

Cours:

STRUCTURES,

POLYNÔMES ET FRACTIONS RATIONNELLES

LICENCE: MATHÉMATIQUES,

SEMESTRE I

A B Prof. Hicham Yamoul

ABCDE

Table des matières

I	Lois de composition interne				
	I.I	Définit	tions et propriétés	2	
	1.2	Stabilit	té	4	
	1.3	Exercic	ces	4	
2	Groupes				
	2. I	Group	pes, premières notions	6	
		2.I.I	Définitions et Propriétés	6	
		2.1.2	Sous-groupes	7	
		2.I.3	Homomorphismes de groupes	8	

Chapitre 1

Lois de composition interne

1.1 Définitions et propriétés

Soit E un ensemble.

Une loi de composition interne (l.c.i.) sur E est une application de $E \times E$ dans E, noté généralement *, \bot , ... l'image de (x,y) par cette application est notée x*y. On a ainsi,

$$E \times E \to E$$
$$(x, y) \mapsto x * y$$

Exemple 1.1.1 \bullet $(\mathbb{N}, +)$; (\mathbb{R}, \times) ; $(\mathbb{C}, +)$; $(\mathbb{C}, .)$ les ensembles des nombres munis des opérations usuelles + et \times sont des ensembles munis des l.c.i.

ullet Si on note F^E l'ensemble des applications de E dans F, alors

$$E^E \times E^E \to E^E$$

 $(f,g) \mapsto f \circ g$

La composition des applications est une l.c.i.

 $\bullet \cap et \cup sont \ des \ lois \ de \ composition \ internes \ sur \ \mathcal{P}(E).$

Définition 1.1.1 On dit qu'une l.c.i. est commutative si $\forall (x,y) \in E^2$; x*y=y*x.

Définition 1.1.2 On dit qu'une l.c.i. est associative si $\forall (x, y, z) \in E^3$; (x * y) * z = x * (y * z) = x * y * z.

Définition 1.1.3 Soit $e \in E$, on dit que e est un élément neutre pour * lorsque $\forall x \in E, x*e=e*x=x$

Les deux égalités x * e = x et e * x = x doivent être vérifiées lorsque * n'est pas commutative.

Proposition 1.1.1 Si une l.c.i. * admet un élément neutre e dans E, alors il est unique.

En effet, si e et e' sont deux éléments neutres, alors e' = e * e' = e (La première égalité vient du fait que e est neutre, la seconde du fait que e' est neutre)

Définition 1.1.4 Si * est une l.c.i. est associative sur E et s'il y a dans E un élément neutre pour * on dit que (E, *) est un monoïde.

Si de plus * est commutative, on dit que (E, *) est un monoïde commutatif.

Exemple 1.1.2 $(\mathbb{N}, +)$ est un monoïde commutatif.

Définition 1.1.5 Soit E un ensemble muni d'une l.c.i. possédant un élément neutre e. Soient x et x' deux éléments de E. On dit que x' est symétrique de x (pour la loi *) lorsque;

$$x * x' = x' * x = e.$$

Proposition 1.1.2 Si * est associatif, et si un élément x de E admet un élément symétrique pour *, alors il est unique.

Preuve : En effet, si x' et x'' sont deux éléments symétriques de x, alors : x'' = e * x'' = (x' * x) * x'' = x' * (x * x'') = x' * e = x'.

Si un élément x de E admet un élément symétrique pour \ast , alors on dit que x est symétrisable.

Définition 1.1.6 Soit E un ensemble muni d'une l.c.i. *. Un élément a de E est dit régulier à gauche (resp. à droite) si

$$\forall x, y \in E, \ a * x = a * y \Rightarrow x = y$$

(resp.)
$$\forall x, y \in E, x * a = y * a \Rightarrow x = y$$

Lorsque la loi * est commutative, on dit simplement que a est régulier.

Exemple 1.1.3 Dans $(\mathbb{Z}, .)$, tout élément non nul est régulier.

Définition 1.1.7 On suppose que E est muni de deux lois de composition internes * et \top . On dit que * est distributive sur \top si

$$\forall x,\,y\,z\in E;\;x*(y\top z)=(x*y)\top(x*z)\,\mathit{et}\\(y\top z)*x=(y*x)\top(z*x)$$

Exemple 1.1.4 Dans $(\mathbb{Z}, +, .)$ La loi . est distributive sur +.

