ArmoredSoftware Semantics 0.0

ArmoredSoftware Crew Information and Telecommunication Technology Center The University of Kansas palexand@ku.edu

December 5, 2014

Contents

1	Introduction	1
2	SPI Calculus	1
	2.1 Wide Mouth Frog	2
	2.2 Needham Schroeder	2
	2.3 Privacy CA Protocol	5
3	Strand Spaces	5
	3.1 Needham Schroder	5
\mathbf{A}	Glossary	5

List of Figures

Abstract

This document describes evolving $\ensuremath{\mathsf{ARMOREDSOFTWARE}}$ semantic definitions.

1 Introduction

2 SPI Calculus

Examples motivated by Abadi and Gordon [1999].

2.1 Wide Mouth Frog

2.2 Needham Schroeder

$$A \rightarrow B: \{A^+, N_A\}_{B^+} \text{ on } c$$

$$B \rightarrow A: \{N_A, N_B\}_{A^+} \text{ on } c$$

$$A \rightarrow B: \{N_B\}_{B^+} \text{ on } c$$

$$A \stackrel{\Delta}{=} \overline{c}\langle\{(A,N_A)\}_{B^+}\rangle.$$

$$c(M).$$

$$\operatorname{case}\ \{M\}_{A^-} \text{ of } (N_A,nb) \text{ in }$$

$$\overline{c}\langle\{nb\}_{B^+}\rangle.$$

$$A$$

$$B \stackrel{\Delta}{=} c(M).$$

$$\operatorname{case}\ \{M\}_{B^-} \text{ of } (x,n) \text{ in }$$

$$\overline{c}\langle\{(n,N_B)\}_{x^+}\rangle.$$

$$c(M).$$

$$\operatorname{case}\ \{M\}_{B^-} \text{ of } N_B \text{ in } B$$

$$\operatorname{sus}\ \stackrel{\Delta}{=} (\nu c)A \mid B$$

React Inter
$$\overline{m\langle N\rangle}.P\mid m(x).Q\to P\mid [x\to N]Q$$

Red Replace
$$|P>P|!P$$

Note that we may want a more general let that matches more than pairs here. We'll see what the other inference rules give us.

$$\operatorname{Red} \operatorname{Suc} \overline{\quad} \operatorname{case} \operatorname{suc}(M) \text{ of } 0: P \operatorname{suc}(x): Q > [x \to M]Q$$

I find the case rules over naturals quite crude.

Additional proposed semantic rules for public/private key encryption and signature checking

$$\begin{array}{c} \text{Red Asym Decrypt 1} \\ \hline \text{case } \{M\}_{k^+} \text{ of } \{x\}_{k^-} \text{ in } P > [x \to M]P \\ \hline \\ \text{Red Asym Decrypt 2} \\ \hline \\ \text{case } \{M\}_{k^-} \text{ of } \{x\}_{k^+} \text{ in } P > [x \to M]P \\ \hline \end{array}$$

The previous two rules capture the essence of asymmetric key pairs. Specifically, encrypt with one and decrypt with the other.

Assume |M| is the hash and not the message itself and $\{|M|\}_{k^-}$ is the hash encrypted with private key, k^- . Thus, a signed message is the pair $(M, \{|M|\}_{k^-})$ consisting of the message and the signed hash. Given this, a successful signature check looks something like this:

$$\begin{split} & \text{let } (m,s) = (M,\{|M|\}_{k^-}) \text{ in case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ &> [m \to M][s \to \{|M|\}_{k^-}] \text{case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ &> \text{case } \{|M|\}_{k^-} \text{ of } \{x\}_{k^+} \text{ in } [m \to M][s \to \{|M|\}_{k^-}] [\![x \text{ is } |m|]\!] P \\ &> [\![x \to |M]\!] [m \to M][s \to \{|M|\}_{k^-}] [x \text{ is } |m]\!] P \\ &> [\![|M| \text{ is } |M|]\!] [x \to |M|] [m \to M][s \to \{|M|\}_{k^-}] P \\ &> [x \to |M|] [m \to M][s \to \{|M|\}_{k^-}] P \end{split}$$

This is precisely what we want. Specifically, P with m replaced by the message M and s replaced by the decrypted signature, |M|, produced by the signature check. It is unlikely that |M| will be used in P, but it is available.

If the signature does not match, the process hangs. Assume the hash is incorrect. Specifically, $M \neq N$:

$$\begin{split} & | \text{let } (m,s) = (M,\{|N|\}_{k^-}) \text{ in case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ & > [m \to M][s \to \{|N|\}_{k^-}] \text{case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ & > \text{case } \{|N|\}_{k^-} \text{ of } \{x\}_{k^+} \text{ in } [m \to M][s \to \{|N|\}_{k^-}] [\![x \text{ is } |m|]\!] P \\ & > [\![x \to |N|]\!] [m \to M][s \to \{|M|\}_{k^-}] [\![x \text{ is } |m|]\!] P \\ & > [\![N| \text{ is } |M|]\!] [x \to |N|][m \to M][s \to \{|M|\}_{k^-}] P \end{split}$$

The process is stuck when |N| is |M| fails because $N \neq M$.

Now assume the wrong private key was used to sign the message hash. Specifically, $j \neq k$:

$$\begin{split} & | \det{(m,s)} = (M,\{|M|\}_{j^-}) \text{ in case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ & > [m \to M][s \to \{|M|\}_{j^-}] \text{case } s \text{ of } \{x\}_{k^+} \text{ in } [\![x \text{ is } |m|]\!] P \\ & > \text{case } \{|M|\}_{j^-} \text{ of } \{x\}_{k^+} \text{ in } [m \to M][s \to \{|M|\}_{k^-}] [\![x \text{ is } |m|]\!] P \end{split}$$

The process is stuck when $\{|M|\}_{j^-}$ does not unify with $\{x\}_{k^+}$.

Do we really want a signature check that fails to get stuck? I think so. M is available, but the signature check is stuck. A signed message is best represented as a pair $(M, \{|M|\}_{k^-})$ allowing the message to be explicitly available.

Struct Nil
$$P \mid \mathbf{0} \equiv P$$

Struct Comm
$$P \mid Q \equiv Q \mid P$$

Struct Assoc
$$P \mid (Q \mid R) \equiv (P \mid Q) \mid R$$

Struct Switch
$$(\nu m)(\nu n)P \equiv (\nu n)(\nu m)P$$

Struct Drop
$$(\nu n)\mathbf{0} \equiv \mathbf{0}$$

Struct Extrusion
$$\frac{n \notin fv(P)}{(\nu n)(P \mid Q) \equiv P \mid (\nu n)Q}$$

Struct Red
$$P > Q$$

 $P \equiv Q$

Struct Refl
$$P \equiv P$$

Struct Symm
$$P \equiv Q$$

 $Q \equiv P$

Struct Trans
$$P \equiv Q$$
 $Q \equiv R$ $P \equiv R$

Struct Par
$$\frac{P \equiv P'}{P \mid Q \equiv P' \mid Q}$$

Struct Res
$$\frac{P \equiv P'}{(\nu n)P \equiv (\nu n)P'}$$

React Struct
$$P \equiv P' \quad P' \rightarrow Q' \quad Q' \equiv Q$$

 $P \rightarrow Q$

React Par
$$P' \to P'$$
 $P \mid Q \to P' \mid Q$

React Res
$$\frac{P' \to P'}{(\nu n)P \to (\nu n)P}$$

$$A \stackrel{\Delta}{=} \bar{c}\langle\{(A, N_{-}A)\}_{B^{+}}\rangle.$$

2.3 Privacy CA Protocol

3 Strand Spaces

3.1 Needham Schroder

$$A \rightarrow B: \{A^+, N_A\}_{B^+} \text{ on } c$$

$$B \rightarrow A: \{N_A, N_B\}_{A^+} \text{ on } c$$

$$A \rightarrow B: \{N_B\}_{B^+} \text{ on } c$$

A Glossary

- \bullet **0** null process
- |M| hash of M
- K^+ public half of asymmetric key K
- K^- private half of asymmetric key K
- $\{M\}_K$ encrypt M with symmetric key K
- $\{M\}_{K^+}$ encrypt M with the public key from K
- $\{M\}_{K^-}$ decrypt M with the public key from K
- $\{|M|\}_{K^-}$ sign M with the private key from K
- $\{|M|\}_{K^+}$ check signature on M with the public key from K
- $(\nu x)P$ new variable x defined in scope of P
- $\bar{c}\langle M \rangle$ send M on channel c
- c(M) receive M on channel c
- \bullet !P infinite replication of P
- $\bullet P + Q P \text{ or } Q$
- $P \mid Q$ P in parallel with Q
- case $\{M\}_k$ of x in P attempt to decrypt $\{M\}_k$ and bind to x in P if successful. Stuck if unsuccessful
- case $\{M\}_{k^-}$ of x in P attempt to decrypt $\{M\}_{k^+}$ and bind to x in P if successful. Stuck if unsuccessful
- case $\{|M|\}_{k^+}$ of x in P attempt to check signature $\{|M|\}_{k^-}$ and bind to x in P if successful. Stuck if unsuccessful

- case x of y 0: P suc(x): Q case splitting over integers. x is bound in Q.
- let (x,y)=M in y match M to (x,y) binding x and y to pair elements in M
- $A \stackrel{\triangle}{=} B$ define an equivalence
- $A \rightarrow B : M$ on c A sends B message M on channel c

$$A \stackrel{\Delta}{=} (\nu c) \; \overline{c} \langle M \rangle. \mathbf{0} \mid c(M). A$$

References

M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. *Information and Computation*, 148:1–70, 1999.