目录

第一讲	帽子戏法	2
	剪纸游戏(1)	
第三讲	剪纸游戏(2)	16
第四讲	体体面面	24
第五讲	海的女儿	31

第一讲帽子戏法

到加度 知识点拨

1. $\frac{1}{7}$ 的"秘密"

$$\frac{1}{7} = 0.142857$$
, $\frac{2}{7} = 0.285714$, $\frac{3}{7} = 0.428571$, $\frac{4}{7} = 0.571428$, $\frac{5}{7} = 0.714285$, $\frac{6}{7} = 0.857142$

2. 推导以下算式

$$(1) \ 0.\dot{1} = \frac{1}{9}; \ 0.\dot{1}\dot{2} = \frac{12}{99} = \frac{4}{33}; \ 0.\dot{1}\dot{2}\dot{3} = \frac{123}{999} = \frac{41}{333}; \ 0.\dot{1}\dot{2}\dot{3}\dot{4} = \frac{1234}{9999};$$

$$(2) \ 0.1\dot{2} = \frac{12-1}{90} = \frac{11}{90}; \ 0.12\dot{3} = \frac{123-12}{9000} = \frac{37}{300}; \ 0.12\dot{3}\dot{4} = \frac{1234-123}{9000} = \frac{1111}{9000};$$

$$(3) \ 0.12 \ \overset{\bullet}{34} = \frac{1234 - 12}{9900} = \frac{611}{4950} ; \quad 0.1234 = \frac{1234 - 1}{9990} = \frac{137}{1110}$$

以
$$0.1234$$
 为例,推导 $0.1234 = \frac{1234 - 12}{9900} = \frac{611}{4950}$.

设 0.1234=A, 将等式两边都乘以 100, 得: 100A=12.34;

再将原等式两边都乘以 10000, 得: 10000A=1234.34,

两式相减得: 10000A - 100A = 1234 - 12, 所以 $A = \frac{1234 - 12}{9900} = \frac{611}{4950}$.

3. 循环小数化分数结论

	纯循环小数	混循环小数
分子	循环节中的数字所组成的数	循环小数去掉小数点后的数字所组成的数与
		不循环部分数字所组成的数的差
分母	n个9, 其中n等于循环节所	按循环位数添 9, 不循环位数添 0, 组成分母,
	含的数字个数	其中 9 在 0 的左侧

$$0.\dot{a} = \frac{a}{9}$$
; $0.\dot{a}\dot{b} = \frac{ab}{99}$; $0.0\dot{a}\dot{b} = \frac{ab}{99} \times \frac{1}{10} = \frac{ab}{990}$; $0.a\dot{b}\dot{c} = \frac{\overline{abc} - a}{990}$,

凡是分母的质因数仅含2和5的, 化成小数后为有限小数, 凡是分母的质因数不含2和5的, 化成小数后为纯循环小数; 除2和5外还有其他质因数的, 化为小数后为混循环小数.

2

【例1】在小数 1.80524102007 上加两个循环点,能得到的最小的循环小数是_____(注:公元 2007 年 10 月 24 日北京时间 18 时 05 分,我国第一颗月球探测卫星"嫦娥一号"由"长征三号甲"运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻.)

【巩固】给下列不等式中的循环小数添加循环点: 0.1998 > 0.1998 > 0.1998 > 0.1998.

【例2】把下列循环小数化为分数: 0.6, 0.525, 2.635

【巩固】计算: 0.3+0.03+0.003+……=2009÷ ().

【例3】计算: (1) 0.01+0.12+0.23+0.34+0.78+0.89 (2) 0.67+0.212+0.111020

【巩固】计算: (1) 0.291-0.192+0.375+0.526 (2) 0.330×0.186

【例4】 计算: $(1.6-1.5+8\frac{1}{3}) \div 25\frac{1}{2} + 0.6 =$ ______.

【例5】真分数 $\frac{a}{7}$ 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是 1992, 那么 a 是多少?

【巩固】真分数 $\frac{a}{7}$ 化成循环小数之后,从小数点后第 1 位起若干位数字之和是 2717,则 a 是 多少?

【例6】将循环小数 0.081 与 0.200836 相乘, 小数点后第 2008 位是_____.

