

(B) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift [®] DE 42 01 439 A 1

PATENTAMT

- (1) Aktenzeichen: P 42 01 439.5 Anmeldetag: 21. 1.92
- Offenlegungstag: 22. 7.93

(51) Int. Cl.5: H 04 L 27/00 H 04 L 1/00

H 04 L 27/01 H 04 L 25/04 H 04 L 1/06 H 04 H 1/00 H 04 H 5/00 // H04L 27/18

(7) Anmelder:

Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, DE

(4) Vertreter:

Amersbach, W., Dipl.-Ing., 7913 Senden

② Erfinder:

Müller, Andreas, 7916 Nersingen, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> 34 18 702 C2 DE 38 05 582 A1 DE 37 36 125 A1 DE 37 30 399 A1 DE 37 13 367 A1 DE 35 39 494 A1 ΕP 01 39 514 B1 ΕP 04 23 775 A2

LO, N.W.K.;

et.al.: Adaptive Equalization and Diversity Combining for Mobile RadioUsing Inter- Polated Channel Estimates. In: IEEE Trans. Veh. Technol., USA, Vol.40, No.3, Aug. 1991, S.636-45;

- (S) Verfahren und Anordnung zur Übertragung hoher Datenraten für den digitalen Rundfunk
- Die Erfindung betrifft ein Übertragungsverfahren und eine Anordnung für den digitalen Rundfunk, insbesondere für mobile Empfänger. Mit dem erfindungsgemäßen Verfahren und der Anordnung kann der analoge FM-Rundfunk unter Beibeheitung der Bandbreite ersatzt werden. Die Bendbreite des digitalen Obernogungsschlieben wird en des bestehendes UKW Konsirecter engappüt. Mit bekennten Queilliedie die UKW Konsirecter engappüt. rungsverfahren wird ein Steree-Rundfunkprogramm mit 256 kBit/s kodiert.

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Anordnung zur digitalen Datenübertragung nach dem Oberbegriff der Patentansprüche 1, 14, 15 und 16.

Die Erfindung findet Verwendung bei der digitalen Rundfunkübertragung, insbesondere für mobile Empfänger.

Aus anderen Anwendungsgebieten, z. B. dem Mobilfunk sind gattungsgemäße Datenübertragungsverfahren bekannt (J. G. Proakis: Digital Communications, McGraw-Hill, New York), die sich jedoch aufgrund der anderen Randbedingungen, z. B. Sendeleistung, Trägerfrequenzbereich, Datenrate und Bandbreite, nicht unmittelbar auf ein Modulationsverfahren für die Rundfunkübertragung anwenden lassen.

Das erfindungsgemäße Verfahren ist sowohl für den Einsatz im konventionellen Zellennetz sowie im Gleichwellen-Netzwerk (mehrere Sendestationen strahlen auf der gleichen Trägerfrequenz ab) geeignet. Das Verfahren ist für ein Single-Programm-Per-Carrier System ausgelegt, bei dem auf einem HF-Träger ein Programm übertragen wird. Dabei wird von folgenden Randbedingungen ausgegangen.

15		
	Nutzdatenrate:	256 kBits/s (Stereo)
	Redundanz + Training:	256 kBit/s
	übertragene Datenrate:	512 kBit/s
	Bandbreite:	300 kHz
20	Spektrum-Effizienz:	1,7 Bit/s/Hz
	Trägerfrequenzbereich:	50-900 MHz
	Geschwindigkeit Empfänger relativ zum Sender:	max. 250 km/h
25	Dopplerfrequenz:	max. 200 Hz
2.5	Echolaufzeit konventionelles Netz:	max. 100 µs
	Gleichwellen-Netz:	max. 220 µs
30	Signalverzögerung durch Verarbeitung inklusive (De)-Interleaving:	max. 100 ms
30	(Delineticaving:	

Als Modulationsverfahren für die digitale Rundfunkübertragung eignet sich eine gefilterte 4 Phasenumtastung (4PSK). 4-PSK benutzt 4-wertige Symbole. Daraus folgt eine übertragene Datenrate mit einer Symbolrate von 256 kSym/s, einer Symboldauer von 3—91µs und einem Roll-off Faktor von 0.1719. Für die Impulsformung wird die Impulsantwort eines Filters verwendet. Die Autokorrelationsfunktion (AKF) der Impulsantwort des Filters ist durch ein ideales Impulssystem beschrieben. Wird ein Demodulator mit einem Matched-Filter eingesetzt, bei dem die Antwort auf einen Basisimpuls gerade die AKF ist, so ist bei der Verwendung der Impulsantwort des Filters das Ausgangssignal frei von Impulsnebensprechen, sofern keine Signal-Echos auf dem Kanal entstehen.

