使用list和tuple

4917次阅读

1ist

Python内置的一种数据类型是列表: list。list是一种有序的集合,可以随时添加和删除其中的元素。

比如,列出班里所有同学的名字,就可以用一个list表示:

```
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']
```

变量classmates就是一个list。用len()函数可以获得list元素的个数:

```
>>> len(classmates)
3
```

用索引来访问list中每一个位置的元素,记得索引是从0开始的:

```
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range
```

当索引超出了范围时,Python会报一个IndexError错误,所以,要确保索引不要越界,记得最后一个元素的索引是len(classmates) - 1。

如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素:

```
>>> classmates[-1]
'Tracy'
```

以此类推,可以获取倒数第2个、倒数第3个:

```
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
IndexError: list index out of range
```

当然,倒数第4个就越界了。

list是一个可变的有序表,所以,可以往list中追加元素到末尾:

```
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']
```

也可以把元素插入到指定的位置,比如索引号为1的位置:

```
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']
```

要删除list末尾的元素,用pop()方法:

```
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']
```

要删除指定位置的元素,用pop(i)方法,其中i是索引位置:

```
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']
```

要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:

```
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']
```

list 里面的元素的数据类型也可以不同,比如:

```
>>> L = ['Apple', 123, True]
```

list元素也可以是另一个list,比如:

```
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
```

要注意s只有4个元素,其中s[2]又是一个list,如果拆开写就更容易理解了:

```
>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']
```

要拿到'php'可以写p[1]或者s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维……数组,不过很少用到。

如果一个list中一个元素也没有,就是一个空的list,它的长度为0:

```
>>> L = []
>>> len(L)
0
```

tuple

另一种有序列表叫元组: tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:

```
>>> classmates = ('Michael', 'Bob', 'Tracy')
```

现在, classmates这个tuple不能变了, 它也没有append(), insert()这样的方法。其他获取元素的方法和list是一样的, 你可以正常地使用classmates[0], classmates[-1], 但不能赋值成另外的元素。

不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。

tuple的陷阱: 当你定义一个tuple时,在定义的时候,tuple的元素就必须被确定下来,比如:

```
>>> t = (1, 2)
>>> t
(1, 2)
```

如果要定义一个空的tuple,可以写成():

```
>>> t = ()
>>> t
()
```

但是,要定义一个只有1个元素的tuple,如果你这么定义:

```
>>> t = (1)  
>>> t  
1
```

定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。

所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:

```
>>> t = (1,)
>>> t
(1,)
```

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

最后来看一个"可变的"tuple:

```
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
```

这个tuple定义的时候有3个元素,分别是'a','b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?

别急,我们先看看定义的时候tuple包含的3个元素:

当我们把list的元素'A'和'B'修改为'X'和'Y'后,tuple变为:

表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的"不变"是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!

理解了"指向不变"后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。

小结

list和tuple是Python内置的有序集合,一个可变,一个不可变。根据需要来选择使用它们。

条件判断和循环

4143次阅读

条件判断

计算机之所以能做很多自动化的任务,因为它可以自己做条件判断。

比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现:

```
age = 20
if age >= 18:
    print 'your age is', age
    print 'adult'
```

根据Python的缩进规则,如果if语句判断是True,就把缩进的两行print语句执行了,否则,什么也不做。

也可以给if添加一个else语句, 意思是, 如果if判断是False, 不要执行if的内容, 去把else执行了:

```
age = 3
if age >= 18:
    print 'your age is', age
    print 'adult'
else:
    print 'your age is', age
    print 'teenager'
```

注意不要少写了冒号:。

当然上面的判断是很粗略的,完全可以用elif做更细致的判断:

```
age = 3
if age >= 18:
    print 'adult'
elif age >= 6:
    print 'teenager'
else:
    print 'kid'
```

elif是else if的缩写,完全可以有多个elif,所以if语句的完整形式就是:

```
if 〈条件判断1〉:
〈执行1〉
elif 〈条件判断2〉:
〈执行2〉
elif 〈条件判断3〉:
〈执行3〉
else:
〈执行4〉
```

if语句执行有个特点,它是从上往下判断,如果在某个判断上是True,把该判断对应的语句执行后,就忽略掉剩下的elif和else,所以,请测试并解释为什么下面的程序打印的是teenager:

```
age = 20
if age >= 6:
    print 'teenager'
elif age >= 18:
```

```
print 'adult'
else:
    print 'kid'
```

if判断条件还可以简写,比如写:

```
if x:
    print 'True'
```

只要x是非零数值、非空字符串、非空list等,就判断为True,否则为False。

循环

Python的循环有两种,一种是for...in循环,依次把list或tuple中的每个元素迭代出来,看例子:

```
names = ['Michael', 'Bob', 'Tracy']
for name in names:
    print name
```

