07 2a

(i) Differentiate with respect to x: $\frac{2x}{e^x + 1}$

2

Using the quotient rule:

$$\frac{d}{dx} \left(\frac{2x}{e^x + 1} \right) = \frac{(e^x + 1) \cdot 2 - 2x \cdot e^x}{(e^x + 1)^2}$$
$$= \frac{2e^x + 2 - 2x \cdot e^x}{(e^x + 1)^2}$$

As
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

$$u = 2x$$
 then $\frac{du}{dx} = 2$ and $v = e^x + 1$ then $\frac{dv}{dx} = e^x$

Board of Studies: Notes from the Marking Centre

(i) Common errors included reversing the terms in the numerator, the wrong sign, and claiming that the derivative of 2x is x or that of e^{x+1} is x e^x . Some candidates rewrote the quotient as a product but then had very limited success applying the product rule. Candidates are reminded to use brackets where appropriate.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies