Herbst 14 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $f:[0,\infty)\to[0,\infty)$ stetig. Betrachte das Anfangswertproblem

$$y'(x) = f(x)(1 - y(x)), y(0) = 0.$$

- a) Ist das Anfangswertproblem eindeutig lösbar?
- b) Untersuchen Sie die Lösungen y auf etwaige Monotonie.
- c) Zeigen Sie, dass $\lim_{x\to\infty}y(x)$ existiert und bestimmen Sie den Wert.
- d) Geben Sie explizit die Lösung im Fall $f(x) = \alpha x^{\beta-1}$ an, wobei $\alpha > 0$ und $\beta \ge 1$.

Lösungsvorschlag:

- a) Ja. Es handelt sich um eine explizite, lineare Differentialgleichung, diese besitzen zu jeder Anfangsbedingung eine eindeutige, globale Lösung.
- b) Die Funktion $y \equiv 1$ ist eine Lösung der Differentialgleichung und darf demnach nicht geschnitten werden, weil die Strukturfunktion stetig und lipschitzstetig bezüglich y ist. Es gilt daher y(x) < 1 für alle $x \in \mathbb{R}$. Wäre dem nicht so, so würde ein $x_0 \in \mathbb{R}$ mit $y(x_0) \geq 1$ existieren, und nach dem Zwischenwertsatz, wegen y(0) = 0, auch ein $x_1 \in \mathbb{R}$ mit $y(x_1) = 1$, ein Widerspruch. Also folgt y(x) < 1 und daher $y'(x) \geq 0$ für alle $x \in \mathbb{R}$. Demnach ist y monoton wachsend.
- c) Die Lösung wächst monoton und ist nach oben durch 1 beschränkt, also existiert der Limes und dieser liegt in [0,1], wegen y(0)=0. Der Wert des Limes ist durch $\sup_{x\in\mathbb{R}}y(x)$ gegeben und hängt von f ab. Mit der Lösungsformel können wir die Lösung des Anfangswertproblems angeben, es ist $y(x)=1-e^{-\int_0^x f(t) \, \mathrm{d}t}$ die Maximallösung des Problems und $\lim_{x\to\infty}y(x)=1-e^{-\int_0^\infty f(t) \, \mathrm{d}t}$, wobei $e^{-\infty}:=0$ definiert wird.
- d) Wir müssen nur $\int_0^x f(t) dt$ bestimmen, eine Stammfunktion ist durch $\frac{\alpha}{\beta} x^{\beta}$ gegeben, also ist $y(x) = 1 e^{-\frac{\alpha}{\beta} x^{\beta}}$ die Lösung des Problems.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$