2.6.2 Stokes-Integralsatz

Wir betrachten ein Gebiet $G \subset \mathbb{R}^3$ mit Randkurve ∂G , welche das Einheitsnormalen-Vektorfeld $\hat{\mathbf{n}}$ rechts umläuft im Bereich eines Vektorfeldes $\mathbf{v} : \mathbb{R}^3 \to \mathbb{R}^3$. Die Situation ist in der folgenden Skizze dargestellt.

Wir betrachten den folgenden Satz.

Satz 2.20 Stokes-Integralsatz in 3D

Seien $G \subset \mathbb{R}^3$ ein Gebiet mit Randkurve ∂G , welche das Einheitsnormalen-Vektorfeld $\hat{\mathbf{n}}$ rechts umläuft im Bereich eines Vektorfeldes $\mathbf{v} : \mathbb{R}^3 \to \mathbb{R}^3$, dann gilt

$$\oint_{\partial G} \langle \mathbf{v}, \hat{\mathbf{e}} \rangle ds = \Upsilon_{\mathbf{v}} = \int_{G} \langle \text{rot}(\mathbf{v}), \hat{\mathbf{n}} \rangle dA$$
(2.172)