	Nevral Networks
Basi	cally: build a prediction function f
as	1
	$f = f_{K}(\hat{f}_{k-1}(\hat{f}_{k-2}(\hat{f}_{k-3}(\hat{f}_{i}(x)))))$
Singl	e hidden layer (feed-forwad network)
	(X_1)
	(Xp)
, IVI P	of Output
. (aight hidden läger
	AR = 5 (WKX + bR brek
	$(\chi_1, -\cdot, \chi_p)$
	We FP

("activation fretion", non-livear

Y = UTA + C the actuation function of can be of many different forms, popular choices. (Six Mary -G(x) = -G(X) = max(o, X) (ReLU Symond Ch) 6(1) applyiz elevent-wise f(x) = UT f(WTX+b)+C Emps of weights

How to learn params? (at 0 = vec. of all params then we learn' o as ô where $\hat{\theta} = \underset{A}{\operatorname{arsmin}} \sum_{n} L(y_n, f_{\theta}(x_n))$ Problem: - super-high-dim'l opt. problem
- likely to over-fit 1) learn "slowly" via gradient descent (2) regularize Gradient discunt: (0) initial quess 60) 1) For t=1,--, $\theta^{(t)} = \theta^{(t-1)} - \propto \nabla_{\theta} \left[\nabla_{\theta} \left[\nabla_{\theta} \left(\nabla_{\theta} \right) \right] \right]$

(2) Stop who L isn't decreases w/ firther steps

Cal	culate VoL via back-propagation	
	(applying Chain rule from calc I)	
	$\frac{\partial}{\partial x}f(g(x)) = f(g(x))g'(x)$	
	car be slaw!	
Spec	ed up! Stochastic Grad. Descent.	
	$\nabla_{\theta} \sum_{n} L(y_{n}, f_{0}(x_{n})) = \sum_{n} \nabla_{\theta} L(y_{n}, f_{0}(x_{n}))$	
	don't sum are 1 all training data -	
Also regulariza!		
	1) penalize loss e.g. L + 110112	
	L+11011,	
	2) carly stopping - Stop SGD when val- perf. Stop getting Letter	

3) drop aut: randomly set some weights to zero during training