CS2040S

AY23/24 sem 2 midterms

ORDERS OF GROWTH

definitions

$$T(n) = \Theta(f(n))$$

$$\iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

$$T(n) = \Theta(f(n))$$

$$c_1f(n)$$

$$c_2f(n)$$

T(n) = O(f(n)) if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \leq cf(n)$ $T(n) = \Omega(f(n))$

if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \geq c f(n)$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

• addition: T(n) + S(n) = O(f(n) + g(n))

- multiplication: T(n) * S(n) = O(f(n) * g(n))

• composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$

only if both functions are increasing

• if/else statements: $\cos t = \max(c1,c2) \le c1+c2$

• max: $\max(f(n), g(n)) \le f(n) + g(n)$

notable

- $\sqrt{n} \log n$ is O(n)
- $O(2^{2n}) \neq O(2^n)$
- $O(\log(n!)) = O(n \log n) \to \text{sterling's approximation}$
- $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

master theorem

$$\begin{split} T(n) &= aT(\frac{n}{b}) + O(n^d) \quad a \geq 0, b > 1, d \geq 0 \\ &= \begin{cases} \Theta(n^{\log_b a}) & \text{if } d < \log_b a \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } d = \log_b a \\ \Theta(n^d) & \text{if } d > \log_b a \text{ polynomially} \end{cases} \end{split}$$

space complexity

- $\Theta(f(n))$ time complexity $\Rightarrow O(f(n))$ space complexity
- the maximum space incurred at any time at any point
- · NOT the maximum space incurred altogether!
- assumption: once we exit the function, we release all memory that was used

Binary Search

- Invariant: $A[begin] \le target \le A[end]$
- Time : $O(\log n)$
- Space : *O*(1)
- · When to use:
- Input is sorted, or can be manipulated to be sorted
- By checking a value, can eliminate all smaller or bigger
- Find local minimum or local maximum

SORTING

overview

- BubbleSort compare adjacent items and swap
- Best Case O(n) Already Sorted
- Worst Case $O(n^2)$ Reverse Sorted / Smallest at back
- SelectionSort takes the smallest element, swaps into place
- Always finds min(element) n-1 times for n elements.
- InsertionSort from left to right: swap element leftwards until it's smaller than the next element. repeat for next element
- Best Case O(n) Already Sorted
- tends to be faster than the other $O(n^2)$ algorithms
- MergeSort mergeSort 1st half; mergeSort 2nd half; merge
- QuickSort
- partition algorithm: O(n)
- stable quicksort: $O(\log n)$ space
 - first element as partition. 2 pointers from left to right
 - · left pointer moves until element > pivot
 - · right pointer moves until element < pivot
 - · swap elements until left = right.
 - then swap partition and left=right index.

optimisations of QuickSort

- array of duplicates: $O(n^2)$ without 3-way partitioning
- stable if the partitioning algo is stable.
- · extra memory allows quickSort to be stable.

choice of pivot

- worst case $O(n^2)$: first/last/middle element
- worst case $O(n \log n)$: median/random element
- split by fractions: $O(n \log n)$
- · choose at random: runtime is a random variable

QuickSelect

- O(n) to find the k^{th} smallest/largest element
- Select a pivot and partition the array. The partition will always be in the correct position.
- If pivot is already the k^{th} smallest element: return it.
- Else: recurse into the < pivot partition, if pivot position is > k. And vice-versa.
- When to use:
- Finding median
- Finding k^{th} smallest elements (use QuickSelect to find k^{th} element, then linear search

TREES

binary search trees (BST)

- · a BST is either empty, or a node pointing to 2 BSTs.
- tree balance depends on order of insertion
- balanced tree: $O(h) = O(\log n)$
- for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k 1$

BST operations

- height, h(v) = max(h(v.left), h(v.right))
- leaf nodes: h(v) = 0
- modifying operations
- search, insert O(h)
- delete O(h)

