Name: Colby Frison

OUID: 113568816

1. Compute the size of the problem that can be solved on a machine that takes 10^{-9} seel op in one day when $T(n) = 15n^2$, $8n^3$, 2^n , 3^n , n!, $n\log n$. Also plot T(n) vs n where $n \in [2, 20]$ on a graph.

biven:

Machine speed: 10^{-9} seel op

Total time: 1 day = 86,400 seeTotal time: $1 \text{$

Plot made using peython with the matplotlib library

4. Let us assume algorithm-1 runs in $T_1(n) = \frac{1}{2}n^2$ steps, algorithm-2 takes $T_2(n) = 6n\log_2(n) + 6n$ steps for an input of size n. For what values of n (interval) does algorithm-2 perform better than algorithm-1

Find interval of 'n' where Tz(n) < T, (n):

n can be found by doing trials of values for n, but to be more exact I used a graph to find 89.879 was the point at which the

Alg-2 performs better then alg-1 for
$$n > 89.879$$

 $n \in (89.879, \infty)$