ORACLE Academy

Marine Sillian

Objetivos

- En esta lección se abordan los siguientes objetivos:
 - Identificar los pasos necesarios para crear tablas de base de datos
 - Describir la finalidad del lenguaje de definición de datos (DDL)
 - Mostrar las operaciones DDL necesarias para crear y mantener las tablas de una base de datos

DFo 6-3 Lenguaje de definición de datos (DDL)

Objetos de base de datos

Objeto	Descripción
Tabla	Es la unidad básica de almacenamiento; consta de filas.
Vista	Representa de forma lógica subjuegos de datos de una o más tablas.
Secuencia	Genera valores numéricos.
Índice	Mejora el rendimiento de algunas consultas.
Sinónimo	Ofrece un nombre alternativo para un objeto.

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Nota: En este curso, vamos a crear y recuperar información de la unidad básica de almacenamiento, las tablas. Hay más objetos de base de datos disponibles que los enumerados, pero no se tratan en este curso.

Reglas de nomenclatura para tablas y columnas

- Los nombres de tabla y de columna deben:
 - -Empezar por una letra
 - -Tener entre 1 y 30 caracteres
 - -Contener solo A-Z, a-z, 0-9, , \$ y #
 - No ser un duplicado de otro nombre de objeto propiedad del mismo usuario
 - -No ser una palabra reservada del servidor de Oracle

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Nota: Los nombres no son sensibles a mayúsculas/minúsculas. Por ejemplo, EMPLOYEES se considera lo mismo que eMPloyees o eMployees. Sin embargo, los identificadores entre comillas son sensibles a mayúsculas/minúsculas.

Para obtener una lista completa de las palabras reservadas, consulte: https://docs.oracle.com/cd/B28359 01/appdev.111/b31231/appb.htm#CJHIIICD

Sentencia CREATE TABLE

- Para emitir una sentencia CREATE TABLE, se debe disponer de lo siguiente:
 - El privilegio CREATE TABLE
 - -Un área de almacenamiento

```
CREATE TABLE [schema.]table
          (column datatype [DEFAULT expr][, ...]);
```


ORACLE Academy

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Para crear una tabla, un usuario debe tener el privilegio CREATE TABLE y un área de almacenamiento en la que crear los objetos. El administrador de la base de datos (DBA) utiliza sentencias de lenguaje de control de datos (DCL) para otorgar privilegios a los usuarios.

En la sintaxis:

- schema es el mismo nombre que el del propietario.
- table es el nombre de la tabla.
- DEFAULT expr especifica un valor por defecto si se omite un valor en la sentencia INSERT.
- column es el nombre de la columna.
- datatype es el tipo de dato y la longitud de la columna.

Nota: Se necesita el privilegio CREATE ANY TABLE para crear una tabla en cualquier esquema distinto del esquema del usuario.

Sentencia CREATE TABLE

- Especifique en la sentencia:
 - -Nombre de la tabla
 - Nombre de columna, tipo de dato de columna, tamaño de columna
 - -Restricciones de integridad (opcional)
 - -Valores por defecto (opcional)

```
CREATE TABLE [schema.]table (column datatype [DEFAULT expr][, ...]);
```


DFo 6-3 Lenguaje de definición de datos (DDL)

Creación de tablas

Crear una tabla:

```
CREATE TABLE dept(
deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
create_date DATE DEFAULT SYSDATE
);
```

 Para confirmar que se ha creado la tabla, ejecute el comando DESCRIBE

Academy

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Nota: Puede ver la lista de las tablas que posee realizando consultas en el diccionario de datos. Por ejemplo, select table_name from user_tables;

Para obtener más información sobre las tablas del diccionario de datos, consulte: https://docs.oracle.com/database/121/GMSWN/apc.htm#GMSWN600

Creación de tablas

• Confirmar la creación de la tabla:

DESCRIBE dept;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT	DEPTNO	NUMBER	-	2	0	-		-	-
	DNAME	VARCHAR2	14	-	-	-		-	-
	LOC	VARCHAR2	13	-	-	-		-	-
	CREATE_DATE	DATE	7	-	-	-		SYSDATE	-

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Tipos de dato

Tipo de dato	Descripción
VARCHAR2(size)	Datos de caracteres de longitud variable (Se debe especificar un tamaño máximo; el tamaño mínimo es 1). Tamaño máximo: 32767 bytes
CHAR(size)	Datos de tipo carácter de longitud fija de longitud (size) en bytes. (El tamaño por defecto y mínimo es 1; el tamaño máximo es 2000)
NUMBER(p, s)	Datos numéricos de longitud variable. La precisión es p, y la escala, s. (La precisión es el número total de dígitos decimales, y la escala el número de dígitos a la derecha del punto decimal; la precisión puede ir de 1 a 38, y la escala de –84 a 127).
DATE	Valores de fecha y hora hasta el segundo más próximo entre el 1 de enero del 4712 a.C. y el 31 de diciembre del 9999 d.C.
LONG	Datos de caracteres de longitud variable (hasta 2 GB).

DFo 6-3 Lenguaje de definición de datos (DDL)

Tipos de dato

Tipo de dato	Descripción			
CLOB	Objeto grande de caracteres (CLOB) que contiene caracteres de un solo byte o multibyte. El tamaño máximo es (4 GB - 1) * (DB_BLOCK_SIZE); almacena datos del juego de caracteres nacional.			
NCLOB	CLOB que contiene caracteres Unicode. Se soportan los juegos de caracteres de ancho fijo y variable y ambos utilizan el juego de caracteres nacional de la base de datos. El tamaño máximo es (4 GB - 1) * (tamaño de bloque de base de datos); almacena datos del juego de caracteres nacional.			
RAW (Size)	Datos binarios raw con una longitud en bytes especificada por size. Debe especificar size para un valor RAW. El tamaño (size) máximo es: 32767 bytes si MAX_SQL_STRING_SIZE = EXTENDED 4000 bytes si MAX_SQL_STRING_SIZE = LEGACY			
LONG RAW	Datos binarios raw de longitud variable hasta 2 GB.			
BLOB	Objeto grande binario. El tamaño máximo es (4 GB - 1) * (parámetro de inicialización DB_BLOCK_SIZE (de 8 TB a 128 TB)).			
BFILE	Datos binarios almacenados en un archivo externo (hasta 4 GB).			
ROWID	Cadena de base 64 que representa la dirección única de una fila en su tabla correspondiente. Este tipo de dato es principalmente para valores devueltos por la pseudocolumna ROWID			

ORACLE

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

MA SIMINING SIIDA

Ejemplo: Creación de una tabla con diferentes tipos de datos

```
CREATE TABLE
               print media(
  product id
               NUMBER (6),
  id
               NUMBER (6),
               VARCHAR2 (100),
  desc
  composite
               BLOB,
  msourcetext
               CLOB,
               CLOB,
  finaltext
  photo
               BLOB,
  graphic
               BFILE
);
```


Academy

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

12

Tipos de dato de fecha

NEW YORK

LONDON

токуо

MOSCOW

Tipo de dato	Descripción
TIMESTAMP	Permite almacenar los datos de tiempo como fecha con segundos fraccionarios. Almacena el valor de año, mes, día, hora, minuto y segundo del tipo de dato DATE, así como el valor para segundos fraccionarios. Existen diversas variaciones de este tipo de dato, como, por ejemplo, WITH TIMEZONE y WITH LOCALTIMEZONE.
INTERVAL YEAR TO MONTH	Permite almacenar el tiempo como un intervalo de años y meses. Se utiliza para representar la diferencia entre dos valores de fecha y hora en los que las únicas partes significativas son el año y el mes.
INTERVAL DAY TO SECOND	Permite almacenar el tiempo como un intervalo de días, horas, minutos y segundos; se utiliza para representar la diferencia exacta entre dos valores de fecha y hora.
TIMESTAMP WITH TIME ZONE	Variante de TIMESTAMP que incluye el nombre de la región de zona horaria o el desplazamiento de zona horaria en su valor.

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

3

Puede utilizar varios tipos de dato de fecha.

Ejemplo de TIMESTAMP WITH TIMEZONE:

```
CREATE TABLE table_tstz (c_id NUMBER, c_tstz TIMESTAMP WITH TIME ZONE);

INSERT INTO table_tstz VALUES(1, '01-JAN-2003 2:00:00 AM - 07:00');
```

Ejemplos: Tipos de dato de fecha

• Ejemplo de tipo de dato TIMESTAMP:

```
CREATE TABLE table_ts(
   c_id NUMBER(6),
   c_ts TIMESTAMP
);
```

```
INSERT INTO table_ts
VALUES(1, '01-JAN-2003 2:00:00');
```


DFo 6-3

Lenguaje de definición de datos (DDL)

Ejemplos: Tipos de dato de fecha

 Ejemplo de una tabla con las columnas TIMESTAMP, INTERVAL YEAR TO MONTH e INTERVAL DAY TO SECOND:

```
CREATE TABLE time_table(
   start_time    TIMESTAMP,
   duration_1    INTERVAL DAY (6) TO SECOND (5),
   duration_2    INTERVAL YEAR TO MONTH
);
```


Academy

Lenguaje de definición de datos (DDL)

MA SIMILITIAN SIMILAR

Opción DEFAULT

- Especifica un valor por defecto para una columna durante la operación CREATE TABLE
- Esta opción evita que se introduzcan valores nulos en las columnas si se inserta una fila sin un valor para la columna

```
... hire date DATE DEFAULT SYSDATE, ...
```

 Los valores literales, expresiones o funciones SQL son valores válidos

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

16

Observe el siguiente ejemplo, donde la sentencia inserta el valor NULL en lugar del valor por defecto:

```
INSERT INTO hire dates values (45, NULL);
```

En el siguiente ejemplo, la sentencia inserta SYSDATE para la columna HIRE_DATE, ya que es el valor DEFAULT:

```
INSERT INTO hire dates(id) values(35);
```

Opción DEFAULT

- El nombre de otra columna o una pseudocolumna son valores no válidos
- El tipo de dato por defecto debe coincidir con el tipo de dato de la columna

```
CREATE TABLE hire_dates(
id NUMBER(8),
hire_date DATE DEFAULT SYSDATE
);
```

Table created.

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

DFo 6-3 Lenguaje de definición de datos (DDL)

Escenario de caso: Creación de tablas CREATE TABLE authors (NUMBER (3), name VARCHAR2 (60) Creación); correcta de tablas CREATE TABLE members (id NUMBER (4), first name VARCHAR2 (50), last name VARCHAR2 (50), street address VARCHAR2(50), city VARCHAR2 (20), Creación de state VARCHAR2(2), tablas VARCHAR2 (10) zip); Results Explain Describe Saved SQL History

ORACLE Academy

Lenguaje de definición de datos (DDL)

Table created.

0.03 seconds

Escenario de caso: Creación de tablas

Creación de tablas

```
CREATE TABLE publishers(
  id NUMBER(2),
  name VARCHAR2(100) NOT NULL
);

CREATE TABLE books(
  id VARCHAR2(6),
  title VARCHAR2(255) NOT NULL,
  publisher_id NUMBER(2),
  author_id NUMBER(3)
);
```

Creación correcta de tablas

Results Explain Describe Saved SQL History

Table created.

0.03 seconds

Lenguaje de definición de datos (DDL)

Inclusión de restricciones

- · Las restricciones aplican reglas en el nivel de tabla
- Las restricciones garantizan la consistencia e integridad de la base de datos
- · Los siguientes tipos de restricciones son válidos:
 - -NOT NULL
 - -UNIQUE
 - -PRIMARY KEY
 - -FOREIGN KEY
 - -CHECK

ORACLE Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Restricciones de integridad de datos

Restricciones	Descripción
NOT NULL	La columna no puede contener un valor nulo.
UNIQUE	Los valores de una columna o una combinación de columnas deben ser únicos para todas las filas de la tabla.
PRIMARY KEY	La columna (o una combinación de columnas) debe contener el valor AND IS NOT NULL único para todas las filas.
FOREIGN KEY	La columna (o una combinación de columnas) debe establecer y aplicar una referencia a una columna o una combinación de columnas de otra tabla (o de la misma).
CHECK	Una condición debe ser true.

DFo 6-3 Lenguaje de definición de datos (DDL)

Directrices de restricción

 Asignar un nombre a una restricción (de lo contrario, el servidor de Oracle genera un nombre con el formato SYS_Cn)

Constraint	Туре	
SYS_C0014370	Primary Key	

- Es fácil hacer referencia a las restricciones si se les asigna un nombre significativo. (Por ejemplo, employee_employee_id_pk)
- Crear una restricción en uno de los siguientes momentos:
 - En el momento de la creación de la tabla
 - Después de la creación de la tabla
- Definir una restricción en el nivel de columna o de tabla
- Ver una restricción en el diccionario de datos

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

24

Por ejemplo, al crear una tabla, si especifica una columna para que sea la llave primaria sin utilizar la palabra reservada "CONSTRAINT", Oracle genera un nombre de restricción, como se muestra a continuación:

CREATE TABLE DEPT_SAMPLE(DEPT_ID NUMBER(2) PRIMARY KEY, DEPARTMENT_ID VARCHAR2(50));

A STATION STATES

Directrices de restricción

- Las restricciones de nivel de columna se incluyen al definir la columna
- Las restricciones de nivel de tabla se definen al final de la definición de tabla y deben hacer referencia a la columna o las columnas a las que pertenece la restricción
- Funcionalmente, una restricción de nivel de columna es lo mismo que una restricción de nivel de tabla
- Las restricciones NOT NULL solo se pueden definir en el nivel de columna
- Las restricciones que se aplican a más de una columna se deben especificar en el nivel de tabla

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Definición de restricciones

Sintaxis de CREATE TABLE con CONSTRAINTS:

```
CREATE TABLE [schema.]table
  (column datatype [DEFAULT expr]
  [column_constraint],
    ...
  [table_constraint][,...]);
```

ORACLE Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

26

En la sintaxis:

- schema es el mismo nombre que el del propietario.
- table es el nombre de la tabla.
- DEFAULT expr especifica un valor por defecto que se utiliza si se omite un valor en la sentencia INSERT.
- column es el nombre de la columna.
- datatype es el tipo de dato y la longitud de la columna.
- column constraint es una restricción de integridad como parte de la definición de columna.
- table constraint es una restricción de integridad como parte de la definición de tabla.

