Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Проект на Github

Содержание

1 Динамическое программирование

 $\mathbf{2}$

1 Динамическое программирование

Задача: Пусть есть полоска $1 \times n$, где в i-ой клетке записано число a_i . В нулевой клетке находится кузнечик, способный прыгать на 1 или 2 позиции вправо. Хотим найти максимальную сумму

Доказательство.

Достаточно заметить, что попав на *i-ую* позицию, предыдущие прыжки никак не повлияют на максимальное значение с начальной точкой в текущей позиции.

Решение:

- 1. Заведем массив dp, где в dp[i] будет хранится максимальная сумма до данной клетки (то есть из всевозможных путей выбираем наибольший)
- 2. Запишем в dp[0] = 0, в $dp[1] = a_1$
- 3. Пусть k клеток заполнены. Тогда k+1-ая будет пересчитываться по формуле

$$dp[k+1] = a_{k+1} + max(dp[k], dp[k-1])$$

- 4. Тогда наш ответ равен значению dp[n]
 - -Асимптотика O(n)

Доказательства во всех задачах ДП проводятся по индукции по шагу алгоритма

Общая концепция:

$$\underbrace{\text{Придумываем, что хранить}} \to \underbrace{\text{Пишем пересчет}} \to \underbrace{\text{Находим ответ в конце}}$$

Задача с ЕГЭ: Есть таблица $n \times m$, где в каждой клетке написана ее цена. Хотим найти максимальный путь из нижнего левого угла в правый верхний.

Р. S. двигаемся только вверх или вправо

Решение:

- 1. Создаем массив $n \times m$, где в каждой клетке хранится наибольшая цена среди путей до этой клетки.
- 2. Записываем во всех "крайних клетках" сумму на единственном пути до нее.
- 3. Для остальных клеток формула пересчета такая:

$$dp[i][j] = a_{ij} + max(dp[i-1][j], dp[i][j-1])$$

- 4. Получаем ответ в клетке dp[n][m]
 - -Асимптотика O(nm)

Еще задачка: НОП (наибольшая общая последовательность)

Ищем наибольшую по длине общую последовательность в двух s и t.

1. Пусть dp[i][j] - длина НОП для последовательностей $s_{1,2,...,i}$ и $t_{1,2,...,j}$

- 2. $dp[0][\circ] = 0, dp[\circ][0] = 0$
- 3. Хотим найти dp[i][j]:
 - (a) s_i не участвует в НОП \rightarrow dp[i-1][j]
 - (b) t_j не учатствует в НОП \to dp[i] [j-1]
 - (c) s_i и t_j участвуют в НОП, тогда они должны быть равны и ответ: $\mathrm{dp}[i-1][j-1]+1$

$\underline{\underline{\mathbf{M}}}$ еще одна: НВП (наибольшая возрастающая последовательность) Решение 1:

- 1. dp[i][k] минимальное значение элемента, на котором заканчивается последовательности длины k, если рассматривать только элементы a_1, a_2, \ldots, a_i
- 2. $dp[0][0] = -\infty, dp[0][k > 0] = +\infty$
- 3. Пусть известна $dp[i-1][\circ]$

Далее, есть 2 случая:

- (a) Не берем a_i , тогда ответ равен dp[i-1][j]
- (b) Берем a_i Тогда найдем $min\ k$, что $dp[i][k] \geqslant a_i$ и поменяем значение на a_i

Заметим, что выполняется инвариант:

$$\mathrm{dp}[i]\left[0\right] < \mathrm{dp}[i]\left[1\right] < \ldots < \mathrm{dp}[i]\left[k\right]$$

А тогда, кроме dp[i][k] под условие б) ничего не подойдет, а еще, это k можно найти с помощью бин поиска.

Таким образом, ДП в этой задаче будет заполняться построчно, где i+1-ая строка получается из i-ой изменением одного элемента

Асимптотика $O(n \log n)$

Решение 2:

Оживляем элементы по возрастанию, предварительно стабильно отсортировав их. dp[i] - максимальная длина ВП, оканчивающейся в a_i на момент оживления этого элемента.

a_i	2	3	1	5		4	6	5			a_i	;	2	3	1	5	4	6		5
$dp\left[i\right]$	×	×	×	×	: ;	×	X	×		7	dp	[i]	×	×	1	×	×	×	- 2	×
a_i	2	3	1	5	4	6	5	5	,		a_i		2 3	3 1	5	4	. 6	j	5	
$dp\left[i\right]$	1	×	1	×	×	×	<	X	\rightarrow		$dp\left[i\right]$		1 2	2 1	X	: ×	(>	()	×	
a_i	2	3	1	5	4	6	5				a_i	2	3	1	5	4	6	5		
$dp\left[i\right]$	1	2	1	×	3	X	X		7 [d	lp[i]	1	2	1	3	3	×	4		
a_i	2	3	1	5	4	6	5													
$dp\left[i\right]$	1	2	1	3 3	3	4	4													

Несложно заметить, что dp[i] будет равно максимальному значению слева от текущей ячейки, что мы умеем находить за $O(\log n)$ через ДО

Тогда итог (максимальное значение в таблице) будет найдено за $O(n \log n)$

Последняя: (Рюкзак)

Есть n предметов, w_i - вес i-го элемента, а c_i - его стоимость. Вместимость рюкзака - W. Найти максимальную стоимость содержимого.

Обозначим за dp[i][a] максимальную стоимость предметов, если выбирать какие-то предметы из первых i с суммой веса a.

Тогда аналогично с предыдущей задачей будем вычислять dp[i+1][a], выбирая a_{i+1} или не выбирая его.

Это будет соответствовать значениям $dp[i][a-w_i]+c_i$ и dp[i][a]

Тогда поскольку $a \in {0,1,\ldots,W},$ окончательная асимптотика будет равна O(nW)