This listing of claims will replace all prior versions and listings of claims in the application.

## Listing of Claims

1. (Previously Presented) An acylated indanyl amine according to the general formula (I) in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof

wherein

R<sup>1</sup> and R<sup>4</sup> are independently from each other selected from the group consisting of:

H:

unsubstituted and at least monosubstituted  $C_1$ - $C_{10}$ -alkyl,  $C_2$ - $C_{10}$ -alkenyl and  $C_2$ - $C_{10}$ -alkynyl, the substituents of which are selected from the group consisting of F, OH,  $C_1$ - $C_8$ -alkoxy,  $(C_1$ - $C_8$ -alkyl)mercapto, CN, COOR<sup>6</sup>, CONR<sup>7</sup>R<sup>8</sup>, and unsubstituted and at least monosubstituted phenyl, the substituents of which are selected from the group consisting of halogens, pseudohalogens,  $C_1$ - $C_3$ -alkyl,  $C_1$ - $C_3$ -alkoxy and  $CF_3$ ;

unsubstituted and at least monosubstituted phenyl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy and CF<sub>3</sub>;

R<sup>9</sup>CO; CONR<sup>10</sup>R<sup>11</sup>; COOR<sup>12</sup>; CF<sub>3</sub>; halogens; pseudohalogens; NR<sup>13</sup>R<sup>14</sup>; OR<sup>15</sup>; S(O)<sub>m</sub>R<sup>16</sup>; SO<sub>2</sub>NR<sup>17</sup>R<sup>18</sup>; and NO<sub>2</sub>;

R<sup>2</sup> and R<sup>3</sup> are independently from each other selected from the group consisting of:

H:

halogens;

pseudohalogens;

unsubstituted and at least monosubstituted  $C_1$ - $C_{10}$ -alkyl the substituents of which are selected from the group consisting of OH and phenyl;

OH;

 $C_1$ - $C_{10}$ -alkoxy;

phenoxy;

 $S(O)_{m}R^{19};$ 

CF<sub>3</sub>:

CN;

NO<sub>2</sub>:

(C<sub>1</sub>-C<sub>10</sub>-alkyl)amino;

di(C<sub>1</sub>-C<sub>10</sub>-alkyl)amino;

(C<sub>1</sub>-C<sub>6</sub>-alkyl)-CONH-;

unsubstituted and at least monosubstituted phenyl-CONH- and phenyl-SO<sub>2</sub>-O-, the substituents of which are selected from the group consisting of halogens, pseudohalogens, CH<sub>3</sub> and methoxy;

```
(C_1-C_6-alkyl)SO_2-O_-;
```

unsubstituted and at least monosubstituted ( $C_1$ - $C_6$ -alkyl)CO, the substituents of which are selected from the group consisting of F and di( $C_1$ - $C_3$ -alkyl)amino;

and phenyl-CO, the phenyl part of which can be substituted by one or more substituents from the group consisting of C<sub>1</sub>-C<sub>3</sub>-alkyl, halogens and methoxy;

A is selected from the group consisting of CH<sub>2</sub>, CHOH and CH-(C<sub>1</sub>-C<sub>3</sub>-alkyl);

B is selected from the group consisting of CH<sub>2</sub> and CH-(C<sub>1</sub>-C<sub>3</sub>-alkyl);

R<sup>5</sup> is a benzo[1,3] dioxole group optionally substituted with one or more substituents selected from the group consisting of:

halogens;

pseudohalogens;

NH<sub>2</sub>;

unsubstituted and at least monosubstituted  $C_1$ - $C_{10}$ -alkyl,  $C_2$ - $C_{10}$ -alkenyl,  $C_2$ - $C_{10}$ -alkynyl,  $C_1$ - $C_{10}$ -alkoxy,  $(C_1$ - $C_{10}$ -alkyl)amino, and di $(C_1$ - $C_{10}$ -alkyl)amino, the substituents of which are selected from the group consisting of F, OH,  $C_1$ - $C_8$ -alkoxy, aryloxy,  $(C_1$ - $C_8$ -alkyl)mercapto, NH<sub>2</sub>,  $(C_1$ - $C_8$ -alkyl)amino, and di $(C_1$ - $C_8$ -alkyl)amino;  $C_3$ - $C_5$ -alkandiyl;

```
phenyl;
aryl-substituted C1-C4-alkyl;
CF<sub>3</sub>;
NO<sub>2</sub>;
OH;
phenoxy;
benzyloxy;
(C_1-C_{10}-alkyl)COO;
S(O)_m R^{20};
SH;
phenylamino;
benzylamino;
(C<sub>1</sub>-C<sub>10</sub>-alkyl)-CONH-,
(C_1-C_{10}-alkyl)-CON(C_1-C_4-alkyl)-;
phenyl-CONH-;
phenyl-CON(C_1-C_4-alkyl)-;
(C_1-C_{10}-alkyl)-CO;
phenyl-CO;
CF<sub>3</sub>-CO;
-OCH<sub>2</sub>O-;
-OCF<sub>2</sub>O-;
-OCH<sub>2</sub>CH<sub>2</sub>O-;
-CH<sub>2</sub>CH<sub>2</sub>O-;
COOR<sup>21</sup>:
CONR<sup>22</sup>R<sup>23</sup>;
CNH(NH<sub>2</sub>);
SO2NR24R25;
R<sup>26</sup>SO<sub>2</sub>NH-;
R^{27}SO_2N(C_1-C_6-alkyl)-;
```

and wherein all aryl, phenyl, aryl-containing, and phenyl-containing groups, which are optionally present in the said substituents of the benzo[1,3]dioxole group can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens,  $C_1$ - $C_3$ -alkyl, OH,  $C_1$ - $C_3$ -alkoxy, and  $CF_3$ ;

R<sup>6</sup> is selected from the group consisting of:

H;

 $C_1$ - $C_{10}$ -alkyl, which can be substituted by one or more substituents selected from the group consisting of F,  $C_1$ - $C_8$ -alkoxy, and di( $C_1$ - $C_8$ -alkyl)amino;

4 of 11

aryl- $(C_1-C_4$ -alkyl) optionally substituted by one or more substituents selected from the group consisting of halogens,  $C_1-C_4$ -alkoxy, and di $(C_1-C_6$ -alkyl)amino;

R<sup>7</sup> is selected from the group consisting of:

H.

 $C_1$ - $C_{10}$ -alkyl which can be substituted by one or more substituents selected from the group consisting of F,  $C_1$ - $C_8$ -alkoxy, di( $C_1$ - $C_8$ -alkyl)amino and phenyl;

phenyl; and indanyl;

and wherein each of the aforementioned aromatic groups can be unsubstituted or carry one or more substituents from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy and CF<sub>3</sub>;

R<sup>8</sup> is H or C<sub>1</sub>-C<sub>10</sub>-alkyl;

R<sup>9</sup> is selected from the group consisting of:

 $C_1$ - $C_{10}$ -alkyl which can be unsubstituted or carry one or more substituents from the group consisting of: F,  $(C_1$ - $C_4)$ -alkoxy, di $(C_1$ - $C_3$ -alkyl)amino;

and unsubstituted and at least monosubstituted phenyl, the substituents of which are selected from the group consisting of C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy, halogens, pseudohalogens, and CF<sub>3</sub>;

 $R^{10}$  independently has the same meaning as  $R^7$ ;

 $R^{11}$  independently has the same meaning as  $R^{8}$ ;

R<sup>12</sup> independently has the same meaning as R<sup>6</sup>;

R<sup>13</sup> is selected from the group consisting of:

H;

C1-C6-alkyl;

unsubstituted and substituted phenyl, benzyl,  $(C_1-C_6-alkyl)-CO$ , and phenyl-CO, the substituents of which are selected from the group consisting of halogens, pseudohalogens,  $C_1-C_3-alkyl$ ,  $C_1-C_3-alkoxy$ , and  $CF_3$ ,

and wherein one or more of these substituents can be present;

R<sup>14</sup> independently has the same meaning as R<sup>13</sup>;

R<sup>15</sup> is selected from the group consisting of:

H:

C<sub>1</sub>-C<sub>10</sub>-alkyl;

 $(C_1-C_3-alkoxy)-C_1-C_3-alkyl;$ 

and substituted and unsubstituted benzyl, and phenyl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy, and CF<sub>3</sub>, and wherein one or more of these substituents can be present;

R<sup>16</sup> is selected from the group consisting of:

 $C_1$ - $C_{10}$ -alkyl which can be substituted by one or more substituents selected from the group consisting of F, OH,  $C_1$ - $C_8$ -alkoxy, aryloxy,  $(C_1$ - $C_8$ -alkyl)mercapto,  $(C_1$ - $C_8$ -alkyl)amino and di $(C_1$ - $C_8$ -alkyl)amino;

CF<sub>3</sub>;

and substituted and unsubstituted phenyl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy and CF<sub>3</sub>, and wherein one or more of these substitutents can be present;

R<sup>17</sup> independently has the same meaning as R<sup>7</sup>;

R<sup>18</sup> independently has the same meaning as R<sup>8</sup>;

R<sup>19</sup> independently has the same meaning as R<sup>16</sup>;

R<sup>20</sup> independently has the same meaning as R<sup>16</sup>;

R<sup>21</sup> independently has the same meaning as R<sup>6</sup>;

R<sup>22</sup> independently has the same meaning as R<sup>7</sup>;

R<sup>23</sup> independently has the same meaning as R<sup>8</sup>;

 $R^{24}$  independently has the same meaning as  $R^7$ ;

 $R^{25}$  independently has the same meaning as  $R^{8}$ ;

R<sup>26</sup> independently has the same meaning as R<sup>16</sup>;

 $R^{27}$  independently has the same meaning as  $R^{16}$ ;

aryl is phenyl, naphth-1-yl or naphth-2-yl; and m is 0, 1 or 2.

2. (Currently Amended) An acylated indanyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I):

R<sup>1</sup> is selected from the group consisting of: H; C<sub>1</sub>-C<sub>4</sub>-alkyl; C<sub>1</sub>-C<sub>4</sub>-alkoxy; CF<sub>2</sub>; halogens; pseudohalogens; (C<sub>1</sub>-C<sub>4</sub>-alkyl)-S(O)<sub>m</sub>-; and unsubstituted and at least monosubstituted phenyl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy, and CF<sub>3</sub>;

 $R^2$  and  $R^3$  are independently from each other selected from the group consisting of: H; halogens; pseudohalogens; and  $C_1$ - $C_3$ -alkyl;

R<sup>4</sup> independently has the same meaning as R<sup>1</sup>;

A is selected from the group consisting of CH2 and CHOH;

B is selected from the group consisting of CH2 and CH-CH3;

R<sup>5</sup> is a benzo[1,3] dioxole group optionally substituted with one or more substituents selected from the group consisting of: halogens; CN; NH2; unsubstituted and at least monosubstituted C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-alkoxy, (C1-C8alkyl)amino, and di(C1-C8-alkyl)amino, the substituents of which are selected from the group consisting of F, C1-C6-alkoxy, phenoxy, (C1-C6-alkyl)mercapto, NH2, (C1-C6-alkyl)amino, and di(C1-C6-alkyl)amino; C3-C5-alkandiyl; phenyl; phenyl-substituted C1-C2-alkyl; CF3; OH; phenoxy; benzyloxy;  $(C_1-C_6-alkyl)COO$ ;  $S(O)_m(C_1-C_6)-alkyl$ ;  $S(O)_m-phenyl$ ; SH; phenylamino; benzylamino; (C1-C6-alkyl)-CONH-; (C1-C6-alkyl)-CON(C1-C4-alkyl)-; phenyl-CONH-; phenyl-CON(C<sub>1</sub>-C<sub>4</sub>-alkyl)-; (C<sub>1</sub>-C<sub>6</sub>-alkyl)-CO; phenyl-CO; CF<sub>3</sub>-CO; -OCH<sub>2</sub>O-; - $OCF_2O$ -;  $-OCH_2CH_2O$ -,  $-CH_2CH_2O$ -;  $COO(C_1$ - $C_6$ -alkyl);  $-CONH_2$ ;  $-CONH(C_1$ - $C_6$ -alkyl);  $-CONH(C_1$ - $C_6$ - $C_6$ -alkyl);  $-CONH(C_1$ - $C_6$  $CON(di(C_1-C_6-alkyl)); CNH(NH_2); -SO_2NH_2; -SO_2NH(C_1-C_6-alkyl); -SO_2NH(phenyl); -S$  $SO_2N(di(C_1-C_6-alkyl)); (C_1-C_6-alkyl)SO_2NH-; (C_1-C_6-alkyl)SO_2N(C_1-C_6-alkyl)-; phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phe$ SO<sub>2</sub>NH-; and phenyl-SO<sub>2</sub>N(C<sub>1</sub>-C<sub>6</sub>-alkyl)-; and wherein all phenyl and phenyl-containing groups, which are optionally present in the said substituents of the benzo[1,3] dioxole group; can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C1-C3-alkyl, OH, C1-C3-alkoxy, and CF3; and

m is 0 or 2.

