Support Vector machine Theory of kernel function

Professor Abdellatif El Afia

plan

- 1. Reproducing kernel Hilbert spaces
- 2. Caracterizing Kernel Functions
- 3. Kernel Constructions
- 4. Transforming Kernel Matrices

Theory of kernel function

Reproducing Kernel Hilbert Spaces

- 1. Inner Product Space
- 2. Hilbert Space
- 3. Function Spaces
- 4. Separable Hilbert Spaces

Inner product space

Definition: An inner product space X is a vector space with an associated inner product

$$\begin{cases} h & X \times X \to^{1} & \mathbb{R} \\ & (x,y) \to & h(x,y) \end{cases}$$

that satisfies:

- Symmetry: h(x,y) = h(y,x)
- Linearity:
 - h(ax, y) = ah(x, y)
 - h(x + z, y + z) = h(x, y) + h(z, y)
- Positive Semi-Definiteness(PSD): $h(x, x) \ge 0$
- The inner product space is strict if $h(x, x) = 0 \Leftrightarrow x = 0$

A strict inner product space X has a natural norm given by $||x||_2 = \sqrt{x^T x}$ The associated metric is $h(x,z) = ||x-z||_2$

The space \mathbb{R}^n has the inner product $h(x,y) = x^T y$ which yields the Euclidean norm:

$$(\|x - y\|_2)^2 = \sum_{i=1}^{\infty} (x_i + y_i)^2$$

Hilbert Space

Definition:

A strict inner product space *X* is a Hilbert space if it is:

- Complete: Technical Condition required for potentially infinite-dimensional sets Every Cauchy sequence $\{x_i \in X\}_{i=1}^{\infty}$ such that $\limsup_{n \to \infty} ||x_n x_m|| = 0$ converges to an element $x \in X$; i.e., $\lim_{i \to \infty} x_i = x$
- Separable: Condition required to make Hilbert space isomorphisms

 There is a countable subset $\hat{X} = \{x_i \in X\}_{i=1}^{\infty}$ such that $\forall x \in X$ and $\varepsilon > 0$, $\exists x_i \in \hat{X}$ such that : $||x_i x|| < \varepsilon$

Examples:

- the interval [0, 1], the reals \mathbb{R} , the complex numbers C and Euclidean spaces \mathbb{R}^n for $n \in \mathbb{N}$, are the Hilbert space
- The subspace ℓ^2 for which $\forall x \ h(x,x) < \infty$ is a Hilbert space
- The Subspace $L_2(X)$ defined on X, a compact subspace of \mathbb{R}^d , for which $\forall f \in L_2(X)$, $h(f, f) = \int_x f(x)f(x)dx < \infty$ is a Hilbert space

Separable Hilbert Spaces

• Hilbert space F is isomorphic to H if there is a one-to-one linear mapping $T: F \to H$ such that for $\forall x, y \in F$

$$h_H(T(x), T(y)) = h_F(x, y)$$

- Every separable Hilbert space is isomorphic to:
 - \mathbb{R}^d if it has a dimension d
 - l_2 if it has an infinite dimension
- Since Hilbert space F is isomorphic to \mathbb{R}^d or l_2 , F has an orthonormal basis $\{\phi_i\}$ and $\forall x \in F$ have a Fourier decomposition:

$$x = \sum_{i} h_{F}(\phi_{i}, x)\phi_{i}$$

Theory of kernel function

Caracterizing Kernel Functions

- 1. Kernel Termenology
- 2. Kernel Matrices
- 3. Reproducing Kernel Function
- 4. Kernel Functions

Kernel termenology

Definition:

A kernel, k, is a two-argument real-valued function over $X \times X$

$$k: X \times X \rightarrow \mathbb{R}$$

 $(x,y) \rightarrow k(x,y) = h_F(\phi(x),\phi(y))$

for some inner-product space F such that $\phi: X \to F$ and $\forall x \in X \to \phi(x) \in F$

- Kernel functions must be symmetric since inner products are symmetric
- To show that k is a valid kernel, it is sufficient to show that a mapping ϕ exists that yields. However, this is generally difficult to construct.
- In this rest of this chapter, we will demonstrate additional ways to construct and validate kernels

