Dissolution et chute d'une particule d'alumine dans un bain électrolytique

J. Rappaz, janvier 2018

1. DISSOLUTION(sans chute)

ullet Si r_0 est le rayon d'une particule d'alumine sphérique et si K est son taux de dissolution dans le bain électrolytique, alors son rayon satisfera par hypothèse l'équation d'évolution suivante:

$$\frac{d}{dt}r(t) = -Kr^{-1}(t), (1)$$

$$r(0) = r_0, (2)$$

$$r(0) = r_0, (2)$$

• L'unique solution des équations (1) et (2) est donnée par

$$r(t) = (r_0^2 - 2Kt)^{1/2}. (3)$$

REMARQUE 1: Lorsque

$$T = \frac{r_0^2}{2K},\tag{4}$$

on a r(T) = 0. Donc la particule est complètement dissoute au temps T.

• Si $K \to 0$, alors $T \to \infty$ et si K = 0, alors $r(t) = r_0$.

• Si c est la concentration d'alumine dissoute, c_{sat} sa concentration de saturation, Θ la température du bain, Θ_{liq} et Θ_{crit} sa température de liquidus et critique respectivement, Thomas utilise la formule

$$K = \frac{1}{2}10^{-9} \cdot \frac{c_{sat} - c}{c_{sat}} \cdot (1 - \exp(-\frac{\Theta - \Theta_{liq}}{\Theta_{crit} - \Theta_{liq}})),$$
si $c < c_{sat}$ et $\Theta > \Theta_{liq} \cdot ([K] = m^2 s^{-1})$ (5)

• Si
$$c\approx 0$$
 et $\Theta-\Theta_{liq}>>\Theta_{liq}-\Theta_{crit},$ alors $K=\frac{1}{2}10^{-9}m^2s^{-1}$ et $T=r_0^2.10^9s.$

• De plus, si $r_0 = 2.10^{-4} m$, alors T = 40s.

2. CHUTE (sans dissolution)

• Si, pour t > 0, x(t) est la trajectoire verticale d'une particule de rayon r_0 dans le bain électrolytique, alors l'équation du mouvement est donnée par

$$\varrho_{al}V_0x''(t)) = g(\varrho_{al} - \varrho_e)V_0 - 6\pi\mu r_0x'(t), \tag{6}$$

• $V_0 = \frac{4}{3}\pi r_0^3$ est le volume de la particule de densité ϱ_{al} , et de vitesse $x'(t) = \frac{d}{dt}x(t)$,

• $\varrho_e=$ densité du bain électrolytique de viscosité $\mu.$

• Solution avec conditions initiales x(0) = 0 et x'(0) = 0

$$x(t) = A(1 - \exp(-Bt)) + Ct,$$
 (7)

$$A = \frac{4\varrho_{al}g(\varrho_{al} - \varrho_{e})}{81} \frac{r_{0}^{4}}{\mu^{2}}, \ B = \frac{9}{2\varrho_{al}} \frac{\mu}{r_{0}^{2}}, \ C = \frac{2g(\varrho_{al} - \varrho_{e})}{9} \frac{r_{0}^{2}}{\mu}.$$
 (8)

- Si $\varrho_{al}=$ 3960 $kg.m^{-3}$, $\varrho_{e}=$ 2130 $kg.m^{-3}$, $r_{0}=2.10^{-4}m$, $\mu=1$, on obtient A= 5.6 $10^{-9}m$, B= 2.8 $10^{4}s^{-1}$, C= 1.6 $10^{-4}m.s^{-1}$.
- La vitesse stationnaire est donnée par $C=1.6~10^{-4}m.s^{-1}$ avec un $R_e=\frac{\varrho_e 2r_0C}{\mu}=1.4~10^{-4}$.

3. DISSOLUTION ET CHUTE

• Pour $t \in [0,T]$, avec $T = \frac{r_0^2}{2K}$, x(t) est la trajectoire verticale d'une particule de rayon r_0 qui se dissout dans le bain électrolytique. L'équation du mouvement est donnée par

$$\frac{d}{dt}(\varrho_{al}V(t)x'(t)) = g(\varrho_{al} - \varrho_e)V(t) - 6\pi\mu(r_0^2 - 2Kt)^{1/2}x'(t).$$
 (9)

- $V(t) = \frac{4}{3}\pi(r_0^2 2Kt)^{3/2}$ est le volume de la particule de densité ϱ_{al} , et de vitesse $x'(t) = \frac{d}{dt}x(t)$,
- $\varrho_e =$ densité du bain électrolytique de viscosité μ .

Avec les conditions initiales

$$x(0) = 0 \text{ et } x'(0) = 0,$$
 (10)

on montre que

$$x(T) = \frac{g(\varrho_{al} - \varrho_e)}{K(18\mu - 4\varrho_{al}K)} r_0^4. \tag{11}$$

• $4\varrho_{al}K<10^{~-5}kg.m^{-1}s^{-1}$ et $18\mu>10^{-2}kg.m^{-1}s^{-1}.$ On obtient la formule

$$x(T) = \frac{g(\varrho_{al} - \varrho_e)}{18.K} \cdot \frac{r_0^4}{\mu}$$
 (12)

REMARQUE 2: Supposons $r_0 = 2.10^{-4} m$, $\mu = 1$

- Lorsque $c\approx 0$ et $\Theta-\Theta_{liq}>>\Theta_{liq}-\Theta_{crit}$, on a $K=0.5\ 10^{-9}m^2s^{-1}$, $T=40\ s$, et $x(T)\approx 3.10^{-3}m$.
- Lorsque $c = \frac{c_{sat}}{2}$, alors $K = 0.25 \ 10^{-9} m^2 s^{-1}$, $T = 80 \ s$, et $x(T) \approx 6.10^{-3} m$.

REMARQUE 3: Si, au lieu de $r_0 = 2.10^{-4}m$ on a un agrégat de dimension $r_0 = 2 \ mm$, alors $T = 4000 \ s$ et $x(T) \approx 30 \ m$???