(a)	The	e dra	g force $F_{\rm D}$ acting on a sphere	e moving through a fluid is given by the expression
				$F_{\rm D} = K \rho v^2$
	whe	ere	K is a constant,	
	and	d	ρ is the density of the fluid v is the speed of the sphere	
	Det	erm	ine the SI base units of <i>K</i> .	
				base units[3]
(b)	A b	all o	of weight 1.5 N falls vertically y the expression in (a) . The b	from rest in air. The drag force $F_{\rm D}$ acting on the ball is ball reaches a constant (terminal) speed of $33{\rm ms^{-1}}$.
		sume form	· · · · · · · · · · · · · · · · · · ·	the ball is negligible and that the density of the air is
		the	instant when the ball is trave	lling at a speed of 25 m s ⁻¹ , determine
	(i)	the	drag force $F_{\rm D}$ on the ball,	
				$F_{\rm D}$ =
	(ii)	the	acceleration of the ball.	
				acceleration = m s ⁻² [2]
				[2]

Describe the acceleration of the ball in (b) as its speed changes from zero to $33\mathrm{ms^{-1}}$.	
[3	.[3]
[Total: 10	10]

2 The variation with time t of the velocity v of two cars P and Q is shown in Fig. 2.1.

Fig. 2.1

The cars travel in the same direction along a straight road. Car P passes car Q at time t = 0.

(a) The speed limit for cars on the road is $100\,\mathrm{km}\,\mathrm{h}^{-1}$. State and explain whether car Q exceeds the speed limit.

.....[1

(b) Calculate the acceleration of car P.

acceleration = ms⁻² [2]

(c)	Determine the distance between the two cars at time $t = 12s$.
	distance = m [3]
(d)	From time $t = 12s$, the velocity of each car remains constant at its value at $t = 12s$.
	Determine the time <i>t</i> at which car Q passes car P.
	<i>t</i> = s [2]
	[Total: 8]

3	(a)	State the difference between a stationary wave and a progressive wave in terms of									
		(i)	the ene	rgy transfer ald	ong the wave,						
		(ii)	the phase of two adjacent vibrating particles.								
							[1]				
	(b)	(b) A tube is open at both ends. A loudspeaker, emitting sound of a single freque near one end of the tube, as shown in Fig. 3.1.									
					tube						
		/	speaker	A	А	А	A				
	lou	udspe			0.						
					Fig. 3.1						
		The speed of the sound in the tube is 340 m s ⁻¹ . The length of the tube is 0.60 m. A stationary wave is formed with an antinode A at each end of the tube and two antinod inside the tube.									
		(i)		•	y an <i>antinode</i> of the sta	,					
		(ii)	State th	ne distance bet	ween a node and an a	djacent antinode.					
					distance	9 =	m [1]				
		(iii)	Determi	ine, for the sou	ınd in the tube,						
			1. the	wavelength,							

wavelength = m [1]

	frequency = Hz [2]
(iv)	Determine the minimum frequency of the sound from the loudspeaker that produces a stationary wave in the tube.
	minimum frequency = Hz [2]
	[Total: 9]

2. the frequency.

(a)	Def	ine strain.	
(b)	is a	ire is designed to ensure that its strain does not exceed 4.0×10^{-4} when a force of 8.0k pplied. The Young modulus of the metal of the wire is $2.1 \times 10^{11} \text{Pa}$. It may be assume the wire obeys Hooke's law.	ίN ∋d
		a force of 8.0 kN, calculate, for the wire,	
	(i)	the maximum stress,	
	(ii)	maximum stress =	[2]
		minimum cross-sectional area =	

5 Three cells of electromotive forces (e.m.f.) E_1 , E_2 and E_3 are connected into a circuit, as shown in Fig. 5.1.

Fig. 5.1

The circuit contains resistors of resistances R_1 , R_2 , R_3 and R_4 . The currents in the different parts of the circuit are I_1 , I_2 and I_3 . The cells have negligible internal resistance.

Kirchhoff's laws to state an equation relating

a)	I_1,I_2 and $I_3,$	[1
b)	E_1 , E_3 , R_1 , R_3 , R_4 , I_1 and I_3 in loop WXYZW,	. •
c)	$E_1,E_2,R_1,R_2,I_1 \text{ and } I_2 \text{ in loop YZWY}.$	 [1
		 [1

[Total: 3]

6	(a)	Define <i>electric field strength</i> .
		[1

(b) Two parallel metal plates in a vacuum are separated by a distance of 15 mm, as shown in Fig. 6.1.

Fig. 6.1

A uniform electric field is produced between the plates by applying a potential difference between them.

A particle of mass $1.7 \times 10^{-27} \, \text{kg}$ and charge $+1.6 \times 10^{-19} \, \text{C}$ is initially at rest at point A on one plate. The particle is moved by the electric field to point B on the other plate. The particle reaches point B with kinetic energy $2.4 \times 10^{-16} \, \text{J}$.

(i) Calculate the speed of the particle at point B.

(ii) State the work done by the electric field to move the particle from A to B.

(iii)	your	answer	in (i	i) to	determine	the	force	on	the	particle
	,	,		(-	-,						

(iv) Determine the potential difference between the plates.

(v) On Fig. 6.2, sketch a graph to show the variation of the kinetic energy of the particle with the distance *x* from point A along the line AB.

Numerical values for the kinetic energy are not required.

Fig. 6.2

[1]

[Total: 10]

7 (a) Define the ohm.

.....[1]

(b) Wires are used to connect a battery of negligible internal resistance to a lamp, as shown in Fig. 7.1.

Fig. 7.1

The lamp is at its normal operating temperature. Some data for the filament wire of the lamp and for the connecting wires of the circuit are shown in Fig. 7.2.

	filament wire	connecting wires
diameter	d	14 <i>d</i>
total length	L	7.0 <i>L</i>
resistivity of metal (at normal operating temperature)	ρ	0.028 p

Fig. 7.2

(i) Show that

$$\frac{\text{resistance of filament wire}}{\text{total resistance of connecting wires}} = 1000.$$

(ii)	the information in (i) to explain qualitatively why the power dissipated in the filament wire of the lamp is greater than the total power dissipated in the connecting wires.
	[1]
(iii)	The lamp is rated as 12 V, 6.0 W. the information in (i) to determine the total resistance of the connecting wires.
	total resistance of connecting wires = Ω [3]
(iv)	The diameter of the connecting wires is decreased. The total length of the connecting wires and the resistivity of the metal of the connecting wires remain the same.
	State and explain the change, if any, that occurs to the resistance of the filament wire of the lamp.
	[3]
	[Total: 10]

8	A neutron within a nucleus decays to produce a proton, a β^- particle and an (electron) antineutrino						
		$n \longrightarrow p + \beta^- + \bar{\nu}$					
	(a)	the quark composition of the neutron to show that the neutron has no charge.					

[3]

(b) Complete Fig. 8.1 by giving appropriate values of the charge and the mass of the proton, the β^- particle and the (electron) antineutrino.

	proton	β^- particle	antineutrino
charge			
mass			

Fig. 8.1

[2]

[Total: 5]