MIDTERM EXAMINATION

October 2015

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Deputy head of Dept. of Mathematics:	Lecturers:
Assoc. Prof. Dr. Pham Huu Anh Ngoc	Assoc. Prof. Dr. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let c_1, c_2 be positive numbers. For $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, define

$$\|\boldsymbol{x}\| = c_1|x_1| + c_2|x_2|.$$

Show that $\|\cdot\|$ is a norm on \mathbb{R}^2 . Let ρ be the metric induced by this norm, determine the distance $\rho(\boldsymbol{a}, \boldsymbol{b})$ between $\boldsymbol{a} = (1, 0)$ and $\boldsymbol{b} = (0, 2)$.

Question 2 (a) (10 marks) Let a and b be points in the metric space (X, d). Define the function $f: X \to \mathbb{R}$ by f(x) = d(x, a) + d(x, b). Show that f is Lipschitz continuous.

(b) (15 marks) Show that the set

$$E = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 3, \ 2 \le y \le 5\}$$

is compact in the Euclidean space \mathbb{R}^2 . Apply part (a) to show that there is a point $(x_0, y_0) \in E$ such that

$$d((x_0, y_0), (-1, 1)) + d((x_0, y_0), (2, 0))$$

= $\sup\{d((x, y), (-1, 1)) + d((x, y), (2, 0)) : (x, y) \in E\},\$

where d is the Euclidean metric on \mathbb{R}^2 .

Question 3 (a) (10 marks) Let A and B be subsets of a metric space (X, d). Show that if $A \subset B$, then $int(A) \subset int(B)$.

(b) (15 marks) Let (X, \mathcal{M}, μ) be a measure space. A set $A \in \mathcal{M}$ is said to be σ -finite if $A = \bigcup_{n=1}^{\infty} A_n$, where $A_n \in \mathcal{M}$ and $\mu(A_n) < \infty$ for all n. If A is a σ -finite set, show that there exists a sequence $\{B_n\} \subset \mathcal{M}$ such that

$$A = \bigcup_{n=1}^{\infty} B_n$$
, $B_n \subset B_{n+1}$ and $\mu(B_n) < \infty$ for all n .

Question 4 (a) (10 marks) Let μ^* be an outer measure on X and let A, B be subsets of X. Show that if $\mu^*(A) = 0$, then $\mu^*(A \cup B) = \mu^*(B)$.

(b) (15 marks) Let $F(x) = x^3$. If μ is the Lebesgue-Stieltjes measure corresponding to F, compute the measure $\mu((-1,0] \cup [2,4])$.

SOLUTIONS

Question 1 Let $\alpha \in \mathbb{R}$, $\boldsymbol{x} = (x_1, x_2)$, $\boldsymbol{y} = (y_1, y_2) \in \mathbb{R}^2$. We have

$$\|\boldsymbol{x}\| = c_1|x_1| + c_2|x_2| \ge 0$$
 and
 $\|\boldsymbol{x}\| = 0 \iff c_1|x_1| + c_2|x_2| = 0$
 $\iff x_1 = x_2 = 0$ (since $c_1, c_2 > 0$)
 $\iff \boldsymbol{x} = \boldsymbol{0}$.

 $\|\alpha \boldsymbol{x}\| = \|(\alpha x_1, \alpha x_2)\| = c_1 |\alpha x_1| + c_2 |\alpha x_2| = |\alpha|(c_1|x_1| + c_2|x_2|) = |\alpha|\|\boldsymbol{x}\|.$ Finally,

$$\|\boldsymbol{x} + \boldsymbol{y}\| = \|(x_1 + y_1, x_2 + y_2)\| = c_1|x_1 + y_1| + c_2|x_2 + y_2|$$

$$\leq c_1(|x_1| + |y_1|) + c_2(|x_2| + |y_2|) = \|\boldsymbol{x}\| + \|\boldsymbol{y}\|.$$

Thus $\|\cdot\|$ is a norm on \mathbb{R}^2 .

The metric ρ induced by this norm is

$$\rho(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\| = \|(x_1 - y_1, x_2 - y_2)\| = c_1|x_1 - y_1| + c_2|x_2 - y_2|.$$

Therefore $\rho(\mathbf{a}, \mathbf{b}) = c_1|1 - 0| + c_2|0 - 2| = c_1 + 2c_2$.

Question 2 (a) For $x, y \in X$, we have

$$|f(x) - f(y)| = |d(x, a) + d(x, b) - d(y, a) - d(y, b)|$$

$$\leq |d(x, a) - d(y, a)| + |d(x, b) - d(y, b)|$$

$$\leq d(x, y) + d(x, y) = 2d(x, y).$$

Thus f is Lipschitz and therefore is continuous on X.

(b) Suppose that $\{(x_k, y_k)\}\subset E$ and $(x_k, y_k)\to (x, y)\in \mathbb{R}^2$. Since $-1\leq x_k\leq 3$ and $2\leq y_k\leq 5$ for all k, letting $k\to\infty$ we get $-1\leq x\leq 3$ and $2\leq y\leq 5$, showing that $(x,y)\in E$. Thus E is closed. Furthermore, E is bounded, hence it is compact.

Let

$$f(x,y) = d((x,y),(-1,1)) + d((x,y),(2,0)), (x,y) \in \mathbb{R}^2.$$

Applying part (a) for a = (-1, 1) and b = (2, 0) we find that f is continuous on \mathbb{R}^2 . As E is compact, there exists $(x_0, y_0) \in E$ such that $f(x_0, y_0) = \sup\{f(x, y) : (x, y) \in E\}$, that is,

$$d((x_0, y_0), (-1, 1)) + d((x_0, y_0), (2, 0))$$

= $\sup\{d((x, y), (-1, 1)) + d((x, y), (2, 0)) : (x, y) \in E\}.$

Question 3 (a) If $x \in \text{int}(A)$, there is r > 0 such that $B(x, r) \subset A$. Since $A \subset B$, $B(x, r) \subset B$, which shows that $x \in \text{int}(B)$. Thus $\text{int}(A) \subset \text{int}(B)$.

(b) By definition, there exists a sequence $\{A_n\} \subset \mathcal{M}$ such that $\mu(A_n) < \infty$ for all n and $A = \bigcup_{k=1}^{\infty} A_k$. For each $n \in \mathbb{N}$, set

$$B_n = \bigcup_{k=1}^n A_k.$$

As \mathcal{M} is a σ -algebra, $B_n \in \mathcal{M}$ for every n. Moreover,

$$B_n \subset B_{n+1}, \quad \bigcup_{n=1}^{\infty} B_n = \bigcup_{k=1}^{\infty} A_k = A$$

and, by subadditivity,

$$\mu(B_n) = \mu\left(\bigcup_{k=1}^n A_k\right) \le \sum_{k=1}^n \mu(A_k) < \infty$$
 for all n .

Question 4 (a) Applying monotonicity and subadditivity gives

$$\mu^*(B) \le \mu^*(A \cup B) \le \mu^*(A) + \mu^*(B) = \mu^*(B),$$

which implies $\mu^*(A \cup B) = \mu^*(B)$.

(b) Since F is increasing and continuous, it induces a measure μ such that

$$\mu((a,b]) = F(b) - F(a) = b^3 - a^3, \quad a, b \in \mathbb{R}, \ a \le b.$$

Since (-1,0] and [2,4] are disjoint, we have

$$\mu((-1,0] \cup [2,4]) = \mu((-1,0]) + \mu([2,4]) = F(0) - F(-1) + \mu([2,4])$$
$$= 0^3 - (-1)^3 + \mu([2,4]) = 1 + \mu([2,4]).$$

Furthermore,

$$\mu([2,4]) = \mu\left(\bigcap_{n=1}^{\infty} \left(2 - \frac{1}{n}, 4\right]\right) = \lim_{n \to \infty} \mu\left(\left(2 - \frac{1}{n}, 4\right]\right)$$
$$= \lim_{n \to \infty} \left[F(4) - F\left(2 - \frac{1}{n}\right)\right] = \lim_{n \to \infty} \left[4^3 - \left(2 - \frac{1}{n}\right)^3\right]$$
$$= 64 - 8 = 56.$$

Thus $\mu((-1,0] \cup [2,4]) = 1 + 56 = 57$.