Assignment 2: Solutions CSE 335A: Compiler Design

Kumar Gourav Songara Roll Number:- 170353 songara@iitk.ac.in

1 question 1

Given Grammar:

Function
$$\rightarrow$$
 Type id (Arguments)
Type \rightarrow id | Type *
Arguments \rightarrow ArgList | ϵ
ArgList \rightarrow Type id , ArgList | Type id

1.1 Part a

$$First^{+}(Type \rightarrow id|Type *) = First^{+}(Type \rightarrow id) \bigcap First^{+}(Type \rightarrow Type *)$$
 (1)

$$\{id\} \cap \{id\} \neq \phi \tag{2}$$

Above you can see that intersection of $First^+$ of this grammar is not null. Meaning this grammer is not backtrack free. Which is required for LL(1) grammar.

Proving that this grammar is not LL(1).

1.2 Part b

Modified grammar:

Function
$$\rightarrow$$
 Type id (Arguments)

Type \rightarrow id A

 $A \rightarrow *A \mid \epsilon$

Arguments \rightarrow ArgList $\mid \epsilon$

ArgList \rightarrow Type id B

 $B \rightarrow$, ArgList $\mid \epsilon$

1.3 Part c

First	Terminal
Function	id
Type	id
A	* <i>€</i>
Arguments	$\operatorname{id}\epsilon$
ArgList	id
В	$,\epsilon$

Figure 1: First of MODIFIED GRAMMAR

Follow	Terminal
Function	\$
Type	id
A	id
Arguments)
ArgList)
В)

Figure 2: Follow of MODIFIED GRAMMAR

1.4 Part d

Non-Terminal	id	*	()	\$,
Function	Function→Type id Arguments				
Type	Type→id A				
A	$A \rightarrow \epsilon$	$A \rightarrow *A$			
Arguments	Arguments→ArgList			Arguments $\rightarrow \epsilon$	
ArgList	ArgList→Type id B				
В				$B \rightarrow \epsilon$	B→,ArgList

Figure 3: *LL(1) PARSING TABLE*

2 Question 2

Given grammar:

$$\begin{array}{ccc} S & \longrightarrow & LM \mid Lp \mid qLr \mid sr \mid qsp \\ L & \longrightarrow & aMb \mid s \mid t \\ M & \longrightarrow & t \end{array}$$

First	Terminal					
S	qsat					
L	a s t					
M	t					

Figure 4: First of given q2 GRAMMAR

Follow	Terminal
S	\$
L	tpr
M	b \$

Figure 5: Follow of MODIFIED GRAMMAR

Augmented Grammar:

$$\begin{array}{ccc}
0 \, S^{'} & \longrightarrow & S \\
1 \, S & \longrightarrow & LM \\
2 \, S & \longrightarrow & Lp \\
3 \, S & \longrightarrow & qLr \\
4 \, S & \longrightarrow & sr \\
5 \, S & \longrightarrow & qsp \\
6 \, L & \longrightarrow & aMb \\
7 \, L & \longrightarrow & s \\
8 \, L & \longrightarrow & t \\
9 \, M & \longrightarrow & t
\end{array}$$

Figure 6: Agumented Grammar

2.1 SLR(1)

LR(0) canonical collection:

$$I_{0} = Closure(S^{'} \rightarrow .S)$$

$$I_{0} = \{S^{'} \rightarrow .S \\ S \rightarrow .LM \\ S \rightarrow .LP \\ S \rightarrow .qLr \\ S \rightarrow .sr \\ S \rightarrow .sr \\ S \rightarrow .qsp \\ L \rightarrow .aMb \\ L \rightarrow .s \\ L \rightarrow .t\}$$

$$I_1 = Goto(I_0, S)$$

 $I_1 = \{ S' \rightarrow S. \}$

$$I_2 = Goto(I_0, L)$$

$$I_2 = \{S \rightarrow L.M \\ S \rightarrow L.p \\ M \rightarrow .t\}$$

$$I_3 = Goto(I_0, q)$$

$$I_3 = \{S \rightarrow q.Lr \\ S \rightarrow q.sp \\ L \rightarrow .aMb \\ L \rightarrow .s \\ L \rightarrow .t\}$$

$$I_4 = Goto(I_0, S)$$

 $I_4 = \{S \rightarrow s.r$
 $L \rightarrow s.\}$

$$I_5 = Goto(I_0, a)$$

 $I_5 = \{L \rightarrow a.Mb M \rightarrow .t\}$

$$I_6 = Goto(I_0, t)$$

 $I_6 = \{L \rightarrow t.\}$

$$I_7 = Goto(I_2, M)$$

 $I_7 = \{S \rightarrow LM.\}$

$$I_8 = Goto(I_2, p)$$

 $I_8 = \{S \rightarrow Lp.\}$

$$I_9 = Goto(I_2, t)$$

 $I_9 = \{M \rightarrow t.\}$

$$I_{10} = Goto(I_3, L)$$
 $I_{10} = \{S \rightarrow qL.r\}$
 $I_{11} = Goto(I_3, s)$
 $I_{11} = \{S \rightarrow qs.p \ L \rightarrow s.\}$
 $I_{12} = Goto(I_3, t)$
 $I_{12} = \{L \rightarrow t.\}$
 $I_{13} = Goto(I_4, r)$
 $I_{13} = \{S \rightarrow sr.\}$
 $I_{14} = Goto(I_5, M)$
 $I_{14} = \{L \rightarrow aM.b\}$
 $I_{15} = Goto(I_{10}, r)$
 $I_{15} = \{S \rightarrow qLr.\}$
 $I_{16} = Goto(I_{11}, p)$
 $I_{16} = \{S \rightarrow qsp.\}$
 $I_{17} = Goto(I_4, b)$
 $I_{17} = \{L \rightarrow aMb.\}$
 $I_{19} = Goto(I_5, t)$

