Notes

January 21, 2015

$$m * (A \cup B) \le m * A + m * B$$

we want

if
$$A_i \cap A_j = \emptyset$$

$$m * (\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} m * (A_i)$$

we don't always get this (sum of parts bigger than the whole) this is a huge problem

measureable

a set E is measurable if for any set $A m * (A) = m * A \cap E) + m * (A \cap E^{C})$

if we can chop A in half and the size of the pieces together is the same as the size of the pieces apart then E is measurable. this gives us what we want above.

two facts

- 1. if E is measurable, then so is E^C definition is symmetric with respect to complements
- 2. E is measurable if and only if $m * A \ge m * (A \cap E) + m * (A \cap E^C)$ for any A

proof

 $A = (A \cap E) \cup (A \cap E^C) \to m * (A) \le m * (A \cap E) + m * (A \cap E^C)$ (less than comes free, only need to show the greater than part)

E measurable means that $m * A = m * (A \cap E) + m * (A \cap E^{C})$ for any A

1. if m * (E) = 0 then E is measurable $(\emptyset, \text{ singletons, cantor set})$

proof

let A be a set.
$$A \cap E \subseteq E \rightarrow m*(A \cap E) \le m*E = 0$$
 and $A \cap E^C \subset A \rightarrow m*(A \cap E^C \le m*(A)$ and so $m*(A \cap E) + m*(A \cap E^C) \le 0 + m*(A)$

intersections and unions

proposition

if E_1, E_2 are measurable, then so is $E_1 \cup E_2$.

proof

$$\begin{split} m*A &= m*A \cap E_1 + m*A \cap E_1^C \\ m*A &= m*A \cap E_2 + m*A \cap E_2^C \\ \text{we want } m*A &\geq m*A \cap (E_1 \cup E_2) + m*A \cap (E_1 \cup E_2)^C \\ \\ A \cap (E_1 \cup E_2) \\ (A \cap E_1) \cup (A \cap (E_2 \cap E_1^C)) \\ A \cap (E_1 \cup E_2)^C \\ A \cap (E_1^C \cup E_2^C) \\ \\ m*(A \cap E_1^C) &= m*((A \cap E_1^C) \cap E_2) + m*((A \cap E_1^C) \cap E_2^C) \\ m*(A \cap (E_1 \cup E_2)) &\leq m*(A \cap E_1) + m*(A \cap E_2 \cap E_1^C) \\ m*(A \cap E_1^C) - m*((A \cap E_1^C) \cap E_2) &= m*((A \cap E_1^C) \cap E_2^C) \\ m*(A \cap (E_1 \cup E_2)) &\leq m*(A \cap E_1) + m*(A \cap E_1^C) &= m*(A) \end{split}$$

proposition

if E_1, E_2 are measurable, so is $E_1 \cap E_2$. $E_1 \cap E_2 = (E_1^C)^C \cap (E_2^C)^C$ demorgans law says $(E_1)^C \cup E_2^C)^C$ and so $(E_1^C \cup E_2^C)$ is measurable and so on

propostion

if A is a set and E_1, E_2 are measureable and $E_1 \cap E_2 = \emptyset$ then $m*(A \cap (E_1 \cup E_2)) = m*(A \cap E_1) + m*(A \cap E_2)$

proof

$$m*A = m*A \cap E_1 + m*A \cap E_1^C \\ m*A \cap (E_1 \cup E_2) = m*A \cap (E_1 \cup E_2) \cap E_1 + m*A \cap (E_1 \cup E_2) \cap E_1^C = m*A \cap E_1 + m*A \cap E_2$$