Subject Name: Basic Electrical Engineering Subject Code: ES 103

Faculty Name: Kamlesh Pandey

Assignment -2

Module II: Alternating Current Circuits

- 1. Define the following
 - (i) RMS Value (ii) Average Value (iii) Instantaneous Value (iv) Real power (v) Apparent power (vi) Reactive power (vii) Frequency (viii) Balanced three phase circuit
- 2. A series circuit has $R=10\Omega$, L=50mH, and $C=100\mu F$ and is supplied with 200V, 50Hz. Find (i) Impedance (ii) current (iii) power (iv) power factor (v) voltage drop across the each element.
- 3. A coil of resistance 10 Ω and inductance 0.1 H is connected in series with a 150 μF capacitor across 200V, 50 Hz supply. Calculate (i) Inductive reactance, Capacitance reactance, impedance, current and power factor. (ii) The voltage across the coil and capacitor respectively.
- 4. A series circuit having pure resistance of 40Ω , pure inductance of 50 mH and a capacitor is connected across a 400 V, 50 Hz ac supply. This LC circuit draws a current of 10 A. Calculate (i) Power factor of the circuit, (ii) Capacitor value.
- 5. Derive the expression for impedance, phase angle, power factor, current, voltage, reactance, apparent power, real power and reactive power for RC series circuit.
- 6. Suppose an AC generator with $V(t)=150 \sin{(100t)}$ is connected to a series RLC circuit with $R=\Omega~40.0$, L=80.0 mH , and C=50.0 μF

- (a) Calculate V_R , V_L , V_c and, the maximum of the voltage drops across each circuit element.
- (b) Calculate the maximum potential difference across the inductor and the capacitor between point b and d
- 7. A sinusoidal voltage $V(t)=200 \text{sin}\omega t$ is applied to a series RLC circuit with L=10.0 mH, C=100 nF and $R=20.0 \Omega$. Find the following quantities: (a) the resonant frequency, (b) the amplitude of the current at resonance, (c) the quality factor Q of the circuit, and 12-28 (d) the amplitude of the voltage across the inductor at the resonant frequency.
- 8. A coil of resistance 10Ω and inductance 0.1 H is connected in series with a 150 μF capacitor across a 200 V, 50 Hz supply. Calculate the voltage across the coil and the capacitor respectively.
- 9. A circuit is composed of a resistance 6 Ω and a series capacitive reactance of 8 Ω . A voltage E(t)=141 sin 314t is supplied to the circuit. Find (i) Complex impedance, (ii) Effective value of current, (iii) Power delivered to the circuit, (iv) Capacitance of the capacitor.