## Applications of the course

Lecture 36

## Applications of the course

- 1. Speech synthesis
- 2. Convolution neural networks
- 3. Health applications
- 4. Optics and Spatial filtering
- 5. And some more

## Applications of the course

#### 1. Speech synthesis

- 2. Convolution neural networks
- 3. Health applications
- 4. Optics and Spatial filtering
- 5. And some more

### Fourier Series of Vowels







| Item  | F1  | F2   | Duration<br>(ms) |
|-------|-----|------|------------------|
| heed  | 292 | 2352 | 177              |
| hid   | 285 | 2410 | 126              |
| head  | 668 | 1863 | 179              |
| had   | 652 | 1877 | 132              |
| hud   | 695 | 1235 | 152              |
| hard  | 818 | 1182 | 174              |
| herd  | 524 | 1389 | 169              |
| hawed | 568 | 866  | 181              |
| hod   | 460 | 875  | 176              |
| whod  | 289 | 813  | 220              |
| hood  | 296 | 935  | 163              |







































# Mapping CT system to DT system

## CT and DT system

Basic CT system

Basic DT system



$$h(t) = e^{pt}u(t)$$

$$h[n] = p_o^n u[n]$$

### CT and DT system

Basic CT system

Basic DT system



$$h(t) = e^{pt}u(t)$$

$$h[n] = p_o^n u[n]$$





$$\frac{dy(t)}{dt} = x(t)$$

$$sY(s) = X(s)$$

$$\frac{y[n+1] - y[n]}{T} = x[n]$$

$$\frac{Y(z)z - Y(z)}{T} = X(z)$$



$$sY(s) = X(s)$$

$$\frac{Y(s)}{X(s)} = \frac{1}{s}$$



$$\frac{Y(z)z - Y(z)}{T} = X(z)$$

$$\frac{Y(z)}{X(z)} = \frac{T}{z - 1}$$



$$sY(s) = X(s)$$

$$H(s) = \frac{1}{s}$$



$$\frac{Y(z)z - Y(z)}{T} = X(z)$$

$$H(z) = \frac{T}{z - 1}$$





$$H(s) = \frac{1}{s}$$

$$H(s) = H(z) \Rightarrow \frac{1}{s} = \frac{T}{z-1}$$

$$H(z) = \frac{T}{z - 1}$$

$$\frac{1}{s} = \frac{T}{z - 1}$$

$$z \rightarrow 1 + sT$$





$$\frac{1}{s} = \frac{T}{z - 1}$$

$$z \rightarrow 1 + sT$$



$$\frac{1}{s} = \frac{T}{z - 1}$$

$$z \rightarrow 1 + sT$$







$$\frac{dy(t)}{dt} = x(t)$$

$$sY(s) = X(s)$$



$$\frac{y[n] - y[n-1]}{T} = x[n]$$

$$\frac{Y(z) - z^{-1}Y(z)}{T} = X(z)$$



$$sY(s) = X(s)$$

$$H(s) = \frac{1}{s}$$



$$\frac{Y(z) - z^{-1}Y(z)}{T} = X(z)$$

$$H(z) = \frac{T}{1 - z^{-1}}$$

$$z \to \frac{1}{1 - sT}$$





$$z \to \frac{1}{1 - sT}$$





### Trapezoidal





$$\frac{dy(t)}{dt} = x(t)$$

$$\frac{y[n] - y[n-1]}{T} = \frac{x[n] + x[n-1]}{2}$$

$$sY(s) = X(s)$$

$$\frac{Y(z) - z^{-1}Y(z)}{T} = \frac{X(z) + z^{-1}X(z)}{2}$$

### Trapezoidal





$$sY(s) = X(s)$$

$$\frac{Y(z) - z^{-1}Y(z)}{T} = \frac{X(z) + z^{-1}X(z)}{2}$$

$$H(s) = \frac{1}{s}$$

$$H(z) = \frac{T(1+z^{-1})}{2(1-z^{-1})}$$

# Trapezoidal

$$z \to \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}$$





### Impulse-invariance

Basic CT system

Basic DT system



$$h(t) = e^{pt}u(t)$$

$$h[n] = p_o^n u[n] = e^{pn} u[n]$$

### Applications of the course

- 1. Speech synthesis
- 2. Convolution neural networks
- 3. Health applications
- 4. Optics and Spatial filtering
- 5. And some more

















| -1   1   1   -1 |  | -1 | 1 | 1 | -1 |
|-----------------|--|----|---|---|----|
|-----------------|--|----|---|---|----|





























### Applications of the course

- 1. Speech synthesis
- 2. Convolution neural networks
- 3. Health applications
- 4. Optics and Spatial filtering
- 5. And some more

## Electrocardiogram



#### Electrocardiogram





#### Electrocardiogram





#### Applications of the course

- 1. Speech synthesis
- 2. Convolution neural networks
- 3. Health applications
- 4. Optics and Spatial filtering
- 5. And some more

# Data track spacing?











$$\frac{2\pi}{\lambda}(d\sin\theta) = 2\pi m$$

$$d \sin \theta = m\lambda$$

$$d\frac{D+d/2}{z} = \lambda$$

$$dD + \frac{d^2}{2} = z\lambda$$

$$d \approx \frac{z\lambda}{D}$$

#### CD track length

$$d \approx \frac{z\lambda}{D}$$

$$d \approx \frac{2.7 \, feet \times 600 nm}{1 \, feet} \approx 1600 nm$$





$$F(\theta) = \int_{-\infty}^{\infty} f(x)e^{-j\frac{2\pi}{\lambda}x\sin\theta} dx$$

$$F(\theta) = \int_{-\infty}^{\infty} f(x)e^{-j\frac{2\pi}{\lambda}x\theta} dx$$

$$\omega = \frac{2\pi\theta}{\lambda} \qquad F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-j\omega x} dx$$



#### Halftone dots noise



















