ALTAVOZ EN SISTEMA REFLECTOR DE BAJOS (BASS-REFLEX)

 Una caja diseñada para un sistema bass reflex tiene un volumen de 1,5 pies³ y una frecuencia de resonancia f_B de 25Hz. Se estima que el factor de pérdidas por fugas del sistema es igual a 7. El altavoz elegido para el diseño produce una frecuencia de corte de 30Hz.

Fig. 11. Alignment chart for vented-box systems with $Q_B = Q_L = 7$.

- a) Proponga un alineamiento y calcule los valores de α , Qts, h, y f₃/f_s.
- b) ¿Cual es la frecuencia de resonancia en pantalla infinita f_s requerida?
- c) ¿Cual es el volumen de aire equivalente del altavoz necesario Vas?
- d) Si se asume que el Qms = 4, calcule la eficiencia de referencia no.
- 2) Se quiere diseñar un sistema de Bass Reflex, utilizando un altavoz electrodinámico de $S_D = 0.114m^2$. Se necesitan las siguientes características:
 - $f_3 = 40$ Hz.
 - Sensibilidad (1W, 1m) = 100dB

Se supone QL= 10 y se quiere que su función respuesta sea tipo Butterwoth 4° orden, con el parámetro B = 0 (usar el gráfico de la página siguiente).

Fig. 10. Alignment chart for vented-box systems with $Q_B = Q_L = 10$.

3) Un driver electrodinámico tiene una compliancia representada por Vas = 9 pies³. El altavoz será instalado en una caja con reflector de bajos que tiene un volumen neto de 3 pies³. Se necesita que el sistema posea una frecuencia de corte f₃ de 30Hz. (Considere en sus cálculos QL = 7

Fig. 11. Alignment chart for vented-box systems with $Q_B = Q_L = 7.$

- a) ¿Cual debe ser el factor de pérdidas total del driver en pantalla infinita Qts?
- b) ¿Cual es la frecuencia de resonancia f_s necesaria?
- c) ¿Cual es la frecuencia de resonancia f_B del sistema?
- d) ¿Qué tipo de respuesta tiene el sistema? (por ejemplo, B4, QB3 (B =?), o C4 (k =?)).
- e) Si Qms = 3, determine la eficiencia de referencia del sistema.
- 4) Realice un diseño de caja bass reflex con dos ductos iguales indicando las dimensiones de la caja para los siguientes drivers y alineamientos.

 - a) Driver JBL Modelo 123A y alineamiento 4th Order Boom Box
 b) Driver JBL Modelo 130A y alineamiento Quasi 3rd Order Butterworth
 - c) Driver JBL Modelo 2115A y alineamiento 4th Order Chebyshev

Calcule para cada caso la sensibilidad y la potencia acústica de programa. Utilice las tablas de alineamiento citadas en "Loudspeaker Design Cookbook".

5) Elija alguno de los altavoces JBL para diseñar un sistema bass réflex con dos altavoces en configuración estándar, tomando como condición que los drivers deben alinearse con una función de respuesta plana (sin ripple ni peaks en baja frecuencia). Proponga al menos dos alineamientos distintos.

PARÁMETROS THIELE-SMALL ALTAVOCES JBL

Model	fs	Qts	Qms	Qes	Vas	Eff	Pe	Xmax	Re	Le	Sd	BL	Mms	Flux
112A	40	0.21	4	0.22	34.0	0.9	60	2.79	5.8	0.3	0.018	12	22	0.95
116A	28	0.46	5	0.51	73.6	0.3	50	4.83	5.2	0.6	0.018	6.7	25	0.85
122A	17	0.23	7	0.24	339.8	0.67	50	6.86	5.7	1.5	0.053	16	100	1.08
123A	25	0.49	8.5	0.52	235.1	0.68	50	7.87	4.4	0.6	0.049	8.9	85	1
124A	16	0.14	6	0.14	399.3	1.1	100	5.08	6.3	1.4	0.053	21	100	1.2
125A	25	43	7.5	0.46	235.1	0.77	50	4.83	5.2	0.7	0.049	7.5	32	0.85
127A	25	0.43	7.5	0.46	235.1	0.77	50	4.83	5.2	0.7	0.049	7.5	32	0.85
127H	25	0.43	7.5	46	237.9	0.77	50	4.83	6.6	0.7	0.032	7.5	33	1.07
128H	20	0.24	7	0.25	280.4	0.86	100	7.87	5.7	0.6	0.053	16	90	1.07
130A	37	0.18	4	0.19	297.4	7.7	100	2.03	5.7	0.8	0.090	22.5	70	1.1
136A	16	0.21	5.5	0.22	736.3	1.4	100	5.08	6.3	1.4	0.088	21	151	1.2
136HS	35	0.38	7.7	0.4	153.5	1.59	300	7.87	5	1.5	0.088	20	146	1.22
506G	50	0.5	2.5	0.65	19.8	0.42	50	10.67	4.5	0.6	0.014	6	13	1.05
508G	45	0.6	7.5	0.65	42.5	0.66	100	10.41	5.9	0.7	0.021	7	17	1
1400	52	0.31	4.1	0.34	62.3	2.5	600	7.62	4.1	0.9	0.064	18.4	85	0.56
2020H	66	0.25	5	0.26	51.5	5.43	400	5.08	4.8	0.02	0.053	18.3	44	1
2022H	75	0.4	4.3	0.44	42.5	3.9	300	6.35	4.6	0.7	0.053	14.6	43	1
2025H	48	0.22	4	0.23	78.4	3.55	400	7.11	3.9	0.15	0.053	16.6	55	1
2032H	57	0.54	5.5	0.6	133.1	4	300	6.35	4.2	0.6	0.088	12.8	65	1
2035H	48	0.34	5	0.36	140.5	4.13	400	7.11	3.9	0.25	0.088	16.6	85	1
2042H	39	0.4	5	0.44	337.0	4.5	300	7.62	4.3	0.8	0.127	16.2	110	1
2105H	200	0.53	3	0.65	1.0	1.2	25	1.52	6.1	0.3	0.006	6.6	3.5	1.35
2108	40	0.17	4.5	0.18	36.8	1.2	75	1.52	5.8	0.5	0.018	13	20	1.02
2110	60	0.31	3.5	0.34	34.0	2.1	25	2.54	6	0.3	0.021	6.8	11	0.85
2115A	55	0.48	4	0.54	34.0	1	30	5.59	5.5	0.3	0.018	6.8	11	0.85

Thiele/Small Parameters