Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 17

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:				
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}$, and	$\begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$	span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly

dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

Solution: Yes because $s(a_1x^3 + b_1x) + t(a_2x^3 + b_2x) = (sa_1 + ta_2)x^3 + (sb_1 + tb_2)x$ also belongs to W. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.