

FIG. 1B.

FIG. 1A.

FIG. 2.

FIG. 3B.

FIG. 3A.

FIG. 4.

Fig. 5

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR
PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.

Docket No. 612,404-424

Express Mail No. EV337191037US

Page 6 of 46

Fig. 6

Fig. 7

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR
PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 7 of 46

Fig. 8A

Fig. 8B

FIG. 9

FIG. 10

FIG. 11

LOCATION #1 IS MASKED FROM UV EXPOSURE WHILE LOCATIONS 2,3 & 4 ARE EXPOSED ALLOWING THE PSORALEN MOLECULES TO COVALENTLY CROSS-LINK THE (A) AND (B) DNA SEQUENCE.

FIG. 12

PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

DEHYBRIDIZATION IS CARRIED OUT TO REMOVE THE NON-CROSSLINKED SEQUENCE (B) FROM THE 1st LOCATION, WHICH NOW HAS A PERMANENT (A) SEQUENCE IDENTITY. DNA SEQUENCE (B) IS NOW COVALENTLY COUPLED TO LOCATIONS 2, 3 AND 4

FIG. 13.
PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL
A PSORALEN FUNCTIONALIZED DNA SEQUENCE (C) IS NOW HYBRIDIZED TO SEQUENCE (B),
AND THE PROCESS IS REPEATED.

FIG. 14.
PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL
LOCATIONS 1 AND 2 ARE NOW MASKED WHILE LOCATIONS 3 AND 4 ARE EXPOSED AFFECTING
THE COVALENT CROSS-LINKING OF SEQUENCES (B) AND (C).

FIG. 15

PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

DEHYBRIDIZATION IS CARRIED OUT TO REMOVE SEQUENCE (C) FROM LOCATION 2.
A PERMANENT (B) DNA SEQUENCE IS NOW PRESENT AT LOCATION 2

FIG. 16

PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

A PSORALEN FUNCTIONALIZED DNA SEQUENCE (D)
IS NOW HYBRIDIZED TO SEQUENCE (C), AND THE
PROCESS IS REPEATED.

FIG. 17

PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

FIG. 18

PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

DEHYBRIDIZATION IS CARRIED OUT TO REMOVE DNA SEQUENCE (D) FROM LOCATION 3. A PERMANENT (C) IDENTITY IS PRESENT AT LOCATION 3 AND A PERMANENT (D) IDENTITY IS PRESENT AT LOCATION 4. THIS COMPLETES THE PROCESS FOR PREPARING A FOUR ID DNA WRITE MATERIAL.

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR
PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.

Docket No. 612,404-424

Express Mail No. EV337191037US

Page 14 of 46

FIG. 19
PROCESS FOR PREPARING FOUR ID DNA WRITE MATERIAL

COMPLEMENTARY DNA SEQUENCES TO (A), (B), (C), (D)
IDENTITIES LABELED WITH FOUR RESPECTIVE FLUORESCENT
DYES CAN BE HYBRIDIZED TO DEMONSTRATE EACH IDENTITY

FIG. 20

PROCESS FOR WRITING TO FOUR ID DNA WRITE MATERIAL

↓ ↓ ↓ ↓ | | | | | | | | | | | |
HIGH ENERGY UV LIGHT (254 nm)

THIS DIAGRAM SHOWS THE CHIP SURFACE WITH (A),(B),
(C) AND (D) IDENTITIES. BY EXPOSING LOCATIONS 1 AND
3 TO HIGH ENERGY UV LIGHT AND MASKING LOCATIONS 2
AND 4, 1 AND 3 ARE RENDERED UNHYBRIDIZABLE WHILE
2 AND 4 RETAIN THE ABILITY TO HYBRIDIZE

FIG. 21

PROCESS FOR WRITING TO FOUR ID DNA WRITE MATERIAL

SELECTIVE UV EXPOSURE LEAVES LOCATIONS 1 AND 3 UNHYBRIDIZABLE
AND LOCATIONS 2 AND 4 RETAIN THE ABILITY TO HYBRIDIZE

FIG. 22.

PROCESS FOR WRITING TO FOUR ID DNA WRITE MATERIAL

ALL 4 DNA COMPLEMENTS LABELED WITH THEIR RESPECTIVE FLUORPHORES ARE
APPLIED TO THE SURFACE, ONLY LOCATIONS (B) AND (D) HYBRIDIZE THEIR
RESPECTIVE FLUORESCENT COMPLEMENTS

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 18 of 46

Fig. 23A

Fig. 23B

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR PHOTONIC AND ELECTRONIC APPLICATIONS

INVENTOR'S NAME
Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 19 of 46

Fig. 24A

Fig. 24B

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.

Docket No. 612,404-424

Express Mail No. EV337191037US

Page 20 of 46

Fig. 25A

Fig. 25B

Fig. 26A

Fig. 26B

FIG. 27A

FIG. 27B

ORIGINAL CAPTURE DNA SEQUENCE A, WHICH IS NOT FLUORESCENTLY LABELED, IS COVALENTLY ATTACHED TO THE APS LAYER ON THE CHIP SURFACE

FIG. 27C

FLUORESCENTLY LABELED COMPLEMENTARY DNA SEQUENCE TO THE (A) IDENTITY ON THE SURFACE IS HYBRIDIZED TO THE ENTIRE CHIP LEAVING THE ENTIRE SURFACE BRIGHT

FIG. 28A

1/2 OF SURFACE IS UV CROSSLINKED SO WHEN THE BODIPY TEXAS RED LABELED (A) IDENTITY COMPLEMENT IS HYBRIDIZED ACROSS THE ENTIRE CHIP ONLY THE NON-CROSSLINKED RIGHT SIDE OF THE CHIP ATTAINS COLOR

FIG. 28B

AFTER UV CROSSLINKING THE BODIPY ORANGE LABELED (B) DNA COMPLEMENT IS HYBRIDIZED LEAVING ONLY THE (B) IDENTITY LEFT SIDE OF THE CHIP BRIGHT

FIG. 28C

AFTER UV CROSSLINKING BOTH (A) AND (B) DNA COMPLEMENTS LABELED WITH THEIR RESPECTIVE FLUOROPHORES ARE HYBRIDIZED TO THE SURFACE, THE LEFT SIDE ATTAINING THE BOOIPY ORANGE AND THE RIGHT ATTAINING THE BOOIPY TEXAS RED COLOR

FIG. 29

FIG. 31

FIG. 33

FIG. 34

FIG. 35

Nanospheres arranged in Octahedron
using 3D DNA nanoconstruction techniques

Nanospheres arranged into lattice structure and bound to surface to create a 3D device

FIG. 36

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 32 of 46

FIG. 39.

NEGATIVELY CHARGED TYPE 1 NANOSTRUCTURES
MOVE TOWARD POSITIVELY BIASED MICROLOCATION

FIG. 40A

NEGATIVELY CHARGED TYPE 2 NANOSTRUCTURES ARE
INTRODUCED OVER THE ARRAY AND ACCUMULATE
ON THE POSITIVELY BIASED MICROLOCATIONS

FIG. 40C

TYPE 1 NANOSTRUCTURES ACCUMULATE
ON THE POSITIVELY BIASED MICROLOCATION
BOTH TYPE 1 AND TYPE 2 NANOSTRUCTURES ARE NOW
CLUSTERED ONTO THEIR RESPECTIVE MICROLOCATIONS

FIG. 40B

ELECTRONICALLY ASSISTED SELF-ASSEMBLY BEGINS WHEN
MICROLOCATION #1 IS BIASED NEGATIVE AND A CENTER
MICROLOCATION IS BIASED POSITIVE CAUSING THE NEGATIVELY
CHARGED TYPE 1 NANOSTRUCTURES TO MOVE TO CENTER LOCATION

FIG. 40E

TYPE 2 NANOSTRUCTURES ARE MOVED TO CENTER
LOCATION BY BIASING MICROLOCATION #8
NEGATIVE AND CENTER LOCATION POSITIVE

TYPE 1 NANOSTRUCTURES ACCUMULATE AND
HYBRIDIZE TO THE SPECIFIC MICROLOCATION
TYPE 2 NANOSTRUCTURES CONTAINING COMPLEMENTARY
DNA SEQUENCE HYBRIDIZE TO TYPE 1 NANOSTRUCTURES

FIG. 40H

Fig. 41

FIG. 43

SELF ASSEMBLY OF A DNA SELECTIVE MATRIX WITHIN
PERIMETERS CREATED BY OTHER NANOFABRICATION TECHNIQUES

FIG. 44

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR
PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 40 of 46

AFFINITY BASED SELF-ASSEMBLY SYSTEMS AND DEVICES FOR
PHOTONIC AND ELECTRONIC APPLICATIONS

Inventors: Heller et al.
Docket No. 612,404-424
Express Mail No. EV337191037US
Page 41 of 46

FIG. 46A

FIG. 46B

FIG. 46C

FIG. 46E

FIG. 46F
SPATIAL LIGHT ADDRESSING PROCESS COMPLETE

