Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to capture light exposure-related behaviours 2 Mushfigul Anwar Siraji^{1,*}, Rafael Robert Lazar^{2, 3, *}, Juliëtte van Duijnhoven⁴, Luc 3 Schlangen⁵, Shamsul Haque¹, Vineetha Kalavally⁶, Céline Vetter^{7, 8}, Gena Glickman⁹, Karin Smolders¹⁰, & Manuel Spitschan^{11, 2, 3} 5 ¹ Monash University, Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Malaysia 7 ² Psychiatric Hospital of the University of Basel (UPK), Centre for Chronobiology, Basel, Switzerland 9 ³ University of Basel, Transfaculty Research Platform Molecular and Cognitive 10 Neurosciences, Basel, Switzerland 11 ⁴ Eindhoven University of Technology, Department of the Built Environment, Building 12 Lighting, Eindhoven, Netherlands 13 ⁵ Eindhoven University of Technology, Department of Industrial Engineering and 14 Innovation Sciences, Intelligent Lighting Institute, Eindhoven, Netherlands 15 ⁶ Monash University, Department of Electrical and Computer Systems Engineering, 16 Malaysia, Selangor, Malaysia 17 ⁷ University of Colorado Boulder, Department of Integrative Physiology, Boulder, USA 18 ⁸ Ximes GmbH, Frankfurt, Germanv 19

⁹ Uniformed Services University of the Health Sciences, Department of Psychiatry,

20

Bethesda, USA 21 ¹⁰ Eindhoven University of Technology, Human-Technology Interaction Group, 22 Eindhoven, Netherlands 23 ¹¹ University of Oxford, Department of Experimental Psychology, Oxford, UK 24 * Joint first author

Author Note 26

Add complete departmental affiliations for each author here. Each new line herein 27 must be indented, like this line. 28

Enter author note here.

25

29

editing.

The authors made the following contributions. Mushfigul Anwar Siraji: Formal 30 Analysis, Visualization, Writing - original draft, Writing - review & editing;; Rafael Robert 31 Lazar: Data curation, Investigation, Project administration, Visualization, Writing -32 original draft, Writing - review & editing;; Juliëtte van Duijnhoven: Conceptualization, Methodology, Investigation, Writing – review & editing; Luc Schlangen: Conceptualization, Methodology, Investigation, Writing – review & editing; Shamsul Haque: Conceptualization, Supervision, Writing – review & editing; Vineetha Kalavally: Supervision, Writing - review & editing; Céline Vetter: Conceptualization, Writing review & editing; Gena Glickman: Conceptualization, Methodology, Writing - review & editing; Karin Smolders: Conceptualization, Methodology, Writing – review & editing; Manuel Spitschan: Conceptualization, Data curation, Investigation, Project administration, Visualization, Methodology, Writing - original draft, Writing - review &

Abstract 43

One or two sentences providing a **basic introduction** to the field, comprehensible to a

scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to 46

scientists in related disciplines.

One sentence clearly stating the general problem being addressed by this

particular study. 49

48

55

56

One sentence summarizing the main result (with the words "here we show" or their 50

equivalent).

Two or three sentences explaining what the main result reveals in direct

comparison to what was thought to be the case previously, or how the main result adds

to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily comprehensible

to a scientist in any discipline.

Keywords: keywords 58

Word count: X 59

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to capture light exposure-related behaviours

62 ## * The library is already synchronized with the lockfile.

Introduction

Light exposure is important

63

- Light exposure Behavior is important
- Table: Overview Existing Related Scales: items in total / items on light exposure

 (behaviour)
- Existing Scales: Review them in text
 - None of these do light exposure behavior.

70 Methods

Ethical approval

The cantonal ethics commission (Ethikkommission Nordwest- und Zentralschweiz, project ID Req-2021-00488) reviewed this project and issued an official clarification of responsibility (full document see Suppl. Fig X in appendix) stating: "The research project does not fall under the scope of the Human Research Act, because your project is using only anonymised data. An authorisation from the ethics committee is therefore not required and the EKNZ is not responsible for its review."

78 Data Availability

99

100

101

102

Survey characteristics

Data was collected in a quantitative cross-sectional approach via a fully anonymous online survey hosted on REDCap (Harris et al., 2019, 2009) by way of the University of Basel sciCORE. Participants were recruited via the website of a Comic co-released with the survey(Weinzaepflen & Spitschan, 2021), social media (i.e., LinkedIn, Twitter, Facebook), mailing lists, word of mouth, the investigators' personal contacts, and supported by distribution of the survey link via f.lux software (F.lux Software LLC, 2021).

Completing the online survey took approx. 15 to 20 minutes and was not 86 compensated. The first page of the survey comprised a participant information sheet, 87 where participants' informed consent to participate was obtained before any of the 88 questions were displayed. Underaged participants (<18 years) were urged to obtain 89 assent from their parents/legal guardians, before filling in the survey. Information on the 90 first page included the objectives of the study, inclusion criteria, estimated duration, the 91 use, storage and sharing of the data, compensation (none), and information about the type of questions in the survey. Moreover, participants needed to confirm that they were participating the survey for the first time. To ensure high data quality, five attention check items were included in the survey (e.g., "We want to make sure you are paying attention. What is 4+5?"). The data analysed in this study was collected between 17.05.2021 and 03.09.2021. Questions incorporating retrospective recall were all aligned to the period of "past four weeks," matching the presented LEBA instrument.

In addition to the LEBA questionnaire, which is subject of the current study, the following variables and items were assessed but not included in the analysis:

Sleep disturbance and sleep-related impairment (adult and pediatric versions)
 (Bevans et al., 2019; Daniel J. Buysse et al., 2010; Forrest et al., 2018; Harb,

- Hidalgo, & Martau, 2015; L. Yu et al., 2011)
- Sleep duration, timing, and latency, chronotype, social jetlag, time in bed,
 work/sleep schedule and outdoor light exposure duration (version for adults and
- adolescents) (Roenneberg et al., 2003)
- Meal timing & caffeine consumption [custom items]

Sleep environment [Olivier et al. (2016)

- Light sensitivity (photophobia vs. photophilia) (Wu & Hallett, 2017)
- Self-reported pubertal stage (only if younger than 18 years old) (Petersen,
 Crockett, Richards, & Boxer, 1988)
- Furthermore, the following 1-item demographic variables were assessed:
- 113 Age

107

114 • Sex

118

119

- Gender identity
- Occupational Status
- COVID-19 related Occupational setting during the past four weeks
 - Time zone & country of residence
 - English as native language

Participants

Table 1 summarizes the survey participants' demographic characteristics. Only
participants completing the full LEBA questionnaire were included, thus there are no
missing values in the item analyses. XX participants were excluded from analysis due to
not passing at least one of the "attention check" items. For exploring initial factor
structure (EFA), a sample of 250-300 is recommended (Comrey & Lee, 1992;
Schönbrodt & Perugini, 2013). For estimating the sample size for the confirmatory factor
analysis (CFA) we followed the N:q rule (Bentler & Chou, 1987; Jackson, 2003; Kline,

2015; Worthington & Whittaker, 2006), where ten participants per parameter is required to earn trustworthiness of the result. Our sample size exceeds these requirements: 129 Anonymous responses from a total of n = 690 participants were included in the analysis 130 of the current study, split into samples for exploratory (EFA: n = 428) and confirmatory 131 factor analysis (CFA: n = 262). The EFA sample included participants filling out the 132 questionnaire from 17.05.2021 to XX.XX.XXXX, whereas participants who filled out the 133 questionnaire from YY.YY.YYYY to 03.09.2021 were included in the CFA analysis. 134 Participants indicated filling out the online survey from a diverse range of geographic 135 locations. The four most common geographic locations included: 136

	х
United States - America/New_York (UTC -04:00)	63
United Kingdom - Europe/London (UTC)	57
Germany - Europe/Berlin (UTC +01:00)	53
India - Asia/Kolkata (UTC +05:30)	38

137

138

For a full list of geographic locations, see Suppl. Table X in the appendix.

