Sebastian Kopf

Wintersemester 2016/17

Analysis 2

Inhaltsverzeichnis

1	Top		5			
	1.1	Normierte Vektorräume		5		
		1.1.1 Offene Mengen		5		
		1.1.2 Konvergente Folgen		ç		
		1.1.3 Abgeschlossene und kompakte Mengen		12		
	1.2	Stetige Abbildungen		18		
2	Dif	ferenziation in \mathbb{R}^n		25		
	2.1	Rechnen mit Ableitungen		25		
		2.1.1 Partielle und totale Differenzierbarkeit		25		
		2.1.2 Höhere Ableitungen		34		
		2.1.3 Taylorentwicklung		36		
		2.1.4 Lokale Extrema		42		
	2.2	Lokale Inverse und implizite Funktionen		46		
		2.2.1 Lokale Inverse		46		
		2.2.2 Sätze über implizite Funktionen		48		
3 Di		fferentialgleichungen 5				
	3.1 Definitionen und Beispiele			51		
3.2 Lineare Differentialgleichungen erster Ordnung			51			
	3.3			51		
		3.3.1 Bernoulli-Differentialgleichung	_	51		
		3.3.2 Die Riccati-Differentialgleichung		53		
		3.3.3 Differentialgleichungen mit trennbaren Variablen		57		
		3.3.4 Differentialgleichungen vom Typ $y' = f(at + by + c), a, b, c \in \mathbb{R}$		58		
		3.3.5 Differentialgleichungen vom Typ $y' = f(\frac{y}{t}), f \in C^0(\mathbb{R}^+)$	· -	58		
		3.3.6 Differentialgleichungen vom Typ $y' = f\left(\frac{a_1t + b_1y + c_1}{a_2t + b_3t + c_2}\right), a_k, b_k, c_k$	$k \in \mathbb{R}, k = 1, 2$	59		

1

Topologische Grundlagen

1.1 Normierte Vektorräume

1.1.1 Offene Mengen

Definition 1.1.1.1

Sei V ein \mathbb{R} -Vektorraum. Unter einer Norm auf V verstehen wir eine Funktion $\|\cdot\|:V\to[0,\infty[$ mit:

(N1)

$$||x|| = 0 \Leftrightarrow x = 0 \forall x \in V$$

(N2)

$$||tx|| = |t| ||x|| \forall x \in V \forall t \in \mathbb{R}$$

(N3)

$$||x + y|| \le ||x|| + ||y||$$

Beispiel

i)
$$V = \mathbb{R}, ||x|| := |x|, x \in \mathbb{R}.$$

ii)
$$V = \mathbb{R}^n$$
, $||x||_{\infty} := \max_{1 \le l \le n} |x|_l$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, definiert eine Norm auf \mathbb{R}^n .

iii)
$$V = \mathbb{R}^n$$
, $||x||_1 := \sum_{l=1}^n |x_l|$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, definiert eine Norm auf \mathbb{R}^n .

iv)

$$V = C^0([a,b]) = \{f : [a,b] \to \mathbb{K} \mid f \text{ stetig}\}\$$

 $(\mathbb{K} = \mathbb{R} \text{ oder } \mathbb{K} = \mathbb{C}) \text{ Für } f \in V \text{ sei}$

$$\|f\| = \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} |f(x)|$$

eine Norm auf V.

//

Definition 1.1.1.2

V sei ein \mathbb{R} -Vektorraum. Unter einem Skalarprodukt auf V verstehen wir eine Funktion $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ mit

i)

$$\langle x, y \rangle = \langle y, x \rangle, x, y \in V$$

ii)

$$\langle x+\lambda y,u\rangle=\langle x,u\rangle+\lambda\langle y,u\rangle,\lambda\in\mathbb{R},x,y,u\in V$$

iii)

$$\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle, \lambda \in \mathbb{R}, x, y, z \in V$$

iv)

$$\langle x, x \rangle \ge 0, x \in V$$
 $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

In diesem Fall setze $||x|| = \sqrt{\langle x, x \rangle}$.

Lemma 1.1.1.3 Cauchy-Schwarzsche Ungleichung

Sei V wie bisher und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt. Dann

$$|\langle x, y \rangle| \le ||x|| \, ||y|| \, \forall x, y \in V.$$

Dabei gilt Gleichheit, genau dann, wenn x = ty für ein $t \in \mathbb{R}$.

Beweis: $a, b \in \mathbb{R}$. Dann ist

$$\|a+b\|^2 = \langle a+b,a+b\rangle = \langle a,a+b\rangle + \langle b,a+b\rangle = \langle a,a\rangle + \langle a,b\rangle + \langle b,a\rangle + \langle b,b\rangle = \|a\|^2 + \|b\|^2 + 2\langle a,b\rangle.$$

Ist y = 0, so ist nichts zu tun. Sei also $y \neq 0$ (||y|| > 0).

$$0 \leq \left\| x - \frac{\langle x, y \rangle}{\|y\|^2} y \right\|^2 = \|x\|^2 + \frac{\langle x, y \rangle^2}{\|y\|^2} - 2\left\langle x, \frac{\langle x, y \rangle y}{\|y\|^2} \right\rangle = \|x\|^2 + \frac{\langle x, y \rangle^2}{\|y\|^2} - 2\langle x, y \rangle \frac{1}{\|y\|^2} \langle x, y \rangle = \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}$$

Umstellen liefert

$$\langle x, y \rangle^2 \le \|x\| \|y\|^2.$$

Gilt Gleichheit, so ist $\left\|x - \frac{\langle x, y \rangle}{\|y\|^2}\right\| = 0$, also $x = \frac{\langle xx, y \rangle}{\|y\|^2}y =: t$. Ist x = ty, so $\langle x, y \rangle = t \|y\|^2$.

Lemma 1.1.1.4

 $(V, \langle \cdot, \cdot \rangle)$ sei ein \mathbb{R} -Vektorraum mit Skalarprodukt. Dann definiert $||x|| = \sqrt{\langle x, x \rangle}, \ x \in V$, eine Norm auf V.

Beweis:

(N1), (N2) klar. (N1) folgt aus d), (N2):

$$\sqrt{\langle tx,tx\rangle} = \sqrt{t^2\langle x,x\rangle} = |t|\,\|x\|\,\forall t\in\mathbb{R}\,\forall x\in V$$

(N3)
$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$

Beispiel

Auf \mathbb{R}^n definiere $\langle x, y \rangle = x_1 y_1 + ... + x_n y_n$. Dann ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf \mathbb{R}^n .

$$\|x\| = \sqrt{\sum_{l=1}^n x_l^2}$$

ist die euklidische Norm. //

Definition 1.1.1.5

Sei $(V, \|\cdot\|)$ ein normierter Vektorraum, dann definiere für $a \in V, r > 0$ die Kugel um a mit Radius r als

$$B(a,r) := \langle x \in V \mid \|x - a\| < r \rangle.$$

Beispiel

- i) $V = \mathbb{R}, \|\cdot\| = |\cdot|, B(a,r) =]a r, a r[.$
- ii) $V = \mathbb{R}^n$, $\|\cdot\|$ = euklidische Norm, $B_2(a,r)$ = Kreisscheibe um a mit Radius r.
- iii) $V = \mathbb{R}^n$, $\|\cdot\| = \|\cdot\|_{\infty}$,

$$B_n(a,r) = \{x \in \mathbb{R}^n \mid \|x - a\|_{\infty} < r\} = \{x = (x_1,...,x_n) \mid |x_l - a_l| < r \, \forall \, 1 \le l \le n\}$$

//

Definition 1.1.1.6

 $(V, \|\cdot\|)$ sei ein normierter Raum. Sei $M \subset V$ nicht leer. $x \in M$ heißt innerer Punkt von M, wenn ein $\delta > 0$ existiert, so dass $B(x, \delta) \subset M$.

$$\mathring{M} := \{x \in M \mid x \text{ innerer Punkt von } M\}$$

Wir nennen eine Menge $U \subset V$ offen, wenn $\mathring{U} = U$.

Lemma 1.1.1.7

Sei $(V, \|\cdot\|)$ ein normierter Vektorraum. Dann ist für $a \in V$ und r > 0 die Kugel B(a, r) offen. Genauer ist $y \in B(a, r)$, so $B(y, \rho) \subset B(a, r)$, wenn nur $0 < \rho < r - \|a - y\|$.

Beweis: Sei $y \in B(a,r), z \in B(y,\rho)$.

$$||z-a|| = ||y-a+z-y|| \le ||y-a|| + ||z-y|| < ||y-a|| + \rho < r$$

П

so bald $\rho < r - ||y - a||$.

Lemma 1.1.1.8

 $(V, \|\cdot\|)$ wie zuvor, $M, M_1, M_2 \subset V$. Dann gilt:

- i) Ist $U \subset M$ offen, so $U \subset \mathring{M}$.
- ii) $(M_1 \cap M_2)^\circ = \mathring{M}_1 \cap \mathring{M}_2, (M_1 \cup M_2)^\circ \supset \mathring{M}_1 \cup \mathring{M}_2.$

1.1.2 Konvergente Folgen

 $(V, \|\cdot\|)$ sei ein normierter Vektorraum.

Definition 1.1.2.1

i) Wir nennen eine Folge $(x_k)_{k \in V}$ konvergent gegen $x_0 \in V$, wenn

$$\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} : x_k \in B(x_0, \varepsilon) \text{ für } k \geq n_{\varepsilon}.$$

In diesem Falle:

$$x_0 = \lim_{k \to \infty} x_k$$
.

ii) Sei $(x_n)_n \subset V$. Dann heißt $a \in V$ Häufungswert für $(x_n)_n$, wenn für unendlich viele n gilt $x_n \in B(a, \varepsilon)$, wie auch immer $\varepsilon > 0$ gewählt war. Konvergiert $(x_n)_n$ gegen a, so ist a der einzige Häufungswert für $(x_n)_n$.

Lemma 1.1.2.2

 $(x_n)_n \subset V$ sei eine Folge. Dann konvergiert $(x_n)_n$ gegen $x_0 \in V$ genau dann, wenn

$$\lim_{n\to\infty}\|x_n-x_0\|=0.$$

Konvergiert $(x_n)_n$ gegen $y_0 \in V$, so $y_0 = x_0$.

Lemma 1.1.2.3

Genau dann ist $a \in V$ ein Häufungswert der Folge $(x_n)_n$, wenn $(x_n)_n$ eine Teilfolge $(x_{n_k})_k$ mit Grenzwert a hat.

Beweis:

- i) Eine Teilfolge $(x_{n_k})_k \subset (x_n)_n$ konvergiere gegen a. Zu $\varepsilon > 0$ wähle $k_{\varepsilon} \in \mathbb{N}$ mit $x_{n_k} \in B(a, \varepsilon)$ für $k \ge k_{\varepsilon}$. Somit ist a ein Häufungswert.
- ii) Sei $a \in V$ ein Häufungswert für $(x_n)_n$. Zu $\varepsilon := \frac{1}{k}$ gibt es $x_{n_k} \in B\left(a, \frac{1}{k}\right)$. Dann ist aber $a = \lim_{k \to \infty} x_{n_k}$.

Bemerkung Notation

Für $x = (x_1, ..., x_n) \in \mathbb{R}^n$ setzen wir

$$|x| \coloneqq \sqrt{\sum_{l=1}^n x_l^2}.$$

Lemma 1.1.2.4

 $(x_k)_k \subset \mathbb{R}^n$ konvergiert gegen $a \in \mathbb{R}^n$ genau dann, wenn

$$\lim_{k\to\infty}x_{k,l}=\alpha_l, 1\leq l\leq n.$$

Beweis:

$$|x_{k,l} - a_l| \le |x_k - a| \le \sum_{l=1}^n |x_{k,l} - a_l|$$

Lemma 1.1.2.5

i) Sind die Folgen $(x_k)_k, (y_k)_{\subset}V$ konvergent, so

$$\lim_{k\to\infty}(x_k+\alpha y_k)=\lim_{k\to\infty}x_k+\alpha\lim_{k\to\infty}y_k.$$

ii) Wird $\|\cdot\|$ durch ein Skalarprodukt $\langle\cdot,\cdot\rangle$ induziert, so

$$\lim_{k \to \infty} \langle x_k, y_k \rangle = \langle x_0, y_0 \rangle$$

wenn $x_k \to x_0$, $y_k \to y_0$.

Beweis:

i)

$$||x_k + \alpha y_k - (x_0 + \alpha y_0)|| \le ||x_k - x_0|| + |\alpha| ||y_k - y_0|| \xrightarrow{k \to \infty} 0$$

ii)

$$\begin{aligned} |\langle x_k, y_k \rangle - \langle x_0, y_0 \rangle| &= |\langle x_k - x_0, y_k \rangle + \langle x_0, y_k - y_0 \rangle| \\ &\leq \|x_k - x_0\| \|y_k\| + \|x_0\| \|y_k - y_0\| \end{aligned}$$

$$\leq \|x_k - x_0\| (\|x_0\| + \|y_k - y_0\|) + \|x_0\| \|y_k - y_0\| \xrightarrow{k \to \infty} 0$$

Definition 1.1.2.6

- i) $(x_n)_n \subset V$ heißt Cauchy-Folge, wenn $\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N}$ mit $||x_k x_l|| < \varepsilon$, wenn $k, l \ge n_{\varepsilon}$.
- ii) Wir nennen eine Folge $(x_n)_n$ beschränkt, wenn ein R existiert mit $||x_n|| \le R$ für alle n.

Lemma 1.1.2.7

- i) Jede in V konvergente Folge $(x_n)_n$ ist eine Cauchy-Folge.
- ii) Jede Cauchy-Folge $(x_n)_n$ ist beschränkt.
- iii) Ist a ein Häufungswert der Cauchy-Folge $(x_n)_n$, so ist $a = \lim x_n$.

Beweis:

i) Sei $x_0 = \lim x_k$. Zu $\varepsilon > 0$ wähle $n_{\varepsilon} \in \mathbb{N}$ mit

$$||x_n - x_0|| < \frac{\varepsilon}{2} \forall n \ge n_{\varepsilon}.$$

Für $k, l \ge n_{\varepsilon}$ wird dann

$$||x_k - x_l|| \le ||x_k - x_0|| + ||x_l - x_0|| < \varepsilon.$$

ii) Cauchy-Kriterium für $\varepsilon = 1$:

$$\exists n_1 \in \mathbb{N} : ||x_n - x_{n_1}|| \le 1 \forall n \ge n_1.$$

$$||x_n - x_{n_1}|| \le R := 1 + \sum_{p=1}^{n_1} ||x_p - x_{n_1}|| \ \forall n \ge 1.$$

iii) Wähle Teilfolge $(x_{n_k}) \subset (x_n)_n$, $\lim_{k \to \infty} x_{n_k} = a$. Zu $\varepsilon > 0$ sei $p_\varepsilon \ge 1$:

$$\|x_r-x_s\|<\frac{\varepsilon}{2},r,s\geq p_\varepsilon$$

$$||x_r - a|| \le ||x_r - x_{n_{k_0}}|| + ||x_{n_{k_0}} - a||$$

Wähle $k_0 \gg 1$ und $n_{k_0} \ge p_\varepsilon$ mit $\left\| x_{n_{k_0}} - a \right\| < \frac{\varepsilon}{2}$. Dann ist $\| x_r - a \| < \varepsilon$, wenn $r \ge n_{k_0}$.

Definition 1.1.2.8

 $(V, \|\cdot\|)$ heißt vollständig (Banachraum), wenn jede Cauchy-Folge $(x_k)_k \subset V$ in V einen Grenzwert hat.

Satz 1.1.2.9

Der Raum \mathbb{R}^n ist mit $|\cdot|$ vollständig.

Beweis:

n=1: Ana 1; angenommen $(\mathbb{R}^{n-1},|\cdot|)$ sei vollständig. Ist $(x_k)_k$ eine Cauchy-Folge in \mathbb{R}^n , so schreibe $x_k=(x_k',x_{k,n})$. Da

$$\frac{|x_k' - x_l'| + |x_{k,n} - x_{l,n}|}{2} \le |x_k - x_l| \le |x_k' - x_l'| + |x_{k,n} - x_{l,n}|$$

sind $(x'_k)_k$ und $(x_{k,n})_k$ Cauchy-Folgen, haben also einen Grenzwert x' bzw. x_n .

$$|x_k - x| \le |x_k' - x'| + |x_{k,n} - x_n| \xrightarrow{k \to \infty} 0$$

1.1.3 Abgeschlossene und kompakte Mengen

 $(V, \|\cdot\|)$ sei ein normierter Vektorraum.

Definition 1.1.3.1

- i) $A \subset V$ heißt abgeschlossen, wenn $V \setminus A$ offen ist.
- ii) A heißt beschränkt, wenn $A \subset B(0,R)$ für geeignetes R > 0.
- iii) A heißt kompakt, wenn zu jeder Familie $(U_i)_{i\in I}$ offener Mengen mit $A\subset \bigcup_{i\in I}U_i$ eine endliche Menge $J\subset I$ mit $A\subset \bigcup_{j\in J}U_j$ gefunden werden kann.
- iv) A heißt folgenkompakt, wenn jede Folge $(x_n)_n \subset A$ einen Häufungswert $a_0 \in A$ hat.

Definition 1.1.3.2

- i) $A \subset V$ sei eine Menge. Dann heißt $a_0 \in V$ Häufungspunkt von A, wenn $\forall r > 0$ die Menge $A \cap (B(a_0, r) \setminus \{a_0\}) \neq \emptyset$ ist.
- ii) $A \subset V$, dann $\bar{A} :=$ Durchschnitt aller abgeschlossenen Mengen F mit $A \subset F$ (abgeschlossene Hülle von A).

Lemma 1.1.3.3

 $A \subset V$. Dann sind äquivalent:

- i) A ist abgeschlossen.
- ii) Jeder Häufungspunkt von A liegt in A.

Beweis:

- *i)*⇒*ii)* Sei $a_0 \in V$ Häufungspunkt von A, aber $a_0 \notin A$. Dann ist $a_0 \in V \setminus A$ mit $V \setminus A$ offen. Also $\exists r > 0 : B(a_0, r) \subset V \setminus A$ und $A \cap B(a_0, r) = \emptyset$. \nleq
- $ii)\Rightarrow i)$ Sei $a_0\in V\setminus A$, gäbe es kein r>0 mit $B(a_0,r)\subset V\setminus A$, so wähle zu $r\coloneqq \frac{1}{k}$ ein $x_k\in A\cap B\left(a_0,\frac{1}{k}\right)$, sogar $x_k\neq a_0$. Is $\delta>0$ beliebig, so wähle $k>\frac{1}{\delta}$. Dann ist $x_k\in (B(a_0,\delta)\setminus\{a_0\})\cap A$. Also ist a_0 Häufungspunkt für A, also $a_0\in A$. $\not=$

Bemerkung

Äquivalent:

- i) $A \subset V$ abgeschlossen.
- ii) Ist $a_0 \in V$, $(a_k)_k \subset A$, $a_0 = \lim_{k \to \infty} a_k$, so $a_0 \in A$.

Lemma 1.1.3.4

Sei $A \subset V$, dann ist

 $\overline{A} = B := A \cup \{a_0 \in V \mid a_0 \text{ ist Häufungspunkt von } A\}.$

Beweis: *B* ist abgeschlossen: Sei b_0 ein Häufungspunkt für *B*. Zeige: $b_0 \in B$.

Sei r > 0 beliebig. Sei $b_0 \notin A$. Wähle $y \in B \cap (B(b_0, \frac{r}{2}) \setminus \{b_0\})$, ist $y \in A$, so $A \cap (B(b_0, \frac{r}{2}) \setminus \{b_0\}) \ni y$. Dann ist b_0 Häufungspunkt von A.

Sei $y \notin A$, da $y \in B$, ist y Häufungspunkt von A. Da $y \neq b_0$ existiert

$$\delta \coloneqq \frac{1}{2} \|y - b_0\| > 0.$$

Sei $\rho = \min \left\{ \delta, \frac{r}{2} \right\}$. Wähle $x \in (B(y, \rho) \setminus \{y\}) \cap A$. Dann

$$||x-b_0|| \le ||x-y|| + ||y-b_0|| < \rho + \frac{\delta}{2} \le r.$$

Wäre $x = b_0$, so

$$2\delta = ||y - b_0|| = ||y - x|| < \rho \le \delta$$

Also ist $x \in (B(b_0,r) \setminus \{b_0\}) \cap A$. In beiden Fällen ist $(B(b_0,r) \setminus \{b_0\}) \cap A \neq \emptyset$. Also ist b_0 Häufungspunkt von A, also $b_0 \in B$. Somit ist $\bar{B} = B$, $A \subset B$ und $\bar{A} \subset B$.

Zeige noch: $B \subseteq \bar{A}$. Sei F abgeschlossen, $A \subseteq F$. Sei $b \in B$, $b \in A$. Dann ist $b \in F$. Ist $b \notin A$, so $\exists F$ olge $(b_k)_k \subseteq A$, $b = \lim_{k \to \infty} b_k$. Da $b_k \in F$ für alle k, folgt aus der Bemerkung $b \in F$. Also $B \subseteq F$. Wähle $F = \bar{A}$, so ist $B \subseteq \bar{A}$.

Definition 1.1.3.5

 $A \subset V$, dann heißt $\partial A := \bar{A} \setminus \mathring{A}$ der Rand von A.

Bemerkung

Für $A \subset V$ ist stets

$$\partial A = \bar{A} \cap \overline{A^c} = \bar{A} \cap (\overline{V \setminus A}).$$

Beispiel

i)
$$A = B_2(0, r) \Rightarrow \partial A = \{x \in \mathbb{R}^2 \mid |x| = r\}.$$

ii)
$$V = \mathbb{R}, A = \mathbb{Q} \Rightarrow \partial A = \mathbb{R}.$$

Bemerkung Erinnerung

 $K \subset V$ heißt folgenkompakt, wenn jede Folge $(x_v)_v \subset K$ eine in K konvergente Teilfolge hat. $K \subset V$ heißt überdeckungskompakt, wenn es für jede Überdeckung $(U_i)_{i \in I}$ von K durch offene Mengen $U_i \subset V$ $i_1, ..., i_m$ gibt, so dass $K \subset U_{i_1} \cup ... \cup U_{i_m}$.

Lemma 1.1.3.6

 $K \subset V$ sei kompakt. Dann ist

- i) K beschränkt.
- ii) K abgeschlossen.
- iii) K folgenkompakt.

Beweis:

- i) $(B(0,n))_{n\geq 1}$ ist offene Überdeckung für K. Dann $B(0,n_0)\supset K$ für genügend großes n_0 .
- ii) Sei $(x_n)_n \subset K$ eine Folge, so dass $x_0 = \lim_{n \to \infty} x_n$ existiert. Dann ist $x_0 \in K$, anderenfalls wäre $x_0 \notin K$, so wäre $(U_{\varepsilon})_{\varepsilon > 0}$ eine offene Überdeckung für K, wenn $U_{\varepsilon} \coloneqq \{x \in V \mid \|x x_0\| > \varepsilon\}$. Aber dann ist $K \subset U_{\varepsilon_0}$ für ein genügend klein gewähltes $\varepsilon_0 > 0$, $\|x_n x_0\| \ge \varepsilon_0$. $\midexi{}$
- iii) Sei $(x_n)_n \subset K$ eine Folge ohne Häufungspunkt in K. Dann sind unendlich viele der x_n paarweise verschieden. Ist $x \in K$, so gibt es $\varepsilon_x > 0$ so dass $B(x, \varepsilon_x)$ nur endlich viele der x_n enthält. Dann ist $(B(x, \varepsilon_x))_{x \in K}$ eine offene Überdeckung von K, also finden wir $\tilde{x}_1, ..., \tilde{x}_r \in K$ mit $K \subset \bigcup_{l=1}^r B(\tilde{x}_k, \varepsilon_{\tilde{x}_l})$. Aber die linke Seite enthält unendlich viele der x_n , die rechte nur endlich viele. $\frac{1}{2}$

Lemma 1.1.3.7

Sei $K \subset V$ folgenkompakt und $(U_i)_{i \in I}$ eine Überdeckung von K durch offene Mengen $U_i \subset V$. Dann gibt es ein $\delta > 0$ mit:

$$\forall x \in K \exists i = i_x \in I \text{ mit } B(x, \delta) \subset U_{i_x}.$$

Beweis: Sonst gäbe es zu $k \in \mathbb{N}$ ein $x_k \in K$ mit $B\left(x_k, \frac{1}{k}\right) \not\subset U_i$ für alle $i \in I$. Wähle $(x_{k_l})_l \subset (x_n)_n$ mit $x_0 = \lim_{l \to \infty} x_{k_l} \in K$, sei $i_0 \in I$, $x_0 \in U_{i_0}$. Wähle $\varepsilon > 0$ mit $B(x_0, 2\varepsilon) \subset U_{i_0}$. Ist dann $y \in B\left(x_{k_l}, \frac{1}{k_l}\right)$, so

$$\|y-x_0\| \le \|x_0-x_{k_l}\| + \|y-x_{k_l}\| \le \|x_0-x_{k_l}\| + \frac{1}{k_l} < \varepsilon + \frac{1}{k_l} < 2\varepsilon.$$

Dann gilt $B\left(x_{k_l}, \frac{1}{k_l}\right) \subset B(x_0, 2\varepsilon) \subset U_{i_0}$.

Satz 1.1.3.8

Jede folgenkompakte Menge $K \subset V$ ist kompakt.

Beweis: Sei $K \subset \bigcup_{i \in I} U_i$, U_i offen. Es gibt ein $\delta > 0$ mit:

$$\forall x \in K \exists i_x \in I : B(x, \delta \subset U_{i_x}).$$

Behauptung: Für geeignete $x_1,...,x_N \in K$ ist schon $K \subset \bigcup_{l=1}^N B(x_l,\delta)$.

Angenommen, es sei nicht so. Dann $K \not\subset B(z_1, \delta)$ ($z_1 \in K$ beliebig). Also $\exists z_2 \in K$ mit $\|z_1 - z_2\| \ge \delta$. Auch $K \not\subset B(z_1, \delta) \cup B(z_2, \delta)$, wähle $z_3 \in K$ mit $\|z_3 - z_l\| \ge \delta$, l = 1, 2, induktiv definiere $z_1, ..., z_r \in K$ mit $\|z_i - z_j\| \ge \delta$ für $i \ne j$.

Die Folge $(z_n)_n \subset K$ hat dann keinen Häufungswert. $\mbox{$\frac{1}{2}$}$

Satz 1.1.3.9 Bolzano-Weierstraß

In $(\mathbb{R}^n, |\cdot|)$ hat jede beschränkte Folge $(x_k)_k$ einen Häufungswert.

Beweis: $x_k = (x_{k,1}, ..., x_{k,n})$, wähle aus $(x_{k,1})_k$ eine konvergente Teilfolge $(x_{k_{l,1},1})_l$ aus. Dann ist $(x_{k_{l,1},2})_l$ beschränkt, hat also eine konvergente Teilfolge $(x_{k_{l,2},2})_l$. Aus $(x_{k_{l,2},3})_l$ wähle konvergente Teilfolge $(x_{k_{l,3},3})_l$ aus. So fahre fort und erhalte Teilfolge $(x_{k_{l,n}})_l$, so dass $(x_{k_{l,n},j})_j$ konvergiert für alle $1 \le j \le n$.

Alternativer Beweis: Induktion nach *n*.

$$n=1:\sqrt{}$$

Angenommen der Satz gelte in \mathbb{R}^{n-1} . Schreibe $x_k = (x_k', x_{k,n}) \in \mathbb{R}^{n-1} \times \mathbb{R}$, dann sind $(x_k')_k \subset \mathbb{R}^{n-1}$ und $x_{k,n} \subset \mathbb{R}$ beschränkt. Wähle Teilfolge $(x_{k_l}')_l \subset (x_k')_k$, die konvergiert, etwa gegen x_0' , $(x_{k_l,n})_l$ hat ebenfalls eine gegen ein $x_{0,n} \in \mathbb{R}$ konvergente Teilfolge $(x_{k_l}, n)_p$. Dann konvergiert $(x_{k_l}, n)_p$ gegen $(x_0', x_{0,n})$.

Satz 1.1.3.10 Heine-Borel

Im \mathbb{R}^n ist jede Menge $K \subset \mathbb{R}^n$ genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Beweis: Zu zeigen: Ist K abgeschlossen und beschränkt, so hat jede Folge $(x_k)_k \subset K$ einen Häufungswert $x^* \in K$.

Nach 1.1.3.9 Hat $(x_k)_k$ einen Häufungswert $x^* \in \mathbb{R}^n$ (da K beschränkt). K abgeschlossen, $x^* \in K$.

П

Beispiel

Sei $U \subset \mathbb{R}$ offen.

$$BC^0(U)\coloneqq \{f\colon U\to \mathbb{R}\:|\:f\:\:\mathrm{stetig\:und\:beschr\"{a}nkt}\}$$

ist ein \mathbb{R} -Vektorraum,

$$||f|| := \sup\{|f(x)| \mid x \in U$$

definiert auf $BC^0(U)$ eine Norm. $(BC^0(U), \|\cdot\|)$ ist sogar vollständig. Speziell: $U = \mathbb{R}, K := \{f \in BC^0(U) \mid \|f\| \le 1\}$ ist abgeschlossen und beschränkt. Sei jetzt

$$f_0(x) := \begin{cases} x, & 0 \le x < 1 \\ 1, & 1 < x < 2 \\ 3 - x, & 2 \le x \le 3 \end{cases}, \quad f_n(x) := f_0(x + 3n).$$

$$0, & x \notin [0,3]$$

Dann $(f_n)_n \subset K$, aber $||f_k - f_n|| = 1$ für $k \neq n$. $(f_n)_n$ hat keine konvergente Teilfolge. Also ist K nicht kompakt. $/\!\!/$

Definition 1.1.3.11

Eine offene Menge $\Omega \subset V$ heißt zusammenhängend oder Gebiet, wenn gilt: Sind $U_1, U_2 \subset V$ offen, $U_1 \cap U_2 = \emptyset$, so folgt aus $\Omega = U_1 \cup U_2$ schon $U_1 = \Omega$ oder $U_2 = \Omega$.

Lemma 1.1.3.12

Sei $\Omega \subset V$ ein Gebiet, die Funktion $f: \Omega \to \mathbb{R}$ habe die Eigenschaft: Ist $a \in \Omega$, so gibt es r > 0 mit $B(a,r) \subset \Omega$ und f(x) = f(a) für $x \in B(a,r)$. Dann ist f konstant auf Ω .

Beweis: Sei $a_0 \in \Omega$, $U_1 := \{x \in \Omega \mid f(x) = f(a_0)\}$, $U_2 := \Omega \setminus U_1$ sind offen (Ist das gezeigt, haben wir $U_1 \cup U_2 = \Omega$, $U_1 \cap U_2 = \emptyset$, also $U_1 = \Omega$, da $U_1 \ni a_0$, $U_1 \neq \emptyset$).

Ist $x_1 \in U_1$, r > 0 mit $B(x_1, r) \subset \Omega$ und $f(x) = f(x_1)$ auf $B(x_1, r)$, also $B(x_1, r) \subset U_1$. Also ist U_1 offen.

Ist $x_2 \in U_2$, $r_2 > 0$ mit $B(x_2, r_2) \subset \Omega$ und $f = f(x_2)$ auf $B(x_2, r_2)$. Somit $B(x_2, r_2) \subset U_2$. Also ist auch U_2 offen.

1.2 Stetige Abbildungen

Sei $(V, \|\cdot\|)$ stets ein normierter Vektorraum.

Definition 1.2.1

Sei $(Y, \|\cdot\|_Y)$ ein normierter Vektorraum. Ist $M \subset V$, $f: M \to Y$ eine Abbildung, so heißt f stetig in $x_0 \in M$, wenn zu jedem $\varepsilon > 0$ ein $\delta > 0$ gefunden werden kann, so dass für alle $x \in M \cap B(x_0, \delta)$ gilt $f(x) \in B(f(x_0), \varepsilon)$. Alternativ:

$$||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \varepsilon \forall x \in M.$$

Satz 1.2.2

Sei $M \subset V$, $x_0 \in M$, $f: M \to Y$. Dann ist f in x_0 stetig, wenn für alle $(x_k)_k \subset M$, $\lim x_k = x_0$, gilt $\lim f(x_k) = f(x_0)$.

Beweis:

- '\(\sigma\) '\(\sigma\) \(\sigma\) (x_k)_k \(\subset M\), \(\lim x_k = x_0\).

 Zeige: $f(x_k) \xrightarrow{k \to \infty} f(x_0)$. Sei $\varepsilon > 0$ beliebig. Es gibt $\delta > 0$ mit $f(x) \in B(f(x_0), \varepsilon)$, wenn $x \in M \cap B(x_0, \delta) \exists k_0 \in \mathbb{N}$ mit $||x_k x_0|| < \delta$ für alle $k \ge k_0$. Also $f(x_k) \in B(f(x_0), \varepsilon) \forall k \ge k_0$, also $||f(x_k) f(x_0)|| < \varepsilon \forall k \ge k_0$.
- '\(=\)': Sei f in x_0 unstetig. Dann gibt es ein $\varepsilon > 0$, so dass $f(M \cap B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$ für kein $\delta > 0$. Also gilt $\forall k \geq 1 \exists x_k \in M \cap B\left(x_0 \frac{1}{k}\right)$ mit $||f(x_k) f(x_0)|| \geq \varepsilon$. Aber $\lim x_k = x_0$, ohne dass $(f(x_k))_k$ gegen $f(x_0)$ konvergiert.

Lemma 1.2.3

Seien $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ normierte Vektorräume und $f: M \to S$, $g: S \to Z$ Abbildungen, $M \subset V$, $S \subset Y$. Wenn dann f in $x_0 \in M$ und g in $y_0 \coloneqq f(x_0)$ stetig ist, so ist $g \circ f$ in x_0 stetig.

Lemma 1.2.4

Folgenkriterium anwenden.

Lemma 1.2.5

 $U \subset V$ sei offen und $f: U \to Y$ ($(Y, \|\cdot\|_Y)$ normierter Vektorraum.). Dann ist f auf U stetig genau dann, w(enn $f^{-1}(W)$ offen ist für jede offene Menge $W \subset Y$.

Beweis:

'\(\sigma': S \sigma Y\) sei offen, $x_0 \in f^{-1}(W)$, $y_0 \coloneqq f(x_0)$. W\(\text{ahle } \varepsilon > 0\) mit $B(y_0, \varepsilon) \subset W$, $\exists \delta > 0$ mit $f(B(x_0, \delta)) \subset B(y_0, \varepsilon)$. Dann ist $B(x_0, \delta) \subset f^{-1}(B(y_0, \varepsilon)) \subset f^{-1(W)}$. Also ist $f^{-1(W)}$ offen.

' \Leftarrow ': Sei $x_1 \in U$, $y_1 \coloneqq f(x_1)$. Da $B(y_1, \varepsilon) \subset Y$ offen, ist $f^{-1}(B(y_1, \varepsilon))$ es auch. Da $x_1 \in f^{-1}(B(y_0, \varepsilon))$ $\exists \delta > 0 \text{ mit } B(x_1, \delta) \subset f^{-1}(B(y_0, \varepsilon))$.

Lemma 1.2.6

 $(Y, \|\cdot\|_Y)$ sei normierter Vektorraum.

i) Genau dann ist eine lineare Abbildung $f: V \to Y$ stetig, wenn eine Zahl c > 0 mit

$$||f(x)||_V \le c ||x|| \forall x \in V$$

existiert.

ii) Jede lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^d$ ist stetig.

Beweis:

i) Es gebe eine Konstante c>0 mit $\|f(x)\|_Y\leq c\,\|x\|$ für alle $x\in V$. Dann ist f in 0 stetig nach dem Folgenkriterium.

Sei $x_0 \in V$.

$$\|f(x) - f(x_0)\|_Y = \|f(x - x_0)\|_Y \le c \, \|x - x_0\|$$

Also ist f stetig in x_0 .

Angenommen, f sei stetig, aber $||f(x)||_Y \le c ||x||$ gelte für kein c > 0, dann wähle $x_k \in V$ mit $||f(x_k)||_Y \ge k ||x_k||$.

$$v_k := \frac{x_k}{k} \Rightarrow ||v_k|| \le \frac{1}{k} \text{ und } ||f(v_k)|| = \frac{||f(x_k)||}{k} \ge 1$$

Dann wäre f in 0 unstetig. $\frac{1}{2}$

ii) Sei f(x) = Ax mit $A \in \mathbb{R}^{d \times n}$.

$$A = (a_{ij})_{\substack{i=1,\dots,d\\j=1,\dots,n}} \Rightarrow f(x) = \begin{pmatrix} \langle A_1, x \rangle \\ \vdots \\ \langle A_d, x \rangle \end{pmatrix}, A_i := (a_{i1}, \dots, a_{in})$$

$$|f(x)|^2 = \sum_{i=1}^d \langle A_i, x \rangle^2 \le \left(\sum_{i=1}^d |A_i|^2\right) |x|^2$$

 $c \coloneqq \sqrt{\sum_{i=1}^d |A_i|^2}$ erfüllt das Kriterium aus i).

Lemma 1.2.7

Jede Norm $\mathcal{N}: V \to \mathbb{R}^+$ auf einem Vektorraum V über \mathbb{R} ist stetig, wenn $\dim_{\mathbb{R}} V < \infty$.

Beweis: Sind $x, y \in V$, so

$$\mathcal{N}(x) = \mathcal{N}(y + x - y) \le \mathcal{N}(y) + \mathcal{N}(x - y)$$

$$\Rightarrow \mathcal{N}(x) - \mathcal{N}(y) \le \mathcal{N}(x - y)$$

$$\Rightarrow \mathcal{N}(y) - \mathcal{N}(x) \le \mathcal{N}(x - y)$$

$$\Rightarrow |\mathcal{N}(x) - \mathcal{N}(y)| \le \mathcal{N}(x - y).$$

Lemma 1.2.8

 $(V, \|\cdot\|)$ und $(Y, \|\cdot\|_Y)$ seien normierte Räume. Sei $U \subset V$ offen, $K \subset U$ kompakt, ist dann $f: U \to Y$ stetig, so ist auch f(K) kompakt.

Beweis: Sei $(W_i)_{i \in I}$ eine Überdeckung von f(K) durch offene Mengen. Dann folgt

$$K \subset \bigcup_{i \in I} f^{-1}(W_i).$$

Wähle $i_1,...,i_n \in I$ aus mit $K \subset \bigcup_{k=1}^n f^{-1}W_{i_k}$. Hieraus folgt dann die Behauptung:

$$f(K) \subset \bigcup_{k=1}^{n} W_{i_k}$$
.

Satz 1.2.9

 $(V, \|\cdot\|)$ wie zuvor, ist $K \subset V$ kompakt, und $f: U \to \mathbb{R}$ stetig, so gibt es $x_+, x_- \in K$ mit $f(x_-) \le f \le f(x_+)$.

Beweis: f(K) ist kompakt, also abgeschlossen und beschränkt. $\inf_{x \in K} f(x)$ und $\sup_{t \in K} f(t)$ sind definiert und es gibt Folgen $(x'_n)_n$, $(x''_n)_n \subset K$ mit $f(x'_n) \to \inf_{x \in K} f(x)$, $f(x''_n) \to \sup_{t \in K} f(t)$,

wenn $n \to \infty$. OEdA seien $(x'_n)_n$ und $(x''_n)_n$ konvergent gegen $x_-, x_+ \in K$. Dann ist $f(x_-) = \inf_{x \in K} f(x)$ und $f(x_+) = \sup_{t \in K} f(t)$.

Satz 1.2.10

Ist V ein endlich erzeugter \mathbb{R} -Vektorraum, so gibt es zu 2 Normen $\mathcal{N}_1, \mathcal{N}_2 \colon V \to [0, \infty[$ eine Zahl c > 0, so dass

$$\frac{1}{c}\mathcal{N}_1 \le \mathcal{N}_2 \le c\mathcal{N}_1.$$

Beweis: Sei $n = \dim V$ und $\{b_1, ..., b_n\}$ eine \mathbb{R} -Basis für V. Dann gibt es Linearformen $b_1^*,, b_n^* \colon V \to \mathbb{R}$ mit $x = \sum_{l=1}^n b_l^*(x)b_l \forall x \in V$.

 $F(x) = (b_1^*(x), ..., b_n^*(x)), F: V \to \mathbb{R}^n$ isomorph. $\tilde{\mathcal{N}}_j(y) \coloneqq \mathcal{N}_j(F^{-1}(y))$ sind Normen auf \mathbb{R}^n . Zeige: $\exists c > 0$:

$$\frac{1}{c}\tilde{\mathcal{N}}_1 \le \tilde{\mathcal{N}}_2 \le x\tilde{\mathcal{N}}_1.$$

Für $y \in \mathbb{R}^n$ ist

$$\tilde{\mathcal{N}}_1(y) = \tilde{\mathcal{N}}_1\left(\sum_{j=1}^n y_j e_j\right) \leq \sum_{j=1}^n |y_j| \tilde{\mathcal{N}}_1(e_j) \leq |y| \sqrt{\sum_{j=1}^n \tilde{\mathcal{N}}_1(e_j)^2} = c_1'|y|.$$

 $\tilde{\mathcal{N}}_1 \colon \mathbb{R}^n \to [0, \infty[$ ist stetig, $K \coloneqq \{y \in \mathbb{R}^n \mid |y| = 1\}$ ist abgeschlossen und beschränkt, also kompakt. Dann existiert ein $y_* \in K$ mit $\tilde{\mathcal{N}}_1(y) \ge \tilde{\mathcal{N}}_1(y_*)$ ffür alle $y \in K$. Für alle $y \in \mathbb{R}^n$ gilt dann

$$\tilde{\mathcal{N}}_1(y) = \tilde{\mathcal{N}}_1\left(|y|\frac{y}{|y|}\right) = |y|\tilde{\mathcal{N}}_1\left(\frac{y}{|y|}\right) \ge \tilde{\mathcal{N}}_1(y_*)|y|.$$

Hiermit folgt:

$$\tilde{\mathcal{N}}_1(y) \le c_1'|y| \le \frac{1}{\tilde{\mathcal{N}}_1(y_*)} \tilde{\mathcal{N}}_1(y).$$

Genauso $(\gamma_{**} \in K)$:

$$\tilde{\mathcal{N}}_2(y) \le c_2'|y| \le \frac{1}{\tilde{\mathcal{N}}_2(\gamma_{**})} \tilde{\mathcal{N}}_2(y).$$

Es folgt:

$$\tilde{\mathcal{N}}_1(y) \le c_1'|y| \le \frac{c_1'}{c_2'\tilde{\mathcal{N}}(y_{**})}\tilde{\mathcal{N}}_2(y)$$

$$\frac{c_2'}{c_1'}\tilde{\mathcal{N}}_2(y_{**})\tilde{\mathcal{N}}_1 \leq \tilde{\mathcal{N}}_2$$

$$\tilde{\mathcal{N}}_2(y) \le c_2'|y| \le \frac{c_2'}{c_1'\tilde{\mathcal{N}}_1(y_*)}\tilde{\mathcal{N}}_1(y)$$

$$c\coloneqq \max\left\{\frac{c_1'}{c_2'}\frac{1}{\tilde{\mathcal{N}}_2(y_*)}, \frac{c_2'}{c_1'}\frac{1}{\tilde{\mathcal{N}}_1(y_*)}\right\}$$

liefert das Verlangte.

Lemma 1.2.11

 $(V,\|\cdot\|)$ sei normierter Vektorraum, ebenso $(Y,\|\cdot\|_Y)$. $f:V\to Y$ sei auf einer kompakten Menge $K\subset V$ stetig. Dann ist f auf K gleichmäßig stetig, d.h. zu jedem $\varepsilon>0$ gibt es $\delta>0$, so dass $\|f(x')-f(x'')\|_Y\leq \varepsilon$, wenn immer $x',x''\in K$ mit $\|x'-x''\|\leq \delta$ sind.

Beweis: Zu $\varepsilon > 0$ und $\tilde{x} \in K$ wähle $\delta_{\tilde{x}} > 0$ mit $f(B(\tilde{x}, \delta_{\tilde{x}} \subset B(f(x), \varepsilon/2))$. Dann überdeckt $(B(\tilde{x}, \delta_{\tilde{x}}/2))_{\tilde{x} \in K} K$. Wähle $\tilde{x}_1, ..., \tilde{x}_N \in K$ mit

$$K\subset \bigcup_{j=1}^N B(\tilde{x}_j,\delta_{\tilde{x}_j}/2),\quad \delta\coloneqq \frac{1}{2}\min\{\delta_{\tilde{x}_j},...,\delta_{\tilde{x}_N}\}.$$

Sind jetzt $x', x'' \in K$, $||x' - x''|| < \delta$, für ein $j \in \{1, ..., N\}$ ist dann $x'' \in B(\tilde{x}_j, \delta_{\tilde{x}_j}/2)$. Dann ist

$$\begin{aligned} \left\| x' - \tilde{x}_j \right\| & \le \left\| x' - x'' \right\| + \left\| x'' - \tilde{x}_j \right\| \le \delta_{\tilde{x}_j}. \\ \left\| f(x') - f(x'') \right\|_Y & \le \left\| f(x') - f(\tilde{x}_j) \right\| + \left\| f(\tilde{x}_j) - f(x'') \right\| < \varepsilon \end{aligned}$$

Definition 1.2.12

 $(V, \|\cdot\|)$ sei normierter Raum, $f: V \to V$ heißt kontrahierend, wenn $\exists 0 < x < 1$ mit $\|f(x') - f(x'')\| \le c \|x' - x''\|$ für $x', x'' \in V$.

Satz 1.2.13 Banachscher Fixpunktsatz

 $(V, \|\cdot\|)$ sei vollständiger normierter Vektorraum, $f: V \to V$ sei kontrahierend. Dann hat f genau einen Fixpunkt $x_0 \in V$, also $f(x_0) = x_0$.

Beweis: $x_1 \in V$ sei beliebig, induktiv definiere: $x_{n+1} := f(x_n)$. Dann ist

$$||x_{n+1} - x_{n+1}|| = ||f(x_{n+1} - f(x_n))|| \le c ||x_{n+1} - x_n||.$$

Somit:

$$||x_{n+1} - x_n|| \le c^{n-1} ||x_2 - x_1||.$$

Für m > k gilt dann:

$$\|x_m - x_k\| = \left\| \sum_{l=k}^{m-1} (x_{l+1} - x_l) \right\| \le \sum_{l=k}^{m-1} \|x_{l+1} - x_l\| \le \left(\sum_{l=k}^{m-1} c^{l-1} \right) \|x_2 - x_1\| \le \frac{c^{k-1}}{1-c} \|x_2 - x_1\|.$$

Also bildet $(x_n)_n$ eine Cauchyfolge, es existiert x_0 : $\lim x_n$. Da f stetig ist, gilt

$$f(x_0) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x_0.$$

Ist $y_0 \in V$ und $f(y_0) = y_0$, so

$$||x_0 - y_0|| = ||f(x_0) - f(y_0)|| \le c ||x_0 - y_0|| \Rightarrow x_0 - y_0 = 0.$$

Ergänzung:

$$||x_m - x_k|| \le \frac{c^{k-1}}{1-c} ||x_2 - x_1|| \Rightarrow ||x_k - x_0|| \le \frac{c^{k-1}}{1-c} ||x_2 - x_1||$$

Differenziation in \mathbb{R}^n

2.1 Rechnen mit Ableitungen

2.1.1 Partielle und totale Differenzierbarkeit

Definition 2.1.1.1

 $U \subset \mathbb{R}^n$ sei offen. $f: U \to \mathbb{R}$ heißt in $x^0 \in U$ partiell differenzierbar nach x_j , wenn der Grenzwert

$$f_{x_j}(x^0) = \frac{\partial f}{\partial x_j}(x^0) := \lim_{t \to 0} \frac{f(x^0 + te_j) - f(x^0)}{t}$$

existiert. Dabei ist $e_j = (0, 0, ..., 1_j, 0, ..., 0)$.

Zur Berechnung von $f_{x_j}(x^0)$ setze in f(x) alle Variablen x_i auf x_i^0 , wenn $i \neq j$ und betrachte dann

$$\frac{f(x_1^0,...,x_{j-1}^0,x_j,x_{j+1}^0,...,x_n^0)-f(x^0)}{x_j-x_j^0}$$

und lasse darin $x_j \rightarrow x_j^0$ streben.

Beispiel

i)
$$f(x_1,x_2)\coloneqq x_1^2\cos(2x_1x_2)\quad\text{auf}\quad\mathbb{R}^2,\quad x^0\coloneqq\left(\frac{\pi}{2},1\right)$$

$$f(x_1,1)=x_1^2\cos(2x_1)$$

Bilde Ableitung nach x_1 in $x_1 = \frac{\pi}{2}$:

$$f_{x_1}(x^0) = 2x_1^0 \cos(2x_1^0) - 2(x_1^0)^2 \sin(2x_1^0) = -\pi$$

$$f\left(\frac{\pi}{2}, x_2\right) = \frac{\pi^2}{4} \cos(\pi x_2)$$

$$f_{x_2}(x^0) = -\frac{\pi^2}{4} \sin \pi = 0$$

ii) Auf \mathbb{R}^n sei $f(x) = |x_1|$. Ist $x^0 \in \mathbb{R}^n$, so gilt für $x_1^0 > 0$: $f_{x_1}(x^0) = 1$ und für $x_1^0 < 0$: $f_{x_1}(x^0) = -1$. Ist $x_1^0 = 0$, so existiert $f_{x_1}(x^0)$ nicht. In jedem Falle ist $f_{x_j}(x^0) = 0$, $2 \le j \le n$.

iii)
$$f(x_1, x_2, x_3) \coloneqq \frac{2x_1x_3}{1 + x_1x_2 + x_3^2} \quad \text{auf} \quad U \coloneqq \{x \in \mathbb{R}^3 \mid 1 + x_1x_2 + x_3^2 \neq 0\}, \quad x^0 \coloneqq (1, 2, -2)$$

$$f(x_1, 2, -2) = \frac{-4x^1}{2x_1 + 5}$$

$$f_{x_1}(x_1, 2, -2) = \frac{-4(2x_1 + 5) + 8x_1}{(2x_1 + 5)^2} = \frac{-20}{(2x_1 + 5)^2}$$

$$f_{x_1}(x^0) = -\frac{20}{49}$$

$$f(1, x_2, -2) = \frac{-4}{x_2 + 5}$$

$$f_{x_2}(x^0) = \frac{4}{(x_2^0 + 5)^2} = \frac{4}{49}$$

$$f(1, 2, x_3) = \frac{2x_3}{3 + x_3^2}$$

$$f_{x_3}(x^0) = \frac{2(3 + (x_3^0)^2) - (2x_3^0)^2}{(3 + (x_3^0)^2)^2} = \frac{6 - 2(x_3^0)^2}{(3 + (x_3^0)^2)^2} = \frac{-2}{49}$$

//

Lemma 2.1.1.2

Sind $f,g:U\to\mathbb{R}$ in x^0 partiell differenzier bar nach x_j , so auch $f+\alpha g$, fg und, sofern $g(x^0)\neq 0$, auch $\frac{f}{g}$. Ferner gilt

$$(f + \alpha g)_{x_j}(x^0) = f_{x_j}(X^0) + \alpha g_{x_j}(x^0)$$

$$(fg)_{x_j}(x^0) = f(x^0)g_{x_j}(x^0) + f_{x_j}(x^0)g(x^0)$$

$$\left(\frac{f}{g}\right)_{x_j}(x^0) = \frac{g(x^0)f_{x_j}(x^0) - g_{x_j}(x^0)f(x^0)}{g(x^0)^2}$$

Beweis: Wende Regeln aus Analysis 1 an auf

$$f_j(t) := f(x^0 + te_j), \quad g_j(t) := g(x^0 + te_j) \quad \text{in} \quad t = 0.$$

Definition 2.1.1.3

Wir nennen eine Abbildung $f: U \to \mathbb{R}^d$ ($U \subset \mathbb{R}^n$ offen) in x^0 partiell nach x_j differenzierbar, wenn $f_1, ..., f_d$ es sind, wobei $f = (f_1, ..., f_d)$.

ist f in x_0 partiell differenzierbar (d.h. partiell differenzierbar nach $x_1,...,x_n$), so bezeichnen wir die Matrix

$$J_f(x^0) = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{i=1,\dots,d\\i=1,\dots,n}} \in \mathbb{R}^{d \times n}$$

mit Jacobimatrix von f bei x_0 .

Für d = 1 schreiben wir auch $\nabla f(x^0)$ (Gradient) statt $J_f(x^0)$.

Beispiel

Sei

$$f(x_1, x_2) := \begin{cases} 0, & x = 0 \\ \frac{x_1 x_2}{|x|^2}, & x \neq 0 \end{cases}$$
 in \mathbb{R}^2 , $f(te_j) = 0$.

Hier folgt $\nabla f(0) = 0$. f ist unstetig in 0, denn $\left(\frac{1}{n}, \frac{1}{n}\right) \xrightarrow{n \to \infty} 0$, aber $f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{1}{2} \neq 0$. //

Definition 2.1.1.4 Differenzierbarkeit

 $U \subset \mathbb{R}^n$ sei offen, $x^0 \in U$, dann nennen wir $f: U \to \mathbb{R}$ in x^0 (total) differenzierbar, wenn $a \in \mathbb{R}^n$ existiert, so dass

$$R_{f,x^0}(x) := \frac{f(x) - f(x^0) - \langle a, x - x^0 \rangle}{|x - x^0|} \xrightarrow{x \to x^0} 0$$

Lemma 2.1.1.5

 $f\colon U\to\mathbb{R}$ ist in x^0 differenzierbar genau dann, wenn es stetige Funktionen $\varphi_1,...,\varphi_n\colon U\to\mathbb{R}$ gibt mit

i)

$$f(x) = f(x^{0}) + \sum_{j=1}^{n} (x_{j} - x_{j}^{0}) \varphi_{j}(x)$$

ii) $\varphi_1,...,\varphi_n$ sind stetig in x^0 .

Dann ist $f_{x_j}(x^0) = \varphi_j(x^0)$, also f in x^0 partiell differenzierbar.

Beweis:

 $\dot{\Rightarrow} \dot{:} \text{ W\"ahle } a = (a_1,...,a_n) \in \mathbb{R}^n \text{ mit } \frac{f(x) - f(x^0) - \langle a, x - x^0 \rangle}{|x - x^0|} \xrightarrow{x \to x^0} 0.$

$$\varphi_{j}(x) := \begin{cases} a_{j}, & x = x^{0} \\ a_{j} + \frac{x_{j} - x_{j}^{0}}{|x - x^{0}|} R_{f, x^{0}}(x), & x \neq x^{0} \end{cases}$$

 $\varphi_j(x) \xrightarrow{x \to x^0} \alpha_j$. Also sind alle φ_j in x^0 stetig. Hieraus folgt ii). i) folgt aus:

$$f(x) = f(x^{0}) + |x - x^{0}| R_{f,x^{0}}(x) + \sum_{j=1}^{n} a_{j}(x_{j} - x_{j}^{0})$$

$$= f(x^{0}) + \sum_{j=1}^{n} (x_{j} - x_{j}^{0}) \left(a_{j} + \frac{x_{j} - x_{j}^{0}}{|x - x^{0}|} R_{f,x^{0}}(x) \right)$$

$$= f(x^{0}) + \sum_{j=1}^{n} (x_{j} - x_{j}^{0}) \varphi_{j}(x)$$

'⇔':

$$f(x) - f(x^{0}) = \sum_{j=1}^{n} (x_{j} - x_{j}^{0})\varphi_{j}(x)$$

$$= \sum_{j=1}^{n} (x_{j} - x_{j}^{0})\varphi_{j}(x^{0}) + \sum_{j=1}^{n} (x_{j} - x_{j}^{0})(\varphi_{j}(x) - \varphi_{j}(x^{0}))$$

Sei nun $a := (\varphi_1(x^0), ..., \varphi_n(x^0))$. Dann folgt:

$$R_{f,x^0}(x) = \sum_{j=1}^n \frac{x_j - x_j^0}{|x - x^0|} (\varphi_j(x) - \varphi_j(x^0))$$

$$|R_{f,x^0}(x)| \le \sum_{j=1}^n |\varphi_j(x) - \varphi_j(x0)| \xrightarrow{x \to x^0} 0$$
 wegen ii)

Korollar 2.1.1.6

Ist $f: U \to \mathbb{R}$ in x^0 differenzierbar, so ist f stetig in x^0 .

Definition 2.1.1.7

Eine Abbildung $f: U \to \mathbb{R}^d$ heißt differenzierbar in $x^0 \in U$, wenn eine Matrix $A \in \mathbb{R}^{d \times n}$ mit $\frac{f(x) - f(x^0) - A(x - x^0)}{|x - x^0|} \xrightarrow{x \to x^0} 0$ gefunden werden kann.

(Äquivalent: Ist $f = (f_1, ..., f_d)$, so sind alle f_j in x^0 differenzierbar.)

Lemma 2.1.1.8

 $f: U \to \mathbb{R}^d$ ist in $x^0 \in U$ differenzierbar genau dann, wenn $\Phi_1, ..., \Phi_n : U \to \mathbb{R}^d$, stetig in x^0 , existieren, so dass

$$f(x) = f(x^0) + \sum_{j=1}^{n} (x_j - x_j^0) \Phi_j(x).$$

Lemma 2.1.1.9

Ist $f: U \to \mathbb{R}$ differenzierbar in x^0 , so ist sie auch partiell differenzierbar, und

$$\frac{f(x) - f(x^0) - \langle \nabla f(x^0), x - x^0 \rangle}{|x - x^0|} \xrightarrow{x \to x^0} 0.$$

Beweis: Sei $a=(a_1,...,a_n)$ mit $\frac{f(x)-f(x^0)-\langle a,x-x^0\rangle}{|x-x^0|}\to 0$ mit $x\to x^0$.

$$\frac{f(x^0+te_j)-f)x^0}{t}=\langle \alpha,e_j\rangle+\frac{|t|}{t}R_{f,x^0}(x^0+te_j)\xrightarrow{t\to 0}\alpha_j$$

Also $f_{x_j}(x^0) = a_j$, $1 \le j \le n$.

Mitbewiesen: Ist $\frac{f(x)-f(x^0)-\langle a,x-x^0\rangle}{|x-x^0|} \xrightarrow{x\to x^0} 0$, so ist schon $a=\nabla f(x^0)$. Analog gilt für Abbildungen: Ist $f\colon U\to \mathbb{R}^d$ in $x^0\in U$ differenzierbar und $A\in \mathbb{R}^{d\times n}$ mit

Analog gilt für Abbildungen: Ist $f: U \to \mathbb{R}^d$ in $x^0 \in U$ differenzierbar und $A \in \mathbb{R}^{d \times n}$ mit $\frac{f(x) - f(x^0) - A(x - x^0)}{|x - x^0|} \xrightarrow{x \to x^0} 0$, so ist schon $A = J_f(x^0)$.

Lemma 2.1.1.10

 $f,g:U\Rightarrow \mathbb{R}^d$ seien differenzierbar in $x^0\in U$. Dann ist $f+\alpha g$ es auch $(\alpha\in\mathbb{R})$. Für d=1 ist auch fg differenzierbar in x^0 .

Weiter: $f: U \to \mathbb{R}^d$, $g: U \to \mathbb{R}$ differenzierbar in x^0 , so auch fg.

Beweis:

- 1. Behauptung: Klar nach Lemma 2.1.1.2.
- 2. Behauptung: Schreibe

$$f(x) = f(x^0) + \sum_{j=1}^{n} (x_j - x_j^0) \varphi_j(x)$$
 und $g(x) = g(x^0) + \sum_{k=1}^{n} (x_k - x_k^0) \psi_k(x)$.

Dabei sind φ_j, ψ_k stetig in x^0 . Dann gilt:

$$f(x) + \alpha g(x) = f(x^0) + \alpha g(x^0) + \sum_{l=1}^{n} (x_l - x_l^0) (\varphi_l(x) + \alpha \psi_l(x))$$

$$\begin{split} (fg)(x) &= f(x^0)g(x^0) + f(x^0) \sum_{k=1}^n (x_k - x_k^0) \psi_k(x) + g(x^0) \sum_{j=1}^n (x_j - x_j^0) \varphi_j(x) \\ &+ \sum_{j,k=1}^n (x_j - x_j^0) (x_k - x_k^0) \varphi_j(x) \psi_k(x) \\ &= f(x^0)g(x^0) + \sum_{p=1}^n (x_p - x_p^0) (f(x^0) \psi_p(x) + g(x^0) \varphi_p(x)) \\ &+ \sum_{p=1}^n (x_p - x_p^0) \left(\varphi_p(x) \sum_{k=1}^n (x_k - x_k^0) \psi_k(x) \right) \\ &= f(x^0)g(x^0) + \sum_{p=1}^n (x_p - x_p^0) \left(f(x^0) \psi_p(x) + g(x^0) \varphi_p(x) + \sum_{k=1}^n \varphi_p(x) (x_k - x_k^0) \psi_k(x) \right) \\ &= f(x^0)g(x^0) + \sum_{p=1}^n (x_p - x_p^0) \Phi_p(x) \end{split}$$

$$\frac{1}{g(x)} = \frac{1}{g(x^0)} + \frac{1}{g(x)} - \frac{1}{g(x^0)} = \frac{1}{g(x^0)} - \frac{g(x) - g(x^0)}{g(x)g(x^0)} = \frac{1}{g(x^0)} - \sum_{k=1}^n (x_k - x_k^0) \frac{\psi_k(x)}{g(x)g(x^0)}$$

Somit ist $\frac{1}{g}$ differenzierbar in x^0 , also auch $\frac{f}{g} = f \cdot \frac{1}{g}$.

Satz 2.1.1.11 Kettenregel

Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^d$ offen und $f: U \to V$, $g: V \to \mathbb{R}^k$, $x^0 \in U$, $y^0 = f(x^0)$. Ist f in x^0 und g in y^0 differenzierbar, so ist $g \circ f$ in x^0 differenzierbar und $J_{g \circ f}(x^0) = J_g(y^0) \cdot J_f(x^0)$.

Beweis:

$$g(y) = g(x^{0}) + J_{g}(y^{0})(y - y^{0}) + |y - y^{0}|R_{g,y^{0}}(y) \quad \text{mit} \quad R_{g,y^{0}}(y) \xrightarrow{y \to y^{0}} 0$$

$$f(x) = f(x^{0}) + J_{f}(x^{0})(x - x^{0}) + |x - x^{0}|R_{f,x^{0}}(x) \quad \text{mit} \quad R_{f,x^{0}}(x) \xrightarrow{x \to x^{0}} 0$$

Wähle y = f(x):

$$\begin{split} g \circ f(x) &= g \circ f(x^0) + J_g(y^0)(f(x) - f(x^0)) + |f(x) - f(x^0)| R_{g,y^0}(f(x)) \\ &= g \circ f(x^0) + J_g(x^0)(J_f(x^0)(x - x^0)) + J_g(y^0)|x - x^0| R_{f,x^0}(x) + |f(x) - f(x^0)| R_{g,y^0}(f(x)) \end{split}$$

Nun ist aber

$$\begin{split} &J_g(y^0)|x-X^0|R_{f,x^0}(x)+|f(x)-f(x^0)|R_{g,y^0}(f(x))\\ =&|x-x^0|\left(J_g(y^0)R_{f,x^0}(x)+\left|J_f(x^0)\cdot\frac{x-x^0}{|x-x^0|}+R_{f,x^0}(x)\right|R_{g,y^0}(f(x))\right)\\ =&|x-x^0|\tilde{R}(x) \end{split}$$

Also:

$$g \circ f(x) = g \circ f(x^0) + J_g(y^0)J_f(x^0)(x - x^0) + |x - x^0|\tilde{R}(x)$$
 mit $\tilde{R}(x) \xrightarrow{x \to x^0} 0$

Hieraus folgt die Behauptung.

Beispiel

$$f(x_1, x_2) = (e^{-2x_1})(x_1^2 + x_2), e^{-x_2}x_1, \quad g(y_1, y_2) = (y_1^2, 2y_1y_2 - y_2^2, y_1^2y_2), \quad x^0 = (1, 2)$$

Was ist $J_{g \circ f}(x^0)$?

$$\begin{split} y^0 &= f(x^0) = (3e^{-2}, e^{-2}) \\ J_f(x) &= \begin{pmatrix} \frac{\partial f_1}{x_1} & \frac{\partial f_1}{x_2} \\ \frac{\partial f_2}{x_1} & \frac{\partial f_2}{x_2} \end{pmatrix} (x) = \begin{pmatrix} -2e^{-2x_1}(x_1^2) + 2x_1e^{-2x_1} & e^{-2x_1} \\ e^{-x_2} & -e^{-x_2}x_1 \end{pmatrix} \\ J_f(1,2) &= \begin{pmatrix} -4e^{-2} & e^{-2} \\ e^{-2} & e^{-2} \end{pmatrix} = e^{-2} \begin{pmatrix} -4 & 1 \\ 1 & -1 \end{pmatrix} \\ J_g(y) &= \begin{pmatrix} 2y_1 & 0 \\ 2y_2 & 2y_1 - 2y_2 \\ 2y_1y_2 & y_1^2 \end{pmatrix} \\ J_g(y^0) &= \begin{pmatrix} 6e^{-2} & 0 \\ 2e^{-2} & 4e^{-2} \end{pmatrix} = e^{-2} \begin{pmatrix} 6 & 0 \\ 2 & 4 \\ 6e^{-2} & 9e^{-2} \end{pmatrix} \\ J_{g\circ f}(1,2) &= e^{-4} \begin{pmatrix} 6 & 0 \\ 2 & 4 \\ 6e^{-2} & 9e^{-2} \end{pmatrix} \begin{pmatrix} -4 & 1 \\ 1 & -1 \end{pmatrix} = e^{-4} \begin{pmatrix} -24 & 6 \\ -4 & -2 \\ -15e^{-2} & .3e^{-2} \end{pmatrix} \end{split}$$

//

Definition 2.1.1.12

 $f\colon U\to\mathbb{R}$ sei eine Funktion, $x^0\in U,\ v\in\mathbb{R}^n,\ |v|=1.$ Wenn dann $\lim_{t\to 0} rac{f(x^0+tv)-f(x^0)}{t}=:\partial_v f(x^0)$ existiert, sagen wir, f sei in x^0 in Richtung v differenzierbar. $\partial_v f(x^0)$ heißt Richtungsableitung von f in x^0 in Richtung v.

Beispiel

i)

$$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{|x|^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \quad \frac{f(tv)}{t} = \frac{t^2 v_1 v_2}{t^3 |v|^2} = \frac{v_1 v_2}{t}$$

wenn |v| = 1. $\partial_v f(0)$ existiert nicht, außer für $v_1 v_2 = 0$.

ii)

$$f(x_1, x_2) = \begin{cases} \frac{x_1^2 x_2}{|x|^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \quad \frac{f(tv)}{t} = \frac{t^3 v_1^2 v_2}{t^3 |v|^2} = v_1^2 v_2$$

wenn |v| = 1. Also ist $\partial_v f(0) = v_1^2 v_2$.

$$R_{f,0}(x) = \frac{f(x)}{|x|} = \frac{x_1^2 x_2}{|x|^3} = \frac{x_1^3}{(2x_1^2)^{3/2}} = \frac{1}{2^{3/2} \left(\frac{x_1}{|x_1|}\right)^3} = \begin{cases} \frac{1}{2^{3/2}}, & x_1 > 0\\ -\frac{1}{2^{3/2}}, & x_1 < 0 \end{cases}$$

f ist nicht differenzierbar in 0.

//

Lemma 2.1.1.13

 $U \subset \mathbb{R}^n$ sei offen, $x^0 \in U$, $f: U \to \mathbb{R}$ in x^0 differenzierbar. Dann existiert $\partial_v f(x^0)$ für alle $v \in S := \{v \mid |v| = 1\}$ und

$$\partial_v f(x^0) = \langle \nabla f(x^0), v \rangle$$

.

Beweis: $\alpha'(t) := x^0 + tv :] - \delta, \delta[\to U \text{ ist differenzierbar in } 0 \text{ } (0 < \delta \text{ klein}) \text{ } , f \circ \alpha \text{ ist differenzierbar und}$

$$\partial_v f(x^0) = (f \circ \alpha)'(0) = J_f(\alpha(0))\alpha'(0) = \nabla f(x^0) \begin{pmatrix} \alpha_1(0) \\ \vdots \\ \alpha'_n(0) \end{pmatrix} = \langle \nabla f(x^0), v \rangle.$$

Lemma 2.1.1.14 Mittelwertsatz

Sei $f: B(x^0,R) \to \mathbb{R}$ differenzierbar, dann gibt es für $A,B \in B(x^0,R)$ ein $\xi \in \{tB+(1-t)A \mid 0 \le t \le 1\}$ mit

$$f(B) - f(A) = \langle \nabla f(\xi), B - A \rangle$$
.

