特殊関数

介川侑大*1

2021年1月17日

^{*1} 東京工業大学物理学系 3 年

目次 第1章 ガンマ関数 1 第2章 ベータ関数 4 第3章 超幾何関数 6 第4章 Legendre 関数 8 Tchebysheff 多項式 第5章 11 第6章 Hermite 関数 **13** Laguerre 関数 第7章 **15** 第8章 Bessel 関数 **19**

第1章

ガンマ関数

	目次
1.1	定義
1.2	漸化式
1.3	Gauss の公式
1.4	Weiersrtrass の公式
	ディガンマ関数
1.6	Euler の反転公式
1.7	Hankel の積分表示
1.8	Stirling の公式 3

1.1 定義

$$\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt \qquad (x > 0)$$
(1.1)

1.2 漸化式

 $\Gamma(x+1) = x\Gamma(x) \qquad (x>0) \tag{1.2}$

特に、

$$\Gamma(1) = 1$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (1.3)

から、

$$\Gamma(n+1) = n! \qquad \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$
(1.4)

1.3 Gauss の公式

•

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^{x-1}}{(x)_n} \tag{1.5}$$

1.4 Weiersrtrass の公式

•

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) e^{\frac{x}{n}} \tag{1.6}$$

オイラー定数γは次のように定義される。

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \tag{1.7}$$

1.5 ディガンマ関数

4

$$\psi(x) := \frac{d}{dx} \operatorname{In}\Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \sum_{k=1}^{\infty} \left(\frac{1}{x+k-1} - \frac{1}{k}\right)$$
(1.8)

1.6 Euler の反転公式

4

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x} \tag{1.9}$$

1.7 Hankel の積分表示

$$\Gamma(x) = -\frac{1}{2i\sin \pi x} \int_{c} (-t)^{x-1} e^{-t} dt$$
 (1.10)

1.8 Stirling の公式

+

$$\Gamma(x+1) \approx \sqrt{2\pi x} \, e^{-x} x^x \tag{1.11}$$

第2章

ベータ関数

	目次	
2.1	定義	4
2.2	積分表示	4
2.3	ガンマ関数表示	5

2.1 定義

 $B(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt$ (2.1)

2.2 積分表示

 $B(x,y) = \int_0^{\infty} \frac{s^{x-1}}{(1+x)^{x+y}} ds$ (2.2)

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1}\theta \cos^{2y-1}\theta d\theta$$
 (2.3)

2.3 ガンマ関数表示

+

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 (2.4)

第3章

超幾何関数

	目次	
3.1	定義	6
3.2	超幾何方程式	6
3.3	積分表示	7
3.4	合流型超幾何方程式	7
3.5	積分表示	7
3.2 3.3 3.4	超幾何方程式	6 7

3.1 定義

 $_{p}F_{q}\begin{pmatrix} a_{1} & \dots & a_{p} \\ b_{1} & \dots & b_{q} \end{pmatrix} := \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \cdots (a_{p})_{n}}{(b_{1})_{n} \cdots (b_{q})_{n}} \frac{x^{n}}{n!}$ (3.1)

3.2 超幾何方程式

 $x(1-x)\frac{d^2}{dx^2}u + (c - (a+b+1)x)\frac{d}{dx}u - abu = 0$ (3.2)

解は、

$$u = {}_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}$$
(3.3)

3.3 積分表示

_

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_{0}^{1} t^{a-1} (1-t)^{c-a-1} (1-xt)^{-b} dt$$
 (3.4)

3.4 合流型超幾何方程式

4

$$x\frac{d^2}{dx^2}u + (c - x)\frac{d}{dx}u - au = 0 (3.5)$$

解は、

$$u = {}_{1}F_{1}(a, c; x) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{x^{n}}{n!}$$
(3.6)

3.5 積分表示

$${}_{1}F_{1}(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_{0}^{1} t^{a-1} (1-t)^{c-a-1} e^{xt} dt$$
 (3.7)

第4章

Legendre 関数

	目次
4.1	Legendre の微分方程式
4.2	定義
4.3	超幾何関数表示
4.4	Rodrigues の公式
4.5	直行性
4.6	シュレーフリの積分表示 9
4.7	母関数
4.8	隣接 3 項間漸化式 10
4.9	Legendre 陪多項式
	4.9.1 微分方程式
	4.9.2 定義
	4.9.3 直行性

4.1 Legendre の微分方程式

$$\frac{d}{dx}\{(1-x^2)\frac{d}{dx}u\} + \nu(\nu+1)u = 0$$
(4.1)

