Espaces préhilbertiens réels : exercices

Produit scalaire

Exercice 1 (*)

Vérifier que $\langle .,. \rangle$ est un produit scalaire sur E dans les cas suivants.

1.
$$E = \mathcal{M}_n(\mathbb{R})$$
 et $\langle A, B \rangle = \operatorname{tr} A^{\mathsf{T}} B$.

2.
$$E = \mathcal{C}([-1,1],\mathbb{R})$$
 et $PSfg = \int_{-1}^{1} \frac{f(t)g(t)}{\sqrt{1-t^2}} dt$.

3.
$$E=\{f:\mathbb{R}\to\mathbb{R} \text{ continues}: f^2 \text{ intégrable sur } \mathbb{R}\}$$
 et $\langle f,g\rangle=\int_{\mathbb{R}}fg.$

4.
$$E = \mathbb{R}[X]$$
 et $\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$.

5.
$$E = \mathbb{R}[X]$$
 et $\langle P, Q \rangle = \sum_{n=0}^{+\infty} \frac{P(n)Q(n)}{2^n}$

Exercice 2 (*)

Soit $n \in \mathbb{N}^*$ fixé, $E = \mathbb{R}_n[X]$ et $F = \{P \in E : P(0) = P(1) = 0\}$. Pour $(P, Q) \in E$, on pose

$$\phi(P,Q) = -\int_0^1 (PQ'' + P''Q).$$

- 1. Vérifier que F est un espace vectoriel.
- 2. Donner une base et la dimension de F.
- 3. ϕ définit-il un produit scalaire sur E? sur F?

Exercice 3 (*)

Soit E l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que la série de terme général u_n^2 converge. Pour u et v dans E, on pose

$$\langle u, v \rangle = \sum_{n=0}^{+\infty} u_n v_n.$$

- 1. Montrer que E est un espace vectoriel. On le note usuellement l^2 .
- 2. Montrer que $\langle u, v \rangle$ existe.
- 3. Montrer qu'il s'agit d'un produit scalaire.

Exercice 4 (Applications de l'inégalité de Cauchy-Schwarz)

Soient $x_1, \ldots, x_n \in \mathbb{R}$.

1. Démontrer que

$$\left(\sum_{k=1}^{n} x_k\right)^2 \leqslant n \sum_{k=1}^{n} x_k^2$$

et étudier les cas d'égalité.

2. On suppose en outre que $x_k > 0$ pour chaque $k \in \{1, \dots, n\}$ et que $x_1 + \dots + x_n = 1$. Démontrer que

$$\sum_{k=1}^{n} \frac{1}{x_k} \geqslant n^2$$

et étudier les cas d'égalité.

Exercice 5 (Applications de l'inégalité de Cauchy-Schwarz)

Soit $E = \mathcal{C}([a, b], \mathbb{R}^*)$. Déterminer $\inf_{f \in E} \left(\int_a^b f \times \int_a^b \frac{1}{f} \right)$. Cette borne inférieure est-elle atteinte?

Orthogonalité

Exercice 6 (*)

Soit $(E, \langle ., . \rangle)$ un espace euclidien et $\mathcal{B} = (\vec{e_1}, \ldots, \vec{e_n})$ une BON de E. On pose

$$\phi \middle| \mathcal{L}(E) \times \mathcal{L}(E) \longrightarrow \mathbb{R}$$

$$(u, v) \longmapsto \sum_{i=1}^{n} \langle u(\vec{e_i}), v(\vec{e_i}) \rangle$$

Montrer que ϕ est un produit scalaire sur $\mathcal{L}(E)$, et déterminer une base orthonormale pour ce produit scalaire.

Exercice 7 (Matrice symétrique)

Soit $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire usuel $\langle A, B \rangle = \operatorname{tr}(A^{\mathsf{T}}B)$.

Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux, où $\mathscr{S}_n(\mathbb{R})$ désigne l'ensemble des matrices symétriques et $\mathscr{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques.

Exercice 8 (Polynômes de Legendre)

On munit le \mathbb{R} -espace vectoriel $E = \mathcal{C}([-1,1],\mathbb{R})$ du produit scalaire usuel défini par

$$\forall (f,g) \in E^2: \quad \langle f,g \rangle = \int_{-1}^1 f(t)g(t)dt.$$

On pose pour tout $n \in \mathbb{N}$,

$$L_n(X) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}X^n} \left[(X^2 - 1)^n \right]$$

Les polynômes $(L_n(X))_{n\in\mathbb{N}}$ s'appellent **polynômes de Legendre**. On pourra introduire $H_n(X)=(X^2-1)^n$.

- 1. Montrer que L_n est un polynôme de degré n dont on précisera le coefficient dominant.
- 2. En utilisant la formule de Leibniz, calculer $L_n(1)$ et $L_n(-1)$.
- 3. Avec une intégration par parties multiple, calculer $\langle L_n, L_n \rangle$.
- 4. Calculer $\langle Q, L_n \rangle$ lorsque Q est un polynôme de $\mathbb{R}_{n-1}[X]$.
- 5. En déduire $\langle L_n, L_m \rangle$ lorsque n?m.
- 6. Comparer $(L_n)_{n\in\mathbb{N}}$ à l'orthonormalisée de la base canonique.

Exercice 9 (Polynômes de Tchebychev)

Soit $E = \mathbb{R}[X]$.

On pose, pour $(P,Q) \in E^2$,

$$\langle P, Q \rangle = \frac{2}{\pi} \int_{-1}^{1} \sqrt{1 - t^2} P(t) Q(t) dt$$

- 1. Montrer que $\langle ., . \rangle$ est bien un produit scalaire sur E.
- 2. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme U_n tel que

$$\forall \theta \in \mathbb{R} : \sin((n+1)\theta) = \sin(\theta)U_n(\cos\theta).$$

Les polynômes $(U_n(X))_{n\in\mathbb{N}}$ s'appellent polynômes de Tchebychev de seconde espèce.

3. Comparer $(U_n)_{n\in\mathbb{N}}$ à l'orthonormalisée de la base canonique.

Projection orthogonale

Exercice 10 (Orthonormalisation de Schmidt)

 $Dans \ \mathbb{R}^3 \ muni \ du \ produit \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ Schmidt \ la \ base \ suivant \ e \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ Schmidt \ la \ base \ suivant \ e \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ Schmidt \ la \ base \ suivant \ e \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ Schmidt \ la \ base \ suivant \ e \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ canonique, \ orthonormaliser \ en \ scalaire \ canonique, \ orthonormaliser \ en \ suivant \ le \ procédé \ de \ scalaire \ en \ scalaire \$

$$u = (1,0,1), v = (1,1,1), w = (-1,-1,0).$$

Exercice 11 (Trouver une base orthonormale)

Déterminer une base orthonormale de $\mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Exercice 12 (Projection orthogonale dans \mathbb{R}^4)

Soit $E = \mathbb{R}^4$ muni de son produit scalaire canonique et de la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$. On considère G le sous-espace vectoriel défini par les équations

$$\begin{cases} x_1 + x_2 &= 0 \\ x_3 + x_4 &= 0. \end{cases}$$

- 1. Déterminer une base orthonormale de G.
- 2. Déterminer la matrice dans \mathcal{B} de la projection orthogonale p_G sur G.
- 3. Soit $x = (x_1, x_2, x_3, x_4)$ un élément de E. Déterminer la distance de x à G.

Exercice 13 (Matrice symétrique)

Soit $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire usuel $\langle A, B \rangle = \operatorname{tr}(A^{\mathsf{T}}B)$.

- 1. Montrer que S et A sont supplémentaires orthogonaux, où S désigne l'ensemble des matrices symétriques et A l'ensemble des matrices antisymétriques.
- 2. Montrer que

$$\forall A \in \mathcal{E} : \operatorname{tr} A \leqslant \sqrt{n \operatorname{tr}(A^{\mathsf{T}} A)}.$$

Étudier le cas d'égalité.

3. Pour $A \in \mathcal{E}$, on pose

$$\begin{array}{ccc}
f_A & \longrightarrow & \mathbb{R} \\
S & \longmapsto & \sum_{i=1}^n \sum_{j=1}^n (a_{i,j} - s_{i,j})^2
\end{array}$$

Déterminer le minimum de f_A et la matrice qui réalise ce minimum.

Exercice 14 (Optimum)

Déterminer $(a, b, c, d) \in \mathbb{R}^4$ tels que l'intégrale

$$\int_{-\pi/2}^{\pi/2} \left(\sin x - ax^3 - bx^2 - cx - d \right)^2 dx$$

soit minimale.