מטלת מנחה (ממיין) 11

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 2,1

מספר השאלות: 4 נקודות

29.3.2009 מועד הגשה: 2009 מועד הגשה:

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1

: הקבוצות הבאות: A יהיו

$$B = \left\{ \frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots \right\} = \left\{ \frac{2}{n} \mid n \in \mathbb{N} \right\}, A = \{2, 4, 6, \dots\} = \{2n \mid n \in \mathbb{N}\}$$

הוכח או הפרך כל אחת מן הטענות הבאות:

- B -ו A ו- A ו- A וים איימת התאמה חד-חד-ערכית בין
- ב. כל התאמה בין A ו- B היא חד-חד-ערכית.
- $2 \in B$ ל- $2 \in A$ המתאימה את B ו- A המתאימה חד-חד-ערכית בין ג.
 - B האם B היא אינסופית! נמק!

שאלה 2

C -ו B ,A ו- באיור שלפניך דיאגרמת ון המתארת את היחסים בין שלוש קבוצות כלשהן המתארת שחלקיות לקבוצה .E

קווקו את השטח המתאר את הקבוצות הבאות:

(תאר כל קבוצה בדיאגרמה נפרדת)

- $A \setminus (B \setminus C)$.
- $(A \setminus B) \setminus C$.
- $(A \setminus B) \cup (B \setminus A)$.
- $A^{C}(E) \cap (B \setminus C)$.7

יהיו A ו- B קבוצות.

הוכח או הפרך כל אחת מהטענות הבאות:

- $A = \varnothing$ או $A \cup B = A \setminus B$ או $A \cup B = A \setminus B$.א
- $A \cup B = \emptyset$ אז $A \setminus B$ ב. אם $A \cup B$ שקולה ל-
- $A \cup B = \emptyset$ אז $A \setminus B$ שקולה ל- $A \cup B$ אז סופית ו- $A \cup B$ אז $A \cup B$ ג.

שאלה 4

:הטענות את הפרך או הוכח הוכח . $B=A\setminus\{\,1\,\}$ יהיו נתון ש-A,Bיהיו

- א. אם A שקולה ל- B , אז A היא אינסופית.
- ב. אם $A \neq B$ ואם A שקולה ל- B , אז $A \neq B$ היא אינסופית.
 - ג. אם $\{2\}$ שקולה ל- B אז A היא אינסופית.

מטלת מחשב (ממ״ח) 01

הקורס: אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 2,1

מספר השאלות: 22 נקודות

סמסטר: 2009 מועד הגשה: 5.4.2009

מומלץ לשלוח את התשובות לממייח באמצעות מערכת שאילתא

www.openu.ac.il/sheilta בכתובת

בכל אחת מן השאלות הבאות סמן:

א - אם רק טענה 1 נכונה ב - אם רק טענה 2 נכונה

ג - אם שתי הטענות נכונות ד - אם שתי הטענות לא נכונות

שאלה 1

$$\{1,2\} \in \{1,2,\{3\}\}$$
 .1

$$.\{1,2\} \subseteq \{1,2,\{1\}\}$$
 .2

שאלה 2

$$\{1\} \in \{1,2,\{1\}\}$$
 .1

$$.\{1\} \subseteq \{1,2,\{1\}\}$$
 .2

$$.\emptyset\subseteq\{1,2\}$$
 .1

$$.\{1,\varnothing\}\subseteq\{1,2\}$$
 .2

- $.\emptyset\subseteq\emptyset$.1
- $.\emptyset = \{\emptyset\}$.2

שאלה 5

- $A \subset B$ אז $x \notin A$ כך ש- $x \in B$ אז .1
 - $A \subseteq B$ אא $A \subset B$ אם .2

שאלה 6

- $A \in B$ אם $A \subseteq B$ אם .1
- $x \in B$ אם $x \in A$ אם $A \in B$.2

שאלה 7

- $x \in B$ אז $x \notin A$ ואם $x \in A \cup B$ אז .1
- $x \notin B$ in $x \notin A$ in $x \notin A \cap B$.2

שאלה 8

- $. x \notin A$ in $x \notin A \setminus B$ d. .1
- $x \in A \cap B$ אז $x \in A \cap B$ אם .2

9 שאלה

- $x \notin B$ אז $x \notin A$ אז $x \notin A \cup B$ אם.1
 - $A \cap B = \emptyset$ אז $B \not\subset A$ רו $A \not\subset B$ אם .2

שאלה 10

- $A \cup B = B$ אא $A \cap B = A$ אם .1
 - $B = \emptyset$ אמ $A \setminus B = A$ אם .2

שאלה 11

השטח המקווקו מתאר את הקבוצה:

- $. [(B \setminus (C \setminus A)) \cap (B \setminus (A \setminus C))] \cup [(A \cap C) \setminus B] \quad .1$
 - $(A \cap C) \cup [(B \setminus C) \cap A^C(E)]$.2

- $. \{1,2,3\} \subseteq \{N\}$.1
 - $\{1\} \in \{N\}$.2

שאלה 13

- . אם B,A קבוצות שקולות אז כל התאמה ביניהן היא חד-חד-ערכית.
- ערכית. אם B,A לא שקולות אז כל התאמה ביניהן היא לא חד-חד-ערכית.

שאלה 14

- A = B אז A = B או $A \subseteq B$ או $A \subseteq B$ אם .1
 - B- אז A לא שקולה ל- $A \neq B$.2

שאלה 15

- A ששקולה ל- A ששקולה ל- A
- $\{A, \{A\}\}$ ששקולה ל- $\{A, \{A\}\}$.2

שאלה 16

- A שקולה ל- A אז א שקולה ל- B חלקית אינסופית אינסופית אם A
 - A לא שקולה ל- A אז A לא שקולה ל- B .2

שאלה 17

- $A \cap B$ אינסופית. $A \cap B$ אז $A \cap B$ אינסופית.
 - . אינסופית A אינסופית A אינסופית A אינסופית A אינסופית

שאלה 18

- 1. כל שתי קבוצות אינסופיות הן שקולות.
- 2. כל שתי קבוצות סופיות ושונות הן לא שקולות.

- $x \in P(A)$ in $x \in A$ in .1
- $\{X\}\subseteq P(A)$ אא $X\subseteq A$ אם .2

- $A \neq \emptyset$ או $P(A) \neq \emptyset$ אם .1
- $A \neq \emptyset$ אז $P(A) \neq \{\emptyset\}$ ב.

שאלה 21

- P(A) קיימת קבוצה A ששקולה ל- 1.
- \mathbf{N} לא שקולה ל- P(A) אם A קבוצת כל המספרים הטבעיים הזוגיים אז לא

- תיבים חיר-זוגיים הטבעיים הטבעיים חיר-זוגיים חיר-גונ אור-זוגיים חיר-גונ כדי להגדיר התאמה אור ערכית בין אור אור להתאים לכל מספר ח2n-1 את המספר המספר אור אור-גונ להתאים לכל מספר המספר אור-גונ המספר המספר אור-גונ אור-גונ המספר ה
 - . $P(\mathbf{N})$ שקולה ל $\mathbf{N} \cup \{\{n\} \mid n \in \mathbf{N}\}$.2

מטלת מנחה (ממיין) 12

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 4,2

מספר השאלות: 3 נקודות

סמסטר: 2009ב מועד הגשה: 12.4.2009

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה
 הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (30 נקודות)

 $B = \{1,2\}$, $A = \{1,\{2\},\emptyset\}$ יהיו

. א. רשום את P(A) ואת P(A) בעזרת צומדיים.

