Logistic Regression

John Rios

Business Intelligence

Confusion Matrix and Statistics

Reference Prediction No Yes No 926 171 Yes 106 202

Accuracy: 0.8028

95% CI : (0.7811, 0.8234)

No Information Rate : 0.7345 P-Value [Acc > NIR] : 1.364e-09

Kappa: 0.4647

Mcnemar's Test P-Value: 0.0001204

Precision: 0.6558 Recall: 0.5416

F1 : 0.5932

Prevalence : 0.2655

Detection Rate: 0.1438 Detection Prevalence: 0.2192

Palanced Accuracy : 0.2192

Balanced Accuracy : 0.7194

'Positive' Class : Yes

Data

Training Data

Test Data

Machine Learning Use

The goal is to predict the target using a new dataset where we have values for predictors but not the target

Evaluate based on prediction error

- Build the model using training data
- Assess performance on test (hold-out) data

Model Evaluation

How well the model predicts new data (not how well it fits the data it was trained with)

 Key component of most measures is difference between actual outcome and predicted outcome (i.e., error)

Model Evaluation (Regression)

Error for data record = predicted (p) minus actual (a)

RMSE: Root Mean Squared Error

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

Total SSE: Total Sum of Squared Errors

When the target is **numeric!**

Last Class...

Model Evaluation (Classification)

Accuracy = (true positives + true negatives) / total

When the target is

Precision = true positives / (true positives + false positives)
Recall = true positives / (true positives + false negatives)

a class!

F1-measure = (2 * precision * recall) / (precision + recall)

Today!

Accuracy

Inappropriate for unbalanced (or skewed) classes

0 = no fraud

1 = yes fraud

Accuracy

Inappropriate for unbalanced (or skewed) classes

0 = no fraud

1 = yes fraud

99.2% accurate!

Accuracy

Inappropriate for unbalanced (or skewed) classes

0 = no fraud

1 = yes fraud

Only 0.50% of transactions are fraudulent!


```
predict_fraud <- function(x){
  return(0)
}</pre>
```

99.5% accurate!

Actual

Predicted

	Positive	Negative
Positive	True Positives	False Positives
Negative	False Negatives	True Negatives

Precision = True positives / Predicted positives

Recall = True positives /

Actual positives

Precision (of all transactions where we predicted fraud, what fraction actually was fraud?)

Recall (of all transactions that actually were fraud, what fraction did we correctly detect as being fraud?)

Actual

Negative

Predicted

	1 0011110	Hoganio	_
Positive	True Positives (45)	False Positives (75)	Precision = True positives /
Negative	False Negatives (5)	True Negatives (9875)	Predicted positives

Recall = True positives /

Actual positives

Positive

Precision (of all transactions where we predicted fraud, what fraction actually was fraud?) 45(TP) / [45(TP) + 75(FP)] = 0.375

Recall (of all transactions that actually were fraud, what fraction did we correctly detect as being fraud?) 45(TP) / [45(TP) + 5(FN)] = 0.9

F1-measure: (2 * 0.375 * 0.9) / (0.375 + 0.9) = 0.529

Accuracy: (45+9875)/10000 = 0.992

Actual

Mogativo

Predicted

	Positive	Negative
Positive	True Positives (0)	False Positives (0)
Negative	False Negatives (50)	True Negatives (9950)

Precision = True positives / Predicted positives

Recall = True positives / Actual positives

Docitivo

Precision: O(TP) / [O(TP) + O(FP)] = undefined

Recall: 0(TP) / [0(TP) + 50(FN)] = 0

F1-measure: undefined

Accuracy: (9950)/10000 = 0.995

Useful metrics for evaluating performance when what we want to predict is rare (e.g., fraudulent transaction)

If the model has high precision and high recall, then we can be confident that the model is doing well even if we have very skewed classes

For regression, we started with a linear regression model and then experimented with random forest next

Can we do the same for classification?

We could, but it is not a good idea to start with a linear regression!

Another Note

We know that a linear regression can output values > 1 or < 0

But it is kind of weird to have such possibility when we know that the target is either 1 or 0

What to do?

Logistic Regression

Start with logistic regression, a very popular model(simple and fast) that will produce output values (predicted scores) between 0 and 1

Don't be confused by terminology, logistic regression has the term "regression" in it for historical reasons, but it is used in ML for classification

Logistic Regression

The model function

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x$$
$$\log(odds\ ratio) = \alpha + \beta x$$

Constructed to maximize the probability of correct classification

p = probability of class membership

 α = log odds of positive class when all predictors are zero

 β = the effect of the predictor on the odds ratio

x = predictor

Logistic Regression

Probability	Odds ratio	log(odds ratio)
0.5	50:50 or 1	0
0.9	90:10 or 9	2.19
0.999	999:1 or 999	6.9
0.01	1:99 or 0.0101	-4.6
0.001	1:999 or 0.001001	-6.9

The odds ratio is the relative chance of an event taking place (OR > 1 more likely, OR < 1 less likely, OR = 1 equally likely)

Example

the β value for each predictor variable indicates the effect of that predictor on the odds ratio. For example, if the β for the flu shot is negative, then getting a flu shot decreases the estimated probability of getting sick,

Flu Shot	Vitamin C intake	Sleep	Sick?
1	1000	7	0
1	500	5	1
0	700	8	1
0	1100	8.5	0
1	600	7	0
0	500	6	1
1	800	6	0

predictor target

ML Classification in R

Use the the caret package

Telco Customer Churn – recall, the goal is to predict the target using a new dataset as best as we can

```
library(tidyverse)
library(caret)
churn <- read_csv("churn.csv")</pre>
```

Customer Churn Rate

A communications company has seen an increase in its rate of attrition or customer churn. As a BI analyst in the company, you have been asked to predict the probability that a customer discontinues their subscription. Your manager shared a dataset with you, and you need to do the following:

- Transform the text variables into numerical variables (e.g., dummy variables)
- Use machine learning and logistic regression to predict the probability that a customer may stop his/her subscription.