Die übertragenen Daten teilen sich auf in Nutzdaten, Redundanz und Trainingsfolge. Die Redundanz wird zur Fehlerkorrektur, die Trainingsfolge zur Kanalschätzung verwendet. Die Anteile am gesamten Datenstrom betragen:

Nutzdaten:	50%
Redundanz:	40%
Training:	10%

45

Die Länge der Trainingsfolge muß mindestens das Donnehe der maximalen Echnianizeit betragen. Das erfordert für konventionellen Netzbetrieb und Gleichwellen-Netzwerk unterschiedliche Rahmenstrukturen. Da die Trainingsfolge aus einer um ein Symbol verkürzten, zweimal wiederholten PN-Sequenz/Pseudo-Nolse-Sequenz) besteht, lassen sich nur bestimmte Längen für Trainingssequenzen realisieren. Die Trainingsfolge wird als Midambel, d. h. in der Rahmenmitte gesendet, da hierdurch die Kanalrückführung verbessert wird. Daraus ergibt sich beispielsweise der Rahmenaufbau im konventionellen Netz:

	Summe	601 Symbole	2.348 ms
65			
	Redundanz 2. Teil	120 Symbole	0.468 ms
	Nutzdaten 2. Teil	150 Symbole	0.596 ms
60	Training	61 Symbole	0.238 ms
	Nutzdaten 1. Teil	150 Symbole	0.586 ms
	Redundanz 1. Teil	120 Symbole	0.468 ms

und der Rahmenaufbau im Gleichwellen-Netzwerk:

Summe '	1249 Symbole	4.879 ms	
Redundanz 2. Teil	250 Symbole	0.977 ms	10
Nutzdaten 2. Teil	312 Symbole	1.219 ms	
Training	125 Symbole	0.488 ms	
Nutzdaten 1. Teil	312 Symbole	1.219 ms	5
Redundanz 1. Teil	250 Symbole	0.977 ms	

15

25

50

55

Zur Wiedergewinnung der ausgesendeten Information wird im Empfänger des Übertragungssystems das empfangene Signal demoduliert. Die äußeren Bedingungen bei der Übertragung im Mehrwege-Mobilfunksignal sind hierfür äußerst ungünstig, so daß leistungsfähige Empfangsalgorithmen erforderlich sind.

Der Erfindung liegt daher die Aufgabe zugrunde, ein digitales Übertragungsverfahren und eine Anordnung anzugeben, so daß der analoge FM-Rundfunk unter Beibehaltung der Bandbreite des bestehenden UKW-Kanalrasters ersetzt werden kann.

Die Aufgabe wird gelöst durch die im kennzeichnenden Teil der Patentansprüche 1, 14, 15 und 16 angegebenen Merkmale. Vorteilhafte Ausgestaltungen und/oder Weiterbildungen sind den Unteransprüchen zu entnehmen.

Die Erfindung wird durch Ausführungsbeispiele näher erläutert unter Bezugnahme auf schematische Zeichnungen.

Mit dem erfindungsgemäßen Verfahren und der Anordnung wird in vorteilhafter Weise erreicht, daß ein durch die Mehrwegeausbreitung bewirktes Impulsnebensprechen durch entsprechende Entzerrung mit Entscheidungsrückführung vermieden wird. Außerdem wird der durch die relative Bewegung von Sender und Empfänger auftretende Dopplereffekt, der zu einem unterschiedlichen Versatz der Trägerfrequenzen führt, durch zeitliche Nachführung der Kanalstoßantwort kompensiert. Auch die, durch die schnelle Änderung der Empfangsbedingungen auftretenden Feldstärkeschwankungen (Schwund), werden durch zusätzliche Diversifikations-Maßnahmen reduziert.

Der Aufbau des erfindungsgemäßen Demodulators ist in Fig. 1 dargestellt. Er besteht aus folgenden Komponenten:

Channel-Matched-Filter (DMF): Das kanalangepaßte Filter optimiert das Signal/Rausch-Verhältnis zu den Abtastzeitpunkten;

Decision-Feedback-Equalizer (DFE): Der Entzerrer mit Entscheidungsrückführung kompensiert die Mehrwegeausbreitung;

Channel-Estimation: Die Kanalschätzeinrichtung schätzt mit Hilfe der Trainingsfolge die Kanalstoßantwort, die von DMF und DFE benötigt wird;

Channel-Tracking: Mit der Kanalnachführeinrichtung wird die Kanalstoßantwort den zeitlichen Kanaländerungen nachgeführt

Wird ideale Synchronisation vorausgesetzt und angenommen, daß der Bittakt und die Lage der Trainingsfolge im Empfangskanal bekannt sind, so ergibt sich folgender Verfahrensablauf:

Zuerst wird mit Hilfe der Trainingsfolge die Kanalstoßantwort geschätzt. Da sich die Trainingsfolge in der Mitte des Kanmons hottnoot, mus dezu elle verdere Ballie des Balliumus zwischenessichers worden.

Aus der geschätzten Keneleteßentwert werden auschließend die DFE-Koelligienten bestimmt. Die beiden Helbrehmen des Datenrahmens werden parallel demoduliert. Dabei werden die Daten von der Trainingsfolge ausgehend zu den Rahmengrenzen hin verarbeitet. Die zweite Rahmenhälfte wird in Richtung der Zeitsechse und die erste Rahmenhälfte gegen die Zeitrichtung verarbeitet. Der Verarbeitungszyklus der Daten besteht aus:

- a) CMF-Aufruf
- b) DFE-Aufruf
- c) Symbol-Entscheidung
- d) Channel-Tracking
- e) DFE-Koeffizienten-Iteration.

Das CMF ist aus dem allgemeineren Matched-Filter ableitbar. Aus dem Datensignal d(t) wird im Sender durch Faltung mit dem Basisimpuls u(t) das Sendesignal s(t) geformt. Der Kanal wird für diese Betrachtung durch additives, weißes, gaußsches Rauschen n(t) beschrieben (AWGN-Kanal).

Es ergibt sich als Empfänger-Eingangssignal

$$x(t) - s(t) + n(t)$$
.

Das Empfangsfilter c(t) ist so zu gestalten, daß sich zum Abtastzeitpunkt das maximale Signal-zu-Rausch-Verhältnis einstellt.

Aus der Literatur (z. B. H. Wolf: Nachrichtenübertragung Springer-Verlag Berlin u.a 1982, Reihe Hochschultext) ist die Lösung bekannt:

$$c(t) = u^{\bullet}(t).$$

5

Die Impulsantwort des Matched-Filters ist gerade der zeitinvertierte konjugiert komplexe Basisimpuls. Neben der Eigenschaft, das maximale Signal-zu-Rausch-Verhältnis zu bewirken, ist das Matched-Filter dadurch gekennzeichnet, daß die Impulsantwort des verketteten Systems aus Pulsformer und Matched-Filter gerade die AKF des Basisimpulses ist. Hieraus folgen die Eigenschaften:

$$\begin{aligned} &l_{uu}(t) = u(t)^{\bullet} c(t) \\ &l_{uu}(t) \leq l_{uu}(0) \\ &l_{uu}(-t) = l_{uu}(t). \end{aligned}$$

Das Energiemaximum ist bei t = 0, der Realteil ist eine gerade, der Imaginärteil eine ungerade Funktion von t. Fig. 2 verdeutlicht den Übergang vom Matched-Filter zum CMF. Die Mehrwegeausbreitung auf dem Kanal wird jetzt berücksichtigt, indem zusätzlich ein lineares System mit der Impulsantwort ch(t) in den Signalweg eingeführt wird. Wenn man dies mit dem Pulsformer zu einem einzigen Filter h(t) zusammenfaßt, läßt sich diese Situation auf das einfache Matched-Filter Problem zurückführen. Unter der "Kanalstoßantwort" wird im folgenden immer h(t) verstanden. d. h. die Verkettung von Pulsformer und physikalischem Kanal. Für die Impulsantwort des CMF folgt aus der Matched-Filter-Lösung:

$$c(t) = h'(t)$$

Zur beachten ist, daß die Kanalstoßantwort und damit auch das CMF zeitvariant sind. Zur Einstellung des CMF ist die Kenntnis von h(t) erforderlich. Die Kanalstoßantwort ist jedoch a priori unbekannt. Man muß sich stattdessen mit einem Schätzwert der Kanalstoßantwort behelfen.

