NCSU Python Exploratory Data Analysis

Proximity Measures: Similarity, Dissimilarity, Distance

- Range: [-1; 1] or [0; 1]
- Highly similar: ~1
- **Binary: Jaccard**
- **Binary: Simple Matching**
- Continuous: Cosine
- Continuous: Pearson cor.
- Ordinal: Spearman cor.

- Range: 1-similarity
- Closeness: dissim. ~ 0
- Closeness: dist. ~ 0
- Attributes: Scaled

[0; Infinity]

- Continuous: Euclidean
- Continuous: Minkowski
- **Continuous: Mahalanobis**
- **Categorical: Hamming**

- Similarity vs. Dissimilarity vs. Distance
- Similarity: Cosine, Jaccard, Pearson, Spearman
- Distance: Euclidean, Minkowski, Hamming, Mahalanobis
- **Proximity for mixed attributes**

Prof. Nagiza F. Samatova

samatova@csc.ncsu.edu

Department of Computer Science North Carolina State University

Proximity Measures

- Range: [-1; 1] or [0; 1]
- Highly similar: ~1
- Binary: Jaccard
- Binary: Simple Matching
- Continuous: Cosine
- Continuous: Pearson cor.
- Ordinal: Spearman cor.

- Range: 1-similarity
- Closeness: dissim. ~ 0
- [0; Infinity]
- Closeness: dist. ~ 0
- Attributes: Scaled
- Continuous: Euclidean
- Continuous: Minkowski
- Continuous: Mahalanobis
- Categorical: Hamming

Proximity and Clustering

Task	Definition	Example question
Proximity matching	Attempts to identify <i>similar</i> individuals based on data known about them.	What are the companies that are similar to IBM's best business customers?
Clustering	Attempts to <i>group</i> individuals in a population together <i>by</i> their <i>proximity</i> , but <i>not driven by any specific purpose</i> .	Do our customers form natural groups or segments?

Proximity is at the Core of Clustering

- Given a set of data objects, each having a set of attributes, and a proximity measure among them, find clusters such that
 - Data points in one cluster are "more similar" to one another.
 - Data points in separate clusters are "less similar" to one another.
- Proximity Measures:
 - Euclidean distance if attributes are continuous.
 - Cosine similarity.

INTRA-cluster distances are minimized

INTER-cluster distances are maximized

Euclidean Distance-based Clustering in 3-D space

Proximity is at the Core of Recommendation Systems

Item-Based Collaborative Filtering

Item_Rank = Average Weighted Sum of Item-Item Similarities

Proximity Depends on Data Types

Features	Description	Example	Statistical Operation	Discrete vs. Continuous
Nominal	values are different names: provide enough info to distinguish one object from another $(=, \neq)$	zip codes, employee ID, eye colors, sex:{male, female}	mode , contingency, entropy, χ^2 -test	discrete
Ordinal	values provide enough info to order objects (<, >)	grades (A, A-, B, B+) size (small, medium, large)	median, percentiles, rank correlation, run tests, sign tests	discrete
Interval	the differences between values are meaningful: allow ordering and subtraction but not other arithmetic operations	calendar dates, time, temperature in Celsius	median, mean, standard deviation, Pearson's correlation, t- and F-tests	both
Ratio	both differences and ratios are meaningful (*, /)	monetary quantities, counts, age, length, temperature	mean, median, geometric mean, harmonic mean, percent variation	continuous

Proximity depends on Discrete vs. Continuous Features

• Discrete:

- Have only a finite or countably infinite set of values
- Often represented as integer variables
- Examples: zip codes, set of words in document collection, sex
- Categorical:
 - Binary: two values: sex:{F, M})
 - Polytomous: a finite set of values:
 - Ordinal: can be compared (<,>): poor, good, excellent
 - Nominal: cannot be compared: zip codes, country names
 - Count: countably infinite set: number of traffic violations

Continuous:

- Have real numbers as values
- Often represented as floating point variables
- Examples: temperature, height, weight

Proximity: Similarity and Dissimilarity

Similarity

- Numerical measure of how <u>alike</u> two data objects are
- Is higher when objects are more alike.
- Often falls in the range [0,1]:
- Examples: Cosine, Jaccard, Tanimoto,

Dissimilarity

- Numerical measure of how <u>different</u> two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data records

