Лекция 10

1. Непрерывность обратной функции.

На предыдущей лекции была доказана следующая теорема.

Теорема 1 (критерий непрерывности монотонной функции).

Монотонная функция $f:[a,b] \to \mathbb{R}$ непрерывна на [a,b] тогда и только тогда, когда f([a,b]) — отрезок.

Теорема 2 (теорема об обратной финуции). Пусть f непрерывна u строго монотонна на [a,b] (т.е. f монотонна u $f(x) \neq f(y)$ при $x \neq y$). Тогда f — биекция между отрезками I = [a,b] u J c концами f(a) u f(b) u f^{-1} непрерывна u строго монотонна на J.

Доказательство. Строгая монотонность означает, что f инъективна, а из предыдущей теоремы следует, что образ I=[a,b], это отрезок J с концами f(a) и f(b). Значит f осуществляет биекцию отрезков I и J, поэтому корректно определена обратная функция $f^{-1}\colon J\to I$.

Без ограничения общности считаем, что f не убывает. Если $f(x_1) < f(x_2)$, то $x_1 < x_2$, т.к. в противном случае $x_1 \ge x_2$ и $f(x_1) \ge f(x_2)$. Поэтому f^{-1} — строго монотонная функция. Кроме того $f^{-1}(J) = I$ — отрезок, что по предыдущей теореме гарантирует непрерывность f.

При помощи приведенной теоремы обосновывается существование и непрерывность функций $\sqrt[n]{x}$, arctgx, и т.д.

Пример 3. Рассмотрим функцию $f(x)=\operatorname{tg} x$ на интервале $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Она строго возрастает на данном интервале и непрерывна. Поэтому образ отрезка $\left[-\frac{\pi}{2}+\frac{1}{n},\frac{\pi}{2}-\frac{1}{n}\right]$ есть отрезок $\left[\operatorname{tg}(-\frac{\pi}{2}+\frac{1}{n}),\operatorname{tg}(\frac{\pi}{2}-\frac{1}{n})\right]$, на котором существует непрерывная строго монотонная обратная функция f_n^{-1} . Эти функции согласованы, т.е. $f_{n+1}^{-1}(x)=f_n^{-1}(x)$ для каждой точки $x\in\left[\operatorname{tg}(-\frac{\pi}{2}+\frac{1}{n}),\operatorname{tg}(\frac{\pi}{2}-\frac{1}{n})\right]$, а $\bigcup_{n=1}^{\infty}\left[\operatorname{tg}(-\frac{\pi}{2}+\frac{1}{n}),\operatorname{tg}(\frac{\pi}{2}-\frac{1}{n})\right]=\mathbb{R}$. Тем самым, построена обратная функция f^{-1} на \mathbb{R} , которую мы обозначаем $\operatorname{arctg} x$.

2. Построение показательной функции.

Пусть a>1. Будем считать известным из школьного курса, что для рациональных x значение a^x корректно определно и выполнены свойства

$$a^0 = 1, a^{x+y} = a^x \cdot a^y, x < y \Rightarrow a^x < a^y$$

для рациональных x и y.

Пемма 4. Пусть $N \in \mathbb{N}$. Тогда найдется такое число C(N), что для всех $x,y \in \mathbb{Q}$, $x,y \leq N$, выполнено

$$|a^x - a^y| \le C(N)|x - y|.$$

Доказательство. Предположим, что x < y. Если $y - x \ge 1$, то

$$a^y - a^x \le a^y \le a^N \le a^N |y - x|.$$

Если y-x<1, то найдется натурально число n, для которого $\frac{1}{n+1}\leq y-x<\frac{1}{n}$. Тогда, по неравенству Бернуллу,

$$a^{y} - a^{x} = a^{x}(a^{y-x} - 1) \le a^{N}(a^{1/n} - 1) \le a^{N}(a - 1)\frac{1}{n} \le 2a^{N}(a - 1)\frac{1}{n+1} \le 2a^{N}(a - 1)(y - x).$$

Таким образом,
$$C(N) = \max\{a^N, 2a^N(a-1)\}.$$

Теорема 5. Пусть a>1. Существует единственная непрерывная функция $f\colon \mathbb{R}\to\mathbb{R}$, совпадающая $c\:x\mapsto a^x\:$ при $x\in\mathbb{Q}$.

Доказательство. Рассмотрим точку $x \in \mathbb{R}$. Пусть $x_n \to x$, $x_n \in \mathbb{Q}$, (такая последовательность всегда существует, например для $x = \pm a_0.a_1a_2a_3...a_m...$ можно взять $x_n := \pm a_0.a_1a_2...a_n$). Найдется число $N \in \mathbb{N}$, для которого $x_n \leq N$ при каждом n. В силу доказанной в предыдущей лемме оценки, последовательность $\{a^{x_n}\}$ фундаментальна, а значит имеет предел, который мы обозначим f(x). Пусть $y_n \to x$, $y_n \in \mathbb{Q}$, некоторая другая последовательность. Тогда для нее найдется число N_1 , для которого $y_n \leq N_1$ при каждом n. Тогда для $N_2 = \max\{N, N_1\}$ выполнено

$$|a^{x_n} - a^{y_n}| \le C(N_2)|x_n - y_n|,$$

откуда получаем, что $a^{y_n} \to f(x)$, что означает корректность определения f.

Рассмотрим теперь две точки x,y. Пусть $N\in\mathbb{N}$ и $x\leq N,y\leq N$. Пусть $x_n\to x,\,x_n\in\mathbb{Q},\,x_n\leq N+1,\,$ и $y_n\to y,\,y_n\in\mathbb{Q},\,y_n\leq N+1.$ Тогда, переходя к пределу в неравенстве, получаем

$$|f(x) - f(y)| \le C(N+1)|x-y|,$$

что влечет непрерывность f. Действительно, если $x_n \to x$ (не обязательно рациональные), то найдется $N \in \mathbb{N}$, для которого $x_n \le N$, $x \le N$. Из неравенства выше получаем, что $f(x_n) \to f(x)$.

Пусть f_1 — какая-то непрерывная функция, совпадающая с $x \mapsto a^x$ при $x \in \mathbb{Q}$. Пусть $x_n \to x, \ x_n \in \mathbb{Q}$. Тогда $f(x_n) = f_1(x_n) = a^{x_n}$ и $f(x_n) \to f(x), \ f_1(x_n) \to f_1(x)$, что и дает совпадение f(x) и $f_1(x)$.

Построенное продолжение f(x) будем также обозначать a^x .

Следствие 6. Для построенной функции a^x выполнены следующие свойства: $a^{x+y} = a^x \cdot a^y$ и $x < y \Rightarrow a^x < a^y$.

Доказательство. Пусть $x_n \to x, y_n \to y, x_n, y_n \in \mathbb{Q}$. Тогда

$$a^{x+y} = \lim_{n \to \infty} a^{x_n + y_n} = \lim_{n \to \infty} a^{x_n} \cdot a^{y_n} = a^x \cdot a^y.$$

Теперь для проверки второго свойства достаточно убедиться, что для x>0 выполнено $a^x>1$. Пусть $x_n\to x,\ x_n\in\mathbb{Q}$. Найдется номер n_0 , начиная с которого $x_n>\frac{x}{2}>0$. Пусть $q\in\mathbb{Q},\ q\in(0,\frac{x}{2})$. Тогда $a^x=\lim_{n\to\infty}a^{x_n}\geq a^q>a^0=1$.

По теореме об обратной функции корректно определна непрерывная строго монотонная функция $\log_a\colon (0,+\infty)\to \mathbb{R}.$

$$3. o - O$$
 СИМВОЛИКА

Определение 7. Пусть f и g определены на множестве D и a предельная для D точка. Говорят, f бесконечно малая по сравнению \mathbf{c} g при $x \to a$ (по множеству D), если f(x) = h(x)g(x) и $\lim_{x\to a} h(x) = 0$. Используется обозначение: $f = \bar{o}(g)$ при $x \to a$ (при этом говорят, что f есть о малое от g).

В частности, $f = \bar{o}(1)$ при $x \to a$ означает, что $\lim_{x \to a} f(x) = 0$. Таким образом, введенное обозначение $f = \bar{o}(g)$ равносильно тому, что $f = \bar{o}(1) \cdot g$.

Пример 8. Пусть m > n, тогда

- 1) $x^m = \bar{o}(x^n)$ при $x \to 0$, т.к. $x^m = x^{m-n} \cdot x^n$;
- 2) $x^n = \bar{o}(x^m)$ при $x \to \infty$, т.к. $x^n = x^{-(m-n)} \cdot x^m$.

Пример 9. Например из первого замечательного предела следует, что $\sin x = x + \bar{o}(x)$. На семинарах будет обосновано, что $\cos x = 1 - \frac{1}{2}x^2 + \bar{o}(x^2)$, $\ln(1+x) = x + \bar{o}(x)$, $(1+x)^{\alpha} = 1 + \alpha x + \bar{o}(x)$, $e^x = 1 + x + \bar{o}(x)$ при $x \to 0$.

Пример 10. Подобная эквивалентность часто используется для вычисления пределов.

$$\lim_{x \to 0} \frac{\ln \cos x}{\sin x^2} = \lim_{x \to 0} \frac{\ln \left(1 - \frac{1}{2}x^2 + \bar{o}(x^2)\right)}{x^2 + \bar{o}(x^2)} = \lim_{x \to 0} \frac{-\frac{1}{2}x^2 + \bar{o}(x^2) + \bar{o}(-\frac{1}{2}x^2 + \bar{o}(x^2))}{x^2 + \bar{o}(x^2)}.$$

Заметим, что $\bar{o}(-\frac{1}{2}x^2+\bar{o}(x^2))=\bar{o}(1)\cdot(-\frac{1}{2}x^2+\bar{o}(x^2))=\bar{o}(1)\cdot(-\frac{1}{2}+\bar{o}(1))\cdot x^2=\bar{o}(1)\cdot x^2=\bar{o}(x^2).$ Кроме того, $\bar{o}(x^2)+\bar{o}(x^2)=(\bar{o}(1)+\bar{o}(1))\cdot x^2=\bar{o}(1)\cdot x^2=\bar{o}(x^2).$ Тем самым, нам осталось вычислить

$$\lim_{x \to 0} \frac{-\frac{1}{2}x^2 + \bar{o}(x^2)}{x^2 + \bar{o}(x^2)} = \lim_{x \to 0} \frac{-\frac{1}{2} + \bar{o}(1)}{1 + \bar{o}(1)} = -\frac{1}{2}.$$