Vu Anh Thu

Hanoi National University of Education

June 10, 2022

- Preliminaries
- The Girsanov theorem
- Applications
- 4 References

- Preliminaries
- 2 The Girsanov theorem
- Applications
- 4 References

Fatou 's lemma

Let X_n be random variables satisfying $X_n \ge 0$ a.s for all n. Then we have

$$\mathbb{E}(\liminf_{n\to\infty}X_n)\leq \liminf_{n\to\infty}\mathbb{E}(X_n)$$

Fatou 's lemma

Let X_n be random variables satisfying $X_n \ge 0$ a.s for all n. Then we have

$$\mathbb{E}(\liminf_{n\to\infty}X_n)\leq \liminf_{n\to\infty}\mathbb{E}(X_n)$$

Cauchy - Schwarz inequality

If $X, Y \in L^2$, then $XY \in L^1$ and we have

$$|\mathbb{E}(XY)| \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Ito 's formula for semimartingale

Let X_t be a semimartingale with continuous paths and $f \in C^2$. Then for almost every ω

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X \rangle_s$$

Ito 's formula for semimartingale

Let X_t be a semimartingale with continuous paths and $f \in C^2$. Then for almost every ω

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X \rangle_s$$

Ito 's product formula

If X and Y are semimartingales with continuous paths, then

$$X_tY_t = X_0Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \langle X, Y \rangle_t$$

- Preliminaries
- 2 The Girsanov theorem
- Applications
- 4 References

From now on, will we suppose that the filtration $(\mathcal{F}_t)_{t\geq 0}$ satisfies the usual conditions.

Lemma 13.1

Suppose Y is a continuous local martingale with $Y_0=0$ and $Z_t=e^{Y_t-\frac{\langle Y\rangle_t}{2}}$. If $\langle Y\rangle_t$ is a bounded random variable for each t, then $\mathbb{E}(|Z_t|^p)<\infty$ for each p>1 and each t.

Lemma 13.2

Suppose A_t is a continuous increasing process adapted to the filtration $\{\mathcal{F}_t\}$ satisfying the usual conditions. Let X be a bounded random variable, H be a bounded adapted process, s < t and $B \in \mathcal{F}_s$. Then

$$\mathbb{E}\left(\int_{s}^{t} X H_{r} dA_{r}; B\right) = \mathbb{E}\left(\int_{s}^{t} \mathbb{E}[X | \mathcal{F}_{r}] H_{r} dA_{r}; B\right)$$

8/15

Lemma 13.2

Suppose A_t is a continuous increasing process adapted to the filtration $\{\mathcal{F}_t\}$ satisfying the usual conditions. Let X be a bounded random variable, H be a bounded adapted process, s < t and $B \in \mathcal{F}_s$. Then

$$\mathbb{E}\left(\int_{s}^{t} X H_{r} dA_{r}; B\right) = \mathbb{E}\left(\int_{s}^{t} \mathbb{E}[X | \mathcal{F}_{r}] H_{r} dA_{r}; B\right)$$

Proposition 3.14

Suppose \mathcal{F}_t is a filtration satisfying the usual conditions, A_t is an adapted process with paths that are increasing, right continuous with left limits and X is a non-negative integrable random variable. Then

$$\mathbb{E}\left(\int_0^t X dA_s\right) = \mathbb{E}\left(\int_0^t \mathbb{E}[X|\mathcal{F}_s] dA_s\right)$$

8 / 15

Let M_t is a non-negative continuous martingale with $M_0=1$ a.s. Define a new probability measure \mathbb{Q} on (Ω, \mathcal{F}) by $\mathbb{Q}(A)=\mathbb{E}[M_t;A]$ if $A\in \mathcal{F}_t$.

ullet $\mathbb Q$ is well-defined since if $A\in\mathcal F_s\subset\mathcal F_t$, then

$$\textit{M}_s = \mathbb{E}[\textit{M}_t|\mathcal{F}_s] \rightarrow 1_{\textit{A}}.\textit{M}_s = \mathbb{E}[1_{\textit{A}}.\textit{M}_t|\mathcal{F}_s] \rightarrow \mathbb{E}[1_{\textit{A}}.\textit{M}_s] = \mathbb{E}[1_{\textit{A}}.\textit{M}_t]$$

- Q is a probability measure since
 - $\mathbb{Q}(A) \geq 0 \ \forall A$
 - $\mathbb{Q}(\Omega) = \mathbb{E}[M_t] = \mathbb{E}[M_0] = 1$ (as M_t is a martingale).
 - ullet For a countable sequence of disjoint sets $A_i \in \mathcal{F}_t$, we have

$$\mathbb{Q}(\cup A_i) = \mathbb{E}[M_t.1_{\cup A_i}] = \sum_i \mathbb{E}[M_t.1_{A_i}] = \sum_i \mathbb{Q}(A_i)$$

Theorem (The Girsanov theorem)

Suppose W_t is a Brownian motion with respect to \mathbb{P} , H is bounded and predictable,

$$M_t = exp\left(\int_0^t H_r dW_r - \frac{1}{2}\int_0^t H_r^2 dr\right),$$

and

$$\mathbb{Q}(B) = \mathbb{E}_{\mathbb{P}}[M_t; B] \text{ if } B \in \mathcal{F}_t$$

Then $W_t - \int_0^t H_r dr$ is a Brownian motion with respect to \mathbb{Q} .

Theorem (Levy 's theorem)

Let M_t be a continuous local martingale with respect to a filtration $\{\mathcal{F}_t\}$ satisfying the usual conditions such that $M_0=0$ and $\langle M\rangle_t=t$. then M_t is a Brownian motion with respect to $\{\mathcal{F}_t\}$.

Theorem (Levy 's theorem)

Let M_t be a continuous local martingale with respect to a filtration $\{\mathcal{F}_t\}$ satisfying the usual conditions such that $M_0=0$ and $\langle M \rangle_t=t$. then M_t is a Brownian motion with respect to $\{\mathcal{F}_t\}$.

Theorem

Let $\mathbb P$ and $\mathbb Q$ be two probability measures such that $\mathbb P(A)=0$ implies $\mathbb Q(A)=0$ for all $A\in\mathcal F$. Then for each $\epsilon>0$ there exists $\delta>0$ such that if $A\in\mathcal F$ and $\mathbb P(A)<\delta$, then $\mathbb Q(A)<\epsilon$.

- Preliminaries
- 2 The Girsanov theorem
- 3 Applications
- 4 References

Applications

- The Girsanov theorem has many applications, including to financial mathematics.
- Here, we give an example of the use of the Girsanov theorem to compute the probability that Brownian motion crosses a line a+bt by time t_0 where a>0, i.e compute $\mathbb{P}(\exists t\leq t_0:W_t=a+bt)$, where W is a Brownian motion.

- Preliminaries
- 2 The Girsanov theorem
- 3 Applications
- 4 References

References

- Richard F.Bass. (2011). Stochastic processes. Cambridge.
- Jean Jacod, Philip Protter. (1999). Probability Essentials. Springer.