Übungsblatt 6

Aufgabe 1 (Dateisysteme)

1.	Geben Sie an, welche Informationen ein Inode speichert.
2.	Nennen Sie drei Beispiele für Metadaten im Dateisystem.
3.	Beschreiben Sie, was ein Cluster im Dateisystem ist.
4.	Beschreiben Sie, wie ein UNIX-Dateisystem (z.B. $\exp(2/3)$, das keine Extents verwendet, mehr als 12 Cluster adressiert.
5.	Beschreiben Sie, wie Verzeichnisse bei Linux-Dateisystemen technisch realisiert sind.
6.	Nennen Sie einen Vorteil und einen Nachteil kleiner Cluster im Dateisystem im Gegensatz zu großen Clustern.
7.	Unterscheiden DOS/Windows-Dateisysteme Groß- und Kleinschreibung?
	\square Ja \square Nein
8.	Unterscheiden UNIX-Dateisysteme Groß- und Kleinschreibung?
	\square Ja \square Nein
9.	Moderne Betriebssysteme beschleunigen Zugriffe auf gespeicherte Daten mit einem Cache im Hauptspeicher.
	\square Ja \square Nein
10.	Die meisten Betriebssystemen arbeiten nach dem Prinzip
	\square Write-Back \square Write-Through
11.	Nennen Sie je einen Vorteil und einen Nachteil eines Caches im Hauptspeicher, mit dem Betriebssysteme die Zugriffe auf gespeicherte Daten beschleunigen.
12.	Was ist ein absoluter Pfadname?
13.	Was ist ein relativer Pfadname?
14.	/var/log/messages ist ein
	\square Absoluter Pfadname \square Relativer Pfadname
15.	BTS_Vorlesung_Vorlesung_05/folien_bts_vorlesung_05.tex ist ein
	\square Absoluter Pfadname \square Relativer Pfadname

Inhalt: Themen aus Foliensatz 6

temen ohne Journal.

16.	Dokumente/MasterThesis/thesis.tex ist ein		
	\square Absoluter Pfadname \square Relativer Pfadname		
17.	/home/ <benutzername>/Mail/inbox/ ist ein</benutzername>		
	\square Absoluter Pfadname \square Relativer Pfadname		
18.	Nennen Sie die Information, die der Bootsektor (auch genannt Bootblock eines Dateisystems speichert.		
19.	Nennen Sie die Information, die der Superblock eines Dateisystems speichert		
20.	Erklären Sie warum manche Dateisysteme (z.B. $\exp(2/3)$ die Cluster des Dateisystems zu Blockgruppen zusammenfassen.		
21.	Beschreiben Sie, was die Dateizuordnungstabelle bzw. File Allocation Table (FAT) ist und welche Informationen diese enthält.		
22.	Beschreiben Sie die Aufgabe des Journals bei Journaling-Dateisystemen.		
23.	Nennen Sie einen Vorteil von Journaling-Dateisystemen gegenüber Dateisys		

- 24. Nennen Sie die drei Werte, die zum Speichern eines Extents nötig sind.
- 25. Beschreiben Sie den Vorteil des Einsatzes von Extents gegenüber direkter Adressierung der Cluster.
- 26. Beschreiben Sie, was das Defragmentieren macht.
- 27. Beschreiben Sie welche Art der Datenverarbeitung durch Defragmentieren maximal beschleunigt wird.
- 28. Beschreiben Sie in welchen Szenario das Defragmentieren sinnvoll ist.

Inhalt: Themen aus Foliensatz 6 Seite 2 von 5

Aufgabe 2 (Dateisysteme)

Kreuzen Sie bei jeder Aussage zu Dateisystemen an, ob die Aussage wahr oder falsch ist.

Aussage	wahr	falsch
Inodes speichern alle Verwaltungsdaten (Metadaten) der Datei-		
en.		
Dateisysteme adressieren Cluster und nicht Blöcke des Daten-		
trägers oder Laufwerks.		
Je kleiner die Cluster, desto größer ist der Verwaltungsaufwand		
für große Dateien.		
Je größer die Cluster, desto geringer ist der Kapazitätsverlust		
durch interne Fragmentierung.		
Unter UNIX haben Dateiendungen schon immer eine große Be-		
deutung.		
Moderne Dateisysteme arbeiten so effizient, dass Puffer durch		
das Betriebssystem nicht mehr üblich sind.		
Absolute Pfadnamen beschreiben den kompletten Pfad von der		
Wurzel bis zur Datei.		
Das Trennzeichen in Pfadangaben ist bei allen Betriebssystemen		
gleich.		
Ein Vorteil der Blockgruppen bei ext2 ist, das die Inodes physisch		
nahe bei den Clustern liegen, die sie adressieren.		
Eine Dateizuordnungstabelle (FAT) erfasst die belegten und frei-		
en Cluster im Dateisystem.		
Bei der Master File Table von NTFS ist Fragmentierung unmög-		
lich.		
Ein Journal im Dateisystem reduziert die Anzahl der Schreibzu-		
griffe.		
Journaling-Dateisysteme grenzen die bei der Konsistenzprüfung		
zu überprüfenden Daten ein.		
Bei Dateisystemen mit Journal sind Datenverluste garantiert		
ausgeschlossen.		
Vollständiges Journaling führt alle Schreiboperation doppelt aus.		
Extents verursachen weniger Verwaltungsaufwand als Block-		
adressierung.		

Aufgabe 3 (Mustervergleiche und Datenauswertung)

1. Nennen (oder beschreiben) Sie <u>eine</u> sinnvolle Anwendung für das Kommando sed.

Inhalt: Themen aus Foliensatz 6 Seite 3 von 5

2. Erzeugen Sie eine Datei sedtest.txt mit folgendem Inhalt:

Zeile 1
Zeile 2
Zeile 3
Zeile 4
Zeile 5
Zeile 6

Fügen Sie mit sed 3 Leerzeichen am Anfang jeder Zeile ein (Einrückung).

- 3. Geben Sie mit sed die Zeilen 2 bis 5 der Datei sedtest.txt aus.
- 4. Löschen Sie mit sed jede 2. Zeile der Datei sedtest.txt.
- 5. Erzeugen Sie eine Datei htmlcode.html mit folgendem Inhalt:

```
<a href="BTSWS2019/index.html">Betriebssysteme (BTS)</a><b>Das ist eine <i>HTML-Datei</i></b><br><h2>Eine Überschrift<h2>
```

Entfernen Sie mit sed alle HTML-Tags aus der Datei htmlcode.html.

6. Erzeugen Sie eine Datei umlaute.txt mit folgendem Inhalt:

```
Bäume, Äpfel, Bücher, Übertreibung
Töpfe, Öffentlichkeit, Straße, Spaß
```

Ändern Sie mit sed alle Umlaute aus der Datei umlaute.txt in "ae", "oe", "ue", "Ae", "Oe", "Ue" und "ss".

7. Erzeugen Sie eine Datei bundesliga_08_0405.txt mit den Ergebnissen des 8. Spieltags der Saison 2004/2005:

```
Schalke
              - Bochum
                              3 : 2 61500 Zuschauer
Bielefeld
                              0 : 2 22700 Zuschauer
             - Stuttgart
Dortmund
             - Nürnberg
                              2 : 2 73500 Zuschauer
Leverkusen
             - Hamburg
                              3 : 0 22500 Zuschauer
             - Mainz
                              1 : 2 24000 Zuschauer
Freiburg
Kaiserslautern - Berlin
                              0 : 2 30500 Zuschauer
            - Mönchengladbach 2 : 1 26500 Zuschauer
Wolfsburg
             - Hannover
                              1: 3 16500 Zuschauer
Rostock
                              1 : 2 42000 Zuschauer
              - München
Bremen
```

- 8. Nennen (oder beschreiben) Sie <u>eine</u> sinnvolle Anwendung für das Kommando awk.
- 9. Ermitteln Sie mit awk alle Spiele, bei denen mehr als 35000 Zuschauer waren.

- 10. Ermitteln Sie mit awk alle Spiele, bei denen weniger als 50000 Zuschauer waren und bei denen es einen Sieg der Heimmannschaft gab.
- 11. Ermitteln Sie mit awk für jedes Spiel die Summe der gefallen Tore.
- 12. Ermitteln Sie mit awk in welcher Stadt die meisten Zuschauer waren und geben das Ergebnis wie folgt aus:

Die meisten Zuschauer waren in STADT (ANZAHL).

Inhalt: Themen aus Foliensatz 6 Seite 5 von 5