Moduł 3: Zasady projektowania reaktorów chemicznych

Projektowanie reaktorów chemicznych dr inż. Jan Krzysztoforski Semestr letni 2021

Treść modułu

- Procedura projektowania reaktorów chemicznych (powtórzenie)
- Charakterystyka reakcji chemicznej
- Budowa i zasada działania reaktorów chemicznych
- Wybrane aspekty projektowania reaktorów chemicznych
 - Wybór warunków prowadzenia reakcji chemicznej
 - Wybór podzespołów
 - Bezpieczeństwo
 - Analiza kosztów
 - Powiększanie skali
 - Automatyka procesowa

Zakres projektu reaktora chemicznego

- Typ i konstrukcja reaktora
- Bilans pędu, masy i energii
- Zestawienie strumieni wlotowych i wylotowych (w tym zapotrzebowanie na media energetyczne)
- Wytyczne do zaprojektowania aparatów pomocniczych
- Projekt aparatury kontrolno-pomiarowej oraz układów regulacji automatycznej
- Dobór wszystkich komponentów reaktora
- Analiza kosztów
- Projekt wykonawczy reaktora

Schemat instalacji przemysłowej

Procedura projektowania reaktorów chemicznych

Dane wejściowe:

- Produkt
- Reakcja chemiczna
- Zdolność produkcyjna
- Stopień przemiany, selektywność, wydajność reakcji (wstępne założenia)

Procedura projektowania reaktorów chemicznych wg: Towler G., Sinnot, R., Chemical Engineering Design. Principles. Practice and Economics of Plant and Process Design, Elsevier, 2013 (Rozdział 15).

Charakterystyka reakcji chemicznej

$$v_A A + v_B B \xrightarrow{kat.} v_C C + v_D D$$

- Równanie stechiometryczne (substraty i produkty, ich proporcje)
- Mechanizm (etapy reakcji, liczba faz, katalizator)
- Kinetyka (szybkość reakcji w funkcji warunków reakcji)
- Termodynamika
 - Szybkość reakcji (stała szybkości reakcji)
 - Efekt cieplny
 - Równowaga reakcji

Szczegółowe informacje: Inżynieria Reaktorów Chemicznych 1, Moduł 2

Budowa i zasada działania reaktorów chemicznych

Rodzaje omawianych reaktorów:

- Reaktory jednofazowe
 - Niekatalityczne
 - Katalityczne
- Reaktory wielofazowe
 - Niekatalityczne
 - Katalityczne
- Bioreaktory
- Reaktory specjalne

Projektowanie reaktorów chemicznych

Dwa podstawowe typy zadań projektowych:

- Ile wynosić będzie stopień przemiany α_A w danym typie reaktora dla zadanego czasu przestrzennego τ ?
- Ile musi wynosić czas przestrzenny τ , aby w danym typie reaktora uzyskać zadany stopień przemiany α_A ?

Rozwiązujemy tzw. równanie wydajności reaktora:

$$f(\alpha_A, \tau, \mathbf{P}) = 0$$

Inne typy zadań projektowych: maksymalizacja konwersji, selektywności, wydajności reakcji przy zadanych ograniczeniach.

Problem doboru układu reaktorów można zawsze sprowadzić do problemu rozwiązania układu równań ww. typu.

Reaktory idealne

REAKTOR OKRESOWY

REAKTOR PÓŁOKRESOWY

REAKTORY CIĄGŁE

Reaktor zbiornikowy z idealnym wymieszaniem

Reaktor rurowy z przepływem tłokowym

Szczegółowe informacje: Inżynieria Reaktorów Chemicznych 1, Moduł 3

Reaktor okresowy

Charakterystyka:

- Nie wymienia masy z otoczeniem
- Pracuje zawsze w stanie nieustalonym
- Typowa konstrukcja: reaktor zbiornikowy z mieszadłem i wymiennikiem ciepła
- Zmiana objętości zazwyczaj pomijalnie mała
- Zaleta: możliwość uzyskania wysokich stopni przemiany przy odpowiednio długim czasie prowadzenia reakcji
- Wada: wysokie koszty ruchowe (napełnianie, opróżnianie i czyszczenia reaktora)

Zastosowanie:

- badanie kinetyki reakcji
- produkcja eksperymentalna
- produkcja drogich produktów w małych ilościach (m.in. biotechnologia, przemysł farmaceutyczny)

Reaktor półokresowy

Charakterystyka:

- Reaktor pracuje podobnie do reaktora okresowego, ale jest dodatkowo wyposażony w:
 - A. strumień wlotowy (z substratem), ALBO
 - B. Strumień wylotowy (głównie z produktem).
- Pracuje w warunkach nieustalonych.
- Umożliwia precyzyjną kontrolę szybkości reakcji.
- Stosowany jest do reakcji w fazie ciekłej lub w układzie gaz-ciecz.

Zastosowanie:

A. Reaktor półokresowy ze strumieniem wlotowym:

- reakcje silnie egzotermiczne,
- reakcje bardzo szybkie,
- reakcje złożone, kontrolowane dopływem jednego z substratów.

B. Reaktor półokresowy ze strumieniem wylotowym:

reakcje odwracalne (odprowadzanie produktu z układu reakcyjnego).

Reaktor zbiornikowy z idealnym wymieszaniem (CSTR)

Charakterystyka:

- Do reaktora w sposób ciągły dopływają substraty i w sposób ciągły odpływa mieszanina reakcyjna.
- We wnętrzu reaktora panuje idealne wymieszanie (stąd skład strumienia wylotowego odpowiada składowi mieszaniny reakcyjnej).
- Najczęściej pracuje w stanie ustalonym.
- Zalety: duża pojemność cieplna, tania konstrukcja, umożliwia uzyskanie produktu o wysokiej i powtarzalnej jakości, łatwa kontrola temperatury.
- Wady: Możliwe występowanie stref martwych lub bocznikowania.