Age among all participants ranged from 11 years to 84 years [EFA: min = 11, max = 139 84; CFA: min = 12, max = 74], with an overall mean of ~ 33 years of age [Overall: M =140 32.95, SD = 14.57; EFA: M = 32.99, SD = 15.11; CFA: M = 32.89, SD = 13.66]. In total 141 325 (47%) of the participants indicated female sex [EFA: 189 (44%); CFA: 136 (52%)], 142 351 (51%) indicated male [EFA: 230 (54%); CFA: 121 (46%)] and 14 (2.0%) indicated 143 other sex [EFA: 9 (2.1%), CFA: 5 (1.9%)]. Overall, 49 (7.2%) [EFA: 33 (7.8%); CFA: 16 (6.2%)] participants indicated a gender-variant identity. In a "Yes/No" guestion regarding native language, 320 (46%) of respondents [EFA: 191 (45%); CFA: 129 (49%)] indicated to be native English speakers. For their "Occupational Status," more than half of the overall sample reported that they currently work [Overall: 396 (57%); EFA: 235 (55%); CFA: 161 (61%)], whereas 174 (25%) [EFA: 122 (29%); CFA: 52 (20%)] reported that 149 they go to school and 120 (17%) [EFA: 71 (17%); CFA: 49 (19%)] responded that they do 150

"Neither." With respect to the COVID-19 pandemic we asked participants to indicate their 151 occupational setting during the last four weeks: In the overall sample 303 (44%) [EFA: 152 194 (45%); CFA: 109 (42%)] of the participants indicated that they were in a home office/ 153 home schooling setting., while 109 (16%) overall [EFA: 68 (16%); CFA: 41 (16%)] 154 reported face-to-face work/schooling. Lastly, 147 (21%) overall [EFA: 94 (22%); CFA: 53 155 (20%)] reported a combination of home- and face-to-face work/schooling, whereas 131 156 (19%) overall [EFA: 72 (17%); CFA: 59 (23%)] filled in the "Neither (no work or school, or 157 indication)" response option. We tested all demographic variables in Table 1 for 158 significant group differences between the EFA and CFA sample, applying Wilcoxon rank 159 sum test for the continuous variable "Age" and Pearson's Chi-squared test for all other 160 categorical variables via the gtsummary R package's "add_p" function (Sjoberg et al., 161 2021a). The p-values were corrected for multiple testing applying false discovery rate (FDR) via the "add_q" function of the same package. After p-value (FDR) correction for multiple testing, none of the demographic variables were significantly different between 164 the EFA sample and the CFA sample (all q-values $q \ge 0.2$, indicating equivalence). 165

- 1. Describe EFA and CFA sample separately.
- 2. Sampling technique: Convince sampling (non-probability sample)
- 3. Method: cross-sectional survey
- 4. How many missing data?
- 5. How incomplete data were addressed.
- 6. Why such sample was chosen?

Procedure

172

173

174

175

Development of the Scale.

- How the items were generated
- 2. How the literature was reviewed to identify construct adequacy of the items.

3. Discuss the expert panel review process to assess content validity

Data Collection. Timeline of data collection, mode of data collection.

Analytic Strategies

176

177

We used R (version 4.1.0), including several R packages, for our analyses. Initially, 179 our tool have six poin Likert type response scale(0:Does not apply/I don't know; 1:Never, 180 2:Rarely; 3:Sometimes; 4:Often; 5: Alsways). As our purpose was to capture light 181 exposure related behavior, "Does not apply/I don't know" and "Never" were providing 182 similar information. As such we decided to collapse "Does not apply/I don't know" and 183 "Never" options into one making it a 5 point Likert type response scale. Necessary 184 assumptions of EFA, including sample adequacy, normality assumptions, quality of 185 correlation matrix, were assessed. Our data violated both the univariate and multivariate 186 normality assumptions. Due to these violations and the ordinal nature of our response 187 data, we used a polychoric correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. 188 We employed principal axis (PA) as a factor extraction method with varimax rotation. PA 189 is robust to the normality assumption violations (Watkins, 2020). The obtained latent 190 structure was confirmed by another factor extraction method: the minimum residuals 191 extraction method as well. We used a combination factor identification method including 192 scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average 193 partials method(Velicer, 1976), and hull method (Lorenzo-Seva, Timmerman, & Kiers, 194 2011) to identify factor numbers. Additionally, to determine the simple structure, we followed the following guidelines recommended by psychometricians (i) no factors with fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with 197 cross-loading greater than .3 across factors (Bandalos & Finney, 2018) We also 198 conducted psychometric analysis on non-merged response options data (supplementary 199 analysis) and rejected the latent structure obtained as the factors were less interpretable. 200

201 Results

Exploratory Factor Analysis

Sampling adequacy was checked using Kaiser-Meyer-Olkin (KMO) measures of 203 sampling adequacy(Kaiser, 1974). The overall KMO vale for 48 items was 0.63 which 204 was above the cutoff value (.50) indicating a mediocre sample (Hutcheson, 1999). 205 Table3 summarizes the univariate descriptive statistics for the 48 items. some of the 206 items were skewed with high Kurtosis values. Our data violated both univariate normality 207 (Shapiro-Wilk statistics; (Shapiro & Wilk, 1965)) and multivariate normality assumptions 208 (Marida's test;(Mardia, 1970)). Multivariate skew was = 583.80 (p <0.001) and 209 multivariate kurtosis was = 2,749.15 (p < 0.001). Due to these violations and ordinal 210 nature of the response data polychoric correlations over Pearson's correlations was 211 chosen (C. Desjardins & Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954), χ^2 212 (1128) = 5042.86, p < .001] indicated the correlations between items are adequate for 213 the EFA. However only 4.96% of the inter-item correlation coefficients were greater than .30. The inter item correlation ranged between .44 to .91. And the corrected item-total correlations ranged between .10 to .44.

217

218

219

220

222

223

224

202

Scree plot (Figure 3) suggested a six-factor solution. Horn's parallel analysis (Horn, 1965) with 500 iterations also indicated a six-factor solution. However, the minimum average partial (MAP) method (Velicer, 1976) and Hull method (Lorenzo-Seva et al., 2011) suggested a five-factor solution. As a result, we tested both five-factor and six-factor solutions.

