

高中数学・一阶

适用于联赛一试与强基计划

作者: Johnny Tang 组织: DEEP Team

时间: January 21, 2022

请:相信时间的力量,敬畏概率的准则

目录

第一部	3分 预备知识	4
第0章	数理逻辑	5
第1章	代数变换基础	6
1.1	多项式的概念	6
1.2	多项式的根与 Vieta 定理	6
1.3	整式恒等变形	6
1.4	简单的不等式	6
1.5	求和符号	6
第2章	数域与运算	7
2.1	复数初步	7
2.2	对数运算	7
第二部	3分 高中数学基础	8
第1章	集合	9
1.1	集合的概念	9
1.2	集合间的运算与运算律	9
1.3	集合元素的个数	9
第2章	函数	10
2.1	映射与函数	10
2.2	常见初等函数	10
2.3	函数的性质	10
2.4	函数迭代与函数方程	11
第3章	三角函数	12
3.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12
	三角函数的计算	
	三角函数的应用	
3.4	反三角函数	13
第4章	平面向量与复数	14
4.1	平面向量的概念	14
4.2	平面向量基本定理	14

4.3	复数	14
第5章	数列	15
5.1	等差数列与等比数列	15
5.2	数列的变形	16
5.3	数学归纳法	16
第6章	极限与导数	17
6.1	极限的概念与运算	17
6.2	导数的概念与运算	17
6.3	导数的应用	17
第7章	不等式	18
7.1	常用不等式	18
7.2	若干著名不等式	18
7.3	常见代数不等式	18
7.4	常见几何不等式	18
第8章	概率、计数与组合	19
8.1	概率与数学期望	19
8.2	排列组合模型	19
8.3	二项式定理	19
第9章	几何中的距离与角度	20
9.1	常用平面几何结论——边长	20
9.2	常用平面几何结论——三角	20
9.3	常用平面几何结论——平面向量	20
第 10 章	解析几何	21
10.1	平面基本元素	21
10.2	圆锥曲线	21
10.3	圆锥曲线计算技巧	21
第 11 章	立体几何	22
11.1	空间中的几何体	22
	空间中的位置关系	22
11.3	空间中的距离与角度	22
11.4	多面体与球	22
11.5	空间向量	22

			日水
第三	部	分 高中数学习题	23
第1:	章	集合	24
1.	.1	集合及其运算	24
1.	.2	集合元素的个数	25
1.	.3	子集的性质	27
第 2	章	函数	28
第3	章	三角函数	29
第4:	章	平面向量	30
第 5	章	复数	31
第6	章	数列	32
第7	章	极限与导数	33
第8	章	不等式	34
第9	章	概率统计与计数	35
第 10	章	解析几何	36
第 11	童	立体几何	37

第一部分

预备知识

第0章 数理逻辑

充分条件与必要条件,命题的关系,命题的逻辑运算,形式逻辑词

第1章 代数变换基础

1.1 多项式的概念

多项式、多项式的根、多项式相等的概念,多项式的运算,多项式的带余除法

1.2 多项式的根与 Vieta 定理

余数定理,因式定理, Vieta 定理

1.3 整式恒等变形

换元技巧, 齐次性原理

1.4 简单的不等式

绝对值不等式,糖水不等式,均值不等式,线性规划

1.5 求和符号

求和符号

第2章 数域与运算

2.1 复数初步

基本概念

2.2 对数运算

基本概念,运算法则,特殊对数

第二部分

高中数学基础

第1章 集合

1.1 集合的概念

集合的概念、表示、性质,常见集合,集合中的元素,集合间的关系

1.2 集合间的运算与运算律

交集与并集,运算律

1.3 集合元素的个数

有限元集合的元素个数公式,容斥公式

第2章 函数

2.1 映射与函数

映射、映射相等的概念,特殊的映射,逆映射,映射的复合,函数的概念

2.2 常见初等函数

基本初等函数、初等函数的概念

2.2.1 二次函数

二次函数的性质,最值问题,实根分布问题

2.2.2 对勾函数

对勾函数、垃圾函数的性质

2.2.3 常值函数、指数函数、幂函数、对数函数

常值函数的概念、幂函数的概念、指数函数的概念、图像与性质,对数函数的概念、图像与性质

2.2.4 三角函数与双曲函数

详见下一章.

