

#### Michael Mekonnen





$$H(R) = \frac{Y}{X} = \frac{KR}{1 - R + KR^2}$$

### DT LTI Systems are an important part of 6.01





$$H(R) = \frac{KR}{1 - R + KR^2}$$



$$H(R) = \frac{KR}{1 - R + KR^2} \qquad H(z) = \frac{Kz}{z^2 - z + K}$$



$$H(R) = \frac{KR}{1 - R + KR^2} \qquad H(z) = \frac{Kz}{z^2 - z + K} \qquad zeros - z = 0$$

$$poles - z = \frac{1 \pm \sqrt{1 - 4K}}{2}$$



What changes?

Goal: help 6.01 students build up a good intuition for systems by building a tool that carries out system analysis.

## What has already been done? 6.01 software lab 5



### What has already been done? 6.01 software lab 5



### What has already been done? MATLAB Simulink



#### What has already been done?





Too general

**Too specific** 

# New idea Something in between



# New idea Something in between









#### UAP

- Start: IAP

- End: March 30, 2013

Buffer: April

#### UAP

Start: IAP

End: March 30, 2013

Buffer: April

#### Schedule

 1 week: Code design (interaction between GUI and System Representation)

– 3 weeks: GUI

- 2 weeks: H(R), H(z)

– 1 week: Pole-zero diagram

2 weeks: Unit sample response

– 1 week: integration

2 weeks: documentation and UAP write-up.

- UAP
  - Start: IAP
  - End: March 30, 2013
  - Buffer: April
- Schedule
  - 1 week: Code design (interaction between GUI and System Representation)
  - 3 weeks: GUI
  - 2 week: H(R), H(z)
  - 1 week: Pole-zero diagram
  - 2 weeks: Unit sample response
  - 1 week: integration
  - 2 weeks: documentation and UAP write-up.
- Regular progress meetings with Professor Freeman.

### Computationally solving a system

# Computationally solving a system How do we solve systems?



# Computationally solving a system How do we solve systems?



# Computationally solving a system How do we solve systems?



$$Y = KR(X - RY) + RY$$

$$H(R) = \frac{Y}{X} = \frac{KR}{1 - R + KR^2}$$

### **Risks**

# Risks GUI Programming In Python

24.1. Tkinter — Python interface to Tcl/Tk

The Trinter module ("Tk interface") is the standard Python interface to the Tk GUI toolkit. B

# Risks GUI Programming In Python

### 24.1. Tkinter — Python interface to Tcl/Tk

The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI toolkit. B

- •Drag and drop?
- •Support for various shapes + interconnections?
- •Easy to integrate plots?
- •Etc.

# Risks Technical difficulty of solving systems



## Risks Technical difficulty of solving systems



- How to detect errors in input
- •Existing packages vs. what I'll have to implement
  - Polynomial representation
  - Equation solver
- •Etc.

## Risks Back-up plans

- Online documentations.
- If GUI Implementation becomes too difficult, settle for textual input.
- Build my own polynomial representation.
- Build my own equation solver.
- Last resort: meet with Professor Freeman when really stuck.

Took 6.003 and 6.011.

- Took 6.003 and 6.011.
- LA for **6.01** twice.

- Took 6.003 and 6.011.
- LA for 6.01 twice.
- Very good relationship with Professor Freeman (UAP advisor).

- Took 6.003 and 6.011.
- LA for 6.01 twice.
- Very good relationship with Professor Freeman (UAP advisor).
- Well experienced in Python.

- Took 6.003 and 6.011.
- LA for 6.01 twice.
- Very good relationship with Professor Freeman (UAP advisor).
- Well experienced in Python.
- Very interested in the material.



$$H(R) = \frac{KR}{1 - R + KR^2}$$



$$H(R) = \frac{KR}{1 - R + KR^2}$$



$$H(R) = \frac{KR}{1 - R + KR^2}$$



$$H(R) = \frac{KR}{(-R + KR^2)}$$



$$H(R) = \frac{KR}{1 - R + KR^2}$$