1 公式

$$Var(X) = \mathbb{E}(X^{2}) - (\mathbb{E}(X))^{2}$$

$$\Sigma_{x} = \mathbb{E}\left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^{\top}\right]$$

$$y = Ax \Rightarrow \Sigma_{y} = A\Sigma_{x}A^{\top}$$

$$A \perp B \Rightarrow \sigma_{A \pm B}^{2} = \sigma_{A}^{2} + \sigma_{B}^{2}$$

$$X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix}^{\top}, X^{\top}X = \begin{bmatrix} 1 & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2} \end{bmatrix}$$

Simple Linear Regression

Model Fitting

Residual:
$$e_i = y_i - \hat{y}_i$$

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \mathbb{E}[\epsilon_i] = 0, \operatorname{Var}(\epsilon_i) = \sigma^2$

$$\begin{cases} S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2 \\ S_{xy} = \sum_{i=1}^n (x_i - \overline{x}) (y_i - \overline{y}) \\ S_{yy} = \sum_{i=1}^n (y_i - \overline{y})^2 \end{cases}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}, \hat{\beta}_1 = \frac{S_{xy}}{S_{xy}}$$

Gauss-Markov Theorem (quality of LSE): Among all estimates that are linear combination of y_1, \dots, y_n and unbiased, the LSE has the smallest variance.

$$\sum_{i=1}^{n} e_i = 0, \sum_{i=1}^{n} x_i e_i = 0, \sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i$$

Statistic Inference & Model Test

Error sum of squares:
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $s^2 = MSE = \frac{SSE}{n-2}$

Regression sum of squares: $SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$ $S_{yy} = SSR + SSE$

$$\hat{\beta}_0 = \boldsymbol{l}^{\top} \boldsymbol{y}, \hat{\beta}_1 = \boldsymbol{k}^{\top} \boldsymbol{y}, k_i = \frac{x_i - \overline{x}}{S_{xx}}, l_i = \frac{1}{n} - k_i \overline{x}$$

$$\sum_{i=1}^n l_i = 0, \sum_{i=1}^n l_i x_i = 0$$

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sigma^2 / S_{xx}}} \sim \mathcal{N}(0, 1), \frac{\hat{\beta}_0 - \beta_0}{\sqrt{(\sigma^2 \sum_{i=1}^n x_i^2) / (n S_{xx})}} \sim \mathcal{N}(0, 1)$$

$$\hat{\beta}_1 - \beta_1$$

$$\hat{\beta}_0 - \beta_0$$

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{s^2 / S_{xx}}} \sim t_{n-2}, \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\left(s^2 \sum_{i=1}^n x_i^2\right) / (n S_{xx})}} \sim t_{n-2}$$

$$\frac{\hat{y}_0 - \mathbb{E}[y_0]}{s\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}} \sim t_{n-2}$$

$$\frac{y_{\text{new}} - \hat{y}_{\text{new}}}{s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}} \sim t_{n-2}$$

$$\mathcal{R}^2 = \frac{\text{SSR}}{S_{yy}} = \frac{S_{xy}^2}{S_{xx}S_{yy}} = r_{xy}^2$$
ANOVA for SLR:

Source of variation	df	Sum of squares (SS)	MS	F	p-value
Regression	1	$SSR = \sum (\hat{y}_i - \bar{y})^2$	MS_{Reg}	MS_{Reg}/s^2	
Residual	n-2	$SSE = \sum (y_i - \hat{y}_i)^2$	s^2	-	
Total	n – 1	$S_{\text{rm}} = \sum (\mathbf{v}_i - \bar{\mathbf{v}})^2$			

$$\begin{aligned} & \text{MS} = \frac{\text{SS}}{\text{df}} \\ & \text{SSR} \sim \sigma^2 \chi_1^2, \text{SSE} \sim \sigma^2 \chi_{n-2}^2 \\ & F = \frac{\text{MS}_{\text{reg}}}{s^2} \sim F(1, n-2) \\ & \mathbb{E}[\text{MS}_{\text{reg}}] = \sigma^2 + \beta_1^2 S_{xx} \end{aligned}$$

F 越大说明 MS_{reg} 越大,也就是 SSR 的贡献更大,更 能说明 $\beta_1 \neq 0$, X effective in explaining variation in Y

Model Diagnostics

Standardized (semistudentized) residual: $e_i^* = \frac{e_i}{\sqrt{\text{MSE}}}$ Rule of Thumb: $|e_i^*| > 3 \Leftrightarrow \text{outliers}$ QQ-Plot: k-th smallest, $\sqrt{\text{MSE}} \left[z \left(\frac{k - 0.375}{0.25} \right) \right]$

residual	expected residual		
e_{\min}	$\sqrt{\text{MSE}}\left[z\left(\frac{1-0.375}{n+0.25}\right)\right]$		
$e_{ m 2nd\ smallest}$	$\sqrt{\text{MSE}}\left[z\left(\frac{2-0.375}{n+0.25}\right)\right]$		
:	:		
e_{\max}	$\sqrt{\text{MSE}}\left[z\left(\frac{n-0.375}{n+0.25}\right)\right]$		

左边: 往下尾巴大: 右边: 往上尾巴大

Calculator

$$\begin{split} \sigma^2\mathbf{x} &= \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2 \\ \mathbf{s}^2\mathbf{x} &= \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2} \\ S_{xx} &= n \cdot \sigma^2\mathbf{x}, S_{yy} = n \cdot \sigma^2\mathbf{y} \\ S_{xy} &= \Sigma\mathbf{x}\mathbf{y} - n \cdot \overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \end{split}$$