Свойства равномерно сходящихся последовательностей

Теорема Арцела (первое доказательство)

Мы будем рассматривать множества, которые есть объединения отрезков, но не любых, а которые не более чем счетные и могут пересекаться лишь по концам:

$$F = \bigcup_{n} \Delta_{n} \subset [a, b], \ \Delta_{n} = [a_{n}, b_{n}], \ \forall n \neq m, \ \Delta_{n} \cap \Delta_{m} = \begin{cases} \varnothing, \\ b_{n} = a_{m} \vee b_{m} = a_{n}, \end{cases}$$

Рис. 1: Расположение отрезков Δ_n и Δ_m , при $n \neq m$.

По-другому это можно записать так: $\mathring{\Delta}_n \cap \mathring{\Delta}_m = \varnothing$, $\forall n \neq m$, где $\mathring{\Delta}$ означет внутренность интервала Δ . Каждому такому множеству F мы можем приписать длину $\lambda(F)$:

$$\lambda(F) = \sum_{n} |\Delta_n|$$

Порядок нумерования отрезков - не важен, поскольку абсолютно сходящийся ряд не меняет своей суммы от перестановки мест слагаемых. Чтобы не разбираться с вопросами, что одно и то же множество можно представить в виде разных объединений Δ_n , мы будем считать, что множество идет всегда в паре с набором отрезков. Далее рассматриваем множества только такого вида.

Утв. 1. Если
$$F \subset \bigcup_n F_n$$
, то $\lambda(F) \leq \sum_n \lambda(F_n)$.

□ По условию:

$$F = \bigcup_{k} \Delta_{k} \subset \bigcup_{n} F_{n}, F_{n} = \bigcup_{j} \Delta_{j}^{n} \Rightarrow \forall k, \Delta_{k} \subset \bigcup_{j,n} \Delta_{j}^{n}$$

по лемме 3, лекции 24 из прошлого семестра будет верно, что длина отрезка Δ_k меньше, чем сумма длин покрывающих отрезков, от которых всегда можно оставить кусок, относящийся только к Δ_k :

$$|\Delta_k| \le \sum_{j,n} |\Delta_j^n \cap \Delta_k|$$

Поскольку $\mathring{\Delta}_n \cap \mathring{\Delta}_m = \varnothing, \, \forall n \neq m,$ то по лемме 2 лекции 25 прошлого семестра:

$$\bigcup_{k=1}^{M} (\Delta_{j}^{n} \cap \Delta_{k}) \subset \Delta_{j}^{n} \Rightarrow \sum_{k=1}^{M} |\Delta_{j}^{n} \cap \Delta_{k}| \leq |\Delta_{j}^{n}|$$

Тогда рассматривая не более чем счетное объединение множеств:

$$\bigcup_{k=1}^{\infty} (\Delta_j^n \cap \Delta_k) \subset \Delta_j^n \Rightarrow \forall M, \ \bigcup_{k=1}^{M} (\Delta_j^n \cap \Delta_k) \subset \Delta_j^n \Rightarrow \forall M, \ \sum_{k=1}^{M} |\Delta_j^n \cap \Delta_k| \leq |\Delta_j^n|$$

Переходя к пределу по $M \to \infty$ мы получим:

$$\sum_{k=1}^{\infty} \left| \Delta_j^n \cap \Delta_k \right| \le \left| \Delta_j^n \right|$$

или воспользовавшись тем, что частичные суммы знакопостоянного ряда ограничены сверху. Поскольку мы рассматриваем множества вида $F \subset [a, b]$, то:

$$J = \bigcup_{n} F_n \subset [a, b] \Rightarrow \lambda(J) \leq \lambda(J) + \lambda([a, b] \setminus J) = \lambda([a, b]) = |[a, b]| = b - a < \infty$$

Тогда, сумма ряда по пересечениям отрезков будет абсолютно сходиться, поскольку:

$$\bigcup_{k} \bigcup_{j,n} (\Delta_j^n \cap \Delta_k) \subset F \subset [a,b] \Rightarrow \sum_{k} \sum_{j,n} |\Delta_j^n \cap \Delta_k| < b - a < \infty$$

Вспоминая, что при абсолютной сходимости можно писать сумму в любом порядке, мы получим:

$$\lambda(F) = \sum_{k} |\Delta_k| \le \sum_{k} \sum_{j,n} |\Delta_j^n \cap \Delta_k| = \sum_{j,n} \sum_{k} |\Delta_j^n \cap \Delta_k| \le \sum_{j,n} |\Delta_j^n| = \sum_{k} \lambda(F_n)$$

Rm: 1. На самом деле в доказательстве есть тонкий момент, касающийся рядов $\sum_{n,m} |a_{n,m}|$.

Почему можно переставлять слагаемые и суммировать в любом порядке? Это похоже на теорему о том, что абсолютно сходящийся ряд можно переставлять в любом порядке, но это не совсем она. Мы хотим:

$$\sum_{n,m} |a_{nm}| = \sum_{n} \sum_{m} |a_{nm}|$$

это не тоже самое, что и переставить как угодно. Это сложение по каждой строке, а затем суммирование по тому, что получилось или наоборот. См. Фихтенгольца про повторные ряды или последующие лекции (это будет обсуждаться далее).

Утв. 2. Пусть есть последовательность вложенных множеств: $F_1 \supset F_2 \supset ... \supset F_n \supset ...$. Причем известно, что $\forall n, \lambda(F_n) \geq \delta > 0$, тогда пересечение не может быть пустым: $\bigcap F_n \neq \emptyset$.

Rm: 2. Смысл утверждения в том, что у вложенных друг в друга множеств длина которых не падает к нулю, поэтому там должно что-то оставаться в пересечении. Если бы выжимались в пустое множество, то там бы и длина падала.

