

Ключи

Архитектор Тимати разработал новую игру в стиле квеста. В этой игре есть n комнат, пронумерованных от 0 до n-1. Изначально в каждой комнате расположен ровно один ключ. Каждый из ключей имеет один из типов, пронумерованных от 0 до n-1. Тип ключа в комнате i ($0 \le i \le n-1$) равен r[i]. Обратите внимание, что несколько комнат могут содержать ключи одного и того же типа, то есть, значения r[i] не обязательно являются различными.

В игре также есть m **двусторонних** переходов, пронумерованных от 0 до m-1. Переход j ($0 \le j \le m-1$) соединяет пару различных комнат u[j] и v[j]. Одна и та же пара комнат может быть соединена несколькими переходами.

В игре участвует один человек, который собирает ключи и перемещается между комнатами с помощью переходов. Будем говорить, что игрок **проходит** переход j, если игрок перемещается по этому переходу от u[j] до v[j] или в обратном направлении. Игрок может пройти через переход j только в том случае, если у игрока уже есть ключ типа c[j].

В любой момент игры игрок находится в некоторой комнате x и может выполнить одно из следующих действий:

- собрать ключ в комнате x, тип которого равен r[x] (если игрок этого еще не сделал),
- пройти через переход j, где или u[j]=x, или v[j]=x, если у игрока уже есть ключ типа c[j]. Обратите внимание, что игрок **никогда** не избавляется от ключей, которые уже были найдены.

Игрок **начинает** игру в комнате с номером s без единого ключа. Комната t называется **достижимой** из комнаты s в том случае, если игрок, начав в комнате s, может добраться до комнаты t, выполняя действия, описанные выше.

Для каждой комнаты i ($0 \le i \le n-1$) обозначим как p[i] общее число комнат, достижимых из i. Тимати хочет найти множество индексов i, на которых достигается минимальное значение p[i] среди $0 \le i \le n-1$.

Детали реализации

Вам необходимо реализовать следующую функцию:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: массив длины n. Для каждого i ($0 \le i \le n-1$) ключ в комнате i имеет тип r[i].
- u,v: два массива длины m. Для каждого j ($0 \leq j \leq m-1$) переход j соединяет комнаты u[j] и v[j].

- c: массив длины m. Для каждого j ($0 \le j \le m-1$) указан тип ключа c[j], необходимый для того, чтобы пройти переход j.
- Данная функция должна возвращать массив a длины n. Для каждого $0 \le i \le n-1$ значение a[i] должно быть равно 1 в том случае, если для всех j, для которых $0 \le j \le n-1$, выполнено $p[i] \le p[j]$. В противном случае значение a[i] должно быть равно 0.

Примеры

Пример 1

Рассмотрим следующий вызов функции

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Если игрок начинает в комнате 0, то игрок может выполнить следующую последовательность действий:

Текущая комната	Действие
0	Собрать ключ типа 0
0	Перейти по переходу 0 в комнату 1
1	Собрать ключ типа 1
1	Перейти по переходу 2 в комнату 2
2	Перейти по переходу 2 в комнату 1
1	Перейти по переходу 3 в комнату 3

Таким образом, комната $\,3\,$ достижима из комнаты $\,0\,$. Аналогичным образом мы можем построить последовательности действий для каждой из комнат, таким образом, все они являются достижимыми из комнаты $\,0\,$, что означает, что $\,p[0]=4\,$. В таблице ниже приведены достижимые комнаты для каждого варианта стартовой комнаты:

Стартовая комната i	Достижимые комнаты	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

Наименьшее значение $\,p[i]\,$ среди всех комнат равно $\,2,$ и оно достигается для $\,i=1\,$ и $\,i=2.$ Таким образом, функция должна вернуть $\,[0,1,1,0].$

Пример 2

В таблице ниже приведены достижимые комнаты для каждого варианта стартовой комнаты:

Стартовая комната i	Достижимые комнаты	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Наименьшее значение $\,p[i]\,$ среди всех комнат равно $\,2$, и это значение достигается для $i\in\{1,2,4,6\}.$ Таким образом, функция должна вернуть $\,[0,1,1,0,1,0,1].$

Пример 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

В таблице ниже приведены достижимые комнаты для каждого варианта стартовой комнаты:

Стартовая комната i	Достижимые комнаты	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Наименьшее значение $\,p[i]\,$ среди всех комнат равно $\,1,$ и это значение достигается при $\,i=2.$ Таким образом, функция должна вернуть $\,[0,0,1].$

Ограничения

- $2 \le n \le 300\,000$
- $1 \le m \le 300000$

- $0 \leq r[i] \leq n-1$ для всех $0 \leq i \leq n-1$
- $0 \leq u[j], v[j] \leq n-1$ и u[j]
 eq v[j] для всех $0 \leq j \leq m-1$
- $0 \le c[j] \le n-1$ для всех $0 \le j \le m-1$

Подзадачи

- 1. (9 баллов) c[j]=0 для всех $0\leq j\leq m-1$ и $n,m\leq 200$
- 2. (11 баллов) $n, m \leq 200$
- 3. (17 баллов) $n,m \leq 2000$
- 4. (30 баллов) $c[j] \leq 29$ (для всех $0 \leq j \leq m-1$) и $r[i] \leq 29$ (для всех $0 \leq i \leq n-1$)
- 5. (33 балла) Без дополнительных ограничений.

Пример проверяющего модуля

Проверяющий модуль считывает данные в следующем формате:

- строка 1: n m
- строка 2: r[0] r[1] ... r[n-1]
- строка 3+j ($0 \le j \le m-1$): $u[j] \ v[j] \ c[j]$

Проверяющий модуль выводит результат вызова функции find_reachable в следующем формате:

• строка 1: a[0] a[1] ... a[n-1]