CSC 311 – Winter 2022 Design and Analysis of Algorithms 2. Growth of functions and asymptotic notation

Prof. Mohamed Menai

Department of Computer Science

King Saud University

Outline

- Asymptotic notation
- The *O*-notation
- The Ω -notation
- The Θ -notation
- The *o*-notation
- The ω -notation

Overview

- Order of growth of functions provides a simple characterization of efficiency
- Allows for comparison of relative performance between alternative algorithms
- Concerned with *asymptotic* efficiency of algorithms
- Best asymptotic efficiency usually is best choice except for smaller inputs
- Several standard methods to simplify asymptotic analysis of algorithms

Asymptotic Notation

- Applies to functions whose domains are the set of natural numbers $N = \{0,1,2,...\}$
- If time resource T(n) is being analyzed, the function's range is usually the set of nonnegative real numbers: $T(n) \in \mathbb{R}^+$
- If space resource S(n) is being analyzed, the function's range is usually also the set of natural numbers: $S(n) \in \mathbb{N}$

The *O*-Notation

- The *O*-notation is an asymptotic upper bound.
- f(n) = O(g(n)) pronounced "f of n is big-oh of g of n":

 $O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that } \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

Using the Definition of the O-Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$ **Solution:** Since when x > 1, $x < x^2$ and $1 < x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$
 $f(x)$ is $O(x^2)$

– Can take c = 4 and $n_0 = 1$ as witnesses to show that

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$.
- If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x)).
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 f_2)(x)$ is $O(g_1(x)g_2(x))$.
- $f(x) = O(g(x)) \Rightarrow f(x) + g(x) = O(g(x))$

The Ω -Notation

- The *O*-notation provides an asymptotic upper bound on a function.
- The Ω -notation provides an asymptotic lower bound on a function.
- $f(n) = \Omega(g(n))$ pronounced "f of n is bigomega of g of n":

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that } \forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$$

The Ω -Notation

 $\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ so that}$ $\forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$

The Ω -Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$

Solution: $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$ for all positive real numbers x.

The Θ-Notation

- The Θ -notation is an asymptotically tight bound on f(n).
- Θ -notation is a stronger notion than O-notation. $\Theta(g(n))$ is a sub-set of O(g(n))
- g(n) asymptotically bounds a function from above and below.

The Θ-Notation

• $\Theta(g(n))$ is the set of functions:

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 > 0, n_0 > 0 \text{ so that}$$

 $\forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$

- A function f(n) belongs to the set $\Theta(g(n))$ if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$, for sufficiently large n.
- Notation: $f(n) = \Theta(g(n))$

Theorem

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

The Θ-Notation Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is of order x^n (or $\Theta(x^n)$).

Example:

The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).

The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).

The *o*-Notation

- The asymptotic upper bound provided by the Onotation may or may not be asymptotically tight:

 - The bound $2n^2 = O(n^2)$ is asymptotically tight.

 - The bound $2n = O(n^2)$ is not.
- The o-notation is used to denote an upper bound that is not asymptotically tight.

```
f(n) = o(g(n)) pronounced "f of n is little-oh of g of n": o(g(n)) = \{ f(n) : \forall c > 0 \ \exists n_0 > 0 \ \text{so that}
```

 $\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n)$ • For example, $2n = o(n^2)$, but $2n^2 \ne o(n^2)$

The *o*-Notation

 $o(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that } \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

The *o*-Notation

$$o(g(n)) = \{ f(n) : \forall c > 0 \ \exists n_0 > 0 \text{ so that}$$

$$\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

- In f(n) = O(g(n)), the bound $f(n) \le c \cdot g(n)$ holds for some constant c > 0.
- In f(n) = o(g(n)), the bound $f(n) \le c \cdot g(n)$ holds for all constants c > 0.
- Intuitively, the function f(n) becomes insignificant relative to g(n), as n approaches infinity: $\lim \frac{f(n)}{f(n)} = 0$

The ω -Notation

- The ω -notation is to Ω -notation, as the o-notation is to O-notation.
- The ω -notation is used to denote a lower bound that is not asymptotically tight.
- $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$
- pronounced "f of n is little-omega of g of n".
- $f(n) \in \omega(g(n))$ implies that: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

The ω -Notation

 $\omega(g(n)) = \{ f(n) : \forall c > 0 \exists n_0 > 0 \text{ so that } \forall n \ge n_0 : f(n) \ge c \cdot g(n) \ge 0 \}$

Intuition for Asymptotic Notation

- Big-Oh
 - f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n).
- Big-Omega
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n).
- Theta
 - -f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n).
- Little-oh
 - -f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n).
- Little-omega
 - -f(n) is $\omega(g(n))$ if f(n) is asymptotically strictly greater than g(n).

Comparison of Functions

Transitivity

- f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

Reflexivity

• f(n) = O(f(n)) $f(n) = \Omega(f(n))$ $f(n) = \Theta(f(n))$

Comparison of Functions

Symmetry

• $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

Transpose Symmetry

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$

Asymptotic Analysis and Limits

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = o(g(n))$.

if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, for some constant c > 0, then $f(n) = \Theta(g(n))$.

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $a^{f(n)} = o(a^{g(n)})$, for any $a > 1$.

$$f(n) = o(g(n)) \Rightarrow a^{f(n)} = o(a^{g(n)})$$
, for any $a > 1$.

Standard Notation and Common Functions

- Important relationships
 - For all real constants a and b such that a > 1, $n^b = o(a^n)$

that is, any exponential function with a base strictly greater than unity grows faster than any polynomial function.

- For all real constants a and b such that a > 0, $\log^b n = o(n^a)$

that is, any positive polynomial function grows faster than any polylogarithmic function.

Standard Notation and Common Functions

- Factorials
 - For all *n* the function *n*! or "*n* factorial" is given by $n! = n \times (n-1) \times (n-2) \times (n-3) \times ... \times 2 \times 1$
 - It can be established that $n! = o(n^n)$ $n! = \omega(2^n)$ $\log(n!) = \Theta(n \log n)$

Asymptotic Running Time of Algorithms

We consider algorithm A better than algorithm
 B if:

$$T_A(n) = o(T_B(n))$$

- Why is it acceptable to ignore the behavior of algorithms for small inputs?
- Why is it acceptable to ignore the constants?
- What do we gain by using asymptotic notation?

Things to Remember

- Asymptotic analysis studies how the values of functions compare as their arguments grow without bounds.
- Ignores constants and the behavior of the function for small arguments.
- Acceptable because all algorithms are fast for small inputs and growth of running time is more important than constant factors.

Things to Remember

• Ignoring the usually unimportant details, we obtain a representation that succinctly describes the growth of a function as its argument grows and thus allows us to make comparisons between algorithms in terms of their efficiency.

Reading

Chapter 2 (Sections 2.1, 2.2)

Anany Levitin, Introduction to the design and analysis of algorithms, 3rd Edition, Pearson, 2012.