HC-SR04

超声波测距模块

用户手册

V-2020

概述:

HC-SR04(2020 版本)是一款尺寸完全兼容老版本,增加UART 和 IIC 功能的开放式超声波测距模块。默认条件下,软件与硬件完全兼容老版本 HC-SR04;可以通过电阻设置成 UART 或 IIC 模式。2CM 超小盲区,4.5M 典型最远测距,2.2mA 超低工作电流。采用升级解调芯片 RCWL-9206,带 UART 与 IIC 功能 MCU;使其外围更加简洁,工作电压更宽(3-5.5V),接口功能更多。

特点:

- 专业解调测距芯片 RCWL-9206
- 支持 GPIO, UART 与 IIC 三种模式接口
- 3V-5.5V 宽电压供电
- 2.2mA 工作电流
- 2cm 最小盲区
- 默认软件与硬件完全兼容老版本 HC-SR04
- 2cm-450cm 的超宽测量范围(测量平整墙面)
- 外围更简洁
- 工作温度: -10℃-70℃

性能参数:

参数名称	备注	最小值	典型值	最大值	单位
工作电压		3		5. 5	V
工作电流			2. 2	3	mA
最大探测距离	平整墙面	350	450	600	CM
工作频率			40		KHz
盲区	盲区内随机值		2	4	CM
探测精度	同一温度		±2		%
分辨率	理论		1		mm
探测角度	最大方向角度		±15	±20	度
测量周期时间			200		mS
输出接口模式		GPIO/UART/IIC			
工作温度	塑壳探头(需定制)	-10		60	$^{\circ}\mathbb{C}$
工作温度	铝壳探头	-10		70	$^{\circ}\mathbb{C}$

接口定义:

序号	接口定义	说明		
1	Vcc	供电电源		
2	Trig/Rx/SCL	GPIO 模式:	Trig	触发信号
		UART 模式:	Rx	接收信号
		IIC 模式:	SCL	时钟信号
3	Echo/Tx/SDA	GPIO 模式为	Echo	反馈信号
		UART 模式:	Tx	发射信号
		ICC 模式:	SCL	数据信号
4	Gnd	地	·	

模式选择:

序号	模式	R4/R5 电阻设置		
1	GPI0	R4=NC	R5=NC	默认
2	UART	R4=NC	R5=10K	
3	IIC	R4=10K	R5=NC	

测量操作:

一: GPIO 模式

超声波时序图

工作模式同老版本 HC-SR04。外部 MCU 给模块 Trig 脚一个大于 10uS 的高电平脉冲;模块会给出一个与距离等比的高电平脉冲信号,可根据脉宽时间"T"

算出:

距离=T*C/2 (C 为声速)

声速温度公式: c=(331.45+0.61t/℃)m•s-1 (其中 330.45 是在 0℃)

0℃声速: 330.45M/S

20℃声速: 342.62M/S

40℃声速: 354.85M/S

0℃-40℃声速误差 7%左右。实际应用,如果需要精确距离值,必需要考虑 温

度影响,做温度补偿。

二: UART 模式

UART 模式波特率设置: 9600 N 1

命令	返回值	说明
OXAO	BYTE_H	输出距离为:
	BYTE_M	((BYTE_H<<16) + (BYTE_M<<8) + BYTE_L)/1000
	BYTE_L	单位 mm
0XF1		公司及版本信息

连接串口。外部 MCU 或 PC 发命令 OXAO,模块完成测距后发 3 个返回距离数据,BYTE_H,BYTE_M与BYTE_L。

距离计算方式如下(单位 mm):

距离=((BYTE_H<<16)+(BYTE_M<<8)+BYTE_L)/1000

三: IIC 模式

IIC 地址: 0X57

IIC 传输格式:

写数据:

读数据:

命令格式:

地址	命令	返回值	说明
写地址	0X01		开始测距命令
OXAE			
读地址		BYTE_H	输出距离为:
OXAF		BYTE_M	((BYTE_H<<16) + (BYTE_M<<8) +
		BYTE_L	BYTE_L)/1000
			单位 mm

向模块写入 0X01,模块开始测距;等待 200mS(模块最大测距时间)以上。直接读出 3 个距离数据。BYTE_H,BYTE_M与 BYTE_L。

距离计算方式如下(单位 mm):

距离=((BYTE_H<<16)+(BYTE_M<<8)+BYTE_L)/1000

应用注意:

- 1: 此模块不宜带电连接,如果要带电连接,则先让模块的 Gnd 端先连接。
- 2: 如果测试面不是很规则或测试远距离物体时,可采用多次测量的方法来校正。
- 3: 两次测试间隔要不小于 200mS。
- 4: 如果客户需要将模块放入自己产品模具中,模块外围参数可能需要调整,批量前可以联系我司确定参数。

应用例程:

详见附件,提供 ARDUINO 测试板 PCB 文件与测试例程。

外型尺寸:

