МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине «Основы профессиональной деятельности»

Вариант № 3459

Выполнил:

Студент группы Р3110 Конкин Вадим Вадимович

Преподаватель:

Бострикова Дарья Константиновна

Содержание

Текст задания	3
Описание программы	3
Вывод	5
Методика проверки программы	6

Текст задания

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна инкрементировать содержимое X (ячейки памяти с адресом 044_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=3X-2 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'ИЛИ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Описание программы

Назначение программы

- 1. Основная программа должна увеличивать на 2 содержимое X (ячейки памяти с адресом 012₁₆) в пикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=5X+2 на данное ВУ, а по нажатию кнопки готовности ВУ-2 вычесть X из содержимого РД данного ВУ, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Текст программы

ORG 0x0

V0: WORD \$default, 0X180

V1: WORD \$default, 0X180 V2: WORD \$int2, 0X180

V3: WORD \$int3, 0x180

V4: WORD \$default, 0X180

V5: WORD \$default, 0X180

V6: WORD \$default, 0X180

V7: WORD \$default, 0X180

ORG 0x44 X: WORD ?

max: WORD 0x002B ; 43, максимальное значение X

min: WORD 0xFFD6 ; -42, минимальное значение Х default: IRET START: DΙ **CLA** OUT 0x1 ; Запрет прерываний для неиспользуемых ВУ OUT 0x3 OUT 0xB OUT 0xD OUT 0x11 OUT 0x15 **OUT** 0x19 OUT 0x1D LD #0xA ; Загрузка в аккумулятор MR (1000|0010=1010) OUT 5 ; Разрешение прерываний для 2 ВУ ; Загрузка в аккумулятор MR (1000|0011=1011) LD #0xB ; Разрешение прерываний для 1 ВУ OUT 7 ΕI PROG: DI LD X **INC INC CALL CHECK** ST X ΕI JUMP PROG int2: ; Обработка прерывания на ВУ-2 :LDX **NOP** IN 4 **NOP** OR X ST X **NOP** ΕI **IRET** int3: ; Обработка прерывания на ВУ-3 ; LD X

NOP

PUSH

ASL

ADD X

DEC

DEC

OUT 6

NOP

POP

NOP

ΕI

IRET

СНЕСК: ; Проверка принадлежности X к ОДЗ

СНЕСК MIN: ; Если x > min переход на проверку верхней границы

CMP min

BPL CHECK MAX

JUMP LD MIN; Иначе загрузка min в аккумулятор

СНЕСК МАХ: ; Проверка пересечения верхней границы Х

СМР тах; Если х < тах переход

BMI RETURN

LD_MIN: LD min; Загрузка минимального значения в X RETURN: RET; Метка возврата из проверки на ОДЗ

Область допустимых значений

 $-128 \le 3X - 2 \le 127$

 $-126 \le 3X \le 129$

 $-42 \le X \le 43$

43 = 0x002B

-42 = 0xFFD6

• Число $X \in [FFD6; 002B]$ (т.к. в ходе выполнения к X прибавляется 2, то max значение 42).

Область представления

- X, min, max знаковое 16-ричное целое число;
- DR КВУ 8-ми разрядное целое знаковое число.

Вывод

В ходе выполнения лабораторной работы я изучил обмен данными с ВУ-1 и ВУ-2 в режиме прерываний, также изучил цикл прерывания и циклы исполнения новых команд. Также закрепил знания в написании программ на ассемблере БЭВМ.

Методика проверки программы

Проверка обработки прерываний:

- 1. Загрузить текст программы в БЭВМ.
- 2. Заменить NOP по нужному адресу на HLT.
- 3. Запустить программу в режиме РАБОТА.
- 4. Установить «Готовность ВУ-2».
- 5. Дождаться останова.
- 6. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х044
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 7. Записать результат обработки прерывания содержимое DR контроллера ВУ-2
- 8. Рассчитать ожидаемое значение обработки прерывания
- 9. Нажать «Продолжение».
- 10. Ввести в ВУ-3 произвольное число, записать его
- 11. Установить «Готовность ВУ-3».
- 12. Дождаться останова.
- 13. Записать текущее значение X из памяти БЭВМ, также, как и в пункте 6.
- 14. Нажать «Продолжение».
- 15. Записать текущее значение X из памяти БЭВМ, также, как и в пункте 6.
- 16. Рассчитать ожидаемое значение переменной X после обработки прерывания

Проверка основной программы:

1. Загрузить текст программы в БЭВМ.

- 2. Записать в переменную X минимальное по ОДЗ значение (-43)
- 3. Запустить программу в режиме останова.
- 4. Пройти нужное количество шагов программы, убедиться, что при увеличении X на 2, до после момента, когда он равен 42, происходит сброс значения в минимальное по ОДЗ.

Прерывание ВУ-2			Прерывание ВУ-3			
AC	Ожидание	DR	AC (07)	DR	AC	Результат
(07)	3*X-2			КВУ-2	(DR - X)	AC (07)
10 ₁₆ (16)	52 ₁₆ (82)	52 ₁₆ (82)	1 ₁₆ (1)	$7F_{16}(127)$	7E ₁₆ (126)	E6 ₁₆ (-26)
FF ₁₆ (-1)	FD ₁₆ (-3)	FD ₁₆ (-3)	1 ₁₆ (1)	1 ₁₆ (1)	0 ₁₆ (0)	0 ₁₆ (0)
18 ₁₆ (25)	7F ₁₆ (127)	7F ₁₆ (127)	1 ₁₆ (1)	E1(-31)	E0 ₁₆ (-32)	E6 ₁₆ (-26)

Основная программа					
AC	Ожидание	AC			
17 ₁₆ (23)	19 ₁₆ (25)	19 ₁₆ (25)			
18 ₁₆ (24)	E6 ₁₆ (-26)	E6 ₁₆ (-26)			
19 ₁₆ (25)	E6 ₁₆ (-26)	E6 ₁₆ (-26)			