Beweis: $\alpha(t) = tB + (1-t)A$, $0 \le t \le 1$, $g := f \circ \alpha$, f(B) = g(1), f(A) = g(0). Es existiert also

$$t_* \in]0,1[\text{ mit } f(B) = f(A) = g(1) - g(0) = g'(t_*) = \langle \nabla f(g(t_*)), B - A \rangle,$$

da
$$g'(t) = B - A$$
, $\xi := g(t_*) = (1 - t_*)A + t_*B$.

Lemma 2.1.1.15

 $U \subset \mathbb{R}^n$ sei offen, $f: U \to \mathbb{R}$ sei partiell differenzierbar. Gibt es M > 0, so dass $|f_{x_j}| \le M$, $1 \le j \le n$, so ist f stetig auf U.

Beweis: $x^0 \in U$ und r > 0, so dass

$$Q(x^0, r) := \{x \in \mathbb{R}^n \mid |x_j - x_j^0| < r, 1 \le j \le n\} \subset U.$$

Für $x \in Q(x^0, r)$ gilt

$$f(x) - f(x^{0}) = f(x) - f(x_{1}^{0}, x_{2}, ..., x_{n}) + f(x_{1}^{0}, x_{2}, ..., x_{n}) - f(x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0})$$

$$= f(x_{1}, xx_{2}, ..., x_{n}) - f(x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0}) + f(x_{1}^{0}, x_{2}, ..., x_{n})$$

$$- f(x_{1}^{0}, x_{2}^{0}, x_{3}, ..., x_{n}) + f(x_{1}^{0}, x_{2}^{0}, x_{3}, ..., x_{n}) - f(x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0})$$

$$= \sum_{k=1}^{n} f(x_{1}^{0}, ..., x_{k-1}^{0}, x_{k}, x_{k+1}) - f(x_{1}^{0}, ..., x_{k}^{0}, x_{k+1}, ..., x_{n})$$
(1)

Die Funktion $g_k(t) := f(x_1^0, ..., x_{k-1}^0, t, x_{k+1}, ..., x_n) - f(x_1^0, ..., x_k^0, x_{k+1}, ..., x_n)$ ist differenzierbar und weiter

$$f(x) - f(x^0) = \sum_{k=1}^{n} g_k(x_k) = \sum_{k=1}^{n} (g_k(x_k) - g_k(x_k^0)).$$

Der Mittelwertsatz für g_k liefert ein z_k zwischen x_k und x_k^0 mit

$$g_k(x_k) - g_k(x_k^0) = g_k'(z_k)(x_k - x_k^0) = f_{x_k}(x_1^0, \dots, x_{k-1}^0, z_k, x_{k+1}, \dots, x_n)(x_k - x_k^0)$$

Es folgt:

$$|g_k(x_k) - g_k(x_k^0)| \le M|x_k - x_k^0| \stackrel{(1)}{\Longrightarrow} |f(x) - f(x^0)| \le M \sum_{k=1}^n |x_k - x_k^0| \le \sqrt{n}M|x - x^0|$$

Die Behauptung folgt.

Lemma 2.1.1.16

 $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ sei partiell differenzierbar und $x^0 \in U$. Sind alle f_{x_j} stetig in x^0 , so ist f in x^0 differenzierbar.

Beweis: Zeige:

$$\frac{f(x) - f(x^0) - \langle \nabla f(x^0), x - x^0 \rangle}{|x - x^0|} \xrightarrow{x \to x^0} 0$$

Dazu sei r > 0 klein, so dass $B(x^0, r\sqrt{n}) \subset U$. Dann gilt:

$$f(x) - f(x^{0}) = \sum_{k=1}^{n} f_{x_{k}}(x_{1}^{0}, ..., x_{k-1}^{0}, z_{k}, x_{k+1}, ..., x_{n})(x_{k} - x_{k}^{0}) \quad (z_{k} \text{ wie oben})$$

$$= \sum_{k=1}^{n} f_{x_{k}}(x^{0})(x_{k} - x_{k}^{0}) + \sum_{k=1}^{n} (f_{x_{k}}(x_{1}^{0}, ..., x_{k-1}^{0}, z_{k}, x_{k+1}, ..., x_{n}) - f_{x_{k}}(x^{0}))(x_{k} - x_{k}^{0})$$

Also:

$$\frac{f(x) - f(x^0) - \langle \nabla f(x^0), x - x^0 \rangle}{|x - x^0|} = \sum_{k=1}^n (f_{x_k}(x_1^0, ..., x_{k-1}^0, z_k, x_{k+1}, ..., x_n) - f_{x_k}(x^0)) \frac{x_k - x_k^0}{|x - x^0|}$$

Aber mit $x \to x^0$ strebt auch $(x_1^0, ..., x_{k-1}^0, z_k, x_{k+1}, ..., x_n) \to x^0$. Da f_{x_k} in x^0 stetig ist geht auch die rechte Seite der obigen Gleichung gegen 0, wenn $x \to x^0$.

2.1.2 Höhere Ableitungen

Definition 2.1.2.1

Sei V ein endlich erzeugter \mathbb{R} -Vektorraum mit einer Norm \mathcal{N} . Ist $U \subset \mathbb{R}^n$ offen, $x^0 \in U$, so heißt eine Abbildung $F: U \to V$ in x^0 differenzierbar, wenn eine lineare Abbildung $DF(x^0): \mathbb{R}^n \to V$ existiert mit

$$\mathcal{N}\left(\frac{F(x)-F(x^0)-DF(x^0)(x-x^0)}{|x-x^0|}\right) \xrightarrow{x\to x^0} 0.$$

Beispiel

- i) Jede lineare Abbildung $f: \mathbb{R}^n \to V$ ist in jedem $x^0 \in \mathbb{R}^n$ differenzierbar, $Df(x^0) = f$.
- ii) Ist $f: U \to \mathbb{R}^d$ in x^0 differenzierbar, so ist $Df(x^0): \mathbb{R}^n \to \mathbb{R}^d$, $Df(x^0)(v) \coloneqq J_f(x^0)v$. Also $Df(x^0) \in \text{hom}(\mathbb{R}^n, \mathbb{R}^d)$. Ist $\lambda(v) = A \cdot v$ mit $A \in \mathbb{R}^{d \times n}$, so ist

$$\mathcal{N}(\lambda) = \sqrt{\sum_{j=1}^{n} \sum_{i=1}^{d} \alpha_{ij}^{2}}$$

wenn $A = (a_{ij})_{i=1,j=1}^{d,n}$.

Definition 2.1.2.2

 $U \subset \mathbb{R}^n$ sei offen, $f: U \to \mathbb{R}^d$ heißt stetig differenzierbar in $x^0 \in U$, wenn f überall differenzierbar ist und $x \mapsto Df(x)$ stetig in x^0 ist.

Bemerkung

Eine differenzierbare Abbildung $f: U \to \mathbb{R}^d$ ist in $x^0 \in U$ stetig differenzierbar, wenn $\frac{\partial f_i}{x_j}$ in x^0 stetig, für alle $1 \le i \le d$, $1 \le j \le n$.

Definition 2.1.2.3

 $U \subset \mathbb{R}^n$ sei offen, $x^0 \in U$, $f: U \to \mathbb{R}^d$ heißt in x^0 2-mal differenzierbar, wenn f differenzierbar ist und Df in x^0 differenzierbar ist.

Bemerkung

Ist $f: U \to \mathbb{R}^d$ differenzierbar, so ist f in x^0 2-mal differenzierbar, wenn alle $\frac{\partial f_i}{\partial x_j}$ in x^0 differenzierbar sind.

Definition 2.1.2.4

 $f: U \to \mathbb{R}$ sei differenzierbar, ist dann jede partielle Ableitung f_{x_j} in $x^0 \in U$ partiell differenzierbar, so schreiben wir

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x^0) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (x^0).$$

Beispiel

$$f(x_1, x_2) = x_1 e^{-2x_1 x_2 + x_2^2}$$

$$\frac{\partial f}{\partial x_2} = x_1 (-2x_1 + 2x_2) e^{-2x_1 x_2 + x_2^2}$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = ((-4x_1 + 2x_2) + (-2x_1^2 + 2x_1 x_2)(-2x_2)) e^{-2x_1 x_2 + x_2^2}$$

$$\frac{\partial f}{\partial x_1} = (1 + 2x_1 x_2) e^{-2x_1 x_2 + x_2^2}$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = (-2x_1 + (1 - 2x_1 x_2)(-2x_1 + 2x_2)) e^{-2x_1 x_2 + x_2^2}$$

Nachrechnen liefert:

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial^2 f}{\partial x_2 \partial x_1} = (-4x_1 + 2x_2 + 4x_1^2 x_2 - 4x_1 x_2^2)e^{-2x_1 x_2 + x_2^2}$$

Gilt dies immer, wenn nur beide 2. partiellen Ableitungen existieren?

Beispiel

$$f(x) := \begin{cases} \frac{x_1 x_2^3}{|x|^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \quad |f(x)| \le |x|^2,$$

f ist stetig in 0, $f(te_1)=f(te_2)=0, \ \frac{\partial f}{\partial x_k}(0)=0, \ 1\leq k\leq 2.$

$$\frac{\partial f}{\partial x_1}(x) = \frac{|x|^2 x_2^3 - x_1 x_2^3 2x_1}{|x|^4} \Rightarrow \left| \frac{\partial f}{\partial x_1}(x) \right| \le 3|x| \xrightarrow{x \to 0} 0$$

$$\frac{\partial f}{\partial x_2}(x) = \frac{|x|^2 3x_1 x_2^2 - 2x_2 x_1 x_2^3}{|x|^4} \Rightarrow \left| \frac{\partial f}{\partial x_2}(x) \right| \le 5|x| \xrightarrow{x \to 0} 0$$

f ist stetig differenzierbar in 0.

$$\frac{\frac{\partial f}{\partial x_1}(te_2) - \frac{\partial f}{\partial x_2}(0)}{t} = \frac{t^5}{t^4t} = 1 \Rightarrow \frac{\partial^2 f}{\partial x_2 \partial x_1}(0) = 1$$

$$\frac{\frac{\partial f}{\partial x_2}(te_1) - \frac{\partial f}{\partial x_2}(0)}{t} = 0 \Rightarrow \frac{\partial^2 f}{\partial x_1 \partial x_2}(0) = 0 \neq \frac{\partial f}{\partial x_2 \partial x_1}(0) = 1$$

//

//

Satz 2.1.2.5

 $U\subset \mathbb{R}^n$ sei offen, $f:U\to \mathbb{R}$ sei differnzierbar und bei $x^0\in U$ sogar 2-mal differenzierbar. Dann gilt

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x^0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x^0) \,\forall i, j \in \{1, ..., n\}.$$

Beachte: In dem Beispiel oben ist das in $x^0 = 0$ nicht erfüllt:

$$\frac{\partial f}{\partial x_1}(x) = \begin{cases} \frac{-x_1^2 x_2^3 + x_2^5}{|x|^4}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\frac{\frac{\partial f}{\partial x_1}(te_1)}{t} = 0, \quad \frac{\frac{\partial f}{\partial x_1}(te_2)}{t} = 1$$

Also ist $\frac{\partial f}{\partial x_1}$ in 0 nicht differenzierbar.

Beweis: $i, j \in \{1, ..., n\}$ seien fest. Betrachte auf $W =]-r, r[\times]-r, r[$ die Funktion

$$g(t,s) := f(x^0 + te_i + se_i) + f(x^0) = f(x^0 + te_i) - f(x^0 + se_i).$$

Das ist für r < 1, klein genug, definiert. Es ist g(t, 0) = 0, g(0, s) = 0.

$$\begin{split} &\frac{\partial g}{\partial t}(0) = \frac{\partial f}{\partial x_i}(x^0) - \frac{\partial f}{\partial x_i}(x^0) = 0, \quad \frac{\partial g}{\partial s}(0) = 0\\ &\frac{\partial^2}{\partial t^2}(0) = \frac{\partial^2 f}{\partial x_i^2}(x^0) - \frac{\partial^2 f}{\partial x_i^2}(x^0) = 0, \quad \frac{\partial^2 g}{\partial s^2}(0) = 0 \end{split}$$

Es gilt

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x^0) = \frac{\partial^2 g}{\partial t \partial s}(0), \quad \frac{\partial^2 f}{\partial x_j \partial x_i}(x^0) = \frac{\partial^2 g}{\partial s \partial t}(0).$$

Sei $g_1 := g(\cdot, t)$ und $g_2 := g(t, \cdot)$.

$$g(t,t) = g_1(t) = g_1(t) - g_1(0) = \frac{\partial g}{\partial t}(\xi_1, t) \cdot t \quad \text{mit} \quad \xi_1 \in]-t, t[.$$

Genauso gilt

$$g(t,t) = g_2(t) = g_2(t) - g_2(0) = \frac{\partial g}{\partial s}(t,\xi_2) \quad \text{mit} \quad \xi_2 \in]-t,t[.$$

$$\frac{\partial g}{\partial t}(\xi_1,t) = \frac{\partial g}{\partial t}(0) + \underbrace{\frac{\partial^2 g}{\partial t^2}(0)\xi_1 + \frac{\partial^2 g}{\partial t\partial s}(0)t}_{\langle \nabla \frac{\partial g}{\partial t}(0),(\xi_1,t)} + |(\xi_1,t)|R_1(\xi_1,t) = \frac{\partial^2 g}{\partial t\partial s}(0)t + |(\xi_1,t)|R_1(\xi_1,t)$$

$$\frac{\partial g}{\partial s}(t,\xi_2) = \frac{\partial^2 g}{\partial t\partial s}(0)t + |(t,\xi_2)|R_2(t,\xi_2),$$

wobei $R_1(\xi_1,t) \xrightarrow{t\to 0} 0$ und $R_2(t,\xi_2) \xrightarrow{t\to 0} 0$. Multipliziere beiden Gleichungen mit t:

$$\frac{\partial g}{\partial t}(\xi_1, t)t = \frac{\partial^2 g}{\partial t \partial s}(0)t^2 + t|(\xi_1, t)|R_1(\xi_1, t)$$
 (1)

$$\frac{\partial g}{\partial s}(t,\xi_2)t = \frac{\partial^2 g}{\partial s \partial t}(0)t^2 + t|(t,\xi_2)|R_2(t,\xi_2)$$
 (2)

Linke Seite von (1)=Linke Seite von (2)=g(t,t). Subtrahiere (2) von (1):

$$0 = \left(\frac{\partial^2 g}{\partial t \partial s}(0) - \frac{\partial^2 g}{\partial s \partial t}\right) t^2 + t(|(\xi_1, t)| R_2(\xi_1, t) - |(t, \xi_2)| R_2(t, \xi_2)).$$

Dividiere durch t^2 :

$$\frac{\partial^2 g}{\partial t \partial s}(0) - \frac{\partial^2 g}{\partial s \partial t}(0) = \frac{|(t, \xi_2)|}{t} R_2(t, \xi_2) - \frac{|(\xi_1, t)|}{t} R_1(\xi_1, t) \xrightarrow{t \to 0} 0.$$

Hieraus folgt die Behauptung.

Definition 2.1.2.6

Ist $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^n$ offen, eine 2-mal differenzierbare Funktion, $x^0 \in U$, so setzen wir $\mathcal{H}_f(x^0) = \left(\frac{\partial^2 f}{\partial x_\partial x_j}(x^0)\right)_{i,j=1}^n$ (Hesse-Matrix von f in x^0). Es gilt $\mathcal{H}_f(x^0)^t = \mathcal{H}_f(x^0)$.

Definition 2.1.2.7

Wir nennen eine Funktion $f: U \to \mathbb{R}$ (k+1)-mal in $x^0 \in U$ differenzierbar $(k \ge 2)$, wenn f sowohl k-mal differenzierbar ist und alle partiellen Ableitungen der Ordnung k in x^0 differenzierbar sind.

Die partiellen Ableitungen k-ter Ordnung sind definiert als

$$\frac{\partial^k f}{\partial x_{i_1}^{\alpha_1} \cdot \ldots \cdot \partial x_{i_l}^{\alpha_l}} = \frac{\partial}{\partial x_{i_1}} \left(\frac{\partial^{k-1} f}{\partial x_{i_1}^{\alpha_1-1} \partial x_{i_2}^{\alpha_2} \cdot \ldots \cdot \partial x_{i_l}^{\alpha_l}} \right), \quad 1 \leq i_1 < \ldots < i_l \leq n, \alpha_1 + \ldots + \alpha_l = k.$$

Lemma 2.1.2.8

Ist f wie oben und k-mal differenzierbar in $x^0 \in U$, so gilt

$$\frac{\partial^k f}{\partial x_{i_1}^{\alpha_{i_1}} \cdot \dots \cdot \partial x_{i_l}^{\alpha_{i_l}}}(x^0) = \frac{\partial^k f}{\partial x_{j_1}^{\beta_{i_1}} \cdot \dots \cdot \partial x_{j_l}^{\alpha_{j_l}}(x^0)}$$

wenn $\{i_1,...,i_l\} = \{j_1,...,j_l\}$, genauer, wenn $\exists \sigma$ Permutation von $\{1,...,l\}$ mit $j_1 = i_{\sigma(1)}$, $j_2 = i_{\sigma(2)},...,j_l = i_{\sigma(l)}$, $\beta_{j_\nu} = \alpha_{i_{\sigma(\nu)}}$, $1 \le \nu \le l$.