With initial 48 items we conducted three rounds of EFA gradually discarded problematic items. (cross-loading items and poor factor loading (<.30) items). Finally, a five-factor EFA solution with 25 items was accepted with low RMSR = 0.08 (Brown,

2015), all factor-loading higher than .30 and no cross-loading greater than .30. We confirmed this five-factor latent structure using varimax rotation with a minimum residual 227 extraction method (Table??). Table4 displays the factor-loading (structural coefficients) 228 and communality of the items. The absolute value of the factor-loading ranged from -.49 229 to .99 indicating strong coefficients. The commonalities ranged between .11 to .99. 230 However, the histogram of the absolute values of non-redundant residual-correlations 231 Fig5 showed 26% correlations greater than the absolute value of .05, indicating a 232 possible under-factoring. (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor 233 solution. However, a factor emerged with only one salient variable loading in the 234 six-factor solution, thus disqualifying the six-factor solution (Table??). 235

In the five-factor solution, the first factor contained three items and explained 236 10.25% of the total variance with a satisfactory internal reliability coefficient (α = .86). All 237 the items in this factor stemmed from the individual's preference to use blue light filters in 238 different light environments. The second factor contained six items and explained 9.93% 239 of the total variance with a satisfactory internal reliability coefficient (α = .71). Items 240 under this factor commonly investigate an individual's hours spent outdoor. The third 241 factor contained five items and explained 8.83% of the total variance. Items under this 242 factor dealt with the specific behaviors pertaining to sleep. The internal consistency 243 reliability coefficient was, α = .68. The fourth factor contained five items and explained 244 8.44% of the total variance with an internal consistency coefficient, α = .62. These five 245 items stemmed from the behavior related to an individual's cellphone usage during the 246 sleep-wakeup time. Lastly, the fifth factor contained six items and explained 6.14% of the total variance. This factor tried to measure an individual's behavior lead by the 248 awareness of light's influence on health. However, this factor showed unsatisfactory internal consistency reliability (α = .53). It is essential to attain a balance between 250 psychometric properties and interpretability of the common themes when exploring the 251 latent structure. As all of the emerged factors are highly interpretable and relevant 252

towards our aim to capture light exposure related behavior, regardless of the apparent low reliability of the two factors, we retain the five-factor solution with 23 items for our confirmatory factor analysis (CFA). Two items showed negative factor-loading (items 44 and 21). Upon inspection, it was understood that these items are negatively correlated to the common theme, and thus in the CFA analysis, we reversed the response code for these two items.

Confirmatory Factor Analysis

We conducted a categorical confirmatory factor analysis with robust weighted least 260 square (WLSMV) estimator as our response data was in ordinary nature(C. Desjardins & 261 Bulut, 2018). Several indices are suggested to measure model fit. These indices can be 262 categorized as absolute, comparative and parsimony fit indices (Brown, 2015). Absolute 263 fit assess the model fit at an absolute level using indices including chi-square test 264 statistics and the standardized root mean square (SRMR) parsimony fit indices including 265 the root mean square error of approximation (RMSEA) considers the number of free 266 parameters in the model to assess the parsimony of the model. Comparative fit indices 267 evaluate the fit of the specified model solution in relation to a more restricted baseline 268 model restricting all covariances among the idicators as zero. Comparative fit index (CFI) 269 and the Tucker Lewis index (TLI) are such two comparative fit indices. Commonly used 270 Model fit quidelines (Hu & Bentle, 1999; Schumacker & Lomax, 2004) includes (i) 271 Reporting of chi-square test statistics (A non-significant test statistics is required to 272 reflect model fit) (i) CFI and TLI (CFI/TLI close to .95 or above/ranging between 90-95 and above) (ii) RMSEA (close to .06 or below), (iii) SRMR (close to .08 or below) to estimate the model fit. Table 5 summarizes the fit indices of our fitted model. Our fitted model failed to attain an absolute fit estimated by the chi-square test. However, the chi-square test is sensitive to sample size and not recommended to be used as the sole 277 index of absolute model fit (Brown, 2015). Another absolute fit index we obtained in our

analysis was SRMR which does not work well with categorical data (C.-Y. Yu, 2002).

Subsequently, we judged the model fit based on the comparative fit indices: CFI, TLI and parsimony fit index-RMSEA. Our fitted model attained acceptable fit (CFI =.94; TLI = .93); RMSEA = .06,

$$.05 - .07, 90$$

) with two imposed equity constrain on item pairs 32-33 and 19-17. However SRMR value was higher than the guideline (SRMR = .12). Further by allowing one pair of items (30-41) to covary their error variance and discarding two item (item 37 & 26) for very low r-square value, our model attained best fit (CFI = .97; TLI = .96); RMSEA = .05

$$.04 - .06, 90$$

) and SRMR value (SRMR = .09) was also close to the suggestions of Hu and Bentle (1999). Since reliability coefficient Cronbach's alpha tends to mis-measure reliability for multidimensional construct (Sijtsma, 2009) we report Mcdonald's omega(total) as the internal consistency reliability coefficient. Mcdonald's omega(total) is reported to be a satisfactory lower bound reliability coefficient that works for both unidimensional and multidimensional construct (Zinbarg, Revelle, Yovel, & Li, 2005). Mcdonald's omega(total) for the five factors were .90, .80, .61, .72, .45 respectively. Mcdonald's omega(total) coefficient for the total scale was .73.

Analysing the quality of items by Item Information Theory

295

We sought the IRT to gether information regarding the item quality. IRT complements the conventional classical test theory-based analysis by gathering information on item discrimination and item difficulty(Baker, 2017). Here, an item's quality is judged based on item information in relation to participants' latent trait level (θ). We gathered evidence on item quality by fitting each factor of LEBA with the graded response model (7 to the combined EFA sample and CFA sample (n =690). Item

discrimination indicates the pattern of variation in the categorical responses with the changes in latent trait, and item information curve (IIC) indicates the amount of 303 information an item carries along the latent trait continuum. Here, we reported the item 304 discrimination parameter and only discarded the items with relatively flat item information 305 curve (information <.2) to develop the short form of LEBA. Baker (2017) categorized the 306 item discrimination in as none = 0; very low =0.01 to 0.34; low = 0.35 to 0.64; moderate = 307 0.65 to 1.34; high = 1.35 to 1.69; very high >1.70. Item discrimination parameters of our 308 scale fell in very high (10 items), high (4 items), moderate (4 items), low (5 items) 309 indicating a good range of discrimination along the latent trait. Examination of the item 310 information curve indicated 6 items (1, 25, 9, 38, 30, & 41) had relatively flat information 311 curves thus discarded. We also gathered evidence of item fit and person fit to our fitted 312 model. 313

Test information curve (TIC) indicate the amount of information an the full-scale carry along the latent trait continuum. As we treated each factor of LEBA as an unidmensional construct we obtain 5 TICs. These information curves indicated except blue filter factor, the other factor's TICs are roughly centered on the center of the trait continuum ((θ)). Also the amount of information changed rather steadily with the change of (θ). Thus we conferred the LEBA scale (except blue filter) estimated the light exposure related behavior with precision near the center of trait continuum (Baker, 2017) which is sufficient to discriminate between latent trait measured by the each factor. The blue filter factor had a peak to the right side of the center of latent trait indicating its ability to providing information only for people who already have some preference towards using blue-filters.

314

315

316

317

319

321

322

324

325

326

327

Our result also indicated all the items fitted well to the respective models as assessed by assessed by RMSEA value obtained from Signed-X2 index implementation. All of the items had RMSEA value <.06 indicating adequate fit. Person fit indicates the validity and meaningfulness of the fitted model at the participants latent trait level (C.

