Models pros and cons

Tuesday, September 4, 2018 1:54 PM

Chris Tufts edited this page on Nov 11, 2015 · <u>4 revisions</u>
Classification Model Pros and Cons (Generalized)

- Logistic Regression
 - o Pros
 - low variance
 - provides probabilities for outcomes
 - works well with diagonal (feature) decision boundaries
 - NOTE: logistic regression can also be used with kernel methods
 - Cons
 - high bias
- Decision Trees
 - Regular (not bagged or boosted)
 - Pros
 - easy to interpret visually when the trees only contain several levels
 - ☐ Can easily handle qualitative (categorical) features
 - □ Works well with decision boundaries parellel to the feature axis
 - Cons
 - prone to overfitting
 - possible issues with diagonal decision boundaries
 - Bagged Trees: train multiple trees using bootstrapped data to reduce variance and prevent overfitting
 - Pros
 - □ reduces variance in comparison to regular decision trees
 - ☐ Can provide variable importance measures
 - classification: Gini index
 - regression: RSS
 - ☐ Can easily handle qualitative (categorical) features
 - □ Out of bag (OOB) estimates can be used for model validation
 - Cons
 - □ Not as easy to visually interpret
 - Does not reduce variance if the features are correlated
 - Boosted Trees: Similar to bagging, but learns sequentially and builds off previous trees
 - Pros
 - □ Somewhat more interpretable than bagged trees/random forest as the user can define the size of each tree resulting in a collection of stumps (1 level) which can be viewed as an additive model
 - □ Can easily handle qualitative (categorical) features
 - Cons
 - Unlike bagging and random forests, can overfit if number of trees is too large
- Random Forest
 - o Pros
 - Decorrelates trees (relative to bagged trees)

- □ important when dealing with mulitple features which may be correlated
- reduced variance (relative to regular trees)
- Cons
 - Not as easy to visually interpret
- SVM
 - Pros
 - Performs similarly to logistic regression when linear separation
 - Performs well with non-linear boundary depending on the kernel used
 - Handle high dimensional data well
 - o Cons
 - Susceptible to overfitting/training issues depending on kernel
- Neural Network (This section needs further information based on different types of NN's)
- Naive Bayes
 - o Pros
 - Computationally fast
 - Simple to implement
 - Works well with high dimensions
 - Cons
 - Relies on independence assumption and will perform badly if this assumption is not met

From https://github.com/ctufts/Cheat-Sheets/wiki/Classification-Model-Pros-and-Cons>