Lista zadań. Nr 0. 27 lutego 2025

ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

- 1. (0 pkt) Przeczytaj Notatkę nr 1 Notatkę nr 2, (zostały przesłane mailem do osób zapisanych na przedmiot).
- 2. (1pkt) Określ z dokładnością do Θ złożoność (przy kryterium jednorodnym) poniższych fragmentów programów:

```
\begin{array}{lll} \text{for } i \leftarrow 1 \text{ to } n \text{ do} & \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ j \leftarrow i & j \leftarrow i \\ \text{while } j < n \text{ do} & \text{while } j < n \text{ do} \\ sum \leftarrow P(i,j) & sum \leftarrow P(i,j) \\ j \leftarrow j + 1 & j \leftarrow j + j \end{array}
```

Rozważ dwa przypadki:

- koszt wykonania procedury P(i,j) wynosi $\Theta(1)$
- koszt wykonania procedury P(i, j) wynosi $\Theta(j)$
- 3. (1pkt) Zapisz w pseudokodzie algorytm szybkiego potęgowania liczby x, który oblicza x^n przez wymnożenie odpowiednich potęg dwójkowych liczby x (tj. potęg postaci x^{2^k}). Zadbaj, by Twój algorytm używał stałej liczby komórek pamięci. Oszacuj jego złożoność przy kryterium jednorodnym i przy kryterium logarytmicznym.
- 4. (1pkt) Napisz w pseudokodzie rekurencyjne funkcje w pseudokodzie, które dla danego drzewa binarnego T obliczają:
 - liczbę wierzchołków w T;
 - \bullet maksymalną odległość między wierzchołkami w T.
- 5. (1pkt) Napisz w pseudokodzie procedury, które dla danego drzewa binarnych przeszukiwań T:
 - wstawiają zadany klucz do T;
 - usuwają wierzchołek z zadanym kluczem z T;
 - dla danego klucza znajdują następny co do wielkości klucz w drzewie.

Możesz założyć, że wszystkie klucze w T są różne.

- 6. (2pkt) Pokaż, w jaki sposób algorytm "macierzowy" obliczania n-tej liczby Fibonacciego można uogólnić na inne ciągi, w których kolejne elementy definiowane są liniową kombinacją skończonej liczby elementów wcześniejszych. Następnie uogólnij swoje rozwiązanie na przypadek, w którym n-ty element ciągu definiowany jest jako suma kombinacji liniowej skończonej liczby elementów wcześniejszych oraz wielomianu zmiennej n.
- 7. (1,5pkt) Ułóż algorytm, który dla drzewa T=(V,E) oraz listy par wierzchołków $\{v_i,u_i\}$ $(i=1,\ldots,m)$, sprawdza, czy v_i leży na ścieżce z u_i do korzenia. Przyjmij, że drzewo zadane jest jako lista n-1 krawędzi (p_i,a_i) , takich, że p_i jest ojcem a_i w drzewie.
- 8. (1pkt) Udowodnij Twierdzenie 1 podane w Notatce nr 2.

9. (Z 2pkt)¹ Ułóż algorytm dla następującego problemu:

Problem.²

 $n, m \in \mathcal{N}$ dane:

dane: $n, m \in \mathbb{N}$ wynik: wartość współczynnika przy x^2 (wzięta modulo m) wielomianu $\underbrace{(...((x-2)^2-2)^2...-2)^2}_{n \text{ razy}}$

Czy widzisz zastosowanie metody użytej w szybkim algorytmie obliczania n-tej liczby Fibonacciego do rozwiązania tego problemu?

- 10. (1pkt) Czy algorytm Dijkstry może być zmodyfikowany tak, by rozwiązywał problem najkrótszych dróg w grafach nieskierowanych, w których wagi przypisane są wierzchołkom a nie krawędziom? Długością drogi w takim grafie jest suma wag wierzchołków, przez które wiedzie.
- 11. (1,5pkt) Niech G będzie nieskierowanym grafem ważonym, w którym waga dokładnie jednej krawędzi (oznaczmy ją przez (u,v)) jest ujemna. Wagi pozostałych krawędzi są dodatnie. Czy algorytm Dijkstry uruchomiony od wierzchołka v poprawnie wylicza długości najkrótszych ścieżek prostych (tj. takich, które nie zawierają powtarzających się wierzchołków) od v do pozostałych wierzchołków?

Krzysztof Loryś

¹Znaczenie etykietki **Z** zostało przedstawione na pierwszym wykładzie. Wyjaśnienie można znaleźć w dokumencie Zasady zaliczania ćwiczeń.

²Zadanie zaczerpnięte ze Sparingu w Programowaniu Zespołowym - Poznań 22.01.2005