Deep Learning I

Introducción al machine learning y a las redes neuronales

MIGUEL ÁNGEL MARTÍNEZ DEL AMOR

DEPARTAMENTO CIENCIAS DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL UNIVERSIDAD DE SEVILIA

About me

- Miguel Ángel Martínez del Amor
- •Profesor Ayudante Doctor del Departamento de Ciencias de la Computación e Inteligencia Artificial

Research Group on Natural Computing

NVIDIA Deep Learning Institute

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

¿Inteligencia Artificial?

People with no idea about AI, telling me my AI will destroy the world

Me wondering why my neural network is classifying a cat as a dog..

Clasificación de objetos (y gatos...)

Localización de objetos en imágenes

Segmentación de tumores

Conducción autónoma (segmentación, localización obstáculos)

Progression of computer vision from

2015

... to 2018

Traductores automáticos

Series temporales

Generando caras artificiales

Paisajes fotorealísticos desde un dibujo

Haciendo hablar a la Mona Lisa:

14

Añadir audio a vídeos sin sonido

Ganar a StarCraft II (AlphaStar) y al GO (AlphaGo)

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

http://www.cs.us.es/~fsancho/?p=deep-learning

WEBINAR DEEP LEARNING I 18

¿Qué es Machine Learning?

¿Qué es Machine Learning?

Rama de la Inteligencia Artificial cuyo objetivo es conseguir que las computadoras "aprendan" a base de ejemplos (Learn by example)

Entrenamiento

http://singaporebusinessintellig ence.blogspot.com/2018/10/w hat-is-automated-machinelearning.html

¿Qué es Machine Learning?

Rama de la Inteligencia Artificial cuyo objetivo es conseguir que las computadoras "aprendan" a base de ejemplos (Learn by example)

Entrenamiento

http://singaporebusinessintellig ence.blogspot.com/2018/10/w hat-is-automated-machinelearning.html

Inferencia

Tipos de Machine Learning

Según el objetivo a predecir

Ranking

Tipos de Machine Learning

Según se usan los ejemplos

Supervised Learning

x_2 x_2 x_1

Unsupervised Learning

Reinforcement Learning

 $\underline{https://lakshaysuri.wordpress.com/2017/03/19/machine-learning-supervised-vs-unsupervised-learning/machine-learning-supervised-vs-unsupervised-learning/machine-learning-supervised-vs-unsupervised-learning/machine-learning-supervised-vs-unsupervised-learning/machine-learning-supervised-vs-unsupervised-learning/machine-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-vs-unsupervised-learning-supervised-learning-supervised-vs-unsupervised-learning-supervised-learning-supervised-learning-supervised-learning-supervised-learning-supervised-learning-supervised-learning-supervised-supervi$

WEBINAR DEEP LEARNING I 23

Metodología por pasos

Hay 5 pasos básicos para construir un modelo ML:

Aunque es un proceso altamente iterativo, que debe repetirse hasta encontrar resultados satisfactorios...

Paso 1. Preparación de Datos

25

Paso 2. Ingeniería de Características

- •Una característica (feature) es una propiedad individual medible del fenómeno/problema que está siendo analizado, y que será usado para formar predicciones.
 - imágenes: pixeles
 - coches autónomos: datos cámaras, sensores, GPS...
- •El número de características se llama dimensión.

	iris	sepal length	sepal width	petal length	petal width
111	Iris-virginica	6.500	3.200	5.100	2.000
117	Iris-virginica	6.500	3.000	5.500	1.800
148	Iris-virginica	6.500	3.000	5.200	2.000
59	lris-versicolor	6.600	2.900	4.600	1.300
76	lris-versicolor	6.600	3.000	4.400	1.400
66	lris-versicolor	6.700	3.100	4.400	1.400
78	lris-versicolor	6.700	3.000	5.000	1.700
87	lris-versicolor	6.700	3.100	4.700	1.500
109	Iris-virginica	6.700	2.500	5.800	1.800
125	Iris-virginica	6.700	3.300	5.700	2.100
141	Iris-virginica	6.700	3.100	5.600	2.400
145	Iris-virginica	6.700	3.300	5.700	2.500
146	Iris-virginica	6.700	3.000	5.200	2.300
77	lris-versicolor	6.800	2.800	4.800	1.400
113	lris-virginica	6.800	3.000	5.500	2.100
144	lris-virginica	6.800	3.200	5.900	2.300
53	lris-versicolor	6.900	3.100	4.900	1.500
121	lris-virginica	6.900	3.200	5.700 26	2.300