Zastosowanie:

- Produkcje wielkotonażowe
- Reakcje homogeniczne w fazie ciekłej, wymagające mieszania (niekoniecznie szybkie)
- Bioreaktory, w szczególności fermentory

Reaktor rurowy z przepływem tłokowym (PFR)

Charakterystyka:

- Reaktor zrealizowany w postaci rury
- Przepływ tłokowy (płaski profil prędkości), założenie o całkowitej segregacji w kierunku osiowym oraz o idealnym wymieszaniu w kierunku promieniowym
- Skład mieszaniny reakcyjnej zmienia się wzdłuż reaktora
- Praca zazwyczaj w stanie ustalonym (człon akumulacyjny jest równy zero)

Zastosowania:

- reakcje szybkie
- reakcje głównie w fazie gazowej, lecz również w fazie ciekłej (niekatalityczne i katalityczne)

Kaskada reaktorów CSTR

- Uzyskanie charakterystyki układu zbliżonej do reaktora rurowego z przepływem tłokowym
- Możliwość chłodzenia/grzania międzystopniowego
- Możliwość zastosowania zmiennych warunków prowadzenia reakcji w kolejnych stopniach kaskady

Reaktor rurowy z recyrkulacją

- Realizacja charakterystyki reaktora CSTR w aparacie o konstrukcji odpowiadającej reaktorowi PFR
- Możliwość chłodzenia/grzania w pętli cyrkulacyjnej
- Reaktory kontaktowe (do reakcji katalitycznych ze katalizatorem stałym w postaci nieruchomego złoża)

Układy reaktorów

- Układ szeregowy
- Układ równoległy
- Układ szeregowo-równoległy
- Układ z separatorem i recyrkulacją

Zasada 1: Dla reakcji pojedynczych

W celu minimalizacji objętości reaktora:

- Dla reagentów, których rząd w reakcji wynosi n>0, utrzymujemy wysokie stężenia.
- Dla reagentów, których rząd w reakcji wynosi n<0, utrzymujemy niskie stężenia.
- Dla reagentów, których rząd w reakcji wynosi n=0, ich stężenia nie mają znaczenia.

Zasada 2: Dla reakcji szeregowych

Dla reakcji szeregowej $A \rightarrow R \rightarrow S \rightarrow T \rightarrow ... Y \rightarrow Z$:

W celu maksymalizacji produkcji produktu pośredniego, należy unikać mieszania strumieni różniących się składem. Lepszy będzie zatem reaktor PFR niż reaktor CSTR lub reaktor PFR z recyrkulacją.

Zasada 3: Dla reakcji równoległych

Dla reakcji równoległych o różnej rzędowości reakcji:

W celu uzyskania najlepszego rozkładu produktów:

- wysokie stężenie C_A faworyzuje reakcję o najwyższej rzędowości (T),
- niskie stężenie C_A faworyzuje reakcję o najniższej rzędowości (R),
- jeśli pożądany produkt (S) powstaje w reakcji o pośredniej rzędowości, pewna pośrednia wartość C_A będzie optymalna,
- dla reakcji równoległych, nieróżniących się między sobą rzędowością, stężenie substratu nie będzie miało znaczenia.

Zasada 4: Dla reakcji złożonych

Złożone układy reakcji mogą być analizowane po rozbiciu na czynniki pierwsze:

- reakcje równoległe,
- reakcje szeregowe.

Przykład: reakcje szeregowo-równoległe

- Substrat A powinien być dozowany zgodnie z regułami dla reakcji szeregowych.
- Substrat B powinien być dozowany zgodnie z regułami dla reakcji równoległych.

Zasada 5: Praca ciągła i nieciągła

Dowolny rozkład produktów może zostać osiągnięty w stacjonarnych procesach przepływowych lub w równoważnym mu procesie nieprzepływowym (i vice versa).

Zasada 6: Wpływ temperatury na rozkład produktów

Dla reakcji złożonych:

$$A \xrightarrow{1} R \xrightarrow{2} S$$

$$A \xrightarrow{1} R \xrightarrow{2} S$$

$$k_{1} = k_{10}e^{-\frac{E_{1}}{RT}}$$

$$k_{2} = k_{12}e^{-\frac{E_{2}}{RT}}$$

- Wysoka temperatura (lub podwyższenie temperatury) sprzyja reakcji o wyższej energii aktywacji.
- Niska temperatura (lub obniżenie temperatury) sprzyja reakcji o niższej energii aktywacji.

Szczegółowe informacje: Inżynieria Reaktorów Chemicznych 1, Moduł 4

Wnioski praktyczne dla inżynierii reaktorów idealnych

- 1. Jeśli tylko możemy, stosujemy reaktory o działaniu ciągłym.
- Przy użyciu reaktora półokresowego możemy kontrolować szybkość reakcji szybkością dozowania substratu.
- 3. Reaktor PFR jest "uciągloną" wersją reaktora okresowego.
- 4. Dla n>0, reaktor PFR jest lepszy niż reaktor CSTR.
- 5. Reaktor CSTR jest wskazany, gdy r(α) posiada maksimum dla dodatniej wartości α (np. reakcja autokatalityczna lub wyraźnie egzotermiczna).
- 6. Układy reaktorów umożliwiają lepsze dopasowanie się do specyfiki danej reakcji chemicznej.
- 7. W przypadku reakcji egzotermicznych w reaktorze CSTR może wystąpić niestabilny stan stacjonarny.

Wnioski praktyczne dla inżynierii reaktorów idealnych

- 8. Dla reakcji autokatalitycznych można zastosować szeregowy układ reaktorów CSTR—PFR lub reaktor PFR z częściową recyrkulacją produktu.
- 9. Dla reakcji odwracalnych warunki reakcji dobieramy w oparciu o regułę przekory Le Chateliera i Browna.
- 10. Dla reakcji równoległych dobieramy optymalne warunki dla reakcji, która daje nam pożądany produkt.
- 11. Dla reakcji szeregowych, jeśli pożądanym produktem jest produkt pośredni, powinniśmy prowadzić reakcję do momentu uzyskania jego maksymalnego stężenia.

Szczegółowe informacje: Inżynieria Reaktorów Chemicznych 1, Moduły 3 i 4

Modele matematyczne dla reaktorów rzeczywistych

- Rozkład czasu przebywania (RTD)
- Model kompartmentowy
- Model dyspersyjny
- Model konwekcyjny z przepływem laminarnym
- Modele mieszania

Źródło: Levenspiel

Reaktory jednofazowe katalityczne

- Opis matematyczny i zasady doboru reaktora są analogiczne do reaktorów jednofazowych niekatalitycznych.
- Pojawia się dodatkowy problem separacji katalizatora oraz jego ponownego użycia.
- W praktyce do reakcji katalitycznych stosuje się najczęściej reaktory wielofazowe.

Reaktory wielofazowe – wprowadzenie

Najważniejsze aspekty projektowania reaktorów wielofazowych:

- Ile faz występuje w reaktorze i jakiego są typu?
- Jakie panują warunki dla transportu pędu, ciepła i masy?
- Czy reakcja jest reakcją katalityczną?
- W której fazie przebiega reakcja?
- Jaka jest powierzchnia międzyfazowa?
- Jaki jest schemat kontaktowania się faz?
- Jaki jest czynnik decydujący o szybkości reakcji?
- Jaka konstrukcja reaktora najlepiej się sprawdzi?