Definición de restricciones

• Sintaxis de restricción de nivel de columna:

```
column [CONSTRAINT constraint_name] constraint_type,
```

Sintaxis de restricción de nivel de tabla:

```
column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),
```


DFo 6-3 Lenguaje de definición de datos (DDL)

Ejemplos: Definición de restricciones

Restricción de nivel de columna:

```
GREATE TABLE employees(
 employee id NUMBER(6)CONSTRAINT emp emp id pk
                         PRIMARY KEY,
               VARCHAR2 (20),
  first name
);
```

Restricción de nivel de tabla:

Lenguaje de definición de datos (DDL)

```
CREATE TABLE employees (
   employee id NUMBER(6),
   first name
                    VARCHAR2 (20),
   iob id
                   VARCHAR2 (10)
   CONSTRAINT emp emp id pk PRIMARY KEY (employee id)
ORACLE
Academy
                                              Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.
```

En este ejemplo, la restricción de llave primaria utiliza el UID designado para dicha entidad y crea la llave primaria (esta se puede crear en el nivel de columna o de tabla); en las diapositivas 33 a 34 encontrará más información sobre las restricciones de llave primaria.

Nota: Los ejemplos de esta diapositiva y los de las siguientes solo muestran una parte del código utilizado para crear la tabla employees y, por lo tanto, no se pueden ejecutar tal y como aparecen.

La creación de restricciones NOT NULL aplica los atributos obligatorios en el diseño.

Mary Million Committee Com

Restricción NOT NULL

• Solo se puede definir en el nivel de columna:

ORACLE

Academy

Lenguaje de definición de datos (DDL)

Marin Million Suns

Restricción UNIQUE

- Una restricción de integridad de clave UNIQUE requiere que todos los valores de la columna o de un juego de columnas sean únicos
- Si la restricción UNIQUE tiene más de una columna, el grupo de columnas se denomina clave única compuesta
- Las restricciones UNIQUE permiten la entrada de valores nulos
- Un valor nulo en una columna (o en todas las columnas de una clave UNIQUE compuesta) cumple siempre una restricción UNIQUE

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Nota: Debido al mecanismo de búsqueda de restricciones UNIQUE en más de una columna, no puede tener valores idénticos en las columnas no nulas de una restricción de clave UNIQUE compuesta parcialmente nula.

Restricción UNIQUE

• Definida en el nivel de tabla o de columna:

```
CREATE TABLE employees (
  employee id
                    NUMBER (6),
  last name
                    VARCHAR2 (25),
  email
                    VARCHAR2 (25) CONSTRAINT
                                  emp email uk UNIQUE,
  salary
                    NUMBER (8,2),
  commission pct
                    NUMBER(2,2),
  hire date
                    DATE,
                                           OR
  CONSTRAINT emp email uk UNIQUE(email)
);
```

ORACLE Academy

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Una clave única compuesta se define en el nivel de tabla. Por ejemplo:

```
ALTER TABLE DEPT SAMPLE ADD CONSTRAINT unq dept det UNIQUE (DEPT ID, DEPARTMENT NAME) ;
```

Nota: El servidor de Oracle aplica la restricción UNIQUE mediante la creación implícita de un índice único en la columna o columnas de clave única.

Mary Million Suns

Restricción PRIMARY KEY

- Una restricción PRIMARY KEY crea una llave primaria para la tabla
- Solo se puede crear una llave primaria para cada tabla
- La restricción PRIMARY KEY es una columna o un juego de columnas que identifica de forma única cada fila de una tabla
- Ninguna columna que forme parte de la llave primaria puede contener un valor nulo
- Se debe crear una llave primaria compuesta en el nivel de la tabla

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

34

Por ejemplo:

```
create table dept(
dept_id number(8),
dept_name varchar2(30),
loc_id number(4),
constraint pk dept primary key(dept id,loc id));
```

Nota: Puesto que la unicidad forma parte de la definición de restricción de llave primaria, el servidor de Oracle aplica la unicidad mediante la creación implícita de un índice único en la columna o columnas de llave primaria.

Restricción PRIMARY KEY

DEPARTMENTS

PRIMARY KEY

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400

··· No permitido (valor nulo)

NULL	Public Accou	2500	
50	Finance	124	1500

No permitido (50 ya existe)

Nota: Consulte en la diapositiva 27 ejemplos de codificación de restricción de llave primaria.

Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Marin Sink

Restricción FOREIGN KEY

- La restricción FOREIGN KEY (o integridad referencial) designa una columna o una combinación de columnas como clave foránea
- Establece una relación con una llave primaria en la misma tabla o en una diferente
- A continuación, se muestran las directrices para las restricciones de clave foránea:
 - -El valor de clave foránea debe coincidir con un valor existente de la tabla principal o ser un valor NULL
 - -Las claves foráneas se basan en los valores de datos y son punteros puramente lógicos, en lugar de físicos

DFo 6-3 Lenguaje de definición de datos (DDL)

Restricción FOREIGN KEY

• Definida en el nivel de tabla:

```
CREATE TABLE employees (
  employee id
                     NUMBER (6),
  last name
                     VARCHAR2 (25),
  email
                     VARCHAR2 (25),
   salary
                     NUMBER(8,2),
  commission pct
                     NUMBER(2,2),
  hire date
                     DATE,
    . . .
  department id
                     NUMBER (4),
  CONSTRAINT emp dept fk FOREIGN KEY (department id)
       REFERENCES departments (department id)
);
ORACLE
Academy
```

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Las claves foráneas compuestas se deben crear mediante la definición de nivel de tabla.

En la diapositiva, el ejemplo define una restricción FOREIGN KEY en la columna DEPARTMENT_ID de la tabla EMPLOYEES, mediante la sintaxis de nivel de tabla. El nombre de la restricción es EMP DEPT FK.

La clave foránea se puede definir también en el nivel de columna, siempre que la restricción esté basada en una sola columna. La sintaxis difiere en que las palabras clave FOREIGN KEY no aparecen. Por ejemplo:

```
CREATE TABLE employees
(...
department_id NUMBER(4) CONSTRAINT emp_deptid_fk
REFERENCES departments(department_id),
...
)
```

Restricción FOREIGN KEY

• Definida en el nivel de columna:

```
CREATE TABLE employees (
  employee id
                    NUMBER (6),
  last name
                    VARCHAR2 (25),
  email
                    VARCHAR2 (25),
  salary
                    NUMBER (8,2),
  commission pct
                    NUMBER(2,2),
  hire date
                    DATE,
  department id
                    NUMBER(4) CONSTRAINT emp dept fk
                 REFERENCES departments (department id)
```

ORACLE

Academy

DFo 6-3 Lenguaje de definición de datos (DDL) Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

39

Se debe crear una clave foránea compuesta en el nivel de la tabla, por ejemplo:

```
CREATE TABLE supplier
( sup_id numeric(15) not null,
  sup_name varchar2(45) not null,
  contact_name varchar2(45),
  CONSTRAINT sup_pk PRIMARY KEY (sup_id, sup_name)
);
```

A SIMILAR SIIIX

Restricción FOREIGN KEY: Palabras clave

- FOREIGN KEY: Define la columna en la tabla secundaria en el nivel de restricción de tabla
- REFERENCES: Identifica la tabla y la columna en la tabla principal
- ON DELETE CASCADE: Suprime las filas dependientes de la tabla secundaria cuando se suprime una fila de la tabla principal
- ON DELETE SET NULL: Convierte los valores de clave foránea dependiente en nulos

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Sin las opciones ON DELETE CASCADE u ON DELETE SET NULL, la fila de la tabla principal no se puede suprimir si se hace referencia a ella en la tabla secundaria. Y estas palabras clave no se pueden utilizar en la sintaxis en el nivel de columna.

Restricción CHECK

- · Define una condición que debe cumplir cada fila
- No puede hacer referencia a columnas de otras tablas

```
CREATE TABLE employees(
...
salary NUMBER(8,2) CONSTRAINT emp_salary_min
CHECK (salary > 0),
...
);
```


DFo 6-3 Lenguaje de definición de datos (DDL) Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Para cumplir la restricción, en cada fila de la tabla se debe definir la condición como TRUE o desconocida (debido a un valor nulo).

Una sola columna puede tener varias restricciones CHECK que hagan referencia a la columna en su definición. No hay ningún límite en cuanto al número de restricciones CHECK que puede definir en una columna.

Las restricciones CHECK se pueden definir en el nivel de tabla o de columna.

CREATE TABLE: Ejemplo de Restricción CHECK

ORACLE

Academy

Lenguaje de definición de datos (DDL)

Escenario de caso: Creación de tablas

¿Cómo agregar restricciones a las tablas de la base de datos de biblioteca simplificada?

