HEURISTIC ANALYSIS: AI PLANNING AND SEARCH

CHRISTOPHER BRIAN CURRIN

Problem	Algorithm	Expansions	Goal Tests	New Nodes	Plan Length	Time Elapsed
1	breadth_first_search	43	56	180	6	0.08
	breadth_first_tree_search	1458	1459	5960	6	2.10
	depth_first_graph_search	21	22	84	12	0.03
	depth_limited_search	101	271	414	50	0.19
	uniform_cost_search	55	57	224	6	0.08
	recursive_best_first_search with h_1	4229	4230	17023	6	5.86
	greedy_best_first_graph_search with h_1	7	9	28	6	0.01
	astar_search with h_1	55	57	224	6	0.08
	astar_search with h_ignore_preconditions	41	43	170	6	0.06
	astar_search with h_pg_levelsum	11	13	50	6	2.75
2	breadth_first_search	3343	4609	30509	9	78.00
	breadth_first_tree_search	-	-	-	-	-
	depth_first_graph_search	624	625	5602	619	20.81
	depth_limited_search	222719	2053741	2054119	50	4830.82
	uniform_cost_search	4853	4855	44041	9	152.89
	recursive_best_first_search with h_1	-	-	-	-	-
	greedy_best_first_graph_search with h_1	998	1000	8982	21	36.28
	astar_search with h_1	4853	4855	44041	9	200.88
	astar_search with h_ignore_preconditions	1506	1508	13820	9	25.64
	astar_search with h_pg_levelsum					
3	breadth_first_search	14663	18098	129631	12	312.87
	breadth_first_tree_search	-	-	-	-	-
	depth_first_graph_search	408	409	3364	392	8.32
	depth_limited_search	-	-	-	-	-
	uniform_cost_search	-	-	-	-	-
	recursive_best_first_search with h_1	-	-	-	-	-
	greedy_best_first_graph_search with h_1	4255	4257	37660	14	324.52
	astar_search with h_1	-	-	-	-	-
	astar_search with h_ignore_preconditions	5087	5089	45349	12	205.80
	astar_search with h_pg_levelsum	-	-	-	-	-

OPTIMAL PLANS

A sample of the optimal plans are in the table below. Deviations from the below were produced depending on the algorithm.

Problem 1 (plan length 6)	Problem 2 (plan length 9)	Problem 3 (plan length 12)		
Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)		
Load(C2, P2, JFK)	Load(C2, P2, JFK)	Load(C2, P2, JFK)		
Fly(P1, SFO, JFK)	Load(C3, P3, ATL)	Fly(P1, SFO, ATL)		
Fly(P2, JFK, SFO)	Fly(P1, SFO, JFK)	Load(C3, P1, ATL)		
Unload(C1, P1, JFK)	Fly(P2, JFK, SFO)	Fly(P2, JFK, ORD)		
Unload(C2, P2, SFO)	Fly(P3, ATL, SFO)	Load(C4, P2, ORD)		
	Unload(C3, P3, SFO)	Fly(P2, ORD, SFO)		
	Unload(C2, P2, SFO)	Fly(P1, ATL, JFK)		
	Unload(C1, P1, JFK)	Unload(C4, P2, SFO)		
		Unload(C3, P1, JFK)		
		Unload(C2, P2, SFO)		
		Unload(C1, P1, JFK)		

DISCUSSION

For each problem, A* with ignore preconditions heuristic seems to be the most optimal heuristic and depth first (graph) search the worst. This was judged on accuracy (did it give the correct result) vs time elapsed vs new nodes. While other heuristics gave the correct length, they were generally slower and/or visited more new nodes. Better heuristics may result in fewer node expansions, but take longer to compute. The trade-off of the A* search with ignore preconditions heuristic is that it is fast, but has more node expansions than the more accurate (in terms of distance to goal) A* level sum heuristic. In certain problems, here air cargo, this speed over accuracy trade-off is a clear winner, but other problems may benefit from more accurate heuristic to reach the optimal solution.

The depth first search, while consistently the fastest to complete, also gave a sub-optimal plan length. This is due to its completion once it has reach a valid solution (passing the goal test) and not the *optimal* solution. A* in contrast chooses the best node of possible actions (according to its heuristic), and therefore can reach the optimal solution.

Breadth first search performed the best of the uninformed heuristics. Both breadth-first and A* searches are *complete* and *optimal* and given no actual heuristic, A* acts equivalent to breadth-first search. Due to the 10-min timeout (sometimes relaxed) many algorithms did not complete to give a result, but for the given results, problem 1 is indicative of the performance of an algorithm on the other problems. On the air cargo problem, we can expect that A* with level sum heuristic will provide the optimal solution with the minimal number of new nodes, but in a substantial amount of time compared to another optimal algorithm. Of course, timing is dependent on the simulation hardware, and a dual-core 2011 laptop probably does not provide the best results.