Задача А. Шары и коробки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У вас есть n шаров разных цветов. Цвет i-го шара $(1 \leqslant i \leqslant n)$ задан одним целым числом a_i . Вам нужно разложить эти шары по коробкам.

Все шары в одной коробке должны быть одного цвета, за исключением не более одного шара. Например, в одну коробку можно положить шары со цветами [2,2,2], [3,3,5,3], но нельзя положить шары со цветами [5,5,6,6].

Выведите минимальное количество необходимых коробок.

Формат входных данных

В первой строке входного файла дано одно целое число n — количество шаров $(1 \le n \le 10^5)$. Во второй строке даны n целых чисел a_1, \ldots, a_n — цвета всех шаров $(1 \le a_i \le n)$.

Формат выходных данных

Выведите единственное целое число — минимальное количество необходимых коробок.

Система оценки

Подзадача	Доп. ограничения	Баллы	Необходимые подзадачи
0	Примеры	0	_
1	$n \leqslant 3$	25	_
2	$a_i \leqslant 2$	25	_
3	$n \leqslant 500$	25	0, 1
4	_	25	2, 3

Примеры

стандартный ввод	стандартный вывод		
3	1		
2 2 2			
3	2		
3 1 2			
6	2		
5 3 2 5 4 5			

Замечание

В первом примере можно положить все шары в одну коробку.

Во втором примере положить все шары в одну коробку не получится. Но можно, например, положить в первую коробку шары с цветами [3,2], а во вторую положить шар с цветом 1.

В третьем примере положить все шары в одну коробку не получится. Но можно, например, положить в первую коробку шары с цветами [2, 4], а во вторую положить шары с цветами [5, 3, 5, 5].

Задача В. Карты

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

У вас есть n карт. На карте i ($1 \le i \le n$) спереди написано число a_i , а сзади написано число b_i . Вам нужно обработать q запросов двух видов:

- 1 р: Перевернуть карту p обратной стороной. $(1 \le p \le n)$
- 2 1 г: Вывести, какое минимальное количество карт понадобится перевернуть, чтобы между картами с номерами $l, l+1, \ldots, r$ нашлись две карты с одним и тем же числом спереди. Если сделать так невозможно, нужно вывести -1. $(1 \le l \le r \le n)$. Заметьте, вам нужно только вывести ответ, а сами карты не переворачиваются.

Формат входных данных

В первой строке входного файла дано одно целое число n — количество карт $(1\leqslant n\leqslant 2\cdot 10^5).$

Во второй строке даны n целых чисел a_1, \ldots, a_n — числа, написанные на передней стороне всех карт $(1 \leq a_i \leq 2 \cdot n)$.

В третьей строке даны n целых чисел b_1, \ldots, b_n — числа, написанные на задней стороне всех карт $(1 \leq b_i \leq 2 \cdot n)$.

В четвертой строке дано одно целое число q — количество запросов ($1 \leqslant q \leqslant 2 \cdot 10^5$).

Последующие q строк содержат запросы в вышеописанном формате, каждый запрос на отдельной строке.

Гарантируется, что есть хотя бы один запрос вида 2.

Формат выходных данных

Для каждого запроса вида 2 выведите одно целое число — минимальное количество карт, которые необходимо перевернуть, либо -1 если это невозможно. Ответы следует выводить в порядке следования запросов.

Система оценки

Подзадача	Доп. ограничения	Баллы	Необходимые подзадачи
0	Примеры	0	_
1	$n \leqslant 100, q = 1$	13	_
2	$n, q \leqslant 5000$	17	0, 1
3	a, b — перестановки чисел от 1 до n	18	_
4	Все запросы только второго вида	18	_
5	_	34	2, 3, 4

Пример

стандартный ввод	стандартный вывод
5	1
3 1 5 2 3	0
2 9 7 1 3	0
7	-1
2 2 4	2
2 1 5	
1 1	
2 1 4	
2 1 2	
1 2	
2 2 5	

3-й этап Республиканской олимпиады по информатике 2023-2024, 1 тур Казахстан, 4 января, 2024

Замечание

Напомним, что перестановкой чисел от 1 до n называется последовательность чисел, в которой каждое число от 1 до n встречается ровно один раз. Например, [1,3,2] и [3,2,1] являются перестановками чисел от 1 до 3, а [2,2,1] и [5,4,3] не являются.