Für die Realisation des CMF ist zu beachten, daß dieses Filter kontinuierliche Signale verarbeitet. Aufgrund der Bandbreite des Basisimpulses muß mit zwei Abtastwerten pro Symbol gearbeitet werden. Am Ausgang des CMF findet die Abtastung statt, d. h. es wird nur ein Ausgangswert pro Symbol generiert.

Die erforderliche Filterlänge (Anzahl von Taps) des CMF wird durch die maximale Echolaufzeit des Kanals festgelegt. Da sich konventionelles Netz und Gleichwellen-Netzwerk hier signifikant unterscheiden, sind die Filterlängen in beiden Fällen unterschiedlich:

35 Filterlänge CMF:

45

60

Konventionelles Netz: 50 Taps Gleichwellen-Netzwerk: 120 Taps.

Die Mehrwegeausbreitung auf dem Mobilfunkkanal bewirkt Impulsnebensprechen. Die Aufgabe eines Entzerrers ist die Kompensation dieses Nebensprechens. Fig. 3 zeigt den Aufbau eines Entzerrers mit Entscheidungsrückführung (DFE). Es besteht aus je einem FIR (Finite-Impulse-Response)-Filter im Vorwärts- und im Rückwärtszweig. Die Filterkoeffizienten werden in einem iterativen Verfahren bestimmt.

Die Längen der Filter im DFE werden durch die Länge der Kanalstoßantwort bestimmt. Folgende Längen werden hier z. B. gewählt:

Länge des Filters im Vorwärtszweig des DFE:

konventionelles Netz: 25 Taps Gischwellen-Netzweit: 40 Tapa

50 Länge des Filters im Rückwärtszweig des DFE:

konventionelles Netz: 24 Taps Gleichwellen-Netzwerk: 59 Taps.

Die DFE-Filterkoeffizienten werden nach folgendem Verfahren berechnet:

Am Ausgang des CMF liegt ein Signai, das aus der Superposition von Impulsen besteht, die die Form der AKF des Basisimpulses besitzen. Dieses Signal wird im Symbolabstand abgetastet. Es wird eine fiktive Folge von Sendedaten angenommen, die nur aus einem einzigen 1-Impuls zum Zeitpunkt t-0 besteht. Dann ist die am DFE liegende Folge gerade durch die Abtastwerte der AKF des Basisimpulses gegeben:

$$l_{uu}(k) = l_{uu}(kT_s), -1 < k < 1$$

 $T_s = Symboldauer$
 $k = Wellenzahl.$

Die ideale Antwort des DFE auf dieses Eingangssignal wäre das ursprüngliche Datensignal, d. h. ein einzelner 1-Impuls bei k = 0.

Die nachlaufenden Echos des Datensignals bereiten keine Probleme bei der Entzerrung, da bereits die Entscheidung über das Sendesymbol vorliegt, deren Korrektheit für die hier angestellten Betrachtungen voraus-

gesetzt wird. Die nachlaufenden Echos lassen sich direkt vom Datensignal subtrahieren. Hierzu dient der Rückführungszweig des DFE.

Die Entzerrung der vorlaufenden Echos ist die schwierigere Aufgabe. Sie läßt sich auch im allgemeinen nicht exakt lösen, so daß hier ein Optimierungsverfahren verwendet wird. Zunächst wird das Fehlersignal, die Abweichung zwischen wahrer und idealer Antwort des DFE auf das oben beschriebene Eingangssignal, berechnet. Es wird ein iteratives Gradientenverfahren zur Minimumsuche abgewandt. Mit Hilfe dieses Gradientenverfahrens wird im Demodulator sowohl die Anfangseinstellung des DFE-Vorwärtsfilters als auch die Nachregelung zum Nachführen von Kanaländerungen durchgeführt.

Bei der Berechnung der Anfangseinstellung werden ausgehend von einem Startwert mehrere Iterationszyklen durchlaufen, solange bis eine ausreichende Konvergenz auftritt oder ein Abbruchkriterium erreicht ist.

