Quantum Annealing for Music Arrangement

Lucas Kirby

4 March 2025

Department of Physics, Durham University

Overview

Motivations

Theory

Adiabatic quantum computing

Quantum annealing

Music arrangement

Methods

Results

Conclusions

Motivations

Motivations

- Small lit review¹
- Quantum computer music
- My own novel adaption of the method
- THIS IS MY OWN IDEA

 $^{^{1}}$ Cambouropoulos, 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'.

Theory

Adiabatic quantum computing

Adiabatic principle

A system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough.²

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p$$

- Universal and guaranteed
- A system that starts in a ground state, ends in a ground state
- Not possible in practice

²Born and Fock, 'Beweis des Adiabatensatzes'.

Quantum annealing

- Relaxes the adiabaticity
- Rate of change determined heuristically
- Final state is probabilistic, not deterministic

Model

Initial state

$$H_0 = h_0 \sum_{i=1}^{N} \sigma_i^x$$

Ising model

$$H_p(\sigma^z) = \sum_{i < j}^N J_{ij} \sigma_i^z \sigma_j^z + \sum_{i=1}^N h_i \sigma_i^z$$

Uses

By Brianlechthaler - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=112382195

Quadratic Unconstrained Binary Optimisation

$$f(x) = \sum_{i < j}^{N} Q_{i,j} x_i x_j + \sum_{i}^{N} Q_{i,i} x_i$$

- Encodes problem solution into Hamiltonian's ground state
- Sent to the QPU for optimisation

Music arrangement

- Adaptation of previously composed pieces for practical or artistic reasons
- Traditionally complex and time-consuming
- This study focuses on reduction

Beethoven's String Quartet No. 10

How to combine them?

Methods

Problem formulation

- 1. Split score into musical phrases
- 2. Arrange phrases into a graph
- 3. Solve graph problem using QPU
- 4. Construct arrangement from solution

1. Split score

Local boundary detection model (LBDM)

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1})$$

Cambouropoulos, 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'

2. Create graph

3. Solve graph

Maximal independent set (MIS)

Largest subset of nodes such that no nodes within the subset are connected by an edge

4. Construct arrangement

Results

Excerpt

String Quartet No. 10 by Ludwig van Beethoven

Phrase detection

Boundary strengths for the Violin I part

Problem graph

Problem graph with 33 nodes and 70 edges

Solutions

Returned solutions for 1000 reads

Example solution

Solution graph returning a subset of $11\ \mathrm{nodes}$

Final arrangement

Selected phrases

Final arrangement

Conclusions

Conclusions

- Successful in creating a valid single-part reduction
- Advantage over classical algorithms Huang, Chiu and Shan, 'Towards an automatic music arrangement framework using score reduction'
- Removes skill barrier for music arrangement

Future work

- Increased problem size
- Parametric variation of LBDM
- Physical limitations of instruments
- Reduction to more than one part
- Quality comparison of computer arrangements Pearce and Wiggins, 'Towards A Framework for the Evaluation of Machine Compositions'

Quantum Annealing for Music Arrangement

Lucas Kirby

4 March 2025

Department of Physics, Durham University

LBDM

Boundary strength

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1})$$
$$r_{i,i+1} = \frac{|x_i - x_{i+1}|}{x_i + x_{i+1}}$$

Normalisation

$$S_i' = \frac{S_i - \min(S_i)}{\max(S_i) - \min(S_i)}$$

Weighting

$$S = rac{1}{3} \left(S'_{
m pitch} + 2 S'_{
m IOI}
ight)$$

Cambouropoulos, 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'

MIS

$$f(x) = A \sum_{ij \in E} x_i x_j - B \sum_i W_i x_i$$

Lucas, 'Ising formulations of many NP problems'

 $A/B>=2\max(W)$ to weight the constraint term more heavily than any objective term

Phrase entropy

Shannon entropy

$$H(X) := -\sum_{i} P(x_i) \log_2 P(x_i)$$

Probability distribution

$$P(x_i) = \frac{n_i}{N}$$

Li et al., 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy'

References i

- Born, M. and V. Fock. 'Beweis des Adiabatensatzes'. de. In: Zeitschrift für Physik 51.3 (Mar. 1928), pp. 165–180. ISSN: 0044-3328. DOI: 10.1007/BF01343193. URL: https://doi.org/10.1007/BF01343193 (visited on 01/03/2025).
- Cambouropoulos, Emilios. 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'. In: International Computer Music Association (2011). ISSN: 2223-3881.
- Huang, Jiun-Long, Shih-Chuan Chiu and Man-Kwan Shan. 'Towards an automatic music arrangement framework using score reduction'. In: ACM Trans. Multimedia Comput. Commun. Appl. 8.1 (Feb. 2012), 8:1–8:23. ISSN: 1551-6857. DOI: 10.1145/2071396.2071404. (Visited on 05/12/2024).

References ii

- Li, You et al. 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy'. In: 2019 53rd Annual Conference on Information Sciences and Systems (CISS). Mar. 2019, pp. 1–5. DOI: 10.1109/CISS.2019.8693036. URL: https://ieeexplore.ieee.org/document/8693036 (visited on 27/12/2024).
- Lucas, Andrew. 'Ising formulations of many NP problems'. English. In: Frontiers in Physics 2 (Feb. 2014). Publisher: Frontiers. ISSN: 2296-424X. DOI: 10.3389/fphy.2014.00005. (Visited on 14/10/2024).

References iii

Pearce, M. and Geraint A. Wiggins. 'Towards A Framework for the Evaluation of Machine Compositions'. In:

Proceedings of the AISB'01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences. 2001.