FEUILLE DE TD 2

Exercice 1

Soit $(B_t, t \ge 0)$, un (\mathscr{F}_t) -mouvement brownien.

- 1. Montrer que $(B_t, t \ge 0)$ et $(B_t^2 t, t \ge 0)$ sont deux \mathscr{F}_t -martingales.
- 2. Soit $\lambda, \mu \in \mathbb{R}$. Etablir l'équivalence : $(\exp{\{\lambda B_t + \mu t\}}, t \ge 0)$ est une \mathscr{F}_t -martingale si et seulement si $\mu = -\lambda^2/2$.

Exercice 2

Soit $(X_t, t \ge 0) := (X(x_0, \sigma, \mu)_t, t \ge 0)$ le mouvement brownien géométrique de paramètres $x_0, \sigma > 0$ et $\mu \in \mathbb{R}$, c'est-à-dire,

$$X_t := x_0 \exp\left\{\sigma B_t + \mu t\right\}, \quad t \ge 0.$$

- 1. Montrer que $(X_t, t \ge 0)$ est continu. Calculer sa valeur en t = 0.
- 2. Montrer que pour tout t la loi de X_t est log-normale; plus précisément, que la loi de $\log(X_t)$ est normale et que X_t admet pour densité

$$f(y) := \frac{1}{\sigma y \sqrt{2\pi t}} \exp\Big\{-\frac{1}{2t\sigma^2} \Big(\log(y/x_0) - \mu t\Big)^2\Big\}, \quad y \ge 0.$$

3. Montrer que pour tout $t E(X_t) = x_0 \exp\left\{\left(\mu + \frac{\sigma^2}{2}\right)t\right\}$ et

$$Var(X_t) = x_0^2 \exp\{(2\mu + \sigma^2)t\} (e^{\sigma^2 t} - 1).$$

4. Montrer que les accroissements relatifs de X sont indépendants : pour tout $0 \le t_1 < \cdots < t_n$ les v.a.

$$\frac{X_{t_2} - X_{t_1}}{X_{t_1}}, \cdots, \frac{X_{t_n} - X_{t_{n-1}}}{X_{t_{n-1}}}$$

sont indépendantes.

5. Soit $0 \leq s < t$ Montrer que $\frac{X_t}{X_s}$ a même loi que $\frac{X_{t-s}}{X_0}.$

Exercice 3

Soit le processus de Black et Scholes de volatilité σ et issu de S_0 ,

$$S_t := S_0 \exp\left\{\sigma B_t + \left(r - \frac{\sigma^2}{2}\right)t\right\}, \quad t \ge 0.$$

- 1. Montrer que le processus de Black et Scholes est un mouvement brownien géométrique. En déduire que ses accroissements relatifs sont indépendants.
- 2. Soient $0 < t_1 < \cdots < t_n$. Indiquer comment déterminer la loi conjointe de S_{t_1}, \cdots, S_{t_n} . En déduire une simulation possible de $(S_t, t \in [0, T])$.
- 3. Montrer que

$$t \longmapsto \widetilde{S}_t := \frac{S_t}{S_t^0} = \frac{S_t}{e^{rt}}$$

est une martingale par rapport à la filtration brownienne.

Exercice 4

Soit (B_t) un (\mathscr{F}_t) -mouvement borwnien. Soient $0 \le a < b \le T$, et ϕ une v.a. \mathscr{F}_a -mesurable, de carré intégrable.

1. Montrer que

$$M_t := \phi \big(B_{(t \vee a) \wedge b} - B_a \big) = \phi \big(B_{t \wedge b} - B_a \big) 1_{\{t \geq a\}}, \quad t \geq 0$$

est une \mathscr{F}_t -martingale continue (on a posé : $x \vee y = \sup\{x,y\}$ et $x \wedge y = \inf\{x,y\}$).

- 2. Montrer que pour tout $t \geq 0$, la v.a. M_t appartient à $L^2(\Omega)$.
- 3. Montrer que $(M_t^2 \phi^2(t \wedge b a)1_{\{t \geq a\}}, t \geq 0)$ est une \mathscr{F}_t -martingale.