

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ»					
КАФЕДРА	ФЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)					
	ДОМ	АШНІ	ЕЕ ЗАДАНІ	ИЕ		
		по дис	сциплине:			
	Баллистик	са ракетно	ого и ствольного	о оружия		
		НА	ТЕМУ:			
«	Внутрибалл	пистическ	сое проектирова:	ние РДТТ»		
		ВАРИАНТ №	13			
Выполнил: студ	дент группы _	CM6-71	(подпись, дата)	Гарпинич Д.Н. (И.О. Фамилия)		
Проверил			(подпись, дата)	Федотова К.В. (И.О. Фамилия)		

Оглавление

Исходные данные	3
1. Термодинамический расчет	5
2. Определение диапазонов варьирования входных проектных парам	етров. б
3. Обоснование проектных параметров РДТТ	11
3.1. Определение номинального давления в камере сгорания	11
3.2. Выбор формы топливного заряда и определение его геометри	ических
характеристик	12
3.3. Определение массовых и габаритных характеристик РДТТ	15
4. Геометрические параметры ТРТ	21
5. Решение ПЗВБ РДТТ	23

Исходные данные

Таблица 1. Исходные данные

	Oci	новные исходн	ые дан	ные		
Наружный ди	аметр РДТТ <i>D</i>	H, MM			610	
Полный импу	льс тяги РДТТ	ГІР, кН∙с			2250	
Продолжител	ьность работы	РДТТ в номин	альном	режиме $t_{\text{ном}}$, c 20	
Примечание (образец / комплекс)					OTPK ATACMS (CIIIA)	
		Характеристи	ки ТРТ	Γ	·	
Краткое обозначение	Содержание,	Условная химическая		Δh_{f298}^0 ,	ρ,	
ОООЗПАЧЕНИЕ	70	формула	a	кДж / кг	кг/м ³	
ПБКГ	14	$C_{7.075}H_{10.65}O_{0.223}N_{0.063}$		-890	920	
ПХА	66	NH ₄ ClO	4	-2510	1950	
Гидрид алюминия	20	AlH ₃		-420	1500	
	Пара	метры закона	горени	я ТРТ		
<i>u</i> ₁ , мм/с·МПа				4,38		
		0,29				
и,	Ia)	7,0				
	D_t , 1/K		0,002			

Таблица 1. Продолжение

Характеристики воспламенительного состава				
Состав		ДР	П	
		74% K	NO3	
C		13,6%	6 C	
Содержание компонентов		10,49	% S	
		2% H	120	
Δh_{f298}^0 , кДж / кг	Δh_{f298}^0 , кДж / кг -39			
Зависимость скорости горения от давления (<i>u</i> в мм / c) $u = 11,7 \left(\frac{1}{98}\right)$			$\left(\frac{p}{066,5}\right)^{0.226}$	
K -т температурной чувствительности скорости горения D_{tB} , $1/K$)1	
δ, κγ/m ³		175	0	
Характеристики материала кор	пуса РД	ITT (AISI 4340))	
Плотность ρ_{κ} , $\kappa \Gamma/M^3$		7800		
Предел прочности овр, МПа		1830		
Условный предел текучести σ _{0.2} , МПа		1830		
Характеристики материалов теплоз	ащитні	ых покрытий ((ТЗП)	
Плотность материала ТЗП камер:	1500			
Плотность материала ТЗП сопла	1750			
Плотность материала защитно-крепящего с	C) р _{зкс} , кг/м ³	920		
Плотность материала вкладыша критическо	го сечен	ния $\rho_{\text{вкс}}$, $\kappa\Gamma/\text{M}^3$	2200	

1. Термодинамический расчет

Для заданного состава СТРТ проводится расчёт в программе «*Terra*». Давление в камере 4 МПа, давление атмосферное 0,1 МПа, режим адиабатического расширения, расширение «замороженное».

Полученные данные для трех участков ДУ приведены в табл. 2.

Таблица 2. Результат термодинамического расчёта

Параметры термодинамического равновесия						
p, MПа	4	<i>I</i> , кДж / кг	-1865,2	T_p , K	2999,5	
Те	еплофизичес	кие характери	стики проду	ктов сгора	R ИН	
<i>c_p</i> , Дж / (кг·К)	2,2367	<i>R_g</i> , Дж / (кг·К)	550,84	Z	0,3239	
<i>c_{pg}</i> , Дж / (кг·К)	2,5429	λ _g , Дж / (кг·К)	0,48726	μ _g , Па∙с	0,8363·10 ⁻⁴	
	Параметры	потока в крит	ическом сеч	ении сопла	l.	
β, м / с	1649,3	<i>I</i> _{удн} , м / с	2039,5	n	1,1604	
	Параметры потока в выходном сечении сопла					
	(равновесное расширение)					
<i>v_a</i> , M / c	2550,2	<i>I</i> _{удп} , м / с	2812,2	n	1,1619	
	Параметры потока в выходном сечении сопла					
(«замороженное» расширение)						
<i>v_a</i> , M / c	2532	<i>I</i> _{удп} , м / с	2786,4	n	1,1755	

2. Определение диапазонов варьирования входных проектных параметров

Входными проектными параметрами являются относительная площадь выходного сечения сопла f_a и степень расширения сопла v_a :

$$; v_a = \frac{F_a}{F_{\text{KP}}}.$$

Чтобы определить рациональные диапазоны варьирования проектных параметров необходимо определить границы области допустимых баллистических решений (ОДБР). При решении данной задачи используются следующие ограничения:

- по уровню номинального давления ($p_{\text{ном}} = p_{\text{min}} \dots p_{\text{max}}$, где $p_{\text{min}} = 4 \text{ МПа}$, а $p_{\text{max}} = 20 \text{ МПа}$);
- по отсутствию перерасширения сопла ($p_a \ge p_h$, где $p_h = 0,1$ МПа);
- по удельному импульсу ($I_{yд} \ge I_{yg \min}$);
- по поперечным габаритам сопла ($f_a \ge f_{a \max}$, где $f_{a \max} = 0.9$).