【巩固】 $\frac{2002}{2009}$ 和 $\frac{1}{287}$ 化成循环小数后第 100 位上的数字之和是_____.

新峰挑战

【挑战1】计算:
$$\frac{(16\frac{8}{247} \times 2.375 + 12\frac{4}{285} \times 4.75) \times 19.98}{6.66 \times (48 \times 2 - \frac{167}{195})} = ____.$$

【挑战2】计算:
$$\frac{\frac{8+9+10}{7} - \frac{9+10+11}{8} + \frac{10+11+12}{9} - \frac{11+12+13}{10}}{\frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10}} = \underline{\hspace{1cm}}.$$

登峰造极

【超越1】设
$$\frac{\frac{147}{340}}{a + \frac{1}{b + \frac{1}{c + \frac{1}{d}}}}$$
 , 其中 a 、 b 、 c 、 d 都是非零自然数,则 $a + b + c + d = \frac{1}{a + \frac{1}{c + \frac{1}{d}}}$

____·

【超越2】将 $\frac{1}{2}$ 化成小数等于 0.5,是个有限小数;将 $\frac{1}{11}$ 化成小数等于 0.0909...,简记为 0.09,是纯循环小数;将 $\frac{1}{6}$ 化成小数等于 0.1666.....,简记为 $0.1\dot{6}$,是混循环小数.现在将 2004 个分数 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,..., $\frac{1}{2005}$ 化成小数,问:其中纯循环 小数有多少个?

	笔记整理
错题题号登记:	
易错点整理:	

第二讲剪纸游戏(1)

知识点拨

圆: 当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆. 固定不动的端点称为圆心,用 O 表示,圆心到圆上所有点的距离都相等.

这条线段的长度称为半径,用 r 表示.

通过圆心且两个端点都在圆上任意一点的线段是直径,用 d 表示.

直径和半径的关系满足: d=2r

扇形: 一条弧和经过这条弧两端的两条半径所围成的图形叫扇形.

圆周长: $C = 2\pi r$, 圆面积: $S = \pi r^2$

扇形弧长: $l = \frac{n}{360} \times 2\pi r = \frac{n\pi r}{180}$, 扇形周长: $C = l + d = \frac{n}{360} \times 2\pi r + 2r = \frac{n\pi r}{180} + 2r$

扇形面积: $S = \frac{n\pi r^2}{360}$

曲线图形综合求面积:割补平移,添加辅助线帮助平移!

到 例题精讲

【例1】有一个花坛,直径为20米,一只小蜜蜂沿着花坛外周飞了一圈,请问它飞了多少米?如果小蜜蜂沿着图中的虚线,飞一个"8"字,路线构成过花坛圆心的两个小圆,那么这次它飞了多少米?(π取3.14)

【巩固】如图,在一块面积为 28.26 平方厘米的圆形铝板中,裁出了 7 个同样大小的圆铝板,请问:余下的边角料的总面积是多少平方厘米? (π取 3.14)

【例2】	已知一个扇形的圆心角为90°,	它所在圆的半径为6厘米,	这个扇形的面积是	_平
	方厘米. (π 取 3.14)			

【例3】如图所示,四个全等的圆每个半径均为 2m, 阴影部分的面积是

【巩固】图中的 4 个圆的圆心恰好是正方形的 4 个顶点,如果每个圆的半径都是 1 厘米,那么 阴影部分的总面积是多少平方厘米? (π 取 3.14)

【例4】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?

【巩固】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?

【例5】如图,图中的三角形都是等腰直角三角形,求各图中阴影部分的面积. (π取 3.14)

【巩固】求下列各图中阴影部分的面积.

【例6】如图,在一个边长为4的正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积.

【巩固】如图, ABCD 是正方形, 且 FA = AD = DE = 1, 求阴影部分的面积. (取 $\pi = 3$)

新峰挑战

【挑战1】如图是一个直径是 3 厘米的半圆,AB 是直径,如图所示,让 A 点不动,把整个半圆 逆时针转 60° ,此时 B 点移动到 C 点,请问:图中阴影部分的面积是多少平方厘米? (π 取 3.14)

【挑战2】如图所示,在半径为 4cm 的图中有两条互相垂直的线段,阴影部分面积 A 与其它部分面积 B 之差(大减小)是_____cm².

全国 登峰造极

【超越1】下图为设计的太空舱轮廓图.已知图形中 4 个圆两两相切(紧挨在一起), O_1 、 O_2 、 O_3 、 O_4 分别为 4 个圆的圆心,四边形 AO_2O_4B 为长方形,且 O_3 为 O_2O_4 中点,EF 长度为 80,CD 长度为 100,那么图中太空舱面积为多少? (π 取 3.14)

【超越2】如图,边长为 3 的两个正方形 BDKE、正方形 DCFK 并排放置,以 BC 为边向内侧作等边三角形,分别以 B、C 为圆心,BK、CK 为半径画弧. 求阴影部分面积. (π 取 3.14)

	笔记整理
错题题号登记:	
易错点整理:	

第三讲剪纸游戏(2)

知识点拨

圆: 直径和半径的关系满足: d=2r

扇形: 一条弧和经过这条弧两端的两条半径所围成的图形叫扇形.

圆周长: $C=2\pi r$, 圆面积: $S=\pi r^2$

扇形弧长: $l = \frac{n}{360} \times 2\pi r = \frac{n\pi r}{180}$, 扇形周长: $C = l + d = \frac{n}{360} \times 2\pi r + 2r = \frac{n\pi r}{180} + 2r$

扇形面积: $S = \frac{n\pi r^2}{360}$

圆环面积: $S = \pi(R^2 - r^2)$.

弓形面积: $S = \frac{1}{4}\pi r^2 - \frac{1}{2}r^2$.

弯角面积: $S=r^2-\frac{1}{4}\pi r^2$

谷形面积: $S = \frac{1}{2}\pi r^2 - r^2$

方中圆:则正方形与圆的面积比是4:π

圆中方:则正方形与圆的面积比是2:π

阿题精讲

【例1】大圆半径为R,小圆半径为r,两个同心圆构成一个环形. 以圆心O为项点,半径R为 边长作一个正方形; 再以O为项点,以r为边长作一个小正方形. 图中阴影部分的面积 为 50 平方厘米,求圆环的面积. (π 取 3.14)

【巩固】大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为直角边作一个等腰直角三角形;再以O为顶点,以r为边长作一个小等腰直角三角形. 图中阴影部分的面积为 100 平方厘米,求圆环的面积. $(\pi \ \mbox{$\mathfrak{P}$}\ \mbox{$\mathfrak{P}$$

【例2】如图,大正方形的面积为 400,被平均分成 4 个相同的小正方形.请依次求出每个小正方形内阴影部分的面积 S_1 、 S_2 、 S_3 、 S_4 . $(\pi$ 取 3.14)

【例3】如图: 三角形面积是 54 平方厘米,以三角形三个顶点为圆心,画 3 个半径为 3 厘米的圆,那么这个图形一共覆盖的面积是多少? (π 取 3.14)

【巩固】用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问: 所余下的边角料的总面积是多少平方厘米?

【例4】如图,三角形 ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径. 已知 AB = BC = 10,那么阴影部分的面积是多少?(π 取 3.14)

【例5】已知三角形 ABC 是直角三角形, AC = 4 cm, BC = 2 cm, 求阴影部分的面积. $(\pi \, \text{取} \, 3.14)$

【巩固】如图,矩形 ABCD 中,AB=6 厘米,BC=4 厘米,扇形 ABE 半径 AE=6 厘米,扇形 CBF 的半径 CB=4 厘米,求阴影部分的面积. (π 取 3)

【例6】如图,等腰直角三角形 ABC 的腰为 10; 以 A 为圆心,EF 为圆弧,组成扇形 AEF; 两个阴影部分的面积相等。求扇形所在的圆面积。

【巩固】三角形 ABC 是直角三角形,阴影 I 的面积比阴影 II 的面积小 25cm^2 , AB = 8 cm ,求 BC 的长度. $(\pi$ 取 3.14)

新峰挑战

【挑战1】如图,两个半径为 1 的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差. (π取 3)

【挑战2】已知正方形 ABCD 的边长为 10 厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连起来得右图.那么,图中阴影部分的总面积等于

平方厘米. (π取 3.14)

(2)以下四个图形的面积比为_____: ____: ____: ____(从小到大).

