Rusk: Dusk genesis circuits

DUSK NETWORK

Victor Lopez <victor@dusk.network>

January 6, 2022

1. Constants

- G JubJub generator point
- G' JubJub generator, $G' \neq G$
- I JubJub identity point

2. Functions

- *H* Hash to BLS12-381
- H' Hash to BLS12-381 truncated to 249 bits
- O Merkle opening over H

3. Gadgets

$$commitment(p, v, b, s) \rightarrow p == v \cdot G + b \cdot G' \wedge v < 2^{s}$$
(1)

$$schnorr(\sigma, k \cdot G, m) \rightarrow \sigma = schnorrSign(k, m)$$
 (2)

$$\sigma := doubleSchnorrSign(s, m, r) \rightarrow c := H'(r \cdot G, r \cdot G', m), u := r - c \cdot s, \sigma = (u, r \cdot G, r \cdot G')$$
 (3)

doubleSchnorrVerify
$$(\sigma, s \cdot G, m) - > c := H'(\sigma_R, \sigma_{R'}, m), \sigma_R = \sigma_u \cdot G + c \cdot \sigma_R \wedge \sigma_{R'} = \sigma_u \cdot G' + c \cdot \sigma_{R'}$$
(4)

$$opening(\mathbf{b}, r, l) \to O(\mathbf{b}) \land (\mathbf{b_0}, \mathbf{b_{|\mathbf{b}|}}) == (l, r)$$
(5)

$$s := selectPair(x,i,(a,b),(c,d)) \rightarrow x \in \{0,1\} \land (s,i) == \begin{cases} ((a,b),(c,d)), & \text{if } x == 1. \\ ((c,d),(a,b)), & \text{if } x == 0. \end{cases}$$
 (6)

$$s := stealthAddress(r, (a, b)) \rightarrow s = H'(r \cdot a) \cdot G + b \tag{7}$$

$$\psi := encrypt(s, n, \mathbf{m}) \to \mathbf{m} == decrypt(s, n, \psi)$$
 (8)

4. Execute

4.1. Structures

- $I = (t, v, b, c, n, s, r, p, \psi, h, o, \sigma)$ Input note
 - *t* Note type
 - v Value
 - b Blinder
 - c Value commitment
 - *k* Stealth address
 - k' Stealth address alternate
 - σ Double Schnorr proof
 - r Public entropy
 - *p* Position in the notes tree
 - *n* Encryption nonce
 - ψ Encryption cipher
 - h Note hash
 - o Merkle tree path
- O = (v, b) Output note
 - v Value
 - b Blinder
- C = (v, b, c) Crossover
 - v Value
 - *b* Blinder
 - c Value commitment

4.2. Private Inputs

- (C_v, C_b)
- \mathbb{I} Set of input notes I
- O Set of input notes O

4.3. Public Inputs

- *C*_c
- A Notes tree Merkle anchor
- F Fee value
- \mathbb{N} Set of nullifiers of \mathbb{I}
- ullet V Set of value commitments of ${\mathbb O}$
- T Transaction hash

- 1. $\forall (i, n) \in \mathbb{I} \times \mathbb{N} \mid \mathbb{I} \mapsto \mathbb{N}$
 - (a) opening (i_0, A, i_h)
 - (b) $i_h == H(i_t, i_c, i_n, i_k, i_r, i_p, i_{\psi})$
 - (c) $doubleSchnorrVerify(i_{\sigma}, i_k, T)$
 - (d) $n == H(i_{k'}, i_p)$
 - (e) $commitment(i_c, i_v, i_b, 64)$
- 2. $commitment(C_c, c_v, c_b, 64)$
- 3. $\forall (o, v) \in \mathbb{O} \times \mathbb{V} \mid \mathbb{O} \mapsto \mathbb{V}$
 - (a) $commitment(v, o_v, o_b, 64)$
- 4. $\sum (i_v \in \mathbb{I}) \sum (o_v \in \mathbb{O}) C_v F = 0$