 $P(B) \setminus P(A)$ ואת $P(A) \setminus P(B)$ ב.

ג. רשום את $P(\varnothing)$ ואת $P(P(\varnothing))$ האם קבוצות אלה שקולות! נמק!

שאלה 2 (40 נקובות)

: מתקיים C ו- B ,A מתקיים

$$(A \cup B) \cap (C \setminus A) = (B \setminus A) \cap C$$
 .

$$A \setminus C \cap B = \emptyset$$
 אז , $A \cup B \setminus C \subseteq A \setminus B$ ב.

$$A = B \cap C$$
 אא , $P(A) = P(B) \cap P(C)$ אם . λ

$$P(A \setminus B) \neq P(A) \setminus P(B)$$
 .7

שאלה 3 (30 נקובות)

 \pm א. תהי A קבוצה שבה לפחות שני איברים ועליה מוגדרת פעולה בינרית

a*b=b , $a,b\in A$ לכל

A -ב קיים א מקיימת מקיימת הסגירות, הקיבוציות, החילופיות, ואם היים ב- א איבר ביחס לפעולה זו. נמק תשובותיך.

P(A) ב. תהי A קבוצה לא ריקה. על הקבוצה P(A) מגדירים פעולה בינרית

$$X*Y=X\cup Y$$
 , $X,Y\in P(A)$ לכל

בדוק אם הפעולה * מקיימת את תכונות הסגירות, הקיבוציות והחילופיות, אם קיים ב-בדוק אם הפעולה * מקיימת את לכל איבר ב-P(A) יש נגדי ביחס לפעולה זו. נמק תשובותיך.

מטלת מחשב (ממ״ח) 20

הקורס: אשנב למתמטיקה

חומר הלימוד למטלה: יחידה 4

מספר השאלות: 24 נקודות

סמסטר: 2009 מועד הגשה: 19.4.2009

מומלץ לשלוח את התשובות לממייח באמצעות מערכת שאילתא

www.openu.ac.il/sheilta בכתובת

בכל אחת מן השאלות הבאות סמן:

א - אם רק טענה 1 נכונה ב - אם רק טענה 2 נכונה

ג - אם שתי הטענות נכונות ד - אם שתי הטענות לא נכונות.

שאלה 1

- m-n של מספרים טבעיים את החפרש .1 הפעולה המתאימה לכל זוג סדור (m,n) של מספרים טבעיים את החפרש .1
- 2. הפעולה המתאימה לכל זוג סדור של מספרים טבעיים כל מספר שקטן מסכומם היא פעולה בינרית על N

שאלה 2

(m+n)(m+n-1)/2 את של מספרים של (m,n) איז סדור אוג המתאימה לכל אוג המתאימה של מספרים אל מספרים היא

- חסגירות את שמקיימת אל N שמקיימת אל פעולה בינרית על 1.
 - 2. פעולה חילופית

- 1. הפעולה שמתאימה לכל זוג סדור של מספרים שלמים את המספר 1/2 היא פעולה בינרית על בינרית על ${\bf Z}$
- 2. הפעולה שמתאימה לכל זוג סדור של מספרים רציונליים את המספר 1/2 היא פעולה בינרית על \mathbf{Q} שמקיימת את תכונת הקיבוציות

 $\cdot *$ שעליה מוגדרת פעולה בינרית A שעליה בינרית אלות 5,4 בשאלות

שאלה 4

- היברים איברים * אם הילופית אז ב- A יש לפחות שני איברים .1
- A -יש אינה חילופית אז ב- A יש לפחות שני איברים .2

שאלה 5

- היברים * קיבוצית אז ב- A יש לפחות שלושה איברים 1.
- * -ט יש נגדי ביחס ל- אז ל- e יש נגדי ביחס ל- A אם ב- A קיים איבר נטרלי

שאלה 6

- הרגיל החיבור הרגיל $A = \{0\}$ היא חבורה ביחס לפעולת החיבור הרגיל
- הרגיל החיבור הרגיל $A = \{0,1,-1\}$ היא חבורה ביחס לפעולת החיבור הרגיל

שאלה 7

- 1. הקבוצה {0,1} היא חבורה ביחס לפעולת הכפל הרגיל
- 2. הקבוצה {1} היא חבורה ביחס לפעולת החילוק הרגיל

*	a	b	С
а	b	а	b
b	а	b	С
C	h	C	а

 $A = \{a, b, c\}$ בשאלות 11-8 נתייחס לקבוצה 11-8 ולפעולה * שמוגדרת על-ידי הטבלה הבאה ולפעולה

שאלה 8

- 1. הפעולה * מקיימת את תכונת הסגירות
- 2. הפעולה * מקיימת את תכונת הקיבוציות

9 שאלה

- 1. הפעולה * היא חילופית
- * -איבר נטרלי ביחס ל- A

- * לכל איבר של A יש נגדי ביחס לפעולה 1
- 2. הפעולה * מקיימת את תכונות הצמצום

- * נגדי ל-a ביחס לפעולה a .1
- * נגדי ל- a ביחס לפעולה c .2

שאלה 12

x*y = x + y + x , $x, y \in \mathbb{N}_0$ לכל : באופן הבא א על א על א נגדיר פעולה בינרית

- * איבר נטרלי ביחס לפעולה 0 איבר
- 2. פעולה קיבוצית, כי הוגדרה בעזרת החיבור הרגיל בלבד

בשאלות A 15-13 היא קבוצה לא ריקה

שאלה 13

- סגורה ביחס לפעולת ההפרש בין קבוצות P(A) .1
- איבר נטרלי ביחס לפעולת ההפרש P(A) -2.

שאלה 14

- איבר נטרלי ביחס לפעולת החיתוך בין קבוצות P(A) -1
 - יש איבר נגדי ביחס לפעולת החיתוך P(A) -2.

שאלה 15

- האיחוד פיים ב-P(A) איבר נטרלי ביחס לפעולת האיחוד .1
- ביחס לפעולת האיחוד P(A) ביחס לפעולת האיחוד .2

שאלה 16

- 12 הקבוצה {4,8} היא חבורה ביחס לפעולת הכפל מודולו
- 12 היא חבורה ביחס לפעולת החיבור מודולו 2.

בשאלות a,b,c ו- היא חבורה ביחס לפעולה e , * הוא העיבר הנטרלי היא G 20-17 בשאלות איברים של G (שימו לב, ייתכן שיש גם איברים אחרים ב- G).

