Valutazione SpeedUp prodotto componente per componente di due array

Studente: Giovanni Leo

Matricola: 0522500538

I test sono stati effettuati sul cluster multi-GPU messo a disposizione dal Dipartimento di Matematica collegandosi mediante ssh al nodo 2 della macchina.

Limitazioni Compute Capability 2.0

- 1536 max thread per ogni SM
- 1024 thread per blocco
- 8 blocchi per ogni SM
- 32 SM
- 32768 max registri per ogni SM

Valutazione

Il programma Esercitazione5MNIPunto1.cu utilizza 10 registri, consideriamo tre configurazioni per kernel.

Configurazione 1

Sapendo che il massimo numero di thread per SM è 1536 e supponendo di voler attivare solo 2 blocchi si ha:

$$\frac{1536}{2} = 768$$

ovvero vengono attivati 768 thread per blocco.

Considerando che vengono attivati 1536 thread ed il numero di registri utilizzati dal programma è 10 allora il numero di registri totale utilizzati sarà: 1536*10=15360<32768.

Nx1000	Tempi CPU	Tempi GPU	SpeedUp
128	0,5098	0,0207	24,62
192	0,7444	0,0275	27,06
256	0,9941	0,0345	28,81
448	1,72	0,0589	29,20
512	1,97	0,0635	31,02

Configurazione 2

Sapendo che il massimo numero di thread per SM è 1536 e supponendo di voler attivare solo 4 blocchi si ha:

$$\frac{1536}{4} = 384$$

ovvero vengono attivati 384 thread per blocco.

Considerando che vengono attivati 1536 thread ed il numero di registri utilizzati dal programma è 10 allora il numero di registri totale utilizzati sarà: 1536 * 10 = 15360 < 32768.

Nx1000	Tempi CPU	Tempi GPU	SpeedUp
128	0,5098	0,0348	14,64
192	0,7444	0,0480	15,50
256	0,9941	0,0586	16,96
448	1,72	0,0578	29,75
512	1,97	0,0648	31,40

Configurazione 3

Sapendo che il massimo numero di thread per SM è 1536 e supponendo di voler attivare solo 8 blocchi si ha:

$$\frac{1536}{8} = 192$$

ovvero vengono attivati 192 thread per blocco.

Considerando che vengono attivati 1536 thread ed il numero di registri utilizzati dal programma è 10 allora il numero di registri totale utilizzati sarà: 1536 * 10 = 15360 < 32768.

Nx1000	Tempi CPU	Tempi GPU	SpeedUp
128	0,5098	0,0352	14,48
192	0,7444	0,0483	15,41
256	0,9941	0,0568	17,50
448	1,72	0,0596	28,85
512	1,97	0,0663	29,71

Grafico

Valutazione SpeedUp

