Awkward Arrays: Accelerating scientific data analysis on irregularly shaped data

Framework, #2103945

PI: Jim Pivarski (Princeton University)

Example of an "awkward" array

```
array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])
```

NumPy-like expression

```
output = np.square(array["v", ..., 1:])
```

Result

```
output.to list()
        [[], [4], [4, 9]],
       [[4, 9, 16], [4, 9, 16, 25]]
```

Equivalent Python

```
output = []
for sublist in python objects:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["v"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)
```

140 seconds

22 GB of memory

(for a similar calculation 10 million times larger, single threaded)

1.5 seconds 2.1 GB of memory

Henry Schreiner Princeton University

Janna Ochorno Princeton University Princeton University Princeton University

Ioana Ifrim

Angus Hollands University of Birmingham → Princeton University

of Technology

Delhi Technological

Arvan Roy Manipal Institute of Technology

Douglas Davis Anaconda, Inc.

Martin Durant Anaconda, Inc

24 more contributors on GitHub

(research scientists)