# PLSC 504 - Fall 2018 Survival Model Extensions, II

October 10, 2018

#### **Topics**

- Duration Dependence
- Competing Risks
- Repeated Events

# **Duration Dependence**

#### Duration Dependence

#### 1. State Dependence

• E.g., Institutionalization / Degradation

Positive State Dependence  $\longrightarrow$  Negative Duration Dependence

Negative State Dependence  $\longrightarrow$  Positive Duration Dependence

#### Duration Dependence

- 2. Unobserved / Unmodeled Heterogeneity
  - $h(t|\mathbf{X}_i) \neq h(t|\mathbf{X}_i)$  for  $\mathbf{X}_i = \mathbf{X}_i$
  - Adverse selection in the sample / data
  - Result: "Spurious" duration dependence

Suppose we have an unobserved Z, with

$$h_i(t|\mathbf{X}_i, Z_i = 0) = 0.05$$

and

$$h_i(t|\mathbf{X}_i, Z_i = 1) = 0.02.$$

## Unobserved Heterogeneity Illustrated



```
> set.seed(7222009)
> W<-rnorm(500)
> X<-rnorm(500)
> 7 < -rnorm(500)
> T<-rexp(500,rate=(exp(0+0.5*W+0.5*X-0.6*Z))) # exponential hazard
> C<-rep(1,times=500)
> S<-Surv(T,C)
> summary(survreg(S~W,dist="weibull"))
Call:
survreg(formula = S ~ W, dist = "weibull")
             Value Std. Error z
(Intercept) -0.0101 0.0629 -0.16 8.73e-01
     -0.6339 0.0610 -10.40 2.47e-25
Log(scale) 0.2833 0.0333 8.52 1.62e-17
Scale= 1.33 \# implies p = 1/Scale = 0.753
Weibull distribution
Loglik(model) = -568.1 Loglik(intercept only) = -615.3
Chisq= 94.47 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```

