```
1/n expansion, 9, 10, 31, 62, 65, 72, 93, 95,
                                                        linear, 46, 53, 54, 111, 123, 124, 138,
         100-103, 137, 144, 153, 162, 167, 204,
                                                             140, 146, 150, 151, 233, 276, 277,
         210, 211, 221, 226, 228, 229, 319,
                                                             289, 346, 421
         350, 394, 396, 415
                                                        monomial, 129
*-polation, 277, 279, 280, 411
                                                        perceptron, 40, 43-46, 128
    curvature, 281
                                                        quadratic, 111
                                                        ReLU, 45-47, 110, 116, 123, 125, 128,
    deep linear networks, 277
                                                             135–137, 139, 140, 143, 148–150, 233,
    nonlinear networks, 278, 280
                                                             238, 244, 245, 335, 336, 345, 346,
    same for inter- and extra-, 281
                                                             381, 395, 421, 422, 438
\delta expansion, 116, 269, 274
                                                        sigmoid, 44-46, 126, 128, 129, 244
    generalized to \epsilon_{1,2} expansion, 279
                                                        sin, 45, 113, 131, 134, 236, 238-240, 245,
\gamma^{[a]} basis, 115
                                                             273
    \sigma\sigma, 120, 271
                                                        softplus, 46, 128, 129, 132, 135, 137
    \sigma'\sigma', 271
                                                        SWISH, 46, 47, 113, 126, 132, 135-137,
    frozen NTK, 271
                                                             336, 346, 381
    kernel, 172, 269, 410
                                                        tanh, 45, 46, 113, 126-131, 133, 134, 141,
       for hybrid approach, 437
                                                             143, 171, 236, 238–240, 244, 245, 273,
    output matrix, 172
                                                             343, 422
                                                   adventure for thrill seekers, 310, 379
absolute certainty, 156, 158, 168, 178, 260, 401
                                                   algorithm dependence, 327, 348, 361, 373,
    *-polation, 281
                                                             375, 382, 393
action, 11, 26, 27, 33, 72, 401, 411
                                                   algorithm independence, 257, 258, 348, 383
    effective, see effective action
                                                   algorithm projector, 327, 336, 372, 373, 375,
    quadratic, see also Gaussian distribution,
                                                             379, 382, 383, 393
         27, 66, 75, 206
                                                   Anderson, Thomas A. "Neo", 21
    quartic, see also nearly-Gaussian
                                                   applause, 180
         distribution, 28, 29–32, 34
                                                   architecture, 7, 40, 42, 109, 197
    sextic, 395
                                                   architecture hyperparameters, 40, 53, 64, 157
    truncation, see also hierarchical scaling,
                                                   Armstrong, Neil, 252
         34
                                                   artificial intelligence, 1, 37, 38, 39, 53
activation, 39
                                                   artificial neural network, see neural network
activation function, 39, 43, 244
                                                   artificial neuron, 37, 39, 180, 182
    GELU, 47, 113, 132, 135–137, 336, 346, 381
                                                   atom, 3, 58
    leaky ReLU, 44, 46
                                                   attention, see also transformer, 42
```

backpropagation, 45, 189, 205, 241 statements, 154, 155 sum rule, 155, 157 backward equation bell curve, see also Gaussian function, 12, 13 MLP, 205, 250 backward pass, 205 bias-variance decomposition, see also generalization error, 267 Banks-Zaks fixed point, see fixed point bias-variance tradeoff, 194, 266, 269, 379, 411 batch, see also stochastic gradient descent, for a universality class **195**, 257 $K^{\star} = 0$ activations, 271 Bayes, Reverend Thomas, 163 scale-invariant activations, 275 Bayesian inference, 153–155, **156**, 157, 160, generalized, 266, 275 161, 163, 164, 167, 168, 191, 249, vs. standard, 266 255, 258, 263, 264 relation to criticality, 269 connection to linear models, 288 biases, see also model parameters, 39, 193 evidence, 154, **156**, 159, 165, 166, big tech, 62 168–173, 406 biological neural network, see also brain, 1, relation to generalization error, 268 247 hierarchical modeling, 166 biological neuron, 37, 39, 154, 180 hypothesis, see hypothesis (Bayesian bit (unit of entropy), 401 inference) black box, 2 likelihood, 156, 159–161, 165, 167, 178, blueprint, 436 186, 187 Boltzmann constant, 401, 413 model comparison, 154, 156, 165, Boltzmann distribution, 412, 413 165–170, 173, 402, 406 Boltzmann entropy, see entropy Bayes' factor, **166**, 167, 168, 171, 402, Boltzmann, Ludwig, 3, 399 406 bona fide, 351 model fitting, 153, 156, 160, **161**, 164, bottleneck, 55 165, 167, 194, 259, 262 bra-ket notation, see also Gaussian approximation methods, 161 expectation, 27, 29, 30 exact marginalization, 162 brain, 1, 39, 42, 53 posterior, see posterior brand awareness, 375 practicalities, 177, 185 Brown, Emmett Lathrop "Doc", 425 prediction, 154, **161**, 164, 165 prior, see prior Carnot, Sadi, 2 via gradient descent central limit theorem, 48 at infinite width, 263 chain rule, 196, 201, 202, 204, 205, 241 but not at finite width, 384 chain-rule factor, 201, 204, 205, 241-243 wiring channel, see also convolutional neural finite width, 182 network, 42 infinite width, 179 chaos, see also overly deep, 65, 397, 426 Bayesian probability, 154, 155 checkpoint, 395 Bayes' rule, **156**, 159, 163–165, 168, 178, classification, 170, 177, **192**, 260, 342, 410 186, 191 CNN, see convolutional neural network hypothesis, see hypothesis (Bayesian coarse-graining, see also renormalization inference) group flow, see also representation product rule, 155, 157 group flow, 73, 106

cognitive science, 37 cokurtosis, see kurtosis, excess Coleman, Sidney, 191, 199 complete the square, 19, 176, 213, 214 computer vision, 42, 55, 168, 192, 428, 436 connected correlator, 23, 33, 227, 397 four-point, see also four-point vertex, see also kurtosis, excess, 24, 28, 31, 53, 59, 62, 63, 70, 182, 207 general definition, 24 higher-point, 34 odd-point vanish with parity, 23 one-point, see also mean, 23 relation to nearly-Gaussian distributions, 26 six-point, 70 two-point, see also covariance, see also metric, 23 continuum limit, see gradient descent, 360 convex function, 404 ConvNet, see convolutional neural network	critical exponent, 131 , 132–134, 140, 142, 143, 145, 151, 152, 231, 232, 235, 236, 238–240, 245, 311, 314, 316, 342 critical initialization hyperparameters, see initialization hyperparameters critical phenomena, 58 critical temperature, 59 criticality, 53, 58, 59 , 64, 69, 70, 110, 112–115, 123–131, 133, 135, 137, 138, 140, 141, 144–147, 150, 169–171, 173, 182, 227, 228, 233–236, 239, 241–244, 267–269, 271, 273, 275, 310, 313, 336, 340, 343, 397, 400, 410, 425, 436, 437 as unsupervised learning, 422 principle of, 110, 154, 273, 276, 360 semi-criticality, 125 , 132, 141 cross correlation dNTK–preactivation, 303 P-recursion, 307 Q-recursion, 308
convolutional neural network, 42 , 55, 157, 166, 168, 428 with residual connections, see ResNet	NTK-preactivation, 209–212, 216 , 217, 218, 220, 221, 226, 227, 232, 240 <i>D</i> -recursion, 219
correlator $2m$ -point, 67 M -point, 22, 55 connected, see connected correlator	F-recursion, 220 cross entropy, 404 cross-entropy loss, see loss cubic model, see nonlinear model
four-point, 60, 62, 208, 209 full, see also moment, 23 higher-point, 59, 65, 68 six-point, 66	cumulant, see also connected correlator, 23, 413 first (mean), see also mean, 23 general definition, 24
two-point, 56, 57, 208, 209 coupling, 11 data-dependent, see data-dependent	second (covariance), see also covariance, 23
coupling non-Gaussian, 32, 33 quadratic, 33, 34, 98, 100, 103, 180, 181, 183, 211	cutoff, effective theory, 110, 144, 145, 232, 292, 312, 381, 395, 407, 408 nearly-kernel methods, 330 vs. measurement precision, 407
quartic, 28, 29, 31, 32, 34, 62, 70, 98, 99, 103, 180, 181, 183, 185, 211, 416 running, see running coupling sextic, 395, 416 covariance, see also cumulant, 16, 23	damping force, 366, 367, 369, 371, 375 data dependence, see also connected correlator, see also data-dependent coupling, 133, 134, 142
COVALIANCE, SEE UBSO CHIHUIAIII, IU. 201	COUDINE, 100, 104, 144

Index Index

data distribution, see also input data, 192,	nonlinear, 359
193, 194	differential of the neural tangent kernel, see
data-dependent coupling, 93, 98, 103, 163,	also meta kernel, 292–294, 339
167, 227, 390, 392–396	connection to representation learning, 330
dataset, see input data	dNTK-preactivation cross correlation, see
ddNTKs, 335–337, 338	cross correlation
contribution to finite-width prediction,	dynamical, see dynamical dNTK
377	iteration equation, see also forward
full expressions, 384	equation, 297
scaling laws, 341	name, 295
statistics, 339	scaling laws, 311
<i>R</i> -recursion, 340, 386	dimensional analysis, 34 , 34, 141, 311, 341,
S-recursion, 341, 387	401, 406
T-recursion, 341, 387	Dirac delta function, 50 , 51, 76, 80, 118, 160,
<i>U</i> -recursion, 341, 388	171, 206, 213, 344, 392
step-independence, 358	integral representation, 50, 76
deep learning, 1, 10, 39, 45, 109, 153, 156, 165,	Dirac, Paul Adrien Maurice, ix, x, 191, 199
179, 195, 205, 227, 238, 241, 389, 397	direct optimization, 321 , 327, 357
abstracted, 317	directed acyclic graph, 41 discriminative model, see also probabilistic
deep but not yet learning, 153	model, 192
history, 38	disorder, see entropy
deep linear network, see also linear, 53,	distillation, see knowledge distillation
53–55, 57–60, 65, 110, 111, 113, 125,	dNTK, see differential of the neural tangent
137, 138, 140, 146, 152, 242, 276,	kernel
277, 281, 289, 397	Don't Panic, HHGTTG, 185
limitations, 277	double factorial, 14
deformation	duality, 9, 242, 284, 286, 287, 289, 324, 328,
Gaussian distribution, 28, 33, 413, 414	394
linear model, 318	learning algorithm – algorithm projectors,
quadratic model, 332	383
defrosted NTK, see neural tangent kernel	linear model – kernel methods, 282
degradation problem, see also overly deep, see	microscopic-macroscopic, 389, 394, 425
<i>also</i> residual network, 425 , 426, 428,	nonlinear model – nearly-kernel methods,
431 , 432, 435	317
degrees of freedom, 106, 403 , 409	dynamical dNTK, 319, 362, 369 dynamical NTK, see also effective kernel, see
depth, 7 , 40	also interaction NTK, 317, 346, 359,
determinant, 17	361
diagonalization, 17, 32, 118, 148	dynamics, see training dynamics
difference equation, see also training	ay names, oos training ay names
dynamics, 359 , 360 , $363-365$	Eames (Inception meme), 165
linear, 359 , 362	early stopping, see regularization
homogeneous, 359	eBook, 230
inhomogeneous, 366	effective action, 103 , 125

as an effective theory, 106 cross-entropy loss, 250 connection to RG flow, 106 MSE loss, 197 in physics, 106 error function, 47 effective feature function, see feature function evidence, see Bayesian inference effective kernel, see nearly-kernel methods expectation value, 11, 13, 21, 21, 227 effective theory, 2, 43, 95, 105, 106, 125, 126, exploding and vanishing gradient problem, 58, 138, 144, 145, 161, 164, 166, 203–205, 122, 173, 227, 241, **242**, 243, 244, 238, 240, 328, 373, 389, 395, 396, 269, 425, 429, 431, 432, 436 407, 436 connection to generalization, 274 representation learning, 351 for residual networks, 436 effective theory of deep learning, 43, 53, 64, relation to criticality, 242 71, 73, 110, 164, 168, 192 exploding and vanishing kernel problem, 58, effectively deep, see also optimal aspect ratio, 112, 113, 124, 171, 241–243, 245 10, 336, 400, 423, 435 expressivity, 40 range extended by residual connections, extensivity 426 of entropy, **403**, 409 eigenvalue, 17 of loss, 162, 194, 267 eightfold way, see also Gell-Mann, Murray, x extrapolation, see also *-polation, 277 Einstein summation convention, 18 Einstein, Albert, 291 Facebook AI Research, x, 177 elementary operation, 38 emergent scale, 54, 62, 110, 138, 232 FAIR, see Facebook AI Research end of training, 262, 328, 335, 399 FCN, see fully-connected network engineering, 383, 437 feature, see also representation, 42, 64, 105, ensemble, see also probability distribution, 47, 158, 186, 198, 200, 264, 353, 355, 389 123, 137, 145, 155, 165, 191, 192, vs. feature function, 289 422, 435 feature function, 283, 288, 318, 333, 383 entropy, 399, **400**, 401–403, 405, 407, 409, 411, effective, **318**, 323, 351 414, 415, 418–420 feature engineering for abstract inputs, additivity, 403, 404, 416 283 subadditivity, 403–405, 421 meta, see meta feature function as a measure of disorder, 401 meta-meta, see meta-meta feature Boltzmann entropy, 402 function Gibbs entropy, 402 nonlinear model, 318 next-to-leading-order correction, 417 random, see also random feature model, Shannon entropy, 401 8, 287–289, 392 epigraph, 396 feature indices, 318 epilogue, 390, 396 feature space, 285, 325 epoch, see also stochastic gradient descent, feedforward network, 41, 182 ferromagnetism, 58 equivalence principle, 244, 245, 260, 272–275, Feynman, Richard, 11 313, 315, 343, 358, 360, 425 fine tuning, 59, **323** connection to generalization, 273, 276 finite-width prediction error factor, 197, 198, 201, 203, 241, 242, 250 ℓ -th-layer, 294, 337 Bayesian inference, 184

C.:	
finite-width prediction (cont.)	midpoint, 268, 272
gradient descent, see also T-shirt	polar angle parameterization, 274
equation, 373	full correlator, see correlator
fixed point	fully-connected network, see also multilayer
Banks–Zaks, see also optimal aspect	perceptron, 40
ratio, 422	fully-trained condition
nontrivial, see also criticality, 58 , 113 ,	finite width, 348
125, 127, 128, 130, 131, 133, 141, 170	infinite width, 253
half-stable, see also GELU, see also	function approximation, see also machine
SWISH, 135–137	learning, 5 , 38 , 39, 40, 47, 53, 158,
trivial, 58 , 112, 113, 123, 124, 136, 170, 172	160, 161, 168, 192, 193, 196–198
	for linear models, 282
float, see type (data)	functional, 401, 404, 405
fluctuations, 23 , 54, 64, 110, 137, 154, 208, 381, 397, 425, 431	Gauss, Carl Friedrich, 247
in deep linear networks, 63	Gauss-Jordan elimination, 177
vs. representation learning, 381	Gaussian distribution, 8 , 12, 21, 32, 34, 48, 54,
for your information, 422	55, 66, 68, 137, 206, 211, 299, 392,
force, see Newton's second law	394, 396, 401, 413, 414
forward equation	action, 27, 75
ddNTKs, 385	as a Gaussian process, 396
dNTK, 299	entropy, 409, 410
general residual network, 436	multivariable, 17
MLP preactivations, 200, 202, 205–207,	normal distribution, standard, 13
299, 300	relationship to Dirac delta function, 50
NTK, 200, 202, 203, 205, 207, 212, 215,	single-variable, 13
217, 243, 244	zero-mean, defined by variance, 22
residual MLP preactivations, 428	Gaussian expectation, see also bra-ket
forward pass, 205	notation, 27 , 79, 147–152, 185, 207,
four-point vertex, see also data-dependent	208, 214–216, 220, 221, 229, 230, 234,
coupling, 81 , 100, 104 , 137, 140, 142,	235, 237, 274, 413
144, 145, 163, 182, 185, 209, 211,	Gaussian function, 12, 16, 39
220, 226, 227, 231, 232, 234, 237,	Gaussian integral, 12
412, 421, 432	Gaussian process, see Gaussian distribution
residual MLPs, 432	gedanken inference, 168
Fourier transform, 22	gedanken model, 397
free energy, 412	GELU, see activation function
frequentist probability, 155	general relativity, 17, 169, 214, 255
frozen NTK, 228 , 229, 231, 232, 234, 235, 238,	generalization, 166, 194 , 196, 198, 264, 265,
239, 243, 244, 249, 253, 258, 263, 267,	411
268, 270, 275, 276, 287, 311, 313, 350	generalization error, 264 , 267, 272, 277, 390,
δ expansion, see δ expansion	425
$\epsilon_{1,2}$ expansion, see δ expansion	bias, $266-270$, 379 , 382
features, 288	related to *-polation, 281
infinite-width limit of the NTK, 228	exact Bayesian inference, 270

finite-width, 379, 383	Hessian, 6 , 267
optimal hyperparameter tuning, 273	hidden layer, 41
robustness measure, 268	hierarchical scaling, 34
universality class analysis, 268	Hinton, Geoffrey Everest, 227
variance, 266, 267, 269, 271, 381	Hopfield network, 182
generalized posterior distribution, see posterior distribution	Hubbard–Stratonovich transformation, 76 , 213
generating function, 14, 18, 19, 22, 212, 214,	human perception, 40
215, 251, 302	hybrid approach, 438
giant leap, see also small step, 252, 348	hype, 389
Gibbs distribution, see Boltzmann distribution	hyperparameters
Gibbs entropy, see entropy	architecture, see architecture
Gibbs, J. Willard, 3	hyperparameters
glasses (Bayesian), 169	initialization, see initialization
goode olde calculation, 211	hyperparameters
GPU, see graphical processing unit	regularization, see regularization
gradient, 6	hyperpameters
gradient clipping, see also exploding and	residual, see residual hyperparameters
vanishing gradient problem, 244	scaling in an effective theory, 204
gradient descent, 54, 162, 182, 191, 192, 194,	training, see training hyperparameters
195 , 196, 197, 199, 200, 206, 227,	Hyperparameters, see also hypothesis
242-245, 252, 257, 327, 383, 393	(Bayesian inference), 157
as Bayesian inference	hypothesis (Bayesian inference), 154 , 155–157,
at infinite width, 263	167
but not at finite width, 384	categorical, see also cross-entropy loss,
continuum or ODE limit, 258, 360, 372,	see also softmax distribution, 159,
379, 380, 382	160, 259, 260
model fitting, 193, 195	deterministic, see also Dirac delta
stochastic, see stochastic gradient descent	function, 158, 160
tensorial, 196, 204, 254	meta hypothesis, see meta hypothesis
wiring	uncertain, see also Gaussian distribution,
finite width, 352, 353, 377	see also mean squared error, 158,
infinite width, 250	160, 260
gradient-based learning, see gradient descent	
graphical processing unit, 38	identity matrix, 16
group representation theory, 105	identity operator, 359
Hamiltonian, see also neural tangent kernel,	imaginary time, 360
192, 197, 360	indices
hard drive, 401	feature, see feature indices
hat (occupational), 401	layer, see layer indices
Hebb, Donald, 180	neural, see neural indices
Hebbian learning, see also neural association,	sample, see sample indices
154, 179 , 179, 182, 378, 400, 417	vectorial, see vectorial indices
Herculean sequence, 148	induced distribution, 49, 51

inductive bias, 64, 111, 138, 154, 168 , 168, 177–180, 182, 185, 242, 397, 400, 435 for representation learning in nonlinear models, 323 of activation functions, 277, 281 of learning algorithms, see also algorithm projector, 336, 372, 382 , 383 of model architectures, 42, 333 of sparsity in deep learning, 397 Industrial Age, 2 infinite-width limit, see also not really deep, 7, 63, 64, 68, 72, 95, 137, 138, 166, 169, 177–179, 206, 209, 210, 221, 226, 228, 243, 249, 381, 396, 410, 421, 431 connection to linear models, 289 of deep linear networks, 62 of residual MLPs, 430 infinity, 247 InfoMax principle, see also unsupervised learning, 422 information, see also surprisal, 402 , 403	for scale-invariant universality, 123, 128 input data, see also test set, see also training set, see also validation set, 39, 42, 49, 55, 96, 97, 138, 157, 168–170, 183, 197, 201, 259, 283, 354, 394, 396, 417 instruction manual, 379 int, see type (data) integral representation, 51, 76 integrating out, see also marginalizing over, 80, 98, 162, 164, 165, 212–214, 221, 390 integration by parts, 122, 215, 229 intensivity (of loss), 194 interacting theory, 9, see also non-Gaussian distribution, 32 entropy and mutual information, 411 variational method, 418 interaction NTK, 362, 363, 365, 366, 370 interactions, 8, 32, 33, 34, 63, 103, 110, 137, 179, 182, 186, 206, 207, 211, 396, 399, 404, 405 connection to statistical (in)dependence,
Information Age, 3, 399	32
information theory, see also statistical mechanics, 10, 143, 382, 397, 399, 400, 402, 412 perspective on *-polation, 411 perspective on criticality, 410 perspective on generalization, 411 infrared (RG flow), 107 initialization (of you), 1, 399 initialization distribution, 5, 47, 55, 123, 137, 155, 157, 162, 165, 173, 182, 192, 193, 199, 201, 204, 205, 212, 391, 426 initialization hyperparameters, 48, 53, 59, 64, 110, 113, 124, 125, 127, 147, 153, 157, 162, 171, 227, 229, 234–236, 244, 258, 263, 264, 269, 273, 275, 292, 422, 425, 429, 437	dynamics, 320, 360–362 weakly-interacting, 320 nearly-kernel methods, 328 self-interactions, 32 strong coupling, 396 interlayer correlation, 190, 211, 212, 214, 251, 252, 302 for dNTK evaluation, 301 interpolation, see also *-polation, 277 intralayer correlation, 211 inverse algorithm design, see also algorithm projector, 383 inverting tensor, 364, 365 iron, 58 irrelevant (RG flow), 108
critical, 58 , 111, 114, 115, 123, 126–128, 131, 136–138, 141, 427 at finite width, 144, 145 for $K^* = 0$ universality, 131 for residual networks, 430	Jacobian, 406 input-output, 138 Jaynes, Edwin T., 153, 155, 412 Jensen inequality, 404 Johnny B. Goode, 425 joules per kelvin (unit of entropy), 401
101 10014461 11007/011109 100	J F (01 011010FJ), 101

k-nearest neighbors, see kernel methods label, 192, 242, 260 hard, see also one-hot encoding, 260 Kaiming initialization, see also initialization hyperparameters, 125 soft, 260 kernel, see also metric, 100, 104, 111, 138, label smoothing, see regularization 227-229, 231, 232, 242, 244 Landau, Lev. 3 δ expansion, see δ expansion language model, 42, 428, 436 $\gamma^{[a]}$ basis, see $\gamma^{[a]}$ basis Laplace transform, 22 effective kernel, see nearly-kernel methods Laplace's principle of indifference, 402 large-n expansion, see 1/n expansion infinite-width limit of the metric, 100 layer, 4, 39 kernel matrix layer indices, 180, 181, 219, 279, 318, 409, 411 diagonal, 146, 150, 274 layer normalization, 437 polar angle parameterization, 147, 274 lazy training, 355 linearized recursion, 112 leaky ReLU, see activation function meta kernel, see nearly-kernel methods learning algorithm, see also Bayesian midpoint, 116, 117-120, 122, 123, 128, inference, see also gradient descent, 130–133, 135, 136, 146 5, **38**, 54, 153, 161, 162, 168, 178, NTK, see neural tangent kernel 191, 195, 196, 261, 262, 327, 383, 393 trained kernel, see nearly-kernel methods dual to algorithm projector, 383 kernel machine, see kernel methods learning rate, 195, 196, 198, 204, 234, 238, 240 kernel methods, 286, 317, 325, 328 global, 194, 196, 201, 203, 249, 253, 255, k-nearest neighbors, 286 393 as a memory-based method, 286 step-dependent, 257 feature, see feature function learning-rate tensor, 196, 200, 201, 204, kernel, 285, 329, 383 254, 255, 258, 293, 337, 353 Gaussian, 286 layer-diagonal, 201 linear, 285 layer-independence, 294 stochastic, 289 learning rate equivalence principle, see kernel trick, 286 equivalence principle prediction, 261, 287, 329, 375, 378 Life, the Universe, & Everything, HHGTTG, as a linear model, 282 stochastic kernel, see also random feature likelihood, see Bayesian inference model, 287 linear, see activation function kernel trick, see kernel methods linear model, 264, 282, 283, 289, 317, 318, kink, see also leaky ReLU, see also ReLU, 46 355, 384, 392 KL divergence, see Kullback-Leibler for effective features, 319 divergence is not a deep linear network, 289 knowledge distillation, 177, 260 linear regression, see also linear model, 283, Konami Code, 168 284, 318, 320 Kronecker delta, 16, 48, 50, 57, 61, 66, 169, vs. quadratic regression, 320 196, 198, 209, 222, 402 linear transformations, 54, 55, 277 Kullback-Leibler divergence, 259, 404, 405 logistic function, see also softmax distribution, kurtosis, excess, see also connected correlator, 44, 46, 47, 128, 159 24, 182 loss, 160, 161, 191, **193**, 194–197, 242 algorithm dependence at finite width, 373 cokurtosis, 182

1 (4)	M II I CI I 2
loss (cont.)	Maxwell, James Clerk, 3
auxiliary, 160	McFly, Martin Seamus "Marty", 425
comparison of MSE and cross-entropy, 260	McGreevy, John, 71
	mean, see also cumulant, see also moment, 13,
cross-entropy, 160, 242, 250, 258–261, 267, 404	23
MSE, 160, 193, 197, 203, 242, 250, 253,	mean squared error, see loss
254, 258, 265, 267, 353	measurement precision cutoff, see cutoff
for linear models, 283	mechanics (physics), 191
generalized, 255, 352	memory-based method, see kernel methods,
name, 194	see nearly-kernel methods
nonlinear models, 319	meta feature function, 318 , 333
of generality, 265	dynamical, 336
SE, 194	random, 331
test loss, 194 , 197, 198, 266	meta hypothesis, 166
relation to generalization, 265	meta kernel, see nearly-kernel methods
training loss, 193 , 194–198	meta representation learning, see
relation to overfitting, 265	representation learning
relation to underfitting, 265	meta-meta feature function, 319, 332
lottery ticket hypothesis, 417, 423	metric, see also data-dependent coupling, see
lowery tiener hypothesis, 411, 420	also kernel, 74
machine learning, see also statistics (branch of	first-layer, 74
mathematics), 39 , 45, 155, 166, 191,	infinite-width limit, 100
205, 261, 265, 282, 317, 390, 397	inverse, 75
MacKay, David, 167, 389	ℓ -th-layer, 91
macroscopic perspective, see also sample	mean, 81
space, 2, 167, 390 , 394, 396, 397,	next-to-leading-order correction, 100,
399, 402, 425, 428	$103,\ 138,\ 140,\ 143-145,\ 350$
magic trick, 50, 212, 344	second-layer, 81
magnetic field, 58	stochastic, 81, 288
magnetism, 58	microscopic perspective, see also parameter
MAP, see maximum a posteriori	space, 2, 383, 390 , 394, 396, 399,
marginal (RG flow), 108 , 145, 350	402, 425, 426
marginalization rule, 96 , 97, 98, 155	microstate (statistical mechanics), 412
marginalizing over, see also integrating out,	midpoint input, 116 , 116, 119, 122, 146, 268
80 , 100, 164, 165, 207, 212	midpoint kernel, see kernel
matrix-vector product, 177	mini-batch, see batch
matter, 3	minimal model, 10
maximum a posteriori, 161 , 162, 165	of deep learning, 43
gradient descent approximation, 262	of representation learning, see
maximum entropy, principle, 400, 402, 412,	representation learning
421	Minsky, Marvin, 109, 227
maximum likelihood estimation, 161, 162,	MLE, see maximum likelihood estimation
165, 177, 194	MLP, see multilayer perceptron
gradient descent approximation, 262	mode, $see~also$ maximum a posteriori, 161

model comparison	nearly-Gaussian process, see nearly-Gaussian
Bayesian, see Bayesian inference	distribution
linear model vs. quadratic model, 323	nearly-kernel machine, see nearly-kernel
model complexity, 167, 322, 390 , 391, 394–397	methods
model fitting, see also training	nearly-kernel methods, $292, 317, 327-329, 375$
Bayesian, see Bayesian inference	as a memory-based method, 328
gradient-based optimization, see gradient	effective kernel, 328–331
descent	in terms of effective feature functions,
model parameters, see also biases, see also	331
weights, 4, 38 , 40, 49, 51, 165,	relation to dynamical NTK, 331
$191 – 193, \ 195, \ 197, \ 389, \ 394, \ 425$	kernel, 325
connection to observables, 3	meta kernel, 326
residual network, 436	other potential names, 326
molecule, 3	prediction, 327
moment, see also full correlator, 14 , 14, 18, 20, 21, 22 , 24, 227	trained kernel, see also trained NTK, 329 375
MSE, see mean squared error	prediction, 329
MSE loss, see loss	wiring, 329
multilayer perceptron, 40 , 41, 76, 80, 157, 166,	nearly-linear model, see nonlinear model
168, 227, 241	nearly-linear regression, see quadratic
a.k.a. a fully-connected network, 40	regression
beyond, 436	negative log probability, see action
vanilla, 427, 429	negative log-likelihood, see also loss, 160, 161
with residual connections, 427–429, 432,	neural association, see also Hebbian learning,
436	154, 179, 180, 182, 435
mutual information, 399, 400, 405 , 405,	neural indices, 49 , 57, 61, 66, 67, 76, 100, 137,
407–411, 415, 417, 421, 422, 432	181, 197, 200, 202, 205–207, 215, 222
next-to-leading-order correction, 417	249, 318
next to leading order correction, 417	neural network, 1 , 4 , 37, 39 , 42, 109, 191–193
Narrator (Arrested Development), 166	241, 389, 397
nat (unit of entropy), 401	history, 38
natural language processing, 42 , 192, 389,	neural tangent kernel, 139, 192, 197 , 199, 204
428, 436	227, 228, 360
natural logarithm, 401	agitated, 228, 235, 239, 240
naturalness, see also fine tuning, 323, 324	defined in conjunction with dNTK, 294 defrosted, 228
near-sparsity, see sparsity, principle of	dynamical, see dynamical NTK
nearly-Gaussian distribution, 9 , 11, 23, 26 , 28,	dynamica, see dynamical NTK dynamics, 363
31–34, 62, 70, 79, 83, 88, 182, 207,	first-layer, 206, 207
210, 211, 378, 393, 394, 396, 400,	frozen, see frozen NTK
401, 411, 412	interaction, see interaction NTK
action, 33, 88	ℓ -th-layer, 201 , 202, 211, 212, 215, 219
as a nearly-Gaussian process, 396	mean, 211, 215, 216 , 217, 220, 222–229,
connected correlators as observables, 26	234, 238, 239, 243
entropy, 411	next-to-leading-order correction, 350
· F U /	3, 300

name, 197, 228, 360 Occam's razor, see also sparsity, principle of, NTK-preactivation cross correlation, see 154, **166**, 167, 168, 171, 323, 390, 402 cross correlation ODE limit, see gradient descent second-layer, 207, 208 one-hot encoding, 170, 260 step-independent, 359, 368 one-parameter families, 277, 431 trained, see also trained kernel, 375 optimal aspect ratio, see also effectively deep. variance, 208–211, 220, **221**, 222, 223, 10, 336, 381, 400, 411, **421**, 428, 432, 226, 227, 231, 240 434, 435, 438 A-recursion, 224 optimal brain damage, 417, 423 B-recursion, 222 optimization, see gradient descent, see training, see also direct optimization, neuron, 1, 4, 39, 41 neuroscience, 37 see also Newton's method orthogonal matrix, 16, 32 Newton tensor, see also second-order update, **254**, 255–257, 349 outcome space, 405, 407 as a metric on sample space, 255, 352 output distribution, 49, 51, 64, 68, 158, 191 output matrix, 173 generalized, 352 $\gamma^{[a]}$ basis, see $\gamma^{[a]}$ basis Newton's method, **256**, 256–259, 350, 382 as a second-order method, 256 overfitting, see also generalization, 166, 198, Newton's second law, 191 **265**, 266, 390 NLO metric, see metric by fine tuning the parameters, 323 overly deep, see also chaos, see also no-free-lunch theorem, 397 degradation problem, 10, 336, 400, non-Abelian gauge theory, see also Banks-Zaks fixed point, 422 423, 425, 426 overparameterization, 166, 284, 285, 287, 389, non-Gaussian distribution, see also nearly-Gaussian distribution, 31, 33, 394, 397 68, 396 in quadratic models, 321 noninformative prior, see prior nonparametric model, see also Gaussian Papert, Seymour, 109, 227 parallel susceptibility, 113, 121, 125, 171, 172, process, 166, 396 229, 231, 233, 236, 237, 243, 269, nonlinear model, 292, 317, 318 cubic model, 319, 332 311, 430 quadratic model, 292, 319, 322, 327, 330, paramagnetism, 58 332 parameter space, see also microscopic perspective, 195, 196, 254, 255, 336, with wiring, 332 nontrivial fixed point, see fixed point 394 normal distribution, see Gaussian distribution parameters, see model parameters normalization factor, see also partition parity symmetry, 24, 25, 33 partition function, see also normalization function, 13, 16, 27, 99, 118, 165, 166 not really deep, see also infinite-width limit, factor, 15, 19, 27, 28, 29, 76, 92, 411 quadratic action, 27 with source, see also generating function, NTK, see neural tangent kernel 14 objective function, see also loss, 193 perceptron, see Perceptron architecture observable, 3, 11, 14, 21, 155, 192, 197, 198, perceptron, see activation function Perceptron architecture, 37, 38, 40 245, 400, 403, 438

permutation symmetry, 47, 123, 431	principles of deep learning theory, 43, 334
perpendicular susceptibility, 121 , 122, 125,	prior, 156 , 157–159, 162, 163, 165–167, 169,
171, 172, 229, 231, 233, 236, 244,	182, 191, 193, 400, 409
271, 311, 430	noninformation prior, see also Laplace's
perturbation theory, 8, 11, 28 , 31, 32, 118,	principle of indifference, 402
320, 360, 393, 411	probabilistic model, 155 , 156, 159, 165, 166,
perturbative cutoff, see cutoff	192
phase transition, 58	probability (branch of mathematics), see also
physics, 2 , 3, 8, 71, 73, 76, 105, 125, 161, 181,	Bayesian probability, see also
185, 320, 324, 344, 401	frequentist probability, 11, 32, 155
piece of cake, see also free dynamics, 359	probability distribution, 11, 12, 16, 18, 21 , 22
point estimate, see also mode, 161	23, 26, 27, 47, 400
Polchinski, Joseph, 11	as a density, 406
polynomial regression, 324	programming, 39, 47
positive semidefinite matrix, 196	programming note, 173
positive definite matrix, 16	PyTorch, 437
posterior, 154, 156 , 159–161, 163–166, 168,	OFD 45
169,173,176,179,182,185,191,	QED, 45 quadratic model, see nonlinear model
262, 263	quadratic model, see nominear model quadratic regression, see also quadratic model
generalized posterior distribution, see also	320 , 320, 357
gradient-based learning, 248, 262 ,	nearly-linear, 320
263, 266, 269, 411	quantum electrodynamics, see QED
infinite-width distribution, 176	quantum mechanics, 3, 53, 118, 191, 199
posterior covariance, 175–177, 183, 185,	quantum meenames, 0, 30, 110, 101, 100
262, 263	Rabi, Isidor Isaac, 337
finite width, 183	RAID, see also Redundant Array of
posterior mean, 176, 177, 183–186, 262,	Independent Disks, 403
384	random feature function, see feature function
finite width, 183	random feature model, 287, 332
practical practitioners, 204, 238	random meta feature model, 332
preactivation, 39	recurrent neural network, 241, 244
pretraining, 11, 399, 422	redundancy (information theory), 400, 408,
principle, 2	423
criticality, see criticality	Redundant Array of Independent Disks, see
InfoMax, see InfoMax principle	also RAID, 403
learning-rate equivalence, see equivalence	regression, 260, 342
principle	linear, see linear regression
maximum entropy, see maximum entropy,	nearly-linear, see quadratic regression
principle	polynomial, see polynomial regression
of indifference, see Laplace's principle of indifference	regularization, 162, 260, 262, 323
	early stopping, 260
sparsity and near-sparsity, see sparsity,	for linear models, 284
principle of	interpretation of representation learning,
typicality, see typicality	323
variational, see variational principle	label smoothing, 260

regularization hyperpameters, 263 ResNet, 43, 428, 436 relative entropy, see Kullback-Leibler RG flow, see renormalization group flow, see representation group flow divergence RG flow and RG flow, 103, 126 relevant (RG flow), 108, 138, 142, 145, 227, 231, 232, 240, 312, 417, 431 RNN, see recurrent neural network Rosenblatt, Frank, 37 ReLU, see activation function Rumelhart, David Everett, 227 renormalization group flow, 105, 125, 144, running coupling, 63, 64, 70, 98–100, **103**, 350, 389, 422 105, 227, 415 representation, see also feature, 73, 105, 137, quadratic, 98, 99, 415 158, 179, 186, 200, 422 quartic, 415 representation group flow, 73, 105, 108, 125, sextic, 418 126, 131, 133, 135, 137, 138, 142, 145, 178, 192, 200, 227, 282, 288, saddle-point approximation, see also point 292, 333, 334, 339, 350, 389, 400, 417, 423, 426, 431 estimate, 161 sample indices, 39, 49, 59, 65, 76, 98, 115, name, 105 137, 139, 159, 163, 169, 192, 197, of preactivations, 71 198, 206, 209, 210, 218, 229, 255 of the ddNTKs, 339 sample space, x, 254, 255, 349, 352, 394 of the dNTK, 296 saturation (of an activation), 45, 46, 243, 244 of the NTK, 199 scale invariance, 45, 47, 113, 123, 125, 136, 137 representation learning, 1, 8, 64, 169, 178, scaling ansatz, 132, 134, 142, 143, 145, 151, 179, 182, 185, 186, 188, 190, 261, 231, 239, 240, 311, 341 282, 289, 317, 334, 366, 381, 396, 422 scaling hypothesis, 389, 390, 397 as the evolution of feature functions, 289 scaling law, 142, 231, 232, 240, 312, 316, 317, for deep linear networks, 289 380, 389, 417 for quadratic models, 319, 322 Schrödinger's cat, 155 manifested at finite width, 351 Schwinger-Dyson equations, 86, 187, 329, 354 meta representation learning, 363 second-order method (optimization), see also minimal model, 292, 317, 319, 329, 332, Newton's method, 254, 256 333 second-order update, see also Newton tensor, nonminimal model, 319 **254**, 255, 352 vs. fluctuations, 381 generalized, 352, 353 vs. kernel learning, 290 self-averaging, see also Dirac delta function, residual block, **426**, 427, 428, 435, **436** 50, 82, 226, 249, 288 residual connection, 10, 43, 425, 426, 427, self-interaction, see interactions 429–432, 435 semi-criticality, see criticality other names, 427 semigroup, see also RG flow, 105 residual function, 426 SGD, see stochastic gradient descent residual hyperparameters, 428, 435, 436 Shannon entropy, see entropy optimal, 435 Shannon, Claude, 399 Shenker, Stephen, 71 residual network, 43, 334, 381, 400, 423, 425, 426, 427, 429, 431, 436 shortcuts, see residual connection sigmoid, see activation function general, 436

simple harmonic oscillator, see also Sho, x, with quadratic models, see quadratic 53 regression sin, see activation function surprisal (information theory), 402, 405, 411 six-point vertex, see also data-dependent susceptibility parallel, see parallel susceptibility coupling, 395 skip connection, see residual connection perpendicular, see perpendicular susceptibility slay the beast (NTK variance), 221 SWISH, see activation function small step, see also giant leap, 248, 252 synergy (information theory), 408 softmax distribution, see also logistic function, 159, 160, 250, 259, 260 T-shirt equation, 375 softplus, see activation function tablet, 230 source term, see also generating function, 14, tanh, see activation function 19, 212 Taylor series, 5, 38 spacetime, 153 temperature, 58, 413 sparsity, principle of, 8, 9, 166, 391, 397 tensor, 5, 16, 28, 76, 196, 253 near-sparsity at finite width, 392, 393, learning-rate tensor, see learning rate 396, 397 Newton tensor, see Newton tensor spin, see also bit (unit of entropy), 58, 115 tensor decomposition spoiler alert, 190, 232 $\gamma^{[a]}$ basis, see $\gamma^{[a]}$ basis statement, see Bayesian probability ddNTKs R/S/T/U, 340, 377statistical dependence, see also interactions, dNTK-preactivation P/Q, 301, 306, 376 see also nearly-Gaussian distribution, four-point correlator, 61 34, 403, 417 giving data-dependent couplings, 393 statistical independence, 32, 32, 34, 63, 137, metric mean and fluctuation, 86, 187 177, 206, 208, 209, 403, 404, 409 NTK mean and fluctuation, 208, 215, absence of interactions and connection to 307, 308, 349 Gaussian distribution, 32 NTK variance A/B, 208, 222, 376 statistical mechanics, see statistical physics NTK-preactivation D/F, 210, 217 statistical physics, 3, 58, 110, 389, 400, 402, six-point correlator, 66 412 tensorial gradient descent, see gradient descent statistics (branch of mathematics), see also test loss, see loss machine learning, 161, 182, 390 test set, **194**, 249, 256, 261, 264, 265, 267, 396 statistics (of a random variable), see also thermodynamics, 2, 401, 412 probability distribution, 21 traditionality, see also exploding and Bayesian interpretation, 155 vanishing gradient problem, 244 steam engine, 2 trained kernel, see nearly-kernel methods step-evolution operator, **360**, 361, 364, 368 trained NTK, see neural tangent kernel stochastic gradient descent, 162, 195, 253, training, see also gradient descent, see also 257, 258 model fitting, 5, 39, 47, 162, 191, str, see type (data) 193-195, 228, 241-244, 252subleading corrections, see also 1/n expansion, training data, see training set **100**, 101–103, 138, 143–145, 228 training dynamics supervised learning, 192, 194, 197, 422 controlled by the NTK, 192 with linear models, see linear regression finite width, 347–373

training dynamics (cont.)	$K^* = 0, 128, 130, 131, 134, 141-144, 152,$
inductive bias, 336	227, 232, 233, 236, 238–240, 242, 243,
infinite width, 248, 250–256	245, 270–272, 275, 312, 314, 342, 343,
training hyperparameters, 162, 195 , 201 ,	421, 431, 433
202, 227, 228, 244, 258, 263,	scale-invariant, 126 , 128, 132, 138–144,
264, 270, 272, 273, 275, 276,	146, 147, 150, 227, 232–236, 238,
293, 425, 429	242–244, 270, 274, 275, 312, 335, 344,
independent from the optimization	346, 421, 430, 433
algorithm, 358	transcended by scaling laws, 142
training loss, see loss	unstructured data, 397
training set, 5 , 193 , 194, 195, 198, 249,	unsupervised learning, 105, 382, 400, 411,
253, 255, 261, 264, 390,	422 , 428, 432, 434
396	as pretraining, 422
transformer, 42 , 43, 157, 166, 168, 389, 428,	as protraining, 122
436 , 437	validation set, 265
transistor, 3	variance, see also cumulant, 13, 16
transition matrix, 90	variational ansatz, 412, 414
translational invariance, 42, 55, 168	variational principle, see also maximum
tripartite information, 408, 411, 423	entropy, principle, 400, 412 ,
trivial factor, see also exploding and	412, 414
vanishing gradient problem,	vectorial indices, 192, 198, 318
241–243	von Neumann, John, 1, 39
trivial fixed point, see fixed point	
truncated normal distribution, 48	website, see deeplearningtheory.com
Turing, Alan, 53	weight tying, see also convolutional neural
type (data)	network, 42
floating-point precision, 407	weights, see also model parameters, 39, 193
integer, 34	Wick contraction, 20 , 56, 57, 60, 61, 65, 74,
string, 34	111, 185, 215, 222
type safety, see also dimensional analysis, 34,	Wick's theorem, 11, 14, 15, 21 , 28–30, 62, 65,
361	66
typicality, 63, 71, 137, 199	width, 7 , 40
principle of, 165, 381	Williams, Ronald J., 227
	wiring, see also Hebbian learning
ultraviolet (RG flow), 107	in Bayesian inference, see Bayesian
underfitting, 265, 266	inference
underparameterization, 284, 321	in gradient-based learning, see gradient
uniform distribution, 48, 413	descent
universality, 106, 110, 125 , 227, 389	in nearly-kernel methods, see
of the fully-trained network solution, 348,	nearly-kernel methods
373, 382	
universality class, 125	zero initialization, see also initialization
half-stable, 137	distribution, 47, 123, 431

