Homework 2

Problem 1. 1) What is the negation of "P(b), for all $b \in B$ "? What about the negation of "P(b), for some $b \in B$ "?

- 2) State $\overline{2}$ and $\overline{3}$ for the equivalence relation axioms (non-symmetry and non-transitivity). How is non-symmetry different from antisymmetry?
- 3) Show that the axioms for an equivalence relation are completely independent.
- 1) The negation of "P(b), for all $b \in B$ " is " $\overline{P}(b)$ for some $b \in B$ ". The negation of "P(b) for some $b \in B$ " is " $\overline{P}(b)$ for all $b \in B$."
- 2) Non-symmetry is stated as, "there exists $a,b \in A$ such that $a \sim b$ but $b \nsim a$." Non-transitivity is stated as "there exists $a,b,c \in A$ such that if $a \sim b$ and $b \sim c$ then $a \nsim c$." Antisymmetry is stated as "for all $a,b \in A$, if $a \sim b$ and $b \sim a$ then a = b."

3)

Proof. The following relations on the set $\{a, b, c\}$ satisfy each of the axioms they are assigned to:

$$\{1,2,3\}: \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}$$

$$\{\overline{1},2,3\}: \{(b,b),(c,c)\}$$

$$\{1, \overline{2}, 3\}: \{(a, a), (b, b), (c, c), (a, b), (c, a), (c, b)\}$$

$$\{1, 2, \overline{3}\}: \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$$

$$\{\overline{1},\overline{2},3\}: \{(b,b),(c,c),(a,b),(c,a),(c,b)\}$$

$$\{\overline{1}, 2, \overline{3}\}: \{(b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$$

$$\{1, \overline{2}, \overline{3}\}: \{(a, a), (b, b), (c, c), (a, b), (b, c)\}$$

 $\{\overline{1},\overline{2},\overline{3}\}: \{(b,b),(c,c),(a,b),(b,c)\}$

Let (G, \circ) be a group where $G = \{a, b, c\}$. Enumerate the group axioms as follows:

- 1) \circ is associative.
- 2) There exists an identity element in G.
- 3) G is solvable.

The following multiplication tables show how \circ works on G such that the respective axioms are satisfied. When composing two elements the left element is taken from the vertical column and the right element is

taken from the horizontal column.

{1,2,3}:	×	a	b	c	$\{\overline{1}, 2, 3\}$:	×	a	b	c	$\{1, 2, \overline{3}\}$:	×	a	$\mid b \mid$	c
	a	a	b	c		a	a	b	c		a	a	b	c
	b	b	c	a		b	c	a	b		b	b	c	b
	c	c	a	b		c	b	c	a		c	c	$\mid b \mid$	c
$\{\overline{1},\overline{2},3\}$:	×	a	b	c	$\{\overline{1},2,\overline{3}\}$:	×	a	b	c	$\{1,\overline{2},\overline{3}\}$:	×	a	b	c
	a	b	b	b		a	a	b	c		a	a	a	a
	1_			_		1_	1.	_	_		1_		-	

$$\{\overline{1}, \overline{2}, \overline{3}\} \colon \begin{array}{|c|c|c|c|c|c|}\hline \times & a & b & c \\\hline a & a & c & c \\\hline b & c & c & a \\\hline c & c & a & b \\\hline \end{array}$$

The set of axioms $\{1, \overline{2}, 3\}$ is satisfied by the natural numbers under addition.

** Problem 2. For a ring, R, with $a, b, c \in R$ show

- 1) If a + b = a + c then b = c.
- 2) $a \cdot 0 = 0 \cdot a = 0$.

Proof. 1) Let a + b = a + c. Add the additive inverse of a to both sides so that we have

$$b = 0 + b = ((-a) + a) + b = (-a) + (a + b) = (-a) + (a + c) = ((-a) + a) + c = 0 + c = c.$$

a

2) Note that 0 is the additive identity, so 0+0=0. Then multiply both sides by a so we have $a \cdot (0+0) = a \cdot 0$ and distributing we have $a \cdot 0 + a \cdot 0 = a \cdot 0$. Now add the additive inverse of $a \cdot 0$ to both sides so we have

$$a \cdot 0 = 0 + a \cdot 0 = (-(a \cdot 0) + a \cdot 0) + a \cdot 0 = -(a \cdot 0) + (a \cdot 0 + a \cdot 0) = -(a \cdot 0) + a \cdot 0 = 0.$$

