УСПЕХИ ХИМИИ

выпуск 4

АПРЕЛЬ -- 1987

TOM LVI

MOCKBA

ЖУРНАЛ ОСНОВАН В 1932 ГОДУ ВЫХОДИТ 12 РАЗ В ГОД

УДК 535.37

ТРИПЛЕТНЫЕ ЭКСИПЛЕКСЫ В ФОТОХИМИИ ХИНОНОВ

Левин П. П., Кузьмин В. А.

Обобщены результаты исследований кинетики и механизма реакций переноса электрона и атома водорода к молекулам хинонов в триплетных состояниях. Рассмотрены спектрально-кинетические характеристики триплетных эксиплексов хинонов и роль электронодопорно-акцепторного взаимодействия и комплексов с водородной связью в фотохимии хиноидных соединений. Основное внимание уделяется экспериментальным исследованиям кинетики и механизма первичных фотохимических процессов, выполненным современными методами импульсного фотолиза.

Библиография — 276 ссылок.

Оглавление

I.	Введение	52 7
Π.	Электронодонорно-акцепторные комплексы хинонов в основном и в триплет-	
III.	ном состояниях	527 5 34 5 43
	Первичные процессы при фотовосстановлении хинонов спиртами	551

і. ВВЕДЕНИЕ

Хиноидные соединения (Q) под действием света вступают в разнообразные химические реакции. В большинстве случаев первичным актом при фотопревращениях хинонов является перенос электрона и атома водорода к молекулам хинонов в триплетных состояниях (³Q), причем важную роль в этих процессах играют электронодонорно-акцепторное взаимодействие и образование водородной связи.

Фотохимии хинонов посвящен ряд обзоров [1—6], рассмотрены фотохимические окислительно-восстановительные реакции хлорзамещенных хинонов [7]. Настоящий обзор посвящен первичным актам в фотохимическом превращении хинонов, переносу электрона и атома водорода к молекулам хинонов в триплетных состояниях, а также свойствам триплетных эксиплексов.

В последние годы, во многом благодаря развитию методов исследования быстрых реакций, особенно импульсного фотолиза с лазерными источниками возбуждения в наносекундном и пикосекундном диапазонах, получены важные данные по кинетике элементарных реакций и механизму переноса электрона и атома водорода с участием ³Q, доказано образование триплетных эксиплексов в этих процессах.

11. ЭЛЕКТРОНОДОНОРНО-АКЦЕПТОРНЫЕ КОМПЛЕКСЫ ХИНОНОВ В ОСНОВНОМ И В ТРИПЛЕТНОМ СОСТОЯНИЯХ

1. Электронодонорно-акцепторные комплексы хинонов в основном состоянии

Хиноидные соединения являются относительно сильными акцепторами электрона и образуют электронодонорно-акцепторные комплексы

[©] Издательство «Наука», «Успехи химии», 1987 г.

(ЭДА-комплексы) с соединениями, обладающими электронодонорными свойствами [8]. Энергия связи между молекулами в ЭДА-комплексах обычно близка к энергии, характерной для ван-дер-ваальсового взаимодействия, и сравнима или несколько превышает kT [8], причем природа взаимодействия между донором и акцептором в комплексе весьма разнообразна [9].

В кристаллическом состоянии при отсутствии локализованного взаимодействия плоскости колец хинона и ароматической молекулы, составляющих ЭДА-комплекс, параллельны друг другу, и расстояние междуними составляет 3,1—3,55 Å [8]. При наличии водородной связи параллельность нарушается: например, если донор — фенол, то угол между плоскостями колец достигает 10° [10]. Энергия Н-связи в комплексе пбензохинона (I) с фенолом составляет в кристаллическом состоянии

5,05 ккал/моль при энтропии 15 кал/моль град [11].

Исследование ИК-спектров кристаллических комплексов (I) с производными анилина показало наличие двух неэквивалентных карбонильных групп в молекуле (I), что обусловлено локализованным характером взаимодействия и заметным вкладом ионной составляющей [2]. Комплексообразованию (I) с донорами, имеющими первичную или вторичную аминогруппу, дополнительно способствует наличие водородной связи между группами NH и C=O, в которую заметный вклад вносит ионная составляющая. Незначительная неэквивалентность карбонильных групп в молекуле (I) наблюдается также в случае комплекса (I) с N,N-диметиланилином и обусловлена локализованным переносом заряда с неподеленной пары атома N на одну из групп С=O. В ЭДА-комплексе (I) с N,N,N',N'-тетраметил-п-фенилендиамином (ТМФД) в кристаллическом состоянии группы С=O эквивалентны; комплекс ионный с делокализованным взаимодействием.

Хиноны не образуют ЭДА-комплексов в растворах с триэтиламином и бипиридином, по-видимому, вследствие стерических затруднений, создаваемых алкильными заместителями в доноре. В случае аминов типа триэтилендиамина и хинуклидина зарегистрировано образование ЭДА-

комплексов в растворах [13].

Образование ЭДА-комплексов между хинонами и донорами электрона сопровождается появлением в ИК-спектре полосы переноса заряда (ПЗ) [8]. Энергия полосы ПЗ является линейной функцией одноэлектронного потенциала полуволн восстановления хинона в ацетонитриле $E_{V_2}(Q^-/Q)$, причем тангенс угла наклона равен 0,95 для гексаметилбензола и 0,8 для других доноров [14]. Отличие тангенса угла наклона данных зависимостей в случае гексаметилбензола по сравнению с другими донорами объясняется стерическим влиянием метильных групп в доноре, которое приводит к увеличению расстояния между донором и хиноном в ЭДА-комплексе [15]. Тангенс угла наклона аналогичных зависимостей энергии полосы ПЗ от потенциала ионизации ароматического донора электрона близок к 0,9 [15, 16]. Незначительное отклонение от линейной зависимости энергии полосы ПЗ от $E_{V_2}(Q^-/Q)$ наблюдается для хинонов с сильными электроноакцепторными заместителями (цианзамещеные хинона (I)) [17].

Наличие локализованного взаимодействия существенно влияет на положение полосы ПЗ. Особенно ярко это выражено в случае комплексов хингидронного типа. Так, образование относительно слабой Н-связи в ЭДА-комплексах хинонов с гидрохинонами или *п*-фенилендиаминами при переходе от раствора к кристаллическому состоянию приводит к понижению энергии перехода с ПЗ на 5000—11 000 см⁻¹ [18—21]. Этот сдвиг обусловлен именно образованием Н-связи, так как положение полосы ПЗ комплексов без Н-связи слабо зависит от агрегатного состояния.

Сильная зависимость взаимодействия в комплексах хингидронного типа от взаимной ориентации хинона и донора доказана при изучении производных парациклофана (А) и (Б) [22]:

Полоса ПЗ в спектре соединения (А) наблюдается при 462 нм, тогда как соединение (Б) поглощает в этой области в 30 раз слабее; полоса ПЗ соединения (Б) имеет максимум при 346 нм. Аналогично ведут себя метоксизамещенные производные (А) и (Б). Следовательно, Н-связь в этих структурах не играет роли (наличие Н-связи в кристаллических комплексах приводит к сдвигу полосы ПЗ в область 600 нм [19]). Электронодонорно-акцепторное взаимодействие в данных структурах аналогично взаимодействию в соответствующих л-комплексах, образующихся в растворе. Полоса ПЗ наблюдается также для многослойных структур, аналогичных (А) и (Б), по с дополнительным бензольным кольцом между хиноном и гидрохиноном; однако взаимная ориентация донора и акцептора в таких структурах не играет роли [23].

Энергия состояния с ПЗ у ЭДА-комплексов хинонов существенно зависит также от молекулярного окружения. Увеличение полярности растворителя при переходе от циклогексана к ацетонитрилу снижает энергию перехода с ПЗ от 1,43 до 1,34 эВ для ЭДА-комплекса хлоранила (II) с ТМФД [24].

Специфическое взаимодействие со средой может оказывать сильное влияние на процесс образования хингидронных комплексов в растворе. В спектрах ЭДА-комплексов орто-хинонов с соответствующими гидрохинонами имеется полоса ПЗ с максимумом при 440 нм. Однако при растворении образцов в спиртах и эфирах образования комплексов не наблюдается вследствие наличия Н-связей с молекулами растворителя [25].

Хиноны способны образовывать также с ароматическими аминами комплексы, имеющие ионную структуру [8, 26]. Ионные комплексы могут существовать одновременно с неполярными ЭДА-комплексами и обнаруживаются только в относительно полярных растворителях или кристаллах. Динамика системы, включающей одновременно полярный и неполярный ЭДА-комплексы, подробно изучена для комплексов (II) с ТМФД [24, 27—32]. В смеси этилового эфира с изо-пропанолом (3:1) помимо поглощения, характерного для неполярного ЭДА-комплекса, наблюдаются полосы при 635, 520 и 434 нм, обусловленные поглощением соответствующих радикалов, и полоса обратного ПЗ при 1100 нм [29, 30]. Образование радикалов в этой системе было доказано методом ЭПР [24]. Предполагается наличие равновесия:

$$Q + \Pi \rightleftharpoons Q \cdots \Pi \rightleftharpoons Q^{-} \cdots \Pi^{+}$$
 (1)

Ионные комплексы возникают в том случае, если концентрация неполярного ЭДА-комплекса превышает определенное значение [29, 30]; они образуются из агрегатов неполярных ЭДА-комплексов типа кластеров за счет возрастания полярности микроокружения в этих агрегатах, что способствует ионизации. Однако в [22] агрегации нейтральных ЭДА-комплексов не обнаружено даже при температурах вплоть до 185 К.

В полярных растворителях нейтральные ЭДА-комплексы хинонов с ароматическими аминами диссоциируют на свободные ион-радикалы [8, 26, 27], присутствие которых в ацетонитрильных растворах (II) с ТМФД зарегистрировано методом ЭПР [31]. Кинетика диссоциации изучена методом импульсного фотолиза в ацетонитрильных растворах ТМФД и 2,6-дифенил-1,4-бензохинона (III) [33]; ЭДА-комплексы диссоциируют с константой скорости $5.5 \cdot 10^3$ с⁻¹, а энтальпия и энтропия активации равны 3,6 ккал/моль и —29 кал/моль град соответственно. Большая отри-

цательная величина энтропии указывает на существенную реорганизацию молекул среды при диссоциации неполярного ЭДА-комплекса на ион-радикалы. Сопоставление величин констант диссоциации с $E_{\psi_0}(Q^-/Q)$ для серии хинонов показало, что наблюдаемая экспериментально свободная энергия переноса электрона ииже значений, вычисленных исходя из величин соответствующих одноэлектронных потенциалов [34].

Следует отметить, что в хингидронных комплексах протекают термические реакции переноса электрона и атома водорода [20, 21, 25].

Таким образом, структура молекулярного окружения, так же как взаимная ориентация реагентов в комплексе и специфика взаимодействий между ними, существенно влияет на энергию состояния с полным переносом заряда и, следовательно, на кинетику реакций, включающих стадию переноса заряда.

2. Триплетные эксиплексы хинонов

Сродство к электрону молекулы в электронно-возбужденном состоянии выше, чем в основном, на величину, которая обычно приравнивается энергии возбуждения [35]. Поэтому ЭДА-комплексы в триплетном состоянии — триплетные эксиплексы (ТЭ) — имеют структуру, характеризующуюся более высоким вкладом состояния с полным переносом заряда по сравнению со структурой соответствующих ЭДА-комплексов в основном состоянии. Также, как и ЭДА-комплексы в основном состоянии, ТЭ можно разделить по строению на полярные и неполярные в зависимости от вклада полярного состояния с полным ПЗ.

Неполярные триплетные состояния ЭДА-комплексов хинонов существенно отличаются по своим характеристикам от соответствующих ³Q. Например, (I) и его производные практически не фосфоресцируют в замороженных растворах, не обладающих электронодонорными свойствами растворителей. Введение в эти растворы слабых доноров электрона (ароматических углеводородов) приводит к существенному возрастанию интенсивности фосфоресценции [36—38], которая наблюдается при фотовозбуждении на длине волны в области полосы ПЗ. Полосы фосфоресценции ЭДА-комплексов хинонов уширены и сдвинуты в длинноволновую область по сравнению со спектрами фосфоресценции хинона, причем тем больше, чем сильнее электронодонорная способность ароматического углеводорода [38]. Спектры фосфоресценции ЭДА-комплексов (I) и его производных с ароматическими углеводородами близки по положению и форме полос к спектру фосфоресценции исходного хинона; это указывает на то, что основной вклад в структуру ЭДА-комплексов в триплетном состоянии вносит структура с возбуждением, локализованным на молекуле хинона.

Триплетные состояния ЭДА-комплексов с локализованным возбуждением, образованных (II) и слабыми донорами электрона, зарегистрированы по поглощению методами импульсного [39] и лазерного [40, 41] фотолиза. Спектры триплет-триплетного поглощения растворов (II) в бензоле, ацетоне и диоксане при комнатной температуре или в смеси диэтиловый эфир — изопентан — этиловый спирт (ЭПА) в присутствии метилметакрилата при 77 К обладают слабыми полосами в области $\lambda > 550$ нм, где поглощение (II) в триплетном состоянии практически отсутствует. Аналогичные спектры поглощения имеют триплетные эксиплексы (ТЭ), образующиеся при тушении дурохинона (IV) в триплетном состоянии слабыми донорами электрона в неполярных растворителях и в ацетонитриле [42—44].

Фотовозбуждение ЭДА-комплексов хинонов в области полосы ПЗ в системах, где энергия состояния с полным переносом заряда ниже энергии триплетного состояния, не приводит к образованию каких-либо промежуточных продуктов [38, 45—48]. Основным каналом дезактивации полярного синглетного электронно-возбужденного состояния ЭДА-комплекса является быстрый безызлучательный переход в основное состояние. Скорость этого процесса определяется скоростью колебательной ре-

лаксации и релаксационных процессов в молекулярном окружении и составляет величину $\gg 10^{11}$ с⁻¹, что существенно выше скорости диссоциации на ион-радикалы и скорости синглет-триплетных переходов [49].

При тушении ³Q донорами электрона в указанных системах наблюдается образование полярных ТЭ [43—46]. Спектры поглощения ТЭ содержат полосы, характерные для соответствующих ион-радикалов, что типично для эксиплексов с полным переносом заряда. Абсолютного совпадения спектров поглощения полярных ТЭ в инертных растворителях со спектрами поглощения соответствующих ион-радикалов не наблюдается вследствие сильного перекрывания электронных облаков радикалов в комплексах типа «сэндвич». Например, спектр поглощения

полярного ТЭ соединения (III) с ТМФД содержит полосы, характерные для катион-радикала ТМФД, но соотношение интенсивностей этих полос в спектрах ТЭ и ТМФД+ различное (рис. 1). Наличие Нсвязи между ион-радикалами в полярном ТЭ приводит к большему сходству спектров поглощения ТЭ и иои-радикалов. Например, спектр поглощения ТЭ систем (III) — дифениламин (ДФА), приведенный на рис. 2, практически полностью совпадает со спектром поглощения катионрадикала ДФА [45, 50]. Образование Н-

Рис. 1. Спектры поглощения растворов 2,6-дифенилбензохинона-1,4 и N,N,N',N'-тетраметилфенилендиамина-1,4 в дибутилфталате, подвергнутых лазерному фотолизу, полученые к концу лазерного импульса: $I-^3Q$ (получено в отсутствие ТМФД), 2- полярный ТЭ (получено при концентрации ТМФД 0,15 моль/л); 3- спектр поглощения катион-радикала ТМФД в ацетонитриле [46]

Рис. 2. a — Спектры поглощения толуольных растворов 2,6-дифенилбензохинона-1,4 и Ph_2NH , подвергнутых лазерному фотолизу при -12° С: I — получен к концу лазерного импульса (суперпозиция спектров ТЭ и Ph_2N°), 2 — через 150 нс после лазерного импульса (спектр Ph_2N°); 6 — кинетика гибели ТЭ, зарегистрированная по поглощению при 690 нм (I) и образования Ph_2N° при 830 нм (I) [50]

связи приводит к уменьшению электронного перекрывания между радикалами вследствие нарушения структуры «сэндвич». В этой системе наблюдается химическая поляризация ядер (ХПЯ), которая формируется в ходе фотолиза по триплетному механизму при геминальной рекомбинации ион-радикальных пар [50]. Для аналогичных систем с участием (II) отмечено, что спектр поглощения анион-радикальной части ТЭ с водородной связью совпадает со спектром поглощения анион-радикала (II) в спиртовых растворах, где образуются водородные связи с молекулами растворителя [51, 52].

