Practice Exam 1

Tables Provided on Exam 1

Table 1.5.1: Laws of propositional logic.

Idempotent laws:	$p \lor p = p$	$p \wedge p = p$
Associative laws:	$(p \vee q) \vee r = p \vee (q \vee r)$	$(p \wedge q) \wedge r = p \wedge (q \wedge r)$
Commutative laws:	$p \vee q = q \vee p$	$p \wedge q = q \wedge p$
Distributive laws:	$p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$	$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$
Identity laws:	$p \vee F \equiv p$	$p \wedge T = p$
Domination laws:	p∧F≡F	$p \vee T \equiv T$
Double negation law:	¬¬p = p	
Complement laws:	p ∧ ¬p ≡ F ¬T ≡ F	p v ¬p = T ¬F = T
De Morgan's laws:	$\neg(p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) = \neg p \lor \neg q$
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) = p$
Conditional identities:	$p \rightarrow q = \neg p \lor q$	$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$

Table 1.12.1: Rules of inference known to be valid arguments.

Rule of inference	Name	
$\frac{p}{p \to q} \over \therefore q$	Modus ponens	
$ \begin{array}{c} \neg q \\ p \to q \\ \hline \vdots \neg p \end{array} $	Modus tollens	
$\frac{p}{\therefore p \lor q}$	Addition	
$\frac{p \wedge q}{\therefore p}$	Simplification	

Rule of inference	Name	
$\frac{p}{q} \\ \therefore p \wedge q$	Conjunction	
$ \begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array} $	Hypothetical syllogism	
$\frac{p \vee q}{\stackrel{\neg p}{\dots} q}$	Disjunctive syllogism	
$\frac{p \vee q}{\neg p \vee r}$ $\frac{\neg q \vee r}{ \cdot \cdot q \vee r}$	Resolution	

Table 1.13.1: Rules of inference for quantified stateme

Rule of Inference	Name
c is an element (arbitrary or particular) $\forall x \ P(x)$ $\therefore P(c)$	Universal instantiation
c is an arbitrary element P(c) ∴ ∀x P(x)	Universal generalization
$\exists x \ P(x)$ ∴ (c is a particular element) ∧ P(c)	Existential instantiation*
c is an element (arbitrary or particular) P(c) 3x P(x)	Existential generalization

Table 3.6.1: Set identities.

Name	Identities	
Idempotent laws	A u A = A	$A \cap A = A$
Associative laws	(A u B) u C = A u (B u C)	(A n B) n C = A n (B n C)
Commutative laws	A u B = B u A	A n B = B n A
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	A u Ø = A	A n <i>U</i> = A
Domination laws	A n Ø = Ø	A u <i>U</i> = <i>U</i>
Double Complement law	$\overline{\overline{A}} = A$	
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \cup \overline{A} = U$ $\overline{\varnothing} = U$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	A ∪ (A ∩ B) = A	A n (A u B) = A

Set Theory

Given:

 $A = \{ 1, \{2\}, \{\{3, 4\}\} \}$

For each of the following statements, state whether they are true or false.

- true a. $1 \in A$
- false b. $1 \subseteq A$
- true c. $\{2\} \in A$
- false d. $\{2\} \subseteq A$
- false e. $\{3, 4\} \in A$
- false f. $\{3, 4\} \subseteq A$
- true g. $\{\{3,4\}\}\in A$
- false h. $\{\{3,4\}\}\subseteq A$
- false i. $\emptyset \in A$
- true j. $\emptyset \subseteq A$
- 1.2 Let $A = \{1, 2, 3, 4\}$. Select the statement that is **false**.
 - a. $\emptyset \in P(A)$
 - b. $\emptyset \subseteq P(A)$
- false C. $\{2, 3\} \in A$
 - d. $\{2, 3\} \subseteq A$

Functions

Choose the property for which the function satisfies if well defined.

- a. Neither one-to-one, nor onto
- b. One-to-one, but not onto
- c. Onto, but not one-to-one
- d. one-to-one and onto
- e. not well defined

Given a function whose domain is the set of all integers and whose target is the set of all positive integers:

f(x) = 2x + 1

f(x) = |x| + 1

 $f(x) = x^2 + 1$

d) $f(x) = \{(x > 0: 2x + 1) \land (x \le 0: -2x)\}$

e) $f(x) = \{(x \ge 0: 2x + 1) \land (x < 0: -2x + 2)\}$

Proofs

4.1 Direct Proof

Prove that the product of two odd integers is an odd integer.

```
Define two odd integers as 2k+1 and 2j+1, where k and j are both integers. we have: (2k+1)^*(2j+1)=4kj+2k+2j+1=2(2kj+k+j)+1, since k and j are both integers, 2kj+k+j is also an integer. Let m=2kj+k+j, (2k+1)^*(2j+1)=2m+1.
```

4.2 Proof by Contrapositive

Prove that if n² is even, then n is even.

Consider the contraposition of the proposition which is $\sim q \rightarrow \sim p$. Show that if n is odd, then n^2 is odd.

```
Suppose n is odd, we shall prove n^2 is odd. Since n is odd, n=2k+1 for some integer k. n^2 = (2k+1)^2 = 4k^2+4k+1=2(2k^2+2k)+1 Since k is an integer, 2k^2+2k is also an integer, define m=2k^2+2k; n^2 = 2m+1, so n^2 is odd;
```

4.2 Proof by Contradiction

Prove by contradiction that if 3n+5 is odd, then n is even.

```
suppose 3n+5 is odd and n is also odd, we have n=2k+1 for some k, 3n+5=3(2k+1)+5=6k+6=2(3k+3). Since k is an integer, 3k+3 is an integer. 3n+5=2(3k+3) is an even integer. This contradicts to the hypothesis that 3n+5 is odd. So if 3n+5 is odd, then n is even.
```

Number Systems Conversion

5.1 Decimal to 8-bit Two's Complement

```
(-43)_{10} = (11010101)2
5.2 Binary to Hexadecimal (110011100)_2 = _{19}C
(1100)_2 = 12 = C
(1001)_2 = 9
(0001)_2 = 1
```

Coding

Make a hollowed-out diamond made up of in-order alphabet letters. An example is below when n=5.

Challenge Question

For this question, you have to create the following Barn Door shape with n=10:

