Chapter 2 Lexical Analysis

注意:

- 1、本次作业全部批改。
- 2、作业中全对以√标识;小问题在答案上做修改;大问题不作任何标记。
- 3、每位同学提交的本子都会有"阅"字和日期,并且作为平时成绩记录。
- 4、是按照多数同学共同存在的问题统计的,个别同学不具有代表性的问题没有统计。

Homework Analysis:

No. 2.1

a. c*a(a|c)*b[a-c]*

问题的思考: 定下第一个 a 和第一个 b 的位置,然后看看串($\sim a \sim b \sim$)中存在的可能及其表达法。

存在的问题:

- ✓ 很多同学考虑的太复杂,考虑到了 a,b 都不存在或者 a 存在 b 不存在的情况,写出了不存在 a 或者 b 的串,题目中说第一个 a 和第一个 b,那 a、b 必然存在。
- ✓ (a|c)*ac*b[a-c]*也可以认为是正确的,其标识的 a 是 b 之前的最后一个 a
- ✓ 本题出错率:约50%

b. ((b|c)*a(b|c)*a)*(b|c)* $\mathfrak{G}(b|c)*(a(b|c)*a(b|c)*)*$

存在的问题:

- ✓ 很多人写成((b|c)*a(b|c)*a (b|c)*)*, 也正确。
- ✓ 本题出错率:约50%

$\mathbf{c.} (1|0)*00$ 或 (1(1|0)*00)|0

问题的思考: 0、末两位为 0 的二进制数均是 4 的倍数。情形一: 多位为 0 即为 0,0 打头的二进制数也可以; 情形二: 不能用多位 0 表示 0,不存在 0 打头的二进制数。

存在的问题:

- ✓ 问题不大。
- ✔ 出错率: 很少, 个别同学粗心。

d. $10101(0|1) \mid 1011(0|1)(0|1) \mid 11(0|1)(0|1)(0|1)(0|1)(0|1) \mid (0|1)*1 (0|1)*(0|1)(0|1)(0|1)(0|1)(0|1)(0|1)$

问题的思考: 大于 101001 的二进制数至少为六位二进制数,最小的大于 101001 的数为 101010,上面分四种情形来表示符合条件的二进制数。

存在的问题:

✓ 这个题目做出来的人很少,主要是分类方法没有考虑好。最后一项 最后一项写成1(0|1)*(0|1)(0|1)(0|1)(0|1)(0|1).

e. (a|c)*(b|bc(a|c)*|ba|bac(a|c)*)*[仅供参考, 如果发现问题,请同学们把自己认

为正确的答案发到我的邮箱: tangdawei2009@gmail.com, 最好详细说明一下]

问题的思考: 先分析没有 b 的情况和一个 b 的情况,一个 b 时,可以单独的一个 b,当后面紧跟一个 c 时,可以为 bc(a|c)*,但后面跟一个 a 时,可以为 ba 或者 bac(a|c)* 存在的问题:

- ✓ 做出的太少,比d题做出的还少,主要是没有能够对问题进行清楚分类
- ✓ 有些同学做出来了,但是忽略了开头的(a|c)*,大部分同学不会。

f. (00|0[1-7][0-7]*)|(0|[1-9][0-9]*)

问题的思考: 八进制数以 $0 \times$ 的数,八进制数的零为 00; 十进制数包含 0 以及不以 0 打头的十进制数。

存在的问题:

✓ 主要问题是很多人没有考虑到 0 的情况,八进制的 0 为 00,十进制的 0 为 0,问题主要 出在这里

g. 1|10

问题的思考: $a^n+b^n=c^n$, 当 n 大于 2 时,这个方程没有任何整数解。这就是数学史上著名的费马大定理或称费马最后的定理。

存在的问题:

✔ 做出来的不多,可能主要是这个数学问题不理解,知识面不够的缘故吧。

需要提醒的问题:

- ✓ 正则表达式写法不规范、参见书中 P19~P20 的写法。有些我已经在作业上标注。
- ✓ 感觉有些同学的正则表达式写的没有错,但是有表达的冗余,关键在于对问题进行正确的分析与分类。
- ✓ d、e 两道题目多数没有写出来,请大家注意分析问题和掌握思维方法,分类的思想。
- ✓ 正则表达式怎么写的问题、请参见每个题目的思考、还可以给我来邮件。

No. 2.2

- a. 正则表达式的定义中可以看出,没有任何运算是能够对字母进行计数的。
- b. 将回文串分为三段(1~n)(n+1)(n~1),从正则表达式的定义可以知道,没有任何一种正则表达式运算能够将部分一的(1~n)进行逆序排列并且表示出来。
- c. 存在括号、嵌套等文法,无法由正则表达式来表达,正则表达式不能表示。

问题的思考:本书中除了正则表达式的定义之外,没有给出其它关于正则表达式的特征描述,因此本题应该从定义出发来做说明。不用考虑的太复杂!

存在的问题:

- ✓ 多数同学直接采用"正则表达式不具备计数功能、记录功能"等结论来解释,但本书中 没有给出这样的结论,因此不妥。
- ✓ 还有些同学通过 FA 与 RE 的关系来阐述正则表达式的表达能力,两者间没有从分必要 关系。
- ✓ 还有些同学用泵定理等进行证明,超出本书范围,不合适。

No. 2.5

本题问题不大,基本都能做对,也能够训练从 NFA 到 DFA 转化的过程。

b. 经过 31+步可以演算出这个 DFA, 还是有些同学做出了结果:

```
edge(1, \in) = \{1\}
DFAedge({1}, a)
                                = \{1, 2, 3, 4, 5, 6\}
DFAedge(\{1\}, b)
                                = \{1\}
DFAedge(\{1, 2, 3, 4, 5, 6\}, a) = \{1, 2, 3, 4, 5, 6\}
DFAedge(\{1, 2, 3, 4, 5, 6\}, b) = \{1, 3, 4, 5, 6\}
DFAedge(\{1, 3, 4, 5, 6\}, a) = \{1, 2, 4, 5, 6\}
DFAedge(\{1, 3, 4, 5, 6\}, b) = \{1, 4, 5, 6\}
DFAedge(\{1, 2, 4, 5, 6\}, a) = \{1, 2, 3, 4, 5, 6\}
DFAedge(\{1, 2, 4, 5, 6\}, b) = \{1, 3, 4, 5, 6\}
DFAedge(\{1, 4, 5, 6\}, a)
                                = \{1, 2, 5, 6\}
DFAedge(\{1, 4, 5, 6\}, b)
                                = \{1, 5, 6\}
DFAedge(\{1, 2, 5, 6\}, a)
                                = \{1, 2, 6\}
DFAedge(\{1, 2, 5, 6\}, b)
                                = \{1, 3, 6\}
DFAedge(\{1, 5, 6\}, a)
                                = \{1, 2, 6\}
DFAedge(\{1, 5, 6\}, b)
                                = \{1, 6\}
DFAedge(\{1, 2, 6\}, a)
                                = \{1, 2, 3\}
DFAedge(\{1, 2, 6\}, b)
                                = \{1, 3\}
DFAedge(\{1, 3, 6\}, a)
                                = \{1, 2, 4\}
DFAedge(\{1, 3, 6\}, b)
                                = \{1, 4\}
DFAedge(\{1, 6\}, a)
                                = \{1, 2\}
DFAedge(\{1,6\},b)
                                = \{1\}
DFAedge(\{1, 2, 3\}, a)
                                = \{1, 2, 3, 4\}
DFAedge(\{1, 2, 3\}, b)
                                = \{1, 3, 4\}
DFAedge(\{1, 3\}, a)
                                = \{1, 2, 4\}
DFAedge(\{1, 3\}, b)
                                =\frac{\{1,4\}}{}
DFAedge(\{1, 2, 4\}, a)
                                = \{1, 2, 3, 5\}
DFAedge(\{1, 2, 4\}, b)
                                = \{1, 3, 5\}
DFAedge(\{1, 4\}, a)
                                = \{1, 2, 5\}
DFAedge(\{1,4\},b)
                                = \{1, 5\}
DFAedge(\{1, 2\}, a)
                                = \{1, 2, 3\}
DFAedge({1, 2}, b)
                                = \{1, 3\}
                                = \{1, 2, 3, 4, 5\}
```

DFAedge($\{1, 2, 3, 4\}, a$)

