Polymer Testing

Polymer Testing, Polymer Analysis, Plastic Testing, and Plastic Analysis by ExcelPlas Call Us: 03 9532 2207

- Home
- About Us
- <u>Services</u> »
- Offerings »
- Contact Us

5-14

 $\underline{\text{Home}} \rightarrow 5\text{-}14$

Filled polypropylene – Furniture

Title	FAILURE ANALYSIS OF POLYMER FURNITURE COMPONENTS
Date	2013
Objective	To determine the cause of failure of a polymer furniture component.
Photo	Figure 1. Close-up of Sample B – failed sample (cracks circled).

Flexible polypropylene (RPP) – Geomembrane

Title	TESTING OF REINFORCED FLEXIBLE POLYPROPYLENE (R-PP) GEOMEMBRANE SAMPLES
-------	--

2013			
Comparative testing of five reinforced flexible polypropylene (R-PP) cover samples			
Breaking Strength: Procedure A – Grab Test Method (ASTM D 751) Trapezoidal Tear (ASTM D 4533)			
Carbonyl Index (based on ASTM F2102)			
Surface microscopy (photographs for assessing micro-cracking)			
Weld Shear (ASTM D 6392)			
Ply Adhesion (ASTM D 6636)			
ATR FT-IR data indicated that all the used samples had undergone significant oxidation. Micrograph showed considerable crazing of the exposed samples but no micro-cracking was evident.			

Flexible polypropylene (RPP) – Liners

Title	TESTING OF REINFORCED FLEXIBLE POLYPROPYLENE (RPP) GEOMEMBRANE SAMPLES
Date	2013
Objective	To conduct comparative testing on three reinforced flexible polypropylene (RPP) cover samples.
Photo	

Figure 1. Surface Detail x200 magnification – no surface micro-cracking evident but slight crazing only.

Figure 2. Surface Detail x200 magnification – surface micro-cracking and fissuring evident.

Figure 3. Surface Detail x200 magnification – surface micro-flaking evident.

Figure 4. Surface Detail x200 magnification – surface crazing/chalking evident.

High density polyethylene (HDPE)- Electrofusion weld

Title	ASSESSMENT OF AN ELECTROFUSION WELD
Date	2013
Objective	To assess the condition of electrofusion weld assembly samples.
D1	

Photo

Figure 1. Mating surfaces of specimen showing some melting of the surfaces (as evidenced by visible ridges)

Figure 2. Socket magnified surface

High density polyethylene (HDPE) – Pipe

Title	TENSILE TESTING OF BUTT FUSED HDPE PIPE SAMPLES
Date	2013
Objective	To measure the tensile properties of HDPE pipe samples for qualification or production testing purposes
Photo	

Figure 1. Specimen 1 failure mode (ductile break)

Figure 2. Specimen 2 failure mode (ductile break)

Testing Undertaken

Tensile properties testing per ISO 13953:2001(E)

High density polyethylene (HDPE) -Pipe electrofusion weld

Title	FAILED ELECTROFUSION WELD
Date	2013
Objective	To investigate the cause of a failed Electrofusion weld
Photo	

Figure 1. Pipe weld section after extensive cleaning. Some mud remained in weld. Long thing contaminant noticed that had mirror image on the fitting surface.

Figure 2. Weld Area at x200 magnification revealing dirt particles melted into surface of specimen

Testing Undertaken	Failure analysis under microscope
Failure Mode	Although the pipe and fitting were hot enough to melt the polymer, the surfaces were never close enough or clean enough for a proper joint to form.

High density polyethylene (HDPE) – Sewer liners

Title	CRACKING OF 5MM HDPE SHEET LINER IN A SEWER	
Date	2012	
Objective	To test coupons/retrieved samples to determine the root cause of embrittlementand cracking failures of a 5mm thick HDPE lining sheet installed in a sewer tunnel approximately 4 years ago.	
Photo	Figure 1 Observed empling	
	Figure 1. Observed cracking	
	DSC Thermal analysis OIT	
	Melt flow index	
Testing Undertaken	Density determination	
	Microscopy	
	Peel testing	
	The 5mm HDPE sheet failed by brittle stress cracking (environmental stress cracking).	
Failure Analysis	The root cause of the cracking was poor material selection as the grade of HDPE used was a homopolymer grade which has excessively high density and high %crystallinity and a marked propensity to undergo stress cracking.	

Low density polyethylene (LDPE) – Safety wear(kneepads)

Title	KNEE PAD MATERIAL IDENTIFICATION AND PERFORMANCE TESTING
Date	2013
Objective	To determine the performance properties and possible identity of the materials used in a kneepad sample
Testing Undertaken	FT-IR DSC Flexural crack (cyclic fatigue) Hardness (DurometerShore A)
Conclusion	FT-IR and DSC analysis indicated the kneepad was constructed from LDPE foam with a small amount of EVA. No flex cracking or flex damaged was observed after 1,000,000 oscillations. The kneepad tested had a larger hardness value than the two kneepads previously tested.

Multilayer Plastic Laminate – Packaging

Title	DELAMINATION FAILURE OF MULTILAYER PLASTIC LAMINATE PACKAGING
Date	2013
Objective	To investigate the origin of delamination defects (ie. adhesion failure of the top clear coating) of a plastic laminate used in packaging bags for dog food.
Photo	

Delamination was associated with the presence of areas of silicone

Nylon-Fibres

contamination.

Testing

Failure Analysis

0/04/2022, 22:00 5-14 Polymer Testing		
Title	PURITY OF NYLON SAMPLES	
Date	2013	
Objective	To measure the nylon 6,6 content of two samples. Samples were recycled material. Not supplied with identification/description, identified in report as Green Fibre Mixture and Grey w/ Green Fibre Mixture.	
Photo	02/10/2013 11:56	
Testing Undertaken	ASTM D 3418 Thermal properties were tested using Differential scanning calorimetry (DSC), crystallinity was also measured	
Conclusion	DSC indicated the green fibrous sample was Nylon 6. Crystallinity measurements of the Grey w/ Green sample indicated it contained Nylon 6	

Accreditation

Gallery

Contact Us

Polymer Testing (Division of ExcelPlas)

274 Wickham Road Highett VIC 3190

Postal Address PO Box 147 Moorabbin VIC 3189

e. info@polymertesting.com.au p. 03 9532 2207

www.polymertesting.com.au

© 2020 Polymer Testing (Division of ExcelPlas). All rights reserved. Back to Top