2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 5

Q1-Q5 Due Date: **31/Mar/2023** (Friday), **09:00** in tutorial class. Q6-Q10 Due Date: **4/Apr/2023** (Tuesday), **18:00** in class.

- Write down your **CHN** name and **student number**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. (Guided proof) Let A be an $m \times n$ matrix. Show that
 - (a) if $x \in N(A)$, then **x** must be in $N(A^T A)$.
 - (b) if $x \in N(A^T A)$, then $A\mathbf{x}$ is in both Col(A) and $N(A^T)$.
 - (c) If A is of rank n, then A^TA is nonsingular.
- 2. (Guided proof) Let A be an $m \times n$ matrix. Show that
 - (a) if $x \in \text{Col}(A^T A)$, then **x** must be in $\text{Col}(A^T)$.
 - (b) if $x \in \text{Col}(A^T)$, then **x** must be in $\text{Col}(A^TA)$.
 - (c) $\operatorname{Col}(A^T A) = \operatorname{Col}(A^T)$.
- 3. Using least-square method,
 - (a) fit a linear function of the form $f(t) = c_0 + c_1 t$ to the data points (0,0), (0,1), (1,1).
 - (b) fit a quadratic polynomial to the data points (0,0), (2,2), (3,6), (4,12).
 - (c) (Software needed) find the trigonometric function of the form $f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t)$ that best fits the data points (0,0), (1,1), (2,2), (3,3).
 - (d) (Software needed) find the equation of the circle that gives the best least squares circle fit to the points (-1, -2), (0, 2.4), (1.1, -4), and (2.4, -1.6).

 [Hint: The general equation for a circle is $2xc_1 + 2yc_2 + (r^2 c_1^2 c_2^2) = x^2 + y^2$]
- 4. Let S be a subspace of \mathbb{R}^n and \mathbf{v} a vector in \mathbb{R}^n . Suppose that \mathbf{x} and \mathbf{y} are orthogonal vectors with $\mathbf{x} \in S$ and that $\mathbf{v} = \mathbf{x} + \mathbf{y}$. Is it necessarily true that \mathbf{y} is in S^{\perp} ? Either prove that it is true or find a counter-example.
- 5. Consider the inner product space C[a, b] with

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx, \qquad f, g \in C[a, b].$$

Find the orthogonal projection of f onto g.

- (a) C[-1,1], f(x) = x and g(x) = 1.
- (b) $C[-\pi, \pi]$, f(x) = x and $g(x) = \sin(2x)$.
- 6. Consider the inner product space C[0,1] with

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$
, and $||f|| = \sqrt{\langle f, f \rangle}$,

for any $f, g \in C[0, 1]$. Let $S = \text{span}\{1, 2x - 1\}$ be a subspace of C[0, 1].

- (a) Show that the vectors 1 and 2x 1 are orthogonal.
- (b) Compute ||1|| and ||2x 1||.
- (c) Find the least squares approximation to $h(x) = \sqrt{x}$ in the subspace S.
- 7. Let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ be the inner product on \mathbb{R}^n . Apply the Gram-Schmidt process to find an orthonormal basis for the following subspaces spanned by \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 .
 - (a) $\mathbf{x}_1 = (1, 2)^T, \mathbf{x}_2 = (0, 1)^T, \mathbf{x}_3 = (1, -1)^T \text{ from } \mathbb{R}^2.$
 - (b) $\mathbf{x}_1 = (1, 0, 0)^T, \mathbf{x}_2 = (1, 1, 1)^T, \mathbf{x}_3 = (1, 1, -1)^T \text{ from } \mathbb{R}^3.$
 - (c) $\mathbf{x}_1 = (4, 2, 2, 1)^T, \mathbf{x}_2 = (2, 0, 0, 2)^T, \mathbf{x}_3 = (1, 1, -1, 1)^T$ from \mathbb{R}^4 .
- 8. Let

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- (a) Find an orthonormal basis for N(A).
- (b) Determine the projection matrix Q that projects vectors in \mathbb{R}^4 onto N(A).
- 9. Let Q be an orthogonal matrix and let $d = \det(Q)$. Show that |d| = 1.
- 10. True or False? If true, explain or prove your answer. If false, state your reasons or give a counter-example to show that the statement is not always true.
 - (a) If A is an $m \times n$ matrix, then AA^T and A^TA have the same rank.
 - (b) It is possible to find a nonzero vector \mathbf{y} in the column space of A^T such that $A\mathbf{y} = \mathbf{0}$.
 - (c) If Q is an orthogonal matrix, then Q^T is also an orthogonal matrix.
 - (d) If Q is an orthogonal matrix, then 3Q is also an orthogonal matrix.