

Reinforcement Learning

Prof. Dr.-Ing. J. Marius Zöllner

Gesetz der Auswirkung

Thorndike (US-amerikanischer Psychologe, 1911)

Unter <u>verschiedenen Reaktionen</u>, die auf dieselbe Situation hin ausgeführt werden, werden - bei Gleichheit anderer Bedingungen - diejenigen <u>stärker mit der Situation verknüpft</u>, die von einem für das Tier <u>befriedigenden Zustand</u> begleitet oder innerhalb kurzer Zeit gefolgt werden . . . ; diejenigen Reaktionen, die von einem für das Tier <u>unangenehmen Zustand</u> begleitet oder dicht gerfolgt werden, werden dagegen - wiederum bei Gleichheit anderer Bedingungen - in ihrer Verknüpfung mit der <u>gegebenen Situation geschwächt</u>.

Lernen mit Belohnung

- a) Licht
- b) Futtermagazin
- c) Hebel
- d) elektr. Rost

Abb. 45. Skinner Box (aus: Lefrançois, 1976, S. 63)

Reinforcement Learning (RL)

Problemstellung
Markov decision process (MDP)

Lernziel maximale Bewertung (reward)

Problemdimensionen in RL

Strategielernen (Policy-learning)
Optimale Strategie
State Value Function
Akkumulierte Bewertung
TD – Lernmethode
(Temporal difference learning)

Lernziel RL

Finde eine Aktionssequenz $a_1, a_2, ..., a_n$ so dass dadurch die maximale Bewertung aufgesammelt wird

Markov decision process (deterministisch)

"Autonomer Agent & Umwelt":

Zustandsgetriebener Prozess

"Sensorik" – Erfassung (partiell) von Zuständen $s_t \in S$

"Aktorik" – Einwirkung auf die Umwelt durch Aktionen $a_t \in A$

Zustandsänderungen (meist bekannt oder beobachtbar)

$$\delta: (S \times A) \rightarrow S$$

$$\delta(s_t, a_t) = s_{t+1}$$

Markov-Bedingung: keine Abhängigkeit von der Vergangenheit

Bewertung von Aktionen (direkt oder indirekt bekannt/messbar)

$$r: (S \times A) \rightarrow R$$

$$r(s_t, a_t) = r_t$$

Markov decision process

RL: Anwendungsbeispiele

- Steuerung von Robotern
 - z.B: mobiler Roboter in Büroumgebung
 - Post holen, wenn welche da ist
 - dock-in Station wenn Batterie leer wird
- Spiele
 - Brettspiele: Schach, Back-Gammon
- Optimierung und Planung
 - Optimierungen von Fertigungsprozessen
 - Planung Taxizentrale
 - welches Taxi fährt wann wohin,
 - s.d. kurze Wartezeiten für Fahrgäste und wenig Benzinverbrauch

Strategielernen - Policy learning

Gesucht:
$$S_1 \xrightarrow{a_1} S_2 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} S_n$$

←→ finde die (optimale) Zielfunktion (target function)

$$\pi: S \to A, \quad \pi(s_t) = a_t$$

so dass die akkumulierte Bewertung (zum Ziel hin)

State Value Function

$$V^\pi(s_t)=r_t+\gamma r_{t+1}+\gamma^2 r_{t+2}+\ldots=\sum_{i=0}^\infty \gamma^i r_{t+i}$$
 maximiert wird

Gewichtung der Bewertungen (Diskontierungsfaktor) $0 \le \gamma \le 1$

0: aktuelle Aktionsbewertung ist wichtig (1-step)

>0: zukünftige (letzte) Bewertungen werden berücksichtigt (n-step)

<1: notwendig um konvergente V-Funktion zu erhalten

Ann.: absorbierender Terminalzustand: Alle Aktionen führen kostenfrei wieder in den Zustand

Optimale Strategie

optimale Zielfunktion

$$\pi^*(s) = \underset{\pi}{\operatorname{arg max}} V^{\pi}(s), \forall s$$

maximale akkumuliere Bewertung:

$$V^*(s) = V^{\pi^*}(s)$$

rekursive Definition (Bellmann Gleichung):

$$V^*(s_t) = r_t + \gamma V^*(s_{t+1})$$

Problem: Wie erhält man $V^*(s)$

Simple Temporal Difference Learning I (Simple Value Iteration)

Idee: Lerne $\hat{V}^*(s)$ als Schätzung von $V^*(s)$

Wähle dann:
$$\pi^*(s) = \arg\max_{a} \left[r(s,a) + \gamma \hat{V}^*(\delta(s,a)) \right]$$

Lernen:

Initialisiere $\hat{V}^*(s)$ zufällig do forever

wähle einen Zustand S_t ermittle beste Aktion und den Folgezustand

$$S_{t+1} = \delta(S_t, \pi^*(S_t))$$

ersetzte

$$\hat{V}^*(S_t) \leftarrow r_t + \gamma \hat{V}^*(S_{t+1})$$

Problem: sehr langsames Lernen ("do forever") und hartes Ersetzen

Beispiel

Zustände, Aktionen und Bewertungen, $\gamma = 0.9$

Maximale akkumulierte Bewertung $V^*(s)$, $\gamma = 0.9$

Optimale Strategie $\pi^*(s)$

Simple Temporal Difference Learning II

Optimierung

Initialisiere
$$\hat{V}^*(s)$$
 zufällig repeat (für jede Lern - Episode) wähle einen Zustand s_t repeat

ermittle Folgezustand
$$S_{t+1} = \delta(S_t, \pi^*(S_t))$$

ersetze
$$\hat{V}^*(s_t) \leftarrow \hat{V}^*(s_t) + \alpha[r_t + \gamma \hat{V}^*(s_{t+1}) - \hat{V}^*(s_t)]$$

$$(\alpha = Lernfaktor)$$

until
$$s_t = \text{teminal}$$

 $r(s,a) \ \delta(s,a)$ müssen bekannt sein Problem:

on-policy-learning: $\pi^*(s)$ verwendet \rightarrow langsam Lernen

Nicht realistisch für echte Anwendungen!!!

Problemdimensionen beim RL

Zielfunktion

Vorhersage: $V(s_{t+1}) \Leftrightarrow \text{Aktionswahl: } a_t$

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma \hat{V}^*(\delta(s, a)) \right]$$

• Bewertung r(s,a)

direkt ⇔ verzögert

- Zustandsübergänge $\delta(s,a)$ deterministisch \Leftrightarrow stochastisch
- Modell (Simulation) des Systems vorhanden ⇔ nicht vorhanden
- Zustandsraum und Aktionsraum eindimensional ⇔ hochdimensional diskret ⇔ kontinuierlich

RL: Einteilung, Q-Lernen, Erweiterungen

Deterministischer MDP

Q – Funktion (Action-Value Function)

Q - Lernalgorithmus

Suchstrategien

Optimierung

Generalisierung

z.B.: Neuronale Netze

Nichtdeterministische MDP Erweiterung

Die Q-Funktion

Q(s,a) maximale Bewertung, die erreicht werden kann im Zustand s durch die Aktion a

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$
 (Bellmann)

$$V^*(s) = \max_{a'} Q(s, a')$$

rekursiv:
$$Q(s,a) = r(s,a) + \gamma \max_{a'} Q(\delta(s,a),a')$$

Idee: Lerne $\hat{Q}(s,a)$, $\forall (s,a) \in S \times A$

Wähle beste Aktion anhand einer Strategie z.B.:

$$\pi^*(s) = \arg\max_{a} Q(s, a)$$

→ In der Anwendung wenig Wissen über Zustandsübergänge nötig

Beispiel

Zustände, Aktionen und Bewertungen

Maximale akkumulierte Bewertung $V^*(s)$, $\gamma = 0.9$

Optimale Strategie $\pi^*(s)$

Q-Lernen Algorithmus

Ziel: finde Schätzung $\widehat{Q}(s,a)$ der absoluten Funktion Q(s,a)

Lernen:

Initialisieren $\forall s, a \quad \widehat{Q}(s, a) = 0$

Wähle Zustand s

do forever:

- wähle Aktion a und führe aus
- *r* ← direkte Bewertung (reward)
- neuer Zustand s ´
- update

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

• $s \leftarrow s$

Q-Lernen Algorithmus

Nach n Iterationen gilt

$$\widehat{Q}_{n+1}(s,a) \ge \widehat{Q}_n(s,a), \forall s, a, n$$
$$\Rightarrow 0 \le \widehat{Q}_n(s,a) \le Q(s,a)$$

Korrektheit und Konvergenz?

JA

wenn: -
$$|r(s,a)| < c$$

- deterministisches System
- wenn alle Paare (s,a) unendlich oft besucht werden

$$\Rightarrow \hat{Q} \rightarrow Q$$

Fehler wird bei jeder Aktualisierung um den Faktor γ kleiner

Suchstrategien / Experimentieren

Problem: Welche Aktion soll in einem Zustand gewählt werden?