Bei der Nachführung wird pro Symbol nur ein unvollständiger Iterationsschritt durchgeführt. Zyklisch wird jeder Koeffizient berücksichtigt, so daß sich ein Iterationsschritt effektiv über mehrere Symboldauern erstreckt. Im Demodulator wird der Algorithmus so implementiert, daß er für einen Iterationsschritt 5 Symboldauern benötigt.

Für die Verarbeitung der vorderen Rahmenhälfte im zeitinversen Betrieb nutzt der Demodulator die Eigenschaft des DMF, daß sein Ausgangssignal die Superposition von Autokorrelationsfunktionen ist. Jede AKF besitzt die Symmetrie-Eigenschaft:

 $I_{uu}(-t) = i^*_{uu}(t).$

Die zeitinvertierte AKF stimmt mit der konjugiert komplexen AKF überein. Daraus folgt, daß die Anfangseinstellung der DFE-Koeffizienten für den zeitinvers demodulierten Halbrahmen gerade das konjugiert komplexe der Koeffizienteneinstellung für den zeitrichtig demodulierten Halbrahmen ist. Das zur DFE Einstellung notwendige Iterationsverfahren muß daher nur einmal pro Rahmen durchgeführt werden. Das Ergebnis kann dann als Anfangswert für beide Halbrahmen genommen werden, indem man die konjugiert komplexen Koeffizienten für den zeitinversen Halbrahmen verwendet.

20

45

65

Zur korrekten Einstellung vom CMF und DFE wird die Kanalstoßantwort benötigt. Diese ist jedoch nicht a priori verfügbar, man muß sich mit einem Schätzwert behelfen. Die Kanalstoßantwort läßt sich schätzen, indem die Kanalstoßantwort auf ein bekanntes Trainingssignal gemessen wird. Die Kanalschätzung ist dann eine Entfaltungsoperation.

Die Entfaltungsoperation wäre am leichtesten bei einem impulsförmigen Trainingssignal durchführbar, ein solches kann jedoch aus technischen Gründen nicht zugelassen werden. Jedoch ist die Kanalschätzung nicht mit beliebigen Trainingssequenzen möglich, wie man sich leicht anhand einer Betrachtung im Frequenzbereich verdeutlicht:

Die Entfaltungsoperation wird im Frequenzbereich durchgeführt, indem das Spektrum des Empfangssignals durch das des Trainingssignals dividiert wird. An den spektralen Nullstellen des Trainingssignals ist diese Division nicht möglich. Aber auch in den Spektralbereichen, wo das Trainingssignal zwar nicht exakt Null ist, aber doch nur geringe Energieanteile besitzt, wird die Schätzung sehr störempfindlich.

Von einem geeigneten Trainingssignal wird daher gefordert, daß sein Spektrum im interessanten Frequenzbereich möglichst weiß ist. Diese Eigenschaft besitzen z. B. Pseudo-Noise(PN –) Sequenzen. Die im Demodulator verwendbaren Trainingsfolgen sind beispielsweise periodisch fortgesetzte PN-Sequenzen.

PN-Sequenz Trainingsfolge konventionelles Netz: 31 Symbole 61 Symbole Gleichwellen-Netzwerk: 63 Symbole 125 Symbole

Es können jedoch auch andere Trainingsfolgen mit ähnlichen Legenschaften eingesetzt werden.

Der Schätzalgorithmus selbst ist unahhängig von der speziellen Trainingsloige. Mathematisch handeit es sich um die Lösung eines überbestimmten linearen Gleichungssystems, dessen Lösung aus der Literatur (W. Bunse u. a.: Numerische lineare Algebra B.G. Teubner Verlag Stuttgart 1985) bekannt ist. Der Algorithmus findet die Lösung im Sinne der kleinsten Fehlerquadrate (Least-Square-Lösung). Die eigentliche Aufgabe besteht darin, das Schätzproblem auf die Lösung eines linearen Gleichungssystems abzubilden.

