

SIMULATION SOLARGESTÜTZTER WÄRMEVERSORGUNGSSYSTEME MIT TRNSYS

Gruppe 2

Christian Mainz & Marvin Grosch

Praktikumstag: 14.-18.09.2020 Abgabe: 16.10.2020

Betreuer: Oleg Kusyy & Christoph Schmelzer

Studiengang: Master re² Semester: SoSe 2020

Matrikelnr.: 35511364, 35598242

Inhaltsverzeichnis

Αl	bbildungsverzeichnis	1
1	Einleitung	1
2	Modellierung2.1 Systembeschreibung2.2 Systemanpassung: Verluste2.3 Systemauslegung	1
3	Parametervariation 3.1 Kaltwasser- und Umgebungstemperatur des Speichers	
4	Optimierung der Kollektorparameter	2
\mathbf{A}	Abbildungsverzeichnis	
	1 Grundsystem	1

1 Einleitung

2 Modellierung

2.1 Systembeschreibung

Abb. 1: Grundsystem

Das System basiert auf einem Speicher mit integrierter Nachheizung sowie einem angeschlossenen Kollektor, welcher mit Wetterdaten gespeist wird. Der Massenstrom des Kollektorkreislaufes wird

2.2 Systemanpassung: Verluste

2.3 Systemauslegung

Anhand der Wetterdaten von Stuttgart soll eine solare Deckung von $60\,\%$ für das vorliegende Zapfprofil erzielt werden.

$$f_{sol,in} = \frac{Q_{sol}}{Q_{sol} + Q_{aux}} \tag{1}$$

$$f_{sol,out} = \frac{Q_{sol} - Q_{verl,Sp}}{Q_{TWW+RH} + Q_{Zirk}} \tag{2}$$

3 Parametervariation

3.1 Kaltwasser- und Umgebungstemperatur des Speichers

- 3.2 Rohrlänge und -dämmung
- 4 Optimierung der Kollektorparameter