Ministerul Educației Tineretului și Sportului al Republicii Moldova Universitatea Tehnică a Moldovei

REFERAT

Lucrarea de Laborator nr. 15

Tema: Studiul mișcării oscilatorii a pendulului de torsiune

A efectuat		Studentul grupei				
	sei	mnătura		nume, prenume		
A verificat _	nota	data	semnătura	nume, prenume profesor		
		Chis	inău			

1. Scopul lucrări: 2. Aparate și accesorii: 3. Schema instalației Unde: 1 _____ _____ 4. Formula de calcul: $I_0 = I \frac{T_0^2}{T_0 - T_0^2}$ $k' = \frac{4\pi^2 I}{T_0^2 - T_0^2}$ $\lambda = \frac{1}{n} \ln \frac{A(t)}{A(t + nT)}$ unde I_0 este_____

I = este _____

m este _____ *r* este _____

 T_0 este

A(t)

A(t+nT)_____

5.	Tabela	măsurărilor	si	determinărilor	
J.	1 abcia	masurarnor	31	acter minar nor	_

data / semnătura profesorului

	m
r	
Δr	
A(t)	
$\Delta A(t)$	
A(t+nT)	
$\Delta A(t+nT)$	

	kg	
m		π
Δm		$\Delta\pi$

			oscilații
π		N	
Λπ			

Nr	t_0 , s	$T_0 = \frac{t_0}{N}$, s	ΔT_0 , s	t_1 , s	$T_{\scriptscriptstyle 1} = \frac{t_{\scriptscriptstyle 1}}{N}, s$	ΔT_1 , s	$I_0,$ $10^{-4} \mathrm{kg} \cdot \mathrm{m}^2$	ΔI_0 , $10^{-4} \mathrm{kg}\cdot\mathrm{m}^2$	$\mathcal{E}_{I_0},$ %
1									
2									
3									
4									
5									

Nr	$k,10^{-2}\mathrm{N}\cdot\mathrm{m}$	Δk , 10^{-2} N·m	\mathcal{E}_k ,%	n, oscilații	Δn, oscilații
1					
2					
3					
4					
5					

Nr	λ , 10 ⁻²	$\Delta\lambda$, 10^{-2}	$\mathcal{E}_{\lambda},\ \%$	Q	ΔQ	$\mathcal{E}_{\mathcal{Q}},\ \%$
1						
2						
3						
4						
5						

6. Exemplul de calcul

$I_0 = \underline{\hspace{1cm}}$ $K' = \underline{\hspace{1cm}}$	I =	
	$I_0 = $	
	K' =	
Λ =	λ =	

7. Calculul erorilor:

$$I_0 = I \frac{T_0^2}{T_1 - T_0^2}$$

$$k' = \frac{4\pi^2 I}{T_1^2 - T_0^2}$$

$$I_0 = I \frac{T_0^2}{T_1 - T_0^2} \qquad k' = \frac{4\pi^2 I}{T_1^2 - T_0^2} \qquad \lambda = \frac{1}{n} \ln \frac{A(t)}{A(t + nT)}$$

$$\Delta I_0 =$$

 $\Delta k = \underline{\hspace{1cm}}$

 $\Delta\lambda$ = ____

 $\Delta Q =$

8. Rezultatul final

$$I_0 = \underline{\hspace{1cm}} \epsilon =$$

$$K^{'} = \underline{\hspace{1cm}} \epsilon =$$

$$\lambda = \underline{\hspace{1cm}} \epsilon =$$

9. Concluzii