- $\phi: X \to F$ and $\forall x \in X \to \phi(x) \in F$
- $\phi: X = \mathbb{R}^d \to F = \mathbb{R}^q$
- q > d

Kernel Matrices

Definition:

A kernel matrix (or Gram matrix) K is the matrix that results from applying k to all pairs of training set $\{x_i\}_{i=1}^n$

$$K = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

that is, $k_{i,j} = k(x_i, x_i)$

Kernel matrices are square and symmetric. And $tr(K) = \sum_{i=1}^{n} k(x_i, x_i)$

Proposition 1:

- Since K is a symmetric $n \times n$ real-valued matrix, it can be written as

 - If rank(K) = n then $K = V\Lambda V^T = \sum_{i=1}^n \lambda_i \nu_i (\nu_i)^T$ Else (rank(K) = k < n), then $K = V\Lambda V^T = \sum_{i=1}^k \lambda_i \nu_i (\nu_i)^T$

where (λ_i, ν_i) are eigen-value/vector pairs of K. This is called the spectral decomposition of K

• $tr(K_1K_2) = tr(K_2K_1)$

Kernel Matrices

Proposition 2:

Kernel matrices, which are constructed from a kernel corresponding to a strict inner product space F, are PSD.

Proof:

By definition of a kernel matrix, for all $i, j \in \{1, ..., n\}, k_{i,j} = h_F(\phi(x_i), \phi(x_j))$

Thus, for any $v \in \mathbb{R}^n$:

•
$$v^T K v = \sum_{i,j}^n v_i k_{i,j} v_j = \sum_{i,j}^n v_i h_F(\phi(x_i), \phi(x_j)) v_j = h_F(\sum_{i=1}^n v_i \phi(x_i), \sum_{j=1}^n v_j \phi(x_j))$$

•
$$\Rightarrow v^T K v = \|\sum_{i=1}^n v_i \phi(x_i)\|_F^2 \|\ge 0$$

Proposition 3:

• Matrix K is PSD iff there exists a real matrix B such that $K = BB^T = V\sqrt{\Lambda}\sqrt{\Lambda}V^T$

Reproducing Kernel Function

Definition (Aronszajn, 1950)

Suppose F is a Hilbert space of functions over X; the function $k: X \times X \to \mathbb{R}$ is a reproducing kernel of F if

- 1. $\forall x \in X$, the function $f_x(\cdot) = k(\cdot, x) \in F$.
- 2. Reproducing Property: $\forall y \in X, \forall f \in F: f(y) = h_F(f, k(., y))$

Further, the space is called a Reproducing Kernel Hilbert Space (RKHS)

Remarks:

• By 1st property and closure of F, $\forall \alpha_i \in \mathbb{R}, \forall x_i \in X$ we have

$$\sum_{i=1}^{n} \alpha_{i} k(., x_{i}) \in \hat{X} = \{x_{i} \in X\}_{i=1}^{\infty}$$

• Applying f_x from 1st property to 2nd property, $\forall (x,y) \in X^2$, we have

$$k(x,y) = h_F(k(.,x),k(.,y))$$

Kernel functions

Definition (Finitely Positive Semi-definite)

A function $k: X \times X \to \mathbb{R}$ is finitely positive semi-definite (FPSD) if

- It is symmetric: i.e., $\forall x, z \in X^2$ $k(x, z) = k(z, x) < \infty$
- The matrix K formed by applying k to any finite subset of X is positive semi-definite: $v^T K v \ge 0$

Theorem:

 $k: X \times X \to \mathbb{R}$ (either continuous or with a countable domain) is FPSD iff \exists Hilbert space F with feature map $\phi: X \to F$ such that:

$$k(x,z) = h_F(\phi(x),\phi(z))$$

Proof

- Case ←: Follows from Proposition 2.
- Case \Rightarrow : Suppose k if FPSD and we construct Hilbert Space F_k with k as its reproducing kernel; i.e., F_k is the closure of functions: $f_{\chi}(.) = k(., \chi)$

Thus, $\forall \alpha_i \in \mathbb{R}, \forall x_i \in X, \ g(.) = \sum_i \alpha_i \ k(., x_i) \in F_k$ and by the reproducing property, $h_F(g,g) = \sum_i \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha$

$$h_F(g,g) = \sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha$$

where K is the kernel matrix $\{x_i\}_{i=1}^n$, and thus $\alpha^T K \alpha \ge 0$ since K is PSD.

Kernel functions

- (Completeness) Follows from the Cauchy-Schwarz inequality, ?
- (Separability) Separability follows from k being continuous or having a countable domain?.

Finally, the mapping ϕ is specified by k and $\phi(x) = k(., x) \in F_k$

Note:

the Inner Product defined above is strict since:

if
$$||f|| = 0$$
 then $\forall x \in X$, $|f(x)| \le ||f|| ||\phi(x)|| = 0$

Theory of kernel function Kernel Constructions

- 1. Simple Kernels
- 2. Closure Properties of Kernels
- 3. Additional Kernel Functions
- 4. Kernel Questions

Simple Kernels

Clearly, the linear kernel defined by

$$K_{lin}(x,z) = h_F(x,z) = x^T z$$

is a valid kernel function since it is an inner product in X

For any $n \times n$ matrix $B \geq 0$,

$$k_B(x, z) = h_F(x, Bz) = x^T Bz$$

is a valid kernel function

Proposition 3

Suppose:

- k_1 and k_2 are kernels on X,
- a > 0,
- $f: X \to \mathbb{R}$,
- $\varphi: X \to \mathbb{R}^n$,
- k_3 is a kernel on \mathbb{R}^n .

Then these are all kernel functions on *X*:

1.
$$k(x,z) = k_1(x,z) + k_2(x,z)$$

2.
$$k(x,z) = a \cdot k_1(x,z)$$

3.
$$k(x,z) = k_1(x,z) \cdot k_2(x,z)$$

4.
$$k(x,z) = f(x)f(z)$$

5.
$$k(x,z) = k_3(\varphi(x), \varphi(z))$$

Proof

Let K_1 and K_2 be the kernel matrices of k_1 and k_2 applied to any set $\{x_i\}_{i=1}^n$ both these matrices are PSD. Also let θ be any n-vector:

- $K = K_1 + K_2 \Longrightarrow \vartheta^T K \vartheta = \vartheta^T K_1 \vartheta + \vartheta^T K_2 \vartheta \ge 0$
- $K = aK_1 \implies \vartheta^T K \vartheta = a \vartheta^T K_1 \vartheta \ge 0$
- Since $K_1 = BB^T$, $K_2 = CC^T \Longrightarrow K = BB^TCC^T \Longrightarrow \vartheta^T K \vartheta = tr(D_\vartheta BB^T D_\vartheta CC^T) = tr(C^T D_\vartheta BB^T D_\vartheta C) = tr((C^T D_\vartheta B)^T C^T D_\vartheta B)$
- $k(x,z) = h(\varphi(x), \varphi(z))$ where $\varphi: X \to \mathbb{R}^n$ thus, k is PSD.
- Since k_3 is a kernel, applying it to any set of vectors $\{\phi(x_i)\}_{i=1}^N$ yields a PSD matrix.

Proof

Let K_1 and K_2 be the kernel matrices of k_1 and k_2 applied to any set $\{x_i\}_{i=1}^n$ both these matrices are PSD. Also let θ be any n-vector:

- $K = K_1 + K_2 \Longrightarrow \vartheta^T K \vartheta = \vartheta^T K_1 \vartheta + \vartheta^T K_2 \vartheta \ge 0$
- $K = aK_1 \implies \vartheta^T K \vartheta = a \vartheta^T K_1 \vartheta \ge 0$
- $K = K_1 K_2$?
- $k(x,z) = h(\varphi(x), \varphi(z))$ where $\varphi: X \to \mathbb{R}^n$ thus, k is PSD.
- Since k_3 is a kernel, applying it to any set of vectors $\{\varphi(x_i)\}_{i=1}^N$ yields a PSD matrix.

The feature spaces for these kernels are as follows:

• For kernel $k_1(x, z) + k_2(x, z)$, the new feature map is equivalent to stacking the feature maps of k_1 and k_2 :

$$\phi(x) = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}$$

- For kernel $a \cdot k_1(x, z)$, its feature space is scaled by \sqrt{a}
- For kernel $k_1(x,z) \times k_2(x,z)$, if ϕ_1 has dimension n_1 and ϕ_2 has dimension n_2 , ϕ has $n_1 n_2$ features given by

$$(\phi(x))_{ij} = (\phi_1(x))_i (\phi_2(x))_j$$

• It follows that the features of $k_1(x,z)^d$ are all monomials of the form

$$(\phi_1(x))_1^{d_1}(\phi_1(x))_2^{d_2}\dots(\phi_1(x))_n^{d_n}, \qquad \sum_{i=1}^{d_i}d_i=1$$

•
$$a \cdot k_1(x, z) = k_1(\sqrt{a}x, \sqrt{a}z)$$

Additional Kernel Functions

Proposition

Suppose k_1 is a kernel on X and $p: \mathbb{R} \to \mathbb{R}$ is a polynomial with non-negative coefficients. Then, the following are kernels:

- 1. Polynomial Kernel:
 - $k_{poly}(x,z) = p(k_1(x,z))$
 - $k_{poly}(x,z) = (x^Tz + R)^d$
- 2. Gaussian kernel:
 - $k(x,z) = e^{k_1(x,z)}$
 - Radial Basis function (RBF) Kernel: $k_{RBF}(x, z) = e^{-\frac{\|x z\|_2^2}{2\sigma^2}}$

Proof

- 1. Constructing a polynomial kernel from base kernel k_1 proceeds directly from Proposition 3 (1, 2, 3)
- 2. Consider that $exp(x) = 1 + x + \frac{1}{2}x^2 + \dots + \frac{1}{i!}x^i + \dots$ Thus, it is a limit of polynomials and the PSD property is closed under pointwise limits.(RBF Kernel) Left as an exercise.

Kernel Questions

Which of the following functions are kernels?

•
$$k_1(x,z) = \sum_{i=1}^{D} (x_i + z_i)$$

•
$$k_2(x,z) = \prod_{i=1}^{D} h\left(\frac{x_i - c}{a}\right) h\left(\frac{z_i - c}{a}\right)$$
 where $h(x) = \cos(1.75x) e^{-\frac{x^2}{2}}$

•
$$k_3(x,z) = \frac{x^T z}{||x||_2 ||z||_2}$$

•
$$k_4(x,z) = \sqrt{||x-z||_2^2 + 1}$$

Theory of kernel function Transforming Kernel Matrices

- 1. Simple Transformations
- 2. Centering Data
- 3. Normalizing Data

Simple Transformations

- Adding a non-negative constant to the Kernel Matrix: corresponds to adding a new constant feature to each training example; i.e., given the matrix Φ of features such that $K = \Phi \Phi^T$, $[\Phi \ c1] * [\Phi \ c1]^T = K + c^2 11^T$
- Adding a non-negative constant to its diagonal: corresponds to adding an indicator feature for every data point

$$\begin{bmatrix} \phi(x_1) & c & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_n) & 0 & \dots & c \end{bmatrix} \begin{bmatrix} \phi(x_1) & c & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_n) & 0 & \dots & c \end{bmatrix}^T = K + c^2 I$$

Centering Data

Suppose we want to translate the origin to the data's center of mass, this transformation can be expressed as kernel transform

$$K \leftarrow K - \frac{1}{N} \ 11^T K - \frac{1}{N} K 11^T + \frac{1K1^T}{N^2} \ 11^T$$

Normalizing Data

Suppose we want to project all data to be norm 1; i.e., $\|\hat{x}\| = 1$

This transformation can be achieved using only the information from the kernel matrix:

$$\hat{k}(x,z) = \frac{k(x,z)}{\sqrt{k(x,x)k(z,z)}}$$