Существование двумерного инварантного подпространства для линейного оператора над \mathbb{R} , отвечающего мнимому корню характеристического многочлена.

Пусть $\varphi:V\to V$ - линейный оператор, $\dim V=n$, тогда в некотором базисе V φ действует матрицей $Y=A_{\varphi}X$, где $X\in\mathbb{R}^n$, а Y - столбец образа этого вектора. Пусть $\lambda=\alpha+i\beta$ $(\beta\neq 0)$ - корень характеристического многочлена.

Рассмотрим линейный оператор над полем \mathbb{C} , действующий при той же матрице $A_{\varphi}: \forall Z \in \mathbb{C}^n Z \to A_{\varphi} Z$, соответствующий оператор будем обозначать той же буквой. Так как \mathbb{C} алгебраически замкнуто, то \exists собственный вектор Z_0 , отвечающий выбранному λ . Это значит, что $A_{\varphi}Z_0 = \lambda Z_0, Z_0 = X_0 + iY_0$, где X_0 и $Y_0 \in \mathbb{R}^n \Longrightarrow A_{\varphi}Z_0 = A_{\varphi}X_0 + iA_{\varphi}Y_0 = (\alpha + i\beta)(X_0 + iY_0) = (\alpha X_0 - \beta Y_0) + i(\beta X_0 + \alpha Y_0) \Longrightarrow$

$$\begin{cases} A_{\varphi}X_0=\alpha X_0-\beta Y_0\\ A_{\varphi}Y_0=\beta X_0+\alpha Y_0\\ \text{соответственно, тогда} \end{cases}$$
 Обозначим x_0 и $y_0\in V$ векторы со столбцами координат X_0 и Y_0

$$\begin{cases} \varphi(x_0) = \alpha x_0 - \beta y_0 \\ \varphi(y_0) = \beta x_0 + \alpha y_0 \\ \text{пространством для } \varphi. \end{cases} \longrightarrow \text{подпространство } U = \langle x_0, y_0 \rangle \subset V \text{ является инвариантным под-$$

Теперь докажем, что $\dim U = 2$.

Доказательство. Предположим, что $\dim U = 1$, то есть $y_0 = \mu x_0$, где $\mu \in \mathbb{R}$. Тогда $\varphi(x_0) = (\alpha - \beta \mu) x_0 \Longrightarrow$ если $x_0 \neq 0$, то x_0 - собственный вектор для φ (для y_0 аналогично). Но эти векторы не были собственными для φ .

$$A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$
 имеет корни $\alpha \pm i\beta \notin \mathbb{R}$ - противоречие. \square

Теорема. Любой линейный оператор в конечномерном вещественном векторным пространстве имеет одномерное или двумерное подпространство.

Доказательство. Если $\exists \lambda \in \mathbb{R}$ - корень характерического многочлена, ему отвечает собственный вектор $u_i \in V, u_i \neq 0, \Longrightarrow \langle u_i \rangle$ - одномерное инвариантное подпространство. Если $\forall \lambda \in \mathbb{C} \setminus \mathbb{R}$, то $\exists U$ - двумерное инвариантное подпространство.

Вместо диаганализируемости можно использовать следующее утверждение:

0.1 Анулирующие многочлены линейных операторов

Пусть $\varphi: V \to V$ - линейный оператор над полем \mathbb{F} .

Определение. Линейный оператор $\varphi: V \to V$ такой, что $\varphi(v) = v \ \forall v \in V$, называется тождественным оператором и обозначается Id.

Определение. Многочлен $f(t) = a_0 + a_1 t + \ldots + a_m t^m \in \mathbb{F}[t]$, где $a_1 \ldots a_m \in \mathbb{F}$, называется анулирующим многочленом оператора φ , если $f(\varphi) = a_0 I d + a_1 \varphi + \ldots + a_m \varphi^m = 0$, то есть $f(A_{\varphi}) = 0$

$$\Longrightarrow A_{f(\varphi)} = f \cdot A_{\varphi} = a_0 E + a_1 A_{\varphi} + \ldots + a_m A_{\varphi}^m.$$

Пример. $V=\mathbb{R}[t]_n,\ \varphi=\frac{d}{dt}.$ $\varphi^n(t^n)=n!,\ \varphi^{n+1}\equiv 0\Longrightarrow$ для $\varphi=\frac{d}{dt}\ t^{n+1}$ - анулирующий многочлен.

