PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-297133

(43) Date of publication of application: 24.10.2000

(51)Int.CI.

CO8G 18/50 B28B 3/20 CO4B 24/28 CO4B 28/02 C07C217/28 CO8G 18/38 CO8G 65/26 // CO4B103:44

(21)Application number: 11-106406

(71)Applicant: MITSUI CHEMICALS INC

(22)Date of filing:

14.04.1999

(72)Inventor: MITSUZUKA MASAHIKO

TSURUTA MANABU

GO UNSHI

(54) COMB-SHAPED DIOL, WATER-SOLUBLE POLYURETHANE AND EXTRUSION MOLDING AID

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a diol compound capable of yielding a water-soluble polyurethane useful as an extrusion molding aid for cement materials by adding an oxirane compound to primary amines.

SOLUTION: This diol is represented by formula I or II. In the formula I, R1 represents a 1-20C hydrocarbon; R2 and R3 independently represent a 4-21C hydrocarbon provided that a part or all of the hydrogen atoms in R1 and R3 may be replaced by F, Cl, Br or I; Y, Y' and Y" independently represent H, methyl or CH2Cl; Z and Z' independently represent O, S or CH2; R4 represents 2-4C alkylene; (k) is 0 to 15; and (n) is 0 to 15 when Z is O and is 0 when Z is S or CH2. In the formula II, R1 represents 1-18C alkyl; R2' and R3' independently represent a 4-21 hydrocarbon group; and R4' represents 1,2- ethylene, 1,3propylene or 1,4-butylene. For instance, the diol is obtained by adding 2 moles of the oxirane compound of formula IV to 1 mole of the primary amine of formula III.

LEGAL STATUS

[Date of request for examination]

29.06.2004

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許山東公開登号 特開2000-297133 (P2000-297133A)

(43)公開日 平成12年10月24日(2000.10.24)

(51) Int.CL		織別記号		ΡI			Ť	~73~}*(参考)
C08G	18/50			008	3 G 18/50		A	4G012
B 2 8 B	3/20			B 2 8	3 B 3/20		K	4G054
C04B	24/28			C 0 4	B 24/28		Z	4H006
	28/02				28/02			4J005
C07C	217/28			C 0 7	7 C 217/28			41034
		•	象商登審	未翻求	請求項の数9	OL	(全 15 頁)	最終頁に続く

(21)出顧番号	物顧平11−106406	(71) 出顧人	000005887
			三非化学株式会社
(22)出版日	平成11年4月14日(1999.4.14)		東京都千代田区度が関三丁目2番5号
		(72) 発明者	三塚 雅彦
			神奈川県横浜市条区笠間町1190番地 三井
			化学课式会社内
		(72) 発明者	製田 學
			神奈川県横浜市条区笠間町1190番地 三井
			化学採式会社内
		(72) 発明者	寒 愛志
			神奈川県横浜市衆区笠岡町1190番地 三井
			化学株式会社内
		1	最終頁に続く

(54) [発明の名称] 櫛形ジオールおよび水溶性ポリウレタンおよび押出成形則剤

(57)【要約】

〈修正有〉

【課題】新規の概形ジオール及び該ジオールとジイソシアナート化合物からなる保形性が高く、粘着力の改善された安価な押出成形助剤を提供する。

【解決手段】化学式!で示される締形ジオール

(但し、R¹ 、R² 、R³ はハロゲン元素で置換されてもよい炭化水素基、Y、Y² およびY² は水素。メチル基ないし塩化メチレン基であり、YとY² は同じでも異っていても良い。また、ZおよびZ² は酸素、硫黄ないしCH₂ 基であり、ZとZ² は同じでも異っていてもよい。R² は炭素数が2~4のアルチレン基であり。kは0~15の整数である。) および該例形ジオールと水溶性アルキレングリコール及びジイソンアナートよりなる押出成形的剤。

(2)

【特許請求の範囲】

【請求項1】 化学式(1)(化1)

* [化1]

$$\begin{array}{c|c}
HO & OH \\
R^2 + O & D \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O \\
\hline
 & R^3
\end{array}$$
(1)

で表される篠形ジオール(化台物D)。ただし、R*は 炭素数が1~2()の炭化水素基である。またR'および R'は炭素敷が4~21の炭化水素基である。また該炭 化水素基R1、R1aよびR1中の水素の一部ないし全部 はフッ素、塩素、臭素ないし沃素で置換されていてもよ く、R'とR'は同じでも異なっていてもよい。またY、 Y"およびY"は水煮、メチル基ないしCH,C 1基で あり、YとY、は同じでも異なっていてもよい。また2 および2、は酸素、硫黄ないしCH,基であり、2と 2. は同じでも異なっていてもよい。またR1は全炭素 数が2~4のアルキレン基であり、kは0~15の整数 20 である。またnは2が酸素の場合は0~15の整数であ り、2が硫黄ないしCH,基の場合は0である。また n' は2' が酸素の場合は()~15の整数であり、2' が確実ないしCH,基の場合はOであり、nとn は同 じでも異なっていてもよい。

【讀求項2】 化学式(2)(化2)

[化2]

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

で表される徳形ジオール(化合物D)。ただし、R'は 炭素数が1~18のアルキル基である。またR'はおよび R'は炭素数が4~21の炭化水素基であり、R'さとR'は同じである。またR'は1、2-エチレン基、1、3-プロピレン基ないし1、4-ブチレン基である。 【語求項3】 化学式3(化3)

[/k2]

で表される繰り返し単位(1)と、化学式4(化4) 「ルム)

で表される繰り返し単位(2)からなる高分子であり、 繰り返し単位(1)のモル比率が0.5以上0.999 50

10 以下であり、繰り返し単位(2)のそル比率がり、00 1以上0.5以下であり、GPCによる宣費平均分子費 が1万から1、000万の範囲にある水溶性ポリウレタ ン。ただし、AはHO-A-OHが少なくとも両末端に 水酸基を有しかつ数平均分子費が400~100、00 のの水溶性ポリアルキレンポリオール(化合物A)である2価基であり、BはOCN-B-NCOが全炭素数が 3~18のポリイソシアナート領よりなる群から遺ばれ たポリイソシアナート化合物(化合物B)である2価基 であり、DはHO-D-OHが請求項1ないし2に記載 20 の傾形ジオール(化合物D)である2価基である。

【請求項4】 繰り返し単位(1)のモル比が0.5以上0.99以下であり、繰り返し単位(2)のモル比率が0.01以上0.5以下であり、化合物Aが3、000~20,000のポリエチレングリコールであり、化合物Bが会炭素敷が3~18の脂肪族ジイソシアナート領よりなる群から選ばれたジイソシアナート化合物であり、化合物Dが請求項2に記載の練型ジオールであり、GPCによる重量平均分子量が10万から100万の範囲にある請求項3に記載の水溶性ポリウレタン。

66 【請求項5】 化合物Bがヘキサメテレンジイソンアナート、インホロンジイソンアナート、水素化キシリレンジイソシアナート、水素化トリレンジイソシアナートまたはノルボルネンジイソンアナートである請求項3ないし4に記載の水溶性ポリウレタン。

【請求項6】 請求項3.4ないし5に記載の水溶性ポリウレタンでありかつ2.5%水溶液粘度が1.000~1.000.000センチボアズである高分子からなるセメント系材料用提出成形助剤。

【語求項7】 水硬性無機的体と細骨村と繊維と語求項40 6に記載の抑出成形助剤と水を含むことを特徴とするセメント系材料押出成形用組成物。

【請求項8】 微維として石綿代替微能を用いることを 特徴とする請求項7 に記載のセメント系材料押出成形用 組成物。

【請求項9】 請求項7.8 に記載のセメント系材料押 出成形用組成物を押出成形して得られる強度の改善され たセメント系材料押出成形物。

【発明の詳細な説明】

[9901]

【発明の属する技術分野】本発明は、水溶性ポリアルキ

レングリコールを主な原斜とする新規な高分子。及び該高分子からなる押出成形助剤、及び該押出成形助剤を含むことを特徴とするセメント系材料押出成形用組成物、及び該セメント系材料押出成形用组成形のに得られる強度の改善されたセメント系材料押出成形物に関する。

3

[0002]

【従来の技術】従来からセメント、細骨材、繊維、水等からなるモルタルを真空押出成形機などで挿出成形しセメント板等を製造する際に、押出中にモルタルから水を 15 分離することなく成形するためには、言い替えればモルタルに保水性を付与するためには、水溶性の高分子をモルタルに添加する必要があった(例えば特公昭43-7134)。十分な保水性を発現するためには高い水溶液粘度が必要であるが、この高分子として現在はメチルセルロース(MC)、ヒドロキシブロビルメチルセルロース(HPMC)やヒドロキシエチルセルロース(HE C)などの水溶性セルロースエーテル類が真ら用いられている。

【0003】また押出直後の成形体の形状を保持するた めには、言い替えればモルタルに保形性を付与するため には、モルタルが高いチクソ性を示すことが必要である が、モルタルにメチルセルロースなどの水溶性高分子を 添加するだけでは十分な保形性は得られなかった。その ため、従来は石綿(アスペスト)が水溶性セルロースエ ーテル領と併用されてきた(例えば特公昭43-713 4)。従って従来の押出成形では、水溶性セルロースエ ーテル類と石綿を併用することで、押出成形に必要なモ ルタルの保水性と保形性を満たしていたと言える。とこ ろが、近年になって石綿の有害性が指摘され、押出成形 30 においても石綿の使用は制限されるようになり、現在で は石綿の代替物として、各種ポリマー微維やガラス繊維 などの石綿代替徴推領が用いられるようになってきた。 しかしながら、これらの石綿代替繊維類を用いたモルタ ルは石綿を用いたモルタルと比較して保形性に劣ってい た。そのため、石綿代替徽維領を用いても、モルタルに 保水性と同時に十分な保形性を付与しうる新規な押出成本

* 形動剤の開発が望まれていた。

【0004】また、水溶性セルロースエーテル類はモルタルの複線時に泡をかみ易く、泡により成形品の強度が低下し易いという問題があった。また、水溶性セルロースエーテル類は原料に特定の天然パルブを用いる半台成高分子であるために比較的高価であり、押出成形品の原料コストを押し上げていた。またパルブの資源も限られており、より安価な工業原料から合成できる新しい押出成形助剤が待たれていた。そこで本発明者らは何形線水基を有する高分子を用いた押出成形助剤を見出し、既に特許出類(特許出類番号平11-067751)したが、結者力が比較的強く、成形圧力が若干高くなるという問題があり、まだ改善の余地を残していた。

[0005]

【発明が解決しようとする課題】水溶性セルロースエーテル類などの既存の押出成形的剤は、石綿を用いないセメント系材料の押出成形に用いるには保形性の点でまだ問題が残っていた。また、水溶性セルロースエーテル領はモルタルの混雑時に泡をかみ易く、泡により成形品の強度が低下し易いという問題があった。また、水溶性セルロースエーテル領は原料に特定の天然パルブを用いるために比較的高価であった。また原料の天然パルブを用いるために比較的高価であった。また原料の天然パルブを用いるでめに比較的高価であった。これらの問題を解決するために発明された新規な押出成形助剤は成形性にまだ改善の余地を残していた。従って本発明の目的は、水溶性セルロースエーテル領に替わる、より経済性でモルタルの保形性と成形品の強度に優れ、かつ成形性の改善された新しい押出成形助剤を提供することにある。

0 (00061

【課題を解決するための手段】本発明者らは上記の問題 を解決すべく説意検討を重ねた結果。 個形ジオールの構 造を改良することにより成形性が改善されることを見出 し、本発明を完成した。

【0007】また本発明は、化学式1(化5) 【0008】

[化5]

$$\begin{array}{c|c}
HO & OH \\
R^2 & OH \\
\downarrow & OH \\$$

で表される新規なジオール(化合物D)である。ただし、R'は炭素数が1~20の炭化水素基である。またR'なよびR'は炭素数が4~21の炭化水素基である。また該炭化水素基R'、R'およびR'中の水素の一部ないし全部はフッ素、塩素、臭素ないし沃素で置換されていてもよく、R'とR'は同じでも異なっていてもよい。またY、Y'およびY'は水素、メチル基ないしCH,

C1基であり、YとY は同じでも異なっていてもよい。また2および2 は酸素、硫黄ないしCH,基であり、2と2 は同じでも異なっていてもよい。またR'は全炭素数が2~4のアルキレン基であり、kは0~15の整数である。またnは2が酸素の場合は0~15の整数であり、2が硫黄ないしCH,基の場合は0であ50 る。またn は2 が酸素の場合は0~15の整数であ

(4)

り、2、が硫黄ないしCH,基の場合は0であり、nと n' は同じでも異なっていてもよい。また本発明は、化 学式(2)(化6)

[0009]

(1t6) (2)

で表される篩形ジオール (化合物D) である。ただし、 R11は炭素数が1~18のアルキル基である。またR11 およびR11は炭素数が4~21の炭化水素基であり、R * 'とR' 'は同じである。またR' 'は1、2-エチレン 基。1、3ープロピレン量ないし1、4ープチレン基で ある。また本発明は、化学式3(化7)

[0010]

【化7】

$$\begin{array}{c|c}
\hline
\begin{pmatrix}
O-A-O & H & H & O\\
\hline
N & B-N & H
\end{pmatrix}$$
(3)

で表される繰り返し単位(1)と、化学式4(化8) [0011] (化8)

$$-\left(O-D-O \stackrel{O}{\longrightarrow} \stackrel{H}{N} - B \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow}\right)$$
 (4)

で表される繰り返し単位(2)からなる高分子であり、 繰り返し単位(1)のモル比率が0.5以上0.999 以下であり、繰り返し単位(2)のモル比率がり、00 1以上(). 5以下であり、GPCによる宣置平均分子登 が1万から1、000万の葡萄にある水溶性ポリウレタ ンである。ただし、AはHO-A-OHが少なくとも両 末端に水酸基を有しかつ数平均分子量が400~10 0.000の水溶性ポリアルキレンポリオール(化合物 A) である2価基であり、BはOCN-B-NCOが全 炭素敷が3~18のポリイソシアナート類よりなる群か ち選ばれたポリインシアナート化合物 (化合物B)であ る2価基であり、DはHO-D-OHが上に記載の該籍 形ジオール(化合物D)である2価量である。

【0012】また本発明は、繰り返し単位(1)のモル 比がり、5以上り、99以下であり、繰り返し単位 (2) のモル比率が0.01以上0.5以下であり、化 合物Aが3,000~20、000のポリエチレングリ コールであり、化合物Bが全炭素数が3~18の脂肪族 ジイソシアナート領よりなる群から遊ばれたジイソシア ナート化合物であり、化合物Dが化学式2で衰される該 簡型ジオールであり、GPCによる重量平均分子量が1

ある。また本発明は、該化合物Bがヘキサメチレンジイ ソンアナート、イソホロンジイソシアナート、水素化キ シリレンジイソンアナート、水素化トリレンジイソシア ナートまたはノルボルネンジイソシアナートである該水 控性ポリウレタンである.

5

【①①13】また本発明は、該記の仰形算水基を有する 水溶性ポリウレタンでありかつ2. 5%水溶液粘度が 1、000~1、000、000センチボアズである高 分子からなるセメント系材料用押出成形助剤である。ま 10 た本発明は、水硬性無機紛体と細骨材と繊維と該押出成 形動剤と水を含むことを特徴とするセメント系材料押出 成形用組成物である。また本発明は、微維として石綿代 替餓俺を用いることを特徴とする該セメント系材料押出 成形用組成物である。また本発明は、該セメント系材料 押出成形用組成物を押出成形して得られる強度の改善さ れたセメント系材料押出成形物である。

[0014]

【発明の実施の形態】本発明により得られる高分子は、 水溶性ポリアルキレンポリオールと構造の改良された機 20 形ジオールをポリイソシアナートで連結して得られる部 形疎水基を有する高分子である。本発明で用いられる水 溶性ポリアルキレンポリオール(化合物A)は、少なく とも高分子鎖の両末端に水酸基を有するアルキレンオキ サイド重合体である。ただし水酸基を3個以上有するボ リアルキレンボリオールを用いると、製品の水への溶解 性が低下しやすい。従って高分子鎖の両末端に1級水酸 基を有するポリアルキレングリコールを用いることがよ り好ましい。

【0015】単重体のアルキレンオキサイドとしてはエ チレンオキサイド、プロビレンオキサイド、ブチレンオ キサイド、エピクロロヒドリンなどがあるが、水溶性を 高めるためにはエチレンオキサイドの含有率が60重量 %以上あることがより好ましい。 更に好ましくはエチレ ンオキサイドの重合物(ポリエチレングリコール。以下 PEGと略記する)を用いることである。

【0016】該化合物Aの分子登は数平均分子量で40 0~100,000のものが好ましい。より好ましくは 1、500~50,000. 更に好ましくは3、000 ~20,000である。分子登が400未満では十分な 水溶液粘度を示す製品が得られず、増粘剤に用いること ができない。また分子置が100,000より大きくな ると反応速度が低下し、やはり十分な水溶液粘度を示す 製品が得られない。分子量が3,000~20、000 の範囲で、十分な水溶液粘度を示す製品が最も得られ場