Desjardins & Bulut, 2018). We estimated the person fit statistics using standardized fit index Zh statistics (Drasgow, Levine, & Williams, 1985). Zh < -2 should be considered as a misfit. Fig indicates that Zh is larger than -2 for most participants, suggesting a good fit of the selected IRT models.

The overall we can concluded that IRT analysis indicated LEBA is a psychometrically sound measure. Item fit indexes and person fit index for all five fitted model were acceptable. Items had diverse slope parameters indicating a good range of discrimination- the ability to differentiate respondents with different levels of the light exposure related behavior. All-in-all we can recommend the LEBA to be used to capture light exposure related behavior.

Discussion

333

334

335

336

340	References
341	Anwar Siraji, M. (2021). Tabledown: A companion pack for the book "basic &
342	advanced psychometrics in r". Retrieved from
343	https://github.com/masiraji/tabledown
344	Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles
345	with R Markdown. Retrieved from https://github.com/crsh/papaja
346	Bajaj, A., Rosner, B., Lockley, S. W., & Schernhammer, E. S. (2011). Validation of
347	a light questionnaire with real-life photopic illuminance measurements: The
348	harvard light exposure assessment questionnaire. Cancer Epidemiology and
349	Prevention Biomarkers, 20(7), 1341–1349.
350	Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed. 2017.)
351	Springer.
352	Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and
353	confirmatory. In The reviewer's guide to quantitative methods in the social
354	sciences (pp. 98-122). Routledge.
355	Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from
356	https://github.com/mariusbarth/tinylabels
357	Bartlett, M. (1954). A Note on the Multiplying Factors for Various Chi-square
358	Approximations. Journal of the Royal Statistical Society. Series B,
359	Methodological, 16(2), 296–298.
360	Bentler, P. M., & Chou, CP. (1987). Practical Issues in Structural Modeling.
361	Sociological Methods & Research, 16(1), 78–117.
362	https://doi.org/10.1177/0049124187016001004
363	Bevans, K. B., Meltzer, L. J., La Motte, A. de, Kratchman, A., Viél, D., & Forrest, C
364	B. (2019). Qualitative development and content validation of the PROMIS
365	pediatric sleep health items. Behavioral Sleep Medicine, 17(5), 657-671.
366	https://doi.org/10.1080/15402002.2018.1461102

367	Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.).
368	New York, NY, US: The Guilford Press.
369	Bryer, J., & Speerschneider, K. (2016). Likert: Analysis and visualization likert
370	items. Retrieved from https://CRAN.R-project.org/package=likert
371	Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019).
372	MOTE: Measure of the Effect: Package to assist in effect size calculations and
373	their confidence intervals. Retrieved from http://github.com/doomlab/MOTE
374	Buysse, Daniel J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J.
375	(1989). The pittsburgh sleep quality index: A new instrument for psychiatric
376	practice and research. Psychiatry Research, 28(2), 193-213.
377	Buysse, Daniel J., Yu, L., Moul, D. E., Germain, A., Stover, A., Dodds, N. E.,
378	Pilkonis, P. A. (2010). Development and validation of patient-reported outcome
379	measures for sleep disturbance and sleep-related impairments. Sleep, 33(6),
380	781-792. https://doi.org/10.1093/sleep/33.6.781
381	Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate
382	Behavioral Research, 1(2), 245–276.
383	https://doi.org/10.1207/s15327906mbr0102_10
384	Chalmers, R. P. (2012). mirt: A multidimensional item response theory package
385	for the R environment. Journal of Statistical Software, 48(6), 1–29.
386	https://doi.org/10.18637/jss.v048.i06
387	Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Borges, B.
388	(2021). Shiny: Web application framework for r. Retrieved from
389	https://CRAN.R-project.org/package=shiny
390	Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis, 2nd ed.
391	Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
392	Conigrave, J. (2020). Corx: Create and format correlation matrices. Retrieved
393	from https://CRAN.R-project.org/package=corx

394	Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., & Swinton, J. (2019). Xtable:
395	Export tables to LaTeX or HTML. Retrieved from
396	https://CRAN.R-project.org/package=xtable
397	Desjardins, C. D. (2018). Handbook of educational measurement and
398	psychometrics using R. (O. Bulut & ProQuest (Firm), Eds.). Boca Raton, FL:
399	CRC Press.
400	Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and
401	Psychometrics Using R. https://doi.org/10.1201/b20498
402	Dianat, I., Sedghi, A., Bagherzade, J., Jafarabadi, M. A., & Stedmon, A. W. (2013)
403	Objective and subjective assessments of lighting in a hospital setting:
404	Implications for health, safety and performance. Ergonomics, 56(10),
405	1535–1545.
406	Dinno, A. (2018). Paran: Horn's test of principal components/factors. Retrieved
407	from https://CRAN.R-project.org/package=paran
408	Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness
409	measurement with polychotomous item response models and standardized
410	indices. British Journal of Mathematical and Statistical Psychology, 38(1),
411	67–86.
412	Eklund, N., & Boyce, P. (1996). The development of a reliable, valid, and simple
413	office lighting survey. Journal of the Illuminating Engineering Society, 25(2),
414	25–40.
415	Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of various SEM
416	packages' output. Retrieved from
417	https://CRAN.R-project.org/package=semPlot
418	Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom,
419	D. (2012). qgraph: Network visualizations of relationships in psychometric
420	data. Journal of Statistical Software, 48(4), 1-18.

421	F.lux Software LLC. (2021). F.lux (Version 4.120). Retrieved from
422	https://justgetflux.com/
423	Forrest, C. B., Meltzer, L. J., Marcus, C. L., La Motte, A. de, Kratchman, A.,
424	Buysse, D. J., Bevans, K. B. (2018). Development and validation of the
425	PROMIS pediatric sleep disturbance and sleep-related impairment item banks
426	Sleep, 41(6). https://doi.org/10.1093/sleep/zsy054
427	Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third).
428	Thousand Oaks CA: Sage. Retrieved from
429	https://socialsciences.mcmaster.ca/jfox/Books/Companion/
430	Fox, J., Weisberg, S., & Price, B. (2020). carData: Companion to applied
431	regression data sets. Retrieved from
432	https://CRAN.R-project.org/package=carData
433	Harb, F., Hidalgo, M. P., & Martau, B. (2015). Lack of exposure to natural light in
434	the workspace is associated with physiological, sleep and depressive
435	symptoms. Chronobiology International, 32(3), 368-375.
436	https://doi.org/10.3109/07420528.2014.982757
437	Harrell Jr, F. E., Charles Dupont, with contributions from, & others., many. (2021).
438	Hmisc: Harrell miscellaneous. Retrieved from
439	https://CRAN.R-project.org/package=Hmisc
440	Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O'Neal, L.,
441	others. (2019). The REDCap consortium: Building an international community
442	of software platform partners. Journal of Biomedical Informatics, 95, 103208.
443	Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G.
444	(2009). Research electronic data capture (REDCap)—a metadata-driven
445	methodology and workflow process for providing translational research
446	informatics support. Journal of Biomedical Informatics, 42(2), 377-381.
447	Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools. Retrieved

