Examen Master 1 Informatique UE HAI718I Probabilités, statistiques Vendredi 14 janvier 2022

1h00 - Documents de cours, TD et TP autorisés - (10 pts)

A) Histogramme, densité de probabilité et fonction de répartition (5 pts)

Soit l'image I ci-dessous composée de pixels codés sur 32 niveaux de gris, de taille 10x10 pixels.

- 1) Tracer l'histogramme de l'image I. En déduire la valeur maximale (en niveaux de gris) des 2 modes de cette image.
- 2) A partir de l'histogramme de l'image I, en déduire les probabilités de chaque niveau de gris αi pour i ∈ [0, 31]. Tracer la densité de probabilité (ddp) de l'image I.
- 3) A partir de la ddp de I, calculer et tracer la fonction de répartition de l'image I.

								-	
29	29	16	19	16	17	27	25	25	29
29	27	26	20	20	17	20	26	26	27
27	26	20	18	18	19	18	20	27	29
28	22	21	19	19	19	18	18	20	27
22	20	19	18	19	19	19	19	20	20
22	20	19	19	20	19	19	18	18	17
28	21	20	18	19	19	20	18	21	27
28	26	20	19	19	19	20	21	27	28
28	28	26	21	21	21	27	28	28	29
30	28	27	27	23	28	27	25	30	30

	32. 34								
	100			ted as a		Salva -			
-									
		Annual Control							
		1							
		100							
		15.7%							
							15.00		
			-		-				
				36					
						1	1		
				1					
	-		-	-		_		-	
				17.75			1	1	
			1						
						1	1		
						1			
						1			
								0	
	1000	e Table		9 7			191 191 69		
		1							

Image I

Image I seuillée

B) Mélange de 2 Gaussiennes (5 pts)

- 1) A partir de l'histogramme obtenu à la question A.1, proposer une valeur de seuil T afin de séparer les pixels de l'image I en 2 classes suivant les 2 modes. Représenter l'image I seuillée : en noir les pixels avec un niveau de gris inférieur au seuil T (mode 1) et en blanc les pixels ayant un niveau de gris supérieur ou égal au seuil T (mode 2).
- 2) Pour chacun des modes, calculer la valeur moyenne et l'écart type.
- 3) Par rapport à la proportion du nombre de pixels par mode (x1 et x2), proposer un modèle de mélange de 2 Gaussiennes - paramètres à introduire μ1, σ1, μ2, σ2 et x1 (sachant que x2=1-x1)

HAI718I Probabilités, statistiques Examen final - Janvier 2022

Durée de l'examen : 1h. Documents de cours, TD et TP ainsi que tables statistiques autorisés

Exercice 1 (6p.) Calcul de probabilités.

- 1. On suppose que $X \sim \mathcal{N}(\mu = 2, \sigma^2 = 2^2)$ (Loi normale $\mathcal{N}(\mu, \sigma^2)$).
 - Calculer les probabilités suivantes et donner les commandes R correspondantes ; dessiner l'aire sous la courbe de la loi normale qui correspond à chaque probabilité : P(X < 3); P(X > 2); P(1 < X < 3).
 - Trouver la valeur de x telle que : P(X < x) = 0.95; P(X > x) = 0.4; P(2-x < X < 2+x) = 0.9. Donner les commandes R correspondantes.
- 2. Soit X_1, \ldots, X_n n variables aléatoires. On note $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ la moyenne empirique.
 - On est dans un cas de variables normales $\mathcal{N}(\mu, \sigma^2)$ et indépendantes. Quelle est la loi de \bar{X} ?
 - Au cas de n variables indépendantes de Bernoulli $\mathcal{B}e(p)$, que vaut \bar{X} ? Quelle est sa loi et peut-on l'approximer par une loi normale? Justifiez.
- 3. Melody Nelson lance 150 fois une pièce de monnaie non-pipée et compte le nombre de fois où elle obtient "pile". Quelles sont les probabilités :
 - qu'elle obtienne un nombre de "pile" supérieur à 50 et inférieur à 105?
 - qu'elle obtienne moins de 40 fois "face"?

Exercice 2 (4p.) On effectue un test d'une hypothèse H_0 contre une hypothèse H_1 au niveau 5% à l'aide de l'observation d'une variable aléatoire X.

1. Sur la figure ci-dessous, on a représenté la densité de la loi de X sous H_0 à droite et la densité de la loi de X sous H_1 à gauche. Quel est la forme de la zone de rejet de H_0 ?

2. Dans quelle figure parmi les figures ci-dessous l'aire de la zone coloriée correspond à (i) l'erreur de première espèce du test, (ii) l'erreur de deuxième espèce du test, (iii) la puissance du test?

3. La valeur observée \bar{x} de la variable X correspond à un niveau de signification du test (appelé aussi la p-valeur) de 1%. Quelle décision vous prenez pour le test de niveau 5% : rejet de H_0 ou non?