Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 19.06.2009

Name:								
Vorname(n):								
Matrikelnummer:								Note:
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	10	10	10	10	40		
	erreichte Punkte							
							•	
D.L.								
${\bf Bitte}\;$								
tragen Sie N	Jame, Vorname und M	[atrike]	lnumme	er auf c	dem De	ckblatt	ein,	
rechnen Sie	die Aufgaben auf sepa	araten	Blätter	n, nich	t auf d	em Ang	gabeblatt,	
	e für eine neue Aufgal							
beginnen bie	Tur cine neue Turgar	<i>JC</i> 1111111	ici auci	i cilic i	icuc sc	100,		
geben Sie au	ıf jedem Blatt den Na	men so	owie die	e Matri	kelnum	mer an	1,	
begründen S	Sie Ihre Antworten aus	sführlic	h und					
kreuzen Sie	hier an, an welchem d	ler folge	enden '	Termine	e Sie ni	icht zu	r mündliche	en Prii-

Viel Erfolg!

□ Mo, 29.06.2009

fung antreten können \Box Fr, 26.06.2009

Abbildung 1: Mikroelektromechanischer Spiegel.

1. Abbildung 1 zeigt die Prinzipskizze eines mikroelektromechanischen Spiegels. Das drehbar gelagerte Spiegelelement (Trägheitsmoment I>0, Drehwinkel ϕ) ist über die masselosen Verbindungselemente (reibungsloses Linearlager, reibungsloses Drehgelenk, Anfangsabstand des Drehpunktes des Spiegels zum Drehgelenk $l_0>0$) mit einer verschiebbar gelagerten, masselosen Elektrode eines Plattenkondensators verbunden und über eine Drehfeder (linear, Federsteifigkeitskoeffizient k>0) und einen Drehdämpfer (linear, Dämpfungskoeffizient d>0) an das Gehäuse gekoppelt. Die zweite Elektrode des Kondensators ist fest am Gehäuse befestigt. Für die Kapazität des Kondensators gilt $C_c(x)=\epsilon \frac{A}{h_0+x}$ (Elektrodenfläche A>0, Elektrodenanfangsabstand $h_0>0$, Permittivität $\epsilon>0$) und die Kraft auf die bewegliche Elektrode lautet $F_c=\frac{1}{2}\frac{\partial C_c(x)}{\partial x}u_c^2$. Der Kondensator wird durch den Strom i eines in Serie mit einer idealen Spannungsquelle (Spannung U) geschalteten Widerstandes R>0 geladen.

Hinweis: Es können folgende trigonometrische Vereinfachungen getroffen werden: $\sin(\phi) \sim \phi$ und $\cos(\phi) \sim 1$.

a) Bestimmen Sie das zugehörige mathematische Modell in der Form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$ und $y = h(\mathbf{x}, u)$ mit der Eingangsgröße u = U, geeigneten Zustandsgrößen \mathbf{x} und dem Drehwinkel ϕ des Spiegels als Ausgangsgröße.

Hinweis: Verwenden Sie den Winkel ϕ als eine der Zustandsgrößen!

- b) Berechnen sie die Ruhelagen \mathbf{x}_R des Systems für die Eingangsgröße $u_R=0.$
- c) Linearisieren Sie das mathematische Modell um die in b) berechnete Ruhelage und bringen Sie das linearisierte System in die Form $\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$, $\Delta y = \mathbf{c}^T \Delta \mathbf{x} + d\Delta u$.
- d) Ist das linearisierte System aus c) für die gegebenen Parameterannahmen stabil? Begründen Sie Ihre Aussage.

2. Bearbeiten Sie die folgenden Aufgaben.

Hinweis: Alle Aufgaben (a,b,c,d,e) können unabhängig voneinander gelöst werden.

a) Welche Bedingung muss ein System der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

 $\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u}, t)$

erfüllen, damit es zeitinvariant ist?

- b) i) Definieren Sie den Begriff der BIBO-Stabilität eines linearen zeitkontinuierlichen zeitinvarianten Systems und geben Sie zwei Kriterien zur Überprüfung der BIBO-Stabilität an.
 - ii) Unter welchen Bedingungen ist der Regelkreis nach Abbildung 2 intern stabil?

Abbildung 2: Regelkreis.

- c) Geben Sie drei verschiedene Möglichkeiten zur Überprüfung der vollständigen Beobachtbarkeit eines linearen zeitkontinuierlichen zeitinvarianten Systems an.
- d) Definieren Sie die Begriffe Erreichbarkeit, Steuerbarkeit und Beobachtbarkeit eines linearen zeitkontinuierlichen zeitinvarianten Systems.
- e) Welche Bedingungen muss ein lineares zeitinvariantes System der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$y = \mathbf{c}^{\mathrm{T}}\mathbf{x} + du$$

erfüllen, damit man von der BIBO-Stabilität der zugehörigen Übertragungsfunktion G(s) auf die asymptotische Stabilität des Systems schließen kann.

Abbildung 3: Zeitdiskreter Regelkreis.

3. Für den in Abbildung 3 dargestellten zeitdiskreten Regelkreis sind folgende Aufgaben zu bearbeiten:

Hinweis: Die Aufgaben (a,c,d) können getrennt voneinander gelöst werden.

- a) Bestimmen Sie die zeitkontinuierliche Streckenübertragungsfunktion $G(s) = \frac{\hat{y}(s)}{\hat{u}(s)}$.
- b) Berechnen Sie die zeitdiskrete Streckenübertragungsfunktions $G(z) = \frac{\hat{y}(z)}{\hat{u}(z)}$, mit der Abtastzeit T_a als Parameter.
- c) Bestimmen Sie aus der Zustandsdarstellung des Reglers dessen Übertragungsfunktion $R(z) = \frac{\hat{u}(z)}{\hat{e}(z)}$.
- d) Für eine spezielle Wahl der Reglerparameter k_1 , k_2 und T_a folgt aus G(z) und R(z) der letzten beiden Unterpunkte die Schleifenübertragungsfunktion im q-Bereich zu

$$L^{\#}(q) = \frac{-0.03(q+0.5)(q+2)(q-200)}{q(q+1)(q-4)} .$$

Bestimmen Sie mit dem vollständigen Nyquistkriterium die Stabilität des geschlossenen Regelkreises. Die benötigte Ortskurve von $L^{\#}(q)$ ist in Abbildung 4 dargestellt.

Abbildung 4: Ortskurve von $L^{\#}(q)$.

Abbildung 5: Steuerung mit Störgrößenaufschaltung.

4. a) Im Folgenden wird die Strecke

$$G(s) = \underbrace{\frac{V_{nom}(1+sc)}{(1+sa)(1+sb)}}_{G_{nom}(s)} + \underbrace{\frac{\Delta V(1+sc)}{(1+sa)(1+sb)}}_{\Delta G(s)} \text{ und } G_d(s) = \frac{1}{1+sa} \text{ mit } V, a, b, c > 0$$

betrachtet.

- i) Entwerfen Sie für die nominelle Strecke $G = G_{nom}$ eine Steuerung R_s (siehe Abbildung 5), sodass die Führungsübertragungsfunktion $T_{nom} = R_s G_{nom}$ die Verstärkung 1 hat und einen Doppelpol bei $\frac{-1}{e}$, e > 0, aufweist.
- ii) Bestimmen Sie für die nominelle Strecke $G = G_{nom}$ die Übertragungsfunktion R_d so, dass eine beliebige Störung d(t) keine Auswirkung auf den Ausgang hat (ideale Störgrößenunterdrückung).
- iii) Die in Punkt a) entworfene Steuerung soll nun im Hinblick auf Parameterschwankungen untersucht werden. Berechnen Sie dazu die Funktionen $S = \frac{T-T_{nom}}{T_{nom}}$ mit $T_{nom} = R_s G_{nom}$ und $T = R_s G$. Zeichnen Sie den Betragsgang von S in die Bode-Diagramm-Vorlage in Abbildung 6 ein. Verwenden Sie dazu die Parameterwerte $V_{nom} = 100$, $\Delta V = 1$. Wie können Sie die Empfindlichkeit gegenüber Parameterschwankungen verbessern?
- b) Von einem Regelkreis mit einem Freiheitsgrad sind Strecke und Regler gemäß

$$G(s) = \frac{V_G}{s^2}, \ V_G \ge 0 \quad \text{und} \quad R(s) = \frac{V_R(1 + sT_1)}{(1 + sT_2)}$$

bekannt. Für welche Werte der Reglerparameter V_R , T_1 und T_2 ist der geschlossene Regelkreis BIBO-stabil? Wie groß ist die bleibende Regelabweichung bei einer Führungsrampe und den Reglerparametern $V_R = 10$, $T_1 = 10$ und $T_2 = 5$?

Abbildung 6: Betragsgang-Vorlage.