(b)
$$5B1.1C_{16}$$

$$= 010110110001.00011100$$

$$= 2661.070_8$$

(c)
$$O_{16} = 0000_2 = 004$$
 $S_{16} = 1000_3 = 204$ $I_{16} = 0001_2 = 014$ $S_{16} = 1001_2 = 214$ $S_{16} = 0010_2 = 024$ $S_{16} = 1010_2 = 224$ $S_{16} = 0011_2 = 034$ $S_{16} = 1010_2 = 234$ $S_{16} = 0101_2 = 104$ $S_{16} = 1000_2 = 104$ $S_{16} = 1001_2 = 114$ $S_{16} = 1101_2 = 314$ $S_{16} = 0110_2 = 124$ $S_{16} = 1110_2 = 324$ $S_{16} = 0111_2 = 134$ $S_{16} = 1111_2 = 334$

(d) DEC.A₁₆ =
$$D \times 16^2 + E \times 16^1 + C \times 16^0 + A \times 16^{-1}$$

= $3328 + 224 + 12 + 0.625$
= 3564.625_{10}

1.5 (a) 1111 + 1010 1111 -1010 101	10010 + 1101 1010011 - 11101 11001		100100 + 10110
1111 1111 10010110		-	100/00 × 101/0 100/00 100/00 100/00
1.7 (a) $(21)_{10} + (11)_{10}$ $= (010(01)_{2} + (11)_{10}$ $= (010(01)_{2} + (11)_{10}$		2'S 010101 +001011 100000 La overflow	1'5 0 0 0 +00 0 1 100000 La overflow
	100000)	110010 + 100000 1)010010 4 overflow	
(c) $(-25)_{10} + (18)_{10}$ $\frac{2'5}{2} = (100111)_2 + (000)_2$	10010)2	100111	100110 + 010010

	14	3	2	1
0	0	b	0	0
1	0	D	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0
5	1	0	0	1
6	1	0	1	0
ŋ	1	1	0	0
8	1	(0	1
9	1	1	1	0
30				

$$A = (10/0/0)_2 = (-21)_{10}$$

$$B = (011101)_2 = (29)_{10}$$
 $B = (1000/0)_2 = (-29)_{10}$

$$_{3}$$
 $-B \stackrel{1}{=} (1000/0)_{2} = (-29)_{10}$

L) over flow, since (-)+(-) => (+)

(b)
$$A = (101010)_2 = (-22)_{10}$$

$$B \stackrel{2's}{=} (011101)_2 = (29)_{10} \quad j \quad -B \stackrel{2's}{=} (100011)_2 = (-29)_{10}$$

L) overflow, since (-) + (-) → (+)

1.44

1. Two positive numbers $\stackrel{(1)}{=}$ $0 \times ... \times + 0 \times$

(Carry in = 1) & (corry out = 0)

2. Two negative numbers => $O(1 \times ... \times + 1 \times ... \times = 1 \times ... \times$ (Carry in = 1) = (carry out = 1)

9 (x ... x + (x ... x = 0 x ... x (carry (x = 0) + (carry out = 1) =) ever flow

3. A positive and a negative numbers

(carry in =0) = (carry out =0)

: 當 carry in + carry out 時、舞產生 overflow.