Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: 2 Bac Sciences Physiques

Durée totale : 2h

🖾 Contenus du programme :

• Fonctions primitives d'une fonction continue sur un intervalle;

• Fonctions primitives de la somme de deux fonctions; fonctions primitives du produit d'une fonction par un nombre réel.

Les capacités attendues :

- Déterminer les fonctions primitives des fonction usuelles;
- Utiliser les formules de dérivation pour déterminer les fonctions primitives d'une fonction sur un intervalle.

Recommandations pédagogiques :

• On déterminera les fonctions primitives des fonctions usuelles à partir de la lecture croisée du tableau des dérivées de ces fonctions.

1. Primitive d'une fonction sur un intervalle :

Definition 1

Soit f et F deux fonctions définies sur un intervalle I de \mathbb{R} .

On dit que la fonction F est une primitive de la fonction f sur I si :

Fest dérivable sur let pour tout $x \in I$: F'(x) = f(x)

Exemple 1

On considére les fonctions f et F définies sur l'intervalle $I=]0;+\infty[$ par :

$$f(x) = 1 + 2x + \frac{1}{\sqrt{x}}$$
 et $F(x) = x + x^2 + 2\sqrt{x}$

La fonction F est une primitive de la fonction f sur I car F est dérivable sur I et pour tout $x \in I$:

$$F'(x) = (x + x^2 + 2\sqrt{x})' = 1 + 2x + \frac{1}{\sqrt{x}} = f(x)$$

2. Primitive d'une fonction continue :

Proposition 1

Toute fonction continue sur un intervalle I admet une primitive définie sur cet intervalle.

Proposition 2

Soit f une fonction continue sur un intervalle I de \mathbb{R} .

- Si F est une primitive de la fonction f sur I, alors les primitives de f sont les fonctions $x \mapsto F(x) + c$ où c est une constante réelle.
- Pour tout $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive G de f sur I vérifiant : $G(x_0) = y_0$.

Exemple 2

Soit f la fonction définie sur l'intervalle $I=]0;+\infty[$ par : $f(x)=1+2x+\frac{1}{\sqrt{x}}$. On a la fonction F

définine sur I par : $F(x) = x + x^2 + 2\sqrt{x}$ est une fonction dérivable de f sur I.

Donc les primitives de la fonction f sur l'intervalle I sont les fonction $x \mapsto x + x^2 + 2\sqrt{x} + c$ où c une constante réel. Soit G la primitive de la fonction f sur I qui s'annule en 1.

Donc $G(x) = x + x^2 + 2\sqrt{x} + c$ avec G(1) = 0.

On a alors $G(1) = 0 \Longleftrightarrow 1 + 1^2 + 2\sqrt{1} + c = 0 \Longleftrightarrow 4 + c = 0 \Longleftrightarrow c = -4$.

Ainsi:

$$(\forall x \in]0; +\infty[); G(x) = x + x^2 + 2\sqrt{x} - 4$$

3. Opérations sur les primitives :

Proposition 3

Si F et G sont respectivement des primitives des fonction f et g sur un intervalle I alors :

- F+G est une primitive de la fonction f+g sur l'intervalle I.
- Pour tout $(\alpha; \beta) \in \mathbb{R}^2$, $\alpha F + \beta G$ est une primitive de $\alpha f + \beta g$ sur l'intervalle I.

	$\overline{}$												
4	Ρ	r	in	n:	it	i٦	ves	11	Q1	110	П	PS	•
т.					u		v (a)			111		1 (1, 1)	

4. I IIIIIUIVES USUEIIES.								
La fonction f	Les primitives F de f'	L'intervalle \boldsymbol{I}						
0	$c \ (c \in \mathbb{R})$	\mathbb{R}						
$x \mapsto a \ (a \in \mathbb{R}^*)$	$x \mapsto ax + c$	\mathbb{R}						
$x\mapsto x^n\ (n\in\mathbb{N}^*)$	$x \mapsto \frac{x^{n+1}}{n+1} + c$	\mathbb{R}						
$x\mapsto \frac{1}{x^n}\ (n\in\mathbb{N}^*-\{1\})$	$x \mapsto \frac{1}{(1-n)x^{n-1}} + c$ $x \mapsto \frac{x^{r+1}}{r+1} + c$ $x \mapsto \frac{n}{n+1} \sqrt[n]{x^{n+1}} + c$	\mathbb{R}_+^* ou \mathbb{R}^*						
$x\mapsto x^r\ (n\in\mathbb{Q}^*-\{1\})$	$x \mapsto \frac{x^{r+1}}{r+1} + c$	\mathbb{R}_+^*						
$x \mapsto \sqrt[n]{x} \ (n \in \mathbb{N}^*)$	$x \mapsto \frac{n}{n+1} \sqrt[n]{x^{n+1}} + c$	\mathbb{R}^+						
$x \mapsto \sin x$	$x \mapsto -\cos x + c$	\mathbb{R}						
$x \mapsto \cos x$	$x \mapsto \sin x + c$	\mathbb{R}						
$x \mapsto 1 + \tan^2 x = \frac{1}{\cos^2(x)}$	$x \mapsto \tan x$	$\left[-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right] (k \in \mathbb{Z})$						
$x \mapsto \sin(ax+b) \ (a \in \mathbb{R}^*)$	$x \mapsto -\frac{1}{a}\cos(ax+b)$	\mathbb{R}						
$x \mapsto \cos(ax+b) \ (a \in \mathbb{R}^*)$	$x \mapsto \frac{1}{a}\sin(ax+b)$	\mathbb{R}						
u'v + uv'	uv + c	Intervalle où u et v sont dérivables						
$\frac{-u'}{u^2}$	$\frac{1}{u}+c$	Intervalle où \boldsymbol{u} est dérivable et ne s'annule pas						
$\frac{u}{2\sqrt{u}}$	$\sqrt{u} + c$	Intervalle où u est dérivable et strictement positive						
$u'u^r \ (r \in \mathbb{Q}^* - \{1\})$	$\frac{u^{r+1}}{r+1} + c$	Intervalle où u est dérivable et u^r est définie						
$\frac{u'v - uv'}{v^2}$	$\frac{u}{v} + c$	Intervalle où \boldsymbol{u} et \boldsymbol{v} sont dérivables et \boldsymbol{v} ne s'annule pas						