- a -נגדי ל- b אז b נגדי ל- a גדי ל- 1.
- חילופית G אז b*a=a*b .2

$$a*(b*c) = (a*c)*b$$
 .1

$$b*(a*c) = (b*a)*c$$
 .2

שאלה 19

$$a*x=b$$
 כך ש- $x\in G$.1

$$y*a=b$$
 כך ש- $y\in G$ כיים.2

שאלה 20

$$a*b^{-1}$$
 נגדי ל- $b*a^{-1}$.1

$$(a*b*c)^{-1} = c^{-1}*b^{-1}*a^{-1}$$
 .2

שאלה 21

- 1. כל חבורה בעלת שלושה איברים היא חילופית
- 2. קיימת חבורה בעלת שלושה איברים ובה איבר שנגדי לעצמו ולא נטרלי

שאלה 22

תהי A קבוצה בת ארבעה איברים

- A שמקיימת את כל התכונות שבהגדרת החבורה, למעט קיבוציות.
- במצום הינרית על A שמקיימת את תכונות הסגירות, קיום איבר נטרלי וחוק הצמצום .2 השמאלי אך אינה מקיימת את חוק הצמצום הימני

שאלה 23

 $A=\{2n|n\in {f N}\}$ נגדיר פעולה בינרית Δ על $A=\{2n|n\in {f N}\}$ באופן הבא:

- מקיימת את חוקי הצמצום Δ .1
 - Δ חבורה ביחס לפעולה A .2

שאלה 24

. תהי שלות כפי שהוגדרה בספר. משולש שווה צלעות, כפי שהוגדרה בספר תהי G

- a = c אם $a \circ b = b \circ c$ אם $a, b, c \in G$ יהיו .1
- $x \circ x \circ x = I$ אז $x \circ x \neq I$ אם $x \in G$.

מטלת מנחה (ממיין) 13

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידה 4

מספר השאלות: 4 נקודות

26.4.2009 מועד הגשה: 2009ב

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1

תהי א קבוצה שעליה מוגדרת פעולה בינרית המקיימת את תכונת הסגירות ואת חוקי תהי א קבוצה שעליה מוגדרת פעולה בינרית x*e=xמתקיים בי $e\in A$ סך שלכל הצמצום. ידוע שיש איבר

- .* אינו בהכרח איבר ניטרלי ב- A ביחס לפעולה
- .* ביחס לפעולה A ביחס e ניטרלי בי e פעולה קיבוצית, או e פעולה פעולה

שאלה 2

. (ביחס שונים) c -ו b ,a ,e) * חבורה ביחס חבורה $G = \{e, a, b, c\}$

(a*a)*a=b כמו כן נתון כי G -ביטרלי האיבר הניטרלי פ

- $a*a \neq e$ וכן ש- $a*a \neq b$, $a*a \neq a$ א. הוכח כי
 - ב. חשב את a*a ואת a*a ואת בתך.
- $b*a \neq c$ וכן ש- $b*a \neq b$, $b*a \neq a$ וכן ש- ג.
- ד. הראה כי יש דרך יחידה להשלים את לוח הפעולה של G. נמק את תשובתך!

א. תהי $A=\{\,2n\mid n\in {\bf Z}\,\}$. על קבוצה או מגדירים היו מגדירים א. תהיA קבוצה או מגדירים בינרית אבוצה בינרית באופן הבא:

.
$$a * b = a + b - ab$$
 , A לכל

A ביחס לפעולה A ביחס אלו מן התכונות שבהגדרת מושג החבורה מתקיימות ב-

ב. בדוק אלו מהתכונות שבהגדרת מושג החבורה מתקיימות בקבוצה $\{1\}$ (קבוצת המספרים הרציונליים השונים מ- 1) ביחס לפעולה * המוגדרת באופן הבא:

.
$$a*b=a+b-ab$$
 , $a,b \in \mathbf{Q} \setminus \{1\}$ לכל

שאלה 4

.* חבורה ביחס לפעולה G

- a*x=b -כך ש- $x\in G$ קיים G ב- b ו- a לכל
- $.\,c=b$ אז .a*c=b*a אם .c*a*c=b*a מתקיים התנאי הבא: .c*a*c=b*a מתקיים התנאי הבא: .c*a*c=b*a הוכח כי .c*a*c=b*a הוכח כי .c*a*c=b*a הוכח כי .c*a*c=b*a הוכח כי .c*a*c=a*c*a*c

-ש $x\in G$ פיים a ב- b - ו a ב- b כך ש-) רמז: עפיי הטענה שהוכחת בסעיף א, לכל (a*b)*x=b*a

מטלת מחשב (ממ״ח) 03

הקורס: אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 6,5

מספר השאלות: 24 נקודות

סמסטר: 2009 מועד הגשה: ב2009

מומלץ לשלוח את התשובות לממייח באמצעות מערכת שאילתא

בכתובת www.openu.ac.il/sheilta

בכל אחת מן השאלות הבאות סמן:

א - אם רק טענה 1 נכונה ב - אם רק טענה 2 נכונה

ג - אם שתי הטענות נכונות ד - אם שתי הטענות לא נכונות

שאלה 1

- $\{a,b,c\}$ ל- $\{1,2\}$ מגדירה פונקציה מ- $\{1,2\}$ ל- $\{1,2\}$ השלשה ($\{1,2\},\{a,b,c\},\{(1,a),(2,b)\}$) מגדירה פונקציה מ- .1
- $\{a,b,c\}$ ל- $\{1,2\}$ מגדירה פונקציה מ- $\{1,2\}$ ל- $\{1,b\}$ ל ל- $\{1,2\}$ השלשה ($\{1,2\}$, $\{a,b,c\}$, $\{(1,b),(2,a),(1,c)\}$) מגדירה פונקציה מ- .2

שאלה 2

- $\{a,b\}$ ל- $\{1,2,\emptyset\}$ מגדירה פונקציה מ- $\{1,2,\emptyset\}$, $\{a,b\}$, $\{(1,a),(2,b)\}$ השלשה .1
- $\{a,b\}$ ל- $\{1,2,\varnothing\}$ מגדירה פונקציה מ- $\{1,2,\varnothing\}$, $\{a,b\}$, $\{(1,a),(2,a),(\varnothing,a)\}$) מגדירה פונקציה מ- .2

שאלה 3

- שוות פונקציות פונקציות שוות ($\{1,2\},\{1,2\},\{(1,1),(2,1)\}$), ($\{1,2\},\{1,2\},\{(2,1),(1,1)\}$) מגדירות פונקציות שוות
 - N ל- N מגדירות פונקציות שוות מ- $g(n) = \frac{n^2}{n-1} \frac{1}{n-1}$ ו- f(n) = n+1 הנוסחות .2

- 1. אם לשתי פונקציות יש אותו תחום, אותו טווח ואותה תמונה, אז הן שוות.
- f=g אז $f^{-1}(D)=g^{-1}(D)$ מתקיים $D\subseteq B$ אז פונקציות ואם לכל f,g:A o B אם .2

f(2)=f(3)=b , f(1)=a : שמוגדרת כך שמוגדרת $f:\{1,2,3\} \to \{a,b,c\}$ נדון בפונקציה 8-5 נדון בפונקציה לבדוק אם כל הביטויים מוגדרים היטבי!)

