Autoencoders and Generative Adversarial Networks

Johanni Brea

Einführung Machine Learning

GYMINF 2022

Low-Dimensional Generators

Often we can describe a data generator as generating a low-dimensional random event Z with probability P(Z) (e.g. choose position and gray level of the cross) followed by a complicated transformation f to produce the observation X = f(X) (e.g. the image with the cross) with a complicated distribution P(X) over observations.

Goal 1 (**compression**): find a low-dimensional representation \hat{Z} of X. Goal 2 (**generation**): find \hat{f} such that we can generate artificial examples, by sampling \hat{Z} and producing an artificial observation $\hat{X} = \hat{f}(\hat{Z})$.

Table of Contents

- 1. Autoencoders
- 2. Recurrent Generators
- 3. Generative Adversarial Networks

Autoencoders

Variational Autoencoders (VAE)

Table of Contents

1. Autoencoders

2. Recurrent Generators

3. Generative Adversarial Networks

Recurrent Generators

$$P(X_1, X_2, ..., X_T) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \cdot \cdot \cdot P(X_T|X_1, ..., X_{T-1})$$

Table of Contents

1. Autoencoders

2. Recurrent Generators

3. Generative Adversarial Networks

GAN Examples

GAN Examples

How GANs Work

How GANs Work

https://naokishibuva.medium.com/understanding-generative-adversarial-networks-4dafc963f2ef

How Conditional GANs Work

https://arxiv.org/abs/1611.07004

Example Code

GAN on MNIST

https://github.com/FluxML/model-zoo/blob/master/vision/dcgan_mnist

Conditional GAN on MNIST

https://github.com/FluxML/model-zoo/blob/master/vision/cdcgan_mnist

