(fact) means something on the slides that looks provable, (exmp) means an example, (ex.) means an exercise and definitely do it, (n.p.) means a theorem that wasn't proven, (long) means the proof is longer than one page

- 1. Prove an intersection of subspaces is always a subspace.
- 2. Let S_1 and S_2 be subspaces of a vector space \mathcal{V} over a field \mathbb{F} . Prove the sum of S_1 and S_2 is the smallest subspace containing \mathcal{S}_1 and \mathcal{S}_2 .
- 3. Prove any $\mathbf{w} \in \mathcal{S}_1 \oplus \mathcal{S}_2$ can be uniquely represented as $\mathbf{w} =$ $\mathbf{u} + \mathbf{v}, \ \mathbf{u} \in \mathcal{S}_1, \ \mathbf{v} \in \mathcal{S}_2.$
- 4. Prove an invertible map has a unique inverse.
- 5. (ex.) Show that a Hermitian matrix has real main diagonal
- 6. (ex.) Show that a skew-Hermitian matrix has pure imaginary main diagonal entries.
- 7. (ex.) What are the main diagonal entries of a real skewsymmetric matrix?
- 8. For any unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$, show that $|\det(\mathbf{U})| = 1$.
- 9. (n.p.) Let $\mathbf{f}: \mathbb{F}^n \to \mathbb{F}^m$ be a linear map. Then \exists a unique matrix $\mathbf{A} \in \mathbb{F}^{m \times n}$ such that $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}, \ \forall \mathbf{x} \in \mathbb{F}^n$. Conversely, if $\mathbf{A} \in \mathbb{F}^{m \times n}$ then the function defined above is a linear map from \mathbb{F}^n to \mathbb{F}^m .
- 10. For any $\mathbf{A} \in \mathbb{F}^{m \times n}$, we have $\dim(\text{Range}(\mathbf{A})) + \dim(\text{Null}(\mathbf{A})) =$
- 11. If $\mathbf{A} \in \mathbb{C}^{m \times n}$, then $\text{Null}(\mathbf{A}) = \text{Range}(\mathbf{A}^*)^{\perp}$ and $\text{Null}(\mathbf{A}^*) =$ Range(\mathbf{A}) $^{\perp}$.
- 12. Any norm satisfies $|\|\mathbf{x}\| \|\mathbf{y}\|| \le \|\mathbf{x} \mathbf{y}\|$.
- 13. (exmp) Let \mathbf{W} be a diagonal matrix with positive diagonal elements. Show that $\|\mathbf{x}\|_{\mathbf{W}} \triangleq \sqrt{\langle \mathbf{x}, \mathbf{W} \mathbf{x} \rangle}$ defines a norm, known as the weighted Euclidean norm.
- 14. Given any matrix $\mathbf{U} \in \mathbb{C}^{m \times d}$ with $m \geq d$ and orthonormal columns, $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$.
- 15. Given any matrix $\mathbf{U} \in \mathbb{C}^{p \times m}$ with $p \geq m$ and orthonormal columns, we have $\|\mathbf{U}\mathbf{A}\|_{\mathbf{F}} = \|\mathbf{A}\|_{\mathbf{F}}$
- (ex.) Prove the Frobenius and entry-wise ℓ_1 norm are sub-multiplicative, but the entry-wise max-norm is not submultiplicative.
- 17. Given any matrix $\mathbf{U} \in \mathbb{F}^{p \times m}$ orthonormal columns, we have $\|\mathbf{U}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$ where the norm is the induced 2-norm.
- 18. Let $\|\cdot\|_p, \|\cdot\|_q, \|\cdot\|_r$ be vector norms on, respectively, domain of **B**, range of **B** and range of **A**. We have $\|\mathbf{AB}\|_{p,r} \leq$ $\|\mathbf{A}\|_{q,r}\|\mathbf{B}\|_{p,q}$
- 19. $\kappa(\mathbf{A}) \ge 1$.
- 20. What is the condition number of a unitary matrix?
- 21. (fact) Prove that $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$. 22. (fact) Prove that $\operatorname{Trace}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$. 23. (fact) Prove that $\rho(\mathbf{A}) = \rho(\mathbf{A}^*)$.
- 24. If (λ, \mathbf{v}) is an eigenpair of $\mathbf{A} \in \mathbb{C}^{n \times n}$, then $(p(\lambda), \mathbf{v})$ is an eigenpair of $p(\mathbf{A})$. Conversely, if $k \geq 1$ and μ is an eigenvalue of $p(\mathbf{A})$, then there is some eigenvalue λ of \mathbf{A} such that $\mu = p(\lambda)$.
- 25. (exmp) Suppose that $\mathbf{A} \in \mathbb{C}^{n \times n}$. If $\operatorname{spec}(\mathbf{A}) = \{-1, 1\}$, what is $\operatorname{spec}(\mathbf{A}^2)$?
- 26. **A** is singular if and only if $0 \in \text{spec}(\mathbf{A})$.
- 27. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\lambda, \mu \in \mathbb{C}$. Then $\lambda \in \operatorname{spec}(\mathbf{A}) \iff \lambda + \mu \in$
- $\operatorname{spec}(\mathbf{A}+\mu\mathbf{I}).$ 28. If $\mathbf{A}\in\mathbb{C}^{n\times n}$ is Hermitian, then all its eigenvalues are real.
- 29. (ex.) Show that skew-Hermitian matrices have pure imaginary eigenvalues.
- 30. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.
- 31. (exmp) Compute the eigenpair of $\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$
- 32. Let $m(\lambda)$ be the algebraic multiplicity of λ . Then $1 \leq 1$ $\dim(\mathcal{E}_{\lambda}(\mathbf{A})) \leq m(\lambda).$
- 33. If A and B are similar, then they have the same characteristic polynomial.
- (λ, \mathbf{v}) is an eigenpair of **A** if and only if $(\lambda, \mathbf{S}^{-1}\mathbf{v})$ is an eigenpair for $\mathbf{B} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S}$.
- (n.p.) The matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is diagonalisable if and only if it has n linearly independent eigenvectors. In other words, \mathbf{A} is
- diagonalisable if and only if it is not defective. (exmp) Show that $\operatorname{Trace}(\mathbf{A}) = \sum_{i=1}^n \lambda_i$ by Schur Triangularities. sation Theorem.
- Prove that $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$. Find all possible Jordan canonical forms for a 3×3 matrix whose eigenvalues are $\{-2, 3, 3\}$.
- 39. Prove a matrix is unitarily diagonalisable if and only if it is
- 40. (fact) Prove a normal matrix is Hermitian if and only if all its eigenvalues are real.
- 41. (fact) The singular values of A are uniquely determined by the

- eigenvalues of A^*A or equivalently by the eigenvalues of AA^* .
- 42. For any $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have $\sigma_i = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})} =$ $\sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)}, i = 1, \dots, \text{Rank}(\mathbf{A}).$
- 43. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a normal matrix whose (not necessarily distinct eigenvalues) are $\lambda_1, \lambda_2, \dots, \lambda_n$. Show that the singular values of **A** are $|\lambda_1|, \ldots, |\lambda_n|$.
- 44. Prove (in the context of singular value decomposition) that $\mathcal{E} = \mathbf{U}\mathcal{E}_0 \text{ where } \mathcal{E}_0 = \left\{ \mathbf{y} \in \mathbb{R}^n \mid \sum_{i=1}^n \frac{y_i^2}{\sigma_i^2} = 1 \right\}$ Prove that if **P** is a projection, then $\mathbf{P}\mathbf{v} = \mathbf{v}$
- $Range(\mathbf{P})$
- 46. Prove that if **P** is a projection, then so is I P.
- 47. Prove that if **P** is a projection, then Range($\mathbf{I} \mathbf{P}$) = Null(\mathbf{P}).
- Prove that if **P** is a projection, then Range(\mathbf{P}) \cap Range($\mathbf{I} \mathbf{P}$) =
- (ex) Prove that for orthogonal projections, we have the Pythagorean theorem $\|\mathbf{v}\|^2 = \|\mathbf{P}\mathbf{v}\|^2 + \|(\mathbf{I} - \mathbf{P})\mathbf{v}\|^2$.
- 50. (ex) Given any matrix $\mathbf{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns, prove that $P = QQ^*$ is an orthogonal projection onto Range(\mathbf{Q}).
- 51. (ex) Given any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{P} = \mathbf{A} \mathbf{A}^{\dagger}$ is an orthogonal projection onto $Range(\mathbf{A})$.
- (ex) Prove $\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0$, $\forall \mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n$.
- 53. (ex) Prove $\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \geq 0$, $\forall \mathbf{x} \in \mathbb{R}^n$.
- 54. (ex) Prove $\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle > 0$, $\forall \mathbf{x} \neq \mathbf{0} \in \mathbb{C}^n$.
- 55. (ex) Prove $\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \geq 0, \quad \forall \mathbf{x} \in \mathbb{C}^n$.
- 56. (ex) Prove that $\mathbf{A} \in \mathbb{C}^{n \times n}$ being either PD or PSD implies Hermitian.
- (ex) Prove that for any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have $\mathbf{A}^* \mathbf{A} \succeq \mathbf{0}$ 57. and $AA^* \succ 0$.
- 58. (ex) Prove that $Rank(\mathbf{A}) = m \Longrightarrow \mathbf{A}\mathbf{A}^* \succ \mathbf{0}$
- 59. (ex) Prove that $Rank(\mathbf{A}) = n \Rightarrow \mathbf{A}^* \mathbf{A} \succ \mathbf{0}$
- 60. (ex) Prove for Hermitian A that $\mathbf{A} \succ \mathbf{0} \iff \lambda_i(\mathbf{A}) > 0, i =$
- 61. (ex) Prove for Hermitian **A** that $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i(\mathbf{A}) \geq 0, i =$ $1, \ldots n$.
- 62. (ex) Prove for Hermitian **A** that $\mathbf{A} \prec \mathbf{0} \iff \lambda_i(\mathbf{A}) < 0, i =$
- 63. (ex) Prove for Hermitian **A** that $\mathbf{A} \leq \mathbf{0} \iff \lambda_i(\mathbf{A}) \leq 0, i = 0$
- 64. (ex) Prove for Hermitian A that every PD matrix is invertible and its inverse is also PD.
- (ex) Prove for Hermitian A that $A, B \succ 0$ and $\alpha > 0$ implies $\alpha \mathbf{A} \succ \mathbf{0} \text{ and } \mathbf{A} + \mathbf{B} \succ \mathbf{0}.$
- 66. (ex) Prove for Hermitian **A** that $\mathbf{A} \succeq \mathbf{0} \iff \exists ! \mathbf{B} \succeq \mathbf{0}$ s.t. $\mathbf{\dot{B}}^2 = \mathbf{A}$ (square root, optional)
- 67. (ex) Prove for Hermitian A that if $A \succ 0$, the Schur, spectral and SV decompositions all coincide.
- (ex) Prove for Hermitian A that if $A \succeq 0$, then $B^*AB \succeq$ $\mathbf{0}, \forall \mathbf{B} \in \mathbb{C}^{n \times n}.$
- (ex) Prove for Hermitian **A** that if $A \succ 0$ and **B** has full column rank, then $\mathbf{B}^* \mathbf{AB} \succ \mathbf{0}$.
- 70. (fact) Prove that a strictly diagonally dominant matrix is nonsingular (Levy-Desplanques theorem).
- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be full column rank. Prove $\kappa(\mathbf{A}^{\top} \mathbf{A}) = \kappa^2(\mathbf{A})$.
- Prove that $\|\mathbf{T}\| < 1 \implies \lim_{k \to \infty} \mathbf{e}_k = 0$, where $\mathbf{T} \triangleq \mathbf{I} \mathbf{M}^{-1}\mathbf{A}$ is the iteration matrix and $\mathbf{e}_k = \mathbf{x}_k - \mathbf{x}^*$ is the error vector.
- 73. Prove that $\rho(\mathbf{T}) < 1 \iff \lim_{k \to \infty} \mathbf{e}_k = 0$.
- 74. (long, for understanding) There is a positive integer $t \triangleq$ $t(\mathbf{v}, \mathbf{A})$ called the grade of \mathbf{v} with respect to \mathbf{A} such that $\dim(\mathcal{K}_k(\mathbf{A}, \mathbf{v})) = \begin{cases} k & k \le t \\ t & k \ge t \end{cases}$
- 75. Prove $t = \min\{k \mid \mathbf{A}^{-1}\mathbf{v} \in \mathcal{K}_k(\mathbf{A}, \mathbf{v})\}.$
- Assume Arnoldi process does not terminate before k steps. Then the vectors $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k\}$ form an orthonormal basis for $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$.
- 77. Arnoldi process breaks down at step j $(h_{j+1,j} = 0)$ if and only if the grade of \mathbf{r}_0 with respect to \mathbf{A} is j, i.e. $t(\mathbf{r}_0, \mathbf{A}) = j$.
- 78. The matrix $\mathbf{L}^{\top} \mathbf{A} \mathbf{K}$ is non-singular if either $\mathbf{A} \succ \mathbf{0}$ and $\mathcal{L} = \mathcal{K}$ or $det(\mathbf{A}) \neq 0$ and $\mathcal{L} = \mathbf{A}\mathcal{K}$.
- The case where $\mathbf{A} \succ \mathbf{0}$ and $\mathcal{L}_k = \mathcal{K}_k$ is equivalent to $\mathbf{x}_k = \underset{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k}{\operatorname{argmin}}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{x} \mathbf{x}^{\star}\|_{\mathbf{A}} = \underset{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k}{\operatorname{argmin}}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle$ $\langle \mathbf{b}, \mathbf{x} \rangle$.
- 80. (sort-of ass) Prove $\operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{x} \mathbf{x}^{\star}\|_{\mathbf{A}}$
- $\underset{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k}{\operatorname{argmin}} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \langle \mathbf{b}, \mathbf{x} \rangle.$ (slightly long) The case where $\det(\mathbf{A}) \neq 0$ and $\mathcal{L}_k = \mathbf{A} \mathcal{K}_k$ is equivalent to $\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$.
- (long) If Arnoldi (or Lanczos) process breaks down at step t= $t(\mathbf{A}, \mathbf{r}_0)$, then \mathbf{x}_t from any projection method onto $\mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ or $\mathbf{A} \cdot \mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ would be exact.