

大语言模型的高效参数微调技术

1 BACKGROUND / 应用背景

- 具有一定专业性、包含私有数据的特定领域需要微调
- 全模型微调 (FFT) 更新所有参数
- 近年大语言模型参数不断增大, 达超过百亿规模(GPT-3 175B)
- FFT 计算、存储、数据传输面临挑战
- 只微调部分参数、或为新任务学习外部模块——高效参数微调(PEFT)

低秩方法

基于适配器的方法

基于层前缀的方法

基于提示的方法

- 低秩矩阵注入与更新
- 权重矩阵通常满秩, 先前工作显示 LLM 具有较低"内在维度"
- 本文假设, 微调过程中的参数更新也存在"低秩"
- $\bullet \quad W = W_0 + \Delta W = W_0 + BA$
- $W_0 \in \mathbb{R}^{d \times k}$ $B \in \mathbb{R}^{d \times r}$ $A \in \mathbb{R}^{r \times k}$ $r \ll \min(d, k)$
- 原始权重固定, 仅更新 A 和 B
- 随机高斯分布初始化 A , 全零矩阵初始化
- 在 Transformer 层应用 LoRA

- 计算资源、效率优化与准确度(以 GPT-3 175B 为例)
- 空间
 - VRAM 使用量减少到 FFT 的 1/3(1.2TB -> 350GB)
 - Checkpoint 约减少 10000 倍(350GB -> 35MB)
- 时间
 - 训练速度较 FFT 提升 25%
- 质量
 - 在保证较低参数量时,效果均达到最佳,大部分情况下优于 FFT

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL	
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5	
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8	
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	

- 秩参数 r 的选择
- 即使是非常小的r, LoRA 的性能已经非常具有竞争力,继续增加r, 验证准确率不再上升
- 支持"内在秩"假设,即低秩矩阵对于微调已然足够
- 补充实验

	Weight Type	r=1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$\begin{array}{ c c } & W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}$	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$ \begin{vmatrix} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{vmatrix} $	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

3 LLM-Adapters / 基于适配器的方法

• 向基座预训练模型的已有子层添加新的模块并训练之

串行适配器

$$H_o \leftarrow H_o + f(H_o W_{\text{down}}) W_{\text{up}}$$
 $f(\cdot)$ 是非线性激活函数

并行适配器

$$H_o \leftarrow H_o + f(H_i W_{\text{down}}) W_{\text{up}}$$

3 LLM-Adapters / 基于适配器的方法

- 串行适配器最佳位置于 MLP 后,并行适配器、LoRA 最佳应用位置于多头注意力层+ MLP 层
- 实验显示,适配器方法和 LoRA 效果各有千秋,并行适配器通常优于串行适配器

4 Comparison and Thoughts / 比较与思考

- LoRA 只需存储低秩矩阵、没有修改模型结构
- 适配器引入推理延迟,结构可能不同导致任务切换效率低下
- 实践 case study——适配器略差于 LoRA
- 检索增强生成方法(RAG)
- 低秩矩阵与并行适配器概念易混淆

Thanks for Watching