Sequential Decision Making and Reinforcement Learning

(SDMRL)

Advanced topics in RL

Sarah Keren

The Taub Faculty of Computer Science Technion - Israel Institute of Technology

Acknowledgments

- David Sliver's course on RL: https://www.deepmind.com/learning-resources/ introduction-to-reinforcement-learning-with-dav
- Slides by Malte Helmert, Carmel Domshlak, Erez Karpas and Alexander Shleyfman.

Reinforcement Learning
(SDMRL)
Sarah Keren
Complex Decisio
Making
Hierarchical
Planning
Hierarchical RL

Complex Decision Making

So Far

- · Single agent
- · Simple tasks
- · No ability to learn complex tasks from experience.
- · No high-level planning and reasoning.
- · No account for other agents in the environment

Reinforcement
Learning
(SDMRL)
Sarah Keren
Complex Decision

Hierarchical

Making

Hierarchical RI

Offline RL

Complex Tasks

"Doing for our robots what nature did for us" - Leslie Kaelbling (MIT) https://youtu.be/5R-xL9YmdR0

Reinforcement Learning (SDMRL)

Complex Decision Making

Planning

Offline RI

fline RL

3 / 30 Sarah Keren

Accounting for Other Agents

Reinforcement Learning

(SDMRL)

Complex Decision Making

Planning

meraremear

Accounting for Other Agents

Reinforcement Learning (SDMRL)

Carab Voro

Complex Decision Making

Planning

Offline RI

So Far

- Performed offline usually using grounded actions and via progression search
- Solutions are action sequences (or policies)

Reinforcement Learning (SDMRL)

Sarah Kerei

Complex Decisio Making

Hierarchical Planning

Reinforcement Learning (SDMRL)

(35. ...

Complex Decisio Making

Hierarchical Planning

- The model specifies a task hierarchy:
 - compound (or complex, abstract, high-level) tasks need to be decomposed into primitive tasks.
- · Benefits of a hierarchical model?

Reinforcement Learning (SDMRL)

Sarah Koro

Complex Decisio Making

Hierarchical Planning

incidi cincut i

- The model specifies a task hierarchy:
 - compound (or complex, abstract, high-level) tasks need to be decomposed into primitive tasks.
- · Benefits of a hierarchical model?
 - More flexibility with regard to modeling approach: incorporate procedural expert knowledge
 - · Speed up search
 - Describe more complex behavior (i.e., pose complex restrictions on the desired solutions)
 - Allow easier user integration in the plan generation process (mixed initiative planning; MIP)
 - · Communicate plans on different levels of abstraction
 - Incorporate task abstraction in plan explanations

Reinforcemen Learning

(SDMRL)

Complex Decisio Making

Hierarchical Planning

Hierarchical Planning in Robotics: Integrated Task Planning and Motion Planning

Task planners can reason over very large sets of states by manipulating partial descriptions, while **geometric (motion)** planners operate on completely detailed specifications of world states

A **task planner** could decide that the living room needs to be traversed, regardless of the detailed arrangement of its furniture.

Motion planners deal beautifully with geometry, but not with non-physical aspects of the domain; they can plan how to get to the phone but not decide that a phone call needs to be made.

(SDMRL)

Sarah Keren

Complex Decision Making

Hierarchical Planning

Hierarchical RL

Challenges

- · Inherits challenges of both motion & classical planning
 - · High-dimensional, continuous state-spaces
 - · State-space exponential in number of variables
 - Long horizons
- Geometric and Continuous constraints limit high-level strategies
 - Kinematics, reachability, joint limits, collisions grasp, visibility, stability, stiffness, torque limits, ...

Learning (SDMRL)

Complex Decision
Making

Hierarchical Planning

Hierarchical Rl

Shakey the Robot (1969)

- First autonomous mobile manipulator (via pushing)
 - · Visibility graph, A* search, and STRIPS (which is a grounded form of PDDL) [Fikes 1971, Nilson 1984]
- Decoupled task and motion planning
 - · Task planning then motion planning

type(ol object) type(robot robot) name(robot shakey) name(ol box1) at(ol 3.1 5.2) at(robot 4.1 7.2) inroom(ol rl) theta(robot 90.1) shape(ol wedge) radius(ol 3.1)

GOTHRU(d,r1,r2)

Precondition INROOM(ROBOT,r1) A CONNECTS(d,r1,r2)

Delete List INROOM(ROBOT.\$)

Add List INROOM(ROBOT.r2)

(SDMRL)

Hierarchical Planning

Shakey the Robot (1969)

- What if a movable block prevented Shakey from safely moving into the adjacent room?
- · Shakey could push it out of the way or go around it
- · What's more efficient? How to push it? ...