Churn Data

ML Classification in R

S 2 7 Filt	er													Q					Q	
customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	* MultipleLines *	InternetService	OnlineSecurity	OnlineBackup [‡]	DeviceProtection	† TechSupport †	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	
1 7590-VHVEG	Female		0 Yes	No		1 No	No phone service	DSL	No	Yes	No	No	No	No	Month-to-month	Yes	Electronic check	29.85		.85 No
2 5575-GNVDE	Male		0 No	No	3	4 Yes	No	DSL	Yes	No	Yes	No	No	No	One year	No	Mailed check	56.95	1889.	.50 No
3 3668-QPYBK	Male		0 No	No		2 Yes	No	DSL	Yes	Yes	No	No	No	No	Month-to-month	Yes	Mailed check	53.85	108.	.15 Yes
4 7795-CFOCW	Male		0 No	No	4	5 No	No phone service	DSL	Yes	No	Yes	Yes	No	No	One year	No	Bank transfer (automatic)	42.30	1840.	.75 No
9237-HQITU	Female		0 No	No		2 Yes	No	Fiber optic	No	No	No	No	No	No	Month-to-month	Yes	Electronic check	70.70	151.	.65 Yes
6 9305-CDSKC	Female		0 No	No		8 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes	Month-to-month	Yes	Electronic check	99.65	820.	.50 Yes
7 1452-KIOVK	Male		0 No	Yes	2	2 Yes	Yes	Fiber optic	No	Yes	No	No	Yes	No	Month-to-month	Yes	Credit card (automatic)	89.10	1949.	.40 No
6713-OKOMC	Female		0 No	No	1	.0 No	No phone service	DSL	Yes	No	No	No	No	No	Month-to-month	No	Mailed check	29.75	301.	.90 No
7892-POOKP	Female		0 Yes	No	2	8 Yes	Yes	Fiber optic	No	No	Yes	Yes	Yes	Yes	Month-to-month	Yes	Electronic check	104.80	3046.	.05 Yes
0 6388-TABGU	Male		0 No	Yes	6	i2 Yes	No	DSL	Yes	Yes	No	No	No	No	One year	No	Bank transfer (automatic)	56.15	3487.	.95 No
1 9763-GRSKD	Male		0 Yes	Yes	1	.3 Yes	No	DSL	Yes	No	No	No	No	No	Month-to-month	Yes	Mailed check	49.95	587.	.45 No
2 7469-LKBCI	Male		0 No	No	1	.6 Yes	No	No	No internet service	No internet service	No internet service	No internet service	No internet service	No internet service	Two year	No	Credit card (automatic)	18.95	326.	.80 No
3 8091-TTVAX	Male		0 Yes	No	5	8 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes	One year	No	Credit card (automatic)	100.35	5681.	.10 No
0280-XJGEX	Male		0 No	No	4	9 Yes	Yes	Fiber optic	No	Yes	Yes	No	Yes	Yes	Month-to-month	Yes	Bank transfer (automatic)	103.70	5036.	.30 Ye
5129-JLPIS	Male		0 No	No	2	!5 Yes	No	Fiber optic	Yes	No	Yes	Yes	Yes	Yes	Month-to-month	Yes	Electronic check	105.50	2686.	.05 No
6 3655-SNQYZ	Female		0 Yes	Yes	6	9 Yes	Yes	Fiber optic	Yes	Yes	Yes	Yes	Yes	Yes	Two year	No	Credit card (automatic)	113.25	7895.	.15 No
7 8191-XWSZG	Female		0 No	No	5	2 Yes	No	No	No internet service	No internet service	No internet service	No internet service	No internet service	No internet service	One year	No	Mailed check	20.65	1022.	.95 No
8 9959-WOFKT	Male		0 No	Yes	7	'1 Yes	Yes	Fiber optic	Yes	No	Yes	No	Yes	Yes	Two year	No	Bank transfer (automatic)	106.70	7382.	.25 No
9 4190-MFLUW	Female		0 Yes	Yes	1	.0 Yes	No	DSL	No	No	Yes	Yes	No	No	Month-to-month	No	Credit card (automatic)	55.20	528.	.35 Ye
0 4183-MYFRB	Female		0 No	No	2	1 Yes	No	Fiber optic	No	Yes	Yes	No	No	Yes	Month-to-month	Yes	Electronic check	90.05	1862.	.90 No
1 8779-QRDMV	Male		1 No	No		1 No	No phone service	DSL	No	No	Yes	No	No	Yes	Month-to-month	Yes	Electronic check	39.65	39.	.65 Yes
2 1680-VDCWW	Male		0 Yes	No	1	.2 Yes	No	No	No internet service	No internet service	No internet service	No internet service	No internet service	No internet service	One year	No	Bank transfer (automatic)	19.80	202.	.25 No
3 1066-JKSGK	Male		0 No	No		1 Yes	No	No	No internet service	No internet service	No internet service	No internet service	No internet service	No internet service	Month-to-month	No	Mailed check	20.15	20.	.15 Yes
4 3638-WEABW	Female		0 Yes	No	5	8 Yes	Yes	DSL	No	Yes	No	Yes	No	No	Two year	Yes	Credit card (automatic)	59.90	3505.	.10 No
5 6322-HRPFA	Male		0 Yes	Yes	4	19 Yes	No	DSL	Yes	Yes	No	Yes	No	No	Month-to-month	No	Credit card (automatic)	59.60	2970.	.30 No
6 6865-JZNKO	Female		0 No	No	3	0 Yes	No	DSL	Yes	Yes	No	No	No	No	Month-to-month	Yes	Bank transfer (automatic)	55.30	1530.	.60 No
6467-CHFZW	Male		0 Yes	Yes	4	7 Yes	Yes	Fiber optic	No	Yes	No	No	Yes	Yes	Month-to-month	Yes	Electronic check	99.35	4749.	.15 Ye
8665-UTDHZ	Male		0 Yes	Yes		1 No	No phone service	DSL	No	Yes	No	No	No	No	Month-to-month	No	Electronic check	30.20	30.	.20 Ye
5248-YGIJN	Male		0 Yes	No	7	'2 Yes	Yes	DSL	Yes	Yes	Yes	Yes	Yes	Yes	Two year	Yes	Credit card (automatic)	90.25	6369.	.45 No
8773-HHUOZ	Female		0 No	Yes	1	.7 Yes	No	DSL	No	No	No	No	Yes	Yes	Month-to-month	Yes	Mailed check	64.70	1093.	.10 Ye
3841-NFECX	Female		1 Yes	No	7	'1 Yes	Yes	Fiber optic	Yes	Yes	Yes	Yes	No	No	Two year	Yes	Credit card (automatic)	96.35	6766.	.95 No