(3) 一些正方形内接于一些同心圆,如图所示. 已知最小圆的半径为 1 cm,请问阴影部分的面积为多少平方厘米? (π 取 $\frac{22}{7}$)

	笔记整理
错题题号登记:	
易错点整理:	

第四讲体体面面

知识点拨

- 1. 长方体(包括正方体)有8个顶点,12条棱,6个面;
- 2. 棱长为 a 的正方体体积公式: $V=a^3$; 表面积公式: $S=6a^2$; 长、宽、高分别为 a、b、c 的长方体体积公式: V=abc; 表面积公式: $S=(ab+bc+ca)\times 2$;
- 3. "切一刀,多两面";"粘一次,少两面"
- 4. 由小立方体堆砌而成的立体图形,其表面积可用三视图法求解: S = (正视图面积 + 俯视图面积 + 侧视图面积 + 凹槽数 $) \times 2$

到 例题精讲

【例1】	(1) 一个长方体有个	`顶点,	个面,	条棱;	
	(2) 一眼最多可以看到长方体	的	_个顶点,	个面,	条棱;
	(3) 正方体是特殊的长方体,	它特殊在_	都相同,_	也都村	泪同;

【巩固】填表: (1) 根据表中数据求正方体的棱长、表面积、体积:

棱长	表面积	体积
1		
	24	
		125

(2) 根据表中数据求长方体方体的表面积、体积、长、高:

长	宽	高	表面积	体积
3	2	1		
	4	3		60
10	5		190	

【例2】有30个棱长为1米的正方体,如图所示堆成一个四层的立体图形.那么该立体图形的表面积等于多少平方米?

【巩固】用 12 个棱长是 1 米的立方体木块拼成如图所示的立体图形,那么该图形的表面积是多少平方米?

【例3】如图所示,一个正方体被切了3刀,这些小正方体的表面积之和为120平方厘米,那么原正方体的表面积是多少平方厘米?

【巩固】把三个完全相同的长方体木块拼成一个正方体,表面积比原来三个长方体的表面积之 和减少了40平方厘米,那么这个正方体的表面积是多少平方厘米?

【例4】有一个边长为 10 厘米的大正方体,分别在它的角上、棱上各挖掉一个棱长为 1 厘米的小正方体后,再把挖掉的两个小正方体按照如图所示的方式摆放,那么图中立体图形的表面积是多少平方厘米?

【巩固】有一个棱长是 4 厘米的正方体,在它的一个角上挖去一个棱长为 1 厘米的正方体后,再把挖掉的小正方体按照如图所示的方式摆放,那么图中立体图形的表面积是多少平方厘米?

【例5】一个正方体形状的木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块,如图所示.那么,这60块小长方体表面积的和是多少平方米?

【例6】(1)下列立体图形都是由若干个棱长为 1 的小正方体堆砌而成的(左 9 个,中间 19 个,右 14 个),请求出它们的外表面积.

(2)下列立体图形也都是由若干个棱长为1的小正方体堆砌而成的(左17个,右13个),请求出它们的的外表面积.注意这些立体图形与上一问中的立体图形有何不同,在计算时你需要注意什么问题.

美国人 巅峰挑战

【挑战1】一个长方体的宽和高相等,并且都等于长的一半(如图). 将这个长方体切成 12 个小长方体,这些小长方体的表面积之和为 600 平方分米. 求这个大长方体的体积.

【挑战2】从一个棱长为 10 厘米的正方形木块中按照下图中 3 种方式挖去一个长 10 厘米、宽 2 厘米、高 2 厘米的小长方体,则这 3 种方式得到的图形的表面积分别是多少?

【挑战3】重新对一个棱长为 5 的正方体打洞(打穿),打洞情况如下图所示: 那么这个立体图形的体积为______,表面积为_____.

全性 登峰造极

【超越1】重新打洞(打穿),下左图中立体图形的体积为_____,表面积为_____;

下右图中立体图形的体积为_____,表面积为_____.

	
_	七儿正生
错题题号登记:	
易错点整理:	
3 77.11.11.11	

第五讲海的女儿

知识点拨

- 1、余数的定义
 - 一般地,如果 a 是整数, b 是整数($b\neq 0$),若有 $a \div b = q...r$,也就是 $a = b \times q + r, 0 \le r < b$:
- 2、余数的性质
 - (1)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;
 - (2)余数小于除数.
 - (3)余数加法定理: "和余=余和"
 - a 与 b 的和除以 c 的余数,等于 a ,b 分别除以 c 的余数之和,或这个和除以 c 的余数。例:(23+16)÷5 的余数是 4,23,16 除以 5 的余数分别是 3 和 1,4=3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以 c 的余数.
 - 例: (23+19)÷5的余数是 2, 23 和 19除 5的余数分别是 3和 4, 3+4=7除以 5的余数也为 2.
 - (4)余数减法定理:"差余=余差"
 - a 与 b 的差除以 c 的余数,等于 a,b 分别除以 c 的余数之差.

例: (23-16)÷5 的余数等于 2, 23, 16 除以 5 的余数分别是 3 和 1, 2=3-1.

当余数的差不够减时时,补上除数再减.

例: $(23-14)\div 5$ 的余数等于 4, 23, 14 除 5 的余数分别是 3 和 4, 3+5-4 除以 5 的余数也为 4. 如果 a, b 除 c 的余数相同,就称 a, b 对于除数 c 同余,则有 c|(a-b). (a, b, c 均为自然数)

- (5)余数乘法定理: "积余=余积"
- a 与 b 的积除以 c 的余数,等于 a, b 分别除以 c 的余数的积,或这个积除以 c 所得的余数.例: 23×16 除以 5 的余数为 3,23,16 除以 5 的余数分别是 3 和 1,3=3×1.

当余数的积比除数大时,所求的余数等于余数之积再除以c的余数.

例: 23×19 除以 5 的余数为 2, 23, 19 除以 5 的余数分别是 3 和 4, 3×4 除以 5 的余数也为 2. 乘方: 如果 a = b 除以 m 的余数相同,那么 $a^n = b^n$ 除以 m 的余数也相同.

- 3、余数的判断法
 - 1、末位判断法:2.5;4.25;8.125。
 - 2、数字和:3.9。
 - 3、奇数位之和减偶数位之和:11。
- 余数四大判断法 4、数段法:
 - ①数段和:99(两位).999=27×37(三位)。
 - ②数段差:7.11.13(三位,奇数段之和减偶数段之差)。
 - |注意:一定奇位(段)和减偶位(段)和,减不够加除数。

到 例题精讲

【例1】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_____.

【巩固】用一个整数去除另一个整数,商 40 余 16,被除数、除数的和是 877,被除数和除数各 是多少?

- 【例2】(1)20121221除以4和8的余数分别是多少?
 - (2) 20152015 除以 3 和 9 的余数分别是多少?

- 【巩固】(1)20132133除以25和125余数分别是多少?
 - (2) 1234567 除以 9 余数是多少?

【巩固】87654321 除以 13 的余数是多少?

- 【例4】(1)123+456+789的和除以111的余数是多少?
 - (2) 224468-6678的结果除以22的余数是多少?

【例5】求478×296×351除以17的余数.

【巩固】(1) 求 23456789+3456789+23456789×3456789 的结果除以 9 的余数;

- (2) 求 36×37×38+39×40×41 的结果除以 7 的余数;
- (3) 求 4×5×3×13×2×29×7×11 的结果除以 19 的余数.

【例6】 2²⁰⁰³ 与 2003² 的和除以 7 的余数是_____.

【挑战1】求(2²⁰¹⁰×21¹⁰⁰⁰)÷83 的余数.

【挑战2】1×3×5×···×2013末三位是多少?

登峰造板

【超越1】有这样一类 2009 位数,它们不含有数字 0,任何相邻两位(按照原来的顺序)组成的两位数都有一个约数与 20 相差 1,这样的 2009 位数共有______个.

【超越2】对任意的自然数 n, 证明 $A = 2903^n - 803^n - 464^n + 261^n$ 能被 1897 整除.

笔记整理
错题题号登记:
易错点整理: