Dummit&Foote Abstract Algebra section 15.4 Solutions for Selected Problems by 3 mod(8)

SungBin Park, 20150462

- 3. (a) $(\varphi^{-1}((R/I)[x_1,\ldots,x_i]) \supset R[x_1,\ldots,x_i] + I[x_1,\ldots,x_n])$: $\varphi(R[x_1,\ldots,x_i] + I[x_1,\ldots,x_n]) = \varphi(R[x_1,\ldots,x_i]) = \varphi(R[x_1,\ldots,x_i]) = (R/I)[x_1,\ldots,x_i]$ since $\varphi: rx_1^{d_1}\cdots x_i^{d_i}\mapsto \varphi(r)x_1^{d_1}\cdots x_i^{d_i}$ for $r\in R$ and d_i nonnegative integers. Therefore, $\varphi^{-1}((R/I)[x_1,\ldots,x_i])\supset R[x_1,\ldots,x_i] + I[x_1,\ldots,x_n]$. $(\varphi^{-1}((R/I)[x_1,\ldots,x_i])\subset R[x_1,\ldots,x_i] + I[x_1,\ldots,x_n])$: Let $\varphi(p)\in (R/I)[x_1,\ldots,x_i]$ for some $p\in R[x_1,\ldots,x_n]$. Then, all the terms of p having one of x_{i+1},\ldots,x_n should have coefficient in I, unless $\varphi(p)$ have nonzero terms having one of x_{i+1},\ldots,x_n , so $\varphi(p)\notin (R/I)[x_1,\ldots,x_i]$, which is contradiction. Therefore, there exists $q\in I[x_1,\ldots,x_n]$ such that $p-q\in R[x_1,\ldots,x_i]$ and $p\in R[x_1,\ldots,x_i]+I[x_1,\ldots,x_n]$.
 - (b) $(\varphi(A \cap R[x_1, \ldots, x_i]) \subset \overline{A} \cap (R/I)[x_1, \ldots, x_i])$: $\varphi(A) = \overline{A} \text{ and } \varphi(R[x_1, \ldots, x_i]) = (R/I)[x_1, \ldots, x_i], \text{ so } \varphi(A \cap R[x_1, \ldots, x_i]) \subset \overline{A} \cap (R/I)[x_1, \ldots, x_i].$ $(\varphi(A \cap R[x_1, \ldots, x_i]) \supset \overline{A} \cap (R/I)[x_1, \ldots, x_i])$: Let $\bar{p} \in \overline{A} \cap (R/I)[x_1, \ldots, x_i] \text{ since } \overline{A} \cap (R/I)[x_1, \ldots, x_i] \neq \phi$ because it contains 0. Let's write $\bar{p} = \sum_{\alpha} \bar{r}_{\alpha} x^{\alpha}$, α is multiindex, such that $\bar{r}_{\alpha} \in R/I$ and there is no terms containing x_{i+1}, \ldots, x_n since $\bar{p} \in (R/I)[x_1, \ldots, x_i]$. Take $p = \sum_{\alpha} r_{\alpha} x^{\alpha}$. Then, $\varphi(p) = \bar{p}, \ p \in \varphi^{-1}(\overline{A}) = A, \ p \in R[x_1, \ldots, x_i]$. Therefore, $p \in \varphi(A \cap R[x_1, \ldots, x_i])$ and $\varphi(A \cap R[x_1, \ldots, x_i]) \subset \overline{A} \cap (R/I)[x_1, \ldots, x_i]$.

11. I'll use proposition 42 (3) in section 15.4. Since $D = R \setminus P$ in R_P , $P \cap D = \phi$. If Q is a P-primary ideal of R, by proposition 42 (3), $c(^e(Q)) = Q$ in R_P . For the same reason, $P' \cap D = \phi$ if $P' \subset P$, and $D^{-1}P'$ is a prime in R_P . Also, $c(^e(Q)) = Q$ in R_P for P'-primary Q.

19. As R is an integral domain with $1, R \setminus \{0\}$ is a multiplicative set containing 1. Let $F = \operatorname{Frac}(R) = R_{R \setminus \{0\}}$ be a fraction field of R. Then, $\operatorname{Frac}(D^{-1}R) \simeq F$. $(D^{-1}R)$ is integral domain: if $\frac{r_1}{d_1} \frac{r_2}{d_2} = 0$, $dr_1r_2 = 0$ for some $d \in D$, but it means $r_1 = 0$ or $r_2 = 0$ and $\frac{r_1}{d_1} = 0$ or $\frac{r_2}{d_2} = 0$, which is contradiction. Therefore, we can define the fractional field fo $D^{-1}R$. Let $\Phi : F \to \operatorname{Frac}(D^{-1}R)$ by $\Phi : \frac{r_1}{r_2} \mapsto \frac{r_1}{\frac{r_2}{2}}$. It is well-defined since if $\frac{r_1}{r_2} = \frac{r_3}{r_4}$, $r_1r_4 - r_2r_4 = 0$ and it means $\frac{r_1}{\frac{r_1}{2}} = \frac{r_3}{\frac{r_1}{2}}$. Also, it is ring homomorphism since $\Phi\left(\frac{r_1}{r_2} + \frac{r_3}{r_4}\right) = \Phi\left(\frac{r_1r_4 + r_2r_3}{r_2r_4}\right) = \frac{r_1r_4 + r_2r_3}{\frac{r_2r_4}{2}} = \frac{r_1r_4 + r_2r_3}{\frac{r_2r_4}{2}} = \frac{r_1}{\frac{r_2r_4}{2}} = \frac{r_1}{r_2} + \frac{r_3}{r_4} = \Phi\left(\frac{r_1}{r_2}\right) + \Phi\left(\frac{r_3}{r_4}\right)$ and $\Phi\left(\frac{r_1}{r_2} \frac{r_3}{r_4}\right) = \frac{r_1r_3}{\frac{r_1}{2}} = \frac{r_1r_3}{\frac{r_1}{2}} = \frac{r_1}{r_2} + \frac{r_3}{r_4}$. Also, it is surjective since for any $\frac{r_1}{r_4} \in \operatorname{Frac}(D^{-1}R)$, $\Phi\left(\frac{r_1d_2}{r_2d_1}\right) = \frac{r_1d_2r_2}{\frac{r_1d_2}{2}} = \frac{r_1r_2}{r_2} = \frac{r_1r_2d_1}{r_2}$. As a surjective field homomorphism, it is a field isomorphism, and F and F and F and F are F and F and F and F are F and F are F and F are F and F and F are F and F and F are F and F and F and F are F and F and F are F and F and F and F and F are F and F and F and F and F are F and F and F and F are F and F and F and F and F and F are F and F are F and F are F and F and F and F and F and F and F are F and F and F and F and F are F and F and F and F and F and F are F and F and F and F and F are F and F and F and F are F and F and F and F are F and F and F and F and

$$\Phi\left(\tilde{p}\left(\frac{\left(\frac{r_1}{d_1}\right)}{\left(\frac{r_2}{d_2}\right)}\right)\right) = \Phi\left(\left(\frac{\left(\frac{r_1}{d_1}\right)}{\left(\frac{r_2}{d_2}\right)}\right)^n + \sum_{i=0}^{n-1} \pi(a_i) \left(\frac{\left(\frac{r_1}{d_1}\right)}{\left(\frac{r_2}{d_2}\right)}\right)^i\right)$$

$$= \left(\frac{r_1d_2}{r_2d_1}\right)^n + \sum_{i=0}^{n-1} \frac{a_i}{1} \left(\frac{r_1d_2}{r_2d_1}\right)^i = 0$$

sine $p\left(\frac{r_1d_2}{r_2d_1}\right) = 0$. Since Φ is isomorphism, it means that $\left(\frac{r_1}{d_1}\right)/\left(\frac{r_2}{d_2}\right)$ is integral over $D^{-1}R$ and $D^{-1}R$ is integrally closed.

27. First, I'll compute $\mathbb{T}_{t,V}$, $\mathbb{T}_{(w_1,w_2,w_3),W}$. Since V = I(0), $D_v(0) = 0$ and $\mathbb{T}_{t,V} = \mathbb{A}^1$. If $w = (w_1, w_2, w_3) \neq 0$,

$$D_w(f)(x,y,z) = (w_3x - 2w_2y + w_1z, -3w_1^2x + w_3y + w_2z, -2w_1w_2x - w_1^2y + 2w_3z)$$

For $\varphi(t)$,

$$D_{\varphi(t)}(f)(x,y,z) = (t^5s - 2t^4y + t^3z, -3t^6x + t^5y + t^4z, -2t^7x - t^6y + 2t^5z)$$

Computing $\mathcal{Z}\left(D_{\varphi(t)}(f)(x,y,z)\right)$, $\mathbb{T}_{(\varphi(t),W)}=\left(1,\frac{4}{3}t,\frac{5}{3}t^2\right)x$. If w=0, then $D_0(f)(x,y,z)=0$ and $\mathbb{T}_{(0,W)}=\mathbb{A}^3$. It describes all $\mathbb{T}_{w,W},\,w\in W$ since φ is set-theoretically bijective between \mathbb{A}^1 and W.

Using previous exercise, for each $t \in \mathbb{A}^1$, $d\varphi : \mathbb{T}_{t,\mathbb{A}^1} \to \mathbb{T}_{\varphi(t),V}$ is given explicitly by

$$d\varphi(a) = (D_t(t\varphi_1)(a), D_t(\varphi_2)(a), D_t(\varphi_3)(a)) = (3t^2a, 4t^3a, 5t^4a) = 3t^2\left(1, \frac{4}{3}t, \frac{5}{3}t^2\right)a$$

It shows that $d\phi$ is vector space isomorphism for $t \neq 0$. However, for t = 0, $\mathbb{T}_{0,\mathbb{A}^1} = \mathbb{A}^1$, but $\mathbb{T}_{0,W} = \mathbb{A}^3$ and $d\varphi(a) = 0$.

Finally, assume that V and W are isomorphic and there exists isomorphism Φ . Then, $d\Phi: \mathbb{T}_{t,\mathbb{A}^1} \to \mathbb{T}_{\varphi(t),V}$ should be isomorphism on t=0, but there can not exists such isomorphism between \mathbb{A}^1 and \mathbb{A}^3 at w=0. Therefore, V and W are not isomorphic.

35. Let P be a prime ideal in R such that $P \cap D = \phi$ and $P \in \operatorname{Ass}_R(M)$. First, $D^{-1}P$ is a prime ideal in $D^{-1}R$ by proposition 38 (3). Let an annihilated element in R be m. Then, $R/P \simeq Rm$ since $P \in \operatorname{Ass}_R(M)$ with annihilated element m.

Consider an exact sequence such that i is inclusion of P into R and $\varphi: R \to Rm$ by $r \mapsto rm$. Since $D^{-1}R$ is a flat R-module, the following sequence is also exact.

$$0 \longrightarrow P \stackrel{i}{\longrightarrow} R \stackrel{\varphi}{\longrightarrow} Rm \longrightarrow 0$$

$$0 \longrightarrow D^{-1}P \xrightarrow{1 \otimes i} D^{-1}R \xrightarrow{1 \otimes \varphi} D^{-1}(Rm) \longrightarrow 0$$

Since $1 \otimes \varphi : \frac{r}{d} \mapsto \frac{rm}{d}$, $\ker(1 \otimes \varphi) = D^{-1}P$ means that $D^{-1}P$ is the annihilator of an element $\frac{m}{1}$, and $D^{-1}P \in \mathrm{Ass}_{D^{-1}R}(D^{-1}M)$.