OMM500N - Assignment 1 – Problem 1 Upgrading a Fleet of School Buses

Part One. Background

St.Louis city wants to upgrade their school bus with some constraints, and we're gonna maximize the result under this circumanstance.

Part Two. Problem Statement

0) Assumptions

One driver per car -> maximum 450 drivers -> 450 cars best use of the allocation' -> maximize seating capacity with new type buses

1) Variables

Xa – new type A's amount

Xc – new type C's amount

Xold – old buses

2) Objective Function

Max 50*Xc + 25*Xa + 0*Xold

3) Constriants

Money: 70000*Xc + 50000*Xa <= 10 millions

AFE: (8*Xc + 10*Xa + 5*Xold) >= 6*(Xc+Xa+Xold)

Driver amounts: Xa + Xc + Xold <= 450

Old buses amount: Xold <= 400

Total seating capacity: 50*Xc + 25*Xa + 50*Xold >= 20000

Non-negativity

4) Solver:

Linear or Nonlinear solver can both complete the work.

Part Three. Result and Recommendation

1) Result

1	Upgrading Buses					
2						
3	PARAMETERS					
4			Туре С	Туре А	Old bus	
5		Purchase Cost	70,000	50,000	0	
6		MPG	8	10	5	
7		Seating Capacity	50	25	50	
8						
9	DECISION VARIABLES					
10			ТуреС	Type A	old bus	
11		Purchase Amounts[cars]	143	0	257	
12						
	OBJECTIVE					
14		Seating capacity by new buses	7,142.857143	maximize		
15						
16						
	CONSTRAINTS					
18			LHS		RHS	
19		Driver Amounts	400	<=	450	
20		Total Seating Capacity	20,000	>=	20,000	
21		money	10,000,000	<=	10,000,000	
22		AFE(with computation transform)	2,429	>=	2,400	
23		Old Bus amount	257	<=	400	
24		Non-negativity				

Buying 143 new type C, and retain 257 old buses, this can provide 7142 seats under upgraded buses and satisfying all constraints.

2) Recommendation:

Budget is not enough for all students to have themselves in new buses.

Under this circumstance, new Type C bus is much preferred than new Type A bus.