Das Empfünger-Eingangssignal sei mit m Abtastwerten pro Symbol abgetastet. Die Länge der Trainingsfolge sei 2n-1 Symbole, die Länge der geschätzten Kanalstoßantwort sei l < = n Symbole. Dann läßt sich die zur Trainingsfolge gehörende Folge von Empfangswerten folgendermaßen durchnumerieren

 $x_{1,1}, x_{1,2}, \dots x_{1,m}, x_{2,1}, \dots x_{2n-1,m}$ 60

und auf eine m-dimensionale Vektorfolge abbilden:

 $X = (x_1, x_2, \dots x_{2n-1}).$

Die Kanalstoßantwort bewirkt, daß die Energie eines Trainingssymbols auf 1 aufeinanderfolgende Empfangsvektoren verteilt wird. Genauso setzt sich jeder Empfangsvektor aus der Überlagerung von 1 aufeinanderfolgenden Trainingssymbolen zusammen.

Stellt man die Kanalstoßantwort wie schon das Empfänger-Eingangssignal als m-dimensionale Vektorfolge dar.

$$\varkappa = (h_1, h_2, \dots h_l)$$

so erhält man das lineare Vektorgleichungssystem

$$Dx = X$$

30

mit 2n-1 Gleichungen für 1 Unbekannte. Die aus den Trainingssymbolen di gebildete Matrix D besitzt den vollen Spaltenrang, was durch geeignete Wahl der Trainingsfolge erreicht werden kann und für PN-Folgen stets erfüllt ist. Dann besitzt das Gleichungssystem eine eindeutige Least-Square-Lösung. Diese berechnet sich zu

$$x = WX \text{ mit } W = (D^HD)^{-1}D^H$$
.

Dabei kennzeichnet der obere Index H die hermitische Matrix, d. h. die aus den konjugiert komplexen Elementen bestehende transponierte Matrix.

Bei der Kanalschätzung wird keine tatsächliche Matrixinversion durchgeführt. Vielmehr sind die Trainingssymbole vorab bekannt, so daß die Matrix W fest abgespeichert wird. Die Kanalschätzung besteht dann lediglich in der Bildung des Matrix-Vektor-Produktes und bedeutet somit den gleichen Rechenaufwand wie ein komplexes FIR-Filter mit 2n-1 Taps.

Der so gewonnene Schätzwert der Kanalstoßantwort wird anschließend noch mit einem nichtlinearen Filter gefiltert. Grund hierfür ist das Koeffizientenrauschen, denn aufgrund des auf dem Funkkanal vorhandenen Rauschens ist die geschätzte Kanalstoßantwort fehlerbehaftet.

Es hat sich gezeigt, daß bei einem langen CMF (lm > 10) sich dieses Koeffizientenrauschen in einer Erhöhung der Fehlerrate bemerkbar macht. Insbesondere Koeffizienten mit kleinen Werten sind unsicher geschätzt. Im Modulator werden deshalb nur die Werte der Kanalstoßantwort, die einen signifikanten Energieanteil besitzen, verwendet und die anderen zu null gesetzt. Dies geschieht nach folgendem Verfahren:

- Der Abtastwert der geschätzten Kanalstoßantwort mit der maximalen Leistung wird ermittelt

Empirisch hat sich der Wert v - 20 als sinnvoll erwiesen.

Durch dieses Verfahren wird nicht nur die Störfestigkeit verbessert, es wird auch der Rechenaufwand reduziert, da Multiplikationen mit den nullgesetzten Koeffizienten eingespart werden. In der Praxis verbleiben nach dem Nullsetzen nur noch ca. 25% der Koeffizienten erhalten. Entsprechend läßt sich der Rechenaufwand tatsächlich signifikant reduzieren. Dies betrifft das DMF und die Kanalnachführung.

Die Kanalstoßantwort wird einmal pro Datenrahmen geschätzt. Aufgrund des bewegten Empfängers ist sie jedoch zeitvariant. Die Änderung der Kanalstoßantwort innerhalb eines Datenrahmens ist bei höheren Fahrzeuggeschwindigkeiten so groß, daß man die geschätzte Kanalstoßantwort nicht als abschnittsweise konstant über einen Rahmen betrachten kann, sondern die Zeitvarianz berücksichtigen muß.

Hierzu dient die Kanalnachführung. Die Koeffizienten der geschätzten Kanalstoßantwort werden den Kanaländerungen nachgeführt. Dabei steht der Kanalnachführung keine a priori Information, wie etwa Trainingssymbole zur Verfügung. Deshalb wird nach dem Prinzip der Entscheidungsrückführung gearbeitet: Die vom Entscheider gelieferten mutmaßlichen übertragenen Daten werden anstelle der tatsächlich übertragenen Daten verwendet, so daß sie den Charakter einer vorab bekannten Information erhalten.

Die Entscheidungsrückführung wird mit der Least Mean Sauare Methode durcheefehrt (e. Freshim Adaptive Pilter Theory Prentice-Hall, Englewood Cliffs. 1986, Seiten 216 - 459).

Der Demodulator selbst besitzt keine Moglichkeit zur Bekämpfung von Schwund, d. h. starker Feldstürkeembrüche.

Um Maßnahmen gegen Schwund zu finden, muß berücksichtigt werden, daß der Schwund eine Funktion des Ortes und der Frequenz ist. Setzt man voraus, daß sich der Empfänger bewegt, ist der Schwund also indirekt auch eine Funktion der Zeit.

Schwundeffekte kann man nun mit redundanter Übertragung (Kanalkodierung) bekämpfen. Dabei ist es jedoch wichtig, die Redundanz so zu übertragen, daß sie einem möglichst unabhängigen Schwund-Einfluß ausgesetzt ist, d. h. zu einem anderen Zeitpunkt oder auf einer anderen Frequenz als die zu schätzende Information

Von letzterer Möglichkeit machen Paralleltonverfahren und Frequency-Hopping-Systeme Gebrauch, für das erfindungsgemäße Übertragungsverfahren ist sie nicht geeignet.

Die erste Möglichkeit, d. h. die Übertragung von Nutzdaten und Redundanz zu genügend weit voneinander entfernten Zeitpunkten, wird durch Einsatz eines Interleavers/Deinterleavers ausgenutzt. Durch das Interleaving werden Bündelfehler vermieden und eine Fehlerkorrektur ermöglicht. Die hierbei auftretende Signalverzögerungszeit ist aufgrund von Anforderungen durch den übertragenen Dienst auf 100ms begrenzt.

Zur Bekämpfung von frequenzabhängigem Schwund ist im beanspruchten Verfahren der optionale Einsatz von mehr als einer Antenne vorgesehen. Dadurch wird das gleiche Signal an zwei verschiedenen Orten mit unabhängigem Schwund empfangen. Hierzu ist ein genügend großer Antennenabstand erforderlich, der sich beim Einsatz im Kraftfahrzeug auch hinreichend gut konstruktiv realisieren läßt.

Die Kombination der Antennensignale im Demodulator erfolgt, wie in Fig. 4 gezeigt. Jeder Signalweg enthält sein eigenes CMF. Dadurch werden die Antennensignale phasenrichtig bezogen auf das Nutzsignal aufaddiert, gleichzeitig wird jedes Signal entsprechend seiner Leistung gewichtet.

Der zusätzliche Rechenaufwand liegt in den zusätzlichen DMFs und den dazugehörigen Algorithmen für Kanalschätzung und -nachführung. Der DFE ist hingegen nur einmal vorhanden.

Durch den Übergang von einer auf zwei Antennen ist eine Verbesserung der Bitfehlerrate um ca. 3 dB meßbar.

Patentansprüche

1. Verfahren zur Übertragung hoher Datenraten über einen Mehrwege-Mobilfunkkanal für den digitalen Rundfunk, bei dem eine Datenfolge aus Nutzdaten, Redundanzen und Trainingsfolge verwendet wird, wobei die Trainingsfolge in der Mitte des Datenrahmens übertragen wird, dadurch gekennzeichnet

10

25

35

45

55

- daß die Datenfolge im Empfänger derart demoduliert wird, daß mit Hilfe der Trainingsfolge die Kanalstoßantwort geschätzt wird, daß mit der geschätzten Kanalstoßantwort die Mehrwegeausbreitung kompensiert wird und daß die geschätzte Kanalstoßantwort den zeitlichen Kanaländerungen nachgeführt wird, und
- daß nach der Demodulation der Schwund durch zeitliche und räumliche Diversifikationsmaßnahmen reduziert wird.
- 2. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß im Empfangsfilter die Mehrwegeausbreitung auf dem Kanal als Impulsantwort eines linearen Systems in den Signalweg eingeführt wird und ein kanalangepaßtes Filter erzeugt wird.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Impulsnebensprechen, das durch die Mehrwegeausbreitung hervorgerufen wird, durch einen Entzerrer mit Entscheidungsrückführung kompensiert wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das am Ausgang des kanalangepaßten Filters anliegende Signal im Entzerrer im Symbolabstand abgetastet wird.
- 5. Verfahren nach den Ansprüchen 3 und 4, dadurch gekennzeichnet, daß die bei der Mehrwegeausbreitung auftretenden vorlaufenden Echos durch ein iteratives Gradientenverfahren entzerrt werden, derart, daß die Abweichung zwischen wahrer und idealer Antwort des Entzerrers auf das Eingangssignal bestimmt wird, und daß das Datensignal dadurch korrigiert wird, daß sowohl die Anfangseinstellung des Vorwärtsfilters des Entzerrers als auch die Nachregelung zum Nachführen der Kanaländerungen korrigiert wird.
- 6. Verfahren nach den Ansprüchen 3 und 4, dadurch gekennzeichnet, daß die bei der Mehrwegeausbreitung auftretenden nachlaufenden Echo des Datensignals im Rückführungszweig des Entzerrers durch Substration vom Datensignal kompensiert werden.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schätzung der Kanalstoßantwort mit einem Least-Square-Verfahren durchgeführt wird, derart, daß das lineare Vektorgleichungssystem

Dx = X

mit D Matrix der Trainingssymbole, X Vektor des Empfänger-Eingangssignals und x Vektor der Kanalstoßantwort, durch den Ansatz

x = WX

mit $W = (D^HD)^{-1}D^H$ und D^H hermetische Matrix von D gelöst wird, wobei X die geschätzte Kanalstoßantwort bildet.

- A Verfalovic dach Ausgebeit 7 (balous) bei Kennedelinger hall hekening Treinbieschilben verswender werden.
 daß damir die Martis W hestimmt wird und daß die Schalbung der Kanalstoßentwert dingb das Musels.
 Vektor-Produkt z = W X erfolgt.
- 9. Verfahren nach Anspruch 8. dadurch gekennzeichnet, daß als Trainingsfolgen periodisch fortgesetzte Pseudo-Noise Sequenzen verwendet werden.
- 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schätzwert der Kanalstoßantwort mit einem nichtlinearen Filter gefiltert wird und lediglich die Werte der Kanalstoßantwort für die Übertragung berücksichtigt werden, die einen signifikanten Energieanteil besitzen.
- 11. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die geschätzte Kanalstoßantwort den zeitlichen Kanaländerungen über eine Entscheidungsrückführung nachgeführt wird, und daß die Entscheidungsrückführung mit einem Least-Mean-Square-Verfahren durchgeführt wird.
- 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schwund durch redundante Übertragung verringert wird, in dem die zu schützende Datenfolge zu einem anderen Zeitpunkt als die Redundanz übertragen wird.
- 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schwund durch den Einsatz von mehr als einer Antenne vermindert wird, indem das gleiche Datensignal an zumindest zwei verschiedenen Orten mit unabhängigem Schwund empfangen wird.
- 14. Demodulator für ein Verfahren nach den vorhergehenden Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß der Demodulator zumindest ein kanalangepaßtes Filter, einen Entzerrer mit Entscheidungsrückführung, eine Kanalschätzeinrichtung und eine Kanalnachführeinrichtung enthält.
- 15. Übertragungssystem für ein Verfahren nach den vorhergehenden Ansprüchen 1 und 13, dadurch ge-

kennzeichnet, daß der Empfänger mindestens zwei Antennen besitzt, mit denen das gleiche Datensignal an zwei verschiedenen Orten mit unabhängigem Schwund empfangen wird.

16. Übertragungssystem für ein Verfahren nach den vorhergehenden Ansprüchen 1 und 12, dadurch gekennzeichnet, daß der Empfänger eine Interleaver/Deinterlearer-Einrichtung enthält, mit der die Übertragung von Nutzdaten und Redundanz zeitlich getrennt durchgeführt wird.

Hierzu 2 Seite(n) Zeichnungen

Nummer: int. Ci.⁵:

Offenlegungstag:

DE 42 01 439 A H 04 L 27/00

22. Juli 1993

FIG. 1

FIG. 2

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 42 01 439 A1 H 04 L 27/00 22. Juli 1993

Vorwärtszweig

Rückwärtszweig

