A. ACTIVATION ENERGY

- Enzymes lower the activation energy for a reaction.
- This means it takes less energy to break the bonds within a substrate.
- This means that the **reaction** will happen **faster**.

B. THE INDUCED FIT MODEL

Advantages of the induced model over the lock and key model

It explains how:

- enzymes may exhibit broad specificity
 - e.g. lipase can bind to a variety of lipids)
- catalysis may occur
 - the **active site shape change stresses bonds** in the **substrate**, increasing the rate of reaction

C. ENZYME INHIBITORS

- These are molecules that reduce the activity of enzymes or even prevent it completely.
- There are competitive inhibitors and non-competitive inhibitors.

Competitive inhibitors

Non-competitive inhibitors

shape.

Effect of increasing the substrate concentration on the degree of inhibition

• This is with a **fixed amount** of **enzyme** and **inhibitor** present.

Competitive Inhibitor

- Increasing the substrate concentration decreases the inhibition.
- (As) substrate **outcompetes** inhibitor
- (For) active site
- More active sites contain the substrate
- (So) more product formed

Non-competitive Inhibitor

- Increasing the substrate concentration has no effect on the inhibition.
- (As) inhibitor binds to allosteric site / does not bind to active site
- (So) active site changes shape
- (So) substrate **cannot fit** active site
- even at high concentrations of substrate

Comparing competitive and non-competitive inhibitors

	Competitive inhibitor	Non-competitive inhibitor
Structure	Similar to	Different to
or shape	the substrate	the substrate
Binds	Active	Allosteric
to	site	site
Active site	No	Yes
changes shape		
Effect of increasing	Less	No effect
the substrate	inhibition	on inhibition
concentration		
Example of	AZT	Cyanide
inhibitor		
Prevents the substrate		
from binding to the	Yes	
active site		

AZT: An example of a competitive inhibitor

- AZT is a competitive inhibitor of reverse transcriptase (an enzyme in HIV)
- AZT is a **similar shape** to the normal nucleotide that contains thymine
- But is a chain terminator.
- AZT binds to the active site of reverse transcriptase.
- This prevents HIV from converting RNA → DNA
- · Reverse transcriptase has a much higher affinity for AZT than that of DNA polymerase
- So synthesis of HIV DNA is prevented more than that of human DNA

Cyanide: An example of a non-competitive inhibitor

- The electron transport chain stops.
- Aerobic respiration stops.
- ATP production stops.
- Death happens very quickly.

D. END-PRODUCT INHIBITION

- The final product of a pathway acts as a non-competitive inhibitor to inhibit its own production.
- The final product binds to an allosteric site on the first enzyme of the pathway.
- This changes the shape of the active site and prevents a build up of excess intermediates
 or product.

Example: Threonine dehydratase and isoleucine

How isoleucine inhibits its own production

- As isoleucine level rises, it binds to an allosteric site on enzyme 1.
- It acts as a non-competitive inhibitor, changing the active site shape.
- (So) intermediates not made.
- (So) isoleucine level falls.
- It stops its own production.
- This is negative feedback.
- This ensures that isoleucine production does not use up all available stocks of threonine.

How isoleucine production starts again

- When isoleucine level falls, less enzyme 1s are inhibited so its level rises again.
- Also, binding of isoleucine is reversible.
- If isoleucine detaches, the active site returns to its original shape.
- (So) substrate can now bind to active site.
- (So) intermediates and isoleucine can be made again.

APPLICATION

Ethylene glycol is a substance found in antifreeze. Drinking antifreeze can kill a person.

The liver contains an enzyme that breaks down ethylene glycol. However, the products of this reaction are even more toxic than the ethylene glycol.

Ethylene glycol poisoning is treated by making a person drink ethanol (alcohol).

The diagram below shows the structures of ethylene glycol and ethanol.

Ethylene glycol

Ethanol (alcohol)

Explain why drinking ethanol prevents a person dying from ethylene glycol poisoning. [4]

Any **four** from:

- Ethylene glycol and ethanol have similar structures/shapes
- Ethanol is a competitive inhibitor
- (So) binds to active site
- (So) substrate/ethylene glycol cannot bind to active site
- (So) toxic/poisonous products not produced / less toxic/poisonous products produced