```
> summary(survreg(S~W+X,dist="weibull"))
Call:
survreg(formula = S ~ W + X, dist = "weibull")
             Value Std. Error z
(Intercept) -0.0511 0.0591 -0.865 3.87e-01
           -0.5907 0.0581 -10.160 2.98e-24
          -0.4750 0.0556 -8.549 1.24e-17
Log(scale) 0.2202 0.0329 6.689 2.24e-11
Scale= 1.25 \# implies p = 1/Scale = 0.802
Weibull distribution
Loglik(model) = -534.5 Loglik(intercept only) = -615.3
Chisq= 161.6 on 2 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```

```
> summary(survreg(S~W+X+Z,dist="weibull"))
Call:
survreg(formula = S ~ W + X + Z, dist = "weibull")
             Value Std. Error
(Intercept) -0.0777 0.0494 -1.57 1.16e-01
           -0.5665 0.0468 -12.11 9.17e-34
           -0.5041 0.0473 -10.66 1.58e-26
Х
         0.5923 0.0446 13.29 2.73e-40
Log(scale) 0.0423 0.0345 1.22 2.21e-01
Scale= 1.04 \# implies p = 1/Scale = 0.959
Weibull distribution
Loglik(model) = -464.3 Loglik(intercept only) = -615.3
Chisq= 302.01 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```



### Duration Dependence: What To Do?

(At least) Three Options:

- 1. Model Specification
- 2. Unit-Level Effects
- 3. Model the Duration Dependence

#### Modeling Duration Dependence

Weibull with:

$$p = \exp(\mathbf{Z}_i \gamma)$$

Gives:

$$h_i(t) = \exp(\mathbf{X}_i \beta) \exp(\mathbf{Z}_i \gamma) [\exp(\mathbf{X}_i \beta) t]^{[\exp(\mathbf{Z}_i \gamma)] - 1}$$
 and (more usefully):

$$S(t) = \exp(-\exp(\mathbf{X}_i\beta)t)^{\exp(\mathbf{Z}_i\gamma)}$$

#### Example: SCOTUS Departures

- > ct.weib

#### Estimates:

|         | data mean | est     | L95%   | U95%      | exp(est) |
|---------|-----------|---------|--------|-----------|----------|
| shape   | NA        | 0.999   | 0.637  | 1.570     | NA       |
| scale   | NA        | 942.000 | 13.700 | 64800.000 | NA       |
| age     | 62.100    | -0.041  | -0.102 | 0.019     | 0.959    |
| pension | 0.199     | -1.310  | -2.360 | -0.265    | 0.269    |
| pagree  | 0.616     | -0.113  | -0.673 | 0.447     | 0.893    |
|         | L95%      | U95%    |        |           |          |
| shape   | NA        | NA      |        |           |          |
| scale   | NA        | NA      |        |           |          |
| age     | 0.903     | 1.020   |        |           |          |
| pension | 0.095     | 0.767   |        |           |          |
| pagree  | 0.510     | 1.560   |        |           |          |
|         |           |         |        |           |          |

N = 1765, Events: 51, Censored: 1714

Total time at risk: 1765 Log-likelihood = -209, df = 5

AIC = 429

#### Example: SCOTUS Departures

> ct.weib.DD

#### Estimates:

|            | data mean | est      | L95%    | U95%       |
|------------|-----------|----------|---------|------------|
| shape      | NA        | 0.3710   | 0.1260  | 1.0900     |
| scale      | NA        | 491.0000 | 16.7000 | 14500.0000 |
| age        | 62.1000   | -0.0307  | -0.0779 | 0.0164     |
| pension    | 0.1990    | -1.0900  | -1.9700 | -0.2190    |
| pagree     | 0.6160    | -0.0328  | -0.4840 | 0.4180     |
| shape(age) | 62.1000   | 0.0172   | -0.0011 | 0.0356     |
|            | exp(est)  | L95%     | U95%    |            |
| shape      | NA        | NA       | NA      |            |
| scale      | NA        | NA       | NA      |            |
| age        | 0.9700    | 0.9250   | 1.0200  |            |
| pension    | 0.3350    | 0.1400   | 0.8030  |            |
| pagree     | 0.9680    | 0.6160   | 1.5200  |            |
| shape(age) | 1.0200    | 0.9990   | 1.0400  |            |
|            |           |          |         |            |