** Problem 3. Let R be a commutative ring with 1. Show that $(R[x], +, \cdot)$ is a commutative ring with 1.

Proof. Let $(a_n), (b_n), (c_n) \in R[x]$. Then we have

$$(a_n) + ((b_n) + (c_n)) = (a_n) + (b_n + c_n) = (a_n + (b_n + c_n)) = ((a_n + b_n) + (c_n)) = (a_n + b_n) + (c_n) = ((a_n) + (b_n) + (c_n)) = (a_n + (b_n + c_n)) = (a_n + (b_$$

so R[x] is associative under addition. Also

$$(a_n) + (b_n) = (a_n + b_n) = (b_n + a_n) = (b_n) + (a_n)$$

so R[x] is commutative under addition. If we let $(0_n) = (d_n)$ such that $d_n = 0$ for all n, then we have

$$(0_n) + (a_n) = (0_n + a_n) = (a_n)$$

for all $(a_n) \in R[x]$. Thus (0_n) is the additive identity of R[x]. Then we see that for $(a_n), (b_n) \in R[x]$ we have

$$(b_n - a_n) + (a_n) = (b_n - a_n + a_n) = (b_n)$$

so R[x] is solvable. Hence (R[x], +) is an abelian group. Now we consider multiplication in R[x]. For $(a_n), (b_n), (c_n) \in R[x]$ we have

$$(a_n) \cdot ((b_n) \cdot (c_n)) = (a_n) \cdot \left(\left(\sum_{i=0}^n b_i c_{n-i} \right)_n \right)$$

$$= \left(\left(\sum_{j=0}^n a_j \sum_{i=0}^{n-j} b_i c_{n-i} \right)_n \right)$$

$$= \left(\left(\sum_{j=0}^n \sum_{i=0}^{n-j} a_j b_i c_{n-i} \right)_n \right)$$

$$= \left(\left(\sum_{j=0}^n a_j b_{n-j} \sum_{i=0}^n c_i \right)_n \right)$$

$$= \left(\left(\sum_{j=0}^n a_j b_{n-j} \right)_n \cdot (c_n)$$

$$= ((a_n) \cdot (b_n)) \cdot (c_n)$$

so R[x] is associative under addition. Consider

$$(a_n) \cdot (b_n) = \left(\left(\sum_{i=0}^n a_i b_{n-i} \right)_n \right) = \left(\left(\sum_{i=0}^n a_{n-i} b_i \right)_n \right) = \left(\left(\sum_{i=0}^n b_i a_{n-i} \right)_n \right) = (b_n) \cdot (a_n)$$

which shows R[x] is commutative under multiplication. Let (1_n) be the sequence for which $1_0 = 1$ and $1_n = 0$ for all $n \neq 0$. Then for all $(a_n) \in R[x]$ we have

$$(a_n) \cdot (1_n) = \left(\left(\sum_{i=0}^n a_n b_{n-i} \right)_n \right) = (a_n \cdot 1) = (a_n)$$

which means that (1_n) is the identity for R[x]. Finally for $(a_n), (b_n), (c_n) \in R[x]$ we have

$$(a_n) \cdot ((b_n) + (c_n)) = (a_n) \cdot (b_n + c_n)$$

$$= \left(\left(\sum_{i=0}^n a_n (b_{n-i} + c_{n-i}) \right)_n \right)$$

$$= \left(\left(\sum_{i=0}^n a_n b_{n-i} \right)_n \right) + \left(\left(\sum_{j=0}^n a_j c_{n-j} \right)_n \right)$$

$$= (a_n) \cdot (b_n) + (a_n) \cdot (c_n)$$

which means that R[x] is distributive. Since it fulfills all the axioms, $(R[x], +, \cdot)$ is a commutative ring with 1.

** **Problem 4.** What are the zero-divisors in R[x]?

Let $(a_n)(b_n) \in R[x]$ such that $(a_n) \cdot (b_n) = 0$ and $(a_n), (b_n) \neq (0_n)$. Then we can say that the first and last nonzero terms in (a_n) and (b_n) are zero divisors in R. This occurs because these terms will multiply and have no other terms of that degree in $(a_n) \cdot (b_n)$. That is, the highest and lowest nonzero index of $(a_n) \cdot (b_n)$ will be the product of zero divisors.

Lemma 1. In a commutative ring with 1, for all a we have $(-1) \cdot a = -a$.

Proof. Note that

$$0 = a \cdot 0 = a \cdot (1 + (-1)) = a \cdot 1 + a \cdot (-1) = a + a \cdot (-1)$$

and adding -a to both sides results in $-a = a \cdot (-1)$.

** Problem 5. Let R be an ordered commutative ring with 1. Show that R is an integral domain.

Proof. Let $a, b, c \in R$ such that $a \neq 0$ and ab = ac. Then adding -(ac) to both sides we have ab + -(ac) = 0. Using associativity, distributivity and Lemma 1 we have $a \cdot (b + (-c)) = 0$. Note also that from Lemma 1 we know that -(b + (-c)) = ((-b) + c). Assuming that this quantity is not 0, there are four cases which follow from the ordering of R.

Case 1: Let a > 0 and (b + (-c)) > 0. Then $a \cdot (b + (-c)) > 0$, which is not true.

Case 2: Let a < 0 and (b + (-c)) > 0. Then from ** Problem 6 part 1) we know -a > 0 and so $-a \cdot (b + (-c)) > 0$. From Lemma 1 and ** Problem 6 part 1) it follows that $a \cdot (b + (-c)) < 0$ which is not true.

Case 3: Let a > 0 and (b + (-c)) < 0. This case is similar to Case 2.

Case 4: Let a < 0 and (b + (-c)) < 0. It follows from ** Problem 6 part 4) that $a \cdot (b + (-c)) > 0$ which is not true.

Since all four of the possible cases are not possible, it must be the case that b + (-c) = 0. Then adding c to both sides results in b = c. Hence, R is an integral domain.

- ** Problem 6. Let R be an ordered commutative ring with 1 with $a, b, c \in R$. Show the following:
- 1) a < 0 if and only if -a > 0.
- 2) a > 0 if and only if -a < 0.
- 3) If a < b and c < 0 then $a \cdot c > b \cdot c$.
- 4) If a < 0 and b < 0 then $a \cdot b > 0$.
- 5) If $a \neq 0$, then $a^2 > 0$.
- 6) 0 < 1.
- *Proof.* 1) Let a < 0. Then add (-a) to both sides. We have 0 = (-a) + a < 0 + (-a) = -a. Similarly, assume -a > 0 and add a to both sides. Then 0 = a + (-a) > a + 0 = a.
- 2) Assume a > 0. Then add (-a) to both sides. We have 0 = (-a) + a > (-a) + 0 = -a. Similarly, assume -a < 0 and add a to both sides. Then 0 = a + (-a) < a + 0 = a.
- 3) Let a < b and c < 0. Then (-c) > 0. Thus $a \cdot (-c) < b \cdot (-c)$. Add $-(a \cdot (-c))$ to both sides so we have $0 < b \cdot (-c) + (-(a \cdot (-c)))$. Using associativity, commutativity, distributivity and Lemma 1 we have $0 < -((b \cdot c) + (-(a \cdot c)))$. Then $0 > (b \cdot c) + (-(a \cdot c))$ and adding $a \cdot c$ to both sides we have $a \cdot c > b \cdot c$.
- 4) Let a < 0 and b < 0. Then -a > 0 so $-(a \cdot b) = (-a) \cdot b < (-a) \cdot 0 = 0$ and $a \cdot b > 0$.
- 5) Let $a \neq 0$. Then either a > 0 or a < 0. Assume first that a > 0. Then

$$a^2 = a \cdot a > a \cdot 0 = 0.$$

If a < 0 then $a \cdot a > 0$ by 4).

6) We know 1 is the multiplicative identity, so $1 \cdot 1 = 1$. But then $1 = 1^2 > 0$ by 5).

Problem 2. For an ordered integral domain $(R, +, \cdot)$ let S be an inductive subset of R if $1 \in S$ and for all $x \in S$, $x + 1 \in S$. Then let N be the intersection of all inductive subsets of R. Show the following: 1) Suppose that S is a non-empty subset of N such that $1 \in S$ and if $x \in S$ then $x + 1 \in S$. Show that S = N.

- 2) Show that N is closed under addition.
- 3) Show that N is closed under multiplication.
- 4) Show that the well ordering principle holds in N.
- 5) Show that $Z = N \cup \{0\} \cup -N$ is closed under addition.
- 6) Show that Z is closed under multiplication.
- 7) Show that Z and \mathbb{Z} are order isomorphic.