Определение границ ОДБР начинается с нахождения точек пересечения границы $p_a = p_h$ с границами $p_{\text{ном}} = p_{\text{min}}$ (точка 1) и $p_{\text{ном}} = p_{\text{max}}$ (точка 2). При заданном давлении ($p = p_{\text{ном}}$) приведённая скорость потока в выходном сечении сопла для заданных точек находится из газодинамической (ГД) функции (1)

$$\lambda_a(p) = \lambda_{\text{max}} \sqrt{1 - \left(\frac{p_a}{p}\right)^{\frac{n-1}{n}}}, \tag{1}$$

где

$$\lambda_{\max} = \sqrt{\frac{n+1}{n-1}} \,.$$

Показатель политропы n во всех расчётах равен показателю политропы в выходном сечении сопла для «замороженного» адиабатического расширения, если не указывается иное значение.

Относительная площадь выходного сечения сопла, необходимая для обеспечения заданного уровня тяги, определяется по формуле (2)

$$f_a(p, \lambda_a) = \frac{\eta_f}{\frac{p}{p_h} (\lambda_a^2 + 1) \varepsilon(\lambda_a) \zeta(\lambda_a) - 1},$$
(2)

где:

• приведённая тяга (η_f) определяется по формуле

$$\eta_f = \frac{P}{p_h F_m},$$

где площадь миделя ЛА (F_m) определяется по формуле

$$F_m = \frac{\pi D_{\rm H}^2}{\Delta};$$

• ГД функция є определяется по формуле

$$\varepsilon(\lambda_a) = \left(1 - \frac{k-1}{k+1}\lambda_a^2\right)^{\frac{1}{k-1}},$$

где показатель адиабаты равен показателю политропы (k = n);

 поправочный коэффициент, учитывающий потери тяги и удельного импульса, обусловленные наличием конденсированной фазы в продуктах сгорания (ζ) определяется по формуле

$$\zeta(\lambda_a) = (1-z) + z \frac{2k}{k+1} \frac{\lambda_a^2}{\lambda_a^2 + 1}.$$

Удельный импульс двигателя, реализуемый в точках 1 и 2, определяется по формуле (3)

$$I_{yx}(p, \lambda_a) = \beta \left(\left(\lambda_a + \lambda_a^{-1} \right) \varepsilon(1) \zeta(\lambda_a) - \frac{p_h}{p} \frac{1}{q(\lambda_a)} \right).$$

$$\beta = \frac{\sqrt{R_{cm} \chi T_p}}{A_n},$$
(3)

где:

$$R_{\text{cm}} = R_g (1-z); \ A_n = \sqrt{n \left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}}.$$

Для постоянной расхода (A_n) используется показатель политропы (n), соответствующий критическому сечению сопла.

Значение, полученное при определении удельного импульса двигателя в точке 1, является минимальным на линии 1-2 ($I_{\rm уд1}$). Приведённая скорость потока в точке 3, для которой $p_{\rm ном}=p_{\rm max}$ и $I_{\rm уд}=I_{\rm уд1}$, определяется итерационным путём из условия

$$I_{\mathrm{y}\mathrm{J}}(p_{\mathrm{max}}, \lambda_{a3}) = I_{\mathrm{y}\mathrm{J}1},$$

где значение λ_{a3} определяется из диапазона $1...\lambda_{a1}$.

Определив значения λ_{a3} определяется значение f_{a3} по формуле (2).

Также для точек 1, 2 и 3 определяются ГД функции ν_a и p_a :

$$v_a(\lambda_a) = \frac{1}{q(\lambda_a)}; \tag{3}$$

$$p_a(p, \lambda_a) = p\pi(\lambda_a), \tag{4}$$

где ГД функции q и π определяются по формулам:

$$q(\lambda_a) = \frac{\lambda_a \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{1}{k-1}}}{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}; \ \pi(\lambda_a) = \left(1 - \frac{k-1}{k+1} \lambda_a^2\right)^{\frac{k}{k-1}}.$$

Результаты расчётов параметров в точках 1, 2, 3 по формулам (1-4) представлены в табл. 3.

