Redes

Tema 2: Capa de aplicación

Oscar García Lorenzo

Escola Politécnica Superior de Enxeñería

Índice

- Introducción
- Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Índice

- Introducción
- Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- 4 Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Arquitectura en capas

Introducción

Capa de aplicación

Protocolos de comunicación

- Necesarios para a comprensión das mensaxes entre os procesos
- Facilitan a programación das funcións de envío e recepción

Deben especificar

- Tipo de mensaxes que se intercambian: petición, resposta, etc.
- Regras que especifican cando e cómo se envían as mensaxes
- Sintaxis da mensaxe: campos
- Semántica de cada campo

Capa de aplicación

Servizos que necesita a aplicación de rede

- Os protocolos da capa de aplicación usan protocolos básicos da capa de transporte
- Transferencia fiábel de datos ou non fiábel
 - TCP proporciona un servicio fiábel e orientado a conexión
 - UDP un servicio non fiábel máis sinxelo pero rápido e non orientado a conexión
- Ancho de banda
- Temporización

Servizo orientado a conexión

Fases

- Establecimiento da conexión
 - O cliente solicita unha conexión
 - Fixanse parámetros
 - Ambolos extremos prepáranse para a transmisión
- Transmisión de datos
- Desconexión: terminan a transmisión e libéranse os recursos

Servizo orientado a conexión

Características

- Segmentación: TCP recolle datos que a aplicación escribe no socket e forma paquetes (Maximum Segment Size -MSS)
- Transferencia fiábel: o receptor envía confirmacións (ACK).
 Se o emisor non recibe ACK dun paquete, retransmítese
- Control de fluxo: permite que o receptor controle a tasa de envío do emisor.
 - TCP ten un mecanismo para que o receptor lle indique ao emisor a tasa de datos que pode aceptar
- Control de conxestión: permite que a tasa de envío do emisor se axuste ás capacidades da rede

Servizo non orientado a conexión

Servizo sen conexión

- Non hai fase de establecemento de conexión
- Non hai confirmacións: o emisor descoñece se o paquete chegou ó destino
- Non hai control de fluxo nen control de conxestión
- ⇒ transmisión máis rápida, aínda que menos fiábel

Na Internet: UDP

- TCP: cando se necesite fiabilidade, telnet, FTP, SMTP, HTTP, etc.
- UDP: velocidade e non importa a pérdida de paquetes, telefonía IP. videoconferencia

Capa de aplicación

Protocolos a tratar

TCP	HTTP (web) SMTP, POP3 e IMAP (correo	
	FTP (ficheiros)	
UDP	DNS (traduccións)	

Axente de usuario

 Interface entre o usuario e a aplicación (navegador, xestor de correo, etc.)

Índice

- Introducción
- Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- 4 Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Protocolo de transferencia de hipertexto

- Protocolo que define a comunicación entre un servidor web e un cliente web
- Usa TCP
- É un protocolo sen estado (ás veces mecanismos como cookies)
- Usa por defecto o porto 80

Conceptos

- Páxina web (ou documento): consta de obxetos (arquivos direccionables por un URL)
- As páxinas web: arquivo HTML base (conten a distribución e, en xeral, o texto) e varios obxetos
- Navegador: axente do usuario para a web
- Servidor web: alberga obxetos
- Solicitude dunha páxina web ⇒ o servidor devolve o documento base

Conexións HTTP

- Non persistentes: usase unha conexión TCP distinta para transferir cada obxeto (HTTP/1.0)
 - Serie: esperase a que acabe a conexión TCP previa
 - Paralelo: inicianse varias conexións TCP á vez
- Persistentes: pódense transferir varios obxetos (e incluso varias páxinas) coa mesma conexión TCP
 - Sen entubamento: o cliente pide un novo obxeto cando se recibiu o previo
 - Con entubamiento: ocliente pode facer peticións de varios obxetos antes de recibir os anteriores (modo por defecto en HTTP/1.1)

Introducción

Tempo de transferencia dunha páxina web

Tempo de transferencia dunha páxina web

Parámetros

- RTT (tempo de ida e volta): tempo necesario para que un paquete pequeno vaia do cliente ao servidor e volva ao cliente
- Tempo de transmisión do arquivo: depende do tamaño do arquivo

Todos os tipos de conexións

- O primero obxeto transfierese en $2RTT + t_{transmisjon}$
- Os seguintes obxetos dependen do tipo de conexión

Mensaxes HTTP

Dous tipos:

- Petición: para pedir obxetos
- Resposta: conteñen os obxetos

Ambos mensaxes teñen:

- Cabeceira: información de control, en ASCII de 7 bits
- Corpo: os datos (un obxeto, contido dun formulario, etc.) e son en binario

Mensaxes de petición			
cabecera	linea de peticion lineas de cabecera linea en blanco	metodo sp URL sp version cr lf nombre campo cabecera sp valor cr lf nombre campo cabecera sp valor cr lf cr lf lf	
cuerpo		cuerpo	

Mensaxes de petición

- Liña de petición: obxeto solicitado
 - Método: GET (páxina normal) POST (formulario)
 - Menos comúns: HEAD (sen devolución, debug) DELETE (borrar)
- Liñas de cabeceira: opcións

Host:
Connection:
User-agent:
Accept-languaje:
IF-modified-since

nome servidor web (pode haber varios para unha IP)
close (se queremos conexións non persistentes)
mozilla/4.0 (o navegador)
es (o idioma preferido da páxina, se o hai)
Wed, 15 Sep 2021 09:23:24 (so se se modificou)

- Corpo
 - GET: baleiro
 - POST: os datos do formulario

Mensaxes de resposta			
cabecera	linea de estado lineas de cabecera linea en blanco	version sp cod. estado sp frase cr lf nombre campo cabecera sp valor cr lf nombre campo cabecera sp valor cr lf cr lf r lf	
cuerpo		objeto	

Mensaxes de resposta

• Liña de estado

404	Not found (a páxina non existe) Bad Request (no se entendió el formato de la petición)
304	Not Modified (pediuse con GET condicional If-modified-since)

Liñas de cabeceira: opcións

Connection:	close (indica que se usan conexións non persistentes)	ı
Date:	data de envío da páxina	ı
Server:	Apache/1.3.0 (o servidor web)	ı
Last-Modified:	cando se creou ou modificou por última vez a páxina	ı
Content-Length:	tamaño en bytes do obxeto, páxina ou imaxe	ı
Content-Type:	text/html, image/gif, image/jpeg	

Corpo: os datos

Cookies

- Liñas de cabeceira
 - set-cookie
 - cookie
- Arquivo común no cliente (navegador)
- Base de datos no servidor
- Número identificativo xerado no servidor
- Mensaxe petición
 - no primeiro nada
 - despois devolve a cookie: cookie id
- Mensaxe de resposta
 - crea a cookie : set-cookie id
- Garda estado

HTTP/2

Nova versión do protocolo HTTP

- Baseado no protocolo SPDY, desenvolto por Google (64 % máis rápido)
- Especificación publicada en maio de 2015
- Soportado polas últimas versións de moitos navegadores

Melloras

- Multiplexación de peticiones HTTP sobre unha mesma conexión TCP
- Compresión de cabeceiras
- Soporte para server push
- Pipelining de solicitude-resposta
- Cifrado da información: uso obligatorio de SSL

HTTP/3

Introducción

ALERTA: Tomado da wikipedia

- Outra vez desenvolto por Google (problemas multiplexado)
- Especificación todavía en borrador
- Soportado polo 73 % dos navegadores
- Chrome e Edge, abril 2020, Firefox, maio 2021
- 21 % das páxinas web top 10 millóns

Melloras

- Capa de transporte cambiada a QUIC (desde TCP)
- QUIC: Quick UDP Internet Connections, pero agora considerada so un nome
- UDP con cambios para control de conxestión
- Mesmos mensaxes e códigos
- Require retoques para adaptarse aos paquetes perdidos

Índice

- Introducción
- 2 Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- 4 Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Protocolo de transferencia de arquivos

- Define a comunicación cun servidor de arquivos
- Con estado: manteñe información durante toda a sesión
- Usa dúas conexións TCP paralelas (información de control fora de banda)
 - Conexión de control
 - Usa o porto 21
 - Para enviar os comandos: nome e chave de usuario, dir, put, get e recibir as respostas
 - É persistente: dura todo o tempo da conexión FTP
 - Usa ASCII de 7 bits
 - Conexión de datos
 - Usa o porto 20
 - Para transmitir datos en resposta aos comandos
 - É non persistente: abrese e péchase unha conexión nova por cada arquiivo que se transmite
 - Usa ASCII de 7 bits

