Les matrices

Définition Une *matrice* est un tableau rectangulaire contenant des nombres :

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Les matrices peuvent représenter toutes sortes d'informations. Si la matrice a m lignes et n colonnes, on dit que c'est une matrice de taille (ou de type) $m \times n$. Les nombres a_{ij} sont les coefficients de la matrice. Ils ont un double indice : i désigne la ligne où se trouve ledit coefficient et j indique la colonne. On dit que la matrice est carrée si n=m, i.e. si elle a autant de lignes que de colonnes, sinon elle est rectangulaire. Une matrice de taille $1 \times n$ s'appelle un vecteur-ligne et une matrice de taille $n \times 1$ s'appelle un vecteur-colonne.

Par exemple la matrice

$$A = \left(\begin{array}{cccc} 2 & 3 & 1 & 7 \\ 0 & 1 & 4 & 1 \\ 2 & 0 & 0 & 0 \end{array}\right)$$

est une matrice rectangulaire de taille 3×4 . Le coefficient de la deuxième ligne et première colonne est $a_{23} = 4$ et celui de la première ligne et quatrième colonne est $a_{14} = 7$.

On peut définir plusieurs opérations algébriques sur les matrices :

1. Multiplication d'une matrice par un nombre

La multiplication d'une matrice A par un nombre 1 λ consiste simplement à multiplier chaque coefficient de la matrice par ce nombre :

$$\lambda \cdot A = \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix}$$

Par exemple

$$3 \cdot \left(\begin{array}{rrrr} 2 & 3 & 1 & 7 \\ 0 & 1 & 4 & 1 \\ 2 & 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{rrrrr} 6 & 9 & 3 & 21 \\ 0 & 3 & 12 & 3 \\ 6 & 0 & 0 & 0 \end{array}\right)$$

2. Somme de deux matrices

On peut additionner deux matrices de même taille. Cela se fait simplement en additionnant les coefficients de même position :

$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$

Par exemple

$$\begin{pmatrix} 2 & 3 & 1 & 7 \\ 0 & 1 & 4 & 1 \\ 2 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 2 & 1 \\ 3 & 2 & 1 & 1 \\ -1 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 & 8 \\ 3 & 3 & 5 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

La matrice nulle de taille $m \times n$ est la matrice $O = O_{m \times n}$ dont tous les coefficients sont nuls, on la note

$$O_{m \times n} = \left(\begin{array}{ccc} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{array} \right)$$

La matrice opposée d'une matrice A est la matrice obtenue en changeant la signe de chaque coefficient

$$-\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{pmatrix}$$

¹Dans le contexte du calcul matriciel, on parle de scalaire. Un scalaire est simplement un nombre réel.

La différence de deux matrices se définit comme la somme :

$$(a_{ij}) - (b_{ij}) = (a_{ij} - b_{ij})$$

Nous avons alors les propriétés suivantes qui sont les premières identités du calcul matriciel (où A, B, C sont des matrices de même taille et λ est un nombre); ces règles sont élémentaires à vérifier.

Premières identités matricielles :		
A + B = B + A	(commutativité)	
A + (B+C) = (A+B) + C	(associativité)	
$\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$	(distributivité)	
$\lambda \cdot A + \mu \cdot A = (\lambda + \mu) \cdot A$	(distributivité)	
A + O = O + A = A		
A - A = O		

Produit matriciel

On peut multiplier une matrice de taille $m \times n$ avec une matrice de taille $n \times p$, on obtient alors une matrice de taille $m \times p$.

La règle est la suivante : si $A = (a_{ij})$ et $B = (b_{jk})$, alors le produit $C = A \cdot B$ est la matrice $C = (c_{ik})$ telle que

$$c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$

Exemple:

$$\begin{pmatrix} 2 & 0 \\ 3 & 1 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 4 & 0 \\ 12 & 5 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$

Matrice identité

La matrice identité de taille $n \times n$ est la matrice $I_n = (\delta_{ij})$ dont les coefficients valent

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si sinon} \end{cases}$$

Par exemple

$$I_4 = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Théorème 2.6 La matrice identité est un élément neutre pour la multiplication matricielle : Si A est une $n \times m$ matrice, alors

$$I_n \cdot A = A \cdot I_m = A.$$

Matrice inverse

Soient A une matrice carrée de taille $n \times n$. On dit que B est la matrice inverse de A si B est aussi une matrice carrée de taille $n \times n$ et si

$$A \cdot B = B \cdot A = I_n$$

On note alors $B = A^{-1}$.

Proposition 2.7 Si l'une des deux relations $A \cdot B = I_n$ ou $B \cdot A = I_n$ est vraie, alors l'autre aussi et donc $B = A^{-1}$.

Le cas des 2×2 matrices. On vérifie facilement que

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \left(\begin{array}{cc} (ad-bc) & 0 \\ 0 & (ad-bc) \end{array}\right) = (ad-bc) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

On a donc la formule suivante :

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right).$$

Cette formule n'a de sens que si $\Delta=(ad-bc)\neq 0$, Ce nombre s'appelle le déterminant de la matrice et se note

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = ad - bc.$$

Proposition 2.8 Une 2×2 matrice A admet un inverse si et seulement si son déterminant est non nul.

Exemple:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 3 \\ 2 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} -\frac{5}{6} & \frac{1}{2} \\ \frac{1}{3} & 0 \end{pmatrix}$$