

Week HW 8, EULER LAGRANGE

Euler-Lagrange equation

Task 1 (Coding)

A mechanical system under the gravity force moves from the rest. Define the velocity of object A if it travels distance s from the rest. The masses of the non-deformable ropes are ignored. Neglect the masses of links FK, KC and the piston K.

The task is to:

- 1. make a plot $v_A(s)$;
- 2. What will change if we omit the last sentence (Neglect ...). (Explain it and show on equations). Why Yablonskii made these constraints?

Needed variables:

$$m_A = 1$$
, $m_B = 3$, $m_D = 20$ (kg);

 $R_{\rm B}=$ 20, $R_{\rm D}=$ 20, $i_{\rm Bx}=$ 18 (cm), $i_{\rm Bx}$ – radii of gyration of the body;

 $\psi = 0.6$ (cm), where ψ is rolling friction.

Task 1 (Yablonskii (eng) D6)

Task 2 (Coding)

System description

You have a a cart pole. Body 1 is a slider, mass m_1 , it moves without friction.

AB is a massless rod with length I. Body 2 with mass m_2 is connected to AB in point B.

It's a 2 DoF system. You should take x and ϕ as a representation of this system. The origin of each coordinate should be the same as on the picture.

Initial conditions:

1.
$$x = 0$$
, $\phi = 10^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

2.
$$x = 0.5$$
, $\phi = 45^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

3.
$$x = 0.5$$
, $\phi = -135^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, $t = 0$;

Parameters: $m_1 = 5 \text{ kg}$, $m_2 = 1 \text{ kg}$, I = 1 m.

Task 2

Task 2 (Coding)

Tasks description

You should solve this problem using **Euler-Lagrange** method;

Tasks

- 1. To derive a differential equation of the motion, using **Euler-Lagrange** approach.
- 2. To create plots x(t), $\phi(t)$, $\dot{x}(t)$, $\dot{\phi}(t)$.
- 3. To make a simulation of this system. Show velocities and accelerations for 1, 2 bodies (coding approach).
- 4. Compare the obtained results from previous lab (Newton-Euler and Model-oriented design).

