answer.md 2025-10-13

CPU Performance Comparison Report

Overview

This report analyzes CPU performance across four different environments:

- 1. Cloud t2.micro No Credits
- 2. Cloud t2.micro with Credits
- 3. Virtual Machine
- 4. Physical Machine

Each test measured CPU computation times from the file results:

- cpu_results_no_credits.txt
- cpu_results_with_credits.txt
- cpu_results_VM.txt
- cpu_results.txt

The data represents time in **seconds** vs. computation step.

1. Experimental Setup

Scenario	CPU Speed (GHz)	Time to Run (s)
Cloud t2.micro No Credits	2.4	4.76723289
Cloud t2.micro with Credits	2.4	0.04370307
Virtual Machine	3.6	0.00778150
Physical Machine	3.6	0.01073980

2. Plot: CPU Performance Comparison

Below is a comparative graph showing runtime behavior for each scenario.

Generated using the accompanying Python script in this project.

answer.md 2025-10-13

3. Analysis

3.1 What is a CPU Credit in AWS?

A **CPU Credit** is a performance unit that allows EC2 instances to burst above baseline CPU utilization. When utilization is below baseline, credits accumulate; when it exceeds baseline, credits are consumed.

3.2 Benefits

answer.md 2025-10-13

Perspective	Benefit
Cloud User	Can burst CPU performance during high-demand periods without constant cost.
Cloud Provider	Can overcommit CPUs by sharing idle compute among users, increasing efficiency.

4. Discussion

- Scenario 1 (No Credits) took the longest runtime (>4.5s).
- Scenario 2 (With Credits) completed the task in <0.05s.
- Both VM and Physical Machine (3.6 GHz) outperformed cloud instances.

From the plot:

• The purple line (t2.micro with Credits) performs similarly to blue (VM) and red (Physical), while gold (No Credits) is significantly slower.

4.1 Local vs Cloud

Yes, the **local notebook** is faster than the **t2.micro instance**, since:

- It has a higher CPU speed (3.6 GHz vs. 2.4 GHz).
- It has dedicated cores, unlike the shared vCPU on the cloud.

4.2 VM vs Physical Machine

The **VM** slightly outperforms the **Physical Machine**, likely due to fewer background processes and a leaner operating system (Debian VM vs. Windows host).

5. Conclusion

- **CPU Credits** significantly impact burstable cloud instance performance.
- Local environments remain superior for short, CPU-intensive tasks.
- **Virtualization overhead** can be minimal or even beneficial depending on the OS and resource allocation.