AD-E-600 349

TECHNICAL REPORT ARLCD-TR-79021

PROPELLING CHARGE CONTAINER LEAK RATE

us army armament research and development command LARGE CALIBER WEAPON SYSTEMS LABORATORY DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Unclassified

υς , Foλω 1475

	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	Technical Report ARLCD-TR-79021	3. RECIPIENT'S CATALOG NUMBER
	4. TITLE (and Subtitie)	1 TYPE OF REPORT & PERIOD COVERED
)	Propelling Charge Container Leak Rate .	Final Control
<u>_</u>		6. PERFORMINS ORS: REPORT NUMBER
	John R. Masly	8. CONTRACT OR GRANT NUMBER(*)
	9. PERFORMING ORGANIZATION NAME AND ADDRESS ARCADCOM, LCWSL Nuclear and Fuze Division (DRDAR-LCN-C) Dover, NJ 07801	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
İ	11. CONTROLLING OFFICE NAME AND ADDRESS ARRADCOM, TSD	Aug 1979
i	STINFO (DRDAR-TSS) Dover, NJ 07801	13: NUMBER OF PAGES 60
	14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)
	(P)68/	Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	
	Approved for public release; distribution unli	mited.
	(18) BIF (19) AD-E411) 34	,
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from	m Report)
		DDC
	18. SUPPLEMENTARY NOTES	ROV 20 1979
	Leak rate M13A3 PA66 Effective hole size M14A2 LAN lines M18A2 Transducer sensitivity M19A1 Article International	B
	A characteristical method was developed for prediction or out of, standard propalling charge shipping the experienced pressure differential as a means to assurance acceptance critimia for the shipping continue verified by laboratory testing, and curves reliable diameter were constructed. A series of tests containers to establish acceptable leakage rates/ho	g containers as a function of o establish reasonable quality ainers. Theoretical results ating leak rate to effective were performed on loaded

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered 410 163

the minimum transducer sensitivity needed for implementation on automated load and pack (LAP) lines.

ACCESS10	N for		-
NTIS	White	Section	6
DDC	Buff So	ection	
UNANNOU	NCED		
JUSTIFICA	TION		
BY RICTDIDUI	TON/AVAHABILIT	V CODES	-
			_1
	Alt. and/or		ᆸ

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

FOREWORD

The author wishes to express appreciation to Mr. Steve Ruffini, Dr. Albertus Schmidlin, and SSG Michael Goes $\,$ for their kind assistance in the preparation of the report.

Table of Contents

Page No.

Introduction	1
Theoretical Leak Rate Prediction	2
Laboratory Testing	6
The Leakage Rate Curves	9
Loaded Container Testing	14
Background	14
Test Equipment and Test Sequence	14
Results of Testing	22
Automated Load and Pack Line Test Equipment	51
Requirements	51
Availability	55
Conclusions and Recommendations	56
References	57
Appendix	58
Distribution List	50

Tables

		Fage	No.
1.	Leakage and Ullage Volume Results M14A2 Container, M3 Charge	33	
2.	Leakage and Ullage Volume Results M14A2 Container, M3 Charge	34	
3.	Leakage and Ullage Volume Results PA66 Container, M188E1M Charge	35	
4.	Leakage and Ullage Volume Results PA66 Container, M188E1 Charge	36	
5.	Leakage and Ullage Volume Results PA66 Container, M188E1 Charge	37	
6.	Leakage and Ullage Volume Results M13A2 Container, M4A2 Charge	38	
7.	Leakage and Ullage Volume Results M18A2 Container, M1 Charge	42	
8.	Leakage and Ullage Volume Results M18A2 Container, M2 Charge	44	
9.	Leakage and Ullage Volume Results M19A1 Container, M2 Charge	46	
10.	Combined Results for the M14A2 Container with M3 Charge	48	
11.	Combined Results for the PA66 Container with M188E1 Charge	49	
12.	Results of Container Testing after Lid Re-Torque	50	
13.	Summary of Loaded Container Test Results	52	
14.	Maximum Leakage Hole Size as a Function of Confidence Level and Percentage of Population	53	
15	Peguinad Pressure Transduren Peselutians	E 1	

Figures

		Fage No.
1.	Laboratory Test Equipment Arrangement	7
2.	Laboratory Test Results for the M19A2 Container 50% Ullage Volume	8
3.	Lairratory Test Results for Hoke Sampling Cyli,der	10
4.	Leakage Factor Curves for 6.89, 20.68, and 34.47 kPa (1, 3, and 5 PSIG)	12
5.	Leakage Factor Curves for 13.79 and 27.58 kPa (2 and 4 PSIG)	13
6.	Test Equipment Arrangement at Aberdeen Proving Ground	15
7.	Container Test Probe	16
8.	Detail of Control Box and Reference Container	17
э.	Detail of Control Box Functions	18
10.	Schematic of Test Equipment Arrangement at Aberdeen Proving Ground	19
11.	Raw Test Data From Loaded Container Testing	23
12.	Data Reduction Computer Program	30

INTRODUCTION

The performance of any smokeless propellant used in cannon artillery depends to a great extent upon the total moisture content of the propellant grains. Since all smokeless propellants are hygroscopic to some degree, various packaging methods have been adopted in order to allow the user to hold to the old maxim of "keeping the powder dry." The accepted practice for the bagged propellant used in separate loading ammunition has been to transport and store the propellant until needed in reusable, sealed metal containers.

The propellant containers presently utilized are tested for any leaks that could possibly admit moisture immediately after fabrication, and again immediately after being loaded. However, there does not exist a definite testing specification for the leak test after loading and the specification for the leak test after manufacture is worded broadly and is non-specific in regard to any leakage rate or equivalent leakage hole size. As a result, the present testing methods are capable of detecting only gross leakage and do not provide an adequate measure of the containers' ability to exclude moisture from reaching the propellant.

To rectify this situation, a study was conducted to:

- 1. Establish the relationship between leak rate and equivalent hole size for the various containers.
- 2. Measure the actual le and rate on a large sample size of each container used to establish the upper limit of the leakage rate for inclusion in a realistic testing specification.
- 3. Determine the availability and identify manufacturers of leak rate detection equipment that is applicable for use on automated LAP lines.

This report documents the efforts and results of these tasks.

THEORETICAL LEAK RATE PREDICTION

Previous theoretical and experimental work has been done in the field of relating geometric configuration to flow and pressure differences. One facet of this work, based on the findings of HALLI, was reported by Slawsky, Schmidlin, and Lutzky.² Their work showed that the performance of a fixed-orifice pneumatic component under given operating conditions could be predicted to within five percent accuracy by consideration of only the orifice upstream conditions and a numerical parameter defined as the flow factor.

Extensive theoretical and experimental studies have shown that

$$\left(\frac{Q}{P_{u}}\right)_{1} = 2F \sqrt{r (1-r)}$$
 (1)

and

$$\left(\frac{Q}{P_{u}}\right)_{2} = \sqrt{\frac{4}{3}} \quad F \sqrt{1-r^{2}} \tag{2}$$

and

$$\begin{pmatrix} \frac{Q}{P_{U}} \rangle_{2} = \sqrt{\frac{4}{3}} \quad F \sqrt{1-r^{2}} \qquad (2)$$

$$\begin{pmatrix} \frac{Q}{P_{U}} \rangle_{3} = \sqrt{\frac{8}{5}} \quad F \sqrt{r (1-r) (3-r)} \qquad (3)$$

where

= Volumetric flow rate

= Absolute upstream pressure (PSIA)

= Flow factor

= The ratio of absolute downstream to absolute

upstream pressure (Pd/Pu)

1,2,3 = Subscripts that denote the upper, lower, and average expected values respectively

If the flow rate and pressures are either known or specified, the previous equations may be solved for the expected values of the flow factor as follows:

$$F_1 = \frac{(Q/P_u)}{2\sqrt{r(1-r)}}$$
 (4)

$$F_2 = \frac{(Q/P_u)}{\sqrt{\frac{4}{3}\sqrt{1-r^2}}}$$
 (5)

$$F_{3} = \frac{(0/P_{u})}{\sqrt{\frac{8}{3}}\sqrt{r(1-r)(3-r)}}$$
(6)

The flow factor for a given set of conditions can usually be obtained by actual measurements of flow. If the leakage path in the container is considered as a short duct whose diameter is small compared to the diameters of the channels it connects, then the following expression may be used to calculate the flow factor:

$$F = 16.5A \tag{7}$$

where A is the cross sectional area of the leakage path, in square inches.

Assuming a circular cross sectional area for the leakage path results in the equation:

$$F = 13D^2 \tag{8}$$

where D is the diameter of the leakage path.

Using this expression in Equations 4 to 6 and solving for the diameter yields:

$$D_1^2 = \frac{(Q/P_u)}{26 \sqrt{r(1-r)}}$$
 (9)

$$v_2^2 = \frac{(Q/P_u)}{13\sqrt{\frac{4}{3}}\sqrt{1-r^2}}$$
 (10)

$$D_3^2 = \frac{(Q/P_u)}{13\sqrt{\frac{8}{5}}\sqrt{r(1-r)(3-r)}}$$
 (11)

Equations 9, 10, and 11 illustrate that if the leakage rate is known or specified in some manner, the hole diameter representative of that leakage rate can be bounded.

Considering the perfect gas law as applied to the containers:

$$p_1V = m_1 RT P_2V = m_2 RT (12)$$

so that

$$(p_1 - p_2) V = (m_1 - m_2) RT$$
 (13)

or

$$(m_1-m_2) = \frac{(p_1-p_2)V}{RT}$$
 (14)

Since $(m_1 - m_2)$ is the mass loss in pounds mass, we must convert this to standard cubic feet by multiplying by the factor RT/ p_a so that

$$(m_1 - m_2) \frac{RT}{p_a} = \frac{(p_1 - p_2)}{RT} \frac{RT}{p_a} V$$
 (15)

or

$$(m_1-m_2) \frac{RT}{p_a} = \frac{(p_1-p_2)V}{p_a}$$
 (16)

Since this is the volume of gas lost through the leak it is equivalent to the volumetric flow rate, Q, multiplied by the time duration, Δ t, over which the pressure change (p₁ - p₂) takes place. This leads to

$$Q\Delta t = (m_1 - m_2) \frac{RT}{p_a} = \frac{(p_1 - p_2)V}{p_a}$$
 (17)

or

$$Q = \frac{(p_1 - p_2)V}{p_a \Delta t} = \frac{V}{p_a} \frac{\Delta p}{\Delta t}$$
 (18)

where V = Volume of gas in container (cubic feet)

 Δp = Pressure change

p = Absolute pressure (14.7 PSI)

△ t = Time interval during the pressure change (minutes)

Using the results of Equation 18 in Equations 9 to 11 and also noting that

$$P_{u} = P_{i} + P_{a} \tag{19}$$

where P_{i} is the internal pressure in the container, the equations for determining hole diameters become

$$p_1^2 = \frac{V}{p_a} \frac{\Delta p}{\Delta t} \frac{1}{(P_i + p_a)} \frac{1}{26 \sqrt{r(1-r)}}$$
(20)

$$p_2^2 = \frac{V}{p_a} \frac{\Delta p}{\Delta t} \frac{1}{(P_i + p_a)} \frac{1}{13\sqrt{\frac{4}{3}}\sqrt{1 - r^2}}$$
 (21)

$$p_3^2 = \frac{V}{p_a} \frac{\Delta p}{\Delta t} \frac{1}{(P_i + p_a)} \frac{1}{13\sqrt{\frac{8}{5}} \sqrt{r(1-r)(3-r)}}$$
(22)

For testing purposes it is easier to measure volume in cubic inches and time in seconds with the result that the equations become

$$D_1^2 = \frac{60}{1728} V \frac{\Delta p}{\Delta t} \frac{1}{p_a(P_i + p_a)} \frac{1}{26 \sqrt{r(1-r)}}$$
(23)

$$\bar{v}_{2}^{2} = \frac{60}{1728} \sqrt{\frac{\Delta p}{\Delta t}} \frac{1}{p_{a}(P_{i}+p_{a})} \frac{1}{13\sqrt{\frac{4}{3}}\sqrt{1-r^{2}}}$$
(24)

$$D_3^2 = \frac{60}{1728} V \frac{\Delta p}{\Delta t} \frac{1}{p_a(P_i + p_a)} \frac{1}{13\sqrt{\frac{8}{5}} \sqrt{r(1-r)(3-r)}}$$
(25)

where:

V = Free volume in the container (in³)

 $\Delta p/\Delta t = Pressure decay rate (1b/in^3/sec)$

 $p_a \approx Absolute pressure (14.7 lb/in³)$ $P_i \approx Container internal pressure (lb/in³)$

r = katio of downstream to upstream absolute pressures $\langle P_{d}/P_{u}, dimensionless \rangle$

LABORATORY TESTING

In order to validate the results predicted by the theory, a series of tests were conducted utilizing an empty M19A2 container. The laboratory test arrangement is shown in Figure 1.

