热学复习

基本概念

理想气体、热力学系统、微观状态、宏观状态、平衡态、准静态过程、可逆过程

物理量

压强、体积、温度、分子数密度、

内能、功(体积功)、热量、

热容量 (定压、定容摩尔热容量, 比热容比) 、比热 热机效率

熵(玻耳兹曼熵、克劳修斯熵变公式)、热力学概率

分子质量、分子运动速度、方均根速率、平均速率、 自由度、速率分布函数、最概然速率、平均自由程

普适气体常数、玻耳兹曼常数

定理和定律

热力学第一定律 热力学第二定律 (熵增加原理) 能量均分定理、麦克斯韦速率分布律

过程

等容过程、等压过程、等温过程、 绝热过程(准静态绝热过程、绝热自由膨胀) 循环过程(热机循环、制冷循环)、卡诺循环

模型

理想气体 (方程)

热学测验题

一、填空题

1. 一定量的理想气体在温度为 T_{a} 、 T_{b} 时分子的最可几速率分别为 v_{pa} 及 v_{pb} 。设 $T_{a} > T_{b}$,则 $v_{pa} _{pa} _{pb}$, $f(v_{pa}) _{pa} _{pb}$ (填 < 或 > 或 =)

2. 下列循环中, ____图是可能的循环。

4. 判断下列过程中 ΔE 、 ΔT 、W、Q的正负。

解: 考虑 c 过程,绝热。
$$Q_c = 0$$
 $W_c > 0$ 由热一律 $\Delta E_c + W_c = 0$ $\Delta E_c < 0$, $\Delta T < 0$.

考虑a 过程,

$$W_{\rm a} > 0$$
 $\Delta E_{\rm a} = \Delta E_{\rm c} < 0$, $\Delta T < 0$.

由热一律
$$Q_a = \Delta E_a + W_a = \Delta E_c + W_a = -W_c + W_a < 0.$$

a 过程,放热

考虑 b 过程,

$$W_{\rm b} > 0$$
 $\Delta E_{\rm b} = \Delta E_{\rm c} < 0$, $\Delta T < 0$.

由热一律
$$Q_b = \Delta E_b + W_b = \Delta E_c + W_b = -W_c + W_b > 0.$$
 b 过程,吸热

5. 一定量的理想气体分别经历如图 (1) 所示的abc过程和图 (2) 所示的def过程,则这两种过程的净吸热和净放热的情况是: abc过程净__热, def过程净__热。

解: (1) 对于a、c 两点 $\Delta E = 0$ 对于abc过程, W > 0 由热一律 $Q_{abc} = \Delta E + W > 0$ abc过程中净吸热。

(2) 与4题 a 过程一样,净放热。

- 6. 图示为一理想气体几种状态变化过程的 P V 图,其中MT为等温线,MQ为绝热线,在AM、BM、CM 三种准静态过程中:
- (1)温度降低的是_____过程;
- (2)气体吸热的是_____过程.

解: (1) A点的温度高于T点的温度,AM过程温度降低。

(2) CM 过程。

将CMQC 视为一个循环, MQ为绝热线,而QC放热,故CM 为吸热过程。

8. 理想气体的压强为P、 密度为 ρ ,则 $v_{\rm rms}$ =____。

解:
$$v_{\rm rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$$

$$PV = \frac{M}{\mu}RT$$

$$\frac{RT}{\mu} = \frac{PV}{M} = \frac{P}{M/V} = \frac{P}{\rho}$$

$$v_{\rm rms} = \sqrt{\frac{3P}{\rho}}$$

- 10. 大气中一绝热气缸内装有一定量的气体。用电炉徐徐加热,活塞无摩擦地缓缓上升。此过程中,以下物理量如何变化?
- (1)气体压强_____;
- (2)气体分子平均动能 ____;
- (3)气体的内能 _____。

答:

- (1)气体压强_<u>不变</u>_.
- (2)气体分子平均动能 增大.
- (3)气体的内能 增大.

