

Agenda

- Recap of Linear Regression Models & Basic Statistical Distributions
- Generalized Linear Model (GLM)
 - Background, Motivations and Assumptions
 - Basic Structure of GLMs
 - Types of GLMs
 - Formulation
 - Model Diagnostics
- Examples
- More Advanced Topics on GLM

SISNW SISNW

SJSU SAN JOSÉ STATE UNIVERSITY

Linear Regression Models Recap

Recall that the linear regression model assumes:

- Linear in parameters
- The response *Y*|*X* is continuous and normally distributed:

$$Y|X \sim N(\mu(X), \sigma^2 I)$$

• The mean $\mu(Y)$ is simply given by:

$$E[Y|X] = \mu(Y) = X^T \beta$$

• Constant variance σ^2

sisny ဥါနက္ကန္ဆုနက္က ဥါနက္ကမ္တုန္တာျခင္ကာတြဲနက္ကမ္တာျခင္ကာမွာ အသည္တိုနက္ကမ္တာျခင္ကာမွာ အသည္တိုနက္ကမ္တာျခင္တာ အ

What are GLMs?

Generalized Linear Model (GLM):

- a class of models popularized by McCullagh and Nelder in 1970-1980s
- unification of various statistical models like linear, logistic and Poisson regressions under a common framework.
- a flexible extension of traditional linear regression models.
- handle various types of response variables (unified approach to modeling of diverse data types)

13

Why are GLMs Important in Data Mining?

GLMs are Important in data mining for several reasons:

- Flexibility to accommodate different types of response variables (e.g. binary, counts etc)
- Unified framework of various statistical models
- Handling of Non-Normal Data vs linear regression
- Use of Link Functions to model nonlinear relationships between the predictors and the response variables
- Robustness robust to violations of assumptions that would otherwise invalidate simpler models
- Wide applications in many fields.

s;//statisticseasilv.com/generalized-linear-models/

Motivations

Generalized Linear Models (GLMs) are quite versatile and are used in various fields. Here are some common applications:

- Healthcare: GLMs are used to model patient outcomes, such as predicting the probability of disease occurrence or recovery rates based on patient characteristics and treatment plans.
- Finance: In risk management and insurance, GLMs help in modeling claim frequencies and severities, as well as in credit scoring to predict the likelihood of loan defaults.
- Marketing: GLMs are used to analyze customer behavior, such as predicting purchase probabilities, customer segmentation, and response rates to marketing campaigns.

https://statisticseasily.com/generalized-linear-models/

15

https://statisticseasily.com/generalized-linear-models/

Motivations

- Environmental Science: They are used to model relationships between environmental factors and outcomes, such as pollution levels and health impacts, or species distribution based on habitat characteristics.
- Social Sciences: GLMs help in analyzing survey data, such as modeling voting behavior, social attitudes, and demographic influences on various outcomes.
- Manufacturing: In quality control and process optimization, GLMs are used to model defect rates and improve production processes.

GLM Assumptions

- The data Y₁, Y₂,..., Y_N are independently distributed, i.e., cases are independent.
- The dependent variable Y does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal, etc.).
- GLM does NOT assume a linear relationship between the response variable and the explanatory variables.
- It does assume a linear relationship between the transformed expected response (with the link function) and the explanatory variables.

https://statisticseasily.com/generalized-linear-models/ Um SJSUm S

17

GLM Assumptions (cont)

- Explanatory variables X₁, X₂, ..., X_p can be nonlinear transformations of some original variables.
- The homogeneity of variance does NOT need to be satisfied.
- Errors need to be independent but NOT normally distributed.
- Parameter estimation uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS).

Linear Regression Models Recap

The linear (regression) model really has three components:

- Random Component: the response variable Y|X is continuous and normally distributed with mean $\mu = \mu(Y) = E[Y|X]$
- Systematic Component: explanatory variables **X** and its linear predictor is

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots = \mathbf{X}^T \boldsymbol{\beta}$$

• Link Function: The "link" between the random component & the systematic components:

$$\mathbf{X} = [X_1 \quad X_2 \quad \dots \quad X_p]^T : \quad \mu(\mathbf{X}) = \mathbf{X}^T \boldsymbol{\beta}$$

What is the link function in this case?

19

Generalization of Linear Regression Models

A generalization to the linear regression model (GLM) is as follows:

- Random Component:
 - ${\it Y}\sim$ some exponential family distribution -

Normal Distribution: continuous response variables Binomial Distribution: binary response variables Poisson Distribution: count data

Systematic Component (and the linear combination):

$$\eta = \mathbf{X}^T \boldsymbol{\beta}$$

Link Function :

$$g(\mu(X)) = X^T \beta$$
 $\mu(X) = g^{-1}(X^T \beta)$

where g is the link function and $\mu(X) = E[Y|X]$.

