

Land cover and land accounting in Vanuatu – Day 3 Components 1 (cont.) & 2 (cont.)

Blanca Perez-Lapena, PhD April 2, 2025

Pipeline for Agile Estimation of Land Accounts (PAELA)

	Dense_Forest	Open_Forest	Forest_plantations	Mangroves	Agriculture	Coconut_Plantation	Grassland	Built-up_Infrastr	Water_body	Shrubs	Bareland	Total
Opening area	274316.9	13137.4	10666.8	752.5	375.6	60.0	1453.4	37753.4	16096.2	9720.2	20416.3	387577.9
Expansions	11301.9	24893.4	5267.3	652.0	173.9	69.1	865.7	12010.2	11082.0	10793.9	7446.6	86209.8
Regressions	18946.6	3582.7	4458.4	430.2	284.3	31.6	663.1	33856.4	9637.2	3494.5	9476.7	86209.8
Net change	7644.7	-21310.7	-808.9	-221.8	110.4	-37.5	-202.6	21846.1	-1444.8	-7299.3	1724.4	0.0
Closing area	266672.3	34448.1	11475.7	974.4	265.2	97.5	1656.1	15907.3	17541.0	17019.6	18691.9	387577.9

Component 1: ROIs dataset (2020)

Component 2: Satellite data extraction & RF model training & prediction

- Input:
 - ROIs dataset
 - Imagery stack

Dates over 2020

🔾 temp_data_extrValues_with_geom_crs — Features Total: 15992, Filtered: 15992, Selected: 0														-	- 🗆	×					
	4_red	3_green 🏝	2_blue	8_nir	11_swir16	y_ndvi	y_mndwi	y_savi	y_bsi	y_vcp	dry_ndvi	dry_mndwi	dry_bsi	wet_ndvi	wet_mndwi	wet_bsi	x	У	class	crs	
14794	0.1167	0.1167	0.106975	0.18215	0.172275	0.23614226	-0.19678457	0.132287	0.004127456	0.43905744	0.24043368	-0.2080089	0.010320284	0.23197994	-0.18466981	-0.000162	852310	8039930	8	PROJCS["W	/GS 8
14795	0.0638	0.1167333	0.0903	0.0215	0.01715	-0.46666667	0.65	-0.09877532	-0.12123552	0.4103406	-0.49532825	0.7433173	-0.14008896	-0.37430167	0.53408533	-0.100034	860070	8058130	13	PROJCS["W	/GS 8
14796	0.0591	0.11675	0.0691	0.3946	0.2181	0.7773961	-0.44584545	0.46949944	-0.21757376	0.6717113	0.82653946	-0.56631577	-0.19196732	0.7274434	-0.37289366	-0.225295	857510	8046550	12	PROJCS["W	/GS 8
14797	0.06125	0.11675	0.086625	0.5512	0.274525	0.828825	-0.34714222	0.58305115	-0.33746243	0.8222809	0.8384536	-0.3813377	-0.35988587	0.82873374	-0.3474419	-0.3354453	859110	8044710	12	PROJCS["W	/GS 8
14798	0.0835	0.1168	0.062	0.4758	0.2819	0.6784893	-0.43841186	0.5279837	-0.1966805	0.47529885	0.72944427	-0.44099936	-0.23728976	0.66805154	-0.43388134	-0.127860	876330	8039010	5	PROJCS["W	/GS 8
14799	0.0626625	0.11680417	0.08258	0.6329	0.308875	0.7818221	-0.38225034	0.63739717	-0.3114242	0.8377942	0.75006974	-0.38535354	-0.29319838	0.83616024	-0.4408558	-0.3239137	859430	8043470	12	PROJCS["W	/GS 8
1480	0.0707	0.11685	0.061	0.5224	0.27423334	0.78253394	-0.42746565	0.6116445	-0.28085408	0.7875149	0.60217714	-0.46908233	-0.15895848	0.8066787	-0.41067916	-0.3212104	862030	8026730		PROJCS["W	/GS 8
14801	0.0518	0.11685	0.05996	0.7092	0.3794	0.8271537	-0.45852605	0.7463383	-0.28492936	0.82205796	0.88317955	-0.55572784	-0.2924507	0.7948541	-0.4144751	-0.283105	857510	8046470	12	PROJCS["W	/GS 8

