- Credit Introduction
- Credit Measurement
 - o PD
 - o LGD
 - o EAD
 - Correlation
- Credit Management
 - Counterparty
 - Netting
 - Collateralization
- Credit Derivative
 - o Collateral Default Swap(CDS)
 - o Total Return Swap (TRS)
 - o Credit Linked Note (CLN)

The Credit Decision

- Credit: receive and pay later
- Credit risk: borrow will not pay
- Transaction
 - o settlement risk
 - The counterparty will never pay for the good or service
 - o financial obligation
 - that arises from the loan agreement. Credit risk that arises from trade credit is nearly indistinguishable from the credit risk that banks incur.
- Revaluation
 - o Borrower's willingness and capacity
 - o External environment and its effects
 - Business climate, country risk, operating conditions
 - o Characteristic of the credit instruments
 - Secure/Unsecure?
 - Maturity/tenor
 - Senior/Subordinated?
 - Loan/bond covenants
 - Borrower repay early?
 - lender call the loan?
 - Convertible bond?
 - o Quality and adequacy of risk migrants
 - Collateral pledged to
 - Loan guarantor
- Qualitative willingness
 - o Gather information
 - o Face-to-face meeting
 - o Name lending
 - o Past: moral obligation, now: legal obligation
 - willingness is more important in less-developed legal and financial markets
- Quantitative ability

- Historical nature of data
 - Not up-to-date, unreliable, miscalculation
- o Difficult to make prediction

0

- Borrowers
 - Corporation
 - Liquidity, Cash flow
 - o Financial institutions
 - Asset quality, capital adequacy, earning quality
- Quantitively
 - o PD, LGD, EAD, time horizon
- Bank failure or insolvency
 - o Bank insolvency: have liquidity
 - o Bank failure: no liquidity

The credit Analyst

- Risk management vs investment selection
 - o Risk management (more common)
 - Bank examiners: robust, depth and liquidity
 - Public: research on potential counterparties
 - o Investment selection
 - Fixed-income: **relative** value
- Primary vs secondary research
 - Primary research
 - Analyst-driven research, more detailed, more human effort, high cost
 - Microeconomic and macroeconomic (political, industry)
 - o Secondary research
 - Research by rating agency
 - Shorter, quick efficient
- Type of Entity
 - o Corporate credit analyst
 - specific industry knowledge
 - focus on one or two industries
 - firm size
 - public company: cheaper, a lot of public information
 - small company: more time and DD, primary research, increase cost
 - o Sovereign
 - Macroeconomic, political, stability of banking system
- Banking credit analyst
 - o Counterparty credit analyst
 - Credit limits, risk mitigants,
 - Fixed-income analyst
 - Fundamental and technical
 - Equity analyst
 - Fundamental and technical
 - ROE, company valuation
- Skills
 - o Quantitative

- o Qualitative
- Research skills
 - Overall sector
 - Large bank > small bank
- Audit
 - o Qualified
 - Substantial doubt in going concern
 - Specific treatment inconsistent with accounting rules
 - Related-party transactions
- FS
- Footnotes
- o Interim: quarterly or semi-annual

Rating Assignment Methodologies

- Good Rating
 - o Objectivity: based on credit risk
 - Homogeneity: comparable among market segments, portfolios, and customer types
 - o **Specificity**: distance to **default** event
 - o **Measurability and verifiability:** correct expectations related to default probabilities which are back tested on a continuous basis.
- Methods
 - o Heuristic: experts-based
 - o Structural: merton, cash-fow
 - o Reduced
 - Statistical: LDA, logistic Regression
 - Numeric: ANN
 - o Clustering: PCA, factor analysis, cannocial
- Experts-based: 4C
- Statistical-based classification
 - Ouantitative method
 - o Focus on unlisted firms
- Numerical approaches
 - o Optimal solution via trained
 - Neural network
- Rating migration matrix
 - o Relative frequency
 - $\circ \quad \text{Discrete ADR} = 1 (1-F \ t)^{(1/t)}$
 - \circ Continuous ADR = ln (1-F t) / t
- Rating Agencies Methodologies
 - o Risk: financial and business
 - o S&P: issuer
 - o Moody: issuance
 - o Fitch: issuer ratings based on potential defaults for publicly listed bonds
- Agency and internal
 - o Internal: time-consuming and difficult
 - o Agency > internal according to good rating
- Structural and reduced form
 - o Structural (Merton) financial and economic assumption

- o Reduced form: statistical and numerical
 - Model risk
 - Aggregate into Top-down classification
 - Stat: Bottom-up and experts-based: bottom up
- Merton model
 - o Apply to liquid, publicly traded firms
 - o fall short of fully reflecting dependence of credit risk
- stats: LDA
 - o Z-score
 - o Original cut-off
 - new cutoff = original cut off + $\lg \frac{(1-PD)}{PD}$ 对数几率
 - Original cut-off + ln (q_solv * /)
 - new cutoff = original cut off + $\lg \frac{(1-PD) \times orror tinity cost}{PD \times LGD}$
- Stats: logit regression
 - \circ Log default/ (1-default) = \sum w_i x_i
- Clustering
 - Cluster analysis
 - Hierarchical clustering
 - o Divisive clustering
 - o PCA
 - Communality (eigenvalue)
 - Eigenvalue > 1
 - o Factor analysis
 - After PCA
 - Few Unobserved factors
 - Canonical correlation
 - Correspondence between a set of independent variables and dependent variables
- Cash flow simulation
 - o Non-existent or relatively meaningless
 - o Pro forma
 - o Model risk
 - No historical data
- Heuristic vs numeric
 - o Heuristic: human decision-making
 - Expert systems
 - Rule: Backward chaining or forward chaining
 - Fuzzy logic
 - Decision support system (DSS
 - Numeric:
 - Neural network: biological
 - Nonlinear, recursive, independent
 - Over-fitting
 - No probability of default
 - o Numeric > heuristic good rating criteria
- Apply qualitative
 - o Binary: yes or no
 - o Nominal: location
 - o Ordinal: low, high

- o Dummy: 0 or 1
- o Steps
 - Quantitative model along with systematic qualitative data collection
 - Produced enough, build a new model includes new qualitative information

Credit Risks and Credit Derivatives

- Merton 模型
 - 算公司估值
 - 。 算PD和LGD
- Credit derivative
 - o Contract with payoffs dependent on a specified credit event
- Zero-coupon bond Face value F and maturity T
 - $\circ V_T = D_T + S_T$
 - Equity (buy a call option): $S_T = \max(V_T F, 0) \not \subseteq \Lambda$ call option
 - Call **option** with strike price F
 - O Debt (buy a bond F and sell put option): $D_T = F \max(F V_T, 0)$
 - Sell put option with exercise price F
 - 买入 bond F, 卖出 put option。
 - o Debt (another way) 最直接,持有 bond V, 卖出 equity 的 call option
 - $D_T = V_T S_T = V_T \max(V_T F, 0)$
 - Buy a bond V_T and sell the call option
 - o T-t= TTM 现在到结束的时间
 - o $c_t p_t = V F \exp(-r \times t)$, r is interest rate
- Equity value

$$\boldsymbol{S_t} = \boldsymbol{V} \times \boldsymbol{N}(\boldsymbol{d}) - \boldsymbol{F} \boldsymbol{e^{-r(T-t)}} \times \boldsymbol{N}(\boldsymbol{d} - \sigma \sqrt{T-t})$$

where:

$$d = \frac{\ln\left(\frac{V}{Fe^{-r(T-t)}}\right)}{\sigma\sqrt{T-t}} + \frac{1}{2}\sigma\sqrt{T-t}$$

V = value of the firm

F = face value of the firm's zero-coupon debt maturing at T (only liability)

σ = volatility of the value of the firm

r = annual interest rate

N(d) = cumulative normal distribution function evaluated at d

Relationship

Figure 2: Relationships Between Debt and Equity Values as Compared to the Inputs of the Merton Model

	Value of Firm, V	Face Value of Debt, F	Time to Maturity, T	Interest Rate, r	Volatility of the Firm, σ
Value of debt	+	+	-	-	-
Value of equity	+	_	+	+	+

Credit spread of the debt

The credit spread can be calculated using the following formula:

credit spread =
$$-\left[\frac{1}{(T-t)}\right] \times \ln\left(\frac{D}{F}\right) - R_F$$

where:

(T - t) = remaining maturity D = current value of debt F = face value of debt R_E = risk-free rate

- •
- o TTM increase, spread increase
- Interest rate increase, spread decrease

Firm value and volatility

- o Delta
 - Assume change in equity perfectly corrected with value of the firm
 - Delta : N(d1)
 - Volatility smirk
 - Non-constant volatility of equity is a violation of BSM
- Geske compound option model
 - Assume firm value follows a lognormal with constant variance
 - 迭代法。
 - 给定 equity value 和 call option on equity
 - 用 BSM 估计 equity value
 - 然后用 compound model 估计 call option on equity
 - o 调整 firm value 和 firm value volatility
 - 直到2个的输出相同

• Subordinate debt

- Valuation
 - A long call option with strike price F
 - A short call option with strike price F+U

Figure 4: Subordinated Debt Payoff

- o Firm value low, like equity
- o Firm value high, like senior debt

○ 经济好,sub 是债务;经济不好,sub 是权益。波动大,权益大。

Figure 5: Relationships for Capital Components for Low vs. High Firm Values

	If Firm Value is Low Firm in Financial Distress			If Firm Value is High Firm Not in Financial Distress		
Variable	Time to Maturity T	Firm Volatility G	Annual Interest Rate r	Time to Maturity T	Firm Volatility G	Annual Interest Rate r
Senior debt	_	_	_	_	_	_
Subordinate debt	+	+	+	-	17	1
Equity	+	+	+	+	+	+

0

• Interest rate dynamic

- o Interest rate increase, Debt and firm value decrease
- Vasicek model
- o In destress
 - Interest rate volatility high, debt value less sensitive

• Applications

- o Lognormal with constant variance, one zero-coupon bond
- o Works for debt below investment grade 非投资级别
- o Firm value no jump 不能 jump
- o No Complicated capital structure (different maturities, more than one bond)
- o 不能预测 spread

• PD和LGD

- o Challenge
 - Lack of public trading
 - Illiquid
 - Not normal
 - Most firms have no traded equity
 - Debt Not mark to market
- o Assume lognormal with constant volatility, one liability (zero-coupon)
- o u 是期望汇报 expected return

PD = N
$$\left[\frac{\ln(F) - \ln(V) - (\mu)(T - t) + 0.5\sigma^{2}(T - t)}{(\sigma)\sqrt{T - t}} \right]$$

where:

N = cumulative normal distribution

F = face value of the zero-coupon bond

V = value of the firm

T = maturity date on bond

 σ = volatility of firm value

Loss given default (LGD) is:

$$LGD = F \times (PD) - Ve^{\mu(T-t)} \times N \left(\frac{\ln(F) - \ln(V) - \mu(T-t) - 0.5\sigma^{2}(T-t)}{\sigma\sqrt{T-t}} \right)$$

PD = $1 - N(d_2) = N(-d_2)$, u is expected return

■ 债务和波动大,越容易违约。

○ LGD (put option 的未来值)

• LGD = F × N(-d₂) - V $e^{u \times \Delta t}$ N(-d₁) = $e^{u \times \Delta t}$ × p_t

Figure 7: Relationships for PD and LGD Relative to Variables in the Merton Model

	Value of Firm	Firm Value Volatility, σ	Expected Return, µ	Time to Maturity, T	Face Value of Debt, F
Probability of default, PD	_	+	_	_	+
Loss given default, LGD	_	+	_	_	+

Example: Compute PD and LGD

Suppose a firm with a value of \$60 million has a bond outstanding with a face value of \$50 million that matures in three years. The current interest rate is 6% and the volatility of the firm is 25%. What is the probability that the firm will default on its debt if the expected return on the firm, μ , is 15%? What is the expected loss given default?

Answer:

$$PD = N \left(\frac{\ln(50) - \ln(60) - (0.15)(3) + (0.5)(0.25)^{2}(3)}{(0.25)\sqrt{3}} \right) = N(-1.244) = 0.1069 = 10.69\%$$

$$LGD = 50(0.1069) - 60e^{0.15(3)}N\left[\frac{\ln(50) - \ln(60) - 0.15(3) - 0.5(0.25)^{2}(3)}{0.25\sqrt{3}}\right]$$

