「反応速度論」レポート課題 No. 2

33417334 otori 334

提出日:2020-02-26

- 1. $nA \longrightarrow P$ なる気相反応において、A の初圧を変えて初速度を測定したところ、初圧 359 torr および 152 torr のときに、初速度はそれぞれ 1.50 torr s^{-1} 、 0.25 torr s^{-1} であった。この反応の次数および速度定数を求めよ。
- 2. 反応 $SO_2Cl_2 \longrightarrow SO_2 + Cl_2$ は一次反応で、 $593\,\mathrm{K}$ において速度定数 $k=2.2\times 10^{-5}\,\mathrm{s}^{-1}$ である. $593\,\mathrm{K}$ で 2 時間反応させると SO_2Cl_2 の何 % が分解するか.
- 3. N_2O_5 の一次分解反応(N_2O_5 $\rightarrow 2NO_2+\frac{1}{2}O_2$)の速度定数は, $4.8\times 10^{-4}\,\mathrm{s}^{-1}$ である.こ の反応の半減期はいくらか.また,最初 $0.5\,\mathrm{atm}$ あった圧力は,反応開始から 10 秒後にはいくらになるか.
- 4. 放射性元素の崩壊速度は一次反応で表される。崩壊の半減期が1590年であるラジウムの崩壊定数(速度定数に相当)を求めよ。また、最初に1/4が崩壊するのに必要な年数を求めよ。
- 5. ある反応 $2A \longrightarrow P$ が、2 次の速度式と速度定数 $k=3.5\times 10^{-4}\,\mathrm{M}^{-1}\,\mathrm{s}^{-1}$ をもつ。A の濃度 が $0.260\,\mathrm{M}$ から $0.011\,\mathrm{M}$ まで変化するのに要する時間を計算せよ。
- 6. $t_{1/2}$ を半減期, $t_{3/4}$ を反応基質濃度が初濃度の 3/4 まで減少する時間とおいた場合,n 次反応 $(n \ge 2)$ での $t_{1/2}/t_{3/4}$ の比を n の関数として示せ.
- 7. $\mathrm{CH_3COOC_2H_5}(aq) + \mathrm{OH^-}(aq) \longrightarrow \mathrm{CH_3COO^-}(aq) + \mathrm{C_2H_5OH}(aq)$ の反応の二次速度定数は, $0.11\,\mathrm{M^{-1}\,s^{-1}}$ である.酢酸エチルを水酸化ナトリウム水溶液に添加して初濃度が [NaOH]= $0.050\,\mathrm{M}$,[$\mathrm{CH_3COOC_2H_5}$]= $0.100\,\mathrm{M}$ になるようにした.反応を開始して $10\,$ 秒後の酢酸エチルの濃度はいくらか.
- 8. ある物質の分解の速度定数が $30\,^{\circ}$ C で $2.8\times10^{-3}\,\mathrm{M}^{-1}\,\mathrm{s}^{-1}$, $50\,^{\circ}$ C で $1.38\times10^{-2}\,\mathrm{M}^{-1}\,\mathrm{s}^{-1}$ であった.この反応の Arrhenius パラメータ(頻度因子と活性化エネルギー)を求めよ.必ず単位をつけること.
- 9. NO の気相酸化反応 $2NO + O_2 \xrightarrow{k_1} 2NO_2$ ①式は、下記の②式と③式の反応から成っている。 k_1, k_2, k_{-2}, k_3 はそれぞれの反応の速度定数である。以下の問いに答えよ。

- (1) N_2O_2 に定常状態近似を適用して NO_2 生成の速度式を導け.
- (2) NO_2 生成速度は、NO 分圧に 2 次、 O_2 分圧に 1 次であることが実験的に知られている。(1) で得た速度式がこの条件に適合する条件を示せ。