Branched Covers.

 $P: X \rightarrow Y$ finite map between compact RS. $Y \supset B = br \, \varphi$, the branch locus.

Then $X - \varphi(B) \longrightarrow Y \setminus B$ is a covering space.

Thm: Given a (connected) covering space q

 $\begin{array}{ccc} \varphi : & \bigvee & \longrightarrow & \bigvee {} \searrow & \varnothing \\ & & & \bigcap & & \bigcap \\ & & \times & \longrightarrow & Y \end{array}$

Then there exists a unique compact R.S. X that completes the diagram above.

Covering spaces

(Y,y) a connected (pointed) top. space (CW compler). We have a 1-1 correspondence

degree \iff index.

X, 2 im TT, (X, 2) C TT, (Y, y)

ll

Loops in Y based at y,

which lift to closed

Loops based at 2 }

CZ T

Ex: $\Delta^* = \bigcirc$ punctured unit disk = $\{z \in C \mid |z| \leq 1\}$.

Then $T_1(A,1) = \mathbb{Z}$. There is a unique subgroup of \mathbb{Z} of index \mathbb{N} . \Rightarrow There is a unique (pointed) cov. space of (A_{11}) of degree \mathbb{N} .

Proof of thm:

Given U

YB

OBB

Let D be a connected component of Δ^* . Then we have an isomorphism.

"Plug the hole": Let $U^{\dagger} = U \cup \{p\}$ p a new point (morally p = 0 of Δ^*).

Topology on U^{\dagger} : A set is open iff its intersection with U and D U g g are open where D U g g g g g .

P given by $D \xrightarrow{\sim} \widetilde{\Delta}$, Complex chart around extends to a hol. Then U -> Y\B $\begin{array}{c} U^+ \longrightarrow Y \\ p \longmapsto b \end{array}$ locally $\Delta \longrightarrow \Delta$ $\omega \mapsto \omega^{\eta}$ Repeat this for all connected components of $\varphi^{-1}(\Delta^{\mathbf{m}})$ and all $b \in B$. Monodromy: (X, x)
(Y,y) Covering Space (both X, Y connected). $S = \varphi^{\dagger}(y) = \pi$ We have a map $M: T_1(Y,y) \rightarrow Aut(S).$ Joop $\longrightarrow [x_i \mapsto x_j]$ at y

if lift l of lstarting at x_i ends at x_j T. l at y Image of M = Transitive subgroup of Aut(S). $\operatorname{Im} T_1(X, x) = \operatorname{Stabilizer} g x in$ $\operatorname{Tr}_1(Y, y).$ under its action on S via M.

り d= dg f then S= 引12,--,d引 (non-uniquely)

$$= \langle \gamma_1, \ldots, \gamma_{2n} | \gamma_1 \ldots \gamma_{2n} \rangle = 1$$

Maps to S2 = Z/27/ < Abelian.

so look at the abelianization.

$$\left\langle \overline{A}_{1}, ..., \overline{A}_{2n} \middle| \overline{A}_{1} + ... + \overline{A}_{2n} = 0 \right\rangle$$

$$\stackrel{\sim}{=} 2^{2n-1} C Z^{2n}$$

How many maps? Z2n-1 - 7 Z/2Z/ Many!

But we want $B = br \varphi$

so every 7: → 1 € Z/27/2.

=> Unique }.

Gives an extremely powerful (but also extremely non-algebraic) way of constructing Riemann Surfaces.

$$\frac{\text{eg.}}{\text{X}}$$
 R.S. of genus $\frac{\text{F}}{\text{X}}$

br $\frac{\text{No.}}{\text{No.}}$, $\frac{\text{No.}}{\text{No.}}$