

Métodos que usam informação de uma vizinhança do píxel da imagem de entrada para calcular o novo valor do correspondente píxel na imagem de saída — operações locais

Operadores de suavização:

Têm como objectivo a **eliminação de ruído** ou de outras pequenas perturbações que afectem o sinal imagem. São equivalentes aos **filtros passa-baixo** no domínio da Transformada de Fourier.

Como desvantagem, **esbatem a imagem**, suavizando as arestas (orlas) dos objectos presentes.

Exemplo de um operador de suavização

Operadores de detecção de arestas:

Têm como objectivo **realçar as arestas** (orlas) da imagem. São equivalentes aos **filtros passa-alto** no domínio da Transformada de Fourier.

Como desvantagem, realçam (aumentam) o ruído, que normalmente é de alta frequência.

Exemplo de um operador de detecção de arestas

A filtragem espacial é realizada através da **convolução discreta** entre uma imagem de entrada (I_{in}) e um **filtro** ou **máscara** (h), resultando uma imagem de saída (I_{out}): o valor de cada píxel na imagem de saída é calculado através de uma **combinação linear** dos valores da **vizinhança** do píxel (na qual ele próprio se inclui) na imagem de entrada; a contribuição de cada píxel vizinho é determinada pelo respectivo **coeficiente** do filtro.

Vizinhança do píxel P ≡ V5

$$I_{out}(i,j) = \sum_{l=-w_l}^{w_l} \sum_{c=-w_c}^{w_c} I_{in}(i+c,j+l).h(w_c+c,w_l+l)$$

A máscara é deslocada sobre toda a imagem (razão pela qual é também designada **janela deslizante**) e em cada posição os valores correspondentes da máscara e dos píxeis da imagem de entrada são multiplicados e somados, sendo o resultado atribuído ao respectivo píxel da imagem de saída.

Existem várias máscaras-padrão para aplicações específicas, onde o tamanho e os coeficientes do filtro determinam as características da operação.

O mais habitual é as máscaras serem rectangulares ou quadradas, com um número ímpar de elementos: $(2w_l + 1)$ linhas e $(2w_c + 1)$ colunas.

Filtro de Média

O valor de cada píxel na imagem de saída é calculado pela média dos seus **vizinhos**, **incluindo-se também a ele próprio**.

$$I_{out}(i, j) = \frac{1}{N_V} \sum_{m,n \in V} I_{in}(m, n)$$

$$N_V = (2w_l + 1) \times (2w_c + 1)$$

(n.º de píxeis na vizinhança)

Algumas características:

- Atenua as variações de intensidade do píxel central em relação aos seus vizinhos.
- Esbate (desfoca) a imagem (blur) quanto maior a janela, maior o esbatimento resultante.
- A máscara pode ter dimensões 3x3, 5x5, ou até maiores.
- Tempo de processamento reduzido.

$$M_8 = \frac{1}{9} \begin{array}{c|cccc} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{array} = \frac{1}{9} \begin{array}{c|cccc} \hline 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Exemplo 1D: Filtro de média com 3 elementos

Exemplo 2D: Filtro de média 3x3

109	105	109	102	105	109
111	107	119	120	118	98
110	105	119	119	118	99
102	105	119	119	118	109
108	102	104	104	105	98
98	100	99	110	100	101

Original

Filtrado

Exemplo 1D: Filtro de média com 3 elementos

Exemplo 2D: Filtro de média 3x3

17	18	18	148	152	155
18	19	20	147	157	160
18	21	20	150	160	163
20	22	25	165	168	167
22	25	30	145	155	160
25	25	27	147	150	157

Original

Filtrado

Filtro de Média Ponderada

Atribui maior peso aos píxeis mais próximos do píxel central do que àqueles que se encontram na periferia da vizinhança \rightarrow preserva melhor as arestas da imagem do que o filtro de média simples.

Exemplos:

$$M_8 = \frac{1}{16} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} = \frac{1}{16} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 & 1 \end{vmatrix}$$

$$M_4 = \frac{1}{6} \begin{vmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{vmatrix}$$

Filtro de Média condicionado pelos dados

- Procura evitar o esbatimento da imagem.
- Só afecta o valor de pontos da imagem que respeitem determinado critério.
- Previne o cálculo da média entre píxeis que pertençam a regiões diferentes da cena.

$$I_{out}(i,j) = \begin{cases} \overline{m}_{V} = \frac{1}{M} \sum_{m,n \in V} I_{in}(m,n) &, \quad \left| I_{in}(i,j) - \overline{m}_{V} \right| \leq T \\ I_{in}(i,j) &, \dots \end{cases}$$

- Evita grandes variações entre os valores dos píxeis das imagens de entrada e de saída.
- Grandes variações entre píxeis vizinhos são atribuídas à presença de arestas ou contornos, que são assim preservados.

