Problem 1: Clustering

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage. 1.1 Read the data and do exploratory data analysis. Describe the data briefly.

- 1.2 Do you think scaling is necessary for clustering in this case? Justify
- 1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them
- 1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score.
- 1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

Dataset for Problem 1: bank_marketing_part1_Data.csv

Data Dictionary for Market Segmentation:

spending: Amount spent by the customer per month (in 1000s) advance_payments: Amount paid by the customer in advance by cash (in 100s) probability_of_full_payment: Probability of payment done in full by the customer to the bank current_balance: Balance amount left in the account to make purchases (in 1000s) credit_limit: Limit of the amount in credit card (10000s) min_payment_amt: minimum paid by the customer while making payments for purchases made monthly (in 100s) max_spent_in_single_shopping: Maximum amount spent in one purchase (in 1000s)

1.1 Read the data and do exploratory data analysis. Describe the data briefly.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
%matplotlib inline
```

In [2]:

```
df=pd.read_csv('bank_marketing_part1_Data.csv')
```

In [3]:

```
df.head()
```

Out[3]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_sir
0	19.94	16.92	0.8752	6.675	3.763	3.252	
1	15.99	14.89	0.9064	5.363	3.582	3.336	
2	18.95	16.42	0.8829	6.248	3.755	3.368	
3	10.83	12.96	0.8099	5.278	2.641	5.182	
4	17.99	15.86	0.8992	5.890	3.694	2.068	
4							<u> </u>

```
In [4]:
```

```
df.shape
```

```
(210, 7)
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
 # Column
                                    Non-Null Count Dtype
    _____
                                    -----
 0
   spending
                                    210 non-null
                                                   float64
 1 advance payments
                                    210 non-null
                                                   float64
 2 probability_of_full_payment 210 non-null
                                                   float64
 3 current balance
                                    210 non-null
                                                   float64
 4 credit_limit
                                    210 non-null
                                                   float64
 5 min payment amt
                                    210 non-null
                                                   float64
 6 max spent in single shopping 210 non-null
                                                    float64
dtypes: float64(7)
memory usage: 11.6 KB
In [6]:
df.dtypes.value counts()
Out[6]:
float64
dtype: int64
All data types are integer type and there is no need for datatype converting
In [7]:
df.isna().sum()
Out[7]:
                                 0
spending
advance payments
                                 0
probability of full payment
                                 0
                                 0
current balance
                                 0
credit_limit
min payment amt
                                 0
                                 0
max_spent_in_single_shopping
dtype: int64
There are no missing values in the dataset.
In [8]:
dupes=df.duplicated()
sum(dupes)
Out[8]:
0
There are no duplicates in the dataset.
In [9]:
df.describe()
Out[9]:
       spending advance_payments probability_of_full_payment current_balance credit_limit min_payment_amt max_spent
```

210.000000

210.000000 210.000000

210.000000

Out[4]:

count 210.000000

210.000000

mean	1 4p84 76749	advance_payinents	probability_of_full_payinent	current_5888666	cr édit énnit	min_payme78 <u>0</u> 2391t	max_spent
std	2.909699	1.305959	0.023629	0.443063	0.377714	1.503557	
min	10.590000	12.410000	0.808100	4.899000	2.630000	0.765100	
25%	12.270000	13.450000	0.856900	5.262250	2.944000	2.561500	
50%	14.355000	14.320000	0.873450	5.523500	3.237000	3.599000	
75%	17.305000	15.715000	0.887775	5.979750	3.561750	4.768750	
max	21.180000	17.250000	0.918300	6.675000	4.033000	8.456000	
4							<u> </u>

In [10]:

```
plt.figure(figsize=(6,4))
df.boxplot(vert=0)
```

Out[10]:

<AxesSubplot:>

Very few outliers are there i.e., for min_payment_amount and probability_of_full_payment. Since clustering is not affected by outliers there is no need to treat outliers.

In [11]:

sns.pairplot(df)

Out[11]:

<seaborn.axisgrid.PairGrid at 0x1d03b291550>

In [12]:

df.corr()

Out[12]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_pa
spending	1.000000	0.994341	0.608288	0.949985	0.970771	
advance_payments	0.994341	1.000000	0.529244	0.972422	0.944829	
probability_of_full_payment	0.608288	0.529244	1.000000	0.367915	0.761635	
current_balance	0.949985	0.972422	0.367915	1.000000	0.860415	
credit_limit	0.970771	0.944829	0.761635	0.860415	1.000000	
min_payment_amt	- 0.229572	-0.217340	-0.331471	-0.171562	-0.258037	
max_spent_in_single_shopping	0.863693	0.890784	0.226825	0.932806	0.749131	
4				1		Þ

In [13]:

sns.heatmap(df.corr(), annot=True)

Out[13]:

<AxesSubplot:>

probability_ol

a.

min_

1.2 Do you think scaling is necessary for clustering in this case? Justify

Yes. Scaling is required for the data.

```
In [14]:
```

from sklearn.preprocessing import StandardScaler

In [15]:

X = StandardScaler()

In [16]:

s_df = pd.DataFrame(X.fit_transform(df.iloc[:,0:7]),columns=df.columns[0:])

In [17]:

s_df

Out[17]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_
0	1.754355	1.811968	0.178230	2.367533	1.338579	-0.298806	
1	0.393582	0.253840	1.501773	-0.600744	0.858236	-0.242805	
2	1.413300	1.428192	0.504874	1.401485	1.317348	-0.221471	
3	1.384034	-1.227533	-2.591878	-0.793049	-1.639017	0.987884	
4	1.082581	0.998364	1.196340	0.591544	1.155464	-1.088154	
						•••	
205	0.329866	-0.413929	0.721222	-0.428801	-0.158181	0.190536	
206	0.662292	0.814152	-0.305372	0.675253	0.476084	0.813214	
207	0.281636	-0.306472	0.364883	-0.431064	-0.152873	-1.322158	
208	0.438367	0.338271	1.230277	0.182048	0.600814	-0.953484	
209	0.248893	0.453403	-0.776248	0.659416	-0.073258	-0.706813	

210 rows × 7 columns

In [18]:

s_df.describe()

Out[18]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_s
count	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	
mean	9.148766e-16	1.097006e-16	1.260896e-15	-1.358702e-16	-2.790757e- 16	5.418946e-16	
std	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	
min	- 1 466714 <u>e</u> ±00	-1.649686e+00	-2.668236e+00	-1.650501e+00	- 1 668209 <u>e</u> ±00	-1.956769e+00	

	25%	spending -8.879552e- 01	advance_payments -8.514330e-01	probability_of_full_payment -5.980791e-01	current_balance -8.286816e-01	credit_limit -8.349072e-	min_payment_amt -7.591477e-01	max_s
	50%	-1.696741e- 01	-1.836639e-01	1.039927e-01	-2.376280e-01	-5.733534e- 02	-6.746852e-02	
	75%	8.465989e-01	8.870693e-01	7.116771e-01	7.945947e-01	8.044956e-01	7.123789e-01	
	max	2.181534e+00	2.065260e+00	2.006586e+00	2.367533e+00	2.055112e+00	3.170590e+00	
4								Þ

Scaled data is in s_df dataframe which will be used for further hierarchical clustering and also kmeans clustering.

1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

In [19]:

```
from scipy.cluster.hierarchy import dendrogram, linkage
HClust = linkage(s_df, method = 'ward')
dend = dendrogram(HClust)
```


In [20]:

Identifying number of optimal clusters.

Importing flcuster module to create clusters

In [21]:

from scipy.cluster.hierarchy import fcluster

```
clusters = fcluster(HClust, 2, criterion='maxclust')
clusters
Out[22]:
2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1,
      1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1,
      1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1,
      2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
      2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
      2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
      2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,
      1, 2, 2, 1, 2, 2, 1, 2, 1, 2], dtype=int32)
Appending clusters to original data set
In [23]:
df['clusters']=clusters
Cluster frequency
In [24]:
df.clusters.value_counts().sort_index()
Out[24]:
     70
1
   140
Name: clusters, dtype: int64
In [25]:
clusters1 = fcluster(HClust, 3, criterion='maxclust')
clusters1
Out[25]:
array([1, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 1, 3, 2, 3, 2, 3, 2, 2, 2,
      1, 2, 3, 1, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 3, 1,
      2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 3,
      1, 3, 1, 2, 3, 2, 1, 1, 2, 1, 3, 2, 1, 3, 3, 3, 3, 1, 2, 3, 3, 1,
      1, 2, 3, 1, 3, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 1,
      3, 3, 1, 2, 2, 1, 3, 3, 2, 1, 3, 2, 2, 2, 3, 3, 1, 2, 3, 3, 2, 3,
      3, 1, 2, 1, 1, 2, 1, 3, 3, 3, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 3,
      3, 3, 3, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 3, 3, 3, 2, 3, 1, 1, 1,
      3, 3, 1, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 2, 3, 3, 2, 1, 3, 1, 1, 2,
      1, 2, 3, 1, 3, 2, 1, 3, 1, 3, 1, 3], dtype=int32)
Appending clusters to original data set
In [26]:
df['clusters1']=clusters1
Cluster frequency
In [27]:
df.clusters1.value counts().sort index()
Out [27]:
1
    70
    67
```

In [22]:

```
3 73
Name: clusters1, dtype: int64
```

By default, dendrogram is showing 2 clusters cluster1: 70 and cluster2:with 140 observations. But if created 3 clusters, almost similar no. of observations are falling in each cluster and i think that the profile can be best compared from technical and business angle if 3 clusters are taken rather than taking two clusters i.e., one high and one low. so, 3 clusters are taken.

df.columns

Cluster profile

```
In [29]:
aggdata=df.drop(['clusters'],axis=1).groupby('clusters1').mean()
aggdata['Freq']=df.clusters1.value_counts().sort_index()
aggdata
Out[29]:
```

spending advance_payments probability_of_full_payment current_balance credit_limit min_payment_amt max_spe

clusters1

1 18.371429	16.145429	0.884400	6.158171	3.684629	3.639157
2 11.872388	13.257015	0.848072	5.238940	2.848537	4.949433
3 14.199041	14.233562	0.879190	5.478233	3.226452	2.612181
4					<u> </u>

HIERARCHICAL CLUSTERING: RECOMMENDATIONS: Cluster 1: This cluster has maximum credit_limit as they are spending more, maximum spent in single_shopping (max_spent_in_single_shopping) and also with highest advance_payments options with highest current_balance and are having highest probability of full payment (probability_of_full_payment) For this cluster, min_payment_amount is moderate. For the cluster 1 type customers, certain incentives of increasing their credit-limits can be an option to attract and maintain customers. Cluster 2: This cluster has minimum spending and the credit_limit, advance_payments, probability_of_full_payment,current_balance are also less. For this segment of clusters, attractive offers can increase their credit usage. Cluster 3:This cluster has moderate credit_limit and all the variable means are showing moderate, except for min_payment_amount.

1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score.

```
s df.columns
Out[31]:
Index(['spending', 'advance payments', 'probability of full payment',
        'current_balance', 'credit_limit', 'min_payment_amt',
       'max_spent_in_single_shopping'],
      dtype='object')
In [32]:
s df.head()
Out[32]:
  spending advance_payments probability_of_full_payment current_balance credit_limit min_payment_amt max_spent_in_sin
0 1.754355
                   1.811968
                                         0.178230
                                                      2.367533
                                                                1.338579
                                                                               -0.298806
  0.393582
                   0.253840
                                         1.501773
                                                      -0.600744
                                                                0.858236
                                                                              -0.242805
  1.413300
                   1.428192
                                         0.504874
                                                      1.401485
                                                                1.317348
                                                                               -0.221471
                                                                               0.987884
                  -1.227533
                                        -2.591878
                                                      -0.793049
                                                               -1.639017
   1.384034
  1.082581
                   0.998364
                                         1.196340
                                                      0.591544
                                                                1.155464
                                                                               -1.088154
creating clusters with kMeans
In [33]:
from sklearn.cluster import KMeans
In [34]:
k_means = KMeans(n_clusters = 2,random_state=1)
In [35]:
k means.fit(s df)
Out[35]:
KMeans(n clusters=2, random state=1)
cluster output for all observations
In [36]:
k means.labels
Out[36]:
array([1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
       1, 0, 0, 1, 0,
                                     0, 0, 1, 0, 0, 0, 0,
                        Ο,
                           0, 0, 0,
                                                             Ο,
                                                                1, 1,
       0, 0, 0, 1, 1, 1, 0, 1, 1, 1,
                                        1, 1, 0, 0, 0,
                                                         1,
                                                             0,
                                                                0, 0,
                           1, 1,
       1, 0, 1, 0, 0, 0,
                                  Ο,
                                     1,
                                        0, 0, 1, 0, 0,
                                                         Ο,
                                                             0,
                                                                1, 0, 0,
       1, 0, 0, 1, 0, 0, 0, 1,
                                     1,
                                        0, 1, 0,
                                                  1, 0,
                                  1,
                                                         1,
                                                             0,
                                                                1, 1, 0,
       1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                                                               0, 0, 0, 0, 0,
       0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,
       0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
       1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])
within cluster sum of squares
```

In [37]:

k means.inertia

```
Out[37]:
659.171754487041
```

Calculating WSS for other values of K - Elbow Method

