mBSW Model Data for the Rheology Textbook

Atharva Modi asm18[at]illinois.edu

Created: January 31, 2025

Introduction

This Jupyter Notebook (mBSW_data_generation.ipynb) computes the relaxation modulus and dynamic moduli from a given set of mBSW parameters and saves it to .csv files in the output_data/ folder.

Summary

• Data used here from the Hatzikiriakos et al. (2000) is for "PB-linear", a well-entangled linear 1,4 polybutadiene:

Hatzikiriakos, Savvas & Kapnistos, Michael & Chevillard, Cyril & Winter, H. & Roovers, Jacques. (2000). Relaxation time spectra of star polymers. Rheologica Acta. 39. 38-43. 10.1007/s003970050005

• The inferred parameters from the paper corresponding to our standard mBSW form are:

$$H(\tau) = e^{-\left(\frac{\tau}{\tau_{\text{max}}}\right)^{\beta}} \left[H_e \left(\frac{\tau}{\tau_{\text{max}}}\right)^{n_e} + H_g \left(\frac{\tau}{\tau_e}\right)^{-n_g} \right]$$

Variable	Value
H_g (Pa)	4.9×10^5
n_g	0.67
τ_e (s)	0.86
H_e (Pa)	1.86×10^{5}
n_e	0.30
$\tau_{\rm max}$ (s)	9.0×10^5
β	2.0

• A free parameter not mentioned is the minimum cutoff relaxation time (τ_{\min}) . We used it to match the glassy modulus, giving us:

$$-~\tau_{\rm min}=1.8\times10^{-5}~{\rm s}$$

- Calculated rubbery modulus, $G_{\text{rubbery}} = 1.42 \text{ MPa}$

Additional analysis performed for improved model fitting and uncertainty quantification. Details in additional_analysis/.

Contributing

Feel free to modify the notebook for different datasets or additional processing steps. Please contact asm[eighteen][at]illinois.edu for any feedback.

License

This project is open-source and licensed under the MIT License.