



Europäisches Patentamt  
European Patent Office  
Office européen des brevets

⑩ Veröffentlichungsnummer: 0 261 539  
A2

⑪

## EUROPÄISCHE PATENTANMELDUNG

⑫ Anmeldenummer: 87113393.0

⑬ Int. Cl.4: C07D 215/26 , C07D 215/20 ,  
C07D 215/22 , C07D 215/14 ,  
C07D 213/74 , C07D 213/38 ,  
A61K 31/47 , A61K 31/44

⑭ Priorität: 24.09.86 DE 3632329

⑮ Veröffentlichungstag der Anmeldung:  
30.03.88 Patentblatt 88/13

⑯ Benannte Vertragsstaaten:  
AT BE CH DE ES FR GB IT LI NL SE

⑰ Anmelder: BAYER AG  
Konzernverwaltung RP Patentabteilung  
D-5090 Leverkusen 1 Bayerwerk(DE)

⑱ Erfinder: Mohrs, Klaus, Dr.  
Claudiusweg 9  
D-6500 Wuppertal 1(DE)  
Erfinder: Parzborn, Elisabeth, Dr.  
Am Tescher Busch 13  
D-6500 Wuppertal 11(DE)  
Erfinder: Seuter, Friedel, Dr.  
Moospfad 16  
D-6500 Wuppertal 1(DE)  
Erfinder: Fruchtmann, Romanis, Dipl.-Biologin  
Konrad-Adenauer-Ufer 71  
D-5000 Köln 1(DE)  
Erfinder: Kohlsdorfer, Christian, Dr.  
Franz-Stryck-Strasse 16  
D-5042 Erftstadt(DE)

⑲ Substituierte Phenylsulfonamide.

⑳ Neue substituierte Phenylsulfonamide können durch Umsetzung von entsprechenden Aminen mit Sulfonhogeniden hergestellt werden. Die neuen Verbindungen können als Wirkstoffe zur Hemmung von enzymatischen Reaktionen und zur Hemmung der Thrombozytenaggregationen eingesetzt werden.

EP 0 261 539 A2

### **Substituierte Phenylsulfonamide**

Die Erfindung betrifft substituierte Phenylsulfonamide, Verfahren zu ihrer Herstellung und ihre Verwendung in Arzneimitteln.

Aus US-Patentschrift 4 581 457 ist bekannt, das Phenylsulfonamide mit einer Benzimidazolyimethoxygruppe oder mit einer Benzothiazolylmethoxygruppe im Aromaten antiinflammatorische Wirkung haben.

**O-Pyridyl-benzylsulfonamide** werden in JP 61/010548 mit einer antiinflammatorischen und antithrombotischen Wirkung und in CA 101, 110849 v mit einer Pflanzenschutzwirkung beschrieben.

Die vorliegende Erfindung betrifft neue substituierte Phenylsulfonamide der allgemeinen Formel (IV)



in welcher

R<sup>1</sup> = für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht der substituiert sein kann durch Halogen-, Alkyl-

**22** Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl, R<sup>2</sup>- für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl steht.

**Stellung:** -Ur für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxy carbonyl, oder

25 - für Pentafluorphenyl oder

- für geradkettiges, verzweigtes oder cyclisches Alky steht, das substituiert sein kann durch Halogen, Aryl, Aryloxy, Cyano, Alkoxykarbonyl, Alkoxy, Alkylthio oder Trifluormethyl

X - für eine Gruppierung -O-, -A-B-oder -B-A-steht,  
und



odoo



bedeutet und

#### **43 B = -CH<sub>2</sub>-order**



bedeutet

wobei R<sup>1</sup> nicht für einen Pyridylrest stehen darf, wenn X für die Gruppierung -O-steht, und deren Salze.

Die erfindungsgemäßen substituierten Phenylsulfonamide können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Säuren genannt.

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der substituierten Phenylsulfonamide können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfinsäure, Ethansulfinsäure, Toluolsulfinsäure, Benzolsulfinsäure, Naphthalindsulfinsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoësäure.

Die erfindungsgemäßen Stoffe zeigen überraschenderweise eine gute antiinflammatorische und thrombozytenaggregationshemmende Wirkung und können zur therapeutischen Behandlung von Menschen und Tieren verwendet werden.

Alkyl steht im allgemeinen für einen verzweigten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen. Bevorzugt wird Niederalkyl mit 1 bis etwa 6 Kohlenstoffatomen. Besonders bevorzugt ist ein Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielsweise seien Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Hexyl, Isohexyl, Heptyl, Isoheptyl, Octyl und Isooctyl genannt.

Cycloalkyl steht im allgemeinen für einen cyclischen Kohlenwasserstoffrest mit 5 bis 8 Kohlenstoffatomen. Bevorzugt sind der Cyclopentan- und der Cyclohexanring. Beispielsweise seien Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl genannt.

Alkoxy steht im allgemeinen für einen über einen Sauerstoffatom gebundenen geradketigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen. Bevorzugt ist Niederalkoxy mit 1 bis etwa 6 Kohlenstoffatomen. Besonders bevorzugt ist ein Alkoxyrest mit 1 bis 4 Kohlenstoffatomen. Beispielsweise seien Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, Pentoxy, Isopentoxy, Hexoxy, Heptoxy, Isoheptoxy, Octoxy oder Isooctoxy genannt.

Alkythio steht im allgemeinen für einen über ein Schwefelatom gebundenen geradketigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen. Bevorzugt ist Niederalkythio mit 1 bis etwa 6 Kohlenstoffatomen. Besonders bevorzugt ist ein Alkythiorest mit 1 bis 4 Kohlenstoffatomen. Beispielsweise seien Methythio, Ethythio, Propythio, Isopropythio, Butythio, Isobutythio, Pentythio, Isopentythio, Hexythio, Isohexythio, Heptythio, Isoheptythio, Octythio oder Isooctythio genannt.

Alkylsulfonyl steht im allgemeinen für einen geradketigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen, der über eine SO<sub>2</sub>-Gruppe gebunden ist. Bevorzugt ist Niedrigalkylsulfonyl mit 1 bis etwa 6 Kohlenstoffatomen. Beispielsweise seien genannt: Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, Isopropylsulfonyl, Butylsulfonyl, Isobutylsulfonyl, Pentylsulfonyl, Isopentylsulfonyl, Isobutylsulfonyl, Isohexylsulfonyl.

Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis etwa 12 Kohlenstoffatomen. Bevorzugt sind Phenyl, Naphthyl und Biphenyl.

Alkoxy carbonyl kann beispielsweise durch die Formel  

$$\begin{array}{c} \text{O} \\ | \\ \text{C}-\text{O}-\text{Alkyl} \end{array}$$

dargestellt werden.

Alkyl steht hierbei für einen geradketigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen. Bevorzugt wird Niederalkoxycarbonyl mit 1 bis etwa 6 Kohlenstoffatomen im Alkytell. Insbesondere bevorzugt wird ein Alkoxy carbonyl mit 1 bis 4 Kohlenstoffatomen im Alkytell. Beispielsweise seien die folgenden Alkoxy carbonylreste genannt: Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl oder Isobutoxycarbonyl.

Aryloxy steht im allgemeinen für einen aromatischen Rest mit 6 bis etwa 12 Kohlenstoffatomen, der über ein Sauerstoffatom gebunden ist. Bevorzugte Aryloxyreste sind Phenoxy oder Naphthoxy.

Halogenalkyl steht im allgemeinen für geradketiges oder verzweigtes Niederalkyl mit 1 bis 8 Kohlenstoffatomen und einem oder mehreren Halogenatomen, bevorzugt mit einem oder mehreren Fluor-, Chlor- und/oder Bromatomen. Bevorzugt ist Alkyl mit 1 bis 4 Kohlenstoffatomen und mit einem oder mehreren Fluor- und/oder Chloratomen. Besonders bevorzugt ist Alkyl mit 1 bis 2 Kohlenstoffatomen und mit bis zu 5 Fluoratomen oder mit bis zu 3 Chloratomen. Beispielsweise seien genannt: Fluormethyl, Chlormethyl, Brommethyl, Fluorethyl, Chlorethyl, Bromethyl, Fluorpropyl, Chlorpropyl, Brompropyl, Fluorbutyl, Chlorbutyl, Brombutyl, Fluorisopropyl, Chlorisopropyl, Bromisopropyl, Fluorisobutyl, Chlorisobutyl, Bromisobutyl, Difluormethyl, Trifluormethyl, Dichlormethyl, Trichlormethyl, Difluorethyl, Dichlorethyl, Trifluorethyl und Trichlorethyl. Ganz besonders bevorzugt sind Trifluormethyl, Difluormethyl, Fluormethyl und Chlormethyl.

Halogenalkoxy steht im allgemeinen für über ein Sauerstoffatom gebundenes geradkettiges oder verzweigtes Niederalkyl mit 1 bis 8 Kohlenstoffatomen und einem oder mehreren Halogenatomen, bevorzugt mit 1 oder mehreren Fluor-, Chlor- und/oder Bromatomen. Bevorzugt ist Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und mit einem oder mehreren Fluor- und/oder Chloratomen. Besonders bevorzugt ist Halogenalkoxy mit 1 bis 2 Kohlenstoffatomen und mit bis zu 5 Fluoratomen oder mit bis zu 3 Chloratomen. Beispiele seien genannt: Fluormethoxy, Chlormethoxy, Fluorethoxy, Chlorethoxy, Bromethoxy, Fluorpropoxy, Chlorpropoxy, Brompropoxy, Fluorbutoxy, Chlorbutoxy, Brombutoxy, Fluorisopropoxy, Chlorisopropoxy, Bromisopropoxy, Difluormethoxy, Dichlormethoxy, Trifluormethoxy, Trichlormethoxy, Difluorethoxy, Dichlorethoxy, Trifluorethoxy, Trichlorethoxy. Ganz besonders bevorzugt sind Trifluormethoxy, Difluormethoxy, Fluormethoxy und Chlormethoxy.

Halogen steht im allgemeinen für Fluor, Chlor, Brom oder Iod, bevorzugt für Fluor, Chlor oder Brom. Besonders bevorzugt steht Halogen für Fluor oder Chlor.

Bevorzugt werden Verbindungen der allgemeinen Formel (I) in welcher

- R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolinyrest steht, der substituiert sein kann durch Fluor, Chlor, Brom, Niederalkyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Niederalkoxy, Cyano, Trifluormethyl, Trifluormethoxy, Niederalkoxycarbonyl, Niederalkylsulfonyl,  
 R<sup>2</sup> - für Wasserstoff, Cyan, Nitro, Fluor, Chlor, Brom, Niederalkyl, Niederalkoxy, Trifluormethyl, Trifluormethoxy, oder Niederalkoxycarbonyl steht,  
 R<sup>3</sup> - für Phenyl steht, das bis zu 2-fach gleich oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy, Niederalkyl, Niederalkoxy, Niederalkylthio, Niederalkylsulfonyl, Cyan, Niederalkoxycarbonyl oder  
 - für Pentfluorphenyl oder  
 - für geradkettiges, verzweigtes oder cyclisches Alkyl mit bis zu 8 Kohlenstoffatomen steht, das substituiert sein kann durch Fluor, Chlor, Brom, Phenyl, Phenoxy, Cyan, Niederalkoxy oder Trifluormethyl und  
 X - für eine Gruppierung -O-, -A-B- oder -B-A- steht,  
 wobei  
 A - -O-

37



38 oder



40

bedeutet  
 und  
 B - -CH<sub>2</sub>- oder

45



50

bedeutet,  
 wobei R<sup>1</sup> nicht für einen Pyridyrest stehen darf, wenn X für die Gruppierung -O- steht,  
 und deren Salze.

Besonders bevorzugt sind solche Verbindungen der allgemeinen Formel (I) in welcher

- R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolinyrest steht, der substituiert sein kann durch Fluor, Chlor, Alkyl mit bis zu 4 Kohlenstoffatomen, Alkoxy mit bis zu 4 Kohlenstoffatomen oder durch Trifluormethyl,  
 R<sup>2</sup> - für Wasserstoff, Cyan, Fluor, Chlor, Methyl, Ethyl, Propyl, Isopropyl, Methoxy, Ethoxy, Trifluormethyl, Methoxycarbonyl, Ethoxycarbonyl oder Propoxycarbonyl steht,  
 R<sup>3</sup> - für Phenyl steht, das substituiert sein kann durch Fluor, Chlor, Trifluormethyl, Trifluormethoxy, Alkyl mit

bis zu 4 Kohlenstoffatomen, Alkoxy mit bis zu 4 Kohlenstoffatomen, Cyano, Alkoxycarbonyl mit bis zu 4 Kohlenstoffatomen, oder

-für Pentafluorphenyl oder

-für geradketiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen steht, das substituiert sein kann durch Fluor, Chlor oder Phenyl

und

X - für -O-, -OCH<sub>2</sub>-, -CH<sub>2</sub>O-, -OCH(CH<sub>3</sub>)-, -CH<sub>2</sub>N(CH<sub>3</sub>)-, -CH<sub>2</sub>N(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>-steht, wobei R<sup>1</sup> nicht für einen Pyridylrest stehen darf, wenn X für die Gruppierung -O-steht.

6 Beispielweise seien folgende substituierte Phenylsulfonamide genannt.

- N-[2-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[2-(Chinolin-8-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[2-(Chinolin-8-yloxy)phenyl]-butansulfonamid
- N-[2-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[2-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[4-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[4-(Chinolin-8-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[4-(Chinolin-8-yloxy)phenyl]-butansulfonamid
- N-[4-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[4-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-butansulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[3-(Chinolin-8-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-butansulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-3-chlorpropan sulfonamid
- N-[4-(Chinolin-7-yloxy)phenyl]-4-fluorbenzolsulfonamid
- N-[4-(4-Methylchinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[4-(4-Methylchinolin-8-yloxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[4-(4-Methylchinolin-8-yloxy)phenyl]-butansulfonamid
- N-[4-(Chinolin-8-yloxy)-3-chlorphenyl]-4-chlorbenzolsulfonamid
- N-[4-(Chinolin-8-yloxy)-3-chlorphenyl]-3-trifluormethylbenzolsulfonamide
- N-[4-(6-Methylchinolin-8-yloxy)phenyl]-butansulfonamid
- N-[4-(6-Methylchinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[2-(4-Methylchinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[2-(4-Methylchinolin-8-yloxy)phenyl]-butansulfonamid
- N-[4-(Chinolin-6-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[4-(Chinolin-6-yloxy)phenyl]-3-trifluormethylbenzolsulfonamide
- N-[4-(Chinolin-6-yloxy)phenyl]-butansulfonamide
- N-[2-(Chinolin-6-yloxy)phenyl]-4-chlorbenzolsulfonamid
- N-[2-(Chinolin-6-yloxy)phenyl]-butansulfonamid
- N-[4-(4-Methylchinolin-2-yloxy)phenyl]-4-chlorbenzolsulfonamide
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-butansulfonamid
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropan sulfonamid
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-pentafuorbenzolsulfonamid
- N-[4-(Chinolin-2-yl-methoxy)phenyl]-1-methylbutansulfonamid
- N-[2-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid
- N-[2-(Chinolin-2-yl-methoxy)phenyl]-3-trifluormethylbenzolsulfonamid
- N-[2-(Chinolin-2-yl-methoxy)phenyl]-butansulfonamid
- N-[2-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropan sulfonamid
- N-[3-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid
- N-[3-(Chinolin-2-yl-methoxy)phenyl]-3-trifluormethylbenzolsulfonamid Hydrochlorid
- N-[3-(Chinolin-2-yl-methoxy)phenyl]-butansulfonamid

- N-[3-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropansulfonamid  
 N-[4-[1-(Chinolin-2-yl)ethyl]oxy]phenyl]butansulfonamid  
 N-[4-(Chinolin-2-yl)methoxy-3-cyano-phenyl]butansulfonamid  
 N-[3-Ethoxycarbonyl-4-(chinolin-2-yl)methoxy-phenyl]butansulfonamid  
 5 N-[2-(Chinolin-8-yloxy)methyl]phenyl]-4-chlorbenzolsulfonamid  
 N-[3-(Chinolin-8-yloxy)methyl]phenyl]-4-chlorbenzolsulfonamid  
 N-[3-(Chinolin-8-yloxy)methyl]phenyl]-3-trifluoromethylbenzolsulfonamid  
 N-[3-(Chinolin-8-yloxy)methyl]phenyl]butansulfonamid  
 N-[3-(Chinolin-8-yloxy)methyl]phenyl]-4-fluorbenzolsulfonamid  
 10 N-[2-(Chinolin-8-yloxy)methyl]phenyl]butansulfonamid  
 N-[2-(Chinolin-8-yloxy)methyl]phenyl]-3-trifluoromethylbenzolsulfonamid  
 N-[2-(Chinolin-8-yloxy)methyl]phenyl]-3-chlorpropansulfonamid  
 N-[3-(Chinolin-8-yloxy)methyl]phenyl]-3-chlorpropansulfonamid  
 N-[2-(Chinolin-8-yloxy)methyl]phenyl]-4-fluorbenzolsulfonamid  
 15 N,N,N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]butansulfonamid  
 N,N,N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]-3-chlorpropansulfonamid  
 N,N,N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]-3-trifluoromethylbenzolsulfonamid  
 N,N,N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]-4-chlorbenzolsulfonamid  
 N,N,N'-[3-[(Methyl-2-(2-pyridyl)ethyl)aminomethyl]phenyl]-4-chlorbenzolsulfonamid  
 20 N,N,N'-[3-[(Methyl-2-(2-pyridyl)ethyl)aminomethyl]phenyl]-3-trifluoromethylbenzolsulfonamid  
 N,N,N'-[3-[(Methyl-2-(2-pyridyl)ethyl)aminomethyl]phenyl]butansulfonamid  
 Weiterhin wurde ein Verfahren zur Herstellung der erfindungsgemäßen substituierten Phenylsulfonamide der allgemeinen Formel (I)



- in welcher
- R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl, Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,
- R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl steht,
- R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxy carbonyl oder
- für Pentanfluorphenyl oder
- für geradketiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryloxy, Cyano, Alkoxy carbonyl, Alkoxy, Alkythio oder Trifluoromethyl und
- 45 X - für eine Gruppierung -O-, -A-B- oder -B-A- steht,  
 wobei  
 A - -O-,



, oder



bedeutet  
B -  $\text{CH}_2$ - oder

5



bedeutet  
wobei R<sup>1</sup> nicht für einen Pyridyrest stehen darf, wenn X für die Gruppierung -O-steht,  
und deren Salze  
gefunden, das dadurch gekennzeichnet ist, daß man Amine der allgemeinen Formel (II)

15



20

in welcher  
R<sup>1</sup>, R<sup>2</sup> und X die oben angegebene Bedeutung haben, mit Sulfonsäurehalogeniden der allgemeinen Formel  
(III)  
R<sup>3</sup>-SO<sub>2</sub>-Y (III)  
in welcher  
R<sup>3</sup> die oben angegebene Bedeutung hat  
und  
30 Y - für Halogen steht  
in Gegenwart eines inerten Lösungsmittels, gegebenenfalls in Gegenwart einer Base umsetzt und dann  
gegebenenfalls im Fall der Herstellung der Salze mit einer entsprechenden Säure umsetzt.  
Das erfindungsgemäße Verfahren kann durch folgendes Formelschema erläutert werden:

35



Als Lösungsmittel für das erfindungsgemäße Verfahren eignen sich übliche organische Lösungsmittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran oder Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfractionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Essigester, Triethylamin, Pyridin, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton oder Nitro-

than. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.

Basen für das erfindungsgemäße Verfahren können übliche basische Verbindungen sein. Hierzu gehören vorzugsweise Alkali- oder Erdalkalihydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalihydride wie Natriumhydrid, oder Alkali- oder Erdalkalcarbonate wie Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat oder Calciumcarbonat, oder Alkalialkoholate wie beispielsweise Natriummethanolat, Natriumethanolat, Kaliummethanolat, Kaliummethanolat oder Kalium-tert-butylat, oder Alkaliamide wie Natriumamid oder Lithiumdisopropylamid, oder organische Aminen wie Benzyltrimethylammoniumhydroxid, Tetrabutylemmoniumhydroxid, Pyridin, Dimethylaminopyridin, Triethylamin, N-Methylpiperidin, 1,5-Diazabicyclo[4.3.0]non-5-en oder 1,5-Diazabicyclo[5.4.0]undec-5-en.

- 10 Das erfindungsgemäße Verfahren wird im allgemeinen in einem Temperaturbereich von -30° C bis +150° C, bevorzugt von -20° C bis +80° C durchgeführt.

Das erfindungsgemäße Verfahren wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, das Verfahren bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

- 15 Im allgemeinen setzt man 1 bis 5 Mol, bevorzugt 1 bis 2 Mol, besonders bevorzugt 1 Mol Sulfonsäurehalogenid, bezogen auf 1 Mol des Amins ein. Die Base wird im allgemeinen in einer Menge von 1 bis 10 Mol, bevorzugt von 1 bis 5 Mol, bezogen auf das Sulfonsäurehalogenid eingesetzt.

Als Sulfonsäurehalogenide für das erfindungsgemäße Verfahren seien beispielsweise genannt:  
4-Toluol-sulfonylchlorid

- 20 4-Chlorphenyl-sulfonylchlorid  
4-Fluorphenyl-sulfonylchlorid  
3-Trifluormethylphenyl-sulfonylchlorid  
Pentafluorphenyl-sulfonylchlorid  
2,5-Dichlorphenyl-sulfonylchlorid  
25 4-Methoxyphenyl-sulfonylchlorid  
Propyl-sulfonylchlorid  
Butyl-sulfonylchlorid  
Isobutyl-sulfonylchlorid  
1-Methylbutyl-sulfonylchlorid  
30 3-Chlorpropyl-sulfonylchlorid  
4-Chlorbutyl-sulfonylchlorid  
Pentyl-sulfonylchlorid

Die als Ausgangsstoffe eingesetzten Amine der allgemeinen Formel (II)

35



in welcher

- 45 R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl, Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,  
R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl steht,  
und

- 50 X - für eine Gruppierung  
-O-, -A-B- oder -B-A- steht,  
wobei  
A = -O-,

55



, oder



bedeutet  
und B = -CH<sub>2</sub>-oder

70



- 15 bedeutet  
wobei R<sup>1</sup> nicht für eine Pyridylgruppe stehen darf, wenn X für die Gruppierung -O steht,  
können hergestellt werden, indem man  
Nitroverbindungen der allgemeinen Formel (IV)

20



- 30 in welcher  
R<sup>1</sup>, R<sup>2</sup> und X die oben angegebene Bedeutung haben reduziert.  
Das erfindungsgemäße Verfahren kann durch folgendes Formelschema erläutert werden:



- 45 Die Reduktion erfolgt im allgemeinen durch Hydrierung mit Metallkatalysatoren wie beispielsweise Platin, Palladium, Palladium auf Tierkohle, Platinoxid oder Raney-Nickel, bevorzugt mit Palladium auf Tierkohle, in Anwesenheit von Säuren.

Als Säuren können erfindungsgemäß starke Mineralsäuren aber auch organische Säuren eingesetzt werden. Bevorzugt sind dies Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, oder Carbonsäuren wie Essigsäure, Oxalsäure, Trifluoressigsäure, oder Sulfonsäuren wie Methans-, Ethans-, Phenyls- oder Toluolsulfinsäure, oder Naphthalendsulfinsäure.

Der Katalysator wird hierbei im allgemeinen in einer Menge von 0,1 bis 50 Mol-%, bevorzugt von 1 bis 10 Mol-% bezogen auf 1 Mol der Nitroverbindung eingesetzt.

Die Hydrierung erfolgt im allgemeinen in einem Temperaturbereich von -20° C bis +100° C, bevorzugt im Bereich von 0° C bis +50° C.

Im allgemeinen erfolgt die Hydrierung bei Normaldruck. Es ist ebenso möglich, die Hydrierung bei einem Überdruck von 2 bis 200 bar, bevorzugt von 2 bis 50 bar durchzuführen.

Als Lösemittel für die Hydrierung eignen sich Wasser und inerts organische Lösemittel. Bevorzugt gehören hierzu Alkohole wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykolanmono-oder -dimethylether, oder Chlorkohlenwasserstoffe wie Methylchlorid, Chloroform oder Tetrachlorkohlenstoff, oder Eisessig, Trifluoressigsäure, Dimethylformamid, Hexamethylphosphorsäuretriamid, Essigester, Aceton oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen.

Darüberhinaus kann die Reduktion auch nach Methoden durchgeführt werden, wie sie im allgemeinen zur Reduktion von Nitrogruppen zu Aminogruppen üblich ist. Hierbei seien beispielsweise zu nennen: Die Reduktion mit Hydrazin in Wasser und/oder Alkoholen wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, bevorzugt in Anwesenheit von Katalysatoren wie Platin, Palladium oder Palladium auf Tierekiele in einem Temperaturbereich von 0° C bis +150° C, bevorzugt von +20° C bis +100° C.

Die Reduktion mit Lithiumaluminimumhydrid in inerten Lösemitteln wie Ether z.B. Diethylether, Dioxan oder Tetrahydrofuran, oder Kohlenwasserstoffe wie Benzol, Toluol oder Xylo, oder Chlorkohlenwasserstoffe wie Methylchlorid, Chloroform oder Tetrachlorkohlenstoff in einem Temperaturbereich von -30° C bis +150° C, bevorzugt von 0° C bis +80° C oder  
Reduktion mit Zink in Wasser und/oder Alkoholen wie Methanol, Ethanol, Propanol oder Isopropanol in Anwesenheit von Säuren wie Salzsäure oder Essigsäure.

Ebenso können die erfindungsgemäß verwendeten Amine hergestellt werden, wie es beispielsweise in DE-A-1 36 07 382 beschrieben wird.

20 Als Amine werden beispielsweise erfindungsgemäß verwendet:

- 8-(2-Aminophenoxy)chinolin
- 7-(4-Aminophenoxy)chinolin
- 8-(4-Aminophenoxy)chinolin
- 8-(3-Aminophenoxy)chinolin
- 25 8-(4-Aminophenoxy)-4-methyl-chinolin
- 8-(4-Amino-2-chlorphenoxy)chinolin
- 8-(4-Aminophenoxy)-6-methyl-chinolin
- 8-(2-Aminophenoxy)-4-methyl-chinolin
- 6-(2-Aminophenoxy)chinolin
- 30 2-(4-Aminophenoxy)methyl)chinolin
- 2-(2-Aminophenoxy)methyl)chinolin
- 2-(3-Aminophenoxy)methyl)chinolin
- 2-(4-Amino-2-cyano-phenoxymethyl)chinolin
- 2-[1-(4-Aminophenoxy)ethyl]chinolin
- 35 2-(4-Amino-2-ethoxycarbonyl-phenoxymethyl)chinolin
- 8-(2-Aminobenzoyloxy)chinolin
- 8-(3-Aminobenzoyloxy)chinolin
- 2-[N-(3-Aminobenzyl)-N-methyl]aminopyridin
- 2-[2-(N-3-aminobenzyl-N-methyl)aminoethyl]pyridin

40 Als als Ausgangsstoffe eingesetzten Nitroverbindungen der allgemeinen Formel (IV), wobei  
a) Nitroverbindungen, in welchen R<sup>1</sup> und R<sup>2</sup> die angegebene Bedeutung haben und X für -O-steht,  
R<sup>1</sup> jedoch nicht für einen Pyridylrest steht,  
der allgemeinen Formel (IVa)

45



50

entsprechen und wobei

55 b) Nitroverbindungen, in welchen R<sup>1</sup> und R<sup>2</sup> die angegebene Bedeutung haben und X für -A-B-steht,  
der allgemeinen Formel (IVb)



10

entsprechen und wobei

c) Nitroverbindungen in welchen R<sup>1</sup> und R<sup>2</sup> die angegebene Bedeutung haben und X für -B-A steht,  
der allgemeinen Formel (IVc)

15

20



25

entsprechen,  
können hergestellt werden, indem man  
Fluornitrophenylverbindungen der allgemeinen Formel (V)

30

35

in welcher R<sup>3</sup> die angegebene Bedeutung hat, mit Alkoholen der allgemeinen Formel (VI)  
R<sup>1</sup>-OH (VI)40 In welcher R<sup>1</sup> die angegebene Bedeutung hat aber nicht für einen Pyridylrest stehen darf, in geeigneten  
Lösungsmitteln in Anwesenheit von Basen umgesetzt.  
Die Reaktion kann durch folgendes Formelschema verdeutlicht werden:

45

50

55



20 Als Lösemittel eignen sich die üblichen organischen Lösmedien, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether, wie beispielsweise Dioxan, Tetrahydrofuran oder Diethylether, oder Chlorkohlenwasserstoffe wie Methylchlorid, Trichlormethan oder Tetrachlormethan, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylool, Hexan, Cyclohexan, oder Erdölfraktionen, oder Amide wie Dimethylformamid oder Hexamethylphosphorsäuretriamid, oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösmedien einzusetzen.

25 Als Basen können die üblichen anorganischen oder organischen Basen eingesetzt werden. Hierzu gehören vorzugsweise Alkalihydroxide wie beispielsweise Natriumhydroxid oder Kaliumhydroxid, oder Erdalkalihydroxide wie beispielsweise Bariumhydroxid, oder Alkalicarbonate wie Natriumcarbonat oder Kaliumcarbonat, oder Erdalkalicarbonate wie Calciumcarbonat, oder organische Amine wie Triethylamin, Pyridin oder Methylpiperidin.

30 Das Verfahren wird im allgemeinen in einem Temperaturbereich von 0° C bis +150° C, bevorzugt von +20° C bis +100° C durchgeführt.

Das Verfahren wird im allgemeinen bei Normaldruck durchgeführt, es ist aber auch möglich das Verfahren bei Unterdruck oder bei Überdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

35 Im allgemeinen setzt man 0,5 bis 2 Mol, bevorzugt 1 Mol Alkohol bezogen auf 1 Mol Fluornitrophenylverbindung ein.

Als Fluornitrophenylverbindungen werden beispielsweise erfundungsgemäß verwendet:

2-Fluornitrobenzol,  
3-Fluornitrobenzol,

4-Fluornitrobenzol.

Als Alkohole werden beispielsweise erfundungsgemäß verwendet:

2-Hydroxychinolin,  
4-Hydroxychinolin,  
5-Hydroxychinolin,  
45 8-Hydroxychinolin,  
1-Hydroxyisochinolin,  
5-Hydroxyisochinolin,  
2-Hydroxy-4-methyl-chinolin,  
8-Hydroxy-4-methyl-chinolin,  
50 8-Hydroxy-6-methyl-chinolin.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formel (V) und (VI) sind bekannt. Die Verbindungen der allgemeinen Formel (IVb) werden hergestellt,

indem man

55 Nitrophenylverbindungen der allgemeinen Formel (VII)



- in welcher
- 10 R<sup>2</sup> und A die angegebene Bedeutung haben,  
mit Halogeniden der allgemeinen Formel (VII)  
Hal-B-R<sup>1</sup> (VII)
- in welcher
- R<sup>1</sup> und B die angegebene Bedeutung haben  
und
- 15 Hal - für Chlor, Brom oder Iod steht,  
in geeigneten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umsetzt.  
Das erfindungsgemäße Verfahren kann beispielsweise durch das folgende Formelschema erläutert werden:
- 20



Als Lösemittel eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören vorzugsweise Alkohole wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder Ether wie beispielsweise Dioxan, Tetrahydrofuran oder Diethylether, oder Chlorkohlenwasserstoffe wie beispielsweise Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan oder Trichlorethylen, oder Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan, oder Erdölfractionen, oder Nitromethan, Dimethylformamid, Acetonitril, Aceton oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen.

40

Als Basen eignen sich anorganische oder organische Basen. Hierzu gehören vorzugsweise Alkalihydroxide wie beispielsweise Natriumhydroxid oder Kaliumhydroxid, oder Erdalkalihydroxide wie Bariumhydroxid, oder Alkalikarbonate wie beispielsweise Natriumcarbonat oder Kaliumcarbonat, oder Erdalkalikarbonate wie Calciumcarbonat oder organische Amine wie beispielsweise Triethylamin, Pyridin, Methylpiperidin, Pipendin oder Morphin.

45

Es ist auch möglich, als Basen Alkalimetalle wie Natrium, oder deren Hydride wie Natriumhydrid einzusetzen.

Das Verfahren wird im allgemeinen in einem Temperaturbereich von 0° C bis +150° C, bevorzugt von +10° C bis +100° C durchgeführt.

50 Das Verfahren wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, das Verfahren bei Unterdruck oder Überdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

Im allgemeinen setzt man 0,5 bis 5, bevorzugt 1 bis 2 Mol Halogenid bezogen auf 1 Mol Nitrophenylverbindung ein. Die Base wird im allgemeinen in einer Menge von 0,5 bis 5 Mol, bevorzugt von 1 bis 3 Mol, bezogen auf das Halogenid eingesetzt.

Als Nitrophenylverbindungen werden beispielsweise erfundungsgemäß verwendet:

- 5 2-Nitrophenol,
- 3-Nitrophenol,
- 4-Nitrophenol.

Als Halogenide werden beispielsweise erfundungsgemäß verwendet:

- 8-Chlormethyl-chinolin,
- 10 7-Chlormethyl-chinolin,
- 2-Chlormethyl-chinolin,
- 2-Chlormethyl-pyridin,
- 3-Chlormethyl-pyridin,
- 4-Chlormethyl-pyridin,
- 15 2-Chlormethyl-4-methyl-chinolin,
- 8-Chlormethyl-6-methyl-chinolin.

Die Ausgangsverbindungen (VII) und (VIII) sind bekannt.

Die Verbindungen der allgemeinen Formel (IVc) werden hergestellt indem man

- 20 Verbindungen der allgemeinen Formel (IX)



30

in welcher

R<sup>2</sup> und B die oben angegebene Bedeutung haben  
und

Hal - für Chlor, Brom oder Iod steht,

- 35 mit Verbindungen der allgemeinen Formel (X)
- H-A-R<sup>1</sup> (X)

In welcher

A und R<sup>1</sup> die oben angegebene Bedeutung haben,

in geeigneten Lösungsmitteln, gegebenenfalls in Anwesenheit einer Base umsetzt.

- 40 Das Verfahren kann beispielsweise durch das folgende Formelschema erläutert werden:

45

50

55



Die Formulierungen werden beispielsweise hergestellt durch Verstreichen der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgernmitteln und/oder Dispergernmitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

- 5 Als Hilfsstoffe seien beispielsweise aufgeführt: Wasser, nicht-toxische organische Lösungsmittel, wie Paraffine (z.B. Erdölfraktionen), pflanzliche Öle (z.B. Erdnuss/Sesamöl), Alkohole (z.B. Ethylalkohol, Glycerin), Trägerstoffe, wie z.B. natürliche Gestehensmehle (z.B. Kaoline, Tonerden, Talcum, Kreide), Synthetische Gestehensmehle (z.B. hochdisperse Kiesel säure, Silikate), Zucker (z.B. Rohr-, Milch- und Traubenzucker), Emulgernmittel (z.B. Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate, Arylsulfonate), Dispergernmittel (z.B. Lignin-Sulfatblaugen, Methylcellulose, Stärke und Polyvinylpyrrolidon) und Gleitmittel (z.B. Magnesiumstearat, Talcum, Stearinäsure und Natriumlaurylsulfat).

10 Die Applikation erfolgt in üblicher Weise, vorzugsweise oral oder parenteral, insbesondere perlingual oder intravenös. Im Falle der oralen Anwendung können Tabletten selbstverständlich außer den genannten Trägerstoffen auch Zusätze, wie Natriumcitrat, Calciumcarbonat und Dicalciumphosphat zusammen mit verschiedenen Zuschlagsstoffen, wie Stärke, vorzugsweise Kartoffelstärke, Gelatine und dergleichen enthalten. Weiterhin können Gleitmittel, wie Magnesiumstearat, Natriumlaurylsulfat und Talcum zum Tablettieren mitverwendet werden. Im Falle wässriger Suspensionen können die Wirkstoffe außer den obengenannten Hilfsstoffen mit verschiedenen Geschmacksaufbesserern oder Farbstoffen versetzt werden.

15 Für den Fall der parenteralen Anwendung können Lösungen der Wirkstoffe unter Verwendung geeigneter flüssiger Trägermaterialien eingesetzt werden.

20 Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,001 bis 1 mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

25 Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

30 Die erfindungsgemäßen substituierten Phenylsulfonamide können sowohl in der Humanmedizin als auch in der Veterinärmedizin eingesetzt werden.

### 35 Herstellungsbeispiele

Die Retentionszeiten  $R_t$  (min) werden mit einem HPLC-Gerät (Fa. Knauer) an Hibar-Säulen (Fa. Merck) ermittelt.

- 40 System a: RP-8, 7  $\mu\text{m}$   
Durchfluß: 2 ml/min  
Eluens: Acetonitril/Wasser = 70:30 (v/v)

### 45 Beispiel 1

8-(2-Nitrophenoxy)chinolin



29 g 8-Hydroxychinolin und 28 g wasserfreies Kaliumcarbonat werden 1 h bei 25° C in 400 ml

Dimethylformamid gerührt. Es werden 21 ml 2-Fluor-nitrobenzol gelöst in 100 ml Dimethylformamid, zugetropft, und das Reaktionsgemisch wird 15 h bei 25° C gerührt. Das Lösungsmittel wird im Vakuum abgedampft, der Rückstand in Essigester aufgenommen und dreimal mit Wasser gewaschen. Nach Trocknen über Natriumsulfat wird das Lösungsmittel im Vakuum abgedampft und der Rückstand aus Methanol umkristallisiert.

Ausbeute: 82% der Theorie  
Fp. : 113 - 114° C (Methanol)  
Analog Beispiel 1 wurden hergestellt:

10

Beispiel 2

8-(4-Nitrophenoxy)chinolin

15

20

25



Ausbeute: 80%  
Fp. : 165 - 166° C (Methanol)

30

Beispiel 3

8-(3-Nitrophenoxy)chinolin

35

40

45



Ausbeute: 58% der Theorie  
Fp. : 133 - 134° C (Methanol)

50

55

Beispiel 4

4-Methyl-8-(4-nitrophenoxy)chinolin

5

10

15



20 Ausbeute: 88% der Theorie  
Fp. : 148 - 149° C (Methanol)

Beispiel 5

25 8-(2-Chlor-4-nitrophenoxy)chinolin

30

35

40

45

50

55



Ausbeute: 89% der Theorie  
Fp. : 113 - 115° C (Ethanol)

Beispiel 6

6-Methyl-8-(4-nitrophenoxy)chinolin

5



10

15

20

Ausbeute: 80% der Theorie  
Fp. : 143° C (Ethanol)

Beispiel 7

4-Methyl-8-(2-nitrophenoxy)chinolin

25



30

35

40

Ausbeute: 69% der Theorie  
Fp. : 98 - 99° C (Ethanol/Wasser)

Beispiel 8

45

8-(2-Nitrophenoxy)chinolin



50

55

Ausbeute: 88% der Theorie  
Fp. : 114 - 116° C (Ethanol)

Beispiel 9

## 2-(4-Nitrophenoxymethyl)chinolin

5

10

15



28 g 4-Nitrophenol und 55 g wasserfreies Kallumcarbonat werden 1 h bei 25° C in 300 ml Dimethylformamid gerührt. Nach Zutropfen einer Suspension von 53 g 2-Chlorphenylchinolin-hydrochlorid in 100 ml Dimethylformamid wird 15 h bei 40 - 50° C gerührt. Nach Abdampfen des Lösungsmittels wird der Rückstand mit Wasser verrührt, abgesaugt und aus Methanol umkristallisiert.

Ausbeute: 91% der Theorie

Fp. : 144 - 145° C (Methanol)

Analog Beispiel 9 wurden hergestellt:

25

Beispiel 10

30

## 2-(2-Nitrophenoxy)methyl)chinolin

35

40

Ausbeute: 83% der Theorie

Fp. : 121 - 122° C (Methanol)

45

50

55



Beispiel 11

2-(3-Nitrophenoxymethyl)chinolin

5

10

15



Ausbeute: 94% der Theorie  
Fp. : 109° C (Methanol)

20

Beispiel 12

2-(2-Cyano-4-nitrophenoxymethyl)chinolin

25

30

35



Ausbeute: 50% der Theorie  
Fp. : 161 - 162° C (Methanol)

40

Beispiel 13

2-[1-(4-Nitrophenoxy)ethyl]chinolin

45

50

55



Ausbeute: 75% der Theorie

R<sub>f</sub> = 2.07 (System a)

Beispiel 14

2-(2-Ethoxycarbonyl-4-nitrophenoxymethyl)chinolin



Ausbeute: 40% der Theorie  
Fp.: 139 - 140° C (Ethanol)

Beispiel 15

8-(2-Nitrobenzyl)oxy)chinolin



42 g 8-Hydroxychinolin und 40 g wasserfreies Kaliumcarbonat werden 1 h bei 25° C in 400 ml Dimethylformamid gerührt. Danach werden 50 g 2-Nitrobenzylchlorid in 150 ml Dimethylformamid zuge-tropft, die Mischung 15 h bei 25° C gerührt und eingedampft. Der Rückstand wird mit Wasser verrührt, abgesaugt und aus Ethanol umkristallisiert.  
Ausbeute: 84% der Theorie  
Fp.: 151 - 153° C (Ethanol)  
Analog Beispiel 15 wurden hergestellt:

50

55

Beispiel 16

8-(3-Nitrobenzyl)chinolin

5

10

15



20

Ausbeute: 70% der Theorie  
Fp.: 98 - 99° C (Ethanol)

25

Beispiel 17

30

2-[N-Methyl-N-(3-nitrobenzyl)aminoethyl]pyridin



35

Zu einer Lösung von 5,4 g 2-(2-Methylaminoethyl)pyridin in 20 ml Methanol werden bei 40° C 6,8 g 3-Nitrobenzylchlorid in 25 ml Methanol langsam zugetropft. Anschließend gibt man 15 ml Triethylamin in 15 ml Methanol zu und röhrt 15 bei 40° C. Nach Abdampfen des Lösungsmittels im Vakuum wird der Rückstand in 300 ml Wasser aufgenommen und dreimal mit Dichlormethan extrahiert. Nach Trocknen über Natriumsulfat wird im Vakuum eingedampft und der Rückstand an Kieselgel (Eluens: Dichlormethan / Methanol 100:5) chromatographiert.

40 Ausbeute: 82% der Theorie  
Kp.: 245° C / 0,5 mm (Kugelrohr)

45

Beispiel 18

2-[N-(3-Nitrobenzyl)-N-methyl]aminopyridin

50

55



21,6 g 2-Methylaminopyridin und 34,2 g 3-Nitrobenzylchlorid werden 30 min auf 50° C erwärmt. Nach Zugabe von 3 g Dimethylaminopyridin wird 3 h auf 100° C erwärmt. Nach Abkühlen wird das

Reaktionsgemisch in Dichlormethan aufgenommen und mit 2 N NaOH und Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt: Der Rückstand wird über Kieselgel (Eluens: Dichlormethan) chromatografiert. Das Produkt kristallisiert aus.

Ausbeute: 55% der Theorie

5 Fp.: 58 - 57° C

Beispiel 19

10 8-(2-Aminophenoxy)chinolin



35,4 g 8-(2-Nitrophenoxy)chinolin und 3,4 g 10%iges Palladium/Kohle werden unter Stickstoff in 350 ml Methanol suspendiert und erwärmt. Unter Rückfluß werden 27,8 ml Hydrazinhydrat langsam zugetropft, danach wird weitere 2 h im Rückfluß erhitzt. Nach Abkühlen wird der Katalysator abfiltriert und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wird aus Methanol umkristallisiert.

25 Ausbeute: 89% der Theorie

Fp.: 135° C (Methanol)

Analog Beispiel 18 wurden hergestellt:

30 Beispiel 20

7-(4-Aminophenoxy)chinolin



45 Ausbeute: 72% der Theorie

Fp.: 131° C (Ethanol)

50

55

Beispiel 21

8-(4-Aminophenoxy)chinolin

5

10

15



Ausbeute: 68% der Theorie

Fp. : 204° C (Methanol)

20

Beispiel 22

25

8-(3-Aminophenoxy)chinolin

30

35



Ausbeute: 22% der Theorie

Fp. : 98 - 100° C (Methanol)

40

45

50

55

Beispiel 23

8-(4-Aminophenoxy)-4-methyl-chinolin

6

10

15



20 Ausbeute: 71% der Theorie  
Fp. : 157 - 159° C (Ethanol)

Beispiel 24

25

8-(4-Amino-2-chlorphenoxy)chinolin

30

35

40



46

50

56

Beispiel 25

8-(4-Aminophenoxy)-6-methyl-chinolin

5

10

15

20



Ausbeute: 77% der Theorie

Fp. : 184 - 185° C (Ethanol)

25

Beispiel 26

8-(2-Aminophenoxy)-4-methyl-chinolin

25

30

35



Ausbeute: 84% der Theorie

Fp. : 180 - 181° C (Ethanol)

40

Beispiel 27

6-(2-Aminophenoxy)chinolin

45

50



Ausbeute: 74% der Theorie

Fp. : 115 - 117° C (Ethanol)

55

Beispiel 28

2-(4-Aminophenoxy)methyl)chinolin

5

10

15

20

Beispiel 29

2-(2-Aminophenoxy)methyl)chinolin

25

30

35

40

Beispiel 30

2-(3-Aminophenoxy)methyl)chinolin

45

50

55



Beispiel 31

2-(4-Amino-2-cyano-phenoxymethoxy)chinolin

5



10

15

Ausbeute: 49% der Theorie

Fp. : 156° C

20

Beispiel 32

2-[1-(4-Aminophenoxy)ethyl]chinolin

25



30

35

40

Ausbeute: 85% der Theorie

Fp. : 88 - 88° C

Beispiel 33

2-(4-Amino-2-ethoxycarbonyl-phenoxymethoxy)chinolin

45

50

55



Ausbeute: 57% der Theorie  
Fp. : 83 - 95° C

s Beispiel 34

8-(2-Aminobenzyl)oxychinolin

10



15

Ausbeute: 80% der Theorie  
Fp. : 103 - 105° C (Eissigester)

Beispiel 35

8-(3-Aminobenzyl)oxychinolin

30



35

Ausbeute: 74% der Theorie  
Fp. : 146 - 147° C (Ethanol)

Beispiel 36

2-[N-(3-Aminobenzyl)-N-methyl]aminopyridin

50



55

Ausbeute: 92% der Theorie  
 $R_f = 1.64$  (System a)

Beispiel 37

2-[2-(N-3-aminobenzyl-N-methyl)aminoethyl]pyridin

5

10



Ausbeute: 84% der Theorie  
 15  $R_f = 0,28$  ( $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}$  10:1)

Beispiel 38

20 N-[2-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid

25

30



3,54 g 8-(2-Aminophenoxy)chinolin werden in 70 ml Dichlormethan gelöst und bei 25° C mit einer Lösung von 3,17 g 4-Chlorbenzolsulfinsäurechlorid in 30 ml Dichlormethan versetzt. Nach 1 h werden 2,42 ml Pyridin zugegeben und 15 h bei 25° C gerüttelt. Nach Abdampfen des Lösungsmittels wird der Rückstand mit Wasser verführt. Das Produkt wird abfiltriert und aus Ethanol umkristallisiert. Ausbeute: 94% der Theorie  
 35 Fp.: 135 - 137° C (Ethanol)

Analog Beispiel 38 wurden hergestellt:

Beispiel 39

40 N-[2-(Chinolin-8-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid

45

50



55 Ausbeute: 68% der Theorie  
 R<sub>f</sub> = 2,89 (System a)

Beispiel 40

N-[2-(Chinolin-8-yloxy)phenyl]butansulfonamid

5

10



Ausbeute: 51% der Theorie  
 Fp. : 87 - 88° C

Beispiel 41

N-[2-(Chinolin-8-yloxy)phenyl]-3-chlorpropansulfonamid

25

30



Ausbeute: 50% der Theorie  
 $R_f = 2.00$  (System a)

35

Beispiel 42

N-[2-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid

40

45



50 Ausbeute: 46% der Theorie  
 Fp. : 243 - 244° C (Methanol)

55

Beispiel 43

N-[4-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid

5

10

15



20

Beispiel 44

N-[4-(Chinolin-8-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid

25

30

35



40

Beispiel 45

N-[4-(Chinolin-8-yloxy)phenyl]butansulfonamid

45

50

55

Ausbeute: 65% der Theorie  
Fp. : 162° C (Methanol)

Beispiel 46

N-[4-(Chinolin-8-yloxy)phenyl]-3-chlorpropansulfonamid

5



10

Ausbeute: 69% der Theorie  
Fp. : 161 - 162° C (Methanol)

Beispiel 47

N-[4-(Chinolin-8-yloxy)phenyl]-4-fluorbenzolsulfonamid

25



30

Ausbeute: 76% der Theorie  
Fp. : 181 - 183° C (Methanol)

35

Beispiel 48

N-[4-(Chinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid

45



50

Ausbeute: 61% der Theorie  
Fp. : 190 - 191° C (Ethanol)

55

Beispiel 49

N-[3-(Chinolin-8-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid

5

10

15

20

Ausbeute: 53% der Theorie  
 Fp. : 171 - 173° C (Ethanol)

Beispiel 50

N-[3-(Chinolin-8-yloxy)phenyl]-4-fluorobenzolsulfonamid

25

30

35

Ausbeute: 51% der Theorie  
 Fp. : 201 - 202° C (Methanol)

Beispiel 51

N-[3-(Chinolin-8-yloxy)phenyl]-3-chlorpropansulfonamid

50

55

Ausbeute: 66% der Theorie



Fp. : 138 - 140° C (Ethanol)

Beispiel 52

5

N-[3-(Chinolin-8-yloxy)phenyl]butansulfonamid

10

15



20

Ausbeute: 56% der Theorie

Fp. : 107 - 108° C (Diisopropylether)

Beispiel 53

25

N-[4-(Chinolin-7-yloxy)phenyl]-4-chlorbenzolsulfonamid

30

35



40

Ausbeute: 93% der Theorie

Fp. : 208° C (Methanol)

Beispiel 54

45

N-[4-(Chinolin-7-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid

50

55



Ausbeute: 64% der Theorie  
Fp. : 190° C (Methanol)

5 Beispiel 55

N-[4-(Chinolin-7-yloxy)phenyl]butansulfonamid

10



15

20 Ausbeute: 70% der Theorie  
Fp. : 168° C (Methanol)

25 Beispiel 56

N-[4-(Chinolin-7-yloxy)phenyl]-3-chlorpropansulfonamid

30



35

40 Ausbeute: 75% der Theorie  
Fp. : 175 - 176° C (Methanol)

45 Beispiel 57

N-[4-(Chinolin-7-yloxy)phenyl]-4-fluorbenzolsulfonamid

50



55

Ausbeute: 61% der Theorie  
Fp. : 175 - 178° C (Methanol)

5 Beispiel 58

N-[4-(4-Methylchinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid



Ausbeute: 94% der Theorie  
Fp. : 223 - 224° C (Methanol)

## Beispiel 59

30 N-[4-(4-Methylchinolin-8-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid



Ausbeute: 70% der Theorie  
Fp. : 202 - 203° C

55

Beispiel 60

N-[4-(4-Methylchinolin-8-yloxy)phenyl]butansulfonamid

5

10

15



20 Ausbeute: 81% der Theorie

Fp. : 208 - 209° C (Ethanol)

Beispiel 61

N-[4-(Chinolin-8-yloxy)-3-chlorphenyl]-4-chlorbenzolsulfonamid

30

35

40

45

50

55



Beispiel 62

N-[4-(Chinolin-8-yloxy)-3-chlorophenyl]-3-trifluormethylbenzolsulfonamide

5

10

15

20

Beispiel 63

N-[4-(8-Methylchinolin-8-yloxy)phenyl]butansulfonamid

25

30

35

40



Ausbeute: 88% der Theorie

Fp. : &gt; 245° C (Methanol)

Beispiel 64

45 N-[4-(8-Methylchinolin-8-yloxy)phenyl]-4-chlorobenzolsulfonamid

50

55



| Wet Signal | normal activity in Wn | extra or activity in Wn | No effect | Condition | base "restricted" |
|------------|-----------------------|-------------------------|-----------|-----------|-------------------|
| m er       | a                     | a                       | a         |           |                   |
| n          | o x                   | o                       |           |           |                   |
| r          | o x n                 | o                       |           |           |                   |
| u          | o x r                 | o                       |           |           |                   |
| v          | o x v                 | o                       |           |           |                   |
| w          | o x w                 | o                       |           |           |                   |
| x          | o x r                 | o                       |           |           |                   |
| y          | o x v                 | o                       |           |           |                   |
| z          | o x r                 | o                       |           |           |                   |
| 1          | o x v                 | o                       |           |           |                   |
| 2          | o x r                 | o                       |           |           |                   |
| 3          | o x v                 | o                       |           |           |                   |
| 4          | o x r                 | o                       |           |           |                   |
| 5          | o x v                 | o                       |           |           |                   |
| 6          | o x r                 | o                       |           |           |                   |
| 7          | o x v                 | o                       |           |           |                   |
| 8          | o x r                 | o                       |           |           |                   |
| 9          | o x v                 | o                       |           |           |                   |
| 10         | o x r                 | o                       |           |           |                   |
| 11         | o x v                 | o                       |           |           |                   |
| 12         | o x r                 | o                       |           |           |                   |
| 13         | o x v                 | o                       |           |           |                   |
| 14         | o x r                 | o                       |           |           |                   |
| 15         | o x v                 | o                       |           |           |                   |
| 16         | o x r                 | o                       |           |           |                   |
| 17         | o x v                 | o                       |           |           |                   |
| 18         | o x r                 | o                       |           |           |                   |
| 19         | o x v                 | o                       |           |           |                   |
| 20         | o x r                 | o                       |           |           |                   |
| 21         | o x v                 | o                       |           |           |                   |
| 22         | o x r                 | o                       |           |           |                   |
| 23         | o x v                 | o                       |           |           |                   |
| 24         | o x r                 | o                       |           |           |                   |
| 25         | o x v                 | o                       |           |           |                   |
| 26         | o x r                 | o                       |           |           |                   |
| 27         | o x v                 | o                       |           |           |                   |
| 28         | o x r                 | o                       |           |           |                   |
| 29         | o x v                 | o                       |           |           |                   |
| 30         | o x r                 | o                       |           |           |                   |
| 31         | o x v                 | o                       |           |           |                   |
| 32         | o x r                 | o                       |           |           |                   |
| 33         | o x v                 | o                       |           |           |                   |
| 34         | o x r                 | o                       |           |           |                   |
| 35         | o x v                 | o                       |           |           |                   |
| 36         | o x r                 | o                       |           |           |                   |
| 37         | o x v                 | o                       |           |           |                   |
| 38         | o x r                 | o                       |           |           |                   |
| 39         | o x v                 | o                       |           |           |                   |
| 40         | o x r                 | o                       |           |           |                   |
| 41         | o x v                 | o                       |           |           |                   |
| 42         | o x r                 | o                       |           |           |                   |
| 43         | o x v                 | o                       |           |           |                   |
| 44         | o x r                 | o                       |           |           |                   |
| 45         | o x v                 | o                       |           |           |                   |
| 46         | o x r                 | o                       |           |           |                   |
| 47         | o x v                 | o                       |           |           |                   |
| 48         | o x r                 | o                       |           |           |                   |
| 49         | o x v                 | o                       |           |           |                   |
| 50         | o x r                 | o                       |           |           |                   |
| 51         | o x v                 | o                       |           |           |                   |
| 52         | o x r                 | o                       |           |           |                   |
| 53         | o x v                 | o                       |           |           |                   |
| 54         | o x r                 | o                       |           |           |                   |
| 55         | o x v                 | o                       |           |           |                   |
| 56         | o x r                 | o                       |           |           |                   |
| 57         | o x v                 | o                       |           |           |                   |
| 58         | o x r                 | o                       |           |           |                   |
| 59         | o x v                 | o                       |           |           |                   |
| 60         | o x r                 | o                       |           |           |                   |
| 61         | o x v                 | o                       |           |           |                   |
| 62         | o x r                 | o                       |           |           |                   |
| 63         | o x v                 | o                       |           |           |                   |
| 64         | o x r                 | o                       |           |           |                   |
| 65         | o x v                 | o                       |           |           |                   |
| 66         | o x r                 | o                       |           |           |                   |
| 67         | o x v                 | o                       |           |           |                   |
| 68         | o x r                 | o                       |           |           |                   |
| 69         | o x v                 | o                       |           |           |                   |
| 70         | o x r                 | o                       |           |           |                   |
| 71         | o x v                 | o                       |           |           |                   |
| 72         | o x r                 | o                       |           |           |                   |
| 73         | o x v                 | o                       |           |           |                   |
| 74         | o x r                 | o                       |           |           |                   |
| 75         | o x v                 | o                       |           |           |                   |
| 76         | o x r                 | o                       |           |           |                   |
| 77         | o x v                 | o                       |           |           |                   |
| 78         | o x r                 | o                       |           |           |                   |
| 79         | o x v                 | o                       |           |           |                   |
| 80         | o x r                 | o                       |           |           |                   |
| 81         | o x v                 | o                       |           |           |                   |
| 82         | o x r                 | o                       |           |           |                   |
| 83         | o x v                 | o                       |           |           |                   |
| 84         | o x r                 | o                       |           |           |                   |
| 85         | o x v                 | o                       |           |           |                   |
| 86         | o x r                 | o                       |           |           |                   |
| 87         | o x v                 | o                       |           |           |                   |
| 88         | o x r                 | o                       |           |           |                   |
| 89         | o x v                 | o                       |           |           |                   |
| 90         | o x r                 | o                       |           |           |                   |
| 91         | o x v                 | o                       |           |           |                   |
| 92         | o x r                 | o                       |           |           |                   |
| 93         | o x v                 | o                       |           |           |                   |
| 94         | o x r                 | o                       |           |           |                   |
| 95         | o x v                 | o                       |           |           |                   |
| 96         | o x r                 | o                       |           |           |                   |
| 97         | o x v                 | o                       |           |           |                   |
| 98         | o x r                 | o                       |           |           |                   |
| 99         | o x v                 | o                       |           |           |                   |
| 100        | o x r                 | o                       |           |           |                   |
| 101        | o x v                 | o                       |           |           |                   |
| 102        | o x r                 | o                       |           |           |                   |
| 103        | o x v                 | o                       |           |           |                   |
| 104        | o x r                 | o                       |           |           |                   |
| 105        | o x v                 | o                       |           |           |                   |
| 106        | o x r                 | o                       |           |           |                   |
| 107        | o x v                 | o                       |           |           |                   |
| 108        | o x r                 | o                       |           |           |                   |
| 109        | o x v                 | o                       |           |           |                   |
| 110        | o x r                 | o                       |           |           |                   |
| 111        | o x v                 | o                       |           |           |                   |
| 112        | o x r                 | o                       |           |           |                   |
| 113        | o x v                 | o                       |           |           |                   |
| 114        | o x r                 | o                       |           |           |                   |
| 115        | o x v                 | o                       |           |           |                   |
| 116        | o x r                 | o                       |           |           |                   |
| 117        | o x v                 | o                       |           |           |                   |
| 118        | o x r                 | o                       |           |           |                   |
| 119        | o x v                 | o                       |           |           |                   |
| 120        | o x r                 | o                       |           |           |                   |
| 121        | o x v                 | o                       |           |           |                   |
| 122        | o x r                 | o                       |           |           |                   |
| 123        | o x v                 | o                       |           |           |                   |
| 124        | o x r                 | o                       |           |           |                   |
| 125        | o x v                 | o                       |           |           |                   |
| 126        | o x r                 | o                       |           |           |                   |
| 127        | o x v                 | o                       |           |           |                   |
| 128        | o x r                 | o                       |           |           |                   |
| 129        | o x v                 | o                       |           |           |                   |
| 130        | o x r                 | o                       |           |           |                   |
| 131        | o x v                 | o                       |           |           |                   |
| 132        | o x r                 | o                       |           |           |                   |
| 133        | o x v                 | o                       |           |           |                   |
| 134        | o x r                 | o                       |           |           |                   |
| 135        | o x v                 | o                       |           |           |                   |
| 136        | o x r                 | o                       |           |           |                   |
| 137        | o x v                 | o                       |           |           |                   |
| 138        | o x r                 | o                       |           |           |                   |
| 139        | o x v                 | o                       |           |           |                   |
| 140        | o x r                 | o                       |           |           |                   |
| 141        | o x v                 | o                       |           |           |                   |
| 142        | o x r                 | o                       |           |           |                   |
| 143        | o x v                 | o                       |           |           |                   |
| 144        | o x r                 | o                       |           |           |                   |
| 145        | o x v                 | o                       |           |           |                   |
| 146        | o x r                 | o                       |           |           |                   |
| 147        | o x v                 | o                       |           |           |                   |
| 148        | o x r                 | o                       |           |           |                   |
| 149        | o x v                 | o                       |           |           |                   |
| 150        | o x r                 | o                       |           |           |                   |
| 151        | o x v                 | o                       |           |           |                   |
| 152        | o x r                 | o                       |           |           |                   |
| 153        | o x v                 | o                       |           |           |                   |
| 154        | o x r                 | o                       |           |           |                   |
| 155        | o x v                 | o                       |           |           |                   |
| 156        | o x r                 | o                       |           |           |                   |
| 157        | o x v                 | o                       |           |           |                   |
| 158        | o x r                 | o                       |           |           |                   |
| 159        | o x v                 | o                       |           |           |                   |
| 160        | o x r                 | o                       |           |           |                   |
| 161        | o x v                 | o                       |           |           |                   |
| 162        | o x r                 | o                       |           |           |                   |
| 163        | o x v                 | o                       |           |           |                   |
| 164        | o x r                 | o                       |           |           |                   |
| 165        | o x v                 | o                       |           |           |                   |
| 166        | o x r                 | o                       |           |           |                   |
| 167        | o x v                 | o                       |           |           |                   |
| 168        | o x r                 | o                       |           |           |                   |
| 169        | o x v                 | o                       |           |           |                   |
| 170        | o x r                 | o                       |           |           |                   |
| 171        | o x v                 | o                       |           |           |                   |
| 172        | o x r                 | o                       |           |           |                   |
| 173        | o x v                 | o                       |           |           |                   |
| 174        | o x r                 | o                       |           |           |                   |
| 175        | o x v                 | o                       |           |           |                   |
| 176        | o x r                 | o                       |           |           |                   |
| 177        | o x v                 | o                       |           |           |                   |
| 178        | o x r                 | o                       |           |           |                   |
| 179        | o x v                 | o                       |           |           |                   |
| 180        | o x r                 | o                       |           |           |                   |
| 181        | o x v                 | o                       |           |           |                   |
| 182        | o x r                 | o                       |           |           |                   |
| 183        | o x v                 | o                       |           |           |                   |
| 184        | o x r                 | o                       |           |           |                   |
| 185        | o x v                 | o                       |           |           |                   |
| 186        | o x r                 | o                       |           |           |                   |
| 187        | o x v                 | o                       |           |           |                   |
| 188        | o x r                 | o                       |           |           |                   |
| 189        | o x v                 | o                       |           |           |                   |
| 190        | o x r                 | o                       |           |           |                   |
| 191        | o x v                 | o                       |           |           |                   |
| 192        | o x r                 | o                       |           |           |                   |
| 193        | o x v                 | o                       |           |           |                   |
| 194        | o x r                 | o                       |           |           |                   |
| 195        | o x v                 | o                       |           |           |                   |
| 196        | o x r                 | o                       |           |           |                   |
| 197        | o x v                 | o                       |           |           |                   |
| 198        | o x r                 | o                       |           |           |                   |
| 199        | o x v                 | o                       |           |           |                   |
| 200        | o x r                 | o                       |           |           |                   |
| 201        | o x v                 | o                       |           |           |                   |
| 202        | o x r                 | o                       |           |           |                   |
| 203        | o x v                 | o                       |           |           |                   |
| 204        | o x r                 | o                       |           |           |                   |
| 205        | o x v                 | o                       |           |           |                   |
| 206        | o x r                 | o                       |           |           |                   |
| 207        | o x v                 | o                       |           |           |                   |
| 208        | o x r                 | o                       |           |           |                   |
| 209        | o x v                 | o                       |           |           |                   |
| 210        | o x r                 | o                       |           |           |                   |
| 211        | o x v                 | o                       |           |           |                   |
| 212        | o x r                 | o                       |           |           |                   |
| 213        | o x v                 | o                       |           |           |                   |
| 214        | o x r                 | o                       |           |           |                   |
| 215        | o x v                 | o                       |           |           |                   |
| 216        | o x r                 | o                       |           |           |                   |
| 217        | o x v                 | o                       |           |           |                   |
| 218        | o x r                 | o                       |           |           |                   |
| 219        | o x v                 | o                       |           |           |                   |
| 220        | o x r                 | o                       |           |           |                   |
| 221        | o x v                 | o                       |           |           |                   |
| 222        | o x r                 | o                       |           |           |                   |
| 223        | o x v                 | o                       |           |           |                   |
| 224        | o x r                 | o                       |           |           |                   |
| 225        | o x v                 | o                       |           |           |                   |
| 226        | o x r                 | o                       |           |           |                   |
| 227        | o x v                 | o                       |           |           |                   |
| 228        | o x r                 | o                       |           |           |                   |
| 229        | o x v                 | o                       |           |           |                   |
| 230        | o x r                 | o                       |           |           |                   |
| 231        | o x v                 | o                       |           |           |                   |
| 232        | o x r                 | o                       |           |           |                   |
| 233        | o x v                 | o                       |           |           |                   |
| 234        | o x r                 | o                       |           |           |                   |
| 235        | o x v                 | o                       |           |           |                   |
| 236        | o x r                 | o                       |           |           |                   |
| 237        | o x v                 | o                       |           |           |                   |
| 238        | o x r                 | o                       |           |           |                   |
| 239        | o x v                 | o                       |           |           |                   |
| 240        | o x r                 | o                       |           |           |                   |
| 241        | o x v                 | o                       |           |           |                   |
| 242        | o x r                 | o                       |           |           |                   |
| 243        | o x v                 | o                       |           |           |                   |
| 244        | o x r                 | o                       |           |           |                   |
| 245        | o x v                 | o                       |           |           |                   |
| 246        | o x r                 | o                       |           |           |                   |
| 247        | o x v                 | o                       |           |           |                   |
| 248        | o x r                 | o                       |           |           |                   |
| 249        | o x v                 | o                       |           |           |                   |
| 250        | o x r                 | o                       |           |           |                   |
| 251        | o x v                 | o                       |           |           |                   |
| 252        | o x r                 | o                       |           |           |                   |
| 253        | o x v                 | o                       |           |           |                   |
| 254        | o x r                 | o                       |           |           |                   |
| 255        | o x v                 | o                       |           |           |                   |
| 256        | o x r                 | o                       |           |           |                   |
| 257        | o x v                 | o                       |           |           |                   |
| 258        | o x r                 | o                       |           |           |                   |
| 259        | o x v                 | o                       |           |           |                   |
| 260        | o x r                 | o                       |           |           |                   |
| 261        | o x v                 | o                       |           |           |                   |
| 262        | o x r                 | o                       |           |           |                   |
| 263        | o x v                 | o                       |           |           |                   |
| 264        | o x r                 | o                       |           |           |                   |
| 265        | o x v                 | o                       |           |           |                   |
| 266        | o x r                 | o                       |           |           |                   |
| 267        | o x v                 | o                       |           |           |                   |
| 268        | o x r                 | o                       |           |           |                   |
| 269        | o x v                 | o                       |           |           |                   |
| 270        | o x r                 | o                       |           |           |                   |
| 271        | o x v                 | o                       |           |           |                   |
| 272        | o x r                 | o                       |           |           |                   |
| 273        | o x v                 | o                       |           |           |                   |
| 274        | o x r                 | o                       |           |           |                   |
| 275        | o x v                 | o                       |           |           |                   |
| 276        | o x r                 | o                       |           |           |                   |
| 277        | o x v                 | o                       |           |           |                   |
| 278        | o x r                 | o                       |           |           |                   |
| 279        | o x v                 | o                       |           |           |                   |
| 280        | o x r                 | o                       |           |           |                   |
| 281        | o x v                 | o                       |           |           |                   |
| 282        | o x r                 | o                       |           |           |                   |
| 283        | o x v                 | o                       |           |           |                   |
| 284        | o x r                 | o                       |           |           |                   |
| 285        | o x v                 | o                       |           |           |                   |
| 286        | o x r                 | o                       |           |           |                   |
| 287        | o x v                 | o                       |           |           |                   |
| 288        | o x r                 | o                       |           |           |                   |
| 289        | o x v                 | o                       |           |           |                   |
| 290        | o x r                 | o                       |           |           |                   |
| 291        | o x v                 | o                       |           |           |                   |
| 292        | o x r                 | o                       |           |           |                   |
| 293        | o x v                 | o                       |           |           |                   |
| 294        | o x r                 | o                       |           |           |                   |
| 295        | o x v                 | o                       |           |           |                   |
| 296        | o x r                 | o                       |           |           |                   |
| 297        | o x v                 | o                       |           |           |                   |
| 298        | o x r                 | o                       |           |           |                   |
| 299        | o x v                 | o                       |           |           |                   |
| 300        | o x r                 | o                       |           |           |                   |
| 301        | o x v                 | o                       |           |           |                   |
| 302        | o x r                 | o                       |           |           |                   |
| 303        | o x v                 | o                       |           |           |                   |
| 304        | o x r                 | o                       |           |           |                   |
| 305        | o x v                 | o                       |           |           |                   |
| 306        | o x r                 | o                       |           |           |                   |
| 307        | o x v                 | o                       |           |           |                   |
| 308        | o x r                 | o                       |           |           |                   |
| 309        | o x v                 | o                       |           |           |                   |
| 310        | o x r                 | o                       |           |           |                   |
| 311        | o x v                 | o                       |           |           |                   |
| 312        | o x r                 | o                       |           |           |                   |

Ausbeute: 94% der Theorie  
Fp. : > 245° C

5    Beispiel 65

N-[2-(4-Methylchinolin-8-yloxy)phenyl]-4-chlorbenzolsulfonamid



Ausbeute: 80% der Theorie  
Fp. : 123 - 125° C (Methanol)

25    Beispiel 66

N-[2-(4-Methylchinolin-8-yloxy)phenyl]-butansulfonamid



Ausbeute: 62% der Theorie  
 $R_t = 2.21$  (System a)

50

55

Beispiel 67

N-[4-(Chinolin-6-yloxy)phenyl]-4-chlorbenzolsulfonamid

5

10

15



Ausbeute: 33% der Theorie  
Fp. : > 255° C

20

Beispiel 68

N-[4-(Chinolin-6-yloxy)phenyl]-3-trifluoromethylbenzolsulfonamid

25

30

35



Ausbeute: 60% der Theorie  
Fp. : 142 - 143° C (Methanol)

40

Beispiel 69

N-[4-(Chinolin-6-yloxy)phenyl]butansulfonamide

45

50

55



Ausbeute: 84% der Theorie  
Fp. : 170° C (Methanol)

Beispiel 70

N-[2-(Chinolin-6-yloxy)phenyl]4-chlorbenzolsulfonamid

5



10

15

Ausbeute: 84% der Theorie  
Fp. : 151 - 152° C (Ethanol)

20

Beispiel 72

N-[2-(Chinolin-6-yloxy)phenyl]butansulfonamid

25



30

Ausbeute: 62% der Theorie  
Fp. : 131 - 133° C (Ethanol)

35

Beispiel 72

N-[4-(4-Methylchinolin-2-yloxy)phenyl]4-chlorbenzolsulfonamid

40



45

50

Ausbeute: 88% der Theorie  
Fp. : 174 - 176° C (Methanol)

55

Beispiel 73

N-[4-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid

5



Ausbeute: 82% der Theorie  
Fp.: 125° C (Methanol)

20

Beispiel 74

N-[4-(Chinolin-2-yl-methoxy)phenyl]-3-trifluoromethylbenzolsulfonamid

25



35

Ausbeute: 93% der Theorie  
Fp.: 81 - 83° C (Methanol)

40

Beispiel 75

N-[4-(Chinolin-2-yl-methoxy)phenyl]butansulfonamid

45



55

Ausbeute: 77% der Theorie  
Fp.: 113° C (Ethanol)

Beispiel 78

N-[4-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropansulfonamid

5



10

Ausbeute: 74% der Theorie  
Fp. : 117° C (Methanol)

15

Beispiel 77

N-[4-(Chinolin-2-yl-methoxy)phenyl]pentafluorbenzolsulfonamid

20



25

30

Ausbeute: 37% der Theorie  
Fp. : 170 - 178° C (Toluol)

40

Beispiel 78

N-[4-(Chinolin-2-yl-methoxy)phenyl]-1-methylbutansulfonamid

45



50

55

Ausbeute: 70% der Theorie  
R<sub>f</sub> = 1.68 (System a)

Beispiel 79

N-[2-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid

5

10



Ausbeute: 82% der Theorie  
 Fp. : 129 - 130° C (Methanol)

Beispiel 80

N-[2-(Chinolin-2-yl-methoxy)phenyl]-3-trifluormethylbenzolsulfonamid

25

30



35

Ausbeute: 79% der Theorie  
 Fp. : 154-155° C (Methanol)

40

45

Beispiel 81

N-[2-(Chinolin-2-yl-methoxy)phenyl]butaneulfonamid



50

Ausbeute: 40% der Theorie  
 Fp. : 93 - 94° C (Methanol)

55

Beispiel 82

N-[2-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropansulfonamid

5



10

Ausbeute: 67% der Theorie  
Fp. : 100 - 101 ° C (Methanol)

15

Beispiel 83

N-[3-(Chinolin-2-yl-methoxy)phenyl]-4-chlorbenzolsulfonamid

20



25

Ausbeute: 85% der Theorie  
Fp. : 157 - 159 ° C (Isopropanol)

35

Beispiel 84

N-[3-(Chinolin-2-yl-methoxy)phenyl]-3-trifluormethylbenzolsulfonamid Hydrochlorid

40



45

Ausbeute: 81% der Theorie  
Fp. : 183 - 187 ° C (Isopropanol)

50  
55

Beispiel 85

N-[3-(Chinolin-2-yl-methoxy)phenyl]butansulfonamid

5

10

15



Ausbeute: 67% der Theorie  
Fp. : 105 - 106° C (Isopropanol)

20

Beispiel 86

N-[3-(Chinolin-2-yl-methoxy)phenyl]-3-chlorpropansulfonamid

25

30

35



Ausbeute: 90% der Theorie  
Fp. : 116 - 117° C (Isopropanol)

40

Beispiel 87

N-[4-[1-(Chinolin-2-yl-ethoxy)phenyl]butansulfonamid

45

50

55



Ausbeute: 89% der Theorie  
R<sub>f</sub> = 1.80 (System a)

Beispiel 88

N-[4-(Chinolin-2-yl)methoxy-3-cyano-phenyl]butansulfonamid

5

10

15



Ausbeute: 43% der Theorie

Fp. : 158 - 160° C (Isopropanol)

20

Beispiel 89

N-[3-Ethoxycarbonyl-4-(chinolin-2-yl)methoxy-phenyl]butansulfonamid

25

30

35



Ausbeute: 33% der Theorie

Fp. : 80 - 82° C

40

Beispiel 90

N-[2-(Chinolin-8-yloxyethyl)phenyl]-4-chlorbenzolsulfonamid

50

55



Ausbeute: 31% der Theorie

Fp. : 136 - 137° C

### Beispiel 91



5



10

76

Ausbeute: 81% der Theorie  
Fp.: 201 - 202° C (Methanol)

210

### Beispiel 92



45



10

Ausbeute: 60% der Theorie  
Fp.: 210 - 212° C (Ethanol)

### Beispiel 93



Ausbeute: 42% der Theorie

Fp. : 136 - 137° C (Ethanol)

Beispiel 94

5

N-[3-(Chinolin-8-yloxyethyl)phenyl]4-fluorbenzolsulfonamid

10

15

20

Ausbeute: 88% der Theorie  
Fp. : 206 - 207° C (Ethanol)



25

Beispiel 95

N-[2-(Chinolin-8-yloxyethyl)phenyl]butansulfonamid

30

35

40

Ausbeute: 56% der Theorie  
Fp. : 88 - 89° C (Ethanol)



45

Beispiel 96

N-[2-(Chinolin-8-yloxyethyl)phenyl]-3-trifluormethylbenzolsulfonamid

50

55



A u s s b e u t % o . T h i s d a r d e r  
Fp : -12°0 (E1H2 10 G a n l)

5 B'pdi i e l 9 7

N-[{2'-Ch-1yn oxyl in y8)-ph-yn-3-th-1rp]-epams 1-3-ch-1o-o-uulf on am i'd

1 0



7 5

A u s b e u t % . 57% d e r T h e o n e  
20 Fp : -8.6°C 7

B'pdi i e l 9 8

25 N-[3-(C h-1n g i k y n -8-y-lp) p r p e p t y l l] 18'-ch-1o-r o-a n s u l f o n a m i'd

3 0



35

A u s b e u t % . 7.2% d e r T h e o n e  
40 Fp : 4.21 °(-43 °C) E than o l

B'pdi i e l 9 9

45 N-[2-(C h-1n g i k y n -8-y-lp)-yel-H-1o-benzosu lf8] a m i'd

5 0



5 5

A u s b e u t % . 9.5% d e r T h e o n e  
pF : -1.21(Eth1 22) C an o l

Beispiel 100

N,N',N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]butansulfonamid

5



10

Ausbeute: 78% der Theorie  
R<sub>1</sub> = 1.80 (System a)Beispiel 101

20 N,N',N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]3-chlorpropansulfonamid

25



30

Ausbeute: 71% der Theorie  
Fp. : 63 - 65° C

35

Beispiel 102

N,N',N'-[3-(Methyl-2-pyridyl-aminomethyl)phenyl]-3-trifluoromethylbenzolsulfonamid

40



45

50 Ausbeute: 81% der Theorie  
Fp. : 194 - 197° C

55

Beispiel 103

N,N',N'-[3-(Methyl-2-pyridylaminomethyl)phenyl]-4-chlorbenzolsulfonamid

5

10

Ausbeute: 70% der Theorie  
15 Fp.: 113 - 114° CBeispiel 104

20 N,N',N'-[3-[(Methyl-2-(2-pyridyl)ethyl)aminomethyl]phenyl]-4-chlorbenzolsulfonamid

25

30

Ausbeute: 74% der Theorie  
35 R<sub>f</sub> = 0,58 (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 10:1)Beispiel 105

40 N,N',N'-[3-[Methyl-2-(2-pyridyl)ethyl]aminomethylphenyl]-3-trifluoromethylbenzolsulfonamid

45

50

Ausbeute: 73% der Theorie  
R<sub>f</sub> = 0,59 (CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 10:1)

55

Beispiel 106

N,N',N"-{3-[{[Methyl-2-(2-pyridyl)ethyl]aminomethyl}phenyl]butansulfonamid

5



10

Ausbeute: 35% der Theorie  
15  $R_f = 0.58$  ( $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}$  10:1)AnwendungsbeispieleBeispiel 107

(Thrombozytenaggregationshemmung)

Zur Bestimmung der thrombozytenaggregationshemmenden Wirkung wurde Blut von gesunden Probanden beiderlei Geschlechts verwendet. Als Antikoagulans wurden einem Teil 3,8%iger wässriger Natriumzitratlösung 9 Teile Blut zugemischt. Mittels Zentrifugation erhält man aus diesem Blut plättchenreiches Zitratplasma (PRP) (Jürgens/Beller, Klinische Methoden der Blutgerinnungsanalyse; Thieme Verlag, Stuttgart, 1959).

Für diese Untersuchungen wurden 0,8 ml PRP und 0,1 ml der Wirkstofflösung bei 37° C im Wasserbad vorinkubiert. Anschließend wurde die Thrombozytenaggregation nach der turbidometrischen Methode (Born, G.V.R., J. Physiol. (London), 162, 87, 1962) im Aggregometer bei 37° C bestimmt (Therapeutische Berichte 47, 80-86, 1975). Hierzu wurde die vorinkubierte Probe mit 0,1 ml Kollagen, einem aggregationsauslösenden Agens, versetzt. Die Veränderung der optischen Dichte in der Probe der PRP wurde während einer Zeitspanne von 8 Minuten aufgezeichnet und der Ausschlag nach 8 Minuten bestimmt. Hierzu wird die prozentuale Hemmung gegenüber der Kontrolle errechnet.

Als Grenzkonzentration wird der Bereich der minimal effektiven Konzentration angegeben (Tabelle 1).

Tabelle 1 Thrombozytenaggregationshemmung

|    | <u>Beispiel-Nr.</u> | <u>Hemmung µg/ml (Grenzkonzentration)</u> |
|----|---------------------|-------------------------------------------|
|    | 38                  | 0,3-0,1                                   |
| 46 | 43                  | 1,0-0,1                                   |
|    | 44                  | 10 - 1                                    |
|    | 45                  | 10 - 1                                    |
| 50 | 46                  | 1,0 - 0,1                                 |
|    | 52                  | 10 - 3                                    |
|    | 58                  | 10 - 3                                    |
| 55 | 74                  | 3,0 - 1,0                                 |
|    | 90                  | 1,0 - 0,1                                 |

Als Maß für eine Lipoxygenase-Hemmung wurde die Freisetzung von Leukotrien B<sub>4</sub> (LTB<sub>4</sub>) an polymorphekerigen Rattenleukozyten (PMN) nach Zugabe von Substanzen und Ca-Ionophor mittels reverse phase HPLC nach Borgeat, P. et al. Proc. Nat. Acad. Sci. 76, 2148-2152 (1979) bestimmt. Die in vivo-Aktivität der Verbindungen wurde mit dem Mäuseohr-Entzündungsmodell nach Young, J.M. et al., J. of Investigative Dermatology 82, 367-371 (1984) nachgewiesen.

5 in den Tabellen 2 und 3 sind beispielhaft die nach diesem Test erzielten Werte einiger erfindungs-gemäßige Verbindungen aufgeführt:

10 **Tabelle 2 Lipoxygenasehemmung**

| Bsp.-Nr. | IC <sub>50</sub> -Wert (g/ml) |
|----------|-------------------------------|
| 53       | 8.8 x 10 <sup>-8</sup>        |
| 54       | 1.7 x 10 <sup>-7</sup>        |
| 57       | 3.3 x 10 <sup>-8</sup>        |
| 20 73    | 1.0 x 10 <sup>-7</sup>        |
| 74       | 1.0 x 10 <sup>-7</sup>        |
| 75       | 5.7 x 10 <sup>-8</sup>        |
| 25 76    | 4.6 x 10 <sup>-8</sup>        |
| 78       | 7.4 x 10 <sup>-8</sup>        |

30 **Tabelle 3 Mouse Ear Inflammation Test**

| Beispiel | Dosis          | Entzündungshemmung % |
|----------|----------------|----------------------|
| 58       | 2 mg/Ohr top.  | 58                   |
| 75       | "              | 39                   |
| 78       | "              | 65                   |
| 44       | 100 mg/kg p.o. | 38                   |
| 40 75    | "              | 46                   |
| 76       | "              | 37                   |

45 **Ansprüche**

## 1. Phenylsulfonamide der Formel (I)



in welcher

R<sup>1</sup> -für einen Pyridyl-, Chinolyl-oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl,

Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,  
 R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl  
 steht,

R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch  
 bonyl oder

- für Pentfluorphenyl oder

- für geradketiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryl,  
 Aryloxy, Cyano, Alkoxy carbonyl, Alkoxy, Alkylthio oder Trifluormethyl  
 und

X - für eine Gruppierung -O-, -A-B-oder -B-A- steht,  
 wobei

A = -O-,

15



20 , oder



25

bedeutet und  
 B = -CH<sub>2</sub>- oder

30



35

bedeutet wobei R<sup>1</sup> nicht für einen Pyridylrest  
 stehen darf,

wenn X für die Gruppierung -O- steht.  
 und deren Salze.

2. Phenylsulfonamide nach Anspruch 1,  
 wobei

R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Fluor, Chlor, Brom, Niederalkyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Niederalkoxy, Cyano, Trifluormethyl, Trifluormethoxy, R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Fluor, Chlor, Brom, Niederalkyl, Niederalkoxy, Trifluormethyl, Trifluormethoxy, oder Niederalkoxy carbonyl steht,

R<sup>3</sup> - für Phenyl steht, das bis zu 2-fach gleich oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy, Niederalkyl, Niederalkoxy, Niederalkylthio, Niederalkylsulfonyl, - für Pentfluorphenyl oder

- für geradketiges, verzweigtes oder cyclisches Alkyl mit bis zu 8 Kohlenstoffatomen steht, das substituiert sein kann durch Fluor, Chlor, Brom, Phenyl, Phenoxy, Cyano, Niederalkoxy oder Trifluormethyl und

X - für eine Gruppierung -O-, -A-B-oder -B-A- steht,  
 wobei

A = -O-,

55



oder



bedeutet und  
B -  $-\text{CH}_2-$  oder



- 15 bedeutet,  
wobei R<sup>1</sup> nicht für einen Pyridyrest stehen darf, wenn X für die Gruppierung -O-steht,  
und deren Salze.  
3. Phenylsulfonamide nach den Ansprüchen 1 und 2,  
wobei
- 20 R<sup>1</sup> - für einen Pyridyl-, Chinoyl- oder Isochinolyrest steht, der substituiert sein kann durch Fluor, Chlor, Alkyl mit bis zu 4 Kohlenstoffatomen, Alkoxy mit bis zu 4 Kohlenstoffatomen oder durch Trifluormethyl,  
R<sup>2</sup> - für Wasserstoff, Cyano, Fluor, Chlor, Methyi, Ethyl, Propyl, Isopropyl, Methoxy, Ethoxy, Trifluormethyl,  
Methoxycarbonyl, Ethoxycarbonyl oder Propoxycarbonyl steht,  
R<sup>3</sup> - für Phenyl steht, das substituiert sein kann durch Fluor, Chlor, Trifluormethyl, Trifluormethoxy, Alkyl mit  
25 bis zu 4 Kohlenstoffatomen, Alkoxy mit bis zu 4 Kohlenstoffatomen, Cyano, Alkoxycarbonyl mit bis zu 4  
Kohlenstoffatomen oder  
- für Pentfluorphenyl oder  
- für geradketiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen steht, das substituiert sein kann  
durch Fluor, Chlor oder Phenyl
- 30 und  
X - für -O-, -OCH<sub>2</sub>-, -CH<sub>2</sub>O-, -OCH(CH<sub>3</sub>)-, -CH<sub>2</sub>N(CH<sub>3</sub>)-, -CH<sub>2</sub>N(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>-steht  
wobei R<sup>1</sup> nicht für einen Pyridyrest stehen darf, wenn X für die Gruppierung -O-steht  
und deren Salze.
4. Phenylsulfonamide der Formel (I)
- 35



- 45 In welcher  
R<sup>1</sup> - für einen Pyridyl-, Chinoyl- oder Isochinolyrest steht, der substituiert sein kann durch Halogen, Alkyl,  
Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxycarbonyl oder Alkylsulfonyl,  
R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxycarbonyl  
steht,  
R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch  
Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxycarbonyl  
oder  
- für Pentfluorphenyl oder  
- für geradketiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryl,  
Aryloxy, Cyano, Alkoxycarbonyl, Alkoxy, Alkythio oder Trifluormethyl
- 50 und  
X - für eine Gruppierung -O-, -A-B- oder -B-A- steht,  
wobei  
A - -O-,
- 55



5 , oder

10 bedeutet und  
B -  $-CH_2-$  oder

20 bedeutet  
 wobei R<sup>1</sup> nicht für einen Pyridylrest stehen darf, wenn X für die Gruppierung -O-steht,  
 und deren Salze,  
 zur therapeutischen Behandlung.

## 5. Verfahren zur Herstellung von Phenylsulfonamiden der Formel (I)

25



30 in welcher  
 R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl, Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,  
 R<sup>2</sup> - für Wasserstoff, Cyan, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl steht,  
 R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxy carbonyl oder  
 40 - für Pentafluorphenyl oder  
 - für geradkettiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryl, Aryloxy, Cyano, Alkoxy carbonyl, Alkoxy, Alkythio oder Trifluormethyl  
 und  
 45 X - für eine Gruppierung -O-, -A-B- oder -B-A- steht,  
 wobei  
 A -  $-O-$ ,

50 , oder  
55



5 bedeutet und  
B -  $\text{-CH}_2$ -oder



10 bedeutet wobei R<sup>1</sup> nicht für ein Pyridylerest stehen darf, wenn X für die Gruppierung -O-steht,  
und deren Salze,  
15 das dadurch gekennzeichnet ist, daß man  
Amine der allgemeinen Formel (II)



20 in welcher  
R<sup>1</sup>, R<sup>2</sup> und X die oben angegebene Bedeutung haben, mit Sulfonsäurehalogeniden der allgemeinen Formel  
(III)  
25 R<sup>2</sup>-SO<sub>2</sub>-Y (III)  
in welcher  
R<sup>3</sup> die oben angegebene Bedeutung hat  
und  
Y - für Halogen steht  
30 In Gegenwart eines inerten Lösemittels, gegebenenfalls in Gegenwart einer Base umsetzt und dann  
gegebenenfalls im Fall der Herstellung der Salze mit einer entsprechenden Säure umsetzt.  
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Umsetzung im Temperaturbereich  
von -30° C bis +150° C durchführt.  
35 7. Arzneimittel, enthaltend ein oder mehrere Phenylsulfonamide der allgemeinen Formel (I)



40 in welcher  
45 R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl,  
Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,  
R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl  
steht,  
50 R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch  
Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxy carbonyl  
oder  
- für Pentfluorphenyl oder  
- für geradketiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryl,

Aryloxy, Cyano, Alkoxy carbonyl, Alkoxy, Alkythio oder Trifluormethyl und

X - für eine Gruppierung -O-, -A-B- oder -B-A-steht,  
wobei

5 A - -O-,



10

, oder



15

bedeutet und  
B - -CH<sub>2</sub>- oder

20



25 bedeutet

wobei R<sup>1</sup> nicht für einen Pyridylrest stehen darf, wenn X für die Gruppierung -O-steht,  
und deren Salze.

8. Arzneimittel nach Anspruch 7, enthaltend 0,5 bis 90 Gew.-% Phenylsulfonamide, bezogen auf die  
30 Gesamtmasse.  
9. Verwendung von Phenylsulfonamiden der Formel



35 40 in welcher

R<sup>1</sup> - für einen Pyridyl-, Chinolyl- oder Isochinolylrest steht, der substituiert sein kann durch Halogen, Alkyl, Cycloalkyl, Alkoxy, Cyano, Nitro, Halogenalkyl, Halogenalkoxy, Alkoxy carbonyl oder Alkylsulfonyl,

R<sup>2</sup> - für Wasserstoff, Cyano, Nitro, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Alkoxy carbonyl steht,

R<sup>3</sup> - für einen Arylrest steht, der bis zu dreifach gleich oder verschieden substituiert sein kann durch bonyl oder Halogen, Halogenalkyl, Halogenalkoxy, Alkyl, Alkoxy, Alkythio, Alkylsulfonyl, Cyano, Nitro oder Alkoxy car-

-fonyl oder

45 - für geradketiges, verzweigtes oder cyclisches Alkyl steht, das substituiert sein kann durch Halogen, Aryl, und

Aryloxy, Cyano, Alkoxy carbonyl, Alkoxy, Alkythio oder Trifluormethyl

50 X - für eine Gruppierung -O-, -A-B- oder -B-A-steht,  
wobei

A - -O-,

55



5 , oder



10

bedeutet und  
B -  $-CH_2-$  oder

15



20 bedeutet

wobei R' nicht für einen Pyridylrest stehen darf, wenn X für die Gruppierung -O-steht,  
und deren Salze,  
zur Herstellung von Arzneimitteln.

10. Verwendung nach Anspruch 8 zur Herstellung von Lipoxygenasehemmern.
11. Verwendung nach Anspruch 9 zur Herstellung von Thrombozytenaggregationshemmern.
12. Verwendung nach Anspruch 9 zur Herstellung von Arzneimitteln zur Hemmung von enzymatischen Reaktionen.

30

35

40

45

50

55