4.2 定義

4

 $\nu = n (\in \mathbb{N})$ の時、

$$P_n(x) := \frac{1}{2^n} \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k}{k!} \frac{(2n-2k)!}{(n-2k)!(n-k)!} x^{n-2k}$$
(4.2)

4.3 超幾何関数表示

4

$$P_n(x) = {}_{2}F_1(n+1, -n; 1; \frac{1-x}{2})$$
(4.3)

4.4 Rodrigues の公式

4

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \tag{4.4}$$

4.5 直行性

4

$$(P_n(x), P_m(x)) := \int_{-1}^1 P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{n,m}$$
 (4.5)

4.6 シュレーフリの積分表示

4

$$P_n(x) = \frac{1}{2^n \cdot 2\pi i} \oint \frac{(z^2 - 1)^n}{(z - x)^{n+1}} dz$$
 (4.6)

4.7 母関数

$$\sum_{n=0}^{\infty} P_n(x)\zeta^n = \frac{1}{\sqrt{1 - 2x\zeta + \zeta^2}}$$
 (4.7)

4.8 隣接3項間漸化式

4

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0 (4.8)$$

4.9 Legendre 陪多項式

6

4.9.1 微分方程式

$$\frac{d}{dx}\{(1-x^2)\frac{d}{dx}u\} - \frac{k^2}{1-x^2}u + n(n+1)u = 0$$
(4.9)

4.9.2 定義

$$P_n^k(x) := (-1)^k (1 - x^2)^{\frac{k}{2}} \frac{d^k}{dx^k} P_n(x)$$
(4.10)

4.9.3 直行性

$$\int_{-1}^{1} P_n^k(x) P_m^k(x) dx = \frac{2(n+k)!}{(2n+1)!(n-k)!} \delta_{n,m}$$
(4.11)

第5章

Tchebysheff 多項式

	目次
5.1	微分方程式
5.2	超幾何関数表示
5.3	Rodrigues の公式
5.4	直行性
5.5	母関数
5.6	隣接 3 項間漸化式
5.7	三角関数関係

5.1 微分方程式

$$\frac{d}{dx}\left\{\sqrt{1-x^2}\frac{d}{dx}u\right\} + \frac{n^2}{\sqrt{1-x^2}}u = 0 \tag{5.1}$$

5.2 超幾何関数表示

$$T_n(x) = \frac{(\frac{1}{2})_n}{n!} {}_2F_1(-n, n; \frac{1}{2}; \frac{1-x}{2})$$
 (5.2)

5.3 Rodrigues の公式

4

$$T_n(x) = \frac{(-1)^n}{(2n-1)!!} \sqrt{1-x^2} \frac{d^n}{dx^n} (1-x^2)^{n-\frac{1}{2}}$$
 (5.3)

5.4 直行性

4

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \pi & \text{n=m=0} \\ \frac{\pi}{2} \delta_{n,m} & \text{otherwise} \end{cases}$$
 (5.4)

5.5 母関数

4

$$\sum_{n=0}^{\infty} T_n(x)\zeta^n = \frac{1 - x\zeta}{1 - 2x\zeta + \zeta^2}$$
 (5.5)

5.6 隣接3項間漸化式

4

$$T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0 (5.6)$$

5.7 三角関数関係

$$T_n(\cos\theta) = \cos(n\theta) \tag{5.7}$$

第6章

Hermite 関数

	目次
6.1	Hermite の微分方程式
6.2	定義
6.3	合流型超幾何関数表示 14
6.4	Rodrigues の公式
6.5	直行性
6.6	積分表示
6.7	母関数
6.8	隣接 3 項間漸化式

6.1 Hermite の微分方程式

 $\frac{d}{dx}\left\{e^{-x^2}\frac{d}{dx}u\right\} + 2ne^{-x^2}u = 0 \tag{6.1}$

6.2 定義

 $H_n(x) := \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \frac{n!}{k!(n-2k)!} (2x)^{n-2k}$ (6.2)

6.3 合流型超幾何関数表示

4

$$H_{2n}(x) = (-1)^n \frac{(2n)!}{n!} {}_{1}F_{1}(-n, \frac{1}{2}; x^2)$$
(6.3)

$$H_{2n+1}(x) = (-1)^n \frac{2(2n+1)!}{n!} x_1 F_1(-n, \frac{3}{2}; x^2)$$
(6.4)

6.4 Rodrigues の公式

4

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
(6.5)

6.5 直行性

6

$$(H_n(x), H_m(x)) := \int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} dx = 2^n n! \delta_{n,m}$$
 (6.6)

