

IBM ILOG CPLEX What is inside of the box?

Ricardo Lima rlima@andrew.cmu.edu

EWO Seminar Carnegie Mellon University

Contents

1. Introduction

What is CPLEX? Types of problems. History.

2. Algorithms

- Optimizers available. Heuristic based algorithms.
- 3. Parallelization
- 4. Tools
- 5. Final remarks

Introduction

Optimization software package

Commercialized by IBM ILOG

Types of problems CPLEX can solve

Mathematical programming problems:

- Linear programming
- Mixed integer programming
- Quadratic programs
- Mixed integer quadratic programs
- Quadratic constrained programs
- Mixed integer quadratic constrained programs
- It is used to solve other problems: MINLP

Linear programming (LP)

Maximize: c^Tx Objective function Subject to: $Ax \leq b$ Constraints $x \in \mathbb{R}^n$ Decision variables $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$

Mixed integer linear programming

(MILP)

Maximize: $c^T x + d^T y$ Subject to: $Ax + By \le b$

Integer variables

 $x \in \mathbb{R}^n$

 $y \in \mathbb{Z}_+^k$

 $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times k}, c \in \mathbb{R}^n, d \in \mathbb{R}^k, b \in \mathbb{R}^m$

Quadratic programs

Maximize:
$$c^T x + 1/2x^T Qx$$
 (QP)

Subject to: $Ax \leq b$

 $x \in \mathbb{R}^n$

 $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$

 $Q \in \mathbb{R}^{n \times n}$

Remark: If matrix Q is positive semi-definite then the problem QP is convex.

Quadratic programs

Maximize:
$$c^T x + 1/2x^T Qx$$
 (MIQP)

Subject to: $Ax \leq b$

$$x_l \in \mathbb{Z}_+, l \in N_l$$

 $x_j \in \mathbb{R}, j \in N_j$

$$A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$$

$$Q \in \mathbb{R}^{n \times n}$$

Remark: If matrix Q is positive semi-definite then the problem QP is convex.

Quadratic constrained programming

Maximize:
$$c^T x + 1/2x^T Qx$$

(QCP)

Subject to: $Ax \leq b$

 $1/2x^T B_i x + a_i x \le b_i, i = 1, ..., m_1$

 $x \in \mathbb{R}^n$

 $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$

 $B_i \in \mathbb{R}^{m \times n}, i = 1, ..., m_1$

Quadratic constrained programming

Maximize:
$$c^T x + 1/2x^T Qx$$
 (MIQCP)

Subject to:
$$Ax \leq b$$

$$1/2x^T B_i x + a_i x \leq b_i, i = 1, ..., m_1$$

$$x_l \in \mathbb{Z}_+, l \in N_l$$

$$x_j \in \mathbb{R}, j \in N_j$$

$$A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$$

$$B_i \in \mathbb{R}^{m \times n}, i = 1, ..., m_1$$

CPLEX history and facts

2008 – Bixby, Gu, and Rothberg left ILOG and found Gurobi Optimization.

CPLEX releases history

LP solver

- Simple B&B
- Limited cuts

- Simple B&B
- Limited cuts
- Simple heuristic
- Faster dual simplex

CPLEX releases history (cont.)

1999

- 5 different node heuristics
- 6 types of cutting planes
 Default LP method: dual
 - Knapsack covers
 - GUB covers
 - Flow covers
 - Cliques
 - Implied bounds
 - Gomory mixed integer cuts

2000

- Semi-Continuous and Semi-Integer Variables
- Default LP method: dual simplex.
- Preprocessing
- Cuts:
 - mixed integer rounding
 - disjunctive
 - flow path

2002

- New Methods for Solving LP Models: Sifting
- Concurrent optimization:

 Dual Simplex; 2) Barrier method, 3) Primal
 Simplex, 4) Barrier method
- New QP Capabilities
- 9 types of cutting planes

CPLEX release history (cont.)

