Python Workshop - ANU (CBE)

Jupyter Notebooks and Python Programming Fundamentals

Matthew McKay [matthew.mckay@anu.edu.au]

June 2017

Agenda ...

- 1. Jupyter Notebooks
- 2. Intro to Python Programming
- 3. Resources

Jupyter

Quick Review

- 1. Notebook Basics
- 2. Modal Editing
- 3. Running Code
- 4. Text Editor Features (Syntax Highlighting etc.)
- 5. Tab Completion
- 6. Object Introspection
- 7. Working with the shell
- 8. Working with Files
- 9. First Python Program

Everyone is able to run Jupyter?

Any Questions

Discuss Order of Cell Execution (DEMO)

Intro to Python Topics

- 1. Introductory Example
- 2. Basic Structure of a Python Program
- 3. Variables and Assignment
- 4. Data Types
 - Booleans
 - Numbers (integers, floats, fractions and complex numbers)
 - Strings
 - Bytes (and byte arrays)
 - Lists
 - Dictionaries
 - Sets
 - Tuples
- 5. Mutable and Immutable

Python Fundamentals

See notebook intro-to-python.ipynb

Order of Operations

Python uses math conventions to determine the order of operations

- Parentheses
- Exponentiation
- 3. Multiplication and Division
- 4. Addition and Subtraction

Note: Operators that share precedence are then evaluated from left to right.

Using parentheses is good programming practice to improve clarity.

How are numbers stored by a computer?

Binary Number System

Is a base 2 number system with digits 0, and 1

Example: 1011_2

Very useful when using Boolean Logic (True and False).

Decimal Number System

Is a base 10 number system with digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

Conversion:

$$1011_2 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 8 + 0 + 2 + 1 = 11_{10}$$

Others: Hexa-Decimal, Octal

Numbers and Precision ...

The way computers store numbers is important when using math

Computers have finite resources and can only represent ranges of values.

Example:

Signed 8-bit Integer can represent values up to $2^7 - 1$

Unsigned 8-bit Integer can represent values up to 2^8-1

Python provides a number of conveniences when working with numbers.

e.g. Integers are limited by memory

Floating Point Numbers

Floating point numbers are often approximate values with varying degrees of precision

Example:

Floating Point Numbers

Comparison can be a bit tricky ...

Example:

```
In [15]: 1/3 == 1/3
Out[15]: True
In [16]: 0.3 == 0.1 + 0.1 + 0.1
Out[16]: False
In [17]: 0.1 + 0.1 + 0.1
Out[17]: 0.300000000000000004
In [18]: import math
In [19]: math.isclose(0.1+0.1+0.1, 0.3)
Out[19]: True
```

Python Floating Point Limitations

https://docs.python.org/3.5/tutorial/floatingpoint.html

Additional References

The main reference is:

http://quant-econ.net/py/learning_python.html

Additional References:

- 1. "Think Python", Allen B. Downey, Oreilly Media
- 2. "Data Science from Scratch", Joel Grus, Oreilly Media
- 3. "Python for Data Analysis", Wes McKinney, Oreilly Media