

Visualizing the Deep CNN Models

Konda Reddy Mopuri

Agenda

- Motivation
 - Why do we need to visualize?
 - What are the implications of it?
- Some interesting attempts

Motivation

Why do we need to visualize?

CNNs - complex ML systems

- CNNs is a success story
- However, they are complex models
- 10s of layers, 100s of feature maps, 100000000 of parameters

CNNs - what do they learn?

CNNs are black boxes?

Often don't provide detailed information about the inference

Interpretability matters

- These CNN classifiers suffer
 - Lack of decomposability
 - No transparency
 - when they fail → no warning, no explanation
 - From the trade-off b/w "Accuracy" and "Interpretability"

What gets better?

Implications

Information supporting the inference

- Reason an inference
- E.g. Visual explanations

Can enable Human verification

- Incorrect predictions can be costly
 - Ex: Medical diagnosis, defence applications, etc.
- Predictions need to be verified by an expert

Approaches

Some of them

CNN Visualization

Neuron Visualization Evidence Localization Feature Reconstruction

CNN Visualization

Neuron Visualization Evidence Localization Feature Reconstruction

RCNN

Neurons and stimuli

• What do the neurons learn?

Neurons and stimuli

Recognize visual attributes/concepts/topics

- Understanding a convnet requires interpreting the feature activity
 @different layers
- Map neuron activations onto i/p pixel space
- Show what patterns caused it

- Deconv layers
- Switches
- Transposed filters

- Pick a unit to visualize
- Zero out all the remaining units in the layer
- Project back via the deconv layers

Observations

- Patches have greater variation than visualizations
- Strong grouping w/i feature map
- Greater invariance at higher layers
- Exaggeration of discriminative parts

Neuron Visualization Evidence Localization Feature Reconstruction

Evidence localization

- Provide visual explanations
- Grounding the inference
- Ex: Classification network
 - Which pixels are responsible to the predicted label?

Deep inside a CNN

Deep inside CNNs

- Class model visualization
- Image-specific class saliency visualization

Class model visualization

Numerically generate an image for chosen class

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2,$$

Class model visualization

Numerically generate an image for chosen class

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2,$$

Image specific visualization

- Query the CNN about the spatial support for a class
- Compute the gradients wrt the image

Image specific visualization

 Equivalent to performing gradient ascent on score function wrt image

$$S_c(I) \approx w^T I + b$$
 $w = \frac{\partial S_c}{\partial I}\Big|_{I_c}$

Image specific visualization

Guided backprop for better reconstruction

<u>Guided backprop</u> by Springenberg et al. ICLR 2015

Guided backprop for better reconstruction

<u>Guided backprop</u> by Springenberg et al. ICLR 2015

Class activation maps

Class Activation Maps (CAM)

 Class discriminative image regions used by CNN to identify the category

B Zhou et al. Learning Deep Features for Discriminative Localization, CVPR 2016

Class Activation Maps (CAM)

Perform GAP on the final conv feature map

B Zhou et al. Learning Deep Features for Discriminative Localization, CVPR 2016

Class Activation Maps (CAM)

- f_k(x,y) activation of unit 'k' in last conv layer at location (x,y)
- GAP \Rightarrow F^k = $\Sigma_{x,y}$ f_k(x,y)
- Score predicted for class 'c' → S_c

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k w_k^c f_k(x,y).$$

$$M_c(x,y) = \sum_k w_k^c f_k(x,y).$$

Class Activation Maps (CAM)

- $f_{k}(x,y)$ activation of unit 'k' in last conv layer at location (x,y)
- GAP \rightarrow F^k = $\Sigma_{x,y}$ f_k(x,y)
- Score predicted for class 'c' → S_c

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k w_k^c f_k(x,y).$$

$$M_c(x,y) = \sum_k w_k^c f_k(x,y).$$

Advantages of CAM

- Doesn't require a backprop operation
- Class discriminative

Drawbacks of CAM

- CNN needs GAP in the architecture
 - If not, it needs retraining (last layer) with a GAP

WSL with CAM

- Remove fc layers
- Add GAP layer retrain
- Threshold the map
- Fit a BB
- Detection on ILSVRC 2012 validation set

Table 1. Classification error on the ILSVRC validation set.

Networks	top-1 val. error	top-5 val. error
VGGnet-GAP	33.4	12.2
GoogLeNet-GAP	35.0	13.2
AlexNet*-GAP	44.9	20.9
AlexNet-GAP	51.1	26.3
GoogLeNet	31.9	11.3
VGGnet	31.2	11.4
AlexNet	42.6	19.5
NIN	41.9	19.6
GoogLeNet-GMP	35.6	13.9

Table 2. Localization error on the ILSVRC validation set. *Back prop* refers to using [23] for localization instead of CAM.

Method	top-1 val.error	top-5 val. error
GoogLeNet-GAP	56.40	43.00
VGGnet-GAP	57.20	45.14
GoogLeNet	60.09	49.34
AlexNet*-GAP	63.75	49.53
AlexNet-GAP	67.19	52.16
NIN	65.47	54.19
Backprop on GoogLeNet	61.31	50.55
Backprop on VGGnet	61.12	51.46
Backprop on AlexNet	65.17	52.64
GoogLeNet-GMP	57.78	45.26

Gradient weighted CAM

Grad-CAM

- Gradient weighted CAM
- Combines class specific gradient info. with pixel visualization
- Generalizes CAM for all architectures

Grad-CAM

Grad-CAM, NIPSW 2016, ICCV 2017

Grad-CAM

- Gives the weights to combine w/o
 GAP/retraining
- ReLU captures only the +ve correlations

Grad-CAM results

More results

Original Image

Grad CAM

Guided Backpropagation

Guided Grad CAM

Other similar works

- Layerwise relevance propagation for neural networks, ICMLW 2016, PLOS 2015
- Excitation backpropagation, ECCV 2016
- Visualizing Higher-Layer Features of a Deep Network [Y Bengio et al.] [Tech Report]
- Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks [ICCV 2015]
- Grad-CAM++ from Prof. Vineeth's group, IIT Hyderabad
-

Neuron Visualization **Evidence Localization**

Feature Reconstruction

Inverting deep representations

Understanding deep image representations by inverting them

Mahendran et al. CVPR 2015

Inverting deep features

Figure 1. What is encoded by a CNN? The figure shows five possible reconstructions of the reference image obtained from the 1,000-dimensional code extracted at the penultimate layer of a ref-

Inverting deep features

- Given an image encoding, to what extent we can reconstruct the image?
- No unique solution

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{H \times W \times C}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})$$

Loss function & Regularizer

$$\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$

- R restrict the reconstruction to natural images
- Challenge: modelling it → TV norm prior

$$\mathcal{R}_{V^{\beta}}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^2 + (x_{i+1,j} - x_{ij})^2 \right)^{\frac{\beta}{2}}$$

Results

Inverting CNN representation with another CNN

Inverting Visual Representations with Convolutional Networks

Alexey Dosovitskiy et al. CVPR 2016

Inverting using CNNs

- Train a CNN to invert image representations
 - o SIFT, HOG, CNN representation etc.

Sample results

Network

• Training set of images and their features $\{x_i, \phi_i\}$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i} ||\mathbf{x}_i - f(\boldsymbol{\phi}_i, \mathbf{w})||_2^2.$$

मारतीय प्रौद्योगिकी संस्थान हैदराबाद

Results

Figure 2: Reconstructing an image from its HOG descriptors with different methods.

What next?

Future challenges/directions

- Transparency is useful at three different stages of Artificial Intelligence (AI) evolution
- Al is significantly weaker than humans not yet reliably 'deployable' (e.g, VQA)
 - Identify the failure modes
- Al is on par with humans reliably 'deployable' (e.g, recognition)
 - To establish appropriate trust and confidence in users
- Al is significantly stronger than humans e.g, Chess/Go
 - Machine teaching

Appendix

Guided Backprop

Figure Springenberg et al.

Texture synthesis

Figure L Gatys et al. 2015

Texture synthesis

Figure L Gatys et al. 2015

Style Transfer

Figure from L Gatys et al. 2016

Style Transfer

Figure from <u>godatadriven.com</u>