 \square Возьмем F_n , его можно представить в виде объединения отрезков:

$$\forall n, F_n = \bigcup_j \Delta_j^n \subset [a, b]$$

Мы рассматриваем только такие множества. Заметим, что следующий ряд сходится:

$$\sum_{j} |\Delta_{j}^{n}| \le b - a < \infty$$

Это так, поскольку мы берем отрезки внутри [a,b], которые пересекаются лишь по концам \Rightarrow любая конечная сумма этих отрезков будет оцениваться длиной отрезка [a,b]:

$$\bigcup_{j=1}^{\infty} \Delta_{j}^{n} \subset [a,b] \Rightarrow \forall M, \ \bigcup_{j=1}^{M} \Delta_{j}^{n} \subset [a,b] \Rightarrow \forall M, \ \sum_{j=1}^{M} \left| \Delta_{j}^{n} \right| \leq |[a,b]| = b - a < \infty$$

Переходя в неравенстве к пределу по $M \to \infty$, мы получим:

$$\bigcup_{j=1}^{\infty} \Delta_j^n \subset [a,b] \Rightarrow \sum_{j=1}^{\infty} \left| \Delta_j^n \right| \le |[a,b]| = b - a < \infty$$

Таким образом, сумма отрезков Δ_i^n конечна \Rightarrow можно выбрать сколь угодно малый хвост:

$$\forall \delta > 0, \, \forall n, \, \exists \, N_n \colon \bigcup_{j=N_n+1}^{\infty} \Delta_j^n \subset \bigcup_{j=1}^{\infty} \Delta_j^n \colon \sum_{j=N_n+1}^{\infty} |\Delta_j^n| < \frac{\delta}{2^{n+1}}$$

Обозначим через K_n объединение первых N_n отрезков:

$$\forall n, K_n = \bigcup_{j=1}^{N_n} \Delta_j^n$$

очевидно, что такие множества - компакты (конечное объединение отрезков). Тогда:

$$\forall n, F_n \setminus K_n \subset \widetilde{F_n \setminus K_n} = \bigcup_{j=N_n+1}^{\infty} \Delta_j^n \Rightarrow \widetilde{F_n \setminus K_n} = (F_n \setminus K_n) \cup \{c \colon c \in I\}$$

где I_n - множество концов отрезков, выброшенных при вычете множества K_n из F_n . Тогда очевидно:

$$\lambda\left(\widetilde{F_n\setminus K_n}\right) = \sum_{j=N_n+1}^{\infty} |\Delta_j^n| < \frac{\delta}{2^{n+1}}$$

Пересечем эти компакты K_n следующим образом:

$$\forall M, K^M = \bigcap_{n=1}^M K_n = \bigcap_{n=1}^M \left(\bigcup_{j=1}^{N_n} \Delta_j^n\right)$$

Полученное множество также будет являться компактом, поскольку пересечение компактов это их замкнутое подмножество \Rightarrow это компакт. Предположим, что пересечение K^M не пусто, тогда:

$$\bigcap_{M=1}^{\infty} K^M \neq \varnothing \Rightarrow \bigcap_{n=1}^{\infty} K_n \neq \varnothing \Rightarrow \bigcap_{n=1}^{\infty} F_n \neq \varnothing$$

поскольку, если в пересечении K_n что-то есть, то это же будет и в пересечении F_n . Пусть пересечение по K^M будет пусто, тогда:

$$\bigcap_{M=1}^{\infty} K^{M} = \varnothing \Rightarrow \exists T \colon K^{T} = \varnothing$$

Это так, поскольку мы получили вложенную систему компактов:

$$\forall M, K^M = \bigcap_{n=1}^M K_n \Rightarrow K^1 \supset K^2 \supset \dots K^M \supset K^{M+1} \supset \dots$$

если каждый из них не пуст, то в каждом можно взять точку \Rightarrow это будет подмножество точек компакта, например, $K^1 \Rightarrow$ из последовательности точек компакта выберем сходящуюся подпоследовательность:

$$\forall M, \, K^M \neq \varnothing \Rightarrow \forall M, \, \exists \, x_M \colon x_M \in K^M \Rightarrow \{x_M\} \in K^1 \Rightarrow \exists \, x_{M_j} \in \{x_M\} \colon x_{M_j} \to x_0 \in K^1$$

Поскольку K^M - вложенные, то начиная с некоторого номера, все члены этой подпоследовательности будут лежать в каждом из указанных компактов \Rightarrow в силу замкнутости компакта, предел также будет лежать в каждом K^M (предел в замкнутом множестве принадлежит этому же множеству):

$$\forall M, \exists N : \forall j > N, x_{M_i} \in K^M \Rightarrow x_0 \in K^M$$

Возьмем $K^T,$ поскольку оно пустое, то его можно выбрасывать откуда угодно:

$$F_T = F_T \setminus K^T = F_T \setminus \left(\bigcap_{n=1}^T K_n\right) = \bigcup_{n=1}^T \left(F_T \setminus K_n\right)$$

Поскольку по условию $F_1\supset F_2\supset\ldots\supset F_n\supset\ldots$, то мы перепишем равенство выше так:

$$F_T = \bigcup_{n=1}^T (F_T \setminus K_n) \subset \bigcup_{n=1}^T (F_n \setminus K_n) \subset \bigcup_{n=1}^T \left(\widetilde{F_n \setminus K_n} \right)$$

По утверждению 1 мы получим следующее:

$$\delta \le \lambda(F_T) \le \sum_{n=1}^T \lambda\left(\widetilde{F_n \setminus K_n}\right) < \sum_{n=1}^T \frac{\delta}{2^{n+1}} < \sum_{n=1}^\infty \frac{\delta}{2^{n+1}} = \frac{\delta}{2}$$

Получили противоречие \Rightarrow невозможно, что пересечение K^M - пусто.

