Inner product spaces

Jagannath IIITDM Kancheepuram, Chennai

Inner product spaces

Objective. Introducing (1) length and (2) angle on vector spaces over \mathbb{R} or \mathbb{C} .

Definition. Let F be the field of real numbers or the field of complex numbers, and V a vector space over F. An **inner product** on V is a function $\langle , \rangle : V \times V \longrightarrow F$ such a way that for all $\alpha, \beta, \gamma \in V$ and all $c \in F$,

- (1) $\langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle$;
- (2) $\langle c\alpha, \beta \rangle = c \langle \alpha, \beta \rangle$;
- (3) $\langle \beta, \alpha \rangle = \overline{\langle \alpha, \beta \rangle}$; (Complex conjugate)
- (4) $\langle \alpha, \alpha \rangle > 0$ if $\alpha \neq \mathbf{0}$.

1

Example 1. Standard inner product

Let
$$V = F^n = \{(x_1, x_2, \dots, x_n) : x_i \in F\}$$
. Let $\alpha = (x_1, x_2, \dots, x_n)$, $\beta = (y_1, y_2, \dots, y_n)$ and $\gamma = (z_1, z_2, \dots, z_n)$ be vectors in V .

$$\langle \alpha, \beta \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n} = \sum_{i=1}^n x_i \overline{y_i}$$

Show that \langle,\rangle is an inner product.

(1)
$$\langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$$

 $\alpha + \beta = (x_1 + y_1, \dots, x_n + y_n).$

$$\langle \alpha + \beta, \gamma \rangle = (x_1 + y_1)\overline{z_1} + (x_2 + y_2)\overline{z_2} + \cdots + (x_n + y_n)\overline{z_n} = \sum_{j=1}^{n} (x_j + y_j)\overline{z_j}$$

$$\langle \alpha + \beta, \gamma \rangle = \sum_{j=1}^{n} x_j \overline{z_j} + \sum_{j=1}^{n} y_j \overline{z_j} = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle.$$

(2)
$$\langle c\alpha, \beta \rangle = c \langle \alpha, \beta \rangle$$
;
 $c\alpha = (cx_1, cx_2, \dots, cx_n)$

$$\langle c\alpha, \beta \rangle = \sum_{j=1}^{n} cx_{j}\overline{y_{j}} = c\sum_{j=1}^{n} x_{j}\overline{y_{j}} = c\langle \alpha, \beta \rangle$$

(3)
$$\langle \beta, \alpha \rangle = \overline{\langle \alpha, \beta \rangle}$$
;

$$\overline{\langle \alpha, \beta \rangle} = \sum_{j=1}^{n} x_{j} \overline{y_{j}} = \sum_{j=1}^{n} y_{j} \overline{x_{j}} = \langle \beta, \alpha \rangle$$

(4)
$$\langle \alpha, \alpha \rangle > 0$$
 if $\alpha \neq \mathbf{0}$

$$\langle \alpha, \alpha \rangle = \sum_{i=1}^{n} x_{i} \overline{x_{i}} = \sum_{i=1}^{n} |x_{i}|^{2} > 0$$
, provided $\alpha \neq \mathbf{0}$

Example 2. Let $V = \mathbb{R}^2$. Let $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$ be two vectors in \mathbb{R}^2 . Define

$$\langle \alpha, \beta \rangle = x_1 y_1 - x_2 y_1 - x_1 y_2 + 4 x_2 y_2.$$

Prove that \langle,\rangle is an inner product.

Definition. Let A be an $m \times n$ matrix over the field F. We define the **conjugate transpose** or **adjoint** of A to be the $n \times m$ matrix A^* such that $(A^*)_{ij} = \overline{A_{ji}}$ for all i, j.

Example 3. Let $V = F^{n \times n} = M_{n \times n}(F)$. Let A, B be two matrices in $F^{n \times n}$. Define

$$\langle A, B \rangle = \operatorname{tr} (B^*A).$$

Prove that \langle , \rangle is an inner product on $F^{n \times n}$.

