1. Introduction to spectral theory

1.1. Main definitions.

<u>Definition</u>. A scalar λ is called an eigenvalue of an operator $A: V \to V$ if there exists a non-zero vector $v \in V$ such that

$$Av = \lambda v$$

The vector v is called the eigenvector of A

Theorem (From hamberger Thm 5.2). Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Proof. A scalar λ is an eigenvalue of A if and only if there exists a nonzero vector $v \in F^n$ such that $Av = \lambda v$, that is, $(A - \lambda I_n)(v) = 0$. By Theorem 2.5, this is true **if and only if** $A - \lambda I_n$ is not invertible. However, this result is equivalent to the statement that $\det(A - \lambda I_n) = 0$

<u>Definition.</u> Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is clased the characteristic polynomial of A

Theorem (From hamberger Thm 5.4). Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

<u>Definition.</u> The nullspace $N(A - \lambda I)$, i.e. the set of all eigenvectors and 0 vector, is called the eigenspace. The set of all eigenvalues of an operator A is called spectrum of A, and is usually denoted $\sigma(A)$.

Remark.

If the matrix A is ugly, what should we do?

we can use the similar matrices

A and B are called similar if there exists an invertible matrix S such that

$$A = SBS^{-1}$$

The determinants of similar matrix is same

$$\det(A) = \det(SBS^{-1}) = \det(S)\det(B)\det(S^{-1}) = \det(B)$$

We can find $A - \lambda I$ and $B - \lambda I$ is similar

$$A - \lambda I = SBS^{-1} - \lambda SIS^{-1} = S(BS^{-1} - \lambda IS^{-1}) = S(B - \lambda I)S^{-1}$$

It same in transform

If $T: V \to V$ is a linear transform, α, β are two bases in V, then

$$[T]^{\alpha}_{\alpha} = [I]^{\alpha}_{\beta} [T]^{\beta}_{\beta} [I]^{\beta}_{\alpha}$$

<u>Definition</u> (algebraic mutiplicity). The largest positive integer k such that $(x - \lambda)^k$ divides p(x) is called the multiplicity of the root λ .

If λ is an eigenvalue of an operator (matrix) A, then it is a root of the characteristic polynomial $p(z) = \det(A - zI)$. The multiplicity of this root is called the (algebraic) multiplicity of the eigenvalue λ .

<u>Definition</u> (geometric multiplicity). The dimension of the eigen space $N(A - \lambda I)$ is called geometric multiplicity of the eigenvalue λ .

1.2. Diagonalization.

<u>Definition</u>. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_A is diagonalizable.

Theorem. A matrix A admits a representation $A = SDS^{-1}$, where D is a diagonal matrix and S is an invertible one **if and only if** there exists a basis in F^n of eigenvectors of A.

Proof. Let $D = \text{diag} \{ \lambda_1, \lambda_2, \dots, \lambda_n \}$, and let b_1, \dots, b_n be the columns of S (note that since S is invertible it's columns form a basis in F^n). Then the identity $A = SDS^{-1}$ means that D = [A]