Exercise 1 It is a well known fact that
$$\lim_{x \to \infty} \left(\left(1 + \frac{1}{x} \right)^x \right) = \lim_{x \to 0} \left((1+x)^{1/x} \right) = e$$
. Find
$$\lim_{x \to 0} \left(\frac{\ln(1+x)}{x} \right) = \boxed{1}.$$

Hint: Recall that $\lim_{x\to\infty}\left(\left(1+\frac{1}{x}\right)^x\right)=e$ and, equivalently, $\lim_{x\to0}\left((1+x)^{1/x}\right)=e$. Observe that we can rewrite this in a more illuminating way as $\frac{\ln(1+x)}{x}=x^{-1}\ln(1+x)$. Apply some properties of logarithms to this.

Hint: We know, from the properties of logarithms, that $b \ln(a) = \ln(a^b)$ when a > 0. Hence, $x^{-1} \ln(1+x) = \ln((1+x)^{1/x})$ for x > -1 (and, of course, $x^{-1} = \frac{1}{x}$). Hence, $\ln((1+x)^{1/x}) = \frac{\ln(1+x)}{x}$ when $x \neq 0$. So $\lim_{x \to 0} \left(\ln((1+x)^{1/x})\right) = \lim_{x \to 0} \left(\frac{\ln(1+x)}{x}\right)$. Recall that $\ln(x)$ is continuous everywhere besides x = 0. What can you say about $\lim_{x \to 0} \ln((1+x)^{1/x})$?