(i) Explain why the definition of Q-quadratic convergence of a sequence requires the initial assumption that the sequence converges at all.

Otherwise, the sequence $x^{(k)}=(-1)^k$ with C=1 would satisfy the requirements of Q-Quadratic convergence for $x^*=0$

(ii) Show that Q-quadratic convergence implies Q-superlinear convergence which implies Q-linear convergence which implies convergence.

1. Q-quadratic =) Q-super linear

Choose E(N)=C. ||x(N) x* || As x con-eyes to x*, this is

a null sequence. Then

 $||x^{(h)}||_{-x} = \frac{||x^{(h)}||_{-x}}{||x^{(h)}||_{-x}} = \frac{||x^{(h)}||_{-x}}{||x^{$

7 d-symmen =) U-linear

As $\xi^{(h)} \longrightarrow 0$, there exists $c \in (0,n)$ s,t. $\exists N \in W: \forall n \geq N: \xi^{(h)} \times c$ (from the deformant of Q-superliner consigning \bot is Clear M_{+} $\xi^{(h)} \supseteq O$ $\forall \Lambda \in W$)

Thus, $\forall N \geq N$ $\forall X = X^{\dagger} | X = X^{\dagger}$

Inst is the determinant of Orther conveyance. [

3, de law =) coneguu

Let $\xi > 0$. Consider $C = 11 \times {}^{(0)} - \times {}^{\dagger} \parallel_{m}$

As CE(0,1), -e can find a nEW s.t.

=) 4 × (n) ->* // < c ~ (× (0) - × // = c ~ (< &

 $(iii) \quad \hbox{(a) Show that the notions of Q-linear, Q-superlinear and Q-quadratic convergence of a sequence imply their respective R-convergence counterparts.}$

Choose
$$z^{(k)} = |(x^{(k)} - x^k)|_{\infty}$$
. $\exists c \in (0,1)$ st

$$\| \mathbf{x}^{(k)} - \mathbf{x}^{*} \|_{2} \le C \cdot \| \mathbf{x}^{(k)} - \mathbf{x}^{*} \|_{2}$$
 for large energy h

Also,
$$\| x^{(h)} - x^{*} \|_{\mathcal{N}} = \xi^{(h)}$$
 $\forall k \in \mathbb{N}$, i.e. $x^{(h)}$ convayes \mathcal{R} -linearly.

$$=$$
) $\xi^{(hr)} \leq \int^{(h)} \xi^{(h)}$

$$|\xi^{(kn)}-0| \leq |\xi^{(n)}| |\xi^{(n)}-0|$$

Analogously, it is every to then that
$$2^{(h)} > 1/x^{(h)} - x^{*}$$
 (any)

$$||x|^{(hh)} - x^{*}||_{\mathcal{N}} \leq |(||x|^{(h)} - x^{*}||^{2} =) \quad \xi^{(hh)} \leq |(|\xi|^{(h)})^{2} = ||\xi|^{(hh)} - 0| \leq |(|\xi|^{h}) - 0|^{2}$$

(b) Give an example that shows that R-convergence of a sequence generally does not imply Q-convergence.

Then
$$|X^{h} - v| = 2^{(-1)^{h} - \kappa} \le 2^{7-k} = \xi^{(\kappa)}$$
 and for $c = \frac{1}{2}$,

$$|\xi^{(h+n)}-0|=2^{n-(h+n)}=2^{-h}=c\cdot 2^{n-k}=c\cdot |\xi^{(h)}-0|$$

(iv) (a) Let $\|\cdot\|_a$, $\|\cdot\|_b \colon \mathbb{R}^n \to \mathbb{R}$ be equivalent norms. Show that Q-superlinear resp. Q-quadratic convergence of a sequence w.r.t. $\|\cdot\|_a$ implies Q-superlinear resp. Q-quadratic convergence w.r.t. $\|\cdot\|_b$.

Q-superher:
$$\exists null sequence $\xi^{(h)} \leq 1$.
$$||\chi^{(nn)} - \chi^* ||_{\alpha} \leq |\xi^{(h)}| (|\chi^{(h)} - \chi^* ||_{\alpha}) \qquad \forall k.$$$$

As the norms are equivalent
$$\exists C: \|X\|_b \leq C \|X\|_b = C \|X\|_b \leq C \|X\|_b$$
. The sequence $\int_{-\infty}^{\infty} |X| \leq C \|X\|_b \leq C \|X\|_b = C \|X\|_b \leq C \|X\|_b = C \|X\|_b \leq C \|X\|_b \leq C \|X\|_b \leq C \|X\|_b \leq C \|X\|_b = C \|X\|_b \leq C$

$$|||| ||| |||_{L^{\infty}(h^{2})} |||_{b} \leq ||| |||_{L^{\infty}(h^{2})} |||_{a} \leq ||| |||_{L^{\infty}(h^{2})} |||_{b}^{2} \leq ||| ||_{b}^{\infty} ||_{b}^{2} \leq ||| |||_{b}^{\infty} ||_{b}^{2} ||_{b}^{2} ||_{b}^{2} ||_{b}^{2} |||_{b}^{2} ||||_{b}^{2} |||_{b}^{2} |||_{b}^{2} |||_{b}^{2} |||_{b}^{2}$$

Also, as
$$x^{(+)}$$
) It will like it also comeges with 11:11/2 a working to Analyses ?

(b) Give an example that shows that a similar statement can not hold for Q-linear convergence. Does it hold for R-linear convergence?

(onother the sequence
$$\times \stackrel{(n)}{=} \begin{cases} 2^{-k} \binom{7}{7} & \text{if } k \text{ even}, \\ 2^{-h+1} \binom{7}{6} & \text{if } k \text{ even}, \end{cases}$$

7. W.r.t.
$$(1-lh)$$
, it compose $(2-lmcorly)$ with $C = \frac{7}{2}$, $(2-lo)+(2-h-0)$ if h even $= 2^{-h+7}$, $(2-h+7-0)+(0-0)$

=)
$$11+h^{(n)}-oll_1=2^{-n}=\frac{7}{2}\cdot 2^{-k_{1}}=c\cdot 11 \times {}^{(n)}-oll_1$$

$$\| \times^{(k+1)} - 0 \|_{\infty} = 2^{-2^{\kappa}} = \| \times^{(2^{\kappa})} - 0 \|_{\infty} = \emptyset \quad \not\exists c \in (0,1),$$

3. Yes R-her consegne with II-IIa = R-hour comme with II-IIb post: Let x(+) conger R-hours with II-IIa, i.e.

$$\| x^{(h)} - x^* \|_{a} \le \xi^{(k)}$$
 The $\exists d \in (0,1) \ S.L.$ $\| \xi^{(h)} - 0 \| \le d \cdot \| \xi^{(h)} - 0 \|$

$$||x^{(h)}-x^{\mu}||_{L^{\infty}} \leq c \cdot ||x^{(h)}-x^{\mu}||_{\alpha} \leq c \cdot 2^{(h)}$$

As
$$|c \cdot c^{(\alpha r)} - 0| \le d |c \cdot c^{(h)} - 0|$$
, The sequence $|c \cdot c^{(h)}|$ whys

De linearly to 0 mir.t. [.] > X(M) congres 12-land) wirt. [[-1]

(i) For each of the following cases, give an example of a null sequence $(x^{(k)})$ in (\mathbb{R}, \cdot) that	٠
(a) converges, but does not converge Q-linearly,	۰
(b) converges Q-linearly, but does not converge Q-superlinear,	۰
(c) converges Q-superlinearly, but does not converge Q-quadratically,	۰
(d) converges Q-quadratically.	
a) consider the sequence $X^{(h)} = 2^{h^2 - k}$ It doesn't conveye almostly to by a	is.
$ x^{(2k)} - 0 = 2^{1-2k} > 2^{2k} = 2^{1-2k+7} = x^{(2k-7)} - 0 $ $ x^{(2k)} - 0 = x^{(2k-7)} - 0 $	•
(b) $x^{(h)} = 2^{-h}$ A $ x^{(h+1)} - 0 = 2^{-h-7} = \frac{7}{2} \cdot 2^{-h} = \frac{7}{2} \cdot x^{(h)} = 0 $ Here is no	
half sequence $\xi^{(h)}$ s.t. $ \chi^{(h+\gamma}-o) \leq \xi_h^{-1}/x^{(h)}-o $	
$ X^{(h)} ^2 = 2^{h^2} + X^{(h+1)} ^2 = 2^{(h+1)^2} = 2^{(h+1)^2} = 2^{2h-1} - 2^{-h^2} \leq 2^{(h)} \cdot X^{(h+1)} ^2$	<u> </u>
for $z^{(h)} = 2^{-K}$. However, $ x^{(h)} - 0 ^2 = 2^{-2K^2}$	•
Let C s.t. $ x^{(K+7)}-0 \leq C \cdot x^{(h)}-0 ^2$	•
$(=)$ $2^{-k^2-2h-7} \leq (.2^{-2h^2})$	
(5) 5 (5) \(\frac{7}{45-51-5}\)	
$(k-1)^2 \leq 4$	
$(\lambda) = \lambda^{(h)} = \lambda^{2^h}$. For $C=7$, we have	
$ x^{(n+1)}_{0} = 2^{2^{n+1}} = 2^{2^{n+2}} = (2^{2^{n}})^{2} = x^{(n)}_{0} ^{2}$	
x = x = x = x = x = x = x	
(ii) Explain what the Q-convergence rates of a sequence $x^k \to x^*$ will look like in a semi-logarithmic plot, i. e., when plotting the map $k \mapsto \ln x_k - x^* $.	
Q-hiem: $\left(\ln \left(\frac{x + h - x^{*}}{x^{h} - x^{*}} \right) \leq \ln c < 0, \text{ as } c \in (0, 1).$	
=) (e-liverly conegany sequences are bounded by a decreasing liver function	•
(a-spectrum: (n) x km - xt < lu E(k) The drottence has to decross carp org. so it can to se good history however, anything below like e.g h2	۰
so it can't be just linear; however, anything below like e.g h2	
$Q=q_{nn}Arot_{i}$: $(n(x^{h}-x^{*}) \leq 2((n(x^{h}-x^{*})+(n)))$ we expect x^{h}	
to be round above SI an exponential fundame like it	٠

Homework Problem 1.3 (Optimality Condition Gap)

9 Points

Consider the optimization problem

Minimize
$$f(x) = (x_1 - x_2^2)(2x_1 - x_2^2) = 2x_1^2 - 3x_1x_2^2 + x_2^4$$
 where $x \in \mathbb{R}^2$.

(i) Show that the necessary optimality conditions of first and second order are satisfied at $(0,0)^T$.

$$\nabla f(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \times 7 - 3 \times 2^{2} \\ -6 \times 1^{2} + 4 \times 2^{2} \end{pmatrix} \qquad \text{if } (0) = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow \text{Second order } 0.0.$$

(ii) Show that $(0,0)^T$ is a local minimizer for f along every straight line passing through (0,0).

Bry shiph I be though
$$[0,0]$$
 dearded by $S(t) = (\Lambda t)$, $\Lambda \mu \neq 0$

$$f(S(t)) = 2 \lambda^{2} t^{2} - 3 \lambda \mu^{2} t^{3} + \mu^{4} t^{4}$$

$$\frac{\partial f(S(t))}{\partial t}|_{t=0} = 0$$

$$\frac{\partial^{2} f(S(t))}{\partial t}|_{t=0} = 2 \lambda^{2} > 0 \Rightarrow t=0, (0,0)^{\frac{1}{2}} |ocal nummary.$$

(iii) Show that $(0,0)^{\mathsf{T}}$ is not a local Minimizer of f on \mathbb{R}^2 .

Assume (90) was a local minite of
$$f$$
 on \mathbb{R}^2 . Then, (in \mathbb{R} , every open set contains a Sull).

- 1.0.9. $\exists ZA: \forall x s. |Y| (2: 0-f(0,0) \leq f(x))$

Consider
$$x = \begin{pmatrix} \frac{1}{5} \xi^2 \\ \frac{1}{2} \xi \end{pmatrix}$$
, $f(x^*) = \begin{pmatrix} \frac{1}{5} \xi^2 - \frac{1}{4} \xi^2 \end{pmatrix} \begin{pmatrix} \frac{2}{5} \xi^2 - \frac{7}{4} \xi^2 \\ \frac{1}{5} \xi^2 - \frac{1}{4} \xi^2 \end{pmatrix}$

$$= -\frac{1}{20} \xi^2 \cdot \frac{3}{20} z^2 = \frac{3}{400} z^2 < 0$$

Homework Problem 1.4 (First Order Conditions are Sufficient for Convex Functions)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function that is differentiable at $x \in \mathbb{R}^n$ with f'(x) = 0. Show that x is a global minimizer of f.

he has: $f(\alpha + (\gamma \alpha) \gamma) \leq \alpha f(\gamma) + (\gamma - \alpha) f(\gamma)$

w.l.o.g. x = 9 f(x)=0. Assume 3 7 6 Mm S. F. + (7) (

Then for a 6 To, 1]:

 $= f(6-\alpha) \times + \alpha \gamma) < (7-\alpha) f(x) + \alpha f(y) = \alpha f(y) < 0$

 $=) \quad |f(\alpha y)| > \alpha |f(y)| \quad (1)$

Let $2 = \frac{1}{2} \frac{|f(y)|}{||y||}$ (2)

my Taylor Le Fru a of s.t. ya wh llayll xo

|x| = |x| + |x|

(=) |f(4)| × 2 11411 / Secard of (2),