

Funktionale Sicherheit und

Inhalt

Funktionale Sicherheit bei Fahrzeugen

- Simulative Anforderungen der ISO26262
- Optimaler Einsatz von Simulationsmodellen

Zusammenfassung

Funktionale Sicherheit bei Fahrzeugen Zielsetzung der ISO 26262

- StandardisiertesVorgehen bei
 - der Entwicklung
 - der Produktion und
 - dem Betrieb
- Dadurch werden
 - Systematische Fehler vermieden,
 - Zufällige Fehler minimiert und
 - das Restrisiko minimiert.

Betrachtung des gesamten Lebenszyklus

sichere Funktion

Funktionale Sicherheit bei Fahrzeugen Maßnahmen

Einfluss Analyse SW Sicherheitsanforderungen Sicherheits plan SW Architektur Design Gefahren und Risikoanalyse SW Design und Implementierung => ASIL Level **SW Integration und Test** 1. Vocabulary Sicherheitskonzept Verifikation 2. Management of functional s 4. Product development at the system level Sicherheitsanforderungen 3. Concept phase **Technisches** 5. Product development 6. Product develo Sicherheitskonzept at the hardware level at the software lev *dware- Software stelle 8. Supporting processes HW Sicherheitsanforderungen riented and safety-oriented analyses reation und Test **HW Design** Evaluierung der HS Metriken ntung Evaluierung der Produktionsplanung Sicherheitsverletzungen durch Sicherheits-Wartungsplanung zufällige Fehler Hochschule Ulm **HW Integration und Test**

Funktionale Sicherheit bei Fahrzeugen Vorgehen

Funktionale Sicherheit bei Fahrzeugen Vorgehen

- Einteilung der Funktion in Klassen
 - Schadensausmaß
 - Eintrittswahrscheinlichkeit
 - Kontrollierbarkeit

	Serverity class			
	SO SO	S1	S2	S3
Description	No injuries	Light and moderate injuries	Serve and life- threatening injuries (survival probable)	Life-threatening injuries (survival uncertain) fatal injuries

	Probability class				
	EO	E1	E2	E3	E4
Description	Incredible	Very low probability	Low probability	Medium probability	High probability

	Controlability class			
	CO	C1	C2	C3
Description	Controllable in General	Simply Controllable	Normally Controllable	Difficult to control or uncontrollable

Funktionale Sicherheit bei Fahrzeugen Vorgehen

Ermittlung des ASIL Levels

Serverity class	Probability class	Controllability class			
		C1	C2	C3	
S1	E1	QM	QM	QM	
	E2	QM	QM	QM	
	E3	QM	QM	А	
	E4	QM	А	В	
S2	E1	QM	QM	QM	
	E2	QM	QM	А	
	E3	QM	А	В	
	E4	А	В	С	
S3	E1	QM	QM	Α	
	E2	QM	A	В	
	E3	А	В	С	
	E4	В	С	D	

Simulative Anforderungen der ISO26262 Systemebene

7.4.8	Verification of system design				
	The system design shall be verified for compliance and		ASIL		
7.4.8.1	completeness with regard to the technical safety concept using the verification methods listed in Table 3.	Α	В	С	D
	1a System design inspection	+	++	++	++
	1b System design walkthrough	++	+	0	0
	2a Simulation	+	+	++	++
	2b System prototyping and vehicle tests	+	+	++	++
	3 System design analyses see Table 1)		Inductive and/or deductive analysis		

- ++ highly recomended
- + recomended
- o non recommendation for or against

Simulation ist für ASIL Level A und B empfohlen und für C und D sehr empfohlen Alternative ist 2b => teuer und zeitaufwändig

Simulative Anforderungen der ISO26262 Hard- Softwareebene

- Hardwareverifikation durch Simulation
 - Level B-D empfohlen
 - Alternative zum HW Prototyp
 - Vorteile bei der Fehlerinjektion
- Softwareverifikation durch Simulation
 - Alternative zu Walk-through, Inspection, Prototype, formal verif., Control flow, Data flow analysis
- Verifikation der Sicherheitsanforderungen
 - HiL Simulation

Simulative Anforderungen der ISO26262 HW SW Integration

"Back to back" Test ASIL A und B empfohlen, ASIL C und D sehr empfohlen

 Analyse des Zeitverhaltens der Sicherheitsmechanismen

Optimaler Einsatz von Simulationsmodellen Simulatorauswahl

Für umfassende Analysen und Test

Multi Domain Problem

- Multidomain Simulation
 - Multidomain Simulator
 - Simulatorkopplung
 - Modellaustausch z.B. FMI

Optimaler Einsatz von Simulationsmodellen Modellaufbau

- System / Modellarchitektur
 - klar strukturiert
 - beherrschbar

- Begrenzte Anzahl von Schnittstellen
- Messbare Zustandsgrößen

Optimaler Einsatz von Simulationsmodellen Modellaufbau

Simulationsmodell zur Verifikation des Sicherheitskonzeptes
 Durch Fehlerinjektion
 Verifikation der Fehlertoleranzzeit

Zusammenfassung

- Die Anwendung der Norm ISO 26262 Funktionale Sicherheit erfordert weit mehr als z.B. CMMI oder SPICE Anforderungen
- Auf Basis der Gefahren- und Risikobewertung erfolgt eine Einstufung in einen "Automotive Savety Integrity Level" (ASIL) von A bis D (höchster)
- Die Norm fordert Maßnahmen und Prozessschritte anhand der ASIL Einstufung
- Simulationsmethoden bieten eine gute Alternative zu teuren Prototypaufbauten

Vielen Dank für die Aufmerksamkeit

Prof. Dr. Walter Commerell
HS-Ulm
Institut Energie- und Antriebstechnik
Institut Fahrzeugsystemtechnik

email: Commerell@hs-ulm.de

Simulative Anforderungen der ISO26262 HW SW Integration

Optimaler Einsatz von Simulationsmodellen Simulatorauswahl

Optimaler Einsatz von Simulationsmodellen

HW Fault Metric Single Point Fault Metric

Single Point Fault Metric

HW Fault Metric Latent Fault Metric

Optimaler Einsatz von Simulationsmodellen

