Ejercicios Matemapli Modelos Matemáticos

Daniel Monjas Miguélez

2 DGIIM Universidad de Granada

May 31, 2020

Ejercicio 1:Dados $\alpha > 0$ y $\beta > 0$, se define la función:

$$f(x) = \begin{cases} -\alpha x & si \quad x \ge 0 \\ \beta x & si \quad x < 0 \end{cases}$$

1. Representa gráficamente la función f
 para $\alpha=1.3$ y $\beta=0.5$ y estudia la evolución de las soluciones de la ecuación en diferencias

$$x_{n+1} = f(x_n)$$

si la condición inicial es:

- $x_0 = 0.6$
- $x_0 = -0.8$

2.Determina las condiciones que deben cumplir α y β para que p=0 sea un punto de equilibrio asintóciamente estable.

Apartado 1:

Sea $x_0=0.6$, como $x_0>0$ se tiene que $x_1=f(x_0)=-\alpha x$. Definimos la solución general de la ecución en diferencias $x_{n+1}=-\alpha x_n$, cuyo polinomio característico es $P(\lambda)=\lambda+\alpha$ donde $P(\lambda)=0\Leftrightarrow \lambda=-\alpha$, luego la solución general sería $x_n=c_0\cdot (-1.3)^n$, teniendo en cuenta que el dato inicial es $x_0=0.6$ se tendría que $c_0=0.6$, luego $x_n=(0.6)\cdot (-1.3)^n$. Esta solución claramente alterna terminos, luego $x_1<0$. Por tanto $x_2=f(x_1)=\beta x_1$, luego definiremos una segunda ecuación en diferencias cuyo valor inicial será $y_0=-0.78=0.6\cdot (-1.3)$. $y_{n+1}=\beta y_n$ donde el polinomio característico asociado es $P(\lambda)=\lambda-\beta$ y se verifica que $P(\lambda)=0\Leftrightarrow \lambda=\beta$ y como el dato inicial es $y_0=x_1=-0.78$ se tiene que $y_n=-0.78\cdot (0.5)^n$ que es menor que cero $\forall n\in\mathbb{N}$, luego a partir de x_1 se sigue la ecuación en diferencias anterior donde es claro que,

$$\lim_{n \to \infty} y_n = 0$$

luego como a partir de x_1 todos los términos son menores que 0 se verifica las segunda ecuación en diferencias y para el datos $x_0 = 0.6$ las soluciones tienden a 0 por la izquierda.

Sea $x_0 = -0.8$, entonces como $x_0 < 0$ tendremos que $x_1 = f(x_0) = \beta x_0$. Definimos la solución de la ecuación en diferencias $x_{n+1} = \beta x_n$, cuyo polinimio característico asociado es $P(\lambda) = \lambda - \beta$ donde $P(\lambda) = 0 \Leftrightarrow \lambda = \beta$ luego como $x_0 = -0.8$ se tiene que la solución general de la ecucación en diferencias para la condición inicial $x_0 = -0.8$ es $x_{n+1} = (-0.8) \cdot (0.5)^n$ donde esta solución es claramente menor que $0 \ \forall n \in \mathbb{N}$. Luego se sigue esta solución $\forall n \in \mathbb{N}$, que claramente verifica que,

$$\lim_{n \to \infty} x_n = 0$$

Luego hemos visto que se verifica que para ambas condiciones iniciales que las soluciones tienden a 0.

Apartado 2: Claramente p=0 es un punto de equilibrio pues $\alpha \cdot p=0$ para cualquier α . Usando el apartado anterior vemos que si la condición inicial x_0 es un número positivo, sea cual sea, se verificará que x_1 es menor que 0, pues por hipótesis $\alpha>0$, luego $-\alpha<0$, y por consiguiente $x_0\cdot -\alpha<0$. Luego a partir de x_1 se utiliza la solución de la ecuación en diferencias $y_{n+1}=x_n\cdot (\beta)^n$, que sabemos que converge a 0 si y sólo si $\beta<1$, además por hipótesis tenemos que $\beta>0$. Si la condición inicial fuese negativa se trabaja directamente con la solución general de $x_{n+1}=x_n\cdot \beta$, que converge a 0 si y sólo si $\beta<1$. Luego si $\alpha\in\mathbb{R}+$ y $0<\beta<1$, para cualquier punto de un entorno de 0 se verificará que al aplicar $x_{n+1}=f(x_n)$ $\lim_{n\to\infty}x_n=0$, luego si $\alpha\in\mathbb{R}^+$ y $0<\beta<1$ el punto p=0 será asintóticamente estable.

Ejercicio 2: Dado $\alpha > 0$, se considera la ecuación en diferencias:

$$x_{n+1} = 1 - \alpha |x_n|$$

- 1. Para $\alpha=0.4$, estudia gráficamente el comportamiento de las soluciones en función de su dato inicial $x_0 \in \mathbb{R}$.
- 2. Para $\alpha>0$ determina el número de puntos de equilibrio de la ecuación en diferencias.
- 3. Estudia la estabilidad de los puntos de equilibrio para $\alpha = 1.3$.
- 4. Si $\alpha = 2$, comprueba que $\{-0.2, 0.6\}$ es un 2-ciclo y estudia su estabilidad.

Solución: Primero para facilitar el trabajo posterior defino $f(x) = 1 - \alpha |x|$ y desdoblamos lo anterior en una función por partes de la siguiente manera,

$$f(x) = \begin{cases} 1 - \alpha x & si \quad x \ge 0 \\ 1 + \alpha x & si \quad x < 0 \end{cases}$$

Apartado 1: Teniendo en cuenta que en la ecuación en diferencias dada hay un valor absoluto desdoblamos esta en dos,

$$x_{n+1} = \begin{cases} 1 - 0.4x_n & si \quad x \ge 0\\ 1 + 0.4x_n & si \quad x < 0 \end{cases}$$

, teniendo en cuanta lo anterior vamos a estudiar tres casos.

1. Si $0 \le x_n \le 2.5$ tenemos que $0 \ge -0.4x_n \ge -1$, de lo que obtenemos que $1 \ge 1 - 0.4x_n \ge 0$. Como sabemos que $1 - 0.4x_n = x_{n+1}$, hemos demostrado que si $0 \le x_n \le 2.5 \Rightarrow 0 \le x_{n+1} \le 1$, pero como x_{n+1} también verificará la hipótesis entonces $0 \le x_{n+2} \le 1$, y así sucesivamente para todo n+k con $k \in \mathbb{N}$. De aquí obtenemos que si $0 \le x_0 \le 2.5$ entonces $0 \le x_n \le 1$ para todo $n \in \mathbb{N}$. Para ver como se comportan las soluciones a largo plazo con esta condición inicial en primer lugar estudiamos si hay algún punto fijo. $\frac{1}{1.4} = \frac{5}{7} = x_*$ que es positivo y pertenece al intervalo [0,1]. Por consiguiente definimos la solución general de la ecuación en diferencias,

$$P(\lambda) = \lambda + 0.4 \Rightarrow P(\lambda) = 0 \Leftrightarrow \lambda = -0.4$$

De aquí hemos obtenido la solución de la ecuación homogénea asociada. Ahora como solución particular comamos $\frac{5}{7}$ llegando a $x_n = c_0 \cdot (-0.4)^n + \frac{5}{7}$ cuyo limite verifica $\lim_{n\to\infty} x_n = \frac{5}{7}$. Y también se verifica que $c_0 = x_0 - \frac{5}{7}$.

Y si $0 \le x_0 \le 2.5$ entonces $-\frac{5}{7} \le c_0 \le \frac{25}{14}$ y de aquí se obtiene que si c_0 verifica lo anterior entonces $x_n \ge 0$.

- 2. Segundo caso $x_n < 0$. Veamos que si $x_n < 0$ entonces $x_n < 0.4x_n < 0$ y claramente $x_n < 1 + 0.4x_n$. De aquí obtenemos que si $x_n < 0$, entonces existirá un $k \in \mathbb{N}$ tal que $x_n < x_{n+1} < \ldots < x_{n+k-1} < 0 < x_{n+k}$. Ahora tenemos que $x_{n+k-1} \cdot 0.4 < 0 \Rightarrow 0 < 1 + 0.4 \cdot x_{n+k+1} = x_{n+k} < 1$. Como $0 \le x_{n+k} \le 1$ aplicamos el caso anterior con $x_0 = x_{n+k}$. Luego si $x_0 < 0$ entonces existe un $k \in \mathbb{N}$ tal que $0 \le x_k \le 1$ y se aplica el caso anterior, es decir, $\lim_{n \to \infty} x_n = \frac{5}{7}$.
- 3. Tercer caso $x_n > 2.5$. De aquí se obtiene que $-0.4x_n < -1 \Rightarrow 1-0.4x_n < 0$. Luego si $x_n > 2.5 \Rightarrow x_{n+1} < 0 \Rightarrow \exists k \in \mathbb{N} \ tal \ que \ 0 \leq x_{n+1+k} \leq 1$. Luego si $x_0 > 2.5 \Rightarrow x_1 < 0$ entonces aplicamos el caso dos y finalmente el caso uno.

De aquí hemos obtenido que independientemente de la condición inicial se tiende al punto de equilibrio que se encuentra en $\frac{5}{7}$. Fijándonos en la gráfica al principio del apartado si la condición inicial están en el cateto rojo b entonces x_1 permanecerá en el triángulo rojo. Si x_0 está por debajo del punto B, x_1 estará a la izquierda del eje y, y crecerá hasta entrar en el triángulo rojo. Si $x_0 < 0$, entonces x_n crecerá hasta entrar en el triángulo rojo.

Apartado 2:Para realizar el estudio de los puntos de equilibrio estudiaremos dos casos:

- $x = 1 \alpha x$, donde despejando la ecuación anterior se llega a $x = \frac{1}{1+\alpha}$. Como $\alpha > 0$ claramente $1 + \alpha > 0$ y por consiguiente $\frac{1}{1+\alpha}$, luego $p = \frac{1}{1+\alpha}$ es un punto de equilibrio, para todo $\alpha > 0$.
- $x=1+\alpha x$, donde despejando la ecuación anterior se llega a $x=\frac{1}{1-\alpha}$. Para que el punto anterior sea de equilibrio se tiene que verificar que $\frac{1}{1-\alpha}<0$ luego se deberá verificar que $1-\alpha<0\Rightarrow\alpha>1$.

En conclusión, la función tendrá dos puntos de equilibrio si $\alpha > 1$, en caso contrario sólo tendra un punto de equilibrio.

Apartado 3: Usando el apartado anterio como $\alpha > 1$ se tendran dos puntos de equilibrio, $p_1 = \frac{1}{1+\alpha} = \frac{1}{2.3} \approx 0.43478$. Claramente la función f(x) es continua en el punto p_1 luego calcularemos la derivada.

$$f'(x) = \begin{cases} -1.3 & si \quad x \ge 0\\ 1.3 & si \quad x < 0 \end{cases}$$

utilizando esta derivada vemos que $f'(p_1) \notin (-1,1)$, luego el punto de equilibrio p_1 no es asintóticamente estable.

Calculamos ahora $p_2 = \frac{1}{1-1.3} = \frac{1}{-0.3} \approx -3.33$ utilizando la derivada calculada para el caso anterior se tiene que $f'(p_2) \notin (-1,1)$, luego el punto de equilibrio p_2 tampoco es asintóticamente estable. Luego para $\alpha = 1.3$ ninguno de los puntos de equilibrio de la función es asintóticamente estable.

Apartado 4: Probaremos que es un dos ciclo, luego $f(-0.2) = 1 + 2 \cdot (-0.2) = 0.6$ y $f(0.6) = 1 - 2 \cdot 0.6 = -0.2$, luego queda demostrado que $\{-0.2, 0.6\}$ es un 2-ciclo. Para ver que sea asintóticamente estable usaremos la regla de la cadena. Llamaremos $g(x) = 1 - \alpha x$ y $h(x) = 1 + \alpha x$. Luego,

$$(g \circ h)'(-0.2) = g'(h(-0.2)) \cdot h'(-0.2) = g'(0.6) \cdot 2 = -2 \cdot 2 = -4 \notin (-1, 1)$$

si se compone $h \circ g$ al aplicar la regla de la cadena se ve a simple vista que $(h \circ g)'(0.6) = -4 \notin (-1,1)$ luego el 2-ciclo es claramente inestable.