Riemann surfaces final exam

Matei Ionita

December 7, 2013

Problem 1

a) We define $\theta_1: \mathbb{C} \to \mathbb{C}$ by:

$$\theta_1(z|\tau) = \sum_{n \in \mathbb{Z}} \exp[\pi i (n+1/2)^2 \tau + 2\pi i (n+1/2)(z+1/2)]$$

The periodicity of this theta function is given by:

$$\theta_1(z+1|\tau) = -\theta_1(z|\tau)$$

$$\theta_1(z+\tau|\tau) = -e^{-i\pi\tau - 2\pi i z}\theta_1(z|\tau)$$

$$\theta_1(z+m+n\tau|\tau) = e^{i\pi(m+n) - i\pi n\tau - 2\pi i nz}\theta_1(z|\tau)$$

The sum used to define θ_1 is convergent everywhere, so θ_1 has no poles. Its zeros are all lattice points $z = m + n\tau$.

b) We show existence by explicit construction. dz is a holomorphic form on \mathbb{C} , which is also doubly periodic, so it descends to a holomorphic form on \mathbb{C}/Λ . Then we define:

$$\omega_{PQ}(z) = \left[\frac{\theta_1'(z-P)}{\theta_1(z-P)} - \frac{\theta_1'(z-Q)}{\theta_1(z-Q)} \right] dz$$

We first show that ω_{PQ} is doubly periodic. By the transformation law for θ_1 :

$$\frac{\theta_1'(z-P+1)}{\theta_1(z-P+1)} = \frac{\theta_1'(z-P)}{\theta_1(z-P)}$$
$$\frac{\theta_1'(z-P+\tau)}{\theta_1(z-P+\tau)} = \frac{\theta_1'(z-P)}{\theta_1(z-P)} - 2\pi i$$
$$\Rightarrow \omega_{PQ}(z+1) = \omega_{PQ}(z+\tau) = \omega_{PQ}(z)$$

Therefore ω_{PQ} is well-defined on \mathbb{C}/Λ . We know from complex analysis that $\theta'_1(z-P)/\theta_1(z-P)$ has a simple pole with residue 1 whenever $\theta_1(z-P)$ has zeros, which happens for z=P. Since $\theta_1(z-P)$ has no poles, these are all the poles of $\theta'_1(z-P)/\theta_1(z-P)$. This shows that

 ω_{PQ} has a simple pole with residue 1 at P, and a simple pole with residue -1 at Q.

c) Similarly, define:

$$\omega_P(z) = \left(\frac{\theta_1'(z-P)}{\theta_1(z-P)}\right)'$$

By the reasoning in part b), θ'_1/θ_1 is invariant under $z \to z + 1$, and changes by a constant under $z \to z + \tau$. Then its derivative is doubly periodic. Moreover, θ'_1/θ_1 has a simple pole at P with residue 1. Therefore, in some small neighborhood of P, its Laurent expansion is:

$$\frac{\theta_1'(z-P)}{\theta_1(z-P)} = \frac{1}{z-P} + \text{ holomorphic}$$

And the expansion of its derivative is:

$$\left(\frac{\theta_1'(z-P)}{\theta_1(z-P)}\right)' = -\frac{1}{(z-P)^2} + \text{ holomorphic}$$

Which shows that $\omega_P(z)$ has a double pole at P.

Problem 2

a) Given a metric h(z) on L, we define its curvature:

$$F_{\bar{z}z} = -\partial_z \,\partial_{\bar{z}} \log h$$

Then we define the first Chern class as:

$$c_1(L) = \frac{i}{2\pi} \int_X F_{\bar{z}z} dz \wedge d\bar{z}$$

b) In class we proved the following theorem. If ϕ is a meromorphic section of L which is not identically 0, then:

$$c_1(L)$$
 = number of zeros of ϕ – number of poles of ϕ

We see that, if $c_1(L) < 0$, then any meromorphic section must have at least a pole. Thus, no section is holomorphic.

c) We denote the vector space of holomorphic sections of L by $H^0(X, L)$. The Riemann-Roch theorem says that:

$$\dim H^0(X,L) - \dim H^0(X,K \otimes L^{-1}) = c_1(L) + \frac{1}{2}c_1(K^{-1})$$

We want to apply this to $L = K^n$. Note that, if h_1, h_2 are metrics on L_1, L_2 , then h_1h_2 is a metric on $L_1 \otimes L_2$. Then using the definition of curvature, which includes a logarithm, we see

that the curvature is additive. Then c_1 must also be additive. In particular, $c_1(L^n) = nc_1(L)$ for all L. We obtain:

$$\dim H^0(X, K^n) - \dim H^0(X, K^{1-n}) = -nc_1(K^{-1}) + \frac{1}{2}c_1(K^{-1})$$

d) In general, we know that for n = 0 (holomorphic functions) the dimension is 1, and for n = 1 (holomorphic 1-forms) the dimension is g. For all other n, we split the computation into 3 cases:

First case: $c_1(K^{-1}) > 0$, which only happens when g = 0. This is equivalent to $c_1(K) < 0$, which also shows that $c_1(K^n) = nc_1(K) < 0$ for all n > 0. Using the result of part b), we see that dim $H^0(X, K^n) = 0$ for all n > 0. In this case, part c) reduces to:

$$\dim H^0(X, K^{1-n}) = 2n - 1$$

For convenience, we make the substitution m = 1 - n, and we obtain that, for $m \le 0$:

$$\dim H^0(X, K^m) = 1 - 2m$$

To sum up, the dimension of $H^0(X, K^n)$ is 0 for n > 0, and 1 - 2n otherwise.

Second case: $c_1(K^{-1}) = 0$, which only happens when g = 1. This implies that $c_1(K^n) = 0$ for all n. Using part b), we see that any meromorphic section of K^n has equal number of zeros and poles. In particular, holomorphic sections have no zeros. Now consider two nontrivial sections $\phi_1, \phi_2 \in \Gamma(X, K^n)$ and evaluate them at some point z. Let $w_1 = \phi_1(z)$ and $w_2 = \phi_2(z)$. We construct the linear combination:

$$\psi = w_1 \phi_2 - w_2 \phi_1 \in \Gamma(X, K^n)$$

Since $\psi(z) = 0$, ψ must be the trivial section. Therefore ϕ_1, ϕ_2 are linearly dependent. This shows that dim $H^0(X, K^n) = 1$ for all n.

Third case: $c_1(K^{-1}) < 0$, which happens for $g \ge 2$. This implies that $c_1(K^{-n}) < 0$ for n > 0, therefore dim $H^0(X, K^{1-n}) = 0$ for n > 1. In this case, part c) reduces to:

$$\dim H^0(X, K^n) = (2n - 1)(g - 1)$$

To sum up, the dimension of $H^0(X, K^n)$ is (2n-1)(g-1) for n > 1, g for n = 1, 1 for n = 0, and 0 for n < 0.

e) We proved in class that the dimension of the moduli space of Riemann surfaces of genus g is equal to dim $H^0(X, K^2)$. Using part d), we see that this is 0 for g = 0, 1 for g = 1 and 3(g-1) for $g \geq 2$.

Problem 3

a) Let $\phi_1, \phi_2 \in \Gamma(X, L)$ and $\psi_1, \psi_2 \in \Gamma(X, L \otimes \overline{K})$. We define:

$$\langle \phi_1, \phi_2 \rangle = \int_Y \phi_1 \bar{\phi}_2 h \ g_{\bar{z}z}$$

$$\langle \psi_1, \psi_2 \rangle = \int_X \psi_1 \bar{\psi}_2 h$$

To see that these definitions make sense, note that:

$$\phi_1\bar{\phi}_2h\ g_{\bar{z}z}\in\Gamma(X,L\otimes\bar{L}\otimes L^{-1}\otimes\bar{L}^{-1}\otimes K\otimes\bar{K})=\Gamma(X,K\otimes\bar{K})$$

$$\psi_1 \psi_2 h \in \Gamma(X, L \otimes \bar{K} \otimes \bar{L} \otimes K \otimes L^{-1} \otimes \bar{L}^{-1}) = \Gamma(X, \bar{K} \otimes K)$$

Both expressions are 1-1 forms, so it makes sense to integrate them over X.

b) The formal adjoint $\bar{\partial}^{\dagger}$ is defined as:

$$\langle \bar{\partial}\phi, \psi \rangle = \langle \phi, \bar{\partial}^{\dagger}\psi \rangle \quad \forall \phi, \psi$$

Writing the inner products explicitly, this becomes:

$$\int_{X} (\bar{\partial}\phi)\bar{\psi}h = \int_{X} \phi \overline{(\bar{\partial}^{\dagger}\psi)}h \ g_{\bar{z}z}$$

After integrating by parts on the LHS:

$$\int_{X} \phi \; \bar{\partial}(\bar{\psi}h) = \int_{X} \phi \overline{(\bar{\partial}^{\dagger}\psi)} h \; g_{\bar{z}z}$$

Using $\bar{h}=h, \bar{g}^{\bar{z}z}=g^{\bar{z}z}$ and $g^{\bar{z}z}g_{\bar{z}z}=1$, we further rewrite the LHS:

$$\int_{X} \phi h \overline{g^{\bar{z}z}} h^{-1} \, \partial(\psi h) g_{\bar{z}z} = \int_{X} \phi \overline{(\bar{\partial}^{\dagger} \psi)} h \, g_{\bar{z}z}$$

Since this must hold for all ϕ , we obtain:

$$\bar{\partial}^{\dagger}\psi = g^{\bar{z}z}h^{-1}\,\partial(h\psi)$$

$$\bar{\partial}^{\dagger}\psi=g^{\bar{z}z}\nabla_z\psi$$

Where $\nabla_z : \Gamma(X, L \otimes \bar{K}) \to \Gamma(X, L \otimes \bar{K} \otimes K)$ is the covariant derivative on the bundle $L \otimes \bar{K}$.

c) We first show that $\operatorname{Ker} \Delta_+ = \operatorname{Ker} \bar{\partial}$, and the analogous statement will hold for Δ_- .

$$\operatorname{Ker} \Delta_{+} = \{ \phi \in \Gamma(X, L) | \bar{\partial}^{\dagger} \bar{\partial} \phi = 0 \} \subset \{ \phi | \langle \phi, \bar{\partial}^{\dagger} \bar{\partial} \phi \rangle = 0 \}$$
$$= \{ \phi | ||\bar{\partial} \phi||^{2} = 0 \} = \{ \phi |\bar{\partial} \phi = 0 \} = \operatorname{Ker} \bar{\partial}$$

But clearly $\operatorname{Ker} \bar{\partial} \subset \operatorname{Ker} \bar{\partial}^{\dagger} \bar{\partial} = \operatorname{Ker} \Delta_{+}$, so the two are equal. Therefore:

$$\dim \operatorname{Ker} \Delta_{+} - \dim \operatorname{Ker} \Delta_{-} = \dim \operatorname{Ker} \bar{\partial} - \dim \operatorname{Ker} \bar{\partial}^{\dagger}$$

We can define the action of $e^{-t\Delta_{\pm}}$ on eigenfunctions ϕ_{\pm}^{n} as:

$$e^{-t\Delta_{\pm}}\phi_{+}^{n} = e^{-t\lambda_{\pm}^{n}}\phi_{+}^{n}$$

We consider only eigenfunctions that satisfy $||\phi_{\pm}^n|| = 1$. Assuming that the eigenvalues are discrete, we can define the trace of the exponential as:

$$\operatorname{Tr} e^{-t\Delta_{\pm}} = \sum_{n} \langle \phi_{\pm}^{n}, e^{-t\Delta_{\pm}} \phi_{\pm}^{n} \rangle = \sum_{n} e^{-t\lambda_{\pm}^{n}}$$

Now note that, if $\lambda \neq 0$ is an eigenvalue for Δ_+ , it is also an eigenvalue for Δ_- . This is because:

$$\bar{\partial}^{\dagger}\bar{\partial}\phi = \lambda\phi \Rightarrow (\bar{\partial}\bar{\partial}^{\dagger})(\bar{\partial}\phi) = \lambda(\bar{\partial}\phi)$$

The converse is proved analogously. We see that the nonzero eigenvalues of Δ_+ and Δ_- coincide, and therefore:

$$\operatorname{Tr} e^{-t\Delta_{+}} - \operatorname{Tr} e^{-t\Delta_{-}} = \sum_{\lambda_{n}=0} e^{-t\lambda_{+}^{n}} - \sum_{\lambda_{n}=0} e^{-t\lambda_{-}^{n}}$$

Recall that each n parametrizes a unit length eigenfunction, therefore each $\lambda_n = 0$ gives a one-dimensional subspace of the kernel. This becomes:

$$\operatorname{Tr} e^{-t\Delta_+} - \operatorname{Tr} e^{-t\Delta_-} = \dim \operatorname{Ker} \Delta_+ - \dim \operatorname{Ker} \Delta_-$$

And combining this with our previous result:

$$\operatorname{Tr} e^{-t\Delta_{+}} - \operatorname{Tr} e^{-t\Delta_{-}} = \dim \operatorname{Ker} \bar{\partial} - \dim \operatorname{Ker} \bar{\partial}^{\dagger}$$

d) The operator $\bar{\partial}$ is defined on $\Gamma(X, L)$ and:

$$\operatorname{Ker} \bar{\partial} = \{ \phi \in \Gamma(X, L) | \bar{\partial} \phi = 0 \} = H^0(X, L)$$

Moreover, in part b) we showed that:

$$\operatorname{Ker} \bar{\partial}^{\dagger} = \{ \psi \in \Gamma(X, L \otimes \bar{K}) | \partial_{z}(h\psi) = 0 \}$$
$$= \{ \psi \in \Gamma(X, L \otimes \bar{K}) | \partial_{\bar{z}}(h\bar{\psi}) = 0 \}$$

This gives an isomorphism:

$$\psi \in \operatorname{Ker} \bar{\partial}^{\dagger} \longleftrightarrow h\bar{\psi} \in \operatorname{Ker} \bar{\partial}|_{\Gamma(X,K \otimes L^{-1})}$$

Which shows that dim Ker $\bar{\partial}^{\dagger} = \dim H^0(X, K \otimes L^{-1})$. Together with the result of part c), we get:

$$\operatorname{Tr} e^{-t\Delta_+} - \operatorname{Tr} e^{-t\Delta_-} = \dim H^0(X, L) - \dim H^0(X, K \otimes L^{-1})$$

Problem 4

a) On $X_{\mu} \cap X_{\nu}$, ϕ^{α} satisfy the glueing condition:

$$\phi_{\mu}^{\alpha}(z_{\mu}) = t_{\mu\nu}{}^{\alpha}{}_{\beta}(z)\phi_{\nu}^{\beta}(z_{\nu})$$

The transition matrix is holomorphic, $\partial_{\bar{i}} t = 0$, therefore:

$$\frac{\partial}{\partial \bar{z}_{\mu}^{j}} \phi_{\mu}^{\alpha}(z_{\mu}) = t_{\mu\nu}{}^{\alpha}{}_{\beta}(z) \frac{\partial}{\partial \bar{z}_{\mu}^{j}} \phi_{\nu}^{\beta}(z_{\nu}) = t_{\mu\nu}{}^{\alpha}{}_{\beta}(z) \frac{\partial}{\partial \bar{z}_{\mu}^{k}} \frac{\partial}{\partial \bar{z}_{\nu}^{k}} \phi_{\nu}^{\beta}(z_{\nu})$$

Which shows that $\partial_{\bar{j}} \phi^{\alpha} \in \Gamma(X, E \otimes \Lambda^{0,1})$. In the case of $\nabla_{j} \phi$, we have $H_{\bar{\beta}\gamma} \in \Gamma(X, \bar{E}^{*} \otimes E^{*})$, so $H_{\bar{\beta}\gamma}\phi^{\gamma} \in \Gamma(X, \bar{E}^{*})$. This is an antiholomorphic bundle, so the same reasoning as for $\partial_{\bar{j}}$ above shows that $\partial_{j}(H_{\bar{\beta}\gamma}\phi^{\gamma}) \in \Gamma(X, \bar{E}^{*} \otimes \Lambda^{1,0})$ is well-defined. Finally, since $H^{\alpha\bar{\beta}} \in \Gamma(X, E \otimes \bar{E})$, we see that $\nabla_{j}\phi \in \Gamma(X, E \otimes \Lambda^{1,0})$.

b)
$$\nabla_{i}\phi^{\alpha} = H^{\alpha\bar{\beta}}H_{\bar{\beta}\gamma}\,\partial_{i}\,\phi^{\gamma} + H^{\alpha\bar{\beta}}\,\partial_{i}\,H_{\bar{\beta}\gamma}\phi^{\gamma} = \delta^{\alpha}_{\gamma}\,\partial_{i}\,\phi^{\gamma} + (H^{\alpha\bar{\beta}}\,\partial_{i}\,H_{\bar{\beta}\gamma})\phi^{\gamma}$$

Therefore $A^{\alpha}_{i\gamma}=H^{\alpha\bar{\beta}}\,\partial_j\,H_{\bar{\beta}\gamma}.$ Now we write the commutator:

$$[\nabla_{j}, \nabla_{\bar{k}}] \phi^{\alpha} = [\partial_{j}, \partial_{\bar{k}}] \phi^{\alpha} + A^{\alpha}_{j\gamma} (\partial_{\bar{k}} \phi^{\gamma}) - \partial_{\bar{k}} (A^{\alpha}_{j\gamma} \phi^{\gamma})$$
$$= -(\partial_{\bar{k}} A^{\alpha}_{j\gamma}) \phi^{\gamma}$$

Therefore $F_{\bar{k}j}^{\alpha}{}_{\gamma} = -\partial_{\bar{k}} A^{\alpha}_{j\gamma} = -\partial_{\bar{k}} (H^{\alpha\bar{\beta}} \partial_{j} H_{\bar{\beta}\gamma}).$

c) We begin by computing dA:

$$dA = d(A_j dz^j) = (\partial_k A_j dz^k + \partial_{\bar{k}} A_j d\bar{z}^k) \wedge dz^j$$

$$= \frac{1}{2} (\partial_k A_j - \partial_j A_k) dz^k \wedge dz^j + F_{\bar{k}j} d\bar{z}^k \wedge dz^j$$

$$= \frac{1}{2} [\partial_k (H^{-1} \partial_j H) - \partial_j (H^{-1} \partial_k H)] dz^k \wedge dz^j + F$$

$$= \frac{1}{2} [-H^{-1} (\partial_k H) H^{-1} (\partial_j H) - (j \leftrightarrow k)] dz^k \wedge dz^j + F$$

$$= \frac{1}{2} (A_j A_k - A_k A_j) dz^k \wedge dz^j + F$$

$$= -A \wedge A + F$$

Thus $F = dA + A \wedge A$. We take another exterior derivative of this equation and use the fact that $d^2 = 0$:

$$dF = d(A \land A) = dA \land A - A \land dA$$

= $(-A \land A + F) \land A - A \land (-A \land A + F)$
= $F \land A - A \land F$

d) If such ∇_j exists, it has to satisfy:

$$\phi^{\alpha}(\nabla_{j}\psi_{\alpha}) = \partial_{j}(\phi^{\alpha}\psi_{\alpha}) - (\nabla_{j}\phi^{\alpha})\psi_{\alpha}$$

$$= (\partial_{j}\phi^{\alpha})\psi_{\alpha} + \phi^{\alpha}(\partial_{j}\psi_{\alpha}) - (\partial_{j}\phi^{\alpha})\psi_{\alpha} - A^{\alpha}_{j\beta}\phi^{\beta}\psi_{\alpha}$$

$$= \phi^{\alpha}(\partial_{j}\psi^{\alpha}) - A^{\beta}_{j\alpha}\phi^{\alpha}\psi_{\beta}$$

$$= \phi^{\alpha}(\partial_{j}\psi^{\alpha}) - \phi^{\alpha}A^{\beta}_{j\alpha}\psi_{\beta}$$

On the third line we simply relabeled the dummy indices α and β . We see that the following definition does the job:

$$\nabla_{j}\psi_{\alpha} = \partial_{j}\psi_{\alpha} - \psi_{\beta}A^{\beta}_{j\alpha}$$
$$\nabla_{j}\psi = \partial_{j}\psi - \psi A_{j}$$

For $T \in \Gamma(X, \operatorname{End}(E))$, we proceed similarly:

$$\begin{split} (\nabla_{j}T^{\alpha}{}_{\beta})\phi^{\beta} &= \nabla_{j}(T^{\alpha}{}_{\beta}\phi^{\beta}) - T^{\alpha}{}_{\beta}(\nabla_{j}\phi)^{\beta} \\ &= \partial_{j}(T^{\alpha}{}_{\beta}\phi^{\beta}) + A^{\alpha}_{j\gamma}T^{\gamma}{}_{\beta}\phi^{\beta} - T^{\alpha}{}_{\beta}\,\partial_{j}\,\phi^{\beta} - T^{\alpha}{}_{\beta}A^{\beta}_{j\gamma}\phi^{\gamma} \\ &= \partial_{j}\,T^{\alpha}{}_{\beta}\phi^{\beta} + A^{\alpha}_{j\gamma}T^{\gamma}{}_{\beta}\phi^{\beta} - T^{\alpha}{}_{\gamma}A^{\gamma}_{j\beta}\phi^{\beta} \\ \nabla_{j}T^{\alpha}{}_{\beta} &= \partial_{j}\,T^{\alpha}{}_{\beta} + A^{\alpha}_{j\gamma}T^{\gamma}{}_{\beta} - T^{\alpha}{}_{\gamma}A^{\gamma}_{j\beta} \\ \nabla_{j}T &= \partial_{j}\,T + [A_{j},T] \end{split}$$

e) The usual exterior derivative d on scalar valued forms is defined as:

$$d(\omega_{\bar{k}j}dz^j \wedge d\bar{z}^k) = (\partial_l \,\omega_{\bar{k}j})dz^l \wedge dz^j \wedge d\bar{z}^k + (\partial_{\bar{l}} \,\omega_{\bar{k}j})d\bar{z}^l \wedge dz^j \wedge d\bar{z}^k$$

We emulate this behavior and define:

$$d_{A}(F_{\bar{k}j}dz^{j} \wedge d\bar{z}^{k}) = (\nabla_{l}F_{\bar{k}j})dz^{l} \wedge dz^{j} \wedge d\bar{z}^{k} + (\nabla_{\bar{l}}F_{\bar{k}j})d\bar{z}^{l} \wedge dz^{j} \wedge d\bar{z}^{k}$$

$$= (\partial_{l}F_{\bar{k}j}dz^{l} + \partial_{\bar{l}}F_{\bar{k}j}d\bar{z}^{l}) \wedge dz^{j} \wedge d\bar{z}^{k} + (A_{l}F_{\bar{k}j} - F_{\bar{k}j}A_{l})dz^{l} \wedge dz^{j} \wedge d\bar{z}^{k}$$

$$d_{A}F = dF + A \wedge F - F \wedge A$$

Together with the result of part c), this shows $d_A F = 0$.