$$LGD = 5.345 - (94.099)N(-1.677) = 5.345 - (94.099)(0.0468) = 5.345 - 4.404$$

= 0.941 = \$941,000

0

0

• Credit risk portfolio models

- o Credit VaR
 - One year
 - Highly skewed, not normal, but **lognormal**
- CreditRisk+ factors 因子法
 - Common risk factors for each obligor
 - Obligors are uncorrelated
 - Factors: positive, mean of 1
- Credit Metrics 组合折现法,概率转移矩阵 KMV Credit Monitor
 - Rating class
 - Migration matrix -> migrate probability
 - Estimate distribution of value
 - 1 year forward zero curves to get current price of one year
 - Expected bond value
 - 99% Credit VaR = 99%时的 price market price (很接近开始的值)
- Moody's KMV Merton 权益来估值
 - Expected default frequencies (EDF) for each obligator: k = short + long/2
 - (A-K) / (A*sigma)
 - Allow for more complicated capital structure
 - Solve for firm value and volatility
 - Major advantage: use current equity values in the model
 - Change of event affect PD
 - Expected return from CAPM
- o CreditPortfolio View 宏观经济
 - Transition matrices: economic cycle or macroeconomic 经济
 - GDP, interest, unemployment
 - Autoregressive process
 - Sector index
 - Default rate based on index (logistic)
 - Decide which transition matrices to use
- o Limitations
 - Most do not consider: interest, spread, current economic
- Credit Derivative
 - Usually on OTC not exchange
 - o Credit default put pays on loss due to default
 - o CDS
 - o TTOR: return for a LIBOR + spread
 - o Swap:
 - Full two-way payment : 无论是否违约, 还是要支付
 - Limited two-way payment: 一个违约就取消

Spread Risk and Default Intensity Models

- Spread
 - o Difference in yields between risky bond and reference security
 - o Yield spread: YTM bond YTM benchmark
 - o I-spread: YTM bond linear interpretation of benchmark
 - o Z-spread: basis points added to each spot rate on a benchmark curve

- o Asset-swap spread: spread floating leg of asset swap on a bond
- o CDS spread: market premium
- o OAS: z-spread for optionality of embedded option
 - Z-spread = OAS if no option
 - Z-spread > OAS for callable bond
 - Must be used for MBS
- Discount margin: fixed spread LIBOR
- DVCS (spread 01)
 - o Smaller spread larger effects on bond price
 - $\frac{\Delta \text{spread}}{\text{spread}} \to \frac{1}{\text{spread}}$
 - Convexity
- Exponential distribution
 - O Waiting time for an event (i.e., the time takes to default)
 - $\circ \quad f(x) = \frac{1}{\beta} \times e^{-x/\beta}$
 - \circ β is the scale parameter
 - $0 \quad \lambda = \frac{1}{\beta} \text{ rate parameter, hazard rate}$
 - o $mean = \frac{1}{\lambda}$, $variance = 1/\lambda^2$
- Poisson

 - \circ λ average number of success per unit, average number of default per unit
 - \circ mean = variance = λ
- Hazard rates
 - o Default intensity,
 - o $P(x < t) = F(t) = 1 e^{-\lambda t}$ cumulative PD
 - Survival probability $S(t)1 F(t) = e^{-\lambda t}$
 - Marginal default probability: $\lambda e^{-\lambda t}$
 - Conditional probability $\frac{F(t+1)-F(t)}{1-F(t)} = 1 e^{-\lambda} = F(1)$ 第一年的违约概率
- Risk neutral hazard rates from spreads
 - Continuous compound
 - o hazard * LGD ≅ spread spread 是用来补偿违约的
- CDS 用 CDS 的 spread 来估计违约强度
 - o Bond market
 - Default probability are insufficient
 - Few issue zero-coupon bonds
 - o CDS
 - Observable, Liquid contracts, more maturities, large number
- Hazard rate curves
 - Bootstrap
 - o Few maturities, need to interpolation
 - (PV of expected payments in default) = (PV of expected premiums paid)
 - o Time-varying hazard rates -> PD for each time range
- Spread curve (term-structure) and Default distribution
 - o Spread: Upward sloping 违约增加
 - Default distribution: default unlikely in the near team but increase with time

- o Spread Downward sloping 短期高违约,但是可以活更久
 - **High** short-term default, but survive for a sufficiently long time if the firm can right itself
 - Deeper at the beginning, but flatter later
- o Default distribution: always upward
- Spread risk
 - Mark-to-market effect
 - shock CDS **curve parallel** up and down by 0.5bps
 - o spread volatility
 - std of spreads
 - historical or forward-looking data

Portfolio Credit Risk

- 重点
 - o Portfolio credit VaR
 - o SFM VaR
 - Copulas VaR
- default correlation

Figure 1: Default Probabilities for Two Firms

Event	\boldsymbol{x}_1	x_2	$(x_1 \ x_2)$	Default Probability
Firm 1 Defaults	1	0	0	$\pi_1 - \pi_{12}$
Firm 2 Defaults	0	1	0	$\pi_2 - \pi_{12}$
Both Default	1	1	1	π_{12}
No Default	0	0	0	$1 - \pi_1 - \pi_2 + \pi_{12}$

• Default correlation

$$\rho_{12} = \frac{\pi_{12} - \pi_1 \pi_2}{\sqrt{\pi_1 (1 - \pi_1)} \sqrt{\pi_2 (1 - \pi_2)}}$$

- \circ Cov(X,Y) = E(XY) E(X)E(Y) =
- \circ Variance(X) = $pi pi^2 = p^*(1-p)$
- Correlation-based Framework
 - o n portfolio, 2^n outcomes, $n+1+n^*(n-1)/2$ conditions
 - o n*(n-1) pairwise correlations, set to a single non-negative parameter
 - o some positions do not **fit** well
 - guarantees, revolving credit agreements, other contingent liabilities
 - CDS
 - convertible bonds
 - o Limited data
- Portfolio Credit VaR
 - Credit VaR = Quantile of credit loss expected loss
 - 和以前的 VaR 不太一样,以前的是 worst case loss (z*alpha -u)
 - o Default correlation 不影响 expected loss

- o correlation=1, a single portfolio
- o correlation=0, binomial distribution
- o more bonds, credit VaR decrease, worst case loss converges to expected
- Single-Factor Model 无条件和条件

○ Unconditional Mode
$$R_i = \beta_i \times R_M + \sqrt{1 - \beta_i^2} \times \epsilon_i \sim N(0,1)$$

$$\qquad R_M \sim N(0,1), \epsilon_i \sim N(0,1)$$

- O Each have a β_i correlation with the market
- Correlation between each other $Corr(R_i, R_i) = \beta_i \times \beta_i$
- o Default Condition
 - If $R_i \le k_i$, the logarithmic distance to the defaulted asset value
 - k_i = Φ⁻¹(α)就是 critical value, 和对应的显著程度
- o Conditional independence 条件独立,市场回报已知
 - Once market return is realized, asset returns are independent of each other

•
$$R_i - \beta_i \times \overline{R_M} = \sqrt{1 - \beta_i^2} \times \epsilon_i \to R_i \sim N(\beta_i \times \overline{R_M}, \sqrt{1 - \beta_i^2})$$

- As market goes from strong to weak, a smaller idiosyncratic shock will trigger default
- Conditional Default Distribution Variance

$$\circ \quad \mu = \beta_i \times \overline{R_M}, \sigma = \sqrt{1 - \beta_i^2}$$

- Unconditional cumulative probability of default $\Phi(k_i)$
- O Conditional cumulative probability $F(m) = \Phi\left(\frac{k_i \beta_i \times \overline{R_M}}{\sqrt{1 \beta_i^2}}\right)$
- o All firms have the same β , k, π
 - Joint cumulative probability of default

$$\Phi\binom{k}{k} = P(-\infty \le R \le k, -\infty \le R \le k)$$

Default correlation

- Credit VaR with SFM
 - o Loss level of 0.01 (99% confidence level) -> k=-2.33

- Credit VaR with Copulas
 - Define the copulas function
 - Simulate default times
 - Obtain market values and P&L for each scenario
 - o Compute distribution stats by adding terminal value result

Structured Credit Risk

- Securitization Products
 - Covered bonds 表内资产、有保证
 - On-balance sheet Securitization
 - Not true securitization
 - Principle and interest are guaranteed

- Not part of bankruptcy-remote structure
- Investors have **recourse** against the originator
- o Mortgage pass-through securities 表外资产,提前偿还
 - True off-balance sheet
 - Agency MBS: implicit or explicit government guarantee
 - Default risk not true concern
 - Primary risk: prepayment of principal
- o CMO 顺序法,一个接一个,本金和利息
 - Tranche 顺序 tranche
 - Waterfall or sequential pay structure
 - Tranche 1 receive all principle and interest, and then after tranche 1 is retired, then tranche 2
- Structured Credit Products
 - o Tranche have different risk 吸收损失
 - Junior tranche bears the first losses
- Asset-backed securities most general
 - o Pooled and trenched
 - o MBS < ABS
 - o CBO (bond), CDO (debt), CLO (loan), CMO (mortgage)
- Difference
 - o Underlying collateral: loan, bond, debt, credit card receivable, auto loan
 - o Size and number
 - o Passive (auto loan or mortgage) or actively managed
 - Active: add or shed assets
 - Revolving pool
 - Loan proceeds are reinvested in new assets
- Capital Structure
 - o Priority of tranches
 - o Senior
 - Highest, Lowest coupon, safest
 - Mezzanine (junior)
 - Absorb loss only after equity is completely written down
 - Relatively **high** coupon or high spread
 - Equity
 - Lowest, absorb the first loss up to predefined level
 - Residual cash flow
 - Smallest part

• Credit enhancement

- o Internal:
 - Hard: over collateralization (claim < collateral)
 - Soft: excess spread (cash flow collected > payment)
 - Separate trust account
- o External: insurance, CDS
- Waterfall structure
 - o OC trigger
 - First allocate to senior and junior
 - how to allocate excess between equity and accumulating trust
 - o interest = coupon = LIBOR + spread
 - o assume constant default rate

- loan proceeds = P * coupon * (1-default) 影响收入
- Securitization Participants
 - o Originator 贷款
 - Funds the loan
 - o Underwriter 发行
 - Issuance of debt and equity
 - Structure the issue (size, coupon, trigger, sell)
 - Warehouse the collateral and face the risks of drop or note marketed
 - o Credit rating agencies (CRA) 评级
 - Influence the issue by requiring enhancement
 - Influence the size of tranche
 - Conflict: allocate more to larger positions
 - Solution: own analysis and insurance
 - o Servicer 收钱
 - Collect and distribute cash flow and fees
 - Provide liquidity
 - Conflict: foreclosure, delay to increase fee
 - o Manager actively
 - Solution: originator and/or manager to bear the first loss
 - Custodian and trustees
 - Administrative, verify documents, disbursing funds, transfer bunds
- Three-tire structure
 - o 有违约时,影响收入的现金流
 - N * (1-PD) * each bond value * coupon%
 - o 无论是否有违约,每个 tranche 的利息还是按照没有 default 的算
 - N* each bond value * weight i* coupon i
 - 按照原始本金
 - Recover of sale of defaulted asset
 - o The recovered funds would earn interest over the remaining life
 - o Flow
 - Senior > mezzanine > excess spread account (max) > equity
 - o If L B > 0
 - Pay bond holder: senior and mezzanine
 - If L-B>K
 - K -> excess spread
 - L-B-K -> equity
 - o Else
 - Pay L to bond holder, shortfall is B-L
 - Check accumulated fund
 - If can cover then cover, then suffer a write down
 - o Consider default and recovery
 - o Recovery the **principle** -> trust account
 - Last year
 - Recovery, no trust account, principle
 - Senior > junior > equity

The terminal cash flows are summarized as follows:

- 1. Loan interest = $\left(N \sum_{t=1}^{T} d_{t}\right) \times (LIBOR + spread) \times par$
- 2. Proceeds (par) from redemption of surviving loans = $\left(N \sum_{t=1}^{T} d_{t}\right) \times par$

©2018 Kaplan, Inc.

eference to GARP Assigned Reading – Malz, Chapter 9

- 3. Recovery in final year: $R_T = 0.4d_T \times par$
- 4. Residual in trust account: $\sum_{\tau=1}^{T} (1+r)^{t-\tau} OC_t$
- Inflow
 - Interest + principle + recovery principle + OC * (1+r t)
- Outflow
 - Pay Principle first (senior > junior > equity)
- Simulation
- PD and default correlation
- Convexity
 - o Default rate increase (想成是 bond price 和 interest 的关系)
 - Equity decrease rapidly then moderately (positive convexity)
 - Senior decrease rapidly (negative convexity)
 - Junior: negative convexity at low default, positive convexity at high default
 - o Relation (equity 高风险、高收益、依靠波动; senior: 不依靠波动)
 - PD -> mean all decrease, VaR (equity decrease, senior increase)
 - Correlation -> VaR all increase, mean (equity increase, senior decrease)
 - Equity 的 mean value 和 VaR 一致; senior 的相反; mezzanie 从 senior 向 equity 变化
 - Correlation
 - Senior VaR increase, but incremental difference between high correlation (0.6 and 0.9) is small.
 - Senior well insulated: high default, correlation low

Figure 3: Increasing Default Probability (Holding Correlation Constant)

	Mean value	Credit VaR
Equity tranche	↓	↓
Mezzanine tranche	\downarrow	↑ then ↓
Senior tranche	\downarrow	↑

0

Figure 4: Increasing Correlations (Holding Default Probability Constant)

	Mean value	Credit VaR
Equity tranche	<u></u>	↑
Mezzanine tranche	<pre>↓(at low default rates) ↑(at high default rates)</pre>	↑
Senior tranche	\downarrow	↑

Measure default sensitives

- Default -01, shock up and down by 10bps
 - 1/20 [(mean value / loss based on π + 0.001) (mean value / loss based on π 0.001)]
- always positive
- approach 0 as default is very high
- more variation when default generated loss close to tranche attachment point
 - similar option to at-the-money
- o Risk
 - Systematic risk: correlation
 - Tranche thinness
 - Equity and mezzanine very think
 - Close to 95% or 99% credit VaR
 - Loss granularity
 - Loan level divarication
 - Few large loan increase tail events
- Implied correlation
 - Market price and a pricing function 定价函数
 - For each tranche: Assume constant pairwise and constant market price
 - CDS -> risk-neutral default probabilities and recovery rate
 - Estimated Default and correlation -> fed into a copula
- Structured products motivation
 - Originator:
 - lower cost of funding
 - o Diversification, high reputation
 - o Commercial mortgage pool, hard to diversify
 - Collect service fee
 - Investor

• Desire risk-return level via trenching

Counterparty Risk

- Counterparty and lending
 - o Counterparty: refer to pre-settlement risk in most cases
 - o Counterparty: bilateral, amount uncertain
 - o Lending: unilateral, certain principle
- Exchange and OTC
 - o counterparty risk in OTC but not exchange
 - o repo
 - hair cut: credit = collateral * (1-haircut)
 - repo rate: repurchase price = credit * (1+ repo rate)
 - OTC derivative
 - Interest rate swap: no principle exchange, net interest (float and fixed)
 - Largest outstanding notional amount in the market
 - Foreign exchange swap: **exchange** principle
 - CDS:
- Players
 - Large: large banks
 - o Medium: smaller banks for financial institution
 - o Small
 - Sovereign entities, large corporation, small financial institution
 - Specific and illiquid derivative
 - Others
 - Collateral management, clearing service, trade compression
- measure
 - o replacement cost: Mark to market (cost, bid-ask spread)
 - o exposure: current, future, contingent
 - o default: mean reversion, market -> risk-neutral -> implied -> no arbitrage
 - o recovery
- Manage
 - High quality counterparties
 - o diversification: more counterparties
 - o cross-product netting
 - o close-out: close after default and settle
 - o walkaway: cancel if default, largest advantage if negative exposure and counterparty default 不用还债,还可以讨债 claim
 - o CCP: redistribute
- Mitigating
 - o Netting
 - o Collateral: liquid and legal
 - o Hedging: generate market risk
 - o CCP: liquid, systematic, operational
- Quantify: CVA

Netting, close-out

• ISDA

- Master agreement, standardize OTC reduce legal uncertainty and mitigate credit risk
- o collateral, netting, and termination
- o cover multiple transactions by a single **legal** contract with an **indefinite** term
- o bilateral netting
- o legal opinion in most jurisdictions
- payment netting **settlement** netting increase operation efficiency
- close-out netting **pre-settlement** netting
- netting
 - o without: exposures are additive 可加性
 - o with: reduce exposure, unwind positions, multiple position, stability
- acceleration clause 加速条款
 - o accelerate future payments, i.e., rating downgrade
- close out
 - o terminate: cancel + claim for compensation
 - o negative MTM need to pay
 - o positive MTM can claim and replace with another
 - o cons
 - speed up distress -> time out
 - o props
 - can re-hedge while waiting to receive a claim
- multilateral netting
 - o CCP: valuation, settlement, collateralization
 - Disadvantage
 - Mutualized counterparty risk 风险共享
 - Less incentive to monitor other credit quality
 - **Redundant** trading positions 冗余
 - Disclosure 披露
- Netting effectiveness
 - o Negative MTM benefit
 - Only positive MTM
 - up-front premiums (options)
 - Equality options, FX options, caps and floors, swaptions
 - o Can be negative
 - Without up-front premiums
 - Swaps, futures, forwards, off-market instruments, wrong-way instruments
- Termination Features
 - o Reset 重置
 - Terminate before becoming bankrupt
 - In-the-money -> at-the money
 - o Break: Additional termination events (ATEs)
 - Terminate if declines to the bankruptcy point
 - Terminate at replacement value
 - Mandatory, optional, trigger-based
 - Bank paradox
 - Exercise early to be effective
 - o Walkaway 不用还债,还可以讨债

- Benefit from default of counterparty
- No net liability, but can claim MTM exposure
- o Trade compression
 - Multilateral netting, reduce redundancies without changing risk profile
 - Standard coupons and maturity dates help compression

Collateral

- Collateral management: bilateral
 - o Reduce exposure
 - Reduce capital
 - More competitive pricing
- CSA
 - o Evolved a few decades but no legal standards
 - Part of ISDA
 - o Define all collateralization parameters account for scenarios
- Parameters
 - Threshold
 - When MTM excel threshold, post collateral
 - High credit
 - o Minimum transfer amount
 - Minimum amount of collateral can be called
 - Additive to threshold
 - Rounding
 - Hair
 - credit = collateral * (1 − hair cut)
 - Initial margin
 - Independent amount
 - o Credit quality
 - Credit support amount
 - Called at a time
- Valuation Agent
 - o Role
 - Credit exposure, market value, credit support amount, delivery/return collateral
 - Similar company: both can be the agent, but delay and disputes -> third party
- Governance
 - o Include maximum number of trades
 - Focus on majority trades
 - Separate handle complexity or illiquidity and a small portion
 - Leave out: face frequent disputes
- Dispute
 - o Exposure
 - Undisputed -> transferred
 - o disputed -> identified -> quotes from market makers (4) for MTM
- features
 - o substitution, reuse, rehypothecation
- CSA
 - Two-way: similar but can differ in parameters
 - o One-way: one party post
 - o Link to credit quality, equity, net asset, credit spread

- Risks
 - Market risks
 - Delay: minimum transfer and threshold
 - Normal delay: sending/receiving collateral
 - Operational risk
 - missed called, failed delivery
 - o liquidity and liquidation risk
 - liquidation: transaction cost, ask-bid spread
 - slow: market risk fast: liquidity risk
 - funding liquidity risk
 - no funding to settle obligation
 - illiquid: high risk
 - default risk
 - foreign exchange risk

Credit Exposure and Funding

nositive and negative

positive and n	egaure			
	Positive		Negative	
Point 时间点	E/MtM	Exposure	NE	Negative exposure
Point 时间点	EE	Expected positive exposure	NEE	Negative Expected exposure
Time range 时间段	EPE	Expected positive exposure	ENE	expected negative exposure

	Positive		Positive Maximum		Positive Effective	
Point 时间 点	E/MtM	Exposure				
Point 时间 点	EE	Expected positive exposure	PFE	Potential future exposure	Effective EE	Nondecreasing EE

Time	EPE	Expected	Maximum	Maximum	Effective	Nondecreasing
range		positive	PFE	PFE	EPE	EPE
时间		exposure				
段						

VaR and Exposure

-	VaR	Exposure
Application	Risk management	Risk management
		Bond pricing
Time	Short	Many
Risk mitigant		Netting, collateral
Market trend variables	No	Yes
(volatility, co-dependency)		
Path dependency (Future	No	Yes
payments, cash flow, cancellation,		
credit exposure)		

• credit exposure factors

- o future uncertainty
- o periodic cash flow: regularly reduce risk, periodic but not equal -> more risk
- o combination of profiles
- o optionality

collateral

- o delay in receiving collateral
- o variations in collateral value
- granularity effects
- o path dependency

PFE

- o A measure of credit and counterparty
- Factor Maturity
 - Bond/loan stable and decrease linearly quickly
 - Interest swap concave, a peak shape
 - FX increase
 - Cross-currency: IR + FX -> increase
 - Option: increase (deep in the money)
 - CDS: increase and then flat, maximum is LGD
- Factor frequency
 - Pay frequently: more risk
 - Receive frequently: less risk

Netting Benefit

- o individual: netting benefit = no netting netting
- EE: netting benefit = average no netting average netting
- E -> EE -> EPE
- Negative correlation better
- Netting factor: small is better
 - o netting factor = $\sqrt{\frac{1}{n} + \left(1 \frac{1}{n}\right)\rho} = \sqrt{\rho + \frac{1}{n}(1 \rho)}$
 - n is the number of exposures, ρ is the average correlation
 - o large n and small ρ is better
 - o depend on initial MtM, negative is better

- Collateral on Exposure
 - Remargin period: take place to actually delivered
 - Steps
 - Valuation/margin call: exposure, market value
 - Receiving collateral: receive request -> release collateral
 - Settlement: sell collateral for cash
 - Grace period: additional time to deliver collateral
 - Liquidation/close-out and re-hedge
 - Liquidate the collateral, close out and re-hedge
 - o Basel II: OTC Derivate (10day), repo (5 days)
- Measure Exposure During Remargin $0 t = \frac{remargin \ period}{total \ trading \ days} \text{ years}$
 - o σ_E is volatility **collateralized** exposure

$$\circ \quad \text{EE} = \frac{1}{\sqrt{2\pi}} \times \sigma_E \times \sqrt{t} = 0.4 \times \sigma_E \times \sqrt{t}$$

- PFE = $Z_{\alpha} \times \sigma_E \times \sqrt{t}$ (99% -> 2.33 单边)
- o Collateral volatility (may increase the volatility)
 - $Collatered\ Exposure = Exposure Collateral$
 - Effective variance $\sigma_{CE}^2 = \sigma_E^2 + \sigma_C^2 2 \times \sigma_E \times \sigma_C \times \rho$
- Modelling Collateral
 - May be deficient due to terms (threshold, minimum transfer amount)
 - o Exposure may increase between margin calls
 - o Collateral is path-dependent
- Risk-Neutral and Real-world
 - o Real-world: historical data
 - o Risk-Neutral: market price (implied volatility)

Counter-party Risk Intermediaries

- **SPV**
 - Off-balance sheet
 - o Bankruptcy-remote
 - Legal risk: consolidate originator with SPV
- DPC (derivative)
 - o Bankruptcy-remote, capitalize
 - Market risk: offsetting contract
 - Support from originator
 - o Internal credit risk management
 - Marking to market and collateral
- Monolines (insurance)
 - Only insure bond repayments
 - No collateral at the beginning
 - Concentrate systematic risk
- CCP
 - o Reduce systematic risk
 - Market neutral: offset buy-seller side
 - Collateral, daily MtM
 - o Novation: replace non-performing contracts with new ones when default
 - Loss mutualization
- Default

- o Novation: replace with new ones
- o auction: within clearing members
- absorb realized loss

Loss waterfall - Loss mutualization

- o Defaulting member margin account: collateral
- o Defaulting member default **fund** contribution
- o CCP Equity
- Default Funds of Non-defaulting members
- o Right of assessment: additional contribution to default fund
- o Further liquidity support or CCP fail
- CCP
 - Advantages
 - Transparency (concentration), multilateral netting,
 - Liquidity (daily collateral settling)
 - Legal and operational efficiency (netting and collateral)
 - Loss mutualization
 - Default management: auction, stable
 - Disadvantages
 - Moral hazard
 - Adverse selection 逆向选择
 - member trade with CCP that offer best prices
 - Bifurcation 二分市场
 - Procyclicality 周期性
 - Positive correlation between event and economy state
- Impact
 - o CVA (credit)
 - o FVA (funding): uncollateralized OTC
 - o KVA (capital): reserves
 - o MVA (margin): increase, more margin

Default Probability, Credit Spread and Funding costs

- Real-world and real-neutral
 - o Real-world: historical data
 - Real-world interest-free + inflation
 - **Risk management**: risk and return assessment
 - Real-neutral: market information
 - Real-world + liquid + default
 - Hedge decision
- Estimation approach
 - Historical data real-world probability
 - Transition matrix
 - Cumulative: matrix multiplication
 - Mean-reversion: cumulative PD for investment increases for noninvestment grade
 - Equity-based real-world probability
 - Merton: equity market data to estimate default pro probabilities
 - KMV: built on Merton, relax several assumptions
 - Volatility and market value estimates

- Distance to default: $(A K)/A \setminus$ sigma
- Historical default data and distance-to-default -> expected default
- Credit Grade no empirical data is not utilized
 - Observable market data and balance sheet information
 - Simple and easier to replicate
- o Risk-neutral approach
 - PD from observed credit spread and the market price of a traded credit security
 - Hazard * LGD = spread
- Recovery rates
 - Depend on each other
 - o Recovery rates -> market prices of recovery swaps
 - o From defaulted security
 - Vary by industries
 - Clustering of defaults during economic downturns
 - o Higher default rates have a negative relation with recovery
 - o Related to capital structure
 - o Realized (Settled) vs eventual (actual)
- CDS
 - o Physical
 - Delivery squeeze: many people need to buy to deliver increase the price
 - o Cash
 - Settlement price: auction 30 days after default
- Credit Spread Curve
 - o Most liquid
 - o Choice of reference
 - o Around a single, liquid observation to map the entire curve
- Portfolios of Credit Derivatives
 - o CDS index
 - Equally weighted index
 - Fixed maturity and static constituents
 - Defaulted will be replaced by new names
 - Roll every six month, a new on-the-run CDS index series is created
- CDO
 - Index tranches
 - Capital structure for credit index
 - Loss distribution is divided into mutually exclusive ranges
 - Equity, mezzanine, senior, super-senior
 - [attachment point X%, detachment point Y%]
 - o super-senior tranche [X%, Y%] loss range (EL=PD*LGD)
 - (number of defaults / n)* (1-recovery) = X%
 - Credit risk, not a major concern
 - Primary risk: counterparty risk
 - o CDO
 - Senior, mezzanine, equity
 - o Synthetic CDO
 - Custom-made for a specific transaction
 - Separate from the rest

