Corrigé du TP 3 réseaux : Adressage IP et routage

Safa YAHI

Exercice 1:

=> **Hôte A**: adresse IP:15.35.57.98 / masque: 255.0.0.0

1) Pour avoir l'adresse de son réseau, on calcul <u>le AND entre son adresse IP et le son masque :</u>

Au début, on met mécaniquement tous les octets en binaire, même si faire le AND avec 255 ou avec 0 ne le nécessite pas vraiment! C'est surtout pour voir la méthode générale à appliquer avec des masques moins « sympa » (voir hôtes D et E).

On peut montrer comment calculer 15 et 35 en binaire avec la méthode des divisions successives par 2, comment calculer 57 et 98 avec la méthode des soustractions successives des plus grandes puissances de 2.

On convertit ensuite au décimal et donc l'adresse du réseau est 15.0.0.0/8

Notons que /8 (la taille du préfixe) correspond au nombre de bits à 1 dans le masque de sous-réseau.

On constate que:

- X AND 255 = X
- X AND 0 = 0

Par conséquent, on n'a pas besoin de convertir en binaire lorsqu'il s'agit de ces valeurs dans le masque ;)

2) Pour avoir l'adresse de diffusion, on met toute la partie hôte à 1 (partie réseau et hôte délimités par le masque)

Partie réseau	Partie hôte
15.	11111111 . 11111111 . 11111111

adresse de diffusion : 15.255.255.255

=> **Hôte B**: @ IP: 210.100.45.9 / Masque: 255.255.255.0

1) Adresse réseau:

	210	100	45	9
AND	255	255	255	0
	210	100	45	0

Adresse réseau : 210.100.45.0/24

2) Adresse de diffusion :

Partie réseau	Partie hôte
210.100.45.	11111111

Ce qui donne 210.100.45.255

=> **Hôte C** : @ IP : 172.15.25.81 / Masque : 255.255.0.0

Encore un masque sympa!

Adresse réseau: 172.15.0.0/16

Adresse de diffusion: 172.15.255.255

=> **Hôte D**: adresse IP: 10.246.235.210, Masque: 255.255.252.0

Le 3eme octet du masque ne correspond ni à 255 ni à 0, on le traite alors en binaire!

	10	246	11101011	210
AND	255	255	11111100	0
	10	246	11101000	0

L'adresse du réseau est : 10.246.232.0/22

Partie réseau	Partie hôte
10 . 246 . 111010	11 . 11111111
	235

L'adresse de diffusion : 10.246.235.255

Hôte E: (a) **IP**: 192.169.1.254 / Masque: 255.248.0.0

Deuxième octet à mettre en binaire :

1) Adresse réseau?

	192	10101001	1	254
AND	255	11111000	0	0
	192	10101000	0	0

Adresse réseau : 192.168.0.0/13

2) Adresse diffusion?

Partie réseau	Partie hôte
192.10101	111 . 11111111 . 11111111
	175

Donc adresse diffusion: 192.175.255.255

Exercice 2

On regarde l'intervalle des adresses IP privées données en cours.

- 1. 10.0.5.15 => privée
- 2. $12.45.25.63 \Rightarrow$ publique
- 3. 192.168.1.254 => privée
- 4. 80.10.10.81 => publique
- 5. 172.32.0.1 => publique (commence par 172 mais le deuxième octet > 31)

Exercice 3:

- 1) <u>adresse IPv4</u>: 10.192.135.190 / <u>masque de sous-réseau</u>: 255.255.255.0
- 2) <u>adresse de réseau</u> : 10.192.135.0/24 (le résultat du AND entre l'adresse IP et le masque)
- 3) Pour avoir la <u>plus petite adresse d'hôte</u>, on met toute la partie hôte à 0 hormis le dernier bit à 1, pour exclure l'adresse de réseau qu'on ne peut affecter à un hôte :

10.192.135.00000001 (partie hôte en bleu) Ce qui donne 10.192.135.1 4) pour avoir la <u>plus grande adresse d'hôte</u>, on met toute la partie hôte à 1 hormis le dernier bit à 0, pour exclure l'adresse de diffusion qu'on ne peut affecter à un hôte :

10.192.135.11111110 (partie hôte en bleu) Ce qui donne 10.192.135.254

5) l'adresse de la passerelle est : 10.192.135.250, elle appartient à l'intervalle des hôtes du réseau de notre réseau, donc oui la passerelle et le PC sont sur le même réseau.

Exercice 4:

les valeurs sont données en hexadécimal.

- version: 4
- longueur entête : 5 (5 mots de 4 octets)
- champs DS : 00
- longueur totale : 0040
- identification: 325f
- indicateur + décalage : 0X0000 (pour simplifier les calculs)
- durée de vie : 80
- protocole : 11. En décimal, protocole = 1 +16 = 17 donc ce paquet IP encapsule un datagramme UDP.
- Somme de contrôle d'entête : 0000
- adresse IP de source : 8b 7c bb 1d => En décimal pointé : 139.124.187.29
- adresse Ip de destination: 8b 7c 01 02 => en décimal pointée:139.124.1.2
- le reste est la partie données (pas d'option ni padding étant donnée que la longueur entête est de 5 mots de 32 bits). Les données correspondent à un datagramme UDP.

Exercice 5:

- 1) on cherche la plus petite puissance de $2 \ge 120$. C'est $128 = 2^7$ donc il faut prendre 7 bits pour la partie sous-réseau ce qui donne un préfixe de 16+7 cad /23 (16 est la taille de la partie réseau).
- 2) Il reste 16 7 = 9 bits pour la partie hôte. Le nombre d'hôtes par sous-réseaux : $2^9 2 = 510$ (on soustrait 2 pour les hôtes pour exclure 00...00 (adresse sous réseau) et 11...11 (adresse de diffusion sur le sous réseau).
- 3) Le premier sous-réseau possède la plus petite adresse de sous-réseau cad des 0 partout sur la partie sous-réseau (la partie hôte est à 0 aussi) :

Partie réseau (décimal)	Partie sous-réseau (binaire)	Partie hôte (binaire)
172.30	0000000	0.00000000

l'adresse du premier sous-réseau : 172.30.0.0/23

Pour avoir l<u>a plus petite adresse d'hôte</u>, on met tous les bits de la partie hôte à 0 sauf le plus à droite à 1.

Partie réseau (décimal)	Partie sous-réseau (binaire)	Partie hôte (binaire)
172.30	000000	0.00000001

ce qui donne 172.30.0.1

Pour avoir <u>la plus grande adresse d'hôte</u>, on met, dans la <u>partie hôte</u>, tous les bits à 1 sauf le plus à droite à 0 (pour ne pas avoir une adresse de diffusion):

Partie réseau	Partie sous-réseau	Partie hôte
172.30	000000	1.1111111 <u>0</u>

l'adresse est : 172.30.1.254

4) Le <u>dernier sous-réseau</u>: possède l'adresse de sous-réseau la plus haute qu'on obtient en mettant des 1 partout dans la partie sous-réseau.

Partie réseau	Partie sous-réseau	Partie hôte
172.30	1111111	0.00000000

L'adresse du dernier sous-réseau : 172.30.254.0/23

La plus petite adresse d'hôte : 172.30.254.1

Partie réseau	Partie sous-réseau	Partie hôte
172.30	1111111	0.00000001

La plus grande adresse d'hôte: 172.30.255.254

Partie réseau	Partie sous-réseau	Partie hôte
172.30	1111111	1.1111110

Exercice 6:

La plus petite puissance de 2 (moins 2) \geq 60 est $2^6 = 64$ Donc il faut 6 bits pour la partie hôte \geq 26 -2 = 62 hôtes possibles.

ça convient à A, B et C mais pas trop à D et E où on a besoin juste de 2 hôtes (largement < 62) ce qui implique un gaspillage des 60 adresses IP d'hôte.

Par ailleurs, il reste 2 bits pour la partie sous-réseau \Rightarrow 2² = 4 sous-réseaux possibles alors qu'on a besoin de 5 sous réseaux

La solution, c'est le VLSM (masque de sous réseau à taille variable) ce qui nous permet de prendre plus de bits de la partie hôte pour définir plus de sous-réseaux. Pour D et E, on doit laisser 2 bits pour la partie hôte $(2^2 - 2 = 2)$ et donc on peut prendre jusqu'à 6 bits pour la partie sous-réseaux.

Pour éviter un chevauchement d'adresses dans deux sous-réseaux différents, on passe par un arbre binaire comme le montre la figure ci-après.

Par conséquent,

A : dernier octet : 000000000 => adresse A : 192.168.50.0/26

/* 26 = 24 (partie réseau) + 2 (partie sous-réseau) */

B : dernier octet : 01000000 => adresse B : 192.168.50.64/26 C : dernier octet : 10000000 => adresse C : 192.168.50.128/26 D : dernier octet : 11000000 => adresse D : 192.168.50.192/30

/* 30 = 24 (partie réseau) + 6 (partie sous-réseau) */

E : dernier octet : 11000100 => adresse E : 192.168.50.196/30

Exercice 7:

1. Tables sans route par défaut

1. Table de R1

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
200.50.70.0/24	0.0.0.0 (remise directe
150.30.0.0/16	200.50.70.2
120.0.0.0/8	200.50.70.2
206.20.55.0/24	200.50.70.2

2. Table de R2

Destination	Routeur
90.0.0.0/8	200.50.70.1
200.50.70.0/24	0.0.0.0 (remise directe)
150.30.0.0/16	0.0.0.0 (remise directe)
120.0.0.0/8	0.0.0.0 (remise directe)
206.20.55.0/24	120.0.0.2

3. Table de S1

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
200.50.70.0/24	90.0.0.1
150.30.0.0/16	90.0.0.1
120.0.0.0/8	90.0.0.1
206.20.55.0/24	90.0.0.1

4. Table de S2

Destination	Routeur
90.0.0.0/8	120.0.0.1
200.50.70.0/24	120.0.0.1
150.30.0.0/16	120.0.0.1
120.0.0.0/8	0.0.0.0 (remise directe)
206.20.55.0/24	120.0.0.2

2. Tables avec route par défaut

table de R1

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
200.50.70.0/24	0.0.0.0 (remise directe
0.0.0.0	200.50.70.2

table de R3

Destination	Routeur
120.0.0.0/8	0.0.0.0
206.20.55.0/24	0.0.0.0
0.0.0.0	120.0.0.1

Table de S1

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
0.0.0.0	90.0.0.1

Table de S3

Destination	Routeur
206.20.55.0/24	0.0.0.0 (remise directe)
0.0.0.0	206.20.55.1

3. Supprimer l'accès à un réseau

1) enlever la route par défaut, considérer la table de la question 1 et enlever l'entrée vers 206.20.55.0/24

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
200.50.70.0/24	90.0.0.1
150.30.0.0/16	90.0.0.1
120.0.0.0/8	90.0.0.1
206.20.55.0/24	90.0.0.1

2) On rajoute une route vers un hôte

Destination	Routeur
90.0.0.0/8	0.0.0.0 (remise directe)
200.50.70.0/24	90.0.0.1
150.30.0.0/16	90.0.0.1
120.0.0.0/8	90.0.0.1
206.20.55.119/32	90.0.0.1

4. Non, car la subdivision (subnetting) est une question interne au réseau subnetté et elle n'est pas visible depuis l'extérieur et R1 fait partie de l'extérieur.