Demo Session: Price Discovery

Overview

- What has been completed
- Current Progress
- Next Steps

Architecture

Optimization

Problem: R2 score of all the regression models built on Amazon products (~10000 data points) is lower than 0.6

Optimization:

Try big dataset

Stylish product dataset on Kaggle (~56000 data points)

Using large CLIP model
 Switch from vit-basic model to vit-large model

Result

	Vit_basic (1024 features, 1 hour)			Vit_large(1536 features, 56 hours)		
	Xgboost	Random Forest	LightGBM	Xgboost	Random Forest	LightGBM
R2	0.66	0.15	0.73	0.69	0.72	0.74
MAPE				0.4	0.33	0.27

MAPE: Mean absolute percentage error

Price Range

upper = LGBMRegressor(objective = 'quantile', alpha = **0.95**)

upper2 = LGBMRegressor(objective = 'quantile', alpha = **0.80**)

Drawback

It took a long time to extract image information from products.

Using GPU

• If you want to get the price range in 20 to 80 percentile, upper price became lower than predict price when price is higher than \$6000.

Performance is not decent.

Try RAG (retrieval-augmented generation)

Steps Taken for implementing RAG

- Created the text and images database
- Stored 100000 instances in both text and images
- Passing the product title/ description to the text database and getting top 5 similar results
- Passing the image to the image database and getting top 5 similar results
- Consolidating the results obtained from the two databases and adding the same in the prompt
- Passing the prompt to the LLM
- LLM gives the result in the form of product range

Components for Iteration 1

Vector Database - ChromaDB

Text Embeddings: all-mpnet-base-v2

Image Embeddings: Open-clip / Clip

Framework for passing prompt: Langchain

LLM: Microsoft Phi-2

Results of Iteration 1

Passed Text: Skechers Men's Afterburn M. Fit

Passed Image:

Price Range given:

\$99.50-\$249.00

Actual product on Amazon

Skechers Men's Afterburn M. Fit

★★★★☆ ~ 76,946 400+ bought in past month

\$50²³ List: \$70.00

Components for Iteration 2

Vector Database - ChromaDB

Text Embeddings: Open-Clip / Clip

Image Embeddings: Open-clip / Clip

Framework for passing prompt: Langchain

LLM: Microsoft Phi-2

Results of Iteration 2

Passed Text: Skechers Men's Afterburn M. Fit

Passed Image:

Price Range given:

\$60-\$80

Evaluation

Original price	Predicted price range		
\$20	\$10 - \$30		
\$50	\$60 - \$100		
\$100	\$90 - \$110		

Plan for improvement

- Improving the prompts.
- Migrating the Vector Database from local machine to Cloud.
- Improving the data by exploring different embeddings from different multimodal Ilms or looking into Knowledge graph database.
- Enabling / Fine tuning the LLM to be aware of events like Black Friday sale,
 etc. eg. using agents to search on current market situation.
- Improving on the decided evaluation metric that makes sure the range given is suitable and that the price is in the range.
- Experimenting with different LLM's.

Next Steps

Questions?

