第7章存储 习 题答案

6. 某计算机中已配有 0000H~7FFFH 的 ROM 区域,现在再用 8K×4 位的 RAM 芯片形成 32K×8 位的存储区域, CPU 地址总线为 A0-A15,数据总线为 D0-D7,控制信号为 R/W#(读/写)、MREQ#(访存)。要求说明地址译码方案,并画出 ROM 芯片、RAM 芯片与 CPU 之间的连接图。假定上述其他条件不变,只是 CPU 地址线改为 24 根,地址范围 000000H~007FFFH 为 ROM 区,剩下的所有地址空间都用 8K×4 位的 RAM 芯片配置,则需要多少个这样的 RAM 芯片?参考答案:

CPU 地址线共 16 位, 故存储器地址空间为 0000H~FFFFH,其中,8000H~FFFFH 为 RAM 区,共 2^{15} =32K 个单元,其空间大小为 32KB,故需 8K×4 位的芯片数为 32KB/8K×4 位= 4×2 = 8 片。

因为 ROM 区在 $0000H\sim7FFFH$,RAM 区在 $8000H\sim FFFFH$,所以可通过最高位地址 A_{15} 来区分,当 A_{15} 为 0 时选中 ROM 芯片;为 1 时选中 RAM 芯片,此时,根据 A_{14} 和 A_{13} 进行译码,得到 4个译码信号,分别用于 4 组字扩展芯片的片选信号。(图略,可参照图 4.15)

若 CPU 地址线为 24 位,ROM 区为 000000H~007FFFH,则 ROM 区大小为 32KB,总大小为 16MB=2¹⁴KB=512×32KB,所以 RAM 区大小为 511×32KB,共需使用 RAM 芯片数为 511×32KB/8K×4位=511×4×2 个芯片。

- 17. 假设某计算机的主存地址空间大小为64MB,采用字节编址方式。其cache数据区容量为4KB,采用4路组相联映射方式、LRU替换和回写(write back)策略,块大小为64B。请问:
 - (1) 主存地址字段如何划分?要求说明每个字段的含义、位数和在主存地址中的位置。
 - (2) 该cache的总容量有多少位?
 - (3) 若cache初始为空,CPU依次从0号地址单元顺序访问到4344号单元,重复按此序列共访问16次。若cache命中时间为1个时钟周期,缺失损失为10个时钟周期,则CPU访存的平均时间为多少时钟周期?

参考答案:

- (1) cache 的划分为: $4KB = 2^{12}B = 2^4$ 组 $\times 2^2$ 行/组 $\times 2^6$ 字节/行,所以,cache 组号(组索引)占 4 位。 主存地址划分为三个字段: 高 16 位为标志字段、中间 4 位为组号、最低 6 位为块内地址。 即主存空间划分为: $64MB = 2^{26}B = 2^{16}$ 组群 $\times 2^4$ 块/组群 $\times 2^6$ 字节/块
- (2) cache 共有 64 行,每行中有 16 位标志、1 位有效位、1 位修改(dirty)位、2 位 LRU 位,以及数据 64B。故总容量为 64×(16+1+1+2+64×8)=34048 位。
- (3) 因为每块为 64B,CPU 访问的单元范围为 $0\sim4344$,共 4345 个单元,4345/64=67.89,所以 CPU 访问的是主存前 68 块(第 $0\sim67$ 块),也即 CPU 的访问过程是对前 68 块连续访问 16 次,总访存次数为 $16\times4345=69520$ 。

cache 共有 16 组,每组 4 行,采用 LRU 算法的替换情况如下图所示:

	第0行	第1行	第2行	第3行
0组	0/64/48	16/0/64	32/16	48/32
1组	1/65/49	17/1/65	33/17	49/33
2组	2/66/50	18/2/66	34/18	50/34
3组	3/67/51	19/3/67	35/19	51/35
4组	4	20	36	52
15组	15	31	47	63

根据图中所示可知,第一次循环的每一块只有第一次未命中,其余都命中;以后 15 次循环中,有 20 块的第一字未命中,其余都命中。所以命中率 p 为 $(69520-68-15\times20)/69520 = 99.47%$ 平均访存时间为: Hit Time + (1-p) × Miss Penalty

=1+10×(1-p) = 1+0.0053×10 = 1.053 个时钟周期

23. 假定一个虚拟存储系统的虚拟地址为40位,物理地址为36位,页大小为16KB,按字节编址。若页表中有有效位、存储保护位、修改位、使用位,共占4位,磁盘地址不在页表中,则该存储系统中每个进程的页表大小为多少?如果按计算出来的实际大小构建页表,则会出现什么问题?

参考答案:

因为每页大小有 16KB,所以虚拟页数为 $2^{40}B/16KB=2^{(40\cdot14)}=2^{26}$ 页。

物理页面和虚拟页面大小相等,所以物理页号的位数为 36-14=22 位。

页表项位数为:有效位+保护位+修改位+使用位+物理页号位数=4+22=26位。

为简化页表访问,每项大小取 32 位。因此,每个进程的页表大小为: 226×32b=256MB。

如果按实际计算出的页表大小构建页表,则页表过大而导致页表无法一次装入内存。

24. 假定一个计算机系统中有一个TLB和一个L1 data cache。该系统按字节编址,虚拟地址16位,物理地址12位;页大小为128B,TLB为四路组相联,共有16个页表项;L1 data cache采用直接映射方式,块大小为4B,共16行。在系统运行到某一时刻时,TLB、页表和L1 data cache中的部分内容(用十六进制表示)如下:

组号	标记	页框号	有效位									
0	03	_	0	09	0D	1	00	1	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	_	0	03	_	0
3	07	_	0	63	0D	1	0A	34	1	72	_	0

(a) TLB (四路组相联): 四组、16 个页表项

虚页号	页框号	有效位
00	08	1
01	03	1
02	14	1
03	02	1
04	_	0

行索引	标记	有效位	字节3	字节 2	字节1	字节 0
0	19	1	12	56	С9	AC
1	15	0	1	_	1	_
2	1B	1	03	45	12	CD
3	36	0	1	_	1	_
4	32	1	23	34	C2	2A

05	16	1
06	_	0
07	07	1
08	13	1
09	17	1
0A	09	1
0B	_	0
0C	19	1
0D	_	0
0E	11	1
0F	0 D	1

5	0 D	1	46	67	23	3D
6	_	0	-	1	-	_
7	16	1	12	54	65	DC
8	24	1	23	62	12	3A
9	2D	0	_	_	_	_
A	2D	1	43	62	23	С3
В	_	0	_	-	_	_
C	12	1	76	83	21	35
D	16	1	A3	F4	23	11
E	33	1	2D	4A	45	55
F	14	0	_	_	_	_

(b) 部分页表: (开始 16 项)

(c) L1 data cache: 直接映射, 共 16 行, 块大小为 4B

请回答下列问题:

- (1) 虚拟地址中哪几位表示虚拟页号? 哪几位表示页内偏移量? 虚拟页号中哪几位表示 TLB 标记? 哪几位表示 TLB 索引?
- (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
- (3) 主存(物理)地址如何划分成标记字段、行索引字段和块内地址字段?
- (4) CPU 从地址 067AH 中取出的值为多少?说明 CPU 读取地址 067AH 中内容的过程。

参考答案:

- (1) 16 位虚拟地址中低 7 位为页内偏移量,高 9 位为虚页号;虚页号中高 7 位为 TLB 标记,低 2 位为 TLB 组索引。
- (2) 12 位物理地址中低7位为页内偏移量,高5位为物理页号。
- (3) 12 位物理(主存)地址中,低2位为块内地址,中间4位为 cache 行索引,高6位为标记。
- (4) 地址 067AH=0000 0110 0111 1010B, 所以, 虚页号为 0000011 00B, 映射到 TLB 的第 00 组,将 0000011B=03H 与 TLB 第 0 组的四个标记比较,虽然和其中一个相等,但对应的有效位为 0, 其余都不等,所以 TLB 缺失,需要访问主存中的慢表。直接查看 0000011 00B =00CH 处的页表项,有效位为 1,取出物理页号 19H=11001B,和页内偏移 111 1010B 拼接成物理地址: 11001 111 1010B。根据中间 4 位 1110 直接找到 cache 第 14 行(即:第 E 行),有效位为 1,且标记为 33H=110011B,正好等于物理地址高 6 位,故命中。根据物理地址最低两位 10,取出字节 2 中的内容 4AH=01001010B。