

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 3

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Χρωματισμοί κορυφών και ακμών

1.6~ Έστω G γράφημα όπου $\Delta(G) \leq 3.$ Δείξτε ότι το G είναι 4-ακμοχρωματίσιμο.

Θα δείξουμε ότι γραμμικό γράφημα L(G) του G είναι 4 χρωματίσιμο.

Λήμμα 1. $A\nu K_4 \subseteq L(G)$ τότε $\Delta(G) \geq 4$.

Απόδειξη. Έστω e_1, e_2, e_3, e_4 οι ακμές του G που στο L(G) είναι κορυφές 4-κλίκας. Αυτό σημαίνει ότι κάθε ζεύγος e_i, e_j θα πρέπει να έχει κοινό άκρο.

Έστω $e_1=\{u,v\}$ και χωρίς βλάβη της γενικότητας έστω $e_2=\{u,w\}$. Αν η e_3 έχει κοινό άκρο με την e_1 την κορυφή v, τότε αναγκαστικά $e_3=\{v,w\}$ ώστε να έχει κοινό άκρο και με την e_3 . Σε αυτή την περίπτωση όμως η e_4 δεν μπορεί να έχει κοινό άκρο και με τις 3 προηγούμενες ακμές.

Άρα η e_3 έχει κοινό άκρο με την e_1 το u, δηλαδή $e_3 = \{u, x\}$ για κάποια κορυφή x (διαφορετική από τις $\{u, v, w\}$).

Τέλος, η e_4 θα πρέπει να έχει κοινό άκρο με όλες τις υπόλοιπες και αυτό μπορεί να συμβεί μόνο αν $e_4=\{u,y\}$ για κάποια νέα κορυφή y.

Συνεπώς
$$\Delta(G) \geq d(u) = 4$$
.

Εφόσον $\Delta(G) \leq 3$, από το Λήμμα 1 έχουμε ότι το L(G) δεν μπορεί να περιέχει το K_4 ως υπογράφημα άρα δεν μπορεί να το περιέχει και ως ελάσσον.

Από την εικασία του Hadwinger για την περίπτωση k=4 (για το συγκεκριμένο k έχει αποδειχθεί ότι η εικασία ισχύει) έχουμε ότι $\chi(L(G))<4$ άρα μπορούμε να χρωματίσουμε τις ακμές του G με 4 (ή λιγότερα) χρώματα.

1.7 Δείξτε ότι υπάρχει c τέτοιο ώστε κάθε ένωση δύο επίπεδων γραφημάτων να έχει χρωματικό αριθμό το πολύ c.

Λήμμα 2.
$$A \nu G = G_1 \cup G_2$$
 τότε $\chi(G) \leq \chi(G_1) \cdot \chi(G_2)$.

Απόδειξη. Έστω $\chi(G_1)=k, \chi(G_2)=l$ και $\chi_{G_1}:V(G_1)\to [k], \chi_{G_2}:V(G_2)\to [l]$ οι συναρτήσεις χρωματισμού του καθενός.

Επεκτείνουμε τις παραπάνω συναρτήσεις ως εξής:

$$\overline{\chi_{G_i}}(u) = \left\{ egin{array}{ll} \chi_{G_i}(u) &, \ u \in V(G_i) \\ 1 &, \ \mbox{διαφορετικά} \end{array}
ight.$$

Ορίζουμε το σύνολο $S=\{(x,y)\mid x\in A,y\in B\}$ και χρωματίζουμε το G με χρώματα από το S ως εξής:

$$\chi_G(u) = (\overline{\chi_{G_1}}(u), \overline{\chi_{G_2}}(u))$$

Ο παραπάνω είναι έγχυρος χρωματισμός αφού αν $\chi_G(u)=\chi_G(v)$ τότε $\overline{\chi_{G_i}}(u)=\overline{\chi_{G_i}}(v)$ για i=1,2 επομένως $\{u,v\}\notin E(G_i)$ και έτσι $\{u,v\}\notin E(G)$.

Άρα
$$\chi(G) \leq |S| = \chi(G_1) \cdot \chi(G_2)$$
.

Από το θεώρημα των 4 χρωμάτων έχουμε ότι αν G_1, G_2 επίπεδα γραφήματα τότε $\chi(G_1), \chi(G_2) \le 4$ επομένως από το Λήμμα $2: \chi(G_1 \cup G_2) \le 16$.

2 Διαπεράσεις

2.1 (*) Για ποιά k και l το γράφημα $G_{k,l}=P_l^{[k]}$ είναι Χαμιλτονιανό;

Για k=1, κανένα από τα P_l με $l\geq 1$ δεν είναι Χαμιλτονιανό.

Για $k \geq 2,$ θα δείξουμε ότι για κάθε $l \geq 1$ το $P_l^{[k]}$ είναι Χαμιλτονιανό.

Παρατήρηση 3. Το $P_l^{[2]}=P_l\times P_l$ είναι ισόμορφο με την (l+1,l+1)-σχάρα η οποία είναι Χαμιλτονιανό γράφημα για κάθε $l\geq 1$ (διαπερνάμε όλες τις κορυφές της πρώτης στήλης από πάνω προς τα κάτω, της δεύτερης στήλης από κάτω προς τα πάνω κ.ο.κ.).

Λήμμα 4. Αν G είναι Χαμιλτονιανό τότε το $G \times P_k$ είναι επίσης Χαμιλτονιανό.

Aπόδειξη. Το γράφημα $G \times P_k$ είναι ουσιαστικά το G όπου κάθε κορυφή του έχει αντικατασταθεί από ένα μονοπάτι P_k (και έχουν προστεθεί οι κατάλληλες ακμές μεταξύ κορυφών των μονοπατιών).

Ας πάρουμε ένα κύκλο Hamilton του G:

$$u_1 \to \ldots \to u_n \to u_1$$

Αυτός μπορεί να μετασχηματιστεί απευθείας σε κύκλο Hamilton του $G \times P_k$ ως εξής:

$$(u_1^1 \to \ldots \to u_1^k) \to \ldots \to (u_n^1 \to \ldots \to u_n^k) \to u_1^1$$

όπου στο παραπάνω u_i^j είναι η j-οστή κορυφή του μονοπατιού το οποίο έχει αντικαταστήσει την κορυφή u_i του G στον $G\times P_k$.

Από το Λήμμα 4 και την Παρατήρηση 3 έχουμε επαγωγικά ότι για κάθε $k\geq 2$ το $P_l^{[k]}$ είναι Χαμιλτονιανό για οποιδήποτε $l\geq 1$.

2.11 (*) Ένα τριγωνοποιημένο επίπεδο γράφημα έχει χρωματικό αριθμό 3 αν και μόνο αν είναι γράφημα Euler.

Θα θεωρήσουμε ότι το γράφημα περιέχει τουλάχιστον 3 χορυφές αφού διαφορετικά η πρόταση είναι τετριμμένη.

 Δ είχνουμε τις δύο κατευθύνσεις της εκφώνησης ως εξής:

 (\Rightarrow) Έστω (προς απαγωγή σε άτοπο) ότι το G (με $n(G) \geq 3$) τριγωνοποιημένο επίπεδο γράφημα το οποίο είναι 3-χρωματίσιμο αλλά $\delta \varepsilon \nu$ είναι γράφημα Euler.

Το G θα πρέπει να περιέχει τουλάχιστον μία χορυφή περιττού βαθμού, έστω $u \in V(G)$. Η u δεν μπορεί να έχει βαθμό 1 γιατί διαφορετικά θα βρίσκεται στο σύνορο μίας μόνο όψης f η οποία όμως θα πρέπει να έχει στο σύνορό της τουλάχιστον άλλες 2 χορυφές. Έστω v, w αυτές οι χορυφές και χωρίς βλάβη της γενικότητας έστω v η γειτονική της u. Τότε όμως μπορούμε να προσθέσουμε την αχμή $\{w, u\}$ και το γράφημα να παραμείνει επίπεδο. Αυτό είναι άτοπο γιατί το γράφημα είναι τριγωνοποιημένο, δηλαδή η προσθήχη μιας αχμής δεν θα έπρεπε να είναι εφικτή.

Συνεπώς $d(u) \geq 3$. Έστω $[v_0,v_1,\ldots,v_{k-1}]$ οι γειτονικές κορυφές τις u σε ορολογιακή διάταξη όπως εμφανίζονται στην επίπεδη εμβάπτιση του G. Αφού το γράφημα είναι τριγωνοποιημένο θα πρέπει να υπάρχουν οι ακμές $\{v_i,v_{(i+1)\mod k}\}$ για κάθε $i=0,\ldots,k-1$.

Άρα η γειτονιά της u ενάγει περιττό κύκλο και αυτό σημαίνει ότι χρειάζονται τουλάχιστον 4 χρώματα για το χρωματισμό της u και της γειτονιάς της. Άτοπο.

 (\Leftarrow) Έστω τριγωνοποιημένο επίπεδο γράφημα G με $n(G) \geq 3$ το οποίο είναι γράφημα Euler αλλά $\delta \varepsilon \nu$ είναι 3-χρωματίσιμο.

Από την εικασία του Hadwinger για k=4, έχουμε ότι $K_4 \leq G$, δηλαδή υπάρχει μια ακολουθία συνθλίψεων ακμών μετά από την οποία το γράφημα G' που απομένει περιέχει 4-κλίκα.

Κάθε κορυφή του G έχει άρτιο βαθμό (ως γράφημα Euler) και έτσι το ίδιο θα ισχύει και για κάθε γράφημα που προκύπτει από συνθλίψεις ακμών του G. Συνεπώς το G' θα είναι γράφημα Euler.

Έστω x,y,z,w οι κορυφές τις 4-κλίκας του G'.

TODO: ...

- 3 Επίπεδα γραφήματα
- 4 Τέλεια γραφήματα
- 5 Μερικές διατάξεις
- 6 κ-δέντρα
- 7 Άπειρα γραφήματα
- 8 Κανονικά γραφήματα και Ταιριάσματα
- 9 Διάφορα