DFAedge($\{1, 2, 3, 4\}, b$)	$= \{1, 3, 4, 5\}$	←
DFAedge($\{1, 3, 4\}, a$)	$= \{1, 2, 4, 5\}$	←
DFAedge($\{1, 3, 4\}, b$)	= {1, 4, 5}	←
DFAedge({1, 2, 3, 5}, a)	$= \{1, 2, 3, 4, 6\}$	←
DFAedge($\{1, 2, 3, 5\}$, b)	$= \{1, 3, 4, 6\}$	←
DFAedge($\{1, 3, 5\}, a$)	$= \{1, 2, 4, 6\}$	←
DFAedge($\{1, 3, 5\}, b$)	= {1, 4, 6}	←
DFAedge($\{1, 2, 5\}, a$)	$= \{1, 2, 3, 6\}$	←
DFAedge($\{1, 2, 5\}, b$)	$= \{1, 3, 6\}$	←
DFAedge($\{1, 5\}, a$)	$=$ $\{1, 2, 6\}$	
$DFAedge(\{1,5\},b)$	= {1, 6}	
DFAedge($\{1, 2, 3\}, a$)	$= \{1, 2, 3, 4\}$	←
DFAedge($\{1, 2, 3\}, b$)	$= \{1, 3, 4\}$	←
$DFAedge({1,3},a)$	$=\frac{\{1,2,4\}}{}$	
$DFAedge({1,3},b)$	$=\frac{\{1,4\}}{\{1,4\}}$	
DFAedge({1, 2, 3, 4, 5}, a)	$=$ $\{1, 2, 3, 4, 5, 6\}$	
DFAedge({1, 2, 3, 4, 5}, b)	$=$ $\{1, 3, 4, 5, 6\}$	
DFAedge($\{1, 3, 4, 5\}$, a)	$=$ $\{1, 2, 4, 5, 6\}$	
DFAedge($\{1, 3, 4, 5\}, b$)	$= \{1, 4, 5, 6\}$	←
DFAedge($\{1, 2, 4, 5\}$, a)	$=$ $\{1, 2, 5, 6\}$	
DFAedge($\{1, 2, 4, 5\}, b$)	$= \{1, 3, 5, 6\}$	←
DFAedge($\{1, 4, 5\}, a$)	$=\frac{\{1,2,5,6\}}{}$	
DFAedge($\{1, 4, 5\}, b$)	$=$ $\{1, 5, 6\}$	
DFAedge({1, 2, 3, 4, 6}, a)	$=$ $\{1, 2, 3, 4, 5, 6\}$	
DFAedge({1, 2, 3, 4, 6}, b)	$=$ $\{1, 3, 4, 5\}$	
DFAedge($\{1, 3, 4, 6\}, a$)	$=$ $\{1, 2, 4, 5\}$	
DFAedge($\{1, 3, 4, 6\}, b$)	$= \{1, 4, 5\}$	←
DFAedge($\{1, 2, 4, 6\}, a$)	$=$ $\{1, 2, 3, 5\}$	
DFAedge($\{1, 2, 4, 6\}, b$)	$=\frac{\{1,3,5\}}{}$	
$DFAedge(\{1,4,6\},a)$	$=\frac{\{1,2,5\}}{}$	
$DFAedge(\{1,4,6\},b)$	$=\frac{\{1,5\}}{\{1,5\}}$	
DFAedge($\{1, 2, 3, 6\}, a$)	$=\frac{1,2,3,4}{1}$	
DFAedge($\{1, 2, 3, 6\}, b$)	$=\frac{1,3,4}{1}$	
DFAedge($\{1, 3, 6\}, a$)	$=\frac{\{1,2,4\}}{}$	
$DFAedge(\{1,3,6\},b)$	$=\frac{1,4}{1,4}$	
DFAedge($\{1, 2, 3, 4\}, a$)	$=$ $\{1, 2, 3, 4, 5\}$	
DFAedge($\{1, 2, 3, 4\}, b$)	$=\frac{\{1,3,4,5\}}{}$	
$DFAedge(\{1,3,4\},a)$	$=\frac{\{1,2,4,5\}}{}$	
$DFAedge(\{1,3,4\},b)$	$=\frac{\{1,4,5\}}{}$	
DFAedge($\{1, 4, 5, 6\}, a$)	$=\frac{\{1,2,5,6\}}{}$	
DFAedge($\{1, 4, 5, 6\}, b$)	$= \{1, 5, 6\}$	
DFAedge($\{1, 3, 5, 6\}, a$)	$=\frac{\{1,2,4,6\}}{}$	
DFAedge($\{1, 3, 5, 6\}, b$)	$=\frac{\{1,4,6\}}{}$	
$DFAedge(\{1,4,5\},a)$	$=$ $\{1, 2, 5, 6\}$	

DFAedge($\{1, 4, 5\}, b$) = $\frac{\{1, 5, 6\}}{\{1, 2, 6\}}$

问题的思考: 一种办法就是按部就班的将整个过程写出来,另外一种办法是实现该算法,让 计算机去做这件事情。

存在的问题:

- ✓ 多数同学感觉状态太多,没有能够给出完整的步骤和正确的结果。
- ✓ 没有对等价状态进行合并。
- ✔ 不过还是有个别同学做出来了

No. 2.6

等价的状态为1和5,2和8,4和6 转化好的图为

本题问题不大,出错不多,出错情况主要在有些同学1和5的等价状态没有给出,或者4和6的等价状态没有给出。