CPLEX 9.0 2003

CPLEX 10.0 2006

CPLEX 11.0 2007

CPLEX 12.2 2010

- QCP
- Relaxation Induced Neighborhood Search (RINS)
- Improvements for MIQPs
- Changes in MIP start behavior
- Feasible Relaxation
- Indicators
- Solution Polishing

- The solution pool
- Tuning tool
- Parallel mode

- MIP is faster
- Multi-commodity flow cuts
- Enhanced heuristics
- Enhanced dynamic search

Computational performance

The actual computational performance is the result of a combination of different types of improvements:

types of improvement	types of improvements.						
LP solvers	Cutting planes	Heuristics	Parallelization				
Pre-processing	 From theory to 	Node heuristicsRINS	• Search in B&B				
 Algebra for sparse 	practice	Polishing	 Barrier method 				
systems							
 Methods: primal, 							
dual, barrier							
 Techniques to avoid 							
degeneracy and	Plus the machine improvements						
numerical							

difficulties

Computational evolution for LPs

16

In the beginning

- 1952 (E48,V71) solved in 18 hours, 71 Simplex iterations.

 Orden (1952), Hoffman et al. (1953)
- 1963 **(E99,V77)** estimated **120** man days. Stigler's (1945) diet problem
- 1990 **(E26, V71)** solved in 8 hours. Orchard-Hays (1990)

Evolution reported by Bixby for solving LP problems (1984:2004):

- Algorithms: Primal vs best of Primal/Dual/Barrier 3300x
- Machines: (workstations -> PCs): 1600x
- Net: algorithm x machine 5 300 000x
 5 days/5 300 000 = 0.08 seconds

LP performance

Computational experiments:

Size of the LP model:

Equations 60,390 # Variables 69,582 No advanced basis was used

Res	sults CPU (s)	
	CPLEX version	
	7.1	12.2
Primal Simplex	205	45
Dual Simplex	281	51
Network Simplex	174	91
Barrier	97	18
Sifting	-	420

Optimization algorithms in CPLEX

Simplex optimizers

- Primal, dual, network
- LP and QP

Barrier optimizer

LP, QP, and QCP

Mixed integer optimizers

- Branch & Cut
- Dynamic search
- MIP, MIQP, MIQCP

Remarks:

- The barrier optimizer can explore the presence of multiple threads.
- The barrier optimizer cannot start from an advanced basis, and therefore it has limited application in Branch and Bound methods for MIPLs.
- Re-optimization with the simplex algorithms is faster, when starting from a previous basis.

MIP solvers in CPLEX

Mixed integer optimizers

- Branch & Cut
- Dynamic search
- MIP, MIQP, MIQCP

New algorithm to solve MIPs

- Branch & cut based
- Some user callbacks cannot be used
- IBM trade secret
- Methodology is proprietary

Examples

- POUTIL MILP model from the GAMS library.
- RHS MILP continuous time slot based model for scheduling of continuous processes.
- RH12 MILP scheduling model with travelling salesman based constraints.

	POUTIL	RHS	RH12
Equations	2,178	16,886	10,421
Variables	1,260	12,156	19,134
0-1 variables	773	5,938	13,340

Computer: machine running Linux, with 8 threads Intel Xeon@ 2.66GHz

Branch and Bound (MILP)

Main idea: solve MILP problems by solving a sequence of linear relaxations to provide bounds

MILP formulation

$$Z(X) = \min \{cx + fy : (x, y) \in X\}$$

where
 $X = \{(x, y) \in \mathbb{R}^n_+ \times \{0, 1\}^p : Ax + By \ge b\}$

The relaxation is given by

$$Z(X) = \min \{cx + fy : (x,y) \in X\}$$
 where $X = \{(x,y) \in \mathbb{R}^n_+ \times \{0,1\}^p : Ax + By \ge b\}$ $Z(P_X) = \min \{cx + fy : (x,y) \in X\}$ where $P_X = \{(x,y) \in \mathbb{R}^n_+ \times [0,1]^p : Ax + By \ge b\}$

The linear relaxation provides a lower bound on the optimal objective value:

$$Z(P_X) \leq Z(X)$$

B&B algorithm

Remarks

- B&B is not suitable for large scale problems
- The number of iterations grows exponentially with the number of variables

CPLEX uses the branch and cut algorithm

- Based on BB
- It is applied to a reformulation of the set V using a preprocessing step and by the addition of cutting planes.

Branch and cut algorithm in CPLEX

12/07/2010 EWO seminar 23

Branch and cut algorithm in CPLEX

Pre-processing and probing

Goals

- Reduce the size of the problem
- Improve the formulation
 - A new model is defined
 - Tighter formulation without increasing the size of the problem
 - Independent of the relaxation solution

Techniques used:

- Pre-processing
- Probing

Pre-processing and probing

- Pre-processing techniques
 - Identification of infeasibility
 - Identification of redundancy
 - Improve bounds
 - Rounding (for MIP)
- Probing techniques: fix binary variables to either 0 or 1, and check the logical implications
 - Fixing variables
 - Improve coefficients
 - Logical implications
- Both formalized by Savelsbergh (1994) and Wolsey (1998)

Pre-processing example

Initial LP formulation

Final LP formulation

--- Generating LP model P1

--- wolsey_2.gms(25) 3 Mb

--- 4 rows 4 columns 13 non-zeroes

--- Executing CPLEX: elapsed 0:00:00.017

Cplex 12.2.0.0, GAMS Link 34

Reading data...

Starting Cplex...

Tried aggregator 1 time.

LP Presolve eliminated 4 rows and 4 columns.

All rows and columns eliminated.

Presolve time = 0.00 sec.

LP status(1): optimal

Optimal solution found.

Objective: 3.600000

Heuristics at the root node (and afterwards)

Why heuristics?

- Can achieve solutions of difficult MILP problems by exploring parts of the tree that the solver will not.
- May provide good solutions quickly.
- May help to prove optimality
 - explicitly: prune nodes more efficiently
 - Implicitly: provide integer solutions

Types of heuristics:

- Node heuristics: diving
- Neighborhood exploration

Note: heuristic solutions are identified by a '+' in the CPLEX output

Heuristics at the root node (cont).

- Diving heuristics
 - 1 Fix a set of integer infeasible variables
 - 2 Bound strengthening
 - 3 Solve LP relaxation
 - 4 Repeat
- Neighborhood
 - Local Branching (LB)
 - Relaxation Induced Neighborhood Search (RINS)
 - Guided Dives (GD)
 - Evolutionary algorithms for polishing MIP solutions

Cuts and heuristics at the root node

Example: MILP problem from Wolsey (1998), solved with B&C requiring 3 nodes

N	odes	Cuts/						
	Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
*	0+	0			0.0000		21	
	0	0	575.4371	9	0.0000	575.4371	21	
*	0+	0			518.0000	575.4371	21	11.09%
	0	0	557.1433	13	518.0000	Cuts: 9	27	7.56%
*	0+	0			525.0000	557.1433	27	6.12%
	0	0	547.8239	17	525.0000	Cuts: 9	37	4.35%
	0	0	546.4737	6	525.0000	Cuts: 8	39	4.09%
*	0+	0			527.0000	546.4737	39	3.70%
	0	0	546.0000	6	527.0000	Cuts: 3	40	3.61%
*	0	0	integral	0	545.0000	ZeroHalf: 1	42	0.00%
	0	0	cutoff		545.0000	545.0000	42	0.00%
Elapsed real time = 0.08 sec. (tree size = 0.00 MB, solutions = 5)								

Clique cuts applied: 1 Cover cuts applied: 7 Zero-half cuts applied:

Gomory fractional cuts applied:

MIP status(101): integer optimal solution 12/07/2010 **EWO** seminar

NEIGHBORHOOD HEURISTICS

RINS Danna, Rothberg, and Le Pape, (2005)

 Idea: explore the neighborhood of the incumbent to find better solutions

Algorithm:

- Fix the binary variables with the same values in the continuous relaxation and in the incumbent.
- Solve a sub-MIP on the remaining variables.

Example:

- Relaxation: x=(0.1, 0, 0, 1, 0.9)
- Incumbent: x=(1, 0, 1, 1, 0)
- Fix $x_2 = 0$, $x_4 = 1$
- Solve a sub-MIP

RINS (cont.)

