# $\begin{array}{c} {\bf TFY4115~Fysikk~(MTEL/MTTK/MTNANO)} \\ {\bf LØsningsforslag~for~Øving~6} \end{array}$

## Oppgave 1.

<u>a.</u> Treghetsmomentet til ei skive er  $I_0$ , og treghetsmomentet til begge skivene er  $2I_0$ . Spinnet må være bevart siden det er ingen netto kraftmoment på skivene:

$$\tau_{\text{tot}} = \frac{dL}{dt} = 0 \quad \Rightarrow \quad L_{\text{i}} = L_{\text{f}}$$

$$I_{0}\omega_{\text{i}} = 2I_{0}\omega_{\text{f}} \quad \Rightarrow \quad \omega_{\text{f}} = \frac{\omega_{\text{i}}}{2}$$

$$(1)$$

**b.** Endringen i kinetisk energi er:

$$\Delta E_{\mathbf{k}} = E_{\mathbf{k},2} - E_{\mathbf{k},1} = \frac{1}{2} \cdot 2I_0\omega_{\mathbf{f}}^2 - \frac{1}{2}I_0\omega_{\mathbf{i}}^2 = I_0\frac{1}{4}\omega_{\mathbf{i}}^2 - \frac{1}{2}I_0\omega_{\mathbf{i}}^2 = -\frac{1}{4}I_0\omega_{\mathbf{i}}^2$$
 (2)

Halve rotasjonsenergien går over til varme pga friksjonen mellom platene. Slik var det også for translasjonsenergien når en kartong ble sluppet ned på et transportband i en tidligere øving.

## Oppgave 2.

<u>a.</u> Treghetsmomentet til skiva er  $I_s = \frac{1}{2}MR^2$ , og treghetsmomentet til ett prosjektil skutt inn i skiva ved radius r er  $I_p = mr^2$ . Det totale treghetsmomentet for skiva med n prosjektil blir:

$$I_{\text{tot}} = I_{\text{s}} + nI_{\text{p}} = \frac{1}{2}MR^2 + nmr^2$$
 (3)

 $\underline{\mathbf{b}}$ . Ved starten er det kun prosjektilene som har spinn, dvs  $L_{\rm i}=nL_0$ . Når prosjektilene treffer skiva, vil skiva starte å rotere. Skiva med n prosjektiler vil få en vinkelhastighet  $\omega_{\rm f}$ , og spinnet er  $L_{\rm f}=I_{\rm tot}\omega_{\rm f}$ . I denne prosessen er spinnet bevart:

$$L_{\rm i} = L_{\rm f}$$

$$nL_0 = I_{\rm tot}\omega_{\rm f}$$

$$\omega_{\rm f} = \frac{nL_0}{I_{\rm tot}} = \frac{nL_0}{\frac{1}{2}MR^2 + nmr^2}.$$
(4)

#### Oppgave 3.



<u>a.</u> Her har vi fire ukjente:  $\theta_0$ , S,  $F_{\rm f}$ ,  $F_{\rm N}$ . Dette krever fire likninger. Når snella holdes i ro av snora og friksjonen, gjelder Newton 1:

Normalt skråplan:  $\sum F_{\perp} = 0 \quad \Rightarrow \quad F_{\rm N} = Mg\cos\theta \quad ({\rm I})$ 

Langs skråplan:  $\sum F_{||} = 0 \implies Mg \sin \theta = F_{\rm f} + S$  (II) hvor  $F_{\rm f}$  er friksjonskrafta.

Spinnlikning:  $\sum \tau = 0 \implies Sr = F_f R$  (III)

Statisk friksjonskraft kan ligge mellom null og en øvre grense:

 $F_{\rm f} \le \mu_{\rm S} F_{\rm N} = \mu_{\rm S} M g \cos \theta$  (IV)

Ved grensa  $\theta = \theta_0$  – dvs. der hvor snella akkurat glipper fra underlaget og begynne å rulle/slure – er friksjonskrafta lik det maksimale:  $F_f = \mu_S Mg \cos \theta_0$ .

