L.EIC

Algoritmos e Estruturas de Dados 2023/2024

AP Rocha, P Diniz A Costa, B Leite, F Ramos, J Pires, PH Diniz, V Silva

Tree

- Tree: set of nodes and set of edges connecting pairs of nodes
 - each node may have 0 or more successors (children)
 - each node has exactly one predecessor (parent)
 - except the starting node, called the root
 - There is a unique path from the root to each node; the path length for a node is the number of edges to traverse

Tree terminology

- Tree branches
 - links from nodes to its children: tree of n nodes has n-1 branches (max)
- Depth of a node
 - Length of path from root to node
 - depth of root is 0
 - depth of a node = 1 + depth of its parent
- Height of a node
 - Length of path from node to its deepest leaf (descendent)
 - height of a leaf is 0
 - height of a node = 1 + height of children of greatest height
 - Height of the tree: height of the root
- If there is a path from node u to node v
 - u is ancestor of v
 - v is descendent of u
- Size of a node: number of descendents

Tree terminology

A binary tree is a tree where each node has at most two children

- Some properties:
 - A non-empty binary tree with depth h has:
 - at least h + 1 nodes
 - at most $2^{h+1} 1$ nodes
 - The depth of a binary tree with n elements (n > 0) is:
 - at least $log_2 n$
 - at most n-1
 - The average depth of a tree of n nodes is \sqrt{n}

Tree traversals

- To traverse the binary tree is to visit each node in the binary tree exactly once
- There are four different ways to traverse the binary tree, the first three are defined recursively:
- Preorder: visit the root first, then the left subtree, and finally the right subtree
- Inorder: visit the left subtree first, then the root, and finally the right subtree
- Postorder: visit the left subtree first, then the right subtree, and finally the root
- By level: nodes are visited by increasing level (depth), and within each level, from left to right

Tree traversal - example

Preorder	+ * a b – sen f * h j
Inorder	a * b + f sen - h * j
Postorder	a b * f sen h j * - +
Level	+ * - a b sen * f h j

L.EIC

• Binary Tree

- most usual operations:
 - create an empty tree
 - determine if the tree is empty
 - create a tree from two subtrees
 - remove the elements of the tree (clear the tree)
 - traversal the tree
 - print the tree

Node of the binary tree


```
template <class T> class BTNode {
   T element;
   BTNode<T>* left, * right;
  //...
public:
   BTNode(const T& el, BTNode<T>* l = 0, BTNode<T>* r = 0)
      : element(el), left(l), right(r) {}
};
```

Binary tree


```
template <class T> class BinaryTree {
   BTNode<T>* root;
   // ...
public:
   BinaryTree() { root = 0; }
   BinaryTree(const BinaryTree & t);
   BinaryTree(const T& el);
   BinaryTree(const T& el, const BinaryTree<T>& l,
                                  const BinaryTree<T>& r);
   ~BinaryTree { makeEmpty(); }
   bool isEmpty() const;
   T& getRoot() const;
   void makeEmpty();
   void output(ostream& out) const;
};
```

root

Binary tree: traversal

```
template <class T>
void BinaryTree<T>::output(ostream& out) const {
   output (out, root);
template <class T>
void BinaryTree<T>::output(ostream& out,const BTNode<T>* n) const {
   if (n) {
      out << n->element << '';
                                                          Tree traversal?
      output(out, n->left);
      output(out, n->right);
```

Binary Tree: iterators

What about *iterators?*

Implementation:

- Constructor has the tree to iterate as a parameter; iterator is referencing the first element.
- methods:
 - void advance() //go to the next element
 - T& retrieve() //return the element referenced by the iterator
 - bool isAtEnd() //check if have reached the end
- An implementation for each possible tree traversal:
 - <u>preorder</u>, <u>BTItrPre</u> (let's see this implementation)
 - inorder, BTItrIn
 - postorder, BTItrPos
 - <u>by level</u>, <u>BTItrLevel</u>

Preorder iterator: a possible implementation


```
template <class T> class BTItrPre {
   stack<BTNode<T>*> itrStack;
public:
   BTItrPre(const BinaryTree<T>& t);
   void advance();
   T& retrieve();
   bool isAtEnd() const;
};
template <class T>
BTItrPre<T>::BItrPre(const BinaryTree<T>& t) {
   if (!t.isEmpty())
      itrStack.push(t.root);
```

