

(6)

Dashboard

<u>People</u>

Grades

Pages

Files

Home

Assignments

Discussions

Syllabus

Modules

Collaborations

BigBlueButton

View All Pages

Matrix multiplication

Matrix multiplication

Please take your time and learn about Matrices and Matrix Multiplication!

We will use these mathematics heavily in the next chapters

QUANTGATES Matrix multiplication Matrix multiplication

Learn how to multiply matrices with vectors and other matrices.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} ae + bf \\ ce + df \end{bmatrix}$$
 Matrix vector multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$
 Matrix multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} & b \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} \\ c \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} & d \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} ae_1 & ae_2 & be_1 & be_2 \\ ae_3 & ae_4 & be_3 & be_4 \\ ce_1 & ce_2 & de_1 & de_2 \\ ce_3 & ce_4 & de_3 & de_4 \end{bmatrix}$$
Tensor product of two matrices

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Now Try these;

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

This matrix is called **Not Gate** or **Pauli Matrix x**

Can you see what happened here? You just applied the Not Gate, and you Transformed your Qubit from Zero State to One State!

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, Zero Base of the Qubit

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, Base One of your Qubit

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

This Matrix is called Hadamard and the vector is just base Zero

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \text{ Hadamard Gate}$$

Exercise

Compute below tensor products. HXH = (1/sqrt(2))[1 1;1 -1]X(1/sqrt(2))[1 1;1 -1] $H\otimes H$ HXH = (1/sqrt(2))[(1/sqrt(2))[1 1; 1 - 1] (1/sqrt(2))[1 1; 1 - 1]; 1 - 1];(1/sqrt(2))[1 1; 1 -1] -(1/sqrt(2))[1 1; 1 -1]; 1 -1]] $H \otimes H \otimes H$ HXH = [(1/2)[11; 1-1](1/2)[11; 1-1];(1/2)[1 1; 1 -1] -(1/2)[1 1; 1 -1]] H X H X H = (H X H) X H = [(1/2)[1 1; 1 - 1] (1/2)[1 1; 1 - 1];(1/2)[1 1; 1 -1] -(1/2)[1 1; 1 -1]] X (1/sqrt(2))[1 1; 1 -1] since H = (1/sqrt(2))[1 1; 1 - 1]◆ Previous HXHXH = [(1/2)[HH; H-H] (1/2)[HH; H-H];Next ▶

(1/2)[H H; H - H] - (1/2)[H H; H - H]]