



# **Stationarity**

Polytechnic of Statistics STIS, Jakarta INDONESIA - 2018

#### **Time Series**

- Suatu time series atau runtun waktu adalah himpunan pengamatan yang berurut dalam waktu.
  - If the set is continuous, the time series is said to be continuous.
  - If the set is discrete, the time series is said to be discrete.
- Kuliah ini hanya membahas time series yang diskrit dengan pengamatan pada waktu t = 1, 2, ..., N.

#### Discrete time series may arise in two ways:

- By sampling a continuous time series.
   Mengambil pengamatan pada waktu-waktu tertentu
  - Nilai tukar rupiah bulanan, yg diamati tiap awal bulan
- 2. By accumulating a variable over a period of time. Mengakumulasikan pengamatan pada periode waktu tertentu.
  - rainfall, which is usually accumulated over a period such as a day or a month,
  - GDP, which is accumulated over the quarterly or annual.

#### **Deterministic and Statistical Time Series**

 If future values of a time series are exactly determined by some mathematical function such as:

$$z_t = \cos(2\pi f_t)$$

the time series is said to be deterministic.

• If future values can be described only in terms of a probability distribution, the time series is said to be nondeterministic or stochastic, or simply a statistical time series.

$$z_t = \cos(2\pi f_t) + u_t$$
, where  $u_t$  is probabilistic



#### Stochastic Processes

- Stochastic (Random) Process: collection of random variables ordered in time.
  - o NOTATIONS: Let Y a random variable, Y(t) if continuous (e.g. electrocardiogram), and  $Y_t$  if discrete (e.g. GDP, PDI, etc.).
  - o Now, If we let Y represent GDP, then we can have  $Y_1$ ,  $Y_2$ ,  $Y_3$ , ...,  $Y_{20}$  where the subscript 1 denotes the 1st observation (i.e. GDP for the 1st quarter of  $1^{st}$  year) and the subscript 20 denotes the last observation (i.e. GDP for the  $4^{th}$  quarter of  $5^{th}$  year).

# STATIONARITY

## Stationary Stochastic Processes

- Stationary Stochastic Processes: A stochastic process is said to be stationary/weakly/covariance/2nd-order stationary if:
  - Its mean and variance are constant over time, and
  - o The value of the **covariance** between the two time periods depends only on the distance/lag between the two time periods and not the actual time at which the covariance is computed.
  - $\circ$  E.g. let's  $\mathbf{Y}_{t}$  be a stochastic process, then;
  - Mean:  $E(Y_t) = \mu$  (1)
  - Variance:  $var(Y_t) = E(Y_t \mu)^2 = \sigma^2$  (2)
  - Covariance:  $\gamma_k = E[(Y_t \mu)(Y_{t+k} \mu)]$  ......(3)
    - Where  $\gamma_k$ , the covariance (or auto-covariance) at lag  $\,k$ ,
    - If k = 0, we obtain  $\gamma_0$ , which is simply the variance of  $Y (= \sigma^2)$ ; if k = 1,  $\gamma_1$  is the covariance between two adjacent values of Y

- A very special class of stochastic processes, called **stationary processes**, is based on the assumption that the process is in a particular state of **statistical equilibrium**.
  - Strictly Stationarity
  - Weakly Stationarity
  - Covariance Stationarity
  - 2<sup>nd</sup> Order Stationarity

# (REVIEW) Sifat proses stokastik data yang stasioner:

- 1.  $f(Z_t, \ldots, Z_{t+k}) = f(Z_{t+m}, \ldots, Z_{t+k+m}) \ \forall \ m,t,k$
- 2.  $E(Z_t) = \mu_Z$  (tidak tergantung pada t)
- 3. Var  $(Z_t) = \sigma^2_Z = E[(Z_t \mu_Z)^2]$  (tidak tergantung pada t)
- 4.  $\gamma_k = \text{cov}(Z_t, Z_{t+k})$ ; tidak tergantung pada t =  $\text{cov}(Z_{t+m}, Z_{t+m+k})$

Sebagai catatan: Untuk lag nol, atau k=0, berlaku:

$$\gamma_0 = \text{cov}(Z_t, Z_t) = \text{var}(Z_t) = \sigma^2_Z$$

#### **Strict Stationerity (Stationarity)**

Suatu proses stokastik dinamakan stasioner ( $strict\ stationerity$ ) jika pdf bersama  $f(Z_{t1},Z_{t2},...,Z_{m})$  dan pdf bersama  $f(Z_{t1+k},Z_{t2+k},...,Z_{m+k})$  adalah sama untuk sebarang bilangan bulat positif n dan sebarang pilihan t1,t2,...,tn. Dalam hal ini struktur probabilistik dari proses tidak berubah dengan berubahnya waktu.





# Why are Stationary Time Series so Important?

- Jika time series tidak stasioner, maka hanya dapat mempelajari perilaku data untuk periode waktu under consideration, tidak bisa untuk forecasting (peramalan)
- Data time series yang tidak stasioner juga bisa menimbulkan spurious regression → jika dua variabel dibuat tren, regresi satu dan yang lainnya bisa memiliki R² tinggi tapi tidak berkorelasi (meaningless)

### White Noise Processes (stationary process)

- We call a stochastic process (time Series) purely random/white noise process if it has zero mean, constant variance  $\sigma^2$ , and is serially uncorrelated i.e. [u<sub>t</sub> ~ IIDN(0,  $\sigma^2$ )].
- Note: Here onward, in all equations the assumption of "white noise" will be applicable on  $\boldsymbol{u}_t$  .

# Random Walk Model (RWM)

### Non Stationary Stochastic Processes

**Random Walk** merupakan model time series stokastik yang paling sederhana, dan merupakan contoh klasik dari model yang tidak stasioner.

