

[Patentanmeldung]**Magnetische Nanopartikel mit verbesserten Magneteigenschaften****[Beschreibung]**

Die Erfindung betrifft ein Verfahren zur Herstellung magnetischer Nanopartikel, die aus Metalloxid-Polymerkompositen bestehen.

[Stand der Technik]

Für magnetische Kompositpartikel mit Durchmessern im Nanometerbereich gibt es bereits eine Reihe von technisch etablierten Applikationen. Beispielsweise können derartige Partikel in molekularbiologischen Applikationen zur Isolierung, Fixierung und Reinigung von Zellen, Zellbestandteilen, Nukleinsäuren, Enzymen, Antikörpern, Proteinen und Peptiden, in der Zellbiologie zu Phagozytose-Untersuchungen, in der Klinischen Chemie als Bestandteil von diagnostischen Assays oder therapeutischen Arzneiformen, in der Klinischen Diagnostik als Kontrastmittel, Radionuklid- oder Drug-Carrier in der Biochemie und Technischen Chemie als Festphasen für die Untersuchung von Molecular Recognition-Phänomenen und heterogenkatalytischen Prozessen eingesetzt werden.

Eine Vielzahl von polymerbeschichteten Metalloxidpartikeln wurden seit Mitte der 1980-er Jahre für biologische Anwendungen in magnetischen Feldern beschrieben. Insbesondere magnetisierbare Nanopartikel unterhalb von 200 nm eröffnen neue Möglichkeiten für den Transport und die Separation von Zellen, Zellbestandteilen, bioaktiven Molekülen und Radionukliden (US2003/0099954 MILTENYI; WO01/17662 ZBOROWSKI; WO02/43708 ALEXIOU), für die Anwendung als Markierung in

BESTÄTIGUNGSKOPIE

kontrastgebenden magnetischen Abbildungs- und Diagnoseverfahren (US2003/0092029A1 JOSEPHSON; WO01/74245 JOHANSSON; US5427767 KRESSE) sowie die mechanische (DE10020376A1 KOCH) und thermale Beeinflussung von lebenden Zellen (US6541039 LESNIAK) und sind deshalb ständig in ihren applikationsbezogenen Eigenschaften verbessert worden. Allen Anwendungen ist gemeinsam, dass magnetisierbare Metalloxide mit einer biokompatiblen polymeren Beschichtung zu Kompositpartikeln mit Größen von 5 nm bis 500 nm zu einer kolloidal stabilen Suspension auf wässriger Basis verbunden werden. Dabei soll das Beschichtungsmaterial entweder eine Wechselwirkung mit biologischen Materialien ausschließen, eine gute Verträglichkeit mit lebenden Zellen ermöglichen und die Wege der Metabolisierung in lebenden Organismen beeinflussen oder durch gezielte Funktionalisierung mit biochemisch aktiven Substanzen eine selektive Bindung an der Oberfläche ermöglichen oder kontrolliert eingeschlossene Substanzen freisetzen. Mittels der magnetisierbaren Anteile der Kompositpartikel wird dabei eine energetische Wechselwirkung mit äußeren magnetischen Feldern genutzt. In magnetischen Feldern erfahren solche Partikel abhängig von den magnetischen Eigenschaften eine Ausrichtung, sie bewegen sich entsprechend räumlicher magnetischer Feldgradienten und reagieren auf zeitliche Änderungen des äußeren Magnetfeldes. Eine große Anzahl von Methoden wurde zur Herstellung von Eisenoxidkristalliten als Metalloidpartikel beschrieben etwa durch Sinterung bei hohen Temperaturen mit anschließender mechanischer Zerkleinerung, Clusterbildung unter Vakuumbedingungen oder nasschemische Synthese aus Lösungen. Die Fällung von Eisenoxiden kann unter nicht-wässrigen Bedingungen erfolgen (US4677027 PORATH) und anschließend in wässrige Bedingungen überführt werden (US5160725 PILGRIM) oder ausschließlich in wässrigen Lösungen erfolgen (US4329241 MASSART). Aus toxikologischen Gründen wird für biologische

