

Авторегресионная генерация текста

Попов Артём, OzonMasters, осень 2022 Natural Language Processing

Авторегрессионная генерация текста

Дано: $x = (x_1, ..., x_n)$ – входная последовательность, $y_0 = < START >$ **Необходимо** сгенерировать последовательность $y_1, ..., y_m$

Используем авторегресионную генерацию!

Пока $y_i \neq \langle END \rangle$ или $i \neq M$:

- 1. Получение из модели логитов $q(y|y_{< i}, x) \equiv q(y|y_{< i})$
- 2. Получение из логитов распределения $p(y|y_{< i})$
- 3. Получение нового токена y_i из распределения $p(y|y_{< i})$

где M — максимальная длина выходной последовательности

Применение кодировщика-декодировщика (RNN)

Эффективный пересчёт логитов: RNN (без внимания)

Сложность обработки кодировщиком в RNN равна $O(nd^2)$

При итеративной генерации m токенов, сложность равна

$$O(d^{2} + |W|d + \dots + md^{2} + |W|d) =$$

$$= O(m^{2}d^{2} + m|W|d)$$

Если кэшировать скрытые состояния с предыдущего шага, сложность равна $O(d^2 + |W|d + \cdots + d^2 + |W|d) = O(md^2 + m|W|d)$

Затраты по памяти O(d)

Эффективный пересчёт логитов: трансформер

Сложность обработки кодировщиком в трансформере равна $O(nd^2 + n^2d)$

При итеративной генерации m токенов, сложность декодировщика равна $O\big(d^2+nd+|W|d+\cdots+md^2+nmd+|W|d\big)=\\=O\big(m^2d^2+m^2nd+m|W|d\big)$

Если кэшировать все "ключи" и "значения" со всех предыдущих шагов, сложность равна $O(d^2+nd+|W|d+...+d^2+nd+|W|d)=0(md^2+mnd+m|W|d)$

MHA MHA MHA MHA MHA **MHA** Emb Emb Emb W_1 W₂

декодер

Затраты по памяти O(nd+md)

Стратегии выбора следующего токена

Наиболее вероятный токен:

$$y_i = \arg\max_{y \in Y} p(y|y_{< i})$$

- Стоит использовать при генерации коротких текстов
- Хорошо подходит для задачи автодополнения текста / кода
- Быстро зацикливается (генерация повторяющихся одинаковых фрагментов)

Сэмплирование токенов:

$$y_i \sim p(y|y_{\leq i})$$

- Стоит использовать при генерации длинного текста
- Хорошо подходит для режима свободной генерации (художественный текст, генеративная диалоговая система)

Получение распределения: softmax с температурой

Стандартный способ получения распределения – softmax:

$$p(y|y_{< i}) = softmax_{y \in Y} (q(y|y_{< i})) = \frac{\exp(q(y|y_{< i}))}{\sum_{u \in Y} \exp(q(u|y_{< i}))}$$

Повышение/понижение температуры в softmax:

$$p(y|y_{< i}) = softmax_{y \in Y} \left(\frac{q(y|y_{< i})}{T}\right)$$

При малых T распределение стремится к вырожденному. При больших T распределение стремится к равномерному.

Получение распределения: topK и topP

Для уменьшения шума будем занулять все элементы распределения кроме нескольких максимальных.

ТорК стратегия – оставляем k токенов с наибольшими вероятностями

ТорР стратегия – оставляем минимальное по размеру множество из k токенов, сумма вероятностей которых превышает p

$$\hat{p}_{y} = softmax_{y \in Y} (q(y|y_{< i}))$$

$$p(y|y_{< i}) = \frac{\hat{p}_y \mathbb{I}[y \in V_k]}{\sum_{u \in Y} \hat{p}_u \mathbb{I}[u \in V_k]}$$

Почему topP лучше topK?

Penalized sampling

Генеративные модели могут зацикливаться: повторять один и тот же токен много раз.

$$Z_y = \begin{cases} \theta, & \text{if } y \in \{y_1, \dots, y_{i-1}\} \\ 1, & \text{иначе} \end{cases}$$

$$p(y|y_{< i}) = softmax_{y \in Y} \left(\frac{q(y|y_{< i})}{Z_y}\right)$$

Чтобы этот трюк работал, все $q(y|y_{< i})$ должны иметь один знак!

Beam search (лучевой поиск)

Вход модели — множество входных последовательностей V = [< START >]

Повторяем пока $|A| \neq m$ или $i \neq M$:

- 1. Для всех последовательностей $y_{< i} \in V$ получаем $q(y|y_{< i},x)$
- 2. Для всех $y_{< i} \in V$ получаем $p(y|y_{< i}, x)$
- 3. Для каждой $y_{< i} \in V$ выбираем m вариантов следующего токена

Beam search (лучевой поиск)

Вход модели — множество входных последовательностей V = [< START >]

Повторяем пока $|A| \neq m$ или $i \neq M$:

- 1. Для всех последовательностей $y_{< i} \in V$ получаем $q(y|y_{< i},x)$
- 2. Для всех $y_{< i} \in V$ получаем $p(y|y_{< i}, x)$
- 3. Для каждой $y_{< i} \in V$ выбираем m вариантов следующего токена
- 4. Оцениваем вероятности всех получившихся последовательностей $p(y_1, ..., y_i | y_0, x) = p(y_i | y_{< i}, x) \ p(y_{i-1} | y_{i-2}, x) \ ... \ p(y_1 | y_0, x)$
- 5. Выбираем m последовательностей с наибольшими вероятностями

Beam search (лучевой поиск)

Вход модели — множество входных последовательностей V = [< START >]

Повторяем пока $|A| \neq m$ или $i \neq M$:

- 1. Для всех последовательностей $y_{< i} \in V$ получаем $q(y|y_{< i},x)$
- 2. Для всех $y_{< i} \in V$ получаем $p(y|y_{< i}, x)$
- 3. Для каждой $y_{< i} \in V$ выбираем m вариантов следующего токена
- 4. Оцениваем вероятности всех получившихся последовательностей $p(y_1, ..., y_i | y_0, x) = p(y_i | y_{< i}, x) \ p(y_{i-1} | y_{i-2}, x) \ ... \ p(y_1 | y_0, x)$
- 5. Выбираем m последовательностей с наибольшими вероятностями
- 6. Если среди m последовательностей есть законченные (кончаются токеном < END > или максимальной длины), добавляем их в A
- 7. Оставшиеся последовательности добавляем в V

Иллюстрация работы beam search

Свойства beam search

- Beam search выбирает наиболее вероятную последовательность, а не последовательность наиболее вероятных токенов
- Beam search необходим, если мы хотим выдавать пользователю несколько вариантов ответа
- Beam search с разумными m практически всегда позволяет получить более адекватные результаты, чем при $m\,=\,1$
- Большие m в beam search приводит к практически одинаковым «безопасным» последовательностям
- При больших m большинство последовательностей будут короткими
- Beam search часто используют с детерминированными стратегиями выбора токена и температурой, реже с семплированием

Сравнение разных стратегий генерации

Method	Perplexity	Self-BLEU4	Zipf Coefficient	Repetition %	HUSE
Human	12.38	0.31	0.93	0.28	-
Greedy	1.50	0.50	1.00	73.66	-
Beam, b=16	1.48	0.44	0.94	28.94	-
Stochastic Beam, b=16	19.20	0.28	0.91	0.32	-
Pure Sampling	22.73	0.28	0.93	0.22	0.67
Sampling, $t=0.9$	10.25	0.35	0.96	0.66	0.79
Top-k=40	6.88	0.39	0.96	0.78	0.19
Top-k=640	13.82	0.32	0.96	0.28	0.94
Top- k =40, t =0.7	3.48	0.44	1.00	8.86	0.08
Nucleus $p=0.95$	13.13	0.32	0.95	0.36	0.97

Что делать на практике?

- Одна и та же обученная модель может вести себя по разному в зависимости от подобранных параметров генерации
- Оптимальный вариант подбор параметров генерации на валидации, замер качества по тесту