Rm: 3. Заметим, что F_n содержат счетное число отрезков, они не обязательно компакты. Если бы они были компактами, то зная что они все не пусты, мы бы знали, что у них непустое пересечение. Поэтому идея состоит в том, чтобы заменить F_n компактами, но делая такую замену, надо убедиться что в какой-то моент эти компакты не станут пустыми. Для этого надо выбирать компакты, которые тоже будут иметь достаточно большую длину. Тогда если компакт схлопнется, то он просто изничтожит соответствующие F_n .

Докажем также вспомогательное утверждение для доказательства теоремы.

Утв. 3. Если f_n - интегрируемы на [a,b] по Риману, $C \ge f_n \ge 0$, $f_n(x) \to 0$ сходятся поточечно к нулю и $\forall n, \exists \mathbb{T}_n$ - разбиение отрезка [a,b] такое, что $\forall n, \mathbb{T}_n \subset \mathbb{T}_{n+1}$. Тогда:

$$\forall \varepsilon > 0, \, \forall \delta > 0, \, \exists \, N \colon \forall n > N, \, \mathbf{I} = \left\{ j \colon \inf_{\Delta_j^n} f_n \ge \varepsilon \right\}, \, \sum_{j \in \mathbf{I}} |\Delta_j^n| \le \delta$$

Рис. 2: Сумма длин отрезков на интервалах, где $\inf_{\Delta_i^n} f_n \geq \varepsilon$ меньше δ .

Предположим противное. Нечто неверно, начиная с некоторого номера, означает, что \exists бесконечная последовательность номеров для которой это нечто будет неверно \Rightarrow существует возрастающая последовательность номеров $\{n_j\}$ такая, что сумма длин отрезков, где точная нижняя грань f_{n_j} больше ε будет больше, чем δ :

$$\exists \{n_j\} \colon \sum_{k \in \mathcal{I}} |\Delta_k^{n_j}| > \delta, \ \mathcal{I} = \left\{k \colon \inf_{\Delta_k^{n_j}} f_{n_j} \ge \varepsilon\right\}$$

Составим из полученных отрезков множества:

$$F_m = \bigcup_{j > m} \left\{ \Delta_k^{n_j} : \inf_{\Delta_k^{n_j}} f_{n_j} \ge \varepsilon \wedge \forall r, t, \, \forall s \ne q, \, \mathring{\Delta}_t^{n_s} \cap \mathring{\Delta}_r^{n_q} = \varnothing \right\}$$

то есть, мы отходим достаточно далеко по номерам j, начиная с номера m и скидываем в кучу "плохие" отрезки. Поскольку разбиения вложенные: $\mathbb{T}_{n_j} \subset \mathbb{T}_{n_{j+1}}$, то каждый раз отрезки, которые появляются на следующем шаге либо содержатся внутри уже имеющихся, либо добавляются к ним:

$$j = m \Rightarrow \Delta_{k_1}^{n_m}, \dots, \Delta_{k_{l_m}}^{n_m} \in \mathbb{T}_{n_m} : \forall i = \overline{1, l_m}, \inf_{\Delta_{k_i}^{n_m}} f_{n_m} \ge \varepsilon$$
$$j = m + 1 \Rightarrow \Delta_{k_1}^{n_{m+1}}, \dots, \Delta_{k_{l_{m+1}}}^{n_{m+1}} \in \mathbb{T}_{n_{m+1}} : \forall i = \overline{1, l_{m+1}}, \inf_{\Delta_{k_i}^{n_{m+1}}} f_{n_{m+1}} \ge \varepsilon$$

Рис. 3: Добавление новых отрезков в F_m : зеленые - добавляются, красные - уже были включены ранее.

Вычеркиваем те отрезки, которые лежат уже внутри учтенных отрезках, опять же это возможно из-за вложенности разбиения. Продолжаем это для всех j > m+1.

Таким образом, F_m имеет ровно тот вид, который мы представляли ранее - объединение попарно непересекающихся по внутренностям отрезков. Очевидно, что $\lambda(F_m) > \delta$, поскольку:

$$\bigcup_{i=1}^{l_m} \Delta_{k_i}^{n_m} \subset F_m \Rightarrow \lambda(F_m) \ge \lambda \left(\bigcup_{i=1}^{l_m} \Delta_{k_i}^{n_m}\right) = \left|\Delta_{k_1}^{n_m}\right| + \ldots + \left|\Delta_{k_{l_m}}^{n_m}\right| > \delta$$

Одновременно с этим, по построению верно $F_1 \supset F_2 \supset \dots F_m \supset F_{m+1} \supset \dots$, потому что каждый раз начинаем со следующего более высокого номера, а значит в предыдущих оно точно содержалось. Тогда по утверждению 2 пересечение всех F_m не пусто.

Пусть $x_0 \in \bigcap_m F_m \neq \emptyset$, утверждается, что в точке x_0 последовательность $f_n(x_0)$ не сходится к нулю: мы брали отрезки со сколь угодно далекими номерами $n_j \Rightarrow$ есть подпоследовательность функций, каждая из которой в этой точке x_0 отделена от нуля значением $\varepsilon \Rightarrow$ не сходится к нулю (если сходится, то любая подпоследовательность сходится к тому же пределу, а здесь это не так) \Rightarrow получили противоречие.

Теорема 1. (**Арцела**) Если f_n , f - интегрируемы на [a,b] по Риману, последовательность - ограничена: $\forall n, x, |f_n(x)| \leq C$ (равномерно ограничены) и $f_n(x) \to f(x)$ поточечно, то:

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

□ Достаточно доказать только в следующем частном случае:

$$C \ge f_n \ge 0, \ f_n \to 0 \Rightarrow \int_{-\infty}^{b} f_n(x) dx \to 0$$

Для понимания этого факта, рассмотрим следующую разность:

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f_n(x) - f(x) \right| dx \to 0$$

где верно следующее: $\forall n, |f_n(x) - f(x)| \ge 0 \land \lim_{n \to \infty} |f_n(x) - f(x)| = 0$. Таким образом, это эквивалентно нашему частному случаю. Рассмотрим его, поскольку все функции f_n - интегрируемы на [a,b], то по критерию Дарбу нижний и верхний интегралы Дарбу равны и равны интегралу по f_n :

$$\underline{\mathbf{I}} = \overline{\mathbf{I}} = \int_{a}^{b} f_n(x) dx$$

По определению нижнего интеграла Дарбу (см. лекцию 24 прошлого семестра) мы знаем, что:

$$\int_{a}^{b} f_n(x)dx = \underline{\mathbf{I}} = \sup_{\mathbb{T}} s(f_n, \mathbb{T})$$

поэтому, поскольку нижний интеграл Дарбу это точная верхняя грань нижней суммы Дарбу, то:

$$\forall n, \, \exists \, \mathbb{T}_n$$
 - разбиение отрезка $[a,b]\colon \int\limits_a^b f_n(x)dx - s(f_n,\mathbb{T}_n) < rac{1}{n}$

Более того, по лемме 2 лекции 24 прошлого семестра, чтобы нижние суммы Дарбу подходили к интегралу достаточно брать мелкое разбиение:

$$\lim_{\lambda(\mathbb{T}_n)\to 0} s(f_n, \mathbb{T}_n) = \underline{\mathbf{I}} = \int_a^b f_n(x) dx, \ s(f_n, \mathbb{T}_n) = \sum_j \inf_{\Delta_j} f_n |\Delta_j^n|, \ \mathbb{T}_n = \{\Delta_j^n\}$$

поэтому можно считать, что $\mathbb{T}_n \subset \mathbb{T}_{n+1}$, $\forall n$, поскольку каждый раз, чтобы подойти ближе мы измельчаем уже имеющееся разбиение. Следовательно, мы видим сразу, что при переходе к новому разбиению отрезки, которые появляются лежат внутри старых отрезков.

Рис. 4: Измельчение разбиения \mathbb{T}_n .

Пусть по утверждению 3 мы выбрали $\varepsilon>0,\,\delta>0$ и нашли $N\Rightarrow$ будем рассматривать при n>N нижнюю сумму Дарбу:

$$s(f_n, \mathbb{T}_n) = \sum_{j \notin \mathcal{I}} \inf_{\Delta_j^n} f_n |\Delta_j^n| + \sum_{j \in \mathcal{I}} \inf_{\Delta_j^n} f_n |\Delta_j^n|, \ \mathcal{I} = \left\{ j \colon \inf_{\Delta_j^n} f_n \ge \varepsilon \right\}$$

следовательно, каждая из этих сумм легко оцениваются:

$$\sum_{j \notin \mathcal{I}} \inf_{\Delta_j^n} f_n |\Delta_j^n| < \varepsilon \sum_{j \notin \mathcal{I}} |\Delta_j^n| \le \varepsilon \sum_j |\Delta_j^n| = \varepsilon (b - a)$$

$$\sum_{j \in \mathcal{I}} \inf_{\Delta_j^n} f_n |\Delta_j^n| \le C \sum_{j \in \mathcal{I}} |\Delta_j^n| \le C\delta$$

Поскольку ε и δ были выбраны произвольно, то выбирая их маленькими, мы делаем и нижнюю сумму Дарбу маленькой. Пусть $\delta = \varepsilon$ и выбираем n так, чтобы n > N и $\frac{1}{n} < \varepsilon$, тогда:

$$\forall \varepsilon > 0, \ \exists \ N' \colon \forall n > N', \ \int_a^b f_n(x) dx < \frac{1}{n} + s(f_n, \mathbb{T}_n) < \varepsilon(1 + (b - a) + C) = \varepsilon C'$$

Теорема Арцела (второе доказательство)

Есть множество доказательств этой теоремы (в том числе и ошибочных), попробуем доказать теорему без введения элементов теории меры (Люксембург). Будем обозначать нижний интеграл Дарбу следующим образом:

$$\int_{\mathbb{T}} f(x)dx = \sup_{\mathbb{T}} s(f, \mathbb{T}) = \lim_{\lambda(\mathbb{T}) \to 0} s(f, \mathbb{T}), \ s(f, \mathbb{T}) = \sum_{k=1}^{N} \inf_{\Delta_k} f \cdot |\Delta_k|$$

Если f - ограничена, то:

$$f(x) \in B(x) \Rightarrow \exists \int f(x)dx$$

для ограниченной функции нижний и верхний интеграл Дарбу всегда существуют. Если функция интегрируема, то её нижний интеграл Дарбу совпадает с обычным интегралом Римана. Воспользуемся следующим:

$$f(x) \le g(x) \Rightarrow \inf_{\Delta_k} f(x) \le f(x) \le g(x) \le \inf_{\Delta_k} g(x) \Rightarrow s(f, \mathbb{T}) \le s(g, \mathbb{T}) \Rightarrow \int_{\mathbb{T}} f(x) dx \le \int_{\mathbb{T}} g(x) dx$$

Таким образом, нижний интеграл Дарбу обладает свойством монотонности.

Упр. 1. Доказать, что нижний интеграл Дарбу не обладает свойством линейности.

Лемма 1. Пусть $f \ge 0$ и ограничена, тогда:

$$\forall \varepsilon > 0, \ \exists \ g_{\varepsilon} \in C[a,b] \colon 0 \le g_{\varepsilon}(x) \le f(x) \land \int_{\underline{s}}^{b} f(x) dx \le \int_{a}^{b} g_{\varepsilon}(x) dx + \varepsilon$$

□ По определению нижнего интеграла Дарбу (как точной верхней грани):

$$\forall \varepsilon > 0, \ \exists \, \mathbb{T} \colon \int_{\overline{a}}^{b} f(x) dx \le s(f, \mathbb{T}) + \frac{\varepsilon}{2}$$

Теперь хотелось бы понять, можно ли найти некоторую функцию h(x) такую, что:

$$s(f, \mathbb{T}) = \int_{a}^{b} h(x)dx$$

Возьмем разбиение отрезка $\{\Delta_k\}$ и преобразуем отрезки в полуинтервалы так, чтобы:

$$\forall k = \overline{1, N-1}, \ \Delta_k = [x_{k-1}, x_k] \Rightarrow \widetilde{\Delta}_k = [x_{k-1}, x_k), \ \Delta_N = \widetilde{\Delta}_N = [x_{N-1}, x_N]$$

Это необходимо, чтобы на концах значения с использованием индикаторной функции не накладывались друг на друга. Таким образом, мы получим функцию h(x):

$$h(x) = \sum_{k=1}^{N} \inf_{\Delta_k} f(x) \cdot \mathbb{I}_{\widetilde{\Delta}_k}(x) = \sum_{k=1}^{N} c_k \cdot \mathbb{I}_{\widetilde{\Delta}_k}(x)$$

Тогда по определению $h(x) \geq 0$, поскольку $f(x) \geq 0$ и $\forall x \in \widetilde{\Delta}_k$ будет верно, что $\inf_{\Delta_k} f(x) \leq f(x)$, следовательно $0 \leq h(x) \leq f(x)$ и мы получаем:

$$\int_{\frac{a}{a}}^{b} f(x)dx \le \int_{a}^{b} h(x)dx + \frac{\varepsilon}{2}$$

Полученная функция h(x) плоха тем, что она разрывна, а мы хотим сделать её непрерывной, не сильно испортив интеграл от h(x). Пусть $\delta > 0$, отступим от краев полуинтервалов на δ :

$$\forall k = \overline{1, N-1}, \ \widetilde{\Delta}_k = [x_{k-1}, x_k) \Rightarrow \widetilde{\Delta}_k = [x_{k-1}, x_{k-1} + \delta) \cup [x_{k-1} + \delta, x_k - \delta) \cup [x_k - \delta, x_k)$$
$$\widetilde{\Delta}_N = [x_{N-1}, x_N] \Rightarrow \widetilde{\Delta}_N = [x_{N-1}, x_{N-1} + \delta) \cup [x_{N-1} + \delta, x_N - \delta) \cup [x_N - \delta, x_N]$$

и построим ребра трапеции на промежутках $[x_{k-1},x_{k-1}+\delta)$ и $[x_k-\delta,x_k)$, тогда получим функцию:

Puc. 5: Построение функции h(x).

$$g_{\delta}(x) = \begin{cases} \frac{c_k}{\delta}(x - x_{k-1}), & x \in [x_{k-1}, x_{k-1} + \delta) \\ c_k, & x \in [x_{k-1} + \delta, x_k - \delta) \\ \frac{c_k}{\delta}(x_k - x), & x \in [x_k - \delta, x_k) \lor x \in [x_N - \delta, x_N] \end{cases}$$

Очевидно, что $g_{\delta}(x) \in C[a,b]$ и $0 \leq g_{\delta}(x) \leq h(x)$. Пусть $\forall x \in [a,b], 0 \leq f(x) \leq C$, сравним интегралы (смотрим на разность площадей под графиками):

$$\int_{a}^{b} h(x)dx - \int_{a}^{b} g_{\delta}(x)dx \le c_{1} \cdot \delta \cdot \frac{1}{2} \cdot 2 + c_{2} \cdot \delta \cdot \frac{1}{2} \cdot 2 + \dots + c_{N} \cdot \delta \cdot \frac{1}{2} \cdot 2 \le N\delta C$$

Поскольку N,C - фиксированы, то выберем δ так, чтобы $N\delta C<\frac{\varepsilon}{2}$ и тогда функция g_δ - искомая.

Лемма 2. Пусть $0 \le f_n \le C, f_n \to 0$ и $\forall x, f_n(x) \ge f_{n+1}(x)$ (невозр. последовательность $\forall x$), тогда:

$$\int_{a}^{b} f_n(x)dx \to 0$$

□ По лемме 1:

$$\forall n, \exists g_n \in C[a,b] : 0 \le g_n \le f_n, \int_{\frac{a}{2}}^{b} f_n(x) dx \le \int_{a}^{b} g_n(x) dx + \frac{\varepsilon}{2^n}$$

Поскольку $\forall x, f_n(x) \to 0$, то из неравенства выше $\forall x, g_n(x) \to 0$, но вообще говоря ничего про монотонность сказать не можем. Перейдем к вспомогательным функциям $h_n(x)$:

$$h_n(x) = \min\{q_1(x), q_2(x), \dots, q_n(x)\}\$$

Очевидно, что $h_n(x) \in C[a,b]$, в силу непрерывности функций $\{g_n(x)\}$ и функции $\min\{x_1,\ldots,x_n\}$. Также ясно, что $h_n(x)$ не возрастает по n: $h_n(x) \geq h_{n+1}(x)$, более того $0 \leq h_n(x) \leq g_n(x) \Rightarrow \forall x, h_n(x) \to 0$ и по признаку Дини (будет дальше доказана в курсе) $h_n \rightrightarrows 0$. Тогда:

$$\int_{a}^{b} h_n(x)dx \to 0$$

Для доказательства леммы не хватает оценки разности интегралов по функциям $h_n(x)$ и $g_n(x)$, если они не отличаются сильно, то интеграл от $g_n(x)$ также будет стремится к нулю. Оценим разность:

$$g_n(x) - h_n(x) = g_n(x) - \min\{g_1(x), \dots, g_n(x)\} \le \sum_{k=1}^n (\max\{g_k(x), \dots, g_n(x)\} - g_k(x))$$

Каждое слагаемое справа - неотрицательное по построению суммы. Неравенство верно в силу того, что хотя бы одно слагаемое справа будет больше, чем слагаемое слева. Например, если $\min\{g_1(x), \dots, g_n(x)\} = g_m(x)$, то:

$$g_n(x) - \min\{g_1(x), \dots, g_n(x)\} = g_n(x) - g_m(x) \le \max\{g_m(x), \dots, g_n(x)\} - g_m(x)$$

Оценим интеграл разности:

$$\int_{a}^{b} (g_n(x) - h_n(x)) dx \le \sum_{k=1}^{n} \left(\int_{a}^{b} \max\{g_k(x), \dots, g_n(x)\} dx - \int_{a}^{b} g_k(x) dx \right)$$

Поскольку функции $f_n(x)$ - монотонные и в силу построения $g_n(x)$ будет верно:

$$\max\{g_k(x), \dots, g_n(x)\} \le \max\{f_k(x), \dots, f_n(x)\} = f_k(x) \Rightarrow$$

$$\Rightarrow \int_{a}^{b} \max\{g_k(x), \dots, g_n(x)\} dx = \int_{\underline{a}}^{b} \max\{g_k(x), \dots, g_n(x)\} dx \le \int_{\underline{a}}^{b} f_k(x) dx$$

где равенство верно в силу того, что интеграл Римана и Дарбу совпадают для $g_n(x)$, а неравенство верно в силу монотонности нижнего интеграла Дарбу. Тогда:

$$\int_{a}^{b} \max\{g_k(x), \dots, g_n(x)\} dx - \int_{a}^{b} g_k(x) dx \le \int_{\underline{a}}^{b} f_k(x) dx - \int_{a}^{b} g_k(x) dx \le \frac{\varepsilon}{2^k} \Rightarrow$$

$$\Rightarrow \int_{a}^{b} (g_n(x) - h_n(x)) dx \le \sum_{k=1}^{n} (\max\{g_k(x), \dots, g_n(x)\} - g_k(x)) \le \sum_{k=1}^{n} \frac{\varepsilon}{2^k} \le \varepsilon$$

Таким образом, мы получаем:

$$\forall \varepsilon > 0, \ \int_{\frac{a}{a}}^{b} f_n(x) dx \le \int_{a}^{b} g_n(x) dx + \frac{\varepsilon}{2^n} \le \int_{a}^{b} g_n(x) dx + \varepsilon \le \int_{a}^{b} h_n(x) dx + 2\varepsilon$$

Поскольку ε - произвольный, интеграл от $h_n(x)$ стремится к нулю, то:

$$\int_{a}^{b} h_{n}(x)dx \to 0 \Rightarrow \int_{\overline{a}}^{b} f_{n}(x)dx \to 0$$

Теорема 2. (**Арцела**) Если f_n, f - интегрируемы на [a, b] по Риману, последовательность - ограничена: $\forall n, x, |f_n(x)| \leq C$ (равномерно ограничены) и $f_n(x) \to f(x)$ поточечно, то:

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

□ Достаточно доказать только в следующем частном случае:

$$C \ge f_n \ge 0, f_n \to 0 \Rightarrow \int_a^b f_n(x)dx \to 0$$

Для понимания этого факта, рассмотрим следующую разность:

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f_n(x) - f(x) \right| dx \to 0$$

где верно следующее: $\forall n, |f_n(x) - f(x)| \ge 0 \land \lim_{n \to \infty} |f_n(x) - f(x)| = 0$. Таким образом, это эквивалентно нашему частному случаю. Введем вспомогательные функции:

$$\forall n, M_n(x) = \sup_{k > n} f_k(x)$$

Тогда для этих функций будет справедливо: $0 \le M_n(x) \le C$ и $M_n(x) \ge M_{n+1}(x)$ просто по определению, поскольку $\lim_{n\to\infty} f_n(x) = 0$, то $\lim_{n\to\infty} M_n(x) = 0$. Однако, про интегрируемость $M_n(x)$ мы уже ничего сказать не можем. Также очевидно, что

$$\forall n, \ 0 \le f_n(x) \le M_n(x)$$

Поскольку нижний интеграл Дарбу обладает свойством монотонности, то в силу интегрируемости $f_n(x)$ по Риману будет верно:

$$0 \le \int_a^b f_n(x)dx = \int_{\frac{a}{a}}^b f_n(x)dx \le \int_{\frac{a}{a}}^b M_n(x)dx$$

По лемме 2, второй интеграл будет стремиться к нулю.

Перестановочность равномерной сходимости и дифференцирования

Заметим, что не существует результата, который утверждал что если последовательность дифференцируемых функций сходится равномерно, то можно говорить, что её предел будет дифференцируемой функцией. Легко придумать последовательность функций:

$$f_n(x) = \frac{\sin(n^2 x)}{n} \Longrightarrow 0, f'_n(x) = n\cos(n^2 x) \Longrightarrow \nexists \lim_{n \to \infty} f'_n(x)$$

где последовательность их производных f'_n не будут сходиться (даже поточечно). Поэтому результаты с производными обычно формулируются задом наперед: если всё хорошо с производными, а с функциями не слишком плохо, то с функциями всё хорошо.

Rm: 4. Заметим, что если последовательность производных f'_n равномерно сходится, то из этого, вообще говоря, не следует, что f_n куда-либо тоже сходятся. Например, можно взять последовательность констант и тогда:

$$f'_n(x) \Longrightarrow 0 \Rightarrow \exists g \colon f_n \to g$$

Теорема 3. Пусть функции f_n - дифференцируемы на (a,b), $f'_n \stackrel{(a,b)}{\Rightarrow} g$ и $\exists x_0 \in (a,b)$: $\exists \lim_{n \to \infty} f_n(x_0)$. Тогда эти функции сходятся равномерно: $f_n \stackrel{(a,b)}{\Rightarrow} f$ и f - дифференцируема на (a,b), причем f' = g.

 \square Покажем сначала, что последовательность f_n сходится. Воспользуемся критерием Коши:

$$\forall n, m, f_n(x) - f_m(x) = (f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0)) + (f_n(x_0) - f_m(x_0))$$

Таким образом, первые два слагаемых образуют приращение, тогда как для последнего слагаемого, в силу сходимости в точке x_0 , критерий выполняется. Воспользуемся теоремой Лагранжа:

$$\exists c \in (x_0, x) \lor c \in (x, x_0), \ f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0)) = (f'_n(c) - f'_m(c)) (x - x_0)$$

Тогда получим следующую оценку:

$$|f_n(x) - f_m(x)| \le |x - x_0| \cdot |f'_n(c) - f'_m(c)| + |f_n(x_0) - f_m(x_0)|$$

Переходя к точной верхней грани:

$$\sup_{(a,b)} |f_n(x) - f_m(x)| \le (b-a) \cdot \sup_{(a,b)} |f'_n(x) - f'_m(x)| + |f_n(x_0) - f_m(x_0)|$$

Поскольку f'_n сходится равномерно, то для неё выполняется критерий Коши. Поскольку $f_n(x_0)$ это числовая последовательность, которая сходится, то для неё он также выполняется. Тогда:

$$(b-a) \cdot \sup_{(a,b)} |f'_n(x) - f'_m(x)| + |f_n(x_0) - f_m(x_0)| \xrightarrow[n,m\to\infty]{} 0 \Rightarrow \sup_{(a,b)} |f_n(x) - f_m(x)| \xrightarrow[n,m\to\infty]{} 0$$

Следовательно, для f_n выполняется условие Коши равномерной сходимости $\Rightarrow f_n \stackrel{(a,b)}{\Rightarrow} f$.

Теперь хотелось бы понять, что f - дифференцируемая и её производная в точности равна g. Пусть:

$$h_n(x) = \frac{f_n(x) - f_n(x_0)}{x - x_0}, \ h(x) = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow \lim_{x \to x_0} h_n(x) = f'_n(x_0)$$

то есть, при каждом n функция h_n имеет предел при $x \to x_0$. Мы хотим доказать, что:

$$\exists \lim_{x \to x_0} h(x) \colon \lim_{x \to x_0} h(x) = \lim_{n \to \infty} f'_n(x_0)$$

Чтобы воспользоваться первой теоремой о перестановке пределов, надо проверить, что h_n равномерно сходится к h. Очевидно, что $\forall x \neq x_0, h_n(x) \to h(x)$ поточечно (только что доказали). Проверим критерий Коши и вновь воспользуемся теоремой Лагранжа:

$$h_n(x) - h_m(x) = \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0} = \frac{(f'_n(t) - f'_m(t))(x - x_0)}{x - x_0} = f'_n(t) - f'_m(t)$$

где t лежит между x и x_0 . Аналогично шагам ранее, возьмем точную верхнюю грань:

$$\sup_{(a,b)} |h_n(x) - h_m(x)| \le \sup_{(a,b)} |f'_n(x) - f'_m(x)| \xrightarrow[n,m\to\infty]{} 0 \Rightarrow h_n(x) \stackrel{(A,b)}{\Rightarrow} h(x)$$

Следовательно, по теореме о перестановке пределов функция f будет дифференцируемой, причем:

$$g(x_0) = \lim_{n \to \infty} f'_n(x_0) = \lim_{n \to \infty} \left(\lim_{x \to x_0} h_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} h_n(x) \right) = \lim_{x \to x_0} h(x) = f'(x_0)$$

где последнее равенство верно просто по определению производной.

Rm: 5. Заметим, что предположение о конечности интервала здесь важно. Например, если взять следующие функции:

$$f_n(x) = \frac{x}{n}, x \in \mathbb{R} \Rightarrow f_n(0) = 0 \to 0, f'(x) = \frac{1}{n} \stackrel{\mathbb{R}}{\Longrightarrow} 0$$

Но при этом сама функция $f_n(x) \stackrel{\mathbb{R}}{\not\rightrightarrows} 0$.

Функциональные ряды

Очень часто последовательность приходит как последовательность частичных сумм. Поэтому рассмотрим ряды, каждым членом которого есть некоторая функция $f_n(x)$.

Опр: 1. Ряд
$$\sum_{n=1}^{\infty} f_n(x)$$
 сходится поточечно на $X \Leftrightarrow \forall x \in X, \sum_{n=1}^{\infty} f_n(x)$ - сходится.

Опр: 2. Ряд $\sum_{n=1}^{\infty} f_n(x)$ <u>сходится равномерно на</u> $X \Leftrightarrow$ последовательность $S_N(x) = \sum_{n=1}^N f_n(x)$ частичных сумм этого ряда сходится равномерно на X.

Тем самым, ничего нового не возникает: исследование равномерной сходимости ряда это исследование равномерной сходимости его частичных сумм.

 \mathbf{Rm} : 6. Из определения сразу следует, что если ряд сходится равномерно, то он должен быть сходящимся \Rightarrow всегда предполагаем ряд сходящимся.

Пусть ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится поточечно. Что означает его равномерная сходимость? Рассмотрим хвост этой суммы:

$$\sum_{n=N+1}^{\infty} f_n(x) = S(x) - S_N(x) \Rightarrow \sup_{X} \left| \sum_{n=N+1}^{\infty} f_n(x) \right| = \sup_{X} |S(x) - S_N(x)| \xrightarrow[N \to \infty]{} 0$$

то есть равномерная сходимость ряда это в точности равномерная сходимость к нулю его хвостов. Сразу же из определения следует утверждение, которое часто работает на практике.

Утв. 4. (**необходимое условие равномерной сходимости ряда**) Если ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X, то его слагаемые равномерно стремятся к нулю: $f_n \stackrel{X}{\Longrightarrow} 0$.

$$f_n(x) = S_n(x) - S_{n-1}(x), \ S_n(x) \stackrel{X}{\Longrightarrow} S(x), \ S_{n-1}(x) \stackrel{X}{\Longrightarrow} S(x) \Rightarrow f_n(x) \stackrel{X}{\Longrightarrow} S(x) - S(x) = 0$$

Теорема 4. (критерий Коши равномерной сходимости ряда) Ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на X тогда и только тогда, когда:

$$\forall \varepsilon > 0, \ \exists N : \forall n, m > N, \ \sup_{X} \left| \sum_{k=m}^{n} f_k(x) \right| < \varepsilon$$

 \square Этот критерий есть буквально переписанная теорема для последовательности частичных сумм, поскольку:

$$\sup_{X} \left| \sum_{k=m}^{n} f_k(x) \right| = \sup_{X} \left| S_n(x) - S_m(x) \right|$$

Основной и самый популярный метод проверки рядов на наличие равномерной сходимости это признак Вейерштрасса.

Теорема 5. (признак Вейерштрасса) Пусть $f_n \colon X \to \mathbb{R}$ и $\exists a_n \ge 0 \colon \forall x \in X, \, |f_n(x)| \le a_n$, тогда из сходимости ряда $\sum_{n=1}^{\infty} a_n$ следует равномерная сходимость ряда $\sum_{n=1}^{\infty} f_n(x)$.

□ Проверим критерий Коши:

$$\forall x \in X, \left| \sum_{k=m}^{n} f_k(x) \right| \le \sum_{k=m}^{n} a_k \Rightarrow \sup_{X} \left| \sum_{k=m}^{n} f_k(x) \right| \le \sum_{k=m}^{n} a_k$$

Поскольку для ряда $\sum_{n=1}^{\infty} a_n$ критерий Коши выполняется и оценка сверху не зависит от x, то критерий

Коши для функционального ряда сразу выполняется.

Rm: 7. Заметим, что признак Вейерштрасса используется не только для рядов, но и для последовательностей, поскольку:

$$f_n = f_1 + f_2 - f_1 + f_3 - f_2 + \ldots + f_n - f_{n-1}$$

В этом случае признак Вейерштрасса означает, что для равномерной сходимости последовательности достаточно иметь оценку разности соседей f_n :

$$|f_n - f_{n-1}| \le a_n$$

Следовательно, если ряд из a_n сойдется, то из этого будет следовать, что f_n сойдутся равномерно:

$$\sum_{n=1}^{\infty} a_n < \infty \Rightarrow f_n \rightrightarrows f$$

Также вспомним теорему, уже доказанную для последовательностей.

Теорема 6. Пусть (X, ρ) - метрическое пространство, a - предельная точка, $f_n \colon X \setminus \{a\} \to \mathbb{R}(\mathbb{C})$ и $\forall n, \exists \lim_{x \to a} f_n(x) = b_n$. Если ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на $X \setminus \{a\}$ и его сумма равна S(x), то

 $\exists \lim_{x \to a} S(x) \colon \sum_{n=1}^{\infty} b_n = \lim_{x \to a} S(x) < \infty$ Или если написать подробнее:

$$\sum_{n=1}^{\infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \sum_{n=1}^{\infty} f_n(x) < \infty$$

 \square Поскольку $S_N(x) \rightrightarrows S(x)$, при этом если возьмем предел при $x \to a$, то:

$$\lim_{x \to a} S_N(x) = \sum_{n=1}^N b_n$$

Далее воспользуемся теоремой о перестановке пределов:

$$\sum_{n=1}^{\infty} b_n = \lim_{N \to \infty} \sum_{n=1}^{N} b_n = \lim_{N \to \infty} \left(\lim_{x \to a} S_N(x) \right) = \lim_{x \to a} \left(\lim_{N \to \infty} S_N(x) \right) = \lim_{x \to a} S(x) = \lim_{x \to a} \sum_{n=1}^{\infty} f_n(x)$$

Переформулировки некоторых теорем для рядов

Теорема 7. (о перестановке ряда и интеграла) Пусть функции $f_n(x)$ - интегрируемы по Риману на [a,b] и ряд $\sum_{n=1}^{\infty} f_n$ сходится равномерно на [a,b] к своей сумме S(x). Тогда S(x) - интегрируема по Риману и верно:

$$\int_{a}^{b} S(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)dx$$

□ Распишем частичную сумму, как последовательность и применим теорему о перестановке пределов:

$$S_N(x) = \sum_{n=1}^N f_n(x) \Rightarrow S_N(x) \stackrel{[a,b]}{\Rightarrow} S(x) \Rightarrow \int_a^b S(x) dx = \lim_{N \to \infty} \int_a^b S_N(x) dx = \lim_{N \to \infty} \sum_{n=1}^N \int_a^b f_n(x) dx$$

Теорема 8. (о дифференцируемости суммы ряда) Пусть функции $f_n(x)$ дифференцируемы на конечном интервале $(a,b), \exists x_0 \colon$ ряд $\sum_{n=1}^{\infty} f_n(x_0)$ сходится и ряд $\sum_{n=1}^{\infty} f'_n(x)$ сходится на (a,b) равномерно.

Тогда $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на (a,b), его сумма S(x) - дифференцируема на (a,b) и верно:

$$S'(x) = \sum_{n=1}^{\infty} f'_n(x)$$

□ Распишем частичную сумму, как последовательность:

$$S_N(x) = \sum_{n=1}^{N} f_n(x) \Rightarrow S_N'(x) = \sum_{n=1}^{N} f_n'(x) \stackrel{(a,b)}{\Rightarrow} g(x), \ \exists \lim_{N \to \infty} S_N(x_0) = \sum_{n=1}^{\infty} f_n(x_0)$$

Тогда по теореме о перестановке дифференцируемости и предела:

$$S_N(x) \stackrel{(a,b)}{\Longrightarrow} S(x), S'(x) = g(x) = \lim_{N \to \infty} S'_N(x) = \sum_{n=1}^{\infty} f'_n(x)$$