Derivation of the ML solutions

The NLL cost

The estimated normalized PSD matrix is

$$\hat{\mathbf{\Gamma}}_x = \begin{bmatrix} 1 & \hat{\gamma}_x \\ \hat{\gamma}_x^* & 1 \end{bmatrix} \tag{1}$$

where $\gamma_x(\omega) = \frac{E[X_1(\omega,t)X_2^*(\omega,t)]}{\sqrt{E[|X_1(\omega,t)|^2]E[|X_2(\omega,t)|^2]}}$, and $\hat{\gamma}_x(\omega)$ is an estimate of $\gamma_x(\omega)$ obtained by replacing the expectations with sample averages.

The true PSD matrix is supposed to have the form

$$\mathbf{\Gamma}_{x} = P_{s} \begin{bmatrix} 1 & e^{j\phi} \\ e^{-j\phi} & 1 \end{bmatrix} + P_{v} \begin{bmatrix} 1 & \gamma_{v} \\ \gamma_{v}^{*} & 1 \end{bmatrix} = P_{s}\mathbf{\Phi} + P_{v}\mathbf{\Gamma}_{v}$$
 (2)

where P_s and P_v are the powers of source signal and noises, respectively, and Φ and Γ_v the source signal and noise coherence matrices, respectively. Note that we do *not* assume $P_s + P_v = 1$. The degree of freedoms of this model is three.

Then, the sample size normalized negative logarithm likelihood (NLL) function for the power normalized observations is given by

$$J(\hat{\mathbf{\Gamma}}_x|P_s, P_v, \phi) = \log \det \mathbf{\Gamma}_x + \operatorname{tr}(\mathbf{\Gamma}_x^{-1}\hat{\mathbf{\Gamma}}_x) + 2\log \pi$$
 (3)

where det and tr denote the determinant and trace of a square matrix, respectively.

The gradients of NLL cost

To derive the ML solution, we need to solve the system of equations $\partial J/\partial P_s = 0$, $\partial J/\partial P_v = 0$ and $\partial J/\partial \phi = 0$. Note that for any invertible matrix \boldsymbol{A} , we have

$$\mathbf{0} = d\mathbf{I} = d(\mathbf{A}\mathbf{A}^{-1}) = d\mathbf{A}\mathbf{A}^{-1} + \mathbf{A}d\mathbf{A}^{-1}$$

Thus,

$$d\mathbf{A}^{-1} = -\mathbf{A}^{-1}d\mathbf{A}\mathbf{A}^{-1}$$

With this fact, we can easily write down the derivative of Γ_x^{-1} with respect to P_s , P_v and ϕ . For example, we have

$$\frac{\partial \mathbf{\Gamma}_{x}^{-1}}{\partial \phi} = -\mathbf{\Gamma}_{x}^{-1} \frac{\partial \mathbf{\Gamma}_{x}}{\partial \phi} \mathbf{\Gamma}_{x}^{-1} = -\mathbf{\Gamma}_{x}^{-1} P_{s} \frac{\partial \begin{bmatrix} 1 & e^{j\phi} \\ e^{-j\phi} & 1 \end{bmatrix}}{\partial \phi} \mathbf{\Gamma}_{x}^{-1} = -\mathbf{\Gamma}_{x}^{-1} P_{s} \begin{bmatrix} 0 & je^{j\phi} \\ -je^{-j\phi} & 0 \end{bmatrix} \mathbf{\Gamma}_{x}^{-1}$$

Here, we give the gradients in their compact forms as below.

$$\frac{\partial J}{\partial P_s} = \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\boldsymbol{\Phi}) - \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\hat{\boldsymbol{\Gamma}}_x\boldsymbol{\Gamma}_x^{-1}\boldsymbol{\Phi})
\frac{\partial J}{\partial P_v} = \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\boldsymbol{\Gamma}_v) - \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\hat{\boldsymbol{\Gamma}}_x\boldsymbol{\Gamma}_x^{-1}\boldsymbol{\Gamma}_v)
\frac{1}{P_s}\frac{\partial J}{\partial \phi} = \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\frac{d\boldsymbol{\Phi}}{d\phi}) - \operatorname{tr}(\boldsymbol{\Gamma}_x^{-1}\hat{\boldsymbol{\Gamma}}_x\boldsymbol{\Gamma}_x^{-1}\frac{d\boldsymbol{\Phi}}{d\phi})$$
(4)

where
$$\frac{d\Phi}{d\phi} = \begin{bmatrix} 0 & je^{j\phi} \\ -je^{-j\phi} & 0 \end{bmatrix}$$
.

Solving the set of equations (4)

We drop out the subscript ml to simplify our notations.

Let us rewrite the set of equations $\partial J/\partial P_s=0,\,\partial J/\partial P_v=0$ and $\partial J/\partial \phi=0$ as

$$\operatorname{tr}[(\boldsymbol{I} - \boldsymbol{\Gamma}_x^{-1} \hat{\boldsymbol{\Gamma}}_x)(\boldsymbol{\Gamma}_x^{-1} \boldsymbol{\Phi})] = 0, \ \operatorname{tr}[(\boldsymbol{I} - \boldsymbol{\Gamma}_x^{-1} \hat{\boldsymbol{\Gamma}}_x)(\boldsymbol{\Gamma}_x^{-1} \boldsymbol{\Gamma}_v)] = 0, \ \operatorname{tr}[(\boldsymbol{I} - \boldsymbol{\Gamma}_x^{-1} \hat{\boldsymbol{\Gamma}}_x)(\boldsymbol{\Gamma}_x^{-1} \boldsymbol{\Phi})] = 0$$

We can always rewrite $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B})$ as $[\operatorname{vec}(\boldsymbol{A})]^T\operatorname{vec}(\boldsymbol{B}^T)$. Thus, $\operatorname{vec}(\boldsymbol{I}-\boldsymbol{\Gamma}_x^{-1}\hat{\boldsymbol{\Gamma}}_x)$ can be solved from the set of equations

$$\begin{bmatrix} [\operatorname{vec}(\mathbf{\Gamma}_x^{-1}\mathbf{\Phi})]^T \\ [\operatorname{vec}(\mathbf{\Gamma}_x^{-1}\mathbf{\Gamma}_v)]^T \\ [\operatorname{vec}(\mathbf{\Gamma}_x^{-1}\frac{d\mathbf{\Phi}}{d\phi})]^T \end{bmatrix} \operatorname{vec}(\mathbf{I} - (\mathbf{\Gamma}_x^{-1}\hat{\mathbf{\Gamma}}_x)^T) = \mathbf{0}$$

It is easy to verify that $\operatorname{vec}(\Phi)$, $\operatorname{vec}(\Gamma_v)$ and $\operatorname{vec}(\frac{d\Phi}{d\phi})$ are three independent vectors. So $\operatorname{vec}(\Gamma_x^{-1}\Phi)$ and $\operatorname{vec}(\Gamma_x^{-1}\Gamma_v)$ and $\operatorname{vec}(\Gamma_x^{-1}\frac{d\Phi}{d\phi})$ are independent as well since Γ_x^{-1} is not singular. Thus, we have three independent equations, and the model just has a degree of freedoms of three. Hence, we must have $I - (\Gamma_x^{-1}\hat{\Gamma}_x)^T = \mathbf{0}$, i.e., $\Gamma_x = \hat{\Gamma}_x$. Starting from $\Gamma_x = \hat{\Gamma}_x$, we can have

$$P_s + P_v = 1, \ P_s e^{j\phi} + P_v \gamma_v = \hat{\gamma}_x$$

Thus,

$$e^{j\phi} = \frac{\hat{\gamma}_x - P_v \gamma_v}{P_s} = \frac{\hat{\gamma}_x - P_v \gamma_v}{1 - P_v}$$

Since $|e^{j\phi}| = 1$, we have

$$\left| \frac{\hat{\gamma}_x - P_v \gamma_v}{1 - P_v} \right| = 1$$

We can solve for P_v from the above equation. There will be two solutions for P_v . But, the one greater than 1 should be discarded as $P_s = 1 - P_v \ge 0$.