Reinforcement Learning (SDMRL)

Sarah Kerer

Complex Decision
Making

Hierarchical Planning

2 / 30 Sarah Keren

Decoupled vs. Integrated Task and Motion Planning

- Decoupled: discrete (task) planning then continuous (motion) planning
 - Requires a strong downward refinement assumption: every correct discrete plan can be refined into a correct continuous plan (from hierarchal planning)
- · Integrated: simultaneous discrete & continuous planning

In both cases motion and task planners communicate via predicates that need to hold at the end of execution (e.g. 'Block A in gripper')

Reinforcement Learning (SDMRL)

Sarah Keren

Complex Decision Making

Hierarchical Planning

ileraremeat ite

Example: Preparing a meal

Example:https://youtu.be/JNOk1rylDpU?t=1557

Reinforcement Learning

(SDMRL)

Complex Decision
Making

Hierarchical Planning

Hierarchical RI

Example: Preparing a meal

- · Clean 3 blue cups and clean/cook 2 green cabbages
- 64 continuous and 10 discrete variables

Reinforcement Learning (SDMRL)

(---

Complex Decision Making

Hierarchical Planning

Hierarchical R

Hybrid Planning Spectrum

Ideas?

Reinforcement Learning (SDMRL)

Complex Decision
Making

Hierarchical Planning

ileiaicilicai KL

offline RL

Hierarchical RL

Hierarchical RL

- Hierarchical reinforcement learning (HRL) decomposes a reinforcement learning problem into a hierarchy of subproblems or subtasks such that higher-level parent-tasks invoke lower-level child tasks as if they were primitive actions.
- A decomposition may have multiple levels of hierarchy.
 Some or all of the subproblems can themselves be reinforcement learning problems.
- When a parent-task is formulated as a reinforcement learning problem it is commonly formalized as a semi-Markov decision problem because its actions are child-tasks that persist for an extended period of time.

https://link.springer.com/referenceworkentry/10. 1007%2F978-0-387-30164-8_363 Reinforcement Learning (SDMRL)

Complex Decisio

Planning

Hierarchical RL

Benefits of Hierarchical Reinforcement Learning (HRL)

- Hierarchical decomposition reduces the computational complexity if the overall problem can be represented more compactly
- Subtasks are reusable learned (transfer learning) and can be provided independently
- Increased robustness.

Reinforcement Learning

(SDMRL)

Complex Decision
Making

Planning

Hierarchical RL

Offline RL

Formal Definition of Options

- **Definition:** An option O is the following triplet: $O = \{I, \pi, \beta\}$ where:
 - I is the set of initial states $\{s_1, ..., s_k\}$ from which the O can be operated.
 - \bullet π is the option-policy, which dictates how to operate while O is active. Formally: $\pi: S_{tates} \times A_{ctions} \to P_{Actions}$
 - \emptyset β is an option-terminator which dictates when an O is terminated. Formally: $\beta: S_{tates} \times A_{ctions} \rightarrow \{0,1\}$
- Meta-Policy: In addition to the options, there is a meta-policy $\pi_{Meta}: \mathcal{S} \times O_{ptions} \rightarrow P_{Options}$ which dictates which option to operate, when an option is terminated.

Reinforcement Learning

(SDMRL)

Complex Decision Making

Planning

Hierarchical RL

Offline RL

Options - Problem Definition

(SDMRL)

- Problem definition:
 - Input: an RL environment (the environment model is not necessarily known) for an agent to take actions in. Formally: An MDP: $E = \langle S, A, P, R, \gamma \rangle$
 - Output: An agent that takes actions in the environment to maximize rewards.
 - Formally: An agent's policy $\pi: \mathcal{S} \to \mathcal{A}$ that maximizes the accumulated reward.