Утверждение. Если $dimV=n,\ mo\ \exists\ многочлен\ степени\le n^2,\ анулирующий\ \varphi.$

 \mathcal{A} оказательство. $\dim L(V)=n^2,\ L(V)\cong M_n(\mathbb{F})\Longrightarrow$ операторы $Id,\ \varphi,\ \varphi^2,\ \ldots,\ \varphi^{n^2}$ линейно зависимы, так как их больше $n^2\Longrightarrow\exists\ a_0,\ \ldots,\ a_{n^2}\in\mathbb{F}:a_0Id+a_1\varphi+\ldots+a_{n^2}\varphi^{n^2}=0\Longrightarrow a_0+a_1t+\ldots+a_{n^2}t^{n^2}$ - многочлен анулирующий многочлен для φ

Определение. Могочленной матрицей (матричным многочленом) называется матрица $P = (P_{ij}(\lambda))$, где $P_{ij}(\lambda)$ - многочлены над полем, над которым задано векторное пространство.

Пример.
$$P = \begin{pmatrix} 1 - \lambda^2 & 2\lambda + 1 \\ 3\lambda^2 & \lambda^2 + \lambda + 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \lambda + \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} \lambda^2$$
 - многочлен от λ с матричными коэффициентами.

Определение. Оператор $\varphi V \to V$ называется нулевым оператором, если образом любого вектора является нулевой вектор.

Определение. Для матрицы $A = (a_{ij})$ присоединённой матрицей называется матрица $\widehat{A} = (A_{ij})$, то есть $\widehat{a_{ij}} = A_{ji}$.

Свойство.
$$A \cdot \widehat{A} = \begin{pmatrix} |A| & & & \\ & & \ddots & & \\ & & & |A| \end{pmatrix} = |A| \cdot E.$$

Теорема. Гамильтона-Кэли

Характеристический многочлен $\chi_{\varphi}(\lambda)$ является анулирующим многочленом для линейного оператора φ , то есть $\chi_{\varphi}(\varphi)=0$, где θ - нулевой оператор.

В матричной форме:

$$\forall A \in M_n(\mathbb{F}), \ \chi_A(A) = 0.$$

Доказательство. Пусть A - данная матрица, $\chi_A(\lambda)|A-\lambda E|=\sum\limits_{i=0}^n p_i\lambda^i,\, p_i\in\mathbb{F},\, p_n=(-1)^n.$

$$\chi_A(A) = \sum_{i=0}^n p_i A^i$$
 (считаем, что $A^0 = E$).

Составим матрицу $\widehat{A-\lambda E}=\sum\limits_{j=0}^{n-1}D_j\lambda^j$, где $D_j\in M_n(\mathbb{F})$.

Рассмотрим равенство: $(A - \lambda E)(\widehat{A - \lambda E}) = \chi_A(\lambda)E$.

$$(A - \lambda E) \cdot \sum_{j=0}^{n-1} D_j \lambda^j = \sum_{j=0}^{n-1} (A D_j \lambda^j) - \sum_{j=0}^{n-1} D_j \lambda^{j+1} = A D_0 + \sum_{j=1}^{n-1} (A D_j - D_{j-1}) \lambda^j - D_{n-1} \lambda^n = \chi_A(\lambda) E = (\sum_{j=0}^n p_j \lambda^j) E.$$

Приравняем матричные коэффициенты при соответствующих степенях λ :

$$\lambda^{0} : E \cdot |AD_{0} = p_{0}E$$

$$\lambda^{1} : A \cdot |AD_{1} - D_{0} = p_{1}E$$

$$\vdots |$$

$$\lambda^{j} : A^{j} \cdot |AD_{j} - D_{j-1} = p_{j}E$$

$$\lambda^{j+1} : A^{j+1} \cdot |AD_{j+1} - D_{j} = p_{j+1}E$$

$$\vdots |$$

$$\lambda^{n} : A^{n} \cdot |-D_{n-1} = p_{n}E$$

Домножим равенства с любой стороны на соответствующие степени A и сложим.

 $\implies \chi_A(A)E = 0.$