CP implementations

David del Val

Contents

1	Gra	Graphs			
	1.1	Dijkstra	4		
	1.2	Bellman Ford	٠		

Chapter 1

Graphs

1.1 Dijkstra

Shortest path from orig node to dest (or to every node) in a graph that does not contain negative edges. It chooses the best path greedily in each iteration and, therefore, it only works on graphs without negative weights.

```
int dijkstra(int orig, int dest, vector<vector<pii>>> &graph) {
20
        vi dists(graph.size(), INT_MAX / 10);
21
        priority_queue<pii, vector<pii>, greater<pii>> q;
22
23
        q.push({0, orig});
24
        dists[orig] = 0;
        while (!q.empty()) {
26
            auto a = q.top();
27
            q.pop();
28
            if (a.se == dest) { // If we already reached the destination
29
                 return a.fi;
30
            }
31
            if (dists[a.se] != a.fi) { // If we have found a better option
                 continue;
33
34
            for (auto b : graph[a.se]) { // Else iterate through the edges
35
                 if (dists[b.fi] > dists[a.se] + b.se) {
36
                     dists[b.fi] = dists[a.se] + b.se;
37
                     q.push({dists[b.fi], b.fi});
                 }
            }
40
        }
41
        return dists[dest];
42
   }
43
```

```
Running time: \mathcal{O}(V + E \log(E))
(V = vertices, E = edges)
```

Observations

- If we ignore the check in line 30, we can return the distances vector, which will contain the shortest distance from dist to every other node.
- If we are doing some kind of pruning it is imperative that we prune as many branches as possible in the main loop. That is to say, we should introduce as many if statements in line 36 to make sure that we run the for loop as few times as possible.

An example of this approach is problem UVA-11635. In that problem, we add a lot of branches to the queue (we may run the for loop twice in some nodes) but we prune them in the main loop. Thus the running time is still acceptable.

1.2 Bellman Ford

Shortest parth from orig to every other node. It is slower than Dijkstra but it works on graphs with negative weights.

This algorithm works by trying to relax every edge V-1 times. If there are no negative cycles, after V-1 iterations, we must have found the minimum distance to every node. Therefore if after these iterations, we run another iteration and the distance to a node decreases, we must have a negative cycle.

```
vi bellmanFord(int orig, vector<pair<pii, int>> edges, int n) {
20
        vi dist(n, INT_MAX / 10);
21
        dist[orig] = 0;
22
        for (int i = 0; i < n - 1; ++i) {
23
            for (auto e : edges) {
24
                dist[e.fi.se] = min(dist[e.fi.se], dist[e.fi.fi] + e.se);
25
            }
26
27
        // dist[i] contains the shortest path from 0 to i
28
29
        //We can now check for a negative cycle
30
        bool negativeCycle = false;
31
        for (auto e : edges) {
32
            if (dist[e.fi.se] > min(dist[e.fi.se], dist[e.fi.fi] + e.se)) {
33
                negativeCycle = true;
34
            }
35
        }
36
        return dist;
37
   }
```

```
Running time: \mathcal{O}(VE)
(V = vertices, E = edges)
```

Observations

• If we keep track of the distance that decrease when we check for a negative cycle, we will get at least one node of every negative cycle present in the graph.

We can use this, for instance, to check if we can reach a node with a cost smaller than a given bound. If it is connected to a node in a negative cycle, it's distance will be as small as we want it to be (by looping in the cycle).

This can be seen at play in UVA-10557

• If we modify slightly the main loop, iteration i will be the result of considering paths of at most i + 1 edges:

```
for (int i = 0; i < n - 1; ++i) {
    for (auto e : edges) {
        dists2[e.fi.se] = min(dists2[e.fi.se], dists[e.fi.fi] + e.se);
}
dists = dists2;
}</pre>
```

This can be seen at play in UVA-11280