Physics 514 – MD Exercise

Emanuel Gull

Due Wednesday October 16

1 Molecular Dynamcis

1.1 Code

Write a Lennard Jones simulation, either by downloading the sample code from the Canvas website and implementing the missing force calculation or by implementing a simulation yourself.

1.2 Integrator

Replace the forward Euler method with a velocity verlet algorithm:

• Calculate:

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \vec{v}(t) \Delta t + \frac{1}{2} \vec{a}(t) \Delta t^2$$
 (1)

- Derive $\vec{a}(t+\Delta t)$ from the interaction potential using $\vec{x}(t+\Delta t)$
- Calculate:

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{1}{2} \left[\vec{a}(t) + \vec{a}(t + \Delta t) \right] \Delta t \tag{2}$$

Check that the total energy stays constant as a function of time, at least for short times.

1.3 Measurements

Examine the trajectories of your molecules. Find a region of phase space where the system is solid and another one where it is fluid. Don't forget to thermalize! Plot the positions as a function of time to show the difference between the fluid and the solid. Hint: changing the pressure or number of molecules in the box is an easy way to change the phase.

1.4 Measurements (II)

measure the angle integrated pair correlation function g(r) in both cases, plot it as a function of r.