习题课3

2019年10月19日

习题 1. 设 $\alpha_1, \dots, \alpha_{n+1} \in \mathbb{R}^n$ 满足 $\alpha_i \cdot \alpha_i < 0, \forall i \neq j$. 证明: 其中任意 n 个向量都线性无关.

习题 2. 设 $C(\mathbb{R})$ 是 $\mathbb{R} \to \mathbb{R}$ 的所有的连续函数构成的集合. 定义 $C(\mathbb{R})$ 上的加法和数乘如下:

$$(f_1 + f_2)(x) := f_1(x) + f_2(x), \quad (cf)(x) = cf(x).$$

- 1. 证明 $C(\mathbb{R})$ 是线性空间;
- 2. 设 $\lambda_1, \dots, \lambda_n$ 是互不相同的 n 个实数, $f_i(x) = e^{\lambda_i x}, 1 \le i \le n$. 证明 $\{f_1(x), \dots, f_n(x)\}$ 线性无关.
- 3. 对任意 $n \ge 1$, 证明 $\mathcal{C}(\mathbb{R})$ 中的下面三组函数都是线性无关的:
 - $\sin x, \sin 2x, \cdots, \sin nx;$
 - $1, \cos x, \cos 2x, \cdots, \cos nx$;
 - $1, \sin x, \cos x, \sin 2x, \cos 2x, \cdots, \sin nx, \cos nx$.

习题 3. $V = \left\{ AB - BA : A, B \in M_{n \times n}(\mathbb{R}) \right\}$. 证明 dim $V = n^2 - 1$.

习题 4. 证明: 若 $C \in M_{n \times r}(\mathbb{R})$ 的列向量线性无关, $A \in M_{r \times m}(\mathbb{R})$, B = CA, 则 B 的第 j_1, \dots, j_s 列线性相关 (resp. 线性无关) 当且仅当 A 的第 j_1, \dots, j_s 列线性相关 (resp. 线性无关). 特别的, $A \subseteq B$ 的秩相同.

习题 5. 1. 设 $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times \ell}(\mathbb{R});$ 证明 $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.

- 2. 设 $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times \ell}(\mathbb{R})$. 证明方程组 ABx = 0 和方程组 Bx = 0 同解的充要条件是 rank(AB) = rank(B).
- 3. 读 $A, B \in M_{n \times n}(\mathbb{R})$ 且 $\operatorname{rank}(B) = \operatorname{rank}(AB)$. 证明 $\operatorname{rank}(B^2) = \operatorname{rank}(AB^2)$.

习题 6. 如果 $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ 满足条件:

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad 1 \le i \le n;$$

则称 A 是对角占优矩阵. 求证: 对角占优矩阵是满秩矩阵.

习题 7. 设线性空间 V 中有向量组 $\alpha_1, \alpha_2, \cdots, \alpha_k$ 线性无关. 考虑有序向量组 $\{\beta, \alpha_1, \alpha_2, \cdots, \alpha_k\}$. 求证: 或者该有序向量组线性无关, 或者存在唯一的 i 使得 α_i 可由 $\beta, \alpha_1, \alpha_2, \cdots, \alpha_{i-1}$ 线性表出.

- **习题 8.** 1. 设 $\alpha_1, \dots, \alpha_k$ 是有限维线性空间 V 中的一组线性无关的向量. 证明我们可以把它们扩张成 V 的一组基.
 - 2. 设 V,W 都是线性空间 X 的有限维子空间. 证明

$$\dim(V) + \dim(W) = \dim(V \cap W) + \dim(V + W).$$

习题 9. 设 $W \subseteq V = \mathbb{R}^n$ 设维数为 r < n 的线性子空间, $S := \{U \subseteq V : U \in V \}$ 的线性子空间, $W \subseteq U$, dim U = n - 1. 证明

$$W = \bigcap_{U \in S} U.$$

习题 10. 设 $A \in M_{m \times n}(\mathbb{R})$, $\alpha_1, \dots, \alpha_r \in \text{Null}(A)$ 是一个极大线性无关组, β 是非齐次方程组 Ax = b 的一个特解. 证明: $\alpha_1, \dots, \alpha_r, \beta \in \mathbb{R}^n$ 也是线性无关的.

习题 11. 考察 \mathbb{R}^4 中的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_5$:

$$\alpha_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 4 \end{bmatrix}, \quad \alpha_2 = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} 3 \\ 0 \\ 7 \\ 14 \end{bmatrix}, \quad \alpha_4 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}, \quad \alpha_5 = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 0 \end{bmatrix}.$$

- (i) 找出它们的一组极大线性无关组,也就是 $span\{\alpha_1,\dots,\alpha_5\}$ 的一组基,给出这个向量组的秩。
- (ii) 用这组基表示向量组中的其他向量。

习题 12. 考察 \mathbb{R}^5 中的三个平面

$$S_1 := \{ \mathbf{x} = (x_1, x_2, \dots, x_5)^T : 3x_1 + 2x_2 + x_3 + x_4 + x_5 = 7 \},$$

$$S_2 := \{ \mathbf{x} \in \mathbb{R}^5 : 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -2 \},$$

$$S_3 := \{ \mathbf{x} \in \mathbb{R}^5 : 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 12 \}.$$

- (i) 求它们的交集 S. 判断 $\mathbf{0}$ 是否在 S 里,判断 S 是否构成一个线性空间 (即是 \mathbb{R}^5 的一个子空间)。
- (*ii*) 求一个线性空间 V 和一个向量 \mathbf{x}_0 使得 $S = \mathbf{x}_0 + V := \{\mathbf{x}_0 + \mathbf{x} : \mathbf{x} \in V\}$. 找出 V 的一组基。

习题 13. 求如下矩阵 A 的 LU 分解, 特别的, 给出一个 a,b,c,d 应当满足的限制条件, 使分解可进行。

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}.$$

习题 14. 判断以下命题是否正确?证明你的答案。.

- (i) A 和 A^T 的零空间相同。
- (ii) 可以找到一个矩阵 A, 它的列空间包括向量 (1,1,0) 和 (0,1,1), 并且它的零空间包含 (1,0,1) 和 (0,0,1).
- (iii) 对于 n 阶方阵 $A, B \in \mathbb{M}_n, n \geq 2$, 我们有 $\operatorname{rank}(AB) = \operatorname{rank}(BA)$.
- (iv) 对于 $A \in \mathbb{M}_n$, 和非零向量 $\mathbf{b} \in \mathbb{R}^n$, 已知 \mathbf{x}_p 是非齐次方程组 $A\mathbf{x} = \mathbf{b}$ 的特解, 它是在通解 S 里, 令自由未知数取零得到的。则 $\|\mathbf{x}_p\| = \min_{\mathbf{x} \in S} \|\mathbf{x}\|$, 也就是说它是 S 里长度最短的解。

习题 15. 求下列线性空间的维数。其中,复数矩阵所配的加法和数乘是普通的矩阵加法和数乘,实函数的加法和它与实数的数乘如本习题练习 2.

- (i) 2 by 2 复矩阵 $\mathbb{M}_2(\mathbb{C})$, 作为数域 \mathbb{C} 上的线性空间。
- (ii) 2 by 2 复矩阵 $\mathbb{M}_2(\mathbb{C})$ 作为数域 \mathbb{R} 上的线性空间。
- (iii) 在 \mathbb{R} 上连续的实函数集 $C(\mathbb{R})$, 作为数域 \mathbb{R} 上的线性空间。