6.6 積分表示

6

$$H_n(x) = \frac{n!}{2\pi i} \oint \frac{e^{2xz - z^2}}{z^{n+1}} dz$$
 (6.7)

6.7 母関数

4

$$\sum_{n=0}^{\infty} \frac{H_n(x)}{n!} \zeta^n = e^{-\zeta^2 + 2x\zeta} \tag{6.8}$$

6.8 隣接3項間漸化式

$$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0 (6.9)$$

第7章

Laguerre 関数

	目次
7.1	Laguerre の微分方程式
7.2	定義
7.3	合流型超幾何関数表示
7.4	Rodrigues の公式
7.5	直行性
7.6	積分表示
7.7	母関数
7.8	隣接 3 項間漸化式
7.9	Laguerre 陪多項式
	7.9.1 微分方程式
	7.9.2 定義
	7.9.3 合流型超幾何関数表示
	7.9.4 Rodriguess の公式
	7.9.5 直行性
	7.9.6 母関数
	7.9.7 隣接 3 項間漸化式

7.1 Laguerre の微分方程式

$$\frac{d}{dx}\{xe^{-x}\frac{d}{dx}u\} + ne^{-x}u = 0$$
 (7.1)

7.2 定義

4

$$L_n(x) := \sum_{k=0}^n \frac{(-1)^k (n!)^2}{(k!)^2 (n-k)!} x^k$$
 (7.2)

7.3 合流型超幾何関数表示

4

$$L_n(x) = n!_1 F_1(-n, 1; x)$$
(7.3)

7.4 Rodrigues の公式

4

$$L_n(x) = e^x \frac{d^n}{dx^n} (e^{-x} x^n) \tag{7.4}$$

7.5 直行性

•

$$(L_n(x), L_m(x)) := \int_0^\infty L_n(x) L_m(x) e^{-x} dx = (n!)^2 \delta_{n,m}$$
 (7.5)

7.6 積分表示

4

$$L_n(x) = \frac{n!}{2\pi i} \oint_c \frac{e^{-xz/(1-z)}}{(1-z)z^{n+1}} dz$$
 (7.6)

7.7 母関数

$$\sum_{n=0}^{\infty} \frac{L_n(x)}{n!} \zeta^n = \frac{e^{\frac{-x\zeta}{1-\zeta}}}{1-\zeta}$$

$$(7.7)$$

7.8 隣接3項間漸化式

_

$$L_{n+1}(x) + (x - (2n+1))L_n(x) + n^2L_{n-1}(x) = 0$$
(7.8)

7.9 Laguerre 陪多項式

_

7.9.1 微分方程式

$$\frac{d}{dx}\{x^{k+1}e^{-x}\frac{d}{dx}u\} + nx^k e^{-x}\frac{d}{dx}u = 0$$
 (7.9)

7.9.2 定義

$$L_n^k(x) := (-1)^k \frac{d^k}{dx^k} L_{n+k}(x) = \sum_{l=0}^n (-1)^l \frac{((n+k)!)^2}{(n-l)!(l+k)!(l)!} x^l$$
 (7.10)

7.9.3 合流型超幾何関数表示

$$L_n^k(x) = \frac{((n+k)!)^2}{n!k!} {}_1F_1(-n, k+1; x)$$
(7.11)

7.9.4 Rodriguess の公式

$$L_n^k(x) = e^x x^{-k} \frac{(n+k)!}{n!} \frac{d^n}{dx^n} (e^{(-x)} x^{n+k})$$
(7.12)

7.9.5 直行性

$$(L_n^k(x), L_m^k(x)) := \int_0^\infty L_n^k(x) L_m^k(x) e^{-x} x^k dx = \frac{((n+k)!)^3}{n!} \delta_{n,m}$$
 (7.13)

7.9.6 母関数

$$\sum_{n=0}^{\infty} L_n^k(x) \frac{\zeta^n}{(n+k)!} = \frac{e^{\frac{-x\zeta}{(1-\zeta)}}}{(1-\zeta)^{k+1}}$$
(7.14)

7.9.7 隣接3項間漸化式

$$\frac{n+1}{n+1+k}L_{n+1}^k(x) + (x - (2n+k+1))L_n^k(x) + (n+k)^2L_{n-1}^k(x)$$
 (7.15)

第8章

Bessel 関数

	目次
8.1	Bessel の微分方程式
8.2	定義
8.3	合流型超幾何関数表示 21
8.4	直行性
8.5	性質
8.6	積分表示
	8.6.1 シュレーフリの積分表示 21
	8.6.2 ポアソンの積分表示
8.7	母関数
8.8	漸化式
8.9	ノイマン関数
	8.9.1 定義
8.10	ハンケル関数
	8.10.1 定義
8.11	変形ベッセル関数
	8.11.1 定義
	8.11.2 微分方程式
	8.11.3 合流型超幾何関数表示

