Final Project Numerical Solutions to PDEs

Connor Emmons and Noah Wells $9~{\rm May}~2025$

1 Basic Heat Equation

$$u_t = 2u_{xx}$$

 $u(0,t) = u(3,t) = 0$
 $u(x,0) = \sin(\pi x) + \sin(2\pi x)$

2 General Wave Equation

$$u_{tt} = 0.16u_{xx} + 0.02\sin(x+t)$$

$$u(0,t) = 0.01\sin(t)$$

$$u_x(2,t) = 0$$

$$u(x,0) = \sin\left(\frac{\pi x}{2}\right)$$

$$u_t(x,0) = \cos\left(\frac{\pi x}{2}\right)$$

Using the central difference approximation for second derivatives gives the following:

$$\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2} = 0.16 \left(\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} \right) + 0.02 \sin(x+t)$$

$$u_i^{n+1} = \frac{0.16\Delta t^2}{\Delta x^2} \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right) + 0.02\Delta t^2 \sin(x+t) + 2u_i^n - u_i^{n-1}$$
(1)

Note that the i index represents the spatial steps and the n index represents the temporal steps. This gives a formulation for the next time step. Rewriting this gives a formulation for the current time step based on the previous time steps.

$$u_i^n = \frac{0.16\Delta t^2}{\Delta x^2} \left(u_{i+1}^{n-1} - 2u_i^{n-1} + u_{i-1}^{n-1} \right) + 0.02\Delta t^2 \sin\left(x+t\right) + 2u_i^{n-1} - u_i^{n-2} \tag{2}$$

This is the form which will be implemented to produce the numerical solution.

3 Two-Dimensional General Heat Equation

$$u_{t} = 0.5\nabla^{2}u + e^{-t}u$$

$$u_{x}(0, y, t) = 0$$

$$u_{y}(x, 0, t) = 0$$

$$u(x, 4, t) = e^{-t}$$

$$u(4, y, t) = 0$$

$$u(x, y, 0) = \begin{cases} 1 & \text{for } y \ge x \\ 0 & \text{for } y < x \end{cases}$$

Using the forward difference approximation for first derivatives and the central difference approximation for second derivatives gives the following:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = 0.5 \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{\Delta x^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2} \right) + e^{-t} u_{i,j}^n
u_{i,j}^{n+1} = 0.5 \Delta t \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{\Delta x^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2} \right) + \left(e^{-t} \Delta t + 1 \right) u_{i,j}^n$$
(3)

In this case, i and j represent the x and y spatial steps, respectively. This gives a formulation for the next time step. Assuming the same step size for both spatial dimensions allows the simplification $\Delta x = \Delta y = h$. Along with rewriting the formulation to give the current time step as a function of the previous time steps, this gives:

$$u_{i,j}^{n} = \frac{0.5\Delta t}{h^2} \left(u_{i+1,j}^{n-1} + u_{i-1,j}^{n-1} + u_{i,j+1}^{n-1} + u_{i,j-1}^{n-1} - 4u_{i,j}^{n-1} \right) + \left(e^{-t}\Delta t + 1 \right) u_{i,j}^{n-1} \tag{4}$$

This is the form which will be implemented to produce the numerical solution.

4 Poisson's Equation

```
\begin{array}{l} \nabla^2 u = 1 + 0.2 \delta_{(1,3)}(x,y) \\ u(x,4) = x \\ u(2,y) = 1 \\ u(0,y) = 1 \text{ for } 2 \leq y \leq 4 \\ u(1,y) = 0 \text{ for } 0 \leq y \leq 2 \\ u(x,2) = 0 \text{ for } 0 \leq x \leq 1 \\ u(x,0) = 1 \text{ for } 1 \leq x \leq 2 \end{array}
```

5 Spacecraft Application