Showing 1 to 31 of 7,043 entries, 21 total columns

Transform the following variables to numeric

Add an N at the end of the new variable name to identify that the variable is numeric, e.g., PartnerN

- Partner (1, 0)
- Dependents (1, 0)
- PhoneService (1, 0)
- MultipleLines (1, 0)
- InternetService (dummy variables)
- OnlineSecurity (1,0)
- OnlineBackup (1, 0)

- DeviceProtection (1,0)
- TechSupport (1, 0)
- StreamingTV (1, 0)
- StreamingMovies (1, 0)
- Contract (1, 0)
- PaperlessBilling (1, 0)
- PaymentMethod (1, 0)
- Churn (1, 0)

Data Manipulation

To run the model, we need numeric values.

```
mutate(DeviceProtectionN = case_when(
library(fastDummies)
                                                     DeviceProtection = "Yes" \sim 1,
# transform categories to numbers
                                                     DeviceProtection == "No" ~ 0,
churn <- churn %>%
                                                     DeviceProtection == "No internet service" ~ 0
 mutate(genderN = case_when(
                                                   )) %>%
    gender == "Male" \sim 1.
                                                   mutate(TechSupportN = case_when(
    gender == "Female" ~ 0
                                                     TechSupport == "Yes" ~ 1,
 )) %>%
                                                     TechSupport == "No" ~ 0.
  mutate(PartnerN = case_when(
                                                     TechSupport == "No internet service" ~ 0
    Partner == "Yes" \sim 1.
                                                   )) %>%
    Partner == "No" ~ 0
                                                   mutate(StreamingTVN = case_when(
 )) %>%
                                                     StreamingTV == "Yes" \sim 1,
 mutate(DependentsN = case_when(
                                                     StreamingTV == "No" \sim 0,
    Dependents == "Yes" \sim 1.
                                                     StreamingTV == "No internet service" ~ 0
    Dependents == "No" ~ 0
                                                   )) %>%
 )) %>%
                                                   mutate(StreamingMoviesN = case_when(
                                                     StreamingMovies == "Yes" ~ 1,
  mutate(PhoneServiceN = case_when(
                                                     StreamingMovies == "No" ~ 0.
    PhoneService == "Yes" ~ 1,
                                                     StreamingMovies == "No internet service" ~ 0
    PhoneService == "No" ~ 0
                                                   )) %>%
 )) %>%
                                                   mutate(ContractN = case_when(
 mutate(MultipleLinesN = case_when(
                                                     Contract == "Month-to-month" ~ 0,
    MultipleLines == "Yes" \sim 1,
                                                     Contract == "One year" ~ 1,
   MultipleLines == "No" \sim 0.
                                                     Contract == "Two year" ~ 1
   MultipleLines == "No phone service" ~ 0
                                                   )) %>%
  )) %>%
                                                   mutate(PaperlessN = case_when(
  dummy_cols(., select_columns =
                                                     PaperlessBilling == "Yes" \sim 1,
                'InternetService'
                                                     PaperlessBilling == "No" ~ 0
                                                   )) %>%
  mutate(OnlineSecurityN = case_when(
                                                   mutate(PaymentN = case_when(
    OnlineSecurity == "Yes" \sim 1,
                                                     PaymentMethod == "Electronic check" ~ 0,
    OnlineSecurity == "No" \sim 0.
                                                     PaymentMethod == "Mailed check" ~ 0,
    OnlineSecurity == "No internet service" ~ 0
                                                     PaymentMethod == "Bank transfer (automatic)" \sim 1.
```

Data Manipulation

To run the model, we need numeric values.

