International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules
Country: EST
Revision:

Molekulide tuvastamine

Petr töötab ettevõttes, mis toodab molekulide tuvastamise masinaid. Iga molekuli mass on positiivne täisarv. Masinal on $tuvastamise lõik \ [l,u]$, kus l ja u on positiivised täisarvud. Masin suudab mingi molekulide hulga tuvastada parajasti siis, kui selle hulga mingi alamhulga masside summa on masina tuvastamise lõigus.

Formaalsemalt, olgu meil n molekuli massidega w_0,\ldots,w_{n-1} . Tuvastamine õnnestub, kui leidub selline paarikaupa erinevate indeksite hulk $I=\{i_1,\ldots,i_m\}$, et $l\leq w_{i_1}+\ldots+w_{i_m}\leq u$.

Masina iseärasuste tõttu võib eeldada, et l ja u vahe on alati vähemalt sama suur kui kergeima ja raskeima molekuli masside vahe. Formaalsemalt, $u-l \geq w_{max}-w_{min}$, kus $w_{max}=\max(w_0,\dots,w_{n-1})$ ja $w_{min}=\min(w_0,\dots,w_{n-1})$.

Kirjutada programm, mis leiab molekulide hulga sellise alamhulga, mille summaarne mass jääb tuvastamise lõiku, või teeb kindlaks, et sellist alamhulka pole.

Realisatsioon

Sinu lahendus peab realiseerima järgmise funktsiooni (meetodi):

- o int[] solve(int l, int u, int[] w)
 - I ja u: tuvastamise lõigu otspunktid;
 - w: molekulide massid;
 - kui otsitav alamhulk leidub, peab funktsioon tagastama massiivi sellesse alamhulka kuuluvate elementide indeksitega; kui võimalikke vastuseid on mitu, tagastada ükskõik milline neist;
 - o kui otsitavat alamhulka ei leidu, peab funktsioon tagastama tühja massiivi.

C keeles on funktsiooni liides natuke teistsugune:

- o int solve(int l, int u, int[] w, int n, int[] result)
 - o n: massiivi w elementide arv (molekulide arv);
 - teised sisendparameetrid on samasugused nagu eelmisel juhul;
 - o m indeksiga massiivi tagastamise asemel peab funktsioon salvestama indeksid massiivi result esimesse m elementi ja seejärel tagastama m;
 - kui otsitavat alamhulka ei leidu, peab funktsioon massiivi result puutumata jätma ja tagastama 0.

Indeksid võivad tagastatavas massiivis (või C keeles massiivis result) olla mistahes

järjekorras.

Vaata ka näitekoodi failides olevat keelespetsiifilist lisainfot.

Näited

Näide 1

```
solve(15, 17, [6, 8, 8, 7])
```

Selles näites on neli molekuli massidega 6, 8, 8 ja 7. Masin suudab tuvastada molekulide alamhulki kogumassiga 15 kuni 17 (kaasa arvatud). Pane tähele, et $17-15\geq 8-6$. Molekulide 1 ja 3 masside summa on $w_1+w_3=8+7=15$, seega võiks funktsioon tagastada [1, 3]. Teised võimalikud õiged vastused on [1, 2] ($w_1+w_2=8+8=16$) ja [2, 3] ($w_2+w_3=8+7=15$).

Näide 2

```
solve(14, 15, [5, 5, 6, 6])
```

Selles näites on neli molekuli massidega 5, 5, 6 ja 6 ning me otsime alamhulka summaarse massiga 14 kuni 15 (kaasa arvatud). Jällegi, $15-14 \geq 6-5$. Kuna ei ole ühtki alamhulka, mille masside summa oleks $14\,$ või $15\,$, peab funktsioon tagastama tühja massiivi.

Näide 3

```
solve(10, 20, [15, 17, 16, 18])
```

Selles näites on neli molekuli massidega 15, 17, 16 ja 18 ning me otsime alamhulka summaarse massiga 10 kuni 20 (kaasa arvatud). Jällegi, $20-10 \geq 18-15$. Iga üheelemendilise alamhulga mass jääb 10 ja 20 vahele, seega on võimalikud vastused [0], [1], [2] ja [3].

Alamülesanded

- 1. (9 punkti): $1 \leq n \leq 100$; $1 \leq w_i \leq 100$; $1 \leq u, l \leq 1000$ ja kõik w_i on võrdsed.
- 2. (10 punkti): $1\leq n\leq 100$; $1\leq w_i,u,l\leq 1000$ ja $\max(w_0,\ldots,w_{n-1})-\min(w_0,\ldots,w_{n-1})\leq 1$.
- 3. (12 punkti): $1 \leq n \leq 100$ ja $1 \leq w_i, u, l \leq 1000$.
- 4. (15 punkti): $1 \le n \le 10\,000$ ja $1 \le w_i, u, l \le 10\,000$.
- 5. (23 punkti): $1 \le n \le 10\,000$ ja $1 \le w_i, u, l \le 500\,000$.
- 6. (31 punkti): $1 \leq n \leq 200\,000$ ja $1 \leq w_i, u, l < 2^{31}$.

Näitekood

Näitekood loeb sisendi järgmisel kujul:

- \circ Rida 1: kolm täisarvu $\,n$, $\,l$, $\,u$.
- \circ Rida 2: n täisarvu w_0,\dots,w_{n-1} .