Q	data_extrVal_	geom_crs_20	020_vROIs2 -	— Features	Total: 15992,	Filtered: 1599	2, Selected: 0													_		×
/			₽ ₽		7 🏗 🌺 🞾																	
	4_red	3_green	2_blue	8_nir	11_swir16	y_ndvi	y_mndwi	y_savi	y_bsi	y_vcp	dry_ndvi	dry_mndwi	dry_bsi	wet_ndvi	wet_mndwi	wet_bsi	X	у	class eo	met	crs	_
384	0.052375	0.08785	0.045508	0.44935	0.25903332	0.7736924	-0.49190855	0.57504684	-0.22361831	0.7371176	0.7446177	-0.47717187	-0.20206845	0.82191277	-0.5058284	-0.2823981	878570.0	8039450.0	5 PC	PROJC	S["WGS 84 /	/ UTM
385	0.05005	0.0824	0.0459	0.437875	0.25715	0.7706664	-0.51540637	0.5552202	-0.20754814	0.7153296	0.7053502	-0.47242838	-0.1828272	0.8293326	-0.5276966	-0.2674832	878590.0	8039450.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
386	0.0521	0.07735	0.0422	0.4205	0.2505	0.7714611	-0.54022855	0.5383003	-0.20665957	0.7132552	0.69241893	-0.45474246	-0.1696722	0.84	-0.5550779	-0.27637497	878610.0	8039450.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
387	0.0504	0.087	0.0472	0.4531	0.27445	0.7835421	-0.5245554	0.58787954	-0.22974211	0.76854247	0.7269698	-0.5067155	-0.19049355	0.79876035	-0.5249879	-0.2743818	878590.0	8039430.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
388	0.05265	0.0894	0.0509625	0.4446	0.2729	0.7743145	-0.49979544	0.56318027	-0.22630087	0.7231481	0.69840574	-0.4438586	-0.16827111	0.8080007	-0.5253132	-0.25451207	878610.0	8039430.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
389	0.05175	0.09295	0.0477	0.463	0.24665	0.80073386	-0.44857118	0.5721927	-0.2814056	0.6972896	0.8213822	-0.4438743	-0.33303666	0.7890923	-0.45354357	-0.24045399	873870.0	8039270.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
390	0.0547	0.09525	0.0502	0.45825	0.24235	0.79595315	-0.43586686	0.5662876	-0.27857447	0.77987957	0.80338985	-0.4404332	-0.32804894	0.7662971	-0.43443263	-0.27284968	873890.0	8039270.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
391	0.05215	0.1012	0.0492	0.45545	0.23105	0.79209846	-0.41121092	0.5713765	-0.2815159	0.7917523	0.7936852	-0.39421088	-0.33142948	0.7920899	-0.41897964	-0.2615526	873910.0	8039270.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
392	0.0518	0.1039	0.0481	0.43395	0.23715	0.7937078	-0.4020597	0.5819202	-0.25014156	0.7896532	0.8040865	-0.39466476	-0.36365464	0.75364643	-0.40957466	-0.23687384	873930.0	8039270.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
393	0.04995	0.0984	0.0479	0.4373	0.23815	0.7989785	-0.4205038	0.558335	-0.27341297	0.801412	0.8023135	-0.41732296	-0.36972666	0.79564756	-0.42433658	-0.22237581	873950.0	8039270.0	5 PC	I PROJC	S["WGS 84 /	/ UTM
						1371	$\alpha \alpha \omega$	HAIL	א פוווו	Wall	Call	111										

(2020)

Component 2: Satellite data extraction & RF model training & prediction

- Input:
 - ROIs dataset
 - Imagery stack

- Output:
 - Trained Random Forest model (e.g., Opening year)

Component 2: Satellite data extraction & RF model training & prediction

• Input:

- Trained Random Forest model
- Imagery stack (e.g., Opening year)

• Output:

 Land cover classified raster map (e.g., Opening year)

Component 2: Output

LC prediction (2020)

Yesterday - Component 1 & 2 (2020)

- You used the already provided ROIs dataset for 2020 (vROIs2)
- You ran Component 2 (Colab) to create the Land cover classified raster for 2020

Today - Component 1 (2023)

Today - Component 1: From vROIs2 (2020) to vROIs1 (2023)

Today – Component 1: Output ROIs (2023)

Today - Component 2 (2023)

Today – Your turn

- 1) Component 1: Create the ROIs dataset for 2023
- Go through Step 1.2 to copy the files:
 - FROM 'Z_Visit_Vanuatu_April2025\Component_1\output\2020\vROIs2'
 - > TO 'D:\Z_Visit_Vanuatu_April2025\Component_1\output\2023\vROIs1'
- Do not edit the kml in Google Earth Pro
- Go through Step 1.3
- Go through Step 1.4
 (use the provided stack in Component 1 for 2023 to delineate clouds)
- 2) Run Component 2 to obtain the land cover classified map for 2023 (Step 2.1, Step 2.2, Step 2.3)

