Sections 6, 7

Today:

- ▶ §6: Counterexamples
 - Disprove statements that are false by providing a counterexample
- ▶ §7: Boolean Algebra
 - Define Boolean algebra and its basic operations
 - Show two statements are logically equivalent
 - Determine if Boolean expressions are tautologies, contingencies or contradictions

Counterexamples for If-Then Statements

To show $(A) \Longrightarrow (B)$ is false:

- Find an instance where *A* is true, but *B* is false.
- ▶ Just one counterexample disproves a statement!

Note: Proof by example is NOT valid.

Example

Let n be an integer. If
$$5 \mid (n^2 - 1)$$
 then $5 \mid (n - 1)$.

 $n = 1$:

 $5 \mid 0 =$)

 $5 \mid 0 =$)

 $5 \mid 0 =$
 $5 \mid$

Discrete Mathematics - Sections 6, 7

Counterexamples for If and Only If Statements

To show $A \iff B$ is false: $\left(A \iff B \text{ means } A \implies B \text{ and } B \implies A\right)$

► Find an instance where *A* is true, but *B* is false.

Find an instance where *B* is true, but *A* is false.

. One direction is enough

. One direction might be true while the other is false (that stu makes ACDB false)

. Clearly state which direction you're disproving

Exercises

The following statements are false. Explain why.

- ① If a, b, and c are positive integers with a|(bc), then a|b or a|c.
- ② a,b, and c are positive integers. $a^{(b^c)} = (a^b)^c$.
- p is prime if and only if $2^p 1$ is also prime.

Algebra v.s. Boolean Algebra

	Algebra	Boolean Algebra
Expression	3x-2y	$\neg x \lor y$
Variables	Numbers	True or False
Basic	Addition +	And \land
Operations	Multiplication ×	And \land Or \lor Not \neg
		Not ¬
		Implication -> } shortuits
		Equivalence \leftrightarrow
Properties	Commutative	Commutative
	Associative	Associative
	Distributive	Distributive

$$\frac{(y+2) = (x \circ y) \cdot z}{x \cdot (y+2) = x \cdot y + x \cdot z} = \frac{x \cdot (y \circ z)}{-(x \cdot y) \cdot (x \cdot z)}$$

Truth Table for Ba	asic ()pera	tions `	land Ind	luee	Ineg	\righ	tarrow	
Let x and y b	e Bo	oolea	A			neg/	implies	s iff	"<=>"
	x	у	$x \triangle y$	$x \bigcirc y$	Gk	$x \rightarrow y$	$x \leftrightarrow y$		3
	T	T	T	T	F	T	T		
	T	F	F	T	F	F	F		
	F	T	F	T	T	T			
	F	F	F	F	T	T	T		

Remark: Order of operation: \neg first, then read left to right. Expressions inside parentheses must be evaluated first.

Examples

 \bullet ¬ False \vee False \wedge True =

Suppose that x is True, y =is False. Evaluate

$$\neg(x \land y) \lor ((\neg x) \land y)$$

(Poll Everywhere)

Definition

When two Boolean expressions have the same output value for all possible values of their variables, we call these expressions **logically equivalent**. **Example:** Show that $\neg(x \land y)$ and $(\neg x) \lor (\neg y)$ are logically equivalent.

х	у	$x \wedge y$	$\neg(x \land y)$	$\neg x$	$\neg y$	$(\neg x) \lor (\neg y)$
T	T					
T	F					
F	T					
F	F					

Prove logical equivalence > Method 1: TRUTH TABLE

Example

Show that $x \land (y \lor z) = (x \land y) \lor (x \land z)$.

x	у	z	$y \lor z$	$x \wedge (y \vee z)$	$x \wedge y$	$x \wedge z$	$(x \wedge y) \vee (x \wedge z)$
T	T	T					
T	T	F					
T	F	Т					
T	F	F					
F	T	Т					
F	T	F					
F	F	T					
F	F	F					

Proposition (Proposition 7.3)

The expressions $x \to y$ and $(\neg x) \lor y$ are logically equivalent.

Important Properties

pro-tip: prove these via touth table

[Theorem 7.2]

- ► Commutative: $x \land y = y \land x$ and $x \lor y = y \lor x$
- * Associative: $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ and $(x \vee y) \vee z = x \vee (y \vee z)$
 - ▶ **Identity:** $x \land TRUE = x$ and $x \lor FALSE = x$
- *** Double negative:** $\neg(\neg x) = x$
 - ▶ **Idempotency:** $x \land x = x$ and $x \lor x = x$
- **Distributive:** $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
 - $\blacktriangleright x \land (\neg x) = FALSE \text{ and } x \lor (\neg x) = TRUE$

DeMorgan's Laws:
$$\neg(x \land y) = (\neg x) \bigvee (\neg y)$$
 and $\neg(x \bigvee y) = (\neg x) \land (\neg y)$

Contriduction

tantology

Prove logical equivalence > Method 2: PROPERTIES

More Examples

1. Show that $(x \land y) \lor (x \land \neg y) = x$.

$$(xny) \vee (xny) = xn(y \vee (yy))$$
 // distributive
= $xn(True)$ // tautology
- $xn(True)$ // identity

2. Show that $x \to y = (\neg y) \to (\neg x)$.

$$x \rightarrow y = (\neg x) \vee y \qquad \text{//prop. 7.3}$$

$$= y \vee (\neg x) // \text{commutative prop}$$

$$= \neg (\neg y) \vee (\neg x) // \text{double neg.}$$

$$= (\neg y) \rightarrow (\neg x) // \text{prop 7.3}$$

(Poll everywhere)

Exercises

Prove that $x \leftrightarrow y$ is logically equivalent to $(x \to y) \land ((\neg x) \to (\neg y))$

Tautologies and Contradictions

► A **tautology** is a logical statement that is always true, for all truth values of its variables.

► A **contradiction** is a logical statement that is always false, for all truth values of its variables.

► A **contingency** is a logical statement that can be either true or false depending on the truth values of its variables.

Classify the Boolean expression

Touth table	$(x \lor y) \land (x \lor \neg y) \land (\neg x).$
	XV9 (XV79) Result T T F Constradiction F F T F T F T T T T T T T
10000	False (All)
$(\chi \vee y) \wedge (\chi \vee \gamma y)$	$ \Lambda(\neg x) = \chi v (y \wedge 7y) \Lambda(\neg x) $ (au stributive) $ = \chi v \text{ False } \Lambda(\neg x) $ (contoub ctom)
	identity) = x \(\gamma\) = False

Examples of Classification

- 1. $(\neg x) \lor y$
- 2. $x \wedge (\neg x)$

(Poll Everywhere)

Exercises

Without using a truth table, show that the following expression is a tautology

$$((x \to y) \land (x \to \neg y)) \to \neg x$$

Summary of 6

- ► We cannot prove statements using examples.
- ► However, if there is one instance where the statement is false, we can *disproof* with an example.

Summary of 7

- ▶ We use truth tables to show two Boolean expressions are *logically equivalent*.
- ► There are three classifications of Boolean expressions: *tautology* (all TRUE), *contradiction* (all FALSE), and *contingency* (some TRUE and some FALSE).