MA3227 Numerical Analysis II

Lecture 6: GMRES

Simon Etter

2019/2020

Introduction

LU factorisation is an all-or-nothing algorithm: we must run the full algorithm to extract any meaningful information, but when we do we get a result which is accurate up to machine precision.

Such an algorithm is called *direct*.

Over the next few weeks, we will look at methods which proceed in iterations. After each iteration, we get an approximation $x_k \approx x$, and we may terminate the algorithm if we are happy with x_k .

Such an algorithm is called *iterative*.

Iterative algorithms may perform better than LU factorisation when used correctly, but doing so can be challenging.

Problem statement

Given invertible $A \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^N$, find $x \in \mathbb{R}^N$ such that Ax = b.

Subspace method

Given $V_k \in \mathbb{R}^{N \times k}$, approximate x by

$$x_k = V_k y_k$$
 where $y_k = \arg\min \|AV_k y_k - b\|$.

Terminology: $r = b - Ax_k$ is called the *residual* of x_k .

Krylov subspace method

Choose
$$V_k = \begin{pmatrix} b & Ab & \dots & A^{k-1}b \end{pmatrix}$$
.

The approximate solution x_k is then given by

$$x_k = p_{k-1}(A) b$$
 where $p_{k-1} = \underset{p_{k-1} \in \mathcal{P}_{k-1}}{\operatorname{arg \, min}} \left\| \left(A p_{k-1}(A) - I \right) b \right\|.$

$$\mathcal{P}_k = \left\{ p(x) \mid p(x) = \sum_{\ell=0}^k c_\ell x^\ell \right\}$$
 denotes the space of polynomials of degree $\leq k$.

Remarks on Krylov subspace methods

- ► Terminology: Krylov subspace = span $\{b, Ab, \dots, A^{k-1}b\}$.
- We will discuss pros and cons of Krylov subspaces later. For now, let us focus on the how rather than the why.
- ► There are several distinct but related Krylov subspace methods. In this lecture, we will focus on the Generalised Minimal Residual (GMRES) method, which solves

$$x_k = p_{k-1}(A) b$$
 where $p_{k-1} = \underset{p_{k-1} \in \mathcal{P}_{k-1}}{\arg \min} \| (Ap_{k-1}(A) - I) b \|_2$.

Note that this formula uses $\|\cdot\|_2$ while formula on previous slide uses $\|\cdot\|_2$.

Implementing GMRES, the bad way

- 1. Assemble $V_k = \begin{pmatrix} b & Ab & \dots & A^{k-1}b \end{pmatrix}$.
- 2. Solve least squares problem $y_k = \arg\min ||AV_k y_k b||_2$.
- 3. Set $x_k = V_k y_k$.

See gmres_unstable() and test().

Observation

Algorithm breaks down for $k \gtrsim 8!$

The following slides will explain why.

Breakdown of naive GMRES

Notation and assumptions:

Let λ_{ℓ} , u_{ℓ} be the eigenvalues and -vectors of A sorted such that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_N|$.

We will always assume that there are N distinct eigenvectors. Argument is similar but more technical otherwise.

- Let $c \in \mathbb{R}^N$ be such that $b = \sum_{\ell=1}^N c_\ell u_\ell$.
- Assume $|\lambda_1| > |\lambda_2|$ (argument is similar but more technical otherwise).

We observe:

$$A^k b = \sum_{\ell=1}^N c_\ell A^k u_\ell = \sum_{\ell=1}^N c_\ell \lambda_\ell^k u_\ell.$$

 $ightharpoonup rac{|\lambda_\ell|^k}{|\lambda_1|^k} o 0$ for $k o \infty$ and all $\ell > 1$.

Hence we conclude that $\left|A^kb/\lambda_1^k o c_1u_1\right|$ for $k o\infty$.

Breakdown of naive GMRES (continued)

 $lackbox{ }A^kb/\lambda_1^k
ightarrow c_1u_1$ implies that the right-most columns of

$$V_k = \begin{pmatrix} b & Ab & \dots & A^{k-1}b \end{pmatrix}$$

are almost collinear. See normalised_krylov_vectors().

▶ We have seen in Lecture 5 (least squares) that computing $QR = AV_k$ is ill-conditioned if columns of AV_k are almost linearly dependent, i.e. rounding errors will be amplified in this case.

Armed with the above, we can now explain why gmres_unstable() breaks down for $k \gtrsim 8$:

- ▶ For $k \lesssim 8$, the columns of V_k are independent enough that the rounding errors remain small.
- ▶ For $k \gtrsim 8$, rounding errors are amplified to the extent that they spoil the accuracy of the result.

Question: Can we modify the GMRES algorithm to avoid excessive growth of rounding errors?

Stabilising GMRES

Observations:

- ▶ The matrix $V_k = \begin{pmatrix} b & Ab & \dots & A^{k-1}b \end{pmatrix}$ is a bad representation for the subspace $K_k = \text{range}(V_k)$ because the columns of V_k are almost linearly dependent.
- ► GMRES solution x_k depends on subspace K_k but not on the matrix V_k which represents this subspace.
- ▶ The ideal representation of K_k would be an orthogonal matrix $Q_k \in \mathbb{R}^{N \times k}$ such that $K_k = \operatorname{span}(Q_k)$ since orthogonality is the most extreme form of linear independence.
- Such a Q_k could be computed by first assembling V_k and then computing the QR factorisation of V_k , but of course this would run into the same conditioning problem as before.
- ▶ To get a numerically stable algorithm, we must interleave the steps "add column to Q_k " and "orthogonalise Q_k " as demonstrated on the next slide.

GMRFS

Stabilising GMRES (continued)

Algorithm 1 Arnoldi iteration

```
1: Q_1 = b/\|b\|_2.

2: for \ell = 1, ..., k do

3: \tilde{q}_{\ell+1} = AQ_{\ell}[:, \ell].

4: for m = 1, ..., \ell do

5: H[m, \ell] = Q_{\ell}[:, m]^T \tilde{q}_{\ell+1}

6: \tilde{q}_{\ell+1} = \tilde{q}_{\ell+1} - Q_{\ell}[:, m] H[m, \ell]

7: end for

8: H[\ell+1, \ell] = \|\tilde{q}_{k+1}\|_2

9: Q_{\ell+1} = \left(Q_{\ell} \mid \frac{\tilde{q}_{\ell+1}}{H[\ell+1, \ell]}\right)

10: end for
```

This algorithm is almost the same as modified Gram-Schmidt from Lecture 5. The only substantial difference is that above we initialise $\tilde{q}_{\ell+1} = AQ_{\ell}[:,\ell]$ while for Gram-Schmidt we had $\tilde{q}_{\ell} = A[:,\ell]$. The following slides list the key properties of this algorithm.

Lemma

Let $Q = Q_k$ be the matrix computed by the Arnoldi iteration. Then,

$$range(Q) = span\{b, Ab, \dots, A^{k-1}b\}$$

Proof (not examinable).

We will show by induction that for all $\ell = 1, ..., k$ we have

$$Q[:,\ell] = \sum_{m=0}^{\ell-1} c_m^{(\ell)} A^m b$$
 with $c_{\ell-1}^{(\ell)} \neq 0$.

The first part implies range(Q) \subset span{ $b, Ab, ..., A^{k-1}b$ }.

The second part guarantees that

$$A^{\ell-1}b = rac{1}{c_{\ell-1}^{(\ell)}} \left(Q[:,\ell] - \sum_{m=0}^{\ell-2} c_m^{(\ell)} A^m b
ight)$$

which can be used to inductively show that $A^{\ell-1}b \in \operatorname{range}(Q)$. The details are easy to work out, so I omit them here.

Proof (continued).

Base: $Q[:,1] = b/\|b\|_2 = c_0^{(1)}A^0b$ with $c_0^{(1)} = 1/\|b\|_2$.

Induction: We can rewrite lines 3, 6, 9 of the Arnolid iteration in the form

$$H[\ell+1,\ell] \; Q[:,\ell+1] = AQ[:,\ell] - \sum_{m=1}^{\ell} Q[:,m] \; H[m,\ell].$$

By induction hypothesis, the highest power of A in $AQ[:,\ell]$ is A^{ℓ} while all the green terms only go up to at most $A^{\ell-1}$.

This implies that $Q[:,\ell+1]$ can be written in the form

$$Q[:,\ell+1] = \sum_{m=0}^{\ell} c_m^{(\ell+1)} A^m b$$
 with $c_\ell^{(\ell+1)} = \frac{c_{\ell-1}^{(\ell)}}{H[\ell+1,\ell]}
eq 0$

as claimed.

Lemma

Let Q_{ℓ} be the matrices computed by the Arnoldi iteration. Then,

$$Q_{\ell}^T Q_{\ell} = I$$

Proof. This follows straightforwardly from the discussion of the Gram-Schmidt orthogonalisation procedure in Lecture 5.

Corollary

The columns of Q_k are an orthogonal basis for span $\{b, Ab, \dots, A^{k-1}b\}$.

Implementing GMRES, the stable way

- 1. Run Arnoldi iteration to obtain Q_k, H_k .
- 2. Solve least squares problem $y_k = \arg\min \|AQ_k y_k b\|_2$
- 3. Set $x_k = Q_k y_k$.

See gmres_slow().

Discussion

Assembling AQ_k in the above algorithm is expensive.

The next result shows that it is also unnecessary.

Lemma (Arnoldi relations)

$$AQ_{\ell} = Q_{\ell+1} H_{\ell}$$

where Q_ℓ are the matrices computed by the Arnoldi iteration and $H_\ell = H[1:\ell+1,1:\ell].$

Proof (not examinable). As before, we rewrite lines 3, 6, 9 of the Arnoldi iteration in the form

$$H[\ell+1,\ell] \ Q[:,\ell+1] = AQ[:,\ell] - \sum_{m=1}^{\ell} Q[:,m] \ H[m,\ell].$$

Rearranging yields

$$AQ[:,\ell] = \sum_{m=1}^{\ell} Q[:,m] H[m,\ell] + Q[:,\ell+1] H[\ell+1,\ell] = Q_{\ell+1} H[:,\ell].$$

Discussion

Arnoldi relations allow to rewrite the GMRES least squares problem as

$$\begin{aligned} y_k &= \arg\min \|AQ_k y_k - b\|_2 \\ &= \arg\min \|Q_{k+1} H_k y - b\|_2 \\ &= \arg\min \|H_k y_k - Q_{k+1}^T b\|_2 \\ &= \arg\min \|H_k y_k - \|b\|_2 \, e_1\|_2. \end{aligned}$$

On the third and fourth line, I used that $Q_{k+1}[:,1] = b/||b||_2$. This immediately explains how we get from the third to the fourth line.

To see that the third equality holds, we note that

- even for a rectangular orthogonal matrix $Q_{k+1} \in \mathbb{R}^{N \times (k+1)}$ we have $\|Q_{k+1}v\|_2 = \|v\|_2$, and
- ▶ $b = Q_{k+1}Q_{k+1}^Tb$ because $Q_{k+1}[:,1] = b/\|b\|_2$ and hence $b \in \text{range}(Q_{k+1})$ (recall the projector property of $Q_{k+1}Q_{k+1}^T$ from Lecture 5).

Discussion (continued)

Advantages of rewriting

$$y_k = \arg \min \|AQ_k y_k - b\|_2 = \arg \min \|H_k y_k - \|b\|_2 e_1\|_2.$$

- No more matrix products to assemble least squares matrix.
- ▶ $H_k \in \mathbb{R}^{(k+1)\times k}$ is much smaller than $AQ_k \in \mathbb{R}^{N\times k}$.
- ▶ H_k has special structure: $H_k[i,j] = 0$ if i > j + 1, i.e.

Matrices of this form are called *Hessenberg*.

QR factorisation of such H_k can be computed in $\mathcal{O}(k^2)$ operations. See literature for details (keyword: Householder reflectors).

See gmres() for final implementation of GMRES algorithm.

Runtime of Arnoldi iteration

- Line 3: *k* matrix-vector products.
- ▶ Lines 5, 6: $\mathcal{O}(Nk^2)$ FLOP.
 - \triangleright $\mathcal{O}(N)$ FLOP per execution of either line.
 - Number of executions: $\sum_{\ell=1}^k \sum_{m=1}^\ell 1 = \sum_{\ell=1}^k \ell = \frac{k(k+1)}{2}$.
- ▶ Lines 8, 9: $\mathcal{O}(Nk)$ FLOP.

Summary: k matrix-vector products, $\mathcal{O}(Nk^2)$ other FLOP.

Runtime of Arnoldi-based GMRES

- ▶ Arnoldi: k matrix-vector products, $\mathcal{O}(Nk^2)$ other FLOP.
- ▶ Least squares: $\mathcal{O}(k^2)$ FLOP.
- $ightharpoonup x_k = Q_k y_k$: $\mathcal{O}(Nk)$ FLOP.

Summary: k matrix-vector products, $\mathcal{O}(Nk^2)$ other FLOP.

Discussion

GMRES runtime (copied from above):

k matrix-vector products, $\mathcal{O}(Nk^2)$ other FLOP.

- ▶ GMRES runtime is $\mathcal{O}(N)$ if
 - runtime of matrix-vector product is $\mathcal{O}(N)$, and
 - sufficient accuracy can be achieve for $k = \mathcal{O}(1)$.

The first condition is the case e.g. for sparse matrices like $\Delta_n^{(d)}$. We will return to the second condition in the next lecture.

- ▶ GMRES becomes expensive for large k due to the $\mathcal{O}(Nk^2)$ operations for orthogonalisation.
- Good news: orthogonalisation simplifies for symmetric matrices! We will return to this in a later lecture.

Summary GMRES

► Core idea of GMRES: approximate $x = A^{-1}b$ by

$$x_k := p_{k-1}(A)\,b \qquad \text{where} \qquad p_{k-1} := \mathop{\arg\min}_{p_{k-1} \in \mathcal{P}_{k-1}} \left\| \left(Ap_{k-1}(A) - I\right)\,b \right\|_2.$$

► The above optimisation problem can be solved using linear algebra techniques. The resulting runtime is

k matrix-vector products, $\mathcal{O}(Nk^2)$ other FLOP.