Таблица 3. Значения параметров в трёх точках

Точка	λ_a	v_a	f_a	$p_{\scriptscriptstyle{ ext{HOM}}}$, $ ext{HOM}$	p_a / p_h	<i>I</i> _{уд} , м / с
				МПа		
1	2,29	6,23	0,40	4	1	2421
2	2,60	21,57	0,24	20	1	2788
3	2,03	3,07	0,04	20	13,22	2421

Границы ОДБР в координатах (v_a , f_a) определяются параметрическим способом. Для этого с некоторым шагом (0,001) задаются диапазоны значений λ_a , соответствующие линиям 1–2, 3–2 и 3–1. Для каждой линии определяются значения v_a по формуле (3) и значения f_a :

• для линии $1-2 (p_a = p_h)$

$$f_a(\lambda_a) = \frac{\eta_f}{\frac{p_a}{p_h} \frac{\lambda_a^2 + 1}{\tau(\lambda_a)} \zeta(\lambda_a) - 1},$$

где

$$\tau(\lambda_a) = 1 - \frac{k-1}{k+1} \lambda_a^2;$$

- для линии 3-2 ($p_{\text{ном}} = p_{\text{max}}$) расчёт выполняется по формуле (2);
- для линии 3–1 ($I_{yд} = I_{yд1}$)

$$f_a(\lambda_a) = \eta_f \left(\frac{\beta}{I_{yx}} (\lambda_a + \lambda_a^{-1}) \epsilon(1) \zeta(\lambda_a) - 1 \right).$$

График границ ОДБР, построенных в координатах (v_a, f_a), представлен на рис.1.

Рис. 1. Границы ОДБР

В качестве опорного значения рассматривается $f_a = f_{a2}$.

Минимальное значение λ_a , соответствующее f_a , равняется большему из корней уравнения

$$a\lambda_a^2 + b\lambda_a + c = 0,$$

где коэффициенты a, b и c равны:

$$a = 1 + z \frac{n-1}{n+1};$$

$$b = -\frac{I_{yxl}}{\beta \epsilon(1)} \left(1 + \frac{f_a}{\eta_f} \right);$$

$$c = 1 - z.$$

Максимальное значение λ_a , соответствующее f_a , при $f_a = f_{a2}$ равняется λ_{a2} . Полученные значения $\lambda_{a \text{ min}}$ и $\lambda_{a \text{ max}}$ представлены в табл. 4 (1 и 11 точки соответственно).

3. Обоснование проектных параметров РДТТ

С помощью заданных величин $D_{\rm H}$, I_{P} , $t_{\rm Hom}$ и известных характеристиках ТРТ сочетание f_a и λ_a определяются все оставшиеся проектные параметры РДТТ.

Диапазон значений $\lambda_{a \text{ min}} \dots \lambda_{a \text{ max}}$ разбивается на 11 расчётных точек. Для каждой точки проводится ряд вычислений, позволяющих определить массовые и габаритные характеристики РДТТ. После сравнения полученных вариантов осуществляется выбор наилучшего на основе определённого критерия качества.

3.1. Определение номинального давления в камере сгорания

Удельный импульс двигателя в атмосфере (из условия заданного уровня тяги) определяется по формуле (5)

$$I_{yx}(I_{yxx}) = I_{yxx}(\lambda_a) \frac{\eta_f}{\eta_f + f_a}, \tag{5}$$

где удельный импульс двигателя в пустоте ($I_{\text{удп}}$) рассчитывается по формуле

$$I_{\text{удп}}(\lambda_a) = \beta((\lambda_a + \lambda_a^{-1})\epsilon(1)\zeta(\lambda_a)).$$

Номинальное давление в камере сгорания (КС) определяется по формуле (6):

$$p_{\text{ном}}\left(\mathbf{v}_{a},\,I_{\text{удп}},\,I_{\text{уд}}\right) = p_{h} \frac{\beta \mathbf{v}_{a}\left(\lambda_{a}\right)}{I_{\text{удп}}\left(\lambda_{a}\right) - I_{\text{уд}}\left(\lambda_{a}\right)}. \tag{6}$$

Также ещё выполняется рассчёт давления в выходном сечении сопла (p_a) по формуле (4).

Результаты расчётов значений пармаетров по формулам (4 – 6) представлены в табл. 4.

Таблица 4. Определение номинального давления в камере сгорания

	λ_a	v_a	f_a	$p_{\text{ном}}$, МПа	p_a/p_h	<i>I</i> _{уд} , м / с
1	2,18	4,466	0,24	4,824	1,892	2424,487
2	2,222	5,037	0,24	5,363	1,785	2459,929
3	2,264	5,72	0,24	6,003	1,684	2495,579
4	2,306	6,54	0,24	6,767	1,587	2531,425
5	2,348	7,535	0,24	7,686	1,494	2567,456
6	2,39	8,749	0,24	8,801	1,405	2603,662
7	2,432	10,245	0,24	10,165	1,321	2640,034
8	2,474	12,107	0,24	11,848	1,24	2676,565
9	2,516	14,447	0,24	13,947	1,163	2713,245
10	2,558	17,422	0,24	16,593	1,089	2750,068
11	2,6	21,25	0,24	19,971	1,018	2787,027

3.2. Выбор формы топливного заряда и определение его геометрических характеристик

Для выбора формы заряда предварительно строится зависимость приведённой толщины свода (e_d) от номинального давления в КС из условия обеспечения заданной продолжительности работы РДТТ (7)

$$e_d(u) = \frac{2}{D_{\text{\tiny KC}}} u(p) t_{\text{\tiny HOM}}, \tag{7}$$

где:

• закон горения определяется по формуле (8)

$$u(p) = u_1 p^{\vee}; \tag{8}$$

• внутренний диаметр КС

$$D_{\rm \tiny KC}=0.96D_{\rm \tiny H}.$$

По среднему значению диапазона e_d определяется форма заряда. Из результатов, представленных в табл. 5, делается вывод о том, что заряд щелевой с цилиндрическим каналом ($e_d = 0,5...0,75$).

После выбора формы заряда задаются характерные значения его основных геометрических параметров.

Рекомендуемые значения параметров щелевого заряда:

- количество щелей (n = 4);
- относительная длина щели ($\bar{a} = 0.3$);
- относительная ширина щели ($\bar{c} = 0.3$);

Из полученных по формуле (7) значений e_d выбираются точки, для которых выполняется условие применимости для щелевого заряда

$$e_d(u) < 1 - \overline{c}$$

Коэффициент заполнения объёма цилиндрической части КС для заряда щелевого типа рассчитывается по формуле (9)

$$\varepsilon_{\omega}\left(\varepsilon_{f}, f_{\mathbf{u}}\right) = \varepsilon_{f}\left(\overline{d}\right) - \overline{a}f_{\mathbf{u}}\left(\overline{d}\right), \tag{9}$$

где:

• коэффициент заполнения поперечного сечения КС для заряда щелевого типа рассчитывается по формуле

$$\varepsilon_f(\overline{d}) = 1 - \overline{d}(e_d)^2$$

где

$$\overline{d}(e_d) = 1 - e_d(u);$$

• относительная суммарная площадь поперечного сечения щелей ($f_{\text{щ}}$)

$$f_{\text{III}}\left(\overline{d}\right) = \frac{n}{\pi} \left(\overline{c}\sqrt{1-\overline{c}^2} - \overline{c}\sqrt{\overline{d}^2 - \overline{c}^2} + \arcsin\left(\overline{c}\right) - \overline{d}^2 \arcsin\left(\frac{\overline{c}}{\overline{d}}\right)\right).$$

Масса топлива (из условия обеспечения заданного полного импульса тяги при реализуемом удельном импульсе) определяется по формуле (10)

$$\omega(I_{\rm yg}) = \frac{I_P}{I_{\rm yg}(I_{\rm ygn})}. \tag{10}$$

Длина заряда из условия размещения необходимой массы топлива (11)

$$l_{\text{sap}}(\omega, \, \varepsilon_{\omega}) = \frac{\omega(I_{\text{yd}})}{\rho_{\text{T}} \varepsilon_{\omega}(\varepsilon_{f}, f_{\text{III}}) F_{\text{KC}}}, \tag{11}$$

где:

• плотность ТРТ определяется по формуле

$$\frac{1}{\rho_{\mathrm{T}}} = \sum_{i=1}^{n} \frac{q_i}{\rho_i},$$

где q_i – массовая доля i-го компонента в составе ТРТ;

• площадь КС

$$F_{\rm KC} = \frac{\pi D_{\rm KC}^2}{4} \,.$$

Параметр Победоносцева (начальное значение) для заряда щелевого типа определяется по формуле (12)

$$\kappa \left(l_{\text{sap}}, e_d \right) = \frac{4l_{\text{sap}} \left(\omega, \varepsilon_{\omega} \right)}{D_{\text{kc}} \left(1 - e_d \left(u \right) \right)}. \tag{12}$$

Результаты расчётов значений пармаетров по формулам (7-12) представлены в табл. 5.

Табл. 5. Результаты вычислений

	<i>u</i> , MM / c	e_d	ϵ_{ω}	ω, κΓ	$l_{\text{зар}}$, м	κ
1	6,913	0,472	0,703	928,032	3,056	39,549
2	7,129	0,487	0,718	914,66	2,95	39,274
3	7,366	0,503	0,734	901,594	2,846	39,117
4	7,626	0,521	0,751	888,828	2,743	39,106
5	7,913	0,54	0,768	876,354	2,642	39,279
6	8,23	0,562	0,787	864,168	2,544	39,687
7	8,581	0,586	0,806	852,262	2,448	40,406
8	8,971	0,613	0,827	840,63	2,355	41,548
9	9,405	0,642	0,848	829,265	2,266	43,291
10	9,891	0,676	0,869	818,161	2,181	45,925
11	10,437	0,713	0,89	807,312	2,1	49,974

По значениям из табл. 5 строятся графики зависимостей параметров e_d , ϵ_{ω} и к от номинального давления в КС. Графики представлены на рис. 2.

Рис. 2. Графики зависимостей $e_d(p_{\text{ном}})$, $\varepsilon_{\omega}(p_{\text{ном}})$, $\kappa(p_{\text{ном}})$

3.3. Определение массовых и габаритных характеристик РДТТ

По условию ДЗ топливный заряд скреплён со стенками камеры, сопловой блок имеет одно центральное сопло.

ДУ разбивается на следующие элементы:

- цилиндрическая обечайка с защитно-крепящим слоем (ЗКС);
- эллиптическое переднее днище с ТЗП;
- сопловое днище (эллиптическое с центральным отверстием) с ТЗП;
- коническая дозвуковая часть сопла с ТЗП;
- цилиндрический сопловой стакан и эрозионностойкий вкладыш критического сечения;
- коническая сверхзвуковая часть сопла с ТЗП.

Исходные данные для определения массы конструкции включают в себя геометрические размеры, необходимые для вычисления объёмов элементов,

представленных выше, а также значения плотностей конструкционных и теплозащитных материалов.

Толщина цилиндрической оболочки камеры (13)

$$\delta_{\text{of}} = \frac{D_{\text{H}}}{2} \frac{p_p}{\sigma_{\text{Bp}}},\tag{13}$$

где p_p — расчётное давление в КС, определяемое на основе давления при максимальной температуре эксплуатации ($T_0 = 323$ K) с учётом поправок

$$p_p = p_{+50} \frac{\sigma_{\text{Bp}}}{\sigma_{0.2}} k_1 k_2 \eta,$$

где k_1 — коэффициент, учитывающий всплеск давления при совместном горении воспламенителя и основного заряда ($k_1 = 1,1$); k_2 — коэффициент, учитывающий повышение давления, обусловленное разбросом характеристик топлива ($k_2 = 1,2$); η — коэффициент запаса прочности ($\eta = 1,25$).

Давление в КС при $T_0 = 323$ К.

$$p_{+50} = p_{\text{HOM}} \left(\varphi_t \left(T_0 \right) \varphi_{\kappa} \left(\kappa \right) \right)^{\frac{1}{1-\nu}},$$

где $\varphi_t(T_0)$, $\varphi_{\kappa}(\kappa)$ — поправки, учитывающие зависимость скорости горения топлива от начальной температуры заряда T_0 и параметра Победоносцева (при превышении порогового значения ($\kappa_{\text{пор}} = 100$))

$$\varphi_t\left(T_0\right) = e^{D_t\left(T_0 - T_{ref}\right)},$$

где $T_{ref} = 293 \text{ K};$

$$\phi_{\kappa}(\kappa) = \begin{cases} 1 + 0.003(\kappa - \kappa_{\text{пор}}), & \text{при } \kappa \ge \kappa_{\text{пор}} \\ 1, & \text{при } \kappa < \kappa_{\text{пор}} \end{cases},$$

где $\kappa_{\text{пор}} = 100$.

Толщина переднего днища КС

$$\delta_{\text{дH}1} = \frac{D_{\text{H}}}{2} \frac{p_p}{\sigma_{\text{BD}}} \left(\frac{D_{\text{H}}^2}{24b^2} + \frac{1}{3} \right),$$

где меньшая полуось эллиптической образующей (b)

$$b = \frac{D_{\text{H}}}{4}$$
.

Толщины остальных элементов ДУ:

- сопловое днище КС $\delta_{дн2} = \delta_{дн1}$;
- дозвуковая часть сопла $\delta_{c1} = 2\delta_{o6}$;
- сверхзвуковая часть сопла $\delta_{c2} = \delta_{o6}$;
- сопловой стакан $\delta_{cr} = 3\delta_{o6}$;
- ЗКС в цилиндрической части КС $\delta_{3KC} = 1$ мм;
- ТЗП переднего и соплового днищ КС $\delta_{n1} = \delta_{n2} = 6$ мм;
- ТЗП дозвуковой части сопла $\delta_{nc1} = 6$ мм;
- ТЗП сверхзвуковой части сопла $\delta_{пс2} = 3$ мм;
- вкладыш критического сечения $\delta_{\text{вкс}} = 15 \text{ мм}$.

Диаметр входного сечения сопла, совпадающий с диаметром центрального отверстия соплового днища, равен

$$D_{\rm BX} = \frac{D_{\rm H}}{2}.$$

Диаметры выходного и критического сечений сопла:

$$D_a = \sqrt{\frac{4}{\pi} f_a F_m} \; ;$$

$$D_{\rm kp} = \frac{D_a}{\sqrt{v_a}}$$
.

Длина цилиндрической обечайки КС

$$l_{\text{of}} = l_{\text{sap}}$$
.

Длины дозвукового и сверхзвукового участков сопла:

$$l_{\rm c1} = \frac{D_{\rm BX} - D_{\rm Kp}}{2 {\rm tg} \theta_{\rm c1}};$$

$$l_{\rm c2} = \frac{D_a - D_{\rm kp}}{2 {\rm tg} \theta_{\rm c2}} \,,$$

где $\theta_{c1} = 30^{\circ}$, $\theta_{c2} = 15^{\circ}$.

Длина соплового стакана

$$l_{\rm ct} = \frac{D_{\rm kp}}{2}.$$

Длина двигателя (14)

$$.l_{\text{дB}} = b + l_{\text{дB}} + b \sqrt{1 - \frac{D_{\text{BX}}^2}{D_{\text{H}}^2}} + l_{\text{c1}} + l_{\text{cT}} + l_{\text{c2}} ..$$
(14)

Элементы ДУ разбиваются на простые формы, объёмы которых вычисляются по формулам:

- 1. Цилиндрическая оболочка $V_{\text{цил}} = \frac{\pi}{4} (D^2 (D 2\delta)^2) l$;
- 2. Коническая оболочка $V_{\text{кон}} = \frac{\pi l \delta}{\cos \theta} \left(\frac{D_{\text{вн 1}} + D_{\text{вн 2}}}{2} + \frac{\delta}{\cos \theta} \right);$
- 3. Эллиптическое днище $V_{\text{элл1}} = \frac{2\pi\delta}{3} \left(\frac{D^2}{4} + Db (D+b)\delta + \delta^2 \right);$
- 4. Эллиптическое днище с центральным отверстием

$$V_{\text{элл2}} = \frac{\pi D^2 b}{6} \left(1 - \frac{d^2}{D^2} \right)^{\frac{3}{2}} - \frac{\pi}{6} (D - 2\delta)^2 (b - \delta) \left(1 - \frac{d^2}{\left(D - 2\delta \right)^2} \right)^{\frac{3}{2}}.$$

Плотности материала корпуса, ТЗП, ЗКС и вкладыша критического сечения представлены в табл. 1.