3. (Currently Amended) An acylated indanyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I):

R1 is H, halogen or C1-C4-alkyl;

R<sup>2</sup> and R<sup>3</sup> are each H;

R4 independently has the same meaning as R1;

A is CH<sub>2</sub>;

B is CH2;

R<sup>5</sup> is a benzo[1,3] dioxole group optionally substituted with one or more substituents selected from the group consisting of: halogens, CN; NH<sub>2</sub>; unsubstituted and at least monosubstituted C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>1</sub>-C<sub>3</sub>-alkoxy, (C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, and di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, the substituents of which are selected from the group consisting of F, C<sub>1</sub>-C<sub>3</sub>-alkoxy, (C<sub>1</sub>-C<sub>3</sub>-alkyl)mercapto, and NH<sub>2</sub>; C<sub>3</sub>-C<sub>5</sub>-alkandiyl; phenyl; phenyl-substituted C<sub>1</sub>-C<sub>2</sub>-alkyl; CF<sub>3</sub>; OH; (C<sub>1</sub>-C<sub>4</sub>-alkyl)COO; S(O)<sub>m</sub> (C<sub>1</sub>-C<sub>4</sub>)-alkyl; (C<sub>1</sub>-C<sub>4</sub>-alkyl)-CONH-; (C<sub>1</sub>-C<sub>4</sub>-alkyl)-CON(C<sub>1</sub>-C<sub>4</sub>-alkyl)-; (C<sub>1</sub>-C<sub>4</sub>-alkyl)-CO; phenyl-CO; CF<sub>3</sub>-CO; -OCH<sub>2</sub>O-; -OCF<sub>2</sub>O-; -OCH<sub>2</sub>CH<sub>2</sub>O-; -CH<sub>2</sub>CH<sub>2</sub>O-; COO(C<sub>1</sub>-C<sub>6</sub>-alkyl); -CONH<sub>2</sub>; -CONH(C<sub>1</sub>-C<sub>4</sub>-alkyl); -CON(di(C<sub>1</sub>-C<sub>4</sub>-alkyl)); CNH(NH<sub>2</sub>); -SO<sub>2</sub>NH<sub>2</sub>; -SO<sub>2</sub>NH(C<sub>1</sub>-C<sub>4</sub>-alkyl); -SO<sub>2</sub>NH(phenyl); -SO<sub>2</sub>N(di(C<sub>1</sub>-C<sub>4</sub>-alkyl)); (C<sub>1</sub>-C<sub>4</sub>-alkyl)SO<sub>2</sub>NH-; and (C<sub>1</sub>-C<sub>4</sub>-alkyl)SO<sub>2</sub>N(C<sub>1</sub>-C<sub>4</sub>-alkyl)-; and wherein all phenyl and phenyl-containing groups, which are optionally present in the said substituents of the benzo[1,3] dioxole group; can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, OH, C<sub>1</sub>-C<sub>3</sub>-alkoxy, and CF<sub>3</sub>; and

m is 0 or 2.

4. (Currently Amended) An acylated indanyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I)

R<sup>1</sup> is H, halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;

R<sup>2</sup> and R<sup>3</sup> are each H;

R<sup>4</sup> independently has the same meaning as R<sup>1</sup>;

A and B are each CH2;

R<sup>5</sup> is benzo[1,3] dioxole group optionally substituted with one or more substituents selected from the group consisting of: F; Cl; Br; C<sub>1</sub>-C<sub>3</sub>-alkyl; C<sub>1</sub>-C<sub>3</sub>-alkoxymethyl; 2-amino-