448	from https://CRAN.R-project.org/package=purrr
449	Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.
450	Psychometrika, 30(2), 179-185. https://doi.org/10.1007/BF02289447
451	Horne, J. A., & Östberg, O. (1976). A self-assessment questionnaire to determine
452	morningness-eveningness in human circadian rhythms. International Journal
453	of Chronobiology.
454	Hu, L., & Bentle, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
455	analysis: Conventional criteria versus new alternatives. Structural Equation
456	Modeling: A Multidisciplinary Journal, 6(1), 1–55.
457	https://doi.org/10.1080/10705519909540118
458	Hutcheson, G. D. (1999). The multivariate social scientist: Introductory statistics
459	using generalized linear models. London: SAGE.
460	lannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz graphs as
461	SVG. Retrieved from https://CRAN.R-project.org/package=DiagrammeRsvg
462	lannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved from
463	https://github.com/rich-iannone/DiagrammeR
464	Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter
465	Estimates: Some Support for the N:q Hypothesis. Structural Equation
466	Modeling, 10(1), 128-141. https://doi.org/10.1207/S15328007SEM1001_6
467	Johnson, P., & Kite, B. (2020). semTable: Structural equation modeling tables.
468	Retrieved from https://CRAN.R-project.org/package=semTable
469	Johnson, P., Kite, B., & Redmon, C. (2020). Kutils: Project management tools.
470	Retrieved from https://CRAN.R-project.org/package=kutils
471	Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2021).
472	semTools: Useful tools for structural equation modeling. Retrieved from
473	https://CRAN.R-project.org/package=semTools
474	Kaiser, H. F. (1974). An index of factorial simplicity. <i>Psychometrika</i> , 39(1), 31–36.

475	https://doi.org/10.1007/bf02291575
476	Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix using
477	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=ggcorrplot
478	Kline, R. B. (2015). Principles and practice of structural equation modeling. The
479	Guilford Press.
480	Kowarik, A., & Templ, M. (2016). Imputation with the R package VIM. Journal of
481	Statistical Software, 74(7), 1–16. https://doi.org/10.18637/jss.v074.i07
482	Lishinski, A. (2021). lavaanPlot: Path diagrams for 'lavaan' models via
483	'DiagrammeR'. Retrieved from
484	https://CRAN.R-project.org/package=lavaanPlot
485	Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method for
486	Selecting the Number of Common Factors. Multivariate Behavioral Research,
487	46, 340-364. https://doi.org/10.1080/00273171.2011.564527
488	Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and
489	algorithms for correlation analysis in r. Journal of Open Source Software,
490	5(51), 2306. https://doi.org/10.21105/joss.02306
491	Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with
492	applications. Biometrika, 57(3), 519-530.
493	https://doi.org/10.1093/biomet/57.3.519
494	Mock, T. (2021). gtExtras: A collection of helper functions for the gt package.
495	Retrieved from https://github.com/jthomasmock/gtExtras
496	Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved from
497	https://CRAN.R-project.org/package=tibble
498	Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA: Dimensionality
499	assessment using minimum rank factor analysis. Retrieved from
500	https://CRAN.R-project.org/package=EFA.MRFA
501	Olivier, K., Gallagher, R. A., Killgore, W. D. S., Carrazco, N., Alfonso-Miller, P.,

502	Grandner, M. A. (2016). Development and initial validation of the assessment
503	of sleep environment: A novel inventory for describing and quantifying the
504	impact of environmental factors on sleep. Sleep, 39(Abstract Supplement:
505	A367).
506	Ooms, J. (2021a). Magick: Advanced graphics and image-processing in r.
507	Retrieved from https://CRAN.R-project.org/package=magick
508	Ooms, J. (2021b). Rsvg: Render SVG images into PDF, PNG, PostScript, or
509	bitmap arrays. Retrieved from https://CRAN.R-project.org/package=rsvg
510	Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report
511	measure of pubertal status: Reliability, validity, and initial norms. Journal of
512	Youth and Adolescence, 17(2), 117–133. https://doi.org/10.1007/BF01537962
513	Pornprasertmanit, S., Miller, P., Schoemann, A., & Jorgensen, T. D. (2021).
514	Simsem: SIMulated structural equation modeling. Retrieved from
515	https://CRAN.R-project.org/package=simsem
516	R Core Team. (2021). R: A language and environment for statistical computing.
517	Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
518	https://www.R-project.org/
519	Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and
520	personality research. Evanston, Illinois: Northwestern University. Retrieved
521	from https://CRAN.R-project.org/package=psych
522	Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: Daily
523	temporal patterns of human chronotypes. Journal of Biological Rhythms,
524	<i>18</i> (1), 80–90.
525	Rosseel, Y. (2012). lavaan: An R package for structural equation modeling.
526	Journal of Statistical Software, 48(2), 1–36. Retrieved from
527	https://www.jstatsoft.org/v48/i02/
528	Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration, transformation.

529	Retrieved from https://CRAN.R-project.org/package=dlookr
530	Sarkar, D. (2008). Lattice: Multivariate data visualization with r. New York:
531	Springer. Retrieved from http://lmdvr.r-forge.r-project.org
532	Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations
533	stabilize? Journal of Research in Personality, 47(5), 609-612.
534	https://doi.org/10.1016/j.jrp.2013.05.009
535	Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural
536	equation modeling. psychology press.
537	Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality
538	(complete samples). Biometrika, 52(3-4), 591-611.
539	https://doi.org/10.1093/biomet/52.3-4.591
540	Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of
541	cronbach's alpha. Psychometrika, 74(1), 107.
542	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C
543	(2021b). Gtsummary: Presentation-ready data summary and analytic result
544	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
545	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C
546	(2021a). Gtsummary: Presentation-ready data summary and analytic result
547	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
548	Stauffer, R., Mayr, G. J., Dabernig, M., & Zeileis, A. (2009). Somewhere over the
549	rainbow: How to make effective use of colors in meteorological visualizations.
550	Bulletin of the American Meteorological Society, 96(2), 203–216.
551	https://doi.org/10.1175/BAMS-D-13-00155.1
552	Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data:
553	Extending the Cox model. New York: Springer.
554	Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J. (2021). Packrat: A
555	dependency management system for projects and their r package

556	dependencies. Retrieved from https://CRAN.R-project.org/package=packrat
557	van Lissa, C. J. (2021). tidySEM: Tidy structural equation modeling. Retrieved
558	from https://CRAN.R-project.org/package=tidySEM
559	Velicer, W. (1976). Determining the Number of Components from the Matrix of
560	Partial Correlations. Psychometrika, 41, 321–327.
561	https://doi.org/10.1007/BF02293557
562	Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth).
563	New York: Springer. Retrieved from https://www.stats.ox.ac.uk/pub/MASS4/
564	Verriotto, J. D., Gonzalez, A., Aguilar, M. C., Parel, JM. A., Feuer, W. J., Smith,
565	A. R., & Lam, B. L. (2017). New methods for quantification of visual
566	photosensitivity threshold and symptoms. Translational Vision Science &
567	Technology, 6(4), 18–18.
568	Watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis with R
569	and RStudio. https://doi.org/10.4324/9781003120001
570	Weinzaepflen, C., & Spitschan, M. (2021). Enlighten your clock: How your body
571	tells time. Open Science Framework. https://doi.org/10.17605/OSF.IO/ZQXVH
572	Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal
573	of Statistical Software, 40(1), 1-29. Retrieved from
574	http://www.jstatsoft.org/v40/i01/
575	Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag
576	New York. Retrieved from https://ggplot2.tidyverse.org
577	Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string
578	operations. Retrieved from https://CRAN.R-project.org/package=stringr
579	Wickham, H. (2021a). Forcats: Tools for working with categorical variables
580	(factors). Retrieved from https://CRAN.R-project.org/package=forcats
581	Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from
582	https://CRAN.R-project.org/package=tidyr

