Package 'solrad'

October 14, 2022

Title Calculating Solar Radiation and Related Variables Based on Location, Time and Topographical Conditions

Description For surface energy models and estimation of solar positions and components with varying topography, time and locations. The functions calculate solar top-of-atmosphere, open, diffuse and direct components, atmospheric transmittance and diffuse factors, day length, sunrise and sunset, solar azimuth, zenith, altitude, incidence, and hour angles, earth declination angle, equation of time, and solar constant. Details about the methods and equations are explained in Seyednasrollah, Bijan, Mukesh Kumar, and Timothy E. Link. 'On the role of vegetation density on net snow cover radiation at the forest floor.' Journal of Geophysical Research: Atmospheres 118.15 (2013): 8359-8374, <doi:10.1002/jgrd.50575>.

Version 1.0.0
Date 2018-11-04
Author Bijan Seyednasrollah
Maintainer Bijan Seyednasrollah <bijan.s.nasr@gmail.com></bijan.s.nasr@gmail.com>
Depends R (>= 3.3.0)
Suggests testthat, rmarkdown, knitr,
License AGPL-3 file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1.9000
URL https://github.com/bnasr/solrad/
BugReports https://github.com/bnasr/solrad/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2018-11-05 05:20:03 UTC
R topics documented:

Altitude						 				 													2
AST						 				 													3

2 Altitude

Alti	tude	Solar Altitude Angle	
index			1
Index			1
	Transmittance		10
	OpenRadiation		1.
	LST		12
	Incidence		1
	HourAngle		1
	ExtraterrestrialNorma	ıal	10
	-		

Description

This function solar altitude angle (in degrees) for a given day of year and location.

Usage

```
Altitude(DOY, Lat, Lon, SLon, DS)
```

Arguments

DOY	Day of year
Lat	Latitude in degrees
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes

AST 3

Examples

```
#Calculating solar altitude angle for two consecutive days

DOY <- seq(0, 2, .05)

alpha <- Altitude(DOY, Lat = 45, Lon=0, SLon=0, DS=60)
#Note: only the difference between Lon and SLon matters not each value
plot(DOY, alpha)</pre>
```

AST

Apparent Solar Time

Description

This function returns the apparent solar time (in minutes) for a given day of year and location.

Usage

```
AST(DOY, Lon, SLon, DS)
```

Arguments

DOY	Day of year
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes

```
#Calculating apparent solar time for two consecutive days 
 DOY \leftarrow seq(0, 2, .05) 
 ast \leftarrow AST(DOY, Lon=0, SLon=0, DS=60) 
 #Note: only the difference between Lon and SLon matters not each value 
 plot(DOY, ast)
```

DayLength

nuth Angle	

Description

This function returns solar azimuth angle (in degrees) for a given day of year and location. The solar azimuth angle is the angle of sun's ray measured in the horizental plane from due south

Usage

```
Azimuth(DOY, Lat, Lon, SLon, DS)
```

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes

Examples

```
#Calculating solar azimuth angle for two consecutive days on 45 degree lat and 10 degree lon DOY <- seq(0, 2, .05)

Az <- Azimuth(DOY, Lat = 45, Lon=10, SLon=10, DS=0)

#Note: only the difference between Lon and SLon matters not each value plot(DOY, Az)
```

DayLength	Day Length

Description

This function estimates day length (in hours) for a given day of year and latitude.

Usage

```
DayLength(DOY, Lat)
```

DayOfYear 5

Arguments

DOY Day of year

Lat Latitude (in degrees)

Examples

```
#Calculating day length for 365 day of the year for 45 degree latitude
DOY <- 1:365
Lat = 45
dl <- DayLength(DOY, Lat)
plot(DOY, dl)</pre>
```

DayOfYear

Day of year

Description

This function returns a continuous the day of year value (as integer value 1:365) for a given date-time in "POSIXIt" "POSIXct" format.

Usage

```
DayOfYear(DateTime)
```

Arguments

 ${\tt DateTime}$

DateTime object

```
#Calculating day of year for now
DayOfYear(Sys.time())
```

6 DiffuseRadiation

Dec]	٠.	4	÷	
Dec		ทลเ	. 1	OH

Declination Angle

Description

This function calculates solar declination angle for a given day of year.

Usage

```
Declination(DOY)
```

Arguments

DOY

Day of year

Examples

```
#Calculating solar declination angle for 365 day of the year
DOY <- 1:365
delta <- Declination(DOY)
plot(DOY, delta)</pre>
```

DiffuseRadiation

Solar Diffuse Radiation on a Surface

Description

This function returns solar diffuse dadiation (in W/m2) for a given day of year, location and topography.

Usage

```
DiffuseRadiation(DOY, Lat, Lon, SLon, DS, Elevation, Slope)
```

Arguments

DOY	Day of year

Lat Latitude (in degrees)
Lon Longitude in degrees

SLon Standard longitude (based on time zone) in degrees

DS Daylight saving in minutes
Elevation Elevation of the site in meters

Slope Site slope in degrees

DiffusionFactor 7

Examples

```
#Calculating atmospheric transmittance coefficient for two consecutive days on 45 degree # latitude and 10 degree longitude and at 100 m altitude.
```

```
DOY <- seq(0, 2, .05)
```

Sdifopen <- DiffuseRadiation(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 100, Slope = 0) #Note: only the difference between Lon and SLon matters not each value

plot(DOY, Sdifopen)

DiffusionFactor

Atmospheric Diffusion Factor

Description

This function returns atmospheric diffusion factor for a given day of year, location and topography.

Usage

```
DiffusionFactor(DOY, Lat, Lon, SLon, DS, Elevation)
```

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes

Elevation Elevation of the site in meters

```
\#Calculating atmospheric diffusion factor for two consecutive days on 45 degree \# latitude and 10 degree longitude and at 100 m altitude.
```

```
DOY <- seq(0, 2, .05)

td <- DiffusionFactor(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 100)

#Note: only the difference between Lon and SLon matters not each value

plot(DOY, td)
```

8 DirectRadiation

DirectRadiation	Solar Direct Beam Radiation on Surface
	v

Description

This function returns solar open direct beam dadiation (in W/m2) for a given day of year, location and topography.

Usage

```
DirectRadiation(DOY, Lat, Lon, SLon, DS, Elevation, Slope, Aspect)
```

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes
Elevation	Elevation of the site in meters
Slope	Site slope in degrees
Aspect	Site aspect with respect to the south in degrees

Examples

#Calculating atmospheric transmittance coefficient for two consecutive days on 45 degree #latitude and 10 degree longitude and at 100 m altitude.

```
DOY <- seq(0, 2, .05)
Sopen <- OpenRadiation(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 100) #Note: only the difference between Lon and SLon matters not each value plot(DOY, Sopen)
```

EOT 9

EOT

Equation of time

Description

This function approximates the value of equation of time for a given day of year

Usage

EOT(DOY)

Arguments

DOY

Day of year

Examples

```
#Calculating equaiton of time for 365 day of the year

DOY <- 1:365

eot <- EOT(DOY)

plot(DOY, eot)</pre>
```

Extraterrestrial

Solar Extraterrestrial Radiation

Description

This function calculates solar extraterrestrial radiation (in W/m2) for a given day of year.

Usage

```
Extraterrestrial(DOY)
```

Arguments

DOY

Day of year

10 ExtraterrestrialNormal

Examples

```
#Calculating solar extraterrestrial radiation for 365 day of the year
DOY <- 1:365
Sextr <- Extraterrestrial(DOY)
plot(DOY, Sextr)</pre>
```

ExtraterrestrialNormal

Normal Extraterrestrial Solar Radiation

Description

This function calculates extraterrestrial solar radiation normal to surface (in W/m2) for a given day of year, location and topography.

Usage

ExtraterrestrialNormal(DOY, Lat, Lon, SLon, DS, Slope, Aspect)

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes
Slope	Site slope in degrees
Aspect	Site aspect with respect to the south in degrees

```
#Calculating solar incidence angle for two consecutive days on 45 degree latitude and
# 10 degree longitude

DOY <- seq(0, 2, .05)

SextrNormal <- ExtraterrestrialNormal(DOY, Lat = 45, Lon=10, DS=0, Slope = 10, Aspect = 0)
#Note: only the difference between Lon and SLon matters not each value
plot(DOY, SextrNormal)</pre>
```

HourAngle 11

le	
le	

Description

This function returns solar hour angle for a given day of year, and location.

Usage

```
HourAngle(DOY, Lon, SLon, DS)
```

Arguments

DOY	Day of year
Lon	Longitude in degrees

SLon Standard longitude (based on time zone) in degrees

DS Daylight saving in minutes

Examples

Incidence Solar Incidence Angle

Description

This function returns solar incidence angle (in degrees) for a given day of year and location and site slope and aspect. The solar incidence angle is the angle between sun's ray and the normal on a surface.

Usage

```
Incidence(DOY, Lat, Lon, SLon, DS, Slope, Aspect)
```

LST

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes
Slope	Site slope in degrees
Aspect	Site aspect with respect to the south in degrees

Examples

```
#Calculating solar incidence angle for two consecutive days on 45 degree latitude and
# 10 degree longitude

DOY <- seq(0, 2, .05)

theta <- Incidence(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Slope = 10, Aspect = 0)
#Note: only the difference between Lon and SLon matters not each value

plot(DOY, theta)</pre>
```

LST

Local Standard Time

Description

This function returns local standard time (in minutes) given a day of the year value.

Usage

LST(DOY)

Arguments

DOY

Day of year

```
#Calculating local standard time for two consecutive days
DOY <- seq(0, 2, .05)
lst <- LST(DOY)
plot(DOY, lst)</pre>
```

OpenRadiation 13

OpenRadiation	Open Sky Solar Radiation	

Description

This function returns open sky solar radiation (in W/m2) for a given day of year and location.

Usage

```
OpenRadiation(DOY, Lat, Lon, SLon, DS, Elevation)
```

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes
Elevation	Elevation of the site in meters

Examples

```
\#Calculating open sky solar radiation for two consecutive days on 45 degree latitude and \# 10 degree longitude and at 100 \# altitude.
```

```
DOY <- seq(0, 2, .05)

Sopen <- OpenRadiation(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 100)

#Note: only the difference between Lon and SLon matters not each value

plot(DOY, Sopen)
```

|--|

Description

This function calculates solar variables including radiation components, solar angles and positions and day length.

Usage

```
Solar(DOY, Lat, Lon, SLon, DS, Elevation, Slope, Aspect)
```

14 SolarConstant

Arguments

DOY Day of year

Lat Latitude (in degrees)
Lon Longitude in degrees

SLon Standard longitude (based on time zone) in degrees

DS Daylight saving in minutes
Elevation Elevation of the site in meters

Slope Site slope in degrees

Aspect Site aspect with respect to the south in degrees

Examples

```
#Calculating solar variables and angles

DOY <- seq(0, 2, .05)

solar <- Solar(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 1000, Slope = 10, Aspect = 0)
#Note: only the difference between Lon and SLon matters not each value

par(mfrow=c(3,1))
plot(DOY, solar$Altitude, ylim = c(-90,90))
plot(DOY, solar$Azimuth, col= 'red')

plot(DOY, solar$Sdiropen)
lines(DOY, solar$Sdiropen, col='red')</pre>
```

SolarConstant

Solar Constant

Description

This constant value returns solar constant in Watt per meter squared

Usage

SolarConstant

Format

An object of class numeric of length 1.

```
#Printing Solar Constant
print(SolarConstant)
```

Sunrise 15

Sunrise Sunrise Time

Description

This function estimates sunrise time (in continuous hour values) for a given day of year and latitude.

Usage

```
Sunrise(DOY, Lat)
```

Arguments

DOY Day of year

Latitude (in degrees)

Examples

```
#Calculating sunrise time for 365 day of the year for 45 degree latitude
DOY <- 1:365
Lat = 45
sunrise <- Sunset(DOY, Lat)
plot(DOY, sunrise)</pre>
```

Sunset

Sunset Time

Description

This function estimates sunset time (in continuous hour values) for a given day of year and latitude.

Usage

```
Sunset(DOY, Lat)
```

Arguments

DOY Day of year

Lat Latitude (in degrees)

Transmittance

Examples

```
#Calculating sunset time for 365 day of the year for 45 degree latitude
DOY <- 1:365
Lat = 45
sunset <- Sunset(DOY, Lat)
plot(DOY, sunset)</pre>
```

Transmittance

Atmospheric Transmittance

Description

This function returns atmospheric transmittance coefficient for a given day of year and location.

Usage

```
Transmittance(DOY, Lat, Lon, SLon, DS, Elevation)
```

Arguments

DOY	Day of year
Lat	Latitude (in degrees)
Lon	Longitude in degrees
SLon	Standard longitude (based on time zone) in degrees
DS	Daylight saving in minutes
Elevation	Elevation of the site in meters

Examples

#Calculating atmospheric transmittance coefficient for two consecutive days on 45 degree # latitude and 10 degree longitude and at 100 # altitude.

```
DOY <- seq(0, 2, .05)

tb <- Transmittance(DOY, Lat = 45, Lon=10, SLon=10, DS=0, Elevation = 100)

#Note: only the difference between Lon and SLon matters not each value
plot(DOY, tb)
```

Index

* AST	* LST
AST, 3	LST, 12
* Altitude	* Length
Altitude, 2	DayLength, 4
* Angle	* Normal
Declination, 6	ExtraterrestrialNormal, 10
HourAngle, 11	* Open
Incidence, 11	OpenRadiation, 13
* Atmospheric	* Radiation
DiffusionFactor, 7	DiffuseRadiation, 6
Transmittance, 16	DirectRadiation, 8
* Azimuth	Extraterrestrial, 9
Azimuth, 4	ExtraterrestrialNormal, 10
* Beam	OpenRadiation, 13
DirectRadiation, 8	* Solar
* Constant	Declination, 6
SolarConstant, 14	Extraterrestrial, 9
* DOY,	ExtraterrestrialNormal, 10
DayOfYear, 5	Incidence, 11
* Day	Solar, 13
DayLength, 4	SolarConstant, 14
DayOfYear, 5	* Sunrise
* Declination	Sunrise, 15
Declination, 6	* Sunset
* Diffuse	Sunset, 15
DiffuseRadiation, 6	* Transmittance
* Diffusion	Transmittance, 16
DiffusionFactor, 7	* Variables
* Direct	Solar, 13
DirectRadiation, 8	* of
* Equation	DayOfYear, 5
EOT, 9	EOT, 9
* Extraterrestrial	* time
Extraterrestrial, 9	EOT, 9
ExtraterrestrialNormal, 10	* value
* Hour	EOT, 9
HourAngle, 11	* year
* Incidence	DayOfYear, 5
Incidence. 11	Altitude.2

INDEX

```
AST, 3
{\sf Azimuth}, \textcolor{red}{4}
DayLength, 4
DayOfYear, 5
Declination, 6
DiffuseRadiation, 6
DiffusionFactor, 7
DirectRadiation, 8
EOT, 9
Extraterrestrial, 9
{\tt Extraterrestrial Normal}, {\color{red}10}
{\it HourAngle}, \\ 1\\ 1
Incidence, 11
LST, 12
OpenRadiation, 13
Solar, 13
SolarConstant, 14
Sunrise, 15
Sunset, 15
{\it Transmittance}, \\ 16
```