The Disk method:

Volume of disk = π . (radius)² . thickness = $\pi [f(x)]^2 dx$

Volume =
$$\pi \int_a^b [f(x)]^2 dx$$
.

Example 1. Find the volume of the solid obtained by revolving the region bounded by $y = \sqrt{x}$, x = 4 and the x-axis about the x-axis.

The Washer method:

 $= \pi \left[\frac{4}{5} - \left(-1 + \frac{1}{5} \right) \right]$

 $=\pi\left[\frac{4}{5}-\left(-\frac{4}{5}\right)\right]=\frac{8\pi}{5}$

Volume =
$$\pi \int_a^b \left([f(x)]^2 - [g(x)]^2 \right) dx$$

Upper curve

Example 2. Find the volume of the solid obtained by revolving the region bounded by y = 1 and $y = x^2$ about the x-axis.

Example 3. Find the volume of the solid obtained by revolving the region bounded by y = x + 3 and $y = x^2 + 1$ about the x-axis.

The Shell method:

Volume of a shell = 2π . (radius) . (height) . (thickness) = $2\pi x (f(x) - g(x)) dx$

Volume =
$$2\pi \int_{a}^{b} x (f(x) - g(x)) dx$$

Example 4. Find the volume of the solid obtained by revolving the region bounded by $x = \sqrt{y}$, y = 1 and the y-axis about the y-axis.

$$x = \sqrt{y}, y = 1 \text{ and the } y\text{-axis about the } y\text{-axis.}$$

$$x = \sqrt{y} \text{ or } y = x^{2}$$

$$x = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y} \text{ or } y = x^{2}$$

$$y = \sqrt{y}$$

Example 5. Find the volume of the solid obtained by revolving the region bounded by $y = x^{2/3}$, x = 8 and the x-axis about the <u>y-axis</u>.

 $V = a\pi \int_{a}^{b} x \left(f(x) - g(x)\right) dx$ $= 9 \mu \left(x \left(x_{3/3} - 0 \right) \right)$ $= 2\pi \int_{\mathcal{S}} x^{1+\frac{2}{3}} dx = 2\pi \int_{\mathcal{S}} x^{5/3} dx$ $= 2\pi \frac{5/3+1}{5/3+1} = 2\pi \cdot \frac{3}{8} \times \frac{8/3}{8}$ $= 2\pi \cdot \frac{3}{8} \cdot 8^{3}$ $= 2\pi \cdot \underline{3} \cdot (2^3)^{1/3}$ $= 2\pi \cdot \frac{3}{8} \cdot 2^8 = 2\pi \cdot (3) \cdot (2^5)$