Proof. 1) By definition $S \subset N$. Also note that $1 \in S$ and $1 \in N$. Suppose that for some $n \in N$, $n \in S$. Then note that n + 1 is in both N and S so by induction, N = S.

- 2) Let $n \in N$. Let $S = \{m \in N \mid m+n \in N\}$. Note that $1 \in S$. Suppose $m \in S$. Then $m+n \in N$ and $m+n+1 \in S$. By induction, N is closed under addition.
- 3) Let $n \in N$ and let $S = \{m \in N \mid mn \in N\}$. Then $1 \in S$. Suppose that $m \in S$, then n(m+1) = mn + m and $mn \in N$ and N is closed under addition so $mn + m \in N$. Thus $m+1 \in S$ so S = N. Thus N is closed under multiplication.
- 4) Clearly a subset of N with 1 element is well ordered. Assume all subsets $S \subseteq N$ with n elements are well ordered. Consider a subset $S' \subseteq N$ with n+1 elements. Let $x \in S'$ and consider $S' \setminus \{x\}$. This set is well ordered so it has a least element, y. There are then two cases, x < y in which case x is the least element of x' or x > y in which case x is the least element of x'. We see then that x' is well ordered. By induction, well ordering holds in x'.
- 5) We already know that N is closed under addition and thus -N is closed under addition. Addition $\{0\}$ won't change anything since it's the additive identity. Thus, the only thing we need to check is whether for $n \in N$ and $m \in -N$ we have $n + m \in Z$. Fix $n \in N$ and let S be the set of $m \in N$ such that $-m + n \in Z$. We see that $n + -1 \in Z$ so $1 \in S$. Let $m \in S$. Then using Lemma 1, associativity and distributivity

$$n + -(m+1) = n + (-m+-1) = (n+-m) + -1$$

and $(n+-m)+-1 \in \mathbb{Z}$. Thus the statement must hold true for all m.

- 6) We know that N is closed under multiplication and using ** Problem 6 we know that for $n, m \in -N$, $mn \in N$. Also, $0 \cdot n = 0$ for all n so again we must consider the product of m and n where $n \in N$ and $m \in -N$. Let $n, m \in N$ and consider n(-m). Using Lemma 1 and associativity this is just -(nm) which is in $-N \subseteq Z$. Thus Z is closed under multiplication.
- 7) Note that for all $n \in \mathbb{N}$, we have $n \in \mathbb{Z}$. To show this, note that $1 \in \mathbb{Z}$. Then for all $n \in \mathbb{N}$ such that $n \in \mathbb{Z}$, we have $n+1 \in \mathbb{Z}$. Since for all $n \in \mathbb{Z}$, $-n \in \mathbb{Z}$ as well, we have $-N \subseteq \mathbb{Z}$. Then let $f: Z \to \mathbb{Z}$ be the identity function such that

$$f(n) = \begin{cases} n & \text{if } n \in N \\ 0 & \text{if } n = 0 \\ n & \text{if } n \in -N. \end{cases}$$

Then for $n, m \in \mathbb{Z}$ we have f(n+m) = n+m = f(n)+f(m) and f(nm) = nm = f(n)f(m). Finally, if n < m then f(n) = n < m = f(m).

** Problem 7. Show that addition and multiplication on \mathbb{N} satisfy associativity, commutativity and distributivity.

Associative Law of Addition

Proof. Fix a and b and let S be the set of natural numbers for which the associative law holds. Then

$$(a+b) + 1 = (a+b)' = a+b' = a+(b+1)$$

so $1 \in S$. Suppose that $c \in S$. Then (a + b) + c = a + (b + c), and

$$(a+b)+c'=((a+b)+c)'=(a+(b+c))'=a+(b+c)'=a+(b+c')$$

so $c' \in S$. Thus the law holds for all natural numbers.

Commutative Law of Addition

Proof. Fix b and let S be the set of all $a \in \mathbb{N}$ for which the law holds. We have

$$b+1=1+b=b'$$

so that $1 \in S$. Let $a \in S$. Then a + b = b + a. Thus

$$(a+b)' = (b+a)' = b+a'.$$

But also, a' + b = (a + b)' by the definition of addition. Thus $a' \in S$ and the law holds for all a.

Commutative Law of Multiplication

Proof. Fix b and let S be the set of all a for which the law holds. We have $b \cdot 1 = b$ and $1 \cdot b = b$. Thus $1 \in S$. Let $a \in S$. Then ab = ba. Note that

$$ab + b = ba + b = ba'$$

and by the definition of multiplication we have a'b = ab + b so that a'b = ba' and $a' \in S$. Thus the law holds for all a.

