

Coping With NP-Completeness

 ${\bf Q}.$ Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.

10.1 Finding Small Vertex Covers

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).

- Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k kn).

```
Ex. n = 1,000, k = 10.

Brute. k n^{k+1} = 10^{34} \Rightarrow infeasible.

Better. 2^k k n = 10^7 \Rightarrow feasible.
```

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it's also practical.

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size \leq k iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size \leq k-1.

Pf →

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. ←

- Suppose S is a vertex cover of $G \{u\}$ of size $\leq k-1$.
- Then $S \cup \{u\}$ is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has \leq k(n-1) edges. Pf. Each vertex covers at most n-1 edges.

Copyright 2000, Kevin Wayne

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k \text{ kn})$ time.

```
boolean Vertex-Cover(G, k) {
   if (G contains no edges)     return true
   if (G contains ≥ kn edges)   return false

let (u, v) be any edge of G
   a = Vertex-Cover(G - {u}, k-1)
   b = Vertex-Cover(G - {v}, k-1)
   return a or b
}
```

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes O(kn) time (to check at most kn edges).

10.2 Solving NP-Hard Problems on Trees

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

➤ degree = 1

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)

- Consider a max cardinality independent set S.
- If $v \in S$, we're done.
- If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum.
- IF $u \in S$ and $v \notin S$, then $S \cup \{v\} \{u\}$ is independent. •

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
   S ← φ
   while (F has at least one edge) {
      Let e = (u, v) be an edge such that v is a leaf
      Add v to S
      Delete from F nodes u and v, and all edges
          incident to them.
   }
   Add the resting nodes to S
   return S
}
```

Pf. Correctness follows from the previous key observation. •

Remark. Can implement in O(n) time by considering nodes in post-order.

_

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\Sigma_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- OPT_{in} (u) = max weight independent set of subtree rooted at u, containing u.
- OPT_{out}(u) = max weight independent set of subtree rooted at u, not containing u.

$$\begin{aligned} OPT_{in}(u) &= w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v) \\ OPT_{out}(u) &= \sum_{v \in \text{children}(u)} \max \left\{ OPT_{in}(v), \ OPT_{out}(v) \right\} \end{aligned}$$

children(u) = { v, w, x }

Weighted Independent Set on Trees: Dynamic Programming Algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in O(n) time.

Pf. Takes O(n) time since we visit nodes in post-order and examine each edge exactly once. • can also find independent set itself (not just value)

13

Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

see Chapter 10.4, but proceed with caution

Graphs of bounded tree width. Elegant generalization of trees that:

- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

10.3 Circular Arc Coloring

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^m)$ time by trying all k-colorings.

Goal. O(f(k)) · poly(m, n) on rings. n: #nodes m: #streams (paths, arcs)

Copyright 2000, Kevin Wayne

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^m)$ time by trying all k-colorings.

Goal. $O(f(k)) \cdot poly(m, n)$ on rings.

k=3 →

Review: Interval Coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

maximum number of streams at one location

Circular arc coloring.

• number of colors \geq depth.

max depth = 2

min colors = 3

(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring. Given a set of n arcs with depth $d \le k$, can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v_1 and v_n . The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.

Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v₀.
- At each node v_i , some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1} .
- \blacksquare The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v₀.
- \blacksquare At each node v_i , some intervals may finish, and others may begin.
- \blacksquare Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through $v_{i\text{-}1}$
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

Circular Arc Coloring: Running Time

Running time. $O(k! \cdot n)$.

- n phases of the algorithm. (n for #nodes)
- Bottleneck in each phase is enumerating all consistent colorings.
- $\, \bullet \,$ There are at most k intervals through $v_i,$ so there are at most k! colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10) even if the number of nodes n (or paths) is large.