2.3 函数的性质

2.3.1 单调性

单调性的概念,函数单调性的运算,区间根定理

2.3.2 奇偶性

奇偶性的概念,函数奇偶性的运算

2.3.3 对称性

对称性的概念, 函数的对称变换, 含绝对值的函数

2.3.4 周期性

周期性的概念

2.4 函数迭代与函数方程

2.4.1 函数的迭代与不动点

函数迭代的概念,函数不动点的概念

2.4.2 简单的函数方程

函数方程问题, Cauchy 方程

第3章 三角函数

3.1 三角函数的概念

任意角, 弧度制

3.1.1 三角函数的性质

三角函数的定义,诱导公式,和差角公式

3.1.2 三角函数的函数性质

三角函数的图像与性质

3.1.3 三角函数与双曲函数

三角函数的复数表示, 双曲函数的定义

3.2 三角函数的计算

3.2.1 三角恒等变形

二倍角、半角公式,三倍角公式,万能公式,辅助角公式,积化和差、和差化积公式,双曲恒等变形公式

3.2.2 正弦定理与余弦定理

正弦面积公式, 正弦定理, 余弦定理

3.3 三角函数的应用

3.3.1 三角换元

三角换元常见形式

3.3.2 三角恒等式

常见的三角恒等式

3.3.3 三角不等式

常见的三角不等式

3.4 反三角函数

反三角函数的概念、图像与性质

第4章 平面向量与复数

4.1 平面向量的概念

平面向量的概念,向量间的关系,向量的运算

4.2 平面向量基本定理

4.2.1 平面向量基本定理

平面向量基本定理, 定比分点公式

4.2.2 向量的本质

平面向量的坐标表示,高维向量的定义

4.3 复数

4.3.1 复数的表示

复数的几何表示,复数的三角表示

4.3.2 复数的运算

复数的四则运算, 共轭复数的运算

第5章 数列

数列,顾名思义,就是将一组数按顺序排为一列的形式. 为了区别于集合与组,一般直接将每一项列出来而不加括号,例如 a_1, a_2, \cdots, a_n . 也可以用通项公式或递推公式表示,例如

$$\{a_n\}_{n=1}^{\infty}$$
 $a_{n+k} = f(a_{n+1}, \cdots, a_{n+k-1})$

其中第一种表示形式的" $\sum_{n=1}^{\infty}$ "常省略不写.

数列可按以下标准分类:

- 1. 单调性: 若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} \geq (>)$ a_n , 称 $\{a_n\}$ 为 (严格) 递增数列; 反之,若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} \leq (<)$ a_n , 称 $\{a_n\}$ 为 (严格) 递减数列; 若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} = a_n$, 称 $\{a_n\}$ 为常数数列.
- 2. 有限性: 若数列 $\{a_n\}$ 的项数有限, 称其为**有限数列**; 反之, 若数列 $\{a_n\}$ 的项数无限, 称其为**无限数列**.
- 3. 有界性: 以上界为例. 若数列 $\{a_n\}$ 满足

$$\exists M > 0 \ s.t. \ \forall n \in \mathbb{N}^*, \ a_n < M$$

则称其为**有界数列**,其中它的**上界**是M;若满足

$$\forall M > 0, \exists n_0 \in \mathbb{N}^* \ s.t. \ a_n > M$$

则称其为无界数列. 下界的定义类似.

对于一个给定的数列,我们会研究它的递推公式、通项公式、前n 项和 S_n 、前n 项积 T_n ,等等.

5.1 等差数列与等比数列

5.1.1 等差数列

我们定义满足递推式 $a_{n+1} = a_n + d$ 的数列 $\{a_n\}$ 为**等差数列**, 并称 a_1 为**首项**, d 为**公差**.

等差数列的通项公式可以表达为 $a_n = a_1 + (n-1)d$. 若将 a_n 看做关于 n 的函数,容易发现任何一个形如 $a_n = pn + q$ 的式子都代表一个等差数列.

等差数列的前 n 项和公式表达为

$$S_n = \sum_{k=1}^n [a_1 + (k-1)d] = na_1 + d[0 + 1 + \dots + (n-1)] = na_1 + \frac{n(n-1)}{2}d$$

若将 S_n 看做关于 n 的函数,容易发现任何一个形如 $S_n = pn^2 + qn$ 的式子都代表一个等差数列.

以下列出等差数列的部分性质:

命题 5.1

设等差数列 $\{a_n\}$,

- 2. $S_m, S_{2m} S_m, S_{3m} S_{2m}, \cdots$ 也为等差数列,且其公差为 m^2d .
- 3. $S_{2n-1} = (2n-1)a_n$.