```
In [38]:
wss =[]
In [39]:
for i in range (1,6):
    KM = KMeans(n clusters=i,random state=1)
    KM.fit(s df)
    wss.append(KM.inertia_)
In [40]:
WSS
Out[40]:
[1469.999999999998,
 659.171754487041,
 430.6589731513006,
 371.38509060801096,
 327.21278165661346]
In [41]:
a = [1, 2, 3, 4, 5]
In [42]:
sns.pointplot(a, wss)
C:\Users\hp\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass th
e following variables as keyword args: x, y. From version 0.12, the only valid positional
argument will be `data`, and passing other arguments without an explicit keyword will res
ult in an error or misinterpretation.
  warnings.warn(
Out[42]:
<AxesSubplot:>
1400
```


KMeans with K=2

```
In [43]:
```

```
k means = KMeans(n_clusters = 2,random_state=1)
k means.fit(s df)
labels = k means.labels
```

```
In [44]:
labels
Out[44]:
array([1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
       1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
       0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
       1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1,
       1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,
       1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
       0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,
       0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
       1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])
Cluster evaluation for 2 clusters: the silhouette score
In [45]:
from sklearn.metrics import silhouette samples, silhouette score
In [46]:
# Calculating silhouette score
silhouette score(s df,labels,random state=1)
Out[46]:
0.46577247686580914
KMeans with K=3
In [47]:
k means = KMeans(n clusters = 3, random state=1)
k means.fit(s df)
labels = k means.labels
Cluster evaluation for 3 clusters: the silhouette score
In [48]:
silhouette score(s df,labels,random state=1)
Out[48]:
0.4007270552751299
Appending Clusters to the original dataset
In [49]:
df["Clus kmeans3"] = labels
df.head()
```

Out[49]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_sin
0	19.94	16.92	0.8752	6.675	3.763	3.252	
1	15.99	14.89	0.9064	5.363	3.582	3.336	
2	18.95	16.42	0.8829	6.248	3.755	3.368	
3	10.83	12.96	0.8099	5.278	2.641	5.182	
4	17.99	15.86	0.8992	5.890	3.694	2.068	

Cluster Profiling

```
In [50]:

df.Clus_kmeans3.value_counts().sort_index()

Out[50]:

0    71
1    72
2    67
Name: Clus_kmeans3, dtype: int64

In [51]:

clust_profile=df.drop(['clusters','clusters1'], axis=1).groupby('Clus_kmeans3').mean()
clust_profile['freq']=df.Clus_kmeans3.value_counts().sort_index()
clust_profile
Out[51]:
```

spending advance_payments probability_of_full_payment current_balance credit_limit min_payment_amt ma

Clus_kmeans3

4						Þ
2	18.495373	16.203433	0.884210	6.175687	3.697537	3.632373
1	11.856944	13.247778	0.848253	5.231750	2.849542	4.742389
0	14.437887	14.337746	0.881597	5.514577	3.259225	2.707341

Cluster 0: This cluster has moderate credit_limit and all the variable means are showing moderate, except for min_payment_amount..

Cluster 1: This cluster has minimum spending and the credit_limit, advance_payments, probability_of_full_payment,current_balance are also less. For this segment of clusters, attractive offers can increase their credit usage.

Cluster 2: This cluster has maximum credit_limit as they are spending more, maximum spent in single_shopping (max_spent_in_single_shopping) and also with highest advance_payments options with highest current_balance and are having highest probability of full payment (probability_of_full_payment) For this cluster, min_payment_amount is moderate. For the cluster 2 type customers, certain incentives of increasing their credit-limits can be an option to attract and maintain customers

1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters

The results of the cluster profile were compared and shown in Table 1.5 The frequency count of the clusters revealed almost similar counts. The mean for the clusters with both hierarchical and KMeans showed similar trend. The ouput for the cluster profiles are given in Table 1.3 and 1.4 as shown in the above questions. Table 1.5 given in pdf TABLE 1.5 HIERARCHICAL KMEANS segment 1 2 HIGH 2 1 LOW 3 0 MODERATE

HIGH SEGMENT: This cluster has maximum credit_limit as they are spending more, maximum spent in

single_shopping (max_spent_in_single_shopping) and also with highest advance_payments options with highest current_balance and are having highest probability of full payment (probability_of_full_payment)

Promotional Strategy: Credit card usage is maximum and certain incentives of increasing their credit-limits can be an option to attract and maintain these customers.

MODERATE SEGMENT: This cluster has moderate credit_limit and all the variable means are showing moderate, except for min_payment_amount.

Promotional Strategy: To these segment interest rate deductions can be the best strategy so that they can increase their credit usage.

LOW SEGMENT: This cluster has minimum spending and the credit_limit, advance_payments, probability_of_full_payment,current_balance are also less.

Promotional Strategy: For this segment of clusters, attractive offers can increase their credit usage. To these segment interest rate deductions and long term payment options without interest can be the strategies so that they can increase their credit usage.

In []: