THE DT CREPANT RESOLUTION CONJECTURE

PATRICK LEI

ABSTRACT. We will prove the DT crepant transformation conjecture by crossing infinitely many walls in a finite amount of time.

1. Brief review

Recall that \mathcal{X} is a projective Calabi-Yau 3-orbifold (where we require $H^1(\mathcal{O}_{\mathcal{X}}=0)$), that X is the coarse moduli space (which is a projective, Gorenstein, Calabi-Yau variety with at worst quotient singularities), and Y was a distinguished crepant resolution of X. Also recall that we have derived equivalences $\Phi \colon D(Y) \leftrightarrow D(\mathcal{X}) \colon \Psi$.

Let C be the category $Coh(\mathfrak{X})$ tilted at the torsion pair $(Coh_{\leq 1}(\mathfrak{X}), Coh_{\geq 2}(\mathfrak{X}))$. We consider the graded motivic Hall algebra $H_{gr}(C)$, which is a module over $K(St_C)$. Also, recall the category

$$\mathtt{A} = \left\langle \mathtt{O}_{\mathfrak{X}}[1], \mathtt{Coh}_{\leqslant 1}(\mathfrak{X}) \right\rangle.$$

Finally, recall the integration map $I \colon H_{gr,sc}(\mathtt{C}) \to \left\{ \sum_{\alpha \in N(\mathfrak{X})} \mathfrak{n}_{\alpha} q^{\alpha} \right\}$, where $H_{sc}(\mathtt{C})$ is a quotient of the algebra

$$H_{\text{reg}}(\mathtt{C}) = \mathsf{K}(\mathtt{Var}_{\mathbb{C}})[\mathbb{L}^{-1}][[\mathbb{P}^n]^{-1} \mid n \geqslant 1] \cdot \{\text{schemes}\} \subset \mathsf{H}(\mathtt{C}).$$

of regular elements.

2. Stability conditions

Fix an ample class $\omega \in N^1(Y)$ and an ample line bundle A on X.

Definition 2.1. A *stability condition* on $Coh_{\leq 1}(\mathfrak{X})$ consists of a slope function $\mu \colon N_{\leq 1}(\mathfrak{X}) \to S$ to a totally ordered set (S,<) such that if

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$
,

then either $\mu(A) > \mu(B) > \mu(C)$ or $\mu(A) < \mu(B) < \mu(C)$ or $\mu(A) = \mu(B) = \mu(C)$ and every $F \in \mathtt{Coh}_{\leqslant 1}(\mathfrak{X})$ has a Harder-Narasimhan filtration $0 = F_0 \subset \cdots \subset F_n = F$.

We will now define a number of stability conditions. First, we fix a "generating" vector bundle V (where every coherent sheaf on $\mathfrak X$) is locally a quotient of $V^{\oplus n}$ for some $\mathfrak n$. We can assume that $V=V^\vee$ (by taking $V\oplus V^\vee$). Now we define a modified Hilbert polynomial for a sheaf F by

$$p_F(k) = \chi(\mathfrak{X}, V^{\vee} \otimes F(k)) = \ell(F)k + deg(F).$$

Date: April 28, 2022.

PATRICK LEI

Definition 2.2. Define the *Nironi slope* of F to be

$$\nu(F) \coloneqq \frac{\text{deg } F}{\ell(F)}$$

if $F \notin Coh_0(X)$ and $\nu(F) = \infty$ otherwise. Also write $\nu_+(F), \nu_-(F)$ for the slopes of the Harder-Narasimhan factor of F with largest (resp. smallest) slope.

Definition 2.3. Define the stability condition ζ on $N_1^{\text{eff}}(\mathfrak{X}) \setminus 0$ by

$$\zeta(\beta,c) = \left(-\frac{deg_{\gamma}(ch_2(\Psi(A \cdot \beta)) \cdot \omega)}{deg(A \cdot \beta)}, \nu(\beta,c)\right) \in (-\infty,\infty]^2$$

for $\beta=0$ and $\zeta(0,c)=(\infty,\infty)$. Here, we use the lexicographical ordering on $(-\infty,\infty]$.

For a stability condition μ and $s \in S$, define a torsion pair by

$$\begin{split} T_{\mu,s} &:= \big\{ T \in \mathtt{Coh}_{\leqslant 1}(\mathfrak{X}) \mid T \twoheadrightarrow Q \neq 0 \implies \mu(Q) \geqslant s \big\}; \\ F_{\mu,s} &:= \big\{ F \in \mathtt{Coh}_{\leqslant 1}(\mathfrak{X}) \mid 0 \neq H \hookrightarrow F \implies \mu(H) < s \big\}. \end{split}$$

Also, call the category of $(T_{\mu,s},F_{\mu,s})$ -pairs $P_{\mu,s}$. Finally, define the category of semistable sheaves of slope s by $\mathfrak{M}^{ss}_{\mathfrak{u}}(s)$.

In order to control DT-like invariants coming from stability conditions, we need our categories of semistable objects and of pairs to satisfy openness and boundedness properties.

Proposition 2.4.

2

- (1) For any $\delta \in \mathbb{R}$, the torsion pair $(T_{\nu,\delta}, F_{\nu,\delta})$ is open.
- (2) For any $(\gamma, \eta) \in \mathbb{R}_{>0} \times \mathbb{R}$, the torsion pair $(T_{\zeta,(\gamma,\eta)}, F_{\zeta,(\gamma,\eta)})$ is open. In addition, the moduli stack $\underline{\mathcal{M}}^{ss}_{\zeta}(\mathfrak{a},\mathfrak{b}) \subset \underline{\mathtt{Coh}}_{\leqslant 1}(\mathfrak{X})$ is open for any $(\mathfrak{a},\mathfrak{b}) \in \mathbb{R}^2$.

We will now discuss boundedness. For any real number $\gamma > 0$, define the function

$$L_{\gamma} \colon N_0(\mathfrak{X}) \to \mathbb{R} \qquad c \mapsto deg(c) + \gamma^{-1} \, deg_{Y}(ch_2(\Psi(c)) \cdot \omega).$$

This will control the series expansion of the rational function $f_{\beta}(q)$, where $PT(\mathfrak{X})_{\beta}$ is the expansion of $f_{\beta}(q)$ in $\mathbb{Q}[N_0(\mathfrak{X})]_{deg}$ (this means roughly that degree is bounded below).

Definition 2.5. Let $S \subset N_0(\mathfrak{X})$ and $L \colon N_0(\mathfrak{X}) \to \mathbb{R}$ be a homomorphism. Then S is L-bounded if the set

$$S \cap \{c \in N_0(\mathcal{X}) \mid L(c) \leq M\}$$

is finite for every $M \in \mathbb{R}$. We also say that S is weakly L-bounded if the set

$$(S/\ker L) \cap \{c \in N_0(\mathfrak{X})/L \mid L(c) \leq M\}$$

is finite for every $M \in \mathbb{R}$.

The main results about semistable sheaves and pairs are the following. Recall that a category \mathbb{W} is log-able if $(\mathbb{L}-1)\log[\underline{\mathbb{W}}]\in H_{gr,reg}(\mathbb{C})$.

Proposition 2.6. *Let* $(a,b) \in \mathbb{R}^2$. *The set*

$$\{c \in N_0(\mathfrak{X}) \mid \mathfrak{M}^{ss}(\mathfrak{a}, \mathfrak{b}) \neq \emptyset\}$$

is L_{γ} -bounded. Moreover, the category $\mathfrak{M}_{\gamma}^{ss}(\mathfrak{a},\mathfrak{b})$ is log-able.

Proposition 2.7. *For any* $(\gamma, \eta) \in \mathbb{R}_{>0} \times \mathbb{R}$ *, the set*

$$\left\{c \in \mathsf{N}_0(\mathfrak{X}) \,|\, \mathsf{P}_{\zeta,(\gamma,\eta)}(\beta,c) \neq \emptyset\right\}$$

is L_{γ} -bounded. Moreover, the stack $\underline{P}_{\zeta_{\gamma}(\gamma,n)}(\beta,c)$ is of finite type.

Corollary 2.8. The category $P_{\zeta,(\gamma,\eta)}$ defines an element of $H_{gr}(C).$

Finally, we will locate regions in which the notion of a $(T_{\zeta,(\gamma,\eta)},F_{\zeta,(\gamma,\eta)})$ -pair is constant.

Lemma 2.9. Let $\beta \in N_1(\mathfrak{X})$. $T_{\gamma,(\gamma,\eta)} \cap Coh_{\leqslant 1}(\mathfrak{X})_{\leqslant \beta}$ and $F_{\zeta,(\gamma,\eta)} \cap Coh_{\leqslant 1}(\mathfrak{X})_{\leqslant \beta}$ are constant on the components of $(\mathbb{R}_{>0} \times \mathbb{R}) \setminus (V_{\beta} \times \mathbb{R})$, where

$$V_{\beta} = \left\{ -\frac{deg_{Y}(ch_{2}(\Psi(A \cdot \beta')) \cdot \omega)}{deg(A \cdot \beta')} \mid 0 < \beta' \leqslant \beta \right\} \cap \mathbb{R}_{>0}.$$

For $\gamma \in V_{\beta}$, the categories are locally constant on $\{\gamma\} \times \mathbb{R} \setminus W_{\beta}$, where $W_{\beta} = \frac{1}{\ell(\beta)!}\mathbb{Z}$.

3. DT-LIKE INVARIANTS

We define DT-like invariants counting objects in the categories that we have defined. Once we do this, we will cross our infinitely many walls.

Recall that $\mathcal{M}^{ss}_{\zeta}(\mathfrak{a},\mathfrak{b})$ is log-able for any $(\mathfrak{a},\mathfrak{b})\in\mathbb{R}^2$. Therefore, we have an element

$$\eta_{\zeta,(\alpha,b)} = (\mathbb{L} - 1) \log[\underline{\mathcal{M}}_{\zeta}^{ss}(\alpha,b)] \in \mathsf{H}_{gr,reg}(\mathtt{C}).$$

Therefore, we can define DT-type (Joyce-Song) invariants by

$$\sum_{\zeta(\beta,c)=(\alpha,b)} J^\zeta_{(\beta,c)} z^\beta q^c \eqqcolon I\Big(\eta_{\zeta,(\alpha,b)}\Big).$$

Now let $(\gamma, \eta) \in \mathbb{R}_{>0} \times \mathbb{R}$ be away from the walls. By a result of Abramovich-Corti-Vistoli, there is an element $(\mathbb{L}-1)[\underline{P}_{\zeta,(\gamma,\eta)}(\beta,c)] \in H_{reg}(C)$. Then we can define DT-type invariants by

$$\mathrm{DT}_{(\beta,c)}^{\zeta,(\gamma,\eta)}z^{\beta}\mathfrak{q}^{c}\mathsf{t}^{-[\mathfrak{O}_{\mathfrak{X}}]}\coloneqq\mathrm{I}((\mathbb{L}-1)[\underline{P}_{\zeta,(\gamma,\eta)}(\beta,c)]).$$

Finally, we can form generating series

$$\mathrm{DT}_{\beta}^{\zeta,(\gamma,\eta)} \coloneqq \sum_{c \in N_0(\mathfrak{X})} \mathrm{DT}_{(\beta,c)}^{\zeta,(\gamma,\eta)} \mathfrak{q}^c \in \mathbb{Z}[N_0(\mathfrak{X})]_{L_\gamma};$$

$$J^{\zeta}(\mathfrak{a},\mathfrak{b})_{\beta}\coloneqq\sum_{\substack{\mathfrak{c}\in N_{0}(\mathfrak{X})\\\zeta(\beta,\mathfrak{c})=(\mathfrak{a},\mathfrak{b})}}J^{\zeta}_{(\beta,\mathfrak{c})}\mathfrak{q}^{\mathfrak{c}}\in\mathbb{Q}[N_{0}(\mathfrak{X})]_{L_{\gamma}}.$$

Lemma 3.1. Let $\beta \in N_1(\mathfrak{X})$ and let $\gamma > \gamma'$ for all $\gamma' \in V_\beta$. An object $E \in A$ of class $(-1,\beta,c)$ is a $(T_{\zeta,(\gamma,\eta)},F_{\zeta,(\gamma,\eta)})$ -pair if and only if it is a PT stable pair.

PATRICK LEI

4

The following is a technical lemma whose proof requires the Hard Lefschetz condition.

Lemma 3.2. For every $\gamma \in V_{\beta}$, there is a unique class $\beta_{\gamma} \in N_1(\mathfrak{X})$ with $0 < \beta_{\gamma} \leqslant \beta$ such that $L_{\gamma}(A \cdot \beta_{\gamma}) = 0$. Class the class $c_{\gamma} \coloneqq A \cdot \beta_{\gamma} \in N_0(\mathfrak{X})$.

Now we will discuss wall-crossing. Once we cross all of the walls in V_{β} , we will have Bryan-Steinberg invariants, which we will define later. First, we need to understand what happens when we reach a wall $\gamma \in V_{\beta}$. Note that the set

$$S = \bigcup_{\beta' \leq \beta} \left\{ (\beta', c) \mid L_{\gamma}(c) \leqslant x, \underline{P}_{\zeta, (\gamma, \eta)}(\beta', c) \neq \emptyset \right\}$$

is finite for any $x \in \mathbb{R}$, so we can define

$$M_{\beta,\gamma,x}^+ = \max_{(\beta',c) \in S} \deg(\beta',c) \qquad M_{\beta,\gamma,x}^- \coloneqq \min_{(\beta',c) \in S} \deg(\beta',c).$$

Lemma 3.3. Let $\gamma \in V_{\beta}$, $E \in A$ be of class $(-1, \beta, c)$, and let

$$\begin{split} &\eta_{\gamma,(\beta,c)}^{+} \coloneqq \text{max} \left\{ 0, \text{deg}(\beta,c) - M_{\beta,\gamma,L_{\gamma}(c)-K_{\gamma}}^{-} \right\}; \\ &\eta_{\gamma,(\beta,c)}^{-} \coloneqq \text{min} \left\{ 0, \text{deg}(\beta,c) - M_{\beta,\gamma,L_{\gamma}(c)-K_{\gamma}}^{+} \right\}; \end{split}$$

$$\label{eq:theory_equation} \begin{split} & \textit{If} \, \eta > \eta_{\gamma,(\beta,c)}^+, \textit{then} \, E \textit{ is a} \, (T_{\zeta,(\gamma,\eta)}, F_{\zeta,(\gamma,\eta)}) \textit{-pair iff} \, E \textit{ is a} \, (T_{\zeta,(\gamma+\epsilon,\eta)}, F_{\zeta,(\gamma+\epsilon,\eta)}) \textit{-pair.} \\ & \textit{If} \, \eta < \eta_{\gamma,(\beta,c)}^-, \textit{ then} \, E \textit{ is a} \, (T_{\zeta,(\gamma,\eta)}, F_{\zeta,(\gamma,\eta)}) \textit{-pair iff} \, E \textit{ is a} \, (T_{\zeta,(\gamma-\epsilon,\eta)}, F_{\zeta,(\gamma-\epsilon,\eta)}) \textit{-pair.} \\ & \textit{pair.} \end{split}$$

This tells us that on each wall $\gamma \in V_{\beta}$, we can enter $\{\gamma\} \times \mathbb{R}$ at ∞ from the right and then leave the wall to the left at $-\infty$. Now we need to understand what happens at the walls W_{β} as we move from ∞ to $-\infty$.

