

浅谈逻辑规则在知识图谱表示学习中的应用

王 泉 中国科学院信息工程研究所 2015-06-27

概述

- ■知识图谱:实体和关系构成的异质有向图
- ■表示学习:将实体和关系在隐式向量空间进行表示、 建模与学习
- ■方法瓶颈:单纯数据驱动型方法,精度有限
- ■逻辑规则: 更准确的表示学习+提升任务精度

大纲

- ■知识图谱
- ■知识图谱表示学习
- ■逻辑规则的使用
- ■结束语

大纲

- ■知识图谱
- 知识图谱表示学习
- ■逻辑规则的使用
- 结束语

知识图谱

■ 知识图谱:实体和关系构成的异质有向图

(John, athletePlaysForTeam, 76ers)

(Bob, athletePlaysForTeam, 76ers)

(Bob, teamMates, Tom)

(Tom, athletePlayesInLeague, NBA)

(76ers, teamPlaysInLeague, NBA)

知识图谱

知识图谱:实体和关系构成的异质有向图

(John, athletePlaysForTeam, 76ers)

(Bob, athletePlaysForTeam, 76ers)

(Bob, teamMates, Tom)

(Tom, athletePlayesInLeague, NBA)

(76ers, teamPlaysInLeague, NBA)

■ 符号化的表示形式严重制约其计算与建模

大纲

- ■知识图谱
- ■知识图谱表示学习
- ■逻辑规则的使用
- 结束语

知识图谱表示学习

■基本思想

- 在隐式向量空间对实体和关系进行表示、建模与学习
- 将实体和关系可计算化,简化知识图谱操作与建模

■ 应用场景

- 知识推理 [Bordes et al., 2013; Socher et al., 2013]
- 关系抽取 [Riedel et al., 2013; Weston et al., 2013]
- 实体消解 [Bordes et al., 2014]
- 实体分类 [Nickel et al., 2012]

总体框架

- 在隐式向量空间对实体/关系进行表示、建模与学习
 - 将实体和关系在隐式向量空间进行表示
 - 定义打分函数, 衡量三元组成立的可能性
 - 根据已知事实构造优化问题,学习模型参数

总体框架

- 在隐式向量空间对实体/关系进行表示、建模与学习
 - 将实体和关系在隐式向量空间进行表示
 - 定义打分函数, 衡量三元组成立的可能性
 - 根据已知事实构造优化问题 学习模型参数

基于重构误差

数据全观测

基于排序损失

数据有缺失

基于重构误差的方法: RESCAL

■ 实体/关系的隐空间表示 + 打分函数定义

■基于重构误差的参数学习

$$\min_{\substack{\{\mathbf{e}_i\},\{\mathbf{R}_k\}}} \sum_{k} \sum_{i} \sum_{j} \left(y_{ij}^{(k)} - f\left(e_i,r_k,e_j\right) \right)^2 + \lambda \mathcal{R},$$

$$\underbrace{\text{数据全观测}}$$

基于重构误差的方法

■相同的目标函数

$$\min_{\{\mathbf{e}_i\},\{\mathbf{R}_k\}} \sum_{k} \sum_{i} \sum_{j} \left(y_{ij}^{(k)} - f\left(e_i, r_k, e_j\right) \right)^2 + \lambda \mathcal{R},$$

■ 不同的隐空间表示方式和打分函数

Method	Entity/Relation embeddings	Scoring function
RESCAL (Nickel et al., 2011)		$f_{ij}^{(k)} = \mathbf{e}_i^T \mathbf{R}_k \mathbf{e}_j$ $f_{ij}^{(k)} = \sum_{\ell} e_{i\ell} r_{k\ell} e_{j\ell}$
	$\mathbf{e},\mathbf{r}\in\mathbb{R}^d$	
TUCKER (Chang et al., 2013)	$\mathbf{e}, \mathbf{r} \in \mathbb{R}^d$	$f_{ij}^{(k)} = \sum_{\ell} \sum_{m} \sum_{n} o_{\ell m n} e_{i\ell} r_{km} e_{jn}$

基于排序损失的方法: TransE

■ 实体/关系的隐空间表示 + 打分函数定义

$$f(e_i, r_k, e_j) = \|\mathbf{e}_i + \mathbf{r}_k - \mathbf{e}_j\|_1$$

$$f_{ij}^{(k)} = \begin{bmatrix} & & & \\ & + & \\ & & \end{bmatrix} - \begin{bmatrix} & & \\ & & \end{bmatrix}$$

翻译变换

■基于排序损失的参数学习

$$\min_{\substack{\{\mathbf{e}_i\},\{\mathbf{r}_k\}\\ \mathbf{g}_i\},\{\mathbf{r}_k\}}} \sum_{t^+ \in O} \sum_{t^- \in \mathcal{N}_{t^+}} \left[\gamma + f(e_i, r_k, e_j) - f(e_i', r_k, e_j') \right]_+$$
数据有缺失

基于排序损失的方法

■相同的目标函数

$$\min_{\{\mathbf{e}_i\}, \{\mathbf{r}_k\}} \sum_{t^+ \in O} \sum_{t^- \in \mathcal{N}_{t^+}} \left[\gamma + f(e_i, r_k, e_j) - f(e_i', r_k, e_j') \right]_+$$

■ 不同的隐空间表示方式和打分函数

Method	Entity/Relation embeddings	Scoring function
TransE (Bordes et al., 2013)	$\mathbf{e},\mathbf{r}\in\mathbb{R}^d$	$f_{ij}^{(k)} = \ \mathbf{e}_i + \mathbf{r}_k - \mathbf{e}_j\ _{\ell_1/\ell_2}$ $f_{ij}^{(k)} = (\mathbf{W}_{u1}\mathbf{r}_k + \mathbf{W}_{u2}\mathbf{e}_i + \mathbf{b}_u)^T (\mathbf{W}_{v1}\mathbf{r}_k + \mathbf{W}_{v2}\mathbf{e}_j + \mathbf{b}_v)$
SME (lin) (Bordes et al., 2014)	$\mathbf{e},\mathbf{r}\in\mathbb{R}^d$	$f_{ij}^{(k)} = (\mathbf{W}_{u1}\mathbf{r}_k + \mathbf{W}_{u2}\mathbf{e}_i + \mathbf{b}_u)^T \left(\mathbf{W}_{v1}\mathbf{r}_k + \mathbf{W}_{v2}\mathbf{e}_j + \mathbf{b}_v\right)$
SME (bilin) (Bordes et al., 2014)	$\mathbf{e},\mathbf{r}\in\mathbb{R}^d$	$f_{ij}^{(k)} = \left(\left(\underline{\mathbf{W}}_{u} \bar{\mathbf{x}}_{3} \mathbf{r}_{k} \right) \mathbf{e}_{i} + \mathbf{b}_{u} \right)^{T} \left(\left(\underline{\mathbf{W}}_{v} \bar{\mathbf{x}}_{3} \mathbf{r}_{k} \right) \mathbf{e}_{j} + \mathbf{b}_{v} \right)$
SE (Bordes et al., 2011)	$\mathbf{e} \in \mathbb{R}^d, \mathbf{R}^u, \mathbf{R}^v \in \mathbb{R}^{d \times d}$	$f_{ij}^{(k)} = \ \mathbf{R}_k^u \mathbf{e}_i - \mathbf{R}_k^v \mathbf{e}_j\ _{\ell_1}$

数据驱动型方法的不足

■ 精度有限: 广泛相关 ≠ 精确匹配

(San Antonio, cityLocatedInState, ?)

- Florida
- Arizona
- Maine
- Ohio
- Colorado
- Texas

大纲

- 知识图谱
- ■知识图谱表示学习
- ■逻辑规则的使用
- 结束语

表示学习 + 逻辑规则

■基本思想

- 将表示学习和逻辑规则相结合, 充分发挥两者优势
- 通过使用规则,实现更准确的表示学习,提升任务精度

■方法分类

- 流水线式方法 [Beltagy et al., 2013, 2015; Wang et al., 2015]
- 联合式方法 [Rocktaschel et al., 2014, 2015]

流水线式方法

- ■基本特点
 - 表示学习和规则的使用为两个相互独立的环节
 - 规则的使用并不直接影响表示学习
- 连接纽带
 - 0-1型整数线性规划 [Wang et al., 2015]
 - 马尔可夫逻辑网络 [Beltagy et al., 2013, 2015]

- 知识推理: 0-1型整数线性规划
 - 目标函数:知识图谱表示学习
 - 约束条件: 规则 (逻辑+非逻辑)

- 知识推理: 0-1型整数线性规划
 - 目标函数:知识图谱表示学习
 - 约束条件: 规则 (逻辑+非逻辑)

- 1. 最符合表示学习模型的预测
- 2. 满足所有的推理规则

■ 优化问题

$$\max_{\left\{x_{ij}^{(k)}, \epsilon_{ij}^{(k)}\right\}} \sum_{k} \sum_{i} \sum_{j} w_{ij}^{(k)} x_{ij}^{(k)} - \sum_{t^{+} \in \mathcal{O}} \epsilon_{ij}^{(k)},$$
s.t. R1. $x_{ij}^{(k)} + \epsilon_{ij}^{(k)} = 1, \ \forall t^{+} \in \mathcal{O},$

$$R2. \ x_{ij}^{(k)} = 0, \ \forall k, \forall i \notin \mathcal{H}_{k}, \forall j \notin \mathcal{T}_{k},$$

$$R3. \ \sum_{i} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{1-M}, \forall j,$$

$$R3. \ \sum_{j} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{M-1}, \forall i,$$

$$R3. \ \sum_{i} x_{ij}^{(k)} \leq 1, \ \sum_{j} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{1-1}, \forall i, \forall j,$$

$$R4. \ x_{ij}^{(k_1)} \leq x_{ij}^{(k_2)}, \ \forall r_{k_1} \mapsto r_{k_2}, \forall i, \forall j,$$
where $x_{ij}^{(k)} \in \{0, 1\}, \forall k, i, j; \ \epsilon_{ij}^{(k)} \in \{0, 1\}, \forall t^{+} \in \mathcal{O}.$

■ 优化问题

■ 优化问题

$$\max_{\{x_{ij}^{(k)}, \epsilon_{ij}^{(k)}\}} \sum_{k} \sum_{i} \sum_{j} w_{ij}^{(k)} x_{ij}^{(k)} - \sum_{t^{+} \in \mathcal{O}} \epsilon_{ij}^{(k)}, \\
\text{s.t.} \quad \text{R1.} \quad x_{ij}^{(k)} + \epsilon_{ij}^{(k)} = 1, \ \forall t^{+} \in \mathcal{O}, \\
\text{R2.} \quad x_{ij}^{(k)} = 0, \ \forall k, \forall i \notin \mathcal{H}_{k}, \forall j \notin \mathcal{T}_{k}, \\
\text{R3.} \quad \sum_{i} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{1-M}, \forall j, \\
\text{R3.} \quad \sum_{j} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{M-1}, \forall i, \\
\text{R3.} \quad \sum_{i} x_{ij}^{(k)} \leq 1, \ \sum_{j} x_{ij}^{(k)} \leq 1, \ \forall k \in \mathcal{R}_{1-1}, \forall i, \forall j, \\
\text{R4.} \quad x_{ij}^{(k_1)} \leq x_{ij}^{(k_2)}, \ \forall r_{k_1} \mapsto r_{k_2}, \forall i, \forall j, \\
\text{where} \quad x_{ij}^{(k)} \in \{0, 1\}, \forall k, i, j; \ \epsilon_{ij}^{(k)} \in \{0, 1\}, \forall t^{+} \in \mathcal{O}.$$

联合式方法

- ■基本特点
 - 表示学习和规则的使用在统一框架同时进行
 - 规则的使用直接影响表示学习
- 规则建模
 - 张量操作 [Rocktaschel et al., 2014]
 - 实数操作 [Rocktaschel et al., 2015]

- 将逻辑规则和三元组统一对待,协同学习
 - 三元组: 经由实体/关系表示转换成向量
 - 逻辑规则: 经由张量操作转化成向量

■ 三元组转换

- [true]
$$\coloneqq \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$$
 [false] $\coloneqq \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathbb{R}^2$

$$- \text{ relation } r \coloneqq \boxed{} \in \mathbb{R}^{2 \times d}$$

■逻辑规则转换

$$- \left[\neg \mathcal{A} \right] \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} [\mathcal{A}] \in \mathbb{R}^2$$

$$- \left[\mathcal{A} \wedge \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

$$- \left[\mathcal{A} \vee \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

$$- \left[\mathcal{A} \Rightarrow \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

■逻辑规则转换

$$- \begin{bmatrix} \neg \mathcal{A} \end{bmatrix} \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} [\mathcal{A}] \in \mathbb{R}^2$$

$$- \left[\mathcal{A} \wedge \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

$$- \left[\mathcal{A} \vee \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

$$- \left[\mathcal{A} \Rightarrow \mathcal{B} \right] \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \overline{\times}_{2} \left[\mathcal{B} \right] \times \left[\mathcal{A} \right] \in \mathbb{R}^{2}$$

■ 协同表示学习

$$\min_{[p] \in \mathfrak{P}, [R] \in \mathfrak{R}} \sum_{\mathcal{F} \in K} \left\| [\mathcal{F}] - \top \right\|_2$$

- 将逻辑规则和三元组统一对待,协同学习
 - 三元组: 经由实体/关系表示转换成实数
 - 逻辑规则: 经由实数操作转化成实数

- ■三元组转换
 - [true] = 1 [false] = 0
 - relation $r := \mathbf{r} \in \mathbb{R}^d$
 - entity pair $(h, t) := \mathbf{p} \in \mathbb{R}^d$
 - $[\mathcal{F} = r(h, t)] := \sigma(\mathbf{r} \cdot \mathbf{p}) \in (0, 1)$

- ■逻辑规则转换
 - $\left[\neg \mathcal{A}\right] \coloneqq 1 \left[\mathcal{A}\right] \in (0,1)$
 - $[\mathcal{A} \land \mathcal{B}] \coloneqq [\mathcal{A}][\mathcal{B}] \in (0,1)$
 - $[\mathcal{A} \vee \mathcal{B}] := [\mathcal{A}] + [\mathcal{B}] [\mathcal{A}][\mathcal{B}] \in (0,1)$
 - $[\mathcal{A} \Rightarrow \mathcal{B}] \coloneqq [\mathcal{A}]([\mathcal{B}] 1) + 1 \in (0,1)$

- ■逻辑规则转换
 - $\left[\neg \mathcal{A} \right] := 1 \left[\mathcal{A} \right] \in (0,1)$
 - $[\mathcal{A} \land \mathcal{B}] := [\mathcal{A}][\mathcal{B}] \in (0,1)$
 - $[\mathcal{A} \vee \mathcal{B}] := [\mathcal{A}] + [\mathcal{B}] [\mathcal{A}][\mathcal{B}] \in (0,1)$
 - $[\mathcal{A} \Rightarrow \mathcal{B}] \coloneqq [\mathcal{A}]([\mathcal{B}] 1) + 1 \in (0,1)$
- 协同表示学习

$$\min_{\mathbf{V}} \sum_{\mathcal{F} \in \mathfrak{F}} -\log([\mathcal{F}])$$

流水线式 VS 联合式

- 流水线式方法
 - 规则的使用不能直接影响表示学习
 - 依赖外部工具(ILP、MLN)为连接纽带,效率较低
 - 规则直接作用于任务,任务精度提升明显

Relation	RESCAL	r-RESCAL	TRESCAL	r-Trescal	TransE	r-TransE
CityCapitalOfCountry (H)	1.83	92.91	0.67	83.17	18.98	59.38
CityCapitalOfCountry (T)	6.26	92.91	1.67	83.17	28.48	59.38
CityLocatedInCountry (T)	9.11	86.80	6.53	85.62	25.30	82.02
CityLocatedInState (T)	7.54	0.00	8.81	1.43	4.66	1.67
StateLocatedInCountry (T)	57.43	57.43	56.88	56.88	3.64	3.64
Overall	14.11	67.27	12.71	62.68	16.55	43.73

Relation	RESCAL	r-RESCAL	TRESCAL	r-TRESCAL TransE	r-TransE
AthleteLedSportsTeam (T)	42.03	81.98	42.16	81.16 10.43	52.94
AthletePlaysForTeam (T)	41.09	78.88	39.76	78.31 8.56	54.50
CoachesTeam (T)	2.53	78.68	2.62	74.99 14.43	60.98
OrganizationHiredPerson (H)	3.00	68.65	3.11	69.78 16.97	51.43
PersonBelongsToOrganization (T)	30.80	72.82	23.80	73.57 8.93	54.23
Overall	30.49	78.17	29.72	77.26 11.20	54.58

流水线式 VS 联合式

- 联合式方法
 - 规则的使用直接影响表示学习
 - 向量/矩阵/张量运算,效率较高
 - 规则并非直接作用于任务,任务精度提升有限

大纲

- ■知识图谱
- ■知识图谱表示学习
- ■逻辑规则的使用
- ■结束语

结束语

知识图谱表示学习

■基本思想

- 在隐式向量空间对实体和关系进行表示、建模与学习
- 将实体和关系可计算化,简化知识图谱操作与建模

■总体框架

- 将实体和关系在隐式向量空间进行表示
- 定义打分函数, 衡量三元组成立的可能性
- 根据已知事实构造优化问题,学习模型参数

■ 方法瓶颈

- 单纯数据驱动型方法,精度有限

结束语

表示学习+逻辑规则

- ■基本思想
 - 将表示学习和逻辑规则相结合, 充分发挥两者优势
- 流水线式方法
 - 独立环节: 规则的使用不能直接影响表示学习
 - 规则直接作用于任务,任务精度提升明显
- 联合式方法
 - 统一框架: 规则的使用直接影响表示学习
 - 规则并非直接作用于任务,任务精度提升有限

参考文献

[Beltagy et al., 2013] I. Beltagy, C. Chau, G. Boleda, D. Garrette, K. Erk, and R. Mooney. Montague meets Markov: Deep semantics with probabilistic logical form. In Proceedings of *SEM, 11—21, 2013.

[Beltagy et al., 2015] I. Beltagy, S. Roller, P. Cheng, K. Erk, and R. Mooney. Representing meaning with a combination of logical form and vectors. arXiv preprint, 2015.

[Bordes et al., 2011] A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning structured embeddings of knowledge bases. In Proceedings of AAAI, 301—306, 2011.

[Bordes et al., 2013] A. Bordes, N. Usunier, A. Garcia-Duran, J.Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In Proceedings of NIPS, 2787—2795, 2013.

[Bordes et al., 2014] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A semantic matching energy function for learning with multi-relational data. MACH LEARN, 94(2): 233—259, 2014.

[Chang et al., 2013] K. W. Chang, W. T. Yih, and C. Meek. Multi-relational latent semantic analysis. In Proceedings of EMNLP, 1602—1612, 2013.

[Franz et al., 2009] T. Franz, A. Schultz, and S. Sizov. TripleRank: Ranking semantic web data by tensor decomposition. In Proceedings of ISWC, 213—228, 2009.

[Nickel et al., 2011] M. Nickel, V. Tresp, and H. P. Kriegel. A three-way model for collective learning on multirelational data. In Proceedings of ICML, 809—816, 2011.

[Nickel et al., 2012] M. Nickel, V. Tresp, and H. P. Kriegel. Factorizing YAGO: Scalable machine learning for linked data. In Proceedings of WWW, 271—280, 2012.

参考文献

[Riedel et al., 2013] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin. Relation extraction with matrix factorization and universal schemas. In Proceedings of NAACL-HLT, 74—84, 2013.

[Rocktaschel et al., 2014] T. Rocktaschel, M. Bosnjak, S. Singh, and S. Riedel. Low-dimensional embeddings of logic. In Proceedings of ACL Workshop, 45—49, 2014.

[Rocktaschel et al., 2015] T. Rocktaschel, S. Singh, and S. Riedel. Injecting logical background knowledge into embeddings for relation extraction. In Proceedings of NAACL-HLT, to appear, 2015.

[Socher et al., 2013] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng. Reasoning with neural tensor networks for knowledge base completion. In Proceedings of NIPS, 926—934, 2013.

[Wang et al., 2015] Q. Wang, B. Wang, and L. Guo. Knowledge base completion using embeddings and rules. In Proceedings of IJCAI, to appear, 2015.

[Weston et al., 2013] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier. Connecting language and knowledge bases with embedding models for relation extraction. In Proceedings of EMNLP, 1366—1371, 2013.

谢谢!

wangquan@iie.ac.cn