Anwendungen eine wässrige Formulierung verwendet (US4101435 HASEGAWA). Die nasschemische Synthese der Eisenoxidkristallite kann einer Beschichtung durch die polymeren Bestandteile vorangehen (Core-shell-Methode) oder in Anwesenheit des Polymers erfolgen (One-pot-Methode). Die Core-shell-Methode macht die Zugabe von Stabilisatoren zu den Eisenoxiden erforderlich, da diese zur Bildung von Aggregaten in wässriger Suspension neigen. Als Stabilisatoren kommen amphiphile Substanzen (WO01/56546 BABINCOVA) oder zusätzliche Nanopartikel mit elektrisch geladener Oberfläche in Betracht (US4280918 HOMOLA). Oberflächenaktive Substanzen als Stabilisatoren können jedoch die Möglichkeiten einer chemischen Funktionalisierung der Oberfläche stark eingrenzen. Heute werden im allgemeinen hauptsächlich nach der One-pot-Methode hergestellte magnetisierbare eisenhaltige Nanokompositpartikel wegen ihrer physikalischen und chemischen Eigenschaften und der pharmazeutischen/galenischen Stabilität für medizinische Anwendungen akzeptiert.

Die One-pot-Methode verwendet das Beschichtungspolymer direkt während der Bildung der Eisenoxide zur Stabilisierung bei Keimbildung und Wachstum der Kristallite aus der Lösung. Eine der meist eingesetzten Beschichtungsmaterialien ist Dextran in verschiedenen Modifizierungen. Aber auch andere Polysaccharide wie Arabinogalactan, Stärke, Glycosaminoglycane oder Proteine fanden Verwendung (US6576221 KRESSE). Das wohl einfachste Verfahren ist die Fällung von Eisen(II)- und Eisen(III)-Salzen in Gegenwart von Dextran (US4452773 MOLDAY). Abgewandelt wird das Verfahren durch die Verwendung von Ultraschall mit anschließender thermischer Behandlung in einem Durchflussverfahren (US4827945 GROMAN). Die Qualität des Produktes kann durch magnetische Klassierung weiter verbessert werden (WO9007380 MILTENYI). Eine weitergehende Verkapselung/Beschichtung meist unter Verwendung amphiphiler Substanzen als Stabilisatoren kann das

Verhalten biologischer Systeme gegenüber den Kompositpartikeln wesentlich modifizieren (US5545395 TOURNIER, EP0272091 ELEY).

Zur Herstellung hoch disperser wässriger Systeme als injizierbare Flüssigkeit kommen neben verschiedenen Stabilisatoren unterstützend spezielle Methoden der Homogenisierung zum Einsatz. Solche Methoden sind beispielsweise die Rotor-Stator-Homogenisierung und die Hochdruckhomogenisierung. Ein besonders hoher mechanischer Energieeintrag wird durch den Einsatz von Liquid-jet- oder Liquid-slot-nozzle-Hochdruckhomogenisatoren erreicht (Microfluidizer-Technologie), was insbesondere zur Herstellung von Liposomen genutzt wird (US5635206 GANTER) aber auch in anderen Fällen die Herstellung injizierbarer Wirkstoffformulierungen erleichtert (US5595687 RAYNOLDS). Der Einsatz eines Hochdruckhomogenisators zur Herstellung oxidischer Nanokompositpartikel mittels kontrollierter Koaleszenz mit anschließender Trocknung in Emulsionen, deren nichtwässrige Komponente eine Oxidkomponente als Sol enthält, ist im Zusammenhang mit der industriellen Herstellung von Katalysatormaterialien (US5304364 COSTA) sowie elektrographischer Tonerpartikel, keramischer Pulver, Filzmaterialien, Sprühschichten, Wirkstoffträger oder Ionenaustauscherharze beschrieben (US5580692 LOFFTUS).

Alle beschriebenen Magnetpartikel-Typen im Größenbereich unterhalb 200 nm sind meist nur über aufwendige Separationsverfahren (z. B. Hochgradienten-Magnet-separation) anzureichern oder zu fixieren.

Andererseits gibt es in den Life Sciences bereits zahlreiche Magnetpartikelapplikationen, die durch Separationsschritte an Permanentmagneten wesentlich effizienter ausgeführt werden könnten oder die aus anderen Gründen eine hohe Magnetomobilität der Partikel erfordern.

[Aufgabe der Erfindung]

Somit lag der vorliegenden Erfindung die Aufgabe zugrunde, magnetische Nanopartikel zugänglich zu machen, die über eine genügend hohe Magnetisierung bei kleinen Feldstärken verfügen.