Beispiel

$$f(x_1, x_2) = x_1^3 x_2, \quad x^0 = (1, -1)$$

$$\frac{\partial^3}{f} \partial x_1^2 \partial x_2 = \frac{\partial}{\partial x_2} \left(\frac{\partial^2}{\partial x_1^2} x_1^3 x_2 \right) \Big|_{x=x^0} = 6_{x_1} |_{x=x^0} = 6$$

$$\frac{\partial^4 f}{\partial x_1 \partial x_2^3} (x^0) = 0$$

$$\frac{\partial^3 f}{\partial x_1^3} (x^0) = 6x_2 |_{x=x^0} = -6$$

//

2.1.3 Taylorentwicklung

Satz 2.1.3.1 Erinnerung

 $f:]x_0-a, x_0+a[\to \mathbb{R} \text{ sei } k-\text{mal stetig differenzierbar. Dann gibt es zu jedem } x \in]x_0a, x_0+a[$ ein ξ zwischen x_0 und x mit

$$f(x) = \sum_{j=0}^{k} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(k+1)}(\xi)}{(k+1)!} (x - x_0)^{k+1}.$$

Lemma 2.1.3.2

Sei $x^0 \in \mathbb{R}^n$ und $W = \{x \mid |x_j - x_j^0| < r, 1 \le j \le n\}$. Ist $f: W \to \mathbb{R}$ eine (k+1)-mal stetig differenzierbare Funktion, so gibt es zu $x \in W$ ein $\tau \in]0,1[$ mit

$$f(x) - f(x^{0}) = \sum_{i=1}^{k} \frac{f_{(x,x^{0})}^{(j)}(0)}{j!} + \frac{f_{(x,x^{0})}^{(k+1)}(\tau)}{(k+1)!}$$

wobei $f_{(x,x^0)}(t) := f(x^0 + t(x - x^0)), \ 0 \le t \le 1.$ $f_{x,x^0}(1) = f(x), \ f_{x,x^0}(0) = f(x^0).$

Bemerkung Vorbetrachtung

$$f'_{x,x^0}(t) = \frac{\mathrm{d}}{\mathrm{d}t}f(x^0 + t(x - x^0)) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x^0 + t(x - x^0))(x_j - x_j^0)$$

$$\begin{split} f_{x,x^0}''(t) &= \sum_{j=1}^n \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial x_j} (x^0 - t(x - x^0)) \right) (x_j - x_j^0) \\ &= \sum_{j=1}^n \sum_{k=1}^n \frac{\partial^2 f}{\partial x_k \partial x_j} (x^0 + t(x - x^0)) (x_k - x_k^0) (x_j - x_j^0) \\ &= \left((x_1 - x_1^0) \frac{\partial}{\partial x_1} + (x_2 - x_2^0) \frac{\partial}{\partial x_2} + \dots + (x_n - x_n^0) \frac{\partial}{\partial x_n} \right)^2 f(x^0 + t(x - x^0)) \end{split}$$

Induktiv:

$$f_{x,x^0}^{(j)}(t) = \left(\sum_{l=1}^{n} (x_l - x_l^0) \frac{\partial}{\partial x_l}\right)^j f(x^0 + t(x - x^0))$$

Notation:

$$\frac{\partial^{\alpha} f}{\partial x^{\alpha}}(x^{0}) := \frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} ... \partial x_{n}^{\alpha_{n}}}(x^{0}), \quad \text{wobei} \quad \alpha = (\alpha_{1}, ..., \alpha_{n}) \in \mathbb{N}_{0}^{n}, |\alpha| :== \alpha_{1} + ... + \alpha_{n}$$

Für $x=(x_1,..,x_n), \alpha\in\mathbb{N}_0^n$ sei $x^\alpha=x_1^{\alpha_1}...x_n^{\alpha_n}$. Weiter sei $\alpha!=\alpha_1!\alpha_2!...\alpha_n!$.

Beispiel

$$(1,2,3)^{(3,2,2)} = 2^2 \cdot 3^2 = 36, \quad (4,2,3)! = 24 \cdot 2 \cdot 6 = 288$$

//

Lemma 2.1.3.3

R sei kommutativer Ring mit 1. Dann gilt für $z_1,...,z_n \in R$, $k \in \mathbb{N}$, der Multinomialsatz:

$$(z_1 + ... + z_n)^k = \sum_{|\alpha| = k} \frac{k!}{\alpha!} z^{\alpha}$$

Beispiel Anwendung

 f,x,x^0 wie in der Vorbetrachtung. Dann gilt

$$\left((x_1 - x_1^0) \frac{\partial}{\partial x_1} + \dots + (x_n - x_n^0) \frac{\partial}{\partial x_n}\right)^k f = \sum_{|\alpha| = k} \frac{k!}{\alpha!} \frac{\partial^{\alpha} f}{\partial x^{\alpha}} (x^0) (x - x^0)^{\alpha}$$

//

Satz 2.1.3.4

Sei $f: W \to \mathbb{R}$ eine (k+1)-mal stetig differenzierbare Funktion auf $W = \{x \mid |x_j - x_j^0| < r, 1 \le j \le n\}$. Dann gibt es zu jedem $x \in W$ ein ξ_x auf der Verbindungsstrecke von x^0 nach x mit

$$f(x) = \sum_{\alpha \in \mathbb{N}_0^n \mid \alpha \mid \le k} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(x^0)}{\partial x^{\alpha}} (x - x^0)^{\alpha} + \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ \mid \alpha \mid = k+1}} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(\xi_x)}{\partial x^{\alpha}} (x - x^0)^{\alpha}.$$

Beispiel

$$f(x_1, x_2) = \frac{x_1^2 - x_2}{1 + |x|^2}, \quad x^0 = (1, 1)$$

Taylorpolynom $T_2 f$ für f um x^0 vom Grad 2?

$$y_1 = x_1 - 1$$
, $y_2 = x_2 - 1 \Rightarrow x_j = y_j + 1$

$$f(x) = \frac{(y_1 + 1)^2 - (y_2 + 1)}{1 + (y_1 + 1)^2 + (y_2 + 1)^2}$$
$$= \frac{y_1^2 + 2y_1 - y_2}{3 + 2y_1 + 2y_2 + |y|^2}$$

$$= \frac{1}{3}(2y_1 - y_2 + y_1^2) \frac{1}{1 + \frac{2}{3}(y_1 + y_2) + \frac{1}{3}|y|^2}$$

$$= \frac{1}{3}(2y_1 - y_2 + y_1^2) \sum_{l=0}^{\infty} (-1)^l \left(\frac{2}{3}(y_1 + y_2) + \frac{1}{3}|y|^2\right)^l$$

$$= \frac{1}{3}(2y_1 - y_2 + y_1^2) \left(1 - \left(\frac{2}{3}(y_1 + y_2) + \frac{1}{3}|y|^2\right) + \dots\right)$$

$$= \frac{1}{3}(2y_1 - y_2 + y_1^2) \left(1 - \frac{2}{3}(y_1 + y_2)\right) + \text{Terme mindestens 3. Ordnung}$$

$$= \frac{1}{3}(2y_1 - y_2) - \frac{2}{9}(2y_1 - y_1)(y_1 + y_2) + \frac{1}{3}y_1^2 + (\text{Term } \ge 3. \text{ Ordnung})$$

$$= \frac{2}{3}y_1 - \frac{1}{3}y_2 - \frac{4}{9}y_1^2 - \frac{2}{9}y_1y_2 + \frac{2}{9}y_2^2$$

$$= \frac{2}{3}(x_1 - 1) - \frac{1}{3}(x_2 - 1) - \frac{4}{9}(x_1 - 1)^2 - \frac{2}{9}(x_1 - 1)(x_2 - 1) + \frac{2}{9}(x_2 - 1)^2$$

//

2.1.4 Lokale Extrema

Definition 2.1.4.1

 $U \subset \mathbb{R}^n$ sei offen, $f: U \to \mathbb{R}$ eine Funktion. Dann heißt $x^0 \in U$ ein lokales $\begin{cases} \text{Minimum} \\ \text{Maximum} \end{cases}$

von f, wenn $\exists r > 0 : B(x^0, r) \subset U$ und $\begin{cases} f \ge f(x^0) \\ f \le f(x^0) \end{cases}$ auf $B(x^0, r)$.

ist f sogar differenzierbar, so nennen wir $x^0 \in U$ einen kritischen Punkt für f, wenn $\nabla f(x^0) = 0$.

Lemma 2.1.4.2

 $f: U \to \mathbb{R}$ sei differenzierbar und habe in $x^0 \in U$ ein lokales Extremum. Dann ist $\nabla f(x^0) = 0$.

Beweis: Sonst wäre $v := \nabla f(x^0) \neq 0$. $g(t) = f(x^0 + tv)$ ist auf $] - \delta, \delta[$ differenzierbar, wenn $\delta > 0$ klein genug ist. Dann hat g in t = 0 ein lokales Extremum. Also

$$0 = g'(0) = \langle \nabla f(x^0), v \rangle = |v|^2 > 0.$$

Einschub: Positiv-definite Matrizen:

 $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$ heißt symmetrisch, wenn $A^t = A$ $(a_{ij} = a_{ji} \forall i, j = 1,...,n)$.

Definition 2.1.4.3

Man nennt A positiv-semidefinit, wenn $\langle x, Ax \rangle \ge 0$ für alle $x \in \mathbb{R}^n$, A heißt positiv-definit, wenn $\langle x, Ax \rangle > 0$ und $\langle x, Ax \rangle = 0$ nur, wenn x = 0.

Entsprechend: A heißt negativ-(semi)definit, wenn -A positiv-(semi)definit ist.

Ist A weder positiv- noch negativ-(semi)definit, so heißt A indefinit.

Beispiel

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \quad \langle x, Ax \rangle = ax_1^2 + 2bx_1x_2 + cx_2^2$$

Für a > 0 wird $\langle x, Ax \rangle = a(x_1^2 + 2\frac{b}{a}x_1x_2 + \frac{c}{a}x_2^2) = a((x_1 + \frac{b}{a}x_2)^2) + (\frac{c}{a} - (\frac{b}{a})^2)x_2^2) \ge 0$, wenn $b^2 \le ac$. Also A positiv semidefinit $\Leftrightarrow \det A \ge 0$.

Für a = 0 wird $\langle x, Ax \rangle = (2bx_1 + cx_2)x_2 \Rightarrow A$ indefinit, außer b = 0. //

Beispiel 2.1.4.4

$$A = \begin{pmatrix} 3 & 1 & -2 \\ 1 & 4 & 2 \\ -2 & 2 & 6 \end{pmatrix}$$

Für $x \in \mathbb{R}^3$ ist

$$\begin{split} \langle x,Ax\rangle &= \left\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} 3x_1 + x_2 - 2x_3 \\ x_1 + 4x_2 + 2x_3 \\ -2x_1 + 2x_2 + 6x_3 \end{pmatrix} \right\rangle \\ &= 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 4x_2^2 4x_2x_3 + 6x_3^2 \\ &= 3\left(x_1^2 + \frac{2}{3}x_1x_2 - \frac{4}{3}x_1x_3\right) + 4x_2^2 + 4x_2x_3 + 6x_3^2 \\ &= 3\left(x_1^2 + 2x_1\left(\frac{x^2}{3} - \frac{2}{3}x_3\right)\right) + 4x_2^2 + 4x_2x_3 + 6x_3^2 \\ &= 3\left(x_1 + \frac{x_2}{3} - \frac{2}{3}x_3\right)^2 - 3\left(\frac{x_2}{3} - \frac{2x_3}{3}\right)^2 + 4x_2^2 + 4x_2x_3 + 6x_3^2 \\ &= 3\hat{x}_1^2 + \frac{11}{3}x_2^2 + \frac{16}{3}x_2x_3 + \frac{14}{3}x_3^2 \\ &= 3\hat{x}_1^2 + \frac{11}{3}\left(x_2^2 + \frac{16}{11}x_2x_3 + \frac{14}{11}x_3^2\right) \end{split}$$

$$= 3\hat{x}_{1}^{2} + \frac{11}{3} \left(\left(x_{2} + \frac{8}{11} x_{3} \right)^{2} + \left(\frac{14}{11} - \left(\frac{8}{11} \right)^{2} \right) x_{3}^{2} \right)$$

$$= 3\hat{x}_{1}^{2} + \frac{11}{3} \hat{x}_{2}^{2} + \frac{11}{3} \cdot \frac{90}{121} x_{3}^{2}$$

$$= 3\hat{x}_{1}^{2} + \frac{11}{3} \hat{x}_{2}^{2} + \frac{30}{11} \hat{x}_{3}^{2}$$

$$= \langle \hat{x}, D\hat{x} \rangle, \quad D := \begin{pmatrix} 3 & 0 & 0 \\ 0 & \frac{11}{3} & 0 \\ 0 & 0 & \frac{30}{11} \end{pmatrix}$$

$$\hat{x} = Wx, \quad W := \begin{pmatrix} 1 & \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 & \frac{8}{11} \\ 0 & 0 & 1 \end{pmatrix}$$

Also ist

$$\langle \hat{x}, D\hat{x} \rangle = \langle Wx, DWx \rangle = \langle x, W^t Dwx \rangle.$$

Gilt $\langle x, Ax \rangle = \langle x, Bx \rangle$ für alle $x \in \mathbb{R}^n$, so A = B. Das heißt, $A = W^t DW$, $S := W^{-1} = \begin{pmatrix} 1 & -\frac{1}{3} & \frac{10}{11} \\ 0 & 1 & -\frac{8}{11} \\ 0 & 0 & 1 \end{pmatrix}$.

Satz 2.1.4.5

 $U \subset \mathbb{R}^n \text{ sei offen, } x^0 \in U, \ f: U \to \mathbb{R} \text{ sei 2-mal stetig differenzierbar. Ist } \nabla f(x^0) = 0 \text{ und}$ $\mathcal{H}_f(x^0) \begin{cases} \text{positiv} \\ \text{negativ} \end{cases} \text{ definit, so hat } f \text{ bei } x^0 \text{ ein lokales } \begin{cases} \text{Minimum} \\ \text{Maximum} \end{cases}.$

Beweis: Sei etwa $\mathcal{H}_f(x^0)$ positiv definit. Dann gibt es ein c > 0 mit $\langle v, \mathcal{H}_f(x^0)v \rangle \ge 2c|v|^2$ (denn $\xi \mapsto \langle \xi, \mathcal{H}_f(x^0)\xi \rangle$ hängt stetig von ξ ab und nimmt auf $\partial B(0,1)$ ein Minimum an, etwa in ξ^0 ; offenbar ist $\langle \xi, \mathcal{H}_f(x^0)\xi^0 \rangle 2c > 0$; ist $v \in \mathbb{R}^n \setminus \{0\}$, so $\frac{v}{|v|} \in \partial B(0,1)$, also $\left\langle \frac{v}{|v|}, \mathcal{H}_f(x^0)\frac{v}{|v|} \right\rangle \ge 2c$). Es gilt für jedes $x \in B(x^0, \delta)$, $\delta > 0$ klein genug:

$$f(x) = f(x^0) + \langle \nabla f(x^0), x - x^0 \rangle + \frac{1}{2} \langle x - x^0, \mathcal{H}_f(t_x)(x - x^0) \rangle$$

 t_x auf der Verbindungslinie von x^0 nach x (innerhalb $B(x^0, \delta)$). Aber $\nabla f(x^0) = 0$; also

$$\begin{split} f(x) &= f(x^0) + \frac{1}{2} \langle x - x^0, \mathcal{H}_f(x^0)(x - x^0) \rangle + \frac{1}{2} \langle x - x^0, (\mathcal{H}_f(t_x) - \mathcal{H}_f(x^0))(x - x^0) \rangle \\ &\geq f(x^0) + c|x - x^0|^2 + \frac{1}{2} \langle x - x^0, (\mathcal{H}_f(t_x) - \mathcal{H}_f(x^0))(x - x^0) \rangle. \end{split}$$

Aber $\|\mathcal{H}_f(t_x) - \mathcal{H}_f(x^0)\| \le \frac{c}{4}$, wenn δ klein genug ist. Somit wird

$$\frac{1}{2}\langle x-x^0,(\mathcal{H}_f(t_x)-\mathcal{H}_f(x^0))(x-x^0)\rangle \geq -\frac{c}{8}|x-x^0|^2.$$

Es folgt

$$f(x) \ge f(x^0) + \frac{7}{8}c|x - x^0|^2 \ge f(x^0)$$

auf $B(x^0, \delta)$.

Ist $\mathcal{H}_f(x^0)$ negativ-definit, wiederhole Argument für -f.

Beispiel

$$f(x) := (2x_1 - x_2^2)e^{-|x|^2}$$
 in \mathbb{R}^2

Lokale Extrema für *f*?

$$\begin{split} \nabla f &= (f_{x_1}, f_{x_2}) \\ f_{x_1} &= 2e^{-|x|^2} - 2x_1(2x_1 - x_2^2)e - |x|^2 = 2e^{-|x|^2}(1 - 2x_1^2 + x_1x_2^2) \\ f_{x_2} &= -2xe^{-|x|^2} - 2x_2(2x_1 - x_2^2)e^{-|x|^2} = -2x_2e^{-|x|^2}(1 + 2x_1 - x_2^2) \end{split}$$

Sei $\nabla f(x) = 0$. Ist $x_2 = 0$, so $x_1 \in \left\{ -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$. Ist $x_2 \neq 0$, so $x_2^2 - 2x_1 = 1$ und $2x_1^2 - x_1x_2^2 = 1$, so existiert kein geeignetes x_1 . Also

$$\{x \mid \nabla f(x) = 0\} = \left\{-\frac{1}{\sqrt{2}}e_1, \frac{1}{\sqrt{2}}e_1\right\}.$$

$$\begin{split} f_{x_1,x_1}(x) &= -4x_1e^{-|x|^2}(1-2x_1^2) + 2e^{-|x|^2}(-4x_1) \quad \text{auf} \quad \{x_2=0\} \\ f_{x_1,x_2}(x) &= -4x_2e^{-|x|^2}(1-2x_1^2+x_1x_2^2) + 2e^{-|x|^2}2x_1x_2 = 0 \quad \text{auf} \quad \{x_2=0\} \\ f_{x_2,x_2}(x) &= (-2e^{-|x|^2}+4x_2^2e^{-|x|^2})(1+2x_1) - 2x_2e^{-|x|^2}(-4x_2) = -2(1+2x_1e^{-|x|^2}) \quad \text{auf} \quad \{x_2=0\} \\ \mathcal{H}_f\left(-\frac{1}{\sqrt{2}}e_1\right) &= \begin{pmatrix} -\frac{8}{\sqrt{2}}e^{-\frac{1}{2}} & 0 \\ 0 & -2(1-\sqrt{2})e^{-\frac{1}{2}} \end{pmatrix} \quad \text{positiv-definit} \\ \mathcal{H}_f\left(\frac{1}{\sqrt{2}}e_1\right) &= -2e^{-\frac{1}{2}}\begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & 1+\sqrt{2} \end{pmatrix} \quad \text{negativ-definit} \end{split}$$

 $-\frac{1}{\sqrt{2}}e_1$:lokales Minimum, $\frac{1}{\sqrt{2}}e_1$:lokales Maximum für f. Sind das absolute Extrema? $/\!\!/$

2.2 Lokale Inverse und implizite Funktionen

2.2.1 Lokale Inverse

Bemerkung Vorbetrachtung

 $A \in \mathbb{R}^{n \times n}$ sei invertierbar, f(x) = Ax + b hat eine inverse Abbildung $\Leftrightarrow \det A \neq 0$, $(f^{-1}(y) = A^{-1}(y - b))$. ist nun f(x) = b + Ax + R(x), $|R(x)| \leq c|x|^2$, so kann man hoffen, dass $\exists g : B(b, \delta) \to \mathbb{R}^n$, f(g(y)) = y auf $B(b, \delta)$.

Satz 2.2.1.1

Sei $U_1, V \subset \mathbb{R}^n$ offen, $f: U_1 \to V$ sei bijektiv und k-mal stetig differenzierbar, $k \geq 1$; ist $\det J_f(x) \neq 0$ für alle $x \in U_1$, so ist $g \coloneqq f^{-1} \colon V \to U_1$ ebenfalls k-mal stetig differenzierbar, wenn nur g stetig ist; dann ist $F_g(f(x)) = J_f(x)^{-1}$, $x \in U_1$.

Beweis: Sei $x_1 \in U_1$, $y_1 = f(x_1)$, $M = J_f(x_1)^{-1}$. Zeige:

- i) $\exists \delta_0 > 0 \text{ mit } |g(y) g(y_1)| \le 2 ||M|| |y y_1| \text{ auf } B(y_1, \delta_0).$
- ii) g ist differenzierbar in y_1 , $J_g(y_1) = J_f(x_1)^{-1}$.

zu i) Es gilt

$$f(x) = f(x_1) + J_f(x_1)(x - x_1) + |x - x_1|R(x_1, x),$$

wobei $|R(x_1,x)| \xrightarrow{x \to x_1} 0$. Wähle r > 0 mit $|R(x_1,x)| \le \frac{1}{2||M||}$, wenn $|x-x_1| < r$. Da g in y_1 stetig ist, gilt mit kleinem $\delta_0 > 0$: $|g(y_1) - x_1| < r$, wenn $y \in B(y_1, \delta_0)$. Es folgt

$$y-y_1=f(g(y))-f(g(y_1))=J_f(x_1)(g(y)-x_1)+|g(y)-x_1|R(x_1,g(y))$$

auf $B(y_1, \delta_0)$. Weiter:

$$M(y-y_1) = g(y) - x_1 + |g(y) - x_1| M \cdot R(x_1, g(y))$$

$$|g(y) - x_1| = |M(y - y_1) - (g(y) - x_1)M \cdot R(x_1, g(y))| \le ||M|| ||y - y_1|| + ||M|| \frac{1}{2||M||} |g(y) - x_1|$$

auf $B(y_1, \delta_0)$. Also $|g(y) - x_1| \le 2 ||M|| |y - y_1|$ auf $B(y_1, \delta_0)$.

zu ii)

$$\frac{g(y) - x_1 - M(y - y_1)}{|y - y_1|} = -\frac{|g(y) - x_1|}{|y - y_1|} M \cdot R(x_1, g(y)) \xrightarrow{y \to y_1} 0$$

Also ist g differenzierbar in y_1 . Für $y \in V$ sei x = g(y). Dann ist $J_g(y) = J_f(g(y))^{-1}$.

$$\frac{\partial g_i}{partial y_j}(y) = \pm \frac{1}{\det J_f(g(y))} \det \left(\frac{\partial f_l}{\partial x_p} g(y) \right)_{\substack{l \neq i \\ p \neq j}}$$
(*)

ist stetig; also g stetig differenzierbar.

Sei v < k und schon bewiesen, dass g v-mal stetig differenzierbar ist. Wegen $v + 1 \le k$ und (*) ist $\frac{\partial g_i}{\partial y_i}$ sogar v-mal stetig differenzierbar. g ist also (v+1)-mal stetig differenzierbar.

Satz 2.2.1.2 Existenz der lokalen Inversen

Sei $f: U \to \mathbb{R}^n$ eine k-mal stetig differenzierbare Abbildung, $U \subset \mathbb{R}^n$ offen; sei $x^0 \in U$ mit $\det J_f(x^0) \neq 0$; $y^0 = f(x^0)$. Dann gibt es offene Umgebungen $U_1 \ni x^0$, $V_1 \ni y^0$, so dass $f: U_1 \to V_1$ bijektiv wird und die (lokale) Inverse $g \coloneqq (f|_{U_1})^{-1}$ wieder k-mal stetig differnzierbar. (Ist $\tilde{y} \in V_1$, so ist $f(x) = \tilde{y}$ eindeutig nach x auflösbar)

Beweis: Ersetze f durch $\hat{f}(x) = f(x+x^0) - y^0$, dann ist $\hat{f}(0) = 0$; ist \hat{g} lokale Inverse für \hat{f} nahe 0, so findet man auch eine lokale Inverse g für f nahe x^0 ; dann $f(x) = y^0 + \hat{f}(x-x^0)$. Daher OdBA: $x^0 = y^0 = 0$. Gesucht ist eine stetige lokale Inverse g für f. Daraus folgt dann mit Satz 2.2.1.1 die Behauptung.

Sei $\delta_0 > 0$, $B(0, \delta_0) \subset U$, für $0\delta \le \delta_0$ und $y \in B(0, \delta)$ setze $h^y(x) := x - J_f(0)^{-1}(f(x) - y)$ auf $\overline{B(0, \delta)} =: K_\delta$.

$$J_{h^y}(x) = E - J_f(0)^{-1} J_f(x);$$

ist δ klein genug, so $\|J_{h^y}(x)\| \leq \frac{1}{10n^2}$ für $x \in K_\delta$; mit Mittelwertsatz für jede Koordinate h_l^y folgt dann

$$|h^{y}(x)-h^{y}(\tilde{x})| \leq \frac{1}{2}|x-\tilde{x}|, \quad x,\tilde{x} \in K_{\delta}.$$

Mit $c_1 := \frac{\delta}{1 + \|J_f(0)^{-1}\|}$ gilt

$$|h^{y}(x)| \le |h^{y}(0)| + |h^{y}(x) - h^{y}(0)| \le \left\| J_{f}(0)^{-1} \right\| |y| + \frac{1}{2}|x| < \delta$$

wenn $|y| \le c_1 \delta$. Also ist $h^y := K_\delta \to K_\delta$ kontrahierend; sei g(y) Fixpunkt für h^y ($z_1 = 0$, $z_{m+1} = h^y(z_m)$, $(z_m)_m$ konvergiert). Aus $h^y(g(y)) = g(y)$ folgt f(g(y)) = y.

$$U_2 := f^{-1}(B(0, c_1 \delta) \cap B(0, \Delta)), \quad V_2 = B(0, c_1 \delta);$$

dann ist $f: U_2 \to V_2$ surjektiv; seien $x, \tilde{x} \in U_2$ mit $f(x) = f(\tilde{x}) =: y$. Dann sind x und \tilde{x} Fixpunkte für h^y . Da h^y kontrahierend ist, gilt dann $x = \tilde{x}$ und somit ist $f: U_2 \to V_2$ injektiv.

$$U_1 = f^{-1}(B(0, 7/8c_1\delta) \cap B(0, 7/8\delta), \quad V_1 = B(0, 7/8c_1\delta)$$

Behauptung: $g: V_1 \to U_1$ ist stetig. Sei $y^* \in V_1$ und angenommen, g sei unstetig in y^* . Dann existiert eine Folge $(y_l)_l \subset V_1$ mit $\lim_{l \to \infty} y_l = y^*$ aber $\lim_{l \to \infty} g(y_l) = \hat{x} \neq g(y^*)$. Aber:

$$f(\hat{x}) = \lim_{l \to \infty} f(g(y_l)) = \lim_{l \to \infty} y_l = y^* /_{2}$$

2.2.2 Sätze über implizite Funktionen

Sei $\mathscr{A} \in \mathbb{R}^{d \times n}$, d < n; $\rangle(\mathscr{A}) = d$. Sind die Spalten $i_1, ..., i_d$ linear unabhängig, so ist die Matrix $(\mathscr{A}e_{i_1}, ..., \mathscr{A}e_{i_d})$ invertierbar; dann ist das lineare Gleichungssystem Ax = 0 nach $x_{i_1}, ..., x_{i_d}$ lösbar:

$$x_{i_{\nu}} = L_{\nu}(x_{j_1}, ..., x_{j_{n-d}}), 1 \le \nu \le d, \{j_1, ..., j_{n-d}\} = \{1, ..., n\} \setminus \{i_1, ..., i_d\},$$

wobei L_{ν} Linearformen sind (implizite Funktionen).

Satz 2.2.2.1 Implizite Funktionen

Sei $f: U \to \mathbb{R}^d$ eine k-mal stetig differenzierbare Abbildung, $U \subset \mathbb{R}^n$ offen, $x^0 \in U$, d < n, $y^0 = f(x^0)$. Ist rang $(J_f(x^0)) = d$ und die ersten d Spalten von $J_f(x^0)$ linear unabhängig, so gibt es offene Umgebungen $U^* \ni x^{0,*}$, $U^{**} \ni x^{0,**}$ und eine k-mal stetig differenzierbare Abbildung $\Phi: U^{**} \to U^*$ mit $x^{0,*} = \Phi(x^{0,**})$, so dass

$$U^* \times U^{**} \cap \{x \mid f(x) = y^0\} = \{x \in U^* \times U^{**} \mid x^* = \Phi(x^{**})\}.$$

Dabei ist für $x = (x_1, ..., x_d, x_{d+1}, ..., x_n)$: $x^* = (x_1, ..., x_d)$ und $x^{**} = (x_{d+1}, ..., x_n)$.

Beweis: Ersetze f durch $f = y^0$; OBdA $y^0 = 0$.

$$F(x) := \begin{pmatrix} f(x) \\ x^{**} \end{pmatrix} \colon U \to \mathbb{R}, \quad J_F(x) = \begin{pmatrix} J_f(x) \\ 0 & E_{n-d} \end{pmatrix}, \quad \det J_F(x) = \det \left(\frac{\partial f_i}{\partial x_j}(x) \right)_{i, i=1}^d, \quad \det J_F(x^0) \neq 0$$

Es existiert $G: V_1 \to U_1$ k-mal stetig differenzierbar Inverse zu F, wobei U_1 offene Umgebung von $x^0, V_1 \ni \begin{pmatrix} 0 \\ x^{0,**} \end{pmatrix}$ offen. Es gilt für $x \in U_1$:

$$f(x) = 0 \Leftrightarrow F(x) = \begin{pmatrix} 0 \\ x^{**} \end{pmatrix} \Leftrightarrow x = G \begin{pmatrix} 0 \\ x^{**} \end{pmatrix},$$

wähle $\Phi(x^{**} = G\begin{pmatrix} 0 \\ x^{**} \end{pmatrix}$. Dann finden wir auch U^*, U^{**} ; Φ ist k-mal stetig differenzierbar, da F und damit auch G es sind.

Beispiel

$$f(x_1, x_2, x_2) = x_1^2 x_2 - x_3^2 + \sin(\pi x_1 x_3), \quad x^0 = (1, 1, 1)$$

$$f_{x_1} = 2x_1x_2 + \pi x_3\cos(\pi x_1x_3), \quad f_{x_1}(x^0) = 2 - \pi \neq 0$$

Also existiert ein $\delta > 0$ mit $\Phi]1 - \delta, 1 + \delta[\times]1 - \delta, 1 + \delta[\to \mathbb{R}$ stetig differenzierbar (unendlich oft) und $f(\Phi(x_2, x_3), x_2, x_3) = 0$, $\Phi(1, 1) = 1$. Was ist $\nabla \Phi(1, 1)$? Bilde $\frac{\partial}{\partial x_j} f(\Phi(x_2, x_3), x_2, x_3) = 0$.

$$\begin{split} \frac{\partial f}{\partial x_1}(\Phi(x^{**}), x^{**}) \frac{\partial \Phi}{\partial x_j}(x^{**}) + \frac{\partial f}{\partial x_j}(\Phi(x^{**}), x^{**}) &= 0 \\ \frac{\partial \Phi}{\partial x_j}(1, 1) &= -\frac{\frac{\partial f}{\partial x_j}(1, 1, 1)}{\frac{\partial f}{\partial x_1}(1, 1, 1)} = -\frac{1}{2 - \pi} \frac{\partial f}{\partial x_j}(x^0) = \begin{cases} \frac{-1}{2 - \pi}, & j = 1 \\ \frac{2 + \pi}{2 - \pi}, & j = 3 \end{cases} \\ \Phi(x_2, x_3) &= 1 - \frac{1}{2 - \pi}(x_2 - 1) + \frac{2 + \pi}{2 - \pi}(x_3 - 1) + \dots \end{split}$$

//

Differentialgleichungen

3.1 Definitionen und Beispiele

3.2 Lineare Differentialgleichungen erster Ordnung

Beispiel Logistische Differentialgleichung

$$P' = \lambda K P - \lambda P^2$$

$$u := -\frac{1}{P} \text{ löst } u' = \frac{P'}{P^2} = -\lambda K u - \lambda.$$

$$u(t) = u(0)e^{-\lambda K t} - \frac{1}{k} \left(1 - e^{-\lambda K t} \right)$$

$$P(t) = -\frac{1}{u(t)} = \frac{KP(0)}{(K - P(0))e^{-\lambda K t} + P(0)} \le K \text{ wenn } P(0) \le K$$
 Für $P(0) > K$, ist
$$P(t) = \frac{KP(0)}{Ke^{-\lambda K t} + (1 - e^{-\lambda K t})P(0)} \le P(0).$$

3.3 Lösungsmethoden für spezielle Differentialgleichungen erster Ordnung

3.3.1 Bernoulli-Differentialgleichung

Seien $a, b \in C^0(I)$, $\rho \in \mathbb{R} \setminus \{0, 1\}$. Die DGL

(B)
$$u' = au + bu^{\rho}$$

heißt Die Bernoulli-Differentialgleichung.

Im Allgemeinen ist (B) nur für positive Funktionen u erklärt.

Beispiel

Die Logistische DGL: $\rho = 2$. //

Lemma 3.3.1.1

i) Ist $z \in C^1(I)$ positiv und löst

$$(L) z' = (1 - \rho)(az + b)$$

, so ist $u = \frac{1}{z^{1-\rho}}$ Lösung zu (B).

- ii) Ist $u \in C^1(I)$ positiv und löst (B), so ist $z = u^{1-\rho}$ Lösung zu (L).
- iii) Sind u_1, u_2 positive Lösungen zu (B) und gibt es ein $t_0 \in I$ mit $u_1(t_0) = u_2(t_0)$, so ist schon $u_1 = u_2$.

Beweis:

i) Sei $u = \frac{1}{z^{1-\rho}}$. Dann

$$u' = \frac{1}{1-\rho} z^{\frac{1}{1-\rho}-1} z' = z^{\frac{\rho}{1-\rho}} (az+b) = az^{\frac{\rho}{1-\rho}+1} + bz^{\frac{1}{1-\rho}\rho} = au + bu^{\rho}.$$

ii) $z' = (u^{1-\rho})' = (1-\rho)u^{-\rho}u' = (1-\rho)u^{-\rho}(au + bu^{\rho}) = (1-\rho)(az + b)$

iii) $z_k \coloneqq u_k^{1-\rho}$ lösen beide $z_k' = (1-\rho)(az_k+b)$; $w \coloneqq z_1-z_2$ löst $w' = (1-\rho)aw$ und $w(t_0) = 0$. Also w = 0, $z_1 = z_2$ und somit $u_1 = u_2$.

