1. Convert the following numbers from the given base to the other three bases ...

- ♦ 69.3125₁₀ to binary/octal/hexadecimal:
 - 69.3125₁₀ to binary:

69 / 2 = 34, 1	0.3125 * 2 = 0.625	
34/2 = 17, 0	0.625 * 2 = 1.25	
17 / 2 = 8, 1	0.25 * 2 = 0.5	
8/2=4, 0	0.5 * 2 = 1.0	
4/2=2, 0	→ 0.0101 ₂	
2/2=1, 0		
1/2=0, 1		
→ 1000101 ₂		
→ 1000101.0101 ₂		

• 69.3125₁₀ to octal:

69 / 8 = 8, 5	0.3125 * 8 = 2. 5
8 / 8 = 1, 0	0.5 * 8 = 4.0
1/8 = 0, 1	→ 0.24 ₈
→ 105 ₈	
→ 105.24 ₈	

• 69.3125₁₀ to hexadecimal:

69 / 16 = 4 , 5	0.3125 * 16 = 5.0	
4 / 16 = 1, 4	→ 0.5 ₁₆	
→ 45 ₁₆		
→ 45.5 ₁₆		

- ◆ 10111101.101₂ to decimal/octal/hexadecimal
 - 10111101.101₂ to decimal:

$$\rightarrow$$
 2⁷ + 2⁵ + 2⁴ + 2³ + 2² + 2⁰ + 2⁻¹ + 2⁻³ = 189.625₁₀

- 10111101.101₂ to octal: → 010 111 101 . 101_2 → 275.5₈
- 10111101.101₂ to hexadecimal:
 - → 1011 1101 . 1010_2 → BD.A₁₆

- ♦ 326.5₈ to decimal/binary/hexadecimal
 - 326.5₈ to decimal:

$$\Rightarrow$$
 3 * 8² + 2 * 8¹ + 6 * 8⁰ + 5 * 8⁻¹ = 214.625₁₀

- 326.5₈ to binary:
 - \rightarrow 326.5₈ \rightarrow 011 010 110 . 101₂
- 326.5₈ to hexadecimal:

→
$$326.5_8$$
 → $011\ 010\ 110\ .\ 101_2$ → $1101\ 0110\ .\ 1010_2$ → $D6.A_{16}$

- ◆ C7.A₁₆ to decimal/binary/octal
 - C7.A₁₆ to decimal:

$$\rightarrow$$
 12 * 16¹ + 7 * 16⁰ + 10 * 16⁻¹ = 199.625₁₀

- C7.A₁₆ to binary:
 - → C7. A_{16} → 1100 0111 . 1010₂
- $C7.A_{16}$ to octal:

♦ Summary:

Decimal	<u>Binary</u>	<u>Octal</u>	<u>Hexadecimal</u>
69.3125 ₁₀	$100\overline{0101.0101}_{2}$	$1\overline{05.24}_{8}$	45.5 ₁₆
189.625_{10}	10111101.101_2	275.58	$BD.A_{16}$
214.625 ₁₀	011010110.101_2	326.58	$D6.A_{16}$
199.625 ₁₀	11000111.1010_2	307.58	$C7.A_{16}$

2. Perform the following arithmetic operations using 2's complement ...

a. $17_{10} - 69_{10}$

$0\ 0\ 0\ 1\ 0\ 0\ 0\ 1$	← 17 ₁₀
-01000101	← 69 ₁₀
00010001	
$+\ 1\ 0\ 1\ 1\ 1\ 0\ 1\ 1$	← 2's comp. of 01000101
11001100	→ -2's comp. of 11001100 → -00110100_2 → -52_{10}

b. $-12_{10} \times 11_{10}$

Note: Here 8-bits will not be sufficient to represent the result since the multiplicand (-12_{10}) and the multiplier $(+11_{10})$ require 5 bits each to be represented in the two's complement format, and hence the multiplication product needs to be represented by 2*5=10 bits. So we choose to represent all numbers using 10 bits (instead of 8 bits).

Multiplicand is negative & multiplier is positive → Product is negative! Product = 2's comp. of 0010000100 = 11011111100

c. $-116_{10} \div -21_{10}$

| Divisor | =
$$21_{10}$$
 \rightarrow | Quotient | = 5_{10} \leftarrow | Dividend | = 116_{10} \bigcirc 0 0 0 1 0 1 0 1 0 \bigcirc 0 0 0 1 0 1 0 1 0 \bigcirc \bigcirc 0 0 0 1 0 1 0 1 0 \bigcirc \bigcirc | Remainder | = 11_{10}

Dividend and divisor are negative \rightarrow Quotient is positive & remainder is negative Quotient = 00000101

Remainder = 2's complement of 00001011 = 11110101

CS 211 – Digital Logic Design First Term – 1439/1440 **Solution to Assignment #1**

- 3. Calculate the decimal value which is equivalent to the binary value: 100010010110 ...
 - a. If it represents a BCD number.

$$1000\ 1001\ 0110_{BCD} \rightarrow 896_{10}$$

b. If it represents a Gray Code.

$$100010010110_{Gray} \rightarrow 111100011011_2 \rightarrow 2^{11} + 2^{10} + 2^9 + 2^8 + 2^4 + 2^3 + 2^1 + 2^0 = 3867_{10}$$

c. If it represents a signed number in the sign-magnitude form.

$$100010010110_{\text{SM}} \rightarrow -00010010110 \rightarrow -150_{10}$$

d. If it represents a signed number in the 1's complement form.

100010010110_{1's} → -1's comp. of 100010010110 → -011101101001 → -
$$(2^{10} + 2^9 + 2^8 + 2^6 + 2^5 + 2^3 + 2^0) = -1897_{10}$$

4. Represent 69.3125₁₀ as a single-precision floating-point binary number.