Forming a Magic Square

We define a magic square to be an $n \times n$ matrix of distinct positive integers from 1 to n^2 where the sum of any row, column, or diagonal of length n is always equal to the same number: the magic constant.

You will be given a 3×3 matrix s of integers in the inclusive range [1,9]. We can convert any digit a to any other digit b in the range [1,9] at cost of |a-b|. Given s, convert it into a magic square at *minimal* cost. Print this cost on a new line.

Note: The resulting magic square must contain distinct integers in the inclusive range [1,9].

Example

```
s = [[5, 3, 4], [1, 5, 8], [6, 4, 2]]
```

The matrix looks like this:

```
5 3 4
1 5 8
6 4 2
```

We can convert it to the following magic square:

```
8 3 4
1 5 9
6 7 2
```

This took three replacements at a cost of |5-8|+|8-9|+|4-7|=7.

Function Description

Complete the *formingMagicSquare* function in the editor below.

formingMagicSquare has the following parameter(s):

• int s[3][3]: a 3 imes 3 array of integers

Returns

• int: the minimal total cost of converting the input square to a magic square

Input Format

Each of the 3 lines contains three space-separated integers of row s[i].

Constraints

• $s[i][j] \in [1, 9]$

Sample Input

Sample Output

1

Explanation

Matrix \boldsymbol{s} initially looks like this:

```
4 9 2
3 5 7
8 1 5
```

Observe that it's not yet magic, because not all rows, columns, and center diagonals sum to the same number.

If we change the bottom right value, s[2][2], from 5 to 6 at a cost of |6-5|=1, s becomes a magic square at the minimum possible cost. Thus, we print the cost, 1, on a new line.