5. Send to contract transparent

5.1. Structures

- $C = (v, b, c, n, \psi)$ Crossover
 - v Value
 - *b* Blinder
 - c Value commitment
 - *n* Encryption nonce
 - ψ Encryption cipher

5.2. Private Inputs

- (C_b, C_n, C_{ψ})
- σ Schnorr signature
- A Contract address

5.3. Public Inputs

- (C_c, C_v)
- F_a Fee stealth address
- S Signed message

- 1. $commitment(C_c, C_v, C_b, 64)$
- 2. $S == H(C_c, C_n, C_{\psi}, C_v, A)$
- 3. $schnorr(\sigma, F_a, S)$

6. Send to contract obfuscated

6.1. Structures

- $C = (v, b, c, n, \psi)$ Crossover
 - v Value
 - *b* Blinder
 - c Value commitment
 - *n* Encryption nonce
 - ψ Encryption cipher
- $M = (r, v, b, c, x, p, s, a, n, \psi)$ Message
 - r Entropy
 - v Value
 - *b* Blinder
 - c Value commitment
 - *x* Flag to use public derive key
 - *p* Public derive key pair
 - *s* Secret derive key pair
 - a Stealth address
 - *n* Encryption nonce
 - ψ Encryption cipher

6.2. Private Inputs

- v value
- $(C_b, M_r, M_b, M_x, M_s)$
- σ Schnorr signature

6.3. Public Inputs

- $(C_c, C_n, C_{\psi}, M_c, M_p, M_a, M_n, M_{\psi})$
- A Contract address
- S Signed message
- F_a Fee stealth address

- 1. $commitment(C_c, v, C_b, 64)$
- 2. $commitment(M_c, v, M_b, 64)$
- 3. $(p_a, p_b) := selectPair(M_x, I, M_p, M_s)$
- $4. \ M_a == stealthAddress(M_r,(p_a,p_b))$
- 5. $M_{\psi} == encrypt(M_r \cdot p_a, M_n, [v, M_b])$
- 6. $S == H(C_c, C_n, C_{\psi}, M_c, M_n, M_{\psi}, A)$
- 7. $schnorr(\sigma, F_a, S)$

7. WITHDRAW FROM TRANSPARENT

7.1. Structures

- N = (v, b, c) Phoenix note
 - v Value
 - *b* Blinder
 - c Value commitment

7.2. Private Inputs

• *N_b*

7.3. Public Inputs

• (N_v, N_c)

7.4. Circuit

1. $commitment(N_c, N_v, N_b, 64)$

8. WITHDRAW FROM OBFUSCATED

8.1. Structures

- I = (v, b, c) Input
 - v Value
 - *b* Blinder
 - c Value commitment
- $C = (r, v, b, c, x, p, s, a, n, \psi)$ Message change
 - r Entropy
 - v Value
 - *b* Blinder
 - c Value commitment
 - *x* Flag to use public derive key
 - *p* Public derive key pair
 - *s* Secret derive key pair
 - a Stealth address
 - n Encryption nonce
 - ψ Encryption cipher
- O = (v, b, c) Output Phoenix note
 - v Value
 - *b* Blinder
 - c Value commitment

8.2. Private Inputs

• $(I_v, C_v, O_v, I_b, C_b, O_b, C_r, C_x, C_s)$

8.3. Public Inputs

• $(I_c, C_c, O_c, C_p, C_a, C_n, C_{\psi})$

- 1. $commitment(I_c, I_v, I_b, 64)$
- 2. $commitment(C_c, C_v, C_b, 64)$
- 3. $commitment(O_c, O_v, O_b, 64)$
- 4. $(p_a, p_b) := selectPair(C_x, I, C_p, C_s)$
- 5. $C_a == stealthAddress(C_r, (p_a, p_b))$
- 6. $C_{\psi} == encrypt(C_r \cdot p_a, C_n, [C_v, C_b])$
- 7. $I_v C_v O_v == 0$