multiple R	0.448038061				
R Square	0.200738104				
Adjusted R Square	0.177230401				
Standard Error	690.4932487				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	4071350.565	4071350.565	8.539247984	0.006138611
Residual		34	16210551.5	476780.9265		
Total		35	20281902.07			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	525.8994241	359.9388248	1.461080017	0.153174285	-205.5837955
X Variable 1	3.057481003	1.046294529	2.922199169	0.006138611	0.931156089

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

FA-18C VFA 94 Total as Y

Regression Statistics	
Multiple R	0.384779607
R Square	0.148055346
Adjusted R Square	0.12299815
Standard Error	746.5225782
Observations	36

	df		SS	MS	F	Significance F
Regression		1	3292892.273	3292892.273	5.908695758	0.020491898
Residual		34	18948062.63	557295.9597		
Total		35	22240954.9			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	585.5727312	426.2131672	1.373896388	0.178464601	-280.5960685
X Variable 1	2.861908301	1.177361689	2.430780895	0.020491898	0.469223044

CVW 11 VINSON REGRESSION SUMMARY OUTPUT HH-60H HS 6

HH-60H HS 6	Total as Y				
Regression Statistics					
Multiple R	0.495460558				
R Square	0.245481165				
Adjusted R Square	0.223289434				
Standard Error	190.8847148				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	403059.6406	403059.6406	11.06183068	0.002122497
Residual	3	34	1238857.128	36436.97434		
Total	3	35	1641916.768			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	44.25597506	48.91771759	0.90470237	0.371989365	-55.15672259
X Variable 1	2.036434657	0.612289732	3.325933054	0.002122497	0.792113029

CVW 11 VINSON REGRESSION SUMMARY OUTPUT

S-3B VS 29 Total as Y

Regression Statistics	
Multiple R	0.747292076
R Square	0.558445446
Adjusted R Square	0.545458548
Standard Error	394.8164624
Observations	36

	df		SS	MS	F	Significance F
Regression		1	6702947.359	6702947.359	43.00067797	1.6412E-07
Residual		34	5299921.325	155880.039		
Total		35	12002868.68			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	9.871434172	155.5683894	0.063453985	0.949776594	-306.2813632
X Variable 1	3.547786831	0.541028154	6.557490219	1.6412E-07	2.448286058

SH-60F HS 6 Total as Y									
Regression Statistics									
Multiple R	0.395905437								
R Square	0.156741115								
Adjusted R Square	0.131939383								
Standard Error	145.8543148								
Observations	36								

ANOVA

	df		SS	MS	F	Significance F
Regression		1	134443.4	134443.4	6.319764927	0.016840042
Residual	3	34	723298.3587	21273.48114		
Total	3	35	857741.7587			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	189.4596914	54.4891851	3.477014586	0.001406995	78.72441691
X Variable 1	0.823177662	0.327448583	2.513914264	0.016840042	0.157722516

CVW 11 VINSON REGRESSION SUMMARY OUTPUT CVW 11 VINSON	Total as Y	Mean STD DEV CV	\$ \$ 0.	0.722618 0.719255 995346446	\$ \$ 1	\$	0.959012 0.854851 0.891386908	\$ \$ 0	4.229032 3.662870 .866125017
Regression Statistic	S	_							
Multiple R	0.736272212	_							
R Square	0.54209677								
Adjusted R Square	0.54049571								
Standard Error	535.8883941								
Observations	288	-							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	97233932.21	97233932.21	338.5861166	1.97567E-50
Residual	286	82132442.08	287176.3709		
Total	287	179366374.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-25.08443002	59.95641946	-0.418377719	0.675984957	-143.096174
X Variable 1	4.345255851	0.236146101	18.40070968	1.97567E-50	3.880451356

a. Fuel

The F- and T-statistic significances for all squadrons onboard CVW 11 both approach zero and the air wing as a whole has a fuel R^2 value of .6976 or 69.76 percent.

The mean of the data is \$722.62 per FH, the standard deviation is \$719.26 and the CV is .9953 or 99.53 percent expected error.

The regression slope is \$967.92 and is expected to explain 69.76 percent of all fuel costs across all T/M/S of aircraft.

b. AVDLRs

The F- and T-statistic significances both approach zero but the ${\ensuremath{R}}^2$ value is an impressive .3594 or 35.94 percent.

The mean is \$2547.40 per FH and has a standard deviation of \$2620.36 for a CV of 1.0286 or 102.86 percent expected error.

The regression equation slope of \$2531.27 explains nearly 36 percent of all AVDLR costs.

c. Other Maintenance

The F- and T-statistic significances approach zero while the ${\mbox{R}}^2$ value also comes in at an impressive .3773 or 37.73 percent.

The mean for the Other Maintenance is \$959.01 per FH with a standard deviation of \$854.85 and a CV of .8914 or 89.14 percent.

The regression slope of \$846.06 per FH explains 37.73 percent of all Other Maintenance costs across all squadron and IDTC statuses.

d. Total Costs

Because of the above normal statistics in the other categories, the F- and T-statistic significances, as expected, approach zero and the R^2 value is a very impressive .5421 or 54.21 percent.

The mean across all costs is \$4229.03 per FH and has a standard deviation of \$3662.87 for a CV of .8661 or

86.61 percent error if the mean is used as a predictor of total costs.

The regression slope of \$4345.26 per FH is expected to explain 54.21 percent of all costs based on FH.

Discussion

More analysis is required to find the reason behind the numbers put up by the squadrons onboard CVW 11. Whatever the reasons are for the relatively high correlation between FH and costs, they should be shared with all of the squadrons throughout COMNAVAIRPAC.

CVW 14 USS ABRAHAM LINCOLN

Table 3.11 represents the statistical regression for each of the squadrons onboard CVW 14.

Table 3.11. CVW 14 USS ABRAHAM LINCOLN

Fuel

CVW 14 LINCOLN REGRESSION

SUMMARY OUTPUT

E-2C VAW 113	Fuel as Y
Regression Statist	tics
Multiple R	0.900583931
R Square	0.811051416
Adjusted R Square	0.805494105
Standard Error	12.29736482
Observations	36

	df		SS	MS	F	Significance F
Regression		1	22070.27664	22070.27664	145.943132	7.47406E-14
Residual		34	5141.656175	151.2251816		
Total		35	27211.93281			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	5.331862002	3.627140728	1.469990387	0.1507583	-2.039369983
X Variable 1	0.284389836	0.023540855	12.08069253	7.47406E-14	0.236549093

EA-6B VAQ 139	Fuel as Y						
Regression Statistics							
Multiple R	0.818039069						
R Square	0.669187919						
Adjusted R Square	0.659458152						
Standard Error	29.87442062						
Observations	36						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	61382.50817	61382.50817	68.77738312	1.11515E-09
Residual	34	30344.35425	892.4810074		
Total	35	91726.86242			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	11.44681236	11.23079028	1.019234807	0.315289603	-11.37688452
X Variable 1	0.741637538	0.089427045	8.293213076	1.11515E-09	0.559900037

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18 C VFA 113 Fuel as Y

Regression Statistics	
Multiple R	0.775599852
R Square	0.601555131
Adjusted R Square	0.589836164
Standard Error	67.60496678
Observations	36

	df		SS	MS	F	Significance F
Regression		1	234608.2722	234608.2722	51.33175511	2.76668E-08
Residual		34	155394.6721	4570.431533		
Total		35	390002.9444			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	65.36506044	32.51479121	2.010317705	0.052384062	-0.712902038
X Variable 1	0.700426743	0.097761907	7.164618281	2.76668E-08	0.501750776

FA-18C VFA 115	Fuel as Y					
Regression Statistics						
Multiple R	0.932754136					
R Square	0.870030278					
Adjusted R Square	0.866207639					
Standard Error	54.62153111					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	679045.4319	679045.4319	227.5993893	1.24961E-16
Residual	34	101439.3965	2983.51166		
Total	35	780484.8284			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	4.406433177	16.39309303	0.268798156	0.789709404	-28.90831822
X Variable 1	0.855226924	0.056688611	15.08639749	1.24961E-16	0.74002188

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18C VFA 25 Fuel as Y

Regression Statistics	
Multiple R	0.693770598
R Square	0.481317642
Adjusted R Square	0.466062279
Standard Error	82.36171039
Observations	36

	df		SS	MS	F	Significance F
Regression		1	214022.7477	214022.7477	31.55071615	2.70973E-06
Residual		34	230637.3455	6783.451339		
Total		35	444660.0933			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	73.88752116	39.52106241	1.869573251	0.070175423	-6.428888154
X Variable 1	0.716103368	0.127488528	5.617002417	2.70973E-06	0.457015678

FA-18E VFA 115	Fuel as Y
Regression Stat	istics
Multiple R	0.993734369
R Square	0.987507995
Adjusted R Square	0.987140584
Standard Error	15.94560036
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression		1 683390.8	3417 683390.84°	17 2687.740923	6.00249E-34
Residual	3	4 8644.9 ⁻	1381 254.262170)9	
Total	3	5 692035.7	7555		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.481081826	2.814322633	-0.170940538	0.865283777	-6.200469786
X Variable 1	1.474073382	0.028433178	51.84342699	6.00249E-34	1.416290251

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

HH-60H HS 4 Fuel as Y Regression Statistics Multiple R 0.853562125 R Square 0.728568301 Adjusted R Square

0.720585015 Standard Error 2.836263829 Observations 36

	df		SS	MS	F	Significance F
Regression		1	734.1450518	734.1450518	91.26171441	3.71204E-11
Residual		34	273.5093453	8.04439251		
Total		35	1007.654397			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.283135826	0.763281265	1.681078634	0.10191313	-0.268037314
X Variable 1	0.100723869	0.01054358	9.553099728	3.71204E-11	0.079296751

S-3B VS 35	Fuel as Y				
Regression Statistics					
Multiple R	0.924986844				
R Square	0.855600662				
Adjusted R Square	0.851353623				
Standard Error	23.8224281				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression		1 114329.1243	114329.1243	201.4581435	7.54165E-16
Residual	3	4 19295.27474	567.5080805		
Total	3	5 133624.399			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.925597763	7.091034491	1.258715886	0.216707406	-5.485108676
X Variable 1	0.351309151	0.024751245	14.19359516	7.54165E-16	0.301008602

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

SH-60F HS 4	Fuel as Y
Regression St	tatistics
Multiple R	0.525624909
R Square	0.276281545
Adjusted R Square	0.254995708
Standard Error	38.28463945

ANOVA

Observations

	df		SS	MS	F	Significance F
Regression		1	19024.36933	19024.36933	12.97959513	0.000994448
Residual		34	49834.26301	1465.713618		
Total		35	68858.63235			

36

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-19.50725575	14.18226873	-1.375467926	0.177981575	-48.32907456
X Variable 1	0.284095965	0.078855954	3.602720517	0.000994448	0.12384149

CVW 14 LINCOLN REGRESSION	١
SUMMARY OUTPUT	
CVW 14 LINCOLN	

Mean STD DEV CV

Fuel as Y

\$ 0.68685 \$ 0.69641 1.013917833

Regression Statistics	
Multiple R	0.813410738
R Square	0.661637029
Adjusted R Square	0.660586213
Standard Error	79.87880993
Observations	324

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4017501.219	4017501.219	629.6407758	9.27508E-78
Residual	322	2054561.017	6380.624276		
Total	323	6072062.236			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-14.78200712	6.985928228	-2.115968937	0.035114655	-28.52584164
X Variable 1	0.77595668	0.030923672	25.09264386	9.27508E-78	0.715118691

AVDLR

CVW 14 LINCOLN REGRESSION

SUMMARY OUTPUT E-2C VAW 113

E-2C VAW 113	AVDLR as Y
Regression Stat	istics
Multiple R	0.338562115
R Square	0.114624306
Adjusted R Square	0.088583844
Standard Error	840.0455459
Observations	36

	df	SS	MS	F	Significance F
Regression	1	3106230.702	3106230.702	4.401777043	0.043407302
Residual	34	23993001.65	705676.5192		
Total	35	27099232.36			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-107.22766	247.7736862	-0.432764519	0.667918726	-610.7640424
X Variable 1	3.373859835	1.608099866	2.09804124	0.043407302	0.105809861

EA-6B VAQ 139	AVDLR as Y
Regression Statis	stics
Multiple R	0.446940046
R Square	0.199755405
Adjusted R Square	0.176218799
Standard Error	192.1265411
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	313277.6654	313277.6654	8.487009836	0.006280648
Residual		34	1255028.665	36912.60779		
Total		35	1568306.33			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	85.29465972	72.22676944	1.180928628	0.245826424	-61.48769943
X Variable 1	1.67546016	0.575117725	2.913247301	0.006280648	0.506681089

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18 C VFA 113 AVDLR as Y

Regression Statistics	
Multiple R	0.493405855
R Square	0.243449338
Adjusted R Square	0.221197848
Standard Error	333.0462713
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1213552.729	1213552.729	10.94081059	0.002229487
Residual		34	3771273.84	110919.8188		
Total		35	4984826.568			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	96.90198426	160.1795029	0.604958703	0.549223065	-228.6217171
X Variable 1	1.593016906	0.481610154	3.307689615	0.002229487	0.614267957

FA-18C VFA 115	AVDLR as Y						
Regression Statistics							
Multiple R	0.745045367						
R Square	0.555092599						
Adjusted R Square	0.542007087						
Standard Error	333.1054097						
Observations	36						

ANOVA

	df		SS	MS	F	Significance F
Regression		1	4706933.858	4706933.858	42.42039656	1.87154E-07
Residual	3	4	3772613.274	110959.214		
Total	3	5	8479547.132			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.462890174	99.972078	-0.004630195	0.996332714	-203.6304632
X Variable 1	2.251650583	0.345711347	6.513094239	1.87154E-07	1.549081058

CVW 14 LINCOLN REGRESSION

SUMMARY OUTPUT FA-18C VFA 25 **AVDLR as Y**

Regression Statistics	
Multiple R	0.522384116
R Square	0.272885165
Adjusted R Square	0.251499434
Standard Error	345.2927831
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1521355.959	1521355.959	12.76015169	0.001082482
Residual		34	4053721.606	119227.1061		
Total		35	5575077.565			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	83.06893866	165.6878854	0.501357951	0.619350095	-253.6491354
X Variable 1	1.909242831	0.534482204	3.572135453	0.001082482	0.82304502

FA-18E VFA 115	AVDLR as Y
Regression	Statistics
Multiple R	0.773745116
R Square	0.598681504
Adjusted R Square	0.586878019
Standard Error	64.13747333
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	208645.6219	208645.6219	50.7207401	3.13304E-08
Residual		34	139862.9265	4113.615486		
Total		35	348508.5484			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	0.704876663	11.31995903	0.062268482	0.950713652	-22.30003281
X Variable 1	0.814496392	0.114365853	7.121849486	3.13304E-08	0.582077168

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

HH-60H HS 4 AVDLR as Y

Regression Statistics	
Multiple R	0.333068303
R Square	0.110934495
Adjusted R Square	0.084785509
Standard Error	98.11150766
Observations	36

	df		SS	MS	F	Significance F
Regression		1	40836.79643	40836.79643	4.242401485	0.047148245
Residual		34	327279.5098	9625.867936		
Total		35	368116.3063			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	68.38632675	26.40328268	2.590069105	0.014028559	14.72843576
X Variable 1	0.751220264	0.364721538	2.059709078	0.047148245	0.010017407

S-3B VS 35	AVDLR as Y					
Regression Statistics						
Multiple R	0.448758779					
R Square	0.201384442					
Adjusted R Square	0.177895749					
Standard Error	834.5916673					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5971936.139	5971936.139	8.573675976	0.00604689
Residual	34	23682470.54	696543.2512		
Total	35	29654406.68			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	53.84424932	248.4263264	0.216741318	0.829705238	-451.0184568
X Variable 1	2.539034495	0.86713171	2.928084011	0.00604689	0.776811997

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

SH-60F HS 4 AVDLR as Y

Regression Statistics	
Multiple R	0.351833177
R Square	0.123786584
Adjusted R Square	0.098015601
Standard Error	197.4200465
Observations	36

	df		SS	MS	F	Significance F
Regression		1	187208.2992	187208.2992	4.803331915	0.035351897
Residual		34	1325138.942	38974.67477		
Total		35	1512347.241			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	103.3593646	73.13283321	1.413310001	0.166655002	-45.26433649
X Variable 1	0.891194463	0.406631652	2.1916505	0.035351897	0.064820064

CVW 14 LINCOLN REGRESSION		Mean	\$	2.17178
SUMMARY OUTPUT		STD DEV	\$	2.82576
CVW 14 LINCOLN	AVDLR as Y	CV	1.3	301126146

Regression Statistics	
Multiple R	0.559158442
R Square	0.312658163
Adjusted R Square	0.310523561
Standard Error	451.6777899
Observations	324

ANOVA

	df	SS	MS	F	Significance F
Regression	1	29882046.38	29882046.38	146.4714106	4.80905E-28
Residual	322	65692129.94	204012.8259		
Total	323	95574176.32			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	9.654413508	39.50219871	0.244401928	0.807075209	-68.0606251
X Variable 1	2.116238619	0.174859086	12.10253736	4.80905E-28	1.772227879

Other Maintenance

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT E-2C VAW 113

E-2C VAW 113	Maint as Y
Regression Statis	tics
Multiple R	0.250992702
R Square	0.062997337
Adjusted R Square	0.035438435
Standard Error	76.54203057
Observations	36

	df		SS	MS	F	Significance F
Regression		1	13392.45635	13392.45635	2.285916071	0.139793055
Residual		34	199195.2031	5858.682444		
Total		35	212587.6594			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	104.4708482	22.57627715	4.627461272	5.19615E-05	58.59036304
X Variable 1	0.221533956	0.146524471	1.511924625	0.139793055	-0.0762394

EA-6B VAQ 139	Maint as Y
Regression Stat	istics
Multiple R	0.635058366
R Square	0.403299128
Adjusted R Square	0.385749103
Standard Error	61.26290477
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	86247.13916	86247.13916	22.97997376	3.17451E-05
Residual		34	127606.879	3753.143501		
Total		35	213854.0182			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	25.55760019	23.0307675	1.109715523	0.274908992	-21.24651984
X Variable 1	0.879106999	0.183386336	4.793743188	3.17451E-05	0.506421369

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18 C VFA 113 Maint as Y

Regression Statistics	
Multiple R	0.506314497
R Square	0.25635437
Adjusted R Square	0.23448244
Standard Error	114.2511731
Observations	36

	df		SS	MS	F	Significance F
Regression		1	152994.1937	152994.1937	11.7207017	0.001628593
Residual		34	443813.2391	13053.33056		
Total		35	596807.4328			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	114.9545737	54.94941003	2.092007423	0.043978228	3.284010252
X Variable 1	0.565624918	0.165215857	3.423551036	0.001628593	0.229866121

FA-18C VFA 115	Maint as Y
Regression Statis	stics
Multiple R	0.833698066
R Square	0.695052466
Adjusted R Square	0.68608342
Standard Error	99.43836842
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	766265.6517	766265.6517	77.49458893	2.74585E-10
Residual		34	336191.6299	9887.989114		
Total		35	1102457.282			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.61656902	29.84358715	0.992393068	0.328016341	-31.03285724
X Variable 1	0.908493089	0.103201483	8.803101097	2.74585E-10	0.698762579

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18C VFA 25

FA-18C VFA 25	Maint as Y
Regression Statistic	cs
Multiple R	0.632941989
R Square	0.400615562
Adjusted R Square	0.382986607
Standard Error	101.0201139
Observations	36

	df		SS	MS	F	Significance F
Regression		1	231908.6652	231908.6652	22.72486274	3.43626E-05
Residual		34	346972.1559	10205.06341		
Total		35	578880.8211			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	82.32671398	48.47425104	1.69835969	0.098575094	-16.18475181
X Variable 1	0.745425485	0.15637006	4.767060178	3.43626E-05	0.427643499

FA-18E VFA 115	Maint as Y				
Regression Statistics					
Multiple R	0.447495276				
R Square	0.200252022				
Adjusted R Square	0.176730022				
Standard Error	145.988222				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	181442.2047	181442.2047	8.513392879	0.006208476
Residual	3	34	724627.0727	21312.56096		
Total	3	35	906069.2774			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	6.053151381	25.76622692	0.234925796	0.815675474	-46.3100874
X Variable 1	0.759545306	0.260316889	2.917771903	0.006208476	0.230518084

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

HH-60H HS 4 Maint as Y

Regression Statistics	
Multiple R	0.03176326
R Square	0.001008905
Adjusted R Square	-0.028373186
Standard Error	94.20778454
Observations	36

	df		SS	MS	F	Significance F
Regression		1	304.748116	304.748116	0.034337403	0.854091978
Residual		34	301753.6267	8875.106669		
Total		35	302058.3748			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	31.5848473	25.35273206	1.245816318	0.221348588	-19.93806937
X Variable 1	0.06489511	0.350209766	0.185303543	0.854091978	-0.646816295

S-3B VS 35	Maint as Y					
Regression Statistics						
Multiple R	0.476343175					
R Square	0.226902821					
Adjusted R Square	0.204164668					
Standard Error	73.15051784					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	53397.32891	53397.32891	9.978947164	0.003315881
Residual	34	181933.9408	5350.99826		
Total	35	235331.2697			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	168.2364485	21.77413834	7.726434262	5.49546E-09	123.9861045
X Variable 1	0.240088186	0.076002596	3.158947161	0.003315881	0.085632428

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

SH-60F HS 4 Maint as Y

Regression Statistics					
Multiple R	0.460639738				
R Square	0.212188969				
Adjusted R Square	0.189018056				
Standard Error	100.0014103				
Observations	36				

	df		SS	MS	F	Significance F
Regression		1	91578.15937	91578.15937	9.157557639	0.004696096
Residual		34	340009.59	10000.28206		
Total		35	431587.7494			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-11.79952853	37.04480162	-0.318520494	0.752038602	-87.08357374
X Variable 1	0.623312571	0.205975732	3.026145674	0.004696096	0.204719795

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT CVW 14 LINCOLN	Maint as Y	Mean STD DEV CV	\$ \$ 0	0.92869 0.75110 .808774474
Regression Statistics	3	-		
Multiple R	0.714481601	-		
R Square	0.510483959			
Adjusted R Square	0.508963723			
Standard Error	108.4956396			
Observations	324	•		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3952716.004	3952716.004	335.7925397	6.99654E-52
Residual	322	3790359.83	11771.30382		
Total	323	7743075.834			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.63415032	9.488658534	3.123112736	0.001951983	10.96654476
X Variable 1	0.769674811	0.042002172	18.32464296	6.99654E-52	0.687041425

Total Costs

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT E-2C VAW 113

OOMINIATE OOT OT						
E-2C VAW 113	Total as Y					
Regression Statistics						
Multiple R	0.385613036					
R Square	0.148697414					
Adjusted R Square	0.123659102					
Standard Error	831.6644436					
Observations	36					

	df		SS	MS	F	Significance F
Regression		1	4107661.5	4107661.5	5.938795609	0.020197238
Residual		34	23516635.39	691665.7467		
Total		35	27624296.89			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	2.575050126	245.3016576	0.010497484	0.991685729	-495.937569
X Variable 1	3.879783627	1.592055915	2.436964425	0.020197238	0.644338862

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT FA-6R VAO 139

SOMMAN COLL OF						
EA-6B VAQ 139	Total as Y					
Regression Statistics						
Multiple R	0.645655564					
R Square	0.416871108					
Adjusted R Square	0.399720258					
Standard Error	223.3503867					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1212521.842	1212521.842	24.30614886	2.11569E-05
Residual		34	1696103.438	49885.39523		
Total		35	2908625.28			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	122.2990723	83.96485354	1.456550772	0.154414097	-48.33792816
X Variable 1	3.296204697	0.668584182	4.930126658	2.11569E-05	1.937479058

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18 C VFA 113 Total as Y

Regression Statistics	
Multiple R	0.64893914
R Square	0.421122008
Adjusted R Square	0.404096184
Standard Error	397.5425359
Observations	36

	df		SS	MS	F	Significance F
Regression		1	3909012.178	3909012.178	24.73431093	1.85986E-05
Residual		34	5373362.307	158040.0679		
Total		35	9282374.485			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	277.2216184	191.1991554	1.449910266	0.156246216	-111.34156
X Variable 1	2.859068567	0.574876642	4.973360125	1.85986E-05	1.690779436

FA-18C VFA 115	Total as Y
Regression Statis	stics
Multiple R	0.880493985
R Square	0.775269657
Adjusted R Square	0.768659942
Standard Error	357.2388566
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	14968813.29	14968813.29	117.2924317	1.45578E-12
Residual	3	34	4339066.421	127619.6006		
Total	3	35	19307879.71			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	33.56011202	107.215043	0.313016822	0.756179965	-184.3269273
X Variable 1	4.015370596	0.370758093	10.83016305	1.45578E-12	3.261899993

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

FA-18C VFA 25 Total as Y

Regression Statistics	
Multiple R	0.672658588
R Square	0.452469576
Adjusted R Square	0.43636574
Standard Error	410.8218811
Observations	36

	df		SS	MS	F	Significance F
Regression		1	4742061.444	4742061.444	28.09700594	6.99138E-06
Residual		34	5738337.012	168774.618		
Total		35	10480398.46			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	239.2831738	197.1318605	1.213822937	0.233179995	-161.336704
X Variable 1	3.370771684	0.63591536	5.300660896	6.99138E-06	2.078437034

FA-18E VFA 115	Total as Y
Regression Stat	istics
Multiple R	0.820727782
R Square	0.673594092
Adjusted R Square	0.663993918
Standard Error	204.0737969
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1 29	922090.521	2922090.521	70.16478128	8.85163E-10
Residual	3-	4 14	115967.896	41646.11459		
Total	3	5 43	338058.417			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	6.276946217	36.01805466	0.174272216	0.862685095	-66.9204995
X Variable 1	3.048115081	0.363891383	8.376442042	8.85163E-10	2.308599301

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

HH-60H HS 4 Total as Y

Regression Statistics

Multiple R 0.229161637
R Square 0.052515056
Adjusted R Square 0.024647851

 R Square
 0.052515056

 Adjusted R Square
 0.024647851

 Standard Error
 179.662119

 Observations
 36

	df		SS	MS	F	Significance F
Regression		1	60827.98983	60827.98983	1.884475214	0.178813931
Residual		34	1097468.218	32278.47699		
Total		35	1158296.208			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	101.2543099	48.34977901	2.094204192	0.043769606	2.995801531
X Variable 1	0.916839243	0.667879294	1.372761893	0.178813931	-0.440453892

S-3B VS 35	l otal as Y
Regression Statistics	S
Multiple R	0.523391768
R Square	0.273938942
Adjusted R Square	0.252584205
Standard Error	841.2274842
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	9077922.163	9077922.163	12.82801763	0.001054401
Residual		34	24060565.12	707663.6801		
Total		35	33138487.29			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	231.0062956	250.4015578	0.922543365	0.362745921	-277.8705609
X Variable 1	3.130431831	0.874026252	3.581622206	0.001054401	1.354197948

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT

 SH-60F HS 4
 Total as Y

 Regression Statistics

 Multiple R
 0.471195517

 R Square
 0.222025215

 Adjusted R Square
 0.199143604

 Standard Error
 280.3286818

ANOVA

Observations

7.1.10 171						
	df		SS	MS	F	Significance F
Regression		1	762519.1672	762519.1672	9.703215914	0.003723204
Residual		34	2671861.774	78584.16983		
Total		35	3434380.941			

36

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	72.0525803	103.8457395	0.69384243	0.492494625	-138.987215
X Variable 1	1.798602999	0.577400912	3.114998542	0.003723204	0.625183937

CVW 14 LINCOLN REGRESSION SUMMARY OUTPUT CVW 14 LINCOLN Regression Statistics	Total as Y	Mean STD DEV CV	\$ 0.68685 \$ 0.69641 1.013917833	\$ 2.17178 \$ 2.82576 1.301126146	\$ 0.92869 \$ 0.75110 0.808774474	\$ 3.78733 \$ 3.60270 0.951251824
Multiple R	0.735376508	-				
R Square	0.540778609					
Adjusted R Square	0.539352455					
Standard Error	485.7545025					
Observations	324	-				
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	89471956.74	89471956.74	379.1868482	2.32057E-56	
Residual	322	75978294.61	235957.4367			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	24.5065567	42.48243175	0.576863322	0.564434847	-59.07167265
X Variable 1	3.661870111	0.188051284	19.47272062	2.32057E-56	3.291905571

323

165450251.3

a. Fuel

Total

The F- and T-statistic significances approach zero and the R^2 value for all the squadrons is .6616 or 66.16 percent explained by the model.

The mean of the data is \$686.85 per FH with a standard deviation of \$696.41 and a CV of 1.014 or a 101.4 percent error when using the mean.

The regression slope is \$775.96 per FH so that FH explain just less than two-thirds of all fuel costs.

b. AVDLRs

Almost as impressive as the numbers from the USS CARL VINSON, the F- and T-statistic significances approach zero and the AVDLR $\rm R^2$ value .3127 or 31.27 percent.

The simple mean is \$2171.78 with a standard deviation of \$2825.76 and an expected error of 1.3011 or 130.11 percent.

The regression slope is \$2116.24 per FH and equates to FH predicting less than one-third of all AVDLR costs.

c. Other Maintenance

Here the USS ABRAHAM LINCOLN squadrons excel with F- and T-statistic significances approaching zero and an ${\mbox{R}}^2$ value of an impressive .5105 or 51.05 percent.

The mean \$928.69 per FH has a standard deviation of \$751.10 and a subsequent CV of .8088 or 80.88 percent.

The regression slope has a value of \$769.67 per FH and explains well over one-half of all Other Maintenance.

d. Total Costs

As with the USS CARL VINSON, the relatively high predictive value of FH in relation to individual costs leads to the relatively high predictive value for total costs. The F- and T-statistic significances approach zero and the $\rm R^2$ value .5408 or 54.08 percent.

The overall mean is \$3787.33 per FH and has a standard deviation of \$3602.70 for an expected error, CV, of .9513 or 95.13 percent.

The regression slope is \$3661.87, and the calculated R^2 implies that FH explain well over one-half of the total costs for all squadrons onboard CVW 14 for all IDTC statuses.

e. Discussion

Again, as with the CVW 11 squadrons, further research is required to determine the cause of differing numbers, but once those causes are identified, other squadrons should incorporate them.

5. Discussion

While the comparisons of FH to costs among different air wings did not lead to a perfect cost estimating relationship, it did however expose some interesting similarities between the air wings. While an R² value of 50 percent may not seem ideal, when compared to values of 5 percent for Other Maintenance and 32 percent for total costs between air wings with essentially the same composition, mission and IDTC statuses, it shows that some squadrons and air wings may be better at controlling costs than others.

The final comparison will seek to determine if FH are a good predictor of costs between individual T/M/S of aircraft.

E. TYPE/MODEL/SERIES (T/M/S) OF AIRCRAFT

1. E-2C Hawkeye

Table 3.12 shows the regression statistics for all four squadrons of the E-2C Hawkeye.

Table 3.12. E-2C T/M/S

Fuel

E-2C T/M/S REGRESSION

SUMMARY OUTPUT F-2C VAW 112 T/M/S

E-2C VAW 112 T/M/S	Fuel as Y
Regression St	tatistics
Multiple R	0.880471642
R Square	0.775230312
Adjusted R Square	0.768619439
Standard Error	13.28602802
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	20699.61412	20699.61412	117.2659486	1.46016E-12
Residual	34	6001.630383	176.5185407		
Total	35	26701.2445			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	10.90333001	3.972239366	2.744882422	0.009599171	2.830773675
X Variable 1	0.261080991	0.02410956	10.82894033	1.46016E-12	0.212084502

SUMMARY OUTPUT F-2C VAW 113 T/M/S

E-2C VAW 113 I/M/S	Fuel as Y				
Regression Statistics					
Multiple R	0.900583931				
R Square	0.811051416				
Adjusted R Square	0.805494105				
Standard Error	12.29736482				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	22070.27664	22070.27664	145.943132	7.47406E-14
Residual	34	5141.656175	151.2251816		
Total	35	27211.93281			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	5.331862002	3.627140728	1.469990387	0.1507583	-2.039369983
X Variable 1	0.284389836	0.023540855	12.08069253	7.47406E-14	0.236549093

SUMMARY OUTPUT

E-2C VAW 116 T/M/S	Fuel as Y				
Regression Statistics					
Multiple R	0.853985449				
R Square	0.729291147				
Adjusted R Square	0.721329122				
Standard Error	14.82525869				
Observations	36				

ANOVA

	df		SS	MS	F	Significance F
Regression		1	20131.77006	20131.77006	91.59618824	3.54588E-11
Residual		34	7472.802036	219.7882952		
Total		35	27604.5721			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.479899923	5.570146351	1.522383684	0.137160426	-2.839991977
X Variable 1	0.293960533	0.030714986	9.570589754	3.54588E-11	0.231540212

SUMMARY OUTPUT F-2C VAW 117 T/M/S

E-2C VAW 117 T/M/S	Fuel as Y					
Regression Statistics						
Multiple R	0.898027688					
R Square	0.806453728					
Adjusted R Square	0.800761191					
Standard Error	12.23077469					
Observations	36					

Regression 1 21192.46592 21192.46592 141.6685867 Residual 34 5086.122886 149.5918496		df		SS	MS	F	Significance F
Residual 34 5086.122886 149.5918496	Regression		1	21192.46592	21192.46592	141.6685867	1.12774E-13
	Residual	;	34	5086.122886	149.5918496		
Total 35 26278.5888	Total	(35	26278.5888			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-2.046277624	5.016296966	-0.407925934	0.685885529	-12.24061289
X Variable 1	0.353476553	0.029697769	11.90246137	1.12774E-13	0.293123464

SUMMARY OUTPUT		Mean	\$ 0.338970
E-2C T/M/S	Fuel as Y	STD DEV	\$ 0.193066
Regression Sta	ntistics	CV	0.569567
Multiple R	0.881683672	_	
R Square	0.777366097		
Adjusted R Square	0.775798253		
Standard Error	13.27306266		
Observations	144		
-			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	87350.40647	87350.40647	495.8184017	3.61278E-48
Residual	142	25016.73531	176.1741923		
Total	143	112367.1418			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	6.459491418	2.215969737	2.914972759	0.004134724	2.078941453
X Variable 1	0.294481044	0.01322501	22.26698008	3.61278E-48	0.268337718

AVDLR

SUMMARY OUTPUT

E-2C VAW 112 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.479402615				
R Square	0.229826867				
Adjusted R Square	0.207174716				
Standard Error	392.5810897				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	1563687.996	1563687.996	10.14591805	0.003092628
Residual	34	5240077.009	154119.912		
Total	35	6803765.005			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	237.753585	117.3733832	2.02561755	0.05071032	-0.777671825
X Variable 1	2.269181215	0.712399334	3.185265773	0.003092628	0.821412532

SUMMARY OUTPUT

E-2C VAW 113 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.338562115				
R Square	0.114624306				
Adjusted R Square	0.088583844				
Standard Error	840.0455459				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3106230.702	3106230.702	4.401777043	0.043407302
Residual	34	23993001.65	705676.5192		
Total	35	27099232.36			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-107.22766	247.7736862	-0.432764519	0.667918726	-610.7640424	396.3087224
X Variable 1	3.373859835	1.608099866	2.09804124	0.043407302	0.105809861	6.64190981

SUMMARY OUTPUT

E-2C VAW 116 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.265210195				
R Square	0.070336447				
Adjusted R Square	0.042993402				
Standard Error	491.4546421				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	621298.6709	621298.6709	2.572370624	0.117995106
Residual	34	8211940.618	241527.6652		
Total	35	8833239.289			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	330.0635607	184.6493433	1.787515486	0.082771462	-45.18880682
X Variable 1	1.633045399	1.018196237	1.603861161	0.117995106	-0.436176953

SUMMARY OUTPUT

E-2C VAW 117 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.361264123				
R Square	0.130511767				
Adjusted R Square	0.104938583				
Standard Error	536.2379305				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1467506.173	1467506.173	5.103461891	0.030403574
Residual	34	9776738.017	287551.1181		
Total	35	11244244.19			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-11.94913904	219.9311795	-0.054331264	0.956989242	-458.9027772
X Variable 1	2.941438912	1.302049201	2.259084304	0.030403574	0.295358312

SUMMARY OUTPUT		Mean	\$ 3.284091
E-2C T/M/S	AVDLR as Y	STD DEV	\$ 4.293864
Regression S	tatistics	CV	1.307474

r togression statistics					
Multiple R	0.351639986				
R Square	0.12365068				
Adjusted R Square	0.117479206				
Standard Error	585.6748916				
Observations	144				

	df	SS	MS	F	Significance F
Regression	1	6872595.937	6872595.937	20.03584205	1.54799E-05
Residual	142	48708141.17	343015.0787		
Total	143	55580737.11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	97.57243618	97.7798319	0.997878952	0.320035468	-95.71966165
X Variable 1	2.612072845	0.583554584	4.476141424	1.54799E-05	1.458496617

Other Maintenance

SUMMARY OUTPUT

E-2C VAW 112 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.035631323				
R Square	0.001269591				
Adjusted R Square	-0.028104833				
Standard Error	298.8221346				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3859.402373	3859.402373	0.043220972	0.836550066
Residual	34	3036018.717	89294.66815		
Total	35	3039878.12			
		00000.0			
		00000.0			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept			t Stat 2.70704429	<i>P-value</i> 0.010542165	Lower 95% 60.28771212

SUMMARY OUTPUT

E-2C VAW 113 T/M/S Maint as Y

Regression Statistics						
Multiple R	0.250992702					
R Square	0.062997337					
Adjusted R Square	0.035438435					
Standard Error	76.54203057					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	13392.45635	13392.45635	2.285916071	0.139793055
Residual	34	199195.2031	5858.682444		
Total	35	212587.6594			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	Coefficients 104.4708482	Standard Error 22.57627715	<i>t Stat</i> 4.627461272	<i>P-value</i> 5.19615E-05	Lower 95% 58.59036304

SUMMARY OUTPUT

E-2C VAW 116 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.186054671				
R Square	0.03461634				
Adjusted R Square	0.006222703				
Standard Error	204.6256682				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	51048.19002	51048.19002	1.219158377	0.277279173
Residual	34	1423636.579	41871.66409		
Total	35	1474684.769			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	119.655014	76.88195823	1.556347116	0.128886066	-36.58782082
X Variable 1	0.468099546	0.423943672	1.104155051	0.277279173	-0.393457086

SUMMARY OUTPUT

E-2C VAW 117 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.341712302				
R Square	0.116767297				
Adjusted R Square	0.090789865				
Standard Error	98.55919016				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	43663.57143	43663.57143	4.494951426	0.041372659
Residual	34	330273.0748	9713.913965		
Total	35	373936.6463			
<u> </u>					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	57.52998381	40.4228006	1.423206283	0.163788249	-24.61897678
X Variable 1	0.507375501	0.239313386	2.120130049	0.041372659	0.021032506

SUMMARY OUTPUT		Mean	\$ 1.242270
E-2C T/M/S	Maint as Y	STD DEV	\$ 1.347767
Regression S	tatistics	CV	1.084922
Multiple R	0.124546165	-	
R Square	0.015511747		
Adjusted R Square	0.008578731		
Standard Error	194.8451636		
Observations	144		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	84941.0808	84941.0808	2.237373665	0.136928806
Residual	142	5390978.566	37964.63779		
Total	143	5475919.647			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	138.2061711	32.52986873	4.248592955	3.87234E-05	73.90081851
X Variable 1	0.290391413	0.194139769	1.495785301	0.136928806	-0.093385922

Total Costs

SUMMARY OUTPUT

_		
F-2C VAW	112 T/M/S	Total as Y

Regression Statistics					
Multiple R	0.437290005				
R Square	0.191222549				
Adjusted R Square	0.167434976				
Standard Error	513.6980141				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	2121313.021	2121313.021	8.038758545	0.007655165
Residual	34	8972112.09	263885.6497		
Total	35	11093425.11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	490.5081849	153.5847637	3.193729464	0.003023926	178.3865974
X Variable 1	2.642996009	0.932184796	2.835270454	0.007655165	0.748569821

SUMMARY OUTPUT

E-2C VAW 113 T/M/S Total as Y

Regression Statistics					
Multiple R	0.385613036				
R Square	0.148697414				
Adjusted R Square	0.123659102				
Standard Error	831.6644436				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4107661.5	4107661.5	5.938795609	0.020197238
Residual	34	23516635.39	691665.7467		
Total	35	27624296.89			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	2.575050126	245.3016576	0.010497484	0.991685729	-495.937569
X Variable 1	3.879783627	1.592055915	2.436964425	0.020197238	0.644338862

SUMMARY OUTPUT

E-2C VAW 116 T/M/S Total as Y

Regression Statistics					
Multiple R	0.331152137				
R Square	0.109661738				
Adjusted R Square	0.083475318				
Standard Error	564.9201902				
Observations	36				

<u>ANO</u>VA

	df	SS	MS	F	Significance F
Regression	1	1336451.48	1336451.48	4.187733179	0.048512343
Residual	34	10850583.93	319134.8213		
Total	35	12187035.41			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	458.1984746	212.2518199	2.158749333	0.038017388	26.85116257
X Variable 1	2.395105479	1.170402236	2.046395167	0.048512343	0.016563524

SUMMARY OUTPUT

E-2C VAW 117 T/M/S Total as	Y
-----------------------------	---

Regression Statistics					
Multiple R	0.432720532				
R Square	0.187247059				
Adjusted R Square	0.163342561				
Standard Error	559.5099273				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	2452172.205	2452172.205	7.833130687	0.008391048
Residual	34	10643746.2	313051.3588		
Total	35	13095918.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	43.53456714	229.4758935	0.18971303	0.850662092	-422.816251
X Variable 1	3.802290966	1.358556365	2.798773068	0.008391048	1.041374067

SUMMARY OUTPUT		Mean	\$ 0.338970	\$ 3.284091	\$ 1.242270	\$ 4.865332
E-2C T/M/S	Total as Y	STD DEV	\$ 0.193066	\$ 4.293864	\$ 1.347767	\$ 4.724409
Regression S	Statistics	CV	0.569567	1.307474	1.084922	0.971035
Multiple R	0.391155039	_				
R Square	0.153002265					
Adjusted R Square	0.147037492					
Standard Error	633.517111					
Observations	144					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	10294864.95	10294864.95	25.65097958	1.25018E-06
Residual	142	56990838.06	401343.93		
Total	143	67285703.01			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	242.2380987	105.7672055	2.29029497	0.023477285	33.1564851
X Variable 1	3.196945302	0.631223601	5.064679613	1.25018E-06	1.949136509

a. Fuel

The F- and T-statistic significances for all four squadrons analyzed approached zero and there was an overall $\mbox{\sc R}^2$ value of .7773 or 77.73 percent.

The mean for all four squadrons collectively was \$338.97 per FH with a standard deviation of \$193.07. This

gives a CV, or expected error, when using the mean as a predictor, of .5696 or 56.96 percent

The regression slope is \$294.48 per FH and predicted 77.73 percent of the E-2C fuel costs.

b. AVDLRS

The F- and T-statistic significances approach zero while the ${\mbox{R}}^2$ value approximated only .1236 or 12.36 percent of the AVDLR costs for all four squadrons.

The simple mean was \$3284.10, and had a standard deviation of \$4293.84. This means the CV, or expected error when using the mean, was 1.3074 or 130.74 percent.

The regression slope was \$2612.07 per FH but only explained just over 12 percent of the costs.

c. Other Maintenance

The F- and T-statistic significances do not approach zero. Instead they fall into the 86 percent confidence interval, versus the desired 95 percent, and subsequently, the R^2 value only explains .0155 or 1.55 percent of the overall Other Maintenance.

The mean of the four squadrons was \$1242.27 per FH and had a standard deviation \$1347.77 for a CV of 1.0849 or 108.49 percent.

The regression equation slope was \$290.39 per FH but described less than 2 percent of all Other Maintenance costs.

d. Total Costs

With such wide swings in prediction values, total costs approximated by FH suffered as well. The F- and T- statistic significances approach zero but the \mathbb{R}^2 value

explained only 15.30 percent of the total costs across all four squadrons.

The mean of the data was \$4865.33 per FH and had a standard deviation of \$4724.41 for a CV of .9710 or 97.10 percent.

The regression equation slope was \$3196.95 though it only explained 15.30 percent of the total costs.

e. Discussion

It is obvious from analysis of the data that FH predict fuel costs well across all the E-2C squadrons. The lack of prediction for AVDLRs and Other Maintenance is also something that is common to the aircraft. The AVDLR data ranged from an R² value of nearly 23 percent for VAW 112 to a low of seven percent for VAW 116. The same can be said for Other Maintenance where FH may be expected to predict a high of 11 percent for VAW 117 to a low of less then one percent for VAW 112.

2. EA-6B Prowler

Table 3.13 shows the regression statistics for all four squadrons that fly the EA-6B Prowler.

