AI505 Optimization

Optimization in Machine Learning

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Simplified Notation

Let ξ be a random seed or the realization of a single (or a set of) sample (x, y). For a given (w, ξ) let $f(w; \xi)$ be the composition of the loss function L and the prediction function h

Then:

$$R(\mathbf{w}) = \mathbb{E}_{\xi}[f(\mathbf{w}; \xi)]$$
 Expected Risk

Let $\{\xi_{[i]}\}_{i=1}^n$ be realizations of ξ corresponding to $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and $f_i(\mathbf{w}) \stackrel{\text{def}}{=} f(\mathbf{w}; \xi_{[i]})$ Then:

$$R_n(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w})$$
 Empirical Risk

Stochastic vs Batch Optimization Methods

Reduction to minimizing R_n , with $\mathbf{w}_0 \in \mathbb{R}^d$ given (deterministic problem) **Stochastic Approach**: Stochastic Gradient (Robbins and Monro, 1951)

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \alpha_k \nabla f_{i_k}(\mathbf{w}_k)$$

 i_k is chosen randomly from $\{1,\ldots,n\}, \alpha_k > 0$.

- very cheap iteration only on one sample.
- $\{w_k\}$ is a stochastic process determined by the random sequence $\{i_k\}$.
- the direction might not always be a descent but if it is a descent direction in **expectation**, then the sequence $\{w_k\}$ can be guided toward a minimizer of R_n .

Batch Approach: batch gradient, steepest descent, full gradient method:

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \alpha_k \nabla R_n(\mathbf{w}_k) = \mathbf{w}_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(\mathbf{w}_k)$$

- more expensive
- can use all deterministic gradient-based optimization methods
- the sum structure opens up to parallelization

Analogues in simulation: stochastic approximation (SA) and sample average approximation (SAA)

Stochastic Gradient

- In case of redundancy using all the sample data in every iteration is inefficient
- Comparison of the performance of a batch L-BFGS method on number of evaluations of a sample gradient $\nabla f_{i_k}(\mathbf{w}_k)$.
- Each set of *n* consecutive accesses is called an **epoch**.
- The batch method performs only one step per epoch while SG performs *n* steps per epoch.

Let $\{x_k\}$ be a sequence in \mathbb{R}^n that converges to x^* .

The convergence is said to be Q-linear (quotient-linear) if there is a constant $r \in (0,1)$ such that

$$\frac{\|\mathbf{x}_{k+1} - \mathbf{x}^*\|}{\|\mathbf{x}_k - \mathbf{x}^*\|} \le r$$
 for all k sufficiently large

ie, the distance to the solution x^* decreases at each iteration by at least a constant factor bounded away from 1 (ie, < 1).

Example:

sequence $\{1 + (0.5)^k\}$ converges Q-linearly to 1, with rate r = 0.5.

The convergence is said to be Q-superlinear if

$$\lim_{k\to\infty}\frac{\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^*\|}{\|\boldsymbol{x}_k-\boldsymbol{x}^*\|}=0$$

Example: the sequence $\{1 + k^{-k}\}$ converges superlinearly to 1.

An even more rapid convergence rate:

The convergence is said to be Q-quadratic if

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} \le M$$
 for all k sufficiently large

where M is a positive constant, not necessarily less than 1.

Example: the sequence $\{1 + (0.5)^{2^k}\}$.

The values of r and M depend not only on the algorithm but also on the properties of the particular problem.

Regardless of these values a quadratically convergent sequence will always eventually converge faster than a linearly convergent sequence.

Superlinear convergence (quadratic, cubic, quartic, etc) is regarded as fast and desirable, while sublinear convergence is usually impractical.

- Quasi-Newton methods for unconstrained optimization typically converge Q-superlinearly
- Newton's method converges Q-quadratically under appropriate assumptions.
- Steepest descent algorithms converge only at a Q-linear rate, and when the problem is ill-conditioned the convergence constant r in is close to 1.

A slightly weaker form of convergence:

overall rate of decrease in the error, rather than the decrease over each individual step of the algorithm.

We say that convergence is R-linear (root-linear) if there is a sequence of nonnegative scalars $\{v_k\}$ such that

 $\|\mathbf{x}_k - \mathbf{x}^*\| \le \{v_k\}$ for all k, and $\{v_k\}$ converges Q-linearly to zero.