583	Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
584	Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source
585	Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
586	Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from
587	https://CRAN.R-project.org/package=readxl
588	Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of
589	data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
590	Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data. Retrieved
591	from https://CRAN.R-project.org/package=readr
592	Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for
593	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=cowplot
594	Worthington, R. L., & Whittaker, T. A. (2006). Scale Development Research: A
595	Content Analysis and Recommendations for Best Practices. The Counseling
596	Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
597	Wu, Y., & Hallett, M. (2017). Photophobia in neurologic disorders. <i>Translational</i>
598	Neurodegeneration, 6(1), 26. https://doi.org/10.1186/s40035-017-0095-3
599	Xie, Y., Wu, X., Tao, S., Wan, Y., & Tao, F. (2021). Development and validation of
600	the self-rating of biological rhythm disorder for chinese adolescents.
601	Chronobiology International, 1–7.
602	https://doi.org/10.1080/07420528.2021.1989450
603	Yu, CY. (2002). Evaluating cutoff criteria of model fit indices for latent variable
604	models with binary and continuous outcomes (Thesis). ProQuest
605	Dissertations Publishing.
606	Yu, L., Buysse, D. J., Germain, A., Moul, D. E., Stover, A., Dodds, N. E.,
607	Pilkonis, P. A. (2011). Development of short forms from the PROMIS™ sleep
608	disturbance and sleep-related impairment item banks. Behavioral Sleep
600	Medicine 10(1) 6-24 https://doi.org/10.1080/15402002.2012.636266

610	Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts
611	and multiple responses. Journal of Statistical Software, 34(1), 1-13.
612	https://doi.org/10.18637/jss.v034.i01
613	Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P.,
614	Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing
615	colors and palettes. Journal of Statistical Software, 96(1), 1-49.
616	https://doi.org/10.18637/jss.v096.i01
617	Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting colors
618	for statistical graphics. Computational Statistics & Data Analysis, 53(9),
619	3259-3270. https://doi.org/10.1016/j.csda.2008.11.033
620	Zhu, H. (2021). kableExtra: Construct complex table with 'kable' and pipe syntax.
621	Retrieved from https://CRAN.R-project.org/package=kableExtra
622	Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's α , revelle's β ,
623	and McDonald's ω h: Their relations with each other and two alternative
624	conceptualizations of reliability. Psychometrika, 70(1), 123–133.

Table 1

Existing related Scales

			Relevant	_
Name	Authors	Description	Items	Adaptations
Visual Light	(Verriotto	Eight-question survey to assess the	All items	
Sensitivity	et al.,	presence and severity of photosensitivity		
Questionnaire-8	2017)	symptoms		
Office Light	(Eklund	Multi-item questionnaire to assess		
Survey	&	electrical lighting environment in office		
	Boyce,			
	1996)			
Harvard Light	(Bajaj,	Self-administered semi-quantitative light	All Items	
Exposure	Ros-	questionnaire		
Assessment	ner,			
Questionnaire	Lock-			
	ley, &			
	Sch-			
	ern-			
	ham-			
	mer,			
	2011)			

			Relevant	
Name	Authors	Description	Items	Adaptations
Hospital Lighting	(Dianat,	23 items questionnaire to assess light		
Survey	Sedghi,	environment in a hospital		
	Bagherz	ade,		
	Ja-			
	farabadi	,		
	& Sted-			
	mon,			
	2013)			
Morningness-	(Horne	19 items questionnaire to understand		
Eveningness	& Öst-	your body clock		
Questionnaire	berg,			
	1976)			
Munich	(Roenne	ebtargtems questionnaire to understand		
Chronotype	Wirz-	individuals phase of entrainment		
Questionnaire	Justice,			
(MCTQ)	& Mer-			
	row,			
	2003)			
Assessment of	(Olivier	items questionnaire measuring your		
Sleep	et al.,	sleep environment quality I		
Environment	2016) l			
	13			

			Relevant	
Name	Authors	Description	Items	Adaptations
The Pittsburgh	(Daniel	9 items inventory to measure sleep		
Sleep Quality	J.	quality and sleeping pattern		
Index (PSQI)	Buysse,			
	Reynold	s		
	III,			
	Monk,			
	Berman	,		
	&			
	Kupfer,			
	1989)			
Self-Rating of	(Xie,	items questionnaire assessing four	ems 3.,	
Biological	Wu,	dimensions of biological rhythm disorder	22., 23.,	
Rhythm Disorder	Tao,	in adolescents (digital media use, sleep,	24., 25.	
for Adolescents	Wan,	eating habits, and activity) I It	and 29. I	
(SBRDA)	& Tao,			
	2021) l			
	29			
Photosensitivity	(Wu &	dichotomous (yes/no) items	l items l	
Assessment	Hallett,	questionnaire to assess "photophobia"		
Questionnaire	2017) l	and "photophilia," giving two final scores		
(PAQ)	16	of "photophobic" and "photophilic"		
		behaviours I AI		

		1. EFA	2. CFA		
	Overall, N	Sample, N =	Sample, N =	p-	q-
Variable	= 690	428	262	value	value
Age	32.95	32.99 (15.11)	32.89 (13.66)	0.5	0.5
	(14.57)				
Sex				0.14	0.4
Female	325 (47%)	189 (44%)	136 (52%)		
Male	351 (51%)	230 (54%)	121 (46%)		
Other	14 (2.0%)	9 (2.1%)	5 (1.9%)		
Gender-Variant Identity	49 (7.2%)	33 (7.8%)	16 (6.2%)	0.4	0.5
Native English Speaker	320 (46%)	191 (45%)	129 (49%)	0.2	0.5
Occupational Status				0.040	0.2
Work	396 (57%)	235 (55%)	161 (61%)		
School	174 (25%)	122 (29%)	52 (20%)		
Neither	120 (17%)	71 (17%)	49 (19%)		
Occupational setting				0.3	0.5
Home office/Home	303 (44%)	194 (45%)	109 (42%)		
schooling					
Face-to-face	109 (16%)	68 (16%)	41 (16%)		
work/Face-to-face					
schooling					
Combination of home- and	147 (21%)	94 (22%)	53 (20%)		
face-to-face-					
work/schooling					
Neither (no work or school,	131 (19%)	72 (17%)	59 (23%)		
or in vacation)					