Preorder iterator: a possible implementation

```
template <class T>
                                               itrStack
BTItrPre<T>::BItrPre(const BinaryTree<T>& t)
   if ( !t.isEmpty() )
      itrStack.push(t.root);
template <class T>
bool BTItrPre<T>::isAtEnd() const {
   return itrStack.empty();
template <class T>
T& BTItrPre<T>::retrieve() {
   return itrStack.top()->element;
```

Preorder iterator: a possible implementation

```
template <class T>
void BTItrPre<T>::advance() {
   BTNode<T>* actual = itrStack.top();
   BTNode<T>* next = actual->left;
   if (next)
      itrStack.push(next);
   else {
      while ( ! itrStack.empty() ) {
         actual = itrStack.top();
         itrStack.pop();
         next = actual->right;
         if (next) {
            itrStack.push(next);
            break;
```


Binary Search Tree (BST)

• Binary Search Tree

Binary tree, without duplicates. For every node (X):

- The values of all the items in its left subtree are smaller than the item in X
- The values of all the items in its right subtree are larger than the item in X

- In *Linear Data Structures* with sorted elements:
 - Search for elements can be achieved in $O(\log n)$
 - ...but not <u>insertion</u> or <u>deletion</u> of elements

- In a *Binary Tree* structure:
 - Logarithmic running time can be guaranteed for insertion and deletion operations (if balanced tree)
 - A Binary Search Tree:
 - Supports more operations compared to the basic Binary Tree structure, namely: <u>search</u>, <u>insertion</u> and <u>deletion</u>
 - Elements in nodes must be comparable (*Comparable*)

Search

Takes advantage of the order property of the tree to select a search path.
 A subtree is ignored with each comparison.
 can be O(log n)

Maximum and Minimum

- When looking for the <u>maximum</u>: consistently choose the right subtree.
- When looking for the <u>minimum</u>: consistently choose the left subtree.

Insertion

 Follows the logic behind the search operation. The new node is inserted where the search fails.

can be $O(\log n)$

see animation in VisuAlgo

Deletion

- <u>Leaf Node</u>: delete the node
- Node with only one child: child node replaces the parent node
- Node with two children: element is replaced by the smallest element in the right subtree (or the largest element in the left subtree); its node has at most one child node that replaces the parent node.

can be $O(\log n)$

see animation in VisuAlgo

• Declaration of the **BST** class (private section)

```
template <class Comparable> class BST {
     BinaryNode<Comparable> *root;
     const Comparable ITEM NOT FOUND;
     const Comparable & elementAt(BinaryNode<Comparable> *t) const;
     bool insert(const Comparable & x, BinaryNode<Comparable>* & t);
     bool remove(const Comparable & x, BinaryNode<Comparable>* & t);
     BinaryNode<Comparable> * findMin(BinaryNode<Comparable>*t) const;
     BinaryNode<Comparable> * findMax(BinaryNode<Comparable>*t) const;
     BinaryNode<Comparable> * find( const Comparable & x,
                                             BinaryNode<Comparable>*t) const;
     void makeEmpty( BinaryNode<Comparable>* & t );
     void printTree( BinaryNode<Comparable>*t ) const;
     BinaryNode<Comparable>* copySubTree(BinaryNode<Comparable>* t);
    // continue...
```

• Declaration of the **BST** class (public section)

```
construtor
public:
   explicit BST(const Comparable& notFound)
   BST (const BST & t);
   ~BST();
   const Comparable& findMin() const;
   const Comparable& findMax() const;
   const Comparable& find (const Comparable& x) const;
   bool isEmpty() const;
   void printTree() const;
   void makeEmpty();
   bool insert (const Comparable & x);
   bool remove (const Comparable & x);
   const BST& operator = (const BST& rhs);
};
```

• BST Class: constructor and destructor

• BST Class: find

```
template <class Comparable>
const Comparable & BST<Comparable>::find(const Comparable& x) const {
  return elementAt( find(x, root) );
template <class Comparable>
const Comparable&
BST<Comparable>::elementAt(BinaryNode<Comparable>* t) const{
   if ( t == NULL ) return ITEM NOT FOUND;
      else return t->element;
```

Binary Search Tree: Implementation

• BST Class: find

```
template <class Comparable>
BinaryNode<Comparable> * BST<Comparable>::find(const Comparable& x,
                               BinaryNode<Comparable>* t) const
   if (t == NULL)
      return NULL;
   else if (x < t->element)
      return find(x, t->left);
   else if (t->element < x)
      return find(x, t->right);
   else return t;
```

Note: we only need the < operator

Binary Search Tree: Implementation

• BST Class: insert


```
template <class Comparable>
bool BST<Comparable>::insert(const Comparable& x) {
   return insert (x, root);
template <class Comparable>
bool BST<Comparable>::insert(const Comparable& x,
                                  BinaryNode<Comparable>* & t) {
   if ( t == NULL ) {
      t = new BinaryNode<Comparable>(x, NULL, NULL);
      return true;
   else if (x < t->element)
      return insert(x, t->left);
   else if (t->element < x)
      return insert(x, t->right);
   else
      return false; // duplicate; do nothing
```

BST Class: remove

```
template <class Comparable>
bool BST<Comparable>:: remove (const Comparable & x,
                              BinaryNode<Comparable> * & t) {
   if (t == NULL)
      return false; // item not found; do nothing
   if (x < t->element)
      return remove(x, t->left);
   else if (t->element < x)
      return remove(x, t->right);
   else if (t->left != NULL && t->right != NULL) {
      t->element = findMin(t->right)->element;
      return remove (t->element, t->right);
   else {
      BinaryNode<Comparable>* oldNode = t;
      t = (t-)left != NULL) ? t-)left : t-)right;
      delete oldNode;
      return true;
```

Class set (STL)

Class **set** in STL:

template < Key, Compare > class set

- *Key*: type of the item in the set
- Compare: determines the ordering of the keys; by default is the operator <
- distinct, ordered data stored in a *balanced** binary tree
- implemented as a *red black* * tree
- inorder iterator

en.cppreference.com/w/cpp/container/set

* we will see this later

Class set (STL)

Some methods of *set* (STL)

- iterator **begin**()
- iterator **end**()
- size_type size() const
- bool **empty**() const
- void clear()
- std::pair<iterator,bool> insert(const value_type& value)
- iterator **erase**(const_iterator position);
- iterator **find**(const Key& key)
- ...

Counting word occurrences

We want to write a program that reads a text file and outputs an ordered listing of the words it contains, as well as their number of occurrences.

- Store the words and associated counters in a binary search tree.
- Use alphabetical order to compare nodes.

WordFreq class: representation of the words and respective frequencies

```
class WordFreq {
    string word;
    int frequency;
public:
    WordFreq();
    WordFreq(string w);
    bool operator < (const WordFreq & w) const;
    bool operator == (const WordFreq & w) const;
    void incFrequency();
    friend ostream& operator <<(ostream& out,const WordFreq& w);
};</pre>
```

wordFreq.cpp

```
WordFreq::WordFreq(): word(""), frequency(0) {};
WordFreq::WordFreq(string w): word(w), frequency(1) {};
bool WordFreq::operator < (const WordFreq & w) const {</pre>
    return word < w.word;
bool WordFreq::operator == (const WordFreq & w) const {
    return word == w.word;
void WordFreq::incFrequency() {
    frequency ++;
```

```
int main() {
  set<WordFreq> words;
  string word1 = getWord();
  while ( word1 != "" ) {
     set<WordFreq>::iterator it = words.find(WordFreq(word1));
     if ( it == words.end() )
        words.insert (WordFreq (word1));
     else {
        WordFreq found = *it;
        found.incFrequency();
        words.erase(it);
        words.insert(found);
     word1 = getWord();
  set<WordFreq>::iterator it = words.begin();
  while ( it!=words.end() ) {
     cout << *it;
     it++;
```

In a library, information about existing books is stored in a binary search tree (books) sorted by author and, for the same author, by title.

```
class Book {
   string title;
   string author;
public:
   // ...
};
class Library {
  set < Book > books;
public:
  Library();
  // ...
};
```

• Implement in the **Library** class the member function:

```
void addBooks(const vector<Book> & books1)
```

This function inserts into the BST books the books included in the books I vector.

```
void Library::addBooks(const vector<Book>& books1) {
   for (int i=0; i< books1.size(); i++)
      books.insert(books[i]);
}</pre>
```

```
bool Book::operator < (const Book& 11) const {
   if (author == 11.author)
      return (title < 11.title);
   else
      return (author < 11.author);
}</pre>
```

Binary Search Tree: example 2

• Implement in the **Library** class the member function:

```
vector<string> getTitles(string author1, int & nVisits)
```

The function returns a vector with the <u>titles</u>, in alphabetical order, of all the books of author *author1*. And returns in *nVisits* the number of nodes that were visited in this search.

```
vector<string> Library::getTitles(string author1, int& nVisits) {
    vector<string> vres;
    nVisits=0;
    set < Book > :: iterator it = books.begin();
    for(; it!=books.end(); it++) {
        nVisits++;
        if (it->getAuthor() > author1)
          break;
        if (it->getAuthor() == author1)
            vres.push back(it->getTitle());
    return vres;
```

Binary Search Tree: example 2

• Implement in the **Library** class the member function:

```
string removeBook (string author1, string title1)
```

The function removes the book of author *author1* and title *title1* from BST books and returns the string "*removed*".

If the book does not exist, it returns the title of the first book (alphabetically) of that author.

If no book of that author exists, it returns the string "author nonexistent".

Binary Search Tree: example 2

```
string Library::removeBook(string author1, string title1) {
  Book 11(title1, author1);
   set<Book>::iterator it = books.find(l1);
   if (it!=books.end()) {
      books.erase(it);
      return "removed";
   set<Book>::iterator it = books.begin();
         for (;it!=books.end(); it++) {
      if (it->getAuthor() == author1)
         return it->getTitle();
      if (it->getAuthor() > author1)
            return "author nonexistent";
   return "author nonexistent";
```

Balanced Binary Search Trees

Binary Search Tree

• Binary Search Tree

- tree can be unbalanced
- insertion, removal and searching operations can be O(n) in the worst case, when tree degenerates into list

Balanced tree: for each node, the heights of the left and right subtrees differ by at most one unit

• Balanced Binary Search Tree

- avoid degenerate cases
- guarantees $O(\log n)$ for insertion, removal and searching

unbalanced BST

balanced BST

AVL Tree

- AVL Tree
 - Balanced binary search tree

- <u>Insertion</u> and <u>removal</u> identical to BST
 - But the tree might become unbalanced

Apply *rotations* along the path on the unbalanced nodes in order to keep it balanced

• <u>Searching</u> identical to BST

Insertion

- After an insertion, only nodes on the path from the root to have the balance condition changed.
- If so, it is necessary to rebalance
 - rebalance the deepest node where unbalance arises
 - the whole tree is balanced
- Let K be the node to be rebalanced due to insertion in:
 - 1. left tree of the left child of K
 - 2. right tree of the left child of K
 - 3. left tree of the right child of K
 - 4. right tree of the right child of K

^{*}cases 1 and 4 are symmetrical; * cases 2 and 3 are symmetrical;

• **Single rotation** (for cases 1 and 4)

- before rotation:
 - k2 is the deepest node where balance fails
 - left subtree is 2 levels below the right
- after rotation:
 - k1 and k2 now have subtrees of the same height
 - problem is solved with a single operation

see animation in VisuAlgo

• **Double rotation** (for cases 2 and 3)

- before rotation:
 - one (and only one) of sub-trees B or C is 2 levels apart from D
- double rotation can be seen as a sequence of 2 single rotations
 - rotation between the node's child and grandchild
 - rotation between the node and its new child

AVL: a possible implementation

AVL Tree **Node**

AVL Tree

```
template <class Comparabe>
class AVLTree {
    AVLNode<Comparable> *root;
    //...
};
```


Insertion in a AVL tree has complexity $O(\log n)$:

- $O(\log n)$ to get the insertion position
- O(1) to eventually rebalance the tree

Exercise: build the AVL tree that results from inserting the following sequence of values:

1, 2, 3, 4, 5, 6, 7, 15, 14, 13, 12, 11, 10, 9, 8

AVL: removal

Removal

Same idea as insertion:

- find the node to remove
- remove the node (same process as in BST)
- apply rotations, as already described, along the path on all unbalanced nodes until reach the root

Removal in a AVL tree has complexity $O(\log n)$:

- $O(\log n)$ to find the node to be deleted
- O(1) to eventually rebalance the tree

AVL: removal

Red-Black Trees

Red-Black tree

- another type of balanced binary search tree
- operations have complexity $O(\log n)$
- *Properties* of a Red-Black tree
 - each node is colored as red or black
 - the root is black
 - if a node is red, its children are black
 - any path from a node to an empty subtree contains the same number of black nodes
 - height of a Red Black tree is at most = $2 \times \log(n + 1)$
 - ensures that search operation is of logarithmic order.

51

Class set (STL)

Class **set** in STL:

template < Key, Compare > class set

- *Key*: type of the item in the set
- *Compare*: determines the ordering of the keys; by default is the operator <
- implemented as a red-black tree