

INTELLIGENCE ARTIFICIELLE PROJET - EXAMEN ORAL

REGRESSION LOGISTIQUE & NAIVE BAYES

Gregory Sedykh, Leandre Catogni, Noah Peterschmitt, Noah Munz, Michel Donnet

02 Fevrier 2024

RÉGRESSION LOGISTIQUE

RÉGRESSION LOGISTIQUE BINAIRE: PRINCIPE

RÉGRESSION LOGISTIQUE BINAIRE: IDÉE

RÉGRESSION LOGISTIQUE: FONCTION D'ESTIMATION

Fonction sigmoïde

$$\sigma(z)=rac{1}{1+e^{-z}}$$

Caractérisiques:

- Comprise entre 0 et 1 ⇒ probabilité!
- Point d'inflexion à 0.5

Idée:

ullet établir un seuil afin de prédire le label Y

ENTRAÎNEMENT DU MODÈLE

But:

ullet maximiser la probabilité P(Y=y|X) pour y la valeur d'entrainement du label.

Mais on a la descente en gradient...

 \Rightarrow transformer le problème en problème de minimisation !

 \Rightarrow Negative Logarithm Likelihood

RÉGRESSION LOGISTIQUE MULTINOMIALE: PRINCIPE

GÉNÉRALISATION DE LA FONCTION SIGMOÏDE EN FONCTION SOFTMAX

$$P(Y=k|X) = rac{1}{1+e{-}X heta^T} \;
ightarrow \; rac{e^{X heta_k^T}}{\sum_i^N e^{X heta_i^T}}$$

ENTRAÎNEMENT DU MODÈLE

Même principe que pour la régression logistique binaire

NAIVE BAYES

NAIVE BAYES

- Classification probabiliste conditionnelle: théorème de Bayes : $P(Y|X) = rac{P(X|Y)P(Y)}{P(X)}$
 - lacktriangledown Features X_0,\cdots,X_{K-1} , Classes Y_0,\cdots,Y_{C-1} (ici C=3,K=3)
- Sepal length \bot sepal width \bot petal length \bot petal width (Hypthèse d'indépendence naïve)
- Calculer la distribution empirique des features indépendemment des autres
 - X_i continue $\Rightarrow X_i \sim \mathcal{N}(\mu_i, \sigma_i)$, i.e. pour notre colonne de data, on calcule, la moyenne et standard deviation \Rightarrow on dit que ce sont les paramètres de la loi normale qui modélise comment les données de la colonne i sont réparties
 - $lacksquare X_i$ binaire \Rightarrow $X_i \sim \mathcal{B}(p_i)$
- On calcul l'impact qu'ont les V.A. de lois inférés de la répartition de chaque colonne sur le label que l'on veut prédire.
 - E.g. Comment la répartition de X_2 (longueur du pétale) nous donne une information sur le type de fleur?
- Intuitivement \Rightarrow Comment la probabilité que la longueure du pétale aie une certaine valeur influe sur le type de fleur Y_i ?
- En se prenant l'information non pas donnée par la répartition de X_2 mais par la répartition de tous les $[X_{j\in[0,3]}]\Rightarrow$ on obtient le principe du classifier bayesien. (Chaque X_j a un poids équivalent)

NAIVE BAYES - FORMELLEMENT

- $ullet P(cause| ext{effet}) = rac{P(ext{effet}|cause)P(cause)}{P(ext{effet})}$
- $P(class| ext{donn\'ee}) = rac{P(ext{donn\'ee}|class)P(class)}{P(ext{donn\'ee})} = rac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$
- On aimerait (intuitivement): Calculer les probabilités que notre label ait telle ou telle classe connaissant notre sample, et prendre le max \tilde{y} i.e.

$$ilde{y} = rg \max_{y \in \mathcal{Y}} P(y|\mathbf{x})$$

- Ici on part du principe qu'on connaît $\mathbf{x} \Rightarrow$ perd principe de la prédiction puisque ça impose le fait que l'on doit avoir déjà observé <u>exactement</u> ce \mathbf{x} .
- On utilise que, le y qui maximise la formule du théorème de bayes est aussi le y qui maximise $P(\mathbf{x}|y)P(y)$, (car $P(y|x) \propto P(x)P(y)$)

NAIVE BAYES - CONCLUSION

- $ullet \ ilde y = rg \max_{y \in \mathcal{Y}} P(y|\mathbf{x})$
- $P(y|x) \propto P(x)P(y)$
- Donc $\tilde{y} = P(\mathbf{x}|y)P(y)$
- Sepal length \bot sepal width \bot petal length \bot petal width (Hypthèse d'indépendence naïve)

$$oldsymbol{\Phi} P(\mathbf{x}|y) = P(x_1|y) \prod_{k=2}^K P(x_k|x_{k-1},\cdots,x-1,y) = P(x_1|y) \prod_{k=2}^K P(x_k|y) = \prod_{k=1}^K P(x_k|y)$$

• En on conclut donc que

$$\left| ilde{y} = rg \max_{y \in \mathcal{Y}} \left[\prod_{k=1}^K P(x_k|y)
ight]
ight|$$

• On prédit la classe \tilde{y} d'un sample \mathbf{x} , en calculant le maximum de la probabilité conditionnelle $P(\mathbf{x}|classe)$ pour chaque classe.

EVOLUTION DES MÉTRIQUES

CONTEXTE:

Les mesures d'évaluations permettent d'analyser les performances de prédictions d'un modèle, à l'aide d'un "test set".

Rappel:

Test set : Données dont on connaît les labels exacts, que l'on cachera afin de tester les prédictions faites par le modèle.

DÉFINITIONS UTILES :

Dans le contexte multinomial considérons un label positif et des labels nétagifs (ie. ceux qui diffèrent du label positif), on a alors :

- True positive (TP) : Labels positifs qui ont été correctement prédits comme tel
- False Positive (FP): Labels négatifs prédits comme positifs
- True negative (TN): Labels négatifs prédits comme négatifs
- False Negative (FN) : Labels positfs prédits comme négatifs

PRÉCISION

- **Intuition**: Proportion des prédictions positives correctes (TP) par rapport à toutes les prédictions positives (TP + FP).
- Cas multinomial : Moyenne des précisions pour chaque label positif possible.
- Définition :

$$rac{1}{|L|} \cdot \sum_{l \in L} rac{TP_l}{TP_l + FP_l}$$

où L est l'ensemble des labels

RAPPEL:

- Intuition : Proportion des prédictions positives correctes (TP) par rapport aux positifs réels (du test set) (TP + FN).
- Cas multinomial: Moyenne des rappels pour chaque label positif possible.
- Définition Formelle :

$$rac{1}{|L|} \cdot \sum_{l \in L} rac{TP_l}{TP_l + FN_l}$$

où L est l'ensemble des labels

F1 SCORE:

- Intuition : Combinaison de la précision et du rappel (moyenne harmonique)
- Définition :

$$\frac{2}{rappel^{-1} + precision^{-1}} = 2 \cdot \frac{precision \cdot rappel}{precision + rappel}$$

ACCURACY:

- Intuition : Proportion des prédictions correctes parmi l'ensemble total des prédictions.
- Définition :

$$\frac{\text{Nombre de predictions correctes}}{\text{Nombre total de prediction}} = \frac{TP + TN}{TP + TN + FP + FN}$$

OVERFITTING

On ne veut pas apprendre le bruit des données d'apprentissage!

SUR-APPRENTISSAGE: EXEMPLE

SUR-APPRENTISSAGE: GRAPHIQUE

COMMENT ÉVITER LE SUR-APPRENTISSAGE ?

Validation croisée!

AUTRES TECHNIQUES?

- Ajout données d'apprentissage modifiées (pour plus de généralisation...)
- Retirer des caractéristiques
- ..

CONCRÊTEMENT, DANS LE PROJET

Dans le projet, pour montrer le phénomène de sur-apprentissage:

- Ajout de bruits aux données d'apprentissage
- Volume réduit de données
- Modification du nombre d'itérations

RÉSULTATS OBTENUS

RÉSULTATS OBTENUS

RÉSULTATS OBTENUS

- Pic bleu et rouge faible $\Rightarrow X_0$ et X_1 ont moins d'influence sur la classe.
- Chevauchement faible ⇒ peu interdépendance

- pic bleu et vert faible $\Rightarrow X_0$ et X_2 ont moins d'influence sur la classe.
- Chevauchement fort entre bleu et vert et vert et vert et vert et vert et rouge \Rightarrow interdépendance entre X_1 et X_2 et X_0 et X_2

- Pic bleu et vert faible $\Rightarrow X_0$ et X_2 ont moins d'influence sur la classe.
- Chevauchement fort entre bleu et vert et rouge et magenta \Rightarrow interdépendance entre X_1 et X_3 et entre X_0 et X_2

FONCTIONS UTILISÉES

plot_util.py : modification de la fonction plot_vs afin de pouvoir comparer jusqu'à 4 fonctions.

feature_analyse_plot.py : affichage pour chaque classe les courbes des normal PDF de chaque données.

SAMPLING

SAMPLING

- Une fois que les paramètres des classes sont obtenus en supposant l'indépendance des variables, on échantillone de nouvelles données afin de comparer les résultats obtenus avec les données d'origine.
- L'échantillonage est fait dans le fichier sampling.py.
- On fait 50 échantillons pour chaque classe, à partir des paramètres des distributions obtenus dans la section précédente.
- On obtient les résultats suivants (la moyenne et l'écart-type sont donnés pour chaque classe et chaque variable):

A

GRAPHS PAR CLASSE ($Y \in \{\,0,1,2\,\}$)

RÉSULTATS

COMPARAISON AVEC SKLEARN

NAIVE BAYES

NOTRE NAIVE BAYES

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

SKLEARN NAIVE BAYES

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

LOGISTIC REGRESSION

NOTRE LOGISTIC REGRESSION

• Precision: 0.850

• Recall: 0.846

• Accuracy: 0.866

• F1 score: 0.848

SKLEARN LOGISTIC REGRESSION

• Precision: 0.976

• Recall: 0.974

• Accuracy: 0.977

• F1 score: 0.975

CONCLUSION

