CORRECTION SÉANCE 4 (16 FÉVRIER)

Exercice 1.

1. La forme f se décompose sur la base duale de la base canonique : $f = ae_1^* + be_2^* + ce_3^*$, on a alors

$$\begin{cases} f(4,2,0) = 4a + 2b = 2, \\ f(1,2,-3) = a + 2b - 3c = -7, \\ f(0,2,5) = 2b - 5c = 1. \end{cases}$$

C'est un système linéaire (d'inconnues a, b, c). Pour le résoudre, on calcule l'inverse de la matrice

$$M = \begin{pmatrix} 4 & 2 & 0 \\ 1 & 2 & -3 \\ 0 & 2 & 5 \end{pmatrix}.$$

On trouve

$$M^{-1} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix}.$$

Donc

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

et $f = 2e_1^* - 3e_2^* + e_3^*$, autrement dit f(x, y, z) = 2x - 3y + z.

2. Par définition, on a $f_1 = 2e_1^* + 4e_2^* + 3e_3^*$, $f_2 = e_2^* + e_3^*$, $f_3 = 2e_1^* + 2e_2^* - e_3^*$, la matrice de passage de la famille f_i à la base canonique duale e_i^* est donc

$$\begin{pmatrix} 2 & 0 & 2 \\ 4 & 1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$$

qui est inversible (son déterminant est -4), donc les f_i forment bien une base de E^* . Soit $e \in E$, on sait que $(f_1(e), f_2(e), f_3(e))$ est donné par Me, où

$$M = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$

trouver la base antéduale revient à trouver a, b, c tels que Ma = (1, 0, 0), Mb = (0, 1, 0), Mc = (0, 0, 1), autrement dit, a, b, c sont les colonnes de M^{-1} on calcule donc

$$M^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2 \end{pmatrix}$$

la base antéduale de f_i est donc $a = \frac{1}{4}(3, -2, 2), b = \frac{1}{4}(-10, 8, -4)$ et $c = \frac{1}{4}(-1, 2, -2)$.

Exercice 3. Le polynôme $(X - \alpha)^m$ est unitaire de degré m, la famille considérée est donc une famille de polynômes échelonnée de taille n, qui forme donc une base de E_n . Ensuite, on sait que

$$\left(\frac{\partial}{\partial X}\right)^{\ell} (X - \alpha)^m = \begin{cases} \frac{m!}{(m-\ell)!} (X - \alpha)^{m-\ell} & \text{si } \ell < m, \\ m! = \ell! & \text{si } \ell = m, \\ 0 & \text{si } \ell > m. \end{cases}$$

Autrement dit, l'évaluation en α de ce polynôme vaut $\ell!$ si $\ell = m$, et 0 sinon. Ainsi, $\operatorname{ev}_{\alpha} \circ (\frac{\partial}{\partial X})^{\ell}$ est une forme linéaire sur E_n , qui vaut $\ell!$ en $(X - \alpha)^{\ell}$ et 0 en $(X - \alpha)^m$ pour $m \neq \ell$. Comme k est de caractéristique 0, $\ell!$ est inversible pour tout $\ell \in \mathbb{N}$, et la base duale de $(X - \alpha)^{\ell}$ est donnée par

$$\frac{1}{\ell!}\operatorname{ev}_{\alpha}\circ\left(\frac{\partial}{\partial X}\right)^{\ell},\ \ell\in\llbracket0,n\rrbracket$$

Exercice 6. 1. Supposons que Φ est surjective. On a $\operatorname{Im} \Phi = k^p$, autrement dit, pour tout $(u_1, \ldots, u_p) \in k^p$, il existe $x \in E$ tel que $\varphi_i(x) = u_i$ pour tout $i \in [1, p]$. Soit ensuite une combinaison linéaire

$$\sum_{i=1}^{p} \lambda_i \varphi_i = 0$$

avec $\lambda_i \in k$ pour $i \in [1, p]$. Fixons $j \in [1, p]$ quelconque, on peut par hypothèse considérer $x_j \in E$ tel que $\varphi_i(x_j) = \delta_{i,j}$. On a alors

$$0 = \sum_{i=1}^{p} \lambda_i \varphi(x_j) = \lambda_j.$$

Donc $\lambda_j = 0$ pour tout $j \in [1, p]$, et la famille $(\varphi_1, \dots, \varphi_p)$ est donc libre.

2. Si Im $\Phi \neq k^p$, alors Im Φ est contenue dans un certain hyperplan H, noyau d'une forme linéaire non nulle α . On a donc $\alpha \circ \varphi = 0$, ce qui donne une combinaison linéaire nulle en les φ_i , et comme $\alpha \neq 0$, cette combinaison linéaire est non triviale : les φ_i ne forment pas une famille libre.

Exercice 7. 1. On sait que $\langle .,. \rangle$ est bilinéaire, en particulier, l'application σ_x est linéaire et $\sigma_x \in E^*$.

- 2. On sait que $\langle .,. \rangle$ est bilinéaire, en particulier, l'application Σ est linéaire. Ensuite, soit $x \in \text{Ker }\Sigma$, on a $\sigma_x(y) = 0$ pour tout $y \in E$. En particulier, $\sigma_x(x) = ||x||^2 = 0$, ce qui entraı̂ne x = 0. On a donc $\text{Ker }\Sigma = \{0\}$. Comme E est de dimension finie, cela entraı̂ne que Σ est un isomorphisme de k-espaces vectoriels.
- 3. Soit $\varphi \in E^*$, on pose $x = \Sigma^{-1}(\varphi)$, de sorte que $\varphi = \sigma_x$ (et x est unique avec cette propriété). On a

$$\varphi \in F^o \Leftrightarrow \sigma_x \in F^o$$
$$\Leftrightarrow \forall y \in F, \ \sigma_x(y) = 0$$
$$\Leftrightarrow \forall y \in F, \langle x, y \rangle = 0$$
$$\Leftrightarrow x \in F^{\perp}$$

D'où le résultat.

Exercice 8.

1. Soit $\varphi \in F^*$, on a

$$\varphi \in \operatorname{Ker}^t f \Leftrightarrow \varphi \circ f = 0 \Leftrightarrow \operatorname{Im} f \subset \operatorname{Ker} \varphi \Leftrightarrow \varphi \in (\operatorname{Im} f)^o$$

2. Le rang de f est la dimension de $\operatorname{Im} f$. Le rang de tf est la dimension de $\operatorname{Im} {}^tf$. Par le théorème du rang, dim $\operatorname{Im} {}^tf = \dim F - \dim \operatorname{Ker}({}^tf) = \dim F - \dim (\operatorname{Im} f)^o = \dim \operatorname{Im} f$, d'où le résultat. La conclusion sur les

matrices découle du fait que le rang de f est celui de sa matrice dans une base quelconque, et du fait que la matrice de tf est la transposée de la matrice de f (dans les bases duales correspondantes).

- 3.a) On a ${}^t\partial(\varphi)=\varphi\circ\partial$, qui à un polynôme P associe $\varphi(P')$, si P est constant, P'=0 et ${}^t\partial(\varphi)(P)=0$, d'où le résultat.
- b) On sait que ∂ est surjective car tout polynôme admet des primitives (qui sont encore des polynômes), en revanche, $\operatorname{Im}^t\partial$ ne contient que des formes linéaires s'annulant sur les constante, elle n'est donc pas égale à $k[X]^*$.