PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS E INFORMÁTICA UNIDADE EDUCACIONAL PRAÇA DA LIBERDADE Bacharelado em Engenharia de Software

Daniel Aquino Silva, Ian Asenjo Dominguez Cunha, Laura Lourdes Coutinho
Rodrigues, Weber Marques de Oliveira, Viviane da Silva Rocha

Trabalho Prático I: Decodificador de Instruções do MIPS

Belo Horizonte 2020

Danie	l Aquino S	Silva, la	an Asenjo	Dominguez C	unha,	Laura L	ourdes (Coutinho
	Rodrigue	es. Wek	oer Marqu	es de Oliveira	. Vivia	ne da Si	Iva Roc	ha

Trabalho Prático I: Decodificador de Instruções do MIPS

Trabalho sobre Decodificador de Instruções do MIPS, apresentado como requisito parcial à aprovação na disciplina Arquitetura de Computadores.

Professor: Pedro Henrique

Belo Horizonte 2020

SUMÁRIO

1. CATEGORIA	4		
1.1. Aritméticas	4		
1.2. Lógicas	4		
1.3. Deslocamento Bit a Bit	5		
1.4. Acesso à Memória	6		
1.5. Desvio Condicional	6		
1.6. Desvio Incondicional	7		
1.7. Outras	7		
2. METODOLOGIA	7		
3. CONSIDERAÇÕES FINAIS			
REFERÊNCIAS	8		

1. Categoria

1.1. Aritméticas

Operações aritméticas são compostas por: soma (add), soma imediata (addi), subtração (sub), multiplicação (mult), divisão (div), negação (neg).

```
case "add":
        op = "100000";
        System.out.print(op);
        break;
case "addi":
        op = "1000";
        System.out.print(op);
        break;
case "sub":
        op = "100010";
        System.out.print(op);
        break;
case "mult":
        op = "11000";
        System.out.print(op);
        break;
case "div":
        op = "11010";
        System.out.print(op);
        break;
```

1.2. Lógicas

Comandos lógicos são compostos por: E (AND, ANDI), deslocamento (ASL, ASR, LSL, LSR), comparação (CMP, CMPI), OU-exclusivo (EOR, EORI), complemento (NOT), nor (nor), OU (OR, ORI), test-and-set (TAS),Set Less Than (SLT), Set Less Than Imm. (SLTi).

```
case "xor":
                                case "slti":
        op = "100110";
                                           op = "1010";
        System.out.print(op);
        break;
                                           System.out.print(op);
 case "nor":
                                           break;
        op = "100111";
                                 case "andi":
        System.out.print(op);
                                           op = "1100";
        break;
 case "slt":
                                           System.out.print(op);
        op = "101010";
                                           break;
        System.out.print(op);
                                 case "ori":
        break;
case "and":
                                           op = "1101";
        op = "100100";
                                           System.out.print(op);
        System.out.print(op);
                                           break;
        break;
case "or":
       op = "100101";
       System.out.print(op);
       break;
```

1.3. Deslocamento Bit a Bit

Os comandos Bit a Bit são compostos por Shift Left Logical (sll) e Shift Right Logical (srl).

1.4. Acesso à Memória

Comandos de acesso à memória são Load Word (lw) e Store Word (sw).

1.5. Desvio Condicional

Comandos do desvio condicional são Branch On Not Equal (bne) e Branch On Equal (beq).

1.6. Desvio Incondicional

Presente nos comandos Jump (j), Jump Register (jr) e Jump And Link (jal).

1.7. Outras

Instrução NOP (nenhuma operação).

```
default: op="erro";
break;
```

2. Metodologia

Os serviços usados para a comunicação do grupo foi o aplicativo de mensagens instantâneas WhatsApp e o Discord para compartilhamento de tela, distribuição de tarefas e reunião do grupo, além disso foi utilizado a ferramenta Trello para acompanhamento de algumas tarefas e registro de reuniões do grupo. O código da aplicação está disponível no GitHub.

A linguagem de programação de alto nível utilizada foi JAVA (software eclipse) e a linguagem de montagem Assembly.

5. Considerações finais

O objetivo do trabalho foi a construção construção de um simulador de um processador MIPS.

REFERÊNCIAS

https://drive.google.com/drive/folders/1DLQ09tEwyniCtlKA9K_gtBZi8J0MzmpR