

ANOVA Statistics Tutorial Day 9

Prabesh Dhakal 2020 June 11

WHAT ARE WE DOING TODAY?

We briefly revisit the contents from last week.

EXERCISE

We apply what we learned.

Please ask if you have any questions now.

Otherwise, we can move on to the recap.

(PEARSON'S) CORRELATION

$$cor(x, y) = \frac{cov(x, y)}{\sigma_x * \sigma_y}$$

A measure of strength of linear relationship between two quant. Variables.

Value lies between [-1, +1].

What is high vs medium vs low correlation?

REGRESSION

Objective:

estimating the "right" regression coefficients

The model with smallest error is the best model

the straight line that best fits the data.

> summary(model_cars) Call: lm(formula = dist ~ speed, data = cars) Residuals: 1Q Median 3Q Max Min -29.069 -9.525 -2.272 9.215 43.201 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -17.5791 6.7584 -2.601 0.0123 * speed 3.9324 0.4155 9.464 1.49e-12 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

IT'S BEEN A LONG JOURNEY

1. Descriptive Data

- Summary statistics: central tendencies / dispersion / outliers ...
- Data visualization: bar plot / histogram / box plot / scatter plot ...
- 2. Data Distributions: normal / uniform / poisson / ...
- 3. Hypothesis Testing
 - Shapiro-Wilk's Test of Normality
 - Chi-square Tests: independence / goodness of fit
 - One Sample t-Test / Paired t-Test / Independent t-Test
 - F-Test for equality of variance
- 4. Pearson's Correlation
- 5. Simple Linear Regression

ANOVA

Applies to cases with more than 2 groups.

 H_0 : Means of the groups are equal

 H_1 : Means of at least one group is not the same

Consider two research questions:

Are scientists happier than managers?

Which of the 4 fertilizers work best?

ARE SCIENTISTS HAPPIER THAN MANAGERS?

This is a case of comparison of two groups -> t-Test

WHICH OF THE 4 FERTILIZERS WORK THE BEST?

This is a case of comparison of more than 2 groups -> ANOVA

ONE-WAY VS TWO-WAY ANOVAS

One-way ANOVA:

- one factor investigated
- e.g. Does type of sand affect the yield of crop?

Two-way ANOVA:

- two factors investigated concurrently
- e.g. Does type of sand and type of fertilizer affect the yield?

ONE-WAY VS TWO-WAY ANOVAS

	One-way ANOVA	Two-way ANOVA
Basis of comparison	3 or more levels of one factor	Effect of multiple levels of two factors
Independent Vars	1	2
Sample size	Can be unequal in each group	Needs to be equal in each group

One-way ANOVA Intuition

Total Variation (SSY)

data point - overall mean

= Between-groups Variation (SSA)

treatment mean - overall mean

+ Within-groups Variation (SSE)

data points - treatment means

Statistics Tutorial Day 9

ANOVA Test Statistic (F Ratio)

 $F - ratio = \frac{SS_{between_groups}}{df_{treatment}} \div \frac{SS_{within_groups}}{df_{residuals}}$ (test statistic) (treatment means) - treatment means)

ONE-WAY ANOVA RESULT FROM R

```
model <- lm(yield ~ soil)
> anova(model)
Analysis of Variance Table
Response: yield
               Sum Sq
          Df
                        Mean Sq F value Pr(>F)
               99.2
soil
          2
                        49.600 4.2447 0.02495 *
Residuals
               315.5
                       11.685
Signif. codes: 0 '***'
                      0.001 '**' 0.01 '*' 0.05
```

TWO-WAY ANOVA RESULT FROM R

```
> anova(lm(mpg ~ cyl + am, data=mt_df))
Analysis of Variance Table
Response: mpg
                                     Pr(>F)
         Df Sum Sq Mean Sq F value
          2 824.78
                   412.39 43.6566 2.477e-09 ***
cyl
             36.77
                   36.77 3.8922
                                    0.05846.
am
Residuals 28 264.50 9.45
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' 1
```

(Videos on ANOVA)

- One way: https://www.youtube.com/watch?v=-yQb_ZJnFXw
- Two way: https://www.youtube.com/watch?v=cNIIn9bConY

Exercise

Download the R file for Day 9 and open it on RStudio. ©

PLAN FOR NEXT WEEK

That's it for today! :-)

Tasks: Freeform Exercise.zip on MyStudy

Next week, we are going to discuss:

End-to-end Data Analysis Workflow

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de