

In the Claims

--52. A compound of the structure

RECEIVED

AUG 06 2002

TECH CENTER 1600/2900

2

wherein R^{34} is selected from the group consisting of H , CH_2CN , CF_3 ;

R independently is selected from the group consisting of X^1 , X^2 , X^3 , R^5 , NHR^{6A} and $N(R^{6A})_2$, and wherein

X^1 is selected from the group consisting of 2- and 3-pyrrolyl, 2- and 3-thienyl, 2- and 4-imidazolyl, 2-, 4- and 5-oxazolyl, 3- and 4-isoxazolyl, 2-, 4- and 5-thiazolyl, 3-, 4- and 5-isothiazolyl, 3- and 4-pyrazolyl, 1-, 2-, 3- and 4-pyridinyl, and 2-, 4- and 5-pyrimidinyl;

X^2 is selected from the group consisting of phenyl, benzyl, $-C_6H_4CH_2-N(CH_3)_2$, 2-, 3- and 4-alkoxyphenyl (C_1-C_{12} alkyl), 2-, 3- and 4-halophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dihalophenyl, 2-, 3- and 4-haloalkylphenyl (1 to 5 halogen atoms, C_1-C_{12} alkyl), 2-, 3- and 4-cyanophenyl, carboalkoxyphenyl (C_1-C_4 alkyl), 2-, 3-, and 4-nitrophenyl, 2-, 3- and 4-haloalkylbenzyl (1 to 5 halogen atoms (C_1-C_{12} alkyl)), alkylsalicylphenyl (C_1-C_4 alkyl), 2-, 3- and 4-acetylphenyl, phenyl substituted by methoxy, ethoxy, OH , NH_2 , halo, C_1-C_4 alkyl or C_1-C_4 alkyl substituted by OH or by 1 to 3 halo atoms, and $-C_{10}H_6OH$; and

X^3 is selected from the group consisting of alkoxy ethyl (C_1-C_6 alkyl),

adamantoyloxymethyl, pivaloyloxy(methoxymethyl)methyl
 (-CH(CH₂CH₂OCH₃)-O-C(O)-C(CH₃)₃), 1-adamantane-
 carbonyloxymethyleneoxymethyl-, pivaloyloxymethyl (-CH₂-O-C(O)-C(CH₃)₃),
 pivaloyloxy(methoxymethyl)-methyl (-CH(CH₂OCH₃)-O-C(O)-C(CH₃)₃),
 pivaloyloxyisobutyl (-CH(CH(CH₃)₂)-O-C(O)-C(CH₃)₃), isobutyryloxymethyl
 (-CH₂-O-C(O)-CH₂-CH(CH₃)₂), cyclohexanoyloxymethyl
 (-CH₂-O-C(O)-C₆H₁₁), isopropyl (-CH(CH₃)₂), t-butyl (-C(CH₃)₃),
 -CH₂-CH₃, -(CH₂)₂-CH₃, -(CH₂)₃-CH₃, -(CH₂)₄-CH₃, -(CH₂)₅-CH₃, -CH₂-CH₂F,
 -CH₂CH₂Cl, -CH₂-CF₃ and -CH₂-CCl₃;

or two R groups are joined to form substituents selected from the group
 consisting of -C₁₀H₆- and -C₆H₄C₆H₄-,

wherein R⁵ is selected from the group consisting of CH₂C(O)N(R^{6A})₂,
 CH₂C(O)OR^{6A}, CH₂OC(O)R^{6A}, CH(R^{6A})OC(O)R^{6A}, CH₂C(R^{6A})₂CH₂OH, CH₂OR^{6A},
 NH-CH₂-C(O)O-CH₂CH₃, N(CH₃)-CH₂-C(O)O-CH₂CH₃, NHR⁴⁰,
 CH₂-O-C(O)-C₆H₅, CH₂-O-C(O)-C₁₀H₁₅, -CH₂-O-C(O)-CH₂CH₃,
 CH₂-O-C(O)-CH(CH₃)₂, CH₂-O-C(O)-C(CH₃)₃, and CH₂-O-C(O)-CH₂-C₆H₅;

wherein R^{6A} is selected from the group consisting of C₁-C₂₀ alkyl which is
 unsubstituted or substituted by substituents independently selected from the
 group consisting of OH, O, N and halogen (1 to 5 halogen atoms), C₆-C₂₀ aryl
 which is unsubstituted or substituted by substituents independently selected

from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms) or C₇-C₂₀ aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), wherein O and N are substituted for carbon and provided that the total number of R⁵ or R carbon atoms is less than 25 for compounds where R⁵ or R is selected from the group consisting of N(R^{6A})₂, CH₂C(O)N(R^{6A})₂, CH₂C(O)OR^{6A}, CH₂OC(O)R^{6A}, CH(R^{6A})OC(O)R^{6A} and CH₂C(R^{6A})₂CH₂OH; wherein R⁴⁰ is C₁-C₂₀ alkyl; and B is a 1-pyrimidinyl residue selected from the group consisting of cytosinyl, 5-halocytosinyl, and 5-(C₁-C₃-alkyl)cytosinyl.--