Diese Aufgabe wird dadurch gelöst, dass magnetische Nanopartikel bestehend aus einem Metalloxid und einem Polymer mit einem Massenanteil an Metall größer oder gleich 50 % und hydrodynamischen Durchmessern unterhalb 200 nm mittels Hochdruckhomogenisierung aus den Komponenten und einem Trägermedium erzeugt werden.

Diese magnetischen Nanopartikel sind weiterhin dadurch gekennzeichnet, dass sie bei kleinen Magnetfeldstärken ein vergleichsweise höheres magnetisches Moment als das eingesetzte Metalloxid aufweisen.

Solche magnetische Nanopartikel werden weder durch Amphiphile strukturiert, wie es bei Magnetliposomen der Fall ist, oder durch Tenside stabilisiert, so wie üblicherweise bei Ferrofluiden verfahren wird. Vielmehr bilden sie in Wasser und wässrigen Lösungen ohne Einwirkung eines äußeren Magnetfeldes ein langzeitstables Kolloid.

Bei den eingesetzten Metalloxiden handelt es sich vornehmlich um Eisenoxide, wie Magnetit (Fe_3O_4) oder Maghemit (Fe_2O_3) oder daraus resultierenden Mischphasen. Die Eisenoxide können durchaus auch Anteile von anderen zwei- oder dreiwertigen Metallionen, wie beispielsweise Ca^{2+} , Ba^{2+} , Zn^{2+} , Co^{2+} , Co^{3+} , Cr^{3+} , Ti^{3+} , Mo^{2+} , Mn^{2+} und Cu^{2+} , enthalten.

Das eingesetzte Polymer kann dem Bereich der synthetischen Polymere entstammen. Dafür kommen prinzipiell Polymere in Frage, die über Heteroatome oder funktionelle Gruppen verfügen, die bindende Wechselwirkungen zu Metallionen eingehen können, wie unter anderem Polyole, Polyamine,

Polyether, Polyester, Polyamide sowie davon abgeleitete Derivate, Copolymeren und Blends.

Andererseits kann das Polymer auch aus der Gruppe der Biopolymeren und hier insbesondere aus dem Bereich der Polysaccharide gewählt werden. Dabei kommen sowohl natürliche als auch derivatisierte Polysaccharide in Betracht. Unter den Polysacchariden weisen eine Reihe von Vertretern eine ausgeprägte Affinität zu Schwermetallionen, insbesondere auch Eisenionen, auf.

Zu diesen Vertretern zählt auch das Dextran, das zudem den Vorteil bietet, weniger als andere natürliche Polysaccharide (z. B. Stärke) Qualitätsschwankungen zu unterliegen, was wiederum für die Reproduzierbarkeit der Partikelchargen von großem Wert ist. Ebenso ist eine Derivatisierung des Dextrans in vielfältiger Weise ausführbar. Nach an sich bekannten Methode können so funktionelle Gruppen (COOH, NH₂, ...), Spacer mit funktionellen Gruppen (Polyethylenglykol-basierte COOH- oder NH₂-Gruppen) oder biochemisch relevante Substrukturen (Oligonukleotide, Nukleinsäuren, Peptide, Proteine sowie Antikörper und Enzyme) eingeführt werden. Die Derivatisierung des Dextrans kann aber auch genutzt werden, um metallselektive Chelatoren, beispielsweise für die Fixierung von Radionukliden, oder pharmazeutischen Wirkstoffen zu binden.

Als Technologie zur Herstellung der erfindungsgemäßen magnetischen Nanopartikel hat sich die Hochdruckhomogenisation unter Verwendung des Microfluidizer™ vom Typ M-110Y bewährt. Dabei werden die Komponenten Metalloxid und Polymer in einem Trägermedium, in den meisten Fällen wird Wasser verwendet, bei Drücken im Bereich von 500 bar bis 1200 bar unter Anwendung hoher Scherkräfte prozessiert. Das Verfahren kann auch dadurch modifiziert werden, dass die Metalloxide erst während der Ultrahomogenisation aus entsprechenden Metallsalzen oder -

hydroxiden *in situ* generiert werden. In diesen Fällen wird ein alkalisches Trägermedium, beispielsweise eine wässrige Ammoniaklösung verwendet.

Überraschenderweise konnte festgestellt werden, dass die Hochdruckhomogenisierung der Komponenten Metalloxid und Polymer in einem Trägermedium nicht nur zu kolloidal stabilen Magnetpartikel-Population im Durchmesserbereich unterhalb von 200 nm führt, sondern dass die erzeugten magnetischen Nanopartikel bei kleinen Magnetfeldstärken unter 50 Oe über größere magnetische Momente verfügen als sie für das als Ausgangsmaterial verwendete Metalloxid bestimmt wurden (Abb. 1).

Die Auswirkung der verbesserten Magneteigenschaften auf die Magnetomobilität wird beim Vergleich der ermittelten Werte für die erfindungsgemäß hergestellten magnetischen Nanopartikeln mit herkömmlichen superparamagnetischen Eisenoxid-Partikeln (SPIO) deutlich (Abb. 2). Die nach den Beispielen 1 bis 5 gewonnenen magnetischen Nanopartikel weisen durchweg wesentlich höhere Magnetomobilitäten als vergleichbare SPIO-Partikel (analog US 4452773, Partikeldurchmesser: 100 nm) auf.

Die erfindungsgemäß hergestellten magnetischen Nanopartikel können für diverse Life-Sciences-Applikationen eingesetzt werden. So sind sie besonders für Anwendungen auf bioanalytischem und diagnostischem Gebiet, bei Bioseparationsprozessen und als Trägermaterial im High-Throughput-Screening geeignet. Der geringe Durchmesser in Verbindung mit der ausgeprägten kolloidalen Stabilität erlaubt darüber hinaus auch ihren Einsatz bei *in vivo*-Anwendungen, beispielsweise in Form von injizierbaren Kontrastmitteln, Radionuklid-Carriern oder Wirkstoffdepots. Für solche Applikationen ist es von besonderem Vorteil, dass die erfindungsgemäßen Partikel durch Sterilfiltration aufbereitet werden können.

[Beispiele]

Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden, ohne darauf beschränkt zu sein.

Beispiel 1.

36 g Dextran (MW = 40.000 D, Fluka) wurden in 120 ml Wasser gelöst. 180 ml einer 2,5% (w/w) wässrigen Magnetitsuspension (micromod, 45-00-202, Partikeldurchmesser: 200 nm) wurde auf 40°C erwärmt und 10 min bei 500 bar im Microfluidizer M-110Y ultrahomogenisiert. Nach Druckerhöhung auf 1000 bar wurde die auf 40°C erwärmte Dextranlösung zur ultrahomogenisierten Magnetitsuspension gegeben. Die Dextran-Magnetit-Suspension wurde 20 min bei 1000 bar und 90°C ultrahomogenisiert. Nach Abkühlen auf Raumtemperatur wurden die erhaltenen magnetischen Nanopartikel zur Abtrennung des Dextranüberschusses 15 min am Permanentmagneten separiert und in 40 ml Wasser resuspendiert. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 130-140 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 58-62 % (w/w).

Beispiel 2.

Die Partikelsynthese wurde analog Beispiel 1. durchgeführt, wobei der Druck während der gesamten Ultrahomogenisation 500 bar betrug. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 160-180 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 58-62 % (w/w).

Beispiel 3.

Die Partikelsynthese wurde analog Beispiel 1. durchgeführt, wobei das Massenverhältnis zwischen Dextran und Magnetit von 8:1 (Beispiel 1) auf 12:1 erhöht wurde. Dazu wurden 54 g Dextran (MW = 40.000 D, Fluka) in 180 ml Wasser gelöst. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 130-140 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 52-56 % (w/w).

Beispiel 4.

12 g Ethylenimin-Polymerlösung (50% (v/v), MW = 600 - 1.000 kD, Fluka) wurde mit 30 ml Wasser gemischt. 60 ml einer 2,5% (w/w) wässrigen Magnetitsuspension (micromod, 45-00-202, Partikeldurchmesser: 200 nm) wurde auf 40°C erwärmt und 10 min bei 500 bar im Microfluidizer M-110Y ultrahomogenisiert. Nach Druckerhöhung auf 1000 bar wurde die auf 40°C erwärmte Ethylenimin-Polymerlösung zur ultrahomogenisierten Magnetitsuspension gegeben. Die Polyethylenimin-Magnetit-Suspension wurde 20 min bei 1000 bar und 90°C ultrahomogenisiert. Nach Abkühlen auf Raumtemperatur wurden die erhaltenen magnetischen Nanopartikel zur Abtrennung des Polymerüberschusses 15 min am Permanentmagneten separiert und in 25 ml Wasser resuspendiert. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 80 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 60-65 % (w/w).

