Recherche Opérationnelle et Optimisation

3A MAM

TD Algorithme du simplexe

Exercice 1

Une entreprise fabrique deux types de chaises : classique ou ergonomiques. Le profit net unitaire est de 200 euros et 500 euros respectivement. La fabrication d'une chaise ergonomique nécessite 2 morceaux de cuire, 2 kg d'aluminium et 3 composants d'amortissement alors qu'une chaise classique nécessite 1 morceau de cuire, 3 kg d'aluminium et 1 composant d'amortissement. Les stocks actuels de l'entreprise sont 180 morceaux de cuire, 420 kg d'aluminium et 240 composants d'amortissement.

1. Formaliser un problème de programmation linéaire à partir de l'énoncé précédent.

2. Proposer une solution à base de résolution graphique.

3	Proposer	une solution	nar la	méthode	du S	Simpleye
o.	rioposei	une solution	Dai ia	пеннопе	au c	mindexe.

				Tab	leau 1				Commentaire
				100					
				m 1	1 0				 G
				Tab	leau 2				Commentaire
				Tab	leau 3				Commentaire
				Tab	leau 4	:			Commentaire
	Solv	ution:							
Ĺ									

Exercice 2

Une entreprise fabrique deux types de tablettes : familiales ou professionnelles. Le profit net unitaire est de 200 euros et 300 euros respectivement. La fabrication d'une tablette professionnelle nécessite 2 composants de calcul, 2 composants multimédia et 3 composants de mémoire alors qu'une tablette familiale nécessite 1 composant de calcul, 3 composants multimédia et 1 composant de mémoire. Les stocks actuels de l'entreprise sont 1800 composants de calcul, 4200 composants multimédia et 2400 composants de mémoire.

1. Formaliser un problème de programmation linéaire à partir de l'énoncé précédent.

2. Proposer une solution à base de résolution graphique.

9	Proposer	1100 gol	ution	non 1	a má	ithodo	4.,	Cimn1	0750
ა.	Proposer	une soi	ution	par 1	$a~\mathrm{m}\epsilon$	etnoae	au	Simbi	lexe.

		Ta	bleau 1	L				Commentaire
		Ta	bleau 2	2				Commentaire
		Ta	bleau 3	3				Commentaire
		 Та	bleau 4	1				Commentaire
			1					
							\vdash	
Sol	ution:							
1								