O Referencial de Frenet-Serret e Grupos de Lie

Conrado Damato de Lacerda

Universidade Estadual de Campinas

O referencial de Frenet-Serret é um tema clássico de Geometria Diferencial e consiste de atribuir a cada ponto de uma curva espacial uma base ortonormal positiva de \mathbb{R}^3 que forneça propriedades geométricas da curva. É interessante observar que essa atribuição essencialmente produz uma curva no grupo de Lie SO(3), e com isso podemos aproveitar a bem conhecida estrutura desse grupo para obter informações sobre a curva original. Nas próximas páginas descreveremos como isso pode ser feito.

O Referencial de Frenet-Serret

Seja $\gamma:[0,L]\to\mathbb{R}^3$ uma curva de classe $C^k,\ k\geq 3$, parametrizada por comprimento de arco (PPCA), isto é, $|\dot{\gamma}(s)|=1$ para todo $s\in[0,L]$, em que $|\ |$ denota a norma euclideana usual de \mathbb{R}^3 . Definimos o vetor tangente a γ como sendo a função $T:s\in[0,L]\mapsto\dot{\gamma}(s)\in\mathbb{R}^3$. Dois fatos acerca de T são relevantes:

- $T \in \gamma(0)$ determinam γ ; de fato, $\gamma(s) = \gamma(0) + \int_0^s T(t)dt$.
- $\dot{T} \perp T$, pois $\langle \dot{T}, T \rangle = \frac{1}{2} \frac{d}{ds} |T(s)|^2 = \frac{1}{2} \frac{d}{ds} 1 = 0$. Não é necessário que \dot{T} também seja unitário.

Definimos a curvatura de γ como sendo a função $\kappa:s\in[0,L]\mapsto |\dot{T}(s)|\in[0,+\infty)$. Suporemos, por motivos geométricos, que $\kappa>0$. Com isso, definimos o vetor normal a γ como a função $N:s\in[0,L]\mapsto \dot{T}(s)/\kappa(s)\in\mathbb{R}^3$. Segue dessas definições que N é um campo unitário ao longo de γ perpendicular a T e vale a relação $\dot{T}=\kappa N$.

O vetor binormal a γ é dado por $B(s) := T(s) \times N(s)$, em que \times denota o produto vetorial de \mathbb{R}^3 . Deste modo, (T(s), N(s), B(s)) é uma base ortonormal positiva de \mathbb{R}^3 para cada $s \in [0, L]$. Chamamos a tripla (T, N, B) de referencial de Frenet-Serret de γ .

As equações de Frenet-Serret

São as equações que descrevem \dot{T} , \dot{N} e \dot{B} em termos do próprio referencial de Frenet-Serret. A primeira já foi obtida: $\dot{T} = \kappa N$. Para a segunda, que descreve \dot{N} , primeiro notamos que |N| = 1 implica, como no caso de T, que $\dot{N} \perp N$. Logo, $\dot{N} = \alpha T + \tau B$, em que $\alpha, \tau : [0, L] \to \mathbb{R}$. Chamamos τ de torção de γ , e provaremos a seguir que $\alpha = -\kappa$. Com efeito, de $\dot{T} \perp T$ temos

(1)
$$0 = \frac{d}{ds} \langle \dot{T}(s), T(s) \rangle = \langle \ddot{T}(s), T(s) \rangle + |\dot{T}(s)|^2.$$

Derivando ambos o lados da equação $\dot{T} = \kappa N$, obtemos $\ddot{T} = \dot{\kappa} N + \kappa \dot{N}$. Substituir essas duas relações em (1) fornece

$$0 = \langle \dot{\kappa}N + \kappa \dot{N}, T \rangle + |\kappa N|^2 = \kappa(\langle \dot{N}, T \rangle + \kappa),$$

e portanto $\alpha = \langle \dot{N}, T \rangle = -\kappa$. A segunda equação de Frenet-Serret então fica $\dot{N} = -\kappa T + \tau B$. A terceira equação, que determina \dot{B} , é obtida das duas primeiras mais a definição de B: como $B = T \times N$, então

$$\begin{split} \dot{B} &= \dot{T} \times N + T \times \dot{N} \\ &= (\kappa N) \times N + T \times (-\kappa T + \tau B) \\ &= -\tau (B \times T) \\ &= -\tau N. \end{split}$$

Com isso obtemos as equações de Frenet-Serret:

(2)
$$\begin{cases} \dot{T} = \kappa N \\ \dot{N} = -\kappa T + \tau B \\ \dot{B} = -\tau N. \end{cases}$$

O Grupo SO(3)

Definimos SO(3) como o conjunto das matrizes $A \in M_3(\mathbb{R})$ que satisfazem $A^tA = I$ (ou, equivalentemente, $AA^t = I$) e det(A) = 1. A primeira condição significa que as matrizes de

SO(3) são ortogonais, e portanto são as matrizes de mudança entre as bases ortonormais de \mathbb{R}^3 . Já a segunda implica que essas mudanças de base não alteram orientação, de modo que SO(3) pode ser visto como o conjunto das matrizes de mudança entre bases ortonormais positivas.

