Comprehensive Examination CSE - 2019 Batch

S.NO.	Questions	Choices	Answers
	Given the following state table of an FSM with two states A and B, one input and one output:		
	Present Present State Input Next State A Next State B Output	1.	
	State A B 0 0 0 0 1	3	
	0 1 0 1 0 0	2.	
	1 0 0 0 1 0	4	
1	1 1 0 1 0 0 0 0 1 0 1 0	3.	1.0
	0 1 1 0 0 1	5	
	1 0 1 0 1 1 1 1 1 0 0 1		
	1 1 1 0 0 1	4.	
	If the initial state is A=0, B=0, what is the minimum length of an input string which will take the machine to the state $A=0$, $B=1$ with Output = 1?	6	
		1. {a(cd)^nb n>=1}	
2	(a+b)(cd)*(a+b) denotes the following set	2. $\{a(cd)^n >= 1\} U\{b(cd)^n n>= 1\}$	3.0
		$3. \\ \{a(cd)^na n>=0\}U\{a(cd)^nb n>=0\}U\{b(cd)^na n>=0\}U\{b(cd)^nb n>=0$ U	
		4. {ac^nd^nb n>=1}	
		1.	\vdash
		11101000	
		2.	
3	-24 is 2's complement form is	01111111	1.0
3			1.0
		3.	
		01001000	
		4. 00111111	
		1.	
		2 input ANDs only	
		2.	
	A 2 bit binary multiplier can be implemented using	2 input X-ORs and 4-input AND gates only	
4	112 on onary maniput can be implemented asing		2.0
		3. XOR gates and shift registers	
		4.	
		Two (2) input NORs and one XNOR gate	
		1 wo (2) input twoks and one XIVOK gate	
		1.	
		Address registrar	
		2. Program counter	
		3.	
5	A registrar stores the intermediate arithmetic and logic results in it.		4.0
		Index registrar	
		4.	
		Accumulator	
			ļ

S.NO.	Questions	Choices	Answers
		1. Structure	
		2. Memory	
6	A class is a	3. Template	3.0
		4. Function	
		1. default constructor	
		2. parameterized constructor	
7	A constructor without any arguments is	3. none	1.0
		4. overloading	
		1. that takes all default arguments	
		2. have to be called explictly	
8	A default constructor is one that	3. gets called automatically	1.0
		4. does take many parameters	
		1.	
		n 2. n/2	
9	A finite automata that will accept only string X of length n will have many states		3.0
		3. n+1	
		4. infinite	
		1. the data members of the derived class of A.	
10		2. public data members and member functions.	1.0
10	A friend function to a class A cannot access	3. protected data members and member functions.	1.0
		4. private data members and member functions.	
		Can closely model objects in the real world.	
		2. bring together all aspects of an entity in one place.	
11	A property which is not true for classes is that they	3. permit data to be hidden from other classes.	2.0
		4. are removed from memory when not in use.	
		1. 3	
		2.4	
12	A quadruple is a record structure with fields.	3. 1	2.0
		4. 2	
		1. Zero addressing	
		2.	
13	A Stack-organised Computer uses instruction of	Two-addressing	1.0
15		3. Indirect addressing	1.0
		4. Index addressing	
		Restricted to methods of the same class	
14	Access to private data is	2. Restricted to methods of other classes	1.0
		3. Available to methods of the same class and other classes	
		Not an issue because the program will not compile	
		1. constant	
15	All member functions are to it's class by default	2. non static	4.0
13	All member functions are to its class by default	3. dynamic	4.0
		4. static	
		1. The LR(1) parser for G has S-R conflicts.	
		2. The LR(0) parser for G has S-R conflicts.	
16	An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if	3. The LALR(1) parser for G has reduce-reduce conflicts	1.0
		4. The SLR(1) parser for G has S-R conflicts.	
		I. Is optimized to occupy less space	
		2. Optimized the code	
17	An optimizing compiler	3. Is optimized to take less ame for execution	2.0
		4. Secured Code	
I		1. Secured Code	

S.NO.	Questions	Choices	Answers
		1. Exactly one leftmost derivation for a string w	
	An unambiguous grammar has	2. At most one leftmost and one rightmost derivation for a string w	
18		At most one rightmost derivation for a string w	1.0
		Exactly one leftmost and rightmost derivation for a string w	
		4. Exactly one lettinost and rightmost derivation for a string w	
		1 Events and leftweet desired for a string re-	
		Exactly one leftmost derivation for a string w	
		At most one leftmost and one rightmost derivation for a string w	
19	An unambiguous grammar has	3. At most one rightmost derivation for a string w	1.0
19			1.0
		Exactly one leftmost and rightmost derivation for a string w	
		1. integrated circuits	+
		2. binary coding schemes	
20	ASCII, EBCDIC, and Unicode are examples of	3. two-state systems	1.0
		4. adapter cards	
		1. {b^na^mc^p n,m,p>=1}	
		2. {ba^nc n>=0}	
21	baa*c denotes the set	3. {ba^nc n>=1}	3.0
		4. {w w is a string of a,b,c}	
		1. encoder	
22		2. carry look ahead	
22	BCD to seven segment is a	3. comparator	1.0
		4. decoder	
		1. 2	
	Calculate the person months for a project that was completed in two months with two people	2. 4	2.0
23	working on it.	3.1	2.0
		4. 8	
		1. sizeof(int) * 2	
24	class A { int a; static float b; } ; What is the size of class A?	2. sizeof(int) + sizeof(float)	2.0
		3. sizeof(int) 4. sizeof(float)	
		<u> </u>	
		1. nothing 2. initializes the data member with 0	
25	class n{ int a=0;}obj; what will happen?	Initializes the data member with 0 3. error	3.0
		4. initializes the object with 0	
		1. deep copy 2. shallow copy	
26	class n{ public: int *a;}o,p; assigning o=p is called?	3. error	2.0
		4. constructor	
		1. error	+
		2. 10	
27	class n{ public: int a;}	3. 1	1.0
	obj; obj.a=10; cout << a;	4. 0	

S.NO.	Questions	Choices	Answers
		1.0	
		2. error	
28	class n{ public: int a=7;} p,q; cout<< n.a;	3. depends on compiler	2.0
		4. 7	
		1.	
		3	
	Consider the regular language $L = (111 + 11111)^*$. The minimum number of states in any DFA	2. 5	
29	accepting the language is	3.	4.0
		8	
		4.9	
		1. index addressing mode.	
		2.	
30	Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called.	register mode.	4.0
		3. implied mode.	
		4. relative address mode.	
		are directly accessible in the derived class are visible in the derived class	
31	Data Members of the base class that are marked private:	are visible in the derived class sexist in memory when the object of the derived class is created	4.0
31	Data Members of the base class that are marked private.	the derived class	4.0
		4. does exist in memory when the object of the derived class is created	
		1. 1111	
		2.	
		1101	
22	Decimal number 9 in Gray code is	3.	2.0
32		1100	2.0
		4.	
		1110	
		There is no relationship between the phase in which a defect is discovered and its repair cost	
		2. The most expensive defect to correct is the one detected during the	
33	During a software development project two similar requirements defects were detected. One was detected in the requirements phase, and the other during the implementation phase. Which of the	implementation phase.	2.0
	following statements is mostly likely to be true?	The most expensive defect to correct is the one detected during the requirements phase.	
		4. The cost of fixing either defect will usually be similar.	
		1. people, product, process, project	
		2. people, product, performance, process	
34	Effective software project management focuses on four P's which are	3. people, performance, payoff, product	1.0
		4. people, process, payoff, product	
		1. Indexed Allocation and used in Windows OS	
		2. used in Windows OS	
35	FAT file system is	3. about storage in RAM	1.0
		4. Indexed Allocation.	
		1. helper	
		2. header	
36	Files whose names end in .h are called files	3. handy	2.0
		4. helping	
			•

S.NO.	Questions	Choices	Answers	
		1. type-1		
		2.		
37	Finite automata recognizesgrammars	type-3	2.0	
		3. type-0 4.		
		type-2		
		I. Boolean values		
		Bootean values		
20	Floating point representation is used to store	2. real integers	2.0	
38		3. integers	2.0	
		4.		
		whole numbers		
		1. Only parameters of the basic type		
39	Function templates can accept	2. Only one parameter	1.0	
		Any type of parameters Only parameters of the derived type		
		1. Use-case Diagram		
		2. Sequence Diagram		
40	Functional requirements of a system is modelled using	3. Class Diagram	1.0	
		4. Package Diagram		
		1.	+-	
		N^2		
41	Given an arbitrary non-deterministic finite automaton (NFA). with N states, the maximum number of states in an equivalent minimized DFA is at least.	2. 2N	3.0	
71	of states in an equivalent minimized DLA is at reast.	3. 2^N	3.0	
		4. N!		
		1.	-	
		1, 2 and 3		
	Given the language L = {ab, aa, baa}, which of the following strings are in L*? 1) abaabaaabaa	2. 2, 3 and 4		
42	2) aaaabaaaa 3) baaaabaaaab	3.	3.0	
	4) baaaaabaa	1, 2 and 4		
		4.		
		1, 3 and 4		
		not possible compile time polymorphism		
43	Having more than one constructor in a class is	3. constructor overriding	3.0	
		4. error		
		1.	+	
		16		
44	How many DFAs exit with two state over the input alphabet (a,b)	2. 26	4.0	
44		3. 32	4.0	
		4. 64		
		1. 16	+	
		2. 64		
45	How many possible outputs would a decoder have with a 6-bit binary input?	3. 128	2.0	
ı		4. 32		
		1		

S.NO.	Questions	Choices	Answers
	· ·	1. 2	
		2. 4	
46	How many select lines would be required for an 8-line-to-1-line multiplexer?	3. 3	3.0
		4. 8	
		1. three	
		2. four	
47	How many stages are there in process improvement?	3. five	4.0
		4. six	
		1. 12	
40	How many two state FA can be drawn over alphabet {0,1} which accepts(0+1)*	2. 14	
48		3.	3.0
		<mark>20</mark>	
		4. 15	
		1. delete(var-name);	
49	How will you free the allocated memory ?	2. dalloc(var-name);	3.0
49	now will you free the anocated memory ?	3. free(var-name);	5.0
		4. remove(var-name);	
		1. for (; ;)	
		2. if(1)	
50	Identify the invalid statement from the following	3. break(0)	3.0
		4. while(false)	
		1. (10011000)	
		2. (11001100)	
<u>.</u>	If a register containing binary data (11001100) is subjected to arithmetic shift left operation, then		1.0
51	the content of the register after 'ashl' shall be	3. (1101100)	1.0
		4.	
		(10011001)	
		1. intranet	
52	If a university sets up web-based information system that faculty could access to record student	2. ERP	1.0
32	grades and to advise students, that would be an example of an	3. extranet	1.0
		4. CRM	
		1. n+2	
		2.	
53	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	n+1	2.0
		3. n	
		4. n-1	
		1. n+2	
		2.	
	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	<u>n+1</u>	2.0
		3. n	
		4. n-1	
		1.	
		m+2	
	If there is a complete DFA M1 recognizing a language L1 and has m states out of which two are	2. m	
55	final states then the machine M recognizing L1 complement will have final states.		1.0
		3.) m-2	
		4. 2	

S.NO.	Questions	Choices	Answers
	If V is the name of the class, what is the correct way to declare converget return of V?	1. X(class X* arg)	
		2. X(X& arg)	
56		3. X(X* arg)	2.0
		4. X(X arg)	
		1. all parameters to the left of that variable must have default values	
		2. all parameters to the right of that variable must have default values	
57	If you assign a default value to any variable in a function prototype's parameter list, then	3. all other parameters in the function prototype must have default values	2.0
		4. no other parameters in that prototype can have default values	
		1. text	
		2. source	
	If you want to use a class to define objects in many different programs, you should define the class		3.0
	in a C++ file	3. header	
		4. program	
		1. to convert the 4-bit BCD into Gray code	
		2. to convert the 4-bit BCD into 7-bit code	
59	In a BCD-to-seven-segment converter, why must a code converter be utilized?	3. to convert the 4-bit BCD into 10-bit code	2.0
		4. No conversion is necessary	
		1. new	
		2. this	
60	In C++, dynamic memory allocation is accomplished with the operator	3. malloc	1.0
		4. delete	
-		1. malloc()	
		2. delete	
61	In C++, dynamic memory allocation is achieved with the operator		3.0
		3. new	
		4. this	
		1. Software Product Engineering	
		2. Software Quality Assurance	
62	In CMM, the life cycle activities of requirements analysis, design, code, and test are described in	3. Software Subcontract Management	1.0
		Software Quality Management	
_		1.	
		9's complement	
		2. 2's complement	
63	In computers, subtraction is generally carried out by		2.0
05		10's complement	2.0
		4.	
		1's complement	
		1. The value of x is assigned to y or the value of y is assigned t o x.	
		2. The value of x is assigned to y and the value of y is assigned t o x.	
64	In the types of Three-Address statements, copy statements of the form $x := y$ means	3. The value of y is assigned to x.	3.0
		4. The value of x is assigned to y.	
		1. one for the primary functions and one for the auxiliary functions	
65	Many programmers separate a class into two files:	2. one for the public data and one for the private data	4.0
05	wany programmers separate a class mile two mes.	3. one for the void functions and one for the other functions	4.0
		4. one for the declarations and one for the implementations	
		1. Useless Code	
	Market and the second s	2. Strength Reduction	
	Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of	3. Induction Variable	2.0
		4. Loop unwinding	

s.no.	Questions	Choices	Answer
		1. input data select lines	
	One can safely state that the output lines for a demultiplexer are under the direct control of the:	2. the internal OR gate	
67		3. the internal AND gates	1.0
		4. Input data line	
		Three arguments	+
		2. Two arguments	
68	Overloading a prefix increment operator by means of a member function takes	3. No argument	3.0
		4. One argument	
		different names and different argument lists	+
		2. different names and the same argument list	
69	Overloading involves writing two or more functions with	3. the same name and the same argument list	4.0
		4. the same name and different argument lists	
		1. malloc() and calloc()	
70	Specify the 2 library functions to dynamically allocate memory?	2. malloc() and memalloc()	1.0
, 0	specify the 2 notary functions to dynamically another inclinity.	3. alloc() and memalloc()	1.0
		4. memalloc() and faralloc()	
		Project Organization Monitoring Adopting	
		2. Planning Origanizing Monitoring Adjusting	
71	State the acronym of POMA in software project management	3. project oriented maintenance and administration	2.0
		4. Project Orientation Mapping Adjusting	
		1. inheritance	+
		2. reusability	
72	Templates improve	3. class	2.0
		4. functions	
		1. p	+
		2. Epsilon	
73	The Epsilon-Closure of any state q will contain the state irrespective of q.		3.0
		3. q	
		4. Final State	
		1. 0.1111	
		2.	
74	The binary value for 0.4375 is	0.0111	2.0
/4	The omary value for 0.4373 is	3.	2.0
		0.0011	
		4. 0.1010	
		appears inside the definition of the derived class	
		2. ppears inside the definition of the derived class constructor	
75	The call to the parameterized constructor of base class in the derived class	3. appears at the statement where the derived class object is created	2.0
		4. appears in the member initialization list of the derived class constructor	
		1. Software reuse	
		2. Software Security	
76	The fundamental notions of software engineering does not account for ?	3. Software Validation	3.0
		4. Software processes	
		Softmare processes	1

S.NO.	Questions	Choices	Answers
		1. Context-sensitive but not context-free	
		2. Recursive but not Context-free	
77	The language is $L=\{0^p1^q0^r\mid p,q,r^{-3}\mid 0,p\mid r\}$ is	3. Regular	4.0
		4. Context-free	
		1. strnstr()	†
		2. strrchr()	
78	The library function used to find the last occurrence of a character in a string is	3. laststr()	2.0
		4. strstr()	
		1.	+
		Electronic Switching System	
79	The major source of data for other systems are:	2. Transaction Processing Systems	2.0
		3. Decision Support System	
		4. Management Information System	
		1. private	
90	The manufact of a class in a L.L. but default are	2. protected	1.0
80	The members of a class in c++ by default, are	3. public	1.0
		4. mandatory to specify	
		1. Infinite	
		2. One	
81	The minimum length for strings in the regular expression (10* + 001*)* is	3. Zero	3.0
		4. Two	
		1. 10's Complement	†
		2. 2's complement	
82	The negative numbers in the binary system can be represented by	3.	2.0
02	The migative manifests in the original value of represented by	Sign magnitude	1.0
		4. I's complement	
		1.	+
		8 half-adders, 8 full-adders	
		2.	
		1 half-adders, 15 full-adders	
83	The number of full and half-adders required to add 16-bit numbers is		2.0
		3.	
		16 half-adders, 0 full-adders	
		4. 4 half-adders, 12 full-adders	
		1.	
		n-n	
	The samples of state in a scaling M	2.	
84	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2.	m+n	2.0
		3. m+n+1	
		4. n-m	
		<u> </u>	<u></u>

S.NO.	Questions	Choices	Answers
85	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2.	1. m-n 2. m+n 3. m+n+1 4. n-m	2.0
86	The number of states in DFA is the number of states in NFA for the same Language.	1. Greater then 2. equal to 3. less then 4. greater then or equal to	3.0
87	The processor 80386/80486 and the Pentium processor uses bits address bus:	 36 32 16 4.64 	2.0
88	The set of all strings over the alphabet $\{a,b\}$ (including epsilon) is denoted by	1. (a+b)^+ 2. a^+b^+ 3. a*b* 4. (a+b)*	4.0
89	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
90	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
91	The special memory used to store the micro routines of a computer is	1. Control table 2. Control store 3. Control mart 4. Control shop	2.0
92	The system having memory elements are called.	sequential circuits complex circuits combinational circuits description of the sequence of th	1.0

S.NO.	Questions	Choices	Answers
		1.6	
	The term m45 should be made up of at least literals	2. 31	
93		3. 4	2.0
		4. 5	
_		Team, Organization, contractor	
		2. Project, Strategic, Activity	
94			4.0
24	The time key levels at which responsibility can be defined is at the,	3. Hoject, Activity, WBS	4.0
		4. Project, Organization, Team	
		1. priming	
		2. pretest	
	The while loop is referred to as a(n) loop because the loop condition is tested at the beginning of the loop		2.0
		4. beginning	
		1. global variable in the C++ language	
0.6		2. function in the C++ language	2.0
96	The word case used in the switch statement represents a	3. keyword in the C++ language	3.0
		4. data type in the C++ language	
		1. void and free	
	Two against specifiers in C++ are	2. public and private	
97			2.0
		4. formal and informal	
		1. Actors	
98	Usecase analysis focuses upon	2. Objects	1.0
90		3. Data	1.0
		4. Entities	
		1. Local	
		2. Global	
99	Variables inside parenthesis of functions declarations havelevel access.	3. Module	1.0
		4. Universal	
		A type of memory used in super computers	
		An illusion of extremely large main memory	
100	Virtual mamory is		2.0
		3. An extremely large main memory	
		4. An extremely large secondary memory	
		1.	
		IGP	
		2. EGP	
	WE RECEIVED "404 – PAGE NOT FOUND" MESSAGE, WHEN WE BROWSE THE	3.	
101	WEB PAGE. WHICH PROTOCOL PROVIDES THIS MESSAGE?	SNMP	4.0
		4.	
		ICMP	

S.NO.	Questions	Choices	Answers
	Control	1.	
		1 and 2	
		2.	
	When the state of		
102	What are the minimum number of 2-to-1 multiplexers required to generate a 2- input AND gate and a 2-input Ex-OR gate?	1 and 3	1.0
102			1.0
		3.	
		1 and 1	
		4. 2 and 2	
		1. ptr is array of pointers to 10 integers	
	What does the following declaration mean?	2. ptr is a pointer to an array of 10 integers	
103	int (*ptr)[10];	3. ptr is an array of 10 integers	2.0
		4. ptr is an pointer to array	
		1. A Flip flop	
104	What is an Accumulator?	2. A counter	3.0
104	what is an Accumulator?	3. A Sequential Logic Circuit	3.0
		4. A Combinational Logic Circuit	
		A Combinational Logic Circuit	+
		2. A Sequential Logic Circuit	
105	What is an ALU?		2,3
		3. A Combination of Combinational Circuit and Sequential Circuit	
		4. A flip flop	
		Last two sum bits are different	
		Last two carrys are same	
106	What is the condition for setting the Overflow flag in status register?	3. Last two sum bits are same	3.0
		Last two carrys are different	
		1. n/2	
		2. n-1	
107	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a	3. 2n-1	2.0
		4. 2^n	
		1 50 20 20	1
		1. 50-20-30	
100	What is the recommended distribution of effort for a software project?	2. 50-30-20	4.0
108	what is the recommended distribution of effort for a software project?	3. 30-40-30	4.0
		4. 40-20-40	
		1. no return type	
		2. int	
109			1.0
10)	What is the return type of the conversion operator function?	3. void	1.0
		4. float	
		1. S0 = 1, S1 = 0, S2 = 1	+
110	What is the status of the inputs S0, S1, and S2 of the 74151 eight-line multiplexer in order for the	2. S0 = 1, S1 = 1, S2 = 0	1.0
	output Y to be a copy of input I5?	3. S0 = 0, S1 = 1, S2 = 0	
		4. S0 = 0, S1 = 0, S2 = 1	
		cannot access any of its class data members	\dagger
		2. cannot modify values of its class data members	
111	What is true about constant member function of a class?	3. cannot modify values of its class data members which are mutable	2.0
		can modify values of its class data members	

What will be the output of the following code #include void main() { int i; int a[3]=5; for [-2,i]=-0,i]= } { 5. 5 o 0 } { 2. 5 o 0 } { 2. 5 o 0 } { 3. 5 garbage garbage} { 4. 5 mul mill } { 4. Memory Read cycle } { 2. 6 Sech cycle } { 3. Instruction cycle } { 4. Memory Read cycle } { 4. Memory write cycle } { 7. Too } { 7. T	3.0
What will be the output of the following code #include void main() { int i; int a[3]=5; for [-2;3]=0;1-) { printf(?%da7,a[1];] } ### Note of the computer of the following code #include void main() { int i; int a[3]=5; for [-2;3]=0;1-) { printf(?%da7,a[1];] } ### Note of the computer of the following code #include void main() { int i; int a[3]=5; for [-2;3]=0;1-) { printf(?%da7,a[1];] } ### Note of the computer of the memory, it is called ### Note of the memory is called	
(i=2;i>=0;i-) { printf(%dun,a[i]); } (i=2;i==0;i-) { printf(%dun,a[i]); } (i=2;i==0;i==0;i-) { printf(%dun,a[i]); } (i=2;i==0;i==0;i==0;i==0;i==0;i==0;i==0;i	
In the complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. In the coperator surely	3.0
Memory Read cycle Comparison of the memory, it is called Comparison of the memory and the memory, it is called Comparison of the memory with expels	3.0
Hen an instruction is read from the memory, it is called 2. Fetch cycle 3. Instruction cycle 4. Memory write cycle 1. Two 2. Three 3. Only one 4. Any number When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least	3.0
114 When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states Final states	3.0
113 When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states Final states	3.0
Instruction cycle 4. Memory write cycle 1. Two 2. Three 3. Only one 4. Any number 4. The directory structure 4. Three 4. Any number 5. Separate with the re is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 4. 7 4. 7 4. 7 4. Three 4. Any number 4. Any number 4. Any number 5. Separate with the reliance of the original language then there will be at least final states. 5. Separate with the reliance of the original language then there will be at least final state. 5. Separate with the reliance of the original state in the reduced FA, then its regular expression will contain a state of the reliance of the original state in the reduced FA, then its regular expression will contain a state of the reliance of the original state in the reduced FA, then its regular expression will contain a state of the reliance of the original state in the reduced FA, then its regular expression will contain a state of the original state in the reduced FA, then its regular expression will contain a state of the original state in the reduced FA, then its regular expression will contain a state of the original state in the reduced FA, then its regular expression will contain a state of the original state of the original state in the reduced FA, then its regular expression will contain a state of the original state in the reduced FA, then its regular expression will contain a state of the original	
A. Memory write cycle 1. Two 2. Three 2. Three 3. Only one 4. Any number 4. Any number 4. Any number 5. Any number 5. Any number 6. Any number 6. Any number 7. Any	ſ
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states 1 Three	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states	
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 1.0 dot	
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least 3.5 4.7 116 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely 1. dot 2. binary + 3. star 4. unary + 4. unary	3.0
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 116	
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 116 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely 117 When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain amachine with final state same as that of	
such that it recognizes complement of the original language then there will be at least final states. 1. dot	
such that it recognizes complement of the original language then there will be at least final states. 1. dot	
In a final states. 3.	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When there is more than one final state in the reduced FA, then its regular expression will contain a star 4. unary + I. M1 OR M2 2. M1 AND M2 2. M1 AND M2 3. M2 4. M1 Which directory implementation is used in most Operating System? I. Two level directory structure 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure	3.0
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When there is more than one final state in the reduced FA, then its regular expression will contain a star operator surely 2. binary + 3. star 4. unary +	
When there is more than one final state in the reduced FA, then its regular expression will contain 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1 Which directory implementation is used in most Operating System? When there is more than one final state in the reduced FA, then its regular expression will contain 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1 1. Two level directory structure 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure 4. Tree directory structure	
The poperator surely 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1 118 Which directory implementation is used in most Operating System? 118 Which directory implementation is used in most Operating System? 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1 1. Two level directory structure 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure	4.0
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	4.0
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
machine with final state same as that of	
4. M1 1. Two level directory structure 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure	2.0
1. Two level directory structure 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure	
Which directory implementation is used in most Operating System? 2. Acyclic directory structure 3. Single level directory structure 4. Tree directory structure	
Which directory implementation is used in most Operating System? 3. Single level directory structure 4. Tree directory structure	
4. Tree directory structure	4.0
1. double funct(char x)	
2. void funct();	
119 Which is not a proper prototype? 3. char x();	1.0
4. intfunct(char x, char y);	
1.	
191.168.1.1/24	
2.	
191.168.1.1/16	
120 WHICH OF THE BELOW IS CALLED CLASSLESS ADDRESS?	2.0
3.	
191.168.1.1/8	
4.	
191.168.1.1/4	
	1

.NO.	Questions	Choices	Answe
		1. SMTPMP	
21	WHICH OF THE BELOW IS NOT AN EMAIL PROTOCOL?	2. IMAP	4.0
21	WHICH OF THE BELOW IS NOT AN EMAIL PROTOCOL?	3. POP	4.0
		4. SNMP	
		1. call displayName	
		2. call displayName ()	
22	2 Which of the following calls a function named displayName, passing it no actual arguments?	3. displayName	4.0
		4. displayName()	
		1. nondeterministic PDA to deterministic PDA	
		2. nondeterministic FSA to deterministic FSA	
23	Which of the following conversion is not possible (algorithmically)?		1.0
		3. regular grammar to context-free grammar	
		4. nondeterministic TM to deterministic TM	
		1. Leftmost derivation	
		2. Leftmost derivation traced out in reverse	
24	Which of the following derivations does a top-down parser use while parsing an input string? The input is assumed to be scanned in left to right order.	3. Rightmost derivation	1.0
		Rightmost derivation traced out in reverse	
		1. compare();	+
		2. cmp();	
25	Which of the following functions compares two strings?	3. stringcompare();	4.0
		4. strcmp();	
		1. a;	+
		2. *a;	
26	Which of the following gives the memory address of a variable pointed to by pointer a?	3. &a	3.0
		4. address(a);	
		1. Quadraples	_
27	which of the following intermediate language can be used in intermediate code generation?	2. Postfix notation and Three address code	1,3,2
		3. Triples	
		Infix notation and two address code	
		1. void funct(int) { printf(?Hello"); }	
20	White of the control	2. int funct();	4.0
28	Which of the following is a complete function?	3. void funct(x) { printf(?Hello"); }	4.0
		4. int funct(int x) { return x=x+1; }	
		1. void ~Country()	
		2. int ~Country(Country obj)	
29	Which of the following is a valid destructor of the class name "Country"	3. int ~Country()	4.0
		4. Country()	
		1. void * operator new () { }	
		2. int operator ++() { }	
30	which of the following is an incorrect definition inside a class?	3. void operator delete(void * ptr) { }	2.0
		4. void * operator new(size_t size) { }	

S.NO.	Questions	Choices	Answers
		The output toggles if one of the inputs is held HIGH.	
131	Which of the following is correct for a gated D flip-flop?	2. Only one of the inputs can be HIGH at a time.	4.0
		3. The output complement follows the input when enabled.	
		4. Q output follows the input D when the enable is HIGH.	
		1. Collaborative technologies	
122	Which of the Callegian is not a stable about the form in Committee and the Callegian in Calleg	2. Knowledge asset management	2.0
132	Which of the following is not a technology driver for an information system?	3. Enterprise applications	2.0
		4. Object technologies	
		1. Copy Constructor	
		2. Friend Constructor	
133	Which of the following is not a type of constructor?	3. Default Constructor	2.0
		4. Parametrized Constructor	
		1. /*	\vdash
		2. //	
134	Which of the following is the insertion operator? 3.	3. <<	4.0
		4.>>	
		Hardware and software costs	+
	Which of the following is/are main parameters that you should use when computing the costs of a software development project?	Effort costs (the costs of paying software engineers and managers)	
135		3. Travel and training costs	4.0
		4. All the parameters required given in the option.	
		1. internal	
		2. protected	
136	Which of the following language feature is not an access specifier in C++?	3. public	1.0
		4. private	
		1. (aaa+ab+a)+(bbb+bb+a)	+-
		2.	
	Which of the following regular expression denotes a language comprising of all possible strings	((a+b) (a+b) (a+b))*	
137	over {a,b} of length n where n is a multiple of 3?	3. (aaa+bbb)*	2.0
		4. (a+b+aa+bb+aba+bba)*	
		1. r* s* = r* + s*	
		2. $(r + s)^* = (r^*s^*)^*$	
138	Which of the following regular expression identities are true?	3. $(r + s)^* = r^* + s^*$	2.0
		4. $(r + s)^* = r^* s^*$	
		1. int f2() { static int i; i++; return i; }	+
		2. int f3(static int i) { return 300;}	
139	Which of the following results in a compile-time error?	3. static int f1() { return 100; }	3.0
		4. static int a;	
		1	

S.NO.	Questions	Choices	Answer
		1. FCFS	
140	Which of the Callesian and the little of the side of t	2. Round Robin	2.0
140	Which of the following scheduling algorithm comes under preemptive scheduling?	3. Multilevel Queue Scheduling	2.0
		4. Largest Job First	
		1 (underscore)	
	Which of the following enecial symbol is allowed in a variable name?	2 (hyphen)	
141		3. (pipeline)	1.0
		4. * (asterisk)	
		1. For $R = RI^*$, $L(R)$ is empty if and only if $L(RI)$ is empty	
		2. For $R = (RI)$, $L(R)$ is empty if and only if $L(RI)$ is empty	
Which of the following statement is false?	3. For $R = R1R2$, $L(R)$ is empty if and only if either $L(R1)$ or $L(R2)$ is empty.	1.0	
		4. If $R = RI + R2$, $L(R)$ is empty if and only if both $L(RI)$ and $L(R2)$ are empty.	
		1. If there is a PDA by acceptance state that accept L , then there is also a PDA by empty stack that accept L	
142	Which of the following statement is false?	2. If there is a NPDA that accept L, then there is also a DPDA that accept L.	
143		3. If there is a PDA by empty stack, then there is also a CFG G that accept L.	
		4. If there is a CFG G that accepts L, then there is also a PDA that accept L.	
		Turing recognizable languages are closed under union and complementation.	
144	Which of the following statements is/are FALSE?	2. Turing decidable languages are closed under intersection and complementation	
144		Turing recognizable languages are closed under union and intersection.	
		For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.	i
		Removing left recursion alone	
		2. Factoring the grammar alone	
145	Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?	3. Removing left recursion and factoring the grammar	4.0
		4. Removing left recursion, left factoring and ambiguity of the grammar	
		1. this,x	
		2. *this.x	
146	Which of the following ways are legal to access a class data member using this pointer?	3. this->x	3.0
		4. *this-x	
		1. An LR(k) parser.	
147 WI	Will ed Ch	2. An LALR(k) parser	4.0
	Which one of the following is a top-down parser?		IT.U
147	which one of the following is a top-down parser?	Operator precedence parser. Recursive descent parser.	

S.NO.	Questions	Choices	Answers
		1. Master schedule.	
		2. Staff appraisals.	
148	Which one of the following is a valid project Key Performance Indicator (KPI)?	3. Management buy in.	4.0
		4. Milestone achievement.	
		1. virtual void Display(void){0};	
		2. void Display(void) = 0;	
149		3. virtual void Display(void) = 0;	3.0
		4. virtual void Display = 0;	
		1	
		The set of all strings containing at least two 0's	
		2. The set of all strings that begin and end with either 0 or 1.	
150	Which one of the following languages over alphabet $\{0,1\}$ is described by the regular expression: $(0+1)*0(0+1)*0(0+1)*?$	3.	1.0
		The set of all strings containing at most two 0's.	
		4. The set of all strings containing the substring 00.	
		1. Build & Fix Model	
151	Which one of the following models is not suitable for accommodating any change?	2. RAD Model	3.0
131	which one of the following models is not suitable for accommodating any change.	3. Waterfall Model	3.0
		4. Prototyping Model	
		1. 0*(11*0)*	
		2. 0*1*01	
Which one of the following regular expressions over {0,1} denote	Which one of the following regular expressions over {0,1} denotes the set of all strings not	2.01101	
152	containing 100 as a substring?	0*(10+1)*	1234.0
		4.	
		0*1010*	
		To identify the health and safety strategies and procedures to be used	
		on the project	
		To establish the extent of work required prior to project commissioning and the handover	
153	Which one of the following statements best defines the purpose of a Product Breakdown Structure (PBS)?	3. To define how the products are produced by identifying derivations 3.	4.0
	().	and dependencies	
		4. To define the hierarchy of deliverables that are required to be produced on the project	
		1. The project team.	
		2. The chief executive.	
154	Who owns the Project Management Plan (PMP)?	3. The project manager.	3.0
		4. The project support office.	
	White the appular arranged to denote the law area. I was 9 - (1) - 1 - 1 - 1 - 1 - 1 - 1	1. a*b*	
155	Write the regular expression to denote the language L over $? = \{a,b\}$ such that all the string do not contain the substring "ab".		24.0
		3. (ab)*	
		4. (ba)*	
		1.	
		Von-Neuman architecture	
		2.	
		RISC architecture	
156	Zero address instruction format is used for		4.0
		3.	
		CISC architecture	
		4. Stack-organized architecture	
			1

S.NO.	Questions	Choices	Answers
		1.	
		Steeper	
		2.	
157	In a slab under steady state conduction if the thermal conductivity increases along the thickness, the	Flatter	3.0
137	temperature gradient along the direction will become	3.	3.0
		Constant	
		4.	
		mixed pattern	
		1.	
		2 sec	
	2.	2.	
	The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as 1-mm-dia sphere. The properties of the junction are $k = 35 \text{ W/m}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^{3}$,	10 sec	
158	and $C_p = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h =$	3.	3.0
	210 W/m ² °C. The time taken by the thermocouple to read 99 percent of the initial temperature difference 28 sec 4.	28 sec	
		4.	
		63 sec	
		1.)	
		increase	
		2.	
150	Assuming flow to be laminar, if the diameter of the pipe is halved, then the pressure drop will	decrease	1.0
139		3.	1.0
		remain same	
		4.	
		be quadrupled	
		L)	
		ML ⁻¹ T ⁻¹	
		2.	
		MLT ⁻¹	
160	Dimension of absolute viscosity is	3.	1.0
		ML ⁻¹ T	
		4.	
		MLT	
		1.Octal code	$\vdash\vdash\vdash$
		2.Grey code	
	Which of the following is minimum error code?	3.Binary code	
161	which of the following is imminum offer code.	4.	2.0
		Excess 3 code	
		Excess 5 code	
		1.	$\vdash \vdash \vdash$
		4 circuits	
		2.	
	When used with an IC, what does the term "QUAD" indicate?	2 circuits	
162	mind used with an ic, what does the tellit QUAD indicate:	3.	1.0
		8 circuits	
		4.	
		6 circuits	
ĺ			

		1.)	
		1011	
		1011 1	
		2.	
		1111	
163	Adding 1001 and 0010 gives		1.0
		3.	
		0	
		4.	
		1010	
\dashv		1	ļ
		1.	
		0	
		2.	
164 F	tadix of binary number system is?	3	3.0
		2	
		4.	
		A&B	
\dashv		1. is connected to Q	-
		2.R is connected to Q	
165 SR	D Flin day and he approved the Triangle day 169	3.Both S and R are shortend	4.0
		4.S and R are connected to Q and Q' respectively	
\dashv		1.	
		JK flip-flop does not need a clock pulse	
		2.	
		there is feedback in JK flip-flop	
166 1	The main difference between JK and RS flip-flop is that?		3.0
	the main unference octiveen set and to mp nop is that.	3.	3.0
		JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of junction cathode multivibrator	
\dashv		1.Set of capacitor used to register input instructions in a digital computer	
		2.Set of paper tapes and cards put in a file	
F	Register is a	3.	
167		Temporary storage unit within the CPU having dedicated or general purpose use	3.0
		purpose use	
		4.Part of the auxiliary memory	
\dashv		1.	
		addition	
		2.	
168	Magnitude comparator compares using operation of	subtraction	xnorl
		3.	
		multiplication	
		4.	
		division	

	Questions	Choices	Answer
		1.	
		Both input zero	
		2.	
		zero at R and one at S	
169	An SR flip flop cannot accept the following input entry		4.0
		3.	
		zero at S and one at R	
		4.	
		Both inputs one	
		1.	
		equal	
		2.	
170	One operation that is not given by magnitude comparator	less	2.0
	One operation that is not given by magnitude comparator	3.	
		greater	
		4.	
		addition	
		1)	
		<mark>a*</mark>	
		2.	
		a	
171	Automaton accepting the regular expression of any number of a 's is:	3.	1.0
		a*b*	
		4.	
		abc	
		1	1
		Q	
		2.	
172	Let L be a set accepted by a nondeterministic finite automaton. The number of states in non-deterministic finite automaton is $ \mathbf{Q} $. The maximum number of states in equivalent finite	2 Q	4.0
	automaton that accepts L is	3.	
		2 raise to power Q *1	
		4.	
		2 raise to power Q	
		1.	
		4	
		2.	
		3	
173	Number of final state require to accept $\Phi(phi)$ in minimal finite automata.	3	4.0
		3.	
		1	
		4.	
		<u>0</u>	
		•	•

S.NO.	Questions	Choices	Answe
		1. the machine code corresponding to the processor of the PC used for application development	
174	The embedded c program is converted by cross compiler to	2. the machine code corresponding to a processor which is different from the processor of the PC used for application development 3.	2.0
		the machine code for all the microcontrollers 4. assemble code of the PC used for application development	
175	The regular expression $0*(10*)*$ denotes the same set as	1. (1*0)*1* 2. 0 + (0 + 10)* 3. (0 + 1)* 10(0 + 1)* 4.	1.0
176	Which of the following statements is/are FALSE? (1) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. (2) Turing recognizable languages are closed under union and complementation. (3) Turing decidable languages are closed under intersection and complementation (4) Turing recognizable languages are closed under union and intersection.	(0+1)* 1. 1 and 4 only 2. 1 and 3 only 3. 2 only	3.0
		3 only 1. both are under union 2.	
177	Two automata are equal when	both are under same language 3. both are having equal number of states	2.0
		both are having same number of final states	

S.NO.	Questions	Choices	Answei
		1.	
		2 states	
		2.	
		4 states	
178	What is the minimum number of states needed to a DFA over Σ = (a, b) which accept those words	3.	3.0
	,	6 states	
		4.	
		5 states	
		1.	
		yx	
		2.	
	If a language is denoted by a regular expression $L = (x)^*(x yx),$ then which of the following is not a legal string within L?	xyx	
179		3.	4.0
	aren which of the following is not a legal string within L:	x	
		4.	
		xyxyx	
		1.	
		(a+b)	
		2.)	
100	The CFG s> as bs a b	$(a+b)(a+b)^*$	
		3.	2.0
	is equivalent to regular expression	(a+b)(a+b)	
		4.	
		(a + b) (a + b) (a + b) (a + b)	
		1.	
		Pumping Lemma	
		2.	
		RE	
181	is used to check whether the language is not regular.	3.	1.0
101		MN Theorem	1.0
		4.	
		Pigeon hole principle	
		1.)	_
		the instruction set architecture	
		2.	
102	The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by	page size	1.0
182	·	3.	1.0
		physical memory size	
		4.	
		number of processes in memory	

S.NO.	Questions	Choices	Answers
		1.	
		11	
	A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry	2.	
102	contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The size of	14	4.0
	the cache tag directory is	3.	
		27	
		4.)	
		16	
		1.	
		before the CPU time slice expires	
104		2.	1.0
184	Pre-emptive scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run	1.0
		3.	
		when it requests IO	
		4.	
		None of mentioned	
		1.	
		Are easier to develop than single programming systems	
		2.	
		Execute each job faster	
185	Multiprogramming systems	3.	3.0
		Execute more jobs in the same time	
		4.	
		Are used only on large main frame computers	
		1.	
		4	
		9	
		2.	
186	The DMA controller has registers	2	3.0
-00		3.	[
		3	
		4.	
		1	
		1.)	
		X	
	The truth table		
	X Y f(X,Y) 0 0 0	2.	
	0 1 0 1 0 1	X+Y	
187	1 1 1		1.0
	represents the Boolean function	3.	
		3. X'Y'	
		4.	
		Y	

S.NO.	Questions	Choices	Answers
		I.	
		(a+b+aa+bb+aba+bba)*	
		2.	
		(aaa+bbb)*	
	Which of the following regular expression denotes a language comprising of all possible	3.	3.0
	strings over $\Sigma = \{a,b\}$ of length n where n is a multiple of 3?	((a+b) (a+b) (a+b))*	
		4.	
		(aaa+ab+a)+(bbb+bb+a)	
		1.NFA is more powerful than DFA	
		2.DFA is more powerful than NFA	
189	Which of the following statement is true?	3.	3.0
		NFA and DFA have equal power	
		4.None	
190	Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. Which of the following most closely approximates the maximum input size of a problem that can	1.256 2.2048 3.1024 4.512	4.0
	be solved in 6 minutes?		
		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
191	ElGamal encryption system is:	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
		1.	
	#include < stdio.h >	var=100	
	int main() {	2.	
	typedef auto int AI;	var=AI	
192	AI var=100; printf("var=%d",var);	3.	4.0
	return 0; }	var=0	
	, C:J.d	4.	
	Find the output	Error	
		1.	
	#include < stdio.h >	myName=ABCDEFG(size=7)	
	int main() {	2.	
	typedef char* string; string myName="ABCDEFG";	Error	
193	<pre>printf("myName=%s (size=%d)",myName,sizeof(myName));</pre>	3.	4.0
	return 0; }	myName=ABCDEFG(size=4)	
	Cind the cutant	4.	
	Find the output	myName=ABCDEFG(size=8)	
	#include < stdio.h >	1.	
	int main() {	Error	
	typedef int AAA,BBB,CCC,DDD; AAA aaa=10;	2.	
	BBB bbb=20;	10,10,10,10	
194	CCC ccc=30; DDD ddd=40;	3.	3.0
	printf("%d,%d,%d,%d",aaa,bbb,ccc,ddd); return 0;	10,20,30,40	
	,	4.	
		T. Control of the con	1
	Find the output	AAA,BBB,CCC,DDD	

	#include < stdio.h > int main()	1.	
	int main()		
	{	10012,12100	
	typedef struct	2.	
	int empid;	0,0	
195	int bsal; }EMP;	3.	1.0
	EMP E={10012,15100}; printf("%d,%d",E.empid,E.bsal);	Error	
	return 0;	4.	
	}		
	Find the output	10012,10012	
		1.)	
	#include < stdio.h >	0 1 2 255	
	void main()	2.	
	{ unsigned char var=0; for(var=0;var<=255;var++);	255	
196	{ printf("%d ",var);	3.	1.0
	}	256	
	}		
	Find the output	4.	
		blank screen as output	
	#include <stdio.h></stdio.h>		
	#define MOBILE 0x01		
	#define LAPPY 0x02	1.	
	int main() {	I have purchased:	2.0
	unsigned char item=0x00;	2.	
107	<pre>item =MOBILE; item =LAPPY;</pre>	I have purchased:Mobile, Lappy	2.0
197	printf("I have purchased:"):	3.	2.0
	<pre>if(item & MOBILE) { printf("Mobile, ");</pre>	I have purchased:Mobile,	
	} if(item & LAPPY){	4.	
	<pre>printf("Lappy"); }</pre>	I have purchased:Lappy	
	return 1;		
	}		
		1.	
	#include <stdio.h></stdio.h>	13)	
	int main() {	2.	
	char flag=0x0f;	d	
198	<pre>flag &= ~0x02; printf("%d",flag);</pre>	3.	1.0
	return 0;	22	
	}		
	Predict the Output.	4.	
		10	
\dashv		1.	
	#include <stdio.h></stdio.h>	c = 12	
	int main()	2.	
	int a=10; int b=2;		
199	int c;	c = 10	3.0
-//	<pre>c=(a & b); printf("c= %d",c);</pre>	3.	[
	return 0;	c = 2	
	}	4.	
	Find the output.	c = 0	

Choices	Answers
4	4.0
0	
0	
4	4.0
1	
1	
3	3.0
	5.0
3	3.0
2	3.0
3	3.0

S.NO.	Questions	Choices	Answers
	#include <stdio.h> #define TRUE 1</stdio.h>	1.	
	int main()	1	
	{ if(TRUE)	2.	
	printf("1");	Error	
206	printf("2"); else	3.	2.0
	printf("3"); printf("4");	2	
	return 0;	4.	
	}	12	
	Find the output.		
		1.	
	#include <stdio.h></stdio.h>	Hello	
	#define TRUE 1 int main()	2.	
	{	Hello Hello Hello (infinite times)	
207	int loop=10; while(printf("Hello ") && loop);	3.	4.0
	,	Hello (10 times)	
	Find the output	4.	
		Hello (11 times)	
		1.	
	#include <stdio.h> #define VAR1 VAR2+10</stdio.h>	VAR2+10	
	#define VAR2 VAR1+20	2.	
	int main()	VAR1+20	
208	{ printf("%d",VAR1);	3.	3.0
	return 0;	Error	
	}	4.	
	Find the output	10	
-	#include <stdio.h></stdio.h>		
	#include < string.h >		
	struct student	1.	
	{ char name[20];	Mike Thomas	
	}std;		
	char * fun(struct student *tempStd) {	2.	
209	strcpy(tempStd->name,"Thomas"); return tempStd->name;	Mike Mike	3.0
209	return tempstu->name, }	3.	3.0
	int main()	ThomasThomas	
	{ strcpy(std.name,"Mike ");	4.	
	printf("%s%s",std.name,fun(&std));	ThomasMike	
	return 0;		
	Find the output	1.	
	#include <stdio.h> #include <string.h></string.h></stdio.h>	Inclu	
	internal sampli		
	{ char s1[]="IncludeHelp";	2.	
210	char s2[10];	IncluGARBAGE_VALUE	1.0
210	strncpy(s2,s1,5);	3.	1
	printf("%s",s2); return 0;	Error	
	}	4.	
	Find the output	IncludeHelp	
		1	I

S.NO.	Questions	Choices	Answers
		1.	
	#Include \stalo.n>	IncludeHelp.Com	
	#include <string.h> int main()</string.h>	2.	
211	char str1[]="IncludeHelp",str2[]=".Com";	<mark>udeHelp</mark>	2.0
211	printf("%s",strl+strlen(str2)); return 0;	3.	2.0
	}	Error	
	Find the output	4.	
		IncludeHelp4	
		1.	
	#include <stdio.h></stdio.h>	50501150	
	#include <string.h> int main()</string.h>	2.	
212	{ char str[50]="IncludeHelp";	1150	2.0
212	printf("%d%d",strlen(str),sizeof(str)); return 0;	3.	2.0
	}	1111	
	Find the output	4.	
		5011	
	#include <stdio.h></stdio.h>	1.	
	#include <string.h> int main()</string.h>	0	
	{ int val=0;	2.	
212	char str[]="IncludeHelp.Com";	1 =	2.0
213	val=strcmp(str,"includehelp.com");	3.	3.0
	printf("%d",val); return 0;	-1	
	}	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	#define OFF 0	1122	
	#if debug == OFF int a=11;	2.	
	#endif	Error	
214	int main() {	3.	1.0
	int b=22; printf("%d%d",a,b);	1111	
	retum 0;	4.	
	Find the output	2222	
		1.	
	#include <stdio.h></stdio.h>	Garbage	
	int main() {	2.	
	char *text="Hi Babs.";	В	
215	char x=(char)(text+3);	3.	4.0
	printf("%c\n",x);	Error	
	return 0;	4.	
	Find the output	Null	
	#include <stdio.h></stdio.h>	1.	<u> </u>
		Garbage	
	int main() {	2.	
	char *text="Hi Babs.";	В	
216	<pre>char x=(char)(text[3]);</pre>	3.	2.0
	printf("%c\n",x);	Епог	
	return 0;	4.	
	Find the output	Null	
			<u> </u>

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h></stdio.h>	Complie time error	
	int main()	2.	
	int anyVar=10;	10	2.0
217	printf("%d",10); return 0;	3.	2.0
	} extern int anyVar;	Run Time error	
	Find the output	4.	
		No output	
	#include <stdio.h></stdio.h>	1.	
		Error	
	int x=2.3;	2.	
• • •	const char c1=(float)x;	2.3,2	
218	const char c2=(int)x;	3.	2.0
	printf("%d,%d\n",c1,c2);	2.3000000,2	
	return 0; }	4.	
	Find the output	2,2	
	#include <stdio.h></stdio.h>	1.	
	struct sample	0	
	int a;	2.	
	}sample;	100	
219	int main() {	3.	2.0
	sample.a=100; printf("%d",sample.a);	ERROR	2.0
	return 0;	4.	
	Find the output	arning	
	#include <stdio.h></stdio.h>		
	char* funl(void) {	1.	
	char str[]="Hello"; return str;	ERROR	
	}		
	char* fun2(void)	2. Hello,Hello	
220	char *str="Hello";		4.0
	}	J. Hello,Garbage	
	{	4.	
	printi(708,708 ,1ui1(),1ui12());	Garbage, Hello	
	}	Guorge, 1010	
	Find the output #include <stdio.h></stdio.h>	-	
	char* strFun(void)	1.	
	char *str="IncludeHelp";	str value= Garbage value	
	return str; }	2.	
221	int main() {	str value = IncludeHelp	2.0
	char *x; x=strFun();	3.	
	printf("str value = %s",x);	Error	
	return 0; }	4.	
	Find the output	No output	

Questions	Choices	Answers
	1.	
#include <stdio.h></stdio.h>		
int fooo(void) {		
static int num=0;		
return num;		
} int main()		
{ int val;		2.0
val=fooo(); printf("step1: %d\n",val);	step3: 3	2.0
val=fooo();	3.	
val=fooo();	step1: 0	
return 0;	step2: 0	
}	step3: 0	
Find the output	4.	3.0
	ERROR	
	1.	
	Start debuggingIncludeHelp	
int main() {	2.	
#ifdef debug printf("Start debugging "):	IncludeHelp	
#endif	3.	2.0
return 0;	Error	
}	4.	
Find the output	debug	
int main()		
{ int a[5]={0x00,0x01,0x02,0x03,0x04},i; i=4;		
while(a[i])		
printf("%02d ",*a+i);		3.0
}		
}		
Find the cutant		
	01 02 03 04	
	1.	
{ int a[5]={1,2,3,4,5},b[5]={10,20,30,40,50},tally;	1 2 3 4 5	
for(tally=0;tally< 5;++tally)	2.	
(a+tally)=(tally+a)+*(b+tally);	10 20 30 40 50	3.0
for(tally=0;tally<5;tally++) printf("%d ",*(a+tally));	3.	3.0
	11 22 33 44 55	
}	4.	
Find the output	Error	
	1.	
	Error	
	2.	
{ static int array[]= $\{10,20,30,40,50\}$;	1040	
printt("%d%d",*array,*(array+3)* *array); return 0;	3.	4.0
}	10300	
Find the output	4.	
	1	1
	10400	
	#include <stdio.h> int fooo(void) {</stdio.h>	In the content of t

.NO	. Questions	Choices	Answers
		1.	
		Error	
		2.	
		A,A,A	
		B,B,B	
		C,C,C	
		D,D,D	
		E,E,E	
	#include <stdio.h> int main()</stdio.h>	3.	
	C. C. C. C. C. CALIBUCUED CI.	B,B,B	
227	printf(" $%c$, $%c$, $%c$ \n",*(x+tally)+1,x[tally]+1,*(tally+x)+1);	C,C,C	3.0
	return 0; }	D,D,D	
	Find the output	E,E,E	
	1	F,F,F	
		4.	
		E,E,E	
		D,D,D	
		C,C,C	
		B,B,B	
		A,A,A	
		1.	
	#include <stdio.h> int main()</stdio.h>	\0IncludeHelpTRUE	
	{ char result,str[]="\0IncludeHelp";	2.	
	result=printf("%s",str); if(result)	\0IncludeHelpFALSE	
228	printf("TRUE");		4.0
	else printf("FALSE");	Error	
	return 0;	4.	
	Find the output	FALSE	
		1.	
	#include <stdio.h></stdio.h>	IncludeHelp	
	int main() {	2.	
229	char str[8]="IncludeHelp"; printf("%s",str);	IncludeH	3.0
229	return 0;	3.	3.0
	}	Error	
	Find the output	4.	
		No output	
		1.	
		HelloFriends	
		HelloFriends	
	#include <stdio.h> int main()</stdio.h>	2.	
	Į į	Hello%s%dFriends	
220	printf(str);	TX 11 0/ 0/ 15 : 1	2.0
230	printf("%s",str);	3.	3.0
	return 0;	Hello(null)0Friends	
	Find the output	Hello%s%dFriends	
	a ma uno output		
		4.	
		Garbage value	
		Garbage value	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h> int main()</stdio.h>	value is = %d	
	{	2.	
	char str[]="value is =%d"; int a='7';	value is = %c	
	str[11]='c'; printf(str,a);	3.	4.0
	return 0;	value is = 55	
	}	4.	
	Find the output	value is = 7	
		1.	
	#include <stdio.h></stdio.h>	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	int main() {	2.	
	char X[10]={'A'},i; for(i=0; i<10; i++)	A	
232	printf("%d ",X[i]);	3.	4.0
	retum 0; }	A 32 32 32 32 32 32 32 32 32	
	Find the output	4.	
		Error	
		1.	
	#include <stdio.h></stdio.h>	Error	4.0
	int main() {	2.	
233	char *str="IncludeHelp"; printf("%c\n",*&*str);	IncludeHelp	2.0
233	return 0;	3.	3.0
	}	I)	
	Find the output	4.	
		*I	
		1.	
		4, 4, 4	
		1,4	
	#include <stdio.h></stdio.h>	2.	
	int main(){ float a=125.50;	4, 4, 8	
	int b=125.50; char c='A';		
234		1, 1	4.0
	printf("%d,%d,%d\n",sizeof(a),sizeof(b),sizeof(125.50)); printf("%d,%d\n",sizeof(c),sizeof(65));	3.	
	return 0;	4, 4, 4	
	What will be the entered on a 22 bit according	1, 1	
	What will be the output on a 32 bit compiler.	4.	
		4, 4, 8	
		1, 4	
		1.	
	#include <stdio.h></stdio.h>	Condition is True	
	int main()	2.	
	if((-100 && 100) (20 && -20))	Condition is False	
235	printf("%s","Condition is true."); else		1.0
	printf("%s","Condition is false."); return 0;	3.	
	}	No output	
	Find the output	4.	
		Error	

.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>		
	{ int a=10;	1.	
	if(10L == a) printf("10L"); else if(10==a)	2.	
	printf("10");	10L	
236	printf("0");	3.	2.0
	retum 0; }	10L10	
	Find the output.	4.	
		Error	
	int main()	1.	
	int a=10;	Hello	
	mintf("III allo ").	2.	
237	break;	HelloOK	4.0
.51	} alsa	3.	4.0
	{ printf("Hii"):	OK	
	return 0;	4.	
	Find the output.	Error error	
		1.	
	#Include <stalo.n></stalo.n>	1.234	
	{	2. 1.234000	
238	float b=1.234;		3.0
	return 0;	1.234000	
) D. Nada at an	4.	
	reduct the output:	Error	
	#include <stdio.h></stdio.h>		
	int main()	1.	
	to a to	OIHelp 1IHelp 2IHelp 3IHelp 4IHelp	
		2.	
	goto lbl; else	0IHelp 1IHelp 2IHelp 4IHelp	
239		3.	1.0
	printf("IHelp ");	1 IHelp	
	return 0:	4.	
	}	Ептог	
	Find the output	1	
		1. size of array is = 20	
	int main()	size of array is = 20 2.	
	int MAX=10;	size of array is = 40	
240	printf("size of array is = %d",sizeof(array);		2.0
	return 0;	size of array is = 4	
		4.	
		Error	
			I

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	{	No output	
	int pn=100; if(pn>20)	2.	
241	<pre>if(pn<20) printf("Heyyyyy");</pre>	<mark>Hiiii</mark>	2.0
	else	3.	
	return 0;	Неууууу	
	}	4.	
	Find the output.	HeyyyyyHiiiii	
	#include <stdio.h></stdio.h>	1.	
	{	ERROR	
	int var=100;	2.	
242	int var=200; printf("%d",var);	200200	10
242	}	3.	4.0
	printf("%d",var); return 0;	100100	
	}	4.	
	Find the output	200100	
		1.	
		value of var = 250	
	#include <stdio.h></stdio.h>	includehelp.com	
	int main()	2.	
	int var=250;	value of var = 250	
243	printf("value of var = %d\n",var); 200+50;	includehelp	2.0
2.13	"includehelp.com"; printf("%s\n","includehelp");	3.	2.0
	return 0;	Error	
	Find the output	4.	
	The die Supul	value of var = 250	
		Garbage	
	#include <stdio.h></stdio.h>	1.	<u> </u>
	int main() {	Error	
	int iVal; char cVal;	2.	
	void *ptr; // void pointer	value =50.size= 4	
	iVal=50; eVal=65;	value =65,siz= 4	
244	ptr=&iVal printf("value =%d,size= %d\n",*(int*)ptr,sizeof(ptr));	3.	2.0
	ptr=&cVal	value =50,size= 4	
	printf("value =%d,size= %d\n",*(char*)ptr,sizeof(ptr)); return 0;	value =65,size= 1	
	}		
	r. Id.	4. Garbage value	
	-	1.	1
	#include <stdio.h> int main()</stdio.h>	0 1 0 0 0	
	{ static int var[5];	2.	
	int count=0;	0 2 0 0 0	
245	<pre>var[++count]=++count; for(count=0;count<5;count++)</pre>	3.	3.0
	printf("%d ".var[count]);	00200	
	retum 0;		
	}	4.	
	Find the output		
	Find the output	0 0 0 0 0	_

s.no.	Questions	Choices	Answers
	#include <stdio.h> int main()</stdio.h>	1.	
	{	12, 12	
	struct sample { int a;	2.	
	int b;	12, 0	
246	sample *s; }t;	3.	4.0
	printf("%d,%d",sizeof(sample),sizeof(t.s));	Error	
	return 0;	4.	
	}		
	Find the output	12, 4	
	#include <stdio.h> int main()</stdio.h>	I.	
	{	Name: Mike, Age: 26	
	struct std	2.	
	char name[30]; int age;	Name: Garbage, Age: Garbage	
247	 };	3.	1.0
	struct std s1={"Mike",26}; struct std s2=s1;		
		Name: Null, Age: 26	
	printf("Name: %s, Age: %d\n",s2.name,s2.age); }	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	int main()		
	typedef struct tag{	ERROR	
	char str[10]; int a;	2.	
	}har;	IHelp, 10	
248	har h1,h2={"IHelp",10};	3.	4.0
	h1=h2; h1.str[1]='h';	IHelp, 0	
	printf("%s,%d",h1.str,h1.a); return 0;	4.	
	}	Ihelp, 10	
	Find the output		
		1.	
	#include <stdio.h> int main()</stdio.h>		
	{ union test	10,10	
	{	2.	
•	int i; int j;	10,0	
249	};	3.	4.0
	union test var=10;	0,10	
	printf("%d,%d\n",var.i,var.j);	4.	
		Error	
	Find the output #include <stdio.h></stdio.h>		
	#include <stdio.h> int main()</stdio.h>	1.	
	{ union values	A,B,0	
	{	2.	
	int intVal; char chrVal[2];i		
250	};	A,B,16961	2.0
230	union values val;	3.	2.0
	val.chrVal[0]='A'; val.chrVal[1]='B';	B,B,66	
	printf("\n%c,%c,%d",val.chrVal[0],val.chrVal[1],val.intVal);	4.	
	return 0; }	A,A,65	
	Find the output		
	r ma are carpas		

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>		
	int main() {		
	union values	1.	
	unsigned char a;	44,44,300	
	unsigned char b; unsigned int c ;	2.	
	ansigned int c,	1,2,300	
251	union values val;	3.	1.0
	val.a=1;	2,2,300	
	val.b=2; val.c=300;		
	printf("%d,%d,%d",val.a,val.b,val.c);	4.	
	return 0;	256,256,300	
	}		
<u> </u>	Find the output		
ĺ		1.	
	#include <stdio.h></stdio.h>	2004	2.0
ĺ	int main() {	2.	
	void *ptr;	2001	
252	++ptr; printf("%u",ptr);	3.	2.0
	return 0;	2000	
	,	4.	
	Find the output		
		ERROR	
	#include <stdio.h> struct employee {</stdio.h>	1.	
	int empId;	Id: 3, Age: 24, Name: Mike	
	char *name; int age;	2.	
	}; int main()	Id: 3, Age: 23, Name: Mike	
253	{		3.0
	struct employee emp []={ {1,"Mike",24}, {2,"AAA",24}, {3,"BBB",25}, {4,"CCC",30} };	Id: 3, Age: 30, Name: AAA	
	printf("Id: %d, Age: %d, Name: %s", emp[2].empId,3[emp].age,(*(emp+1)).name); return 0;		
ĺ	}	4.	
ĺ	Find the output	Error	
	•	1.	
ĺ	#include <stdio.h></stdio.h>	Case-2	
	void main() {	2.	
	int a=2; switch(a)	Message	
	{		
	printf("Message\n"); default:	3.	
254	printf("Default\n");	Message	4.0
	case 2: printf("Case-2\n");	Case-2	
1	case 3: printf("Case-3\n");	4.	
	}	Case-2	
	<pre>printf("Exit from switch\n"); }</pre>	Case-3	
	Find the output	Exit from switch	

S.NO.	Questions	Choices	Answers
255	<pre>#include <stdio.h> void main(){ static int staticVar; int j; for(j=0;j<=5;j+=2) switch(j){ case 1: staticVar++; break; case 2: staticVar+=2; case 4: staticVar%=2; j=-1; continue; default: staticVar; continue; } printf("%d",staticVar); }</stdio.h></pre> Find the output	1. 0 2. 1 3. 2 4. Error	1.0
256	#include <stdio.h> void main() { int a=0; a=5 2 1; printf("%d",a); } Find the output.</stdio.h>	1. 2 2. 1 3. 0 4. 8	2.0
257	case 0: printf("Case ZERO\n"); break; default: printf("DEFAULT\n");	1. Case NULL 2. Case ZERO 3. Case DEFAULT 4. Error	4.0
258	<pre>#include <stdio.h> void main() { int a=2; int b=a; switch(b) { case a: printf("Case-a\n");</stdio.h></pre>	1. Case-2 2. Error: case expression not constant 3. Message Case-2 4. Case-2 Case-3 Exit from switch	2.0

NO.	Questions	Choices	Answ
	#include <stdio.h></stdio.h>	1. After loop cnt= 1	
	void main() {	2.	
	int cnt=1; while(cnt>=10)	1,	
	{ printf("%d,",cnt);	After loop cnt= 2	
9	cnt+=1;	3.	1.0
	} printf("\nAfter loop cnt=%d",cnt);		
	printf("\n"); }	After loop cnt= 2	
	Find the output	4.	
		11	
		1.	
		ABCDE	
		A B C D E	
		2.	
	#include <stdio.h></stdio.h>	ABCD	
	void main()	ABCD	
	int i,j,charVal='A';	ABCD	
	for(i=5;i>=1;i)	A B C D	
0	$\begin{cases} for(j=0;j< i;j++) \end{cases}$	l e e e e e e e e e e e e e e e e e e e	3.0
	printf("%c ",(charVal+j));	A B C D	
	printf("\n"); }	ABC	
	}		
	Identify the output	A B	
		A -	
		4.	
		ABCDE	
		ABCD	
		ABC	
		AB	
		A	
	#include <stdio.h> void main()</stdio.h>		Г
	{	1.	
	int i=1; while (i<=5)	Error	
	{ printf("%d",i);	2.	
	if (i==5) goto print;	12345includehelp.com	
1	i++;	3.	1.0
	}	1234includehelp.com	
	fun() {	4.	
	print:	lincludehelp.com 2includehelp.com 3includehelp.com 4includehelp.com	1
	<pre>printf("includehelp.com"); }</pre>	5includehelp.com	
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	Value of intVar=23, x=21	
	void main(){ int intVar=20,x;	2.	
2	x=++intVar,intVar++,++intVar; printf("Value of intVar=%d, x=%d",intVar,x);	Value of intVar=23, x=23	1.0
	}	3.	
	Find the output	Value of intVar=21, x=21	
		4.ERROR	
		1	

S.NO.	Questions	Choices	Answers
	#include <stdio.h> void main()</stdio.h>	1. #0#1#2#3#4#5#6###	
	int tally;	2.	
	for(tally=0;tally<10;++tally) { printf("#").	#0#1#2#3#4#5#6#7#8#9#10	
263	printf("#"); if(tally>6)	3.	1.0
	continue; printf("%d",tally);	#0#1#2#3#4#5##7#8#9#10	
	}	4.	
	Find the output	#0#1#2#3#4#5#	
		1.	
		34	
	#include <stdio.h> void main(){</stdio.h>	2. 290	
264	unsigned char c=290; printf("%d",c);	3.	1.0
	}	Garbage value	
	Find the output	4.	
		Епог	
\dashv		1.	
	#include <stdio.h></stdio.h>	0 1 2 infinity	
	which main()	2.	
265	{	1 2 2 127	4.0
200	ror(;en(++;print) (%d ,en()); printf("%d",en();	3.	4.0
		0	
	Find the output	4.	
		1	
	#include <stdio.h<< td=""><td>1. Hello</td><td></td></stdio.h<<>	1. Hello	
	#include <string.h></string.h>	2.	
	int main()	Error	
266	char str[];	3.	2.0
	strcpy(str,"Hello"); printf("%s",str); return 0;	NULL	
	Find the output	4.	
	That are output	NO OUTPUT	
		1.	
	#include	sum=30	
	#define $SUM(x,y)$ int s; $s=x+y$; printf("sum=%d\n",s);	2.	
267	int main() {	10,20 3.	1.0
207	SUM(10,20); return 0;	Error	1.0
	}	4.	
	Find the output	sum=0	
		1.	
	#include int main()	11, 11	
	char ch=10;	2. 10, 11	
268	void *ptr=&ch printf("%d,%d",*(char*)ptr,++(*(char*)ptr));	3.	1.0
	return 0;	Error	
	; Find the output	4.	
l	ina an vapat		
		10, 10	

S.NO.	Questions	Choices	Answer
	#include	1.	
	int main() {	вввв	
	char *str []={"AAAAA","BBBBB","CCCCC","DDDDD"}; char **sptr []={str+3,str+2,str+1,str};	2.	
	char ***pp;	ccccc	
269	pp=sptr;	3.	3.0
	++pp; printf("%s",**++pp+2);	BBB	
	return 0;	4.	
	Find the output	Error	
		1.	+
		5	
	#include int main()	2.	
	{ int a=10,b=2;	5.0	
270	int *pa=&a, *pb=&b printf("value = %d", *pa/*pb);	3.	1.0
	return 0;	ERROR	
	}		
	Find the output	4.	
		No output	
	#include void fun(int *ptr)	l.	
	{ *ptr=100;	100,100	
	}	2.	
	int main() {	50,50	
271	int num=50; int *pp=#	3.	3.0
	fun(& *pp); printf("%d,%d",num,*pp);	50,100	
	return 0;	4.	
	}	Error in function calling	
	Find the output	I.	
	#include	2	
	#define FUN(x) x*x int main()	2.	
	{ int val=0;		
272	val=128/FUN(8); printf("val=%d",val);	12864 3.	2.0
	return 0;		
	}	40	
	Find the output	4.	
			-
		1.	
	#include int main ()	43	
	{	2.	
272	static int a[]={10, 20, 30 40, 50}; static int *p[]= {a, a+3, a+4, a+1, a+2};	140	2.0
213	int **ptr=p; ptr++;	3.	2.0
	printf ("%d%d", ptr p, **ptr);	89	
	The output of the program is	4.	
		78	
			+
		1.	
	#inahyda catdia h	I. Hello	
	#include <stdio.h> #define TRUE 1</stdio.h>		
	#define TRUE 1 int main() {	Hello 2.	
	#define TRUE 1	Hello 2. ERROR	3.0
	#define TRUE 1 int main() { switch(TRUE) { printf("Hello");	Hello 2. ERROR 3.	3.0
	<pre>#define TRUE 1 int main() { switch(TRUE) { printf("Hello"); } }</pre>	Hello 2. ERROR 3. No output	3.0
274	#define TRUE 1 int main() { switch(TRUE) { printf("Hello");	Hello 2. ERROR 3.	3.0

Questions	Choices	Answer
	1. 0, 1, 2, 3, 3, 4, 5, 0, 1	
{ zero, one, two, three , four=3,five,six,seven=0,eight };	2. 0, 1, 2,3,3,1,2,3,4	
void main() { printf("%d,%d,%d,%d,%d,%d,%d,%d,%d",zero,one,two,three,four,five,six,seven,eight); }	3. 0,1,2,3,3,1,2,3,4	1.0
What will be the output.	4. 0, 1, 2, 3, 3, 4, 5, 0, 9	
	1.	
int main(){	-5 2.	
int ans; ans= val+ !val + ~val + ++val;	-6 3.	2.0
return 0;	0	
Find the output.	4. 6	
	1.	
	2.	
float a,b; a=3.0f; b=4.0f;	0, 0.7, 0.75 3.	3.0
printf("%.0f,%.1f,%.2f",a/b,a/b,a/b); return 0; }	0, 0.8, 0.75	
Find the output.	4. Error: Invalid format Specifier	
	1. value of a=10	
int main() { float a;	2. value of a=10.000000	
(int)a= 10; printf("value of a=%d",a); return 0;	3. value of a=0	4.0
Find the output	4.	
	L-Value required 1.	
	0 0 1 2 1	
{ int i=-1,j=-1,k=0,l=2,m;	0 0 1 3 2	
printf("%d %d %d %d %d",i,j,k,l,m); return 0;	3. 0 0 1 3 1	3.0
Find the output	4.	
	1.	
#include <stdio.h> int main()</stdio.h>	24, 24 2.	
int intVar=24; static int x=intVar;	24, 0	3.0
<pre>printf("%d,%d",intVar,x); retum 0; }</pre>	3. Error: Illegal Initialization	
Find the output of this program, (program name is: static_ec.c)	4. Run time error	

.NO.	Questions	Choices	Answe
		1.	
	#include <stdio.h> int main()</stdio.h>	0	
ĺ	{	2.	
201	int ok=-100; -100;	-100	
281	printf("%d",ok); return 0;	3.	2.0
	}	100	
	Find the output.	4.	
		Error	
\dashv		1.	\vdash
		ERROR	
	#include <stdio.h></stdio.h>	2.	
	int main()	value of var= -10	
	{ int var;	value of var= 10	
	var=10; printf("value of var= %d\n",var);	3.	
282	var=++10; printf("value of var= %d\n",var);	value of var= 10	3.0
	return 0;	value of var= 10	
	}		
	Find the output	4.	
		value of var= 10	
		value of var= 11	
		1.	
		x=100	
		x=100	
	#include <stdio.h></stdio.h>	2.	
	int main() { int x;	x=100	
	x=100,30,50;	x=50	
283	printf("x=%d\n",x); x=(100,30,50);	3.	2.0
	printf("x=%d\n",x); return 0;	x=50	
	} Find the output	x=50	
ľ	and the output	4.	
		x=50	
		x=100	
			<u> </u>
		1.	
	#include <stdio.h> void main()</stdio.h>	Hello	
	{	2.	
	int a=10; switch(a){	ОК	
284	case 5+5: printf("Hello\n");	3.	3.0
	default: printf("OK\n");	Hello	
	printi(OK ii);	ОК	
	} Find the output	4.	
		Error	
\dashv		1.	
	#include <stdio.h></stdio.h>	var : E, 69	
	void main()	2.	
	{ unsigned short var='B';	var : E, 68	
285	var+=2; var++;	3.	1.0
	printf("var : %c , %d ", var,var);	var : D, 69	
ľ			
	Find the output	4.	
		var : D, 68	1

S.NO.	Questions	Choices	Answers
	#include <stdio.h> void main()</stdio.h>		
	{	1.	
	int a=2; switch(a/2*1.5)	One	
	{ case 1:	2.	
	printf("One"); break;	Two	
286	case 2: printf("Two");	3.	4.0
	break;	Other	
	default: printf("Other");	4.	
	break;	Error	
	}		
	Find the output		
	#include <stdio.h> void main()</stdio.h>		
	{ short a=2;	1.	
	switch(a)	One	
	case 1L:	2.	
287	printf("One\n"); break;	Two	2.0
207	case 2L: printf("Two\n");	3. 	
	break; default:	Else	
	printf("Else\n");	4.	
	break; }	Error	
	} Find the output		
	#include <stdio.h></stdio.h>	1.	
	void main()	2 nd	
	short day=2;	2.	
	switch(day) {	22 nd	
288	case 2: case 22: printf("%d nd",day);	3.	3.0
	break; default:	Error	
	printf("%d th",day); break;	4.	
	oreak,	2 nd	
	Find the output	22 nd	
		1.	
	#include <stdio.h></stdio.h>	Addition is = 20	
	int main(){	2.	
	int a,b,c; a=0x10; b=010;	Addition is = 24	
289	c=a+b; printf("\nAddition is= %d",c);		2.0
	return 0;	Addition is = Garbage	
	Find the output.	4.	
	Suipui.	Error	
		I.	
		AABB1	
	#include <stdio.h></stdio.h>	AABB1	
	void main() {	2.	
	int x; x=(printf("AA") printf("BB"));		
290	printf("%d",x); printf("\n");	1	4.0
290		3.	1.0
	x= (printf("AA")&&printf("BB")); printf("%d",x);	AABBI	
	}	AAI	
	Find the output	4.	
		AAI	
		AABBI	

S.NO.	Questions	Choices	Answers
291	\$a = array(null => 'a', true => 'b', false => 'c', 0 => 'd', 1 => 'e', " => 'f'); echo count(\$a), "\n"; What will be printed?	1.2 2.3 3.4 4.5	2.0
	\$a = array(); if (\$a[1]) null; echo count(\$a), "\n"; What will be printed?	1.0 2.1 3.2 4.Code wont work	1.0
		1.	
		Incremental development	
		2.	
		Agile	
293	What is the most common approach for the development of application system now?	3.	1.0
		Waterfall	
		4.	
		None of the options	
		1.	
		RAW	
		2.	
294	data type can store unstructured data	CHAR	1.0
294	data type can store mistructured data	3.	1.0
		NUMERIC	
		4.	
		VARCHAR	
		1.	
		infrastructure mode	
		2.	
		ad-hoc mode	
295	A wireless network interface controller can work in		3.0
		3.	
		both infrastructure and ad-hoc mode	
		4.	
		none	
		1.	
		The omitted value takes "undefined"	
		2.	
• • •	Consider the code snippet given below	This results in an error	
	var count = [1,,3];	3.	1.0
	What is the observation made?	This results in an exception	
		4.	
		Can't predict	
		1.	
		$x = \sim (-y); w = (x = (y = z));$ q = a?b:(c?d:(e?f:g));	
		2.	
	Consider the following javascript statements	x = a?b:(c?d:(e?f:g));	
297	x = x - y; w = x = y = z;	$q = \sim (-y); w = (x = (y = z));$	4.0
	q = a?b:c?d:e?f:g;	3. $x = (x = (y = z)); w = \sim (-y);$	
	The above code snippet is equivalent to:	x - (x - (y - z)); w - (-y); q = a?b: (c?d: (e?f:g));	
		4.	
		$x = \sim (-y); w = (x = (y = z));$ q = (c?d:(e?f:g));	
		1	

.NO.	Questions	Choices	Answ
		1.	
		text==pattern	
		2.	
		text.equals(pattern)	
98	<pre>var text = "testing: 1, 2, 3"; // Sample text var pattern = /\d+/g // Matches all instances of one or more digits</pre>	3.	4.0
	In order to check if the pattern matches with the string "text", the statement is	text.test(pattern)	
		4.	
		pattern.test(text)	
			\bot
		1.	
		Partial Key	
		2.	
		Candidate Key	
99	is the minimal super key	3.	2.0
		Surrogate Key	
		4.	
		Unique Key	
00	is a built - in JavaScript function which can be used to execute another function after a	1.Timeout() 2.TimeInterval() 3.setTimeout() 4.All of the above	3.0
	given time interval.	1.	+
		alter .	
		2.	
01	command can be used to modify a column in a table	update	1.0
01		3.	1.0
		set	
		4.	
		create	
		1.	+
		Constraints	
		2.	
		Stored Procedure	
02	is preferred method for enforcing data integrity		1.0
		3.	
		Triggers	
		4.	
		Cursors	
		1.	+
		very low	
		2.	
		low	
)3	66.6% risk is considered as	3.	4.0
		moderate	
		4.	
		<mark>high</mark>	
	8086 microprocessor is interfaced to 8253 a programmable interval timer. The maximum number	1.216 2.28 3.210 4.220	1.0
04	by which the clock frequency on one of the timers is divided by	1.210 2.28 3.210 4.220	

S.NO.	Questions	Choices	Answers
		1.	
		User Interfaces	
		2.	
		Web Services	
305	Which activity most easily lends itself to incremental design?	3.	3.0
		Enterprise resource planning	
		4.	
		Embedded Sofftware	
		1.Gantt Chart 2.	
		Structure Chart	
		3.	
306	Graphical representation of the project, showing each task and activity as horizontal bar whose length is proportion to time taken for a completion of that activity is called	Pert Chart	1.0
	tengin is proportion to time taken for a completion of that activity is cancil	4.	
		Time Line	
		Time Line	
		1.	
		Software suffers from exposure to hostile environments	
		2.	
		Defects are more likely to arise after software has been used often	
3017.	Software deteriorates rather than wears out because	3.	3.0
		Multiple change requests introduce errors in component	
		interactions	
		4.	
		Software spare parts become harder to order	
		1.Estimation and planning 2.	
		Analysis and design	
		3.	
3018	The 40-20-40 rule suggests that the least amount of development effort can be spent on	Coding	3.0
		4.	
		Testing	
		1.	
		A reasonable approach when requirements are well defined	
		2.	
		A Useful approach when a customer cannot define requirements	
2010		clearly	2.0
3019	The prototyping model of software development is	3.	2.0
		The best approach to use projects with larger development teams	
		4.	
		A risky model that rarely produces a meaningful product	
		1.	
		component analysis	
		2.	
		requirements modification	
310	In reuse-oriented software engineering the last stage is	3.	3.0
			
		system validation	
		4.	
		system design	

1 Make the first foliosistic as not a part/product of apparent or regimentary 2 2 2 2 2 2 2 2 2	S.NO.	Questions	Choices	Answers
District of the following is and a pertinated of negativeselve engineering: 10 Section of performance in the process where 1 you dood what colors you will use to program 2 you dood what colors you will use to program 3 you dood what colors you will use to program 4 you dood what colors you will use to program 5 you dood what colors are marked from the grown of the section of the sect			Feasibility study	
Site what is a sharinge of incremental delange? 3.10 Sharine is a sha	311	Which of the following is not a part/product of requirements engineering?	Requirements validation	4.0
Site software specification is the process where 2. You decide what software you will use to program 2. You decide what software you will use to program 3. What is made a software specification is the process where 2. "You find use what sortware are captured form the system 4. "" *** "Processing a software specification is the process makes" *** "State of the software should produce the software process makes that software you will use to program the state of the system of the software should produce the state of the system			System models	
312 Notice in an advantage of incommental delivery? 313 Note in an advantage of incommental delivery? 314 Note in an advantage of incommental delivery? 315 Note in an advantage of incommental delivery? 315 Note in an advantage of incommental delivery? 316 Note in an advantage of incommental delivery? 317 Continents can are probably on an advantage of incommental delivery? 318 Note in an advantage of incommental delivery? 319 Note in an advantage of incommental delivery? 310 Note in an advantage of incommental delivery? 310 Note in an advantage of incommental delivery? 310 Note in an advantage of incommental delivery? 311 Note in an advantage of incommental delivery? 312 Note in an advantage of incommental delivery? 313 Note in an advantage of incommental delivery? 314 Note in an advantage of incommental delivery? 315 Note in an advantage of incommental delivery? 316 Note in an advantage of incommental delivery? 317 Note in an advantage of incommental delivery? 318 Note in an advantage of incommental delivery? 319 Note in an advantage of incommental delivery? 319 Note in an advantage of incommental delivery? 320 Note in an advantage of incommental delivery? 321 Note in an advantage of incommental delivery? 322 Note in an advantage of incommental delivery? 323 Note in an advantage of incommental delivery? 324 Note in an advantage of incommental delivery? 325 Note in an advantage of incommental delivery? 326 Note in an advantage of incommental delivery? 327 Note in an advantage of incommental delivery? 328 Note in an advantage of incommental delivery? 329 Note in an advantage of incommental delivery? 320 Note in an advantage of incommental delivery? 321 Note in an advantage of incommental delivery? 322 Note in an advantage of inco				
3.0 Yes find out what scritters are required from the covers the full product and the covers the full product are covered from the covers the full product and covers the full product are covered from the covers the full product and covers of the covers o				
A none	3 112 s	oftware Specification is the process where		3.0
1.				
she has a software development process model 316 what is the type of software design that defines interfaces between system 316 that is the type of software design that defines interfaces between system 317 the size of the data count register of a DMA controller is 16 bits. The processor needs to transfer to transfer the fife from the disk to main memory is discussed. The memory is the understand. 318 The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer to transfer the fife from the disk to main memory is processor to transfer of the fife from the disk to main memory is processor needs to transfer to the fife from the disk to main memory is processor into transfer the fife from the disk to main memory is the control of the system has from the fife from the disk to main memory is the control of the system has from the fife from the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main memory is the control of the system has from the fife form the disk to main				
Section Sect			everything is coded at once, so the customer receives the full	
Customers can use probabyee and gain experience that informs their requirements for later systems 4. none of the mentioned L.waterfall model 2. Incremental model 3. Bockm's Spiral model 4. all 1. architectural design 2. interface besign 2. interface besign 4. database design The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a processor to transfer the file from the disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller cade to get the control of the system bus from the processor to transfer the file from the disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller cade to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. 3.0 3.0 3.0	2 1/2 11		replacement systems are easily developed with full features that	2.0
Intermental model 2. Incremental model 3. Bothm's Spiral model 4. all 1. architectural design 2. Interface Design 4. database design 1. The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a [field 2/3).154 kilobytes from disk to main memory is 1. The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a [field 2/3).154 kilobytes from disk to main memory is 1. The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a [field 2/3).154 kilobytes from disk to main memory is 1. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4	3113 W	nat is an advantage of incremental delivery?	Customers can use prototypes and gain experience that informs	3.0
Incremental model 3. Boehm's Spiral model 4. all 1. architectural design 2. interface Design 3. components? A. database design 1. 4.54 The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a 2. file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. 3. 3. 3. 3. 4. 4. 4. 4. 4.				
3 is a software development process model A. Boehm's Spiral model 4. all 1. architectural design 2. Interface Design 3. components? A. database design 1. database design 1. database design 2. The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. 3. 456 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4				
314 his is a software development process model 4. all 1. architectural design 2. interface Design 3. components? The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. 3. 456 4. 3. 3. 3. 456 4.				
all 1. architectural design 2. Interface Design 3. components? 3. database design 4. database design 1. 454 The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. descended by the data count register of a DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. descended by the data count register of a DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. descended by the data count register of a DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. descended by the data count register of a DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is	31:4.		Boehm's Spiral model	4.0
architectural design 2. Interface Design 3. components? The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller was to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3.0 3.0 3.0 3.0 3.0 3.0 3.0				
The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a 2. file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3. 3. 456 4.				
The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a 2. file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3.0 3.0 3.0	315	That is the type of software design that defines interfaces between system	Interface Design	2.0
The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3.0 456 4.		components?	component Design	
The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a 2. file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is 3.0 456 4.				
file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the 455 processor to transfer the file from the disk to main memory is 3.0 456 4.				
processor to transfer the file from the disk to main memory is 3. 456 4.		file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The		
4.	316	processor to transfer the file from the disk to main memory is	3.	3.0
			4.	
				<u> </u>

S.NO.	Questions	Choices	Answer
	Control	1.	
		D type flip-flop	
		2.	
	Frankish of the City of the Grands and the desired Const. Const. on the city of the City o	R S type flip-flop	
317	For which of the following flip-flop the output clearly defined for all combinations of two inputs?		3.0
		3.	
		J K flip-flop	
		4.	
		T flip-flop	
		1.	
		Next State	
		2.	
		Present State	
	In excitation table of D flipflop next state is equal to		
318		3.	4.0
		Previous State	
		4.	
		D State	
		1.	
		33	
	A computer system implements 8 kilobyte pages and a +32-bit physical address space. Each page	2.	
319	table entry contains a valid bit, a dirty bit, three permission bits, and the translation. If the maximum size of the page table of a process is 24 megabytes, the length of the virtual address	35	4.0
	supported by the system is bits.	3.	
		34	
		4.	
		36	
		1.	
		Mapping	
		2	
	A graphical display of the fundamental products in a truth-table is known as	2.	
320		Graphing	4.0
		3.	
		Т-тар	
		4.	
		Karnaugh-Map	
		1.	
		30	
	A processor can support a maximum memory of 4 GB, where the memory is word-addressable (a	2.	
	word consists of two bytes). The size of the address bus of the processor is at least	31)	2.0
321	bits	3.	2.0
		32	
		4.	
		33	
-			

S.NO.	Questions	Choices	Answers
		1.	
		Indirect addressing	
322		2.	
	A Stack-organized Computer uses instruction of	Two-addressing	3.0
		3.	
		Zero addressing	
		4.	
		Index addressing	
		1.	
		19	
		2.	
	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of	20	
323	bits for the TAG field is	3.	2.0
		21	
		4.	
		22	
		1.	
		Encoder	
		2.	
324	A circuit that converts n inputs to 2 ⁿ outputs is called	Decoder .	1.0
		3.	
		Comparator	
		4.	
		Carry Look Ahead	
		1.	
		849	
		2.	
	A Program Counter contains a number 825 and address part of the instruction contains the number	<mark>850</mark>	
325	24. The effective address in the relative address mode, when an instruction is read from the memory is		2.0
		3.	
		801	
		4.	
		802	
		1.	
		It makes it seem like there's more memory in the computer	
		2.	
		It reduces the number of memory copies required	
	Buffering is useful because		
326	Santoning is about bootable	3.	4.0
		It allows all device drivers to use the same code	
		4.	
		It allows devices and thee CPU to operate asynchronously	

S.NO.	Questions	Choices	Answers
	Consider a 6-stage instruction pipeline, where all stages are perfectly balanced. Assume that there is no cycle-time overhead of pipelining. When an application is executing on this 6-stage pipeline, the speedup achieved with respect to non-pipelined execution if 25% of the instructions incur 2 pipeline stall cycles is	1. 1 2. 2 3. 4 4.5	3.0
	Consider a join (relation algebra) between relations $r(R)$ and $s(S)$ using the nested loop method. There are 3 buffers each of size equal to disk block size, out of which one buffer is reserved for intermediate results. Assuming $size(r(R))$	1. Relation r(R) is in the outer loop. 2. Relation s(S) is in the outer loop. 3. Join selection factor between r(R) and s(S) is more than 0.5 4. Join selection factor between r(R) and s(S) is less than 0.5.	1.0
329	Consider a main memory system that consists of 8 memory modules attached to the system bus, which is one word wide. When a write request is made, the bus is occupied for 100 nanoseconds (ns) by the data, address, and control signals. During the same 100 ns, and for 500 ns thereafter, the addressed memory module executes one cycle accepting and storing the data. The (internal) operation of different memory modules may overlap in time, but only one request can be on the bus at any time. The maximum number of stores (of one word each) that can be initiated in 1 millisecond is	1. 5535 2. 65335 3. 53892 4.	4.0
330	Consider two processors P1 and P2 executing the same instruction set. Assume that under identical conditions, for the same input, a program running on P2 takes 25% less time but incurs 20% more CPI (clock cycles per instruction) as compared to the program running on P1 If the clock frequency of P1 is 1GHz, then the clock frequency of P2 (in GHz) is	1. 1.5 2. 1.6 3. 1.7 4.	2.0
	Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called	1. relative address mode. 2. index addressing mode. 3. register mode 4. implied mode	1.0

S.NO.	Questions	Choices	Answers
		1.	
	How many address bits are needed to select all memory locations in the 16K × 1 RAM?	8	
		2.	
332		3.	3.0
		14	
		4.	
		16	
		1.	
		Width of tag comparator	
		2.	
	If the associativity of a processor cache is doubled while keeping the capacity and block size unchanged, which one of the following is guaranteed to be NOT affected?	Width of set index decoder	
333	unchanged, which one of the following is guaranteed to be NOT affected?	3.	4.0
		Width of way selection multiplexer	
		4.	
		Width of processor to main memory data bus	
		1.	
		11 bits	
		2.	
334	If the main memory is of 8K bytes and the cache memory is of 2K words. It uses associative mapping. Then each word of cache memory shall be	21 bits	3.0
		3. 16 bits	
		4.	
		20 bits	
		1.	
		interrupt of lower priority	
		2.	
		interrupt of higher priority	
335	If two interrupts, one of higher priority and other of lower priority occur simultaneously, then the service provided is for	3.	2.0
		both the interrupts	
		4.	
		none of the mentioned	
		1.	
		binary sequence	
	Minterms are arranged in map in a sequence of	2.	
336		gray code	2.0
		3.	
		binary variables	
		4. BCD code	
		200	

s.no.	Questions	Choices	Answers
		As an alternative to register allocation at compile time 2.	
337	Register renaming is done is pipelined processors	For efficient access to function parameters and local variables 3. To handle certain kinds of hazards	3.0
		4. As part of address translation	
		1. X + Y + Z 2.	
338	Simplified form of the boolean expression $(X + Y + XY)(X + Z)$ is	XY + YZ 3.	3.0
		X + YZ 4.	
		XZ + Y 1.	
339	The 16-bit 2's complement representation of an integer is 1111 1111 1111 0101, its decimal representation is	1 2. 2 3.	4.0
		3 4. -11	
		1. Absolute 2.	
340	The addressing mode used in an instruction of the form ADD R1, R2 is	Indirect 3. Index	3.0
		4. Register	
		1. 10 address, 16 data lines	
341	The capacity of a memory unit is defined by the number of words multiplied by the number of bits/word. How many separate address and data lines are needed for a memory of 4 K \times 16?	2.11 address, 8 data lines3.12 address, 12 data lines	4.0
		4. 12 address, 16 data lines	

NO.	Questions	Choices	Answers
		1.	
		read by host to get input	
		2.	
-	The data-in register of I/O port is	read by controller to get input	
342	and an egote of 2 o port to	3.	1.0
		written by host to send output	
		4.	
		written by host to start a command	
_			
		1.	
		Flash memory	
		2.	
1	The Firmware are stored in read-only memory orchips.	Dynamic random access memory	
343		3.	3.0
		EEPROM	
		4.	
		Random-access memory	
\dashv		1.	
		hit ratio	
		2.	
344		miss ratio	1.0
		3.	
		average ratio	
		4.	
		ratio	
		1.	
		-256	
		2.	
1	The smallest integer than can be represented by an 8-bit number in 2?s complement form is	-128	
345		3.	2.0
		-127	
		4.	
		1	
_		1.	
		JK flip flop needs a clock pulse	
		2.	
346	The main difference between JK and RS flip-flop is that	There is a feedback in JK flip-flop	3.0
040		5.	3.0
		JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of Junction cathode multi-vibrator	
		<u> </u>	1

S.NO.	Questions	Choices	Answers
		1.	
		Clock rate	
		2.	
	The rate at which a computer clock deviates from a perfect reference clock is called as	Clock speed	
347		3.	3.0
		clock drift rate	
		4.	
		Transmission Bandwidth	
		1.	
		21	
		2.22	
348	The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-way set associative cache is bits		4.0
2.0		3.	
		23	
		4.	
		24	
		1.	
		3	
		2.	
		5	
349	To build a mod-19 counter the number of flip-flops required is	3	2.0
		7	
		,	
		4.	
		9	
		1.	
		69282	
		2.	
		69272	
	Using 10's complement 72532- 3250 is		
350		3.	1.0
		69252	
		4.	
		69232	
		09232	
		1.	
		How they are initiated	
		2.	
351	What is the main difference between traps and interrupts?	The kind of code that's used to handle them	1.0
		3.	
		Whether or not the scheduler is called	
		4.	
		How the operating system returns from them	
		speaking system retains from them	

s.no.	Questions	Choices	Answers
		1.	
		Memory Read cycle	
		2.	
352	When an instruction is read from the memory, it is called	Fetch cycle	
		3.	3.0
		Instruction cycle	
		4.	
		Memory write cycle	
		I.	
		move R1, R2	
		2	
		2.	
353	Which amongst the following refers to Absolute addressing mode	move LOC1, LOC2	1.0
		3.	
		move LOC1, R2	
		4.	
		move LOC2, R1	
		1.	
		RAID level 1	
		2.	
		RAID level 2	
354	Which level of RAID refers to disk mirroring with block striping?		1.0
		3.	
		RAID level 0	
		4.	
		RAID level 3	
		1.	
		1 ⊕ 0 = 1	
		2.	
		1 ⊕ 1 ⊕ 0 =1	
255	Which of the following logic expression is incorrect?		2.0
355		3.	2.0
		1 ⊕ 1 ⊕ 1 = 1	
		4.	
		1 ⊕ 1 = 0	
		1.	
		FIFO	
	Which of the following are the above to the state of the	2.	
356	Which of the following paging algorithms is most likely to be used in a virtual memory system?	Second chance	3.0
		3.	
		Least Recently Used	
		4.	
		Least Frequently Used	
		passes . requesting coeu	1

s.no.	Questions	Choices	Answers
	-	1.	
		expansion bus	
357		2.	
	which one of the following connects high-speed high-bandwidth device to memory subsystem and	DCI l	1.0
		3.	1.0
		SCSI bus	
		4.	
		none of the mentioned	
		1.	
		Distributed parity	
		2.	
		No Parity	
358	Which one of these is characteristic of RAID 5?		1.0
		3.	
		All parity in a single disk	
		4.	
		Double Parity	
		1.	
		RAID 1	
	Which two RAID types use parity for data protection?	2.	
359		RAID 4	4.0
		3. 	
		RAID 1+0	
		4.	
		RAID 5	
		1.	
		-10111	
		2.	
		-10011	
360	X=1010100 and Y=1000011 using 1's complement Y-X is		3.0
500		3.	3.0
		<mark>-10001</mark>	
		4.	
		-11001	
		1.	
		Zero	
		2.	
	The minimum number of NAND gates required to implement the Boolean function. A + AB' + AB'C is equal to	1	
361	• **	3.	1.0
		4	
		4.	
		7	
			Ь

S.NO.	Questions	Choices	Answers
		1.	
		ab + (cd)' + cd + bd'	
		2.	
		a(b+c)+cd	
	Which of the following boolean expressions is not logically equivalent to all of the rest?	3.	
362		ab + ac + (cd)'	3.0
		4.	
		bd' + c'd' + ab + cd	
		1.	
		Encoder	
		2.	
		Decoder	
363	Which of the following unit will choose to transform decimal number to binary code?	3.	1.0
		Multiplexer	
		4.	
		Counter	
		1.Width of tag comparator	
364	If the associativity of a processor cache is doubled while keeping the capacity and block size unchanged, which one of the following is guaranteed to be NOT affected?	2. Width of set index decoder	4.0
304		3.Width of way selection multiplexer	4.0
		4. Width of processor to main memory data bus	
		1.	
		Hash function	
		2.	
	The correspondence between the main memory blocks and those in the cache is given by	Mapping function	
365	The correspondence between the main memory blocks and those in the cache is given by	3.	2.0
		Locale function	
		4.	
		Assign function	
		1.	
		<mark>33</mark>	
	The stage delays in a 4-stage pipeline are 800, 500, 400 and 300 picoseconds. The first stage (with	2.	
366	delay 800 picoseconds) is replaced with a functionally equivalent design involving two stages with respective delays 600 and 350 picoseconds. The throughput increase of the pipeline is	34	1.0
	percent.	3.	1.0
		35	
		4.	
		32	
		1.	
		driver	
		2.	
	What is the software that runs a computer, including scheduling tasks, managing storage, and	application suitex	
367	handling communication with peripherals?	3.	3.0
		operating system	
		4.	
		bluetooth technology	

.NO.	Questions	Choices	Answer
		1.2n	
		2.	
269	For an undirected graph with n vertices and e edges, the sum of the degree of each vertex isequal	(2n-1)/2	3.0
	to	3. <u>2e</u>	3.0
		4.	
		pow(e,2)/2	
		1.	
		higher-age	
		2.	
		increase-age	
69	Which attribute is used to extend the lifetime of a cookie?		3.0
	vyriich attribute is used to extend the lifetime of a cookie?	3.	
		max-age	
		4.	
		lifetime	
		1.	-
		Internal Style	
		2.	
		Inline Style	
370	<h2 style="color:blue">I am Blue</h2> is way of styling HTML elements	3.	2.0
		External Style	
		4.	
		Default	
		1.	
		Web 1.0	
		2.	
		Web 2.0	1.0
371	a to a second		
	is referred to as Static Web	3.	
		Web 3.0	
		4.	
		Web 4.0	
		1.	ļ
		10, 8, 7, 3, 2, 1, 5 2.	
	A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order	10, 8, 7, 2, 3, 1, 5	
5/2	traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted into the heap in that	3.	1.0
	order. The level-order traversal of the heap after the insertion of the elements is:	10, 8, 7, 1, 2, 3, 5	
		4.	
		10, 8, 7, 5, 3, 2, 1	
		1.	
		full binary tree 2.	
	A binary tree in which if all its levels except possibly the last, have the maximum number of nodes		
373	and all the nodes at the last level appear as far left as possible, is known as	AVL tree 3.	1.0
		threaded tree	
		4.	
			1
		complete binary tree	

S.NO.	Questions	Choices	Answers
		1.	
		34	
		2.	
374		99	4.0
	A binary tree T has 20 leaves. The number of nodes in T having two children is	3.	4.0
		7	
		4.	
		19)	
		1.	
		3	
		2.	
	A process executes the code fork ();	4	
375	fork (); fork ();	3.	3.0
	The total number of child processes created is	7	
		4.	
		8	
		1.	
		both as a server and a client	
		2.	
		As Client always	
376	A Search engine can serve as		1.0
		3.	
		As Server always	
		4.	
		Neither client nor server	
		1.	
		Generalization	
		2.	
		Association	
377	An object of class A receives a message with an argument that is an instance of class B. Identify the type of relationship between class A and Class B:	3.	1.0
		Aggregation	
		4.	
		Realization	
		1.	
		505	
		2.	
		506	
378	Consider an undirected graph G where self-loops are not allowed. The vertex set of G is $\{(i,j): 1=i=12, 1=j=12\}$. There is an edge between (a,b) and (c,d) if $ a-c =1$ and $ b-d =1$. The	3.	2.0
	number of edges in this graph is	507	
		4.	
		508	
		1.	
		1/8 2.	
		1	
379	Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is ½. What is the expected number of unordered cycles of length	3.	3.0
	three?	7	
		4.	
		8	

.NO.	Questions	Choices	Answer
	Considerate C forest on visua below	1. The function returns 0 for all values of j.	
	Consider the C function given below. int f(int j)		
	{ static int i = 50;	2.	
	int k;	The function prints the string something for all values of j.	
380	if (i == j) {		4.0
	<pre>printf("something"); k = f(i);</pre>	3.	
	return 0;	The function returns 0 when $j = 50$.	
	} else return 0;	4.	
	}		
	Which one of the following is TRUE?	The function will exhaust the runtime stack or run into an infinite loop when $j = 50$.	
		1.	
		ABCD EFGH	
	Consider the following function written the C programming language.	2.	
	void foo (char * a) { if (* a & & * a ! =' ') {	ABCD	
381	putchar (*a);		1.0
	<i>j</i> }	3.	
	} The output of the above function on input 'ABCD EFGH' is	HGFE DCBA	
	Two contracts of the contract		
		4.	
		DCBA)	<u> </u>
		1.	
		+ - 1 6 7 * 2 ? 5 - 3 4 *	
	Consider the following New andrest trace for two versions a his are two	2.	
	Consider the following New-order strategy for traversing a binary tree: 1) Visit the root;	+ 1 * 6 7 ? 2 - 5 * 3 4	
382	2)Visit the right subtree using New-order; 3)Visit the left subtree using New-order;	3.	3.0
	The New-order traversal of the expression tree corresponding to the reverse polish expression 3 4 *	-+1*76?2-5*43	
	5 - 2 ? 6 7 * 1 + - is given by:	4.	
		176*+2543*-?-	
		.1/6*+2343*-!-	
		1.	
	Consider the following program: int f(int *p, int n)	2	
	{	2.	
	if (n \leq 1) return 0; else return max (f (p+1, n-1),p[0]-p[1]);	1	
383	}	3.	3.0
	int main() {	3	
	int a[] = {3,5,2,6,4}; printf("%d", f(a,5));		
	}	4.	
	The value printed by this program is	4	
		1.	
		15	
	Consider the following recursive C function. Void get (int n)	2.	
	{if (n<1) return;	25	
364	get (n-1) get (n-3);		2.0
	printf ("%d",n); If get(6) function is being called in main () then how many times will the get() function be invoked	3.	
	before returning to the main ()?	43	
		4.	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the function func shown below:	7	
	int func(int num) {	2.	
	int count = 0; while (num) {	8	
	count++; num>>= 1;	3.	3.0
	} return (count);	9	
	} The value returned by func(435)is	4.	
	The value retained by faile (155).	0	
		1.	
		80 30 62 114 77 9 99	
		2.	
		114 30 62 77 9 99	
386	For the array (77,62,114,80,9,30,99), write the order of the elements after two passes using the Radix sort	3.	2.0
		9 114 30 62 77 80 99	
		4.	
		9 30 62 77 80 99 114	
		1.	
		list>	
		2.	
		 	
387	How can you make a list that lists the items with numbers?	3.	2.0
		<dl></dl>	1
		4.	
			
		1.	
		using System.out.println 2.	
		using Document.Write("Hello World")	
388	How do you write "Hello World" in PHP?	3.	4.0
	·	"Hello World"	
		4.	
		using echo("Hello World")	
		1.	
		UDP	
		2.	
		TCP	
389		3.	2.0
	HTTP is implemented over		
		SMTP L.	
		4.	
		POP	
		1.	
		isolated	
		2.	
390	If every node u in G adjacent to every other node v in G, A graph is said to be	complete 3.	2.0
		finite	
		4.	
		strongly connected	

S.NO.	Questions	Choices	Answers
		1. A tree has no bridges 2.	
391	In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the	A bridge cannot be part of a simple cycle 3.	4.0
	following statements is true?	Every edge of a clique with size 3 is a bridge (A clique is any compete sub graph of a graph) 4.	
		A graph with bridges cannot have a cycle	<u> </u>
		1. GET	
		2.	
		POST	
392	In HTTP, which method gets the resource as specified in the URI	3.	3.0
		PUT	
		4. TRACE	
		I.	
		Providing the library for the Java program	
		2.	
	Java package is a grouping mechanism with the purpose of	Controlling the visibility of the classes, interfaces and methods	
393		3.	2.0
		Replacing header file used in C/C++	
		4. An application framework	
		1.	
		full: (REAR+1) mod n==FRONT empty: REAR ==FRONT	
		2. (REAR) mod n==FRONT	
	Suppose a circular queue of capacity (n? 1) elements is implemented with an array of n elements. Assume that the insertion and deletion operations are carried out using REAR and FRONT as	empty: REAR ==FRONT	1.0
	array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are		
		(REAR+1) mod n==Rear empty: REAR ==FRONT	
		4. full: (FRONT+1) mod n==FRONT	
		empty: REAR ==FRONT	-
	The following function computes the maximum value contained in an integer array	a != n	
	int max(int *p, int n) {	2.	
	mit a=0, b=n-1; while () {	b != 0	
395	if $(p[a] \le p[b])$ { $a = a+1$; } else { $b = b-1$; }	3.	4.0
	} return p[a];	b > (a+1)	
	} The missing loop condition is	4. b!= a	
		1.	1
			
		2.	
		<ins></ins>	
396	The following HTML element helps making animated text	3.	4.0
		<mark></mark>	
l l		4.	
		<marquee></marquee>	

S.NO.	Questions	Choices	Answers
		1.	
		63	
		2.	
397	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary	64	2.0
371	search tree, such that the resulting tree has height 6, is	3.	2.0
		65	
		4.	
		66	
		1.	
		To cache page translation information	
		2.	
398	The purpose of a TLB is	To cache frequently used data 3.	2.0
		To hold register values while a process is waiting to be run	
		4.	
		To hold the start and length of the page table	
		1.	
		 br>	
		2.	
399		<h>></h>	3.0
3,,	The following HTML element is used to display horizontal line	3.	5.0
		<hr/>	
		4.	
		<h2></h2>	
		1.	
		static	
		2.	
400	To prevent any method from overriding, the method has to declared as,	const	3.0
400			3.0
		3.	
		final 4.	
		extends	
		1.	
		multiprogramming	
		2.	
401		multiuser interfacing	1.0
.01		3.	1.0
		Random scheduling	
		4.	
		Variable cpu cycles	<u> </u>
		1.	
		ServletRequest and ServletResponse 2.	
		HttpServletRequest and HttpServletResponse	
402	What are the parameters of the service method?		2.0
		3.	
		HttRequest and HttpResponse 4.	
		Request and Response	
Ī			

S.NO.	Questions	Choices	Answe
		1.	
		Java Scripting Pages	
		2.	
402		Java Service Pages	2.0
403	What does JSP stand for?	3.	3.0
		Java Server Pages	
		4.	
		Java Script Program	
		1.	
		5, undefined, undefined	
		2.	
	What does the following bit of JavaScript print out?	5,3,undefined	
404	var a = [1,3,4,5];	3.	1.0
	console.log([a[4], a[1], a[5]]);	5,0,undefined	
		5,0,undermed	
		4.	
		5,null,undefined	
		1.	
		Used to separate cell walls from their contents	
		2.	
		Used to set space between cells	
405		Used to set space between cens	2.0
	What is cell padding?	3.	
		Used to provide width to a cell	
		4.	
		Used to merge two cells 1.	
		<pre><input type="text"/></pre>	
		2.	
406	What is the correct HTML for making a text input field?	<textfield> 3.</textfield>	1.0
	The state of the s	<input type="textfield"/>	
		4.	
		<textinput type="text"></textinput>	
		1.	
	What will be printed as the output of the following program?	I = 0	
	public class testincr	2.	
	public static void main(String args[])	I = 1)	
	int i = 0;	3.	2.0
	i = i++ + i; System.out.println(" I = " +i);	I = 2	
	} }	4.	
		I=3	
			į.

S.NO.	Questions	Choices	Answers
		1.	
		getYear()	
		2.	
408		getYYYY()	1.0
100	Which method is used to get the year of a date object in YYYY format in Javascript.	3.	1.0
		getFullYear()	
		4.	
		get4Year()	
		1.	
		Text	
		2.	
		Password	
409	Which of the following input controls that cannot be placed using <input/> tag?	3.	4.0
		Submit	
		4.	
ı		Textarea	
		1.	+-
		body:color=black	
		2.	
		{body;color:black}	
410	Which is the correct CSS syntax?	3.	4.0
		{body:color=black(body}	
		{body.coloi-black(body)	
		4.	
		body {color: black}	
		1.	
		n + 9378 2.	
411		2^ n-1	
411	Which of the following asymptotic notation is the worst among all?	3.	2.0
		2^ n - 1 4.	
		2n ? 1	
		1.	\vdash
1		(i) and (ii) only	
	Which of the following is/are example(s) of stateful application layer protocols?	2.	
	(i)HTTP (ii)FTP	(ii) and (iii) only 3.	3.0
	(iii)TCP	(ii) and (iv) only	
	(iv)POP3	4.	
		(iv) only	
		1.	
		valign	
		2.	
		bgcolor	
413	Which of these is not a valid attribute of	3.	4.0
		align	
		4.	
		rowspan	
			Ь

S.NO.	Questions	Choices	Answers
		1.	
		GET 2.	
414	Which of these methods has no restrictions on content size when a form is submitted.	HEAD	
		2	3.0
		POST	
		1031	
		4.	
		PUT I.	
		Google	
		2.	
		Archie	
415	Which one is the first search engine in internet?	3.	2.0
		AltaVista	
		4.	
		WAIS	
		1.	
		45	
		2.	
		<mark>67</mark>	
416	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is	3.	2.0
		34	
		4.	
		78	
		1.	
		Browser enriched mail client	
		2.	
417		HTML-enabled mail client	2.0
		3. Rich Text mail client	
		4.	
		client server mail client	
		1.	
		a prompt	
		2.	
418	An incorrectly typed command will cause the operating system to display	an error message 3.	2.0
	in incorrectly typed command with eduse the operating system to display	a question mark	
		4.	
		causes exception	
		1.	
		<pre><td< td=""><td></td></td<></pre>	
		2.	
419	Choose the correct HTML to left-align the content inside a table cell	3.	4.0
		4.	
		<u>I</u>	

s.no.	Questions	Choices	Answers
	Consider the below code fragment: if (fork $k() = 0$)	1. $ u=x+10 \text{ and } v=y $	
	{ a= a+5; printf("%d, %d \n", a, &a);	2.	
420	} else	u=x+10 and $v!=y$	3.0
	{ a= a ? 5; (correction : a= a-5;) printf("%d %d \n", 0, &a);	3.	
	Let u, v be the values printed by parent process and x, y be the values printed by child process. Which one of the following is true?	u + 10 = x and v = y 4.	
		u + 10= x and v != y 1.	
	Consider the following C code segment: int a, b, c = 0; void prtFun(void); main() { static int a = 1; /* Line 1 */ prtFun(); a += 1;	31 41 42 2. 42	
421	prtFun() printf("\n %d %d", a, b); }	61 61 3.	4.0
	void prtFun(void) { static int a=2; /* Line 2 */ int b=1; a+=++b; printf("n %d %d", a, b); }	42 62 20 4.	
	What output will be generated by the given code segment if: Line 1 is replaced by auto int a = 1; Line 2 is replaced by register int a = 2;	42 42 20	
	Consider the following C program. #include <stdio.h> int f1 (void); int f2 (void); int x = 10; int main () {</stdio.h>	1. 434 2. 230	
	int x=1; x+=f1()+ f2()+f3()+f2(); printf("%d", x); return 0;	3. 43	2.0
	int f1(){int x=25; x++; return x;} int f2(){static int x =50; x++; return x;} int f3(){x*=10; return x}; The output of the program is	4. 432	
	Consider the following program: int f(int *p, int n) {	1. 1 2.	
423	if (n <= 1) return 0; else return max (f (p+1, n-1),p[0]-p[1]); } int main()	2 3.	3.0
	{ int a[] = {3,5,2,6,4}; printf("%d", f(a,5)); }	3. 4.	
	The value printed by this program is	4	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h> using namespace std;</iostream.h>		
	void myFunction(int& x, int* y, int* z) {	1.	
	static int temp=1; temp += (temp + temp) - 1;	3 3 3 2	
	x + = (y + + *z) + temp; y = x	2.	
	*z=temp; *z= x;	3 2 3 3 3 3.	gar3
	cout< <x<*y<<*z<<temp;< td=""><td>Correct answer: 3 (garbage value) 3 3 3 2 3 2</td><td></td></x<*y<<*z<<temp;<>	Correct answer: 3 (garbage value) 3 3 3 2 3 2	
	int main() {	Not in options 4.	
	int $i = 0$; int $j[] = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$;	3 1 3 3	
	==i++ - ++i; myFunction(i, j, &i);		
	return 0;		
	,	1.	
		save	
		2.	
125		dontresize	2.0
425	If you don't want the frame windows to be resizeable, simply add what to the lines?	3.	3.0
		noresize	
		4.	
		Delete 1.	
		BSD Unix	
		2.	
		Windows	
426	Sockets originate from	3.	1.0
		Linux	
		4.	
		Mac	
		1.	
		10,20,15,23,25,35,42,39,30 2.	
		15,10,25,23,20,42,35,39,30	
427	The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of the following is the postorder traversal sequence of the same tree?	3.	4.0
	one of the following is the postoruer traversal sequence of the same tree:	15,20,10,23,25,42,35,39,30	
		4.	
		15,10,23,25,20,35,42,39,30	
	What will be the output of the following C progress?	1.	
	What will be the output of the following C program? void count(int n){ static int d=1;	3 1 2 2 1 3 4 4 4	
	static int d=1; printf("%d ", n); printf("%d ", d);	2.	
	printit (%d %, d); d++; if(n>1) count(n-1);	312111222	1.0
428	it(n>1) count(n-1); printf("%d ", d);	3.	1.0
	yoid main(){ count(3);	3122134	
	count(), }	4.	
		3121112	

S.NO.	Questions	Choices	Answers
		1. In the section	
		2. In the <head> section</head>	
429	Where in an HTML document is the correct place to refer to an external style sheet?		head
		At the end of the document	
		4. At the top of the document 1.	
		title,body,form and script 2.	
430	Which of the following is included in the head section of HTML	title,meta tag,script and CSS 3.	2.0
		title, meta tag,css and form 4.	
		title, body,script and CSS 1.	
		CGI 2.	
431		HTML	3.0
		3. JavaScript	
		4. CSS	
		1. 2.	
432		<tdleft></tdleft>	4.0
	Which of the following in HTML is used to left align the content inside a table cell?	3.	
		4.	
		A cookie is a piece of code that has the potential to compromise the security of an internet user	
		2.	
433	Which one of the following statements is NOT correct about HTTP cookies?	A cookie gains entry to the user's work area through an HTTP header 3.	1.0
		A cookie has an expiry date and time 4.	
		Cookies can be used to track the browsing pattern of a user at a particular site 1.	
	Consider the following program: int f(int *p, int n) {	1	
131	$ \begin{cases} if (n \le 1) \text{ return } 0; \\ else \text{ return } \max (f(p+1, n-1), p[0]-p[1]); \\ \end{cases} $	2	3.0
	int main() { int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	3. 3	5.0
	print(("%d", 1(a,5)); } The value printed by this program is	4. 4	
			ı

S.NO.	Questions	Choices	Answer
		1.	
		GET	
		2.	
		HEAD	
435	Which of these methods has no restrictions on content size when a form is submitted.	3.	3.0
		POST	
		4.	
		PUT	
\neg		1.	1
		Stack	
		2.	
	datastructure used in pushdown automata.	array	
436		3.	1.0
		queue	
		4.	
		linked list	
	Consider the following:		-
		1.Inorder successor of the root 2.	
	temp=root->left;	Maximum element in the right subtree of root	
	while(temp->right!=NULL)	3.	
437	temp=temp->right;	Minimum element in the right subtree of root	4.0
	return temp;	4.	
		Inorder predecessor of the root	
	The above code snippet for a BST with the address of the root node in pointer 'root' returns		ļ
		1.	
		Class attribute	
		2.	
	is used to define a special CSS style for a group of HTML elements	name attribute	
438		3.	1.0
		group attribute	
		4.	
		id attribute	
\dashv		1.	1
		method attribute	
		2.	
		action attribute	
439	The attribute defines the action to be performed when the form is submitted	3.	2.0
		onSubmit attribute	
		4.	
		onClick attribute	
			ļ
		S1 is a serializable schedule	
	Consider a schedule S1 given below; R1(A); W1(A); R2(B); R2(A); R1(B); W2(A+B); W1(B); where R1 and W1 are	2.	
	read and write operations of transaction 11 and R2 and W2 are read and		4.0
	write operations of transaction T2.	3.	
,	Which of the following is correct regarding schedule S1?	S1 is a conflict serializable schedule	
		4.	
		S1 is a view serializable schedule	

S.NO.	Questions	Choices	Answers
3.110.	Questions	1.	Allsweis
		switching algebra	
		on the same of the	
441		2.	
		arithmetic algebra	
	Boolean algebra is also called		1.0
		3.	
		linear algebra	
		4.	
		algebra	
		1.	
		generate code	
		2.	
		provide thorough testing	
442	Software prototyping helps to		2.0
		3.	
		explore possible software solutions	
		4.	
		collect initial software requirements	
		1.	
	Activities such as documentation and software configuration management are what	Primary	
		2.	4.0
		Validation	
		3.	
		Design	
		4.	
		supporting	
		1.	
		quickest to complete	
		2.	
		highest-priority	
444	In incremental delivery the services are typically delivered first		2.0
		3.	
		cheapest	
		4.	
		most fun to code	
		1.	
		degrade	
		2.	
445	In incremental development system structure tends to as many new	improve	1.0
445	increments are added.	3.	1.0
		develop its own AI	
		4.	
		shrink	

s.no.	Questions	Choices	Answer
		1.	
		of the developers to the clients	
		2.	
446	Software specifications are intended to communicate the system needs	to marketing	2.0
446	<u>.</u>	3.	3.0
		of the clients to the developers	
		4.	
		to the general public	
		1.	1
		Incremental development	
		2.	
	This software process model takes the fundamental activities of specification,	The waterfall model	
447	development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation,	3.	2.0
	testing, and so on	Reuse-oriented software engineering	
		4.	
		Boehm's spiral model	
		1.	1
		A simplified representation of a software process	
		2.	
448	What is a software process model?	A presentation put together in Powerpoint 3.	1.0
		A work flow model of the software's components	
		4.	
		A prototype of the final software product	
		1.	
		architectural design	
		2.	
	What is a type of software design that designs system data structures to be used	interface Design	
	what is a type of software design that designs system data structures to be used in a database?	3.	4.0
		component Design	
		4.	
		Database design	
		1.	-
		The Waterfall Method	
		2.	
450	What is based on the idea of developing an initial implementation, exposing this to user comment and evolving it through several versions until an adequate system	Incremental Development	2.0
	has been developed?		
		Reuse-oriented Software Engineering	
		4.	
		Implementation And Unit Testing	
		1.	
		Architectural design	
		2.	
		Database design	
451	What is NOT part of the design process	3.	4.0
		Component design	
			1
		4.	
		4. Validation testing	

S.NO.	Questions	Choices	Answers
		1.	
		Requirements Definition	
		2.	
		System and Software Design	
452	Which is not part of the waterfall method?	3.	4.0
		Implementation and Unit Testing	
		4.	
		System Validation	
		I. Requirements Definition 2. System and Software Design 3. Implementation and Unit Testing 4. System Validation 1. It is possible to gather more of the requirements up front 2. Time to market is faster because there is less overhead 3. It is easier to get customer feedback on the development work that's been done 4. It is easier to reuse existing components. 1. Picture quality 2. Production 3. Software speed 4. Change madent: 1. stud[2].marks[4] 2. stud[4].marks[2] 3. a [2].marks[4] 4. s[4].marks[2] 1. a float 2. ardouble 3. a long double 4. depends on the memory model 1. Analyze results 2.	
	Which statement best describes a benefit of Incremental development over the		
453	waterfall model	3.	3.0
		1.	
		Picture quality	
		2.	
	He does COO Do to the State of	Production	
454	adds to the costs of Software Development because it usually means that work that has been completed has to be redone	3.	4.0
		Software speed	
	Given the following structure template, choose the correct syntax for accessing the 5th subject marks of the 3rd student:		
	struct stud	stud[2].marks[4]	
	{	2	
	int marks[6];		
455	char sname[20];	stud[4].marks[2]	3.0
	char rno[10];	3.	
		s[2].marks[4]	
	}s[10];		
		s[4].marks[2]	
		1.	
		a float	
		2.	
		a double	
456	By default, any real number in C is treated as	3.	1.0
		a long double	
			\vdash
457	is the 1st step in the testing process	Plan test	2.0
101	15 are 15t step in the testing process	3.	2.0
		Release product	
		4.	
		Conduct tests	
		<u>I</u>	
			•

S.NO.	Questions	Choices	Answers
		1.	
		Hypermedia message	
		2.	
150	A set of documents in which a given document can contain text, graphics video and audio clips as well as embedded references to other documents world wide web	Hypertext document	3.0
750	pages are called as	3.	3.0
		Hypermedia Documents	
		4.	
		Path rectangular grid of Pixels	
		1.	
		User interface issues	
		2.	
459	A software requirements specification (SRS) document should avoid discussing which one of the following?	Non-functional requirements	1.0
		3.	
		Design specification	
		4.Interfaces with third party softwareKey	
		1.	
		40	
		2.	
460	Consider a B+ tree in which the search Answer is 12 bytes long, block size is 1024 bytes, record pointer is 10 bytes long and block pointer is 8 bytes long. The	50	2.0
	maximum number of keys that can be accommodated in each non-leaf node of the tree is	3.	2.0
		60	
		4.	
		70	
		1.	
		analysis, design,coding,testing	
		2.	
461		planning,analysis,design,coding	4.0
401	Extreme Programming process model includes framework activities such as	3.	4.0
		planning,analysis,coding,testing	
		4.	
		planning, design, coding, testing	
		1.	
		enter and leave scope	
		2.	
		inherit parent class	
462	For automatic objects, constructors and destructors are called each time the objects —	3.	1.0
		are constructed	
		4.	
		are destroyed	
		1.	$\vdash \vdash \vdash$
		Trust	
		2.	
		Competence	
463	Important capability needed for an agile software developer is		3.0
		Decision-making	
		4.	
		HardworkKey	

S.NO.	Questions	Choices	Answers
		1.	
464		Analysis	
		2.	
	In which phase is Agile Modeling(AM) carried out	Coding	3.0
404		3.	3.0
		Planning Pla	
		4.	
		TestingKey	
		1.	
		Machine language	
		2.	
		Assembly language	
465	Mnemonic codes and variable names are used in	3.	2.0
		high level language	
		4.	
		Used nowhere	
		The linear sequential model	
		2.	
466	Waterfall model of software development is also termed as	Fountain model	1.0
400		3.	1.0
		Spiral model	
		4.	
		Concurrent development model	
		1.	
		Fire Dispatch Systems	
		2.	
		Nuclear Reactors	
467	Which of the following is not a Life-critical System?	3.	4.0
		Power Utilities	
		4.	
		Inventory Management	
		1.	
		A destructor has void return type.	
		2.	
468	Which of the following statement is correct about destructors?	A destructor has integer return type.	3.0
		3.	
		A destructor has no return type.	
		4.	
		A destructors return type is always same as that of main()	
	#include <iostream.h></iostream.h>	1.	
	using namespace std;	20	
	int main() {	2.	
	int x=20; if(!(!x)&&x)	10	
469	cout< else	3.	1.0
	{ x=10;	1	
	cout< return 0; }	4.	
	}	0	

S.NO.	Questions	Choices	Answers
470	Find the output of the following program? #include <iostream.h> using namespace std;</iostream.h>	1. 62010206 2. 72010107 3. Actual answer: 70020106 nearest possible answer 71020106 4.	2.0
	If a, b, c, are three nodes connected in sequence in a singly linked list, find the valid statement that may help to change this list to a circular linked list?	1. a->next=c 2. b->next=c 3. a->next=c 4. c->next=b Other answer: c->next = a	4.0
472	Round Robin scheduling is the strategy of temporarily suspending a running process	1. After the CPU time slice expires 2. to allow starving processes to run 3. when it requests IO 4. when OS wait	1.0
473	With a single resource, deadlock occurs	if there are more than two processes competing for that resource 2. if there are only two process completing for that resource 3. if there is a single process competing for that resource 4. it never occur in this case	1.0
474	OS pays more attention on the meeting of the time limits.	1. Distributed 2. Network 3. Real time 4. Desktop	3.0

S.NO.	Questions	Choices	Answers
	-	1.	
		121	
		2.	
475	Consider a software program that is artificially seeded with 100 faults. While testing this program,	175	
	159 faults are detected, out of which 75 faults are from those artificially seeded faults. Assuming that both are and seeded faults are of same nature and have same distribution, the estimated	3.	4.0
	number of undetected real fault is	432	
		4. Actual Answer: 28	
		428	
		1.	
		s1 = s2	
		2.	
	Given the code String s1 = ? VIT?;	s1 = s2	
476	String s2 = ? VIT ?; String s3 = new String (s1);	3.	13.0
	Which of the following would equate to true?	s3 = s1	
		4.	
		s3=s1	
		1.	
		0	
		2.	
		3	
477	Suppose T is a binary tree with 14 nodes. What is the minimum possible depth of T?	3.	2.0
		4	
		4.	
		5	
		1.	
		<form></form>	
		2.	
478	The following HTML element contains meta data which is not displayed inside the	<title></td><td>2.0</td></tr><tr><td></td><td>document</td><td>3.</td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><frame></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><STYLESHEET></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td>479</td><td>To link your Web page to a style sheet, you must use the tag</td><td><STYLE></td><td>3.0</td></tr><tr><td>.,,</td><td>To link your web page to a style sheet, you must use the tag</td><td>3.</td><td>3.0</td></tr><tr><td></td><td></td><td>link></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><web></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><mark><0 ></mark></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td>480</td><td>Which of these will create a shuffled list?</td><td></td><td>1.0</td></tr><tr><td rowspan=3>480</td><td>miner of those will elegate a situation list:</td><td>3.</td><td>1.0</td></tr><tr><td></td><td><dl></td><td></td></tr><tr><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td>Nested list</td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table></title>	

S.NO.	Questions	Choices	Answers
		Stream Control Transmission Protocol (SCTP). 2.	
481	Which one of the following is a cryptographic protocol used to secure HTTP connection?	Transport Layer Security (TSL). 3.	2.0
		Explicit Congestion Notification (ECN). 4. Resource Reservation Protocol.	
		1. Bubble Sort 2.	
482	Which of the following is example of in-place algorithm?	Merge Sort 3. Insertion Sort 4.	3.0
		1. 79n²+43n	
483	Which of these is asymptotically bigger?	2. 65n ³ +34n 3.	2.0
		6*2 ⁿ 4. 5*2n	
484	bit in ICW1 indicates whether the 8259A is cascade mode or not	1.LTIM=0 2.LTIM=1 3.SNGL=1 4 <mark>.SNGL=0</mark>	4.0
485	messages are typically used for diagnostic or control purposes or generated in response to errors in IP operations.	1.ICMP 2.TCP 3.UDP 4.IP	1.0
486	gives the number of bits that can be transmitted over a network in a fixed time period.	1.Latency 2.Jitter 3.Bandwidth 4.Delay	3.0
487	_ cryptography refers to encryption methods in which both the sender and receiver share the same key.	1.Symmetric 2.Asymmetric 3.Ceaser key 4.Asymmetric key	1.0
488	is responsible for the final encapsulation of higher-level messages into frames that are sent over the network using the physical layer.	1. Data link layer 2. Network layer 3. Application layer 4. Session layer	1.0
489	appends to the address a slash character and the decimal number of leading bits of the routing prefix.	1.CIDR 2.TCP 3.UDP 4.IP	1.0
490	is assigned to an organization by a global authority.	1.Subnet ID 2.Supernet ID 3.Host ID 4.Network ID	4.0
491	produces the relation that has attributes of R1 and R2	1. Cartesian product 2. Difference 3. Intersection 4. Product	1.0
40.0	should keep track of multiple file downloads requested by a particular FTP application, or		
492	multiple telnet connections from a single terminal client, or web page retrievals from a web server.	1. Transport layer 2. Application layer 3. Fresentation layer 4. Session layer	
493	functions as a request-response protocol in the client-server computing model.	1. <mark>HTTP</mark> 2.IP 3.TCP 4.UDP 1.	1.0
494	is commonly used in wireless LAN.	time division multiplexing 2. orthogonal frequency division multiplexing 3. space division multiplexing 4. long division multiplexing	2.0

Part	An	Answer
### Part Part		
Sour I recent Sour I recen		
### Section of the post of picks and leads into the ready queen. #### Action from the post of picks and leads into the ready queen. #### Action from the post of picks and leads into the ready queen. #### Action from the post of allocating a process to the processor. #### Action from scheduler (CPU Scheduler)		
Middium term Anne of fibres A	1.0	1.0
Second of the communication and bother measures to the processor. Second secondary of the communication purposes to the processor. Second secondary of the communication purposes to the processor. Second secondary of the communication purposes to the processor. Second secondary of the communication purposes to the processor. Second secondary (CFU Scheduler) Secondary of the communication purposes to the processor. Second secondary of the communication purposes to the processor. Second secondary (CFU Scheduler) Secondary of the communication purposes to the processor. Secondary of the processor. Secondary o		
Note of these Note of the section Note of these Note of these Note of the section Note of these Note of the section Note of these Note of the section Note of these Note of the Note of these Note of the Note of these Note of the No		
April Care		
Loop from scheduler 2. Short term scheduler 2. Short term scheduler (CPU Scheduler) 3. Medium term scheduler 4. Medium term scheduler 5. Med Termschaft page table 4. Medium term scheduler 5. Medium term scheduler 6. Mediu		
Apple		
Horizontal page table and process to the processor. 488		
496 does the job of allocating a process to the processor. 497 has a dedicated communication path however stations 498 is a high speed cache used to hold recently referenced page table entries as a part of page dvirtual memory 499 is a high speed cache used to hold recently referenced page table entries as a part of page dvirtual memory 499 angued virtual memory 499 maged virtual memory 499 maged virtual memory management scheme will produce least fragement 499 maged virtual memory management scheme will produce least fragement 499 memory management scheme will produce least fragement 400 more of these 400 more of these 410 memory management scheme will produce least fragement 410 memory management scheme will produce least fragement 410 memory management scheme will produce least fragement 411 memory management scheme will produce least fragement 422 memory management scheme will produce least fragement 430 more of these 449 memory management scheme will produce least fragement 449 memory management scheme will produce least fragement 450 more of these 450 more of these 450 more of these 550 mo		
Modium term scheduler 4. Disposabler 497 has a dedicated communication path between stations 498 is a high speed cache used to hold recently referenced page table entries as a part of paged virtual memory 499 magnetic page table 499 memory management achieve will produce least fragement 400 memory management achieve will produce least fragement 41 memory management achieve will produce least fragement 42 most Fit 43 memory management achieve will produce least fragement 44 most of these 45 memory management achieve will produce least fragement 46 most of these 47 memory management achieve will produce least fragement 48 memory management achieve will produce least fragement 49 memory management achieve will produce least fragement 40 most Fit 41 memory 42 most Fit 43 memory 44 most fit fit 44 most fit fit 45 memory 46 memory 47 (Index Register) 48 memory 49 memory management achieve will produce least fragement 49 memory management achieve will produce least fragement 40 memory 41 memory 42 memory 43 memory 44 most Fit 45 memory 46 memory 47 (Index Register) 48 memory 49 memory 40 memory 40 memory 41 memory 42 memory 43 memory 44 most Fit 44 memory 45 memory 46 memory 46 memory 47 memory 48 memory 48 memory 49 memory 40 memory 40 memory 41 memory 42 memory 43 memory 44 memory 45 memory 46 memory 47 memory 48 memory 48 memory 49 memory 40 memory 40 memory 40 memory 41 memory 42 memory 43 memory 44 memory 45 memory 46 memory 47 memory 48 memory 49 memory 40 memory 40 memory 41 memory 41 memory 42 memory 43 memory 44 memory 45 memory 46 memory 47 memory 48 memory 49 memory 40 memory 40 memory 40 memory 41 memory 42 memory 43 memory 44 memory 45 memory 46 memory 47 me	4.0	4.0
Auto-		
Signature Sign		
Many and edicated communication path between stations 1. 1. 1. 1. 1. 1. 1. 1		
Application 1. Investigation Look asside buffer 2. Investe page table 2. Investe page table 3. Segmented page table 4. International p		
498 499 499 499 499 499 499 499	1.0	1.0
498 499 499 499 499 499 499 499		
Inverse page table Sale Internetical page table Sa		
499 499 499 499 Applied with all memory management scheme will produce least fragement first as a part of page table and p		
Segmented page table 4. Hierarchical page table 4. Hierarchical page table 4. Hierarchical page table 5. Best Fit 2. Worst Fit 3. First Fit 4. None of these The page table page that will not be used for a shortest period of time 4. AC (Accumulator) Solution Solution Solution Solution Solution Solution Figster keeps tracks of the instructions stored in program stored in memory. AC (Accumulator) Solution AC (Accumulator) Solution Solution Solution AC (Accumulator) Solution Sol	1.0	1.0
4. Hierarchical page table 1. Best Fit 2. Worst Fit 3. First Fit 4. None of these 1. AR (Address Register) 2. XR (Index Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
1 Best Fit 2 Worst Fit 3		
1 Best Fit 2 Worst Fit 3		
Here are the page that will not be used for a shortest period of time states that it is Optimal Replacement algorithm Best Fit 2. Worst Fit 3. First Fit 4. None of these 1. AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a shortest period of time 2. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time	-+	
499 memory management scheme will produce least fragement first Fit 4. None of these 1. AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a shortest period of time 2. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
### Beliase the page that will not be used for a shortest period of time #### Beliase the page that will be used for a shortest period of time ##### Beliase the page that will be used for a shortest period of time ###################################		
### Beliase the page that will not be used for a shortest period of time #### Beliase the page that will be used for a shortest period of time ##### Beliase the page that will be used for a shortest period of time ###################################		
First Fit 4. None of these 1. AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a shortest period of time 2. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time	1.0	1.0
None of these 1. AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
1. AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
AR (Address Register) 2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a shortest period of time 2. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time	-+	
2. XR (Index Register) 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
Tregister keeps tracks of the instructions stored in program stored in memory. 3. PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
register keeps tracks of the instructions stored in program stored in memory. 2. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time		
PC (Program Counter) 4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time	3.0	3.0
4. AC (Accumulator) 1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time 4. Replace the page that will be used for a shortest period of time		
1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time		
1. Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time		
Replace the page that will not be used for a longest period of time 2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time	\dashv	
2. Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time	ne	
Replace the page that will not be used for a shortest period of time 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time	_	
states that it is Optimal Replacement algorithm 3. Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time	ne	
Replace the page that will be used for a longest period of time 4. Replace the page that will be used for a shortest period of time	1.0	1.0
4. Replace the page that will be used for a shortest period of time		
Replace the page that will be used for a shortest period of time		
argorium is used for the flow control of data between school and feetiver. [1.Dijkstra 2.Kif 3.Leaky bucket 4.00 Back in	4.0	4.0
		1.0

S.NO.	Questions	Choices	Answers
	·	1.	
		Web Servers	
		2.	
		Web Downloading Utilities	
503	programs automatically connects to web sites and download documents and save them to local drive	3.	2.0
		Stay Connected	
		4.	
		Offline Browsers	
504 505	signal prevent the microprocessor from reading the same data more than one function in PHP returns a list of response headers sent (or ready to send)	1.pipelining 2.handshaking 3.controlling 4.signaling 1.header() 2.headers list() 3.header sent() 4.header send()	2.0
303	tunction in Frir feturns a fist of response headers sent (or ready to send)	1. neader() 2.neaders_inst() 3.neader_senit() 4.neader_senit() 1.	2.0
		Prototype	
		2.	
506	is an initial version of a software system that is used to demonstrate concepts, try out design options, and find out more about the problem and its possible solutions.	Architectural Design	1.0
		3.	
		Subsystem	
		4.	
		Module	
		1.	
		Process	
		2.	
		Thread	
507	is a basic unit of CPU utilization		2.0
		3.	
		Process Control Block	
		4.	
		Program Counter	
		1.Transaction	
		2.Optimization	
508	is a logical unit of access to a DBMS	3.Schema	1.0
		4.Data	
		1.	
		Q needs to send at least 2 HTTP requests to S, each necessarily in a separate TCP connection to server S	
		2.	
	A graphical HTML browser resident at a network client machine Q accesses a static HTML	Q needs to send at least 2 HTTP requests to S, but a single TCP connection to server S is sufficient	
500	webpage from a HTTP server S. The static HTML page has exactly one static embedded image		2.0
	which is also at S. Assuming no caching, which one of the following is correct about the HTML webpage loading (including the embedded image)?	3.	
		A single HTTP request from Q to S is sufficient, and a single TCP connection between Q and S is necessary for this	
		4.	
		A single HTTP request from Q to S is sufficient, and this is possible	
		without any TCP connection between Q and S	
		1.	
		1,048,576 locations	
		2.	
		2,097,152 locations	
510	A 20-bit address bus can locate	3.	1.0
		4,194,304 locations	
		4.	
		8,388,608 locations	
511	A 32-bit address bus allows access to a memory of capacity	1.1 GB 2.16 MB 3.64 MB 4 <mark>.4 GB</mark>	4.0
1			

S.NO	Questions	Choices	Answer
		1,	
		m	
		2.	
		m+1	
512	A B-tree of order m has maximum ofchildren	3.	1.0
		m - 1	
		4.	
		m/2	
513	A binary code that progresses such that only one bit changes between two successive codes is:	1.Gray code 2.excess-3 code 3.8421 code 4.nine's-complement code	1.0
514	A certain 5-bit self-complementary code is used to represent the 10 decimal digits 0 through 9. Given that (246) in decimal is represented as 00010 00100 00110 in this code, what is the representation for (375)?	1.00110 00100 00010 2.00011 00111 00101 3.11001 11101 11011 4.11101 11011 11001	4.0
		1.	
		connect () system call returns successfully	
		2.	
	A client process P needs to make a TCP connection to a server process S. Consider the following situation: the server process S executes a socket(), a bind() and a listen() system call in that order,	connect () system call blocks	
515	following which it is preempted. Subsequently, the client process P executes a socket() system call	3,	3.0
	followed by connect() system call to connect to the server process S. The server process has not executed any accept() system call. Which one of the following events could take place?	connect () system call returns anerror	
		4.	
		connect () system call results in a core dump	
		1.	
		Common Cost Estimation Model.	
		2.	
		Constructive Cost Estimation Model.	
516	A COCOMO model is	3.	2.0
		Complete Cost EstimationModel.	
		4.	
		Comprehensive Cost Estimation Model.	
517	A collection of unused memory reserved for dynamic allocation is called	1. Heap 2. Static 3. array 4. stack dynamic	1.0
518	A comparison between ring and Johnson counters indicates that:	1.A ring counter has fewer flip-flops but requires more decoding circuitry 2.A ring counter has an inverted feedback path 3.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has an inverted feedback path	4.0
		1.	
		1.6 seconds	
		2.	
519	A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for	2 seconds	2.0
/	which the computer can transmit at the full 10Mbps?	3.	
		5 seconds	
		4.	
		8 seconds	
520	A data structure where elements can be added or removed at either end but not in the middle	1.linked lists 2.Stacks 3.Queues 4.Deque	4.0
		1.	ĺ
		Mutation testing	
		2.	
		Stresstesting	
521	A fault simulation testing technique is	3.	1.0
		Black boxtesting	
		4.	
		White box testing	
522	A grammar that produces more than one parse tree for some sentence is called	1.Ambiguous 2.Irregular 3.Regular 4.Unambiguous	1.0

group of bits that tell the computer to perform a specific operation is known as	1. Instruction code 2. Micro-operation 3.	
group of bits that tell the computer to perform a specific operation is known as	2. Micro-operation 3.	
group of bits that tell the computer to perform a specific operation is known as	Micro-operation 3.	
group of bits that tell the computer to perform a specific operation is known as	3.	
group of bits that tell the computer to perform a specific operation is known as		
	A1-4- "	1.0
	Accumulator	
	4.	
	Register	
J-K flip-flop is in a "no change"condition when	1.J = 1, K = 1 2.J = 1, K = 0 3.J = 0, K = 1 4.J = 0, K = 0	4.0
	1.	
	aaa	
	2.	
to the first the second of the	aba	
ot belong to the regular set represented by the above expression.	3.	3.0
	ababa	
	4.	
	aa	
	1	
	block HTTP traffic during 9:00PM and 5:00AM	
	2	1.0
layer-4 firewall cannot		1.0
	traffic to same IP	
	4.	
	block TCP traffic from a specific user on a specific IP address on multi-	
	user system during 9:00PM and 5:00AM	
linear collection of data elements where the linear node is given by means of pointer is called	1. primitive list 2.node list 3.linked list 4.array	3.0
major problem with priorityscheduling is		2.0
	Low priority	
	4.	
	None of these	
	1.	
	15 states	
	2.	
minimum state DEA accepting the language I = 1 w/w belongs 10.11*\ number of 0s and 1s in w	7 states	
re divisible by 3 and 5, respectively} has	3.	1.0
	9 states	
	4.	
	8 states	
network that contains multiple hubs is most likely configured in which topology?	1. Mesh 2.Tree 3.Bus 4.Star	2.0
		1
	Language is represented by a regular expression (a)*(a+ba). Which of the following string does of belong to the regular set represented by the above expression. Layer-4 firewall cannot Linear collection of data elements where the linear node is given by means of pointer is called a major problem with priorityscheduling is The major problem with priorityscheduling is The minimum state DFA accepting the language L={w/w belongs {0,1}*} number of 0s and 1s in we divisible by 3 and 5, respectively} has	Language is represented by a regular expression (a)*(a+a)a. Which of the following string does ababa 4. an 1. block HTTP traffic during 9:00PM and 5:00AM 2. block all ICMP traffic 3. stop incoming traffic from a specific IP address but allow outgoing traffic to same IP 4. block TCP traffic from a specific user on a specific IP address on multi-user system during 9:00PM and 5:00AM 1. Interest collection of data elements where the linear node is given by means of pointer is called 1. Printitive list 2 node list 3,linked list 4.array 1. Definite blocking 2. Stanvation 3. Low priority 4. None of these 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

S.NO.	Questions	Choices	Answers
		l.	
		True	
		2.	
531	A NFA converted to DFA has more than one final state.	False	1.0
551		3.	1.0
		may be true	
		4.	
		always true	
		I Where each record in table A can have one or more matching records in table B	
532	A one to many relationship (of table A to Table B) is	2. Where each record in table B can have one or more matching records in table A	1.0
332	A one to many relationship (of table A to Fable B) is	3. Where each record in Table B is required to have a match in table A	1.0
		Where each record in table A is required to have a match in table B	
		1.can reduce the cost of using an information utility 2.allows	
533	A packet switching network	communications channel to be shared among more than one user 3.can reduce the cost of using an information utility and allows	3.0
333	A packet switching network	communications channel to be shared among more than one user 4.is	5.0
		free I.	
		when the page is not in the main memory	
		2.	
		when the page is in the cachememory	
534	A page fault occurs	3.	1.0
		when the process enters the blockedstate	
		4.	
		when the process is in the ready state	
535	A parameterized constructor with all arguments initialized is same as	1.default constructor 2.parameterized constructor 3.overriding 4.overloading	1.0
		1.	
		encapsulating PPP frames inside ethernet frames	
		2.	
50.5		encapsulating ethernet frames inside PPP frames	
536	A point-to-point protocol over ethernet is a network protocol for	3.	1.0
		for security of ethernet frames	
		4.	
		for security of PPP frames	
		1.Many to many relationships between the tables that connect them	
537	A primary key, if combined with a foreign key creates	2.Network model between the tables connect them 3.one to many relationship between the tables that connect them 4.Parent child	4.0
		relationship between the tables that connect them 1.	
		be loyal to the organization	
		2.	
538	A professional software engineer must:	build trust from customers	4.0
		3.	
		socialize with customers	
		4.	
		be loyal to the organization and build trust from customers	

S.NO.	Questions	Choices	Answers
		1. Partial Dependencies	
		2.	
		Transitive Dependencies	
539	A relation R is said to be in 2NF when it does not have	3.	1.0
		Multivalued Attributes	
		4.	
		Both Partial dependencies and Multivalued Dependencies	
		the same as a flat file database	<u> </u>
		one that consists of two or more tables that are joined in some way	
540	A relational database is	3.one that consists of two or more tables	4.0
5.0		4.a database that is able to process tables, queries, forms, reports and	
		macros	
541	A ring counter is same as.	1.up-down counter 2.parallel adder 3.shift register 4.ALU	3.0
		1. attribute	
		2.	
		degree	
542	A set of possible data values is called	3.	4.0
		domain	
		4.	
		tuple 1. Digital delay line 2.Serial to parallel conversion 3.All of these	
543	A shift register can be used for.	4.Parallel to serial conversion	4.0
		1.	
		analogmodulation	
		2.	
544	A single channel is shared by multiple signals by	digital modulation	3.0
	, , , ,	3. multiplexing	
		4. none of the mentioned	
	1.	Database 2.DBMS	
545	A software package designed to store and manage databases		2.0
		3. Data Model 4.Data	
		1. Three-addressInstruction	
546	A stack organized computer has	2. Two-address Instruction	4.0
546		3. One-address Instruction	4.0
		4. Zero-address Instruction	
		1.	+
		TRUE	
547	2.0 Cannot find the question	2.	2.0
		False	
		3. 4.	
548	A static data member is given a value	1. Within the class definition 2. Outside the class definition 3. Whenthe program is exeuted 4. Never	2.0
549	A synchronous sequential circuit is made up of.	Lombinational gates 2.flip-flops 3.both flip-flops and latches 4.both combinational gates and flip -flops	4.0
		- Inde	1

ystem uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to in with. The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur? The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur? The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur?	1. 196 2. 192 3. 197 4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2. is not essential when we have millions of files	4.0
in with. The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur? able can have only one	2. 192 3. 197 4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	
in with. The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur? able can have only one	192 3. 197 4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	
in with. The system first accesses 100 distinct pages in some order and accesses the same 100 es but now in the reverse order how many page faults will occur? able can have only one	3. 197 4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	
able can have only one	197 4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	
	4. 195 1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	1. Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	Secondary key 2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	2. Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	Alternate key 3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	3. Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	4.0
	Unique key 4. Primary key 1. allows easy storage and retrieval of file names 2.	
ree sturctured file directory system	1. allows easy storage and retrieval of file names 2.	
ree sturctured file directory system	Primary key 1. allows easy storage and retrieval of file names 2.	
ree sturctured file directory system	1. allows easy storage and retrieval of file names 2.	
ree sturctured file directory system	allows easy storage and retrieval of file names 2.	
ree sturctured file directory system	2.	
ree sturctured file directory system		
ree sturctured file directory system	is not essential when we have millions of files	
ree sturctured file directory system		1
	3.	1.0
	is a much debated unnecessaryfeature	
	4.	
	none of these	
alue that has no defined value is expressed in PHP with the following keyword:	1.undef 2.null 3.Cant Define 4.There is no such concept in PHP	2.0
ariable P is called pointer if	1.P contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA	1.0
ariable P is called pointer if	I.P contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P.	1.0
and Tibelies points in	points to the address of first element in DATA	1.0
	virtual table	
	2.	
	subset of the table	
iew is a	3.	1.0
	base table	
	4.	
	super table	
	1.	
	Disk stack	
	2.	
	Removable disk	
Vinchester disk is a		1.0
		!
		!
	None of these	!
	<u> </u>	<u> </u>
i	ariable P is called pointer if ew is a	I.P. contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA. I.P. contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P points to the address of DATA 3.P can store only memory addresses 4.P points to the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA 1. virtual table 2. subset of the table 3. base table 4. super table 1. Disk stack 2. Removable disk 3. Flexible disk 4.

A		1.	
A			
A		7	
A		2.	
558 4	A complete binary min-heap is made by including each integer in [1;1023] exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus,	8	2.0
th	he root is at depth 0. The maximum depth at which integer 9 can appear is	3.	2.0
		9	
		4.	
		10	
559 A	bstraction is	1. Having public members 2.having private member and public function 3.friend function 4.friend classes	2.0
		1.	
		developer 2.	
Δ	acceptance tests are normally conducted by the	end users	
560 A	ecceptance tests are normany conducted by the	3. test team	2.0
		4.	
		systems engineers	
		1.	
		ROM	
		2.	
		SRAM	
561 A	access time is faster for	3.	2.0
		DRAM	
		4.	
		ERAM	
562 A		1.cyan+ magenta+ Yellow= white 2.Red + Green + Blue = white	2.0
302 7	Additive fulc	3.cyan+ Green+ Yellow= white 4.cyan+ magenta+ Yellow= Black 1.	2.0
		0023H	
		2.	
		0024H	
563 A	ddress line for TRAP is?	3.	2.0
		0033H	
		4.	
		 0099Н	
		1.	
		address latchenable	
		2.	
		address levelenable	
564 A	LE stands for	3.	1.0
		address leakenable	
		4.	
		address leak extension	
Δ	LGORITHM HAS THETO THE PROBLEM IN	1.SOLUTION & FINITE 2.PROBLEM & INFINITE 3.SOLUTION &	
363 N	TUMBER OF STEPS	INFINITE 4.PROBLEM & FINITE	1.0
566 A	.ll devices/host connect to a centralswitch intopology.	1.Star 2.Ring 3.Bus 4.Tree	1.0
		Bottom uptesting	
		2.	
		Top-down testing	
567 A	Ill the modules of the system are integrated and tested as complete system in the case of	3.	4.0
		Sandwich testing	
		4.	
		Big-Bang testing	

S.NO	Questions	Choices	Answers
		1.	
		SLR , LALR	
		2.	
		CLR , LALR	
568	Among simple LR (SLR), canonical LR, and look-ahead LR (LALR), which of the following pairs identify the method that is very easy to implement and the method that is the most powerful, in that order?	3.	3.0
		SLR, CLR	
	ľ	4.	
		SLR	
		I,	
		0	
		2.	
569	An activity is said to be critical if slack time is equal to		1.0
		3.	
		2	
		4.	
		3	
570	An advantage of the database approach is	1.Elimination of the data redundancy 2.Ability to associate related data	4.0
		3.Increase security 4.All of the options 1.relation	
		2. domain	
571	An Entity from an ER diagram can be represented in the relational model by a	3. functionaldependency	1.0
		4.single attribute	
		1.short frame	
570		2.runt frame	2.0
572	An ethernet frame that is less than the IEEE 802.3 minimum length of 64 octets is called	3.mini frame	2.0
		4.man frame	
573	An intermediate code form is	1.Postfix notation 2.Syntax trees 3.Three address code 4.Postfix notation,	4.0
		Syntax trees and Three address code 1.	
		255.255.0.0	
		2.	
574	An organization has a class B network and wishes to form subnets for 64 departments. The subnet	255.255.64.0	4.0
57.	mask would be:	3.	
		255.255.128.0	
		4.	
		255.255.252.0	
575	Any code inside a loop that always computes the same value can be moved before the loop. This is	1.Loop invariant computation 2.Interchange of statements 3.inducation	1.0
	called	variable 4.Algebraic Transformation 1.	
		types of messagesexchanged	
		2.	
576	Application layer protocol defines	message format, syntax andsemantics	4.0
	TI WAY OF PROPERTY.	3.	
		rules for when and how processes send and respond to messages	
		4.	
		all of the mentioned	

S.N O.	Questions	Choices	Answers	
		I.		
		two levels		
		2.		
577		four levels		
	Architecture of the database can be viewed as	3.	3.0	
		three levels		
		4.		
		one level		
		1.		
	la la	->, %, +, =		
		2.		
		=, +, %, ->		
578	Arrange the operators according to their precedence: $+$, $\frac{9}{0}$, $->$, $=$	3.	1.0	
		1%, +, =, >		
		4.		
		%, ->, =, +		
		1000		
		2.		
	What is the maximum number of records that would result in if we join R with S and the equi-join attribute of S is the primary key?	10000	1.0	
		3 .	1.0	
		1,00,00,000		
		4.		
		11000		
580	Assume that we have constructor functions for both base class and derived class. Now consider the	Derived class constructor followed by Base class constructor, 2.Base class constructor followed by derived class constructor, 3.Base class	2.0	
	declaration in main(). Base $*$ P = New Derived; in what sequence will the constructor be called?	constructor will not be called. 4.Derived class constructor will not be called.	2.0	
581	Assume the base address of CS is 3000H and IP is 2000H. Calculate the memory address.	1.32000H 2.3000H 3.30000H 4.2000H	1.0	
		1.		
		ksort()		
		2.		
	Assume you would like to sort an array in ascending order by value while preserving key	asort()		
582	associations. Which of the following PHP sorting functions would you use?	3.	2.0	
		krsort()		
		4.		
		sort()		
<u> </u>		1.		
		17-JUL-00		
		2.		
		10-JUL-00		
	Assuming today is , 10 July 2000, what is returned by this statement: SELECT to_char(Last_DAY(sysdate), 'DD-MON-RR') FROM dual;	3.	4.0	
		31-DEC-00		
		4.		
		31-JUL-00		
		1.sorted linked list 2.sorted binary trees 3.sorted linear array 4.pointer		
584	Binary search algorithm can not be applied to	array	4.0	
585	Bit stuffing refers to	Linserting a '0' in user data stream to differentiate it with a flag 2.inserting a '0' in flag data stream to avoid ambiguity 3.appending a	1.0	
		nibble to the flag sequence 4.appending a nibble to the user data stream		

No.	S.NO	Questions	Choices	Answers
Second S			1.	
Separate			digital modulation	
Billious the send over guided and unquoted media as analog signal oring 1,000 1,			2.	
frequency modulation			amplitude modulation	
Sept	586	586 Bits can be send over guided and unguided media as analog signal using	3.	1.0
ptace modulation place in column products of the state of first 1 bit is S Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(Fifferine access rime) if 5 micro second is associative look-up rime and 88 is 8 in paging leads nee with TLB Cachelater the FAT(F			frequencymodulation	
1			4.	
S87 2.0		pi	phase modulation	
See 2.0 See 2.0 See 2.0 See 3.4 See 3.4			1.	
Second 1				
See By following modern system engineering practices simulation of reactive systems is no longer necessary: 588 By following modern system engineering practices simulation of reactive systems is no longer necessary: 589 Cache mannery acts between	587	2.0		2.0
S88 By following modern system engineering practices simulation of reactive systems is no longer increasing. S89 Pollowing modern system engineering practices simulation of reactive systems is no longer increasing. S10 PTU and RAM 2. RAM and ROM 3. CPU and Hard Dask 4. Nome of these 500 Calculate the block number in free storage management of files system with number of bits per sword is 8, the bit vector is 500 point of first bits is 3 500 point of first bits is 3 500 point of first bits is 3 6. An increasing the process of first bits is 3 6. An increasing the flat of the flat bits is 3 6. An increasing the flat bits i	367			2.0
Sale Pay following modern system engineering practices simulation of reactive systems is no longer 20				
Solicion			1.	
Section Sect				
Sample S	588	nagaccomy.		2.0
September Cache memory acts between September				
Sept				
September				
RAM and ROM 3. CPU and Hard Disk 4. None of these 590 Calculate the block number in five storage management of files system with number of bits per word is 8, the bit vector is 0001101010101, offset of first 1 bit is 3 1.0 2. 1.0 4.5 3. 1.0 4.5 4.				
Section Sect				
Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 000110101011, offset of first 1 bit is 3 59 2. Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 000110101011, offset of first 1 bit is 3 51 45 4. 53 1. 6.2 micro second 2. 7.8 micro second 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.5 micro second 4. 3.5 micro second 4. 3.6 micro second 4. 3.7 micro second 4. 3.8 micro second 4. 3.9 micro second 4. 3.0 micro second 4. 3.1 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.5 micro second 4. 3.6 micro second 4. 3.7 micro second 4. 3.8 micro second 4. 3.9 micro second 4. 3.0 micro second 4. 3.0 micro second 4. 3.0 micro second 4. 3.0 micro second 4. 3.1 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.5 micro second 4. 3.7 micro second 4. 3.0 micr	589	Cache memory acts between		1.0
4. None of these 1. Sp. 2. Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 000110101010, offset of first 1 bit is 3 53 45 4. 53 1. 6.2 micro second 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 4. 3.2 micro second 5. Market second 5. Market second 6. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp	507			1.0
None of these 1. 592 Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 00011010101, offset of first 1 bit is 3 53 45 4. 4. 53 1. 62 micro second 2. 7.8 micro second 3. 2. 2 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.5 micro second 4. 3.6 micro second 4. 3.7 micro second 4. 3.8 micro second 4. 3.9 micro second 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.			CPU and Hard Disk	
Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 000110101010, offset of first 1 bit is 3 2. 51 3. 45 4. 53 1. 6.2 micro second 2. 7.8 micro second 1. 2.2 micro second 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 4. 3.2 micro second 1. 4. 3.2 micro second 4. 3.2 micro second 2. 1. 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 2. 1. 4. 4. 532 4. 533 3.0 3.0 3.0 4. 3.1 micro second 4. 3.2 micro second 5. 1. 4. 4. 5. 4. 5. 5. 6. 7.8 micro second 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 5. 4. 4. 5. 4. 5. 6. 7. Micro second 4. 3. 4. 4. 5. 4. 5. 6. 7. micro second 4. 3. 8. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1			4.	
Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 0001101101101, offset of first 1 bit is 3 45 45 45 45 45 45 45 45 45 45 45 45 45			None of these	
Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 000110101010, offset of first 1 bit is 3 1.			1.	
Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is 0001101010101, offset of first 1 bit is 3 45 45 4. 53 1. 6.2 micro second 2. 7.8 micro second 3. 2. micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.7 micro second 4. 3.8 micro second 4. 3.9 micro second 4. 3.1 micro second 4. 3.2 micro second 4. 3.3 micro second 4. 3.4 micro second 4. 3.5 micro second 4. 3.6 micro second 4. 3.7 micro second 4. 3.8 micro second 4. 3.9 micro second 4. 3.0 micro second 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.			59	
1.0			2.	
3. 45 4. 53 Laculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 2. a Binary operator 3. a Ternary operator 4.		Calculate the block number in free storage management of files system with number of bits per	51	
Solution first 1 bit is 3 45 4. 4. 53 Label the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2. 7.8 micro second 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 4. 3.2 micro second 5.2 micro second 7.8 micro second 8. 8 micro second 9. 8 micro second 9. 9 micro second	590		3.	1.0
4. 53 Laculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB Laculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is 2. micro second 2. 7.8 micro second 3. 2. micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 2. a Binary operator 3. a Ternary operator 4. 2.0 4. Ternary operator 4. 2.0		0001101010101, offset of first 1 bit is 3		
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2. micro second 4. 3.2 micro second I. a Unary operator 2. a Binary operator 3. a Ternary operator 4. a Ternary operator 4.				
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 1. 6.2 micro second 2. 7.8 micro second 3. 2. 2.2 micro second 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 4. 3.2 micro second 5.2 micro second 5.3 micro second 6.3 micro second 6.4 micro second 6.5 micro				
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 3. a Ternary operator 4. a Ternary operator				
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2. 7.8 micro second 3. 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 3. a Ternary operator 4. a Ternary operator				
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 2. a Ternary operator 4. a Ternary operator 4.				
Salculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is the hit-ratio in paging hardware with TLB 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 2. a Binary operator 3. a Ternary operator 4.				
the hit-ratio in paging hardware with TLB 2.2 micro second 4. 3.2 micro second 1. a Unary operator 2. a Binary operator 3. a Ternary operator 4.	501	Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is	7.8 micro second	2.0
4. 3.2 micro second 1. a Unary operator 2. a Binary operator 3. a Ternary operator 4. 4. 4. 4. 4. 4. 592 Cartesian product in relational algebra is 4. 4.	591	the hit-ratio in paging hardware with TLB	3.	3.0
3.2 micro second 1. a Unary operator 2. a Binary operator 3. a Ternary operator 4.			2.2 micro second	
1. a Unary operator 2. a Binary operator 3. a Ternary operator 4.			4.	
a Unary operator 2. a Binary operator 3. a Ternary operator 4.			3.2 micro second	
a Unary operator 2. a Binary operator 3. a Ternary operator 4.			1.	+
2. a Binary operator 3. a Ternary operator 4.				
592 Cartesian product in relational algebra is a Binary operator 3. a Ternary operator 4.				
592 Cartesian product in relational algebra is 3. a Ternary operator 4.				
a Ternary operator 4.	592	Cartesian product in relational algebra is		2.0
4.				
not defined				
			not defined	

S.NO.	Questions	Choices	Answers
		1.	
		True	
593	Change cannot be easily accommodated in most software systems, unless the system was designed	2.	1.0
0,0	with change in mind.	False	1.0
		3. 4. 1.	
		Preventative maintenance.	
		2.	
	Changes made to an information system to add the desired but not necessarily the	Adaptive maintenance.	
594	required features is called	3.	4.0
		Corrective maintenance.	
		4,	
		Perfective maintenance.	
595 596	ClassIP addresses are used for large organizations class n{ int a;}; how much memory the compiler allocates for this class	1.A 2.B 3.D 4.C 1.0 2.2 3.depends on compiler 4.4	1.0 4.0
370	ctass n{ int a, j, now much memory the complicit anocates for this ctass	1.	4.0
		true	
597	1.0	2.	1.0
397			1.0
		false	
		3. 4.	
		L.	
	Classes and components that exhibit functional, layer, or communicational cohesion are relatively	true	
598	easy to implement, test, and maintain.	2.	1.0
		false	
		3. 4.	
599	Compile time polymorphism is	1. function overloading 2.template 3.function overriding 4.abstraction 1.	1.0
		giving programming versatility to the user by providing facilities as	
		pointers to memory counters for loop control	
		2.	
		to reduce no. of bits in the field of instruction	
600	Computers use addressing modetechniques for		4.0
		3.	
		specifying rules for modifying or interpreting address field of the instruction	
		4.	
		All of these	
		I.	
		1.0rely on basis pathtesting 2.	
		exercise the logical conditions in a program module	
601	Condition testing is a control structure testing technique where the criteria used to design test cases	3.	1.0
	is that they	select test paths based on the locations and uses ofvariables	
		4.	
		focus on testing the validity of loop constructs	
		1.	
	Consider 2 scenarios:	Both are true	
	Cl: For DFA (Φ, Σ, δ, qo, F),	2.	
	if F = ϕ , then L = Σ^* C2: For NFA (ϕ , Σ , δ , qo, F),	Both are False	
602	if F = φ , then L = Σ^* Where F = Final states set	3.	3.0
	<pre>per Total states</pre>	C1 is true, C2 is false	
	Choose the correct option ?	4.	
		C1 is false, C2 is true	
603	Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly	1.199 2.200 3.Any number between 0 and 199 4.Any number between	1.0
	two children are	100 and 200	

S.NO.	Questions	Choices	A
		1.	
		8	
		2.	
		14	
604	Consider a DFA over ∑ = {a, b} accepting all strings which have number of a's divisible by 6 and number of b's	2	4
	divisible by 8. What is the minimum number of states that the DFA will have?	3.	
		15	
		4.	
		48	
	Consider a hash table with 9 slots. The hash function is $h(k) = k \mod 9$. The collisions are resolved		T
605	by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The	1.3, 3, and 3 2.3, 0, and 1 3.4, 0, and 1 4.3, 0, and 2	2
	maximum, minimum, and average chain lengths in the hash table, respectively, are		+
		1.	
		8 MSS	
		2.	
	CONTRACTOR AND		
	Consider an instance of TCP's Additive Increase Multiplicative Decrease(AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the	14 MSS	
606	first transmission is 8 MSS. Assume that a time out occurs during the fifth transmission. Find the	3.	3
	congestion window size at the end of the tenth transmission.	7.468	
		7 MSS	
		4.	
		12 MSS	
		12 IVISS	
607	Consider an undirected graph G with 100 nodes. The maximum number of edges to be included is	1.2451 2 <mark>.4950</mark> 3.9900 <mark>.4851</mark>	4
		1.	
	5	5	
		2.	
		3	
608	Consider S->SS a what is the number of different derivation trees for aaaaa	3.	3
		14	
		4.	
		7	
		1.	
		2222hh	
	Consider the CFG with (S,A,B) as the non-terminal alphabet, (a,b) as the terminal alphabet, S as the start	aaaabb	
	symbol and the following set of production rules	2.	
	S> aB S> bA	aabbbb	
609	B> b A> a		3
	B> bS A> aS	3.	
	B> aBB A> bAA	aabbab	
	Which of the following strings is generated by the grammar?	4.	
		abbbba	
		1.	+
		16ms	
		2.	
	Consider the data of previous question. Suppose that the sliding window protocol is used with the		
	sender window size of 2 ^h where is the number of bits identified in the previous question and	18ms	L
	acknowledgments are always piggybacked. After sending 2\(^1\) frames, what is the minimum time the sender will have to wait before starting transmission of the next frame? (Identify the closest	3.	3
	choice ignoring the frame processing time).	20ms	
	5 5 · · · · · · · · · · · · · · · · · ·	20ms	
		4.	
		22ms	╝

612 Control Co	onsider the DFAs M and N given above. The number of states in a minimal DFA that accepts the nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	3. 2 4. 3	1.0
612 Control Co	nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	2. 1. 3. 2. 4.	1.0
612 Control Co	nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	3. 2 4. 3	1.0
612 Control Co	nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	3. 2 4. 3	1.0
612 Control Co	nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	3. 2 4. 3	1.0
612 Control Co	nguage $L(M) \cap L(N)$ is onsider the following array of elements. $\{89,19,50,17,12,15,2,5,7,11,6,9,100\}$. The minimum umber of interchanges needed to convert it into a max-heap is	3. 2 4. 3	1.0
Co	umber of interchanges needed to convert it into a max-heap is	4. 3	
Co	umber of interchanges needed to convert it into a max-heap is	3	
Co	umber of interchanges needed to convert it into a max-heap is		
Co	umber of interchanges needed to convert it into a max-heap is		
Co	umber of interchanges needed to convert it into a max-heap is		1
Co fo		1.4 2.2 3.5 4.3	4.0
fc {		Which one of the following is false?	4.0
{	onsider the following C code segment.	(1) The code contains loop invariant computation	
{	or (i = 0, i <n; i++)<="" td=""><td>(2) There is scope of common sub-expression elimination in this code (3) There is scope of strength reduction in this code</td><td></td></n;>	(2) There is scope of common sub-expression elimination in this code (3) There is scope of strength reduction in this code	
	<pre>for (j=0; j<n; j++)<="" pre=""></n;></pre>	(4) There is scope of dead code elimination in this code	
613	{ if (i%2)		4.0
	x := (4*j + 5*i);		
	y += (7 + 4*j); }		
}			
	hich one of the following is false?		
	onsider the following Cdeclaration ruct {		
	ort s [5]		
	aion { pat y;		
614 lo		1.10 bytes 2.18 bytes 3.22 bytes 4.14 bytes	2.0
}u } 1			
	ssume that objects of the type short, float and long occupy 2 bytes, 4 bytes and 8 bytes, spectively. The memory requirement for variable t, ignoring alignment		
	onsiderations, is		
		1.	
		6	
Co	onsider the following code segment.	2.	
×	= u - t; = x * v;	8	
615	= y + w;		4.0
	= t - z; $= x * y;$	3.	
Th	ne minimum number of total variables required to convert the above code segment to static single	9	
	signment form is	4.	
		10	
		1	
		<u></u>	
		true false	
Co	onsider the following code snippet	2.	
	ar al = [,,,];	false true	
010	ar a2 = new Array(3); in a1	3.	1.0
	in a2	true true	
Re	esult of Javascript is:	4.	
		false true	
	onsider the following code snippet: var $a = [1,2,3,4,5]$; a.slice(0,3); Whatis the possible output	1.Returns [1,2,3] 2.Returns [4,5] 3.Returns [1,2,3,4] 4.Returns	1.0
10	r the above code snippet?	[1,2,3,4,5]	
Co	onsider the following code snippet	1.	
fu {	unction oddsums(n)	Returns [1,4,9,16,25]	
ľ	<pre>let total = 0, result=[]; for(let x = 1; x <= n; x++)</pre>	2.	
	let odd = 2*x-1;	Returns [1,2,3,4,5]	
618	ret odd = 2^x-; total += odd; result.push(total);		1.0
	result; } return result;	3.	
}		Returns [3,6,9,12,15]	
w	hat would be the output if	4.	
00	ddsums(5);	Returns [1,3,5,7,9]	
. C	onsider the following code: var a = []; a.unshift(1); a.unshift(22); a.shift(); a.unshift(3,[4,5]);		<u> </u>
619 a.s	shift(); a.shift(); a.shift(); The final output for the shift() is	1.1 2.[4,5] 3.[3,4,5] 4.Exception	1.0

S.NO.	Questions	Choices	Answers
	Consider the following function double f(double x)		
620	{	11722 24722 2 0 722 4 1 722	2.0
620	if (abs($x*x - 3$) < 0.01) return x ; else return $f(x/2 + 1.5/x)$;	1.1.723 2.1.732 3.0.732 4.1.733	2.0
	} Give a value q (to 2 decimals) such that f(q) will return q:		
		L	
	Consider the following javascript code snippet:	1	
	var a = [];	2.	
	<pre>a.unshift(1); a.unshift(22);</pre>	[4,5]	
621	<pre>a.shift(); a.unshift(); a.shift();</pre>	3.	1.0
	a.shift(); a.shift();	[3,4,5]	
	The final output for the shift() is	4.	
		Exception	
		1.	
	Consider the following program in C language: #include	Compilation fails.	
	main()	Compilation fails.	
	{ int i;	Execution results in a run-timeerror.	4.0
	int *pi = &i scanf(?%d?,pi);	3.	
	printf(?%d\n?, i+5); }	On execution, the value printed is 5 more than the address of variable i 4.	
	Which one of the following statements is TRUE?	On execution, the value printed is 5 more than the integer value entered	
	Consider the following statements for priority queue :		
	S1: It is a data structure in which the intrinsic ordering of the elements does determine the result of its basic operations.	1.Both S1 and S2 are incorrect 2.S1 is correct and S2 is incorrect 3.Both	4.0
	S2: The elements of a priority queue may be complex structures that are ordered on one or several fields.	S1 and S2 are correct 4.S1 is incorrect and S2 is correct	
	Which of the following is correct?		
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d X -> .cX, c/d	1 only	
	X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
624	X -> .d, \$	3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	1 and 4 only	
	 Cannot be merged since look aheads are different. 	4	
	 Can be merged but will result in S-Rconflict. Can be merged but will result in R-Rconflict. 	1,2,3,4	
	4. Cannot be merged since goto on c will lead to two differentsets.		
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d	1 only	
	X -> .cX, c/d X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
625	X -> .d, \$	3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	3 and 4 only	
	1. Cannot be merged since look aheads are different.	4.	
	 Can be merged but will result in S-Rconflict. Can be merged but will result in R-Rconflict. 	1,2,3,4	
	4. Cannot be merged since goto on c will lead to two different sets.		
		li .	
	Consider the grammar shown below.	LL(1) 2.	
626	s - c c	SLR(1) but not LL(1)	1.0
320	C → c C d	3.	
	The grammar is		
		LALR(1) but not SLR(1)	
		4.	
		LR(1) but not LALR(1)	

S.NO.	Questions	Choices	Answers	
		1.		
		200		
	Consider the grammar with the following translation rules and E as the start symbol.	2.		
627	<pre>B - E1 # T { E.value = E1.value * T.value }</pre>	180		
	T → T1 & F { T.value = T1.value + F.value } F{ T.value = F.value }	3.	3.0	
	$F \rightarrow \text{num } \{ \text{ F.value = num.value } \}$	160		
	Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.	4.		
		40		
		I.		
		n1 <n2<n3< td=""><td></td></n2<n3<>		
		2.		
	Consider the grammar			
628	$S \rightarrow (S) \mid a$	n1=n3 <n2< td=""><td>2.0</td></n2<>	2.0	
	Let the number of states in SLR(1), LR(1) and LALR(1) parsers for the grammar be n1, n2 and n3 respectively. The following relationship holds good	3.		
		n1=n2=n3		
		4.		
		n1>n2>n3		
	Consider the intermediate code given below:	1.		
	1. i = 1	5 and 7		
	2. j = 1 3. t1 = 5 * i	2.		
	4. $t2 = t1 + j$	6 and 7		
629	5. $t3 = 4 * t2$ 6. $t4 = t3$		2.0	
	7. a[t4] = -1 8. j = j + 1	3.		
	<pre>9. if j <= 5 goto(3) 10. i = i + 1</pre>	5 and 2		
	11. if i < 5 goto(2)	4.		
	The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are	7 and 8		
		1.		
		mn		
		2.		
	Considerate initial formulation Devicts relation C 16D become trade and C become trade at the state of	m+n		
630	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the maximum size of join is:	3.	1.0	
		(m+n)/2		
		4.		
		2(m+n)		
		I.		
		mn		
		2.		
631	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the	m + n	1.0	
001	maximum size of join is:	3.	1.0	
		(m+n)/2		
		4.		
		2(m+n)		
		1.		
		3		
		2.		
		5		
	Consider the regular language L = (111 + 11111)*. The minimum number of states in any DFA accepting this languages is:	3.	4.0	
		8		
		<u>.</u>		
		9		

S.NO.	Questions	Choices	Answers
		I.	
		2NF	
633		2.	
	Consider the relation R1(employee_name, project_name, dependent_name). If {{employee_name	3NF	
	>-> project_name \}, { employee_name>-> dependent_name } }, what is the highest normal form it satisfies?	3.	1.0
		BCNF	
		4.	
		4NF	
		1.	
		9 + 5 + 2	
	Consider the translation scheme shown below	2.	
	S → T R	95+2+	
634	$R \rightarrow +$ T {print ('+');} R ϵ T \rightarrow num {print (num.val);}	3.	2.0
	Here num is a token that represents an integer and num.val represents the corresponding integer value. For an 9	5 2 + +	
	input string '9 + 5 + 2', this translation scheme will print	4.	
		++952	
	Consider two strings A ='qpqrr' and B = 'pqprqrp'. Let x be the length of the LCS between A and B		
635	and let y be the number of such longest common subsequences between A and B. Then $x + 10y =$	1.42 2.34 3.32 4.30	2.0
		1.	
		values	
		2.	
626	Count function in SQL returns the number of	distinct values	1.0
636		3.	1.0
		groups	
		4.	
		columns	
		1.	
		Batch	
		2.	
		Real Time	
637	CPU Scheduling is the basis ofoperating system	3.	2.0
		Multi-programming	
		4.	
		network	
		1.	
		Error	
		2.	
		Table created	
638	create table student_\$(id number(4), namee varchar2(10)); reponse would be	3.	2.0
		Table created with error	
		4.	
		Table created with data	
639	Creating additional function similar to template function is called	1.implicit specialization 2.explicit specialization 3.abstraction 4.template overriding	4.0
		1.which is written in a language that is same as the source language.	
640	Cross-compiler is a compiler	2.that runs on one computer but produces object code for different type of computer. 3.that generates object code for its host machine. 4.which is	2.0
		written in a language that is different from the source language.	

S.NO	Questions	Choices	Answers
		li .	
		to find some insecurity in a cryptographic scheme	
		2.	
		to increase the speed	
641	Cryptanalysis is used	3.	1.0
		to encrypt the data	
		4.	
		none of the mentioned	
		<u>I.</u>	
		fixed size bit string	
		2.	
		variable size bit string	
642	Cryptographic hash function takes an arbitrary block of data and returns	3.	1.0
		both (a) and (b)	
		4.	
		None	
643	Currently there is no single standard file type that can be used to play audio using the audio element consistently on all browsers. Which is the solution that the audio element provides to	1.Use JavaScript to determine the web browser in use 2.Use Adobe Flash to play the audio 3.Include multiple audio file formats in the src	Perfect answer
	resolve this conflict?	attribute 4.No Solution	not available
			, but i
			think answer
			should be option
			(3).
		rely on basis pathtesting	
		2.	
	Condition testing is a control structure testing technique where the criteria used to design test	exercise the logical conditions in a program module	
644	cases is that they	3.	1.0
		select test paths based on the locations and uses of variables	
		4.	
		focus on testing the validity of loop constructs 1.	
		data is defined separately and not included in programs.	
		2.	
		programs are not dependent on the physical attributes of data	
645	Data independence means	3.	4.0
		programs are not dependent on the logical attributes of data	
		4.	
		programs are not dependent on both physical and logical attributes of	
		data	
		1.does exist in memory when the object of the derived class is created	
646	Data Members of the base class that are marked private:	2.exist in memory when the object of the derived class is created the derived class 3.are visible in the derived class 4.are directly	2.0
		accessible in the derived class	
		L does exist in memory when the object of the derived class is created 2. exist in memory when the object of the derived class is created	
647	Data Members of the base class that are marked private:	the derived class 3.are visible in the derived class 4.are directly	2.0
		accessible in the derived class	
		1.	
		Physical file	
		2.	
		Data Structure	
648	Data Store Symbol in DFD represents a	3.	2.0
		Logical file	
		<u>.</u>	
		ALL	
649	DB, DW and DD directives are used to place data in particular location or to simplyallocate space without preassigning anything to space. The DW and DD directories are used to generate	1.f ull address of labels 2.offsets of full address of labels and variables 3.full address of variables 4.offsets	2.0
	mandar processigning anything to space. The DW and DD unceroties are used to generate	5.1un address of variables 4.0ffsets	<u> </u>

S.NO.	Questions	Choices	Answers
		1.	
		Data Control Language	
		2.	
650	DCL stands for	Data Console Language	1.0
050	202 344143 101	3.	1.0
		Data Console Level	
		4.	
		Data Control Level	
		allows the virtual address space to be independent of the physical memory	
		2.	
		allows the virtual address space to be a multiple of the physical memory	
651	Demand paged memory allocation	size	1.0
		3.	
		allows deadlock to be detected in paging schemes	
		4.	
		is present only in Windows NT	
		1.All of the options	
	Desirable properties of relational database design include	2.minimizing update anomalies	
652		3.minimizing redundancy	1.0
		4.minimizing insertion/deletion anomalies	
		1.	
		String instructions	
		2.	
		Stack instructions.	
653	Direction flag is used with	3.	1.0
		Arithmetic instructions	
		4.	
		Branch instructions	
		I colorior and 2 minutes and 4 industrial	
654	Divide and conquire mechanism is used in	1.selection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search	3.0
		1.	
		Description of logical structure of database.	
		2.	
(55	DM ::1-16	Addition of new structures in the database system.	2.0
655	DML is provided for	3.	3.0
		Manipulation & processing of database.	
		4.	
		Definition of physical structure of database system.	
		1.	
		Drops only the values from the table	
		2.	
		drops structure of the table along with values	
656	Drop SQL clause	3.	2.0
		None of the options	
		4.	
		changes the structure of the table	
657	Duality principle is used when SE is	1.square 2.symmetric 3.asymmetricd 4.translated	2.0
			•

S.NO.	Questions	Choices	Answers
		applications, data, technology infrastructure	
		applications, data, technology infrastructure 2.	
658	During business process engineering, three	communications, organization, financial infrastructure 3.	1.0
	different architectures are examined	network, database, reporting structure	
		4.	
		systems, requirements, data structure 1.6	
		2.5	
659	Each counter of IC 8254 can work indiffernt modes of operation	3.4	1.0
		4.3	
		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
660	ElGamal encryption system is	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
		1.	
		Ultraviolet rays	
		2.	
661	EPROM is generally erased by using	infrared rays 3.	1.0
		12 V electrical pulse	
		4.	
		24 V electrical pulse	
		1.	
		pure ethernet	
		2.	
		ethernet over SDH	
662	Ethernet in metropolitan area network (MAN) can be used as	3.	4.0
		ethernet over MPLS	
		4.	
		combination of all of the above mentioned	
		1. reduce the granularity of the plan	
	Everyone on the software team should	2.	
663	_{3.0} be involved in the planning activity so	analyze requirements in depth	3.0
005	that we can	3.	3.0
		get all team members to "sign up" to the plan	
		begin design	
		1.	
		Are not iterative in nature	
		Can easily accommodate product requirements changes	
664	2.0 Evolutionary software process models	Can easily accommodate product requirements enanges 3.	2.0
		Generally produce throwaway systems	
		4.	
		Are not specific to applications	
		1	

S.NO.	Questions	Choices	Answers
		1. can be avoided by paging	
		2. occurs only if the file system is used improperly	
565	External Fragmentation of the file system	3. can be removed by compaction	4.0
		4.can be avoided by Segmentation	
	Find the output	1.	
		012345678910	
	#include < stdio.h >	2.	
		0 1 2 3 infinte times	
666	int tally=0; for(;;)	3.	3.0
	{ if(tally==10)	1 2 3 4 5 6 7 8 9 10	
	break; printf("%d ",++tally);	4.	
	} return 0;	123456789	
	}		
\neg		1.	
	Find the output	Еггог	
	#include <stdio.h></stdio.h>	2.	
		65	3.0
667	int x=65; const unsigned char c=(int)x;	3.	3.0
	printf("%c\n",c);	A	
	return ()·	4.	
	}	NULL	
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	Error	
	su det sample {	2.0,A,10.5 3.	
668	int a=0; char b='A';	0,A,10.500000	1.0
	float c=10.5; };	4.	
		No Error, No Output	
	struct sample s; printf("%d,%c,%f",s.a,s.b,s.c);		
	return 0; }		
		1.	
		Error	
		2.	
	Find the output:	101,	
	#include <stdio.h> int main()</stdio.h>	Value is = 103	
669	{ int a=100;	3.	3.0
	printf("%d\n"+1,a);	d 	
	return 0;	ue is = 100	
	,	4.	
		100	
		100	
			1

S.NO.	Questions	Choices	Answei
		1.	
	Find the output:	23	
	#include <stdio.h></stdio.h>	2.	
	int main() {	Error	1.0
670	int a=23; ;	3.	1.0
	;printf("%d",a);	;23;	
	return 0;	4.	
	}	;23	
		1.	+
		В	
	Find the output:	2	
	#include <stdio.h></stdio.h>	<u>.</u>	
671	void main()	A	3.0
	const char var='A';	3.	
	++var; printf("%c",var);	ERROR	
	}	4.	
		66	
		1.	
		44	
	FIND THE OUTPUT:	2.	
	#include <stdio.h> void main()</stdio.h>	45	
672	{	3.	2.0
	int $x=10$; x+=(x++)+(++x)+x;	46	
	printf("%d",x);	4.	
	,	47	
		1.	+
		x= 60	
		2	
	Find the output:	x= 70	
673	#include <stdio.h> void main()</stdio.h>		4.0
	{ int x=(20 40) && (10);	3.	
	printf("x=%d",x);	x= 0	
	<i>}</i>	4.	
		x= 1)	
		1.	
		ERROR: can not modify var.	
	Find the output:	2.	
	#include <stdio.h></stdio.h>	ERROR: L-Value required	
674	void main() {	3.	2.0
	char var=10; printf("var is = %d",++var++);	12	
	printit(var is = 700 ,++var++); }	4.	
		ERROR: Expression syntax	
675	First desiration approximation care that values of a section is a section to		12.0
675	First derivative approximation says that values of constant intensities must be	1.1 2.0 3.positive 4.negative 1.For the given PS and NS what will be the inputs 2.For the given PS	2.0
676	Flip-flop excitation tables shows that	and NS what will be the outputs 3.For the given PS and NS what will be the type of flip-flops 4.For the given PS and NS what will be the values	4.0
		of NS and PS respectively 1.MUX 2.PLA 3.ROM 4.DeMUX	4.0
	Following can be used to implement a SOP function without changing it into minterms		

S.NO.	Questions	Choices	Answers
		1.	
		The waterfall model	
		2.	
		prototyping model	
678	For a well understood data processing application it is best to use	3.	1.0
		the evolutionary model	
		4.	
		the spiral model	
		1.	
		3.0 2.	
		data object hierarchy.	
679	For purposes of behavior modeling a state is any	3.	3.0
		observable mode of behavior,	
		4. well defined process.	
		1.	
		A field in a table that matches a key field in another table	
		2.	
		A field in a table that contains data that is also contained elsewhere in	
680	Foreign Key is	another table	1.0
	1 0.0-9.1 1.0-9	3.	1.0
		A key that consists of more than one field	
		4.	
		A field in a table that has the same name as a key field in another table	
		1.	
		i=2	
	Frames of 1000 bits are sent over a 10 ⁶ bps duplex link between two hosts. The propagation time	2.	
		i=3	
681	is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the link). What is the minimum number of bits, i will be required to represent the sequence numbers	3.	4.0
	distinctly? Assume that no time gap needs to be given between transmission of two frames.	i=4	
		4.	
		i=5	
		1.	
		20	
		2.	
682	FTP server listens for connection on port number	21	2.0
302	sec. s. ascens for connection on port number	3.	2.0
		22	
		4.	
		23	
683	Functions that combines to produce $f(x,y)$	1.illumination and frequency 2.intensity and reflectance 3.illumination	4.0
	1 7/1/2/	and radiance 4. illumination and reflectance 1.	
		Consumes less power	
		2.	
		has higher speed	
684	Generally Dynamic RAM is used as main memory in a computer system as it	3.	2.0
		has lower cell density	
		4.	
		needs refreshing circuitry	

S.NO.	Questions	Choices	Answers
		1.	
		waterfall, componet-based, iterative	
685		2.	
	Generic process models are:	waterfall, structural, component-based 3.	4.0
		sequential, waterfall, iterative	
		4.	
		component-based, object-oriented, iterative	
		1.	
		strstr()	
		2.	
		extract	
686	Given a comma-separated list of values in a string, which function from the given list can create an array of each individual value with a single call in PHP?	3.	3.0
		explode()	
		4.	
		strtok()	
687	Given a hash table T with 25 slots that stores 2000 elements, the load factor a for T is	1,80 2. <mark>0.0125</mark> 3.8000 4.1.25	2.0
		1.	
		substr(\$email, strpos(\$email, "@"));	
	Given a variable Semail containing the string user@example.com, which of the following PHP statements would extract the string example.com?	2.	
		strstr(\$email, "@");	
		3.	4.0
		strchr(\$email, "@");	
		4.	
		substr(\$email, strpos(\$email, "@")+1);	
	Given an array that represents elements of arithmetic progression in order. It is also given that one		
	element is missing in the progression, the worst case time complexity to find the missing element efficiently is:	1.theta(n) 2.theta(nLogn) 3.theta(Logn) 4.theta(1)	3.0
690	Given CF=0, BX=00111011 01110101 ROR BX,1. The result is	1. <mark>CF=1 BX=10011101 10111010</mark> 2.CF=1 BX=10100111 01101110 3.CF=0 BX=01001110 11011101 4.CF=0 BX=01010011 10110111	1.0
		1.	
		An attributes of an entity can have more that one value	
		2.	
		An attribute of an entity can be composite	
691	Given the basic ER and relational models, which of the following is INCORRECT?	3.	3.0
		In a row of a relational table, an attribute can have more than one value	
		4. In a row of a relational table, an attribute can have exactly one value or a	
		NULL value	
692	Given the Code segment CS = 1000H and the offset BX=0050H. Calculated physical address is	1.10000H 2 <mark>.10050H 3</mark> .11050H 4.11000H	2.0
693	Given the Extra segment ES = 52B9H and the offset BX=D470H. Calculated physical address is	1.60000H 2.70000H 3.11000H 4 <mark>.11050H</mark>	4.0
	Given the frequency f=1.5MHZ for 8253 timer the value of time period T is	1.10ms 2.0 <mark>.66us 3</mark> .1ms 4.100ms	2.0
		1.	
		A is a key for R	
		2.	
695	Given the functional dependencies, {AB -> CDE and A -> E}, for relation schema R =	BE is a key for R	3.0
	(A,B,C,D,E) we can infer the following:	3. A D is a lost for D	
		AB is a key for R	
		4. B is a key for R	

s.no.	Questions	Choices	Answer
		1.	
		1, 2 and 3	
	Given the language L = {ab, aa, baa}, which of the following strings are in L*?	2.	
	abaabaaabaa	1, 2 and 4	
696	2) aaaabaaaa	3.	2.0
	3) baaaaabaaab 4) baaaaabaa	1, 3 and 4	
		4.	
		2, 3 and 4	
			_
		1.	
		DDL	
		2.	
		TCL	
697	Grant and revoke are statements.	3.	3.0
		DCL	
		4.	
		DML	
		DIVIL	
		1.	+
		coaxial cable	
		2	
		2.	
698	High speed ethernet works on	twisted pair cable	3.0
090	ingh speed enternet works on	3.	3.0
		optical fiber	
		4.	
		none of the mentioned	
		1.Using sizeof() 2.count() 3.Writing a user defined function and using	
699	How can we count the number of elements in an array?	array_search() 4.using sizeof() and count()	4.0
700	How can you specify default text in an input field?	1.Using JavaScript 2.Using the 'text' attribute 3.Using the 'placeholder' element 4.Using the 'placeholder' attribute	4.0
701	How do I create PHP arrays in a HTML?	1.< input name= MyArray[]/> 2.< input ="MyArray[]" /> 3.< input	3.0
	·	name="MyArray[]" /> 4.< input MyArray[] /> 1.One is not a method of the String object. 2.substr() takes three	+
702	How do substring() and substr() differ?	arguments, substring() only two. 3. Only one accepts a desired string	3.0
703	How do we access the value of 'd' later? $a = array(a', 3 \Rightarrow b', 1 \Rightarrow c', d');$	length as an argument. 4.Besides the spelling, nothing. 1.\$a[0] 2.\$a[1] 3.\$a[2] 4.\$a[4]	4.0
	How do we prevent margins, borders and padding from overlapping?	1.Setting zero paddings and margins 2.By displaying our list as block	2.0
		elements 3.Using table cells 4.By displaying our list as inline elements 1.Using header() function 2.Using Javascript 3.Using	+
	How do we submit form data without a Sumbit button?	fdf_set_submit_form_action() fucntion 4.using header() and javascript	4.0
	How do you check queue is full in array implementation How do you get information from a form that is submitted using the "get" method?	1.if(rear==size) 2.if(front==size) 3.if(rear==-1) 4.if(front==-1) 1.Request.QueryString; 2.\$ GET[]; 3.Request.Form; 4.\$ POST[];	1.0
	How is a J-K flip-flop made to toggle?	1.J = 0, K = 0 2.J = 0, K = 1 3.J = 1, K = 0 4.J = 1, K = 1	4.0
709	How many bits are required to store one BCD digit?	1.1 2.2 3.3 4.4	4.0
709		1.	
			i
		six	
		six 2.	
710	How many diagrams are here in Unified Modelling Language?	2.	4.0
710	How many diagrams are here in Unified Modelling Language?	2. seven	4.0
710	How many diagrams are here in Unified Modelling Language?	2. seven 3.	4.0
710	How many diagrams are here in Unified Modelling Language?	2.seven3.eight4.	4.0
		2. seven 3. eight 4. nine	
711	How many different states does a 3-bit asynchronous counter have?	2. seven 3. eight 4. nine 1.2 2.4 3.8 4.16	3.0
711 712		2. seven 3. eight 4. nine	

S.NO.	Questions	Choices	Answer
715	How many minimum states are required in a DFA to find whether a given binary string has odd number of 0's or not, there can be any number of 1's.	1. 1 2. 2 3. 3 4.	2.0
716			2.0
	How many nodes in a tree have no ancestors. How many operating modes are available in 8253A.	1.2 2.n <mark>3.1 4.0</mark> 1.1 2.2 <mark>3.6 4.3</mark>	3.0
	How many transistors does the 8086 have	1.29,000 2.10,000 3.129,000 4.110,000	1.0
	How to create a Date object in JavaScript?	1.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters]) 4.dateObjectName Date([parameters])	1.0
720	How to create a memory without a name during the execution of the program?	1.malloc() 2.Queue 3.stack 4.list	1.0
721	How will you free the allocated memory ?	1.remove(var-name); 2.free(var-name); 3.delete(var-name); 4.dalloc(var-name);	2.0
	How will you handle the overflow condition of a linked queue through code(note: new_node is a newly created node in a memory)	1.if(rear—size) 2.if(new_node==0) 3.if(front==size) 4.if(new_node==null)	1.0
723	HTTP client requests by establishing a connection to a particular port on the server.	user datagram protocol 2. transmission control protocol 3. broader gateway protocol 4. RIP	2.0
724	IC 8237 hasmany pins	1. 40 2. 28 3. 24 4. 20	1.0
725	IC 8257 hasmany channels for data transfer	1. 1 2. 2 3. 3 4.	4.0
726	Identify different segments in a program	l.only code segment 2.data and code segment 3.only data segment 4.data, code, stack and extra segments	4.0
	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD	1.00010111B 2.0001X111B 3.00010101B 4.00110111B	2.0
727	countdown. Identify the addressing mode for the instruction MOV AH,47H	1.Immediate addressing mode 2.Direct addressing mode 3.Based addressing mode 4.Indirect addressing mode	2.0

.NO.	Questions	Choices	Answer
		1.	
		1024	
		2.	
		1023	
	If a class B network on the Internet has a subnet mask of 255.255.248.0, what is the maximum number of hosts per subnet?	3.	3.0
		2046	
		4.	
		2047	
731		1. protected and public data only in C and B 2. protected and public data	4.0
	then a class C member function can access	only in C. 3.private data in A and B. 4.protected data in A and B. 1. The object cannot be created 2. Only its member functions and friends	
732	If a constructor function is defined in private section of a class, then	may declare objects of the class 3.Only its friends may declare objects of the class 4.Only its member functions may declare objects of the class	2.0
		1.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=1 . 2.CF=0,PF=1,AF=0,ZF=0,SF=1,OF=1	
733	If AL= 7FH and instruction ADD AL,1 is given, specify the contents of the six status flag	3.CF=0,PF=1,AF=1,ZF=O,SF=1,OF=1	4.0
734	If AL=C0H, Determine the content of the register AL after SAL AL,1 instruction is executed.	4.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=0 1.E0H 2.80H 3.0CH 4.0EH	2.0
/34	if AL—Corr, Determine the content of the register AL arter SAL AL, i instruction is executed.	1.	2.0
		10	
		2.	
	If all page frames are initially empty, and a process is allocated 3 page frames in real memory and	7	
	references its pages in the order 1 2 3 2 4 5 2 3 2 4 1 and the page replacement is FIFO, the total number of page faults caused by the process will be	3.	4.0
		8	
		4.	
		0	
		9	
		1.	
		Functional Cohesion	
	If all tasks must be executed in the same time-span, what type of cohesion is being exhibited?	2.	
		Temporal Cohesion	
736			2.0
		3.	
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.Class C is friend of Class A 2.Class A is friend of Class C 3.Class A	
737	If class A is friend of class B and if class B is friend of class C, which of the following is true?	and Class C don't have any friend relationship 4. Class A and Class C are	4.0
		mutual friends	
		1.	
		correct.	
		2.	
		unambiguous.	
	If every requirement stated in the Software Requirement Specification (SRS) has only one interpretation, SRS is said to be		2.0
	•	3.	
		consistent.	
		4.	
		verifiable.	
	If inspected in a browser, what will be the total width of the div in the following code snippet?		-
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	1.664px 2.660px 3.644px 4.600px	1.0
	40px 10px;}	1	-
		1.	
		regular	
		2.	
		context-free	
		context-nec	1
740	If Land Large recursively enumerable, then Lis		4.0
740	If Land Large recursively enumerable, then Lis	3.	4.0
740	If Land Large recursively enumerable, then Lis		4.0
740	If L and L' are recursively enumerable, then L is	3.	4.0
740	If L and L' are recursively enumerable, then L is	3. context-sensitive	4.0

S.NO.	Questions	Choices	Answer
		1. n 2.	
741	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	n+1 3. n+2 4. n-1	2.0
742	If p and q are assigned the values 2 and 3 respectively then the statement $P = q++$	1.assigns a value 5 to p 2.assigns a value 3 to p 3.gives an error message 4.assigns a value 4 to p	2.0
743	If paral is the DOM object for a paragraph, what is the correct syntax to change the text within the paragraph?	1."New Text"? 2.para1.value="New Text"; 3.para1.firstChild.nodeValue= "New Text"; 4.para1.nodeValue="New Text";	2.0
744	If the class name is X, what is the type of its "this" pointer?	1.X* 2.const X* const 3.X& 4.X* const	3.0
	If the disk size is 2^3 0 bytes and block size is 2^1 2 bytes then find how many such blocks are there?	1. 2^42 2. 2^18 3. 2^360 4. 2^30	2.0
746	If the PIC outputs the type number of C8H, the CPU will retrive the vector stored in the address	1.00320H - 00323H 2.00324H - 00327H 3.00223H - 00226H 4.00140H - 00143H	
747	If the size of logical address space is 2 to the power of m, and a page size is 2 to the power of n addressing units, then the high order bits of a logical address designate the page number, and the low order bits designate the page offset.	3. m-n,m 4. m-n,n	4.0
	If there are n relations how many number of join conditions has to be applied to retrieve the data from all the n relations?	1. N+1 2. N 3. N-1 4. A Number in the range 0 toN.	3.0
749	If we create a file by 'ifstream', then the default mode of the file is	1.ios :: out 2.los in 3.ios :: app 4.ios :: binary	1.0
	If X->Y and X->Z then	1. Y->Z 2. Z->Y 3. X->YZ 4. Doesn't hold	3.0

752 IF	x> y then y> x. This statement is 'Y is a subset of X then you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	1. True 2. False 3. Can't Say 4. Doesn't hold 1. X> Y 2. Y>X 3. Y>> X 4.	2.0
752 IF	Y is a subset of X then You have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	2. False 3. Can't Say 4. Doesn't hold 1. X> Y 2. Y>X 3. Y>> X 4.	
752 IF	Y is a subset of X then You have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	False 3. Can't Say 4. Doesn't hold 1. X> Y 2. Y>-X 3. Y>> X 4.	
752 IF	Y is a subset of X then You have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	3. Can't Say 4. Doesn't hold 1. X> Y 2. Y>X 3. Y>> X	
752 IF	Y is a subset of X then You have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	Can't Say 4. Doesn't hold 1. X> Y 2. Y> X 3. Y>> X	
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	4. Doesn't hold 1. X> Y 2. Y>X 3. Y>> X	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	Doesn't hold 1. X> Y 2. Y>X 3. Y>> X	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	1. X> Y 2. Y> X 3. Y>> X	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	X> Y 2. Y> X 3. Y>> X 4.	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	2. Y>X 3. Y>-> X 4.	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	Y>X 3. Y>-> X 4.	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	3. Y>-> X 4.	2.0
752 If	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	Y>> X 4.	2.0
753 If or	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	4.	
753 If or	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	4.	
753 If or	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the		
753 If or	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	X is a sub set of Y	1
753 If or	you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	A is a sub-set of 1	<u> </u>
	der of the characters when you dequeue all the elements?	1.'r', 'a', 't' ² .'t', 'a', 'r' ³ .'r', 't', 'a' ⁴ .'t', 'r', 'a'	1.0
- 1		1.	
		multiplication	
		2.	
		addition	
754 IN	IMUL source is a signed	3.	1.0
		subtraction	
		4.	
		division	
_			
755 In	8086 microprocessor one of the following statements is not true		2.0
756 In	8086 microprocessor the following has the highest priority among all type interrupts	pipelining 1.TYPE 255 2.DIV 0 3.NMI 4.OVER FLOW	3.0
750 11	ooo meeproeessa at ronoving nastate ingress promy among an type interrupts	I.	1
		TRAP	
		2.	
		RST6.5	
757 In	8086, Example for Non maskable interrupts are	3.	1.0
		INTR	
		4.	
		RST6.6	<u> </u>
		1.	
		always be evaluated	
		2.	
		be evaluated only if the definition is L-attributed	
758 In	a bottom-up evaluation of a syntax directed definition, inherited attributes can	3.	2.0
		be evaluated only if the definition has synthesized attributes	
		4.	
		never be evaluated	
		1.components are arranged hierarchically 2.there is no beginning and no	
759 In	a circular linked list	end 3. forward and backward traversal within the list is permitted	2.0
		4.components are arranged from top to bottom	Ь

S.NO.	Questions	Choices	Answers
		1.	
		parsing of the program	
		2.	
		the code generation	
760	In a compiler, keywords of a language are recognized during	3.	3.0
		the lexical analysis of the program	
		4.	
		dataflow analysis	
		1.	
		Student credit hours	
		2.	
	In a conceptual model for a university, which of the following could most appropriately be	Course prerequisites	
	represented via a recursive relationship?	3.	2.0
		Parking sticker assignments	
		4.	
		Final exam schedules	
		1.A tree has no bridge 2.A bridge cannot be part of a simple cycle	
762		3.Every edge of a clique with size>=3 is a bridge (A clique is any	4.0
	following statements is True?	complete subgraph of a graph) 4.A graph with bridges cannot have a cycle	
		1.	
		from I/O to memory	
		2.	
	In a DMA write operation the data is transferred	from memory to I/O	
763		3.	1.0
		from memory to I/O	
		4.	
		from I/O to I/O	
	In a microprocessor, the service routine for a certain interrupt starts from a fixed location of memory which cannot be externally set, but the interrupt can be delayed or rejected. Such	1.maskable and non-vectored 2.non-maskable and vectored 3.maskable	3.0
	aninterrupt is	and vectored 4.non-maskable and non-vectored	3.0
		1.	
		For shortest path routing between LANs	
		2.	
	In a network of LANs connected by bridges, packets are sent from one LAN to another through	For avoiding loops in the routing paths	
	intermediate bridges. Since more than one path may exist between two LANs, packets may have to be routed through multiple bridges. Why is the spanning tree algorithm used for bridge-routing?	3.	2.0
		For fault tolerance	
		4.	
		For minimizing collisions	
	In a syntax directed translation schema, if value of an attribute of a node is function of the values of the attributes of its children, then it is called	1.Inherited attributes 2.Synthesized attributes 3.Canonical attributes 4.Derived attributes	2.0
		1.	
		500 metres of cable.	
		2.	
		200 metres of cable.	
767	In a token ring network the transmission speed is 10 ⁷ bps and the propagation speed is 200	3.	3.0
,07	metres/micro second. The 1-bit delay in this network is equivalent to:		5.5
		20 metres of cable.	
		4.	
		50 metres of cable.	
		<u>I</u>	

S.NO.	Questions	Choices	Answer
	n a virtual memory environment	segmentation and page tables are stored in the cache and do not add any substantial overhead	
768		2. slow down the computer system considerable	1.0
		3. segmentation and page tables are stored in the RAM	
		4. only page table is stored in cache	
		1111110001 2.	
769	In access lists and groups which one of the following is correct for the 'RWX' notation of the order 'group, owner, public'	110111001 3.	2.0
		001111110 4.	
770	In an array representation of binary tree, the left child of i th node is located at	001110111 1.2i+2 2.(i-1)/2 3.(i-2)/2 4.2i+1	4.0
	In an array representation of binary tree, the right child of i th node is located at	1.(i-2)/2 2.(i-1)/2 <mark>3.2i+2</mark> 4.2i+1	3.0
		1. rectangle 2. ellipse	1.0
772	In an E-R diagram an entity set is represent by a	3. diamond box	
		4. circle	
	In an E-R diagram attributes are represented by	1. rectangle 2.	
773		square 3.	3.0
		ellipse 4.	
774	In any undirected graph, the sum of the degrees of all nodes is:	triangle 1. is twice number of edges 2. is always ODD 3. need not be even 4. must be even	1.0
		1. Zero 2.	1.0
	In Assembly language programming, minimum number of operands required for an instruction is/are	One 3. Two	
		4. Three	
776	In asynchronous serial communication the physical layer provides	1.start and stop signalling 2.flow control 3.both (a) and (b) 4.none of the mentioned	3.0
777	In binary heap, whenever the root is removed then the rightmost element of last level is replaced by the root. Why?	1.To make sure that it is still complete binary tree 2.It is the easiest possible way 3.Because left and right subtree might be missing 4.maximum value is contained by the root node	1.0

S.NO.	Questions	Choices	Answer
	-	1.not Null	
750		2.Null	1.0
778	In case of entity integrity, the primary key may be	3.a foreign key	1.0
		4.any value	
		1.	
		cannot be a member of the software team	
		2.	
779	3.0 In collaborative requirements gathering the	cannot be a customer	2.0
	facilitator	3.	
		controls and facilitates the process	
		4. must be an outsider	
		1.Major difference between LAN and WAN is that the later uses	
780	In context of OSI or TCP/IP computer network models, which of the following is false?	switching element 2.Network layer is connection oriented 3.A repeater is used just to forward bits from one network to another one 4.A gateway is	2.0
		used to connect incompatible networks	
		1.	
		transpositional ciphers	
		2.	
781	In cryptography, the order of the letters in a message is rearranged by	substitution ciphers	1.0
, 01	e. prography, and order of the fetters in a message to real anged by	3.	1.0
		both (a) and (b)	
		4.	
		none of the mentioned	
		1.	
		Half the baud rate.	
		2.	
		Twice the baud rate.	
782	In Ethernet when Manchester encoding is used, the bit rate is:	3.	1.0
		Same as the baud rate.	
		4.	
		Grows exponentially	
		1.	
		transmission control protocol	
		2.	
		user datagram protocol	
783	In FTP protocol, client contacts server using as the transport protocol.	3.	1.0
		datagram congestion control protocol	
		4.	
		stream control transmission protocol	
		1.two leaf nodes in the general tree 2.its right child and sibling in the	-
784	In general tree to binary tree conversion, the two links of the binary tree node points to	genral tree 3.its left child and sibling in the general tree 4.its left and	4.0
		right child in the general tree	
		multiple HTTP requests are sent on a single TCP connection without	
		waiting for the corresponding responses	
		2.	
.	A MARRON	multiple HTTP requests can not be sent on a single TCP connection	
785	In HTTP pipelining	3.	1.0
		multiple HTTP requests are sent in a queue on a single TCP connection	
		4.	
		l"	
		none of the mentioned	1

In interactive excitonments such as time-sharing systems, the primary requirement is to provide contents, the sharing and contents, the sharing system is used to search a string and returns. For Come First Serve	S.NO.	Questions	Choices	Answers
Second Second requires time and in general, so that system resources equitably, in each standards, the scheduling algorithm that is more popularly applied is standards, the scheduling algorithm that is more popularly applied is second second and standards, the scheduling algorithm that is more popularly applied is second second as string and returns. 77. Property of the property of the standards of the string and returns. 78. In proceeding Segretary Object Method tear) is used to search a string and returns. 78. In proceeding Segretary Object Method tear) is used to search a string and returns. 78. In proceeding Segretary of the string of the string and returns. 78. In proceeding Segretary of the string of the strin			Shortest Remaining Time Next (SRTN) Scheduling	
Part	786	reasonably good response time and in general, to share system resources equitably. In such	3.	3.0
The item is surewhall girrithm the Worst case occurs when The item is surewhare in the middle of the army. The teem is set in the bast cleared in the latter of the army. The teem is set in the bast cleared in the latter of the army. The teem is set in the bast cleared in the latter of the army. The teem is set in the bast cleared in the latter of the army. The teem is set in the bast cleared in the latter of the army at all. The latter of the decided decoded dec			4.	
The column is aligned in the less cleared aligned in the less cleared in the last cleared in the process. The CPU is all cleared in the process with the highest priority (mullet integer – highest priority). The problem of process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process with the highest priority (mullet integer – highest priority). The problem of process cleared in the process	787	In javascript, RegExp Object Method test() is used to search a string and returns		1.0
2 deceded 2 deceded 3 Control bus signal StQS1 and S2 are sent out in	788	In linear search algorithm the Worst case occurs when	the array at all 3.The item is the last element in the array 4.The item is the last element in the array or is not there at all	4.0
Part	789	In max mode, control bus signal So,S1 and S2 are sent out in form	2. decoded 3.	3.0
the first column will take precedence 2. the column is skipped 3. the last column will take precedence 4. an arror is thrown. 791 In operator precedence parsing , precedence relations are defoned 792 In PIP, array values are keyed byvalues (called indexed arrays) or usingvalues (called indexed arrays) or usingvalues (called associative arrays). Of course, these key methods can be combined as well. 793 In PIP, which of the following function is used to insert content of one php file into another php file before server executes it 794 In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer – highest priority). The problem of Starvation? low priority processes may never execute, is resolved by aging 795 In software engineering development, if there are no applicable theories, people often use adhoc approach.			4. unshared	
myself_elech_array() if two or more columns of the result have the same field names, what is taken? the last column will take precedence the last column will take prece			the first column will take precedence 2.	
To delimit the handle 2. For all pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 3. For all pair of nonerminals 4. Only for a certain pair of terminals 4. Only for a ce			3. the last column will take precedence	3.0
reminals 4 Only for a certain pair of terminals 1. Float, string 2. Positive number, negative number 3. String, Boolean 4. Integer, String 1. Terminating the process. 2. Aging 3. Mutual Exclusion 4. Semaphore 1. Include[] 2.#include() 4.#include() 4. Mutual Exclusion 4. Semaphore 1. True 2. Positive number, negative number 3. Mutual Exclusion 4. Semaphore 1. True 2. Positive number, negative number 3. Mutual Exclusion 4. True 2. Positive number, negative number 3. String, Boolean 4. Anneger, String 1. Terminating the process. 2. Aging 3. Mutual Exclusion 4. Semaphore 1. True 2. Include() 2.#include() 4.#include() 4.#inc			an error is thrown.	
Float, string 2. Positive number, negative number 2. Positive number, negative number 3. String, Boolean 4. Integer, String 4. In PHP, which of the following function is used to insert content of one php file into another php In PHP, which of the following function is used to insert content of one php file into another php In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by 1. True 1. True 2. Positive number, negative number 3. String, Boolean 4. Interminating the process. 2. Againg 3. Mutual Exclusion 4. Semaphore 1. True 2.	791	In operator precedence parsing, precedence relations are defoned	·	3.0
In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by The problem of, Starvation? low priority processes may never execute, is resolved by In software engineering development, if there are no applicable theories, people often use adhoc approach. In software engineering development, if there are no applicable theories, people often use adhoc approach.	192	(called associative arrays). Of course, these key methods can be combined as well.	Float, string 2. Positive number, negative number 3. String, Boolean 4.	4.0
Terminating the process. 2. In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by Mutual Exclusion 4. Semaphore In software engineering development, if there are no applicable theories, people often use adhoc approach.			1.include[] 2.#include() 3.include() 4.#include{}	3.0
In software engineering development, if there are no applicable theories, people often use adhoc approach. True 2.	794	allocated to the process with the highest priority (smallest integer = highest priority). The problem	Terminating the process. 2. Aging 3. Mutual Exclusion 4.	2.0
3. 4.			True 2. False	1.0

S.NO.	Questions	Choices	Answers
		1.	
		true	
796	2.0	2.	1.0
		false	
		3. 4.	
		The operand is inside the instruction	
		2.	
		The address of the operand is inside the instruction	
797	In the absolute the addressing mode	3.	1.0
		The register containing the address of the operand is specified inside the	
		instruction	
		4.	
		The location of the operand is implicit	
		1.view level	
		2.conceptual level	
798	In the architecture of a database system external level is the	3.logical level	1.0
		4.physical level	
		1.In both AST and CFG, let node N2 be the successor of node N1. In the	
799	In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the	input program, the code corresponding to N2 is present after the code corresponding to N1 2.For any input program, neither AST nor CFG will	10
	following is True?	contain a cycle 3.Each node in AST and CFG corresponds to at most one statement in the input program 4. The maximum number of successors of	4.0
		a node in an AST and a CFG depends on the input program	
	In the context of object-oriented software engineering a component contains	4.0	4.0
801	In the following code snippet, what is the correct value of the left margin? margin: 10px 5px 20px 15px;	1.10px 2.5px 3.20px 4 <mark>.15px</mark>	4.0
		I.	
		Greater than 100	
		2.	
	In the multi-programming environment, the main memory consisting of number of	only one	
	process.	3.	4.0
		Greater than 50	
		4.	
		More than one	
		1.	
		uniform resource identifier	
		2.	
		unique resource locator	<u>.</u>
803	In the network HTTP resources are located by	3.	1.0
		unique resource identifier	
		4.	
		unique resource identifier	
		1.	
		a file	
		2.	
00.		a record	
804	In the operation read_item(x), what does x mean?	3.	4.0
		a disk block	
		4.	
		all of the options	
		1	

		1.	
		only the process which has control of the processor is found	
		2.	
205	In the running state	all the processes waiting for I/O to be completed are found	1.0
003		3.	1.0
		all the processes waiting for the processor are found	
		4.	
		everything in these options are found	
		1.	
		does not increase	
		2.	
	In the clays start phase of the TCD congestion control algorithm, the size of the congestion window	increases linearly	
806	In the slow start phase of the TCP congestion control algorithm, the size of the congestion window	3.	4.0
		increases quadratically	
		4.	
		increases exponentially	
\dashv		1.	
		In the first loop	
		2.	
807	In the spiral model 'risk analysis' is performed	in the first and second loop	3.0
		3.	
		In every loop	
		4.	
\dashv		before using spiral model 1.	-
		entire IP packet	
		2	
		IP header	
808	In tunnel mode IPsec protects the	ir neader	1.0
		3.	
		IP payload	
		4.	
		none of the mentioned	
, 7		1.Control Coupling	
	In what type of coupling, the complete data structure is passed from one module to another?	2.Stamp Coupling	
809	······································	3.External Coupling	2.0
		4.Content Coupling	
		1.	
		Absolute	
		2.	
		Immediate	
810	In which addressing mode the operand is given explicitly in the instruction	3.	2.0
		Indirect	
		4.	
		Direct	
811	In which case is it mandatory to provide a destructor in a class?	1.Class for which copy constructor is defined 2.Class for which two or more than two objects will be created 3.Almost in every class 4.Class whose objects will be created dynamically	4.0
			1

S.NO.	Questions	Choices	Answers
		1.	
		active mode	
		2.	
		passive mode	
812	In which mode FTP, the client initiates both the control and data connections.	3.	2.0
		active mode and passive mode	
		4.	
		none of the mentioned	
813	In which topology, if there are n devices in a network, each device has n-1 ports for cables?	1.Mesh 2.Star 3.Ring 4.Bus	1.0
		1.	
		1978	
		2.	
014	Lambighton 9000 mar introduced	1979	1.0
814	In which year, 8086 was introduced?	3.	1.0
		1977	
		4.	
		1981	
		1.	
		TRUE	
815	2.0	2.	1.0
		FALSE	
		3. 4.	
		1.	
		multiple access point are inter-connected with each other	
		2.	
		there is no access point	
816	In wireless distribution system	3.	1.0
		only one access point exists	
		4.	
		none of the mentioned	
		1.	
		connected basic service sets	
		2.	
817	In wireless network an extended service set is a set of	all stations	1.0
		3.	
		all access points	
		4.	
		all nodes	
		1.	
		Floppy disk	
		2.	
		Magnetic tape	
818	Information retrieval is faster from	3.	3.0
		Hard disk	
		4.	
		CD	

s.no.	Questions	Choices	Answer
		1.	
		missing Select keyword	
		2.	
819	Insert into Emp(101, 'XXX') gives the following error	Missing Values	2.0
		3.	
		both of the errors	
		4.	
		No of the errors	
		1.	
	int main()	x=100,y=200	
	int x,y;	2.	
000	x=(100,200);	x=200,y=200	
820	y=100,200;	3.	4.0
	printf("x=%d,y=%d",x,y);	ERROR	
	return 0;	4.	
	Find the output	x=200,y=100	
		1.	
		Sequence Diagram + Collaboration Diagram	
		2.	
		Activity Diagram + State Chart Diagram	
821	Interaction Diagram is a combined term for	3.	1.0
		Deployment Diagram + Collaboration Diagram	
		4.	
		None	
822	Internet Explorer uses property to create transparent images.	1moz-opacity:x 2.filter: alpha(opacity=x) 3.filter: beta(opacity=x) 4 IE-opac;y	2.0
	Interpolation search is an improved variant of binary search.	1.in sorted form and equally distributed 2.in sorted form and but not	
823	It is necessary for this search algorithm to work that data collection should be	equally distributed 3.equally distributed but not sorted 4.unsorted and not evenly distributed	1.0
		1.	
		transport layer	
		2.	
024	IDC as is designed to mustide the associate at the	network layer	2.0
824	IPSec is designed to provide the security at the	3.	2.0
		application layer	
		4.	
		session layer	
825	It is difficult to design asynhronous sequential circuit because.	1.External clock is to be provided 2.It is using Flip flops 3.It is more complex 4.Generally they involve stability problem	4.0
		1.	
		True	
826	It is ok to have a single ideal approach to develop a software.	2.	2.0
		False	
		3. 4.	
		1.	
		False	
827	It would be ideal if all of computer science theories can be used in software engineering.	2.	2.0
827	,		
827		True	
827		True 3. 4.	
	JavaScript RegExp Object has modifier 'i' to		2.0

S.NO.	Questions	Choices	Answers
		1. Cartesian Product	
829	Join is equal to	Combination of Union and Cartesian product 3. Combination of selection and Cartesian product 4.	3.0
830	K-map follow following code for marking adjacent variables	Combination of intersection and Cartesian product 1.84-2-1	2.0
050	is map to now to now mig code for marking adjacent variables	2.Gray Code 3.2421 4.8421 1.	2.0
	Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge	P Only 2.	
031	weight is increased by the same value, then which of the following statements is/are TRUE? P: Minimum spanning tree of G does not change. Q: Shortest path between any pair of vertices	Q Only	1.0
	does not change	3. Neither P nor Q 4.	
		Both P and Q	
832	Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model?	2 2. 3 3. 4 4. 5	2.0
833	Let G be a graph with n vertices and m edges, What is the tightest upper bound on the running time on Depth First Search of G? Assume that the graph is represented using adjacency matrix	1.O(n) 2.O(m+n) 3.O(mn) 4. <mark>O(n^2)</mark>	4.0
834	Let G be the CFG, I be the number of left most derivations, r be the number of right most derivations and P be the number of parse trees. Assume I, r and P are computed for a particular string. For a given CFG 'G' and given string 'w', what is the relation between I, P, r?	1. =P=r 2. <=P>=r 3. >=P<=r 4. <=P<=r	1.0
835	Let $G(x)$ be the generator polynomial used for CRC checking. What is the condition that should be satisfied by $G(x)$ to detect odd number of bits in error?	1. G(x) contains more than two terms 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms.	3.0

S.NO.	Questions	Choices	Answers
		1.	
		L1' is recursive and L2' is recursively enumerable	
		2.	
	Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE?	L1' is recursive and L2' is not recursively enumerable	
836	L1'> Complement of L1	3.	2.0
	L2'> Complement of L2	L1' and L2' are recursively enumerable	
		4.	
		L1' is recursively enumerable and L2' is recursive	
	Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot,		
837	Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3,	1.t1=5 <mark>2.t1>t2</mark> 3.t1 4.t1=t2	2.0
838	2} respectively,Which one of the following holds? Let $T(n)$ be the function defined by $T(n) = 1$ and $T(n) = 2T(n/2) + n$,	1 T(n) = O(n) 2 T(n) = O(1002n) 2 T(n) = O(n) 4 T(n) = O(n2)	3.0
838	which of the following is TRUE?	$1.T(n) = O(n) \ 2.T(n) = O(\log 2n) \ 3.T(n) = O(n) \ 4.T(n) = O(n2)$ $1.$	3.0
		n+1	
		2.	
839	Let w be any string of length n is {0,1}*. Let L be the set of all substrings of w. What is the minimum number of	n 	1.0
039	states in a non-deterministic finite automaton that accepts L?	3.	1.0
		n-1	
		4.	
		2n+1	
		1.Peephole optimization 2.DFA and Constant folding 3.Basic Code	
840	Local and loop optimization in turn provide motivation for	Analysis <mark>4.Data flow analysis</mark>	4.0
841	LOCK prefix is used most often	1.during normal execution. 2.during DMA accesses 3.during interrupt	3.0
842	Logical addressing is used in layer	servicing. 4.during memory accesses 1.Network 2.Transport 3.Physical 4.Session	1.0
		1.	
		rely basis path testing	
	10	2.	
843	1.0	exercise the logical conditions in a program module	2.0
		3.	
		select test paths based on the locations and uses of variables 4.	
		focus on testing the validity of loop constructs	
		1.	
		backup and low volume data	
		2.	
		backup and high volume data	
844	Magnetic tapes are good storage media for	3.	2.0
		storing original but low volume data	
		4.	
		storing original but high volume data	
845	Manager salary details are hidden from the employee. This is	1.Conceptual level data hiding 2.Physical level data hiding 3.External	1.0
	5 - 7	level data hiding 4.None of mentioned 1.	1
		TRUE	
846	1.0	2.	2.0
070			2.0
		FALSE	
		3. 4.	

.NO.	Questions	Choices	Answei
		1.	
		P-4. Q-1, R-2, S-3	
	Match all items in Group 1 with correct options from those given in Group 2.	2.	
	Group 1 Group 2	P-3, Q-1, R-4, S-2	
847	P. Regular expression 1. Syntax analysis	3.	2.0
	Q. Pushdown automata 2. Code generation R. Dataflow analysis 3. Lexical analysis		
	S. Register allocation 4. Code optimization	P-3, Q-4, R-1, S-2	
		4.	
		P-2, Q-1, R-4, S-3	
		1.	
	Match the following:	a	
	List-I List-II A. Lexical analysis 1. Graph coloring	2.	
	B. Parsing 2. DFA minimization	1	
348	C. Register allocation 3. Post-order traversal D. Expression evaluation 4. Production tree		2.0
	Codes:	3.	
	A B C D (a) 2 3 1 4	c	
	(b) 2 1 4 3 (c) 2 4 1 3	4.	
	(d) 2 3 4 1	d	
849	Memory elements in clocked sequential circuits are called.	1.latches 2.gates 3.signals 4.flipflop	4.0
		1.	
		Read only memory	
		2.	
	Memory unit accessed by content is called	Programmable Memory	
350		3.	4.0
		Virtual Memory	
		4.	
		Associative Memory	
851	Mode of communication in which transmission takes place in both directions, but only in one	1.simplex 2.four wired 3.full duplex 4.half-duplex	4.0
	direction at a time is called	1.	
		adaptive maintenance	
		2.	
	Modifying the software to match changes in the ever changing environment is called	corrective maintenance	
352	,g	3.	1.0
		perfective maintenance	
		4.	
		preventive maintenance	
		İ	-
		1.	
		Component reuse is common in the software world.	
		2.	
		4.0Reusable components are too expensive to use. 3.	
353	Most software continues to be custom built because	Software is easier to build without using someone else's components	1.0
		4.	
		Off-the-shelf software components are unavailable in many application domains.	

S.NO.	Questions	Choices	Answers
	Multiple choice examination answer sheets can be evaluated automatically by	Optical Mark Reader 2.	
854		Optical Character Reader 3.	1.0
		Magnetic tape reader	
		4. Magnetic ink character reader.	
		1. persistent HTTP	
855	Multiple object can be sent over a TCP connection between client and server in	2. nonpersistent HTTP 3.	1.0
		both persistent HTTP and nonpersistent HTTP 4.	
956	Multiple veriable deeleration of some data tupe can be avoided by?	p-persistent HTTP 1.array 2.identifiers 3.functions 4.Pointer	1.0
856	Multiple variable declaration of same data type can be avoided by?	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.0
		frame filter 2.	
857	Network layer firewall works as a	packet filter 3.	2.0
		both (a) and (b) 4.	
		none of the mentioned	
858	Network models are complicated by physical keys, but the relation model is	1.Slower because it uses logical keys 2.Slower because it uses physical keys 3.Faster because it uses physical keys 4.Faster because it uses logical keys	4.0
859	Network operating system that does not support symmetric multi-processing (SMP) is	1.Banyan (VINES) 2.Microsoft NT advanced server 3.SCO Unix 4.Novell Network 3.X	4.0
860	NOR Gate does NOT follow	DeMorgan's Theorem 2.Associative Law 3.Commutative Law Distributive Law	4.0
861	Normalisation of database is used to	1.Minimise Errors 2.Improve Security 3.Eliminate redundancy 4.Improve security	3.0
862	Number of the times the instruction sequence below will loop before coming out of loop is, MOV AL, 00h A1: INC AL JNZ A1	1.255 2.01 3.00 4.256	4.0
		Object Database Connectivity. 2.	
863	ODBC stands for	Oral Database Connectivity. 3.	4.0
		Oracle Database Connectivity. 4.	
		Open Database Connectivity.	
864	One application of a digital multiplexer is to facilitate:	1.data generation 2.serial-to-parallel conversion 3.data selector 4.parity checking	1.0
		1. unit testing. 2.	
865	One of the fault base testing techniques is	beta testing. 3. Stress testing.	4.0
		4. mutation testing.	
		<u>l</u>	

S.NO.	Questions	Choices	Answers
		1.	
		It can be used to priortize packets	
		2.	
866	One of the header fields in an IP datagram is the Time to Live (TTL) field. Which of the following	It can be used to reduce delays	4.0
800	statements best explains the need for this field?	3.	4.0
		It can be used to optimize throughput	
		4.	
		It can be used to prevent packet looping	
867	One of the main advantage of using src attribute is	1.It becomes self-cached 2.It makes the HTML file modular 3.It restricts	4.0
\dashv		manipulation in the HTML file 4.It simplifies the HTML files 1.	
		make parsing and semantic analysis simpler	
		2.	
		improve error recovery and error reporting	
868	One of the purposes of using intermediate code in compilers is to	3.	3.0
000		increase the chances of reusing the machine-independent code optimizer	5.0
		in other compilers.	
		4.	
		improve the register allocation.	
960		1.reference parameter has to be returned 2.binary addition requires that	3.0
869	overloading + operator requires return type as object because,	3.all overloading functions require that 4.chain of additions	3.0
870	Overloading involves writing two or more functions with	1.different names and different argument lists 2.different names and the same argument list 3.the same name and different argument lists 4.the same name and the same argument list	3.0
871	Overloading the function operator	1.usually make use of a constructor that takes arguments. 2.allows you to create objects that act syntactically like functions. 3.requires a class with	3.0
071	Overloading the function operator	an overloaded operator. 4.requires a class with an overloaded [] operator	
		1.	
		TCP, but not UDP	
		2.	
972	Packets of the same session may be routed through different paths in:	TCP and UDP	2.0
0/2	rackets of the same session may be found unough different paths in.	3.	2.0
		UDP, but not TCP	
		4.	
		Neither TCP nor UDP	
		1.	
		solves the memory fragmentation problem	
		2.	
		allows modular programming	
873	Paging	3.	1.0
		allows structured programming	
		4.	
		avoids deadlock	
\dashv		1.	<u> </u>
		Many-to-one model	
		2.	
		Many-to-many	
874	Parallelism and concurrency is fully achieved in which of the following thread model		1.0
		3.	
		one-to-one model	
		4.	
		All the models	

S.NO.	Questions	Choices	Answers
		1.	
		Mapping Mappin	
		2.	
875	Passing the request from one schema to another in DBMS architecture is called as	Communication	1.0
	·	3.	
		Relational	
		4. network	
876	Pee hole optimization	1.Local optimization 2.Loop optimization 3.Constant folding 4.Data flow analysis	3.0
		1.	
	2.0	true	
877	2.0	2.	4.0
		false	
		3. 4.	
		mechanical specifications of electrical connectors and cables	
		2.	
		electrical specification of transmission line signal level	
878	Physical layer provides	3.	4.0
		specification for IR over optical fiber	
		4.	
		all of the mentioned	
		1.	
		1	
	Pick an incorrect declaration:	2.	
	1. int x[5];	2	
879	2. int $x[5]=\{1,2,3,4,5\}$;	3.	4.0
	3. int $x[5] = \{1,2\}$	3	
	4. int x[];	4.	
		4	
880	Pick the odd one out.	1.[] 2.() (3.:: 4.~	3.0
880	rick the out one out.	1. [1. [1. [1. [1. [1. [1. [1. [1. [1. [3.0
		Coupling objects together more tightly	
		2.	
881	Polymorphism reduces the effort required to extend an object system by	2.0 enabling a number of different operations to share the same name.	4.0
		making objects more dependent on one another	
		4. removing the barriers imposed by encapsulation.	
	Popular application of flip-flop are. Postorder Tree travsersal is recursive	1.Shift registers 2.Transfer register 3.Counters 4.All of these 1.LDR 2.LRD 3.DLR 4.DRL	4.0
083	r ostolidel 11ee travsetsal is feculsive	1.Ualue is =1250 2.	2.0
	PREDICT THE OUTPUT:	Value is =80	
	#include <stdio.h> void main()</stdio.h>	3.	
884	{	Value is =125	2.0
	int $a=10,b=2,x=0;$ x=a+b*a+10/2*a;	4.	
	printf("value is =%d",x); }	Error	
885	Prim's algorithm is a method available for finding out the minimum cost of a spanning tree.	1.O(1) 2.O(n*n) 3.O(n logn) 4.O(n)	3.0
555	Its time complexity is given by:	1.	
		true	
886	Program flow graphs are identical to program flowcharts.	2.	2.0
		false	
		3. 4.	
		•	

.NO.	Questions	Choices	Answei
		1.	
		interrupt recognized	
		2.	
		execution of RST instruction	
887	PSW is saved in stack when there is a	3.	1.0
		Execution of CALL instruction	
		4.	
		All of these	
		1.	
		TRUE	
888	Quantitative methods for assessing the quality of proposed architectural designs are readily	2.	2.0
	available.	FALSE	
		3. 4.	
		1.	
		Relational Algebra	
		2.	
		Tuple Relational Calculus	
889	Query Tree uses	3.	4.0
		Domain Relational Calculus	
		4.	
		All of the options	
890	Relations produced from an E - R model will always be in	1.3 NF 2.B CNF 3.2 NF 4.1 NF	1.0
	Relocating bits used by relocating loader are specified by	1.Relocating loader itself 2.Linker 3.Assembler 4.Macro processor	2.0
		1.	
		FIFO Page replacement algorithm	
		2.	4.0
	Replace the page that has not be used for the longest period of time. This principle is adopted by	Optimal Page replacement algorithm	
892	replace the page that has not be used for the longest period of time. This principle is adopted by	3.	
		Round robin scheduling algorithm	
		4.	
		LRU Page replacement algoorithm	
		1.	-
		Allows multiple tasks to simultaneously use resource	
		2.	
893	Resource locking	Forces only one task to use any resource at any time	2.0
	-	3.	
		Can easily cause a dead lock condition	
		4.	
		Is not used for disk drives	
		1.	
		Client	
		2.	
		Investor	
894	Risk management is one of the most important jobs for a	3.	4.0
894			
894		Production team	
894		Production team 4.	
894		4.	
894	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format.		3.0

S.NO.	Questions	Choices	Answers
		1.	
		Static loading	
		2.	
	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format.	Dynamic loading	
896	The main program is loaded into memory & is executed. This type of loading is called	3.	3.0
		Dynamic linking	
		4.	
		Overlays	
-007		1.friend function 2.virtual function 3.operator overloading 4.function	2.0
897	Run time polymorphism is achieved by	overloading	2.0
		All palindromes	
		2.	
000	C > College little. The leaves are sented by the selection of the selectio	All odd length palindromes.	2.0
898	S -> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	3.	2.0
		Strings that begin and end with the same symbol	
		4.	
		All even length palindromes	
		1.	
		true	
899	1.0	2.	2.0
		false	
		3. 4.	
		1.	
		Displays the department ID along with the average salary of employees	
		in each department if their average of salary is greater than 8000.	
		2.	
900	SELECT department_id, AVG(salary) FROM employees WHERE AVG(salary) > 8000 GROUP	Displays a error	2.0
	BY department_id	3.	
		Displays the department ID along with the average salary of employees	
		4.	
		None of the options	
		1.	
		Displays a error	
		2.	
		Displays the department ID along with the number of employees in each	
901	SELECT department_id, COUNT(last_name) FROM employees;	department.	2.0
		3.	
		None of the options	
		4.	
		Dsiplays department ID and a null value	
		1.	
		Displays the employee_id and name of employees who gets minimum	
		salary in their department	
		2.	
902	SELECT employee_id, last_name FROM employees WHERE salary = (SELECT MIN(salary) FROM employees GROUP BY department_id);	Error	1.0
	Tront employees Groot D1 department_td),	3.	
		None of the options	
		4.	
		Displays the employee_id, name of employees and their salary	

S.NO.	Questions	Choices	Answers
		1.	
		Displays number of days an employee has worked in the company.	
		2.	
903	SELECT last_name, SYSDATE-hire_date FROM_employees;	Displays number of months an employee has worked in the company.	1.0
		3.	
		Error	
		4.	
		None of the mentioned	
		1.	
		the selection operation in relational algebra	
		2.	
		the selection operation in relational algebra, except that select in SQL retains duplicates	
904	Select operation in SQL is equivalent to	3.	4.0
		the projection operation in relational algebra	
		4.	
		the projection operation in relational algebra, except that select in SQL	
		retains duplicates	
		1.	
		r1(x), w2(y)	
		2.	
		r1(x), w1(x)	
905	Select the conflicting operation:	3.	3.0
		w1(y), w2(x)	
		4.	
		r1(x), w2(x)	
906	SELECT THE HIGHEST PRIORITY OPERATOR	1.&& 2., 3.?: 4.++	4.0
907	Shift reduce parsers are	1.Vertical parser 2.top down and bottom up parser 3.Bottom up parser 4.Top down parser	3.0
908	Simple network management protocol (SNMP) is implemented with a daughter board in	1.the nodes 2.the server 3.the hubs 4.a separate PC that managers the	3.0
	Skewed binary trees can be efficiently represented using	network 1.Arrays 2,Linked lists 3.Stacks 4.Queues	2.0
		1.	
	2.0	True	
910	2.0	2.	1.0
		False	
		1: 4.	
		True	
911	Software engineering includes system engineering.	2.	1.0
		False	
		3. 4.	
		1.Customer visible usage scenarios	
		2. Important software features	
912	4.0		2.0
		3.System inputs and outputs 4.	
		ALL	
		1.	
	Software is a product and can be manufactured using the same technologies used for other	True	
913	engineering artifacts.	2.	2.0
		False False	
		3. 4.	

915 Some code 916 Some code 917 Specify th	e validation is achieved through a series of tests performed by the user once the software is d in his or her work environment.	1. true 2. false 3. 4. 1. they enhance the portability of the compiler to other target processors 2. program analysis is more accurate on intermediate code than on machine	2.0
915 Some code 916 Some code 917 Specify th	e validation is achieved through a series of tests performed by the user once the software is d in his or her work environment.	2. false 3. 4. 1. they enhance the portability of the compiler to other target processors 2.	2.0
915 Some code 916 Some code 917 Specify th	d in his or her work environment.	false 3. 4. 1. they enhance the portability of the compiler to other target processors 2.	2.0
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because	3. 4. 1. they enhance the portability of the compiler to other target processors 2.	
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because	they enhance the portability of the compiler to other target processors 2.	
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because	they enhance the portability of the compiler to other target processors 2.	
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because	2.	
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because		1
916 Some cod 917 Specify th	de optimizations are carried out on the intermediate code because	program analysis is more accurate on intermediate code than on machine	
916 Some cod 917 Specify th		code	
917 Specify th		3.	1.0
917 Specify th		the information from dataflow analysis cannot otherwise be used for optimization	
917 Specify th		4.	
917 Specify th		the information from the front end cannot otherwise be used for	
917 Specify th		optimization	
	de optimizations are carried out on the intermediate code because	1. The information from data flow analysis cannot otherwise be used for optimization 2. They enhance the portability of the complier to other target processors 3. The information from the front end cannot otherwise be used for optimization 4. Program analysis is name accurate on intermediate code than on machine code	2.0
918 Spurious	the 2 library functions to dynamically allocate memory?	1 -1104110 21104	2.0
918 Spurious		1.	_
918 Spurious		join operation done on a non-key attribute	
918 Spurious		2.	
918 Spurious		outer join operation	
	stuples are formed because of	3.	1.0
		transitive dependencies	
		4.	
		inner join	
			—
		1.	
		White box testing	
		2.	
010 SPS is al.	lso known as specification of	Stress testing	4.0
JIJ BRS is als	iso known as specification of	3.	1.0
		Integrated testing	
		4.	
		Black box testing	
		1.	
		12	
		2.	
(window)	A needs to send a message consisting of 9 packets to Station B using a sliding window a size 3) and go-back-n error control strategy. All packets are ready and immediately	14	
available	e for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever	3.	3.0
get lost),	then what is the number of packets that A will transmit for sending the message to B?	16	
		4.	
			1
		18	1

S.NO.	Questions	Choices	Answer
	Station A uses 32 byte packets to transmit messages to Station B using a sliding window protocol.	1. 20 2. 40	
921	The round trip delay between A and B is 80 milliseconds and the bottleneck bandwidth on the path between A and B is 128 kbps. What is the optimal window size that A should use?	3. 160 4. 320	2.0
922	2.0	1. true 2. false 3. 4.	4.0
923	String length is found by the condition	1.str[i]!=NULL 2.str[i]!=sizeof(str) 3.str[i]>='\0' 4.str[i]!='\0'	4.0
924	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	1.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT 2.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT 3.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 4.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT	4.0
925	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	1.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT2.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 3.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT4.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT	1.0
926	Suppose P, Q, R, S, T are sorted sequences having lengths 20, 24, 30, 35, 50 respectively. They are to be merged into a single sequence by merging together two sequences at a time, The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.672 2.740 3. <mark>358</mark> 4.354	3.0
927	Suppose P, Q, R, S, T are sorted sequences having lengths 20,24,30,35,50 respectively. They are to be merged into a single sequence by merging together two sequences at a time. The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.368 2.338 3.348 4 <mark>.358</mark>	4.0
928	Suppose the round trip propagation delay for a 10 Mbps Ethernet having 48-bit jamming signal is 46.4 micro sec. The minimum frame size is:	94 2. 416 3. 464 4. 512	4.0
929	Suppose x is dead, that is, never subsequently used, at the point where the statement x=y+z appears in a basic block. Then this statement may be safely removed without changing the value of the basic block. This transformation is known as	1.Common subexpression elimination 2.Dead code elimination 3.Renaming temporary variables 4.Loop invarient	2.0
930	Suppose you want to delete the name that occurs before 'Vellore' in an alphabetical listing. Which of the following data structures shall be most efficient for this operation?	Circular linked list 2.Dequeue 3.Linked list 4.Doubly linked list 1.	2.0
931	Symantec Antivirus is a customized product.	True 2. False 3. 4.	2.0
932	Synchronous counters eliminate the delay problems encountered with asynchronous (ripple) counters because the.	1.input clock pulses are applied simultaneously to each stage 2.input clock pulses are applied only to the first and last stages 3.input clock pulses are applied only to the last stage 4.input clock pulses are not used to activate any of the counter stages	4.0
933	Syntax for creating a RegExp object: (i). var txt=new RegExp(pattern,modifiers); (ii). var	1.(i) only 2.(ii) only 3.Both (i) and (ii) 4.None of these	3.0
934	txt=/pattern/modifiers; Which of the above mentioned syntax is correct? Synthesized attribute can be easily simulated by a	1.LR grammar 2.Ambiguous grammar 3.LL grammar 4.LF grammer 1.	1.0
935	System prototypes allow users	to see how well the system supports their work 2. to start working on the system 3. to put the system to production 4.	1.0

S.NO.	Questions	Choices	Answers
		1.	
		State diagram	
		2.	
		Activity diagram	
936	System reactions to external events is depicted by	3.	1.0
		Usecase diagram	
		4.	
		Sequence diagram	
		1	
		1.	
	2.0	TRUE	
937		2.	1.0
		FALSE	
		3. 4.	-
		1.	
0.7.5	1.0	true	
938		2.	1.0
		false	
		3. 4.	
		True	
939	1.0		2.0
939		2.	3.0
		False	
0.10	Theis neither an input nor an output; it is an internal bit programmed via the PC4(Port A) or	3. 4.	2.0
240	PC2(Port B)bits	1.IFB 2.INTR 3 <mark>.INTE</mark> 4.NMI	3.0
941	The instruction is used to specify the number of stop bits, data bits,parity bit, and baud rate clock factor for the 8251 UART	1.bit set/reset 2.Mode 3.Command 4.Code	2.0
		1.	
		1 Kbyte	
		2.	
		64 Kbyte	
942	The 1 MB byte of memory can be divided into segment	3.	2.0
		33 Kbyte	
		4.	
		34 Kbyte	
\dashv		1.	
1		the condition of result of ALU operation	
		2.	
		the condition of memory	
943	The 16 bit flag of 8086 microprocessor is responsible to indicate	3.	1.0
		the result of addition	
		4.	
		the result of subtraction	
944	The 16-bit data segment value is 1000H and the offset is 2000H. calculated physical address is	1.10000H 2.11000H <mark>3.12000H</mark> 4.12500H	3.0
	The 16 hit steel comment value is SDOTH and the SECRET OCCOUNTS AND A SECRET OCCOUNTS AN		
945	The 16-bit stack segment value is 5D27H and the offset is 2C30H. calculated physical address is	1.5FFEOH 2.5FAE0H <mark>3.5FEA0H 4</mark> .12500H	3.0

S.NO.	Questions	Choices	Answers
946	The bus controller device decodes the signals to produce the control bus signal	1. internal 2. data 3. external 4. address	3.0
947	The translates internet domain and host names to IP address.	1. domain name system 2. routing information protocol 3. network time protocol 4. internet relay chat	1.0
948	The method of an Array object adds and/or removes elements from an array.	1. Slice 2. Reverse 3. Shift 4. Splice	4.0
949	Theensures that only one IC is active at a time to avoid a bus conflict caused by two ICs writing different data to the same bus	1.control bus 2.control instructions 3.address decoder 4.CPU	3.0
_	The property specifies the stack order of an element	1.d-index 2.s-index 3.x-index 4.z-index	4.0
951	The access method used for magnetic tape is	1. Direct 2. Random 3. Sequential 4. None of these	3.0
952	The address resolution protocol (ARP) is used for:	 3. Finding the IP address that corresponds to a MAC address 4. Finding the MAC address that corresponds to an IP address 	4.0
953	The advantage of DBMS over file systems is	1. redundancy 2. data dependence 3. multiple user 4. single user	1.0

S.NO.	Questions	Choices	Answers
		1.	
		data, hardware, software, people	
954	1.0	2.	1.0
751		data, documentation, hardware, software	1.0
		3. data, hardware, software, procedures	
		4.documentation, hardware, people, procedures	
		1.	
		base 64 encoding	
		2.	
		base 32 encoding	
955	The ASCII encoding of binary data is called	3.	1.0
		base 16 encoding	
		4.	
		base 8 encoding	
		1.	
		seek time	
		2.	
956	The average time required to reach a storage location in memory and obtain its contents is called	turnaround time	3.0
	the	3.	
		access time	
		4.	
		transfer time	
		1.	
		Bucket Hash	
		2.	
		Quad tree	
957	The best index for exact match query is	3.	1.0
		B Tree	
		4.	
		B+ Tree	
		1.software developers do not need to do any testing	
		2.a test team will test the software more thoroughly	
958	1.0)	3.testers do not get involved with the project until testing begins	4.0
		4.arguments between developers and testers are reduced	
		1.	
		examine the system model for errors	
		2.	
959	4.0	have the customer look over the requirements	2.0
,,,		3.	2.0
		send them to the design team and see if they have any concerns	
		4.	
		use a checklist of questions to examine each requirement	
		1.	
		8	
		2.	
		6	
960	The BIU contains FIFO register of size bytes	3.	2.0
		4	
		4.	
ı		12	
i		12	

Questions	Choices	Answers
	1.	
	queue	
	2.	
	register	
from memory and store them in	3.	1.0
	memory	
	4.	
	stack	
	1.ppears inside the definition of the derived class constructor 2.appears	
	in the member initialization list of the derived class constructor 3.appears	
uctor of base class in the derived class	inside the definition of the derived class 4.appears at the statement where the derived class object is created	4.0
	1.ppears inside the definition of the derived class constructor 2.appears	
uctor of base class in the derived class	in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where	4.0
	the derived class object is created	
at squares in four variable K-map represent the function equal	1.Four literal 2.One literal 3. Unity 4.Zero	3.0
ed in modes of operation.	1.4 2.3 3 <mark>.6 4</mark> .5	3.0
	1.	
	cycles in the program	
	2.	
provides the designer with information regarding the number of	errors in the program	4.0
novides the designer with information regarding the number of	3.	4.0
	3.0independent logic paths in the program 4.	
	"	
	statements in the program	
dth First Traversal on a graph is	, i	4.0
Γ	1.NAME VALUE ADDRESS 2.BITS BYTES WORD 3.SIZE LIMITS RESTRICTIONS 4 <mark>.TYPE SIZE RANGE</mark>	4.0
mal number of 'A580' is	1.43286	2.0
aph is the sequence of the degrees of the nodes in the graph in	1.Deep Copy 2.Shanow Copy 3.Son Copy 4.Hard Copy	2.0
wing sequences can not be the degree sequence of any graph? 3, 2, 2 III. 7, 6, 6, 4, 4, 3, 2, 2 IV. 8, 7, 7, 6, 4, 2, 1, 1	1.IV only 2.III and IV 3.I and II 4.II and IV	4.0
, 2, 2, 2, 1111 7, 0, 0, 1, 1, 2, 2, 2, 111 0, 7, 7, 0, 1, 2, 1, 1	1.	
	Architectural design	
	2.	
	Interface design	
structures and their representation is	<u> </u>	4.0
	Component design	
	4.	
	Database design	
	1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items	
and a record is	in a record may have different data type 4.In a record, there may not be a	3.0
of the object?	natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen	3.0
delete a number in a stored set of numbers is	1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree	2.0
	1.	
	depicts relationships between data objects	
	2.	
	depicts functions that transform the data flow	
	3.	1.0
	indicates how data are transformed by the system	
	4.	
	indicates system reactions to external events	
ave two formats. In one of the formate are married and	,	
or external op-codes (for the co- processor) which can be	1.64 <mark>2.128 </mark>	2.0
ave two 1	formats. In one of the formats, no memory operand is mal op-codes (for the co- processor) which can be	formats. In one of the formats, no memory operand is

s.no.	Questions	Choices	Answers
		1.	
		Pascal	
		2.	
079	The external creatern has evaluate true is exceed using from each iterature	Dennis Ritchie	4.0
978	The external system bus architecture is created using from architecture	3.	4.0
		Charles Babbage	
		4.	
		Von Neumann	
		1.	
		data centric architecture	
		2.	
		service oriented architecture	
979	The file transfer protocol is built on	3.	3.0
		client server architecture	
		4.	
		peer to peer architecture	
	The first processor to include Virtual memory in the Intel microprocessor familywas	1.Pentium 2.80486 3.80286 4.80386 1.Referential Integrity Constraint 2.Check Constraint 3.Foreign Key	3.0
981	The following is not a Relational Model Constraint	Constraint 4.Entity Integrity Constraint	1.0
		1.	
		Equi-join	
		2.	
	The following SOL is which type of join: SELECT CUSTOMER T. CUSTOMER ID	Natural join	
982		3.	4.0
		Outer join	
		4.	
		Cartesian join	
		1.	
		Define the specification for computer-based system	
		2.	
		Develop defect free computer-based systems	
983	4.0	3.	1.0
		Verify the correctness of computer-based systems	
		4.	
		ALL	
		1.	
		ltrim .	
		2.	
		lpad	
984	The function used to remove the leading spaces is	3.	1.0
		rpad	
		4.	
		rtrim	
		1.	
		TRUE	
985	The goal of product engineering is to translate the customer's desire for a set of defined capabilities into a working product.	2.	1.0
	mto a working product.	FALSE	
		3. 4.	

S.NO.	Questions	Choices	Answers
		1.	
		ambiguous	
		2.	
006		left-recursive	2.0
986	The grammar A \rightarrow AA (A) ϵ is not suitable for predictive-parsing because the grammar is	3.	2.0
		right-recursive	
		4.	
		an operator-grammar	
		1.	
		LL(1) but not LR(1)	
		2.	
		LR(1)but not LR(1)	
987	The grammar S → aSa bS c is	3.	3.0
		Both LL(1)and LR(1)	
		4.	
		Neither LL(1)nor LR(1)	
		1.	
		Polling	
		2.	
		Interrupt	
988	The Hardware mechanism that enables a device to notify the CPU is called	3.	2.0
		Systems Call	
		4.	
		None of these	
		1.	
		Inter process communication	
		2.	
		Thrashing Thrashing	
989	The high paging activity is called	3.	2.0
		Context Switching	
		4.	
		Working Set 1.	
		DMA Controller	
		2.	
990	The IC 8237 is a	Interrupt Controller	1.0
		3.	
		Keyboard controller	
		4.	
		Serial Interface Controller	
		1.	
		24	
		2.	
		28	
991	The IC 8251 A hasmany pins	3.	3.0
		40	
		4.	
		30	

S.NO.	Questions	Choices	Answers
		1.	
		24	
992		2.	
	The IC 8254 hasmany pins	28	1.0
		3. 34	
		4.	
		40	
		1.	
		1	
		2.	
		2	
993	The IC 8254 hasmany 16 bit counters	3.	3.0
		3	
		4.	
		4	
		1.	
		20	
		2.	
		30	
994	The IC 8279 hasmany pins	3.	4.0
		40	
		4.	
		10	
		1.	
		IC 8251A	
		2.	
		IC8259	
995	The IC Number for USART is	3.	1.0
		IC5255	
		4.	
		IC 8254	
		1.	
		on the property of locality of reference	
		2.	
		on the heuristic 90-10 rule	
996	The idea of cache memory is based	3.	1.0
		on the fact that references generally tend to cluster	
		4.	
		all of these	
		1.	-
		accuracy	
		2.	
997	The importance of software design can be summarized in a single word	complexity	3.0
		3.	
		4.0efficiency 4.	
		4. quality	

S.NO.	Questions	Choices	Answers
		1.	
		Build & FIX Model & Waterfall Model	
		2.	
	The Incremental Model is a result of combination of elements of which two models?	Linear Model & RAD Model	
998	The merchicital words is a result of combination of cicinents of which two models:	3.	3.0
		Linear Model & Prototyping Model	
		4.	
		Waterfall Model & RAD Model	
		1.	
		A reasonable approach when requirements are well defined.	
		2.	
		A good approach when a working core product is required quickly.	
999	The incremental model of software development is		2.0
	•	3.	
		The best approach to use for projects with large development teams.	
		4.	
		A revolutionary model that is not used for commercial products.	
		1.	
		8 bit	
		2.	
		16 bit	
1000	The intel 8086 microprocessor is a processor	3.	2.0
		32 bit	
		4.	
		4bit	
1001	The internal block discourse 600200 contains. Continued a set		2.0
	The internal block diagram of 80286 contains functional parts. The interrupt cycle ends when the instruction is executed	1.6 <mark>2.4 3.2 4.8</mark> 1.IRET(2.CALL)3.PUSH 4.POP	3.0
		1.	
		Is always regular and context free	
		2.	
		Is always regular	
1003	The intersection of CFL and regular language	3.	3.0
		Is always context free	
		4.	
		Need not be regular	
		1.	
		8 bits	
		2.	
1004	The IP is bits in length	4 bits	4.0
		3.	
		16 bits	
		4.	
		32 bits	
		1.	
		Both a and b are equal in value, type and reference address	
		2.	
		Both a and b are equal in value	
1005	The javascript statement a—b refers to	3.	3.0
		Both a and b are equal in value and type	
		4.	
		There is no such statement	
		I nere is no such statement	

S.NO.	Questions	Choices	Answers
		1.	
		Process control block	
		2.	
1006	The kernel keeps track of the state of each task by using a data structure called	Process Status Word 3.	1.0
		Memory control block	
		4.	
		None of these	
		1.	\vdash
		Regular	
		2.	
	The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described	context free	
1007		3.	1.0
		Recursive	
		4.	
		Deterministic context free	
		1.	
		not recursive	
		2. is recursive and is a deterministic CFL	
1008	The language L= {0 ⁱ 21 ⁱ i≥0 } over the alphabet {0,1, 2} is:	3.	2.0
		is a regular language	
		4.	
		is not a deterministic CFL but a CFL	
		1.	
		Machine language	
		2.	
1009	The language that the computer can understand and execute is called	Application software	1.0
		3.	
		System program	
		4. None of these	
		1.	
		Regular language	
		2.	
1010		context free but not regular	2.0
1010	The language $\{a^m b^n C^{m+n} \mid m, n \ge 1\}$ is	3.	2.0
		context sensitive but not context free	
		4.	
		type-0 but not context sensitive	<u> </u>
		1.	
		2.	
	The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is	3	
1011		3.	2.0
	a*b* (ba) *a*	4	
		4.	
		5	
1012	The length property belongs to which of the following objects?	1.Window 2.Element 3.History 4.Document	2.0
1013	The levels of hierarchy in inheritance helps to handle	1.flexibility 2.complexity 3.detailed information 4.security	4.0

S.NO.	Questions	Choices	Answers
		1.	
		Deterministic pushdown automata	
		2.	
1014	The lexical analysis for a modern language such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?	Finite state automata	2.0
1014		3.	2.0
		Non-deterministic pushdown automata	
		4.	
		Turing machine	
1015	The library function used to find the last occurrence of a character in a string is	1.strnstr() 2.laststr() 3.strrchr() 4.strstr()	3.0
		1.	
		A reasonable approach when requirements are well defined.	
		2.	
		A good approach when a working program is required quickly.	
1016	The linear sequential model of software development is	3.	1.0
		The best approach to use for projects with large development teams.	
		4.	
		An old fashioned model that cannot be used in a modern context.	
		1.	
		Classical life cycle model	
		2.	
1015		Spiral model	
1017	The linear sequential model of software development is also known as the	3.	3.0
		Waterfall model	
		4.	
		Incremental Model	
\dashv		1.	
		Accumulator	
		2.	
		Instruction Register	
1018	The load instruction is mostly used to designate a transfer from memory to a processor register		1.0
	known as	3.	
		Program counter	
		4.	
		Memory address Register	
1010	The main purpose of a data link content monitor is to	1.detect problems in protocols 2.determine the type of switch used in a data link 3.determine the flow of data 4.determine the type of switching	1.0
1019	i ne main purpose of a data link content monitor is to	used in data link	1.0
		1.	
		7	
		2.	
		8	
1020	Γhe maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is	3.	2.0
		9	
		4.	
		6	

S.NO.	Questions	Choices	Answers
	The maximum size of payload field in ethernet frame is	1. 1000 bytes	
1021		2. 1200 bytes	4.0
		3. 1300 bytes 4.	
		1500 bytes 1.	
		2 [^] n 2.	
1022	The maximum window size for data transmission using the selective reject protocol with n-bit frame sequence numbers is:	2^(n-1)	2.0
		2^n - 1 4.	
		2^(n-2)	
		1. TTL to RS 232C Level converter	
1023	The MC 1488 is	2. RS-232 to TTL level converter 3.	1.0
		Bidirectional Level converter 4.	
		Unidirectional level converter	
	The mechanism that bring a page into memory only when it is needed is called	Segmentation 2.	
1024		Fragmentation	3.0
		Demand Paging 4.	
		Page Replacement	
1025	The members of a class, by default, are	1. private 2.protected 3.public 4.mandatory to specify 1.	3.0
		main memory 2.	
1026	The memory unit that communicates directly with the CPU is called the		1.0
		3. shared memory	
		4. auxiliary memory	
		1. memory	
1027	The microprocessor can read/write 16 bit data from or to	2. I /O device	1.0
		3. processor	
		4. register	

		1.	
		carry flag	
1		2.	
7	The microprocessor determines whether the specified condition exists or not by testing the	conditional flag	
1028		3.	2.0
		common flag	
		4.	
		sign flag	
	The minimum number of arithmetic operations required to evaluate the polynomial $P(X) = X^5 + Y^5 + Y$		-
1029 4	$4X^3 + 6^X + 5$ for a given value of X using only one temporary variable is.	1.6 2.9 3.8 4.7	4.0
1030	The minimum number of arithmetic operations required to evaluate the polynomial $P(X)=X^5+4X^3+6^2X+5$ for a given value of X using only one temporary variable.	1.6 2.7 3.8 4.9	2.0
	The minimum number of nodes in a binary tree of depth d (root at level 0) is	1.2d - 1 2 <mark>.d + 1</mark> 3.2d + 1 - 1 4.d	2.0
		1.	
		Hardware	
		2.	
		Software	
1032	The Magnation of Management Leid in	3.	1.0
	The MMU (Memory Management Unit) is a	Firmware	
		4.	
		Malware	
		1.	
		TRUE	
	The nature of collaboration is such that all system requirements are defined by consensus of a committee of customers and developers.	2.	2.0
		FALSE	
		3. 4.	
1034 7	The node type for document returns the value	1.2 2.9 3.3 4.8	4.0
		1.	
		0	
		2.	
1	The number of auxiliary memory required for a Push Down Machine (PDM) to behave like a Finite	2	
1035	State Machine (FSM) is	3.	1.0
		4	
		4.	
		1	
\longrightarrow			
	The number of clock pulses needed to shift one byte of data from input to the output of a 4-bit shift register is.	1.10 2.12 3.16 4.32	3.0
	The number of components in a graph with n nodes and 1 edge are	1.n 2.n-2 3. <mark>n-1 4</mark> .n-3	3.0
_	The number of components in a graph with n nodes and 1 edge are The number of counters available in internal block diagram of 8253 is	1.n 2.n-2 3 <mark>.n-1 4</mark> .n-3 1.2 2.1 <mark>3.3</mark> 4.4	3.0
1037	The number of counters available in internal block diagram of 9235 is	1.	5.0
		Greater	
		2.	
1040	The number of states in DFA isthan the number of states in NFA for the same Language	less	2.0
		3.	
		greater equal	
		4.	
		equal	
	The number of takens in the following C statement is		
1041		2.0	4.0
	orintf("i = %d, &i = %x", i, &i); The operation of processing each element in the list is known as	1.Sorting 2.Merging 3.Inserting 4.Traversal	4.0
			+
1042 T	The other name for MODE 0 in 8253 timer is	1.software triggered strobe 2.Programmable one shot 3.Interrupt on terminal count 4.Square wave rate generator	3.0

S.NO.	Questions	Choices	Answer
		1. bit-by-bit delivery	
		2.	
1044	The physical layer concerns with	process to process delivery	1.0
		3. application to application delivery	
		4.	
		Hop by hop delivery	<u> </u>
		1.	
		line coding	
		2.	
1045	The abovious services was with fire	channel coding	1.0
1045	The physical layer is responsible for	3.	4.0
		modulation	
		4.	
		all of the mentioned	
		1.	
		data link layer	
		2.	
		network layer	
1046	The physical layer translates logical communication requests from the into hardware specific operations.	3.	1.0
		trasnport layer	
		4.	
		application layer	
		1.	
		decrements the total length by 1	
		decrements the total longin by I	
		2.	
		increments the total length by 1	
1047	The pop() method of the array in javascript does which of the following task?		1.0
		3.	
		prints the first element but no effect on the length	
		4.	
		don't return the value of deleted element	
		I.	
		physical signalling sublayer	
		2.	
		physical data sublayer	
1048	The portion of physical layer that interfaces with the media access control sublayer is called	3.	1.0
		physical address sublayer	
		4.	
		none of the mentioned	
1049	The postfix expression for * + a b - c d is?	1.ab + cd - * 2.ab + cd * - 3.ab + - cd * 4.ab cd + - *	1.0
	The postfix form of the expression (A+ B)*(C*D- E)*F / G is	1.AB + CD* E - *F *G / 2.AB + CD* E - F **G / 3.AB+ CD*E - FG /**	3.0
	The preorder traversal sequence of a binary search tree is 30,20,10,15,25,23,39,35,42. Which one	4.AB + CDE * - * F *G / 1.10,20,15,23,25,35,42,39,30 2.15,10,25,23,20,42,35,39,30	4.0
1051	of the following is the postorder traversal sequence of the same tree?	3.15,20,10,23,25,42,35,39,30 4.15,10,23,25,20,35,42,39,30	

		Choices	Answers
		1.	
		reading	
		2.	
1050		writing	
1052	The process of retaining data for future use is called	3.	3.0
		storing	
		4.	
		coding	
\dashv		1.	
		Association	
		2.	
,		Decomposition	
	The project planner examines the statement of scope and extracts all important software functions which is known as	3.	3.0
		Planning process	
		4.	
		ALL	
		1.	
		Another name for component-based development.	
		2.	
		Another name for component-based development.	
1054	3.0	3.	4.0
		A high speed adaptation of the linear sequential model.	
		4.	
		ALL	
		A LEE	
		1.attribute	
		2.relation	
1055	The RDBMS terminology for a row is	3.degree	4.0
		4.tuple	
\dashv		1.	
		may be different	
		2.	
1056	The recognizing capabilities of NDFSM and DFSM	must be different	3.0
1030	The recognizing capabilities of NDF SW and DF SW	3.	3.0
		must be same	
		4.	
		none of the mentioned	
1057	The relational model uses some unfamiliar terminology. A tuple is equivalence to a:	1.record 2.field 3.file 4.database	1.0
		1.	
		Interrupt	
		2.	
,	The removal of process from active contention of CDU and reintendence them into many and the international contents.	Swapping	
1058	The removal of process from active contention of CPU and reintroduce them into memory later is known as	3.	2.0
		Signal	
		4.	
		Thread	
\dashv		1.List should be small in number 2.List should be large in number 3.List	
	The restriction while using the binary search is ?	should be sorted 4. No restriction	3.0
1060	The result evaluating the postfix expression (10 5 + 60 6 / * 8 –) is The searching technique that takes O (1) time to find a data is	1.284 2.142 3.213 4.71 1.Binary Search 2.Linear Search 3.Tree Search 4.Hashing	2.0 4.0

.NO.	Questions	Choices	Answ
		1.	
		S < STBR	
		2.	
		S > STBR	
062	The segment number S is legal if	3.	3.0
		S < STLR	
		4.	
		S > STLR	
063	The simplest image processing technique is	1.coordinates transformation 2.intensity transformation 3.spatial transformation 4.domain transformation	1.0
)64	The situation when in a linked list START=NULL is	1.overflow 2.underflow 3.housefull 4.saturated	2.0
)65	The smallest element of an array's index is called its	1.lower bound 2.range D. extract 3.upper bound 4.ion	1.0
		D. extract 5.upper bound 4.ton	
		2 states	
		3 states	
66	The smallest finite automation which accepts the language $\{x \mid \text{length of } x \text{ is divisible by } 3\}$ has:		3.0
		3.	
		4 states	
		4.	
		5 states	
		1.Counting the average memory needed by the algorithm 2.Counting the	
067	The space factor when determining the efficiency of algorithm is measured by	minimum memory needed by the algorithm 3. Counting the maximum memory needed by the algorithm 4. Counting the maximum disk space	3.0
		needed by the algorithm	
		1.	
	40	Ends with the delivery of the software product	
068	4.0	2.	2.0
		Is not more chaotic than the incremental model 3.Do not Include project risks evaluation during each iteration 4.Includes	
		feasibility risks	$oxed{oxed}$
		1.	
		IBM	
		2.	
		Barry Boehm	
)69	The spiral model was originally proposed by	3.	2.0
		Pressman	
		4.	
		Royce	
		1.	
		Specifies a range to test	
		2.	
		specifies between which tables the data is present	
)70	The SQL BETWEEN operator	3.	1.0
		specifies the columns between which columns the data is present	
		4.	
		None of the options	
		1.010 of the options	1
.=:	The starting address for counter 0 of 8253 is 0038H, then port address for control word register is	1.44H 2.49H <mark>3.42H 4</mark> .46H	3.0

S.NO.	Questions	Choices	Answers
		1.	
		depicts relationships between data objects	
		2.	
		depicts functions that transform the data flow	
1072	The state diagram	3.	1.0
		indicates how data are transformed by the system	
		4.	
		indicates system reactions to external events	
1073	The status that cannot be operated by direct instructions is	1.Z 2.Cy 3.P 4.AC	4.0
	The stream insertion operator should be overloaded as	1. friend functions 2.member function 3.non member functions 4.static	4.0
		functions 1. friend functions 2.member function 3.non member functions 4.static	
1075	The stream insertion operator should be overloaded as	functions	4.0
1076	The switching method fixes the path from source to destination is	1.circuit switching 2.Message Switching 3.Packet switching 4.Frame Relay	1.0
1077	The syntax of Eval is	[LobjectName.]eval(numeriC) 2.[objectName.]eval(string) 3. [EvalName.]eval(string) 4.[EvalName.]eval(numeriC)	2.0
		1.	
		detailed view	
		2.	
		domain view	
1078	The system engineering process usually begins with the	2	1.0
		4.0 _{element view}	
		4.	
		world view	
		1.	
		Function, performance and constraints of a computer-based system	
		2.	
1079	1.0	implementation of each allocated system	3.0
		3.	
		element software architecture	
	The tightest upper bound for the worst case performance of quicksort implemented on an array of	4.time required for system simulation	
1080	n elements by always chosing the pivot as the central element is	1.T(n! logn) 2.O(n logn) 3. <mark>O(n^2) 4</mark> .O(n^3)	3.0
	The time complexity to build a heap with a list of n numbers is The topology with highest reliability is	1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1.ring topology 2.star topology 3.bus topology 4.mesh topology	2.0
1082	The topology with nighest renability is	1. It is topology 2.star topology 3.ous topology 4.mesh topology	4.0
		28	
		2.	
		40	
1083	The total number of pins for the IC 8255 is		2.0
		7	
		30	
		4.	
		20	
1084	The two statements that can be used to change the flow of control are	1.switch and do-while 2.if and while 3.if and switch 4.break and continue	3.0
		1.	
		none of the options	
		2.	
		the SELECT clause only	
1085	The UNION SQL clause can be used with	3.	2.0
		the UPDATE clause only	
		4.	
		the DELETE and UPDATE clauses	

		1.	
	· ·		I
		debug programs following the detection of run-time errors	
		2.	
1086 T	The use of traceability tables helps to	determine the performance of algorithm implementations	3.0
		3.	
		identify, control, and track requirements changes	
_		4.Analyze design changes 1.AX=1101 1010 1111 1111 2.AX=1101 1010 0000 0000	
1087 T	The value in AL=11011010 after the operation of CBW, the result is	. <mark>3.AX=1111 1111 1101 1010 4</mark> .AX=0000 0000 1101 1010	3.0
		Object oriented file implementation	
		2.	
1 8801	The virtual file system provides us the following	Structured programming file implementation	2.0
		3.	
		Linked file allocation	
		4.	
\perp		Indexed file allocation	
		1.	
		encoding	
		2.	
T 9801	The work of EU is	decoding	3.0
.007	ile work of EO is	3.	3.0
		processing	
		4.	
		calculations	
П		1. size of the budget	
		2.	
		size of the product being built	
1090 2		3.	3.0
		software process being used 4.	
		stakeholders needs	
-	The worst case running time to search for an element in a balanced binary search tree with n*2^n		
e	elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
1092 n	The worst case running time to search for an element in a balanced in a binary search tree with *2^n elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
		1.	
		(1-p)^(n-1)	
		2.	
1093 T	There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each	np(1-p)^(n-1)	2.0
ti	ime slot. What is the probability that only one station transmits in a given time slot?	3.	2.0
		p(1-p)^(n-1)	
		4.	
		1-(1-p)^(n-1)	
094 T	There is no connection setup phase in	I.Frame relay 2.Virtual Circuit Switching 3. Datagram 4.ATM I.	3.0
		when excessive swapping takes place	
		2.	
		when you thrash your computer	
1095 T	Chrashing occurs	3.	1.0
		whenever deadlock occurs	
		4.	
	i de la companya de	when no swapping takes place	l l

1097	Thresholding function in contrast stretching creates To create an alias Objects have to be passed by To Delete an item from a Queue identify the correct set of statements	1.binary image 2.high quality image 3.low quality image 4.enhanced image 1.address 2.reference 3.value 4.field by field	1.0
1098		-	
1000	To Delete an item from a Queue identify the correct set of statements		2.0
1099		1.Q[REAR] = item; REAR ++ 2.item = Q[FRONT]; FRONT++ 3.item = Q[REAR]; FRONT ++ 4.item = Q[FRONT]; REAR ++	2.0
	To determine the architectural style or combination of styles that best fits the proposed system, requirements engineering is used to uncover	algorithmic complexity characteristics and constraints control and data design patterns	2.0
	To interface memory with the microprocessor, connect register the lines of the address bus must be added to address lines of the chip.	1. single 2. memory 3. multiple 4. triple	2.0
1101	To operate correctly, starting a ring counter requires	1.presetting all the flip-flops 2.clearing one flip-flop and presetting all the others 3.presetting one flip-flop and clearing all the others 4.clearing all the flip-flops	1.0
	Today the increased power of the personal computer has brought about an abandonment of the practice of team development of software	1. True 2. false 3. 4.	1.0
1103	Trigger is a	1. Statement that enables to start any DBMS 2. Statement that is executed by the user when debugging an application program 3. Statement that is executed automatically by the system as a side effect of a modification to the database 4. Condition the system tests for the validity of the database user	3.0
1104	Two computers C1 and C2 are configured as follows. C1 have IP address as 203.197.2.53 and netmask 255.255.128.0. C2 have IP address as 203.197.75.201 and netmask 255.255.192.0. Which one of the following statements is true?	C1 and C2 both assume they are on the same network C2. C2 assumes C1 is on same network, but C1 assumes C2 is on a different network	3.0
1105	Two sets of functional dependencies E and F are equivalent if E+ = F+ . This statement is	1. True 2. False 3. Cant Say 4.	1.0
1106	Updating a database means	1.deleting database 2.modifying or adding record occurrences 3.revising the file structure 4.reorganizing the database	2.0

.NO.	Questions	Choices	Answer
		1.	
		customers	
		2.	
1107		3.0experienced programmers 3.	
1107	Usability questionnaires are most meaningful to the interface designers when completed by	product users	2.0
		•	
		4.	
		project managers	
	Using linked list node representation, inserting a node in general tree is performed efficiently	1.not possible 2. <mark>by merging with an existing node 3</mark> .after introducing a new link 4.after converting to binary tree	2.0
1109	Using the 8259A, the INT input of the 8086 can be expanded to accomodeate up to prioritized interrupt inputs	1.60 2 <mark>.64</mark> 3.16 4.32	2.0
$\neg \neg$	Usually a pure virtual function	1. Will be called only to delete an object 2. Is defined only in derived class	2.0
	A	Will never be called 4.Has complete function body	<u> </u>
		RAM	
1111		2.	
	Virtual memory is the portion of	Cache Memory	3.0
1111	virtual memory is the portion of	3.	3.0
		Hard Disc	
		4.	
		None of these	
		1.	
		A5/2 cipher	
		2.	
		b5/4 cipher	
1112	Voice privacy in GSM cellular telephone protocol is provided by	3.	1.0
		b5/6 cipher	
		4.	
		b5/8 cipher	
1113	VOLATILE MEMORY IS ?	1.COMPACT DISK 2.HARD DISK 3.RANDOM ACCESS MEMORY	3.0
		4.READ ONLY MEMORY 1.	
		architecture, interface, component	
		2.	
1114	1.0	cost, risk, schedule	1.0
		3.	1.0
		Information, function, behavior	
		4.	
		NONE	
\dashv		1.	
		Risk monitoring	
		2.	
	What assess the risk and your plans for risk mitigation and revise these when you learn more about the risk?	Risk planning	1.0
		3.	1
		Risk analysis	
		4.	
		Risk identification	

S.NO.	Questions	Choices	Answers
		1.	
		too slow	
		2.	
		unreliable	
1116	What characteristic of RAM memory makes it not suitable for permanent storage?		3.0
		3.	
		it is volatile	
		4.	
		too bulky	
		1.'c' means argument count 'v' means argument vector 2.'c' means	
1117	What do the 'c' and 'v' in argv stands for?	argument count 'v' means argument vertex 3.'c' means argument configuration 'v' means argument visibility 4.'c' means argument control	1.0
		'v' means argument vector	
		1.Match one or more characters that are not open paranthesis 2.Match zero or more characters that are open paranthesis 3.Match zero or more	
1118	What does /[^(]* regular expression indicate ?	characters that are not open paranthesis 4.Match one or more characters	2.0
		that are open paranthesis	
1119	What does explode function in php do	1.Used to convert a string to an array 2.Used to split a given string into the number of chunks specified 3. Used to split a string by a string 4.Used	1.0
		to split string into two equal halves	
	What does microprocessor speed depends on	1.Clock 2.Address bus width 3.Data bus width 4.Size of register 1.19 2.910 3.9109 4.91	2.0 1.0
	What does parseFloat(9+10) evaluates to in JavaScript? What does the following declaration mean?	1.19 2.910 3.9109 4.91 1.ptr is array of pointers to 10 integers 2.ptr is a pointer to an array of 10	-
1122	int (*ptr)[10];	integers 3.ptr is an array of 10 integers 4.ptr is an pointer to array	2.0
		1.	
		1 => 'b'	
		2.	
	What elements will the following script output?	True => 'a', a => 'b'	
1123	php</td <td></td> <td>3.0</td>		3.0
	\$array = array (true => 'a', 1 => 'b'); var dump (\$array);	3.	5.0
	?>	NULL	
		4.	
		0 => 'a', 1 => 'b'	
1104			2.0
	What gets printed? \$str = 'a\\b\n'; echo \$str;	1.ab(newline) 2.a\b(newline) 3.a\b\n 4.a\b(newline) 1.PHP continues to execute the script. 2.Results in a fatal error	3.0
1125	What happens if no file path is given in include() function?	3. Include_path is made use of 4. It haults the script.	3.0
		1.	
		Software is set of programs	
		2.	
		Software is documentation and configuration of data	
		-	
1126	What is a Software ?	3.	3.0
		Software is set of programs and Software is documentation and	
		configuration of data	
		4.	
		Software is a set of documents.	
		1.none of them 2.A master clock triggers all the flip-flops at a time 3.all	
1127	What is asynchronous counter.	the flip-flop are combined to common clock 4.each flip-flop has it own	4.0
		clock 1.	
		block cipher	
		2.	
		stream cipher	
1128	What is data encryption standard (DES)?	3.	1.0
		bit cipher	
		4.	
		none of the mentioned	

S.NO.	Questions	Choices	Answers
		1.	
		idle time between frames	
		2.	
		idle time between frame bits	
1129	What is interframe gap?	3.	1.0
		idle time between packets	
		4.	
		none of the mentioned	
1130	What is meant by parallel-loading the register?	1.Shifting the data in all flip-flops simultaneously 2.Loading data in two of the flip-flops 3.Loading data in all flip-flops at the same time 4.Momentarily disabling the synchronous SET and RESET inputs	3.0
1131	What is the best case for linear search	1.O(n) 2.O(1) 3.O(log n) 4.O(2n)	2.0
1132	What is the code to start displaying the time when document loads?	1.onload = displayTime; 2.window. = displayTime; 3.window.onload = displayTime; 4.window.onload = start;	3.0
1133	What is the condition for resetting(s=0) the S flag in status register?	1.MSB of the result is One 2.MSB of the result is zero 3.LSB of the result is one 4.LSB of the result is zero	2.0
1134	What is the correct CSS syntax for making all the elements bold?	1.p {font-weight:bold;} 2.p style="text-size:bold" 3.p {text-size:bold} 4.p style="font-size:bold">	1.0
		1.mysqli_db(host,username,password,dbname);	
		2.mysqli connect(host,username,password,dbname);	
		3.mysqli open(host,username,password,dbname);	
1135	What is the correct way to connect to a MySQL database?		2.0
		4.	
		mysqli_connect(,,)	
-	What is the data structures used to perform recursion?	1.list 2.queue 3.stack 4.Tree	3.0
-	What is the default execution time set in set_time_limit()? What is the default size of a file set in upload max filesize?	1.20 secs 2.30 secs 3.40 secs 4.50 secs 1.1 MB 2.2 MB 3.2.5 MB 4.3 MB	2.0
1136	what is the default size of a file set in upload_max_mesize :	1. They both behave the same. 2. Print can take multiple parameters where	_
1139	What is the difference between echo and print?	as echo cannot 3. Echo can take multiple parameters where as print cannot 4. Print is a function where as echo is not.	3.0
1140	What is the following style an example of? img[alt~="Pie"]	1.Attribute Match 2.Exact Value Match 3.Contains Value Match 4.Subcode Match	3.0
		1.	
		1 NF	
		2.	
	What is the highest normal form level satisfied by the following table design? $R = \begin{pmatrix} A_1 & A_2 & A_3 & A_4 & A_4 \end{pmatrix}$, $E = \begin{pmatrix} A_1 & A_2 & A_3 & A_4 & A_4 \end{pmatrix}$, $E = \begin{pmatrix} A_1 & A_2 & A_3 & A_4 & A_4 \end{pmatrix}$.	2 NF	
1141	$\{A1,A2,A3,A4,A4\}\ F=\{A1->A3,A3->A4\}\ Key=\{A1,A2\}$	3.	2.0
		3 NF	
		4.	
		BCNF	
		1.	
		n/2	
		2.	
1142	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a grammar with no	<u>n-1</u>	2.0
1142	epsilon- and unit-production (i.e., of type A -> ε and A -> a) to parse a string with n tokens?	3.	2.0
		2n-1	
		4.	
		2^n	
		1.	
		Any size	
		2.	
11/12	What is the maximum size of data that the application layer can pass on to the TCP layer below?	2^16 bytes-size of TCP header	1.0
11+3	made is the maximum size of data that the application rayer can pass on to the TCF rayer below?	3.	1.0
		2^16 bytes	
		4.	
		1500 bytes	
1144	What is the minimum number of NAND gates required to implement A + AB` + AB`C?	1.0 2.1 3.2 4.3	1.0
		1.Define pattern matching techniques 2.Define subpatterns within the	
1145	What is the most essential purpose of paranthesis in regular expressions?	complete pattern 3.Define portion of strings in the regular expression 4.All of the mentioned	2.0

S.NO.	Questions	Choices	Answei
	what is the need of segmenting the memory in 8086	1.Increase the memory accessibility 2.Increase the memory addressibility 3.easy to retrieve data 4.faster access	
		Seasy to retrieve data 4.faster access 1.	
		a, d, c, b	
		2.	
1147	What is the normal order of activities in which traditional software testing is organized? a.	b, d, a, c	1.0
	integration testing b. system testing c. unit testing d.validation testing	3.	
		3.0 _c , a, d, b	
		4. d, b, c, a	
		1.	
		Requirements Definition, System & Software Design, Implementation &	
		Unit Testing, Integration & System Testing, Operation & Maintenance.	
		2.	
		Requirements Definition, Integration & System Testing, System & Software Design, Implementation & Unit Testing, Operation &	
		Maintenance.	
1148	What is the order of the stages in the waterfall mode?	3.	1.0
		System & Software Design, Requirements Definition, Operation &	
		Maintenance, Implementation & Unit Testing, Integration & System Testing.	
		4.	
		Implementation & Unit Testing, Requirements Definition, System &	
		Software Design, Integration & System Testing, Operation &	
		Maintenance.	
		1.	
		10***24000	
		2.	
		*****24000	
1149	what is the output for the following function? LPAD(salary,10,'*')	3.	2.0
		24000*****	
		4.	
		error	
		1.	
		1,2	
	What is the output?	2.	
	#include <stdio.h> void main()</stdio.h>	3,2	
1150	{	3.	1.0
	int a=3,b=2; a=a==b==0;	0,0	
	printf("%d,%d",a,b);	4.	
	,	2,3	
		I.	
		Used to register a global variable	
		2.	
1151	What is the names of © SESSIONITO	Used to initialize a session	2.0
1131	What is the purpose of \$_SESSION[]?	3.	3.0
		Used to store variables of the current session	
		4.	
		Used to initialize a cookie	
1152	What is the result of the following code snippet? window.location === document.location	1.False 2 <mark>.True</mark> 3.0 4.1	2.0
		1. Find the last occurrence of the string within a string 2. Find the first	
1153	What is the strpos() function used for?	occurrence of the string within a string 3.Find both last and first occurrence 4.Search for all occurrence within a string	2.0
	What is the time complexity for binary search	1.O(log n) 2.O(n^2) 3.O(1) 4.O(2n)	1.0
_	What is the time complexity for insertion sort What is the worst case for Selection sort	1.O(log n) 2.O(n) 3. <mark>O(n^2) 4.O(1)</mark> 1.O(log n) 2.O(2n) 3.O(n)(4.O(n^2)	3.0 4.0

S.NO.	Questions	Choices	Answers	
		1.		
		security algorithm for ethernet		
		2.		
		security algorithm for wireless networks		
1157	What is Wired Equivalent Privacy(WEP)?	3.	2.0	
		security algorithm for USB		
		4.		
		None		
		1.		
		wi-fi protected access		
		2.		
		wired protected access		
1158	What is WPA?	3.	1.0	
		wired process access		
		4.		
		wi-fi process access		
		1.		
		Read/Write. Creates a new file. Returns FALSE and an error if file		
		already exists		
		2.		
		Write only. Creates a new file. Returns TRUE and an error if file already		
1159	What is x+ mode in fopen() used for?	exists	1.0	
		3.		
		Read/Write. Opens and clears the contents of file		
		4.		
		Write. Opens and clears the contents of file		
1160	What keyword covers unhandled possibilities?	1.other 2.default 3.contingency 4.all	2.0	
	What is a constant of the cons	1.Relaional		
	What kind of schema it is?	2.Logical Schema		
1161	Student(sid, sname, dob, address, pincode)	3.Conceptual Schema	1.0	
		4.External View		
		1.		
		GD library		
		2.		
		ZIP library		
1162	What library do you need in order to process images?		1.0	
		Win32 API library		
		4.		
		BOGUS library		
		1.		
		num is unsigned integer		
		2.		
	What type of declaration is this:	num is unsigned float		
1163		3.	4.0	
	unsigned num;	num is unsigned character		
		4.		
		Invalid declaration		
1164	What type of register would shift a complete binary number in one bit at a time and shift all the stored bits out one bit at a time?	1.PIPO 2.PISO 3.SIPO 4. <mark>SISO</mark>	4.0	
			1	

extern int ok; printf("value of ok = %d",ok); return 0; extern int ok=1000; hat will be the result of the expression 13 & 25	1. Declaration Error 2. value of ok = 1000 3. value of ok = 0 4. Linking Error 1.25 2.38 3.9 4.12 1.	2.0
nclude <stdio.h> main() extern int ok; printf("value of ok = %d",ok); return 0; extern int ok=1000; hat will be the result of the expression 13 & 25</stdio.h>	2. value of ok = 1000 3. value of ok = 0 4. Linking Error 1.25 2.38 3.9 4.12	2.0
main() extern int ok; printf("value of ok = %d",ok); return 0; extern int ok=1000; hat will be the result of the expression 13 & 25	3. value of ok = 0 4. Linking Error 1.25 2.38 3.9 4.12	2.0
extern int ok; printf("value of ok = %d",ok); return 0; extern int ok=1000; hat will be the result of the expression 13 & 25	3. value of ok = 0 4. Linking Error 1.25 2.38 3.9 4.12	2.0
return 0; extern int ok=1000; hat will be the result of the expression 13 & 25	value of ok = 0 4. Linking Error 1.25 2.38 3.9 4.12	
extern int ok=1000; hat will be the result of the expression 13 & 25	4. Linking Error 1.25 2.38 3.9 4.12	
hat will be the result of the expression 13 & 25	Linking Error 1.25 2.38 3.9 4.12	
hat will be the result of the expression 13 & 25	1.25 2.38 <mark>3.9 4</mark> .12	
		-
		3.0
	High paging activity	
	2.	
	Thrasing happens	
hat will be the status of a computer during storage compaction	3.	4.0
hat will happen if the first argument of open() is omitted?	page in the history	3.0
hat will the following script output?		
um = 0;		1.0
: (\$i = 0; \$i < 5; \$i++) { um += Sarray[\$array[\$i]];		1.0
	NULL	
,	4.	
	5	
hat would be the output of the below code fragment? var a = ["s","a","v","e"]; cument.write(a.join(""));	1.Undefined 2.save 3.vase 4.S	2.0
	1.	
	true	
	2.	1.0
	false	
	3. 4.	
		1.0
		1.0
	Domain Constraint	
	1. 3.0t/cht/	
	2.	
hen a single item that triggers other data flow along one of many paths of a data flow diagram,	poor modularity	1.0
characterizes the information flow.		1.0
	transform flow	
	hat would be the output of the below code fragment? var a = ["s","a","v","e"]; cument.write(a.join("")); hen a new row is inserted the constraints that can be violated are hen a single item that triggers other data flow along one of many paths of a data flow diagram,	Working set model developed 4. It will sit idle Interior Page® Remains in the same page 3 about blank 4. Open the first again the first argument of open() is omitted? Interior Page® Remains in the same page 3 about blank 4. Open the first again in the first open in the history Interior Page® Remains in the same page 3 about blank 4. Open the first again in the first open in the history Interior Page® Remains in the same page 3 about blank 4. Open the first again in the first open in the history Interior Page® Remains in the same page 3 about blank 4. Open the first page in the history Interior Page® Remains in the same page 3 about blank 4. Open the first page in the history Interior Page® Remains in the same page 3 about blank 4. Open the first page in the history Interior Page® Remains in the same page 3 about blank 4. Open the first page in the history Interior Page Remains in the same page 3 about blank 4. Open the first page in the history Interior Page Remains in the same page 3 about blank 4. Open the first page in the history Interior Page Remains in the same page 3 about blank 4. Open the first page in the history Interior Page Remains in the same page 3 about blank 4. Open the first page in the history Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 3 about blank 4. Open the first page 1. Interior Page Remains in the same page 2 about page 1. Interior Page Remains in

S.NO.	Questions	Choices	Answers
		1.	
		HTTP protocol	
	When displaying a web page, the application layer uses the	2.	
1174		FTP protocol	1.0
		3.	
		SMTP protocol 4.	
		IMAP Protocol	
	When operated in slave mode, the PIC outputs its type number only if the cascaded address	IVIAI TIUUCUI	
1175	received on CASO-CAS2 matches the address programmed in bits D0-D2	1.ICW1 2.ICW2 3.ICW3 4 <mark>.ICW4</mark>	4.0
		1. 4.0 _{low} coupling	
		2.	
1176	When the overall flow in a segment of a data flow diagram is largely sequential and follows straight-line paths, is present.	good modularity	3.0
	3.	3. transaction flow	
		4. (transform flow	
1177	When the pre-order and post-order traversal of a Binary Tree generates the same output, the tree	1.Three nodes 2.Two nodes 3.One node 4.Any number of nodes	3.0
11//	can have maximum	1.	5.0
		automata	
		2.	
		finite automata	
1178	When there are infinite distinguishable strings then there cannot be a	3.	2.0
		regular expression	
		4.	
		both finite automata and regular expression	
		1.	
		Prints an exception error	
		2.	
		Prints an overflow error	
1179	When there is an indefinite or an infinity value during an arithmetic value computation, javascript	3.	3.0
		Displays "Infinity"	
		4.	
		Prints the value as such	
1180	When used with the datalist element, what is the list attribute in HTML5 used to accomplish?	1.Local databases 2.Drop down lists 3. <mark>Autocompletion</mark> 4.Global Databases	3.0
		1.	
		M2	
		2.	
1181	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a	M1 and M2	2.0
1101	machine with final state same as that of	3.	۷.۰۷
		M1	
		4.	
		M1 or M2	
		1.	
		Primary Key	
		2. Not Null	
	when you were asked to design a relation, you come across a situation, where passport number is to be included for the people. All the students wont be having passport. So what constraint you	3.	4.0
	would be using?	5. Default	
		4.	
		Unique	

.NO.	Questions	Choices	Answer
		1.	
		Register values	
	Which of the following is shared between all of the threads in a process? Assume a kernel level	2.	
		File descriptors	
183		3.	2.0
		Scheduler priority	
		4.	
		Local variables	
1184	Which buffer is a parallel to serial converter that receives a parallel byte for conversion into a serial signal and further transmission onto the communication channel.	1. Transmit buffer 2. Receive buffer 3. Data bus buffer 4. Modem control	1.0
	serial signal and future transmission onto the communication channel.	1.	
		INSTR	
		2.	
185	Which character function can be used to return a specified portion of a character string?	SUBSTRING	3.0
100	The character failed and the about to retain a specifical posterior of a character suring.	3.	5.0
		SUBSTR	
		4.	
		POS	
		1.image-background:url('R4R_Logo.jpg') 2.background-	
186	Which command we use to set an image on background?	image:url('R4R Logo.jpg') 3.bg-image:url('R4R Logo.jpg')	2.0
187	Which Data structure is best suited for the UNDO operation in Windows	4.background-image:href('R4R_Logo.jpg') 1.Both Stack and Queues 2.Queues 3.Stack 4.Arrays	3.0
	•	1.	
		External	
		2.	
188	Which database level is closest to the users?	Conceptual	1.0
		3.	
		Internal	
		4.	
		Physical	
		1.	
		NEXT_DAY	
		2.	
		LAST_DAY	
189	Which date function is used to obtain the date of next Wednesday	3.	3.0
		NEXT_DATE	
		4.	
		All of the options	
		1.	
		Architectural design	
		2.	
		Component-level design	
190	4.0	3.	3.0
		Data design	
		4.	
		Interface design	1

s.no.	Questions	Choices	Answer
		1.	
		Single level directory structure	
		2.	
		Two level directory structure	
1191	Which directory implementation is used in most of the Operating Systems?	3.	3.0
		Tree directory structure	
		4.	
		Acyclic directory structure	
		1.	
		Single level directories	
		2.	
		Two level directories	
1192	Which directory implementation method creates more dangling pointers?	3.	4.0
		Tree Structured Diretories	
		4.	
		Acyclic graph directories	
1102	Which alament is year to draw anothing images on a wak need?		4.0
1193	Which element is used to draw graphics images on a web page?	1.script 2.audio 3.embed 4.canvas 1.	4.0
		Unit Testing	
		2.	
1194	Which granularity level of testing checks the behavior of module cooperation?	Integration Testing	2.0
		3.	
		Acceptance Testing	
		4.	
		Regression Testing	
	Which header file should be included to use functions like malloc() and calloc()?	1.string,h 2.dos,h 3.memory.h 4.stdlib.h	4.0
1196	Which Instruction word is used to specify the number of stop bits, data bits, parity bit and the baud rate clock factor for the 8251A USART	1.Mode 2.Command followed by Mode 3.Command 4.Mode followed by command	4.0
	and clock fields for the 625 ff Co5 ffC	1.	
		SQL cannot support object-orientation	
		2.	
		The same query can be written in many ways, each with vastly different	
1107	Which is a major problem with SQL?	execution plans.	2.0
1197	which is a major problem with SQL:	3.	2.0
		SQL syntax is too difficult for non-computer professionals to use	
		4.	
		SQL creates excessive locks within the database	
			_
		1.	
		Safe State	
		2.	
		Unsafe State	
			3.0
1198	Which is not related to deadlock avoidance?	3.	
1198	Which is not related to deadlock avoidance?	3. Safe Sequence	
1198	Which is not related to deadlock avoidance?		
1198		Safe Sequence	

S.NO.	Questions	Choices	Answers
		1.	
		Entry level personnel	
		2.	
	Which is one of the most important stakeholder from the following?	Middle level stakeholder	10
1199		3.	4.0
		Managers	
		4.	
		Users of the software	
		1.	
		var txt = new Array(1:"tim",2:"kim",3:"jim")	
		2.	
		var txt = new Array:1=("tim")2=("kim")3=("jim")	
1200	Which is the correct way to write a JavaScript array?	3.	3.0
		var txt = new Array("tim","kim","jim")	
		4.	
		var txt = new Array="tim","kim","jim"	
		1.	
		Stack	
		2.	
1201	Which is used to store critical pieces of data during subroutines and interrupts	Queue	1.0
	······································	3.	
		Accumulator	
		4.	
		Data register	
	Which item is an example of a physical network address?	1.IP address 2.MAC address 3.Workstation name 4.www.proprofs.com	2.0
1203	Which JavaScript function is most useful for finding errors?	1.Confirm 2.Prompt 3.Debug 4.Alert	3.0
		1.	
		1. Software interrupts 2.	
		Software interrupts 2.	
1204		Software interrupts 2. Interrupt-driven I/O	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA)	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA)	4.0
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1.	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2.	1.0
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement()	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4.	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection()	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1.	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString)	
	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2.	
1205	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString)	1.0
1205	Which method bypasses the CPU for certain types of data transfer?	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2.	
1205	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString)	1.0
1205	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3.	1.0
1205	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3. stringVariable.indexOf(subString)	1.0
1205	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Software interrupts 2. Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3. stringVariable.indexOf(subString) 4.	1.0

S.NO.	Questions	Choices	Answers
		I. Waterfall Model	
1207	Which model can be selected if user is involved in all the phases of SDLC?	2. Prototyping Model 3.	3.0
		RAD Model 4.	
		Prototyping Model and RAD model 1.	
1208	3.0	design model 2. implementation model 3. user model 4. client model	2.0
		1. CDMA 2. CSMA/CA	
1209	Which multiple access technique is used by IEEE 802.11 standard for wireless LAN?	3. ALOHA 4. CSMA/CD	2.0
1210	Which of the below given sorting techniques has highest best-case runtime complexity?	1.bubble sort 2.insertion sort 3.quick sort 4.selection sort	3.0
1211	Which of the following (in file scope) leads to a compile-time error?	1.const int a=90; 2.const int f1() { return 100; } 3.int f2() const { return 200; } 4.const int f3(const int i) { return 300;}	3.0
1212	Which of the following activities is not one of the four things that need to be accomplished by the generic planning task set?	3.0 Develop overall project strategy 2. Identify the functionality to deliver in each software increment 3. Create a detailed schedule for the complete software project 4.	4.0
1213	Which of the following addressing modes are suitable for program relocation at run time? 1. Absolute addressing 2. Based addressing 3. Relative addressing 4. Indirect addressing	Devise a means of tracking progress on a regular basis 1. and 4 2. 1 and 2 3. 2 and 3 4. 1,2 and 4	4.0
7	Which of the following algorithm design technique is used in the quick sort algorithm?	Greedy method 2.Backtracking 3.Divide and conquer 4.Dynamic programming	3.0
1214			
	Which of the following algorithm is Minimum Spanning Tree in graph	1.Dijiktra's algorithm 2.AVL Tree algorithm 3.Kruskal's algorithm 4.Merge algorithm 1.Dijiktra's algorithm 2.Prim's algorithm 3.Kruskal's algorithm 4.Merge	3.0

S.NO.	Questions	Choices	Answers
		1.	
	Which of the following are decidable?	I and II	
	I. Whether the intersection of two regular languages is infinite	2.	
	II. Whether a given context-free language is regular	I and IV	
1217	III. Whether two push-down automata accept the same language	3.	3.0
	IV. Whether a given grammar is context-free	II and III	
	W. Wildlich a given gramma is context nee	4.	
		I and III	
		1.	
		enctype='multipart/form-data'	
		2.	
		enctype='singlepart/data'	
1218	Which of the following attribute is needed for file upload via form?	3.	1.0
		enctype='file'	
		4.	
		enctype='form-data/file'	
		1.	
		Column	
		2.	
		1966_Invoices	
1219	Which of the following can be a valid column name?	3.	3.0
		Catch #22	
		4.	
		#Invoices	
1220	Which of the following can't be done with client-side JavaScript?	1. Validating a form 2. Sending a form's contents by email 3. Storing the	3.0
	_	form's contents to a database file on the server 4. Testing the form 1. Average case 2. Worst case 3. Best case 4. Null case	4.0
1221	Which of the following case does not exist in complexity theory? Which of the following command words need to be programmed to operate a single PIC in fully	1.ICW1 and ICW2 2.ICW1, ICW2 and ICW4 3.ICW2 and ICW3	2.0
1222	nested mode with an 8086 microprocessor	4.ICW1 and ICW4	2.0
1223	Which of the following correctly describes C++ language?	Statically typed language 2.Dynamically typed language 3.Both Statically and dynamically typed language 4.Type-less language	4.0
		1.	
		It is the position in a sentential form where the next shift or reduce operation will occur	
		2	
		It is non-terminal whose production will be used for reduction in the next	
		step	
1224	Which of the following describes a handle (as applicable to LR-parsing) appropriately?	3.	4.0
1221	which of the following december a harring (as applicable to Extracting) appropriately.	It is a production that may be used for reduction in a future step along	1.0
		with a position in the sentential form where the next shift or reduce operation will occur	
		4.	
		It is the production p that will be used for reduction in the next step	
		along with a position in the sentential form where the right hand side of	
		the production may be found	
1225	Which of the following explains cookies nature?	1.Non Volatile 2.Volatile 3.Intransient 4.Transient	4.0
		Continuous No action	
		Contiguous allocation	
		2.	
1226	Which of the following file access method needs a relative block number (**)	Linked allocation	3.0
1220	Which of the following file access method needs a relative block number 'n'?	3.	3.0
		Direct access	
		4.	
		Sequential access	

s.no.	Questions	Choices	Answei
		I.	
		break()	
		2.	
		quit()	
1227	Which of the following function is used to terminate the script execution in PHP?	3.	3.0
		die()	
		4.	
		exit()	
1228	Which of the following function sets first n characters of a string to a given character?	1.strset() 2.strnset() 3.strinit() 4.strcset()	2.0
		1.	
		1 and 3 only	
	Which of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are	2.	
	nonterminals, and r, s, t are terminals.	1 only	
1229	 P → Q R P → Q s R 	3.	1.0
	3. $P \rightarrow \epsilon$	2 and 3 only	
	4. $P \rightarrow Q t R r$	4.	
		1,2,3 and 4 only	
1230	which of the following intermediate language can be used in intermediate code generation?	1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix notation and two address code	1.0
		1.	
		All Statements Coverage	
	Which of the following is a black box testing strategy?	2.	
		Control Structure Coverage	
1231		3.	3.0
		Cause-Effect Graphs	
		4.	
		ALL	
		1.)	
		=	
		2.	
		LIKE	
1232	Which of the following is a comparison operator in SQL?		4.0
		3.	
		BETWEEN	
		4.	
		all of the options	
		1.	
		system context model	
		2.	
1233	Which of the following is a dynamic model that shows how the system interacts with its environment as it is used?	interaction model	2.0
		3.	Ī.,
		environmental model	
		4.	
		L	1
		both system context and interaction	

S.NO.	Questions	Choices	Answers
		1.	
		SELECT NULL FROM EMPLOYEE;	
		2.	
		SELECT NAME FROM EMPLOYEE;	
1234	Which of the following is a legal expression in SQL?	3.	2.0
		SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;	
		4.	
		None of the options	
\dashv		1	
		1. difficult to undete	
		difficult to update	
		2.	
1235	Which of the following is a problem of file management system?	lack of data independence	4.0
		3.	
		data redundancy	
		4.	
		all options given	
		1.	
		PERT	
		2.	
	Which of the following is a project scheduling method that can be applied to software	СРМ	
	development?	3.	4.0
		CMM	
		4.)	
		both PERT and CPM	
\dashv		1.X.25 level 2-ISO 2.Source routing and Domains Naming Usenet	
1237	Which of the following is a wrong example of network layer	3.X.25 packet land protocols (PLP-ISO) 4.Internet protocol (I/P) ARPA NET	
1238	which of the following is an incorrect definition inside a class?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void operator delete(void * ptr) { } 4.int operator ++() { }	2.0
1239	which of the following is an incorrect definition inside a class?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void	2.0
	The same same same same same same same sam	operator delete(void * ptr) { } 4.int operator ++() { } 1.It is a class of which stream is an object. 2.Using cin, the data can be	2.0
1240	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class.	1.0
\dashv		1.	
		Place the user in control	
		2.	
		Reduce the user's memory load	
1241	Which of the following is golden rule for interface design?		4.0
		Make the interface consistent	
		iviake the interface consistent	
		la l	
		4.	
		4. ALL	
		ALL I.	
		ALL	
		ALL I.	
1242		ALL 1. Cache memory 2. Secondary memory	2.0
1242	Which of the following is lowest in memory hierarchy?	ALL 1. Cache memory 2. Secondary memory	3.0
1242	Which of the following is lowest in memory hierarchy?	1. Cache memory 2. Secondary memory	3.0
1242	Which of the following is lowest in memory hierarchy?	ALL 1. Cache memory 2. Secondary memory 3.	3.0
1242	Which of the following is lowest in memory hierarchy?	ALL 1. Cache memory 2. Secondary memory 3. Registers	3.0

S.NO.	Questions	Choices	Answers
		1.	
		Join	
		2.	
1243	Which of the following is not a binary operator in relational algebra?	Semi-Join	4.0
	, , , , , , , , , , , , , , , , , , , ,	3.	
		Assignment	
		4.	
ightharpoonup		Project .	
		1.	
		Instruction cache	
		2.	
1244	Which of the following is not a form of memory ?	Instruction register	3.0
		3. Instruction opcode	
		Instruction opcode 4.	
		Translation-a-side buffer	
		1.	
		atomicity	
		2.	
1245	Which of the following is not a property of a transaction?	consistency	4.0
	which of the following is not a property of a transaction:	3.	4.0
		dirty read	
		4.	
		durability	
		1.	
		evaluations to be performed	
		2.	
1246	Which of the following is not a SQA plan for a project?	amount of technical work	2.0
		3.	
		audits and reviews to be performed	
		4.	
		documents to be produced by the SQA group	
	Which of the following is not a valid attribute of the INPUT tag?	1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH	4.0
1248	Which of the following is NOT a valid PHP comparison operator?	1.!= 2.>= 3. <mark>&&&</mark> 4.=== 1.	3.0
		Communications components	
		2.	
, ,	Which of the following is not an example of infrastructure components that may need to be	Database components	
1249 i	ntegrated into the software architecture?	3.)	2.0
		4.0Interface components 4.	
		Memory management components	
1250	Which of the following is not about a visiting for the following in the state of the following is not about a state of the following in the state of the following is not about a state of the following in the state of the following is not about a state of the following in the state of the following is not about a state of the sta		2.0
1230	Which of the following is not characteristics of a relational database model	Complex logical relationships 2. Treelike structure 3. Tables 4. Records 1.	2.0
		Specification delays	
		2.	
		Product competition	
1251	Which of the following is not considered as a risk in project management?	3.	4.0
		Testing	
		4.	
- 1		Staff turnover	

S.NO.	Questions	Choices	Answers
		1.	
		Magnetic tape 2.	
		Printer	
1252	Which of the following is not hardware:	3.	4.0
		VDU terminal	
		4.	
		Assembler	
		1.	
		All design should be as simple as possible, but no simpler	
		2.	
1253	Which of the following is not one of Hooker's core principles of software engineering practice?	A software system exists only to provide value to its users.	3.0
		3.	
		Pareto principle (20% of any product requires 80% of the effort)	
		4. 3.0Remember that you produce others will consume	
		1.	
		Create unit tests before you begin coding	
		2. 3.0Create a visual layout that aids understanding	
1254	Which of the following is not one of the principles of good coding?	3. Keep variable names short so that code is compact	4.0
		4.	
		Write self-documenting code, not program documentation	
1255	Which of the following is not possible using PHP?	1.Deleting files from the server 2.Redirect a visitor to another page 3.Set the value of the window statusbar 4.Obtain the IP address of a Visitor	4.0
		1.	
		File permissions	
		2.	
1256		Program Counter	4.0
1236	Which of the following is not the attribute of FCB?	3.	4.0
		Access Control List	
		4. Pointers to file control blocks	
		1. They should be declared in the public section.	
1257	Which of the following is not the characteristic of constructor?	. 2. They do not have return type. 3. They can not be inherited. 4. They can	4.0
		be virtual. 1.	
		Functional Cohesion	
		2.	
1250		Temporal Cohesion	2.0
1258	Which of the following is the best type of module cohesion?	3.	3.0
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.	
		Control Coupling 2.	
		2. Stamp Coupling	
1259	Which of the following is the worst type of module coupling?	3.	3.0
		External Coupling	
		4.	
		Content Coupling	
		<u> </u>	ı
			ļ

S.NO.	Questions	Choices	Answers
		1.	
		Every subset of a regular set is regular.	
		2.	
		Every finite subset of a non-regular set is regular.	
1260	Which of the following is TRUE?	3.	1.0
		Every finite subset of a non-regular set is regular.	
		4.	
		Infinite union of finite sets is regular.	
		1.	
		The complement of a recursive language is recursive.	
		2.	
		The complement of a recursively enumerable language is recursively	
		enumerable	
1261	Which of the following is true?	3.	1.0
		The complement of a recursive language is either recursive or recursively enumerable	
		4.	
		The complement of a context-free language is context-free	
		1.	
		Every relation in 2NF is also in BCNF	
		2.	
		A relation R is in 3NF if every non-prime attribute of R is fully	
1262	Which of the following is TRUE?	functionally dependent on every key of R	3.0
1202	Which of the following is TRUE?	3.	3.0
		Every relation in BCNF is also in 3NF	
		4.	
		No relation can be in both BCNF and 3NF	
		1.	
		Segmentation is faster than paging	
		2.	
		Paging is faster than segmentation	
1263		3.	2.0
	Which of the following is true?	Pages are unequal sized pieces	
		4.	
		Segments are equal sized pieces	
10.01			
1264	Which of the following is useful in traversing a given graph by breadth first search?	1.List 2.Queue 3.Set 4.Stack 1.	2.0
		Do not allows developers to make changes to the delivered increment	
		2.	
1265	Which of the following is valid reason for collecting customer feedback concerning delivered software?	2.0 Delivery schedule can be revised to reflect changes	4.0
		3.	
		Developers can not identify changes to incorporate into next increment	
		Delivery schedule can't be revised to reflect changes	
		Create	
		2.	
1266	Which of the following is/are the DDL statements?	Drop	4.0
1200	The second of th	3.	
		Alter	
		4.	
		All of the options	
		1	1

A contract this between prompting of the following memory allocation schemes suffers from External fragmentation: 1	S.NO.	Questions	Choices	Answers
Which of the following each connective? 120 Secretarian Secretarian	Siz (O)	<i>Questions</i>		11115111111
A country of the following records of the 2 per control fore? Country of the 2 pe				
12-02 See Action Company C		Which of the following languages are context-free?		
1. 1. 1. 1. 1. 1. 1. 1.			3.	2.0
Looly Loudy Loudy Loudy Loudy Loudy Loudy Loudy Loudy Loudy Paging Paging Loudy A result predictionality Loudy A result of the fellowing memory allocation scheme suffers from External Enginematation? A result of the fellowing memory allocation scheme suffers from External Enginematation? A result of the fellowing memory allocation scheme suffers from External Enginematation? A result of the fellowing memory allocation scheme suffers from External Enginematation? A result of the fellowing memory allocation scheme suffers from External Enginematation? A result of the fellowing memory allocation scheme suffers from External Enginematation? Loudy A result of the fellowing memory allocation scheme suffers from External Enginematation? Loudy A result of the fellowing annee focus and fellowing scheme schedule to stacks? ETO Inter 2 LIPO Int 3 Particulation Inter 4 Paging Loudy EXELECTION LOUNON 1207	$L2 = \{a^m b^n a^m b^n \mid m, n \ge 1\}$	L3 only	2.0	
1208 Which of the following manus certainty implies the need for an entire table to implement? 1.0		$L3 = \{a^mb^n \mid m = 2n + 1\}$	4.	
1208 Which of the following manus certainty implies the need for an entire table to implement? 1.0			L1 only	
Segmentation 2				
2			1.	
Pure Demand Paging 1. A magging 1. A binary relationship 2. A binary relationship 3. A binary relationship 4. A recursive relationship 5. A recursive relationship 6. A recursive relationship 7. A recursive relationship 8. BELECTION 8. BELECTION 8. BELECTION 9. BELECTION 9. BELECTION 9. BELECTION 9. BELECTION 9. BELECTION 1. D. UNION 4. CONNON 1. D. UNION			Segmentation	
1200 Which of the following memory allocution scheme suffers from External Engineeration? 1.			2.	
1200 Which of the following memory allocution scheme suffers from External Engineeration? 1.			Pure Demand Paging	
swapping 4. Proping 5. A himary relationship 2. A ternary relationship 2. A ternary relationship 3. A recursive relationship 4. An identifying relationship 5. I JEPO lists 2 J.JPO list 3 Prob-down lists 4 Pries I JEPO lists 2 J.JPO lis	1268			1.0
A paging				
Page 1209 Which of the following most certainty implies the need for an entire tuble to implement? A binary relationship A branary relationship A branary relationship A recursive relationship A re			swapping	
1209 Which of the following most certainly implies the need for an entire table to implement? 1,			4.	
A binary relationship 2. A icroary relationship 3. A recursive relationship 4. An identifying relationship 5. BEDICTION 1. BEDICTION 2. SELECTION 1.0 UNION 4. JOIN 1.22 Which of the following operators is used if we are interested in only certain columns of a table? 7. UNION 4. JOIN 1.22 Which of the following operators can be overloaded through friend function? 1.22 Which of the following operators has an associativity from Right to Left? 1.22 3.0 Which of the following operators has an associativity from Right to Left? 1.22 Which of the following pattern is the basis of interaction management in many web-based systems? 3.0 Model view controller 4. different operating system 1. Membership problem for CPGs 2. Analogatity problem for CPGs 3. Finiteness problem for EPSAs 4.			paging	
A binary relationship 2. A icroary relationship 3. A recursive relationship 4. An identifying relationship 5. BEDICTION 1. BEDICTION 2. SELECTION 1.0 UNION 4. JOIN 1.22 Which of the following operators is used if we are interested in only certain columns of a table? 7. UNION 4. JOIN 1.22 Which of the following operators can be overloaded through friend function? 1.22 Which of the following operators has an associativity from Right to Left? 1.22 3.0 Which of the following operators has an associativity from Right to Left? 1.22 Which of the following pattern is the basis of interaction management in many web-based systems? 3.0 Model view controller 4. different operating system 1. Membership problem for CPGs 2. Analogatity problem for CPGs 3. Finiteness problem for EPSAs 4.			1	\vdash
2. A ternary relationship 3. A recursive relationship 4. An identifying relationship 6. A recursive relationship 7. A recursive relationship 8. A recursive relationship 9. A recursive relationship 4. An identifying relationship 8. BROISECTION 9. SELECTION 1. UNION 4. I .: 2-2-3()45 1.: 2-2-3<4 3.0 Which of the following operators can be overloaded through friend function? 1.: 2-2-3<4 3. Which of the following operators has an associativity from Right to Left? 1. architecture 2. Which of the following pattern is the basis of interaction management in many web-based systems? 3. model-view-controller 4. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for CFGs 3. Finiteness problem for FSAs 4.				
A ferror relationship A fe			A binary relationship	
1269 Which of the following most certainly implies the need for an entire table to implement? 3. A recursive relationship 4. An identifying relationship 1.			2.	
A recursive relationship 4. An identifying relationship 1. PROJECTION 1. PROJECTION 2. SELECTION 3. UNION 4. JOIN 1272 Which of the following operation is used if we are interested in only certain columns of a table? 4. JOIN 1.			A ternary relationship	
A recursive relationship 4. An identifying relationship 4. An identifying relationship 5. An identifying relationship 6. An identifying relationship 7. An identifying relationship 8. I.FIO lists 2.LIFO list 3.Push-down lists 4.Piles 9. I.FO SELECTION 2. SELECTION 3. UNION 4. JOIN 1.272 Which of the following operation is used if we are interested in only certain columns of a table? 4. JOIN 4.	1269	Which of the following most certainly implies the need for an entire table to implement?	3	4.0
4. An identifying relationship 1270 Which of the following name does not relate to stacks? 1. FIFO lists 2.LIFO list 3.Push-down lists 4.Piles 1. PROJECTION 2. SELECTION 3. UNION 4. JOIN 1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1. Set = 3.0 4.** 1. architecture 2. repository pattern 3. architecture 2. repository pattern 3. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for CFGs 4. Finiteness problem for CFGs				
An identifying relationship 1270 Which of the following name does not relate to stacks? 1. EFFO issts 2.LIFO isst 3.Push-down lists 4.Ptles 1. PROJECTION 2. SELECTION 3. UNION 4. JOIN 1272 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1273 Which of the following operator can be overloaded through friend function? 1. **2 = 3.() 4.** 1. **2 = 3.*< 4.<** 3. **3 = 4.* 1. **architecture 2. **repository pattern* 2. **repository pattern* 3. **model-view-controller* 4. **different operating system* 1. **Membership problem for CFGs* 2. **Ambiguity problem for CFGs* 3. **Indicators problem for CFGs* 4. **Ambiguity problem for CFGs* 3. **Finiteness problem for FSAs* 4. ** 4. **Finiteness problem for FSAs* 4. ** 1. **Part of the following problems is undecidable?* 2. **Ambiguity problem for CFGs* 3. **Finiteness problem for FSAs* 4. ** 4. ** 1. **Control in the following problems is undecidable?* 3. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4. ** 4. ** 1. ** 4.			A recursive relationship	
1270 Which of the following name does not relate to stacks? 1FIFO lists 2.LIFO list 3.Push-down lists 4.Piles 1.0			4.	
1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. SELECTION 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.5 2,-3 () 4.6 4.0 1.7 3.7 Which of the following operators has an associativity from Right to Left? 1.6 2,-3 3,-4 3,-6 3,0 1.7 architecture 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.			An identifying relationship	
1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. SELECTION 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.5 2,-3 () 4.6 4.0 1.7 3.7 Which of the following operators has an associativity from Right to Left? 1.6 2,-3 3,-4 3,-6 3,0 1.7 architecture 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.	1270	Which of the following name does not relate to stacks?	1 FIFO liets 2 I IFO list 3 Push-down lists 4 Piles	1.0
2. SELECTION 3. UNION 4. JOIN 1.272 Which of the following operator can be overloaded through friend function? 1.22 2. Which of the following operator can be overloaded through friend function? 1.22 2. Which of the following operators has an associativity from Right to Left? 1.22 2. Which of the following operators has an associativity from Right to Left? 1.22 3. Which of the following operators has an associativity from Right to Left? 1.23 4. Which of the following pattern is the basis of interaction management in many web-based systems? 1. Which of the following pattern is the basis of interaction management in many web-based fifterent operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.	1270	which of the following name does not relate to stacks:		1.0
2. SELECTION 3. UNION 4. JOIN 1.272 Which of the following operator can be overloaded through friend function? 1.22 2. Which of the following operator can be overloaded through friend function? 1.22 2. Which of the following operators has an associativity from Right to Left? 1.22 2. Which of the following operators has an associativity from Right to Left? 1.22 3. Which of the following operators has an associativity from Right to Left? 1.23 4. Which of the following pattern is the basis of interaction management in many web-based systems? 1. Which of the following pattern is the basis of interaction management in many web-based fifterent operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.			PROJECTION	
1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.> 2.= 3.()4.* 4.0 1273 Which of the following operators has an associativity from Right to Left? 1. architecture 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.				
1271 Which of the following operation is used if we are interested in only certain columns of a table? Solid Nation Solid			2.	
UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1>2.=3.()4.* 1.+=2.=3.<4.<= 3.0 1. architecture 2. Which of the following pattern is the basis of interaction management in many web-based systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.			SELECTION	
4. JOIN 1272 Which of the following operator can be overloaded through friend function? 12.=3.()4* 4.0 1.+=2.=3.<4.<- 3.0 1. architecture 2. repository pattern systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.	1271	Which of the following operation is used if we are interested in only certain columns of a table?	3.	1.0
4. JOIN 1272 Which of the following operator can be overloaded through friend function? 12.=3.()4* 4.0 1.+=2.=3.<4.<- 3.0 1. architecture 2. repository pattern systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.			UNION	
JOIN 1272 Which of the following operator can be overloaded through friend function? 1> 2 3.() 4.* 4.0 1273 Which of the following operators has an associativity from Right to Left? 1.+= 2= 3.<- 4.<- 3.0 1.				
1272 Which of the following operator can be overloaded through friend function? 1> 2.= 3.() 4.* 1.+= 2.== 3.<4.<= 3.0 1. architecture 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.				
1.77 Which of the following operators has an associativity from Right to Left? 1.4 2.4 3.0			JOIN	
Which of the following pattern is the basis of interaction management in many web-based systems? Which of the following pattern is the basis of interaction management in many web-based systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			1> 2.= 3.() 4.*	4.0
Which of the following pattern is the basis of interaction management in many web-based systems? Which of the following pattern is the basis of interaction management in many web-based repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.	1273	Which of the following operators has an associativity from Right to Left?	1.+= 2.== 3.<< 4.<=	3.0
Which of the following pattern is the basis of interaction management in many web-based systems? 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			1.	
Which of the following pattern is the basis of interaction management in many web-based systems? Which of the following pattern is the basis of interaction management in many web-based 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAS 4.			architecture	
3.0 model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			2.	
3.0 model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.		Which of the following pattern is the basis of interaction management in many web-based	repository pattern	
model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				3.0
4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				
different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			model-view-controller	
1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			4.	
1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			different operating system	
2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				\vdash
2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			Membership problem for CFGs	
Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				
1275 Which of the following problems is undecidable? 3. Finiteness problem for FSAs 4.				
Finiteness problem for FSAs 4.			Ambiguity problem for CFGs.	
4.	1275	Which of the following problems is undecidable?	3.	2.0
4.			Finiteness problem for FSAs	
Equivalence problem for FSAs.				
			Equivalence problem for FSAs.	
			1	•
	1			

S.NO.	Questions	Choices	Answers
		Deciding if a given context-free grammar is ambiguous.	
		2. Deciding if a given string is generated by a given context-free grammar	
1276	Which of the following problems is undecidable?	3. Deciding if the language generated by a given context-free grammar is empty	1.0
		4. Deciding if the language generated by a given context-free grammar is finite.	
		1.	
	Which of the following process is concerned with analyzing the costs and benefits of proposed	Change management 2. Version management	
	changes?	3. System building	1.0
		4. Release management	
1278	Which of the following property allows you to specify an element's position with respect to the browser window?	1.relative 2.fixed 3.static 4.absolute	1.0
		1. Product risk 2. Project risk	
1279	Which of the following risk is the failure of a purchased component to perform as expected?	3. Business risk 4.	1.0
		Programming risk	
		1. People risks 2.	
1280	Which of the following risks are derived from the organizational environment where the software is being developed?	Technology risks 3. Estimation risks	4.0
		4. Organizational risks	
		Managerial risks 2.	
	Which of the following risks are derived from the software or hardware technologies that are used to develop the system?	Technology risks 3.	2.0
		Estimation risks 4. Organizational risks	
1282	Which of the following statements about queues is incorrect?	1.Queues are first-in, first-out (FIFO) data structures 2.Queues can be implemented using arrays 3.Queues can be implemented using linked lists 4.New nodes can only be added at the front of the queue	4.0
1283	Which of the following statements are true in c++?	Class members are public by default. 2. Structures can not have functions as members. 3. Classes can not have data as public members. 4. Structures can have functions	1.0

s.no.	Questions	Choices	Answers
		1.	
	Which of the following statements are TRUE?	I and II	
	I. There exist parsing algorithms for some programming languages	2.	
1204	whose complexities are less than $O(n^3)$. II. A programming language which allows recursion can be implemented	I and IV	
1284	with static storage allocation. III. No L-attributed definition can be evaluated in The framework	3.	2.0
	of bottom-up parsing.	III and IV	
	IV. Code improving transformations can be performed at both source language and intermediate code level.	4.	
		I, II and III	
1285	Which of the following statements best describes the operation of a synchronous up-/down-counter?	1.In general, the counter can be reversed at any point in its counting sequence. 2.The counter can be reversed, but must be reset before counting in the other direction. 3.The counter can count in either direction, but must continue in that direction once started. 4.The count sequence cannot be reversed, once it has begun, without first resetting the counter to zero.	1.0
		1.	
		It is a degree to which software running on one platform can easily be converted to run on another platform.	
		2.	
		It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
		3.	
1286	Which of the following statements explains portabililty in non-functional requirements?	The ability of the system to behave consistently in a user-acceptable manner when operating within the environment for which the system was intended.	1.0
		4.	
		It is a degree to which software running on one platform can easily be converted to run on another platform as well as It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
		1.	
		Every NFA can be converted to an equivalent DFA	
		2.	
1287	Which of the following statements is false?	Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine	4.0
		3.	
		Every regular language is also a context-free language	
		4.	
		Every subset of a recursively enumerable set is recursive	
1288	Which of the following statements is NOT valid about operator overloading?	1.Overloaded operator must have at least one operand of its class type. 2.Only existing operators can be overloaded. 3.The overloaded operators follow the syntax rules of the original operator. 4.The arity of the operator can be changed.	3.0
1289	Which of the following statements is NOT valid about operator overloading?	1.Overloaded operator must have at least one operand of its class type. 2.Only existing operators can be overloaded. 3.The overloaded operators follow the syntax rules of the original operator. 4.The arity of the operator can be changed	4.0
1290	Which of the following statements is true?	1.An INPUT field of type password provides excellent security 2.An INPUT field of type password provides a masked field but no real security 3.A maximum length can not be set for a password field 4.A password INPUT field can only be included in a FORM that uses the get METHOD	4.0
1291	Which of the following statements is true?	1.Quadraples have some disadvantages over triples notation for an optimizing compiler 2.For optimizing compiler, moving a statement that defines a temporary value requires us to change all references to that statements. It is an overhead for triples notation 3.For optimizing compiler, triples notation has important benefit where statements are often moved around as it incurs no movements or change 4.All the statements are false	2.0
1292	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree vertices is even,Q: Sum of degrees of all vertices is even	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
1293	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
	vertices is even,Q: Sum of degrees of all vertices is even		<u> </u>

S.NO.	Questions	Choices	Answers
		1.	
		Avoidance strategies	
		2.	
1204	Which of the following strategies means that the impact of the risk will be reduced?	Minimization strategies	
1294		3.	2.0
		Contingency plans	
		4.	
		ALL	
		1.	
		socket	
		2.	
		bind	
1295	Which of the following system calls results in the sending of SYN packets?	3.	4.0
		listen	
		4.	
		connect	
		1.	
		Branching	
		2.	
	Which of the following term is best defined by the statement "The greation of a new codeline from	Merging	
	a version in an existing codeline"?	3.	1.0
		Codeline	
		4.	
		Mainline	
		1.	
		Underestimated development time	
		2.	
		Organizational restructuring	
1297	maximize information hiding in the design."?	3.	3.0
		Requirements changes	
		4.	
		None	
		1.	
		Technology change	
		2.	
		Product competition	
1298	which the system is built is superseded by new technology."?	3.	1.0
		Requirements change	
		4.	
		None	
		1.	
		Staff turnover	
		2.	
1200	Which of the following term is best defined by the statement: "There will be a change of organizational management with different priorities."?	Technology change	3.0
		3.	
		Management change	
		4.	
		Product competition	

S.NO.	Questions	Choices	Answers
		1.	
		Competence	
		2.	
1300	Which of the following traits need to exist among the members of an agile software team?	Decision-making ability	4.0
1500		3.	
		4.0Mutual trust and respect 4.	
		ALL	
$ \bot $		ALL	
1301	Which of the following tree may have smaller elements in its left subtree and larger element in its right subtree	1.B+ Tree 2.AVL Tree 3.Binary tree 4.Binary search Tree	4.0
	Which of the following ways below is correct to write a CSS?	1.p {color:red;text-align:center}; 2.p {color:red;text-align:center} 3.p	3.0
\dashv		{color:red;text-align:center;} 4.p (color:red;text-align:center;) 1.	
		direct access from a magnetic tape	
		2.	
		direct access from a hard disk	
1303	Which of the following would cause quickest access		2.0
		3.	
		direct access from a floppy disk	
		4.	
		direct access from a cassette tape	
ightharpoonup			
		1.	
		I and II only	
		2.	
	Which of the regular expressions given below represent the following DFA?	I and III only	
	I) 0*1(1+00*1)* II) 0*1*1+11*0*1	3.	3.0
	III) (0+1)*1	II and III only	
		4.	
		I,II,III	
		1.// var $a = 0$; // var $b = 0$; 2./* var $a = 0$; // var $b = 0$; */3./* var $a = 0$; */	
1305	Which of these contains an executable statement?	var b = 0; 4.// var a = 0; /* var b = 0; */	3.0
		I.	
		Adequacy	
		2.	
		Feasibility	
1306	Which of these does not belong to the basic principles of good product design?	3.	4.0
		Portability	
		4.	
		Economy	
		1.	-
		cost estimation	
	Which of these framework activities is not normally associated with the user interface design	2. 1.0interface construction	3.0
	processes?	3	
ı		interface validation 4.	
		1	
		user and task analysis	

S.NO.	Questions	Choices	Answer
		1.	
		Software engineering belongs to Computer science	
		2.	
		Software engineering is a part of more general form of System	
		Engineering	
1308	Which of these is incorrect?	3.	3.0
		Computer science belongs to Software engineering	
		4.	
		Software engineering is concerned with the practicalities of developing	
		and delivering useful software	
		1.	
		Behavioral elements	
		2.	
1309	Which of these is not an element of an object-oriented analysis model?	Class-based elements	4.0
1307	which of these is not an element of an object-oriented analysis model:	3.	1.0
		Data elements	
		4.	
		Scenario-based elements	
1210	Which of these sets of HTML5 attributes can be used for form validation?	1.required, pattern, min and max 2.auto, fixed, number 3.number, text,	1.0
		currency 4.input, radio,checkbox 1.8 4 - 2 - 1 2.4 8 1 2 3.4 4 3 - 2 4.2 4 2 1	3.0
1311	Which one is not a self complementary code?	1.84-2-12.4812 <mark>3.443-</mark> 24.2421 1.Network Model	3.0
		2.Object Model 3.Notation Model	
1312	Which one of the following is currently the most popular data model?	4.Relational Model	4.0
		1.	
		Linked allocation	
		2.	2.0
		Fixed Indexed allocation	
1313	Which one of the file allocation scheme cannot be adopted for dynamic storage allocation	3.	
		Variable Indexed allocation	
		4.	
		Contiguous allocation	
		I.	
		RSA algorithm	
		2.	
1214	Which one of the following algorithm is not used in asymmetric-key cryptography?	diffie-hellman algorithm	3.0
1314	which one of the following algorithm is not used in asymmetric-key cryptography:	3.	3.0
		electronic code book algorithm	
		4.	
		ECC	
		1.	
		НТТР	
		2.	
1315	Which one of the following allows a user at one site to establish a connection to another site and	FTP	3.0
	then pass keystrokes from local host to remote host?	3.	
		telnet	
		4.	
		none of the mentioned	
		1.namespaces provide facilities for organizing the names in a program to	
		avoid name clashes 2. Namespaces refer to space between the names in a	1.0
1316	Which one of the following correctly describes the meaning of 'namespace' feature in C++?	program 3.Namespaces refer to the memory space allocated for names	

S.NO.	Questions	Choices	Answers
		1.	
		collision detection	
		2.	
		Acknowledgement of data frames	
1317	Which one of the following event is not possible in wireless LAN.	3.	1.0
		multi-mode data transmission	
		4.	
		none of the mentioned	
		1.	
		stream control transmission protocol (SCTP)	
		2.	
1318	Which one of the following is a cryptographic protocol used to secure HTTP connection?	transport layer security (TSL)	2.0
	6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 7	3.	
		explicit congestion notification (ECN)	
		4.	
		resource reservation protocol	
		1.	
		Availability	
		2.	
	Which one of the following is a requirement that fits in a developer's module?	Testability	
1319		3.	2.0
		Usability	
		4.	
		Flexibility	
		1.	
		dynamic host configuration protocol	
		2.	
		simple network management protocol	
1320	Which one of the following is an internet standard protocol for managing devices on IP network?	3.	2.0
		internet message access protocol	
		4.	
		media gateway protocol	
		1.	
		A basic block is a sequence of instructions where control enters the	
		sequence at the beginning and exits at the end.	
		2.	
		Available expression analysis can be used for common subexpression	
1321	Which one of the following is FALSE?	elimination.	2.0
		3.	
		Live variable analysis can be used for dead code elimination.	
		4.	
		$x = 4 * 5 \Rightarrow x = 20$ is an example of common subexpression	
		elimination.	
l			

S.NO.	Questions	Choices	Answers
		1.	
1322	Which one of the following is FALSE?	There is unique minimal DFA for every regular language	
		2.	
		Every NFA can be converted to an equivalent PDA	4.0
		Complement of every context-free language is recursive	4.0
		4.	
		Every nondeterministic PDA can be converted to an equivalent	
		deterministic PDA	
		1.	
		Elicitation	
		2.	
		Design a model	
1323	Which one of the following is not a step of requirement engineering?	3.	2.0
		Analysis	
		4.	
		Documentation	
		1.	
		FAT	
		2.	
1224		NTFS	4.0
1324	Which one of the following is not a windows file system?	3.	4.0
		FAT32	
		4.	
		EXT	
		1.	
		media gateway protocol	
		2.	
1325	Which one of the following is not an application layer protocol?	dynamic host configuration protocol	3.0
		3.	
		resource reservation protocol	
		4. session initiation protocol	
		application layer protocols are used by both source and destination	
		devices during a communication session	
		2.	
1326		application layer protocols implemented on the source and destination host must match	3.0
		3.	
		both the options	
		4.	
		1.	
		Killing a process	4.0
		2.	
1327		Rollback to the previous state	
	Which one of the following is not the process of Deadlock Recovery?	3.	
		Selecting a Victim	
		4.	
		Delaying the process	
			1

S.NO.	Questions	Choices	Answer
	,	1.provide security	
1328		2.develop applications	
	Which one of the following is not the responsibility of the DBA?	3.periodically tunes the database	2.0
		4.restores the system after a failure	
	Which one of the following is the recurrence equation for the worst case time complexity of the Quicksort algorithm for sorting n>=2 numbers? In the recurrence equations given in the options below, c is a constant.	$\frac{1.T(n)=2T(n/2)+cn}{4.T(n)=2T(n-2)+cn} \frac{2.T(n)=T(n-1)+T(0)+cn}{3.T(n)=T(n/2)+cn}$	1.0
1330	Which one of the following is the very first task executed by a session enabled page?	1.Delete the previous session 2.Start a new session 3. Check whether a valid session exists 4. Handle the session	3.0
	Which one of the following is True at any valid state in shift-reduce parsing?	1. Viable prefixes appear only at the bottom of the stack and not inside 2.	
1331		Viable prefixes appear only at the top of the stack and not inside 3. The stack contains only a set of viable prefixes	3.0
		4. The stack never contains viable prefixes	
	Which one of the following is used as the start frame delimeter in ethernet frame?	1. 10101010 2.	
1332		10101011 3.	2.0
		00000000 4. 11111111	
1333	Which one of the following languages over the alphabet {0,1} is described by the regular expression: (0+1)*0(0+1)*?	1. The set of all strings containing the substring 00. 2. The set of all strings containing at most two 0's. 3. The set of all strings containing at least two 0's. 4. The set of all strings that begin and end with either 0 or 1.	3.0
1334	Which one of the following models is not suitable for accommodating any change?	1. Build & Fix Model 2. Prototyping Model 3. RAD model 4. Waterfall Model	4.0
1335	Which one of the following modulation scheme is supported by WiMAX?	1. binary phase shift keying modulation 2. quadrature phase shift keying modulation 3. quadrature amplitude modulation 4. all of the mentioned	4.0

S.NO.	Questions	Choices	Answei
		1.	
1336		simple mail transfer protocol	
		2.	
		post office protocol	
	Which one of the following protocol delivers/stores mail to reciever server?	3.	1.0
		internet mail access protocol	
		4.	
		hypertext transfer protocol	
		1.	
		a and b	
		2.	
		b and c	
1337	Which one of the following regular expressions over $\{0, 1\}$ denotes the set of all strings not containing 100 as a substring (a) $0*(11)*0*$ (b) $(0*1010)*$ (c) $0*1*010$ (d) $0*(10)*01*$	3.	14.0
		only c	
		4.	
		only b	
		1.	
		Any relation with two attributes is in BCNF	
		A relation in which every key has only one attribute is in 2NF	
1338	Which one of the following statements if FALSE?	3.	4.0
1550	which old of the following statements if TAESE.	A prime attribute can be transitively dependent on a key in a 3 NF	4.0
		relation.	
		4.	
		A prime attribute can be transitively dependent on a key in a BCNF relation.	
		relation.	
1339	Which one of the following uses 8B/6T encoding scheme	1.100 Base-T1 2.100 Base-T4 3.100 Base TX 4.100 Base-FX	2.0
1340	Which property is used to obtain browser vendor and version information?	1.modal 2.version 3.browser 4.navigator	4.0
1340		1.	
		session initiation protocol	
		session initiation protocol 2.	
		session initiation protocol 2. session modelling protocol	
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3.	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3.	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4.	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1.	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much?	1.0
1341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2.	1.0
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much?	
	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions? Which question no longer concerns the modern software engineer?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2.	1.0
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish?	
1341	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3.	
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4.	
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4. Why can't software errors be removed from products prior to delivery?	
1342	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4.	

S.NO.	Questions	Choices	Answei
		1.	
		Sum	
		2.	
		Count	
1345	Which SQL functions is used to count the number of rows in a SQL query?	3.	2.0
		Max	
		4.	
		ALL	
		1.	
		goto xyz	
		2.	
1346	Which statement does not require semicolon?	int x = 20	3.0
		3.	
		#define MAX 100	
		4.	
		do {} while(count<=100)	
1247	Which date and is trans	1.Standard form must consists of minterms 2.All standard form are	1.0
1347	Which statement is true:	canonical forms 3.Canonical form can consist of a term with a literal missing 4.All canonical form are standard form	1.0
		1.	
		coaxial cable	
		2.	
		twisted pair cable	
1348	Which transmission media has the highest transmission speed in a network?	3.	3.0
		optical fiber	
		4.	
		electrical cable	
		1.	
		form	
		2.	
		frame	
1349	Which of these is a stand alone tag?	3.	2.0
		table	
		4.	
		anchor	
	NU. 1		ļ
1350	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree(BST)in the sequence shown, the element in the lowest level is	1.65 <mark>2.67</mark> 3.83 4.69	2.0
		1.	
		Time consuming	
		2.	
		Process entered in to critical section may close the file	
1351	Why 'critical section' is not imposed on file systems instead 'file locks' when more than one process	3.	3.0
	tries to access the file?	we cannot satisfy the three conditions of mutual exclusion, progress and	
		bounded waiting	
		4.	
		we cannot use semaphore	
		we cannot use semaphore	

S.NO.	Questions	Choices	Answers
		1.	
1352	WiMAX MAC layer provides an interface between	higher transport layers and physical layer	
		2.	
		application layer and network layer	1.0
		3. data link layer and network layer	
		data ilik iayer and network iayer 4.	
		none of the mentioned	
		1.	
	WiMAX provides	simplex communication	
		2.	
		half duplex communication	
1353		3.	2.0
		full duplex communication	
		4.	
		none of the mentioned	
		1.	
		wireless maximum communication	
		2.	
1254		worldwide interoperability for microwave access	2.0
1354	WiMAX stands for	3.	2.0
		worldwide international standard for microwave access	
		4.	
		none of the mentioned	
		1.	
		orthogonal frequency division multiplexing	
		2.	
1355	WiMAX uses the	time division multiplexing	1.0
1333		3.	
		space division multiplexing	
		4.	
		all of the mentioned	
		1.	
		radio waves	
		2.	
1356	Wireless transmission can be done via	microwaves	4.0
1550		3.	
		infrared	
		4.	
		all of the mentioned	
	Write Through technique is used in which memory for updating the data	1.	
		Virtual memory	
		2.	
1357		Main memory	4.0
		3.	
		Auxiliary memory	
		4.	
		Cache memory	
1358	You can find the element you want to manipulate by way?	1.getElementById() 2.getElementsByTagName() 3.getElementsByClassName() 4.All of the these	4.0

S.NO.	Questions	Choices	Answers
1359	You have an array of n elements, Suppose you implement quicksort by always choosing the central element of the array as the pivot, Then the tightest upper bound for the worst case performance is	1.O(log n) 2.O(n) 3. <mark>O(n^2)</mark> 4.O(1)	3.0
	You have to sort a list L consisting of a sorted list followed by a few "random" elements. Which of the following sorting methods would be especially suitable for such a task?	1.Bubble sort 2.Selection sort 3.Quick sort 4.Insertion sort	4.0
1361	You need to check the size of a file in PHP function. $size = X(filename)$; Which function will suitably replace 'X'?	1. filesize 2. size 3. sizeofFile 4. getSize	1.0
1362	'Aging registers' are	Counters which indicate how long ago their associated pages have been referenced. Registers which keep track of when the program was last accessed 3. Counters to keep track of last accessed instruction Counters to keep track of the latest data structures referred	1.0