

ANALISIS Y DISEÑO DE SOFTWARE

TIPOS PRINCIPALES DE DIAGRAMAS UML

TIPOS PRINCIPALES DE DIAGRAMAS UML

A continuación, se describen los principales tipos de diagramas en UML, acompañados de ejemplos que ilustran su uso práctico:

Diagramas estructurales

1. Diagrama de clases

Este diagrama es fundamental en el diseño orientado a objetos, porque describe las clases que forman parte del sistema (Rodríguez, 2012), junto con sus atributos, operaciones (métodos) y las relaciones entre ellas (herencia, asociaciones, agregaciones, composiciones).

Ejemplo. En una plataforma de reservas de hoteles, existirían clases como Hotel, Habitación, Cliente y Reserva, donde Reserva asociaría a Cliente y Habitación.

2. Diagrama de objetos

Este diagrama representa instancias específicas de clases en un momento dado, mostrando valores concretos de atributos y relaciones reales entre objetos (Rodríguez, 2012).

Ejemplo. Un objeto cliente1:Cliente podría tener nombre= "Ana Martínez" y correo="ana.martinez@email.com", enlazado con reserva101:Reserva.

3. Diagrama de componentes

Refleja la organización modular del sistema, mostrando los componentes físicos (bibliotecas, módulos de código, servicios) y sus interfaces. Resulta especialmente útil para visualizar sistemas grandes y distribuidos.

Ejemplo. Un sistema bancario puede dividirse en componentes como Gestión de Cuentas, Autenticación de Usuarios y Procesamiento de Pagos.

4. Diagrama de despliegue

Este diagrama muestra cómo los componentes del sistema se distribuyen físicamente en hardware (nodos) y redes. Permite visualizar servidores, dispositivos móviles, routers y conexiones de red (Teniente López et al., 2015).

Ejemplo. Un sistema web podría tener un Servidor Web, un Servidor de Base de Datos y clientes representados como Dispositivos Móviles.

5. Diagrama de paquetes

Agrupa clases, interfaces y otros elementos dentro de paquetes organizativos, mostrando las dependencias entre ellos.

Ejemplo. En una aplicación universitaria, podrían existir paquetes como Académico, Administración y Financiero, donde cada uno contiene clases relacionadas.

Diagramas de comportamiento

1. Diagrama de casos de uso

llustra qué funcionalidades ofrece un sistema a los usuarios externos, sin detallar cómo se implementan internamente.

Ejemplo. En una tienda en línea, casos de uso comunes incluyen "Registrarse", "Buscar productos", "Agregar al carrito" y "Realizar pago".

2. Diagrama de actividades

Describe el flujo de procesos o actividades dentro de un sistema o negocio, enfocándose en la lógica del flujo de trabajo y los eventos que controlan su avance.

Ejemplo. Para el proceso "Realizar pedido", las actividades serían: "Seleccionar producto", "Confirmar pedido", "Ingresar dirección de entrega" y "Pagar".

3. Diagrama de estados

Representa los diferentes estados que puede tener un objeto durante su ciclo de vida y las transiciones entre estos estados causadas por eventos (Teniente López et al., 2015).

Ejemplo. Un objeto Pedido puede pasar por estados Nuevo, Procesando, Enviado y Entregado, dependiendo de las acciones del usuario y del sistema.

4. Diagrama de tiempos

Se utiliza para visualizar cómo cambian los estados u otros atributos de un objeto a lo largo del tiempo, permitiendo analizar temporalidades críticas en procesos concurrentes (Rodríguez, 2012).

Ejemplo. Monitorear la carga del servidor durante el día para identificar picos de tráfico.

5. Diagrama de interacción general

Proporciona una representación combinada de actividades, secuencias y comunicaciones, permitiendo observar interacciones complejas a nivel macro.

Ejemplo. En el registro de un nuevo usuario, combina flujos como validación de correo, creación de cuenta y envío de notificaciones.

Diagramas de interacción

Los diagramas de interacción son específicos para describir cómo los objetos colaboran para cumplir un propósito particular:

1. Diagrama de secuencia

Muestra objetos dispuestos horizontalmente e intercambiando mensajes de manera temporal (de arriba hacia abajo). Cada mensaje representa una interacción en el orden en que ocurre.

Ejemplo. En un pago en línea, el Usuario envía una solicitud de pago al Sistema, el sistema valida el pago con el Banco, y finalmente confirma la compra al usuario.

2. Diagrama de comunicación

Enfatiza las relaciones entre los objetos en lugar del tiempo de los mensajes, describiendo quién se comunica con quién y cómo se establecen los vínculos (Rodríguez, 2012).

Ejemplo. Para procesar un préstamo, un Solicitante envía una solicitud al Sistema, el sistema consulta el Registro de Crédito y responde.