Likning (III) gir  $S = (R/r)F_f$  som settes inn i likn. (II) og gir

$$Mg\sin\theta_0 - F_f - (R/r)F_f = 0 \tag{5}$$

Innsetting i dette av grenseverdien av  $F_f$  gir ei likning for  $\theta_0$ :

$$Mg\sin\theta_0 = \mu_S Mg\cos\theta_0 (1 + R/r)$$
  $\Rightarrow$   $\tan\theta_0 = \mu_S (1 + R/r),$  (6)

og dermed

$$\underline{\theta_0 = \arctan\left[\mu_S(1 + R/r)\right]},\tag{7}$$

og snorkrafta

$$\underline{S = \frac{R}{r}F_{\rm f} = \frac{R}{r}\mu_{\rm S}Mg\cos\theta_0}, \quad \text{Alternative uttrykk: } S = \frac{mgR}{r+R}\sin\theta_0 = Mg\left(\sin\theta_0 - \mu_{\rm S}\cos\theta_0\right). \tag{8}$$

<u>b.</u> Når snella har begynt å slure, må likn. (II) og (III) erstattes av Newtons 2.lov. Vinkelen er nå gitt lik  $\theta$  (≥  $\theta$ <sub>0</sub>), og de fire ukjente blir: a, S<sub>1</sub>, F<sub>f</sub>, F<sub>N</sub>. Snorkrafta blir en annen enn tidligere, derfor nytt symbol, og akselerasjonen a langs skråplanet blir en ukjent. Friksjonskrafta nå er gitt av den kinetiske friksjonskoeffisienten  $\mu$ <sub>K</sub>:

$$F_{\rm f} = \mu_{\rm K} F_{\rm N} = \mu_{\rm K} M g \cos \theta. \tag{9}$$

Likning (I) bestemmer  $F_N$  og likn. (9) bestemmer  $F_f$ , slik at vi har igjen bare to ukjente, a og  $S_1$ . To likninger:

Newton 2 langs skråplan:  $\sum F_{||} = Ma \implies Mg \sin \theta - F_{f} - S_{1} = Ma$  (IIb)

Spinnlikning:  $\sum \tau = I\dot{\omega} \implies -F_{\rm f} R + S_1 r = I\dot{\omega}$  (IIIb)

der I = treghetsmomentet om hjulaksen. Vi har valgt a positiv nedover og positiv  $\omega$  mot klokka (= den retningen der virkelig går). Når snella rutsjer nedover rulles snora ut med hastighet  $v = \omega r$  (IKKE  $v = \omega R!$ ), og  $\dot{\omega} = \dot{v}/r = a/r$ . N2-likningene (IIb) og (IIIb) gir da (vi venter litt med å sette inn for  $F_f$ ):

$$M g \sin \theta - F_{\rm f} - S_1 = Ma \tag{10}$$

$$-F_{\rm f}R + S_1 r = I(a/r). \tag{11}$$

To likninger og to ukjente (a og  $S_1$ ). Eliminerer  $S_1$  fra likn. (10) og setter inn i likn. (11):

$$S_1 = M g \sin \theta - F_f - Ma \quad \stackrel{\text{(11)}}{\Longrightarrow} \quad -F_f R + M g r \sin \theta - F_f r = I \left( a/r \right) + M a r \,. \tag{12}$$

Løsning av a, litt smarte divisjoner og innsetting av  $F_{\rm f}$  gir

$$a = g \frac{\sin \theta - \mu_{\rm K} \cos \theta \left(1 + \frac{R}{r}\right)}{1 + I/(Mr^2)}.$$
(13)

### Oppgave 4.



- <u>a.</u> Om vi analyserer med Newtons lover i labsystem eller i et system som følger kula og betrakter sentrifugalkraften, skjønner vi at kula pga. tyngdekraften må legge seg i bunnen ( $\theta=0$ ) når  $\omega=0$  og ved svært stor hastighet vil kula presses så langt ut som mulig, dvs.  $\theta\to90^\circ$  når  $\omega\to\infty$ .
- $\underline{\mathbf{b}}$ . To krefter virker på kula: Tyngdekraft  $m\overrightarrow{\boldsymbol{g}}$  og normalkraft fra underlaget:  $\overrightarrow{\boldsymbol{F}}_{\mathrm{N}}$ . Normalkrafta kan dekomponeres i vertikal og horisontal retning, se nedenfor.
- <u>c.</u> Når kula er i "likevekt", roterer den med ringen i en avstand  $r=R\sin\theta$  fra rotasjonsaksen (se figuren). Rotasjonshastigheten er:

$$v = \frac{\text{omkrets}}{\text{omløpstid}} = \frac{2\pi r}{2\pi/\omega} = \omega r \,.$$

I z-retning (langs rotasjonsaksen) er et ingen akselerasjon, slik at sum av krefter må være lik null:

$$mg = F_{\rm N} \cdot \cos \theta \quad \Rightarrow \quad F_{\rm N} = \frac{mg}{\cos \theta}$$

I radiell retning har vi sentripetalakselerasjon  $a_{\rm c}=\omega^2 r=\omega^2 R\sin\theta$ , og den eneste krafta som kan bidra til dette er komponenten av  $F_{\rm N}$  i radiell retning. Derfor:

$$ma_{\rm c} = F_{\rm N} \cdot \sin \theta \quad \Rightarrow \quad m\omega^2 R \sin \theta = \frac{mg}{\cos \theta} \cdot \sin \theta$$
 (14)

Vi løser mhp.  $\theta$  og finner hva likevektsvinkelen er for gitt  $\omega$ :

$$\cos \theta = \frac{g}{\omega^2 R}$$
 eller  $\underline{\theta(\omega)} = \arccos \frac{g}{\omega^2 R}$ . (15)

<u>d.</u> Grenseverdien  $\omega \to \infty$  gir  $\theta(\omega) = \arccos 0 = \pi/2$  som stemmer med det vi resonnerte oss frem til under pkt.a.

Men for  $sm\mathring{a}$  verdier av  $\omega$  er resultatet ikke helt som ventet! Som kjent kan ikke  $\cos\theta$  bli større enn 1, slik at når  $\frac{g}{\omega^2 R} > 1$  har ikke likn. (15) løsning.

For å forstå fysikken bak dette, kan vi velge å se det fra koordinatsystem som følger kula, slik at vi inkluderer sentrifugalkrafta  $F_{\rm s}=m\omega^2 r=m\omega^2 R\sin\theta$ . Se figuren. Denne vil trekke kula *oppover* ringen med sin komponent  $F_{\rm s}\cos\theta$ , mens tyngdens komponent  $mg\sin\theta$  trekker nedover ringen. Skal kula stå i ro må disse være like:

$$mg\sin\theta = m\omega^2 R\sin\theta \cdot \cos\theta. \tag{16}$$

Når faktoren  $\sin \theta$  forkortes bort, gjenstår den konstante vekta mg, som skal balanseres mot sentrifugalkraftleddet  $m\omega^2 R\cos\theta$ . Men når  $\omega$  blir liten nok, har dette leddet ingen sjanse i konkurransen, konstanten mg vinner uansett og likevektsposisjon blir i bunnen av ringen,  $\theta = 0$ . Eneste mulighet å oppfylle likn. (16) og (14) er at  $\sin \theta = 0$ . Denne løsningsmuligheten mister vi når vi forkorter med  $\sin \theta$  for å oppnå likn. (15).



Men  $\cos\theta$  kan ikke bli større enn 1, som betyr at det ikke finnes noen vinkel som svarer til  $\arccos(2,48)$ , som diskutert ovenfor. Ved rotasjonsfrekvenser under grensetilfellet  $\cos\theta = g/\omega^2 R \equiv 1$  vil kula forbli ved  $\theta = 0$ . Denne minste frekvensen er  $\omega_{\min} = \sqrt{\frac{g}{R}} = 9,90 \text{ s}^{-1}$ , dvs.  $f_{\min} = \frac{1}{2\pi} \cdot \omega = 1,6 \text{ Hz}$ .

En graf av  $\theta(\omega) = \arccos \frac{g}{\omega^2 R}$  vil forklare hva som skjer (se figuren). Grafen viser at  $\theta$  øker veldig brått når grensehastigheten  $\omega_{\min}$  er passert. Merk deg at det ikke er friksjonen som er årsak til dette forløpet, vi har null friksjon mellom kule og ring.



 $\underline{\mathbf{f}}$ . For kjeglependelen er snorkrafta S analog med normalkrafta  $F_{\mathrm{N}}$  ovenfor. Ellers er argumentasjonen helt lik og likn. (15) gir

$$\omega = \sqrt{\frac{g}{R\cos\theta}}.$$

Graf til høyre. For  $\theta \to 90^\circ$  vil  $\omega \to \infty$ . For  $\theta \to 0^\circ$  vil  $\omega \to \sqrt{\frac{g}{R}}$ .

For kjeglependelen er det naturlig å betrakte vinkelen  $\theta$  som pådraget mens resultatet er vinkelhastigheten  $\omega$  som pendelen innstiller seg på. Ved eksperimenter finner vi at  $\omega$  nærmer seg en fast verdi (ikke null) når  $\theta$  går mot null. Vi ser av uttrykket over at denne verdien er  $\omega_{\min} = \sqrt{\frac{g}{R}}$ . Det er det samme vi observerer i ringproblemet ovenfor, men her er  $\omega$  pådraget: Når vi lar rotasjonen bli langsom har vi løsning bare inntil frekvensen er  $\omega_{\min} = \sqrt{\frac{g}{R}}$ . Under denne frekvensen har vi bare løsningen  $\theta = 0$  og ringen faller brått ned.



Det kan bemerkes at en planpendel med lengde R har ved små vinkelutslag den samme frekvensen:  $\omega_{\min} = \sqrt{\frac{q}{R}}$  (forelesning eller Ch. 14.5 i Y & F). En planpendel får noe lavere  $\omega$  ved større vinkelutslag, mens en kjeglependel får høyere  $\omega$  ved større vinkelutslag.