Sure Independence Screening for Ultra-High Dimensional Feature Space

Rong Wei (Carter) Man, Chen Yan Michael Chou

STA315 University of Toronto Mississauga

April 2, 2019

Overview

- Background Information
- 2 Insight on High Dimensionality
- 3 Existing Methods (LASSO, Dantzig Selector, etc.)
- 4 Sure Independence Screening (SIS)
- Simulation Results
- 6 Conclusions

Background Information

- Variable selection plays an important role in high dimensional statistical modeling
- Computational cost and estimation accuracy are top two concerns
- The results from existing methods are challenged when dimensionality is ultra high
- Frequent in genomics and finance

Insight on Ultra High Dimensionality

- 4 facts for real difficulty when p>>n:
 - Design matrix X is rectangular
 - ullet Population covariance matrix Σ may become ill-conditioned as n grows
 - Minimum non-zero absolute coefficient $|\beta_i|$ may decay with n to noise level
 - Distribution of z may have heavy tails

Goal of Paper

Reduce dimensionality p from a large or huge scale (say, $exp(O(n^{\xi}))$) for some $\xi > 0$) to a relatively large scale d (e.g., o(n)) by a fast and efficient method.

Existing Methods

- SCAD
 - coincides with lasso until $|x|=\lambda$, then smoothly transitions to a quadratic penalization
 - retains the penalization rate (and bias) of the LASSO for small coefficients, but continuously relaxes the rate of penalization as the absolute value of the coefficient increases
- Adaptive Lasso (AdaLasso)
 - ullet use weighted penalty approach (bias of estimate comes from λ)
 - choose weights such that variable with large coefficients have smaller weights
- Lasso

Existing Methods

Dantzig Selector (DS)

Dantzig Selector (DS)

The Dantzig selector was proposed in Candes and Tao (2007) to recover a sparse high dimensional parameter vector in the linear model. It is the solution $\hat{\beta_{DS}}$ to the following ℓ_1 -regularization problem

$$\min_{\zeta \in R^d} ||\zeta||_1 \text{ subject to } ||(X_{\mathcal{M}})^T r||_{\infty} \leq \lambda_d \sigma,$$

The authors pointed out that the above convex optimization problem can be easily recast as a linear program:

$$\min \sum_{i=1}^d u_i \text{ subject to} - u \leq \zeta \leq u \text{ and} - \lambda_d \sigma 1 \leq (X_{\mathcal{M}})^T (y - X_{\mathcal{M}} \zeta) \leq \lambda_d \sigma 1.$$

Dantzig Selector (DS)

- Well-developed lower dimensional technique that can be applied to estimate the d-vector β at d < n
- Problems:
 - Computational cost high for huge scale problems
 - Log p grows large and not negligible
 - Large dimensionality causes Uniform Uncertainty Principle (UUP) to fail
 - No guarantee of model selection

Let $\omega = (\omega_1, ..., \omega_p)^T$ be a *p*-vector obtained by the componentwise regression, that is,

$$\omega = X^T y,$$

where the $n \times p$ data matrix X is first standardized columnwise. For any given $\gamma \in (0,1)$, we sort the p componentwise magnitudes of the vector ω in a decreasing order and define a submodel

$$\mathcal{M}_{\gamma} = \{1 \leq i \leq p : |\omega_i| \text{ is among the first } [\gamma n] \text{ largest of all} \},$$

where $[\gamma n]$ denotes the integer part of γn . This is a straightforward way to shrink the full model $\{1,...,p\}$ down to a submodel \mathcal{M}_{γ} with size $d=[\gamma n]< n$.

New Definition:

SIS ranks all the p features using the marginal utilities based on the marginal correlations $c\hat{o}rr(x_j,y)$ of x_j 's with the response y and retains the top d covariates with the largest absolute correlations collected in the set $\hat{\mathcal{M}}$; that is,

$$\hat{\mathcal{M}} = \{1 \leq j \leq p : |c\hat{o}rr(x_j, y)| \text{ is among the top } d \text{ largest ones} \},$$

where $c\hat{o}rr(x_j, y)$ denotes the sample correlation. This achieves the goal of variable screening.

Given \mathcal{M}_* the true model and \mathcal{M}_γ the model selected by SIS:

Theorem

$$P(\mathcal{M}_* \subset \mathcal{M}_\gamma) o 1$$
 as $n o \infty$

Why pick SIS over other existing methods?

- Narrows down the search for important predictors, speeds up Dantzig selector
- Reduces logarithmic factor: $Log(p) \rightarrow Log(d) < log(n)$
- Oracle Property: Selecting right model; estimating parameters efficiently

Simulation Procedure

- Apply SIS to reduce dimensionality from p to large scale d (d < n)
- Use lower dimensional mode selection method (SCAD, DS, AdaLasso)

Figure 2: Methods of model selection with ultra high dimensionality.

Simulation I

$$(n, p, s) = (200, 1000, 8)$$
 and $(800, 20000, 18)$

Table 1: Results of simulation I

Medians of the selected model sizes (upper entry))
	and the estimation errors (lower entry)					
p	DS	Lasso	SIS-SCAD	SIS-DS	SIS-DS-SCAD	SIS-DS-AdaLasso
1000	10^{3}	62.5	15	37	27	34
	1.381	0.895	0.374	0.795	0.614	1.269
20000	_	_	37	119	60.5	99
		_	0.288	0.732	0.372	1.014

Simulation II

$$(n, p, s) = (200, 1000, 5), (200, 1000, 8)$$
 and $(800, 20000, 14)$

Table 2: Results of simulation II

		Medians of the selected model sizes (upper entry))	
	and the estimation errors (lower entry)						
p	DS	Lasso	SIS-SCAD	SIS-DS	SIS-DS-SCAD	SIS-DS-AdaLasso	
1000	10^{3}	91	21	56	27	52	
(s = 5)	1.256	1.257	0.331	0.727	0.476	1.204	
	10^{3}	74	18	56	31.5	51	
(s = 8)	1.465	1.257	0.458	1.014	0.787	1.824	
20000	_	_	36	119	54	86	
			0.367	0.986	0.743	1.762	

Real Data Analysis

Table 3: Classification errors on the Leukemia data set

Method	Training error	Test error	Number of genes	
SIS-SCAD-LD	0/38	1/34	16	
SIS-SCAD-NB	4/38	1/34	16	
Nearest shrunken centroids	1/38	2/34	21	

Problems of SIS

- Unimportant predictors correlated with important predictors can have higher priority to be selected
- Important predictors that are marginally uncorrelated but jointly correlated with response wont be picked
 - $cov(x_i, x_j)$ is low, but $cov(x_i, x_j, y)$ is high
- Issue of collinearity

Iterative Sure Independence Screening (ISIS)

- ullet Select subset of k_1 variables $A_1 = \left\{X_{i_1}, X_{i_2}, ..., X_{i_{k_1}}
 ight\}$
- Use *n*-vector of residuals as new responses and reapply SIS to remaining $p-k_1$ variables $A_2=\left\{X_{j_1},X_{j_2},...,X_{j_{k_2}}\right\}$
- Weaken priority of unimportant variables
- Variables missed in first screening will survive
- Stop until we get ℓ disjoint subsets of A_1 , ..., A_ℓ whose union $A = \bigcup_{i=1}^{\ell} A_i$ has a size d, which is less than n

Simulation III

Table 7: Simulations I and II in Section 3.3 revisited: Medians of the selected model sizes (upper entry) and the estimation errors (lower entry)

	Simulation I	Simulation II		
p	ISIS-SCAD		ISIS-SCAD	
1000	13	(s = 5)	11	
	0.329		0.223	
		(s = 8)	13.5	
			0.366	
20000	31		27	
	0.246		0.315	

SIS-SCAD	
21	
0.331	
18	
0.458	
36	
0.367	

SIS-SCAD	
15	
0.374	
37	
0.288	

(b) SIS Simulation II

(a) SIS Simulation I

Conclusions from Paper

- Reduce dimensionality from high up
- Speed up variable selection and improve estimation accuracy
- Can be combined with lower dimensional techniques

Thank You for Listening!