冲刺 NOI2023 模拟试题

Day1

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	神奇的纸牌	凌乱平衡树	打扫笛卡尔	
英文题目与子目录名	uno	treap	cartesian	
可执行文件名	uno	treap	cartesian	
输入文件名	uno.in	treap.in	cartesian.in	
输出文件名	uno.out	treap.out	cartesian.out	
每个测试点时限	1.0秒	1.0 秒	1.0 秒	
测试点数目	20	20	20	
测试点是否等分	是	是	是	
附加样例文件	有	有	有	
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统型	传统型	传统型	
运行内存上限	512MB	512MB	512MB	

二. 提交源程序文件名

对于 C++语言	uno.cpp	treap.cpp	cartesian.cpp
----------	---------	-----------	---------------

三. 编译选项

对于 C++语言	-lm -std=c++14 -02
I .	

四. 注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、特别提醒:评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

神奇的纸牌 (uno)

题目描述

小Y和小T在打UNO。

小 T 太菜了,哪怕小 Y 允许她复制她拥有的牌,她也总是输。小 Y 看不下去了,所以决定教她 UNO 的技巧。

UNO 的牌一共有两个属性: 花色和点数。其中花色有四种,分别是红色 (R) 黄色 (Y) 蓝色 (B) 绿色 (G),而点数一共有 n 种,分别从 1 到 n。每张属性相同的牌一共有 1 张,也就是说 UNO 牌一共有 4n 张。一张牌的表示方法为数字加空格加字符,即 int char。

UNO 的规则是一开始先手任意打出一张牌,打出的这张牌就是目前局面上的牌,之后按照逆时针的方向逐个出牌。一个人可以出牌 x,当且仅当 x 的花色和局面上的牌相同,或者 x 的点数和局面上的牌相同。出完牌 x 后,局面上的牌会变成 x 。如果一个人不能出牌,那么 Ta 需要从牌堆摸一张牌。

玩 UNO 最重要的是要知道一组牌怎么通过合适的决策打得尽可能多。在小 Y 的教导下,小 T 很快就掌握了在允许复制的情况下的 UNO 的技巧。

小 T 现在想知道,在 4n 张牌组成的 2^{4n} 个可能的手牌中,在允许复制牌的情况下(每张牌可以复制无限次),有多少组手牌在最优决策下可以一次出完。在这里,小 T 是先手,且小 T 的逆时针方向的下一个还是小 T (因为只有她一个人在打)。

因为数字太大了她认不出来,所以她会给你一个数 P,请对它取模。不保证 P 为质数。

输入格式

输入文件名为 uno.in。

第一行两个正整数 n, P,意义见题目描述。

输出格式

输出文件名为 uno.out。

一行一个整数表示答案。

输入输出样例 1

uno.in	uno.out
2 114514	206

见下发样例 example_uno1.in/out。

样例解释 1

直接枚举过于麻烦,故给出n=2的计算过程。

对于 n=2,一个手牌不合法当且仅当两种数字都出现,且它们拥有的颜色集合没有交。故不合法的方案数为 $\sum_{i=1}^{3} \binom{4}{i} \times (2^i-1) = 50$,所以合法方案数为 $2^{2\times 4}-50=206$ 。

为了方便大家理解出牌方式,这里给出一种 1B,1G,2G,2R 的出牌方法:复制得到的 1G,复制得到的 2G, 2R,复制得到的 2G,复制得到的 1G, 1B, 1G, 2G。当然,直接出: 1B,1G,2G,2R 也是可行的,上面只是为了让大家明白怎么出牌怎么复制。

输入输出样例 2

见下发样例 example_uno2.in/out。数据性质同测试点 4。

输入输出样例 3

见下发样例 example_uno3.in/out。数据性质同测试点 7。

输入输出样例 4

见下发样例 example_uno4.in/out。数据性质同测试点 15。

数据规模与约定

对于 100% 的数据和所有样例,均保证 $1 \le n \le 10^{18}, 2 \le P \le 2 \times 10^9$ 。 对于不同的测试点,我们约定数据规模如下:

测试点编号	$n \le$
1,2,3	5
4,5,6	10
7,8,9,10	2021
11,12,13,14	10^{5}
15,16,17	10^{9}
18,19,20	10 ¹⁸