1.2. STABILITÉ H.Yamoul

1.2 Stabilité

(E,*) désigne toujours un ensemble muni d'une l.c.i. *.

Définition 1.2.1 Soit F une partie non vide de E. On dit que F est stable par * si

$$\forall (x,y) \in F^2, \ x * y \in F.$$

Proposition 1.2.1 Soit (E, *) un monoide (* est associative). Alors l'ensemble S des éléments symétrisables de E est stable par *.

Preuve : Si x admet un élément symétrique x', et si y admet un élément symétrique y'. Alors x * y admet un élément symétrique appartenant à S, en effet, soient x, y deux éléments de S. On note x et y leurs symétriques resp.

Soit e l'élément neutre de E.

On a
$$(x*y)*(y'*x') = x*(y*y')*x' = e$$
. $(x'*y')*(y*x) = x'*(y'*y)*x = x'*x = e$.

Donc $x * y \in F$ et l'élément symétrique de x * y est y' * x'.

Soit A un ensemble et soit E un ensemble muni d'une l.c.i. On définit sur $E^A = \mathcal{F}(A, E)$ une loi $\hat{*}$ de la façon suivante :

Pour tous f, g de $\mathcal{F}(A, E)$, $f \hat{*} g$ est l'application de A dans E qui à tout x de A associe f(x) * g(x). Ainsi :

$$f \hat{*} g : A \to E$$

 $x \mapsto f(x) * g(x)$

1.3 Exercices

Exercice 1.3.1 Pour tout $x, y \in I =]1, +\infty[$, on pose x * y = xy - x - y + 2. Montrer que * est une l.c.i. dans I

Exercice 1.3.2 On considère la l.c.i. \top définie sur \mathbb{Z}^2 par :

$$\forall (x,y) \in \mathbb{Z}^2; \ x \top y = xy - 3x - 3y + 12$$

- 1. Etudier la commutativité et l'associativité de \top .
- 2. Montrer que (\mathbb{Z}, \top) admet un élément neutre à déterminer.
- 3. Déterminer l'ensemble des éléments symétrisables et le symétrique de chaque élément de cet ensemble.
 - 4. Déterminer l'ensemble des éléments réguliers.

1.3. EXERCICES H.Yamoul

Exercice 1.3.3 Soit (E, *) tel que :

i)
$$(\forall x \in E)$$
; $x * x = x$,
ii) $\forall (x, y, z) \in E^3$; $(x * y) * z = (y * z) * x$
Montrer que * est commutative.

Exercice 1.3.4 Soit (E, *)

(*)
$$\forall (x, y, z, w) \in E^4$$
, $(w * x) * (y * z) = w * z$
1. Montrer que $\forall a, b, c \in E$, on a $c = a * b \Rightarrow c * c = c$,

2. En déduire que a, b x de E

$$(a*b)*x = a*x.$$

Exercice 1.3.5 Soit E un ensemble non vide muni d'une loi \cdot qui est associative et qui vérifie :

$$\forall a, b, c, d \in E, ab = cd \Rightarrow a = c \text{ ou } b = d.$$

Démontrer que

$$\forall a, b \in S, ab = a \text{ ou } ab = b$$

Exercice 1.3.6 Soit E un ensemble non vide muni de deux lois * et \circ telles que :

$$\forall x, y, z, t \in E, (x * y) \circ (z * t) = (x \circ y) * (z \circ t);$$

il existe $e \in E$ tel que $\forall x \in E, x * e = x$;

il existe $\varepsilon \in E$ tel que $\forall x \in E, \ \varepsilon \circ x = x \circ \varepsilon = x$.

Montrer que

$$\varepsilon = e \ et \circ = *.$$

Exercice 1.3.7 Dans \mathbb{R} , on définit la loi de composition interne * par :

$$\forall x, y \in \mathbb{R}, x * y = ax + by.$$

Trouver des conditions sur a et b pour que *

- soit commutative,
- soit associative,
- possède un élément neutre.