【0017】本発明で用いられるポリインシアナート化 合物(化合物B)は、鎖状脂肪族ポリインシアナート 類、環状脂肪族ポリインシアナート類および芳香族ポリ イソンアナートよりなる群から選ばれた全炭紊骸が(N ①万から100万の範囲にある該水溶性ポリウレタンで 50 CO基の炭素を含めて)3~18のポリイソシアナート

8

化合物である。ポリインシアナート類の全炭素数が18 より大きいと高分子の溶解性が低下し易い。ただし分子 内にNCO基3個以上有するポリイソシアナート類を用 いると、製品の水への溶解性が低下しやすい。従って分 子内にNCO墓を2個有するジイソシアナート類を用い ることがより好ましい。 ジイソシアナート類とポリアル キレングリコール領の反応では、芳香族ジインシアナー ト類>鎖状脂肪族ジイソンアナート類>環状脂肪族ジイ ソンアナート類の順に反応性が高いが、芳香族ジイソシ アナート領は無溶媒で反応させると急激に反応するた め、反応が不均一になり易く分子量の副御にやや難があ

【① ①18】また、芳香族ジイソシアナート類を用いて 製造した高分子は、強塩基性であるモルタル中で経時変 化をきたし、混雑後時間とともに助剤としての効果が低 下することがある。モルタルはp目が約14の強アルカ りなので、アルカリによる加水分解を受け易い芳香族ジ イソシアナート類とポリアルキレングリコール間の結合 が切断されるためと考えられる。従って、全炭素数が3 ~18の脂肪族ジイソシアナート類(鎖状脂肪族ジイソ シアナート類および環状脂肪族ジイソシアナート類)を 用いることがより好ましい。更に好ましくはヘキサメチ レンジイソシアナート(道称HDIと略す)、イソホロ ンジイソシアナート(通称IPDIと略す)、水素化キ シリレンジイソシアナート (通称HXDIと略す)、水 素化トリレンジイソシアナート(通称HTD i と略す) またはノルボルネンジイソシアナート(通称NBDIと 略す)を用いることである。特に好ましくはHDIを用 いることである。

【0019】鎖状脂肪族ジイソシアナート類は、NCO 36 基の間を直鎖もしくは分岐鎖のアルキレン基で繋いだ機 造をもつジイソシアナート化合物であり、具体例として は、メチレンジイソシアナート、エチレンジイソシアナ ート、トリメチレンジイソンアナート、1-メチルエチ レンジイソシアナート、テトラメチレンジイソシアナー ト、ペンタメチレンジイソシアナート、2-メチルブタ ンー1,4-ジイソシアナート、ヘキサメチレンジイソ シアナート(HDI)、ヘブタメチレンジイソシアナー ト、2、2 - ジメチルペンタンー1、5 - ジイソシア 1) オクタメチレンジイソシアナート、2.5ージメ チルヘキサンー1、6ージイソシアナート、2、2、4 ートリメチルペンタンー1、5-ジイソシアナート、ノ ナメチルジイソシアナート、2,4、4-トリメチルへ キサンー1、6-ジイソンアナート、デカメチレンジイ ソンアナート、ウンデカメチレンジイソシアナート、ド デカメチレンジイソシアナート、トリデカメチレンジイ ソンアナート、テトラデカメチレンジイソシアナート、 ペンタデカメチレンジイソシアナート、ヘキサデカメチ

ソシアナートなどが挙げられる。

【0020】環状脂肪族ジイソシアナート領は、NCO 基の間を繋ぐアルキレン基が環状構造をもつジイソシア ナート化合物であり、具体倒としては、シクロヘキサン -1.2-ジイソシアナート、シクロヘキサン-1,3 ージイソシアナート、シクロヘキサンー1, 4ージイソ シアナート、1-メチルンクロヘキサン-2、4-ジイ ソンアナート、1-メチルンクロヘキサン-2、6-ジ イソシアナート、1-エチルシクロヘキサン-2、4-19 ジイソシアナート、4.5-ジメチルシクロヘキサンー 1、3-ジイソンアナート、1、2-ジメチルンクロへ キサンーω, ω'ージイソシアナート、1,4-ジメチ ルシクロヘキサンーω, ω`ージイソシアナート。イソ ホロンジイソシアナート(IPDI)、ジシクロヘキシ ルメタンー4、4°ージイソシアナート、ジシクロヘキ シルメチルメタンー4、4、-ジイソシアナート、ジシ クロヘキシルジメチルメタンー4、4、-ジイソシアナ ート、2、2、-ジメチルジシクロヘキシルメタンー 4、4、-ジイソシアナート、3、3、-ジメチルジシ クロヘキシルメタンー4、4 ージイソシアナート、 4、4°-メチレンーピス(イソシアナトシクロヘキザ ン) イソプロビリデンビス(4-シクロヘキシルイソ シアナート) (IPCI) 1, 3-ビス(イソシアナ トメチル》シクロペキサン、水素化トリレンジイソシア ナート(HTDI)、水素化4. 4、 - ジフェニルメタ ンジイソシアナート(HMDI)、水素化キシリレンジ イソシアナート(HXDI)、水素化トリレンジイソシ アナート(通称HTDIと略す)、ノルボルネンジイソ シアナート (NBDI) などが挙げられる。

【0021】芳香族ジイソシアナート類は、NCO基の 間をフェニレン基、アルキル置換フェニレン基およびア ラルキレン基などの芳香族基ないし芳香族基を含有する 炭化水素基で繋いだジイソシアナート化合物であり、具 体例としては、1、3-および1、4-フェニレンジイ ソンアナート、1-メチル-2、4-フェニレンジイソ シアナート(2、4-TDI)、1-メチル-2、6-フェニレンジイソシアナート(2,6-TDi).1-メチルー2,5-フェニレンジインシアナート、1-メ チルー3.5-フェニレンジイソシアナート、1-エチ ナート、リジンジイソシアナートメチルエステル(LD 40 ルー2,4-フェニレンジイソシアナート、1-イソブ ロビルー2、4-フェニレンジインシアナート、1、3 ージメチルー2、4ーフェニレンジイソシアナート、 1. 3-ジメチルー4. 6-フェニレンジイソシアナー ト、1、4ージメチルー2、5ーフェニレンジイソシア ナート、カーキシレンジイソシアナート、ジエチルベン ゼンジイソシアナート、ジイソプロビルベンゼンジイソ シアナート、1-メチル-3、5-ジエチルベンゼン-2、4-ジイソンアナート、3-メチルー1,5-ジエ チルベンゼン-2、4-ジイソシアナート、1、3、5 レンジイソシアナート、トリメチルヘキサメチレンジイ 50 -トリエチルベンゼン-2、4-ジイソシアナート、ナ

10

特闘2000-297133

フタリンー1、4ージイソシアナート。ナフタリンー 1、5-ジイソシアナート、1-メチルナフタリン-1、5-ジイソシアナート、ナフタリン-2,6-ジイ ソンアナート、ナフタリン-2、7-ジイソシアナー ト、1、1ージナフチルー2、2 ージイソシアナー ト、ピフェニルー2、4、ージイソシアナート、ピフェ ニルー4, 4'ージイソシアナート、1, 3ーピス(1 - イソシアナト-1-メチルエチル) ベンゼン、3、 3、-ジメチルビフェニル-4、4、-ジイソシアナー ト、ジフェニルメタンー4、4~ ージインシアナート (MD!)、ジフェニルメタン-2、2°-ジイソシア ナート、ジフェニルメタン-2,41-ジイソシアナー ト、キシリレンジイソシアナート(XDI)などが挙げ

【① 022】本発明の縮形ジオール(化合物D)は、化*

られる。その他のポリイソシアナートとしては1.6.

アナートー4-イソシアナートメチルオクタン、1。

られる。

11-ウンデカトリイソシアナート、1,8-ジイソシ

3、6-ヘキサメチレントリイソシアナートなどが挙げ

[0023] [(t9]

$$R^{1} \xrightarrow{O}_{K}^{NH_{2}} \qquad (5)$$

で表わされる1級アミン類に化学式6(化10) [0024]

*学式5(化9)

$$R^2 + \left(0\right)^2$$

で表されるオキシラン化合物を、該1級アミン類1モル 当たり該オキンラン化合物をモル付加させることによっ て得られる。これを反応式で表せば、化学式7(化)

1) [0025] 【化11】

のようになる。式中のR*は化学式5に表された適当な 置換基、またR"およびR'は化学式6に表された適当な 置換塞である。

【0026】ただし、R1は炭素敷が1~20のアルキ ル基。アルケニル基、アラルキル基またはアリール基等 の炭化水素基である。またR'およびR'は炭素数が4~ 21のアルキル基、アルケニル基、アラルキル基または 30 ーテル結合により炭化水素基とアミノ基の間の運動性が アリール基等の炭化水素基である。また炭化水素基 R'、R'およびR'中の水素の一部ないし全部はフッ 素。塩素、臭素ないし沃素などのハロゲン原子で置換さ れていてもよい。R¹とR¹は同じでも異なっていてもよ いが、同じであることがより好ましい。またY、Y、お よびY~は水素、メチル蟇ないしCH。C1蟇であり、 YとY、は同じでも異なっていてもよいが、同じである ことがより好ましい。R*は全炭素数が2~4のアルキ レン墓であり、kは0~15の整数である。また2およ びる、は酸素、硫質ないしC貝,量であり、そと2、は 同じでも異なっていてもよいが、同じであることがより 好ましい。更に好ましくは乙および乙、がともに酸素で あることである。またnは2が酸素の場合は0~15の 整数であり、Zが硫黄ないしCH,基の場合はOであ る。またn は2 が酸素の場合は0~15の整数であ り、Z が硫黄ないしCH。基の場合はOであり、nと n'は同じでも異なっていてもよいが、同じであること がより好ましい。

【0027】本発明の特長の一つは、このポリウレタン を邸囿したモルタルの粘着力が従来の疎水性ジオールを 50 チルアミン、2 -ペンチルオキシエチルアミン 2 -へ

用いたポリウレタンのそれより低く、その結果セメント 板の钾出成形時の吐出圧力が低いことにある。粘着力が 低い理由はまだ十分には明らかでないが、一つは1級ア ミン類の構造に原因があると思われる。アミンのアミノ 基と疎水基(炭化水素基)の間に炭素数が2~4のアル キレンオキシ基が1~16個(k+1個)挿入され、エ 向上したことで疎水基同士の会合・解解がより効果的に 行われたことなどが考えられる。アルキレン基R4はよ り具体的には1、2-エチレン基、1、3-プロピレン 基、1,2-プロピレン基、1,4-ブチレン基、2, 3-ブチレン量などが挙げられる。

【0028】より具体的に説明すると、1級アミン類と しては2-アルコキシエチルアミン類。3-アルコキシ プロビルアミン類、4ーアルコキシブチルアミン類、ア ルケニルオキンアルキルアミン類、アラルキルオキシア 40 ルキルアミン類。アリールオキシアルキルアミン類、ア ルコールーアルキレンオキシド付加物のアミノアルキル エーテル類、フェノール/アルキル置換フェノールーア ルキレンオキンド付加物のアミノアルキルエーテル領な どが挙げられる。

【0029】2-アルコキシエチルアミン類としては、 2-メトキシエチルアミン、2-エトキシエチルアミ ン、2-プロポキシエチルアミン、2-イソプロポキシ エチルアミン、2-プトキシエチルアミン、2-(イソ ブトキシ) エチルアミン、2- (ter-ブトキシ) エ

(7)

キシルオキシエチルアミン、2-ヘプチルオキシエチル アミン、2-オクチルオキシエチルアミン、2-(2-エチルヘキシルオキシ) エチルアミン、2-(α-ブチ ルオクチルオキシ) エチルアミン、2-デシルオキシエ チルアミン、2-ドデシルオキシエチルアミン、2-テ トラデシルオキシエチルアミン、2-ベンタデシルオキ シエチルアミン、2-ヘキサデシルオキシエチルアミ ン、2-ヘプタデシルオキシエチルアミン、2-オクタ デンルオキシエチルアミン。2-ノナデシルエチルアミ ン、2-エイコシルエチルアミンなどが挙げられる。 【①030】3-アルコキシプロピルアミン類の倒とし ては、3-メトキシプロビルアミン、3-エトキシプロ ピルアミン、3-プロポキンプロピルアミン、3-イソ プロポキシプロビルアミン 3-プトキシプロビルアミ ン、3-(イソプトキシ) プロピルアミン、3-(te r-ブトキシ) プロピルアミン、3-ペンチルオキシブ ロビルアミン、3-ヘキシルオキシブロビルアミン、3 -ヘプチルオキシプロピルアミン、3-オクチルオキシ プロビルアミン、3-(2-エチルヘキシルオキン)プ ロビルアミン 3-(α-ブチルオクチルオキン)プロ 20 ン化合物としては各種グリンジルエーテル類や1、2-ピルアミン、3ーデシルオキシプロビルアミン、3ード デンルオキシプロビルアミン、3-、3-テトラデシル オキンプロピルアミン、3-ペンタデシルオキンプロピ ルアミン、3-ヘキサデンルオキシプロピルアミン、3 ーヘプタデシルオキシプロビルアミン、3ーオクタデシ ルオキシプロビルアミン、3-ノナデシルプロビルアミ ン、3-エイコンルプロピルアミンなどが挙げられる。 【0031】4~アルコキシブチルアミン類の倒として は、4-メトキシブチルアミン、4-エトキシブチルア シブチルアミン、4ープトキシブチルアミン、4ー(イ ソプトキシ) ブチルアミン、4- (ter-ブトキシ) ブチルアミン、4ーペンチルオキシブチルアミン、4ー ヘキシルオキシブチルアミン、4-ヘブチルオキシブチ ルアミン、4-オクチルオキシブチルアミン、4-(2 ーエチルヘキシルオキシ)ブチルアミン、4~(α-ブ チルオクチルオキシ〉 ブチルアミン、4-デシルオキシ ブチルアミン、4ードデンルオキシブチルアミン、4ー テトラデシルオキシブチルアミン、4-ペンタデンルオ ン、4ーヘプタデシルオキシブチルアミン、4-オクタ デンルオキシブチルアミン、4-ノナデシルプチルアミ ン、4-エイコシルプチルアミン、4-(2,4-ジー teェーアミルフェノキシ) ブチルアミンなどが挙げら れる。アルケニルオキシアルキルアミン類の例として は、3-ビニルプロピルアミン、2-アリルオキシエチ ルアミン、3-オレイルオキシプロビルアミンなどが例 として挙げられる。

【0032】アラルキルオキシアルキルアミン類の例と しては、2-ベンジルオキンエチルアミン、3-フェネー50 ル)フェニルエーテル、2-ビスフェニルグリンジルエ

チルオキシプロビルアミンなどが例として挙げられる。 アリールオキシアルキルアミン頷としては、2-フェニ ルオキシエチルアミン、3 - (p-ノニルフェニルオキ シ)プロピルアミンなどが例として挙げられる。その他 のアミン類としてはアルコール領やフェノール類のアル キレンオキサイド付加物 (エチレンオキサイド付加物、 プロビレンオキサイド付加物、エピクロロヒドリン付加 物など)のアミノアルカノールエーテル領が挙げられ

17

【① ①33】アルコールーエチレンオキサイド付加物の 10 アミノアルカノールエーテルの例としては、2-[2-〈ドデシルオキン〉エトキン]エチルアミン、3、6、 9-トリオキサベンタデンルアミンなどが挙げられる。 同様にアルコール類やフェノール類のプロピレンオキサ イド付加物、プロピレンオキサイド/エチレンオキサイ 下付加物、エピクロロヒドリン付加物の各々のアミノア ルカノールエーテル領を用いることも可能である。付加 数kは1~15程度が適当である。付加数が15を超え るとポリウレタンの水溶液粘度が低下し易い。オキシラ エポキシアルカン類、1、2-エポキシアルケン類、グ リンジルスルフィド領などを用いることが可能である。 【①①34】アルキルグリンジルエーテル類の倒として は、n-ブチルグリシジルエーテル、sec-ブチルグ リンジルエーテル、ter‐ブチルグリシジルエーテ ル、グリシジルペンチルエーテル、グリシジルヘキシル エーテル、グリンジルオクテルエーテル、2-エチルへ キンルグリシンルエーテル 2-メチルオクチルグリシ ジルエーテル、グリシジルノニルエーテル、デンルグリ ミン、4-プロポキシブチルアミン、4-イソプロポキ(30) シジルエーテル、ドデシルグリシジルエーテル、グリシ ジルラウリルエーテル、グリシジルトリデシルエーテ ル、グリシジルテトラデンルエーテル、グリシジルペン タデンルエーテル、グリンジルヘキサデシルエーテル、 グリンジルステアリルエーテル、3-(2-(パーフル オロヘキシル) エトキシ) -1, 2-エポキシブロバ ン、3-(3-パーフルオロオクチル-2-イオドプロ ボキシ)-1、2-エボキシプロパンなどが挙げられ る.

