NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

EVALUATION OF THE BOEING PAN AIR TECHNOLOGIES CODE (A502I) THROUGH PREDICTION OF SEPARATION FORCES ON THE GBU-24

by

Matthew A. LeTourneau

March, 1996

Thesis Advisor:

Max F. Platzer

Approved for public release; distribution is unlimited.

19960719 009

DTIC QUALITY INSPECTED 4

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

	REPORT D	OCUM	ENTATION 1	PAGE		F	orm Approv	ved OMB No. 0704-0188	1
data or an Oper	c reporting burden for this collection sources, gathering and maintaining the yother aspect of this collection of in ations and Reports, 1215 Jefferson E action Project (0704-0188) Washing	he data needed, a nformation, inclu Davis Highway, S	and completing and reviewing uding suggestions for reducin	g the collection of this burden.	n of information to Washington	. Send co	omments reg	garding this burden estima	ing ate ation
1.	AGENCY USEONLY (Leave blank) 2. REPORT DATE March 1996 Master's The							OATES COVERED	
4.	4. TITLE AND SUBTITLE EVALUATION OF THE BOEING PAN AIR TECHNOLOGIES CODE (A502I) THROUGH PREDICTION OF SEPARATION FORCES ON THE GBU-24 5. FUR						FUNDING	GNUMBERS	
6.	AUTHOR(S) LeTourneau, Matthew, A								
7.	PERFORMINGORGANIZATIONNAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey CA 93943-5000							MINGORGANIZATI NUMBER	ON
9.	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)							RING/MONITORING REPORT NUMBER	
11.	SUPPLEMENTARY NOTES official policy or positi							do not reflect th	ıe
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.						DISTRIB	UTIONCODE		
dete three rect agree a su	ABSTRACT (maximum 200) The Boeing PAN AIR ermination of separation ee problems for which of tangular, parabolic arc element is found in all cubsonic case and a superiments for low angle.	Technolo on forces of other soluti wing and a cases. A50 ersonic cas	n ordnance. To the ions and experime a delta wing at both 22i is then applied e. Good agreemen	is end, A ntal data h subsoni to the GI	502i is first are availance and super BU-24's be	st assoble, i. erson	essed by e. stead ic cond n two c	y applying it to ly flow past a litions. Good configurations fo	
14.	SUBJECT TERMS A502i, Panel Methods, Potential FLow, Geometry Modelling, GBU-24 15. NUMBER OF PAGES 116								
							16	PRICECODE	
17.	SECURITY CLASSIFICA-	18. SECU	RITY CLASSIFI-	19. SEC	CURITY CLA	SSIFIC	A- 20	. LIMITATIONOF	

NSN 7540-01-280-5500

TION OF REPORT

Unclassified

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

UL

ABSTRACT

TIONOF ABSTRACT Unclassified

CATION OF THIS PAGE

Unclassified

Approved for public release; distribution is unlimited.

EVALUATION OF THE BOEING PAN AIR TECHNOLOGIES CODE (A502I) THROUGH PREDICTION OF SEPARATION FORCES ON THE GBU-24

Matthew A. LeTourneau Lieutenant, United States Navy B.S., The George Washington University, 1988

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1996

Author:	Matthew a. TeTamer				
	Matthew A. LeTourneau				
Approved by:	Mas F. Plote				
	Max F. Platzer, Thesis Advisor				
	Email H. TUNCER				
	Ismail Tuncer, Second Reader				
	Daniel & Collens				
	Daniel J. Collins, Chairman				
	Department of Aeronautics and Astronautics				

ABSTRACT

The Boeing PAN AIR Technologies code (A502i) is investigated to explore its suitability for determination of separation forces on ordnance. To this end, A502i is first assessed by applying it to three problems for which other solutions and experimental data are available, i.e. steady flow past a rectangular, parabolic arc wing and a delta wing at both subsonic and supersonic conditions. Good agreement is found in all cases. A502i is then applied to the GBU-24's being in two configurations for a subsonic case and a supersonic case. Good agreement is found with data obtained from wind tunnel experiments for low angles of attack.

٧i

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	OVERVIEW OF THE A502i CODE	3
	A. THEORY	3
	B. GENERAL A502i USAGE	9
	C. GEOMETRY MODELLING. 1. The Parabolic Arc Airfoil. 2. The Deltawing. 3. GBU-24. 4. The F-14. 5. Combination Geometries.	12 13 15
	D. GRAPHICS VISUALIZATION	24
III.	DATA EXTRACTION	27
IV.	RESULTS OF A502i COMPUTATIONS	29
	A. PARABOLIC ARC AIRFOIL DISCUSSION	29
	B. DELTAWING DISCUSSION	31
	C. GBU-24 FREE-STREAM (NO CANARDS) DISCUSSION 1. Subsonic Case (M=0.8)	35
	D. GBU-24 FREE-STREAM (WITH CANARDS) DISCUSSION 1. Subsonic Case (M=0.8)	38
	E. F-14 DISCUSSION	42
	F. POST-PROCESSING DISCUSSION	42
V.	SUMMARY AND CONCLUSIONS	47
APPE	NDIX A. GBU-24 OUTPUT FILE (INPUT FILE PORTION)	49
APPE	NDIX B. GBU-24 OUTPUT FILE (EDGE ANALYSIS)	71
APPE	NDIX C. GBU-24 OUPUT FILE (UNIT NORMALS)	85

APPENDIX D. GBU-24 OU	TPUT FILE (SOLUTION DATA)8
LIST OF REFERENCES.	103
INITIAL DISTRIBUTION	LIST10

ACKNOWLEDGEMENT

The author wants to thank Dr. Alex Cenko of NAWC/AD Warminster whose assistance, guidance and tutelage made this thesis possible.

I. INTRODUCTION

In the past, ballistic trajectory determination for manual or computer predicted ordnance delivery from an aircraft was determined through measurement of separation forces on the piece of ordnance via wind tunnel or captive carry measurements. The advent of panel method codes using linearized potential theory, such as A502i, or its full potential version TranAir, allow for a cheaper and safer method of predicting separation forces. Furthermore, A502i allows for any arbitrary configuration to be modelled within the limitations of the number of panels and networks allowed and excluding transonic flow.

The purpose of this work was to determine the separation forces on a GBU-24 carried by an F-14 on stations 3 or 6 or both. It was also the purpose of this work to provide an analysis of the code itself to see if it is a viable tool for the study of flow characteristics over arbitrary wing configurations for use in the Naval Postgraduate School's (NPS) Department of Aeronautics and Astronautics. The majority of the work was conducted on the NPS computer systems. The Department of Aeronautics and Astronautics Silicon Graphics Incorporated (SGI) workstations were utilized for most of the input files as well as the execution of the code. Due to the amount of disk space required, storage of the output files took place on the NPS Computer Center's Y-MP EL98 Cray computer. The bulk of the GBU-24 data was calculated using the SGI workstations at the Naval Air Warfare Center in Warminster.

The scope of this analysis was to understand the capabilities of the A502i code. The approach was to validate A502i against existing data and linear theory. The code was run for three different geometries under assorted Mach and AOA conditions. Comparisons were made for each of the geometries.

II. OVERVIEW OF THE A502i CODE

The A502i code is used to computationally analyze inviscid subsonic or supersonic flows about arbitrary configurations. The code differs from other panel methods in that it is a higher order panel method; that is, the singularity strengths are not constant on each panel. A502i solves the linearized potential flow boundary-value problem at subsonic and supersonic Mach numbers.

The aerodynamic solution provides surface flow properties (flow directions, pressures, Mach number), configuration forces and moments, sectional forces and moments, and pressures. Additionally, A502i calculates flow properties in the flow-field points and flow-field streamlines. Results are limited to subsonic and supersonic cases (transonic cases excluded) with attached flow. Results are not usually applicable to cases where viscous effects and separation are dominant.

A. THEORY

The basic equations describing the flow of a viscous, compressible, heat-conducting fluid are the Navier-Stokes equations. These are:

(a) The continuity equation,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = \frac{\partial \rho}{\partial t} + \sum_{i=1}^{3} \frac{\partial (\rho V_i)}{\partial x_i} = 0$$
 (2.1)

where $\nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})$ is the gradient operator with respect to the location vector $\vec{x} = (x_1, x_2, x_3)$, and where the conventional index notation is used instead of $\vec{x} = (x, y, z)$. In addition, t is time, $\rho(\vec{x}, t)$ is the density and $\vec{V}(\vec{x}, t)$ is the velocity vector, with components $\vec{V} = (V_1, V_2, V_3)$.

(b) The conservation of momentum equation,

$$\frac{\partial}{\partial t}(\rho V_j) + \sum_{i=1}^{3} \frac{\partial}{\partial x_i}(\rho V_i V_j) = \frac{-\partial p}{\partial x_j} + \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \tau_{ji} + \rho f_j \quad (j = 1, 2, 3)$$
(2.2)

where τ_{ij} is the deviatoric portion of the stress tensor which vanishes for a frictionless fluid, $\vec{f}(\vec{x},t)$ is an external body force per unit mass exerted on the fluid, and $p(\vec{x},t)$ is the pressure.

(c) The conservation of energy equation

$$\frac{\partial}{\partial t} (\rho e + \frac{1}{2} \rho |\vec{V}|^{2} + p) + \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} [(\rho e + \frac{1}{2} \rho |\vec{V}|^{2} + p)V_{i}]$$

$$= \frac{\partial p}{\partial t} + \sum_{i,m} \frac{\partial}{\partial x_{i}} (\tau_{im} V_{m} + k \frac{\partial T}{\partial x_{i}}) + \rho \sum_{i} f_{i} V_{i}$$
(2.3)

where $e(\vec{x},t)$ is the internal energy of the fluid, k is the coefficient of heat conductivity for the fluid, and $T(\vec{x},t)$ is the temperature.

(d) The equation of state

$$f(\rho, p, T)=0 \tag{2.4}$$

where the function f depends on the type of fluid. The derivations of these equations can be found in Refs. 1,2 and 3.

The Navier-Stokes equations can be simplified by the neglect of viscosity, which is equivalent to setting the deviatoric stress tensor to zero. Combining the momentum and continuity equations yields

$$\rho \frac{dV_j}{dt} = -\frac{\partial p}{\partial x_j} + \rho f_j \quad j = 1, 2, 3$$
 (2.5)

where the convective derivative operator is defined as

$$\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + \sum_{i} V_{i} \frac{\partial}{\partial x_{i}}$$

Equation (2.5) is referred to as Euler's equation. The continuity and energy equations can

Equation (2.5) is referred to as Euler's equation. The continuity and energy equations can be reduced to

$$\rho \frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{1}{2} \left| \vec{\mathbf{V}} \right|^2 \right) = -\vec{\mathbf{V}} \cdot \nabla \mathbf{p} + \rho \vec{\mathbf{V}} \cdot \vec{\mathbf{f}}$$
 (2.6)

and the rate of increase of heat per unit mass is given by

$$q = \frac{1}{\rho} \nabla \cdot (k \nabla T) = \frac{d\rho}{dt} + p \frac{d}{dt} \left(\frac{1}{\rho}\right)$$
 (2.7)

Equations 2.5, 2.6 and 2.7 can be reduced to a single equation when four further assumptions are made. First, assume isentropic flow, thus

$$q=0$$
 (2.8)

Second, assume irrotationality

$$\nabla \,\mathbf{x}\,\vec{\mathbf{V}} = 0 \tag{2.9}$$

which allows for the introduction of the potential function [Refs 2,3]

$$\nabla \Phi = \vec{V} \tag{2.10}$$

Third, assume the existence of a freestream potential Φ_{∞} , whose gradient is the uniform velocity \vec{V}_{∞} attained at points sufficiently distant from the disturbance being analyzed, and thus write

$$\phi = \Phi - \Phi_{m} \tag{2.11}$$

and

$$\vec{\mathbf{V}} = (\mathbf{u}, \mathbf{v}, \mathbf{w}) = \nabla \Phi = \nabla \Phi_{\mathbf{w}} + \nabla \phi = \vec{\mathbf{V}}_{\mathbf{w}} + \nabla \phi$$
 (2.12)

The quantities ϕ and \vec{v} are called the perturbation potential and velocity [Ref 3]. Fourth, assume that

$$\left|\vec{\mathbf{v}}\right|^2 \ll \mathbf{a}_{_{\infty}} \tag{2.13}$$

everywhere, where a_o is the freestream speed of sound.

Based on these four assumptions, the unsteady potential equation is obtained [Refs 1,3]:

$$(1 - M_{\infty}^{2})\phi_{xx} + \phi_{yy} + \phi_{zz} - 2M_{\infty}^{2}\phi_{xt} - M_{\infty}^{2}\phi_{tt}$$

$$= M_{\infty}^{2} \left[\frac{1}{2} (\gamma - 1)(2u + 2\phi_{t} + |\vec{v}|^{2}) \nabla^{2}\phi + (2u - u^{2})\phi_{xx} + v^{2}\phi_{yy} + 2vw\phi_{yz} + w^{2}\phi_{zz} + 2(1 + u)(v\phi_{xy} + w\phi_{xz}) + 2(uu_{t} + vv_{t} + ww_{t}) \right]$$

$$(2.14)$$

Assuming the flow conditions do not change with time yields the steady non-linear potential equation.

$$(1 - M_{\infty}^{2})\phi_{xx} + \phi_{yy} + \phi_{zz}$$

$$= M_{\infty}^{2} \left[\frac{1}{2} (\gamma - 1)(2u + |\vec{v}|^{2}) \nabla^{2} \phi + (2u + u^{2})\phi_{xx} + v^{2}\phi_{yy} + 2vw\phi_{yz} + w^{2}\phi_{zz} + 2(1 + u)(v\phi_{xy} + w\phi_{xz}) \right]$$
(2.15)

When M_m=0, equation (2.15) reduces to Laplace's equation,

$$\nabla^2 \phi = 0 \tag{2.16}$$

For the case of $M_{\infty} \neq 0$, the following is supposed,

$$\mathbf{M}_{_{\infty}}^{2} |\vec{\mathbf{v}}| \ll 1 - \mathbf{M}_{_{\infty}}^{2} \tag{2.17}$$

$$\mathbf{M}_{\infty}^2 |\vec{\mathbf{v}}| \ll 1 \tag{2.18}$$

which are small perturbation assumptions [Refs. 1,2]. With these assumptions the steady non-linear potential equation reduces to the Prandtl-Glauert equation [Ref 1]:

$$(1 - M_{x}^{2})\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$$
 (2.19)

Through a coordinate transformation [Refs. 1,2,3], the Prandtl-Glauert equation can be rewritten as:

$$s\phi_{\bar{x}\bar{x}} + \phi_{\bar{v}\bar{v}} + \phi_{\bar{z}\bar{z}} = 0 \tag{2.20}$$

where when s=1, it is the subsonic case and Laplace's equation applies and when s=-1, it is the supersonic case and the wave equation applies. Applying Green's third identity [Ref. 1] yields the following integral equation,

$$\phi(P) = -\frac{1}{4\pi} \int_{S} \int \left[\frac{\sigma}{R} - \mu \hat{\mathbf{n}} \cdot \nabla \frac{1}{R} \right] dS$$
 (2.21)

where σ represents the source strength and μ represents the doublet strength. When supplemented with boundary conditions, it is equation (2.21) that A502i solves.

A502i solves equation (2.21) through a discretization process. The general idea of the process falls into two parts. The first is developing finite dimensional approximate representation formulas for the singularity functions, which creates a system of equations with unknown coefficients, λ_i . The second part involves solving the set of equations for all λ_i . This allows for completely determining the source and doublet functions. Then, by virtue of equation (2.21), the potential function $\phi(P)$ is determined for all points P, solving the problem.

The features of A502i which distinguish it from predecessors are three-fold. The first is a feature known as "continuous geometry", the second is linear source and quadratic doublet variation, the third is continuity of doublet strength.

Most panel methods approximate the configuration geometry with panels whose planform is a quadrilateral. Thus, if the panels themselves are planar, only a small class of configurations (such as cylinders and flat wings) can be described without gaps being left between panels. These gaps are generally small, except for highly twisted surfaces. The

gaps cause little numerical error in subsonic flow, but in supersonic flow, the cumulative effect of the gaps is serious [Ref. 1]. The problem is not associated with leakage of flow through the gaps, but with the doublet strength jumping abruptly from a non-zero value to zero at a panel edge which does not exactly meet the adjacent edge. In A502i, gaps are closed by means of panels which are comprised of several planar regions.

The feature of linear source and quadratic doublet variation is what makes A502i a higher order panel method. The basis function corresponding to a source parameter is locally linear, while the basis function corresponding to a doublet parameter is locally quadratic. This is what allows for A502i to find supersonic solutions. Numerical solution of the wave equation is far more sensitive to the numerical idiosyncracies of a panel method than is the solution of Laplace's equation for subsonic flow. Experimental evidence [Ref. 1] indicates that exact surface analysis is not feasible in supersonic flow without doublet continuity, thus the potential for numerical error is greatly reduced by requiring the doublet singularity strength to be continuous across panels.

B. GENERAL A502i USAGE

The use of the A502i code consists of generating an input file, which can be arbitrarily named, and which contains the information defining the geometry of the configuration, flow field points of interest, the flow conditions and wakes. The process of building a geometry is difficult in that A502i is particular about its input format. Simple configurations, such as a rectangular, planform wing can be modelled manually, but more complex structures require a pre-processing program, such as MACGS, where a geometry can be graphically built. MACGS will output a data file in a format that, with minor modifications, via another pre-processing program that can move the data from three columns to six columns, will be readily usable by A502i. Currently, the school does not have a copy of MACGS, but it can be acquired through McDonnell-Douglas. To complete

this thesis, MACGS was used on the SGI workstations at NAWC Warminster. Wakes also must be constructed in the same manner as the structure to be analyzed. More detailed instructions on the specifics of wakes and surface geometries can be found in Ref. [4]. Appendix A is a portion of an output file, but lines 1 thru 1120 are an exact duplicate of the input file.

1. Running A502i with an Existing Executable

Assuming an A502i executable file (e.g., A502) has already been placed in a user executable directory (e.g., /usr/local/bin), the only other necessary items needed to produce a set of A502i output files is the input file and a large amount of storage space. Anything modelled with more than one thousand panels total will use more than one hundred mb of disk space. If the maximum number of panels (20,000) is used, the disk space required will be on the order of 2 gb.

To run A502i, enter after the UNIX prompt:

A502 <input file > output file

Prior to running the code, it is highly recommended that a Cray account be opened and linked to the department's SGI workstations. This is done by assigning the same user i.d. number to the Cray account as is assigned to the account with the department. User i.d. numbers can be changed by the computer center at the user's request. This is required due to the limited disk space available to individual accounts in the department. Once an account is opened, log on to a department workstation, change directories to an existing Cray directory, for example (after the UNIX prompt):

cd /jedi/d1/maletour

Transfer the input file to the Cray directory and execute the code. The screen will display what portion of the code it is performing and how long it took to perform each portion in CPU time. The code outputs numerous files in addition to the arbitrarily named output file.

The two output files of interest, in the vast majority of cases, are the arbitrarily named output file and the ft13 file. In order to run another solution all output files must be deleted or renamed prior to re-executing the code. Relevant results should not be kept on the Cray account as files on disks d1, d2 and u1 are considered temporary storage and subject to erasure after a period of time.

2. Creating an A502i Input File

The input file, which can be arbitrarily named, consists of two portions, the largest being the geometry data. Appendix A is a complete recreation of the input file for the GBU-24 with canards. The file begins with line 1, \$TITLE, and ends with line 1120, \$END. The line numbers are for reference only and are not part of the actual input file. The first portion consists of creating the initial conditions, i.e., the free-stream Mach number and angle of attack, the type of analysis to be performed, i.e., solution or datacheck, what types of output that are to be included in the arbitrarily named output file, and reference points to be used in calculating forces and moments. The geometry data consists of the points that bound each panel, that in turn belong to a specific group of panels that make up a network. The overall structure being modelled consists of a series of networks. A502i can run up to 150 networks and or 20,000 panels with a limit of 8,000 panels per network. Referencing Appendix A, line 28 represents the first network of the model, a canard. Line 29 represents the number of networks that will be classified under this \$POINTS statement. Line 30 indicates what kind of surface the network will be, a three-dimensional surface with flow properties to be calculated, a wake and a base are several examples. Line 31 is the number of y points and the number of x points respectively that make up the grid of that network. Line 32 is where the panel points start. Reference 4 contains detailed instructions on the options and meaning of each of the nongeometry inputs, including some capabilities not shown in Appendix A.

Two types of solutions can be run, a datacheck and a full solution. Reference 4 explains how to enter either one into the input file. The datacheck only analyzes the geometry. This can be accomplished in a matter of seconds for a simple geometry as it is only running the first several portions of the code. The full solution can take a couple of hours for a geometry of the size of 4,000 panels. The datacheck should be run once the geometry has been modelled. It will check for any panel edges that do not abut properly, and when column 4 of line 20 in Appendix A is a 1, the datacheck will list the unit normal vectors, which must be facing outward. The datacheck will also see if the wakes are attached properly. A502i is capable of giving warnings both on-screen and in the arbitrarily named output file when an edge or a wake is not modelled properly, but it only lists the unit normal vectors. The directions of the vectors must be manually checked by the user. The full solution performs the datacheck first, so the data is repeated in the arbitrarily named output file. Appendix B is a portion of the output file that contains the summary of facing surfaces. Each panel edge is looked at to see what it abuts against. Sections such as wingtips, leading edges of a flat plate or any surface that does not need a wake attached, but is unabutted to any other panel on that edge will draw probable error messages or warnings from the code. The user must ensure that the edge is not supposed to abut against anything or need a wake attached. If that is the case, the warnings may be ignored. Appendix D is the first page of the portion of the output file that lists the unit normal vectors. The three columns under zc are the x-y-z coordinates of the given panel's center. The three columns under znc are the x-y-z coordinates of the unit normal vector. In most cases, when the y coordinates are of the same sign, then the unit normal vector is pointing outward.

C. GEOMETRY MODELLING

Five geometries needed to be modelled, each of increasing complexity. Modelling proved to be the most difficult task, in that A502i is a FORTRAN code and is very format sensitive, but the sheer number of points that need to be generated can take a lot of time and the order those points are listed in the input file is what determines whether or not the shape is correctly modelled. Of the five geometries modelled, none were done completely manually. A spreadsheet was used for generating the parabolic arc airfoil and the deltawing since those structures can be constructed out of one network, excluding wingtips and wakes, and the surface can be defined by a mathematical function. The bombs and the F-14 required the use of MACGS to be properly modelled. MACGS is indifferent as to the order that geometries are built, and often doesn't require many coordinate inputs if building a model on top of an existing IGS file. The output file from MACGS is automatically formatted and the points placed in the appropriate order for A502i to understand. Although, the order may be reversed where the unit outward normal vector is concerned. MACGS has the ability to output files in several different panel method code input formats, including PMARC. Reference 4 gives detailed instructions on how to properly order points to build a group of networks that will model a geometry. A502i uses a right-handed coordinate system that is similar to an aircraft body axes. When put in terms of a wing, the x axis is positive from leading edge to trailing edge. The z axis is positive up and the y axis is positive out the right wing

1. The Parabolic Arc Airfoil

The parabolic arc airfoil is the simplest of all the geometries. The airfoil has a chord of five and a span of ten. The maximum thickness is .15. The model consists of approximately 600 panels, including the wake and wingtips. A spreadsheet was used to develop the geometry portion of the input file. Line 32 of Appendix A demonstrates the

format that the spreadsheet used. Rows consist of two points, with coordinates x1, y1, z1, x2, y2, z2 using a format of 6F10.0. The chord was divided into 25 points (x coordinate) from trailing edge to leading edge and then another 25 points from leading edge to trailing edge (bottom half). The span was divided into 12 points (y coordinate) from left to right. Due to the symmetry of a rectangular planform, the y coordinate was constant along the 50 x coordinates that constituted a chordwise cross-section. To attain a maximum thickness of .15 the formula,

$$z = .3 * (\frac{x}{c} - \frac{x}{c^2})$$
 (2.22)

was utilized to generate the values of the z coordinates. The wingtips simply connect the x coordinate on the top side with it's symmetrical counterpart on the bottom side. Due to a trailing edge composed of a straight line, the wake is modelled by a single panel that spans the trailing edge and has a length aft of 100. Figure 2.1 shows the panel distribution across the top surface of the parabolic arc airfoil, where the thickness is represented by the color scheme. A panel and a point are numbered to show how they were entered into the input file.

2. The Deltawing

The deltawing represented a step up in complexity over the parabolic arc airfoil. The chordwise cross-section is parabolic, while the spanwise cross-section is linear. The procedure for building the geometry on a spreadsheet was the same as that for the parabolic arc airfoil, only the chord length is not constant along the span. For simplicity in design, the number of panels per column of panels is constant on the deltawing, as on the parabolic arc airfoil. This means an increasing panel density in the direction of the wing tip. The wake is modelled the same as the airfoil. The right wingtip ended in a point, so no extra panelling was needed to close any gaps. The symmetry of the deltawing allowed for

Figure 2.1 Parabolic Arc Panel Distribution

further simplification and reduction of the code's run time by only modelling from the centerline to the right tip. A502i allows the user to stipulate whether there is symmetry in the x-z plane and or the x-y plane (see line 5 and 6 of Appendix A). This means that the gap between the top and bottom panels at the center line does not need to be bridged as in the parabolic arc airfoil (symmetry could have also been used in the airfoil's case). The chord of the deltawing has a length of 90 and the semi-span has a length of 15. The maximum thickness occurs midway along the centerline and is .05. The model consists of 880 panels. Figure 2.2 shows the panel distribution along the top surface of the deltawing.

Thickness is represented by the color scheme.

Figure 2.2 Panel Distribution of Deltawing

3. GBU-24

Wind tunnel experiments were run on the GBU-24 without canards attached, so it was deemed relevant to build a model with and without canards as a comparison of the code's performance. The model of the GBU-24 was too complex to build with a spreadsheet, so MACGS was used. The bomb was modelled at NAWC Warminster by superimposing a group of networks on top of an IGS file being displayed by MACGS. The complete configuration consists of approximately 1300 panels. Figures 2.3 and 2.4 are displays of the GBU-24 with canards, with Figure 2.4 including the wakes. Figure 2.5

is included to show how the GBU-24 model was assembled. Each different color represents a network.

Several features of the geometry are relevant to point out. Two of them are modifications made to the geometry that differ from the actual dimensions of the bomb. Dr. Alex Cenko of NAWC Warminster has extensive experience with modelling stores in A502i. The modifications were made on his knowledge of how to get the most accurate results from the code when modelling stores. The first is to model the fins and canards as flat plates, i.e., no thickness, which A502i allows you to do through a single numerical change in the input code for each network that represents a flat plate (see line 30 of Appendix A). The fins and canards are extremely thin when compared to the rest of the bomb, and to add a third dimension to the geometry complicates the construction of the fin or canard for several reasons. The leading and trailing edges must be sharp and the surface the fin or canard attaches to would have to be modified to abut properly with two edges instead of one. Experience has shown that the simpler version yields accurate predictions. A502i is an inviscid code, so it cannot take into account separation effects on its own. The GBU-24 does not have a flat base. In reality, it is more bullet nosed in shape. However, at the speeds with which the bomb is being analyzed, separation does occur near the trailing edge of the bomb. Experience has shown that truncating the end into a flat base and designating it a separated flow region through an appropriate input (see line 702, column 1, Appendix A) yields better results than attempting to model the bomb to exact physical dimensions. The last feature to point out are the wakes, as seen in Figure 2.4. A502i has a limitation in that the wakes must be modelled by the user, and they have the same abutment requirements as physical surfaces. Regardless of angle of attack, the wakes remain stationary with respect to the body to which they are attached. At higher angles of attack, the wakes are no longer close to paralleling the free-stream velocity. Remodelling the wakes is nearly an impossible task. The fin and base wakes would not be too difficult

Figure 2.3 GBU-24 Geometry (Wakes not Shown)

Figure 2.4 GBU-24 Geometry (Wakes Shown)

Figure 2.5 GBU-24 Geometry (Network Modelling)

because they do not abut against any physical surfaces except for the surfaces they are trailing from. The canard wakes must abut properly against the bomb's body all the way to the base. Modification of those wakes would entail modification of the entire body, or in a possible simplification, letting the wakes remain attached along the body until the base of the bomb and then shifting them relative to the free-stream.

4. The F-14

The F-14 geometry was modelled in the same fashion as the GBU-24. The geometry consists of approximately 1500 panels. While that may seem fairly coarse for such a complex structure, experience shows that it is all that is required to get accurate predictions. The primary area of interest is the underside of the fuselage forward and between the two nacelles. Higher panel density on the top half is not required. Figures 2.6 and 2.7 display the F-14 geometry without and with wakes shown. Several omissions are made to the model as having a trivial effect on the analysis or no effect at all. Phoenix rails and bomb racks are not modelled along with the chin pod because they are deemed insignificant to achieve reasonably accurate predictions over small angles of attack. External tanks were not considered, but could be modelled much in the same way as the bomb and inserted into the input file to see what effects the drop tanks have on separation forces. The vertical tails and horizontal stabilizers were deemed irrelevant to the prediction of the separation forces and were left out. This reduces the number of panels and networks, which also reduces the amount of time it takes to run a solution.

5. Combination Geometries

The F-14 and GBU-24 were modelled separately, but were combined together as shown in Figure 2.8. The first step to accomplish this was using the FORTRAN code NAVSEP which, among many of its functions will translate coordinates to relocate items in the flow-field. Once accomplished, the GBU-24 file was pasted into the F-14 input file.

Figure 2.6 F-14 Geometry (Wakes not Shown)

Figure 2.7 F-14 Geometry (Wakes Shown)

Figure 2.8 F-14 and GBU-24 on Station 3 Combined Geometries

D. GRAPHICS VISUALIZATION

One of the pre/post-processing codes that came with A502i is called RAID. Currently an executable exists in the department's computer system that can be accessed through typing after the UNIX prompt,

raid

Raid is a basic graphics program that can read A502i and TRANAIR input files and display geometries and flow properties from solutions. After accessing raid, it will ask what type of input file it is being asked to visualize. It can handle five other modes of input besides A502i/TRANAIR [Ref. 10]. It will then ask for the name of the input file. A prompt will follow asking about object definition matrices which needs to be answered by,

EACH

The next prompt will ask if the panels are going to be shaded by a Cp value. Cp is used generically in that Cp can be displayed or Mach or any of the relevant 49 surface flow properties [Ref. 4]. This is only used after a solution has been run, data has been extracted and a colorscale for contour plots has been determined. If only the geometry is to be displayed, then hit carriage return for all the next questions until a pink window appears with a menu in the lower left corner of the window. An anomaly of the program is that if you want to display the wakes, then wake display must be deselected. To view the geometry select view on the menu. All selections with the mouse in RAID are made with the center mouse button. A new window appears with a menu bar at the bottom and left and the geometry in the center. From there, rotation, translation, scaling, axes, reflections and other manipulation of the geometry is possible. Figures 2.3 through 2.8 are examples of geometries displayed on RAID.

When presentation of solutions (i.e., Cp or Mach contours) are desired, the use of another post-processing program is required to generate a colormap file. The program is called crebar. An executable currently exists on the department's system. Type in,

crebar

after the UNIX prompt. The program will ask straightforward questions. Number values associated with colors available can be found in Ref. 10. The color file can be saved under any name, but must lie in the same directory as the input and solution files. The first line of the color file will list four numbers. The first number is the number of colors assigned to the colormap (248 maximum). Occasionally, the color bar displayed in RAID when using a colormap will disappear when certain menu items are selected. To prevent this, change the last three numbers to read 6, 1, -1. Plotting outputs from RAID requires saving the file in a format, such as RGB, that a printer will recognize. It is possible to change the text color and background color, the default is black, to avoid excessive use of black ink in hard copies.

III. DATA EXTRACTION

When a solution has run to completion, there are two files of interest, the arbitrarily named output file and the ft13 file. The arbitrarily named output file contains results for everything that A502i solves for. The ft13 file contains only the 49 surface flow properties on each panel. Appendix D is the solution portion of an arbitrarily named output file for the first network.

For purposes of displaying flow properties on RAID, it is necessary to utilize the ft13 file. A post-processing code called RAIDCONV is used to extract the specific information. To access RAIDCONV, type

raidconv

after the UNIX prompt. An executable currently exists in the department's system. The ft13 file must be in the same directory as RAIDCONV is accessed in. RAIDCONV will prompt the user for which kind of panel method is being used (A502i is one of three choices). The next prompt will ask for the name of the ft13 file. The last prompt will ask for the flow property that is to be extracted. A file called ft13.cp will be created. It can be renamed for purposes of multiple flow properties extraction. Abbreviations for the 49 flow properties can be found at the bottom of page 1 of Appendix D. The two primary flow properties are

LMACHU for local Mach number

CP2ND for second order pressure coefficient

CP2ND is the default setting for RAIDCONV. Once the ft13.cp file is created, RAID can be used as previously discussed to display the flow properties. An anomaly of RAIDCONV is that it does not recognize kt=20 type wakes, used where wakes from a wing abut against a body [Ref. 4]. To assist in extracting all the data, the kt=20 wakes

should be placed at the end of the input file. In general, it is good practice to place all wakes at the end of the input file when using A502i.

The arbitrarily named output file duplicates the data found in the ft13 file and includes moments and forces. A502i will sum up the moments and forces on each network and for all networks so far [App. D]. The moments are computed based on the coordinates entered into the input file [Ref. 4 and App. A].

IV. RESULTS OF A502i COMPUTATIONS

A. PARABOLIC ARC AIRFOIL DISCUSSION

This simple geometry was analyzed primarily to evaluate A502i's capabilities by a comparison to known linear theory. To this end, the geometry discussed in section II-C and shown in Figure 2.1 was run by A502i at a Mach of 0.3 and a Mach of 1.5 at an angle of attack of zero. Two of the 49 flow properties that A502i computes [Ref. 4] for each panel are linear Cp and second order Cp, given by

$$CPLIN = -2u_c (4.1)$$

$$CP2ND = -2u_c - [(1-M_{\infty}^2)u_c^2 + v_c^2 + w_c^2]$$
 (4.2)

Where u_c, v_c and w_c are the compressible components of the perturbation velocity. Figure 4.1 plots the linear theory, A502i linear and second order results for the subsonic case, while Figure 4.2 represents the supersonic solution.

Linear theory for parabolic arc airfoils is outlined in Refs. 2 and 3. The equation representing the subsonic case is given by:

$$Cp(x) = \frac{-8 * \tau_{max}}{\pi * \text{chord} * \sqrt{1 - M_{\infty}^2}} * (1 - (.5 - x) * \ln \left| \frac{1 - x}{x} \right|) \text{ where } 0 < x < 1$$
 (4.3)

Equation 4.3 includes a Prandtl-Glauert compressibility correction. The equation representing the supersonic case is given by:

$$Cp(x) = \frac{2\theta}{\sqrt{M_{\infty}^2 - 1}} \quad \text{where } 0 < x < \text{chord}$$

$$\text{and } \theta = \tau_{\text{max}} * \left(\frac{1}{\text{chord}} - \frac{2x}{\text{chord}^2}\right)$$
(4.4)

Figure 4.1 Cp Comparison of a Parabolic Arc Airfoil at Mach = 0.3.

Figure 4.2 Cp Comparison of a Parabolic Arc Airfoil at Mach = 1.5.

Figure 4.1 shows very good agreement with the linear theory curve. There is a small but noticeable difference between A502i's linear results and second order results, with the second order results being more accurate, as expected. The maximum difference between the linear theory curve and the second order A502i curve amounts to a value of 2.5% right at mid-chord. The gap between the two curves from .25 chord to .75 chord were the result of thin panel density in that region.

Figure 4.2 shows excellent agreement with the linear theory curve. The A502i values of Cp for the linear and second order analysis are virtually identical. There are small deviations from linear theory near the leading and trailing edges, but this is expected due to numerical error associated with the discontinuity A502i would encounter right on the leading or trailing edges.

B. DELTAWING DISCUSSION

Reference 9 provides data on Mach distribution, using approximated linear theory, over a deltawing of the configuration discussed in section II-D. This simple geometry provided another test of A502i's capabilities. Figures 4.3 and 4.5 show the A502i results for the subsonic and supersonic case, while Figures 4.4 and 4.6 reflect the results from Ref. 9. For both cases, good agreement is found with the linear theory, with A502i's subsonic analysis being physically more accurate than the approximate linear theory, while A502i's supersonic analysis is not as physically accurate.

A comparison of Figures 4.3 and 4.4 reveals several points of interest. The Mach contour representing the free-stream value is given by the dashed line. All lines outside the dashed line represent areas where the Mach value is less than free-stream, and inside the dashed line is where the Mach value is more than free-stream. The location of where the free-stream Mach contour, in Figure 4.3, intersects the centerline agrees very well with Figure 4.4. However, Figure 4.4 does not have the contour extending all the way to the

tip. This is a physical limitation of the approximate theory used in Figure 4.4 and A502i is giving a more realistic solution. Figure 4.4 suggests that the peak Mach value occurs at approximately two-thirds chord along the centerline. The A502i results show the peak Mach contour occurring out midway along the semi-span. Those Mach values are less than 1% larger than the yellow Mach contour surrounding it, and can be attributed to how the panel density increases with movement towards the wingtip. A502i performed very well for this subsonic case.

A comparison of Figures 4.5 and 4.6 shows that A502i did not perform as well as in the subsonic case. Again, the contour representing the free-stream value of Mach =1.414 is given by the dashed line. All lines forward are below free-stream and all lines aft are above free-stream. Figure 4.6 shows the intersection of the free-stream Mach contour on the centerline occurring at approximately 39% chord, which is in excellent agreement with A502i's result. Figure 4.6 shows the peak Mach value occurring at the trailing edge on the centerline. This makes more physical sense than the results that A502i yielded. The maximum thickness of the deltawing occurs along the centerline, allowing for greater expansion. The discrepancy may be attributable to panel density and accumulation of numerical error. A close study of the A502i results reveals some discontinuities along the column of panels out at the wing-tip which would have adversely affected the solution and caused errors to propagate along the semi-span.

Figure 4.3 A502i Mach Contour Plot (M∞=.01)

Figure 4.4 Approximate Linear Theory [Ref. 9] $M_{\infty}=0$

Figure 4.5 A502i Mach Contour Plot (M∞=1.414)

Figure 4.6 Approximate Linear Theory [Ref. 9] M_{∞} =1.414

C. GBU-24 FREE-STREAM (NO CANARDS) DISCUSSION

A free-stream measurement of separation forces on the GBU-24, without canards, was conducted in a wind tunnel for various Mach numbers from .8 to 1.2 [Ref. 7]. Since A502i uses linear potential theory, the model of the GBU-24, without canards, was evaluated at both Mach .8 and 1.2, avoiding the transonic regime, to ascertain the accuracy of the code with the given geometry. Normal forces and pitching moments for both cases are plotted and compared to the wind tunnel data.

1. Subsonic Case $(M_{\infty}=0.8)$

The GBU-24 model, without the canards, was run for angles of attack varying from -10 to +10 degrees in two degree increments. Values much higher than that ran into wake modelling problems as the wake's angle relative to the free-stream was getting large enough that results would become questionable, and remodelling the wake was too difficult for such a complex geometry. The results of the A502i analysis are displayed in Figures 4.7 and 4.8. For angles of attack between -4 and +4 degrees, A502i does a good job of predicting the separation forces. The pitching moment, which happens to be unstable without the canards, is approximately linear over the -4 to +4 degree range and is the limiting factor to the models accuracy. The normal force is approximately linear over a wider range, and A502i does a good job of predicting the normal forces from -6 to +6 degrees.

2. Supersonic Case (M∞=1.2)

The results for the subsonic case demonstrated that the effective range of angle of attack that A502i needed to explore was from -6 to +6 degrees. Figures 4.9 and 4.10 plot the comparison of wind tunnel data versus A502i results for pitching moment and normal force. The results for the supersonic case are slightly better than that of the subsonic case. The actual pitching moment of the GBU-24 is approximately linear over a wider angle of

Figure 4.7 Comparison of Pitching Moments

Figure 4.8 Comparison of Normal Forces

attack region, but fluctuations in the data at -6 and +6 degrees means that the model is still only viable from -4 to +4 degrees. The normal force line is nearly linear from -10 to +10 degrees and extrapolating the A502i results out to 10 degrees would still yield good predictions.

Figure 4.9 Comparison of Pitching Moments

Figure 4.10 Comparison of Normal Forces

D. GBU-24 FREE-STREAM (WITH CANARDS) DISCUSSION

As in the case with no canards, free-stream measurements of the separation forces on GBU-24 were taken from Mach .8 to 1.2 in a wind tunnel [Ref. 7]. Again, due to the limitations of linear theory inherent in the code, an analysis was done for Mach numbers of .8 and 1.2 to minimize transonic effects. Even with the more complex geometry, A502i does an accurate job of predicting the separation forces over the range of angles of attack that are approximately linear.

1. Subsonic Case (M∞=0.8)

The GBU-24 model, with canards, was run in two degree increments of angle of attack from -10 to +10. The wake modelling limitation, as well as reviewing the data from the wind tunnel measurements [Ref. 7] showed the non-linearity of the separation forces at

the higher values of angle of attack, precluded any attempts to predict forces beyond the aforementioned angle of attack interval. The results of the A502i analysis are displayed in Figures 4.11 and 4.12. The addition of the canards makes the pitching moment stable, but linear over a smaller region than without the canards. A502i gave accurate results from -2 to +2 degrees angle of attack when predicting pitching moment. The prediction of normal forces fared better, showing accurate results from -3 to +3 degrees angle of attack.

Figure 4.11 Comparison of Pitching Moments

Figure 4.12 Comparison of Normal Forces

2. Supersonic Case $(M_{\infty}=1.2)$

As in the case with no canards, the region of accuracy, with the model used, was assumed to be less than + or - 10 degrees angle of attack. Cases were run from -6 to +6 degrees angle of attack in two degree increments. A comparison of A502i results with wind tunnel data is shown in Figures 4.13 and 4.14. For both the pitching moment and the normal force, A502i does a much better job of prediction then when subsonic. The wind tunnel data is nearly linear in both pitch moment and normal force from -8 to +8 degrees angle of attack. Extrapolating the A502i data out to + or - 8 degrees angle of attack, shows excellent agreement with the wind tunnel data.

Figure 4.13 Comparison of Pitching Moments

Figure 4.14 Comparison of Normal Forces

E. F-14 DISCUSSION

The GBU-24, without canards was located at station 3 of the F-14 via the NAVSEP code. In the process of running a solution, the combined geometries were found to have a total of 150 networks (A502i's maximum). The combined geometry had about 4,000 panels, far short of the 20,000 panel maximum, so there was room for more detailed modelling, but there was not a chance to insert the GBU-24, with canards, into the F-14's flow field and analyze the forces on the bomb. The geometry with the canardless bomb ran to a solution that appeared to be valid, so there is a high degree of confidence that if the number of networks could be reduced to allow the GBU-24, with canards, to be inserted into the F-14 flow field, the code would yield accurate predictions at small angles of attack on the forward stations. To reduce the total number of networks by combining existing networks would have required a large time investment and the use of MACGS, which the department currently does not possess, the two reasons why it was not done. Figure 4.15 shows a Mach distribution of the solution of the canardless bomb and F-14 at Mach = 0.8 and 0 degrees angle of attack

F. POST-PROCESSING DISCUSSION

The Mach values for the subsonic case of the GBU-24, with canards, at 4 degrees angle of attack, were extracted from the ft13 file. These values, used in conjunction with RAID are shown in Figures 4.16 and 4.17. The color distribution over the nose in Figure 4.16 indicates that the bomb is at an angle of attack, and scanning the rest of the model showed no discontinuous solutions, which is generally represented in A502i by a Mach value of 0 or 1,000. The visual representation is a quick way of telling if A502i ran an accurate solution. The only other way is to individually check the Mach or Cp values of each panel in the ft13 file or the arbitrarily named output file. The other point of interest in Figure 4.16 is the lack of panel density along the mid-section of the bomb. The goal, in the

case of stores separation prediction, is to have as simple a model as possible that still gives accurate predictions. The fewer the number of panels, the shorter the run time. The fact that A502i is a higher order panel method allows the luxury of using fewer panels. Figure 4.17 highlights the approach used to take into account separation effects as discussed on page 16.

Figure 4.15 Mach Distribution over GBU-24 and F-14 (M_{∞} =0.8, alpha=0°)

Figure 4.16 Mach Distribution over GBU-24 (M_{∞} =0.8, alpha=4°)

Figure 4.17 Mach Distribution over GBU-24 (M_{∞} =0.8, alpha=4°)

V. SUMMARY AND CONCLUSIONS

The main goal of this analysis is to determine the accuracy of A502i on both simple geometries and complex geometries. To accomplish this, A502i is compared with results available from linear theory and wind tunnel experiments. This allows conclusions to be drawn on the capabilities as well as the limitations of A502i.

In general, A502i can accurately predict flow properties, forces and moments on simple and complex geometries at low angles of attack. The predictions are valid over a wide Mach range, from 0 up to and including 0.8 and from 1.2 and above. The supersonic solutions are available due to A502i's higher order capabilities.

The limitations of A502i are consistent with most panel methods. A502i cannot predict flow dominated by viscous, separated or transonic effects. It cannot predict flow with different total pressures, such as flow properties inside a jet plume or a propeller slipstream swirl. The biggest shortcoming of A502i is its inability to handle unsteady cases and automatically determine wake shapes.

Experience or knowledge of the flow properties around the geometry being tested is important in building an accurate model. An accurate model may not be physically accurate. Flight test results revealed a yawing moment on the GBU-24 that was not discovered in wind tunnel experiments when the bomb was carried on an aft station. The yawing moment may be caused by the fact that the canards are not fixed, but spring-damped. A502i predictions would not be accurate without inputting a moment to simulate the deflection of the canards, since the canards are fixed by the geometry. A502i, while a powerful tool in terms of cost savings and time, cannot completely substitute for wind tunnel experiments and flight tests, as constructing a complex geometry to exact physical specifications will probably not yield accurate predictions.

APPENDIX A. GBU-24 OUPUT FILE (INPUT FILE PORTION)

	000000 pe				
	total storage provided				
:	total :				
***************************************	900000				
化银铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	200 maximum scratch storage 900000 total 0 addr(scratch storage) 1	3 blocks: 10 status: 0 ************************************	100 **		
***************************************	ys s) ******* status: status:	locks: 10 status: 0 ************************************	potential flow about arbitrary configurations version id = ht2 (12 feb 92) boeing ver 100 07-Mar-9	**	- list of a502 input data cards
			ntial flow about ion id = ht2 (12 M=0.8	* * * * * * * * * * * * * * * * * * * *	- list of a50 STREAM M=0.8 MJSYRM SYRM SR.
在	dynamic memory manag max no. levels addr(maplev) ************************************	wopen call on unit ************************************	potential version i GBU-24 FREESTREAM M=0.8 \$SOLUTION	* ************************************	- list 2 SEBU-24 FREESTREAM M=0.8 3 SSOLUTION 4 SSYMMETRY 5 = MISYMM MJSYMM 6 0.0 7 SMACH NUMBER 8 = AMACH 9 8 = AMACH 10 \$CASES 11 = NCASE 12 1.2 13 \$ANGLES-OF-ATTACK 14 = ALPC

Printed by maletour from osprey

IBCONP IEDGEP					.138 -2.32	3.138 -2.324	.138 -2.32	642 -3 5	.642 -3.5	4.642 -3.581	.642 -3.5	.146 -4.84	.146 -4.83	6.146 -4.838	.146 -4.83	.650 -6	9- 059.	7.650 -6.095	0- 6#0.	77	.154 -7	9.154 -7.352	.153 -7	0	10 658 -8 612	0.658	0.657 -8.		12.163 -9.873	.162 -9.	.162 -9.	.161 -9.	.667 -11	.667 -11	13.666 -11.122	.665 -11	
	IFMCPR 0. FORCES AND M	NREF 1. DREF			4 (24 31.795	.324 26.418	•	,	32.929	•	42	38	339 34.063	62	43.1	39.1	35.196	21.7	43	39	353 36.330	32	7.3		37	M			41	8 8	36.	43.8	41.7	39	7.6	LIS
	IOUTPR 0. CCUMULATED	SF ZREF 0 0.0 SF CREF	DRK = ZCAN4	0.6	.138 -2	.138 -2	3.138 -2.3	.138 -2	.642 -3	.642 -3	., .,	1 7	.146 -4	7	145	9- 059	220	Ÿ	000	155	154	.154 -7	.153	7. LD3	659.0	0.658	0.658 -	0.657 -8	2.163 -9	2.163	2.162	2.161	H	3.667 -11	3.666 -11	3.665 -11	3.665 -11
2. \$PRINTOUT OPT =ISINGS IGE 0.	PRAIC NEXDGN 0. SFERENCES FOR A	REF YRI 10.716 0.0 SREF BRE	105.1248 1.0 \$POINTS NETWO 1.0	0.6	45.236	34.483	29.107	45.183	40.281	35.380	30.478	45.130	40.703	36.276	27.422	45.077	41.125	37.173	23.220	45.025	41.547	38.069	34.591	31.114	41.969	38.966	35.963	32.959	44.919	42.390	39.862	37.334 700 Ac	44.866	42.812	40.759	38.705	36.65

					·
-12.379	.3.138 -3.138 -3.138	-6.642 -6.642 -6.642 -6.642 -6.146 -6.146 -6.146	6.7.6 6.6.6 6.6.6 7.6 7	-10.658 -10.658 -10.657 -12.162 -12.162 -12.162 -12.161 -13.667	२० रायस्य १७ सम्मन
15.170 15.169	-2.324 -2.324 -2.324 -2.324	13.582 13.582 13.582 13.582 14.82 16.833 17.		-8.612 -8.608 -9.873 -9.869 -9.865 -9.861 -11.131	HH www.
40.866	42.548 37.171 31.795 26.418	42.732 37.830 32.929 28.027 42.917 38.489 34.063 29.635	4444 G & & &	40.464 37.464 34.464 43.655 41.126 38.598 36.069 43.839	24.00 24.00 24.00 24.00 24.00
-12.381 -12.376 -12.371 :CAN3	mmmm	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7. 650 -7. 650 -7. 650 -7. 650 -7. 649 -9. 155 -9. 154 -9. 153 -9. 153 -9. 153	10.658 10.658 10.658 10.658 12.163 12.163 12.163 12.161 13.668	-13.666 -13.665 -13.665 -15.172 -15.170 -15.169 -15.168
15.170 15.169 15.168 15.168	2.324 -2.324 -2.324 -2.324	-23.324 -33.523.324 -33.5583. -33.5583. -44.658.641 -68.840 -68.839	-6.100 -6.098 -6.094 -6.094 -7.358 -7.358 -7.353 -7.359 -7.359 -7.359 -7.359 -7.359	-8.613 -8.610 -8.607 -8.607 -9.875 -9.871 -9.867 -9.863 -11.133	-11.124 -11.120 -11.12.392 -12.387 -12.381 -12.376 -12.371 ORK =
A A E NIO	च लेले ले ले	23.730 45.183 40.281 35.380 30.478 25.576 45.130 40.703 31.246	45.077 41.125 33.220 33.220 29.268 41.547 41.547 38.069 34.591	41.969 38.966 38.966 44.919 42.390 42.390 37.334 44.866 42.805 44.866 41.11	A C C C C C C C C C C C C C C C C C C C
상다스	888888 01284	88888888888888888888888888888888888888	96 97 98 99 100 100 103 103	100 100 110 111 112 113 114 116	1118 1119 1220 1221 1224 1224 1226 1237 1237 1237 1237

5 A																																															
20000	3.138	1.5	1	4.642	١٠	9 4		14	6.146	. 14	. 14	V	9	7.650	9	1	7	4.1.6 4.7.0	1 -	1	0.65	0.65	10.658	0.65	2.1	2.1	12.162	7. 7	m	m.	13.666	'n	5.1	15.171	5.1	5.1					2.324	32		3.	L	3.582	٤
	2.324	 4	2	3.582	ΰr	ů r		ω.	4.839	∞.	œ	0	. 09	6.095	.09	6	5	7 354		1			8.608				9.865		ä	ä	11.122	-i	2.38	12.384	2.37	2.37					-3.138	13	.13	.13		24.042	
	37.171	4.7	,	42.732	~ (28.323)	2	38.489	4	σ		9.1	35.196	1.2	,	7.0	39.808			3.4	9.	37.464	₽.	43.655	41.126	38.598	00.00	43.839	41.785	39.732	37.678		42.445							42.548	٦,	•	4	í	37 030	
	3.138	27.6	3.138	4.642	4.642	4 642	4.642	6.146	6.146	6.146	6.146	7 650	7.650	7.650	7.650	7.649	7. T. C	40T.6	9.153	9.153	10.659	10.659	10.658	10.658	12.163	12.163	12.162	12.161	13.668	13.667	13.666	13.665	15.172	15.171	15.170	15.169	15.168	CANS			2.324	i,	j, c	J. C	J.	υ'n	ľ
	2.324	324	324	583	282	581	580	841	840	839	837	100	860	960	.094	092	5000	. ይህር የተተ	350	348	.616	. 613	.610	100.	.875	.871	108.	859	1.133	1.129	1.124	1150	2.392	2.387	2.382	2.376	2.371	Z =		9	m	3.13	2.43	3 . L3	2. L3	9 4	
	39.859	٠.	7	-	4 .	J 4	ູນ	٦	7	CJ (ω <	* 0	-	Н	2	7 0	5 L	n C	ואיי	-	σ.	σ.	5, 0	, 0	, 0,	., .	ייי	į w	.866	.812	759	. 103	813	.234	. 655	٠. ١	38.49/	E S	0	6	45.236	3.85	9.0	ייי ביי	2.73	0 T C	
	131	133	134	135	137	138	139	140	141	142	143	145	146	147	148	Q I	100	152	153	154	155	156	157	159	160	161	163	164	165	166	167	169	170	171	172	173		SH	. 4	~	179	787	T 0 T	797	187	101	

.665 11.115 .172 12.392 44.024 -15.172 12.389 .170 12.387 42.045 -15.171 12.384 .170 12.382 40.865 -15.171 12.384 .169 12.376 39.287 -15.169 12.379 = ZNOSF .100 3.999 2.498 0.000 3.564 .000 1.853 0.000 0.000 0.000 .995 3.465 2.498 1.778 3.088 .2007 2.498 3.086 1.788
7.007 2.498 3.080 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-3.463 2.498 1.789 -3. -1.604 0.000 0.000 0. -4.000 2.498 0.000 -3
-1.853 0.000 0.000 0.3.
-1.604 0.000 0.000 0.

Printed by maletour from osprey

	•	•		0000	•	•	•	•							-3.463					-3.463								2.165		3.465	4.000		3.301	0	7.00.7	0.000	1	-2.166	-3 464		-4.000		-3.301	-2.007	>	000.0	1	2.165
				0.000								1.995	3.999	2.007	-2.007	-3.999		0	0	2.007	0	9	σ					-3.300	9	566.T-	000.0)	2.159		3.403	4.000		3.301	2 007		0.000		-2.165	-3.463) - -	-4.000		-3.300
0.	4	٥.	4	0.000		. <	. <	?				.49	.49	.49	8.499	9,	4	73	73	21.730	73	.73	. 73					22.730		22.130	22.730)	22.730		22.130	22.730		22.730	22 730		22.730		22.730	22.730		22.730		22.730
)	0	0	2	۰ د) -	1 ~	, -	AFT															2.007		CANFWD1			2.324	2.007	3.465	000.4	3.999	3.138	3.465	2.007	000.0	0.000	-2.324	-3.464	-3.463	-4.000	-4.000	-3,138	-2.007	-2.007	0.000	0.000	2.324
-1.604	-3.999	-1.853	-3.463	-1.604	VC0	470.0	000	= ZNO			CI	0.0	3.4	ж. 4	0,		, c		ω 4.	ω 4.	0.0	ά. 4.	-3.463	0.00	Z = 3		2		40	- -		0	m,	ين د	, 7		٠, ١				٧.	0	OI C	. ~	. ~. . m	٧.	٠: ١	-3.138 -3.463
0.482 -1	8.499	0.482	8.499	0.482		400	0.482	OINTS NETWO	0	0	13.0	8.499	8.499	8.499	8.499	8.499	007	21.730	21.730	21.730	21.730	21.730	21.730	21.730	POINTS NEIWO	0.0	m	73	73	2 5	73	73	73	7.3	3.5	73	73	2 5	7.5	73	. 73	73	7.3	73	73.	73	5	21.730
245	246	247	248	242	25.0	252	25.3	254 SE	255 1.	256 1.	257														vrr	5 -		276	277	279	280	281	282	283	285	286	287	200	290	291	292	293	294	296	297	298	299	301

Page 7																											•							
resuits			4.000	4 000 C	***		0.000	0000	23.138		-4.000	-2.324 -4.000	-2.324			3.138	. 0 .	m			2.165		0.000	-2.007	-3,301	•	-4.000	-3.464	-2 166	1	0.000	2.007	3.301	4.000
			0.000	00000	•		-4.000	-4.000	*75.32		0.000	3.138	3.138			4.000	4.000	2.324			-3.300		-4.000	-3.463	-2.166		0.000	2.007	1 301	1	4.000	3.463	2.159	0.000
		1.	23.730	45.236	200	1.	23.730	45.236	0.23.0	÷.	23.730	45.236	45.236	_	i	23.730	45.236	45.236		1.	46.236		45.236	46.236	46.236		46.236	46.236	46 236	3	46.236	46.236	46.236	46.236
	BODCAN1	0.	3.138	3.138	ODCANZ	0.	2.324	2.324	ODCAN3	0.	-3.138	-3.464	-3.464 BODCAN4	C		2.324	-2.324	2.007 RFT1		°.	2.007	2.324	0.000	-2.007	-3.464	-3.138	-4.000	-3.464	-3.464	-2.324	000.0	2.007	3.465	3.138
	н	0.	2.324	420		0.	.138	138	9 11	0	-2.324	2.007		c		3.138 -2.	3.138	3.463 ORK = ZCAN		0	13.0	-3.138	-4.000	-3.463	-2.007	-2.324	000.0	2.007	3.464	3.138	4.000	3.463	1.995	2.324
13:51	POINTS NETWORK	1	mr	י מי ר	OINTS N		23.730	45.236	OINTS	000	0	45.236	45.236 POINTS NETW	c		23.730 3	45.236	벙	0	٠	23	23	23	23	23	23	23	23	23	33	23	3 M C	47.236	ოო
Mar 7 1996 13:51	302 \$F	304 1.	306		310 \$P	1	314		٠. د کا	320 1.			V.F.1	-	4	330	332		335 1.0		338	339	340	242	344	345	346	348	349	351	352	9 10 10	356	357

000			'	
n n	3.465	46.236	-1.995	3.465
. E.		46.236	-3.300	2.165
38 2. ZCANAFTZ				
0	0	1		
0.0	0	,		
3.0		3.31	4.000	
64		53.318	2.007	-3.464
00		3.31	-2.007	
		3.31	-4.000	
200	4.000	3.31	-1.995	
00		. 23	1.995	4
63		47.236	4.000	0.000
64		.23	2.007	4
00		.23	-2.007	4
63		.23	-4.000	٥.
63		. 23	-1.995	₹.
00 4				
707	200			
0.				
16	6.281	71.254	-3.616	6.281
67	5.500		-1.995	3.465
200	7.230		0000	7.250
16	6.281		3.616	281
99	5.499		1.995	3.465
78	3.638		6.278	3,638
16	3.186		3.463	2.007
51	0.000		7.250	0.000
49	0.000		4.000	-0.001
79	mı		6.278	-3.638
900	m u		3.464	-2.008
ממ	о и		20.00	2 7 7
100	10.498		700.7	404.
100	· Œ		000	000
-3.638	, w		-3.638	-6.279
185	L,		-2.007	-3.464
278	ຕ		-6.278	-3.638
197	ന		-3.463	-2.007
250	-0.001		-7.250	0.000
349	0		-4.000	-0.001
278	3.638		-6.278	3,638
197	3.185		-3.463	2.007
1.6	6.281		-3.616	6.281
7.0	000.0		-T.393	3.400
1				

osprey
from
lour
nale
ğ
intec
ā

			4 - 1				
917	132.459	-6.278	-3.639	132.459	-7.250	-0.000	
417			3.038	3,2		•	
418			-3.796	34.			
419			3.795	34.			
420			-3.951	35.			
421			3.950	35.			
422			-4.100	37.			
423			4.100	37.			
424			-4.196	38			
425			4.195	38			
426			-4.254	40			
427			4 254				
120							
0 0			875.8-	1.	•		
423			4.328	4			
430			-4.300	43.			
431			4.299	43.			
432			-3.854	48			
433			3.853	48			
434			2000	֝ ֓֞֜֜֝֓֞֜֜֝֓֓֓֓֞֜֝			
1			22.60	36			
7 (0.7.5	2			
2 1 2			-2.584				
	160.353	4.457	7	60.			
S	POINTS NE	2	BODA3				
439 1	0.						
		11.0					
442	5	220	020 9	0	000		
100	104.400	0000	0.4.0	132.439	000.0	167.7-	
,	9 0	970	6/7:0-		8/7.9-	'n	
444	34	. 796	-6.550	34.	000.0	-7.564	
445	34		-6.550	34.	-6.549	•	
446	35	951	-6 817	2	000	-7 072	
447	3.5	05.0	-6 817	ער	200.4	•	
977	27	000	7000	֡ ֓֞֜֜֝֞֜֝֞֜֝֞֜֝֞֜֝֡֓֡֓֞֝֡֡֡֝֡֡֡֡֡֝	010	, ,	
	֓֝֜֝֜֝֜֜֝֜֝֜֝֜֝֜֝֓֜֝֜֝֝֓֡֜֝֡֜֝֡֡֡֜֝֝֓֡֜֝֡֡֝֡֡֡֡֝֡֡֡֝	200	0.0.7	: :	000.0	ó	
カップ	2	00 T	9/0 / / -	·	-7.075		
450	38	.195	-7.240	38	000.0	-8.361	
451	38	.195	-7.240	38.	-7.239	•	
452	40	254	-7 341	40	000	. a	
453	2	740	7				
	, ,	9 0	7.0.1	٠,	T#0./-	;	
# I	1	.328	-1.469		0.000		
455	41	.328	-7.469	41	-7.469		
456	43	300	-7.420	433	000.0		
457	43	300	-7 420	43	-7 420		
450	0.0	0 0	011		000		
0 0	,	000	000.0-	9	0.00	•	
407	8	853	-6.650	8	-6.650	٠	
460	53	.256	-5.619	53	0.000		
461	53	.256	-5.619	23	-5 619		
462	9	201	4 450		000	24.	
463	160 252		000		0 1		
₹	TOO TOO TOO	200.3	3º (c)	9	104.41	٠	
Λ,	FOINIS NE	77	ODAZ				
٠,	٥.						
	٥.						
467	4	11.0					
468	32.45	6.278	. 63	32.45		0.00	
469	132.459	6.279	-3.638	132.459	3.639	-6 27R	
470	71 75	055	70	71 17	•	000	
773	4	200				000.0	
1 (17.80	00000	7	74.17	•	066.9-	
	10		1	1)	

Printed by maletour from osprey

																				_							•		_	_	_		_	•			m	0		0.1	- 0		. 00		9	0 0	oo -	10	n
-6.817										•	•		•					1	٠.	٠, ۲	i u	3.256		5.052	.43	.61	7.728		٣,	۲.	ė.	7.134	4	ц	,	8.344	Ŋ.	٥.	•	æ. •	9.437	: ິ	٧		0	٠. د	11.058	-	i
951	72	0	7.0	0.0	4.	26	28	69	00	80	53	68	26	0 4	,			,	50	٠.	100	180	ı ŧ	80	75	6.0	27.7	N O	9	7	S	35	4	25	73	62	88	94		282	17	300	543		338	696	369 0 F	200	000
3.9										•	•		•		•							5.61	•	7.4			•					6		0	. 0	10.06	10.2	9.3			10.0		0		0	ä,	11.8	, , .	÷
865	200	500	7447	100	100	551	551	975	975	235	235	934	934	200	,			•	٦,١	v	40	934		966.	096.	314	200.		.818	.422	. 530	.132	.075	V	, α	.749	2	9	•	₹ (000	. 0	12				.195		
135.	37	137.	138.	140	140	141.	141.	143	143.	148	148	153	153	1 0	-			,	134	137	1 4 0	153	1	13	13	13	152	4	13	13	13	142	CT.	-	1 -	137	_	П	1	13	136	14	15		13	13	136	1.	1
.950	1.100	1.100	195	254	254	1.328	1.328	1.300	1.300	3.853	3.853	3.256	3.256	500.0				,	3.638	3.950	202	3 . 853	2.583	4.856	5.246	5.552	5 251	4.283	6.074	6.540	6.907	7.086	9.00	200.7	7.833	8.261	8.462	8.333	7.682	8.508	9.123 9.615	9.835	9.819	9.382	6	0	> -	4 -	4
															ZFINZ																															-, ,	-, -	• •	•
6.817	. 07	.07	4.5	36	3.4	46	.46	.42	.42	. 64	. 64	. 61	5) # • }									7.119																n (0	-	0	0	0	Н.		10	¥
5.865	0	01	- 1	٠. د	, ,		1	S	2	J.	2	4	4.0	2				0	o i	no	۰ -	4 15	. ~	0	N.	7 5	οĽ		2	8	8	<u>۔</u>	ກຸດ	, c	2.5	9	6	2	9	4.0	4 L	6.0	75	33	9 !	17	, ,	3.6	2
m .	m	m 1	~ ~	7	. 4	-	7	-	7	₩.	₩.	io i	0	οũ	5 5			7	Ŋ,	٠. و و	0 -	1 00	Ó	132.480	'n.	χ. (α	20	000	2	20	37	6	0 0	2 0	4	36	38	5	09	25	9 4	8	45	9	33	4	3 5	4	ř
															\$P	1 1.0	7																																
473	47	47	1	4 7	47	48	48	48	48	48	48	48	20 0	0 Q	4 4	49	49	6.0	6.0	4 4 V 0	7 7	4	49	20	200	200	U I	200	50	50	20	200	7 7	7 7	5 5	51	51	21	21	2 :	2,5	52	52	52	52	22.5	א ני	1 17	1 1

Page 11																																																	-
	11.318	12.102	12.781	12.781						۲.	4	Ġ	-4.300	3		S (7,0	51.613	. 8	9	Ψ	-6.770	oι	-7.134			4	m u	0.03 030	•		o,	20.702	. 0		10.066	10.770	-11.058	11 190	667:11	11.318	12.102	12.410	2.781	.2.781				
	11.695	40		3.7						20.00	-7.075	-7.341	-7.420	-5.619	-7 400	-7.975	-8.249	-8.379	-6.882		-8.267	20.87	hσ	-8.140		9.125	9.773	-10.288	9.394		-9.982	.671	238	643		838	269	-11.869 -1 -12 105 -1	888)	695	.467	-12.769 -12	131	130				
	133.137	135	138	151					3.4			,	153 034	,	33.9	36,9	39.3	143.055	53.5		2) t	າແ	42	153.075	,	א ה	ט ני	141.207	22		133.469	, ,	2.0	2.2		13.301	170.5	9.354	1.768		3.137	4.288	424.0	1 321	7				
-	3 11.702	12	12	12	ZFIN4				-3.639	-3.951	701 7-	0C+ P-	-3.854	-2.584	~4.856	-5.246	-5.552	-5.708	-5.351	-4.283	-6.540	-6.907	-7.086	-6.844 1	584.6-	-7.833	-8.261	-8.462	-8.333	789.7-	-9.508	-9.615	-9.835	-9.819	-9.382	-10 413	-10.968	-11.206	-11.301	-11.081	-10.943	-12 320	-12.574	-12.781	-12.781	ZFIN3			
1	1 12.073	12	77.	12	IWORK =			7.	-6.27	-6.81	-7.23	-7.46	-6.65	-4.45	-7.11	-7.69	-8.147	-8.382	15 003	-7 960	-8.572	-9.055	-9.294	-8.835	-8.801	-9.448	-9.962	-10.205	716.6-	-0.640	-10.324	-10.869	-11.115	-10.994	-10.484	-11.198	-11.775	-12.023	-12.065	-11.685	-12.325	-12.681	-12.929	-13.131	-13.130			7.0	
132.	133.701	134.9	143.6	160.2	SPOINTS	н (160.328																					160.278	OINTS NE	20	11.0	100
530	531	522	534	535	536	537	8 7 7	720	040	141	542	543	544	0 4 0 4	0 40	54 B	549	550	551	552	553	554 101	0 4 0 4	557	558	559	560	196	563	564	565	200	700	569	570	571	572	573	, C	576	577	578	579	280	18T	583 1	584 2	585	586

Page 12				
results	-7.076 -7.341 -7.420 -5.619 -7.408 -7.975 -8.249		-9.982 -10.966 -10.966 -11.238 -10.643 -10.838 -11.869 -12.185 -12.185 -12.185 -12.185 -12.185 -13.130	7.250 3.638 7.563 3.795 7.872 7.9872 3.950 8.170 4.100 8.360 8.477
re	4.254 4.300 3.256 5.052 5.436 5.436 5.436	. 850 307 770 983 134 441 . 562 3. 104 3. 344 3. 548	8.815 9.437 9.702 9.960 9.966 10.770 11.371 11.318 11.318 11.318 11.318 11.318 11.318 11.318 11.318 11.318 11.318	0.000 6.278 6.000 6.550 6.817 7.075 7.240
	339	43 33 33 33 36 36 42 53 53 113 113 113 113 113 113 113 113 1	133.469 135.350 136.281 140.281 152.205 133.301 134.817 139.354 151.768 133.137 134.288 135.424 138.424 131.331	132.459 134.175 134.175 135.865 135.865 137.500 137.500 137.500
	11 11 11 11 11 11 11 11 11 11 11 11 11	12 112 12 13 13 15 14 18 11 17 17 17 17 17 17 17 17 17 17 17 17	-9. 642 -10.324 -10.324 -10.326 -10.994 -10.994 -10.484 -11.198 -12.023 -12.065 -11.325 -12.073 -12.073 -12.073 -12.073 -12.073 -12.073 -12.929 -13.130	6.281 6.581 6.552 6.820 6.820 7.078 7.243 7.243
		88 11 14 77 77 77 86 86 83 83 83 83 83 83 83 83 83 83 83 83 83	8.508 8.508 9.123 9.615 9.819 9.819 9.382 9.726 10.413 10.968 11.301	11.0 -3.616 3.616 -3.773 3.773 3.927 -4.076 -4.170 -4.170
37	35.865 38.947 41.551 48.235 .60.353 132.480 135.495	140.676 147.477 132.502 135.128 137.598 137.598 134.763 134.763 134.763 136.926 138.929	160.316 132.544 134.402 136.255 138.059 145.175 160.303 160.303 137.190 137.190 144.403 160.291 133.587 133.587 134.924 134.924 134.924 134.924 136.228	4.0 132.459 132.459 134.175 134.175 134.175 135.865 135.865 137.500 137.500
Mar 7 1996 13:51	587 588 588 590 591 592 593	594 595 598 599 601 602 603 605 605	609 610 611 612 613 613 615 616 621 620 621 622 622 622 623 623 624 625 625	630 1 631 632 633 633 633 633 633 633 633 633 633

Page 13																																																		
2000								5.147						6.552	7.078	7.344	2.4.7	2.621	•	• 0	8.249	۳.	α.		8.267	4/20.00	0.1.7	8.140		ų.	6.7	9.0	10.288	?		Ö	10.966	.i	ö	0	5 6	11.869	18	88	,	۰. م	12.46/	. T	3	•
	0.000							000.0						-3.773					LC.	-5.436	-5.619	S	-4.850	200	-6.307	-6.7.0	-7.134	-6.441		-7.562		10 a			æ	4	-9.702	ن ن	٥	0		-11.058	i.	i.	۰	j٠	-12.410	7	7	
	141.551	41.55	70.00	70.01	70.07	53.62	53.93	50.3	50.35					134.176	0.04	4.0	53.9		33.	36.	139.314	43.	53.	2	136.422	າສ	142.132	53		133.642					33.	35.	136.970	מיני	7			136.195			22 12	34.28	135.424	38.42	51.33	
	7.472	7/8.7	7 423	6.652	6 652	5.621	5.621	4.459	4	ZFIN1				187.9	7.243	7.472	6.652	4.459	7.119	7.695	8.147	8.382	7.746	7.960	8.572	9.055	9.294	8.835	7.348	8.801	0.40	10.205	9.917	8.794	9.642	10.324	11 115	10 000	10.239	10.484	11.198	11.775	12.023	12.065	11.325	12.073	12.681	12.929	13.131	4000
'	4 302	7	4	'n	m	5	m	7	2	2			0.0	-3.927	-4.170	-4.302	-3.830	-2.568	-4.856	-5.246	-5.552	907.5-	105.C-	-6.074	-6.540	-6.907	-7.086	-6.844	-5.983	167.7-	-8.261	-8.462	-8.333	-7.682	-8.508	-y.123	-9.613	-9.819	-9.382	-9.726	ä.	_:	_: :	3 1	-10.943	-5	.,	, i c	À.	
141 551	141.551	143.975	143.975	148.235	148.235	153.934	153,934	160.353	2	2 0			132 450	135.865	138.948	141.551	148.235	160.353	132.480	135.495	138.272	140.070	160.341	132.502	135.128	137.598	139.801	146./13	132 523	134.763	136.926	138.929	145.945	160.316	134.544	136 361	138.059	145.175	160.303	132.566	134.047	135.587	144 402	160.291	132.587	133.701	134.924	130.323	160.032	
644	645	646	647	648	649	650	651	652	٠,	^ ~	10	4	658	629	099	661	662	663	664	000	000	0 0	699	670	671	672	673	675	676	677	678	619	680	189	700	489	685	989	687	889	500	0.69	169	693	\$69	695	969	000	0 0	200

Printed by maletour from osprey

9.0. 0. 0. 0. 3.53 3.53 2.568 3.53 2.568 3.53 2.568 4.55 3.53 2.568 4.55 3.53 2.568 4.55 3.53 2.568 4.55 3.50 0.000 3.50

Frage																																																
2	-5.903	. 10		ي و	794	?					3.583	6.100	8.616	11.133	c	5.782	~	80		4.444	6.960	11.994	•	4.896	7.413	9.930	12.447	a	7.413	. 6	4	7 10 0	10.00	10.087	12.604		5.208	7.725	10.242	12.733	5.358	7.875	10.392	N	4.54	7.971	10.488	٠
	4.283	11.081		Si.	7.682	?					9	١٩	-10.659	٥.		-7.976					-10.010		2	7.7	~10.790	3.7	χ. Σ	7	-10.791	3.7	8.		•	-14.071			-8.321	w (ω, c	j	.2	-11.588	'n,	٥	7	-11.752	7	٢
	160.341	60.2		60.	1160.316	9			1.		ഗ	ശ	44.972		~	53,160	ന	N		61.732	61.627	61.415		_	71.096	0 (•	5	132.301	32	32		4	133.911	33	1	135.812	35	2 5	1	3	137.341	37	5	38	138.789	38.	9
81	-4.458	2	Н	40	ກເ	4 -	+		0.		2.324	4.841	845.7	12 342	2.007	4.523	7.040	9.557	12.074	3.185	5.702	10.736	13.253	3.638	6.155	8.672	12 105 12 705	3 638	6.155	8.672	11.189	13.705	6.312	8.829	11.346	13.863	3.950	6.467	200.00	14.018	4.100	6.617	9.134	11.651	4.195	6.712	9.229	317 716
823	5.983 -7.								0	16.0	-3.138	-6.146	-9.155	-15.172	-3.463	-6.471	-9.480	-12.489	-15.497	-5.497	-11 514	-14.523	-17.531	-6.278	-9.286	-12.295	-15.303	-6.278	-9.286	-12.295	-15.304	-18.312	855	-12.566	-15.575	-18.583	-6.817	25.825	-12.834	18.851	-7.075	-10.084	-13.092	-101.01	-7.240	-10.248	-13.257	376 31
	160,353 2	160.303	160.278	1160.353	1160.328	1160.278	POINTS NETW	0,	1.	٥.																		32	32.	32.	32	132.036	34	33.	33	m		υ. υ.	מיני	 M	37.	37.	3.7		38.	38	38.	a
2	758										770	771	2//	774	775	776	111	778	779	780	787	783	784	785	786	18/	789	790	791	792	793	794	196	797	798	799	800	T08	202	804	805	806	708	000	810	811	812	913

5.512	5.4	90.	1	5.586	8.IU3	13.137)	5.558	8.075	10.592	m		7.628		ď	A. P.	7.031	9.548	12.065	-	3,841 5,358	9 00	Ľ,	•	ص رد	8.875	ų.				4	210.1-	9.0	9.		-4.967	υ, c	ی د	,		-10.010			
-8.845	സ	ന		ن د	-11.981	066				941	.950	-8.154	-11.162	.171	.179	1	13	-13.140	6.14	-	-5.962		4			-11.979					6	ን ‹	-8.616	-11.133		-3.265	-5.782	- 8.299	- 418.01-	4.444	-6.960	9.477	1986.	
140.048	83.6	9.73		141.498	141.393	141.207	;	43.	43	143.711	43.	8 7	148.076	47	47.	2		153.670	53.		160.301	60.09	59.9	,	60.3	1160.089	59.9			. 1.	107	45.103	44.972	44.866		53.265	٦,	9.9	٠,		61.627		•	
4.254	9.288	11.805	14.322	4.328	0.845	11 879	14.396	4.299	6.816	9.333	11.850	14.36/	6.370	8.887	11.404	13,921	5 773	8.290	10.806	13.323	2.583	7.617	10.134	12.651	2.583	7.617	10.134	-1	SUWNS	0	,	-5.158	551.6-	-12.163	-15.172	-3.463	-6.471	087.6-	-12.489	-5.497	-8.505	-11.514	-14.523	-1/.53T
-7.341	-13.358	-16.367	-19.375	-7.469	-10.477	115.486	-19.503	-7.420	-10.428	-13.437	-16.445	119.454	0 0 0	-12.667	-15.675	-18.684	10.01 709 a-	-11.636	-14.644	-17.653	-4.457	-10.475	-13.483	-16.492	-4.457	-10.475	-13.483	-16.492	ž	0	16.0								12.557					7
140.100	000	784	578	551	545	240	100	975	370	764	558	555	000	023	918	812	# C C	723	617	512	353	142	036	931	353	142	036	1159.931	NETA	0.	0.6	1 6	10	0	∞	3	ດ,	ਜ਼ (53.001	0 1	Ψ	u;	4.	٠,
815																												4	7. 4	ä		0 0 0 0 0 0 0	856	857	858	859	860	861	862	864	865	866	867	222

Page 17																																												
-16.808		-7.782				-8.054				-8.321	-11.329	-14.338	-17.347	ď	ຸທຸ	-14.597	ø.	α		-14.761	۲.	8	-11.854	٠.	ή.	0	-11.981	oςο	7	ė	9.0	-17.950	1	-8.154	1 -	-	•	-10 131	! -:	1 -		-5.962	o -	
-12.447		-4.896	-9.930	-12.447	•	-5.054	ů c	י כ	?	-5.208	-7.725	-10.242	7	35	.87	-10.392	90			-10.488		S.	-8.029		'n	S	-8.103	<u>-</u> د	,	'n.	-10 592	-13.109	,	-7.628	-10.145	-12.662		-7.031		•		19.62	200	٥
70.884	- 0	132.301	2	$^{\circ}$	-	134.017		. n		35.	35	135.600	,	37	37	137.236	37	3.89	3.78	138.683	0.5	o	33	, מ	,	41.4	141.393	41.1			143.81/		0	148.076		47.	23	153.776	53.	53.	203	160.195	60.09	
-15.303	-18.312	-9.286	-12.295	-15.304	-18.312	-9.558	-12.566	-15.575	-18.583	-6.817	-9.825	-15.842	-18.851	-7.075	-10.084	-13.092	-19.101	-7.240	-10.248	-13.257	-19.274	-7.341	-10.350	-16 367	-19.375	-7.469	-10.477 -13 486	-16.494	~19.503	-7.420	-13.437	-16.445	-19.454	-9.658	-12.667	-15.675	-5.619	-8.627	-11.636	-14.644	-4.457	-7.466	-10.475	
-11.189	-13.705	-6.155	-8.672	-11.189	-3.795	-6.312	-8.829	-11.346	~13.863	-3.950	100.01	-11,501	-14.018	-4.100	-6.617	-7.134	-14.168	-4.195	-6.712	-11.746	-14.263	-4.254	-6.771	-11.805	-14.322	-4.328	-9.362	-11.879	-14.396	-6.299	-9.333	-11.850	-3.853	-6.370	-8.887	-11.404	-3.256	-5.773	-8.290	-10.806	-2.583	-5.100	-7.617	
70.937	132.459	132.353	132.248	132.036	134.175	134.070	133.964	133.858	133.753	135.865	135.653	135.548	135.442	137.500	157.594	137 183	137.077	138.947	138.842	138.631	138.525	140.100	139.889	139.784	139.678	141.551	141.340	141.234	141.129	143.870	143.764	143.658	148.235	148.129	148.023	147.812	153.934	153.828	153.723	153.512	160.353	160.248	160.142	2000
872	874	875	0/0	878	879	880	881	882	80 00	9 00 0 00 0 00	988	887	888	6 C	891	892	893	80 90 40 10	896	897	868	668	901	902	903	904	906	907	30 G	910	911	912	914	915	917	918	919	920	176	923	924	925	976	1.0.0

Page 18							
results	-5.962 -8.970 -11.979 -14.987	-3.583 -6.100 -8.616 -11.133	-3.265 -5.782 -8.299 -10.816 -4.444 -6.960	-11.994 -4.896 -7.413 -9.930 -12.447	-4.896 -7.413 -9.930 -12.447 -5.054 -7.570 -10.087 -12.604		(4 011
	-3.841 -6.358 -8.875 -11.392	4.642 7.650 10.659 13.668	4.967 7.976 10.984 13.993 7.001 10.010	0 ron9	7.782 10.791 13.799 16.808 8.054 11.062 14.071		o Frich ma
	160.301 160.195 160.089 159.984	45.183 45.077 44.972 44.866	53.265 53.160 53.054 52.948 61.732 61.627	77 77 70 70 70 70 70 70 70 70 70 70 70 7	132.406 132.301 132.195 132.089 134.122 134.017	135 135 135 135 137 137	138.8 138.8 138.6 138.6 138.6 138.6
	-4.457 11 -7.466 11 -10.475 11 -13.483 11 -16.492 WK3	1111	무게하다란다	14411.4	-13.705 -3.638 -6.155 -6.155 -11.189 -13.705 -3.795 -6.312 -6.312	1 1 , ,	• •
	XX 110	16.0 3.138 6.146 9.155	15.172 3.463 6.471 9.480 12.489 15.497 5.497	11.514 14.523 17.531 6.278 9.286 12.295 15.303	18.312 6.278 9.286 12.395 15.304 18.312 6.549 9.558	15.5/5 18.583 6.817 9.824 12.834 15.842 18.851 7.075	13.092 16.101 19.240 7.240 10.248 13.257 16.265 19.274
13:51	1160.353 -2 1160.248 -5 1160.142 -7 1160.036 -10 1159.931 -12 OUNTS NETWORK	9.0 45.236 45.130 45.025	44.813 53.318 53.212 53.107 53.001 52.896 61.785	61.574 61.468 61.362 71.254 71.148 71.043	70.831 132.459 132.248 132.248 132.142 134.175 134.070	133.858 133.753 135.865 135.653 135.653 135.648 137.500 137.500	137.288 137.183 137.077 138.947 138.842 138.736 138.525 140.100
7 1996 13	229 1. 930 1. 931 1. 932 1. 934 \$PO	937 938 939 940	942 944 944 944 945 946 948	9550 9521 9554 9554 955	957 957 959 960 961 963	966 967 968 970 972 973	975 976 977 978 979 981 982 983

Page 19																																															
Sinesi	-13.063	· · · · · · ·	-8.103	-10.620	~		10.558				-5.111	-7.628	-10.145	-12.662				-12.065		-3.841	-6.358	-11.392		ω.	w, c	-11.342					4.642	-	10.659	m	•	7 976	. 6	6			10.010			7.	0.7	13.799	9
	17.871	8.973		14.990	_	•	11 924	, 0	0	•	Π.	1.1	14.171		*	! -	! ~	16.149			8.970			5.962	8.970	14.987					3.583	6.100	8.616	11.133	c	5.782	Š	æ			9 477			4.896	7.413	9.930	
	139.731	141	141.	141.287	141.	143	143	143.	143.		148.	148.	147.971		153	153.	153	153.		160.3	160.089	159.9	,	160	160	1159.984			-	;	ഹ	വ	44.972	7	-	53.160	٥.	o.			61.521			71.201	71.096	70.884	
	367 -11.805 375 -14 322	-4.328	-6.845	-9.362	-14.396	-4.299	-6.816	-9.333	-11.850	-14.367	-3.853	-6.370	-8.887	-13.921	-3.256	-5.773	-8.290	-10.806	-13.323	15.083	-7.617	-10.134	-12.651	-2.583	-7.617	-10.134	-12.651	-	O		3.138	6.146	3.155	15.172	3.463	6.471	9	12.489	ດທ	8.505	, ⊣	14.523	7	6.278	2	15.303	α
	16.367	7	0,	v		7		i. M	ů	٠. ه		n.c	9 0		5.6	8.	<u>.</u>		. 4	7.466	7	w.	9.4	4		ω. 4.	10.4 		0	6.0	2.324	4.841	0 t. 0	12.392	2.007	4.523	0.040	150.61	٧ ٣	5.702	œ	10.736	m r	5.658	8.672	11.189	m
0 0	139.678	141.551	141.445	141.340	141.129	143.975	143.870	143.764	143.658	143.553	148.235	148.123	147.918	147.812	153.934	153.828	153.723	153.512	160.353	160.248	160.142	150.035	1160.353	1160.248	1160.142	1160.036	OINTS NETWOR		.0 1.	0.6	45.236	45.025	44.919	44.813	53.318	53.212	53.001	52.896	61.785	61.679	61.574	61.468	61.362	71.148	71.043	70.937	70.831
000	987	886	n 000	991	992	993	400	300	9 6	0000	0 0	1000	1001	1002	1003	1004	1005	1007	1008	1009	1010	1012	1013	1014	1015	1016	1018 \$P	1019 1.	1020 18	1021	1022	1024	1025	1026	1027	1028	1030	1031	1032	1033	1034	1035	1037	1038	1039	1040	TOT

Page 20																																					
results	10.791 13.799 16.808	8.054 11.062	14.071 17.079	.3	11.329	7.3	5.5	11.588	7.6	8.744	-	14.761	:		14.863		8.97	11.981	96.7		8.924	ن من	7.9	8.154	11.162	14.171	_	7.1		13.140	,	5.962				8.970	۰
	7.413 9.930 12.447		10.087	- 63	7.725		ω.	7.875	0,			10.488	•		10.546		Ŋ.	8.103	٠.	,	5.558	. o			7.628		2	4.514	7.031	9.548	14.003	8	າ, α	11.392	c	6.358	
	132.301 132.195 132.089	46.6	33.911	35	135.706	3.0	37.4	137.341	37.1	0	٠.	138.683	ú	0	139.942	3.0	41.4	141.393	41.2		43	143.81/	43	a	148.076	47.	47	53.	53	153.670	2	9	90	159.984		1160.301	
	9.286 1 12.295 1 15.304 1	8.312 6.549	12.566 1	8.583	· ທ •	# (1)	- 2	40	9 -	6 9	2 00	2.2	74	7.341	10.350	16.367	19.375	10.477	13.486	19.503	7.420	10.428	16.445	19.454	9.0	12.667	15.675	5.619	8.627	11.636	14.644	4.457	7.466	13.483	16.492	104.4	
	6.155 8.672 1.189	705		13.863	6.467	8.984	14.018	6.617	11.651	14.168	4.195	9.229	11.746	4.254	6.771	11.805	14.322	6.845	9.362	11.879	4.299	6.816	11.850	14.367	3.853	8.887	11.404	13.921	5.773	8.290	10.806	2.583	5.100	7.617	12.651	2.583	
1:51	132.353 132.248 132.142	10.10	m m	n m 14	135.759	135.653 135.548	135.442	137.394	137.288	137.077	138.947	138.736	138.631	140.100	139.995	139.889	139.678	141.531	141.340	141.234	143.975	143.870	143.764	143.553	148.235	148.023	147.918	147.812	153.934	153.723	153.617	153.512	160.248	160.142	159.931	1160.353	
Mar 7 1996 13:	1043	917	8 6 6	010	53	55 55 55	95	58	650	191	962	16.4	265	990	890	1069	1071	1073	1074	1075	1077	1078	1079	1081	1082	1083	1085	1086	1087	1089	1090	1091	1093	1094	1096	1097	

																	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
																	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
																	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
14.987			5.148	2.583	-2.583	89T.C-	12.004		5.148	2.583	-2.583	-5.148	-2.584		essing		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
11.392		1.	0.00	4.457	4.457	0.000	104.47		0.000	4.457	4.457	000.0	-4.457		input processing		9.0000	9,0000		9.0000	9.0000	13.0000	2.0000
1159.984		•	160.353	160.353	160.353	160.353	160.333		1160.353	1160.353	1160.353	1160.353	1160.353	555.0011	record of		9.0000	9.0000		9.0000	9.0000	4.0000	13.0000
13.483	VAK		4 459	4.460	0.000	-4.458	80.6	459	4.459	4.460	0.000	-4.458	-4.458	4.459			7 7	77		3 2	4 2	1 5 1	H 6
.134	ORK = ZBODWAK		10.10	2.568	5.148	2.584	-2.583	10.140	-2.568	2.568	5.148	2.584	-2.583	-2.568			1 ng processed	1 ng processed		1 # being processed	1 ng processed		1 ng processed
1160.036 10 1159.931 12	SPOINTS NEIW	.8.	160 353	160.353	160.353	160.353	160.353	160.333	1160.353	1160.353	1160.353	1160.353	1160.353	1160.353 \$END			F I kn,kt network # being pro	I kn,kt network # being		kn,kt network # bei	or kn,kt network # being	*	I kn,kt network # being
1100	1102 \$	1104 1	1106	1107	1108	1109	1110	1111	1113	1114	1115	1116	1117	1118 1119 1120 \$		\$TIT \$SYM \$MAC \$CAS \$ANG \$PRI	\$REF \$POI ki net	\$POI kr	\$POI	ne	\$POI kı ne	\$POI k	\$POI k

APPENDIX B. GBU-24 OUPUT FILE (EDGE ANALYSIS)

			tted free edge	free						tted free edge	tted free edge						thad from adda	thou the odge	200					tted free edge	itted free edge																											
ľ			unabu	unabu						unabu	unabu						Hemit	denn	4					unabı	unabı																											
			probable error: unabutted	probable error:						probable error:	probable error: unabutted						probable error: mabutted	probable error: unaburted	propaga error:					probable error:	probable error: unabutted																											
Jamest Collection	Alec. 84ye	1.1+																																																10.3+		
	180	15	12	12	12	12	12	18	12	12	12	12	15	1 :	10	1 5	9 6	7 5	1 5	7 5	4 5	7 1	2 5	7 1	17	12	12	15	12	12	77	12	12	175	12	12	12	15	7 5	112	12	12	12	12	12	12	12	7 -	12	12	12	12
7	IN-TARIC																																																			
	Knet, eage	30.1-	1.2-	1.3-	10.2-	11.4+	1.4-	2.1-	29.1-	2 2-	2.3-	9 2-	10.01		1 - 6	21.T	-T. T.	7.5	14.0-	-7.11	+ 1 0	1 7	1.00	4 2-	1 6.	8.2-	9.4+	4.4-	6.4+	5.1	+ c	77.0	+ 1 -	7.3+	6.2-	7.3+	6.2-	+ 1.9	1. T.	17.7	10.1+	7.1-	9.1+	7.1-	7.4+	7.2-	12.2+	2.00	12.2+	12.2+	10.3-	11.3-
	12	2 5	12	12	12	12	12	12	18	12	12	12	1 5	4 5	7 -	10	0 0	77	77	77.	7 5	7 7	77	170	12	12	12	12	12	12	17	7.5	12	12	15	12	12	12	77	7 1	1 5	12	12	12	12	12	12	7 .	12	12	12	12
	nw-laent																																																			
	abutment	4	0	'n	4			S		v	, ,	- α	•		c	n	,	110	1 5	77		ŗ	13	1.4	1 1	16			17		18		F3	20	1	21		22		73	2.4	,	25		26		27	Ċ	87	29		30

																																										a <i>f</i>	b			n /				n (p			
																																									free edge	tree edge			المري مطمر	free edge			ree edge	froe odge	ייים מייי			
																																									unabuttad f	unabutted f	מוושהתרופת ד		* hothinden	unabutted f	unabucceu 1		unabutted f	unabutted f	מוומחתריפת			
																																									orror.	proparie error:	TOTTA		3	probable error:	: ToTTA		nrohable error.	probable error: unabutted	propagie eilor:			
12.1+	12.4+	13.3-	12.4+	13.3-	14.3-	13.1+	14.3-	13.1+	13.2+	13.4-	21.4-	14.1+	17.4-	14.1+	16.4-	14.1+	15.4-	14.1+	14.2+	14.4-	19.4-	15.1+	16.3-	32.1+	15.2+	23.4-	22.4+	15.3+	21.1-	20.4-	16.1+	17.3-	32.1+	16.2+	23.41	0.0	17.1+	- 5.1.5	17.75	+7.7	18.5	1001	10.24	17.47	10.01	10.11	19.24	10.11 10.21	+1.00	20.02	12.00	20 3+	32.1+	1 10
122	12	12	12	12	12	12	12	77	77	17	12	12	12	12	12	12	12	12	12	12	12	12	12	18	12	12	12	12	12	12	12	12	18	12	12	77	77	7 7	0 C	7 7	1 1 2	1 1	7 0	0 (7 5	17	77	170	12	12	12	12	18	9 (
12.3+	1 + m	- 4	.3+	- 4 -	-	÷	-10	.3+	+	- 7 -	-1-	+ 4 +	1.1-	.4+	1.1-	5.4+	1.1-	5.4+	1.4+	1.2-	5.3+	4+	5.1-	3.4+	2.1-	5.2-	1+	2.4-		7.3+	0.4+	6.1-	3.4+	2.1-	-2.0	1.3+	+ + +	7.1-	+ +	1.1.	17.8	7.0	17.0	10.0	+	1.0	17.6	10.0	1.0	100	1 7 6	7 1 +	3.4+	
12 12																																																						
31	32																																																					

Раде 60	
	outted free edge
	nnak Innak
	, pp. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
resuits	. 5 t
1	12 23.4- 12 22.14- 12 22.14- 12 22.3-1- 13 22.3-1- 18 24.3+ 18 24.3+ 18 25.4- 18 24.3+ 18 25.4- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 25.3- 18 30.3- 18 30.3- 18 30.3- 18 30.3- 18 31.
	21.2- 22.1- 22.1- 22.3- 23.1- 24.2- 24.2- 24.2- 24.3- 24.4- 25.3- 25.4- 25.4- 26.3- 26.4- 26.3- 26.4- 27.4- 28.3- 29.4- 29.3- 29.4- 29.3- 29.4- 30.3- 30.3- 30.4- 31.3- 31.4-
	21.2- 22.1- 22.1- 22.2- 22.3- 23.3- 24.4- 24.3- 25.3- 32.2+ 32.2+ 32.4- 32.2- 25.3- 25.3- 25.3- 26.2- 26.2- 27.3- 27.3- 29.3- 29.3- 29.3- 29.3- 29.3- 29.3- 30.4- 31.3- 31.3- 31.4-
	vith
Mar 7 1986 13:51	59 60 61 62 63 64 65 66 66 67 69 71 72 73 74 75 76 77 78 81 82 83 83 84 85 85 86 87 87 87 87 87 87 88 87 87 87

io efa i																																									
									ı															-1.775733													-4.458000				
																								0.854933													2.584000				
resuits																								68.013867													160.353000				
n is	110	air	air	air	air	alr r	איר ב	air	air	air	air	alr.	air	air	air	air r	air	air	air	air	n d	a tr	atr	air	air	air	air	air	air	air	air	air	air	air	air	air	air	air			grid location
, addii	uppet	reddn	lower	nbber	lower	upper	LOWEL	upper	lower	upper	lower	upper	TOMET	lower	upper	lower	lower	npper	lower	upper	Lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	npper	upper		CS XXXX	fine grid
analvete	analyara	analysis	nt=18 wake	nt=18 wake		nt=18 wake			nt=18 wake		nt=18 wake			nt=18 wake			analvsis	analysis	nt=18 wake		extra control points	row col f																			
#	17	1 5	18	19	19	20	21	22	22	24	24	25	25	26	27	27	2 8	23	29	30	30	31	32	Ľ	9	7	œ (y [11	12	13	4 5	16	17	21	23	23	32	ra-cp	summary of extra	nw edge point
Mar 7 1996 -																								0	ı												м		0*b*extra	****	-

																		A-44																									*
																																								2 indicatos noint moved by Seat			*** warning
																																								ends at ai	٠,٠	6 7 8	nt
																		*		location																		Σ		starts at ai # 1	corresponding edge		the source along the source along this abuitment
4	6 6 7	n u	n u	, v	· —	23	21	7	13	19		-	н	н (۲,	7 5	Ç.	rs * * *	7	grid loc	n r	- 65	13	ın ı	n u	വ	н,	23	7	13	m	-1 -		7	13	43		abutment summary		19-61	11-01		1 4 4
,	⊢ 1 ℃	י ני	13	7 -	2.5	-	m	Н	Н	1	7	19	13	7	r		4	point	6120	rine	77	- ۲	+	ហ	٠.	161	21	⊢ (*)	n		7	13	7	Н		4		outmen		4	n var	ч	and the shape
	10	יי ר	n m) r) (12	11	4	7	10	7	-1	1	- 1 ·	4.	- 01	24	tra v-parameter points	7	705	V <	, ,	10	m	~) r	n m	7	12	1 7	10	2	rd r	ㅋ ~	4	7 0 1	7.0		'nď		40.40	matching ructa-it	mu-match	44-
	⊢ ~) <	* [, 0	1 -	-	7	Н	Т	7	4	10	7	4	Н,	⊣ -	4	d-v a		FO.	7		1 -1	m·	4 (10	11	-1 ~	4		4	10	- 4	ч	ч-	7						ı vo	
	10	1	* [*	٠ ٢	۳ ۲	12	<u>ا</u> ۳	4	7	10	12	7	7	10	41	10	24	of extra	4 4	point	17	7	10	11	40	10	m	12	n 🔝	10	12	41	10	4	7	70				dblt edge	rype r	18	
	۰.	n (40	4 0	1 4	-, ا	im	-	н	Н	٣	4	4	7	٦,	٦,	4		1	ige J	V r														н -				н		nw/la		
	L L	٠,٠	77	12	12		9 6	14	14	14	14	23	23	23	32	3.5	a-cp a-vp	summary		y v	o r	- 1		7	175	12	12	13	14	14	11	23	23	32	32	3.2 73~47	tment		nt #				:
	4. π																. Ð Ð	* * * *		r	-i c	, w			۰ ،		. 6	10.	12.	13.	15.	16.	18.	19.	20. 32	21. 0*o*oxt)	0*b*abut	H	0abutment	1	nw.ed	30.1	

osprey
fom
tour
maje
۾
育
든

8	* *			*	*			*	*		
ES BEAT	<pre>3 indicates point moved by \$eat *** warning</pre>	4 indicates point moved by \$eat	4 indicates point moved by \$eat	6 indicates point moved by \$eat *** warning	7 indicates point moved by \$eat *** warning	8 indicates point moved by \$eat	8 indicates point moved by \$eat	10 indicates point moved by \$eat *** warning	<pre># 11 (-) indicates point moved by \$eat 9</pre>	<pre>1 # 12 (-) indicates point moved by \$eat 9</pre>	9 indicates point moved by \$eat
resuits	starts at ai # 2 ends at ai # 4 ends at ai # 2 starts or responding edge points (minus (-) mu-match 1 2 4 5 6 7 8 9 strength matched to zero along this abutment	<pre>starts at a1 # 3 ends at a1 # 4 corresponding edge points (minus (-) indicates point moved by 1 2 3 4 5 6 7 8 9</pre>	starts at ai # 1 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 9 1 0 0 0 0 0 0 0 1	starts at al # 5 ends at al # 5 ends at al # matching kutta-fl corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 strength matched to zero along this abutment	starts at a! # 6 ends at a! # 7 matching kutta-fl corresponding edge points (minus (-) indicates point moved by \$eat mu-match 1 2 3 4 5 6 7 8 9 strength matched to zero along this abutment *** wa	starts at ai # 7 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at al # 5 ends at al # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 9 1 2 0 0 0 0 0 0 0 1	edge type matching kutta-fl corresponding edge points (minus (-) indicates point moved by \$eat at a match 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 9 1 1 2 3 4 5 6 7 8 9 9 1 1 2 3 4 5 6 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ends at al bints (minus 6 7 8	starts at ai # 11 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at al # 12 ends at al # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 9 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
	ning kutta-fl atch th matched to ze	ning kutta-fl atch	ning kutta-fl atch	ning kutta-fl atch th matched to z	hing kutta-fl atch th matched to z	hing kutta-fl atch	hing kutta-fl atch	matching kutta-fl mu-match :rength matched to z	matching kutta-fl mu-match .rength matched to z	matching kutta-fl mu-match	matching kutta-fl mu-match
	dblt edge matching type type mu-match 12 4 mu-match doublet strength ma	dblt edge type type matching 12 4 mu-match	dblt edge type type matching 12 4 mu-match 12 4	dblt edge type type matching 12 4 18 5 mu-match doublet strength m	dblt edge type type matching 12 4 mu-match doublet strength m	dblt edge type type matching 12 4 mu-match	dblt edge type type matching 12 4 mu-match 12 4	dblt edge type type matci 12 4 18 5 mu-m doublet streng	dblt edge type type matc 12 4 mu-m doublet streng	dblt edge type type matc 12 4 mu-m	dblt edge type type matc 12 4 mu-m 12 4
Mai 7 1880 13:01	* nw.edge nw/id 1.2 Qabutment # 3	nw/id	nw/id	vabutment # 5 nw.edge nw/id 2.1 29.1 Oabutment # 6	nw.edge nw/id 2.2 0abutment # 7	nw.edge nw/id 2.3	, wu #	" nw/	nw.edge nw/id 3.2 Oabutment # 11	nw.edge nw/id 3.3	

8												_								
sprey	- Bos 64		*		*															
Printed by maletour from osprey	Y.	oved by \$eat	*** warning	oved by \$eat	*** warning	Şe	ved by \$eat	•	ved by seat	ved by \$eat	,	7ed by seat	1 2 7	ed by seat	4	ed by seat		ed by \$eat		ed by \$eat
L		14 indicates point m		15 indicates point m		16 indicates point moved by	16 indicates point moved by	17	10 11 12 13	17 indicates point mo	7 ndicates noint mo	Our DOING TO THE HOLD THE	9 ndicates point mov	0 11) odicatos point mo:			dicates point mov		utcates point mov
results		iblt edge starts at ai # 13 ends at ai # 14 Yhe type matching kutta-fl corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 4 5 6 7 8 9 doublet strength matched to zero along this and thought		type type matching kutta-fl corresponding edge points (minus (-) indicates point moved by doublet strength matched to reso li 2 3 4 5 6 7 8 9	Chis abutment	starts at ai # 15 ends at ai # corresponding edge points (minus (-) 1 2 4 5 6 7 8 9	starts at ai # 13 ends at ai # 1 corresponding edge points (minus (-) i 1 2 3 4 5 6 7 8 9 9 1 0 0 0 0 0 2 2 0 0 0 0 0 1 1	at ai # 17 ends at ai # 1 onding edge points (minus (-) ;	1 2 3 4 5 6 7 8 9 1 13 12 11 10 9 8 7 6 5	# 18 ends at al # edge points (minus (-) 1	starts at ai # 19 ends at ai # 17 corresponding edge points (minus (-) indicates not a mondal hamada hamad	21	starts at ai # 20 ends at ai # 19 corresponding edge points (minus (-) indicates noint moved hy	3 4 5 6 7 8 9 1	starts at ai # 19 ends at ai # 20 corresponding edge points (minus () indicates rotat massed to	13	starts at ai # 12 ends at ai # 16 Corresponding edge boints / minus / 1/331	3 4 2 1	starts at ai # 4 ends at ai # 12 corresponding edge points (minus /-) indicate	2 1
		starts kutta-fl corres 1 atched to zero along		kutta-fl corresponded to zero	diois a reto atomo	starts kutta-fl corresp 1	starts kutta-fl correst 1 1	starts at kutta-fl correspond	13 1	starts at ai kutta-fl corresponding 1 -2 3 4 -3 2	starts kutta-fl corresp	H 73	starts starts skutta-fl correspond	11 10	starts starts kutta-fl correspo	11 12 13 12	starts a kutta-fl correspo	4 1 3 3 3	starts a kutta-fl correspo	44 A4
		matching mu-match strength m		matching mu-match strength	,	matching mu-match	matching mu-match	matching	mu-match	matching mu-match	matching mu-match	ייים - ייום בכלו	matching	mu-match	matching	mu-match	matching	mu-match	matching	mu-match
			dblt edge		طابلة	type type	dblt edge type type 12 4 12 4	dblt edge type type		dblt edge type type 12 4	dblt edge type type 12 4	12 4	dblt edge type type 12 4	12 4	dblt edge type type 12 4	12 4	dblt edge type type	12 4	o o	4 4
3:54	# 13	nw/id # 14		nw/id # 15		nw/id # 16	nw/id	nw/id	18	nw/id 19	nw/id	20	nw/id	21	nw/id	22	nw/id	23	nw/id	24
Mar 7 1996 13:51	Oabutment	nw.edge 4.1 28.1 0abutment		nw.edge 4.2 0abutment		nw.edge 4.3 Oabutment #	nw.edge 4.4 8.2 9.4 Oabutment #	nw.edge 5.1	6.4 Oabutment #	nw.edge 5.2 5.4 0abutment #		6.3 Oabutment #	nw.edge r 6.2	7.3 Oabutment #	nw.edge n 6.2	7.3 Oabutment #	nw.edge n 7.1	8.1 Oabutment #	dge	11.1 Oabutment #

starts at al # 8 ends at al # 4 corresponding edge points (minus (-) indicates point moved by \$eat corresponding edge points (minus (-) indicates point moved by \$eat 7 8 9 10 4 3 2 1	starts at ai # 16 ends at ai # 8 corresponding edge points (minus (-) indicates point moved by \$eat 10 11 12 13 4 3 2 1	<pre>starts at a! # 20</pre>	starts at a! # 9 ends at a! # 13 corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 4 1 10	<pre>starts at ai # 13 ends at ai # 5 corresponding edge points (minus (-) indicates point moved by \$eat</pre>	<pre>starts at ai # 5 ends at ai # 1 corresponding edge points (minus (-) indicates point moved by \$eat</pre>	<pre>starts at ai # 1 ends at ai # 9 corresponding edge points (minus (-) indicates point moved by \$eat</pre>	<pre>starts at at # 13 ends at at # 21 corresponding edge points (minus (-) indicates point moved by \$eat</pre>	starts at a1 # 22 ends at a1 # 21 corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 3 2 1	starts at ai # 21 ends at ai # 22 corresponding edge points (minus (-) indicates point moved by \$eat corresponding edge points (minus (-) indicates point moved by \$eat 3 4 5 6 7 8 9 10 11 12 13 12 11 10 9 8 7 6 5 4 3	starts at a! # 24 ends at a! # 23 corresponding edge points (minus (-) indicates point moved by \$eat corresponding edge points (minus (-) indicates point moved by \$eat 1 1 2 3 4 5 6 7 8 9 10 11 12 11 10 9 8 7 6 5 4 3 2 1	starts at ai # 23 ends at ai # 24 starts at ai # 24
starts at al # 8 ends corresponding edge points (m o 7 8 9 10 4 3 2 1	starts at ai # 16 ends corresponding edge points (1 10 11 12 13 4 3 2 1										
kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	y kutta-fl n	g kutta-fl h	
matching kutta-fl mu-match		matching mu-match	matching mu-match	matching mu-match	matching mu-match						
dblt edge type type m 12 4 m	t edge e type 4	t edge e type 4	edge type	t edge e type 4	edge type 4	ty ed	dblt edge type type 12 4	, T 60.	dblt type 12	dblt edge type type 12 4	dhlt edde
v/id	25 db nw/id ty	26 dl	27 nw/id	28 nw/id	29 nw/id	# 30 nw/id	# 31 nw/id	# 32 nw/id	# 33 nw/id	# 34 s nw/id	35 # 35
mar / 1996 13.57 nw.edge nv	ent #	0abutment # nw.edge r 7.2	*	Dabutment #	14.2 Oabutment # nw.edge 10.3			0abutment nw.edge	13.3 Oabutment nw.edge	0abutment	14.3 Oabutment

Printed by maletour from osprey

: a1 # 23 nus (-) indicates point moved	. ai # 25 nus (-) indicates point moved	: ai # 26 nus (-) indicates point moved	t ai # 27 nus (-) indicates point moved	t ai # 28 nus (-) indicates point moved	t ai # 25 nus (-) indicates point moved	s at ai # 28 minus (-) indicates point moved by \$eat 7 8 9 10 11 5 4 3 2 1 5 4 3 2 1	t ai # 30 nus (-) indicates point moved by	t ai # 25 nus (-) indicates point moved by \$eat 8 9 -10 11 8 9 -10 11	t ai # 27 nus (-) indicates point moved by \$eat 8 9 10 11 4 3 2 1
12 13 starts at a1 # 22 ends at a1 # 23 corresponding edge points (minus (-) indicates point moved by 2 1	starts at ai # 26 ends at ai # 25 corresponding edge points (minus (-) indicates point moved by 1 2 3 4 4 3 2 1	starts at al # 27 ends at al # 26 corresponding edge points (minus (-) indicates point moved by 4 5 6 7 4 3 2 1	starts at ai # 28 ends at ai # 27 corresponding edge points (minus (-) indicates point moved by 7 -8 9 10 4 -3 2 1	starts at al # 25 ends at al # 28 corresponding edge points (minus (-) indicates point moved by 10 -11 12 13 4 -3 2 1	starts at ai # 24 ends at ai # 25 corresponding edge points (minus (-) indicates point moved by 1 2 3 4 4 3 2 1	starts at al # 29 ends at al # corresponding edge points (minus (-1 2 3 4 5 6 7 8 9 11 10 9 8 7 6 5 4 3 11 10 9 8 7 6 5 4 3	starts at ai # 29 ends at ai # corresponding edge points (minus (-) 1 - 2 3 4 4 -3 2 1 10 -11 12 13	starts at al # 30 ends at al # ; corresponding edge points (minus (-) ; 1	starts at al # 31 ends at al # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 11 10 9 8 7 6 5 4 3
kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl	kutta-fl
mu-match matching mu-match	matching mu-match	matching mu~match	matching mu-match	matching mu-match	matching mu-match	matching mu-match	matching mu-match	matching mu-match	matching mu-match
12 4 12 4 dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4	dblt edge type type 12 4 12 4 18 5	dblt edge type type 12 4 12 4	dblt edge type type 12 4

		*	*		;	k K	*		*	*	
\$eat	Şeat	\$eat warning	\$eat warning	Seat	**	warning	\$eat warning	\$eat	\$eat warning	\$eat warning	\$eat
	ζq	* **	, ¥ ф			*	¥ ¥	λq	þý.	, **	rd 1
Ved	ved ved	ved	ved	oved	oved		oved	oved	oved	oved	oved
t mo	t mo	of mo	at me	at m	nt W		r H	nt m	n E	nt n	nt n
potn	ntod	poir	poti	pot	pot		pod	pod	pod	pod	tod :
29 indicates point moved by	26 indicates point moved by 10 11 2 1 2 1	31 indicates point moved by \$eat *** wa	starts at ai # 26 ends at ai # 33 corresponding edge points (minus (-) indicates point moved by 1 2 3 4 5 6 7 along this abutment ****	34 indicates point moved by 10 11	34 indicates point moved by	ļ	starts at al # 28 ends at al # 35 corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 4 5 6 7 along this abutment *** wa.	36 indicates point moved by 10 11	starts at ai # 29 ends at ai # 36 corresponding edge points (minus (-) indicates point moved 1 2 3 4 5 6 7 7 6 5 4 3 2 1 along this abutment	<pre>starts at a1 # 27 ends at a1 # 37 corresponding edge points (minus (-) indicates point moved by 1 2 3 4 5 6 7 along this abutment ************************************</pre>	starts at ai # 37 ends at ai # 38 corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 4 5 6 7 8 9 10 11
	# () owe	# (-)	# ()		* <u>(</u>	•	* £		* £	* ①	# <u> </u> 6
ends at ai # points (minus (-)	s at ai minus (7 8 5 4	nus (ends at ai # s (minus (- 7	t ai nus 8	ends at ai # ss (minus (-) 7	1	t ai	ends at ai	ends at ais (minus 7)	nt ai	ends at ai # s (minus (- 7 8 9
endsat s (mir	ends at ai s (minus 7 8 5 4	ds a (mti	ds a (mi	ds a (mi	lds a (mt 7		lds a (mt	ids a (mi	ids a (md 7	nds a (mj	nds a (m)
nts	32 enda edge points (4 -5 -6 8 -7 -6 8 -7 -6	en nts	en nts 6	en nts 6	Ints		Ints 6	er ints 6	ints f 2	ints 6	el ints 6
poi	2 e poi -5 -7	poi	poi 5	a pol	w Sod	ant	8 8 Pod ent	6 S	e po:	a po 5 ent	7 e po 5
edge 4 4 10	32 edge 4 8	edge 4 7 7 7 outme	# 26 edge 4	# 9dge	# 32 edge 4	butin	edg edg t	# 35 edge 4	# 29 edge 4 4 butme	# 2 edg	# 37 edge 4
at # ling 3 5 9	at # Bing 3 9	ai # iing (3 8 6 is ab	at ding	ai ding 3	ding 3	1s 1s	ai ding 3 is a	ai ding 3	at ding 3 5 its a	at ding 3	at ding
spond 22 6	sspond -2 -10 -10	s at spond 2 9 5 g th	s at spon 2 g th	s at spon 2	s at spon 2	ig th	is at ispon 2 ig th	is at aspon	spon 2 6 og th	aspor 2 19 th	ts at espor
starts at al # 31 corresponding edge 1 2 3 4 7 6 5 4 7 8 9 10	starts at al # corresponding 1 -2 3 11 -10 9 11 -10 9	starts at ai # 32 ends at ai # corresponding edge points (minus (-) 1 2 3 4 1 0 9 8 7 1 1 5 6 7 2ero along this abutment	starts at ai # 26 ype type matching kutta-fl corresponding edge po 12 4 mu-match doublet strength matched to zero along this abutment	starts at ai # 33 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at al # 32 ends at al # 1 corresponding edge points (minus (-) 1 2 3 4 5 6 7 1 7 6 5 4 3 2 1	alon	start corre	starts at al # 35 ends at al # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	dge matching kutta-fl corresponding edge porton and an arching kutta-fl corresponding edge porton and an arching kutta-fl corresponding edge porton and a set strength matched to zero along this abutment	starts at al # 27 corresponding edge por 1 2 3 4 5 zero along this abutment	starts at ai # corresponding e 1 2 3
m Ö	w U	s o o	S O O S	w 0	wo	0.182	zero		Zero	zero	
1-f1	1-f1	a-f1 to 2	a-fl to ;	a-f1	kutta-fl vor-mtch	2	a-fl to	kutta-fl	kutta-fl vor-mtch	kutta-fl cched to	kutta-fl
kutta-fl	kutta-fl	matching kutta-fl mu-match strength matched to	kutta-fl ched to	kutta-fl	kutta-fl vor-mtch	strength matched to	kutt	kutt	kutt vor-	dge ype matching kutta-fl 4 mu-match et strength matched to	kutt
		ng ch mat	ng ch mat		566	mat	ng ch mat	ng ch	ing ich ich mat	ing cch nat	ing
matching mu-match	matching mu-match	matching mu-match	matching mu-match rength m	matching mu-match	matching vor-mtch mu-match	angth	tchi i-mat	matching mu-match	matching vor-mtch mu-match crength ma	matching mu-match rength ma	matching mu-match
		ma mu stre	ma mu stre		E SE	stre	stre		e me	e e string	
edge type 4	edge type 4	edge type 4 4 5 olet s	edge type 4	edge type	lblt edge cype type 12 4	olet	edga type	edg typ	e to	edge type 4	edge type
dblt type 12 12 18	dblt type 12 12 12	dblt edge type type 12 4 12 4 18 5 doublet	dblt edge type type 12 4 doublet s	dblt edge type type 12	dblt type 12 18	dout	dblt edge starts at a1 # 28 type type matching kutta-fl corresponding edge pot 12 4 mu-match a1 2 3 4 doublet strength matched to zero along this abutment	dblt edge type type 12 4	dblt e type t 12 18 doubl	dblt edge type type 12 4 doublet s	dblt type 12
3	3	nw/id	nw/id # 50	nw/id	NG.	* 25	nw/id # 53	nw/id # 54	3	nw/id # 56	nw/id
	* 1	ant #									dge
nw.edge 16.2 23.4 32.1	Oabutment nw.edge 17.1 18.4 21.3	nw.edge 17.2 23.4 32.1	nw.edge 18.1 Oabutment	nw.edge 18.2	nw.edge 18.3 24.1	Oabutment *	nw.edge 19.1 Oabutment	nw.edge 19.2	nw.edge 19.3 26.1	nw.edge 20.1 Oabutment	nw.edge 20.2
FHGW	de Turk	Oak	, le	C		0 *	0 *	C	, 0	, O	1

Page 68			:	*			*		*	:		*		*	
Pag	Seat	\$eat	, warning \$eat	warning \$eat	Şeat	\$eat	warning	\$eat	gentle reminder	Şeat	şeat	warning	Şeat	ninder	eat.
	moved by	moved by		ž ą́			k K		gentle	d by \$		*		gentle	by \$
	t move		t move	point moved	move	move.		moved by	*	move	шолес		move	*	THO VO
	poin s	; point	poin:	poin	poin	point		point		point	point		point		point
	38 indicates	32 indicates	** 39 indicates point moved by	40 indicates 10 11	40 indi	30 indicates point moved by	ç			43 indicates point moved by ***	32 indicates point moved by	:	44 indicates point moved by	ı,	indicates point moved by cost
	at * s (-)	at # s (-)	ai # s (-)	# (-) 8	# (-)	ai. * (-)	#	ŧ ()						#	ŧ î
	31 ends at ai # 38 edge points (minus (-) indicates point 4 5 6 7 4 3 2 1	ends at al points (minus	nt ends at ai points (minus 5 6 7	ends at ai points (minus 5 6 7 8	ends at a points (minus 5 6 7 3 2 1	ends at ai points (minus	onde of	points (minus	be added	ends at ai # points (minus (-) 5 6 7	ends at ai # points (minus (-)	4	points (minus	De added	points (minus
	starts at ai # 31 corresponding edge 1 2 3 4 7 6 5 4	starts at ai # 30 ends at ai # corresponding edge points (minus (-) 1 - 2 3 4 4 1 - 2 3 4	zero along this abutment starts at ai # 25 ends at ai # corresponding edge points (minus (-) 7200 along this abutment	starts at a1 # 39 ends at a1 # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 30 ends at ai # corresponding edge points (minus (-) 1 2 4 5 6 7 1 6 5 4 3 2 1	starts at ai # 41 ends at ai # corresponding edge points (minus (-) 2 1	starts at ai # 34	corresponding edge points (minus (-)	wake Illaments will	starts at ai # 42 corresponding edge 1 2 3 4	starts at ai # 43 corresponding edge 1 2	nterto estado es	20 7	starts at ai # 44	
	kutta-fl co				st kutta-fl co vor-mtch	st kutta-fl co unabuttød	st			kutta-fl co: unabutted	sta kutta-fl co		kutta-fl com		kutta-fl com
		g ku	match patch	r k				kat	חווש						
	matching vor-mtch mu-match	matching mu-match	strength matched to	matching mu-match	matching vor-mtch mu-match	matching mu-match edge left		type matching kutta-fl	Spp Sire	matching edge left	matching		Ype matching 2 trailing edge		matching
	dblt edge type type 12 4 18 5	dblt edge type type 12 4 12 4 18 5 doublet edge	dblt edge type type 12 4	dblt edge type type 12 4	dblt edge type type 12 4 18 5	dblt edge type type 12 4 12 4 wake side		type type 18 2 wake trai		dbit edge type type 18 2 wake side	dblt edge type type 18 2 wake side	ູ່ພ	type type 18 2 wake trail	ø	type type
# 57	nw/id # 58	nw/id # 59	nw/1d 60	nw/id #	nw/id	nw/id		nw/1d 64		nw/id 65	nw/id t	.0	nw/id t 67		nw/id t
Oabutment	nw.edge 20.3 27.1 Oabutment	nw.edge 21.2 23.4 32.1 0abutment		nw.edge 22.2 Oabutment #				nw.edge 24.2 Oabutment #	*	nw.edge 24.3 Oabutment #	nw.edge 24.4 abutment #		nw.edge 25.2 abutment #		nw.edge 1

Vonce	2000
-	5
****	mode
-	Ē
-	2
	Ž
	_

				*	*	*	:	*	‡	*	*
/ed by \$eat	*** warning **	ved by \$eat * gentle reminder **	wed by \$eat *** warning **	oved by \$eat *** warning **	moved by \$eat *** gentle reminder **	\$eat warning	\$eat * warning	minder	rning	moved by \$eat 14 15 16 *** warning	moved by \$eat 14 15 16 *** gentle reminder
30 indicates point moved		46 indicates point mov ***	47 indicates point mo	29 indicates point m	48 indicates point m *	49 indicates point moved by ***	31 indicates point n	50 indicates point 10 11 12 13			 52 indicates point moved by \$eat indicates point moved by \$eat 10 11 12 13 14 15 16 9 10 11 12 13 *** gentle re
c ai # 45 ends at ai # nding edge points (minus (-)	1 C2	starts at al # 36 ends at al # 46 corresponding edge points (minus (-) indicates point moved by 1 2 A A B A B A B A B A B A B A B A B A B	starts at ai # 46 ends at ai # 47 corresponding edge points (minus (-) indicates point moved by corresponding edge points (minus (-) indicates point moved by 1 2 3 4 5 6 7	starts at ai # 47 ends at ai # 29 corresponding edge points (minus (-) indicates point moved by 1 2	starts at ai # 38 ends at ai # 48 corresponding edge points (minus (-) indicates point moved by 1 2 wake filaments will be added	starts at ai # 48 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7	starts at ai # 49 ends at ai # 31 corresponding edge points (minus (-) indicates point moved by 1 2	starts at ai # 14 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 wake filaments will be added	starts at ai # 50 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 51 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 6 ends at ai # corresponding edge points (minus (-) 1 2 4 5 6 7 8 9 wake filaments will be added
st kutta-fl co	left unabutted	st kutta-fl co	: . "		s kutta-fl c unabutted. wa	kutta-fl unabutted	kutta-fl unabutted		matching kutta-fl edge left unabutted	matching kutta-fl edge left unabutted	blt edge ype type matching kutta-fl 18 2 wake trailing edge unabutted.
matching	edge	matching	ing eage matching edge lef	matching edge left	matching ling edge	matching edge lef					e matching ailing edge
dblt edge type type 18 2	18 2 18 2 wake side		wake trall dblt edge type type 18 2				dblt edge type type 18 2 wake side	dblt e type t 18	dblt e type t 18 wake	dblt edge 1 type type 18 2 wake side	t G
//id	69	nw/id	# 70 nw/id " "	á	, å,	, i		. f.	. 4	, i #	ž #
223	32.2 32.4		***	v * nw.edge 26.4		nw.edge	nw.edge	nw.edge 28.2	nw.edge 28.3	nw.edge 28.4	nw.edge 29.2 Oabutment

*	*	*	:	*	:	*	*		
\$eat * warning	\$eat 16 * warning	\$eat 16 le reminder	moved by \$eat	moved by seat 14 15 16 *** warning	moved by \$eat 14 15 16 *** gentle reminder	moved by \$eat	moved by \$eat 14 15 16 *** gentle reminder	moved by \$eat	
53 indicates point moved by **	5 indicates point moved by 10 11 12 13 14 15 7	54 indicates point moved by 10 11 12 13 14 15 *** gent	55 indicates point moved by **	starts at ai # 55 ends at ai # 1 corresponding edge points (minus (-) indicates point moved by \$eat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *** Wa	56 indicates point moved by 10 11 12 13 14 15 *** gent.	57 indicates point moved by	9 indicates point moved by \$eat 10 11 12 13 14 15 16 *** gentle re	45 indicates point moved by \$eat 10 11 12 13	
# (6	# () 6	# (-) 9	# (-) 9	# (6 6)	# () 6	# () 6	# (] 6	# (-) 6	
starts at ai # 52 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 53 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 2 ends at ai corresponding edge points (minus 1 2 3 4 5 6 7 8 18 eake filaments will be added	starts at al # 54 ends at al # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	ends at a points (minus 5 6 7 8	starts at ai # 10 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 9 rake filaments will be added	starts at ai # 56 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9	starts at ai # 57 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 rake filaments will be added	starts at ai # 45 ends at ai # corresponding edge points (minus (-) 1 2 3 4 5 6 7 8 9 *****	
52 adge 4	53 edge 4	edge 4 will	54 edge	55 edge	10 edge 4 will	56 edge	edge 4 will	# 45 adge 4	
starts at ai # corresponding 1 2 3	starts at ai # corresponding 1 2 3	starts at ai # 2 endicorresponding edge points (1 2 3 4 5 6 7 wake filaments will be added	starts at ai # corresponding 1 2 3	starts at ai # corresponding 1 2 3	starts at ai # 10 endicorresponding edge points (212345)	starts at ai # corresponding i	starts at ai # 57 corresponding edge 1 2 3 4 wake filaments will		0.1911E-02 0.000000 0.000000 0.000000 0.000000 0.000000
kutta-fl unabutted	kutta-fl unabutted	kutta-fl mabutted.	kutta-fl unabutted	kutta-fl unabutted	kutta-fl unabutted.	kutta-fl unabutted	kutta-fl unabutted.	matching kutta-fl	853000000000000000000000000000000000000
blt edge ype type matching 18 2 wake side edge left	odge -ype matching kutta-fl side edge left unabutted	blt edge Ype type matching kutta-fl 18 2 wake trailing edge unabutted	matching edge left	dge ype matching 2 side edge left	blt edge ype type matching kutta-fl 18 2 wake trailing edge unabutted	matching e edge left	ndge .ype matching kutta-fl trailing edge unabutted	matching of network	tolerance 0.000500 0.2.498000 0.0000000 0.3.555000 1.3.555000 0.000000 0.000000 0.0000000000
edge type 2 side	edge type 2 e side	edge type 2 e trai	edge type 2 side	edge type 2 s side	edge type 2 trai	edge type 2 side		25 July 25 Jul	*
dblt e type t 18 wake	dblt e type t 18 wake	dblt edge type type 18 2 wake tra	dblt edge type type 18 2 wake side	dblt edge type type 18 2 wake side	dblt edge type type 18 2 wake trai	dblt edge type type 18 2 wake side	dblt type 18 wake	dblt type 18 mover motion dz(i)	.1t. eps 0.000000 8.499000 0.00000 3.999000 8.499000
nw/id 80	nw/id 81	nw/id 82	nw/id 83	nw/id 84	nw/id 85	nw/id 86	nw/id 87	%/id ***	*
#	#	*	**	#	*	*	*	fe n ment gmov fe fe	19 x 2 x 2 x 3 x 2 x x 3 x x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5
nw.edge 29.3 Oabutment	nw.edge 29.4 Oabutment	nw.edge 30.2 Oabutment	nw.edge 30.3 Oabutment	nw.edge 30.4 Oabutment	nw.edge 31.2 Oabutment	nw.edge 31.3 Oabutment	nw.edge 31.4 Oabutment	nw.edge n 32.3 0.e*abutment 0*b*nwedgmov 1 nw.edge dz(max)	5.2 0.50E-03 1 orig x y moved x

APPENDIX C. GBU-24 OUTPUT FILE (UNIT NORMALS)

					ta	0.	6.0	8.0	9.0	0.5	4.0	0.3	0.1	0.0	1.0	0.0	0.0	0.0	0.0	0.0
					fsed	1 0	4	4	4	4	4	4	4	4	ω,	-	0	0	0	0
32		32				н	4	4	4	4	4	4	4	4	٣	0	0	0	0	0
(*)					jzc ifn jfn izdc abut		4	4	4	4	4	4	7	4	S	7	0	0	0	0
					n izo	н	н		н		_	н	~	+	7	7	7	2	7	c
31		31			n J£1	н	63	4	9	80	10	12	14	16	17	П	7	4	9	α
					ic if	-	7	٣	4	Ŋ	9	7 1	œ	6	10 1	11	12	13	14	L
						_	œ	00	80	80	œ	89	80	8						u
30		30			nw panel.sp	1.1	1.8	2.8	3.8	4.8	ις α	6.8	7.8	8.	8.4	1.5	1.5	2.5	3.5	•
					nw I	H	-	П	-1	Т	-	Н	Н	٦	-	1	7	7	1	,
29		29				6	7	0	6	w	턴	=	6	23	22	7	7:	61	61	:
						0.766799	0.766927	0.767049	0.767049	0.767213	0.767301	0.767301	0.767499	0.767552	0.767552	0.766927	0.766927	0.767049	0.767049	
28		88																		
7		6			znc	0.641888	0.641734	0.641588	0.641588	0.641392	0.641288	0.641288	0.641050	0.640987	0.640987	0.641734	0.641734	0.641588	0.641588	
	16 17 11 11					0	0	0	0.	0.	0	0	0	0	o	0	0.	0		
27		27				0000	0149	0000	0.00000.0	0.000149	0.00000.0	0.00000.0	0.000149	0.00000.0	0.00000.0	0.000149	0.000149	0.00000.0	0.00000.0	
	summary of networks for trefftz plane analysis					0.00000.0	0.000149	0.000000	00.0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
56	ie and	26				971	644	625	625	280	295	562	515	216	441	114	683	450	489	
6	plan					-2.414971	-2.402644	-2.402625	-2.402625	-2.402580	-2.402562	-2.402562	-2.402515	-2.401216	-2.402441	-2.927114	-2.949683	-2.949450	-2.949489	
	fftz					7	-2	?												
25	r tre	25			1 2C	3.246673	3.232000	3.232000	3.232000	3.232000	3.232000	3.232000	3.232000	3.230462	3.231929	3.858495	3.885736	3.885756	3.885803	
	ts fo				rk :	3.24	3.23	3.23	3.23	3.23	3.23	3.2	3.2	3.2	3.2	3.8	3.8	3.8	3.8	
6	twork	on.		34	for network	25	81	23	=======================================	4	82	06	92	37	15	96	27	43	18	
24	of ne	id 24		2.099325	for 1	45.090395	.834818	41.158462	38.481511	35.804544	33.127182	.449590	27.771476	5.093237	24.013415	45.085496	.930127	.359743	38.789418	
	ary o	ork-		0.0		45.	43.	41.	38.	35.	33.	30.	27.	25	24	45	43	41	38	
in .	wwns	network-id		ldn anl	<pre>0*e*11bgeoab 0 control points jc jc/naive</pre>	г	7	m	4	5	9	7	œ	6	10	11	12	13	14	
nwltrf/in 1.	11 11 11 11	nw ne nwltrf/out 1.	224 225 227 228 331 32	t/abtidn abtcal/anl	ntro jc	н	2	m	4	Ŋ	9	7	ø	6	10	11	12	13	1.4	

APPENDIX D. GBU-24 OUTPUT FILE (SOLUTION DATA)

1											
0	0.0997	0.1009	0.1172	-0.0675	0.0789	0.9443	~0.6205	-0.0662	0.0789	0.9818	.0234 0.7580
0	0.0196	0.000	0.0000	-0.1352	0.1604	-0.0365	0.4701	-2.9497	3.8857	43.9301	12 1
cpt	cp2ndd	cpslnd	cplind	pvtl	pvtu	vtl	vtu	pwnl	numd	wnl	num pus
cpi	cp2nd1	cpslnl	cplinl	vzl	vyl	vxl	phel	wzl	wyl	wxl	lmachl
cpt	cp2ndu	cpslnu	cplinu	nzn	nĀn	nxa	pheu	wzn	mān	wxn	lmachu
rđ	any	anx	s0	ďz	ďy	ğ	qo	м	λ	×	je ip
œ	columns =	number	rows = 8	number	: type = 12	doublet	type = 0	1 source	index:	d :	network id:
6	, 0.03490)	0.00000	0.99939,	direction = (compressibility di	compre	0.03490)	0.00000,	0.99939,	elocity = (freestream velocity =
0.000	1.00000 sideslip =	speed = 1 angle of si	0 freestream s compressibility a	0.0000 f .00000 compre	ngle =	sideslip e of attac	ttack = 2.00000 sideslip a compressibility angle of attack	ď	angle of 0.60000	= 0.80000 ity factor =	mach number = 0.80000 compressibility factor
				н	solution number		simultaneous				1 0*b*solution
							* * * * * * *	ition indicators olution 0.257794E-12 ************************************	Q 00 *	* uniform * *******	
							* *	***********************************	*****	***	o
							stics us: 0	solver statistics 100 status:	eration: flag for blocks:		Ological flags for cp/2 F = bkprnt, prir wopen call on unit
							16313	112589	16313	0	n56chg: 1.
					0	count nwrdt=	tion 1/o		ance coefficient J= 0	influence 0 nwrdg=	ncalga
		٥		0	6943		1890		ield	panel near f	eight sub-
		000		000	148//3 120038 141840		32254 25193		liate field Hate field	quadrupole far fleid one sub-panel intermediate f two sub-panel intermediate f	quadrupole one sub-pa
		000		00	614894		140654 68550			ar field field	monopole far field dipole far field
		0		0	0		0			Ce	no influence
		blet	block/doublet	block/source	panel/doublet b		panel/source				pic counts
Page 144		i de comine				results					Mar 7 1996 13:51
Sprøy	Printed by maletour from osprey	Printed by m									

0.9869 -0.0815 0.0856 0.0348 0.0270 0.0269 0 0.9866 0.1377 0.0856 0.0825 0.0739 0.0728 0 0.9554 0.0430 -0.0357 0.0000 0.0862 0.0354 0 0.9903 -0.0465 0.0337 0.0179 0.0157 0 0 0.9921 0.0365 0.0337 0.0179 0.0157 0 0 0.9621 0.0389 -0.0330 0.0750 0 0 0 0 0.9631 0.0174 -0.0152 0.0641 0.0614 0 0 0 0 0.9863 0.0216 0.0146 0.0214 0.0213 0 </th <th>results</th> <th></th> <th></th> <th></th>	results			
0.01377 0.0856 0.0825 0.0739 0.0728 0.0896 -0.0757 0.0000 0.0196 0.0196 0.0430 -0.0370 0.0930 0.0862 0.0854 -0.0465 0.0387 0.0179 0.0157 0.0157 0.0389 -0.0330 0.0179 0.0157 0.0157 0.0389 -0.0330 0.0000 0.0007 0.0196 0.0174 -0.0152 0.0641 0.0614 0.0637 0.0216 0.0177 0.0281 0.0274 0.0619 0.0246 0.0146 0.0281 0.0214 0.0219 0.0246 0.0146 0.0281 0.0214 0.0219 -0.0048 0.0035 0.0410 0.0398 0.0399 -0.0048 0.0263 0.0021 0.0023 0.0196 -0.0114 0.0023 0.0023 0.0196 0.0186 -0.0118 0.0220 0.0000 0.018 0.028 -0.0168 0.0168 0.0016		-1.0905	0.0680 -1.09	
0.0896 -0.0757 0.0000 0.0006 0.0196 0.0430 -0.0370 0.0930 0.0862 0.0854 -0.0465 0.0397 0.0179 0.0157 0.0157 0.0305 0.0392 0.0179 0.0157 0.0157 0.0389 -0.0330 0.0000 0.0174 0.0597 0.0174 -0.0152 0.0641 0.0614 0.0619 0.0246 0.0146 0.0641 0.0274 0.0273 0.0546 0.0146 0.0359 0.0340 0.0337 0.0546 0.0146 0.0359 0.0340 0.0337 0.0254 0.0263 0.0410 0.0398 0.0337 0.0254 0.0263 0.0421 0.0423 0.0359 0.0254 0.0263 0.0421 0.0423 0.0359 0.0254 0.0263 0.0431 0.0423 0.0423 0.0254 0.0263 0.0424 0.0263 0.0464 0.0186 0.0186 0.0402		0.9500	-0.0269 0.95	
0.0430 -0.0370 0.0930 0.0862 0.0854 -0.0465 0.0387 0.0179 0.0157 0.0157 -0.0465 0.0387 0.0179 0.0157 0.0157 0.0905 0.0332 0.0750 0.0157 0.0157 0.0389 -0.0330 0.0000 0.0059 0.0159 0.0174 -0.0152 0.0641 0.0614 0.0697 0.0216 0.0177 0.0281 0.0514 0.0519 0.0546 0.0146 0.0359 0.0340 0.0337 0.0546 0.0146 0.0359 0.0374 0.0213 -0.0043 0.00410 0.0340 0.0337 0.0319 -0.0048 0.0033 0.0410 0.0339 0.0319 -0.0048 0.0033 0.0421 0.0419 0.0419 -0.0148 0.0021 -0.0023 0.0419 0.0419 -0.0149 0.0252 0.0263 0.0404 -0.0419 -0.0168 0.0144 -0.0411	,	0.5707	-2.9495 0.57	
-0.0465 0.0387 0.0179 0.0157 0.0157 0.0905 0.0392 0.0750 0.0704 0.0697 0.0389 -0.0330 0.0000 0.0009 0.0196 0.0174 -0.0152 0.0641 0.0614 0.0697 0.0174 -0.0152 0.0641 0.0614 0.0610 0.0246 0.0177 0.0281 0.0274 0.0273 0.0546 0.0146 0.0359 0.0340 0.0337 0.0043 -0.0033 0.0410 0.0338 0.0337 0.0294 -0.0033 0.0410 0.0338 0.0339 0.0259 0.0263 -0.0021 0.0339 0.0339 0.0254 0.0263 -0.0023 -0.0023 -0.0039 0.0294 0.0263 -0.0021 -0.0023 -0.0023 0.0256 0.0263 -0.0023 -0.0023 0.0051 0.0052 0.0608 0.0189 0.0188 0.0052 0.0053 0.0264 -0.0404		-0.4911	-0.0360 -0.4	
0.0395 0.0392 0.0750 0.0704 0.0697 0.0389 -0.0330 0.0000 0.0000 0.0196 0.0174 -0.0152 0.0641 0.0614 0.0610 -0.0216 0.0177 0.0281 0.0614 0.0610 0.0546 0.0146 0.0359 0.0340 0.0337 0.0043 -0.0036 0.0000 0.0337 0.0337 -0.0048 0.0033 0.0410 0.0398 0.0337 -0.0048 0.0033 0.0421 0.0423 -0.0023 -0.0166 0.0143 0.0023 -0.0023 -0.0023 -0.0168 0.0143 0.0059 0.0188 0.0188 -0.018 0.0051 -0.0053 0.0188 0.0188 -0.018 0.0051 -0.0059 0.0589 0.0589 -0.018 0.0051 -0.0068 0.0592 0.0589 -0.018 0.0144 -0.0404 -0.0404 -0.0401 -0.018 0.008 0.0080	-1.0617 0.9	-1.	0.0389 -1.0	·
0.0389 -0.0330 0.0000 0.0196 0.0174 -0.0152 0.0641 0.0614 0.0610 -0.0216 0.0177 0.0281 0.0274 0.0610 -0.0246 0.0146 0.0359 0.0340 0.0273 0.0546 0.0146 0.0359 0.0337 0 -0.00043 -0.0033 0.0410 0.0398 0.0337 -0.0048 0.0033 0.0410 0.0398 0.0397 -0.0048 0.0053 -0.0021 -0.0023 -0.0023 -0.0148 0.0263 -0.0021 -0.0023 -0.0023 -0.0149 0.0051 -0.0053 0.0189 0.0188 0.0051 -0.0050 0.0608 0.0589 0.0188 0.0018 0.0014 -0.0411 -0.0404 -0.0401 0.0168 0.0140 -0.0404 -0.0401 -0.0401 0.0018 0.0140 -0.0080 0.0188 -0.0091 0.0012 0.0248 0.0080 0.0080<	0.9571 0.9	0.0	-0.0268 0.9	
0.0174 -0.0152 0.0641 0.0614 0.0610 -0.0216 0.0177 0.0281 0.0274 0.0273 0.0546 0.0146 0.0359 0.0340 0.0373 0.0546 0.0146 0.0359 0.0398 0.0337 -0.0004 -0.0033 0.0410 0.0398 0.0397 -0.0048 0.0263 0.0421 0.0419 0.0397 -0.0259 0.0263 -0.0021 -0.0023 0.0419 -0.0166 0.0143 0.0021 -0.0023 -0.0023 -0.0114 0.0053 0.0186 0.0189 0.0188 -0.0118 0.0041 -0.0023 0.0189 0.0188 -0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0196 -0.0168 0.0140 -0.0015 -0.0015 -0.0189 -0.0080 0.0080 0.0788 -0.0012 0.0248 0.0016 -0.0090 -0.0197<	0.6353 -0.0	0.	-2.9495 0.	
-0.0216 0.0177 0.0281 0.0274 0.0273 0.0546 0.0146 0.0359 0.0340 0.0337 0 0.0043 -0.0036 0.0000 0.0196 0 0 0 -0.0048 -0.0033 0.0410 0.0398 0.0397 0 <td>-0.3976 0.9</td> <td>-0.3</td> <td>-0.0145 -0.3</td> <td></td>	-0.3976 0.9	-0.3	-0.0145 -0.3	
0.0546 0.0146 0.0359 0.0340 0.0337 0.0043 -0.0036 0.0000 0.0196 0 -0.0048 -0.0033 0.0410 0.0398 0.0397 -0.0048 0.0033 0.0410 0.0398 0.0397 -0.0294 0.0263 -0.0021 -0.0023 -0.0023 -0.0166 0.0143 0.0000 0.0196 0.0189 -0.0157 -0.0050 0.0608 0.0592 0.0589 0.0051 -0.0050 0.0608 0.0592 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 0.0168 0.0140 -0.0404 -0.0401 -0.0401 0.0018 0.0140 -0.0418 -0.0401 -0.0401 0.0085 -0.0080 0.0806 0.0788 0.0782 0.00168 -0.0803 -0.0797 - 0.0017 -0.0187 -0.0280 -0.0288 - 0.0082 -0.0082 -0.0280 -0.0288	-1.0330 0.9	-1.0	0.0181 -1.0	
0.0043 -0.0036 0.0000 0.0000 0.0196 0 -0.00048 -0.0003 0.0410 0.0398 0.0397 0 -0.0048 0.0033 0.0411 0.0421 0.0419 0 -0.0294 0.0263 -0.0021 -0.0023 -0.0023 -0.0023 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0198 0.0198 0.0051 0.0051 0.0050 0.00608 0.0592 0.0589 0.0051 0.0051 0.00414 0.00411 0.00404 0.00401 0.00196 0.0196 0.0198 0.00253 0.0250 0.0008 0.0008 0.0009 0.00196 0.00196 0.00198 0.00198 0.00198 0.00198 0.00199 0.00092 0.	0.9694 0.9		-0.0268	
-0.0004 -0.0003 0.0410 0.0398 0.0397 -0.0048 0.0033 0.0431 0.0421 0.0419 0.0254 0.0263 -0.0021 -0.0023 -0.0023 -0.0146 0.0143 0.0000 0.0000 0.0196 -0.0114 0.0050 0.0189 0.0188 0.0051 -0.0050 0.0608 0.0582 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0196 -0.0168 0.0140 -0.0008 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0216 -0.0814 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0196 -0.0279 0.0280 -0.0280 -0.0288 -0.0197 0.0166 -0.0287 -0.0288 -0.0082 -0.0082 -0.0288 -0.0288	0.6558 0.0	9.0	-2.9493	
-0.0048 0.0033 0.0431 0.0421 0.0419 0.0419 0.0294 0.0263 -0.0021 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0186 0.0144 0.0093 0.0196 0.0189 0.0188 0.0051 -0.0051 -0.0414 -0.0411 -0.0404 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401 -0.0401 -0.00196 -0.00168 0.00220 0.0806 0.0788 0.0782 0.0025 0.0814 -0.0803 -0.0797 -0.00197 0.001		-0.3345	0.0002 -0.3	·
0.0294 0.0263 -0.0021 -0.0023 -0.0023 -0.0166 0.0143 0.0000 0.0189 0.0186 -0.0114 0.0093 0.0196 0.0189 0.0188 0.0051 -0.0050 0.0608 0.0582 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0196 -0.0168 0.0140 -0.0015 -0.0015 0.0085 -0.0080 0.0806 0.0788 0.0782 0.0012 0.0216 -0.0814 -0.0803 -0.0797 - -0.0279 0.0248 0.0000 0.0196 - -0.028 - -0.0197 0.0166 -0.0280 -0.0287 -0.0288 -		-0.9903	0.0038	
-0.0166 0.0143 0.0000 0.0006 0.0196 -0.0114 0.0093 0.0196 0.0189 0.0188 0.0051 -0.0050 0.0608 0.0592 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0196 -0.0168 0.0140 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 0.0012 0.0516 -0.0814 -0.0803 -0.0797 0.0197 0.0248 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 0.0082 -0.0082 0.1060 0.1042 0.1032		0.9801	-0.0269	
-0.0114 0.0093 0.0196 0.0189 0.0188 0.0051 -0.0050 0.0608 0.0592 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0196 -0.0168 0.0140 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0516 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0288 -0.0082 -0.0082 0.1060 0.1042	0.6287 0.0		-2.9491	
0.0051 -0.0050 0.0608 0.0592 0.0589 0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0401 -0.0253 0.0220 0.0000 0.0000 0.0196 -0.0168 0.0140 -0.0008 -0.0015 -0.0015 0.0085 -0.0080 0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0000 0.0196 -0.0279 0.0248 0.0000 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 -0.0082 0.0082 0.1042 0.1032	-0.2984 0.9		0.0095	
0.0118 0.0414 -0.0411 -0.0404 -0.0401 -0.0253 0.0220 0.0000 0.0166 -0.0196 -0.0168 0.0140 -0.0006 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 0.0082 -0.0082 0.1060 0.1042 0.1032	-0.9271 0.9		-0.0043	
-0.0253 0.0220 0.0000 0.0000 0.0196 -0.0168 0.0140 -0.0008 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0196 -0.0197 0.0166 -0.0287 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032	0.9906.0		-0.0268	
-0.0168 0.0140 -0.0008 -0.0015 -0.0015 -0.0015 0.0085 -0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 -0.0279 0.0248 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032	0.5518 0.0		-2.9492	
0.0085 -0.0080 0.0806 0.0788 0.0782 0.0012 0.0516 -0.0814 -0.0803 -0.0797 - -0.0279 0.0248 0.0000 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032	-0.2883 1.0		0.0140	
0.0012 0.0516 -0.0814 -0.0803 -0.07970.0279 0.0248 0.0000 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032		0.8401	-0.0071	
-0.0279 0.0248 0.0000 0.0000 0.0196 -0.0197 0.0166 -0.0280 -0.0287 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032	1.0007 0.5		-0.0268	
-0.0197 0.0166 -0.0280 -0.0287 -0.0288 - 0.0082 -0.0082 0.1060 0.1042 0.1032	0.4202 0.0		-2.9490	
0.0082 -0.0082 0.1060 0.1042 0.1032	-0.3060 1.0	·	0.0162	·
	-0.7263 0.9		-0.0070	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mar 7 1996 13:51					resuits					ď	Page 146
1.0153 0.0056 0.0056 0.01563 0.01564 0.0564 0.0560 0.0000 0.0000 0.0195 1.0153 0.0201 0.01056 0.01563 0.01563 0.01561 0.0136 0.01060 0.0000 0.0195 0.9715 0.0201 0.01056 0.02164 0.0165 0.0201 0.0106 0.0186 0.0201 0.0202 0.0202 0.0006 0.0006 0.0126 0.0216 0.0201 0.0006 0.0006 0.0186 0.0202 0.03936 0.0124 0.0203 0.0134 0.0528 0.0114 0.0105 0.0201 0.0006 0.0006 0.0018 0.03930 0.0114 0.0203 0.0135 0.1125 0.0303 0.0105 0.0002 0.0001 0.0001 0.03930 0.0125 0.0125 0.0124 0.0528 0.0114 0.0105 0.0006 0.0001 0.0001 0.03930 0.0012 0.0125 0.0124 0.0223 0.0125 0.0028 0.0025 0.0001 0.0001 0.03930 0.0012 0.0120 0.0121 0.0203 0.0125 0.0002 0.0001 0.0001 0.03930 0.0012 0.0012 0.0221 0.0221 0.0114 0.0112 0.0025 0.0002 0.0001 0.03930 0.0012 0.0012 0.0221 0.0221 0.0012 0.0022 0.0002 0.0001 0.03930 0.0012 0.0012 0.0001 0.0002 0.0002 0.0002 0.0001 0.03930 0.0012 0.0012 0.0002 0.0002 0.0002 0.0002 0.0001 0.03930 0.0012 0.0012 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0012 0.0012 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0012 0.0014 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0012 0.0014 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0012 0.0014 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.03930 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.03931 0.0002	0.0000	0.0000	-0.0269	-0.0269	1.0143	0.9479	0.0150	0.0617	-0.1339	-0.1329	-0.1320	Ŷ
1.0159 0.01541 0.01561 0.01562 0.01562 0.01562 0.01563 0.01564 0.015		25.9399	3.8863	-2.9489	0.2091	0.1259	-0.0564	0.0500	0.0000	0.0000	0.0195	0
1.0000 0.0201 0.0104 0.0154 0.1544 0.0201 0.0201 0.01544 0.01544 0.01544 0.01544 0.01544 0.01544 0.01544 0.0201 0.0000 0.0004 0.0204 0.0	0234	1.0159	-0.0363	0.0303	-0.3655	1.0449	-0.0363	0.0313	-0.0908	-0.0921	-0.0929	0-
1.000 1.00	0.7307	0.9716	0.0201	-0.0168	-0.5745	0.9190	0.0201	-0.0186	0.1644	0.1614	0.1589	0
4.3.9956 -4.2081 -6.6121 -0.0103 0.0309 -0.0264 0.0009 0.0104 0.0009 0.0104 0.0109 0.0114 0.0109 0.0124 0.0114 0.0109 0.0114 0.0109 0.0114 0.0109 0.0114 0.0109 0.0114 0.0109 0.0114 0.0109 0.0114 0.0109 0.0115 0.0125 0.0115 0.0125 0.0115 0.0115 0.0115 0.0115 0.0116 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0111 0.0117 0.0111 0.0111 0	0.0000 0.0000 0.2513	0.000	-0.0268	-0.0268	1.0460	0.9194	0.0522	0.0945	-0.2551	-0.2535	-0.2518	0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	22 9	43.9956	5.3899	-4.2081	0.6121	-0.0103	0.0309	-0.0261	0.0000	0.0000	0.0178	0
1.0000 -0.0135 -0.0135 -0.0125 -0.0125 -0.0135 -0.0135 -0.0155 -0.0152 -0.0152 -0.0125 -0.0121 -0.0211 -0.0211 -0.0211 -0.0211 -0.0211 -0.0212 -0.0122 -0.01	0.7641	0.9858	0.0114	6600.0-	-0.5134	0.9589	0.0114	-0.0109	0.0841	0.0820	0.0813	0
1.0000 -0.0271 -0.0271 -0.0271 -0.0252 -0.02	0.7731	0.9890	-0.0195	0.0159	-1.1255	0.9693	-0.0195	0.0152	0.0616	0.0609	0.0605	0
1.000 1.00	0.0000	0.000	-0.0271	-0.0271	0.9591	9696.0	0.0555	0.0302	0.0225	0.0211	0.0208	0
1.00 1.00	23 10	41.6628	5.3899	-4.2076	0.6418	-0.0113	0.0155	-0.0132	0.000	0.000	0.0178	0
Harris Continuo	0.7708	0.9885	0.0025	-0.0021	-0.4271	0.9668	0.0025	-0.0028	0.0678	0.0664	0.0660	0
House Hous	0.7807	0.9923	-0.0130	0.0109	-1.0689	0.9781	-0.0130	0.0104	0.0442	0.0435	0.0433	0
Harry Fig. Harry Harry	0.0000	0.0000	-0.0268	-0.0268	0.9668	0.9783	0.0418	0.0220	0.0236	0.0230	0.0227	0
x y z d0 dx dy dz so anx any wxu wxu wxu yxu vxu vxu vxu cplinu cp	1 network i	d:	index:		type =			requnu	rows =		columns	ω
wxu wyu wzu vxu vxu vxu cplnu	je ip	×	7	и	90	ð	dy	dz	0 83	anx	ăuk	ď
wx1 wy1 wz1 phel vx1 vy1 vz1 cplinl cplinl cpsinl cpzndl cpzndl 1 wn1 pwnu pwnu vt1 vt1 pvtu cplind cpsind cpzndd cpzndd 1 39.3297 5.3900 -4.2074 0.6593 -0.0025 0.0030 -0.0026 0.0043 0.0028 0.0049 0.0480 0.0178 0.0178 87 0.9917 -0.0073 0.0059 -1.0213 0.9785 -0.0073 0.0429 0.0438 0.0429 0.0439 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0059 0.0518 0.0984 -0.0059 0.0071 0.0984 -0.0059 0.0071 0.0984 -0.0052 0.0011 0.0310 0.0310 0.0310 0.0360 10 0.0000 0.0026 0.0017 0.0984 0.0022 0.0011 0.0182 0.0116 0.0193 0.0193 0.0193 0.0193 0.0193 <t< td=""><td>nz lmachu</td><td>mxm</td><td>wyn</td><td>wzu</td><td>pheu</td><td>nxa</td><td>nAn</td><td>nzn</td><td>cplinu</td><td>cpslnu</td><td>cp2ndu</td><td>cpi</td></t<>	nz lmachu	mxm	wyn	wzu	pheu	nxa	nAn	nzn	cplinu	cpslnu	cp2ndu	cpi
ml pwnu pwnl vtu vtl pvtu pvtl cplind cpsind cp2ndd c 11 39.3297 5.3900 -4.2074 0.6593 -0.0025 0.0030 -0.0026 0.0000 0.0000 0.0178 87 0.9917 -0.0043 0.0352 -0.0043 0.0043 0.0429	snu lmachl	wxl	wyl	wzl	phel	vxl	vy1	vzl	cplinl	cpslnl	cp2ndl	cpi
11 39.3297 5.3900 -4.2074 0.6593 -0.0025 0.0030 -0.0026 0.0026 0.0036 -0.0026 0.0036 0.0026 0.0036 0.0036 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00430 0.00429	num pus	wnl	numd	pwnl	vtu	vtl	pvtu	pvtl	cplind	cpslnd	cp2ndd	cpi
0.9917 -0.0043 0.0034 -0.3620 0.9760 -0.0043 0.0028 0.0490 0.0480 0.0478 0.9925 -0.0073 0.0054 0.0054 0.0054 0.0438 0.0429 0.0427 0.0000 -0.0269 -1.0213 0.9786 -0.0073 0.0247 0.0653 0.0429 0.0427 36.9972 5.3901 -4.2069 0.6518 0.0096 -0.0072 0.0073 0.0073 0.0073 0.0138 0.0118 0.0316 0.0309 0.9946 -0.0025 0.0017 -0.3185 0.9844 -0.0025 0.0011 0.0514 0.0319 0.0309 0.0000 -0.0269 -0.0269 0.9845 0.9749 -0.0022 0.0316 0.0514 0.0503 0.0500	24 11	39.3297	5.3900	-4.2074	0.6593	-0.0025	0.0030	-0.0026	0.0000	0.0000	0.0178	0
0.9925 -0.0073 0.0059 -1.0213 0.9785 -0.0073 0.0054 0.0429 0.0429 0.0427 0.0000 -0.0269 -0.0269 0.9760 0.9786 0.0291 0.0247 0.0053 0.0052 0.0051 36.9972 5.3901 -4.2069 0.6518 0.0096 -0.0073 0.0063 0.0000 0.00178 0.9946 -0.0055 0.0077 -0.3185 0.9844 -0.0095 0.0073 0.0318 0.0310 0.0309 0.9913 -0.0022 0.0017 -0.9703 0.9749 -0.0022 0.0011 0.0514 0.0503 0.0500 0.0000 -0.0269 -0.0269 0.9845 0.9749 0.0182 0.0316 -0.0193 -0.0193 -0.0193 -0.0192	0.7787	0.9917	-0.0043	0.0034	-0.3620	0.9760	-0.0043	0.0028	0.0490	0.0480	0.0478	0
0.0000 -0.0269 -0.0269 0.9786 0.0291 0.0247 0.0053 0.0052 0.0051 36.9972 5.3901 -4.2069 0.6518 0.0096 -0.0095 0.0073 0.0000 0.0000 0.0178 0.9946 -0.0022 0.0017 -0.9703 0.9844 -0.0022 0.0011 0.0514 0.0503 0.0500 0.0000 -0.0269 -0.0269 0.9845 0.9749 -0.0182 0.0316 -0.0193 -0.0193 -0.0192	0.7810	0.9925	-0.0073	0.0059	-1.0213	0.9785	-0.0073	0.0054	0.0438	0.0429	0.0427	0
36.9972 5.3901 -4.2069 0.6518 0.0096 -0.0072 0.0063 0.0000 0.0070 0.0178 0.9946 -0.0055 0.0077 -0.3185 0.9844 -0.0095 0.0073 0.0318 0.0310 0.0309 0.9913 -0.0022 0.0017 -0.9703 0.9749 -0.0022 0.0011 0.0514 0.0503 0.0500 0.0000 -0.0269 -0.02845 0.9749 0.0182 0.0316 -0.0193 -0.0193 -0.0192	0.0000	0.0000	-0.0269	-0.0269	0.9760	0.9786	0.0291	0.0247	0.0053	0.0052	0.0051	0
0.9946 -0.0095 0.0077 -0.3185 0.9844 -0.0095 0.0073 0.0318 0.0310 0.0309 0.9913 -0.0022 0.0017 -0.9703 0.9749 -0.0022 0.0011 0.0514 0.0503 0.0500 0.0000 -0.0269 -0.0269 0.9845 0.9749 0.0182 0.0316 -0.0196 -0.0193 -0.0192	25 12	36.9972	5.3901	-4.2069	0.6518	9600.0	-0.0072	0.0063	0.0000	0.000	0.0178	0
0.9913 -0.0022 0.0017 -0.9703 0.9749 -0.0022 0.0011 0.0514 0.0503 0.0500 0.0000 -0.0269 -0.0269 0.9845 0.9749 0.0182 0.0316 -0.0196 -0.0193 -0.0192	0.7863	0.9946	-0.0095	0.0077	-0.3185	0.9844	-0.0095	0.0073	0.0318	0.0310	0.0309	0
0.0000 0.0000 -0.0269 -0.0269 0.9845 0.9749 0.0182 0.0316 -0.0196 -0.0193 -0.0192	0.7778	0.9913	-0.0022	0.0017	-0.9703	0.9749	-0.0022	0.0011	0.0514	0.0503	0.0500	0
	0.000.0	0.000	-0.0269	-0.0269	0.9845	0.9749	0.0182	0.0316	-0.0196	-0.0193	-0.0192	0-

Printed by maletour from osprey

	0	0	0	0-	0	0	0	9	0	0	0	0-	0	0-	0	0-	0	0	0	0	0	0	0	0	0	155
	0.0178	0.0141	0.0613	-0.0472	0.0177	-0.0038	0.0759	-0.0797	0.0177	-0.0318	9660.0	-0.1314	0.0177	-0.1169	0.1716	-0.2884	0.0160	0.0693	0.0638	0.0055	0.0160	0.0562	0.0521	0.0041	0.0160	
	0.0000	0.0141	0.0617	-0.0475	0.000.0	-0.0038	0.0764	-0.0802	0.000	-0.0317	0.1006	-0.1323	0.0000	-0.1157	0.1745	-0.2902	0.000.0	0.0697	0.0641	0.0056	0.0000	0.0565	0.0524	0.0041	0.000.0	
	0.000.0	0.0149	0.0630	-0.0481	0.0000	-0.0031	0.0780	-0.0810	0.0000	-0.0308	0.1027	-0.1335	0.000	-0.1124	0.1801	-0.2925	0.000	0.0708	0.0651	0.0057	0.0000	0.0574	0.0534	0.0041	0.0000	
	0.0139	0.0116	-0.0023	0.0393	0.0216	0.0160	-0.0055	0.0481	0.0347	0.0234	-0.0113	0.0630	0.0817	0.0485	-0.0333	0.1137	-0.0024	0.0016	0.0040	0.0349	0.0018	0.0052	0.0034	0.0304	0.0066	
	-0.0160	-0.0143	0.0017	0.0077	-0.0247	-0.0194	0.0053	0.0036	-0.0397	-0.0279	0.0119	0.0211	-0.0939	-0.0565	0.0373	0.0763	0.0028	-0.0034	-0.0062	0.0391	-0.0022	-0.0073	-0.0050	0.0308	-0.0078	
	0.0236	0.9928	0.9692	0.9692	0.0398	1.0016	0.9618	0.9618	0.0656	1.0152	0.9496	0.9498	0.1435	1.0551	0.9116	0.9130	-0.0028	0.9651	0.9679	0.9679	-0.0021	0.9717	0.9738	0.9738	0.0039	
	0.6136	-0.2934	-0.9070	0.9929	0.5403	-0.2881	-0.8284	1.0019	0.4231	-0.3068	-0.7299	1.0159	0.2271	-0.3662	-0.5933	1.0578	0.6451	-0.4654	-1.1105	0.9652	0.6518	-0.4002	-1.0521	0.9717	0.6513	
	-4.2065	0.0117	-0.0016	-0.0269	-4.2061	0.0160	-0.0047	-0.0269	-4.2057	0.0231	-0.0101	-0.0270	-4.2053	0.0472	-0.0312	-0.0268	-5.4668	0.0023	0.0047	-0.0271	-5.4660	0.0058	0.0040	-0.0269	-5.4653	
	5.3901	-0.0143	0.0017	-0.0269	5.3902	-0.0194	0.0053	-0.0269	5.3903	-0.0279	0.0119	-0.0270	5.3902	-0.0565	0.0373	-0.0268	6.8941	-0.0034	-0.0062	-0.0271	6.8941	-0.0073	-0.0050	-0.0269	6.8942	
	34.6651	0.9975	0.9893	0.0000	32.3324	1.0006	0.9867	0.0000	29.9996	1.0054	0.9825	0.0000	27.6671	1.0192	0.9693	0.000.0	44.0611	0.9878	0.9887	0.000	41.9658	0.9901	6066.0	0.000	39.8703	
.0191	26 13	0.7937	0.7728	.0613 0.0000 .0472	27 14	0.8018	0.7665	00000.0	28 15	0.8146	0.7561	0.0000 0.0000 .1313	29 16	0.8544	0.7257	.1709 0.0000 .2875	32 17	.0191 0.7693	0.7717	.0000.0 0.0000.0 .0055	33 18	0.7750	0.7768	0.0000	34 19	

Page 148	(0	0	0-	0	0	0	0	œ	ĸ	cpi	cpi	cpi	0	0	0	0-	0	0-	0	0	0	0	0	0	0
Pa		0.0418	0.0498	-0.0080	0.0159	0.0267	0.0542	-0.0275	columns =	any	cp2ndu	cp2nd1	cp2ndd	0.0159	0.0109	0.0631	-0.0522	0.0159	-0.0074	0.0766	-0.0840	0.0159	-0.0373	0.1013	-0.1386	0.0159
		0.0420	0.0500	-0.0081	0.0000	0.0268	0.0545	-0.0277	number	anx	cpslnu	cpslnl	cpslnd	0.0000	0.0109	0.0635	-0.0526	0.000	-0.0074	0.0772	-0.0846	0.0000	-0.0371	0.1023	-0.1394	0.000
		0.0428	0.0511	-0.0083	0.000	0.0275	0.0557	-0.0281	rows = 8	0 8	cplinu	cplinl	cplind	0.0000	0.0117	0.0648	-0.0532	0.0000	-0.0066	0.0788	-0.0854	0.000	-0.0360	0.1046	-0.1406	0.0000
		0.0082	0.0016	0.0309	0.0115	0.0112	-0.0003	0.0345	number rows	qz	nzn	vzl	pvtl	0.0170	0.0143	-0.0027	0.0402	0.0247	0.0187	-0.0060	0.0487	0.0395	0.0271	-0.0124	0.0649	0.0926
		-0.0109	-0.0031	0.0223	-0.0133	-0.0140	-0.0007	0.0137	type = 12	dy	n.	vyl	pvtu	-0.0197	-0.0179	0.0018	0.0051	-0.0284	-0.0229	0.0055	0.0081	-0.0454	-0.0320	0.0133	0.0268	-0.1066
results		0.9789	0.9750	0.9750	0.0137	0.9864	0.9728	0.9728	doublet type =	ğ	nxa	vxl	vtl	0.0260	0.9943	0.9683	0.9683	0.0419	1.0033	0.9614	0.9614	0.0690	1.0177	0.9487	0.9489	0.1566
		-0.3496	-1.0010	0.9790	0.6334	-0.3148	-0.9483	0.9866	type = 0	q0	nəyđ	phel	vtu	0.5927	-0.2957	-0.8884	0.9945	0.5225	-0.2942	-0.8167	1.0037	0.4118	-0.3148	-0.7266	1.0186	0.2250
		0.0086	0.0021	-0.0271	-5.4646	0.0115	0.0004	-0.0270	1 source	И	nzm	wzl	pwnl	-5.4639	0.0144	-0.0020	-0.0271	-5.4630	0.0186	-0.0051	-0.0271	-5.4624	0.0267	-0.0112	-0.0268	-5.4617
		-0.0109	-0.0031	-0.0271	6.8943	-0.0140	-0.0007	-0.0270	index:	×	nĀn	wyl	numd	6.8943	-0.0179	0.0018	-0.0271	6.8944	-0.0229	0.0055	-0.0271	6.8943	-0.0320	0.0133	-0.0268	6.8939
		0.9926	0.9913	0.0000	37.7751	0.9952	9066.0	0.000.0		×	wxn	wxl	wnl	35.6799	0.9980	0.9890	0.000	33.5845	1.0011	0.9866	0.000.0	31.4892	1.0062	0.9822	0.000	29.3942
Mar 7 1996 13:51	.0191	0.7814	0.7779	0.000.0	35 20	0.7881	0.7759	0.0000	1 network id:	jc ip	nz lmachu	snu lmachl	num rus	36 21	0.7952	0.7720	.0631 0.0000 .0522	37 22	0.8034	0.7661	0.0000	38 23	0.8171	0.7554	0.0000	39 24 .0191

Printed by maletour from osprey

0	0	0-	0	0	0	0-	0	0	0	0	0	0	0	0-	0	0	0	0	0	0	0	0	0	9	•
-0.1335	0.1819	-0.3154	0.0142	0.0616	0.0621	-0.0005	0.0141	0.0502	0.0551	-0.0049	0.0141	0.0380	0.0533	-0.0153	0.0141	0.0243	0.0568	-0.0324	0.0141	0.0086	0.0652	-0.0566	0.0141	-0.0106	
-0.1320	0.1852	-0.3172	0.000.0	0.0620	0.0625	-0.0005	0.000.0	0.0504	0.0554	-0.0050	0.0000	0.0381	0.0535	-0.0154	0.0000	0.0244	0.0571	-0.0327	0.000	0.0086	0.0656	-0.0570	0.000	-0.0106	
-0.1277	0.1919	-0.3195	0.0000	0.0628	0.0637	-0.0009	0.000.0	0.0512	0.0566	-0.0054	0.000	0.0388	0.0547	-0.0159	0.0000	0.0251	0.0584	-0.0332	0.000	0.0093	0.0670	-0.0576	0.000	-0.0098	
0.0545	-0.0380	0.1227	0.0080	0.0071	-0.0009	0.0380	8600.0	0.0093	-0.0005	0.0349	0.0126	0.0116	-0.0010	0.0347	0.0156	0.0137	-0.0019	0.0370	0.0203	0.0166	-0.0037	0.0420	0.0279	0.0209	
-0.0639	0.0427	0.0883	-0.0095	-0.0100	-0.0005	0.0321	-0.0117	-0.0125	-0.0008	0.0256	-0.0148	-0.0150	-0.0002	0.0189	-0.0183	-0.0174	6000.0	0.0118	-0.0236	-0.0206	0.0029	0.0057	-0.0322	-0.0256	
1.0626	0.9059	0.9077	0.0002	0.9689	0.9688	0.9688	0.0024	0.9747	0.9723	0.9723	0.0075	0.9808	0.9733	0.9733	0.0161	0.9876	0.9715	0.9715	0.0281	0.9954	0.9672	0.9672	0.0443	1.0048	
-0.3754	-0.6004	1.0659	0.6354	-0.4399	-1.0752	0.9690	0.6339	-0.3885	-1.0224	0.9748	0.6254	-0.3482	-0.9737	0.9810	0.6045	-0.3198	-0.9243	0.9878	0.5641	-0.3050	-0.8690	0.9957	0.4978	-0.3059	
0.0531	-0.0359	-0.0270	-6.7254	0.0078	-0.0002	-0.0272	-6.7242	0.0099	0.0001	-0.0272	-6.7230	0.0120	-0.0004	-0.0272	-6.7221	0.0140	-0.0013	-0.0272	-6.7211	0.0167	-0.0030	-0.0272	-6.7200	0.0208	
-0.0639	0.0427	-0.0270	8.3988	-0.0100	-0.0005	-0.0272	8.3986	-0.0125	-0.0008	-0.0272	8.3984	-0.0150	-0.0002	-0.0272	8.3985	-0.0174	0.0009	-0.0272	8.3986	-0.0206	0.0029	-0.0272	8.3984	-0.0256	
1.0217	0.9673	0.000.0	44.1269	0.9890	0.9891	0.000.0	42.2688	0.9910	0.9904	0.0000	40.4108	0.9932	0.9908	0.0000	38.5529	0.9956	0.9901	0.0000	36.6947	0.9983	0.9887	0.0000	34.8366	1.0016	
0.8624	.1332	.1810 0.0000 .3142	42 25	.0169	.0616 0.7725	.0621 0.0000 .0005	43 26	.0169	.0501 0.7756	.0551 0.0000 .0049	44 27	.0169 0.7831	.0379	.0532 0.0000 .0153	45 28	.0169 0.7892	.0243	.0567 0.0000 .0324	46 29	.0169 0.7962	.0086	.0651 0.0000 .0565	47 30	.0169	

8910	80 II	ď	u cpi	l cpi	d cpi	141 0	429 -0	047 0	477 -0	0.0141 0	486 -0	0.1926 0	411 -0	0.0123 0	0.0554 0	0.0586 0	032 -0	0.0123 0	0.0455 0	0.0550 0	0- 560	0.0123 0	0.0354 0	0.0540 0
-0.0891	r columns	any	cp2ndu	cp2ndl	cp2ndd	0.0141	-0.0429	0.1047	-0.1477		-0.1486		-0.3411				-0.0032				-0.0095			
-0.0897	number	anx	cpslnu	cpslnl	cpslnd	0.0000	-0.0428	0.1058	-0.1486	0.000	-0.1468	0.1963	-0.3431	0.000	0.0557	0.0589	-0.0032	0.0000	0.0457	0.0553	9600.0-	0.000	0.0355	0.0543
-0.0905	rows = 8	os	cplinu	cplinl	cplind	0.0000	-0.0415	0.1082	-0.1497	0.0000	~0.1415	0.2040	-0.3455	0.0000	0.0564	0.0604	-0.0040	0.0000	0.0465	0.0568	-0.0103	0.0000	0.0362	0.0557
0.0503	number	дz	nzn	vzl	pvtl	0.0435	0.0295	-0.0140	0.0677	0.1013	0.0590	-0.0423	0.1312	0.0165	0.0116	-0.0048	0.0407	0.0173	0.0131	-0.0043	0.0386	0.0187	0.0150	-0.0037
0.0120	type = 12	ďλ	nån	vyl	pvtu	-0.0501	-0.0352	0.0149	0.0315	-0.1168	-0.0695	0.0473	0.0981	-0.0196	-0.0154	0.0042	0.0276	-0.0206	-0.0174	0.0032	0.0225	-0.0221	-0.0189	0.0033
0.9605	doublet	φx	nxa	vxl	vtl	0.0734	1.0203	0.9469	0.9472	0.1693	1.0693	0.9000	0.9023	0.0014	0.9720	0.9705	0.9706	0.0046	0.9769	0.9723	0.9724	0.0091	0.9820	0.9729
1.0053	source type = 0	do do	neud	phel	vtu	0.3938	-0.3278	-0.7216	1.0214	0.2164	-0.3883	-0.6047	1.0732	0.5979	-0.4289	-1.0269	0.9722	0.5938	-0.3883	-0.9821	0.9772	0.5827	-0.3562	-0.9389
-0.0272	1 source	И	nzm	wzl	pwnl	-6.7188	0.0291	-0.0128	-0.0270	-6.7179	0.0574	-0.0400	-0.0272	-7.9837	0.0123	-0.0041	-0.0272	-7.9822	0.0136	-0.0036	-0.0275	-7.9807	0.0154	-0.0031
-0.0272	index:	⋋	nĀm	wyl	numd	.8.3980	-0.0352	0.0149	-0.0270	8.3979	-0.0695	0.0473	-0.0272	9.9036	-0.0154	0.0042	-0.0272	9.9034	-0.0174	0.0032	-0.0275	9.9029	-0.0189	0.0033
0.0000		×	wxn	wxl	wnl	32.9791	1.0071	0.9816	0.0000	31.1216	1.0241	0.9653	0.0000	44.1925	0066.0	0.9899	0.000	42.5718	0.9918	0.9905	0.0000	40.9511	0.9935	0.9907
0.0000	network id:	jc ip	lmachu	snu lmachl	snı wnu snd	48 31	0.8197	0.7540	.1046 0.0000 .1475	49 32	0.8697	0.7171	0.0000 0.0000 3396	52 33	.0148 0.7754	0.7741	.0032	53 34	0.7797	0.7756	00000.0	54 35	0.7842	0.7761

24
-0.0271
-7.9795
0.0164
-0.0035
-0.0275
-7.9781
0.0187
-0.0047
-0.0275
-7.9767
0.0228
-0.0075
-0.0273
-7.9753
0.0311
-0.0148
-0.0273
-7.9739
0.0615
-0.0444
-0.0275
1 source
и
wzn
wzl
DWnl

Page 152		0	0	0	0	0	0	0	0-	0	0	0	0	0	0	0	0-	0	0	0	0-	0	0-	0	0	0	152
Pag		0.0105	0.0497	0.0541	-0.0043	0.0105	0.0418	0.0528	-0.0110	0.0105	0.0341	0.0521	-0.0180	0.0105	0.0241	0.0549	-0.0308	0.0105	0.0080	0.0647	-0.0566	0.0105	-0.0138	0.0807	-0.0945	0.0105	
		0.0000	0.0500	0.0544	-0.0044	0.0000	0.0420	0.0530	-0.0111	0.000.0	0.0342	0.0524	-0.0182	0.000	0.0241	0.0552	-0.0311	0.0000	0.0080	0.0651	-0.0570	0.0000	-0.0138	0.0814	-0.0952	0.0000	
		0.0000	0.0508	0.0564	-0.0056	0.0000	0.0428	0.0550	-0.0122	0.0000	0.0350	0.0542	-0.0192	0.000	0.0250	0.0570	-0.0320	0.0000	0.0090	0.0669	-0.0579	0.0000	-0.0127	0.0834	-0.0962	0.0000	
		0.0265	0.0168	-0.0097	0.0447	0.0267	0.0177	-0.0090	0.0432	0.0269	0.0192	-0.0077	0.0421	0.0276	0.0196	-0.0080	0.0426	0.0300	0.0214	-0.0086	0.0465	0.0357	0.0251	-0.0106	0.0548	0.0517	
		-0.0316	-0.0220	9600.0	0.0253	-0.0318	-0.0235	0.0083	0.0219	-0.0320	-0.0240	0.0080	0.0189	-0.0326	-0.0255	0.0071	0.0154	-0.0352	-0.0275	0.0077	0.0131	-0.0415	-0.0309	0.0106	0.0187	-0.0598	
resuits		0.0019	0.9746	0.9728	0.9729	0.0052	0.9786	0.9734	0.9735	0.0087	0.9824	0.9738	0.9738	0.0150	0.9874	0.9724	0.9724	0.0279	0.9954	0.9674	0.9675	0.0469	1.0061	0.9593	0.9594	0.0821	
		0.5332	-0.4324	-0.9657	0.9750	0.5290	-0.4007	-0.9297	0.9790	0.5189	-0.3750	-0.8939	0.9829	0.5042	-0.3543	-0.8584	0.9879	0.4755	-0.3428	-0.8183	0.9960	0.4248	-0.3443	-0.7691	1.0069	0.3406	
		-9.2422	0.0173	-0.0091	-0.0276	-9.2404	0.0182	-0.0084	-0.0279	-9.2387	0.0196	-0.0071	-0.0271	-9.2370	0.0199	-0.0073	-0.0279	-9.2351	0.0215	-0.0079	-0.0279	-9.2334	0.0250	9600.0-	-0.0274	-9.2317	
		11.4079	-0.0220	9600.0	-0.0276	11.4079	-0.0235	0.0083	-0.0279	11.4075	-0.0240	0.0080	-0.0271	11.4070	-0.0255	0.0071	-0.0279	11.4071	-0.0275	0.0077	-0.0279	11.4069	-0.0309	0.0106	-0.0274	11.4065	
		44.2579	6066.0	8066.0	0.0000	42.8745	0.9923	0.9910	0.0000	41.4910	0.9936	0.9911	0.0000	40.1079	0.9954	9066.0	0.0000	38.7248	0.9982	0.9888	0.0000	37.3418	1.0020	0.9859	0.0000	35.9585	
996 13:51		41	0.7779	.7761	0000.0	42	7814	7977.	0.0000	43	.7848	0.7769	0000.0	44	0.7893	.0241 0.7757	00000.0	4.5	0.7965	0.7714	0.0000.0	46	0.8064	0.7644	0.0000	47	
Mar 7 1996 13:51	snd	62	0497	0.7761	0.0000	63	0.7814	0.7767	0.0000	64	0.7848	0.030	.0321 0.0000 .0180	65	0120	0.0241	9080.	99	0000	0.7714	9950.	67	0210.	9000	0944	99	

0-	0	0-	0	0-	0	0-	0	0	0	0-	0	0	0	0-	00	rt	cpt	cpi	cbi	0	0	0	o o	0
-0.0526	0.1127	-0.1654	0.0105	-0.1807	0.2179	-0.3986	0.0087	0.0444	0.0484	-0.0040	0.0087	0.0389	0.0481	-0.0093	columns =	any	cp∠ndu	cp2ndl	cp2ndd	0.0087	0.0334	0.0477	-0.0144	0.0087
-0.0524	0.1140	-0.1664	0.000.0	-0.1780	0.2228	-0.4009	0.000.0	0.0446	0.0486	-0.0040	0.000.0	0.0390	0.0484	-0.0093	number	anx	cpslnu	cpslnl	cpslnd	0.0000	0.0335	0.0480	-0.0145	0.000
-0.0507	0.1170	-0.1677	0.0000	-0.1707	0.2330	-0.4036	0.0000	0.0458	0.0519	-0.0060	0.000.0	0.0403	0.0515	-0.0112	rows = 8	0.8	cplinu	cplinl	cplind	0.000	0.0348	0.0509	-0.0162	0.000.0
0.0334	-0.0183	0.0747	0.1195	0.0676	-0.0519	0.1511	0.0457	0.0267	-0.0190	0.0557	0.0457	0.0272	-0.0184	0.0545	number	zp	nzn	vzl	pvtl	0.0450	0.0278	-0.0172	0.0530	0.0448
-0.0408	0.0190	0.0396	-0.1381	-0.0806	0.0575	0.1182	-0.0546	-0.0341	0.0204	0.0308	-0.0545	-0.0352	0.0193	0.0297	type = 12	φλ	αλα	vyl	pvtu	-0.0537	-0.0354	0.0183	0.0284	-0.0534
1.0248	0.9427	0.9431	0.1978	1.0836	0.8859	0.8892	0.0014	0.9768	0.9753	0.9757	0.0040	0.9795	0.9755	0.9759	doublet	¥	nxa	vxl	vt1	0.0065	0.9822	0.9757	0.9760	0.0110
-0.3642	-0.7048	1.0262	0.1888	-0.4193	-0.6081	1.0887	0.4285	-0.4570	-0.8854	0.9777	0.4256	-0.4325	-0.8581	0.9805	source type = 0	do	pheu	phel	vtu	0.4194	-0.4115	-0.8309	0.9833	0.4102
0.0328	-0.0170	-0.0277	-9.2298	0.0657	-0.0493	-0.0279	-10.5007	0.0272	-0.0185	-0.0278	-10.4987	0.0277	-0.0179	-0.0281	1 source	и	nzm	wzl	pwnl	-10.4967	0.0282	-0.0167	-0.0278	-10.4945
-0.0408	0.0190	-0.0277	11.4064	-0.0806	0.0575	-0.0279	12.9125	-0.0341	0.0204	-0.0278	12.9122	-0.0352	0.0193	-0.0281	index	>	י אַא	wyl	numd	12.9120	-0.0354	0.0183	-0.0278	12.9116
1.0086	0.9801	0.000.0	34 5750	1.0291	7096.0	0000000	44.3232	0.9914	0.9919	0.000	43.1771	0.9924	0.9920	0.000.0		×	e a	wx]	wnl	42.0309	0.9934	0.9920	0.000.0	40.8853
.0126	.0526	.1125	.1651	.0126	.1799	.2164 0.0000 .3962	72 49	.0104	.0444	.0483 0.0000	73 50	7.	.0388	0.0000	.0092 1 network id:	c.	r	snu lmachl	snl wnu	74 51	.78	.0333	.0477 0.0000 .0144	75 52

0.0378 0.0375	0.0487	-0.0521	0.0596	0.9780	-0.7448	-0.0515	0.036	0.7730	2.0.0
						1		76000	0 7846
0.0306	0.0371	0.0614	-0.0760	0.9799	-0.5067	0.0618	-0.0760	0.9918	0.7872
0.000.0	0.0000	0.1135	-0.1356	0.0018	0.2381	-11.7570	14.4169	43.4799	83 58 .0083
-0.0025	-0.0072	0.1049	0.0781	0.9814	0.9826	-0.0285	-0.0285	0.0000	0.0000
0.0375	0.0487	-0.0532	0.0602	0.9781	-0.7644	-0.0526	0.0602	0.9937	0.7847
0.0350	0.0415	0.0609	-0.0761	0.9777	-0.5250	0.0613	-0.0761	0.9910	0.7852
0.000.0	0.000	0.1141	-0.1363	-0.0004	0.2395	-11.7593	14.4174	44.3885	82 57 .0083
-0.4304	-0.4335	0.1625	0.1291	0.8826	1.0966	-0.0282	-0.0282	0.0000	0.0000
0.2364	0.2483	-0.0578	0.0641	0.8784	9909.0-	-0.0550	0.0641	0.9578	0.7016
-0.1940 -	-0.1852	0.0728	-0.0871	1.0907	-0.4378	0.0708	-0.0871	1.0315	0.8937
0.000.0	0.0000	0.1306	-0.1512	0.2123	0.1687	-10.4861	12.9107	36.3021	79 56
-0.1592 -	-0.1608	0.0780	0.0437	0.9451	1.0245	-0.0285	-0.0285	0.0000	0.0000
0.1101	0.1138	-0.0232	0.0238	0.9445	-0.6887	-0.0219	0.0238	0.9809	0.7523
-0.0491 -	-0.0470	0.0369	-0.0463	1.0228	-0.3905	0.0364	-0.0463	1.0078	0.8227
0.000.0	0.0000	0.0601	-0.0700	0.0783	0.2983	-10.4883	12.9106	37.4480	78 55
-0.0800-	-0.0813	0.0591	0.0269	0.9635	1.0034	-0.0276	-0.0276	0.0000	0.0000
0.0732	0.0760	-0.0167	0.0178	0.9632	-0.7382	-0.0159	0.0178	0.9875	0.7680
-0.0068	-0.0053	0.0309	-0.0382	1.0022	-0.3780	0.0309	-0.0382	1.0005	0.8033
0.000.0	0.000	0.0477	-0.0560	0.0390	0.3601	-10.4904	12.9110	38.5940	77 54
-0.0438	-0.0452	0.0538	0.0254	0.9713	0.9932	-0.0281	-0.0281	0.0000	0.0000
0.0574	0.0602	-0.0164	0.0168	0.9711	-0.7742	-0.0157	0.0168	0.9903	0.7749
0.0136	0.0150	0.0288	-0.0368	0.9921	-0.3813	0.0290	-0.0368	0.9969	0.7941
0.000.0	0.0000	0.0452	-0.0536	0.0211	0.3929	-10.4924	12.9114	39.7398	76 53
-0.0236 -	-0.0252	0.0524	0.0269	0.9751	0.9869	-0.0282	-0.0282	0.0000	0.0000
0.0498	0.0527	-0.0168	0.0172	0.9748	-0.8038	-0.0162	0.0172	0.9917	0.7782
0.0262	0.0275	0.0280	-0.0361	0.9859	-0.3936	0.0283	-0.0361	0.9947	0.7885
				results					Mar 7 1996 13:51
Printed by malete									
0.0241 0.0251 0.0234 0.0234 0.0234 0.0234 0.0234 0.0234 0.03373	under the second of the second		0.0275 -0.0252 -0.0252 -0.0252 -0.0150 -0.0150 -0.0452 -0.0470 -0.1138 -0.1138 -0.1485 -0.0487 -0.0487 -0.0487 -0.0000	0.0280 0.0275 -0.0168 0.0527 0.0524 -0.0252 0.0452 0.0000 0.0288 0.0150 -0.0164 0.0602 0.0309 -0.0452 0.0313 -0.0470 0.0353 -0.0470 0.03591 -0.0813 0.0591 -0.0813 0.0591 0.0000 0.0359 -0.0470 -0.0578 0.2483 0.1138 0.0728 -0.1852 -0.0578 0.2483 0.1625 -0.4335 0.1049 -0.0072 0.1049 -0.0072	-0.0361 0.0280 0.0275 0.0172 -0.0168 0.0527 0.0269 0.0524 -0.0252 -0.0368 0.0452 0.0000 -0.0368 0.0288 0.0150 0.0168 -0.0164 0.0602 0.0254 0.0309 -0.0452 -0.0382 0.0309 -0.0452 -0.0382 0.0309 -0.0452 -0.0382 0.0309 -0.0452 -0.0383 0.0369 -0.0470 -0.0269 0.0591 -0.0813 -0.0278 0.0591 -0.0813 -0.0238 -0.0232 0.1138 0.0238 -0.0578 0.2483 0.0238 -0.0578 0.2483 0.0241 0.0578 0.2483 0.1291 0.1625 -0.4335 -0.1363 0.1141 0.0000 -0.0761 0.0603 0.0415 0.0602 -0.0532 0.0487 0.0781 0.1049 -0.0072	0.9859 -0.0361 0.0280 0.0275 0.9748 0.0172 -0.0168 0.0527 0.9751 0.0269 0.0524 -0.0252 0.9711 -0.0536 0.0452 0.0000 0.9921 -0.0368 0.0452 0.0000 0.9713 0.0254 0.0288 0.0150 0.9713 0.0254 0.0389 0.0150 0.9713 0.0254 0.0388 0.0452 0.9714 0.0168 -0.0164 0.0602 0.9715 -0.0382 0.0309 -0.0452 0.9635 0.0269 0.0377 0.0000 1.0228 -0.0463 0.0369 -0.0470 0.9445 0.0238 -0.0267 0.0000 1.0907 -0.0463 0.0591 -0.0813 0.9451 0.0437 0.0780 -0.1608 0.2123 -0.1512 0.1306 0.0000 1.0907 -0.0871 0.0728 -0.1852 0.8826 0.1291 0.1625 -0.4335 0.9826 0.1291 0.1625 0.0415 0.9777 -0.0761 0.0609 0.0415 0.9777 -0.0761 0.0609 0.00415 0.9781 0.0602 -0.0532 0.00870 0.9181 0.0602 -0.0532 0.0000	results results -0.3936 0.9859 -0.0361 0.0280 0.0275 -0.8038 0.9748 0.0172 -0.0168 0.0527 -0.8038 0.9748 0.0172 -0.0168 0.0527 -0.3929 0.0211 -0.0536 0.0452 0.0000 -0.3813 0.9921 -0.0368 0.0150 0.0150 -0.3813 0.9921 -0.0368 0.0288 0.0150 -0.3780 0.9921 -0.0368 0.0168 0.0160 -0.3780 1.0022 -0.0382 0.0477 0.0000 -0.3780 1.0022 -0.0382 0.0477 0.0053 -0.3935 0.0783 -0.0463 0.0591 -0.0453 -0.3905 1.0228 -0.0463 0.0591 -0.0453 -0.3905 1.0228 -0.0463 0.0569 -0.0463 -0.6887 0.9451 0.0437 0.0780 -0.0601 -0.4338 1.0228 -0.0463 0.0561 -0.061 <td>results results 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 -0.0162 -0.8038 0.9748 0.0172 -0.0168 0.0527 -0.0282 -0.9869 0.9751 0.0269 0.0527 -0.0282 0.9869 0.9751 0.0269 0.0527 -0.0290 -0.3813 0.9921 -0.0368 0.0452 -0.0252 -0.0257 -0.7742 0.9711 0.0168 -0.0164 0.0652 -0.0290 -0.3913 0.9921 -0.0369 0.0477 0.0052 -0.0276 -0.7382 0.9713 0.0254 0.0538 -0.0452 -0.0276 0.3932 0.9713 0.0254 0.0538 -0.0452 -0.0276 1.0034 0.9832 0.0167 0.0053 -0.0276 1.0034 0.9845 0.0269 -0.0470 -0.0285 1.0245 0.0437 0.0780 -0.1608 -0.0286 1.0245 0.9451 0.0374</td> <td>0.9947 -0.0361 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 0.9947 -0.0361 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 0.0000 -0.0282 -0.8689 0.9751 0.0269 0.0254 -0.0252 39.7386 12.9114 -10.4924 0.3929 0.0211 -0.0569 0.0524 -0.0252 0.9963 -0.0368 0.0290 -0.3813 0.9921 -0.0569 0.0524 -0.0552 0.0900 -0.0382 0.0290 -0.0381 0.0371 -0.0569 0.0528 0.0502 1.0005 -0.0382 0.0291 -0.07742 0.9713 0.0564 -0.0528 0.0477 0.0000 0.0000 -0.0282 0.0382 0.0382 0.0382 0.0477 0.0000 0.0006 -0.0282 0.0289 0.0382 0.0384 0.0584 0.0477 0.0000 0.0007 -0.0282 0.0364 -0.0382 0.0459 <t< td=""></t<></td>	results results 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 -0.0162 -0.8038 0.9748 0.0172 -0.0168 0.0527 -0.0282 -0.9869 0.9751 0.0269 0.0527 -0.0282 0.9869 0.9751 0.0269 0.0527 -0.0290 -0.3813 0.9921 -0.0368 0.0452 -0.0252 -0.0257 -0.7742 0.9711 0.0168 -0.0164 0.0652 -0.0290 -0.3913 0.9921 -0.0369 0.0477 0.0052 -0.0276 -0.7382 0.9713 0.0254 0.0538 -0.0452 -0.0276 0.3932 0.9713 0.0254 0.0538 -0.0452 -0.0276 1.0034 0.9832 0.0167 0.0053 -0.0276 1.0034 0.9845 0.0269 -0.0470 -0.0285 1.0245 0.0437 0.0780 -0.1608 -0.0286 1.0245 0.9451 0.0374	0.9947 -0.0361 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 0.9947 -0.0361 0.0283 -0.3936 0.9859 -0.0361 0.0280 0.0275 0.0000 -0.0282 -0.8689 0.9751 0.0269 0.0254 -0.0252 39.7386 12.9114 -10.4924 0.3929 0.0211 -0.0569 0.0524 -0.0252 0.9963 -0.0368 0.0290 -0.3813 0.9921 -0.0569 0.0524 -0.0552 0.0900 -0.0382 0.0290 -0.0381 0.0371 -0.0569 0.0528 0.0502 1.0005 -0.0382 0.0291 -0.07742 0.9713 0.0564 -0.0528 0.0477 0.0000 0.0000 -0.0282 0.0382 0.0382 0.0382 0.0477 0.0000 0.0006 -0.0282 0.0289 0.0382 0.0384 0.0584 0.0477 0.0000 0.0007 -0.0282 0.0364 -0.0382 0.0459 <t< td=""></t<>

	0.0069 0 0.0274 0 0.0368 0 -0.0094 -0 0.0235 0 0.0370 0 -0.0136 -0 columns = 8 any a cp2ndu cpi cp2ndd cpi	36 94 3	36 35	36 94	35 35 36 36	3 9 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3	11 9 11 20	9 11	H .			_			0.0069	0.0190 0	0.0384 0	-0.0194 -0	0.0069 0	0.0116 0	0.0435 0	-0.0318 -0	0 6900.0	-0.0170 -0	0.0687 0	155
	1125 0.0000 5608 0.0340 5517 0.0477 1021 -0.0137 1112 0.0000 5609 0.0301 5503 0.0476 1004 -0.0175 number rows = 8	10 77 75 00 01 76	77 78 00 01 01 76	37 00 01 76 75	00 01 76 75	01 76 75	75	75		0.0	200	cplinu	cplinl	cplind	0.0000	0.0254	0.0485	-0.0231	0.0000	0.0176	0.0529	-0.0353	0.000	-0.0109	0.0783	
oplini cplind 0.0000 0.0254 0.0485 -0.0231 0.0000 0.0176 0.0529 -0.0353 0.0000 0.0109	0.1125 0.0608 -0.0517 0.1021 0.0112 0.0609 -0.0503 0.1004	0.0608 -0.0517 0.1021 0.1112 0.0609 -0.0503 0.1004	-0.0517 0.1021 0.1112 0.0609 -0.0503 0.1004	0.1021 0.1112 0.0609 -0.0503 0.1004	0.1112 0.0609 -0.0503 0.1004 number	0.0609 -0.0503 0.1004 number	-0.0503 0.1004 number	0.1004 number	number		dz	nza	vzl	pvt1	0.1088	0.0603	-0.0486	0.0980	0.1050	0.0589	-0.0460	0.0950	0.1052	0.0589	-0.0463	
(2) (603 (603 (603 (603 (603 (603 (603 (603	-0.1345 -0.0766 0.0580 0.0775 -0.1330 -0.0768	-0.0766 0.0580 0.0775 -0.1330 -0.0762 0.0568	0.0580 0.0775 -0.1330 -0.0762 0.0568	0.0775 -0.1330 -0.0762 0.0568	-0.1330 -0.0762 0.0568 0.0768	-0.0762 0.0568 0.0768	0.0568	0.0768		type = 12	dy	nZn	vy1	pvtu	-0.1302	-0.0752	0.0550	0.0752	-0.1254	-0.0731	0.0523	0.0722	-0.1251	-0.0738	0.0513	
vzl cpl cpl pvtl cpl pvtl cpl pvtl cpl cpl cpl cpl cpl cpl cpl cpl cpl cp	0.9815 0.9816 0.9785 0.9834 0.9786 0.9815	0.9815 0.9785 0.9816 0.0049 0.9834 0.9786	0.9785 0.9816 0.0049 0.9834 0.9786	0.9816 0.0049 0.9834 0.9786 0.9815	0.0049 0.9834 0.9786	0.9834	0.9786	0.9815		doublet	Ą	nxn	vx1	vtl	0.0077	0.9858	0.9780	0.9808	0.0140	8686.0	0.9758	0.9783	0.0410	1.0040	0.9631	
yyu yzu cpu cpu cpu cpu cpu cpu cpu cpu cpu cp	148 0.2366 112 -0.4894 112 -0.7260 129 0.9863 121 0.2332 120 -0.4741 1498 -0.7072 1286 0.9883 120 -0.3983	3 5 5 5 5 5	3 5 5 5 6	3 5 5 5	3 5 5 5	3 5 5	N M	m		Ç	ao	pheu	phel	vtu	0.2278	-0.4606	-0.6884	0.9905	0.2185	-0.4498	-0.6683	0.9942	0.1989	-0.4450	-0.6439	
vx1 vy1 vz1 cp1 vx1 vx1 cy1 cp1 vx1 vx1 cy1 cp1 vx1 vx1 cy1 cp1 vx1 vx1 cy1 cp1 vx1 vx1 cp1 vx1 vx1 cp1 vx1 vx1 cp1 vx1 vx1 cp1 co 0.0077 -0.1302 0.1088 co 0.9858 -0.0752 0.0603 co 0.9808 0.0752 0.0980 co 0.9898 -0.0731 0.0589 co 0.9788 0.0523 -0.0460 co 0.9783 0.0722 0.0950 co 0.9783 0.0722 0.0950 co 0.9783 0.0722 0.0950 co 0.9783 0.0722 0.0950 co 0.9783 0.0722 0.0689 co 0.942 0.9631 0.0589 co 0.9631 0.0513 -0.0463	-11.7548 0.0612 -0.0512 -0.0289 -11.7521 0.0612 -0.0498 -0.0286	0.00	-0.00 0.00 -0.00	0.00 0.00 0.00 0.00	0.0	0.0	0.0-	0.0-			23	nzm	wzl	pwnl	-11.7497	0.0605	-0.0480	-0.0285	-11.7475	0.0591	-0.0454	-0.0282	-11.7451	0.0587	-0.0454	
phel vxl vyl vzl cpl cpl cpl cyl bel vxl phel vxl vyl vzl cpl cpl vxl vtu vtl pvtu pvtl cpl cpl co.2278 0.0077 -0.1302 0.1088	14.4167 -0.0766 0.0580 -0.0289	-0.0766 0.0580 -0.0289	0.0580	-0.0289		14.4162	-0.0762	0.0568	-0.0286	index:	λ	wyu	wyl	numd	14.4158	-0.0752	0.0550	-0.0285	14.4154	-0.0731	0.0523	-0.0282	14.4150	-0.0738	0.0513	
wzl pneu vxu vyu vyu vzl cpl cpl cpl pwnl vtu vtl pvtu pvtl cpl cpl cpl co.0605 -0.4606 0.9858 -0.0752 0.0603 0.0605 -0.04806 0.9858 -0.0752 0.0603 0.05905 0.9808 0.0752 0.0980 -0.0591 -0.04498 0.9898 -0.0731 0.0589 0.0591 -0.04498 0.9758 0.0523 -0.0460 0.0591 -0.0454 0.9898 -0.0731 0.0589 0.05942 0.9783 0.0722 0.0950 -0.04450 0.0587 0.0589 0.0410 -0.1251 0.1052 0.0589 0.0587 -0.04450 0.0410 -0.1251 0.1052 0.0589 0.0587 -0.04450 0.09631 0.0513 -0.0463		42.5713	0.9923	0.9938	0.0000	41.6630	0.9931	0.9938	0.0000	φ: •	×	wxn	wxl	wnl	40.7547	0.9939	0.9936	0.000	39.8463	0.9954	0.9927	0.0000	38.9378	1.0005	0.9881	
wyu wzu pneu vxu vxu <td>84 59 .0083 0.7886</td> <td>0083</td> <td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td>0273</td> <td>0366</td> <td>85 60</td> <td>.0083 0.7903</td> <td>.0234</td> <td>.0369 0.0000 .0135</td> <td>1 network id:</td> <td>je ip</td> <td>nz Imachu</td> <td>snu lmachl</td> <td>snl wnu snd</td> <td>86 61</td> <td>.0083</td> <td>0.190</td> <td>.0383 0.0000 .0193</td> <td>87 62</td> <td>.0083</td> <td>.0116 0.7817</td> <td>.0433 0.0000 .0317</td> <td>88 63</td> <td>0.8084</td> <td>.0169 0.7706</td> <td>0000</td>	84 59 .0083 0.7886	0083	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0273	0366	85 60	.0083 0.7903	.0234	.0369 0.0000 .0135	1 network id:	je ip	nz Imachu	snu lmachl	snl wnu snd	86 61	.0083	0.190	.0383 0.0000 .0193	87 62	.0083	.0116 0.7817	.0433 0.0000 .0317	88 63	0.8084	.0169 0.7706	0000

Mar 7 1995 13:51				resuits						
0.0000 0.0000	-0.0289	-0.0289	1.0085	0.9655	0.0722	0.0983	-0.0892	-0.0862	-0.0857	0-
64 38.0294	14.4148	-11.7426	0.1326	0.1914	-0.1885	0.1613	0.000	0.0000	0.0069	0
0.8864 1.0273	-0.1057	0.0857	-0.4642	1.0800	-0.1057	0.0876	-0.1647	-0.1784	-0.1808	0-
0.7126 0.9618	0.0828	-0.0712	-0.5968	0.8886	0.0828	-0.0738	0.2290	0.2112	0.2065	0
0.000 0.0000	-0.0286	-0.0286	1.0887	0.8955	0.1404	0.1732	-0.3937	-0.3896	-0.3873	9
1 0*b*for-mom-net#- 1			force / moment data for network	nt data for	network	1				
totals for column 1	ـــ	area	fx	£y	-	fz	ж	Лш	mz	
		40.29655	0.00000	-0.00355		-0.00424	-0.02639	-0.01477		0.0123
		40.29655	0.0000	0.00999	666	0.01196	0.07635	0.05750		-0.0480
		40.29655	0.0000	0.00644	644	0.00771	0.04996	0.04273		-0.0356
totals for column 2	2	area	fx	fγ	ľ	fz	шХ	Тш	zw	.,
		36.57013	0.0000	-0.00156		-0.00186	-0.01623	-0.00475		0.0039
		36.57013	0.0000	0.01074	.074	0.01285	0.11449	0.05956		-0.0497
		36.57013	0.0000	0.00918	918	0.01099	0.09826	0.05481		-0.0457
totals for column	e	area	ţx	fγ		£2	шх	мУ	ZW	N
		32.84674	0.0000	-0.00043		-0.00051	-0.00566	0.00065		-0.0005
		32.84674	0.0000	0.01025	1025	0.01227	0.14047	0.05580		-0.0466
		32.84674	0.0000	0.00982	2882	0.01176	0.13480	0.05644		-0.0471
totals for column	4	area	fx	fy		fz	mx	шУ	zw	2
		29 12062	00000	80000 0	820C	0.00034	0.00478	0.00379		-0.0031

				resuits				Page 157
ın o		29.12062	0.00001	0.00945	0.01131	0.15828	0.05062	-0.0422
° 7		29.12062	0.00001	0.00972	0.01165	0.16305	0.05440	-0.0454
totals for column	Ŋ	area	ţx	fy	fz	шх	my	ZW
		25.40189	0.00000	0.00073	0.00088	0.01453	0.00560	-0.0046
n «		25.40189	0.00001	0.00845	0.01012	0.16733	0.04459	-0.0372
n oo		25.40189	0.00001	0.00917	0.01100	0.18186	0.05018	-0.0418
totals for column	9	area	fx	fy	fz	xw	шУ	Zw.
		21.67510	0.00000	0.00094	0.00114	0.02161	0.00619	-0.0051
a (21.67510	0.00001	0.00726	0.00870	0.16598	0.03775	-0.0315
1 0		21.67510	0.00001	0.00820	0.00984	0.18759	0.04394	-0.0366
totals for column	7	area	fx	fy	Ęz	mx	Кш	ZW
		17.95490	0.00000	0.00085	0.00103	0.02206	0.00525	-0.0043
0 4		17.95490	0.00001	0.00580	0.00695	0.14997	0.02966	-0.0247
2 0		17.95490	0.00001	0.00665	0.00797	0.17204	0.03491	-0.0291
totals for column	ø	area	ţx	fy	fz	жш	тиу	ZW
		14.22880	0.0000	0.00037	0.00045	0.01058	0.00233	-0.0019
ar o		14.22880	0.00001	0.00352	0.00422	0.10168	0.01772	-0.0147
\ M		14.22880	0.00001	0.00389	0.00467	0.11226	0.02005	-0.0167
totals for network		агеа	fx	fy	£z	Хш	й	zw
c		218.09473	0.0000	-0.00237	-0.00279	0.02527	0.00427	-0.0033
		218.09473	0.00005	0.06546	0.07837	1.07455	0.35320	-0.2950

	sprey
,	T Trom C
	aletou
:	ᅙ
	Printe

110. 7 1006 t0:64					*confe				6	forder management for some	6
Mar 7 1996 13:01					resmis					2	rage 150
5 3			218.09473	0.00006		0.06308	0.07559	1.09982	0.35747		-0.2984
totals for all networks	l networks	so far	area	ţx	fγ		z	жж	шУ	mZ	
ō			218.09473	0.00000	-0.00237	·	-0.00279	0.02527	0.00427	·	-0.0033
, c			218.09473	0.00005		0.06546	0.07837	1.07455	0.35320		-0.2950
n (218.09473	0.00006		0.06308	0.07559	1.09982	0.35747		-0.2984
0*e*for-mom 1		, , , ,	c	1	1	; ;			-		c
network to	<u>.</u>	ındex:		source type = 0	doublet	doublet type = 12	romper	number rows = 8	numper	columns =	20
jc ip nz	×	7	И	do	ਝੁੱ	ďλ	zр	s 0	anx	any	ø
Imachu	wxm	nĀm	wzn	pheu	nxa	77	nza	cplinu	cpslnu	cp2ndu	cpi
lmach1	wxl	wyl	wzl	phel	vx1	vyl	vzl	cplinl	cpslnl	cp2ndl	cpi
wnn	wnl	numd	pwnl	vtu	vtl	pvtu	pvtl	cplind	cpslnd	cp2ndd	cpi
112 65	43.9301	-2.9497	-3.8857	-0.3830	0.0239	0.1109	0.1332	0.0000	0.0000	0.0234	0-
0.7810	0.9895	0.0571	0.0684	-1.0960	0.9741	0.0571	0.0679	0.0483	0.0439	0.0437	0
0.7609	0.9839	-0.0538	-0.0641	-0.7130	0.9501	-0.0538	-0.0653	0.1054	0.0928	0.0918	0
0.0000	0.0000	0.0222	0.0222	0.9781	0.9539	0.0669	0.1218	-0.0571	-0.0489	-0.0481	0-
113 66	41.3597	-2.9495	-3.8858	-0.4581	0.0263	0.0643	0.0775	0.0000	0.0000	0.0234	0-
0.7883	0.9942	0.0345	0.0412	-1.0532	0.9853	0.0345	0.0409	0.0278	0.0266	0.0265	0
0.7655	0.9864	-0.0298	-0.0356	-0.5950	0.9590	-0.0298	-0.0366	0.0857	0.080.0	0.0793	0
0.0000	0.0000	0.0224	0.0224	0.9867	0.9601	0.0302	0.0842	-0.0579	-0.0534	-0.0528	0-
114 67	38.7894	-2.9495	-3.8858	-0.5064	0.0122	0.0308	0.0371	0.000	0.000.0	0.0234	0-
0.7849	0.9936	0.0181	0.0216	-1.0143	0.9826	0.0181	0.0212	0.0345	0.0340	0.0339	0
0.7743	0.9901	-0.0127	-0.0152	-0.5079	0.9705	-0.0127	-0.0159	0.0614	0.0587	0.0584	0
0.0000	0.0000	0.0224	0.0224	0.9830	0.9707	0.0168	0.0553	-0.0269	-0.0248	-0.0245	0
115 68	36.2197	-2.9493	-3.8859	-0.5195	-0.0020	0.0076	0.0091	00000.0	00000.0	0.0234	0
0.7800	0.9921	0.0066	0.0081	-0.9653	0.9774	0.0066	0.0076	0.0459	0.0451	0.0449	0

LIST OF REFERENCES

- 1. Epton, M., Magnus, A., "PAN AIR A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method", Volume I Theory Document (Version 3.0), NASA Contractor Report 3251, Ames Research Center, Moffett Field, CA., March 1992.
- 2. Bertin, J. J., and Smith, M. L., <u>Aerodynamics for Engineers</u>, 2nd ed., Prentice-Hall, 1989.
- 3. Anderson, J. D., Fundamentals of Aerodynamics, 2nd ed., McGraw-Hill, 1991.
- 4. Saaris, G. R., "A502i User's Manual-PAN AIR Technology Program for Solving Problems of Potential Flow about Arbitrary Configurations", Boeing Document Number D6-54703, Boeing, February 1992.
- 5. Cenko, A., "Determination of Correct AIWS Carriage Loads", Report Number NAWCADAWR-92095-60, Naval Air Warfare Center Aircraft Division, Warminster, PA., June 1992.
- 6. Cenko, A., Tinoco, E., Dyer, R., DeJongh, J., "PAN AIR Applications to Weapons Carriage and Separation", AIAA Paper 80-0187, 18th Aerospace Sciences Meeting, Pasadena, CA, January 1980.
- 7. Cenko, A., Talbot, M., Piranian, A., "Analysis of the F-14/GBU-24 and Wind Tunnel Test", Air Vehicle and Crew Systems Technology Department (Code 6053), Naval Air Warfare Center Aircraft Division, Warminster, PA., December 1995.
- 8. Johnson, F., Samant, S., Bieterman, M., Melvin, R., Young, D., Bussoletti, J. Hilmes, C., "TranAir: A Full-Potential, Solution-Adaptive, Rectangular Grid Code for Predicting Subsonic, Transonic, and Supersonic Flows about Arbitrary Configurations", Theory Document, NASA Contractor Report 4348, Ames Research Center, Moffett Field, CA., December 1992.
- 9. Keube, F., "Low Apsect Ratio Wings with Small Thickness at Zero Lift in Subsonic and Supersonic Flow", KTH-Aero TN21, Royal Institute of Technology, Stockholm, Sweden, June 1952.
- 10. Hermstad, D., <u>RAID User's Guide</u>, NASA Ames Division Federal Systems Group, Sterling Software, Inc., Palo Alto, CA., March 1991.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Chairman1
	Department of Aeronautics and Astronautics, Code AA Naval Postgraduate School Monterey, CA 93943-5000
4.	Dr. Max F. Platzer
5.	Dr. Kevin Jones
6.	Dr. Ismail Tuncer
7.	LT Matthew LeTourneau