STAT253/317 Lecture 1

Cong Ma

4.1 Introduction to Markov Chains

Stochastic Processes

A stochastic process is a family of random variables $\{X_t : t \in \mathcal{T}\}$ such that

▶ For each $t \in \mathcal{T}$, X_t is a random variable

The index set ${\mathcal T}$ can be discrete or continuous

- $\mathcal{T} = \{0, 1, 2, 3, 4\}$
- $ightharpoonup \mathcal{T} = \mathbb{R}, \mathbb{R}^+, \mathbb{R}^2, \mathbb{R}^3$

Examples:

	Discrete	Time Mar	kov C	Chains		Chapt	er 4	4
_	.	_	_		5	~ !		_

- Poisson Processes, Counting Processes Chapter 5
- ► Continuous Time Markov Chains Chapter 6
- ► Renewal Theory Chapter 7
- ▶ Queuing Theory Chapter 8

4.1 Introduction to Markov Chain

Consider a stochastic process $\{X_n : n = 0, 1, 2, \ldots\}$ taking values in a finite or countable set \mathfrak{X} .

- $ightharpoonup \mathfrak{X}$ is called the **state space**
- ▶ If $X_n = i$, $i \in \mathfrak{X}$, we say the process is in state i at time n
- Since $\mathfrak X$ is countable, there is a 1-1 map from $\mathfrak X$ to the set of non-negative integers $\{0,1,2,3,\ldots\}$ From now on, we assume $\mathfrak X=\{0,1,2,3,\ldots\}$

Definition

A stochastic process $\{X_n: n=0,1,2,\ldots\}$ is called a **Markov** chain if it has the following property:

$$P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_2 = i_2, X_1 = i_1, X_0 = i_0)$$

= $P(X_{n+1} = j \mid X_n = i)$

for all states i_0 , i_1 , i_2 , ..., i_{n-1} , i, $j \in \mathfrak{X}$ and $n \geq 0$.

Transition Probability Matrix

If $P(X_{n+1} = j | X_n = i) = P_{ij}$ does not depend on n, then the process $\{X_n : n = 0, 1, 2, ...\}$ is called a **stationary Markov** chain. From now on, we consider stationary Markov chain only.

 $\{P_{ij}\}$ is called the **transition probabilities**.

The matrix

$$\mathbb{P} = \begin{pmatrix} P_{00} & P_{01} & P_{02} & \cdots & P_{0j} & \cdots \\ P_{10} & P_{11} & P_{12} & \cdots & P_{1j} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ P_{i0} & P_{i1} & P_{i2} & \cdots & P_{ij} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

is called the transition probability matrix.

Naturally, the transition probabilities $\{P_{ij}\}$ satisfy the following

$$ightharpoonup P_{ij} \ge 0$$
 for all i, j

▶ Rows sums are 1:
$$\sum_{i} P_{ij} = 1$$
 for all i .

In other words, $\mathbb{P}\mathbf{1}=\mathbf{1}$, where $\mathbf{1}=(1,1,\ldots,1,\ldots)^{\top}$ Lecture 1 - 4

Example 1: construct Markov Chain from i.i.d. sequence

Let $\{Y_n\}_{n\geq 0}$ be an i.i.d. sequence. The following two stochastic processes $\{X_n\}_{n\geq 0}$ are Markov chains

- $ightharpoonup X_n = Y_n$
- $X_n = \sum_{k=0}^n Y_k$

Example 2: Random Walk

Consider the following random walk on integers

$$X_{n+1} = \begin{cases} X_n + 1 & \text{with prob } p \\ X_n - 1 & \text{with prob } 1 - p \end{cases}$$

This is a Markov chain because given $X_n, X_{n-1}, X_{n-2}, \ldots$, the distribution of X_{n+1} depends only on X_n but not X_{n-1}, X_{n-2}, \ldots . The state space is

$$\mathfrak{X} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\} = \mathbb{Z} = \mathsf{all} \; \mathsf{integers}$$

The transition probability is

$$P_{ij} = \begin{cases} p & \text{if } j = i+1\\ 1-p & \text{if } j = i-1\\ 0 & \text{otherwise} \end{cases}$$

Lecture 1 - 6

Example 2: Random Walk (Cont'd)

Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each stage, a ball is selected at random from the totality of K balls, and move to the other container. Let

 $X_0=\#$ of balls in container A in the beginning $X_n=\#$ of balls in container A after n movements, $n=1,2,3,\ldots$

$$\mathfrak{X} = \{0,1,2,\ldots,K\}$$

$$P_{ij} = egin{cases} rac{i}{K} & ext{if } j=i-1 \ rac{K-i}{K} & ext{if } j=i+1 \ 0 & ext{otherwise} \end{cases}$$

Joint Distribution of Random Variables in a Markov Chain

Suppose $\{X_n: n=0,1,2,\ldots\}$ is a stationary Markov chain with

- ightharpoonup state space $\mathfrak X$ and
- ▶ transition probabilities $\{P_{ij}: i, j \in \mathfrak{X}\}.$

Define $\pi_0(i) = P(X_0 = i)$, $i \in \mathfrak{X}$ to be the distribution of X_0 .

What is the joint distribution of X_0, X_1, X_2 ?

$$\begin{split} &\mathbf{P}(X_0=i_0,X_1=i_1,X_2=i_2)\\ &=\mathbf{P}(X_0=i_0)\mathbf{P}(X_1=i_1|X_0=i_0)\mathbf{P}(X_2=i_2|X_1=i_1,X_0=i_0)\\ &=\mathbf{P}(X_0=i_0)\mathbf{P}(X_1=i_1|X_0=i_0)\mathbf{P}(X_2=i_2|X_1=i_1) \quad (\mathsf{Markov})\\ &=\pi_0(i_0)P_{i_0i_1}P_{i_1i_2} \end{split}$$

In general,

$$P(X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_{n-1} = i_{n-1}, X_n = i_n)$$

= $\pi_0(i_0) P_{i_0 i_1} P_{i_1 i_2} \dots P_{i_{n-1} i_n}$

Lecture 1 - 9