MMAE 410 – Aircraft Flight Mechanics Computer Homework Assignment 1

Due September 18, 2017

(Please provide your code, figures and numerical results clearly)

- 1. Given the aerodynamic and inertial properties of C-172: Thrust T=360 lb (assume constant), reference area S=175.5 ft², runway slope and dry rolling friction $\mu_r=0.025$ and $\varphi=0^{\rm o}$, weight W=2,450 lb, gravitational acceleration g=32.2 ft/s², sea-level air density $\rho=0.00238$ slug/ft³, zero-lift drag coefficient $C_{D_0}=0.02$, lift-induced drag coefficient K=0.085, maximum lift coefficient $C_{L_{\rm max}}=1.78$, write a code in MATLAB to simulate the ground roll flight phase of C-172 using a numerical ODE (Ordinary Differential Equation) solver (e.g., ODE23) and obtain ground roll distance S_q in existence of
 - a) no wind,
 - b) a 15 ft/s head wind,
 - c) a 15 ft/s tail wind.

(Hint: The states for a straight ground roll is speed and ground roll distance.)

- 2. Given the properties of a paper airplane glider: reference area $S=0.017~\rm m^2$, aspect ratio AR=0.86, Oswald efficiency factor e=0.9, mass $m=0.003~\rm kg$, gravity $g=9.8~\rm m/s^2$, air density $\rho=1.225~\rm kg/m^3$, zero-lift drag coefficient $C_{D_0}=0.02$, initial height $h=2~\rm m$, assume $(L/D)_{\rm max}$, assuming glide at $(L/D)_{\rm max}$, simulate and plot the trajectory of the paper glider (range vs height) when it starts with
 - a) an equilibrium initial conditions,
 - b) a zero initial flight path angle and 5 m/s initial speed.
 - c) Iterate your simulation with higher initial speeds and zero initial flight path angle and find the approximate speed that starts a loop in the trajectory.
 - d) Compare and discuss the results.

Hint: Treat paper glider as point-mass. With no thrust the pitch/vertical plane motion of airplane will be governed by four differential equation:

$$\dot{V} = \frac{1}{m} \left[-C_D \frac{1}{2} \rho S V^2 - W \sin \gamma \right]$$

$$\dot{\gamma} = \frac{1}{mV} \left[C_L \frac{1}{2} \rho S V^2 - W \cos \gamma \right]$$

$$\dot{h} = V \sin \gamma$$

$$\dot{r} = V \cos \gamma$$

where speed V, flight path angle γ , height h, and range r are called longitudinal states.