- Structured CDO
 - CLO, MBS, cash CDO -> more complex waterfall structure

CVA – CCR expected value

- Pricing counterparty risk
- Credit value adjustment
 - o Expected value or price of counterparty credit risk
 - Risky value = risk-free value CVA
 - - EE: discounted expected exposure
 - o Assume no wrong-way risk 假定无错向风险
- CVA spread

$$O \frac{CVA(t,T)}{CDS_{premium}(t,T)} = X^{CDS} \times EPE = spread \times EPE$$

- o $CDS_{premium}(t,T)$ unit premium value of a CDS
- o X^{CDS}: CDS premium at maturity date T, credit spread
- Impact
 - o CVA will increase if spread increase
 - o CVA lower for upward-sloping curve, higher for downward-sloping
 - o CVA will decrease if
 - recovery rate increase
 - actual recovery settlement recovery increase
 - netting
 - risk-free value of a new trade = new CVA CVA
 - collateral increase (reduce expected exposure)
 - but minimum transfer and threshold increase CVA
- Incremental and Marginal
 - o Incremental: **pricing** a new trade 定价
 - o Marginal: break down into trade level to see contribution 贡献
 - Larger n, smaller marginal effects
- CVA to running spread
 - CVA / (Duration * principle) = xxx bps
- CVA to exotic products and path dependency
 - Exotic products
 - MC simulation
 - Path dependency
 - information on the entire path from present to future
- BCVA
 - \circ BCVA = CVA + DVA
 - CVA = LGD $\times \sum_{i=1}^{m} EE(t_i) \times PD_C(t_{i-1}, t_i)$ 对手违约
 - DVA = $\text{LGD} \times \sum_{i=1}^{m} NEE(t_i) \times PD_I(t_{i-1}, t_i)$ 自己违约
 - o BCVA = CVA DVA 也可以这样理解
 - Netting may be a disadvantage
- BCVA spread

$$O \frac{\frac{1}{CDS}}{CDS_{premium}(t,T)} = X_{C}^{CDS} \times EPE - X_{I}^{CDS} \times ENE$$

o C: counterparty, I: institution

WWR

Correlation between exposure and counterparty

- RWR and WWR (center of attention)
- Loan exposure, fixed for a specific time
- OTC derivative, fluctuates on market conditions
- **High** quality more WWR
- OTC put option
 - Out-of-money put have more WWR than in-the-money put
 - o Economic fall, increase exposure,
- CDS
 - o Economic fall, CDS gain,
- Foreign currency swaps
 - o Japanese currency appraised, US depreciated
- Collateral
 - o Reduce
 - o Exposure jumps, benefit limited, currency devaluation
- CCP
 - o Collateral and default fund contribution

Stress Test CCP

- CCP Measures
 - o Exposure: current/peak/expected/expected positive
- CCR Risk
 - o Credit risk
 - CVA, managed at inception or collateral
 - Focus on risk mitigation and credit evaluation
 - Manage portfolio
 - Measures: all kinds of exposure
 - Market risk
 - CVA (spread) and variability in CVA (VaR of CVA)
 - Incorporate correlation
 - hedge risk
 - o Credit and market risk both
- Stress current exposure
 - o Most common
 - Shortcoming
 - Aggregating results is challenge
 - No WWR
- Stress Expected Loss
 - Loan portfolio
 - Expected loss (EL): PD, LGD, EAD
 - Stress EL EL
 - Derivative Portfolio
 - EAD -> Alpha * EPE
- Stress CVA
 - o Unilateral CVA and bilateral BCVA
 - o Stressed CVA (both PD and EE)
- Stress BCVA
 - o BCVA~ = $X_C^{CDS} \times EPE \times S_I X_I^{CDS} \times ENE \times S_C$
 - S_I survival probability of financial 自己要存活,然后 CVA 才有价值

Retail

•

Credit Migration

- Collateral
- Guarantee
- Credit Enhancement

Credit Risk

- Default Mode
 - Default risk
 - o Recovery risk
 - o Exposure risk
- Value based
 - Migration risk
 - o Spread risk
 - Liquidity risk
- Concentration risk in portfolio
- Portfolio correlation
- Counterparty Risk
- Settlement Risk

_

Loss

- Expected Loss
 - \circ EL = EAD * PD * LGD
- Unexpected Loss / VaR / Economic Capital
 - \circ UL = WCL(c%) EL
- Catastrophic Loss
 - o Expected Shortfall (1-c%)

FIGURE 3-1 Loss rate distribution and economic capital.

Credit VaR

Credit loss

0

- Expected loss EL = PD * LGD * EAD
- o Worst case loss WCL
- Unexpected loss UL = Credit VaR = WCL EL
- Default correlation has no effect on EL but is an increasing function with UL.
- Portfolio VaR
 - o n credits, default probability p, default correlation 0.
 - o VaR 95%

• Default correlation

- $\circ \quad Correlation = COV(X,Y) / sqrt(Var(X) Var(Y))$
- $\bigcirc \quad COV(X,Y) = E(XY) E(X) E(Y) = p(XY) p(x) p(y)$
- \circ Var(X) = n * p * (1-p)

Probability of Default in Rating System

- Good Rating Systems
 - Measurability and Verifiability
 - o Objectivity and Homogeneity
 - o Specificity
- Probs
 - o Cumulative default probability
 - o Marginal default probability
 - o Forward probability (contingent to survival rate)
 - o Survival Rate
 - o Annualized Default Rate

Spread and Default

- Define
 - o 1 dollar, probability of default: p, RR: recovery at default
 - o risk free rate: r, yield to maturity: y
- PV equal
 - \circ PV = 1 / (1+y), use yield to maturity
 - \circ PV = (p * RR + (1-p)*1) / (1+r), use risk free and default
 - \circ 1 / (1+y) = (1 p * LGD) / (1+r)
- Spread
 - \circ Spread y r
 - \circ (1+r)/(1+y) = 1 p*LGD
 - \circ P * LGD= (y-r)/(1+y) = spread / (1+y)
 - 0

Merton Model

- V: firm value, D: debt, E: equity.
- Equity
 - o Call option on firm value V with strike price D
 - \circ E = Max(V-D,0)
- Bond
 - Risky bond + put option = risk free bond
 - Risky bond = risk free bond put option
 - $O = V \max(V-D,0) = \min(D,V)$
- Model
 - o Equity call = $V N(d1) K \exp(-R_f *t) N(d2)$

- o Bond = V equity = K exp(-R_f t) N(d2) + V (1 N(d2)) • 1 - N(d2) = N(-d2)
- O Rf is the risk-free rate
- Default
 - o $d1 = (\ln V/F \exp(-r * t) + 0.5*s^2*t) / (s*sqrt(t))$
 - o $d2 = (\ln V/F \exp(-r * t) 0.5*s^2*t) / (s*sqrt(t))$
 - o r: asset expected return, not risk-free return
 - o s: asset volatility
- Default probability
 - o d2 is the distance to default
 - \circ N(-d2) = 1 N(d2)
- Characteristics
 - o Follows lognormal diffusion process, no sudden change
 - o Default can only occur at the debt maturity

KMV Model

- Normalized distance to default
 - \circ Z = (A K) / (A * s) = (1 K/A) / s
 - \circ K is the liabilities, K = short-term liabilities + 0.5 * long-term liabilities
 - o A: Asset, Asset=Liabilities + Equity
 - o s: asset volatilities

Poisson and Exponential Distribution

- Poisson: $p(x) = \exp(-r) * r^x / x!$
- Hazard rate: r, over dt is r*dt
- Cumulative PD: $F(t) = 1 \exp(-t)$
- Survival distribution: $S(t) = \exp(-t) = 1 F(t)$

•

Single-Factor Model

- Alpha = beta * $m + sqrt(1 beta^2)$ * e
- E(a) = 0, Var(a) = 1
- Conditional cumulative default probability function
 - o Assume m is known
 - \circ e i = (k i beta * m') / sqrt(1 beta 2)
 - \circ p =\Phi(e i)

Other PD Models

- Linear discriminant analysis
 - o Z-score function
 - o The cut-off value is 2.675
- Logistic Regression Model
 - O Log odds = $\log p / (1-p) = \sum w i * x i$
 - $o pi = 1 / (1 + exp(- \setminus sum w i * x i))$

Credit Exposure

- Current Exposure (Replacement Cost)
- MtM

- o Market to market, can be positive or negative
- Expected Exposure (EE) (over distribution)
 - o The average of the distribution of exposure at a future date
 - Positive exposure = max(value, 0)
- Expected Positive Exposure (**EPE**) (**over time**)
 - o Weighted average over time of EE, where weights are the proportion that
- Negative Exposure (NEE)
 - o From counterparty's point of view.
 - Negative exposure = min(value, 0)
- Expected Negative Exposure (ENE)
 - Weighted average of NEE over time
- Peak Exposure/Potential Future Exposure (PFE)
 - o A high-percentile (95% or 99%) of the distribution at a future date
- Maximum PFE
 - Highest PFE value over time
- Effective EE (non-decreasing EE)
- Effective EPE
- Cross-currency swap
 - o Interest rate swap (IRS) + foreign exchange (FX) forward contract

Credit Value Adjustment (CVA)

- $CVA = LGD * \sum EE(t) * PD(t-1, t) * d(t)$
- CVA = CS * EPE
- Incremental CVA
 - Accounts for change in CVA
- marginal CVA
 - o break down netted trades to see the impact
- Stress test on loan portfolio
 - \circ El s = \sum PD * EAD * LGD
- Stress test on derivative portfolio
 - o EL = \sum PD * alpha * EPE * LGD
- Stressed CVA

0

- DVA and Stressed DVA
- CVA = EPE * counterparty credit spread
- DVA = ENE * institution credit spread
- BCVA = CVA DVA
- Hazard rate = spread / LGD

Wrong Way Risk (WWR)

- Relation between **exposure** and **creditworthiness increase** risk
- RWR: buy oil from oil producer at fixed price
- Highest WWR: an out-of-money put option

CCP

Mitigation Counterparty Risk

Netting

- o Total exposure: \sum i max(MtM i, 0) 先最大化、再求和
- o Netting exposure: max(\sum_i MtM_i, 0) 先求和、再最大化
- Netting factor = netting exposure / total exposure
- o Portfolio with **n** positions and average correlation **r**
 - Netting factor = sqrt(n + n*(n-1)*r) / n
 - Netting factor = sqrt(1/n + (1 1/n) *r)

Collateral

- o Remargin period: between call and its receipt
- o Threshold: exposure level below which collateral is not called
- o Minimum transfer amount: minimum quantity or block transferred
- o Independently amount: initial margin

• Contract Clauses

- Walk-away clause
- Close-out netting
- o Acceleration
- Termination
- Novation

• Central Counterparties

- o Loss waterfall: initial margin, reserve contribution,
- o Initial margin: initial margin
- O Variation margin: daily change in positions
- Hedging
- Collateral Support Annex (CSA)

Credit Derivatives

• Credit Default Swaps (CDS)

- o Protection Buyer-seller
 - Buyer: periodic payment
 - Seller: contingent payment
- Only market risk
- Like a put option
- Risk-free bond = Risky bond + CDS
- Settlement
 - Cash-settled: pay par market
 - Digital CDS: illiquid asset
 - Receive pre-agreed cash
 - Physically settled
- o First to default
- Nth to default (correlation)

Total Return Swaps (TRS)

- Buyer-seller
 - Buyer (payer and risk seller): payment tied to reference asset
 - Seller: payment tied to reference rate

o Hedge against **credit risk** (default, deterioration) and **market** risk.

- Credit-Linked Notes (CLN)
 - o A swap, principle is exchanged
 - \circ Investor: CLN = Bond CDS
 - Issue CDS and Buy a coupon
 - o Issuer: CLN = CDS Bond
 - Issues a coupon bond to investor and buy CDS from investor
 - o Investors: a funded CDS, sellers who have funded the contingent credit loss
 - o Protection Buyer-Seller
 - Buyer: issuer
 - Seller: investors
 - o Lender receives an enhanced coupon
 - o Least counterparty credit exposure for the protection buyer
 - o Selling/issuing a CLN transfers credit risks to investors
 - o The buyer pays the principle to the seller and receive regular coupon
 - o If there is no credit event, the principle will be paid back to the investor.
 - o Otherwise, CLN buyer receive the collateral.

Structured Products

- Securitization
 - Tranching
 - Waterfall
- Products
 - Covered bonds
 - o MBS
 - o CDO
- CDO
 - o Cash-flow vs synthetic
- Internal credit enhancement