

TY CSE (24-25) ISE-2

Faculty:

Mr. Sagar Shinde

Team Members

- > Parshwa Herwade: 22510064
- > Ishwar Raut: 22510065
- > Karan Tanna: 22510076
- > Adhiket Shinde: 22510082
- > Shubham Dambal: 22510120

Table of Content-Case Study: Ratnagiri

- 1. Waste Segregation
- 2. Storage
- 3. Collection
- 4. Transfer and transport
- 5. Processing
- 6. Disposal of waste
- 7. Performance Analysis
- 8. Recommendations for Improvement and Conclusion

Ratnagiri & Solid Waste Management

About Ratnagiri District

- Located on the Konkan coast of Maharashtra
- Known for Alphonso mangoes, beaches, forts, and fisheries
- Area: 8,208 sq. km
- Population: 1.6 million (2011 Census)
- Administrative Units: 9 Municipalities, 9 Tahsils
- Mix of urban towns, coastal villages, and forest zones

Solid Waste Management (SWM) Overview

- SWM includes the collection, storage, transport, processing, and disposal of waste.
- Rapid urban growth, tourism, and fisheries are causing a spike in waste generation.
- Ratnagiri generates around 61.9 MT of solid waste daily, but:
 - Only 68% of waste is processed.
 - No ścientific landfill exists.
- Segregation and storage systems are underdeveloped.
 The district has potential for improvement using decentralized systems, bio-processing, and community engagement.

1. Waste Generation

Total Solid Waste Generation: 61.9 Metric Tons/Day

Composition Breakdown:

- Wet Waste (55%): ~34.05 MT/Day mainly kitchen and market waste
- Dry Waste (45%): ~27.85 MT/Day paper, plastic, metals, etc.
- C&D Waste: 277.7 MT/Year -mostly from renovation & coastal construction
- Plastic Waste: 1.63 MT/Day rapidly increasing with packaged goods
- Biomedical Waste: 219 kg/Day mainly from hospitals in Ratnagiri city

Key Insight:

- Increasing urbanization is directly leading to growing volumes of solid waste.
- There is no formal quantification methodology, impacting planning and budgeting.

Local Insights:

- Fish markets and weekly haats contribute significantly to wet waste.
- Tourism (Ganpatipule, Pawas) increases dry waste during peak seasons
- Coastal erosion and unplanned construction contribute to rising C&D waste.

2. Waste Storage

Current Situation:

- Limited segregated storage systems
- Insufficient bins in public places
- Inadequate household-level storage
- Dedicatedly 6 C&D waste storage facilities available

Challenges:

- No standardized bin system
- Very low segregation at source
- No separate storage for domestic hazardous waste
- No e-waste storage infrastructure
- Tourists leave behind plastic waste with no bins on beaches or forts

Suggested Actions:

- Introduce color-coded bins for wet/dry/hazardous waste
- Ensure two-bin system at household level
- Build e-waste and hazardous waste storage hubs in each municipality

3. Waste Collection

Current Status:

- 60-100% collection efficiency across the district.
- Door-to-door collection implemented in all ULBs (Urban Local Bodies).
- 100% manual road sweeping coverage.
- Limited mechanical road sweeping facilities.
- 100% segregated waste collection in most ULBs.
- No authorization for waste pickers in the district.

Identified Gaps:

- Collection efficiency needs to improve in some areas.
- Lack of mechanical road sweeping facilities.
- No formal integration of waste pickers.
- Limited specialized collection for hazardous and e-waste.

Ideal 3-Tier Collection System:

- a. **Door-to-Door Collection:** Primary collection from households and establishments.
- b. **Community Collection Points**: Strategically located for community drop-off.
- c. **Transfer Stations:** Intermediate facilities for waste consolidation befor transport to processing sites.

4. Transfer and Transport

Current Status:

- 65-100% segregated waste transport across ULBs.
- Dedicated vehicles for waste transportation.
- Limited transfer stations in the district.
- C&D (Construction and Demolition) waste transport often unregulated.
- Biomedical waste transported to treatment facility in Kolhapur.

Identified Gaps:

- Lack of intermediate transfer stations.
- Unregulated transport of C&D waste.
- Limited GPS tracking of waste transport vehicles.
- Inefficient routing of collection vehicles.

Efficient Transfer & Transport System:

- Covered vehicles to prevent waste spillage.
- GPS tracking for route optimization.
- Separate vehicles for different waste streams.
- Strategic transfer stations to reduce transport costs.
- Regular maintenance of transport vehicles.