```
N = 1765, Events: 51, Censored: 1714 Total time at risk: 1765 Log-likelihood = -208, df = 6
```

AIC = 427



# h(t)s by Age and Model



# Competing Risks

#### Competing Risks

R multiple kinds of events:

$$T_i \in T_{i1}, ..., T_{iR}$$

Observed duration:

$$T_i = \min(T_{i1}, ... T_{iR})$$

Event indicator:

$$D_i = r$$
 iff  $T_i = T_{ri}$ 

R censoring indicators:

$$C_{ir} = \begin{cases} 1 \text{ if observation } i \text{ experienced event } r \\ 0 \text{ otherwise} \end{cases}$$

#### Likelihoods

$$L_i = f_r(T_i | \mathbf{X}_{ir}, \beta_r) \prod_{r \neq D_i} S_r(T_i | \mathbf{X}_{ir}, \beta_r)$$

$$L = \prod_{i=1}^{N} \left\{ f_r(T_i | \mathbf{X}_{ir}, \beta_r) \prod_{r \neq D_i} S_r(T_i | \mathbf{X}_{ir}, \beta_r) \right\}$$

$$= \prod_{r=1}^{R} \prod_{i=1}^{N_r} \left\{ f_r(T_i | \mathbf{X}_{ir}, \beta_r) S_r(T_i | \mathbf{X}_{ir}, \beta_r) \right\}$$

$$= \prod_{r=1}^{R} \prod_{i=1}^{N} \left[ f_r(T_i | \mathbf{X}_{ir}, \beta_r) \right]^{C_{ir}} \left[ S_r(T_i | \mathbf{X}_{ri}, \beta_r) \right]^{1-C_{ir}}$$

r = 1 i = 1

#### **Practical Estimation**

- Independent risks = separate models
- Otherwise identical estimation, interpretation, etc.
- No identification problem
- Discrete-Time → MNL
- See (e.g.) Diermeier and Stevenson 1999; Zorn and Van Winkle 2000; Goemans 2008

#### Independent Risks

- Key: <u>Conditional</u> independence
- → Model specification
- Dependent risks:
  - Using frailties (Gordon 2002)
  - Discrete-time: strategic (Fukumoto 2009)
  - Discrete-time: bivariate probit (Quiros Flores 2012)
  - SUR?

### Example: SCOTUS Vacancies

- Supreme Court Vacancies, 1789-1992 (NT = 1783)
- Departures ∈ {Retirement, Mortality}
- Independent competing risks models: Cox + MNL

#### **SCOTUS** Data

#### > summary(scotus)

| •            |              |             |                |
|--------------|--------------|-------------|----------------|
| justice      | svcstart     | service     | retire         |
| Min. : 1     | Min. : 0 N   | Min. : 1    | Min. :0.00     |
| 1st Qu.: 26  | 1st Qu.: 4 1 | lst Qu.: 5  | 1st Qu.:0.00   |
| Median : 51  | Median: 9 N  | Median :10  | Median:0.00    |
| Mean : 53    | Mean :11 N   | Mean :12    | Mean :0.03     |
| 3rd Qu.: 79  | 3rd Qu.:16 3 | 3rd Qu.:17  | 3rd Qu.:0.00   |
| Max. :109    | Max. :36 N   | Max. :37    | Max. :1.00     |
| death        | chief        | south       | age            |
|              |              |             | .00 Min. :32   |
| 1st Qu.:0.00 | 1st Qu.:0.00 | 1st Qu.:0   | .00 1st Qu.:56 |
| Median :0.00 | Median:0.00  | Median :0   | .00 Median :62 |
| Mean :0.03   | Mean :0.12   | Mean :0     | .31 Mean :62   |
| 3rd Qu.:0.00 | 3rd Qu.:0.00 | 3rd Qu.:1   | .00 3rd Qu.:69 |
| Max. :1.00   | Max. :1.00   | Max. :1     | .00 Max. :91   |
| pension      | pagree       | threeca     | t              |
| Min. :0.0    | Min. :0.00   | Min. :0.0   | 00             |
| 1st Qu.:0.0  | 1st Qu.:0.00 | 1st Qu.:0.0 | 00             |
| Median :0.0  | Median :1.00 | Median :0.0 | 00             |
| Mean :0.2    | Mean :0.61   | Mean :0.0   | 08             |
| 3rd Qu.:0.0  | 3rd Qu.:1.00 | 3rd Qu.:0.0 | 00             |
| Max. :1.0    | Max. :1.00   | Max. :2.0   | 00             |

#### SCOTUS: Death and Retirement



# Independent Risks (Cox) Models

|                     | Combined | Retirement | Death  |
|---------------------|----------|------------|--------|
| Age                 | 0.06     | 0.07       | 0.04   |
|                     | (0.02)   | (0.03)     | (0.02) |
| Chief               | -0.03    | -0.23      | 0.09   |
|                     | (0.30)   | (0.44)     | (0.40) |
| South               | 0.29     | 0.06       | 0.45   |
|                     | (0.23)   | (0.34)     | (0.33) |
| Pension Eligibility | 0.59     | 2.04       | -0.48  |
|                     | (0.28)   | (0.55)     | (0.41) |
| Party Agreement     | -0.01    | 0.10       | -0.10  |
|                     | (0.21)   | (0.29)     | (0.31) |
| AIC                 | 713.26   | 356.70     | 348.83 |
| Num. events         | 99       | 52         | 47     |

# Multinomial Logit

|                     | Retirement | Death   |
|---------------------|------------|---------|
| Intercept           | -7.77      | -8.28   |
|                     | (1.45)     | (1.28)  |
| Age                 | -0.29      | 0.00    |
|                     | (0.45)     | (0.42)  |
| Chief               | 0.06       | 0.48    |
|                     | (0.34)     | (0.32)  |
| South               | 0.07       | 0.06    |
|                     | (0.03)     | (0.02)  |
| Pension Eligibility | 1.40       | -0.56   |
|                     | (0.42)     | (0.41)  |
| Party Agreement     | 0.03       | -0.26   |
|                     | (0.30)     | (0.31)  |
| log(Time)           | -0.30      | 0.51    |
|                     | (0.27)     | (0.29)  |
| AIC                 | 847.51     | 847.51  |
| BIC                 | 924.31     | 924.31  |
| Log Likelihood      | -409.75    | -409.75 |

# Multiple / Repeated Events

### Multiple / Repeated Events

Events are not "absorbing"  $\rightarrow$  capable of repetition

Raises (at least) two issues:

- Dependence across events
- Parameter variability



## Variance Correction Model Properties

| Model<br>Property                                  | Andersen-Gill<br>(AG)                     | Marginal<br>(WLW)                                       | Conditional<br>(PWP),<br>Elapsed Time                                                                            | Conditional<br>(PWP),<br>Gap Time   |
|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Risk Set for<br>Event <i>k</i><br>at Time <i>t</i> | Independent<br>Events                     | All Subjects that Haven't Experienced Event k at Time t | All Subjects that Have Experienced Event <i>k</i> - 1, and Haven't Experienced Event <i>k</i> , at Time <i>t</i> |                                     |
| Time Scale                                         | Duration Since<br>Starting<br>Observation | Duration Since<br>Starting<br>Observation               | Duration Since<br>Starting<br>Observation                                                                        | Duration Since<br>Previous<br>Event |
| Robust standard errors?                            | Yes                                       | Yes                                                     | Yes                                                                                                              |                                     |
| Stratification by Event?                           | No                                        | Yes                                                     | Y                                                                                                                | es                                  |

#### Data Organization

- dyadid year start stop altstart altstop dispute eventno 2130 1951 2130 1952 2130 1953 2130 1954 2130 1956 2130 1957 2130 1958 2130 1959 2130 1960 2130 1961 2130 1962 2130 1963 2130 1964 2130 1965

.

#### First Events

