Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 2

1. Since $\{a_n\}$ is bounded, let $|a_n| \leq M$ for all n. Therefore, $|s_n| \leq M$. Now, to prove $\{s_n\}$ is a monotone let $a_n \leq a_{n+1}$ for all n. Then

$$s_{n+1} - s_n = \frac{1}{n+1} \sum_{i=1}^n a_i + \frac{1}{n+1} a_{n+1} - \frac{1}{n} \sum_{i=1}^n a_i$$

$$= \frac{1}{n+1} a_{n+1} - \frac{1}{n(n+1)} \sum_{i=1}^n a_i$$

$$\geq \frac{1}{n+1} a_{n+1} - \frac{1}{n(n+1)} \cdot n a_{n+1}$$

$$= 0.$$

 $\Rightarrow s_{n+1} \ge s_n$ for all n.

2. Use induction to show that the sequence $\{s_n\}$ is bounded below by $\frac{1}{2}$. Then note that if $s_n > \frac{1}{2}$, we have

$$s_{n+1} - s_n = -\frac{2}{3}s_n + \frac{1}{3} < 0.$$

Hence $\{s_n\}$ is nonincreasing.

3. $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) = \frac{1}{2} \left(\sqrt{a_n} - \frac{\sqrt{2}}{\sqrt{a_n}} \right)^2 + \sqrt{2} \Rightarrow a_{n+1} \geq \sqrt{2}, \ \forall \ n, \text{ i.e. } \{a_n\} \text{ is bounded below.}$ Also $2a_{n+1} - a_n = \frac{2}{a_n} \Rightarrow 2a_{n+1} - 2a_n = \frac{2}{a_n} - a_n = \frac{2 - a_n^2}{a_n} \leq 0$ $\Rightarrow a_{n+1} \leq a_n$. Hence $\{a_n\}$ is nonincreasing. The limit of the sequence $\{a_n\}$ is $\sqrt{2}$.

- 4. (a) Note that the given sequence takes the value $\frac{\sqrt{3}}{2}$, $\frac{-\sqrt{3}}{2}$, 0 infinitely times. Therefore $\limsup a_n = \frac{\sqrt{3}}{2}$, $\liminf a_n = -\frac{\sqrt{3}}{2}$.
 - (b) $\limsup a_n = +\infty$, $\liminf a_n = 0$.
 - (c) $\limsup a_n = 0$, $\liminf a_n = 0$.
- 5. $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x| < 1$, then $\lim_{n \to \infty} a_n = 0$.
- 6. Notice that $n^3+n+1\leq n^3+n+i\leq n^3+n+n$ for all $1\leq i\leq n$. This implies that $\frac{n^2}{n^3+2n}\leq \frac{n^2}{n^3+n+i}\leq \frac{n^2}{n^3+n+1}$ for all $1\leq i\leq n$. Thus by taking the summation from i=1 to n, we get

$$\frac{n \cdot n^2}{n^3 + 2n} \le x_n \le \frac{n \cdot n^2}{n^3 + n + 1}$$

and hence $x_n \to 1$.