Features	Description	Dissimilarity	Similarity
Nominal	values are different names: provide enough info to distinguish one object from another $(=, \neq)$	$d = \begin{cases} 0, p = q \\ 1, p \neq q \end{cases}$	$s = egin{cases} 1, oldsymbol{p} = oldsymbol{q} \ 0, oldsymbol{p} eq oldsymbol{q} \end{cases}$
Ordinal*	values provide enough info to order objects (<, >)	$d=\frac{ p-q }{n-1}$	$s=1-\frac{ p-q }{n-1}$
Interval or Ratio	Interval: the differences between values are meaningful: allow ordering and subtraction but not other arithmetic operations Ratio: both differences and ratios are meaningful (*, /)	d = p - q	$s = -d$ $s = \frac{1}{1+d}$ $s = 1 - \frac{d-min_d}{max_d - min_d}$

^{*} values mapped to integers 0, 1, ..., n-1, where n is the number of unique values

Common Properties of a Similarity

• Similarities, also have some well-known properties:

- sim(p, q) = 1 (or maximum similarity) only if p = q
- sim(p, q) = sim(q, p) for all p and q (Symmetry)

where sim(p, q) is the similarity between points (data objects), p and q

Similarity for Binary Attributes

- Suppose p and q have only binary attributes
- Compute similarities using the following quantities
 - M01 = the number of attributes where p was 0 and q was 1 (0-1 Mismatch)
 - M10 = the number of attributes where p was 1 and q was 0 (1-0 Mismatch)
 - M00 = the number of attributes where p was 0 and q was 0 (0-0 Match)
 - M11 = the number of attributes where p was 1 and q was 1 (1-1 Match)
- Simple Matching and Jaccard Coefficients:

```
SMC = number of matches / number of attributes
= (M11 + M00) / (M01 + M10 + M11 + M00)
```

```
Jaccard = number of 11 matches / number of not-both-zero attributes values = (M11) / (M01 + M10 + M11)
```

Example: SMC vs. Jaccard

```
p = 1000000000
```

$$q = 0000001001$$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00})$$

= $(0+7)/(2+1+0+7) = 0.7$
Jaccard = $(M_{11})/(M_{01} + M_{10} + M_{11}) = 0/(2+1+0) = 0$

$$Jaccard(X,Y) = \frac{X \cap Y}{X \cup Y}$$

Jaccard Similarity: Binary Attributes

	U = 0	U = 1	
X = 0	а	b	a + b
X = 1	С	d	c + d
	a + c	b + d	р

Jaccard's Coefficient: d / (b + c + d) Ignores zero matches (a):

- Desirable when we do not want two records to be similar simply because a large number of characteristics are absent in both
 - Document-document similarity: matching Words used
 - User-User similarity: matching Items purchased

Non-binary Attributes: Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where:
 - indicates vector dot product and
 || d || is the length of vector d.

• Example:

$$d_1$$
 = 3 2 0 5 0 0 0 2 0 0
 d_2 = 1 0 0 0 0 0 1 0 2
 $\cos(d_1, d_2)$ = .3150

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

Correlation (Pearson Correlation)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_k = (p_k - mean(p)) / std(p)$$

$$q'_k = (q_k - mean(q)) / std(q)$$

$$correlation(p,q) = p' \bullet q'$$

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1

Proximity Measures

- Range: [-1; 1] or [0; 1]
- Highly similar: ~1
- Binary: Jaccard
- Binary: Simple Matching
- Continuous: Cosine
- Continuous: Pearson cor.
 - Ordinal: Spearman cor.

- Range: 1-similarity
- Closeness: dissim. ~ 0
- [0; Infinity]
 - Closeness: dist. ~ 0
- Attributes: Scaled
- Continuous: Euclidean
- Continuous: Minkowski
- Continuous: Mahalanobis
- Categorical: Hamming

Proximity: Distance Metric

Distance d (p, q) between two points p and q is a dissimilarity measure if it satisfies:

1. Positive definiteness:

```
d(p, q) \ge 0 for all p and q and d(p, q) = 0 only if p = q.
```

- 2. Symmetry: d(p, q) = d(q, p) for all p and q.
- 3. Triangle Inequality:

```
d(p, r) \le d(p, q) + d(q, r) for all points p, q, and r.
```

• Examples:

- Euclidean distance
- Minkowski distance
 - Manhattan (city block) distance
- Mahalanobis distance
- Hamming distance

Exercise: Is this a distance metric?

