Single Qubit Clifford Sequences Experiment using

Gate Insertion and Pulse Stretching

Meeting with Professor Schnetzer September 9, 2020

Reproducing the following figure from Kandala paper

FIG. 2. Error mitigation of random single-qubit and two-qubit circuits a Expectation value of the ground state projector for identity equivalent single-qubit Clifford sequences for stretch factors c=1 (red), 2 (orange), 3 (yellow), 4 (green) and the corresponding Richardson extrapolations to first (light blue), second (dark blue) and third order (violet). b Experimental implementation of trajectories described by Eq. 3, represented on a Bloch sphere for stretch factors c=1 (red), 2 (orange), 3 (green) and the and the corresponding first-order Richardson extrapolation (blue). The ideal theoretical trajectory is one that takes the qubit from its ground state to its excited state along the surface of the Bloch sphere. c Expectation value of the ZZ parity for identity equivalent two-qubit Clifford sequences applied on a Bell State for stretch factors c=1 (red), 1.5 (green) and the corresponding 1st order Richardson extrapolations (dark blue). The color density plots of $\bf a$, $\bf c$ represent histograms of outcomes of 100 numerical experiments obtained by bootstrapping of each experimental data point.

Noise Stretch Factors: 1,2,3,4

Gate Insertion

Pulse Stretching

Noise Stretch Factors: 1, 1.1, 1.2, 1.3

Gate Insertion

Pulse Stretching

Methods

Gate Insertion

- For a given gate length x:
 - Generate x Clifford gates adding up to an identity
 - For a given scale factor c:
 - Use Random Identity Insertion Method (after every gate in the circuit, add x identities where x is sampled from a Poisson distribution with mean (c-1)/2

Pulse Stretching

- For a given gate length x:
 - Generate x Clifford gates adding up to an identity
 - For a given scale factor c:
 - Each U3 gate in the circuit has some associated DRAG pulse (Derivative Removal by Adiabatic Gate)
 - Thus pulse is a function of duration, amplitude and sigma (width of Gaussian)
 - To stretch the pulse,
 - New Duration = c*duration
 - New amp = amplitude/c
 - New sigma = c*sigma