Масса «сухой» ДУ (15)

$$m_{\text{ABO}} = \sum_{i=1}^{N} \rho_i V_i$$
 (15)

Масса снаряженной ДУ (16)

$$m_{\rm dB} = m_{\rm dB0} + \omega \,. \tag{16}$$

Коэффициент конструктивно-массового совершенства (17)

$$\alpha_{\rm dB} = \frac{m_{\rm dB0}}{\omega} \,. \tag{17}$$

Выбор одного лучшего решения для дальнейшей проработки выполняется по критерию качества (18)

$$C_{\text{\tiny ZB}} = \sqrt{\frac{m_{\text{\tiny ZB}}}{m_{\text{min}}}} \frac{l_{\text{\tiny ZB}}}{l_{\text{min}}}, \tag{18}$$

где m_{\min} , l_{\min} — наименьшие среди рассмотренных вариантов значения массы и длины ДУ (используются для нормирования критерия).

Лучшее решение соответствует минимуму коэффициента качества $C_{\text{дв}}$. Результаты расчёта формул (13 – 18) представлены в табл. 6.

Таблица 6. Результаты вычислений

	δ_{of} , mm	$m_{ m дв0},{ m K}\Gamma$	$m_{ m дв}, { m K} \Gamma$	$lpha_{ extsf{ iny JB}}$	$l_{ m дв},{ m MM}$	$C_{\scriptscriptstyle m JB}$
1	1,444	95,206	1023,237	0,103	3846,651	1,131
2	1,605	101,417	1016,077	0,111	3759,129	1,115
3	1,796	108,744	1010,338	0,121	3673,011	1,099
4	2,025	117,429	1006,256	0,132	3588,457	1,084
5	2,3	127,782	1004,137	0,146	3505,65	1,07
6	2,634	140,208	1004,375	0,162	3424,806	1,058
7	3,042	155,234	1007,495	0,182	3346,187	1,047
8	3,545	173,565	1014,195	0,206	3270,115	1,039
9	4,174	196,155	1025,421	0,237	3196,998	1,033
10	4,966	224,313	1042,474	0,274	3127,359	1,03
11	5,976	259,871	1067,183	0,322	3061,89	1,031

По значениям из табл. 6 строятся графики зависимостей параметров $m_{\rm дв}$ и $l_{\rm дв}$ от номинального давления в КС. Графики представлены на рис. 3. Также строится график зависимости $m_{\rm дв}$ от $l_{\rm дв}$. График зависимости представлен на рис. 4.

Рис. 3. Графики зависимостей $m_{\rm дв}(p_{\rm ном}),\ l_{\rm дв}\ (p_{\rm ном})$

Рис. 4. График зависимости $m_{\rm ДB}(l_{\rm ДB})$

4. Геометрические параметры ТРТ

Для устранения прогрессивности с торцов заряда выполняются щели или пропилы. В зависимости от количества и глубины щелей может быть получен любой характер изменения площади поверхности горения (нейтральный, прогрессивный, дигрессивный). На рис. 5 представлен канально-щелевой заряд.

Рис. 5. Канально-щелевой заряд

Определяющие геометрические размеры:

1. минимальная толщина свода e_0

$$e_0 = \frac{\left(D - d\right)}{2};$$

- 2. количество щелей n=4;
- 3. глубина щелей в безразмерной форме $\bar{a} = 0.3$;
- 4. ширина щелей в безразмерной форме $\overline{c} = 0.05$.

Характерные участки поверхности горения:

А. Поверхность канала (основной участок) (19)

$$S_A(e) = \pi(d+2e)(l-a-e).$$
 (19)

В. Поверхность канала в области щелей (20)

$$S_{B}(e) = \begin{cases} n(\beta - \varphi_{1}(e))(d + 2e)a, \text{ при } e \leq e_{1} \\ 0, \text{ при } e > e_{1} \end{cases}$$
 (20)

С. Боковые поверхности щелей (21)

$$S_{C}(e) = \begin{cases} 2nab_{1}(e), \text{ при } 0 \le e \le e_{1} \\ 2nab_{2}(e), \text{ при } e_{1} \le e \le e_{2}. \\ 0, \text{ при } e > e_{2} \end{cases}$$
 (21)

D. Торцы заряда (включая торцевые поверхности щелей) (22)

$$S_D(e) = \frac{\pi}{4} (D^2 - (d+2e)^2).$$
 (22)

Суммарная площадь поверхности горения находится как сумма поверхностей горения характерных участков (23)

$$S(e) = S_A(e) + S_B(e) + S_C(e) + S_D(e).$$
 (23)

Результаты расчёта формул (19 - 23) представлены на рис. 6.

Рис. 6. График зависимости площади поверхности горения канальнощелевого заряда от толщины сгоревшего свода

5. Решение ПЗВБ РДТТ

Форма зерна – двояковыпуклая таблетка (рис. 7).

