Алгебра 7

Igor Engel

1

Теорема 1.1. Если $H \leq \mathbb{Z}/n$, то H - циклическая.

$$\forall d \quad n \ \vdots \ d \quad \exists ! H \leq \mathbb{Z}/n \quad |H| = d.$$

Доказательство. Заметим, что существует эпиморфизм $\pi: \mathbb{Z} \mapsto \mathbb{Z}/n$. Так-как $H \leq \mathbb{Z}/n$, существует прообра $\pi^{-1}(H)$.

Докажем, что если $f: g_1 \mapsto g_2$, и $H \leq g_2$, то $f^{-1}(H) \leq g_1$.

$$f(e_{g_1}) = e_{g_2} \implies e_{g_1} \in f^{-1}(H).$$

$$f(a^{-1}) = f(a)^{-1} \implies (f(a) \in H \iff f(a)^{-1} \in H).$$

$$f(a \cdot b) = f(a) \times f(b) \implies f(a \cdot b) \in H.$$

Тогда мы знаем, что $\pi^{-1}(H) = \langle k \rangle$ - циклическая.

Тогда H тоже циклическая, и равна $\langle \pi(k) \rangle$:

Пусть $y \in \pi^{-1}(H)$. Тогда y = sk, а $\pi(y) = \overline{k}\overline{s}$, и $\pi(y) \in H$.

Для доказательство второго утверждения, построим подгруппу порядка d, где d - делитель n.

Возьмём $\frac{n}{d}$, и построим из него подгруппу.

Докажем единственность: любая другая подгруппа того-же порядка так-же цикличиская, и порождена элементом порядка d. Назовём этот элемент x Тогда $\frac{n}{(n,x)} = d$, значит, $(n,x) = \frac{n}{d}$. Значит, $x : \frac{n}{d}$, и $\langle x \rangle = \langle d \rangle$.

Определение 1.1. Пусть $a_1 \dots a_k \in \{1, \dots, n\}$.

Тогда по этим элементом можно построить цикл:

$$C(x) = \begin{cases} x & x \notin \{a_1, \dots, a_k\} \\ a_{i+1} & x = a_i, i < k \\ a_1 & a_k = x \end{cases}$$

Цикл обозначается (a_1,\ldots,a_k)

Теорема 1.2. Порядок цикла равен его размеру.

Доказательство. Рассмотрим перестановку $c^{d}(x)$ для каждого x:

- 1. Если $x \notin \{a_1, \ldots, a_k\}$, то $c^d(x) = x$
- 2. Если $x = a_1$, то $c^d = x \iff k$.
- 3. Для других аналогично.

Определение 1.2. x называется неподвижной относительно перестановки σ , если $\sigma(x) = x$.

Множество всех неподвижных точек обозначается ${\rm Fix}\,\sigma.$

Дополнение этого множества: Supp σ

Определение 1.3. Перестановки σ_1 и σ_2 называются независимыми если Supp $\sigma_1 \cap$ Supp $\sigma_2 = \emptyset$.

Лемма 1.3.1. Независимые перестаноки коммутируют.

Определение 1.4. x лежит в одной орбите с y относительно c, если $\exists k \in \mathbb{Z}$ $c^k(x) = y$.

Лемма 1.4.1. Это отношение эквивалентности.

Доказательство. Рефлексивность: $c^0(x) = x$

Симметричность: Если $c^{k}(x) = y$, то $c^{-k}(y) = x$.

Транзитивность: Если $c^{k_1}(x) = y$, $c^{k_2}(y) = z$, то $c^{k_2}(c^{k_1}(x)) = z \implies c^{k_1+k_2}(x) = z$

Теорема 1.3. Любую перестановку $\sigma \in S_n$ можно представить как произведение циклов c_1, \ldots, c_k , где циклы попарно независимы.

Доказательство. Разобьём σ на орбиты Ω_i .

Построем циклы:

$$C_i(x) = \begin{cases} x & x \notin \Omega_i \\ \sigma(x) & x \in \Omega_i \end{cases}$$

Докажем что C_i будет циклом:

Возьмём какой-нибудь $x\in\Omega_i$, тогда $\Omega_i=\{x,\sigma(x),\sigma^2(x),\dots,\sigma^{k-1}(x)\}.$

 Γ де $k = |\Omega_i|$.

Елси хотя-бы один из элементов вида $\sigma^m(x)$ повторялся с любой из меньших степеней, $m \neq k$, то в $|\Omega_i|$ было-бы m, а не k. Строгое доказательство аналогично докательству про эквивалентность определений порядка элемента.

$$\operatorname{Supp} C_i = \begin{cases} \Omega_i & |\Omega_i| \neq 1\\ \emptyset & |\Omega_i| = 1 \end{cases}$$

Значит, циклы независимы.

Пусть $x \in \Omega_i$, тогда все циклы кроме *i*-го ничего с ним не делают, а *i*-ый переводит в $\sigma(x)$. Значит, композиция (произведение) циклов равно σ .

Теорема 1.4. Порядок перестановки равен НОК порядков циклов в её разложении.

Доказательство. Пусть $\sigma = c_1 c_2 \dots c_k$

Так-как независимые перестановки коммутируют, $\sigma^d = c_1^d c_2^d \dots c_k^d$.

Эти циклы всё ещё независимы, значит чтобы σ была тождественной, надо чтобы все циклы были тождественными перестановками.

Наименьшее такое d - HOK порядков циклов.

Теорема 1.5. Обратная перестановка получается переворотом элементов в циклах разложения.

Теорема 1.6. Пусть \overline{C}_n - множество всех циклов в S_n . Тогда $S_n = \langle \overline{C}_n \rangle$

Определение 1.5. Транспозиция - цикл длины 2.

Теорема 1.7. S_n порождена транспозициями.

Доказательство. Выразим цикл (a_1, \ldots, a_k) как произведение транспозицией.

$$(a_1, \dots, a_k) = (a_1, a_k)(a_1, a_{k-1}) \dots (a_1, a_2).$$

 $(a_1, \dots, a_k) = (a_1, a_2)(a_2, a_3) \dots (a_{k-1}, a_k).$

Определение 1.6. Перестановка $\sigma \in S_n$, то пара i < j задаёт инверсию для σ , если $\sigma(i) > \sigma(j)$

Определение 1.7. Чётность σ - чётность число инверсий.

Определение 1.8. Знак $\operatorname{sgn} \sigma - 1^{\operatorname{число} \operatorname{инверсий}}$

Лемма 1.8.1. Знак перестановки равен 1 если она чётная, и -1 если нечётная.

Лемма 1.8.2.

$$\operatorname{sgn} \sigma = \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

Доказательство. j-i положительное, $\sigma(j)-\sigma(i)$ отрицательно тогда и только тогда, когда i,j задают инверсию.

Заметим, для каждого множителя в числителе найдётся равный ему по модулю множитель в знаменателе (так-как σ - биекция, в числителе тоже встретится разность любых двух элементов, но возможно в другом порядке).

Лемма 1.8.3.

$$\operatorname{sgn} \sigma = \prod_{\{i,j\}} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

Лемма 1.8.4. $\operatorname{sgn} \sigma$ - гомоморфизм из S_n в $\{\pm 1\}$

Доказательство.

$$\operatorname{sgn} \sigma \tau = \operatorname{sgn} \sigma \operatorname{sgn} \tau = \prod_{\{i,j\}} \frac{\sigma(j) - \sigma(i)}{j - i} \prod_{\{e,k\}} \frac{\tau(k) - \tau(e)}{k - e}.$$

$$i, j = \{\tau(k), \tau(e)\}.$$

$$\prod_{\{k,e\}} \frac{\sigma(\tau(k)) - \sigma(\tau(e)}{\tau(k) - \tau(e)} \prod_{\{k,e\}} \frac{\tau(k) - \tau(e)}{k - e} = \prod_{\{k,e\}} \frac{\sigma(\tau(k)) - \sigma(\tau(e))}{k - e} = \operatorname{sgn} \sigma \tau. \qquad \Box$$

Лемма 1.8.5. $g \in S_n$.

$$g(1,2)g^{-1} = (g(1), g(2)).$$

Лемма 1.8.6. $sgn(a_1, a_2) = -1$

Доказательство.

$$sgn(1,2) = -1.$$

Возьмём
$$g \in S_n$$
, такое, что $g(1) = a_i$, $g(2) = a_j$.
Тогда $\operatorname{sgn}(a_i, a_j) = \operatorname{sgn} g(1, 2)g^{-1} = \operatorname{sgn} g \operatorname{sgn} g^{-1} \operatorname{sgn}(1, 2) = -1$

Лемма 1.8.7. Если σ - произведение k транспозиций, то $\operatorname{sgn} \sigma = (-1)^k$

Определение 1.9 (Игра в 15). Возьмём квадрат 4×4 , поставим в него 15 квадратов, слева-направа, сверху-вниз, помяв местами квадраты 14 и 15.

Можно-ли поменять квадраты обртано?

Лемма 1.9.1. Нет.

Доказательство. Добавим «фантомный» 16-й квадарт. Тогда квадрат эквивалентен перестановке из S_{16} .

Начальная перестаовка эквивалентна (14, 15).

Любое действие с квадратом эквивалентно домножению слева на (16, x).

Надо получить тождественную перестановку.

Количество шагов должно быть нечётно, так-как начальная перестановка нечётна, а тождественная - чётна. Заметим, что квадрат 16 является фиксированной точкой и в начальной и в тождественной перестановке.

На каждом ходу квадрат сдвигается на одну клетку, значит движений вверх столькоже, сколько вниз и движений влево столько-же, сколько вправо, иначе квадрат не вернётся в начальную точку.

Значит, шагов должно быть чётно. Противоречие.