 Random walk without drift atau dikenal juga dengan pure random walk → tanpa intercept

$$Y_t = Y_{t-1} + u_t$$

Random walk with drift → dengan intercept

$$Y_t = \delta + Y_{t-1} + u_t$$





A random walk without drift.

A random walk with drift.

## a) Random Walk without Drift

Asumsi pada model ini adalah perubahan nilai Y<sub>t</sub> berurutan berdasarkan suatu distribusi probabilitas dengan mean o. Modelnya dapat dinyatakan dalam bentuk:

$$Y_t = Y_{t-1} + u_t$$
; atau  $Y_t - Y_{t-1} = u_t$   
 $E(u_t) = 0$ ;  $E(u_t u_s) = 0$ ;  $t \neq s$ 

Dimana:  $u_t$  adalah error yang "white noise" atau "purely random", dengan mean = 0 dan varian =  $\sigma^2$ .

Model tsb juga dapat diartikan bahwa nilai Y pada waktu ke-t sama dengan nilai Y pada waktu ke-t-1 ditambah random.

#### Bukti bahwa random walk tidak stasioner:

Model randam walk:  $Y_t = Y_{t-1} + u_t$ 

dapat ditulis dengan:

$$Y_1 = Y_0 + u_1.$$
  
 $Y_2 = Y_1 + u_2 = Y_0 + u_1 + u_2.$   
 $Y_3 = Y_2 + u_3 = Y_0 + u_1 + u_2 + u_3.$ 

Maka:

$$Y_t = Y_o + \Sigma u_t$$
.

Sehingga:

$$E(Y_t) = E(Y_o + \Sigma u_t) = E(Y_o) + E(\Sigma u_t)$$

 $Y_o$  adalah konstanta, sehingga nilai harapannya konstan,  $Y_o$   $u_t$  adalah "white noise", sehingga nilai harapannya = 0.

Jadi: 
$$E(Y_t) = E(Y_o + \Sigma u_t) = E(Y_o) + E(\Sigma u_t) = Y_o + O = Y_o$$
.

Maka dapat disimpulkan bahwa rata-rata **random walk tanpa intersep** adalah konstan.

Sekarang kita lihat varian-nya, yaitu:

$$Var(Y_t) = Var(Y_o + Σu_t)$$
  
=  $Var(Y_o) + Var(Σu_t)$ 

 $Y_o$  adalah konstanta, sehingga varian-nya = 0.  $u_t$  adalah "white noise", sehingga variannya =  $\sigma^2$ .

#### Jadi:

Var(Y<sub>t</sub>) = Var(Y<sub>o</sub> + 
$$\Sigma$$
u<sub>t</sub>)  
= Var(Y<sub>o</sub>) + Var( $\Sigma$ u<sub>t</sub>)  
=  $o + \Sigma \sigma^2$   
=  $t \sigma^2$   
(tidak konstan, tergantung pada t)

## Random Walk dengan Tren

Model: 
$$Y_t = Y_{t-1} + \delta t + u_t$$

Bukti model ini tidak stasioner:

Maka:

$$E(Y_t) = E(Y_o + t \delta + \Sigma u_t)$$

$$= Y_o + t \delta \qquad (depend on t)$$

$$Var(Y_t) = Var(Y_o + t \delta + \Sigma u_t)$$

$$= t \sigma^2 \qquad (depend on t)$$

## b) Random Walk with Drift

• Let's modify,  $Y_t = Y_{t-1} + u_t$  (4) as follows:

$$Y_t = \delta + Y_{t-1} + u_t$$
 (9)

where  $\delta$  is the drift parameter.

• The name drift comes from the fact that if we write the preceding equation as:

$$\mathbf{Y}_{t} - \mathbf{Y}_{t-1} = \Delta \mathbf{Y}_{t} = \delta + \mathbf{u}_{t} \quad \dots \tag{10}$$

• It shows that  $Y_t$  drifts upward/downward, depending on  $\delta$  being positive/negative.

# Further Explanation

- Note that model  $Y_t = \delta + Y_{t-1} + u_t$  (9) is also an AR(1) model.
- Following the procedure discussed for Random Walk Without Drift, it can be shown that for the random walk with drift model (9),

$$E(Y_t) = Y_0 + t \cdot \delta \dots (11)$$

$$var(Y_t) = t\sigma^2 \dots (12)$$

- Here, again for RWM with drift the mean as well as the variance increases over time, again violating the conditions of stationarity.
- In short, RWM, with or without drift, is a non-stationary stochastic process.
- The random walk model is an example of what is known in the literature as a Unit Root Process.

# Tests of Stationarity

# Tests of Stationarity

- In practice we face two important questions:
  - How do we find out if a given time series is stationary or not?
  - Is there a way that it can be made stationary?
- Prominently discussed tests in the literature are:
  - Graphical Analysis
  - Autocorrelation Function
  - The Unit Root Test

## 1. Graphical Analysis

- Before pursuing a formal test, it is always advisable to plot the time series under study
- E.g. take the GDP time series.
- You will see that over the period of study GDP has been increasing (i.e. showing an upward trend)
- This perhaps suggests that the GDP series is not stationary (also more or less true of the other economic time series).

### **Analisis Grafik**

Sebelum dilakukan formal test, lakukan dulu plot data time series. Plot tersebut dapat menjadi petunjuk awal mengenai perilaku data time series.

#### **Pemeriksaaan Stasioneritas**



Gambar 2.1 Plot Data dalam Keadaan Stasioner Nilai Tengah dan Ragam.



Gambar 2.3 Plot Data Stasioner pada Nilai Tengah, tapi Tidak Stasioner pada Ragam.



Gambar 2.2 Plot data yang tidak Stasioner pada Nilai Tengah, tapi Stasioner pada Ragam.



Gambar 2.4 Plot Data yang Tidak Stasioner pada Nilai Tengah maupun Ragamnya.



GDP, PDI, and PCE, United States, 1970-1991 (quarterly).