The Exponential Family of Distributions

- In GLMs, the response variable is assumed to follow a distribution from the exponential family, which includes distributions like normal, binomial, Poisson, and gamma.
- The probability density function (pdf) for the exponential family can be written as:

Distribution	Domain	$\mu=E[Y x]$	$v(\mu)$	$\theta(\mu)$	$b(\theta)$
Binomial $B(n,p)$	$0,1,\ldots,n$	np	$\mu - rac{\mu^2}{n}$	$\log \tfrac{p}{1-p}$	$n\log(1+e^{ heta})$
Poisson $P(\mu)$	$0,1,\dots,\infty$	μ	μ	$\log(\mu)$	$e^{ heta}$
Neg. Binom. $NB(\mu, lpha)$	$0,1,\ldots,\infty$	μ	$\mu + lpha \mu^2$	$\log(rac{lpha\mu}{1+lpha\mu})$	$-rac{1}{lpha} \mathrm{log}(1-lpha e^{ heta})$
Gaussian/Normal $N(\mu,\sigma^2)$	$(-\infty,\infty)$	μ	1	μ	$rac{1}{2} heta^2$
Gamma $N(\mu, u)$	$(0,\infty)$	μ	μ^2	$-\frac{1}{\mu}$	$-\log(- heta)$
Inv. Gauss. $IG(\mu,\sigma^2)$	$(0,\infty)$	μ	μ^3	$-rac{1}{2\mu^2}$	$-\sqrt{-2\theta}$
Tweedie $p \geq 1$	depends on $\it p$	μ	μ^p	$\frac{\mu^{1-p}}{1-p}$	$\tfrac{\alpha-1}{\alpha} \left(\tfrac{\theta}{\alpha-1} \right)^{\alpha}$

Link Functions

The link function connects the linear predictor to the mean of the distribution function.

Common link functions include:

Identity Link	Logit Link	Probit Link	Log Link	Inverse Link	Cloglog Link
$g(\mu) = \mu$	$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$	$g(\mu) = \Phi^{-1}(\mu)$	$g(\mu) = \log(\mu)$	$g(\mu) = \frac{1}{\mu}$	$g(\mu) = \log(-\log(1-\mu))$
continuous	binary	binary	count	skewed cont.	binary

23

Common Types of GLMs

- Linear Regression (Continuous Outcome)
- Logistic Regression (Binary Outcome)
- Poisson Regression (Count Outcome)
- Gamma Regression (Positive Continuous Outcome)
- Probit Regression (Binary Outcome with Less Sensitivity to Extreme Values)
- Complementary Log-Log Regression (Binary Outcome with Small Probability of Success)

GLM Diagnostics

Model diagnostics are crucial for assessing the fit and validity of Generalized Linear Models (GLMs). Here are some key diagnostics and techniques used to evaluate GLMs:

- Residual Analysis using Pearson Residuals: $r_i = \frac{y_i \hat{\mu}_i}{\sqrt{\hat{V}(\hat{\mu}_i)}} \quad \text{estimated variance of y}$
- Influence Measures using Leverage & Cook's distance:

$$h_i = X_i (X^T W X)^{-1} X_i^T$$
 $D_i = \frac{(r_i^2 h_i)}{p(1 - h_i)^2}$

diagonal matrix of weights

Goodness-of-Fit using Deviance & Pearson Chi-Square Test:

$$D = 2 \sum_{i=1}^{n} \left[y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - \left(y_i - \hat{\mu}_i \right) \right] \qquad \qquad X^2 = \sum_{i=1}^{n} \frac{\left(y_i - \hat{\mu}_i \right)^2}{\hat{V}(\hat{\mu}_i)}$$

33

GLM Diagnositcs

- Model Validation using:
 - Cross-validation
 - Bootstrapping
- Collinearity Diagnostics using Variance Inflation Factor (VIF)
 - for highly correlated explanatory variables

$$\mathrm{VIF} = \frac{1}{1-R_{j_{\mathrm{in}}}^{2}}$$
 coefficient of determination of the regression of predictor (j) on all other predictors

Model Comparison

The two common criteria used for model selection and comparison for GLMs are:

- Akaike Information Criterion (AIC): lower values → better model
 - AIC penalizes models with more parameters to prevent overfitting

$$AIC = -2\log(L) + 2k$$

- L maximum likelihood of the model
- k # of parameters in model
- n # of observations
- Bayesian Information Criterion (BIC): lower values → better model
 - BIC penalizes models with more parameters more heavily than AIC, especially as the sample size (n) increases.

$$BIC = -2\log(L) + k\log(n)$$

NO STANDARD PROPERTY OF THE PR

Building GLMs in Python

Using statsmodels library

import statsmodels.api as sm

- Model fitting
 - Specify the model → model = sm.GTM(y, X, family=...)
 - Fit the model → result = model.fit()
 - Summarize the model → result.summary()
 - Make model predictions → result.predict()

37

More Complicated System Component

Here are some more complex forms of the systematic component:

Generalized Additive Models (GAMs)

$$\eta = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p)$$

Generalized Estimating Equations (GEEs)

$$\eta = X\beta$$

Nonlinear Models

$$\eta = g(X, \beta)$$

Interaction Terms

$$\eta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2)$$

39

Summary

- GLMs are an extension of linear models that allow for response variables that have error distribution models other than a normal distribution
- A unified framework that includes logistic, Poisson, Gamma regression etc
- 3 main components: Random Component, Systematic Component and Link Function
- It's based on MLE rather than OLS
- Can check goodness of fit using deviance and Pearson residuals & X² tests
- Common model comparison criteria: AIC and BIC