【0035】アルケニルグリシジルエーテル類の倒とし キンプチルアミン、4-ヘキサデシルオキシブチルアミ 40 ては、アリルグリシシルエーテル、オレイルグリンシル エーテルなどが挙げられる。アラルキルグリシジルエー テル類の例としては、ペンジルグリンジルエーテル、フ ェネチルグリンジルエーテルなどが挙げられる。アリー ルグリシジルエーテル類の倒としては、フェニルグリシ ジルエーテル、4-ter-ブチルフェニルグリンジル エーテル、2-エチルフェニルグリンジルエーテル、4 -エチルフュニルグリシジルエーテル、2-メチルフェ ニルグリシジルエーテル、グリシジル-4-ノニルフェ ニルエーテル、グリシジル-3-(ベンタデカジエニ

(8)

ーテル、ベンジルグリシジルエーテル。αーナフチルグ リンジルエーテル、ジブロモフェニルグリシジルエーテ ルなどが挙げられる。その他のグリンジルエーテル領と してはアルコール領やフェノール領のアルキレンオキサ イド付加物(エチレンオキサイド付加物、プロピレンオ キサイド付加物、エピクロロヒドリン付加物など)のグ リンジルエーテル類が挙げられる。

【0036】エチレンオキサイド付加物のグリンジルエ ーテルの例としては、2-エチルヘキンルアルコールー リルアルコールーエチレンオキサイド付加物のグリシジ ルエーテル、4-ter-ブチルフェノールーエチレン オキサイド付加物のグリンジルエーテルやノニルフェノ ールーエチレンオキサイド付加物のグリシジルエーテル 類などが挙げられる。同様にアルコール類やフェノール 類のプロピレンオキサイド付加物、プロピレンオキサイ ド/エチレンオキサイド付加物、エピクロロヒドリン付 加物の各々のグリシジルエーテル領を用いることも可能 である。工業薬品のグリンジルエーテル類には通常はエ ピクロロヒドリン付加物のグリシジルエーテル類が副生 26 成物として含まれているが、そのような純度の低い原料 も用いることができる。付加数nは1~15程度が適当 である。付加敷が15を超えるとポリウレタンの水溶液 粘度が低下し易い。

【0037】また1、2-エポキシアルカン類や1、2 -エポキシアルケン類の例としては、1,2-エポキシ ヘキサン、1、2-エポキシヘブタン、1,2-エポキ シオクタン、1、2-エポキシノナン、1,2-エポキ シデカン、1、2-エポキンドデカン、1,2-エポキ シテトラデカン、1、2-エポキシヘキサデカン、1、 2-エポキシオクタデカン、1,2-エポキシエイコサ ン、1,2-エポキシー?-オクテン、1,2-エポキ シーターデセンなどが挙げられる。その他のオキシラン 化合物としては2-エチルヘキシルグリシジルスルフィ ド、デシルグリンジルスルフィドなどのアルキルグリシ ジルチオエーテル (アルキルグリシジルスルフィド) 類 や、カーノニルフェニルグリシジルスルフィドなどのア リールグリシジルチオエーテル (アリールグリンジルス ルフィド)類が挙げられる。

【0038】上記のアミン類とオキシラン化合物類を、 アミン1分子にオキシラン化合物2分子の割合で反応さ せることにより化合物Dを得ることができるが、その反 応はオキシラン化合物として1、2~エポキシアルカン 類、1、2-エポキシアルケン類、グリシジルスルフィ 下類を用いた場合と比較して、グリンジルエーテル領を 用いた場合により容易である。 グリンジルエーテル類の アミン類との反応性が高いためと思われる。

【0039】化合物Dは分子内に3本の韓水鎖を有する が、これらの疎水鎖が互いに近接していることにより、

にする効果がある。各頭水鎖の炭素数は高分子が十分な 会合を形成しろる長さが必要である。アミン類の炭素数 は1以上20以下が好ましい。炭素敷が20を超えるア ミン類を用いるとポリウレタンの溶解性が低下すること がある。より好ましくは炭素数が1~18の鎖状ないし 環状アルキルアミン類、更に好ましくは炭素数が4~1

8の鎖状アルキルアミン類である。

14

【0040】グリシジルエーテル類の疎水基の炭素数は 4以上21以下が好ましい。炭素数が4余満のグリシジ エテレンオキサイド付加物のグリシジルエーテル。ラウ 10 ルエーテルを用いるとポリウレタンの水溶液粘度が充分 に高くならないことがある。炭素数が21を超えるグリ シジルエーテルを用いるとポリウレタンの溶解性が低下 することがある。より好ましくは炭素敷が4~18の直 鎖状ないし分岐鎖状アルキル基を鎮水基として有するア ルキルグリシジルエーテル類、ないし炭素数が6~18 の芳香族基またはアルキル置換芳香族基を韓水量として 有するアリールグリシジルエーテル類である。同様の理 由により1,2-エポキシアルカン、1,2-エポキシ アルケン、アルキルグリンジルチオエーテル、アリール グリンジルチオエーテルの疎水基の炭素数は4以上21 以下が好ましい。

> 【1)041】また、3本の疎水鎖の炭素数の合計(上述 した化学式 1 ないし化学式 2 の置換基 R 1 R 2 および R3の各々の炭素数の合計)が大きいほど、高分子は水 中で会合し易く高い水溶液粘度を得易いが、炭素敷の台 計が大きすぎると高分子の水への溶解性が低下し易い。 韓水基の炭素数の合計は12~40の範囲にあることが 好ましい。より好ましくは炭素数の合計が12~37の 範囲にあることである。更に好ましくは炭素数の合計が 30 12~28の範囲にあることである。炭素数の合計が1 2より小さいと、高い水溶液粘度を示す高分子が得られ 難い。また炭素数の台計が40を超えると、ポリウレタ ンの水への溶解性が低下し易い。

【0042】以下に篠形疎水性ジオールの製造方法を説 明するが、本発明に用いる櫛形醇水性ジオールの合成方 **法はこの例に限定されるものではない。 撮枠装置、原料** 導入機構、温度制御機構を有する反応容器に、原料のア ミン類とオキシラン化合物類を仕込み、所定の反応温度 において撹拌しながら反応させる。反応は無慈媒で行う ことができるが、DMFなどの一般的な溶媒を用いても よい。原料の導入は、アミン類とオキシラン化合物類を 一括して仕込んでもよいし、どちろか一方を反応容器に 仕込み、他方を連続的ないし段階的に導入してもよい。 【0043】反応温度は室温~160°C程度、より好ま しくは60℃~120℃程度が適当である。反応時間 は、反応温度等にも依るが、0.5~10時間程度であ る。反応終了後のジオールは、GPCにより分散度を求 めることができる。また常法により〇日価を求めること ができる。

水溶液中での水溶性ポリウレタン間の疎水的会合を容易 50 【①①44】櫛形轅水基を育する水溶性ポリウレタン

(9)

特闘2000-297133

16

は、化学式8(化12)

* [化12]

[0045]

(1-x)HO-A-OH + x HO-D-OH + GCN-B-NCO

に表すように、ポリアルキレングリコール(化合物A) および徳状草水性ジオール (化合物D) の2個の水酸基 とジイソシアナート化合物 (化合物B) の2個のNCO 基の反応により合成される。繰り返し単位 (1) のモル 比率が(1-x)でかつ繰り返し単位(2)のモル比率 がxである水溶性ポリウレタンは、化合物Aと化合物D のモル比率が(1-x):xの比率で反応させることに より得られる。以下に水溶性ポリウレタンの製造方法を 例を挙げて説明するが、勿論本発明は以下の製造方法に 限定されるものではない。

15

【0046】捌拌装置、原料導入機構、温度制御機構を 20 有する反応容器内を不活性ガスで置換する。ポリアルキ レングリコールを反応容器へ仕込む。場合によっては溶 雄を仕込む。反応容器を設定された反応温度に制御しつ つ触媒を加える。容器内を捌拌しつつジイソシアナート 化合物、締形疎水性ジオールを反応容器へ導入する。導 入方法は特に限定するものではない。連続的に導入して も断続的に導入してもよい。またジイソシアナート化台 物と櫛形線水性ジオールは、同時に導入しても、ジイソ シアナート化合物の導入後に緯形線水性ジオールを導入 ト化合物を導入してもよい。

【0047】触媒は必ずしも反応前にポリアルキレング リコールに添加する必要はなく、ポリアルキレングリコ ールにジイソシアナート化合物や篠形疎水性ジオールを 加えた後に触媒を加え、反応を開始することも可能であ る。または、ジイソシアナート化合物や緯形線水性ジオ ールに予め触媒を添加しておき、これらをポリアルキレ ングリコールに加え反応させることも可能である。所定 の反応時間後に生成物を反応容器から取り出し、ペレッ ト状、フレーク状、粉末状や溶液などに加工して製品と する.

【0048】反応に用いられる触媒は特に限定するもの ではなく、有機金属化合物、金属塩、3級アミン、その 他の塩基触媒や酸触媒などの、一般にイソシアナート類 とポリオール類の反応に用いられる公知の触媒を用いる ことができる。例を挙げれば、ジブチル縄ジラウレート (以下DBTDLと略す)、ジプチル錦ジ (ドデンルチ オラート)、第一縄オクタノエート、フェニル水銀アセ テート、亜鉛オクトエート、鉛オクトエート、亜鉛ナフ テナート、鉛ナフテナート、トリエチルアミン(TE

10 A)、テトラメチルブタンジアミン(TMBDA)、N ーエチルモルホリン (NEM)、1、4-ジアザ [2. 2. 2] ビシクロオクタン (DABCO)、1. 8-ジ アザビシクロ[5.4.0]-7-ウンデセン(DB U) N, N '-ジメチル-1, 4-ジアザシクロヘキ サン (DMP) などがある。なかでもDBTDLがより 好ましい。

【0049】反応に用いる触媒の置は、反応温度や触媒 の種類によっても異なり特に限定するものではないが、 ポリアルキレングリコールの1モル当たり(). ()()()1 ~0. 1モル、より好ましくは0. 001~0. 1モル 程度で十分である。反応は無溶媒で行うこともできる が、生成物の溶融粘度を下げるために溶媒を用いて反応 させることもできる。溶媒としては、四塩化炭素、ジク ロロメタン、クロロホルム。トリクレンなどのハロゲン **系溶剤や、キシレン、トルエン、ベンゼンなどの芳香族 系溶剤や、デカン、オクタン、ヘプタン、ヘキサン、シ** クロヘキサン、ペンタンなどの飽和炭化水素系溶剤や、 ジオキサン、テトラヒドロフラン、ジエチルエーテル、 ジメチルエーテル、エチレングリコールジメチルエーテ しても、篠形疎水性ジオールの導入後にジイソンアナー 35 ルなどのエーテル系控剤や、ジエチルケトン、メチルエ チルケトン、ジメチルケトンなどのケトン系溶剤や、酢 酸エチル、酢酸メチルなどのエステル系溶剤、などの活 性水素を持たない溶剤が有効に用いられる。ただし溶媒 を用いないことは、脱溶剤の工程が不用となるので製造 コストの点で有利であり、また環境汚染の恐れが少ない のでより好ましい。

> 【0050】反応に用いるジイソシアナート化合物の登 は、ポリアルキレングリコールとਿ形疎水性ジオールの 各々のモル数の合計が1モルに対して、ジイソンアナー ト化合物のモル数 (NCO/OH) がり、8~1、3モ ル、より好ましくは0.9~1.2モル、更に好ましく は1.0~1.1である。0.8未満または1.3を超 えると生成物の平均分子量が小さく、押出成形助剤とし ての能力が十分でない。ジイソシアネートのモル数とボ リアルキレングリコールと仰形線水性ジオールのモル数 の合計とがほぼ等量である条件で最も分子量の大きな生 成物が得られる。ただし、ポリアルキレングリコールや **徳形疎水性ジオールに水分が含まれる場合には、上述の** ジイソシアナート化合物の量は、水分によりジイソシア 50 ナートが分解する分だけ余分に用いる必要がある。従っ

て、十分に乾燥した原料を用いることがより好ましい。 できれば原料に含まれる水分は5,000ggm以下が 好ましい。より好ましくは1,000ppm以下、更に 好ましくは200ppm以下である。

【0051】反応に用いる櫛形頭水性ジオールの量は、 ポリアルキレングリコールの分子置や櫛形醇水性ジオー ルの疎水基の炭素数によっても異なるが、篠形疎水栓ジ オールのモル数がポリアルキレングリコールの1モル当 たり0.001~1モル(xが0.001~0.5)が ないことがある。また1モルを超えて反応させることは 溶解性を低下させる場合があるので好ましくない。な お、() 内の数値は該化学式9中のxの値を表してい

【0052】該ポリアルキレングリコールとして数平均 分子室が3.000~20、000の範圍にあるポリエ チレングリコールを用いた場合に、紳出成形助剤として 最も優れたポリウレタンが得られ易い。この場合に反応 に用いる締形疎水性ジオールの畳としては、ポリエチレ ングリコール 1 モル当たり 0.01~1モル(x が0. 01~0.5) がより好ましい。更に好ましくは0.0 3~0.67モル (xが0.03~0.4) である。 0.01モル未満では押出成形助剤としての効果が十分 でないことがある。

【0053】反応温度は用いる触媒の種類や置などによ っても異なるが、50~180℃が適当である。より好 ましくは60~150℃。 さらに好ましくは80~12 ○○の範囲である。反応温度が50℃未満では反応速度 が遅く経済的でない。また180℃を超えると生成物が 熱分解することがある。反応時間は用いる触媒の種類や 30 置、反応温度などにより異なり特に限定するものではな いが、1分~10時間程度で十分である。反応圧力は特 に限定されない。常圧、減圧ないし加圧状態で反応させ ることができる。より好ましくは鴬圧ないし弱加圧状態 で反応させる。

【①①54】以下に本発明により得られる水溶性ポリウ レタンの特性を記す。本発明により2.5%水溶液粘度 (ポリウレタンの濃度が2.5重置%の水溶液の25℃ での钻度を、B型回転粘度計を用いて回転数6 r pinで 測定した値〉がおよそ100から1、000,000セ ンチボアズ(cP)を超える会合性高分子が得られる。 特に押出成形助剤として用いるには、2.5%水溶液粘 度が1,000~1,000,000cP、より好まし くは10,000~500、000cPのものが適して いる。押出成形助剤として用いた場合。2.5%水溶液 粘度が1,000cP未満のものは保水性が不十分にな り易く、押出成形時に水を分離し易い。また2. 5%水 恣波钻度が1.000,000cPを超えるものは粘着 力が強すぎて押出成形体の表面平滑性が損なわれ易い。 【0055】高分子線度が2.5%の水溶液40重量部 50 ヒェーム、ベントナイト、鮎土等の無機材料やパルプ、

とセメント100宣世部を混合すると、セメントに対す る高分子の比率が1 宣置%。セメントに対する水の比率 が40宣置%となるが、これらの比率は後述する様に押 出成形用モルタルに典型的な値である。従って、押出成 形助剤の特性を表すには2.5%水溶液粘度が適してい

【0056】本発明により得られる高分子の重量平均分 子量はおよそ1万かち1、000万の範囲にある。特に 押出成形助剤として用いるには、重量平均分子量が10 適当である。0.001モル未満では増粘効果が表われ、10 万~100万の範囲の高分子がより適している。重畳平 均分子量が10万余満では水溶液粘度が十分でないこと が多い。また重量平均分子量が100万を超えると水溶 液が曳糸性をもつために、押出成形助剤として適さない。 ことがある。これらの水溶性ポリウレタンはフレーク状 の固体で用いることも、水溶液やアルコールなどの溶剤 に希釈して用いることもできるが、押出成形助剤として 用いるには、取り扱い易さなどから紛体で用いるのがよ り好ましい。紛体の粒径は16メッシュ(1mm)以下 のものを用いるのが好ましい。 粒径が16メッシュを超 20 える紛体は溶解性が劣ることがある。該押出成形助剤は 該水溶性ポリウレタンを主成分として、酸化防止剤、安 定化剤、可塑剤、希釈剤、固結防止剤などを含んでいて 644

> 【① 057】本発明で用いられるセメント系材料押出成 形用組成物は 従来から押出成形助剤として用いられて いるメチルセルロースやヒドロキシブロピルメチルセル ロースなどのセルロースエーテル領の替わりに本発明に よる押出成形助剤を含むことを除けば、他の組成につい ては公知のセメント系材料押出成形用組成物と同等のも のが有効に用いられる。具体的には普通ボルトランドセ メント、特殊ポルトランドセメント、高炉セメント、フ ライアッシュセメント、アルミナセメント、石膏などの 水硬性粉体を主成分とし、細骨材、微能、水と成形用増 粘剤を含む。

> 【① 058】細骨材は用いなくても押出成形は可能であ るが、押出成形品の寸法精度の向上や原料のコストを低 減させるために通常は用いられる。細骨材としては砂が 主に用いられるが、その他としてパーライト、バーミク ライト、シラスパルーン、軽石、発泡コンリート破砕。 物、発泡プラスチック破砕物等の軽量骨材を用いること ができる。

