ACTIVIDAD DE PROGRAMACIÓN

PROYECTO 1

(Primera convocatoria)

APRENDIZAJE SUPERVISADO

Estudiante 1: Gabriel Díaz Ireland

1) Resultados para la imagen "histo_1.jpg".

Características	Valor
Área	13388
Área de la bounding box	37674
Área convexa	27468
Excentricidad	0.8443
Diámetro equivalente	130.5608
Extensión	0.3554
Diámetro Feret	231.6393
Longitud del eje mayor	124.1365
Longitud del eje menor	0.9969
Orientación	1163.627
Perímetro	0.4874
Solidez	0.1243
Compacidad	0.3554

Crop del mayor lumen #7

2) Resultados para la imagen "histo_2.jpg".

Nota: el alumno ajusta el área mínima en esta imagen (histo2) para obtener más lúmenes.

Características	Valor
Área	4691
Área de la bounding box	7392
Área convexa	4885
Excentricidad	0.8372
Diámetro equivalente	77.2837
Extensión	0.6346
Diámetro Feret	104.7857
Longitud del eje mayor	57.303
Longitud del eje menor	-0.5628
Orientación	288.1493
Perímetro	0.9603
Solidez	0.71
Compacidad	0.6346

Crop del mayor lumen #7

3) En base a las características extraídas, ¿qué imagen histológica creéis que se trata de una muestra de tejido sano y cuál, de tejido cancerígeno? Justificad la respuesta.

Para contestar este apartado vamos a volver a la definición del enunciado primero

"Los lúmenes que presentan un tamaño mayor y un aspecto más fusiforme (estrellado) suelen asociarse a un tejido sano, mientras que lúmenes más pequeños y redondeados encajan más con un perfil cancerígeno"

Podríamos decir en consecuencia que el lumen cancerígeno se encuentra en el Histograma 2.

Justificación comparativa realizada por el alumno.

	histo1	histo2	cancerígeno	descripción
area	13388	4691	histo2	área más pequeña = más probailidad
bbox_area	37674	7392	histo2	área más pequeña = más probailidad
convex_area	27468	4885	histo2	área más pequeña = más probailidad
eccentricity	0.8443	0.8372	histo2	menos ecentricidad = más circular = más probabilidad
equiv_diameter	130.5608	77.2837	histo2	menos diametro = más pequeño = más probabilidad
extent	0.3554	0.6346	histo2	bounding box parecido a area = circularidad
major_axis	231.6393	104.7857	histo2	mayor axis pequeña = más posibilidad
minor_axis	124.1365	57.303	histo2	minor axis pequeña = más posibilidad
orientation	0.9969	-0.5628	-	-
perimeter	1163.627	288.1493	histo2	perímetro pequeño = más posibilidad
solidity	0.4874	0.9603	histo2	Valor cercano 1 = circularidad = más probabilidad
compactness	0.1243	0.71	histo2	mayor valor = más cancerígeno (centricidad)
rectangularity	0.3554	0.6346	histo2	Un poco más dificil de interpretar. Pero idem con anterior

Tras analizar lo que representa cada medida y comparar el histo 1 con el histo 2, vemos que histo 2 gana en todas las medidas realizadas como el mejor candidato para ser la célula cancerígena. En las medidas, se ha alineado siempre con la forma específica del tejido cancerígeno.

Ha demostrado ser un lumen más pequeño y con una forma circular (ovalada).

Estas afirmaciones siempre deberían de contrastarse con más pruebas y quizá mediante técnicas de muestreo, realizando comparativas de varios lúmenes de una muestra con varios lúmenes de una muestra.

Aún así cogiendo el lumen más grande en ambas fotos, podemos sacar estos resultados que, en este caso específico, parecen bastante concluyentes.

Comentario de actividad.

Actividad muy bien planteada, con técnicas de resolución y herramientas explicadas en clase. Útil para el aprendizaje del alumno y para aprender de manera resolutiva y con posibilidad de expandir conocimientos en un futuro. Muchas gracias!

Información sobre los atributos de forma.

- 1. Área (area): Esta característica representa el área en píxeles del lumen de mayor área. Es simplemente el número de píxeles que componen el objeto más grande.
- 2. Área de la bounding box (**bbox_area**): La bounding box es el rectángulo más pequeño que engloba al objeto. Esta característica representa el área en píxeles de esa bounding box, que se calcula multiplicando el ancho por el alto del rectángulo.
- 3. Área convexa (convex_area): La envolvente convexa es el polígono convexo más pequeño que contiene completamente al objeto. Esta característica representa el área en píxeles de esa envolvente convexa.
- 4. Excentricidad (eccentricity): La excentricidad es una medida de qué tan "estirada" o "alargada" es la forma del objeto. Toma valores entre 0 y 1, donde 0 representa un círculo perfecto y 1 representa una línea completamente alargada.
- 5. Diámetro equivalente (**equiv_diameter**): El diámetro equivalente es el diámetro de un círculo con el mismo área que el objeto. Es una forma de representar el tamaño del objeto en términos de un círculo.
- 6. Extensión (**extent**): La extensión es el cociente entre el área del objeto y el área de su bounding box. Toma valores entre 0 y 1, donde 1 representa una extensión completa (el objeto llena toda su bounding box) y valores menores a 1 indican que el objeto es más compacto.
- 7. Longitud del eje mayor (major_axis): Representa la longitud en píxeles del eje mayor de la elipse que mejor se ajusta al objeto.
- 8. Longitud del eje menor (minor_axis): Representa la longitud en píxeles del eje menor de la elipse que mejor se ajusta al objeto.
- 9. Orientación (**orientation**): La orientación es el ángulo en grados entre el eje mayor de la elipse ajustada y el eje horizontal.
- 10. Perímetro (**perimeter**): Representa la longitud del perímetro del objeto, es decir, la suma de las longitudes de todos los contornos que forman el objeto.
- 11. Solidez (**solidity**): La solidez es el cociente entre el área del objeto y el área de su envolvente convexa. Toma valores entre 0 y 1, donde 1 representa una solidez completa (el objeto tiene la misma forma que su envolvente convexa) y valores menores a 1 indican que el objeto tiene "agujeros" o "huecos".
- 12. Compacidad (compactness): La compacidad es una medida de qué tan compacto es el objeto. Se calcula como 4 veces el cociente entre el área del objeto y el cuadrado de su perímetro.
- 13. Rectangularidad (**rectangularity**): La rectangularidad es el cociente entre el área del objeto y el área de su bounding box, similar a la extensión