Modification for Position Spline in IMU Frame

Section II-C Position spline (equations (10) and (11)) is now represented in IMU frame:

$${}^{w}\mathbf{p}_{i}(t) = {}^{w}\mathbf{p}_{c_{j}} + {}^{w}_{c_{j}}\mathbf{R}^{c}\mathbf{p}_{i} + t\mathbf{l}_{j}^{p} + t^{2}\mathbf{q}_{j}^{p} + t^{3}\mathbf{c}_{j}^{p}$$
$${}^{w}\mathbf{p}_{i}(t_{j-1}) = {}^{w}\mathbf{p}_{i_{j-1}}$$

Section II-D The acceleration prediction is unchanged since the additional term ${}_{c}^{w}$, $\mathbf{R}^{c}\mathbf{p}_{i}$ in ${}^{w}\mathbf{p}_{i}(t)$ is not related to time.

Section II-F Velocity calculations (equation (18) and the following \mathbf{l}_{j}^{p} equation) are updated to:

$$\mathbf{l}_{j}^{p} = ({}^{w}\mathbf{p}_{c_{j-1}} + {}^{w}_{c_{j-1}}\mathbf{R}^{c}\mathbf{p}_{i} - {}^{w}\mathbf{p}_{c_{j}} - {}^{w}_{c_{j}}\mathbf{R}^{c}\mathbf{p}_{i})/t_{j-1} - t_{j-1}\mathbf{q}_{j}^{p} - t_{j-1}^{2}\mathbf{c}_{j}^{p}$$

$$= ({}^{w}\mathbf{p}_{c_{j}} + {}^{w}_{c_{j}}\mathbf{R}^{c}\mathbf{p}_{i} - {}^{w}\mathbf{p}_{c_{j+1}} - {}^{w}_{c_{j+1}}\mathbf{R}^{c}\mathbf{p}_{i})/t_{j} + t_{j}\mathbf{q}_{j+1}^{p} + 2t_{j}^{2}\mathbf{c}_{j+1}^{p}$$

Hence, the velocity continuity constraint (equation (19)) is updated to:

$$\mathbf{c}_{v}(j) = ({}^{w}\mathbf{p}_{c_{j-1}} + {}^{w}_{c_{j-1}}\mathbf{R}^{c}\mathbf{p}_{i} - {}^{w}\mathbf{p}_{c_{j}} - {}^{w}_{c_{j}}\mathbf{R}^{c}\mathbf{p}_{i})/t_{j-1} - t_{j-1}\mathbf{q}_{j}^{p} - t_{j-1}^{2}\mathbf{c}_{j}^{p} \\ - ({}^{w}\mathbf{p}_{c_{j}} + {}^{w}_{c_{j}}\mathbf{R}^{c}\mathbf{p}_{i} - {}^{w}\mathbf{p}_{c_{j+1}} - {}^{w}_{c_{j+1}}\mathbf{R}^{c}\mathbf{p}_{i})/t_{j} - t_{j}\mathbf{q}_{j+1}^{p} - 2t_{j}^{2}\mathbf{c}_{j+1}^{p} = \mathbf{0}$$

Jacobians.pdf, Section III-A In addition to $\frac{\partial \mathbf{c}_v(j)}{\partial^w \mathbf{p}_{c_{j-1}}}$, $\frac{\partial \mathbf{c}_v(j)}{\partial^w \mathbf{p}_{c_j}}$, and $\frac{\partial \mathbf{c}_v(j)}{\partial^w \mathbf{p}_{c_{j+1}}}$, we augment the Jacobians with:

$$\begin{split} &\frac{\partial \mathbf{c}_v(j)}{\partial^w_{c_{j-1}}\mathbf{R}} = -\frac{1}{t_{j-1}} \cdot (^w_{c_{j-1}}\mathbf{R}^c\mathbf{p}_i)^\wedge \\ &\frac{\partial \mathbf{c}_v(j)}{\partial^w_{c_j}\mathbf{R}} = (\frac{1}{t_{j-1}} + \frac{1}{t_j}) \cdot (^w_{c_j}\mathbf{R}^c\mathbf{p}_i)^\wedge \\ &\frac{\partial \mathbf{c}_v(j)}{\partial^w_{c_{j+1}}\mathbf{R}} = -\frac{1}{t_j} \cdot (^w_{c_{j+1}}\mathbf{R}^c\mathbf{p}_i)^\wedge \end{split}$$