В

Theoretical Motivations

• a batch approach can minimize R_n at a fast rate; e.g., if R_n is strongly convex. A batch gradient method, then there exists a constant $\rho \in (0,1)$ such that, for all $k \in \mathbb{N}$, the training error follows linear convergence

$$R_n(\mathbf{w}_k) - R_n^* \leq \mathcal{O}(\rho^k),$$

• rate of convergence of a basic stochastic method is slower than for a batch gradient; e.g., if R_n is strictly convex and each i_k is drawn uniformly from $\{1, \ldots, n\}$, then for all $k \in \mathbb{N}$, SG satisfies the sublinear convergence property

$$\mathbb{E}[R_n(\mathbf{w}_k) - R_n^*] = \mathcal{O}(1/k).$$

neither the per-iteration cost nor the right-hand side depends on the sample set size n

• in a stochastic optimization setting, SG yields for the expected risk the same convergence rate once substituted $\nabla f_{i_k}(\mathbf{w}_k)$ replaced by $\nabla f(\mathbf{w}_k; \xi_k)$ with each ξ_k drawn independently according to the distribution P

$$\mathbb{E}[R(\mathbf{w}_k) - R^*] = \mathcal{O}(1/k).$$

If $n \gg k$ up to iteration k minimizing R_n same as minimizing R

Beyond SG: Noise Reduction and Second-Order Methods

- on horizontal axis methods that try to improve rate of convergence
- on vertical axis, methods that try to overcome non-linearity and ill-conditioning

Mini-batch Approach small subset of samples, call it $S_k \subseteq \{1, ..., n\}$, chosen randomly in each iteration:

$$oldsymbol{w}_{k+1} \leftarrow oldsymbol{w}_k - rac{lpha_k}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}}
abla f_i(oldsymbol{w}_k)$$

due to the reduced variance of the stochastic gradient estimates, the method is easier to tune in terms of choosing the stepsizes $\{\alpha_k\}$.

dynamic sample size and gradient aggregation methods, both of which aim to improve the rate of convergence from sublinear to linear

Outline

1. Analysis of SG

Theoretical Analysis — Preliminaries

convergence properties and worst-case iteration complexity bounds.

$$F(\mathbf{w}) = \begin{cases} R_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}) & \text{Empirical Risk} \\ R(\mathbf{w}) = \mathbb{E}_{\xi}[f(\mathbf{w}; \xi)] & \text{Expected Risk} \end{cases}$$

sampling uniformly with replacement from training set $\rightsquigarrow R_n$ sampling with $P(\xi)$ with replacement from training set $\rightsquigarrow R$.

```
Procedure SG(...);
Choose an initial iterate \mathbf{w}_0;
for k=0,1,\ldots do

Generate a realization of the random variable xi_k;
Compute a stochastic vector g(\mathbf{w}_k,\xi_k);
Choose a stepsize \alpha_k>0;
Set the new iterate as \mathbf{w}_{k+1}\leftarrow\mathbf{w}_k-\alpha_kg(\mathbf{w}_k,\xi_k);
```

Theoretical Analysis — Preliminaries

 ξ_k may represent a single sample or a mini-batch g may represent a stochastic gradient (biased estimator of $\nabla F(\mathbf{w}_k)$ or a stochastic Netwon or quasi-Newton direction).

$$g(\mathbf{w}_k, \xi_k) = \begin{cases} \nabla f(\mathbf{w}_k; \xi_k) \\ \frac{1}{n_k} \sum_{i=1}^{n_k} \nabla f(\mathbf{w}_k; \xi_{k,i}) \\ H_k \frac{1}{n_k} \sum_{i=1}^{n_k} \nabla f(\mathbf{w}_k; \xi_{k,i}) \end{cases}$$

 H_k a symmetric positive definite scaling matrix α_k fixed stepsize or diminishing stepsizes \mathbf{w}_k can have influence on the sample selection (active learning)

Convergence Analysis – Assumptions

- Assumption 4.1 Lipschitz-continuous objective gradients
- Assumption 4.3 First and second moment limits. The objective function and SG (Algorithm 4.1) satisfy the following:
 - objective function to be bounded below by a scalar F_{inf} over the region explored by the algorithm.
 - in expectation, the vector $-g(\mathbf{w}_k, \xi_k)$ is a direction of sufficient descent for F from \mathbf{w}_k with a norm comparable to the norm of the gradient
 - the variance of $g(\mathbf{w}_k, \xi_k)$ is restricted, but in a relatively minor manner.

$$Var_{\xi_k}[g(\mathbf{w}_k, \xi_k)] \le M + M_V \|\nabla F(\mathbf{w}_k)\|_2^2, \ M > 0, M_V > 0 \text{ for all } k \in \mathbb{N}$$

• Lemma: Markovian manner in the sense that \mathbf{w}_{k+1} is a random variable that depends only on the iterate \mathbf{w}_k , the seed ξ_k , and the stepsize α_k and not on any past iterates.

Convergence Analysis – Assumptions

• Assumption 4.5 Strong convexity. The objective function $F: \mathbb{R}^d \to \mathbb{R}$ is strongly convex in that there exists a constant c > 0 such that

$$F(\bar{\boldsymbol{w}}) \geq F(\boldsymbol{w}) + \nabla F(\boldsymbol{w})^T (\bar{\boldsymbol{w}} - \boldsymbol{w}) + \frac{1}{2}c \|\bar{\boldsymbol{w}} - \boldsymbol{w}\|_2^2$$
 for all $(\bar{\boldsymbol{w}}, \boldsymbol{w}) \in \mathbb{R}^d \times \mathbb{R}^d$

(grows at least quadratically, for univariate case: $f''(w) \ge c$, $c \ge 0$) Hence, F has a unique minimizer, denoted as $\mathbf{w}^* \in \mathbb{R}^d$ with $F^* \stackrel{def}{=} F(w^*)$.

