ANLY 561 HW

Name:Yuqi Wang NetID:yw545

Problem 1

Part (a)

Observe that this program

$$\max_{x\in\mathbb{R}^2}x_1 ext{ subject to }x_2+(x_1-1)^3\leq 0, x_1\geq 0, x_2\geq 0.$$

is equivalent to the program

$$\min_{x\in\mathbb{R}^2} -x_1 ext{ subject to } x_2+(x_1-1)^3 \leq 0, x_1\geq 0, x_2\geq 0.$$

Now we let $f(x_1,x_2)=-x_1$, $h_1(x_1,x_2)=x_2+(x_1-1)^3$, $h_2(x_1,x_2)=-x_1$, $h_3(x_1,x_2)=-x_2$, then we have $\nabla f(x_1,x_2)=\begin{pmatrix} -1\\0 \end{pmatrix}, \nabla h_1(x_1,x_2)=\begin{pmatrix} 3(x_1-1)^2\\1 \end{pmatrix}, \nabla h_2(x_1,x_2)=\begin{pmatrix} -1\\0 \end{pmatrix}, \nabla h_3(x_1,x_2)=\begin{pmatrix} 0\\-1 \end{pmatrix}.$

At
$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,

$$abla h_1(1,0) = egin{pmatrix} 0 \ 1 \end{pmatrix},
abla h_2(1,0) = egin{pmatrix} -1 \ 0 \end{pmatrix},
abla h_3(1,0) = egin{pmatrix} 0 \ -1 \end{pmatrix}$$

So we can see that $\nabla h_1(1,0)$ and $\nabla h_3(1,0)$ are linearly dependent because if we form a eqution that $c_1 \nabla h_1(1,0) + c_2 \nabla h_3(1,0) = \mathbf{0}$, c_1 could be any number (so not necessary to be 0), then $c_2 = -c_1$ could satisfy the equation.

Since $\nabla h_1(1,0)$ and $\nabla h_3(1,0)$ are linearly dependent, the Linear Independence Constraint Qualification fails at $x=\left(\begin{array}{c} 1 \\ 0 \end{array} \right)$.

Part (b)

The KKT conditions:

(Stationarity)

$$-\left(egin{array}{c} -1 \ 0 \end{array}
ight) = \lambda_1 \left(egin{array}{c} 3(x_1-1)^2 \ 1 \end{array}
ight) + \lambda_2 \left(egin{array}{c} -1 \ 0 \end{array}
ight) + \lambda_3 \left(egin{array}{c} 0 \ -1 \end{array}
ight)$$

(Primal Feasibility)

$$h_1(x_1,x_2)=x_2+(x_1-1)^3\leq 0, h_2(x_1,x_2)=-x_1\leq 0, h_3(x_1,x_2)=-x_2\leq 0$$

(Dual Feasibility)

$$\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_3 \geq 0$$

(Complementary Slackness)

$$\lambda_1 h_1(x_1,x_2) = \lambda_1 (x_2 + (x_1-1)^3) = 0, \lambda_2 h_2(x_1,x_2) = \lambda_2 (-x_1) = 0, \lambda_3 h_3(x_1,x_2) = \lambda_3 (-x_2) = 0$$

Part (c)

As
$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,

$$-\left(egin{array}{c} -1 \ 0 \end{array}
ight) = \lambda_1 \left(egin{array}{c} 0 \ 1 \end{array}
ight) + \lambda_2 \left(egin{array}{c} -1 \ 0 \end{array}
ight) + \lambda_3 \left(egin{array}{c} 0 \ -1 \end{array}
ight)$$

implies that λ_2 has to be -1<0, so it does not satisfy the Dual Feasibility. Therefore, $x=\left(rac{1}{0}
ight)$ does not satisfy the KKT conditions.

Part (d)

Consider the program

$$\max_{x\in\mathbb{R}^2} x_1 ext{ subject to } x_2+(x_1-1)^3 \leq 0, x_1\geq 0, x_2\geq 0.$$

and we suppose that $x=\begin{pmatrix}1\\0\end{pmatrix}$ is NOT the solution to the above program, then there must exist a $x^*=\begin{pmatrix}x_1^*\\x_2^*\end{pmatrix}$ such that $x_2^*+(x_1^*-1)^3\leq 0$, $x_1^*\geq 0$, $x_2^*\geq 0$ and also $x_1^*>1$. Since $x_1^*>1$, then $(x_1^*-1)^3>0$. If we want to satisfy $x_2^*+(x_1^*-1)^3\leq 0$, x_2^* has to be less than 0. However, we also have a condition that $x_2^*\geq 0$. Thus, we get a contradiction.

So $x=\left(egin{array}{c}1\\0\end{array}
ight)$ is the solution to this program.

Problem 2

Part (a)

Consider the program

$$\min_{x \in \mathbb{R}^2} 3x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_2x_3 + 3x_3^2 ext{ subject to } 0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1, 0 \leq x_3 \leq 1$$

Now we let $f(x_1,x_2,x_3)=3x_1^2-2x_1x_2+3x_2^2-2x_2x_3+3x_3^2$, $h_1(x_1,x_2,x_3)=-x_1$, $h_2(x_1,x_2,x_3)=x_1-1$, $h_3(x_1,x_2,x_3)=-x_2$, $h_4(x_1,x_2,x_3)=x_2-1,\,h_5(x_1,x_2,x_3)=-x_3,\,h_6(x_1,x_2,x_3)=x_3-1,\, ext{then we have} \
abla^2f(x_1,x_2,x_3)=egin{pmatrix}6&-2&0\-2&6&-2\0&-2&6\end{pmatrix}$

$$abla^2 f(x_1,x_2,x_3) = \left(egin{array}{ccc} 6 & -2 & 0 \ -2 & 6 & -2 \ 0 & -2 & 6 \end{array}
ight)$$

So $\nabla^2 f$ has 1 by 1 leading principal minor: 6.

 $\nabla^2 f$ has 2 by 2 leading principal minor: 6*6-(-2)(-2)=36-4=32.

 $abla^2 f$ has 3 by 3 leading principal minor: 6*(6*6-(-2)(-2))-(-2)((-2)6-0)=192-24=168.

By Sylvester's Criterion, $\nabla^2 f(x_1,x_2,x_3)$ is positive definite. Then by Second Order Conditions for Convexity, $f(x_1,x_2,x_3)$ is strictly convex.

 $\text{In addition, } h_1(x_1,x_2,x_3) = -x_1, h_2(x_1,x_2,x_3) = x_1 - 1, h_3(x_1,x_2,x_3) = -x_2, h_4(x_1,x_2,x_3) = x_2 - 1, h_5(x_1,x_2,x_3) = -x_3, h_7(x_1,x_2,x_3) = -x_1, h_7(x_1,x_2,x_3) = -x_2, h_7(x_1,x_2,x_3) = -x_3, h_7(x_1,x_2,x_3) = -x$

 $h_6(x_1,x_2,x_3)=x_3-1$ are all affine so they are all convex. So the program is a convex program. And as $x=egin{pmatrix} 0.5 \ 0.5 \ 0.5 \end{pmatrix}$, it satisfies

 $h_1 < 0, h_2 < 0, h_3 < 0, h_4 < 0, h_5 < 0, h_6 < 0$, which means that Slater's condition holds. Therefore, by the Sufficient Conditions for Convex Programming, the solution to this program must satisfy the KKT conditions.

Part (b)

The KKT conditions:

(Stationarity)

$$-\left(egin{array}{c} 6x_1-2x_2 \ -2x_1+6x_2-2x_3 \ -2x_2+6x_3 \end{array}
ight) = \lambda_1 \left(egin{array}{c} -1 \ 0 \ 0 \end{array}
ight) + \lambda_2 \left(egin{array}{c} 1 \ 0 \ 0 \end{array}
ight) + \lambda_3 \left(egin{array}{c} 0 \ -1 \ 0 \end{array}
ight) + \lambda_4 \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight) + \lambda_5 \left(egin{array}{c} 0 \ 0 \ -1 \end{array}
ight) + \lambda_6 \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight)$$

(Primal Feasibility)

$$h_1(x_1,x_2,x_3)=-x_1\leq 0, h_2(x_1,x_2,x_3)=x_1-1\leq 0, h_3(x_1,x_2,x_3)=-x_2\leq 0, \ h_4(x_1,x_2,x_3)=x_2-1\leq 0, h_5(x_1,x_2,x_3)=-x_3\leq 0, h_6(x_1,x_2,x_3)=x_3-1\leq 0$$

(Dual Feasibility)

$$\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_3 \geq 0, \lambda_4 \geq 0, \lambda_5 \geq 0, \lambda_6 \geq 0$$

(Complementary Slackness)

$$\lambda_1 h_1^{'}(x_1,x_2,x_3) = \lambda_1(-x_1) = 0, \lambda_2 h_2(x_1,x_2,x_3) = \lambda_2(x_1-1) = 0, \lambda_3 h_3(x_1,x_2,x_3) = \lambda_3(-x_2) = 0, \ \lambda_4 h_4(x_1,x_2,x_3) = \lambda_4(x_2-1) = 0, \lambda_5 h_5(x_1,x_2,x_3) = \lambda_5(-x_3) = 0, \lambda_6 h_6(x_1,x_2,x_3) = \lambda_6(x_3-1) = 0$$

