Ex: monoide, groups, rings, fielde, (+ Vector spaces)

Def: (G, *) group: > * is an operation: Hayt 6: 7** + 6 V*, y 2 F6: **(y*) = (x*y)*2 -> nentral element: Je66 Yx+6 : x *e=exx=x -> invertisity (symmetrical element, inverse element) YA66 JA66: XXX=Xxx=C

1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?

5.1.		
Ė	7	

	+	-	•		
N	Yes	Vo	Yes	Mo	
72	je>	(4)	Yes	Vo	
Q	0	Yes	Yes	νo	
IR	Yo	Y15	Ter	μo	
C	Yes	Yes	Ye-	۲۰	

- **4.** Let "*" be the operation defined on \mathbb{R} by x * y = x + y + xy. Prove that:
- (i) $(\mathbb{R}, *)$ is a commutative monoid.
- (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.

We show that 0 is, indeed, a number element.

\[
\forall \tau \left(\rightarrow + 0 = \text{ is } = \text{ is } = \text{ of } \text{ is } = \text{ of } \text{ is } = \text{ of } \text{ of } \text{ is } = \text{ of } \text{ of } \text{ of } \text{ of } \text{ is } = \text{ of } \te

Def. : X is an operation on S

Def.: * is an operation on S

A \(\in \) is a stable subset of \(\in \) with regards to

the operation * if \(\tau \) by \(\tau \).

(ii) 4*,y + [-1,00): * * * y = [-1,00)

V +, y z -1 => (1+x) (1+y) zo 20 70

=) (1+x) · (1+y)-17-1 -) **y = [-1,00)

8. Let "·" be an operation on a set A and let $X, Y \subseteq A$. Define an operation "*" on the power set $\mathcal{P}(A)$ by

$$X*Y = \left\{x \cdot y \mid \underline{x \in X}, y \in Y\right\}.$$

Prove that:

- (i) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), *)$ is a monoid.
- (ii) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), *)$ is not a group.

Likevise we show that x x (1x 2) = (xxy) x 2 =) (S(A), x) Semigroup Let e be the neutral elaunt in the monoid (A,.) It E = {e} Let X = P(A) => X * E = { *·e (* + ×) = X $E \times X = \{\underbrace{e \times 1}_{x \leftarrow x}\} - X$ (4) $\forall x \in \mathcal{P}(A)$: $\times * \emptyset = \emptyset$ 3 YXEPHI: XXØ FE >) & cannot be invertible