> 【① ①59】微能類は該組成物(モルタル)の保形性を 高めるために添加される。微能としては、石綿、ロック ウール、ガラス微維、炭素微維、ポリマー繊維等の各種 繊維が用いられる。ただし、安全性の面から、ロックウ ール、ガラス繊維、炭素繊維、ポリマー繊維(ポリプロ ピレン繊維、ピニロン繊維、アラミド機能など) 等の石 総以外の繊維(以下、石綿代替繊維と略す)を用いるこ とがより好ましい。その他にもフライアッシュ、シリカ

特闘2000-297133

吸水性樹脂などの吸水剤や、再乳化樹脂粉末や各種減水 剤、界面活性剤、消泡剤等を含んでいてもよい。

【0060】本発明の押出成形助剤の添加量は、用いる モルタルの組成によっても異なるが、押出成形建材用セ メント組成物中の水硬性紛体に対して通常(). 1~5重 置%程度、より好ましくはり、2~3重置%、更に好ま しくは0.5~1.5重量%が適当である。0.1重費 %未満では十分な押出成形助剤の効果が得られないこと がある。また5重置%を超えて添加するのは粘着力が強 すぎ、生産性が低下するので好ましくない。最適な添加 10 入し、十分混合した後、水を必要量加えてさらに混合 置は該組成物の組成や押出成形機の能力、成形体の形態 等の具体的成形条件により異なるが、一般的に従来添加 していたセルロースエーテル類の50~95重量%程度 で充分である。添加方法はフレーク状や粉体の押出成形 助剤をセメント組成物の他の成分と、乾燥したまま提拌 復合してもよいし、押出成形助剤を水溶液としセメント 組成物の他の成分に加えてもよい。勿論、押出成形助剤 として本発明の成形用増貼剤とセルロースエーテル類、 ポリアクリルアミド孫ポリマー、ポリエチレンオキシ ド ボリビニルアルコール等の他の既存の増粘剤を併用 20 実施例1 して用いることもできる。

【0061】該組成物に含まれる水の比率は、用いる細 骨村や繊維の種類や量などにより異なり一概には言えな いが、セメントなど水硬性紛体に対する水の重量比(水 /セメント比) は0.2~1の範囲が好ましい。より好 ましくは0、3~0、7、更に好ましくは0、3~0、 4が適当である。水/セメント比が1を超えると十分な 曲げ強度が得られないことがある。また(). 2未満では セメントの水和に要する水分が不足し、やはり曲げ強度 の高い成形体が得られないことがある。特に高強度の成 30 形体を得るには水/セメント比が0.3~0.7の範囲 にあることがより好ましい。更に好ましくは、水/セメ ント比が0.3~0.4の範囲であり、この範囲で最も 高い強度の成形体が得られやすい。

【①062】細骨材の添加量は従来の押出成形に用いる モルタルと同程度であればよいが、典型的には砂等の細 骨付はセメントなどの水硬性粉体に対して10~500 重量%程度、より好ましくは30~300重置%であ る。繊維の添加量はモルタルの組成や押出成形の形状な どにより異なるが、本発明の成形助剤を用いる利点とし て、従来の押出成形で用いられた繊維の添加畳より少な い量で、モルタルに十分な保形性が得られることが挙げ **ちれる。繊維として石綿を用いる場合には、石綿の使用** 貴を従来の70~95%程度に削減してもよい。ポリマ ー微能などの石綿代替繊維を用いる場合には、より大き な微能量低減効果があり、微能の使用量を従来の50~ 90%程度に削減することができる。石綿代替微能にお いてより大きな微維性低減効果が得られるのは、石綿代 替機能が石綿と比較して保形性に劣っているためであ

とができる。微能の添加量は典型的にはセメントなどの 水硬性粉体に対して0.1~10重量%程度、より好き しくは0.5~5重量%である。

【0063】これらのセメント系材料組成物は、混線級 で混練後、セメント系材料用押出成形機で押出成形する 等。従来の方法で押出成形することができる。混練方法 は特に限定するものではないが、一般的には押出成形用 のモルタルの製造はセメント、細骨村、成形助剤、繊維 が入った各ホッパーからミキサー内に各成分を必要置投 し、これをニーダー等に移して混雑する。混雑された組 成物は真空押出成形機等によりセメント板、中空セメン ト板、セメント系サイディングボード、円柱、パイプな どの各種成形体に成形される。該成形体は水蒸気養生や オートクレープ養生され製品となる。

[0064]

【実施例】以下、本発明を実施例によって説明するが、 勿論本発明はこの実施例に限られるものではない。 【0065】(櫛形草水性ジオールの合成例)

500mlの丸底フラスコにマグネチックスターラー、 温度計ねよび滴下ロートを設置し、3-[(2-エチル ヘキシル) オキシ] -1-プロピルアミン(広栄化学) 93.6%を住込み、フラスコ内を窒素で置換した。オ イルバスでフラスコを60°Cに加熱し、撮枠しながら、 満下ロートから2-エチルヘキシルグリシジルエーテル 〈ナガセ化成工業、デナコールEX-121、エポキシ 価188) 188. 0gを40分かけて滴下した。滴下 終了後、オイルバスの温度を80℃に上げて、フラスコ を10時間加熱した。続いて、オイルバスの温度を12 O Cに上げて、真空ポンプを用いて、3 mm Hg の真空 度で少量の未反応物を減圧留去した。3-【(2-エチ ルヘキシル)オキシ]-1-プロピルアミン1モルに対 して2-エチルヘキシルグリシジルエーテルが2モルの 比率で付加した櫛形醇水性ジオール1(〇日価からの平 均分子置560)を収率98%で得た。

【0066】庚鎚例2

3-(ブチルオキシ)-1-プロピルアミン(東京化 成) とロープチルグリシジルエーテル (東京化成) から 49 緯形疎水性ジオール2を合成した。

【0067】実施例3

3-(ブチルオキシ)-1-プロピルアミン(東京化 成) と2-エチルヘキシルグリシジルエーテルから締形 草水性シオール3を台成した。

[0068] 実施例4

3-(ドデシルオキシ)-1-プロビルアミン(広常化 学)と2-エチルヘキシルグリシジルエーテルから篠形 韓水性シオール4を台成した。

【0069】実施例5

る。この保形性の不足を本発明の成形動剤により補うこ 5g 3-(ドデシルオキシ)-1-プロビルアミンアミン

(12)

特闘2000-297133

(広栄化学) とドデシルグリシジルエーテル (アルドリ ッチ社製ドデンル/テトラデシルグリンジルエーテルを 蒸留錯製したもの)から櫛形蘖水性ジオール5を合成し tc.

【0070】実施例6

2-エトキシエチルアミン(東京化成)とカーオクチル グリンジルエーテル (P&B) から伽形線水性ジオール 6を合成した。

【0071】実総例7

4-メトキシブチルアミン (SALOR) とオクタデシ*19

*ルグリシジルエーテル(日本独脂、エピオールSK)か ら節形導水性ジオール7を合成した。

【0072】実総例8

3-(ブチルオキシ)-1-プロピルアミン(東京化 成)とオクタデンルグリンジルエーテル(日本油脂、エ ピオールSK) から緯形疎水性ジオール8を合成した。 表しに結果を纏めた。

[0073]

【表1】

表 1 権が疎水性ジオールの合成例

化合物の構造式:RI-OCH,CH (OH) CH,N (R') CH,CH (OH) CH,O-R*

実験警号	R¹	R*, R*	O H 値から本 めた分子量
実施例 'I	- (ch,) *0ch*ch (ch*) *ch*	-CH2CH (CH2) 3CH5	560
実施例2	- (он _е) "о (он _е) "он _а	— (GH _B) "СН _B	390
実施例3	- (CH2) 20 (CH2) TCH2	-сн _х сн (сн _х) зсн,	507
実施例 4	- (CH ₂) ,D (CH ₂) ,1CH,	-cH2CH (CH2) 3CH	620
実施例5	- (сн.) ,о (сн.) ,,сн.	- (си,) ,,си,	695
实施例 6	- (сн.) досн,сн.	- (CH _e) , СН ₆	460
実施例7	- (CH,) 40CH,	- (GH _z) ₁₂ CH _z	754
実施研8	- (CH ₂) 30 (CH ₂) 4CH ₃	(OHg) ,+GHA	780
比較例 1	-cH ₂ CH (CH ₂) ₃ CH ₈ -CH ₂ CH ₃	-cH2CH (CH2) 4CH2	490