Se $\gamma:[0,L]\to\mathbb{R}^3$ é uma curva PPCA e (T,N,B) é o seu referencial de Frenet-Serret, definimos a curva $F:[0,L]\to SO(3)$ pela condição que F(s) é a matriz de mudança da base canônica de \mathbb{R}^3 para (T(s),N(s),B(s)), isto é,

$$F = \begin{pmatrix} | & | & | \\ T & N & B \\ | & | & | \end{pmatrix}.$$

Usaremos o termo referencial de Frene-Serret para também nos referirmos à curva F.

Teorema 1. Seja $\mathfrak{so}(3)$ o subespaço vetorial de $M_3(\mathbb{R})$ formado pelas matrizes antissimétricas.

- 1. Seja $F:[0,L]\to SO(3)$ uma curva. Então existe uma curva $\omega:[0,L]\to\mathfrak{so}(3)$ tal que $\dot{F}=F\omega$.
- 2. Dadas $\omega:[0,L]\to\mathfrak{so}(3)\ e\ A_0\in SO(3)$, existe uma única curva $F:[0,L]\to SO(3)$ tal que $F(0)=A_0\ e\ \dot F=F\omega$.
- **Demonstração.** 1. Defina $\omega : [0, L] \to M_3(\mathbb{R})$ por $\omega(s) = F(s)^t \dot{F}(s)$. Segue de $FF^t = I$ que $\dot{F} = F\omega$, de modo que resta apenas provar que $\omega(s)$ é antissimétrica. Para tanto, usamos que $F^tF = I$:

$$0 = \frac{d}{ds}\mathbf{I} = \frac{d}{ds}F(s)^tF(s) = \dot{F}(s)^tF(s) + F(s)^t\dot{F}(s) = \omega(s)^t + \omega(s).$$

2. A equação $\dot{F} = F\omega$ é uma EDO linear (com coeficientes não constantes), e portanto existe uma única curva $F: [0, L] \to M_3(\mathbb{R})$ que a satisfaz e tal que $F(0) = A_0$. Só falta provar que $F(s) \in SO(3)$ para todo $s \in [0, L]$. Consideremos a curva $G: s \in [0, L] \to M_3(\mathbb{R})$ dada por $G(s) = F(s)F(s)^t$. Por um lado,

$$\dot{G}(s) = \frac{d}{ds}F(s)F(s)^t = \dot{F}(s)F(s)^t + F(s)\dot{F}(s)^t$$

$$= F(s)\omega(s)F(s)^t + F(s)\omega(s)^tF(s)^t$$

$$= F(s)(\omega(s) + \omega(s)^t)F(s)^t = 0,$$

isto é, G é constante. Por outro, $G(0) = A_0 A_0^t = I$ pois $A_0 \in SO(3)$, e portanto $FF^t = I$. Por fim, $\det F(s) = \pm 1$ uma vez que F(s) é uma matriz ortogonal e o sinal de $\det F(s)$ é o mesmo de $\det F(0) = \det A_0 = 1$ por continuidade. Com isso, $\det F(s) = 1$ e $F: [0, L] \to SO(3)$.

Tomando F o referencial de Frenet-Serret de γ , escrevamos ω explicitamente

$$\omega = \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix}, \text{ em que } a, b, c : [0, L] \to \mathbb{R}.$$

Pela parte 1. do Teorema 1,

$$\begin{pmatrix} | & | & | \\ \dot{T} & \dot{N} & \dot{B} \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ T & N & B \\ | & | & | \end{pmatrix} \cdot \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix} = \begin{pmatrix} | & | & | \\ aN + bB & -aT + cB & -bT - cN \\ | & | & | \end{pmatrix},$$

isto é,

$$\begin{cases} \dot{T} = aN + bB \\ \dot{N} = -aT + cB \\ \dot{B} = -bT - cN. \end{cases}$$

Comparando com as equações de Frenet-Serret (2), obtemos que $a=\kappa,\,b=0$ e $c=\tau,$ de modo que

(3)
$$\omega = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

Teorema 2 (Teorema Fundamental de Curvas). Sejam $\kappa, \tau : [0, L] \to \mathbb{R}$, $\kappa > 0$. Então, existe $\gamma : [0, L] \to \mathbb{R}^3$ uma curva PPCA com curvatura κ e torção τ . Além disso, se $\tilde{\gamma}$ é outra tal curva, então existe um movimento rígido $R : \mathbb{R}^3 \to \mathbb{R}^3$, tal que $\tilde{\gamma} = R \circ \gamma$.

