MATH1001 Homework Solution

Chapter 8

8.2.2

(a) The standard deviation of the nine sample differences is given as 59.3. The standard error is

$$SE_{\bar{D}} = \frac{s_D}{\sqrt{n_D}} = \frac{59.3}{\sqrt{9}} = 19.77.$$

(b) $\rm H_0$: The mean weight gains on the two diets are the same (μ_1 = μ_2)

 H_A : The mean weight gains on the two diets are different ($\mu_1 \neq \mu_2$)

 t_s = 22.9/19.77 = 1.158. With df = 8, Table 4 gives $t_{0.20}$ = 0.889 and $t_{0.10}$ = 1.397. Thus, 0.20 < P-value < 0.40 and we do not reject H_0 . There is insufficient evidence (0.20 < P < 0.40) to conclude that the mean weight gains on the two diets are different.

(c) 22.9
$$\pm$$
 (1.860)(19.77)
 (-13.9,59.7) or -13.9 < μ_D < 59.7 lb.

(d) We are 90% confident that the average steer gains somewhere between 59.7 pounds more and 13.9 pounds less when on Diet 1 than when on Diet 2 (in a 140-day period).

8.2.3

Let 1 denote control and let 2 denote progesterone.

 H_0 : Progesterone has no effect on cAMP ($\mu_1 = \mu_2$)

 H_A : Progesterone has some effect on cAMP ($\mu_1 \neq \mu_2$)

The standard error is

$$SE_{\bar{D}} = \frac{s_D}{\sqrt{n_D}} = \frac{0.40}{\sqrt{4}} = 0.20.$$

The test statistic is

$$t_s = \frac{\overline{d}}{SE_{\overline{D}}} = \frac{0.68}{0.20} = 3.4.$$

To bracket the P-value, we consult Table 4 with df = 4 - 1 = 3. Table 4 gives $t_{0.025} = 3.182$ and $t_{0.02} = 3.482$. Thus, the P-value is bracketed as 0.04 < P-value < 0.05.

At significance level α = 0.10, we reject H $_0$ if P < 0.10. Since 0.04 < P < 0.05, we reject H $_0$. There is sufficient evidence (0.04 < P < 0.05) to conclude that progesterone decreases cAMP under these conditions.