Разберем пример. Изначально на передней стороне всех карт написаны числа [3, 1, 5, 2, 3].

- 1. Приходит запрос второго вида с l=2, r=4. В этом промежутке нет пары одинаковых чисел, но для этого можно перевернуть карту с номером 4.
- 2. Приходит запрос второго вида с l=1, r=5. Есть пара одинаковых чисел на картах с номерами 1 и 5.
- 3. Приходит запрос первого вида с p=1. Нужно перевернуть карту 1 обратной стороной. Теперь на передней стороне всех карт написаны [2,1,5,2,3].
- 4. Приходит запрос второго вида с l=1, r=4. Есть пара одинаковых чисел на картах с номерами 1 и 4.
- 5. Приходит запрос второго вида с l=1, r=2. В этом промежутке нет пары одинаковых чисел и нельзя никак перевернуть карты чтобы появилась такая пара.
- 6. Приходит запрос первого вида с p=2. Нужно перевернуть карту 2 обратной стороной. Теперь на передней стороне всех карт написаны [2,9,5,2,3].
- 7. Приходит запрос второго вида с l=2, r=5. В этом промежутке нет пары одинаковых чисел, но для этого можно перевернуть карты с номерами 2 и 5.

Задача С. Дерево Нархана

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам дано дерево состоящее из n вершин. У каждой вершины есть цвет: белый или черный.

Вам даны q запросов, в каждом запросе дано два числа X и Y. На всех белых вершинах вы пишете число X, а на всех черных пишете число Y. Вам нужно посчитать количество возможных различных весов по всем возможным связным подграфам. Вес связного подграфа это сумма значений вершин которые в него входят.

Дерево это связный граф без циклов. Связный подграф это подмножество вершин и подмножество ребер которые образуют связный граф.

Выведите ответы по модулю $10^9 + 7$.

Формат входных данных

В первой строке входных данных дано число $n \ (1 \le n \le 5000)$ — количество вершин в дереве.

Во второй строке дано n целых чисел a_i ($0 \le a_i \le 1$) — цвет i-й вершины, 0 означает черный цвет, 1 соответственно означает белый цвет.

В следующих n-1 строке дано по два числа $v_i, u_i \ (1 \leqslant v_i, u_i \leqslant n)$ — вершины которое соединяет i-й ребро.

В следующей строке дано число q ($1 \le q \le 1000$) — количество запросов.

В следующих q строках дано по два целых числа X,Y ($0 \leqslant X,Y \leqslant 10^9, X \neq Y$) — значения из запроса.

Гарантируется, что вам дано дерево.

Формат выходных данных

Для каждого запроса выведите ответ на задачу по модулю $10^9 + 7$.

Система оценки

Подзадача	Дополнительные ограничения	Баллы	Необходимые подзадачи
0	Примеры	0	_
1	$n \leqslant 20, q = 1$	11	_
2	$n \leq 2000, v_i = i, u_i = i + 1, q = 1$	9	_
3	$n \le 2000, v_i = 1, u_i = i + 1, q = 1$	10	_
4	$n \leqslant 100, X, Y \leqslant 100, q = 1$	15	1
5	$n \leqslant 100, q = 1$	14	1,4
6	$n \leqslant 5000, q = 1$	22	1, 2, 3, 4, 5
7	$n \leqslant 5000, q \leqslant 1000$	19	1, 2, 3, 4, 5, 6

Примеры

стандартный ввод	стандартный вывод
3	4
0 1 1	2
3 1	3
2 3	
3	
1 2	
0 1	
1 0	
6	10
1 0 0 1 0 1	
5 4	
6 5	
2 4	
1 2	
3 4	
1	
1 6	

Замечание

Объяснение второго примера.

Дерево из второго примера:

Возможные суммы:

- Сумма 1: Вершины 1
- \bullet Сумма 6: Вершины 2
- \bullet Сумма 7: Вершины 1,2
- Сумма 8: Вершины 1, 2, 4
- Сумма 13: Вершины 2, 3, 4
- Сумма 14: Вершины 1, 2, 3, 4
- Сумма 15: Вершины 1, 2, 4, 5, 6
- Сумма 19: Вершины 2, 3, 4, 5

3-й этап Республиканской олимпиады по информатике 2023-2024, 1 тур Казахстан, 4 января, 2024

- Сумма 20: Вершины 1, 2, 3, 4, 5
- Сумма 21: Вершины 1,2,3,4,5,6