Math Probset 4 Optimization and Convex Analysis Jan Ertl Kendra Robbins

6.6

critical points: $(0,0), (\frac{-1}{3},0), (0,\frac{-1}{4}), (\frac{-1}{9},\frac{-1}{12})$ Hessian: $D^2 f(x,y) = \begin{bmatrix} 6y & 6x + 8y + 1 \\ 6x + 8y + 1 & 8x \end{bmatrix}$ saddle points: $(0,0), (\frac{-1}{3},0), (0,\frac{-1}{4})$ because the Hessian evaluated at each point has

eigenvalues of opposite sign. maximum: $(\frac{-1}{9}, \frac{-1}{12})$ because the hessian evaluated there has 2 negative eigenvalues.

6.7

i) Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $\langle \cdot, \cdot \rangle$ be the usual dot product.

$$Q^T = (A^T + A)^T = A + A^T = Q$$

 $\Rightarrow Q$ is symmetric

Since the domain is real, we have $\langle Ax, x \rangle = \langle x, Ax \rangle$, so:

$$x^{T}Qx = x^{T}(A^{T} + A)x = x^{T}A^{T}x + x^{T}Ax = (Ax)^{T}x + x^{T}Ax = \langle Ax, x \rangle + \langle x, Ax \rangle$$

$$= 2 \langle x, Ax \rangle = 2x^{T}Ax$$

$$\Rightarrow f(x) = \frac{1}{2}x^TQx - b^Tx + c$$

ii) Suppose x* is a minimizer of f.

$$f'(x) = x^T Q - b^T$$

Since the domain of f is \mathbb{R}^n , x* must be an interior point. So we must have f'(x*) = 0. $\Rightarrow (x*)^T Q = b^T$

By taking the transpose of both sides: $Q^Tx*=b$

iii) Suppose x* is the unique solution of the minimization problem of $f(x) = \frac{1}{2}x^TQx - \frac{1}{2}x^TQx$ $b^T x + c$.

Then f''(x*) = Q is positive semi definite.

But if Q has a zero eigenvalue, x* would not be unique. So Q must be positive definite.

Suppose Q is positive definite.

$$f''(x) = Q$$
 so $D^2 f(x) > 0 \ \forall x$

$$\Rightarrow f$$
 is convex by 7.2.10

 \Rightarrow the minimizer of f is unique according to Albi

From ii) we have $Q^T x * = b$ is a solution of f.

Let λ_1, λ_2 be the eigenvalues of Q. Since Q is positive definite, $\lambda_1, \lambda_2 > 0$.

So
$$det(Q) = \lambda_1 \lambda_2 > 0$$

$$\Rightarrow Q = Q^T$$
 is invertible.

So $x* = Q^{-1}b$ is a solution to $f(x) = \frac{1}{2}x^TQx - b^Tx + c = 0$

By second order sufficient conditions, x* is a unique minimizer of f.

6.11

Define $f(x) = a^2 x_0^2 + bx_0 + c$.

With f'(x) = 2ax + b and f''(x) = 2a we find that the degree 2 taylor approximation of f at x_0 is $q(x) = a^2x_0^2 + bx_0 + c = f(x)$. Then $x_1 = x_0 - (\frac{2ax_0 + b}{2a}) = \frac{-b}{2a}$. So $f'(x_1) = -b + b = 0$

Then
$$x_1 = x_0 - (\frac{2ax_0 + b}{2a}) = \frac{-b}{2a}$$
.
So $f'(x_1) = -b + b = 0$

 $\Rightarrow x_1$ is a minimizer of f. And since f is quadratic x_1 must be the unique minimizer.

6.15 See jupyter notebook

7.1

Suppose $S \subseteq V$ is nonempty and $x, y \in conv(S)$. Then $x = \sum_{i=1}^{I} c_i x_i$ and $y = \sum_{j=1}^{J} k_j y_j$ where $\{x_i\}_{i=1}^{I}, \{y_i\}_{j=1}^{J} \subseteq S$ and $\sum_{i=1}^{I} c_i = 1$ and $\sum_{i=1}^{J} k_i = 1$.

Let
$$\lambda \in [0, 1]$$
 and consider $\lambda x + (1 - \lambda)y$:

$$\lambda x + (1 - \lambda)y = \lambda \sum_{i=1}^{I} c_i x_i + (1 - \lambda) \sum_{j=1}^{J} k_j y_j$$

$$= \lambda \sum_{i=1}^{I} c_i x_i + \sum_{j=1}^{J} k_j y_j - \lambda \sum_{j=1}^{J} k_j y_j$$

$$= \sum_{i=1}^{I} \lambda c_i x_i + \sum_{j=1}^{J} k_j y_j - \sum_{j=1}^{J} \lambda k_j y_j$$
Since $\sum_{i=1}^{I} c_i = 1$, $\sum_{i=1}^{I} \lambda c_i x_i = \lambda \sum_{i=1}^{I} c_i = \lambda$
Since $\sum_{j=1}^{J} k_j = 1$, $\sum_{j=1}^{J} \lambda k_j = \lambda \sum_{j=1}^{J} k_j = \lambda$.

So the sum of the coefficients on $\sum_{i=1}^{J} \lambda c_i x_i + \sum_{j=1}^{J} k_j y_j - \sum_{j=1}^{J} \lambda k_j y_j$ are $\lambda + 1 - \lambda = 1$, and all x_i, y_i are elements of S, so $\lambda x + (1 - \lambda)y \in conv(S)$

 $\Rightarrow conv(S)$ is convex.

i) Let P be a hyperplane such that $P = \{x \in V : \langle a, x \rangle = b\}$ for some vector a and some real number b.

Let $x, y \in P$ and let $\lambda \in [0, 1]$. Then we have $\langle a, x \rangle = b$ and $\langle a, y \rangle = b$.

Then
$$< a, \lambda x + (1 - \lambda)y > = < a, \lambda x > + < a, (1 - \lambda)y >$$

= $\lambda < a, x > + (1 - \lambda) < a, y > = \lambda b + (1 - \lambda)b = b$

- $\Rightarrow \lambda x + (1 \lambda)y \in P$
- $\Rightarrow P$ is convex.
- ii) Let H be a half space such that $H = \{x \in V : \langle a, x \rangle \leq b\}$ for some vector a and some real number b.

Let $x, y \in H$ and let $\lambda \in [0, 1]$. Then we have $\langle a, x \rangle \leq b$ and $\langle a, y \rangle \leq b$.

Then
$$\langle a, \lambda x + (1 - \lambda)y \rangle = \langle a, \lambda x \rangle + \langle a, (1 - \lambda)y \rangle$$

= $\lambda \langle a, x \rangle + (1 - \lambda) \langle a, y \rangle \leq \lambda b + (1 - \lambda)b = b$
 $\Rightarrow \lambda x + (1 - \lambda)y \in H$
 $\Rightarrow H$ is convex.

7.4

i)
$$||x-y||^2 = ||(x-p) + (p-y)||^2 = \langle (x-p) + (p-y), (x-p) + (p-y) \rangle$$

= $\langle x-p, x-p \rangle + \langle x-p, p-y \rangle + \langle p-y, x-p \rangle + \langle p-y, p-y \rangle$
= $||x-p||^2 + ||p-y||^2 + 2\langle x-p, p-y \rangle$

- ii) Suppose $y \neq p$ and $\langle x p, p y \rangle \geq 0 \ \forall y \in C$ By i) we have $||x - y||^2 - ||x - p||^2 = ||p - y||^2 + 2 \langle x - p, p - y \rangle$ Since $y \neq p$, $||p - y||^2 > 0$, so $||x - y||^2 - ||x - p||^2 > 0$ $\Rightarrow ||x - y||^2 > ||x - p||^2$ $\Rightarrow ||x - y|| > ||x - p||$
- iii) Suppose $\lambda \in [0,1]$ and $z = \lambda y + (1-\lambda)p$. By i), $||x-z||^2 = ||x-p||^2 + ||p-z||^2 + 2 < x - p, p - z >$ Further, $||p-z||^2 = =$ $= < \lambda (p-y), \lambda (p-y) = \lambda^2 < p - y, p - y > = \lambda^2 ||p-y||^2 = \lambda^2 ||y-p||^2$ Additionally, $2 < x - p, p - z > = 2 < 2 < x - p, p - \lambda y - (1-\lambda)p >$ $= 2 < x - p, \lambda (p-y) > = 2\lambda < x - p, p - y >$ So $||x-z||^2 = ||x-p||^2 + ||p-z||^2 + 2 < x - p, p - z >$ $= ||x-p||^2 + 2\lambda < x - p, p - y > + \lambda^2 ||y-p||^2$
- iv) Let's use iii) with $\lambda = 1$. So z = y and: $||x y||^2 = ||x p||^2 + 2 < x p, p y > + ||y p||^2$ From ii) we have ||x - y|| > ||x - p|| for $y \neq p$. Without the condition $y \neq p$ we have $||x - y|| \ge ||x - p||$ So $||x - y||^2 - ||x - p||^2 \ge 0$ So $||x - y||^2 - ||x - p||^2 = 2 < x - p, p - y > + ||y - p||^2 \ge 0$

7.8

Suppose $f: \mathbb{R}^m \to \mathbb{R}$ is convex, $A \in M_{mxn}, b \in \mathbb{R}^m$. Define g(x) = f(Ax + b). Then: $g(\lambda x + (1 - \lambda)y) = f(\lambda Ax + (1 - \lambda)Ay + b)$ $= f(\lambda (Ax + b) + (1 - \lambda)(Ay + b)) \leq \lambda f(Ax + b) + (1 - \lambda)f(Ay + b)$ $= \lambda g(x) + (1 - \lambda)g(y)$ $\Rightarrow g$ is convex.

7.12

i) Suppose $A, B \in PD_n(\mathbb{R}), \lambda \in [0, 1], \text{ and } x \in \mathbb{R}^n.$

```
Then A = A^T and B = B^T so we have:
     (\lambda A + (1 - \lambda B))^T = \lambda A^T + (a - \lambda)B^T = \lambda A + (1 - \lambda B)
Further, using \langle x, Ax \rangle > 0, \langle x, Bx \rangle > 0 we have:
      < x, (\lambda A + (1 - \lambda B))x > = x^T(\lambda A + (1 - \lambda)B)x = \lambda(x^TAx) + (1 - \lambda)(x^TBx) > 0
\Rightarrow \lambda A + (1 - \lambda B) \in PD_n(\mathbb{R})
\Rightarrow PD_n(\mathbb{R}) is convex.
iia) Suppose that \forall A, B \in PD_n(\mathbb{R}), g(t) : [0,1] \to \mathbb{R} defined by g(t) = f(tA + (1-t)B)
is convex.
Let t_1, t_2 \in [0, 1] and \lambda \in [0, 1]. Then we have:
```

 $\lambda g(t_1) + (1 - \lambda)g(t_2) = \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B).$ Also: $g(\lambda t_1 + (1 - \lambda)t_2) = f((\lambda t_1 + (1 - \lambda)t_2)A + (1 - \lambda t_1 + (1 - \lambda)t_2)B)$ $= f(\lambda(t_1A + (1-t_1)B) + (1-\lambda)(t_2A + (1-t_2)B)).$ Since g is convex we have: $g(\lambda t_1 + (1 - \lambda)t_2) \le \lambda g(t_1) + (1 - \lambda)g(t_2)$

Using the substitutions $X = t_1A + (1 - t_1)B$ and $Y = t_2A + (1 - t_2)B$ we get:

 $f(\lambda X + (1-\lambda)Y) \le \lambda f(X) + (1-\lambda)f(Y)$. $\Rightarrow f$ is convex.

iib) Since A is positive definite by 4.5.7 there exits a nonsingular matrix S such that $A = S^H S$. Then, $tA + (1-t)B = S^H (tI + (1-t)(S^H)^{-1}BS^{-1})S$, so: $q(t) = -\log(\det(tA + (1-t)B)) = -\log(\det(S^H(tI + (1-t)(S^H)^{-1}BS^{-1})S))$. Then: $-\log(\det(S^H(tI+(1-t)(S^H)^{-1}BS^{-1})S))$ $= -\log(\det(S^H)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) - \log(\det(S))$ $= -\log(\det(S^H)\det(S)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1}))$ $= -\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})).$

iic) Since $A, B \in PD_n(\mathbb{R})$, then $B^{-1} \in PD_n(\mathbb{R})$ and $x^HSB^{-1}S^Hx = (S^Hx)^HB^{-1}(xS) >$ 0 so $((S^H)^{-1}BS^{-1})^{-1} = SB^{-1}S^H$ is positive definite.

Further, $(S^H)^{-1}BS^{-1}$ is positive definite.

Let $\{\lambda_i\}_i$ be the eigenvalues of $((S^H)^{-1}BS^{-1})$ and $\{x_i\}_i$ the corresponding eigen- $(tI + (1-t)(S^H)^{-1}BS^{-1})x_i = tx_i + (1-t)\lambda_i x_i =$ vectors. Then for every i: $(t+(1-t)\lambda_i)x_i$.

So $\{t+(1-t)\lambda_i\}_i$ are the eigenvalues of $(tI+(1-t)(S^H)^{-1}BS^{-1})$ corresponding to the $\{x_i\}_i$

Now:

 $-\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1}))$ $= -\log(\det(A)) - \log(\prod_{i=1}^{n} (t + (1-t)\lambda_i))$ $= -\log(\det(A)) - \sum_{i=1}^{n} \log((t + (1-t)\lambda_i)).$

iid) Using iic) we get $g'(t) \sum_{i=1}^{n} (1-\lambda_i)/(t+(1-t)\lambda_i)$ and $g''(t) = \sum_{i=1}^{n} (1-\lambda_i)^2/(t+t)$ $(1-t)\lambda_i)^2$, which is nonnegative for all $t \in [0,1]$.

7.13

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex and bounded above.

Then $\exists M \in \mathbb{R}$ such that $f(x) \leq M \ \forall x \in \mathbb{R}^n$.

For contradiction suppose that f is not a constant function. Then $\exists x, y \in \mathbb{R} R^n$ such that $f(x) \neq f(y)$. The line connecting (x, f(x)) and (y, f(y)) is above f for values between x and y and is below f for values not between x and y. Since the line connecting (x, f(x)) and (y, f(y)) is not constant, it intersects and exceeds M for some values in \mathbb{R}^n that are not between (x, f(x)) and (y, f(y)). Since f is above the line connecting (x, f(x)) and (y, f(y)) at those values, this is a contradiction.

7.20

```
Suppose f: \mathbb{R}^n \to \mathbb{R} and -f are convex.

Let x, y \in \mathbb{R}^n, with x \neq y, and let \lambda \in [0, 1].

f \text{ convex} \Rightarrow f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).

-f \text{ convex} \Rightarrow -f(\lambda x + (1 - \lambda)y) \leq -\lambda f(x) - (1 - \lambda)f(y).

So we must have f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y). \Rightarrow f is affine.
```

7.21

 \Rightarrow

Let $x^* \in \mathbb{R}^n$ be a local minimizer of f.

Then there exists an open neighborhood V of x^* such that $f(x^*) \leq f(x)$ for all $x \in V$. Since ϕ is strictly increasing, $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in V$.

Thus, x^* is a local minimizer of $\phi \circ f$.

 \leftarrow

Suppose x^* is a local minimizer of $\phi \circ f$.

Then there exists an open neighborhood U of x^* such that $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in U$.

Since ϕ is strictly increasing, $f(x^*) \leq f(x)$ for all $x \in U$.

 $\Rightarrow x^*$ is a local minimizer of f.