```
> OR1st<-OR[OR$eventno==1,]
> OR.1st<-Surv(OR1st$altstart,OR1st$altstop,OR1st$dispute)
> OR.Cox.1st<-coxph(OR.1st~allies+contig+capratio+growth+democracy+
                 trade+cluster(dyadid),data=OR1st,method="efron")
> OR. Cox. 1st.
Call:
coxph(formula = OR.1st ~ allies + contig + capratio + growth +
   democracy + trade + cluster(dyadid), data = OR1st, method = "efron")
          coef exp(coef) se(coef) robust se
                                             z
allies
        -0.448
                 0.6389
                         0.1585
                                  0.1640 - 2.732 0.0063000000
        1.070
                 2.9167 0.1681
                                  0.1767 6.059 0.0000000014
contig
-2.198 0.1110 1.7195 1.9005 -1.157 0.2500000000
growth
democracy -0.424   0.6547   0.1298   0.1259 -3.365   0.0007600000
trade
        -6.728
                0.0012 12.3255 13.9025 -0.484 0.6300000000
```

Likelihood ratio test=121 on 6 df, p=0 n= 17158, number of events= 205

#### Andersen-Gill

```
> OR.AGS<-Surv(OR$altstart,OR$altstop,OR$dispute)
> OR.Cox.AG<-coxph(OR.AGS~allies+contig+capratio+growth+democracy+
                  trade+cluster(dyadid),data=OR,method="efron")
> OR. Cox. AG
Call:
coxph(formula = OR.AGS ~ allies + contig + capratio + growth +
   democracy + trade + cluster(dyadid), data = OR, method = "efron")
            coef exp(coef) se(coef) robust se z
allies
         -0.414 0.66090755
                             0.1107 0.1703 -2.431 1.5e-02
        1.213 3.36515975 0.1209 0.1782 6.811 9.7e-12
contig
capratio -0.214 0.80717357 0.0514 0.0817 -2.620 8.8e-03
growth -3.227 0.03967003 1.2279 1.3169 -2.451 1.4e-02
democracy -0.439 0.64437744 0.0998 0.1231 -3.571 3.6e-04
trade
         -13.162 0.00000192 10.3266
                                    13.8188 -0.953 3.4e-01
```

Likelihood ratio test=272 on 6 df, p=0 n= 20448, number of events= 405

#### Prentice et al.: Elapsed Time

```
> OR.PWPES<-Surv(OR$altstart,OR$altstop,OR$dispute)
> OR.Cox.PWPE<-coxph(OR.PWPES~allies+contig+capratio+growth+democracy+
                 trade+strata(eventno)+cluster(dyadid),data=OR,
                 method="efron")
> OR. Cox. PWPE
Call:
coxph(formula = OR.PWPES ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dyadid), data = OR,
   method = "efron")
          coef exp(coef) se(coef) robust se
allies
        -0.240
                 0.7865
                         0.1122
                                  0.1283 -1.872 6.1e-02
                 2.3811 0.1223 0.1329 6.526 6.8e-11
contig
        0.868
growth
        -3.625 0.0266 1.2371 1.2032 -3.013 2.6e-03
democracy -0.273 0.7612 0.1036
                                  0.1074 -2.541 1.1e-02
trade
        -2.514
                 0.0810
                         9.2934
                                  9.9432 -0.253 8.0e-01
Likelihood ratio test=133 on 6 df, p=0 n= 20448, number of events= 405
```

#### Prentice et al.: Gap Time

```
> OR.PWPGS<-Surv(OR$start,OR$stop,OR$dispute)
> OR.Cox.PWPG<-coxph(OR.PWPGS~allies+contig+capratio+growth+democracy+
                   trade+strata(eventno)+cluster(dyadid),data=OR,
                   method="efron")
> OR. Cox. PWPG
Call:
coxph(formula = OR.PWPGS ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dyadid), data = OR,
   method = "efron")
          coef exp(coef) se(coef) robust se z
allies
        -0.329
                 0.7193
                         0.1119
                                 0.1229 -2.68 7.3e-03
contig
        0.885 2.4232 0.1222 0.1285 6.89 5.6e-12
growth
        -3.459 0.0315 1.2189 1.2102 -2.86 4.3e-03
democracy -0.284 0.7530 0.1028 0.1016 -2.79 5.2e-03
trade
        -4.287
               0.0137 9.9352 10.4592 -0.41 6.8e-01
```

Likelihood ratio test=139 on 6 df, p=0 n= 20448, number of events= 405

#### WLW: Data Organization

```
> OR.expand<-OR[rep(1:nrow(OR),each=max(OR$eventno)),]
> OR.expand<-ddply(OR.expand,c("dyadid", "year"), mutate,
                 eventrisk=cumsum(one))
> OR.expand$dispute<-ifelse(OR.expand$eventno==OR.expand$eventrisk
                          & OR.expand$dispute==1,1,0)
> dim(OR.expand)
[1] 163584
               17
> head(OR.expand.9)
  dvadid year start stop futime dispute allies contig trade growth
    2020 1951
                             35
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                             35
                                                     1 0.014 0.0085
   2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1952
                                                     1 0 015 0 0259
  democracy capratio
                     one eventno altstart altstop eventrisk
                0.20
1
                0.20
                                         0
                0.20
                0.20
                0.20
                                         0
                0.20
                                         0
                0.20
                                         0
                0.20
                0.19
```

#### WLW Model