ORACLE Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Escenario de caso: Adición de restricciones

```
CREATE TABLE authors (
   id
            NUMBER (3),
            VARCHAR2 (60)
   name
   CONSTRAINT
                atr id pk PRIMARY KEY (ID)
CREATE TABLE members (
   id
                     NUMBER (4),
   first name
                     VARCHAR2 (50),
   last name
                     VARCHAR2 (50),
   street address
                     VARCHAR2 (50),
   city
                     VARCHAR2 (20),
   state
                     VARCHAR2(2),
                     VARACHAR2 (10),
   zip
   CONSTRAINT mbr id pk PRIMARY KEY
                                       (ID)
```

ORACLE

Academy

Lenguaje de definición de datos (DDL)

```
Escenario de caso: Adición de restricciones
CREATE TABLE publishers (
   id
               NUMBER (2),
               VARCHAR2 (100) NOT NULL,
   CONSTRAINT plr id pk PRIMARY KEY (ID)
CREATE TABLE books (
                     VARCHAR2 (6),
   id
   title
                     VARCHAR2 (255) NOT NULL,
   publisher id NUMBER(2),
   author id
                     NUMBER (3),
   CONSTRAINT bok id pk PRIMARY KEY (ID),
   CONSTRAINT bok atr fk FOREIGN KEY (author id)
                                  REFERENCES authors (id),
   CONSTRAINT bok plr fk FOREIGN KEY (publisher id)
                                  REFERENCES publishers (id)
ORACLE
Academy
                                     Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.
           Lenguaje de definición de datos (DDL)
```

Escenario de caso: Adición de restricciones

```
CREATE TABLE book transactions (
   id
                    VARCHAR2 (6),
                    DATE DEFAULT SYSDATE NOT NULL,
   tran date
                    VARCHAR2(10),
   type
   book id
                    VARCHAR2 (6) ,
   member id
                    NUMBER (4),
   CONSTRAINT btn id pk PRIMARY KEY (ID),
   CONSTRAINT bok btn fk FOREIGN KEY (book id)
                               REFERENCES books (id),
   CONSTRAINT bok mbr fk FOREIGN KEY (member id)
                               REFERENCES members (id)
```

ORACLE

Academy

Lenguaje de definición de datos (DDL)

Lenguaje de definición de datos

- La creación de tablas forma parte del lenguaje de definición de datos de SQL
- Entre otras sentencias DDL se incluyen:
 - -ALTER: Para modificar la estructura de un objeto
 - -DROP: Para eliminar un objeto de la base de datos
 - RENAME: Para cambiar el nombre de un objeto de base de datos

DFo 6-3 Lenguaje de definición de datos (DDL)

Sentencia ALTER TABLE

- Utilice la sentencia ALTER TABLE para cambiar la estructura de tabla:
 - -Agregar una columna
 - -Modificar una definición de columna existente
 - -Definir un valor por defecto para la nueva columna
 - -Borrar una columna
 - -Cambiar el nombre de una columna
 - -Cambiar una tabla al estado de solo lectura

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Después de crear una tabla, puede que necesite cambiar la estructura de la tabla por cualquiera de las siguientes razones:

- Ha omitido una columna.
- Debe cambiar la definición de columna o su nombre.
- · Debe eliminar columnas.
- Desea definir la tabla en modo de solo lectura.

Sentencia ALTER TABLE

 Utilizar la sentencia ALTER TABLE para agregar, modificar y borrar columnas:

```
ALTER TABLE table

ADD (column data type [DEFAULT expr]
[, column data type]...);
```

```
ALTER TABLE table

MODIFY (column data type [DEFAULT expr]
[, column data type]...);
```

```
ALTER TABLE table
DROP (column [, column] ...);
```

ORACLE

Academy

DFo 6-3 Lenguaje de definición de datos (DDL) Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

49

En la sintaxis:

- table es el nombre de la tabla.
- ADD | MODIFY | DROP es el tipo de modificación.
- column es el nombre de la columna.
- data type es el tipo de dato y la longitud de la columna.
- DEFAULT expr especifica el valor por defecto de una columna.

Adición de columnas

Puede utilizar la cláusula ADD para agregar columnas:

```
ALTER TABLE employees
ADD termination date DATE;
```

La nueva columna se convierte en la última:

EMPLOYEE_ID	LAST_NAME	HIRE_DATE	TERMINATION_DATE
100	King	17-Jun-1987	-
101	Kochhar	21-Sep-1989	-
102	De Haan	13-Jan-1993	-
200	Whalen	17-Sep-1987	-

Academy

Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Nota: Si una tabla ya contiene filas cuando se agrega una columna, la nueva columna será inicialmente nula o utilizará el valor por defecto para todas las filas. Solo puede agregar una columna NOT NULL obligatoria a una tabla que contenga datos en las demás columnas si especifica un valor por defecto. Puede agregar una columna NOT NULL a una tabla vacía sin el valor por defecto.