Table 3.13. EA-6B T/M/S

Fuel

EA-6B T/M/S REGRESSION

SUMMARY OUTPUT FA-6B VAO 131 T/M/S

EA-6B VAQ 131 1/M/S	Fuel as Y					
Regression Statistics						
Multiple R	0.870258103					
R Square	0.757349166					
Adjusted R Square	0.750212377					
Standard Error	33.24317723					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	117273.0798	117273.0798	106.1190322	5.42329E-12
Residual	3	34	37573.70031	1105.108833		
Total	3	35	154846.7801			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-8.22113931	14.88970487	-0.552135813	0.584466784	-38.48064039
X Variable 1	1.014556692	0.098487175	10.30140924	5.42329E-12	0.814406803

SUMMARY OUTPUT

EA-6B VAQ 135 T/M/S	Fuel as Y				
Regression Statistics					
Multiple R	0.858708814				
R Square	0.737380828				
Adjusted R Square	0.729656734				
Standard Error	29.52282139				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	83207.03542	83207.03542	95.46503376	2.10625E-11
Residual	34	29634.29743	871.5969831		
Total	35	112841.3328			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-3.179560621	12.82380739	-0.247942013	0.805670631	-29.24065565
X Variable 1	0.916283047	0.093779408	9.770620951	2.10625E-11	0.725700485

EA-6B VAQ 138 T/M/S	Fuel as Y
Regression Sta	ntistics
Multiple R	0.954206572
R Square	0.910510181
Adjusted R Square	0.907878128
Standard Error	26.51139353
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	243139.3259	243139.3259	345.9314884	2.14951E-19
Residual	34	23897.03556	702.853987		
Total	35	267036.3614			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	11.92220464	7.43763225	1.602956995	0.118195091	-3.192872728
X Variable 1	0.812551488	0.043687364	18.59923354	2.14951E-19	0.723768141

SUMMARY OUTPUT

EA-6B VAQ 139 T/M/S	Fuel as Y				
Regression Statistics					
Multiple R	0.818039069				
R Square	0.669187919				
Adjusted R Square	0.659458152				
Standard Error	29.87442062				
Observations	36				

	df		SS	MS	F	Significance F
Regression		1	61382.50817	61382.50817	68.77738312	1.11515E-09
Residual	;	34	30344.35425	892.4810074		
Total	;	35	91726.86242			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	11.44681236	11.23079028	1.019234807	0.315289603	-11.37688452
X Variable 1	0.741637538	0.089427045	8.293213076	1.11515E-09	0.559900037

SUMMARY OUTPUT		Mean	\$ 0.900576
EA-6B T/M/S	Fuel as Y	ST DEV	\$ 0.525151
Regression Sta	tistics	CV	0.583127372
Multiple R	0.89452541	-	
R Square	0.800175708		
Adjusted R Square	0.798768495		
Standard Error	30.39656045		
Observations	144		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	525380.9385	525380.9385	568.6243132	1.65469E-51
Residual	142	131201.026	923.950887		
Total	143	656581.9645			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	5.189983306	5.29990966	0.979258825	0.32911753	-5.286928308
X Variable 1	0.860353289	0.036079799	23.84584478	1.65469E-51	0.789030401

AVDLR

SUMMARY OUTPUT

EA-6B VAQ 131 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.125424213					
R Square	0.015731233					
Adjusted R Square	-0.013217848					
Standard Error	341.0487829					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	63206.39052	63206.39052	0.543410445	0.466079683
Residual	34	3954685.26	116314.2724		
Total	35	4017891.65			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	323.9788464	152.75663	2.120882389	0.04130487	13.54022785
X Variable 1	0.744830838	1.010400746	0.737163785	0.466079683	-1.308549181

EA-6B VAQ 135 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.454404965					
R Square	0.206483872					
Adjusted R Square	0.183145162					
Standard Error	203.4128086					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	366071.4726	366071.4726	8.847270258	0.005368233
Residual	34	1406810.203	41376.77068		
Total	35	1772881.676			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	61.19680467	88.35628013	0.692614091	0.493255642	-118.3646425
X Variable 1	1.921907891	0.646141928	2.974436124	0.005368233	0.608790369

SUMMARY OUTPUT

EA-6B VAQ 138 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.33325379					
R Square	0.111058089					
Adjusted R Square	0.084912738					
Standard Error	225.8468821					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	216662.5886	216662.5886	4.247718509	0.047017851
Residual	34	1734231.681	51006.81415		
Total	35	1950894.27			
	·	***	***	•	· · · · · · · · · · · · · · · · · · ·

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	130.7122191	63.3601569	2.0630034	0.046815964	1.948972764
X Variable 1	0.767035121	0.372166592	2.060999396	0.047017851	0.010702105

EA-6B VAQ 139 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.446940046					
R Square	0.199755405					
Adjusted R Square	0.176218799					
Standard Error	192.1265411					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	313277.6654	313277.6654	8.487009836	0.006280648
Residual	34	1255028.665	36912.60779		
Total	35	1568306.33			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	85.29465972	72.22676944	1.180928628	0.245826424	-61.48769943
X Variable 1	1.67546016	0.575117725	2.913247301	0.006280648	0.506681089

SUMMARY OUTPUT		Mean	\$ 2.406496
EA-6B T/M/S	AVDLR as Y	ST DEV	\$ 2.055819
Regression S	tatistics	CV	0.854278788
Multiple R	0.297038243	_	
R Square	0.088231718		
Adjusted R Square	0.081810815		
Standard Error	254.1812236		
Observations	144	_	

Regression 1 887800.8001 887800.8001 13.74132464 Residual 142 9174349.408 64608.09442	<i>df</i>		SS	MS	F	Significance F
Residual 142 9174349.408 64608.09442	Regression	1	887800.8001	887800.8001	13.74132464	0.00029995
	Residual	142	9174349.408	64608.09442		
Total 143 10062150.21	Total	143	10062150.21			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	166.2036833	44.31874865	3.750188992	0.000256567	78.59396122
X Variable 1	1.118400708	0.301705435	3.706929274	0.00029995	0.521986547

Other Maintenance

SUMMARY OUTPUT

EA-6B VAQ 131 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.265256971				
R Square	0.070361261				
Adjusted R Square	0.043018945				
Standard Error	103.1687331				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	27390.15639	27390.15639	2.573346792	0.117927865
Residual	34	361888.7747	10643.78749		
Total	35	389278.9311			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	131.0011677	46.2095418	2.834937603	0.007661595	37.0921418
X Variable 1	0.490314131	0.305650599	1.60416545	0.117927865	-0.130842213

SUMMARY OUTPUT

EA-6B VAQ 135 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.344292018				
R Square	0.118536993				
Adjusted R Square	0.092611611				
Standard Error	112.5270013				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	57895.15557	57895.15557	4.572237004	0.039764526
Residual	34	430519.0846	12662.32602		
Total	35	488414.2401			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

EA-6B VAQ 138 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.547838628				
R Square	0.300127162				
Adjusted R Square	0.279542667				
Standard Error	58.20597875				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	49396.96569	49396.96569	14.58025365	0.000543163
Residual	34	115189.8227	3387.935963		
Total	35	164586.7884			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	64.43386458	16.32938171	3.945885136	0.000378051	31.24859007
X Variable 1	0.366246449	0.095915961	3.818409833	0.000543163	0.171321892

SUMMARY OUTPUT

EA-6B VAQ 139 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.635058366				
R Square	0.403299128				
Adjusted R Square	0.385749103				
Standard Error	61.26290477				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	86247.13916	86247.13916	22.97997376	3.17451E-05
Residual	34	127606.879	3753.143501		
Total	35	213854.0182			
	Coofficients	Standard Error	t Stat	D value	Lower 05%

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	25.55760019	23.0307675	1.109715523	0.274908992	-21.24651984
X Variable 1	0.879106999	0.183386336	4.793743188	3.17451E-05	0.506421369

SUMMARY OUTPUT		Mean	\$ 1.164863
EA-6B T/M/S	Maint as Y	ST DEV	\$ 0.772127
Regression S	tatistics	cv	0.662848057
Multiple R	0.387199869	_	
R Square	0.149923738		
Adjusted R Square	0.143937286		
Standard Error	92.17950214		
Observations	144		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	212798.9962	212798.9962	25.04383644	1.63272E-06
Residual	142	1206582.607	8497.060614		
Total	143	1419381.603			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	79.65218612	16.07231301	4.955863296	2.02099E-06	47.88028553
X Variable 1	0.547550847	0.109414285	5.004381724	1.63272E-06	0.331259652

Total Costs

SUMMARY OUTPUT

EA-6B VAQ 131 T/M/S Total as Y

Regression Statistics					
Multiple R	0.367221169				
R Square	0.134851387				
Adjusted R Square	0.10940584				
Standard Error	329.8571978				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	576627.7641	576627.7641	5.299606437	0.027581744
Residual	34	3699396.212	108805.7709		
Total	35	4276023.976			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	446.7588748	147.7438901	3.023873775	0.004723876	146.5073626
X Variable 1	2.249701661	0.97724424	2.302087409	0.027581744	0.263703724

EA-6B VAQ 135 T/M/S Total as Y

Regression Statistics				
Multiple R	0.558354413			
R Square	0.31175965			
Adjusted R Square	0.291517287			
Standard Error	288.9850553			
Observations	36			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1286202.827	1286202.827	15.40134649	0.000401893
Residual	34	2839420.315	83512.36221		
Total	35	4125623.142			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	123.7991687	125.5262374	0.986241373	0.330981503	-131.3006704
X Variable 1	3.602503045	0.91796265	3.924454929	0.000401893	1.736979717

SUMMARY OUTPUT

EA-6B VAQ 138 T/M/S Total as Y

Regression Statistics				
Multiple R	0.637448885			
R Square	0.406341081			
Adjusted R Square	0.388880525			
Standard Error	244.7743835			
Observations	36			

<u>ANO</u>VA

	df	SS	MS	F	Significance F
Regression	1	1394326.825	1394326.825	23.2719434	2.90068E-05
Residual	34	2037092.959	59914.49881		
Total	35	3431419.784			
	O 551 1 1	0, , , =			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	207.0682883	68.67016803	3.01540384	0.004828818	67.51380812
X Variable 1	1.945833057	0.403356678	4.824100268	2.90068E-05	1.126114202

EA-6B VAQ 139 T/M/S Total as Y

Regression Statistics					
Multiple R	0.645655564				
R Square	0.416871108				
Adjusted R Square	0.399720258				
Standard Error	223.3503867				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1212521.842	1212521.842	24.30614886	2.11569E-05
Residual	34	1696103.438	49885.39523		
Total	35	2908625.28			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	122.2990723	83.96485354	1.456550772	0.154414097	-48.33792816
X Variable 1	3.296204697	0.668584182	4.930126658	2.11569E-05	1.937479058

SUMMARY OUTPUT		Mean	\$	0.900576	\$	2.406496	\$ 1.164863	\$	4.471936
EA-6B T/M/S	Total as Y	ST DEV	\$	0.525151	\$	2.055819	\$ 0.772127	\$	2.641909
Regression Sta	atistics	CV	0.	583127372	0	.854278788	0.662848057	0.	.590775276
Multiple R	0.522116745	<u>-</u> '							
R Square	0.272605896								
Adjusted R Square	0.267483402								
Standard Error	291.7555871								
Observations	144	-							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4529937.133	4529937.133	53.21741951	1.92845E-11
Residual	142	12087227.81	85121.32259		
Total	143	16617164.94			
-					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	251.0458527	50.87017187	4.935030559	2.21396E-06	150.4852152
X Variable 1	2.526304845	0.346305069	7.295027039	1.92845E-11	1.841725704

a. Fuel

The fuel prediction for all four Prowler squadrons had F- and T-statistic significances approaching zero and an \mathbb{R}^2 value of .8001 or 80.01 percent.

The mean of the data, \$900.58 per FH, had a standard deviation of \$525.15 for a CV of .5831 or 58.31 percent.

The regression slope was \$860.36 per FH and explained over 80 percent of the Prowler fuel costs.

b. AVDLRS

The Prowler AVDLR prediction F- and T-statistic significances approach zero while the R^2 value showed only .0882 or 8.82 percent of AVDLR costs were explained by the FH.

The mean value was \$2406.50 and had a standard deviation of \$2055.82 for a CV, or expected error, of .8542 or 85.42 percent.

The slope of the regression was \$1118.40 but predicted only 8.82 percent of all four squadron's AVDLR costs.

c. Other Maintenance

Other Maintenance costs showed wide swings across the squadrons. The F- and T-statistic significances approach zero and the overall ${\tt R}^2$ value was .1499 or 14.99 percent.

The mean value was \$1164.86 per FH with a standard deviation \$772.13 for a CV of .6628 or 66.28 percent.

The slope of the regression line was \$547.55 but explained just 15 percent of the total Other Maintenance costs.

d. Total Costs

As with the Hawkeye squadrons, the AVDLR and Other Maintenance costs brought down the total costs. The F- and T-statistic significances approach zero but the \mathbb{R}^2 value was only .2726 or 27.26 percent.

The mean for all squadrons was \$4471.94 per FH with standard deviation \$2641.91 and a CV of .5908 or 59.08 percent.

The overall total cost regression slope was \$2526.30 per FH but explained just over one-quarter of all costs across the four squadrons.

e. Discussion

The Fuel variability, as measured by the R² value, ranged from 66.92 percent for VAQ 139 to 91.05 for VAQ 138. The real variability came in AVDLR costs where VAQ 131 FH explained only 1.57 percent of the costs but VAQ 135 and VAQ 139 FH explained approximately 20 percent.

3. FA-18A Hornet

Table 3.14 shows the regression statistics for the squadron that flew the FA-18A Hornet.

Table 3.14. FA-18A T/M/S

FA-18A T/M/S REGRESSION

SUMMARY OUTPUT FA-18A VFA 97	Fuel as Y	\$ \$	0.994472 0.419724
Regression Statis	stics		0.422057103
Multiple R	0.885754689		
R Square	0.784561369		
Adjusted R Square	0.778224939		
Standard Error	60.01908596		
Observations	36		

	df		SS	MS	F	Significance F
Regression		1	446026.8582	446026.8582	123.8175644	7.0622E-13
Residual		34	122477.8831	3602.290679		
Total		35	568504.7413			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-33.95208518	31.80293065	-1.067577248	0.293233107	-98.58337389
X Variable 1	1.106286103	0.099420588	11.12733411	7.0622E-13	0.904239291

SUMMARY OUTPUT		\$	3.113001
FA-18A VFA 97	AVDLR as Y	\$	1.931167
Regression S	tatistics	• (620355273

- regression se	41101100
Multiple R	0.440747279
R Square	0.194258164
Adjusted R Square	0.170559875
Standard Error	534.0495812
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	2337897.361	2337897.361	8.197138689	0.007135754
Residual		34	9697104.475	285208.9551		
Total	;	35	12035001.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	176.1786083	282.9823467	0.622578088	0.537715332	-398.9103341
X Variable 1	2.532792851	0.884643988	2.863064563	0.007135754	0.734981146

0.522847093

SUMMARY OUTPUT \$ 1.095066 FA-18A VFA 97 Maint as Y \$ 0.572552

Regression Statistics							
Multiple R	0.531956614						
R Square	0.282977839						
Adjusted R Square	0.261888952						
Standard Error	149.3637432						
Observations	36						

	df	SS	MS	F	Significance F
Regression	1	299356.8105	299356.8105	13.41833917	0.000840512
Residual	34	758523.9447	22309.52779		
Total	35	1057880.755			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	57.31224798	79.1449035	0.724143254	0.473931444	-103.5294419
X Variable 1	0.906319915	0.247418483	3.663105126	0.000840512	0.403505391

SUMMARY OUTPUT FA-18A VFA 97 Regression S	Total as Y	Mean St Dev	\$ 0.994472 \$ 0.419724 0.422057103	\$ 3.113001 \$ 1.931167 0.620355273	\$ 1.095066 \$ 0.572552 0.522847093	\$ 5.202539 \$ 2.488880 0.478397242
Multiple R	0.613730495		0.422007 100	0.020000270	0.022047030	0.470007242
R Square Adjusted R Square	0.37666512 0.358331741					
Standard Error	605.3807422					
Observations	36	-				
ANOVA						
	df	SS	MS	F	Significance F	

	df	SS	MS	F	Significance F
Regression	1	7529568.634	7529568.634	20.54531922	6.87285E-05
Residual	34	12460518.66	366485 843		

Total 35 19990087.3

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	199.5387711	320.779323	0.622043744	0.538062459	-452.3628183
X Variable 1	4.545398869	1.002802835	4.532694477	6.87285E-05	2.507459654

a. Fuel

The F- and T-statistic significances approach zero while the ${\ensuremath{R}}^2$ value explains .7846 or 78.46 percent of the variation.

The mean is \$994.47 per FH with a standard deviation of \$419.72 and a CV of .4221 or 42.21 percent.

The regression equation slope is \$1106.29 per FH and explains 78.46 percent of the fuel costs.

b. AVDLRs

The F- and T-statistic significances approach zero while the \mbox{R}^2 value is .1943 or 19.43 percent.

The mean of the data is \$3113.00 with a standard deviation of \$1931.17 for a CV of .6204 or 62.04 percent.

The regression slope is \$2532.79 per FH but explains fewer than 20 percent of the costs.

c. Other Maintenance

The F- and T-statistic significances approach zero and the \mbox{R}^2 value is .2830 or 28.30 percent.

The mean of the data is \$1095.07 with a standard deviation of \$572.55 and a CV of .5228 or 52.28 percent.

The regression equation slope is \$906.32 per FH but explains only 28.30 percent of the Other Maintenance costs.

d. Total Costs

The contribution of the fuel costs and the relative strength of the AVDLR and Other Maintenance costs led to the F- and T-statistic significances approaching zero and the $\rm R^2$ value equating to .3767 or 37.67 percent.

The mean of the data is \$5202.54 per FH with a standard deviation of \$2488.88 and a CV of .4784 or 47.84 percent.

The regression slope is \$4545.40 per FH and explains 37.67 percent of all costs.

e. Discussion

The relative strength or weakness of the data for the FA-18A is because only one squadron, VFA 97, flew the FA-18A during this time frame.

4. FA-18C Hornet

Table 3.15 shows the regression statistics for all squadrons of the FA-18C Hornet.

Table 3.15. FA-18C T/M/S

Fuel

FA-18C T/M/S REGRESSION

SUMMARY OUTPUT

FA-18C VFA 113 T/M/S	Fuel as Y					
Regression Statistics						
Multiple R	0.775599852					
R Square	0.601555131					
Adjusted R Square	0.589836164					
Standard Error	67.60496678					
Observations	36					

ANOVA

	df		SS	MS	F	Significance F
Regression		1	234608.2722	234608.2722	51.33175511	2.76668E-08
Residual		34	155394.6721	4570.431533		
Total		35	390002.9444			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	65.36506044	32.51479121	2.010317705	0.052384062	-0.712902038
X Variable 1	0.700426743	0.097761907	7.164618281	2.76668E-08	0.501750776

SUMMARY OUTPUT

FA-18C VFA 115 T/M/S	Fuel as Y						
Regression Statistics							
Multiple R	0.932754136						
R Square	0.870030278						
Adjusted R Square	0.866207639						
Standard Error	54.62153111						
Observations	36						

	df		SS	MS	F	Significance F
Regression		1	679045.4319	679045.4319	227.5993893	1.24961E-16
Residual		34	101439.3965	2983.51166		
Total		35	780484.8284			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	4.406433177	16.39309303	0.268798156	0.789709404	-28.90831822
X Variable 1	0.855226924	0.056688611	15.08639749	1.24961E-16	0.74002188

Fuel as Y
tics
0.815841893
0.665597995
0.655762642
88.39341296
36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	528763.97	528763.97	67.67403148	1.34307E-09
Residual		34	265655.4455	7813.395455		
Total		35	794419.4155			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	54.08673067	40.22196047	1.344706475	0.187622628	-27.65407394
X Variable 1	0.835198311	0.101526306	8.226422763	1.34307E-09	0.62887217

SUMMARY OUTPUT

FA-18C VFA 146 T/M/S	Fuel as Y
Regression Sta	tistics
Multiple R	0.747068703
R Square	0.558111647
Adjusted R Square	0.54511493
Standard Error	92.291206
Observations	36

	df		SS	MS	F	Significance F
Regression		1	365770.0062	365770.0062	42.94251217	1.66287E-07
Residual		34	289600.668	8517.666705		
Total		35	655370.6741			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	102.4505111	36.94801948	2.772828221	0.008953785	27.36315074
X Variable 1	0.613610618	0.093637356	6.553053653	1.66287E-07	0.423316741

FA-18C VFA 147 T/M/S	Fuel as Y
Regression Stati	istics
Multiple R	0.741315121
R Square	0.549548109
Adjusted R Square	0.536299524
Standard Error	89.82430778
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	334675.5443	334675.5443	41.47975861	2.32071E-07
Residual	34	274325.8131	8068.406268		
Total	35	609001.3575			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	119.3080878	35.54507704	3.356529165	0.001954011	47.07184757
X Variable 1	0.583163925	0.090546682	6.440478135	2.32071E-07	0.399151049

SUMMARY OUTPUT

FA-18C VFA 151 T/M/S	Fuel as Y
Regression Sta	ntistics
Multiple R	0.820930662
R Square	0.673927152
Adjusted R Square	0.664336774
Standard Error	84.3015001
Observations	36

	df		SS	MS	F	Significance F
Regression		1	499399.1968	499399.1968	70.27117802	8.69735E-10
Residual		34	241629.2592	7106.742919		
Total		35	741028.456			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.90172485	39.94319912	0.748606158	0.459242309	-51.2725689
X Variable 1	0.888314248	0.105968799	8.382790587	8.69735E-10	0.67295988

FA-18C VFA 22 T/M/S	Fuel as Y
Regression Sta	ntistics
Multiple R	0.856969954
R Square	0.734397503
Adjusted R Square	0.726585665
Standard Error	66.93978734
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	421256.4959	421256.4959	94.01084457	2.55696E-11
Residual		34	152351.7944	4480.935129		
Total		35	573608.2903			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-8.981071459	34.89422732	-0.257379863	0.798436902	-79.89462674
X Variable 1	0.983485187	0.101432901	9.695918964	2.55696E-11	0.777348867

SUMMARY OUTPUT FA-18C VFA 25 T/M/S

FA-18C VFA 25 1/M/S	Fuel as Y
Regression Sta	ntistics
Multiple R	0.693770598
R Square	0.481317642
Adjusted R Square	0.466062279
Standard Error	82.36171039
Observations	36

	df		SS	MS	F	Significance F
Regression		1	214022.7477	214022.7477	31.55071615	2.70973E-06
Residual		34	230637.3455	6783.451339		
Total		35	444660.0933			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	73.88752116	39.52106241	1.869573251	0.070175423	-6.428888154
X Variable 1	0.716103368	0.127488528	5.617002417	2.70973E-06	0.457015678

FA-18C VFA 94 T/M/S	Fuel as Y
Regression Stat	tistics
Multiple R	0.62166602
R Square	0.38646864
Adjusted R Square	0.3684236
Standard Error	113.630989
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression		1 276534.9216	276534.9216	21.41689019	5.19035E-05
Residual	34	439008.0564	12912.00166		
Total	35	715542.978	3		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	45.76514489	64.87549758	0.705430349	0.48534779	-86.0776422
X Variable 1	0.829357821	0.179210619	4.627838608	5.19035E-05	0.465158264

SUMMARY OUTPUT

OOMINIATE OOTI OT	
FA-18C VMFA 314 T/M/S	Fuel as Y
Regression State	tistics
Multiple R	0.153801576
R Square	0.023654925
Adjusted R Square	-0.005061107
Standard Error	181.8029527
Observations	36

	df	SS	MS	F	Significance F
Regression		1 27226.95111	27226.95111	0.823753261	0.370473357
Residual	34	1123778.663	33052.3136		
Total	35	5 1151005.614			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	270.5031174	114.0147386	2.37252763	0.023465993	38.7974433
X Variable 1	0.222900009	0.245590472	0.907608539	0.370473357	-0.27619955

FA-18C VMFA 323 T/M/S	Fuel as Y
Regression Stat	istics
Multiple R	0.539929433
R Square	0.291523792
Adjusted R Square	0.270686257
Standard Error	150.3080369
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	316076.3902	316076.3902	13.9903201	0.000676901
Residual		34	768145.2024	22592.50595		
Total		35	1084221.593			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	51.72206507	84.73570371	0.610392819	0.545660388	-120.4814904
X Variable 1	0.781589514	0.208960837	3.740363632	0.000676901	0.35693028

 SUMMARY OUTPUT
 \$ 0.924350

 FA-18C T/M/S
 Fuel as Y
 \$ 0.409186

 Regression Statistics
 0.442673849

 Multiple R
 0.703077805

 R Square
 0.4943184

 Adjusted R Square
 0.493034944

 Standard Error
 105.6645631

 Observations
 396

	df	SS	MS	F	Significance F
Regression		1 4300159.551	4300159.551	385.1464031	2.62783E-60
Residual	39	4 4399009.959	11164.9999		
Total	39	5 8699169.51			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	67.40481358	13.83826287	4.870901371	1.61186E-06	40.19872409
X Variable 1	0.728540464	0.037122802	19.62514721	2.62783E-60	0.65555686

AVDLR

SUMMARY OUTPUT

FA-18C VFA 113 T/M/S	AVDLR as Y
Regression Sta	tistics
Multiple R	0.493405855
R Square	0.243449338
Adjusted R Square	0.221197848
Standard Error	333.0462713
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1213552.729	1213552.729	10.94081059	0.002229487
Residual	34	3771273.84	110919.8188		
Total	35	4984826.568			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	96.90198426	160.1795029	0.604958703	0.549223065	-228.6217171
X Variable 1	1.593016906	0.481610154	3.307689615	0.002229487	0.614267957

SUMMARY OUTPUT

FA-18C VFA 115 T/M/S	AVDLR as Y
Regression Sta	atistics
Multiple R	0.745045367
R Square	0.555092599
Adjusted R Square	0.542007087
Standard Error	333.1054097
Observations	36

	df	SS	MS	F	Significance F
Regression	1	4706933.858	4706933.858	42.42039656	1.87154E-07
Residual	34	3772613.274	110959.214		
Total	35	8479547.132			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.462890174	99.972078	-0.004630195	0.996332714	-203.6304632
X Variable 1	2.251650583	0.345711347	6.513094239	1.87154E-07	1.549081058

FA-18C VFA 137 T/M/S	AVDLR as Y
Regression Sta	atistics
Multiple R	0.313013014
R Square	0.097977147
Adjusted R Square	0.071447063
Standard Error	395.0243168
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	576280.3715	576280.3715	3.693058322	0.063053332
Residual	34	5305503.169	156044.2109		
Total	35	5881783.541			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	515.7977341	179.7492813	2.869539896	0.007019582	150.503484
X Variable 1	0.871917901	0.453714345	1.921733156	0.063053332	-0.05013998

SUMMARY OUTPUT FA-18C VFA 146 T/M/S

FA-18C VFA 146 T/M/S	AVDLR as Y
Regression Sta	atistics
Multiple R	0.362354521
R Square	0.131300799
Adjusted R Square	0.105750822
Standard Error	440.4351507
Observations	36

	df	SS	MS	F	Significance F
Regression	1	996875.2341	996875.2341	5.138979226	0.029870064
Residual	34	6595426.148	193983.122		
Total	35	7592301.382			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	458.3656593	176.3245626	2.59955648	0.013710352	100.0312707
X Variable 1	1.012999486	0.446859293	2.266931676	0.029870064	0.104872738

FA-18C VFA 147 T/M/S	AVDLR as Y				
Regression Statistics					
Multiple R	0.4776795				
R Square	0.228177705				
Adjusted R Square	0.205477049				
Standard Error	415.8695142				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1738397.047	1738397.047	10.05159092	0.0032167
Residual	34	5880213.398	172947.4529		
Total	35	7618610.445			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	313.5815002	164.5669673	1.905494798	0.065200613	-20.85859575
X Variable 1	1.3290862	0.419213969	3.170424407	0.0032167	0.477141473

SUMMARY OUTPUT

FA-18C VFA 151 T/M/S	AVDLR as Y
Regression Sta	atistics
Multiple R	0.247978181
R Square	0.061493178
Adjusted R Square	0.033890036
Standard Error	386.6505191
Observations	36

	df	SS	MS	F	Significance F
Regression	1	333047.0705	333047.0705	2.227760108	0.144772211
Residual	34	5082953.212	149498.6239		
Total	35	5416000.283			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	472.1578858	183.200283	2.577277055	0.014468384	99.85036124
X Variable 1	0.725430009	0.486028018	1.492568293	0.144772211	-0.262297113

FA-18C VFA 22 T/M/S	AVDLR as Y					
Regression Statistics						
Multiple R	0.313707844					
R Square	0.098412612					
Adjusted R Square	0.071895335					
Standard Error	639.1835268					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1516257.609	1516257.609	3.711263974	0.06243933
Residual	34	13890889.75	408555.5809		
Total	35	15407147.36			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	238.3813085	333.1922041	0.715446837	0.479217679	-438.7462738
X Variable 1	1.865868421	0.968545642	1.926464112	0.06243933	-0.10245185

SUMMARY OUTPUT

FA-18C VFA 25 T/M/S	AVDLR as Y
Regression St	atistics
Multiple R	0.522384116
R Square	0.272885165
Adjusted R Square	0.251499434
Standard Error	345.2927831
Observations	36

	df	SS	MS	F	Significance F
Regression	1	1521355.959	1521355.959	12.76015169	0.001082482
Residual	34	4053721.606	119227.1061		
Total	35	5575077.565			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	83.06893866	165.6878854	0.501357951	0.619350095	-253.6491354
X Variable 1	1.909242831	0.534482204	3.572135453	0.001082482	0.82304502

FA-18C VFA 94 T/M/S	AVDLR as Y				
Regression Statistics					
Multiple R	0.254951014				
R Square	0.065000019				
Adjusted R Square	0.03750002				
Standard Error	653.3681831				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1009013.01	1009013.01	2.363637122	0.133447651
Residual	34	14514259.41	426889.9826		
Total	35	15523272.42			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	314.8758016	373.0283997	0.844106781	0.404509982	-443.2086173
X Variable 1	1.584219431	1.030445281	1.537412476	0.133447651	-0.509895957

SUMMARY OUTPUT

FA-18C VMFA 314 T/M/S AVDLR as Y

Regression Statistics				
Multiple R	0.207089114			
R Square	0.042885901			
Adjusted R Square	0.014735486			
Standard Error	533.5167081			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	433636.4617	433636.4617	1.523455393	0.225560725
Residual	34	9677762.647	284640.0779		
Total	35	10111399.11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	255.6847464	334.586249	0.764181873	0.450030039	-424.2758741
X Variable 1	0.889556376	0.720706776	1.234283352	0.225560725	-0.575095051

SUMMARY OUTPUT EA_18C V/MEA 323 T/M/S AVIDLE

FA-18C VMFA 323 T/M/S	AVDLR as Y				
Regression Statistics					
Multiple R	0.308342353				
R Square	0.095075006				
Adjusted R Square	0.068459565				
Standard Error	429.2728204				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	658263.0543	658263.0543	3.572174756	0.067305277
Residual	34	6265355.246	184275.1543		
Total	35	6923618.3			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coemicients	Standard Error	t Stat	P-value	Lower 95%
Intercept	329.8352487	242.0012613	1.362948469	0.181857853	-161.9701627
X Variable 1	1.127930749	0.596782511	1.890019777	0.067305277	-0.084876436

SUMMARY OUTPUT

2.133181 FA-18C T/M/S AVDLR as Y \$ 1.405633 0.658937527

Regression Statistics					
Multiple R	0.372497826				
R Square	0.13875463				
Adjusted R Square	0.136568728				
Standard Error	462.7988017				
Observations	396				

	df	SS	MS	F	Significance F
Regression	1	13595690.11	13595690.11	63.47706026	1.76292E-14
Residual	394	84387995.96	214182.7309		
Total	395	97983686.07			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	288.3862091	60.6100218	4.758061464	2.74814E-06	169.2266229
X Variable 1	1.295424246	0.162593664	7.967249228	1.76292E-14	0.975764342

Other Maintenance

SUMMARY OUTPUT FA-18C VFA 113 T/M/S	Maint as Y
Regression Sta	atistics
Multiple R	0.506314497
R Square	0.25635437
Adjusted R Square	0.23448244
Standard Error	114.2511731
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	152994.1937	152994.1937	11.7207017	0.001628593
Residual	34	443813.2391	13053.33056		
Total	35	596807.4328			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	114.9545737	54.94941003	2.092007423	0.043978228	3.284010252
X Variable 1	0.565624918	0.165215857	3.423551036	0.001628593	0.229866121

SUMMARY OUTPUT

Maint as Y
atistics
0.833698066
0.695052466
0.68608342
99.43836842
36

	df	SS	MS	F	Significance F
Regression	1	766265.6517	766265.6517	77.49458893	2.74585E-10
Residual	34	336191.6299	9887.989114		
Total	35	1102457.282			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.61656902	29.84358715	0.992393068	0.328016341	-31.03285724
X Variable 1	0.908493089	0.103201483	8.803101097	2.74585E-10	0.698762579

FA-18C VFA 137 T/M/S	Maint as Y
Regression Sta	ntistics
Multiple R	0.093123806
R Square	0.008672043
Adjusted R Square	-0.020484661
Standard Error	590.9495045
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	103868.4719	103868.4719	0.297428785	0.589059078
Residual	34	11873524.77	349221.3169		
Total	35	11977393.25			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	254.0223201	268.9017973	0.944665758	0.351494741	-292.4515218
X Variable 1	0.370169431	0.678748766	0.545370319	0.589059078	-1.009213115

SUMMARY OUTPUT FA-18C VFA 146 T/M/S Maint as Y

FA-10C VFA 140 1/10//3	Maille as 1				
Regression Statistics					
Multiple R	0.203564572				
R Square	0.041438535				
Adjusted R Square	0.013245551				
Standard Error	231.7598838				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	78947.77098	78947.77098	1.469817262	0.233731922
Residual	34	1826229.888	53712.64375		
Total	35	1905177.659			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	255.5371259	92.78314884	2.754132933	0.009380889	66.979205
X Variable 1	0.285074754	0.23514031	1.212360203	0.233731922	-0.192787536

FA-18C VFA 147 T/M/S	Maint as Y				
Regression Statistics					
Multiple R	0.248232551				
R Square	0.061619399				
Adjusted R Square	0.03401997				
Standard Error	253.4419173				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	143408.2863	143408.2863	2.232633082	0.144347118
Residual	34	2183915.385	64232.80543		
Total	35	2327323.671			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	202.2250691	100.2914768	2.016373431	0.051715905	-1.59159994
X Variable 1	0.381738343	0.255480117	1.494199813	0.144347118	-0.137459381

SUMMARY OUTPUT

FA-18C VFA 151 T/M/S	Maint as Y
Regression Sta	atistics
Multiple R	0.066105449
R Square	0.00436993
Adjusted R Square	-0.024913307
Standard Error	597.5196732
Observations	36

	df	SS	MS	F	Significance F
Regression	1	53279.46449	53279.46449	0.149229757	0.701679502
Residual	34	12139011.84	357029.7599		
Total	35	12192291.3			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	253.4118803	283.1129608	0.895091061	0.377031689	-321.9425016
X Variable 1	0.290150039	0.75109508	0.386302676	0.701679502	-1.236257809

FA-18C VFA 22 T/M/S	Maint as Y				
Regression Statistics					
Multiple R	0.126630899				
R Square	0.016035385				
Adjusted R Square	-0.012904751				
Standard Error	184.5207978				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	18865.54965	18865.54965	0.55408809	0.461766195
Residual	34	1157629.444	34047.92483		
Total	35	1176494.994			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	296.4991871	96.18660173	3.082541454	0.004054045	101.0246224
X Variable 1	0.208127395	0.279601722	0.744370936	0.461766195	-0.360091295

SUMMARY OUTPUT

FA-18C VFA 25 T/M/S	Maint as Y
Regression S	tatistics
Multiple R	0.632941989
R Square	0.400615562
Adjusted R Square	0.382986607
Standard Error	101.0201139
Observations	36

	df	SS	MS	F	Significance F
Regression	1	231908.6652	231908.6652	22.72486274	3.43626E-05
Residual	34	346972.1559	10205.06341		
Total	35	578880.8211			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	82.32671398	48.47425104	1.69835969	0.098575094	-16.18475181
X Variable 1	0.745425485	0.15637006	4.767060178	3.43626E-05	0.427643499

FA-18C VFA 94 T/M/S	Maint as Y				
Regression Statistics					
Multiple R	0.26077299				
R Square	0.068002552				
Adjusted R Square	0.040590863				
Standard Error	180.4833569				
Observations	36				

ANOVA

7110 171					
	df	SS	MS	F	Significance F
Regression	1	80809.74352	80809.74352	2.480786604	0.124505054
Residual	34	1107524.233	32574.24213		
Total	35	1188333.976			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	224.9317847	103.0436124	2.182879457	0.036045703	15.52210681
X Variable 1	0.448331049	0.284645363	1.575051302	0.124505054	-0.130137546

SUMMARY OUTPUT

FA-18C VMFA 314 T/M/S Maint as Y

Regression Statistics				
Multiple R	0.236381254			
R Square	0.055876097			
Adjusted R Square	0.028107747			
Standard Error	397.7426979			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	318332.0901	318332.0901	2.012222451	0.165138502
Residual	34	5378774.627	158199.2537		
Total	35	5697106.717			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	81.82994242	249.4378064	0.328057497	0.744879961	-425.0883369
X Variable 1	0.762168141	0.537294996	1.41852827	0.165138502	-0.329745947

SUMMARY OUTPUT EA-18C VMEA 323 T/M/S Maint a

FA-18C VMFA 323 T/M/S	Maint as Y			
Regression Statistics				
Multiple R	0.342561762			
R Square	0.117348561			
Adjusted R Square	0.091388224			
Standard Error	1056.725479			
Observations	36			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5047679.914	5047679.914	4.52030199	0.04083742
Residual	34	37966737.06	1116668.737		
Total	35	43014416.97			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-796.2548119	595.7258102	-1.336612915	0.190225031	-2006.914523
X Variable 1	3.123407146	1.469078066	2.126100184	0.04083742	0.137883274

SUMMARY OUTPUT

1.019888 FA-18C T/M/S Maint as Y \$ 1.311177 1.285608133

Regression Statistics				
Multiple R	0.223667183			
R Square	0.050027009			
Adjusted R Square	0.04761591			
Standard Error	446.7891996			
Observations	396			

	df	SS	MS	F	Significance F
Regression	1	4141854.448	4141854.448	20.74863355	6.99273E-06
Residual	394	78650512.02	199620.5889		
Total	395	82792366.47			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	104.952032	58.5133389	1.793642851	0.073636894	-10.08546577
X Variable 1	0.715004556	0.156969061	4.5550668	6.99273E-06	0.40640265

Total Costs

SUMMARY OUTPUT

FA-18C VFA 113 T/M/S	Total as Y
Regression Sta	tistics
Multiple R	0.64893914
R Square	0.421122008
Adjusted R Square	0.404096184
Standard Error	397.5425359
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3909012.178	3909012.178	24.73431093	1.85986E-05
Residual	34	5373362.307	158040.0679		
Total	35	9282374.485			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	277.2216184	191.1991554	1.449910266	0.156246216	-111.34156
X Variable 1	2.859068567	0.574876642	4.973360125	1.85986E-05	1.690779436

SUMMARY OUTPUT

FA-18C VFA 115 T/M/S	Total as Y
Regression Sta	atistics
Multiple R	0.880493985
R Square	0.775269657
Adjusted R Square	0.768659942
Standard Error	357.2388566
Observations	36

	df	SS	MS	F	Significance F
Regression	1	14968813.29	14968813.29	117.2924317	1.45578E-12
Residual	34	4339066.421	127619.6006		
Total	35	19307879.71			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	33.56011202	107.215043	0.313016822	0.756179965	-184.3269273
X Variable 1	4.015370596	0.370758093	10.83016305	1.45578E-12	3.261899993

FA-18C VFA 137 T/M/S	Total as Y				
Regression Statistics					
Multiple R	0.394933451				
R Square	0.155972431				
Adjusted R Square	0.131148091				
Standard Error	721.5268156				
Observations	36				

ANOVA

7110 171					
	df	SS	MS	F	Significance F
Regression	1	3270958.836	3270958.836	6.283044361	0.017135634
Residual	34	17700432.15	520600.9456		
Total	35	20971390.99			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	823.9067848	328.3188428	2.509471518	0.017019029	156.6830577
X Variable 1	2.077285643	0.828726367	2.50660016	0.017135634	0.393112141

SUMMARY OUTPUT

 FA-18C VFA 146 T/M/S
 Total as Y

 Regression Statistics

 Multiple R
 0.466195032

 R Square
 0.217337808

 Adjusted R Square
 0.194318331

 Standard Error
 613.2076396

ANOVA

Observations

	df	SS	MS	F	Significance F
Regression	1	3550217.475	3550217.475	9.441474916	0.004159763
Residual	34	12784802.71	376023.6092		
Total	35	16335020.19			

36

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	816.3532963	245.4925967	3.325368289	0.002125734	317.4526425
X Variable 1	1.911684858	0.622151823	3.072698312	0.004159763	0.647321061

FA-18C VFA 147 T/M/S	Total as Y				
Regression Statistics					
Multiple R	0.548870838				
R Square	0.301259197				
Adjusted R Square	0.280707997				
Standard Error	594.3756456				
Observations	36				

ANOVA

7110 171					
	df	SS	MS	F	Significance F
Regression	1	5178752.295	5178752.295	14.65895889	0.000527569
Residual	34	12011601.87	353282.4081		
Total	35	17190354.17			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	635.114657	235.2050201	2.700259785	0.010720089	157.1208606
X Variable 1	2.293988468	0.599155661	3.828701985	0.000527569	1.076358466

SUMMARY OUTPUT

FA-18C VFA 151 T/M/S	Total as Y			
Regression Statistics				
Multiple R	0.318431226			
R Square	0.101398445			
Adjusted R Square	0.074968988			
Standard Error	773.2654401			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	2294036.107	2294036.107	3.836569308	0.058389605
Residual	34	20329940.99	597939.4409		
Total	35	22623977.1			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	755.4714909	366.3836992	2.061968075	0.046920169	10.89071931
X Variable 1	1.903894296	0.972011288	1.95871624	0.058389605	-0.07146901

FA-18C VFA 22 T/M/S	Total as Y			
Regression Statistics				
Multiple R	0.448038061			
R Square	0.200738104			
Adjusted R Square	0.177230401			
Standard Error	690.4932487			
Observations	36			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4071350.565	4071350.565	8.539247984	0.006138611
Residual	34	16210551.5	476780.9265		
Total	35	20281902.07			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	525.8994241	359.9388248	1.461080017	0.153174285	-205.5837955
X Variable 1	3.057481003	1.046294529	2.922199169	0.006138611	0.931156089

SUMMARY OUTPUT

FA-18C VFA 25 T/M/S	Total as Y			
Regression Statistics				
Multiple R	0.672658588			
R Square	0.452469576			
Adjusted R Square	0.43636574			
Standard Error	410.8218811			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	4742061.444	4742061.444	28.09700594	6.99138E-06
Residual	34	5738337.012	168774.618		
Total	35	10480398.46			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	239.2831738	197.1318605	1.213822937	0.233179995	-161.336704
X Variable 1	3.370771684	0.63591536	5.300660896	6.99138E-06	2.078437034

FA-18C VFA 94 T/M/S	Total as Y				
Regression Statistics					
Multiple R	0.384779607				
R Square	0.148055346				
Adjusted R Square	0.12299815				
Standard Error	746.5225782				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3292892.273	3292892.273	5.908695758	0.020491898
Residual	34	18948062.63	557295.9597		
Total	35	22240954.9			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	585.5727312	426.2131672	1.373896388	0.178464601	-280.5960685
X Variable 1	2.861908301	1.177361689	2.430780895	0.020491898	0.469223044

SUMMARY OUTPUT

FA-18C VMFA 314 T/M/S Total as Y

Regression Statistics				
Multiple R	0.291456237			
R Square	0.084946738			
Adjusted R Square	0.058033407			
Standard Error	781.1134006			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	1925783.352	1925783.352	3.15630709	0.084583385
Residual	34	20744696.92	610138.1446		
Total	35	22670480.27			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	608.0178063	489.8624519	1.241201084	0.223027072	-387.5018176
X Variable 1	1.874624526	1.055175428	1.776599868	0.084583385	-0.269748535

FA-18C VMFA 323 T/M/S	Total as Y				
Regression Statistics					
Multiple R	0.467102413				
R Square	0.218184664				
Adjusted R Square	0.195190096				
Standard Error	1175.272282				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	13106174.36	13106174.36	9.488530405	0.004077404
Residual	34	46963007.88	1381264.938		
Total	35	60069182.24			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-414.6974981	662.5562143	-0.625905379	0.535556459	-1761.172842
X Variable 1	5.032927409	1.633883886	3.080345825	0.004077404	1.712478034

SUMMARY OUTPUT FA-18C T/M/S	Total as Y	Mean St Dev	\$ 0.924350 \$ 0.409186	\$ 2.133181 \$ 1.405633	\$ 1.019888 \$ 1.311177	\$ 4.077420 \$ 2.246576
Regression S	Statistics	cv	0.442673849	0.658937527	1.285608133	0.550979831
Multiple R	0.488670749	_				
R Square	0.238799101					
Adjusted R Square	0.236867119					
Standard Error	701.2307597					
Observations	396					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	60778717.6	60778717.6	123.6031719	3.68835E-25
Residual	394	193739483.9	491724.5784		
Total	395	254518201.5			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	460.7430547	91.83604512	5.0170176	7.95647E-07	280.1929607
X Variable 1	2.738969266	0.246361223	11.11769634	3.68835E-25	2.25462195

a. Fuel

Surprisingly, the fuel data is more varied than expected for 11 squadrons flying the FA-18C. The F- and T-statistic significances approach zero but the $\rm R^2$ value is only .4943 or 49.43 percent.

The mean of all the data is \$924.35 per FH with a standard deviation of \$409.19 and a CV of .4427 or 44.27 percent.

The regression slope is \$728.54 per FH but explains just less than one-half of the fuel costs.

b. AVDLRs

The F- and T-statistic significances approach zero while the \mbox{R}^2 value explains only .1386 or 13.86 percent.

The mean of the data is \$2133.18 with a standard deviation of \$1405.63 for a CV of .6589 or 65.89 percent.

The regression slope is \$1295.42 per FH but explains only 13.86 percent of the total AVDLR costs.

c. Other Maintenance

Though the R^2 value is only .0500 or 5.00 percent, the F- and T-statistic significances approach zero.

The mean of the Other Maintenance data is \$1019.89 per FH with a standard deviation of \$1311.18 and an expected error of the mean, CV, of 1.2856 or 128.56 percent.

The regression equation slope is \$715.00 per FH but predicts only 5 percent of the Other Maintenance for the 11 squadrons.

d. Total Costs

The total costs prediction accuracy was brought down by the relative lack of correlation for AVDLRs and Other Maintenance. The F- and T-statistic significances approach zero but the R^2 value is only .2388 or 23.88 percent.

The mean value of \$4077.42 has a standard deviation of \$2246.58 and a CV of .5510 or 55.10 percent.

The slope of the equation is \$2738.97 per FH but explains less than one-quarter of all costs.

e. Discussion

The large data set for the FA-18C provides interesting comparisons between the 11 squadrons. For example, fuel R² values range from 87 percent for VFA 115 to a low of just over two percent for VMFA 314. There is not as wide of a variance for the AVDLR costs as there is for the Other Maintenance costs. Over 40 percent of VFA 25 Other Maintenance costs were predicted by FH while less than one percent of VFA 151 and VFA 137 Other Maintenance costs were predicted by their FH.

5. FA-18E Super Hornet

Table 3.16 shows the regression statistics for all squadrons flying the FA-18E Super Hornet.

Table 3.16. FA-18E T/M/S

FA-18E T/M/S REGRESSION

SUMMARY OUTPUT		Mean	\$ 1.459302
FA-18E VFA 115	Fuel as Y	St Dev	\$ 0.401010
Regression Statis	stics	cv	0.274795349
Multiple R	0.920651068	3	
R Square	0.847598389)	
Adjusted R Square	0.771397584	ļ	
Standard Error	56.2015056	3	
Observations	4	<u> </u>	

	df		SS	MS	F	Significance F
Regression		1	35133.90816	35133.90816	11.12322088	0.079348932
Residual		2	6317.218464	3158.609232		
Total		3	41451.12662			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-151.2018862	175.8531237	-0.859819166	0.480496838	-907.8373358
X Variable 1	1.975129757	0.592216293	3.335149304	0.079348932	-0.572973066

SUMMARY OUTPUT	11/2/2	Mean	\$ 0.836139
FA-18E VFA 115	AVDLR as Y	St Dev	\$ 0.723488
Regression Si	tatistics	CV	0.865272374
Multiple R	0.020759944	F	
R Square	0.000430975	;	
Adjusted R Square	-0.499353537	•	
Standard Error	259.6785198	3	
Observations	4	ļ	
		_	

	df		SS	MS	F	Significance F	
Regression		1	58.1489144	58.1489144	0.000862322	0.979240056	
Residual		2	134865.8672	67432.93362			
Total		3	134924.0162				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	221.5396116	812.5276783	0.272654849	0.810690161	-3274.487255
X Variable 1	0.080353206	2.736329724	0.029365323	0.979240056	-11.69313155

SUMMARY OUTPUT		Mean	\$	0.945399
FA-18E VFA 115	Maint as Y	St Dev	\$	1.567093
Regression S	Statistics	CV	1	.657599352
Multiple R	0.661387121	_		
R Square	0.437432924			
Adjusted R Square	0.156149387			
Standard Error	421.9688086			
Observations	4			
		•		

	df		SS	MS	F	Significance F
Regression		1	276903.1216	276903.1216	1.555131622	0.338612876
Residual		2	356115.3509	178057.6755		
Total		3	633018.4726			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1902.478656	1320.329986	1.440911496	0.286312349	-3778.446718
X Variable 1	-5.544933308	4.44644322	-1.247049166	0.338612876	-24.67644769

SUMMARY OUTPUT FA-18E VFA 115		Mean St Dev	\$ \$	1.459302 0.401010	\$ \$	0.836139 0.723488	\$ \$		\$ \$	3.240840 2.093165
Regression S	Statistics	CV	0.	274795349	0.	865272374		1.657599352	0.	.645871073
Multiple R	0.311607354									
R Square	0.097099143									
Adjusted R Square	-0.354351285									
Standard Error	714.0390401									
Observations	4									

	df		SS	MS	F	Significance F
Regression		1	109660.2529	109660.2529	0.215082625	0.688392646
Residual		2	1019703.502	509851.7508		
Total		3	1129363.754			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1972.816382	2234.210531	0.883003797	0.470380529	-7640.222349
X Variable 1	-3.489450346	7.52409653	-0.463770013	0.688392646	-35.86304736

a. Fuel

The F- and T-statistic significances approach zero, but are not within the 95 percent confidence interval. Instead, the significance is within a 92 percent confidence interval and has an R^2 value of .8476 or 84.76 percent.

The mean of the data is \$1459.30 per FH with a standard deviation of \$401.01 for a CV of .2748 or 27.48 percent.

The regression equation slope is \$1975.13 per FH and explains 84.76 percent of the fuel costs.

b. AVDLRs

The F- and T-statistic significances do not approach zero and show almost no correlation with FH. The ${\mbox{R}}^2$ value is only .0004 or .04 percent!

The mean value is \$836.14 with a standard deviation of \$723.49 for a CV of .8653 or 86.53 percent.

The regression equation slope is \$8.03 per FH and explains a mere .04 percent of the AVDLR costs.

c. Other Maintenance

Again the F- and T-statistic significance do not approach zero and are instead in the 66 percent confidence interval, meaning the FH does not predict the Other Maintenance data well at all. The R^2 value is .4374 but the regression equation shows this value is meaningless.

The mean is \$945.40 with a standard deviation of \$1567.09 and an expected error by using the mean of 1.6576 or 165.76 percent.

The meaningless regression equation has a slope of -\$5544.93, which means that for every hour you fly, you save over \$5000, which is counterintuitive. A nice situation to have, but not possible.

d. Total Costs

As with Other Maintenance, the F- and T-statistic significances do not approach zero and are in the 31 percent confidence interval. The R^2 value is .0971 or 9.71 percent but this too is meaningless when the regression equation is revealed.

The mean of the data is \$3240.84 per FH with a standard deviation of \$2093.17 for a CV of .6459 or 64.59 percent. This is well beyond the regression equation.

The slope of the equation is -\$3489.45 per FH and again is counterintuitive and is disregarded.

e. Discussion

One possible reason for the meaningless regression results is because only one squadron, VFA 115, flies the Super Hornet and there is only 3 months worth of data available. Once there is more data available, a better analysis can be accomplished. In the interim, the mean data

used is just as effective, if not more, than the regression.

6. HH-60H Seahawk

Table 3.17 shows the regression statistics for all four squadrons flying the HH-60H Seahawk.

Table 3.17. HH-60H T/M/S

Fuel

HH-60 T/M/S REGRESSION

SUMMARY OUTPUT

HH-60H HS 2 T/M/S	Fuel as Y
Regression Sta	atistics
Multiple R	0.905416573
R Square	0.819779171
Adjusted R Square	0.814478559
Standard Error	4.078861397
Observations	36

	df		SS	MS	F	Significance F
Regression		1	2573.052873	2573.052873	154.6574391	3.32835E-14
Residual		34	565.6617502	16.6371103		
Total		35	3138.714624			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.036017207	1.308680237	0.79165038	0.434053056	-1.623539272
X Variable 1	0.123153905	0.009902909	12.43613441	3.32835E-14	0.103028786

HH-60H HS 4 T/M/S	Fuel as Y
Regression Sta	atistics
Multiple R	0.853562125
R Square	0.728568301
Adjusted R Square	0.720585015
Standard Error	2.836263829
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	734.1450518	734.1450518	91.26171441	3.71204E-11
Residual	34	273.5093453	8.04439251		
Total	35	1007.654397			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.283135826	0.763281265	1.681078634	0.10191313	-0.268037314
X Variable 1	0.100723869	0.01054358	9.553099728	3.71204E-11	0.079296751

SUMMARY OUTPUT HH-60H HS 6 T/M/S

CONTINUATE COLL OL	
HH-60H HS 6 T/M/S	Fuel as Y
Regression S	tatistics
Multiple R	0.881975189
R Square	0.777880235
Adjusted R Square	0.7713473
Standard Error	3.863882074
Observations	36

	df	SS	MS	F	Significance F
Regression	1	1777.67422	1777.67422	119.0705742	1.19166E-12
Residual	34	507.6058791	14.92958468		
Total	35	2285.280099			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.096115315	0.990190819	-0.097067468	0.923242762	-2.108423848
X Variable 1	0.135242101	0.012393948	10.9119464	1.19166E-12	0.110054584

SUMMARY	OUTPUT
----------------	--------

HH-60H HS 8 T/M/S	Fuel as Y
Regression Sta	atistics
Multiple R	0.852827789
R Square	0.727315237
Adjusted R Square	0.719295097
Standard Error	3.90907311
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1385.760948	1385.760948	90.68610149	4.01757E-11
Residual		34	519.5489877	15.28085258		
Total		35	1905.309935			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	1.392031783	1.122548909	1.24006337	0.223442297	-0.889260574
X Variable 1	0.094542527	0.009927887	9.522925049	4.01757E-11	0.074366646

SUMMARY OUTPUT		\$	0.124516
HH-60H T/M/S	Fuel as Y	\$	0.101971
Regression	on Statistics	(0.818937114
Multiple D	U 883083448		

regrees: etc	
Multiple R	0.883983448
R Square	0.781426736
Adjusted R Square	0.779887487
Standard Error	3.857494057
Observations	144

	df	SS	MS	F	Significance F
Regression	1	7554.228263	7554.228263	507.6677464	9.75298E-49
Residual	142	2112.996977	14.8802604		
Total	143	9667.22524			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	0.767152317	0.522214479	1.469036855	0.144034708	-0.265166212
X Variable 1	0.115001767	0.005104048	22.53148345	9.75298E-49	0.104912037

AVDLR

SUMMARY OUTPUT

SOMMAN OUTFUT	
HH-60H HS 2 T/M/S	AVDLR as Y
Regression S	tatistics
Multiple R	0.329435951
R Square	0.108528046
Adjusted R Square	0.082308282
Standard Error	93.78989862

36

ANOVA

Observations

	df	SS	MS	F	Significance F
Regression	1	36410.39136	36410.39136	4.139169528	0.049760776
Residual	34	299082.5328	8796.545083		
Total	35	335492.9242			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	70.35235498	30.09197294	2.337911015	0.025413572	9.198148393
X Variable 1	0.463272485	0.227708845	2.034494907	0.049760776	0.00051274

SUMMARY OUTPUT

HH-60H HS 4 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.333068303				
R Square	0.110934495				
Adjusted R Square	0.084785509				
Standard Error	98.11150766				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	40836.79643	40836.79643	4.242401485	0.047148245
Residual	34	327279.5098	9625.867936		
Total	35	368116.3063			
					_

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	68.38632675	26.40328268	2.590069105	0.014028559	14.72843576
X Variable 1	0.751220264	0.364721538	2.059709078	0.047148245	0.010017407

HH-60H HS 6 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.413516248				
R Square	0.170995688				
Adjusted R Square	0.146613208				
Standard Error	124.3147966				
Observations	36				

<u>ANOV</u>A

	df	SS	MS	F	Significance F
Regression	1	108380.9447	108380.9447	7.01305565	0.012180423
Residual	34	525441.734	15454.16865		
Total	35	633822.6787			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	56.57983116	31.85795215	1.776003394	0.084683354	-8.163274639
X Variable 1	1 055006030	0 3087573	2 6/8217//8	0.012180423	0.245624238

SUMMARY OUTPUT

HH-60H HS 8 T/M/S AVDLR as Y

Regression Statistics				
Multiple R	0.481361281			
R Square	0.231708683			
Adjusted R Square	0.20911188			
Standard Error	113.6474861			
Observations	36			

	df	SS	MS	F	Significance F
Regression	1	132438.7179	132438.7179	10.25404693	0.002956672
Residual	34	439135.5373	12915.7511		
Total	35	571574.2552			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	75.79910197	32.63557828	2.322591048	0.026321224	9.475670793
X Variable 1	0.924252281	0.288630938	3.202194081	0.002956672	0.337684028

SUMMARY OUTPUT HH-60H T/M/S	AVDLR as Y	\$ \$	1.597755 1.452376
Regression S	tatistics		0.909010736
Multiple R	0.383594353		
R Square	0.147144628		
Adjusted R Square	0.141138604		

108.5294861

144

ANOVA

Standard Error

Observations

	df	SS	MS	F	Significance F
Regression	1	288571.1153	288571.1153	24.49950811	2.07633E-06
Residual	142	1672568.208	11778.64935		
Total	143	1961139.323			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	71.51839047	14.69235422	4.86772844	2.9675E-06	42.4744055
X Variable 1	0.710781132	0.143600915	4.94969778	2.07633E-06	0.426909482

Other Maintenance

SUMMARY OUTPUT

HH-60H HS 2 T/M/S Mai	int as	Y
-----------------------	--------	---

Regression Statistics					
Multiple R	0.071888685				
R Square	0.005167983				
Adjusted R Square	-0.024091782				
Standard Error	323.1448361				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	18443.55715	18443.55715	0.176624215	0.676934818
Residual	34	3550367.894	104422.5851		
Total	35	3568811.451			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	121.3885788	103.6792427	1.170808887	0.249816338	-89.31285452
X Variable 1	-0.329720672	0.784550771	-0.420266838	0.676934818	-1.92411862

HH-60H HS 4 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.03176326				
R Square	0.001008905				
Adjusted R Square	-0.028373186				
Standard Error	94.20778454				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	304.748116	304.748116	0.034337403	0.854091978
Residual	34	301753.6267	8875.106669		
Total	35	302058.3748			
10141		002000.07.10			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	31.5848473	25.35273206	1.245816318	0.221348588	-19.93806937
X Variable 1	0.06489511	0.350209766	0.185303543	0.854091978	-0.646816295

SUMMARY OUTPUT

HH-60H HS 6 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.421975862				
R Square	0.178063628				
Adjusted R Square	0.153889029				
Standard Error	97.08763184				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	69429.45431	69429.45431	7.365732389	0.010362902
Residual	34	320484.2807	9426.008256		
Total	35	389913.735			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-12.22774078	24.88049062	-0.49145899	0.626259658	-62.790948
X Variable 1	0.845196517	0.311422316	2.713988281	0.010362902	0.21231064

HH-60H HS 8 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.344367921				
R Square	0.118589265				
Adjusted R Square	0.09266542				
Standard Error	89.14119396				
Observations	36				

ANOVA

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	36349.86908	36349.86908	4.574524496	0.039717988
Residual	34	270169.1837	7946.152461		
Total	35	306519.0528			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.396871939	25.59822934	0.328025498	0.744903941	-43.6249549

0.024126762

 SUMMARY OUTPUT
 \$ 0.655687

 HH-60H T/M/S
 Maint as Y
 \$ 2.229315

 Regression Statistics
 3.399966439

Regression Statistics						
Multiple R	0.103025936					
R Square	0.010614343					
Adjusted R Square	0.003646839					
Standard Error	179.4259699					
Observations	144					

	df	SS	MS	F	Significance F
Regression	1	49044.06662	49044.06662	1.523406726	0.219143417
Residual	142	4571502.371	32193.67867		
Total	143	4620546.438			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	29.24228805	24.29008005	1.203877797	0.230639808	-18.77457226
X Variable 1	0.293023667	0.23740768	1.234263637	0.219143417	-0.176286084

Total Costs

SUMMARY OUTPUT

HH-60H HS 2 T/M/S Total as Y

Regression Statistics					
Multiple R	0.060398666				
R Square	0.003647999				
Adjusted R Square	-0.025656472				
Standard Error	299.6755445				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	11179.52674	11179.52674	0.124486086	0.726397029
Residual	34	3053384.687	89805.43197		
Total	35	3064564.214			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	192.7769509	96.14924963	2.004976135	0.052979667	-2.621705279
X Variable 1	0.256705718	0.727570591	0.352825858	0.726397029	-1.221894649

SUMMARY OUTPUT

HH-60H HS 4 T/M/S Total as Y

Regression Statistics						
Multiple R	0.229161637					
R Square	0.052515056					
Adjusted R Square	0.024647851					
Standard Error	179.662119					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	60827.98983	60827.98983	1.884475214	0.178813931
Residual	34	1097468.218	32278.47699		
Total	35	1158296.208			
		•			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	101.2543099	48.34977901	2.094204192	0.043769606	2.995801531
X Variable 1	0.916839243	0.667879294	1.372761893	0.178813931	-0.440453892

HH-60H HS 6 T/M/S Total as Y

Regression Statistics						
Multiple R	0.495460558					
R Square	0.245481165					
Adjusted R Square	0.223289434					
Standard Error	190.8847148					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	403059.6406	403059.6406	11.06183068	0.002122497	
Residual	34	1238857.128	36436.97434			
Total	35	1641916.768				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	
Intercept	Coefficients 44.25597506	Standard Error 48.91771759	t Stat 0.90470237	<i>P-value</i> 0.371989365	Lower 95% -55.15672259	

SUMMARY OUTPUT

HH-60H HS 8 T/M/S Total as Y

Regression Statistics						
Multiple R	0.568740249					
R Square	0.32346547					
Adjusted R Square	0.303567396					
Standard Error	146.7807546					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	350231.4227	350231.4227	16.25611925	0.000295507
Residual	34	732516.0569	21544.58991		
Total	35	1082747.48			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	85.58800569	42.15029271	2.030543567	0.050181481	-0.071638942
X Variable 1	1.503005609	0.372779622	4.031887802	0.000295507	0.745426768

SUMMARY OUTPUT HH-60H T/M/S	Total as Y	Mean St Dev	\$ \$	0.124516 0.101971	\$ \$	1.597755 1.452376	\$ \$		\$ \$	
Regression	Statistics	CV	0.	818937114	0.	909010736		3.399966439	1	.161377435
Multiple R	0.317535894	•								
R Square	0.100829044									
Adjusted R Square	0.094496854									
Standard Error	211.8993788									
Observations	144									
		•								

	df	SS	SS MS		Significance F		
Regression	1	714975.3834	714975.3834	15.92325031	0.000105285		
Residual	142	6375991.237	44901.34674				
Total	143	7090966.621					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	101.5278308	28.68622016	3.539254398	0.000542845	44.82063913
X Variable 1	1.118806565	0.280374909	3.990394756	0.000105285	0.56455879

a. Fuel

The F- and T-statistic significances approach zero as the \mbox{R}^2 value equates to .7814 or 78.14 percent.

The mean of the data for the four squadrons is \$124.52 per FH with a standard deviation of \$101.97 for a CV of .8189 or 81.89 percent.

The regression slope is \$115.00 per FH and explains over three-quarters of the fuel costs.

b. AVDLRs

The F- and T-statistic significances approach zero but the \mbox{R}^2 value explains only .1471 or 14.71 percent.

The mean of the data is \$1597.75. It has a standard deviation of \$1452.38 and a CV of .9090 or 90.90 percent.

The regression equation slope is \$710.78 but is not preferred to the mean because it explains only 14.71 percent of the costs.

c. Other Maintenance

The F- and T-statistic significances do not approach zero and are instead in the 78 percent confidence interval vice the desired 95 percent. The R^2 value is only .0106 or 1.06 percent

The mean of the four squadrons is \$655.69 and has a standard deviation of \$2229.32 for a standard error using the mean of 3.399 or 339.9 percent.

The regression slope is \$293.02 but explains barely over 1 percent of the Other Maintenance costs.

d. Total Costs

Because of the poor correlation between FH and both AVDLR and Other Maintenance, the total costs prediction suffers as well. The F- and T-statistic significances approach zero but the $\rm R^2$ value is only .1008 or 10.08 percent.

The mean of the data is \$2377.96 with a standard deviation of \$2761.71 for a CV of 1.1613 or 161.3 percent.

The slope of the regression equation is \$1118.80 but describes only ten percent of the total costs.

e. Discussion

Closer scrutiny of the data "by squadron" reveals interesting differences, specifically with AVDLR and Other Maintenance costs, which compound the problem. Additionally, these differences are confined to the same two squadrons.

The AVDLR R^2 values of HS 2 and HS 4 were in the 10 to 11 percent range while HS 6 and HS 8 had R^2 values of 17 and 23 percent respectively.

The Other Maintenance costs showed similar, but much more pronounced, differences. HS 2 and HS 4 had $\rm R^2$ values each of less than one percent, while HS 6 and HS 8 had values of nearly 18 and nearly 12 percent respectively.

Further scrutiny of this discrepancy could lead to FH as a more viable predictor of costs.

7. S-3B Viking

Table 3.18 shows the regression statistics for all four squadrons flying the S-3B Viking.

Table 3.18. S-3B T/M/S

Fuel

S-3B T/M/S REGRESSION

SUMMARY OUTPUT S-3B VS 29 T/M/S

Regression S	Statistics
Multiple R	0.949914846
R Square	0.902338215
Adjusted R Square	0.899465809
Standard Error	21.31073711
Observations	36

Fuel as Y

	df		SS	MS	F	Significance F
Regression		1	142666.0217	142666.0217	314.1402664	9.53555E-19
Residual		34	15441.01555	454.1475163		
Total		35	158107.0373			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-26.82566791	8.397008141	-3.194669752	0.003016384	-43.89043039
X Variable 1	0.517588822	0.029202705	17.72400255	9.53555E-19	0.458241824

S-3B VS 33 T/M/S	Fuel as Y
Regression S	Statistics
Multiple R	0.785013357
R Square	0.616245971
Adjusted R Square	0.604959087
Standard Error	28.84356625
Observations	36

ANOVA

7 11 10 17 1						
	df		SS	MS	F	Significance F
Regression		1	45423.2258	45423.2258	54.59841826	1.44478E-08
Residual		34	28286.34467	831.9513137		
Total		35	73709.57046			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	20.71030874	10.48542164	1.975152689	0.05641484	-0.598617808
X Variable 1	0.283730286	0.038398624	7.389074249	1.44478E-08	0.205694944

SUMMARY OUTPUT S-3B VS 35 T/M/S

S-3B VS 35 1/M/S	Fuel as Y						
Regression Statistics							
Multiple R	0.924986844						
R Square	0.855600662						
Adjusted R Square	0.851353623						
Standard Error	23.8224281						
Observations	36						

	df		SS	MS	F	Significance F
Regression		1	114329.1243	114329.1243	201.4581435	7.54165E-16
Residual		34	19295.27474	567.5080805		
Total		35	133624.399			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.925597763	7.091034491	1.258715886	0.216707406	-5.485108676
X Variable 1	0.351309151	0.024751245	14.19359516	7.54165E-16	0.301008602

S-3B VS 38 T/M/S	Fuel as Y
Regression St	tatistics
Multiple R	0.667517426
R Square	0.445579514
Adjusted R Square	0.429273029
Standard Error	64.4566494
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1 11	3527.3017	113527.3017	27.32529526	8.70691E-06
Residual	3	34 14	1258.4281	4154.659651		
Total	3	5 25	4785.7298			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	32.84294029	23.08866304	1.422470423	0.164000069	-14.07883757
X Variable 1	0.324212761	0.062022272	5.227360257	8.70691E-06	0.198168422

SUMMARY OUTPUT

0.401443 S-3B T/M/S Fuel as Y 0.257264 0.640846666

Regression Statistics					
Multiple R	0.813215717				
R Square	0.661319803				
Adjusted R Square	0.658934731				
Standard Error	40.19463805				
Observations	144				

	df	SS	MS	F	Significance F
Regression	1	447967.2997	447967.2997	277.2745878	3.37575E-35
Residual	142	229416.4678	1615.608928		
Total	143	677383.7675			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	8.802851654	6.802827376	1.293998975	0.197766413	-4.645041937
X Variable 1	0.368538933	0.022132391	16.65156412	3.37575E-35	0.324787412

AVDLR

SUMMARY OUTPUT S-3B VS 29 T/M/S **AVDLR as Y**

S-3B VS 29 1/W/S	AVULR as Y
Regression	Statistics
Multiple R	0.669540234
R Square	0.448284124
Adjusted R Square	0.432057187
Standard Error	370.9468169
Observations	36

ANOVA

Dannasian				<u>-</u>	Significance F
Regression	1	3801369.557	3801369.557	27.62592287	7.99074E-06
Residual	34	4678452.392	137601.5409		
Total	35	8479821.949			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-34.51474583	146.1631019	-0.23613857	0.814741927	-331.553712
X Variable 1	2.671742871	0.508318905	5.256036802	7.99074E-06	1.638715246

SUMMARY OUTPUT S-3B VS 33 T/M/S **AVDLR as Y**

S-3B VS 33 1/M/S	AVDLR as Y				
Regression Statistics					
Multiple R	0.452074252				
R Square	0.204371129				
Adjusted R Square	0.18097028				
Standard Error	388.8111872				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	1320278.14	1320278.14	8.733492022	0.005639971
Residual	34	5139920.736	151174.1393		
Total	35	6460198.876			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	272.3229518	141.3434525	1.926675392	0.06241203	-14.9213147
X Variable 1	1.529675903	0.517613341	2.955248217	0.005639971	0.477759724

S-3B VS 35 T/M/S	AVDLR as Y
Regression S	Statistics
Multiple R	0.448758779
R Square	0.201384442
Adjusted R Square	0.177895749
Standard Error	834.5916673
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5971936.139	5971936.139	8.573675976	0.00604689
Residual	34	23682470.54	696543.2512		
Total	35	29654406.68			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coerricients	Standard Error	t Stat	P-value	Lower 95%
Intercept	53.84424932	248.4263264	0.216741318	0.829705238	-451.0184568
X Variable 1	2.539034495	0.86713171	2.928084011	0.00604689	0.776811997

SUMMARY OUTPUT

S-3B VS 38 T/M/S	AVDLR as Y
Regression S	Statistics
Multiple R	0.357662055
R Square	0.127922146
Adjusted R Square	0.102272797
Standard Error	623.1496673
Observations	36

526.9985031

1.339081505

ANOVA

Intercept

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	1936663.333	1936663.333	4.98734481	0.032221823
Residual	34	13202727.27	388315.5078		
Total	35	15139390.6			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

223.2150263 2.360945461

 $0.599614759 \quad 2.233236398 \quad 0.032221823$

0.024102033

73.37128961

0.120518504

SUMMARY OUTPUT		\$	2.737965
S-3B T/M/S	AVDLR as Y	\$	2.469341
Regression Statistics			.901889318

Regression S	tatistics
Multiple R	0.473280225
R Square	0.223994172
Adjusted R Square	0.218529342
Standard Error	583.994217
Observations	144

	df	SS	MS	F	Significance F
Regression	1	13979034.35	13979034.35	40.98831631	2.09139E-09
Residual	142	48428992.85	341049.2454		
Total	143	62408027.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	181.7158137	98.8393487	1.838496673	0.068078574	-13.67074698
X Variable 1	2.058727204	0.321564993	6.402211829	2.09139E-09	1.42305448

Other Maintenance

SUMMARY OUTPUT

S-3B VS 29 T/M/S	Maint as Y
Regression S	Statistics
Multiple R	0.363714761
R Square	0.132288427
Adjusted R Square	0.106767499
Standard Error	114.8940417
Observations	36

	df	SS	MS	F	Significance F
Regression	1	68425.88063	68425.88063	5.183527194	0.029215322
Residual	34	448821.7876	13200.64081		
Total	35	517247.6682			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	71.21184792	45.27136711	1.572999723	0.124979587	-20.79057886
X Variable 1	0.358455139	0.157442552	2.276736084	0.029215322	0.038493588

S-3B VS 33 T/M/S	Maint as Y
Regression	Statistics
Multiple R	0.49158261
R Square	0.241653463
Adjusted R Square	0.219349153
Standard Error	73.35782922
Observations	36

ANOVA

Residual 34 182966.6177 5381.371108	nce F	Significand	F	MS	SS		df	
	328345	0.00232	10.83438418	58303.84199	58303.84199	1		Regression
				5381.371108	182966.6177	34		Residual
Total 35 241270.4597					241270.4597	35		Total

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	110.7301304	26.6675682	4.152239514	0.000208866	56.53514699
X Variable 1	0.321451381	0.097659204	3.291562574	0.002328345	0.12298413

SUMMARY OUTPUT S-3B VS 35 T/M/S	Maint as Y
Regression S	Statistics
Multiple R	0.476343175
R Square	0.226902821
Adjusted R Square	0.204164668
Standard Error	73.15051784
Observations	36

	df	SS	MS	F	Significance F
Regression	1	53397.32891	53397.32891	9.978947164	0.003315881
Residual	34	181933.9408	5350.99826		
Total	35	235331.2697			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	168.2364485	21.77413834	7.726434262	5.49546E-09	123.9861045
X Variable 1	0.240088186	0.076002596	3.158947161	0.003315881	0.085632428

SUMMARY OUTPUT S-3B VS 38 T/M/S	Maint as Y
Regression S	Statistics
Multiple R	0.188699246
R Square	0.035607405
Adjusted R Square	0.007242917
Standard Error	465.7984373
Observations	36

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	272371.3566	272371.3566	1.255351597	0.270384924
Residual	34	7376918.263	216968.1842		
Total	35	7649289.619			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-13.31843058	166.8511048	-0.07982225	0.936846617	-352.4004494

 $0.502181447 \quad 0.448206318 \quad 1.12042474 \quad 0.270384924 \quad -0.408682783$

SUMMARY OUTPU	Т	\$	0.682852
S-3B T/M/S	Maint as Y	\$	0.924884
Pegression	Statistics	_ 4	354441594

Regression Statistics						
Multiple R	0.190164334					
R Square	0.036162474					
Adjusted R Square	0.029374886					
Standard Error	243.7720722					
Observations	144					

	df	SS	MS	F	Significance F
Regression	1	316599.7333	316599.7333	5.327735384	0.02243289
Residual	142	8438324.894	59424.8232		
Total	143	8754924.627			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	99.79586403	41.25772508	2.418840686	0.016836063	18.23720232
X Variable 1	0.309824309	0.134228324	2.308188767	0.02243289	0.044480487

Total Costs

SUMMARY OUTPUT S-3R V/S 20 T/M/S

S-3B VS 29 T/M/S	Total as Y
Regression S	Statistics
Multiple R	0.747292076
R Square	0.558445446
Adjusted R Square	0.545458548
Standard Error	394.8164624
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	6702947.359	6702947.359	43.00067797	1.6412E-07
Residual	34	5299921.325	155880.039		
Total	35	12002868.68			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	9.871434172	155.5683894	0.063453985	0.949776594	-306.2813632
X Variable 1	3.547786831	0.541028154	6.557490219	1.6412E-07	2.448286058

SUMMARY OUTPUT S-3B VS 33 T/M/S	Total as Y
Regression S	tatistics
Multiple R	0.538720022
R Square	0.290219262
Adjusted R Square	0.269343358
Standard Error	430.0923585
Observations	36

<u>ANOV</u>A

	df	SS	MS	F	Significance F
Regression	1	2571605.781	2571605.781	13.90211704	0.00069974
Residual	34	6289300.853	184979.4368		
Total	35	8860906.634			

	Coefficients	Coefficients Standard Error t Sta		P-value	Lower 95%
Intercept	403.763391	156.3502822	2.582428284	0.014289765	86.02159723
X Variable 1	2.13485757	0.572569797	3.728554283	0.00069974	0.971256508

S-3B VS 35 T/M/S	Total as Y						
Regression Statistics							
Multiple R	0.523391768						
R Square	0.273938942						
Adjusted R Square	0.252584205						
Standard Error	841.2274842						
Observations	36						

ANOVA

X Variable 1

	df	SS	MS	F	Significance F
Regression	1	9077922.163	9077922.163	12.82801763	0.001054401
Residual	34	24060565.12	707663.6801		
Total	35	33138487.29			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	231.0062956	250.4015578	0.922543365	0.362745921	-277.8705609

0.874026252 3.581622206

0.001054401

1.354197948

SUMMARY OUTPUT

S-3B	VS 38	T/M/S	Total as	s Y

3.130431831

Regression Statistics						
Multiple R	0.407317247					
R Square	0.165907339					
Adjusted R Square	0.141375202					
Standard Error	865.3828068					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	5064618.546	5064618.546	6.76285718	0.013677437
Residual	34	25462171.68	748887.4022		
Total	35	30526790.22			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	546.5230128	309.9840314	1.76306828	0.086875959	-83.43991884
X Variable 1	2.165475712	0.832699318	2.6005494	0.013677437	0.473228207

SUMMARY OUTPUT S-3B T/M/S	Total as Y	Mean St Dev		0.401443 0.257264	\$ \$	2.737965 2.469341	\$ \$	0.682852 0.924884	\$ \$	
Regression	Statistics	CV	0.	640846666	0	.901889318		1.354441594	0.	.764053811
Multiple R	0.532041605	•								
R Square	0.283068269									
Adjusted R Square	0.278019454									
Standard Error	663.862391									
Observations	144									

	df	SS	MS	F	Significance F
Regression	1	24709153.24	24709153.24	56.06627865	6.77137E-12
Residual	142	62581284.94	440713.2742		
Total	143	87290438.17			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	290.3145294	112.3568084	2.583862371	0.01077954	68.20652629
X Variable 1	2.737090446	0.365542841	7.487741892	6.77137E-12	2.014481895

a. Fuel

The F- and T-statistic significances approach zero while the ${\mbox{R}}^2$ value for the four squadrons is .6613 or 66.13 percent.

The mean of the data is \$401.44 per FH with a standard deviation of \$257.26 and a CV of .6408 or 64.08 percent

The slope of the regression equation is \$368.54 per FH and explains nearly two-thirds of the data.

b. AVDLRs

The F- and T-statistic significances approach zero and the \mbox{R}^2 value is an impressive, for AVDLRs, .2240 or 22.40 percent.

The mean is \$2737.96 with a standard deviation of \$2469.34 and a CV of .9019 or 90.19 percent.

The slope of the regression line is \$2058.73 per FH though it describes just over 22 percent of the AVDLR costs.

c. Other Maintenance

The F- and T-statistic significances approach zero but are close to being outside our 95 percent confidence interval. The R^2 value is .0362 or 3.62 percent.

The mean of the data is \$682.85 and has a standard deviation of \$924.88 for a CV of 1.354 or 135.4 percent.

The regression slope is \$309.82 but captures less than four percent of the data.

d. Total Costs

The F- and T-statistic significances approach zero while the \mathbb{R}^2 value is .2830 or 28.30 percent.

The mean for all the costs across all four squadrons is \$3822.26 with a standard deviation of \$2920.41 and a CV of .7640 or 76.40 percent.

The regression slope is \$2737.09 and captures just over one-quarter of the total costs.

e. Discussion

A surprising finding, after analyzing the four squadrons, is how one squadron in particular did better in the regression statistics and correlation between FH and costs than the other three in nearly every category.

VS 29 R^2 values were better than the other three squadrons in everything except Other Maintenance, and in the case of AVDLRs, FH were twice as good a predictor of costs as their nearest squadron.

8. SH-60F Seahawk

Table 3.19 shows the regression statistics for all four squadrons flying the SH-60 Seahawk.

Table 3.19. SH-60F T/M/S

Fuel

SH-60F T/M/S REGRESSION

SUMMARY OUTPUT

SH-60F HS 2 T/M/S	Fuel as Y
Regression St	atistics
Multiple R	0.864707785
R Square	0.747719554
Adjusted R Square	0.74029954
Standard Error	5.502936828
Observations	36

ANOVA

	df		SS	MS	F	Significance F
Regression		1	3051.568468	3051.568468	100.770651	1.05724E-11
Residual		34	1029.598667	30.28231373		
Total		35	4081.167135			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-0.544997841	2.270213738	-0.240064551	0.811721746	-5.158624213
X Variable 1	0.128303945	0.01278124	10.0384586	1.05724E-11	0.102329358

SUMMARY OUTPUT

SH-60F HS 4 T/M/S	Fuel as Y
Regression Stat	tistics
Multiple R	0.525624909
R Square	0.276281545
Adjusted R Square	0.254995708
Standard Error	38.28463945
Observations	36

	df	SS	MS	F	Significance F
Regression		1 19024.36	5933 19024.36933	12.97959513	0.000994448
Residual	3	4 49834.26	6301 1465.713618		
Total	3	5 68858.63	3235		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-19.50725575	14.18226873	-1.375467926	0.177981575	-48.32907456
X Variable 1	0.284095965	0.078855954	3.602720517	0.000994448	0.12384149

SH-60F HS 6 T/M/S	Fuel as Y
Regression Sta	atistics
Multiple R	0.888367751
R Square	0.789197261
Adjusted R Square	0.78299718
Standard Error	5.113655624
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3328.520159	3328.520159	127.2882269	4.86567E-13
Residual	34	889.0821106	26.14947384		
Total	35	4217.602269			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	0.740244942	1.91039208	0.387483255	0.700813626	-3.142136323
X Variable 1	0.129523756	0.011480355	11.28220842	4.86567E-13	0.106192883

SUMMARY OUTPUT SH-60F HS 8 T/M/S

SH-60F HS 8 T/M/S	Fuel as Y
Regression S	tatistics
Multiple R	0.77162448
R Square	0.595404339
Adjusted R Square	0.583504466
Standard Error	5.737814847
Observations	36

	df		SS	MS	F	Significance F
Regression		1	1647.262267	1647.262267	50.03451455	3.60662E-08
Residual		34	1119.365653	32.92251921		
Total		35	2766.62792			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	2.42866771	2.150782827	1.12920174	0.266717065	-1.942246008
X Variable 1	0.106389532	0.015040562	7.073507938	3.60662E-08	0.075823453

SUMMARY OUTPUT SH-60F T/M/S	Fuel as Y	\$ \$	0.126034 0.069638
Regression Statis	tics		0.552536033
Multiple R	0.540326242		
R Square	0.291952448		
Adjusted R Square	0.286966197		
Standard Error	20.19355205		
Observations	144		

	df	SS	MS	F	Significance F
Regression	1	23876.10474	23876.10474	58.55150183	2.7528E-12
Residual	142	57904.6953	407.7795444		
Total	143	81780.80004			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-5.420907635	3.79744392	-1.427514862	0.155626967	-12.92773075
X Variable 1	0.173625757	0.022690556	7.651895309	2.7528E-12	0.128770852

AVDLR

SUMMARY OUTPUT

SH-60F HS 2 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.248105278					
R Square	0.061556229					
Adjusted R Square	0.033954941					
Standard Error	193.837752					
Observations	36					

	df	SS	MS	F	Significance F
Regression	1	83795.24894	83795.24894	2.230194121	0.144559697
Residual	34	1277484.519	37573.07408		
Total	35	1361279.768			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	462.0102113	79.96695969	5.777513777	1.67541E-06	299.4979034
X Variable 1	-0.672338761	0.450211741	-1.493383448	0.144559697	-1.587278498

SH-60F HS 4 T/M/S AVDLR as Y

Regression Statistics						
Multiple R	0.351833177					
R Square	0.123786584					
Adjusted R Square	0.098015601					
Standard Error	197.4200465					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	187208.2992	187208.2992	4.803331915	0.035351897
Residual	34	1325138.942	38974.67477		
Total	35	1512347.241			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	103.3593646	73.13283321	1.413310001	0.166655002	-45.26433649
X Variable 1	0.891194463	0.406631652	2.1916505	0.035351897	0.064820064

SUMMARY OUTPUT

SH-60F HS 6 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.375254455				
R Square	0.140815906				
Adjusted R Square	0.115545786				
Standard Error	127.9371939				
Observations	36				

	df	SS	MS	F	Significance F
Regression	1	91209.07379	91209.07379	5.572427201	0.024121303
Residual	34	556509.4701	16367.92559		
Total	35	647718.5439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	114.0161298	47.79559283	2.385494624	0.022771984	16.88386249
X Variable 1	0.678020549	0.287223953	2.360598907	0.024121303	0.094311632

SH-60F HS 8 T/M/S AVDLR as Y

Regression Statistics					
Multiple R	0.295250724				
R Square	0.08717299				
Adjusted R Square	0.060325137				
Standard Error	172.2772984				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	96367.03215	96367.03215	3.246925909	0.08043033
Residual	34	1009101.897	29679.46755		
Total	35	1105468.929			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	115.6977108	64.57703234	1.791623222	0.082098165	-15.53852238
X Variable 1	0.813732695	0.45159131	1.801922837	0.08043033	-0.104010663

 SUMMARY OUTPUT
 \$ 1.723861

 SH-60F T/M/S
 AVDLR as Y
 \$ 1.256924

 Regression Statistics
 0.729133173

Regression Statistics					
Multiple R	0.203661643				
R Square	0.041478065				
Adjusted R Square	0.03472791				
Standard Error	185.0614443				
Observations	144				

	df	SS	MS	F	Significance F
Regression	1	210444.0586	210444.0586	6.144757868	0.01435093
Residual	142	4863178.819	34247.73816		
Total	143	5073622.878			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	181.212432	34.80123035	5.207069697	6.60308E-07	112.4170302
X Variable 1	0.515466861	0.207944943	2.478862212	0.01435093	0.104399328

Other Maintenance

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.018920292					
R Square	0.000357977					
Adjusted R Square	-0.029043259					
Standard Error	305.0755677					
Observations	36					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1133.195703	1133.195703	0.012175591	0.912786072
Residual	34	3164417.469	93071.10203		
Total	35	3165550.665			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	134.6313463	125.8576587	1.069711194	0.29228502	-121.1420214
X Variable 1	0.078186345	0.708575089	0.110343062	0.912786072	-1.361810543

SUMMARY OUTPUT

SH-60F HS 4 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.460639738				
R Square	0.212188969				
Adjusted R Square	0.189018056				
Standard Error	100.0014103				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	91578.15937	91578.15937	9.157557639	0.004696096
Residual	34	340009.59	10000.28206		
Total	35	431587.7494			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-11.79952853	37.04480162	-0.318520494	0.752038602	-87.08357374
X Variable 1	0.623312571	0.205975732	3.026145674	0.004696096	0.204719795

SUMMARY OUTPUT

SH-60F HS 6 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.022321968				
R Square	0.00049827				
Adjusted R Square	-0.028898839				
Standard Error	53.48700306				
Observations	36				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	48.49052235	48.49052235	0.016949634	0.897182731
Residual	34	97269.22288	2860.859497		
Total	35	97317.71341			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	74.70331668	19.98201572	3.738527571	0.000680404	34.09500164
X Variable 1	0.015633358	0.120080392	0.130190761	0.897182731	-0.2283992

SUMMARY OUTPUT

SH-60F HS 8 T/M/S Maint as Y

Regression Statistics					
Multiple R	0.166343363				
R Square	0.027670114				
Adjusted R Square	-0.000927824				
Standard Error	50.72413869				
Observations	36				

<u>ANO</u>VA

	df	SS	MS	F	Significance F
Regression	1	2489.462552	2489.462552	0.967556278	0.33223869
Residual	34	87479.90035	2572.938245		
Total	35	89969.3629			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	63.00204547	19.01361569	3.313522609	0.00219473	24.36175477
X Variable 1	0.13078873	0.132963428	0.983644386	0.33223869	-0.13942529

SUMMARY OUTPU SH-60F T/M/S	T Maint as Y	\$ \$	0.625596 1.049545
Regression	Statistics		1.677672452
Multiple R	0.123542647		
R Square	0.015262786		
Adjusted R Square	0.008328016		
Standard Error	164.5236501		
Observations	144		

ANOVA

	df	SS	MS	F	Significance F
Regression	1	59574.23399	59574.23399	2.200907522	0.140145701
Residual	142	3843660.464	27068.03143		
Total	143	3903234.698			
	0 60 - 1 1 -	Otens de set Esses	4.04-4	D	1 0.50/

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	56.9626493	30.9390509	1.841124651	0.06769017	-4.197959566
X Variable 1	0.274259481	0.184867578	1.483545591	0.140145701	-0.091188499

Total Costs

SUMMARY OUTPUT SH-60F HS 2 T/M/S **Total as Y**

SH-60F HS 2 1/M/S	i otai as Y
Regression S	Statistics
Multiple R	0.108270503
R Square	0.011722502
Adjusted R Square	-0.017344483
Standard Error	315.8319517
Observations	36

<u>ANOVA</u>

	df	SS	MS	F	Significance F
Regression	1	40228.37083	40228.37083	0.403292659	0.529644558
Residual	34	3391493.939	99749.82174		
Total	35	3431722.31			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	596.0965598	130.2951602	4.574970848	6.06743E-05	331.3051098
X Variable 1	-0.465848471	0.733558098	-0.635053272	0.529644558	-1.956616909

SUMMARY OUTPUT

SH-60F HS 4 T/M/S Total as Y

Regression St	atistics
Multiple R	0.471195517
R Square	0.222025215
Adjusted R Square	0.199143604
Standard Error	280.3286818
Observations	36

ANOVA

	df	SS	MS	F	Significance F
Regression	1	762519.1672	762519.1672	9.703215914	0.003723204
Residual	34	2671861.774	78584.16983		
Total	35	3434380.941			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	72.0525803	103.8457395	0.69384243	0.492494625	-138.987215
X Variable 1	1.798602999	0.577400912	3.114998542	0.003723204	0.625183937

SUMMARY OUTPUT

SH-60F HS 6 T/M/S Total as Y

Regression Statistics				
Multiple R	0.395905437			
R Square	0.156741115			
Adjusted R Square	0.131939383			
Standard Error	145.8543148			
Observations	36			

<u>ANOV</u>A

	df	SS	MS	F	Significance F
Regression	1	134443.4	134443.4	6.319764927	0.016840042
Residual	34	723298.3587	21273.48114		
Total	35	857741.7587			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	189.4596914	54.4891851	3.477014586	0.001406995	78.72441691
X Variable 1	0.823177662	0.327448583	2.513914264	0.016840042	0.157722516

SUMMARY OUTPUT

SH-60F HS 8 T/M/S Total as Y

Regression Statistics									
Multiple R	0.328288485								
R Square	0.10777333								
Adjusted R Square	0.081531369								
Standard Error	197.8294248								
Observations	36								

ANOVA

	df	SS	MS	F	Significance F
Regression	1	160729.9437	160729.9437	4.106908398	0.05060975
Residual	34	1330640.364	39136.4813		
Total	35	1491370.308			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	181.128424	74.15508182	2.442562526	0.01993381	30.42726513
X Variable 1	1.050910957	0.518571222	2.026550863	0.05060975	-0.002951869

SUMMARY OUTPUT	Γ	mean	\$	0.126034	\$	1.723861	\$ 0.625596	\$	2.475491
SH-60F T/M/S	Total as Y	st dev	\$	0.069638	\$	1.256924	\$ 1.049545	\$	1.643550
Regression	Statistics	cv	0	.552536033	0	.729133173	1.677672452	0.	.663928858
Multiple R	0.267764284	-							
R Square	0.071697712								
Adjusted R Square	0.065160372								
Standard Error	258.8812062								
Observations	144								

ANOVA

	df	SS	MS	F	Significance F
Regression	1	735030.3379	735030.3379	10.9674135	0.001176053
Residual	142	9516766.007	67019.47893		
Total	143	10251796.35			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	232.7541737	48.68320641	4.780995148	4.31196E-06	136.5167501
X Variable 1	0.963352099	0.290892778	3.311708547	0.001176053	0.3883125

a. Fuel

While the F- and T-statistic significances approach zero, the \mbox{R}^2 value is only .2920 or 29.20 percent.

The mean of the four squadrons is \$126.03 per FH, with a standard deviation of \$69.64 and a CV of .5523 or 55.23 percent.

The regression slope is \$173.63 per FH but explains just over 29 percent of the costs.

b. AVDLRs

While the F- and T-statistic significances approach zero, they are nearly outside of the 95 percent confidence interval. This is also apparent in the R^2 value of only .0415 or 4.15 percent.

The mean of the data is \$1723.86 per FH with a standard deviation of \$1256.92 and a CV of .7291 or 72.91 percent.

The slope of the regression equation is \$515.47 per FH but explains only 4.15 percent of the costs.

c. Other Maintenance

The F- and T-statistic significances approach zero, but similar to the AVDLR data, the confidence interval is outside the range. The regression is rather in the 86 percent confidence interval and has an R^2 value of .0153 or 1.53 percent.

The mean is \$625.60 per FH but has a standard deviation of \$1049.55 for an expected error using the mean of 1.677 or 167.7 percent.

The regression equation slope is \$274.26 per FH and is essentially useless, explaining less than two percent of the Other Maintenance costs.

d. Total Costs

Total costs are within the 95 percent confidence interval and have F- and T-statistic significances approaching zero with an \mathbb{R}^2 value of .0717 or 7.17 percent.

The mean of all the data is \$2475.49 with a standard deviation of \$1643.55 and a CV of .6639 or 66.39 percent.

The slope of the equation is \$963.35, and explains barely over seven percent of the costs and is not preferred to the simple mean of \$2475.49 per FH.

e. Discussion

As with the HH-60H analysis, there are squadrons that do better than others as revealed by correlation between FH and costs. They are not, however, always the same squadrons and they are not always the same from cost driver to cost driver within the SH-60F scope. For example, HS 4 had a low R^2 value for fuel of 27.63 percent while the other three squadrons averaged over 71 percent. However in AVDLR costs correlation they are just over 12 percent while the lowest two squadrons were at six and four percent. As for Other Maintenance, HS 4 had an R^2 value of over 21 percent, while the other three had an average R^2 value of less than one percent.

THIS PAGE INTENTIONALLY LEFT BLANK

IV. CONCLUSIONS

A. INTRODUCTION

The purpose of this thesis is to analyze Flying Hours as a predictor of costs at Commander, Naval Air Forces Pacific Fleet (COMNAVAIRPAC). This chapter summarizes each of the findings with respect to costs, provides answers to the primary and secondary research questions, and presents areas for further research to better understand FHP cost relationships.

B. COST SUMMARIES

1. Fuel

The analysis has shown that fuel is the most correlated with FH. Regardless of the mission or the T/M/S of aircraft, the more hours flown the more COMNAVAIRPAC expects to spend on fuel.

While this conclusion is logical, what was not expected was the range of correlation between squadrons flying the same T/M/S. While most T/M/S of aircraft averaged an R^2 value of over 66 percent, there were some squadrons with R^2 values of .2763 and .0237. This shows that using FH as a sole predictor of fuel costs may not always be the optimal solution.

Insight into the wide deviation of fuel costs, or any of the costs for that matter, would provide COMNAVAIRPAC with valuable budget information as well as pointed questions to ask about current methods of predicting future costs.

For example, while the average R^2 value for all the T/M/S of aircraft is 66 percent, further examination shows

that there is quite a difference between fixed wing and rotary aircraft fuel correlation. Since the helicopter squadrons fly a completely different mission than the fixed wing aircraft (constant flight with a relatively benign take-off and landing vice constant cycling of engines during flight coupled with the beating taken during takeoffs and landings), it makes sense that their correlation should be higher. Also, since helicopters do not routinely dump fuel upon a carrier landing as fixed wing aircraft do, and since there is little difference between shipboard and shore based take-offs and landings for helicopters one would expect FH to be a better predictor of costs for helicopters. What may prove a better predictor of Fuel costs is to break down each of the T/M/S of aircraft and find their individual correlation and cost per FH. This would give COMNAVAIRPAC a more accurate prediction of Fuel costs per T/M/S.

2. AVDLRs

Because of AVDLRs wide variability in costs, high dollar value and the possibility for credits from previous submissions giving negative monthly values, using FH as a predictor is much more reckless. As shown by the analysis, there are at times no correlation whatsoever in the amount of hours flown and the cost of AVDLRs.

With R^2 values averaging approximately 20 percent across all T/M/S of aircraft, the range of correlations among the squadrons was not as wide as it was for the fuel costs. The highest correlation was an R^2 value of 55.6 percent and the lowest correlation was an R^2 value of just over one and one half percent.

What was as high, or higher, was the deviation in costs per FH. While accurate AVDLR costs can be predicted if information is broken down and tracked by plane or by block, the reporting of this type of data every month to COMNAVAIRPAC would soon overwhelm anyone who undertook the job of analyzing it.

Additionally, there is little evidence that FH are the best predictor of AVDLR costs. For example, given the scenario of two similar T/M/S of aircraft flying the same amount of hours in a given month, but with one aircraft having 100 flying hours on its engine and the other having 2500 flying hours on its engine, the aircraft with the higher flying hours would be expected to have considerably higher AVDLR costs. This is not captured in the current Flying Hour Cost Report (FHCR), however, and thus partially explains the low correlation between FH and AVDLR costs.

Two examples not inherently obvious in this analysis are the overall rise in AVDLR costs from year to year and the effect aging has on aircraft. Specifically,

Aviation depot-level repairable (AVDLR) cost per flight hour grew sharply in the 1990s. Costs rose 43 percent between FY 1992 and FY 1996 and another 65.5 percent between FY 1996 and FY 2000. [Ref 4]

For an in-depth analysis of the underlying cause for growth in AVDLR cost per flight and a discussion on the aging effects of aircraft on AVDLR costs per FH for the period FY 1992 to FY 2000, refer to the Center for Naval Analyses (CNA) study dated January 2002 [Ref 4].

3. Other Maintenance

Across all T/M/S of aircraft, the highest correlation was an R^2 value of 69.5 percent and the lowest correlation was an R^2 value .03 percent.

While Other Maintenance entails everything up to Depot level repairs to the aircraft, the vast majority of work is routine Preventative Maintenance System (PMS) and includes everything from checking and replacing lubricants to fixing worn or broken equipment throughout the aircraft.

The wide variability in Other Maintenance costs means that FH are also a poor predictor of costs. Since the same maintenance is not performed per FH for any two aircraft, and since maintenance is often deferred from one month to another or from one IDTC status or FY to another, there is often little correlation between the hours flown and the Other Maintenance performed. Taking the AVLDR example from above, the same two aircraft, flying the same amount of hours could have vastly different maintenance requirements, each with a wide variety of Other Maintenance costs. None of these would be accurately reflected in the FHCR or predicted by the hours flown.

4. Total Costs

Since total costs are merely the aggregate of the Fuel, AVDLR and Other Maintenance costs, it follows that weakness in any of the correlations would also cause weakness in the total cost model. Often the strength of the correlation between the FH and fuel costs was overshadowed by the weakness in correlation in FH and AVDLR and/or Other Maintenance.

As the previous summaries have shown, Flying Hours as a predictor of costs are not the best answer. If COMNAVAIRPAC and the chain of command continue to use FH as a predictor, or at least the primary variable to capture costs, they are being underserved. The problem, however, is in the fact that the sheer volume of data required to make FH a valuable predictor of costs would overshadow any benefits derived.

5. Overall

Table 3.20 provides a comprehensive summary of all the cost relationships and their corresponding statistics.

Table 3.20. Comprehensive Summary of Cost Relationships

	F-stat %ile	T- stat %ile	R ² value	Mean	Stdev	cv	Slope	Best Equation Cost per FH
Model as a whole								
Fuel				•	\$ 1,041.18		\$ 834.46	\$ 834.46
AVDLR				\$ 2,312.54	\$3,363.21		\$ 1,851.66	\$ 2,312.54
Other Maint				\$ 951.90	\$2,085.14	219.05%		\$ 951.90
Total Costs	95	95	46.30%	\$ 3,965.54	\$5,083.51	128.19%	\$ 3,460.72	\$ 3,965.54
FY 1999								
Fuel					\$ 714.97		\$ 867.68	\$ 867.68
AVDLR				\$1,978.69	\$ 2,119.64		\$ 1,702.70	\$ 1,978.69
Other Maint				\$ 922.37	\$ 1,167.55		\$ 906.48	\$ 922.37
Total Costs	95	95	57.57%	\$ 3,603.23	\$3,259.51	90.46%	\$ 3,476.86	\$ 3,476.86
FY 2000								
Fuel					\$ 560.88		\$ 627.85	\$ 627.85
AVDLR				\$ 2,326.17	\$ 2,744.59		\$ 1,862.19	\$ 2,326.17
Other Maint				\$ 894.63	\$ 2,146.47		\$ 646.39	\$ 894.63
Total Costs	95	95	32.28%	\$ 3,753.42	\$4,059.43	108.15%	\$ 3,136.43	\$ 3,753.42
FY 2001			05.400/			400.000/		
Fuel				\$ 864.85	\$ 865.14		\$ 1,019.37	\$ 1,019.37
AVDLR				\$ 2,633.67	\$ 2,234.11		\$ 2,002.66	\$ 2,633.67
Other Maint				\$ 1,037.50	\$ 844.40		\$ 771.27	\$ 1,037.50
Total Costs	95	95	57.73%	\$4,536.02	\$ 3,420.60	75.41%	\$ 3,793.29	\$ 3,793.29
FY AVERAGES	0.5	0.5	CO 400/	¢ 000.00	Ф 7 40.00	400 000/	£ 000.07	¢ 000.07
Fuel					\$ 713.66		\$ 838.27	\$ 838.27
AVDLR				\$ 2,312.84	\$ 2,366.11		\$ 1,855.80	\$ 2,312.84
Other Maint				\$ 951.50	\$ 1,386.14		\$ 774.71	\$ 951.50
Total Costs	95	95	49.19%	\$ 3,964.22	\$ 3,579.83	91.34%	\$ 3,468.86	\$ 3,964.22
IDTC 1	0.5	0.5	60.400/	ф 7 00.40	¢ 745.00	101 010/	¢ 040 EE	¢ 040.55
Fuel AVDLR				\$ 702.49 \$ 2,158.35	\$ 715.88		\$ 846.55 \$ 1 674.04	\$ 846.55
Other Maint				\$ 2,156.35	\$ 2,088.25 \$ 794.51		\$ 1,674.84	\$ 2,158.35 \$ 968.10
Total Costs				\$ 3,828.94	\$ 794.51 \$3,017.24	82.07%	\$ 704.64 \$ 3,226.02	\$ 3,828.94
IDTC 2	93	93	49.5970	\$ 5,020. 34	φ 3,017.24	70.0076	φ 3,220.02	φ 3,020.34
Fuel	95	95	65 71%	\$ 687.98	\$ 689.99	100.28%	\$ 808.58	\$ 808.58
AVDLR				\$ 2,621.56	\$ 2,288.00		\$ 1,846.80	\$ 2,621.56
Other Maint					\$ 1,156.19	126.45%		\$ 914.34
Total Costs				\$ 4,223.88	\$ 3,333.59		\$3,469.60	\$ 4,223.88
IDTC 3	00	00	01.1070	¥ 1,220.00	Ψ 0,000.00	70.0270	ψ 0, 100.00	ų i,==0.00
Fuel	95	95	67.03%	\$ 720.40	\$ 805.80	111.86%	\$ 937.40	\$ 937.40
AVDLR				\$ 2,093.70	\$ 2,695.50		\$ 1,710.90	\$ 2,093.70
Other Maint					\$ 2,868.00	291.63%		\$ 983.40
Total Costs				\$ 3,797.50	\$ 4,683.40		\$ 3,473.20	\$ 3,797.50
IDTC AVERAGES				. ,	, ,		, , , , ,	,
Fuel	95	95	64.39%	\$ 703.62	\$ 737.21	104.68%	\$ 864.17	\$ 864.17
AVDLR	95	95	26.18%	\$ 2,291.21	\$ 2,357.25	104.30%	\$1,184.19	\$ 2,291.21
Other Maint	95	95		\$ 955.29	\$1,606.22	166.70%	\$ 778.79	
Total Costs	95	95		\$ 3,950.12	\$3,678.07	93.68%	\$3,389.59	\$ 3,950.12
CVW 2								
Fuel	95	95	60.44%	\$ 706.69	\$ 698.43	98.83%	\$ 867.50	\$ 867.50
AVDLR	95	95	23.88%	\$ 2,380.08	\$1,929.13	81.05%	\$1,506.32	\$ 2,380.08
Other Maint	95	95	5.35%	\$ 961.58	\$ 2,189.20	227.66%	\$ 809.45	\$ 961.58
Total Costs	95	95	32.64%	\$ 4,048.35	\$3,487.46	86.15%	\$3,183.27	\$ 4,048.35
CVW 9								
Fuel				\$ 687.40	\$ 728.26		\$ 786.85	\$ 786.85
AVDLR				\$ 2,143.66	\$ 1,926.81		\$ 1,438.93	
Other Maint				\$ 954.34	\$1,073.24		\$ 678.16	
Total Costs	95	95	47.53%	\$ 3,785.40	\$3,069.30	81.08%	\$ 2,903.93	\$ 3,785.40

	F-stat %ile	T- stat %ile	R ² value	Mean	Stdev	CV	Slope		Equation per FH
CVW 11_									
Fuel		95		\$ 722.62	\$ 719.26	99.53%	•	\$	967.92
AVDLR		95	35.94%		\$ 2,620.36	102.86%	\$ 2,531.27	\$	2,547.40
Other Maint	95	95	37.73%	\$ 959.01	\$ 854.85	89.14%	\$ 846.06	\$	959.01
Total Costs	95	95	54.21%	\$4,229.03	\$ 3,662.87	86.61%	\$ 4,345.26	\$	4,345.26
CVW 14									
Fuel	95	95	66.16%	\$ 686.85	\$ 696.41	101.40%	\$ 775.96	\$	775.96
AVDLR	95	95	31.27%	\$ 2,171.78	\$ 2,825.76	130.11%	\$ 2,116.24	\$	2,171.78
Other Maint	95	95	51.05%	\$ 928.69	\$ 751.10	80.88%	\$ 769.67	\$	769.67
Total Costs	95	95	54.08%	\$3,787.33	\$3,602.70	95.13%	\$ 3,661.87	\$	3,661.87
E-2C					•		•	-	•
Fuel	95	95	77.73%	\$ 338.97	\$ 193.07	56.96%	\$ 294.48	\$	294.48
AVDLR		95		\$ 3,284.10	\$4,293.84	130.74%	-	\$	3,284.10
Other Maint		86	1.55%	\$1,242.27	\$ 1,347.77	108.49%		\$	1,242.27
Total Costs		95			\$ 4,724.41	97.10%		\$	4,865.33
EA-6B	00	00	10.0070	Ψ 4,000.00	Ψ 1,7 2 1.11	07.1070	φ 0,100.00	Ψ	4,000.00
Fuel	95	95	64.20%	\$ 701.11	\$ 1,041.18	148.50%	\$ 834.46	\$	834.46
AVDLR		95			\$ 2,055.82		\$ 1,118.40	\$	2,406.50
Other Maint				-	\$ 2,033.02			\$	1,164.86
Total Costs				•				-	
	95	95	21.20%	\$ 4,471.94	\$ 2,641.91	59.08%	\$ 2,526.30	\$	4,471.94
FA-18A	٥٦	٥٦	70.400/	¢ 004.47	6 440.70	40.040/	£ 4 40C 00	•	4 400 00
Fuel		95			\$ 419.72		\$ 1,106.29	\$	1,106.29
AVDLR		95			\$ 1,931.17		\$ 2,532.79	\$	3,113.00
Other Maint		95			\$ 572.55	52.28%		\$	1,095.07
Total Costs	95	95	37.67%	\$ 5,202.54	\$ 2,488.88	47.84%	\$ 4,545.40	\$	5,202.54
FA-18C									
Fuel		95			\$ 409.19	44.27%		\$	924.35
AVDLR		95			\$ 1,405.63	65.89%		\$	2,133.18
Other Maint		95			\$ 1,311.18	128.56%		\$	1,019.89
Total Costs	95	95	23.88%	\$ 4,077.42	\$ 2,246.58	55.10%	\$ 2,738.97	\$	4,077.42
FA-18E									
Fuel		92	84.76%	\$ 1,459.30	\$ 401.01	27.48%	\$ 1,975.13	\$	1,975.13
AVDLR	1	1	0.04%	\$ 836.14	\$ 723.49	86.53%	\$ 8.03	\$	836.14
Other Maint	66	66	43.74%	\$ 945.40	\$ 1,567.09	165.76%	\$ (5,544.93)	\$	945.40
Total Costs	31	31	9.71%	\$ 3,240.84	\$2,093.17	64.59%	\$ (3,489.45)	\$	3,240.84
HH-60H									
Fuel	95	95	78.14%	\$ 124.52	\$ 101.97	81.89%	\$ 115.00	\$	115.00
AVDLR				\$ 1,597.75		90.90%			1,597.75
Other Maint				\$ 655.69					655.69
Total Costs		95		\$ 2,377.96			\$ 1,118.80	\$	2,377.96
S-3B				, –,	¥ =,: • ::: :		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	_,
Fuel	95	95	66 13%	\$ 401.44	\$ 257.26	64.08%	\$ 368.54	\$	368.54
AVDLR				\$ 2,737.96	\$ 2,469.34		\$ 2,058.73		2,737.96
Other Maint				\$ 682.85	\$ 924.88	135.40%		\$	682.85
Total Costs		95		\$ 3,822.26	\$ 2,920.41		\$ 2,737.09	\$	3,822.26
SH-60F	90	90	20.00 /0	Ψ 0,022.20	Ψ 2,020.41	70.70/0	Ψ 2,131.09	Ψ	5,022.20
Fuel	95	95	20 200/	\$ 126.03	\$ 69.64	55.23%	¢ 172.62	¢	126.03
AVDLR					\$ 1,256.92				
				\$ 1,723.86		72.91%			1,723.86
Other Maint				\$ 625.60	\$ 1,049.55	167.70%			625.60
Total Costs	95	95	7.17%	\$ 2,475.49	\$ 1,643.55	66.39%	\$ 963.35	\$	2,475.49

C. PRIMARY RESEARCH QUESTION

 Do cost estimating relationships exist between the various costs associated with the FHP and the hours actually flown and, if so, will they accurately predict future costs for budget and readiness planning for COMNAVAIRPAC Air Wings?

While there are cost estimating relationships between FH and the various costs associated with the FHP, often these relationships are insufficient in predicting future costs for budgeting and readiness planning. On a case-by-case basis, and for certain costs, FH are relatively accurate predictors. However, there is too little correlation between high dollar value costs and FH to make a generalization that FH are the best predictors.

In an era of uncertain budget funding, either a better model needs to be developed that will incorporate more of the costs or more predictive individual cost drivers need to be developed to enable COMNAVAIRPAC to develop more accurate budget and readiness plans.

D. SECONDARY RESEARCH QUESTIONS

 Are there better metrics and methods to analyze and execute Navy flying hours than the system currently used by OPNAV and COMNAVAIRPAC?

The thesis author had intended to investigate whether other metrics and methods, such as a sortie based cost estimations, are available and viable, but the time and data available precluded this from happening.

While FH are accurate predictors for some T/M/S of aircraft fuel costs, better metrics need to be developed for AVDLRs and Other Maintenance. What those metrics and predictors are may very well differ by T/M/S therefore,

derivation of a single cost estimating relationship model is not feasible.

For what other purposes can predictive models and systems be used, and is there relevant utility to application of new FHP analysis methods within the Navy?

Since the FHP constitutes over \$5 billion of the Navy O&M, N account, nearly \$2 billion of which belongs to COMNAVAIRPAC, a comprehensive predictive model of flying hour cost estimating relationships would benefit all participants in the budget process.

However, because it is not feasible to develop a single, accurate predictive model based on FH, individual models need to be developed to accurately capture as much of the corresponding costs as possible. Once these models are instituted, more accurate budget and readiness planning will result. The institution of these models, however, needs to be predicated on the amount of data required and the number of personnel willing and able to analyze it.

E. AREAS FOR FURTHER RESEARCH

This thesis focused on the effects of FH on related costs. Because the FHP involves so many interrelated variables, there are several related topics worthy of further research. The following topic areas and questions are intended to facilitate this effort:

1. Commander, Naval Air Forces Atlantic (CNAL)

An analysis similar to the one conducted analyzing the effects of FH on Fuel, AVDLR and Other Maintenance costs for CNAL. Is there a difference in the correlation between FH and these costs?

2. Fuel Costs and Trailing Costs

Is there a relationship between the hours flown and the costs associated the following month? Does an increase in FH lead to a representative increase in AVDLR and/or Other Maintenance costs?

3. Shore-Based Comparison

Since this thesis only dealt with CONUS based Carrier Air Wings (CVWs), is there the same lack of correlation between FH and their associated costs with land-based squadrons such as the P-3 Orion or C-2A Greyhound? If not, why not? The Center for Naval Analyses (CNA) study on AVDLRs took into account nearly all T/M/S of aircraft in the navy arsenal. Are carrier operations taking an undue toll on aircraft that shore based squadrons do not deal with?

4. Joint Strike Fighter (JSF)

Since there will be a carrier-based version of the JSF, how do the current estimates of its Fuel, AVDLR and Other Maintenance costs compare with the aircraft it will be replacing? Are FH an accurate predictor of costs throughout development and deployment of a new aircraft type and if not, how much do they change?

5. Aircraft Expense

Based on the analysis done, which T/M/S of aircraft is the most expensive to operate? What is that comparison based on? Is there a way to level the playing field to accurately compare all T/M/S of aircraft?

6. Other Services

How do the Air Force, Army and Marine Corps account for Flight Hour and related costs, and are their costs drivers similar to those derived in this thesis? Do other

services have better predictive capability? If so, how can these cost derivation methods be incorporated into Navy programming, budgeting and readiness planning?

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX. SUMMARY

AIR WING				MONTHLY FUEL\$/FH in 000\$	MONTHLY AVDLR\$/FH in 000\$	MONTHLY MAINT\$/FH in 000\$	FY MONTH (1-12)	FISCAL YEAR (1-3)	IDTC STATUS (1-3)	AIR WING (2,9,11,14)	HOURS
CONSTELLATION		E-2C	VAW 116	0.32827	0.07650	0.14802	1	1	3	2	123
	Oct-98		VAQ 131	0.74337	0.92242	0.43642	1	1	3	2	152
		FA-18C	VMFA 323	1.05123	1.66175	1.06549	1	1	3	2	397
		FA-18C	VFA 151	0.98223	1.04805	1.09316	1	1	3	2	371
		FA-18C	VFA 137	0.96089	1.02934	1.97800	1	1	3	2	384
		HH-60H	HS 2	0.27269	0.14440	0.43473	1	1	3	2	5
		S-3B	VS 38	0.35882	1.53968	0.65629	1	1	3	2	265
		SH-60F	HS 2	0.13426	0.58701	0.46303	1	1	3	2	169
	Total			4.83178	7.00914	6.27514	1	1	3	2	1,866
STENNIS		E-2C	VAW 112	0.42244	0.00000	0.65909	1	1	3	9	13
		EA-6B	VAQ 138	0.88015	0.57236	0.28022	1	1	3	9	74
		FA-18C	VFA 146	0.92374	4.54420	1.22538	1	1	3	9	185
		FA-18C	VMFA 314	0.48599	1.65996	0.89484	1	1	3	9	411
			VFA 147	0.67845	1.77352	1.22978	1	1	3	9	165
		HH-60H		0.00000	0.00000	0.00000	1	1	3	9	0
		S-3B	VS 33	0.36845	1.73008	0.67006	1	1	3	9	213
		SH-60F	HS 8	0.08341	0.84346	2.08929	1	1	3	9	89
	Total			3.84263	11.12357	7.04866	1	1	3	9	1,150
VINSON		E-2C	VAW 117	0.33282	0.00000	0.12810	1	1	1	11	68
		EA-6B	VAQ 135	0.75494	0.75605	0.73778	1	1	1	11	101
		FA-18A	VFA 97	1.10024	4.74651	1.17287	1	1	1	11	225
		FA-18C	VFA 22	1.08503	2.99862	1.21102	1	1	1	11	240
			VFA 94	0.88601	2.46848	0.60035	1 1	1 1	1 1	11 11	296
		HH-60H S-3B	NS 29	0.13747	3.33810	0.53013	1	1	1	11	55 138
		SH-60F	HS 6	0.37516	2.04098 2.82037	1.52458	1	1	1	11	57
	Total	3H-00F	по б	0.14804 4.81970	19.16911	2.16318 8.06801	1	1	1	11	1,180
LINCOLN	lotai	E-2C	VAW 113	0.32467	1.62990	0.64718	1	1	2	14	1,180
LINOOLIN		EA-6B	VAV 113 VAQ 139	0.98860	2.17638	1.40605	1	1	2	14	112
			VFA 113	0.95544	2.83233	0.57257	1	1	2	14	332
		FA-18C	VFA 115	0.94146	2.82284	0.59594	1	1	2	14	342
		FA-18C	VFA 25	0.98224	2.41283	0.59063	1	1	2	14	343
		FA-18E	VFA 115	0.00000	0.00000	0.00000	1	1	2	14	0
		HH-60H		0.09990	0.75748	0.09386	1	1	2	14	94
		S-3B	VS 35	0.42734	3.12353	0.71291	1	1	2	14	307
		SH-60F	HS 4	0.12921	0.74541	0.24644	1	1	2	14	177
	Total			4.84885	16.50070	4.86560	1	1	2	14	1,886
CONSTELLATION		E-2C	VAW 116	0.31152	0.20661	0.25116	2	1	3	2	195
	Nov-98	EA-6B	VAQ 131	0.92990	2.05101	1.10109	2	1	3	2	149
		FA-18C	VMFA 323	0.92697	1.97074	1.25669	2	1	3	2	479
		FA-18C	VFA 151	0.84982	0.99576	0.87623	2	1	3	2	486
		FA-18C	VFA 137	1.36229	0.54570	1.12688	2	1	3	2	326
		HH-60H		0.11403	0.36398	0.13601	2	1	3	2	80
		S-3B	VS 38	0.38190	1.09121	0.56969	2	1	3	2	391
		SH-60F	HS 2	0.11154	0.72287	0.10076	2	1	3	2	281
	Total			4.98799	7.94787	5.41851	2	1	3	2	2,388
STENNIS		E-2C	VAW 112	0.41486	3.40309	0.11402	2	1	3	9	26
		EA-6B	VAQ 138	0.81055	1.48171	0.45108	2	1	3	9	69
		FA-18C	VFA 146	1.03030	1.67957	1.20166	2	1	3	9	193
		FA-18C	VMFA 314	0.95685	2.12285	1.31050	2	1	3	9	380
		FA-18C	VFA 147	1.04246	2.35969	0.97859	2 2	1 1	3	9	213 3
		HH-60H S-3B	HS 8 VS 33	-0.01870 0.40284	0.29884	0.15800 0.83095	2	1	3 3	9 9	3 168
			VS 33 HS 8	0.40284	2.37331 1.34075	0.83095 -0.93645	2	1	3	9	100
	Total	OI I-OUF	1100	4.78886	15.05981	-0.93645 4.10835	2	1	3 3	9	1,153
VINSON	· Ottai	E-2C	VAW 117	0.31406	1.11444	0.38049	2	1	1	11	188
VIIIOOII		EA-6B	VAQ 135	0.91027	5.27114	2.42515	2	1	1	11	127
		FA-18A		0.99197	6.34954	0.83012	2	1	1	11	316
		FA-18C		0.93390	1.67767	0.83445	2	1	1	11	368
		FA-18C		0.93910	1.47548	0.77436	2	1	1	11	366
		HH-60H		0.12218	0.34273	0.32281	2	1	1	11	126
		S-3B	VS 29	0.39269	1.83363	0.40786	2	1	1	11	402
		SH-60F		0.12561	0.72787	0.39297	2	1	1	11	127
	Total			4.72977	18.79252	6.36822	2	1	1	11	2,020
LINCOLN		E-2C	VAW 113	0.40643	14.91532	0.36742	2	1	2	14	71
		EA-6B	VAQ 139	1.02841	6.80188	2.21120	2	1	2	14	33
			VFA 113	0.87848	2.49015	1.20974	2	1	2	14	119
		FA-18C	VFA 115	0.97259	2.67573	1.23762	2	1	2	14	112
		FA-18C		0.90778	3.17565	1.23849	2	1	2	14	118
			VFA 115	0.00000	0.00000	0.00000	2	1	2	14	0
		HH-60H		0.14720	3.44118	0.06485	2	1	2	14	64
		S-3B	VS 35	0.46751	7.86622	1.61192	2	1	2	14	81
		SH-60F	HS 4	0.11365	1.48996	1.22637	2	1	2	14	52
	Total			4.92205	42.85610	9.16763	2	1	2	14	649

CONSTELLATION		E-2C	VAW 116	0.28747	2.12152	2.56101	3	1	1	2	82
	Dec-98	EA-6B	VAQ 131	0.87428	2.60391	2.19243	3	1	1	2	80
			VMFA 323	0.61864	2.20837	1.18266	3	1	1	2	331
			VFA 151	0.86073	2.91977	2.72127	3	1	1	2	290
			VFA 137				3	1	1	2	308
				0.89045	2.09136	3.24975					
		HH-60H		0.12432	2.27676	0.13728	3	1	1	2	42
		S-3B	VS 38	0.40027	3.28652	1.63245	3	1	1	2	176
		SH-60F	HS 2	0.15187	4.31877	0.77442	3	1	1	2	116
	Total			4.20803	21.82697	14.45127	3	1	1	2	1,425
STENNIS		E-2C	VAW 112	0.40480	1.31152	1.10563	3	1	3	9	40
		EA-6B	VAQ 138	0.81800	2.58640	1.10296	3	1	3	9	70
		FA-18C	VFA 146	1.19814	3.37292	2.55303	3	1	3	9	221
		FA-18C	VMFA 314	0.53430	1.27747	0.95249	3	1	3	9	395
			VFA 147	0.88051	2.71603	1.00652	3	1	3	9	285
		HH-60H		0.00000	0.00000	0.00000	3	1	3	9	0
							3	1		9	144
		S-3B	VS 33	0.40504	4.65067	1.51756			3		
		SH-60F	HS8	0.12728	1.83946	0.38979	3	1	3	9	98
	Total			4.36807	17.75447	8.62798	3	1	3	9	1,253
VINSON		E-2C	VAW 117	0.34967	3.24602	1.37470	3	1	2	11	242
		EA-6B	VAQ 135	0.86992	2.65225	1.43743	3	1	2	11	165
		FA-18A	VFA 97	0.98387	1.83894	1.14709	3	1	2	11	365
		FA-18C	VFA 22	0.94038	2.20453	1.10541	3	1	2	11	454
		FA-18C	VFA 94	0.91969	2.53805	1.05046	3	1	2	11	449
		HH-60H		0.09371	0.63300	0.05279	3	1	2	11	189
		S-3B	VS 29	0.41995	1.86912	0.52947	3	1	2	11	448
		SH-60F		0.10758	0.82879	0.17170	3	1	2	11	216
	Total		160	4.68478	15.81071	6.86905	3	1	2	11	2,528
LINCOLNI	TOtal		\(\A\A\\440								-
LINCOLN		E-2C	VAW 113	0.43070	-2.49458	4.81297	3	1	2	14	24
		EA-6B	VAQ 139	0.59680	0.51406	-2.51228	3	1	2	14	37
			VFA 113	0.97145	0.48348	1.38225	3	1	2	14	94
		FA-18C	VFA 115	0.85477	2.05749	2.02598	3	1	2	14	56
		FA-18C	VFA 25	1.10928	2.31427	1.51749	3	1	2	14	138
		FA-18E	VFA 115	0.00000	0.00000	0.00000	3	1	2	14	0
		HH-60H	HS 4	0.12534	1.09045	0.13632	3	1	2	14	43
		S-3B	VS 35	0.43416	-1.76174	1.02550	3	1	2	14	87
		SH-60F	HS 4	0.10145	0.92947	1.47779	3	1	2	14	18
	Total		1.0 1	4.62396	3.13291	9.86601	3	1	2	14	496
CONSTELLATION	1000	E-2C	VAW 116	0.36261	3.06378	2.08376	4	1	1	2	105
CONSTELLATION	lan 00						4	1		2	98
	Jan-99	EA-6B	VAQ 131	0.87801	2.43829	1.36494			1		
			VMFA 323	0.56620	1.41713	0.99586	4	1	1	2	392
			VFA 151	1.04414	0.51981	1.04396	4	1	1	2	356
		FA-18C	VFA 137	1.10279	0.89152	0.87007	4	1	1	2	333
		HH-60H	HS 2	0.14094	0.02567	0.28684	4	1	1	2	67
		S-3B	VS 38	0.36175	1.23289	1.34451	4	1	1	2	201
		SH-60F	HS 2	0.10853	1.13751	0.84425	4	1	1	2	105
	Total			4.56497	10.72659	8.83419	4	1	1	2	1,656
STENNIS		E-2C	VAW 112	0.37066	23.42295	3.62394	4	1	1	9	63
0.2		EA-6B	VAQ 138	0.89032	3.70607	1.30710	4	1	1	9	60
			VFA 146	1.09786	0.78435	0.58677	4	1	1	9	213
				1.58979	1.38136	0.93320	4	1	1	9	428
			VMFA 314								
			VFA 147	1.09985	0.36500	0.81404	4	1	1	9	262
		HH-60H		0.11271	0.31759	0.30132	4	1	1	9	48
		S-3B	VS 33	0.34966	1.22046	1.03359	4	1	1	9	138
		SH-60F	HS 8	0.11831	1.15619	0.73347	4	1	1	9	129
	Total			5.62915	32.35396	9.33342	4	1	1	9	1,342
VINSON		E-2C	VAW 117	0.33036	7.08328	1.44345	4	1	2	11	280
		EA-6B	VAQ 135	0.82366	1.86718	0.93677	4	1	2	11	302
		FA-18A	VFA 97	0.91339	3.54713	1.01852	4	1	2	11	573
		FA-18C	VFA 22	0.88821	1.89314	0.70021	4	1	2	11	621
		FA-18C		0.87244	1.72967	0.55301	4	1	2	11	636
		HH-60H		0.05393	0.66341	0.35053	4	1	2	11	97
		S-3B	VS 29	0.39452	2.79887	0.71916	4	1	2	11	562
		SH-60F					4	1	2		318
	T.4.		160	0.12068	1.22039	0.25831				11	
1111001 **	Total			4.39719	20.80306	5.97996	4	1	2	11	3,390
LINCOLN		E-2C	VAW 113	0.36828	4.01426	2.48951	4	1	3	14	28
		EA-6B	VAQ 139	0.82403	13.04481	11.49908	4	1	3	14	10
		FA-18C	VFA 113	0.56696	0.56434	0.42263	4	1	3	14	285
		FA-18C	VFA 115	0.83573	1.78439	1.00675	4	1	3	14	114
		FA-18C	VFA 25	0.64320	0.98307	0.51945	4	1	3	14	250
			VFA 115	0.00000	0.00000	0.00000	4	1	3	14	0
		HH-60H		0.16101	1.42617	0.54099	4	1	3	14	20
		S-3B	VS 35	0.41004	0.66919	0.84993	4	1	3	14	157
		SH-60F		0.10935	1.39139	0.86421	4	1	3	14	47
	Total			3.91860	23.87762	18.19255	4	1	3	14	910
	· Otal	1		J.J 1000	20.01102	10. 13200	-	•	3		310

				0.0=444	. = =	_				
CONSTELLATION	E-2C	VAW 116	0.41599	2.05441	0.76197	5	1	1	2	147
reb-	• 99 EA-6B	VAQ 131	0.89581	2.70666	1.64970	5	1	1	2	176
	FA-18C		0.99199	1.30652	1.09944	5	1	1	2	543
		VFA 151	1.02372	1.01487	0.72875	5	1	1	2	490
		VFA 137	0.88888	1.55920	0.85179	5	1	1	2	470
	HH-60H		0.14738	0.34708	0.06405	5	1	1	2	139
	S-3B	VS 38	0.37689	1.25864	0.27568	5	1	1	2	420
	SH-60F	HS 2	0.09044	1.26966	0.32426	5	1	1	2	191
То	tal		4.83111	11.51704	5.75564	5	1	1	2	2,574
STENNIS	E-2C	VAW 112	0.36461	1.42437	1.37170	5	1	1	9	88
	EA-6B	VAQ 138	0.95509	2.78706	2.37621	5	1	1	9	65
	FA-18C	VFA 146	0.97265	1.74217	1.44848	5	1	1	9	235
	FA-18C	VMFA 314	0.77935	1.50383	1.28579	5	1	1	9	463
	FA-18C	VFA 147	0.96761	1.88917	0.70768	5	1	1	9	337
	HH-60H	HS 8	0.00000	0.00000	0.00000	5	1	1	9	0
	S-3B	VS 33	0.39866	1.37084	0.80971	5	1	1	9	164
	SH-60F	HS 8	0.13355	1.49412	0.44061	5	1	1	9	141
To	tal		4.57154	12.21156	8.44017	5	1	1	9	1,492
VINSON	E-2C	VAW 117	0.38078	1.69856	0.93658	5	1	2	11	237
	EA-6B	VAQ 135	0.87167	2.46409	1.32405	5	1	2	11	205
	FA-18A	VFA 97	0.88582	2.55666	1.17495	5	1	2	11	434
		VFA 22	0.86449	1.67391	0.81357	5	1	2	11	564
		VFA 94	0.86005	1.72255	0.81868	5	1	2	11	531
	HH-60H		0.10511	1.03965	0.37281	5	1	2	11	130
	S-3B	VS 29	0.39130	3.00264	0.70345	5	1	2	11	477
	SH-60F		0.12512	0.78234	0.11204	5	1	2	11	246
To		1100	4.48434	14.94040	6.25612	5	1	2	11	2,823
LINCOLN	E-2C	VAW 113	0.92519	2.59044	8.03015	5	1	3	14	7
LINGOLIN	EA-6B	VAQ 139	0.85036	5.26538	1.89752	5	1	3	14	99
		VFA 113	0.60298	0.63664	0.32004	5	1	3	14	377
		VFA 115	1.06987	1.38423	0.64550	5	1	3	14	280
		VFA 115	0.98829	1.42859	0.73931	5	1	3	14	233
		VFA 115				5	1	3	14	0
			0.00000	0.00000	0.00000					
	HH-60H		0.12065	2.82916	0.19278	5	1 1	3	14	33
	S-3B	VS 35	0.38059	1.83704	0.92667	5		3	14	161
	SH-60F	HS 4	0.12218	3.12133	0.94622	5	1	3	14	72
	tal		5.06011	19.09279	13.69818	5	1	3	14	1,261
CONSTELLATION	E-2C	VAW 116	0.50394	3.26369	0.64164	6	1	1	2	160
Mar-	99 EA-6B	VAQ 131	0.97501	2.20151	0.94680	6	1	1	2	209
			0.65530	1.78312	0.77990	6	1	1	2	484
		VFA 151	0.94313	1.99882	1.05641	6	1	1	2	460
		VFA 137	0.87659	2.24715	1.06232	6	1	1	2	477
	HH-60H		0.14778	2.26778	0.11537	6	1	1	2	140
	S-3B	VS 38	0.40261	2.00678	0.51835	6	1	1	2	436
	SH-60F	HS 2	0.11424	1.66385	0.59033	6	1	1	2	164
То	tal		4.61860	17.43269	5.71111	6	1	1	2	2,530
STENNIS	E-2C	VAW 112	0.34061	3.07943	0.35797	6	1	1	9	129
	EA-6B	VAQ 138	0.95200	2.42325	0.90322	6	1	1	9	110
	FA-18C	VFA 146	1.00269	1.55880	0.94923	6	1	1	9	462
	FA-18C	VMFA 314	0.25861	1.39683	0.59938	6	1	1	9	478
	FA-18C	VFA 147	1.22815	2.10704	1.17960	6	1	1	9	293
	HH-60H		0.07756	2.56392	2.35384	6	1	1	9	8
	S-3B	VS 33	0.42111	4.44344	0.85958	6	1	1	9	170
	SH-60F		0.12132	1.30789	0.50947	6	1	1	9	199
To	tal		4.40206	18.88059	7.71228	6	1	1	9	1,847
VINSON	E-2C	VAW 117	0.33777	4.72387	0.08841	6	1	2	11	219
	EA-6B	VAQ 135	0.86683	2.50232	2.33445	6	1	2	11	164
		VFA 97	0.96836	2.76394	0.95157	6	1	2	11	396
		VFA 22	0.90703	2.54178	0.89200	6	1	2	11	422
		VFA 94	0.90063	2.64221	0.94140	6	1	2	11	452
	HH-60H		0.11622	2.16146	0.27627	6	1	2	11	131
	S-3B	VS 29	0.39446	3.48886	0.80480	6	1	2	11	390
	SH-60F		0.12213	1.27785	0.31645	6	1	2	11	222
To	tal		4.61342	22.10229	6.60534	6	1	2	11	2,395
LINCOLN	E-2C	VAW 113	0.35284	2.79286	0.86190	6	1	3	14	53
LITOOLIT	EA-6B		0.87869	1.54846		6	1	3	14	99
		VAQ 139			0.93826	6			14	
		VFA 113	0.84781	1.63531	0.51900	6	1 1	3	14	353 375
		VFA 115	0.85661	2.21885	0.71592 0.52456	6	-	3		375 294
		VFA 25	1.00468	1.65848			1	3	14 14	294
		VFA 115	0.00000	0.00000	0.00000	6	1 1	3	14 14	0
	HH-60H		0.12090	3.37957	0.45412	6		3	14 14	34
	S-3B	VS 35	0.42308	2.53366	1.04163	6	1	3	14	210
- -	SH-60F	ПО 4	0.12101	0.57382	0.36370	6	1	3	14 14	170 4 597
То	ıal		4.60562	16.34101	5.41909	6	1	3	14	1,587

CONSTELLATION		E-2C	VAW 116	0.38847	1.72464	1.08312	7	1	1	2	133
	Apr-99	EA-6B	VAQ 131	0.84309	1.72849	1.46846	7	1	1	2	168
	•	FA-18C	VMFA 323	0.88734	1.16199	1.61045	7	1	1	2	428
			VFA 151	0.96173	0.77284	1.73370	7	1	1	2	322
			VFA 137	0.96076	1.83328	1.34127	7	1	1	2	351
		HH-60H		0.09384	1.17669	0.11369	7	1	1	2	113
		S-3B	VS 38	0.37886	3.25817	0.40926	7	1	1	2	247
		SH-60F		0.15204	4.97690	0.66428	7	1	1	2	94
	Total		102				7	1	1	2	
CTTAINIC	Total		\	4.66613	16.63301	8.42422					1,855
STENNIS		E-2C	VAW 112	0.46802	5.59887	1.36567	7	1	1	9	83
		EA-6B	VAQ 138	0.74757	0.00992	0.39771	7	1	1	9	274
			VFA 146	0.82225	2.08388	1.67984	7	1	1	9	332
		FA-18C	VMFA 314	1.11659	0.77355	1.39544	7	1	1	9	479
		FA-18C	VFA 147	0.89819	2.29972	2.01851	7	1	1	9	322
		HH-60H	HS 8	0.18185	7.56801	2.40084	7	1	1	9	7
		S-3B	VS 33	0.38450	7.63548	1.29443	7	1	1	9	219
		SH-60F	HS 8	0.12838	1.66332	0.77039	7	1	1	9	144
	Total			4.74734	27.63275	11.32283	7	1	1	9	1,860
VINSON		E-2C	VAW 117	0.38985	5.16727	1.93209	7	1	2	11	98
		EA-6B	VAQ 135	1.06756	2.76998	2.53643	7	1	2	11	53
		FA-18A		1.20244	4.10695	2.58740	7	1	2	11	116
			VFA 22	1.03516	0.94641	1.53260	7	1	2	11	193
		FA-18C		1.06324	0.75100	1.34016	7	1	2	11	187
		HH-60H			2.26549	0.33529	7	1	2	11	107
				0.14515					2		
		S-3B	VS 29	0.41404	4.26809	1.02239	7	1		11	183
		SH-60F	HS 6	0.11734	1.50538	0.25340	7	1	2	11	83
	Total			5.43478	21.78056	11.53976	7	1	2	11	1,022
LINCOLN		E-2C	VAW 113	0.32122	1.64418	1.77242	7	1	3	14	62
		EA-6B	VAQ 139	0.59234	0.21125	0.62342	7	1	3	14	141
		FA-18C	VFA 113	1.36074	0.47726	1.00831	7	1	3	14	208
		FA-18C	VFA 115	0.96064	1.50474	0.79928	7	1	3	14	263
		FA-18C	VFA 25	0.77638	1.46248	1.23979	7	1	3	14	233
		FA-18E	VFA 115	0.00000	0.00000	0.00000	7	1	3	14	0
		HH-60H	HS 4	0.00000	0.00000	0.00000	7	1	3	14	0
		S-3B	VS 35	0.39681	1.26976	0.85210	7	1	3	14	250
		SH-60F	HS 4	0.12939	0.94491	0.33829	7	1	3	14	150
	Total		110 1	4.53752	7.51458	6.63361	7	1	3	14	1,308
CONSTELLATION	1000	E-2C	VAW 116	0.31021	1.56151	0.61154	8	1	1	2	238
CONCILLLATION	May-99		VAW 110 VAQ 131	0.94269	2.20058	0.64567	8	1	1	2	190
	Way-55						8	1	1	2	512
			VMFA 323	0.73902	1.56928	0.75940		1			
			VFA 151	0.73853	1.40629	0.59343	8		1	2	494
			VFA 137	0.85925	2.03289	0.86504	8	1	1	2	499
		HH-60H		0.14609	1.17474	0.19547	8	1	1	2	142
		S-3B	VS 38	0.33853	1.34146	0.59810	8	1	1	2	447
		SH-60F	HS 2	0.10307	1.68759	0.44885	8	1	1	2	176
	Total			4.17738	12.97433	4.71751	8	1	1	2	2,697
STENNIS		E-2C	VAW 112	0.31196	4.53902	2.60632	8	1	1	9	123
		EA-6B	VAQ 138	0.87742	0.33196	0.48811	8	1	1	9	563
		FA-18C	VFA 146	1.10535	2.43897	0.71784	8	1	1	9	417
		FA-18C	VMFA 314	0.88393	1.49432	0.71008	8	1	1	9	401
		FA-18C	VFA 147	1.08183	1.58038	0.52876	8	1	1	9	400
		HH-60H		0.11342	1.12421	0.74905	8	1	1	9	69
		S-3B	VS 33	0.39347	2.24422	0.66326	8	1	1	9	245
		SH-60F		0.11170	0.86766	0.33489	8	1	1	9	237
	Total			4.87909	14.62073	6.79833	8	1	1	9	2,454
VINSON	1000	E-2C	VAW 117	0.47859	8.84078	2.59123	8	1	2	11	24
VIIVOOIV		EA-6B	VAW 117 VAQ 135	0.25423	1.74986	-0.05856	8	1	2	11	61
		FA-18A		0.79608	4.10329	1.61707	8	1	2	11	117
		FA-18C		0.79437	2.67509	0.93180	8	1	2	11	160
		FA-18C		1.03226	1.65090	0.72894	8	1	2	11	257
		HH-60H		0.07938	10.30852	0.35466	8	1	2	11	21
		S-3B	VS 29	0.33553	4.54772	0.51297	8	1	2	11	109
		SH-60F	HS 6	0.11567	5.65131	1.01702	8	1	2	11	35
	Total			3.88612	39.52747	7.69513	8	1	2	11	785
LINCOLN		E-2C	VAW 113	0.32171	-4.12172	0.62371	8	1	3	14	94
		EA-6B	VAQ 139	0.76256	1.10088	0.09494	8	1	3	14	78
			VFA 113	0.94009	0.89605	0.49854	8	1	3	14	319
			VFA 115	0.79686	2.55783	0.65989	8	1	3	14	251
		FA-18C		1.01038	2.49249	1.08455	8	1	3	14	242
			VFA 115	0.00000	0.00000	0.00000	8	1	3	14	0
			•		2.00000	50000	-		-		
		HH-60H	HS 4	0.00000	0.00000	0.00000	8	1	3	14	0
		HH-60H S-3B		0.00000 0.47166	0.00000 -4.14093	0.00000 1.41132	8 8	1 1	3 3	14 14	0 116
		S-3B	VS 35	0.47166	-4.14093	1.41132	8	1	3	14	116
	Total	S-3B SH-60F	VS 35								

CONSTELLATION		E-2C	VAW 116	0.27056	2.12330	0.60197	9	1	2	2	224
	Jun-99	EA-6B	VAQ 131	0.89831	3.58349	0.64466	9	1	2	2	175
		FA-18C	VMFA 323	0.66926	2.08117	1.05085	9	1	2	2	514
		FA-18C	VFA 151	0.85247	1.60109	0.46711	9	1	2	2	452
		FA-18C	VFA 137	0.86201	1.30069	0.56938	9	1	2	2	487
		HH-60H	HS 2	0.15534	1.69948	0.32522	9	1	2	2	126
		S-3B	VS 38	0.39967	1.72253	0.59600	9	1	2	2	456
		SH-60F	HS 2	0.08503	0.56868	0.54804	9	1	2	2	197
	Total			4.19266	14.68043	4.80324	9	1	2	2	2,630
STENNIS		E-2C	VAW 112	0.32229	8.38573	3.22491	9	1	1	9	65
		EA-6B	VAQ 138	1.15451	1.36721	0.24677	9	1	1	9	194
		FA-18C	VFA 146	1.00706	4.03897	1.47407	9	1	1	9	291
		FA-18C	VMFA 314	0.63834	1.98973	0.97683	9	1	1	9	482
		FA-18C	VFA 147	1.06227	2.32330	2.73226	9	1	1	9	296
		HH-60H	HS 8	0.13471	1.02994	0.36601	9	1	1	9	123
		S-3B	VS 33	0.38649	1.18446	0.86307	9	1	1	9	168
		SH-60F	HS8	0.10641	0.40786	0.38812	9	1	1	9	161
	Total			4.81208	20.72721	10.27204	9	1	1	9	1,779
VINSON		E-2C	VAW 117	0.28730	4.06708	2.28415	9	1	3	11	63
		EA-6B	VAQ 135	0.75559	4.50106	2.19035	9	1	3	11	48
		FA-18A	VFA 97	1.18337	2.01135	0.70992	9	1	3	11	298
		FA-18C	VFA 22	1.59010	7.03611	1.21271	9	1	3	11	270
		FA-18C	VFA 94	1.07389	5.74733	1.07248	9	1	3	11	317
		HH-60H	HS 6	0.07824	2.20004	0.66511	9	1	3	11	71
		S-3B	VS 29	0.37404	0.79426	0.62616	9	1	3	11	203
		SH-60F	HS 6	0.15343	-0.36938	0.59715	9	1	3	11	122
	Total			5.49595	25.98786	9.35803	9	1	3	11	1,391
LINCOLN		E-2C	VAW 113	0.45588	2.55545	1.10641	9	1	1	14	89
		EA-6B	VAQ 139	1.00113	1.47213	1.19239	9	1	1	14	79
		FA-18C	VFA 113	1.04236	3.53881	0.95632	9	1	1	14	260
		FA-18C	VFA 115	1.08949	3.52053	1.48983	9	1	1	14	212
		FA-18C	VFA 25	1.09662	3.73888	0.89815	9	1	1	14	222
		FA-18E	VFA 115	0.00000	0.00000	0.00000	9	1	1	14	0
		HH-60H	HS4	0.11734	4.00103	-0.14731	9	1	1	14	10
		S-3B	VS 35	0.43862	4.50667	1.85214	9	1	1	14	137
		SH-60F	HS4	0.13049	0.85809	0.27955	9	1	1	14	149
	Total			5.37193	24.19159	7.62749	9	1	1	14	1,156
CONSTELLATION		E-2C	VAW 116	0.38041	10.63424	1.19343	10	1	2	2	194
	Jul-99	EA-6B	VAQ 131	0.83056	0.29281	1.50681	10	1	2	2	181
		FA-18C	VMFA 323	0.92551	5.11317	1.02324	10	1	2	2	452
		FA-18C	VFA 151	0.86373	2.58728	0.58488	10	1	2	2	429
		FA-18C	VFA 137	0.90018	2.54480	0.52944	10	1	2	2	430
		HH-60H		0.12907	0.87487	0.36277	10	1	2	2	201
		S-3B	VS 38	0.49873	3.23927	0.75466	10	1	2	2	419
		SH-60F	HS2	0.12291	3.88861	0.34682	10	1	2	2	138
	Total			4.65112	29.17507	6.30205	10	1	2	2	2,443
STENNIS		E-2C	VAW 112	0.40745	1.51207	1.70779	10	1	1	9	164
		EA-6B	VAQ 138	0.68470	-1.58274	0.93756	10	1	1	9	105
		FA-18C	VFA 146	0.93668	2.91539	1.10917	10	1	1	9	338
		FA-18C	VMFA 314	1.04199	3.92633	0.77158	10	1	1	9	423
			VFA 147	0.93688	1.15663	1.13383	10	1	1	9	348
		HH-60H	HS8	0.09922	0.91414	0.29434	10	1	1	9	189
		S-3B	VS 33	0.38558	0.73361	0.17495	10	1	1	9	319
		SH-60F		0.15210	1.01463	0.27475	10	1	1	9	137
	Total			4.64460	10.59007	6.40397	10	1	1	9	2,023
VINSON		E-2C	VAW 117	0.28285	3.00356	-0.00143	10	1	3	11	200
		EA-6B	VAQ 135	0.87920	2.35530	-0.23026	10	1	3	11	90
		FA-18A	VFA 97	0.88703	2.82290	-0.82585	10	1	3	11	266
		FA-18C	VFA 22	0.79780	-0.38364	3.75789	10	1	3	11	293
		FA-18C		0.92497	-0.04966	2.84730	10	1	3	11	389
		HH-60H		0.07181	7.27414	-0.96270	10	1	3	11	58
		S-3B	VS 29	0.36886	4.00359	-1.52099	10	1	3	11	206
		SH-60F		0.14266	4.03315	-0.17816	10	1	3	11	164
	Total			4.35517	23.05935	2.88579	10	1	3	11	1,665
LINCOLN		E-2C	VAW 113	0.35133	5.20104	0.89416	10	1	1	14	55
		EA-6B	VAQ 139	0.79675	1.05879	1.39565	10	1	1	14	116
			VFA 113	0.90441	1.32751	0.48908	10	1	1	14	560
			VFA 115	1.08240	3.43789	0.95264	10	1	1	14	246
		FA-18C		1.03827	2.50909	0.73729	10	1	1	14	227
			VFA 115	0.00000	0.00000	0.00000	10	1	1	14	0
		HH-60H		0.00000	0.00000	0.00000	10	1	1	14	0
		S-3B	VS 35	0.39075	1.20697	1.13104	10	1	1	14	176
		SH-60F		0.12043	-0.24843	0.35059	10	1	1	14	152
	Total			4.68436	14.49286	5.95047	10	1	1	14	1,531

CONSTELLATION		E-2C	VAW 116	0.33693	3.94206	0.91150	11	1	2	2	231
	Aug-99	EA-6B	VAQ 131	1.08133	4.79886	0.80256	11	1	2	2	187
		FA-18C	VMFA 323	0.86817	1.48560	5.69598	11	1	2	2	485
		FA-18C	VFA 151	0.94319	2.40559	-1.18597	11	1	2	2	491
		FA-18C	VFA 137	1.11775	2.64958	-1.51366	11	1	2	2	387
		HH-60H	HS 2	0.14996	0.08456	0.07537	11	1	2	2	190
		S-3B	VS 38	0.47770	2.42449	0.63102	11	1	2	2	486
		SH-60F	HS 2	0.10192	1.50716	0.53337	11	1	2	2	166
	Total			5.07696	19.29790	5.95018	11	1	2	2	2,622
STENNIS		E-2C	VAW 112	0.32404	1.53200	0.82157	11	1	1	9	285
		EA-6B	VAQ 138	0.94616	1.76114	0.30875	11	1	1	9	299
		FA-18C	VFA 146	0.84954	1.83493	0.62797	11	1	1	9	692
		FA-18C	VMFA 314	0.27051	0.88223	0.85645	11	1	1	9	644
		FA-18C	VFA 147	0.83996	1.92303	0.71470	11	1	1	9	672
		HH-60H	HS 8	0.12111	0.62336	0.27037	11	1	1	9	210
		S-3B	VS 33	0.37784	0.90338	0.27115	11	1	1	9	419
		SH-60F	HS 8	0.10545	0.94612	0.12927	11	1	1	9	289
	Total			3.83462	10.40620	4.00022	11	1	1	9	3,510
VINSON		E-2C	VAW 117	0.27970	-6.16749	1.26936	11	1	3	11	131
		EA-6B	VAQ 135	1.00357	7.25882	-0.48995	11	1	3	11	59
		FA-18A	VFA 97	1.00140	4.49798	0.82072	11	1	3	11	293
		FA-18C	VFA 22	1.09180	-1.25283	0.98969	11	1	3	11	283
		FA-18C	VFA 94	1.03865	-1.50796	0.58423	11	1	3	11	395
		HH-60H	HS 6	0.10035	12.14970	-1.89629	11	1	3	11	14
		S-3B	VS 29	0.39635	1.07024	0.58028	11	1	3	11	182
		SH-60F		0.14244	1.25691	0.29592	11	1	3	11	117
	Total			5.05426	17.30536	2.15396	11	1	3	11	1,473
LINCOLN		E-2C	VAW 113	0.38365	-21.68050	2.54362	11	1	1	14	59
		EA-6B	VAQ 139	0.92310	2.70143	0.50383	11	1	1	14	101
			VFA 113	0.86332	1.13177	0.70644	11	1	1	14	449
			VFA 115	1.00905	0.71224	0.95365	11	1	1	14	326
		FA-18C		1.05286	1.18659	0.55365	11	1	1	14	377
			VFA 115	0.00000	0.00000	0.00000	11	1	1	14	0
		HH-60H		0.00000	0.00000	0.00000	11	1	1	14	0
		S-3B	VS 35	0.45566	0.95222	0.93586	11	1	1	14	180
			HS 4	0.12891	1.14315	0.25453	11	1	1	14	145
	Total			4.81655	-13.85310	6.45159	11	1	1	14	1,638
CONSTELLATION		E-2C	VAW 116	0.31082	3.40339	1.24516	12	1	2	2	286
	Sep-99	EA-6B	VAQ 131	0.95286	1.71390	1.28843	12	1	2	2	284
			VMFA 323	0.96014	0.31662	3.43879	12	1	2	2	637
			VFA 151	1.03614	1.19191	-0.37810	12	1	2	2	400
			VFA 137	0.93540	1.38126	0.20306	12	1	2	2	663
		HH-60H		0.12003	0.66747	0.29432	12	1	2	2	370
		S-3B	VS 38	0.50507	2.53144	0.98506	12	1	2	2	596
		SH-60F		0.10945	0.85442	0.73974	12	1	2	2	209
	Total			4.92991	12.06041	7.81645	12	1	2	2	3,445
STENNIS		E-2C	VAW 112	0.45471	6.42565	5.10041	12	1	1	9	84
		EA-6B	VAQ 138	0.97031	-0.12710	2.20730	12	1	1	9	91
			VFA 146	1.00156	1.25472	2.01132	12	1	1	9	351
			VMFA 314	0.80021	-1.28038	0.48393	12	1	1	9	378
			VFA 147	1.11728	1.33006	1.79134	12	1	1	9	345
		HH-60H		0.10305	2.28137	0.30266	12	1	1	9	147
		S-3B	VS 33	0.41574	5.67127	1.56757	12	1	1	9	164
		SH-60F		0.07149	1.90979	1.21238	12	1	1	9	66
	Total			4.93436	17.46538	14.67691	12	1	1	9	1,627
VINSON		E-2C	VAW 117	0.31084	3.69233	0.87435	12	1	3	11	282
		EA-6B	VAQ 135	0.98937	0.03024	2.50215	12	1	3	11	83
		FA-18A		0.78134	-0.66845	1.51358	12	1	3	11	236
		FA-18C		0.97078	7.59261	2.42062	12	1	3	11	310
		FA-18C		0.86415	10.02812	2.99982	12	1	3	11	270
		HH-60H		0.08826	-0.61105	-0.77135	12	1	3	11	-22
		S-3B	VS 29	0.51123	2.72784	0.93733	12	1	3	11	248
		SH-60F		0.11608	0.55441	0.18729	12	1	3	11	259
	Total			4.63205	23.34604	10.66379	12	1	3	11	1,665
LINCOLN		E-2C	VAW 113	0.30558	5.07721	1.15533	12	1	1	14	152
		EA-6B	VAQ 139	0.89534	7.89151	1.59316	12	1	1	14	120
			VFA 113	1.12565	0.42702	1.40602	12	1	1	14	363
			VFA 115	1.07143	0.79584	1.69636	12	1	1	14	303
		FA-18C		1.12958	0.26233	1.42569	12	1	1	14	347
			VFA 115	0.00000	0.00000	0.00000	12	1	1	14	0
		HH-60H		0.15082	42.08725	2.66085	12	1	1	14	5
		1 11 1 001 1		0.10002	72.00723	2.00000	12			17	•
		S-3B	VS 35	0.38476	1.06782	1.78107	12	1	1	14	176
			VS 35								

CONSTELLATION											
		E-2C	VAW 116	0.25513	1.82461	0.38227	1	2	2	2	287
	Oct-99	EA-6B	VAQ 131	0.73289	3.70951	1.06891	1	2	2	2	264
		FA-18C	VMFA 323	0.40045	1.87864	1.06170	1	2	2	2	635
		FA-18C	VFA 151	0.58110	1.41507	0.81750	1	2	2	2	673
		FA-18C	VFA 137	0.72769	1.25869	0.79614	1	2	2	2	693
		HH-60H	HS 2	0.10166	0.89705	0.14587	1	2	2	2	234
		S-3B	VS 38	0.33349	2.68307	0.49048	1	2	2	2	585
		SH-60F		0.07856	1.81864	0.31846	1	2	2	2	208
	Total	000.		3.21096	15.48528	5.08133	1	2	2	2	3,579
STENNIS	Iotai	E-2C	VAW 112	0.26130	1.38081	0.28667	1	2	1	9	187
OILINIO		EA-6B	VAV 112 VAQ 138	0.65725	2.64203	0.57637	1	2	1	9	156
			VAQ 136 VFA 146								
				0.56210	2.98917	0.97618	1	2	1	9	388
			VMFA 314	0.39348	1.33890	0.91119	1	2	1	9	454
			VFA 147	0.72025	2.22064	0.94478	1	2	1	9	385
		HH-60H		0.11414	0.33636	0.30960	1	2	1	9	164
		S-3B	VS 33	0.26551	3.16289	0.44244	1	2	1	9	267
		SH-60F	HS 8	0.08750	1.02194	1.18682	1	2	1	9	78
	Total			3.06154	15.09274	5.63405	1	2	1	9	2,079
VINSON		E-2C	VAW 117	0.23590	-0.14035	0.09301	1	2	3	11	286
		EA-6B	VAQ 135	0.53444	3.60489	0.74740	1	2	3	11	105
		FA-18A	VFA 97	0.72257	2.62450	0.89497	1	2	3	11	277
		FA-18C	VFA 22	0.86277	3.40022	1.77289	1	2	3	11	220
		FA-18C		0.71126	2.27464	1.39912	1	2	3	11	254
		HH-60H		0.00000	0.00000	0.00000	1	2	3	11	0
		S-3B	VS 29	0.28971	1.86896	0.62188	1	2	3	11	149
		SH-60F		0.12290	0.93826	0.25329	1	2	3	11	130
	Total	31 F00F	160								
LINCOLN	Total	E-2C	\/^\^/ 112	3.47955	14.57112	5.78257	1 1	2 2	3	11 14	1,422
LINCOLN			VAW 113	0.25043	0.26114	0.13923	-				143
		EA-6B	VAQ 139	0.46423	2.67211	0.84060	1	2	1	14	150
			VFA 113	0.68579	3.21107	1.49018	1	2	1	14	351
			VFA 115	0.95561	3.99876	1.54573	1	2	1	14	311
		FA-18C		0.70348	3.72500	1.11928	1	2	1	14	376
			VFA 115	0.00000	0.00000	0.00000	1	2	1	14	0
		HH-60H	HS 4	0.11016	1.33237	0.21804	1	2	1	14	33
		S-3B	VS 35	0.31312	1.96320	0.82734	1	2	1	14	252
		SH-60F	HS4	0.09306	2.01641	0.31179	1	2	1	14	191
	Total			3.57589	19.18008	6.49220	1	2	1	14	1,808
CONSTELLATION		E-2C	VAW 116	0.28004	3.93759	1.05268	2	2	2	2	157
	Nov-99	EA-6B	VAQ 131	0.73969	4.91270	0.91780	2	2	2	2	128
			\ #\ #E #\ 0000	0.50040					_		
		FA-18C	VIVIFA 323	0.52842	1.40683	1.27928	2	2	2	2	3/2
		FA-18C FA-18C		0.52842 1.00846	1.40683 2.33291	1.27928 1.63338		2	2	2	372 353
		FA-18C	VFA 151	1.00846	2.33291	1.63338	2	2	2	2	353
		FA-18C FA-18C	VFA 151 VFA 137	1.00846 0.76604	2.33291 2.35425	1.63338 1.50255	2 2	2 2	2 2	2 2	353 368
		FA-18C FA-18C HH-60H	VFA 151 VFA 137 HS 2	1.00846 0.76604 0.09626	2.33291 2.35425 2.37597	1.63338 1.50255 0.44614	2 2 2	2 2 2	2 2 2	2 2 2	353 368 128
		FA-18C FA-18C HH-60H S-3B	VFA 151 VFA 137 HS 2 VS 38	1.00846 0.76604 0.09626 0.31055	2.33291 2.35425 2.37597 2.75229	1.63338 1.50255 0.44614 0.84013	2 2 2 2	2 2 2 2	2 2 2 2	2 2 2 2	353 368 128 357
	Total	FA-18C FA-18C HH-60H	VFA 151 VFA 137 HS 2 VS 38	1.00846 0.76604 0.09626 0.31055 0.08694	2.33291 2.35425 2.37597 2.75229 2.61558	1.63338 1.50255 0.44614 0.84013 0.41866	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	353 368 128 357 137
CTEMBIC	Total	FA-18C FA-18C HH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062	2 2 2 2 2 2	2 2 2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2 2	353 368 128 357 137 2,000
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707	2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1	2 2 2 2 2 2 2 9	353 368 128 357 137 2,000 323
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1	2 2 2 2 2 2 2 9 9	353 368 128 357 137 2,000 323 252
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756	2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1	2 2 2 2 2 2 2 9 9	353 368 128 357 137 2,000 323 252 676
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1	2 2 2 2 2 2 2 9 9 9	353 368 128 357 137 2,000 323 252 676 680
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222
STENNIS	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501
STENNIS		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.21565 0.34712 0.33251 0.37574	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220
	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C SH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590
STENNIS		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.21565 0.34712 0.33251 0.37574	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C SH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53659 0.34712 0.33251 0.337574 4.11408 0.80709	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-6F E-2C EA-6B FA-18A FA-18C FA-18C FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 94	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H E-2C EA-6B FA-18A FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0
		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C FA-18C HH-60H S-3B	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142
	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H E-2C EA-6B FA-18A FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708	1.63338 1.50255 0.444614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95
VINSON		FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C HH-60H S-3B SH-60F	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 99 HS 6	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443
	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.21565 0.33251 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C E-2C EA-6B FA-18C FA-	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 1440 77 323
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340	2.33291 2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C HH-60H S-3B FA-18A FA-18C	VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340 0.65279	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720 1.89976	1.63338 1.50255 0.444614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255 1.25114	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323 345
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 157 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340 0.65279	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720 1.89976 0.00000	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.53699 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255 1.25114 0.00000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323 345 0
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 157 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 25 VFA 95	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340 0.65279 0.00000 0.08454	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720 1.89976 0.00000 0.45265	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.21565 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255 1.25114 0.00000 0.18108	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323 345 0 51
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 157 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340 0.65279 0.00000 0.08454 0.29151	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720 1.89976 0.00000 0.45265 1.54065	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.34712 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255 1.25114 0.00000 0.18108 0.69421	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323 345 0 0 51 213
VINSON	Total	FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VFA 151 VFA 157 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	1.00846 0.76604 0.09626 0.31055 0.08694 3.81641 0.21756 0.66604 0.60082 0.61817 0.60006 0.07812 0.27742 0.07465 3.13284 0.21004 0.43684 0.75602 0.64054 0.70185 0.00000 0.28348 0.09779 3.12656 0.26109 1.15148 0.64329 0.69340 0.65279 0.00000 0.08454	2.33291 2.35425 2.37597 2.75229 2.61558 22.68813 1.66984 2.61035 1.14080 0.30133 1.10010 0.60836 2.07079 1.57793 11.07950 2.00622 2.87728 1.29568 1.90765 1.41588 0.00000 1.97264 1.25708 12.73243 1.72375 3.43365 1.15876 1.28720 1.89976 0.00000 0.45265	1.63338 1.50255 0.44614 0.84013 0.41866 8.09062 1.15707 0.46143 0.68756 0.21565 0.21565 0.33251 0.37574 4.11408 0.80709 0.83908 0.74381 1.10518 0.65357 0.00000 0.53215 0.38250 5.06338 0.86969 1.35341 1.54412 1.23255 1.25114 0.00000 0.18108	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	353 368 128 357 137 2,000 323 252 676 680 717 222 501 220 3,590 121 136 333 268 348 0 142 95 1,443 140 77 323 323 323 345 0 51

CONSTELLATION		E-2C	VAW 116	0.27608	2.16685	8.10581	3	2	2	2	78
	Dec-99	EA-6B	VAQ 131	0.82332	8.50747	2.40230	3	2	2	2	53
		FA-18C	VMFA 323	1.13494	3.29329	9.39683	3	2	2	2	164
		FA-18C	VFA 151	0.74988	2.44562	-3.10108	3	2	2	2	151
		FA-18C	VFA 137	0.76277	2.93282	-3.00373	3	2	2	2	138
		HH-60H		0.05648	1.85954	0.11670	3	2	2	2	97
		S-3B	VS 38	0.32192	4.89514	0.61917	3	2	2	2	168
		SH-60F		0.14201	2.33820	0.57718	3	2	2	2	82
	Total		102	4.26741	28.43892	15.11318	3	2	2	2	931
STENNIS	TOtal	E-2C	VAW 112	0.36850	6.18471	16.84764	3	2	1	9	85
SIEMNIS							3	2			67
		EA-6B	VAQ 138	1.11755	6.37058	1.81040			1	9	
			VFA 146	0.74585	2.29761	2.46292	3	2	1	9	206
			VMFA 314	0.98738	1.79680	1.12648	3	2	1	9	279
			VFA 147	0.74925	3.40806	2.56105	3	2	1	9	161
		HH-60H	HS 8	0.13507	3.13926	1.06640	3	2	1	9	54
		S-3B	VS 33	0.32053	3.09115	1.76574	3	2	1	9	127
		SH-60F	HS 8	0.10971	2.59628	0.65165	3	2	1	9	83
	Total			4.53384	28.88445	28.29228	3	2	1	9	1,063
VINSON		E-2C	VAW 117	0.21421	3.53665	1.37337	3	2	3	11	109
		EA-6B	VAQ 135	0.62600	6.61240	4.63199	3	2	3	11	97
		FA-18A		0.72712	0.86275	0.83544	3	2	3	11	299
		FA-18C		0.73465	1.64964	1.45512	3	2	3	11	279
		FA-18C		0.96024	2.30047	2.12154	3	2	3	11	215
		HH-60H		0.00000	0.00000	0.00000	3	2	3	11	0
		S-3B	VS 29				3	2	3	11	165
				0.30607	1.22613	0.40127					
	T-4-1	SH-60F	H5 0	0.09119	1.07317	0.40764	3	2	3	11	141
	Total			3.65948	17.26119	11.22638	3	2	3	11	1,304
LINCOLN		E-2C	VAW 113	0.56689	12.23829	3.54016	3	2	1	14	44
		EA-6B	VAQ 139	0.60798	4.16572	1.89469	3	2	1	14	92
		FA-18C	VFA 113	0.73592	2.87834	1.04488	3	2	1	14	270
		FA-18C	VFA 115	0.42283	4.03788	2.00980	3	2	1	14	223
		FA-18C	VFA 25	0.78488	4.23471	1.60802	3	2	1	14	258
		FA-18E	VFA 115	0.00000	0.00000	0.00000	3	2	1	14	0
		HH-60H	HS 4	0.08732	0.77194	0.46182	3	2	1	14	46
		S-3B	VS 35	0.36495	2.87664	1.36074	3	2	1	14	168
		SH-60F		0.09611	9.27314	1.17377	3	2	1	14	94
	Total			3.66688	40.47666	13.09387	3	2	1	14	1,194
CONSTELLATION	. • • • • • • • • • • • • • • • • • • •	E-2C	VAW 116	0.31149	7.53385	3.89395	4	2	3	2	25
	lan-00	EA-6B	VAQ 131	0.61367	2.81091	3.99979	4	2	3	2	39
	oai i-oo		VMFA 323	0.32747	0.90442	0.83504	4	2	3	2	250
			VFA 151			1.10823	4	2	3	2	143
				0.69804	0.96168		4			2	
			VFA 137	0.55974	1.14778	1.04745		2	3		183
		HH-60H		0.09181	1.93859	0.11341	4	2	3	2	54
		S-3B	VS 38	0.29000	-13.48213	3.94711	4	2	3	2	52
		SH-60F	HS 2	0.19134	7.11733	1.97429	4	2	3	2	34
	Total			3.08356	8.93243	16.91927	4	2	3	2	778
STENNIS		E-2C	VAW 112	0.30279	4.12575	-0.49699	4	2	2	9	181
		EA-6B	VAQ 138	0.76727	1.86214	0.47019	4	2	2	9	171
		FA-18C	VFA 146	0.75453	2.11647	1.36594	4	2	2	9	373
		FA-18C	VMFA 314	0.26231	1.50988	0.98145	4	2	2	9	386
		FA-18C	VFA 147	0.64093	2.50757	1.18064	4	2	2	9	345
		HH-60H	HS 8	0.09000	1.55454	0.76576	4	2	2	9	125
		S-3B	VS 33	0.31506	2.60175	0.75768	4	2	2	9	276
		SH-60F		0.08681	4.05488	1.06893	4	2	2	9	118
	Total			3.21972	20.33297	6.09360	4	2	2	9	1,973
VINSON		E-2C	VAW 117	0.26755	3.63408	1.14668	4	2	3	11	93
		EA-6B	VAQ 135	0.65014	1.95898	1.17752	4	2	3	11	127
		FA-18A		0.93159	2.26132	0.95367	4	2	3	11	295
		FA-18C		0.63817	1.53293	0.76883	4	2	3	11	309
				0.82092	1.87193		4	2	3		252
		FA-18C				1.27253				11	
		HH-60H		0.00000	0.00000	0.00000	4	2	3	11	0
		S-3B	VS 29	0.28304	1.96560	1.18670	4	2	3	11	157
		SH-60F	HS 6	0.10170	1.39428	0.34207	4	2	3	11	162
	Total			3.69311	14.61911	6.84801	4	2	3	11	1,395
LINCOLN		E-2C	VAW 113	0.19329	1.65511	0.44371	4	2	1	14	284
		E4 0D	VAQ 139	0.66189	0.28273	0.55769	4	2	1	14	169
		EA-6B									
			VFA 113	0.74477	0.69422	0.75197	4	2	1	14	406
		FA-18C		0.74 4 77 0.71757	0.69422 1.40720	0.75197 0.86308	4 4	2	1 1	14 14	406 390
		FA-18C	VFA 113 VFA 115								
		FA-18C FA-18C FA-18C	VFA 113 VFA 115	0.71757	1.40720	0.86308	4	2	1	14	390
		FA-18C FA-18C FA-18C	VFA 113 VFA 115 VFA 25 VFA 115	0.71757 0.60879	1.40720 0.69771	0.86308 0.75367	4 4	2	1 1	14 14	390 441
		FA-18C FA-18C FA-18C FA-18E HH-60H	VFA 113 VFA 115 VFA 25 VFA 115 HS 4	0.71757 0.60879 0.00000 0.08359	1.40720 0.69771 0.00000 1.76450	0.86308 0.75367 0.00000 0.09237	4 4 4	2 2 2 2	1 1 1	14 14 14 14	390 441 0 103
		FA-18C FA-18C FA-18C FA-18E	VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	0.71757 0.60879 0.00000	1.40720 0.69771 0.00000	0.86308 0.75367 0.00000	4 4 4 4	2 2 2	1 1 1	14 14 14	390 441 0
	Total	FA-18C FA-18C FA-18E HH-60H S-3B SH-60F	VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	0.71757 0.60879 0.00000 0.08359 0.28595	1.40720 0.69771 0.00000 1.76450 0.00611	0.86308 0.75367 0.00000 0.09237 0.67279	4 4 4 4	2 2 2 2 2	1 1 1 1	14 14 14 14 14	390 441 0 103 437

CONSTELLATION		E-2C	VAW 116	0.25537	4.78975	3.16606	5	2	3	2	61
	Feb-00	EA-6B	VAQ 131	0.61666	1.88702	1.04418	5	2	3	2	117
		FA-18C	VMFA 323	1.58186	1.08021	0.90933	5	2	3	2	386
		FA-18C	VFA 151	0.57905	0.66806	0.53639	5	2	3	2	259
		FA-18C	VFA 137	0.71055	3.14815	0.89535	5	2	3	2	301
		HH-60H	HS 2	0.14159	2.09829	0.35127	5	2	3	2	76
		S-3B	VS 38	0.27229	8.68319	2.25253	5	2	3	2	67
		SH-60F	HS 2	0.04815	6.04112	0.65535	5	2	3	2	128
	Total			4.20552	28.39578	9.81046	5	2	3	2	1,395
STENNIS		E-2C	VAW 112	0.31076	5.41322	3.72325	5	2	2	9	196
		EA-6B	VAQ 138	0.70534	1.77603	0.48688	5	2	2	9	188
		FA-18C	VFA 146	0.62691	2.40652	0.94461	5	2	2	9	537
		FA-18C	VMFA 314	0.57838	1.02636	0.57256	5	2	2	9	526
		FA-18C	VFA 147	0.62226	2.21476	0.75153	5	2	2	9	543
		HH-60H	HS 8	0.07485	2.14876	0.38746	5	2	2	9	126
		S-3B	VS 33	0.29868	2.57112	0.80096	5	2	2	9	365
		SH-60F	HS 8	0.07778	1.19145	0.48478	5	2	2	9	169
	Total			3.29495	18.74823	8.15201	5	2	2	9	2,651
VINSON		E-2C	VAW 117	0.24595	1.49057	0.78627	5	2	3	11	136
		EA-6B	VAQ 135	0.73264	1.51006	1.40758	5	2	3	11	101
		FA-18A	VFA 97	0.63575	2.30452	1.41767	5	2	3	11	331
		FA-18C	VFA 22	0.61237	1.69850	0.94769	5	2	3	11	359
		FA-18C	VFA 94	0.69477	1.29700	0.71205	5	2	3	11	403
		HH-60H	HS 6	0.00000	0.00000	0.00000	5	2	3	11	0
		S-3B	VS 29	0.30810	0.76860	0.62612	5	2	3	11	215
		SH-60F		0.11250	0.27526	0.48321	5	2	3	11	124
	Total			3.34208	9.34451	6.38059	5	2	3	11	1,668
LINCOLN		E-2C	VAW 113	0.23299	2.73985	0.50787	5	2	1	14	180
		EA-6B	VAQ 139	0.28851	2.97267	1.02047	5	2	1	14	155
			VFA 113	0.66601	1.65928	0.90783	5	2	1	14	334
			VFA 115	0.66673	2.01611	0.93724	5	2	1	14	347
		FA-18C		0.76602	1.93111	1.12178	5	2	1	14	397
			VFA 115	0.00000	0.00000	0.00000	5	2	1	14	0
		HH-60H		0.08071	0.49332	0.14519	5	2	1	14	125
		S-3B	VS 35	0.29995	1.98186	1.11682	5	2	1	14	336
			HS 4	0.08888	2.61845	0.35253	5	2	1	14	201
	Total			3.08981	16.41267	6.10974	5	2	1	14	2,075
CONSTELLATION		E-2C	VAW 116	0.22609	5.02857	2.97758	6	2	3	2	90
		EA-6B	VAQ 131	0.60560	3.32158	0.72571	6	2	3	2	133
			VMFA 323	1.21134	1.72886	1.31549	6	2	3	2	301
			VFA 151	0.75399	2.04274	1.27307	6	2	3	2	379
			VFA 137	0.96327	2.73244	1.24982	6	2	3	2	304
		HH-60H		0.05871	2.60031	0.88850	6	2	3	2	30
		S-3B	VS 38	0.30594	19.24159	0.67192	6	2	3	2	140
		SH-60F		0.11691	2.20283	1.06562	6	2	3	2	117
	Total			4.24185	38.89891	10.16772	6	2	3	2	1,494
STENNIS		E-2C	VAW 112	0.23719	5.73529	0.03224	6	2	2	9	343
		EA-6B	VAQ 138	0.69683	2.59004	0.80831	6	2	2	9	265
			VFA 146	0.61574	2.06342	0.83684	6	2	2	9	717
			VMFA 314	0.49428	0.68592	0.75594	6	2	2	9	765
			VFA 147	0.57072	1.69088	0.66956	6	2	2	9	788
		HH-60H		0.03335	1.58897	0.41337	6	2	2	9	167
		S-3B	VS 33	0.20303	1.91099	0.68680	6	2	2	9	566
		SH-60F		0.10645	0.41293	0.28000	6	2	2	9	235
	Total			2.95758	16.67844	4.48307	6	2	2	9	3,847
VINSON		E-2C	VAW 117	0.23928	4.00335	1.86887	6	2	3	11	160
		EA-6B	VAQ 135	0.54718	3.22502	1.32262	6	2	3	11	161
		FA-18A		0.66575	3.26339	1.06948	6	2	3	11	229
		FA-18C		0.79922	3.31213	1.31903	6	2	3	11	329
		FA-18C		0.72058	3.66509	0.91842	6	2	3	11	311
		HH-60H		0.13160	5.02587	1.08368	6	2	3	11	14
		S-3B	VS 29	0.30628	3.11173	0.63265	6	2	3	11	216
		SH-60F		0.12874	0.62713	0.30682	6	2	3	11	154
	Total			3.53863	26.23372	8.52157	6	2	3	11	1,574
LINCOLN		E-2C	VAW 113	0.23068	2.44990	0.90443	6	2	1	14	159
		EA-6B	VAQ 139	0.90140	1.21879	0.65014	6	2	1	14	174
			VFA 113	0.71822	2.22823	0.77109	6	2	1	14	390
			VFA 115	0.72606	2.35077	0.75826	6	2	1	14	452
		FA-18C		0.78617	1.82247	0.95167	6	2	1	14	344
			VFA 115	0.00000	0.00000	0.00000	6	2	1	14	0
		HH-60H		0.11206	3.34172	0.56713	6	2	1	14	121
		S-3B	VS 35	0.32843	9.77501	0.92121	6	2	1	14	294
		SH-60F		0.07035	3.36371	0.87974	6	2	1	14	149
	Total			3.87338	26.55060	6.40366	6	2	1	14	2,083

CONSTELLATION		E-2C	VAW 116	0.19858	1.00027	0.77078	7	2	3	2	360
	Apr-00	EA-6B	VAQ 131	0.58518	2.76569	1.54176	7	2	3	2	102
	•	FA-18C	VMFA 323	0.69374	1.03175	-20.22299	7	2	3	2	258
		FA-18C	VFA 151	0.66457	2.69384	12.79098	7	2	3	2	233
			VFA 137	0.65897	2.70533	11.67709	7	2	3	2	253
		HH-60H		-0.12165	2.27962	0.53386	7	2	3	2	26
		S-3B	VS 38	0.31139	4.99051	1.06113	7	2	3	2	193
		SH-60F		0.10588	2.15940	1.05626	7	2	3	2	138
	Total		102	3.09666	19.62641	9.20887	7	2	3	2	1,561
STENNIS	I Otal	E-2C	\/^\^/ 110	0.24756	2.89443	0.26085	7	2	2	9	322
SICINIS			VAW 112				7	2	2	9	
		EA-6B	VAQ 138	0.69755	1.42817	1.10961					219
			VFA 146	0.62734	1.01501	-0.42382	7	2	2	9	759
			VMFA 314	0.83101	1.95225	2.48861	7	2	2	9	765
			VFA 147	0.70723	1.11400	-0.55387	7	2	2	9	657
		HH-60H		0.08142	1.05920	0.27628	7	2	2	9	230
		S-3B	VS 33	0.28316	2.53382	0.72771	7	2	2	9	522
		SH-60F	HS 8	0.09585	0.83647	0.84511	7	2	2	9	175
	Total			3.57113	12.83335	4.73049	7	2	2	9	3,649
VINSON		E-2C	VAW 117	0.29457	-0.67963	2.05978	7	2	3	11	84
		EA-6B	VAQ 135	0.47067	-0.78460	1.30966	7	2	3	11	78
		FA-18A	VFA 97	0.73921	2.21794	0.75054	7	2	3	11	183
		FA-18C	VFA 22	0.73398	0.49551	0.71444	7	2	3	11	310
		FA-18C	VFA 94	0.68358	0.43935	1.07957	7	2	3	11	295
		HH-60H		0.07343	3.58657	0.72116	7	2	3	11	18
		S-3B	VS 29	0.27006	1.92044	1.01052	7	2	3	11	163
		SH-60F		0.11231	1.08599	0.50666	7	2	3	11	121
	Total	GI 1 001	1100	3.37780	8.28156	8.15234	7	2	3	11	1,252
LINCOLN	· Ottai	E-2C	VAW 113	0.28067	4.79442	1.37807	7	2	1	14	104
шиоошч		EA-6B	VAQ 139	0.52809	3.96850	2.87818	7	2	1	14	78
			VFA 113	0.74523	1.27547	0.89934	7	2	1	14	277
			VFA 115	0.72161	0.28121	0.73577	7	2	1	14	338
		FA-18C		0.83815	0.45913	1.25672	7	2	1	14	223
			VFA 115	0.00000	0.00000	0.00000	7	2	1	14	0
		HH-60H		0.19295	4.96098	2.60549	7	2	1	14	21
		S-3B					7	2	1		175
			VS 35	0.30268	-2.64663	1.36327				14	
	Tatal	SH-60F	HS 4	0.07458	2.12383	0.97088	7 7	2 2	1	14	115
CONSTELLATION	Total	F 200	\/0\0/440	3.68395	15.21692	12.08772			1	14	1,331
	Na 00	E-2C	VAW 116	0.20964	1.20684	-3.33488	8	2	3	2	130
	May-00		VAQ 131	0.71269	-2.73575	7.63082	8	2	3	2	82
			VMFA 323	0.88597	0.14529	0.52245	8	2	3	2	257
			VFA 151	0.81508	1.68523	-7.04682	8	2	3	2	180
			VFA 137	0.80554	1.11765	-5.51918	8	2	3	2	207
		HH-60H		0.11035	-1.82476	31.71793	8	2	3	2	61
		S-3B	VS 38	0.28257	-0.28134	-10.50069	8	2	3	2	239
		SH-60F	HS2	0.05465	0.39362	12.15391	8	2	3	2	155
	Total			3.87648	-0.29322	25.62354	8	2	3	2	1,311
STENNIS		E-2C	VAW 112	0.27119	4.46161	1.19781	8	2	2	9	225
		EA-6B	VAQ 138	0.71223	2.93567	1.13511	8	2	2	9	149
		FA-18C	VFA 146	0.63067	2.29911	1.58333	8	2	2	9	567
		FA-18C	VMFA 314	0.62369	1.31532	-1.44369	8	2	2	9	575
		FA-18C	VFA 147	0.60829	2.49786	1.48638	8	2	2	9	609
		HH-60H	HS 8	0.08923	1.08823	0.32232	8	2	2	9	126
		S-3B	VS 33	0.29694	2.71600	0.87068	8	2	2	9	427
		SH-60F		0.07750	0.74652	0.43183	8	2	2	9	172
	Total			3.30974	18.06032	5.58377	8	2	2	9	2,850
VINSON		E-2C	VAW 117	0.26017	3.85144	-0.29159	8	2	3	11	104
		EA-6B	VAQ 135	0.94911	0.16874	-0.25409	8	2	3	11	131
		FA-18A		0.72447	5.68791	1.16633	8	2	3	11	249
		FA-18C		0.56843	1.85379	0.62421	8	2	3	11	214
		FA-18C		0.57246	2.44350	0.70515	8	2	3	11	261
							8	2			52
		HH-60H S-3B	VS 29	0.06269 0.28802	0.95705 1.44483	0.21213 0.73230	8	2	3 3	11 11	210
		SH-60F		0.11936	0.75508	0.09721	8	2	3	11	143
	Total		160								
LINCOLN	Total		\/\\\/ 110	3.54471	17.16234	2.99165	8 8	2 2	3 1	11	1,365
LINCOLN		E-2C	VAW 113	0.26445	4.04917	0.61945			1	14	213
		EA-6B	VAQ 139	0.62786	3.39860	1.37963	8	2	1	14	132
			VFA 113	0.75301	1.50083	1.09596	8	2	1	14	320
			VFA 115	0.77317	1.55589	0.97479	8	2	1	14	404
		FA-18C		0.78077	2.12140	0.83447	8	2	1	14	381
			VFA 115	0.00000	0.00000	0.00000	8	2	1	14	0
		HH-60H		0.08450	1.08395	0.20136	8	2	1	14	96
		S-3B	VS 35	0.29378	1.15429	0.75916	8	2	1	14	333
		SH-60F	HS4	0.09258	0.78272	0.17251	8	2	1	14	239
	Total			3.67013	15.64685	6.03734	8	2	1	14	2,117

CONSTELLATION		E-2C	VAW 116	0.38005	8.52219	-0.96828	9	2	3	2	62
	Jun-00	EA-6B	VAQ 131	0.60549	5.40690	1.29289	9	2	3	2	89
		FA-18C	VMFA 323	0.99749	1.65223	0.40443	9	2	3	2	177
		FA-18C	VFA 151	0.69696	3.34750	2.10583	9	2	3	2	175
		FA-18C	VFA 137	0.83704	4.47296	1.80284	9	2	3	2	250
		HH-60H	HS 2	0.14898	1.06526	0.27280	9	2	3	2	71
		S-3B	VS 38	0.30802	3.62185	0.78969	9	2	3	2	136
		SH-60F	HS 2	0.10899	3.15871	0.77134	9	2	3	2	99
	Total			4.08301	31.24761	6.47154	9	2	3	2	1,059
STENNIS		E-2C	VAW 112	0.24131	8.93612	-1.51070	9	2	2	9	69
		EA-6B	VAQ 138	0.94685	19.03866	2.41033	9	2	2	9	38
		FA-18C	VFA 146	0.76232	8.56141	2.04985	9	2	2	9	127
		FA-18C	VMFA 314	0.79095	7.78206	3.25119	9	2	2	9	143
		FA-18C	VFA 147	0.78913	7.19949	2.38112	9	2	2	9	119
		HH-60H	HS8	0.08703	5.33969	0.51412	9	2	2	9	77
		S-3B	VS 33	0.25375	5.79085	1.23710	9	2	2	9	136
		SH-60F	HS8	0.08101	3.42536	1.07081	9	2	2	9	55
	Total			3.95235	66.07364	11.40382	9	2	2	9	765
VINSON		E-2C	VAW 117	0.22675	2.13083	0.56053	9	2	3	11	126
		EA-6B	VAQ 135	0.78342	1.36446	0.33540	9	2	3	11	193
		FA-18A	VFA 97	0.73914	6.39259	1.45986	9	2	3	11	214
		FA-18C	VFA 22	0.72066	4.66908	0.96000	9	2	3	11	220
		FA-18C	VFA 94	0.68845	2.92887	0.85174	9	2	3	11	197
		HH-60H	HS6	0.06082	0.45248	0.66931	9	2	3	11	16
		S-3B	VS 29	0.28762	2.05739	0.50104	9	2	3	11	146
		SH-60F		0.09525	2.52696	0.50209	9	2	3	11	101
	Total			3.60212	22.52266	5.83998	9	2	3	11	1,213
LINCOLN		E-2C	VAW 113	0.24934	12.67394	0.55487	9	2	1	14	280
		EA-6B	VAQ 139	0.68328	3.02728	0.53857	9	2	1	14	203
			VFA 113	0.63813	2.92569	0.62087	9	2	1	14	533
			VFA 115	0.61853	3.98300	0.82662	9	2	1	14	492
		FA-18C		0.62997	2.87541	0.67312	9	2	1	14	524
		FA-18E	VFA 115	0.00000	0.00000	0.00000	9	2	1	14	0
		HH-60H		0.10007	1.01686	0.22384	9	2	1	14	181
		S-3B	VS 35	0.27766	2.13547	0.37954	9	2	1	14	612
			HS 4	0.09159	1.48670	0.37901	9	2	1	14	338
	Total			3.28855	30.12435	4.19644	9	2	1	14	3,162
CONSTELLATION	. • • • •	E-2C	VAW 116	0.24267	1.55923	1.08724	10	2	1	2	127
	Jul-00	EA-6B	VAQ 131	0.85501	21.39565	1.89919	10	2	1	2	86
			VMFA 323	0.02010	4.06210	0.56217	10	2	1	2	328
			VFA 151	0.82319	0.82825	0.78784	10	2	1	2	355
			VFA 137	0.82313	0.76556	0.54744	10	2	1	2	351
		HH-60H		0.09781	0.61017	0.11757	10	2	1	2	93
		S-3B	VS 38	0.32894	2.01145	1.13635	10	2	1	2	158
		SH-60F		0.18212	1.64029	0.74755	10	2	1	2	95
	Total		102	3.37297	32.87269	6.88535	10	2	1	2	1,593
STENNIS	Total	E-2C	VAW 112	0.23014	2.13976	0.84869	10	2	2	9	56
O I LI WIO		EA-6B	VAQ 138	0.58979	-3.17220	0.94854	10	2	2	9	38
			VFA 146	0.60631	7.49957	0.68045	10	2	2	9	134
			VMFA 314	0.72946	-1.73669	0.98967	10	2	2	9	312
			VFA 147	0.71740	7.01753	1.22410	10	2	2	9	134
		HH-60H		0.08089	1.67305	0.62163	10	2	2	9	38
		S-3B	VS 33	0.32368	-7.66243	0.69121	10	2	2	9	66
		SH-60F		0.08032	6.55462	1.88668	10	2	2	9	17
	Total		1100	3.35799	12.31320	7.89097	10	2	2	9	794
VINSON	. •	E-2C	VAW 117	0.17893	1.72000	0.71946	10	2	1	11	95
VIIIOON		EA-6B	VAQ 135	0.73137	1.45188	0.17441	10	2	1	11	162
			VFA 97	0.75584	-4.98900	0.50642	10	2	1	11	202
			VFA 22	0.75946	2.88173	1.42751	10	2	1	11	196
			VFA 94	0.79470	2.77591	1.05235	10	2	1	11	237
		HH-60H		0.00000	0.00000	0.00000	10	2	1	11	0
		S-3B	VS 29	0.32214	0.89021	0.38891	10	2	1	11	208
		SH-60F		0.09274	1.44220	0.49608	10	2	1	11	94
	Total		100	3.63517	6.17293	4.76514	10	2	1	11	1,194
LINCOLN	· Otal	E-2C	VAW 113	0.18484	-14.37558	2.16110	10	2	1	14	76
		EA-6B	VAVV 113 VAQ 139	0.71855	-1.21882	1.83122	10	2	1	14	63
			VFA 113	0.71835	0.52915	1.04384	10	2	1	14	265
			VFA 115 VFA 115	0.81139	0.51993	1.73074	10	2	1	14	223
			VFA 115 VFA 25	0.41644	0.31849	1.73074	10	2	1	14	223 254
			VFA 115	0.00000	0.00000	0.00000	10	2	1	14	0
		HH-60H		0.0000	3.11873	1.47122	10	2	1	14	30
		S-3B	VS 35	0.36979	0.42155	3.17016	10	2	1	14	86
		SH-60F		0.10043	1.05697	0.28595	10	2	1	14	153
	Total		. 10 -	3.45011	-9.62960	12.71147	10 10	2	1	14	1,150
	· Otal	1		3.43011	-3.02300	14.7 1 147	.0	-	•		1,130

CONSTELLATION											
		E-2C	VAW 116	0.55027	-2.33715	1.58922	11	2	1	2	41
	Aug-00	EA-6B	VAQ 131	0.50083	-0.36216	2.44468	11	2	1	2	106
	•	FA-18C	VMFA 323	1.20943	0.26808	0.56851	11	2	1	2	363
			VFA 151	0.72302	0.17800	0.84276	11	2	1	2	264
			VFA 137	0.75746	1.30676	3.75422	11	2	1	2	215
		HH-60H		0.07920	0.31930	0.32326	11	2	1	2	95
		S-3B	VS 38	0.23299	2.58393	1.51006	11	2	1	2	223
		SH-60F		0.09925	1.74108	0.92705	11	2	1	2	127
	Total	011001	102	4.15245	3.69785	11.95978	11	2	1	2	1,434
STENNIS	iotai	E-2C	VAW 112	0.26598	2.11719	3.51284	11	2	3	9	57
SICINIS							11	2	3		
		EA-6B	VAQ 138	0.78015	0.31530	2.13633				9	55
			VFA 146	0.59362	-3.49968	-0.41409	11	2	3	9	290
			VMFA 314	0.26284	5.04827	1.07887	11	2	3	9	522
			VFA 147	0.79347	-6.40789	-0.44263	11	2	3	9	160
		HH-60H		0.09625	4.24621	0.50964	11	2	3	9	26
		S-3B	VS 33	0.29991	8.43980	1.94816	11	2	3	9	82
		SH-60F	HS 8	0.06677	3.20897	0.09981	11	2	3	9	61
	Total			3.15900	13.46817	8.42893	11	2	3	9	1,252
VINSON		E-2C	VAW 117	0.32161	0.49628	0.28394	11	2	1	11	114
		EA-6B	VAQ 135	0.70774	1.90248	1.15284	11	2	1	11	100
		FA-18A	VFA 97	0.82162	3.63421	0.91617	11	2	1	11	215
		FA-18C	VFA 22	0.69769	1.57557	2.13375	11	2	1	11	262
		FA-18C	VFA 94	0.82750	1.14344	0.65784	11	2	1	11	286
		HH-60H		0.16830	0.99966	0.30276	11	2	1	11	55
		S-3B	VS 29	0.26148	3.03285	0.78533	11	2	1	11	210
		SH-60F		0.12047	1.07199	0.69902	11	2	1	11	153
	Total	011001	1100	3.92641	13.85648	6.93166	11	2	1	11	1,396
LINCOLN	· Ottai	E-2C	VAW 113	0.26293	7.79727	0.90718	11	2	2	14	184
шиоошч		EA-6B	VAQ 139	0.57939	2.48557	1.12910	11	2	2	14	190
			VFA 113	0.71647	2.00726	1.05007	11	2	2	14	324
			VFA 115 VFA 115			1.03902	11	2	2	14	348
				0.75702	3.16633						312
		FA-18C		1.17988	3.71087	1.34078	11	2	2	14	
			VFA 115	0.00000	0.00000	0.00000	11	2	2	14	0
		HH-60H		0.09827	3.21183	0.42693	11	2	2	14	77
		S-3B	VS 35	0.29959	3.58427	1.10536	11	2	2	14	336
		SH-60F	HS 4	0.08985	2.96155	0.57087	11	2	2	14	151
	Total			3.98339	28.92496	7.56931	11	2	2	14	1,921
CONSTELLATION		E-2C	VAW 116	0.27361	4.46535	4.08185	12	2	1	2	128
	Sep-00	EA-6B	VAQ 131	0.91687	2.61088	1.61763	12	2	1	2	136
		FA-18C	VMFA 323	0.75442	4.34962	0.57042	12	2	1	2	270
		FA-18C	VFA 151	1.20026	7.80677	3.75613	12	2	1	2	185
							10	•			
			VFA 137	0.93952	6.56029	-0.12536	12	2	1	2	283
		FA-18C	VFA 137 HS 2				12		1 1		
		FA-18C HH-60H	HS2	0.16536	1.44213	0.13366		2		2	61
		FA-18C HH-60H S-3B	HS 2 VS 38	0.16536 0.09066	1.44213 2.78348	0.13366 0.37084	12 12	2 2	1 1	2 2	61 695
	Total	FA-18C HH-60H	HS 2 VS 38	0.16536 0.09066 0.13507	1.44213 2.78348 8.72873	0.13366 0.37084 0.78618	12 12 12	2 2 2	1 1 1	2 2 2	61 695 105
STENNIS	Total	FA-18C HH-60H S-3B SH-60F	HS 2 VS 38 HS 2	0.16536 0.09066 0.13507 4.47576	1.44213 2.78348 8.72873 38.74725	0.13366 0.37084 0.78618 11.19136	12 12 12 12	2 2 2 2	1 1 1 1	2 2 2 2	61 695 105 1,863
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C	HS 2 VS 38 HS 2 VAW 112	0.16536 0.09066 0.13507 4.47576 0.25718	1.44213 2.78348 8.72873 38.74725 4.39417	0.13366 0.37084 0.78618 11.19136 1.63956	12 12 12 12 12	2 2 2 2 2	1 1 1 1 3	2 2 2 2 9	61 695 105 1,863 224
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B	HS 2 VS 38 HS 2 VAW 112 VAQ 138	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071	12 12 12 12 12	2 2 2 2 2 2	1 1 1 1 3 3	2 2 2 2 9 9	61 695 105 1,863 224 63
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304	12 12 12 12 12 12 12	2 2 2 2 2 2 2	1 1 1 1 3 3 3	2 2 2 2 9 9	61 695 105 1,863 224 63 230
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930	12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3	2 2 2 2 9 9 9	61 695 105 1,863 224 63 230 431
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172	12 12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3	2 2 2 2 9 9 9 9	61 695 105 1,863 224 63 230 431 246
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658	12 12 12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3	2 2 2 2 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94
STENNIS	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489	12 12 12 12 12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 3 3 3 3 3 3 3 3	2 2 2 2 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152
STENNIS		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660	12 12 12 12 12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21
	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287	12 12 12 12 12 12 12 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461
STENNIS		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10366 0.37305 0.15086 4.50553 0.36945	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 92 VFA 94	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 9	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 92 VFA 94	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C HH-60H	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414 368 112
		FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18A FA-18C FA-18C HH-60H S-3B	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414 368 112
	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18A FA-18C FA-18C HH-60H S-3B	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72293 1.40878 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414 368 112 181 68
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C H-60H S-3B SH-60F	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72287 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18553 4.50136	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B SH-60F	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 4.50553 0.37305 0.15086 4.50553 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563 4.50136	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628 269
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10366 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18553 4.50136 0.27104 0.71729 0.72980	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628 269 134 379
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 113 VFA 115	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563 4.50136 0.27104 0.71729 0.72980 0.75045	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414 368 112 181 68 1,628 269 134 379 395
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 113 VFA 115 VFA 25	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.12887 0.10366 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18553 4.50136 0.27104 0.71729 0.72980 0.75045 0.75347	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156 3.73246	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331 1.76493	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 119 249 414 368 112 181 68 1,628 269 134 379 395 376
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C H-3C H-3C H-3C H-3C H-3C H-3C H-3C H-3	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 115 VFA 25 VFA 115	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 0.37305 0.15086 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18553 4.50136 0.27104 0.71729 0.72980 0.75045 0.00000	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156 3.73246 0.00000	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331 1.76493	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628 269 134 379 395 376 0
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563 4.50136 0.27104 0.71729 0.72980 0.75045 0.75347 0.00000 0.10035	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156 3.73246 0.00000 1.79542	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331 1.76493 0.00000 0.40527	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628 269 134 379 395 376 0 102
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10366 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563 4.50136 0.27104 0.71729 0.72980 0.75045 0.75347 0.00000 0.10035 0.34782	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156 3.73246 0.00000 1.79542 9.58347	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331 1.76493 0.00000 0.40527 0.41718	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 269 134 379 395 376 0 102 488
VINSON	Total	FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-	HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4 VS 35	0.16536 0.09066 0.13507 4.47576 0.25718 0.76229 0.72093 1.40878 0.72887 0.10356 4.50553 0.36945 0.80678 1.06075 0.81694 0.80885 0.13564 0.31742 0.18563 4.50136 0.27104 0.71729 0.72980 0.75045 0.75347 0.00000 0.10035	1.44213 2.78348 8.72873 38.74725 4.39417 -2.04102 4.49691 1.82233 4.11603 1.54826 4.15173 14.72349 33.21190 18.30214 -0.56588 7.94560 5.19612 3.11286 0.42201 6.10395 5.35097 45.86778 -7.18373 1.33129 3.39090 3.88156 3.73246 0.00000 1.79542	0.13366 0.37084 0.78618 11.19136 1.63956 1.15071 -0.14304 3.33930 -1.41172 0.23658 1.21489 5.21660 11.24287 1.32820 1.42790 0.72344 0.04246 0.54639 0.25856 1.20292 1.25826 6.78811 0.98635 1.70124 1.43848 1.71331 1.76493 0.00000 0.40527	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11	61 695 105 1,863 224 63 230 431 246 94 152 21 1,461 119 249 414 368 112 181 68 1,628 269 134 379 395 376 0 102

