Project 2 STAT 355

Sabbir Ahmed

April 10, 2017

1 Part 1

1000 random samples of size 40 were generated from normal distribution with mean $\mu = 3$ and standard deviation $\sigma = 2$.

```
# initialize parameters for normal distribution
N <- 40 # size
mu <- 3 # mean
sigma <- 2 # standard deviation
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array
# generate 1000 samples
for (i in 1:NUMSAMPS){
    generatedData <- rnorm(N, mu, sigma)
        # store the sample means in vector
        sampMeans[i] = mean(generatedData)

if (i == 1) {
        firstMean = mean(generatedData)
        firstStd = sd(generatedData)
}
</pre>
```

1.1 Output

The first sample mean and standard deviation were computed:

$$E(\overline{X}) = 2.833, \ \sigma_{\overline{X}} = 0.316$$

All the samples were then used to find the sample mean and standard deviation. The theoretical values were also computed based on the relationships:

$$\mu = \mu$$

$$E(\overline{X}) = \mu$$

$$\sigma = \sigma$$

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

	Actual	Theoretical
μ	3.000	3.000
$\mathrm{E}(\overline{X})$	2.990	3.000
σ	2.000	2.000
$\sigma_{\overline{X}}$	0.311	0.316

1.2 Distribution

Distribution of the data was plotted with a histogram using ggplot2 in Figure 1.

```
ggplot() + aes(sampMeans) +
    geom_histogram(binwidth=0.1, color="black", fill="white") +
    labs(y="Count", x="Sample Means")
```


Figure 1: Histogram of the Generated Data

2 Part 2

1000 random samples of size 15 were generated from a binomial distribution with n = 10 and standard deviation p = 0.15.

```
# initialize parameters for binomial distribution N <- 15  
n <- 10  
p <- 0.15  
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array for (i in 1:NUMSAMPS){
```

```
generatedData <- rbinom(N, n, p)
sampMeans[i] = mean(generatedData)

if (i == 1) {
    firstMean = mean(generatedData)
    firstStd = sd(generatedData)
}</pre>
```

2.1 Output

The first sample mean and standard deviation were computed:

$$E(\overline{X}) = 1.000, \ \sigma_{\overline{X}} = 0.329$$

All the samples were then used to find the sample mean and standard deviation. The theoretical values were also computed based on the relationships:

$$\mu = np$$

$$E(\overline{X}) = np$$

$$\sigma = np(1-p)$$

$$\sigma_{\overline{X}} = \frac{np(1-p)}{\sqrt{n}}$$

	Actual	Theoretical
$\overline{\mu}$	1.500	1.500
$\mathrm{E}(\overline{X})$	1.518	1.500
σ	1.275	1.275
$\sigma_{\overline{X}}$	0.292	0.329

2.2 Distribution

Distribution of the data was plotted with a histogram using ggplot2 in Figure 2.

```
# plot a histogram of the data
ggplot() + aes(sampMeans) +
    geom_histogram(binwidth=0.2, color="black", fill="white") +
    labs(y="Count", x="Sample Means")
```

3 Part 3

1000 random samples of size 120 were generated from a binomial distribution with n=10 and standard deviation p=0.15.

```
# initialize parameters for binomial distribution N <- 120  
n <- 10  
p <- 0.15  
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array for (i in 1:NUMSAMPS){
```


Figure 2: Histogram of the Generated Data

```
generatedData <- rbinom(N, n, p)
sampMeans[i] = mean(generatedData)

if (i == 1) {
    firstMean = mean(generatedData)
    firstStd = sd(generatedData)
}</pre>
```

3.1 Output

The first sample mean and standard deviation were computed:

$$E(\overline{X}) = 1.492, \ \sigma_{\overline{X}} = 0.116$$

All the samples were then used to find the sample mean and standard deviation. The theoretical values were also computed based on the relationships:

$$\mu = np$$

$$E(\overline{X}) = np$$

$$\sigma = np(1-p)$$

$$\sigma_{\overline{X}} = \frac{np(1-p)}{\sqrt{n}}$$

	${f Actual}$	Theoretical
$\overline{\mu}$	1.500	1.500
$\mathrm{E}(\overline{X})$	1.502	1.500
σ	1.275	1.275
$\sigma_{\overline{X}}$	0.101	0.116

3.2 Distribution

Distribution of the data was plotted with a histogram using ggplot2 in Figure 3.

```
# plot a histogram of the data
ggplot() + aes(sampMeans) +
   geom_histogram(binwidth=0.1, color="black", fill="white") +
   labs(y="Count", x="Sample Means")
```


Figure 3: Histogram of the Generated Data

4 Conclusion

```
# main.R
# This file contains the implementation of the functions in the Project 2
# NOTE: THIS SCRIPT WAS COMPILED ON A LINUX MACHINE - SOME STATEMENTS MAY THROW
# WARNINGS OR ERRORS IN OTHER SYSTEMS
library(ggplot2) # for generating high quality plots
set.seed(124) # seed the random generators
# LaTex template for the output
outputTemplate <- "\\subsection{Output}</pre>
   The first sample mean and standard deviation were computed:
   \[ E(\overline{X}) = \%.3f, \ \sigma_{\overline{X}} = \%.3f \] 
   All the samples were then used to find the sample mean and standard
   deviation. The theoretical values were also computed based on the
   relationships:
   \\[ \\mu = %s \\]
   \[ E(\ E(\ X)) = %s \]
   \\[ \\sigma = %s \\]
   \\[ \\sigma_{\\overline{X}} = %s \\]
   \\begin{table}[h]
       \\centering
       \\begin{tabular*}{200pt}{@{\\extracolsep{\\fill}} c c c}
       & \\textbf{Actual} & \\textbf{Theoretical} \\\\
       \\hline
       $\\mu$ & %.3f & %.3f \\\\
       E($\\overline{X}$) & %.3f & %.3f \\\\
       $\\sigma$ & %.3f & %.3f \\\\
       \\end{tabular*}
   \\end{table}
# global variables
NUMSAMPS <- 1000
firstMean <- 0
firstStd <- 0
# ------ Part 1 -----
# initialize parameters for normal distribution
N <- 40 # size
mu <- 3 # mean
sigma <- 2 # standard deviation
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array</pre>
firstMean <- 0
firstStd <- 0
# generate 1000 samples
for (i in 1:NUMSAMPS){
   generatedData <- rnorm(N, mu, sigma)</pre>
   # store the sample means in vector
   sampMeans[i] = sum(generatedData)/N
   if (i == 1) {
       firstMean = sum(generatedData)/N
       firstStd = sigma/sqrt(N)
```

```
}
# save output
sink("part1.tex", append=FALSE, split=FALSE)
cat(
        outputTemplate,
        firstMean, firstStd,
        "\\mu", "\\mu", "\\sigma", "\\frac{\\sigma}{\\sqrt{n}}",
       mu, mu,
       sum(sampMeans)/NUMSAMPS, mu,
       sigma, sigma,
       sd(sampMeans), sigma/sqrt(N)
)
sink()
png(filename="figures/hist1.png")
# plot a histogram of the data
ggplot() + aes(sampMeans) +
    geom_histogram(binwidth=0.1, color="black", fill="white") +
    labs(y="Count", x="Sample Means")
dev.off()
# ------ Part 2 -----
# initialize parameters for binomial distribution
N <- 15
n <- 10
p <- 0.15
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array</pre>
for (i in 1:NUMSAMPS){
    generatedData <- rbinom(N, n, p)</pre>
    sampMeans[i] = sum(generatedData)/N
    if (i == 1) {
       firstMean = sum(generatedData)/N
        firstStd = n*p*(1-p)/sqrt(N)
    }
}
# save output
sink("part2.tex", append=FALSE, split=FALSE)
cat(
    sprintf(
        outputTemplate,
        firstMean, firstStd,
        "np", "np", "np(1-p)", "\\frac\{np(1-p)\}\{\\\sqrt\{n\}\}",
       n*p, n*p,
       sum(sampMeans)/NUMSAMPS, n*p,
       n*p*(1-p), n*p*(1-p),
        sd(sampMeans), n*p*(1-p)/sqrt(N)
)
sink()
png(filename="figures/hist2.png")
# plot a histogram of the data
ggplot() + aes(sampMeans) +
    geom_histogram(binwidth=0.2, color="black", fill="white") +
    labs(y="Count", x="Sample Means")
```

```
dev.off()
# ------ Part 3 -----
\hbox{\tt\# initialize parameters for binomial distribution}\\
N <- 120
n <- 10
p <- 0.15
sampMeans <- rep(0, times=NUMSAMPS) # initialize empty array</pre>
for (i in 1:NUMSAMPS){
    generatedData <- rbinom(N, n, p)</pre>
    sampMeans[i] = sum(generatedData)/N
    if (i == 1) {
       firstMean = sum(generatedData)/N
        firstStd = n*p*(1-p)/sqrt(N)
}
# save output
sink("part3.tex", append=FALSE, split=FALSE)
cat(
    sprintf(
        outputTemplate,
        firstMean, firstStd,
"np", "np", "np(1-p)", "\\frac{np(1-p)}{\\sqrt{n}}",
        n*p, n*p,
        sum(sampMeans)/NUMSAMPS, n*p,
        n*p*(1-p), n*p*(1-p),
        sd(sampMeans), n*p*(1-p)/sqrt(N)
)
sink()
png(filename="figures/hist3.png")
# plot a histogram of the data
ggplot() + aes(sampMeans) +
    geom_histogram(binwidth=0.1, color="black", fill="white") +
    labs(y="Count", x="Sample Means")
dev.off()
```