СОДЕРЖАНИЕ

BE	ВЕДЕНИЕ	2
1	Основная открытая проблема	3
2	Гипотеза Коллатца (проблема $3x+1$)	4
3	Построение автомата для функции вида $f(x) = cx \dots$	6
34	АКЛЮЧЕНИЕ	9
CI	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

ВВЕДЕНИЕ

Цель данной научно-исследовательской работы - попытка разобраться с гипотезой, которая была поставлена В. С. Анашиным и А. Ю. Хренниковым в книге Applied Algebraic Dynamics[1] и подробно описана в первом разделе. Поскольку данная гипотеза - это открытая проблема, то нельзя заранее сказать о том, будет она доказана или опровергнута.

В течение семестра гипотеза была рассмотрена, а затем, чтобы в дальнейшем рассматривать гипотезу в терминах автоматов, была проведена работа по созданию алгоритма для преобразования детерминированных функций $f: \mathbb{Z}_p \to \mathbb{Z}_p$ в конечные автоматы. Задача о построение конечного автомата для детерминированной функции была поставлена и решена в курсовой работе для частной функции вида $f(x) = cx, c = \frac{n}{m}$, где $n, m \in \mathbb{Z}$.

Ближе к концу семестра была рассмотрена гипотеза Коллатца, которая, если ее переложить на язык p-адических функций, очень схожа с гипотезой рассмотренной в первом разделе.

Основной список используемой литературы для построения функции f(x) = cx приведен в курсовой работе.

1 Основная открытая проблема

В книге [1] В. С. Анашин и А. Ю. Хренников ставят следующую проблему, которую отмечают как открытую.

Проблема 1. Существует ли полином g над \mathbb{Z}_2 такой что композиция

$$f(x) = g\left(\frac{x(x+1)}{2}\right) \tag{1}$$

транзитивна по $\pmod{2^k}$ для всех k.

В начале семестра было рассмотрено предположение о том, что данную задачу можно рассматривать в терминах рядов Ван дер Пута и Т-функций, но в последствии от этого было решено отказаться в пользу рассмотрения задачи в терминах автоматов. В терминах автоматов функцию $f(x) = \frac{x(x+1)}{2}$ можно рассматривать как некоторый ассинхронный автомат, а функцию g как некоторый синхронный автомат.

2 Гипотеза Коллатца (проблема 3x + 1)

Помимо рассмотрения проблемы 1 в терминах автоматов был рассмотрен вариант переложения гипотезы Коллатца на термины p-адического анализа. После переложения гипотеза очень сильно стала напоминать исходную решаемую проблему.

Перед постановкой гипотезы Коллатца в терминах p-адического анализа кратко объясним суть гипотезы. Для этого рассмотрим следующую последовательность чисел, называемую сиракузской последовательностью. Берём любое натуральное число $n \in \mathbb{N}$. Если оно чётное, то делим его на 2, а если нечётное, то умножаем на 3 и прибавляем 1 (получаем 3n+1). Над полученным числом выполняем те же самые действия, и так далее. Гипотеза заключается в том, что какое бы начальное число n мы ни взяли, рано или поздно мы получим единицу.

Рисунок 1 – Пример сиракузской последовательности

Рисунок 2 – Длины сиракузских последовательностей для чисел от 1 до 9999

Для постановки задачи в терминах p-адического анализа переформу-

лируем гипотезу в виде следующей формулы:

$$\Phi_3(x) = \begin{cases}
3x + 1, x \equiv 1 \pmod{2} \\
\frac{x}{2}, x \equiv 0 \pmod{2}
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{3x + 1}{2}, x \equiv 1 \\
\frac{x}{2}, x \equiv 0
\end{cases}$$
(2)

Далее можно рассматривать вопрос о том, сохраняет ли функция T_3 меру Хаара и, если дополнительно ввести следующие функции:

$$F: x \longmapsto \left[\frac{x}{2}\right], F: \mathbb{N} \to \mathbb{N}$$

$$G: x = x_0 + x_1 p + x_2 p^2 + \dots, x \longmapsto \frac{x - x_0}{p}$$

то можно рассматривать задачу об их биективности, совместимости и 1-липшицевости.

В данных терминах гипотеза Коллатца очень напоминает гипотезу 1.

3 Построение автомата для функции вида f(x) = cx

Для решения задачи 1 в терминах автоматов очень важно построить способ, который будет давать нам однозначное представление функции в виде автомата. Для этого были сделаны следующие шаги.

Для любого рационального числа $c=\frac{n}{m}$, где $n,m\in\mathbb{Z}$ и где p не является делителем m, существует ограниченно-детерминированная функция $f:\mathbb{Z}_p\to\mathbb{Z}_p$ такая, что f(x)=cx. Обозначим через \mathfrak{A}_c соотвествующий приведенный конечный автомат. Легко видеть, что для любой детерминированной функции $f:\mathbb{Z}_p\to\mathbb{Z}_p$ и слова $\alpha=a(1)a(2)\dots a(l)\in E_p^l$ для соответствующей остаточной функции $f_{\alpha}(x)$ выполняется следующее соотношение:

$$f([\alpha] + p^l x) = [\beta] + p^l f_{\alpha}(x) \tag{3}$$

где $\beta = b(1)b(2) \dots b(l) = f(\alpha) \in E_p^l$:

$$\underbrace{a(1)\dots a(l)\underbrace{x(1)x(2)\dots}_{\alpha} \to \underbrace{f}}_{(1)\dots b(l)} \to \underbrace{b(1)\dots b(l)\underbrace{x(1)x(2)\dots}_{x}}_{(4)}$$

Из соотношения 3 непосредственно следует формула для $f_{\alpha}(x)$:

$$f_{\alpha}(x) = \frac{f([\alpha] + p^{l}x) - [\beta]}{p^{l}}.$$
 (5)

Для начала опишем автомат \mathfrak{A}_n , где $n \in \mathbb{N}$. Применив формулу 5 к функции f(x) = nx, получим:

$$(nx)_{\alpha} = \frac{n([\alpha] + p^l x) - [\beta]}{p^l} = nx + \frac{n[\alpha] - [\beta]}{p^l},\tag{6}$$

где $[\beta]=n[\alpha]\pmod{p^l}$ (так как $f(\alpha)=\beta$). Следовательно, $n[\alpha]-[\beta]$ делится на p^l , и мы получаем более короткое представление:

$$(nx)_{\alpha} = nx + q,\tag{7}$$

где $q=\left[\frac{n[\alpha]}{p^l}\right]\in\{0,\ldots,n-1\}$, так как $n[\alpha]=p^lq+[\beta]$ и $[\alpha],[\beta]\in[0,p^l)$. Покажем, что $\forall q\in\{0,\ldots,n-1\}\quad \exists \alpha:\alpha\in E_p^l,$ что $q=\frac{n[\alpha]}{p^l}$.

Действительно, последнее эквивалентно следующему выражению:

$$p^l q \le n[\alpha] < p^l q + p^l. \tag{8}$$

Возьмем теперь достаточно больше l так, чтобы выполнялось неравенство $p^l>n$, и положим $\alpha\in E_p^l$ равным p-ичной зависи числа $\left[\frac{p^lq}{n}\right]$, т.е. $[\alpha]=\left[\frac{p^lq}{n}\right]$. Тогда:

$$\frac{p^l q}{n} \le [\alpha] < \frac{p^l q}{n} + 1 \Rightarrow p^l q \le n[\alpha] < p^l q + n \Rightarrow p^l q \le n[\alpha] < p^l q + p^l. \tag{9}$$

Следовательно, слово α удовлетворяет условию (4) и $q = \left[\frac{n[\alpha]}{p^l}\right]$. Таким образом, показано что остаточные функции для f(x) = nx полностью исчерпываются функциями $f^{(q)}(x) = nx + q$, где $q \in \{0, \dots, n-1\}$. Более того, все эти функции различны, поскольку $f^{(q)}(0) \neq f^{(q')}(0)$ при $q \neq q'$.

Такое наблюдение позволяет выбрать в качестве множества состояний приведенного автомата \mathfrak{A}_n , реализующего ограниченно-детерминированная функцию nx, множество $Q = \{0, \ldots, n-1\}$. Опишем функцию переходов и функцию выходов автомата \mathfrak{A}_n . Применив формулу 5 к функции $f^{(q)}(x) = nx + q$ и однобуквенному слову $\alpha = a$, получим:

$$(nx+q)_{\alpha} = \frac{n(px+a) + q - b}{p} = nx + \frac{q + na - b}{p}$$
 (10)

где $b=na+q\pmod p$. Тогда $(nx+q)_{\alpha}=nx+q'$, где $q'=\frac{q+na-b}{p}$, и в автомате \mathfrak{A}_n переход $q\stackrel{a/b}{\longrightarrow} q'$ существует тогда и только тогда, когда выполнено равенство:

$$q + na = pq' + b \tag{11}$$

Так как $q^{'} \in [0, n)$ и $b \in [0, p)$, то из равенства 11 следует, что

$$q' = p^{-1}(q - a) \pmod{n}, b = n^{-1}(a - q) \pmod{p}$$
 (12)

где p^{-1} - это обратный элемент для p в кольце целых чисел по модулю n, а n^{-1} - это обратный элемент для элемента n в кольце целых чисел по модулю

p.Оба элемента существуют, поскольку n и p - взаимно простые числа.

ЗАКЛЮЧЕНИЕ

В дальнейшей научной работе планируется формализовать способ получения автомата для любого полинома и последующее применение полученных результатов к проблеме 1.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Anashin, V. Applied Algebraic Dynamics / V. Anashin, A Khrennikov. Berlin, Germany : Walter de Gruyter, 2009. 557 p.