

Tree-stían

Problem

You are given an integer N and N-1 bidirectional edges. These edges connect N vertices in such a way that there is a path¹ between any two vertices (i.e., they form a tree). Additionally, each vertex has a weight. For all paths, we define their weight as the product of the number of edges in it and the **greatest common divisor** of each of the weights of the vertices in the path. Determine the simple path (that does not repeat edges) with the maximum weight.

Implementation Details

You must implement the function Tree-stian(). This function receives an integer N, 2 vectors u, v with N-1 elements, and a vector w, with N elements. For each $0 \le i \le N-2$, u[i] and v[i] are the vertices that are connected by the edge i. For each $0 \le i \le N-1$, w[i] is the weight of the vertex i. This function must return an integer, the maximum weight of a path in the tree. The function would look like this:

```
#include <bits/stdc++.h>
using namespace std;
long long int Tree-stian(int N, vector<int> u, vector<int> v, vector<int> w) {
    // Implement this function.
}
```

The evaluator will call the function **multiple** times per test case.

Examples

Example 1:

■ The evaluator calls the function

```
Tree-stian(6, {0, 0, 0, 2, 3}, {1, 2, 3, 4, 5}, {8, 2, 2, 4, 4, 8})
```

the tree in this example is as follows:

¹A path is defined as a sequence of vertices, such that for any two consecutive vertices, there is an edge connecting them.

• The possible paths and their weights in this tree are:

dist(a,b)	0	1	2	3	4	5
0	0	2	2	4	4	8
1	2	0	4	4	6	6
2	2	4	0	4	2	6
3	4	4	4	0	6	4
4	4	6	2	6	0	8
5	8	6	6	4	8	0

• The correct answer is 8.

Example 2:

■ The evaluator calls the function

$$Tree-stian(9,\ \{0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7\},\ \{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8\},\ \{3,\ 3,\ 15,\ 10,\ 14,\ 7,\ 21,\ 6,\ 2\})$$

the tree in this example is as follows:

• The correct answer is 14.

Considerations

- $1 \le N \le 2 \times 10^5$.
- The vectors u and v will have exactly N-1 elements.
- The vector w will have exactly N elements.
- For each $0 \le i \le N-2$, it holds that $0 \le u[i] \ne v[i] < N$.
- For each $0 \le i \le N-1$, it holds that $1 \le w[i] \le 10^6$.
- It is guaranteed that the graph formed by the edges is a tree.
- Let S_N be the sum of all values of N across all function calls. It is guaranteed that $S_N \leq 2 \times 10^5$.

Subtasks

- (3 points) $N, S_N \leq 2000$.
- (9 points) For all $0 \le i \le N-1$, it holds that w[i]=1.
- (11 points) For all $0 \le i \le N-2$, it holds that gcd(w[u[i]], w[v[i]]) is a prime number.
- (22 points) For all $0 \le i \le N-1$, it holds that w[i] is a power of 2.
- (22 points) For all $0 \le i \le N-2$, it holds that u[i] = i, v[i] = i+1.
- (33 points) No additional restrictions.