Distributive Law

Proof. Fix a and b and let S be the set of all c for which the law holds. We have

$$a(b+1) = ab' = ab + a = ab + a \cdot 1$$

so $1 \in S$. Let $c \in S$. Then a(b+c) = ab + ac. Thus

$$a(b+c') = a(b+c)' = a(b+c) + a = (ab+ac) + a = ab + (ac+a) = ab + ac'$$

so that $c \in S$. Thus the law holds for all c.

Associative Law of Multiplication

Proof. Fix a and b and let S be the set of all c such that the law holds. Note that

$$(xy) \cdot 1 = xy = x(y \cdot 1)$$

so that $1 \in S$. Let $c \in S$. Then (ab)c = a(bc). Thus

$$(ab)c' = (ab)c + ab = a(bc) + ab = a(bc + b) = a(bc')$$

and $c' \in S$. Thus the law holds for all c.

Lemma 2. For $a, b \in \mathbb{N}$ we have $a \neq a + b$.

Proof. Fix a and let S be the set of all b such that statement is true. We know $1 \neq a' = a+1$ so $1 \in S$. Let $y \in S$ so that $a \neq a+b$. Then $b' \neq (a+b)' = a+b'$. Thus $b' \in S$ and the statement is true for all b.

- ** **Problem 8.** For $a, b, c \in \mathbb{N}$ show the following:
- 1) Exactly one of a = b, there exists u such that a = b + u, there exists v such that b = a + v is true.
- 2) If a < b and b < c then a < c.
- 3) If a < b then a + c < b + c.

Proof. 1) By Lemma 2, the first and second and first and third conditions cannot both be true. Similarly the second and third conditions cannot both be true since

$$a = b + u = (a + v) + u = a + (v + u).$$

So at most one of the conditions is true for all $a, b \in \mathbb{N}$. Now fix a and let S be the set of all b such that at least one of the conditions holds. For b=1 we have either a=1=b or a=u'=u+1=b+u for some u. Thus $1 \in S$. Let $b \in S$. Then either a=b, so that

$$b' = b + 1 = a + 1$$

and b' satisfies the third condition, or a = b + u so that if u = 1 then a = b + 1 = b' and b' satisfies the first condition, else if $u \neq 1$ then for some w, u = w' = 1 + w and

$$a = b + u = b + w' = b + (w + 1) = b + (1 + w) = (b + 1) + w = b' + w$$

and b' satisfies the second condition, or finally b = a + v so that

$$b' = (a+v)' = a+v'$$

and b' satisfies the third condition. In all cases, $b' \in S$ and so the statement holds for all b.

2) Let a < b and b < c. Then there exists $v, w \in \mathbb{N}$ such that b = a + v and c = b + w. Thus

$$c = (a + v) + w = a + (v + w)$$

and so a < c.

3) If a < b then a + u = b for some u. Then

$$b + c = (a + u) + c = (u + a) + c = u + (a + c) = (a + c) + u$$

and so b+c>a+c.

- ** **Problem 9.** Let \sim be an equivalence relation on $\mathbb{N} \times \mathbb{N}$ such that $(a,b) \sim (c,d)$ if and only if a+d=b+c. Show that the set of equivalence classes of this relation is the set of integers.
- ** **Definition 9.1** Let \mathbb{Z} be the set of equivalence classes of \sim . Let $X,Y \in \mathbb{Z}$ such that $(a_1,b_1) \in X$ and $(a_2,b_2) \in Y$. Define

$$X + Y = \overline{(a_1 + a_2, b_1 + b_2)}$$

$$X \cdot Y = XY = \overline{(a_1 a_2 + b_1 b_2, a_1 b_2 + a_2 b_1)}$$

** Problem 9.2 The operations + and \cdot are well defined. That is, if $(a_1,b_1) \sim (c_1,d_1)$ and $(a_2,b_2) \sim (c_2,d_2)$ then

$$(a_1 + a_2, b_1 + b_2) \sim (c_1 + c_2, d_1 + d_2)$$

and

$$(a_1a_2 + b_1b_2, a_1b_2 + a_2b_1) \sim (c_1c_2 + d_1d_2, c_1d_2 + c_2d_1).$$

Proof. Let $(a_1, b_1) \sim (c_1, d_1)$ and $(a_2, b_2) \sim (c_2, d_2)$. Then $a_1 + d_1 = b_1 + c_1$ and $a_2 + d_2 = b_2 + c_2$. Adding these equations gives us

$$(a_1 + a_2) + (d_1 + d_2) = (b_1 + b_2) + (c_1 + c_2)$$

which implies

$$(a_1 + a_2, b_1 + b_2) \sim (c_1 + c_2, d_1 + d_2).$$

A longer calculation can be done to show that

$$a_1a_2 + b_1b_2 + c_1d_2 + c_2d_1 = a_1b_2 + a_2b_1 + c_1c_2 + d_1d_2$$

which implies

$$(a_1a_2 + b_1b_2, a_1b_2 + a_2b_1) \sim (c_1c_2 + d_1d_2, c_1d_2 + c_2d_1).$$

** Problem 9.3 (Associativity of Addition) For all $a, b, c \in \mathbb{Z}$ we have (a + b) + c = a + (b + c).

Proof. Let $(a_1, a_2) \in a$, $(b_1, b_2) \in b$ and $(c_1, c_2) \in c$. Then we have

$$(a+b) + c = \left(\overline{(a_1, a_2)} + \overline{(b_1, b_2)}\right) + \overline{(c_1, c_2)}$$

$$= \overline{(a_1 + b_1, a_2 + b_2)} + \overline{(c_1, c_2)}$$

$$= \overline{((a_1 + b_1) + c_1, (a_1 + b_1) + c_2)}$$

$$= \overline{(a_1 + (b_1 + c_1), a_2 + (b_2 + c_2))}$$

$$= \overline{(a_1, a_2)} + \overline{(b_1 + c_1, b_2 + c_2)}$$

$$= \overline{(a_1, a_2)} + \left(\overline{(b_1, b_2)} + \overline{(c_1, c_2)}\right)$$

$$= a + (b + c)$$

** Problem 9.4 (Commutativity of Addition) For all $a, b \in \mathbb{Z}$ we have a + b = b + a.

Proof. Let $(a_1, a_2) \in a$ and $(b_1, b_2) \in b$. Then

$$a+b=\overline{(a_1,a_2)}+\overline{(b_1,b_2)}=\overline{(a_1+b_1,a_2+b_2)}=\overline{(b_1+a_1,b_2+a_2)}=\overline{(b_1,b_2)}+\overline{(a_1,a_2)}=b+a.$$

** Problem 9.5 (Additive Identity) There exists $n \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}$ we have n + a = a. From here forward we will call this n, 0.

Proof. Let $n = \overline{(1,1)}$. Let $a \in \mathbb{Z}$ such that $(a_1,a_2) \in a$. Then

$$n + a = \overline{(1,1)} + \overline{(a_1, a_2)} = \overline{(1 + a_1, 1 + a_2)}.$$

Note that $\overline{(1+a_1,1+a_2)} = \overline{(a_1,a_2)}$ because

$$1 + a_1 + a_2 = 1 + a_2 + a_1.$$

** Problem 9.5 (Additive Inverse) For all $a \in \mathbb{Z}$ there exists $b \in \mathbb{Z}$ such that b + a = 0. From here forward we will call this b, -a.

Proof. Let $a \in \mathbb{Z}$ such that $(a_1, a_2) \in a$ and consider $b = \overline{(a_2, a_1)}$. Then

$$b+a=\overline{(a_2,a_1)}+\overline{(a_1,a_2)}=\overline{(a_2+a_1,a_1+a_2)}=\overline{(1,1)}.$$

** Problem 9.6 (Associativity of Multiplication) For all $a, b, c \in \mathbb{Z}$ we have (ab)c = a(bc).

Proof. Let $(a_1, a_2) \in a$, $(b_1, b_2) \in b$ and $(c_1, c_2) \in c$. Then we have

$$(ab)c = \overline{\left(\overline{(a_1, a_2)} \cdot \overline{(b_1, b_2)}\right)} \cdot \overline{(c_1, c_2)}$$

$$= \overline{\left(a_1b_1 + a_2b_2, a_1b_2 + a_2b_1\right)} \cdot \overline{(c_1, c_2)}$$

$$= \overline{\left((a_1b_1 + a_2b_2)c_1 + (a_1b_2 + a_2b_1)c_2, (a_1b_1 + a_2b_2)c_2 + (a_1b_2 + a_2b_1)c_1\right)}$$

$$= \overline{\left(a_1b_1c_1 + a_1b_2c_2 + a_2b_2c_1 + a_2b_1c_2, a_2b_2c_2 + a_2b_1c_1 + a_1b_1c_2 + a_1b_2c_1\right)}$$

$$= \overline{\left(a_1(b_1c_1 + b_2c_2) + a_2(b_1c_2 + b_2c_1), a_2(b_1c_1 + b_2c_2) + a_1(b_1c_2 + b_2c_1)\right)}$$

$$= \overline{\left(a_1, a_2\right)} \cdot \overline{\left(b_1c_1 + b_2c_2, b_1c_2 + b_2c_1\right)}$$

$$= \overline{\left(a_1, a_2\right)} \cdot \overline{\left((b_1, b_2) \cdot \overline{(c_1, c_2)}\right)}$$

$$= a(bc)$$

** Problem 9.7 (Commutativity of Multiplication) For all $a, b \in \mathbb{Z}$ we have ab = ba.

Proof. Let $(a_1, a_2) \in a$ and $(b_1, b_2) \in b$. Then

$$ab = \overline{(a_1, a_2)} \cdot \overline{(b_1, b_2)} = \overline{(a_1b_1 + a_2b_2, a_1b_2 + a_2b_1)} = \overline{(b_1a_1 + b_2a_2, b_1a_2 + b_2a_1)} = \overline{(b_1, b_2)} \cdot \overline{(a_1, a_2)} = ba.$$

** Problem 9.8 (Multiplicative Identity) There exists $e \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}$ we have ea = a. From here forward we will call this e, 1.

Proof. Let $e = \overline{(1+1,1)}$ and let $a \in \mathbb{Z}$ such that $(a_1,a_2) \in a$. Then

$$ea = \overline{(1+1,1)} \cdot \overline{(a_1, a_2)}$$

$$= \overline{((1+1)a_1 + 1 \cdot a_2, (1+1)a_2 + 1 \cdot a_1)}$$

$$= \overline{(a_1 + (a_1 + a_2), a_2 + (a_1 + a_2))}$$

$$= \overline{(a_1, a_2)}$$

$$= a.$$

** Problem 9.9 (Distributivity) For all $a, b, c \in \mathbb{Z}$ we have a(b+c) = ab + ac.

Proof. Let $(a_1, a_2) \in a$, $(b_1, b_2) \in b$ and $(c_1, c_2) \in c$. Then we have

$$\begin{split} a(b+c) &= \overline{(a_1,a_2)} \cdot \left(\overline{(b_1,b_2)} + \overline{(c_1,c_2)} \right) \\ &= \overline{(a_1,a_2)} \cdot \overline{(b_1+c_1,b_2+c_2)} \\ &= \overline{(a_1(b_1+c_1)+a_2(b_2+c_2),a_1(b_2+c_2)+a_2(b_1+c_1))} \\ &= \overline{(a_1b_1+a_1c_1+a_2b_2+a_2c_2,a_1b_2+a_1c_2+a_2b_1+a_2c_1)} \\ &= \overline{((a_1b_1+a_2b_2)+(a_1c_1+a_2c_2),(a_1b_2+a_2b_1)+(a_1c_2+a_2c_1))} \\ &= \overline{(a_1b_1+a_2b_2,a_1b_2+a_2b_1)} + \overline{(a_1c_1+a_2c_2,a_1c_2+a_2c_1)} \\ &= \overline{(a_1,a_2)} \cdot \overline{(b_1,b_2)} + \overline{(a_1,a_2)} \cdot \overline{(c_1,c_2)} \\ &= ab+ac. \end{split}$$

** Definition 9.10 (Embedding of \mathbb{N}) Let $f: \mathbb{N} \to \mathbb{Z}$ be a function defined by

$$f(n) = \overline{(n+1,1)}.$$

** Problem 9.11 The function f is injective.

Proof. Let $a, b \in \mathbb{N}$ such that f(a) = f(b). Then we have $\overline{(a+1,1)} = \overline{(b+1,1)}$ and so (a+1)+1=1+(b+1) which means that a=b. Thus f is injective.

** Problem 9.12 For all $a, b \in \mathbb{N}$ we have

$$f(a+b) = f(a) + f(b)$$

and

$$f(ab) = f(a)f(b).$$

Proof. Let $a, b \in \mathbb{N}$, then $f(a) = \overline{(a+1,1)}$ and $f(b) = \overline{(b+1,1)}$. Then $f(a+b) = \overline{(a+b+1,1)} = \overline{((a+b+1)+1,1+1)} = \overline{((a+1)+(b+1),1+1)} = \overline{(a+1,1)} + \overline{(b+1,1)} = f(a) + f(b).$ Similarly,

$$\begin{split} f(ab) &= \overline{(ab+1,1)} \\ &= \overline{(ab+1+a+b+1,a+b+1+1)} \\ &= \overline{((a+1)(b+1)+1,(a+1)+(b+1))} \\ &= \overline{(a+1,1)} \cdot \overline{(b+1,1)} \\ &= f(a)f(b). \end{split}$$

** **Definition 9.13** Let $a, b \in \mathbb{Z}$ such that $(a_1, a_2) \in a$ and $(b_1, b_2) \in b$. Then

$$a < b$$
 if $a_1 + b_2 < a_2 + b_1$.

** Problem 9.14 The relation < is well-defined.

 $\underline{Proof.} \ \operatorname{Let} \ \overline{(a_1,a_2)}, \overline{(b_1,b_2)}, \overline{(c_1,c_2)}, \overline{(d_1,d_2)} \in \mathbb{Z} \ \operatorname{such that} \ \overline{(a_1,a_2)} < \overline{(b_1,b_2)}, \ \overline{(a_1,a_2)} \sim \overline{(c_1,c_2)} \ \operatorname{and} \ \overline{(b_1,b_2)} \sim \overline{(d_1,d_2)}. \ \operatorname{Then we know that}$

$$a_1 + b_2 < a_2 + b_1$$
,

$$a_1 + c_2 = a_2 + c_1$$

and

$$b_1 + d_2 = b_2 + d_1$$
.

Adding the desired quantities to the inequality results in

$$a_1 + a_2 + b_1 + b_2 + c_1 + d_2 < a_1 + a_2 + b_1 + b_2 + c_2 + d_1$$

which gives us the result

$$\overline{(c_1,c_2)} < \overline{(d_1,d_2)}.$$

** Problem 9.15 The relation < is an ordering on \mathbb{Z} .

Proof. Let $(a_1, a_2) \in a$, $(b_1, b_2) \in b$ and $(c_1, c_2) \in c$. Then it's clear that if a < b then

$$a_1 + b_2 < a_2 + b_1$$

and so $a \neq b$ and a is not greater than b. The same argument holds for a > b. Note that a must be at least greater than, less than or equal to b however, because of the ordering of \mathbb{N} .

Suppose that a < b and b < c. Then we have

$$a_1 + b_2 < a_2 + b_1$$

and

$$b_1 + c_2 < b_2 + c_1.$$

Adding these gives the desired result that

$$a_1 + c_2 < a_2 + c_1$$

so a < c.

Suppose that a < b. Then $a + c = \overline{(a_1 + c_1, a_2 + c_2)}$ and $b + c = \overline{(b_1 + c_1, b_2 + c_2)}$. Since

$$a_1 + b_2 < a_2 + b_1$$

it's clear that

$$a_1 + b_2 + c_1 + c_2 < a_2 + b_1 + c_1 + c_2$$

which shows that a + c < b + c.

Finally, suppose that a < b and 0 < c. Then $a_1 + b_2 < a_2 + b_1$ and $c_2 < c_1$. Combining these inequalities gives us the desired result of

$$(a_1c_1 + a_2c_2) + (b_1c_2 + b_2c_1) < (a_1c_2 + a_2c_1) + (b_1c_1 + b_2c_2)$$

which implies that ac < bc.

** Problem 9.16 For all $n \in \mathbb{N}$, we have f(n) > 0. Additionally, if $a \in \mathbb{Z}$ such that a > 0, then a = f(n) for some $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$. Then $f(n) = \overline{(n+1,1)}$ and n+2>2. Thus f(n)>0.

Let $a \in \mathbb{Z}$ such that $(a_1, a_2) \in a$ and a > 0. Then $a_1 > a_2$ so there exists some b such that $\overline{(a_1, a_2)} = \overline{(a_1 + b, 1)}$ so that a = f(n) for some $n \in \mathbb{N}$.

Thus there is a bijection between \mathbb{N} and the positive elements of \mathbb{Z} . Hence, \mathbb{Z} is a ordered integral domain where the positive elements are well ordered.