凌乱平衡树 (treap)

题目描述

小T正在学习平衡树。

现在她手上有左右两个 Treap, 其中左边的 Treap 上的权值严格小于右边的 Treap (即 fhq-treap 分裂后所得), 她想把它们合并。(不难发现在合并的时候 Treap 上面的点的权值已经无用)

按照常规操作,在合并的时候,假设当前左 Treap 合并到的点是 x,右子树合并到的点是 y,子树大小分别是 sz_x, sz_y ,那么 x 成为合并后这个点的概率是 $\frac{sz_x}{sz_x+sz_x}$ 。

但是小 T 忘记要随机化了, 现在 x 成为合并后这个点当且仅当 $sz_x \ge sz_y$ 。

这样的话 Treap 的复杂度可能就不正确了。因为平衡树的复杂度和树的高度息息相关,所以小 T 定义一个 Treap 的复杂度定义为每个点的深度和,根节点的深度为 1。

她想知道用她的方法合并两个 Treap 之后,这个 Treap 的复杂度为多少。

但是因为她刚学平衡树,把 Treap 和 Splay 又搞混了,所以她还会对待合并的两个 Treap 进行一些 Rotate 操作(即 Zig-Zag)。

输入格式

输入文件名为 treap.in。

第一行两个正整数 n, m,表示左边的 Treap 节点个数和右边的 Treap 节点个数。

接下来 n 行,每行两个正整数 x_i, y_i ,表示左边的 Treap 中编号为 i 的节点的左孩子标号和右孩子标号,如果它没有某个孩子,那么该值为 0。

接下来 m 行,每行两个正整数 x_i, y_i ,表示右边的 Treap 中编号为 i 的节点的左孩子标号和右孩子标号,如果它没有某个孩子,那么该值为 0。

接下来给出一个正整数 q,表示小 T 会进行多少次 Rotate 操作。

接下来 q 行,每行两个正整数 op, x,若 op = 1,表示对左 Treap 的 x 号节点进行 Rotate,若 op = 2,表示对右 Treap 的 x 号节点进行 Rotate。保证 x 不为根(即 Rotate 操作合法)。

输出格式

输出文件名为 treap.out。

输出共 q+1 行,第 i 行表示对初始的两个 Treap 进行前 i-1 次 Rotate 操作后,合并得到的 Treap 的复杂度。

输入输出样例 1

treap.in	treap.out
3 3	15
2 3	17
0 0	
0 0	
0 2	
0 3	
0 0	
1	
1 2	

见下发样例 example_treap1.in/out。

样例解释 1

上面分别是第一个查询时左边的树,右边的树,合并后的树。为了方便,在合并后的树中左边的 节点为 1,2,3,右边的节点为 1',2',3'。下同。

上面是第二个查询时的图。

输入输出样例 2

见下发样例 example_treap2.in/out。数据性质同测试点 1。

输入输出样例 3

见下发样例 example_treap3.in/out。数据性质同测试点 5。

输入输出样例 4

见下发样例 example_treap4.in/out。数据性质同测试点 13。

数据规模与约定

对于 100% 的数据和所有样例,均保证 $1 \le n, m, q \le 2 \times 10^5$,所有 Rotate 操作合法。对于不同的测试点,我们约定数据规模如下:

测试点编号	$n \leq$	$m \leq$	$q \leq$	特殊性质
1,2,3,4	2021	2021	2021	无
5,6,7,8	2×10^5	1	2×10^5	保证所有操作只在左边的树上
9,10,11,12		2×10^5	2 × 10	休证別有採作只任任題的例上
13,14,15,16	5×10^4	5×10^4	5×10^4	五 无
17,18,19,20	2×10^5	2×10^5	2×10^5	<u></u> 儿

打扫笛卡尔 (cartesian)

题目描述

小Y和小T在笛卡尔树上玩。

他们发现每次从根走到一个节点 x 都要经过 dep_x 个节点(包含根和 x,根的 dep 为 1),所以他们把一棵树的舒适度定义为 $\sum_{x\in T} dep_x$ 。

对于一棵笛卡尔树 T,自然要打扫干净在能在上面玩。为了偷懒,小 Y 在打扫笛卡尔树的时候并没有每个节点都打扫到,而是采取了一种随机的方式。方式如下:

- 1. 小 Y 一开始在根。
- 2. 如果当前节点没有打扫过, 那么打扫它。
- 3. 假设现在小 Y 在的节点 x 还有 d 个孩子没有打扫过,那么他会等概率在节点 x 的双亲节点 (这里假设根节点的双亲节点为【终止打扫节点】) 和所有没去过的孩子节点组成的大小为 d+1 的集合中随机选择一个节点(即概率是 $\frac{1}{d+1}$),并且走过去。
 - 4. 如果当前节点是【终止打扫节点】, 那么打扫终止。否则回到 2.。

最后打扫总会终止,而这时候如果把打扫过的节点拿出来,会得到一个新的树 T',这棵树的根还是原来的根。

最后小 Y 和小 T 会在新树 T' 上玩。为了能更好的了解这棵树,他们想知道这棵新树 T' 的舒适度的期望。但是他们每过一会就会得到另外一棵笛卡尔树,所以请你求出对于所有长度为 n 的排列,把它建成**小根**笛卡尔树后,随机打扫得到的树的期望舒适度的和。

不过小 Y 和小 T 没有那么多时间来看这么长的数字,所以小 T 会告诉你一个她喜欢的数 P,请把答案对它取模。

输入格式

输入文件名为 cartesian.in。

第一行两个正整数 n, P,意义见题目描述。

输出格式

输出文件名为 cartesian.out。

一行一个整数表示答案。

输入输出样例 1

cartesian.in	cartesian.out
3 1000000007	17

见下发样例 example_cartesian1.in/out。

样例解释 1

不难发现小 Y 的打扫并不关心孩子是左孩子还是右孩子(废话)。 所以一共有两种树:

排列 1,2,3、1,3,2、2,3,1、3,2,1 形成的树是左图,排列 2,1,3、3,1,2 形成的图是右图。对于左图,随机打扫有以下三种方式:

根,结束,概率 1/2,舒适度 1。

根,根的孩子,根,结束,概率 $\frac{1}{2} \times \frac{1}{2}$,舒适度1+2=3。

根,根的孩子,根的孩子的孩子,根的孩子,根,结束,概率 $\frac{1}{2} \times \frac{1}{2}$,舒适度 1+2+3=6。 故期望为 $\frac{1}{2}+\frac{1}{4}\times 3+\frac{1}{4}\times 6=\frac{11}{4}$ 。

对于右图,随机打扫有以下五种方式:

根,结束,概率 3,舒适度 1。

根,根的左孩子,根,结束,概率 $\frac{1}{3} \times \frac{1}{2}$,舒适度 1+2=3。

根,根的右孩子,根,结束,概率 $\frac{1}{3} \times \frac{1}{2}$,舒适度 1+2=3。

根,根的左孩子,根,根的右孩子,根,结束,概率 $\frac{1}{3} \times \frac{1}{2}$,舒适度 1+2+2=5。

根,根的右孩子,根,根的左孩子,根,结束,概率 $\frac{1}{3} \times \frac{1}{2}$,舒适度 1+2+2=5。

故期望为 $\frac{1}{3} \times 1 + \frac{1}{6} \times 3 \times 2 + \frac{1}{6} \times 5 \times 2 = 3$ 。

故总期望为 $\frac{11}{4} \times 4 + 3 \times 2 = 17$ 。

输入输出样例 2

见下发样例 example_cartesian2.in/out。数据性质同测试点 3。

输入输出样例 3

见下发样例 example_cartesian3.in/out。数据性质同测试点 7。

输入输出样例 4

见下发样例 example_cartesian4.in/out。数据性质同测试点 15。

数据规模与约定

对于 100% 的数据和所有样例,均保证 $1 \le n \le 10^7, 2 \le P \le 2 \times 10^9$ 。特别的,所有测试点编号 $1 \sim 10$ 的测试点,和测试点编号在 $11 \sim 20$ 之间且为奇数的测试点保证 P 为大于 n 的质数。

对于不同的测试点,我们约定数据规模如下:

测试点编号	$n \le$
1,2	4
3,4	10
5,6	80
7,8,9,10	2021
11,12,13,14	3×10^{4}
15,16	10^{5}
17,18	10^{6}
19,20	10^{7}