ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТАРНСПОРТА

Федерально государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет путей и сообщения» (ФГБОУ ВО ИрГУПС)

Факультет «Управление на транспорте и информационнные технологии» Кафедра «Информационные системы и защита информации»

THE KUR TITLE WILL BE SETTED

Курсовая работа

КР. 430200. 09.03.01.ПЗ

Выполнил магистрант гр. ПИм.1-16-1 Арляпов С.В.

Проверил к. ф-м. н., доцент Шлаустас Р.Ю.

Содержание Задание Введение 1. Техническое задание 1.5.7 Требования к эксплуатации, удобству технического обслуживания и 1.5.10 Требования к консервации, хранению и транспортированию 1.5.1 Пребования стандартизации, унификации и каталогизации 2. Техническое предложение 3. Технический проект 3.1 Техническое описание КР.430200.09.03.01.ПЗ Подпись Изм. Лист №докум. Разраб. Арляпов С.В. Лист Листов Шлаустас Р.Ю. Пров.

4. Схема функциональная 4.1 Схема электрическая функциональная	
5. Схема структурная 5.1 Схема электрическая структурная	
6. Схема принципиальная 6.1 Схема электрическая принципиальная	
7. Чертёж основания	
8. Чертёж крышки корпуса	
9. Чертёж сборочный	
10Рисунок печатной платы	
Заключение	

ני	Вадание			
J	радание			
$\overline{}$	T	ТТТ		I
!			КР.430200.09.03.01.ПЗ	

	Введені	ие		
Изм.	Лист №дон	кум. Подпись Дата	КР.430200.09.03.01.ПЗ	<u>Лис</u> 5

1 Техническое задание

1.1 Обоснование для проведения работ

Задание преподавателя.

1.2 Исполнитель работ

Студент ИрГУПС ФУТиИТ группы ПИь-16 Арляпов С.В.

1.3 Цель выполнения работ

Разработать устройство охранной сигнализации, предназначенное для контроля, мониторинга и управления территориально-распределенными объектами муниципальных и ведомственных образований с целью увеличения безопасности.

1.4 Назначение продукции

Устройство будет обеспечивать сбор, обработку, передачу и представление в заданном виде служебной информации и информации о проникновении (попытки проникновения).

1.5 Технические требования

1.5.1 Состав продукции

- 1) Основной блок устройства обработки информации;
- 2) Датчики «Рапид 3» 3 штуки;
- 3) Витая пара 1 км;
- 4) Вилки «RJ-45» 5 штук;
- 5) Эксплуатационная документация.

1.5.2 Требования к показателям назначения

1.5.2.1 Выполняемые функции

Разрабатываемое устройство должно обеспечивать в режиме реального времени:

- 1) сбор данных;
- 2) обработку данных;
- 3) оповещение оператора.

1.5.2.2 Нормы и количественные показатели

- Время реакции не менее 1 секунды.
- Время срабатывания механизма оповещения не менее 30 секунд.
- Дальность обнаружения датчиком не менее 15 метров.

						Лист
	·				КР.430200.09.03.01.ПЗ	
Изм.	Лист	№докум.	Подпись	Дата		6

1.5.2.3 Технические характеристики (параметры)

Максимальное количество подключаемых датчиков не менее 4 штук. Максимальная длина кабеля, подключающего датчик к устройству, 400 метров

1.5.2.4 Требования к совместимости

Особых требований не предъявляется.

1.5.2.5 Требования по мобильности

Разрабатываемое изделие должно быть выполнено в стационарном исполнении.

1.5.3 Требования к электропитанию

Электропитание осуществляется по первой категории надежности от однофазной (трехфазной) сети переменного тока 220В, 50Гц, от отдельной группы электрощита, находящегося в охраняемом помещении.

1.5.4 Требования надежности

1.5.4.1 Требования по безотказности

Разрабатываемое устройство должно удовлетворять следующим требованиям:

- вероятность безотказной работы 0,95, не менее;
- средняя наработка на отказ 50000 часов, не менее;
- среднее время восстановления 1 час, не более.

1.5.4.2 Требования по долговечности

Разрабатываемое устройство должно удовлетворять следующим требованиям: срок службы до списания 8 лет, не менее.

1.5.4.3 Критерии отказов и предельного состояния изделия

Отказом разрабатываемого изделия считают невыполнение функций, заданных требованиями п.5.2.1 настоящего технического задания.

1.5.5 Конструктивные требования

- 1.5.5.1 Конструктивное исполнение входящих в разрабатываемое устройство должно обеспечивать:
 - 1) Удобство эксплуатации;
 - 2) Возможность ремонта.

Изм.	Лист	№докум.	Подпись	Дата

- 1.5.5.2 Разрабатываемое изделие должно иметь моноблочную конструкцию.
- 1.5.5.3 Разрабатываемое изделие должно соответствовать следующим требованиям:
 - 5.5.3.1 Размеры:
 - 1) Габаритные 450х450х160 мм, не более;
 - 2) Установочные 500х500х210 мм, не более.
- 5.5.3.2 Масса 2 кг, не более. 5.5.3.3 Устройство крепится на вертикальную поверхность с помощью винтовых соединений. 5.5.3.4 Тип кабеля витая пара. 5.5.3.5 Тип порта RJ-45. 5.5.3.6 Разрабатываемое изделие должно иметь максимальную длину кабеля, подключающего датчик к устройству, 400 метров.
- 1.5.5.4 Покрытия должны обеспечивать необходимую коррозионную стойкость, надежную работу и декоративный вид разрабатываемого изделия при эксплуатации и при хранении.
- 1.5.5.5 Оборудование не должно требовать доступа сзади при монтаже, подводке кабеля и обслуживании.
- 1.5.5.6 Внешние электрические разъемы должны иметь маркировку, позволяющую определить их назначение.
- 1.5.5.7 Электрическая схема должна быть выполнена на единой печатной плате. Монтаж должен осуществляться с помощью методов групповой пайки.

1.5.6 Требования по эргономике и технической эстетике

Кодирование и компоновка средств отображения информации, органов управления на пульте управления, цветовое оформление лицевых панелей пульта разрабатываемого изделия должны обеспечивать безошибочность и быстродействие операторов, удобство и безопасность работы в любое время суток. Необходимо предусмотреть независимое автономное питание, обеспечивающее работу ПКП и извещателей в течении не менее чем 24 часов в дежурном режиме и в течении не менее чем 3 часов в режиме «тревога».

1.5.7 Требования к эксплуатации, удобству технического обслуживания и ремонта

- 1.5.7.1 Требования к стойкости к внешним воздействующим факторам
- 5.7.1.1 Разрабатываемое изделие должно быть стойким, устойчивым и прочным к воздействию климатических факторов в соответствии с таблицей 1.1:

Таблица 1.1 Воздействие климатических факторов

№	Наименование воздействующего фактора	Характеристика воздействующего фактора	Максимальное значение (диапазрн возможных измерений) воздействующего фактора				
	Стойкость						

						Лист
					КР.430200.09.03.01.ПЗ	
Изм.	Лист	№докум.	Подпись	Дата		8

Продолжение таблицы 1.1

	Наименование воздействующего фактора	Характеристика воздействующего фактора	Максимальное значение (диапазрн возможных измерений) воздействующего
№			фактора
	Температура		
1	окружающей среды	Градусов цельсия	5 до 35
	_	Относительная влажность при	
2	Влажность воздуха	температуре 25°, %	до 70
3	Атмосферное давление	Па (мм рт. ст.)	630 до 800
		Устойчивость	
	Температура		
4	окружающей среды	Градусов цельсия	40
		Относительная влажность при	
6	Влажность воздуха	температуре 25° , %	до 80
9	Атмосферное давление	Па (мм рт. ст.)	800 до 900
		Прочность	
	Температура		
7	окружающей среды	Градусов цельсия	50
		Относительная влажность при	
8	Влажность воздуха	температуре 25° , %	до 90
9	Атмосферное давление	Па (мм рт. ст.)	900 до1000

5.7.1.2 Разрабатываемое изделие должно быть устойчивым к воздействию механических факторов в соответствии с таблицей 1.2:

Таблица 1.2 Воздействие климатических факторов

No	Наименование воздействующего фактора	Характеристика воздействующего фактора	Максимальное значение (диапазрн возможных измерений) воздействующего фактора
1	Синусоидальная вибрация	диапазон частот, Гц	$0,5-200*10^{8}$
2	Случайная вибрация	диапазон частот, Гц	$0,5-200*10^{20}$