Paso 3. Modelado

- •Hay que elegir un tipo de modelo:
 - Paramétrico: El modelo resume los datos con un conjunto de parámetros (p.ej. Regresión lineal, redes neuronales, ...)
 - No paramétrico: El modelo representa los datos sin parámetros, basado directamente en información de los ejemplos (p.ej. Árbol de decisión, KNN...)
- •No confundir un parámetro del modelo con un **hiperparámetro**: parámetro que se emplea para ajustar el entrenamiento del modelo

https://towardsdatascience.com/understanding-hyperparameters-and-its-optimisation-techniques-f0debba07568

WEBINAR DEEP LEARNING I 27

Paso 4. Medida del Rendimiento

28

Paso 4. Medida del Rendimiento

Por ejemplo, en clasificación binaria:

Imagen:

 $Accuracy = \frac{TP + TN}{TOTAL}$

Precission =
$$\frac{TP}{TP+FP}$$

Images from the STL-10 dataset

Paso 5. Mejora de Rendimiento

Al final, todo se reduce a un proceso de mejora continuado

WEBINAR DEEP LEARNING I

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

Regresión lineal

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

X

$$y \approx f(x) = Wx + b = 0.8233x + 52,096$$

Regresión lineal

x_1	\mathbf{X}_{2}	X_3	X_4	У
Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

$$y \approx f(x) = Wx^{T} = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4$$
$$f = 80 + 0.9x_1 + 0.5x_2 + 3x_3 - 2x_4$$

Perceptrón simple / Regresión logística

- •Frank Rosenblatt, ~1957
- ·Clasificación binaria (dos clases, 0 y 1).

•
$$\mathbf{y} \approx f(W\mathbf{x}^T + b) = \begin{cases} 1, \text{ si } W\mathbf{x}^t + b > \text{valor_umbral} \\ 0, \text{ en otro caso} \end{cases}$$

- Otras funciones de activación: sigmoide (regresión logística), signo, ...
- •Si pensamos en 2 dimensiones, sería partir el plano mediante una recta.

La neurona artificial

•Neurona artificial, 1943, McCulloch y Pitts

La neurona artificial

•Neurona artificial, 1943, McCulloch y Pitts

Redes multicapa

- •Organizando perceptrones simples en múltiples capas (MLP):
 - Capa de **neuronas** de entrada
 - Capa/s de **neuronas** ocultas
 - Capa de neuronas de salida
- Cada neurona de una capa conectada con todas de la capa anterior (fully connected)
- •Capa de **entrada** sin pesos

Redes multicapa: capa de salida

•Clasificación binaria:

- K=2 clases
- Variable de salida es y=0 o 1
- 1 unidad de salida

hidden layer 1 hidden layer 2

Clasificación multiclase:

- K≥3 clases
- K variables de salida, , y₁...y_k
- K unidades de salida
- Se considera la más alta

Funciones de activación: capa de salida

Clasificación binaria:

• La función **sigmoide o logística**: $\sigma(x) = \frac{1}{1+e^{-x}}$

·Clasificación multiclase:

• La función **softmax**: $\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^N e^{z_k}}$

X ...

Funciones de activación: No linealidad

Funciones de activación: capas ocultas

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

Función de coste

- •Necesitaremos ajustar los parámetros del modelo (pesos W) para que se comporte mejor con los datos.
- •Por tanto, necesitamos cuantificar cuánto de "buena" es nuestra red para un ejemplo.
- •Definiremos:
 - La función de pérdida (loss): para un ejemplo
 - La función de coste (cost): para un conjunto de ejemplos (dataset, batch)
 - La función objetivo a minimizar. La función de coste es una función objetivo.
- •El nombre de estas funciones se suelen confundir

Función de coste

•En regresión lineal es MSE (error cuadrático medio):

$$J(W) = \frac{1}{m} \sum_{i=1}^{m} (f_{W}(x^{i}) - y^{i})^{2}$$

•En regresión logística para clasificación binaria (binary cross entropy):

$$J(W) = \frac{1}{m} \left(\sum_{i=1}^{m} y^{i} \log(f_{W}(x^{i})) + (1 - y^{i}) \log(1 - f_{W}(x^{i})) \right)$$

•En regresión logística para clasificación multiclase (cross entropy):

$$J(W) = \frac{1}{m} \left(\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^i \log \left(f_W^k(x^i) \right) + \left(1 - y_k^i \right) \log \left(1 - f_W^k(x^i) \right) \right)$$

Descenso por gradiente

Buscar el mínimo posible de la función de coste, es decir $\min_{\mathbf{W}} J(\mathbf{W})$

Descenso por gradiente

Buscar el mínimo posible de la función de coste, es decir $\min_{\mathbf{W}} J(\mathbf{W})$