- · case 1: no children remove the node
- case 2: 1 child remove the node, connect parent to child
- case 3: 2 children delete the successor; replace node with successor
- · query operations
 - searchMin O(h) recurse into left subtree
 - searchMax O(h) recurse into right subtree
 - successor O(h)
 - if node has a right subtree: searchMin(v.right)
 - else: traverse upwards and return the first parent that contains the key in its left subtree

traversal

pre-order DFS in-order DFS post-order DFS
Root-Left-Right Left-Root-Right Left-Right-root

AVL Trees

- · height-balanced (maintained with rotations)
- \iff |v.left.height v.right.height| ≤ 1
- each node is augmented with its height v.height = h(v)
- space complexity: O(LN) for N strings of length L
- · Use AVL when a sorted order is required

rebalancing

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

- insertion: max. 2 rotations O(1)
- deletion: recurse all the way up O(h)
- · rotations can create every possible tree shape.

Trie

- search, insert O(L) (for string of length L)
- space: $O(\text{size of text} \cdot \text{overhead})$

Augmented Data Structures

- When num of inserts > num of selects : Unsorted Array
- When num of selects > num of inserts : Sorted Array
 Best of both worlds : Binary Search Tree

Order Statistics Tree

- AVL tree where each node store count of nodes in subTree
- Select(rank) using weight in $O(\log n)$
- weight(v) = weight(v.left) + weight(v.right) + 1
- Rank in subTree = left.weight + 1
- If go right subTree, remember to minus left weight
- Use when need a count of elements smaller/larger than some value, for cheap counting

interval trees

- search(key) $\Rightarrow O(\log n)$
- if value is in root interval, return
- if value > max(left subtree), recurse right
- else recurse left (go left only when can't go right)
- all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching

- binary tree; leaves store points, internal nodes store max value in left subtree
- buildTree(points[]) $\Rightarrow O(n \log n)$ (space is O(n))
- query(low, hight) $\Rightarrow O(k + \log n)$ for k points
- v=findSplit() $\Rightarrow O(\log n)$ find node b/w low & high
- leftTraversal(v) \Rightarrow O(k) either output all the right subtree and recurse left, or recurse right
- rightTraversal(v) symmetric
- insert(key), insert(key) $\Rightarrow O(\log n)$
- 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$)
- build x-tree from x-coordinates; for each node, build a y-tree from y-coordinates of subtree
- 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

kd-Tree

- stores geometric data (points in an (x, y) plane)
- alternates splitting (partitioning) via x and y coordinates
- construct(points[]) $\Rightarrow O(n \log n)$
- search(point) $\Rightarrow O(h)$
- searchMin() $\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$

(a, b)-trees

e.g. a (2, 4)-tree storing 18 keys

- rules
- 1. (a, b)-child policy where $2 \le a \le (b+1)/2$

	# keys		# children	
node type	min	max	min	max
root	1	b-1	2	b
internal	a-1	b-1	a	b
leaf	a-1	b-1	0	0

- 2. an internal node has 1 more child than its number of keys
- 3. all leaf nodes must be at the same depth from the root
- terminology (for a node z)
- ullet key range range of keys covered in subtree rooted at z
- keylist list of keys within z
- treelist list of z's children
- max height = $O(\log_a n) + 1$
- min height = $O(\log_b n)$
- search(key) $\Rightarrow O(\log n)$
- $O(\log_2 b \cdot \log_a n)$ binary search for key at node · height
- insert(key) $\Rightarrow O(\log n)$ insert only at leaves
- · Navigate to (Search for) suitable leaf and add to key list
- If leaf node becomes too large, redistribute using split()
- split() a node with too many children
- 1. use median to split the keylist into 2 halves
- 2. move median key to parent; re-connect remaining nodes

3. (if the parent is now unbalanced, recurse upwards; if the root is reached, median key becomes the new root)

- delete(key) $\Rightarrow O(\log n)$
 - if the node becomes empty, merge(y, z) join it with its left sibling & replace it with their parent

- if the combined nodes exceed max size: share(y, z) = merge(y, z) then split()
- · if root node is too large, promote a new root
- · Proactive vs Passive insertion approaches:
- Proactive: Preemptively spilt node at full capacity during search phase
- Passive: Insert first, then check parent for violation (may have to split all the way to the top)
- Insertion will never violate Rule 3 as the tree grows root upwards. Leaves are always on the same level

