1. Problem 1: The algorithm of Ford-Fulkerson and the value of a flow

Figure 1: A digraph G = (V, A) with edge capacities $u : A \to \mathbb{Z}_{>0}$

1.a Consider the graph G = (V, A) with edge capacities $u : A \to \mathbb{Z}_{\geq 0}$ given in Figure 1. Apply the algorithm of Ford and Fulkerson to obtain a maximal s-t flow. In every iteration, provide the current flow and its value, the corresponding residual graph, as well as an augmenting s-t path together with its increment value γ (or a certificate that there is no augmenting s-t path).

There exists no augmenting s-t path. The nodes reachable from s are v_1, v_2, v_3, v_5, v_6 .

1.b Show that the value of any s-t flow f is equal to the difference between the inflow into t and the outflow at t, i.e., $v(f) = f(\delta^{-}(t)) - f(\delta^{+}(t))$

By Lemma 4.3 a flow can be expressed via an s-t cut as the following: $v(f) = f(\delta^+(C)) - f(\delta^-(C))$. Let C be a cut where on one side are all vertices except t ($C = V \setminus \{t\}$). The inflow into t is precisely the outflow of the defined cut ($\delta^-(t) = \delta^+(C)$). Therefore the flow can be defined as $v(f) = f(\delta^-(t)) - f(\delta^+(t))$.

2. Problem 2: Flow through intermediate vertices

2.a Let G = (V, A) be a directed graph with arc capacities $u : A \to \mathbb{Z}_{\geq 0}$, and let $s_1, s_2, \ldots, s_l \in V$ be distinct. Assume that for every $i \in \{1, \ldots, l-1\}$, there is an $s_i - s_{i+1}$ flow f_i with value $v(f_i) \geq k$ for some $k \in \mathbb{Z}_{\geq 0}$. Prove that there exists an s_1 - s_l flow f with value $v(f) \geq k$.

if there exists a path s_1 - s_2 with flow $f_1 \ge k$ and a path s_2 - s_3 with flow $f_2 \ge k$, there exists a path s_1 - s_3 with a flow $f_{1,3} \ge k$. With this definition there exists an s_1 - s_l path with $f \ge k$.

3. Problem 3: Max-flow min-cut via duality I

max
$$\nu$$
s.t.
$$\sum_{a \in \delta^{+}(v)} f_{a} - \sum_{a \in \delta^{-}(v)} f_{a} = \begin{cases} \nu & \text{if } v = s \\ -\nu & \text{if } v = t \\ 0 & \text{if } v \in V \setminus \{s, t\} \end{cases}$$

$$f_{a} \leq u_{a} \quad \forall a \in A$$

$$f_{a}, v \in \mathbb{R}_{\geq 0}$$

$$(1)$$

3.a Prove that the optimal value of Equation 2 equals the value of a maximum s-t flow in G.

To prove this, we need to show that the Equation 2 is equal to the definition 4.1. (i) of the definition states the following: Capacity constraints: $f(a) \leq u(a) \quad \forall a \in A$. This is precisely what the second constraint in the LP states. The (ii) part states the following: Balance constraints: for

$$v \in V, \ f(\delta^+(v)) - f(\delta^-(v)) \begin{cases} = 0 & \text{if } v \in V \setminus \{s,t\} \\ \ge 0 & \text{if } v = s \\ \le 0 & \text{if } v = t \end{cases}. \text{ There are three parts to prove.}$$

It's easy to see that $\sum_{a \in \delta^+(v)} f_a - \sum_{a \in \delta^-(v)} f_a = 0$ is equal to $f(\delta^+(v)) - f(\delta^-(v)) = 0$.

 ν is the value of the flow, so it corresponds to the outflow of s. Therefore the sum of all outflows of s must equal ν

With the same argument, the inflow for t has to equal the value of ν .

3.b Write down the dual of the linear program Equation 2, using variables y_v for $v \in V$ and z_a for $a \in A$.

min
$$\sum_{a \in A} u_a z_a$$

s.t. $\sum_{a \in \delta^+(v)} f_a \ge \sum_{a \in \delta^-(v)} f_a$
 $f_a \le u_a \quad \forall a \in A$
 $f_a, v \in \mathbb{R}_{>0}$ (2)