Unit 4 Time Series and Recommender Engine

Time Series Analysis

- Why Time Series Analysis?
- What is Time Series?
- Components of Time Series
- When not to use Time Series?
- What is Stationarity?
- ARIMA Model
- Case study

Why Time Series Analysis?

- In any Supervised learning,
 - Dependent and independent variable will be present and predict the function based on independent variable
- In Time Series, Analysis done on One variable i.e, time

Why Time Series Analysis?

- A very popular tool for Business Forecasting.
- Basis for understanding past behavior.
- Can forecast future activities/planning for future operations
- Evaluate current accomplishments/evaluation of performance.
- Facilitates comparison

Time Series

- An ordered sequence of values of a variable at equally spaced time intervals.
- The intervals may be hourly, weekly, monthly, quarterly, seasonally...
- In time series, time act as an independent variable to estimate dependent variables
- Y = F(t) i.e, Y(t) = y(t-1) + Error
- Time Series Analysis
 - Previous behaviour
 - Plan for Future

Applications

- Economic Forecasting
- Sales Forecasting
- Budgetary Analysis
- Stock Market Analysis
- Yield Projections
- Process and Quality Control
- Inventory Studies
- Workload Projections
- Utility Studies
- Census Analysis

Four Components

- Trend
 - Movement higher or lower for period of time
 - Happens for some time and then disappears (upward trend or downtrend or horizontal/stationary)
- Seasonality
 - It repeats itself in systematic intervals over time
- Irregularity
 - Unsystematic pattern, short duration and not repeating
 - Happens randomly
- Cyclic
 - Repeating up and down movements

Time Series data patterns

When Not to use Time Series Analysis?

- When the values are constant
- Values are in the form of functions

What is stationarity?

- A statistical property (Stationarity) always present in time series analysis
 - Constant mean (average)
 - Constant variance (distance from mean)
 - Autocovariance that does not depend on time (equal)
 - There is no correlation between the time y(t-1),y(t-2)
- Most Time series work on the assumption that TS is stationary.

Test to check stationarity

- Rolling statistics
 - Plot the moving average We can plot the moving average or moving variance and see if it varies with time.
- Dickey Fuller Test
 - Ho: Time series is non stationary
 - Ha: Time series is stationary
 - If the 'Test Statistic' is less than the 'Critical Value', we can reject the null hypothesis and say that the series is stationary.

To make TS stationary

- Estimating and Eliminating Trend
 - Log transform
 - Moving average
 - Smoothing
 - Regression Fitting
- Eliminating Trend and Seasonality
 - Differencing
 - Decomposition

ARIMA Model

AR

• AR stands for autoregressive. Autoregressive parameter is denoted by p. AR terms are just lags of dependent variable. For instance if p is 5, the predictors for x(t) will be x(t-1)...x(t-5).

• MA

• MA stands for moving the average, which is denoted by q. MA terms are lagged forecast errors in prediction equation. For instance if q is 5, the predictors for x(t) will be e(t-1)...e(t-5) where e(i) is the difference between the moving average at i^{th} instant and actual value.

• In ARIMA time series analysis, Integrated is denoted by d. Integration is the inverse of differencing. When d=0, it means the series is stationary and we do not need to take the difference of it. When d=1, it means that the series is not stationary and to make it stationary, we need to take the first difference. When d=2, it means that the series has been differenced twice. Usually, more than two time difference is not reliable.

AutoRegressive(AR) Model

Y_t depends only of past values. Y_{t-1}, Y_{t-2}, Y_{t-3 etc}

$$Y_{t} = f(Y_{t-1}, Y_{t-2}, Y_{t-3...})$$

$$Y_{t} = \beta_{0} + \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \beta_{3}Y_{t-3}...$$

Moving Average Model

Y_t depends only on random error terms

$$Y_{t} = f(\epsilon_{t,} \epsilon_{t-1,} \epsilon_{t-2,} \epsilon_{t-3,...})$$
or
$$Y_{t} = \beta + \epsilon_{t} + \theta_{1} \epsilon_{t-1} + \theta_{2} \epsilon_{t-2} + \theta_{3} \epsilon_{t-3+...}$$

ARMA

Combines AR and MA

$$Y_{t} = \beta_{0} + \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \beta_{3}Y_{t-3}...$$

$$\varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \theta_{3}\varepsilon_{t-3}...$$

Integration

- A non-stationary time series can be converted into stationary ts after differencing
- After differencing once, series is called as integrated of order 1 and denoted by I(1). In general I(d)

ARIMA Modelling

1. Visualize the time series 2. Stationarize the series 3. Plot ACF/PACF charts and find optimal parameters 4. Build the ARIMA model 5. Make Predictions

Recommendation Engine

Association Rule mining

- Association Rule mining is "what goes with what"
- Association rule mining is a technique to identify underlying relations between different items.
- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transactions.
- The process of identifying an associations between products is called <u>association rule mining</u>.
- More profit can be generated if the relationship between the items purchased in different transactions can be identified.

