63 a Collesson Resolution Methods 1

1 - Open addness.

2 - External or Separate chaining.

3 - Coalesced Chaining.

advantages of no 2:

- Deletions are easily possible.
- Number of elements (an be greater than the table rize.
- Retrieval operations are efficient sing has h function is computed only once during retrieval.

Disadvantages uf no 2.

c	380
ŧ	201
2	1
3	(
4	c
5	4
6	elph

$$\mu(175) = 175 / 520$$
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 201
 2

•