【0074】比較例1

2-エチルヘキシルアミン (関東化学) 64. 68と2 -エチルグリンジルエーテル1888から従来型の導水 性ジオールを合成した。平均分子置は490であった。 【0075】(水溶性ポリウレタンの合成例)以下に実 施例1の鎮水性ジオールを用いた水溶性ポリウレタンの 台成例を示すが、勿論本発明は以下の例に限定されるも のではない。

【0076】実施例9

500m!のSUS製セパラブルフラスコに市販のPE G#6000 (純正化学、数平均分子量8、700) を 100g仕込み、窒素シール下で150℃にて溶融し た。これを撮評しながら減圧下(3mmHg)で3時間 乾燥した。残留する水分は200ppmであった。80 49 【0079】比較例2 ℃まで温度を下げ、フラスコ内を撹拌しながら、実施例 1で得た緯形疎水性ジオール1を0.80g、ヘキサメ チレンジイソンアナート (東京化成)を2.30g仕込 んだ。触媒としてDBTDLを0.01g添加すると、 10分程で急激に増粘した。規律を止めて、さらに2時 間反応させた。反応終了後に生成物をフラスコから取り

出し、小片に裁断後放冷した。これを液体窒素で冷却 し、電動ミルで粒径 1 mm (16 メッシュ) 以下に粉砕 した。2.5%水溶液粘度は100、000cP.GP 30 Cによる重置平均分子置は48万であった。

【0077】実施例10~14

徳形疎水性ジオール 1 の仕込み置とHD 1 の置が異なる ことを除いては、実施例8と同じである。HDIのモル 数がPEGと仰形線水性ジオールの各々のモル数の合計 の1.03倍になるように(NCO/OH=1.0) HDIの量を選んだ。

【0078】実給例15~17

PEGの分子量が20.000ないし3.000である ことを除けば実能例9~14と同様に合成した。

比較例1のジオールを用いてポリウレタンを合成した。 NCO/OHは1.03とした。結果を表2に実施例9 ~17の結果と合わせて示した。

[0080]

【表2】

24

23

	[2	*	食性ポ	リウ	レタ	ンの	合成例
--	-----	---	-----	----	----	----	-----

突肢等号	PEGØ	珠水位ゲオー5	味水基の	球水性ジャーメ	雑返単位の	2、5%水溶液	重量平均分子
	分子量	の種類	全资素数	/PEG (%)	係数 X	粘度(c P)	量 (×10°)
実施例 9	8, 700	安庭例1	24	0. 60	0.11	100, 000	48
突旋網 1 5	8, 700	実施例2	12	1. 0	0.18	10,000	3 6
実施倒 1 1	8, 700	実施例3	20	0. 65	0. 10	1, 000	49
実施例12	8, 700	安施例4	28	0. 50	0. 07	280, 000	47
紫葱倒13	8, 700	安施例6_	38	0. 30	0. 04	800, 000	5 1
実施例 4	8, 700	実施例6	18	0. 80	0. 11	90. 000	46
突送例15	20.000	異施例7	87	0. 6	0. 06	1. 000, 000	100
実施例 1 6	3, 000	安施例 6	40	0. 2	0. 01	2, 000	10
実施例17	20, 000	実施例2	12	2. 0	0. 50	500,000	9 0
比較例2	8, 700	比較例1	24	0. 73	0. 11	100,000	60

【0081】(押出成形試験)セメント、砂、石綿代替繊維、押出成形助剤と水からなるモルタルを用いて板状成形体(セメント板)の成形試験を行った。普通ボルトランドセメント100重量部、標準砂100重量部、ビニロン繊維(ユニチカビニロンタイプABセミハード)1.5重量部に所定量の成形助剤を加え、高速ミキサー(宮崎鉄工製MHS-100)で3分間混合した。この組成物に所定の水/セメント比になるように水を加え、更に3分間混合し、セメント系材料押出成形用組成物を得た。このモルタルをスクリュー式の複複(宮崎鉄工製MP-30-1)で混ねした。この複複物をスクリュー式の真空押出成形機(宮崎鉄工製FM-30-1)を用い、一定の押出速度で厚さ10mm、幅20mmの板状に押出成形した。成形体を28日間水中費生し、曲け強度を測定した。

【① 0 8 2 】 2 . 5 %水溶液粘度がほぼ等しい。実施例 9 . 比較例2の水溶性ポリウレタンと市販品の押出成形 30 助剤として広く用いられているメトローズ9 0 S H - 3 (0) 0 (0 の 3 種類を同置添加したモルタルのダイスでの吐出圧力、成形時の水分能の有無、表面形状、成形体の保形性、養生後の曲け強度を比較した。 衰 3 に実施例および比較例に用いた成形助剤の種類と添加置 (セメントに対する宣置%)、モルタル中の水/セメント比(W/C)、吐出圧力、成形時の水分離の有無、衰面形状、成形体の保形性、養生後の曲け強度を示した。

【① 0 8 3 】水分離の有無の判定は、押出成形時にダイス部分からの水の流出を酸察し、水分離がまったくない場合は良(⑩)、水分離が若干認められるが押出成形可能な場合は可(〇)、水分離が明瞭に認められ押出成形不能な場合は不良(×)とした。表面形状の判定は、押出成形直後の成形体の表面が得らかな場合は良(⑩)、凹凸が若干認められる場合は可(〇)、凹凸が明瞭に認められる場合は不良(×)とした。成形体の保形性の判定は、押出成形直後の成形体を長さ20cmに切断し、間隔10cmで配置した2個のブロックの間に水平に載せ、25で湿度100%のもとで、24時間後に成形体中央部が垂直方向に垂れ下がった距離を計り、これが150

5mm未満であれば良(®)、15mm以上20mm未満であれば可(O)、20mm以上であれば不良(×)とした。曲げ強度はJiS R-5201に進じて測定した。

【0084】 【表3】

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/...

25 150 0 0 0 水油糖の 有象 **6** (kgf/om !) 0.出胚為 **9**1 **ゲノカメソヤ** 0.00 반 政等の部の部位画 (対セソント重量%) ٥ 成的助剤の復聞 **免医虫** 比較知2 比较细密

(14) 特闘2000-297133

26

* [0085] 東施例18は比較例3よりも吐出圧力が低く、保形性、曲強度は比較例3とほぼ同等で比較例4 (市販品)より優れている。本発明による挿出成形助剤が保形性や成形体の強度の点で市販品より優れていることが解る。また吐出圧力は市販品と同等あり、結着力の点で改良されていることが解る。衰4にその他の押出成形助剤を用いた例を示した。

[0086]

【表4】

19

20

30

*

長4 押出成形試験の結集(2)

突身番号	成形助剤の種類	成形助剤の添加量 (対付い単量%)	水/セメント 比	水分離の 有無	表面形状	保部性	曲げ姓良 (kg/em²)
実施例19	実施領10	1. 0	0. 30	6	6	⊕	150
奥斯例26	異態例11	1.5	0.35	0	€	•	145
実施別21	実施領12	1. 0	0. 80	9	Ø	G	150
実施例22	実施例13	1. 0	0. 30	•	•	G	160
実施例23	実施例14	1. 0	0. 30	9	a		150
実施制24	実施第15	0. 5	0. 95	•	•	•	145
实监纲 2 5	実施別16	1. 0	0. 35	0	9	•	145
实施例26	実施領17	0. 5	0. 35	•	0	•	145
比较例5	市医品	1, 5	0. 35	- (+1)		-	_
比较例G	市販品	0. 5	0. 30	0	•	×	130
比較例7	無添加		0. 35	# (*2)		-	

注) * 1: 押出成形様の美空脱池室内でモルタルが兼しく発泡したため成形試験を中止した。

^{≠ 2 :} 押出時にモルタルから水が分離したため成形試験を中止した。

本発明の押出成形助剤は起泡性が低く、成形時の真空脱 50 気の効率が高いことも特長の一つである。

(15)

特闘2000-297133

28

[0087] 【発明の効果】本発明によって保形性の高い、钻着力の 改善された安価な押出成形動剤が利用できるようになっま

27

* た。またこの押出成形助剤を用いることにより強度の向 上した押出成形セメント板を得ることができるようにな

フロントページの続き

(51) Int.Cl.'

識別記号

F!

f-73-ド (容考)

C 0 8 G 18/38

65/25

C 0 8 G 18/38 55/26

// CO4B 103:44

Fターム(参考) 40012 PA04 PA24 PB33 PC08

4G054 AA01 AA15 BD03

4H006 AA01 AA03 AB46 BN10

43005 AA14

43034 CA04 CC05 CD04 CD08 DA01

D804 DG03 DG04 DG14 DG23

DG27 DG29 HA01 HA07 HC03

HC12 HC13 HC17 HC22 HC46

HC54 HC57 HC71 HC73 KB02