Aufgabenblatt 1

Aufgabe 1

Geben Sie alle Elemente in $\{a, b\}^*\{c\}^*$ der Länge ≤ 2 an.

Aufgabe 2

Seien Σ ein Alphabet und $n, m \ge 0$. Begründen Sie $\Sigma^n \Sigma^m = \Sigma^{n+m}$.

Aufgabe 3

Konstruieren Sie einen DFA M mit $L(M) = \{w \in \{0, 1\}^* \mid w \text{ enthält eine gerade Anzahl Einsen}\}$. Dabei ist $\Sigma = \{0, 1\}$.

Aufgabe 4

Sei $\Sigma = \{a, b, c\}.$

- a) Konstruieren Sie einen DFA M über Σ , der alle Wörter akzeptiert, die aba oder acb enthalten.
- b) Berechnen Sie schrittweise $\hat{\delta}(z_0, acaabab)$, wobei z_0 der Startzustand von M sei. Begründen Sie damit $acaabab \in L(M)$.

Beachten Sie die Definitionen aus der Vorlesung.

Aufgabe 5

Konstruieren Sie einen DFA M mit $L(M) = \{w \in \{0, 1\}^8 \mid w \text{ ist ein Codewort des Parity-Check-Code der Länge 8}\}$. Dabei ist $\Sigma = \{0, 1\}$.