

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ	Фундаментальные науки
—— КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Peaлизация операций тензорного анализа и изучение тензора кривизны Римана в пакете Wolfram Mathematica.

Студент	ФН2-51Б		А. Р. Ластра-Грек
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			Н.Г. Хорькова
		(Подпись, дата)	(И.О. Фамилия)

Оглавление

1.	Постановка задачи			
2.	Сведения о тензоре кривизны Римана	3		
3.	Программная реализация тензорных операций	4		
	3.1. Представление тензоров в библиотеке	4		
	3.2. Представление связностей в библиотеке	5		
	3.3. Операции над тензорами	6		
4.	Проверка свойств тензора кривизны Римана и тензора Риччи	7		
	4.1. Алгебраические свойства тензора кривизны	7		
	4.2. Свойство тензора Риччи для разных римановых пространств	10		
За	ключение	12		
Ст	Список использованных истоиников			

1. Постановка задачи

Используя пакет компьютерной алгебры Wolfram Mathematica, составить программы для выполнения основных алгебраических операций над тензорами, операции ковариантного дифференцирования, а также вычисления тензора кривизны Римана и тензора Риччи. Применить написанные программы для проверки свойств тензора кривизны Римана, нахождения компонент тензора кривизны Римана и тензора Риччи в римановых пространствах различной размерности. Работу оформить в системе верстки ЕТБХ.

2. Сведения о тензоре кривизны Римана

Пусть в области $U\subset \mathbb{R}^n$ задана симметричная аффинная связность $\nabla=\{\nabla_k\}$, где ∇_k — оператор ковариантного дифференцирования. Как известно, если функция $f(x^1,\ldots,x^n)$ многих переменных дважды непрерывно дифференцируема в U, то в этой же области ее вторые частные производные $\frac{\partial^2 f}{\partial x^k \partial x^l}$ и $\frac{\partial^2 f}{\partial x^l \partial x^k}$ равны, $k\neq l$. Однако если перейти от частных производных к ковариантным, то такое равенство, в общем случае, выполняться не будет. А именно можно показать, что результат применения оператора $(\nabla_k \nabla_l - \nabla_l \nabla_k)$ к векторному полю T имеет вид

$$(\nabla_k \nabla_l - \nabla_l \nabla_k) T^i = T^q R^i_{q, kl},$$

где

$$R_{q,kl}^{i} = \frac{\partial \Gamma_{ql}^{i}}{\partial x^{k}} - \frac{\partial \Gamma_{qk}^{i}}{\partial x^{l}} + \Gamma_{ql}^{p} \Gamma_{pk}^{i} - \Gamma_{qk}^{p} \Gamma_{pl}^{i}. \tag{1}$$

Также можно показать, что набор функций $R_{q,kl}^i$ образует тензорное поле типа (1,3), называемое тензором кривизны Римана.

Перечислим алгебраические свойства тензора кривизны Римана:

- 1) $R_{j,kl}^i + R_{j,lk}^i = 0;$
- 2) $R_{j,kl}^i + R_{l,jk}^i + R_{k,lj}^i = 0$ тождество Якоби;
- 3) если связность ∇ согласована с римановой метрикой $(g_{ij}),$ то $R_{ij,\,kl}+R_{ji,\,kl}=0,$ где $R_{ij,\,kl}=g_{i\alpha}R^{\alpha}_{j,\,kl};$
- 4) если связность ∇ согласована с метрикой, то $R_{ij,kl} = R_{kl,ij}$.

Символы Кристоффеля согласованной связности ∇ можно найти по формуле

$$\Gamma^{i}_{jk} = \frac{1}{2}g^{i\alpha} \left(\frac{\partial g_{j\alpha}}{\partial x^{k}} + \frac{\partial g_{k\alpha}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{\alpha}} \right), \tag{2}$$

где функции g^{ij} определяются из равенства $g_{i\alpha}g^{\alpha j}=\delta^j_i,\,\delta^j_i$ — символы Кронекера.

Тензором Риччи называется свертка тензора кривизны Римана этой связности:

$$R_{jl} = R^i_{j,il}$$
.

Римановой кривизной называется скалярная функция $R = g^{kl}R_{kl}$.

Важным свойством тензора Риччи и римановой кривизны является то, что в случае поверхности в трехмерном пространстве риманова кривизна R равна удвоенной гауссовой кривизне: R=2K.

3. Программная реализация тензорных операций

В рамках курсовой работы была разработана библиотека "TensorOperations" для системы компьютерной алгебры Wolfram Mathematica для вычислений с тензорами. С ее помощью можно естественным образом обращаться к компонентам тензора, осуществлять основные алгебраические операции и операции из тензорного анализа.

3.1. Представление тензоров в библиотеке

В рамках библиотеки объект тензора представлен выражением с заголовком "TensorType". В нем хранится информация о размерности пространства, в котором находится тензор, о типе и компонентах тензора. В качестве компонент тензора могут выступать не только числовые значения, но и выражения, содержащие символы, что позволяет использовать TensorType для представления тензорных полей.

Для корректного создания объекта TensorType используется функция CreateTensor[dims, type, comps], которая принимает в качестве аргументов размерность dims пространства, тип тензора type в виде списка из двух элементов, и таблицу значений компонент comps. В случае, если отсутствует последний аргумент comps, функция возвращает тензор, у которого все компоненты равны нулю.

Для обращения к компоненту тензора T, представленным объектом типа TensorType, используется запись $T_{\{j...\}}^{\{i...\}}$, где $\{i...\}$ и $\{j...\}$ — списки значений верхних и нижних индексов соответствующего компонента. Для присвоения компоненте определенного значения или выражения используется оператор тождественности "Congruent": $T_{\{i...\}}^{\{i...\}} \equiv \exp r$.

Для вывода компонент тензора используются две специальные функции: PrintTensor и PrintComponents. Первая выводит таблицу всех ненулевых компонент, а вторая — все компоненты в виде упорядоченной совокупности матриц.

3.2. Представление связностей в библиотеке

Для задания аффинной связности внутри библиотеки сначала требуется определить соответствующие символы Кристоффеля. Для этого в рамках библиотеки была реализована функция CreateChristoffelSymbols[dim, comps], которая возвращает объект ChristoffelSymbols, представляющий символы Кристоффеля с компонентами comps в пространстве размерности dim. В случае, когда аффинная связность согласуются с некоторой римановой метрикой, в программе для построения символов Кристоффеля по формуле (2) используется перегрузка CreateChristoffelSymbols[g, x], где g — матрица компонент метрики, x — список символов, представляющих координаты криволинейной системы координат (сокращенно КСК).

Для вывода всех символов Кристоффеля используется функция PrintComponents. Для представления аффинных связностей в библиотеке используются объекты типа AffineConnection. Для их создания используется реализованная функция CovariantD[G, x], принимающая на вход объект символов Кристоффеля G и список х символов координат КСК. Объект AffineConnection можно применить к объекту TensorType как функцию, тем самым получая ковариантную производную соответствующего тензорного поля — объект типа TensorType.

3.3. Операции над тензорами

Приведем таблицу реализованных в библиотеке тензорных операций.

Таблица 1. Реализованные в библиотеке тензорные операции

Операции/функции	Значение	
T + S и $T - S$	Сложение и разность тензоров Т и S соот-	
	ветственно	
k * T	Умножение тензора Т на выражение k	
T⊗S или CircleTimes[T, S]	Тензорное произведение тензоров Т и S	
Convolution[T, i, j]	Свертка тензора Т по і-му верхнему и по	
	ј-му нижнему индексам	
Convolution[T, sumIndicies]	Последовательная свертка тензора Т по	
	всем парам индексов "верхний-нижний"	
	из списка sumIndicies	
ChangeCLC[T, oldToNew, new]	Смена криволинейной системы координат	
	для компонент тензора Т на новую с сим-	
	волами new с указанием зависимости ста-	
	рых координат от новых в списке правил	
	oldToNew	
ChangeCLC[T, old, newToOld]	Смена КСК для тензора Т, old — спи-	
	сок символов координат старой КСК,	
	newToOld — список правил замены симво-	
	лов новой КСК на старые	
<pre>SwapUpIndicies[T, {f, s}]</pre>	Перестановка местами верхних f-го и s-го	
	индексов тензора Т	
SwapDownIndicies[T, {f, s}]	Перестановка местами нижних f-го и s-го	
	индексов тензора Т	
PermuteUpIndicies[T, perm]	Перестановка местами верхних индексов	
	тензора T при помощи перестановки perm	
PermuteDownIndicies[T, perm]	Перестановка местами нижних индексов	
	тензора Т при помощи перестановки ретт	

4. Проверка свойств тензора кривизны Римана и тензора Риччи

Для проверки свойств тензора кривизны был создан исполняемый файл типа тестовый ноутбук "Tests for Riemann tensor properties.nb", в котором содержаться тесты для проверки всех четырех приведенных выше алгебраических свойства тензора кривизны Римана и геометрического свойства тензора Риччи. Перед запуском тестов проверки свойств необходимо указать размерность n пространства, в котором определен тензор кривизны.

4.1. Алгебраические свойства тензора кривизны

Приведем пример проверки алгебраических свойств тензора кривизны для случая двумерного пространства. В начале ноутбука задается размерность n, а также создается список криволинейных координат, которые понадобятся для создания тензора кривизны Римана.

```
n = 2;
coords = Table[Subscript[x, i], i, n]
```

Затем для проверки первого и второго свойства создается объект Γ символов Кристоффеля симметричной аффинной связности. В качестве самих символов Кристоффеля выступают неопределенные функции $a_{i,j,k}[x_1,\ldots,x_n]$. Для создания тензора кривизны Римана используется реализованная в библиотеке функция RiemannTensor [Γ , coords], которая возвращает построенный по формуле (1) тензор кривизны для симметричной аффинной связности с символами Кристоффеля Γ , заданных в КСК с координатами coords. Для упрощения компонент тензора кривизны используется реализованная в библиотеке функция SimplifyComponents.

	i \ j	1	2
$\Gamma_{\{\mathtt{i},\mathtt{j}\}}^{\{\mathtt{1}\}}$:	1	$a_{1,1,1}[x_1, x_2]$	$a_{1,1,2}[x_1, x_2]$
	2	$a_{1,1,2}[x_1, x_2]$	$a_{1,2,2}[x_1, x_2]$
	i \ j	1	2
$\Gamma^{\{2\}}_{\{\mathtt{i},\mathtt{j}\}}$:	1	$a_{2,1,1}[x_1, x_2]$	$a_{2,1,2}[x_1, x_2]$
	2	$a_{2,1,2}[x_1, x_2]$	$a_{2,2,2}[x_1, x_2]$

Рис. 1. Полученные символы Кристоффеля в случае двумерного пространства.

Далее для полученного тензора кривизны проводятся два теста для проверки первых двух свойств. Тесты представляют собой отдельный тип исполняемой ячейки в исполняемом файле. Для того, чтобы тест считался успешно пройденным требуется, чтобы выводы в полях "Input" и "Expected Output" совпадали. В случае успеха выводится надпись "Success", иначе — "Failure".

Рис. 2. Тест для проверки первого свойства тензора кривизны.

Рис. 3. Тест для проверки второго свойства тензора кривизны.

Для проверки третьего и четвертого свойства нужно определить символы Кристоффеля для аффинной связности, согласованной с некоторой римановой метрикой с симметричной матрицей компонент g. В качестве элементов матрицы g выступают неопределенные функции $\mathbf{a}_{i,j}$ [$\mathbf{x}_1,\ldots,\mathbf{x}_n$].

```
g = Array[Subscript[a, ##][Sequence @@ coords] &, Table[n, 2]] /.
(Subscript[a_, x_, y_] /; x > y) :> Subscript[a, y, x];
g // MatrixForm
Γ = CreateChristoffelSymbols[g, coords];
R = RiemannTensor[Γ, coords] // SimplifyComponents;
```

$$\left(\begin{array}{ccc} a_{1,1}\left[x_{1},\,x_{2}\right] & a_{1,2}\left[x_{1},\,x_{2}\right] \\ a_{1,2}\left[x_{1},\,x_{2}\right] & a_{2,2}\left[x_{1},\,x_{2}\right] \end{array}\right)$$

Рис. 4. Полученная матрица д в случае двумерного пространства.

Далее для полученного тензора кривизны проводятся два теста для проверки третьего и четвертого свойств.

Рис. 5. Тест для проверки третьего свойства тензора кривизны.

Рис. 6. Тест для проверки четвертого свойства тензора кривизны.

4.2. Свойство тензора Риччи для разных римановых пространств

Проверим свойство R=2K, где $R=g^{kl}R_{kl}$ — риманова кривизна, K — гауссова кривизна, для разных двумерных римановых пространств. Для этого рассмотрим два случая: поверхность сферы и плоскость Лобачевского.

Для поверхности сферы $K=1/r^2$, что подтверждается результатами вычислений в Wolfram Mathematica:

Рис. 7. Тест для проверки свойства тензора Риччи в случае поверхности сферы.

Для плоскости Лобачевского K=-1, что также подтверждается результатами вычислений в Wolfram Mathematica:

Рис. 8. Тест для проверки свойства тензора Риччи в случае плоскости Лобачевского.

Заключение 12

Дополнительно рассмотрим четырехмерное пространство с метрикой Шварцшильда. В таком пространстве риманова кривизна R=0, что подтверждается результатами вычислений в Wolfram Mathematica:

Рис. 9. Тест для проверки свойства тензора Риччи в случае пространства с метрикой Шварцшильда.

Заключение

В рамках курсовой работы с использованием пакета компьютерной алгебры Wolfram Mathematica была разработана библиотека "TensorOperations" для работы с тензорами. В ней реализованы основные операции тензорной алгебры и тензорного анализа. Составлен исполняемый файл типа тестовый ноутбук, использующий написанную библиотеку, в котором собраны тесты для проверки алгебраических свойств тензора кривизны Римана, а также тесты для проверки свойства римановой кривизны.

Список использованных источников

- 1. Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии М.: Факториал Пресс, 2000. 448 с.
- 2. Львовский С. М. Набор и верстка в системе IATEX. 5-е изд., переработанное. М.: МЦНМО, 2014. 400 с.
- 3. Дьяконов В. П. Mathematica 5/6/7. Полное руководство. М.: ДМК Пресс, 2010. 624 с.: ил.