Рис. 7. Зерно воспламенительного состава

Геометрические параметры зерна:

- толщина свода $e_0 = 0,5...2,5$ мм;
- высота цилиндрического элемента $c = 0,4...0,8e_0$ (принять $c = 0,8e_0$);
- диаметр таблетки $d = 5...10e_0$ (принять $d = 5e_0$).

Проводится интегрирование системы уравнений внутренней баллистики РДТТ.

Математическая модель:

$$\begin{cases} \frac{dp}{dt} = \frac{k-1}{W} \left(X + \frac{k}{k-1} Y \right) \\ \frac{dT}{dt} = \frac{1}{\rho W R} \left(X + Y \right) \\ \frac{dW}{dt} = \frac{G_{\rm B}}{\rho_{\rm B}} + \frac{G_{\rm T}}{\rho_{\rm T}} \\ \frac{dc_p}{dt} = \frac{1}{\rho W} \left(G_{\rm B} \left(c_{p\rm B} - c_p \right) + G_{\rm T} \left(c_{p1} - c_p \right) \right) \\ \frac{dR}{dt} = \frac{1}{\rho W} \left(G_{\rm B} \left(R_{\rm B} - R \right) + G_{\rm T} \left(R_1 - R \right) \right) \\ \frac{de_{\rm B}}{dt} = u_{\rm B} \left(p, T_0 \right) \Phi_0 \\ \frac{de}{dt} = u \left(p, T_0 \right) \phi_{\kappa} \left(\kappa(e) \right) \Phi_1 \\ \frac{d\eta_T}{dt} = \frac{2q_{\rm 3ap}^2}{c_{\rm T} \lambda_{\rm T} \rho_{\rm T}} \Phi_q \end{cases}$$

Данную систему уравнений также необходимо дополнить:

$$\begin{split} X &= G_{\scriptscriptstyle B} c_{\scriptscriptstyle p \scriptscriptstyle B} \left(T_{\scriptscriptstyle p \scriptscriptstyle B} - T \right) + G_{\scriptscriptstyle T} c_{\scriptscriptstyle p \scriptscriptstyle 1} \left(T_{\scriptscriptstyle p \scriptscriptstyle 1} - T \right) - q_{\scriptscriptstyle 3 a p} S_{\scriptscriptstyle T \scriptscriptstyle 0} \varPhi_{\scriptscriptstyle q} - q_{\scriptscriptstyle w} S_{\scriptscriptstyle w} \,; \\ Y &= G_{\scriptscriptstyle B} R_{\scriptscriptstyle B} T + G_{\scriptscriptstyle T} R_{\scriptscriptstyle 1} T - \frac{p}{\rho} G - p \bigg(\frac{G_{\scriptscriptstyle B}}{\rho_{\scriptscriptstyle B}} + \frac{G_{\scriptscriptstyle T}}{\rho_{\scriptscriptstyle T}} \bigg). \end{split}$$

Индекс «в» соответствует параметрам воспламенительного состава и его продуктов сгорания, индекс «т» - параметрам ТРТ, индекс «1» - параметрам продуктам сгорания ТРТ.

Вспомогательные множители:

$$\Phi_q = \Phi\left(T_s - T_0 - \sqrt{\eta_T}\right);$$

$$\Phi_0 = \Phi\left(e_{\text{B}0} - e_{\text{B}}\right); \Phi_1 = \Phi\left(e_{\text{max}} - e\right)\left(1 - \Phi_q\right),$$

где T_s – температура вспышки основного заряда.

Система дифференциальных уравнений дополняется следующими алгебраическими выражениями:

• уравнение состояния совершенного газа

$$p = \rho RT$$
;

• выражение для показателя адиабаты продуктов сгорания

$$k = \frac{c_p}{c_p - R};$$

• скорость горения основного заряда

$$u = u_1 \left(\frac{p}{p_{ref}}\right)^{v} \exp\left(D_t \left(T_0 - T_{ref}\right)\right),\,$$

где p_{ref} соответствует заданному закону горения ТРТ, $T_{ref} = 293,15$ K;

• скорость горения воспламенительного состава

$$u_{\rm B} = u_{\rm 1B} \left(\frac{p}{p_{ref B}} \right)^{\rm V_B} \exp \left(D_{tB} \left(T_0 - T_{ref} \right) \right);$$

• секундный массоприход при сгорании основного заряда

$$G_{\mathrm{T}} = S_{\mathrm{r}}(e)u(p, T_0)\rho_{\mathrm{T}}\varphi_{\kappa}(\kappa(e))\Phi_{1},$$

где

$$\phi_{\kappa} (\kappa) = \begin{cases} 1 + 0.003 (\kappa - \kappa_{\text{пор}}), & \text{при } \kappa \geq \kappa_{\text{пор}} \\ 1, & \text{при } \kappa < \kappa_{\text{пор}} \end{cases},$$

где $\kappa_{\text{пор}} = 100$.

• секундный массоприход при сгорании восаламенительного состава

$$G_{\scriptscriptstyle\rm R} = S_{\scriptscriptstyle\rm \Gamma R}(e_{\scriptscriptstyle\rm R})u_{\scriptscriptstyle\rm R}(p, T_0)\rho_{\scriptscriptstyle\rm R}\Phi_0;$$

• секундный массовый расход продуктов сгорания через сопло

$$G = \begin{cases} \frac{pF_{\text{кр}}}{\sqrt{RT}} \left(\frac{p_h}{p}\right)^{\frac{1}{n}} \sqrt{\frac{2n}{n-1}} \left(1 - \left(\frac{p_h}{p}\right)^{\frac{n-1}{n}}\right) & \text{при } p < \frac{p_h}{\pi(1)}; \\ \frac{A_n(n) \, pF_{\text{кр}}}{\sqrt{RT}} & \text{при } p \geq \frac{p_h}{\pi(1)} \end{cases};$$

• число Рейнольдса для случая течения продуктов сгорания воспламенительного состава по каналу заряда

$$Re = \frac{G_{\rm B}}{F_{\rm KaH}} \frac{d}{\mu_{\rm gB}},$$

где площадь поперечного сечения канала заряда

$$F_{\text{кан}} = \frac{S_{\text{r0}}}{\kappa_0};$$

• число Нуссельта

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$

где число Прандтля определяется по характеристикам продуктов сгораия воспламенительного состава;

• плотность теплового потока

$$q_{\text{3ap}} = \text{Nu} \frac{\lambda_{gB}}{d} \left(T - T_0 - \sqrt{\eta_T} \right).$$

Масса воспламенительного состава рассчитывается при $T_0 = 223,15 \, \mathrm{K},$ т.к. эта температура наиболее неблагоприятна для воспламенения

$$\omega_{\rm B} = (0, 5...0, 75) \frac{p_{\rm HOM} W_0}{R_{\rm B} T_{\rm DB}},$$

где начальный объём КС равен

$$W_0 = \frac{\pi}{12} D_{\text{KC}}^3 + \frac{\pi}{4} D_{\text{KC}}^2 l_{\text{sap}} - \frac{\omega}{\rho_{\text{T}}}.$$

Суммарная площадь поверхности горения воспламенителя

$$S_{\scriptscriptstyle \Gamma B}(e_{\scriptscriptstyle B}) = \frac{\omega_{\scriptscriptstyle B}}{\omega_{\scriptscriptstyle B1}} S_{\scriptscriptstyle B1}(e_{\scriptscriptstyle B}),$$

где масса единичного зерна воспламенителя

$$\omega_{\rm R1} = \rho_{\rm R} V_{\rm R1}$$
,

Для расчётов принимаются следующие условия.

Значения удельной теплоёмкости и коэффициента теплопроводности топлива:

$$c_{\rm T} = 1250 \; \text{Дж} \; / \; (\text{кг·K}); \; \lambda_{\rm T} = 0.3 \; \text{Вт} \; / \; (\text{м·K}).$$

Температура вспышки основного заряда для смесевого ТРТ

$$T_s = 750 \text{ K}.$$

Начальные условия (t = 0 c):

$$\begin{cases} p = p_h \\ T = T_0 \\ W = W_0 \\ c_p = c_{p0} \\ R = R_0 \\ e_{\scriptscriptstyle \mathrm{B}} = e = \eta_T = 0 \end{cases}.$$

В качестве начального газа в КС рассматривается воздух:

$$c_{p0} = 1004,5$$
 Дж / (кг·К); $R_0 = 287$ Дж / (кг·К); $p_h = 0,1$ МПа.

Интегрирование проводится в 2 этапа:

• первый этап. Шаг интегрирования $dt = 5 \cdot 10^{-5}$ с. Система уравнений интегрируется до момента t = 0,25 с. Начальные условия записаны выше.

• второй этап. Шаг интегрирования $dt = 5 \cdot 10^{-3}$ с. Система уравнений интегрируется до момента пока давление не упадёт до критического, при котором $p\pi(1) = p_h$. Начальными условиями являются параметры в конце первого этапа.

Полученные индикаторные диаграммы для первого и второго этапа представлены на рис. 8, 9. Параметры воспламенителя представлены в табл. 7.

Параметры горения РДТТ в различных характерных точках, соответствующих различным значениям T_0 , представлены в табл. 8-10.

Рис. 8. Зависимость давления и температуры горения зарядов первые 250 мс

Таблица 7. Параметры воспламенителя

$N_{ m min}$	e _{Bc0 min} , M	p_{max} / $p_{ ext{HOM}}$ (-50)	ω_{Bc} / ω_{Bc0}	<i>t</i> , c	$\omega_{\rm Bc0}$, K Γ
8800	0,00245	1,092	0,846	0,0581	6,28

Рис. 9. Зависимость давления и температуры горения зарядов за все время

Таблица 8. Решение при $T_0 = 223,15 \text{ K}$

	t, c	p, MПa	Т, К
«ign»	0,058	8,565	2056,954
«max»	0,153	16,969	2805,006
«осн»	24,485	12,467	3000,488
«п»	25,49	0,175	1605,729

Таблица 9. Решение при $T_0 = 273,15 \text{ K}$

	<i>t</i> , c	p, M∏a	T, K
«ign»	0,035	7,061	2085,526
«max»	0,13	20,605	2820,31
«OCH»	20,105	15,087	2998,345
«п»	21,73	0	484,621

Таблица 10. Решение при $T_0 = 323,15 \ \mathrm{K}$

	<i>t</i> , c	p, MПa	<i>T</i> , K
«ign»	0,029	6,355	2091,821
«max»	0,126	22,074	2838,084
«OCH»	18,475	16,467	2999,963
«п»	20,13	0	470,585