Part (c)

We have

$$egin{pmatrix} 2x_2-6x_1=-\lambda_1+\lambda_2 & 2x_1-6x_2+2x_3=-\lambda_3+\lambda_4 & 2x_2-6x_3=-\lambda_5+\lambda_6 \ \lambda_1(-x_1)=0 & \lambda_2(x_1-1)=0 & \lambda_3(-x_2)=0 \ \lambda_4(x_2-1)=0 & \lambda_5(-x_3)=0 & \lambda_6(x_3-1)=0 \end{pmatrix}$$

and

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0, \lambda_5 \ge 0, \lambda_6 \ge 0 \ 0 \le x_1 \le 1, 0 \le x_2 \le 1, 0 \le x_3 \le 1$$

- Case 1: $x_1 = 0$, then $x_1 1 \neq 0$, so $\lambda_2 = 0$,
 - Case 1-1: $x_2=0$, $x_3=0$, then $\lambda_1=\lambda_2=\lambda_3=\lambda_4=\lambda_5=\lambda_6=0$ it satisfies the KKT conditions.
 - Case 1-2: $x_2=0$, $x_3=1$, then $\lambda_4=\lambda_5=0$, so $-\lambda_3=2x_3=2 \implies \lambda_3=-2<0$, so the KKT conditions fail.
 - lacktriangle Case 1-3: $x_2=1$, $x_3=0$, then $\lambda_3=\lambda_6=0$, so $\lambda_4=-6 \implies \lambda_4<0$, so the KKT conditions fail.
 - Case 1-4: $x_2=1$, $x_3=1$, then $\lambda_3=\lambda_5=0$, so $\lambda_6=2-6=-4 \implies \lambda_6<0$, so the KKT conditions fail.
- Case 2: $x_1=1$, then $\lambda_1=0$,
 - Case 2-1: $x_2=0$, $x_3=0$, then $\lambda_4=\lambda_6=0$, so $-\lambda_3=2-0+0=2 \implies \lambda_3<0$ so the KKT conditions fail.
 - Case 2-2: $x_2=0$, $x_3=1$, then $\lambda_4=\lambda_5=0$, so $-\lambda_3=2-0+2=4 \implies \lambda_3<0$ so the KKT conditions fail.
 - Case 2-3: $x_2=1, x_3=0$, then $\lambda_3=\lambda_6=0$, so $-\lambda_5=2-0=2 \implies \lambda_5<0$, so the KKT conditions fail.
 - lacktriangledown Case 2-4: $x_2=1$, $x_3=1$, then $\lambda_4=\lambda_5=0$, so $\lambda_6=2-6=-4 \implies \lambda_6<0$, so the KKT conditions fail.
- Case 3: $\lambda_1=\lambda_2=0$ and $x_1\neq 0$ or 1, then $6x_1=2x_2\implies 3x_1=x_2$, then we will have $x_2\neq 0\implies \lambda_3=0$.
 - Case 3-1: if $x_2=1$ and $x_1=\frac{1}{3}$, then $\frac{2}{3}-6+2x_3=\lambda_4$. Since $x_3\leq 1$, then $2x_3\leq 2$, implies that $\frac{2}{3}-6+2x_3=\lambda_4<0$, so the KKT conditions fail.
 - Case 3-2: if $x_2<1$, then $\lambda_3=\lambda_4=0$, so $2x_1-6x_2+2x_3=0=-16x_1+2x_3$. And also λ_5,λ_6 cannot be 0 at the same time in this case, so $x_3=0$ or 1. x_3 cannot be 0 since $x_1\neq 0$ and $0=-16x_1+2x_3$. Then $x_3=1$, so $x_1=\frac{1}{8}$, and $x_2=\frac{3}{8}$, and $\lambda_1=\lambda_2=\lambda_3=\lambda_4=\lambda_5=0$ $\lambda_6=2x_2-6x_3=\frac{3}{4}-6<0$, so the KKT conditions fail.
- Case 4: $\lambda_1=\lambda_2=0$ and $x_1=0$ or 1, then $6x_1=2x_2\implies 3x_1=x_2$, since $x_2\leq 1$, $x_1\neq 1$, so $x_1=x_2=0\implies \lambda_4=0$. In order to avoid duplication of cases, $x_3\neq 0$.

Then $2x_3 = -\lambda_3$. Since $0 < x_3 \le 1$, then $\lambda_3 < 0$, so the KKT conditions fail.

