通知: 作业1发布

作业1可从课程网页上下载(http://qiqi789.github.io/teaching/AI/)

10/10 日课上提交

人工智能导论: 局部搜索和不确定搜索

局部搜索

许多优化问题, 路径解不相关; 目标状态才 是问题的解状态空间 = 完整布局配置的集合

找到满足约束的布局配置解,例如n个皇后问题;或是找到最优布局解,例如旅行销售商问题

在这些情况,可以使用迭代改进算法;保持一个当前状态,然后尝试改进它。

空间成本固定,适合线上(online)或线下(offline)搜索

N皇后问题的启发式信息

目标布局:n个皇后在棋盘上不互相冲突

状态: n 个皇后在棋盘上布局, 一列放一个

启发式函数:相互冲突的皇后对数

N皇后演示

[Demo: n-queens – iterative improvement (L5D1)]

爬山算法(Hill-climbing)

function HILL-CLIMBING(问题) returns 一个状态

当前节点 ← make-node(问题.初始状态)

loop do

邻居节点 ← 选一个 当前节点 的后继节点中评估值最大的节点

if邻居节点.value ≤ 当前节点.value then return 当前节点.state

当前节点←邻居节点

全局和局部最优解

随机开始点

。找到全局最优

随机水平移动

- 。跳出"shoulder"
- 。无限循环在"flat local maxima"

模拟退火(Simulated annealing)

退火过程用来缓慢冷却金属使之达到一个稳定状态

基本想法:

- 。允许偶尔的随机移动,依赖于"温度"
- 。高温 => 更多的随机移动, 系统可能走出局部最优格局
- 。逐渐降低温度,根据一个冷却的时间调度

好似晃动崎岖不平的表面, 让一个乒乓球滚入最深的曲面里

。理论上:存在一个冷却时间调度,使得找到全局最优的可能概率为1。

模拟退火(Simulated annealing)算法

function SIMULATED-ANNEALING(问题,冷却调度) returns 一个状态

当前节点 ← make-node(问题.initial-state)

for t = 1 to ∞ do

T←调度(t)
if T = 0 then return 当前节点

下一节点 ← 一个随机选择的 当前节点 的后继节点

 $\Delta E \leftarrow \Gamma$ 一节点.value —当前节点.value if $\Delta E > 0$ then 当前节点 \leftarrow 下一节点

else 当前节点←下一节点,如果随机概率大于等于 e^{ΔE/T}

局部光束搜索(Local beam search)

基本思想:

- 。 K 拷贝某种局部搜索算法, 随机初始化
- 。在每一轮
 - 。从k个当前状态产生所有的后继状态
 - 。 选出 k 个最好的, 赋给当前搜索状态

为什么和 开始 K 个 并行 局部搜索不一样?

• 搜索间相互交流!

还有什么其他的著名算法采用相同的思想?

。 进化算法!

基因遗传算法Genetic algorithms

启发于自然选择

- 。在每一步选择保持 N 个最好的个体,基于目标函数a fitness function
- 。个体对的操作: 交错, 随机翻转, 产生变化的个体

举例:8皇后问题

不确定搜索

在真实世界里搜索

非确定性: 行动有不可预测的影响

- 。问题构建需允许多个行动输出
- 。解则是 条件化的规划
- 新算法: 与或搜索 (AND-OR)
- 。解规划中也可能有循环步骤!

部分可观察性: 感知的不是整个状态

- 。可信状态(belief state) = 智能体可能处在的状态集合
- 。问题需在可信状态空间搜索

非确定性和 部分可观察性

会出故障的吸尘器(行动的结果不确定性造成的)

如果格子有灰尘, 吸尘可能也吸掉邻近格子里的灰尘

。例如,状态1可能会到5或7

如果格子是干净的, 吸尘也可能会发生故障, 些灰尘在上面

。例如,状态4可能会到4或2

问题建立(problem formulation)

Results(s,a) 返回一个状态 集合

- 。Results(1,吸尘) = {5,7}
- 。Results(4,吸尘) = {2,4}
- Results(1,向右) = {2}

其他的都和以前一样

条件化的解

从状态 1, 行动 [吸尘] 能解决问题吗? ઌૢૺૹૢ 。不必然! 那么[吸尘,右移,吸尘]? 。不必然! [吸尘; if 状态=5 then [右移,吸尘] else []] 这是一个依情况而定的解(分支化或条件性规 6 如何找到这样的解? 8 这是一个解

与或搜索树(And-Or search trees)

或-节点:

- 。智能体选择行动;
- 。 *至少一个分支*能得到解即成功

与-节点:

- 。 自然选择行动的影响;
- 。*所有分支*必须都能被求解, 否则失败

两种节点按层交替排列

与或搜索树

树节点

- 。选择不同行动 (OR)
- 。同一行动可能的不同结果 (AND)

条件化的搜索解

- 。还是一个树,条件化选择行动 (if this, do that, else if...)
- 。也有可能存在循环

AND-OR 搜索策略

AND-OR search: 调用 OR-Search 在根节点上

OR-search(node): 如果在任意一个行动的结果集合上 AND-search 获得成功,则返回成功

AND-search(set of nodes): 如果OR-search 在这个集合内的所有节点上都成功,则返回成功

与或搜索算法(递归,深度优先)

Function 与或图搜索(问题) returns 一个条件性规划, 或失败

或-搜索(问题.初始状态,问题,[])

Function 或-搜索(状态,问题,路径) returns一个条件性规划,或失败

if 问题.goal-test(状态) then return 空规划

if 状态 曾出现在 路径 then return 失败

for each 行动 in 问题.actions(状态) do

规划 ← 与-搜索(results(状态,行动),问题,[状态 | 路径])

if 规划 ≠ 失败 then return [行动 | 规划]

return 失败

一个行动上的与搜索成功,则或搜索返回包含 该行动的一个规划

与或搜索,继续

Function 与-搜索(**状态集**, 问题, 状态路径) returns 一个条件规划, 或失败 for each s_i in 状态集 do

行动plan_i ← OR-SEARCH(s_i,问题,路径)

if plan_i = 失败 then return 失败

return [if s₁ then plan₁

else if s₂ then plan₂

else . . . if s_{n-1} then $plan_{n-1}$ else $plan_n$

如果有一个结果状态节点的或搜 索返回失败,则其父节点的与搜 索返回失败,说明该行动方向不 成功。

会打滑的吸尘器

有时移动可能会不成功(停在原地)

不能保证会得到一个条件化的解!

存在一个 *循环解 cyclic solution*:

- [*Suck*, L1]
- 。这里 L1 只是一个标签,它代表:
 - L1: Right, if State = 5 then L1 else Suck
- 。修改 AND-OR-GRAPH-SEARCH,当找到一个重复状态时,5 添加一个标签,增加一个条件分支指向这个标签,而不 是返回一个失败。(使得相应动作可重复执行)
- 一个循环行动规划是一个循环解的条件是:
- 。 每个叶节点是一个目标状态
- 。在该循环规划里的任一点,都有一条路径走到一个叶节点

非决定性 nondeterminism 到 底表示的是什么?

举例: 你的旅店门卡不能打开你旅店房间的门

- 。解释 1: 你没有用对方式
 - 。 这是 nondeterminism; 不断的尝试
- 。解释 2: 门卡本身有问题
 - 。 这是 partial observability; 需要换一个新的门卡
- 。解释 3: 这不是你的房间
 - 。 这是 embarrassing; be ashamed

当输出结果不决定性的依赖于某个隐藏状态,这个非决定性的模型才是合适的

部分可观察性 Partial observability

极端的部分可观察性:没传感器的环境世界

在吸尘器例子里,假设没有传感器!

可信状态 belief state:一个集合包括智能体可能处在的所有环境状态

。 通常情况, 给定当下的感知, 智能体所知道的情况

状态,可信状态,可信状态空间

例如: 5个网格位置 {A,B,C,D,E} 可能有 0-5 个妖怪

状态空间的表达:

■ 5 布尔值 (a,b,c,d,e)

状态空间大小:

25

状态举例:

(1,1,1,1,1) ghosts everywhere

(0,0,0,0,0) no ghosts

(1,1,0,0,0) ghosts in just A and B

可信状态举例:

I believe that there are ghosts everywhere or no ghosts at all

(1,1,1,1,1)(0,0,0,0,0)

I believe that there is exactly one ghost

(1,0,0,0,0) (0,1,0,0,0) (0,0,1,0,0) (0,0,0,0,1) (0,0,0,0,1)

Empty belief state

Every configuration is possible

(0,0,0,0,0) (1,0,0,0,0) ... (0,1,0,0,0) (1,1,0,0,0) ... (0,0,1,0,0) (1,0,1,0,0) ... (0,1,1,0,0) (1,1,1,0,0) ... (0,0,0,1,0) (1,0,0,1,0) ...

•••

无传感器问题的构建

底层的"物理"问题通常有 Actions, , Result, , Goal-Test, , 和 Step-Cost, .

初始状态:一个可信状态(belief state) b (包括若干或所有物理状态 s)

。N 个物理状态(physical states) => 2^N 可信状态 (belief states)

Goal test: 每个元素状态 s in b 满足 Goal-Test_P(s)

Actions: 行动合集 Actions_P(s) for each s in b

转移模型 Transition model:

- 。决定性的 Deterministic: Result(b,a) = 结果状态集合 Resultp(s,a) for each s in b
- 。非决定性的 Nondeterministic: Result(b,a) = 结果状态集合 Resultsp(s,a) for each s in b
- Step-Cost(b,a,b') = Step-Cost_p(s,a,s') for any s in b
 - 。假设给定行动a,步骤成本对于任何s in b 都相同

在无传感器可信状态空间里的搜索

所有搜索过程都和以前一样!

解还是行动的序列!

- 一些变通的地方:
- If any s in b is unsolvable, b is unsolvable
- 。If b' 包含 b and b' 有一个解, b 有同样的解
- 。If b' 包含 b, 并且在搜索树里我们已找到一条路径通向b, 那么可以丢弃 b'

书上图4.14, 决定性行动的,无感知,可信状态空间的状态图

无传感器问题有什么现实意义?

反映了许多现实中机器人的操控问 题

"零件导向传送器"由一系列倾斜的导向装置组成,可以把零件按一个方向进行导向,无论它们的初始方向是什么

这比起应用摄像机和机器人手臂更加简单方便,且更可靠!

播放演示视频

部分可观察性Partial observability: 问题建立

需说明智能体能观测到什么:

- 。 行动决定性的 Deterministic: Percept(s) 是在状态 s 收到的感知
- 非决定性的 Nondeterministic: Percepts(s) 在状态 s 收到的可能的感知
- 。全部可感知: Percept(s) = s 无传感器: Percept(s)=null

■ 智能感知局部(当前房间的)吸 尘器环境世界

Percept(s1) = [A,Dirty]

4

Percept(s3) = [A,Dirty]

部分可观察性: 可信状态转移模型 belief state transition model

b' = Predict(b,a) 更新可信状态 *只根据行动 a*

Possible-Percepts(b') 是在更新后的可信状态下可能导致的感知的集合

Union of Percept(s) for every s in b'

Update(b',p) 是新的可信状态,如果收到的是感知 p (根据感知对可信状态过滤)

仅包含状态 s in b' for which p = Percept(s)

Results(b,a) 返回结果的可信状态集合

Update(Predict(b,a),p) for each p in Possible-Percepts(Predict(b,a))

举例: Results(b₀,Right)

举例: Results(b₀,Right)

间进行过滤)

智能体对可信状态的修改(维护)

感知 p 取决于环境

递归的可信状态估计(计算根据上一个可信状态):

b <- Update(Predict(b,a),p)

形成了 预测-更新循环 predict-update cycle

- 。类似的称谓: monitoring, filtering, state estimation
- 。 定位 Localization 和 画地图 mapping 是两种特殊的应用

总结

非确定性(行动导致的)要求解是条件化的规划通过与或搜索寻找解

无感知问题 的解是通常的行动规划 通过在信念状态空间中去寻找解

通常的部分可观察环境 导致 感知上的非确定性 在信念状态空间里进行与或搜索(And-Or search)

通过 预测-更新 循环 (Predict-Update cycle) 进行可信状态的转移

