Proposition 3.0.8. [8, Proposition 6] Soit L un anneau de $Lie \mathfrak{M}_c$ tel que pour tout $x \in L$, il existe un n tel que $[x+y,_n x] = [y,_n x] = 0$ pour tout $y \in L'$. Alors L est nilpotent.

Démonstration. On procède par récurrence sur la classe de résolubilité, le cas abélien étant trivial. On peut donc supposer que L' est nilpotent. Il suffit de montrer par récurrence que tout centre itéré de L' est contenu dans un centre itéré de L: il existera alors un indice i tel que $L' = Z_n(L') \leq Z_i(L)$ et donc $L/Z_i(L)$ est abélien et $L = Z_{i+1}(L)$. Evidemment, $\{0\} = Z_0(L')$ est contenu dans $Z_0(L)$. Supposons que $Z_i(L') \leq Z_k(L)$; les sous-anneaux $Z_{i+1}(L')$ et $Z_i(L')$ sont des idéaux de L. On considère $A = Z_{i+1}(L')/Z_i(L')$; c'est un anneau de Lie abélien sur lequel L agit de façon adjointe, de sorte que A est un L-module. L'anneau de Lie A est centralisé par L' et on obtient donc une structure de L/L'-module.

Comme L est \mathfrak{Z}_f , il existe $x_1,...,x_n$ dans L tels que $C_A(L)=C_A(x_1,...,x_n)$. Pour tout x_i , il existe un entier n_i tel que $[x_i+y,_{n_i}x_i]=[y,_{n_i}x_i]=0$; ainsi, pour tout $y\in L'$, l'action de x_i+y sur A coïncide avec celle de x_i . D'après le Lemme 3.0.7, on obtient donc pour tout $y\in Z_{i+1}(L'), [y,_m L]\leq Z_i(L')\leq Z_k(L)$ pour $m=1+\sum_{i=1}^k(n_i-1)$. Par conséquent, d'après la Proposition 2.0.6, $y\in Z_{k+m}(L)$. Finalement, $Z_{i+1}(L')\leq Z_{k+m}(L)$.

Théorème 3.0.9. [8, Theorem 8] Soit L un anneau de Lie \mathfrak{M}_c . Alors F(L) est un idéal nilpotent.

Démonstration. L'idéal F = F(L) est localement nilpotent et donc résoluble d'après la Proposition 3.0.3. Soit $x \in F$; cet élément appartient à un idéal nilpotent I de L, de classe de nilpotence r. Par conséquent, pour un élément g de F', $[x,y] \in I$ et donc $ad_x^r(x+y) = ad_x^r(y) = 0$. On conclut d'après la Proposition 3.0.8.

4 Théorème de Engel

Dans cette section, nous allons établir un analogue du théorème de Engel. Sauf mention explicite du contraire, L est une algèbre de Lie sur un corps de caractéristique nulle. D'après les travaux de Hartley, il est possible de définir un analogue du radical de Baer dans ce contexte.

Définition 4.0.1. Soit L une algèbre de Lie. On dit que H est un sous-idéal de L s'il existe une suite finie de sous-algèbres telle que :

$$H_0 = H \triangleleft H_1 \triangleleft ... \triangleleft H_n = L.$$

 $L'indice\ d'un\ sous-id\'eal\ d\'esigne\ la\ longueur\ minimale\ d'une\ suite\ de\ la\ forme\ pr\'ec\'edente.$

Fait 4.0.2. [9] Le radical de Baer B(L) est la sous-algèbre engendrée par les sous-idéaux nilpotents et de dimension finie. On a: