Fundamentos matemáticos del aprendizaje profundo

 1° cuatrimestre 2025

Práctica 1: Problemas introductorios

Ejercicio 1. Una fábrica tiene n proveedores que producen cantidades x_1, \ldots, x_n por día. La fábrica está conectada con sus proveedores por un sistema de rutas, que pueden ser utilizadas con capacidades variables c_1, \ldots, c_n , de manera tal que la fábrica queda provista por una cantidad diaria $x = c_1 x_1 + \cdots + c_n x_n$.

- (a) Dado que la producción de la fábrica empieza cuando el suministro alcanza una cantidad crítica diaria b, escribir la fórmula para los ingresos diarios de la fábrica y.
- (b) Formular el problema como un problema de aprendizaje.

Ejercicio 2. Un número n de instituciones financieras, cada una teniendo una riqueza de x_i , deposita una cantidad de dinero en un fondo a una tasa ajustable para el depósito de w_i . Luego, el dinero en el fondo viene dado por $x = w_1 x_1 + \cdots + w_n x_n$. El fondo está diseñado para funcionar de la siguiente forma: mientras el fondo tenga menos que una cierta reserva M, el manager del fondo no realiza inversiones. Sólo se invierte el dinero excedente a la reserva M. Sea $k = e^{rt}$, donde r y t denotan la tasa de retorno y el tiempo de inversión respectivamente.

- (a) Hallar la fórmula para la inversión.
- (b) Enunciar el problema de aprendizaje asociado.

(a) Dada una función continua $f:[0,1]\to\mathbb{R}$ hallar la función lineal L(x)=ax+b tal que L(0)=f(0) y que minimize el error cuadrático $\frac{1}{2}\int_0^1(L(x)-f(x))^2\,dx$. (b) Dada una función continua $f\colon [0,1]\times[0,1]\to\mathbb{R}$ hallar la función lineal L(x)=ax+by+c

tal que L(0,0) = f(0,0) y que minimize el error cuadrático

$$\frac{1}{2} \int_0^1 \int_0^1 (L(x,y) - f(x,y))^2 \, dx \, dy.$$

Ejercicio 4. Dado un compacto $K \subset \mathbb{R}^n$, asociamos la matriz simétrica

$$r_{ij} = \int_K x_i x_j \, dx.$$

La inversibilidad de la matriz $R = (r_{ij})$ en general depende de K y de la dimensión n.

- (a) Probar que si n=2 la matriz R es inversible para cualquier compacto $K \in \mathbb{R}^2$.
- (b) Probar que si $K = [0, 1]^n$, entonces R es inversible para todo $n \ge 1$.