Descenso por gradiente

- •Seguir el gradiente en negativo (la mayor pendiente)
- •Es decir: calculamos el coste, su derivada, y actualizamos cada parámetro w_i :

$$\mathbf{w}_j = \mathbf{w}_j - \alpha \frac{d}{d\mathbf{w}_j} J(\mathbf{W}) = \mathbf{w}_j - \alpha \sum_{i=1}^m (f_{\mathbf{W}}(x^i) - y^i) f'_{\mathbf{W}}(x^i) x_j^i$$

 $\cdot \alpha$ es el factor de aprendizaje (un *hiperparámetro*). Hay que ajustarlo bien:

Descenso por gradiente: métodos

http://cs231n.github.io/neural-networks-3/

- •Métodos varían según actualización de parámetros
- Uso de mini-batch (batch)
- Adam

Descenso por gradiente: métodos

•Métodos varían según actualización de parámetros

- Uso de mini-batch (batch)
- Adam

http://cs231n.github.io/neural-networks-3/

Retropropagación

- ·Para entrenar una red, hacemos una iteración (época) sobre el dataset:
 - 1. Pasarle una serie de ejemplos y calcular sus salidas
 - 2. Calcular el valor de la función de coste
 - 3. Calcular los errores y los gradientes en la capa de salida
 - 4. Propagar los errores y gradientes hacia atrás (la capa de entrada)
 - 5. Actualizar los pesos de la red

Retropropagación

Demo

Comprobemos la potencia representacional de una red con https://playground.tensorflow.org

WEBINAR DEEP LEARNING I

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras

Niveles de programación

Programación a nivel 0:

- Podemos elegir el lenguaje de nuestra elección, una buena tarde e implementar los conceptos.
- ¿Qué pasa si quiero cambiar la arquitectura de la red? Si no lo he hecho bien, tendría que reprogramarla desde cero, sobre todo para ajustar la propagación del gradiente.

```
import matplotlib.pyplot as plt
import numpy as np
from scipy, special import expit
def sigmoid(eval):
    return expit(eval)
def Neural Training(Y01, Labels01, eta, Epochs):
    d, samplenumb = Y01. shape
    # Random [-1,1] init from Haykin
    WIH = 2*np.mat(np.random.rand(2*d,d)) -1.0
    WHO = 2*np.mat(np.random.rand(1,2*d)) -1.0
   difft = Labels01.astype(np.float64)
    for i in xrange(1, Epochs):
        #Get the input to the output layer
        y j temp = sigmoid(WIH*Y01)
        netk = WHO*y i temp
        zk = siamoid(netk)
        # Creating Delta Wk
        diff1 = difft - zk
        tDeltaWk = eta*np.multiply(diff1,np.multiply(sigmoid(netk),1.0-sigmoid(netk)))
        tDeltaWk = np.tile(tDeltaWk,(2*d,1))
        DeltaWk = np.multiply( v i temp, tDeltaWk)
        DeltaWk = np.transpose(np.sum(DeltaWk,1))
        # New Weights
        WHO = WHO + DeltaWk
        #Creating Delta Wi
        dnetj = np.multiply(y j temp, 1.0-y j temp)
        tprodsumk = np.multiply(np.transpose(DeltaWk),np.transpose(WHO))
        tprodsumk = np.tile(tprodsumk, (1, samplenumb) )
        tprodsumk = eta*np.multiply(tprodsumk,dnetj)
        DeltaWi = tprodsumk * np.transpose(Y01)
        # New Weights
        WIH = WIH + DeltaWi
    return WIH, WHO
# Number of samples
N= 69999
#Number of Epochs
Epochs = 20
#Learning Rate
eta = 0.001
# opening images for [r]eading as [b]inary
in file = open("train-images.idx3-ubyte", "rb")
in file.read(16)
Data = in file.read()
in file.close()
# Transform the data stream
X = np.fromstring(Data, dtype=np.uint8)
X = X.astype(np.float64)
X = np.mat(X)
```

Niveles de programación

- •Programación a nivel 1:
 - APIs con bloques reutilizables y diferenciación automática.
 - TensorFlow y PyTorch

Niveles de programación

•Programación a nivel 2:

- APIs que proveen una capa de abstracción sobre los detalles de modelo.
- Encajamos bloques que representan partes de la arquitectura que queremos montar.
- Keras, Caffe, Fast.ai

Ecosistema actual

Índice

- 1. Motivación
- 2. Introducción al Machine Learning
- 3. Redes neuronales multicapa
- 4. Optimización de redes neuronales
- 5. Entornos software para Deep Learning
- 6. Nuestra primera red con Keras