- 3,3,3-trifluoro-propyl-; CF<sub>3</sub>; C<sub>3</sub>-C<sub>5</sub>-alkandiyl; phenyl; benzyl; OH; C<sub>1</sub>-C<sub>3</sub>-alkoxy; phenoxy; trifluoromethoxy; 2,2,2-trifluoroethoxy; (C<sub>1</sub>-C<sub>4</sub>-alkyl)COO; (C<sub>1</sub>-C<sub>3</sub>-alkyl)mercapto; phenylmercapto; (C<sub>1</sub>-C<sub>3</sub>-alkyl)sulfonyl; phenylsulfonyl; NH<sub>2</sub>; (C<sub>1</sub>-C<sub>4</sub>-alkyl)amino; di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino; (C<sub>1</sub>-C<sub>3</sub>-alkyl)-CONH-; (C<sub>1</sub>-C<sub>3</sub>-alkyl)-SO<sub>2</sub>NH-; (C<sub>1</sub>-C<sub>3</sub>-alkyl)-CO; phenyl-CO; -OCH<sub>2</sub>O-; -OCF<sub>2</sub>O-; -CH<sub>2</sub>CH<sub>2</sub>O-; COO(C<sub>1</sub>-C<sub>4</sub>-alkyl); -CONH<sub>2</sub>; -CONH(C<sub>1</sub>-C<sub>4</sub>-alkyl); -CON(di(C<sub>1</sub>-C<sub>4</sub>-alkyl)); CN; -SO<sub>2</sub>NH<sub>2</sub>; -SO<sub>2</sub>NH(C<sub>1</sub>-C<sub>4</sub>-alkyl); and -SO<sub>2</sub>N(di(C<sub>1</sub>-C<sub>4</sub>-alkyl)); and wherein all phenyl and phenyl-containing groups which are optionally present in said benzo[1,3] dioxole group can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C<sub>1</sub>-C<sub>3</sub>-alkyl, OH, C<sub>1</sub>-C<sub>3</sub>-alkoxy, and CF<sub>3</sub>.
- 5. (Previously Presented) An acylated indanyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I):

R<sup>1</sup> is H, halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl;

 $R^2$ ,  $R^3$  and  $R^4$  are each H;

A and B are each CH2;

R<sup>5</sup> is selected from the group consisting of: benzo[1,3]dioxol-5-yl, and 2,2-difluorobenzo[1,3]dioxol-5-yl.

6. (Previously Presented) An acylated indanyl amine or a pharmaceutically acceptable salt thereof according to claim 1, which is 2,2-difluoro-benzo[1,3]dioxole-5-carboxylic acid indan-2-ylamide.

## 7-20. (Canceled)

- 21. (Original) A pharmaceutical preparation comprising an effective dose of at least one compound of the formula (I) as defined in claim 1 in any of its stereoisomeric forms or a mixture thereof in any ratio and/or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 22. (Original) A pharmaceutical preparation according to claim 21, which pharmaceutical preparation is in the form of a pill, tablet, lacquered tablet, sugar-coated tablet, granule, hard or soft gelatin capsule, aqueous, alcoholic or oily solution, syrup, emulsion or

suspension, suppository, solution for injection or infusion, ointment, tincture, spray, transdermal therapeutic systems, nasal spray, aerosol mixture, microcapsule, implant or rod.

## 23. (Canceled)

- 24. (Previously Presented) The acylated indanyl amine according to claim 1 selected from the group consisting of benzo[1,3]dioxol-5-carboxylic-acid (5-nitro-indan-2-yl)-amide, benzo[1,3]dioxol-5-carboxylic-acid (6-chlor-1-hydroxy-indan-2-yl)-amide, 2,2-difluoro-benzo[1,3]dioxol-5-carboxylic acid indan-2-ylamide, and benzo[1,3]dioxol-5-carboxylic acid indan 2-yl-amide.
- 25. (Previously Presented) The acylated indanyl amine according to claim 24, which is 2,2-difluoro-benzo[1,3]dioxol-5-carboxylic acid indan-2-ylamide.
- 26. (Previously Presented) A pharmaceutical preparation comprising an effective dose of at least one compound of claim 24 and a pharmaceutically acceptable carrier.
- 27. (Previously Presented) A pharmaceutical preparation according to claim 26, which pharmaceutical preparation is in the form of a pill, tablet, lacquered tablet, sugar-coated tablet, granule, hard or soft gelatin capsule, aqueous, alcoholic or oily solution, syrup, emulsion or suspension, suppository, solution for injection or infusion, ointment, tincture, spray, transdermal therapeutic systems, nasal spray, aerosol mixture, microcapsule, implant or rod.