SIA - TP N°3 Perceptrón simple y multicapa Grupo 5

Integrantes:

- Catalán, Roberto José 59174
- Dell'Isola, Lucas 58025
- Galende, Lautaro 60287

1

Perceptrón simple con función escalón

Problemas implementados

Función AND

Entrada		Salida esperada	
-1	1	-1	
1	-1	-1	
-1	-1	-1	
1	1	1	

Salidas obtenidas				
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
1	1	1	1	1
√	√	√	√	\

- 5 ejecuciones
- Parámetros utilizados
 - Épocas = 100
 - Iteraciones = 500
 - Tasa de aprendizaje = 0.1

Entrada		Salida esperada	
-1	1	1	
1	-1	1	
-1	-1	-1	
1	1	-1	

Salidas obtenidas				
1	1	-1	-1	1
1	-1	1	1	1
-1	-1	-1	-1	1
1	1	-1	1	-1
X	×	×	×	X

- 5 ejecuciones
- Parámetros utilizados
 - Épocas = 100
 - Iteraciones = 500
 - Tasa de aprendizaje = 0.1

Perceptrón simple escalón

¿Qué problemas resuelve?

Problemas de separabilidad lineal

¿Cómo resolvió los problemas pedidos?

AND 🗸

• XOR 💢

Hiperplano para el AND

Hiperplanos para el XOR

2

Perceptrón simple lineal y no Lineal

2.1

Perceptrón lineal

Perceptrón simple lineal

- Entradas
 - TP3-ej2-Conjunto-entrenamiento.txt
- Salidas esperadas
 - TP3-ej2-Salida-deseada.txt
- Parámetros utilizados
 - Épocas → 100
 - \circ Iteraciones \rightarrow 200
 - Tasa de aprendizaje \rightarrow 0.01
- Cálculo del error
 - Error cuadrático medio

Análisis para encontrar los mejores parámetros

Se decidió realizarlo con 100 épocas para todos los parámetros

Parámetros - Cantidad de iteraciones

Parámetros - Tasa de aprendizaje

Error vs Épocas

2.2

Perceptrón no lineal

Perceptrón simple no lineal

- Entradas
 - o TP3-ej2-Conjunto-entrenamiento.txt
- Salidas esperadas
 - TP3-ej2-Salida-deseada.txt
- Parámetros utilizados
 - Épocas → 100
 - Iteraciones →100
 - Tasa de aprendizaje \rightarrow 0.01
 - \circ $\beta = 1$
- Salida se encuentra normalizada
- Cálculo del error
 - Error cuadrático medio

Parámetros - Cantidad de iteraciones

Parámetros - Tasa de aprendizaje

Parámetros - Beta

Parámetros - Training Ratio

⇒ 80% - 20%

Error vs Épocas

Capacidad de aprendizaje

Perceptrón simple lineal

- Mala
 - No logra aprender la función dada con suficiente precisión

Perceptrón simple no lineal

- Buena
 - Logra aprender la función dada con un error aceptable

Perceptrón simple no lineal

Capacidad de generalización

Perceptrón simple lineal y no lineal

¿Cómo escoger el mejor conjunto de entrenamiento?

¿Cómo evaluar la máxima capacidad de generalización para este conjunto de datos?

Validación cruzada

Perceptrón multicapa

Problemas implementados

3.1

Función XOR

Elección de parámetros: cantidad de iteraciones

Elección de parámetros: tasa de aprendizaje

Elección de parámetros: beta

Entrada		Salida esperada	
-1	1	1	
1	-1	1	
-1	-1	-1	
1	1	-1	

Parámetros

- \circ Épocas \rightarrow 75
- \circ Iteraciones \rightarrow 75
- \circ Tasa de aprendizaje \rightarrow 1
- \circ Capas ocultas $\rightarrow 1$
- \circ Neuronas \rightarrow 5
- \circ $\beta = 1$

Error vs épocas

Resultados

El perceptrón resuelve el problema

3.2

Par o impar

Par o impar

Entradas

- TP3-ej3-mapa-de-pixeles-digitos-decimales.txt
 - o Imágenes de 5 x 7 pixeles
 - o Representan los números del 0 al 9

Salidas esperadas

- (1, 0)
 - Si el número es par
- (0, 1)
 - Si el número es impar

Par o impar

Conjunto de entrenamiento

Subconjunto del conjunto de entrada

Conjunto de testeo

• Complemento del subconjunto seleccionado

Par o impar

Parámetros

- Épocas → 100
- Iteraciones \rightarrow 50
- Tasa de aprendizaje \rightarrow 0.2
- Capas ocultas → 1
- Neuronas \rightarrow 30
- ß = 1

Par o impar

Resultados

Par o impar

Resultados y conclusiones

- NO resuelve el problema
 - Era de esperar, pues los dibujos de los dígitos no tienen relación con su paridad

3.3

Identificar dígito

Entradas

- TP3-ej3-mapa-de-pixeles-digitos-decimales.txt
 - o Imágenes de 5 x 7 pixeles
 - Representan los números del 0 al 9

Salidas esperadas

- Arreglo de 10 elementos con el elemento i en 1 y todos los demás en 0
 - Siendo i el número representado por la imágen de entrada

Ejemplo:

- Entrada: imágen que representa el 2
- Salida esperada: [0, 0, 1, 0, 0, 0, 0, 0, 0]

Conjunto de entrenamiento

Conjunto de entrada (imágenes con los dígitos del 0 al 9)

Conjunto de testeo

- Conjunto de entrada con ruido
 - Cada bit de la imágen tiene probabilidad 0.02 de intercambiar su valor

Elección de parámetros: cantidad de iteraciones

Elección de parámetros: tasa de aprendizaje

Elección de parámetros: beta

Parámetros

- Épocas → 100
- Iteraciones → 50
- Tasa de aprendizaje \rightarrow 0.2
- Capas ocultas \rightarrow 1
- Neuronas \rightarrow 30
- ß = 1

Identificar dígito

Métricas: precision

Identificar dígito

Métricas: recall

Identificar dígito

Métricas: f1-score

Resultados y conclusiones

- Logra resolver el problema de manera exitosa en pocas épocas
 - La configuración elegida es adecuada

GRACIAS