Functions:

$$y = -2x + 17$$

 $g(x) = -2x + 17$

An equation: 2x+y=17

Two variables

Function notation:

$$f(x) = 2x + 3$$

$$y = 2x + 3$$

Examples (in equation form)

What makes an IF I POT A PARTICULAR equation a function?

"X" INTO A FUNCTION, I

WILL ALWAYS GET THE

SAME "F(X)" OUTPUT

Functions are mathematical machines:

Not a function:

$$y^{2} = X$$

$$2^{2} = 4$$

$$(-2)^{2} = 4$$

$$y = 2$$

$$(-2)^{2} = 4$$

$$y = -2$$

$$\frac{15}{y} = x - 4$$

a function has an input of 7 and an output of 12.

give me an example of a function that would do this

$$f(x) = 12$$
 when $x = 7$

$$f(x) = x + 5$$

$$f(x) = \frac{12}{7} \times 6$$

$$f(x) = \frac{12}{7} \times 7$$

Some functions have a limited # of x values (inputs) that will work.

The list of possible x-values is called the "domain"

Restricted by definition

$$f(x) = \frac{x}{x}; x \neq 0$$

Restricted by function

$$f(x) = x^2 - 7$$

No restriction

The possible output values of a function are called the range.

$$y=|x|$$
 range: ?

domain	range
	1
-	1
\bigcirc	\rightarrow
-9	2
31	31

We can show functions as a table

domain: all #1's

range: $f(x) \ge 0$

Function? Or no function?

Input	Output
1	15
3	20
5	15
7	20

Shoe Sizes The table shows men's shoe sizes in the United States and Australia. Write a rule for the Australian size as a function of the United States' size.

U.S. size	5	6	7	8	9	10
Australian size	3	4	5	6	7	8

$$f(5) = 3$$

 $f(6) = 4$
 $f(7) = 5$
:

$$f(x) = x - a$$

$$F = \frac{9}{5}c + 32$$

$$f(c) = \frac{9}{5}c + 32$$

true functions can be graphed on an x-y axis - any vertical line will only hit the graph once (at most)

What's the rule?

X	у
1	a
2	8
3	14
4	20

$$f(x) = 6x - 4$$

Sec 1.6 and 1.7 022912.notebook February 29, 2012

Metal Screws The table shows the number of threads per inch on a screw as a function of screw size.

Screw size number, <i>x</i>	0	1	2	3	4	5	6
Number of threads per inch, <i>y</i>	80	72	64	56	48	44	40

- **a.** Graph the function.
- **b.** Describe how the number of threads per inch changes as the screw size increases.
- **c.** Would it be reasonable to expect a #8 screw to have 32 threads per inch? *Explain*.

Homework:

- p. 38 4-18 (even), 24
- p. 46 2-8 (even), 16, 19