CONSTELLATION		E-2C	VAW 116	0.38133	3.60482	0.18781	1	3	1	2	307
	Oct-00	EA-6B	VAQ 131	1.15796	1.50144	1.19937	1	3	1	2	191
		FA-18C	VMFA 323	0.87242	2.50372	1.66289	1	3	1	2	525
		FA-18C	VFA 151	1.11948	1.62006	1.01774	1	3	1	2	492
		FA-18C	VFA 137	1.03117	1.74583	0.72349	1	3	1	2	548
		HH-60H	HS2	0.16512	0.56572	0.45450	1	3	1	2	177
		S-3B	VS 38	0.86624	1.68607	0.71097	1	3	1	2	313
		SH-60F	HS2	0.13773	0.34211	0.20461	1	3	1	2	349
	Total			5.73145	13.56977	6.16137	1	3	1	2	2,902
STENNIS		E-2C	VAW 112	0.35269	0.45185	0.35524	1	3	3	9	180
		EA-6B	VAQ 138	1.17201	4.06863	0.46697	1	3	3	9	87
		FA-18C	VFA 146	1.13761	2.82793	0.82375	1	3	3	9	204
		FA-18C	VMFA 314	1.16642	2.07297	1.50176	1	3	3	9	394
		FA-18C	VFA 147	1.24084	1.29688	0.41454	1	3	3	9	291
		HH-60H	HS8	0.08892	1.17252	0.37634	1	3	3	9	54
		S-3B	VS 33	0.49156	1.53809	1.02767	1	3	3	9	118
		SH-60F	HS 8	0.16032	0.34093	0.43672	1	3	3	9	128
	Total			5.81036	13.76981	5.40300	1	3	3	9	1,455
VINSON		E-2C	VAW 117	0.46554	0.63508	0.37572	1	3	1	11	112
		EA-6B	VAQ 135	1.09541	0.78981	1.35466	1	3	1	11	136
		FA-18A	VFA 97	1.36975	4.38636	1.08448	1	3	1	11	251
		FA-18C	VFA 22	1.17979	3.02422	1.24903	1	3	1	11	267
		FA-18C	VFA 94	1.10567	3.29451	1.24893	1	3	1	11	337
		HH-60H	HS 6	0.14409	0.82640	0.33554	1	3	1	11	91
		S-3B	VS 29	0.43808	1.24468	0.30036	1	3	1	11	259
		SH-60F		0.11575	1.06181	2.19354	1	3	1	11	88
	Total			5.91408	15.26287	8.14226	1	3	1	11	1,542
LINCOLN		E-2C	VAW 113	0.38840	2.93456	0.75620	1	3	2	14	299
		EA-6B	VAQ 139	0.96538	2.11408	1.36198	1	3	2	14	246
			VFA 113	0.99983	1.55738	0.94201	1	3	2	14	492
			VFA 115	1.08587	1.57052	0.94603	1	3	2	14	452
		FA-18C		1.08699	2.26668	1.05672	1	3	2	14	501
			VFA 115	0.00000	0.00000	0.00000	1	3	2	14	0
		HH-60H		0.14160	0.63009	0.37214	1	3	2	14	106
		S-3B	VS 35	0.44208	1.14843	0.49477	1	3	2	14	637
			HS 4	0.15431	0.45154	0.35216	1	3	2	14	304
	Total			5.26447	12.67328	6.28202	1	3	2	14	3,035
CONSTELLATION		E-2C	VAW 116	0.41368	3.48018	0.82903	2	3	1	2	157
	Nov-00	EA-6B	VAQ 131	1.13186	4.01664	1.12204	2	3	1	2	144
			VMFA 323	1.15951	2.59344	1.80233	2	3	1	2	359
			VFA 151	2.01868	4.07035	2.08164	2	3	1	2	198
			VFA 137	3.63943	7.96398	3.80890	2	3	1	2	111
		HH-60H		0.14788	0.59223	0.28195	2	3	1	2	138
		S-3B	VS 38	0.94237	6.52193	1.08185	2	3	1	2	164
		SH-60F		0.13241	2.74451	0.97675	2	3	1	2	174
	Total			9.58581	31.98326	11.98448	2	3	1	2	1,445
STENNIS		E-2C	VAW 112	0.38428	17.87537	8.94421	2	3	3	9	52
		EA-6B	VAQ 138	1.13337	4.18050	0.97656	2	3	3	9	98
			VFA 146	1.15443	1.48699	0.82539	2	3	3	9	308
			VMFA 314	1.76799	1.47881	1.30123	2	3	3	9	379
			VFA 147	1.11042	1.83228	0.72866	2	3	3	9	289
		HH-60H	HS 8	0.15602	3.57029	0.44413	2	3	3	9	86
		S-3B	VS 33	0.48230	4.94123	1.10668	2	3	3	9	172
		SH-60F		0.14116	2.80231	1.76135	2	3	3	9	47
	Total			6.32996	38.16777	16.08821	2	3	3	9	1,431
VINSON		E-2C	VAW 117	0.40811	2.47837	0.76535	2	3	1	11	163
		EA-6B	VAQ 135	1.08428	2.90994	0.93993	2	3	1	11	130
		FA-18A		1.13941	3.65469	0.93557	2	3	1	11	324
		FA-18C		1.10403	2.35270	1.03414	2	3	1	11	380
		FA-18C		1.18320	2.35086	1.26342	2	3	1	11	353
		HH-60H		0.15628	0.45853	0.11090	2	3	1	11	88
		S-3B	VS 29	0.43495	3.02110	0.83438	2	3	1	11	266
		SH-60F		0.16201	1.36774	0.25900	2	3	1	11	150
	Total			5.67227	18.59393	6.14269	2	3	1	11	1,855
LINCOLN		E-2C	VAW 113	0.41672	2.36349	0.94235	2	3	2	14	267
		EA-6B	VAQ 139	0.96675	2.27293	1.10083	2	3	2	14	220
			VFA 113	1.03073	1.65414	0.99924	2	3	2	14	498
			VFA 115	1.10073	1.39961	0.87434	2	3	2	14	484
		FA-18C		1.11135	1.44967	0.93153	2	3	2	14	487
			VFA 115	0.00000	0.00000	0.00000	2	3	2	14	0
		HH-60H		0.13106	0.67106	0.54011	2	3	2	14	137
		S-3B	VS 35	0.44803	1.54686	0.48920	2	3	2	14	584
		SH-60F		0.13829	0.59381	0.45494	2	3	2	14	358
	Total			5.34365	11.95156	6.33254	2	3	2	14	3,035

CONSTELLATION		E-2C	VAW 116	0.34953	3.17425	1.43891	3	3	1	2	125
0	Dec-00	EA-6B	VAQ 131	1.13204	3.61169	2.63563	3	3	1	2	91
		FA-18C	VMFA 323	0.01544	4.25672	1.67039	3	3	1	2	264
		FA-18C	VFA 151	1.24738	2.35624	1.43056	3	3	1	2	242
		FA-18C	VFA 137	1.19981	1.31046	1.16238	3	3	1	2	223
		HH-60H	HS2	0.14346	1.12755	0.30322	3	3	1	2	111
		S-3B	VS 38	0.51440	5.91989	0.92300	3	3	1	2	189
		SH-60F	HS2	0.14747	11.59930	2.76001	3	3	1	2	51
	Total			4.74953	33.35609	12.32410	3	3	1	2	1,295
STENNIS		E-2C	VAW 112	0.61381	2.15584	15.31073	3	3	3	9	49
		EA-6B	VAQ 138	1.38863	-4.86428	2.00253	3	3	3	9	36
			VFA 146	1.02270	1.85233	1.59358	3	3	3	9	192
		FA-18C	VMFA 314	1.24657	1.74470	0.80051	3	3	3	9	312
			VFA 147	1.09634	5.88013	2.20927	3	3	3	9	168
		HH-60H		0.18300	3.27653	0.39790	3	3	3	9	57
		S-3B	VS 33	0.43105	2.44618	1.20183	3	3	3	9	207
			HS 8	0.15795	1.17015	0.60867	3	3	3	9	88
	Total	011001	1100	6.14004	13.66157	24.12500	3	3	3	9	1,108
VINSON	· Otta	E-2C	VAW 117	0.38261	-0.18019	0.99617	3	3	1	11	93
		EA-6B	VAQ 135	1.27933	1.29918	1.76507	3	3	1	11	57
		FA-18A		1.22629	4.92130	2.16672	3	3	1	11	215
		FA-18C		1.13075	3.11451	1.31980	3	3	1	11	202
		FA-18C		1.01010	4.65170	1.63338	3	3	1	11	221
		HH-60H		0.16829	1.73987	0.93902	3	3	1	11	52
		S-3B	VS 29	0.43276	1.45575	2.66712	3	3	1	11	166
		SH-60F	HS 6	0.43270	7.78443	2.52672	3	3	1	11	31
	Total	3H-00F	по о				3	3	1		
LINCOLN	TOLAI	F 00	\/0\0/440	5.77168	24.78655	14.01400				11	1,036
LINCOLN		E-2C	VAW 113	0.41193	7.80057 2.44494	0.81786	3	3 3	2	14	237
		EA-6B	VAQ 139	0.96794		1.02253	3		2	14	211
			VFA 113	1.09017	3.13103	0.75996	3	3	2	14	452
			VFA 115	1.13432	3.14253	0.81811	3	3	2	14	422
		FA-18C		1.10132	3.04244	0.80284	3	3	2	14	435
			VFA 115	0.00000	0.00000	0.00000	3	3	2	14	0
		HH-60H		0.12068	1.10159	0.50458	3	3	2	14	114
		S-3B	VS 35	0.47418	2.90061	0.64202	3	3	2	14	501
		SH-60F	HS4	0.14472	1.72443	0.37213	3	3	2	14	281
	Total			5.44525	25.28816	5.74003	3	3	2	14	2,654
CONSTELLATION		E-2C	VAW 116	0.43457	2.16619	1.36352	4	3	1	2	197
J	Jan-01	EA-6B	VAQ 131	1.05501	2.73750	1.96796	4	3	1	2	151
			VMFA 323	0.94106	0.67310	0.83672	4	3	1	2	424
		FA-18C	VFA 151	1.08437	2.91027	1.20953	4	3	1	2	429
		FA-18C	VFA 137	1.01861	3.35879	1.55543	4	3	1	2	402
		HH-60H	HS 2	0.13934	0.57042	0.28563	4	3	1	2	101
		S-3B	VS 38	0.21270	1.68089	0.25795	4	3	1	2	744
		SH-60F	HS2	0.14044	1.78624	0.91361	4	3	1	2	205
	Total			5.02610	15.88340	8.39036	4	3	1	2	2,653
STENNIS		E-2C	VAW 112	0.51809	5.54017	8.04980	4	3	3	9	26
		EA-6B	VAQ 138	1.17455	0.71992	0.87516	4	3	3	9	90
		FA-18C	VFA 146	1.05168	2.70734	0.58902	4	3	3	9	287
		FA-18C	VMFA 314	1.21132	1.34775	0.89881	4	3	3	9	393
		FA-18C	VFA 147	1.10836	3.16302	0.90457	4	3	3	9	235
		HH-60H	HS 8	0.24141	2.07076	1.52334	4	3	3	9	21
		S-3B	VS 33	0.42087	3.20572	1.19018	4	3	3	9	182
		SH-60F	HS 8	0.12810	0.10710	0.36548	4	3	3	9	120
	Total			5.85437	18.86177	14.39637	4	3	3	9	1,354
VINSON		E-2C	VAW 117	0.41943	3.05296	1.46535	4	3	1	11	109
		EA-6B	VAQ 135	1.11560	2.52799	1.42568	4	3	1	11	94
		FA-18A		1.36961	2.80009	1.40132	4	3	1	11	350
		FA-18C		1.26442	1.72524	1.03409	4	3	1	11	225
		FA-18C		1.51237	2.53882	1.80995	4	3	1	11	243
		HH-60H		0.09397	2.48321	0.43745	4	3	1	11	63
		S-3B	VS 29	0.47837	2.39943	1.18725	4	3	1	11	170
		SH-60F		0.21644	1.76089	2.45841	4	3	1	11	83
	Total			6.47021	19.28863	11.21949	4	3	1	11	1,337
LINCOLN		E-2C	VAW 113	0.46466	0.75617	1.35346	4	3	2	14	90
- •			VAQ 139	1.50647	2.86167	0.32034	4	3	2	14	65
			VFA 113	1.61732	2.60669	0.63306	4	3	2	14	155
			VFA 115	1.16255	2.08776	0.62190	4	3	2	14	137
		FA-18C		1.23011	2.33369	0.83085	4	3	2	14	177
			VFA 115	0.00000	0.00000	0.00000	4	3	2	14	0
		HH-60H		0.00000	1.44085	0.22636	4	3	2	14	73
		S-3B	VS 35	0.50985	2.99161	0.34854	4	3	2	14	147
		SH-60F		0.30303	0.73713	0.17659	4	3	2	14	110
	Total	31.501		6.81364	15.81557	4.51111	4	3	2	14	954
	· Juli			3.0.1307	10.01001		•	•	-		•

CONSTELLATION		E-2C	VAW 116	0.37282	3.22655	2.10089	5	3	1	2	170
	Feb-01	EA-6B	VAQ 131	0.91416	3.20385	2.09055	5	3	1	2	151
		FA-18C	VMFA 323	2.30751	2.22739	0.97028	5	3	1	2	346
		FA-18C	VFA 151	1.06811	1.18460	0.74700	5	3	1	2	406
		FA-18C	VFA 137	1.13978	2.43089	0.95635	5	3	1	2	412
		HH-60H	HS2	0.15379	2.53137	0.66306	5	3	1	2	99
		S-3B	VS 38	0.62462	2.70690	1.05803	5	3	1	2	314
		SH-60F	HS 2	0.13102	2.67588	1.01165	5	3	1	2	178
	Total			6.71180	20.18743	9.59782	5	3	1	2	2,076
STENNIS		E-2C	VAW 112	0.45928	4.19596	3.53227	5	3	1	9	84
		EA-6B	VAQ 138	1.15168	1.31104	0.85754	5	3	1	9	82
		FA-18C	VFA 146	1.08158	2.84036	1.16462	5	3	1	9	291
		FA-18C	VMFA 314	0.35191	1.45502	0.63265	5	3	1	9	340
		FA-18C	VFA 147	0.88145	1.79235	0.66121	5	3	1	9	380
		HH-60H	HS8	0.10662	4.83736	0.62751	5	3	1	9	92
		S-3B	VS 33	0.37703	3.66866	0.85905	5	3	1	9	203
		SH-60F	HS 8	0.17732	1.44890	1.51967	5	3	1	9	96
	Total			4.58685	21.54964	9.85453	5	3	1	9	1,569
VINSON		E-2C	VAW 117	0.37257	1.37043	0.37483	5	3	1	11	270
		EA-6B	VAQ 135	1.17817	1.13994	0.75398	5	3	1	11	187
		FA-18A	VFA 97	1.16550	2.53381	1.09589	5	3	1	11	440
		FA-18C	VFA 22	1.03554	1.50934	0.61093	5	3	1	11	516
		FA-18C	VFA 94	0.38434	2.30690	0.96529	5	3	1	11	565
		HH-60H	HS 6	0.19014	2.00094	0.69638	5	3	1	11	75
		S-3B	VS 29	0.48006	1.47679	0.20460	5	3	1	11	495
		SH-60F		0.11534	0.99656	0.37412	5	3	1	11	349
	Total			4.92166	13.33471	5.07602	5	3	1	11	2,897
LINCOLN		E-2C	VAW 113	0.36609	3.91388	4.50359	5	3	2	14	47
		EA-6B	VAQ 139	1.09943	13.20003	1.35322	5	3	2	14	36
			VFA 113	1.22908	5.18466	1.54173	5	3	2	14	61
			VFA 115	1.25078	6.97847	1.99592	5	3	2	14	39
		FA-18C		0.18365	3.98046	1.63816	5	3	2	14	72
			VFA 115	0.00000	0.00000	0.00000	5	3	2	14	0
		HH-60H		0.14894	3.48261	0.34208	5	3	2	14	23
		S-3B	VS 35	0.48415	3.96197	2.27271	5	3	2	14	82
			HS 4	0.16530	1.70970	0.32628	5	3	2	14	58
	Total			4.92742	42.41178	13.97370	5	3	2	14	417
CONSTELLATION		E-2C	VAW 116	0.37572	7.61452	1.20967	6	3	2	2	173
	Mar-01	EA-6B	VAQ 131	1.39124	5.32637	1.80324	6	3	2	2	117
			VMFA 323	1.26862	2.34528	1.82376	6	3	2	2	403
			VFA 151	1.19173	4.56354	1.28329	6	3	2	2	319
			VFA 137	0.70675	2.54708	0.93716	6	3	2	2	579
		HH-60H		0.16617	1.26568	0.31004	6	3	2	2	116
		S-3B	VS 38	0.48730	4.88160	1.19189	6	3	2	2	306
		SH-60F		0.15164	3.52338	0.96220	6	3	2	2	124
	Total			5.73918	32.06743	9.52124	6	3	2	2	2,137
STENNIS		E-2C	VAW 112	0.57313	4.43271	1.78605	6	3	1	9	85
		EA-6B	VAQ 138	1.06037	1.52068	1.04421	6	3	1	9	88
			VFA 146	1.08207	1.76964	0.83336	6	3	1	9	323
			VMFA 314	1.19381	1.29788	1.16792	6	3	1	9	486
			VFA 147	1.15628	3.89451	1.58940	6	3	1	9	355
		HH-60H		0.09308	2.34902	0.89944	6	3	1	9	93
		S-3B	VS 33	0.47916	1.59555	1.03566	6	3	1	9	285
		SH-60F		0.22999	1.06327	1.42585	6	3	1	9	82
	Total			5.86789	17.92325	9.78189	6	3	1	9	1,797
VINSON		E-2C	VAW 117	0.41943	4.28024	1.04647	6	3	1	11	140
		EA-6B	VAQ 135	1.14615	2.81243	0.91493	6	3	1	11	143
		FA-18A		1.29240	3.14220	1.09734	6	3	1	11	305
		FA-18C		1.22624	4.44333	1.36913	6	3	1	11	293
		FA-18C		2.23539	2.57527	1.11522	6	3	1	11	346
		HH-60H		0.15327	0.80644	0.20907	6	3	1	11	144
		S-3B	VS 29	0.45520	2.87553	0.53317	6	3	1	11	215
		SH-60F		0.19173	1.34627	1.50803	6	3	1	11	95
	Total			7.11981	22.28171	7.79337	6	3	1	11	1,680
LINCOLN		E-2C	VAW 113	0.46357	6.07124	1.23155	6	3	3	14	68
		EA-6B	VAQ 139	1.70518	4.18209	2.36497	6	3	3	14	47
			VFA 113	1.22031	2.31701	0.83669	6	3	3	14	239
			VFA 115	0.00000	0.00000	0.00000	6	3	3	14	0
		FA-18C		1.94280	4.24646	1.66935	6	3	3	14	157
			VFA 115	0.00000	0.00000	0.00000	6	3	3	14	0
		HH-60H		0.15351	5.37805	0.65372	6	3	3	14	16
		S-3B	VS 35	1.29149	16.46467	4.67483	6	3	3	14	39
		SH-60F	HS 4	0.14337	1.49666	0.75409	6	3	3	14	136
	Total			6.92024	40.15617	12.18520	6	3	3	14	700

CONSTELLATION											
CONTILLECTION		E-2C	VAW 116	0.44851	4.63425	1.27434	7	3	2	2	166
	Apr-01	EA-6B	VAQ 131	1.27669	6.33689	1.98720	7	3	2	2	112
		FA-18C	VMFA 323	1.33532	3.12659	2.27181	7	3	2	2	263
		FA-18C	VFA 151	1.09417	3.10898	1.23166	7	3	2	2	363
		FA-18C	VFA 137	1.29910	3.87154	1.50912	7	3	2	2	340
		HH-60H	HS2	0.18534	1.98453	0.85806	7	3	2	2	68
		S-3B	VS 38	0.58027	3.62024	0.59368	7	3	2	2	306
		SH-60F		0.14583	1.95295	0.38307	7	3	2	2	214
	Total			6.36522	28.63598	10.10893	7	3	2	2	1,831
STENNIS		E-2C	VAW 112	0.43993	9.04576	2.85886	7	3	1	9	111
		EA-6B	VAQ 138	1.14213	2.75503	1.57279	7	3	1	9	109
			VFA 146	1.11760	3.46770	1.36144	7	3	1	9	310
			VMFA 314	1.76641	1.37590	1.55065	7	3	1	9	345
			VFA 147	1.19531	3.38455	1.09390	7	3	1	9	275
		HH-60H		0.10908	2.23900	0.50216	7	3	1	9	56
		S-3B	VS 33	0.48346	4.18955	0.60014	7	3	1	9	173
		SH-60F		0.48340	4.22244	0.54330	7	3	1	9	72
	Total	3H-00F	поо				7	3	1	9	
MNCON	TOLAI	F 200	\(\0\\\\447	6.38741	30.67993	10.08326					1,451
VINSON		E-2C	VAW 117	0.42795	3.54943	1.46548	7	3	1	11	113
		EA-6B	VAQ 135	1.24414	0.80592	1.19348	7	3	1	11	102
		FA-18A		1.18922	2.89436	0.81815	7	3	1	11	394
		FA-18C		1.11816	2.06932	0.73621	7	3	1	11	407
		FA-18C		1.13526	2.09919	0.86404	7	3	1	11	418
		HH-60H		0.24962	2.13579	1.14366	7	3	1	11	32
		S-3B	VS 29	0.47273	2.10957	0.62954	7	3	1	11	263
		SH-60F	HS 6	0.10761	2.87594	1.20629	7	3	1	11	118
	Total			5.94471	18.53952	8.05685	7	3	1	11	1,847
LINCOLN		E-2C	VAW 113	0.34013	-0.19156	0.78653	7	3	3	14	136
		EA-6B	VAQ 139	0.73065	1.46593	0.87977	7	3	3	14	77
		FA-18C	VFA 113	1.20892	2.43243	1.02930	7	3	3	14	240
		FA-18C	VFA 115	0.00000	0.00000	0.00000	7	3	3	14	0
		FA-18C	VFA 25	1.36656	2.75402	1.08000	7	3	3	14	210
		FA-18E	VFA 115	0.00000	0.00000	0.00000	7	3	3	14	0
		HH-60H		0.16650	3.08781	0.25518	7	3	3	14	33
		S-3B	VS 35	0.47118	4.54663	2.01535	7	3	3	14	67
		SH-60F		0.12918	2.83959	0.63451	7	3	3	14	91
	Total	GI 1 001	110 1	4.41312	16.93484	6.68062	7	3	3	14	851
CONSTELLATION		E-2C	VAW 116	0.38733	4.55989	0.64959	8	3	2	2	290
00.101EEE 111011											
	May.01										
	May-01	EA-6B	VAQ 131	1.28535	2.02842	1.25299	8	3	2	2	208
	May-01	EA-6B FA-18C	VAQ 131 VMFA 323	1.28535 1.14097	2.02842 2.26554	1.25299 1.10038	8	3 3	2 2	2 2	208 479
	May-01	EA-6B FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151	1.28535 1.14097 1.16425	2.02842 2.26554 2.39712	1.25299 1.10038 0.87615	8 8 8	3 3 3	2 2 2	2 2 2	208 479 554
	May-01	EA-6B FA-18C FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137	1.28535 1.14097 1.16425 1.05867	2.02842 2.26554 2.39712 2.40946	1.25299 1.10038 0.87615 1.04351	8 8 8 8	3 3 3 3	2 2 2 2	2 2 2 2	208 479 554 536
	May-01	EA-6B FA-18C FA-18C FA-18C HH-60H	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2	1.28535 1.14097 1.16425 1.05867 0.12186	2.02842 2.26554 2.39712 2.40946 0.26741	1.25299 1.10038 0.87615 1.04351 0.33764	8 8 8 8	3 3 3 3	2 2 2 2 2	2 2 2 2 2	208 479 554 536 207
	May-01	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781	8 8 8 8 8	3 3 3 3 3	2 2 2 2 2 2	2 2 2 2 2 2	208 479 554 536 207 557
		EA-6B FA-18C FA-18C FA-18C HH-60H	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686	8 8 8 8 8	3 3 3 3 3 3	2 2 2 2 2 2 2	2 2 2 2 2 2 2	208 479 554 536 207 557 310
	May-01	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493	8 8 8 8 8 8	3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	208 479 554 536 207 557 310 3,141
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048	8 8 8 8 8 8	3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 9	208 479 554 536 207 557 310 3,141
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385	8 8 8 8 8 8 8	3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1	2 2 2 2 2 2 2 2 2 9 9	208 479 554 536 207 557 310 3,141 178 106
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593	8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1	2 2 2 2 2 2 2 2 2 9 9	208 479 554 536 207 557 310 3,141 178 106 328
STENNIS		EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385	8 8 8 8 8 8 8	3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1	2 2 2 2 2 2 2 2 2 9 9	208 479 554 536 207 557 310 3,141 178 106
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593	8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1	2 2 2 2 2 2 2 2 2 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142
STENNIS		EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.28535 1.14097 1.16425 1.05867 0.15867 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256	8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232
STENNIS	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33	1.28535 1.14097 1.16425 1.05867 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8	1.28535 1.14097 1.16425 1.05867 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840
	Total	EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39069 1.390697 19.99212 1.23338 1.86099	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18A FA-18A	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521
	Total	EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 94	1.28535 1.14097 1.16425 1.05867 0.15867 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 94 HS 6	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C E-2C EA-6B FA-18A FA-18A FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C HH-60H S-3B	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	1.28535 1.14097 1.16425 1.05367 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.3908 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 1,53 1,840 270 215 489 521 495 68 483
	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39089 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C FA-18C HH-60H S-3B SH-60F	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.13249 0.53055 0.17409 5.88175	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815
	Total	EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-1	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B FA-18C FA-18C FA-18C E-2C EA-6B FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 97 VFA 99 HS 6 VS 29 HS 6 VAW 113 VAQ 139	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.8883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C FA-18C HH-60H S-3B FA-18A FA-18C FA-18C HH-60H S-3B FA-18C FA-1	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 113 VFA 115	1.28535 1.14097 1.16425 1.053619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425 0.00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 22 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000 1.29521	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000 1.38674	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342 0.70425 0.00000 0.67268	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0 0 247
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000 1.29521 0.00000	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000 1.38674 0.00000	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425 0.00000 0.67268 0.00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0 247 0
VINSON	Total	EA-6B FA-18C FA-	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 97 VFA 97 VFA 99 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 HS 4	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000 1.29521 0.00000 0.15579	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000 1.38674 0.00000 0.72130	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.8883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425 0.00000 0.67268 0.00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0 0 0 0 0 0 0 0 0 0 0 0 0
VINSON	Total	EA-6B FA-18C FA-18C FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18A FA-18C HH-60H S-3B SH-60F E-2C EA-6B FA-18C FA-1	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 VFA 25 VFA 115 VFA 25 VFA 115 HS 4 VS 35	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000 1.29521 0.000000 1.29521 0.000000 1.05579 1.07136	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000 1.38674 0.00000 0.72130 12.24887	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.88811 0.58503 0.76883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425 0.00000 0.67268 0.00000 0.67268 0.00000 0.05827 2.93668	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0 247 0 6 44
VINSON	Total	EA-6B FA-18C FA-	VAQ 131 VMFA 323 VFA 151 VFA 137 HS 2 VS 38 HS 2 VAW 112 VAQ 138 VFA 146 VMFA 314 VFA 147 HS 8 VS 33 HS 8 VAW 117 VAQ 135 VFA 97 VFA 92 VFA 94 HS 6 VS 29 HS 6 VAW 113 VAQ 139 VFA 113 VFA 115 VFA 25 VFA 115 VFA 25 VFA 115 VFA 25 VFA 115 HS 4 VS 35	1.28535 1.14097 1.16425 1.05867 0.12186 0.53619 0.15243 5.84705 0.38912 1.29931 1.56430 1.04076 1.68846 0.12677 0.49949 0.19952 6.80773 0.42649 1.04741 1.08558 1.13573 1.29942 0.18249 0.53055 0.17409 5.88175 0.34959 1.14530 1.11706 0.00000 1.29521 0.00000 0.15579	2.02842 2.26554 2.39712 2.40946 0.26741 3.54878 1.33952 18.81614 2.48731 0.70581 4.66924 1.31304 3.88927 3.16950 1.39098 2.36697 19.99212 1.23338 1.86099 2.14711 1.81709 2.30637 1.23528 1.71142 1.69809 14.00972 0.74321 3.53239 1.80558 0.00000 1.38674 0.00000 0.72130	1.25299 1.10038 0.87615 1.04351 0.33764 0.45781 0.31686 6.03493 1.34048 1.31385 1.86593 0.75255 1.63197 0.34526 0.79256 0.71860 8.76120 0.94762 0.73315 0.8883 1.13115 0.39859 0.64487 6.09735 0.01342 0.72898 0.70425 0.00000 0.67268 0.00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9	208 479 554 536 207 557 310 3,141 178 106 328 415 286 142 232 153 1,840 270 215 489 521 495 68 483 274 2,815 271 70 236 0 0 0 0 0 0 0 0 0 0 0 0 0

CONSTELLATION		E-2C	VAW 116	0.38598	5.23686	3.44743	9	3	2	2	227
	Jun-01	EA-6B	VAQ 131	1.17598	1.88982	1.18546	9	3	2	2	179
		FA-18C	VMFA 323	1.06216	2.82040	1.00276	9	3	2	2	482
		FA-18C	VFA 151	1.23328	2.91068	1.20858	9	3	2	2	445
		FA-18C	VFA 137	1.28356	2.63225	1.02714	9	3	2	2	504
		HH-60H	HS2	0.13326	1.39118	0.17988	9	3	2	2	151
		S-3B	VS 38	0.62109	3.13663	0.49120	9	3	2	2	451
		SH-60F	HS2	0.15174	1.02895	0.61444	9	3	2	2	274
	Tota	I		6.04705	21.04677	9.15690	9	3	2	2	2,713
STENNIS		E-2C	VAW 112	0.49938	1.75826	1.46293	9	3	2	9	85
		EA-6B	VAQ 138	1.17016	1.26231	0.77682	9	3	2	9	79
		FA-18C	VFA 146	1.20296	2.41770	1.23903	9	3	2	9	387
		FA-18C	VMFA 314	0.24435	1.72921	0.69334	9	3	2	9	500
		FA-18C	VFA 147	1.16016	3.75590	1.15685	9	3	2	9	426
		HH-60H	HS8	0.21806	3.20191	0.62089	9	3	2	9	63
		S-3B	VS 33	0.07661	1.23261	0.98818	9	3	2	9	149
		SH-60F	HS8	0.13055	6.13087	1.05074	9	3	2	9	112
	Total	I		4.70225	21.48877	7.98878	9	3	2	9	1,801
VINSON		E-2C	VAW 117	0.44485	1.17607	0.98806	9	3	1	11	185
		EA-6B	VAQ 135	1.08092	5.33695	2.82038	9	3	1	11	152
		FA-18A	VFA 97	1.15920	3.27871	1.24459	9	3	1	11	448
		FA-18C	VFA 22	1.13101	1.37027	0.72987	9	3	1	11	416
		FA-18C	VFA 94	1.06241	2.26666	1.13040	9	3	1	11	457
		HH-60H	HS6	0.09887	1.95781	0.37618	9	3	1	11	72
		S-3B	VS 29	0.57220	3.08830	0.61771	9	3	1	11	376
		SH-60F		0.17803	1.58663	0.58040	9	3	1	11	193
	Total			5.72749	20.06140	8.48758	9	3	1	11	2,299
LINCOLN		E-2C	VAW 113	0.48384	0.66461	3.62114	9	3	3	14	61
		EA-6B	VAQ 139	1.23526	1.39250	0.90777	9	3	3	14	124
			VFA 113	1.14513	2.66069	1.64382	9	3	3	14	281
			VFA 115	0.00000	0.00000	0.00000	9	3	3	14	0
			VFA 25	1.33788	1.77167	1.39074	9	3	3	14	247
			VFA 115	1.33681	0.00000	0.03306	9	3	3	14	308
		HH-60H		0.12469	3.81186	0.39732	9	3	3	14	41
		S-3B	VS 35	0.50928	2.09667	0.91408	9	3	3	14	223
		SH-60F		0.16273	2.13803	0.56108	9	3	3	14	133
	Total			6.33562	14.53604	9.46903	9	3	3	14	1,418
CONSTELLATION		E-2C	VAW 116	0.48183	4.04367	2.73439	10	3	2	2	200
	Jul-01	I EA-6B	VAQ 131	1.36688	1.22228	0.79907	10	3	2	2	190
			VMFA 323	1.09061	1.83603	1.07541	10	3	2	2	506
			VFA 151	1.26287	1.32899	0.79919	10	3	2	2	518
			VFA 137	1.24294	1.34320	0.79232	10	3	2	2	564
		HH-60H		0.14136	0.93224	0.33345	10	3	2	2	146
		S-3B	VS 38	0.61342	1.74624	0.53819	10	3	2	2	516
		SH-60F		0.13820	1.45868	0.58144	10	3	2	2	288
	Tota			6.33811	13.91134	7.65346	10	3	2	2	2,928
STENNIS		E-2C	VAW 112	0.46538	1.92827	0.98758	10	3	2	9	271
		EA-6B	VAQ 138	1.07782	2.51366	1.05285	10	3	2	9	149
			VFA 146	0.81273	2.05781	0.67248	10	3	2	9	475
			VMFA 314	1.39225	1.29578	0.71665	10	3	2	9	441
			VFA 147	1.07844	2.05320	0.86760	10	3	2	9	449
		HH-60H		0.13528	2.67349	0.20257	10	3	2	9	127
		S-3B	VS 33	0.64637	1.85001	0.27691	10	3	2	9	326
		SH-60F		0.15603	1.99243	0.66067	10	3	2	9	163
	Total			5.76430	16.36464	5.43732	10	3	2	9	2,400
VINSON		E-2C	VAW 117	0.41105	1.00613	1.50150	10	3	2	11	146
		EA-6B	VAQ 135	1.26264	3.09677	3.06525	10	3	2	11	80
			VFA 97	1.22485	4.50198	2.47467	10	3	2	11	222
			VFA 22	1.09808	2.70950	2.02337	10	3	2	11	255
			VFA 94	1.32640	3.26399	1.69954	10	3	2	11	285
		HH-60H		0.23386	0.77602	0.82428	10	3	2	11	43
		S-3B	VS 29	0.42956	4.86285	1.16520	10	3	2	11	192
		SH-60F		0.19392	3.62772	1.30907	10	3	2	11	106
	Total			6.18036	23.84496	14.06287	10	3	2	11	1,329
LINCOLN		E-2C	VAW 113	0.46208	-4.01753	4.06023	10	3	3	14	60
		EA-6B	VAQ 139	1.03825	-0.29398	0.79371	10	3	3	14	100
			VFA 113	1.17741	1.67378	1.31134	10	3	3	14	254
			VFA 115	0.00000	0.00000	0.00000	10	3	3	14	0
			VFA 25	1.24694	0.81997	0.99147	10	3	3	14	234
			VFA 115	1.27114	0.52336	0.30731	10	3	3	14	261
		HH-60H		0.17267	1.05452	0.04944	10	3	3	14	46
		S-3B	VS 35	0.47962	2.82908	2.38248	10	3	3	14	90
		SH-60F		0.13303	0.08328	0.80137	10	3	3	14	154
	Tota	l		5.98113	2.67249	10.69736	10	3	3	14	1,199

CONSTELLATION	E-2C	VAW 116	0.41253	4.03773	1.37348	11	3	2	2	153
A	ug-01 EA-6B	VAQ 131	1.42483	3.46470	1.50821	11	3	2	2	102
	FA-18C	VMFA 323	1.46193	2.14268	1.35682	11	3	2	2	270
	FA-18C	VFA 151	1.17617	4.17347	1.30919	11	3	2	2	236
	FA-18C	VFA 137	1.14959	3.80980	1.30540	11	3	2	2	264
	HH-60H	HS 2	0.13985	1.33693	0.22874	11	3	2	2	62
	S-3B	VS 38	0.57140	4.23332	0.69713	11	3	2	2	317
	SH-60F	HS 2	0.16089	2.80109	0.61871	11	3	2	2	186
	Total		6.49718	25.99973	8.39768	11	3	2	2	1,591
STENNIS	E-2C	VAW 112	0.38530	2.66823	3.28840	11	3	2	9	248
	EA-6B	VAQ 138	0.98019	2.89568	1.56870	11	3	2	9	209
	FA-18C	VFA 146	1.31239	2.12819	0.99191	11	3	2	9	534
	FA-18C	VMFA 314	0.87440	1.78334	0.82719	11	3	2	9	510
	FA-18C	VFA 147	1.17472	2.73192	1.36198	11	3	2	9	482
	HH-60H	HS8	0.13514	0.73504	0.21709	11	3	2	9	115
	S-3B	VS 33	0.46013	1.56067	0.40459	11	3	2	9	435
	SH-60F	HS 8	0.14906	3.81658	0.76255	11	3	2	9	242
	Total		5.47133	18.31966	9.42241	11	3	2	9	2,775
VINSON	E-2C	VAW 117	0.42331	1.85100	1.74450	11	3	2	11	173
	EA-6B	VAQ 135	1.07462	4.74272	2.17576	11	3	2	11	116
	FA-18A	VFA 97	1.07949	5.15795	2.38338	11	3	2	11	323
	FA-18C	VFA 22	1.23294	3.52907	1.59962	11	3	2	11	293
	FA-18C	VFA 94	1.05428	2.90974	1.42235	11	3	2	11	328
	HH-60H	HS 6	0.13444	10.93544	1.67441	11	3	2	11	46
	S-3B	VS 29	0.56049	1.66334	0.58396	11	3	2	11	365
	SH-60F		0.14651	1.22568	0.32524	11	3	2	11	221
	Total		5.70607	32.01494	11.90922	11	3	2	11	1,865
LINCOLN	E-2C	VAW 113	0.34651	0.44409	4.91454	11	3	3	14	70
	EA-6B	VAQ 139	1.15333	2.54416	1.05656	11	3	3	14	102
		VFA 113	1.32723	1.59565	1.10849	11	3	3	14	241
	FA-18C	VFA 115	0.00000	0.00000	0.00000	11	3	3	14	0
		VFA 25	1.64580	1.67656	1.00888	11	3	3	14	252
		VFA 115	1.64351	1.11480	0.14668	11	3	3	14	363
	HH-60H	HS4	0.15828	2.29781	0.76625	11	3	3	14	68
	S-3B	VS 35	0.27172	2.24841	1.55358	11	3	3	14	224
	SH-60F		0.15550	0.88682	0.92669	11	3	3	14	95
	Total		6.70187	12.80831	11.48168	11	3	3	14	1,414
CONSTELLATION	E-2C	VAW 116	1.15077	83.58108	-0.01044	12	3	2	2	24
s	ep-01 EA-6B	VAQ 131	1.67206	15.70257	0.00344	12	3	2	2	33
	-	VMFA 323	0.92489	3.66111	-0.00063	12	3	2	2	210
		VFA 151	1.27242	10.34111	0.00225	12	3	2	2	110
		VFA 137	1.32118	9.84527	0.00197	12	3	2	2	129
	HH-60H		0.43095	7.42779	0.01164	12	3	2	2	47
	S-3B	VS 38	0.63203	17.14088	0.00121	12	3	2	2	137
	SH-60F		0.33513	10.93240	0.00118	12	3	2	2	68
	Total		7.73943	158.63219	0.01062	12	3	2	2	760
STENNIS	E-2C	VAW 112	0.51187	9.27059	1.19577	12	3	2	9	125
	EA-6B	VAQ 138	1.17943	1.61469	0.57062	12	3	2	9	165
		VFA 146	1.22856	4.14152	1.58603	12	3	2	9	342
		VMFA 314	1.55541	-0.55589	-0.40358	12	3	2	9	401
		VFA 147	1.32069	2.57905	1.06426	12	3	2	9	382
	HH-60H	HS 8	0.18130	1.24980	3.71861	12	3	2	9	156
	S-3B	VS 33	0.52846	7.15011	0.83550	12	3	2	9	234
	SH-60F		0.29967	2.13117	0.76120	12	3	2	9	115
	Total		6.80538	27.58106	9.32840	12	3	2	9	1,920
VINSON	E-2C	VAW 117	0.43860	8.49107	-0.13551	12	3	2	11	205
	EA-6B	VAQ 135	1.23778	4.53534	1.69870	12	3	2	11	165
		VFA 97	1.05291	2.86822	1.16295	12	3	2	11	456
		VFA 22	1.09867	7.62034	1.19865	12	3	2	11	404
		VFA 94	1.09990	6.93991	1.27410	12	3	2	11	446
	HH-60H		0.22383	3.21544	3.80657	12	3	2	11	167
	S-3B	VS 29	0.54372	5.93399	0.31326	12	3	2	11	423
	SH-60F		0.21469	1.86708	0.56566	12	3	2	11	201
	Total		5.91010	41.47140	9.88438	12	3	2	11	2,466
LINCOLN	E-2C	VAW 113	1.02992	35.77852	0.62971	12	3	3	14	22
	EA-6B	VAQ 139	1.15637	1.14087	1.06507	12	3	3	14	116
		VFA 113	1.47991	5.74833	2.10686	12	3	3	14	193
		VFA 115	0.00000	0.00000	0.00000	12	3	3	14	0
		VFA 25	1.69626	5.66130	1.99430	12	3	3	14	194
		VFA 115	1.54239	1.82820	4.01997	12	3	3	14	240
	HH-60H		0.55592	15.97716	19.28338	12	3	3	14	29
	S-3B	VS 35	0.57141	11.75371	2.74190	12	3	3	14	144
	SH-60F		0.22150	1.36360	1.01177	12	3	3	14	159
	Total		8.25368	79.25168	32.85296	12	3	3	14	1,096

AIR		in 000\$			
WING		MONTHFUELCOST	MONTHAVDLRCOST	MONTHMAINTCOST	TOTALCOST
CONSTELLATION		\$40.34430	\$9.40176	\$18.19119	\$67.93725
	Oct-98		\$140.39258	\$66.42278	\$319.95689
		\$417.33886 \$364.01568	\$659.71365 \$388.40662	\$423.00135 \$405.12445	\$1,500.05386 \$1,157.54675
		\$368.69535	\$394.95766	\$758.95896	\$1,522.61197
		\$1.33620	\$0.70754	\$2.13016	\$4.17390
		\$95.01607	\$407.70691	\$173.78659	\$676.50957
		\$22.74393	\$99.43922	\$78.43802	\$200.62116
OTENNIO	Total		\$2,100.72594	\$1,926.05351	\$5,449.41137
STENNIS		\$5.61850 \$65.39484	\$0.00000 \$42.52666	\$8.76595 \$20.82023	\$14.38445 \$128.74173
		\$171.26070	\$842.49423	\$227.18563	\$1,240.94056
		\$199.54839	\$681.58052	\$367.42143	\$1,248.55035
		\$111.74002	\$292.09806	\$202.54510	\$606.38318
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$78.55408	\$368.85279 \$74.81452	\$142.85583 \$185.31004	\$590.26269
	Total	\$7.39841 \$639.51494	\$74.81453 \$2,302.36678	\$185.31994 \$2,941.88172	\$267.53288 \$5,883.76345
VINSON	. ota	\$22.49865	\$0.00000	\$8.65965	\$31.15830
		\$76.39955	\$76.51206	\$74.66368	\$227.57529
		\$247.99391	\$1,069.86307	\$264.36447	\$1,582.22144
		\$260.40672	\$719.66779	\$290.64441	\$1,270.71892
		\$261.99191 \$7.51950	\$729.93032 \$182.59425	\$177.52390	\$1,169.44613 \$219.11177
		\$51.92250	\$282.47118	\$28.99801 \$211.00233	\$545.39601
		\$8.48253	\$161.60740	\$123.95027	\$294.04019
	Total		\$3,222.64608	\$1,179.80671	\$5,339.66805
LINCOLN		\$58.31000	\$292.72959	\$116.23346	\$467.27306
		\$110.32736	\$242.88397	\$156.91505	\$510.12638
		\$317.30055 \$321.50881	\$940.61548 \$963.99991	\$190.15179 \$203.51519	\$1,448.06783 \$1,489.02390
		\$337.20432	\$828.32328	\$202.76449	\$1,368.29209
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$9.41032	\$71.35485	\$8.84181	\$89.60698
		\$130.97905	\$957.36249	\$218.50764	\$1,306.84918
	Total	\$22.88389 \$4.307.93434	\$132.01275 \$4.439.39333	\$43.64484 \$1.40.57427	\$198.54148
CONSTELLATION	Total	\$1,307.92431 \$60.87105	\$4,429.28232 \$40.37170	\$1,140.57427 \$49.07711	\$6,877.78091 \$150.31986
	Nov-98		\$305.80485	\$164.17206	\$608.62545
		\$443.92791	\$943.78726	\$601.83083	\$1,989.54601
		\$412.67218	\$483.54006	\$425.49872	\$1,321.71096
		\$444.65203	\$178.11702	\$367.81315	\$990.58220
		\$9.13410 \$149.20985	\$29.15500 \$426.33432	\$10.89419 \$222.57602	\$49.18329 \$798.12019
		\$31.38711	\$203.41538	\$28.35417	\$263.15666
	Total		\$2,610.52560	\$1,870.21626	\$6,171.24463
STENNIS		\$10.74485	\$88.14000	\$2.95315	\$101.83800
		\$55.52272	\$101.49694	\$30.89878	\$187.91844
		\$199.26047 \$363.79563	\$324.82863 \$807.10940	\$232.40161 \$498.25058	\$756.49071 \$1,669.15562
		\$222.14805	\$502.85058	\$208.53723	\$933.53585
		-\$0.05424	\$0.86665	\$0.45820	\$1.27061
		\$67.83896	\$399.66465	\$139.93267	\$607.43629
		\$15.02935	\$134.61090	-\$94.01954	\$55.62071
VINSON	Total	•	\$2,359.56774	\$1,019.41269	\$4,313.26622
VINSON		\$59.07415 \$115.51381	\$209.62701 \$668.90807	\$71.57036 \$307.75191	\$340.27152 \$1,092.17379
		\$313.76102	\$2,008.35823	\$262.56705	\$2,584.68630
		\$343.86034	\$617.71920	\$307.24488	\$1,268.82442
		\$343.61590	\$539.87941	\$283.33861	\$1,166.83392
		\$15.33347	\$43.01308	\$40.51308	\$98.85964
		\$157.85949 \$15.98989	\$737.12079 \$92.65770	\$163.95790 \$50.02525	\$1,058.93817 \$158.67284
	Total		\$4,917.28348	\$1,486.96906	\$7,769.26061
LINCOLN		\$28.65350	\$1,051.53010	\$25.90313	\$1,106.08674
		\$34.34899	\$227.18294	\$73.85414	\$335.38607
		\$104.09946	\$295.08300	\$143.35461 \$137.00474	\$542.53707
		\$108.44354 \$107.20866	\$298.34393 \$375.04482	\$137.99474 \$146.26595	\$544.78221 \$628.51943
		\$0.0000	\$0.00000	\$0.00000	\$0.00000
		\$9.42084	\$220.23541	\$4.15059	\$233.80684
		\$37.86860	\$637.16406	\$130.56553	\$805.59820
		\$5.89856	\$77.32889	\$63.64877	\$146.87621
	Total	\$435.94215	\$3,181.91316	\$725.73746	\$4,343.59277

CONSTELLATION	N	\$23.57244	\$173.96441	\$210.00281	\$407.53967
	Dec-98	\$70.02946	\$208.57290	\$175.61369	\$454.21606
		\$204.83182	\$731.19111	\$391.57780	\$1,327.60073
		\$249.87028	\$847.60876	\$789.98356	\$1,887.46260
		\$274.34877	\$644.34756	\$1,001.24867	\$1,919.94500
		\$5.24648 \$70.32747	\$96.07942 \$577.44084	\$5.79303 \$286.82169	\$107.11893 \$934.59000
		\$17.57127	\$499.68134	\$89.60067	\$606.85327
	Total	\$915.79798	\$3,778.88634	\$2,950.64193	\$7,645.32624
STENNIS		\$16.15134	\$52.32949	\$44.11479	\$112.59563
		\$57.34196	\$181.30655	\$77.31756	\$315.96606
		\$264.18979	\$743.72980	\$562.94228	\$1,570.86187
		\$210.94251	\$504.34469	\$376.04147	\$1,091.32867
		\$251.03289	\$774.33921	\$286.96020	\$1,312.33231
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$58.36631	\$670.16149	\$218.68031	\$947.20812
	Total	\$12.52466	\$181.00323	\$38.35521	\$231.88310
VINSON	Total	\$870.54948 \$94.49065	\$3,107.21446 \$784.23707	\$1,604.41182 \$332.12728	\$5,582.17575 \$1,200.84590
VINSON		\$84.48065 \$143.88521	\$784.23797 \$438.68264	\$237.75125	\$820.31910
		\$359.20962	\$671.39695	\$418.80392	\$1,449.41049
		\$426.55640	\$999.97523	\$501.41263	\$1,927.94427
		\$413.31050	\$1,140.60008	\$472.07490	\$2,025.98547
		\$17.69273	\$119.51099	\$9.96757	\$147.17130
		\$187.97089	\$836.61765	\$236.99241	\$1,261.58094
		\$23.28106	\$179.35024	\$37.15511	\$239.78641
	Total	\$1,656.38706	\$5,170.37174	\$2,246.28507	\$9,073.04387
LINCOLN		\$10.33685	-\$59.86993	\$115.51124	\$65.97817
		\$21.78318	\$18.76317	-\$91.69834	-\$51.15199
		\$90.83104 \$47.52533	\$45.20556 \$114.39666	\$129.24041 \$112.64424	\$265.27701 \$274.56623
		\$152.74831	\$318.67530	\$208.95895	\$680.38256
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$5.42709	\$47.21633	\$5.90244	\$58.54586
		\$37.81518	-\$153.44769	\$89.32110	-\$26.31142
		\$1.83622	\$16.82348	\$26.74799	\$45.40769
0010751147101	Total	\$368.30318	\$347.76288	\$596.62804	\$1,312.69410
CONSTELLATION	N Jan-99	\$37.89320	\$320.16508 \$330.44018	\$217.75332	\$575.81160 \$450.60775
	Jan-33	\$86.22075 \$221.72460	\$239.44018 \$554.94737	\$134.03681 \$389.97978	\$459.69775 \$1,166.65174
		\$371.71407	\$185.05234	\$371.64916	\$928.41558
		\$367.56007	\$297.14296	\$289.99478	\$954.69781
		\$9.40044	\$1.71207	\$19.13234	\$30.24485
		\$72.78403	\$248.05690	\$270.51503	\$591.35596
	Total	\$11.36265	\$119.09698	\$88.39316	\$218.85278
STENNIS	Total	\$1,178.65981 \$23.31436	\$1,965.61388 \$1,473.30353	\$1,781.45438 \$227.94573	\$4,925.72807 \$1,724.56362
OTENNIO		\$53.68606	\$223.47593	\$78.81822	\$355.98021
		\$234.28327	\$167.38064	\$125.21672	\$526.88064
		\$680.11121	\$590.94454	\$399.22366	\$1,670.27940
		\$288.59982	\$95.77574	\$213.60361	\$597.97916
		\$5.36520	\$15.11723	\$14.34301	\$34.82544
		\$48.32266	\$168.66759	\$142.84151	\$359.83175
	Tatal	\$15.30881 \$4.348.00438	\$149.61055	\$94.91041	\$259.82976
VINSON	Total	\$1,348.99138 \$92.46810	\$2,884.27574 \$1,082,61124	\$1,296.90287 \$404.02183	\$5,530.17000 \$2,479.10117
VINSON		\$248.99392	\$1,982.61124 \$564.44746	\$404.02183 \$283.18493	\$1,096.62632
		\$523.27940	\$2,032.15006	\$583.51076	\$3,138.94022
		\$551.75520	\$1,176.01649	\$434.96912	\$2,162.74080
		\$554.60897	\$1,099.54877	\$351.54851	\$2,005.70625
		\$5.24702	\$64.54931	\$34.10678	\$103.90311
		\$221.87796	\$1,574.08330	\$404.45489	\$2,200.41615
	.	\$38.36435	\$387.96245	\$82.11622	\$508.44302
LINCOLN	Total	\$2,236.59493 \$10.34875	\$8,881.36908 \$112.80084	\$2,577.91304 \$69.95522	\$13,695.87705 \$193.10480
LINOOLIN		\$10.34875 \$8.15792	\$112.0004 \$129.14358	\$113.84086	\$193.10480 \$251.14236
		\$161.35615	\$160.61044	\$120.28045	\$442.24704
		\$94.93901	\$202.70694	\$114.36707	\$412.01302
		\$160.79996	\$245.76864	\$129.86220	\$536.43080
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$3.17191	\$28.09550	\$10.65747	\$41.92488
		\$64.21193	\$104.79485	\$133.09961	\$302.10639
	Total	\$5.17208 \$508.15771	\$65.81294 \$1,049.73372	\$40.87718 \$732.94006	\$111.86219 \$2,290.83148
	iotai	ψ550.15771	ψ1,043.73372	φ132.3 4 000	ψ <u>∠,∠</u> 30.031 4 0

CONSTELLATION	N	\$61.02531	\$301.38187	\$111.78097	\$474.18815
	Feb-99	\$157.66174	\$476.37192	\$290.34676	\$924.38042
		\$538.25471	\$708.92016	\$596.55479	\$1,843.72966
		\$501.42021	\$497.08484	\$356.94127	\$1,355.44633
		\$417.41828	\$732.19827	\$399.99981	\$1,549.61636
		\$20.42724	\$48.10497	\$8.87769	\$77.40990
		\$158.21900	\$528.37807	\$115.73208	\$802.32916
		\$17.24769	\$242.12428	\$61.83697	\$321.20895
	Total	\$1,871.67419	\$3,534.56440	\$1,942.07034	\$7,348.30892
STENNIS		\$31.97660	\$124.91757	\$120.29820	\$277.19237
		\$61.69888	\$180.04419	\$153.50288	\$395.24596
		\$228.28149	\$408.88796	\$339.95806	\$977.12751
		\$360.45112	\$695.51979	\$594.67652	\$1,650.64744
		\$325.79524	\$636.08300	\$238.27489	\$1,200.15313
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$65.46066	\$225.09152	\$132.95395	\$423.50613
		\$18.88407	\$211.26804	\$62.30229	\$292.45440
	Total	\$1,092.54806	\$2,481.81208	\$1,641.96679	\$5,216.32694
VINSON		\$90.20625	\$402.38808	\$221.87572	\$714.47005
		\$178.43055	\$504.39998	\$271.03312	\$953.86366
		\$384.17986	\$1,108.82390	\$509.57540	\$2,002.57916
		\$487.92003	\$944.75300	\$459.17962	\$1,891.85264
		\$456.86096	\$915.02014	\$434.88291	\$1,806.76401
		\$13.64376	\$134.94623	\$48.39062	\$196.98060
		\$186.57065	\$1,431.66031	\$335.40423	\$1,953.63520
		\$30.72881	\$192.14179	\$27.51592	\$250.38652
	Total	\$1,828.54087	\$5,634.13343	\$2,307.85754	\$9,770.53185
LINCOLN		\$6.01375	\$16.83788	\$52.19595	\$75.04758
		\$84.27101	\$521.79905	\$188.04405	\$794.11410
		\$227.02241	\$239.69350	\$120.49426	\$587.21017
		\$299.77630	\$387.86211	\$180.86872	\$868.50713
		\$230.27191	\$332.86038	\$172.25909	\$735.39139
		\$0.00000	\$0.00000 \$03.33046	\$0.00000	\$0.00000
		\$3.93333	\$92.23046	\$6.28471	\$102.44850
		\$61.16035	\$295.21188 \$225.04755	\$148.91577	\$505.28801
	Total	\$8.80890	\$225.04755	\$68.22220	\$302.07864
CONSTELLATION	Total	\$921.25796 \$90.93133	\$2,111.54282 \$523,40512	\$937.28475 \$102.01909	\$3,970.08553
CONSTELLATION	Mar-99	\$80.83123 \$203.29044	\$523.49512 \$459.01439	\$102.91898 \$197.40757	\$707.24534 \$859.71240
	IVIAI-55	\$203.29044 \$316.97038	\$862.49298	\$377.23547	\$1,556.69883
		\$433.74613	\$919.25906	\$485.84233	\$1,838.84753
		\$418.48301	\$1,072.78885	\$507.14950	\$1,998.42136
		\$20.65936	\$317.03606	\$16.12911	\$353.82453
		\$175.61997	\$875.35630	\$226.10628	\$1,277.08254
		\$18.76918	\$273.37009	\$96.99040	\$389.12967
	Total	\$1,668.36971	\$5,302.81284	\$2,009.77964	\$8,980.96220
STENNIS		\$43.90512	\$396.93796	\$46.14177	\$486.98485
		\$104.71974	\$266.55731	\$99.35422	\$470.63127
		\$462.84245	\$719.54085	\$438.16410	\$1,620.54739
		\$123.48852	\$666.98798	\$286.20189	\$1,076.67839
		\$359.23431	\$616.30822	\$345.03196	\$1,320.57449
		\$0.62050	\$20.51134	\$18.83073	\$39.96257
		\$71.50394	\$754.49601	\$145.95735	\$971.95730
		\$24.10646	\$259.87832	\$101.23103	\$385.21582
	Total	\$1,190.42104	\$3,701.21799	\$1,480.91306	\$6,372.55209
VINSON		\$73.86925	\$1,033.11031	\$19.33439	\$1,126.31395
		\$141.81409	\$409.37975	\$381.91562	\$933.10946
		\$383.75953	\$1,095.35108	\$377.10815	\$1,856.21876
		\$382.58437	\$1,072.12338	\$376.24449	\$1,830.95224
		\$407.26550	\$1,194.80541	\$425.70141	\$2,027.77233
		\$15.16640	\$282.07015	\$36.05309	\$333.28965
		\$153.64204	\$1,358.91206	\$313.46816	\$1,826.02226
		\$27.12409	\$283.81098	\$70.28263	\$381.21770
	Total	\$1,585.22527	\$6,729.56312	\$2,000.10795	\$10,314.89634
LINCOLN		\$18.55922	\$146.90431	\$45.33609	\$210.79963
		\$86.72638	\$152.83303	\$92.60637	\$332.16578
		\$299.61487	\$577.91953	\$183.41414	\$1,060.94854
		\$321.05909	\$831.62422	\$268.32821 \$154.37366	\$1,421.01152
		\$295.47690	\$487.75958	\$154.27366	\$937.51014
		\$0.00000 \$4.13471	\$0.00000 \$115 58116	\$0.00000	\$0.00000
		\$4.13471 \$99.63631	\$115.58116 \$530.80073	\$15.53089 \$210.22120	\$135.24676 \$937.65931
		\$88.63621 \$20.51111	\$530.80073 \$97.26305	\$218.22138 \$61.64647	\$837.65831 \$179.42063
	Total	\$20.51111 \$1,134.71847	\$2,940.68561	\$1,039.35722	\$5,114.76129
	i Jiai	ψ1,134./104/	Ψ 2 ,340.00301	ψ1,009.00122	ψ5,11 1 .70129
			0.44		

		054 47000	2000 54404	0440.54004	****
CONSTELLATIO		\$51.47228 \$141.89215	\$228.51464	\$143.51284	\$423.49977
	Apr-99	\$379.60580	\$290.90480 \$497.10054	\$247.14138 \$688.94936	\$679.93834 \$1,565.65570
		\$309.19757	\$248.46958	\$557.38337	\$1,115.05051
		\$337.12926	\$643.29775	\$470.65301	\$1,451.08002
		\$10.64131	\$133.43640	\$12.89294	\$156.97065
		\$93.46394	\$803.79165	\$100.96487	\$998.22045
		\$14.29206	\$467.82844	\$62.44188	\$544.56238
	Total	\$1,337.69437	\$3,313.34380	\$2,283.93964	\$6,934.97782
STENNIS		\$38.93935	\$465.82575	\$113.62357	\$618.38867
		\$204.90938	\$2.71832	\$109.01297	\$316.64067
		\$272.82117 \$535.29119	\$691.43170 \$370.84030	\$557.36948 \$668.97329	\$1,521.62235 \$1,575,10478
		\$289.21584	\$740.50914	\$649.96093	\$1,575.10478 \$1,679.68591
		\$1.20020	\$49.94888	\$15.84557	\$66.99465
		\$84.35914	\$1,675.22401	\$283.99786	\$2,043.58101
		\$18.44781	\$239.01915	\$110.70479	\$368.17175
	Total	\$1,445.18408	\$4,235.51725	\$2,509.48846	\$8,190.18979
VINSON		\$38.32225	\$507.94229	\$189.92473	\$736.18928
		\$56.90102	\$147.63973	\$135.19146	\$339.73221
		\$139.36335	\$475.99537	\$299.87969	\$915.23840
		\$199.68227	\$182.56283	\$295.63821	\$677.88331
		\$198.93230	\$140.51176	\$250.74311	\$590.18718
		\$15.86503 \$75.60310	\$247.61854 \$770.35356	\$36.64760	\$300.13117
		\$75.60319 \$9.68047	\$779.35256 \$124.19394	\$186.68884 \$20.90527	\$1,041.64459 \$154.77967
	Total	\$734.34987	\$2,605.81702	\$1,415.61891	\$4,755.78581
LINCOLN		\$19.91550	\$101.93888	\$109.89005	\$231.74443
		\$83.75692	\$29.87007	\$88.15154	\$201.77853
		\$283.57789	\$99.46042	\$210.13190	\$593.17020
		\$252.84077	\$396.04873	\$210.36922	\$859.25872
		\$180.97519	\$340.90499	\$288.99495	\$810.87513
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$99.20140	\$317.44091	\$213.02574	\$629.66805
	T-4-1	\$19.38231	\$141.54711	\$50.67646	\$211.60588
CONSTELLATIO	Total	\$939.64998	\$1,427.21111 \$272.40751	\$1,171.23986	\$3,538.10095
CONSTELLATIO	May-99	\$73.92423 \$178.73311	\$372.10751 \$417.22916	\$145.72986 \$122.41928	\$591.76159 \$718.38155
	Way-55	\$378.08078	\$802.84160	\$388.50979	\$1,569.43217
		\$364.61031	\$694.28730	\$292.97852	\$1,351.87614
		\$428.50837	\$1,013.80314	\$431.39676	\$1,873.70827
		\$20.74408	\$166.81239	\$27.75621	\$215.31268
		\$151.45725	\$600.16840	\$267.59136	\$1,019.21701
		\$18.09913	\$296.34143	\$78.81754	\$393.25810
	Total	\$1,614.15727	\$4,363.59092	\$1,755.19932	\$7,732.94751
STENNIS		\$38.27804	\$556.93716	\$319.79592	\$915.01113
		\$494.24909	\$186.99131	\$274.95341	\$956.19381
		\$460.38019	\$1,015.82983	\$298.97958	\$1,775.18959
		\$354.27848	\$598.92399 \$631.51044	\$284.60144 \$211.20250	\$1,237.80392 \$1,275,11291
		\$432.30086 \$7.83505	\$631.51944 \$77.57016	\$211.29250 \$51.69450	\$1,275.11281 \$137.08070
		\$7.82595 \$96.24313	\$77.57016 \$548.93536	\$51.68459 \$162.23430	\$807.41279
		\$26.48412	\$205.72324	\$79.40300	\$311.61036
	Total	\$1,910.03986	\$3,822.43049	\$1,682.94475	\$7,415.41510
VINSON		\$11.67769	\$215.71498	\$63.22607	\$290.61874
		\$15.58441	\$107.26639	-\$3.58977	\$119.26102
		\$93.14145	\$480.08529	\$189.19690	\$762.42364
		\$126.86117	\$427.21224	\$148.80866	\$702.88206
		\$265.39374	\$424.44648	\$187.40964	\$877.24986
		\$1.64319 \$36.63003	\$213.38631 \$406.61114	\$7.34155 \$56.01660	\$222.37104
		\$36.63992 \$4.08317	\$496.61114 \$100.40132	\$56.01669 \$35.90075	\$589.26775 \$239.47524
	Total	\$555.02474	\$199.49132 \$2,564.21414	\$684.31048	\$239.47524 \$3,803.54936
LINCOLN	iotai	\$30.20880	-\$387.02908	\$58.56654	-\$298.25375
		\$59.63184	\$86.08862	\$7.42432	\$153.14478
		\$299.88918	\$285.83919	\$159.03411	\$744.76248
		\$200.17018	\$642.52741	\$165.76488	\$1,008.46247
		\$244.20806	\$602.43387	\$262.13499	\$1,108.77692
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$54.57103	-\$479.10597	\$163.28966	-\$261.24527
	Tatal	\$19.08680	\$391.36186	\$35.84975	\$446.29841
	Total	\$907.76589	\$1,142.11590	\$852.06425	\$2,901.94604

CONSTELLATION		\$60.65991	\$476.04395	\$134.96172	\$671.66558
	Jun-99	\$156.93531	\$626.03540	\$112.62277	\$895.59348
		\$343.93295	\$1,069.51441	\$540.03290	\$1,953.48026
		\$384.88965	\$722.89348	\$210.90011	\$1,318.68324
		\$419.54022	\$633.04413	\$277.11509	\$1,329.69943
		\$19.61935 \$192.21174	\$214.64444 \$785.30095	\$41.07574 \$271.71562	\$275.33953
		\$182.21174 \$16.70787	\$111.74512	\$271.71562 \$107.69043	\$1,239.22832 \$236.14342
	Total	\$1,584.49699	\$4,639.22189	\$1,696.11438	\$7,919.83326
STENNIS	Total	\$20.88460	\$543.39501	\$208.97400	\$773.25360
0.1 <u>1</u>		\$224.20628	\$265.51146	\$47.92203	\$537.63977
		\$293.45718	\$1,176.95683	\$429.54337	\$1,899.95738
		\$307.55014	\$958.65142	\$470.63857	\$1,736.84012
		\$313.90174	\$686.53582	\$807.38344	\$1,807.82100
		\$16.52910	\$126.37424	\$44.90980	\$187.81315
		\$64.85270	\$198.75317	\$144.82237	\$408.42824
		\$17.11088	\$65.58387	\$62.41014	\$145.10489
VINCON	Total	\$1,258.49262	\$4,021.76182	\$2,216.60371	\$7,496.85815
VINSON		\$18.15751 \$35.96602	\$257.03955 \$214.25041	\$144.35855 \$104.36053	\$419.55561 \$354.47607
		\$352.99902	\$214.25041 \$599.98508	\$104.26053 \$211.76815	\$354.47697 \$1,164.75225
		\$429.16688	\$1,899.04690	\$327.31107	\$2,655.52485
		\$340.74540	\$1,823.62880	\$340.29755	\$2,504.67175
		\$5.54691	\$155.98308	\$47.15618	\$208.68617
		\$75.74253	\$160.83731	\$126.79709	\$363.37694
		\$18.64173	-\$44.87925	\$72.55399	\$46.31647
	Total	\$1,276.96600	\$5,065.89189	\$1,374.50312	\$7,717.36102
LINCOLN		\$40.43696	\$226.66814	\$98.13845	\$365.24355
		\$78.78874	\$115.85692	\$93.84131	\$288.48697
		\$271.11721	\$920.44398	\$248.73956	\$1,440.30075
		\$231.18920	\$747.05557 \$828.16260	\$316.14161 \$198.93941	\$1,294.38638
		\$242.90211 \$0.00000	\$0.00000	\$0.00000	\$1,270.00411 \$0.00000
		\$1.12646	\$38.40992	-\$1.41417	\$38.12221
		\$60.00380	\$616.51184	\$253.37293	\$929.88857
		\$19.37770	\$127.42654	\$41.51390	\$188.31814
	Total	\$944.94218	\$3,620.53551	\$1,249.27300	\$5,814.75069
CONSTELLATION		\$73.68637	\$2,059.85291	\$231.16726	\$2,364.70654
	Jul-99	\$150.33059	\$52.99902	\$272.73243	\$476.06204
		\$418.70150	\$2,313.20004	\$462.91281	\$3,194.81435
		\$370.79996	\$1,110.72071	\$251.08929	\$1,732.60996
		\$386.80917	\$1,093.50266 \$176.11070	\$227.50205	\$1,707.81388
		\$25.98279 \$208.72024	\$176.11070 \$1,355.63333	\$73.02634 \$315.82532	\$275.11984 \$1,880.17889
		\$16.90059	\$534.68449	\$47.68746	\$599.27254
	Total	\$1,651.93120	\$8,696.70387	\$1,881.94297	\$12,230.57804
STENNIS		\$66.90255	\$248.28192	\$280.41986	\$595.60433
		\$71.55124	-\$165.39591	\$97.97551	\$4.13084
		\$316.87892	\$986.27684	\$375.23189	\$1,678.38764
		\$440.55352	\$1,660.05172	\$326.22500	\$2,426.83024
		\$325.66042	\$402.04368	\$394.11808	\$1,121.82218
		\$18.75238	\$172.77311 \$223.04817	\$55.63021 \$55.70226	\$247.15571
		\$122.96178 \$20.89886	\$233.94817 \$139.41061	\$55.79236 \$37.75003	\$412.70231 \$198.05950
	Total	\$1,384.15967	\$3,677.39015	\$1,623.14294	\$6,684.69275
VINSON	Total	\$56.42838	\$599.21100	-\$0.28444	\$655.35494
		\$78.77595	\$211.03506	-\$20.63148	\$269.17953
		\$236.12797	\$751.45621	-\$219.84118	\$767.74300
		\$233.83380	-\$112.44612	\$1,101.43656	\$1,222.82423
		\$359.44461	-\$19.29886	\$1,106.45904	\$1,446.60479
		\$4.19360	\$424.80986	-\$56.22194	\$372.78151
		\$75.80045	\$822.73871	-\$312.56353	\$585.97563
	Total	\$23.38138 \$1,067.98615	\$661.03364 \$3,338.53948	-\$29.20063 \$1,569.15239	\$655.21439 \$5.975.67802
LINCOLN	iotai	\$1,067.98615 \$19.42859	\$3,338.53948 \$287.61756	\$1,569.15239 \$49.44731	\$5,975.67802 \$356.49347
		\$92.42336	\$122.81951	\$161.89577	\$377.13864
		\$506.65325	\$743.67182	\$273.98184	\$1,524.30690
		\$265.72928	\$844.00318	\$233.87407	\$1,343.60654
		\$235.68777	\$569.56276	\$167.36491	\$972.61544
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$68.65540	\$212.06485	\$198.72456	\$479.44481
	Total	\$18.25787 \$1,206.83553	-\$37.66239 \$2,742.07729	\$53.15007 \$1,138.43853	\$33.74555 \$5,087.35135
	iJiai	ψ1,200.03333	Ψ2,1 42.01123	φ1,130.43033	ψυ,υυ1.υυ1υ0

CONSTELLATION	N	\$77.69561	\$909.03982	\$210.19296	\$1,196.92840
	Aug-99	\$201.88435	\$895.94711	\$149.83883	\$1,247.67029
		\$420.97610	\$720.36626	\$2,761.98049	\$3,903.32285
		\$463.01334	\$1,180.90396	-\$582.19163	\$1,061.72567
		\$432.90440	\$1,026.18308	-\$586.23970	\$872.84778
		\$28.50688	\$16.07449	\$14.32711 \$206.55132	\$58.90848
		\$232.06870 \$16.89900	\$1,177.81914 \$249.88700	\$306.55132 \$88.43264	\$1,716.43917 \$355.21864
	Total	\$1,873.94838	\$6,176.22085	\$2,362.89203	\$10,413.06126
STENNIS	Total	\$92.28790	\$436.31271	\$233.98241	\$762.58303
		\$282.71285	\$526.23007	\$92.25401	\$901.19693
		\$588.05376	\$1,270.14168	\$434.68113	\$2,292.87656
		\$174.17880	\$568.06988	\$551.46618	\$1,293.71486
		\$564.70790	\$1,292.85240	\$480.49278	\$2,338.05308
		\$25.44575	\$130.96871	\$56.80427	\$213.21873
		\$158.31313	\$378.51802	\$113.61248	\$650.44363
	T-4-1	\$30.44315	\$273.14351	\$37.32000	\$340.90666
VINSON	Total	\$1,916.14325 \$36.69704	\$4,876.23698 \$900.17460	\$2,000.61326 \$166.54057	\$8,792.99349 -\$605.93700
VIIIOOII		\$58.90936	-\$809.17460 \$426.09275	\$166.54057 -\$28.75998	\$456.24213
		\$293.20869	\$1,317.00746	\$240.30545	\$1,850.52161
		\$308.76166	-\$354.30006	\$279.88373	\$234.34533
		\$410.47565	-\$595.94515	\$230.88643	\$45.41693
		\$1.43502	\$173.74068	-\$27.11690	\$148.05880
		\$72.09566	\$194.67589	\$105.55274	\$372.32430
		\$16.59410	\$146.42998	\$34.47487	\$197.49895
	Total	\$1,198.17719	\$498.52694	\$1,001.76692	\$2,698.47104
LINCOLN		\$22.78871 \$93.23287	-\$1,287.82170 \$272.84402	\$151.09131 \$50.88710	-\$1,113.94168
		\$387.46000	\$272.84492 \$507.93842	\$50.88719 \$317.05238	\$416.96497 \$1,212.45079
		\$329.25283	\$232.40248	\$311.17471	\$872.83002
		\$396.92757	\$447.34558	\$208.72467	\$1,052.99781
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$82.06467	\$171.49514	\$168.54904	\$422.10885
	Total	\$18.69144	\$165.75666 \$500.06440	\$36.90652 \$4.344.38584	\$221.35462
CONSTELLATION		\$1,330.41810 \$88.95668	\$509.96149 \$974.05047	\$1,244.38581 \$356.36429	\$3,084.76540 \$1,419.37144
	Sep-99	\$270.23045	\$486.06108	\$365.39759	\$1,121.68912
	•	\$611.51234	\$201.65550	\$2,190.16483	\$3,003.33267
		\$414.55913	\$476.88398	-\$151.27853	\$740.16458
		\$620.45193	\$916.18944	\$134.68657	\$1,671.32793
		\$44.36425	\$246.69598	\$108.78052	\$399.84075
		\$300.91958 \$22.89791	\$1,508.22947 \$178.74543	\$586.89854 \$154.75344	\$2,396.04759 \$356.39678
	Total	\$2,373.89227	\$4,988.51135	\$3,745.76725	\$11,108.17086
STENNIS		\$38.19599	\$539.75421	\$428.43461	\$1,006.38481
		\$88.49255	-\$11.59153	\$201.30543	\$278.20645
		\$351.34724	\$440.15662	\$705.57235	\$1,497.07622
		\$302.32007	-\$483.72909	\$182.82811	\$1.41909
		\$385.68548	\$459.13720	\$618.37122	\$1,463.19391
		\$15.15808 \$69.30570	\$335.58991 \$031.70020	\$44.52147 \$257.55143	\$395.26946 \$1.257.64741
		\$68.30579 \$4.74708	\$931.79020 \$126.81008	\$257.55143 \$80.50218	\$1,257.64741 \$212.05933
	Total	\$1,254.25228	\$2,337.91761	\$2,519.08680	\$6,111.25669
VINSON		\$87.53197	\$1,039.75883	\$246.21587	\$1,373.50667
		\$82.11740	\$2.50984	\$207.67871	\$292.30596
		\$184.55305	-\$157.88897	\$357.50749	\$384.17156
		\$300.55436	\$2,350.67217	\$749.42494	\$3,400.65148
		\$233.23543	\$2,706.58957	\$809.65063 \$17.13306	\$3,749.47563
		-\$1.95936 \$126.68167	\$13.56530 \$675.95793	\$17.12396 \$232.27105	\$28.72990 \$1,034.91064
		\$30.11112	\$143.81390	\$48.58346	\$222.50849
	Total	\$1,042.82563	\$6,774.97858	\$2,668.45612	\$10,486.26033
LINCOLN		\$46.57054	\$773.76739	\$176.07269	\$996.41063
		\$107.26231	\$945.40241	\$190.86015	\$1,243.52487
		\$408.61249	\$155.00911 \$240.82126	\$510.38657 \$513.31007	\$1,074.00818
		\$324.21589 \$392.18984	\$240.82126 \$91.08228	\$513.31997 \$494.99811	\$1,078.35712 \$978.27023
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.67868	\$189.39260	\$11.97381	\$202.04509
		\$67.71823	\$187.93700	\$313.46791	\$569.12315
		\$25.99671	-\$50.99462	\$3.78591	-\$21.21201
	Total	\$1,373.24469	\$2,532.41744	\$2,214.86512	\$6,120.52725

CONSTELLATION	l	\$73.17072	\$523.29840	\$109.63457	\$706.10369
	Oct-99	\$193.55511	\$979.68100	\$282.29967	\$1,455.53578
		\$254.08593	\$1,191.99785	\$673.64582	\$2,119.72961
		\$391.31227	\$952.90656	\$550.50496	\$1,894.72379
		\$504.43470	\$872.52415	\$551.88430	\$1,928.84314
		\$23.80760	\$210.08907	\$34.16368	\$268.06035
		\$195.12444	\$1,569.86510	\$286.98239	\$2,051.97193
		\$16.31717	\$377.73186	\$66.14354	\$460.19256
	Total	\$1,651.80794	\$6,678.09399	\$2,555.25893	\$10,885.16086
STENNIS		\$48.86319	\$258.21219	\$53.60745	\$360.68283
		\$102.26862	\$411.09948	\$89.68309	\$603.05119
		\$218.03994	\$1,159.49902	\$378.66189	\$1,756.20085
		\$178.71744	\$608.12953	\$413.86148	\$1,200.70845
		\$277.43953	\$855.38991	\$363.92972	\$1,496.75916
		\$18.73106	\$55.19588	\$50.80521	\$124.73216
		\$70.91698	\$844.80874	\$118.17679	\$1,033.90251
		\$6.83404	\$79.81385	\$92.69033	\$179.33822
	Total	\$921.81080	\$4,272.14860	\$1,561.41598	\$6,755.37537
VINSON		\$67.42130	-\$40.11171	\$26.58325	\$53.89284
		\$56.27697	\$379.59463	\$78.70172	\$514.57332
		\$200.44080	\$728.03566	\$248.26518	\$1,176.74164
		\$190.06767	\$749.06798	\$390.56803	\$1,329.70368
		\$180.94489	\$578.66904	\$355.93657	\$1,115.55051
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$43.02128	\$277.54101	\$92.34845	\$412.91075
		\$16.00117	\$122.16191	\$32.97796	\$171.14104
	Total	\$754.17409	\$2,794.95852	\$1,225.38117	\$4,774.51378
LINCOLN		\$35.86162	\$37.39588	\$19.93730	\$93.19481
		\$69.81956	\$401.88588	\$126.42666	\$598.13210
		\$240.98668	\$1,128.36846	\$523.64884	\$1,893.00399
		\$297.29069	\$1,244.01511	\$480.87795	\$2,022.18375
		\$264.71908	\$1,401.71877	\$421.18555	\$2,087.62340
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$3.66849	\$44.36801	\$7.26061	\$55.29711
		\$78.87549	\$494.53052	\$208.40812	\$781.81413
		\$17.73765	\$384.32818	\$59.42778	\$461.49361
	Total	\$1,008.95926	\$5,136.61082	\$1,847.17282	\$7,992.74290
CONSTELLATION		\$43.96644	\$618.20160	\$165.27036	\$827.43840
	Nov-99	\$94.53260	\$627.84327	\$117.29537	\$839.67124
		\$196.78491	\$523.90254	\$476.40537	\$1,197.09282
		\$355.98470	\$823.51841	\$576.58401	\$1,756.08712
		\$281.90358	\$866.36578	\$552.93910	\$1,701.20846
		\$12.32191	\$304.12447	\$57.10537	\$373.55176
		\$110.74184	\$981.46787	\$299.59115	\$1,391.80086
	Total	\$11.94540	\$359.38065 \$5.404.80460	\$57.52321 \$3.303.74304	\$428.84925
CTENNIC	Total	\$1,108.18138	\$5,104.80460 \$530.35754	\$2,302.71394	\$8,515.69992
STENNIS		\$70.27209	\$539.35754 \$656.76463	\$373.73511 \$116.09695	\$983.36475
		\$167.57576 \$406.21627	\$771.29192	\$464.85818	\$940.43734 \$1,642.36637
		\$420.23142	\$204.84136	\$146.60112	\$771.67390
		\$430.06375	\$788.44267	\$384.86397	\$1,603.37039
		\$17.34936	\$135.11726	\$77.09430	\$229.56093
		\$138.90324	\$1,036.84649	\$166.48622	\$1,342.23596
		\$16.43134	\$347.30312	\$82.69982	\$446.43428
	Total	\$1,667.04324	\$4,479.96499	\$1,812.43569	\$7,959.44392
VINSON		\$25.30938	\$241.74956	\$97.25402	\$364.31296
-		\$59.54123	\$392.17316	\$114.36701	\$566.08139
		\$251.90578	\$431.72176	\$247.83816	\$931.46570
		\$171.53626	\$510.86814	\$295.96688	\$978.37128
		\$244.17389	\$492.58411	\$227.37665	\$964.13466
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$40.31136	\$280.50937	\$75.67114	\$396.49187
		\$9.25138	\$118.91947	\$36.18445	\$164.35530
	Total	\$802.02928	\$2,468.52557	\$1,094.65831	\$4,365.21316
LINCOLN		\$36.63147	\$241.84143	\$122.01809	\$400.49100
		\$88.89456	\$265.07814	\$104.48343	\$458.45612
		\$207.78231	\$374.28051	\$498.75045	\$1,080.81327
		\$223.62048	\$415.12354	\$397.49659	\$1,036.24062
		\$225.21177	\$655.41847	\$431.64294	\$1,312.27318
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$4.27792	\$22.90384	\$9.16250	\$36.34426
		\$62.12141	\$328.31262	\$147.93609	\$538.37011
	_	\$17.09461	\$292.77080	\$53.00000	\$362.86541
	Total	\$865.63453	\$2,595.72936	\$1,764.49009	\$5,225.85397

		204 47000	2400 50000	*****	****
CONSTELLATIO		\$21.47922	\$168.58082	\$630.63206	\$820.69210
	Dec-99	\$43.63604 \$196.59459	\$450.89598 \$541.41674	\$127.32198 \$1.544.83034	\$621.85400 \$2,272.84056
		\$186.58458 \$113.23233	\$369.28820	\$1,544.83924 -\$468.26297	\$14.25755
		\$105.33852	\$405.02200	-\$414.81500	\$95.54553
		\$5.49544	\$180.93317	\$11.35474	\$197.78336
		\$53.95334	\$820.42465	\$103.77262	\$978.15062
		\$11.61652	\$191.26493	\$47.21303	\$250.09448
	Total	\$541.33599	\$3,127.82649	\$1,582.05571	\$5,251.21819
STENNIS		\$31.39602	\$526.93720	\$1,435.41895	\$1,993.75217
		\$75.09964	\$428.10304	\$121.65906	\$624.86175
		\$153.94406	\$474.22630	\$508.34614	\$1,136.51650
		\$275.08324 \$120.85443	\$500.58709 \$549.71974	\$313.83680 \$413.09727	\$1,089.50713 \$1,083.67144
		\$7.29399	\$169.52021	\$57.58581	\$234.40001
		\$40.73879	\$392.88528	\$224.42595	\$658.05002
		\$9.07288	\$214.71254	\$53.89127	\$277.67668
	Total	\$713.48305	\$3,256.69140	\$3,128.26126	\$7,098.43571
VINSON		\$23.30551	\$384.78747	\$149.42284	\$557.51581
		\$60.72198	\$641.40251	\$449.30319	\$1,151.42769
		\$217.19132	\$257.70197	\$249.54663	\$724.43991
		\$204.89494	\$460.08516	\$405.83236	\$1,070.81246
		\$206.06822	\$493.67988	\$455.28259	\$1,155.03069
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$50.53273	\$202.43338	\$66.24995	\$319.21605
	Total	\$12.88473 \$775.59942	\$151.63854 \$2,591.72891	\$57.59955 \$1,833.23711	\$222.12282 \$5,200.56544
LINCOLN	Total	\$25.16989	\$543.38018	\$1,633.23711 \$157.18312	\$725.73319
LINGOLIN		\$55.63011	\$381.16300	\$173.36429	\$610.15740
		\$198.55215	\$776.57547	\$281.90825	\$1,257.03587
		\$94.24935	\$900.04405	\$447.98492	\$1,442.27831
		\$202.57708	\$1,092.97924	\$415.02872	\$1,710.58504
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$3.97314	\$35.12318	\$21.01291	\$60.10923
		\$61.27485	\$482.98786	\$228.46774	\$772.73046
		\$9.00545	\$868.89326	\$109.98185	\$987.88055
	Total	\$650.43202	\$5,081.14624	\$1,834.93179	\$7,566.51005
CONSTELLATIO		\$7.88067	\$190.60637	\$98.51703	\$297.00407
	Jan-00	\$23.93319	\$109.62558	\$155.99175	\$289.55052
		\$81.76831 \$99.68009	\$225.83435 \$137.32841	\$208.51066 \$158.25589	\$516.11332 \$395.26439
		\$102.15315	\$209.46946	\$191.15946	\$502.78207
		\$4.92994	\$104.10216	\$6.08985	\$115.12195
		\$14.93516	-\$694.32988	\$203.27606	-\$476.11867
		\$6.42912	\$239.14238	\$66.33601	\$311.90751
	Total	\$341.70963	\$521.77882	\$1,088.13671	\$1,951.62515
STENNIS		\$54.74385	\$745.93489	-\$89.85601	\$710.82273
		\$131.12721	\$318.23918	\$80.35598	\$529.72238
		\$281.06398	\$788.38634	\$508.81365	\$1,578.26397
		\$101.25297	\$582.81366	\$378.83992	\$1,062.90655
		\$221.05818 \$11.20518	\$864.86048 \$193.54001	\$407.20231 \$95.33736	\$1,493.12097 \$300.08254
		\$86.98862	\$718.34266	\$209.19408	\$1,014.52536
		\$10.21749	\$477.25901	\$125.81310	\$613.28960
	Total	\$897.65748	\$4,689.37622	\$1,715.70040	\$7,302.73411
VINSON		\$24.98917	\$339.42285	\$107.10017	\$471.51219
		\$82.37240	\$248.20263	\$149.19169	\$479.76671
		\$274.91273	\$667.31497	\$281.42725	\$1,223.65496
		\$197.19403	\$473.67497	\$237.56988	\$908.43888
		\$206.54285	\$470.97754	\$320.16773	\$997.68812
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$44.38054 \$16.46546	\$308.20620 \$225.73353	\$186.07494 \$55.38191	\$538.66167 \$297 58089
	Total	\$16.46546 \$846.85717	\$225.73353 \$2,733.53269	\$1,336.91357	\$297.58089 \$4,917.30343
LINCOLN	· Jtai	\$54.81693	\$469.38855	\$125.83636	\$650.04184
		\$111.79349	\$47.75363	\$94.19309	\$253.74020
		\$302.15166	\$281.64645	\$305.07546	\$888.87357
		\$279.49311	\$548.10381	\$336.16895	\$1,163.76587
		\$268.72066	\$307.96829	\$332.67067	\$909.35963
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$8.64309	\$182.44928	\$9.55096	\$200.64334
		\$124.84444	\$2.66914	\$293.74147	\$421.25505
	Total	\$18.96846	\$382.17869	\$55.81543	\$456.96258
	Total	\$1,169.43185	\$2,222.15784	\$1,553.05239	\$4,944.64208

CONSTELLATION		\$15.62851	\$293.13287	\$193.76284	\$502.52422
	Feb-00	\$72.14968	\$220.78078	\$122.16880	\$415.09926
		\$609.96411	\$416.52812	\$350.63774	\$1,377.12997
		\$150.14743	\$173.22685	\$139.08648	\$462.46076
		\$213.94549	\$947.90910 \$160.00045	\$269.59102	\$1,431.44561
		\$10.80312 \$18.10746	\$160.09945 \$577.43191	\$26.80160 \$149.79322	\$197.70417 \$745.33258
		\$6.18273	\$775.67934	\$84.14662	\$866.00869
	Total	\$1,096.92853	\$3,564.78843	\$1,335.98830	\$5,997.70527
STENNIS		\$61.03237	\$1,063.15614	\$731.24603	\$1,855.43453
		\$132.53335	\$333.71694	\$91.48407	\$557.73436
		\$336.71169	\$1,292.54264	\$507.34770	\$2,136.60203
		\$304.22826	\$539.86701	\$301.16443	\$1,145.25969
		\$337.95153	\$1,202.83656	\$408.15570	\$1,948.94380
		\$9.45378	\$271.38834 \$038.45046	\$48.93598 \$292.34915	\$329.77810 \$1,339.82589
		\$109.01728 \$13.16014	\$938.45946 \$201.59362	\$82.02396	\$296.77772
	Total	\$1,304.08840	\$5,843.56069	\$2,462.70703	\$9,610.35612
VINSON		\$33.44946	\$202.71782	\$106.93306	\$343.10035
		\$74.06985	\$152.66688	\$142.30633	\$369.04306
		\$210.24228	\$762.10394	\$468.82272	\$1,441.16893
		\$219.84180	\$609.76198	\$340.22154	\$1,169.82533
		\$279.99156	\$522.68998	\$286.95446	\$1,089.63600
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$66.14933	\$165.01938	\$134.42804	\$365.59676
	Total	\$13.89382 \$897.63810	\$33.99474 \$2,448.95473	\$59.67673 \$1,539.34288	\$107.56528 \$4,885.93571
LINCOLN	Total	\$42.00788	\$493.99582	\$91.56892	\$627.57263
		\$44.71966	\$460.76423	\$158.17277	\$663.65666
		\$222.24886	\$553.70284	\$302.94448	\$1,078.89618
		\$231.15630	\$698.98437	\$324.94172	\$1,255.08239
		\$304.03519	\$766.45882	\$445.23644	\$1,515.73045
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$10.09717 \$100.84231	\$61.71464 \$666.30121	\$18.16377 \$375.47341	\$89.97558 \$1,142.61692
		\$17.89161	\$527.09485	\$70.96373	\$615.95018
	Total	\$972.99897	\$4,229.01678	\$1,787.46525	\$6,989.48099
CONSTELLATION		\$20.25794	\$450.55948	\$266.79128	\$737.60871
	Mar-00	\$80.60563	\$442.10265	\$96.59254	\$619.30082
		\$364.49229	\$520.21331 \$774.40440	\$395.83141	\$1,280.53701
		\$285.83765 \$293.02684	\$774.40119 \$831.20838	\$482.62059 \$380.19666	\$1,542.85943 \$1,504.43188
		\$1.76120	\$78.00931	\$26.65497	\$106.42548
		\$42.89234	\$2,697.67109	\$94.20366	\$2,834.76709
		\$13.71385	\$258.39158	\$124.99704	\$397.10247
	Total	\$1,102.58774	\$6,052.55700	\$1,867.88814	\$9,023.03288
STENNIS		\$81.45240	\$1,969.49901	\$11.07206	\$2,062.02347
		\$184.51980	\$685.84258 \$1,478.64345	\$214.04124	\$1,084.40362
		\$441.23582 \$378.21924	\$1,478.64345 \$524.86708	\$599.67908 \$578.44878	\$2,519.55835 \$1,481.53511
		\$449.84411	\$1,332.75225	\$527.74783	\$2,310.34419
		\$5.57605	\$265.67519	\$69.11615	\$340.36739
		\$114.89433	\$1,081.42919	\$388.66239	\$1,584.98591
		\$25.04669	\$97.16244	\$65.88318	\$188.09232
	Total	\$1,680.78845	\$7,435.87120	\$2,454.65071	\$11,571.31035
VINSON		\$38.23692	\$639.73604	\$298.64512	\$976.61808
		\$88.26069 \$152.45571	\$520.19603 \$747.31574	\$213.33920 \$244.91157	\$821.79591 \$1,144.68301
		\$263.18304	\$1,090.68598	\$434.35655	\$1,788.22558
		\$223.81250	\$1,138.37579	\$285.26057	\$1,647.44886
		\$1.89504	\$72.37256	\$15.60503	\$89.87263
		\$66.12578	\$671.82284	\$136.58953	\$874.53815
		\$19.77499	\$96.32778	\$47.12691	\$163.22969
111100: **	Total	\$853.74467	\$4,976.83276	\$1,675.83448	\$7,506.41191
LINCOLN		\$36.67863	\$389.53482	\$143.80419	\$570.01765
		\$156.39366 \$280.24767	\$211.46028 \$860.45717	\$112.79859 \$300.87800	\$480.65253 \$1.450.58375
		\$280.24767 \$328.32648	\$869.45717 \$1,063.01870	\$300.87890 \$342.88437	\$1,450.58375 \$1,734.22955
		\$270.59888	\$627.29370	\$327.56596	\$1,225.45853
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$13.55907	\$404.34776	\$68.62247	\$486.52930
		\$96.45996	\$2,870.92020	\$270.56024	\$3,237.94039
	T-4 *	\$10.48963	\$501.52860	\$131.16850	\$643.18673
	Total	\$1,192.75397	\$6,937.56123	\$1,698.28322	\$9,828.59843
			0.45		

CONSTELLATION	N	\$71.38973	\$359.59741	\$277.09554	\$708.08267
	Apr-00	\$59.45416	\$280.99382	\$156.64246	\$497.09045
		\$179.26311	\$266.60529	-\$5,225.62126	-\$4,779.75286
		\$154.64639	\$626.85624	\$2,976.46155	\$3,757.96418
		\$166.58752	\$683.90698	\$2,951.96928	\$3,802.46378
		-\$3.15074	\$59.04212	\$13.82700	\$69.71838
		\$60.06644 \$14.55866	\$962.67013 \$296.91682	\$204.69159 \$145.23558	\$1,227.42816 \$456.71106
	Total	\$702.81527	\$3,536.58881	\$1,500.30173	\$5,739.70581
STENNIS	Total	\$79.71390	\$932.00540	\$83.99288	\$1,095.71218
		\$152.55318	\$312.34019	\$242.67250	\$707.56587
		\$476.28015	\$770.59924	-\$321.76554	\$925.11385
		\$635.47631	\$1,492.88492	\$1,903.03959	\$4,031.40081
		\$464.43991	\$731.56642	-\$363.72654	\$832.27979
		\$18.71749	\$243.51069	\$63.51621	\$325.74439
		\$147.86652	\$1,323.15881	\$380.01275	\$1,851.03808
		\$16.81284	\$146.71663	\$148.23313	\$311.76261
VINCON	Total	\$1,991.86030	\$5,952.78231	\$2,135.97498	\$10,080.61758
VINSON		\$24.77307	-\$57.15659 \$61.3550	\$173.22775 \$103.41573	\$140.84423
		\$36.80637 \$135.27532	-\$61.35550 \$405.88244	\$102.41572 \$137.34903	\$77.86659 \$678.50679
		\$227.31369	\$153.45855	\$221.26304	\$602.03528
		\$201.51969	\$129.51969	\$318.25677	\$649.29615
		\$1.32174	\$64.55820	\$12.98087	\$78.86081
		\$43.93822	\$312.45535	\$164.41104	\$520.80460
		\$13.58924	\$131.40426	\$61.30614	\$206.29963
	Total	\$684.53734	\$1,078.76641	\$1,191.21035	\$2,954.51410
LINCOLN		\$29.27348	\$500.05842	\$143.73258	\$673.06448
		\$41.03291	\$308.35283	\$223.63481	\$573.02055
		\$206.50338	\$353.43251	\$249.20802	\$809.14390
		\$244.04902	\$95.10614	\$248.83903	\$587.99419
		\$186.99079 \$0.00000	\$102.43135 \$0,0000	\$280.37327	\$569.79541
		\$3.99403	\$0.00000 \$102.69220	\$0.00000 \$53.93364	\$0.00000 \$160.61987
		\$52.93794	-\$462.89530	\$238.43576	-\$171.52159
		\$8.59866	\$244.87759	\$111.94217	\$365.41842
	Total	\$773.38021	\$1,244.05573	\$1,550.09928	\$3,567.53522
CONSTELLATION	N	\$27.23174	\$156.76880	-\$433.20120	-\$249.20067
	May-00	\$58.15583	-\$223.23702	\$622.67500	\$457.59381
		\$227.69308	\$37.33969	\$134.27062	\$399.30339
		\$146.95863	\$303.84691	-\$1,270.54139	-\$819.73585
		\$166.66618	\$231.24118	-\$1,141.91796	-\$744.01061
		\$6.75312	-\$111.67508	\$1,941.13702 \$2,510,71542	\$1,836.21507
		\$67.56155 \$8.46550	-\$67.26927 \$60.97142	-\$2,510.71542 \$1,882.64063	-\$2,510.42314 \$1,952.07755
	Total	\$709.48562	\$387.98662	-\$775.65270	\$321.81954
STENNIS		\$61.04442	\$1,004.30819	\$269.62808	\$1,334.98069
		\$105.83790	\$436.24102	\$168.67780	\$710.75671
		\$357.33958	\$1,302.67432	\$897.11397	\$2,557.12787
		\$358.80717	\$756.70638	-\$830.55692	\$284.95663
		\$370.32733	\$1,520.69625	\$904.90866	\$2,795.93223
		\$11.26125	\$137.33490	\$40.67635	\$189.27250
		\$126.73319	\$1,159.18922	\$371.60830	\$1,657.53071
	Total	\$13.34494 \$1,404.69579	\$128.55055 \$6,445.70083	\$74.36107 \$1,896.41731	\$216.25656 \$9,746.81392
VINSON	·otai	\$27.08382	\$400.93493	-\$30.35473	\$397.66403
		\$124.33404	\$22.10525	-\$33.28542	\$113.15387
		\$180.68311	\$1,418.56498	\$290.88186	\$1,890.12996
		\$121.70049	\$396.89547	\$133.64327	\$652.23923
		\$149.52567	\$638.24259	\$184.18466	\$971.95292
		\$3.25377	\$49.67113	\$11.00946	\$63.93436
		\$60.51259	\$303.55797	\$153.85724	\$517.92781
	Tatal	\$17.06841 \$684.46404	\$107.97607	\$13.90096 \$733.83730	\$138.94543
LINCOLN	Total	\$684.16191 \$56.38172	\$3,337.94840 \$863.28264	\$723.83729 \$132.06770	\$4,745.94760 \$1,051.73207
LIITOOLIT		\$82.68914	\$605.26264 \$447.59538	\$181.69783	\$711.98235
		\$241.26481	\$480.86616	\$351.14483	\$1,073.27580
		\$312.43818	\$628.73569	\$393.91062	\$1,335.08449
		\$297.24007	\$807.61758	\$317.68413	\$1,422.54179
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$8.09466	\$103.84195	\$19.29021	\$131.22681
		\$97.80051	\$384.26354	\$252.72542	\$734.78947
	Tatal	\$22.08051	\$186.67919	\$41.14400 \$4.680.66475	\$249.90369
	Total	\$1,117.98959	\$3,902.88214	\$1,689.66475	\$6,710.53648

CONSTELLATION		\$23.67717	\$530.93260 \$400.67363	-\$60.32355	\$494.28623
	Jun-00	\$53.82769 \$176.85463	\$480.67363 \$202.04124	\$114.93814 \$71.70504	\$649.43946 \$541.50181
		\$176.85463 \$122.10776	\$292.94124 \$586.48174	\$71.70594 \$368.94109	\$1,077.53059
		\$209.42700	\$1,119.13579	\$451.06978	\$1,779.63256
		\$10.54777	\$75.42020	\$19.31401	\$105.28197
		\$41.73625	\$490.76031	\$107.00320	\$639.49976
		\$10.78970	\$312.71212	\$76.36243	\$399.86424
	Total	\$648.96797	\$3,889.05763	\$1,149.01103	\$5,687.03663
STENNIS		\$16.62647	\$615.69896	-\$104.08717	\$528.23826
		\$35.79093	\$719.66136	\$91.11041	\$846.56270
		\$97.04394	\$1,089.86796	\$260.94652	\$1,447.85842
		\$113.18517 \$93.82716	\$1,113.61208 \$856.01892	\$465.24472 \$283.11493	\$1,692.04197 \$1,232,06101
		\$6.72714	\$412.75839	\$39.74124	\$1,232.96101 \$459.22677
		\$34.58563	\$789.29236	\$168.61689	\$992.49487
		\$4.44767	\$188.05232	\$58.78759	\$251.28758
	Total	\$402.23411	\$5,784.96235	\$1,263.47512	\$7,450.67157
VINSON		\$28.63833	\$269.12423	\$70.79482	\$368.55738
		\$151.12125	\$263.20452	\$64.69858	\$479.02435
		\$158.10281	\$1,367.37457	\$312.26410	\$1,837.74148
		\$158.40134	\$1,026.26381	\$211.00887	\$1,395.67403
		\$135.55610	\$576.69462	\$167.70824	\$879.95896
		\$0.96705	\$7.19442	\$10.64211	\$18.80358
		\$41.93473 \$0.65883	\$299.96695 \$256.23362	\$73.05128 \$50.01222	\$414.95296 \$316.90467
	Total	\$9.65883 \$684.38045	\$256.23362 \$4,066.05673	\$50.91222 \$961.08022	\$316.80467 \$5,711.51740
LINCOLN	10141	\$69.81457	\$3,548.70326	\$155.36366	\$3,773.88149
		\$138.57016	\$613.93140	\$109.22268	\$861.72424
		\$339.80173	\$1,557.92997	\$330.61223	\$2,228.34393
		\$304.31553	\$1,959.63837	\$406.69472	\$2,670.64863
		\$329.78893	\$1,505.27512	\$352.37772	\$2,187.44178
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$18.07200	\$183.64510	\$40.42461	\$242.14171
		\$169.95266	\$1,307.12018	\$232.31810	\$1,709.39094
	T-4-1	\$30.96551	\$502.65357	\$128.14473	\$661.76382
CONSTELLATION	Total	\$1,401.28110	\$11,178.89698 \$107.70091	\$1,755.15846 \$137.96146	\$14,335.33653
CONSTELLATION	Jul-00	\$30.77086 \$73.87282	\$197.70981 \$1,848.58422	\$137.86146 \$164.09035	\$366.34213 \$2,086.54739
	0ui-00	\$6.59353	\$1,332.36845	\$184.39238	\$1,523.35436
		\$292.48003	\$294.27730	\$279.91835	\$866.67568
		\$288.75342	\$268.55732	\$192.04266	\$749.35340
		\$9.08677	\$56.68514	\$10.92191	\$76.69383
		\$52.07068	\$318.41251	\$179.88375	\$550.36693
		\$17.24672	\$155.33501	\$70.79323	\$243.37496
	Total	\$770.87483	\$4,471.92976	\$1,219.90409	\$6,462.70868
STENNIS		\$12.84172	\$119.39844	\$47.35700	\$179.59716
		\$22.35291	-\$120.22649	\$35.94960 \$01.38434	-\$61.92398
		\$81.42725 \$227.51719	\$1,007.19283 -\$541.67206	\$91.38424 \$308.67952	\$1,180.00432 -\$5.47535
		\$95.98860	\$938.94525	\$163.78450	\$1,198.71835
		\$3.09015	\$63.91034	\$23.74621	\$90.74670
		\$21.26591	-\$503.42190	\$45.41234	-\$436.74365
		\$1.33328	\$108.80662	\$31.31889	\$141.45878
	Total	\$465.81701	\$1,072.93302	\$747.63229	\$2,286.38232
VINSON		\$16.94423	\$162.88393	\$68.13242	\$247.96058
		\$118.77481	\$235.78506	\$28.32482	\$382.88469
		\$152.45285	-\$1,006.28147	\$102.14458	-\$751.68405
		\$148.62568	\$563.95516 \$657.05725	\$279.36458	\$991.94541
		\$188.10557 \$0.00000	\$657.05725 \$0.00000	\$249.09171 \$0.00000	\$1,094.25453 \$0.00000
		\$67.06981	\$185.34203	\$80.97063	\$333.38247
		\$8.72656	\$135.71114	\$46.68134	\$191.11904
	Total	\$700.69951	\$934.45309	\$854.71007	\$2,489.86267
LINCOLN		\$14.06596	-\$1,093.98199	\$164.45970	-\$915.45633
		\$45.41229	-\$77.02967	\$115.73298	\$84.11560
		\$219.22241	\$140.22483	\$276.61682	\$636.06406
		\$181.02188	\$115.99549	\$386.12820	\$683.14558
		\$105.60800	\$80.76839	\$257.97220	\$444.34859
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$0.64030	\$93.25014	\$43.98963 \$373.63416	\$137.88007
		\$31.80223 \$15.37649	\$36.25313 \$161.82137	\$272.63416 \$43.77860	\$340.68953 \$220.97646
	Total	\$15.37649 \$613.14957	\$161.82137 -\$542.69830	\$1,561.31230	\$220.97646 \$1,631.76356
	iotai	ψ010.14937	-ψ342.03030	ψ1,501.51250	ψ1,001.10000

CONSTELLATIO		\$22.72598	-\$96.52445	\$65.63496	-\$8.16351
	Aug-00	\$52.98730 \$430.03454	-\$38.31621 \$07.31450	\$258.64765 \$206.36041	\$273.31875
		\$439.02454 \$190.51491	\$97.31450 \$46.90374	\$206.36941 \$222.06725	\$742.70845 \$459.48590
		\$163.00632	\$281.21468	\$807.90922	\$1,252.13021
		\$7.52446	\$30.33370	\$30.71015	\$68.56831
		\$51.93291	\$575.95879	\$336.59222	\$964.48392
		\$12.61433	\$221.29128	\$117.82801	\$351.73362
	Total	\$940.33075	\$1,118.17603	\$2,045.75887	\$4,104.26565
STENNIS		\$15.26745	\$121.52665	\$201.63676	\$338.43086
		\$42.98617	\$17.37317	\$117.71183	\$178.07117
		\$171.85353 \$437.00564	-\$1,013.15819	-\$119.87797	-\$961.18263
		\$137.09561 \$127.11369	\$2,633.17890 -\$1,026.54442	\$562.73738 -\$70.90854	\$3,333.01189 -\$970.33928
		\$2.45448	\$108.27845	\$12.99577	\$123.72870
		\$24.47257	\$688.68787	\$158.96980	\$872.13024
		\$4.06656	\$195.42627	\$6.07831	\$205.57113
	Total	\$525.31006	\$1,724.76868	\$869.34333	\$3,119.42207
VINSON		\$36.72807	\$56.67551	\$32.42637	\$125.82995
		\$70.77433	\$190.24767	\$115.28419	\$376.30620
		\$176.89519	\$782.44635	\$197.25179	\$1,156.59333
		\$183.07341	\$413.42886	\$559.89536	\$1,156.39762
		\$236.91436	\$327.36696	\$188.34027	\$752.62160
		\$9.20599	\$54.68128	\$16.56073	\$80.44799
		\$54.90982	\$636.89766	\$164.91922	\$856.72670
		\$18.44364	\$164.12217	\$107.02035	\$289.58616
LINGOLN	Total	\$786.94481	\$2,625.86646	\$1,381.69828	\$4,794.50954
LINCOLN		\$48.40528 \$110.03611	\$1,435.47828	\$167.01190 \$314.41548	\$1,650.89545
		\$110.02611 \$232.27930	\$472.00942 \$650.75285	\$214.41548 \$340.43365	\$796.45101 \$1,223.46579
		\$263.66835	\$1,102.83435	\$361.89217	\$1,728.39487
		\$367.76852	\$1,156.67958	\$417.92062	\$1,942.36873
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$7.53757	\$246.34739	\$32.74566	\$286.63062
		\$100.63279	\$1,203.95714	\$371.29209	\$1,675.88202
		\$13.52194	\$445.71345	\$85.91519	\$545.15058
	Total	\$1,143.83987	\$6,713.77246	\$1,991.62675	\$9,849.23908
CONSTELLATIO	N	\$35.04923	\$572.01128	\$522.88502	\$1,129.94553
	Sep-00	\$124.96891	\$355.86259	\$220.48239	\$701.31389
		\$203.92030	\$1,175.70212	\$154.18319	\$1,533.80562
		\$221.92717	\$1,443.47173	\$694.50891	\$2,359.90781
		\$265.60122	\$1,854.59382	-\$35.43830	\$2,084.75673
		\$10.15304	\$88.54654	\$8.20698	\$106.90656
		\$63.00793	\$1,934.52160 \$013.15378	\$257.73690	\$2,255.26643
	Total	\$14.11477 \$938.74257	\$912.15278 \$8,336.86246	\$82.15626 \$1,904.72135	\$1,008.42380 \$11,180.32638
STENNIS	Total	\$57.60723	\$984.29336	\$367.26052	\$1,409.16111
O I E I I I I I		\$48.10055	-\$128.78826	\$72.61007	-\$8.07765
		\$165.81276	\$1,034.28983	-\$32.89860	\$1,167.20399
		\$606.61928	\$784.69435	\$1,437.90260	\$2,829.21622
		\$179.59441	\$1,014.19009	-\$347.84754	\$845.93696
		\$9.72475	\$145.38194	\$22.21449	\$177.32118
		\$56.62972	\$630.23217	\$184.42008	\$871.28196
		\$3.18324	\$310.66557	\$110.07018	\$423.91899
VINCON	Total	\$1,127.27194	\$4,774.95904 \$2,170.63419	\$1,813.73178	\$7,715.96276
VINSON		\$43.81643 \$05.60350	\$2,170.63418	\$157.52410 \$160.20618	\$2,371.97472
		\$95.60350 \$264.12645	-\$67.05690 \$1.078.45481	\$169.20618 \$180.13562	\$197.75278
		\$338.29621	\$1,978.45481 \$2,151.71433	\$17.58255	\$2,422.71689 \$2,507.59310
		\$297.57549	\$1,145.21953	\$201.01506	\$1,643.81009
		\$15.15136	\$47.13885	\$28.88069	\$91.17091
		\$57.42211	\$1,104.20500	\$217.60868	\$1,379.23579
		\$12.54167	\$361.72578	\$85.05813	\$459.32558
	Total	\$1,124.53323	\$8,892.03560	\$1,057.01102	\$11,073.57984
LINCOLN		\$72.80101	-\$1,929.54993	\$264.93358	-\$1,591.81535
		\$95.97382	\$178.12683	\$227.62554	\$501.72619
		\$276.66642	\$1,285.48976	\$545.32696	\$2,107.48314
		\$296.27709	\$1,532.44161	\$676.41508	\$2,505.13377
		\$283.07813	\$1,402.28413	\$663.08484	\$2,348.44710
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$10.19536 \$169.84042	\$182.41492 \$4.679.61063	\$41.17531 \$203.70952	\$233.78559 \$5.053.16056
		\$169.84042 \$29.62705	\$4,679.61063 \$756.67627	\$81.89184	\$5,053.16056 \$868.19516
	Total	\$1,234.45930	\$8,087.49420	\$2,704.16267	\$12,026.11617
		. ,	,	,· - · · · · · ·	,

CONSTELLATIO		\$117.10791	\$1,107.04105	\$57.67658	\$1,281.82555
	Oct-00	\$220.93891	\$286.47419	\$228.83903	\$736.25214
		\$457.58677	\$1,313.20028	\$872.18524	\$2,642.97229
		\$551.12110	\$797.55632 \$055.84114	\$501.03454 \$306.11007	\$1,849.71197 \$1,016.51571
		\$564.56360	\$955.84114 \$100.13264	\$396.11097	\$1,916.51571
		\$29.22587 \$271.13308	\$527.73875	\$80.44673 \$222.53276	\$209.80524 \$1,021.40459
		\$48.10779	\$119.49951	\$71.46945	\$239.07675
	Total	\$2,259.78503	\$5,207.48389	\$2,430.29532	\$9,897.56423
STENNIS	iotai	\$63.34283	\$81.15277	\$63.80177	\$208.29737
OTENNIO		\$101.96498	\$353.97080	\$40.62663	\$496.56240
		\$232.41331	\$577.74582	\$168.29214	\$978.45127
		\$459.21953	\$816.12921	\$591.24188	\$1,866.59062
		\$360.46423	\$376.74480	\$120.42437	\$857.63339
		\$4.81037	\$63.43354	\$20.35992	\$88.60383
		\$58.00359	\$181.49441	\$121.26514	\$360.76314
		\$20.47236	\$43.53704	\$55.76940	\$119.77880
	Total	\$1,300.69119	\$2,494.20839	\$1,181.78125	\$4,976.68083
VINSON		\$52.14053	\$71.12931	\$42.08082	\$165.35066
		\$149.30372	\$107.65068	\$184.63993	\$441.59433
		\$344.35532	\$1,102.73113	\$272.63758	\$1,719.72403
		\$315.12285	\$807.76877	\$333.61698	\$1,456.50860
		\$373.05432	\$1,111.56894	\$421.38869	\$1,906.01195
		\$13.05422	\$74.87222	\$30.39961	\$118.32605
		\$113.46357	\$322.37096	\$77.79247	\$513.62701
		\$10.23202	\$93.86412	\$193.90909	\$298.00524
	Total	\$1,370.72655	\$3,691.95614	\$1,556.46517	\$6,619.14786
LINCOLN		\$115.97697	\$876.26108	\$225.80199	\$1,218.04004
		\$237.00165	\$519.00577	\$334.36549	\$1,090.37291
		\$492.31740	\$766.85601	\$463.84588	\$1,723.01928
		\$490.48754	\$709.40391	\$427.31986	\$1,627.21131
		\$544.14809	\$1,134.70061	\$528.99232	\$2,207.84102
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$15.00910	\$66.78976	\$39.44725	\$121.24611
		\$281.43036	\$731.08828 \$437.33304	\$314.97343	\$1,327.49207
	Tatal	\$46.89375	\$137.22204	\$107.02282	\$291.13861
CONSTELLATIO	Total	\$2,223.26486	\$4,941.32745 \$544.64830	\$2,441.76903	\$9,606.36135
CONSTELLATIO	Nov-00	\$64.74040 \$163.32687	\$544.64839 \$579.60103	\$129.74331 \$161.91083	\$739.13210 \$904.83873
	1404-00	\$416.37932	\$931.30555	\$647.21703	\$1,994.90190
		\$399.49748	\$805.52220	\$411.95566	\$1,616.97534
		\$403.61239	\$883.20592	\$422.40652	\$1,709.22483
		\$20.42209	\$81.78648	\$38.93714	\$141.14571
		\$154.54911	\$1,069.59616	\$177.42328	\$1,401.56855
		\$23.02616	\$477.27009	\$169.85612	\$670.15238
	Total	\$1,645.55382	\$5,372.93582	\$2,159.44990	\$9,177.93954
STENNIS		\$19.90549	\$925.94408	\$463.31031	\$1,409.15988
		\$111.29651	\$410.52552	\$95.89779	\$617.71982
		\$355.91141	\$458.43847	\$254.46644	\$1,068.81632
		\$670.24378	\$560.61658	\$493.29776	\$1,724.15812
		\$321.02292	\$529.71138	\$210.65546	\$1,061.38976
		\$13.40198	\$306.68761	\$38.15046	\$358.24005
		\$83.09971	\$851.37396	\$190.68057	\$1,125.15425
		\$6.57815	\$130.58759	\$82.07900	\$219.24475
	Total	\$1,581.45995	\$4,173.88518	\$1,828.53781	\$7,583.88294
VINSON		\$66.44079	\$403.47791	\$124.59916	\$594.51786
		\$141.39048	\$379.45681	\$122.56695	\$643.41424
		\$369.62572	\$1,185.58233	\$303.50018	\$1,858.70823
		\$419.52965	\$894.02472	\$392.97205	\$1,706.52642
		\$418.14113	\$830.79476	\$446.49327	\$1,695.42917
		\$13.68973 \$115.92909	\$40.16688 \$904.51019	\$9.71448	\$63.57109
		\$115.82808	\$804.51918	\$222.19495	\$1,142.54222
	Total	\$24.31830 \$1.568.96388	\$205.29852 \$4.743.32112	\$38.87628 \$1.660.91732	\$268.49309 \$7.073.20233
LINCOLN	Total	\$1,568.96388 \$111.18026	\$4,743.32112 \$630.57804	\$1,660.91732 \$251.41949	\$7,973.20233 \$993.17779
LINOULIN		\$212.29837	\$630.57804 \$499.13624	\$251.41949 \$241.74233	\$993.17779 \$953.17694
		\$513.09895	\$823.42854	\$497.42098	\$1,833.94847
		\$533.08394	\$623.42634 \$677.82965	\$497.42096 \$423.44516	\$1,633.94647
		\$541.55854	\$706.42387	\$453.93317	\$1,701.91558
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$17.90240	\$91.66720	\$73.77962	\$183.34922
		\$261.64958	\$903.36387	\$285.69094	\$1,450.70439
		\$49.54912	\$212.76165	\$163.00470	\$425.31548
	Total	\$2,240.32116	\$4,545.18907	\$2,390.43640	\$9,175.94663
		•	•	•	

CONSTELLATION	1	\$43.51652	\$395.19367	\$179.14391	\$617.85410
	Dec-00	\$103.35501	\$329.74705	\$240.63328	\$673.73534
		\$4.07030	\$1,122.49655	\$440.48181	\$1,567.04866
		\$302.24085	\$570.91764	\$346.62506	\$1,219.78356
		\$267.31745	\$291.97082	\$258.97805	\$818.26631
		\$15.91002	\$125.04490	\$33.62693	\$174.58185
		\$97.11904	\$1,117.67575	\$174.26250	\$1,389.05729
		\$7.47658	\$588.08433	\$139.93272	\$735.49363
	Total	\$841.00577	\$4,541.13071	\$1,813.68426	\$7,195.82074
STENNIS		\$29.95369	\$105.20479	\$747.16348	\$882.32196
		\$49.43505	-\$173.16819	\$71.28994	-\$52.44320
		\$196.25626	\$355.46288	\$305.80730	\$857.52645
		\$389.05540	\$544.51949	\$249.83883	\$1,183.41372
		\$184.18556	\$987.86168	\$371.15700	\$1,543.20425
		\$10.37582	\$185.77912	\$22.56097	\$218.71591
		\$89.09777	\$505.62490	\$248.41749	\$843.14016
		\$13.88340	\$102.85617	\$53.50212	\$170.24168
	Total	\$962.24295	\$2,614.14084	\$2,069.73715	\$5,646.12094
VINSON		\$35.39131	-\$16.66786	\$92.14592	\$110.86937
		\$73.30554	\$74.44300	\$101.13823	\$248.88676
		\$263.28406	\$1,056.60392	\$465.19456	\$1,785.08255
		\$227.84608	\$627.57363	\$265.93920	\$1,121.35892
		\$223.43460	\$1,028.95506	\$361.30370	\$1,613.69336
		\$8.73440	\$90.29906	\$48.73525	\$147.76871
		\$71.83893	\$241.65463	\$442.74266	\$756.23622
		\$4.43050	\$243.65280	\$79.08638	\$327.16968
	Total	\$908.26542	\$3,346.51424	\$1,856.28590	\$6,111.06557
LINCOLN		\$97.62649	\$1,848.73617	\$193.83238	\$2,140.19504
		\$204.62170	\$516.85990	\$216.16315	\$937.64474
		\$492.53800	\$1,414.60058	\$343.34966	\$2,250.48824
		\$479.02347	\$1,327.09051	\$345.48660	\$2,151.60058
		\$479.51632	\$1,324.67945	\$349.55678	\$2,153.75255
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$13.80606	\$126.02246	\$57.72373	\$197.55225
		\$237.42275	\$1,452.33739	\$321.46042	\$2,011.22056
		\$40.59285	\$483.70356	\$104.38220	\$628.67860
	Total	\$2,045.14763	\$8,494.03001	\$1,931.95492	\$12,471.13256
CONSTELLATION		\$85.60985	\$426.73913	\$268.61320	\$780.96218
	Jan-01	\$159.41169	\$413.63614	\$297.35931	\$870.40714
		\$398.91358	\$285.32802	\$354.68746	\$1,038.92906
		\$464.86856	\$1,247.63117	\$518.52422	\$2,231.02396
		\$409.89056	\$1,351.57812	\$625.90535	\$2,387.37402
		\$14.07361	\$57.61266	\$28.84867	\$100.53495
		\$158.29277	\$1,250.91994	\$191.96959	\$1,601.18230
		\$28.76272	\$365.82115	\$187.10828	\$581.69215
	Total	\$1,719.82334	\$5,399.26634	\$2,473.01609	\$9,592.10576
STENNIS		\$13.62585	\$145.70636	\$211.70986	\$371.04207
· · - · · · · ·		\$106.06167	\$65.00894	\$79.02738	\$250.09799
		\$302.04183	\$777.54942	\$169.16722	\$1,248.75847
		\$475.92748	\$529.52927	\$353.14351	\$1,358.60025
		\$259.90934	\$741.72783	\$212.12065	\$1,213.75782
		\$5.06956	\$43.48599	\$31.99004	\$80.54558
		\$76.76583	\$584.72272	\$217.08973	\$878.57829
		\$15.33380	\$12.81938	\$43.74753	\$71.90071
	Total	\$1,254.73535	\$2,900.54990	\$1,317.99593	\$5,473.28118
VINSON		\$45.88581	\$333.99423	\$160.30953	\$540.18957
		\$104.97755	\$237.88430	\$134.15603	\$477.01788
		\$479.36334	\$980.03235	\$490.46191	\$1,949.85760
		\$284.36830	\$388.00555	\$232.56713	\$904.94098
		\$367.35556	\$616.67891	\$439.63597	\$1,423.67044
		\$5.94850	\$157.18739	\$27.69068	\$190.82657
		\$81.22665	\$407.42290	\$201.59487	\$690.24442
		\$17.94260	\$145.97752	\$203.80192	\$367.72204
	Total	\$1,387.06831	\$3,267.18314	\$1,890.21805	\$6,544.46950
LINCOLN		\$41.77268	\$67.97979	\$121.67582	\$231.42830
		\$97.92054	\$186.00825	\$20.82201	\$304.75080
		\$251.17039	\$404.81886	\$98.31479	\$754.30403
		\$159.03727	\$285.60593	\$85.07620	\$529.71940
		\$217.48387	\$412.59640	\$146.89465	\$776.97492
		\$0.00000	\$0.0000	\$0.00000	\$0.00000
		\$12.58969	\$104.89374	\$16.47924	\$133.96267
		\$75.05003	\$440.36544	\$51.30531	\$566.72078
		\$16.45665	\$81.01032	\$19.40778	\$116.87475
	Total	\$871.48111	\$1,983.27873	\$559.97581	\$3,414.73565

CONSTELLATION	N	\$63.37997	\$548.51273	\$357.15203	\$969.04473
	Feb-01	\$137.85462	\$483.14055	\$315.25422	\$936.24939
		\$798.39768	\$770.67552	\$335.71561	\$1,904.78882
		\$434.07864	\$481.42264	\$303.58248	\$1,219.08376
		\$469.02033	\$1,000.31082	\$393.53861	\$1,862.86977
		\$15.22496	\$250.60573	\$65.64334	\$331.47404
		\$196.06696	\$849.69646	\$332.11700	\$1,377.88042
		\$23.34827	\$476.84271	\$180.27649	\$680.46747
	Total	\$2,137.37144	\$4,861.20716	\$2,283.27979	\$9,281.85839
STENNIS		\$38.48753	\$351.62135	\$296.00405	\$686.11293
		\$94.32300	\$107.37380	\$70.23255	\$271.92935
		\$315.06360	\$827.39778	\$339.25497	\$1,481.71635
		\$119.75396	\$495.14289	\$215.29155	\$830.18841
		\$334.86136	\$680.91220	\$251.19336	\$1,266.96692
		\$9.84072	\$446.48846	\$57.91901	\$514.24819
		\$76.68689	\$746.20460	\$174.73108	\$997.62257
	T-4-1	\$16.95145	\$138.51519	\$145.28069	\$300.74734
VINCON	Total	\$1,005.96852	\$3,793.65627	\$1,549.90726	\$6,349.53205
VINSON		\$100.63233	\$370.15335	\$101.24274	\$572.02841
		\$220.55257	\$213.39702	\$141.14485	\$575.09444
		\$513.05336	\$1,115.38328	\$482.41129	\$2,110.84793
		\$534.64685	\$779.27373 \$1,303,70374	\$315.42503	\$1,629.34561
		\$217.03842 \$14.16550	\$1,302.70374 \$140.07038	\$545.09856 \$51.88010	\$2,064.84072
		\$14.16559 \$237.59302	\$149.07028 \$730.86350		\$215.11597
		\$237.58392 \$40.26476	\$347.89803	\$101.25463 \$130.60587	\$1,069.70204 \$518.76866
	Total		\$5,008.74291		\$8,755.74377
LINCOLN	Iotai	\$1,877.93780 \$17.20615	\$183.95240	\$1,869.06306 \$211.66889	\$412.82743
LINCOLN		\$39.46942	\$473.88092	\$48.58061	\$561.93095
		\$75.21975	\$317.30136	\$94.35376	\$486.87487
		\$48.65528	\$271.46239	\$77.64148	\$397.75915
		\$13.18595	\$285.79708	\$117.62008	\$416.60310
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$3.39591	\$79.40350	\$7.79952	\$90.59893
		\$39.55521	\$323.69318	\$185.68022	\$548.92861
		\$9.55431	\$98.82094	\$18.85902	\$127.23427
	Total	\$246.24198	\$2,034.31176	\$762.20357	\$3,042.75732
CONSTELLATION		\$64.96210	\$1,316.55045	\$209.15242	\$1,590.66497
	Mar-01	\$162.49703	\$622.11949	\$210.61825	\$995.23477
		\$511.50767	\$945.61686	\$735.33857	\$2,192.46310
		\$379.68441	\$1,453.94245	\$408.85659	\$2,242.48345
		\$408.92836	\$1,473.74157	\$542.24173	\$2,424.91167
		\$19.29228	\$146.94496	\$35.99525	\$202.23249
		\$149.30983	\$1,495.72076	\$365.19519	\$2,010.22578
		\$18.83387	\$437.60322	\$119.50479	\$575.94188
	Total	\$1,715.01555	\$7,892.23976	\$2,626.90280	\$12,234.15810
STENNIS		\$48.77298	\$377.22324	\$151.99278	\$577.98900
		\$93.41868	\$133.97153	\$91.99524	\$319.38545
		\$349.18474	\$571.06247	\$268.92398	\$1,189.17119
		\$579.83489	\$630.37804	\$567.25887	\$1,777.47180
		\$410.24679	\$1,381.77294	\$563.91991	\$2,355.93963
		\$8.67466	\$218.92885	\$83.82814	\$311.43165
		\$136.75294	\$455.37085	\$295.57756	\$887.70135
		\$18.76735	\$86.76274	\$116.34914	\$221.87924
	Total	\$1,645.65304	\$3,855.47066	\$2,139.84561	\$7,640.96931
VINSON		\$58.55219	\$597.52219	\$146.08788	\$802.16226
		\$164.01338	\$402.45880	\$130.92683	\$697.39901
		\$394.44175	\$958.99830	\$334.90955	\$1,688.34960
		\$358.67411	\$1,299.67288	\$400.47160	\$2,058.81859
		\$772.99879	\$890.52950 \$116.04650	\$385.64406	\$2,049.17236
		\$22.05586	\$116.04659	\$30.08573	\$168.18818
		\$97.91433 \$18.23353	\$618.52582 \$128.03017	\$114.68406 \$143.41322	\$831.12421 \$289.67692
	Total	\$18.23333 \$1,886.88395		\$143.41322 \$1,686.22293	\$289.67692 \$8,584.89112
LINCOLN	iotai	\$31.47641	\$5,011.78425 \$412.23730	\$83.62206	\$527.33578
LINOULIN		\$80.31397	\$196.97650	\$111.38999	\$388.68045
		\$291.04310	\$552.60582	\$199.55032	\$1,043.19925
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$304.43717	\$665.42047	\$261.58789	\$1,231.44552
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$2.39475	\$83.89752	\$10.19803	\$96.49030
		\$49.85166	\$635.53608	\$180.44837	\$865.83611
		\$19.48447	\$203.39586	\$102.48094	\$325.36127
	Total	\$779.00153	\$2,750.06955	\$949.27760	\$4,478.34868
			•		
			0.50		

CONSTELLATION	N	\$74.45252	\$769.28585	\$211.53983	\$1,055.27820
	Apr-01	\$142.98881	\$709.73204	\$222.56645	\$1,075.28730
		\$351.45522	\$822.91798	\$597.94103	\$1,772.31422
		\$396.96409	\$1,127.93778	\$446.84648	\$1,971.74835
		\$441.04319	\$1,314.38692	\$512.34636	\$2,267.77647
		\$12.65900 \$177.37337	\$135.54372 \$1.105.08330	\$58.60536	\$206.80808
		\$177.27227 \$31.14985	\$1,105.98320 \$417.15085	\$181.36865 \$81.82308	\$1,464.62412 \$530.12377
	Total	\$1,627.98495	\$6,402.93833	\$2,313.03723	\$10,343.96051
STENNIS	Total	\$48.83268	\$1,004.07941	\$317.33386	\$1,370.24595
		\$124.60643	\$300.57407	\$171.59163	\$596.77213
		\$346.56644	\$1,075.33277	\$422.18373	\$1,844.08294
		\$609.40996	\$474.68698	\$534.97488	\$1,619.07181
		\$328.94981	\$931.42755	\$301.04058	\$1,561.41794
		\$6.08689	\$124.93617	\$28.02075	\$159.04381
		\$83.68712	\$725.21122	\$103.88391	\$912.78226
		\$9.55784	\$302.32641	\$38.90059	\$350.78484
VINCON	Total	\$1,557.69717	\$4,938.57459	\$1,917.92993	\$8,414.20169
VINSON		\$48.52979 \$127.15150	\$402.50484 \$92.36517	\$166.18531 \$121.97415	\$617.21995
		\$127.15150 \$468.31637	\$82.36517 \$1,139.79973	\$322.18568	\$331.49082 \$1,930.30178
		\$454.98083	\$842.00545	\$299.56576	\$1,596.55204
		\$473.97126	\$876.41237	\$360.73630	\$1,711.11992
		\$8.06264	\$68.98597	\$36.94018	\$113.98879
		\$124.37638	\$555.02719	\$165.63148	\$845.03505
		\$12.71978	\$339.93668	\$142.58369	\$495.24016
	Total	\$1,718.10855	\$4,307.03741	\$1,615.80256	\$7,640.94851
LINCOLN		\$46.08722	-\$25.95583	\$106.57426	\$126.70564
		\$55.96793	\$112.29012	\$67.39049	\$235.64853
		\$289.53533	\$582.56714	\$246.51684	\$1,118.61931
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$286.43047 \$0.00000	\$577.24252 \$0.00000	\$226.36712 \$0.00000	\$1,090.04011 \$0.00000
		\$5.41123	\$100.35370	\$8.29326	\$114.05819
		\$31.61625	\$305.07869	\$135.22980	\$471.92473
		\$11.70412	\$257.26671	\$57.48637	\$326.45720
	Total	\$726.75255	\$1,908.84303	\$847.85814	\$3,483.45372
CONSTELLATION	N	\$112.32665	\$1,322.36750	\$188.38125	\$1,623.07541
	May-01	\$267.22384	\$421.70904	\$260.49562	\$949.42850
		\$546.98019	\$1,086.09801	\$527.52446	\$2,160.60267
		\$644.64747	\$1,327.28489 \$1,301.33735	\$485.12367 \$550.21638	\$2,457.05603
		\$567.34092 \$25.23648	\$1,291.22735 \$55.38143	\$559.21638 \$69.92460	\$2,417.78465 \$150.54251
		\$298.55168	\$1,975.96300	\$254.91017	\$2,529.42485
		\$47.23756	\$415.11706	\$98.19409	\$560.54871
	Total	\$2,509.54479	\$7,895.14829	\$2,443.77024	\$12,848.46332
STENNIS		\$69.37956	\$443.48649	\$239.00695	\$751.87300
		\$137.33667	\$74.60398	\$138.87386	\$350.81451
		\$512.46593 \$424.04540	\$1,529.64440	\$611.27904	\$2,653.38938
		\$431.91540 \$482.89871	\$544.91050 \$1,112.33071	\$312.31023 \$466.74319	\$1,289.13613 \$2,061.97262
		\$18.03947	\$451.01919	\$49.13067	\$518.18933
		\$115.78275	\$322.42965	\$183.71520	\$621.92760
		\$30.50720	\$361.91037	\$109.87392	\$502.29149
	Total	\$1,798.32570	\$4,840.33529	\$2,110.93307	\$8,749.59406
VINSON		\$115.06663	\$332.76524	\$255.66711	\$703.49898
		\$225.19309	\$400.11317	\$157.62702	\$782.93328
		\$531.17412	\$1,050.58090	\$434.55406	\$2,016.30907
		\$591.48692	\$946.33929	\$304.68166	\$1,842.50787
		\$643.73205	\$1,142.57416 \$83.38130	\$380.87884	\$2,167.18506 \$172.05179
		\$12.31777 \$255.99083	\$825.76034	\$76.35273 \$192.32156	\$1,274.07273
		\$47.73475	\$465.61664	\$176.82300	\$690.17439
	Total	\$2,422.69617	\$5,247.13104	\$1,978.90597	\$9,648.73317
LINCOLN	- ****	\$94.80799	\$201.55809	\$3.63936	\$300.00544
		\$79.71313	\$245.85457	\$50.73735	\$376.30506
		\$263.40214	\$425.75623	\$166.06260	\$855.22097
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$319.52802	\$342.10889	\$165.95048	\$827.58739
		\$0.00000 \$11.85554	\$0.00000 \$54.80106	\$0.00000	\$0.00000
		\$11.85554 \$47.03250	\$54.89106 \$537.72525	-\$4.43445 \$128.92005	\$62.31214 \$713.67780
		\$9.26278	\$206.61080	\$47.45707	\$263.33065
	Total	\$825.60210	\$2,014.50489	\$558.33246	\$3,398.43945

CONSTELLATION		\$87.73334	\$1,190.33754	\$783.60092	\$2,061.67180
	Jun-01	\$210.26508	\$337.90068	\$211.96001	\$760.12578
		\$512.17441	\$1,359.99622	\$483.53152	\$2,355.70215
		\$549.30104	\$1,296.41815	\$538.30329	\$2,384.02248
		\$646.65965	\$1,326.12819	\$517.47327	\$2,490.26111
		\$20.12179	\$210.06837	\$27.16243	\$257.35258
		\$279.86484	\$1,413.36476	\$221.33639	\$1,914.56599
		\$41.52993	\$281.62230	\$168.17183	\$491.32406
	Total	\$2,347.65007	\$7,415.83621	\$2,951.53967	\$12,715.02595
STENNIS		\$42.34774	\$149.10031	\$124.05634	\$315.50439
		\$92.32583	\$99.59661	\$61.29130	\$253.21374
		\$465.78782	\$936.13176	\$479.75424	\$1,881.67383
		\$122.10226	\$864.08690	\$346.46007	\$1,332.64922
		\$494.46195	\$1,600.76315	\$493.04970	\$2,588.27481
		\$13.69421	\$201.08013	\$38.99182	\$253.76616
		\$11.44510 \$14.63100	\$184.15140	\$147.63454 \$147.69354	\$343.23104
	Total	\$14.62199	\$686.65745	\$117.68254	\$818.96198
VINSON	Total	\$1,256.78690	\$4,721.56771 \$217.80880	\$1,808.92056	\$7,787.27518
VINSON		\$82.38683 \$164.29982	\$217.80880 \$811.21603	\$182.98832 \$428.69722	\$483.18395 \$1,404.21307
		\$519.66828		\$557.94859	\$2,547.46403
		\$470.27282	\$1,469.84717 \$569.75660	\$303.48094	\$1,343.51036
		\$485.09530	\$1,034.95867	\$516.13953	\$2,036.19350
		\$7.14820	\$141.54967	\$27.19745	\$175.89533
		\$215.03403	\$1,160.58137	\$232.13514	\$1,607.75053
		\$34.41324	\$306.69618	\$112.19206	\$453.30148
	Total	\$1,978.31851	\$5,712.41448	\$2,360.77925	\$10,051.51225
LINCOLN		\$29.41728	\$40.40856	\$220.16554	\$289.99138
		\$152.92472	\$172.39153	\$112.38248	\$437.69873
		\$321.66588	\$747.38848	\$461.74977	\$1,530.80412
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$330.72516	\$437.95672	\$343.79105	\$1,112.47293
		\$412.00410	\$0.00000	\$10.18892	\$422.19302
		\$5.09997	\$155.90493	\$16.25056	\$177.25546
		\$113.46712	\$467.13877	\$203.65806	\$784.26396
		\$21.64342	\$284.35852	\$74.62354	\$380.62548
	Total	\$1,386.94766	\$2,305.54750	\$1,442.80992	\$5,135.30508
CONSTELLATION		\$96.12475	\$806.71267	\$545.51060	\$1,448.34802
	Jul-01	\$259.70702	\$232.23329	\$151.82272	\$643.76303
		\$552.06867	\$929.39993	\$544.37152	\$2,025.84012
		\$654.03999 \$704.04834	\$688.28521 \$757.56506	\$413.90269 \$446.97117	\$1,756.22789 \$1,005.45457
		\$701.01834 \$20.62432	\$757.56506 \$136.01352	\$446.87117 \$48.65022	\$1,905.45457 \$205.28807
		\$316.52563	\$901.06076	\$277.70371	\$1,495.29010
		\$39.84227	\$420.53698	\$167.63055	\$628.00980
	Total	\$2,639.95100	\$4,871.80742	\$2,596.46318	\$10,108.22159
STENNIS		\$125.97827	\$521.98336	\$267.33874	\$915.30038
		\$160.16435	\$373.52921	\$156.45393	\$690.14748
		\$386.04832	\$977.45811	\$319.42845	\$1,682.93489
		\$613.56242	\$571.05054	\$315.82691	\$1,500.43987
		\$484.32853	\$922.09065	\$389.63927	\$1,796.05846
		\$17.16701	\$339.26546	\$25.70587	\$382.13833
		\$210.97453	\$603.84450	\$90.38370	\$905.20273
		\$25.41688	\$324.56668	\$107.62337	\$457.60693
	Total	\$2,023.64031	\$4,633.78851	\$1,672.40024	\$8,329.82906
VINSON		\$60.13677	\$147.19743	\$219.66962	\$427.00382
		\$100.37961	\$246.19317	\$243.68715	\$590.25993
		\$272.40669	\$1,001.23955	\$550.36638	\$1,824.01261
		\$280.23003	\$691.46521	\$516.36476	\$1,488.05999
		\$377.49245	\$928.93123	\$483.68821	\$1,790.11189
		\$10.14962	\$33.67935	\$35.77372	\$79.60269
		\$82.39017	\$932.69423	\$223.48497	\$1,238.56937
	Total	\$20.45890 \$4.203.64424	\$382.72438 \$4.364.13454	\$138.10692 \$2.414.14172	\$541.29020 \$7.078.01050
LINCOLN	Total	\$1,203.64424 \$27,86322	\$4,364.12454 -\$242.25692	\$2,411.14172 \$244.83207	\$7,978.91050 \$30.43837
LINCOLIN		\$27.86322 \$104.24062	-\$242.25692 -\$29.51549	\$244.83207 \$70.68840	\$30.43837 \$154.41362
		\$104.24062 \$298.47320	-\$29.51549 \$424.30276	\$79.68849 \$332.42410	\$1,055.20007
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$291.78454	\$191.87337	\$232.00375	\$715.66166
		\$331.76696	\$136.59806	\$80.20916	\$548.57418
		\$7.85630	\$47.98076	\$2.24970	\$58.08676
		\$43.02171	\$253.76856	\$213.70853	\$510.49879
		\$20.53974	\$12.85796	\$123.73098	\$157.12868
	Total	\$1,125.54628	\$795.60906	\$1,308.84679	\$3,230.00213

CONSTELLATION	N	\$63.07514	\$617.36845	\$210.00485	\$890.44845
	Aug-01	\$145.61777	\$354.09253	\$154.13895	\$653.84924
		\$394.86684	\$578.73858	\$366.47645	\$1,340.08187
		\$277.92880	\$986.19125	\$309.36118	\$1,573.48123
		\$303.95121	\$1,007.31116	\$345.14793	\$1,656.41031
		\$8.62851	\$82.48874	\$14.11311	\$105.23035
		\$180.96173	\$1,340.69391	\$220.78263	\$1,742.43827
		\$29.95855	\$521.56256	\$115.20396	\$666.72507
	Total	\$1,404.98855	\$5,488.44718	\$1,735.22907	\$8,628.66480
STENNIS		\$95.36245	\$660.38806	\$813.87984	\$1,569.63035
		\$204.85981	\$605.19668	\$327.85900	\$1,137.91549
		\$700.94503	\$1,136.66661	\$529.77789	\$2,367.38952
		\$445.76770	\$909.14837	\$421.69930	\$1,776.61536
		\$565.62544	\$1,315.41904	\$655.79174	\$2,536.83622
		\$15.59545	\$84.82378	\$25.05237	\$125.47160
		\$200.24901	\$679.20413	\$176.07608	\$1,055.52922
		\$36.11786	\$924.75847	\$184.76687	\$1,145.64320
VINCON	Total	\$2,264.52275	\$6,315.60513	\$3,134.90309	\$11,715.03097
VINSON		\$73.18952	\$320.03823 \$540.73305	\$301.62461	\$694.85236
		\$124.33321	\$548.73285	\$251.73496	\$924.80102
		\$349.10814	\$1,668.08223	\$770.78566	\$2,787.97603
		\$360.63486	\$1,032.25322	\$467.89026	\$1,860.77834
		\$346.22646 \$6.14305	\$955.55726 \$400.74066	\$467.09869 \$76.52045	\$1,768.88241 \$582.41406
		\$6.14395 \$204.63300	\$499.74966 \$607.28431		
		\$204.63309 \$32.43621	\$607.28431 \$271.36462	\$213.20419 \$72.00714	\$1,025.12159 \$375.80798
	Total	\$1,496.70544	\$5,903.06238	\$2,620.86597	\$10,020.63379
LINCOLN	Total	\$24.08211	\$30.86458	\$341.56034	\$396.50702
LINCOLIN		\$117.17787	\$258.48668	\$107.34674	\$483.01128
		\$319.99415	\$384.71187	\$267.25780	\$971.96382
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$414.08269	\$421.82128	\$253.83478	\$1,089.73875
		\$597.08797	\$405.00730	\$53.29032	\$1,055.38559
		\$10.68423	\$155.10244	\$51.72178	\$217.50846
		\$60.91907	\$504.09373	\$348.31297	\$913.32576
		\$14.80354	\$84.42544	\$88.22076	\$187.44975
	Total	\$1,558.83163	\$2,244.51332	\$1,511.54549	\$5,314.89044
CONSTELLATION	N	\$28.07890	\$2,039.37843	-\$0.25484	\$2,067.20249
	Sep-01	\$55.51245	\$521.32517	\$0.11422	\$576.95184
		\$194.59767	\$770.29700	-\$0.13327	\$964.76139
		\$140.47465	\$1,141.65837	\$0.24834	\$1,282.38135
		\$170.43183	\$1,270.03986	\$0.25387	\$1,440.72555
		\$20.42684	\$352.07721	\$0.55189	\$373.05594
		\$86.52461	\$2,346.58590	\$0.16598	\$2,433.27649
		\$22.72197	\$741.21639	\$0.08013	\$764.01849
	Total	\$718.76891	\$9,182.57833	\$1.02631	\$9,902.37355
STENNIS		\$64.08552	\$1,160.67771	\$149.70988	\$1,374.47311
		\$194.13487	\$265.77868	\$93.92362	\$553.83717
		\$420.65740	\$1,418.05812	\$543.05715	\$2,381.77268
		\$623.71923	-\$222.90992	-\$161.83656	\$238.97275
		\$504.37326 \$20.31007	\$984.94075 \$105.21001	\$406.44240 \$590.94637	\$1,895.75641
		\$28.31897	\$195.21901 \$1,673.84114	\$580.84637	\$804.38435
		\$123.71207 \$34.46172	\$1,673.84114 \$245.08436	\$195.59038 \$87.53808	\$1,993.14359 \$367.08416
	Total	\$1,993.46305	\$5,720.68985	\$1,895.27133	\$9,609.42422
VINSON	. ota.	\$89.82500	\$1,738.97119	-\$27.75235	\$1,801.04383
		\$204.10935	\$747.87716	\$280.11562	\$1,232.10213
		\$479.81184	\$1,307.04807	\$529.95565	\$2,316.81556
		\$443.42495	\$3,075.57101	\$483.77424	\$4,002.77020
		\$490.00670	\$3,091.73206	\$567.61367	\$4,149.35243
		\$37.42409	\$537.62147	\$636.45782	\$1,211.50338
		\$230.21213	\$2,512.44969	\$132.63597	\$2,875.29780
		\$43.13029	\$375.09732	\$113.64072	\$531.86833
	Total	\$2,017.94435	\$13,386.36798	\$2,716.44134	\$18,120.75366
LINCOLN		\$22.45229	\$779.97177	\$13.72775	\$816.15181
		\$134.25512	\$132.45550	\$123.65506	\$390.36569
		\$286.21496	\$1,111.72644	\$407.46694	\$1,805.40834
		\$0.00000	\$0.00000	\$0.00000	\$0.00000
		\$328.22561	\$1,095.46076	\$385.89743	\$1,809.58379
		\$370.17307	\$438.76722	\$964.79192	\$1,773.73220
		\$16.23275	\$466.53297	\$563.07479	\$1,045.84052
		\$82.11163	\$1,689.00815	\$394.01063	\$2,165.13041
	-	\$35.15238	\$216.40264	\$160.56751	\$412.12254
	Total	\$1,274.81782	\$5,930.32545	\$3,013.19204	\$10,218.33531

SUMMARY OUTPUT Fuel Vs Flying Hours

Regression Statistics

 Multiple R
 0.941305726

 R Square
 0.886056471

 Adjusted R Square
 0.885970799

 Standard Error
 139.999601

 Observations
 1332

ANOVA

df SS MS F Significance F

Regression 1 202710838.7 202710838.7 10342.44868 Residual 1330 26067851.42 19599.88829

0

Total 1331 228778690.2

Coefficients Standard Error t Stat P-value Lower 95%

 Intercept
 5.235272688
 4.656572502
 1.124275996
 0.261098828
 -3.89975022

 X Variable 1
 0.68863005
 0.006771335
 101.6978303
 0
 0.675346396

SUMMARY OUTPUT AVDLR Vs Flying Hours

Regression Statistics

 Multiple R
 0.857167752

 R Square
 0.734736555

 Adjusted R Square
 0.734537108

 Standard Error
 742.3926243

 Observations
 1332

ANOVA

df SS MS F Significance F

Regression 1 2030360610 2030360610 3683.883456 0

Residual 1330 733025255.5 551146.8087

Total 1331 2763385866

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 51.89430009 24.6929638 2.101582479 0.035777572 3.452921821

X Variable 1 2.179385587 0.035907166 60.69500355 0 2.108944767

SUMMARY OUTPUT Maintenance Vs Flying Hours

Regression Statistics

 Multiple R
 0.817932074

 R Square
 0.669012878

 Adjusted R Square
 0.668764016

 Standard Error
 348.3557689

 Observations
 1332

ANOVA

df SS MS F Significance F
Regression 1 326227852.1 326227852.1 2688.283228 0

Residual 1330 161397816.5 121351.7418

Total 1331 487625668.6

Coefficients Standard Error t Stat P-value Lower 95% Intercept 32.79032969 11.58677513 2.829978949 0.004725086 10.05999398

X Variable 1 0.873590702 0.016848859 51.84865696 0 0.840537483

SUMMARY OUTPUT Total Cost Vs Flying Hours

Regression Statistics

 Multiple R
 0.917478135

 R Square
 0.841766128

 Adjusted R Square
 0.841647155

 Standard Error
 919.6843407

 Observations
 1332

ANOVA

df SS MS F Significance F

Regression 1 5984408289 5984408289 7075.280008 0

Residual 1330 1124939651 845819.2866

Total 1331 7109347940

Coefficients Standard Error t Stat P-value Lower 95% Intercept 89.91990246 30.58992155 2.93952707 0.003343892 29.91017772

X Variable 1 3.741606339 0.044482202 84.11468367 0 3.654343458

LIST OF REFERENCES

- 1. "Highlights of the Department of the Navy FY 2002 Budget,"[http://navweb.secnav.navy.mil/pubbud/02pres/highbook/02pb_highlights.pdf]. pp. 2-11.
- 2. "Highlights of the Department of the Navy FY 2003 Budget,"[http://navweb.secnav.navy.mil/pubbud/03pres/highbook/SectionII.pdf]. pp. 2-11.
- 3. Keating, Peter J. and Paulk, David A. Examination of the Flying Hour Program (FHP) Budgeting Process and an Analysis of Commander Naval Air Forces, Pacific (COMNAVAIRPAC) FHP Underfunding. Masters Thesis. Naval Postgraduate School, Monterey, California, December 1998.
- 4. Jondrow, James M. et al CNA Research on the Cost Growth of Depot-Level Repairables. CRM D0004644.A2. Center for Naval Analyses (CNA), Alexandria, Virginia, January 2002.

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

- 1. Defense Technical Information Center Ft. Belvoir, Virginia
- Dudley Knox Library
 Naval Postgraduate School
 Monterey, California
- 3. LTCOL Greg Mislick, USMC
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California
- 4. Professor Lawrence R. Jones
 Graduate School of Business and Public Policy
 Naval Postgraduate School
 Monterey, California