

大学物理-基础实验 | 数据分析

姓名 王元叙

学号 PB22000195

班级 22 级少年班学院 5 班

日期 2023 年 5 月 10 日

光电效应测普朗克常数

1 基础实验数据分析

1.1 零电流法测量普朗克常数

表 1 零电流法测原始数据

波长/nm	577	546	436	45	365
频率/10 ¹⁴ Hz	5.199	5.495	6.880	7.407	8.219
遏止电压/V	0.488	0.594	1.152	1.466	1.738

图 1: 零电流法最小二乘法拟合

拟合得到直线方程中, 曲线斜率、截距分别为为

 $k = 0.421 \times 10^{-14}, b = -1.708 \times 10^{-14}$

计算得到普朗克常数

$$h = e \frac{U_0}{f} = ek$$

= 1.602 × 10⁻¹⁹ × 0.421 × 10⁻¹⁴ J·s
= 6.736 × 10⁻³⁴ J·s

对比普朗克常数标准值 $h_0 = 6.63 \times 10^{-34} \,\mathrm{J\cdot s}$,相对误差为

$$h_{ ext{H}$$
对误差 $= \frac{|h - h_0|}{h_0} = \frac{6.736 - 6.63}{6.63} = 1.60\%$

得到红限频率为

$$\nu = \frac{1.708}{0.421} \times 10^{-14} \text{ Hz}$$
$$= 4.057 \times 10^{-14} \text{ Hz}$$

溢出功

$$A = 1.602 \times 10^{-19} \times 1.708 \times 10^{-14} \,\mathrm{J\cdot s}$$

= 2.736 × 10⁻³⁹ J

1.2 补偿法测量普朗克常数

表 2 补偿法测原始数据

波长/nm	577	546	436	45	365
频率/10 ¹⁴ Hz	5.199	5.495	6.880	7.407	8.219
遏止电压/V	0.492	0.598	1.158	1.468	1.740
暗电流/10 ⁻¹³ A	-0.02	-0.03	-0.05	-0.04	-0.54

图 2: 补偿法最小二乘法拟合

拟合得到直线方程中, 曲线斜率、截距分别为为

$$k = 0.423 \times 10^{-14}, b = -1.714 \times 10^{-14}$$

计算得到普朗克常数

$$h = e \frac{U_0}{f} = ek$$

= 1.602 × 10⁻¹⁹ × 0.421 × 10⁻¹⁴ J·s
= 6.776 × 10⁻³⁴ J·s

对比普朗克常数标准值 $h_0 = 6.63 \times 10^{-34} \,\mathrm{J\cdot s}$, 相对误差为

$$h_{ ext{H}$$
 η igž $= rac{|h - h_0|}{h_0} = rac{6.776 - 6.63}{6.63} = 2.21\%$

得到红限频率为

$$\nu = \frac{1.714}{0.423} \times 10^{-14} \text{ Hz}$$

= $4.071 \times 10^{-14} \text{ Hz}$

溢出功

$$A = 1.602 \times 10^{-19} \times 1.714 \times 10^{-14} \,\mathrm{J\cdot s}$$

$$= 2.748 \times 10^{-39} \,\,\mathrm{J}$$

1.3 通过光阑孔径研究饱和光电流与光强的关系

取定入射距离为 40 cm

表 3 光阑孔径与饱和光电流关系

波长 436/nm	光阑孔径 Φ/mm	2	4	8	14.35
(X K 450/ IIII	饱和光电流 $I_M/10^{-10}{ m A}$	9.5	33.9	121.8	368
577/nm	光阑孔径 Φ/mm	2	4	8	14.35
	饱和光电流 $I_M/10^{-10}{ m A}$	1.1	3.7	13.6	40.7

由于光强 P 正比于 Φ^2 , 于是作图

| 100 | 100 | 200 | 光阑孔径^2 (mm^2)

图 3.1 波长 436nm

图 3.2 波长 577nm

两条图线分别指出:

$$I_{M,436} = 1.76\Phi^2 + 7.98$$

 $I_{M,577} = 0.19\Phi^2 + 0.61$

从中可以看出,饱和光电压 I 与光强 P 成线性关系,并且截距均在实验误差允许范围内。因此我们可以近似认为,饱和光电压 I 正比于光强 P 。

1.4 通过人射距离研究饱和光电流与光强的关系

取定光阑孔径为 2 mm

表 4 入射距离与饱和光电流关系

波长 436/nm	入射距离 L/cm	30	32	34	36	38	40
(X C 450/IIII	饱和光电流 $I_M/10^{-10} { m A}$	20.9	16.2	14.8	12.3	10.4	9.0
577/nm	入射距离 LL/cm	30	32	34	36	38	40
	饱和光电流 $I_M/10^{-10}{ m A}$	2.27	1.91	1.60	1.31	1.20	1.07

由于光强 P 正比于 L^{-2} ,于是作图

图 4.1 波长 436nm

图 4.2 波长 577nm

两条图线分别指出

$$I_{M,436} = 2.37L^{-2} - 5.94$$

 $I_{M,577} = 0.25L^{-2} - 0.51$

从中可以看出,饱和光电压 I 与光强 P 成线性关系,并且截距均在实验误差允许范围内。因此我们可以近似认为,饱和光电压 I 正比于光强 P 。

光电效应测普朗克常数 PB22000195 王元叙

2 进阶实验

使用拐点法测量了四种波长单色光的遏止电压,原始数据见附录(在 $\lambda=362~\mathrm{nm}$ 的数据当中,虽然原始数据记录了 101 组,但是这里只对前 61 组绘图,因为后面的数据中电流已经大于 0,对拐点法无用)

光电效应测普朗克常数 PB22000195 王元叙

图 5.3: 波长 436nm, 电压区间-1250 -1050 mV 拐点位于 -1198 mV 的位置。

图 5.4: 波长 546nm,电压区间-700 -500 mV 拐点位于 -632 mV 的位置。

光电效应测普朗克常数 PB22000195 王元叙

表 5 1	拐点法	测原始	数据
-------	-----	-----	----

波长/nm	546	436	45	365
频率/10 ¹⁴ Hz	5.495	6.880	7.407	8.219
遏止电压/V	0.632	1.198	1.528	1.780

图 6: 拐点法法最小二乘法拟合

拟合得到直线方程中, 曲线斜率为

$$k = 0.431 \times 10^{-14}$$

计算得到普朗克常数

$$h = e \frac{U_0}{f} = ek$$

= 1.602 × 10⁻¹⁹ × 0.431 × 10⁻¹⁴ J·s
= 6.909 × 10⁻³⁴ J·s

对比普朗克常数标准值 $h_0 = 6.63 \times 10^{-34} \,\mathrm{J\cdot s}$,相对误差为

$$h_{\rm HJR} = \frac{|h - h_0|}{h_0} = \frac{6.909 - 6.63}{6.63} = 4.21\%$$

3 误差分析

在使用三种方法测量遏止电压进而测量普朗克常数的过程当中,理论上来看,零电流法的误差应当大于补偿法的误差,补偿法的误差应当大于拐点法的误差。然而在实际实验中,后两种方法得到的误差都相对较大,原因可能有以下几点:

- 1. 补偿法测量普朗克常数,由于暗电流长时间不稳定,因此读数误差较大,造成最终测量结果误差增大
- 2. 在使用补偿法测量的过程中,实际实验的得到的图像并不存在清晰的拐点,曲线的斜率逐渐增大,很难判断拐点的正确位置,造成了较大的实验误差。
- 3. 补偿法测量中, 自动扫描得到的数据有些许误差, 增大了判断拐点的难度