AD-A055 033

TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/G 12/1
GRADIENT STATES FOR SOME DUALITIES WITH THE CHARNES-COOPER EXTR-ETC(U)
JUL 77 A CHARNES, L SEIFORD N00014-75-C-0569
CCS-295 NL

UNCLASSIFIED

























DDC END



AD A 055033

FOR FURTHER TRAN "4.24



PERILIPIE TO EN

# CENTER FOR CYBERNETIC STUDIES

The University of Texas Austin, Texas 78712

This document has been sold; its

for public release unlimited act; its

cistribution is unlimited.



78 06 06 056



## Research Report CCS 295

GRADIENT STATES FOR SOME DUALITIES WITH THE C<sup>2</sup> EXTREMAL PRINCIPLE

by

A. Charnes\* L. Seiford\*\*



September 1977

\*The University of Texas, Austin, Texas. \*\*York University, Downsview, Cntario, Canada.

This research was partly supported by Project NR047-021, CNR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.

## CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director Business-Economics Building, 203E The University of Texas Austin, Texas 78712 78 06 06 056

## ABSTRACT

Gradient characterizations of some convex function infima are derived which apply to extension of the Charnes-Cooper duality state characterizations to more general classes of convex programming problems via the Charnes-Cooper extremal principle for optimization dualities.

| CCESSION    | White Section                 |
|-------------|-------------------------------|
| ITIS<br>DDC | Buff Section C                |
| UNANNOUN    | 030                           |
| JUSTIFICAT  | ION                           |
|             | ***************************** |
| BY          |                               |
| DISTRIBUT   | TION AVAILABILITY TOOK        |
|             | SP-C                          |
| HIST.       |                               |
| Dist.       |                               |

The C<sup>2</sup> extremal principle for dualities which was originally presented in Charnes, Cooper and Seiford [1] is an approach to deriving dual optimization problems with proper duality inequality which simplifies and generalizes the Fenchel-Rockafellar scheme [2, 3]. The derivation is accomplished in two stages. The first is the achievement of the duality inequality. The second is the decoupling of the primal and dual variables.

# The C2 Extremal Principle

Let  $K(\delta,x)$  be a real valued function which is concave in  $\delta$  for

 $(\delta, x) \in \Delta \Theta X \subseteq R^{\mathbf{m}} \Theta R^{\mathbf{s}}$ 

and for which

$$g(\delta) \equiv \inf_{x \in X} K(\delta, x)$$

exists for each  $\delta \epsilon \Delta$ . Let T be a map from the convex set  $Z \subseteq \mathbb{R}^n$  into X. If  $K(\delta,T(z))=f(z)$ , a convex function for  $z\epsilon Z$ ,  $\delta \epsilon \Gamma$ , then  $\Gamma \delta T[Z]$  is the decoupling set for  $(\delta,x)$ . If we further require  $\Delta \cap \Gamma$  to be a convex set, the problems

$$\sup g(\delta), \quad \delta \varepsilon \Delta \cap \Gamma \tag{1}$$

and

inf 
$$f(z)$$
,  $z \in Z$  (2)

are dual convex programming problems.

As an example in the use of the use of the C2 extremal principle, we derive the dual problems for linear programming. Let

estilatence one estillists dotte villappet tilles appropriate and constitution of 
$$\mathbf{x}' = (\mathbf{x}, \mathbf{y})$$
 on the derivation is accomplished to the derivation is accomplished to

and

$$x \in X = \{x : x \ge b\}.$$

Then

$$g(y) = \inf_{x} K(y,x) = y^{T}b.$$

If we let x = Az, then

$$y^{T}_{b} \leq y^{T}_{Az}$$
 wyea, wzeZ = {z : Az  $\geq$  b}.

Defining

$$\Gamma = \{y : y^T A = c^T\}$$
 and T said also make the minimum

We have the strict rest of the ferial terms of the series of the series

$$\sup_{\mathbf{y} \in \Delta} \mathbf{y}^{\mathbf{T}}_{\mathbf{b}} \leq \inf_{\mathbf{z} \in \mathbf{Z}} \mathbf{c}^{\mathbf{T}}_{\mathbf{z}}$$

or equivalently

y ≥ 0

$$\begin{array}{ccc}
sup b^{T}y & \leq & inf c^{T}z \\
subject to & subject to \\
A^{T}y = c & Az \geq b
\end{array} \tag{3}$$

It is well known that a duality gap cannot occur in linear programming. In the general case the existence or non-existence of duality gaps is dependent on the choices of  $\Delta \cap \Gamma$  and Z.

## Gradient Characterization of Some Convex Function Infima

The extension of our characterization to duality states for more general cases of dual convex problems of the form given in Charnes, Cooper and Seiford [1] depends on developing properties characterizing the existence or non-existence of infima for special classes of convex functions. In the following theorem we adduce some such properties.

Theorem 1: Let  $f:X \to R$  be convex and differentiable on an open convex set  $X \subseteq R^m$ . For the linear function  $A:Z \to X$  with Z convex, consider

$$C(z) = f(Az) - b^{T}z.$$

If we define

$$\Gamma = \{\delta : \delta^{T} A = b^{T}\}$$

$$\Delta_{x} = \nabla f[x]$$

$$\Delta_{z} = \nabla f[A(z)]$$

then

(i) a) C(z) is bounded below implies  $\overline{\Delta}_z \cap \Gamma \neq \phi$ 

b)  $\Delta_{\mathbf{x}} \cap \Gamma \neq \emptyset$  implies  $C(\mathbf{z})$  is bounded below

F(E) = C(x(t)) 4 + ==

(ii) a) C(z) has an infimum implies

at some 
$$\overline{\Delta}_z \cap \Gamma \neq \phi$$
,  $\Delta_z \cap \Gamma = \phi$  and to hamily the odd some determinant

- b)  $\Delta_{x} \cap \Gamma \neq \phi$ ,  $\Delta_{z} \cap \Gamma = \phi$  implies C(z) has an infimum
- (iii) C(z) has a minimum if and only if  $\Delta_z \cap \Gamma \neq \phi$ .

<u>Proof</u>: (1) a) Suppose  $\overline{\Delta}_z \cap \Gamma = \phi$ . Then

$$\nabla C(z) = \nabla f(Az)^{T}A - b^{T}$$

is bounded away from zero, i.e.,

$$\|\nabla C(z)\| \ge \varepsilon > 0.$$

Consider the differential equation system.

$$\dot{z}(t) = \frac{-\nabla C(z(t))}{\|\nabla C(z(t))\|}.$$

The function  $-\nabla C(\cdot)/||\nabla C(\cdot)||$  is continuous [2] and bounded, since  $\nabla C$  is the gradient of a <u>convex</u> function. Hence there exists a solution, z(t). For  $F(t) \equiv C(z(t))$ 

$$F'(t) = \nabla C(z(t)) \cdot \dot{z}(t)$$

$$= \nabla C(z(t)) \cdot \left( \frac{-\nabla C(z(t))}{\| \nabla C(z(t)) \|} \right)$$

$$= -\| \nabla C(z(t)) \| \le -\varepsilon < 0.$$

Thus as t + + =

$$F(t) = C(z(t)) + -\infty$$

and C is unbounded below.

(i) b) If  $\Delta_{\mathbf{x}} \cap \Gamma \neq \phi$ , let  $\overline{\delta} \in \Delta_{\mathbf{x}} \cap \Gamma$ .

Then  $C(z) = f(Az) - b^{T}z = f(Az) - \overline{\delta}^{T}Az$ .

Hence  $\inf_{z} C(z) \stackrel{>}{=} \inf_{x} f(x) - \overline{\delta}^{T}_{x} \stackrel{>}{=} f(x_{0}) - \overline{\delta}^{T}_{x_{0}}$ 

by the differentiable convexity of f, where  $x_0$  satisfies  $\nabla f(x_0) = \overline{\delta}$ .

(iii) Suppose C(z) attains its minimum at  $z_0$ . Then

$$\nabla C(z_0)^T = \nabla f(Az_0)^T A - b^T = 0.$$

Setting  $\delta = \nabla f(Az_0)$  we have

 $\delta \in \Delta_z \cap \Gamma$ .

Conversely, if  $\delta_{o} \in \Delta_{z} \cap \Gamma$ , then  $\delta_{o} \in \Gamma$ 

so  $C(z) = f(Az) - \delta_0^T Az$ 

and  $\nabla C(z)^{T} = \nabla f(Az)^{T} \cdot A - \delta_{O}^{T} A$ =  $(\nabla f(Az)^{T} - \delta_{O}^{T} A.$ 

Since  $\delta_0 \in \Delta_z$ ,  $\exists z_0$  and that  $\nabla f(Az_0) = \delta_0$ .

Hence  $\nabla C(z_0) = 0$  and C(z) attains its minimum at  $z_0$ .

(ii) a) and b) now follow by exhaustion.

Corollary 1  $\Gamma = \phi \Rightarrow C(z)$  is unbounded below.

Proof: Consider the dual linear programming problems

(I) (II)  

$$\max b^{T}z \qquad \min \delta^{T}0$$
s.t.  $Az = 0$  s.t.  $\delta^{T}A = b^{T}$ 

If  $\Gamma = \phi$ , then II is infeasible. Since z = 0 satisfies (I), there exists a sequence  $z_n$  such that

$$Az_n = 0 \ ( > n ) \text{ and } b^T z_n + \infty .$$

Thus 
$$C(z_n) = f(Az_n) - b^T z_n$$

$$= f(0) - b^T z_n + - \infty.$$

That the characterization given by Theorem 1 is a best possible is shown by the following examples.

Example 1: To show that (in i,b) we need  $\Delta_{\mathbf{x}} \cap \Gamma \neq \emptyset$  (rather than  $\overline{\Delta}_{\mathbf{x}} \cap \Gamma \neq \emptyset$ ) to insure  $C(\mathbf{z})$  is bounded below, consider

$$f(x) = \begin{cases} -\ln(-x) & \text{if } x \leq -1 \\ x + 1 & \text{if } x > -1 \end{cases}$$

Then  $b = 0 \in \overline{\Delta}_{x}$  but  $\lim_{x \to -\infty} f(x) - 0 \cdot x = -\infty$ .

Example 2: To show (in i, a) that C(z) bounded below only guarantees  $\overline{\Delta}_z \cap \Gamma \neq \emptyset$  and not  $\Delta_z \cap \Gamma \neq \emptyset$ , consider

$$f(z) = e^{z}.$$
( $\forall z$ )

Then 
$$f(z) = e^{z} - 0 \cdot z > 0$$
 ( $(x)z$ )  
but  $0 \notin \Delta_{z}$ ,  $0 \in \overline{\Delta}_{z}$ .

## Conclusion

In other work now in progress we employ these results to obtain duality state characterizations of dual convex programs derived from the  $C^2$  principle. We also make applications to two-person zero-sum games whose payoff function is of the form  $K(\delta,x) = f(x) - \delta^T x + g(\delta)$  where f(x) is convex and  $g(\delta)$  is concave. Such

games have arisen in contexts where the x-player corresponds to a government agency and the  $\delta$ -player is the totality of enterprise groups whose activities are being regulated.

optimisation desinties for entername textiss estimation.

Center for Cybernaric Studies, Research Report CCS 251, The University of Texas, Austis, Texas, April 1976; To appear in Scitschrift Mathematische Operationsforschung und Statistik, Series Optimization

Fenchal, "Commandones, Sein, and Functions," Lacture Notes, "Threeton University, Department of Numbersity, September 1953.

Y taceron, Who largey 1910.

#### REFERENCES

- 1. A. Charnes, W. W. Cooper and L. Seiford, "Extremal Principles and Optimization Dualities for Khinchin-Kullback-Leibler Estimation," Center for Cybernetic Studies, Research Report CCS 261, The University of Texas, Austin, Texas, April 1976. To appear in Zeitschrift Mathematische Operationsforschung und Statistik, Series Optimization, issue 1, vol. 9 (1978).
- W. Fenchel, "Convex Cones, Sets, and Functions," Lecture Notes, Princeton University, Department of Mathematics, September 1953.
- 3. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

Office of Naval Research (Code 434) Washington, D.C.

13. ABSTRACT

Gradient characterizations of some convex function infima are derived which apply to extension of the Charnes-Cooper duality state characterizations to more general classes of convex programming problems via the Charnes-Cooper extremal principle for optimization dualities.

, `

The state of the s

Security Classification

| KEY WORDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LINKA         |                   | LINK B        |                 | LINK          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|-----------------|---------------|-----------|
| CONTROL DATA - R. & OF CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROLE          | WT                | ROLE          | wT              | ROLE          | wT        |
| NOT AN THE REST REST OF THE SAME AND THE SAM |               | in yer suit       | C. Thirt 19   | eleante politic | SET Y ARREST  |           |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | ( East            | The State No. |                 | it in sin     |           |
| ALL SELECTION OF THE PARTY OF T |               | CHARLES           | elion,        |                 | tol te        |           |
| Gradient characterizations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | BROLL I       | days lead       | intve         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 | - 120 100     |           |
| Convex function infima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | estrila       | ud an             | oc So         | a stei          | 9 100-911     |           |
| Convex function infilma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                   |               |                 |               |           |
| Channes Cooper outnomel principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   | in the second |                 |               |           |
| Charnes-Cooper extremal principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$2,710,00 PF | responsible       | E towyso by   | 30753 63        |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
| Dual convex programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                   |               |                 | a term of the |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
| trans to do oil to be an at the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |               |                 | 7.107.68      | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 | 1.00          | Pate      |
| ieus valuties i sent and a vector and a region and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                   |               | Li Lee          |               | S. E. Let |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               | 00.00           | 67-9          | 1 76      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               | and the   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 | 1384          | 1009      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               | 1000      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | origina o     |                   |               |                 | a dob         | nact.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 10                | thinkli       | D 73 F          | D. Gen. S     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               | # 3 C CW        |               |           |
| Office of Navat Research (Code 434)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |               |                 |               |           |
| Washington, D.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a la ma       | NAME OF THE PARTY | ed our        | effecter        | dheril        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | se Chiu       | 1.10 n            | pianak        | a of            | torie e       | our       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R BALLO       | o to a            | Reals         | 3,672,000       | de pro        | m 1       |
| nization dualities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nigo a        | a elei            | ORITH         | Amor            | X3.78         | [06]      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               | 4               |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |               |                 |               |           |

DD FORM .. 1473 (BACK)

Unclassified
Security Classification