B-Tree

- (B, 2B)-trees $\Rightarrow (a, b)$ -tree where a = B, b = 2B
- Augmentation: A linkedList connects each level

Stack and Queue

- Stack (LIFO / FILO)
 - Push: O(1) Push item to top of the stack
 - Pop: O(1) Remove and return item at the top of stack
 - Peek: O(1) Return item at top only
- Queue (FIFO)
- Enqueue: O(1) Push item to back of the queue
- Dequeue: ${\cal O}(1)$ Remove and return item at front of queue
- Peek: O(1) Return item at front of queue only

Implementing Stacks and Queues

rray

- Stack:
 - Push: Append to end of array O(1)
 Pop: Remove from end of array -
- Queue:
- Enqueue: Append to end of array
- Dequeue: Remove from front of array
 O(n) !!

Linked List

- Stack:
 - Push: Append to end of linked list O(1) or O(n)? (O(1) if has tail ptr)
 - Pop: Remove from end of linked list
 O(1) or O(n)? (O(1) if has tail ptr)
 - Queue:
 - Enqueue: Append to end of linked list
 - O(1) or O(n)? (O(1) if has tail ptr)

 Dequeue: Remove from front of
 - linked list: O(1)

PROBABILITY THEORY

- if an event occurs with probability p, the expected number of iterations needed for this event to occur is $\frac{1}{n}$.
- for random variables: expectation is always equal to the probability
- linearity of expectation: ${\cal E}[A+B] = {\cal E}[A] + {\cal E}[B]$

sort	best	average	worst	stable?	memory
bubble	O(n)	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$O(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	O(n)	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	×	O(1)

sorting invariants

sorting invariants			
sort	invariant (after k iterations)		
bubble	largest k elements are sorted		
selection	smallest k elements are sorted into final positions		
insertion	first k slots are sorted (not final positions)		
merge	given subarray is sorted		
quick	partition is in the right position		

searching

oodroning			
search	average		
linear	O(n)		
binary	$O(\log n)$		
quickSelect	O(n)		
interval	$O(\log n)$		
all-overlaps	$O(k \log n)$		
1D range	$O(k + \log n)$		
2D range	$O(k + \log^2 n)$		

Logarithm Properties

$$\log_a c \Rightarrow \frac{\log_b c}{\log_b a}$$
$$\log n^c \Rightarrow c \log n$$
$$\log ab \Rightarrow \log a + \log b$$
$$\log \frac{a}{b} \Rightarrow \log a - \log b$$
$$a^{\log b} \Rightarrow b^{\log a}$$

data structures assuming O(1) comparison cost

data structure	search	insert
sorted array	$O(\log n)$	O(n)
unsorted array	O(n)	O(1)
linked list	O(n)	O(1)
tree (kd/(a, b)/binary)	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$
trie	O(L)	O(L)
dictionary	$O(\log n)$	$O(\log n)$
symbol table	O(1)	O(1)
chaining	O(n)	O(1)
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)

orders of growth

$$1<\log n<\sqrt{n}< n< n\log n< n^2< n^3< 2^n< 2^{2n}\\ \log_a n< n^a< a^n< n!< n^n\\ \text{orders of growth}$$

$$T(n) = T(\frac{n}{2}) + O(n)$$
 $\Rightarrow O(n)$

$$T(n) = T(\frac{n}{2}) + O(\log n) \qquad \qquad \Rightarrow O(\log^2 n)$$

$$T(n) = T(\frac{n}{2}) + O(1)$$
 $\Rightarrow O(\log n)$

$$T(n) = 2T(\frac{n}{2}) + O(1)$$
 $\Rightarrow O(n)$

$$T(n) = 2T(\frac{n}{2}) + O(n)$$
 $\Rightarrow O(n \log n)$

$$T(n) = 2T(n-1) + O(1) \qquad \Rightarrow O(2^n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n)$$
 $\Rightarrow O(n(\log n)^2)$

$$T(n) = 2T(\frac{n}{4}) + O(1)$$
 $\Rightarrow O(\sqrt{n})$

$$T(n) = T(n-c) + O(n)$$
 $\Rightarrow O(n^2)$