Beispiel 5.

72 g Dextran (MW = 40.000 D, Fluka) wurden in 180 ml Wasser gelöst. 90 ml einer 1,5% (w/w) wässrigen Maghemitsuspension (hergestellt nach: M. Holmes et al., J. Magn. Magn. Mater. 122, 134 (1993), Partikeldurchmesser: 20 nm, pH= 1.6 - 2.0)

wurde auf 40°C erwärmt und 5 min bei 500 bar im Microfluidizer M-110Y ultrahomogenisiert. Nach Zugabe der auf 40°C erwärmten Dextranlösung zur ultrahomogenisierten Maghemitsuspension wurde die Suspension durch Zugabe von 120 ml 0,1 M Natronlauge neutralisiert. Nach Abkühlen auf Raumtemperatur wurden die erhaltenen magnetischen Nanopartikel mittels Hochgradientenmagnetfeld mit Wasser gewaschen. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 60-70 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 50-52 % (w/w).

Beispiel 6.

Zur Funktionalisierung mit terminalen Carbonsäuregruppen über einen Ethylenglycol-Spacer wurden 20 ml einer 5 % (w/w) Dextran-Magnetit-Nanopartikel-Suspension aus Beispiel 1 (Partikeldurchmesser: 130-140 nm) mit 5 ml 0,5 M 2-Morpholinoethansulfonsäure-Puffer (pH = 6,3) gemischt. 120 mg N-Ethyl-N'-(3-dimethylaminopropyl)-carbodiimid-hydrochlorid und 120 mg 3,6-Dioxaoctandisäure wurden in je 5 ml 0,1 M 2-Morpholinoethansulfonsäure-Puffer (pH = 6,3) gelöst und vereinigt. Nach Inkubation dieser Lösung für 10 min bei 50°C erfolgte die Zugabe zur Nanopartikel-Suspension. Die Partikelsuspension wurde 2 h bei Raumtemperatur geschüttelt. Nach Separation am Permanentmagneten wurden die Nanopartikel in Wasser resuspendiert. Für die Dichte an Carbonsäuregruppen auf der Partikelloberfläche wurde ein Wert von 40-50 nmol/mg mittels Strömungspotenzialmessung bestimmt (Polyelektrolyt titration gegen 0,001 N Poly(diallyldimethylammoniumchlorid)-Lösung, Mütek PCD 03 pH). Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 120-130 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern

Instr.). Der Eisenanteil in den Partikeln beträgt 60-65 % (w/w).

Beispiel 7.

Zur kovalenten Bindung von Streptavidin auf der Partikeloberfläche wurden 10 ml einer 2 % (w/w) Dextran-Magnetit-Nanopartikel-Suspension aus Beispiel 7 mit terminalen Carbonsäuregruppen auf der Partikeloberfläche mit 2,5 ml 0,5 M 2-Morpholino-ethansulfonsäure-Puffer (pH = 6,3) gemischt. 20 mg N-Ethyl-N'-(3-dimethylaminopropyl)-carbodiimid-hydrochlorid und 40 mg N-Hydroxysuccinimid wurden in je 1 ml 0,1 M 2-Morpholino-ethansulfonsäure-Puffer (pH = 6,3) gelöst und zur Nanopartikel-Suspension gegeben. Die Partikelsuspension wurde 2 h bei Raumtemperatur geschüttelt. Nach Separation am Permanentmagneten wurden die Nanopartikel in 10 ml 0,1 M 2-Morpholino-ethansulfonsäure-Puffer (pH = 6,3) resuspendiert. Nach Zugabe von 1 mg Streptavidin (Molecular Probes) wurde die partikelsuspension 3 h bei Raumtemperatur geschüttelt. Zur Absättigung reaktiver Stellen wurde die Partikel-Suspension nach Zugabe von 2 ml 0,4 M Glycinlösung eine weitere Stunde bei Raumtemperatur geschüttelt. Nach Separation am Permanentmagneten wurden die Nanopartikel einmal mit 10 ml PBS-Puffer (pH=7,4) gewaschen und in 5 ml PBS-Puffer (pH=7,4) resuspendiert. Die Konzentration an kovalent gebundenem Streptavidin auf den Dextran-Magnetit-Nanopartikeln beträgt 1,5-2 µg Streptavidin pro mg Partikel. Der hydrodynamische Durchmesser der resultierenden magnetischen Nanopartikel beträgt 130-140 nm (Photonenkorrelationsspektroskopie, Zetasizer 3000, Malvern Instr.). Der Eisenanteil in den Partikeln beträgt 60-65 % (w/w).

