

🛘 🕻 (+1) 858-952-2680 | 🗖 rvasan@eng.ucsd.edu | 🎁 ritvikvasan.github.io | 🗖 ritvikvasan | 🗖 ritvikvasan | 💆 @ritvikvasan

Summary _____

I am a 5th year PhD candidate working on computational mechanobiology. I have expertise in applying theoretical and statistical algorithms to biophysical problems.

Education

University of California, San Diego

9500 Gilman Drive, San Diego, CA

PhD in Mechanical Engineering (3.97/4.00)

2016 - 2020

M.S. IN MECHANICAL ENGINEERING (3.97/4.00)

2015 - 2016

B.S. IN MECHANICAL ENGINEERING (8.76/10.00)

Pilani, Rajasthan, India 2011 - 2015

Experience_

Laboratory for computational and cellular mechanobiology

University of California, San Diego

PHD CANDIDATE

BITS Pilani

Dec 2015 - Present

- Developed theoretical frameworks adopting differential geometry techniques used in computer graphics to estimate forces from cell membrane shapes at the nanometer length scale. (github.com/ritvikvasan/EMM)
- Designed a pipeline that models the spatio-temporal distribution of actin filaments during mammalian clathrin-mediated endocytosis. (github.com/DrubinBarnes/AkamatsuCMEmanuscript)
- Validated a 3D membrane mechanics Iso-Geometric Analysis (IGA) framework using axisymmetric modeling to investigate constriction and scission of tubular membrane necks. (github.com/ritvikvasan/Membrane-neck-formation)
- Led collaborative teams of scientists across multiple universities.
- $\bullet \ \ \text{Mentored multiple high school, undergraduate and masters students on various projects.}$

Allen Institute for Cell Science Seattle, WA

SUMMER TRAINEE June - Sept 2018 and 2019

- Implemented a conditional variational autoencoder (cVAE) on Gaussian distributions using PyTorch to study encoding distributions from an information theoretic framework, with a goal to build a fully factorizable probabilistic model of structures inside a cell (github.com/AllenCellModeling/CVAE_testbed).
- Created an open source force-inference Python package named DLITE to estimate cell-cell forces from max projects of z-stacks in segmented images (github.com/AllenCellModeling/DLITE). Press release avaialable at phys.org/news/2019-11-cell-cell-snapshots-time-lapse-videos-cells.html

Applied physics and instrumentation lab

Indian Institute of Science

July 2014 - Aug 2015

of the Cell

RESEARCH ASSISTANT

Designed a proof of concept of an affordable and portable cell-phone microscope for malaria diagnosis.

• Selected as one of the top innovation projects in India for the Gandhian award by SRISTI.

Vasan*, Alimohamadi, Hassinger, Stachowiak, Rangamani

• Publicized work through national newspapers and networks.

Selected Publications

	Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations	In review
2019	Vasan*, Rowan, Lee, Johnson,Rangamani, Holst	IIITeview
2019	Branched actin filament self-organization and force generation during Clathrin-mediated endocytosis	In review
2019	Akamatsu, Vasan*, Serwas, Ferrin, Rangamani, Drubin	
2019	DLITE uses cell-cell interface movement to better infer cell-cell forces	Biophysical Journal
	Vasan*, Maleckar, Williams, Rangamani	
	The role of traction in membrane curvature generation	Molecular Biology

Conferences and Awards			
2019	Chair Cell mechanics, mechanosensing and motility	Biophysical Society	
2019	Talk Biophysical Society meeting		
2018	Poster American Society for Cell Biology meeting		
2017	Outstanding graduate student Mechanical and Aerospace Engineering	UCSD	
2016	Frontiers of Innovation and Scholars Program (FISP)	UCSD	

Skills_

2018

Programming

Programming Python, JAVA, LaTeX, PyTorch, Tensorflow, MATLAB, Jython, OpenCV, Git,

Software and hardware packages COMSOL, Solidworks, Inventor, Cadence, LabView, AutoCAD, Raspberry Pi, Arduino, Beaglebone black

November 13, 2019 Ritvik Vasan · Résumé