Clasificación de Imagenes de Redes Sociales para Mattelsa

Laura Riveros Quintero Mariel Viviana Sánchez Gamba

20 de marzo de 2025

Introducción y Problema

Contexto:

- Mattelsa es una marca de ropa con enfoque activista y alto volumen de contenido en redes sociales.
- Importancia de analizar la percepción del cliente en el producto.

Problemas principales:

Clasificación manual de imágenes consume mucho tiempo.

Clasificación de imagenes

Imágenes de producto

Imágenes de activismo y cultura popular

Objetivos

Objetivos Específicos:

- Identificar las publicaciones predominantes en las redes sociales de Mattelsa, teniendo en cuenta los dos tipos de contenido que sube la marca a sus redes sociales.
- Clasificar las imágenes utilizando herramientas de Machine Learning.
- Mejorar las predicciones del modelo mediante el uso de algoritmos de optimización y búsqueda local.

Impacto

Impacto de la solución:

- Identificar el tipo de imagen que se publica en redes sociales.
- Evaluar el impacto de campañas publicitarias.
- Mejorar la estrategia de comunicación de la marca.

Calsificación manual de imagenes

Clasificación de Imágenes

Modelo:

Las Redes Neuronales Convolucionales fueron seleccionadas como modelo principal para la clasificación de imágenes debido a su alta precisión y capacidad para manejar datos visuales complejos. A continuación, se detallan las razones clave para esta elección:

- Alta precisión en el reconocimiento de patrones complejos en imágenes.
- Capacidad de aprendizaje profundo y extracción automática de características relevantes.
- Eficiencia en el procesamiento de grandes volúmenes de datos visuales.

Resultados de Clasificación de Imágenes

Figura: Resultados de Clasificación de Imágenes

Resultados Generales

Algoritmos de optimización y busqueda:

Se emplearon dos algoritmos de optimización para encontrar la mejor configuración de hiperparámetros en la red neuronal convolucional, con el objetivo de mejorar su desempeño en la clasificación de imágenes.

- Simulated Annealing.
- Genetic Algorithm.

Resultados obtenidos:

Optimizador	Capa 1	Capa 2	Capa 3	Dropout	Dense units	acuraccy
Simulated Annealing	16	64	16	0.3	512	0.94
Genetic Algorithm	58	118	68	0	274	0.92

Cuadro: Mejor configuración encontrada

Conclusiones

- Simulated Annealing encontro una mejor configuración en términos del mayor accuracy (0.94).
- ➤ Simulated Annealing uso menos neuronas en las capas internas y más en la capa densa que GA.
- ► El uso de dropout (0.3) en Simulated Annealing pudo haber ayudado a evitar sobreajuste.

Muchas gracias

Laura Riveros Quintero ltriverosq@eafit.edu.co Mariel Viviana Sánchez Gamba mvsanchezg@eafit.edu.co