Введение сольватирующих добавок, например спиртов, вызывает изменение спектров поглощения полярных ТЭ. При содержании метанола в бензоле 10% спектры поглощения ТЭ практически отвечают суперпо-

зиции спектров поглощения соответствующих ион-радикалов [43, 44, 53]. Молекулы спирта образуют водородные связи с анион-радикалом хинона в ТЭ [54]. Сольватированные полярные ТЭ имеют строение

сольватно-разделенной ионной пары.

В системах, характеризующихся близкими величинами энергий состояний с полным ПЗ и с локализованным возбуждением, сольватация вызывает наиболее сильные изменения структуры ТЭ и смещает равновесие (схема типа (1) с участием ³Q) в сторону образования ион-радикальных пар в триплетном состоянии [42—44]. Например, введение незначительного количества метанола в бензол (диэлектрическая проницаемость растворителя при этом практически не изменяется) или увеличение диэлектрической проницаемости среды до 5 путем введения соответствующего количества ацетонитрила в бензол приводят к образованию ион-радикальных пар при фотовозбуждении хинона (IV) в присутствии трифениламина (ТФА) уже при относительно низких концентрациях ТФА, при которых образование полярного ТЭ в этой системе в бензоле практически не наблюдается [44]. Влияние сольватации и диэлектрической проницаемости среды обусловлены изменением энергии состояния с полным ПЗ.

Константа скорости безызлучательного перехода в основное состояние (k_{T9}) полярных ТЭ с энергией, превышающей 1 эВ (например, ТЭ системы (III) — ТФА), слабо зависит от полярности и вязкости растворителя (табл. 1). В случае ТЭ с низкой энергией эта константа уменьшается при возрастании полярности среды (ТЭ системы (III) — ТМФД, табл. 1). Сольватация метанолом вызывает увеличение или уменьшение k_{T9} полярных ТЭ с высокой и низкой энергией соответственно. Величина k_{T9} возрастает по мере снижения энергии состояния с полным переносом заряда [43, 54], отклонения от этой закономерности наблюдаются только при очень низких значениях указанной энергии.

Кинетика процесса безызлучательной дезактивации ТЭ хинонов до основного состояния подчиняется правилу энергетического интервала для процессов внутренней конверсии, что свидетельствует о важной роли фактора Франка — Кондона в процессах безызлучательной дезактивации ТЭ. Этот же фактор ответственен за увеличение $k_{\rm T9}$ при образовании водородных связей с молекулами среды или между радикалами в ТЭ. Константа $k_{\rm T9}$ незначительно уменьшается при повышении давления до

3 кбар [55].

Триплетные эксиплексы участвуют в качестве промежуточных частиц во многих фотохимических реакциях хинонов — фотоприсоединения, фотозамещения, сенсибилизированной фотоизомеризации и фоторазложения. Так, n-бензохинон (I) фотохимически устойчив в бензоле, но в присутствии трифторуксусной кислоты образуется 4-феноксифенол [56]. Предполагается, что эта реакция включает стадию образования неполярного ТЭ в виде бирадикального аддукта, в котором протекает катализируемый кислотой перенос протона. Существование этого аддукта подтверждено методом химической поляризации ядер (ХПЯ) при фотовозбуждении ЭДА-комплекса фторанила с бензолом в области полосы ПЗ [57]. В циклоприсоединении олефинов к триплетам хинонов также участвует ТЭ, представляющий собой бирадикальный аддукт или структуру с существенным вкладом состояния с полным переносом заряда [58—62]. Эти эксиплексы тушатся О2, SO2, нуклеофильными реагентами и протонируются в присутствии кислот с образованием разнообразных продуктов. Одновременное исследование методами ХПЯ и пикосекундного лазерного фотолиза природы промежуточных продуктов, возникающих при фотолизе системы хлоранил (II) — 1,1-диметилинден в ацетонитриле, показало, что первичным продуктом взаимодействия ³Q с олефином является ион-радикальная пара ¹.

¹ Cm. Rentzepis P. M., Steyert D. W., Roth H. D., Abelt C. I. J. Phys. Chem. 1985, v. 89, p. 3955.

при комнатной температуре							
Донор электрона	Растворитель	k _{T3} ·10-4, c+1	Ссылки				
Дурохинон							
2-Метоксинафталин	бензол	0,6	[42]				
Toucheur revuus	ацетонитрил бензол	0,4 0,5	[42] [44]				
Трифениламин →	бензол — метанол (20:1)	3,0	[44]				
:	2,6-Дифенил-бензохинон-1,4						
Трифениламин	бен зо л	5,0	[53]				
» »	толуол перфторбензол	5,1 5,0	[53] [53]				
 >>	1,4-Диоксан	8,6	[53]				
>	вазелиновое масло	5,6	[53]				
» »	дибутилфталат тетрагидрофуран	7,2 7,6	[53] [53]				
*	тетратидрофуран	27	[53]				
*	амиловый спирт	19	[53]				
» Дифениламин	бензол — метанол (20:1) толуол	12 28	[53] [50]				
ж ж	перфторбензол	11	[50]				
*	тетрагидрофуран	ÎÔ	[50]				
» »	дибутилфталат	68	[50]				
4 -Фениланилин	вазелиновое масло диоксан	$\begin{bmatrix} 12 \\ 50 \end{bmatrix}$	[50]				
»	бензол	25	*				
4-Фениланилин	толуол	25	*				
>	CHCl ₃ CH ₂ Cl ₂	22 35	*				
>	1,1,2,2-Тетрахлорэтан	19	*				
»	1,2-Дихлорэтан	32	*				
N,N-Диметил-4-метоксианилин	тетрагидрофуран толуол	55 23	[84]				
N,N,N',N'-Тетраметил- <i>n</i> -	толуол	$\geqslant 50$	[45]				
фенилендиамин		1					
» »	дибутилфталат тетрагидрофуран	26 30	[45] [45]				
2,6-1	, Цифенил-3-хлорбензохинон-1, 4	•					
Нафталин	бензол	9,5	[43]				
»	бензол — метанол (20:1)	11	[43]				
1,2,3-Триметоксибензол »	бензол — метанол (20:1)	1,6	[43]				
4-Фениланилин	толуол	$\frac{2,7}{42}$	[43] *				
» Г1	1,1,2,2-тетрахлорэтан	51	* .				
Грифениламин *	бензол — метанол (20:1)	6,4	[43]				
N,N-Диметил-4-метоксианилин	бензол — метанол (20:1)	13 12	[43] [43]				
>>	бензол — метанол (20:1)	18	[43]				
N,N,N',N'-Тетраметнл- <i>n-</i> фенил е ндиамин	бензол	≥50	[43]				
2,6-Дис	фенил-3,5-дихлорбензохинон-1,4	•					
рифениламин	бензол	10 [[43]				
» -Фениланилин	бензол — метанол (20:1) толуол	$\geqslant 140$	[43] *				
	Хлоранил	140 1					
`рифениламин	бензол 1	15	[43]				
* * * * * * * * * * * * * * * * * * *	бензол — метанол (20:1)	25	[43]				
-Метилимидазол -Метилбензимидазол	диоксан	6,5	[51]				
-метилоензимидазол -Этилиндазол	диоксан диоксан	≥50 ≥50	[51] [51]				
Індол	диоксан	\$50 \$50	[51]				
-Этилиндол -Фениланилин	диоксан	≥50	[51]				
-Фениланилин (ифениламин	толуол 1,2-дихлорэтан	≥140	* [40]				
1	ı,≈ Anviohaiau	110	[48]				

Донор электрона	Растворитель	k _T 3·10−•, c−¹	Ссылки	
	Хлоранил			
Дурол ** ** ** ** Гексаметилбензол ** Пентаметилбензол ** п-Ксилол ** Мезитилен м-Ксилол ** Толуол	1,2-дихлорэтан этилацетат диоксан бензол эфир дихлорметан ССІ ₄ бензол ССІ ₄	20 20 17 22 40 21 31 21 26 20 23 10 6,2 11 7,6 1,8 2,1 0,52 0,56	[48] [48] *** ** *** *** *** *** *** *** *** **	

*См. Левин П. П., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1986, с. 2587. **См. Коbashi Н., Копdo Т., Funabashi М. Bull. Chem. Soc. Japan, 1983, v. 59, р. 2347. ***См. Левин П. П., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1986, с. 1435.

Предполагается, что первоначальное образование полярных ТЭ является универсальным процессом в многочисленных фотохимических реакциях присоединения с участием хинонов [62]. Исследование ХПЯ при фотоизомеризации олефинов [63] и разнообразных циклических углеводородов [64-69], при фоторазложении тиминовых димеров [70], при димеризации олефинов и диссоциации их циклодимеров [71] и димера антрацена [72], сенсибилизированных хинонами, показывает, что все эти реакции включают стадию образования ион-радикальных пар вследствие переноса электрона с реагента на ³Q. Первичным актом при нуклеофильном замещении сульфопроизводных антрахинона-9,10 (V) в присутствии алифатических аминов является перенос электрона с амина на молекулу хинона в триплетном состоянии с дальнейшим замещением в ион-радикальной паре [73]. Аналогично протекает фотозамещение окси- и аминопроизводных (V) [74]. При сенсибилизированном хинонами декарбоксилировании мочевой кислоты также осуществляется перенос электрона на ³Q [75].

III. ПЕРЕНОС ЭЛЕКТРОНА К МОЛЕКУЛАМ ХИНОНОВ В ТРИПЛЕТНЫХ СОСТОЯНИЯХ

1. Кинетика тушения молекул хинонов в триплетных состояниях донорами электрона

Кинетика и механизм тушения триплетных состояний хинонов донорами электрона в жидких растворах изучалась методами импульсного и лазерного фотолиза. Получены константы скорости тушения триплетных состояний соединений (IV) [42, 44, 76—82], (II) [40, 48, 51, 52, 83], (III) [45, 46, 84], 2-метилнафтохинона-1,4 (VI) [85], 2-сульфоантрахинона-9,10 (VII) [86—88], антантрона (VIII) [89, 90] различными донорами электрона (табл. 2). Исследована также кинетика тушения триплетного состояния (VIII) свободными радикалами, которые в этой реакции служат в качестве доноров электрона [91]. Оценены константы скорости тушения триплетного состояния 2,6-дисульфоантрахинона-9,10 (или его сольвата) в воде различными анионами, которые составляют 106—107 л/моль с [92, 93]. Триплетное состояние 2-метилсульфоантрахинона-9,10 тушится С1- в воде с константой скорости ~107 л/моль с [94].

 $Taблица\ 2$ Константы скорости тушения триплетных состояний хинонов донорами электрона и атома водорода в жидких растворах при комнатной температуре

Тушитель	Растворитель	k_q , л/моль \cdot с	Ссылки	
	Дурохинон			
N,N-Диметил-4-метоксианили	ин бензол	$[1,2\cdot 10^{10}]$	[42]	
»	ацетонитрил	$1,3 \cdot 10^{10}$	[42]	
»	метанол	$1.4 \cdot 10^{10}$	[42]	
V,N-Диметиланилин	бензол	$7.7 \cdot 10^9$	[42]	
»	ацетонитрил	$9.9 \cdot 10^9$	[42]	
» V,N-Диэтиланилин	метанол циклогексан	$\begin{array}{c c} 1,1 \cdot 10^{10} \\ 8,0 \cdot 10^{9} \end{array}$	[42] [77]	
*,1** <u>Anstananana</u>	ацетонитрил	$9,4 \cdot 10^9$	77	
Анилин	вода — метанол (4:1),	3,0 · 109	[81]	
	pH 8			
PhNH ₃ +	вода — метанол (4:1),	$5.0 \cdot 10^7$	[81]	
1-N111+	pH 2,4	107	1011	
PhNH ⁺ ₃	вода — метанол (4:1), pH — 2	$<10^{7}$	[81]	
Д ифениламин	бензол	7,3 · 109	[42]	
»	ацетонитрил	$7.5 \cdot 10^{9}$	1421	
>>	метанол	$8,4 \cdot 10^9$	[42]	
>>	вода — этанол (2:1)	$3.0 \cdot 10^9$	[78]	
Гри- <i>п</i> -толиламин	бензол	$6.7 \cdot 10^9$	[42]	
»	ацетонитрил	1,0·10iê	[42]	
»	метанол	1,0-1010	[42]	
Грифениламин »	бензол	$6.5 \cdot 10^{7}$ $7.8 \cdot 10^{9}$	[42] [42]	
* *	ацетонитрил метанол	8,0·10 ⁹	[42]	
Гри-п-бромфениламин	бензол	4,2 · 10 ³	[42]	
»	ацетонитрил	$6.4 \cdot 10^9$	[42]	
»	метанол	$8.0 \cdot 10^9$	[42]	
Гриметиламин	вода — метанол (4:1),	$3.0 \cdot 10^8$	[81]	
Me ₃ NH+	pH 11	< 107	[01]	
r-r-91 41 1	вода — метанол (4:1), pH 7	10'	[81]	
Триэтиламин	циклогексан	2,0 · 109	[77]	
*	ацетонитрил	$6.0 \cdot 10^9$	[77]	
Et ₃ NH+	вода — метанол (4:1),	$< 10^{6}$	[81]	
Tarrame	pH 2	7.	[-01	
Триэтиламин Et ₃ NH+	изо-пропанол	$7,1\cdot10^{8}$	[76]	
Latgivii .	вода — метанол (4:1), pII — 2	$< 10^{6}$	[81]	
<i>втор</i> -Бутиламин	изо-пропанол	2,3 · 108	[76]	
Диазабициклооктан	вода — метанол $(4:1)$,	$1.3 \cdot 10^7$	[81]	
	pH 2,1			
>	вода — метанол (4:1),	3,0 · 105	[81]	
CH CH/COEVNIA	pH 0	10.100	1017	
$CH_3CH(CO_2^-)NH_2$	вода — метанол (4:1), pH 10,2	$1,0 \cdot 10^8$	[81]	
CH ₃ CH (CO ₂)NH ₃ ⁺	ргі 10,2 вода — метанол (4:1),	5.105	[81]	
	pH 5,4			
-O ₃ SCH ₂ NH ₂	вода — метанол (4:1),	$2,7 \cdot 10^7$	[81]	
NCCH NILL L NCCCC NOCT	pH 7,2		1017	
NCCH ₂ NH ₂ +NCCH ₂ NH ₃ +	вода — метанол (4:1),	1 · 1 06	[81]	
NCCH ₂ NH ₃ ⁺	рН 5,3 вода — метанол (4:1),	< 10 ⁵	[81]	
	рН 3,3	_ 10	[[01]	
NH_3	вода — метанол (4:1),	3,0 · 106	[81]	
77 7+	pH 10—11			
NH_4^+	вода — метанол (4:1),	< 105	[81]	
1,3,5-Триметоксибензол	pH 4—5	2 2 1 1 1 9	[70]	
1,3,3-1 риметоксиоензол 1,2,3-Триметоксибензол	вода — этапол (2 : 1) бензол	$\begin{array}{c} 3,3 \cdot 10^9 \\ 5,5 \cdot 10^7 \end{array}$	[78] [42]	
»	ацетонитрил	$2,2 \cdot 10^8$	[42]	
>	метанол	$3.0 \cdot 10^9$	[42]	
2-Метоксинафталин	бензол	$4,2 \cdot 10^{7}$	[42]	
»	ацетонитрил	1,0.108	[42]	
»	метанол	$2,2 \cdot 10^9$	[42]	
Дибенз-18-краун-6	бензол	$7.6 \cdot 10^6$	[42]	
» "	ацетонитрил	$5.5 \cdot 10^7$	[42]	
»	метанол	$9.5 \cdot 10^{8}$	[42]	

