Cognome	Nome	
Matricola	Numero di CFU	Fila 1
_		2023
punti). (a) Dare la definizione di modello di u	un insieme di formule Γ	
(b) Dare la definizione della relazione	"avere la stessa cardinalità"	
(a) un modello è un mondo v t.c. v soddisfogni $F \in \Gamma$ (b) Due insieme hanno la stessa cardinalità		v = 1 per
punti). Considerare le seguenti funzioni (dove la e le altre due funzioni prendono in inpu		a lista di naturali
f(n,[]) = [] f(n,h :: t) = h :: (n+h) :: f((n,t) $\mid [] = 0$ $\mid \Sigma([]) = 0$ $\mid \Sigma(h::t) = h$	$+ \Sigma(t)$
Dimostrare, per induzione strutturale s usuali proprietà della somma e del prod	, , , , , , , , , , , , , , , , , , , ,	l , assumendo le

L1 (2

L2 (6

Teorema: $\forall l. \forall n. \Sigma(f(n, l)) = 2\Sigma(l) + n|l|$.

Dimostrazione:

procediamo per induzione strutturale su l per dimostrare $\forall n. \Sigma(f(n,l)) = 2\Sigma(l) + n|l|$.

- Caso []: dobbiamo dimostrare $\forall n.\Sigma(f(n,[])) = 2\Sigma([]) + n|[]|$ che è equivalente a $\forall n.0 = 2*0 + n*0$. Ovvio per le proprietà dell'aritmetica.
- Caso h::t: per ipotesi induttiva sappiamo $\forall n.\Sigma(f(n,t))=2\Sigma(l)+n|t|$ (II). Dobbiamo dimostrare $\forall n.\Sigma(f(n,h::t))=2\Sigma(h::t)+n|h::t|$, che è equivalente a $\forall n.h+(n+h)+\Sigma(f(n,t))=2(h+\Sigma(t))+n(1+|t|)$. Sia n un numero naturale. Per (II) ci riduciamo a dimostrare $h+(n+h)+(2\Sigma(t)+n|t|)=2(h+\Sigma(t))+n(1+|t|)$. Ovvio per le proprietà della somma e del prodotto.

qed.

	Cognome	Nome	
	Matricola	Numero di CFU	Fila 1
	Esame di LOGICA PER	i Bologna, Corso di Laurea in Informa L'INFORMATICA (9 CFU), 09/06/ . Se strettamente necessario, si può allegare un fo nome, cognome, fila e matricola.	2023
L3 (6 pu	nti). Dimostrare che, in teoria assioma	atica degli insiemi, vale	
	$\forall A,$	$B.\emptyset \neq A \cup B \Rightarrow \emptyset \neq A \vee \emptyset \neq B$	
	La dimostrazione:		
	• DEVE essere preceduta/seg	uita dall'elenco di tutti gli assiomi utilizzati	
	0 2 00	razione deve corrispondere a uno o più pa itare equivalenze logiche notevoli e applicaz e	
	• la dimostrazione potrebbe e formula o riduzione all'assur	essere classica, richiedendo excluded middle edo	su una qualche

Assioma di estensionalità: $\forall A, B.A = B \iff (\forall X.X \in A \iff X \in B)$.

Assioma del vuoto: $\forall X.X \notin \emptyset$.

Assioma dell'unione: $\forall A, B, X.X \in A \cup B \iff X \in A \lor X \in B$.

Teorema: $\forall A, B.\emptyset \neq A \cup B \Rightarrow \emptyset \neq A \lor \emptyset \neq B$

Dimostrazione:

Siano A,B insiemi t.c. $\emptyset \neq A \cup B$ (H). Per l'EM si ha $\emptyset = A \vee \emptyset \neq A$ e $\emptyset = B \vee \emptyset \neq B$. Procediamo per casi:

- Casi $\emptyset \neq A$ (K) o $\emptyset \neq B$ (K): da (K) segue $\emptyset \neq A \vee \emptyset \neq B$
- Caso $\emptyset = A$ (K1) e $\emptyset = B$ (K2). Per (H) e ex-falso, ci riduciamo a dimostrare $\emptyset = A \cup B$ che, per l'assioma di estensionalità, ci permette di ridurci a dimostrare $\forall X.X \in \emptyset \iff X \in A \cup B$. Sia X un insieme. Dimostriamo entrambe le direzioni dell'iff:
 - Dimostriamo $X \in \emptyset \Rightarrow X \in A \cup B$. Supponiamo $X \in \emptyset$. Quindi, per l'assioma del vuoto, assurdo. Quindi $X \in A \cup B$.
 - Dimostriamo $X \in A \cup B \Rightarrow X \in \emptyset$. Supponiamo $X \in A \cup B$. Per l'assioma dell'unione, $X \in A \vee X \in B$. Procediamo per casi:
 - * Caso $X \in A$: quindi, per (K1), assurdo. Quindi $X \in A \cup B$.
 - * Caso $X \in B$: quindi, per (K2), assurdo. Quindi $X \in A \cup B$.

qed.

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 09/06/2023

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

L4 (6 punti). Si consideri il seguente ragionamento:

Se l'assassino non confessa o il corpo è ben occulato, allora l'assassino se la cava. Il caso non resta irrisolto o l'assassino non se la cava. Il caso resta irrisolto se l'assassino non confessa. Quindi l'assassino confessa e: 1) il corpo non è ben occultato o 2) il caso non resta irrisolto.

Verificare la correttezza del ragionamento utilizzando la deduzione naturale per la logica proposizionale. Preferire una prova intuizionista se possibile.

$$\neg A \lor B \Rightarrow C, \quad \neg D \lor \neg C, \quad \neg A \Rightarrow D \quad \vdash \quad A \land (\neg B \lor \neg D)$$

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 09/06/2023

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

A5 (7 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

- (a) $(\mathbb{N}, max, 0, ^*)$, dove max(n, m) é il numero più grande tra n ed m, e $n^* = n$, forma un gruppo.
- (b) Considera il monoide $(\mathbb{R}, +, 0)$. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita come f(x) = 2x + 1 é un morfismo di monoidi da $(\mathbb{R}, +, 0)$ a $(\mathbb{R}, +, 0)$.
- (c) $(2\mathbb{N} \cup 3\mathbb{N}, +, 0)$, dove $2\mathbb{N}$ é l'insieme dei multipli di 2 in \mathbb{N} , $3\mathbb{N}$ é l'insieme dei multipli di 3 in \mathbb{N} , e $2\mathbb{N} \cup 3\mathbb{N}$ é la loro unione, forma un monoide.
- (d) $(2\mathbb{N} \cap 3\mathbb{N}, +, 0)$, dove $2\mathbb{N} \cap 3\mathbb{N}$ é l'intersezione di $2\mathbb{N}$ e $3\mathbb{N}$, forma un monoide.
- (e) $(\mathbb{N}, \times, 0)$ forma un monoide.
- (f) $(\mathbb{R}, +, 0, ^{-1})$, dove \mathbb{R} é l'insieme dei numeri reali e r^{-1} é definito come -r, forma un gruppo abeliano.
- (g) $(\mathcal{P}(X), \cup, \emptyset, \cap)$, dove $\mathcal{P}(X)$ é l'insieme dei sottoinsiemi di un dato insieme X, é un semi-anello.
- (a) No perché $max(n, n^*) = max(n, n) = n$ é diverso da 0 per $n \neq 0$.
- (b) No, ad esempio $f(2+3) = f(5) = 11 \neq 12 = 5 + 7 = f(2) + f(3)$.
- (c) No, ad esempio 2 + 3 = 5, che non é un multiplo né di 3 né di 2.
- (d) Si
- (e) No, 0 non é l'elemento neutro per ×.
- (f) Si.
- (g) Si.

A6 (3 punti). Considera il gruppo $\mathcal{M}=(\{2^n\mid n\in\mathbb{Z}\},\times,1,^{-1})$. Elementi di questo gruppo sono ad esempio

$$2^0 = 1$$
 $2^{-1} = \frac{1}{2}$ $2^1 = 2$ $2^2 = 4$.

L'operazione di inverso é definita da $(2^n)^{-1} := 2^{-n}$.

- Considera la funzione $f: \{2^n \mid n \in \mathbb{Z}\} \to \mathbb{Z}$ definita da $f(2^n) = n$. Quale struttura di gruppo su \mathbb{Z} rende f un morfismo di gruppi? Ció che é richiesto é di definire \circ , u, $^{-1}$ su \mathbb{Z} in modo tale che $\mathcal{Z} = (\mathbb{Z}, \circ, u, ^{-1})$ sia un gruppo e $f: \mathcal{M} \to \mathcal{Z}$ sia un morfismo di gruppi. (Non é necessario dare una dimostrazione, solo la definizione della struttura di gruppo su \mathbb{Z} .)
- Definiamo $g: \{2^n \mid n \in \mathbb{Z}\} \to \mathbb{N}$ come $g(2^n) = |n|$, dove |n| é il valore assoluto di n (quindi ad esempio |-5| = |5| = 5). Indica se la seguente affermazione é vera o falsa. Se vera, dai una dimostrazione. Se falsa, dai un controesempio:
 - -g é un morfismo di monoidi da $(\{2^n \mid n \in \mathbb{Z}\}, \times, 1)$ a $(\mathbb{N}, +, 0)$.
- Definiamo $\circ := +, u := 0, n^{-1} := -n.$ Infatti $f(1) = f(2^0) = 0, f(2^n \times 2^m) = f(2^{n+m}) = n + m = f(2^n) + f(2^m) e f(2^n)^{-1} = n^{-1} = -n = f(2^{-n}) = f((2^n)^{-1}).$
- Falso, per esempio $g(2^2 \times 2^{-3}) = g(2^{2-3}) = g(2^{-1}) = |-1| = |1| \neq |2+3| = |2| + |3| = g(2^2 + 2^{-3}).$