ΔΙΚΤΥΑ 1 - ΤΥΠΟΛΟΓΙΟ

ΔΙΕΥΘΥΝΣΕΙΣ ΙΡ

ΔΕΣΜΕΥΜΕΝΕΣ	MIN	00000000	δεκαδικ ό	0	διεύθυνση	Δικτύου
ΤΙΜΕΣ	MAX	11111111	■	255		Εκπομπής

ΜΑΣΚΑ ΔΙΕΥΘΥΝΣΗΣ (ΔΥΝΑΙ

(ΔΥΝΑΜΙΚΟΣ ΔΙΑΧΩΡΙΣΜΟΣ)

Πλήθος bits Δικτύου (Network) ($\underline{\pi}\underline{\chi}$. /26) \Rightarrow Συνεχόμενα 1 bits στην αρχή της Διεύθυνσης IP

Υπόλοιπα bits (πχ. 32-26=6) \Rightarrow Πλήθος bits H/Y (Host) \Rightarrow Πλήθος Διευθύνσεων H/Y $(2^6 - 2 = 62)$

ΜΕΤΑΓΩΓΗ ΕΙΚΟΝΙΚΟΥ ΚΥΚΛΩΜΑΤΟΣ

Σε κάθε πίνακα, κάθε συνδυασμός (Θύρα, VCI) είναι μοναδικός. Ξεκινάμε από τον αρχικό Η/Υ, και επαναληπτικά αναζητούμε το συνδυασμό Θύρα Εξόδου – Έξοδος VCI σε άλλο κόμβο ως Θύρα Εισόδου – Είσοδος VCI.

ΔΡΟΜΟΛΟΓΗΣΗ

Κάθε **κόμβος** διατηρεί **Πίνακα Δρομολόγησης**, με **1 εγγραφή** (διάνυσμα) (|**Destination|Next Hop|Cost** |) για **κάθε πιθανό προορισμό.** Αν δεν υπάρχει διαδρομή, το συνολικό κόστος αρχικοποιείται ως άπειρο. Κάθε φορά που αλλάζει ο Πίνακας του, στέλνει στους γείτονες του ενημέρωση με όλες τις διαδρομές του.

ETHERNET

Επαναληπτικός Αλγόριθμος Εκθετικής Υποχώρησης Ethernet (εώς εξάντληση των πλαισίων)

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ

ΕΠΙΠΕΔΟ	ПРО	ΠΡΟΣΘΕΤΕΙ		ΩΦΕΛΙΜΟ	
Εφαρμογής		L		-	
Μεταφοράς		UDP	8		
Πεταφορας	TH	ТСР	20	L	
Δικτύου	IPH	IP	20	L+TH	
Μετάδοσης	L _{μετάδ}	L _{μετάδοσης_fec}		L+TH+k*IPH	

ΥΠΟΛΟΓΙΣΜΟΣ ΘΡΑΥΣΜΑΤΩΝ
$k θραύσματα = \left[\frac{L+TH}{MTU-IPH}\right]$
([<mark>συνολικό]</mark>)

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ (L + TH + IPH) > MTU \Rightarrow το πακέτο σπάει σε $\begin{cases} (k-1) \ \theta \rho \alpha \dot{\nu} \sigma \mu \alpha \tau \alpha \mu \epsilon \gamma \dot{\epsilon} \theta o \nu \varsigma \end{cases}$ MTU

Αδιαφανή Θραύσματα (σε ασκήσεις) τα ωφέλιμα $2^{\eta c}$ μετάδοσης είναι τα θραύσματα της $1^{\eta c}$

1° ΘΡΑΥΣΜΑ			k'	ΘΡΑΥΣΜΑ
IPH	MTU - IPH	•••	IPH	≤ (MTU - IPH)

 $(k-1)*MTU + 1*(\leq MTU) = L + TH + k*IPH$

ΠΙΘΑΝΟΤΗΤΑ ΕΠΙΤΥΧΙΑ ΠΑΚΕΤΟΥ = [ΠΙΘΑΝΟΤΗΤΑ ΕΠΙΤΥΧΙΑΣ ΘΡΑΥΣΜΑΤΟΣ] ΠΛΗΘΟΣ ΘΡΑΥΣΜΑΤΩΝ

P(success_packet) = [P(success_frame)] k

ABP

ΑΒΡ Χρόνος Μετάδοσης Πλαισίου (k-1 αποτυχίες, 1 επιτυχία)

$$d = (k-1)*t_{timeout} + (2*t_{pr} + t_{tr} + t_{s} + t_{ack})$$

ΑΒΡ Μέσος Χρόνος Μετάδοσης Πλαισίου (k-1 αποτυχίες, 1 επιτυχία)