Тушитель	Растворитель	$k_{m{q}}$, л/моль \cdot с	Ссылки				
Дурохинон							
2,3-Диметилнафталин	бензол	3,2 · 106	[42]				
» »	ацетонитрил метанол	$3,3 \cdot 10^6$ $4,3 \cdot 10^7$	[42] [42]				
» 2,6-Диметилнафталин	бензол	1,6.106	[42]				
>	ацетонитрил	$3,3 \cdot 10^{6}$	[42]				
» Пентаметилбензол, нафталин	метанол бензол, ацетонитрил, мета- нол	$ \begin{array}{c c} 1,1 \cdot 10^8 \\ < 5 \cdot 10^4 \end{array} $	[42] [42]				
Cl-	вода — метанол (4:1), pH 7	1,0.107	[81]				
>	вода — метанол (4:1), pH —2	1,0 · 109	[81]				
Br-	вода — метанол (4:1), рН 7	4,0 · 109	[81]				
OH-	вода — метанол (4:1), pH 10—12	1,5·10°	[81]				
I~	вода — метанол (4:1), pH 7	9,0 · 109	[81]				
» Ag+	ацетонитрил	$9,9 \cdot 10^{9}$ $1,5 \cdot 10^{6}$	[82] [82]				
	вода — метанол (2,3:1) ацетонитрил	5.10^{5}	[82]				
» Fe ²⁺	вода — этанол (2:1)	$1,3 \cdot 10^9$	[78]				
Fe(CN) ₆ ⁴⁻	вода — этанол (2:1)	2,6·10 ⁹	[78]				
»	вода — метанол (2,3:1)	4,3·10 ⁹	[82]				
IrCl ₆	вода — метанол (2,3:1)	$4,1 \cdot 10^9$	[82]				
SCN-	вода метанол (2,3:1)	4,6·10 ⁹	[82]				
CO_3^{2-}	ацетонитрил	$8,1\cdot10^9$	[82]				
	вода — этанол (2:1)	$7,3 \cdot 10^7$	[78]				
Дурогидрохинон »	изо-пропанол циклогексан	$\begin{array}{c} 2.1 \cdot 10^9 \\ 6.2 \cdot 10^9 \end{array}$	[150] [149]				
»	этанол	$3,9 \cdot 10^9$	[149]				
4-Фенилфенол	бензол	$1,2 \cdot 10^{10}$	[42]				
» »	ацетонитрил метанол	$2,3 \cdot 10^9$ $6,9 \cdot 10^9$	$\begin{bmatrix} 42 \\ 42 \end{bmatrix}$				
	Хлоранил						
Нафталин	пропилцианид	$7,0\cdot 10^9$	[83]				
Акрилонитрил Дурол	1,2-дихлорэтан	$3,1\cdot10^4$	[40]				
Метилметакрилат	1,2-дихлорэтан 1,2-дихлорэтан	$3,1 \cdot 10^9$ $5,1 \cdot 10^6$	[48] [40]				
»	ацетонитрил	$6.7 \cdot 10^{6}$					
Стирол	1,2-дихлорэтан	$2,5 \cdot 10^9$	[40]				
» Пиразол	ацетонитрил диоксан	$8,0 \cdot 10^9$ $4 \cdot 10^7$	[40] [51]				
*	ацетонитрил	7.10^{7}	[51]				
Имидазол	диоксан	$2.0 \cdot 10^9$	[51]				
» 1-Метилимидазол	ацетонитрил диоксан	$\begin{array}{c} 4.1 \cdot 10^9 \\ 2.6 \cdot 10^9 \end{array}$	[51] [51]				
»	ацетонитрил	4,7·10°					
Бензимидазол »	диоксан	1,4.109	[51]				
" 1-Метилбензимидазол »	ацетонитрил диоксан	$\begin{array}{c c} 6,3 \cdot 10^9 \\ 1,1 \cdot 10^9 \\ 4.8 \cdot 10^9 \end{array}$	[51] [51]				
Индазол	ацетонитрил диоксан	$\begin{array}{c c} 4,8 \cdot 10^9 \\ 1,4 \cdot 10^9 \\ 5,3 \cdot 10^9 \end{array}$	[51] [51]				
2-Этилиндазол	ацетонитрил диоксан	$5,3 \cdot 10^9$ $3,4 \cdot 10^9$	[51] [51]				
Индол	ацетонитрил диоксан	$9,6 \cdot 10^9$ $5,0 \cdot 10^9$	[51] [51]				
1-Этилиндол	ацетонитрил диоксан	$1,3 \cdot 10^{10}$ $5,4 \cdot 10^{9}$	[51] [51]				
Towns	ацетонитрил	1,2 1010	[51]				
Тетрахлоргидрохинон *	диоксан 1,2-дихлорэтан	$1,7 \cdot 10^9$ $3,6 \cdot 10^9$	[152]				
»	ацетонитрил	$3,6.10^{\circ}$ $4,7.10^{\circ}$	[152] [152]				
	j *	-,. •	[102]				

		Тиолица 2 (1	ц ооолжение
Тушитель	Растворитель	k_q , д/мэль-с	Ссылки
	Фторанил		
Тетрафторгидрохинон	бензол	2,0.109	[57]
	2,6-Дифенилбензохинон-1,4	1 =10 10 1	[0.]
N,N,N',N'-Тетраметил-n-	Толуол	1,8.1010	[45]
фенилендиамин	дибутилфталат	$1,1 \cdot 10^9$	[45]
Трифениламин	толуол	$5,0\cdot 10^9$	[45]
» Дифениламин	дибутилфталат толуол	$3,3 \cdot 10^8$ $7,9 \cdot 10^9$	[45]
дифениламин ≫	дибутилфталат	5,1.108	[45] [45]
2,3,5-Триметилфенол	бензол	$1,1\cdot 10^{10}$	
2,4,6-Триметилфенол	бензол	$9,9 \cdot 10^9$	[151]
4-Фенилфенол 2,6-Дифенилгидрохинон	бензол бензол	1,0.1016	[151]
2,6-Дифенил-4-дифенилметил-	OCH3ON	1,0.1010	[151]
фенол	бензол	$9.2 \cdot 10^9$	[151]
2-Ф енил-6- <i>трет</i> -бутил-4-дифе-			£1
нилметилфенол	бензол	$5,6 \cdot 10^9$	[151]
2,6-Ди- <i>трет</i> -бутил-4-дифенил- метилфенол	бензол	2 4 109	[1517
2,4,6-Три- <i>трет</i> -бутил-фенол	бензол	$\begin{array}{c c} 3,4\cdot 10^9 \\ 2,3\cdot 10^9 \end{array}$	[151] [151]
2,3-Дихлорфенол	бензол	9,1.109	[151]
3-Нитрофенол	бензол	$1,3 \cdot 10^{10}$	[151]
2,6-Ди-трет-бутил-4-нитро-		0.0.100	
фенол 4-Нитрофенол	бензол бензол	$\begin{array}{c c} 6,6 \cdot 10^9 \\ 2,7 \cdot 10^9 \end{array}$	[151]
2,4-Динитрофенол	бензол	$4,2\cdot 10^9$	[151] [151]
2,6-Динитрофенол	бензол	$7,3\cdot 10^9$	[151]
2,4,6-Тринитрофенол	бензол	$9.7 \cdot 10^9$	[151]
	2-Метилнафтохинон-1,4	, ,	
Тимин	вода	2,7 · 109	[85]
Урацил 6 М	вода	$3.0 \cdot 10^9$	[85]
6-Метилурацил	Вода	$3,2 \cdot 10^9$	[85]
	2-Сульфоантрахинон-9,10		
NCSe ⁻	вода	$3,7 \cdot 10^9$	[86]
NO_2^-	вода	$3,2 \cdot 10^9$	[86]
I	вода	$4.2 \cdot 10^9$	[86]
N_3^-	вода	$3,1 \cdot 10^9$	[86]
Br-	вода	$3.8 \cdot 10^9$	[86]
NCS- OH-	вода	$3.9 \cdot 10^9$	[86]
Cl-	вода вода	$\begin{bmatrix} 0.3 \cdot 10^9 \\ 0.5 \cdot 10^9 \end{bmatrix}$	[86]
ClO_4^- , SO_4^{2-}	вода	<10°	[86] [86]
4, 4		1 10 [[00]
N N II	Антантроп		F 0 0 3
N,N-Диметил-4-метоксианилин	бензол	$7.6 \cdot 10^9$	[89]
Трифениламин"	ацетонитрил бензол	$9.2 \cdot 10^9$ $4.6 \cdot 10^5$	[89] [89]
»	ацетонитрил	$2.3 \cdot 10^9$	[89]
4-Аминодифенил	бензол	$4,6 \cdot 10^9$	[89]
» 4-Броманилин	ацетонитрил	$5.3 \cdot 10^9$	[89]
ч-Броманилин »	бензол ацетонитрил	4,8 · 10 ⁸ 4,8 · 10 ⁹	[89] [89]
4-Метоксидифенил	бензол	$3,5 \cdot 10^{5}$	[89]
»	ацетонитрил	$3,9 \cdot 10^{5}$	[89]
2,6-Дифенилгидрохинон	бензол	$2.8 \cdot 10^9$	[151]
» 2,4,6-Триметилфенол	ацетонитрил бензол	$2,1\cdot10^9$	[151]
»	ацетонитрил	$\begin{array}{c c} 3,2\cdot 10^9 \\ 5,8\cdot 10^8 \end{array}$	[151] [151]
2,6-Ди- <i>трет</i> -бутил-4-метил- фенол	бензол .	$9,2 \cdot 10^{7}$	[151]
»	ацетонитрил	$2,2 \cdot 10^7$	[151]
2,3,5-Триметилфенол	бензол	$2,3 \cdot 10^9$	[151]
» 4-Фенилфенол	ацетонитрил бензол	$\begin{array}{c c} 4.8 \cdot 10^8 \\ 2.3 \cdot 10^9 \end{array}$	[151]
»	ацетонитрил	$2.3 \cdot 10^{\circ}$ $2.8 \cdot 10^{7}$	[151] [151]
	1	1 2,0 10	LIUIJ

Тушитель	Растворитель	k_q , л/моль \cdot с	Ссылки		
	Антантрон				
		$ \begin{bmatrix} 5,3 \cdot 10^7 \\ 8,3 \cdot 10^6 \\ 1,1 \cdot 10^7 \\ 1,9 \cdot 10^6 \\ 7,2 \cdot 10^6 \\ 3,4 \cdot 10^6 \\ 5,7 \cdot 10^6 \\ 1,0 \cdot 10^5 \\ 4,0 \cdot 10^5 \\ 8,1 \cdot 10^5 \\ 1,9 \cdot 10^5 \\ 2,7 \cdot 10^5 \\ 5,2 \cdot 10^4 \end{bmatrix} $			

Тушение возбужденных состояний путем переноса электрона описывается схемой (2) [95, 96].

$${}^{3}Q + \coprod_{\substack{k_{12} \\ k_{21}}} ({}^{3}Q \cdots \coprod_{\substack{k_{23} \\ k_{32}}} {}^{3}(Q^{-} \cdots \coprod_{\substack{k_{1} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{21} \\ k_{31}}} Q^{-} + \coprod_{\substack{k_{21} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{21} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{21} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{22} \\ k_{21}}} Q^{-} + \coprod_{\substack{k_{22} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{23} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{23} \\ k_{22}}} Q^{-} + \coprod_{\substack{k_{23} \\ k_{23}}} Q^{-} + \coprod_{\substack{k_{23} \\ k_{24}}} Q^{-} + \coprod_{\substack{k_{24} \\ k_{24}}} Q^{-} + \coprod_{\substack{\substack{k_{24} \\ k_{24}}}} Q^{-}$$

В рамках этой схемы при условии $k_{31} \ll k_{30}$, которое обычно выполняется в полярных растворителях, в квазистационарном приближении константа скорости тушения (k_q) рассчитывается по формуле:

$$k_q = \frac{k_{12}}{1 + (1/K_{23} + k_{30}/k_{23}) k_{21}/k_{30}} \tag{3}$$

Константы скоростей элементарных стадий реакции (2) вычисляются по формулам:

$$k_{23} = k^0 \exp\left(-\Delta G_{23}^*/RT\right)$$
 (4)

$$k_{23}/k_{32} = K_{23} = \exp\left(-\Delta G_{23}/RT\right)$$
 (5)

где k^0 — частотный фактор, а ΔG_{23}^* и ΔG_{23} — свободная энергия активации и стандартная свободная энергия переноса электрона. В модели [95, 96] предполагается, что $k^0 = k_{30}$ и значение k_q в ацетонитриле вычисляется по формуле (6):

$$k_q$$
, л/моль \cdot c = $2 \cdot 10^{10} \{1 + 0.25 [\exp(\Delta G_{23}^*/RT) + \exp(\Delta G_{23}/RT)]\}^{-1}$ (6)

Величина ΔG_{23}^* связана при этом с ΔG_{23} соотношением (7)

$$\Delta G_{23}^* = \frac{1}{2} \Delta G_{23} + \left[\left(\frac{1}{2} \Delta G_{23} \right)^2 + (\Delta G_{23}(0))^2 \right]^{\frac{1}{2}}$$
 (7)

где $\Delta G_{23}(0)$ — внутренний барьер процесса переноса электрона, равный в ацетонитриле 2,4 ккал/моль. Предложены также другие соотношения, связывающие ΔG_{23}^* и ΔG_{23} — в приближении параболических энергетических поверхностей [97, 98]:

$$\Delta G_{23}^* = \Delta G_{23}(0) \left[1 + 0.25 \Delta G_{23} / \Delta G_{23}(0) \right]^2$$
 (8)

и формула, аналогичная соответствующему выражению для процесса переноса энергии [99]:

$$\Delta G_{23}^* = \Delta G_{23} + \Delta G_{23}(0) \ln \{1 + \exp \left[-\Delta G_{23} \ln 2/\Delta G_{23}(0)\right]\} (\ln 2)^{-1}$$
 (9)

Величина ΔG_{23} вычисляется исходя из окислительно-восстановительных потенциалов и энергии триплетного состояния [95, 96, 100].

Зависимости k_q от ΔG_{23} , вычисленные по формуле (6) с использованием выражений (7)—(9), представлены на рис. 3. Там же приведены экспериментальные данные по тушению триплетных состояний соединений (IV) и (VII) неорганическими ионами в воде, а также соединения (IV) в триплетном состоянии в ацетонитриле и бензоле ароматическими донорами электрона (см. табл. 2). Зависимости, соответствующие выражениям (7) и (9), удовлетворительно описывают экспериментальные результаты в полярной среде. Зависимость, соответствующая формуле (8), предсказывает уменьшение k_q при больших отрицательных значениях ΔG_{23} , чего не наблюдается экспериментально. В работах [101, 102] обсуждены причины расхождения теории и эксперимента (наличие других каналов реакции, особенности организации среды вокруг пар заряженных и нейтральных реагентов и формы энергетической поверхности).

Удовлетворительная корреляция между k_q и ΔG_{23} еще не является доказательством того, что в ходе тушения осуществляется полный перенос заряда. Так, если при тушении соединения (IV) в триплетном состоянии некоторыми неорганическими ионами и ароматическими донорами в гидроксилсодержащих растворителях действительно наблюдается

образование ион-радикалов даже при низких значениях k_q [42, 78, 80], то в ацетонитриле ион-радикалы образуются только при значениях k_q , близких к диффузионному пределу [42]. В случае тушения с низкими значениями k_a реакция может осуществляться путем образования неполярных ТЭ, которые с малой скоростью диссоциируют на ион-радикалы. Протонирование приводит к возрастанию электроноакцепторной способности. При протонировании соединения (IV) в триплетном состоянии значение k_q для анионов возрастает, а для катионов — уменьшается (табл. 2) [81].

Если промежуточный ТЭ имеет неполярную природу как в полярных, так и в неполярных растворителях, то величина k_q не изменяется при переходе от бензола к ацетонитрилу (табл. 2). Такие ТЭ обладают малым дипольным моментом, поэтому их энергия слабо зависит от диэлектрической проницае-

Рис. 3. Зависимости $\lg k_q$ от ΔG_{23} , вычисленные по формуле (6) с использованием выражений (7) (a), (8) (б) и (9) (в), и экспериментальные значения k_q , полученные при тушении молекул хинонов в триплетном состоянии донорами электрона в воде (1), ацетонитриле (2) и бензоле (3)

мости среды ϵ . Изменение природы ТЭ (переход от неполярного к полярному) в ходе увеличения ϵ приводит к резкому излому на зависимостях k_q от ϵ , как это наблюдается при тушении некоторых 3Q трифениламином [44, 89]. Введение сольватирующих добавок, которые образуют комплексы с ТЭ, также сопровождается значительным возрастанием k_q (см. табл. 2) вследствие изменения природы и энергии ТЭ [42, 44, 89].

Таким образом, кинетика и механизм тушения триплетных состояний хинонов донорами электрона определяются свойствами промежуточных ТЭ, которые ответственны и за закономерности процесса образования ион-радикалов в полярных средах.

2. Образование ион-радикалов в реакциях триплетных состояний хинонов

Перенос электрона к молекуле хинона в триплетном состоянии в полярных средах сопровождается образованием анион-радикала хинона и окисленной формы донора электрона, в качестве которого часто выступают молекулы растворителя. Ион-радикалы зарегистрированы методами импульсного и лазерного фотолиза при тушении триплетных состоя-

ний соединения (IV) ароматическими аминами [34, 42, 44, 54, 77-79, 82, 103, 104], ароматическими углеводородами [42, 78, 80], ацетоном [78], неорганическими анионами [78, 79, 81]; соединения (II) — ароматическими аминами [34, 48, 54, 105], гетероциклическими соединениями [51, 52], ароматическими углеводородами [41, 42, 83, 106—108], циклическими углеводородами [64], метилметакрилатом [40], некоторыми полярными растворителями [39, 83, 105, 108—110]; других производных (I) — ароматическими аминами и углеводородами [33, 34, 45, 46, 53— 55]; нафтохинона-1,4 (IX) трифениламином [54]; соединения (VI) — пиримидинами [85]; соединения (V) и его производных— аминами [54, 111] и неорганическими анионами [86, 87, 92, 93, 112]; соединения (VIII) — ароматическими аминами [89]; производных дифенохинона трифениламином [54]. Образование ион-радикалов однозначно следует из данных XПЯ при фотолизе (II) в полярных растворителях в присутствии олефинов [63, 71] и некоторых циклических углеводородов [65— 69]. Методом ЭПР наблюдалось образование ион-радикальных пар при фотолизе трет-бутилзамещенных (I) и о-бензохинона в замороженных диэтиламине и триэтиламине [113, 114], однако в [115] сделан вывод, что образуется пара нейтральных радикалов.

На основании данных по химической поляризации электронов (ХПЭ) и ХПЯ предполагается, что основным процессом при тушении ³Q алифатическими аминами в спиртах является образование анион-радикалов хинона [116, 117]. Анион-радикал может образовываться в ходе вторичных процессов переноса протона [118]. Так, методом ХПЭ при фотолизе спиртовых растворов хинонов в присутствии алифатических аминов в [76, 119—122] также зарегистрировано образование анион-радикалов хинонов; однако в экспериментах по лазерному фотолизу замечено, что процесс образования этих радикалов протекает медленнее, чем гибель исходного триплетного состояния [76]. В экспериментах по пикосекундному лазерному фотолизу удалось однозначно показать, что при тушении триплета соединения (V) и его хлорированных производных триэтиламином в спирте происходит перенос электрона [111]. Для систем хинон — органометаллические доноры [118, 123—127] и витамин К, — витамин С [128] вывод о том, что ион-радикалы образуются в ходе первичного акта, сделанный на основании данных ЭПР и ХПЭ, также представляется нам достаточно однозначным. В системе 9,10-фенантренхинон $(X) - Me_3SnSnMe_3$ радикалы образуются при фотовозбуждении ЭДА-комплексов в области полосы ПЗ [118]. При фотолизе кристаллических образцов 3,6-ди-трет-бутилпирокатехина с добавкой 3,6-ди-третбутилбензохинона-1,2 обнаружен сигнал ЭПР, отнесенный к ион-радикальной паре [129, 130].

Образование ион-радикалов при взаимодействии хинонов в триплетных состояниях с донорами электрона в полярных средах обычно протекает с близкими к 1,0 выходами в системах, где ΔG_{23} имеет отрицательное значение и величина k_q близка к диффузионному пределу [42, 78, 83]. Исключение составляют доноры, имеющие радикальный фрагмент, так как в этом случае образуется ионная пара в дублетном спиновом состоянии, в котором (в отличие от триплетного состояния) нет спинового запрета для перехода в основное (также дублетное) состояние исходных реагентов [91]. В случае систем с положительной ΔG_{23} и величиной k_q ниже диффузионного предела, высокие выходы радикалов наблюдаются только в гидроксилсодержащих растворителях [42].

Ион-радикалы образуются с высокими выходами при тушении ³Q донорами электрона в мицеллярных растворах и микроэмульсиях, причем реагенты могут находиться как в одной, так и в разных фазах [78, 79, 80, 103, 104, 131]. В последнем случае электроны с поверхности мицеллы — места расположения донора, переходят через границу раздела фаз к молекуле хинона в триплетном состоянии, расположенной внутри мицеллы. Этот процесс протекает очень быстро (например, за 40 нс между молекулой (IV) в анионной мицелле и Fe²⁺ [78] и еще быстрее между этой же молекулой в катионной мицелле и CO₃²⁻ [79]), что обу-

словлено наличием туннельного механизма. Радикалы не образуются в мицеллах, содержащих анионы Cl- или Br-, вследствие тушения триплетного состояния этими анионами. Этот эффект не столь ярко выражен в микроэмульсиях, где молекула в триплетном состоянии находится в бензольной фазе и удалена от нонов поверхностно-активного вещества [103].

Во многих случаях тушение 3Q неорганическими аннонами (например, NO_2 -, CO_3^{2-} , SO_3^{2-}) сопровождается образованием радикалов с высоким выходом [86, 87, 92, 93, 112, 132]. Однако радикалы не образуются при взаимодействии с N_3 -, NCS-, Cl-, Br-, I- [81, 86, 87, 92, 94]. Вклад тушения за счет эффекта тяжелого атома незначителен, так как ионы Ce- не эффективно тушат триплетное состоящие (IV) [81]. Зависимость выхода радикалов от природы неорганического аниона можно объяснить исходя из величины спин-орбитального взаимодействия в неорганическом радикала. Если мультиплетное расщепление энергетических уровней радикала, обусловленное орбитальным моментом, превышает 100 см^{-1} , то интеркомбинационная конверсия в радикальной паре ускоряется настолько, что этот процесс становится основным каналом гибели триплетной радикальной пары [87]. Особо следует отметить случай ту-

шения анионом NO₂-, который обладает триплетным состоянием с энергией 56 ккал/моль. Тушение этим анионом приводит к образованию радикалов, т. е. при наличии двух возможных каналов реакции (перенос энергии и перенос электрона), оба из которых являются экзотермичными, процесс идет по наиболее выгодному по энергии пути. Вполне вероятно, что переносу электрона в данном случае предшествует перенос энергии.

Низкий квантовый выход образования радикалов характерен также для тушения анионом ОН- (в случае системы (IV) — ОН- выход радикалов составляет 10% [77])

Рис. 4. Зависимость $\lg k_{\rm T9}$ от $1/\epsilon$ бинарных смесей бензол—метанол (1) и бензол—бензонитрил (2). Получено при лазерном фотолизе растворов 2,6-дифенилбензохинона-1,4 в присутствии трифениламина [53]

вследствие существования быстрых химических каналов гибели ТЭ (оксилирование) [86]. Точно так же процесс образования аддуктов, конкурирующий с диссоциацией на ион-радикалы, обусловливает низкую эффективность образования радикалов при тушении триплетного состояния соединения (II) виниловыми мономерами [40].

Низкие выходы ион-радикалов зарегистрированы при фотолизе хинонов в полярных растворителях, не содержащих гидроксил (так, при фотолизе (II) в ацетонитриле квантовый выход равен 0,08, в пропилцианиде — в три раза меньше [40, 83], для (IV) в ацетоне выход составил 0,08 [78]), что обусловлено малой величиной константы скорости переноса электрона. Аналогичным образом объясняется низкий (0,15) выход анион-радикалов при фотолизе (IV) в мицеллярных растворах лаурилсульфата натрия (донором электрона является сульфатная группа) [78].

Детальные исследования методом импульсного фотолиза с регистрацией поглощения и электропроводности в бинарных смесях и вязких спиртах при различном давлении показали, что при тушении триплетных состояний хинонов ароматическими донорами электрона в средах с умеренной полярностью радикалы образуются в результате диссоциации ТЭ согласно схеме (10) [34, 53—55].

$$3Q + Д \rightleftharpoons TЭ$$

$$Q^{-} + Д^{+}$$

$$Q + Д$$

$$Q + Д$$

$$(10)$$

Константа скорости, диссоциации полярных ТЭ на ион-радикалы (k_2) зависит от вязкости среды и удовлетворительно вычисляется по формуле для константы скорости диффузионно-контролируемой диссоциации ионных пар:

$$k_{\text{gHC}} = 3e^2D \left\{ \sigma^3 \epsilon kT \left[\exp\left(e^2/\sigma \epsilon kT \right) - 1 \right] \right\}^{-1}$$
 (11)

где e — заряд электрона, D — коэффициент взаимной диффузии, σ — среднее расстояние между ионами в паре.

Tаблица 3 Расстояние (σ , $\mathring{\bf A}$) между ион-радикалами в триплетных эксиплексах *

		Раст		
Хинон	Донор	бензол — метанол	бензол — бен- зонитрил	Ссылки
Антрахинон-9,10	Трифециламин	16,7		[54]
Нафтахинон-1,4	**************************************	17,3	_	[54]
Турохипон	>	19,2	11,9 (19,7)	[54]
2,6-Дифенилбензо- хинон-1.4	»	16,0	11,4	[54]
линон-1,4 Бензохинон-1,4	>	15,3		[54]
2,6-Дифенил-3,5-дихлор- бензохинон-1,4	*	14,2		[54]
Клоранил	»	13,4	10,5	[54]
Броманил	»	12,9	10,9	[54]
,4'-Дифенохинон	»	17,0	_	[54]
3,3′,5,5′-Тетрахлор-4,4′- дифенохинон	*	15,1	11,6	[54]
3,6-Ди- <i>трет</i> -бутилбензо- хинон-1,2	»	13,6	-	[54]
2,6-Дифенил-3-хлорбен- зохинон-1,4	»	14,7	-	[54]
»	нафталин	15,3		[54]
	1,2,3-триметоксибензол	15,6		[54]
»	N,N-диметиланилин	13.8	. – .	[54]
2,6-Дифенил-3-хлорбен- зохинон-1,4	N,N-диметил-4- метоксианилин	14,6	_	[54]
»	N,N,N',N'-тетраметил- бензидин	15,7	_	[54]
»	N,N,N',N'-тетраметил- <i>n</i> - фенилендиамин	15,0	-	[54]
>>	дифениламин	_	7,5	[34]
2,6-Дифенил-3,5-дихлор- бензохинон-1,4	≯	-	8,5	[34]
Хлоранил	>	1	10,5	[34]
Броманил	*	1	11,5	[34]

[•] В скобках приведено значение для смеси бензол — бензонытрил + 5 об.% метанола.

Величины σ (табл. 3), полученные из зависимостей $k_{\tau \theta}$ или выхода радикалов от диэлектрической проницаемости бинарных смесей ε (рис. 4), в большинстве случаев существенно превышают сумму ван-дер-ваальсовых радиусов реагентов, а также расстояние между неспаренными электронами в аналогичных радикальных парах в замороженных растворах (равное $6.0-6.5\,\text{Å}$ [38, 113]), в которых реакция протекает через ЭДА-комплексы или комплексы с H-связью. Наличие водородной связи между радикалами, как например, в системе 2.6-дефинил-3-хлорбензохинон-1.4-ДФА, сопровождается уменьшением σ , причем тем более заметным, чем сильнее H-связь. Высокие значения σ отражают тот факт, что радикалы образуются из сольватно-разделенных ион-радикальных пар.

В отсутствие специфических взаимодействий радикалов друг с другом или с молекулами среды величины σ практически не зависят от структуры хинона и донора (см. табл. 3); однако введение в систему спиртов вызывает увеличение σ, причем тем большее, чем прочнее водородная связь между анион-радикалом хинона и молекулой спирта.

Исследование динамики процессов в ион-радикальной паре в пикосекундном временном интервале при переносе электрона от ароматических доноров к молекуле (II) в триплетном состоянии в ацетонитриле показало, что перенос электрона сопровождается установлением равновесия в системе катион — анион — молекулярное окружение за $\sim 0,1$ — 0,5 нс [106]. Предполагается, что это термодинамическое равновесие достигается за счет диффузионных процессов. При анализе спектральных изменений в ходе установления равновесия сделан вывод, что расстояние, на которое переносится электрон, меньше равновесного расстояния между радикалами в паре. Аналогичные эксперименты в системе (V) — триэтиламин в спирте и ацетонитриле также указывают на первичное образование контактной ион-радикальной пары [111]². Однако исследования в системах бензофенон — амины привели авторов [133, 134) к выводу о сближении радикалов, образовавшихся после переноса электрона.

IV. ПЕРЕНОС АТОМА ВОДОРОДА К МОЛЕКУЛАМ ХИНОНОВ в триплетных состояниях

Реакция переноса атома Н к молекулам хинонов в триплетных состояниях может осуществляться по трем механизмам. В двух крайних случаях реакция протекает в две стадии, когда вначале переносится электрон, а затем протон (схема (12)) или наоборот (схема (13)).

В промежуточном случае атом водорода переносится более или менее как целое:

$$^{3}Q + RH \rightleftharpoons (^{3}Q \cdots RH) \rightleftharpoons ^{3}(QH \cdots R') - \longrightarrow QH + R'$$

$$(14)$$

Вообще говоря, перечисленные процессы могут конкурировать друг с другом, однако более всроятна ситуация, когда реакцию нельзя однозначно отнести к какому-то одному из трех типов, так как промежуточное состояние с переносом заряда описывается суперпозицией состояний различной природы, а комплекс с водородной связью может характеризоваться потенциальной поверхностью с одним минимумом для положе-

Перенос атома H к карбонильным соединениям в триплетных $n\pi^*$ состояниях имеет много общего с аналогичными процессами с участием алкоксильных радикалов и рассматривался теоретически как реакция з рамках методов валентных связей [135], корреляционных диаграмм [136] и теории возмущений [137, 138]. Кроме того, перенос атома Н к триплетным состояниям карбонильных соединений, в том числе хинонов, автор работ [139, 140] рассчитывал как туннельный процесс в рамках теории безызлучательных переходов; этот подход позволяет удовлетворительно рассчитать константы скорости переноса атома Н для систем с электронодонорно-акцепторным взаимодействием.

543

² Cm. Hamanoue K., Nakayama T., Sugiura K., Teranishi H., Washio M., Tagawa S., Tabatu Y. Chem. Phys. Letters, 1985, v. 118, p. 503; Hamanoue K., Kimoto M., Kajiwara Y., Nakayama T., Teranishi H. J. Photochem. 1985, v. 31, p. 143.

1. Перенос атома водорода при взаимодействии хинонов в триплетных состояниях с аминами

Взаимодействие хинонов в триплетных состояниях с вторичными и первичными ароматическими аминами в жидких растворах сопровождается образованием как ион-радикалов, так и нейтральных радикалов — вследствие переноса электрона и атома водорода соответственно [34, 42, 45, 50, 141]. Увеличение температуры раствора приводит к увеличению выхода нейтральных радикалов, но суммарный выход радикалов не изменяется. Процесс тушения осуществляется с диффузионной константой скорости (см. табл. 2); дейтерирование аминогрупп не вызывает значительного изменения соотношения выходов радикалов различной природы.

