PHẦN ĐÁP ÁN 083.01.10.

PHÀN I

(Mỗi câu trả lời đúng thí sinh được 0,25 điểm)

Câu		1	2	3	4	5	6	7	8	9	10	11	12
Chọ	n	В	С	Α	Α	D	Α	D	С	D	D	Α	С

PHẦN II

Điểm tối đa của 01 câu hỏi là 1 điểm.

- □ Thí sinh chỉ lựa chọn chính xác 01 ý trong 1 câu hỏi được 0,1 điểm.
- \Box Thí sinh chỉ lựa chọn chính xác 02 ý trong 1 câu hỏi được 0,25 điểm.
- \Box Thí sinh chỉ lựa chọn chính xác 03 ý trong 1 câu hỏi được 0.50 điểm.
- □Thí sinh lựa chọn chính xác cả 04 ý trong 1 câu hỏi được 1 điểm.

Câu 1:	Câu 2:	Câu 3:	Câu 4:
a) S	a) S	a) Đ	a) Đ
b) Đ	b) Đ	b) Đ	b) Đ
c) Đ	c) S	c) Đ	c) S
d) S	d) Đ	d) S	d) Đ

PHẦN III. (Mỗi câu trả lời Đúng thí sinh Được 0,5 Điểm)

Câu	1	2	3	4	5	6
Chọn	21,2	20	68	0,46	4,74	142

PHẦN LỜI GIẢI CHI TIẾT ĐỀ 2

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Học sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi học sinh chỉ chọn một phương án.

Câu 1: Cho hàm số y = f(x) có đồ thị như *Hình 1*.

Hàm số đã cho đồng biến trên khoảng nào trong các khoảng sau đây?

A. (0;1).

B. (1;2).

 $\mathbf{C}.(-1;0).$

D. (-1;1).

Hướng dẫn giải

Chon **B**.

Dựa vào đồ thị hàm số đã cho, hàm số đồng biến trên khoảng $(-\infty;-1)$ và $(1;+\infty)$.

Do đó hàm số đã cho đồng biến trên khoảng (1;2).

Cho hàm số y = f(x) có đồ thị như *Hình* 2. Câu 2:

Đồ thị hàm số đã cho có đường tiệm cận ngang là:

A. x = 2.

B. x = -2.

C. v = 2.

D. y = -2.

Hướng dẫn giải

<u>C</u>. Chon

Dựa vào đồ thị hàm số, ta thấy đường thẳng y = 2 là đường tiệm cận ngang của đồ thị hàm số.

Họ nguyên hàm của hàm số $f(x) = \sin x$ là? Câu 3:

 $\mathbf{A} \cdot -\cos x + C$.

B. $\cos x + C$.

C. $\sin x + C$. D. $-\sin x + C$.

Hướng dẫn giải

Chon

Ta có $\int \sin x dx = -\cos x + C$ với C là hằng số.

Trong không gian tọa độ Oxyz, vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng Câu 4: (P): 2x - y + z + 3 = 0?

A.
$$\vec{n_1} = (2; -1; 1)$$

B.
$$\overrightarrow{n_2} = (2;1;1)$$

A.
$$\overrightarrow{n_1} = (2; -1; 1)$$
. **B.** $\overrightarrow{n_2} = (2; 1; 1)$. **C.** $\overrightarrow{n_3} = (2; -1; 3)$. **D.** $\overrightarrow{n_4} = (-1; 1; 3)$.

D.
$$\overrightarrow{n_4} = (-1;1;3)$$

Hướng dẫn giải

Chọn $\underline{\mathbf{A}}$.

Ta có $\vec{n} = (2; -1; 1)$ là một véc-tơ pháp tuyến của mặt phẳng (P).

Trong không gian tọa độ Oxyz, phương trình nào sau đây là phương trình tham số của đường thẳng? Câu 5:

A.
$$\begin{cases} x = 2 + t^2 \\ y = 3 - t \\ z = 4 + t \end{cases}$$

A.
$$\begin{cases} x = 2 + t^2 \\ y = 3 - t \\ z = 4 + t \end{cases}$$
B.
$$\begin{cases} x = 2 + y \\ y = 3 - t^2 \\ z = -4 + 2t \end{cases}$$
C.
$$\begin{cases} x = 2 + t \\ y = 3 - t \\ z = t^2 \end{cases}$$
D.
$$\begin{cases} x = 2 + 3t \\ y = 4 + 5t \\ z = 5 + 6t \end{cases}$$

C.
$$\begin{cases} x = 2 + t \\ y = 3 - t \\ z = t^2 \end{cases}$$

D.
$$\begin{cases} x = 2 + 3t \\ y = 4 + 5t \\ z = 5 + 6t \end{cases}$$

Hướng dẫn giải

Ta thấy $\begin{cases} x = 2 + 3t \\ y = 4 + 5t \text{ là một phương trình tham số của đường thẳng.} \end{cases}$

- Trong không gian tọa độ Oxyz, cho mặt cầu: $(S):(x-6)^2+(y+7)^2+(z-8)^2=9^2$ Câu 6: Tâm của mặt cầu (S) có tọa độ là:
 - **A.** (6; -7; 8). **B.** (-6; 7; 8). **C.** (6; 7; -8). **D.** (6; 7; 8).