- Case 5: $\lambda_3=\lambda_4=0$ and $x_2\neq 0$ or 1, then $2x_1-6x_2+2x_3=0 \implies 2x_3=6x_2-2x_1$. In order to avoid duplication of cases, $\lambda_1,\lambda_2\neq 0$ at the same time.
 - Case 5-1: $x_1 = 0$, $\lambda_2 = 0$, then $2x_2 = -\lambda_1 \implies \lambda_1 < 0$, so the KKT conditions fail.
 - lacktriangledown Case 5-2: $x_1=1, \lambda_1=0$, then $2x_2-6=\lambda_2 \implies \lambda_2<0$, so the KKT conditions fail.
- Case 6: $\lambda_3=\lambda_4=0$ and $x_2=0$ or 1, then $2x_1-6x_2+2x_3=0 \implies 2x_3=6x_2-2x_1$. In order to avoid duplication of cases, $\lambda_1,\lambda_2\neq 0$ at the same time.
 - Case 6-1: $x_2 = 0$, then $2x_3 = -2x_1$, and we have $x_1 = 0$ or 1. if $x_1 = 0$, then $x_2 = 0$, $x_3 = 0$, this is the same as Case 1-1. If $x_1 = 1$, $x_3 < 0$, so the KKT conditions fail.
 - Case 6-2: $x_2 = 1$, then $2x_3 = 6 2x_1$. Since $x_1 = 0$ or 1, then $2x_3 = 6$ or 4. In both cases, x_3 is not in the feasible range, so the KKT conditions fail.
- Case 7: $\lambda_5=\lambda_6=0$ and $x_3
 eq 0$ or 1, then $6x_3=2x_2\implies 3x_3=x_2$, then we will have $x_2
 eq 0\implies \lambda_3=0$.
 - Case 7-1: if $x_2=1$ and $x_3=\frac{1}{3}$, then $\frac{2}{3}-6+2x_1=\lambda_4$. Since $x_1\leq 1$, then $2x_1\leq 2$, implies that $\frac{2}{3}-6+2x_1=\lambda_4<0$, so the KKT conditions fail.
 - Case 7-2: if $x_2<1$, then $\lambda_3=\lambda_4=0$, so $2x_1-6x_2+2x_3=0=-16x_3+2x_1$. And also λ_1,λ_2 cannot be 0 at the same time in this case, so $x_1=0$ or 1. x_1 cannot be 0 since $x_3\neq 0$ and $0=-16x_1+2x_3$. Then $x_1=1$, so $x_3=\frac{1}{8}$, and $x_2=\frac{3}{8}$, and $\lambda_2=\lambda_3=\lambda_4=\lambda_5=\lambda_6=0$, $\lambda_1=2x_2-6x_1=\frac{3}{4}$, so the KKT conditions fail.
- Case 8: $\lambda_5=\lambda_6=0$ and $x_3=0$ or 1, then $6x_3=2x_2\implies 3x_3=x_2$, since $x_2\le 1$, $x_3\ne 1$, so $x_3=x_2=0\implies \lambda_4=0$. In order to avoid duplication of cases, $x_1\ne 0$. Then $2x_1=-\lambda_3$. Since $0< x_1\le 1$, then $\lambda_3< 0$, so the KKT conditions fail.

Therefore, we can get that as $x_1=0, x_2=0, x_3=0$, $x=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ is the only point that satisfies the KKT conditions.

Part (d)

$$x=egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$$
 is the solution to this program not only because that $x=egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$ is the only point that satisfies the KKT conditions, but also:

Consider the program

$$\min_{x \in \mathbb{R}^2} 3x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_2x_3 + 3x_3^2 ext{ subject to } 0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1, 0 \leq x_3 \leq 1$$

then, observe that

$$f(x_1,x_2,x_3)=3x_1^2-2x_1x_2+3x_2^2-2x_2x_3+3x_3^2=(x_1-x_2)^2+(x_2-x_3)^2+2x_1^2+x_2^2+2x_3^2$$

We know that
$$(x_1-x_2)^2\geq 0$$
, $(x_2-x_3)^2\geq 0$, $2x_1^2\geq 0$, $x_2^2\geq 0$, $2x_3^2\geq 0$, so $(x_1-x_2)^2+(x_2-x_3)^2+2x_1^2+x_2^2+2x_3^2\geq 0$

So the minimum value of $f(x_1, x_2, x_3)$ is 0. Then the minimum value occurs as $(x_1 - x_2)^2 = 0$, $(x_2 - x_3)^2 = 0$, $2x_1^2 = 0$, $x_2^2 = 0$, which means $x_1 = 0$, $x_2 = 0$, $x_3 = 0$.

Thus,
$$x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 is the solution to this program.