

Introduction to NLP

Bayes' Theorem

Bayes' Theorem

- Formula for joint probability
 - -p(A,B) = p(B|A)p(A)
 - p(A,B) = p(A|B)p(B)
- Therefore
 - -p(B|A)=p(A|B)p(B)/p(A)
- Bayes' theorem is used to calculate P(A|B) given P(B|A)

- Diagnostic test
- Test accuracy
 - P(positive | \neg disease) = 0.05 false positive
 - P(negative | disease) = 0.05 false negative
 - so p(positive | disease) = 1-0.05 = 0.95

Diagnostic test with errors

		A=TEST	
P(A	B)	Positive	Negative
B=DISEASE	Yes	0.95	0.05
	No	0.05	0.95

- What is p(disease | positive)?
 - P(disease|positive) = P(positive|disease)*P(disease)/P(positive)
 - P(¬disease|positive) = P(positive| ¬disease)*P(¬disease)/
 P(positive)
 - P(disease|positive)/P(¬disease|positive) = ?
- We don't really care about p(positive)
 - as long as it is not zero, we can divide by it on both sides

- P(disease|positive)/P(¬disease|positive) =
 (P(positive|disease) x P(disease))/(P(positive|¬disease) x
 P(¬disease))
- Suppose P(disease) = 0.001
 so P(¬disease) = 0.999
- P(disease|positive)/P(\neg disease|positive) = (0.95 x 0.001)/(0.05 x 0.999) = 0.019
- P(disease|positive)+P(¬disease|positive) = 1
- P(disease|positive) ≈ 0.02
- P(disease) is called the prior probability
- P(disease|positive) is called the posterior probability
- In this example the posterior is 20 times larger than the prior