Filtro de Mediana

- Filtro não linear: o valor de saída não é combinação linear dos valores da vizinhança.
- Considera uma vizinhança em torno de cada píxel, atribuindo-lhe na imagem de saída o valor central do vector de valores ordenados da vizinhança considerada.
- Eficaz a remover pontos de ruído isolado com intensidades muitos díspares («ruído sal e pimenta»).
- Preserva arestas e contornos da imagem: um valor pouco representativo na vizinhança não altera a mediana.

30

50

20

- O valor do píxel é substituído por um existente na vizinhança (na imagem de saída não surgem valores que não constem na imagem inicial).
- Tempos de cálculo superiores ao filtro de média.

Exemplo 1D: Filtro de mediana com 3 elementos

Exemplo 2D: Filtro de mediana 3x3

109	105	109	102	105	109
111	109	107	107	104	98
110	105	105	105	104	99
102	105	105	105	105	109
108	102	103	103	105	98
98	100	99	110	100	101

Original

Filtrado

Exemplo 1D: Filtro de mediana com 3 elementos

Exemplo 2D: Filtro de mediana 3x3

M

Operações de suavização

Comparativo Média/Mediana: Ruído isolado («sal e pimenta»)

14

Comparativo Média/Mediana: Ruído gaussiano

Filtro de mediana 3x3

Filtro de média 3x3

Filtro de Moda

Para uma dada vizinhança, o valor de cada píxel (na imagem de saída) é o do seu **vizinho mais comum** (considerando os valores da imagem de entrada).

Filtro dos k vizinhos mais próximos

Para uma dada vizinhança, o novo valor de cada píxel, $I_{out}(i,j)$, será igual à **média** dos k **vizinhos** cujo valor está **mais próximo** do seu valor original, $I_{in}(i,j)$.

(k é um **parâmetro ajustável**; p. ex., para uma vizinhança 3x3 um valor habitual é k = 6.)

Filtro Sigma

Para uma dada vizinhança, $I_{out}(i,j)$ será igual à média dos **vizinhos** cujos valores não diferem mais do que T unidades do valor original do píxel considerado, $I_{in}(i,j)$.

(O parâmetro T pode ser derivado do **desvio padrão** dos píxeis da imagem, donde o nome do filtro.)

Filtro Gaussiano

Filtro linear cujos coeficientes são determinados por uma função gaussiana com desvio padrão σ.

$$g_{\sigma}(x) = k.e^{-\frac{x^2}{2\sigma^2}}$$

$$g_{\sigma}(x, y) = k.e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Aproximação discreta do Gaussiano 2D

- Eficaz na remoção de ruído que siga uma distribuição gaussiana (ruído gaussiano).
- Atribui maior peso aos píxeis mais próximos do píxel central do que àqueles que se encontram na periferia da vizinhança → preserva melhor as arestas da imagem.
- O grau de suavização é controlado pelo valor do desvio padrão: quanto maior o desvio padrão, maior a largura do filtro e maior o seu poder de suavização.
- Filtro separável: pode ser implementado através de duas convoluções ortogonais com um filtro
 1D → eficiente mesmo com filtros de grandes dimensões.

Exemplo: Ruído gaussiano

Filtro gaussiano 5x5 $(\sigma = 1)$

Arestas ou orlas (edges):

Zonas onde ocorrem **fortes variações** nos valores da vizinhança de um píxel.

Uma aresta está associada a um **máximo local** na **primeira derivada** do sinal da imagem.

A detecção de arestas **realça as zonas** da imagem onde ocorrem essas variações significativas.

Gradiente

O gradiente é o equivalente 2D da primeira derivada do sinal, sendo definido pelo vector:

$$\nabla I(x,y) = \begin{bmatrix} \nabla_x \\ \nabla_y \end{bmatrix} = \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix} \longrightarrow \text{Gradiente segundo a direcção } x$$
Gradiente segundo a direcção y

Propriedades do Gradiente:

 A magnitude do gradiente é igual à taxa de variação máxima de *I(x,y)* por unidade de distância e segundo a direcção de ∇.

$$\nabla_{m}[I(x, y)] = mag[\nabla] = \sqrt{\nabla_{x}^{2} + \nabla_{y}^{2}} \approx |\nabla_{x}| + |\nabla_{y}|$$

2. O vector gradiente aponta na **direcção** segundo a qual se dá a maior variação do sinal I(x,y).

$$\nabla_{\theta} [I(x, y)] = \theta(x, y) = \tan^{-1} \left(\frac{\nabla_{y}}{\nabla_{x}} \right)$$

 A direcção do gradiente é perpendicular à direcção da aresta.