Consulte la diapositiva 9 para consultar el código para crear esta tabla.

Modificación de columnas

 Puede cambiar el tipo de dato, tamaño y valor por defecto de una columna:

```
ALTER TABLE employees
MODIFY first_name VARCHAR2(30);
```

- El cambio de un valor por defecto solo afecta a las inserciones posteriores en la tabla
- Las modificaciones están sujetas a determinadas condiciones

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

51

A continuación, se muestran las directrices para modificar una columna:

- Puede aumentar el ancho o la precisión de una columna numérica.
- Puede aumentar el ancho de las columnas de caracteres.
- Puede reducir el ancho de una columna si:
 - La columna solo contiene valores nulos.
 - La tabla no tiene filas.
 - La disminución del ancho de columna no es inferior a los valores existentes en dicha columna.
- Puede cambiar el tipo de dato si la columna solo contiene valores nulos. La única excepción son las conversiones de CHAR a VARCHAR2, que se pueden realizar con los datos de las columnas.
- Solo puede convertir una columna CHAR al tipo de dato VARCHAR2 o una columna VARCHAR2 al tipo de dato CHAR si la columna contiene valores nulos o si no cambia el tamaño.
- El cambio a un valor por defecto de una columna solo afecta a las inserciones posteriores en la tabla.
- Puede agregar una restricción NOT NULL mediante las cláusulas MODIFY.

Borrado de columnas

 Usar la cláusula DROP COLUMN para borrar columnas que ya no son necesarias:

ALTER TABLE employees
DROP (termination_date);

Table altered.

EMPLOYEE_ID	LAST_NAME	HIRE_DATE
100	King	17-Jun-1987
101	Kochhar	21-Sep-1989
102	De Haan	13-Jan-1993
200	Whalen	17-Sep-1987

ORACLE

Academy

Lenguaje de definición de datos (DDL)

Copyright @ 2020, Oracle y/o sus filiales. Todos los derechos reservados.

A continuación, se muestran las directrices para borrar una columna:

- La columna puede o no contener datos.
- Con la sentencia ALTER TABLE DROP COLUMN, solo se puede borrar una columna en cada ocasión.
- La tabla debe tener al menos una columna después de modificarla.
- Después de borrar una columna, no se puede recuperar.
- Una llave primaria a la que hace referencia otra columna no se puede borrar, a menos que se agregue la opción de cascada.
- El borrado de una columna puede tardar un rato si tiene muchos valores. En este caso, puede ser mejor definirla para que no se utilice y borrarla cuando haya menos usuarios en el sistema. De esta forma, se evitan los bloqueos ampliados.

Opción SET UNUSED

- La opción SET UNUSED marca una o más columnas como no utilizadas para que se puedan borrar simultáneamente cuando la demanda de recursos del sistema sea menor
- Puede utilizar la opción SET UNUSED para marcar una o más columnas como no utilizadas
- Puede utilizar la opción DROP UNUSED COLUMNS para eliminar las columnas marcadas como no utilizadas

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

Las columnas no utilizadas se tratan como si se hubieran borrado, aunque sus datos de columna permanezcan en las filas de la tabla.

Después de que una columna se marque como no utilizada, no tendrá acceso a dicha columna. Las consultas SELECT * no recuperan datos de las columnas marcadas como no utilizadas. Además, los nombres y tipos de columnas marcados como no utilizados no se muestran durante la sentencia DESCRIBE, y puede agregar a la tabla una nueva columna con el mismo nombre que la columna no utilizada.

Puede especificar la palabra clave ONLINE para indicar que se permiten las operaciones de lenguaje de manipulación de datos (DML) en la tabla al marcar la columna o columnas como UNUSED. El siguiente ejemplo de código muestra el uso de SET UNUSED COLUMN, que define una columna como no utilizada para siempre mediante la adición de la palabra clave ONLINE:

ALTER TABLE dept80 SET UNUSED (hire date) ONLINE;

La información de SET UNUSED se almacena en la vista de diccionario USER UNUSED COL TABS.

Nota: Las instrucciones para definir una columna como UNUSED son similares a las instrucciones para borrar una columna.

