Photospheric Current Spikes as Possible Predictors of Flares

Michael L. Goodman - NASA Marshall Space Flight Center/Jacobs ESSSA (michael.l.goodman@nasa.gov)

Chiman Kwan, Bulent Ayhan & Eric L. Shang - Applied Research, LLC 2016 Conference on Partially Ionized Plasmas in Astrophysics: Aug.29 - Sept.2

Objective:

- Are there enhancements in the photospheric J in NLRs of ARs that are useful for forecasting M/X flares?
- HMI: Full disk, continuous time coverage. 1'', 12 minute resolution \Rightarrow granulation dynamics is being resolved.
- Can HMI be used to detect hitherto undetected changes in J distribution? Approach:
- Use HMI time series of photospheric B(x, y, t) to determine an analytic expression for B(x, y, z, t). Compute J, A, E in each pixel for 14 ARs. 7 with M/X flares. 7 with B, C, or no flares.
- Compute time series of $Q = \eta J^2$ (+ other quantities). Are there correlations with flare occurrence times?

Magnetic Field

$$\mathbf{B}(x, y, z, t) = e^{-z/L(x, y, t)} \sum_{n=0}^{N_x} \sum_{m=0}^{N_y} \mathbf{b}_{nm}(t) e^{2\pi i \left(\frac{nx}{L_x} + \frac{my}{L_y}\right)}.$$
 (1)

 $L(x,y,t) = L_0(x,y,t) + zL_1(x,y,t)/L_0$, determined by the HMI data and the $\nabla \cdot \mathbf{B} = 0$ condition. No force-free assumption.

Vector Potential, Electric Field, Ohm's Law

Solve $\mathbf{A} = \nabla \times \mathbf{B}, \nabla \cdot \mathbf{A} = 0$ analytically. Then

$$\mathbf{E} = \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} - \nabla \phi \sim \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}.$$
 (2)

Ohm's law: $\mathbf{E} + (\mathbf{V} \times \mathbf{B})/c = \eta \mathbf{J}$.

Solution Steps:

- 1. Filter out the 6, 12, and 24 hour periods in the time series of B_{HMI} for each pixel. Corrects for spurious Doppler periods induced by SDO motion.
- 2. Set $\mathbf{B}(x, y, 0, t) = \mathbf{B}_{HMI}(x, y, t)$. Use FFT to solve for the $\mathbf{b}_{nm}(t)$.
- 3. Set $\nabla \cdot \mathbf{B}(x, y, z, t) = 0$. Expand in z, solve for L(x, y, t).
- 4. Determine NLR(t) of each AR using Schrijver's algorithm (2007, ApJ).
- 5. At each time, compute the pixel and NLR integrated values of $Q, \mathbf{J} \cdot \mathbf{E}$, and $R_{CM} \equiv \mathbf{V} \cdot (\mathbf{J} \times \mathbf{B})/c$. $\mathbf{J} \cdot \mathbf{E} = Q + R_{CM}$ (EM, CM KE, and thermal energy balance). Convection driven heating: $Q \sim -R_{CM}$ (i.e. $|\mathbf{J} \cdot \mathbf{E}|/Q \ll 1$).
- 6. Compute power spectra, spectrograms, and cumulative distribution functions (CDFs) of time series of Q. Look for non-random structure.

Figure 1: NLR integrated Q for 2 of 7 SF ARs.

Figure 2: NLR integrated Q for 2 of 7 SF ARs.

Figure 3: NLR integrated Q for 2 of 7 SF ARs.

Figure 4: NLR integrated Q for the 7th SF AR, and R_{CM} for 1 of 7 SF ARs. Stars, Squares, Diamonds label values of RCM, Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted with RCM when the integrated $Q \geq 10^{22}$ ergs-cm⁻¹-s⁻¹.

Figure 5: NLR integrated R_{CM} for 2 of 7 SF ARs. Stars, Squares, Diamonds label values of RCM, Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted with RCM when the integrated $Q \geq 10^{22}$ ergs-cm⁻¹-s⁻¹.