Check: Class Distribution

Is the target skewed?

```
# is the target skewed?
ggplot(df1, aes(ChurnN)) +
  geom_bar() +
  theme_classic() +
  labs(x = "Churn", y = NULL) +
  scale_x_continuous(breaks = c(0,1))
```


Splitting Data

Set a seed value so that results are reproducible Split the data into training and testing

```
# transform target into a factor
df1$Churn <- as.factor(df1$Churn)</pre>
set.seed(12L) # set a starting seed to be able to get reproducible results
# partition data
trainIndex <- createDataPartition(df1$Churn, # target variable
                                   p = 0.8, # percentage that goes to training
                                   list = FALSE, # results will not be in a list
                                  times = 1) # number of partitions to create
churn train <- df1[trainIndex, ] # data frame for training
churn test <- df1[-trainIndex, ] # data frame for testing
```

Selecting Predictors

To compute the correlation, we need numeric values

compute the correlation between predictors and the target
predTargetCor <- cor(churn_train[,2:23])</pre>

*	ChurnN
	0.440504050
ContractN	-0.412521352
tenure	-0.364702823
InternetService_No	-0.229404000
PaymentN	-0.216936773
TotalCharges	-0.210396458
OnlineSecurityN	-0.171199823
TechSupportN	-0.170782623
DependentsN	-0.154602867
PartnerN	-0.145129210
InternetService_DSL	-0.115749460
OnlineBackupN	-0.098013503
DeviceProtectionN	-0.071942497
genderN	0.006471311
PhoneServiceN	0.007138488
MultipleLinesN	0.036112029
StreamingMoviesN	0.057989626
StreamingTVN	0.059047981
SeniorCitizen	0.143192896
PaperlessN	0.185933833
MonthlyCharges	0.186248242
InternetService_Fiber optic	0.300759774
ChurnN	1.000000000

Model Induction and Testing

Use training set to build model, then predict churn using the test set

Model Performance

Use training set to build model, then predict churn using the test set

```
# how did we do? confusion matrix
confusionMatrix(data = churn_test$pred_churn,
                reference = churn test$Churn,
                mode = "prec_recall",
                positive = "Yes")
```

- Of all customers where we predicted churn, ~66% actually churned
- Of all customers that actually churned, we only correctly predicted about half (~54%)

Confusion Matrix and Statistics

```
Reference
Prediction No Yes
       No 926 171
       Yes 106 202
```

```
Accuracy : 0.8028
```

No Information Rate: 0.7345 P-Value [Acc > NIR] : 1.364e-09

Kappa : 0.4647

Mcnemar's Test P-Value: 0.0001204

```
Precision: 0.6558
   Recall: 0.5416
```

Prevalence: 0.2655 Detection Rate : 0.1438 Detection Prevalence: 0.2192 Balanced Accuracy: 0.7194

'Positive' Class : Yes

At-home exercise

- Experiment with different models to check and see if your model performance changes. A couple of popular options to try out are:
 - k-Nearest neighbors
 - Decision Trees
 - Support Vector Machines
 - Naïve Bayes

Summary

- Classification ML is when the target is a class (e.g., "yes" or "no"). Here, start with logistic regression rather than linear regression to try and maximize the probability of correct classification
- If the class distribution of the target is skewed (e.g., a lot more 0s than 1s), look for precision and recall in addition to accuracy in order to evaluate the performance of the model
- Other rules still apply: transform data, split sample, select features, train the model, and test performance