```
democracy+trade+strata(eventno)+
                 cluster(dyadid),data=OR.expand,
                 method="efron")
> OR.Cox.WLW
Call:
coxph(formula = OR.expand.S ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dyadid), data = OR.expand,
   method = "efron")
          coef exp(coef) se(coef) robust se
allies
        -0.230
                0.7947
                        0.1122
                                0.1248 -1.841 6.6e-02
        0.852 2.3435 0.1223 0.1297 6.568 5.1e-11
contig
growth
       -3.508 0.0300 1.2370 1.1671 -3.005 2.7e-03
democracy -0.271 0.7625 0.1037 0.1055 -2.570 1.0e-02
```

Likelihood ratio test=129 on 6 df, p=0 n= 163584, number of events= 405

9.6144 -0.276 7.8e-01

0.0702 9.2807

trade

-2.656

# Models of Repeated Events

|                  | First   | AG      | PWP-E   | PWP-G   | WLW     |
|------------------|---------|---------|---------|---------|---------|
| Allies           | -0.45   | -0.41   | -0.24   | -0.33   | -0.23   |
| Ailles           |         |         | •       |         | • •     |
|                  | (0.16)  | (0.17)  | (0.13)  | (0.12)  | (0.12)  |
| Contiguity       | 1.07    | 1.21    | 0.87    | 0.89    | 0.85    |
|                  | (0.18)  | (0.18)  | (0.13)  | (0.13)  | (0.13)  |
| Capability Ratio | -0.20   | -0.21   | -0.16   | -0.17   | -0.16   |
|                  | (80.0)  | (80.0)  | (0.06)  | (0.06)  | (0.06)  |
| Growth           | -2.20   | -3.23   | -3.63   | -3.46   | -3.51   |
|                  | (1.90)  | (1.32)  | (1.20)  | (1.21)  | (1.17)  |
| Democracy        | -0.42   | -0.44   | -0.27   | -0.28   | -0.27   |
|                  | (0.13)  | (0.12)  | (0.11)  | (0.10)  | (0.11)  |
| Trade            | -6.73   | -13.16  | -2.51   | -4.29   | -2.66   |
|                  | (13.90) | (13.82) | (9.94)  | (10.46) | (9.61)  |
| AIC              | 2538.02 | 5015.77 | 3892.77 | 4103.47 | 5597.54 |
| Num. events      | 205     | 405     | 405     | 405     | 405     |

### Parameter Change Across Events

- Values of  $\beta$  differ from k to k+1
- Again: Institutionalization, learning, etc.
- Addressed using strata by covariate interactions

#### Parameter Change Example

```
> OR$capXevent<-OR$capratio*OR$eventno
> OR.Cox.BVary<-coxph(OR.PWPGS~allies+contig+growth+democracy+
                    trade+capratio+capXevent+strata(eventno)+
                    cluster(dyadid),data=OR,
                    method="efron")
> OR.Cox.BVary
Call:
coxph(formula = OR.PWPGS ~ allies + contig + growth + democracy +
   trade + capratio + capXevent + strata(eventno) + cluster(dyadid),
   data = OR. method = "efron")
           coef exp(coef) se(coef) robust se
allies
         -0.349
                  0.7053
                          0.1120
                                    0.1177 -2.967 3.0e-03
contig 0.897
                  2.4517 0.1221 0.1254 7.150 8.7e-13
         -3.519 0.0296 1.2196 1.2129 -2.901 3.7e-03
growth
democracy -0.305 0.7374 0.1037 0.0972 -3.135 1.7e-03
trade
         -3.297 0.0370 9.7624 10.1869 -0.324 7.5e-01
capratio -0.340 0.7117 0.0997 0.1054 -3.227 1.2e-03
capXevent 0.135
                  1.1443
                           0.0631
                                    0.0581 2.321 2.0e-02
Likelihood ratio test=143 on 7 df, p=0 n= 20448, number of events= 405
```

### Conclusions / Recommendations

As a practical matter, estimating these models is simply a function of:

- Setting up the data correctly (so as to define the right risk sets),
- Stratifying when appropriate, and
- Calculating / using robust standard errors...