<u>Titre</u>: Équation de Bessel

Recasages: 220,221

Thème: Séries entières, analyse réelle.

Références : Francinou, Gianella, Nicolas - Oraux X-Ens Analyse 4 (p. 101)

Théorème 1. On considère l'équation différentielle de Bessel (E): xy'' + y + xy = 0. La solution f_0 de (E) valant 1 en 0 se développe en série entière. De plus, si f est une autre solution sur un intervalle]0,a[, alors (f,f_0) est libre si et seulement si f n'est pas bornée au voisinage de 0.

On raisonne d'abord par analyse synthèse : si f_0 se développe en série entière, on a une suite $(a_n)_{n\in\mathbb{N}}$ et un réel R>0 tel que, sur]-R,R[, on ait

$$f_0(x) = \sum_{n=0}^{\infty} a_n x^n$$

d'où dans ce cas

$$f_0'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
 et $f_0''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$

Si f_0 est solution de léquation de Bessel sur]-R,R[, on a

$$0 = xf_0''(x) + f_0'(x) + xf_0(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{\infty} na_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^{n+1}$$

$$= \sum_{n=1}^{\infty} (n+1)na_{n+1}x^n + \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + \sum_{n=1}^{\infty} a_{n-1}x^n$$

$$= \sum_{n=1}^{\infty} ((n+1)^2 a_{n+1} + a_{n-1})x^n + a_1$$

On obtient donc les conditions suivantes sur les coefficients de f_0 (par unicité du développement en série entière)

$$\begin{cases} a_1 = 0 \\ \forall n \in \mathbb{N}, (n+2)^2 a_{n+2} = -a_n \end{cases}$$

Ainsi, $a_{2n+1} = 0$ quel que soit $n \in \mathbb{N}$, et

$$\forall n \in \mathbb{N}, a_{2n} = \frac{-1}{2n} \frac{-1}{2(n-2)} \cdots \frac{-1}{2} a_0 = \frac{(-1)^n}{4^n n!} a_0$$

Comme $f_0(0) = a_0 = 1$, on obtient

$$f_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n n!} x^{2n}$$

Passons à la synthèse : la série entière ci dessus à un rayon de convergence infini : pour R > 0, la suite $\frac{(-1)^n}{4^n n!} R^{2n} = \frac{R^n}{n!} \left(\frac{-R}{4}\right)^n$ est bornée, on conclut par le théorème d'Abel. Comme les coefficients de f_0 vérifient les équations précédente, f_0 est bien l'unique solution maximale du problème de Cauchy étudié.

Passons au second point, soit a > 0, et f une autre solution de l'équation de Bessel sur [0, a[. Comme f_0 est définie sur \mathbb{R} et continue, elle est bornée au voisinage de 0, ainsi que

tous ces multiples scalaires : si la famille (f_0, f) est liée, f est bornée au voisinage de 0. Réciproquement, si (f, f_0) est libre, comme on se place sur un intervalle où x > 0, on peut écrire (E) comme $y'' + \frac{1}{x}y' + y = 0$. L'ensemble des solutions de cette équation est un \mathbb{R} -espace vectoriel de dimension 2, donc le wronskien $W = ff'_0 - f'f_0$ ne s'annule jamais. Pour tout $x \in]0, a[$, on a

$$W'(x) = f(x)f_0''(x) - f''(x)f_0(x) = -\frac{1}{x}W(x)$$

en remplaçant f'' par $\frac{-1}{x}f'(x) - f(x)$ et de même pour f_0 . Ainsi, $W(x) = \frac{C}{x}$ pour une certaine constante C, non nulle puisque W est non nul.

Si f est bornée au voisinage de 0, sachant que f_0 et f_0' ont respectivement 1 et 0 pour limite en 0, on a

 $W(-x) \sim f'(x) \sim \frac{-C}{x}$

quand x tend vers 0. Soit $b \in]0, a[$, la fonction $x \mapsto \frac{-C}{x}$ est de signe constant sur]0, b] et n'est pas intégrable, donc f(x) et $\ln(x) - \ln(b) + f(b)$ sont équivalents. En effet, on peut considérer $f'(x) = -C\frac{g(x)}{x}$ avec $\lim_{x\to 0} g(x) = 1$, on a alors

$$\frac{f(x) - f(b)}{\ln(x) - \ln(b)} = \frac{\int_{b}^{x} f'(t)dt}{\int_{b}^{x} \frac{1}{t}dt} = \frac{\int_{b}^{x} \frac{g(t)}{t}dt}{\int_{b}^{x} \frac{1}{t}dt}$$

Soit $\varepsilon > 0$, on pose $b_0 < b$ tel que $1 - \varepsilon < g(x) < 1 + \varepsilon$ sur $]0, b_0[$, on a alors

$$\begin{split} \frac{\int_{b}^{x} \frac{g(t)}{t} dt}{\int_{b}^{x} \frac{1}{t} dt} &= \frac{\int_{b}^{b_{0}} \frac{g(t)}{t} dt + \int_{b_{0}}^{x} \frac{g(t)}{t} dt}{\int_{b}^{b_{0}} \frac{1}{t} dt + \int_{b_{0}}^{x} \frac{1}{t} dt} \\ &= \frac{\int_{b}^{b_{0}} \frac{g(t)}{t} dt}{\int_{b}^{x} \frac{1}{t} dt} + \frac{\int_{b_{0}}^{x} \frac{g(t)}{t} dt}{\int_{b}^{b_{0}} \frac{1}{t} dt + \int_{b_{0}}^{x} \frac{1}{t} dt} \\ &\to 0 + \frac{\int_{b_{0}}^{x} \frac{g(t)}{t} dt}{\int_{b_{0}}^{x} \frac{1}{t} dt} \\ &1 - \varepsilon \leqslant \dots \leqslant 1 + \varepsilon \end{split}$$

D'où l'équivalence voulue. Ainsi, la fonction f n'est effectivement pas bornée, d'où une contradiction et le résultat.