- For instance, if item A and B are bought together more frequently then several steps can be taken to increase the profit. For example,
 - A and B can be placed together so that when a customer buys one of the product he doesn't have to go far away to buy the other product.
 - People who buy one of the products can be targeted through an advertisement campaign to buy the other.
 - Collective discounts can be offered on these products if the customer buys both of them.
 - Both A and B can be packaged together.

- Applications
 - Market basket analysis
 - Cross-marketing
 - Catalog design etc..

Association Rules

- Association rule has to be interpreted in the form of "if-then" statements
- Association rules are probabilistic in nature

TID	ITEMS
10	Milk, Cereal, Sugar
20	Bread, Cereal, Eggs
30	Milk, Bread, Cereal, Eggs
40	Bread, Eggs

- Some possible association rules are
 - {Bread} -> {Eggs}
 - {Bread, Cereal} -> {Eggs}
- Collection of one or more items is called **Itemset**.

{Bread, Cereal} -> {Eggs}
 X => Y
 If - Then
 Antecedent - Consequent

- The possible associations can be many. We may be interested in finding the strong associations.
- But how to find strong associations?
- Answer: Support, Confidence & Lift.
- Support and Confidence are the measures to confirm the rule as a strong association rule.
- These two measures express the degree of uncertainty about the rule.
- The antecedent and consequent must be disjoint sets

Theory of Apriori Algorithm

- There are three major components of Apriori algorithm:
 - Support (prevalance/popularity)
 - Confidence(predictability) likely purchase of consequent
 - Lift(interest)- association expect by chance
- Support refers to the default popularity of an item and can be calculated by finding number of transactions containing a particular item divided by total number of transactions.
- Support(B) = (Transactions containing (B))/(Total Transactions)

- Confidence refers to the likelihood that an item B is also bought if item A is bought. It can be calculated by finding the number of transactions where A and B are bought together, divided by total number of transactions where A is bought.
 - Confidence(A→B) = (Transactions containing both (A and B))/(Transactions containing A)
- Lift(A -> B) refers to the increase in the ratio of sale of B when A is sold. Lift(A -> B) can be calculated by dividing Support divided by Support (A)* Support(B).
 - Lift($A \rightarrow B$) = (Support/Support (A) * (Support (B))

Three key terms to determine rules

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Lift = 1 means there is no association between products A and B.

Lift > 1 means products A and B are more likely to be bought together.

Lift < 1 means two products are unlikely to be bought together.

Steps in Apriori algorithm

- Find frequent itemset which satisfies the min_sup
- For each frequent itemset identify all non-empty proper subset
- For each subset s of I, form a rule s=>I where s and I are disjoint
- For each rule R, compute its confidence and Lift
- Select R as a strong rule if conf (R) >=min_conf and Lift >

Steps to find frequent Itemset

- Let k=1
- Generate frequent item sets of length 1
- Repeat until no new frequent item sets are identified
- Create a candidate list of k itemsets by performing join operation on pairs of (k-1) itemsets in the list.
- Prune candidate item sets containing subsets of length k that are infrequent
- Count the support of each candidate by scanning the DB
- Eliminate candidates that are infrequent, leaving the list with only those that are frequent

Example

TID	ITEMS
10	Milk, Cereal, Sugar
20	Bread, Cereal, Eggs
30	Milk, Bread, Cereal, Eggs
40	Bread, Eggs

A = milk B= bread C= cereal D= sugar E= eggs

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Example

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_{i}

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 L_{1}

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

 $\begin{array}{c|cccc} L_2 & \hline {\bf Itemset} & {\bf sup} \\ \hline \{{\sf A,C}\} & 2 \\ \hline \{{\sf B,C}\} & 2 \\ \hline \{{\sf B,E}\} & 3 \\ \hline \{{\sf C,E}\} & 2 \\ \end{array}$

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

3 rd scan	L_3
	_

Itemset	sup
{B, C, E}	2

26

- To speed up the process,
 - Set a minimum value for support and confidence. This means that we are only interested in finding rules for the items that have certain default existence (e.g. support) and have a minimum value for co-occurrence with other items (e.g. confidence).
 - Extract all the subsets having higher value of support than minimum threshold.
 - Select all the rules from the subsets with confidence value higher than minimum threshold.
 - Order the rules by descending order of Lift.

Advantage

- Subset of a frequent itemset is also a frequent itemset.
- This reduce the number of candidates being considered by only exploring the itemsets whose support count is greater than the minimum support count.
- All infrequent itemsets can be pruned if it has an infrequent subset.