Изм.	Лист	№докум.	Подпись	Дата

Продолжение таблицы 1.2

	Наименование воздействующего фактора	Характеристика воздействующего фактора	Максимальное значение (диапазрн возможных измерений) воздействующего
№			фактора
3	Удары многократного действия	максимальная амплитуда ускорения, $m*c^2,(g)$	10
4	Удары одиночного действия	максимальная амплитуда ускорения, $m*c^2$, (g)	20
5	Линейное ускорение	максимальная амплитуда ускорения, $m*c^2$, (g)	30

1.5.7.2 Требования к эксплуатационным показателям

5.7.2.1 Разрабатываемый Комплекс должен обеспечивать циклическую работу со следующими параметрами цикла: время загрузки — 30 мин., время обработки — 10 час., время выгрузки — 30 мин., время подготовки — 10 мин. 5.7.2.2 Должен быть обеспечен режим работы от аварийного источника питания. 5.7.2.3 Периодическое техническое обслуживание разрабатываемого изделия должно проводиться не реже одного раза в год. 5.7.2.4 Периодическое техническое обслуживание должно включать в себя обслуживание всех датчиков. 5.7.2.5 К обслуживанию комплекса должны допускаться лица, имеющие допуск к работе с электроустановками напряжением до 220 В. 5.7.2.6 Гарантийный срок разрабатываемого Комплекса должен составлять 5 лет, не менее.

1.5.7.3 Требования по ремонтопригодности

- 5.7.3.1 Обслуживание и ремонт разрабатываемого Изделия должны производиться без применения специальных инструментов."5.7.3.2 Требования к ЗИП
 - 1) Комплект ЗИП должен включать запасные части, необходимые для ремонта и поддержания работоспособного состояния разрабатываемого изделия в течение одного года.
 - 2) В комплект ЗИП должны входить дополнительные датчики и вилки RJ-45.

Изм.	Лист	№докум.	Подпись	Дата

1.5.8 Требования безопасности

- 1.5.8.1 Условия работы персонала разрабатываемой Системы должны соответствовать санитарным нормам по СанПиН 2.2.2/2.4.1340-03.
- 1.5.8.2 Требования безопасности при монтаже, наладке, эксплуатации, обслуживании и ремонте разрабатываемого Комплекса должны быть приведены в эксплуатационной документации.

1.5.9 Требования к упаковке и маркировке

1.5.9.1 Требования к упаковке

Упаковка должна быть выполнена из картона материалов и обеспечивать защиту от ударных воздействий.

1.5.9.2 Требования к маркировке

5.9.2.1 Надписи, цифры, буквы и знаки, нанесенные при маркировке, должны быть хорошо видны, и сохранять четкость в течение всего срока эксплуатации. 5.9.2.2 Маркировка упаковки для транспортирования должна содержать основные, дополнительные, информационные надписи и манипуляционные.

1.5.10 Требования к консервации, хранению и транспортированию

1.5.10.1 Условия хранения

Изделие должно храниться в упакованном виде в отапливаемых и вентилируемых помещениях при температуре от 5 до 35 °C и относительной влажности воздуха не выше 80% (при температуре 25 °C) при отсутствии в этих помещениях конденсации влаги, паров химически активных веществ и источников электромагнитных полей.

1.5.10.2 Срок хранения

Срок хранения разрабатываемого изделия в условиях отапливаемых хранилищ в соответствии с паспортными данными на аппаратуру, но не менее 8 лет.

1.5.10.3 Условия транспортирования:

- Температура окружающей среды: от минус 50 до 50 °C;
- Относительная влажность до 95 % при температуре 30 °C;
- Атмосферное давление от 84 до 107 кПа (от 630 до 800 мм рт. ст.);
- Воздействие ударных нагрузок многократного действия с пиковым ускорением не более 15g (147 м/с2) при длительности действия ударного ускорения 10–15 мс.
- 1.5.10.4 Гарантийный срок хранения разрабатываемого прибора в заводской упаковке в отапливаемом помещении

Не менее одного года.

	_					
						Лист
					КР.430200.09.03.01.ПЗ	1.1
Изм.	Лист	№докум.	Подпись	Дата		11

1.5.11 Требования стандартизации, унификации и каталогизации

Особых требований не предъявляется.

1.6 Требования по видам обеспечения

1.6.1 Требования по метрологическому обеспечению

Особых требований не предъявляется.

1.6.2 Требования по программному обеспечению

Особых требований не предъявляется.

1.7 Экономическое обоснование

1.8 Наименование этапов и выполняемых работ

- 1) Техническое предложение:
 - а) Выбор датчиков;
 - б) Выбор структурной схемы;
 - в) Выбор оптимального варианта реализации;
 - г) Разработка и согласование с преподавателем комплекта технической документации, разрабатываемой в рамках договора;
 - д) Разработка ТД в соответствии с согласованном комплектом.
- 2) Технический проект:
 - а) Разработка технического проекта, в том числе:
 - Разработка конструктивных решений Комплекса и его составных частей:
 - Разработка чертежей;
 - Разработка функциональной и принципиальной схемы.
 - Создание рисунка печатной платы.
 - Выполнение необходимых расчетов для технических решений, обеспечивающих показатели надежности.
 - б) Разработка эксплуатационной документации в соответствии с согласованном перечнем.

			·	
Изм.	Лист	№докум.	Подпись	Дата

2 Техническое предложение

2.1 Сравнительный анализ вариантов реализации

Прибор сравнивает значение с датчиков и заданное значение, результаты передаются на выходы управляющего устройства.

Различные варианты реализации представлены на рисунках 2.1 и 2.2.

Рисунок 2.1 – Структурная схема на ПЛИС

Рисунок 2.2 – Структурная схема на компараторе и регистре

Сравнение вариантов реализации представлено в таблице 2.1.

						Лист
					КР.430200.09.03.01.ПЗ	1.0
Изм.	Лист	№докум.	Подпись	Дата		13

Таблица 2.1 Сравнение реализаций

Вид	На ПЛИС	На регистре и компорато- ре		
Структура	1) ПЛИС хранит установленные настройки и суммирует значения датчиков. 2) Сравнение установленных настроек и показателей датчиков производится посредством ПЛИС. 3) Результат сравнения преобразуется из цифрового сигнала в аналоговый.	1) Цифровой регистр хранит установленные настройки. 2) Значения с датчиков проходят через сумматор. 3) Сравнение установленных настроек, хранимых в регистре, и показателей датчиков производится с помощью компаратора. 4) Выходная информация с компаратора преобразуется в аналоговый сигнал.		
Преимущества	Низкое энергопотребление	Простой ремонт, низкая стоимость		
Примерная стоимость	1750	1200		

2.2 Выбор датчиков

Датчик движения - это устройство для получения информации о состоянии контролируемой им системы, преобразующее данные об изменении характеристик исследуемой области в сигнал, удобный для дальнейшего использования.

2.2.1 Выбор типа датчиков

Под понятием «датчик движения» или «датчик присутствия», часто скрываются устройства совершенно разного принципа действия, выполняющие единую задачу, только различными способами.

В настоящее время наибольшее распространение получили следующие виды датчиков движения:

- Инфракрасные датчики движения (ИК);
- Ультразвуковые датчики движения (УЗ);
- Микроволновые датчики движения (СВЧ).

Плюсы и минусы представлены в таблице 2.3.

						Лист
					КР.430200.09.03.01.ПЗ	4.4
Изм.	Лист	№докум.	Подпись	Дата		14

Таблица 2.2 Сравнение видов датчиков

Вид	Преимущества	Недостатки
Инфракрасные	Возможность довольно точной регулировки дальности и угла обнаружения движущихся объектов Удобен в использовании вне помещений т.к. реагирует лишь на объекты имеющие собственную температуру При работе абсолютно безопасны для здоровья человека или домашних питомцев, т.к. работает как «приемник», ничего не излучая	Возможность ложных срабатываний. Из-за того, что датчик реагирует на любые ИК (тепловые) излучения, могут случаться ложные срабатывания даже на теплый воздух, поступающий из кондиционера, радиаторов отопления и т.п. Снижена точность работы на улице. Из-за воздействия окружающих факторов, таких как прямой солнечный свет, осадки и т.п. Относительно небольшой диапазон рабочих температур Не обнаруживает объекты облаченные/покрытые не пропускающими ИК - излучение материалами
Ультразвуковые	Относительно невысокая стоимость Не подвергаются влиянию окружающей среды Определяют движение вне зависимости от материала объекта Имеют высокую работоспособность в условиях высокой влажности или запылённости Не зависят от влияния температуры окружающей среды или объектов	Многие домашние животные слышат ультразвуковые частоты, на которых работает датчик движения, что зачастую вызывает у них сильный дискомфорт Относительно невысокая дальность действия Срабатывает только на достаточно резкие перемещения, если двигаться совсем плавно — возможно обмануть ультразвуковой датчик движения

Изм.	Лист	№докум.	Подпись	Дата

Продолжение таблицы 2.3

Вид	Преимущества	Недостатки
Микроволновые	Имеет более высокую стоимость относительно датчиков других типов с аналогичными показателями Возможность ложных срабатываний, из-за движений вне необходимой зоны наблюдения, за окном и т.п. СВЧ излучение небезопасно для здоровья человека	Датчик способен обнаруживать объекты за разнообразными диэлектрическими или слабо проводящими ток препятствиями: тонкими стенами, дверьми, стеклами и т.п. Работоспособность датчика не зависит от температуры окружающей среды или объектов Микроволновый датчик движения способен реагировать на самые незначительные движения объекта Датчик обладает более компактными размерами Может иметь несколько независимых зон обнаружения

2.2.2 Выбор производителя датчиков

Компания «Сибирский Арсенал» - производитель охранных систем, работающий на рынке с 1992 года. Система качества этой компании сертифицирована на соответствие международному стандарту ISO 9001. Введу того, что эта компания достаточно компетентна, и их демократичная ценовая политика даёт возможность сделать выбор среди датчиков марки «Рапид».

2.2.3 Выбор датчика марки «Рапид»

После анализа предложенных вариантов был выбран вариант с ПИД-регулятором, т.к. вариант на ПЛИС имеет более высокую себестоимость.

Выбор датчика был произведён между датчиками марки «Рапид»: Рапид-3; Рапид-2; Рапид-10. Сравнение вариантов представлено в таблице ??.

Таблица 2.3 Сравнение видов датчиков

Датчик	Рапид-3	Рапид-2	Рапид-10
Дальность обнаружения человека, не менее	15м	10м	15м
Диапазон скоростей дви- жения нарушителя	0,3-3,0 мс	0,3-3,0 мс	0,3-3,0 мс

	·			·
Изм.	Лист	№докум.	Подпись	Дата

Продолжение таблицы 2.3

Датчик	Рапид-3	Рапид-2	Рапид-10
Длительность тревожно- го извещения	2,5 с	2,5 с	2 c
Диапазон напряжений питания от шлейфа сигнализации	830 B	3 B	915 B
Bec	100 г	150 г	50 г
Потребляемый ток	250 мкА	-	14 мА
Диапазон рабочих температур	-30+50	-10+50	-30+50
Относительная влажность воздуха при температуре +35 °C, без конденсации влаги, не более	95%	95%	95%
Габаритные размеры	90х58х45 мм	90х58х45 мм	90х58х45 мм
Срок службы, не менее	10 лет	5 лет	10 лет
Стоимость	434	1613	657

2.3 Заключение по проведённым анализам

После анализа предложенных вариантов реализации был выбран вариант с регистром, т.к. вариант на ПЛИС имеет более высокую себестоимость.

После анализа предложенных вариантов инфракрасных датчиков был выбран Рапид-3, т.к. вариант является наиболее экономичным.

			·	
Изм.	Лист	№докум.	Подпись	Дата

3 Технический проект

3.1 Техническое описание

3.1.1 Назначение

Устройство предназначения для мониторинга и включения системы оповещения в случае реагирования датчиков движения.

3.1.2 Принцип работы

К выходам АЦП подключаются датчики движения. К выходу ЦАП подключается управляющее устройство, компаратор.

Сигналы, полученные от датчиков, поступают на аналоговый сумматор AD1, значение выхода (контакт 6) AD1 преобразуется в цифровой сигнал с помощью DD1. К управляющему устройству DD4 подключаются выходз с преобразователя DD1 и с регистра DD3. Результат сравнения получаемой и хранимой информации подаётся с управляющего устройства DD4 на преобразователь DD2. Сигналы, полученные от DD2 выводится на диоды R1-R10. Необходимые настройки хранятся в регистре DD3.

Настройки, определяемые производителем, устанавливаются с помощью X1, выходы которого подключены к регистру DD3.

3.2 Расчёты

Прибор сравнивает значение с датчиков и заданное значение, результаты передаются на выходы управляющего устройства.