Proposition 3.4. Let $\beta \in N_1(\mathfrak{X})$, $\gamma \in V_{\beta}$, and $\eta \in W_{\beta}$. Then

$$DT_{\leqslant\beta}^{\zeta,(\gamma,\eta+\epsilon)}t^{-[\mathfrak{O}_{\mathfrak{X}}]}=exp\Big(\Big\{J^{\zeta}(\gamma,\eta)_{\leqslant\beta},-\Big\}\Big)DT_{\leqslant\beta}^{\zeta,(\gamma,\eta-\epsilon)}t^{-[\mathfrak{O}_{\mathfrak{X}}]}\in\mathbb{Q}[N_{1}^{eff}(\mathfrak{X})]_{\leqslant\beta}.$$

Now define the series

$$DT_{(\beta,c_0+\mathbb{Z}c_\gamma)}^{\zeta,(\gamma,\eta)} \coloneqq \sum_{k\in\mathbb{Z}} DT_{(\beta,c_0+kc_\gamma)}^{\zeta,(\gamma,\eta)} q^{c_0+kc_\gamma}.$$

Lemma 3.5. Let $\beta \in N_1(\mathfrak{X})$, $c_0 \in N_0(\mathfrak{X})$, $\gamma \in V_{\beta}$, and $\eta_0 \leqslant -\ell(\beta)$. Then

$$DT_{(\beta,c_0+\mathbb{Z}c_{\gamma})}^{\zeta,(\gamma,\eta_0)}-DT_{(\beta,c_0+\mathbb{Z}c_{\gamma})}^{\zeta,(\gamma,\infty)}$$

is a rational function of degree less than $deg(\beta,0) + M^+_{\beta,\gamma,L_{\gamma}(c_0)} + n_0\ell(\beta) + \ell(\beta)^2.$

Taking $n_0 \to -\infty$, we obtain

Corollary 3.6. Let β , c_0 , γ be as above. Then $DT^{\zeta,(\gamma,\infty)}_{(\beta,c_0+\mathbb{Z}c_\gamma)}$ and $DT^{\zeta,(\gamma,-\infty)}_{(\beta,c_0+\mathbb{Z}c_\gamma)}$ are equal as rational functions.

Theorem 3.7. Let $\beta \in N_1(\mathfrak{X})$, $\gamma \in R_{>0} \setminus V_{\beta}$, $\eta \in \mathbb{R}$. Then $DT_{\beta}^{\zeta,(\gamma,\eta)}$ is the expansion of $f_{\beta}(q)$ in $\mathbb{Z}[N_0(\mathfrak{X})]_{L_{\gamma}}$.

4. Bryan-Steinberg invariants

In order to have a crepant resolution conjecture, we need some kind of enumerative invariants on Y. Define

$$\mathtt{T}_{\mathtt{f}} = \big\{ \mathtt{F} \in \mathtt{Coh}_{\leqslant 1}(\mathtt{Y}) \mid \mathtt{Rf}_{\ast}\mathtt{F} \in \mathtt{Coh}_{0}(\mathtt{X}) \big\}.$$

Then define $F_f = T_f^{\perp}$. We can define a Bryan-Steinberg pair (F, s) as a (T_f, F_f) -pair in A_Y . Equivalently, we have

Definition 4.1. A Bryan-Steinberg pair (F,s) consists of $F \in Coh_{\leq 1}(Y)$ and $s \in H^0(Y,F)$ such that $Rf_* \operatorname{coker}(s) \in Coh_0(X)$ and F admits no maps from elements of T_f .

For a class $(\beta, n) \in N_1(Y) \oplus \mathbb{Z}$, let $\underline{P}_{BS}(\beta, n)$ be the moduli stack of Bryan-Steinberg pairs of class $(-1, \beta, n) \in \mathbb{Z} \oplus N_{\leqslant 1}(Y)$. Then we can define the BS invariant $BS(Y/X)_{(\beta, n)}$ via the Behrend function.

Before we continue, we will say a little but more about the McKay correspondence. Define the category Per(Y/X) to be the category of complexes $E \in D(Y)$ such that $Rf_*(E) \in Coh(X)$ and such that for any $F \in Coh(Y)$ with $Rf_*F = 0$, Hom(F[1], E) = 0 (called *perverse coherent sheaves*).

Proposition 4.2. The equivalence $\Phi \colon D(Y) \to D(X)$ restricts to an equivalence of abelian categories $Per(Y/X) \simeq Coh(X)$.

We now need to relate Bryan-Steinberg pairs to objects living on X. We first define a new torsion pair.

Definition 4.3. Let $T_{\zeta,0} \subset \mathtt{Coh}_{\leqslant 1}(\mathfrak{X})$ denote the subcategory of sheaves T such that if T \twoheadrightarrow Q, then either $Q \in \mathtt{Coh}_0(\mathfrak{X})$ or

$$deg_{\mathbf{Y}}(ch_2(\Psi(\mathbf{Q}\cdot\mathbf{A}))\cdot\boldsymbol{\omega})<0.$$

Let $F_{\zeta,0}\subset Coh_{\leqslant 1}(\mathfrak{X})$ be the full subcategory on sheaves F such that if $S\hookrightarrow F$, then S has pure dimension 1 and $deg_Y(ch_2(\Psi(S\cdot A))\cdot\omega)\geqslant 0$.

The following result justifies the inclusion of ζ , 0 in the subscript.

Lemma 4.4. Let $\beta \in N_1(\mathfrak{X})$. If $0 < \gamma < \min_{\gamma' \in V_\beta} \gamma'$, then for any $\eta \in \mathbb{R}$ an object $E \in A$ of class $(-1, \beta, c)$ is a $(T_{\zeta,0}, F_{\zeta,0})$ -pair if and only if it is a $(T_{\zeta,(\gamma,\eta)}, F_{\zeta,(\gamma,\eta)})$ -pair.

We should think of $(T_{\zeta,0},F_{\zeta,0})$ as being the limit of $(T_{\zeta,(\gamma,\eta)},F_{\zeta,(\gamma,\eta)})$ -pairs as $\gamma \to 0$. Finally, we relate $(T_{\zeta,0},F_{\zeta,0})$ -pairs to (T_f,F_f) -pairs, and as a corollary, we can relate enumerative invariants on $\mathcal X$ to enumerative invariants on Y.

PATRICK LEI

Lemma 4.5. We have the following:

6

$$\begin{split} &T_f = \Psi(\texttt{Coh}_0(\mathcal{X})) \cap \texttt{Coh}(Y); \\ &T_{\zeta,0} = \left\langle \Phi(\texttt{Per}_{\leqslant 1}(Y/X) \cap \texttt{Coh}(Y)[1]), \Phi(T_f) \right\rangle_{ex}; \\ &F_{\zeta,0} = \Phi\Big(\texttt{Per}_{\leqslant 1}(Y/X) \cap \texttt{Coh}(Y) \cap T_f^{\perp}\Big). \end{split}$$

These give us the following:

Lemma 4.6. If E is a $(T_{\zeta,0},F_{\zeta,0})$ -pair with $\beta_E \in N_{1,mr}(\mathfrak{X})$, then $\Psi(E)$ is an f-stable pair. On the other hand, if $E = (\mathfrak{O}_Y \to F)$ is an f-stable pair, then ΦE is a $(T_{\zeta,0},F_{\zeta,0})$ -pair.

This implies that $\underline{P}_{BS}(\beta,n) \cong \underline{P}_{\zeta,(\gamma,\eta)}(\Phi(\beta,n))$ for $0 < \gamma < min_{\gamma' \in V_{\beta}} \gamma'$, so we have proven

Theorem 4.7 (Crepant resolution conjecture). *There exists a unique rational function* $f_{\beta} \in Q(N_0(\mathfrak{X}))$ *such that*

- (1) The Laurent expansion of f_{β} with respect to deg is the series $PT(\mathfrak{X})_{\beta}$;
- (2) The Laurent expansion of f_{β} with respect to L_{γ} for $0 < \gamma < min_{\gamma' \in V_{\beta}} \gamma'$ is the series $BS(Y/X)_{\beta}$.

Using results of Bryan-Steinberg and of the previous lecture, we have

Corollary 4.8 (Crepant resolution conjecture, original formulation). *There is an equality of rational functions*

$$\frac{DT(\mathfrak{X})_{\beta}}{DT(\mathfrak{X})_{0}} = \frac{DT(Y)_{\beta}}{DT_{exc}(Y)}.$$