

Background

Consider an indirect Gaussian sequence space model consisting of:

- \blacktriangleright an unknown parameter of interest $\left(\theta_{j}^{\circ}\right)_{j\in\mathbb{N}}=\theta^{\circ}$,
- ▶ a decreasing multiplicative sequence $(\lambda_j)_{j\in\mathbb{N}} = \lambda$ converging to 0,

The goal is to recover θ° and derive an upper bound.

The he model

For any index j, an unbiased estimator of θ_j° is Y_j/λ_j . Hence, an intuitive class of estimators are the projection estimators: $\tilde{\theta}^m = \left(Y_j/\lambda_j\mathbb{1}_{\{j\leq m\}}\right)_{j\in\mathbb{N}}$ with m in \mathbb{N} . The model selection method offers a data driven way to select m in this context:

$$G_n := \max \left\{ 1 \le j \le n : n^{-1} \lambda_j^{-2} \le \lambda_1^{-2} \right\},$$

$$\widehat{m} := \underset{m \in [\![1,G_n]\!]}{\min} \left\{ 3m - \sum_{j=1}^m Y_j^2 \right\}, \qquad \widehat{\theta} := \left(\widetilde{\theta}_j^{\widehat{m}}\right)_{j \in \mathbb{N}}.$$

It is shown in ?, in the direct case, that this estimator is consistent, converges in probability and \mathbb{L}^2 -norm, noted $\|\cdot\|$, with minimax optimal rate over some Sobolev ellipsoid:

$$\Theta^{\circ} := \Theta^{\circ}\left(\mathbf{a}, L^{\circ}\right) \left\{\theta : \sum_{j=1}^{\infty} \frac{1}{\mathbf{a}_{j}} \theta_{j}^{2} < L^{\circ}\right\}.$$

Prior work

We adopt a Bayesian point of view:

- lacktriangle the parameter $m{ heta}$ is a random variable with prior $\mathbb{P}_{m{ heta}}$,
- ▶ given θ , the likelihood of Y is $\mathbb{P}^n_{Y|\theta} = \mathcal{N}\left(\theta\lambda, n^{-1}\mathbb{I}\right)$,
- we are interested in the posterior distribution $\mathbb{P}_{\boldsymbol{\theta}^n|Y} \propto \mathbb{P}_{Y|\boldsymbol{\theta}}^n \cdot \mathbb{P}_{\boldsymbol{\theta}}$.

In the spirit of ?, we then generate a posterior family by introducing an iteration parameter η :

- for $\eta=2$, we take the posterior for $\eta=1$ as prior, hence, the prior distribution is $\mathbb{P}^n_{\boldsymbol{\theta}^2}=\mathbb{P}^n_{\boldsymbol{\theta}^1|Y^1}$, the likelihood is kept the same $\mathbb{P}^n_{Y^2|\boldsymbol{\theta}^2}=\mathbb{P}^n_{Y|\boldsymbol{\theta}}$ and we compute the posterior distribution with the same observations Y, which we note $\mathbb{P}^n_{\boldsymbol{\theta}^2|Y^2}$,
- **...**
- For any value of $\eta>1$, the prior is $\mathbb{P}^n_{\boldsymbol{\theta}^\eta}=\mathbb{P}^n_{\boldsymbol{\theta}^{\eta-1}|Y^{\eta-1}}$ and we compute the posterior with the same likelihood $\mathbb{P}_{Y^\eta|\boldsymbol{\theta}^\eta}=\mathbb{P}^n_{Y|\boldsymbol{\theta}}$ and same observation Y which gives $\mathbb{P}^n_{\boldsymbol{\theta}^\eta|Y^\eta}$.

This iteration procedure corresponds to giving more and more weight to the observations and make the prior knowledge vanish. Within this framework we define the family of estimators:

$$\widehat{ heta}^{(\eta)} := \mathbb{E}^n_{oldsymbol{ heta}^{\eta}|Y^{\eta}} \, [oldsymbol{ heta}],$$

and call self-informative limit the limit of the estimate with $\eta \to \infty$. We are interested in the behavior of the family $\left(\mathbb{P}^n_{\pmb{\theta}^\eta|Y^\eta}\right)_{\eta \in \mathbb{N}^\star}$ as n and/or η tend to infinite.

In particular, the question of oracle and minimax concentration (resp. convergence) is answered for any element of the family of posterior distributions (resp. posterior means), including when η tends to infinite.

The problem

 \blacktriangleright Consider a random hyper-parameter M , with values in a subset of $\mathbb{N},$ acting like a threshold:

$$\forall j > m, \quad \mathbb{P}_{\boldsymbol{\theta}_j | M = m} = \delta_0,$$

 $\forall j \leq m, \quad \mathbb{P}_{\boldsymbol{\theta}_j | M = m} = \mathcal{N}(0, 1).$

ightharpoonup if we denote \mathbb{P}_M the distribution of M (to be specified later), then

$$\mathbb{P}_{\boldsymbol{\theta}|Y}^{n} = \sum_{m \in \mathbb{N}} \mathbb{P}_{\boldsymbol{\theta}|M=m,Y}^{n} \cdot \mathbb{P}_{M=m|Y}^{n}.$$

 \blacktriangleright Hence, given M, the posterior is

$$\forall j > m, \quad \boldsymbol{\theta}_j | M = m, Y \sim \delta_0,$$

$$\forall j \leq m, \quad \boldsymbol{\theta}_j | M = m, Y \sim \mathcal{N} \left(\frac{Y_j \cdot n \cdot \lambda_j}{1 + n \cdot \lambda_j^2}, \frac{1}{1 + n \cdot \lambda_j^2} \right).$$

 $\underline{\mathsf{Remark:}}$ the family of hierarchical priors with deterministic threshold M is called family of sieve priors.

Figure: Survival function of M for different values of n

Main results

In ?, under a pragmatic Bayesian point of view; that is, the existence of a true parameter θ° is accepted; it is shown that, by choosing \mathbb{P}_M suitably:

- \blacktriangleright the estimator $\widehat{\theta}^{(1)}$ converges with,
- ightharpoonup oracle optimal rate for the quadratic risk which means, $\forall \theta^{\circ} \in \Theta^{\circ}, \exists C^{\circ} \in [1, \infty[: \forall n \in \mathbb{N}, \exists \Phi_{n}^{\circ} \in \mathbb{R}:$

$$\inf_{m \in \mathbb{N}} \mathbb{E}_{\theta^{\circ}}^{n} \left[\left\| \widetilde{\theta}^{m} - \theta^{\circ} \right\|^{2} \right] \ge \Phi_{n}^{\circ},$$

$$\mathbb{E}_{\theta^{\circ}}^{n} \left[\left\| \widehat{\theta}^{(1)} - \theta^{\circ} \right\|^{2} \right] \le C^{\circ} \Phi_{n}^{\circ};$$

ightharpoonup minimax optimal rate for the maximal risk over Θ° , that is to say, $\exists C^{\star} \in [1, \infty[: \forall n \in \mathbb{N}, \exists \Phi_n^{\star} \in \mathbb{R}:$

$$\inf_{\widetilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}}^{n} \left[\left\| \widetilde{\theta} - \theta^{\circ} \right\|^{2} \right] \geq \Phi_{n}^{\star},$$

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}}^{n} \left[\left\| \widehat{\theta}^{(1)} - \theta^{\circ} \right\|^{2} \right] \leq C^{\star} \Phi_{n}^{\star},$$

where \inf is taken over all possible estimators of θ° ;

- ▶ the posterior distribution concentrates with,
 - ightharpoonup oracle optimal rate for the quadratic loss which means, $\forall \theta^{\circ} \in \Theta^{\circ}, \exists K^{\circ} \in [1, \infty[$:

$$\lim_{n \to \infty} \mathbb{E}_{\theta^{\circ}}^{n} \left[\mathbb{P}_{\boldsymbol{\theta}^{1}|Y^{1}}^{n} \left(\|\boldsymbol{\theta} - \theta^{\circ}\|^{2} \le K^{\circ} \Phi_{n}^{\circ} \right) \right] = 1;$$

ightharpoonup minimax optimal rate Θ° , that is to say, for any unbounded sequence $K_n \in \mathbb{R}^{\mathbb{N}}$:

$$\lim_{n \to \infty} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}}^{n} \left[\mathbb{P}_{\boldsymbol{\theta}^{1}|Y^{1}}^{n} \left(\|\boldsymbol{\theta} - \theta^{\circ}\|^{2} \le K_{n} \Phi_{n}^{\star} \right) \right] = 1.$$

Iterated posterior distributions

Note that in the framework of our hierarchical prior, we have:

$$\mathbb{P}_{\boldsymbol{\theta}^{\eta}|Y^{\eta}}^{n} = \sum_{m \in \mathbb{N}} \mathbb{P}_{\boldsymbol{\theta}^{\eta}|M^{\eta}=m,Y^{\eta}}^{n} \cdot \mathbb{P}_{M^{\eta}=m|Y^{\eta}}^{n},
\widehat{\boldsymbol{\theta}}^{(\eta)} = \left(\mathbb{E}_{\boldsymbol{\theta}^{\eta}|M^{\eta} \geq j,Y^{\eta}}^{n} \left[\boldsymbol{\theta}_{j}\right] \cdot \mathbb{P}_{M^{\eta}|Y^{\eta}}^{n} \left(M^{\eta} \geq j\right)\right)_{j \in \mathbb{N}}.$$

Hence, we first compute $\boldsymbol{\theta}_{i}^{\eta}|M^{\eta},Y^{\eta}$:

$$\forall j \in \mathbb{N}, \quad \boldsymbol{\theta}_{j}^{\eta} | M^{\eta} \geq j, Y^{\eta} \sim \mathcal{N} \left(\frac{\eta \cdot Y_{j} \cdot n \cdot \lambda_{j}}{1 + \eta \cdot n \cdot \lambda_{j}^{2}}, \frac{1}{1 + n \cdot \eta \cdot \lambda_{j}^{2}} \right),$$

$$\boldsymbol{\theta}_{j}^{\eta} | M^{\eta} < j, Y^{\eta} \sim \delta_{0};$$

and then fix the distribution of M^1 : $\forall m \in [1, G_n],$

$$\mathbb{P}_{M^1}(M=m) \propto \exp\left(-3 \cdot \eta \cdot \frac{m}{2}\right) \cdot \prod_{j=1}^m \left(1 + n \cdot \eta \cdot \lambda_j^2\right)^2.$$

Which gives the family of posterior distributions:

$$\mathbb{P}_{M^{\eta}|Y^{\eta}}^{n}(m) \propto \exp\left[-\frac{\eta}{2}\left(3m - \sum_{j=1}^{m} \frac{\eta\left(Y_{j} \cdot n \cdot \lambda_{j}^{2}\right)^{2}}{1 + \eta \cdot n \cdot \lambda_{j}^{2}}\right)\right].$$

Publications and preprints

Consider the limit of the family of posteriors as η tends to infinite:

$$\lim_{\eta \to \infty} \mathbb{P}^n_{\boldsymbol{\theta}^{\eta}|M^{\eta}=m,Y^{\eta}} = \delta_{\tilde{\theta}^m},$$

where $\hat{\theta}^m$ is the projection estimator on the first m dimensions. The distribution of M tends to a point mass:

$$\lim_{\eta \to \infty} \mathbb{P}^n_{M^{\eta}|Y^{\eta}} = \delta_{\widehat{m}},$$

where \widehat{m} is the choice given by the frequentist model selection presented earlier.

The self-informative limit is equal to the model selection estimator, $\widehat{\theta}$, presented above.

Figure: Survival function of M for different values of η

Bibliography

Define the following quantities:

$$\mathfrak{b}_m := \sum_{j=m+1}^{\infty} (\theta^{\circ})^2, \quad \Lambda_j := \lambda_j^{-2}, \quad m \cdot \overline{\Lambda}_m := \sum_{j=1}^m \Lambda_j,$$

$$m_{n}^{\circ} := \underset{m \in \llbracket 1, G_{n} \rrbracket}{\operatorname{arg \, min}} \left[\mathfrak{b}_{m} \vee n^{-1} m \overline{\Lambda}_{m} \right], \quad \Phi_{n}^{\circ} := \left[\mathfrak{b}_{m_{n}^{\circ}} \vee n^{-1} m_{n}^{\circ} \overline{\Lambda}_{m_{n}^{\circ}} \right],$$

$$m_{n}^{\star} := \underset{m \in \llbracket 1, G_{n} \rrbracket}{\operatorname{arg \, min}} \left[\mathfrak{a}_{m} \vee n^{-1} m \overline{\Lambda}_{m} \right], \quad \Phi_{n}^{\star} := \left[\mathfrak{a}_{m_{n}^{\star}} \vee n^{-1} m_{n}^{\star} \overline{\Lambda}_{m_{n}^{\star}} \right].$$

- It is important to note that:
- $\blacktriangleright \Phi_n^{\star}$ is the minimax optimal rate over Θ° ,
- \blacktriangleright Φ_n° is the oracle optimal rate over the projection estimators.

Personal Informations

Last degree before doctorate

Member of the RTG

Date of doctoral degree

Occupation following doctorate

Page of individual report in the report?

MSc in Mathematical statistic, Rennes1 University, 1^{st} of July 2015 From the 5^{th} of October 2015 until the 5^{th} of October 2018

Anticipated, 5^{th} of October 2018 NA