Example 4. Let V = C[0,1] be the vector space of all continuous functions from the interval [0,1] to \mathbb{R} . For $f,g \in C[0,1]$, define

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

Prove that \langle,\rangle is an inner product on C[0,1].

Example 5. Let V = C[0,1] be the vector space of all continuous functions from the interval [0,1] to \mathbb{C} . For $f,g\in C[0,1]$, define

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt.$$

Prove that \langle,\rangle is an inner product on C[0,1].

Property 1. For all $\alpha, \beta \in V$ and $c \in F$, the followings are true.

1.

$$\langle \alpha, \mathbf{c} \beta \rangle = \overline{\mathbf{c}} \langle \alpha, \beta \rangle.$$

2.

$$c\langle \alpha, \beta \rangle = \langle \alpha, \overline{c}\beta \rangle.$$

Proof of (1).

$$\langle \alpha, \mathbf{c} \beta \rangle = \overline{\langle \mathbf{c} \beta, \alpha \rangle} = \overline{\mathbf{c} \langle \beta, \alpha \rangle} = \overline{\mathbf{c}} \ \overline{\langle \beta, \alpha \rangle} = \overline{\mathbf{c}} \ \langle \alpha, \beta \rangle.$$

Property 2.

$$\langle \alpha, \beta + \gamma \rangle = \langle \alpha, \beta \rangle + \langle \alpha, \gamma \rangle.$$

Proof.

$$\begin{split} \langle \alpha, \beta + \gamma \rangle &= \overline{\langle \beta + \gamma, \alpha \rangle} \\ &= \overline{\langle \beta, \alpha \rangle} + \overline{\langle \gamma, \alpha \rangle} \\ &= \overline{\langle \beta, \alpha \rangle} + \overline{\langle \gamma, \alpha \rangle} \\ &= \langle \alpha, \beta \rangle + \langle \alpha, \gamma \rangle. \end{split}$$

Property 3.

$$\langle \alpha, 0 \rangle = \langle 0, \alpha \rangle = 0.$$
 (Homework)

Property 4.

$$\langle \alpha, \alpha \rangle = 0$$
 if and only if $\alpha = 0$. (Homework)

Inner Product Spaces

An inner product space is a real or complex vector space, together with a specified inner product on that space.

Examples

- 1. \mathbb{R}^n is an inner product space with the standard inner product, which is the dot product.
- 2. \mathbb{C}^n is an inner product space with the standard inner product defined in Example 1.
- 3. $F^{n \times n}$ is an inner product space with the inner product defined in Example 3.
- 4. C[0,1] is an inner product space with the inner product defined in Example 4.

Definition. A finite-dimensional real inner product space is called a **Euclidean space**.

Definition. A complex inner product space is called a unitary space.

Norm (length)

Definition.

The norm (length) of a vector α in an inner product space is defined by

$$\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$$
 , (Positive square root).

Example Consider the standard inner product on \mathbb{R}^n

$$\langle \alpha, \alpha \rangle = \sum_{j=1}^{n} x_j \overline{x_j} = \sum_{j=1}^{n} x_j x_j = \sum_{j=1}^{n} x_j^2$$

$$\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle} = \sqrt{\sum_{j=1}^{n} x_j^2}$$
 (length of the vector α).

10

Property 5. In an inner product space the parallelogram law holds. That is

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2).$$

Proof.

$$\|\alpha + \beta\|^{2} = \langle \alpha + \beta, \alpha + \beta \rangle = \langle \alpha, \alpha + \beta \rangle + \langle \beta, \alpha + \beta \rangle$$

$$= (\langle \alpha, \alpha \rangle + \langle \alpha, \beta \rangle) + (\langle \beta, \alpha \rangle + \langle \beta, \beta \rangle)$$

$$= \|\alpha\|^{2} + \|\beta\|^{2} + \langle \alpha, \beta \rangle + \langle \beta, \alpha \rangle$$

$$= \|\alpha\|^{2} + \|\beta\|^{2} + \langle \alpha, \beta \rangle + \overline{\langle \alpha, \beta \rangle}$$

$$\|\alpha + \beta\|^{2} = \|\alpha\|^{2} + \|\beta\|^{2} + 2 \operatorname{Re} \langle \alpha, \beta \rangle. \tag{1}$$

Property 5 contd.

Using similar arguments, we can obtain

$$\|\alpha - \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2 - 2 \text{ Re } \langle \alpha, \beta \rangle.$$
 (2)

From equations (1) and (2) we get

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2).$$

The sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.

Problem 1

Show that if $F = \mathbb{R}$, then

$$\langle \alpha, \beta \rangle = \frac{1}{4} \|\alpha + \beta\|^2 - \frac{1}{4} \|\alpha - \beta\|^2.$$

Theorem 1

If V is an inner product space, then for any vectors $\alpha, \beta \in V$ and any scalar c,

- (i) $\|c\alpha\| = |c| \|\alpha\|$;
- (ii) $\|\alpha\| > 0$ for $\alpha \neq 0$;
- (iii) $|\langle \alpha, \beta \rangle| \le \|\alpha\| \ \|\beta\|$; (Cauchy-Schwarz inequality)
- (iv) $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$. (Triangle inequality)

Orthogonal vectors

Let V be an inner product space and $\alpha, \beta \in V$. We say α is orthogonal to β if $\langle \alpha, \beta \rangle = 0$.

Example Consider the Euclidean space R^3 and the standard basis $B = \{\epsilon_1 = (1,0,0), \epsilon_2 = (0,1,0), \epsilon_3 = (0,0,1)\}.$

$$\langle \alpha, \beta \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$
, where $\alpha, \beta \in \mathbb{R}^3$.
 $\langle \epsilon_1, \epsilon_2 \rangle = 1 \times 0 + 0 \times 1 + 0 \times 0 = 0$.

This means ϵ_1 and ϵ_2 are orthogonal to each other.

Similarly, we can verify that $\langle \epsilon_1, \epsilon_3 \rangle = \langle \epsilon_2, \epsilon_3 \rangle = 0$. Thus, $\epsilon_1, \epsilon_2, \epsilon_3$ are orthogonal to each other.

Any set which has this property is called an orthogonal set.

So, B is an orthogonal set.

Orthogonal set and Orthonormal set

Definition. Let V be an inner product space. A set $S \subseteq V$ is called an orthogonal set if $\langle \alpha, \beta \rangle = 0$ whenever $\alpha, \beta \in S$ and $\alpha \neq \beta$.

Definition. An orthonormal set is an orthogonal set S with the additional property that $\|\alpha\| = 1$ for all $\alpha \in S$.

Example. Observe that

$$\|\epsilon_1\| = \sqrt{\langle \epsilon_1, \epsilon_1 \rangle} = \sqrt{1 \times 1 + 0 \times 0 + 0 \times 0} = 1,$$

Similarly we can verify that $\|\epsilon_2\|=1$ and $\|\epsilon_3\|=1$. Thus, B is an orthonormal set.

Gram-Schmidt orthogonalization process

Input: A basis $\{\beta_1, \beta_2, \dots, \beta_n\}$ of an inner product space V.

Output: An orthogonal basis $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ of V.

$$\alpha_{1} = \beta_{1}$$

$$\alpha_{2} = \beta_{2} - \frac{\langle \beta_{2}, \alpha_{1} \rangle}{\|\alpha_{1}\|^{2}} \alpha_{1}$$

$$\alpha_{3} = \beta_{3} - \frac{\langle \beta_{3}, \alpha_{1} \rangle}{\|\alpha_{1}\|^{2}} \alpha_{1} - \frac{\langle \beta_{3}, \alpha_{2} \rangle}{\|\alpha_{2}\|^{2}} \alpha_{2}$$

$$\alpha_{4} = \beta_{4} - \frac{\langle \beta_{4}, \alpha_{1} \rangle}{\|\alpha_{1}\|^{2}} \alpha_{1} - \frac{\langle \beta_{4}, \alpha_{2} \rangle}{\|\alpha_{2}\|^{2}} \alpha_{2} - \frac{\langle \beta_{4}, \alpha_{3} \rangle}{\|\alpha_{3}\|^{2}} \alpha_{3}$$

and so on...

Problem 3

Find an orthogonal basis of \mathbb{R}^3 with standard inner product from the basis $B = \{\beta_1 = (3,0,4), \beta_2 = (-1,0,7), \beta_3 = (2,9,11)\}$ using Gram-Schimdt process.

 $\alpha_1 = \beta_1 = (3, 0, 4); \quad \|\alpha_1\|^2 = 3^2 + 0^2 + 4^2 = 25$

Solution.

$$\alpha_{2} = \beta_{2} - \frac{\langle \beta_{2}, \alpha_{1} \rangle}{\|\alpha_{1}\|^{2}} \alpha_{1}$$

$$= (-1, 0, 7) - \frac{\langle (-1, 0, 7), (3, 0, 4) \rangle}{25} (3, 0, 4)$$

$$= (-1, 0, 7) - \frac{(-1 \times 3 + 0 \times 0 + 7 \times 4)}{25} (3, 0, 4)$$

$$= (-4, 0, 3).$$

 $\|\alpha_2\|^2 = (-4)^2 + 0^2 + 3^2 = 25$

Problem 3 contd.

$$\alpha_{2} = \beta_{3} - \frac{\langle \beta_{3}, \alpha_{1} \rangle}{\|\alpha_{1}\|^{2}} \alpha_{1} - \frac{\langle \beta_{3}, \alpha_{2} \rangle}{\|\alpha_{2}\|^{2}} \alpha_{2}$$

$$= (2, 9, 11) - \frac{\langle (2, 9, 11), (3, 0, 4) \rangle}{25} (3, 0, 4) - \frac{\langle (2, 9, 11), (-4, 0, 3) \rangle}{25} (-4, 0, 3)$$

$$= (2, 9, 11) - 2(3, 0, 4) - (-4, 0, 3)$$

$$= (0, 9, 0).$$

 $\|\alpha_3\|^2 = 81$

Problem 3 contd.

$$B' = \{\alpha_1 = (3,0,4), \alpha_2 = (-4,0,3), \alpha_3 = (0,9,0)\}$$

is an orthogonal basis of \mathbb{R}^3 .

Verification

$$\langle \alpha_1, \alpha_2 \rangle = 3 \times (-4) + 0 \times 0 + 4 \times 3 = 0$$

$$\langle \alpha_1, \alpha_3 \rangle = \langle \alpha_2, \alpha_3 \rangle = 0$$

Note that B' is a L.I. subset of \mathbb{R}^3 and its an orthogonal basis of \mathbb{R}^3 .

Problem 3 contd.

$$B'' = \left\{ \frac{\alpha_1}{\|\alpha_1\|}, \frac{\alpha_2}{\|\alpha_2\|}, \frac{\alpha_3}{\|\alpha_3\|} \right\}$$

is an orthonormal basis of \mathbb{R}^3 .

$$B'' = \left\{ \frac{1}{5}(3,0,4), \frac{1}{5}(-4,0,3), (0,1,0) \right\}.$$

Problem 4

Using Gram-Schimdt process, find an orthonormal basis for the Euclidean space \mathbb{R}^3 from the following ordered basis

$$B = \{\beta_1 = (1, 1, 1), \beta_2 = (0, 1, 1), \beta_3 = (0, 0, 1)\}.$$

Solution.

$$\begin{split} \alpha_1 &= \beta_1 = (1, 1, 1,), \quad \|\alpha_1\|^2 = 3 \\ \alpha_2 &= \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \quad \|\alpha_2\|^2 = \frac{2}{3} \\ \alpha_3 &= \left(0, -\frac{1}{2}, \frac{1}{2}\right), \quad \|\alpha_3\|^2 = \frac{1}{2} \end{split}$$

The orthonormal basis:

$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$