 $\hat{\mathbb{L}}$ Анные закономерности характерны для реакций, протекающих по схеме (12). Величина ΔG_{23} отрицательна, поэтому перенос электрона является наиболее быстрой из возможных реакций. Затем устанавливается прототропное равновесие в радикальной паре, причем этот процесс вследствие наличия водородной связи также осуществляется очень быстро в ходе термодинамической релаксации. В табл. 4 приведены термодина-

Таблица 4⁻ Константа равновесия K_H , энтальпия ΔH_H и энтропия ΔS_H прототропного равновесия в радикальных парах в среде толуола и CH₃CN [141]

Хинон	Амин	K _H		ΔH_H , ккал/моль		ΔS _H , кал/ /моль·град	
Manon		толуол	CH ₃ CN	толуол	CH3CN	толуол	CH ₃ CN
Дурохинон 2,6-Диметоксибензо- хинон-1,4	дифениламин »	50 34	2,7 3,1	8,0	5,0 4,8	 34	19 19
2 ,6-Дифенилбензохи- нон-1,4	»	25	1,8	9,4	4,5	39	16
2,6-Дифенил-3-хлор- бензохинон-1,4	*	8,1	1,0	10,0	4,3	38	15
2,6-Дифенил-3,5- дихлорбензохинон- 1,4	»	1,2	0,25	10,4	3,8	36	10
2,5-Дихлорбензохи- нон-1,4	>	0,52	0,17	10,6	3,5	35	9
Хлоранил 2,6-Дифенил-3-хлор- бензохинон-1,4	» 4- <i>трет</i> -бутилдифенил- амин	$0,04 \\ 2,8$	$\begin{bmatrix} 0,08\\0,62 \end{bmatrix}$	$\frac{11,4}{9,9}$	$\begin{bmatrix} 3,3\\2,7 \end{bmatrix}$	32 36	6 8
»	4,4'-ди- <i>трет</i> -бутил- дифениламин	1,4	0,37	10,1	1,6	35	3
>>	дифениламин 4,4'-ди-1,1,3,3-тетра- метилбутилдифенил- амин	1,1	0,28	10,2	1,0	35	1
2, 6-Дифенил-3,5- дихлорбензохинон- 1, 4	4,4'-ди- <i>трет</i> -бутил- дифениламин	0,25	0,16	10,8	0,5	34	-2

мические параметры прототропного равновесия в радикальных парах, образующихся при тушении триплетных состояний хинонов вторичными ароматическими аминами. Реорганизация молекул среды в окрестности ионной пары, обладающей существенно большим дипольным моментом по сравнению с парой нейтральных радикалов, приводит к крайне высокому значению ΔS_H . Ослабление электростатического поля при увеличении полярности растворителя сопровождается уменьшением ΔS_H и ΔH_H . Равновесие смещается в сторону ионной пары по мере возрастания кислотности семихинона и основности аминильного радикала. Между свободной энергией переноса протона в толуоле и ацетонитриле и свободной энергией кислотно-основного равновесия в воде, рассчитанной из соответствующих значений рK, наблюдается линейная зависимость [141]. Получены U-образные зависимости K_H от ϵ бинарной смеси то-

луол — ацетонитрил, что объясняется различным ходом уменьшения ΔS_n и ΔH_n по мере увеличения ϵ [141].

Тушение ³Q первичными и вторичными ароматическими аминами в случае, если ΔG_{23} имеет положительное значение (например, в системах, включающих (IV) или (VIII) и ДФА, 4-аминодифенил или 4-броманилин) сопровождается образованием нейтральных радикалов и протекает с константами скорости, существенно превышающими аналогичные константы, полученные в случае доноров электрона, с теми же значениями потенциалов окисления, но не содержащих в структуре групп NH (см. табл. 2) [42, 89, 90]. Предполагается, что тушение протскает по схеме (14), включающей образование ТЭ с Н-связью, что обеспечивает очень быстрый перенос атома Н [42, 89]. Вопрос о степени переноса заряда в ТЭ с Н-связью остается открытым; следует учитывать то, что Н-связь существенно понижает энергию состояния с полным переносом заряда. Константы скорости тушения увеличиваются при увеличении є среды или при введении сольватирующей добавки [89]. В полярной среде или в условиях специфической сольватации значения ΔG_{23} меньше, поэтому реакция протекает по схеме (12).

В некоторых случаях перенос атома Н происходит также при тушении ³Q третичными ароматическими аминами, как например, в системе (IV) — N, N-диэтиланилин в бензоле [77]. Существование достаточно подвижного протона в катион-радикале амина приводит к появлению нового канала гибели полярного ТЭ — процесса переноса протона. Прямые наблюдения методом пикосекундного лазерного фотолиза показали, что перенос протона в полярном ТЭ, возникающем при переносе электрона от N-метилакридина к молекуле (V) в триплетном состоянии, в бензоле протекает за время 140 пс³.

Образование нейтральных радикалов часто паблюдается при взаимодействии хинонов в триплетных состояниях с алифатическими аминами, обладающими подвижным атомом водорода при α -атоме углерода. При тушении триплетного состояния соединения (IV) триэтиламином нейтральные радикалы образуются как в неполярных, так и в полярных растворителях [77]. В экспериментах по ХПЯ доказано [117], что в системе (I) — триэтиламин в ацетонитриле фотоинициированный перенос атома Н протекает в две стадии [117]. Данный механизм подтвержден прямыми наблюдениями для систем (V) — триэтиламин в толуоле [111] и бензофенон — триэтиламин в ацетонитриле [142]. В случае, если перенос электрона термодинамически не выгоден, то может осуществляться эффективный перенос атома Н как целого, когда α -СН связь может быть расположена параллельно орбитали неподеленной пары азота [143].

Фотолиз хинонов в присутствии алифатических и вторичных ароматических аминов в замороженных неполярных растворителях сопровождается появлением сигнала ЭПР от пар нейтральных радикалов, образующихся при фотопереносе атома Н в ЭДА-комплексе [144—146]. Расстояние между неспаренными электронами в радикальных парах составляет 5—9 Å.

Исходя из анализа зависимостей выхода радикалов различной природы в системах хинон — амин от температуры следует ожидать, что при низких температурах должны образовываться преимущественно ион-радикальные пары. Однако это справедливо только в случае жидких растворов. В замороженных растворах образование ионной пары может быть затруднено, так как ограничена вращательная и поступательная подвижность молекул растворителя, что препятствует реорганизации среды, необходимой для стабилизации ионной пары.

³ Cm. Manring L. E., Peters K. S. J. Amer. Chem. Soc., 1985, v. 107, p. 6452.

2. Взаимодействие хинонов в триплетных состояниях с фенолами

Фотовозбуждение хиноидных соединений в присутствии фенолов сопровождается образованием семихиноновых и феноксильных радикалов как в жидкости, так и в твердой матрице. Кинетику и механизм взаимодействия хинонов в триплетных состояниях с фенольными соединениями, а также природу образующихся радикалов изучали методами импульсного фотолиза [41, 42, 84, 89, 90, 147—165], ЭПР [113, 114, 166], ХПЭ [116, 167—173] и ХПЯ [57, 170, 172, 174—176]. Методом ЭПР изучена пространственная структура и динамика радикальных пар, образующихся при фотолизе замороженных растворов или кристаллов хинонов и фенолов [113, 114, 129, 130, 177—184].

а) Кинетика реакций хинонов в триплетных состояниях с фенолами

Тушение триплетных состояний хинонов с достаточно высокой триплетной энергией фенольными соединениями протекает с высокими константами скорости, приближающимися к диффузионному пределу (рис. 5; см. также табл. 2) [42, 57, 84, 149, 150—152, 163, 167]. По мере уменьшения электронодонорной способности фенола величина k_q вначале уменьшается, однако далее начинает возрастать (рис. 5), что указывает на изменение механизма реакции. Величины k_q уменьшаются при введении τper -бутильных групп в opto-положения фенола, что обусловлено экранированием реакционного центра [151]. Из рис. 5 видно,

Рис. 5. Зависимость $\lg k_q$ от одноэлектронного потенциала окисления E_{γ_2} фенолов при тушении триплетных состояний 2,6-дифенилбензохинона-1,4 (энергия триплетного состояния \sim 2,3 эВ) в бензоле (1) и антантрона (энергия триплетного состояния \sim 1,6 эВ) в бензоле (2) и в ацетонитриле (3) [151]

что тушение триплетного состояния антантрона (VIII), имеющего низкую триплетную энергию, протекает в основном с более низкими k_q (см. также табл. 2) [89, 90, 151]. Отметим, что хотя величина k_q уменьшается при ослаблении электронодонорных свойств фенола, однако тангенс угла наклона соответствующих зависимостей существенно меньше ожи-

даемого для реакций переноса электрона, а значения k_q превышают константы скорости переноса электрона в данных системах. Наблюдаемая совокупность закономерностей влияния строения реагентов и свойств среды может быть объяснена в рамках трех возможных механизмов (схемы (12)—(14)).

Реакции между хинонами в триплетном состоянии с высокой энергией и фенолами, обладающими достаточно сильными электронодонорными свойствами (например, гидрохинонами), протекают по схеме (12); при этом прототропное равновесие в радикальной паре полностью смещено в сторону образования пары нейтральных радикалов вследствие крайне высокой кислотности катион-радикалов фенолов.

В случае, если свободная энергия переноса электрона от фенола к молекуле хинона в триплетном состоянии имеет большое положительное значение, тушение осуществляется по схеме (14). На первой стадии реакции образуется ТЭ с водородной связью, в котором протекает процесс переноса атома Н. Триплетное состояние имеет электрофильную природу, поэтому k_q уменьшается при снижении электронодонорной способности фенола. Увеличение полярности среды приводит к ослаблению водородной связи между реагентами в ТЭ, что сопровождается уменьшением константы скорости переноса атома Н.

Следует отметить, что образование водородной связи в ТЭ может приводить к существенному снижению энергии состояния с полным переносом заряда (на ~1 эВ и даже больше). Это объясняется тем, что смещение протона от донора к акцептору сопровождается увеличением электронодонорной способности донора и электроноакцепторной способности акцептора. Поэтому в системах с водородной связью, у которых свободная энергия переноса электрона, вычисленная исходя из окислительно-восстановительных потенциалов реагентов, имеет положительное значение, также возможно протекание переноса атома Н по схеме (12). Двухступенчатый перенос атома Н в некоторых аналогичных системах, где реакция протекает с участием синглетных эксиплексов с водородной связью, доказан экспериментально в результате прямых наблюдений методом пикосекундного лазерного фотолиза [185, 186].

Тушение 3 Q фенолами с ярко выраженными кислотными свойствами (пикриновая кислота, динитрофенолы) описывается схемой (13). При этом механизме k_q может возрастать при увеличении кислотности фенола и полярности растворителя вследствие смещения прототропного равновесия в сторону ионной пары.

Исследование влияния вязкости среды на кинетику тушения триплетного состояния антантрона (VIII) фенолами позволило разделить стадии образования ТЭ с водородной связью и переноса атома Н в этом ТЭ [90]. Величина k_q для некоторых фенолов существенно ниже константы скорости реакции, протекающей при каждой встрече реагентов в растворе, однако зависит от вязкости так же, как и константа скорости диффузионно-контролируемой реакции (рис. 6). Лимитирующей стадией реакции в этих системах является образование ТЭ с водородной связью. Этот процесс контролируется молскулярной подвижностью, но осуществляется с относительно низкой константой скорости, так как для образования комплекса с водородной связью требуется строгая взаимная ориентация реагситов. Увеличение кислотности фенола приводит к уменьшению константы скорости образования промежуточного ТЭ с водородной связью [90]. Это объясняется тем, что в системах, в которых перенос атома Н осуществляется в комплексах с более сильной водородной связью, реагенты в этих комплексах более строго ориентированы друг относительно друга, и эта «жесткая» ориентация препятствует образованию комплекса.

Природа лимитирующей стадии и механизм тушения ³Q фенолами определяют величину наблюдаемого кинетического изотопного эффекта. Акт переноса атома Н в ТЭ характеризуется заметным кинетическим изотопным эффектом; однако если лимитирующая стадия процесса тушения представляет собой образование промежуточного ТЭ, то наблю-

даются низкие значения изотопного эффекта [90, 151]. Низкие (близкие к 1) значения кинетического изотопного эффекта характерны также для процессов тушения, протекающих по схемам (12) и (13), так как скорость этих реакций определяется стадиями переноса заряда или установления прототропного равновесия [89, 151].

б) Образование радикалов при фотолизе хинонов в присутствии фенолов

В большинстве систем взаимодействие хинонов в триплетных состояниях с фенолами приводит к образованию семихиноновых и феноксильных радикалов с выходами, близкими к 100% [42, 89, 149, 151]. Однако исследования ХПЯ при фотолизе хинонов в присутствии фенолов указывают на незначительный вклад процесса геминальной рекомбинации радикальных пар [57, 170—172, 174—176], что должно приводить к снижению выхода радикалов. Кроме этого, если процесс описывается схемой (12), снижение выхода радикалов может быть обусловлено быстрой интеркомбинационной конверсией в неравновесном ТЭ. Таким образом, объясняются относительно низкие выходы радикалов при тушении триплетного состояния хлоранила (II) тетрахлоргидрохиноном [41, 152].

Очень низкие выходы радикалов наблюдались при тушении триплетного состояния антантрона (VIII) пикриновой кислотой и динитрофенолами в бензоле [151]. В этих системах реакция описывается схемой (13), причем основным каналом гибели ионной пары, образовавшейся после переноса протона, является интеркомбинационный переход в основное состояние. Если реакция переноса протона в первичном ТЭ конкурирует с переносом атома Н, то выход феноксильных радикалов увеличивается при повышении температуры вследствие смещения прототропного равновесия в сторону первичного ТЭ, в котором осуществляется перенос атома Н [151]. Существование прототропного равновесия объясняет также низкие выходы радикалов (которые возрастают при повышении температуры) при тушении полярных ТЭ фенолами [163]. При переносе атома Н образуется комплекс, включающий феноксильный и семихиноновый радикалы, а также молекулу донора электрона (амин). Прототропное равновесие в этом комплексе обусловлено переносом протона между амином и семихиноном.

Отмечается, что при тушении ³Q, обладающих неэквивалентными атомами О, следует ожидать образования двух видов семихиноновых радикалов, соотношение выходов которых зависит от механизма реакции [151].

Фотолиз замороженных растворов фенолов и хинонов приводит к образованию радикальных пар из феноксильного и семихинонового радикалов [113, 177]. Фотоперенос атома Н осуществляется в ЭДА-комплексах, которые присутствуют и в жидких растворах, на что указывает небольшой разброс значений расстояния между неспаренными электронами в радикальной паре ($\leq 0.1\,\mathrm{\AA}$) [177, 179]. Оценка константы образования этих комплексов дает значение 0,2—3 л/моль при температуре —90° С [181]. Из анализа спектров ЭПР получены геометрические параметры, характеризующие относительное расположение радикалов в паре — плоскости их колец параллельны друг другу и расположены на расстоянии 1,6 Å [180]. При низкой температуре радикальные пары вращаются как целое с характерными временами 0,1—1,0 мс [182].

В случае производных о-бензохинона часто регистрируется два вида радикальных пар с различным расстоянием между неспаренными электронами, что объясняется миграцией протона в семихиноне между двумя неэквивалентными атомами кислорода [177—180, 182, 184]. Образование двух типов радикальных пар может быть также обусловлено существованием ЭДА-комплексов различного состава [183].

Два типа сигналов ЭПР от радикальных пар зарегистрировано при фотолизе монокристаллов и поликристаллических образцов 3,6-ди-*трет*-бутилбензохинона-1,2 и соответствующего пирокатехина [129, 130]. Один

тип отнесен к ион-радикальной паре, а другой к паре нейтральных радикалов. Эти радикальные пары образуются и гибнут независимо друг от друга. Можно предположить, что в кристалле прототропное равновесие заморожено, поэтому процессы переноса атома Н и электрона идут параллельно в парах донора и акцептора, структура и молекулярное окружение которых благоприятствуют или переносу атома Н, или переносу электрона. Перенос электрона предполагается при фотовозбуждении ЭДА-комплекса дурохинона (IV) и гидродурохинона в области полосы ПЗ в спирте [187].

3. Отрыв атома водорода молекулами хинонов в триплетном состоянии от других органических соединений

Перенос атома водорода к ³Q является очень распространенной реакцией и наблюдается при взаимодействии с углеводородами, кетонами, эфирами, альдегидами, ангидридами, амидами, практически с участием всех органических соединений [4, 6].

Молекулы хинонов в триплетном состоянии способны отрывать атом Н даже от бензола, хотя квантовый выход образования радикалов очень низок [39, 188—191]. Константа скорости тушения триплетного состояния (V) бензолом в ССІ₄ составляет 7,2·10⁵ л/моль·с и возрастает до $2,2\cdot10^6$ л/моль·с при переходе к ацетонитрилу [192]. Большое значение в реакции с бензолом имеет природа триплетного состояния; так, производные соединения (V) с триплетным состоянием $\pi\pi^*$ -типа взаимодействуют с бензолом с существенно более низкими константами скорости [192]. Перенос атома Н от бензола осуществляется в неполярном ТЭ (типа бирадикального аддукта [57]) и является побочным каналом гибели этой частицы.

Фотовосстановление хинонов в смеси с предельными углеводородами протекает малоэффективно [78, 150, 193]; все же радикалы удалось наблюдать методом ЭПР [194] и импульсного фотолиза [39, 149, 195—198]. Квантовый выход радикалов при фотовосстановлении (IV) в циклогексане равен всего 0,09 [149] и еще меньше в гексане [78, 150]. В случае соединения (V), которое имеет триплетное состояние $n\pi^*$ -типа и с болес высокой энергией, квантовый выход радикалов в гексане составляет 0,11 [196], а величина k_q равна 8,6·105 л/моль с [199].

Подробно изучена реакционная способность 3Q по отношению к алкилзамещенным бензолам, флуорену, 9,10-дигидроантрацену [200—206]. Скорость исчезновения 9,10-фенантренхинона (X) увеличивается в ряду: бензол < трет-бутилбензол < толуол < этилбензол < кумол (соответственно 0,33; 0,42; 1,00; 1,27; 2,33) [200]. Методом ХПЯ установлено, что первичный акт представляет собой отрыв атома Н в α -положении алкильного заместителя с образованием радикальных пар, дающих аддукты при образовании связей С—С или С—О [201—206].

Эксперименты по пикосекундному лазерному фотолизу показали, что перенос атома Н от дурола к молекуле хлоранила (II) в триплетном состоянии осуществляется по схеме (12) в неравновесном полярном ТЭ [48]. Обнаружен также небольшой вклад медленного процесса переноса протона в равновесном ТЭ.

В процессе фотолиза замороженных растворов n-бензохинона (I) и алкилзамещенных бензолов при облучении в области полосы ПЗ зарегистрировано (по УФ-поглощению и спектрам ЭПР) образование радикальных пар в триплетном состоянии, включающих нейтральные радикалы с расстоянием между неспаренными электронами $5.8-6.1\,\text{Å}$ [38]. Радикальные пары образуются также в системе (I) — α -метилнафталин, но не образуются с β -метилнафталином, что обусловлено различиями в относительном расположении реагирующих частиц (например, более значительным удалением метильной группы от C=O в ЭДА-комплексе с β -метилнафталином).

Методом импульсного фотолиза показано, что радикалы образуются при фотолизе соединения (IV) в хлороформе [197] и (II) в 1,2-дихлор-

этане; квантовый выход равен 0,19 [40]. Из данных ХПЯ следует, что реакция фторанила в триплетном состоянии с хлороформом включает стадию образования радикальной пары, которая затем рекомбинирует в исходные продукты и диссоциирует на радикалы [57, 175, 176]. Исследование реакции методом ЭПР показало, что эффективность образования радикалов возрастает в присутствии следов кислот [207]. Можно предположить, что перенос атома Н включает стадию переноса протона.

При фотолизе соединения (II) в ацетонитриле и пропилцианиде наряду с заряженными радикалами наблюдается образование семихиноновых радикалов [39, 40, 83, 108, 110]; при этом выход радикалов в пропилцианиде выше, чем в ацетонитриле [83]. Однако в [108, 110] сделан вывод, что семихиноновые радикалы не являются продуктами реакции (II) в триплетном состоянии с молекулами растворителя, а образуются

в побочных фотохимических реакциях.

Перенос атома Н осуществляется весьма эффективно в реакциях ³Q с олефинами. Константа скорости тушения триплетного состояния (X) 2-метилпропеном, транс- и цис-бутил-2-еном, 2-метилбутил-2-еном и 2,3диметилбутил-2-еном в бензоле возрастает от $1,0 \cdot 10^8$ до $1,3 \cdot 10^9$ л/моль \cdot с в этом ряду соединений [208]. Квантовый выход реакции при этом увеличивается от 0,21 до 0,79 и одновременно возрастает вклад процесса R—H-присоединения, включающего стадию переноса атома Н. Перенос атома водорода осуществляется в ТЭ и конкурирует с другим каналом гибели ТЭ — процессом образования продуктов циклоприсоединения. Образование различных аддуктов в ТЭ и в паре нейтральных радикалов приводит к низкому выходу радикалов. Квантовые выходы семихиноновых радикалов при тушении триплетного состояния хлоранила акрилонитрилом и метилметакрилатом в 1,2-дихлорэтане составляют 0,2 и 0,08, а при тушении стиролом радикалы не обнаружены [40]. Константы скорости тушения определяются потенциалом ионизации донора (см. табл. 2).

При взаимодействии 3Q с эфирами осуществляется перенос атома Н из α -положения. Радикалы наблюдали методами ЭПР [172, 190, 207, 209—216] и импульсного фотолиза [39, 41, 215]. По данным ХПЯ, радикальная пара рекомбинирует в аддукты [172, 202, 203, 205, 206, 217—220]. Реакционная способность эфиров выше, чем у алкилзамещенных бензолов. Скорость исчезновения соединения (X) в тетрагидрофуране, диоксане и диэтиловом эфире составляет 1,78; 2,47 и 3,44 соответственно (относительно толуола) [200]. Это обусловлено наличием атома кислорода с неподеленной электронной парой, которая участвует в электронодонорно-акцепторном взаимодействии с 3Q в ТЭ. Перенос атома Н может протекать при облучении в области полосы ПЗ в ЭДА-комплексе в триплетном состоянии, как это наблюдается в системах вида $R-X-CH_2CO_2H$ (X=O, S, NH) [221] и в системе (II) — диоксан [41]. Выход радикалов в последнем случае составляет 0,13, константа скорости образования радикалов из ТЭ равна 3,8· 10^4 с $^{-1}$, а константа скорости других процессов дезактивации ТЭ составляет 2,6· 10^5 с $^{-1}$.

Семихиноновые радикалы зарегистрированы методом ЭПР [190, 207, 209, 212, 214, 222] и импульсного фотолиза [39, 105, 110] при фотовозбуждении хинонов в ацетоне. Выход радикалов увеличивается в присутствии следов кислот [207]. Предполагается, что семихиноновые радикалы образуются в фотохимической реакции с участием продукта темновой

реакции между реагентами [108, 110].

Молекулы хинонов в триплетных состояниях отрывают атом Н от альдегидной группы [4]. Реакция изучена методом ХПЯ; показано, что ее механизм тот же, что и для процессов с участием эфиров и алкилзамещенных бензолов [206]. Известны также реакции отрыва атома Н от ангидридов и амидов [4]. В случае амидов [4] и фосфатов [190, 210, 212, 214] семихиноновые радикалы зарегистрированы методом ЭПР. Семихиноновые радикалы образуются также при фотовозбуждении хинонов в микроэмульсиях [104] и в мицеллярных растворах [223—227] вследствие переноса атома Н от поверхностно-активного вещества.

Существуют многочисленные фотохимические реакции хиноидных соединений с участием заместителей, входящих в состав этих хинонов. Часто предполагается, что первичный процесс представляет собой перенос атома Н от заместителя к карбонильному атому О, но этот механизм еще дискутируется [4]. В подобных реакциях может принимать участие молекула растворителя. Например, образование конечного продукта фотолиза соединения (III)

также можно объяснить в рамках механизма с внутримолекулярным переносом атома H, однако данные XПЯ указывают на то, что первичным актом является перенос электрона или атома H от среды с последующим отрывом атома H от заместителя в хиноне радикалом растворителя [228, 229].

V. ПЕРВИЧНЫЕ ПРОЦЕССЫ ПРИ ФОТОВОССТАНОВЛЕНИИ ХИНОНОВ СПИРТАМИ

Механизму фотовосстановления хинонов в спиртах посвящено большое количество работ; во многих из них обсуждается вопрос о природе первичного акта — или это перенос электрона, или перенос атома водорода как целого.

Фотолиз замороженных спиртовых растворов хинонов приводит к образованию семихиноновых радикалов, наблюдавшихся по УФ-поглощению или методом ЭПР [38, 222, 230—235]. Исследование природы радикалов спирта показало, что вначале образуются алкоксильные радикалы [230, 232]. Первичным актом является перенос электрона с последующим переносом протона от гидроксильной группы. Во вторичных реакциях образуются оксиалкильные радикалы. Существует второй канал реакции — отрыв атома Н от углерода; так, вклад этого пути в случае системы (I) — этанол составляет 10% [222].

Промежуточные продукты фотовосстановления хинонов в присутствии спиртов в жидких растворах изучались методом импульсного фотолиза [39, 78, 81, 93, 105, 149, 150, 215, 229, 236—248]. Авторы работы [78] сделали вывод, что молекула (IV) в триплетном состоянии отрывает электрон от молекулы спирта в смеси вода — этанол (2:1). При этом одновременно с гибелью триплета наблюдается образование анионрадикалов (IV) с квантовым выходом 0,2. Аналогично протекает фотолиз соединения (II) в этаноле (7). Взаимодействие (IV) в триплетном состоянии с растворителем в этаноле и изо-пропаноле приводит к образованию семихиноновых радикалов с выходом 0,4 [149, 150]. Семихиноновые радикалы образуются с высокими выходами (вплоть до 1,0) во многих других системах, но перенос атома Н может при этом осуществляться по двухступенчатому механизму [229].

Убедительные выводы о механизме взаимодействия соединения (V) и его галогензамещенных с этанолом сделаны в [192] при исследовании влияния добавок кислоты на изотопный эффект в реакции фотовосстановления. Зарегистрировано одновременное образование анион-радикала и семихинонового радикала. Дейтерирование спирта приводит к уменьшению выхода фотовосстановления в 1,5 раза. Введение добавок СГ₃СООН не влияет на изотопный эффект в случае (V), но снижает величину изотопного эффекта в случае галогензамещенных (V), имеющих низшее триплетное состояние $\pi\pi^*$ -типа. Таким образом, молекула

⁴ См. также *Hamanoue K., Yokoyama K., Kajiwara Y., Nakajima K., Nakayama T., Teranishi H.* Chem. Phys. Letters, 1984, v. 110, p. 25.

соединения (V) в триплетном состоянии $n\pi^*$ отрывает атом H от молекул этанола, а галогензамещенные (V) в триплетном $\pi\pi^*$ -состоянии — электрон с последующим переносом протона. Сравнение квантовых выходов фотовосстановления в C_2H_5OD и в C_2D_2OH указывает на то, что протон переносится от α -атома углерода катион-радикала спирта.

Константа скорости тушения триплетного состояния (IV) этанолом и изо-пропанолом составляет 3·104 л/моль с [78, 249], а бензиловым спиртом — $8 \cdot 10^5$ л/моль с и возрастает до $2.7 \cdot 10^7$ л/моль с при протонировании молекулы (IV) в триплетном состоянии [81], что говорит в пользу переноса электрона. Наблюдается существенное увеличение константы скорости тушения ³Q спиртами при переходе от хинонов с низшими триплетными состояниями $\pi\pi^*$ -типа ((II), (III), (IV)) или типа ПЗ (2-пипиридиноантрахинон-9,10) к хинонам с триплетными состояниями $n\pi^*$ -типа ((I), (V)). Величина k_a в случае тушения соединения (V) в триплетном состоянии спиртами составляет от $3 \cdot 10^6$ до $2 \cdot 10^7$ л/моль $\cdot \mathbf{c}$ [199, 250], а оценка k_q для тушения соединения (I) в триплетном состоянии метанолом в воде дает значение выше 108 л/моль с [242]. Эта закономерность указывает на радикальный механизм реакции, на основании которого объясняется ряд активности спиртов при их фотодегидрировании, определяющейся подвижностью атома Н в α-положении [251].

Механизм фотовосстановления хинонов спиртами исследовали методами ХПЭ [116, 119, 167, 169, 171, 173, 252—260] и ХПЯ [170, 228, 229, 253, 261—264], которые в большинстве случаев не дают однозначного ответа на вопрос о природе первичных радикалов. Вывод о том, что первичный акт представляет собой перенос электрона, сделан при исследовании ХПЯ в системах (I) — CCl₃COOH — трет-бутанол [263] и (III) — *н*-пропанол [228, 229], в которых ХПЯ формируется по триплетному механизму, проявление которого возможно благодаря малому времени электронной релаксации катион-радикала спирта. Исследование последней системы одновременно методами ХПЯ и импульсного фотолиза показало, что, хотя первичным актом является перенос электрона, но в итоге из «клетки» растворителя выходят нейтральные радикалы, что обусловлено последующим переносом протона.

Природа радикалов, образующихся при фотолизе спиртовых растворов хинонов подробно, исследована методом ЭПР [187, 189, 190, 207, 210, 212, 214, 215, 265—276]. Используя спиновые ловушки, удалось зарегистрировать первичные (очень короткоживущие) алкоксильные радикалы спирта [187, 271, 272, 276]. Сделан вывод, что первичным актом во многих случаях является перенос электрона. В случае ярко выраженных триплетных состояний $n\pi^*$ -типа существует второй путь реакции перенос атома водорода по радикальному механизму. Перенос электрона или атома водорода осуществляется в ЭДА-комплексе с водородной связью в триплетном состоянии и индуцируется электронодонорно-акцепторным взаимодействием с участием неподеленной пары электронов, локализованной на атоме кислорода молекулы спирта и электрона, расположенного на n-орбитали молекулы хинона в триплетном состоянии.

* *

Из анализа литературных данных можно сделать вывод о том, что процессы переноса электрона и образование триплетных электронодонорно-акцепторных комплексов с той или иной степенью переноса заряда и с водородной связью играют важную роль в фотохимии хиноидных соединений. Кинетика и механизм образования триплетных эксиплексов и протекающих в них процессов является основой, которая определяет ход дальнейшего химического превращения. Исследование физико-химических свойств триплетных эксиплексов представляется важным направлением в фотохимии.

Триплетные эксиплексы являются промежуточными частицами не только во многих фотохимических и фотобиологических системах. Сов-

ременные подходы в создании новых методов регистрации информации на основе бессеребряных материалов также могут включать эксиплексные системы, в которых триплетные эксиплексы играют ключевую роль. Благодаря прогрессу в области новых методов на основе лазерной техники, это направление интенсивно развивается в настоящее время.

ЛИТЕРАТУРА

1. Schönberg A., Mustafa A. Chem. Rev., 1947, v. 40, p. 181.

- 1. Schohoefg A., Mustala A. Cheffit. Rev., 1947, V. 40, p. 161.
 2. Bruce J. M. Quart. Rev., 1967, v. 21, p. 405.
 3. Rubin M. B. Fortschr. chem. Forsch., 1969, B. 13. S. 251.
 4. Bruce J. M. In: The Chemistry of the Quinoid Compounds. L.: J. Wiley, 1974, p. 465.
 5. Hageman H. J. Methoden der Organischen Chemie, 1976, B. 4/5b, S. 941.
 6. Ельцов А. В., Студзинский О. П., Гребенкина В. М. Успехи химии, 1977, т. 46,
- 7. Крюков А. И., Шерстюк В. П., Дилунг И. И. Фотоперенос электрона и его прикладные аспекты. Киев: Наук. думка, 1981, с. 44. 8. Foster R., Foreman M. I. In: The Chemistry of the Quinoid Compounds. L.: J. Wi-

- Foster R., Foreman M. I. III. The Chemistry of the Quantity of the Ley, 1974, p. 257.
 Foster R. J. Phys. Chem., 1980, v. 84, p. 2135.
 Sakurai T., Tagawa H. Acta Cryst., 1971, v. B27, p. 1453.
 Fritzsche H. Ber. Bunsenges. phys. Chem., 1964, B. 68, S. 459.
 Chattopadhyay J. B., Deshmukh M. N., Jose C. I. J. Chem. Soc., Faraday Trans. II, 1975, v. 71, p. 1127. 13. Campbele M. J. M., Demetriou B., Jones R. J. Chem. Soc., Perkin Trans. II, 1983,

- 13. Campbele M. J. M., Demetriou B., Jones R. J. Chem. Soc., Perkin Trans. 11, 1983, p. 917.

 14. Peover M. E. Trans. Faraday Soc., 1962, v. 58, p. 1656.

 15. Davis K. M. C., Hammond P. R., Peover M. E. Ibid., 1965, v. 61, p. 1516.

 16. De Pauw E., Collin T. E. Bull. Soc. Chim. Belg., 1984, v. 93, p. 355.

 17. Scribner R. M. J. Org. Chem., 1966, v. 31, p. 3671.

 18. Kalninsh K. K. Chem. Phys. Letters, 1981, v. 79, p. 427.

 19. Kalninsh K. K. J. Chem. Soc., Faraday Trans. II, 1982, v. 78, p. 327.

 20. Kalninsh K. K. Ibid, 1984, v. 80, p. 1529.

 21. Кальнини К. К., Шукарева В. В. Изв. АН СССР. Сер. хим., 1985, с. 95.

 22. Staab H. A., Herz C. P. Angew: Chem. Int. Ed. Engl., 1977, v. 16, p. 799.

 23. Staab H. A., Zapj U., Gurke A. Ibid., 1977, v. 16, p. 801.

 24. Andre J. J., Marchal E., Bieber A. Chem. Phys. Letters, 1979, v. 62, p. 483.

 25. Туманский Б. А., Прокофьев А. И., Бубнов Н. Н., Солодовников С. П., Ходак А. А. Изв. АН СССР. Сер. хим., 1983, с. 268.

- 25. Іуманский Б. А., Прокофьев А. И., Бубнов Н. Н., Солодовников С. П., Ходак А. А. Изв. АН СССР. Сер. хим., 1983, с. 268.
 26. Foster R. In: Molecular Complexes. L.: Flek Science, 1974, v. 2, p. 251.
 27. Foster R., Thomson T. J. Trans. Faraday Soc., 1962, v. 58, p. 860.
 28. Emslic P. H., Foster R. Rec. trav. Chim., 1965, v. 84, p. 255.
 29. Nogami T., Yoshihara K., Nagakura S. Bull. Chem. Soc. Japan, 1971, v. 44, p. 295.
 30. Nogami T., Yoshihara K., Nagakura S. Ibid., 1972, v. 45, p. 122.
 31. Eastman J. M., Engelsma G., Calvin M. J. Amer. Chem. Soc., 1962, v. 84, p. 1339.
 32. Saito Y., Kinoshita M., Sano M., Akamatu H. Bull. Chem. Soc. Japan, 1970, v. 43, p. 2370

- р. 2370. 33. Левин П. П., Худяков И. В., Кузьмин В. А. Докл. АН СССР, 1979, т. 246, с. 144. 34. Левин П. П., Кокрашвили Т. А. Изв. АН СССР. Сер. хим., 1981, с. 1234. 35. Теренин А. Н. Фотоника молекул красителей. Л.: Наука, 1967, с. 411. 36. Briegleb G., Herre W., Wolf D. Spectrochim. Acta, 1969, v. 25, p. 39. 37. Щеглова Н. А., Шигорин Д. Н., Якобсон Г. П., Тушишвили Л. Ш. Журн. физ. химии, 1969, т. 43, с. 1984. 38. Arimitsu S., Tsubomura H. Bull. Chem. Soc. Japan, 1972, v. 45, p. 2433.

- 39. Kawai K., Shirota Y., Tsubomura H., Mikawa H. Ibid., 1972, v. 45, p. 2433. 40. Kobashi H., Gyoda H., Morita T. Ibid., 1977, v. 50, p. 1731. 41. Kobashi H., Tomioka Y., Morita T. Ibid., 1979, v. 52, p. 1568. 42. Левин П. П., Татиколов А. С., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1982, c. 1005.

- 43. Левин П. П. Там же, 1981, с. 2390. 44. Левин П. П., Галл Д., Ваго Ю., Кузьмин В. А. Хим. физика, 1984, т. 3, с. 1380. 45. Kuzmin V. A., Darmanyan A. P., Levin P. P. Chem. Phys. Letters, 1979, v. 63,
- р. 509. 46. Кузьмин В. А., Дарманян А. П., Левин П. П. Докл. АН СССР, 1979, т. 245, с. 1150.
- Nagamura T., Kurihara T., Matsuo T. J. Phys. Chem., 1982, v. 86, p. 1886.
 Kobashi H., Funabashi M., Kondo T., Morita T., Okada T., Mataga N. Bull. Chem. Soc. Japan, 1984, v. 57, p. 3557.
 Hilinski E. F., Masnovi J. M., Amatore C., Kochi J. K., Bentzepis P. M. J. Amer. Chem. Soc. 1982, v. 105, p. 6167.

- 49. Нипякі Е. Р., Маяпогі Л. М., Атагоге С., Кості Л. К., Вепегерія Г. М. 6. Імпессент. 1983, v. 105, p. 6167.
 50. Левин П. П., Дарманян А. П., Кузьмин В. А., Янкелевич А. З., Кузнец В. М. Изв. АН СССР. Сер. хим., 1980, с. 2744.
 51. Петрушенко К. Б., Вокин А. И., Турчанинов В. К., Байкалова Л. В., Еськова Л. А., Фролов Ю. Л. Теор. и эксперим. химия, 1984, т. 20, с. 323.
 52. Петрушенко К. Б., Вокин А. И., Турчанинов В. К., Горшков А. Г., Фролов Ю. Л. Изв. АН СССР. Сер. хим., 1985, с. 267.

- 53. Левин П. П., Виноградов А. М., Дарманян А. П., Кузьмин В. А. Докл. АН СССР, 1980, т. 254, с. 1158.
- 54. Левин П. П., Кокрашвили Т. А., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1982, c. 521.

- 55. Виноградов А. М., Левин П. П., Кузьмин В. А. Там же, 1981, с. 670. 56. Brace-Smith D., Deshpande R., Gilbert A., Grzonka J. Chem. Communs, 1970, p. 561. 57. Hutton R. S., Roth H. D., Schilling M. L. M., Trozzolo A. M., Leslie T. M. J. Amer.
- Chem. Soc., 1982, v. 104, p. 5878. 58. Wilson R. M., Gardner E. J., Elder R. C., Squire R. H., Florian R. Ibid., 1974, v. 96, p. 2955.

 Wilson R. M., Wunderly S. W. Chem. Communs., 1974, v. 461.
 Wilson R. M., Wunderly S. W., Kalmbacher J. G., Brabender W. Ann. New York Acad. Sci., 1976, v. 267, p. 201.
 Wilson R. M., Musser A. K. J. Amer. Chem. Soc., 1980, v. 102, p. 1720.
 Wilson R. M., Wunderly S. W., Walsh T. F., Musser A. K., Dutcalt R., Geiser F., Gee S. K., Brabender W., Yerino L., Conrad T. T., Tharp G. A. Ibid., 1982, v. 104, p. 4420. p. 4429.

- 63. Roth H. D., Schilling L. M. Ibid., 1979, v. 101, p. 1898. 64. Jones G., Chiang S.-H., Becker W. G., Welch J. A. J. Phys. Chem., 1982, v. 86, p. 2805.
- 65. Roth H. D., Schilling M. L. M., Raghavachari K. J. Amer. Chem. Soc., 1984, v. 106, p. 253.

66. Roth H. D., Schilling L. M. Ibid., 1980, v. 102, p. 7956.

67. Roth H. D., Schilling M. L. M., Hutton R. S., Truesdale E. A. Ibid., 1983, v. 105,

68. Roth H. D., Schilling L. M., Jones G. Ibid., 1981, v. 103, p. 1246.

69. Roth H. D., Schilling M. L. M., Gassman P. G., Smith J. L. Ibid., 1984, v. 106, p. 2711.

70. Roth H. D., Lamola A. A. Ibid., 1972, v. 94, p. 1013.

- . 71. Roth H. D., Schilling M. L. M. Ibid., 1981, v. 103, p. 7210.

 72. Barber R. A., De Mayo P., Okada K., Wong S. K. Ibid., 1982, v. 104, p. 4995.

 73. Wubbels G. G., Tollejsen D. M., Meredith R. S., Herwaldt L. A. Ibid. 1973, v. 95, p. 3820.
- 74. Hamilton K., Hunter J. A., Preston P. N. J. Chem. Soc., Perkin Trans. II, 1980, p. 1544.

75. Davidson R. S., Goodwin D. Ibid., 1982, p. 1559.

- 76. Atkins P. W., Dobbs A. J., Evans G. T., McLauchlan K. A., Percival P. W. Mol. Phys., 1974, v. 27, p. 769.
- 77. Amouyal E., Bensasson R. J. Chem. Soc., Faraday Trans. I, 1977, v. 73, p. 1561. 78. Scheerer R., Grätzel M. J. Amer. Chem. Soc., 1977, v. 99, p. 865. 79. Гретцел М. В сб.: Мицеллообразование, солюбилизация и микроэмульсин. М.:

- 79. Гретцел М. В Со. Мицемногоризование, Мир, 1980, с. 269.

 80. Grätzel C. K., Kira A., Jirousek M., Grätzel M. J. Phys. Chem., 1982, v. 87, p. 3983.

 81. Scaiano J. C., Neta P. J. Amer. Chem. Soc., 1980, v. 102, p. 1608.

 82. Martins L. J. J. Chem. Soc., Faraday Trans I, 1982, v. 78, p. 533.

 83. Gschwind R., Haselbach E. Helv. Chim. Acta, 1979, v. 62, p. 941.

84. Левин П. П., Кокрашвили Т. А., Дарманян А. П., Кузьмин В. А. Докл. АН СССР, 1982, т. 262, с. 1180. 85. Fisher G. J., Land E. J. Photochem. Photobiol., 1983, v. 37, p. 27.

86. Loeff I., Treinin A., Linschitz H. J. Phys. Chem., 1983, v. 87, p. 2536. 87. Treinin A., Loeff I., Hurley J. K., Linschitz H. Chem. Phys. Letters, 1983, v. 95, p. 333.

88. Loeff I., Treinin A., Linschitz H. J. Phys. Chem., 1984, v. 88, p. 4931. 89. Левин П. П., Кокрашвили Т. А., Кузьмин В. А. Хим. физика, 1983, т. 2, с. 175. 90. Левин П. П., Кокрашвили Т. А., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1984, c. 1265.

91. Татиколов А. С., Левин П. П. и др. Там же, 1983, с. 517.

92. Kuzmin V. A., Chibisov A. K. Chem. Communs., 1971, p. 1559.
93. Kuzmin V. A., Chibisov A. K. Chem. Communs., 1971, p. 1559.
94. Metcalfe J. J. Chem. Soc., Faraday Trans. I, 1983, v. 79, p. 1721.
95. Rehm D., Weller A. Ber. Bunsenges. Phys. Chem. 1969, B. 73, S. 834.
96. Rehm D., Weller A. Isr. J. Chem., 1970, v. 8, p. 259.
97. Markus R. A. Annu. Rev. Phys. Chem., 1964, v. 15, p. 155.

98. Markus R. A. In: Tunnelling in Biological Systems. N. Y.: Acad. Press, 1979, p. 109. 99. Agmon N., Levine R. D. Chem. Phys. Letters, 1977, v. 52, p. 197.

100. Weller A. Phys. Chem. (N. F.), 1982, B. 133, S. 93. 101. Marcus R. A., Siders P. J. Phys. Chem., 1982, v. 86, p. 622. 102. Kakitani T., Mataga N. Chem. Phys., 1985, v. 93, p. 381.

103. Yamaguchi Y., Miyashita T., Matsuda M. J. Phys. Chem., 1981, v. 85, p. 1369.

- 104. Kiwi J., Grätzel M. J. Amer. Chem. Soc., 1978, v. 100, p. 6314. 105. Shirota Y., Kawai K., Yamamoto N. Bull. Chem. Soc. Japan, 1972, v. 45, p. 2683. 106. Hilinski E. F., Milton S. V., Rentzepis P. M. J. Amer. Chem. Soc., 1983, v. 105, p. 5193.
- 107. Kawai K., Yamamoto N., Tsubomura H. Bull. Chem. Soc. Japan, 1969, v. 42, p. 369. 108. Краснова В. А., Краснов Ю. С., Крюков А. И. Теор. и эксперим. химия, 1982, т. 18, с. 348.

- 109. Крюков А. И., Краснова В. А. Там же, 1972, т. 8, с. 478.
 110. Крюков А. И., Краснова В. А., Краснов Ю. С. Там же, 1979, т. 15, с. 676.
 111. Натапоче К., Yokoyama К., Кајішага Ү., Кітото М., Nakayama Т., Тегапізні Н. Сhem. Phys. Letters, 1985, v. 113, p. 207.
 112. Кузьмин В. А., Карякин А. В., Чибисов А. К. Химия высоких энергий, 1972, т. 6,
- c. 502.
- с. 502.
 113. Бубнов Н. Н., Прокофьев А. И., Володькин А. А., Белостоцкая И. С., Ершов В. В. Докл. АН СССР, 1973, т. 210, с. 100.
 114. Масалимов А. С., Прокофьев А. И., Бубнов С. П., Солодовников С. П., Кабачник М. И. Изв. АН СССР. Сер. хим., 1976, с. 193.
 115. Сердобов М. В. Там же, 1984, с. 1416.

Сердобов М. В. Там же, 1984, с. 1416.
 Wong S. K. J. Amer. Chem. Soc., 1978, v. 100, p. 5488.
 Roth H. D. In: Chemically Induced Magnetic Polarisation. Dordrecht: D. Reidal Publ., 1977, ch. 4.
 Chen K. S., Wan J. K. S., Kochi J. K. J. Phys. Chem., 1981, v. 85, p. 1726.
 Atkins P. W., McLauchlan K. A., Percival P. W. Chem. Communs., 1973, p. 121.
 Atkins P. W., Dobbs A. J., McLauchlan K. A. Chem. Phys. Letters, 1974, v. 29, p. 616.
 Dobbs A. J., McLauchlan K. A. Ibid., 1975, v. 30, p. 257.
 Dobbs A. J. Mol. Phys., 1975, v. 30, p. 1073.
 Emori S., Weri D., Wan J. K. S. Chem. Phys. Letters, 1981, v. 84, p. 512.
 Weir D., Hutchinson D. A., Russell J., Wan J. K. S. Canad. J. Chem., 1982, v. 60, p. 703.

p. 703.

- 125. Kochi J. K., Chen K. S., Wan J. K. S. Chem. Phys. Letters, 1980, v. 73, p. 557. 126. Chen K. S., Foster T., Wan J. K. S. J. Phys. Chem., 1980, v. 84, p. 2473. 127. Creber K. A. M., Chen K. S., Wan J. K. S. Rev. Chem. Intermediates, 1984, v. 5,
- 128. Depew M. C., Adeleke B. B., Wan J. K. S. Canad. J. Chem., 1981, v. 59, p. 2708. 129. Лазарев Г. Г., Лебедев Я. С., Прокофьев А. И., Рахимов Р. Р. Хим. физика, 1982, т. 1, с. 809.
- 130. Lasarev G. G., Lebedev Ya. S., Prokofev A. I., Rakhimov R. R. Chem. Phys. Letters, 1983, v. 95, p. 262.

- 1983, v. 95, p. 262.
 131. Левин П. П., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1986, с. 464.
 132. Кузьмин В. А., Чибисов А. К. Теор. и эксперим. химия, 1971, т. 7, с. 403.
 133. Simons J. D., Peters K. S. J. Amer. Chem. Soc., 1981, v. 103, p. 6403.
 134. Simons J. D., Peters K. S. Ibid., 1982, v. 104, p. 6542.
 135. Previtali C. M., Scaiano J. C. J. Chem. Soc., Perkin Trans. II. 1972, p. 1667, 1672.
 136. Bigot B., Devaquet A., Turro N. J. J. Amer. Chem. Soc., 1981, v. 103, p. 6.
 137. Chandra A. K. J. Photochem., 1979, v. 11, p. 347.
 138. Chandra A. K. Ibid., 1982, v. 18, p. 151.
 139. Formosinho S. J. J. Chem. Soc., Faraday Trans. II, 1976, v. 72, p. 1313, 1332.
 140. Formosinho S. J. Ibid., 1978, v. 74, p. 1978.
 141. Левин П. П., Кокрашвили Т. А., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1983, с. 284. c. 284.

142. Shaefer C. G., Peters K. S. J. Amer. Chem. Soc., 1980, v. 102, p. 7566. 143. Griller D., Howard J. A., Marriott P. D., Scaiano J. C. Ibid., 1981, v. 103, p. 619 144. Иванов Ю. А., Лазарев Г. Г., Лебедев Я. С., Сердобов М. В. Изв. АН СССР.

Сер. хим., 1978, с. 2134. 145. Лазарев Г. Г., Лантратова О. Б., Иванов Ю. А., Покровская И. Е., Сердобов М. В.

- Там же, 1980, с. 942.
- 146. Свиридов Б. Д., Сердобов М. В., Попонова Р. В., Де Ионге К., Никифоров Г. А., Ершов В. В. Хим. физика, 1982, т. 1, с. 1608.
 147. Lantratova O. B., Prokofev A. I., Khudyakov I. V., Kuzmin V. A., Pokrovskaya I. E.
- 141. Lantratova O. B., Prokofev A. I., Knuayarov I. V., Kuzmin V. A., Pokrovskaya I. E. Nouv. J. Chim., 1982, v. 6, p. 365.

 148. Лантратова О. Б., Кузьмин В. А., Прокофьев А. И., Худяков И. В., Покровская И. Е. Изв. АН СССР. Сер. хим., 1981, с. 1789.

 149. Amouyal E., Bensasson R. J. Chem. Soc., Faraday Trans. I, 1976, v. 72, p. 1274.

 150. Наfisi-Мovaghar I., Wilkinson F. Trans. Faraday Soc., 1970, v. 66, p. 2257, 2268.

 151. Кокрашвили Т. А., Левин П. П., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1984,

152. Kobashi H., Nagumo T., Morita T. Chem. Phys. Letters, 1978, v. 57, p. 369. 153. Худаков И. В., Бурлацкий С. Ф., Туманский Б. Л., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1978, с. 2153.

154. Худяков И. В., Кузьмин В. Л. Химия высоких энергий, 1973, т. 7, с. 331. 155. Худяков И. В., Де Ионге К., Левин П. П., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1978, с. 1492.

- 156. Левин П. П., Худяков И. В., Кузьмин В. А. Там же, 1980, с. 255. 157. Бурштейн А. И., Худяков И. В., Левин П. П. Там же, 1980, с. 261. 158. Худяков И. В., Левин П. П., Воеводская М. В., Кузьмин В. А. Там же, 1979, c. 1142.
- 159. Воеводская М. В., Худяков И. В., Левин П. П., Кузьмин В. А. Там же, 1980, c. 1925.
- 160. Levin P. P., Khudyakov I. V., Kuzmin V. A. Int. J. Chem. Kinetics, 1980, v. 12,
- р. 147. 161. Левин П. П., Бурлацкий С. Ф., Овчинников А. А. Теор. и эксперим. химия, 1980, т. 16. с. 746.

- 162. Burlatsky S. F., Levin P. P., Khudyakov I. V., Kuzmin V. A., Ovchinnikov A. A. Chem. Phys. Letters, 1979, v. 66, p. 565.
- 163. Левин П. П., Кокрашвили Т. А., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1984,
- 164. Fessenden R. W., Carton P. M., Shimamori H., Scaiano J. C. J. Phys. Chem., 1982, v. 86, p. 3803.
- N. 86, p. 3603.
 Fessenden R. W., Carton P. M., Paul H., Shimamori H. Ibid., 1979, v. 83, p. 1676.
 Fessenden R. W., Carton P. M., Paul H., Shimamori H. Ibid., 1979, v. 83, p. 1676.
 Prokofev A. I., Bubnow N. N., Solodovnikov S. P., Kabachnik M. I. Tetrahedron Letters, 1973, p. 2479.
 Elliot A. J., Wan J. K. S. J. Phys. Chem., 1978, v. 82, p. 444.
 Wong S. K., Hutchinson D. A., Wan J. K. S. J. Amer. Chem. Soc., 1973, v. 95, p. 622.
 Wong S. K., Hutchinson D. A., Wan J. K. S. Canad, J. Chem., 1974, v. 52, p. 251.
 Vyas H. M., Wong S. K., Adeleke B. B., Wan J. K. S. J. Amer. Chem. Soc., 1975, v. 97, p. 1385.

- v. 97, p. 1385.
- 171. Adeleke B. B., Wan J. K. S. J. Chem. Soc., Faraday Trans. I, 1976, v. 72, p. 1799. 172. Vyas H. M., Wan J. K. S. Canad. J. Chem., 1976, v. 54, p. 979.

- 172. Vyas H. M., Wan J. K. S. Canad. J. Chem., 1976, V. 54, p. 979.
 173. Atkins P. M., Dobbs A. J., McLauchlan K. A. Chem. Phys. Letters, 1974, V. 25, p. 105.
 174. Wan J. K. S., Elliot A. J. Acc. Chem. Res., 1977, V. 10, p. 161.
 175. Vyas H. M., Wan J. K. S. Chem. Phys. Letters, 1975, V. 34, p. 470.
 176. Adrian F. J., Vyas H. M., Wan J. K. S. J. Chem. Phys., 1976, V. 65, p. 1454.
 177. Александров А. И., Бубнов Н. Н., Лазарев Г. Г., Лебедев Я. С., Прокофьев А. И., Сердобов М. В. Изв. АН СССР. Сер. хим., 1976, с. 515.
 178. Добряков С. Н., Лазарев Г. Г., Лебедев Я. С., Сердобов М. В. Там же, 1976, с. 2087
- c. 2087.
- 179. Лазарев Г. Г., Лебедев Я. С., Сердобов М. В. Там же, 1977, с. 325. 180. Dobryakov S. N., Lasarev G. G., Serdobov M. V., Lebedev Ya. S. Mol. Phys., 1978, <u>v.</u> 3**6,** p. 877.
- 181. Белостоцкая И. С., Лазарев Г. Г., Сердобов М. В. Изв. АН СССР. Сер. хим., 1979,

- 182. Лазарев Г. Г., Лебедев Я. С. Там же, 1979, с. 1873. 183. Лазарев Г. Г., Сердобов М. В. Там же, 1980, с. 944. 184. Лазарев Г. Г., Сердобов М. В. Там же, 1980, с. 1409.
- 185. Martin M. M., Ikeda N., Okada T., Mataga N. J. Phys. Chem., 1982, v. 86, p. 4148. 186. Ikeda N., Migasaka H., Okada T., Mataga N. J. Amer. Chem. Soc., 1983, v. 105,
- 5206. 187. Noda S., Sahohira K., Doba T., Yoshida H. Bull. Chem. Soc. Japan, 1982, v. 55,
- p. 1705.

- 188. Rubin M. B., Neuwirth-Weiss Z. Chem. Communs., 1968, p. 1607.
 189. Yoshida H., Kambara Y., Ranly B. Bull. Chem. Soc. Japan, 1974, v. 47, p. 2599.
 190. Claxton T. A., Gough T. E., Symons M. C. R. Trans. Faraday Soc., 1966, v. 62, p. 279.
 191. Rennert J., Ginsburg P. H. Mol. Photochem., 1972, v. 4, p. 217.
 192. Inoue H., Ikeda K., Mihara H., Hids M., Nakashima N., Yoshihara K. Chem. Phys. Letters 1983, v. 95, p. 60.
- Letters, 1983, v. 95, p. 60.

 193. Hermann H., Schenck G. O. Photochem. Photobiol., 1968, v. 8, p. 255.

 194. Bensasson R., Chachaty C., Land E. J., Salet C. Ibid., 1972, v. 16, p. 27.

 195. Kemp D. R., Porter G. Proc. Roy. Soc. 1971, v. 326A, p. 117.

- 196. Carlson S. A., Hercules D. M. Photochem. Photobiol., 1973, v. 17, p. 123.
 197. Bridge N. K., Porter G. Proc. Roy. Soc., 1958, v. 244A, p. 259, 276.
 198. Wilkinson F., Seddon G. M., Tickle K. Ber. Bunsenges Phys. Chem., 1968, B. 72, S. 315.
- 199. Carlson S. A., Hercules M. J. Amer. Chem. Soc., 1971, v. 93, p. 5611.
- 200. Maruyama K., Ono K., Osugi J. Bull. Chem. Soc. Japan., 1969, v. 42, p. 3357.

- 200. Maruyama K., Ono K., Osugi J. Bull. Chem. Soc. Japan., 1969, v. 42, p. 3357.
 201. Maruyama K., Shindo H., Maruyama T. Ibid., 1971, v. 44, p. 585.
 202. Shindo H., Maruyama K., Otsuki T., Maruyama T. Ibid., 1971, v. 44, p. 2000.
 203. Maruayama K., Shindo H., Otsuki T., Maruyama T. Ibid., 1971, v. 44, p. 2756.
 204. Shindo H., Maruyama K., Otsuki T., Maruyama T. Ibid., 1971, v. 44, p. 2789.
 205. Maruyama K., Otsuki T., Tajuwa A., Arakawa S. Ibid., 1973, v. 46, p. 2470.
 206. Maruyama K., Otsuki T., Naruta Y. Ibid., 1976, v. 49, p. 791.
 207. Hudson A., Lewis J. W. J. Chem. Soc., B, 1969, p. 531.
 208. Farid S., Scholz K.-H. Chem. Communs., 1968, p. 412.
 209. Gough T. E. Canad. J. Chem., 1969, v. 47, p. 331.
 210. Gough T. E., Taylor G. A. Ibid., 1969, v. 47, p. 3717.
 211. Wong S. K., Sytnyk W., Wan J. K. S. Ibid., 1972, v. 50, p. 3052.
 212. Gough T. E. Trans. Faraday Soc., 1966, v. 62, p. 2321.
 213. Wilson R. J. Chem. Soc. B, 1968, p. 1581.
 214. Claxton T. A., Oakes J., Symons M. C. R. Trans. Faraday Soc., 1967, v. 63, p. 2125.
 215. Wong S. K., Fabes L., Green W. J., Wan J. K. S. J. Chem. Soc., Faraday Trans. 1, 1972, v. 68, p. 2211. 1972, v. 68, p. 2211. 216. Vyas H. M., Wan J. K. S. Int. J. Chem. Kinetics, 1974, v. 6, p. 125. 217. Maruyama K., Otsuki T. Bull. Chem. Soc. Japan, 1971, v. 44, p. 2885. 218. Maruyama K., Takuwa A. Ibid. 1973, v. 46, p. 1529.

- 219. Maruyama K., Arakawa S. Ibid., 1974, v. 47, p. 1960. 220. Maruyama K., Takuwa A., Soga O. J. Chem. Soc., Perkin Trans. II, 1979, p. 255. 221. Davidson R. S., Steiner P. R. J. Chem. Soc., C, 1971, p. 1682. 222. Horbour J. R., Tollin G. Photochem. Photobiol., 1974, v. 20, p. 387.

- 223. Tanimoto Y., Itoh M. Chem. Phys. Letters, 1981, v. 83, p. 626.

- 224. Tanimoto Y., Udagawa H., Katsuda Y., Itoh M. J. Phys. Chem., 1983, v. 87, p. 2976. 225. Tanimoto Y., Udagawa H., Itoh M. J. Chem. Phys., 1983, v. 87, p. 724. 226. Sakaguchi Y., Hayashi H. J. Phys. Chem., 1984, v. 88, p. 1437. 227. Sakaguchi Y., Hayashi H. Chem. Phys. Letters, 1984, v. 106, p. 420. 228. Кузнец В. М., Шигорин Д. Н., Бучаченко А. Л. Докл. АН СССР, 1977, т. 234, c. 1112.
- 229. Кузнец В. М., Левин П. П., Худяков И. В., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1978, с. 1284.

- хим., 1978, с. 1284.
 230. Холмогоров В. Е. Теор. и эксперим. химия, 1969, т. 5, с. 826.
 231. Шигорин Д. Н., Озерова Г. А., Возняк В. М. Журн. физ. химин, 1967, т. 41, с. 1238.
 232. Валькова Г. А., Шигорин Д. Н. Там же, 1972, т. 46, с. 3065.
 233. Катіуа М., Наtano К., Кwan Т. Chem. Pharm. Bull., 1967, v. 16, р. 932.
 234. Horbour J. R., Tollin G. Photochem. Photobiol., 1974, v. 19, р. 147.
 235. Hales В. J. J. Amer. Chem. Soc., 1975, v. 97, р. 5993.
 236. Davis A. K., McKellar J. F., Phylips G. O. Proc. Roy. Soc., 1971, v. 323A, р. 69.
 237. Allen N. S., Harwood B., McKellar J. F. J. Photochem., 1978, v. 9, р. 559, 565.
 238. Allen N. S., Harwood B., McKellar J. F. Ibid., 1979, v. 10, р. 187, 193.
 239. Ahmed M., Davies A. K., Phillips G. O., Richards J. T. J. Chem. Soc., Perkin Trans. II, 1973, р. 1386.
- II, 1973, p. 1386. 240. Bridge N. K. Trans. Faraday Soc., 1960, v. 56, p. 1001.

- 241. Leary G., Porter G. J. Chem. Soc., A, 1970, p. 2273. 242. Beck S. M., Brus L. E. J. Amer. Chem. Soc., 1982, v. 104, p. 1103, 4789. 243. Кетр D. R., Porter G. J. Chem. Soc., A, 1971, p. 3510. 244. Дарманян А. П., Худяков И. В., Кузьмин В. А. Изв. АН СССР. Сер. хим., 1976, c. 1172.

- 245. Kemp D. R., Porter G. Chem. Communs., 1969, p. 1029.
 246. Phillips G. O., Worthington N. W., McKellar J. F., Sharpa R. R. Ibid., 1967, p. 835.
 247. Phillips G. O., Worthington N. W., McKellar J. F., Sharpe R. R. J. Chem. Soc., A, 1969, p. 767.
 248. Allen N. S., McKellar J. F., Moghaddam B. M. J. Appl. Chem. Biotechnol., 1979, p. 200, p. 110.
- v. 29, p. 119.
- 249. Land E. J. Trans. Faraday Soc., 1969, v. 65, p. 2815.
- 250. Hulme B., Land E. J., Phillips G. J. Chem. Soc., Faraday Trans. I, 1972, v. 68, p. 2003.

- 251. Wells C. F. Trans. Faraday Soc., 1961, v. 57, p. 1703, 1719.
 252. Wong S. K., Wan J. K. S. J. Amer. Chem. Soc., 1972, v. 94, p. 7197.
 253. Hutchinson D. A., Vyas H. M., Wong S. K., Wan J. K. S. Mol. Phys, 1975, v. 29,

- 254. Adeleke B. B., Choo K. Y., Wan J. K. S. J. Chem. Phys., 1975, v. 62, p. 3822.
 255. Trifunac A. D., Norris J. R. Chem. Phys. Letters, 1978, v. 59, p. 140.
 256. Trifunac A. D., Thurnauer M. C., Norris J. R. Ibid., 1978, v. 57, p. 471.
 257. Pedersen J. B., Hansen C. E. M., Parbo H., Muus L. T. J. Chem. Phys., 1975, v. 63,

- р. 2398.
 258. Muus L. T., Frydkjaer S., Nielsen K. B. Chem. Phys., 1978, v. 30, p. 163.
 259. Frydkjaer S., Muus L. T. Ibid., 1980, v. 51, p. 335.
 260. Frydkjaer S., Muus L. T. Ibid., 1981, v. 59, p. 365.
 261. Кузнец В. М., Шигорин Д. Н., Бучаченко А. Л., Валькова Г. А., Янкелевич Л. З., Шапетько Н. Н. Изв. АН СССР. Сер. хим., 1977, с. 775.
 262. Кузнец В. М., Шигорин Д. Н., Бучаченко А. Л., Валькова Г. А., Янкелевич А. З., Шапетько Н. Н. Там же, 1978, с. 62.
 263. Кузнец В. М., Шигорин Д. Н., Бучаченко А. Л., Янкелевич А. З. Докл. АН СССР, 1980 т. 253 с. 386
- 263. Кузнец В. М., Шигорин Д. Н., Бучаченко А. Л., Янкелевич А. З. Докл. АН СССР, 1980, т. 253, с. 386.
 264. Кузнец В. М., Янкелевич А. З., Свиридов Б. Д., Никифоров Г. А., Де Ионге К., Хагеман Х. И., Ершов В. В. Изв. АН СССР. Сер. хнм., 1979, с. 1251.
 265. Ayscough Р. В., Sealy R. С. J. Chem. Soc., Perkin Trans. II, 1973, р. 543.
 266. Hales В. І., Bolton J. R. Photochem. Photobiol., 1970, v. 12, р. 239.
 267. Yoshida H., Hayashi K., Warashina T. Bull. Chem. Soc. Japan, 1972, v. 45, р. 3515.
 268. Warashina T., Edlund O., Yoshida H. Ibid., 1975, v. 48, р. 636.
 269. Yoshida H., Shoma J., Warashina T. Ibid., 1974, v. 47, р. 1396.
 270. Kambara Y., Yoshida H. Ibid., 1977, v. 50, p. 1367.
 271. Noda S., Doda T., Mizuta T., Miura M., Yoshida H. J. Chem. Soc., Perkin Trans. II, 1980, p. 61.

- 1980, p. 61.
- 272. McLauchlan K. A., Sealy R. C. Chem. Communs., 1976, p. 115.
- 272. McLauchlan K. A., Sealy R. C. Chem. Communs., 1976, p. 115.
 273. Kambara Y., Yoshida H., Ranby B. Bull. Chem. Soc. Japan, 1977, v. 50, p. 2554.
 274. Ilten D. F., Kronenberg M. E., Calvin M. Photochem. Photobiol., 1968, v. 7, p. 331.
 275. Quinlan K. P. J. Phys. Chem., 1969, v. 73, p. 2058.
 276. Khudyakov I. V., Prokofev A. I., Morgulis L. A., Kuzmin V. A. Chem. Phys. Letters, 1984, v. 104, p. 409.