Figure 7: *LR*(0) automaton

State	p	q	r	S	t	a	b	\$	A	L	M
I_0		S3		S4	S6	S5			1	2	
I_1								Accept			
I_2	S8				S9						7
I_3				S11	S12	S5				10	
I_4			S13/r7		r7						
I_5					S16						14
I_6	r8		r8		r8						
I_7								r1			
I_8								r2			
I_9							r9	r9			
I_{10}			S15								
I_{11}	S16/r7		r7		r7						
I_{12}	r8		r8		r8						
I_{13}								r4			
							S17				
I_{14} I_{15}								r3			
I_{16}								r5			
I_{17}	r6		r6		r6						

Figure 8: SLR parsing table

2.2 LALR

LALR canonical collection:

$$I_{0} = \text{Closure}(S' \rightarrow .S)$$

$$I_{0} = \{S' \rightarrow .S \$,$$

$$S \rightarrow .LM \$,$$

$$S \rightarrow .Lp , \$$$

$$S \rightarrow .qLr \$,$$

$$S \rightarrow .sr \$,$$

$$S \rightarrow .qsp \$,$$

$$L \rightarrow .aMb , t/p,$$

$$L \rightarrow .s , t/p$$

$$L \rightarrow .t , t/p \}$$

$$I_{1} = Goto(I_{0}, S)$$
 $I_{1} = \{S' \rightarrow S., \$\}$
 $I_{2} = Goto(I_{0}, L)$
 $I_{2} = \{S \rightarrow L.M, \$$
 $S \rightarrow L.p, \$$
 $M \rightarrow .t, \$\}$
 $I_{3} = Goto(I_{0}, q)$
 $I_{3} = \{S \rightarrow q.Lr, \$$
 $S \rightarrow q.sp, \$$
 $L \rightarrow .aMb, r$
 $L \rightarrow .s, r$
 $L \rightarrow .t, r\}$
 $I_{4} = Goto(I_{0}, s)$
 $I_{4} = \{S \rightarrow s.r, \$$
 $L \rightarrow s., t/p\}$
 $I_{5} = Goto(I_{0}, t)$

$$I_5 = Goto(I_0, t)$$

$$I_5 = \{L \rightarrow t., t/r/p\}$$

$$I_6 = Goto(I_0, a)$$

 $I_6 = \{L \rightarrow a.Mb, t/r/p M \rightarrow .t, b\}$

$$I_7 = Goto(I_2, M)$$
 $I_7 = \{S \rightarrow LM., \$\}$
 $I_8 = Goto(I_2, p)$
 $I_8 = \{S \rightarrow Lp., \$\}$
 $I_9 = Goto(I_2, t)$
 $I_9 = \{M \rightarrow t., \$/b\}$

$$I_{10} = Goto(I_3, L)$$
 $I_{10} = \{S \rightarrow qL.r, \$\}$
 $I_{11} = Goto(I_3, s)$
 $I_{11} = \{S \rightarrow qs.p, \$$
 $L \rightarrow s., r\}$
 $I_{12} = Goto(I_4, r)$
 $I_{12} = \{S \rightarrow sr., \$\}$
 $I_{13} = Goto(I_6, M)$
 $I_{13} = \{L \rightarrow aM.b, t/r/p\}$
 $I_{14} = \{S \rightarrow qLr., \$\}$
 $I_{15} = Goto(I_{11}, p)$
 $I_{15} = \{S \rightarrow qsp., \$\}$
 $I_{16} = Goto(I_{13}, b)$
 $I_{16} = \{L \rightarrow aMb., t/r/p\}$
 $I_{16} = Goto(I_3, a)$
 $I_{16} = Goto(I_3, t)$
 $I_{19} = Goto(I_6, t)$

Figure 9: *LR*(1) automaton

State	p	q	r	S	t	a	b	\$	A	L	M
I_0	_	S3		S4	S5	S6			1	2	
I_1								Accept			
I_2	S8				S9						7
I_3				S11	S5	S6				10	
I_4			S12		r7						
I_5	r8		r8		r8						
I_6					S9						
I_7								r1			
I_8								r2			
I_9							r9	r9			
I_{10}			S14								
I_{11}	S15		r7								
I_{12}								r4			
I_{13}							S16				
I_{14}								r3			
I_{15}								r5			
I_{16}	r6		r6		r6						

Figure 10: LALR(1) parsing table

3 Question 3

There will be a make file for compilation. simple make command to compile. It is assumed that flex and bison are preinstalled. make all clean command to clear all temporary files.

- \$ make
- \$ make clean

after compilation, a program will be created known as compiler. Use it as executable and then file name on which it had to execute let it be example.txt

\$./compiler example.txt