Introduction to graph differences

NETWORK ANALYSIS IN PYTHON (PART 2)

Eric Ma

Data Carpentry instructor and author of nxviz package

Time series analysis

Time series analysis

- How some number changes as a function of time
 - Is there an upward or downward trend?
- Rate of change of things over a sliding window of time
- Examples:
 - Tracking weight over time
 - Tracking stock investment portfolio value over time

Evolving graphs

- Graphs that change over time: communication networks
- Assumptions:
 - Edge changes over time; assume nodes stay constant
 - Both edges and nodes change over time

Graph differences

- Graphs are comprised of:
 - A node set
 - An edge set
- If a node set doesn't change:
 - Changing only the edge set will result in a change in the graph

Graph differences

Analogy: set differences

```
set(c1, c2, c3).difference(set(c2, c3, c4)) = set(c1)
set(c2, c3, c4).difference(set(c1, c2, c3)) = set(c4)
```

- In NetworkX: .difference(G1, G2) function
 - Assumes G1 and G2 have equal node sets

Graph differences in Python

```
G1.edges()
[('cust1', 'cust2'), ('cust3', 'cust2')]
G2.edges()
[('cust1', 'cust3'), ('cust3', 'cust2')]
G2minusG1 = nx.difference(G2, G1)
G1minusG2 = nx.difference(G1, G2)
```


Let's practice!

NETWORK ANALYSIS IN PYTHON (PART 2)

NETWORK ANALYSIS IN PYTHON (PART 2)

Eric Ma

Data Carpentry instructor and author of nxviz package

- Graph summary statistics:
 - Number of nodes
 - Number of edges
 - Degree distribution
 - Centrality distributions

- For simple metrics, use edgelist data
- For graph theoretic metrics, use graph object

Cumulative distribution

Compact way of representing the distribution of values

Cumulative distribution

Compact way of representing the distribution of values

Cumulative distribution

Compact way of representing the distribution of values

Let's practice!

NETWORK ANALYSIS IN PYTHON (PART 2)

Zooming in & zooming out: Overall graph summary

NETWORK ANALYSIS IN PYTHON (PART 2)

Eric Ma

Data Carpentry instructor and author of nxviz package

Graph exploration at scales

- Exploration at global and local scales
- Global: Centrality distributions
- Local: Connectivity and structures

Zooming on nodes

- Isolate a given node or set of nodes
- Plot node statistic over time

Summarizing evolving node statistics

- Customer-product dataset
 - Investigate how purchasing patterns have changed over time
- customer1 node of interest

Summarizing evolving node statistics

```
Gs = [\ldots]
noi = 'customer1'
degs = []
for g in Gs:
               # Get the degree of the node
    degs.append(len(g.neighbors(noi)))
plt.plot(degs)
plt.show()
```

Summarizing evolving node statistics

Default dictionaries

```
from collections import defaultdict
d = defaultdict(list)
d['heathrow'].append(0.31)
d['heathrow'].append(0.84)
d
```

```
defaultdict(list, {'heathrow': [0.31, 0.84]})
```

Default dictionaries

```
d2 = dict()
d2['heathrow'].append(0.31)
```

Let's practice!

NETWORK ANALYSIS IN PYTHON (PART 2)