Hướng dẫn giải

Chon **A**.

Mặt cầu (S) có tọa độ tâm I(6, -7, 8) và bán kính R = 9

Cho hai biến cố A, B với 0 < P(B) < 1. Phát biểu nào sau đây là đúng? Câu 7:

A.
$$P(A) = P(\overline{B}).P(A|B) + P(B).P(A|\overline{B}).$$

B.
$$P(A) = P(B).P(A|B) - P(\overline{B}).P(A|\overline{B}).$$

C.
$$P(A) = P(\overline{B}) . P(A | \overline{B}) - P(B) . P(A | B)$$
.

D.
$$P(A) = P(B).P(A|B) + P(\overline{B}).P(A|\overline{B}).$$

Hướng dẫn giải

Chon

Công thức đúng là $P(A) = P(B).P(A|B) + P(\overline{B}).P(A|\overline{B})$.

Xét mẫu số liệu ghép nhóm cho ở Bảng I. Gọi \bar{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Câu 8: Đô lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

Nhóm	Giá trị đại diện	Tần số
$[a_1;a_2)$	x_1	$n_{\rm l}$
$\left[a_2;a_3\right)$	x_2	n_2
	•••	
$\left[a_{m};a_{m+1}\right)$	\mathcal{X}_m	n_{m}
		n

A.
$$s^2 = \frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + ... + n_m(x_m - \overline{x})^2}{n}$$
.

B.
$$s = \sqrt{\frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + ... + n_m(x_m - \overline{x})^2}{m}}.$$

C.
$$s = \sqrt{\frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + ... + n_m(x_m - \overline{x})^2}{n}}$$
.

D.
$$s^2 = \frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + ... + n_m(x_m - \overline{x})^2}{m}$$
.

Chọn C. Độ lệch chuẩn của mẫu số liệu ghép nhóm là

$$s = \sqrt{\frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + \dots + n_m(x_m - \overline{x})^2}{n}}$$

Trong không gian Oxyz, tọa độ của vecto \vec{k} là: Câu 9:

Hướng dẫn giải

Chon

Tọa độ của véc-tơ $\vec{k} = (0,0,1)$.

Câu 10: Cho các hàm số y = f(x), y = g(x) liên tục trên đoạn [a;b] và có đồ thị như Hình 3.

Khi đó, diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b là:

A.
$$S = \int_{b}^{a} |f(x) - g(x)| dx.$$

B.
$$S = \int_{a}^{b} \left[g(x) - f(x) \right] dx.$$
D.
$$S = \int_{a}^{b} \left| f(x) - g(x) \right| dx.$$

C.
$$S = \int_{1}^{a} \left[f(x) - g(x) \right] dx$$
.

D.
$$S = \int_{a}^{b} |f(x) - g(x)| dx$$
.

Hướng dẫn giải

Chon D.

Dựa vào Hình 3, diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b là $S = \int |f(x) - g(x)| dx$

Câu 11: Cho hàm số y' = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là F(x). Biết rằng F(1) = 9, F(2) = 5. Giá trị của biểu thức $\int_{-2}^{2} f(x) dx$ bằng:

A. −4.

B. 14.

C. 4

D. 45.

Hướng dẫn giải

Chọn <u>A</u>.

Ta có
$$\int_{1}^{2} f(x) dx = F(x) \Big|_{1}^{2} = F(2) - F(1) = 5 - 9 = -4$$
.

Câu 12: Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm I(1;1;1) đến mặt phẳng (P): 2x - y + z - 16 = 0 bằng?

A. −6.

B. 18.

C. $3\sqrt{6}$.

D. −18.

Hướng dẫn giải

Chọn $\underline{\mathbf{C}}$.

Khoảng cách từ điểm I(1;1;1) đến mặt phẳng (P): 2x-y+z-16=0 là

$$d(I,(P)) = \frac{|2.1-1+1-16|}{\sqrt{2^2+(-1)^2+1^2}} = \frac{7\sqrt{6}}{3}.$$

PHÀN II. Câu trắc nghiệm đúng sai

Câu 1: • Vectơ chỉ phương của đường thẳng Δ là $\vec{u} = (5;12;-13)$, vectơ pháp tuyến của mặt phẳng (P) là $\vec{n} = (1;-2;-2)$.

• Côsin của góc giữa hai vecto $\vec{u} = (5;12;-13)$ và $\vec{n} = (1;-2;-2)$ là

 $\cos(\vec{u}, \vec{n}) = \frac{\vec{u} \cdot \vec{n}}{|\vec{u}| \cdot |\vec{n}|} = \frac{7}{13\sqrt{2} \cdot 3} = \frac{7}{39\sqrt{2}}$. Khi đó, góc giữa đường thẳng Δ và mặt phẳng (P) là

$$\sin(\Delta, (P)) = |\cos(\vec{u}, \vec{n})| = \frac{7}{39\sqrt{2}} \Rightarrow (\Delta, (P)) \approx 7^{\circ}.$$

Đáp án: a) S b) Đ c) Đ d) S.

Câu 2: Cho hàm số $y = x^3 - 3x^2 + 2$

a) Đạo hàm của hàm số đã cho là $y' = 3x^2 - 6x$.

b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng $(-\infty;0) \cup (2;+\infty)$.

c) Bảng biến thiên của hàm số đã cho là:

x	-∞	0		2		+∞
y'	-	0	+	0	-	
у	+∞	<u>→</u> _2 /		y ² \		▲ -∞

d) Đồ thị hàm số đã cho như ở Hình 4.

Lời giải

Câu 2: Cho hàm số $y = x + \frac{4}{x}$.

- a) Đạo hàm của hàm số đã cho là $y' = 1 \frac{4}{x^2}$ nên mệnh đề sai.
- **b)** $y' = 1 \frac{4}{x^2} > 0 \Leftrightarrow \begin{bmatrix} x > 2 \\ x < -2 \end{bmatrix}, x \neq 0$ nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng $(-2;0) \cup (0;2)$ và nhận giá trị dương trên các khoảng $(-\infty;-2) \cup (2;+\infty)$.
- c) Bảng biến thiên của hàm số đã cho là:

x	-∞ -2	0	2 +∞
y 1	+ 0	-	- 0 +
y	- 00		+ w + w

Mệnh đề sai vì thấy $y(-2) = -4 \neq 4$

d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

Đáp án: a) S b) Đ c) S d) Đ.

Câu 3: Ta có: $AM^2 = BM^2 = 25$, suy ra: $a^2 + (b-4)^2 + (c-5)^2 = a^2 + (b-5)^2 + (c-4)^2 = 25$. Lại có $CM^2 = DM^2 = 9$, suy ra

$$(a-1)^2 + (b-3)^2 + (c-3)^2 = (a-1)^2 + (b+1)^2 + (c-3)^2 = 9$$
.

Từ đẳng thức: $a^2 + (b-4)^2 (c-5)^2 = a^2 + (b-5)^2 + (c-4)^2$ suy ra b = c.

Từ đó ta có toạ độ của điểm M(0;1;1).

Đáp án: a) **Đ** b) **Đ** c) **Đ** d) **S**

- **Câu 4:** Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: $\int (-10t + 20)dt = -5t^2 + 20t + C$ với C là hằng số. Khi đó, ta gọi hàm số $s(t) = -5t^2 + 20t + C$.
 - Do s(0) = 0 nên C = 0. Suy ra $s(t) = -5t^2 + 20t$.
 - Xe ô tô dừng hẳn khi v(t) = 0 hay $-10t + 20 = 0 \Leftrightarrow t = 2$. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
 - Ta có xe ô tô đang chạy với tốc độ $65 \, km / h \approx 18 \, m / s$.

Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: $s(2) = -5 \cdot 2^2 + 20 \cdot 2 = 20(m)$.

Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: $18 + 20 \approx 38(m)$.

Do 38 < 50 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

Đáp án: a) \mathbf{D} , b) \mathbf{D} , c) \mathbf{S} , d) \mathbf{D} .

PHÀN III. Câu trắc nghiệm trả lời ngắn

Câu 1: • Gọi V_1 là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số $y = x + \frac{1}{x}$, trục hoành và hai đường thẳng x = 1, x = 4 quay quanh trục Ox. Khi đó

$$V_1 = \pi \int_{1}^{4} \left(x + \frac{1}{x} \right)^2 dx = \frac{111\pi}{4} \left(dm^3 \right).$$

• Gọi V_2 là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số y=x, trục hoành và hai đường thẳng x=1, x=4 quay quanh trục Ox. Khi đó $V_2=\pi\int\limits_1^4 x^2\,dx=21\left(dm^3\right)$.

Vậy thể tích của bề dày chiếc bát thủy tinh đó là:

$$V = V_1 - V_2 = \frac{111\pi}{4} - 21\pi = \frac{27\pi}{4} \approx 21, 2 (dm^3).$$

Đáp số: **21,2**.

Câu 2: Gọi $u_0 = 60$ (triệu đồng), còn u_n (triệu đồng) là số tiền mà người đó có được sau $n \left(n \in N^* \right)$ tháng gửi tiết kiệm. Khi đó, ta có $u_{n+1} = u_n + \frac{0.5}{100} u_n = 1,005 u_n$.

Suy ra dãy số (u_n) lập thành một cấp số nhân với công bội q = 1,005 và có $u_n = 60.1,005^n$.

Ta xét bất phương trình $60.1,005^n > 66 \Leftrightarrow 1,005^n > 1,1 \Leftrightarrow n > \log_{1,005} 1,1$. Vì $\log_{1,005} 1,1 \approx 19,1$ và $(n \in N^*)$ nên bắt đầu từ tháng thứ 20 trở đi thì người đó có hơn 66 triệu đồng.

Đáp số: 20.

Câu 3: Ta có: $\overrightarrow{MN} = (-1, 2, -2), \overrightarrow{PQ} = (2, 3, 6)$. Khi đó:

$$cos(a,b) = \frac{\left| \overrightarrow{MN}.\overrightarrow{PQ} \right|}{\left| \overrightarrow{MN} \right|.\left| \overrightarrow{PQ} \right|} = \frac{8}{21}$$
, suy ra $(a,b) \approx 68^{\circ}$.

Đáp số: 68.

Câu 4: Xét các biến cố:

A: "Cây phát triển bình thường trên ô đất A";

B: "Cây phát triển bình thường trên ô đất B".

Các cặp biến cố \overline{A} và B, A và \overline{B} là độc lập vì hai ô đất khác nhau.

Hai biến cố $C = \overline{A} \cap B$ và $D = A \cap \overline{B}$ là hai biến cố xung khắc.

Ta có:
$$P(\overline{A}) = 1 - P(A) = 1 - 0,61 = 0,39$$
; $P(\overline{B}) = 1 - P(B) = 1 - 0,7 = 0,3$.

Xác suất để cây chỉ phát triển bình thường trên một ô đất là:

$$P(C \cup D) = P(C) + P(D) = P(\overline{A}) \cdot P(B) + P(A) \cdot P(\overline{B})$$

= 0,39.0,7+0,61.0,3 \approx 0,46.

Đáp số: **0,46.**

Câu 5: Gọi f(x) là lợi nhuận mà lái xe có thể thu về khi chở x (người) $(x \in \mathbb{N}^*)$ trong chuyến xe đó. Khi đó

$$f(x) = \frac{1}{2}x(40-x)^2$$
, với $0 < x \le 16$.

Ta có:
$$f'(x) = \frac{1}{2} [(40-x)^2 - 2x(40-x)] = \frac{1}{2} (40-x)(40-3x)$$
.

Với $0 < x \le 16$ thì $f'(x) = 0 \Leftrightarrow x = \frac{40}{3}$. Mà $13 < \frac{40}{3} < 14$ nên ta có bảng biến thiên như sau:

x	0	13	40 3	14	16
f'(x)		+	0	_	
f(x)	0	4738,5	$f\left(\frac{40}{3}\right)$	4732	4608

Với f(13) = 4738,5, f(14) = 4732. Căn cứ vào bảng biến thiên ta có $\max_{(0;16]} f(x) = 4738,5$ (nghìn

đồng). Vậy người lái xe đó có thể thu được nhiều nhất khoảng 4,74 triệu đồng từ một chuyến chở khách.

Đáp số: **4,74.**

Câu 6. Giả sử đáy dưới và đáy trên của tháp lần lượt có dạng hình vuông ABCD và MNPQ có cạnh lần lượt 6 m và 4 m như hình bên.

Gọi O là giao điểm của các đường thẳng chứa cạnh bên của hình chóp cụt đều. Ta có: BD và NQ lần lượt là giao tuyến của mặt phẳng (OBD) với hai mặt phẳng chứa đáy nên BD // NQ.

Gọi H, K lần lượt là hình chiếu của Q, N trên BD khi đó $HK = QN = 4\sqrt{2}$ (m).

Vì tứ giác BNQD là hình thang cân nên $DH = BK = \frac{BD - HK}{2} = \sqrt{2}$ (m).

Đường cao của khối chóp cụt đều là $QH = \sqrt{14} \,$ (m). Diện tích của hai đáy lần lượt bằng 36 m² và 16 m². Thể tích của khối chóp cụt đều bằng.

$$V = \frac{1}{3} \cdot \sqrt{14} \cdot \left(36 + \sqrt{36.16} + 16\right) = \frac{76\sqrt{14}}{3}$$
 (m³).

Vậy số tiền để mua bê tông tươi làm chân tháp là:

$$\frac{76\sqrt{14}}{3}$$
.1 500 000 ≈ 142 182 980 (đồng) ≈ 142 (triệu đồng)

Đáp số: 142.