- Aktion mit maximalem $\hat{Q}(s,a)$?
 - → "lokales" Lernen nur bestimmter Aktionen
 - → Aktionen die anfangs nicht gewählt wurden, werden nicht weiter ausgewertet obwohl sie ev. bessere Ergebnisse liefern würden
- Probabilistische Auswahl:

$$P(a_i \mid s) = \frac{k^{\hat{Q}(s, a_i)}}{\sum_{i} k^{\hat{Q}(s, a_i)}}, k > 0$$

$$\rightarrow$$
 $\forall a_i \exists P(a_i \mid s) \neq 0$

Exploration vs. Exploitation

Probabilistische Aktionsauswahl je nach:

	raktui	
klein <	k -	→ groß
Exploration		Exploitation
globales" Lernen		- "lokales" Lernen
neue Aktionen		- bekannte Aktionen
untersuchen		untersuchen

Foktor

Beste Lösung:

Änderung der Suchstrategie von global zu lokal während des Lernprozesses

Optimierungen

• In jeder Lernepisode alle $\widehat{Q}(s,a)$ vom Zustand s zum Ziel anpassen

$$\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha [r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$$

- Speichern von Bewertung r für jedes Paar (s,a) wenn $\widehat{Q}(s,a)$ von $\widehat{Q}(s',a')$ abhängig ist und sich $\widehat{Q}(s',a')$ ändert ändere auch $\widehat{Q}(s,a)$
 - ightharpoonup schnelle Konvergenz $\hat{Q}
 ightharpoonup Q$ durch Anpassung mehrerer Werte
 - → Speicheraufwand steigt

Anwendung

Immer dann, wenn Aktionen hohen Zeitaufwand haben (z.B: in der Robotik)

Optimierungen

- Lernen mit (adaptivem) Modell
 - meisten Lernschritte auf simulierter Umgebung
 - wenig Aktionen in realer Umgebung
 - Anpassung des Models

Repräsentation, Generalisierung

Problem: kontinuierlicher Zustandsraum

- Speichern der Q Werte in einer lookup-Tabelle unmöglich
- sehr hohe Anzahl von Lerniterationen nötig

Lösung:

Kombination von RL mit Methoden höherer Generalisierung

z.B.: Neuronale Netze

- ein Netz für alle Aktionen oder
- pro Aktion ein Netz oder
- direktes Lernen der besten Aktion
- update-Werte für $\widehat{Q}(s,a)$ sind Lernbeispiele für das neuronale Netz

Nichtdeterministischer MDP

Problem

$$s \xrightarrow{a} s'$$
 tritt entsprechend der Verteilung $P(s' | s, a)$ auf \vdots

Lösung

Verwenden des Erwartungswertes

$$V^{\pi}(s_t) = E\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i}\right]$$

Berücksichtigen aller Folgezustände

$$Q(s,a) = E[r(s,a)] + \gamma \sum_{s'} P(s' | s,a) \max_{a'} Q(\delta(s',a),a')$$

Lernen von Aktionssequenzen

Problemdefinition

 $TD(\lambda)$ - Lernen

Vorwärtssicht

Rückwärtssicht

Warum Lernen von Aktionssequenzen?

- Bewertung (reward) erst nach einer Sequenz von Aktionen bekannt
 - z.B: Schach: selten ist nur ein Zug relevant
- Bewertung erst am Ziel
 - z.B: Spiel gewonnen?
 - → bei langen Aktionssequenzen kann erst am Ende der Sequenz gelernt werden
 - → nachfolgende Aktionen können für den schlechten Ausgang verantwortlich sein

Lernen von Aktionssequenzen

Temporal_Difference_Learning

die Differenz folgender Schätzungen als Lernsignal für $\hat{Q}(s,a), \ \hat{V}^*(s)$

Vorwärts – Sicht (theoretisch)

- Gewichtete Anpassung an direkt nachfolgender Schätzung (1-step) oder
- Gewichtete Anpassung an n Schritte nachfolgender Schätzung (n-step)

TD-Lernen und Eligibility Traces

Rückwärtige Sicht des TD-Lernen (praktisch)

Fehlersignale (temporal differences) in den Schätzungen werden nach hinten weitergegeben

Eligibility Traces

Eligibility Traces (Verantwortlichkeitsspur)

- Zustande für die Zustandsbewertung → V Lernen
- (Zustand/Aktion) für die Q-Wert Bewertung → Q -Lernen

Eligibility trace e_t(s): Akkumulativ

z.B. für Zustände:

$$e_t(s) = \begin{cases} \gamma \lambda e_{t-1}(s) &, s \neq s_t \\ \gamma \lambda e_{t-1}(s) + 1 &, s = s_t \end{cases}, 0 < \lambda < 1$$

SARSA(λ)-Algorithmus mit Eligibility Traces

Lernen:

Initialisiere
$$\hat{Q}(s,a)$$
 $e(s,a) = 0$, $\forall s,a$ repeat (für jede Lernepisode) wähle s , a repeat $r = r(a,s), s' = \delta(a,s)$ $a' = \pi^{\mathcal{Q}}(s'),$ $if r.\Delta_{\mathcal{Q}} \leftarrow r + \gamma \hat{Q}(s',a') - \hat{Q}(s,a)$ $e(s,a) \leftarrow e(s,a) + 1$ für alle s $(a',a'') \leftarrow \hat{Q}(s'',a'') + \alpha \Delta_{\mathcal{Q}} e(s'',a'')$ $e(s'',a'') = \gamma \lambda e(s'',a'')$ $s \leftarrow s', a \leftarrow a'$ until $s = \text{terminal}$

SARSA Beispiel

- Ziel Pfad zum Ziel finden
- Anfangs alle Q = 0
- Reward nur im Ziel
- Mitte Lernen ohne Eligibility Trace
 - Nur ein Q- Wert wird angepasst
- Rechts Einfluss der Anpassung mit Eligibility

Beispiele

Katz und Maus

http://www.cse.unsw.edu.au/%7Ecs9417ml/RL1/applet.html

Black Jack and Reinforcement Learning

http://lslwww.epfl.ch/~anperez/BlackJack/classes/RLJavaBJ.html

Fahrstuhlsteuerung

TD - Gammon

Steuerung von biologisch motivierten Systemen

Fahrstuhlsteuerung mit RL (Crites96)

Reale praktische Anwendung + Lernen in der Simulation

Ziel: Fahrstühle steuern

Optimierungskriterien:

- Mittlere Wartezeit
- Mittlere Systemzeit
- % der Wartezeit über 60 sec

hier: Minierung mittlerer Wartezeit

Figure 11.8 Four elevators in a ten-story building.

Fahrstuhlsteuerung - Randbedingungen des Lernens

Integration von Vorwissen zur Vereinfachung des Lernproblems

Randbedingungen (Regeln):

- Jeder Fahrstuhl trifft selbständig Entscheidungen
- Kein Überfahren eine Stockwerkes, wenn dort Passagiere aussteigen wollen
- Keine Richtungswechsel, solange Passagiere in die aktuelle Richtung fahren wollen.
- Ein Fahrstuhl darf an einem Stockwerk nicht halten, wenn dort niemand ein- oder aussteigen möchte.
- Kein Fahrstuhl soll an einem Stockwerk halten, wenn ein anderer die Fahrgäste schon aufgenommen hat.
- Wenn die Wahl besteht zwischen hoch und runter, sollen die Fahrstühle hoch fahren.

Fahrstuhlsteuerung - Netzrepräsentation

Aktion: Entscheidung ob am nächsten Stockwerk mit Anfrage gehalten werden soll und ob hoch oder runter gefahren werden soll

Problem: Bei relativ grober Diskretisierung 10²² mögliche Zustände

Lösung: Generalisierung durch Backpropagation Netz

• 47 Eingaben, 20 Hidden Neuronen, 2 Ausgaben

• Ausgaben: 2 Q-Values: für halten / nicht halten, hoch / runter

Eingaberepräsentation

- 9 binäre: Runter-Anfragen

– 9 kont.: Wartezeit der Runter-Anfragen

– 16 binär: für jede Ort-Richtungs-Möglichkeit Fahrstuhl / Etage

10 diskret: Die Orte der anderen Fahrstühle (Etage)

1 binär: Fahrstuhl auf höchster Etage mit wartendem Passagier

1 binär: Fahrstuhl auf der Etage mit dem am längsten wartenden

Passagier

1 Bias Unit (immer an)

Fahrstuhlsteuerung - Ergebnisse

- 2 Ansätze mit Neuronalen Netzen
 - » Jeder Fahrstuhl eigenes Netz
 - » Alle Fahrstühle in einem Netz

Bei beiden Ansätzen wurden die Bewertungen von allen Fahrstühlen verwendet → keine unabhängigen Systeme

Ergebnisse verschiedener Systeme im Vergleich

Ziel: Spiel – Strategie um ein Backgammon Spiel zu gewinnen

Problem: Bewertung am Spielende: gewonnen oder verloren

Zufallskomponente - Würfel

Zustände: 24 mögliche Positionen für 30 Steine → hochdimensional

Aktionen: Zug des Spielers

Lösung: Lerne $\hat{V}^*(s)$ als Gewinnprognose eines Zustandes

Generalisierung:
Neuronales Netz

predicted probability of winning, V_t TD error, $V_{t+1} - V_t$ hidden units (40-80) backgammon position (198 input units)

Zustandsbeschreibung (Eingabe):

- (schwarz + weiß) * 4 * 24 = 192 für die Belegung der Felder
- (schwarz + weiß) = 2 für die Steine, welche draußen sind
- (schwarz + weiß) = 2 für die Steine, welche herausgeholt wurden
- (schwarz + weiß) = 2 binär: nächster Zug schwarz oder weiß

Ausgabe: $\hat{V}^*(s)$

Gewinnwahrscheinlichkeit

Lernen:

- TD(λ)-Algorithmus mit Eligibility Traces
- Spiel gegen sich selbst
- kein spezifisches Spielwissen nötig (außer Spielregeln)

Ergebnisse:

Program	Hidden Units	Training Games	Opponents	Results
TD-Gam 0.0	40	300,000	other programs	tied for best
TD-Gam 1.0	80	300,000	Robertie, Magriel,	-13 points / 51 games
TD-Gam 2.0	40	800,000	various Grandmasters	-7 points / 38 games
TD-Gam 2.1	80	1,500,000	Robertie	-1 point / 40 games
TD-Gam 3.0	80	1,500,000	Kazaros	+6 points / 20 games

 neue Spielzüge wurden vom Programm erzeugt und werden inzwischen allgemein akzeptiert und verwendet

Seit einer Analyse durch TD-Gammon wird ein Eröffnungszug, der bis dahin als selbstverständlich galt, praktisch nicht mehr gespielt.

- Wurf: 4/1
- weiß ist am Zug

Move	Estimate	Rollout
13-9, 6-5	-0.014	-0.040
13-9, 24-23	+0.005	+0.005

Online-Lernen auf der vierbeinigen Laufmaschine BISAM (IIg00/Albiez00)

Ziele

Experimentelles Lernen zur Optimierung der Haltung (Schwerpunkt) im Kreuzgang

Roboter BISAM

21 Aktive Freiheitsgrade (4 pro Bein 5 im Körper) 2 Achsen Lagesensor, 3 Achsen Winkelbeschleunigung 3 Komponenten Kraftsensor pro Fuß Onboard PC, 6 C167 µC

BISAM – Dynamisch und Statisch stabiles

Laufen

BISAM - Steuerungsarchitektur

BISAM – Lernen der Gewichtsverlagerung im Schritt

- Problemstellung
 - Optimierung der Schwerpunktsverschiebung zur Unterstützung des Schritts
- Bewertungskriterien
 - Anhand der Lage des Schwerpunktes (SSM)
- Netzeingaben
 - **Zustand:** $s = (SSM_x SSM_y)$
 - Letzte Aktion: Verschiebung $a_{t-1} = (a_x a_y)$
- Netzausgaben
 - Kritiker: *V*(*s*)
 - Neue Aktion: Verschiebung $a_t = (a_x a_y)$

BISAM – Bewertung des Schwerpunktsverlaufes im Kreuzgang

BISAM – Lernverlauf Kreuzgang

Literatur

- [1] Tom Mitchell: Machine Learning. McGraw-Hill, New York, 1997.
- [2] R.S. Sutton, A.G. Barto: Reinforcement Learning An Introduction. MIT Press, 1998.
- [3] L.P. Kaelbling, M.L. Littman, A.W. Moore: Reinforcement Learning – a survey. Journal of Artificial Intelligence Research, Vol. 76, 1995.
- [4] Vorlesung: Neuronale Netze 2006. http://isl.ira.uka.de/
- Gegenstand aktueller Forschung z.B. Prof. Riedmiller (Freiburg), Prof. Jan Peters (Darmstadt/Tübingen)

Motor Skill Learning for Robotics

Jan Peters, Jens Kober, Katharina Mülling

Department of Empirical Inference and Machine Learning

Max Planck Institute for Biological Cybernetics

