Ayudantía 4 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

4 de abril de 2023

Problema 1. Sea G grupo finito, $S \subseteq G$ un p- subgrupo de Sylow y $H \le G$ subgrupo arbitrario. Demuestre que existe $g \in G$ tal que $gSg^{-1} \cap H$ es un p-subgrupo de Sylow.

Problema 2.

- 1. Suponga que G es un grupo simple y que p es un divisor primo de |G|. Demuestre que |G| divide a $n_p!$ donde n_p denota la cantidad de p-subgrupos de Sylow de G.
- 2. Si G es un grupo de orden |G| = 48 pruebe que G no es simple.
- 3. Demuestre que no existen grupos simples de orden 1,000,000.

Problema 3. Sea G un grupo finito de orden |G| = 231. Demuestre que $|Z(G)| \ge 11$. Indicación: Demuestre que G posee un único 11—Sylow. Suponga por contradicción que dicho subgrupo no está contenido en Z(G) y recuerde la clasificación de grupos de orden primo (Ayudantía 2).

Problema 4. Determinar todos los grupos abelianos de orden 360.

El teorema que se presenta a continuación es una generalización del Pequeño Teorema de Fermat el cual es válido en $\mathbb{Z}/n\mathbb{Z}$ incluso cuando n no es primo. Su demostración es análoga a la del Pequeño Teorema de Fermat (Ayudantía 2) y por lo tanto queda como ejercicio.

Teorema 1 (Teorema de Euler). Sea $n \in \mathbb{N} \geq 1$ entero positivo. Definimos la función φ de Euler como $\varphi(n) = \{m \in \mathbb{N} | m \leq n, \operatorname{mcd}(m, n) = 1\}$. Si $a, n \in \mathbb{Z}$ son enteros primos relativos con $n \geq 1$, entonces

$$a^{\varphi(n)} \equiv 1 \qquad (\text{m\'od } n)$$

Problema 5. Utilice el Teorema chino del resto y el Teorema de Euler para calcular los dos últimos dígitos de $17^{17^{17}}$.

Problema 6. Sea G un grupo y considere el grupo de raíces coplejas de la unidad, denotado por \mathbb{T}^1 . Se define el **grupo dual** de G, denotado \widetilde{G} , como

$$\widehat{G}:=\{\chi:G\to\mathbb{T}\quad|\chi\text{ morfismo de grupos}\}$$

Como su nombre lo indica, este conjunto es un grupo abeliano, cuya ley de composición corresponde al producto puntual de funciones, es decir,

$$(\chi\psi)(g) = \chi(g)\psi(g) \qquad \forall g \in G$$

Demuestre que si G es un grupo abeliano finito, entonces $\widehat{G} \cong G$.

Indicación: Puede utilizar el siguiente lema:

Lema 2. Sean G, G_1, \ldots, G_n grupos abelianos y denote por Hom(G, H) el conjunto de morfismos de grupo $G \to H$. Demuestre que

$$\operatorname{Hom}\left(\prod_{i=1}^{n}G_{i},G\right)\cong\prod_{i=1}^{n}\operatorname{Hom}\left(G_{i},G\right)$$

 $^{^1}$ Geométricamente, este grupo corresponde a la esfera unitaria de $\mathbb C$