S. V. National Institute of Technology, Surat

Applied Mathematics and Humanities Department

B. Tech.-I (Semester-I) Branch-All

Subject: Mathematics-I (MA 10 S1)

Tutorial 1 :

Hyperbolic Functions, Successive Differentiation and Leibnitz's Theorem

- Define **hyperbolic cosine function** and **hyperbolic sine function** with their graphs. Prove the identities: (i) $\cosh^2 x \sinh^2 x = 1$ (ii) $\cosh 2x = 2 \cosh^2 x 1$ (ii) $\cosh 2x = 1 + 2\sinh^2 x$.
- 2. Define exponential formula for sech x, cosech x, tanh x, and coth x. Show that (i) $\operatorname{sech}^2 x = 1 \tanh^2 x$ (ii) $\coth^2 x = 1 + \operatorname{cosech}^2 x$.
- 3. Given that $\sinh x = \frac{5}{12}$, find the values of (a) $\cosh x$ (b) $\tanh x$ (c) $\operatorname{sech} x$ (d) $\coth x$ (e) $\sinh 2x$ (f) $\cosh 2x$. Determine the value of x as a natural logarithm.
- 4 Prove that $\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right), \ x \in \mathbb{R} \text{ and } \cosh^{-1} x = \ln \left(x + \sqrt{x^2 1} \right) \ x \ge 1.$
 - 4 Prove that $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}), x \in \mathbb{R}$ and $\cosh^{-1} x = \ln(x + \sqrt{x^2 1}), x \ge 1$.
- Find the derivative of (i) $\sinh^{-1}(x^3)$ (ii) $\cosh^{-1}(2x+1)$.

 Ans (i) $\frac{3x^2}{\sqrt{x^6+1}}$ (ii) $\frac{1}{\sqrt{x^2+x}}$
- 6 If $y = \frac{x^4}{(x-1)(x-2)}$, then find y_n . Ans: $y_n = (-1)^n (n)! \left(\frac{16}{(x-2)^{n+1}} \frac{1}{(x-1)^{n+1}} \right)$.
- 7. Find the nth derivative of $y = e^{2x} \cos x \sin^2 2x$
- 8. Find the nth derivative of $\frac{1}{x^2 + a^2}$. Ans: $\frac{(-1)^n n!}{a^{n+2}} \sin(n+1)\theta \sin^{n+1}\theta$.
- 9. Show that $D^{2n}(x^2-1)^n=(2n)!$.
 - 10 State and prove Leibnitz's Theorem.

11. If
$$y = x \log \left(\frac{x-1}{x+1} \right)$$
, show that $y_n = (-1)^{n-2} (n-2)! \left(\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right)$.

- 12. If $I_n = \frac{d^n}{dx^n} (x^n \log x)$, prove that $I_n = nI_{n-1} + (n-1)!$.
- 13. If $y = x^2 e^x$, prove that $y_n = \frac{1}{2} n(n-1)y_2 n(n-2)y_1 + \frac{1}{2} (n-1)(n-2)y$.
- 14. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, then prove that $(x^2 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$.
- 15. Determine $y_n(0)$, where $y = e^{m\cos^{-1}x}$.

Ans.:
$$y_n(0) = \begin{cases} m^2(2^2 + m^2)(4^2 + m^2)...((n-2)^2 + m^2), n \text{ even} \\ m^2(1^2 + m^2)(3^2 + m^2)...((n-2)^2 + m^2), n \text{ odd} \end{cases}$$

16. If $f(x) = \tan x$, prove that

$$f^{n}(0) - \binom{n}{2} f^{n-2}(0) + \binom{n}{4} f^{n-4}(0) \dots = \sin\left(\frac{n\pi}{2}\right).$$