Opción SET UNUSED

```
ALTER TABLE
                SET
        UNUSED(<column name> [ , <column name>]);
 OR
 ALTER TABLE
               UNUSED COLUMN <column name> [ , <column name>];
 ALTER TABLE dept
 SET UNUSED (dname);
 ALTER TABLE 
 DROP
       UNUSED COLUMNS;
 ALTER TABLE dept
 DROP UNUSED COLUMNS;
ORACLE
Academy
                                       Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.
            Lenguaje de definición de datos (DDL)
```

Al definir una columna como UNUSED, tiene la opción de borrar esa columna.

Puede utilizar DROP UNUSED COLUMNS para eliminar de la tabla todas las columnas que estén marcadas actualmente como no utilizadas. Puede utilizar esta sentencia cuando desee reclamar el espacio en disco adicional de las columnas no utilizadas en la tabla. Si la tabla no contiene columnas no utilizadas, la sentencia no devuelve ningún error.

Nota: Una opción DROP UNUSED COLUMNS posterior elimina físicamente todas las columnas no utilizadas de una tabla, de forma similar a DROP COLUMN.

Escenario de caso: Modificación de tablas

Profesor

Sean, estaba examinando la tabla AUTHORS y me he dado cuenta de que:

Falta el campo de dirección de correo electrónico del autor.

Hay que aumentar longitud de la columna de nombre del autor.

¿Puede realizar estos cambios?

Claro, puedo hacerlo. La modificación consiste en agregar una nueva columna y aumentar la longitud de columna, así que no debe haber ningún problema

DFo 6-3 Lenguaje de definición de datos (DDL)

Tablas de solo lectura

- Puede utilizar la sintaxis de ALTER TABLE para:
 - Definir una tabla en modo de solo lectura para evitar cambios de DDL o DML durante el mantenimiento de la tabla
 - -Volver a definir la tabla en modo de lectura/escritura

ALTER TABLE dept READ ONLY;

- -- perform table maintenance and then
- -- return table back to read/write mode

ALTER TABLE dept READ WRITE;

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

A continuación, se muestran las directrices para definir una tabla en modo de solo lectura:

- Puede especificar READ ONLY para definir una tabla en modo de solo lectura.
- Cuando una tabla está en modo de solo lectura, no se pueden emitir sentencias DML que afecten a la tabla o cualquier sentencia SELECT... FOR UPDATE.
- Puede emitir sentencias DDL siempre y cuando no modifique los datos de la tabla.
- Se permiten operaciones sobre los índices asociados a la tabla cuando la tabla está en modo de solo lectura.
- Especifique READ/WRITE para volver a definir una tabla de solo lectura en modo de lectura/escritura.

Nota: Si es necesario, puede borrar una tabla en modo READ ONLY. El comando DROP se ejecuta solo en el diccionario de datos, por lo que no es necesario el acceso al contenido de la tabla. El espacio utilizado por la tabla no se reclamará hasta que el tablespace se vuelva a definir en modo de lectura/escritura y, a continuación, se podrán realizar los cambios necesarios en las cabeceras de segmentos de bloque, etc.

Borrado de una tabla

- Mueve una tabla a la papelera de reciclaje
- Elimina la tabla y sus datos si se especifica la cláusula PURGE
- Invalida los objetos dependientes y elimina privilegios de objeto en la tabla

DROP TABLE dept;

Table dropped.

DFo 6-3 Lenguaje de definición de datos (DDL)

Copyright © 2020, Oracle y/o sus filiales. Todos los derechos reservados.

A menos que especifique la cláusula PURGE, la sentencia DROP TABLE no vuelve a liberar espacio en los tablespaces para que lo utilicen otros objetos, y el espacio sigue contando en la cuota de espacio del usuario. El borrado de una tabla invalida objetos dependientes y elimina privilegios de objeto en la tabla.

Al borrar una tabla, la base de datos pierde todos los datos de la tabla y todos los índices asociados a esta.

Sintaxis

DROP TABLE table [PURGE]

En la sintaxis, table es el nombre de la tabla.

A continuación, se muestran las directrices para borrar una tabla:

- Se suprimen todos los datos de la tabla.
- Se mantienen las vistas y los sinónimos, pero no son válidos.
- Se confirman las transacciones pendientes.
- Solo el creador de la tabla o un usuario con el privilegio DROP ANY TABLE puede eliminar una tabla.

Marin Suna

Ejercicio del proyecto

- DFo_6_3_Project
 - Base de datos de la tienda Oracle Baseball League:
 Uso de DDL para crear y mantener tablas de base de datos

ORACLE Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

Resumen

- En esta lección, debe haber aprendido a hacer lo siguiente:
 - Identificar los pasos necesarios para crear tablas de base de datos
 - -Describir el objetivo del DDL
 - Mostrar las operaciones DDL necesarias para crear y mantener las tablas de una base de datos

ORACLE Academy

DFo 6-3 Lenguaje de definición de datos (DDL)

ORACLE Academy