

an see			MC	DBILES	ARE	BANNED
USN:	1	M	S			
						1 1

DEPARTMENT OF MATHEMATICS

Sub Code: MAOE04		Sub:	Applied (Graph Theory	y	Test:	02	
Section Contractor	Time:	3PM to 4PM	Term:	23.03.2022 (extended ti	2 to 06.07.2 Il 22 nd July 202		Marks:	30
Section .	Date:	27.01.2022	Semester:	ν.	Section:	Op	en electi	ve

Note: Answer any TWO full questions. Each main question carries 15 marks

Q.	No.	Questions	Blooms Level	CO's	Mark
١.	(a)	Construct an optimal prefix code for the letters of the word CUT SET.	L3	CO5	5
	(b)	Define path matrix and list all the properties of a path matrix with an example.	14	CO3	5
	(c)	Define each of the following with examples i) Strongly connected digraph		6	
		ii) Condensation of a digraph iii)Circuit matrix of a digraph	19	CO4	5
2.	(a)	A transition digraph of three state Markov process is given below.			
		0.2		1	
		C 0.25 A			
		3 0.2	L3	CO5	5
		0.5 A 0.75 % B			
		Find the probability of traversing from C to A in all possible cases with the directed edge sequences of length two.			
1	(b)	Find the fundamental cut-set matrix of the graph given below			
		A e ₂ B	1		
		e ₁	4	CO3	5
		e ₄ D			

	(c)	Prove that an arborescence is a tree in which every vertex other than the root has an in-degree of exactly one.	L3	CO4	5
3.	(a)	For the following contact network, show that the $(1,2)$ minor of the primitive connection matrix is equal to the switch function F_{12}			
		x_1 x_2 x_3	L3	CO5	5
	(b)	Define rank of incidence matrix, circuit matrix and cut-set matrix with an example.	19	COA	
	(c)	Write a note on	Co	CO3	5
	,	(i) Binary relations on graph (ii) Spanning Arborescence (iii) Tournament	19	CO4	