FTP

Introducción

Comandos e respostas FTP

- Pola conexión de control
- Comandos: constan de 4 caracteres en maiúsculas e campos adicionais acabados en cr+lf

USER	nome de usuario
PASS	chave
LIST	lista de arquivos
RETR	nombre de ficheiro (traer ficheiro)
STOR	nombre de ficheiro (almacenar ficheiro)

Respostas: un código de 3 díxitos e unha frase explicativa

331	Username OK, password required
125	Data connection already open; transfer starting
425	Can't open data connection
452	Error writing file

Transmisión cifrada

• FTP, telnet y HTTP sin cifrar. SFTP, SSH y HTTPS no

Índice

- Introducción
- Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Correo electrónico

Protocolos de correo electrónico

- Para enviar correo ao servidor de correo ou entre servidores: SMTP, HTTP (se se usa un navegador)
- Acceso ao correo polo axente de usuario: POP3, IMAP, HTTP (se se usa un navegador)

Correo electrónico

Introducción

SMTP

Características do funcionamento do correo electrónico

- Caixa de correo no servidor
- O axente de usuario (AU) comunicase co servidor
- Se o servidor destino está fora de servizo, reintentase (30 minutos)
- SMTP usa o puerto 25
- Usa conexións TCP persistentes: mantén aberta a conexión durante toda a sesión (varios mensajes)
- Emplea ASCII de 7 bits tanto para as cabeceiras como para os cuerpos. Unha imaxe, o AU a transforma en ASCII (protocolo de 1982)

SMTP

- Alicia usa sue AU para escribir unha mensaxe
- O AU de Alicia envía a mensaxe ao sue servidor de correo: almacenase nunha cola de mensaxes
- O lado cliente de SMTP (servidor de Alicia) abre unha conexión TCP co servidor de Roberto
- Tras unha sincronización inicial (envío dirección destino e remite), o cliente envía a mensaxe sobre a conexión TCP
- 6 O servidor de Roberto o deposita na sua caixa de correo
- Roberto usa seu AU para ler a mensaxe

SMTP

Mensaxes SMTP

Tres tipos de mensaxes:

Comandos: palabra en maiúscula seguida dos parámetros

•	•
HELO	nome servidor
MAIL FROM:	dirección de correo do remitente
RCPT TO:	dirección de correo do destinatario
DATA	(o contido do correo)
QUIT	,

Respostas: código numérico seguido dunha frase aclarativa

220	nome do servidor
250	comando que se executou satistactoriamente
354	envíe o correo, terminando en .
221	peche de conexión

 Datos: o contido dos correos: todos os obxetos encapsulados nun único arquivo codificado en ASCII de 7 bits (coas chamadas extensiones MIME)

SMTP: Exemplo de transacción entre cliente e servidor

Cliente (C) e servidor (S): telnet smtp.usc.es 25

S: 220 vm075043.usc.es ESMTP Postfix (ATIC-USC)

C: HELO smtp.usc.es

S: 250 vm075043.usc.es

C: MAIL FROM: pepito@gmail.com (que non sexa @usc)

S: 250 2.1.0 Ok

C: RCPT TO: juanito@usc.es

S: 250 2.1.0 Ok

C: DATA

S: 354 End data with <CR><LF>.<CR><LF>

C: Ola

C: Isto é unha proba, adeus

C:

Introducción

S: 250 2.0.0 Ok: queued as 6A7084E9

C: quit

S: 221 2.0.0 Bye

SMTP

Protocolo inseguro

 Non se pide nome e chave de usuario: permite enviar correos a calquera

Comparación con HTTP

- Ambos transmiten arquivos e usan conexións TCP persistentes
- HTTP é un protocolo de demanda (o cliente demanda o arquivo) e SMTP de oferta (o cliente oferta o arquivo)
- SMTP require que a cabeceira e o corpo sexan de ASCII de 7.
 En HTTP o corpo pode conter datos binarios
- HTTP envía obxetos en arquivos diferentes, SMTP van encapsulados no mesmo arquivo que contén o texto
- HTTP non tene estado e SMTP debe recordar a fase da sesión na que se atopa