第8章 Bessel 関数

	8.11.4 母関数	23
	8.11.5 漸化式	23
8.12	球ベッセル関数と球ノイマン関数	23
	8.12.1 微分方程式	23
	8.12.2 定義	23
	8.12.3 Rodrigues の公式	23
	8.12.4 直行性	24
	8.12.5 性質	24
	8.12.6 母関数	24
	8.12.7 隣接 3 項間漸化式	24
8.13	球ハンケル関数	24
	8.13.1 定義	24
	8.13.2 Rodrigues の公式	24
	8.13.3 展開公式	24
	8.13.4 性質	25
	8.13.5 母関数	25
	8.13.6 隣接 3 項間漸化式	25

8.1 Bessel の微分方程式

$$\left\{\frac{d}{dx}\left(x\frac{d}{dx}\right) - \frac{\nu^2}{x}\right\}u + xu = 0 \tag{8.1}$$

または、

$$\frac{d^2}{dx^2}u + \frac{1}{x} + \left(1 - \frac{\nu^2}{x^2}\right)u = 0 \tag{8.2}$$

8.2 定義

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{2k}$$
 (8.3)

8.3 合流型超幾何関数表示

4

$$J_{\nu}(x) = \frac{e^{-ix}}{\Gamma(\nu)} \left(\frac{x}{2}\right)^{\nu} {}_{1}F_{1}(\nu + \frac{1}{2}; 2\nu + 1; 2ix)$$
(8.4)

8.4 直行性

4

$$\int_{0}^{1} J_{\nu}(\lambda_{k}x) J_{\nu}(\lambda_{l}x) x dx = \frac{1}{2} \{J_{\nu+1}(\lambda_{k})\}^{2} \delta_{k,l}$$
 (8.5)

8.5 性質

4

$$\frac{d}{dx}\{x^{\nu}J_{\nu}(x)\} = x^{\nu}J_{\nu-1}(x) \qquad \frac{d}{dx}\{x^{-\nu}J_{\nu}(x)\} = -x^{-\nu}J_{\nu+1}(x) \qquad (8.6)$$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ (8.7)

8.6 積分表示

4

$$J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(x \sin \phi - n\phi)} d\phi$$
 (8.8)

8.6.1 シュレーフリの積分表示

$$J_{\nu}(x) = \frac{1}{2\pi i} \int_{C} e^{\frac{x}{2}(z - \frac{1}{z})} z^{-\nu - 1}$$
(8.9)

8.6.2 ポアソンの積分表示

$$J_{\nu}(x) = \frac{\sqrt{\pi}\Gamma(\nu + \frac{1}{2})}{1} \left(\frac{x}{2}\right)^{\nu} \int_{-1}^{1} e^{\pm ixt} (1 - t^{2})^{\nu - \frac{1}{2}} dt$$
 (8.10)

8.7 母関数

4

$$\sum_{n=-\infty}^{\infty} J_n(x)\zeta^n = e^{\frac{1}{2}x(\zeta - \frac{1}{\zeta})}$$

$$\tag{8.11}$$

8.8 漸化式

4

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x) \qquad J_{\nu-1}(x) - J_{\nu+1}(x) = 2J_{\nu}'(x) \tag{8.12}$$

8.9 ノイマン関数

6

8.9.1 定義

$$Y_{\nu}(x) := \frac{\cos(\nu \pi) J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu x)}$$
 (8.13)

$$Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x) = \frac{1}{\pi} \left[\frac{\partial J_{\nu}}{\partial \nu} - (-1)^n \frac{\partial J_{-\nu}}{\partial \nu} \right]_{\nu=n}$$
(8.14)

8.10 ハンケル関数

4

8.10.1 定義

$$H_{\nu}^{(\pm)} := J_{\nu}(x) \pm iY_{\nu}(x)$$
 (8.15)

8.11 変形ベッセル関数

4

8.11.1 定義

第一種変形ベッセル関数は次のように定義される。

$$I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)$$
 (8.16)

$$I_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(k+\nu+1)} \left(\frac{x}{2}\right)^{2k}$$
 (8.17)

8.11.2 微分方程式

$$\frac{d^2}{dx^2}u + \frac{1}{x}\frac{d}{dx}u - (x^2 + \nu^2) = 0 (8.18)$$

8.11.3 合流型超幾何関数表示

$$I_{\nu}(x) = \frac{e^{-x}}{\nu!} \left(\frac{x}{2}\right)^{\nu} {}_{1}F_{1}(\nu + \frac{1}{2}; 2\nu + 1; 2x)$$
(8.19)

8.11.4 母関数

$$\sum_{n=-\infty}^{\infty} I_n(x)\zeta^n = e^{\frac{x}{2}(\zeta + \frac{1}{\zeta})}$$
 (8.20)

8.11.5 漸化式

$$I_{\nu-1}(x) - I_{\nu+1}(x) = \frac{2\nu}{x} I_{\nu}(x), \quad I_{\nu-1}(x) + I_{\nu+1}(x) = 2I'_{\nu}(x)$$
 (8.21)

8.12 球ベッセル関数と球ノイマン関数

4

8.12.1 微分方程式

$$\frac{d^2}{dx^2}u + \frac{1}{x}\frac{d}{dx}u + \left(1 - \frac{l(l+1)}{x^2}\right)u = 0$$
 (8.22)

8.12.2 定義

$$\begin{cases} j_{l}(x) \coloneqq \sqrt{\frac{\pi}{2x}} J_{l+\frac{1}{2}}(x) \\ y_{l}(x) \coloneqq \sqrt{\frac{\pi}{2x}} Y_{l+\frac{1}{2}}(x) \end{cases}$$

$$(8.23)$$

8.12.3 Rodrigues の公式

$$\begin{cases} j_l(x) = (-1)^l x^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{\sin x}{x} \\ n_l(x) = (-1)^l x^l \left(\frac{1}{23} \frac{d}{x}\right)^l \frac{\cos x}{x} \end{cases}$$
 (l = 0, 1, 2, ...) (8.24)

8.12.4 直行性

8.12.5 性質

$$\begin{cases} f_{l+1}(x) = \left(\frac{l}{x} - \frac{d}{dx}\right) f_l(x) \\ f_{l-1}(x) = \left(\frac{l+1}{x} - \frac{d}{dx}\right) f_l(x) \end{cases} \qquad f_l(x) = j_l(x), y_l(x)$$
 (8.25)

8.12.6 母関数

$$\begin{cases} \sum_{l=0}^{\infty} \frac{j_{l-1}(x)}{l!} \zeta^{l} = \frac{\cos \sqrt{x^{2} - 2x\zeta}}{x} \\ \sum_{l=0}^{\infty} \frac{n_{l-1}(x)}{l!} \zeta^{l} = -\frac{\sin \sqrt{x^{2} - 2x\zeta}}{x} \end{cases}$$
(8.26)

8.12.7 隣接 3 項間漸化式

$$f_{l+2}(x) - \frac{2l+3}{x} f_{l+1}(x) + f_l(x) = 0 \quad (f_l(x) = j_l(x), y_l(x))$$
(8.27)

8.13 球ハンケル関数

4

8.13.1 定義

$$h_l^{(\pm)}(x) = n_l(x) \pm i j_l(x)$$
 (8.28)

8.13.2 Rodrigues の公式

$$h_l^{(\pm)}(x) = (-1)^l x^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{e^{\pm ix}}{x}$$
 (8.29)

8.13.3 展開公式

$$h_l^{(\pm)}(x) = (R_l(x) \pm iS_l(x)) \frac{e^{\pm ix}}{x}$$
 (8.30)

ただし、

$$R_l(x) \pm iS_l(x) = \sum_{24}^{l} \frac{(\mp i)^{l-k}}{2^k k!} \frac{(l+k)!}{(l-k)!} x^{-k}$$
(8.31)

8.13.4 性質

$$\begin{cases} h_{l+1}^{(\pm)}(x) = \left(\frac{l}{x} - \frac{d}{dx}\right) h_l^{(\pm)}(x) \\ h_{l-1}^{(\pm)}(x) = \left(\frac{l+1}{x} + \frac{d}{dx}\right) h_l^{(\pm)}(x) \end{cases}$$
(8.32)

8.13.5 母関数

$$\sum_{l=0}^{\infty} \frac{h_{l-1}^{(\pm)}(x)}{l!} \zeta^{l} = \frac{\pm i e^{\pm i\sqrt{x^{2} - 2x\zeta}}}{x}$$
 (8.33)

8.13.6 隣接3項間漸化式

$$h_{l+2}^{(\pm)}(x) - \frac{2l+3}{x}h_{l+1}^{(\pm)}(x) + h_l^{(\pm)}(x) = 0$$
(8.34)