Міністерство освіти і науки України Національний університет "Львівська політехніка" Кафедра інформаційних систем та мереж

Схемотехніка інформаційних систем Звіт До лабораторної роботи № 3 «Синтез комбінаційних пристроїв в базисі» Варіант 7

Виконав: ст. гр. IT–22 Гук П. М.

Прийняла: Данильченко Т.Є.

«___» ____2020 p. Σ =

Мета роботи: навчитися синтезувати комбінаційні пристрої в заданому базисі **Хід роботи**

Завдання:

- 1. Синтезувати задану логічну функцію в базисі Пірса та Шеффера.
- 2. Провести моделювання в середовищі Logisim.

Завдання індивідуального варіанту:

$$y_7 = \sum (0,2,6,7,8,10,11);$$
 $y_4 = \sum (3,7,8,9,11,15);$

1) Базис Шеффера:

Будуємо карту Карно до заданої функції:

x_3x_2 x_1x_0	x3x2	x3/x2	/x3x2	/x3/x2
x1/x0				
/x1/x0			1	1
/x1x0		1	1	1
x1x0		1	1	

$$y7 = /x3/x1 v x0$$

Синтезуємо мінімізовану функцію в базис Шеффера:

$$y_{4} = (\overline{x}_{3}\overline{x}_{1})v(x_{0}) = \overline{(\overline{x}_{3}\overline{x}_{1})v(x_{0})} = \overline{(\overline{x}_{3}\overline{x}_{1})*(\overline{x}_{0})} = \overline{(\overline{(\overline{x}_{3}\overline{x}_{1})}*(\overline{x}_{0})} = \overline{(\overline{x}_{3}\overline{x}_{1})} = \overline{(\overline{x}_{3}\overline{x$$

Будуємо схему даної функції в базисі Шеффера:

Таблиця істинності до заданого базиса Шеффера:

x_3	x_1	x_0	y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

2) Базис Пірса:

По даній карті Карно об'єднуємо елементи для базису Пірса:

u	ти карпо об едпусмо слементи дли базису тиреа:				
	x_3x_2 x_1x_0	x3x2	x3/x2	/x3x2	/x3/x2
	x1x0	0			0
	x1/x0	0	0	0	0
	/x1/x0	0	0		
	/x1x0	0			

$$y7 = (/x3 \text{ v}/x2) * (/x1 \text{ v}x0) * (/x3 \text{ v}x2 \text{ v}x0) * (x3 \text{ v}x2 \text{ v}/x1)$$

Синтезуємо мінімізовану функцію в базис Пірса:

$$y_{4} = (\overline{x_{1}}vx_{0})(x_{3}vx_{1})(\overline{x_{2}}vx_{1}) = \overline{(\overline{x_{1}}vx_{0})(x_{3}vx_{1})(\overline{x_{2}}vx_{1})} =$$

$$= \overline{(\overline{x_{1}}vx_{0})}v\overline{(x_{3}vx_{1})}v\overline{(\overline{x_{2}}vx_{1})} = \overline{(\overline{x_{1}}vx_{1}vx_{0})}v\overline{(x_{3}vx_{1})}v\overline{(\overline{x_{2}}vx_{2}vx_{1})}$$

$$y_{7} = \frac{(((x_{3} \vee x_{2}) * (x_{1} \vee x_{0}) * (x_{3} \vee x_{2} \vee x_{0}) * (x_{3} \vee x_{2} \vee x_{1}))}{(x_{3} \vee x_{2}) \vee ((x_{1} \vee x_{0}) \vee ((x_{3} \vee x_{2} \vee x_{2}) \vee (x_{1} \vee x_{2}))}$$

$$= \frac{((((x_{3} \vee x_{2}) \vee (x_{1} \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{3} \vee x_{2} \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{2} \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{2} \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{2} \vee x_{2}) \vee ((x_{1} \vee x_{1}) \vee x_{2}) \vee ((x_{2} \vee x_{$$

Будуємо схему даної функції в базисі Пірса:

Таблиця істинності до заданого базиса Пірса:

x_3	x_2	x_1	x_0	y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Висновок: на даній лабораторній роботі я навчився синтезувати комбінаційні пристрої в базисі Шеффера та Пірса.