We want to show that given $f: X \to Y$, f is uniformly continuous if and only if it satisfies the property given in the question.

(\Longrightarrow) Uniform continuity gives that for any $\epsilon > 0$, $\exists \delta > 0$ such that $d_X(p,q) < \delta \Longrightarrow d_Y(f(p), f(q)) < \epsilon$ for any $p, q \in X$. Then, if we have any set E such that diam $E < \delta/2$, then for any two points p, q in E, we have that $d_X(p,q) \le \delta/2 < \delta$, so for any two points $f(p), f(q) \in f(E)$, we have that $d_Y(f(p), f(q)) < \epsilon$, so diam $f(E) < \epsilon$, which was what we wanted.

(\iff) Fix $\epsilon > 0$, and take any $p, q \in X$ such that $d_X(p,q) < \delta/2$ where δ is the associated δ to the fixed ϵ given by the property from the question. Then, $q \in B_{\delta/2}^{\circ}(p)$, and consider that diam $B_{\delta/2}^{\circ}(p) \le \delta/2 < \delta$, so if we have the property from the question, then diam $f(B_{\delta/2}^{\circ}(p)) < \epsilon$. Since we have that $q \in B_{\delta/2}^{\circ}(p) \implies f(q) \in f(B_{\delta/2}^{\circ}(p)) \implies d_Y(f(q), f(p)) < \epsilon$, we are done.

10

Theorem 4.19 is that if $f: X \to Y, X$ compact, f continuous, then f is uniformly continuous. The alternative proof in the problem is as follows:

Suppose that f is not uniformly continuous. Then, for some $\epsilon > 0$ and every $\delta > 0$, there are $p_{\delta}, q_{\delta} \in X$ such that $d_X(p_{\delta}, q_{\delta}) < \delta$ and $d_Y(f(p_{\delta}), f(q_{\delta})) > \epsilon$. For positive integers n, set p_n, q_n to the associated $p_{1/n}, q_{1/n}$ from before, such that $d_Y(f(p_n), f(q_n)) > \epsilon$ and $d_X(p_n, q_n) < 1/n$. Then, we have that since X is compact, that there are convergent subsequences of p_n, q_n , say p_{n_i}, q_{n_i} , such that $p_{n_i} \to p, q_{n_i} \to q$ as $i \to \infty$, $p, q \in X$.

However, since we have that $d(q, p_{n_i}) \leq d(q, q_{n_i}) + d(q_{n_i}, p_{n_i}) < d(q, q_{n_i}) + 1/n_i$, but both terms on the right $\to 0$ as $i \to \infty$, since $q_{n_i} \to q$ by definition and $n_i \to \infty$, so we get that $d(q, p_{n_i}) \to 0$, so p = q. Then, since f is continuous, we have that as $i \to \infty$, $f(p_{n_i}) \to f(p) = f(q)$ and $f(q_{n_i}) \to f(q) = f(p)$, and so both $d(f(p_{n_i}), p)$ and $d(p, f(q_{n_i})) \to 0$ as $i \to \infty$. However, we have that $d(f(p_{n_i}), f(q_{n_i})) = d(f(p_{n_i}), p) + d(p, f(q_{n_i})) > \epsilon$ by construction, so as $i \to \infty$, we get that $0 > \epsilon$, so \Longrightarrow . Thus, f must be uniformly continuous.

2

To see that it is strictly increasing, pick any c,d such that a < c < d < b. Then, we have that f is continuous on [c,d] since it is differentiable on $(a,b) \supset [c,d]$. Next, the mean value theorem gives that there is some point p on (c,d) such that $f'(p) = \frac{f(d) - f(c)}{d - c}$, and since we have that $d > c \implies d - c > 0$, and the derivative is positive by assumption, then f(d) - f(c) > 0 as well, so f must strictly increase.

Then,

$$g'(f(x)) = \lim_{f(t) \to f(x)} \frac{g(f(t)) - g(f(x))}{f(t) - f(x)} = \lim_{f(t) \to f(x)} \frac{t - x}{f(t) - f(x)}$$

but since f is continuous,

$$\lim_{f(t)\to f(x)} \frac{t-x}{f(t)-f(x)} = \lim_{t\to x} \frac{1}{\frac{f(t)-f(x)}{t-x}} = \frac{1}{f'(x)}$$

where this last equality comes from the fact that for any $\delta' > 0$, there is some $\delta > 0$ such that if $|t - x| < \delta$, then $|f(t) - f(x)| < \delta'$, so for any $\epsilon > 0$, if we need that $|f(t) - f(x)| < \delta'$ such that $\left| \frac{t - x}{f(t) - f(x)} \right| < \epsilon$, we can also just require $|t - x| < \delta$, and so the limits are equal.

6

We have that g is differentiable for x > 0, and by product rule we get

$$g'(x) = \frac{f'(x)}{x} - \frac{f(x)}{x^2} = \frac{xf'(x) - f(x)}{x^2}$$

but by the mean value theorem we get that there is some point $p \in (0, x)$ such that $f(x) - f(0) = (x - 0)f'(p) \implies f(x) = xf'(p)$, so

$$g'(x) = \frac{x(f'(x) - f'(p))}{x^2}$$

but since f' is increasing, we have that f(x) > f(p), so g'(x) > 0 for x > 0 so g is strictly increasing by the last problem.

8

f' is continuous on a compact set (namely [a,b]) so f' is uniformly continuous. This gives that for every $\epsilon > 0$, there is some $\delta > 0$ such that if $|y-x| < \delta$, then $|f'(y) - f'(x)| < \epsilon$. Then, the mean value theorem gives for any $t,x \in [a,b]$ some p between x and t such that $f'(p) = \frac{f(t) - f(x)}{t - x}$, but since p is between x and t, |p - x| < |t - x|, so if $|t - x| < \delta$, then $|p - x| < \delta$ and $|f'(p) - f'(x)| = \left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \epsilon$.

For a vector-valued function, note that it has continuous derivative if and only if each component of the derivative is continuous, in which case each component is uniformly continuous; apply the above, and each component f_i satisfies that it is uniformly differentiable. Then, for $|t-x| < \delta$,

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = \left(\sum_{i=1}^{n} \left| \frac{f(t) - f(x)}{t - x} - f'(x) \right|^{2} \right)^{1/2} < (n\epsilon^{2})^{1/2} < \epsilon \sqrt{n}$$

so we have that it holds for vector-valued functions as well.