在证明一个数列是等差数列或利用题目中关于等差数列的条件时,常常利用等差数列的定义,即相邻两项之差为定值.

5.1.2 等比数列

定义,性质,无穷递降等比数列

5.2 数列的变形

5.2.1 数列递推求通项

常见递推求法

5.2.2 数列求和与 ∑ 符号

 S_n 与 a_n , \sum 符号用法

5.3 数学归纳法

第一数学归纳法, 跳跃数学归纳法, 第二数学归纳法, 多元归纳法

第6章 极限与导数

6.1 极限的概念与运算

数列的极限,函数的极限,极限的四则运算,常用极限

6.2 导数的概念与运算

导数的概念,导函数的概念,初等函数的导数,导数的运算法则

6.3 导数的应用

导数与单调性,导数与极值点

第7章 不等式

7.1 常用不等式

7.1.1 均值不等式

均值不等式, 加权均值不等式

7.1.2 Cauchy 不等式

Cauchy 不等式

7.1.3 排序不等式

排序不等式, 切比雪夫不等式

7.1.4 函数的凹凸性与 Jensen 不等式

函数的凹凸性, Jensen 不等式, 加权 Jensen 不等式

7.2 若干著名不等式

Hölder 不等式, Young 不等式, Schur 不等式, 权方和不等式, Bernoulli 不等式

7.3 常见代数不等式

一些常见的代数不等式

7.4 常见几何不等式

一些常见的几何不等式

第8章 概率、计数与组合

8.1 概率与数学期望

8.2 排列组合模型

计数原理, 无重排列与组合, 可重排列与组合, 圆排列

8.3 二项式定理

二项式定理,组合恒等式

第9章 几何中的距离与角度

9.1 常用平面几何结论——边长

Ptolemy 定理,定差幂线定理,Stewart 定理,Menelaus 定理,Ceva 定理

9.2 常用平面几何结论——三角

张角定理,角元 Menelaus 定理,角元 Ceva 定理

9.3 常用平面几何结论——平面向量

极化恒等式,奔驰定理

第10章 解析几何

10.1 平面基本元素

10.1.1 点与直线

形式,位置关系判断,点到直线距离公式,定比分点公式

10.1.2 圆

标准方程,参数方程

10.2 圆锥曲线

10.2.1 椭圆与双曲线

椭圆的概念, 双曲线的概念

10.2.2 第二定义与抛物线

第二定义, 抛物线

10.3 圆锥曲线计算技巧

第11章 立体几何

11.1 空间中的几何体

空间中的几何体及其表面积、体积计算

11.2 空间中的位置关系

公理体系,空间中的平行关系,空间中的垂直关系

11.3 空间中的距离与角度

空间中的距离,空间中的角度

11.4 多面体与球

正方体,正四面体

11.5 空间向量

空间向量基本定理, 法向量与夹角计算

第三部分

高中数学习题

第1章 集合

1.1 集合及其运算

填空题

例题 1.1.1 设集合 $M = \{-1,0,1\}, N = \{2,3,4,5,6\}$, 映射 $f: M \to N$, 则对任意的 $x \in M$, 使得 x+f(x)+xf(x) 恒为奇数的映射 f 的个数为

提示 分类讨论.

例题 1.1.2 称有限集 S 的所有元素的乘积为 S 的"积数",给定数集 $M = \{\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{100}\}$,则集合 M 的所有含偶数个元素的子集的"积数"之和为______.

提示 举例分析.

解答题

例题 1.1.3 (2015 高联)设 a_1, a_2, a_3, a_4 是 4 个有理数,使得 $\{a_i a_j | 1 \le i < j \le 4\} = \{-24, -2, -\frac{3}{2}, -\frac{1}{8}, 1, 3\}$. 求 $a_1 + a_2 + a_3 + a_4$ 的值.

提示 通过大小关系将 $a_1a_2, a_1a_3, a_1a_4, a_2a_3, a_2a_4, a_3a_4$ 与这六个数字对应.

例题 1.1.4 (2017 清华 THUSSAT) 已知集合 $A = \{a_1, a_2, a_3, a_4\}$,且 $a_1 < a_2 < a_3 < a_4$, $a_i \in \mathbb{N}^*$ (i = 1, 2, 3, 4). 记 $a_1 + a_2 + a_3 + a_4 = S$,集合 $B = \{(a_i, a_j) : (a_i + a_j) | S, a_i, a_j \in A, i < j\}$ 中的元素个数为 4 个,求 a_1 的值. 提示 通过大小关系得出不能被 S 整除的两项.

例题 1.1.5 X 是非空的正整数集合,满足下列条件: (i) 若 $x \in X$,则 $4x \in X$; (ii) 若 $x \in X$,则 $[\sqrt{x}] \in X$. 求证: X 是全体正整数的集合.

提示 将两种关于X的性质结合起来看.

例题 **1.1.6** 设 S 为非空数集,且满足: (i)2 $\notin S$; (ii) 若 $a \in S$, 则 $\frac{1}{2-a} \in S$. 证明:

(1) 对一切 $n \in \mathbb{N}^*$, $n \ge 3$,有 $\frac{n}{n-1} \notin S$; (2) S 或者是单元素集,或者是无限集.

提示 数学归纳法.

例题 1.1.7 以某些整数为元素的集合 P 具有下列性质: (i) P 中的元素有正数,有负数; (ii) P 中的元素有奇数,有偶数; (iii) $-1 \notin P$; (iv) 若 $x,y \in P$,则 $x+y \in P$. 试证明:

 $(1)0 \in P$; $(2)2 \notin P$.

提示 第一问:构造;第二问:反证法.

例题 1.1.8 已知数集 A 具有以下性质: (i) $0 \in A, 1 \in A$; (ii) 若 $x, y \in A$, 则 $x - y \in A$; (iii) 若 $x \in A, x \neq 0$, 则 $\frac{1}{x} \in A$.

求证: 当 $x, y \in A$ 时,则 $xy \in A$.

提示 只需证明 $\frac{1}{xy} \in A$, 然后构造.

1.2 集合元素的个数

定理 1.1 (容斥原理 1——容斥公式)

设 $A_i(i=1,2,\cdots,n)$ 为有限集,则

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots + (-1)^{n-1} |\bigcap_{i=1}^{n} A_{i}|$$

可以使用数学归纳法证明.

 \odot

定理 1.2 (容斥原理 2——筛法公式)

设 $A_i(i=1,2,\cdots,n)$ 为全集 I 的子集,则

$$|\bigcap_{i=1}^{n} C_{I} A_{i}| = |I| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |\bigcap_{i=1}^{n} A_{i}|$$

可以通过摩根律证明. 这个公式常常用来计算不满足任意给定性质的子集个数.

填空题

例题 1.2.1 设 $\{b_n\}$ 是集合 $\{2^t + 2^s + 2^r | 0 \le r < s < t, r, s, t \in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,已知 $b_k = 1160$,则 k 的值为______.

提示 分段考虑.

例题 1.2.2 $A = \{z|z^{18} = 1\}$, $B = \{w|w^{48} = 1\}$ 都是 1 的复单位根的集合, $C = \{zw|z \in A, w \in B\}$ 也是 1 的复单位根的集合. 则集合 C 中含有元素的个数为_____.

提示 复数的三角表示.

例题 1.2.3 已知集合 $\{1,2,\cdots,3n\}$ 可以分为 n 个互不相交的三元组 $\{x,y,z\}$,其中 x+y=3z,则满足上述要求的两个最小的正整数 n 是

提示 从条件 x + y = 3z 入手变形消元.

例题 1.2.4 集合 $M = \{x | \cos x + \lg \sin x = 1\}$ 中元素的个数是 .

提示 有没有可能无解?

解答题

例题 **1.2.5** 设集合 $M = \{1, 2, \dots, 1995\}$, $A \in M$ 的子集且满足条件: 当 $x \in A$ 时, $15x \notin A$,求 A 中元素个数的最大值.

提示 先构造最大值情况, 再证明这是最大值.

例题 1.2.6 求最大的正整数 n,使得 n 元集合 S 同时满足: (i)S 中的每个数均为不超过 2002 的正整数; (ii) 对于 S 的两个元素 a 和 b(可以相同),它们的乘积 ab 不属于 S.

提示 先构造最大值情况, 再证明这是最大值.

例题 1.2.7 我们称一个正整数的集合 A 是"一致"的,是指:删除 A 中任何一个元素之后,剩余的元素可以分成两个不相交的子集,而且这两个子集的元素之和相等. 求最小的正整数 n(n>1),使得可以找到一个具有 n 的元素的"一致"集合 A.

提示 将 A 中元素分奇偶讨论.

例题 1.2.8 设 n 是正整数,我们说集合 $\{1,2,\cdots,2n\}$ 的一个排列 (x_1,x_2,\cdots,x_{2n}) 具有性质 P ,是指在 $\{1,2,\cdots,2n-1\}$ 中至少有一个 i,使得 $|x_i-x_{i+1}|=n$,求证:对于任何 n,具有性质 P 的排列比不具有性质 P 的排列的个数多.