Lemma 3.3.1.2

Sei $\rho \in \mathbb{Z}$, $\rho \ge 2$ und w eine beliebige Lösung zu (B) (also nur $w \in C^1(I)$), so gilt: Ist $t_0 \in I$, $w(t_0) = 0$, so w = 0.

Beweis: Sei $\delta > 0$, $I_{\delta} := [t_0 - \delta, t_0 + \delta] \subset I$; $M_{\delta} := \max_{I_{\delta}} |w|$, $L_{\delta} := \max_{I_{\delta}} |a| + M_{\delta}^{\rho-1} \max_{I_{\delta}} |b|$. Wir zeigen: $\forall n \geq 0$ ist

$$|w(t)| \leq \frac{M_{\delta}L_{\delta}^n}{n!}|t-t_0|^n, \quad t \in I_{\delta}.$$

Induktion nach $n: n = 0\sqrt{;}$ $n-1 \rightarrow n:$

$$w(t) = \int_{t_0}^{t} w'(s) ds$$

$$= \int_{t_0}^{t} aw(s) - bw(s)^{\rho} ds$$

$$= \int_{t_0}^{t} w(s)(a(s) + b(s)w(s)^{\rho - 1}) ds$$

$$|w(t)| \le L_{\delta} \int_{t_0}^{t} |w(s)| ds \le L_{\delta} \frac{M_{\delta} L_{\delta}^{n - 1}}{(n - 1)!} \int_{t_0}^{t} (s - t_0)^{n - 1} ds = \frac{M_{\delta} L_{\delta}^{n}}{n!} (t - t_0)^{n}$$

für $t \ge t_0$. Analog für $t \le t_0$.

Also w = 0 auf I_{δ} . Genauso zeige: Ist $t_* \in I$, $w(t_*) = 0$, so $\exists \delta_* > 0$: w = 0 auf $[t_* - \delta_*, t_* + \delta_*]$. Dann ist $\{t \in I \mid w(t) = 0\}$ offen und abgeschlossen und $\neq \emptyset$, stimmt also mit I überein.

3.3.2 Die Riccati-Differentialgleichung

Sind $a, b, f \in C^0(I)$, so heißt die DGL

$$(R) \qquad u' = au + bu^2 + f$$

Riccatische Differentialgleichung.

Lemma 3.3.2.1

Sei $u_p \in C^1(I)$ eine Lösung zu (R).

i) Dann ist eine Funktion $u \in C^1(I)$ Lösung zuz (R), wenn $w = u - u_D$ Lösung zu

$$(B^*)$$
 $w' = (a + 2bu_p)w + bw^2$

ist.

ii) Lösen u_1, u_2 die DGL (R) und $u_1(t_0) = u_2(t_0)$ für ein $t_0 \in I$, so $u_1 = u_2$.

Beweis:

i) $w' = u' - u'_p = au + bu^2 + f - au_p - bu_p - f = aw + bw(u + u_p) = aw + bw(w + 2u_p) = (a + 2bu_p)w + bw^2$ Umgekehrt sei w Lösung zu (B^*) ; $u \coloneqq w + u_p$. Dann $u' = w' + u'_p = (a + 2bu_p)w + bw^2 + au_p + bu_p^2 + f = au + b(w^2 + 2u_pw + u_p^2) + f = au + bu^2 + f$

ii) $w = u_1 - u_2 \text{ löst } (B^*) \text{ mit } w(t_0) = 0 \Rightarrow w \equiv 0.$

Beispiel Grenzgeschwindigkeit eines Autos

Die Geschwindigkeit v eines Autos erfüllt $v'=f-\rho v^2$ (mit $f,\rho>0$). Die DGL ist vom Typ (R) mit $a=0,\ b=-\rho.\ v_p\coloneqq\sqrt{\frac{f}{\rho}}$ löst (R); löse (R) unter v(0)=0.

Löse dazu

$$w' = -2\rho\sqrt{\frac{f}{\rho}}w - \rho w^2 = -2\sqrt{\rho f}w - \rho w^2$$

 $u := \frac{1}{w}$ löst $u' = \frac{-w'}{w^2} = 2\sqrt{\rho f}u + \rho$. Es folgt:

$$\begin{split} u(t) &= e^{2\sqrt{\rho f}t} \left(\int_{0}^{t} \rho e^{-2\sqrt{\rho f}s} \mathrm{d}s + u(0) \right) \\ &= e^{2\sqrt{\rho f}t} \left(-\frac{\rho}{2\sqrt{\rho f}} \left(e^{-2\sqrt{\rho f}t} - 1 \right) + u(0) \right) \\ &= -\frac{1}{2} \sqrt{\frac{\rho}{f}} + \frac{1}{2} \sqrt{\frac{\rho}{f}} e^{2\sqrt{\rho f}t} + u(0) e^{2\sqrt{\rho f}t} \\ w(t) &= \frac{1}{u(t)} = \frac{1}{-\frac{1}{2} \sqrt{\frac{\rho}{f}} e^{2\sqrt{\rho f}t} \left(u(0) + \frac{1}{2} \sqrt{\frac{\rho}{f}} \right)} \\ v(t) &= \sqrt{\frac{f}{\rho}} + w(t) = \sqrt{\frac{f}{\rho}} - \frac{1}{\frac{1}{2} \sqrt{\frac{\rho}{f}} \left(1 - e^{-2\sqrt{\rho f}t} \right) + u(0) e^{2\sqrt{\rho f}t}}; \end{split}$$

mit $u(0) = \sqrt{\frac{f}{\rho}}$ wird v(0) = 0.

$$v(t) = \sqrt{\frac{f}{\rho}} \tanh(\sqrt{f\rho}t) \le \sqrt{\frac{f}{\rho}}$$
 $\tanh = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

 $/\!\!/$

Beispiel

$$y' = e^{-x}y^2 + y - e^x$$

hat die Form (R) mit a = 1, $b = e^{-x}$ und $f = -e^{x}$; $y_p(x) := e^{x}$. $w = y - e^{x}$ löst

$$w' = (1 + 2e^{-x}e^x)w + e^{-x}w^2 = 3w + e^{-x}w^2.$$

$$v = \frac{1}{w}$$
 löst $v' = -3ve^{-x}$.

$$v(x) = \left(v(0) - \frac{1}{2} \left(e^{2x} - 1\right)\right) e^{-3x}$$

$$w(x) = \frac{w(0)e^{3x}}{1 - \frac{w(0)}{2} \left(e^{2x} - 1\right)}$$

$$y(x) = \frac{Ce^{3x}}{1 - \frac{1}{2} \left(e^{2x} - 1\right)C} - e^{x}, \quad C \neq 0$$

//

Lemma 3.3.2.2

Angenommen, $a, b \in C^1(I)$, b habe keine Nullstelle;

$$F\coloneqq bf+\frac{1}{2}\left(a+\frac{b'}{b}\right)'-\left(\frac{1}{2}\left(a+\frac{b'}{b}\right)\right)^2.$$

Dann gilt:

i) Ist z Lösung zu

$$(R') z' = z^2 + F$$

so ist

$$y := \frac{1}{b} \left(z - \frac{1}{2} \left(a + \frac{b'}{b} \right) \right)$$

Lösung zu (R).

ii) Löst w die (lineare DGL) w'' + Fw = 0 und hat keine Nullstelle, so ist $z := -\frac{w'}{w}$ eine Lösung zu (R').

Beweis:

i) Es gilt

$$z' - z^{2} - F = b'y + by' + \frac{1}{2} \left(a + \frac{b'}{b} \right)' - b^{2}y^{2} - b \left(a + \frac{b'}{b} \right) y - \left(\frac{1}{2} \left(a + \frac{b}{b'} \right) \right)^{2} - bf - \frac{1}{2} \left(a + \frac{b'}{b} \right)' + \left(\frac{1}{2} \left(a + \frac{b'}{b} \right) \right)^{2}$$

$$= b'y + by' - b^{2}y^{2} - aby - b'y - bf$$

$$= b(y' - (ay + by^{2} + f)).$$

Also z löst $(R') \Leftrightarrow y$ löst (R).

ii)
$$z = -\frac{w'}{w}$$

$$z' - z^2 - F = -\frac{w''}{w} + \frac{w'^2}{w^2} - \left(\frac{w'}{w}\right)^2 - F = -\frac{1}{w}(w'' + Fw).$$

Hieraus folgt schon die Behauptung.

Beispiel

Was sind die Lösungen zu

$$y' = -\left(2 + \frac{1}{t}\right)y + \frac{1}{t}y^2 + t + 2?$$

Das ist (R) mit $a=-2-\frac{1}{t},\,b=\frac{1}{t}$ und f=t+2 auf $I\subset]0,\infty[$. Berechne F :

$$F = bf + \frac{1}{2} \left(a + \frac{b'}{b} \right)' - \frac{1}{4} \left(a + \frac{b'}{b} \right)^2$$
$$= 1 + \frac{2}{t} + \frac{1}{t^2} - \left(1 + \frac{1}{t} \right)^2$$
$$= 0$$

Also lautet (R') $z'=z^2$, also $-\frac{z'}{z^2}=-1$, also $\left(\frac{1}{z}\right)'=-1$; wähle $z(t)=-\frac{1}{t}$, also Lösung zu (R').

$$y_p(t) := \frac{1}{b} \left(z - \frac{1}{2} \left(\alpha + \frac{b'}{b} \right) \right) = t \left(-\frac{1}{t} + 1 + \frac{1}{t} \right) = t$$

löst (R).

Zu den weiteren Lösungen: Löse

(B)
$$v' = (a + 2by_p)v + bv^2$$

d.h.

$$v' = \left(-2 - \frac{1}{t} + 2\frac{1}{t}t\right)v + \frac{1}{t}v^2 = -\frac{1}{t}(v - v^2)$$

also

$$\frac{v'}{v^2 - v} = -\frac{1}{t},$$

nun ist

$$\frac{1}{v^2-v} = -\left(\frac{1}{v} - \frac{1}{v-1}\right) \Rightarrow \frac{v'}{v^2-v} = \left(\log\frac{v-1}{v}\right)' \Rightarrow \log\frac{v-1}{v} = -\log t + C_1 \Rightarrow \frac{v-1}{v} = \frac{C}{t}, C = e^{C_1}, v(t) = \frac{C}{C-t}$$

vist auf]0,C[definiert, ebenso jede Lösung $y(t)=t+\frac{C}{C-t}$ zu (R). $/\!\!/$

3.3.3 Differentialgleichungen mit trennbaren Variablen

Sei $I \subset \mathbb{R}$ ein Intervall, $h: \hat{I} \to]0, \infty[$ stetig.

Satz 3.3.3.1

Sei $g \in C^0(I)$, $I' \subset I$, $a \in I'$. Ist dann $u \in C^1(I')$ eine Lösung zur DGL

$$(S) y' = g \cdot h(y)$$

(also $u'(t) = g(t)h(u(t)) \forall t \in I'$), so gilt

$$u = H_*^{-1}(H_*(u(\alpha)) + G)$$

wobei H_* Stammfunktion zu $\frac{1}{h}$ und G Stammfunktion zu g mit G(a) = 0 ist.

Beweis:

$$\frac{u'}{h \circ u} = g = G' \Rightarrow (H_* \circ u)' = G'$$

$$H_*(u(t)) - H_*(u(a)) = \int_a^t (H_* \circ u(s))' ds = G(t), \quad H_*(x) = \int_c^x \frac{dz}{h(z)},$$

wenn $\hat{I} = [c, d]$.

$$H_*(u(t)) = H_*(u(a)) + G(t)$$

nach u(t) auflösen. Hieraus folgt dann die Behauptung.

Beispiel

Lösung zu

$$u'\sqrt{1-t^2} + \sqrt{1-u^2} = 0$$
, $u(0) = \frac{1}{2}$.

$$\begin{split} u' &= -\frac{\sqrt{1-u^2}}{\sqrt{1-t^2}} \\ \Rightarrow \frac{u'}{\sqrt{1-u^2}} &= -\frac{1}{\sqrt{1-t^2}} \\ \Rightarrow (\arcsin u)'(t) &= -(\arcsin t)' \\ \Rightarrow \arcsin u(t) - \arcsin \frac{1}{2} &= -\arcsin t \\ \Rightarrow \arcsin u(t) &= \frac{\pi}{6} - \arcsin t \\ \Rightarrow u(t) &= -\sin \left(\arcsin t - \frac{\pi}{6}\right) = -t\cos \frac{\pi}{6} - \frac{1}{2}\cos(\arcsin t) = \frac{-\sqrt{3}}{2}t - \frac{1}{2}\sqrt{1-t^2} \end{split}$$

//

3.3.4 Differentialgleichungen vom Typ y' = f(at + by + c), $a, b, c \in \mathbb{R}$, $f \in C^0(\mathbb{R})$

 $v(t) = by(t) + at + c \text{ muss } v'(t) = by' + a = bf(v(t)) + a \text{ ((S) mit } g \equiv 1) \text{ lösen.}$

Beispiel

$$y' = (2t + 3y + 1)^2, \quad f(z) = z^2, a = 2, b = 3, c = 1.$$

$$v(t) = 3y(t) + 2t + 1 \text{ löst}$$

$$v'(t) = 3v(t)^{2} + 2 = 3\left(v^{2} + \frac{2}{3}\right)$$

$$\Rightarrow \frac{v'}{v^{2} + \frac{2}{3}} = 3$$

$$\Rightarrow \frac{v'}{\left(\sqrt{\frac{3}{2}}v\right)^{2} + 1} = 2$$

$$\Rightarrow \frac{\sqrt{\frac{3}{2}}v'}{1 + \left(\sqrt{\frac{3}{2}}v\right)^{2}} = \sqrt{6}$$

$$\Rightarrow \left(\arctan\left(\sqrt{\frac{e}{2}}v\right)\right)' = \sqrt{6}$$

$$\Rightarrow \arctan\left(\sqrt{\frac{3}{2}}v\right) = \sqrt{6}t + C, \quad C = \arctan\sqrt{\frac{3}{2}}v(0)$$

$$v(t) = \sqrt{\frac{2}{3}}\tan(\sqrt{6}t + C),$$

wenn $-\frac{\pi}{2} < \sqrt{6}t + C < \frac{\pi}{2}$.

$$y(t) = \frac{1}{3}(v(t) - 2t - 1)$$

ist Lösung. $/\!\!/$

3.3.5 Differentialgleichungen vom Typ $y' = f(\frac{y}{t}), f \in C^0(\mathbb{R}^+)$

$$u(t) := \frac{y(t)}{t}$$
 muss

$$u' = \frac{y'}{t} - \frac{y}{t^2}$$

$$\begin{split} &= \frac{1}{t} \left(y' - \frac{y}{t} \right) \\ &= \frac{1}{t} (f(u(t)) - u(t)) \\ &= g(t)h(u(t)), \quad g(t) = \frac{1}{t}, h(\tilde{x}) = f(\tilde{x}) - \tilde{x} \end{split}$$

lösen.

Beispiel Scheinwerfer

$$\left(y' + \frac{x}{y}\right)^2 = 1 + \left(\frac{x}{y}\right)^2$$

$$y' = -\frac{x}{y} + \sqrt{1 + \left(\frac{x}{y}\right)^2} = \frac{1}{\frac{x}{y} + \sqrt{1 + \left(\frac{x}{y}\right)^2}} = f\left(\frac{y}{x}\right),$$
mit $f(s) = \frac{s}{1 + \sqrt{1 + s^2}}$; $u(x) = \frac{y(x)}{x}$ löst $\frac{u'}{f(u) - u} = \frac{1}{x}$; $U(s) := \log \frac{s^2}{1 + \sqrt{1 + s^2}}$ löst $U' = \frac{1}{f(s) - s}$. Also
$$(U \circ u)' = \frac{1}{x} = (\log x)'$$

$$\Rightarrow U(u(x)) = \log x + C_1$$

$$\Rightarrow \frac{u(x)^2}{1 + \sqrt{1 + u(x)^2}} = Cx, \quad C = e^{C_1}$$

$$\Rightarrow \frac{y(x)^2}{x^2 + x\sqrt{x^2 + y(x)^2}} = Cx$$

$$\Rightarrow y(x)^2 = 2C_2x + C_2^2 \quad (C_2 > 0 \text{ passend})$$

//

3.3.6 Differentialgleichungen vom Typ $y' = f\left(\frac{a_1t + b_1y + c_1}{a_2t + b_yt + c_2}\right)$, $a_k, b_k, c_k \in \mathbb{R}$, k = 1, 2

1. Fall: $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$; wähle $\binom{\zeta}{\eta} \in \mathbb{R}^2$ mit

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} \zeta \\ \eta \end{pmatrix} = - \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Dann ist $w(s) = y(s + \zeta) - \eta$ Lösung zu

$$w'(s) = f\left(\frac{a_1s + a_1\zeta + b_1w + b_1\eta + c_1}{a_2s + a_2\zeta + b_2w + b_2\eta + c_2}\right) = f\left(\frac{a_1s + b_1w}{a_2s + b_2w}\right) = F\left(\frac{w(s)}{s}\right), \quad F(z) = f\left(\frac{a_1 + b_1z}{a_2 + b_2z}\right).$$

w löst eine DGL vom Typ 3.3.5.