Magnetisierung

Abbildung 1. Messung der Magnetisierung von je 0,3 mg Partikel in 60 μ l Suspension.

Magnetomobilität der Nanopartikel

Abbildung 2. Messung der Extinktionsabnahme der Nanopartikelsuspensionen (Beispiele 1 - 5) durch Separation der Partikel an einem Permanentmagneten in Abhängigkeit von der Zeit (Wellenlänge: 490 nm, Eisenkonzentration der Partikelsuspensionen: 60 - 70 μ g/ml).

[Patentansprüche]

1. Magnetische Nanopartikel bestehend aus Metalloxiden und einem Polymer, gekennzeichnet dadurch, dass sie
 - a) 50 oder mehr Masseprozent Metall enthalten,
 - b) hydrodynamische Durchmesser unterhalb von 200 nm aufweisen,
 - c) bei kleinen Magnetfeldstärken eine höhere Magnetisierung als das eingesetzte Metallooxid aufweisen und
 - d) durch Hochdruckhomogenisation erzeugt werden.
2. Magnetische Nanopartikel nach Anspruch 1, gekennzeichnet dadurch, dass sie in Wasser und wässrigen Lösungen ohne Einwirkung eines äußeren Magnetfeldes ein langzeitstabiles Kolloid bilden.
3. Magnetische Nanopartikel nach den Ansprüchen 1 und 2, gekennzeichnet dadurch, dass sie mit Permanentmagneten separierbar sind.
4. Magnetische Nanopartikel nach den Ansprüchen 1 bis 3, gekennzeichnet dadurch, dass es sich bei den Metalloxiden um Eisenoxide, wie Magnetit oder Maghemit oder entsprechende Mischphasen handelt.
5. Magnetische Nanopartikel nach den Ansprüchen 1 bis 4, gekennzeichnet dadurch, dass die Eisenoxide Anteile an anderen zwei- oder dreiwertigen Metallionen besitzen.
6. Magnetische Nanopartikel nach den Ansprüchen 1 bis 5, gekennzeichnet dadurch, dass es sich bei dem Polymer um ein synthetisches Polymer handelt.
7. Magnetische Nanopartikel nach den Ansprüchen 1 bis 5, gekennzeichnet dadurch, dass es sich bei dem Polymer um ein natürliches oder derivatisiertes Polysaccharid handelt.

8. Magnetische Nanopartikel nach den Ansprüchen 1 bis 7, gekennzeichnet dadurch, dass es sich bei dem Polysaccharid um Dextran handelt.
9. Magnetische Nanopartikel nach den Ansprüchen 1 bis 8, gekennzeichnet dadurch, dass das Dextran durch funktionelle Gruppen oder Substrukturen derivatisiert ist.
10. Verfahren zur Herstellung magnetischer Nanopartikel nach den Ansprüchen 1 bis 9, gekennzeichnet dadurch, dass die Komponenten Polymer und Metalloxid in einem Trägermedium bei Drücken von 500 bar oder darüber ultrahomogenisiert werden.
11. Verfahren zur Herstellung magnetischer Nanopartikel nach Anspruch 10, gekennzeichnet dadurch, dass als Trägermedium Wasser verwendet wird.
12. Verfahren zur Herstellung magnetischer Nanopartikel nach den Ansprüchen 1 bis 9, gekennzeichnet dadurch, dass die Komponente Metalloxid *in situ* aus entsprechenden Metallsalzen oder -hydroxiden erzeugt wird.
13. Verfahren zur Herstellung magnetischer Nanopartikel nach Anspruch 12, gekennzeichnet dadurch, dass das Trägermedium alkalisch ist.
14. Verfahren zur Herstellung magnetischer Nanopartikel nach den Ansprüchen 12 und 13, gekennzeichnet dadurch, dass es sich beim Trägermedium um eine Lösung von Ammoniak in Wasser handelt.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/007539