Aproximação numérica do Gradiente

Em PDI, as derivadas são aproximadas por diferenças.

$$\frac{\partial I}{\partial x} \equiv \nabla_x \approx I[i+1, j] - I[i, j]$$

$$\frac{\partial I}{\partial y} \equiv \nabla_y \approx I[i, j+1] - I[i, j]$$

$$\nabla_{x} = \boxed{-1 \quad 1}$$
 Máscara para detecção de arestas verticais

$$\nabla_y = \boxed{-1}$$
 Máscara para a detecção de arestas horizontais

Operadores de Roberts

Operadores não orientados segundo os eixos x e y, mas funcionalmente similares aos anteriores.

$$\nabla_{1} \approx I[i, j] - I[i+1, j+1]$$

$$\nabla_{2} \approx I[i+1, j] - I[i, j+1]$$

$$\nabla_1 = \begin{array}{|c|c|c|} \hline 1 & 0 \\ \hline 0 & -1 \\ \hline \end{array}$$

Estas máscaras geram valores centrados em **pontos interpolados** ($[i+\frac{1}{2}, j]$ e $[i, j+\frac{1}{2}]$, ou $[i+\frac{1}{2}, j+\frac{1}{2}]$, respectivamente). Para obter valores centrados em [i, j], é frequente usar pares de máscaras com um número ímpar de elementos e simétricas em relação a [i, j]:

$$\nabla_x \approx I[i+1, j] - I[i-1, j]$$

 $\nabla_y \approx I[i, j+1] - I[i, j-1]$

$$\nabla_{x} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Máscara para detecção de arestas verticais

$$\nabla_y = \boxed{-1}$$

Máscara para a detecção de arestas horizontais

É comum o uso de máscaras 3x3, por exemplo:

Operadores de Prewitt

∇_{x}			
-1	0	1	
-1	0	1	
-1	0	1	

-1	-1	-1	
0	0	0	
1	1	1	
$\overline{m{ abla}_y}$			

Ou até maiores:

-3	-4	0	4	3
-4	-6	0	6	4
-6	-12	0	12	6
-4	-6	0	6	4
-3	-4	0	4	3

Operadores de Sobel

-1	0	1
-2	0	2
-1	0	1
	∇_{x}	

7 x			∇	,
)	1	1	2	1
•	2	0	0	0
)	1	-1	-2	-1

-3	-4	-6	-4	-3
-4	-6	-12	-6	-4
0	0	0	0	0
4	6	12	6	4
3	4	6	4	3

Princípio da detecção de arestas

Imagem original

Roberts (magnitude do gradiente)

Sobel (magnitude do gradiente)

Operadores de segunda derivada

Problema: Usando detectores de arestas baseados no cálculo da 1.ª derivada do sinal, sempre que o valor resultante da filtragem estiver acima de um limiar, considera-se estar-se na presença de uma aresta — daqui resulta um elevado número de píxeis pertencentes à aresta.

Solução: Encontrar máximos locais do gradiente (pontos com valores elevados na 1.ª derivada e com um **cruzamento por zero na 2.ª derivada**); as arestas corresponderão aos pontos onde estes cruzamentos por zero ocorrem.

Laplaciano

O Laplaciano é o equivalente 2D da segunda derivada do sinal:

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

As segundas derivadas segundo x e y podem ser **aproximadas** usando as equações das diferenças:

$$\frac{\partial^2 I}{\partial x^2} = \frac{\partial \nabla_x}{\partial x} = \frac{\partial (I[i+1,j] - I[i,j])}{\partial x} = \frac{\partial I[i+1,j]}{\partial x} - \frac{\partial I[i,j]}{\partial x}$$
$$\approx (I[i+2,j] - I[i+1,j]) - (I[i,j+1] - I[i,j])$$
$$= I[i+2,j] - 2I[i+1,j] + I[i,j]$$

A aproximação anterior está centrada no píxel [i+1, j]. Substituindo i por i-1 (e trocando os sinais*):

$$\frac{\partial^2 I}{\partial x^2} = -I[i+1, j] + 2I[i, j] - I[i-1, j]$$

Analogamente para y:

$$\frac{\partial^2 I}{\partial y^2} = -I[i, j+1] + 2I[i, j] - I[i, j-1]$$

Combinando as duas equações num único operador, obtém-se a seguinte máscara, usada na **aproximação do Laplaciano** (3x3):

^{*} O que quer dizer que, em todo o rigor, trabalhamos com o *negativo* do Laplaciano matemático.

Outras possíveis aproximações do Laplaciano 3x3:

0	-4	0
-4	20	-4
0	-4	0

1	-2	1
-2	4	-2
1	-2	1

-1	-1	-1
-1	8	-1
-1	-1	-1

O Laplaciano assinala a **presença de uma aresta** quando na sua saída se verifica uma transição por zero (**zero crossing**):

Laplaciano do Gaussiano (LoG)

Problema: A segunda derivada das intensidades da imagem é muito sensível ao ruído.

Solução: Primeiro **suavizar** a imagem e só depois **realçar** as arestas — Operador LoG.

$$\begin{split} I_{out}(x,y) &= \nabla^2 \big[G_{\sigma}(x,y) * I_{in}(x,y) \big] \\ &= \Big[\nabla^2 G_{\sigma}(x,y) \Big] * I_{in}(x,y) \\ &= \Bigg[\frac{1}{\sqrt{2\pi\sigma^2}} \frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} e^{-\frac{x^2 + y^2}{2\sigma^2}} \Bigg] * I_{in}(x,y) \end{split}$$
 2.ª derivada do Gaussiano (Laplaciano do Gaussiano)

LoG ≈	0	0	-1	0	0
	0	-1	-2	-1	0
	-1	-2	16	-2	-1
	0	-1	-2	-1	0
	0	0	-1	0	0

aproximação do LoG 5x5 (após inversão dos sinais)

O operador LoG é também conhecido como operador de **Marr-Hildreth** ou, mais familiarmente, como "**chapéu mexicano**" (referência à representação 3D do operador 2D).

Imagem de entrada

Zero crossings do resultado do LoG

Imagem de entrada

Resultado do LoG

Zero crossings do resultado do LoG validados pelo gradiente

Operador de Canny

O operador LoG tem duas limitações: não raro detecta **arestas** "**falsas**" e **erra na localização** de arestas verdadeiras que sejam curvas. Uma solução mais avançada é, p. ex., o algoritmo de Canny, que procede à **validação das arestas** com base em **máximos locais do gradiente**.

- 1. Redução do ruído: Filtragem com Gaussiano.
- 2. Detecção de arestas: Utilizar quatro filtros (horizontal, vertical e diagonais, por exemplo, Sobel + Roberts), aproximando as direcções a 0º, 45º, 90º e 135º.
- 3. Detecção dos máximos locais: Considerar estar perante um máximo local se o píxel actual tiver um gradiente com magnitude superior à dos seus vizinhos segundo a direcção perpendicular à do seu gradiente. (Por exemplo, se a direcção do seu gradiente é 0º, comparar a sua magnitude com a dos seus vizinhos nas direcções Norte e Sul.)
- 4. Traçado das arestas usando binarização com histerese: Considerar como arestas certas os máximos locais que tiverem um valor maior que um certo limiar (threshold) superior; a partir destas, aceitar também como arestas os píxeis conexos que, na direcção da aresta, têm gradiente com magnitude maior do que um certo limiar inferior.

М

Operações de detecção de arestas

Imagem filtrada com Gaussiano

Arestas que são máximos locais

Arestas detectadas (cor indica direcção)

Resultado final do detector de Canny

Unsharp masking

Os operadores de realce da imagem (*image sharpening*) têm como objectivo **realçar os detalhes finos** que estão esbatidos (*blurred*) na imagem original. Um exemplo é o *unsharp masking*, versão digital de uma velha técnica fotográfica.

(c)
$$I_{HP} = I_{in} - I_{LP}$$

(d)
$$I_{out} = I_{in} + k.I_{HP}$$

Imagem original e após unsharp masking (dois exemplos com graus de realce diferentes)

A metade inferior da espiral foi realçada por unsharp masking.

Em PDI, uma maneira mais comum de implementar uma "unsharp mask" é usar o **Laplaciano*** para extrair a informação passa-alto num só passo:

Para contornar o problema da **sensibilidade ao ruído** de que sofre o Laplaciano, uma alternativa é substituí-lo pelo operador **LoG***:

$$I_{out} = I_{in} - k. \nabla^2 G_{\sigma} * I_{in}$$

$$I_{HP}$$

^{*} De facto, conforme visto antes, usamos os *negativos* destes operadores.

Imagem original

Unsharp masking com Laplaciano

Unsharp masking com LoG