Convergence Analysis – Results

- Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize).
- Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes) SG with diminishing step size converges in expectation.
 - role of strong convexity
 - role of initial point
 - trade-offs of mini batches
- Theorem 4.8 (Nonconvex Objective, Fixed Stepsize)
 - While one cannot bound the expected optimality gap as in the convex case, inequality (4.28b) bounds the average norm of the gradient of the objective function observed on {w_k} visited during the first K iterations.
 - classical result for the full gradient method applied to nonconvex functions, namely, that the sum
 of squared gradients remains finite, implying that

$$\{\|\nabla F(\mathbf{w}_k)\|_2\} \to 0.$$

- Theorem 4.9 (Nonconvex Objective, Diminishing Stepsizes)
 - for the SG method with diminishing stepsizes, the expected gradient norms cannot stay bounded away from zero
 - the weighted average norm of the squared gradients converges to zero even if the gradients are noisy, (i.e., if M > 0 in the Variance upper bounding assumption) one can still conclude that the expected gradient norms cannot asymptotically stay far from zero.

Computational Complexity Analysis

- consider a big data scenario with an infinite supply of training examples, but a limited
 computational time budget. what type of algorithm e.g., a simple SG or batch gradient
 method would provide the best guarantees in terms of achieving a low expected risk?
- $\mathbf{w}^* \in \operatorname{argmin} R(\mathbf{w})$; $\mathbf{w}_n \in \operatorname{argmin} R_n(\mathbf{w})$, $\tilde{\mathbf{w}}_n$ approximate empirical risk minimizer returned by a given optimization algorithm at \mathcal{T}_{max}
- The tradeoffs associated with this scenario can be formalized as choosing the family of prediction functions H, the number of examples n, and the optimization accuracy
 ^{def} ∈ E[R_n(w̃_n) − R_n(w_n)] in order to minimize the total error:

$$\underset{\mathcal{H}, n \in \mathbb{N}, \epsilon}{\text{minimize}} E[R(\tilde{\boldsymbol{w}}_n)] = \underbrace{R(\boldsymbol{w}^*)}_{\mathcal{E}_{app}(\mathcal{H})} + \underbrace{E[R(\boldsymbol{w}_n) - R(\boldsymbol{w}^*)]}_{\mathcal{E}_{est}(\mathcal{H}, n)} + \underbrace{E[R(\tilde{\boldsymbol{w}}_n) - R(\boldsymbol{w}_n)]}_{\mathcal{E}_{opt}(\mathcal{H}, n, \epsilon)}$$

subject to
$$\mathcal{T}(n, \epsilon) \leq \mathcal{T}_{max}$$

Computational Complexity Analysis

- SG, with its sublinear rate of convergence, is more efficient for large-scale learning than (full, batch) gradient-based methods that have a linear rate of convergence.
- reducing the optimization error $\mathcal{E}_{opt}(H, n, \epsilon)$ (evaluated with respect to R rather than R_n) one might need to make up for the additional computing time by: (i) reducing the sample size n, potentially increasing the estimation error $\mathcal{E}_{est}(H, n)$; or (ii) simplifying the function family \mathcal{H} , potentially increasing the approximation error $\mathcal{E}_{app}(\mathcal{H})$.

Computational Complexity Analysis

Keep fixed \mathcal{H} carrying out a worst-case analysis on the influence of the sample size n and optimization tolerance ϵ , which together only influence the estimation and optimization errors.

	Batch	Stochastic
$\mathcal{T}(n,\epsilon)$	$\sim n \log \left(rac{1}{\epsilon} ight)$	$rac{1}{\epsilon}$
\mathcal{E}^*	$\sim \frac{\log(\mathcal{T}_{\max})}{\mathcal{T}_{\max}} + \frac{1}{\mathcal{T}_{\max}}$	$rac{1}{\mathcal{T}_{ ext{max}}}$

A stochastic optimization algorithm performs better that batch stochastic in terms of expected error Large gap between asymptotical behavior and practical realities.

Analysis of SG

Remarks

- Fragility of the Asymptotic Performance of SG ok if objective function it includes a squared L₂-norm regularizer (related to constant c) but regularization parameter should be lowered when the number of samples increases.
- SG good for GPUs but ill-conditioning erodes efficiency of SG
- Distributed computing not working with basic SG because of too frequent updates of *w*, more promising with mini-batch.
- Alternatives with Faster Convergence: minimizing empirical risk R_n there is information from previous gradients.
 - gradient aggregation methods
 - dynamic sampling approach