执行这段代码,会依次打印names的每一个元素:

Michael Bob Tracy

所以for x in ... 循环就是把每个元素代入变量x, 然后执行缩进块的语句。

再比如我们想计算1-10的整数之和,可以用一个sum变量做累加:

```
sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
    sum = sum + x
print sum
```

如果要计算1-100的整数之和,从1写到100有点困难,幸好Python提供一个range()函数,可以生成一个整数序列,比如range(5)生成的序列是从0开始小于5的整数:

```
>>> range (5)
[0, 1, 2, 3, 4]
```

range(101)就可以生成0-100的整数序列,计算如下:

```
sum = 0
for x in range(101):
    sum = sum + x
print sum
```

请自行运行上述代码,看看结果是不是当年高斯同学心算出的5050。

第二种循环是while循环,只要条件满足,就不断循环,条件不满足时退出循环。比如我们要计算100以内所有奇数之和,可以用while循环实现:

```
\begin{array}{l} \text{sum} = 0 \\ n = 99 \\ \text{while } n > 0; \\ \text{sum} = \text{sum} + n \\ n = n - 2 \\ \text{print sum} \end{array}
```

在循环内部变量n不断自减,直到变为-1时,不再满足while条件,循环退出。

再议raw input

最后看一个有问题的条件判断。很多同学会用raw_input()读取用户的输入,这样可以自己输入,程序运行得更有意思:

```
birth = raw_input('birth: ')
if birth < 2000:
    print '00前'
else:
    print '00后'
```

输入1982,结果却显示00后,这么简单的判断Python也能搞错?

当然不是Python的问题,在Python的交互式命令行下打印birth看看:

```
>>> birth
'1982'
>>> '1982' < 2000
False
>>> 1982 < 2000
True</pre>
```

原因找到了!原来从raw_input()读取的内容永远以字符串的形式返回,把字符串和整数比较就不会得到期待的结果,必须先用int()把字符串转换为我们想要的整型:

```
birth = int(raw_input('birth: '))
```

再次运行,就可以得到正确地结果。但是,如果输入abc呢?又会得到一个错误信息:

```
Traceback (most recent call last):
```

. . .

ValueError: invalid literal for int() with base 10: 'abc'

原来int()发现一个字符串并不是合法的数字时就会报错,程序就退出了。

如何检查并捕获程序运行期的错误呢?后面的错误和调试会讲到。

小结

条件判断可以让计算机自己做选择, Pvthon的if...elif...else很灵活。

if salary >= 10000:

print

elif salary >=5000:

print

else:

print

循环是让计算机做重复任务的有效的方法,有些时候,如果代码写得有问题,会让程序陷入"死循环",也就是永远循环下去。这时可以用Ctrl+C退出程序,或者强制结束Python进程。

请试写一个死循环程序。

使用dict和set

4078次阅读

dict

Python内置了字典: dict的支持, dict全称dictionary, 在其他语言中也称为map, 使用键-值 (key-value) 存储, 具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

```
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]
```

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个"名字"-"成绩"的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

```
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
```

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael', dict在内部就可以直接计算出 Michael对应的存放成绩的"页码",也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过kev放入:

```
>>> d['Adam'] = 67
>>> d['Adam']
67
```

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

```
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88
```

如果key不存在, dict就会报错:

```
>>> d['Thomas']
```

```
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
KeyError: 'Thomas'
```

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

```
>>> 'Thomas' in d
```

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

```
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
```

注意: 返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

```
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
```

请务必注意,dict内部存放的顺序和kev放入的顺序是没有关系的。

和list比较, dict有以下几个特点:

- 1. 查找和插入的速度极快,不会随着key的增加而增加:
- 2. 需要占用大量的内存,内存浪费多。

而list相反:

- 1. 查找和插入的时间随着元素的增加而增加;
- 2. 占用空间小,浪费内存很少。

所以, dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

```
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
```

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

```
>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])
```

注意,传入的参数[1, 2, 3]是一个list,而显示的set([1, 2, 3])只是告诉你这个set内部有list0,3这3个元素,显示的[]不表示这是一个list0。

重复元素在set中自动被过滤:

```
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])
```

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

```
>>> s. add (4)
>>> s
set([1, 2, 3, 4])
>>> s. add (4)
>>> s
set([1, 2, 3, 4])
```

通过remove(key)方法可以删除元素:

```
>>> s.remove(4)
>>> s
set([1, 2, 3])
```

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

```
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])
```

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部"不会有重复元素"。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

```
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
```

而对于不可变对象,比如str,对str进行操作呢:

```
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
```

```
>>> a
'abc'
```

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

```
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
```

要始终牢记的是, a是变量, 而'abc'才是字符串对象! 有些时候, 我们经常说, 对象a的内容是'abc', 但其实是指, a本身是一个变量, 它指向的对象的内容才是'abc':

当我们调用a. replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)和(1, [2, 3])放入dict或set中,并解释结果。

函数

2258次阅读

我们知道圆的面积计算公式为:

$$S = \pi r^2$$

当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:

r1 = 12.34

r2 = 9.08

r3 = 73.1

s1 = 3.14 * r1 * r1

s2 = 3.14 * r2 * r2

s3 = 3.14 * r3 * r3

当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。

有了函数,我们就不再每次写s = 3.14 * x * x, 而是写成更有意义的函数调用s = area_of_circle(x), 而函数area_of_circle本身只需要写一次, 就可以多次调用。

基本上所有的高级语言都支持函数,Python也不例外。Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

抽象

抽象是数学中非常常见的概念。举个例子:

计算数列的和,比如: 1 + 2 + 3 + ... + 100,写起来十分不方便,于是数学家发明了求和符号 Σ ,可以把1 + 2 + 3 + ... + 100记作:

100

$$\sum_{n}$$

n=1

这种抽象记法非常强大,因为我们看到∑就可以理解成求和,而不是还原成低级的加法运算。

而且,这种抽象记法是可扩展的,比如:

100

$$\sum (n^{2+1})$$

n=1

还原成加法运算就变成了:

2017/1/10 13函数.html

 $(1 \times 1 + 1) + (2 \times 2 + 1) + (3 \times 3 + 1) + \dots + (100 \times 100 + 1)$

可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。

写计算机程序也是一样, 函数就是最基本的一种代码抽象的方式。

2017/1/10 14调用函数.html

调用函数

3223次阅读

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:

http://docs.python.org/2/library/functions.html#abs

也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

调用abs函数:

```
>>> abs (100)
100
>>> abs (-20)
20
>>> abs (12. 34)
12. 34
```

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你: abs()有且仅有1个参数,但给出了两个:

```
>>> abs(1, 2)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)
```

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

```
>>> abs('a')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'
```

而比较函数cmp(x, y)就需要两个参数,如果x < y,返回-1,如果x = y,返回0,如果x > y,返回1:

```
>>> cmp (1, 2)
-1
>>> cmp (2, 1)
1
>>> cmp (3, 3)
```

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

```
>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
```

```
>>> str(1.23)
'1.23'
>>> unicode(100)
u'100'
>>> bool(1)
True
>>> bool('')
False
```

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个"别名":

```
>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1
```

小结

调用Python的函数,需要根据函数定义,传入正确的参数。如果函数调用出错,一定要学会看错误信息,所以英文很重要!

2017/1/10 15定义函数.html

定义函数

3020次阅读

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

我们以自定义一个求绝对值的my abs函数为例:

```
def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x
```

请自行测试并调用my abs看看返回结果是否正确。

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。

return None可以简写为return。

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

```
def nop():
    pass
```

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么 写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

```
if age >= 18:
pass
```

缺少了pass,代码运行就会有语法错误。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:

```
>>> my_abs(1, 2)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: my_abs() takes exactly 1 argument (2 given)
```

但是如果参数类型不对, Python解释器就无法帮我们检查。试试my abs和内置函数abs的差别:

```
>>> my_abs('A')
'A'
>>> abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
```

TypeError: bad operand type for abs(): 'str'

当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,所以,这个函数定义不够完善。

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance实现:

```
def my_abs(x):
    if not isinstance(x, (int, float)):
       raise TypeError('bad operand type')
    if x >= 0:
       return x
    else:
       return -x
```

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

```
>>> my_abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in my_abs
TypeError: bad operand type
```

错误和异常处理将在后续讲到。

返回多个值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

```
import math

def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny
```

这样我们就可以同时获得返回值:

```
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0
```

但其实这只是一种假象, Python函数返回的仍然是单一值:

```
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)
```

原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

小结

定义函数时,需要确定函数名和参数个数;

如果有必要,可以先对参数的数据类型做检查;

函数体内部可以用return随时返回函数结果;

函数执行完毕也没有return语句时, 自动return None。

函数可以同时返回多个值,但其实就是一个tuple。

函数的参数

3271次阅读

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

默认参数

我们仍以具体的例子来说明如何定义函数的默认参数。先写一个计算x²的函数:

```
def power(x):
    return x * x
```

当我们调用power函数时,必须传入有且仅有的一个参数x:

```
>>> power (5)
25
>>> power (15)
225
```

现在,如果我们要计算 x^3 怎么办?可以再定义一个power3函数,但是如果要计算 x^4 、 x^5 ······怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算 x^n ,说干就干:

```
def power(x, n):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s
```

对于这个修改后的power函数,可以计算任意n次方:

```
>>> power (5, 2)
25
>>> power (5, 3)
125
```

但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码无法正常调用:

```
>>> power(5)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 arguments (1 given)
```

这个时候,默认参数就排上用场了。由于我们经常计算 x^2 ,所以,完全可以把第二个参数n的默认值设定为2:

```
def power (x, n=2):
 s = 1
```

```
while n > 0:

n = n - 1

s = s * x

return s
```

这样, 当我们调用power (5) 时, 相当于调用power (5, 2):

```
>>> power(5)
25
>>> power(5, 2)
25
```

而对于n > 2的其他情况,就必须明确地传入n,比如power (5, 3)。

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入name和gender两个参数:

```
def enroll(name, gender):
    print 'name:', name
    print 'gender:', gender
```

这样,调用enrol1()函数只需要传入两个参数:

```
>>> enroll('Sarah', 'F')
name: Sarah
gender: F
```

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

```
def enroll(name, gender, age=6, city='Beijing'):
    print 'name:', name
    print 'gender:', gender
    print 'age:', age
    print 'city:', city
```

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

```
>>> enroll('Sarah', 'F')
Student:
name: Sarah
gender: F
age: 6
city: Beijing
```

只有与默认参数不符的学生才需要提供额外的信息:

```
enrol1('Bob', 'M', 7)
enrol1('Adam', 'M', city='Tianjin')
```

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数 来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enrol1('Bob', 'M', 7), 意思是,除了name, gender这两个参数外,最后1个参数应用在参数age上, city参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'), 意思是, city参数用传进去的值, 其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数, 传入一个list, 添加一个END再返回:

```
def add_end(L=[]):
    L. append('END')
    return L
```

当你正常调用时,结果似乎不错:

```
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
```

当你使用默认参数调用时,一开始结果也是对的:

```
>>> add_end()
['END']
```

但是,再次调用add_end()时,结果就不对了:

```
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
```

很多初学者很疑惑,默认参数是[],但是函数似乎每次都"记住了"上次添加了'END'后的list。

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

```
def add_end(L=None):
    if L is None:
        L = []
    L.append('END')
    return L
```

现在,无论调用多少次,都不会有问题:

```
>>> add_end()
['END']
>>> add_end()
['END']
```

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a, b, c·····, 请计算 $a^2 + b^2 + c^2 + \cdots$ 。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c······作为一个list或tuple传进来,这样,函数可以定义如下:

```
def calc(numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
```

但是调用的时候,需要先组装出一个list或tuple:

```
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84
```

如果利用可变参数,调用函数的方式可以简化成这样:

```
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84
```

所以,我们把函数的参数改为可变参数:

```
def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
```

定义可变参数和定义list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

```
>>> calc(1, 2)
5
>>> calc()
```

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

```
\rightarrow \rightarrow nums = \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}
```

```
>>> calc(nums[0], nums[1], nums[2])
14
```

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把 list或tuple的元素变成可变参数传进去:

```
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
```

这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而 关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为 一个dict。请看示例:

```
def person(name, age, **kw):
    print 'name:', name, 'age:', age, 'other:', kw
```

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

```
>>> person('Michael', 30)
name: Michael age: 30 other: {}
```

也可以传入任意个数的关键字参数:

```
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
```

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

```
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=kw['city'], job=kw['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
```

当然,上面复杂的调用可以用简化的写法:

```
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **kw)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
```

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。

比如定义一个函数,包含上述4种参数:

```
def func(a, b, c=0, *args, **kw):
print 'a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw
```

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

```
>>> func(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> func(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> func(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> func(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
```

最神奇的是通过一个tuple和dict,你也可以调用该函数:

```
>>> args = (1, 2, 3, 4)
>>> kw = {'x': 99}
>>> func(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'x': 99}
```

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数, args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入: func(1, 2, 3), 又可以先组装list或tuple, 再通过*args传入: func(*(1, 2, 3));

关键字参数既可以直接传入: func (a=1, b=2), 又可以先组装dict, 再通过**kw传入: func (** {'a': 1, 'b': 2})。

使用*args和**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

递归函数

2069次阅读

```
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
```

举个例子, 我们来计算阶乘n! = 1 x 2 x 3 x ... x n, 用函数fact(n)表示, 可以看出:

```
fact(n) = n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n = (n-1)! \times n = fact(n-1) \times n
```

所以, fact (n) 可以表示为n x fact (n-1), 只有n=1时需要特殊处理。

于是, fact (n) 用递归的方式写出来就是:

```
def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)
```

上面就是一个递归函数。可以试试:

```
>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
```

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

```
==> fact(5)
==> 5 * fact(4)
==> 5 * (4 * fact(3))
==> 5 * (4 * (3 * fact(2)))
==> 5 * (4 * (3 * (2 * fact(1))))
==> 5 * (4 * (3 * (2 * 1)))
==> 5 * (4 * (3 * 2))
==> 5 * (4 * (6)
==> 5 * 24
==> 120
```

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

```
>>> fact(1000)
Traceback (most recent call last):
   File "(stdin)", line 1, in (module)
   File "(stdin)", line 4, in fact
    ...
   File "(stdin)", line 4, in fact
RuntimeError: maximum recursion depth exceeded
```

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

```
def fact(n):
    return fact_iter(1, 1, n)

def fact_iter(product, count, max):
    if count > max:
        return product
    return fact_iter(product * count, count + 1, max)
```

可以看到, return fact_iter(product * count, count + 1, max)仅返回递归函数本身, product * count和count + 1在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(1, 1, 5)的调用如下:

```
==> fact_iter(1, 1, 5)

==> fact_iter(1, 2, 5)

==> fact_iter(2, 3, 5)

==> fact_iter(6, 4, 5)

==> fact_iter(24, 5, 5)

==> fact_iter(120, 6, 5)

==> 120
```

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

有一个针对尾递归优化的decorator,可以参考源码:

http://code.activestate.com/recipes/474088-tail-call-optimization-decorator/

我们后面会讲到如何编写decorator。现在,只需要使用这个@tail_call_optimized,就可以顺利计算出fact(1000):

```
>>> fact (1000)
```

2017/1/10 17递归函数.html

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

2017/1/10 18高级特性.html

高级特性

1889次阅读

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表, 可以通过循环实现:

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,一行代码能实现的功能,决不写5行代码。

2017/1/10 19切片.html

切片

2384次阅读

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

```
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
```

取前3个元素,应该怎么做?

笨办法:

```
>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']
```

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

```
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
```

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。

如果第一个索引是0,还可以省略:

```
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
```

也可以从索引1开始,取出2个元素出来:

```
>>> L[1:3]
['Sarah', 'Tracy']
```

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

```
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
```

记住倒数第一个元素的索引是-1。

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = range(100) >>> L [0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:]

[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]

 $[0, 1, 2, 3, \ldots, 99]$

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3] (0, 1, 2)

字符串'xxx'或Unicode字符串u'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG' [:3]

'ABC'

>>> 'ABCDEFG' [::2]

'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。 Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

小结

有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。