33

Remarks:

- It may greatly improve solutions of poor quality
- Uses the relaxation to define neighborhoods
- Poor relaxations may lead to large sub-MIP
- The sub-MIP are not solved optimality
- It is only invoked every f nodes

Solution polishing Rothberg, E. (2007)

- Idea: explore the neighborhood of the incumbent by fixing some of the binary variables, and solving a sub-MIP.
- Polishing is based on the integration of an evolutionary algorithm within an MIP branch and bound framework.
- Can only be called when an incumbent is available.

Integration of EA and B&B

EA operators

EA steps

1. Mutation

- a) Choose a seed from the pool (random)
- b) Fix f variables (apply a random mask)
- c) Solve sub-MIP
- d) Add the solution found to the pool

2. Combination

- a. Choose a pair of solutions from the pool (random)
- b. Fix variables with the same value
- c. Solve the sub-MIP
- d. Add the best solution to the pool

Seed
$$x=(1, 0, 0, 1, 0)$$

New
$$x=(?, 0, ?, 1, 0)$$

Solve a sub-MIP with 2 binary variables.

Seed 1
$$x$$
=(1, 0, 0, 1, 0)

New
$$x=(?, ?, \mathbf{0}, \mathbf{1}, \mathbf{0})$$

Solve a sub-MIP with 2 binary variables.

Solution polishing results Rothberg, E. (2007)

Relative gap between solution found and best known solution. Bold means better solution.

	Relative solution quality (versus best known)						
	Initial 50K nodes	After 50% additional time					
Instance	GD + LB + RINS	Defaults	GD + LB + RINS	Polishing			
glass4	0.34722	0.34722	0.34722	0.34722			
liu	0.09747	0.09747	0.09567	0.03430			
mkc	0.00020	0.00020	0.00020	0.00000			
protfold	0.12903	0.12903	0.12903	0.06452			
sp97ar	0.00090	0.00090	0.00081	0.00056			
swath	0.02517	0.02517	0.02517	0.02272			
t <mark>imta</mark> b2	0.07545	0.07545	0.07545	0.06772			
bg512142	0.04287	0.04287	0.04287	0.00000			
dg012142	0.26215	0.26215	0.26198	0.26137			
B2C1S1	0.00707	0.00707	0.00707	0.00093			
pharma1	0.00288	0.00288	0.00288	0.00129			
sp97ic	0.00360	0.00360	0.00360	0.00000			
sp98ar	0.00083	0.00083	0.00083	0.00079			
sp98ic	0.00289	0.00289	0.00018	0.00234			
UMTS	0.00107	0.00107	0.00107	0.00106			
rococoB10-011001	0.02917	0.02328	0.00820	0.01965			
rococoB11-110001	0.03058	0.03058	0.02938	0.02938			
rococoB12-111111	0.02919	0.02919	0.00000	0.01369			
rococoC10-100001	0.06025	0.06025	0.05911	0.06025			
rococoC11-010100	0.04050	0.01249	0.00326	0.04050			
rococoC12-100000	0.01349	0.01349	0.01349	0.01349			
rococoC12-111100	0.01033	0.01033	0.01033	0.00994			
ljb2	0.01574	0.01574	0.00435	0.00000			
ljb7	0.24904	0.24904	0.24747	0.17195			
ljb9	0.77430	0.53763	0.57458	0.32891			
ljb10	0.03254	0.03254	0.03254	0.03196			
ljb12	0.32932	0.32932	0.25586	0.18556			

Solution polishing remarks

- Requires at least one solution
- Keeps the logic of the lower and upper bound used in B&B.
- Solution polishing can be activated after:
 - Node limit
 - Time limit
 - Within a gap %

Impact of cutting planes and heuristics

Parallel optimizers in CPLEX

- Parallelization available:
 - MIP solver
 - Barrier algorithm
 - Concurrent optimization
- Concurrent optimization for solving LP and QP
 - CPLEX launches several optimizers to solve the same problem, the process terminates when the first solver stops:
 - Thread 1 dual simplex
 - Thread 2 barrier.
 - Thread 3 primal simplex
 - Thread >3 barrier run.

MIP parallel optimizer in CPLEX

- Parallelization in the B&B
 - Solution of the root node
 - Solution of nodes
 - Strong branching in parallel
- 2 modes are available:
 - Deterministic invariance and repeatability of the search path and results
 - Opportunistic each run may lead to a different search path and results – usually out-performs the deterministic

Which one should be used?

Log of the parallelization

Deterministic

```
Root node processing (before b&c):
Real time = 37.31

Parallel b&c, 8 threads:
Real time = 3565.95
Sync time (average) = 93.98
Wait time (average) = 216.70

-----

Total (root+branch&cut) = 3603.26 sec.

Opportunistic

Root node processing (before b&c):
Real time = 34.47

Parallel b&c 8 threads:
```

```
Real time = 34.47

Parallel b&c, 8 threads:

Real time = 3566.18

Sync time (average) = 5.97

Wait time (average) = 4.76

Total (root+branch&cut) = 3600.65 sec.
```


Example: POUTIL

RMIP root

246,984.7

CPLEX 12.2

			Objective function			
Threads	CPU time (s)	Gap (%)	RMIP	MIP		
1	950	0.0	266,793.0	266,793.0		
4D	211	0.0	266,793.0	266,793.0		

Example RH12

RMIP root 5,225,207

CPLEX 12.0

			Objective 1	Objective function		
Threads	CPU time (s)	Gap (%)	MIP	MIP		
1	3,600	101.2	5,166,820	-444,529,600		
4D	3,600	114.8	5,165,611	-34,831,279		
40	3,600	10.5	5,166,242	4,674,076		
8D	3,600	42	5,166,870	3,639,156		
80 - 1st run	3,600	1124.5	5,165,035	-504,162		
80 - 2nd run	3,600	17.1 EWO seminar	5,168,434	4,412,006		

Effect of parallelization and polishing

Effect of parallelization and polishing

Effect of parallelization and polishing

Impact of the solution polish option

Ineffective solution polishing

RMIP root 246,984.7

CPLEX 12.2

CPLEX 12.2			Objective fu	nction
Threads	CPU time (s)	Gap (%)	RMIP	MIP
1	950	0.0	266,793.0	266,793.0
4D	211	0.0	266,793.0	266,793.0
40	206	0.0	266,793.0	266,793.0
8D	95	0.0	266,793.0	266,793.0
80	61	0.0	266,793.0	266,793.0
8D Polishing	1000	0.94	264,291.7	266,793.0

MIP start

- CPLEX has the option to start from a user-defined solution
 - The solution can be feasible or unfeasible
 - If the solution is not feasible, CPLEX uses a heuristic to try to repair the solution
 - Helps to find a feasible solution
 - If the solution is feasible, heuristics such as RINS or solution polishing can be used
 - Useful to debug a model

Integration of MIP start and polishing

RHS results: polishing and MIP start

CPLEX 12.2

		Objective function		
Threads	CPU time (s)	Gap (%)	RMIP	MIP
1	3600	3.4	2,669.0	2,580.5
4D	3600	3.3	2,667.5	2,582.4
40	3600	2.3	2,667.2	2,607.2
8D	3600	3.4	2,666.3	2,578.8
80	3600	2.3	2,665.9	2,607.2
8D P - 60s	3600	2.2	2,668.8	2,610.4
8D Start	3600	2.0	2,656.6	2,603.5
CPLEX 7.1	3600	_	2,687.9	

Solution pools

Motivation:

- Value on having more than one solution
- Model does not capture the full essence of the process
- Approximations on creating the model
- Data is not accurate
- Goal: generate and keep multiple solution
 - MIP, MIQCP
- Options and tools:
 - Collect solutions with a given percentage of the optimal solution
 - Collect diverse solutions
 - Collect solutions with diverse properties
 - Difficult to implement with rolling horizon decompositions

Solution pools (cont.)

Example of application (Emilie Danna, CPLEX)

Remark: difficult to implement with rolling horizon decompositions

Tuning tool

Motivation

- MIP solvers have multiple algorithm parameters
- The performance of the solver depends on these parameters
- Default values in solvers are defined in order to work well for a large collection of problems
 - May not work for the user specific problem
- Goal: identify the solver parameters that improve the performance of the solver for a given set of problems.

Tuning tool: example

CPLEX 12.2

			Objective	function
Threads	CPU time (s)	Gap (%)	RMIP	MIP
1	949	0.0	266,793.0	266,793.0
8D	95	0.0	266,793.0	266,793.0
Apply the tuning Time = 327s	g tool	threads 8 cutpass=-1 heurfreq=-1 itlim=100000000 parallelmode=1 probe=-1 varsel=4		
CPLEX 12.2				
			Objective	e function
Threads	CPU time (s)	Gap (%)	RMIF	P MIP
1	67	0.0	266,793.0	266,793.0
8D	8	0.0	266,793.0	266,793.0

Variability

- Variability in the performance may occur in CPLEX 12.2 due to
 - Opportunistic parallelization
 - Heuristics: polishing option (random seed)
 - Numerical reasons
- Variability may occur on
 - Computational time
 - Performance in terms of nodes, iterations
 - Quality of the solution

Remarks:

- It seems particularly relevant when optimality cannot be guaranteed within the maximum time set.
- If repeatability of the results is required the above options should not be used, mainly in the development phase.
- However, it is an opportunity to obtain better solutions.

Final remarks

- The increasing performance of CPLEX has been allowing us to solve more complex problems.
- The CPLEX default parameters may not be a good choice for all problems.
- The solution pool may be an important feature to implement some decompositions.
- Topics not discussed:
 - Infeasibility analysis tool
 - Interface of CPLEX with other applications and programming languages
 - Comparison of the CPLEX performance with other solvers
 - Use of callbacks

CPLEX performance tuning (by Ricardo Lima)

- Technical support from IBM ILOG: "CPLEX Performance Tuning for Mixed Integer Programs"
 - http://www-01.ibm.com/support/docview.wss?uid=swg21400023
- Approach to tune CPLEX for MILPs
 - 1. Use a good formulation.
 - 2. Solve with default values.
 - 3. Check the CPLEX log to evaluate:
 - a) if it is difficult to find the first integer solution.
 - b) the progress of the lower and upper bound, and determine if it is difficult to obtain integer solutions.
 - 4. Diversify or change the search path:
 - a) Set priorities for the variables.
 - b) Increase the frequency of the use of heuristics if it is difficult to find integer solutions.
 - c) Use the polishing option to improve the incumbent. When the polishing option is activated, CPLEX will spend more time solving sub-MIPs, and little progress is made on the relaxation.
 - d) Use the parallel mode with the opportunistic option.
 - e) Change the branching strategy
 - 5. Improve the linear relaxation solution
 - a) Increase the level of generation of cuts (increases the computational times)
 - b) Increase the level of probing (increases the computational times)
 - 6. If the goal is to decrease the computational time, turn off heuristics and turn off the generation of cutting planes, it may be faster.
 - 7. Use the tuning tool.

References for CPLEX and MIP

CPLEX manuals

- IBM ILOG CPLEX Manual
 - http://publib.boulder.ibm.com/infocenter/cosinfoc/v12r2/topic/ilog.odms
 .cplex.help/Content/Optimization/Documentation/CPLEX/_pubskel/CPLEX
 .html

Presolve and conflict analysis

- Rothberg, E., ILOG, Inc. The CPLEX Library: Presolve and Cutting Planes
- Linderoth, J. (2004). Preprocessing and Probing for integer programs, DIMACS Reconnect Conference on MIP.
- Savelsbergh M.W.P. (1994). Preprocessing and probing techniques for Mixed
 Integer Programming problems. ORSA Journal on Computing, 6(4), p. 445-454.
- Atamurk, A., Nemhauser, G., Savelsbergh, M.W.P., (2000). Conflict graphs in solving integer programming problems. *European Journal of Operational Research*, 121, p. 40-55.

References (cont.)

Branch and bound and LP

- Land A. H., Doig, A. G. (1960), an automatic method for solving discrete programming problems, *Econometrica*, 28, pp 497-520
- Rothberg E., ILOG, Inc. The CPLEX Library: Mixed Integer Programming
- Rothberg, E., ILOG, Inc. The CPLEX Library: Presolve and Cutting Planes
- Wolsey, L. A., (1998), Integer programming, Wiley-Intersience.

Local search heuristics

- Rothberg, E. ILOG, Inc. The CPLEX Library: MIP Heuristics
- Danna, E., Rothberg, E., Le Pape, C., (2005). Exploring relaxation induced neighborhoods to improve MIP solutions, *Mathematical Programming*, 102(1), p. 71-91.
- Rothberg, E. (2007). An evolutionary algorithm for polishing Mixed Integer
 Programming Solutions. *INFORMS Journal On Computing*, 19(4) p. 534-541.
- Fischetti, M., Lodi, A. (2005). Local branching. Mathematical Programming, 98,
 p. 23-47.

References (cont.)

Local search heuristics (cont.)

- Chinneck, J. and Lodi, A., (2010). Heuristics for feasibility and optimality in mixed integer programming. CIRRELT Spring School on Logistics, Montreal.
- Dana E. (2008). Performance variability in mixed integer programming. MIP
 2008

Parallelization

 Crainic, T. G., Cun, B., Roucairel, C., (2006). Parallel branch-and-bound algorithms, Parallel combinatorial optimization, Chap. 1. John Wiley and Sons, NJ.

EXTRA SLIDES

Other software packages

Commercial

- XPRESS, FICO
- XA, Sunset Software Technology
- MOSEK, MOSEK
- GUROBI, GUROBI Optimization

Non-commercial

- SCIP, ZIB
- MINTO, CORAL
- GLPK, GNU
- CBC, COIN-OR
- SYMPHONY, COIN_OR

Benchmark sites:

- http://miplib.zib.de
- http://plato.asu.edu/ftp/milpc.html

Example

Consider the pure integer programming problem:

$$\min z = -5y_1 - 2y_2$$
st.
$$-y_1 + y_2 \le 10$$

$$2y_1 + y_2 \le 15$$

$$8y_1 + y_2 \le 30$$

$$y_1, y_2 \in \mathbb{Z}_+$$

Feasible space

Relaxation of the feasible space

Divide et impera

Initialization

$$\frac{L}{Z} = \{P_X\}$$
$$= +\infty$$

Branching

when $Z(V) \leq \overline{Z}$ and $y_j^V \notin \mathbb{Z}$ select branching variable $y_j^V \notin \mathbb{Z}$ set $L := L \cup \{V^0, V^1\}$ where $V^0 = V \cap \{(x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^p : y_j \leq \lfloor y_j^V \rfloor\}$ $V^1 = V \cap \{(x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^p : y_j \leq \lceil y_j^V \rceil\}$ GO TO Termination

$$\min z = -5y_1 - 2y_2$$
st.
$$-y_1 + y_2 \le 10$$

$$2y_1 + y_2 \le 15$$

$$8y_1 + y_2 \le 30$$

$$y_1 \le 2$$

$$y_1, y_2 \in \mathbb{Z}_+$$

$$\min z = -5y_1 - 2y_2
st.
-y_1 + y_2 \le 10
2y_1 + y_2 \le 15
8y_1 + y_2 \le 30
y_1 \ge 3
y_1, y_2 \in \mathbb{Z}_+$$

Divide et impera

Initialization

$$\frac{L}{Z} = \{P_X\}$$
$$= +\infty$$

Node selection and solve

Select $V \in L$ and let $L := L \setminus \{V\}$ Compute Z(V), (x^V, y^V)

$$Z = -32.0$$

 $Z = -32.5$

Upper bound

Cuts and heuristics at the root node

- Given: is a vector of variables $x \in \{0,1\}^p$ that by optimality can be treated as continuous, to $x \in [0,1]^p$.
- Question: what is the impact of relaxing the variables?
 (number of variables, relaxation, search)

Example

In the RHS model the binary variables $Z_{i,l,m,t}$ and $TRT_{i,k,m,t}$ can be relaxed to continuous variables

Reduction of the number of binary variables: 5581 to 1502.

LP solution and relaxation

LP solution is the same for both models
 Optimal solution found.

Objective: 2692.510176

 However, the LP relaxation is different at the beginning of the root node iterations.

CPLEX log using Z and TRT as continuous variables

0	O	2690.3084	1001	2690.3084	9175	
0	0	2688.2465	897	Cuts: 286	11483	
0	0	2687.0382	906	Cuts: 202	13859	
0	0	2686.7985	863	Cuts: 97	14924	
0	0	2686.6539	881	Cuts: 56	15602	
0	0	2686.5623	885	Cuts: 40	15957	
0	0	2686.5612	863	Flowcuts: 9	16028	
0	0	2686.5612	866	Cuts: 17	16073	
Heuristic	still	looking.				
0	2	2686.5612	866	2686.5612	16073	
Elapsed r	eal tir	me = 24.64 s	ec. (tr	ee size = 0.01 MB, solutions	= 0)	
75029 58	991	2652.7284	501	2595.3987 2680.4322 240	25154 3	3.28%

LP solution and relaxation

CPLEX log using Z and TRT as binary variables

0	0	2692.1693	1661		2692.	1693	11471	
0	0	2689.1996	1511		Cuts:	365	14327	
0	0	2684.7527	1567		Cuts:	378	16553	
0	0	2683.4370	1490		Cuts:	263	19210	
0	0	2682.3135	1484		Cuts:	169	20982	
0	0	2681.2411	1595		Cuts:	143	22425	
0	0	2680.6783	1510		Cuts:	134	24554	
0	0	2679 2076	1467		Cuts.	119	26157	
0	0				1		28551	
0	0		_	RMIP ro	oot	RMIP	29187	
0	0						31526	
0	0		RMIP	Beginning	End	Final	32456	
0	0						32775	
0	0						33240	
0	0	BIN	2,693	2,692	2,676	2,666	34183	
0	2						34183	
Elapsed	real time		2 602	2.600	2.600	3	= 0)	
61105	47491	CONT	2,693	2,690	2,690	2,680)	510359	3.39%

- The initial LP relaxations at the root node are different
- The solutions at the end of the root node are different: 2686.5612 vs 2676.4693
- The final relaxation is better when using binary variables

Heuristics motivational example

RHS problem optimized with heuristics and heuristics turned off.

Heuristics motivational example (cont.)

Heuristics automatic

49	9 38	5	2674.4232 12	98		2676.4137 51	1018	
Ela	psed r	eal t	ime = 86.54 s	ec. (t	ree size = 3.9	99 MB, solution	as = 0)	
	544	428	infeasible			2676.4137	523630	
*	604+	321			-1.78665e+10	2672.4010	570690	100.00%
	604	322	2671.7797	1341	-1.78665e+10	2671.7797	577744	100.00%
	605	323	2671.5395	1410	-1.78665e+10	2671.7797	582540	100.00%
	608	324	2665.7742	1321	-1.78665e+10	2671.5025	589020	100.00%
	620	331	2670.9349	1440	-1.78665e+10	2671.2627	604374	100.00%
						Cuts: 50		
	640	339	2655.9561	1075	-1.78665e+10	2671.2627	653538	100.00%
						Cuts: 25		
*	658+	247			-1.46007e+10	2671.2627	662376	100.00%

Heuristics turned off

9656 8295	2668.7217 1328		2669.6422 32	85646				
Elapsed real to	Elapsed real time = 401.82 sec. (tree size = 824.86 MB, solutions = 0)							
Nodefile size =	= 673.26 MB (610.	47 MB after co	mpression)					
9936 8567	2657.0882 11	01	2669.6422	3350837				
10472 9069	infeasible		2669.6422	3475525				
10856 9420	infeasible		2669.6422	3551932				
* 11283 6532	integral	0 -9.18449e+	10 2669.6422	3649047	100.00%			