Assi₅

Xiaolong Yang

1 Conceptual Questions (5 points)

1.a

K-Means is sensitive to noisy data and outliers, because it calculated the center by average of the dataset, and the outliers or noise can affect the mean, thus the K centers would be meaningless.

1.b

No.

1.c

Hierarchical clustering can be applied in more distance function while k-means get a good result merely in Euclidean distance.

Hierarchical clustering did not need the specific K – the number of clusters.

2 Advanced Classification: Perceptron (5 points)

<i>X</i> ₁	X 2	\mathbf{y}
0	0	+
0	1	+
1	0	+
1	1	-

Table 1: Data points with class labels

If $y := sign(w^Tx)$, update $w = w + \eta^*x^*y$

$\frac{1911(W \lambda)}{2}$, apacto $W = W + 1/1 \lambda y$								
	iter1	sign	η*x*y-4	iter2	sign	η*x*y-1	iter3	sign
W0	0.25		-0.5	-0.25		0.5	0.25	
W1	0.25		-0.5	-0.25		0	-0.25	
W2	0.25		-0.5	-0.25		0	-0.25	
Y1	0.25	1		-0.25	-1		0.25	1
Y2	0.5	1		-0.5	-1		0	1
Y3	0.5	1		-0.5	-1		0	1
Y4	0.75	1		-0.75	-1		-0.25	-1

3 Hierarchical Agglomerative Clustering and B-Cubed Evaluation (8 points)

Point	X	y	Ground Truth
P1	1	1	C1
P2	1	2	C1
Р3	2	1	C1
P4	5	1	C2
P5	3	2	C1
P6	5	2	C2
P7	3	3	C1

Table 2: Data Points

3.a.

L1 (value = 1): C1(P1, P2, P3), C2(P4, P6), C3(P5, P7);

L2 (value = 1.414): C4(P1, P2, P3, P5, P7), C5(P4, P6);

L3 (value = 2): C6(P1,P2, P3, P4, P5, P6, P7).

3.b

There would be C1(P2, P1, P3), C2(P4, P6), C3(P5, P7)

3.c

Precision 1 = 3/3 = 1

Precision $2=\cdot 2/2=1$

Precision 3 = 2/2 = 1

Final Precision = 1

Recall 1 = 3/5 = 0.6

Recall2 = 2/2 = 1

Recall 3 = 2/5 = 0.4

Final Recall = (Recall 1*3+ Recall 2*2+ Recall 3*2) * (3+2+2) = 0.657