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01F1/00 H01F1/42 H01F1/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 501 726 A (MOSBACH KLAUS ET AL) 26 February 1985 (1985-02-26) abstract column 3, lines 12-53 examples 1,7,12 column 2, lines 29-44 claim 2 -----	1,4,7-9
X	EP 0 699 964 A (XEROX CORP) 6 March 1996 (1996-03-06) abstract page 5, lines 42-55 page 6, lines 2-6 example 1 page 3, lines 22-35, 48-52 -----	1,4-6,12
A	----- -/-	13,14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

8 December 2004

Date of mailing of the International search report

15/12/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Reder, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/007539

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 667 716 A (ZIOLO RONALD F ET AL) 16 September 1997 (1997-09-16) abstract column 1, line 64 - column 2, line 11 column 12, lines 11-35,58-67 example 1 column 6, lines 49-58 column 9, line 66 - column 10, line 8 column 11, lines 22-34 -& US 5 358 659 A (ZIOLO RONALD F) 25 October 1994 (1994-10-25) example 1 -----	1-6, 10-12
A	----- US 5 852 076 A (OLMSTED RICHARD D ET AL) 22 December 1998 (1998-12-22) column 3, line 23 - column 4, line 63 example 3 -----	13,14
A	WO 95/27437 A (MALLINCKRODT MEDICAL INC) 19 October 1995 (1995-10-19) abstract page 9, columns 15-31 example 1 -----	1,7-14
A	US 5 814 687 A (HAN KAKUN ET AL) 29 September 1998 (1998-09-29) abstract column 8, lines 14-27 example 1 -----	1,4,6,10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/007539

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 4501726	A 26-02-1985	AU 9127482 A EP 0093757 A1 WO 8301738 A1 US 4713249 A		01-06-1983 16-11-1983 26-05-1983 15-12-1987
EP 0699964	A 06-03-1996	US 6048920 A BR 9503634 A CA 2151967 A1 DE 69517563 D1 DE 69517563 T2 EP 0699964 A1 ES 2148443 T3 JP 8073652 A		11-04-2000 02-04-1996 16-02-1996 27-07-2000 19-10-2000 06-03-1996 16-10-2000 19-03-1996
US 5667716	A 16-09-1997	NONE		
US 5358659	A 25-10-1994	DE 69310459 D1 DE 69310459 T2 EP 0586052 A2 JP 2648557 B2 JP 6077037 A US 5567564 A US 5670078 A US 5858595 A		12-06-1997 27-11-1997 09-03-1994 03-09-1997 18-03-1994 22-10-1996 23-09-1997 12-01-1999
US 5852076	A 22-12-1998	US 6051630 A DE 69522232 D1 DE 69522232 T2 EP 0787035 A1 JP 10508795 T WO 9614925 A1		18-04-2000 20-09-2001 13-06-2002 06-08-1997 02-09-1998 23-05-1996
WO 9527437	A 19-10-1995	US 5344640 A US 5342609 A US 5468465 A US 5419892 A WO 9527437 A1 AU 674291 B2 AU 2886492 A AU 6766494 A CA 2120130 A1 EP 0610333 A1 EP 0755222 A1 JP 7500823 T JP 9511520 T US 5407659 A WO 9307905 A2 AT 198423 T AU 686523 B2 AU 7034596 A DE 69231627 D1 DE 69231627 T2 ES 2152932 T3 US 5595724 A US 5560902 A US 5609850 A US 5690908 A		06-09-1994 30-08-1994 21-11-1995 30-05-1995 19-10-1995 19-12-1996 21-05-1993 30-10-1995 29-04-1993 17-08-1994 29-01-1997 26-01-1995 18-11-1997 18-04-1995 29-04-1993 15-01-2001 05-02-1998 23-01-1997 08-02-2001 26-04-2001 16-02-2001 21-01-1997 01-10-1996 11-03-1997 25-11-1997

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/007539

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5814687	A 29-09-1998 JP	9208788 A	12-08-1997