Table 3

Descriptive Statistics

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item1	2.27	1.39	0.74	-0.81	0.81*	.25
Item2	2.87	1.59	0.08	-1.60	0.83*	.19
Item3	3.36	1.38	-0.48	-1.03	0.87*	.16
Item4	1.47	1.18	2.38	4.00	0.43*	.28
Item5	4.01	1.40	-1.22	0.07	0.70*	.13
Item6	2.79	1.55	0.19	-1.48	0.85*	.20
Item7	2.26	1.25	0.70	-0.60	0.85*	.19
Item8	2.97	1.20	-0.06	-0.94	0.91*	10
Item9	2.94	1.03	-0.12	-0.40	0.91*	.10
Item10	2.74	1.04	0.09	-0.74	0.91*	.28
Item11	2.18	0.90	0.60	0.12	0.86*	.26
Item12	2.36	1.22	0.59	-0.62	0.87*	.25
Item13	2.73	1.46	0.20	-1.36	0.87*	.33
Item14	2.14	1.31	0.77	-0.78	0.80*	.26
Item15	3.26	1.09	-0.26	-0.45	0.91*	.14
Item16	1.56	1.23	2.00	2.45	0.50*	.32
Item17	1.54	1.21	2.07	2.75	0.49*	.31
Item18	1.12	0.49	5.02	27.80	0.25*	.16
Item19	1.05	0.36	7.23	52.98	0.13*	.18
Item20	1.04	0.33	8.99	85.28	0.10*	.16
Item21	1.14	0.59	4.79	24.05	0.25*	.16
Item22	3.57	1.07	-0.65	-0.17	0.88*	.21
Item23	2.56	1.27	0.33	-1.00	0.89*	.11

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item24	4.14	0.99	-1.23	1.14	0.79*	.19
Item25	2.59	1.41	0.27	-1.27	0.86*	.19
Item26	2.25	1.27	0.69	-0.64	0.84*	.18
Item27	3.80	1.29	-0.87	-0.42	0.82*	.17
Item28	3.76	1.14	-0.68	-0.45	0.86*	.00
Item29	2.44	1.31	0.38	-1.14	0.86*	.11
Item30	1.48	1.11	2.18	3.35	0.48*	.24
Item31	3.00	1.62	-0.08	-1.61	0.83*	.44
Item32	3.55	1.65	-0.60	-1.34	0.76*	.43
Item33	3.62	1.64	-0.68	-1.25	0.74*	.32
Item34	3.42	1.83	-0.45	-1.69	0.69*	.33
Item35	3.86	1.67	-0.99	-0.85	0.65*	.23
Item36	1.54	1.25	2.13	2.86	0.46*	.36
Item37	1.33	0.91	3.03	8.43	0.41*	.01
Item38	4.30	1.08	-1.79	2.53	0.67*	.22
Item39	1.96	0.98	1.02	0.69	0.82*	.05
Item40	2.16	1.19	0.71	-0.54	0.84*	.14
Item41	1.31	0.81	2.75	6.92	0.43*	.21
Item42	3.93	1.48	-1.06	-0.44	0.71*	.18
Item43	1.64	1.18	1.79	2.02	0.60*	.15
Item44	3.51	1.30	-0.70	-0.59	0.85*	.39
Item45	2.22	1.48	0.71	-1.02	0.76*	.30
Item46	1.76	1.23	1.35	0.44	0.66*	.38
Item47	2.11	1.17	0.77	-0.39	0.83*	.32

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item48	2.60	1.25	0.29	-0.86	0.89*	.35

Note. *p<.001

Table 4

Factor loadings and communality of the retained items

item	PA1	PA2	PA3	PA4	PA5	Communality	Uniqueness
item16	0.99					0.993	0.007
item36	0.94					0.899	0.101
item17	8.0					0.658	0.342
item11		0.79				0.642	0.358
item10		0.76				0.592	0.408
item12		0.65				0.465	0.535
item7		0.5				0.267	0.733
item8		-0.49				0.252	0.748
item9		0.32				0.113	0.887
item27			8.0			0.658	0.342
item3			8.0			0.682	0.318
item40			0.65			0.464	0.536
item30			0.45			0.353	0.647
item41			0.36			0.329	0.671
item33				0.74		0.555	0.445
item32				0.73		0.624	0.376
item35				0.66		0.454	0.546
item37				-0.39		0.174	0.826
item38				0.38		0.178	0.822
item46					0.6	0.422	0.578
item45					0.59	0.374	0.626
item25					0.41	0.193	0.807
item4					0.41	0.219	0.781
item1					0.4	0.17	0.83
item26					0.35	0.165	0.835
% of Variance	0.1	0.1	0.09	0.08	0.06		

Note. Only loading higher than .30 is reported

Table 5

Fit indices of CFA

Model	Chi-Squre	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper CI	SRMR
Five factor model:25	448.51	222.00	.94	0.93	0.06	0.05	0.07	0.12
Five factor model:23	346.59	221.00	.97	0.96	0.05	0.04	0.06	0.09

Note. df: Degrees of Freedom; CFI: Comparative Fit Index; TLI: Tucker Lewis Index;RMSEA:Root Mean Square Error of Approximation; CI: Confidence Interval; SRMR: Standardized Root Mean Square

Table 6
Invariance Analysis

	Chi-Square	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper	SRMR	Chi-Sqr comparison	df*	р
Configural	632.20	442.00	0.95	0.94	0.06	0.05	0.07	0.13	-	-	-
Metric	644.58	458.00	0.95	0.95	0.06	0.05	0.07	0.13	18.019a	16	0.323
Scalar	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	67.961b	64	0.344
Residual	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	0c	0	NA
Structural	691.49	542.00	0.96	0.96	0.05	0.04	0.06	0.13	12.617d	20	0.893

Note. a = Metric vs Configural; b = Scalar vs Metric; c = Residual vs Scalar; d = Structural vs Residual;* = df of model comparison

Table 7

IRT Item parameters for the LEBA Scale

	а	b1	b2	b3	b4
item16	28.13	0.78	0.90	1.06	1.40
item36	4.49	0.94	1.08	1.23	1.40
item17	2.81	0.97	1.11	1.38	1.62
item11	3.27	-0.79	0.65	1.54	2.31
item10	3.07	-1.27	-0.09	0.82	2.00
item12	1.72	-0.67	0.44	1.28	2.11
item7	1.09	-0.50	0.73	1.63	2.97
Ritem8	1.19	-2.26	-0.48	0.64	1.91
item9	0.91	-2.63	-0.96	1.11	3.49
item27	2.21	-1.88	-1.19	-0.73	0.30
item3	3.03	-1.24	-0.77	-0.20	0.66
item40	1.55	-0.51	0.46	1.32	2.22
item30	0.49	3.27	3.74	4.64	6.52
item41	0.51	3.87	4.78	6.39	8.91
item32	1.62	-1.03	-0.78	-0.42	0.16
item35	1.37	-1.09	-0.98	-0.75	-0.40
item38	0.40	-7.48	- 5.56	-4.23	-0.90
item33	12.31	-0.66	-0.48	-0.24	0.13
item46	2.22	0.68	0.89	1.38	2.17
item45	1.51	0.30	0.55	1.17	1.91
item25	0.52	-1.37	-0.04	1.89	4.22
item4	0.84	2.44	2.80	3.18	3.67
item1	0.39	-0.91	1.52	3.25	5.53

Note. a = item discrimination parameter; b(1-4)

= response category difficulty parameter

Figure 1. Development

Figure 2. Correlation plot of the items

Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot (C) Hull Method

Figure 4. Five Factor Solution

Figure 5. Histogram of residulas: five-factor solution

Items	Su	mmar	/ Statistic	cs	Grap	nics		н	esponse Patt	em	
Items	n	Mean	Median	SD	Histogram [†]	Density ²	Never	Rarely	Sometimes	Often	Always
EFA (n = 4							42.29%	22.20%	12.62%	12.38%	10.51%
item01	428	2.3	2.0	1.4		_	(181) 15.89%	(95) 11.45%	(54) 17.29%	(53) 31.07%	(45) 24.30%
item03	428	3.4	4.0	1.4			(68)	(49)	(74)	(133)	(104)
item04	428	1.5	1.0	1.2		_	84.11% (360)	3.50% (15)	2.10% (9)	2.10% (9)	8.18% (3
item07	428	2.3	2.0	1.2		<u></u>	35.98% (154)	27.80% (119)	17.29% (74)	12.38% (53)	6.54% (2
item08	428	3.0	3.0	1.2		\sim	13.79% (59)	22.20% (95)	27.80% (119)	25.93% (111)	10.28%
item09	428	2.9	3.0	1.0		\sim	10.28% (44)	19.63% (84)	41.82% (179)	22.43% (96)	5.84% (2
item10	428	2.7	3.0	1.0		<u></u>	11.92% (51)	31.31% (134)	31.31% (134)	21.96% (94)	3.50% (1
item11	428	2.2	2.0	0.9	-П	^	22.43% (96)	46.26% (198)	23.13% (99)	7.01% (30)	1.17% (
item12	428	2.4	2.0	1.2		<u></u>	29.91% (128)	29.67% (127)	21.50%	12.15% (52)	6.78% (2
item16	428	1.6	1.0	1.2			79.67%	4.21% (18)	3.97% (17)	4.67% (20)	7.48% (3
item17	428	1,5	1.0	1.2	_	^	(341) 80.61%	3.27% (14)	5.14% (22)	3.27% (14)	7.71% (3
item25	428	2.6	3.0	1.4			(345)	13.79%	22.20%	17.99%	11.68%
							(147)	(59) 23.36%	(95) 20.09%	(77) 10.98%	(50)
item26	428	3.7	4.0	1.3			(164)	(100)	(86) 11.21%	(47) 30.37%	7.24% (3
item27	428	3.8	4.0	1.3			8.41% (36) 81.78%	(48)	(48)	(130)	(166)
item30	428	1.5	1.0	1.1		_	(350)	3.27% (14)	4.91% (21)	5.37% (23)	4.67% (2
item32	428	3.6	4.0	1.6		~	23.13% (99)	7.01% (30)	8.18% (35)	14.95% (64)	46.73% (200)
item33	428	3.6	4.0	1.6		~	21.96% (94)	7.01% (30)	7.24% (31)	14.49% (62)	49.309 (211)
item35	428	3.9	5.0	1.7			22.90% (98)	1.87% (8)	3.74% (16)	9.35% (40)	62.15% (266)
item36	428	1.5	1.0	1.3	п	^_	82.24% (352)	3.04% (13)	3.04% (13)	2.34% (10)	9.35% (4
item37	428	2.3	2.0	1.3		<u></u>	38.32% (164)	23.36% (100)	20.09% (86)	10.98% (47)	7.24% (
item38	428	4.3	5.0	1.1			5.37% (23)	3.50% (15)	5.37% (23)	27.57%	58.18% (249)
item40	428	2.2	2.0	1.2		<u></u>	39.49% (169)	25.00% (107)	19.63%	11.45%	4.44% (
item41	428	1.3	1.0	0.8		\wedge	85.05%	4.67% (20)	6.07% (26)	3.04% (13)	1.17% (
item45	428	2.2	1.0	1.5		~	(364)	7.01% (30)	16.36%	11.92%	11.68%
	428	1.8	1.0	1.2		^	(227) 67.06%	7.71% (33)	(70) 11.68%	(51) 8.88% (38)	(50) 4.67% (2
item46 CFA (n =2		1.0	1.0	1.2			(287)	7.71% (33)	(50)	0.00% (30)	4.07% (2
item01	262	2.3	2.0	1.4		<u></u>	40.46% (106)	22.52% (59)	14.50%	10.69%	11.83%
item03	262	3.7	4.0	1.3		_	11.83%	7.25% (19)	17.56%	28.24%	35.11%
item04	262	1.3	1.0	0.8		^	(31) 89.31%	2.29% (6)	(46)	(74)	(92)
_						_	(234) 43.13%	23.66%	14.50%	14.12%	,
item07	262	2.1	2.0	1.2	_		(113) 14.12%	(62) 22.90%	(38)	(37)	4.58% (1
item08	262	3.0	3.0	1.2			(37)	(60)	(55)	(84)	9.92% (2
item09	262	2.9	3.0	1.1		\sim	12.98% (34)	22.14% (58)	34.35% (90)	26.34% (69)	4.20% (1
item10	262	2.6	3.0	1.1		\sim	17.56% (46)	29.39% (77)	29.01% (76)	21.37% (56)	2.67% (
item11	262	2.1	2.0	0.9		<u></u>	25.95% (68)	46.56% (122)	20.23% (53)	5.34% (14)	1.91% (
item12	262	2.3	2.0	1.2		\sim	32.06% (84)	30.92% (81)	19.08% (50)	11.45% (30)	6.49% (
item16	262	1.6	1.0	1.3		^_	78.24% (205)	3.44% (9)	4.20% (11)	5.73% (15)	8.40% (2
item17	262	1.6	1.0	1.2		^_	80.15% (210)	3.44% (9)	5.34% (14)	2.67% (7)	8.40% (2
item25	262	2.5	2.0	1.4		<u></u>	32.82% (86)	18.32% (48)	21.76% (57)	16.79% (44)	10.31%
item27	262	4.0	4.0	1.2			6.11% (16)	7.25% (19)	8.02% (21)	33.59%	45.04% (118)
item30	262	1.4	1.0	1.1		_	83.59%	2.67% (7)	4.20% (11)	(88) 6.11% (16)	3.44% (
item32	262	3.4	4.0	1.7		~	(219) 25.95%	4.20% (11)	11.45%	16.79%	41.60%
							(68) 32.44%		(30) 11.83%	(44) 14.12%	(109)
item33	262	3.1	3.0	1.7			(85) 27.48%	6.11% (16)	(31)	(37)	(93)
item35	262	3.6	5.0	1.8		~~	(72)	2.67% (7)	7.25% (19)	6.49% (17)	(147)
item36	262	1.6	1.0	1.3		^	80.53% (211)	3.44% (9)	3.05% (8)	3.44% (9)	9.54% (2
item38	262	4.3	5.0	1.1			4.20% (11)	7.63% (20)	6.49% (17)	21.37% (56)	60.31% (158)
item40	262	2.5	2.0	1.3		\sim	30.92% (81)	27.10% (71)	18.70% (49)	12.21% (32)	11.07% (29)
item41	262	1.2	1.0	0.7		^_	90.08% (236)	3.82% (10)	2.29% (6)	2.67% (7)	1.15% (
	262	2.0	1.0	1.4		^_	64.12% (168)	5.34% (14)	9.54% (25)	11.83%	9.16% (2
item45	LOL										

Figure 6

Figure 7. (A) Five Factor Model of LEBA

Figure 8. Item information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light

Figure 9. Test information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light