11. 将2kg,100℃的铅块投入10 ℃ 的湖水中,铅与湖水组成的系统的熵变为 ____。(已知铅的比热为 $0.128 \times 10^3 J/kg \cdot K$)

解:
$$\Delta S_{Pb} = \int_{(R)1}^{2} \frac{dQ}{T} = \int_{T_{1}}^{T_{2}} \frac{cmdT}{T} = cm_{Pb} \ln \frac{T_{2}}{T_{1}}$$

$$= 2 \times 0.128 \times 10^{3} \times \ln \frac{10 + 273}{100 + 273} = -70.7 \text{ J/K}$$

铅放出的热量为

$$Q = cm\Delta T = 2 \times 0.128 \times (100 - 10) \times 103 = 23 \times \times 103 \text{ J}$$

$$\Delta S_{\rm W} = \frac{Q}{T_{\rm W}} = \frac{23 \times 10^3}{273 + 10} = 81.4 \text{ J/K}$$

$$\Delta s_{\rm u} = \Delta s_{\rm W} + \Delta s_{\rm Pb} = 81.4 - 70.7 = 10.7 \text{ J/K}$$

二、计算题

1. 绝热容器中间有一无摩擦、绝热的可移动的活塞。活塞的两侧各有 ν mol的理想气体, γ =1.5。初态状态参量为 P_0 , V_0 , T_0 , 现将一线圈通入左侧气体,对气体缓缓加热。左侧气体右移,使右侧压强增加为 $27P_0/8$, 求:

(1)左侧气体作了多少功?

- (3)左侧气体的终温是多少?
- (4)左侧气体吸收了多少热量?

解: (1) 右侧为绝热过程

$$W_{\pm} = \frac{P_0 V_0 - P_1 V_1}{\gamma - 1} = \frac{P_0 V_0}{\gamma - 1} (1 - \frac{P_1 V_1}{P_0 V_0})$$
 $P_1 = 27 P_0 / 8$ 对于绝热过程 $P_1 V_1^{\gamma} = P_0 V_0^{\gamma}$ $V_1 = \left(\frac{P_0}{P_1}\right)^{\frac{1}{\gamma}} V_0 = \frac{4}{9} V_0$

经过计算得到 $W_{\pi} = -P_0V_0$

左侧气体的功 $W_{\pm} = P_0 V_0$

(2) 右侧气体的终温是多少?

$$\frac{P_1V_1}{T_1} = \frac{P_0V_0}{T_0} \qquad T_1 = \frac{3}{2}T_0$$

(3) 左侧气体的终温是多少?

$$\frac{P_A(2V_0 - V_B)}{T_A} = \frac{P_0V_0}{T_0} \qquad P_A = P_B = P_1$$

$$P_A(2V_0 - V_1) = 21$$

$$T_A = \frac{P_A(2V_0 - V_1)}{P_0 V_0} T_0 = \frac{21}{4} T_0$$

(4) 左侧气体吸收的热量是多少? $Q=\Delta E+W$ $W_{\pm}=P_{0}V_{0}$

$$C_{V,m} = \frac{R}{\gamma - 1} = \frac{R}{1.5 - 1} = 2R$$

$$\Delta E = \nu C_{V,m} \Delta T = \nu \cdot 2R \cdot (\frac{21}{4}T_0 - T_0) = \frac{17}{2} \nu R T_0$$

$$Q = \Delta E + W = \frac{17}{2} \nu R T_0 + P_0 V_0$$

2. 一绝热容器,体积为10⁻³m³,以100 m/s 的速度做匀速直线运动,容器中装有 100g的氢气。当容器突然停止运动时,氢气的温度、压强各增加多大?