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/007539

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01F1/00 H01F1/42 H01F1/44

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 H01F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 4 501 726 A (MOSBACH KLAUS ET AL) 26. Februar 1985 (1985-02-26) Zusammenfassung Spalte 3, Zeilen 12-53 Beispiele 1,7,12 Spalte 2, Zeilen 29-44 Anspruch 2 -----	1,4,7-9
X	EP 0 699 964 A (XEROX CORP) 6. März 1996 (1996-03-06) Zusammenfassung Seite 5, Zeilen 42-55 Seite 6, Zeilen 2-6 Beispiel 1 Seite 3, Zeilen 22-35, 48-52 -----	1,4-6,12
A	-----	13,14

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

8. Dezember 2004

15/12/2004

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Reder, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/007539

C(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 667 716 A (ZIOLO RONALD F ET AL) 16. September 1997 (1997-09-16) Zusammenfassung Spalte 1, Zeile 64 – Spalte 2, Zeile 11 Spalte 12, Zeilen 11-35,58-67 Beispiel 1 Spalte 6, Zeilen 49-58 Spalte 9, Zeile 66 – Spalte 10, Zeile 8 Spalte 11, Zeilen 22-34 -& US 5 358 659 A (ZIOLO RONALD F) 25. Oktober 1994 (1994-10-25) Beispiel 1 -----	1-6, 10-12
A	----- US 5 852 076 A (OLMSTED RICHARD D ET AL) 22. Dezember 1998 (1998-12-22) Spalte 3, Zeile 23 – Spalte 4, Zeile 63 Beispiel 3 -----	13,14
A	WO 95/27437 A (MALLINCKRODT MEDICAL INC) 19. Oktober 1995 (1995-10-19) Zusammenfassung Seite 9, Spalten 15-31 Beispiel 1 -----	1,7-14
A	US 5 814 687 A (HAN KAKUN ET AL) 29. September 1998 (1998-09-29) Zusammenfassung Spalte 8, Zeilen 14-27 Beispiel 1 -----	1,4,6,10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/007539

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 4501726	A	26-02-1985	AU EP WO US	9127482 A 0093757 A1 8301738 A1 4713249 A		01-06-1983 16-11-1983 26-05-1983 15-12-1987
EP 0699964	A	06-03-1996	US BR CA DE DE EP ES JP	6048920 A 9503634 A 2151967 A1 69517563 D1 69517563 T2 0699964 A1 2148443 T3 8073652 A		11-04-2000 02-04-1996 16-02-1996 27-07-2000 19-10-2000 06-03-1996 16-10-2000 19-03-1996
US 5667716	A	16-09-1997	KEINE			
US 5358659	A	25-10-1994	DE DE EP JP JP US US US	69310459 D1 69310459 T2 0586052 A2 2648557 B2 6077037 A 5567564 A 5670078 A 5858595 A		12-06-1997 27-11-1997 09-03-1994 03-09-1997 18-03-1994 22-10-1996 23-09-1997 12-01-1999
US 5852076	A	22-12-1998	US DE DE EP JP WO	6051630 A 69522232 D1 69522232 T2 0787035 A1 10508795 T 9614925 A1		18-04-2000 20-09-2001 13-06-2002 06-08-1997 02-09-1998 23-05-1996
WO 9527437	A	19-10-1995	US US US US WO AU AU AU AU CA EP EP JP JP US WO AT AU AU DE DE ES US US US US	5344640 A 5342609 A 5468465 A 5419892 A 9527437 A1 674291 B2 2886492 A 6766494 A 2120130 A1 0610333 A1 0755222 A1 7500823 T 9511520 T 5407659 A 9307905 A2 198423 T 686523 B2 7034596 A 69231627 D1 69231627 T2 2152932 T3 5595724 A 5560902 A 5609850 A 5690908 A		06-09-1994 30-08-1994 21-11-1995 30-05-1995 19-10-1995 19-12-1996 21-05-1993 30-10-1995 29-04-1993 17-08-1994 29-01-1997 26-01-1995 18-11-1997 18-04-1995 29-04-1993 15-01-2001 05-02-1998 23-01-1997 08-02-2001 26-04-2001 16-02-2001 21-01-1997 01-10-1996 11-03-1997 25-11-1997

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/007539

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5814687	A 29-09-1998	JP 9208788 A	12-08-1997