1. Solution

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	62.41
Q2	$\lceil 0.5 \times 54 \rceil$	27	63.88
Q3	$\lceil 0.75 \times 54 \rceil$	41	66.98

We determine the IQR.

$$IQR = Q3 - Q1$$

= 66.98 - 62.41
= 4.57

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $62.41 - 1.5 \times 4.57$
= 55.555
upper boundary = Q3 + $1.5 \times IQR$
= $66.98 + 1.5 \times 4.57$
= 73.835

We determine the outliers.

outliers =
$$\{76.09, 76.58\}$$

We identify the ends of the whiskers: 60.02 and 73.48. We plot the boxplot.

2. Solution

The sample size, *n*, is 48. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 48 ceil$	12	71.96
Q2	$\lceil 0.5 \times 48 \rceil$	24	90.31
Q3	$\lceil 0.75 imes 48 ceil$	36	101.1

We determine the IQR.

$$IQR = Q3 - Q1$$

= 101.1 - 71.96
= 29.14

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 71.96 $- 1.5 \times 29.14$
= 28.25
upper boundary = Q3 + 1.5 $\times IQR$
= 101.1 + 1.5 \times 29.14
= 144.81

We determine the outliers.

outliers =
$$\{19.63\}$$

We identify the ends of the whiskers: 45.84 and 108.74. We plot the boxplot.