Rodzaje reaktorów wielofazowych

Reaktory niekatalityczne:

- Reaktor ciecz-gaz (absorpcja z reakcją chemiczną),
- Reaktor ciecz-para (destylacja reaktywna),
- Reaktor ciecz-ciecz (ekstrakcja reaktywna),
- Reaktor ciecz-ciało stałe.

Reaktory katalityczne:

- Reaktory dwufazowe:
 - Reaktor ze złożem nieruchomym,
 - Reaktor ze złożem fluidalnym;
- Reaktory trójfazowe:
 - Reaktor strużkowy,
 - Reaktor zawiesinowy,
 - Reaktor ze złożem fluidalnym.

Reaktory wielofazowe – kontaktowanie się faz

Schematy kontaktowania się faz:

Źródło: Levenspiel

Reaktory dwufazowe G/L (L/L)

Dwa rozwiązania konstrukcyjne: reaktory kolumnowe i zbiornikowe

- 1. Reaktor (absorber) natryskowy
- 2. Reaktor (absorber) z wypełnieniem
- 3. Reaktor (absorber) półkowy
- Reaktor (absorber) barbotażowy mechaniczny
- 5. Mieszalnik statyczny
- 6. Zbiornik bełkotkowy/barbotażowy
- Zbiornik bełkotkowy/barbotażowy z mieszadłem

Powyższe rozwiązania konstrukcyjne można zastosować w reaktorach ciecz-gaz, ciecz-para oraz ciecz-ciecz.

Reaktory dwufazowe G/L

Różnice w rozwiązaniach konstrukcyjnych:

- Stosunek objętościowy G/L
- Powierzchnia międzyfazowa
- Współczynniki wnikania masy k_g oraz k_l
- Siły napędowe (wynikające ze schematu kontaktowania się faz)

Reaktory G/L – charakterystyka i zasady doboru

Sposób kontaktowania się faz (rodzaje przepływów):

- Kolumny: tłokowy G/tłokowy L
- Zbiorniki bełkotkowe: tłokowy G/wymieszanie L
- Zbiorniki bełkotkowe z mieszadłem: wymieszanie G/wymieszanie L Aparaty kolumnowe mają największą siłę napędową, zbiorniki bełkotkowe z mieszadłem mają najmniejszą siłę napędową.

Współczynniki wnikania masy:

- Krople w gazie: duże $k_{\it q}$, małe $k_{\it l}$
- Pęcherze w cieczy: małe k_l , duże k_g

Reaktory G/L - charakterystyka i zasady doboru

Przepływy

- Kolumny z wypełnieniem $F_l/F_g \approx 10$ (dla 1 bar)
- Inne aparaty: większa elastyczność w doborze stosunku $F_l/\ F_g$

Gdy dominuje opór w warstewkach granicznych G/L:

- Maksymalizować powierzchnię międzyfazową a (zbiorniki z mieszadłem i kolumny)
- Dla dużych oporów w warstewce L unikać reaktorów natryskowych
- Dla dużych oporów w warstewce G unikać reaktorów barbotażowych

Gdy dominuje opór w głębi fazy L:

- Unikać reaktorów natryskowych (mały stosunek V_l / V_g)
- Wykorzystać reaktory zbiornikowe (duży stosunek V_l/V_g)

Reaktory G/L – charakterystyka i zasady doboru

Rozpuszczalność

- Dobrze rozpuszczalne gazy szybkość kontroluje warstewka G (unikać reaktorów barbotażowych)
- Słabo rozpuszczalne gazy szybkość kontroluje warstewka L (unikać reaktorów natryskowych)

Reakcja zmniejsza opór w warstewce L:

- Reakcja nie pomaga w absorpcji gazów dobrze rozpuszczalnych
- Reakcja pomaga w absorpcji gazów słabo rozpuszczalnych i przyspiesza przebieg procesu

Reaktory G/L – podsumowanie

Table 24.1 Characteristics of G/L Contactors (from Kramers and Westerterp, 1961).

			•	1,	
Fi P. 44		<i>a</i>	$f_l = \frac{V_l}{V}$		
Flow Pattern	Contactor	(m^2/m^3)	(-)	Capacity	Comments
Counter Current Flow	Spray tower	60	0.05	Low	Good for very soluble gases high k_g/k_l
	Packed bed	100	0.08	High	Good all rounder, but must have $F_l/F_g \approx 10$
	Plate tower	150	0.15	Medium-high	, g
	Staged bubble column	200	0.9	Low	Needs mechanical mixer or pulsing device. Good for slightly soluble gases and L_1/L_2 . Has low k_g/k_l .
Cocurrent flow	Static mixer	200	0.2-0.8	Very high	Very flexible, little reported data $\bar{t}_g \cong \bar{t}_l$.
Mixed flow of L	Bubble tank	20	0.98	Medium	Cheap to build
	Agitated tank	200	0.9	Medium	Cheap to build but needs a mechanical agitator

Źródło: Levenspiel

Reakcje chemiczne w ciele stałym

Dwa podstawowe schematy przereagowania cząstek ciał stałych:

Reaktory wielofazowe niekatalityczne – modele matematyczne

Model stopniowego przekształcania (progressive conversion model)

Model kurczącego się rdzenia (shrinking core model)

Źródło: Levenspiel

Model kurczącego się rdzenia

Etapy transportu masy i reakcji chemicznej:

Źródło: Levenspiel

Model kurczącego się rdzenia

Etapy transportu masy i reakcji chemicznej:

Źródło: Levenspiel

Rodzaje: **reaktor strużkowy** (trickle bed reactor), **reaktor zawiesinowy** (slurry reactor), **reaktor fluidalny** (fluidized bed reaktor)

Kluczowe aspekty w doborze reaktora:

- miejsce występowania dominującego oporu transportu masy,
- charakterystyka schematu kontaktowania faz,
- rodzaj aparatury pomocniczej.

Ostateczna decyzja zapada na bazie analizy ekonomicznej, biorąc pod uwagę ww. czynniki.

Szybkość procesu – wybieramy reaktor, który wspomaga najwolniejszy etap procesu:

- główny opór transportu masy w warstewce G/L → duża powierzchnia międzyfazowa
- główny opór na granicy faz L/S \rightarrow duża powierzchnia właściwa ciała stałego
- główny opór to transport dyfuzyjny w porach → małe cząstki ciała stałego

Wyznaczanie najwolniejszego etapu na podstawie badań doświadczalnych, zmieniając pojedyncze parametry procesowe przy innych niezmienionych.

Kontaktowanie się faz:

- przepływ tłokowy dla składnika będącego w niedomiarze
- prowadzenie procesu w przeciwprądzie

Aparatura pomocnicza:

- reaktory zawiesinowe wykorzystują małe cząstki katalizatora (=małe opory dyfuzji wewnątrz porów), natomiast pojawia się problem z późniejszą separacją.
- reaktory strużkowe nie wykazują tych problemów, ale cechują się większym oporem transportu masy. Nie jest to jednak kłopotliwe gdy:
 - reakcja jest bardzo wolna, lub
 - reakcja jest bardzo szybka i przebiega na nieporowatych cząstkach fazy stałej, pokrytych katalizatorem.

Podsumowanie:

Reaktory strużkowy jest najprostszy, reaktor zawiesinowy umożliwia większą szybkość procesu, reaktor fluidalny ma cechy pośrednie między reaktorem strużkowym i zawiesinowym.

Bioreaktory

Typy bioreaktorów:

- bioreaktory zbiornikowe z mieszadłem
- bioreaktory barbotażowe (standardowe, air-lift, wieżowe)
- bioreaktory ze złożem nieruchomym
- bioreaktory ze złożem fluidalnym
- fotobioreaktory

Bioreaktor zbiornikowy z mieszadłem

Cechy:

- Różne tryby pracy:
 - reaktor okresowy
 - reaktor półokresowy
 - reaktor ciągły
- Geometria:
 - H/D w zakresie od 3 do 5
 - D_m/D wynosi ok. 1/3
- Zalety:
 - Dobre wymieszanie
 - Efektywne napowietrzanie
 - Szeroki zakres skali procesu
 - Uniwersalność

Bioreaktor barbotażowy

Cechy:

- Strumień gazu odpowiada za napowietrzanie oraz mieszanie
- Możliwość zastosowania perforowanych płytek, sprzyjających mieszaniu
- Różne tryby pracy:
 - reaktor półokresowy
 - reaktor ciągły
- Geometria:
 - H/D w zakresie od 4 do 6
- Rozwiązania konstrukcyjne:
 - Bioreaktor barbotażowy
 - Bioreaktor air-lift
 - z cyrkulacją zewnętrzną
 - z cyrkulacją wewnętrzną
 - Bioreaktor kolumnowy

Bioreaktor air-lift

Bioreaktory typu air-lift zapewniają lepsze wymieszanie w stosunku do standardowego reaktora barbotażowego.

Bioreaktor wieżowy

Cechy:

- Duża wysokość i konstrukcja dwustrefowa
- Mieszanie za sprawą przepływu powietrza
- Cyrkulacja biomasy za sprawą zmiennej szerokości bioreaktora
- Dolna część bioreaktora
 - Wysokie ciśnienie hydrostatyczne
 - Dobra rozpuszczalność tlenu
 - Unoszenie biomasy
- Górna część reaktora
 - Niskie ciśnienie hydrostatyczne
 - Słaba rozpuszczalność CO₂
 - Opadanie biomasy
- Dobre warunki wymieszania i transportu masy przy równoczesnym braku ruchomych części

Bioreaktor ze złożem nieruchomym

Cechy:

- Złoże nieruchome zawierające biokatalizator (enzymy/komórki, unieruchomione na złożu)
- Przepływ od dołu lub od góry (grawitacyjnie)
- Substraty (w tym pożywka) są doprowadzane w strumieniu wlotowym
- Reakcja zachodzi w fazie stałej
- Produkty są odprowadzane w strumieniu wylotowym
- Możliwość napowietrzania od dołu
- Sterowanie wydajnością przez zmianę strumienia objętościowego płynu
- Brak akumulacji produktu wewnątrz reaktora (korzystne w przypadku inhibicji produktem)

Bioreaktor ze złożem fluidalnym

Cechy:

- Konstrukcja analogiczna do bioreaktora barbotażowego/wieżowego
- Biomasa/biokatalizator tworzy osobną fazę stałą (immobilizowane enzymy/komórki)
- Intensyfikacja transportu masy i napowietrzania
- Wymagana jest odpowiednia gęstość cząstek fazy stałej, aby możliwe było wytworzenie złoża fluidalnego

Fotobioreaktor

Cechy:

- Ekspozycja na światło słoneczne (tańsze) lub sztuczne
- Kolektory słoneczne korpusy szklane lub z przezroczystego tworzywa sztucznego
- Cyrkulacja medium reakcyjnego przez kolektory słoneczne
- Konieczny jest ciągły ruch medium reakcyjnego oraz brak powstawania osadów
- Niezbędne jest chłodzenie kolektorów
- Mikroorganizmy rosną w ciągu dnia, a wytwarzają produkty w ciągu nocy

Reaktory specjalne

Reaktory membranowe

- Reaktory zintegrowane
- Zastosowanie w m.in. biotechnologii
- Dobór modułu membranowego pod zastosowanie
- Wyzwania: wydajność i trwałość rozwiązania (fouling)
- Możliwość immobilizacji katalizatorów na membranie

Palniki, piece i silniki

- Zastosowanie w różnych gałęziach przemysłu
- Optymalizacja pracy pod względem sprawności
- Minimalizacja produkcji CO₂, CO oraz NO_x

Reaktory elektrochemiczne

- Elektroliza i galwanizacja
- Ogniwa galwaniczne (pojemność, trwałość, szybkość ładowania, bezpieczeństwo)
- Ogniwa paliwowe

Reaktory specjalne

Reaktory ultradźwiękowe

- Wspomaganie mieszania i reakcji chemicznej
- Podstawy teoretyczne: sonochemia
- Wyzwania: wytwarzanie ciepła

Reaktory mikrofalowe

- Wspomaganie reakcji chemicznych, w tym reakcji polimeryzacji
- Precyzyjne dostarczanie ciepła do układu reakcyjnego
- Wyzwania: dobór parametrów promieniowania oraz geometrii układu pod dane zastosowanie

Fotoreaktory

- Wykorzystanie zjawiska fotokatalizy
- Zastosowanie: np. uzdatnianie wody, oczyszczanie powietrza, hodowla alg

Reaktory specjalne

Reaktory plazmowe

- Wykorzystanie sztucznie wytworzonej plazmy
- Zastosowanie: usuwanie zanieczyszczeń, powlekanie
- Wyzwania: skład i jakość plazmy, sterowanie procesem

Reaktory radiacyjne

- Zastosowanie: sterylizacja, reakcje polimeryzacji
- Wyzwania: dawka, rozwiązanie konstrukcyjne, sterowanie, bezpieczeństwo

Reaktory jądrowe

- Jeden z filarów energetyki XXI wieku
- Wyzwania:
 - Cykl termodynamiczny
 - Rozwiązania konstrukcyjne
 - Sterowanie i regulacja
 - Systemy zabezpieczające

Wybrane aspekty projektowania reaktorów chemicznych

- 1. Wybór warunków prowadzenia reakcji chemicznej
- 2. Wybór podzespołów
 - Mieszanie
 - Wymiana ciepła
 - Katalizator
- 3. Bezpieczeństwo
- 4. Analiza kosztów
- 5. Powiększanie skali
- 6. Automatyka procesowa

- 1. Reakcja chemiczna lub biochemiczna
- Katalizator
- 3. Temperatura
- 4. Ciśnienie
- 5. Faza, w której przebiega reakcja
- 6. Rozpuszczalnik i jego funkcje
- 7. Stężenia (w tym dodanie związków inertnych)

1. Reakcja chemiczna lub biochemiczna

- Reakcja chemiczna przeprowadzana jest zazwyczaj w wyższych temperaturach oraz w szerszym zakresie wartości parametrów operacyjnych
- Reakcja biochemiczna (mikroorganizmy, komórki lub enzymy) wymaga ściśle określonych warunków prowadzenia reakcji

2. Katalizator

- Reakcja katalityczna umożliwia przyspieszenie reakcji chemicznej, co skutkuje mniejsza objętością reaktora i/lub bardziej łagodnymi warunkami prowadzenia reakcji
- Reaktory katalityczne mogą różnić się konstrukcją od reaktorów niekatalitycznych (szczególnie w przypadku katalizy heterogenicznej)

3. Temperatura

- Wzrost temperatury prowadzi do wzrostu szybkości reakcji
- Wzrost temperatury powoduje wzrost (spadek) wartości stałej równowagi reakcji endotermicznej (egzotermicznej)
- Dopuszczalna temperatura jest ograniczona przez termodynamikę, wytrzymałość aparatu, stabilność termiczną reagentów, stabilność termiczną katalizatora
- Reakcje biochemiczne są szczególnie wrażliwe na nadmierny wzrost temperatury

4. Ciśnienie

- Zwiększenie ciśnienia fazy gazowej prowadzi do zwiększenia gęstości mieszaniny reakcyjnej i do zwiększenia stężeń, co przyspiesza reakcję
- W przypadku reakcji odwracalnej wzrost ciśnienia może mieć pozytywny lub negatywny wpływ na stałą równowagi reakcji

5. Faza, w której przebiega reakcja

- W zależności od typu reakcji oraz warunków prowadzenia reakcji, będzie ona przebiegać w różnych fazach
- Często to temperatura reakcji determinuję rodzaj fazy, w której reakcja ta przebiega
- Reagenty stałe korzystnie jest doprowadzać w postaci zawiesin

6. Rozpuszczalnik i jego funkcje

- Rozcieńczanie reagentów
- Rozpuszczanie reagentów stałych
- Zwiększenie bezwładności cieplnej
- Łączenie reagentów wzajemnie nierozpuszczalnych

7. Stężenia

- Wysokie stężenia prowadzą do dużej szybkości reakcji i mniejszych reaktorów
- Niskie stężenia prowadza do mniejszej szybkości reakcji i większych reaktorów, ale do łagodniejszych przebiegów reakcji
- Rozcieńczenie reagentów umożliwia zmniejszenie efektu temperaturowego reakcji
- Dodanie substancji inertnych do fazy gazowej może przesunąć równowagę chemiczną w reakcjach odwracalnych
- Dodanie substancji inertnych może wyprowadzić mieszaninę reakcyjną z zakresu palności/wybuchowości
- Substancje inertne mogą służyć jako stabilizatory warunków reakcji (np. pH)

Mieszanie

Cele mieszania:

- Intensyfikacja transportu masy
- Intensyfikacja transportu ciepła
- Zmiana selektywności reakcji chemicznej

Mieszanie gazów

Łączenie gazów w warunkach dużej intensywności przepływu

Mieszanie cieczy

Mieszanie przez połączenie strumieni, mieszalniki statyczne, mieszadła, mieszanie przy użyciu pomp

Mieszanie ciecz-gaz

• Mieszanie przez połączenie strumieni, mieszalniki statyczne, mieszadła, mieszanie przy użyciu pomp, kontaktowanie faz przy użyciu odpowiednich aparatów

Mieszanie płyn-ciało stałe

Wytwarzanie zawiesin w mieszalnikach zbiornikowych

Mieszanie

Table 15.5	Power Requirements—Baffle	d Agitated Tanks
Agitation	Applications	Power, kW/m ³
Mild	Blending, mixing	0.04-0.10
	Homogeneous reactions	0.01-0.03
Medium	Heat transfer	0.03-1.0
	Liquid-liquid mixing	1.0-1.5
Severe	Slurry suspension	1.5-2.0
	Gas absorption	1.5-2.0
	Emulsions	1.5-2.0
Violent Fine slurry suspension		>2.0

Źródło: Chemical Engineering Design

Wymiana ciepła

Rozważania wstępne:

- 1. Czy reakcja może być prowadzona w sposób adiabatyczny?
- 2. Czy strumienie zasilające mogą zapewniać wymagane chłodzenie lub podgrzewanie?
- 3. Czy najbardziej opłacalna byłaby realizacja wymiany ciepła poza reaktorem?
- 4. Czy najbardziej opłacalna byłaby realizacja reakcji wewnątrz wymiennika ciepła?
- 5. Czy zaproponowana konstrukcja pozwala na bezproblemowe uruchomienie i zatrzymanie procesu?
- 6. Czy są obawy dotyczące bezpieczeństwa, jeśli chodzi o chłodzenie i ogrzewanie reaktora?

Sposoby wymiany ciepła

Przeponowa wymiana ciepła

- Płaszcz grzejny
- Wężownica wewnętrzna
- Zewnętrzny układ do wymiany ciepła (z układem pompowania)

Bezprzeponowa wymiana ciepła

- Ogrzewanie parą
- Chłodzenie przez odparowanie
- Chłodzenie/ogrzewanie strumieniem zasilającym

Chłodzenie i ogrzewanie reaktorów katalitycznych

Reaktory homogeniczne

- płaszcz grzejny, wężownica, wymiennik zewnętrzny
- ogrzewanie parą, chłodzenie przed odparowanie, chłodzenie/ogrzewanie strumieniem zasilającym

Reaktory zawiesinowe

- wężownica wewnętrzna nie jest zalecana (erozja)
- pompy i wymienniki powinny być przystosowane do zawiesin

Reaktory ze złożem nieruchomym

- chłodzenie wewnątrz złoża
- chłodzenie międzystopniowe
- katalizator w wymienniku ciepła

Reaktory ze złożem fluidalnym

- wewnętrzne wymienniki ciepła
- gorące cząstki katalizatora z procesu regeneracji

Wymienniki ciepła jako reaktory

Warunki stosowania WC jako reaktory:

- Wysokotemperaturowe reakcje endotermiczne
- Niskotemperaturowe reakcje egzotermiczne

Reakcje homogeniczne

- Konstrukcja jak w konwencjonalnych wymiennikach ciepła
- Obliczanie wymienników ciepła z reakcją chemiczną odbiega w znaczny sposób od obliczania wymienników ciepła bez reakcji chemicznej

Reakcje heterogeniczne

- Katalizator wewnątrz rurek wymiennika płaszczowo-rurowego
- Dla reakcji endotermicznych możliwe jest bezpośrednie ogrzewanie przy użyciu gazów spalinowych

Katalizatory – kluczowe cechy i dobór

- Kształt dopasowanie do danego typu reaktora
- Rozmiar rozwinięcie powierzchni międzyfazowej, przepływ
- **Skład** substancja katalityczna i substancje strukturalne
- Porowatość rozwinięcie powierzchni międzyfazowej
- Wytrzymałość ważne w reaktorach zawiesinowych i fluidalnych
- Stabilność termiczna istotna w reakcjach egzotermicznych
- Aktywność stopień przyspieszenia reakcji chemicznej
- Selektywność uprzywilejowanie reakcji pożądanej
- Podatność na dezaktywację trwałość katalizatora
- Cena aspekt ekonomiczny (nie jest to czynnik decydujący!)

Bezpieczeństwo

Wybrane aspekty związane z bezpieczeństwem reaktorów:

- Zapobieganie niekontrolowanemu przebiegowi reakcji
- Stabilność pracy reaktora
- Szczelność i wytrzymałość aparatu procesowego
- Podatność na błędy operatorów oraz awarie podsystemów
- Systemy zabezpieczające
- Bezpieczeństwo bezpośredniego otoczenia
- Obciążenie środowiska naturalnego
- Sterylność układu reakcyjnego

Inherently Safer Design Principles Bezpieczeństwo inherentne

Inherentny - nieodłączny, tkwiący w istocie, przynależący do czegoś, nieodzowny. (sjp.pl)

Zasady projektowania inżynierskiego w celu osiągnięcia bezpieczeństwa inherentnego (Kletz i Amyotte, 2010):

- Eliminate
- Minimize
- Substitute
- Moderate
- Simplify
- Error tolerance
- Limit effects

Inherently Safer Design Principles

LP	Zasada	Zastosowanie w reaktorze	Uzasadnienie	Kompromis
1	Minimize	Wybór trybu pracy ciągłej zamiast trybu pracy okresowej	Reaktor rurowy ma mniej elementów wyposażenia niż reaktor okresowy oraz jest łatwiejszy do sterowania i regulacji	Tryb pracy półciągłej może być korzystniejszy, gdy możemy kontrolować przebieg reakcji przez dozowanie substratu
2	Minimize	Zastosowanie dużej liczby małych reaktorów (miniaturyzacja)	Zmniejszone są skutki awarii jednego reaktora	Większe prawdopodobieństwo wystąpienia niebezpiecznego zjawiska, wyższy koszt układu
3	Minimize	Zastosowanie bardziej aktywnego katalizatora	Możliwość zastosowania mniejszego reaktora	Większy strumień uwalnianego ciepła, gdy reakcja jest egzotermiczna
4	Minimize	Połączenie reakcji i separacji (jak w destylacji reaktywnej)	Mniejsza liczba aparatów procesowych	Warunki optymalne dla procesu separacji mogą prowadzić do większych czasów przebywania
5	Minimize	Praca z większym stopniem konwersji	Zmniejszenie recyrkulacji materiału oraz kosztów separacji	Zazwyczaj prowadzi do gorszej selektywności, co może powodować zwiększenie stopnia skomplikowania układu separacyjnego

Inherently Safer Design Principles

LP	Zasada	Zastosowanie w reaktorze	Uzasadnienie	Kompromis
6	Minimize	Poprawienie mieszania	Zmniejszenie czasu reakcji	Większy strumień uwalnianego ciepła, gdy reakcja jest egzotermiczna
7	Substitute	Zastosowanie niepalnego rozpuszczalnika	Niepalne rozpuszczalniki nie mogą spowodować pożaru	Koszty rozpuszczalnika; wiele rozpuszczalników niepalnych to związki halogenowane
8	Substitute	Wykorzystanie biologicznych procesów przetwórczych	Procesy biologiczne przebiegają łagodniej, w fazie wodnej, +/- w temperaturze otoczenia	Znacznie większe reaktory, zwiększenie ilości produkowanych ścieków
9	Substitute	Wykorzystanie innej ścieżki chemicznej	Alternatywna ścieżka chemiczna może pomóc uniknąć związków wybuchowych lub toksycznych	
10	Substitute	Wykorzystanie pary jako czynnika grzejnego, zamiast bezpośredniego opalania lub grzałek elektrycznych	Ogrzewanie parą jest z natury rzeczy ograniczone do temperatury pary, stąd jest bezpieczniejsze	Trudności w uzyskaniu pary wysokotemperaturowej, co skutkuje zmniejszeniem szybkości reakcji; konieczność zastosowania aparatów wysokociśnieniowych; niebezpieczeństwo nieszczelności

Inherently Safer Design Principles

LP	Zasada	Zastosowanie w reaktorze	Uzasadnienie	Kompromis
11	Moderate	Praca w niższej temperaturze	W przypadku przecieku mieszanina reakcyjna jest dalsza od samozapłonu	Zmniejszenie szybkości reakcji, zwiększenie czasu przebywania i objętości mieszaniny reakcyjnej
12	Moderate	Praca w niższym ciśnieniu	Zmniejszone konsekwencje nadciśnienia	Zmniejszenie szybkości reakcji, zwiększenie czasu przebywania i objętości mieszaniny reakcyjnej
13	Moderate	Praca z większym rozcieńczeniem	Zmniejszona intensywność reakcji, osłabiony efekt temperaturowy reakcji (ΔT)	Zmniejszenie szybkości reakcji, zwiększenie czasu przebywania i objętości mieszaniny reakcyjnej, dodatkowe etapy separacji
14	Simplify	Wyeliminowanie procesów nieciągłych	Awaria zaworu przełączającego może być niebezpieczną sytuacją	
15	Simplify	Przeprowadzanie reakcji wewnątrz wymiennika ciepła	Mniej aparatów procesowych	Możliwy przeciek z mieszaniny reakcyjnej do medium grzejnego i odwrotnie

Bezpieczeństwo bioreaktorów

- Zachowanie sterylności układu:
 - konieczność sterylizacji pożywki, powietrza, itp.;
 - zapewnienie sterylności na danym odcinku linii produkcyjnej.
- Zachowanie szczelności układu względem otoczenia:
 - gdy mikroorganizmy są patogenami dla ludzi, zwierząt lub roślin;
 - gdy mikroorganizmy wytwarzają toksyczne związki chemiczne;
 - gdy narażenie pracowników na mikroorganizmy może spowodować reakcje alergiczne;
 - gdy mikroorganizmy zostały zmodyfikowane genetyczne i istnieje niebezpieczeństwo zasiedlenia środowiska naturalnego.

Analiza kosztów

Koszt reaktora: koszt zbiornika ciśnieniowego + koszt wyposażenia

Wzór na oszacowanie cen aparatury procesowej:

$$C_e = a + bS^n$$

gdzie:

 C_e - cena aparatury w USD (2010)

S — rozmiar aparatu

a, b, n – parametry zależne od typu aparatu

Źródło: Chemical Engineering Design

Analiza kosztów

Parametry dla wybranych typów aparatów procesowych:

Aparat	Jednostka dla rozmiaru S	S _{min}	S _{max}	а	b	n
Reaktor z płaszczem i mieszadłem	objętość, m³	0,5	100	61 500	32 500	0,8
Zbiornik ciśnieniowy (304 SS) -poziomy -pionowy	masa skorupy, kg	120 120	250 000 50 000	17 400 12 800	79 73	0,85 0,85
Wypełnienie -pierścienie Raschiga, 304 SS -pierścienie Palla, 304 SS -strukturalne, 304 SS -strukturalne, PVC	objętość, m³			0 0 0 0	8 000 8 500 7 600 5 500	1 1 1 1
Półka -sitowa -zaworowa -dzwonowa	średnica, m	0,5	5	130 210 340	440 400 640	1.8 1.9 1.9
Wymiennik ciepła -płaszczowo-rurowy (u-rurowy) -płytowo-ramowy	Powierzchnia, m ²	10 1	1000 500	28 000 1 600	54 210	1,2 0,95
Mieszadło śmigłowe	moc napędu, KW	5	75	17 000	1 130	1,05

Źródło: Chemical Engineering Design

Powiększanie skali reaktorów

Wyzwania:

- Złożoność procesu przemiany chemicznej:
 - wymiana pędu, masy i ciepła
 - reakcja chemiczna
- Zróżnicowany wpływ powiększania skali na różne zjawiska (proporcjonalność do długości, powierzchni, objętości...)
- Niezmienność kluczowych wielkości (np. rozmiar kryształów lub pęcherzy)
- Odprowadzanie ciepła w reakcjach egzotermicznych
- Brak możliwości równoczesnego spełnienia wszystkich kryteriów podobieństwa
- Różnice konstrukcyjne w skali laboratoryjnej i przemysłowej

Oznaczenia: 1 – skala laboratoryjna, 2 – skala przemysłowa

Kryteria powiększania skali

1. Kryterium podobieństwa warunków prowadzenia procesu:

$$T_1 = T_2$$

$$p_1 = p_2$$

$$(\mathsf{C}_\mathsf{A})_1 = (\mathsf{C}_\mathsf{A})_2$$

$$\rho_1 = \rho_2$$

$$\mu_1 = \mu_2$$

$$(D_{\mathbf{m}})_1 = (D_{\mathbf{m}})_2$$

2. Kryterium podobieństwa geometrycznego:

$$\left(\frac{H}{D}\right)_1 = \left(\frac{H}{D}\right)_2$$

3. Kryterium podobieństwa liczb kryterialnych:

$$Re_1 = Re_2$$

$$Nu_1 = Nu_2$$

$$Sh_1 = Sh_2$$

4. Kryterium podobieństwa bezwymiarowego czasu reakcji:

$$(Da_I)_1 = (Da_I)_2$$

W przypadku spełnienia kryterium podobieństwa warunków:

$$\tau_1 = \tau_2$$

Kryteria powiększania skali

5. Kryterium podobieństwa powierzchni wymiany ciepła:

$$\left(\frac{A_q}{V}\right)_1 = \left(\frac{A_q}{V}\right)_2$$

6. Kryterium podobieństwa warunków transportu masy w układzie wielofazowym:

$$(k_L a)_1 = (k_L a)_2$$
$$(k_g a)_1 = (k_g a)_2$$
$$(ka)_1 = (ka)_2$$

Powiększanie skali bioreaktorów

Ze względu na złożoność procesów biochemicznych podczas powiększania skali nie zmienia się własności fizykochemicznych mediów.

Przykładowe kryteria powiększania skali bioreaktorów:

1. Stałość mocy na jednostkę objętości cieczy nienagazowanej $\left(\varepsilon=\frac{1}{\rho}\frac{P}{V}\right)$

$$\varepsilon_1 = \varepsilon_1$$

Dla przepływu burzliwego:

$$N_2 = N_1 \left(\frac{d_1}{d_2}\right)^{2/3}$$

2. Stałość szybkości liniowej łopatek mieszadła:

$$\pi d_1 N_1 = \pi d_2 N_2$$

3. Stałość objętościowego współczynnika wnikania tlenu:

$$(k_L a)_1 = (k_L a)_2$$

Badania doświadczalne a powiększanie skali

Jakie czynniki brać po uwagę podczas planowania eksperymentów w skali laboratoryjnej, aby wyniki były możliwie miarodajne dla reaktora w dużej skali:

- Sposób mieszania sposób mieszania w małym reaktorze musi odzwierciedlać warunki w dużym reaktorze (np. podawanie strumieni wspólnie do reaktora, podawanie w dwóch różnych miejscach, charakterystyczny czas mieszania).
- Bilans materiałowy już w małym reaktorze bilans materiałowy i bilans pierwiastków musi być zachowany. Należy zwrócić uwagę na skład cieczy i pary w układach wielofazowych, jak i na osadzanie się produktów reakcji na ściance reaktora i/lub na katalizatorze.
- Bilans energii i profil temperatury trudno jest realizować procesy adiabatyczne w małych reaktorach (należy zadbać o dobrą izolację). Profil temperatury małego reaktora powinien odpowiadać profilowi temperatury w dużym reaktorze (rozkład przestrzenny źródeł ciepła).

Badania doświadczalne a powiększanie skali (cd.)

- Przenoszenie masy w układach wielofazowych opory transportu masy mogą ograniczać szybkość reakcji, a zatem należy ten mechanizm uwzględnić w badaniach w skali laboratoryjnej, aby móc rozgraniczyć efekt przenoszenia masy oraz efekt samej reakcji chemicznej.
- **Skład strumieni zasilających** skład strumieni zasilających powinien być identyczny w obydwóch skalach. Odczynniki laboratoryjne mają wysoką czystość i mogą nie zawierać zanieczyszczeń, kluczowych dla procesu.
- Układ recyrkulacji jeśli docelowy układ zawierać będzie recyrkulację strumieni masowych, należy zbadać ten efekt w skali laboratoryjnej (produkty uboczne mogą akumulować się w pętli cyrkulacyjnej).
- Stan ustalony należy zapewnić ścisłe warunki stanu ustalonego.
- Wiek katalizatora lub komórek należy zbadać wpływ długotrwałego stosowania układu reakcyjnego na takie zjawiska, jak starzenie się katalizatora lub ewolucja populacji mikroorganizmów.

Automatyka procesowa w inżynierii reaktorów

Cele i zadania układów automatyki przemysłowej:

- Bezpieczeństwo pracy instalacji
 - utrzymanie parametrów procesowych w bezpiecznym przedziale
 - wykrywanie stanów nietypowych i niebezpiecznych oraz zapewnienie alarmów i zautomatyzowanych procedur wyłączania awaryjnego
 - Zapewnienie alarmów i blokad, aby zapobiegać realizacji niebezpiecznych ingerencji ze strony operatora
- Wydajność produkcji
- Kontrola jakości
- Stabilność pracy
- Koszty eksploatacji

Automatyka procesowa w inżynierii reaktorów

Typowe układy regulacji automatycznej dla reaktorów chemicznych:

- Regulacja temperatury np. przez przepływ medium grzejnego, przez recyrkulację strumienia produktowego lub dodanie substancji inertnych
- **Regulacja ciśnienia** zazwyczaj stałowartościowa (ważna w reaktorach wielofazowych)
- Regulacja przepływu masowego/objętościowego
- Regulacja szybkości mieszania
- Regulacja wypełnienia reaktora (w przypadku reaktorów wielofazowych)
- Regulacja składu
 - pH
 - przewodność
 - potencjał redoks
 - lepkość
 - spektrometry działające w trybie online

P&ID dla reaktora przepływowego z mieszadłem

Legenda: T – transmitter (przekaźnik/przetwornik), I – indicator (wskaźnik), C – controller (regulator), AH – alarm high (alarm wysokiego poziomu), AL. – alarm low (alarm niskiego poziomu),

Aparatura kontrolno-pomiarowa dla bioreaktorów

- Temperatura pomiar temperatury przy użyciu termopar w różnych miejscach bioreaktora; regulacja temperatury przez zmianę przepływu czynnika chłodzącego i/lub grzejnego w wymienniku ciepła.
- Ciśnienie pomiar gazu na wylocie z reaktora oraz regulacja ciśnienia przy pomocy zaworu w przewodzie wylotowym. Zazwyczaj dąży się do utrzymania niewielkiego nadciśnienia (ochrona przed zakażeniem).
- Poziom cieczy ważny dla reaktorów półokresowych i ciągłych. Poziom cieczy może być trudny do zmierzenia z uwagi na pęcherze powietrza oraz pianę.
- **Strumień zasilający** kontrolowanie szybkości dozowania poszczególnych substratów do reaktora półokresowego lub ciągłego. Strumień zasilający jest często zmienny w czasie (zmiana składu i/lub wielkości).
- **Szybkość mieszania** bieżąca kontrola pracy mieszadła zapewnia stałość warunków mieszania oraz stabilność transportu tlenu.

Aparatura kontrolno-pomiarowa dla bioreaktorów

- pH wykorzystanie czujników pH do monitorowania na bieżąco odczynu mieszaniny reakcyjnej. Regulacja pH następuje przez dozowanie małych ilości kwasu (HCl, H₂SO₄) lub zasady (NaOH, NH₃).
- Tlen rozpuszczony pomiar przy użyciu sond tlenowych in situ. Sonda tlenowa może zostać sprzężona z regulacją ciśnienia (aby zwiększyć ciśnienie cząstkowe tlenu) lub mieszania (aby zwiększyć intensywność transportu tlenu).
- Pienienie pomiar przy użyciu np. sondy konduktometrycznej, umiejscowionej na odpowiedniej wysokości. Służy od regulacji dozowania środków przeciwpieniących.
- Skład gazu wylotowego monitorowanie składu online w celu określenia dostępności tlenu dla mikroorganizmów.
- Skład fazy ciekłej analiza chromatograficzna offline.
- **Mętność** wskazuje pośrednio na stężenie biomasy.

Procedura opracowania systemu automatyki procesowej

- 1. Zidentyfikować i narysować pętle regulacji, które są w sposób oczywisty niezbędne do zachowania stabilnej pracy instalacji (poziom, przepływ, ciśnienie, temperatura).
- 2. Zidentyfikować główne zmienne procesowe, którymi trzeba sterować, aby osiągnąć pożądaną jakość produktu. Narysować stosowane pętle regulacji dla tych zmiennych lub dla wielkości pochodnych.
- 3. Dodać pętle regulacji, niezbędne do zapewnienia bezpieczeństwa procesu.
- 4. Zadecydować o dodatkowych punktach pomiarowych do monitorowania przebiegu procesu przez operatora, do identyfikacji i usuwania awarii, oraz do przyszłych badań i modyfikacji układu (np. dodatkowe porty na termometry, punkty poboru próbek).
- 5. Wybrać położenie punktów poboru próbek.
- 6. Zadecydować o typie regulatora (lokalny czy przyłączony do zakładowego systemu automatyki procesowej).
- 7. Określić rodzaje alarmów i blokad.