例题 1.2.9 设 $S \subseteq \mathbb{R}$ 是一个非空的有限实数集,定义 |S| 为 S 中的元素个数,

$$m(S) = \frac{\sum_{x \in S} x}{|S|}$$

已知 S 的任意两个非空子集的元素的算术平均值都不相同. 定义

$$\dot{S} = \{ m(A) | A \subseteq S, \ A \neq \emptyset \}$$

证明: $m(\dot{S}) = m(S)$.

提示 贡献法.

1.3 子集的性质

填空题

例题 1.3.1 设 $S = \{(x,y)|x^2 - y^2$ 为奇数, $x,y \in \mathbb{R}\}$, $T = \{(x,y)|\sin^2(2\pi x^2) - \sin^2(2\pi y^2) = \cos^2(2\pi x^2) - \cos^2(2\pi y^2)$, $x,y \in \mathbb{R}\}$, 则 $S \ni T$ 的关系为_____.

提示 变形.

解答题

例题 1.3.2 设 S 是集合 $\{1,2,3,\cdots,50\}$ 的非空子集,S 中任何两个数之和不能被 7 整除. 求 $\operatorname{card}(S)$ 的最大值. 提示 列举.

例题 1.3.3 已知集合 $A = \{1, 2, \dots, 10\}$. 求集合 A 的具有下列性质的子集个数:每个子集至少含有 2 个元素,且每个子集中任何两个元素的差的绝对值大于 1.

提示 递推思想.

例题 1.3.4 证明:任何一个有限集的全部子集可以这样地排列顺序,使任意两个相邻的集相差一个元素.

提示 举例或递推.

例题 **1.3.5** 对于整数 $n (n \ge 2)$,如果存在集合 $\{1, 2, \dots, n\}$ 的子集族 A_1, A_2, \dots, A_n 满足:

- (a) $i \notin A_i, i = 1, 2, \dots, n$;
- (b) 若 $i \neq j$, $i, j \in \{1, 2, \dots, n\}$, 则 $i \in A_i$ 当且仅当 $j \notin A_i$;
- (c) $\forall i, j \in \{1, 2, \dots, n\}, A_i \cap A_j \neq \emptyset$.

则称 n 是"好数". 证明: (1)7 是"好数"; (2) 当且仅当 $n \ge 7$ 时, n 是"好数".

提示 举例与构造.

例题 1.3.6 设 S 是一个有 6 个元素的集合,能有多少种方法选取 S 的两个 (不必不相同) 子集,使得这两个子集的并是 S? 选取的次序无关紧要,例如,一对子集 $\{a,c\},\{b,c,d,e,f\}$ 与一对子集 $\{b,c,d,e,f\},\{a,c\}$ 表示同一种取法.

提示 对 card $(A \cap B)$ 进行讨论.

例题 1.3.7 (2018 山东预赛) 设集合 A, B 满足: $A \cup B = \{1, 2, \cdots, 10\}, A \cap B = \emptyset$. 若集合 A 中的元素个数不是 A 中的元素,集合 B 中的元素个数不是 B 中的元素,求满足条件的所有不同的集合 A 的个数.

提示 对 |A|, |B| 进行讨论.

例题 1.3.8 设 k,n 为给定的整数, $n>k\geq 2$,对任意 n 元的数集 P,作 P 的所有 k 元子集的元素和,记这些和组成的集合为 Q,集合 Q 中元素个数是 C_Q . 求 C_Q 的最大值和最小值.

提示 数学归纳法.

例题 1.3.9 设集合 $S_n = \{1, 2, \dots, n\}$. 若 $X \in S_n$ 的子集,把 X 中所有数的和为 X 的"容量" (规定空集的容量为 0),若 X 的容量为奇(偶)数,则称 X 为 S_n 的奇(偶)子集.

- (1) 证明: S_n 的奇子集与偶子集的个数相等;
- (2) 证明: 当n > 2时, S_n 的所有奇子集的容量之和等于所有偶子集的容量之和;
- (3) 当 n > 2 时,求 S_n 的所有奇子集的容量之和.

提示 贡献法.

第2章 函数

第3章 三角函数

第4章 平面向量

第5章 复数

第6章 数列

第7章 极限与导数

第8章 不等式

第9章 概率统计与计数

第10章 解析几何

第11章 立体几何