Различные варианты реализации представлены на рисунках ниже

3.2.1 Оценка теплового режима

Тепловой режим выбирается с помощью диаграммы, приведенной на рисунке 3.1. Область разделяемой зоны соответствует каждому способу охлаждения

Рисунок 3.1 – Диаграмма выбор способа охлаждения

- 1) Естественное;
- 2) Естественное или принудительная конвекция;

						Лист
					КР.430200.09.03.01.ПЗ	1.0
Изм.	Лист	№докум.	Подпись	Дата	R1.430200.07.03.01.113	18

- 3) Принудительная конвекция;
- 4) Принудительная конвекция или принудительная жидкостная.

3.2.1.1 Допустимый перегрев нагретой зоны

Для определения зоны необходимо рассчитать $\triangle T_{oc}$ (допустимый перегрев нагретой зоны):

 $\triangle T_{oc} = T_{min} - T_{oc}$, где T_{min} – допустимая температура нагретой зоны, T_{oc} – максимальная температура окружающей среды.

Расчет поверхности нагретой зоны

 $S_k=2*(L_1*L_2+(L_1+L_2)*L_3*K_3)$, где L_1 – длина, м; $L_1=0,12$, L_2 – ширина, м; $L_2=0,09$, L_3 – высота, м; $L_3=0,05$, K_3 – коэффициент заполнения, равный отношению объема функциональных и монтажных элементов внутри объема корпуса к его внутреннему объему.

3.2.1.2 Плотность теплового потока

 $q=P*K/S_k$, где Kn = 1 при н.у. (760 мм. рт.ст); Р — суммарная тепловая мощность.

3.2.1.3 Расчет

Из полученных расчетов можно сделать вывод, что прибору не требуется дополнительное охлаждение.

3.2.2 Расчет надежности

Для расчета средней наработки на отказ используется формула 4 и данные из таблицы 3.1, полученные из справочника. $T_{cp} = 1/\Sigma \lambda_i, T_{cp} = 366300$ часов.

Таблица 3.1 Воздействие климатических факторов

№	Наименование элемента	Интенсивность отказов $\lambda * 10^{-6}$, $1/4$	Кол-во
1	Пайка	0,005	94
2	АЦП	0,15	1
3	ЦАП	0,15	1
4	АУ	0,15	1
5	Регистр	0,15	1
6	Компаратор	0,2	2
7	Резисторы	0,05	10
8	Конденсаторы	0,14	2
9	Диоды	0,12	4

						Лист
					КР.430200.09.03.01.ПЗ	1.0
Изм.	Лист	№докум.	Подпись	Дата		19

4 Схема функциональная

4.1 Схема электрическая функциональная

Изм.	Лист	№докум.	Подпись	Дата

5 Схема структурная

5.1 Схема электрическая структурная

Изм.	Лист	№докум.	Подпись	Дата

6 Схема принципиальная

6.1 Схема электрическая принципиальная

Изм.	Лист	№докум.	Подпись	Дата

Лист

6.2 Перечень элементов

Таблица 6.1 Перечень элементов

No	Поз. обозначение	Наименование	Кол-во
1	R1-R10	Резистор МЛТ, 1 кОм, 0.5 Вт	10
2	X1	Разъём для питания розетка C13	1
3	X2-X5	Разъёмы для датчика ро- зетка RJ45	4
4	VD1-VD4	Диод BL-513-B	4
5	X6	Разъём DB9	1
6	DD1	Аналого-цифровой преобразователь ADC08L060	1
7	DD2	Цифро-аналоговый преобразователь DAC084S085	1
8	AD1	Аналоговый сумматор LF411CN	1
9	DD3	Регистр 74АС244В	1
10	DD4	Компаратор 54AC11520FK	1

Изм.	Лист	№докум.	Подпись	Дата

7 Чертёж основания 450 Ø6-450 25 62.5 65.0 450

Изм.	Лист	№докум.	Подпись	Дата

8 Чертёж крышки корпуса

Изм.	Лист	№докум.	Подпись	Дата

9 Чертёж сборочный

Изм.	Лист	№докум.	Подпись	Дата

10 Рисунок печатной платы

ı					
	·	·			·
	Изм.	Лист	№докум.	Подпись	Дата

Заключение		
Изм. Лист №локум Подпись Дата	КР.430200.09.03.01.ПЗ	Лист 28