Statistiques fondamentales

Université Paris Diderot - M1

Exercice 1 - Autour de la loi Géométrique

La loi géométrique de paramètre $p \in]0,1[$, notée $\mathcal{G}(p)$, est définie par

$$\mathbb{P}\left(\mathcal{G}(p) = k\right) = (1 - p)^{k-1}p,$$

pour $k \in \mathbb{N}^*$. La variance d'une telle loi est $\frac{1-p}{p^2}$. On se donne X de loi $\mathcal{G}(p)$.

- 1. Montrer que $\mathbb{E}(X) = \frac{1}{p}$.
- 2. On se donne $p_0 > p_1$, et on souhaite tester $H_0 : p = p_0$ contre $H_1 : p = p_1$. Montrer que le rapport de vraisemblance, noté RV(x), est une fonction croissante en x.
- 3. En déduire, pour $\alpha>0,$ le test du rapport de vraisemblance au niveau $\alpha.$

On se donne maintenant X_1, \ldots, X_n i.i.d. de loi $\mathcal{G}(p)$.

- 4. Calculer l'estimateur du maximum de vraisemblance de p, noté \hat{p} .
- 5. Montrer que \hat{p} est consistant.
- 6. Étudier le comportement asymptotique de \hat{p} .
- 7. En déduire un test de niveau asymptotique α pour les hypothèses $H_0: p=p_0$ contre $H_1: p=p_1$, avec $p_0>p_1$.

Exercice 2 - Un modèle gaussien

Dans cet exercice $X_1, \ldots, X_n, \ldots, \sim_{\text{i.i.d}} \mathcal{N}(\mu, \text{Id}_2)$ avec $\mu \in \mathbb{R}^2$ inconnu non nul. On cherche à estimer la direction θ de μ soit $\theta = (1/\|\mu\|_2)\mu$. On envisage l'estimateur $\widehat{\theta}_n = (1/\overline{X}_n)\overline{X}_n$.

- 1. Quelle est la limite en loi de $\sqrt{n}(\|\overline{X}_n\| \|\mu\|)$?
- 2. La famille d'estimateurs $(\widehat{\theta}_n)_n$ est-elle consistante?
- 3. La famille d'estimateurs $(\widehat{\theta}_n)_n$ est-elle asymptotiquement gaussienne? Si oui préciser la matrice de covariance de la limite.
- 4. Proposer une famille de régions de confiance pour θ de taux de couverture asymptotique $1-\alpha$.
- 5. Quel est l'estimateur au maximum de vraisemblance de $\theta\,?$

Exercice 3 - Exponentielles bilatères

Dans cet exercice, le modèle est constitué par les distributions de Laplace dont la densité sur \mathbb{R} est donnée par $f_{\mu}(x) = \exp(-|x - \mu|)/2$ avec $\mu \in \mathbb{R}$ (paramètre de localisation).

Les données X_1, \ldots, X_n sont supposées indépendamment identiquement distribuées selon une loi de Laplace de paramètre μ inconnu.

- 1. Quelle est l'espérance de la loi de densité f_{μ} ?
- 2. En déduire un estimateur $\tilde{\mu} + n$ de μ par la méthode des moments.
- 3. Est il biaisé?
- 4. Quel est son risque quadratique (pour une taille d'échantillon donnée)?
- 5. La suite d'estimateurs est-elle consistante?
- 6. Est-elle asymptotiquement normale?
- 7. Proposer des intervalles de confiance de taux de couverture asymptotique 1α ($\alpha \in [0,1[)$).
- 8. Ecrire la log-vraisemblance en μ d'un n-échantillon x_1, \ldots, x_n .
- 9. Le maximum de vraisemblance est il bien défini? unique?
- 10. Proposer un estimateur au maximum de vraisemblance $\widehat{\mu}_{2n+1}$ pour les échantillons de taille 2n+1 impaire.
- 11. Quel est le biais de $\widehat{\mu}_{2n+1}$?
- 12. Donner une majoration (non triviale) de $P_{\mu}\{\widehat{\mu}_{2n+1} \geq \mu + \delta\}$ en fonction de δ et n.
- 13. La suite $(\widehat{\mu}_{2n+1})_n$ est-elle consistante?