# ISE 3230: Systems Modeling and Optimization for Analytics

### Homework 6

(Due Friday 12/04/2020 at 11:59pm)

#### Instructions

- (1) For problems that require coding, your should use the CVXPY package in Python and *Gurobi* as the solver. Please include your code, the relevant part of the output, and comment on it. Do not include your code and/or its output as an appendix to your homework.
- (2) If you are familiar with LaTex or a suitable markdown language for equations and willing to prepare your homework in Jupyter Notebook or Lab, you are welcome to do so.
- (3) that the objectives of some of the problems are Maximization, hence the entering variable at each iteration of the simplex algorithm is the one with the most negative  $z_j c_j$  and the optimality condition is  $z_j c_j \ge 0$  for all j.

## **Problem 1**. Consider the following problem.

Maximize 
$$z = 3x_1 + 2x_2$$
  
subject to 
$$x_1 + 2x_2 \le 11$$
$$x_1 - 3x_2 \le 1$$
$$x_1, x_2 > 0$$

- (a) (5 pts) Solve this problem graphically.
- (b) (10 pts) Write the canonical dual and solve the dual graphically. Compare the optimal objective values of the two problems.
- (c) (5 pts) Solve the primal problem in Python using CVXPY and identify the optimal dual variables (shadow prices) on the program output.



Thus, the optimal solution is  $\binom{x_1}{x_2} = \binom{7}{2}$  $\xi \rho = v S$ .

(b)  

$$m\bar{n} \ge = 11y_1 + y_2$$
  
 $S.t. y_1 + y_2 \ge 3$  D  
 $2y_1 - 3y_2 \ge 2$   
 $y_1, y_2 \ge 0$ 

code Here



```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Sat Dec 5 05:07:07 2020
@author: fionafei
import cvxpy as cp
x = cp.Variable(2, nonneg = True) # vector variable
obj_func=3*x[0]+2*x[1]
#obj_func_neg=3*x[0]+2*x[1]
constraints = []
constraints append(x[0]+2*x[1] <= 11)
constraints.append(x[0]-3*x[1] \le 1)
constraints append (x[0] >= 0)
constraints append (x[1] >= 0)
problem = cp.Problem(cp.Maximize(obj_func), constraints)
#problem = cp.Problem(cp.Minimize(obj_func_neg), constraints)
#problem.solve(solver=cp.CVXOPT,verbose = True)
#problem.solve(verbose = True)
problem.solve(solver=cp.GUROBI,verbose = True)
print("obj_func =")
print(obj_func.value)
#print(obj_func_neg.value)
print("x = ")
print(x.value)
# Shadow prices or dual prices
print("optimal (x[0]+2*2 <=11) dual variable", constraints[0].dual_value)
print("optimal (x[0]-3*2<=1) dual variable", constraints[1].dual_value)</pre>
# Reduced costs
print("reduced cost of the 1st primal variable x[0]", (-1)*constraints[2].dual_v
print("reduced cost of the 2nd primal variable x[1]", (-1)*constraints[3].dual_v
#output
Solved in 0 iterations and 0.01 seconds
Optimal objective -2.500000000e+01
```

```
obj_func = 25.0 x = [7. 2.] optimal (x[0]+2*2<=11) dual variable 2.2 optimal (x[0]-3*2<=1) dual variable 0.8 reduced cost of the 1st primal variable x[0] 0.0 reduced cost of the 2nd primal variable x[1] 0.0
```

**Problem 2**. Consider the following linear programming problem.

Maximize 
$$z=x_1+2x_2-3x_3$$
 subject to 
$$-3x_1+x_2+2x_3=16$$
 
$$2x_1+4x_2+3x_3\geq 20$$
 
$$x_1\geq 0$$
 
$$x_2\leq 0$$
 
$$x_3 \text{ unrestricted}$$

- (a) (5 pts) Using the table provided in the duality lecture, write the general dual.
- **(b)** (10 pts) Transform the given problem into the canonical form. Write the canonical dual and verify its equivalence to that found in part (a).

**Problem 3**. Consider the following linear programming problem.

Maximize 
$$z = 3x_1 + 10x_2 + 5x_3 + 11x_4 + 6x_5 + 14x_6$$
 subject to 
$$x_1 + 7x_2 + 3x_3 + 4x_4 + 2x_5 + 5x_6 = 42$$
  $x_j \ge 0$ , for all  $j$ 

- (a) (5 pts) Write the dual problem.
- (b) (10 pts) Solve the dual problem by inspection.

Problem 4. Consider the following the following problem.

Maximize 
$$z = x_1 + 2x_2 - 9x_3 + 8x_4 - 36x_5$$
  
subject to 
$$2x_2 - x_3 + x_4 - 3x_5 \le 40$$
$$x_1 - x_2 + 2x_4 - 2x_5 \le 10$$
$$x_j \ge 0, \text{ for all } j$$

Problem #2.

W1, W2, W3 >0.

$$3 + 9 :$$

$$2w_1 - 2w_2 - 3w_3 = -3.$$

$$1et w_1^* = w_2 - w_1$$

$$w_2^* = -w_3 \le 3.$$

Thus, the formulation from part (a) is equivalent with the formulation in part (b).

# Problem #3

Sit. 
$$y, >3$$
 $7y, >10$ 
 $y, >\frac{10}{7}$ 
 $3y, >5$ 
 $4y, >11$ 
 $2y, >6$ 
 $5y, >74$ 
 $y, >\frac{1}{3}$ 
 $y, >\frac{1}{3}$ 

(b) By inspection, in order to get minimal objective value.

$$y_1 = min \int_3^3, \frac{10}{7}, \frac{5}{3}, \frac{11}{4}, \frac{11}{3}, \frac{11}{4} = \frac{10}{7},$$

$$y = \frac{10}{7}, 8 = 42x \frac{10}{7} = 60.$$

Problem #4



X1= X1= X2=0

$$\bigcirc$$

$$\begin{cases} 2x_2 + x_4 - 40 = 0 \\ -x_2 + 2x_4 - 10 = 0 \end{cases} \rightarrow \begin{cases} x_2 = 14 \\ x_4 = 12. \end{cases}$$

- (a) (5 pts) Write the dual problem and solve it graphically.
- (b) (10 pts) Using Complementary Slackness (CS) conditions and the optimal dual solution found in part (a), find an optimal solution to the primal problem.

**Problem 5**. Consider the following the following problem.

Maximize 
$$z = 3x_1 - x_2 + 6x_3$$
  
subject to 
$$5x_1 + x_2 + 4x_3 \le 42$$
$$2x_1 - x_2 + 2x_3 \le 18$$
$$x_1, x_2, x_3 > 0$$

- (a) (5 pts) Write the dual problem.
- (b) (10 pts) Solve the primal problem by the primal simplex algorithm. Identify both the optimal primal and optimal dual solutions from the final tableau.
- (c) (5 pts) At each iteration in part (b), identify the dual solution and indicate which dual constraints are violated. Also, at each iteration, identify the  $2 \times 2$  primal basis matrix and the  $3 \times 3$  dual basis matrix.
- (d) (5 pts) Write the complementary slackness conditions and verify that these conditions are satisfied by the optimal solutions found in part (b).
- (e) (10 pts) Solve the problem in Python using CVXPY. Identify the shadow prices. Identify the reduced costs for the original variables. Interpret the two shadow prices and the three reduced costs.

Problem #5.

S.t. 
$$5y_1+2y_2 > 3$$
  $5y_1+2y_2-w_1=3$   $y_1-y_2 > -1$   $y_1-y_2-w_2=-1$   $4y_1+2y_2-w_3=6$ .

y1, y2, W1, W2, W3 2,0.

(b) min 
$$2 = -3x_1 + x_2 - 6x_3$$

5.t. 
$$5x_1+x_2+4x_3+x_4=42$$
  
 $2x_1-x_2+2x_3+x_5=18$   
 $x_1>0$ ,  $i=1,2,...,5$ 

$$\beta_{D} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \beta_{D} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

duay constraint violated

$$\frac{2}{8}$$
  $\frac{1}{1}$   $\frac{1}$ 

$$Bp = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix} \qquad Bp = \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

violate constraint y1-y2>-1.

$$Bp = \begin{pmatrix} 1 & 4 \\ -1 & 2 \end{pmatrix} \quad Bp = \begin{pmatrix} -1 & 5 & 2 \\ 0 & 4 & -1 \\ 0 & 4 & 2 \end{pmatrix}$$

no violations.

$$x_1 = \frac{11}{3}, \quad x_1^{\dagger} = 0, \quad x_3^{\dagger} = 0.$$

(d) 
$$x_1w_1 = x_2w_2 = x_3w_3 = x_4w_1 = x_5w_2 = 0$$
.  
 $x_1(\pm y_1 + 2y_2 - 3) = 0$   $x_1^* = 0$   
 $y_1(\pm x_1 + x_2 + 4x_3 - 42) = 0$   $x_2^* + 4x_3 = 42$   $x_2^* = 2$   
 $y_2(2x_1 - x_2 + 2x_3 - 18) = 0$   $-x_2^* + 2x_3^* = 18$   $x_3^* = 10$ 

 $x_4(y_1-0)=0$   $x_4^{\dagger}=0$  $x_5(y_2-0)=0$   $x_5^{\dagger}=0$ .

Therefore, oil Conditions are soursfied.

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Sat Dec 5 05:07:07 2020
@author: fionafei
import cvxpy as cp
x = cp.Variable(3, nonneg = True) # vector variable
obj_func=3*x[0]-x[1]+6*x[2]
\#obj_func_neg=3*x[0]+2*x[1]
constraints = []
constraints.append(5*x[0]+x[1]+4*x[2] <=42)
constraints.append(2*x[0]-x[1]+2*x[2] <= 18)
constraints append (x[0] >= 0)
constraints append (x[1] \ge 0)
constraints.append(x[2] >= 0)
problem = cp.Problem(cp.Maximize(obj_func), constraints)
#problem = cp.Problem(cp.Minimize(obj_func_neg), constraints)
#problem.solve(solver=cp.CVXOPT,verbose = True)
#problem.solve(verbose = True)
problem.solve(solver=cp.GUROBI,verbose = True)
print("obj_func =")
print(obj_func.value)
#print(obj func neg.value)
print("x =")
print(x.value)
# Shadow prices or dual prices
print("optimal (x[0]+2*x[1]<=11) dual variable", constraints[0].dual_value)</pre>
print("optimal (x[0]-3*x[1]<=1) dual variable", constraints[1].dual_value)</pre>
print("optimal (x[2]>=0) dual variable", constraints[4].dual_value)
Solved in 1 iterations and 0.01 seconds
Optimal objective -5.800000000e+01
obj func =
```