Grundlagen

÷	Pegel	Leistungs- verhältnis	Spannungs- verhältnis	Kenn- farbe	Wert	Multi- plikator	Toleranz
$ \begin{array}{c} \vdots \\ 10^{-3} = 0,001 \\ 10^{-2} = 0,01 \\ 10^{-1} = 0,1 \\ 10^{0} = 1 \\ 10^{1} = 10 \\ 10^{2} = 100 \\ 10^{3} = 1000 \end{array} $	-20 dB -10 dB -6 dB -3 dB -1 dB 0 dB 1 dB 3 dB	0,01 0,1 0,25 0,5 0,8 1 1,26 2	0,1 0,32 0,5 0,71 0,89 1 1,12 1,41	farbe Silber Gold schwarz braun rot orange gelb grün blau violett	- 0 1 2 3 4 5 6	10 ⁻² 10 ⁻¹ 10 ⁻⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶	±10% ±5% - ±1% ±2% - ±0,5 ±0,25% ±0,1%
	6 dB 10 dB 20 dB	4 10 100	2 3,16 10	grau weiß keine	8 9 -	10 ⁸ 10 ⁹	±20%

Wertkennzeichnung durch Buchstaben

p	Pico	10 ⁻¹²
n	Nano	10 ⁻⁹

μ	Mikro	10 ⁻⁶
m	Milli	10^{-3}

		10 ⁰
k	Kilo	10^{3}

M	Mega	10 ⁶
G	Giga	10 ⁹

Ohmsches Gesetz

 $U = I \cdot R$

Ladungsmenge

 $Q = I \cdot t$

Leistung

 $P = U \cdot I$

Arbeit (Energie)

 $W = P \cdot t$

Widerstände in Reihenschaltung

Spannungsteiler

$$\begin{split} R_G &= R_1 + R_2 + R_3 + \dots \cdot R_n \\ \frac{U_1}{U_2} &= \frac{R_1}{R_2} \; ; \qquad \qquad \frac{U_2}{U_G} = \frac{R_2}{R_1 + R_2} \end{split}$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

bei 2 Widerständen

$$\frac{I_2}{I_1} = \frac{R_1}{R_2} \; ; \qquad \qquad I_G = I_1 + I_2 \;$$

$$R_G = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

bei n gleichen Widerständen R

$$R_G = \frac{R}{n}$$

Effektiv- und Spitzenwerte bei sinusförmiger Wechselspannung

$$U_{\mathrm{max}} = \sqrt{2} \cdot U_{\mathrm{eff}}$$
; $U_{\mathrm{eff}} = 0.707 \cdot U_{\mathrm{max}}$; $U_{\mathrm{ss}} = 2 \cdot U_{\mathrm{max}}$

$$U_{eff} = 0.707 \cdot U_{\text{max}}$$
;

$$U_{ss} = 2 \cdot U_{\text{max}}$$

Innenwiderstand

$$R_i = \frac{\Delta U}{\Delta I}$$

Frequenz und Wellenlänge

$$c = f \cdot \lambda$$
 mit $c = c_0 \approx 3.10^8 \frac{\text{m}}{\text{s}}$

zugeschnittene Formel

$$f [MHz] = \frac{300}{\lambda [m]}$$

Frequenz und Periodendauer

$$T = \frac{1}{f}$$

Induktiver Widerstand

$$X_L = 2 \cdot \pi \cdot f \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + \dots L_n$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_G} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$$

Induktivität

$$L = \frac{\mu \cdot A}{l_m} N^2 \qquad \mu = \mu_0 \cdot \mu_r$$

$$L = N^2 \cdot A_I$$

 $\operatorname{mit} A_{\operatorname{L}}$ in nH

Übertrager

$$\frac{N_1}{N_2} = \frac{U_1}{U_2}$$

Kapazitiver Widerstand

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \frac{1}{C_n}$$

bei zwei Kondensatoren

$$C_G = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + \dots + C_n$$

Kapazität eines Kondensators

$$C = \varepsilon \cdot \frac{A}{d} \qquad \varepsilon = \varepsilon_0 \cdot \varepsilon_r$$

Elektrische Feldstärke

$$E = \frac{U}{d}$$

Schwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Spiegelfrequenz / Zwischenfrequenz

$$\begin{split} f_S &= f_E + 2 \cdot f_{ZF} & \text{für } f_O > f_E \\ f_S &= f_E - 2 \cdot f_{ZF} & \text{für } f_O < f_E \end{split}$$

für
$$f_O > f_E$$

$$f_{ZF} = f_E \pm f_O$$

Dämpfung

$$a = 20 \cdot \lg \frac{U_1}{U_2}$$
 in dB; $a = 10 \cdot \lg \frac{P_1}{P_2}$ in dB

$$a = 10 \cdot \lg \frac{P_1}{P_2}$$
 in dE

Gültig ab dem 1. Februar 2007

Verstärkung/Gewinn

$$g = 20 \cdot \lg \frac{U_2}{U_1}$$
 in dB; $g = 10 \cdot \lg \frac{P_2}{P_1}$ in dB

$$g = 10 \cdot \lg \frac{P_2}{P_1} \quad \text{in dB}$$

Leistungspegel

$$p = 10 \cdot \lg \frac{P}{P_0}$$
 in dBm

Absoluter Pegel: $0 \text{ dBm liegt bei } P_0 = 1 \text{ mW}$

ERP/EIRP

$$P_{\text{ERP}} = (P_{\text{Sender}} - P_{\text{Verluste}}) \cdot G_{\text{Antenne Dipol}}$$

$$P_{\text{EIRP}} = (P_{\text{Sender}} - P_{\text{Verluste}}) \cdot G_{\text{Antenne isotrop}}$$

Antennengewinne gegenüber dem isotropen Kugelstrahler

	Gewinnfaktor	Gewinn in dBi
Dipol	1,64	2,15 dBi
λ/4 Vertikal	3,28	5,15 dBi

$$E = \frac{\sqrt{30\Omega \cdot P_{EIRP}}}{r}$$

Sicherheitsabstand*) (zugeschnittene Formel)

Feldstärke im Fernfeld einer Antenne*)

$$r = \frac{\sqrt{30 \cdot P_{EIRP}[\mathbf{w}]}}{E[\frac{\mathbf{v}}{\mathbf{m}}]}$$

Amplitudenmodulation

Modulationsgrad

$$m = \frac{\hat{U}_{mod}}{\hat{U}_T} \; ;$$

Bandbreite

$$B = 2 \cdot f_{mod max}$$

Frequenzmodulation

$$m = \frac{\Delta f_T}{f_{mod}}$$

Ungefähre Bandbreite (Carson-Bandbreite)*)

$$B = 2 \cdot (\Delta f_T + f_{mod \, max})$$

Stehwellenverhältnis (VSWR)

$$s = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{U_{v} + U_{r}}{U_{v} - U_{r}}$$

Rücklaufende Leistung

$$P_r = P_v \cdot \left(\frac{s-1}{s+1}\right)^2 \text{ mit } P_r \neq P_v$$

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P} \,,$$

$$\eta = \frac{P_{ab}}{P_{zu}};$$
 $\eta_{[\%]} = \frac{P_{ab}}{P_{zu}} \cdot 100\%;$ $P_{ab} = P_{zu} - P_{v}$

$$P_{ab} = P_{zu} - P_V$$

^{*)} für Freiraumausbreitung ab $r > \frac{\lambda}{2 + \pi}$

^{*)} Bandbreite, in der etwa 99 % der Gesamtleistung eines FM-Signals enthalten sind. Um Nachbarkanalstörungen ausreichend zu vermindern sind jedoch höhere Frequenzabstände erforderlich.

Kabeldämpfungsdiagramm

Grunddämpfung verschiedener gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m.

Formelzeichen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A ... Querschnitt, Fläche

 A_L ... Induktivitätsfaktor in nH

a ... Dämpfungsmaß in dB

B ... Bandbreite

C ... Kapazität

 C_G ... Gesamtkapazität

 C_1 , C_2 , C_3 , C_n ... Teilkapazitäten

c ... Phasengeschwindigkeit

 c_0 ... Vakuumlichtgeschwindigkeit

d ... Abstand, Entfernung

E... elektrische Feldstärke

f ... Frequenz

 f_E ... eingestellte Empfangsfrequenz

 f_{mod} ... Modulations frequenz

 f_{modmax} ... höchste Modulationsfrequenz

 f_0 ... Oszillatorfrequenz

 f_S ... Spiegelfrequenz

 f_{ZF} ... Zwischenfrequenz

 f_0 ... Resonanz frequenz

G ... Gewinnfaktor

*G*_{Antenne Dipol} ... *Gewinnfaktor bezogen auf den Halbwellendipol*

 $G_{Antenne\ isotrop}$... $Gewinnfaktor\ bezogen\ auf\ den$ $isotropen\ Strahler$

g ... Verstärkungsmaß/Gewinn in dB

I ... Stromstärke

 I_G ... Gesamtstrom

 I_1 , I_2 ... Teilströme

L ...Induktivität

L_G ... Gesamtinduktivität

 L_1 , L_2 , L_3 , L_n ... Teilinduktivitäten

 l_m ... mittlere Feldlinienlänge

m ... Modulationsindex

N ... Windungszahl

P ... Leistung

 P_{Sender} , P_{ERP} , P_{EIRP} ... Sender-/Strahlungsleistungen

P_{Verluste} ... Verluste (Kabel, Koppler etc.)

 P_V ... Verlustleistung

P_r ... rücklaufende (reflektierte) Leistung

P_v ... vorlaufende Leistung

 P_{ab} ... abgegebene Leistung

P_{zu} ... zugeführte Leistung

P₁ ... Eingangsleistung

P₂ ... Ausgangsleistung

Q ... Ladungsmenge

R ... Widerstand

 R_G ... Gesamtwiderstand

 R_i ... Innenwiderstand

 R_1 , R_2 , R_3 , R_n ... Teilwiderstände

r ... Sicherheitsabstand

s ... Stehwellenverhältnis oder Welligkeit

T... Periodendauer

t ... Zeit

U ... Spannung

 U_{eff} ... Effektivspannung

 U_G ... Gesamtspannung

 U_{SS} ... Spannung von Spitze zu Spitze

 U_1 , U_2 ... Teilspannungen bzw.

 U_1 ... Eingangsspannung

 U_2 ... Ausgangsspannung

U_r ... Spannung der rücklaufenden Welle

 U_v ... Spannung der hinlaufenden Welle

 U_{max} ... Spitzenspannung

 \hat{U}_{mod} ... Amplitude der Modulationsspannung

 \hat{U}_{τ} ... Amplitude der HF-Trägerspannung

VSWR ... Stehwellenverhältnis oder Welligkeit

W ... Arbeit

 X_C kapazitiver Wechselstromwiderstand

 X_L ... induktiver Wechselstromwiderstand

ΔI ... Stromänderung

 ΔU ... Spannungsänderung

 Δf_{τ} ... Frequenzhub

 ε_0 ... elektrische Feldkonstante

 ε_r ... relative Dielektrizitätszahl

η ... Wirkungsgrad

 η_{\sim} ... Wirkungsgrad in Prozent

λ ... Wellenlänge

 μ_0 ... magnetische Feldkonstante

 μ_r ... relative Permeabilität

ω... Kreisfrequenz