# Fast Poisson Image Blending using Parallelized Jacobi Method

Amatur Rahman Pennsylvania State University

#### Introduction

Add your information, graphs and images to this section.

#### **Problem Description**

Add your information, graphs and images to this section.

#### Effect of Parallelizing the Code

Add your information, graphs and images to this section.



#### Direct vs. Indirect Solvers

- Our 'A' matrix is sparse, so indirect solver Jacobi does better.
- Sparse matrices do not generally have sparse LU decomposition, so it gets harder to fit the matrices in memory as the problem size goes larger.
- For Jacobi method, we can just store the A matrix in sparse representation.
- We tweaked the initial conditions to achieve fast convergence of direct solver Jacobi.



#### **Strong Scaling**

Add your information, graphs and images to this section.

#### **Results Overview**

Add your information, graphs and images to this section.

#### Coupling

Add your information, graphs and images to this section.

## Acknowledgements

ICS-ACI computing resources were used to perform the computations.

All resources were provided by Dr. Adam Lavely and Dr. Chris Blanton.

#### **Code Availability**

The code is publicly available in github: https://github.com/amatur/cse597\_parallel\_solver

### Bibliography

1] Poisson blending. Retrieved from <a href="http://eric-yuan.me/poisson-blending/">http://eric-yuan.me/poisson-blending/</a> accessed 2018-09-23. [2] Poisson image editing. Retrieved from <a href="http://www.ctralie.com/Teaching/PoissonImageEditing/">http://www.ctralie.com/Teaching/PoissonImageEditing/</a>, accessed 2018-09-23. [3] Barker, B. Message passing interface (mpi). In Workshop: High Performance Computing on Stampede (2015), vol. 262.