COMP20003 Algorithms and Data Structures Balanced Trees

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

So far...

- Dictionary search with slow look-up or insertion:
 - Lists, sorted and unsorted
 - Array, unsorted
 - Sorted array has log n lookup, but n² build
- •Binary search tree: good average case, but very bad worst case.

Balanced trees

- •Binary search tree:
 - Average case insertion and search: log n
 - Worst case for both: O(n)
- So, nice and simple, usually good enough, but not reliable.

This section

- How to get a binary search tree to stay balanced...
- ... or almost balanced...
- no matter what order the data are inserted.
- •Note: this material is not covered in Skiena. It is essential knowledge for any computer scientist, however, and *is* examinable.

Balanced trees

- Idea: make a binary search tree perfectly (or almost perfectly) balanced.
- •In a balanced tree of n items, the height will be O(log n).
 - Perfectly balanced tree, height = log n, exactly.
 - Balanced tree, height = O(log n).
 - Therefore build in balanced tree is O(n log n)
 - Search is O(log n).

- →•AVL trees
 - •2-3-4 trees
 - B+ trees
 - Red-black trees

Balanced Trees and Binary Search Trees

- In balanced trees, during insertion there are mechanisms for making sure the tree does not grow unbalanced.
- At the same time, the bst ordering is preserved.
- So, search in a balanced tree is exactly the same as in a bst.
- The only difference is that it is O(log n).

AVL Trees

- The first balanced tree.
- Insert node + Keep track of height of subtrees of every node.
 - Balance node every time difference between subtree heights is >1.
 - Basic balancing operation: Rotation.
- •Adelson-Velskii, G.; E. M. Landis (1962). "An algorithm for the organization of information". Proceedings of the USSR Academy of Sciences **146**: 263–266. (Russian) English translation by Myron J. Ricci in Soviet Math. Doklady **3**:1259–1263, 1962.

Do these trees satisfy the AVL condition? Why / why not?

Non-AVL Trees caused by...

Outside insertion Inside insertion

Unbalanced tree Categories

Outside Right **Sub-tree** Right **Child** (RR)

Inside Right **Sub-tree** Left **Child** (RL)

Left Child (LL)

Unbalanced tree Categories

Counter =

Outside Right Sub-tree Right Child (RR)

Outside Left Sub-tree Left Child (LL)

Inside Right Sub-tree Left Child (RL)

Unbalanced tree Categories

Inside Right **Sub-tree** Left **Child** (RL)

Look at the node.Counter and node.child.Counter to know Which Rotation to do

Inside Left **Sub-tree**Right **Child** (RL)

Outside Left **Sub-tree** Left **Child** (LL)

COMP 20003 Algorithms and Data Structures

Image from Wikipedia: Tree rotation


```
RotateR(Q)
RotateR (node)
                                      left = P;
    left = node.Left;
    leftRight = left.Right;
                                      leftRight = B;
                                      parent = Null;
    parent = node.Parent;
                                      P.Parent = Null;
    left.Parent = parent;
                                      P.Right = Q;
    left.Right = node;
    node.Left = leftRight;
                                      Q.Left = B;
                                      Q.Parent = P;
    node.Parent = left;
```



```
RotateL(P)
RotateL (node)
                                      right = Q;
    right = node.Right;
    rightLeft = right.Light;
                                      rightLeft = B;
                                      parent = Null;
    parent = node.Parent;
                                      Q.Parent = Null;
    right.Parent = parent;
                                      Q.Left = P;
    right.Left = node;
    node.Right = rightLeft;
                                      P.Right = B;
                                      P.Parent = Q;
    node.Parent = right;
```


- LeftLeft/RightRight-rotation (single) :Take non-AVL node:
 - Rotate Child and node
 - Keep ordered subtree!

Which Rotation should we apply?

Excercise: Rotate? If so, do it...

We have shown that: in these cases (LL/RR), Rotation rebalances the tree.

What about in these cases (LR/RL)?

RL and LR: Double rotation

Right Left (RL) double Rotation:

 First rotation swaps Grandchild and child (Right Rotation)

RL and LR: Double rotation

Right Left (RL) double Rotation:

 Second rotation swaps Parent and child (Left Rotation), as before

Why not just left rotate?

 Note that since rotations preserve the bst ordering of the tree, search is the same as for a bst.

AVL Trees

- •Good features:
 - Tree is always reasonably balanced.
 - Actually height ≤ 1.44 log₂n.
 - Therefore complexity for any search is O(?).
- •Less than ideal features:
 - Very fiddly to code: must keep track of insertion path and size of all subtrees.
 - Balancing adds time (but constant time).

```
node* insert ( node* tree, node* new node )
   if ( tree == NULL )
     tree = new node;
   else if ( new node->key < tree->key ) {
     tree->left = insert ( tree->left, new node );
     /* Fifty lines of left balancing code */
 else {
    tree->right = insert ( tree->right, new node );
    /* Fifty lines of right balancing code */
  return tree;
```


Other resources for AVL trees

Tutorial on AVL trees by Ananda Gunawardena,
 Carnegie Mellon Institute:

http://www.youtube.com/watch?v=EsgAUiXbOBo
(25 minutes)

_λInteractive Demo!

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

- AVL trees use rotation to keep the tree balanced.
- Rotations are a general operation, used in other situations, not just AVL trees.

- •Trees do not have to be binary!
- •Nodes in 2,3,4-Trees have:
 - •1, 2, or 3 keys
 - •2, 3, or 4 pointers, correspondingly.
- •Items are inserted only into leaf nodes.
- When 4-nodes are full split to accommodate new items.
- Tree grows in height slowly.

2-3-4 Tree nodes

2-node

4-node

3-node

2,3,4-Trees

- Note that tree remains balanced even when items are inserted in sorted order.
- Height of tree: between log₄n and log₂n

B+-Trees

- https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
- •B+-trees: generalization of the 2,3,4 tree.
- •Nodes have many pointers:
 - Typically 256-512
 - Depth of tree is log_(very large number)n
- Used for storing large databases on disk, where accesses are very expensive.

- •Red-black trees implement a 2-3-4 tree as a binary search tree, using node rotation to keep the balance.
- Beyond the scope of this subject.
- An excellent description is found in Sedgewick, Algorithms in C, Parts 1-4, Section 13.4.

Splay Trees

- A splay tree is a self-adjusting tree.
- •Insertion:
 - Insert as for bst.
 - "Splay" new node to the root.
- Splay: do a series of rotations, that bring the node closer to the root.

Splay Trees

- A splay tree is a self-adjusting tree.
- Search:
 - Search as for bst
 - "Splay" the searched-for node to the root.
- Note: might be O(n) search in a stick tree,
 but then splaying bushes out the tree.

Splay Trees

- Overall:
 - A single search might take linear time.
 - •BUT over time:
 - •The tree gets bushier.
 - More highly accessed nodes are closer to the root.

- Splay tree analysis: amortized over a series of searches.
- Cope well with nonuniform access.
- •Sleator and Tarjan, Self-Adjusting Binary Search Trees, JACM 32(3), 1985, 652-686.

Splay Tree Example

Splay Tree Example

Now search for w.

Good things about balanced trees

- •Tree is balanced:
 - Always relatively balanced for AVL, 2-3-4, B.
 - On average balanced for splay trees.
- O(log n) search for AVL, 2-3-4, B.

Skip Lists: A Probabilistic Alternative to Balanced Trees

- Skip lists are lists pretending to be balanced trees.
- They have excellent log n search behavior,
 BUT...
- they are a probabilistic algorithm.
 - •There is an extremely high probability that a skip list search will complete in log n time.
 - But there is always an infinitesimal probability of worst case linear behavior.