

Agenda

- Introduction
- System Pipeline
- Data Preprocessing & Analysis
- Feature Engineering
- Static Rules
- Models
- Kaggle Results
- Conclusion
- Key Takeaways

Introduction

- Aim: Classify mail into Spam (0) or Ham (1).
- Problem Type: Binary Classification
- Samples: Dataset is based on the CSDMC2010 SPAM corpus.
 - ► Training Set: 2500
 - ► Test Set: 1827
- Features: Emails in RFC822 format.
- Classification
 - ► There are 2 decision classes: 0(Spam) and 1(Ham).

System Pipeline

- Data Visualization
 - Tabulate & analyse the structure of the data.
- Feature Selection
 - Encoding selected parts of the data as features.
- Evaluation of Models
 - Classification accuracy using K Fold Stratified Cross Validation.

Data Analysis

- Email Fields
 - Subject Length, Content & Presence of some characteristic Spam words in the Email Subject
 - Body Length, Content of Email Body
 - PGP Signatures Presence/Absence of PGP signatures in the Email Body
 - SpamAssassin Classification Spam mails classified as [spam] in Email subject
 - Date Date of the Email
 - Sender Presence of Sender field in the Email header

Distribution of Character counts in Email Message Body

Distribution of Capital letter words in Email Message Body

Presence/Absence of PGP Signature in Email Message Body

Feature Engineering

- Spaminess/Haminess of Email Content [1]
 - ✓ Spamminess(Word) = Number of occurrences of word in Spam emails / Total Occurrences of word in Emails
 - ✓ Spamminess(Message) = Product of Spamminess(Words) in the Email
- Spaminess/Haminess of Top Spam/Ham Words
 - Spaminess & Haminess of extreme K words in terms of spaminess/haminess considered.

Feature Engineering(2)

- Spaminess of Top K Spam Words in Emails
 - Spaminess of extreme K words in terms of spaminess/haminess considered.
- Ratio of Spam words
 - ✓ Ratio of Spam words to total words

Static Rules

- Rule 1
 - ✓ SpamAssassin Classification in Email Subject.
- Rule 2
 - ✓ Presence of PGP Signature in the Email Body.
- ► Rule 3
 - ✓ Date of Email in extreme future/past.
- Rule 4
 - Presence of Sender information.
- Rule 5
 - ✓ Too many capitalized words in the Email Body.

Models

- We tried different types of Binary Classification Models to fit our data
 - Naive Bayes
 - K Nearest Neighbors (kNN)
 - Random Forests (RF)
 - Adaboost
 - Vowpal Wabbit (VW)

Naive Bayes

- Classification Criteria
 - √ Spaminess > Haminess
 - √ Top K Spam/Ham
 - √ Top K Spam > Threshold

Naive Bayes(2)

Random Forests

- Email fields used as feature vector
 - ✓ Subject
 - Body
 - Combined (Subject and Body)
 - ✓ All features (Combined + Special words, capital letter words & PGP) + Spaminess > Haminess metric
 - ✓ All features + Ratio of Spam words metric
 - ✓ All features + Ratio of Spam words metric + Static Rules
 - ✓ All features + Top K Spam > Threshold metric

Random Forests

Spam Detection

The Outliers - Vishal Bhalla & Nithish Raghunandanan

Adaboost

Vowpal Wabbit

- Fast, efficient library for Online Machine Learning.
- Program developed originally at Yahoo! Research, and currently at Microsoft Research [2].
- Adaptive Learning with minimization of loss.
- Features
 - ✓ Email Subjects
 - ✓ Email Body
 - √ Email Subjects + Body
 - Email as a string with headers

Vowpal Wabbit(2)

Evaluation of the Models

Criteria

Classification Accuracy on Stratified K-Fold Cross Validation with a split of

Features used from Email

Kaggle Results

Conclusion

- The best results were observed for the classification by Vowpal Wabbit.
- Adding all information as features for the classifier helps.
- Naive Bayes depends on the calculation of Spamminess/ Haminess parameters.
- Not all static rules are important!
- Rules 1 [SpamAssasinator], Rule 2 [PGP Signature] & Rule 3 [Date] were the most useful.

Key Takeaways

- Vowpal Wabbit is useful in dealing with raw Strings & is extremely fast.
- Better Metric for computing Spamminess or Spammicity of words.

References

▶ [1] Metric for computing Spamminess or Spammicity of words Awad, W. A., and S. M. ELseuofi. "Machine Learning methods for E-mail Classification." International Journal of Computer Applications (0975–8887) 16.1 (2011).

[2] Vowpal Wabbit

Langford, John, L. Li, and A. Strehl. "Vowpal wabbit." URL https://github.com/JohnLangford/vowpal_wabbit/wiki (2011).

Questions?

Thank You!