Dari Plot data time series di atas dapat dilihat GDP menunjukkan tren meningkat. Ini merupakan indikasi bahwa data GDP tidak stasioner



Figure 7-6: Illustrations of time series data, showing (a) a series stationary in the mean; (b) a series non-stationary in the mean; and (c) a series non-stationary in the mean and variance. In each case, n = 100.

# 2. Autocorrelation Function (ACF), Correlogram & Uji-ujinya

## **Autocorrelation Function (ACF)**

ACF lag k dinotasikan  $\rho_k$ 

$$\rho_k = \frac{\gamma_k}{\gamma_0}$$

$$= \frac{\text{covariance at lag } k}{\text{variance}}$$

Di Makridakis.
Simbol r sebagai
estimasi dari
rho, korelasi Yt
dg yt-1 sama
dengan yt dg
yt+1

Karena yang digunakan adalah sample, maka

$$\hat{\gamma}_k = \frac{\sum (Y_t - \bar{Y})(Y_{t+k} - \bar{Y})}{n}$$

$$\hat{\gamma}_0 = \frac{\sum (Y_t - \bar{Y})^2}{n}$$

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

$$r_k = \frac{\sum_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2}$$

Untuk suatu proses yang stasioner  $\{Z_i\}$ , autokorelasi pada lag k atau korelasi antara  $Z_i$  dan  $Z_{t-k}$ , didefinisikan sebagai

$$\rho_k = \frac{Cov(Z_t, Z_{t-k})}{\sqrt{Var(Z_t)}\sqrt{Var(Z_{t-k})}} = \frac{\gamma_k}{\gamma_0}.$$

Fungsi autokorelasi (autocorrelation function), yang disingkat ACF, dibentuk dengan himpunan  $\left\{ \rho_{k};\;k=0,1,2,\dots\right\}$  dengan  $\rho_{0}=1$ .



Contoh Fungsi autokorelasi (ACF) teoritik suatu data Zt

#### **ACF**

Dari suatu *time series* yang stasioner  $Z_1,Z_2,...,Z_n$ , estimasi terhadap nilai mean  $\mu$ , fungsi autokovarians  $\left\{\gamma_k;\ k=0,1,2,...\right\}$ , dan ACF  $\left\{\rho_k;\ k=0,1,2,...\right\}$  dapat dilakukan dengan menggunakan statistik

$$\hat{\mu} = \overline{Z} = \frac{1}{n} \sum_{t=1}^{n} Z_{t} ,$$

dan untuk k = 0,1,2,...

$$\hat{\gamma}_k = \frac{1}{n} \sum_{t=k+1}^n (Z_t - \mu)(Z_{t-k} - \mu)$$

Diperlukan n yang cukup besar untuk memperoleh nilai estimasi yang cukup baik, dan dalam praktek biasanya diperlukan  $n \geq 50$ . (Chatfield, 1996; Soejoeti, 1987). Dari formula diatas terlihat jelas bahwa nilai  $\hat{\gamma}_k$  tidak dapat dihitung untuk k > n-1, dan dalam praktek biasanya tidak memerlukan  $\hat{\gamma}_k$  untuk semua k, melainkan hanya kira-kira untuk  $k \leq \frac{n}{4}$  saja. Nilai ACF  $\rho_k$  selanjutnya dapat diestimasi dengan

$$\hat{\rho}_{k} = r_{k} = \frac{\hat{\gamma}_{k}}{\hat{\gamma}_{0}} = \frac{\sum_{t=1}^{n-k} (Z_{t} - \overline{Z})(Z_{t+k} - \overline{Z})}{\sum_{t=1}^{n} (Z_{t} - \overline{Z})^{2}}$$



# Makridakis pp 316



## **Partial Autocorrelation Function (PACF)**

Makridakis pp 320/323

Partial autocorrelations are used to measure the degree of association between  $Y_t$  and  $Y_{t-k}$ , when the effects of other time lags— 1, 2, 3, ..., k-1—are removed.

The value of this can be seen in the following simple example. Suppose there was a significant autocorrelation between  $Y_t$  and  $Y_{t-1}$ . Then there will also be a significant correlation between  $Y_{t-1}$  and  $Y_{t-2}$  since they are also one time unit apart. Consequently, there will be a correlation between  $Y_t$  and  $Y_{t-2}$  because both are related to  $Y_{t-1}$ . So to measure the real correlation between  $Y_t$  and  $Y_{t-2}$ , we need to take out the effect of the intervening value  $Y_{t-1}$ . This is what partial autocorrelation does.

#### **PACF**

Besaran statistik lain yang diperlukan dalam analisis time series adalah fungsi autokorelasi parsial (PACF), yang ditulis dengan notasi  $\{\phi_{kk} \; ; k=1,2,...\}$ , yakni himpunan autokorelasi parsial untuk berbagai lag k. Autokorelasi parsial didefinisikan sebagai

$$\phi_{kk} = \frac{|P_k^*|}{|P_k|},$$

dimana  $P_k$  adalah matriks autokorelasi  $k \times k$  , dan  $P_k^*$  adalah  $P_k$  dengan kolom terakhir diganti dengan

$$\begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_k \end{bmatrix}.$$

Sehingga diperoleh

$$\phi_{11} = \rho_1,$$

$$\phi_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2},$$



## Contoh 1.

Berikut ini adalah sepuluh nilai yang pertama dari suatu data *time* series yang panjang.

| t     | 1  | 2 | 3  | 4 | 5 | 6  | 7  | 8 | 9  | 10 |
|-------|----|---|----|---|---|----|----|---|----|----|
| $Z_t$ | 13 | 8 | 15 | 4 | 4 | 12 | 11 | 7 | 14 | 12 |

Dari data ini, hitunglah nilai  $r_1$ ,  $r_2$ , dan  $r_3$ .

#### Jawaban :

Berikut ini adalah perhitungan  $r_1$ ,  $r_2$ , dan  $r_3$ .dari 10 data  $time\ series$  di atas.

| t     | $Z_t$ | $Z_{t+1}$ | $Z_{t+2}$ | $Z_{t+3}$ |
|-------|-------|-----------|-----------|-----------|
|       |       |           |           |           |
| 1     | 13    | 8         | 15        | 4         |
| 2     | 8     | 15        | 4         | 4         |
| 3     | 15    | 4         | 4         | 12        |
| 4     | 4     | 4         | 12        | 11        |
| 5     | 4     | 12        | 11        | 7         |
| 6     | 12    | 11        | 7         | 14        |
| 7     | 11    | 7         | 14        | 12        |
| 8     | 7     | 14        | 12        | -         |
| 9     | 14    | 12        | -         | -         |
| 10    | 12    | -         | -         | -         |
|       |       |           |           |           |
| Total | 100   | -         | -         | -         |

(a). 
$$r_{1} = \frac{\sum_{t=1}^{10} (Z_{t} - \overline{Z})(Z_{t+1} - \overline{Z})}{\sum_{t=1}^{10} (Z_{t} - \overline{Z})^{2}}$$

$$= \frac{(13 - 10)(8 - 10) + (8 - 10)(15 - 10) + \dots + (14 - 10)(12 - 10)}{(13 - 10)^{2} + (8 - 10)^{2} + \dots + (12 - 10)^{2}}$$

$$= \frac{-27}{144} = -0.188$$

(b). 
$$r_{2} = \frac{\sum_{t=1}^{10} (Z_{t} - \overline{Z})(Z_{t+2} - \overline{Z})}{\sum_{t=1}^{10} (Z_{t} - \overline{Z})^{2}}$$

$$= \frac{(13 - 10)(15 - 10) + (8 - 10)(4 - 10) + \dots + (7 - 10)(12 - 10)}{(13 - 10)^{2} + (8 - 10)^{2} + \dots + (12 - 10)^{2}}$$

$$= -0,201$$

(c). 
$$r_{3} = \frac{\sum_{t=1}^{10} (Z_{t} - \overline{Z})(Z_{t+3} - \overline{Z})}{\sum_{t=1}^{10} (Z_{t} - \overline{Z})^{2}}$$

$$= \frac{(13 - 10)(4 - 10) + (8 - 10)(4 - 10) + \dots + (11 - 10)(12 - 10)}{(13 - 10)^{2} + (8 - 10)^{2} + \dots + (12 - 10)^{2}}$$

$$= 0.181$$

Dengan demikian dari data di atas diperoleh ACF  $\it r_k$ ,  $\it k=1,2,3$  sebagai berikut.

| k (lag)     | 1       | 2       | 3     |
|-------------|---------|---------|-------|
| $r_k$ (ACF) | - 0,188 | - 0,201 | 0,181 |

#### Contoh 2.

Berdasarkan data time series pada contoh 1 di atas, hitunglah nilai dari  $\hat{\phi}_{11}, \hat{\phi}_{22}$  dan  $\hat{\phi}_{33}$ .

#### Jawaban:

Dengan menggunakan hasil dalam contoh 1, yaitu nilai-nilai dari perhitungan  $r_1$ ,  $r_2$ , dan  $r_3$ , serta menerapkan rumus Durbin (1960) diperoleh

$$\hat{\phi}_{11} = r_1 = -0.188,$$

$$\hat{\phi}_{22} = \frac{r_2 - r_1^2}{1 - r_1^2} = \frac{-0.201 - (-0.188)^2}{1 - (-0.188)^2} = -0.245 .$$

# Pemeriksaan Stasioneritas: Korelogram

- Korelogram merupakan teknik identifikasi kestasioneran data time series melalui Fungsi Autokorelasi (ACF). Fungsi ini bermanfaat untuk menjelaskan suatu proses stokastik, tentang bagaimana korelasi antara data-data (Y<sub>t</sub>) yang berdekatan.
- Korelogram diperoleh dengan membuat plot antara  $\rho_k$  dan k (lag). Plot antara  $\rho_k$  dan k ini disebut korelogram populasi. Dalam praktek, kita hanya dapat menghitung fungsi otokorelasi sampel (Sample Autocorrelation Function).

Data yang stasioner: korelogram menurun dengan cepat seiring dengan meningkatnya k.

Data yang tidak stasioner: korelogram cenderung tidak menuju nol (tidak mengecil) meskipun k membesar

Date: 09/10/04 Time: 10:50 Sample: 1/01/2002 12/31/2002 Included observations: 164

| Autocorrelation | Partial Correlation |    | AC    | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|-------|--------|--------|-------|
|                 | I I                 | 1  | 0.956 | 0.956  | 152.75 | 0.000 |
|                 | 1 1                 | 2  | 0.921 | 0.071  | 295.16 | 0.000 |
|                 | 1 1                 | 3  | 0.878 | -0.097 | 425.38 | 0.000 |
|                 | 1   1               | 4  | 0.839 | 0.016  | 545.13 | 0.000 |
|                 |                     | 5  | 0.805 | 0.051  | 656.13 | 0.000 |
|                 | 1 1                 | 6  | 0.773 | 0.004  | 759.11 | 0.000 |
|                 | 1 1                 | 7  | 0.741 | -0.024 | 854.30 | 0.000 |
|                 | 1 1                 | 8  | 0.711 | 0.013  | 942.58 | 0.000 |
|                 | 101                 | 9  | 0.676 | -0.074 | 1022.8 | 0.000 |
|                 | 1 11                | 10 | 0.647 | 0.042  | 1096.7 | 0.000 |
|                 | 1 1                 | 11 | 0.617 | 0.001  | 1164.6 | 0.000 |
|                 | 1 1                 | 12 | 0.581 | -0.111 | 1225.0 | 0.000 |
|                 |                     | 13 | 0.546 | -0.019 | 1278.9 | 0.000 |
|                 | 1 11                | 14 | 0.516 | 0.055  | 1327.2 | 0.000 |
|                 | 1 1                 | 15 | 0.488 | 0.012  | 1370.8 | 0.000 |
|                 |                     | 16 | 0.468 | 0.051  | 1411.1 | 0.000 |
|                 | 1 1                 | 17 | 0.446 | -0.010 | 1448.0 | 0.000 |
|                 | 101                 | 18 | 0.423 | -0.048 | 1481.4 | 0.000 |
|                 | 1 1                 | 19 | 0.399 | -0.017 | 1511.3 | 0.000 |
|                 | 1 1                 | 20 | 0.370 | -0.054 | 1537.2 | 0.000 |



Date: 09/19/04 Time: 16:32 Sample: 1998:01 2003:05 Included observations: 64

| Autocorrelation | Partial Correlation |           | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|-----------|--------|--------|--------|-------|
| <b>=</b> 1      |                     | 1         | -0.255 | -0.255 | 4.3580 | 0.037 |
| 1 🛭 1           | 1 🔳                 | 2         | -0.072 | -0.147 | 4.7128 | 0.095 |
| 1 🚺 1           | 1 🗖 1               | 3         | -0.056 | -0.125 | 4.9267 | 0.177 |
| 1 ( 1           | 1.0                 | 4         | -0.024 | -0.095 | 4.9662 | 0.291 |
| 1 <b>E</b>      | I                   | 5         | -0.117 | -0.192 | 5.9424 | 0.312 |
| · 🛅 ·           | 1 1 1               | 6         | 0.150  | 0.039  | 7.5731 | 0.271 |
| 1 <b>[</b> ] 1  | ' <b>[</b> '        | 7         | -0.080 | -0.083 | 8.0448 | 0.329 |
| 1 11 1          | 1 1                 | 8         | 0.050  | 0.002  | 8.2360 | 0.411 |
| ' <b>[</b> ] '  |                     |           |        | -0.095 | 8.7154 | 0.464 |
| ' <b>[</b> '    |                     |           |        | -0.145 | 9.0283 | 0.529 |
| 1 1             | 1 1                 |           | -0.019 |        | 9.0568 | 0.617 |
| 1               |                     | 12        | 0.350  | 0.292  | 18.987 | 0.089 |
| 1 1             | ' <u> </u> '        |           | -0.200 |        | 22.302 | 0.051 |
| ' <b>[</b> '    | ' <b>-</b> '        |           |        | -0.122 | 22.678 | 0.066 |
| 1 1             |                     | 15        | 0.078  | 0.059  | 23.207 | 0.080 |
| ' ] '           | ' <mark> </mark> '  | 16        | 0.000  | 0.060  | 23.207 | 0.108 |
| ' 🖳 '           | "   '               | 11.4114.1 | -0.120 | -0.071 | 24.510 | 0.106 |
| '               | ' [ '               | 18        |        | -0.007 | 26.019 | 0.099 |
| '               |                     |           | -0.008 | 0.053  | 26.025 | 0.130 |
| ! <b>-</b> . !  | <b>!</b> -!         | 5775      | -0.149 | -0.195 | 28.156 | 0.106 |
| . <u></u>       |                     | 21        | 0.057  | 0.010  | 28.475 | 0.127 |
| ''              |                     |           | -0.157 | -0.195 | 30.957 | 0.097 |
|                 | . <u></u>           | 23        | 0.235  | 0.157  | 36.634 | 0.035 |
| . <b></b> .     |                     | 24        |        | -0.001 | 37.251 | 0.041 |
|                 | '. .                | 2000      |        | -0.008 | 38.575 | 0.041 |
|                 |                     | 10000000  |        | -0.013 | 38.778 | 0.051 |
| . J .           |                     | 0.000     | -0.023 |        | 38.838 | 0.066 |
| 1 4 1           |                     | 28        | -0.090 | -0.087 | 39.797 | 0.069 |

#### Kapan Otokorelasi = 0?

## **Uji Bartlett**

- dilakukan untuk melihat signikansi  $r_k$  satu per satu. Barlet menunjukkan bahwa jika suatu time series dibentuk melalui proses white noise, maka sampel otokorelasi-nya akan berdistribusi normal dengan mean o dan standar deviasi 1/  $\sqrt{n}$ , dimana n banyaknya pengamatan, atau dinotasikan dengan  $r_k$  ~ N (0, 1/ $\sqrt{n}$ ). Bila n = 100, maka  $r_k$  ~ N (0, 0.1).
- Oleh karena itu, bila ada  $r_k > 0.2$  (dua kali standar deviasi), maka kita yakin dengan kepercayaan 95% bahwa  $\rho \neq 0$  dan berarti time series yang sedang kita analis bukan berasal dari proses white noise. Atau secara matematis dituliskan dengan:

## $r_k \pm Z_{\alpha/2}$ s.e; dimana s.e adalah standar error

 Signifikan atau tidaknya nilai autokorelasi melalui pengujian standar error (Se).

## Hipotesis yang digunakan:

$$H_0$$
:  $\rho_k = 0$  (Stasioner)  
 $H_1$ :  $\rho_k \neq 0$ 

- Jika interval rk tidak mengandung nilai o, maka H<sub>o</sub> tidak dapat ditolak, tetapi jika interval tidak mengandung nilai o, maka H<sub>o</sub> dapat ditolak.
- Pada Korelogram uji ini digambarkan dengan: garis putusputus
- Kelemahan: Kadang timbul keraguan dalam memutuskan stasioner atau tidak.

==→ Perlu uji formal

## Pemeriksaan Stasioneritas: Pormanteau Test

## **Box-Pierce Q Statistic**

Box-Pierce Q Statistic:

$$Q = n \sum_{k=1}^{m} \hat{\rho}_k^2$$

dimana: n = banyak sampel, m=panjang lag

• Jika statistik Q <  $\chi^2(\alpha)$ , H<sub>o</sub> diterima, berarti data deret waktu adalah stasioner

Date: 09/19/04 Time: 16:32 Sample: 1998:01 2003:05 Included observations: 64

| Autocorrelation | Partial Correlation |         | AC     | PAC    | Q-Stat           | Prob           |
|-----------------|---------------------|---------|--------|--------|------------------|----------------|
| - I             |                     | 1 -     | -0.255 | -0.255 | 4.3580           | 0.037          |
| 1 🗓 1           | 1 🗖 1               | 2 .     | -0.072 | -0.147 | 4.7128           | 0.095          |
| 1 1             | 1 🔲 1               | 3 -     | -0.056 | -0.125 | 4.9267           | 0.177          |
| 1 1             | 1 🔳                 | 4 -     | -0.024 | -0.095 | 4.9662           | 0.291          |
| 1 🗖             | <u> </u>            | 5 -     | -0.117 |        | 5.9424           | 0.312          |
| 1 1             | 1 1 1               | 6       | 0.150  | 0.039  | 7.5731           | 0.271          |
|                 |                     | 7 -     |        | -0.083 | 8.0448           | 0.329          |
| 1 11 1          | 1 1                 | 8       | 0.050  | 0.002  | 8.2360           | 0.411          |
| 1 1             |                     | 9.00    |        | -0.095 | 8.7154           | 0.464          |
|                 |                     | 21.7.27 |        | -0.145 | 9.0283           | 0.529          |
| 1 1             | 1 1                 | 2000    |        | -0.104 | 9.0568           | 0.617          |
| 1               | 1                   | 12      | 0.350  | 0.292  | 18.987           | 0.089          |
| 1               | 1 1                 |         | -0.200 |        | 22.302           | 0.051          |
|                 |                     | 1111111 |        | -0.122 | 22.678           | 0.066          |
| 1               | 1 1                 | 15      | 0.078  | 0.059  | 23.207           | 0.080          |
|                 | ' <b> </b> '        | 16      | 0.000  | 0.060  | 23.207           | 0.108          |
|                 |                     | 51.2    | -0.120 |        | 24.510           | 0.106          |
|                 |                     | 18      |        | -0.007 | 26.019           | 0.099          |
|                 |                     | 200     | -0.008 | 0.053  | 26.025           | 0.130          |
| !!              |                     | 0.500   | -0.149 | -0.195 | 28.156           | 0.106          |
|                 |                     | 21      | 0.057  | 0.010  | 28.475           | 0.127          |
|                 |                     | 0.9000  | 0.157  | -0.195 | 30.957           | 0.097          |
|                 |                     | 23      | 0.235  | 0.157  | 36.634           | 0.035          |
|                 |                     | 24      |        | -0.001 | 37.251           | 0.041          |
|                 |                     |         | -0.111 | -0.008 | 38.575           | 0.041          |
|                 |                     | 0.00    | -0.043 | -0.013 | 38.778<br>38.838 | 0.051<br>0.066 |
|                 |                     | 1000    | -0.023 |        | 39.797           | 0.069          |

Date: 09/10/04 Time: 10:50 Sample: 1/01/2002 12/31/2002 Included observations: 164

| Autocorrelation | Partial Correlation |    | AC    | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|-------|--------|--------|-------|
|                 | I I                 | 1  | 0.956 | 0.956  | 152.75 | 0.000 |
|                 | 1 1                 | 2  | 0.921 | 0.071  | 295.16 | 0.000 |
|                 | 1 1                 | 3  | 0.878 | -0.097 | 425.38 | 0.000 |
|                 | 1   1               | 4  | 0.839 | 0.016  | 545.13 | 0.000 |
|                 |                     | 5  | 0.805 | 0.051  | 656.13 | 0.000 |
|                 | 1 1                 | 6  | 0.773 | 0.004  | 759.11 | 0.000 |
|                 | 1 1                 | 7  | 0.741 | -0.024 | 854.30 | 0.000 |
|                 | 1 1                 | 8  | 0.711 | 0.013  | 942.58 | 0.000 |
|                 | 101                 | 9  | 0.676 | -0.074 | 1022.8 | 0.000 |
|                 | 1 11                | 10 | 0.647 | 0.042  | 1096.7 | 0.000 |
|                 | 1 1                 | 11 | 0.617 | 0.001  | 1164.6 | 0.000 |
|                 | 1 1                 | 12 | 0.581 | -0.111 | 1225.0 | 0.000 |
|                 |                     | 13 | 0.546 | -0.019 | 1278.9 | 0.000 |
|                 | 1 11                | 14 | 0.516 | 0.055  | 1327.2 | 0.000 |
|                 | 1 1                 | 15 | 0.488 | 0.012  | 1370.8 | 0.000 |
|                 |                     | 16 | 0.468 | 0.051  | 1411.1 | 0.000 |
|                 | 1 1                 | 17 | 0.446 | -0.010 | 1448.0 | 0.000 |
|                 | 101                 | 18 | 0.423 | -0.048 | 1481.4 | 0.000 |
|                 | 1 1                 | 19 | 0.399 | -0.017 | 1511.3 | 0.000 |
|                 | 1 1                 | 20 | 0.370 | -0.054 | 1537.2 | 0.000 |

## Pemeriksaan Stasioneritas: Pormanteau Test

## Ljung-Box (LB) Statistic

Ljung-Box Statistic:

$$LB = n(n+2)\sum_{k=1}^{m} \left(\frac{\hat{\rho}_k^2}{n-1}\right) \sim \chi^2_m$$

dimana: n = banyak sampel, m=panjang lag

- Jika statistik LB lebih kecil dari nilai kritis statistik tabel
   Chi-Square dengan taraf nyata α maka data stasioner.
- Lebih 'powerfull', Cocok untuk sampel kecil

# Ringkasan Prosedur Eviews untuk Pemeriksaan Stasioneritas

#### **Trend Data**

Dari workfile klik View.



• Selanjutnya klik *Graph*:



- Lakukan semua pilihan seperti gambar disamping.
- Klik OK, akan diperoleh grafik data

#### Autokorelasi dan Korelogram

Dari menu View, klik Correlogram. Muncul tampilan berikut:

Sample: 1 246



- Gunakan terlebih dahulu pilihan *level* pada *correlogram* of. Pilihan *Lag to include* = 36 (by default).
- Klik OK. Akan muncul output korelogram





# 3- The Unit Root Test

# Unit Root Stochastic Process

• Let's write the RWM  $Y_t = Y_{t-1} + u_t$ .... (4) as:

$$Y_t = \rho Y_{t-1} + u_{t-1}$$
  $-1 \le \rho \le 1 \dots (13)$ 

- If  $\rho = 1$ , (13) becomes a RWM (without drift).
- If  $\rho$  is in fact 1, we face what is known as the unit root problem (non-stationarity); as the variance of  $Y_t$  is not stationary.
- The name unit root is due to the fact that  $\rho = 1$ .
- Thus the terms non-stationarity, random walk, and unit root can be treated as synonymous.
- If, however,  $|\rho| \le 1$ , then the time series  $Y_t$  is stationary in the sense we have defined it.
- Note: Unit Root Stochastic Process will be further explained in Unit Root Test of Stationarity.

# The Unit Root Test

$$Y_t = \rho Y_{t-1} + u_t \quad -1 \le \rho \le 1$$

Jika  $\rho = 1 \rightarrow random walk model without drift \rightarrow artinya non stationary stochastic process$ 

Manipulasi Y<sub>t</sub>

$$Y_t - Y_{t-1} = \rho Y_{t-1} - Y_{t-1} + u_t$$

$$\Delta Y_t = (\rho - 1)Y_{t-1} + u_t$$

$$\Delta Y_t = \delta Y_{t-1} + u_t$$

Jika  $\delta$  = 0 , maka  $\rho$  = 1, artinya memiliki unit root sehingga tidak stasioner. Tetapi...

$$\Delta Y_t = u_t$$
$$Y_t - Y_{t-1} = u_t$$

Karena u<sub>t</sub> adalah white noise error term → stasioner Jadi data time series yang tidak stasioner tadi (random walk) menjadi stasioner setelah difference pertama

# The Unit Root Test (cont.)

- We have to take the first differences of  $Y_t$  and regress them on  $Y_{t-1}$  and see if the estimated slope co-efficient in this regression ( $\delta$ ) is zero or not.
- If it is zero, we conclude that  $Y_t$  is non-stationary.
- But if it is negative, we conclude that  $\mathbf{Y}_t$  is stationary.
- The only question is which test we use to find out if the estimated co-efficient of  $Y_{t-1}$  in (4.2) is zero or not?
- Unfortunately, under the null hypothesis that  $\delta = 0$  (i.e.,  $\rho = 1$ ), the t value of the estimated coefficient of  $Y_{t-1}$  does not follow the t distribution even in large samples; i.e. it does not have an asymptotic normal distribution.

# Unit Root Test: Dickey-Fuller (DF) Test

- Dickey and Fuller have shown that under the null hypothesis that  $\delta = 0$ , the estimated t-value of the coefficient of  $Y_{t-1}$  in (4.2) follows the  $\tau$  (tau) statistic.
- These authors have computed the critical values of the tau statistic on the basis of Monte Carlo simulations.
- Interestingly, if the hypothesis that  $\delta = 0$  is rejected (i.e. the time series is stationary), we can use the usual t test.

# **DF-Test**

- **Dickey-Fuller:** diuji dengan uji  $\tau$  (dibaca: tau) atau yang dikenal dengan Dickey Fuller Test (DF). Statistik ini selanjutnya dikembangkan oleh Mc. Kinnon
- Pengujian Dickey–Fuller (DF) dgn nilai τ-statistik:

$$\tau = \frac{\hat{\rho}}{Se(\hat{\rho})}$$

#### Hipotesis:

**Ho** :  $\delta$  = **0** atau  $\rho$  = 1 (**Tidak Stasioner**)

**H1**:  $\delta$  < **0** atau  $\rho$  < 1

- Nilai  $\tau$ -statistik dibandingkan  $\tau$ -McKinnon Critical Values.
- Tolak Ho berarti data stasioner. Jika kita tidak menolak hipotesis  $\delta = 0$ , maka  $\rho = 1$ . Artinya data memiliki unit root, maka data time series  $Y_t$  tidak stasioner.

DF diestimasi untuk 3 bentuk random walk yang berbeda, yaitu

1. Y<sub>t</sub> random walk

$$\Delta Y_{t} = \delta Y_{t-1} + u_{t}$$

2. Y<sub>t</sub> random walk with drift

$$\Delta Y_t = \beta_1 + \delta Y_{t-1} + u_t$$

3. Y<sub>t</sub> random walk with drift around a stochastic trend

$$\Delta Y_t = \beta_1 + \beta_2 t + \delta Y_{t-1} + u_t$$

Jika Ho ditolak, memiliki arti yang berbeda untuk masing bentuk

- 1. Y<sub>t</sub> stasioner dengan rata-rata nol
- 2.  $Y_t$  stasioner dengan rata-rata tidak nol yaitu  $\beta_1/(1-\rho)$
- 3. Y<sub>t</sub> stasioner disekitar tren deterministik

#### Unit Root Test:

# Augmented Dickey-Fuller (ADF) Test

- Model-model sebelumnya mengasumsikan u<sub>t</sub> tidak berkorelasi → Hampir tidak mungkin.
- Korelasi serial antara residual dgn  $\Delta Yt$ , dapat dinyatakan dalam bentuk umum proses autoregressive.
- Jika error term memiliki korelasi, maka dilakukan Augmented Dicky Fuller test (ADF) dengan meregresikan

$$\Delta Y_{t} = \beta_{1} + \beta_{2}t + \delta Y_{t-1} + \alpha_{1}\Delta Y_{t-1} + \alpha_{2}\Delta Y_{t-2} + ...\alpha_{1}\Delta Y_{t-2} + u_{t}$$

$$\Delta Y_{t} = \beta_{1} + \beta_{2}t + \delta Y_{t-1} + \alpha_{i} \sum_{i=1}^{m} \Delta Y_{t-i} + \varepsilon_{t}$$

Hipotesisnya sama dengan DF test

Berdasarkan model tersebut kita dapat memilih tiga model yang akan digunakan untuk melakukan Uji ADF, yaitu:

- 1. Model dengan intersep ( $\beta_1$ ) dan trend ( $\beta_2$ ), sebagaimana model diatas.
- 2. Model yang hanya intersep saja ( $\beta_1$ ), yaitu:

$$\Delta Y_{t} = \beta_{1} + \delta Y_{t-1} + \alpha_{i} \sum_{i=1}^{m} \Delta Y_{t-1} + \varepsilon_{t}$$

3. Model tanpa intersep dan trend (slop), yaitu:

$$\Delta Y_{t} = \delta Y_{t-1} + \alpha_{i} \sum_{i=1}^{m} \Delta Y_{t-1} + \varepsilon_{t}$$

Penghitungan manual cukup sulit → EViews

# Unit Root Test: Phillip Peron (PP) Test

- Asumsi penting dalam DF test adalah error term
   i.i.d. Sementara ADF menyesuaikan DF test untuk
   mengatasi masalah korelasi pada error term
   dengan menambahkan lagged difference terms
   terhadap regresi
- Phillip Peron menggunakan metode non parametrik untuk mengatasi masalah korelasi pada error term tanpa menambahkan lagged difference terms.

## Pemeriksaaan Stasioneritas: Unit Root Test / Uji Akar Unit (PP-Test)

 Nilai τ-statistik dari uji PP (Philip-Perron) dapat dihitung sbb:

$$\tau = \sqrt{\frac{r_0}{h_0}t_0} - \frac{h_0 - r_0}{2h_0\sigma}\sigma_{\theta}$$

dimana:

$$h_0 = r_0 + 2\sum_{r=1}^{M} \left(1 - \frac{j}{T}\right) r_j$$
 adalah spektrum dari  $\Delta$ Yt pada frekuensi nol,  $r_j$  adalah fungsi autokorelasi pada lag  $j$ ,  $t_0$  adalah  $\tau$ -statistik pada  $\theta$ , adalah standar error dari  $\theta$ , dan  $\sigma$  adalah standar error uji regresi.

 Prosedur uji PP dapat diaplikasikan melalui cara yg sama dengan uji DF.

#### **Uji Akar Unit**

• Dari menu View, klik Unit Root Test. Muncul tampilan berikut:



Null Hypothesis: IHSG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=15)

Contoh Output Uji Akar Unit (ADF test)

| ·                     |                       | t-Statistic | Prob.* |
|-----------------------|-----------------------|-------------|--------|
| Augmented Dickey-I    | Fuller test statistic | -2.454606   | 0.3506 |
| Test critical values: | 1% level              | -3.995956   |        |
|                       | 5% level              | -3.428273   |        |
|                       | 10% level             | -3.137529   |        |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

| <b>✓</b> F | ile l | Edit O | bject View | Proc  | Qui  | ck Opt | ions A | ld-ins | Wind  | low H | lelp  |      |
|------------|-------|--------|------------|-------|------|--------|--------|--------|-------|-------|-------|------|
| View       | Proc  | Object | Properties | Print | Name | Freeze | Sample | Genr   | Sheet | Graph | Stats | Iden |

Null Hypothesis: CLOSING has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

|                       |                     | t-Statistic | Prob.* |
|-----------------------|---------------------|-------------|--------|
| Augmented Dickey-Fu   | ller test statistic | -0.785722   | 0.9613 |
| Test critical values: | 1% level            | -4.107947   |        |
|                       | 5% level            | -3.481595   |        |
|                       | 10% level           | -3.168695   |        |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CLOSING)

Method: Least Squares Date: 04/15/15 Time: 09:45

Sample (adjusted): 1/04/2005 4/01/2005 Included observations: 64 after adjustments

| Variable           | Coefficient | Std. Error         | t-Statistic | Prob.    |
|--------------------|-------------|--------------------|-------------|----------|
| CLOSING(-1)        | -0.034075   | 0.043368           | -0.785722   | 0.4351   |
| С                  | 7.179712    | 9.221236           | 0.778606    | 0.4392   |
| @TREND(1/03/2005)  | 0.066212    | 0.043416           | 1.525052    | 0.1324   |
| R-squared          | 0.112162    | Mean dependent var |             | 1.034844 |
| Adjusted R-squared | 0.083052    | S.D. depende       | 1.945823    |          |
| S.E. of regression | 1.863269    | Akaike info cr     | iterion     | 4.128282 |
| Sum squared resid  | 211.7780    | Schwarz crite      | rion        | 4.229480 |
| Log likelihood     | -129.1050   | Hannan-Quin        | 4.168149    |          |
| F-statistic        | 3.853107    | Durbin-Watso       | n stat      | 1.554050 |
| Prob(F-statistic)  | 0.026557    |                    |             |          |



# Assigment #03

- Uji stasioneritas data yang telah ditugaskan sebelumnya, dengan metode:
  - Grafik
  - Korelogram
  - Unit Root Test