Professora Juliana Cobre

Entregar Exercícios 8 e 16 em 13/07/2011

Exercício 1. Suponha que a variável aleatória X tenha os valores possíveis $1, 2, 3, \ldots$, e $P(X = j) = 1/2^j, j = 1, 2, \ldots$

- (a) Calcule P(X ser par).
- **(b)** Calcule $P(X \ge 5)$.
- (c) Calcule P(X ser divisível por 3).

Exercício 2. Considere uma variável aleatória X com os resultados possíveis $0, 1, 2, \ldots$ e $P(X = j) = (1-a)a^j, j = 0, 1, 2, \ldots$

- (a) Para que valores de a o modelo acima tem sentido?
- (b) Verifique que essa expressão representa uma distribuição de probabilidade.
- (c) Mostre que, para quaisquer dois inteiros positivos s e t,

$$P(X > s + t | X > s) = P(X \ge t).$$

Exercício 3. Seja X a duração da vida de uma válvula eletrônica e admita-se que X possa ser representada por uma variável aleatória contínua, com fdp $f(x) = be^{-bx}, x \ge 0$. Seja $p_j = P(j \le X < j + 1)$. Verifique que p_j é da forma $(1-a)a^j$ e determine a.

Exercício 4. A variável aleatória contínua X tem fdp $f(x) = 3x^2, -1 \le x \le 0$, se b for um número que satisfaça a -1 < b < 0, calcule P(X > b|X < b/2).

Exercício 5. Suponha que f e g sejam fdp no mesmo intervalo $a \le x \le b$.

- (a) Verifique que f + g não é uma fdp nesse intervalo.
- (b) Verifique que, para todo β , $0 < \beta < 1$, $\beta f(x) + (1 \beta)g(x)$ é uma fdp nesse intervalo.

Exercício 6. A percentagem de álcool (100X) em certo composto pode ser considerada uma variável aleatória, em que X, 0 < X < 1, tem a seguinte fdp: $f(x) = 20x^3(1 - x)$, 0 < x < 1.

- (a) Estabeleça a expressão da fd F e esboce seu gráfico.
- (b) Calcule $P(X \leq 2/3)$.
- (c) Suponha que o preço de venda desse composto dependa do conteúdo de álcool. Especificamente, se 1/3X < 2/3, o composto se vende por C_1 dólares/galão; caso contrário, ele se vende por C_2 dólares/galão. Se o custo for C_2 dólares/galão, calcule a distribução de probabilidade do lucro líquido por galão.

Exercício 7. Seja X uma variável aleatória contínua, com fdp dada por

$$f(x) = \begin{cases} ax, 0 \le x \le 1, \\ a, 1 < x \le 2, \\ -ax + 3a, 2 < x \le 3, \\ 0, \text{ para quaisquer outros valores.} \end{cases}$$

- (a) Determine a constante a.
- (b) Determine a fd F e esboce o seu gráfico.
- (c) Se X_1, X_2 e X_3 forem três observações independentes de X, qual será a probabilidade de, exatamente, um de esses três números ser maior do que 1.5?

Exercício 8. Suponha que a duração da vida (em horas) de certa válvula seja uma variável aleatória contínua X com fdp dada por $f(x) = 100/x^2$, para x > 100, e zero caso contrário.

- (a) Qual será a probabilidade de que uma válvula dure menos de 200 horas, se soubermos que ela ainda está funcionando após 150 horas de serviço?
- (b) Se três dessas válvulas forem instaladas em um conjunto, qual será a probabilidade de que exatamente uma delas tenha de ser substituída após 150 horas de serviço?
- (c) Qual será o número máximo de válvulas que poderá ser colocado em um conjunto, de modo que exista uma probabilidade de 0,5 de que após 150 horas de serviço todas elas estejam funcionando?

Exercício 9. Suponha que a variável aleatória X tenha valores possíveis $1, 2, 3, \dots$ e que

$$P(X = r) = k(1 - \beta)^{r-1}, 0 < \beta < 1,$$

- (a) Determine a constante k.
- (b) Ache a moda desta distribuição, isto é, o valor de r que torne P(X=r) a maior de todas.

Exercício 10. Suponha que X seja uniformemente distribuída sobre (-1,1), ou seja, f(x)=1/2,-1< x<1. Seja $Y=4-X^2$. Achar a fdp de Y, g(y), e fazer seu gráfico. Verifique também que g(y) é a fdp adequada.

Exercício 11. Suponha que X seja uniformemente distribuída sobre (-1,1), ou seja, f(x) = 1/2, -1 < x < 1. Ache a fdp das seguintes variáveis aleatórias:

- (a) $Y = \text{sen}(\pi/2)X$.
- **(b)** $Z = \cos(\pi/2)X$
- (c) W = |X|

Exercício 12. Suponha que a variável aleatória contínua X tenha fdp $f(x) = e^{-x}, x > 0$. Ache a fdp das seguintes variáveis aleatórias:

(a)
$$Y = X^2$$
 (b) $Z = 3/(X+1)^2$

Exercício 13. Suponha que a variável aleatória discreta X tome os valores 1, 2, e 3 com igual probabilidade. Ache a distribuição de probabilidade de Y=2X+3.

Exercício 14. Suponha que o raio de uma esfera seja uma variável aleatória contínua. Em virtude de imprecisões do processo de fabricação, os raios das diferentes esferas podem ser diferentes. Suponha que o raio R tenha fdp f(r) = 6r(1-r), 0 < r < 1. Ache a fdp do volume V e da área superficial S da esfera.

Exercício 15. A energia radiante (em Btu/horas/pé²) é dada pela seguinte função da temperatura T (em escala Fahrenheit): $E=0,173(T/100)^4$. Suponho que a temperatura T seja considerada uma variável contínua com fdp $f(t)=200t^{-2},40 \le t \le 50$. Estabeleça a fdp da energia radiante E.

Exercício 16. Suponha que $P(X \leq 0, 29) = 0,75$, em que X é uma variável aleatória contínua com alguma distribuição definida sobre (0,1). Quando Y = 1 - X, determinar k de modo que $P(Y \leq k) = 0,25$.