$$p = (p_1, p_2, ..., p_d) \in R^d$$
 and $q = (q_1, q_2, ..., q_d) \in R^d$

$$d(p,q) = \max_{1 \le j \le d}(p_j, q_j)$$

$$d(p,q) = \sqrt{\sum_{j=1}^{d} (p_j - q_j)^2}$$

$$d(p,q) = \max_{1 \le j \le d} (p_j - q_j)$$

$$d(p,q) = \min_{1 \le j \le d} |p_j - q_j|$$

Distance Metric

Not: Positive definite

Not: Symmetric

Not: Triangle Inequality

Distance: Euclidean, Minkowski, Mahalanobis

$$p = (p_1, p_2, ..., p_d) \in R^d$$
 and $q = (q_1, q_2, ..., q_d) \in R^d$

Euclidean

$$dist(p,q) = \sqrt{\sum_{j=1}^{d} (p_j - q_j)^2}$$

 L_2 -norm

Minkowski

$$dist_r(p,q) = \left(\sum_{j=1}^d |p_j - q_j|^r\right)^{\frac{1}{r}}$$

$$r=1$$

City-block distance Manhattan distance L_1 -norm

Mahalanobis

$$dist(p,q) = (p-q)\Sigma^{-1}(p-q)^{\mathrm{T}}$$

 Σ^{-1} : Empirical Covariance Matrix

Features that are highly correlated with other features do not contribute as much to the distance

Examples

Euclidean Distance: Continuous Attributes

Standardization is necessary, if scales differ! Ex: p = (age, salary)

Input Data Table: P

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Output Distance Matrix: D

	p1	p2	р3	p 4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Hamming Distance: Categorical Attributes

Hamming distance:

- The distance is 0 if the features are in the same category and 1, otherwise
- Measures the number of bits that are different between two binary vectors

```
HD = number of mis-matches
= M01 + M10
```

• Matching coefficient:

- 1 if the features are in the same category and 0, otherwise
- Similarity measure, inverse of Hamming distance
- Often normalized by dividing by number of features

```
SMC = number of matches / number of attributes
= (M11 + M00) / (M01 + M10 + M11 + M00)
```

Mahalanobis Distance: Continuous Attributes

- If there is correlation between some attributes/dimensions/features
- Attributes have different ranges of values

$$d(p,q) = (p-q)\Sigma^{-1}(p-q)^{T}$$

Х

- Σ is the covariance matrix of the input data points
- \sum^{-1} is the inverse matrix

Features that are highly correlated with other features do not contribute as much to the distance

For red points:

- **Euclidean distance is 14.7**
 - Mahalanobis distance is 6

-6

Example: Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Show that:

Mahal (A,B) = 5

Mahal (A,C) = 4

Proximity MIXED ATTRIBUTES

Similarity for Mixed Attributes: Gower's Similarity

- Gower's similarity measure:
 - for distance, use 1 Gower's similarity measure
- Categorical feature or attribute:
 - $s_i = 1$ if features are in the same category and 0, otherwise
- Continuous feature or attribute:

•
$$s_i = 1 - \frac{|p_i - q_i|}{range (i^{th} feature)}$$

$$GowersSim = \frac{\sum_{i=1}^{d} s_i}{d}$$

General Approach to Combining Similarities

Motivation

- Attributes are of many different types but an overall similarity is needed
- Different groups of attributes require specialized similarity optimized for this group
- Procedure to combine similarities
 - For the k^{th} attribute (or a group of attributes), compute a similarity, s_k , in the range [0,1]
 - Define an indicator variable, δ_k , for the k^{th} attribute (or groups of attributes) as follows

if the
$$k^{th}$$
 attribute is a binary asymmetric attribute and both objects have a $\delta_k = \begin{cases} \mathbf{0}, & \text{value of 0, or if one of the objects has missing values for the } k^{th} & \text{attribute} \\ \mathbf{1}, & \text{otherwise} \end{cases}$

Compute the overall similarity between the two objects using the formula:

$$sim(p,q) = \frac{\sum_{k=1}^{d} \delta_k s_k}{\sum_{k=1}^{d} \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same:
 - Use weights \mathbf{w}_{k} that are between 0 and 1 and sum to 1

Similarity:
$$sim(p,q) = \frac{\sum_{k=1}^{d} w_k \delta_k s_k}{\sum_{k=1}^{d} \delta_k}$$

Distance:
$$dist_r(p,q) = \left(\sum_{j=1}^d w_j |p_j - q_j|^r\right)^{\frac{1}{r}}$$

References

- https://docs.scipy.org/doc/scipy-0.7.x/reference/spatial.distance.html
- http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise