THE UNITED REPUBLIC OF TANZANIA PRESIDENT'S OFFICE REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT

FORM SIX SPECIAL SCHOOLS SYNDICATE JOINT EXAMINATION

142/1

ADVANCED MATHEMATICS 1

Time: 3:00 Hrs Friday 10-March-2023 PM

INSTRUCTIONS

- 1. This paper consists of ten(10) questions each carrying ten(10) marks
- 2. Answer all questions.
- 3.All necessary working and answers for each question done must be shown clearly.
- 4. Non-programmable scientific calculators may be used.
- 5.Cellular phones and any unauthorized materials are not allowed in the examination room .
- 6. Write your Examination Number on every page of your answer booklet(s).

1. (a) Use a non-programmable calculator to evaluate the values of the following:

(i)
$$\sqrt{\frac{\cot(e^2) + {}^5P_2 \cosh(\ln 2)}{\sin 63^{\circ}21' + \sum_{r=1}^{2} \ln(5r)}}$$
 Correct to three decimal place

(ii)
$$\ln \left(\frac{\sqrt{98.2} \times (0.0076)^{-1} \times 10^{-2}}{\tan \frac{\pi}{3} \times \cos^3 \frac{\pi}{4}} \right)$$
Correct to four significant figures.

(b) The rate of population is directly proportional to the number of inhabitants present at that time, t is given by $N = N_0 e^{kt}$, where N is the population at any time, t, N_0 is the original population and k is a constant. Consider the population growth in city X below:

Year	Population
1985	20,000,000
1995	24,000,000
2000	

By using your non programmable calculator, find the population in the year 2000.

- 2. (a) Solve the equation for exact value of x: $2 \sinh x \cosh x = 2 \tanh \frac{x}{2}$. Leave your answer in logarithmic form.
 - (b) Prove that $16\sinh^2 x \cosh^3 x = \cosh 5x + \cosh 3x 2\cosh x$. Hence or otherwise evaluate $\int_0^1 16\sinh^2 x \cosh^3 x dx$ giving your answer in terms of e.
- 3.A medical company has factories at two places P_1 and P_2 with production capacities 60 and 70 packets of medicine respectively. From these places, supply is made to each of its three agencies situated at A_1 , A_2 and A_3 . The monthly requirements of the agencies, are respectively 40,40 and 50 packets. The transportation costs (TZS) per packet for the factories to the agencies are given below:

FROM TO	P_1	P_2	
A_1	5000	4000	
A_2	4000	2000	
A_3	3000	5000	

- (a) How many packets from each factory should be transported to each agency so that the cost of transportation is minimum?
- (b) Find the minimum cost.
- (c)Is the transportation balanced?why?

4.(a)Calculate the mean and standard deviation of the first n even numbers.

(b) If \overline{x} is the mean of x_1 , x_2 , x_3 , ..., x_n , show that the mean of ax_1 , ax_2 , ax_3 , ..., ax_n is $a\overline{x}$.

(c) Given that the
$$Var(X) = \frac{1}{N} \sum_{i=1}^{n} f_i (x_i - \bar{x})^2$$
, show that $\delta = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2}$,

where $x_i = A + d_i$.

(d)Calculate the variance and standard deviation of the following weekly wages of workers in a certain commercial institution given below:

Weekly	40-43	43-46	46-49	49-52	52-55
wages(Rs)					
No.of workers	31	58	60	44	27

5.(a)Use the laws of algebra of sets to simplify the following sets:

$$(i)[(A \cap B^c) \cup (A \cap B) \cup (A^c \cap B) \cup (A \cap B)^c]^c$$

- $(ii)(A \cap B^c) \cup (A^c \cup B)$
 - (b) 60 students study Economics, Geography and Mathematics. 12 students score A in both Economics and Geography. Half of the students score A in Mathematics, one third score A in Geography. 5% of the students score A in Economics only. If 17 students don't have A in any subject, how many score A in;
 - (i) All three subjects
 - (ii) Geography only
 - (c) A is a set define as $A = \{x^3 : x \in z^+ \text{ and } 0 \le x \le 5\}$. Describe set A by roster form

6. The function f(x) is defined by
$$f(x) = \begin{cases} x, & 0 < x < 2 \\ x - 1, & 1 \le x \le 2 \\ x - n, & n \le x \le n + 1 \text{ , where } n \in \mathbb{Z} \end{cases}$$

- (a) Sketch f(x) and find its domain and range
- (b) What are the values of f(2.5) and f(3)?

(c)Sketch f(x) =
$$\frac{x+1}{(x+1)(x-1)}$$

7.(a)Derive Newton Raphson formula from Taylor's theorem.

- (b)Using both Simpson and Trapezium rule with six ordinates, approximate the value of $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta$ correct to four decimal places.
- (c) (i) Verify whether the equation $x^3+2x^2-5x-6=0$ has a root between x=1.9 to 2.9
 - (ii) Use the N-R formula in three iterations to find the root.
- 8.(a) The straight line L passes through the point (a,3) where a is a constant and is perpendicular to the line with equation 3x+4y=12, given that L crosses the y-axis at (0,-5). Find the value of a.
- (b)Prove that the line 2x-3y-27=0 is a tangent to the circle $x^2+y^2-8x+4y+7=0$.
- (c) (a) The end point coordinates of a line segment PQ are $P(x_1, y_1)$ and $Q(x_2, y_2)$ Prove that the coordinates of the point A(x, y) dividing the line segment PQ in the ratio m:n internally is $A(x, y) = \left[\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}\right]$
- 9.(a)By means of substitution x=1- $\frac{1}{u^4}$, show that $\int_5^{2.25} \frac{1}{u\sqrt{2u^4-1}} du = \frac{\pi}{24}$.
- (b)Evaluate $\int_{1}^{2} \frac{1}{x^{2}\sqrt{x-1}} dx$.
- (c) Find $\int \frac{1}{1+\sin 2x} dx$.
- 10.(a) A tank in the form of an inverted cone having an altitude of 16m and base radius 4m long. Water is flowing into the tank at the rate of 2m³/min. How fast is the water level rising when the water is 5m deep?
- (b)Differentiate with respect to x (i) 2^{x^2} (ii) $x^{x \sin x}$.
- (c)Expand $\sin(\frac{\pi}{6} + h)$ as far as h^5 and hence evaluate $\sin 35^\circ$ correct to four decimal places.
- (d) Find the area bounded by the curves $y^2=4x$ and $x^2=4y$.