# Conjecturer une limite - correction

Exercice 1

1) Réponse c.

2) Réponse b.

3) Réponses a et d.

Exercice 2

Dans chacun des cas suivants, déterminer d'après la courbe les limites de la fonction f aux bornes et une équation de chacune des asymptotes.



 $\lim_{x\to -\infty} f(x) = 1 \text{ et } \lim_{x\to +\infty} f(x) = 1$  La courbe admet une asymptote horizontale d'équation y = 1 en  $+\infty$  et en  $-\infty$ .

 $\lim_{\substack{x \to -2 \\ x < -2}} f(x) = +\infty \text{ et } \lim_{\substack{x \to -2 \\ x > -2}} f(x) = -\infty$ 

La courbe admet une asymptote verticale d'équation x = -2.

$$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = -\infty \text{ et } \lim_{\substack{x \to 2 \\ x > 2}} f(x) = +\infty$$

La courbe admet une asymptote verticale d'équation x = 2.

Exercice 3

L'affirmation suivante est-elle vraie ou fausse? (justifier votre réponse)

"Si f est une fonction strictement décroissante sur  $]0; +\infty[$  alors on a nécessairement  $\lim_{x\to +\infty} f(x) = -\infty$ "

L'affirmation est fausse.

Contre-exemple avec f définie sur  $]0; +\infty[$  par  $f(x)=\frac{1}{x}$  qui est bien strictement décroissante sur  $]0; +\infty[$  mais avec  $\lim_{x\to\infty} f(x)=0.$ 

Exercice 4

Soit la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = \frac{e^x - 1}{e^x + 1}$ 



2) On peut conjecturer que  $\lim_{x \to -\infty} f(x) = -1$  et  $\lim_{x \to +\infty} f(x) = 1$ 

3) On peut proposer un algorithme calculant l'entier à partir duquel la distance entre la courbe et les droites d'équations y=1 en  $-\infty$  et y=1 en  $+\infty$  est plus petite, par exemple, de  $a = 10^3$ .

#### Exercice 5

Soit la fonction 
$$f$$
 définie sur  $\mathbb{R}\setminus\{1\}$  par :  $f(x)=\frac{x}{(x-1)^2}$ 

1) On obtient la courbe suivante :



- 2) (a) On peut conjecturer que  $\lim_{x \to 1} f(x) = +\infty$
- **(b)** La courbe admet une asymptote verticale d'équation x = 1.

#### Exercice 6

On donne la représentation dune fonction f ci-contre définie sur  $\mathbb{R}\setminus\{0\}$ .

- 1) On peut conjecturer que  $\lim_{x\to -\infty} f(x)=0$  et  $\lim_{x\to +\infty} f(x)=1$  La courbe admet deux asymptotes horizontales y=0 et y=1.
- 2) (a) On peut conjecturer que  $\lim_{x\to 0^-} f(x) = -\infty$  et  $\lim_{x\to 0^+} f(x) = +\infty$  (b) La courbe admet une asymptote verticale x=0.
- (c) La fonction f nadmet pas de limite en 0 car les limites en 0<sup>-</sup> et 0<sup>+</sup> ne sont pas égales.

# **Opérations sur les limites**

#### Exercice 7

On donne les limites suivantes :  $\lim_{x\to +\infty} f(x) = +\infty$  et  $\lim_{x\to +\infty} g(x) = 0^-$ 

Les bonnes réponses sont les réponses a); c) et d). La proposition b) est une forme indéterminée.

#### Exercice 8

Soit la fonction f définie sur  $\mathbb{R}^*$  par :

$$f(x) = 2x - 1 - \frac{1}{x}$$

- 1) Déterminer les limites de f en  $+\infty$  et en  $-\infty$ .
  - Limite en  $+\infty$ :

On a: 
$$\lim_{x \to +\infty} 2x - 1 = +\infty$$
 et  $\lim_{x \to +\infty} \frac{1}{x} = 0$ 

Par somme, 
$$\lim_{x \to +\infty} 2x - 1 - \frac{1}{x} = +\infty$$

• Limite en  $-\infty$ :

On a: 
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} 2x - 1 = -\infty$$
 et  $\lim_{\substack{x \to -\infty \\ x \to -\infty}} \frac{1}{x} = 0$ 

Par somme, 
$$\lim_{x \to -\infty} 2x - 1 - \frac{1}{x} = -\infty$$

2) Déterminer les limites de f en 0.

On n'a pas de limite en 0 mais une limite à gauche et à droite.

• Limite en 0<sup>-</sup> :

On a: 
$$\lim_{x\to 0^{-}} 2x - 1 = -1$$
 et  $\lim_{x\to 0^{-}} \frac{1}{x} = -\infty$ 

**Par somme,** 
$$\lim_{x \to 0^{-}} 2x - 1 - \frac{1}{x} = +\infty$$

• Limite en 0<sup>+</sup> :

On a: 
$$\lim_{x \to 0^+} 2x - 1 = -1$$
 et  $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ 

**Par somme,** 
$$\lim_{x \to 0^+} 2x - 1 - \frac{1}{x} = -\infty$$

# Exercice 9

Soit la fonction f définie sur  $\mathbb{R}\setminus\{2\}$  par :

$$f(x) = \frac{3x - 1}{2 - x}$$
 avec  $a = 2$ 

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

**Etude du signe de** 2 - x:

$$2 - x > 0 \Leftrightarrow -x > -2 \Leftrightarrow x < 2$$

$$2 - x < 0 \Leftrightarrow -x < -2 \Leftrightarrow x > 2$$

#### • Limite en $2^-$ lorsque x < 2:

On a: 
$$\lim_{x \to 2^{-}} 3x - 1 = 5$$
 et  $\lim_{x \to 2^{-}} 2 - x = 0^{+}$ 

Par quotient, 
$$\lim_{x\to 2^-} \frac{3x-1}{2-x} = +\infty$$

#### • Limite en $2^+$ lorsque x > 2:

On a: 
$$\lim_{x \to 2^+} 3x - 1 = 5$$
 et  $\lim_{x \to 2^+} 2 - x = 0^-$ 

Par quotient, 
$$\lim_{x\to 2^+} \frac{3x-1}{2-x} = -\infty$$

### Exercice 10

Soit la fonction f définie sur  $\mathbb{R}^*$  par :

$$f(x) = \frac{e^x}{e^x - 1}$$
 avec  $a = 0$ 

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

**Etude du signe de**  $e^x - 1$ :

$$e^{x} - 1 > 0 \Leftrightarrow e^{x} > 1 \Leftrightarrow x > 0$$
  
 $e^{x} - 1 < 0 \Leftrightarrow e^{x} < 1 \Leftrightarrow x < 0$ 

#### • Limite en 0<sup>-</sup> :

On a : 
$$\lim_{x \to 0^{-}} e^{x} = 1$$
 et  $\lim_{x \to 0^{-}} e^{x} - 1 = 0^{-}$ 

Par quotient, 
$$\lim_{x\to 0^-} \frac{e^x}{e^x-1} = -\infty$$

#### • Limite en $0^+$ :

On a : 
$$\lim_{x\to 0^+} e^x = 1$$
 et  $\lim_{x\to 0^+} e^x - 1 = 0^+$ 

Par quotient, 
$$\lim_{x\to 0^+} \frac{e^x}{e^x-1} = +\infty$$

#### Exercice 11

Soit la fonction f définie sur  $\mathbb{R}^*$  par :

$$f(x) = \frac{x-2}{1-e^x} \text{ avec } a = 0$$

Déterminer la limite à gauche et à droite de la valeur *a* donnée, en justifiant le signe du dénominateur.

Etude du signe de  $1 - e^x$ :

$$1 - e^{x} > 0 \Leftrightarrow -e^{x} > -1 \Leftrightarrow x < 0$$
  
$$1 - e^{x} < 0 \Leftrightarrow -e^{x} < -1 \Leftrightarrow x > 0$$

On a: 
$$\lim_{x \to 0^{-}} x - 2 = -2$$
 et  $\lim_{x \to 0^{-}} 1 - e^{x} = 0^{+}$ 

Par quotient, 
$$\lim_{x\to 0^-} \frac{x-2}{1-e^x} = -\infty$$

On a : 
$$\lim_{x \to 0^+} x - 2 = -2$$
 et  $\lim_{x \to 0^+} 1 - e^x = 0^-$ 

Par quotient, 
$$\lim_{x\to 0^+} \frac{x-2}{1-e^x} = +\infty$$

# Chapitre 1: Limites de fonctions

#### Exercice 12

Soit la fonction f définie sur  $\mathbb{R}\setminus\{-1\}$  par :

$$f(x) = \frac{2x^2 - 1}{-x - 1}$$
 avec  $a = -1$ 

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

**Etude du signe de** -x-1 :

$$-x - 1 > 0 \Leftrightarrow -x > 1 \Leftrightarrow x < -1$$
  
 $-x - 1 < 0 \Leftrightarrow -x < 1 \Leftrightarrow x > -1$ 

• Limite en  $-1^-$ :

On a : 
$$\lim_{x \to -1^{-}} 2x^{2} - 1 = 1$$
 et  $\lim_{x \to -1^{-}} -x - 1 = 0^{+}$ 

Par quotient, 
$$\lim_{x\to -1^-} \frac{2x^2-1}{-x-1} = +\infty$$

• Limite en  $-1^+$ :

On a: 
$$\lim_{x \to -1^+} 2x^2 - 1 = 1$$
 et  $\lim_{x \to -1^+} -x - 1 = 0^-$ 

Par quotient, 
$$\lim_{x \to -1^+} \frac{2x^2 - 1}{-x - 1} = -\infty$$

#### Exercice 13

Déterminer la limite en  $+\infty$  de la fonction f dans les cas suivants :

(On précisera si la courbe de f admet une asymptote horizontale en  $+\infty$ )

(a) 
$$f(x) = \frac{1}{x} - \sqrt{x}$$
 (b)  $f(x) = \frac{1}{x+1} - 2$ 

(a) Etude de la limite en  $+\infty$  de  $f(x) = \frac{1}{x} - \sqrt{x}$  :

On a :  $\lim_{x \to +\infty} \frac{1}{x} = 0^+$  et  $\lim_{x \to +\infty} \sqrt{x} = +\infty$  Par somme,  $\lim_{x \to +\infty} \frac{1}{x} - \sqrt{x} = -\infty$  Pas d'asymptote horizontale.

**(b) Etude de la limite en**  $+\infty$  de  $f(x) = \frac{1}{x+1} - 2$  :

On a : 
$$\lim_{x \to +\infty} x + 1 = +\infty$$
 donc  $\lim_{x \to +\infty} \frac{1}{x+1} = 0^+$ 

Par somme, 
$$\lim_{x \to +\infty} \frac{1}{x+1} - 2 = -2$$

La courbe admet une asymptote horizontale d'équation y=-2 en  $+\infty$ .

#### Exercice 14

Déterminer la limite en  $-\infty$  de la fonction f dans les cas suivants : (On précisera si la courbe de f admet une asymptote horizontale en  $+\infty$ )

(a) 
$$f(x) = \frac{1}{x^3} - x$$
 (b)  $f(x) = \frac{x+1}{\frac{1}{x} - 2}$ 

(a) Etude de la limite en  $-\infty$  de  $f(x) = \frac{1}{x^3} - x$ :

On a : 
$$\lim_{x \to -\infty} \frac{1}{x^3} = 0^-$$
 et  $\lim_{x \to -\infty} x = -\infty$  Par somme,  $\lim_{x \to -\infty} \frac{1}{x^3} - x = +\infty$ 

Pas d'asymptote horizontale.

**(b) Etude de la limite en**  $-\infty$  de  $f(x) = \frac{x+1}{\frac{1}{2}-2}$ :

On a : 
$$\lim_{x \to -\infty} x + 1 = -\infty$$
 et  $\lim_{x \to -\infty} \frac{1}{x} = 0^-$  donc  $\lim_{x \to -\infty} \frac{1}{x} - 2 = -2$ 

Par quotient, 
$$\lim_{x \to -\infty} \frac{x+1}{\frac{1}{x}-2} = +\infty$$

Pas d'asymptote horizontale.

#### Exercice 15

Déterminer les limites en  $+\infty$  des fonctions suivantes en expliquant la méthode utilisée.

(a) 
$$f(x) = \frac{1}{1 + e^x}$$

**(b)** 
$$f(x) = 2x\sqrt{x} + 1$$

**(b)** 
$$f(x) = 2x\sqrt{x} + 1$$
  
**(c)**  $f(x) = \frac{-2}{1 - \sqrt{x}}$   
**(d)**  $f(x) = e^x + x - 4$ 

**(d)** 
$$f(x) = e^x + x - 4$$

(a) 
$$f(x) = \frac{1}{1 + e^x}$$

On a: 
$$\lim_{x \to +\infty} 1 + e^x = +\infty$$

Donc par quotient, 
$$\lim_{x \to +\infty} \frac{1}{1 + e^x} = 0$$

**(b)** 
$$f(x) = 2x\sqrt{x} + 1$$

On a : 
$$\lim_{x \to +\infty} 2x = +\infty$$
 et  $\lim_{x \to +\infty} \sqrt{x} = +\infty$ 

et 
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Donc par produit, 
$$\lim_{x \to +\infty} 2x\sqrt{x} + 1 = +\infty$$

(c) 
$$f(x) = \frac{-2}{1 - \sqrt{x}}$$

On a : 
$$\lim_{x \to +\infty} 1 - \sqrt{x} = -\infty$$

Donc par quotient, 
$$\lim_{x \to +\infty} \frac{-2}{1 - \sqrt{x}} = 0$$

**(d)** 
$$f(x) = e^x + x - 4$$

On a: 
$$\lim_{x \to +\infty} e^x = +\infty$$
 et  $\lim_{x \to +\infty} x = +\infty$ 

Donc par somme, 
$$\lim_{x \to +\infty} e^x + x - 4 = +\infty$$

#### Etude d'une fonction

Soit f la fonction définie sur  $\mathbb{R}\setminus\{-1\}$  par  $f(x)=\frac{-5}{x+1}+2$ .

- 1) Etudier les limites en  $+\infty$  et  $-\infty$ .
- 2) Etudier les limites en -1. Interpréter graphiquement ces limites.
- 3) Calculer f'(x).
- 4) Etudier le signe de f' et dresser le tableau de variation de f.
  - 1) Etude des limites en  $+\infty$  et  $-\infty$ :
  - On a :  $\lim_{x \to +\infty} x + 1 = +\infty$  donc par quotient,  $\lim_{x \to +\infty} \frac{-5}{x+1} = 0$

Ainsi, par somme, 
$$\lim_{x \to +\infty} \frac{-5}{x+1} + 2 = 2$$

• On a :  $\lim_{x \to -\infty} x + 1 = -\infty$  donc par quotient,  $\lim_{x \to -\infty} \frac{-5}{x+1} = 0$ 

Ainsi, par somme, 
$$\lim_{x \to -\infty} \frac{-5}{x+1} + 2 = 2$$

La courbe admet une asymptote horizontale d'équation y=2 en  $+\infty$  et en  $-\infty$ .

2) Etude des limites en -1:

#### Etude du signe de x-1:

$$x - 1 > 0 \Leftrightarrow x > 1$$
  
$$x - 1 < 0 \Leftrightarrow x < 1$$

• Limite en  $-1^-$ :

On a : 
$$\lim_{x \to -1^-} x + 1 = 0^-$$
 donc par quotient,  $\lim_{x \to -1^-} \frac{-5}{x+1} = +\infty$ 

Ainsi, **par somme,**

$$\lim_{x \to -1^{-}} \frac{-5}{x+1} + 2 = +\infty$$

• Limite en  $-1^+$ :

On a : 
$$\lim_{x \to -1^+} x + 1 = 0^+$$
 donc   
par quotient,  $\lim_{x \to -1^+} \frac{-5}{x+1} = -\infty$ 

Ainsi, par somme,  

$$\lim_{x \to -1^+} \frac{-5}{x+1} + 2 = -\infty$$

La courbe admet une asymptote verticale d'équation x = -1.

### 3) Calcul de f':

On pose 
$$u(x) = -5$$
 d'où  $u'(x) = 0$   
 $v(x) = x + 1$  d'où  $v'(x) = 1$ 

D'où, 
$$f'(x) = \frac{u'v - v'u}{v^2} = \frac{-(-5)}{(x+1)^2}$$
  
Donc,  $f'(x) = \frac{5}{(x+1)^2}$ 

# 4) Etude du signe de f':

Pour tout  $x \in \mathbb{R} \setminus \{-1\}$ ,  $(x+1)^2 > 0$ 

Donc, f'(x) > 0 pour tout  $x \in \mathbb{R} \setminus \{-1\}$ .

| X               | $-\infty$ | -1 |   | $+\infty$ |
|-----------------|-----------|----|---|-----------|
| Signe de $f(x)$ | +         |    | + |           |

#### Tableau de variation de f:



#### Théorème des valeurs intermédiaires

#### Exercice 16

Soit f une fonction définie et dérivable sur  $\mathbb{R}$ . On donne ci-dessous le tableau de variations de la fonction f sur  $\mathbb{R}$ .



- 1) Montrer que l'équation f(x) = -3 admet une unique solution sur  $\mathbb{R}$ .
- ullet Dans l'intervalle ]  $-\infty$ ; 1[ :

Sur ]  $-\infty$ ; 1[ on a f(x) > -2.

L'équation f(x) = -3 ne possède donc pas de solution sur  $]-\infty;1[$ .

• Dans l'intervalle  $]1; +\infty[$ :

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur  $]1; +\infty[$ .

On a  $\lim_{x \to +\infty} f(x) = -\infty$  et f(1)=1.

Or,  $-3 \in ]-\infty$ ; 1[

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = -3 admet une unique solution dans  $]1; +\infty[$ .

- On déduit de cette étude que l'équation f(x) = -3 possède une unique solution sur  $\mathbb{R}$ .
- 2) Dénombrer le nombre de solutions de l'équation f(x) = 0.
- Dans l'intervalle ]  $-\infty$ ; 1[ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur  $]-\infty;1[$ .

On a  $\lim_{x\to-\infty} f(x) = -2$  et f(1)=1.

Or,  $0 \in ]-2;1[$ 

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans  $]-\infty;1[$ .

• Dans l'intervalle  $]1; +\infty[$ :

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur  $]1;+\infty[$ .

On a  $\lim_{x\to +\infty} f(x) = -\infty$  et f(1)=1.

Or,  $0 \in ]-\infty;1[$ 

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans  $]1; +\infty[$ .

• On déduit de cette étude que l'équation f(x) = 0 possède donc deux solutions sur  $\mathbb{R}$ .

#### Exercice 17

Soit la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = x^3 + 6x^2 + 9x + 3$  dont les variations sont données par le tableau de variations suivant.

| x  | -∞           | -3 |   | -1 | +∞          |
|----|--------------|----|---|----|-------------|
| f' | +            | þ  | - | Ó  | +           |
| f  | <sup>3</sup> |    |   |    | <b>*</b> +∞ |

#### 1) Justifier que f est continue sur $\mathbb{R}$ .

La fonction f est un polynôme donc f est continue sur  $\mathbb{R}$ .

#### 2) Dénombrer les solutions de l'équation f(x) = 2.

#### • Dans l'intervalle $]-\infty;-3[$ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur  $]-\infty;-3[$ .

On a 
$$\lim_{x \to -\infty} f(x) = -\infty$$
 et f(-3)=3.

Or, 
$$2 \in ]-\infty; 3[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 2 admet une unique solution dans  $]-\infty;-3[$ .

#### • Dans l'intervalle ]-3;-1[ :

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur [-3;-1[.

On a 
$$f(-3)=3$$
 et  $f(-1)=-1$ .

Or, 
$$2 \in ]-1;3[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 2 admet une unique solution dans ]-3;-1[.

# • Dans l'intervalle $]-1;+\infty[$ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur  $]-1;+\infty[$ .

On a f(-1)=-1 et 
$$\lim_{x \to \infty} f(x) = +\infty$$
.

Or, 
$$2 \in ]-1; +\infty[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 2 admet une unique solution dans  $]-1;+\infty[$ .

# • On déduit de cette étude que l'équation f(x) = 2 possède donc trois solutions sur $\mathbb{R}$ .

# 3) (a) Justifier que l'équation f(x) = 4 admet une unique solution $\alpha$ .

#### • Dans l'intervalle $]-\infty;-3[$ :

Sur ] 
$$-\infty$$
;  $-3[$  on a  $f(x) < 3$ .

L'équation f(x) = 4 ne possède donc pas de solution sur  $] - \infty$ ; -3[.

#### • Dans l'intervalle ]-3;-1[:

Sur 
$$]-3;-1[$$
 on a  $f(x)<3.$ 

L'équation f(x) = 4 ne possède donc pas de solution sur  $] - \infty$ ; -3[.

# Chapitre 1 : Limites de fonctions

• Dans l'intervalle  $]-1;+\infty[$ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur  $]-1;+\infty[$ .

On a f(-1)=-1 et 
$$\lim_{x \to 0} f(x) = +\infty$$
.

Or, 
$$4 \in ]-1; +\infty[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 4 admet une unique solution dans  $]-1;+\infty[$ .

- On déduit de cette étude que l'équation f(x) = 4 possède une unique solution sur  $\mathbb{R}$ .
- **(b)** Déterminer un encadrement de  $\alpha$  à l'unité près.

lpha pprox 0 à l'unité près.

#### Exercice 18

Une fonction f définie et dérivable sur [1; 13] a pour tableau de variations le tableau suivant.



1) Justifier la continuité de la fonction f est continue sur [1; 13].

D'après la lecture du tableau de variations, la fonction f est continue sur [1; 13].

- 2) Dénombrer les solutions de l'équation f(x)=5. Justifier.
- Dans l'intervalle ]1; 4[:

D'après le tableau de variations, la fonction f est continue et strictement croissante sur ]1;4[.

On a 
$$f(1)=2$$
 et  $f(4)=7$ .

Or, 
$$5 \in ]2;7[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 5 admet une unique solution dans ]1; 4[.

• Dans l'intervalle [4; 10] :

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur [4; 10].

On a 
$$f(4)=7$$
 et  $f(10)=3$ .

Or, 
$$5 \in ]3;7[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 5 admet une unique solution dans 4; 10[.

• **Dans l'intervalle** ]10; 13[ :

Sur ]10; 13[ on a 
$$f(x) < 4$$
.

L'équation f(x) = 5 ne possède donc pas de solution sur ]10; 13[.

• On déduit de cette étude que l'équation f(x) = 5 possède deux solutions sur [1; 13].

- 3) Justifier que l'équation  $f(x) = \frac{5}{2}$  admet une unique solution  $\alpha$ .
- Dans l'intervalle ]1; 4[ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur ]1;4[.

On  $a_f(1)=2$  et f(4)=7.

Or, 
$$\frac{5}{2} \in ]2; 7[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation  $f(x) = \frac{5}{2}$  admet une unique solution dans ]1; 4[.

• Dans l'intervalle ]4; 10[ :

Sur ]4; 10[ on a f(x) > 3.

L'équation  $f(x) = \frac{5}{2}$  ne possède donc pas de solution sur ]4; 10[.

• **Dans l'intervalle** ]10; 13[ :

Sur ]10; 13[ on a f(x) > 3.

L'équation  $f(x) = \frac{5}{2}$  ne possède donc pas de solution sur ]10; 13[.

• On déduit de cette étude que l'équation  $f(x) = \frac{5}{2}$  possède une unique solution sur [1; 13].

#### Exercice 19

Une fonction f définie et dérivable sur [-5; 5[ a pour tableau de variations le tableau suivant.

| x | <b>-</b> 5 | -2 | 0                       | 3  | 5           |
|---|------------|----|-------------------------|----|-------------|
| f | 2          | _1 | <b>y</b> <sup>3</sup> \ | -2 | <b>≠</b> +∞ |

1) Justifier la continuité de la fonction f sur I = [-5; 5[.

D'après la lecture du tableau de variations, la fonction f est continue sur [1; 13].

- 2) Dénombrer les solutions de l'équation f(x)=0. Justifier.
- Dans l'intervalle ] -5; -2[ :

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur ]-5;-2[.

On a f(-5)=2 et f(-2)=-1.

$$\text{Or, } 0 \in ]-1;2[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans ]-5;-2[.

• **Dans l'intervalle** ] − 2; 0[ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur ]-2;0[.

On a f(-2)=-1 et f(0)=3.

 $\text{Or, } 0 \in ]-1;3[$ 

# **Chapitre 1:** Limites de fonctions

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0admet une unique solution dans ]-2;0[.

#### • Dans l'intervalle ]0;3[:

D'après le tableau de variations, la fonction f est continue et strictement décroissante sur ]0; 3[.

On a 
$$f(0)=3$$
 et  $f(3)=-2$ .

Or, 
$$0 \in ]-2;3[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0admet une unique solution dans [0; 3[.

#### • Dans l'intervalle ]3;5[:

D'après le tableau de variations, la fonction f est continue et strictement croissante sur ]3;5[.

On a f(3)=-2 et 
$$\lim_{x\to 5} f(x) = +\infty$$
.  
Or,  $0 \in ]-2; +\infty[$ 

Or, 
$$0 \in ]-2; +\infty$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0admet une unique solution dans [3; 5].

# On déduit de cette étude que l'équation f(x) = 0 possède quatre solutions sur [-5;5].

#### Exercice 20

On donne le tableau de variations d'une fonction f.



#### 1) Donner les limites de la fonction f en $+\infty$ et en $-\infty$ . Interpréter.

D'après le tableau de variation, on lit  $\lim_{x \to \infty} f(x) = -\infty$  et  $\lim_{x \to \infty} f(x) = 2$ .

La courbe  $C_f$  admet une asymptote horizontale déquation y = 2.

# **2)** La fonction *f* admet-elle une limite en -1? Pourquoi?

D'après le tableau de variation, on lit  $\lim_{x\to -1^-} f(x) = -\infty$  et  $\lim_{x\to -1^+} f(x) = +\infty$ . La fonction fnadmet pas de limite en -1 car les limites à gauche et à droite ne sont pas égales. On en déduit que la courbe  $C_f$  admet une asymptote verticale déquation x = -1.

3) Tracer une courbe susceptible de représenter la fonction f.

On fera figurer les éléments caractéristiques du tableau de variations sur la courbe. Courbe possible:



#### Exercice 21

On donne le tableau de variations d'une fonction f.



1) Déterminer les asymptotes de la courbe  $C_f$ .

D'après le tableau de variation, on lit  $\lim_{x\to -\infty} f(x)=0$  et  $\lim_{x\to +\infty} f(x)=1$ . La courbe  $C_f$  admet deux asymptotes horizontales déquation y=0 y=1.

D'après le tableau de variation, on lit  $\lim_{x \to -2^-} f(x) = +\infty$  et  $\lim_{x \to -2^+} f(x) = -\infty$ .

Et  $\lim_{x \to 1^-} f(x) = +\infty$  et  $\lim_{x \to 1^+} f(x) = -\infty$ .

La courbe  $C_f$  admet deux asymptotes verticales déquation x = -2 et x = 1.

2) Démontrer que l'équation f(x) = 0 admet au moins une solution sur  $\mathbb{R}$ .

# • Dans l'intervalle ] $-\infty$ ; -2[ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur  $]-\infty;-2[.$ 

On a 
$$\lim_{x \to -\infty} f(x) = 0$$
 et  $\lim_{x \to -2^-} f(x) = +\infty$ .

Or, 
$$0 \notin ]0; +\infty$$

L'équation f(x) = 0 ne possède donc pas de solution sur  $]-\infty$ ; -2[.

# • Dans l'intervalle ] -2; 1[ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur ]-2;1[.

On a 
$$\lim_{x \to -2^+} f(x) = -\infty$$
 et  $\lim_{x \to 1^-} f(x) = +\infty$ .

Or, 
$$0 \in ]-\infty;+\infty[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans ]-2;1[.

# • Dans l'intervalle $]1; +\infty[$ :

D'après le tableau de variations, la fonction f est continue et strictement croissante sur

# Chapitre 1 : Limites de fonctions

]1; 
$$+\infty$$
[.  
On a  $\lim_{x\to 1^+} f(x) = -\infty$  et  $\lim_{x\to +\infty} f(x) = 1$ .  
Or,  $0 \in ]-\infty$ ; 1[

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans ]1;  $+\infty$ [.

- On déduit de cette étude que l'équation f(x) = 0 possède deux solutions sur  $\mathbb{R}$ .
- **3)** Tracer une courbe susceptible de représenter la fonction f. On fera figurer les asymtotes à la courbe.

#### Courbe possible:

