Decision Trees

Zhang Changshui Dept. of Automation Tsinghua University

Problems

Task: Classify the fruit.

```
Fruit: color: red, green, yellow, ...
```

size: small, medium, big

shape: round, thin

taste: sweet, sour

Problems

- Classification problem involving nominal data.
- Discrete
- No natural notion of similarity.
- No order, in general.
- Fruit: color: red, green, yellow, ...
- size: small, medium, big
- shape: round, thin
- taste: sweet, sour

Representation

 Lists of attributes instead of vectors of real numbers.

4-tuple: {red, round, sweet, small}

- How can we best use such nominal data for classification?
- How can we efficiently learn categories using such nonmetric data?

- Banana: yellow, thin, medium, sweet
- Watermelon: green, round, big, sweet,
- Banana: yellow, thin, medium, sweet
- Grape:green, round, small, sweet
- Grape:red, round, small, sour
- ...

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

- A general framework:
- Create or grow a decision tree using training data
- Decision tree will progressively split the set of training examples into smaller and smaller subsets
- Stop splitting if each subset is pure
- Or accept an imperfect decision

Training data

- Banana: yellow, thin, medium, sweet
- Watermelon: green, round, big, sweet,
- Banana: yellow, thin, medium, sweet
- Grape:green, round, small, sweet
- Grape:red, round, small, sour
- ...

- Should the properties be restricted to binary-valued or allowed to be multivalued?
- Which property should be tested at a node?
- When should a node be declared a leaf?

- If the tree becomes "too large", how can it be made smaller and simpler, that is, pruned?
- If a leaf node is impure, how should the category label be assigned?
- How should missing data be handled?

Number of splits

Should the properties be restricted to binary-valued or allowed to be multivalued?

Number of splits

- The number of splits at a node is related to the property tested at the node.

no

- Which property should be tested at a node?
- Fundamental principle: simplicity
- We prefer decisions that lead to a simple, compact tree with few nodes
- We seek a property query Tat each node N that makes the data reaching the immediate descendent nodes as "pure" as possible
- Purity Impurity

Query selection and node impurity

How to measure impurity?

Entropy impurity (is frequently used)

$$i(N) = -\sum_{j} P(w_j) \log_2 P(w_j)$$

Example: a simple tree

wl (black)	
x 1	x 2
.15	.83
.09	.55
.29	.35
.38	.70
.52	.48
.57	.73
.73	.73
.47	.06

w2 (red)	
x1	x 2
.10	.29
.08	.15
.23	.16
.70	.19
.62	.47
.91	.27
.65	.90
.75	.36(.32)

Example: a simple tree

$$i(N_{root}) = -\sum_{j} P(w_{j}) \log_{2} P(w_{j})$$
$$= -[0.5 \log_{2} 0.5 + 0.5 \log_{2} 0.5]$$
$$= 1$$

Gini impurity (Duda prefers Gini impurity)

$$i(N) = \sum_{i \neq j} P(w_i) P(w_j) = 1 - \sum_j P^2(w_j)$$

Misclassification impurity

$$i(N) = 1 - \max_{j} P(w_{j})$$

Choose the query that decreases the impurity as much as possible.

$$\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L)i(N_R)$$

 $\max \Delta i(N)$

Is it the best method?

- Greedy method to local optimum.
- Global optimum is the smallest tree.

- {23, male} young
- {25, female} young
- {60, male} old
- {58, female} old

How to determine a threshold to distinguish the young and old with attribute "age"?

- There are several decision s that lead to the same reduction in impurity, how to choose among them?
- For example: real -valued $x_l < x_s < x_u$

$$x_s = (x_l + x_u)/2$$

$$x_{s} = (1 - P)x_{l} + Px_{u}$$

Is larger B better?

- {20030101, 23, male} young
- {20030102, 25, female} young
- {20030103, 60, male} old
- {20030104, 58, female} old

1

Is larger B better?

- What is wrong with the attribute Date?
- Gain ratio measure:

$$\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L)i(N_R)$$

$$\Delta i_B(N) = \frac{\Delta i(N)}{-\sum_{k=1}^{B} P_k \log_2 P_k}$$

- train tree using a subset of the data (e.g., 90%), with the remaining kept as a validation set.
- Until the error on the validation data is minimized.

When to stop splitting? Threshold value method

- Set a small threshold value, splitting is stopped if $\Delta i(s) \le \beta$
- Benefits: ?
- Drawback: ?

- Benefits: use all the training data.
 Leaf nodes can lie in different levels of the tree.
- Drawback: difficult to set a good threshold

When to stop splitting?

 Overfit: each leaf corresponds to a single training point and the full tree is merely a convenient implementation of a lookup table

Pruning

- A tree is grown fully
- All pairs of neighboring leaf nodes are considered for elimination.
- Any pair whose elimination yields a satisfactory (small) increase in impurity is eliminated
- And the common antecedent node is declared a leaf.
- Use all information in training set.
- Greater computational expense than stopped splitting.

Assignment of leaf node labels

 Each leaf should be labeled by the category that has most points represented.

Feature choice

Feature choice

Different tree because of only one point

Different tree because of only one point

Multivariate decision tree

- If the "natural" splits of real-valued data do not fall parallel to the feature axes,?
- Allow splits that are not parallel to the feature axes, use a general linear classifier.

Multivariate decision tree

Missing attributes

- Delete any deficient patterns
- Drawback: wasteful (there are many samples)
- Calculate impurities at a node N using only the attribute information present

ID3 method

- For real-valued variables, they are first binned into intervals.
- Every split has a branching factor B_j , where a B_j is the number of discrete attribute bins of the variable j chosen for splitting.
- Such trees have their number of levels equal to the number of input variables.
- It continues until all nodes are pure or there are no more variables to split on.(no pruning)

- The successor and refinement of ID3
- The most popular algorithm for decision tree.
- C4.5 follows all B possible answers to the descendent nodes and ultimately B leaf nodes for missing features.

- Grow the tree until the training data is fit as well as possible and allowing overfitting to occur
- Convert the learned tree into an equivalent set of rules by creating one rule for each path from the root node to a leaf node.

- IF (Outlook = Sunny) & (Humidity = High)
- TEHN PlayTennis = No

- Prune (generalize) each rule by removing any preconditions that result in improving its estimated accuracy.
- Sort the pruned rules by their estimated accuracy, and consider them in this sequence when classifying subsequent instances.

- IF (Outlook = Sunny) & (Humidity = High)
- TEHN PlayTennis = No
- 1. IF (Humidity = High)
- TEHN PlayTennis = No
- 2. IF (Outlook = Sunny)
- TEHN PlayTennis = No
- Select the pruned one which produces the greatest improvement in estimated rule accuracy.
- Then consider pruning the second precondition

- Independent to contexts. If the tree were pruned, two choices: remove the node completely, or retain it there.
- No difference between root node and leaf nodes.
- Improve readability

Decision Forest

Many decision trees by C4.5