Figure 6: NLR integrated R_{CM} for 2 of 7 SF ARs. Stars, Squares, Diamonds label values of RCM, Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted with RCM when the integrated $Q \geq 10^{22}$ ergs-cm⁻¹-s⁻¹.

Figure 7: NLR integrated R_{CM} for 2 of 7 SF ARs. Stars, Squares, Diamonds label values of R_{CM} , Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted when the integral of $Q \geq 10^{22}(10^{21})$ ergs-cm⁻¹-s⁻¹ for the left(right) plot.

Figure 8: NLR integrated R_{CM} for 2 of 7 C ARs. Stars, Squares, Diamonds label values of R_{CM} , Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted when the integral of $Q \geq 10^{20}$ and 10^{22} ergs-cm⁻¹-s⁻¹ for ARs 1665 and 1640.

Figure 9: NLR integrated R_{CM} for 2 of 7 C ARs. Stars, Squares, Diamonds label values of R_{CM}, Q , and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted when the integral of $Q \geq 10^{20}$ ergs-cm⁻¹-s⁻¹.

Figure 10: NLR integrated R_{CM} for 2 of 7 C ARs. Stars, Squares, Diamonds label values of R_{CM} , Q, and $\mathbf{J} \cdot \mathbf{E}$. Blue/Red indicates positive/negative values. Q and $\mathbf{J} \cdot \mathbf{E}$ are plotted when the integral of $Q \geq 10^{20}$ and 10^{21} ergs-cm⁻¹-s⁻¹ for ARs 2075 and 2045.

Non-Random Structure in Time Series of Q:

- Power Spectra: Sharp decreases in power at certain frequencies. In some cases by orders of magnitude.
- Spectrograms: Periodic intensity variations with respect to frequency at certain times, by orders of magnitude.
- Cumulative Distribution Functions: Scale invariant behavior of Q. $N(Q) = AQ^{-S}(S>0)$ above threshold, and over a range of several orders of magnitude. Transition to SOC state above Q threshold?
- In almost all cases, clear that Q is not noise.

Figure 11: Power Spectrum and Spectrogram for SF AR 1158. (1 hr \rightarrow 0.28 mHz)

Figure 12: Power Spectrum and Spectrogram for SF AR 1166

Figure 13: Power Spectrum and Spectrogram for SF AR 1261

Figure 14: Power Spectrum and Spectrogram for SF AR 1158

Figure 15: Power Spectrum and Spectrogram for SF AR 1429/1430

Figure 16: Power Spectrum and Spectrogram for SF AR 1890

Figure 17: Power Spectrum and Spectrogram for SF AR 2017

Figure 18: Power Spectrum and Spectrogram for C AR 1640

Figure 19: Power Spectrum and Spectrogram for SF AR 1665

Figure 20: Power Spectrum and Spectrogram for C AR 1704 $\,$

Figure 21: Power Spectrum and Spectrogram for C AR 1765

Figure 22: Power Spectrum and Spectrogram for C AR 2045.

Figure 23: CDFs for SF ARs 1158 and 1166.

Figure 24: CDFs for SF ARs 1261 and 1283.

Figure 25: CDFs for SF ARs 1429/1430 (coupled) and 1890.

Figure 26: CDFs for SF ARs 2017 and C AR 1640.

Figure 27: CDFs for C ARs 1665 and 1704.

Figure 28: CDFs for C ARs 1765 and 2045.

Figure 29: CDFs for CARs 2075 and 2122.

Conclusions

- There are strong, bursty heating events on granulation scales in the NLR's ARs.
- The largest events are convection energy driven, not EM energy driven. Highly non-force-free events $(J_{\perp} \gg J_{\parallel})$.
- It is plausible that these events are correlated with M/X flares, preceding them by several hours to several days.
- Sample size of 14 ARs is too small to conclude that this apparent correlation is more than plausible.
- Analysis of more and longer time series is needed for a definitive statistical test.