For testing, the propellant container was half filled with water. This was done based on results of earlier testing which indicated that the average ullage volume in a loaded container was approximately 50 percent of the container's total volume. The container was connected to a pressure source by utilizing the threaded hole for the container vent plug. A valve was included in the line to the pressure source to isolate the container during the leak rate testing. A direct reading pressure gage was connected as shown to give a gross indication of container pressure and a Pace-Wianco pressure transducer driving a Hewlett-Packard model 7005B X-Y recorder was included to obtain the pressure-time decay curve. For more precise pressure determination, an Ashcroft Digigage Model BCDO-500 digital water manometer was included as shown. Leakage paths were simulated by venting the container to the atmosphere by means of a vent line employing incrementally variable orifices. A valve was included in the vent line to start and stop the leak test. The test procedure was as follows:

- 1 An orifice of known value was connected to the vent line, and the vent line valve was closed.
- 2. The pressurization valve was opened and the container was brought to a specific pressure.
- 3. The pressurization valve was then closed and the container pressure was allowed to stabilize.
- 4. At the end of the stabilization period, the pressure indicated by the water manometer was marked adjacent to the pen location on the X-Y recorder.
- 5. The vent line valve was then opened to allow the container to experience a simulated leak at the same time the X-Y recorder time sweep was activated to provide a graphical record of the container pressure as a function of time.
- 6. At the end of the test, the vent line valve was closed and the test sequence repeated for a new orifice size or a new initial container pressure.

Figure 2 presents the results of the laboratory testing for four initial container pressures and simulated leakage holes from 150 to 750 micrometers (0.006 to 0.30 inches) in diameter. The plotted curves were based upon Equation 20, and represent the upper bound on the

Figure 1. Laboratory Test Equipment Arrangement

LEAKAGE HOLE SIZE (x 2.5 MICROMETERS) (TNOHED)

Figure 2. Laboratory Test Results for the M19A2 Container - 50% Ullage Volume

leakage rate as predicted by theory. As can be seen, there is a high degree of agreement between the test data and the values predicted by the theory with the exception of the data points representing small leakage hole sizes at the higher pressures.

This anomaly could be explained in one of two ways:

- 1. Leakage paths existed in the test equipment and were not apparent at the lower test pressures, or
- 2. Additional leakage paths were being created in the container seal at the higher pressures.

To test which of the two postulates was in fact true, the container was replaced by a stainless steel Hoke sampling cylinder which was known to exhibit no leakage. The remainder of the test equipment was unchanged.

Figure 3 presents the results of testing with the Hoke sampling cylinder utilizing an initial pressure of 34.5 kPa (5.0 PSIG) and the same family of orifices as used with the M19A2 container. The results clearly indicate that the test arrangement by itself did not introduce any unexpected leakage paths, so that the first postulated cause can be ignored.

The additional leakage paths therefore were being produced in the container lid seal and can be explained as follows: at relatively high internal pressure, the net force applied to the inner surface of the container lid is sufficient to cause the lid seal to lose part of its sealing efficiency and allow some leakage to occur around the periphery of the lid. This condition is more evident for the smaller orifice sizes because the container internal pressure remains at the relatively high pressure condition for a longer period of time. At the larger orifice sizes, the container's internal pressure drops sufficiently fast to cause the additional leakage produced by the lid to be a second order effect not readily observable during the conduct of the test.

It was therefore concluded that the developed theory was sufficiently accurate for predicting leakage hole size based on observed leakage rate provided the container test pressure did not exceed approximately 27.6 kPa (4.0 psig).

The Leakage Rate Curves

Equations 23 and 24 can be solved for the pressure/time decay rate and yield

$$\left(\frac{\Delta p}{\Delta t}\right)_{1} = 748.8 \frac{1}{V_{u}} D^{2} p_{a} (P_{i} + p_{a}) \sqrt{r(1-r)}$$
 (26)

Figure 3. Laboratory Test Results for Hoke Sampling Cylinder

$$\left(\frac{\Delta p}{\Delta t}\right)_2 = 432.3 \frac{1}{V_{ij}} D^2 p_a \left(P_i + p_a\right) \sqrt{1-r^2}$$
 (27)

It can be seen that the pressure decay rate varies with the effective leakage hole diameter, the container's initial pressure, and the ullage volume present in the container. If we now define a new variable, α , as

$$\alpha = V_{u} \left(\frac{\bullet^{\Delta p}}{\Delta t} \right)$$
 (28)

we eliminate any variance with respect to container ullage volume and we have α as a function of only the initial container pressure and the leakage hole size, so that

$$\alpha_1 = 748.8 \, D^2 \, p_a \, (P_i + p_a) \, \sqrt{r(1-r)}$$
 (29)

$$\alpha_2 = 432.3 \, D^2 \, p_a \, (P_j + p_a) \, \sqrt{1 - r^2}$$
 (30)

Figures 4 and 5 show the variation of the quantities α_1 and α_2 : as a function of effective leakage hole size for container initial pressures between 6.9 and 34.5 kPa (1 and 5 psig).

These curves can be utilized in the following ways:

- 1. Given the maximum permissible leakage hole for a container, one would enter the abscissa of Figures 4 or 5 and read up to the intersection with the curves for the desired test pressure. The corresponding values of α_1 and α_2 could then be read off of the ordinate scale. Dividing these values by the container ullage volume would then yield the limits of permissible leakage rate for that container, or
- 2. Using the leakage rate determined from testing a container, one would multiply the leakage rate by the container's ullage volume and enter the ordinate of Figure 4 or 5 with this value. One would then read across to the intersection of this value with the two curves representing the actual container test pressure, and then read the corresponding values from the abscissa to obtain the size range of the effective leakage hole.

Ullage volume for either the loaded or unloaded container can be accurately determined by employing the method used by Goes³.

Figure 4. Leakage Factor curves for 6.89, 20.68, and 34.47 kPa (1, 3, and 5 PSIG)

LEAKAGE HOLE SIZE(x25000 micrometers) (inches)

Figure 5. Leakage Factor Curves for 13.79 and 27.58 kPa (2 and 4 PSIG)

LOADED CONTAINER TESTING

Background

As a result of previous work and the current efforts on leak determination in propellant charge containers, sufficient information was available to determine leakage rates or equivalent hole sizes by the method of pressure decay per unit time.

The problem which remained was the specification of a practical leakage rate as a standard for testing propellant charge containers from a manufacturing standpoint.

It was suggested that, by measuring the leakage rates or equivalent hole sizes in standard loaded propellant charge containers which had previously been deemed acceptable at a LAP facility, a maximum acceptable leakage rate could be determined.

The container testing was comprised of three specific operations. First the ullage volume within each container was determined, next the pressure decay leak test was performed, and finally the lid torque was checked.

Testing Equipment and Test Sequence

Figure 6 illustrates the test equipment arrangement used for the ullage volume determination and leak testing. The instrumentation consisted of an Ashcroft Digital Water Manometer (0.-500 in. differential), a Himmelstein Digital Pressure Decay Leak Tester, a pneumatic control box, a reference container and the necessary pneumatic supply and control lines connecting these items together and to the container test probe shown in Figure 7. Figures 8 and 9 present in mo detail the arrangement of the control box and reference container and the functions located on the control box, respectively. The control box was used for regulating pneumatic power to the valve controls and the test probe clamping cylinder, and also for pressurizing the reference container. Pneumatic power was provided by a shop air system that was capable of delivering 551.6 kFa (80 psig) and was connected to the control box by a quick disconnect coupling. The test probe was attached to the container being tested by means of the clamp and clamping cylinder shown in Figure 7.

For clarity in following the testing sequence, Figure 10 presents the test arrangement in schematic form. The detailed test procedure was as follows:

- 1. Record container type, lot, and charge.
- 2. Turn all valves on the control box OFF.
- 3. Connect pneumatic power to the control box.

Figure 6. Test Equipment Arrangement at Aberdeen Proving Ground

Figure 7. Container Test Probe

Figure 8. Detail of Control Box and Reference Container

Figure 9. Detail of Control Box Functions

Figure 10. Schematic of Yest Equipment Arrangement at Aberdeen Proving Ground

- 4. Turn on pneumatic power.
- 5. Adjust supply and control regulators.
- 6. Push clamping cylinder release valve (V3).
- 7. Turn on power to the clamping cylinder.
- 8. Open reference container charging valve.
- 9. Charge reference container to 17.2 to 41 kPa (2.5 to 6 psig), then close charging valve.
- 10. Number sequentially containers to be tested.
- 11. Reset all instrumentation.
- 12. Open supply valve (V1) and record the pressure after it has stabilized as P1.
- 13. Position test probe over the vent plug hole and clamp the test probe in place by actuating the clamping valve (V4).
- . 14. Open the container valve (V2).
 - 15. Allow the pressure to stabilize then record the pressure as P2.
 - 16. Close the supply valve (V1).
 - 17. Start the leak test instrumentation.
 - 18. While the leak test is in progress (100 second duration) the following must be accomplished:
 - A. Charge the reference container.
 - B. Replace the vent plug on the previously tested container.
 - C. Remove the vent plug from the next container to be tested.
 - D. Check the lid torque on the previously tested container.
 - 19. When the leak test is completed record the pressure remaining in the container as P3.
 - 20. Close the container valve (V2).
 - 21. Release the test probe by actuating the release valve (V3).
 - 22. Return to Step 11, above, and repeat the sequence for the next container to be tested.

The data necessary for the determination of the container ullage volume was obtained in steps 12 through 15 above. Since the test arrangement represents a closed system we can use Boyle's Law to determine the ullage volume. Noting that Boyle's Law can be expressed as

$$P_1V_1 = P_2V_2 \tag{31}$$

for the conditions represented by the described test arrangement, we have

$$P_1 (V_R + V_L) = P_2 (V_R + V_L + V_U)$$
 (32)

where P_1 = Pressure at the start of the ullage volume test.

 P_2 = Pressure at the end of the ullage volume test.

 V_{R} = Volume of the reference container.

 V_L = Volume of the line connecting the reference and test containers.

 $V_{ii} = Ullage$ volume in the container under test.

Solving Equation 32 for the ullage volume and rearranging the terms we have

$$V_u = (V_r + V_L) \left(\frac{\rho_1}{\rho_2} - 1 \right)$$
 (33)

The reference volume used in the testing was an empty M19A2 propellant charge container for which the volume had been determined to be 1377 cubic inches. The volume of the connecting line was also determined in the laboratory and was found to be less than 1% of the total system volume. Due to this minimal effect, the volume of the interconnecting line was ignored during the ullage volume calculations, and Equation 33 reduced to

$$V_u = V_r \left(\frac{p_1}{p_2} - 1 \right)$$
 (34)

A stabilization period was included in the test sequence and was required prior to the recording of any system pressure in order to minimize the introduction of errors due to the adiabatic heating/cooling caused by the pressurization or de-pressurization of the various volumes in the test arrangement.

The pressure transducer available for use with the Himmelstein leak detection equipment had a range of 0.0 to 344.7 kPa (0-50 psig) and had a sensitivity of $^{\pm}$ 0.34 kPa ($^{\pm}$ 0.05 psig). Early in the course of laboratory testing a comparison of the readings obtained from the Himmelstein equipment with those obtained from a water manometer indicated that the pressure transducer was not sufficiently sensitive

for measuring the small leakage rates encountered. Since there was insufficient time prior to the testing scheduled at APG for the purchase of a more sensitive transducer, the Himmelstein equipment was used only as a reference, and the readings from the water manometer were used for the leakage rate/hole size calculations.

During the course of the loaded container testing, a container exhibiting a large leakage rate which also did not meet the mining required lid torque of 2.6 kg-m (225 in-lb) was retested after the container lid was re-torqued to within specification to determine if the leakage was caused by the lid seal or the container.

Results of Testing

A total of 351 containers of various sizes and lots were tested at Aberdeen Proving Ground during the period of March 1979. The data obtained from these tests are presented in Figure 11 organized by lot number, propellant charge, and container type. The columns used in the figure are identified as follows:

- ID An arbitrarily assigned identification number
- TORQ The container lid torque in inch-pounds
 - P1 Auxiliary container pressure at the start of the ullage volume test in inches of water.
 - P2 Auxiliary container pressure at the end of the ullage volume test/container pressure at the start of the leakage test in inches of water.
 - P3 Container pressure at the end of the leakage test in inches of water.

hese data were then utilized as the input to the computer program shown in Figure 12, which calculated the container ullage volume, the effective leakage hole size and the statistical summaries for each container type, lot, and charge combination. Tables 1 through 9 present the results of the computer runs for each container type, lot and charge combination. Tables 10 and 11 present the combined data regardless of container lot for all the M14A2 containers with M3 charges and the PA66 containers with M138E1 charges, respectively.

During the conduct of the test, 17 containers exhibited no measurable lid torque and were not included in the previous statistical summary. The lids on these containers were re-torqued to within specification and then tested. The results of this test are presented in Table 12. Container ID #8 exhibited gross leakage. This condition could not be corrected by re-torquing the lid and the container was omitted from further testing. Container ID #12 did not have a sealing

```
LOT NUMBER
                       CHARGE
                                  CUNTAINER
   KAU-67-621-1370
                                      1414AZ
                          M 3
ID= TORG
                                IU= TUKQ
                                                           43
001 351.
           131.0 052.0 092.0 002 351.
                                            125.0 088.1 088.0
           120.0 083.0 082.6 004 351.
003 351.
                                            108.0 078.7 078.7
           145.0 105.0 105.7 006 351.
                                            129.0 093.5 093.5
005 351.
00/ 351.
           116.7 005.8 005.6 011 351.
                                            130.3 094.1 093.9
009 250.
           128.0 094.0 093.8 010 351.
                                            141.0 103.5 103.3
    LUT NUMBER
                                  CINTAINER
                       CHARGE
   KAN-68-01/-1971
                                      MILLAC
IU= TORO
                                10= 1080
                                             ⊷ 1
                                                           43
014 260.
           138.5 101.0 100.8 015 200.
                                            124.8 095.6 093.0
016 250.
018 240.
           114./ 000.0 004./ 01/ 225.
                                            145./ 100.6 106.4
           133.7 Notes Ustal Ula 130.
                                            145.3 100.3 046.4
020 200.
           145.9 107.5 107.3 021 300.
                                            132.8 096.0 095.1
022 250.
024 200.
           128.2 09).5 090.9 023 150.
145.9 102.7 102.5 025 150.
                                            150.0 111.6 101.0
141.8 100.3 099.9
           142.2 102.9 162.8 021 351.
                                            122.0 094.7 094.5
026 250.
            136.9 054.9 057.7 029 175.
148.0 105.8 105.3 031 140.
.015 560
           153.0 103.5 108.2 033 351.
                                            135.0 096.8 096.6
034 230.
           142.0 107.4 102.1 014 625.
                                            136.1 098.6 098.3
```

Figure 11. Raw Test Data from Loaded Container Testing

LOT N	UMBER	CH	HAKGE	C	DNIAINE	<u>:</u> R		
IND-77	A-5697	164	M1881	- 1M	PA66			
10= 1080	14	ے نیا	F,4	IO=	TORQ	٠1	Pc	P3
036 351.	167.5	nd3•4	054.3	_		150.9	075.3	075.3
038 351.	156.3	9/8.2	0/4.2	039	350.	160.9	088.1	088.1
040 340.	160.0	0/4.7	0/4./	041	351.	150.1	080.3	080.3
042 240. 044 340.	17/.0	0/8.0	000.0	045	350. 350.	1/1.5	085.5 085.3	088.4 084.9
046 351	17/.0	007.6	V05.4	041	330.	15/.0	074.4	079.3
048 280.	1/1.0	185.7	Ud5.6	(144	340.	105.0	082.7	1.580
050 275.	153.1	001.9	601.7	150	250.	150.0	082.4	085.3
052 340.	166.U	082.7	002.1	りちょ	325.	1/0.9	085.6	065.5
054 310.	148.8	014.9	0/4.7	じょう	320.	170.0	092.9	ب. 077
LOT N	UMRF 4	CF	HARGE	C	MIAINU	<u>:</u> k		
KAD-n9	/11-0F	16	hlade	ī, 1	PA66	•		
JU= TORQ	ь1	45	Р3	=ט ו	TURQ	اد	PC	P3
054 400								
056 300.	162.4	$0 \circ \circ \circ 0$	002.0	U D /	300.	157.4	U76.7	078.6
058 290.	184.0	091.1	090.9	059	240.	1/0./	067.6	087.5
058 290. 060 230.	184.0	071.1 003.4	090.9 063.3	059 061	290. 330.	1/0./	067.6 086.5	087.5 086.5
058 290. 060 230. 062 351.	184.0 170.3 182.0	071.1 003.4 088.5	090.9 063.3 064.3	059 051 053	290. 330. 330.	1/6./ 1/4.0 178.2	067.6 086.5 091.9	087.5 086.5 091.8
058 290. 060 230. 062 351. 064 310.	184.0 170.3 182.0 165.7	071.1 003.4	090.9 063.3	059 061	290. 330. 330. 330.	1/0./	087.6 086.5 091.9 081.5	087.5 086.5 091.8 081.3
058 290. 060 230. 062 351. 064 310. 066 280.	184.0 170.3 182.0 165.7 182.3	071.1 003.4 073.5 073.5	U70.9 U63.3 U64.3 U67.1 U67.4	059 001 003 005	290. 330. 330. 230. 330.	1/6./ 1/4.0 178.2 154.0 154.8	087.6 086.5 091.9 081.5 085.9	087.5 086.5 091.8 081.3 085.8
058 290. 060 230. 062 351. 064 310.	184.0 170.3 182.0 165.7	071.1 003.4 077.5 077.1	090.9 063.3 064.3 1.500	059 001 003 005 007	290. 330. 330. 330.	1/6./ 1/4.0 178.2 154.0	087.6 086.5 091.9 081.5	087.5 086.5 091.8 081.3
058 290. 060 230. 062 351. 064 310. 066 280. 068 330.	184.0 170.3 182.0 165.7 182.3	071.1 003.4 073.5 073.5 077.3	090.9 063.3 064.3 062.1 085.4	059 061 063 065 067	290. 330. 330. 230. 330.	1/6./ 1/4.0 178.2 154.0 154.8	087.6 086.5 091.9 081.5 085.9	087.5 086.5 091.8 081.3 085.8
058 290. 060 230. 062 351. 064 310. 066 280. 068 330. 070 310.	184.0 170.3 182.0 165.7 182.3 153.7 157.7	071.1 003.4 073.5 073.5 073.5 073.1 073.1	090.9 063.3 064.3 069.1 069.4 077.2 079.0	059 063 065 067 069	290. 330. 330. 330. 330. 330.	1/0./ 1/4.0 178.2 154.0 154.8 15/.0	087.6 086.5 091.9 081.5 085.9 080.6 080.1	087.5 086.5 091.8 081.3 085.8 080.5
058 290. 060 230. 062 351. 064 310. 066 280. 068 330. 070 310. 072 325.	184.0 170.3 182.0 165.7 182.3 153.9 157.7 171.0	071.1 003.4 073.5 073.5 073.5 073.1 073.1	090.9 063.3 064.3 062.1 062.4 077.4 079.0 064.0	059 063 065 067 009 071	290. 330. 330. 330. 330. 300. 320.	1/0./ 1/4.0 178.2 154.0 154.8 15/.0 151.5 155.5	087.6 086.5 091.9 081.5 085.9 080.6 080.1	087.5 086.5 091.8 081.3 085.8 080.5 080.0
058 290. 060 230. 062 351. 064 310. 066 280. 068 330. 070 310. 072 325.	184.0 170.3 182.0 165.7 182.3 153.9 159.7 171.0 151.3	071.1 003.4 073.5 073.5 077.3 077.1 075.0	090.9 063.3 064.3 062.1 062.4 077.2 079.0 064.0	059 063 065 067 069 071 075	290. 330. 330. 330. 330. 320. 320. 331.	1/0./ 1/4.0 178.2 154.0 154.8 157.0 151.5 155.5	087.6 086.5 091.9 081.5 085.9 080.6 080.1 081.6	087.5 086.5 091.8 081.3 085.8 080.0 080.0
058 290. 060 230. 062 351. 064 310. 066 280. 068 330. 070 310. 072 325. 074 240. 080 250.	184.0 170.3 182.0 165.7 182.3 153.7 157.7 171.0 151.3	071.1 003.4 073.5 073.5 077.3 077.1 074.1 075.0 075.0	090.9 063.3 064.3 069.4 079.4 079.0 064.0 074.8	059 063 065 067 071 073 055	290. 330. 330. 330. 330. 320. 330. 351.	1/0./ 1/4.0 178.2 154.0 154.8 157.0 161.5 165.5 165.5	067.6 086.5 091.9 081.5 085.9 080.6 080.1 081.6 083.3	087.5 086.5 091.8 081.3 085.8 080.5 080.0 081.6 083.1
058 290. 060 230. 062 351. 064 310. 066 280. 070 310. 072 325. 074 240. 080 250. 082 200. 084 260.	184.0 170.3 182.0 165.7 182.3 153.9 157.7 171.0 151.3 175.6	071.1 003.4 073.5 073.5 073.5 073.1 073.1 075.0 075.0 075.1	090.9 063.3 064.3 069.1 089.4 079.0 064.0 074.8 007.0	059 063 0667 067 071 075 081 083 079	290. 330. 330. 330. 330. 330. 351. 390.	1/0./ 1/4.0 178.2 154.0 157.0 151.5 155.5 169.6 180.6 180.6	087.6 086.5 091.9 081.5 085.9 080.6 080.1 081.0 083.3	087.5 086.5 091.8 081.3 085.8 080.5 080.0 081.6 083.1 090.7
058 290. 060 230. 062 351. 064 310. 066 280. 070 310. 072 325. 074 240. 082 200. 084 260.	184.0 170.3 182.0 165.7 182.3 153.9 157.7 171.0 151.3 175.6	071.1 003.4 073.5 077.3 077.3 077.1 075.0 075.0 075.0	090.9 063.3 069.4 079.4 079.0 074.8 074.8 075.8 075.8	0591 0605 0607 0607 0713 0501 0813 079	300. 300. 300. 300. 300. 300. 300. 300.	1/0./ 1/4.0 178.2 154.0 157.0 151.5 155.5 169.6 180.6 180.6	087.6 086.5 091.9 081.5 085.9 080.6 080.1 081.0 083.3	087.5 086.5 091.8 081.3 085.8 080.5 080.0 081.6 083.1 090.7
058 290. 060 230. 062 351. 064 310. 066 280. 070 310. 072 325. 074 240. 082 200. 084 260.	184.0 170.3 182.0 165.7 184.3 153.9 157.7 171.0 151.3 175.6 157.9 176.6	071.1 003.4 072.1 072.5 077.3 077.3 077.1 075.0 075.0 078.1	U 9 0 . 9 U 内 3 . 3 U 内 7 . 4 U 内 7 . 4 U 7 7 . 4 U 7 7 . 4 U 7 7 . 0 U	0591 0605 0607 0609 0713 0505 081 083 079	330. 330. 330. 330. 331. 300. 391. 391. 391.	1/0./ 1/4.0 178.2 154.0 151.5 155.5 165.6 180.0 180.0	087.6 086.5 091.9 081.5 080.6 080.1 081.0 083.3 090.7 090.7	087.5 086.5 091.8 081.3 085.8 080.5 080.0 081.6 083.1 090.7 089.3
058 290. 060 230. 062 351. 064 310. 065 280. 070 310. 072 325. 074 240. 082 200. 084 260. LOT N	184.0 170.3 182.0 165.3 153.9 157.7 171.0 151.3 175.0 176.0	071.1 003.4 003.1 003.1 077.3 077.3 075.0 075.0 075.0 075.7	090.9 063.3 069.4 079.4 079.0 079.0 079.0 079.0 079.0 079.0 079.7	0591 0605 0607 0713 075 081 079 079	290. 230. 200. 230. 200. 200. 200. 190. 190. 200. 190. 190. 190. 190. 190. 190. 190. 190. 190.	1/0./ 1/4.0 178.2 154.0 157.0 151.5 155.5 165.6 180.0 132.0	087.6 086.5 091.9 081.5 085.9 080.6 080.1 081.6 083.3 090.7 090.7	087.5 086.5 091.8 081.3 085.8 080.0 081.6 083.1 090.7 089.3 077.2

Figure 11. (Con't) Raw Test Data from Loaded Container Testing

CIL-6	7337 19	464	M4AZ		MIJA	2		
In= 1080	ьŢ	45	٢3	Iv=	TURQ	Р1	P2	ЕЧ
103 075. 105 225. 107 140. 109 190. 111 240. 113 300. 115 325. 117 250. 119 150.	133.1 109.4 121.0 114.8 103.3 097.7 104.5 106.2	05 •1 080•6 089•8 035•2 076•9 075•5 081•3 080•0	078.0 076.7 068.6 084.5 074.9 074.9 074.9	104 106 108 110 112 114 116 118	105. 140. 130. 175. 190. 150. 310. 250.	126.1 117.9 111.0 088.9 105.3 115.7 101.2	093.2 087.2 081.8 066.3 078.1 085.5 076.5 084.5	093.2 086.1 080.1 066.1 077.3 084.8 076.1
121 200. 123 100. 125 230. 127 220. 129 180. 131 240. 133 351. 135 290. 137 230. 139 250. 141 180. 143 225. 145 350. 147 150. 149 200.	101.2 086.3 118.3 100.7 100.3 115.0 104.2 101.5 114.8 101.9 102.0 114.6	0/6.2 065.5 067.4 0/4.9 002.6 086.0 0/7.3 0/5.4 0/5.7 085.3 0/5.3 0/5.9	0/5./ 064.9 087.0 0/4.1 082.0 085.4 0/6.6 0/4.9 085.2 0/5./ 0/4.9 084.5 0/6.1	122 124 126 1302 132 134 136 138 140 1444 146 148 150	25. 150. 200. 240. 250. 130. 110. 275. 330. 125. 180. 210. 210. 200. 250.	093.3 112.1 107.3 118.0 106.9 106.3 117.9 098.5 096.7 110.0 103.8 119.3 112.7	070.7 083.4 079.1 087.1 078.2 079.9 087.5 073.2 072.3 082.0 077.7 088.1 084.7 084.7	066.9 082.1 075.4 078.9 056.1 079.3 086.9 072.8 071.8 080.9 077.1 087.2 081.9 083.9

CHARGE CONTAINER

LOT NUMBER

Figure 11. (Contt) Raw Test Data from Loaded Container Testing

LO1 NUMBER		CH	IAKGE	CŮ	BNIAIN	:R		
LIL-67.	331 17	ላ ሃ	M442		MIBA	2		
IU= TORQ	Pl	F2	۲3	10=	TORO	Р1	P2	64
153 351.	104.5	ndu.8	UB0.2	154	350.	107.5	080.5	079.8
155 120.	108.5	981.3	U80.2	156	250.	109.4	081.3	080.8
157 225. 159 200.		080.5 082.7	019.4	158 160	150.	105.9	079.9 073.5	078.9
161 351.	110.5	003.1	082.3	162	340.	106.1	079.3	078.3
163 225. 165 175.		0/9.9	0/8.9	164 166	160.	107.6	079.9 072.7	078.6
16/ 175.	10/.0	080.2	019.2	168	351.	114.0	086.1	085.3
169 351. 1/1 1/5.		0/3.6	0/3.1	1/0	351. 225.	097.1 109.9	073.6 083.2	072.9 082.1
1/3 150.	113.3	083.7	0.580	1/4	250.	101.4	076.1	075.3
1/5 300. 1// 230.	101.5	0/6.9 085.5	016.2 084.3	176	340. 225.	114.2	085.0 080.7	084.1
1/9 350.	112.4	084.0	U03.J	180	120.	106.2	080.2	079.4
181 250. 183 175.	102.3	041.6 075.7	∪80.7 ∪14./	184	200. 351.	131.5	066.5 096.5	066.0
185 350.	116.5	084.7	1.880	186	280.	109.3	083.7	083.1
187 180. 189 210.	091.2	009.1	016.3 055.4	190	260.	104.0	077.3 081.7	0/6./
191 230.	105.5	7.580	061.9	192	200.	104.0	077.7	076.1
193 300. 195 250.	096.3	0/3.4	4.110	174	180.	100.5	075.9 073.7	0/4./
19/ 240.	098.9	013.2	0/7./	178	220.	108.7	080.3	079.0
199 220. 201 300.	100.6	0/4.9	0/4.0	102 102	350. 150.	09/.J 135.4	074.1	073.4 099.5

Figure 11. (Con't) Raw Test Data from Loaded Container Testing

LOT N	MMBER	C)	HARDE	C	NIAIN	Ek		
8AJ-67	178-0F	1970	M I		ABIM	۷		
ID= TORU	P1	**/	۲,	10=	TURQ	Pl	HC	٤٩
203 175. 205 000. 207 200. 209 210. 211 180. 213 230. 215 200. 217 140. 219 190. 221 160. 223 150. 224 230. 227 090. 231 160. 231 160. 231 160. 231 140. 239 200. 241 130.	090.0 099.5 106.9 097.5 119.6 123.5 123.5 124.9 124.9 124.5 107.6 107.6 107.6 107.6	999 4 . 6 . 7 . 6 . 7 . 6 . 7 . 6 . 7 . 6 . 6	000 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	4 0 8 0 V 4 68 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0 V 4 6 0	1600 ·	093.8 091.3 105.5 120.3 120.4 123.0 116.5 137.7 112.3 108.4 107.9 123.7 123.7 110.7 115.5 114.3 115.5 106.4	0.4.5.9 0.5.5.9 0.5.5.9 0.5.5.9 0.5.5.9 0.5.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.5.9 0.7.9	073.5 074.5 074.5 074.5 085.1 085.1 073.5 073.5 071.0 080.5 071.0 080.5 074.6 074.4
243 200. 245 190. 247 200. 249 180. 251 150.	107.1 105.4 108.2 105.8 092.3	0/4.7 0/3.5 0/5.2 0/3.2	0/4.5 0/3.3 0/5.1 0/3.1 003.5	244 246 248 250 202	175. 210. 190. 100.	109.2 101.1 069.1 108.4 101.9	075.7 070.7 047.4 075.2 069.7	075.5 070.6 047.4 0/3.4 069.8

Figure 11. (Con't) Raw Test Data from Loaded Container Testing

LOT N	UMHER	C+	HHOL	C	MIAIN	t.R		
BAJ-67	/78-UF 1	9/0	Mic		MIHA	s		
ID= TORG	P1	47	M 3	IU=	וטאט	ь1	44	Р3
253 351. 255 351. 25(351.		0/4.4 0//.5	0/4.3 0/7.3 0/4./	254 250 258	351. 351.	101.1 104.7 105.3	070.7 072.3 074.5	070.5 072.2 074.5
259 351. 261 351.	101.8	0/3.1	0.610 8.510	26U 26Z	351.	054.5 109.4	040.6 075.7	046.5 075.5
263 250. 265 351. 267 351.	098.5	0/4.7	0/4.5	266 266 268	351. 351.	096.3 097.3 103.2	075.2 074.5 076.6	074.4 076.5
269 351. 271 351. 273 351.	111.3	0/1.8 0/7.1 054.7	0/1./ 0/6.9 004./	210 212 214	35U. 35U.	102.5 09 6. 3 09 5. 2	072.3 065.3 073.6	072.4 045.4 073.5
275 351. 277 220. 279 351.	100.5 106.5 107.9	0/0.5	0/0.3 0/4.0 0/4.8	216 218 218	351.	103.1 119.0 096.4	072.2 085.1 067.8	072.U 084.9 067.1
281 351. 283 351. 285 351.		0.6.00 0.75.2 0.75.2	067.8 0/5.0 0/5.1	282 284 280	351. 351.	106.4 111.5 103.6	073.4 077.1 078.9	073.3 076.9 078.7
287 300. 289 351. 291 351.	095.9 099.1 096.1	0/4.9 0/4.9	0/4.8 0/4.8 0/h.1	247 540 598	340. 301. 351.	11E.7	080.1 074.9 078.2	080.0 074.7 078.0
293 351. 295 340. 297 351.	098.7 099.1	060.5 076.6 076.6	000.4 075.3		351. 351.	096.8 094.1 100.5	075.2 077.2	076.7 075.0 077.0
299 351.	101.7	0/9.3	014.2	300	351.	101.5	079.8	0/9./

Figure 11. (Con't) Raw Test Data from Loaded Container Testing

	(A-8R	J5729-5	5 4	MP		M19A	i		
10=	TORG	14	->	F,3	I () =	TURG	P1	44	٢3
301	351.	840.5	014.6	014.4	256	351.	094.0	071.1	071.0
303	250.	162.5	1115.7	U357-4	304	200.	109.6	074.9	073.5
305	260.	112.9	018.1	011.1	300	130.	116.5	073.1	072.8
301	250.	122.8	0.50.4	1.980	いこば	280.	118.1	U/6.8	0/6.4
309	5 50 °	136.5	0.21.1	000°A	310	300.	17201	6.610	017.0
311	220.	110.6	711.5	0/1.5	316	200.	122.9	UH1.5	081.4
313	350.	113.1	00 m • ч	00× 8	314	200.	IUH. 7	ひりょう	073.4
315	100.	152.0	0/4-4	U47.4	310	215.	130.5	さんしょう	083.5
314	100. 300.	117.7	0/5.5	0/5.6 U/h.3	310	200. 215.	113.7	073.7	073.2
321	300.	121.7	0000.6	U00.3	326	300.	107.6	068.5	059.6
323 325	250.	131.0	013.7	0/03.1	324 326	351. 260.	111.9	076.3 093.2	8.SE0
361	150.	120.5	015.1	0/5.5	324	215.	127.9	UB5.4	(185.9
329	200. 220.	121.5	0-0-1	017.8	330 326	240. 150.	118.0	080.7 080.1	080.5
333	275.	128.3	005.4	U05.0	334	180.	119.0	UB1.4	6.180
335 331	200.	117.3	0000	₩₩.4 010.5	355 966	240. 300.	198.5	0n5.1 0HU.3	064.9
334	300.	125.2	014.6	0/5.1	34()	230.	123.8	075.0	074.1
341	351.	124.0	017.5	0/7.1	342	300.	118./	073.4	073.2
343	220.	124.5	リイカ・カ	015.3	344	250 .	13/.0	1.680	082.4
345	300.	114.0	0/0.3	010.2	346	200.	114.0	069.4	069.1
347 349	300. 351.	115.9	017.0	0/1.9	348 350	23U.	114.0	069.6	069.3
351	230.	123.2	11.507	6.000	302	20U.	134.0	UA2.0	041.0

CUNTATNER

Figure 11. (Con't) Raw Test Data from Loaded Container Testing

```
PROGRAM DATA (INPUT GOTPUT) TAPES TAPES TO TRUTO
      DIMENSION ID(100), TOR(100), P1(100), P2(100), P3(100).
     +VULIC100>,0C100>,DC100>
      TTV=i).
      TTQ=0.
      TTD=n.
      ITO=0
      ITU=0
      TTY2=0.
      TTQ2=0.
      TTD2=0.
      件二月
      READ(5:1) Y1
      READ(5:2) NEXLOTE EXLOTE CHARGE ECONT
60
      IF(EDF(5)) 10,20
      DD 30 I=1,H,2
20
      READ(5,3) ID(I. TOR(I),P1(I),P2(I),P3(I),
30
     +ID(I+1),TER(I+1, 21(I+1),P2(I+1),P3(I+1)
      TV=0.
      TQ=0.
      TD=n.
      10BAD=0
      IUBAD=0
      TV2=0.
      TQ2=0.
      TD2=0.
      DO 40 I=1 .N
      VULI(I)=/(P1(I)/P2(I))-1.)◆V1
      VULF=VULI(I)/1728.
      P1(I)=P1(I)/27.692
      P2(I)=P2(I)/27.698
      P3(I)=P3(I)/27.698
      Q(I)=((P2(I)-P3(I))+86.4+YULF)/2157.6866
      R=14.27(P2(I)+14.7)
      D2=(Q(I)/(P2(I)+14.7))/(16.4435+SQFT(R+(1,-R)+(3,-R)))
      D(I) = SOPT(D2)
      TV=TV+VULI(I)
      TQ=TQ+Q(I)
      TEXTD+DCE
```

Figure 12 Data Reduction Computer Program

```
IF(TOR(I).6T.350.) IDBAD=IDBAD+1
      IF (TOR (I).LT.225.) JUBAD=IUBAD+1
      TY2=TY2+(YULI(1)++2)
      TQ2=TQ2+(Q(I)++2)
40
      TD2=TD2+(D(I)++2)
      TTY=TTY+TY
      TTQ=TTQ+TQ
      TTD=TTD+TD
      ITO=ITO+IOBAD
      ITU=ITU+IUBAD
      TTV2=TTV2+TV2
      TTQ2=TTQ2+TQ2
      STTP2=TTP2+TP2
      M=M+N
      VAVE=TV/N
      QAV6=TQ/N
      DAYS=TD/N
      VARV=(N+TV2-(TV++2))/(N+(N-1))
      VARQ=(N+TQ2-(TQ++2))/(N+(N-1))
      VARD=(N+TD2-(TD++2))/(N+(N-1))
      WRITE(6,4) CONT, XLDT1, XLDT2, CHARGE
      WRITE(6,5)
      DD 50 I=1 N
      IF(I.EQ.33.DR.I.EQ.65.DR.I.EQ.97) GD TO 70
      60 TO 80
70
      WRITE(6,5)
80
      CONTINUE
50
      WRITE(6,6) ID(1),TDR(1),VULI(1),Q(1),D(1)
      WRITE(6,7) VAVG, VARY, GAVG, VARQ, DAVG, VARD, N. IUBAD, IDBAD
      30 TO 60
10
      TVRY6=TTV/H
      TQAY6=TTQ/H
      TDAY6=TTD/M
      VARTT=(M+TTT2-(TTT++2))/(M+(M-1))
      VARTV=(M+TTV2-(TTV++2))/(M+(M-1))
      VARTQ=(M+TTQ2~(TTQ++2))/(M+(M-1))
      VARTD=(M+TTD2~(TTD++2))/(M+(M-1))
      WRITE(6.8) TORYS. VARTO, TDRYG, YARTD, M. ITU, ITO
      FORMAT(F8.0)
1
5
      FURMAT(13,A10,A10,A10,A10)
```

Figure 12. (Con't) Data Reduction Computer Program

```
FCRMAT(13:1X:F4.0:2X:F5.0:1X:F5.0:1X:F5.0:1X:13:1X:F4.0:
     +2X,F5.0,1X,F5.0,1X,F5.0)
      FORMAT(1H1,//,10%,17H0ONTAINER TYPE-
                                             •810•/•10X•
     +17HCBHTAINER LBT-- ,610,910,/,10%,
     +17HCHARGE TYPE
                     __
                          •A10)
5
      FORMAT(//,33%,9HEFFECTIVE,/,6%,3HLID.4%,6HULLAGE,
     +6X,4HFLD以,6X,4HHDLE,Z,1X,3HSZN,1X,6HTDRQUE,2X,6HYDLUME。
     +5%,6H(SCFM),3%,13HDIAMETER (IN),/,1%,69(1H+),/)
      FORMAT(1X,13,1X,F6.1,1X,F9.3,2(1X,F10.7))
      FORMAT(///,1X.19HSTATISTICAL SUMMARY,4X,4HMEAN,10X,
     +8HVARIANGE,//,1X,13HULLAGE VOLUME,5X,F10.4,5X,F11.4,/,
     +1X,11HFLOW (SCFM),7X,F10.7,5X,F13.10,/,1X,
     +14HHOLE SIZE (IN),4X,F10.7,5X,F13.10,//1X,9HTOTAL OF ,
     +13,20H CONTAINERS TESTED: ,13,14H UNDER TORQUED ,
     +/,33X,I3,13H DMER TORQUED >
      FORMAT(///j1X,5HTOTAL,/,1X,19HSTATISTICAL SUMMARY,4X,4HMEAN
     +,10%,8HVARIAMCE,//,11HFLOW (SCFH),7%,F10.7,5%,F13.10,
     +/,1X,14HHOLE SIZE (IN),4X,F10.7,5X,F13.10,//,1X,
     +9HTOTAL OF >13,20H CONTAINERS TESTED: >13,
     +14H UNDER TORQUED > / 33X + 13 + 13H OVER TORQUED >
      STOP
      END
```

Figure 12. (Con't) Data Reduction Computer Program

Table 1. Leakage and Ullage Volume Results - M14A2 Container, M3 Charge

CONTRINER TYPE- M1482 CONTRINER LOT--- RAD-67-627-1970 CHARGE TYPE -- M3

	LID	ULLAGE	FLOW	EFFECTIVE HOLE	
S 454			·	• •	
SZN	TORQUE	YOLUME	(SCFM)	DIAMETER (IN)	
+++1	*****	******	******	· · · · · · · · · · · · · · · · · · ·	+++4
1	351.0	583.728	0.0000000	0.0000000	
5	351.0	592.376	.0000496	.0005465	
3	351.0	613.843	.0002055	.0011305	
4	351.0	512.657	0.0000000	0.0000000	
5	351.0	508.411	.0000851	.0006816	
6	351.0	522.818	0.0000000	0.0000000	
7	351.0	495.913	.0000930	-0007122	
11	351.0	529.728	.0000887	.0007182	
9	250.0	5 06 .8 53	.0000848	.0007027	
10	351.0	4 98 .9 13	.0000835	.0006794	

STATISTICAL SUMMARY	HEAH	VARIANCE
ULLAGE VOLUME FLOW (SCFM) HOLE SIZE (IN)	536.5240 .0000680 .0005171	1873.7996 .000000038 .0000001495
TOTAL OF 10 CONTAI	MERS TESTED:	0 UNDER TORQUED

Table 2. Leakage and Ullage Volume Results - M14A2 Container, M3 Charge

CONTAINER TYPE- M1482 CONTAINER LUT- RAD-68-017-1971 CHARGE TYPE -- M3

TODOUT U	LLAGE OLUME ++++++	FLOW (SCEM) 3	EFFECTIVE HOLE DIAMETER (IN)
15 200.0	511.262 492.609 481.140 505.072 282.686 518.156 491.877 527.850 552.305 547.839 579.225 569.746 525.910 405.684 556.926 536.305 549.238 541.881 564.760 543.403 532.512 476.224	.0000856 .0010718 .0001208 .0000845 .0000710 .0032066 .0003975 .0002773 .0048594 .000969 .00019\\(^7\) .000440 .000679 .0005593 .0064488 .0002298 .000907 .0001418 .000909 .0001337 .0001196	
STATISTICAL ULLAGE VOLUM FLOW (SCFM) HOLE SIZE (I	NE 5	MERIN 13.3905 0905669 0013399 RS TESTED:	VARIANCE 4154.1465 .0000013786 .0000013770 10 UNDER TORQUED 2 OVER TORQUED

Table 3. Leakage and Ullage Volume Results - PA66 Container, M188E1M Charge

CONTAINER TYPE- PA66
CONTAINER LOT-- IND-77A-\$69716A
CHARGE TYPE -- M188E1M

				EFFECTIVE	
	LID	ULLAGE	FLUW	HOLE	
SZN	TURQUE	YOLUME	(SCFM)	DIAMETER (IN)	
***	>	******	******	}*********	******
36	351.0	1388 _5 58	.6601162		
37	330.0	1382.486	0.0000000	0_000000	
38	351.0	1375.239	0.0000000	0.0000000	
39	350.0	1137.862	0.0000000	0.0000000	
40	340.0	1387.366	0.0000000	0.000000	
41	351.0	1368.426	0.00000000	0.0000000	
42	240.0	1434.176	.0001200	.0008540	
43	350.0	1408.094	.0002357	.0011898	
44	340.0	1377.000	0.0000000	0.0000000	
45	350.0	1391.529	.0015138	.0030463	
46	351.0	1405.295	.0014112	.0029205	
47	330.0	1345.783	.0001126	.0008469	
48	280.0	1370.573	.0001147	.0008375	
49	340.0	1370.340	0.0000000	0.0000000	
50	275.0	1365.231	0.0000000	0.0000000	
51	250.0	1397.053	.0001169	.0008544	
52	340.0	1386.990	0.0000000	0.0000000	
53	325.0	1372.174	.0001148	.0008382	
54	310.0	1358.615	0.0000000	0.0000000	
35	350.0	1446.764	.006 779 7	.0064961	

STATISTICAL SUMMAR	Y MERN	VARIANCE
ULLAGE VOLUME	1373.4772	3655 .926 0
FLOW (SCFM)	.0005318	.0000023541
HOLE SIZE (IP)	.0009366	.0000025358
TOTAL OF 20 CONTA	INERS TESTED:	O UMBER TORQUED 4 OVER TORQUED

Table 4. Leakage and Ullage Volume Results - PA66 Container, M188E1 Charge

CONTAINER TYPE- PASS CONTAINER LOT-- RAD-69711-DF76 CHARGE TYPE '-- M18861

LID	ULLAGE	FLOW	EFFECTIVE HOLE	
	***********		DIAMETER (IN)	••
*********	• • • • • • • • • • • •	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		* *
5 6 300.0	1253.880	0,00000000	0.0006006	
57 300.0	1373.561 1373.561 1404.307	.0001149	.0008576	
58 390.0		.0002350		
5 9 230.0	1400.579	.0001172	.0008416	
60 230.0	1434.788	.0001201	.0008631	
61 330.0	1392.919	0.0000000		
62 351.0	1454.797	.0002435	.0012098	
63 330.0	1293.091		.0007984	
64 310.0	1405.513		0.0006000	
65 280 . 0	1393.896	.0002333	.0012105	
56 280.0	1427.772 1264.788	.0001195	.0008449	
67 330.0	1264.788	.0001058	. 9008046	
68 330.0	1364.530			
69 300.0		•		
70 310.0	1403.113	.0001174		
71 320.0	1399.348	.0001171	.0008616	
72 385.O	1419.520	.0002376		
73 330.0	1415.813			
74 240.0	1400.968	.0008345	.0012406	
55 351.0		.0002388		
80 250.0	1364.584	.0014844	.0029889	
81 300.0		0.0000000	0.0000000	
82 200.0	1406.973	.0015306		
83 190.0		.0015383		
84 260.0	1367.685 1334.198	0.0000000	0.0000000	
79 300.0	1334.198	0.00000000	0.9000000	
_	L SUMMARY		VARIANCE	
HILAGE VOL	HME 13	878.1450	2628.9372	
FIRM CROEM)	0002757	2629.9372 .0000002224	
HOLE SIZE	(110)	0009573	.00000008111	
TOTAL OF	Se COMINIME	PS TESTED:	2 UNDER TORO	
			2 OVER TOROU	

Table 5. Leakage and Ullage Volume Results ~ PA66 Container, M188El Charge

CONTRINER TYPE- PA66
CONTRINER LOT-- IND-778-5697168
CHARGE TYPE -- M188E1

EFFECTIVE

LID SZM TORQUE	ULLAGE VOLUME	FLOW (SCFM)	HOLE DIAMETER (IM)	
++++++++	*****	*******		
76 150.0 77 240.0 78 225.0 75 175.0	1329,335 1273,045 1355,003 1353,176	0.00000000 0.0000000 .0015874 .0001132	0.0000000 9 '00600 J3040 6 .00082 96	
STATISTICAL	SUMMARY	MEAN	VARIANCE	
ULLAGE VOLU FLOW (SCFM HOLE SIZE)	327.6399 .0004252 .000967 5	1461.4364 .0000006032 .0000020629	
TOTAL OF	4 CONTAIN	ERS TESTED:	2 UNDER TORQUED 0 GVER TORQUED	j

Table 6. Leakage and Ullage Volume Results - M13A2 Container, M4A2 Charge

CONTAINER TYPE- M13A2 CONTAINER LOT-- CIL-67337 CHARGE TYPE -- M4A2

	LID TORQUE	ULLAGE VOLUME	FLOW (SCFM)	EFFECTIVE HOLE DIAMETER (IN
***		******	*****	*****
103		472.432	.0004349	.0015686
104	105.0	486.087	0.0000000	0.0000000
105	225.0	492.030	.0016058	.0031852
106	140.0	484.792	.0002028	.0011086
107	140.0	478.423	.0004003	.0015453
108	130.0	491.545	.0004525	.0016841
109	190.0	478.394	.0002802	.0013111
110	175.0	469.385	.0000786	.0007419
111	240.0	472.728	.0002769	.0013393
112	190.0	479.570	.0003210	.0014362
113	300.0	404.893	.0008033	.0011532
114	150.0	486.379	.0002849	.0013208
115	325.0	392.945	.0003289	.0014381
116	310.0	444.600	.0001488	.0009832
117	250.0	450.967	.0004151	.0016227
118	250.0	472.580	.0001582	.0009872
119	150.0	457.207	.0009296	.0012199
120	220.0	455.428	.0001524	.0009931
121	200.0	451.772	.0001890	.0011093
122	225.0	440.173	.0013997	.0030790
123	100.0	437.276	.0002196	.0012443
124	150.0	473.860	.0002776	.0013123
125	230.0	486.834	.0001630	.0009930
126	0.005	490.915	.0015200	.0031145
127	0.085	474,320	.0003175	.0014443
128	240.0	488,511	.0033521	.0045080
129	130.0	295.071	.0001482	.0009612
130	250.0	505.370	.0090923	.0076405
131	240.0	464.337	.0002331	.0011929
132	130.0	454.979	.0002284	.0012042
133	351.0	479.189	.0002807	.0013466
134	110.0	478.409	.0002402	.0012053

Table 6. (Con't) Leakage and Ullage Volume Results M13A2 Container, M4A2 Charge

				EFFECTIVE	
	1 110	ULLAGE	FLOW	HOLE	
SZN		VOLUME	(SCFM)	DIAMETER (IN)	
****	*****	******	******	· • • • • • • • • • • • • • • • • • • •	****
135	290.0	476.654	.0001994		
136	275.0	475.930	.0091593		
137	230.0	456.870	.0003823		
138	330.0	464.714	.0001944		
139	250.0	459.601	.0002692		
140	125.0	470.195			
141	180.0	489.317			
142	190.0	462.544			
143	225.0	472.991	.0003166		
144	180.0	487.655	.0003673		
145	350.0	299.212	.0002003		
146	210.0	455.207	.0010666		
147	150.0	485.179	.0002436		
148	300.0	434.072	.0002906		
19	200.0	449.450	.0003009		
150	225.0	441.346		.0010022	
151	180.0	408.388			
152	100.0	473.344			
153	351.0	403.897			
154	350.0	461.851	.0002705		
155	120.0	460.694	.0004241		
156	250.0	475.937	.0001991	-	
157	225.0	475.535	.0002399		
159	150.0	448.095	.0003750	*	
159	0	469.545	.0001965	·	
00.	0	445.886	.0002239		
161	351.0	454.029	.0003039 .000389 4	-	
162	340.0	465.367	.0003 9 08		
	225.0	467.043	.0003700 .000 519 3		
	160.0	477.383	.000358 4		
165		475.914			
166	5 70	447.004	.0002992	*0014105	

Table 6. (Con't) Leakage and Ullage Volume Results M13A2 Container, M4A2 Charge

				EFFECTIVE
	ı f D	ULLAGE	FLOW	HOLE
		VOLUME	(SCFM)	DIAMETER (IN)
2411	******* ####		******	
****	•••			
167	175.0	460.145	.0003851	.0015618
	351.0	446.205	.0002997	.0013499
169	351.0	454.635	.0001902	.0011231
	351.0	450.8 9 3	.0002641	.0013233
	175.0	452.494	.0002651	.0013072
172	225.0	441.898	.0001849	.0010717
	150.0	486.9 6 8	.0004482	.0016661
174	250.0	452.365	.0003028	.0014045
175	300.0	440.497	.0002580	.0012929
176	340.0	473.040	.0003563	.0014792
177	230.0	462.221	.0004641	.0016858
178	225.0	464.119	.0003884	.0015660
179	350.0	465,557	.0002727	.0012983 .0013759
180	120.0	446.409	.0002988	_
181	250.0	349.313	.0002631	
188	200.0	385 .14 6	.0001611	
183	175.0	454.756	.0003305	
184	351.0	495.149	.0003729	
185	350.0	516.985	.0004326	
186	280.0	421.161	.0002115	-
187	180.0	295.071	.0001728 .0002389	
188	150.0	475.626	.000258(
189	210.0	440.401	.0002382 4	
190	260.0	482.034	.0002541	•
191	530.0		.0003900	
192	200.0		.0002615	
193	300.0		.000501 .0004488	
194	190.0		.0004406	
	250.0		.0002578	
	180.0		.000152	
	240.0		.000529	-
198	220.0	487.007	# O C C 255 25	· · · · · · · · · · · · · · · · · · ·

Table 6. (Con't) Leakage and Ullage Volume Results MI3A2 Container, M4A2 Charge

LID	ULLAGE	FLOW	HOLE	
S/N TORQUE	VOLUME	(SCFM)	DIAMETER (IN)	
******	******	******	>>>>>	
199 220.0	472.482	.0003558	.0015289	
200 350.0	431.126	.0003247	.0014646	
201 300.0	414.367	.0000693	.0006721	
102 150.0	481.881	.0003226	.0013467	
		-		
STATISTICAL	SUMMARY	MEAN	VARIANCE	

ULLAGE YOLU	ME 45	3.7128	1582.0883	
FLOW (SCFM)		0004488	.0060009138	
HOLE SIZE (014785	.0000006634	
, , , , , , , , , , , , , , , , , , , ,		, o t 41 O 3	*0040000000	
TOTAL OF 10	0 CONTAINER	S TESTER:	49 UMDER TORQUED	
		- 1-01-1-11		
			7 DVER TORQUED	

Table 7. Leakage and Ullage Volume Results - M18A2 Container, M1 Charge

CONTAINER TYPE- M18A2
CONTAINER LOT-- RAJ-67778-OF1970
CHARGE TYPE -- M1

				EFFECTIVE
	LID	ULLAGE	FLOW	HOLE
	TORQUE	VOLUME	(SCFM)	DIAMETER (IN)
***	******	*****	******	******
203	175.0	626.286	.0000524	.0006058
204	160.0	444.757	.0000744	.0007095
205	0.0	588.374	0.0000000	0.0000000
206	200.0	599.731	.0000502	.0005996
207	200.0	604.175	0.0000000	0.0000000
208	190.0	574.828	.0000481	.0005629
209	210.9	597.375	0.0000000	0.0000000
210	180.0	606.869	0.0000000	0.0000000
211	180.0	592.312	.0000496	.0005578
212	180.0	599.052	0.0000000	0.0000000
213	230.0	583.586	.0001465	.0009516
214	170.0	610.923	.0000511	.0005600
215	2 0 0.0	618.278	0.0000000	0.0900000
216	130.0	591,350	0.0000000	0.0000000
217	140.0	621.871	0.0000000	0.0000000
218	175.0	623.136	.0001564	.0009521
219	190.0	609.676	0.0000000	0.0000000
220	160.0	597.931	0.0000000	0.0000000
221	160.0	601.912	.0001007	.0007944
555	190.0	602.666	0.00 0000	0.0000000
553	150.0	622 .9 62	.0001043	.0907710
224	120.0	633.532	.0000530	.0005922
225	230.0	599.830	.0000502	.0005658
226	180.0	619.892	.0000519	.0005639
227	90.0	561.334	.0000939	.0007448
228	180.0	584.377	.0000978	.0007743
229	150.0	428.736	.0000359	.0004741
230	200.0	575.802	.0001446	.0009822
231	160.0	630.343	.0000527	.0005918
535	160.0	606.190	.0000507	.0005853
233	150.0	533.432	.0000893	.0007584
234	150.0	472.926	.0000396	.0004971

Table 7. (Con't) Leakage and Ullage Volume Results - M18A2 Container, M1 Charge

				EFFECTIVE
	LIB	ULLAGE	FLOW	HOLE
SZN	TURQUE	YOLUME	(SCFM)	DIAMETER (IN)
****	****	******	******	***************
235	160.0	611.054	.0001023	
236	170.0	603.616	0.0000000	0.0000000
237	140.0	608 .724	.0001019	.0008055
238	240.0	617.817	.0000517	.000 574 8
239	290.0	598 .29 5	.0000501	.0005737
240	140.0	618.527	.0000518	.0005736
241	130.0	550.446	.0000461	.00054 46
242	230.0	589.615	.0000493	.00057 01
243	200.0	597.25 3	.0001000	.0008109
244	175.0	609.373	.0001020	.0009162
245	190.0	597.637		.0008147
246	210.0	592.091	.0000495	.0005793
247	200.0	604.269	.0000506	.0005757
248	190.0	630.399	0.0000000	
249	180.0	613.254	.0000513	.0005842
250	100.0	607. 9 31	.0009157	.0024500
251	150.0	621.382	.0000520	.0006103
202	150.0	630.386	.0000528	.0005995
STA	ristical	SUMMPRY	MEAN	VAPIANCE *
1 (1 1 6	AGE YOLK	JME 5	i93 .3 343	1771 .2261
	J (SCFM)		0000704	,0000000167
	E SIZE		9005296	.00000 01769
/ I hell tax I				
TOT	AL DIF !	50 CONTAINE	RS TESTED:	46 UNDER TORQUED
	·	_		O OVER TOPRUED

Table 8. Leakage and Ullage Volume Results - M18A2 Container, M2 Charge

CONTAINER TYPE- M1982 CONTAINER LOT-- BAJ-67778-OF1970 CHARGE TYPE -- M2

		VOLUME		EFFECTIVE HOLE DIAMETER (IN	b.
*****	*****		*******	******	•
253	351.0	577.458	.0 000 4 83	.0005644	
254	351.0	592.091			
255	351.0	568.568		.0007835	
256	351.0	617.079	.0000516	.0005879	
257	351.0	572.523	.0000479	.0005612	
258	351.0	569.283	0.0000000	0.0000000	
		540.628			
260	351.0	528. 9 33			
261		593.111		.00057 51	
262	200.0	613.011			
	250.0	429.506			
264	351.0	386.366	.0000323		
265	351.0	506.546	.0000848		
266	351.0	421.417	.0000353		
267		487.664	.0000341		
268	351.0	478.175			
269		594.526			
270	351.0	575.178			
271	351.0	610.809			
272	250.0	653.706	.0108859		
273	351.0	614.529			
274	350.0	404.120	.0000338		
275	351.0	587.911	.0000984		
276	351.0	589.325	.00000986		
277	220.0	602.039	.0000504		
278	351.0	548.535	.0000918		
279	351.0	604.044	· -		
280	351.0	580.858			
281	351.0	591.300			
282		619.087	.0000518		
283		465.104			
284	351.0	614.381	.0001028	.0008156	

Table 8. (Con't) Leakage and Ullage Volume Results - M18A2 Container, M2 Charge

_			EFFECTIVE
LID	ULLA6E		HOLE
	JE YOLUME		DIAMETER (IN)
******	*******	*******	******************
205 251	0 404 450	0000050	0.0040.07
285 351.	· · · - · · -		
286 351.			
287 300			
288 340.			
289 351		.0000372	
290 351			
291 351		.0000301	
292 351		.0001023	
293 351		.0000372	· · -
294 351			
2 95 340			
296 351			
297 351			
298 351	.0 415.597	.0000696	.00067 0 6
299 35 1	.0 388 .96 3	.0000325	.0004555
300 351	.0 374.447	.0000313	.0004461
STATISTIC	CAL SUMMARY	MEAN	VARIANCE
ULLAGE Y	OLUME 5	05.5106	9186.0816
FLOW (SCI	FM) .	.0002856	.0000024425
HOLE SIZE	E (IN) .	.0007719	.0000014238
TOTAL OF	48 CONTAINE	RS TESTED:	2 UNDER TORQUED 40 OVER TORQUED

Table 9. Leakage and Ullage Volume Results - M19Al Container M2 Charge

CONTAINER TYPE- M19A1 CONTAINER LOT-- IA-BR-35729-54 CHARGE TYPE -- M2

				EFFECTIVE	
	LID	ULLAGE	FLOW	HULE	
SZN	TORQUE		(SCEM)		
+++4	*****	******	*****	*******	***
301	351.0	348.630	.0000583	.0006112	
252	351.0	443.506	.0000371	.0005006	
303	250.0	662.692	.0001664	.0010182	
304	200.0	630.589	.0007388	.0022030	
3.05	260.0	613,567	.0002054	.0011487	
306	180.0	817.535	.0002052	.0011686	
307	250.0	726.179	.0001823	.001 0739	
3.08	280.0	740.496	.0002479	.001267 6	
309	220.0	872.723	.0001461	.0009591	
310	300.0	823.034	.0004821	.0017588	
311	226.0	844.935	0.0000000	0.0000 000	
312		689.341	.0002884	.0013442	
313		883 .358	.0000739	.0007124	
314	290.0	652.165	.0002729	.0013436	
315	100.0	1046.370	.0226784	.0122757	
316	275.0	861.036	.0002162	.0011566	
317	100.0	671.265	.0001685	.0010485	
318	200.0	747.354	.0003127	.001 4394	
319	300.0	759.647	.0005081	.0018131	
320	2 75. 0	680 .70 6	.0003987	.0015930	
321	300.0	702.167	.0001763	.0016553	
322	300.0	785.9 96	.0059538	.0063 496	
323	250.0	778.161	.0003907	.0015555	
324	351.0	868.481	.0002907	.0013949	
325	21,0.0	845.287	.0002122	.001198 9	
326	2 60. 0	917.508	.0003071	.0013401	
327	150.0	893.87 4	.0003740	.0015608	
328	275.0	661.406	.0002767	.0012981	
329		706.506	.0002956	.0013680	
330	240.0	63 6.4 57	.0001065	.00082 01	
331	200.0	685.835	.0001722		
332	150.0	642.944	.0002152	.0011680	

Table 9. (Con't) Leakage and Ullage Volume Results - M19A1 Container M2 Charge

				EFFECTIVE
	LID	ULLAGE	FLOW	HOLE
SNM	TOROUE	YOLUME	(SCFM)	DIAMETER (IN)
++++	*****	****	******	·******
333	275.0	691.725	.0002315	.0011910
334	180.0	649.592	.0000544	.0905845
335	200.0	614.225	.0600514	.0005663
336	240.0	918.000	.0001536	.0010426
337	260.0	929.669	.0002334	.0012568
3 38	300.0	715.080	.0001795	.0010661
33 9	300.0	903.429	.0003786	.0015719
340	230.0	895.968	.0002249	.0012151
341	351.0	915.039	.0003063	.0014057
342	300.0	849.838	.0001422	.0009718
343	220.0	893.682	.0001496	.0009891
344	250.0	893.144	.0001495	.0009640
345	300.0	855.973	.0000716	.0006976
346	260.0	896.836	.0002251	.0012410
347	300.0	839.587	.0000703	.0006865
348	230.0	878.431	.0002205	.0012272
349	351.0	910.382	.0009142	.0024737
350	310.0	858,415	.0001437	.0009887
351	230.0	649.839	.0002175	.0011606
305	260.0	886.654	.0002968	.0013631
STAT	ISTICAL	SUMMARY	MEAN	VARIANCE
ULLA	GE YOLU	ME 77	74.7049	17558.6690
FLOW	(SCFH)		0007783	.0000102208
HOLE	SIZE (IN) .	0014858	.0000030089
TOTA	LOF 5	2 CUNTAINER	S TESTED:	is UNDER TORQUED
				5 OVER TORQUED
				<u> </u>

Table 10. Combined Results for the M14A2 Container with M3 Charge

CONTAINER TYPE- M14A2 CONTAINER LOT-- COMBINED CHARGE TYPE -- M3

SZM TORQUE	ULLAGE VOLUME	(SCFM)		(MD)
3 351.0 4 351.0 5 351.0 6 351.0 7 351.0 11 351.0 9 250.0 10 351.0 14 260.0	583.376 593.843 513.657 513.657 502.813 512.613 595.913 596.913 596.913 491.140 505.149 505.149 505.149 505.149 505.23 511.855	.0000830 .0000887	.000546 .001136 0.000000 .000681 0.000000 .000712	550602274343295867164048750
33 351.0 34 230.0 13 225.0	543.403 532.512 476.224	.0000909 .0001337 .0001196	.00072 1 .000862	9 1 6
OLLAGE VOLU FLOW (SCFM) HOUR SIZE (TOTAL OF S	(IN) .	20.5578 9004110 0010927 RS TESTED:	3477.7 .06000 .00000 10 UMDER 11 OVER	09902 11263 TORQUED

Table 11. Combined Results for the PA66 Container with M188E1 Charge

CONTAINER TYPE- PAGE CONTAINER LOT-- COMBINED CHARGE TYPE -- M188E1

SZM TORQUE	WOLLUME	FLOW (SCFM)	DIAMETER (IN)
56 300.0 57 300.0 58 290.0 59 290.0 60 230.0 61 330.0 62 351.0 63 350.0 64 310.0 65 280.0 67 330.0 68 330.0 69 300.0 70 310.0 71 320.0 72 320.0 73 330.0 74 240.0 81 200.0 82 250.0 81 260.0 82 260.0 83 260.0 84 260.0 79 300.0 76 240.0	1434.788 1392.919 1454.797 1393.091 1405.513 1393.896 1487.772 1264.788 1364.530 1305.846 1403.113 1399.348 1419.520 .1415.813 1400.863 1426.592 1364.524 1367.891	.0001149 .0002350 .0001172 .0001201 0.0000000 .0002435 .0001082 0.0002333 .0001195 .0001058 .0001074 .0001171 .0002376 0.0000000 .0002345 .0001588 .0014844 0.0000000 .00158306 .00158306 .00158306 .00158306 .001000000000000000000000000000000000	.0011794 .0008416 .0008631 0.0000000 .0012098 .0007984 0.0000000 .0012105 .0008449 .0008589 .0008589 .0008656 .0012110 0.0000000 .0012406 .0012175 .0029889 0.000000 .0031359 .0070697 0.0000000
78 225.0	1355.003		
75 175.0 STATISTICA	1353.176 L SUMMARY	.0001132 MEAM	.0000236 VARIANCE
ULLAGE VOL FLOW (SCFM HOLE SIZE) .	3 71.411 0 0002957 0009587	2722.4276 .0000002568 .0000009126
TOTAL OF .	зо сшитатив	PS TESTED:	4 UNDER TORQUED 2 OVER TORQUED

Table 12. Results of Container Testing After Lid Re-Torque

CONTAINER TYPE- PA66 CONTAINER LOT-- IND-77A-569716, CHARGE TYPE -- M188E1

LID ŞZN TORQUE	ULLAGE YOLUME	FLOW (SCFM)	EFFECTIVE HOLE DIAMETER (IN)	***
86 300.0 87 306.0 88 300.0 89 300.0 91 300.0 92 300.0 93 300.0 94 300.0 95 300.0 96 300.0	1383.859 1318.235 1346.824 1331.318 1314.929 1341.272 1328.215 1430.153 1296.202 1257.191 1388.741 1350.927 1358.660 1346.858 1312.160 1355.339 1327.169	.0002316 0.0000000 0.0000000 .0001114 0.0000000 .0001111 0.0000000 .0014101 0.0000000 0.0000000 0.0000000 0.0000000	.0011659	
STATISTICAL ULLAGE VOLU FLOW (SCFM) HULE SIZE TOTAL OF	UME 13 (IN)	840.4737 0001361 0005103	VARIANCE 1515.8083 .0000001143 .000006296 0 UMDER TORQUE 0 OVER TORQUE	

tag, and when opened was found to contain only a partial charge. In order to maintain uniformity in the test population, this container was omitted from further testing.

Table 13 presents the results of the determination of leakage hole size for the various container/charge configurations and the overall results. As can be seen, the largest mean effective leakage hole size or any container/charge configuration does not exceed 1.5 mils while the mean effective leakage hole size for the total population of 349 containers does not exceed 1.2 mils.

Based upon the work of Somerville⁴ as reported by Natrella⁵, we can determine the largest value of a selected parameter for a desired confidence level such that a known percentage of the population can be said to lie below that maximum value. Applying this procedure to the effective leakage hole size and utilizing table A-31 of Reference 4 we obtain the results presented in Table 14.

This relates the leakage hole size to the confidence of finding the stated population percentage below (less than) that hole size. For example, we can state that we have a 90% confidence that 95% of all hole sizes in any test population will be less than 0.003079 inches in diameter.

Automated Load and Pack (LAP) Line Test Equipment

Requirements

Equipment destined to be utilized on automated load and pack assembly lines must be capable of detecting leakage rates that are indicative of unacceptable containers. In order to accomplish this goal, the pressure transducer used must have sufficient resolution to be able to detect the pressure decay due to leakage over and above that caused by adiabatic cooling for any container size and ullage volume.

Using the results of Table 14 in conjunction with Figures 4 and 5, we can determine the leakage factors for any population percentage, confidence level, and test pressure. Dividing the leakage factors by the container ullage volume would then result in the minimum transducer resolution needed for the selected test conditions. Table 15 presents the minimum transducer resolutions needed for a given population percentage, confidence level and test pressure, and are based upon the largest ullage volume as determined by the loaded container testing. The resolutions given in the table must be multiplied by the pressure test time in order to arrive at the true resolution needed.

The use of Table 15 can best be shown by the following example:

Problem: We wish to have a 95% confidence that 95% of all containers have leakage holes less than or equal to 0.0031 inches. We

Table 13. Summary of Loaded Container Test Results

Container	Charge	Mean Effective Leakage Hole Size
M13A2	M4A2	0.0014785
M14A2	М3	0.0010827
M18A2	М1	0.0005296
M18A2	M2	0.0007719
M1 9A1	M2	0.0014858
PA66	M188E1	0.0009587
PA66	M188E1M	0.0009366
PA66*	M188E1	0.0005103
		
Total	Summary	0.0011168

Total of 351 Containers Tested:

126 Under Torqued

69 Over Torqued

17 Zero Lid Torque*

2 Omitted From Testing

^{*} Re-Torqued then tested

Table 14. Maximum Leakage Hole Size as a Function of Confidence Level and Percentage of Population

Population Percentage

0.99	3 0.0087689	0.0122757	5 0.0122757	
0.95	0.0030463	0.0030790	0.0031145	0.0031852
0.90	0.001661	0.0018131	0.0018156	0.0022030
0.75	0.0013309	0.0013442	0.0013499	0.0013932
Confidence	0.75	0.90	0.95	0.99

Table 15. Required Pressure Transducer Resolutions

			·	Transducer F	Transducer Resolution (PSI/SEC)	1/SEC)
				F111	Fill Pressure	
Populat;on	į	Hole Size	1 PSIG	2 PSIG	3 PSIG	4 PSIG
0.99		Î	-		-	
0.95	_	0.0031852	0.000290	0.00421	0.00529	0.00595
0.90	0	0.0022030	0.000145	0.000214	0.000268	0.000301
0.69	0.	0.0122757	0.00442	0.00624	0.00834	0.00907
0.95 0.	0	0.0031145	0.000290	0.00421	0.00529	0.00595
0.90	0.	0.0318156	0.0000979	0.000143	0.000181	0.000203
0.99	0.	0.0122757	0.00442	0.00624	0.00834	0.00907
0.95 0.	0	0.0030790	0.000290	0.00421	0.00529	0.00595
0.90 0.0	0.	0.0018131	0.0000979	0.000143	0.000181	0.000203

expect the container pressure test to last 5 seconds and the initial container pressure to be 3.0 psig.

Solution: From Table 14 we see that the leakage hole size was chosen consistent with the confidence level and population percentage.

Entering Table 15 with these values we see that for a test pressure of 3.0 psig, the needed transducer resolution is 0.00529 PSI/SEC. Multiplying this by the container test time of 5 seconds yields the minimum transducer resolution of 0.026 PSI. Therefore in order to conduct a leakage test under the given conditions, we must select a transducer capable of resolving pressure levels to at least 0.026 PSI.

Availability

Although it is known that several commercial firms such as Uson, Inc., and Himmelstein & Co. manufacture total systems for the determination of pressure decay in closed containers, the vast majority of leakage test equipment manufactured is of the halogen or helium "sniffer" type which does not lend itself to employment on a high speed automated LAP line.

With the advent of microprocessor control systems and their application to LAP lines, it is felt that the measurements and calculations needed for leakage rate determination can be best accomplished by utilizing these systems instead of employing a discrete test system. All accept/reject criteria would then reside in the central processor read-only memory (ROM) and the processor itself would accomplish all the necessary computations based upon a pre-stored subprogram and the data it receives from the remote pressure transducer.

The availability of equipment therefore reduces to the availability of pressure transducers with adaquate sensitivity/resolution to measure the unit time pressure decays as given by Table 15. The appendix presents a short list of manufacturers that produce pressure transducers with sufficient accuracy to be employed on LAP lines. It should be noted that this list is by no means exhaustive and that the final choice of equipment/suppliers will depend upon the specific application, the availability of the equipment, and its compatibility with the other LAP line equipment.

CONCLUSIONS AND RECOMMENDATIONS

As a result of the efforts documented by this report, the following conclusions have been reached:

- 1. An adequate theory exists that relates effective leakage hole size to the observed pressure decay in the container and the container ullage volume.
- 2. Laboratory testing has shown a good correlation between theoretical and empirical results.
- 3. A maximum container test pressure has been established that is typically less than 34.5 kPa (5.0 PSIG).
- 4. As a result of a series of tests conducted with loaded propellant containers, a mean ullage volume has been established for each container/charge combination considered. Variations in container ullage volume, as measured, typically run between 3% and 19% of this mean value.
- 5. Applying the developed theory to the results of the loaded container tests has shown that the effective leakage hole size for all the containers tested is on the order of 25 micrometers (0.001 inch).

As a result of this effort and the previous work in this area², the leakage characteristics of propellant containers have been sufficiently determined and no further effort should be required in this area.

Due to the large number of manufacturers producing pressure transducers and the variety of sensing means employed in the transducers, no single manufacturer/transducer type can be recommended. Selection of an appropriate transducer will depend upon parameters fixed by the LAP line design, such as available test time as established by the line production rate, and the decision to employ centralized or discrete test decision logic circuits.

REFERENCES

- 1. N. A. Hall, <u>Thermodynamics of Fluid Flow</u>, Prentice-Hall, Inc., New York, 1951.
- 2. M. Slawsky, A. Schmidlin, and M. Lutzky, "A Method For Predicting Pressure Drops in Pneumatic Components and Systems", SAE National Aeronautic Meeting, New York, NY 20-24 April 1953.
- 3. M. Goes, "Analysis of a Propellant Canister Leak Detection System Utilized on an 155mm and 8-inch LAP Line," DRDAR-LCN-F Letter Report to DRDAR-LCU-TP, October 1977.
- 4. Paul N. Somerville, <u>Tables for Obtaining Non-Farametric Tolerance Limits</u>, Annals of Mathematical Statistics, Vol 29, No. 2, pp 599-601, June 1958.
- 5. Mary Natrella, "Engineering Design Handbook, Experimental Statistics," Section 5, Tables. US Army Materiel Command, AMCP 706-114, July 1963.

APPENDIX

Selected Transducer Manufacturers

Beacon, Inc.
Bell & Howell Co. - CEC Instruments Div
Condec Corp/Consolidated
Datametrics, Inc.
Foxboro Co./ICT, Inc.
Genisco Technology Corp.
Himmelstein & Co.
Honeywell, Inc.
Lynch Corp/Cox Instruments
Robinson - Halpern Co.
Rosemount, Inc.
Schaevitz Engineering
Sensotec, Inc.
Setra Systems, Inc.
Sybron Corp/Taylor
Systron - Donner Corp.
Viatran Corp.

DISTRIBUTION LIST

;	copies
Weapon System Concept Team/CSL ATTN: DRDAR-ACW	1
Aberdeen Proving Ground, MD 21.010	
Technical Library ATTN: DRDAR-CLJ-L Aberdeen Proving Ground, MD 21010	1
Technical Library ATTN: DRDAR-TSB-S Aberdeen Proving Ground, MD 21005	1
Benet Weapons Laboratory Technical Library ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1
Commander U.S. Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L Rock Island, IL 61299	1
Director U.S. Army TRADOC Systems Analysis Activity ATTN: ATAA-SL (Tech Lib) White Sands Missile Range, NM 88002	1
US Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005	1
Commander US Army Armament Research & Development Command ATTN: DRDAR-LCN DRDAR-LCN-C DRDAR-TSS DRDAR-SP DRDAR-LCM-PP, Norm Baron DRDAR-QAR-R, Howard Gould DRDAR-QAR-I Frank Clark	1 10 5 20 2 1 1
Dougn N1 07901	-

DISTRIBUTION LIST (Con't)

	Copies
Commander Defense Documentation Center	12
Cameron Station Alexandria, VA 22314	