§8. Механические и физические приложения двойного интеграла

1°. Нахождение координат центра масс и моментов фигур. Пусть в области D распределена масса с поверхностной плотностью $\mu(M)$, где функция $\mu(M)$ непрерывна на D. Разобьём область D кусочно-гладкими кривыми на n частей D_1, D_2, \ldots, D_n , не имеющих общих внутренних точек, с площадями ΔS_1 , ΔS_2 , ..., ΔS_n , и пусть λ – ранг разбиения (рис. 8.1). Массу Δm_i частичной области D_i можно вычислить по формуле (2.2): $\Delta m_i = \iint \mu(x,y) dx dy = \mu(M_i) \Delta S_i$. Здесь использована теорема о среднем для

двойного интеграла, ΔS_i — площадь области D_i , $M_i \in D_i$ — точка, фигурирующая в теореме о среднем. Сосредоточим теперь всю массу каждой частичной области D_i в точке M_i (рис. 8.1). В результате получим

Рис. 8.1. К определению центра масс пластины

систему n материальных точек, для координат центра масс которой известны формулы:

$$x_C = \frac{1}{m} \sum_{i=1}^{n} x_i \Delta m_i$$
, $y_C = \frac{1}{m} \sum_{i=1}^{n} y_i \Delta m_i$.

(8.1)

Здесь т - масса всей пластинки, т.е. величина $m = \iint \mu(x, y) dx dy$. Суммы в (8.1) являются

интегральными: первая – для функции $x\mu(x, y)$, вторая – для функции $y\mu(x, y)$. Переходя в (8.1) к пределу при $\lambda \to 0$, где $\lambda = \max \Delta S_i$, получаем

$$x_C = \frac{1}{m} \iint_D x \mu(x, y) dx dy, \qquad y_C = \frac{1}{m} \iint_D y \mu(x, y) dx dy. \tag{8.2}$$

Точка $C(x_C, y_C)$ называется центром масс (центром тяжести) пластины D.

Аналогичным образом можно получить формулы для нахождения моментов инерции пластины относительно осей и начала координат:

$$I_x = \iint_D y^2 \mu(x, y) dx dy$$
, $I_y = \iint_D x^2 \mu(x, y) dx dy$, $I_O = \iint_D (x^2 + y^2) \mu(x, y) dx dy$. (8.3)

Пример 8.1. Найти центр масс пластины, ограниченной линиями $x^2/a^2 + y^2/b^2 = 1$, y = 0, $(y \ge 0)$, если поверхностная плотность задана равенством: $\mu(x, y) = \sqrt{x^2/a^2 + y^2/b^2}$.

Рис. 8.2. К примеру 8.1

▶ Сделаем чертёж (рис. 8.2). В силу симметрии центр масс находится на оси Oу, т.е. $x_C = 0$. В силу (2.2) для массы пластины имеем равенство: $x = \iint_{D} \sqrt{x^2/a^2 + y^2/b^2} \ dxdy$. Здесь разумно перейти по формулам (6.7) к обобщенным полярным

координатам: $x=ar\cos\varphi,\ y=br\cos\varphi,\ J=abr$. Тогда $m=ab\iint_D r^2 dr d\varphi$. В новых координатах уравнение эллипса $x^2/a^2+y^2/b^2=1$ имеет вид: r=1. На области D для обобщённых полярных координат выполняются неравенства: $0 \le r \le 1,\ 0 \le \varphi \le \pi,$ поэтому $m=ab\int_0^\pi d\varphi \int_0^1 r^2 dr = \frac{\pi}{3}ab$. По формуле

(8.2) имеем $y_C = \frac{1}{m} \iint_D y \sqrt{x^2/a^2 + y^2/b^2} \ dxdy$. Переходя к обобщённым полярным координатам по формулам получаем:

$$y_C = \frac{1}{m} \iint_{D'} br \sin \varphi r \, abr \, d\varphi dr = \frac{ab^2}{m} \iint_0^\pi \sin \varphi \, d\varphi \int_0^1 r^3 dr = \frac{3ab^2}{\pi ab} (-\cos \varphi) \Big|_0^\pi \frac{r^4}{4} \Big|_0^1 = \frac{3b}{2\pi} \, .$$
 Итак, точка $C(0, 3b/2\pi)$ – центр масс. \blacktriangleleft

- 2° . Задачи, связанные с непрерывным распределением некоторой величины на плоской области. К вычислению двойного интеграла сводятся все механические и физические задачи, связанные с непрерывным распределением массы, заряда, изменением удельной теплоёмкости и т.д. в пределах некоторой плоской фигуры D. Технологию получения соответствующих формул покажем на примере.
- **Пример 8.2.** Тонкая пластинка (её толщиной пренебрегаем) имеет форму области D из плоскости Oxy. Удельная теплоёмкость пластинки, отнесённая к единице площади, задана равенством: $c_p = c_p(x,y)$. Найти количество тепла Q, затраченное при нагревании пластинки от температуры t_1 до температуры t_2 .
- Выделим бесконечно малый элемент (dS) области D, содержащий точку M(x,y), и сделаем упрощающее предположение удельная теплоёмкость в пределах (dS) постоянна и равна её значению в точке M, т.е. $c_p(x,y)$. Тогда для элемента dQ искомой величины Q имеем приближённое выражение вида:

$$dQ = c_n(x, y)dS(t_2 - t_1) = c_n(x, y)dS\Delta t,$$

верное с точностью до бесконечно малых более высокого порядка, чем dS. Тогда точное значение Q выразится формулой $Q = \Delta t \iint_D c_p(x,y) dx dy$.

Такой подход упрощает вывод формул (8.2) — (8.3). Так, для элементарных моментов инерции элемента (dS) относительно осей x и y справедливы следующие равенства: $dI_x = y^2 \mu(x,y) dS$, $dI_y = x^2 \mu(x,y) dS$. Отсюда для I_x и I_y сразу получим формулы (8.3).