

End Semester Examination

Course Title: Real Analysis 1 Time Duration: 2 h 30 min

Date: December 8, 2023 Total Mark: 40 Course Code: MTH-240 Time: 2.30-5 pm

Give proper justifications for your answer. Mention the results or theorems which you are using.

Write True or False

Q.1)a) If h(x) = 0 for x < 0 and h(x) = 1 for $x \ge 0$. Then there exists a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = h(x) for all $x \in \mathbb{R}$.

Q.1)b) We can apply L'Hospital's rule to evaluate $\lim_{x\to+\infty} \frac{x-\sin x}{2x+\sin x}$.

Q.1)c) If $w = x^2 + y^2$ and x = r - s and y = r + s, then $w_r = 4r$.

Q.1)d)Consider the function $f(x) = |x^3|$ for $x \in \mathbb{R}$. Then f''(0) does not exists.

Q.1)e) The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = |\sin x|$ is differentiable at all points in its domain.

Q.1)f) The limit $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^6+y^2}$ exists and equal to 0.

Q.1)g) There does not exist a continuous function from [a, b] onto \mathbb{R} .

Q.1)h) $\lim_{x\to c} g(x)f(x)$ exists always implies $\lim_{x\to c} g(x)$ and $\lim_{x\to c} f(x)$ exist.

Q.1)i) $g \circ f$ is differentiable at all points in its domain always implies g and f are differentiable at all points in their respective domains.

Q.1)j) If f and g are Lipschitz functions on the domain A and both of them are bounded on A, then the product fg is a Lipschitz function on A. $10 \times 1 = 10$ -marks

Q.2)a) Let m be the slope of the tangent line to the graph of $y = \frac{x^2}{x+2}$ at the point (-3, -9). Express m as a limit (Do not compute m).

Q.2)b) Suppose that $\lim_{x\to c} f(x) \neq 0$ and $\lim_{x\to c} g(x) = 0$, then show that $\lim_{x\to c} \frac{f(x)}{g(x)}$ does not exist.

Q.2)c) Find all tangent lines to the graph of $y = x^3$ that pass through the point (2,4). 1.5 + 1.5 + 2 = 5-marks

Q.3)a) What is equivalent criterion for differentiability for z = f(x, y) at any point in its domain?

Q.3)b) Determine all values of the constant $\alpha > 0$ for which the limit $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{|x|^3+|y|^{\alpha}}$ exists?

Q.3)c) Show by an example that the existence of partial derivatives at a given point does not imply continuity at that point. 1.25+2.5+1.25 =

5-marks

 $\mathbf{Q.4}$ a) Find the set of points of continuity of f given by

$$f(x) = \begin{cases} x^2 - 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} \end{cases}$$

Q.4)b) Prove using $(\varepsilon - \delta)$ definition that $f : [0, \pi] \to \mathbb{R}$ defined by $f(x) = \cos x$ is continuous function.

Q.4)c) What is a removable discontinuity? 1.5 + 2.5 + 1 = 5-marks

Q.5)a) What is the first derivative test?

Q.5)b) Determine whether x=0 is a point of local extremum of $k(x)=\cos x-1+\frac{x^2}{2}$. **Q.5)c)** Suppose f is a function from $f:\mathbb{R}\to\mathbb{R}$ is a continuous

Q.5)c) Suppose f is a function from $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{|x|\to\infty} f(x) = 0$. Prove that f is bounded on \mathbb{R} and attains either an absolute maximum or an absolute minimum! 1+2+2=5-marks

Q.6)a) Let $f:[a,b] \to \mathbb{R}$ be a twice differentiable function having at least three distinct zeros in [a,b] then the equation f(x) + f''(x) = 2f'(x) has at least one root in [a,b].

Q.6)b) What is the definition of the directional derivative of z = f(x, y) at any point (x_0, y_0) (in its domain) in the direction of the vector $\bar{v} = v_1 \bar{i} + v_2 \bar{j}$.

Q.6)c) Give the geometric interpretation of the directional derivative (no need to draw). 2 + 1.5 + 1.5 = 5-marks

Q.7)a) Let $f(x) = x^3y - xy^2 + cx^2$ where c is a constant. Find c if f increases fastest at the point P(3,2) in the direction of the vector $\bar{v} = 2\bar{i} + 5\bar{j}$.

Q.7)b) Can you prove $\nabla \frac{f}{g}|_{(x_0,y_0)} = \frac{g\nabla f - f\nabla}{g^2}|_{(x_0,y_0)}$ with necessary conditions.

2.5 + 2.5 = 5-marks