Metal Foams as Compact High Performance Heat Exchangers

K. Boomsma, D. Poulikakos, F. Zwick*

Laboratory of Thermodynamics in Emerging Technologies
Institute of Energy Technology
Swiss Federal Institute of Technology, Zurich

*ABB Corporate Research, Ltd., Baden-Dätwil, Switzerland

REPORT DOCUMENTATION PAGE					0704-0188	
and reviewing this collection of infor Headquarters Services, Directorate for	mation. Send comments regarding this burden es or Information Operations and Reports (0704-01)	stimate or any other aspect of this coll 88), 1215 Jefferson Davis Highway, S	lection of information, inc Suite 1204, Arlington, VA	cluding suggestions for reducin 22202-4302. Respondents sho	gathering and maintaining the data needed, and completing g this burder to Department of Defense, Washington bull be aware that notwithstanding any other provision of I RETURN YOUR FORM TO THE ABOVE ADDRESS.	
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 30-05-2001 Workshop Presentations			3. DATES COVERED (FROM - TO) 30-05-2001 to 01-06-2001			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Metal Foams as Compact High Performance Heat Exchangers				5b. GRANT NUMBER		
Unclassified				5c. PROGRAM I	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT N		
Boomsma, K.;				5e. TASK NUMBER		
Poulikakos, D.;				5f. WORK UNIT NUMBER		
Zwick, F.;						
7. PERFORMING ORGANIZATION NAME AND ADDRESS				8. PERFORMING ORGANIZATION REPORT		
ABB Corporate Research, Ltd. Baden-Datwil, Switzerlandxxxxx				NUMBER		
		AE AND ADDRESS		to aboltage a	10. N. M. D. C. D. C. N. D. L. (2)	
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10. SPONSOR/MONITOR'S ACRONYM(S)		
Office of Naval Research International Field Office Office of Naval Research				11. SPONSOR/MONITOR'S REPORT		
Washington, DCxxxxx				NUMBER(S)		
APUBLIC RELEASE ,		ENT				
13. SUPPLEMENTAL	RY NOTES 3, Thermal Materials Worksh	on 2001 hald in Camb	uridaa IIV on N	May 20 Juna 1 200	11. Additional papara can be	
	o://www-mech.eng.cam.ac.uk		orage, OK on N	71ay 50-Julie 1, 200	71. Additional papers can be	
14. ABSTRACT	7.// w w w incomeng.eam.ac.ar	J OIII/				
? Thermal managemen improvement? Conclu	isions	eat exchanger configur	ation ? Experim	nents & Results?	Numerical Simulations ? Structure	
15. SUBJECT TERMS						
16. SECURITY CLA	SSIFICATION OF:	17. LIMITATION OF ABSTRACT Public Release	18. NUMBER OF PAGES 21	19. NAME OF R Fenster, Lynn lfenster@dtic.m	RESPONSIBLE PERSON	
	BSTRACT c. THIS PAGE lassified Unclassified			19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number 703767-9007 DSN 427-9007		
					Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18	

Contents

- Thermal management of IGBT's
- Metal foam heat exchanger configuration
- Experiments & Results
- Numerical Simulations
- Structure improvement
- Conclusions

Enhanced Heat Dissipation

- Thermal management of IGBT modules
 - Heat dissipation +100 W/cm²
 - Low, uniform operating temperatures increase chip life
- Current configuration
 - Simple flat plate
 - High coolant velocity
 - Significant temperature gradients on the chip
- Possible improvements
 - Implement a highly conductive solid
 - Increase heat convection area
 - Better flow mixing structures

Aluminum Foam Properties

- High surface area to volume ratio
 - ~3000 m²/m³ uncompressed (natural form)
 - ~10,000 m²/m³ compressed
- Highly conductive solid (~218 W/m•K)
- Tortuous flow path
- Easily machined to final size

Aluminum foam in as-manufactured, unaltered state (92% porous)

compressed by a factor of four

Typical Heat Exchanger Configurations

- Simplest design
- High flow velocity
- Mixing depends on upstream channel configuration

- Relatively simple
- Minimal increase in surface area
- Improved mixing through turbulence enhancers

Metal Foam Heat Exchanger Configurations

IGBT Module

IGBT Module

METAL FOAM

Metal Foam Insert

Highly
Conductive
Bond Layer

Vacuum
Brazed
Interface

- Similar to turbulence enhancement array
- Lower flow resistance
- Less foam required
- Lower clogging likelihood

- Distributes heat throughout the coolant stream
- Provides a better basis for comparison of metal foam performance data

Compressed Foam Experimentation

- Utilize compressed foam—specific surface area ~10,000 m²/m³
- Porosities between 48 89%
- Coolant (water) flow velocities up to 2 m/s
- Convection coefficient (measured at plate) +150 kW/m²•K

Compressed Foam Close-up

Brazed Heater Assembly on a 18% AISiC plate

Experimental Apparatus

- Pressure drop measurement
- Coolant temperature at various locations
- USB data acquisition device
 - Temperatures
 - Pressure
- 1200 W delivered by cartridge heaters
- Power input
 - Oscilloscope measurement
 - Temperature change in coolant

Pressure Drop and Heat Convection Coefficients

 Forchheimer-extended Darcy equation

$$\frac{\Delta p}{L} = \frac{\mathbf{m}}{K} v + \frac{c_F}{\sqrt{K}} \mathbf{r} v^2$$

C _F	Forchheimer coefficient		
K	permeability		
L	foam length		
V	flow velocity		
D p	pressure difference		
m	dynamic viscosity		
r	fluid density		

 Convection coefficient measured at plate

$$h'' = \frac{\dot{m}c(T_{w,outlet} - T_{w,inlet})}{(T_{plate} - T_{w,inlet}) \bullet A_{foam-plate}}$$

A area

c specific heat

h" convection coefficient

m mass flux

T temperature

Flow Characterization Experimental Results

- Porosity decrease = pressure drop decrease
- Significant pressure drop compared to flat plate

- Monotonic increase of K with porosity
- Increase in sensitivity of K with increase in porosity

Heat Transfer Experimental Results

- Higher solid fraction provides a higher heat convection coefficient
- Results are independent of heater attachment

- Control of temperature gradient
- Poor performance by plate
- Note: Limited range for full power for the bare plate

Power-Thermal Resistance Comparison

- Basis for real-world performance comparison
- Favorable power—thermal resistance curve
- Poor performance by bare plate

Locate optimum configuration

Scaled Performance Comparison

Heat Exchanger with Turbulence

0.2 mm Narrow Gap (clear)

Behr Heat Exchanger

- Scaled to predict behavior with 50% ethylene glycol-water solution
- Assumptions/Considerations
 - Identical K and c_F
 - Similar operating temperature
 - Increase in flow rate compensates lower heat capacitance

Numerical Approaches

- Experimentally measure flow characteristics
 - Requires a wide variety of foam samples
 - Large time expenditure
 - Limited applicability
 - Foam configuration
 - Coolant type & flow rate range
- Pore-based analysis
 - Idealized three-dimensional solid matrix structure
 - Determine periodic flow behavior
 - Calculate interstitial convection coefficient

Foam Structure Idealization

- 14-sided tetrakaidecahedron
- Tetrahedral angle (~109°)
- Adjustments of shape

Model of the tetrakaidecahedron

Periodic Cell Boundary Conditions

- Periodic Length L
 - Velocity

$$\vec{V}(x, y, z) = \vec{V}(x + L, y, z) = \vec{V}(x + 2L, y, z) = ...$$

Pressure

$$p_x(x, y, z) = -Bx + P(x, y, z)$$

where

$$B = \frac{p_x(x, y, z) - p_x(x + L, y, z)}{L}$$

then

$$p_{y,z}(x, y, z) = p_{y,z}(x + L, y, z) = p_{y,z}(x + 2L, y, z) = \dots$$

Cell Number

Visualization of the Flow Field

- Colored pressure gradient
- Red particle traces
- Non-turbulent flow
 - $-Re_K < 100$ where
 - $Re_{\kappa} = \rho V K^{1/2} \mu^{-1}$
- Vortex development in wake
 - Describe lack of "transitional range" in porous media
 - Insight into dispersion effects

Flow Direction

Periodic Configuration

- Tetrakaidecahedron base unit
- Not numerically optimized to minimize surface energy
- Possible tunneling effects
- Inconsistent porosity
- Improvement needed

Improvement in Periodic Cell Representation

Wetted Form

- Wetted Weaire-Phelan form
- Numerically optimized surface energy
- 0.3% lower surface energy
- Composition
 - 8 equal volume cells
 - 2 dodecahedra
 - 6 fourteen sided figures
 - 2 hexagonal faces
 - 12 pentagonal faces

Conclusions

- Aluminum foam heat exchanger experiment:
 - Significantly higher heat convection coefficient
 - More uniform chip operating temperature
 - Favorable power input to thermal resistance curve
- Approach of pore-based numerical analysis
 - Analyze "transitional" region in porous media
 - Possibly directly calculate dispersion effects
 - Reduce extensive experimentation