- 1. Partition Based Metjods KMeans
- 2. Heirarchical Agglomerative

```
In [1]: #1 importing the dataset
import pandas as pd
customers_df = pd.read_csv("Salary_data.csv");
customers_df.head(5)
```

Out[1]:		age	income
	0	25	69343
	1	28	66205
	2	30	57731
	3	29	63525
	4	31	69891

KMeans

Step 1: It randomly selects 'k' data objects from the dataseteach of which represents a Cluster Center

Step 2: Repeat for each of the remaining data objects, an object is assigned to a cluster to which it is most similar i.e minimum distance (based on the distance between the object and cluster center)

Step 3: It then computes a new mean for each respective cluster until there is no change

```
In [3]: #2 importing the libraries
import numpy as np
import seaborn as sn
import matplotlib as plt
%matplotlib inline
# here we dont want to use line regression therefore fit_reg = False
# plotting the graph between "income" and "age"
sn.lmplot("age" , "income" , data = customers_df , fit_reg = False , size = 4)
```

Out[3]: <seaborn.axisgrid.FacetGrid at 0x23757a2f248>


```
In [4]: #3 KMEANS
    from sklearn.cluster import KMeans
    #KMeans 3 -> choose 3 random centers
    clusters = KMeans(3)
    clusters.fit(customers_df)
```

Out[4]: KMeans(n_clusters=3)

In [5]: # by this we are assignming the cluster number to the repective data item based on first iteration of cluster.fi
customers_df["clusterid"] = clusters.labels_
customers_df.head()

Out[5]:		age	income	clusterid
	0	25	69343	2
	1	28	66205	2
	2	30	57731	2
	3	29	63525	2
	4	31	69891	2

```
In [7]: #4 PLOTTING THE CLUSTERS
    # beacuse we are using 3 clusters
    marker = ['+' , '^' , '.']
    sn.lmplot("age" , "income" , data = customers_df , hue = "clusterid" , fit_reg = False , markers = marker , size
```

C:\Users\harsh\anaconda3\lib\site-packages\seaborn\regression.py:574: UserWarning: The `size` parameter has be
en renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x237581c9e48>


```
In [11]: #5 scaling the features
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         scaled_customers_df = scaler.fit_transform(customers_df[["age" , "income"]])
         scaled customers df[0:5]
Out[11]: array([[-1.58294052, 0.41411441],
                [-1.33212248, 0.23763705],
                [-1.16491046, -0.23893055],
                [-1.24851647, 0.08691707],
                [-1.08130444, 0.44493328]])
In [14]: #6 KMEANS again after scaling the features
         from sklearn.cluster import KMeans
         #KMeans 3 -> choose 3 random centers
         clusters new = KMeans(3)
         clusters new.fit(scaled customers df)
         customers df["clusterid new"] = clusters new.labels
```

In [15]: #7 PLOTTING AGAIN
marker = ['+' , '^' , '.']
sn.lmplot("age" , "income" , data = customers_df , hue = "clusterid_new" , fit_reg = False , markers = marker ,

C:\Users\harsh\anaconda3\lib\site-packages\seaborn\regression.py:574: UserWarning: The `size` parameter has be
en renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

Out[15]: <seaborn.axisgrid.FacetGrid at 0x237582f2948>

In [16]: #PROBLEM STATEMENT
Use the bev.csv dataset and apply KMeans and Agglomerative clustering; Compare the cluster

```
In [18]: #1 Importing the dataset
bev_df = pd.read_csv("bev.csv")
bev_df.head()
Out[18]: Name Potentium Sedium Coffeine Cost
```

```
        Out[18]:
        Name
        Potassium
        Sodium
        Caffeine
        Cost

        0
        new_england_coffee
        144
        15
        4.7
        0.43
```

3 bizzy organic coffee

post_alley_blend 151 19 4.9 0.43

2 stumpdown_coffee 157 15 0.9 0.48

170

7

4 indian bean 152 11 5.0 0.77

```
In [20]: # we have already imported the libraries :-)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_bev_df = scaler.fit_transform(bev_df[["Potassium" , "Sodium" , "Caffeine" , "Cost"]])
scaled_bev_df[0:5]
```

5.2 0.73

```
In [24]: from sklearn.cluster import KMeans
#KMeans 3 -> choose 3 random centers
clusters = KMeans(3)
clusters.fit(scaled_bev_df)
bev_df["clusterid"] = clusters.labels_
```

In [27]: # TO LOOK AT THE CLUSTERS
bev_df[bev_df.clusterid == 0]

Out[27]:

	Name	Potassium	Sodium	Caffeine	Cost	clusterid_new	clusterid
0	new_england_coffee	144	15	4.7	0.43	0	0
1	post_alley_blend	151	19	4.9	0.43	0	0
5	jacobs_coffee	145	23	4.6	0.28	0	0
6	grounds_hounds_coffee	175	24	5.5	0.40	0	0
7	la_columbe_corisca	149	27	4.7	0.42	0	0
10	red_bay_coffee	140	18	4.6	0.44	0	0
16	irish_hazelnut_coffee	139	19	4.4	0.43	0	0
17	cremoso_coffee	144	24	4.9	0.43	0	0