解: 容器停止运动,机械能转化为气体无规则运动的动能。

$$\frac{1}{2}mv^2 = \frac{i}{2}k\Delta T \qquad \qquad k = \frac{R}{N_A}$$

$$\Delta T = \frac{mv^2}{ik} = \frac{\mu v^2}{iR} = \frac{2 \times 10^{-3} \times 100^2}{5 \times 8.31} = 0.481 \text{K}$$

由状态方程 $PV = \nu RT$ $\Delta PV = \nu R\Delta T$

$$\Delta P = \frac{\nu R \Delta T}{V} = \frac{M}{\mu} \frac{R \Delta T}{V} = \frac{100 \times 10^{-3} \times 8.31 \times 0.481}{2 \times 10^{-3} \times 10^{-3}}$$

$$\Delta P = 2 \times 10^4 \, \mathrm{P_a}$$

3. 1mol 氦气的循环过程如图。ab,cd为绝热过程, bc,da 过程为等容过程。求(1)a,b,c,d 各态的温度; (2)循环效率。

解: (1) PV = vRT

$$T_{\rm a} = \frac{P_{\rm a}V_{\rm a}}{R} = \frac{1 \times 1.013 \times 10^5 \times 32.8 \times 10^{-3}}{8.31} = 400 {\rm K}$$

$$T_{\rm b} = \frac{P_{\rm b}V_{\rm b}}{R} = \frac{3.18 \times 1.013 \times 10^5 \times 16.4 \times 10^{-3}}{8.31} = 636 \text{K}$$

$$T_{\rm c}$$
=800K $T_{\rm d}$ =504K

(2) 循环效率

b→c 吸热, d→a 放热

$$Q_{\text{W}} = \nu C_{\text{V,m}} (T_{\text{c}} - T_{\text{b}})$$

$$|Q_{ij}| = \nu C_{V,m} (T_d - T_a)$$

$$Q_{\text{W}} = \nu C_{\text{V,m}} (T_{\text{c}} - T_{\text{b}})$$

$$|Q_{jk}| = \nu C_{V,m} (T_d - T_a)$$

$$\eta = 1 - \frac{|Q_{\dot{\text{D}}}|}{Q_{\text{W}}} = 1 - \frac{T_d - T_a}{T_c - T_b}$$

$$T_c V_c^{\gamma - 1} = T_d V_d^{\gamma - 1}$$
 $T_b V_b^{\gamma - 1} = T_a V_a^{\gamma - 1}$

$$T_b V_b^{\gamma - 1} = T_a V_a^{\gamma - 1}$$

$$(T_c - T_b)V_c^{\gamma - 1} = (T_d - T_a)V_d^{\gamma - 1}$$
 $\gamma = 5/3$

$$\eta = 1 - \left(\frac{V_c}{V_d}\right)^{\gamma - 1} = 37.1\%$$

4. 如图所示为 1 mol 单原子理想气体经历的循环过程,ab为等温线, V_1 , V_2 已知。求循环效率。

解:分析吸、放热。

$$\mathbf{a} \rightarrow \mathbf{b}$$
 等温过程, $T_a = T_b$ $Q = W > 0$,吸热 Q_1

c→a 等容过程,

压强增大,温度升高,吸热 Q_2

b→c 等压过程,

体积减小,温度降低,放热 Q_3

$$\begin{aligned} Q_1 &= W = \int P dV = \int_{V_1}^{V_2} \frac{RT}{V} dV = RT_a \ln \frac{V_2}{V_1} = RT_b \ln \frac{V_2}{V_1} \\ Q_2 &= v C_{V,m} \Delta T = C_{V,m} (T_a - T_c) = C_{V,m} T_a (1 - \frac{T_c}{T_a}) \\ Q_2 &= C_{V,m} T_b (1 - \frac{T_c}{T_b}) = C_{V,m} T_b (1 - \frac{V_1}{V_2}) \end{aligned}$$

$$/Q_3/=\nu C_{P,m} \Delta T = C_{P,m} (T_b-T_c) = C_{P,m}T_b(1-\frac{T_c}{T_b})$$

$$|Q_3| = C_{P,m} T_b (1 - \frac{V_1}{V_2})$$

$$\eta = 1 - \frac{|Q_3|}{Q_1 + Q_2} = 1 - \frac{C_{P,m}T_b(1 - \frac{V_1}{V_2})}{RT_b \ln \frac{V_2}{V_1} + C_{V,m}T_b(1 - \frac{V_1}{V_2})}$$

$$= 1 - \frac{\frac{5R}{2}(1 - \frac{V_1}{V_2})}{R \ln \frac{V_2}{V_1} + \frac{3R}{2}(1 - \frac{V_1}{V_2})}$$

$$P \uparrow a$$

$$=1-\frac{2}{R\ln\frac{V_2}{V_1}+\frac{3R}{2}(1-\frac{V_1}{V_2})}$$

$$\eta = 1 - \frac{5(1 - \frac{V_1}{V_2})}{2\ln\frac{V_2}{V_1} + 3(1 - \frac{V_1}{V_2})}$$

其它典型题

1. 2g氢气与2g氦气分别装在两个容积相同的封闭容器内,温度也相同。(氢气视为刚性双原子分子)。求: (1)氢分子与氦分子的平均平动动能之比; (2)氢气与氦气压强之比; (3)氢气与氦气内能之比。

解: (1)
$$\bar{\varepsilon}_{t} = \frac{3}{2}kT$$
 $\bar{\varepsilon}_{tH_{2}} / \bar{\varepsilon}_{tHe} = 1$
(2) $p = \frac{2}{3}n\bar{\varepsilon}_{t}$ $v_{H_{2}} / v_{He} = \frac{2g}{2g/\text{mol}} : \frac{2g}{4g/\text{mol}} = 2$
 $n_{H_{2}} / n_{He} = \frac{v_{H_{2}}}{V} : \frac{v_{He}}{V} = 2$ $p_{H_{2}} / p_{He} = 2$
(3) $E = \frac{i}{2}vRT$ $E_{H_{2}} / E_{He} = \frac{i_{H_{2}}v_{H_{2}}}{i_{He}v_{He}} = \frac{5}{3} \times 2 = \frac{10}{3}$

$$(2)$$
分别求速率大于 v_0 和小于 v_0 的粒子数;

(3)求粒子的平均速率。

解: (1) 速率分布曲线如右图所示:

由归一化条件:
$$\int_0^\infty f(v) \cdot dv = 1$$

$$\int_0^{v_0} f(v) \cdot dv + \int_{v_0}^{2v_0} f(v) \cdot dv + \int_{2v_0}^{\infty} f(v) \cdot dv = 1$$

$$\int_0^{v_0} \frac{a}{v_0} v \cdot dv + \int_{v_0}^{2v_0} a \cdot dv + 0 = 1 \qquad \frac{a}{v_0} \frac{v_0^2}{2} + a(2v_0 - v_0) = 1 \qquad a = \frac{2}{3v_0}$$

另法: 由图可有面积
$$S$$
 $S = \frac{1}{2}av_0 + av_0 = \frac{100}{100}$ $a = \frac{2}{3v_0}$

$$f(v) = 0 \qquad (2v_0 < v < \infty)$$

$$(2v_0 < v < \infty)$$

$$a \xrightarrow{v_0} 2v_0 \xrightarrow{v}$$

(2) 大于 v_0 的粒子数:

$$N_{1} = N \cdot \int_{v_{0}}^{2v_{0}} f(v) \cdot dv = N \cdot \int_{v_{0}}^{2v_{0}} a dv$$

$$= Nav_{0} = N \cdot \frac{2}{3} \cdot \frac{v_{0}}{v_{0}} = \frac{2}{3}N$$

小于 v_0 的粒子数: $N-\frac{2}{3}N=\frac{1}{3}N$

(3) 平均速率:
$$\overline{v} = \int_0^\infty v \cdot f(v) \cdot dv$$

$$\overline{v} = \int_0^{v_0} v \cdot f(v) \cdot dv + \int_{v_0}^{2v_0} v \cdot f(v) \cdot dv + 0$$

$$= \int_0^{v_0} v \frac{av}{v_0} \cdot dv + \int_{v_0}^{2v_0} v \cdot a \cdot dv = \frac{11}{9} v_0$$

3.理想气体经历如图所示过程,其中bd为绝热过程,分析各个过程热容量的符号。

解:
$$T_2 > T_1$$

bd过程:绝热压缩

由热一律
$$\Delta E_{\rm bd} + W_{\rm bd} = 0$$

$$\Delta E_{\rm bd} = -W_{\rm bd}$$

$$C_{\rm bd} = 0$$

ad过程由热一律
$$Q_{ad}$$
= ΔE_{ad} + W_{ad} = ΔE_{bd} + W_{ad} = - W_{bd} + W_{ad}

$$W_{bd}$$
和 W_{ad} 均为负值。 $|W_{bd}| < |W_{ad}|$ 。

$$Q_{\rm ad} < 0$$
 $\Delta T > 0$ $C_{\rm ad} < 0$

同理:
$$C_{cd} > 0$$

4.如图,总体积为40L的绝热容器,中间用一隔热板隔开,隔板重量忽略,可以无摩擦的自由升降。A、B两部分各装有1mol的氮气,它们最初的压强是1.013×10³Pa,隔板停在中间,现在使微小电流通过B中的电阻而缓缓加热,直到A部分气体体积缩小到一半为止,求在这一过程中: (1)B中气体的过程方程,以其体积和温度的关系表示; (2)两部分气体各自的最后温度; (3)B中气体吸收的热量?

解: (1) $p_A V_A^{\gamma} = C = p_{A1} V_{A1}^{\gamma} = 1.013 \times 10^5 \times 0.02^{1.4} = 4.2 \times 10^2$

活塞上升过程中, $p_A = p_B$, $V_A = V - V_B = 0.04 - V_B$

B 中气体的过程方程为: $p_B(0.04-V_B)^{\gamma} = 4.2 \times 10^2$

$$p_B = \frac{RT_B}{V_B}$$
 $T_B(0.04 - V_B)^{\gamma} = 51V_B$

(2)
$$T_{A2} = T_{A1} \left(\frac{V_{A1}}{V_{A2}}\right)^{\gamma - 1} = \frac{p_{A1}V_{A1}}{R} \left(\frac{V_{A1}}{V_{A2}}\right)^{\gamma - 1} = 322K$$

$$T_{B2} = \frac{51V_{B2}}{(0.04 - V_{B2})^{\gamma}} = 965K$$

(3)
$$Q_B = \Delta E_B + A_B = \frac{i}{2} R (T_{B2} - T_{B1}) + \int_{V_{B1}}^{V_{B2}} p_B dV_B$$

$$= \frac{i}{2} R \left(T_{B2} - \frac{p_{B1} V_{B1}}{R} \right) + \int_{V_{B1}}^{V_{B2}} \frac{4.2 \times 10^2}{\left(0.04 - V_{B2} \right)^{\gamma}} dV_B$$

$$= 1.66 \times 10^4 J$$

5. 1mol双原子分子理想气体作如图的可逆循环过程,其中1—2为直线,2—3为绝热线,3—1为等温线。已知 $T_2 = 2T_1$, $V_3 = 8V_1$ 。试求: (1)各过程的功,内能增量和传递的热量(用 T_1 和已知常数表示); (2)此循环的效率 η 。

解: (1) 1—2任意过程 $\Delta E_1 = C_V(T_2 - T_1)$ $= C_{V}(2T_{1} - T_{1}) = \frac{5}{2}RT_{1} P_{1}$ $A_{1} = \frac{1}{2}(p_{2}V_{2} - p_{1}V_{1}) O$ $= \frac{1}{2}RT_2 - \frac{1}{2}RT_1 = \frac{1}{2}RT_1$ $Q_1 = \Delta E_1 + A_1 = \frac{5}{2}RT_1 + \frac{1}{2}RT_1 = 3RT_1$ 2—3绝热膨胀过程

$$\Delta E_{2} = C_{V}(T_{3} - T_{2})$$

$$= C_{V}(T_{1} - T_{2}) = -\frac{5}{2}RT_{1}$$

$$A_{2} = -\Delta E_{2} = \frac{5}{2}RT_{1}$$

$$Q_2 = 0$$

$$\Delta E_3 = 0$$

$$A_3 = -RT_1 \ln(V_3/V_1) = -RT_1 \ln(8V_1/V_1) = -2.08RT_1$$

$$Q_3 = A_3 = -2.08RT_1$$

(2)
$$\eta = 1 - |Q_3|/Q_1 = 1 - 2.08RT_1/(3RT_1) = 30.7\%$$

6.如图所示,在绝热刚性容器中有一可无摩擦移动且不漏气的极薄导热隔板,将容器分为A、B两部分。A、B中分别有1mol的氦气和1 mol的氦气,它们可被视为刚性分子理想气体。已知初态氦气和氦气的温度分别为 T_A =300K、 T_B =400K,压强均为1atm。忽略导热板的质量并不计其体积的变化,求:

(1)整个系统达到平衡时两种气体的温度。

(2)整个系统达到平衡时两种气体的压强。

(3)氮气末态与初态的熵差。

解: (1) 将氦气和氦气作为一个系统,

因为容器是绝热刚性的,所以系统进行的过程与外界没有热 交换,系统对外不作功。由热力学第一定律可知,系统的总 内能始终不变,即

$$C_{V,mA}(T-T_A)+C_{V,mB}(T-T_B)=0$$

$$C_{V,mA}(T-T_A)+C_{V,mB}(T-T_B)=0$$

$$T = \frac{C_{V,mA}T_A + C_{V,mB}T_B}{C_{V,mA} + C_{V,mB}} = \frac{\frac{3}{2}RT_A + \frac{5}{2}RT_B}{\frac{3}{2}R + \frac{5}{2}R} = 362.5 \text{ K}$$

(2) 设A、B两部分初态的体积为 V_A 、 V_B ,末态的体积为 V_A 、 V_B ,则有

$$V_{\mathrm{A}} + V_{\mathrm{B}} = V_{\mathrm{A}}' + V_{\mathrm{B}}'$$

$$\frac{RT_{A}}{p_{A}} + \frac{RT_{B}}{p_{B}} = 2 \frac{RT}{p}$$
 $p = \frac{2T}{T_{A} + T_{B}} p_{A} = 1.04 \text{ atm}$

(3) 由理想气体的克劳修斯熵变公式

$$\Delta S = C_{\text{pB}} \ln \frac{T}{T_{\text{B}}} + R \ln \frac{p_{\text{B}}}{p} = \frac{7}{2} \times 8.31 \times \ln \frac{3625}{400} + 8.31 \times \ln \frac{1}{1.04} = -3.19 \text{ J/K}$$

7. 1 kg 0 °C 的冰与恒温热库(t = 20 °C)接触,求 冰全部溶化成水的熵变? (熔解热 $\lambda = 334 \text{ J/g}$)

思路:

- > 为不等温热传导过程,不可逆。
- ➤ 设想冰与 0°C 恒温热源接触可逆地吸热

解: 冰等温融化成水的熵变:

$$\Delta S_{\text{Pirk}} = \int \frac{dQ}{T} = \frac{Q}{T} = \frac{m\lambda}{273.15 + t} = \frac{10^3 \times 334}{273.15} = 1.22 \times 10^3 \text{ J/K}$$

另求: 此不等温热传导过程的总熵变

t = 20 °C 的恒温热库发生的熵变:

$$\Delta S_{\text{App}} = \int \frac{dQ}{T} = \frac{Q}{T} = \frac{-m\lambda}{273.15 + t} = \frac{-10^3 \times 334}{293.15} = -1.14 \times 10^3 J/K$$

总熵变
$$\Delta S_{\text{g}} = \Delta S_{\text{Re}} + \Delta S_{\text{Ag}} = 80J/K$$
 符合热二律。