

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Fri Aug 03 11:25:30 EDT 2007

=====

Reviewer Comments:

<210> 2

<211> 1209

<212> DNA

<213> Unknown

<220>

<223> environmental sample

<221> misc_feature

<222> 734

<223> n = A, T, C or G

<400> 2

atggtctggc tgcacggtgg gggctacact atcggcgca gctcgctgcc gccctacgt
60

ggagcagcct tcgcctcgcg ggatgttagtc ctggtgacgg tgaattaccg tcttggccat
120

ctcggcttt tcgcccattcc ggcgctggat gaagaaaaatc cagacggccc ggttcataat
180

ttcgcgcctt tagaccaaatt tgctgccctg aaatgggtgc aggaaaatat cgctgcttc
240

ggcggcgacg cgggaaatgt cacgctgttt ggcgagtctg ccggggcgcg tagcgtgctt
300

tcgctgctgg cgtcgccgct ggcgaaaaac ctttccaca aaggtattat acaaagcgcc
360

tacacgttgc cggatgtcga caggaagaaa gccctgaaac gtggcgtagc gctggccggt
420

cattacgggc tgcaaatgc cacagcggat gaactccgca ctctgcctgc ggatggctg
480

tgggcgcttg aaggcccgct taacatttgtt ccaacgccaa tctccggcga cgtcggtcg
 540
 cctgagccga tgctggatat attcttcgcc gggcgtagc accgcatgcc ctgtatggc
 600
 gggagcaaca gcgacgaggc aagcgtgctg agctacttcg gcatcgatcc tgccggcag
 660
 gtcgaactgc tgccgggggg agcggcggtt ccggactggg ggcttatcaa actgctgtat
 720
 tcccggagtg aaangggat gcccgaactc gggcgacagg tgtgccgcga tatggcttt
 780
 nccncgctgg gttttgttgt gatgcaggcc cagcagcggg tcaatcagcc ctgctggcgc
 840

The above <222> response only indicates one "n" location (734); however, n's are also located at 781 and 784: please explain them.

(from Sequence 3)

<221> VARIANT
 <222> 245, 260, 261
 <223> Xaa = Any Amino Acid

<400> 3
 Met Val Trp Leu His Gly Gly Tyr Thr Ile Gly Ala Gly Ser Leu
 1 5 10 15
 Pro Pro Tyr Asp Gly Ala Ala Phe Ala Ser Arg Asp Val Val Leu Val
 20 25 30
 Thr Val Asn Tyr Arg Leu Gly His Leu Gly Phe Phe Ala His Pro Ala
 35 40 45
 Leu Asp Glu Glu Asn Pro Asp Gly Pro Val His Asn Phe Ala Leu Leu
 50 55 60
 Asp Gln Ile Ala Ala Leu Lys Trp Val Gln Glu Asn Ile Ala Ala Phe
 65 70 75 80
 Gly Gly Asp Ala Gly Asn Val Thr Leu Phe Gly Glu Ser Ala Gly Ala
 85 90 95
 Arg Ser Val Leu Ser Leu Leu Ala Ser Pro Leu Ala Lys Asn Leu Phe
 100 105 110
 His Lys Gly Ile Ile Gln Ser Ala Tyr Thr Leu Pro Asp Val Asp Arg
 115 120 125
 Lys Lys Ala Leu Lys Arg Gly Val Ala Leu Ala Gly His Tyr Gly Leu
 130 135 140
 Gln Asn Ala Thr Ala Asp Glu Leu Arg Ala Leu Pro Ala Asp Gly Leu

145	150	155	160
Trp Ala Leu Glu Gly Pro Leu Asn Ile Gly Pro Thr Pro Ile Ser Gly			
165	170		175
Asp Val Val Leu Pro Glu Pro Met Leu Asp Ile Phe Phe Ala Gly Arg			
180	185		190
Gln His Arg Met Pro Leu Met Val Gly Ser Asn Ser Asp Glu Ala Ser			
195	200	205	
Val Leu Ser Tyr Phe Gly Ile Asp Pro Ala Gly Gln Val Glu Leu Leu			
210	215	220	
Arg Arg Gly Ala Ala Phe Pro Asp Trp Gly Leu Ile Lys Leu Leu Tyr			
225	230	235	240
Ser Arg Ser Glu Xaa Gly Met Pro Glu Leu Gly Arg Gln Val Cys Arg			
245	250		255
Asp Met Ala Phe Xaa Xaa Leu Gly Phe Val Val Met Gln Ala Gln Gln			
260	265	270	

The above <222> response is incorrect: while Xaa is located at 245, "Phe" is located at 260 (not Xaa). Xaa's are located at 261 and 262.