Innovative Add-ons in Waste Collection & Transport

- Smart Bins with sensors to reduce overflow and optimize collection routes
- Pre-sorting hubs at ward level to ease transport load and improve efficiency
- QR-coded bins & geo-tagged complaints to track problem zones and enhance accountability
- PPP models involving SHGs for micro-collection and secondary transport
- Climate-resilient routing planned for monsoon-prone areas
- Live dashboards for ULBs to monitor collection, vehicle routes & citizen feedback

5. Processing Systems

Current Status:

- 42.2 MT/Day (68%) waste processed
- Primary methods: Vermicomposting, Pit composting
- One ULB has biomethanation facility
- 200.75 MT/Annum of C&D waste recycled/disposed
- Plastic waste processing: 45 MT/Month in cement kiln (1 ULB)

Challenges:

- No E-waste processing facilities
- Limited plastic waste recycling options
- Need for more advanced treatment technologies

alamu

6. Waste Disposal

Current Status:

- 19.7 MT/Day (32%) waste dumped untreated
- C&D waste: 74.8 MT/Annum illegally dumped
- No scientific landfill facilities
- Biomedical waste: 100% treated (facility in Kolhapur)

Challenges:

- Lack of engineered landfills
- Unscientific dumping practices
- Limited land availability
- Environmental impact of dumping sites

7.Performance Analysis

SWM Performance Indicators

FUNCTIONAL ELEMENT	PERFORMANCE	STATUS	KEY ISSUES
Waste Generation	Average	Moderate	Lack of proper quantification methodology
Storage	Average	Moderate	Inadequate specialized storage facilities
Collection	Above Average	Good	80-100% collection efficiency
Transfer & Transport	Above Average	Good	85-100% segregated transport
Processing	Average	Moderate	68% waste treated, limited processing options
Disposal	Below Average	Poor	32% waste dumped, no scientific landfill

7.Performance Analysis

Above Average Performance

- Collection System
 - 80-100% door-to-door collection efficiency across ULBs
- Transfer & Transport
 - 85-100% segregated waste transport system
- Biomedical Waste Management

100% treatment of generated biomedical waste

Below Average Performance

Waste Disposal

32% of waste dumped without treatment, no scientific landfill

⚠ C&D Waste Management

74.8 MTA illegally dumped, no processing facilities

Mazardous & E-Waste Management

No dedicated facilities or systems for collection and treatment

7.Performance Analysis

Strengths vs X Weaknesses in Ratnagiri's SWM

Strengths:

- **V** Door-to-door collection in all ULBs
- Manual road sweeping with 100% coverage
- Segregated waste transport operational in all ULBs
- Composting practices (vermicomposting, pit composting) in use

Weaknesses:

- X Limited waste quantification methods
- X Inadequate segregated storage systems
- X No engineered landfills for scientific waste disposal
- No dedicated infrastructure for E-waste or hazardous waste
- Insufficient adoption of advanced processing technologies

Recommendations For Improvement

1. Waste Generation & Storage:

- Install graded weighing systems at transfer stations to ensure accurate measurement.
- Use quadrate sampling to better assess waste quantity and quality.
- Creaté specialized storage facilities for hazardous, plastic, and e-waste.

2. Collection & Transport

- Roll out a 3-tier collection system—door-to-door, community bins, and transfer stations.
- Use mechanical road sweepers for cleaner streets.
- Build transfer stations to optimize logistics.
- Formalize waste pickers as part of the system for inclusive employment.

Recommendations For Improvement

- 3. Processing & Disposal
 ->Diversify treatment methods like biomethanation and RDF.
 ->Set up Construction & Demolition (C&D) waste facilities per urban local body.
- -> Develop scientific landfills with proper liners and gas management.
- ->Enforce EPR for plastics, holding producers accountable.

4. Special Waste Streams

- ->Implement domestic hazardous waste segregation protocols. ->Build an e-waste management system with collection and
- processing units.

Conclusion

Key Findings

- Waste collection system works well in Ratnagiri (80–100% efficiency)
- Many ULBs transport waste in a segregated way
- 32% of waste is not treated and just dumped
- Big gaps in managing C&D waste, hazardous waste, and ewaste
- No scientific landfill in the whole district

Benefits of Better Solid Waste Management

- Environmental: Less pollution and emissions
- Economic: New jobs and value from recycling
- Social: Better health and quality of life
- Operational: Smoother and more efficient systems

Thank You

