Statistics One

Lecture 17 Factorial ANOVA

Two segments

- Factorial ANOVA
- Example

Lecture 17 ~ Segment 1

Factorial ANOVA

Factorial ANOVA

- Two Independent Variables (IVs)One Dependent Variable (DV)

Example

- Suppose an experiment is conducted to examine the effect of talking on a mobile phone while driving

 IV1: Driving difficulty
 IV2: Conversation demand

 - DV: Driving errors

Factorial ANOVA

- Three hypotheses can be tested:
 More errors in the difficult simulator?
 More errors with more demanding conversation?
 - More errors due to the interaction of driving difficulty and conversation demand?

Factorial ANOVA

- · Three F ratios

 - F_A
 F_B
 F_{AxB}

Factorial ANOVA

Main effect: the effect of one IV averaged across the levels of the other IV

9

Factorial ANOVA

 Interaction effect: the effect of one IV depends on the other IV (the simple effects of one IV change across the levels of the other IV)

Factorial ANOVA

• Simple effect: the effect of one IV at a particular level of the other IV

...

Factorial ANOVA

• Main effects and interaction effect are independent from one another

Factorial ANOVA

- Remember, factorial ANOVA is just a special case of multiple regression
 - It is a multiple regression with perfectly independent predictors (IVs)

Remember, GLM

- General Linear Model (GLM) Y = B₀ + B₁X₁ + B₂X₂ + B₃X₃ + e

 - Y = DV X1 = A

 - X2 = B
 - X3 = (A*B)

F ratios

- $$\begin{split} \bullet & \ \mathsf{F}_{\mathsf{A}} = \mathsf{MS}_{\mathsf{A}} \, / \, \, \mathsf{MS}_{\mathsf{S}/\mathsf{AB}} \\ \bullet & \ \mathsf{F}_{\mathsf{B}} = \mathsf{MS}_{\mathsf{B}} \, / \, \, \mathsf{MS}_{\mathsf{S}/\mathsf{AB}} \\ \bullet & \ \mathsf{F}_{\mathsf{AxB}} = \mathsf{MS}_{\mathsf{AxB}} \, / \, \, \mathsf{MS}_{\mathsf{S}/\mathsf{AB}} \end{split}$$

MS

- $MS_A = SS_A / df_A$

- MS_B = SS_B / df_B
 MS_{AXB} = SS_{AXB} / df_{AXB}
 MS_{S/AB} = SS_{S/AB} / df_{S/AB}

23

df

- df_A = a 1 df_B = b 1

- df_{AxB} = (a -1)(b 1)
 df_{S/AB} = ab(n 1)
 df_{Total} = abn 1 = N 1

Follow-up tests

- · Main effects
 - Post-hoc tests
- Interaction
 - Analysis of simple effects
 - Conduct a series of one-way ANOVAs (or t-tests)

Effect size

- Complete η^2 η^2 = SS_{effect} / SS_{total}
- Partial η^2 η^2 = SS_{effect} / (SS_{effect} + SS_{S/AB})

Effect size (complete) η^2 for the interaction = SS_{AxB} / SS_{Total} SS_{AxB} SSA $SS_{S/AB}$

Effect size (partial) η^2 for the interaction = $SS_{AxB} / (SS_{AxB} + SS_{S/AB})$ SS_{AxB} SS_A $\mathrm{SS}_{\mathrm{S/AB}}$

Assumptions

- Assumptions underlying factorial ANOVA
 DV is continuous (interval or ratio variable)
 DV is normally distributed
 Homogeneity of variance

Segment summary

- Factorial ANOVA
 - Three F-tests (F_A,F_B,F_{AxB}) Main effects

 - Interaction effect
 - Simple effects

Segment summary

- Factorial ANOVA
 - Effect size (complete and partial eta-squared)
 - Post-hoc tests (follow main effects)
 - Simple effects analyses (follow interaction)
 - Homogeneity of variance assumption
 - Levene's test

END SEGMENT

30

Lecture 17 ~ Segment 2

Factorial ANOVA Example

31

Example

- Strayer and Johnson (2001) conducted an experiment to examine the effect of talking on a mobile phone while driving
- They tested subjects in a driving simulator

Example

· To manipulate driving difficulty, they simply made the driving course in the simulator more or less difficult

Example

- · To manipulate conversation demand, they
 - included two "talking" conditions:

 In one condition the subject simply had to repeat what they heard on the other line of the phone

Example

- · To manipulate conversation demand, they
 - included two "talking" conditions:

 I the other condition the subject had to think of and then say a word beginning with the last letter of the last word spoken on the phone
 - For example, if you hear "ship", say a word that begins with the letter "p", such as "peach"

Example

- IV1 = driving difficulty (easy, difficult)
- IV2 = conversation demand (none, low, high)
- DV = errors in driving simulator

Example Solving Errors Driving Errors

Results: Levene's test

20

Results: Factorial ANOVA

> summary(anova <- aov(dfSerrors ~ dfSdriving * dfSconversation))

Df Sum Sq Mean Sq F value Pr(>F)

dfSdriving 1 5782 5782 94.64 < 2e-16 ***
dfSconversation 2 4416 2208 36.14 6.98e-13 ***
dfSdriving:dfSconversation 2 1639 820 13.41 5.86e-06 ***

Residuals 114 6965 61

--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

39

Results: Simple effects

- · Simple effect of A at each level of B
 - Effect of driving difficulty at each level of conversation demand
- · Simple effect of B at each level of A
 - Effect of conversation demand at each level of driving difficulty

Example

Results: Simple effects > t.test(none.easy, none.diff, var.equal=T) Two Sample t-test data: none.easy and none.diff $t=1.5052,\ df=38,\ p-value=0.1405$ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: $-8.55966\ 1.25996$ sample estimates: $mean \ of \ x \ mean \ of \ y$ $19.60\ 23.25$ > cohensD(none.easy, none.diff) [1] 0.475981

Results: Simple effects

```
> t.test(low.easy, low.diff, var.equal=T)
```

Two Sample t-test

dato: low.easy and low.diff t = -6.4625, df = 38, p-value = 1.324e-07 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -22.5228 - 11.7772 sample estimates: mean of x mean of y -22.5228 - 11.7772 sample -22.5228 - 11.7722 samp

> cohensD(low.easy, low.diff) [1] 2.043623

Results: Simple effects

> t.test(high.easy, high.diff, var.equal=T)

Two Sample t-test

data: high.easy and high.diff $t = .8,9664, \ df = 38, \ p-value = 6.467e-11$ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 25.5574e - 16.14258 sample estimates: $mean \ of \ x \ mean \ of \ y \ mean \ of \ x \ mea$

> cohensD(high.easy, high.diff) [1] 2.835426

END LECTURE 17