Identifying and Simplifying Non-consumer Terminology in Biomedical Abstracts

Bill Xia, Dr. Brian Ondov, Dr. Dina Demner-Fushman

Lister Hill National Center for Biomedical Communication, National Library of Medicine

INTRODUCTION

Motivation

- Medical literacy informs healthcare decisionmaking.
- Education level is linked to health disparities.
- Biomedical knowledge remains inaccessible due to jargon.

Tools

- Rules-based models are simple to implement but limited in capabilities.
- Advances in Deep Learning (LLMs) have unlocked new methods for accurate adaption of scientific texts.

Task

- Identification Identify non-consumer terms.
- Generalization Replace terms with a more general category.

"ring suture" → "eye procedure"

Omission – Remove irrelevant / overly technical terms.

METHODS

Identification

- Baseline MetaMapLite for identification, filtered by term frequency.
- LLM BERT fine-tuned for a Named Entity Recognition (NER) task.

"Patients	received	a	ring	suture"
\bigcirc	\bigcirc	\bigcirc	В	Т

Generalization

- Baseline UMLS parent terms used to find generalized categories.
- **LLM** BART fine-tuned for a sequence-to-sequence (seq2seq) task.

"Patients received a <u>ring suture</u>."

"eye procedure"

Omission

• **LLM** – BART fine-tuned for a seq2seq task with a T5-based grammar correction model (T5-GCM).

RESULTS

Identification

Model	Avg F1	U F1	∩ F1	Pyramid
Baseline	0.2097	0.2487	0.1497	0.2916
BERT-L	0.3530	0.4260	0.2515	0.4891
BioBERT-L	0.3058	0.3898	0.2071	0.3938
XLM RoBERTa-L	0.3745	0.4596	0.2578	0.5147
DeBERTa-L	0.4317	0.5255	0.2976	0.6014

Table 1. Performance of each identifier model.

Sentence	Model	Expert Terms
	Baseline	sutures, cataract
"Ring sutures induced	BERT-L	Ring sutures, cataract
cataract more frequently than other procedures."	BioBERT-L	Ring sutures, cataract
	XLM RoBERTa-L	Ring sutures, cataract
	DeBERTa-L	Ring, cataract

 Table 2. Example input sentence and terms identified by each identifier model.

Generalization

Model	ROUGE-1	ROUGE-2	ROUGE-L	BLEU	SARI	BERT-Score
Baseline	0.8925	0.8458	0.8920	0.8535	65.15	0.9728
BART	0.9233	0.8802	0.9231	0.8760	66.66	0.9813
BioBART	0.9444	0.9108	0.9442	0.9138	78.31	0.9886

Table 3. Performance of each generalizer model.

Sentence	Model	Generalizations
((Datiantana to a ta diniith	Baseline	None found
"Patients were treated with a [ring suture]."	BART	surgery
	BioBART	ring suture

Table 4. Example input sentence and simplification generated by each generalizer model.

Omission

Model	ROUGE-1	ROUGE-2	ROUGE-L	BLEU	SARI	BERT-Score
BART	0.9191	0.8517	0.9199	0.8198	66.21	0.9609
w/T5-GCM	0.8123	0.7412	0.8077	0.7156	53.49	0.9609

Table 5. Performance of each omission model.

Sentence	Model	Adaption
"Patients were treated with	BART	"Patients were treated with a ."
a [ring suture]."	BART w/ T5-GCM	"Patients were treated with a ."

Table 6. Example input sentence and simplification generated by each omission model.

CONCLUSION

Identification

- LLMs offer performance significantly exceeding that of rules-based models.
- Domain-specific pretraining seems to harm performance.

Generalization

Rule-based generative models rely on rigid vocabulary, so the baseline couldn't find generalizations for all terms.

Omission

• Even with the T5-GCM, the model often failed to produce coherent simplifications.

Other Takeaways

- Automated generative evaluation metrics fail to capture nuances of text simplification tasks.
 - Simplicity
 - Information accuracy
 - Grammatical correctness

FUTURE WORK

Further Evaluation

 Human evaluation allows for a more nuanced evaluation of generative Al output.

End-to-End Simplification

- After identifying terms, a model should be able to predict the most appropriate method of simplification.
- Models need to be combined into a consumerfriendly application for the public to use them.

Alternative Methods

- Retrieval-Augmented Generation (RAG) allows models to generate text with greater accuracy and more up-to-date knowledge.
- Effective omission may require precise prompt engineering or better ways of maintaining grammatical correctness.