Application No: 10555587 Version No: 1.0

Input Set:

Output Set:

Started: 2007-08-01 10:04:38.617
Finished: 2007-08-01 10:04:39.579
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 962 ms
Total Warnings: 3
Total Errors: 8
No. of SeqIDs Defined: 3
Actual SeqID Count: 3

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
E 342	'n' position not defined found at POS: 1926 SEQID(1)
E 342	'n' position not defined found at POS: 1973 SEQID(1)
E 342	'n' position not defined found at POS: 1976 SEQID(1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
E 342	'n' position not defined found at POS: 781 SEQID(2)
E 342	'n' position not defined found at POS: 784 SEQID(2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
E 341	'Xaa' position not defined SEQID (3) POS (245)
E 341	'Xaa' position not defined SEQID (3) POS (261)
E 341	'Xaa' position not defined SEQID (3) POS (262)

SEQUENCE LISTING

<110> Genencor International, Inc.

Jones, Brian E.

Grant, William D.

Heaphy, Shaun

Rees, Helen C.

Grant, Susan

<120> Novel Lipolytic Enzyme LIP1

<130> GC801-2-PCT

<140> 10555587

<141> 2007-08-01

<150> PCT/US04/014752

<151> 2004-05-12

<150> US 60/469,931

<151> 2003-05-12

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 4313

<212> DNA

<213> Unknown

<220>

<223> environmental sample

<221> misc_feature

<222> 1926, 1973, 1976

<223> n = A,T,C or G

<400> 1

tctatgagca acaaggcggt tttagcgaag cgcaggccga ttagtttgtg gccgaggcgc	60
tggaaacatt ccgctggcac cagcacgcaa cggttgacgc cgaaaacctac cgcgcggtgc	120
atgatgagca cccgctgatc gcccgtatgtatc tctgcttccg tggctgccac attaaccacc	180
tgaccccgcg cacgctcgat atcgaccgcg tgcaagtgcgt gatgccggaa cgccggaaatta	240
ccccaaagc cattatcgaa gggccgcgcg gcccgcggcg cccgatttttta ctgcgcggaga	300
ccagctttaa agcgctggaa gagcctattt tgttccggcg tgagcatcac ggaacgcata	360
ccgccccgtt cggcgaaata gaacagcgcg gcgttagcgct gacgcccggaa ggccggggcg	420
tgtacgacga actgctgctg gcccggggca acggcacggta taatctcagc caccagcagc	480
atttacacga agtgttcacc gttcccgaa cagcgacgcg ctgctgcgcg cccaggggct	540
ggcctatttc cgctatcggt tgacgcccgt tggcgaaatg caccgcact caatcaagcc	600
aggcgacgac ccgcacgtgc ttatagaacgc cggctggctg gtggcgccagc cggttattta	660
tgaagatttc ctcccggtca ggcggcggtt tattttccag tcaaacccttgcagcgacgg	720
cgggcaacgg cagcacggcc attccagccg cagcgatgtt gaacaggccc ttggcgccaga	780
ggttgcagac gagttcgccc tctatcagca ggccgaggat cgcagtaaac gccgttgcgg	840
tttgctgttaa acgcgctacc ctgctggagt gtcaatcaca aggaacagca gatggaacaa	900
gttggtagcc gttgctcagg ggagactgag cggcggtt caggggaaag ttgcgggtcta	960

tcgcggcata cccttgccg ctccgcccgt gggtaactg cgctggcgaa cacctcgatcc 1020
ccccggcgcac tggcagggtt tccgcccaggc ggatacattt gcgcctgcatt gctggcaaaag 1080
cctcgaaatac tgcaaagcgg ttggcgccgg cgtatcccgcc cagttttctg aagattgcct 1140
gtatctcaat atctggaccc cggccccggc ggatgcggag ccgctgccc ttatggctg 1200
gctgcacgggt gggggctaca ctatcgccgc aggctcgctg ccgcctacg atggagcagc 1260
cttcgcctcg cgggatgttag tcctggtagt ggtgaattac cgtcttgcc atctcggtt 1320
tttcgcccatt cccgcgctgg atgaagaaaa tccagacggc ccggttcata atttcgccc 1380
tttagaccaa attgctgccc taaaatgggt gcaggaaaat atcgctgtt tcggcgccga 1440
cgcggggaaat gtcacgctgt ttggcgagtc tgccggggcg cgtagcgtgc ttgcgtgt 1500
ggcgtcgccc ctggcgaaaa acctttcca caaaggattt atacaaagcg cctacacgtt 1560
gccggatgtc gacagaaga aagccctgaa acgtggcgta gcgcggccg gtcattacgg 1620
gctgaaaaat gccacagcgg atgaactccg cgctctgcct gcggatggc tggggcgct 1680
tgaaggggccg cttAACATTG gtccaaacgc aatctccggc gacgtcggtc tgccctgagcc 1740
gatgctggat atattctcg cccggcgta gcaccgcatt cccttgatgg tcgggagca 1800
cagcgacgag gcaaggcgatc tgagctactt cggcatcgat cctggggcc aggtcgaact 1860
gctgcggccgg ggagcggcgatc ttccggactg ggggcttataa aactgtgtt attccggag 1920
tggaaangggg atgcccgaac tcgggcccaca ggtgtggcgc gatatggctt ttncncgt 1980
gggtttgtt gtgatgcagg cccagcagcg ggtcaatcag ccctgctggc gctactattt 2040
tgattatgtg gggggggcg aacgtaaaat ctatgccaac ggcacctggc acggcaacga 2100
agtgcgttat gttttgaca cgttaagtct gacgccaccc gcaagtgaat acgtcaacca 2160
aaacgatctc acgtttgccc ggc当地atttgc tgactactgg acccgatgg cccgcagcgc 2220
cggtccccac agtaaagcga taccggggcc gctaagctgg cctgcctgcg ttgcggccaa 2280
ggaccgaacg atgcggtagc gcttactc gccccggcg ttcaaaatggg aaaaccgctt 2340
tatgcgcattt agaatgcggc ttgttaagcg ggtcatgaaat catcacgtca gccttgactg 2400
agcaactcat ggcaaaatgc ttcaagcccg gggcggtc gctgcccggg tttaaccgccc 2460
agacggtagc cccgaccggatc tttaactcg cgttacaaacg gcctgaccag cccggccggta 2520
cgaatatctt ctgcaccagg cgttcatcg gcatggcga tcccaaaccct ctgaatagcg 2580
gcgcgtatgg cgagatccat agtgtcaaaa tgctgatattt tactcattgc ctgccaggggc 2640
gcaagaaaaac cccgttctgc cagaagtgc cagtcgggtc ggtcccggtt tgggtgcaaa 2700
aatgtcagtc ttcccagcc gctatcttct ttggcagca ggctctggc tacaaccggc 2760
gtcagcgcctt cctcgaaaca cagcgtggc gtttgcggc actgcccggg aacaatttgc 2820
gcgtcaaaacg gtcattttt gaagttcagc cctgtctca cggcgtgtt cagcgcaacc 2880
tgttagctccg gcatgcgttg ttcaagctga atcagctttg gcaccagcca ggcgcattgc 2940
cagggtggcc cttaagacg aataatttct ggcttgcggc aggccgggtc ggctacgtcc 3000
agcagattat tgaacgcgt ttgttaattcc gggagcaggc gctgcccctg tggcgtaagg 3060
ccgcaggccgc ggcgtggc ttcaaaaacg gcaaaagccaa gccactgttc gagggccggca 3120
attttgcggc tgacggcgcctt cgggtgagg caaagtccct tcggggccctt ggtcaggttc 3180
aggtgcctgg cgggtgacga gaaaagcgatc cagagtattt agggaaaaat tgcggccggc 3240
catgatgcctc tccgttgagc tatgcatttt ttgcattggcatttgcatttgcatttgcatttgc 3300
gtcgtggcaa tcgcattccgg attgaatagt tatgcaatc gcatattgtt caggagcggc 3360
tatggccatg caaacccgg tgcacatcg ttcaaaactg ccggatgttagt gaaaccacatcg 3420
atttacgggtt atcggtcaggc ttccggccca acataaggcg atcaacccctt ctcaaggccgc 3480
gccccacttc ccctgtgacc cgcagttat tgccggagtc accaggccaa tgcaggagg 3540
gcataaccag tatgcgttca tgacggact tgcgtcgctg aaaaatctt ttgctgaaaa 3600
agtgcggccg cttaacggcgtt caacctacga tccggccggat gaagtgcgtt ttaccggcc 3660
cgccagcggaa gggctgtatt ccgtatcg cggactggta cccccggcg acgaagttat 3720
ctatccggaa cccttttttgc acagctacgc gccgattttt cggcgtccagg ggcgcacgc 3780
ggttgcctt aagctcaggcc tgcctgactt caccattaac tggatgaaat tgcgcgtgc 3840
cataacggccg cgtacccgca tggatgttgc caacacggc cataacccaa gcccggcc 3900
gttcagcgtt catgatctcg aaatgttgc ggcgttacc cgtatcggc atatcggtt 3960
cctgtctgac gaagtgcgtt acgcacatcg gtttgcggta caaaagcatc acggcatggc 4020
caccgcaccccg cagctggccg agcgttagcgt tgcgttgc tgcgttgc tgcgttgc 4080
tggttaccggc tggcggtgg ggtactgcct ggcggccgc gcttgcgtt gatgagatttgc 4140
caagggtgcatt cagttctga ttgtttcaggc cgtatcggc atgcggccacg ctttgcgttgc 4200
ttacatgagc gatccgcaaa ctatcttc gctggccggc ctttaccaggc gcaaggcgatc 4260
ttaatgcag tctctgctgg cggatgcgcatttgc ctttgcgttgc 4313

<210> 2
<211> 1209
<212> DNA
<213> Unknown

<220>
<223> environmental sample

<221> misc_feature
<222> 734
<223> n = A,T,C or G

<400> 2

atggctctggc	tgcacggtgg	gggctacact	atcgccgcag	gctcgctgcc	gccctacgat	60
ggagcagcct	tcgcctcgcg	ggatgttagtc	ctggtgacgg	tgaattaccg	tcttggccat	120
ctcggtttt	tcgcccattcc	ggcgctggat	gaagaaaatc	cagacggccc	ggttcataat	180
ttcgcgttt	tagaccaaatt	tgcgtccctg	aatgggtgc	aggaaaatat	cgctgcttc	240
ggcggcgacg	cggggaaatgt	cacgctgttt	ggcgagtctg	ccggggcgcg	tagcgtgctt	300
tcgctgtgg	cgtcgccgct	ggcgaaaaac	ctttccaca	aaggtattat	acaaagcgcc	360
tacacgttgc	cggatgtcga	caggaagaaa	gccctgaaac	gtggcgttagc	gctggccggt	420
cattacgggc	tgcaaaatgc	cacagcggat	gaactcccg	ctctgcctgc	ggatggctg	480
tgggcgttg	aaggcccgt	taacatttgt	ccaacgcca	tctccggcga	cgtcgtgctg	540
cctgagccga	tgctggatat	attttcgcc	gggcgtcage	accgcattgc	cttgcgtggc	600
gggagcaaca	gcgacgaggc	aagcgtgctg	agctacttcg	gcatcgatcc	tgccggcag	660
gtcgaactgc	tgcgcgggg	agcggcgctt	ccggactggg	ggcttatcaa	actgctgtat	720
tcccgagtg	aaangggat	gcccgaactc	gggcgacagg	tgtgcgcga	tatggcttt	780
ncncgctgg	gttttgtgt	gatgcaggcc	cagcagcggg	tcaatcagcc	ctgctggcgc	840
tactatttt	attatgtggg	ggagggcgaa	cgtaaaatct	atgcacacgg	cacctggcac	900
ggcaacgaag	tgcgtatgt	tttgacacg	ttaagtcga	cgccacccgc	aagtgaatac	960
gtcaaccaaa	acgatctcac	gttgcgggg	caaatttgt	actactggac	ccgtttgcc	1020
cgcagcgccc	gtccccacag	taaagcgata	ccgggcccgc	taagctggcc	tgcctgcgtt	1080
cgcggcaagg	accgaacgat	gcggtaggc	gttcactcgc	ggcgcgggtt	caaagtggaa	1140
aaccgctta	tgcgcattag	aatgcagctg	tttaagcggg	tcatgaagca	tcacgtcagc	1200
cttgcactga						1209

<210> 3
<211> 402
<212> PRT
<213> Unknown

<220>
<223> environmental sample

<221> VARIANT
<222> 245, 260, 261
<223> Xaa = Any Amino Acid

<400> 3

Met	Val	Trp	Leu	His	Gly	Gly	Tyr	Thr	Ile	Gly	Ala	Gly	Ser	Leu	
1					5			10				15			
Pro	Pro	Tyr	Asp	Gly	Ala	Ala	Phe	Ala	Ser	Arg	Asp	Val	Val	Leu	Val
								20			25			30	
Thr	Val	Asn	Tyr	Arg	Leu	Gly	His	Leu	Gly	Phe	Phe	Ala	His	Pro	Ala
								35			40			45	
Leu	Asp	Glu	Glu	Asn	Pro	Asp	Gly	Pro	Val	His	Asn	Phe	Ala	Leu	Leu
								50			55			60	
Asp	Gln	Ile	Ala	Ala	Leu	Lys	Trp	Val	Gln	Glu	Asn	Ile	Ala	Ala	Phe

	70		75		80
Gly Gly Asp Ala Gly Asn Val Thr Leu Phe Gly Glu Ser Ala Gly Ala					
	85		90		95
Arg Ser Val Leu Ser Leu Leu Ala Ser Pro Leu Ala Lys Asn Leu Phe					
	100		105		110
His Lys Gly Ile Ile Gln Ser Ala Tyr Thr Leu Pro Asp Val Asp Arg					
	115		120		125
Lys Lys Ala Leu Lys Arg Gly Val Ala Leu Ala Gly His Tyr Gly Leu					
	130		135		140
Gln Asn Ala Thr Ala Asp Glu Leu Arg Ala Leu Pro Ala Asp Gly Leu					
	145		150		160
Trp Ala Leu Glu Gly Pro Leu Asn Ile Gly Pro Thr Pro Ile Ser Gly					
	165		170		175
Asp Val Val Leu Pro Glu Pro Met Leu Asp Ile Phe Phe Ala Gly Arg					
	180		185		190
Gln His Arg Met Pro Leu Met Val Gly Ser Asn Ser Asp Glu Ala Ser					
	195		200		205
Val Leu Ser Tyr Phe Gly Ile Asp Pro Ala Gly Gln Val Glu Leu Leu					
	210		215		220
Arg Arg Gly Ala Ala Phe Pro Asp Trp Gly Leu Ile Lys Leu Leu Tyr					
	225		230		240
Ser Arg Ser Glu Xaa Gly Met Pro Glu Leu Gly Arg Gln Val Cys Arg					
	245		250		255
Asp Met Ala Phe Xaa Xaa Leu Gly Phe Val Val Met Gln Ala Gln Gln					
	260		265		270
Arg Val Asn Gln Pro Cys Trp Arg Tyr Tyr Phe Asp Tyr Val Gly Glu					
	275		280		285
Ala Glu Arg Lys Ile Tyr Ala Asn Gly Thr Trp His Gly Asn Glu Val					
	290		295		300
Pro Tyr Val Phe Asp Thr Leu Ser Leu Thr Pro Pro Ala Ser Glu Tyr					
	305		310		320
Val Asn Gln Asn Asp Leu Thr Phe Ala Gly Gln Ile Cys Asp Tyr Trp					
	325		330		335
Thr Arg Phe Ala Arg Ser Ala Gly Pro His Ser Lys Ala Ile Pro Gly					
	340		345		350
Pro Leu Ser Trp Pro Ala Cys Val Arg Gly Lys Asp Arg Thr Met Arg					
	355		360		365
Leu Gly Val His Ser Arg Ala Arg Phe Lys Val Glu Asn Arg Phe Met					
	370		375		380
Arg Met Arg Met Gln Leu Phe Lys Arg Val Met Lys His His Val Ser					
	385		390		400
Leu Asp					