Erasmus Mundus Joint Master Degree (EMJMD) in Image Processing and Computer Vision (IPCV)

Applied Video Sequence Analysis

Lab 1 "Foreground segmentation"

José M. Martínez - Paula Moral

josem.martinez@uam.es - paula.moral@uam.es

OBJECTIVES

- To develop a basic foreground segmentation algorithm to detect moving objects on a stationary background
- To improve the performance of the basic algorithm
- To evaluate the performance of foreground segmentation algorithms using standard measures and Matlab code
- To write a report to summarize achievements and results
 - –Motivate the development of the different versions and modes (i.e., what does it enhance?)

DELIVERY RULES

- Assignment available on Moodle to submit your material
- The material must be submitted as a ZIP file with the following format name1Surname1_name2Surname2_lab1.zip
- The submitted ZIP file will contain
 - Report in PDF format (max 6 pages)
 - -Makefile to compile and link the program by simply running make* (Suggestion: use the makefile provided for Lab0)
 - "src" directory with all source files (.h, .hpp, .c and .cpp) necessary for compiling and executing the corresponding program in Linux
 - -"res" directory with the foreground masks for the *Baseline* category of CDNet2012 for different algorithms versions implemented.

^{*}You may want to develop your C/C++ program using Eclipse but only the Makefile must be submitted (please do not submit Eclipse' config files)

Task 0 – Void foreground segmentation using template

- 1. Go to "LAB 1" on Moodle
- 2. Download the example project "LAB 1 code template.zip"
- 3. Download the datasets "AVSASlidesVideosdataset" and "ChangeDetection dataset 2012 (baseline category only)"
- 4. Uncompress the files
- 5. Create a new Project Lab1.0AVSA2020 in Eclipse (see next slide)
- 6. Open the Lab1.0AVSA2020.cpp file in the "src" directory
- 7. Set the directory of the dataset and results according to your installation
- 8. Compile it ("Build Project" in Eclipse)
- 9. Create a "Launch Configuration" for the Project
 - Select the Project in the "Project Explorer" tab, go to the toolbar and select in the "Launch Configuration" pane "Create New Launch Configuration"
 - In the "Environment" tab set
 LD_LIBRARY_PATH=/opt/installation/OpenCV-3.4.4/lib
- 10. Run it ...

- Creating an Eclipse Project from scratch (see Lab0)
 - -How to install and setup Eclipse for OpenCV 3.4.4
 - Configure Eclipse CDT for using OpenCV
- Creating an Eclipse Project with existing code
 - -After creating the Projects and src folder ...
 - instead of creating a new source file (step 7), copy the files (.cpp,
 .hpp) into the src folder
 - Select them in a Files explorer and move them to the Project src folder in Eclipe
 - -Continue with step 8

• . . .

- . . .
- Creating a copy of an Eclipse Project (for incremental development – e.g., different versions in Lab1)
 - -Select source Project in "Project Explorer": then "copy" and "paste"
 - –Name the new project
 - –Rename "main" file and change project dependent code (e.g., project_name)
 - Delete Binaries in Project Folders (e.g., Debug)
 - -Build the Project
 - -Create Launch Configuration for the new project (see Lab0)
 - Remember to set LD_LIBRARY_PATH
 - -Run the Project

- Task 1 Implementation of foreground segmentation algorithms using the OpenCV library
 - -Methods
 - Lab1.1.1: Generation of foreground segmentation mask for each video frame using "frame difference"
 - Parameters: tau (double), rgb (true/false)

- Task 1 Implementation of foreground segmentation algorithms using the OpenCV library
 - -Methods
 - Lab1.1.2: Progressive update of background model through selective running average (blind and selective update)
 - Parameters: tau (double), rgb (true/false), alpha (double), selective_update (true/false)
 - Recommendation: firstly implement blind mode

- Task 1 Implementation of foreground segmentation algorithms using the OpenCV library
 - -Methods
 - Lab1.1.3: Suppression of stationary objects that appear or are removed
 - Parameters: tau (double), rgb (true/false), alpha (double), threshold (int)

- Task 1 Implementation of foreground segmentation algorithms using the OpenCV library
 - Requirements
 - Only use three source files (main.cpp, fgseg.cpp and fgseg.hpp)
 - The algorithm operates over gray-level images and colour-images (optional)
 - Report comparative subjective results using the VideoSlidesAVSA dataset for the three versions
 - Report a sensitivity analysis of the parameters involved in algorithms (i.e. study the values of the parameters involved and their impact in the output or the foreground mask)

-Recommendations

- Develop firstly the gray-level versions
- Motivate in the report the development of the different versions and modes (i.e., what does it enhance?)
- Provide a subjective comparative among versions using the AVSASlidesVideo dataset

- Task 2 Evaluate your algorithm using the ChangeDetection datasets (2012 version, CDNet2012)
 - -Evaluate the algorithm developed in Task 1 using the Baseline category from http://changedetection.net/
 - Category of the dataset available in Moodle
 - MATLAB code is available for evaluating the results of your algorithms
 - -In the report, include performance comparisons with selected approaches from http://jacarini.dinf.usherbrooke.ca/results2012

- Task 3.1 Implementation of a shadow suppression module using the OpenCV library
 - –Method
 - Suppression of shadows based on the chromaticy-based method

- Task 3.2 Evaluate the suppression of shadows method
 - –Evaluation of new algorithm using the Shadow category from http://changedetection.net/

- Task 4.1 Implementation of advanced background subtraction algorithms
 - -Method
 - Single Gaussian

- Task 4.2 Evaluation of advanced background subtraction algorithm
 - -Evaluation of the new algorithm using the *Dynamic Background* category from http://changedetection.net/

- Task 5.1 Implementation of advanced background subtraction algorithms
 - -Method
 - GMM
 - -Recommendation
 - Implement firstly a version using only a Single Gaussian

- Task 5.2 Evaluation of advanced background subtraction algorithm
 - -Evaluation of the new algorithm using the *Dynamic Background* category from http://changedetection.net/

EVALUATION

- This lab assignment will be graded with 10 points
 - Report (up to 2 points) Please follow the report format (see Moodle)
 - -Task 1 (up to 2 points)
 - -Task 2 (up to 2 points)
 - -Task 3 (up to 1 points)
 - -Task 4 (up to 1 points)
 - -Task 5 (up to 2 points)

CRITERIA FOR EVALUATION

- The following general criteria will be used for grading:
 - The solution addresses the requirements for the assignment.
 - -The program compiles, links, and executes.
 - -The program runs correctly.
 - -The program is easy to read and to understand, i.e., it is well commented, and variables are correctly named.
 - -The lab report clearly describes the algorithm and experiments.
- The following specific criteria will be used for grading:
 - -Foreground segmentation using colour information.
 - -Complexity of the implemented algorithms
 - -Processing with OpenCV functions at matrix/vector level instead of pixel-level.

In addition, up to an extra point (1 point) may be awarded depending on the quality of the software delivered in the assignment.

HELP

 Check OpenCV documentation for finding specific functions at https://docs.opencv.org/3.4.4/