Correo electrónico

Protocolos de acceso ao correo

- Os axentes de usuarios para transferir o correo da caixa destino ao computador local
- Non se usa SMTP porque é un protocolo de oferta computador local sempre acendido esperando correos
- Usanse protocolos que permiten descargar os correos: POP3, IMAP y HTTP

Correo electrónico

Introducción

POP3: Protocolo de oficina postal, versión 3

POP3

- Protocolo sinxelo para o acceso ao correo
 - Descargar e borrar do servidor
 - Descargar e mantener no servidor
- Conexión TCP co porto 110 do servidor

Protocolo simple: tres fases

- Autorización: autenticación do usuario
- Transacción
 - Recuperar as mensaxes
 - Marcar/desmarcar para borrado
 - Estadísticas de correo
- Actualización: borrado dos mensaxes marcados
 - Termina a sesión POP3

POP3: Protocolo de oficina postal, versión 3

Mensajes POP3

Introducción

Tres tipos de mensajes:

 Comandos: palabra de 4 caracteres seguida dos parámetros

user	nome do usuario
pass	palabra chave
list	
retr	número de correo (traer correo)
dele	número de correo (borrar correo)
quit	

Respostas: básicamente de dous tipos

```
+OK frase explicativa
-ERR frase explicativa
```

- Datos: datos da respuesta
 - A lista de mensaxes, os contidos dos correos, etc.
 - O correo completo nunha única mensaxe (SMTP xeraba unha mensaxe por cada liña de cabeceira)

POP3: Protocolo de oficina postal, versión 3

Outras características

- Usa conexións persistentes: usase a mesma conexión TCP mentras dure a sesión na que se poden descargar varios correos
- POP3 podese usar para descargar e borrar (retr+dele) os correos do servidor ou para descargar e manter no servidor (retr)
- Necesita conta con contrasinal
- Non manten información de estado entre sesións POP3
- Definido no RFC 1939

IMAP: Protocolo de acceso a mensaxes de Internet

Inconvintes de POP3

- Acceso ao correo en múltiples dispositivos
- Non permite cartafols no servidor

IMAP

- Máis funcionalidades que POP3 ⇒ máis complexo
- O servidor asocia cada mensaxe cun cartafol
 - Cando chega unha mensaxe vai ao cartafol INBOX
 - Permite ler, borrar, mover a outro cartafol...
- Comandos para crear cartafols, realizar buscas, descargar partes da mensaxe...
- Mantén información de estado entre sesións
- Definido no RFC 3501

Índice

- 1 Introducción
- 2 Protocolo de transferencia de hipertexto
- Protocolo de transferencia de arquivos
- 4 Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Servizo de nomes de dominio

● Para traducir nomes de hosts

direccións IP

Compoñentes

- Numerosos servidores de nomes distribuidos por Internet
- A base de datos do DNS está distribuida de forma xerárquica
- Un protocolo que permite aos hosts pedir traduccións aos servidores e que os servidores se intercambien datos entre eles

Protocolo sen conexión

DNS usa UDP, no porto 53 e non ten estado

Servizos proporcionados

- Informa dos servidores autorizados para un dominio
- Alias de servidores de correo: permite simplificar as direccións
- Distribución da carga
 - Asígnanse varias IPs a un nome de host
 - Servidores espello: co mesmo contido
 - Devolve de forma cíclica unha IP do conxunto das asignadas

Tipos de servidores

- Servidores locais: atenden as consultas dos hosts
- Servidores autorizados o autoritativos
 - Para que un host sexa accesibel en Internet, debe estar rexistrado nun servidor autorizado
 - Normalmente pertenecen ao ISP
 - Cada host debe estar en dous servidores autorizados por fiabilidade
 - Moitos servidores autorizados comportanse como locais
- Servidores raíz: sobre 400 na Internet, xestionados por 13 organizacións
 - Información dos dominios de primer nivel (TLD)
- Servidores intermedios ou TLD: información sobre os niveis intermedios

Introducción

Tipos de consultas

Consultas recursivas: cada servidor DNS interroga ao seguinte

 Consultas iterativas: o servidor DNS local contacta con todos os servidores

Caché de DNS

- Os servidores almacenan copias locais das correspondencias que obteñen
- Borranse despois dun certo tempo sen usar (dous días)
- En todos os niveis da xerarquía, incluso nos hosts locais

Mensaxes DNS

Consultas e respostas:

- Cabeceira con información de control
 - Identificación: 16 bits que identifican a consulta (e a sua correspondente resposta)
 - Sinais: 4 bits que indican se consulta ou resposta, tipo de consulta, etc.
 - Tamaño dos campos do corpo
- Corpo: 4 campos
 - Cuestións: unha ou varias preguntas. Nome ou dirección a traducir, etc
 - Respostas: unha ou varias respostas. Parella host/IP
 - Servidores autorizados. Permite facer unha cadea de consultas
 - Información adicional

Mensaxes DNS

cabecera

cuerpo

	identificacion	senales		
	num. cuestiones	num. respuestas		
l	num. s. autorizados	num. inf. adiciona		
	cuestiones			
	respuestas			
	servidores autorizados			
l	informacion adicional			

direcciones IP de los servidores autorizados

Mensaxes DNS

Esos campos conteñen rexistros de recursos: 4-tupla

Tipo	Nome	Valor	TTL
Α	nome de host	dirección IP	
NS	dominio	servidor autorizado para o dominio	
CNAME	alias	nome de host	
MX	alias de correo	servidor de correo	
AAAA	nome de host	dirección IPv6	

TTL: tempo durante o cal é válida a resposta

Índice

- Introducción
- Protocolo de transferencia de hipertext
- Protocolo de transferencia de arquivos
- 4 Protocolos de correo electrónico
- 5 DNS: Servizo de nomes de dominio
- 6 Distribución de contidos

Proporcionar contidos

O acceso a servidores centralizados pode ser lento:

- O camiño das mensaxes é lento ou está conxestionado
- O servidor está sobrecargado

⇒ distribuense (e duplican) os contidos en distintas zonas e dirixense as peticións ao servidor de menor tempo de resposta

Métodos

Método de distribución	Quen proporciona a infraestructura		
	• •		
Caché web (ou servidor proxy)	ISP		
Redes de distribución de contidos	distribuidor de contidos		
Redes P2P (de igual a igual)	usuario		

Introducción

Caché web ou servidor proxy

- Un servidor intermedio (proxy) polo que pasan todas as peticións web dos hosts dunha rede
- Mantén copias dos contidos durante certo tempo
- O usuario debe configurar o navegador
- Permite un esquema xerárquico
- Proporcionado polo ISP

Redes de distribución de contidos (CDN)

- Empresas que posuen centros de host de Internet (compañía CDN) alquilan a sua infraestructura
- A CDN replica os contenidos dos seus clientes nos servidores CDN e os manten actualizados
- A CDN proporciona un mecanismo para que o contido sexa entregado polo servidor CDN que poida facelo máis rápidamente
- Acceso aos contidos mediante dúas técnicas:
 - Redirección de obxetos
 - Balanceo das peticións usando o DNS

Redes de distribución de contidos (CDN)

CDN

- Akamai
 - Introdución profunda, perto usuarios, miles servidores
- Limelight, outras
 - ISP, menos servidores, puntos críticos
- DNS para resolver a dirección do video
- DNS devolve a páxina do CDN
- Estatexias de selección de clústeres propietarias

Redes P2P

- Todos os usuarios son á vez servidores e clientes usando unha aplicación
- Necesitase un nodo de arranque
- Necesitase construir un directorio

Tipo de directorio	Exemplo
centralizado	napster
non centralizado	kaaza
inundación de consultas	gnutella

- BitTorrent
 - Cada arquivo compartese nunha rede P2P propia
 - Necesita un tracker para cada rede
 - Non necesita construir un directorio. A información de cada arquivo vai nos .torrent

Vídeo por Internet

- HTTP unha soa mensaxe
 - Mesma versión para todos
 - Mensaxe grande, pode fallar
- DASH, (Dynamic Adaptive Streaming over HTTP, Fluxos dinámicos adaptativos sobre HTTP)
 - Tasa variabel
 - HTTP pequenas mensaxes
 - Diferentes versións

Aplicacións P2P

- Escalabilidade das arquitecturas P2P
- BitTorrent
- Tablas hash distribuidas (DHT)
- Telefonía sobre Internet: Skype

Fluxos de vídeo e redes de distribución de contido

- Vídeo por Internet
- Fluxos de vídeo HTTP e tecnoloxía de fluxos dinámicos adaptativos sobre HTTP (DASH)
- Redes de distribución de contidos (CDN)
- Casos de estudo: Netflix, YouTube y Kankan