Demonstração. Seja $\omega:[0,L]\to\mathfrak{so}(3)$ dada por (3) e seja $F:[0,L]\to SO(3)$ a curva que satisfaz $\dot{F}=F\omega$ e $F(0)=\mathrm{I}$ (parte 2. do Teorema 1). Para cada $s\in[0,L]$ seja $\alpha(s)=(T(s),N(s),B(s))$ a base de \mathbb{R}^3 tal que $[I]^{can}_{\alpha(s)}=F(s)$; é imediato que $\alpha(s)$ é base ortonormal positiva de \mathbb{R}^3 . Defina $\gamma:[0,L]\to\mathbb{R}^3$ por $\gamma(s)=\int_0^s T(t)dt$. Claramente, $\dot{\gamma}=T$, de modo que γ é PPCA. A igualdade $\dot{F}=F\omega$ implica $\dot{T}=\kappa N$, e disso segue que κ é a curvatura de γ . Já

 $B=T\times N$ decorre de $\alpha(s)$ ser base ortonormal positiva de \mathbb{R}^3 , e portanto $\dot{N}=-\kappa T+\tau B$ (por $\dot{F}=F\omega$) implica que τ é a torção de γ . Isso mostra a primeira parte do Teorema.

Seja $(\tilde{T}, \tilde{N}, \tilde{B})$ o referencial de Frenet-Serret de $\tilde{\gamma}$ com $\tilde{F}: [0, L] \to SO(3)$ a curva associada. Mantemos as notações do parágrafo anterior. Como a curvatura e a torção de γ e $\tilde{\gamma}$ são iguais, então ambas F e \tilde{F} são soluções de $\dot{G} = G\omega$, diferindo apenas nas condições iniciais. A curva $G = \tilde{F}(0)F$ satisfaz $\dot{G} = G\omega$ e $G(0) = \tilde{F}(0)$, e portanto $\tilde{F} = G = \tilde{F}(0)F$.

Seja $R_0: \mathbb{R}^3 \to \mathbb{R}^3$ a tranformação linear cuja matriz com respeito à base canônica é $\tilde{F}(0)$, isto é, $R_0(e_1) = \tilde{T}$, $R_0(e_e) = \tilde{N}$ e $R_0(e_3) = \tilde{B}$. Então, $\tilde{F} = \tilde{F}(0)F$ implica que $\tilde{T} = R_0 \circ T$, $\tilde{N} = R_0 \circ N$ e $\tilde{B} = R_0 \circ B$.

Por fim, defina $R: \mathbb{R}^3 \to \mathbb{R}^3$ por $R(v) = R_0(v) + \tilde{\gamma}(0)$. Claramente, R é um movimento rígido. Além disso, $(R \circ \gamma)(0) = R(0) = \tilde{\gamma}(0)$ e

$$\frac{d}{ds}(R \circ \gamma)(s) = \frac{d}{ds}\left[R_0(\gamma(s)) + \tilde{\gamma}(0)\right] = R_0(T(s)) = \tilde{T}(s).$$

Portanto,
$$(R \circ \gamma)(s) = \tilde{\gamma}(0) + \int_0^s \tilde{T}(t)dt = \tilde{\gamma}(s).$$

Ao construir γ a partir da sua curvatura e torção, a etapa mais complicada é resolver a equação diferencial $\dot{F} = F\omega$. No entanto, caso ω seja constante, então $F(s) = F(0) \exp(s\omega)$, em que exp é a exponencial de matrizes, e o cálculo explícito pode ser feito usando a forma de Jordan de ω (cf. [2]).

O ponto-chave no que fizemos acima é o Teorema 1, que descreve as curvas em SO(3) (um grupo de Lie) em termos de curvas em $\mathfrak{so}(3)$ (a álgebra de Lie de SO(3)). Essa é uma técnica poderosa sempre que se tenta estudar um problema geométrico através de simetrias ou referenciais, e é um dos principais temas da Teoria de Lie.

Referências

- [1] Carmo, M.P. (2005) Geometria Diferencial de Curvas e Superfícies. Coleção Textos Universitários, SBM.
- [2] Rossmann, W. (2002) Lie Groups An Introduction Through Linear Groups. Oxford University Press.