

EE360T/382C-16 Software Testing khurshid@ece.utexas.edu

Lecture 2

Today and next time

Discrete math basics

- Review some material from MIT's 6.042 text
 - https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
- Focus on Section I Proofs in the text
 - Propositions, predicates
 - Logical formulas
 - Mathematical data types
 - Induction
 - State machines

A proposition is a statement that is either true or false

[Prop.
$$1.1.1$$
] $2 + 3 = 5$

[Prop.
$$1.1.2$$
] $1 + 1 = 3$

Can you think of a sentence that is not a proposition?

[Claim 1.1.3] For every non-negative integer n the value of $n^2 + n + 41$ is prime

Let
$$p(n) := n^2 + n + 41$$

Example values:
$$p(0) = 41$$
, $p(1) = 43$; $p(2) = 47$; $p(3) = 53$, ..., $p(20) = 461$ are all prime

But p(40) = 40.40 + 40 + 41 = 41.41 is not a prime

[Euler's conjecture, 1769] $a^4 + b^4 + c^4 = d^4$ has no solution when a, b, c, d are positive integers

Proved false 218 years later [Elkies]

• A = 95800, b = 217519, c = 414560, d = 422481

[Fermat's last theorem, 1630] There are no positive integers x, y, and z such that $x^n + y^n = z^n$ for some integer n > 2

Fermat claimed to have a proof but not enough space to fit it in a margin

Over the years, shown to hold for all n <= 4,000,000

In 1994, Andrew Wiles gave a proof after working on it for 7 years

[Goldbach conjecture, 1742] Every even integer greater than 2 is a sum of 2 primes

Known to hold for all numbers up to 10¹⁸

But we do not know if it true or false

Predicates

A predicate is a proposition whose truth depends on the value of one or more variables

P(n) ::= "n is a perfect square"

Truth depends on the value of n

P(4) is true but P(5) is false

A predicate is analogous to a function

A predicate is a boolean function

Logical formulas

Natural language sentences can have ambiguity

- "You may have cake, or you may have ice cream."
- "If you can solve any problem we come up with, then you get an A for the course."

Boolean operators

P	NOT(P)	
True	False	
False	True	

Р	Q	P AND Q	P OR Q
T	Т	T	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

Boolean operators

Р	Q	P if and only iff Q
T	T	T
Т	F	F
F	T	F
F	F	T

P and Q have the same truth value

Ex: for any real number x, $x^2 - 4 \ge 0$ IFF $|x| \ge 2$

Boolean operators

Р	Q	P IMPLIES Q
Τ	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Is the following propostion true or false:

 If Goldbach's conjecture is true, then x² >= 0 for every real number x

Propositional logic in code

Example Java statement:

if
$$(x > 0 | | (x <= 0 \&\& y > 100)) ...$$

Let A be the expression "x > 0" and B be "y > 100" The condition is "A OR (NOT(A) AND B)"

Propositional logic in code

Α	В	A OR (NOT(A) AND B)			A OR B
Т	Т	Т	F	F	Т
Т	F	T	F	F	Т
F	Т	T	Т	T	T
F	F	F	Т	F	F

"A OR (NOT(A) AND B)" is equivalent to "A OR B"

- Simpler, easier to comprehend
- Can be used to simplify the original program and possibly make it run faster

Notation

EnglishSymbolic NotationNOT(P) $\neg P$ (alternatively, \overline{P})P AND Q $P \land Q$ P OR Q $P \lor Q$ P IMPLIES Q $P \to Q$ if P then Q $P \to Q$ P IFF Q $P \leftrightarrow Q$ P XOR Q $P \oplus Q$

source: page 54 of https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

Equivalence

Do the following two sentences say the same thing?

- If I am hungry, then I am grumpy (S1)
- If I am not grumpy, then I am not hungry (S2)

Let P be "I am hungry" and Q be "I am grumpy"

- S1 is P IMPLIES Q
- S2 is NOT(Q) IMPLIES NOT(P)

Equivalence

Р	Q	P IMPLIES Q	NOT(Q) IMPLIES NOT(P)			
Т	Т	T	F	T	F	
Т	F	F	T	F	F	
F	Т	T	F	T	T	
F	F	T	T	T	T	

NOT(Q) IMPLIES NOT(P) is called the contrapositive of P IMPLIES Q

An implication and its contrpositive are always equivalent

Validity

A formula is valid if it is always true regardless of the values of its variables

Ex: P or not(P)

Ex: (P implies Q and Q implies R) implies (P implies R)

Satisfiability

A formula is satisfiable if there is some assignment of values to its variables such that the formula is true

Ex: P and Q is satisfiable because for P = T and Q = T, P and Q = T

P is satisfiable if and only if its negation not(P) is not valid

The SAT problem

Is the given formula satisfiable?

(p || q || r) && (!p || !q) && (!p || !r) && (!r || !q)

Can construct a truth table to check satisfiability

Size of table grows exponentially

Unknown whether there a polynomial-time solution

"P versus NP" problem

Quantifiers

Universal - for all:

• Ex: $\forall x \in \mathbb{R} . x^2 \ge 0$

Existential - there exists:

• Ex: $\exists x \in \mathbb{R}.5x^2 - 7 = 0$

 $\forall x \in \mathbb{R}.5x^2 - 7 = 0$ is false

Mixing quantifiers

Recall Goldbach's conjecture: Every even integer greater than 2 is a sum of 2 primes

Let *Evens* be the set of all evens > 2 and *Primes* be the set of all primes

 $\forall n \in Evens \exists p \in Primes \exists q \in Primes . n = p + q$

Order of quantifiers

Swapping the order of different types of quantifiers usually changes the meaning of the formula

Ex: the following is false:

 $\exists p \in Primes \exists q \in Primes \forall n \in Evens. n = p + q$

Negating quantifiers

Ex: the following sentences mean the same thing

- Not everyone likes ice cream
- There is someone who does not like ice cream

In general

- $\neg \forall x. P(x)$ is equivalent to $\exists x. \neg P(x)$
- $\neg \exists x . P(x)$ is equivalent to $\forall x . \neg P(x)$

?/!