Hierarchical RI

20 / 30 Sarah Keren

Options - Problem Definition (Continued)

- Method: the agent should learn a set of option policies (and a meta-policy) instead of the final goal directly.
 Formally: learn the following:
 - A set of K option-policies $O_{\pi} = \pi_{o_1}, ..., \pi_{o_k}$ where each option-policy $\pi_{o_i} : \mathcal{S} \times \mathcal{A} \to \{0, 1\}$
 - **2** A set of K option-terminators $B = \beta_{o_1}, ..., \beta_{o_k}$ where each option-terminators $\beta_{o_k} : \mathcal{S} \times \mathcal{A} \to \{0, 1\}$
 - lacktriangledark A meta-policy $\pi_{Meta}: \mathcal{S} \times O \rightarrow \{0,1\}$
 - \P Some papers describe the additional I_{O_i} as the initial states from each option can be started from.

Learning (SDMRL)

(SDMKL)

Complex Decisior Making

Planning

Hierarchical RL

Deepmind Examples

Reinforcement Learning

(SDMRL)

Complex Decisio Making

Planning

Hierarchical RL

22 / 30 Sarah Keren

Amidar Examples

(a) Without a deliberation cost, options terminate instantly and are used in any scenario without specialization.

(b) Options are used for extended periods and in specific scenarios through a trajectory, when using a deliberation cost. Learning (SDMRL)

Carab Voro

Complex Dec Making

Hierarchical Planning

Hierarchical R

Offline RL

MLSH demonstration of options in a Mujoco game

23 / 30 Sarah Keren

Option-Critic (Bacon et al. 2016 AAAI 2017)

Reinforcement Learning (SDMRL)

Complex Decisio Making

Planning

Hierarchical RL

Option-Critic (Bacon et al. 2016 AAAI 2017)

· Main Idea:

- (Novelty) Learns using an actor-critic framework over the options space:
 - Learns a set of option-policies and termination functions, as well as a value function which depends on the current state and option, i.e. $V_{alue}: S_{tates} \times O_{ptions} \to \mathbb{R}$
- Uses a meta-policy to determine which option to perform (originally used a simple DQN)
- Relies on clever mathematical "trick" for optimizing β_{o_i} (terminations): consider the output of β_{o_i} for the calculation of the learned value function.

Meaning that the correct formulation is really:

 $V_{alue}: S_{tates} \times O_{ptions} \times B_{(terminations)} \rightarrow \mathbb{R}$

Reinforcement Learning (SDMRL)

Sarah Koron

Complex Decision Making

Planning

Hierarchical RL

Offline RL

Offline RL

Tutorial: https://arxiv.org/abs/2005.01643 Lecture: https://www.youtube.com/watch?v=NV4oSWe1H9o&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=64

Reinforcement Learning (SDMRL)

(00)....

Complex Decision
Making

Planning

What is Offline RL?

- Offline RL (Batch RL) learns a policy from a pre-collected dataset.
- The agent does not interact with the environment during training.
- Dataset: $\mathcal{D} = \{(s, a, r, s')\}$ collected from prior policies or human experts.
- Goal: Train a policy π that performs well when deployed in the environment.

Reinforcement Learning (SDMRL)

Sarah Kerer

Complex Decision Making

Planning

Offline RI

Challenges in Offline RL

- **Distributional Shift:** Policy π may propose actions outside the dataset distribution.
- Extrapolation Error: Value estimates for out-of-distribution actions are unreliable
- No Exploration: Agent cannot collect new data to refine the policy.
- Bias-Variance Trade-off: Risk of overfitting to the dataset.

(SDMRL)

Offline RI

28 / 30 Sarah Keren

Key Approaches in Offline RL

- **Behavior Regularization:** Ensure policy stays close to dataset policy π_{data} .
- Conservative Value Estimation: Penalize overestimation of rewards.
- Uncertainty Estimation: Avoid actions with high model uncertainty.
- Policy Constraints: Restrict actions to the support of the dataset.

Reinforcement Learning (SDMRL)

Carab Karar

Complex Decision Making

Planning

Offline RI

Applications of Offline RL

- Healthcare: Optimizing treatments using historical patient data.
- · Robotics: Learning control policies from demonstrations.
- Autonomous Vehicles: Training driving policies using logged driving data.
- Finance: Learning trading strategies from historical data.
- Recommender Systems: Improving recommendations based on user logs.

Reinforcement Learning

(SDMRL)

Complex Decision Making

Planning

Offline RI