שאלה 5

$$f(\{1,3\}) = \{a,b\}$$
 .1

$$f(\emptyset) = \emptyset$$
 .2

שאלה 6

$$f(2,3) = b$$
 .1

$$f(\{\emptyset\}) = \{\emptyset\}$$
 .2

שאלה 7

$$f(\{1,2,3\}) = \{a,b,c\}$$
 .1

$$f^{-1}(\{a\}) = \{1\}$$
 .2

שאלה 8

$$f^{-1}(\{b,c\}) = \{2,3\}$$
 .1

$$f^{-1}(\{c\}) = f^{-1}(\emptyset)$$
 .2

9 שאלה

 $f:A \to B$ תהי פונקציה

$$f(A_{\rm l})\cap f(A_{\rm 2})=arnothing$$
 אז $A_{\rm l}\cap A_{\rm 2}=arnothing$ ואם $A_{\rm l}$, $A_{\rm 2}\subseteq A$ אם $A_{\rm l}$

$$f^{-1}(B_1)\cap f^{-1}(B_2)=arnothing$$
 אם $B_1\cap B_2=arnothing$ ואם B_1 , $B_2\subseteq B$ אם B_1

שאלה 10

 $f(x) = x^2 - 2x$ מונקציה שמוגדרת על-ידי $f: \mathbf{R} \to \mathbf{R}$

$$f^{-1}(\{-1,-2\}) = \{1\}$$
 .1

$$f^{-1}({3,-1}) = {3,1}$$
 .2

: שמוגדרות כך, $g,h: \mathbf{R} \to \mathbf{R}$, $f: \mathbf{R} \setminus \{1\} \to \mathbf{R}$ שמוגדרות כך נתונות פונקציות

$$h(x) = 2x - 1$$
, $g(x) = 2x + 1$, $f(x) = 2x/(x - 1)$

שאלה 11

- \mathbf{R} ל- $\mathbf{R}\setminus\{1\}$ ל- מוגדרת מ $f\circ g$.1
- $\mathbf{R} \cdot \mathbf{k} \setminus \{1\}$ ל- $\mathbf{R} \setminus \{1\}$ ל- $g \circ f$.2

שאלה 12

- \mathbf{R} ל- $\mathbf{R}\setminus\{1\}$ מוגדרת מ $f\circ h$.1
- $(f \circ f)(x) = 4x/(x+1)$ ל- $\mathbf{R} \setminus \{1\}$ מוגדרת מ $f \circ f$.2

שאלה 13

- היא פונקציה חד-חד-ערכית f .1
 - היא פונקציה על f .2

B היא פונקציה מקבוצה f 17-14 בשאלות f

שאלה 14

- f(x) = y -ע כך ש $y \in B$ יש $x \in A$ כל אם ורק אם ורק f .1
 - A -יש מקור ב- B יש מקור ב- f .2

שאלה 15

- f(x) = y מתקיים $x \in A$ כך שלכל $y \in B$ מתקיים ורק אם ורק אם f .1
 - $f^{-1}(\{y\}) \neq \emptyset$, $y \in B$ היא על אם ורק אם לכל f .2

שאלה 16

- f(x) = y -שיחד, כך שי יחיד, כך $y \in B$ קיים $x \in A$ לכל אם לכל היא חד-חד-ערכית היא f .1
- $x_1 = x_2$ גורר ש- $f(x_1) = f(x_2)$ היא השוויון $f(x_1) = f(x_2)$ היא חד-חד-ערכית אם לכל $f(x_1) = f(x_2)$

- היא חד-חד-ערכית אם ורק אם לכל $f^{-1}(\{y\})$, $y\in B$ איבר אם ורק אם איבר אחד f .1
 - f(x) = y -יחיד, כך ש- $x \in A$ קיים $y \in B$ היא חד-חד-ערכית אם ורק אם לכל

 $g: B \to C$, $f: A \to B$ בשאלות 21-18 נתונות פונקציות

שאלה 18

- C על A -היא פונקציה מ- $g \circ f$ או על אז f,g היא פונקציה מ- 1.
- ערכית חד-חד-ערכית $g \circ f$ היא פונקציה חד-חד-ערכית f, g בא .2

שאלה 19

- $(g \circ f)^{-1} = g^{-1} \circ f^{-1}$ -ו הפיכה $g \circ f$ הפיכות אז גם f, g הפיכה וו f, g אם .1
 - $f \circ h = h \circ f$ אם $f \circ h = h \circ f$ אם ל- פונקציה הפוכה ו- h פונקציה הפוכה ל-2

שאלה 20

- סופית B איא על אז f סופית ו- 1
- אינסופית B אינסופית ו- f היא על אז A אינסופית .2

שאלה 21

- חד-ערכית אז B סופית ו- f היא חד-חד-ערכית אז B סופית .1
- אינסופית B אינסופית ו- f היא חד-חד-ערכית אז A אינסופית .2

 $f,g:\mathbf{N} o \mathbf{N}$ בשאלות 23-22 נתונות פונקציות בשאלות 23-23 המוגדרות כך:

$$g(n)=egin{cases} rac{n}{2} & ext{Niki} & n & n \\ rac{n+1}{2} & ext{Niki} & n & n \\ \end{array}$$
רכל $n\in \mathbf{N}$

שאלה 22

- היא פונקציה על g .1
- \mathbf{N} איא פונקצית הזהות על $g \circ f$.2

שאלה 23

- ${f N}$ על הזהות פונקצית פונקצית $f\circ h:{f N}\to{f N}$ כך של היא פונקצית הזהות על .1
- ${f N}$ כך ש- $k \circ g$ -כך ש- $k:{f N} o {f N}$ כד הזהות על .2

שאלה 24

 $f:A \to A$ תהי פונקציה

- ערכית חד-חד-ערכית f היא על אז f היא בהכרח ח
- גם על בהכרח היא f היא חד-חד-ערכית אז f היא בהכרח גם על .2

מטלת מנחה (ממיין) 14

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 6,5

מספר השאלות: 4 נקודות

סמסטר: 2009ב מועד הגשה: 17.5.2009

קיימות שתי חלופות להגשת מטלות:

שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס

שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב״נוהל הגשת מטלות מנחה״

שאלה 1

 $A = \{a,b\}$, $B = \{1,2,3\}$: תהיינה B - 1 הקבוצות הבאות

- א. רשום את כל הפונקציות מ- A ל- B. ציין אלו מהן חד-חד-ערכיות, אלו על ואלו הפיכות.
- ב. רשום את כל הפונקציות מ- B ל- A. ציין אילו מהן חד-ערכיות, אילו על ואילו הפיכות.
 - ג. מצא פונקציות $B \to A$ ו- $f: A \to B$ כך ש- $g \circ f$ תהיה הפיכה.

הערה: לפניך דרך נוחה לרישום הפונקציות:

ואת $\begin{bmatrix} a & b \\ 1 & 3 \end{bmatrix}$ - את 3 ול- את 1 ול- a את 3 לדוגמה, את הפונקציה מ- A ל- A המתאימה ל- B המתאימה ל- A את A ל- A המתאימה ל- A המתאימה ל- A את A ל- A המתאימה ל- A המתאימה ל- A את A ל- A המתאימה ל- A המתאימה ל- A את A ל- A המתאימה ל- A המתאימה ל- A את A ל- A המתאימה ל- A המתאימה ל- A את A ל- A המתאימה ל- A המתאימה

שאלה 2

 $C \neq D$ -ע כך כך $C,D \subseteq A$ וקבוצות $f:A \rightarrow B$ כך ע-

- . אברכרת חד-חד-ערכית היא הוכח לי , $f(C) \neq f(D)$ א. הוכח כי אם א. הוכח לא נובע כי
 - $f(C) \neq f(D)$ ב. הוכח שאם f היא חד-חד-ערכית אז
- -ע כך $f\colon A\to B$ חד-חד-ערכית ופונקציה , $C\neq D$, $C,D\subseteq A$ הדגם קבוצות . $f(C)=f(C)\cup f(D)$

g -ות כך: א המוגדרות כך f ו- f המוגדרות כך:

$$f(n) = \begin{cases} n-1 & \text{ii.} n \text{ on } n \\ \frac{n+1}{2} & \text{ii.} n \end{cases}$$
 אם n אי-זוגי

$$g(n) = 2n - 1$$
 , $n \in \mathbb{N}$ לכל

הוכח או הפרך כל אחת מן הטענות הבאות:

- א. f היא חד-חד-ערכית
- ב. g היא חד-חד-ערכית
 - \mathbf{N} ג. f היא על
 - N ד. g היא על
- ${f N}$ היא פונקצית הזהות על $f\circ g$.
- ${f N}$ היא פונקצית הזהות על $g\circ f$.ו

- . A -ל A פונקציות מ- A ל- A האיינה A קבוצה כלשהי ותהיינה
 - g = h אז $g \circ f = h \circ f$ הוכח שאם f היא על ואם

מטלת מנחה (ממ"ן) 15

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 7,6

מספר השאלות: 4 נקודות

סמסטר: 2009ב מועד הגשה:

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1

(בחונה פונקציה \mathbf{Q}) . $f:\mathbf{Q} \to \mathbf{Q} \setminus \{-1\}$ נתונה פונקציה

.
$$g(x) = \frac{f(x)}{f(x)+1}$$
 נסמן $x \in \mathbf{Q}$

- $g: \mathbf{Q} \to \mathbf{Q} \setminus \{1\}$ א. הוכח כי הנוסחה הנייל מגדירה פונקציה
- ב. הוכח כי אם f היא חד-חד-ערכית אז גם g היא חד-חד-ערכית.
 - . הוכח כי אם f היא פונקציה על אז גם g היא פונקציה על.
- ד. הוכח כי אם g^{-1} הפיכה אז גם g הפיכה ומצא נוסחה המביעה את g^{-1} בעזרת הפונקציה f^{-1} וההפכית של f). נמק תשובתד.

שאלה 2

f תהי (המעגל את פנים את לא לא T) , O שמרכזו מעגל שעל הנקודות שעל קבוצת הנקודות T , T קבוצה של המישור במעגל T קבוצה קבועה ביחס ל- T קבוצה קוטר במעגל המישור כך ש- T

- T -ם קוטר קוטר הן f(A), f(B) הוכח שהנקודות א.
 - f נקודת שבת של O ב. הוכח ש-
- . אינה f אינה אז f שיקוף f אינה הזהות אז f(A) = A
- f -ל ביחס קבוצה הוכח שקבוצת הנקודות שבפנים המעגל היא קבוצה קבועה ביחס ל

נתונות f,g איזומטריות של המישור ו- A,B נקודות שונות במישור. ידוע כי הנקודות של התונות $f \circ g$ נקודות שבת של האיזומטריה

- א. הוכח כי $f \circ g$ אינה בהכרח איזומטרית הזהות.
- ב. הוכח כי אם f ו- g הופכות את מגמת המשולשים אז הן איזומטריות הפוכות זו לזו.
- f=g אז שבת אז נקודת שבת המשולשים אם ל- f יש נקודת שבת אז g ו- g הופכות א.

שאלה 4

 $f=S_{\ell_3}\circ S_{\ell_2}\circ S_{\ell_1}$ נסמן (ℓ_1 , ℓ_2 , ℓ_3 מאונכים באיור ישרים שלושה שרים להיו שלושה ℓ_1 , ℓ_2 , ℓ_3

- . $S_{\ell_1}\circ S_{\ell_3}=S_{\ell_3}\circ S_{\ell_1}$ -ו $S_{\ell_1}\circ S_{\ell_2}=S_{\ell_2}\circ S_{\ell_1}$ א. הוכח כי

מטלת מחשב (ממ״ח) 04

הקורס: אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 9,8,7

מספר השאלות: 24 נקודות

סמסטר: 2009 מועד הגשה: 2009

מומלץ לשלוח את התשובות לממייח באמצעות מערכת שאילתא

בכתובת www.openu.ac.il/sheilta

בכל אחת מן השאלות הבאות סמן:

א - אם רק טענה 1 נכונה ב - אם רק טענה 2 נכונה

ג - אם שתי הטענות נכונות ד - אם שתי הטענות לא נכונות

. ביחס אליהם שיקופים שיקופים א S_{ℓ_4} , S_{ℓ_3} , S_{ℓ_2} , S_{ℓ_1} -ו שרים שרים ℓ_4 , ℓ_3 , ℓ_2 , ℓ_1 5-1 בשאלות ביחס

שאלה 1

 $\ell_4=\ell_2$ -ו $\ell_1=\ell_3$ אז טריוויאלית אז מתארים אותה מתארים ארים אותה $S_{\ell_4}\circ S_{\ell_3}$ -ו $S_{\ell_2}\circ S_{\ell_1}$.1

 $\ell_2=\ell_3$ או $\ell_2\|\ell_3$ או פור איזה לא טריוויאלית אז $S_{\ell_4}\circ S_{\ell_3}$ ו- $S_{\ell_2}\circ S_{\ell_1}$ אם .2

שאלה 2

A סיבוב נקודה טריוויאלי טריב נקודה $S_{\ell_2} \circ S_{\ell_1}$ - נתון ש

 $S_{\ell_1}\circ S_{\ell_2}=S_{\ell_3}\circ S_{\ell_4}$ אז קיים ישר פר אז אז אז אז אז אז אז אז מיים ווא $A\in\ell_3$.1

 $S_{\ell_1}\circ S_{\ell_2}=S_{\ell_2'}\circ S_{\ell_1}$ -כך ש- ℓ_2' כיים .2

שאלה 3

שיקוף $S_{\ell_1}\circ S_{\ell_2}\circ S_{\ell_3}$ אז הזזה אז $S_{\ell_3}\circ S_{\ell_2}$ שיקוף .1

שיקוף $S_{\ell_1}\circ S_{\ell_2}\circ S_{\ell_3}$ אם $S_{\ell_3}\circ S_{\ell_2}$ סיבוב ואם אם כיבוב אם אם .2

שאלה 4

. בשאלה זו ℓ_3 ו- מקבילים שרים ישרים
 ℓ_1,ℓ_2 זו בשאלה בשאלה וו ℓ_1,ℓ_2

 $S_{\ell_1}\circ S_{\ell_2}\circ S_{\ell_3}=S_{\ell_1}\circ S_{\ell_2}\circ S_{\ell_3}$ -ע כך ש
 ℓ_3 ל- מקביל מקביל .1

 $S_{\ell_5}\circ S_{\ell_6}\circ S_{\ell_7}=S_{\ell_3}\circ S_{\ell_2}\circ S_{\ell_1}$ -ש כך ש- מאונך להם ℓ_7 וישר וישר ℓ_5,ℓ_6 וישר .2

- $f^{-1}=S_{\ell_1}\circ S_{\ell_2}\circ S_{\ell_3}$ אז $f=S_{\ell_3}\circ S_{\ell_2}\circ S_{\ell_1}$.1
- איזומטריה של המישור אז f^{-1} היא איזומטריה מאותו סוג .2

שאלה 6

- איקוף $f\circ f$ -שיקוף כך היימת איזומטריה ל
- סיבוב $f \circ f$ -טיבוב $f \circ f$ סיבוב .2

.(ראה ציור) C' את B ל-' B את A' את שמתאימה שמתאימה f 8-7 היא איזומטריה שמתאימה את A'

שאלה 7

- וה אור וופפים את ABC'ו וופפים אה ABC'ו וופפים אה .1
- B'ל- אות A'ל- אות את שמתאימה מ- f שונה מ- g שונה מ- g ואת .2

שאלה 8

- .1 היא שיקוף מוזז. f
 - .2 היא סיבוב.

f -ל- ביחס קבוצה קבועה $M \neq \emptyset$ היא איזומטריה וf 10-9 בשאלות

9 שאלה

- אינה הזזה f .1
- f(x) = x מתקיים $x \in M$ אז לכל f אז לכל שבת ביחס M קבוצת שבת M .2

שאלה 10

- f אם M סופית אז M היא בהכרח קבוצת שבת של .1
- (הכלה ממש) $f(M) \subset M$ אם איקוף מוזז אז יתכן $f(M) \subset M$

בשאלות 13-11 f ו- g הן איזומטריות של המישור.

שאלה 11

- $g\circ f$ אז נקודת שבת של g(x) אז $f\circ g$ שבת של .1
 - שיקוף $g \circ f$ שיקוף אז גם $f \circ g$ שיקוף .2

- שבת שבת g -יש נקודת שבת אז ל- $f \circ g$ יש נקודת שבת 1.
- סיבוב $f \circ g$ אם משותפת שבת נקודת ובעלות משולשים משולשים מגמת משולשים f,g סיבוב .2

- שבת נקודות שונות ואם f(B) = A, f(A) = B שונות ואם A,B יש נקודות שבת .1
- 2. קיימים שלושה שיקופים כך שהרכבתם היא איזומטריה בעלת נקודת שבת יחידה

שאלה 14

- 1. אם מוסיפים אקסיומה למערכת בלתי תלויה, מתקבלת מערכת תלויה או בעלת סתירה
- 2. אם משמיטים אקסיומה ממערכת אקסיומות בעלת סתירה, מתקבלת מערכת חסרת סתירה

שאלה 15

- 1. אם לאחר הוספת אקסיומה למערכת שלמה מתקבלת מערכת חסרת סתירה אז המערכת החדשה היא תלויה
 - 2. אם משמיטים אקסיומה ממערכת שלמה אז המערכת החדשה אינה שלמה

שאלה 16

- אם מוסיפים למערכת אקסיומות משפט שאינו מתקיים באחד המודלים של המערכת, אז המערכת החדשה היא בעלת סתירה
- 2. אם מוסיפים למערכת אקסיומות משפט שמתקיים בכל מודל של המערכת, אז המערכת החדשה היא תלויה

lpha השאלות 17, 18 נתונות מערכת אקסיומות A ואקסיומה

שאלה 17

A ל- α שלילת שלאחר הוספת הוספת מערכת מערכת מערכת הוספת ל- α ל- α מתקבלת מערכת חסרת סתירה.

- בעלת סתירה A .1
- אינה קטגורית A .2

שאלה 18

A ל- α ל- α מתקבלת מערכת חסרת הוספת הוספת שלילת ל- α הוספת שלילת מתקבלת מערכת בעלת סתירה.

- A נובעת ממערכת האקסיומות lpha .1
- A נובעת מאקסיומות מערכת lpha

בשאלות 21-19 נעסוק במערכת האקסיומות הבאה:

- א. יש בדיוק ארבע נקודות.
- ב. לכל שתי נקודות שונות יש ישר אחד ויחיד אשר שתיהן נמצאת עליו.
- ג. לכל ישר ℓ ולכל נקודה P שאינה על ℓ קיים ירש יחיד אשר ℓ נמצאת עליו ואין לו נקודות משותפות עם ℓ .

לפניך ההמחשות הבאות (מעגלים וקשתות מגדירים ישרים):

שאלה 19

- 1. המחשה א מראה כי המערכת חסרת סתירה
- 2. המחשה ג מראה כי המערכת חסרת סתירה

שאלה 20

- 2,1 המחשה ב מראה כי אקסיומה 3 אינה נובעת מאקסיומות 1.
- 2. המחשה ה מראה כי אקסיומה 2 אינה נובעת באקסיומות 3,1

שאלה 21

- 1. המחשות א,ד מגדירות מודלים שקולים
- 2. מן ההמחשות הנתונות אפשר להסיק שהמערכת אינה שלמה

בשאלות 23,22 נעסוק במערכת האקסיומות הבאה:

- א. יש לפחות שש נקודות.
- ב. על כל ישר נמצאות בדיוק שלוש נקודות.
- ג. לכל יש ℓ ולכל נקודה P שאינה על ℓ קיים יש יחיד אשר ℓ נמצאת עליו ואין לו נקודות ... משותפות עם ℓ

שאלה 22

- 1. המערכת היא חסרת סתירה
 - 2. המערכת היא בלתי תלויה

- 1. המערכת היא קטגורית
- 2. במערכת מתקיים המשפט הבא: "אם לכל שלוש נקודות קיים ישר אחד אשר הן נמצאות עליו, אז קיימות בדיוק שש נקודות"

מטלת מנחה (ממיין) 16

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 9,8

מספר השאלות: 4 נקודות

14.6.2009 מועד הגשה: 2009ב

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (28 נקודות)

נתונה מערכת האקסיומות הבאה, אשר מושגי היסוד שלה הם "נקודה", "ישר" (כקבוצה של נקודות) והיחס "נמצאת על".

- .1 יש בדיוק ארבעה ישרים.
 - .2 יש בדיוק שש נקודות.
- 3. על כל ישר נמצאות לפחות שתי נקודות שונות.
- 4. לכל שני ישרים שונים יש לכל היותר נקודה אחת הנמצאת על שניהם.
- P-ש כך אחד ישר לכל היותר שאינה על ℓ שאינה אחד פר .5 . . לכל אוור וולכל נקודה ℓ וולכל נקודה שאינה עם . . ℓ נמצאת עליו אין לו נקודה משותפת עם
 - א. לגבי **כל** אחת מההמחשות הבאות, קבע אם היא מגדירה מודל למערכת. אם לא ציין אקסיומה שאינה מתקיימת.

- ב. הוכח כי המערכת היא חסרת סתירה ולא קטגורית.
- ג. הוכח כי אקסיומה 4 אינה נובעת מן אקסיומות האחרות והוכח כי אקסיומה 5 אינה נובעת מן האקסיומות האחרות.
- ד. הוכח שבכל מודל של המערכת מתקיים המשפט: יילא כל הנקודות נמצאות על ישר אחדיי.

שאלה 2 (16 נקודות)

נסתכל במערכת האקסיומות הבאה:

- א. יש בדיוק שלוש נקודות.
- $A,B\in\ell_2$ וגם $A,B\in\ell_1$ ושתי נקודות שונות $A,B\in\ell_1$ ישתי ישרים שונים ℓ_1,ℓ_2 ושתי ושתי
 - ג. על כל ישר יש לפחות שתי נקודות.
- ד. לכל ישר m ונקודה P שאינה על m קיים ישר m אשר m שאינה עליו ואין לו נקודות משותפות עם m

הוכח שהמערכת הזאת היא בעלת סתירה.

שאלה 3 (28) נקודות)

בשאלה זו נתייחס למערכת הכוללת את ארבע האקסיומות של החבורה כפי שהוגדרו בעמוד 45, יחידה 4. מושג היסוד שלה הוא פעולה בינרית.

- א. הוכח כי מערכת האקסיומות היא חסרת סתירה.
- ב. הוכח כי אקסיומה 2 אינה נובעת מן האקסיומות האחרות.
- ג. הוכח כי אקסיומה 4 אינה נובעת מן האקסיומות האחרות.
- ד. נוסיף את אקסיומה 5: יש בדיוק 4 איברים. הוכח שהקבוצה $\{1,3,5,7\}$ ביחס לפעולת הכפל מודולו 8 היא מודל למערכת $\{1,2,3,4,5\}$. (אין צורך בהוכחת קיבוציות).
 - ה. הוכח שהמערכת (1,2,3,4,5) אינה קטגורית.

שאלה 4 (28 נקודות)

נתונה מערכת האקסיומות הבאה, העוסקת במושגים ״נקודה״, ״ישר״ (קבוצה של נקודות) וביחס ״נמצאת על״ בפירושו הרגיל:

- .1 יש בדיוק ארבע נקודות.
- 2. כל שתי נקודות נמצאות על ישר יחיד.
- 3. כל ישר מכיל לפחות שתי נקודות שונות.
- ונקודה P שלא נמצאת על ℓ יש ישר יחיד אשר P נמצאת עליו ואין לו . לכל ישר ℓ . נקודה משותפת עם
 - א. הוכח שמערכת האקסיומות חסרת סתירה.
 - ב. הוכח מתוך מערכת זו את המשפט: ייאין ישר ועליו בדיוק 3 נקודות שונותיי.
 - ג. הוכח שמערכת האקסיומות הנתונה אינה מערכת שלמה.
 - ד. נוסיף למערכת את האקסיומה הבאה: לכל שני ישרים יש נקודה משותפת.
 - (i) הוכח כי המערכת המורחבת חסרת סתירה.
 - (ii) הוכח כי המערכת המורחבת קטגורית.

מטלת מחשב (ממ״ח) 05

הקורס: אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 10, 12

מספר השאלות: 24 נקודות

סמסטר: 23.6.2009 מועד הגשה: 23.6.2009

אנא שים לב:

מלא את כרטיס הממ״ח בהתאם להוראות המצויות בפתח חוברת המטלות ועל גבי המעטפה המכילה את כרטיסי הממ״ח. (מילוי לא נכון עלול לשבש את חישוב הציון.)

בכל אחת מן השאלות הבאות סמן:

א - אם רק טענה 1 נכונה ב - אם רק טענה 2 נכונה

ג - אם שתי הטענות נכונות ד - אם שתי הטענות לא נכונות

בכל השאלות בממייח זה, הנקודות והישרים נמצאים באותו מישור.

בשאלות 4-1 נתייחס למודל אשר הנקודות בו הן כל הנקודות במישור פרט לנקודות השייכות לישר נתון ℓ . נסמן קבוצת הנקודות ב- ℓ . ישר במודל זה הוא חיתוך לא ריק של ישר רגיל במישור, עם הקבוצה ℓ . (שים לב כי במודל זה, ישרים שאינם מקבילים ל- ℓ מורכבים משני חלקים זרים).

שאלה 1

- 1. במודל זה מתקיימות כל אקסיומות החילה.
- 2. המודל מדגים את האי-תלות של אקסיומת המקבילים באקסיומות החילה.

שאלה 2

- 1. המודל מקיים את כל אקסיומות הסדר.
- 2. המודל מדגים את האי-תלות של אקסיומת פאש בשאר אקסיומות הסדר.

שאלה 3

1. המודל מקיים את אקסיומת החפיפה 1-III.

2. המודל מקיים את אקסיומת החפיפה 2-III.

שאלה 4

- 1. המודל מקיים את אקסיומת החפיפה 3-III.
- .4-III מקיים את אקסיומת החפיפה 2

בשאלות 7-5 נתייחס למודל שבו קבוצת הנקודות A היא: קבוצת כל הנקודות הנמצאות בין שתי קרניים שונות היוצאות מאותה נקודה, לא כולל הנקודות שעל שתי הקרניים. (ראה ציור). ישר במודל זה הוא כל חיתוך לא ריק של A עם ישר רגיל במישור (שים לב כי הישרים כאן יכולים להיות קטעים או קרניים, חסרי קצוות).

 \boldsymbol{A}

.2

שאלה 5

- 1. המודל מקיים את כל אקסיומות החילה.
- 2. המודל מדגים את האי-תלות של אקסיומת המקבילים באקסיומות החילה.

שאלה 6

- 1. המודל מקיים את כל אקסיומות הסדר.
- 2. המודל מדגים את האי-תלות של אקסיומת פאש בשאר אקסיומות הסדר.

שאלה 7

- 1. המודל מקיים את כל אקסיומות החפיפה.
- 2. המודל מדגים את האי-תלות של אקסיומת החפיפה 1-III בשאר אקסיומות החפיפה.

בשאלות 11-8 נעסוק בהמחשות הבאות:

הנקודות בכל המחשה הן הנקודות הפנימיות, ללא הנקודות שעל הקו המקיף. ישר הוא אותו חלק של ישר רגיל הנמצא בתוך קבוצת הנקודות הנתונה.

שאלה 8

- המחשה א מקיימת את כל אקסיומות החילה.
- 2. המחשה א מקיימת את אקסיומת המקבילים.

- 1. המחשה ב מקיימת את כל אקסיומות החילה.
- 2. המחשה ב מקיימת את אקסיומת הרציפות 1-IV.

- 1. המחשה א מקיימת את אקסיומת פאש.
- 2. המחשה ב מקיימת את אקסיומת פאש.

שאלה 11

- 1. המחשה א מדגימה את האי-תלות של אקסיומה 4-III בשאר אקסיומות החפיפה.
 - 2. המחשה ב מקיימת את אקסיומת החפיפה 4-III

שאלה 12

- .1 ההמחשה
- 2. ההמחשה מתארת מודל שמקיים את אקסיומות החילה ואקסיומת המקבילים.

מתארת מודל שמקיים את אקסיומות החילה ואקסיומת

. בשאלות a,b,c 13-8 הם מספרים שלמים

שאלה 13

- . $bc \mid a^2$ אז $c \mid a$ וו $b \mid a$.1
- .1 אין מחלק משותף גדול מ- a אז ל- a אז ל- b אין מחלק משותף גדול מ- a .2

שאלה 14

- a אז a מחלק a אז a ואם a אז a ואם a
- a אז a אז a אז a אם a אם a אם a אם a

שאלה 15

- $a^2|bc$ אמ a|c וa|b אמ .1
- bc|a אז c|a ווא c|a אז b|a .2

- a^2 יכול לתת שארית 3 בחלוקה ב- 4.
- .5 יכול לתת שארית 3 בחלוקה ב a^2 .2

- b=c אז c-a או החלוקה של a ב- a שווה לשארית החלוקה של a ב- a אז a .1
- b c a אז שארית החלוקה של a ב- a קטנה משארית אז שארית מארית .2

שאלה 18

- 2b בחלוקה ב- 2r נותן שארית ב- a אז מותן שארית ב- a נותן שארית ב- a נותן שארית .1
 - .5 בחלוקה ב מותן שארית 2 בחלוקה ב- 5 אז 3a נותן שארית 2 בחלוקה ב- 5.

שאלה 19

- .1. בקבוצה הנוצרת מ- {3,4} על-ידי חיבור נמצאים כל המספרים הטבעיים פרט ל- 1,2,5.
- 2. בקבוצה הנוצרת מ- {2,-5} על-ידי חיבור נמצאים כל המספרים השלמים (חיוביים או שליליים).

שאלה 20

- .1 בקבוצה הנוצרת על-ידי כפל מ- {1,2,3,5,7,11,13} נמצא כל מספר טבעי שגדול מ- 100.
 - $\{2, -\frac{1}{2}\}$ נמצא בקבוצה הנוצרת על-ידי כפל מ- 1/8 .2

שאלה 21

- $\{2,5\}$ היא קבוצת יוצרים (ביחס לחיבור) לקבוצה הנוצרת על ידי חיבור מ-
- . $\{9,1/3\}$ היא קבוצת יוצרים מינימלית (ביחס לכפל) היא קבוצת יוצרים מינימלית (ביחס לכפל) . $\{3,\frac{1}{9}\}$

שאלה 22

- 1. 1069 הוא מספר ראשוני.
- .2 הוא מספר ראשוני.

שאלה 23

- אינו ראשוני. n+4 , n+2 , או מבין המספרים או לפחות אחד מבין האוני. n>3
 - ב- 3. אם n > 1 מתחלק ב- 3.

- 21n 28 = 56m 4 כך ש- n 1 מספרים טבעיים n 1 .1
- $1.15^{2m-1} \cdot 6^n \cdot 2^k = 5^k \cdot 9^n \cdot 2^m$ כך ש- m, n, k כך טבעיים מספרים טבעיים .2

מטלת מנחה (ממ"ן) 17

הקורס: 04101 - אשנב למתמטיקה

חומר הלימוד למטלה: יחידות 12,10

מספר השאלות: 4 נקודות

סמסטר: 2009ב מועד הגשה: 30.6.2009

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה
 הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (30 נקודות)

(בשאלה זו נתייחס לאקסיומות הגיאומטריה האוקלידית. הישר והנקודות שלהלן, נמצאים באותו מישור).

א. ℓ ישר ויהיו B , A ויC - B , A ישר ויהיו על ℓ יהי ℓ ישר נתון שיש נקודה D הנמצאת על ℓ ומקיימת (ADC). כמו כן נתון שלא קיימת נקודה E הנמצאת על ℓ ומקיימת (EB). הוכח שיש נקודה על ℓ (נסמנה ב-E, שמקיימת (EBC)).

Cו- ו- מו (וכמו עבר של אינן מאאות אינן מאאות וור ו- ו- ו- ו- אינן להוכיח אינן נמצאות אינן עבר של C אינן של , ℓ אינן שאר עבר של אינן אינן נמצאות אינן עבר של אינן של , ℓ אינן של מאותו עבר של להמחשה.

. (AFC), (BEC), (ADB) : נתון משולש F ו- E , D ותהיינה ΔABC ותהיינה ΔABC ו- E , D אינן קוויות.

. ו- F נמצאות על ישר אחד. E , D ישר אחד.

כמו כן נניח שהן מקיימות (DFE). (אם הן נמצאות בסדר שונה על הישר - ההוכחה דומה). מכו כן נניח שהן מקיימות DE. לפי הנחת השלילה הישר ש- C וC נמצאות עליו חותך את הקטע DE בנקודה C. כעת עליך להשתמש באקסיומת פאש ובאחת מאקסיומות הסדר האחרות ולהגיע לסתירה.

שאלה 2 (30 נקודות)

: הוכח או הפרך את הטענות הבאות

- 36m + 14 = 51n 20 : א. קיימים מספרים טבעיים m ו- m כך ש
- ב. לכל n טבעי, המספר n(n+33)(n+46)(n+92)(n+74) מתחלק ב- 10.
 - . 27 $\in A^*$ על ידי כפל, אז $A = \{36, \frac{1}{9}, \frac{1}{4}\}$ ג. אם A^* הקבוצה הנוצרת מ
 - $a \mid c$ אז $a \mid b$ אינו מחלק את $a \mid bc$ ד. אם $a \mid bc$

שאלה **3** (20 נקודות)

 $a_{n+2} = a_{n+1} + a_n$ טבעי $a_2 = 3$, $a_1 = 2$: התבונן בסדרה הבאה המוגדרת על-ידי

- $a_{8}, \dots, a_{2}, a_{1}$ א. רשום את ערכיהם של
- ב. הוכח באינדוקציה מתימטית כי לכל n טבעי מתקיים:

$$a_{n+1}^2 - a_{n+2} \cdot a_n = (-1)^n$$

! נמק ? a_2 -ו a_1 בחרנו עבור שבחרנו בערכים תלוי בערכים המסוימים ומסוימים שבחרנו שבסעיף בי תלוי מק

שאלה 4 (20 נקודות)

- א. הוכח באינדוקציה שלכל n טבעי, המספר n^3+3n^2+2n מתחלק ב- 6.
- ב. הוכח כי לכל a טבעי , המספר $a(a^2+11)$ מתחלק ב- 6, ללא שימוש באינדוקציה.