$\overline{d} = (\overline{k} - 1)*t_{timeout} + (2*t_{pr} + t_{tr} + t_s + t_{ack})$	$\bar{k} = \frac{1}{1-p}$	p: πιθανότητα αποτυχίας 1 προσπάθειας

Καθυστέρηση **Διάδοσης** (propagation) A↔B

S	Μήκος Συνδέσμου
$\tau_{\mathrm{pr}} = \frac{1}{\mathrm{Us}}$	Ταχύτητα Διάδοσης

Καθυστέρηση **Μετάδοσης** (transmition) A→B Μέγεθος Δεδομένων (bits) $t_{tr} = \frac{1}{C}$ Εύρος Ζώνης (bits/sec)

Καθυστέρηση Επεξεργασίας (service) Β

 t_s Συνήθως 0 Καθυστέρηση Επιβεβαίωσης (acknowledge) A→B

$$t_{tr} = \frac{l_{ack}}{c}$$
Μέγεθος Επιβεβαίωσης
Εύρος Ζώνης (bits/sec)

Εύρος Ζώνης / Μέγιστη Ταχύτητα Μετάδοσης / Μέγιστος Ρυθμός Μετάδοσης

Ρυθμός Παραγωγής	λ _{in}
(εφαρμογή A)	(packet/sec)

$$egin{array}{c|c} \mathsf{Pυθμός} & \lambda_{\mathrm{in}} & \mathsf{A} & \stackrel{\lambda_{\mathrm{out}}}{\longrightarrow} & \mathsf{B} \\ \hline \mathsf{Συμφόρηση} & \lambda_{\mathrm{in}} > \lambda_{\mathrm{out}} \end{array}$$

Ρυθμός Αποστολής	$\lambda_{\text{out}} = \frac{1}{\bar{d}}$
(εφαρμογή B)	(1 packet/sec)

ΡΥΘΜΑΠΟΔΟΣΗ Εφαρμογής

$$\mathbf{R} = \frac{\mathbf{l_{tr}}}{\bar{\mathbf{d}}}$$
 (bps) $\left(\frac{\text{bits πακέτου}}{\text{μέσο χρόνο}}\right)$

Ταχύτητα Φωτός
$$U_s = 3 * 10^8 \text{ m/sec}$$

Μέγιστος Όγκος Δεδομένων
$$t_{pr}*C$$

Round Trip Time
$$RTT = 2 * t_{pr}$$

$$log_2(k) = \frac{ln(k)}{ln(2)}$$
 1 Byte = 8 bits

$$\left(\frac{s}{N}\right) dB = 10 * \log\left(\frac{s}{N}\right)$$

	Μέγεθος Γ	Ιαραθύρου		Αποθηκευτική Ικανότητα RWS-1		l	
	Αποστολέα	Παραλήπτη	k bits → SWS+RWS συνολικά έως 2 ^k				
ΜΕΘΟΔΟΣ	sws	RWS	SV	SWS+RWS Bits = $\lceil \log_2(SWS + RWS) \rceil$		SWS + RWS)]	
ABP	1	1		2	1		
GBN	W	1		W+1	$\lceil \log_2(W+1) \rceil$		
SR	W	W		2*W	$\lceil \log_2(2$	* W)]	

ALOHA

	P _{suc}
PURE	$\frac{1}{e^{2R}}$
SLOTTED	$\frac{1}{e^R}$

P _{suc}	Περιοχή
>1	Ευστάθειας
<1	Αστάθειας
= 1	$ ho_{max}$

$$\rho = R * P_{suc}$$

Στατική Ισορροπία
$\rho_{in} = \rho$

R = Λ ∗T
ρ = λ*Τ

	Τηλεπικοινωνιακό Φορτίο
R	διακινούμενο (συνολικό)
ρin	εισερχόμενο (διεκπαιρωτική ικανότητα)

	Ρυθμός Πλαισίων [πλαίσια/sec]
λ	μόνο νέων εισερχομένων
٨	με αναμεταδόσεις (συνολικά)