Análise de modelos de aprendizagem de máquina em base de dados desbalanceada

Leonardo Alves (las3) Pedro Lins (plal)

Base de dados

- Credit Card Fraud Detection
- 284.807 Transações de cartões de crédito
 - o 492 Fraudes
- Dados reais e confidenciais
 - Aplicação de PCA

Modelos de Aprendizagem

- k-Nearest Neighbors (KNN);
- Decision tree (DT);
- Random forest;
- Multilayer perceptron (MLP);
- Support vector machine (SVM)

Métodos de Balanceamento de dados

- UnderSampling
 - Random UnderSampling
 - Cluster Centroids
- OverSampling
 - SMOTE

Metodologia

- Executar algoritmos
 - Repeated Stratified KFold 5x10
- Avaliar modelos
 - Acurácia
- Teste de normalidade
- Hipóteses
 - Existe diferença entre os modelos?
 - Existe diferença significativa entre os métodos de balanceamento?

Distribuições

Boxplots

Teste de normalidade

- Kolmogorov-Smirnov
- Shapiro-Wilk

Modelo	p-value (KS)	p-value (SW)
Árvore de Decisão	1.7371 x e ⁻³6	0.0684
MLP	1.2029 x <i>e</i> ⁻³⁵	0.1864
Random Forest	1.6716 x e ⁻³⁷	0.0803
SVM	$2.5610 \times e^{-36}$	0.3375
MLP	1.6716 x e ⁻³ ³⁷	0.1241

Teste 1: Existe diferença significativa na acurácia dos modelos

H0: Desempenho dos modelos é igual H1: Desempenho dos modelos é diferente

- Teste de Wilcoxon
- Random UnderSampling

Modelo 1	Modelo 2	p-value
KNN	Árvore de Decisão	1.5 x e ⁻ ⁸
KNN	MLP	0.0007
KNN	Random Forest	5.62 x e ⁻⁵
KNN	SVM	0.0002
Árvore de Decisão	MLP	1.6 x e ⁻9
Árvore de Decisão	Random Forest	4.4 x <i>e</i> ⁻ ⁶
Árvore de Decisão	SVM	7.49 x <i>e</i> ⁻¹⁰
MLP	Random Forest	2.75 x <i>e</i> ⁻ ⁸
MLP	SVM	0.6575
Random Forest	SVM	4.45 x <i>e</i> ⁻ ⁸

Diagrama de diferença crítica

Teste de Friedman

o p-value: 2.94 x *e*⁻²⁵

- Teste de Nemenyi
 - post-hoc test

UnderSampling

- Random UnderSampling
- Cluster Centroids

OverSampling

- SMOTE
- SVM

UnderSampling

- Random UnderSampling
- Cluster Centroids

OverSampling

- SMOTE
- MLP

Boxplots

Teste de normalidade

- Kolmogorov-Smirnov
- Shapiro-Wilk

	SVM	
Método	p-value (KS)	p-value (SW)
Random UnderSampling	1.67 x e ⁻³⁷	0.1241
Cluster Centroids	8.17 x <i>e</i> ⁻³⁶	0.0087
SMOTE	5.80 x e ⁻³8	5.95 x e ⁻¹⁰

	MLP	
Método	p-value (KS)	p-value (SW)
Random UnderSampling	1.67 x e ⁻³⁷	0.0803
Cluster Centroids	2.47 x e ⁻³⁷	0.0561
SMOTE	3.06 x e ⁻⁴0	0.0010

H0: Desempenho usando os métodos de balanceamento é igual

H1: Desempenho usando os métodos de balanceamento é diferente

Teste de Wilcoxon

	SVM	
Método 1	Método 2	p-value
Random UnderSampling	Cluster Centroids	7.55 x e ⁻ ⁸
Random UnderSampling	SMOTE	0.6745
Cluster Centroids	SMOTE	6.16 x e ⁻⁷

	MLP	
Método 1	Método 2	p-value
Random UnderSampling	Cluster Centroids	0.1715
Random UnderSampling	SMOTE	7.5500 x e ⁻¹⁰
Cluster Centroids	SMOTE	$7.5500 \times e^{-10}$

Diagrama de diferença crítica

• Teste de Friedman

O SVM p-value: 8.30 x e^{-9}

O MLP p-value: 1.93 x *e*⁻¹⁷

Teste de Nemenyi

post-hoc test

Conclusões

- Dentre os modelos SVM melhor ranking médio
 - Resultados equivalentes: MLP, KNN e Random Forest
- SMOTE melhor ranking médio entre as técnicas
 - SVM: Random UnderSampling com resultado equivalente (menor tempo de treinamento)

Análise de modelos de aprendizagem de máquina em base de dados desbalanceada

Leonardo Alves (las3) Pedro Lins (plal)