ELSEVIER

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Tables of E2 transition probabilities from the first 2⁺ states in even-even nuclei

B. Pritychenko^{a,*}, M. Birch^b, B. Singh^b, M. Horoi^c

- ^a National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- ^b Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- ^c Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA

HIGHLIGHTS

- Compilation of experimental transition probabilities or B(E2) values for the known first 2⁺ states in even-even nuclei.
- Evaluation of B(E2) values, lifetimes and deformation parameters for 447 even-even nuclei.
- Extensive discussion on data evaluation policies and procedures.
- Nuclear shell model calculation of the first 2⁺ states energies and B(E2) values in even–even nuclei.

ARTICLE INFO

Article history:
Received 14 August 2015
Received in revised form
2 October 2015
Accepted 2 October 2015
Available online 3 November 2015

Keywords: B(E2)First 2^+ states Z=2-104Deformation Evaluation Nuclear data

ABSTRACT

Experimental results of E2 transition probabilities or B(E2) values for the known first 2^+ states in 447 even–even nuclei have been compiled and evaluated. The evaluation policies for the analysis of experimental data have been described and new results are discussed. The recommended B(E2) values have been compared with comprehensive shell model calculations for a selected set of nuclei, where such theoretical procedures are amenable. The present work was motivated by a rapid increase in the number of new B(E2) measurements for the first 2^+ states since the previous evaluation of such data by S. Raman et al. published in 2001. Future plans to investigate the systematics of B(E2) \uparrow values, and intercomparison of different experimental techniques to obtain these data are outlined.

Published by Elsevier Inc.

E-mail address: pritychenko@bnl.gov (B. Pritychenko).

^{*} Corresponding author.

Contents

1.		uction	
2.	Nuclea	r Databases used in the present work	. 4
3.		mental B(E2) values	
	3.1.	⁶ He	
	3.2.	^{10,12} Be	
	3.3.	10,16,18,20 _C	. 1
		^{22,24} 0	. 4
	3.4.	18 26 28 30xx	. 4
	3.5.	^{18,26,28,30} Ne	. 5
	3.6.	^{20,30,32,34} Mg	. 5
	3.7.	^{24,36,38,40} Si	. 5
	3.8.	²⁸ S	
	3.9.	32,44,46, ⁴⁸ Ar	. 5
	3.10.	40,42,44,46,48,50Ca	5
	3.11.	52,54,56,58 _{Ti}	. 5
		46,56,58,60,62,64 _{Cr}	
	3.12.	50.53.63.66.68=	. ວ
	3.13.	50,52,62,64,66,68 Fe	. 6
	3.14.	54,58,60,62,64,70,74 _{Ni}	. 6
	3.15.	^{72,74,76,78,80} Zn	. 6
	3.16.	64,66,70,76,78,80,82Ge	. 6
	3.17.	^{68,70,72,82,84} Se	. 6
	3.18.	72,74,76,78,88,90,92,94,96 K r	6
	3.19.	76,78,84,86,88,96 Sr	. 6
		88,92,96,104,106Zr	. 0
	3.20.	106 109 -	. /
	3.21.	106,108 Mo	. 7
	3.22.	^{96,98,106} Ru	. 7
	3.23.	98,100,110,114Pd	. 7
	3.24.	100, 102, 104, 110, 122, 124, 126 Cd	. 7
	3.25.	104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134 Sn	. 7
	3.26.	108,112,114,118,120,122,128,130,132,134,136Te	7
	3.27.	114,124,126,128,130,132,134,138,140,142,144 Xe	, ,
		122,136,140Ba	. 0
	3.28.		
	3.29.	^{148,152} Ce	. 8
	3.30.	^{136,140} Nd	. 8
	3.31.	¹⁴⁰ , ¹⁴² , ¹⁵² Sm	. 8
	3.32.	138,148,160,162,164 Gd	. 8
	3.33.	¹⁵⁶ Dy	8
	3.34.	158,170 Er	
		168,170,172,174,176Hf	. 0
	3.35.	172 174 176 178 198	. 8
	3.36.	172,174,176,178,188 W	. 9
	3.37.	174,176,178,180,188,190 Os	. 9
	3.38.	178,182,186,196 Pt	. 9
	3.39.	180, 182, 184, 186 Hg	. 9
	3.40.	^{186,188,208} Pb	. 9
	3.41.	194,196,198,200,202 _{P0}	. 9
	3.42.	^{202,204,220} Rn	. a
	3.43.	²²⁴ Ra.	, J
4			. 9
4.		evaluation policies	
		B(E2)↑ Evaluation Procedure	
	4.2.	Asymmetric uncertainties	
	4.3.	A brief review of the previous results	. 10
5.	Adopte	ed values	. 11
	5.1.	Analysis of adopted values	. 12
6.		nodel calculations	
7.		plans and complementary analyses.	
8.		sions	
		wledgments	
		nces	
		ation of Tables	
	Tal	ble 1. Experimental B(E2) \uparrow -, τ - and β_2 -values for $Z=2$ –104 nuclei.	. 15
		ole 2. Comparative analysis of the present and S. Raman et al. [13] results.	
		ble 3. Adopted (recommended) B(E2) \uparrow -, τ - and β_2 -values for $Z=2$ -104 nuclei	
		ble 4. Shell model $E(2_1^+)$ -, $B(E2\uparrow)$ -values for even-even nuclei.	
		ation of Graphs	
		aph 1. Evaluated and shell model calculated energies, E(2_1^+), and B(E; $0_1^+ o 2_1^+$) values for He nuclei	
		aph 2. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Be nuclei	
	Gr	aph 3. Evaluated and shell model calculated energies, E(2_1^+), and B(E; $0_1^+ o 2_1^+$) values for C nuclei	. 16

Graph 4. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ o 2_1^+)$ values for O nuclei	
Graph 5. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ne nuclei	16
Graph 6. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Mg nuclei	
Graph 7. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Si nuclei	16
Graph 8. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for S nuclei.	16
Graph 9. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ar nuclei.	16
Graph 10. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ca nuclei	16
Graph 11. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ti nuclei.	16
Graph 12. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \to 2_1^+)$ values for Cr nuclei	16
Graph 13. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \to 2_1^+)$ values for Fe nuclei	
Graph 14. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \to 2_1^+)$ values for Ni nuclei	
Graph 15. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Zn nuclei	
Graph 16. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ge nuclei.	
Graph 17. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+\to 2_1^+)$ values for Se nuclei.	
Graph 18. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+\to 2_1^+)$ values for Kr nuclei.	16
Graph 19. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ v alues for Sr nuclei	16
Graph 20. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ v alues for Zr nuclei.	
Graph 21. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+\to 2_1^+)$ values for Mo nuclei.	
Graph 22. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ru nuclei.	16
Graph 23. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pd nuclei	
Graph 24. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+\to 2_1^+)$ values for Cd nuclei	
Graph 25. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Sn nuclei.	
Graph 26. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Te nuclei.	
Graph 27. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Xe nuclei	
Graph 28. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ba nuclei	16
Graph 29. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ce nuclei	
Graph 30. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Nd nuclei.	16
Graph 31. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ v alues for Sm nuclei	
Graph 32. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Gd nuclei.	
Graph 33. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Dy nuclei.	
Graph 34. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Er nuclei.	
Graph 35. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Yb nuclei	
Graph 36. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Hf nuclei.	
Graph 37. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for W nuclei.	
Graph 38. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Os nuclei	
Graph 39. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pt nuclei	
Graph 40. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Hg nuclei.	
Graph 41. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pb nuclei	
Graph 42. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Po nuclei.	
Graph 43. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Rn nuclei.	
Graph 44. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ra nuclei.	
Graph 45. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Th nuclei	
Graph 46. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for U nuclei.	
Graph 47. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \to 2_1^+)$ values for Pu nuclei.	
Graph 48. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Cm nuclei.	
Graph 49. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Cf nuclei	1/
Graph 50. Evaluated energies, E(2 ⁺ ₁) for Fm nuclei.	
Graph 51. Evaluated energies, E(2 [†] ₁) for No nuclei.	
Graph 52. Evaluated energy, E(2 ₁ ⁺) for Rf nuclei.	17

1. Introduction

Measurements of the quadrupole collectivity of atomic nuclei started in the early 1950s. Such collectivity was extensively studied along the $N \sim Z$ or "valley of stability" region. In this region, many nuclear structure phenomena, such as nuclear shell closure, were identified and explained in the framework of the nuclear shell model [1,2]. With the advent of radioactive beam and isotope production techniques, scientists were presented with a unique opportunity to test nuclear models for neutron- and protonrich nuclei. This approach produced many interesting and often unexpected results on the evolution of nuclear properties near the neutron and proton driplines [3].

To demonstrate the importance of B(E2) values in nuclear physics research and model development, we will consider nuclear

"magic numbers" and their evolution along the nuclear chart. In stable nuclei, large gaps exist between nuclear shells when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82, and 126 [1,4]. These gaps result in large transition energy values between the ground and first excited states, relatively low quadrupole collectivities and small neutron capture cross sections. The "magic numbers" and their values are not preserved; they evolve for unstable nuclei due to nuclear structure effects. Therefore, nuclear properties of the first excited 2^+_1 states in even–even nuclei provide important information on the evolution of nuclear properties and shell model studies. Accurate knowledge of these properties is necessary for continuing the development of nuclear model calculations and theoretical understanding of many interesting phenomena in the quantum world.

Another significant application of B(E2) evaluated data is for nuclear reaction model calculations. Precise values of quadrupole deformation parameters are essential for the Reference Input Parameter Library (RIPL) [5] and nuclear reaction model codes such as EMPIRE and TALYS [6,7], which are extensively used for ENDF evaluations [8–10]. Such evaluations are critically important for applications of nuclear data as the ENDF/B-VII.1 library [8] provides evaluated neutron cross sections for frequently-used nuclear science and technology codes GEANT and MCNP.

The importance of compilation and evaluation of E2 transition probabilities for even-even nuclei was recognized in the 1960s by P.H. Stelson and L. Grodzins at Oak Ridge National Laboratory. They produced the first compilation of B(E2) values for 2^+_1 states [11], which was then continued by S. Raman et al. [12,13]. Presently, this work proceeds under the auspices of the US Nuclear Data Program (USNDP). It began as periodic update of B(E2) values for the mass regions, where a large number of new experimental results became available. The first update of B(E2) values for Cr, Fe, Ni and Zn isotopes ($Z\sim28$ region) has been recently published by the joint effort of NNDC, Brookhaven National Laboratory (BNL), McMaster and Central Michigan Universities [14]. This update supplied valuable feedback to our collaboration from the research community [15], which has helped to improve the quality of the present work. The detailed description of compilation and evaluation tools, procedures and results is given in the following sections.

2. Nuclear Databases used in the present work

Nuclear Science References (NSR) [16], Evaluated Nuclear Structure Data File (ENSDF) [17,18] and Experimental Unevaluated Nuclear Data List (XUNDL) [19] databases each played a crucial role in this project. A short description of the databases is presented below.

The NSR database [16] is the most comprehensive source of low- and intermediate-energy nuclear physics bibliographical information, containing more than 219,000 articles, mostly in peer-reviewed journals, since the beginning of nuclear science. It consists of primary (journals) and secondary (proceedings, lab reports, theses, private communications) references. The main goal of the NSR is to provide bookmarks for experimental and theoretical articles in nuclear science using keywords. NSR keywords are assigned to articles that contain results on atomic nuclei and masses, nuclear decays, nuclear reactions and other properties. Keywords are also used to build author and subject indexes, which allow users to search for articles by subject (Coulomb excitation, σ , B(E2), $T_{1/2}$, etc.) or author. This database is updated weekly and serves as a primary source of bibliographical information for the ENSDF database.

The ENSDF database [17,18] contains evaluated nuclear structure and decay data. An international network of evaluators [20] contributes to the database. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of "adopted" level and γ -ray transition properties, which represent the evaluator's determination of the recommended values for these properties, based on all the available experimental data. Information in the database is regularly updated and most of this information is also published in Elsevier Nuclear Data Sheets journal as A-chain evaluations. Due to the large scope of the database, evaluation updates are often conducted on an \sim 10-year basis, with some nuclides updated more frequently.

The XUNDL database [19] contains compiled experimental nuclear structure data from current publications in the "ENSDF" format. In general, the information in a given XUNDL dataset comes from a single journal article, or from a set of closely-related articles

by one group of authors. The information in the XUNDL database is often used in the updated ENSDF evaluations.

We primarily used NSR and XUNDL database content for the experimental data search. These searches were verified using the ENSDF database, previous evaluation of S. Raman et al. [13] and references from the original experimental papers.

3. Experimental B(E2) values

Experimental values of B(E2), τ and β_2 are compiled in Table 1. This table extends the list of the previously reported quantities by S. Raman et al. [13], and includes target, beam, beam energy and annotation where the beam energy exceeds the Coulomb barrier [21]. In general, Coulomb excitation and nuclear resonance fluorescence measurements list $0_1^+ \rightarrow 2_1^+$ transitions, while lifetime measurements list $2_1^+ \rightarrow 0_1^+$ transitions. A short review of the recent experimental results that motivated the current evaluation is presented below and provides summary of experimental activities in the last 10-15 years. It lists new nuclides, nuclear physics rationale, experimental techniques, theoretical calculations, laboratories, references, etc. The following data indicate strong international collaborations and broad popularity of quadrupole collectivity studies worldwide.

3.1. ⁶He

A neutron- α -particle coincidence experiment was performed at Notre Dame University to study breakup of 6 He [2007Ko23], and a B(E2) value of 0.00054(7) $\mathrm{e^2b^2}$ was deduced for breakup via the $\mathrm{2^+}$ excited state reaction channel. The measured collectivity is for the particle unbound state. These data are also model dependent due to Coulomb–nuclear interference effects.

Lifetimes 0.205 ± 5 (stat) ± 7 (syst) ps and 2.5 ± 7 (stat) ± 3 (syst) ps of the first 2^+ states in 10 Be and 12 Be have been measured using the Doppler shift attenuation method at Argonne National Laboratory [2009Mc02] and inelastic scattering at RIKEN [2009Im01], respectively. The former measurement provides a discriminating test of *ab initio* calculations of light nuclei. While the later result shows a large quadrupole strength in the ground state transition, providing further evidence on the disappearance of the N=8 "magic number".

To further test *ab initio* model predictions, the lifetime of the 2_1^+ state in 10 C has been precisely re-measured at Argonne using the Doppler shift attenuation method [2012Mc03] to be 0.219(12) ps. Four different measurements [2004Im01,2008Wi04,2008On02] helped to pin-point the recommended B(E2) value for 16 C at 0.00179(20) e^2b^2 . The electric quadrupole transition from the first 2^+ state to the ground 0^+ state in 18 C was studied through a lifetime measurement by an upgraded recoil shadow method at RIKEN [2008On02]. The lifetime of the 2_1^+ state in the near-dripline nucleus 20 C was recently measured to be $9.8(^{+28}_{-30})$ ps at the Michigan State University (MSU) Cyclotron Laboratory [2011Pe21]. That measurement is consistent with the previous limit [2009El03].

3.4. ^{22,24}0

Recent inelastic scattering experiments provided modeldependent data on quadrupole deformation parameter values, β_2 of 0.24 and 0.26 for 22 O [2006El05,2006Be04], and 0.15(4) for 24 O [2012Ts03]. These data provide complementary experimental evidence for a new "magic number" N=14.

3.5. ^{18,26,28,30}Ne

Quadrupole collectivity of neon isotopes has been extensively studied at RIKEN. ¹⁸Ne collectivity was verified in a Coulomb excitation experiment (Coulex) [2006YaZV]. The measurement of the $2_1^+ \rightarrow 0_1^+$ transition in ³⁰Ne [2003Ya05] and confirmation of B(E2) values in ^{26,28}Ne [2007Gi06,2005Iw02] have helped to pin-point the boundary of the "island of inversion" or nuclear shell ordering along Z=10. Finally, ^{28,30}Ne deformation lengths and parameters were extracted from the angle-integrated cross sections using distorted-wave calculations [2014Mi09].

3.6. ^{20,30,32,34}Mg

Investigation of nuclear shell closure effects in the "island of inversion" region served as an additional motivation for study of magnesium isotopes. Coulomb excitation of ^{20,34}Mg was performed at the RIKEN cyclotron facility [2008Iw04,2001Iw07]. The deduced B(E2)↑ value for ³⁴Mg of 0.0631(126) e²b² is in agreement with the MSU measurements [1999Pr09,2005Ch66]. In addition, REX-ISOLDE Coulex B(E2)↑ values of 0.0241(31) and 0.0434(52) e²b² in ³⁰Mg and ³²Mg [2005Ni11,2005NiZS], respectively, confirmed the previous MSU and RIKEN results [1999Pr09,1995Mo16]. Recently, complementary values of deformation lengths and parameters for the first 2⁺ states in ^{32,34,36}Mg were measured at RIKEN [2014Mi09]. These deformation parameters provide a glimpse of quadrupole collectivity in the vicinity of ³²Mg. Finally, in 2015, the RIKEN group demonstrated that the electromagnetic properties of ³²Mg can be studied with Coulomb excitation at beam energies of a few hundreds of MeV/nucleon, where a thicker target can be used to increase the excitation yields [2015Li28].

3.7. ^{24,36,38,40}Si

The Coulomb excitation technique was used for the study of collectivity in the proton-rich nucleus 24 Si. The reduced transition probability from its 2_1^+ state was probed using a radioactive beam of 24 Si at 57.9 MeV/nucleon bombarding a 208 Pb target [2002Ka80]. This B(E2) \downarrow value of 19.1 \pm 5.9 e²fm⁴ is smaller than that of the mirror nucleus 24 Ne. β_2 values of 0.25(4), 0.36(3), and 0.37(5) have been deduced for 36,38,40 Si, respectively, using inelastic proton-scattering cross sections at MSU [2007Ca35]. Enhanced collectivity at N=26 indicates a reduced N=28 shell gap at large neutron excess in this chain of isotopes.

3.8. ²⁸S

²⁸S was measured at RIKEN with the Coulomb excitation technique [2012To06]. The resulting B(E2) value of 181(31) $e^2 fm^4$ is smaller than the expected value based on empirical B(E2) systematics. These results indicate the emergence of the "magic number" Z=16 in the $|T_z|=2$ nucleus ²⁸S.

3.9. ^{32,44,46,48}Ar

The collective strengths of the $0_1^{gs} \rightarrow 2_1^+$ excitations in 32,48 Ar were measured at MSU using NaI- and SeGA- gamma detector arrays [2002Co09,2012Wi05]. The 32 Ar measurement, taken together with previously existing Coulomb excitation data for 32 Si

[1998lb01], yields the isoscalar and isovector multipole matrix elements for the transition between T=2 states in the A=32 system. Complementary Coulex and RDM measurements of 44,46 Ar were conducted at GANIL, France and Legnaro, Italy facilities [2009Zi01,2010Me07], respectively. These experiments addressed the development of deformation and shape coexistence in the vicinity of the doubly magic 48 Ca, related to the weakening of the N=28 shell closure.

3.10. 40,42,44,46,48,50Ca

Electric quadrupole strength distributions in doubly magic nuclei 40,48 Ca were studied using the resonance fluorescence technique at Darmstadt, Germany [2002Ha13]. The transient field technique was employed to study collectivity in 42,44,46Ca at the Cologne tandem accelerator [2003Sc21,2003Sp04]. The ⁴⁶Ca gfactor [2003Sp04] is in disagreement with the large positive value predicted by the large scale shell model (LSSM) calculations which included sd shell core excitations into the fp shell and accounted well for the corresponding 42,44 Ca results [2003Sc21]. Both $g(2_1^+)$ and B(E2) in 46Ca can be explained by full fp-shell model calculations using the FPD6 interaction without invoking core excitations. Lifetimes of the first excited state in 46,48 Ca were measured with the recoil distance method using the PRISMA-CLARA setup at Legnaro [2009Me23,2012Mo11]. The same facility has been employed to measure a lifetime of the first excited state of the N=30isotone, ⁵⁰Ca [2009Va06]. This extends the lifetime knowledge beyond the $f_{7/2}$ -shell closure near the doubly magic nucleus 48 Ca.

3.11. 52,54,56,58Ti

The even–even 52,54,56,58 Ti isotopes have been studied with intermediate-energy Coulex experiments at MSU and absolute B(E2) transition rates have been deduced [2005Di05]. These data confirm the presence of a subshell closure at neutron number N=32 in neutron-rich nuclei above the doubly magic nucleus 48 Ca and do not support the predicted N=34 closure. 52 Ti low-level structure properties were verified using an inverse kinematics reaction Doppler shift attenuation method at Köln (Cologne), Germany [2006Sp02]. Finally, the 58 Ti deformation length was recently probed at RIKEN, Japan [2013Su20]. The energy of the first 2^+ state and the deformation length value are comparable to the ones of 56 Ti, which indicates that the collectivity of the Ti isotopes does not increase significantly with neutron number until N=36.

3.12. 46,56,58,60,62,64Cr

To complete the systematics in the N = Z = 28 region, a B(E2; $0_1^+ \rightarrow 2_1^+$) value of 0.093(20) e^2b^2 has been reported from the intermediate-energy Coulex of ⁴⁶Cr [2005Ya26]. Coulomb excitation B(E2) values of 8.7(30) and 14.8(42) W.u. for ^{56,58}Cr, respectively, have been measured by the RISING collaboration [2005Bu29]. These results agree well with the shell model calculation based on GXPF1A and GXPF1 effective interactions [2005Ho32,2004Ho08]. B(E2) and lifetime values for the first 2⁺ states of ^{58,60,62,64}Cr have been recently measured at MSU [2012Ba31,2013Cr02,2015Br10]. The deformation length and quadrupole deformation parameter have been studied in the inelastic scattering of 60,62 Cr on hydrogen [2009Ao01]. These data provide evidence for enhanced collectivity in chromium nuclei. Recently, quadrupole collectivity of neutron-rich 64Cr was measured with the Coulex technique [2013Cr02]. Its deformation has been interpreted with shell-model calculations using the state-of-theart LNPS effective interaction.

3.13. 50,52,62,64,66,68 Fe

A B(E2;0 $_1^+ \rightarrow 2_1^+$) value of 0.140(30) e^2b^2 in 50 Fe has been reported from an intermediate-energy Coulex experiment [2005Ya26]. A Coulex measurement at MSU [2004Yu07] has produced a B(E2;0 $_1^+ \rightarrow 2_1^+$) value of 0.082(10) e^2b^2 for 52 Fe. The increase in B(E2) strength with respect to the even-mass neighbor 54 Fe agrees with shell model calculations as the "magic number" N=28 is approached. 62,64 Fe lifetimes of 7.4(9) and 7.4(26) ps [2010Lj01], have been originally reported by the GANIL group using the recoil-distance Doppler shift method after multinucleon transfer reactions in inverse kinematics. A recent MSU measurement of lifetimes provides the following results: 8.0(10), 10.3(10), 39.0(40) ps for 62,64,66 Fe [2011Ro02], respectively. The deduced B(E2) strengths demonstrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. Note that both groups used the plunger method. B(E2) values of 0.1445(124) and 0.1777(216) e^2b^2 for 66,68 Fe, respectively, have also been recently measured at MSU [2013Cr02].

3.14. 54,58,60,62,64,70,74Ni

The Coulex technique was employed to deduce the B(E2) value for 54Ni [2004Yu10,2005Ya26]. High-precision reduced electricquadrupole transition probabilities have been measured from the single-step Coulomb excitation of semi-magic ^{58,60,62,64}Ni beams at 1.8 MeV per nucleon on a natural carbon target at the Holifield Radioactive Ion Beam Facility [2014Al20]. A reduced transition probability, B(E2;0 $_1^+ \rightarrow 2_1^+$), of 0.086(14) e^2b^2 [2006Pe13] has been measured by Coulex for the neutron-rich nucleus ⁷⁰Ni in a ²⁰⁸Pb target at intermediate energy. The current B(E2) value for ⁷⁰Ni is unexpectedly large, which may indicate that neutrons added above N = 40 strongly polarize the Z = 28 proton core. The deformation length and quadrupole deformation parameter have been measured by inelastic scattering of ⁷⁴Ni on hydrogen [2010Ao01]. Results of this experiment indicate that the magic character of Z = 28 or N = 50 is weakened in ⁷⁴Ni. The precision of this measurements was improved with Coulomb excitation techniques at MSU [2014Ma85].

3.15. ^{72,74,76,78,80}Zn

A reduced transition probability, B(E2; $0_1^+ \rightarrow 2_1^+$), of 0.174(21) e²b² [2002Le17] for the ⁷²Zn nucleus has been measured by the Coulex technique at intermediate energy. This result is consistent with the expected values from the neighboring nucleus ⁷³Zn and indicates that the behavior of B(E2) strengths around the N = 40 sub-shell closure in Zn is very different from the Ni isotopic chains. A reduced transition probability $B(E2;0_1^+ \rightarrow 2_1^+)$ of 0.204(15) e²b² [2006Pe13] for the neutron-rich ⁷⁴Zn nucleus has been measured by Coulomb excitation on a ²⁰⁸Pb target at intermediate energy. This result agrees well with 0.201(16) e²b² which was measured at REX-ISOLDE [2007Va20]. Recent B(E2) measurements at GANIL and Legnaro facilities [2013Ce01,2013Lo04] highlight needs for additional systematics. The reduced transition probabilities, B(E2;0 $_1^+ \rightarrow 2_1^+$), of 0.145(18), 0.077(19) and 0.073(9) e²b² for ^{76,78,80}Zn have been reported by the REX-ISOLDE group [2007Va20,2009Va01] using the Coulex method at low-energy. Lifetimes of ^{70,72,74}Zn were deduced with the AGATA spectrometer demonstrator [2013Lo04]. These data are consistent with shell model predictions using JUN45 and LNPS effective interactions.

3.16. ^{64,66,70,76,78,80,82}Ge

Collectivity of germanium isotopes was extensively studied in the last ten years. A lifetime value of 3.3(5) ps for the N=Z

nucleus ⁶⁴Ge was measured with the recoil distance method at MSU [2007St16]. The last result is in excellent agreement with large-scale shell-model calculations applying the GXPF1A interactions. Recent lifetime measurements in ⁶⁶Ge [2013Co23,2012Lu03] indicate potential problems with the original measurement [1979Wa23]. A low-level structure of ⁷⁰Ge was investigated at Munich tandem with the Doppler shift attenuation technique [2006Le31]. Complementary B(E2) values for a ⁷⁶Ge primary beam were deduced and used for calibration of secondary fragment values at MSU, GANIL, and Legnaro [2005Di05,2006Pe13,2013Lo04]. Reduced transition probabilities in ^{78,80,82}Ge were investigated at RIKEN, Oak Ridge, and MSU [2005Iw03,2005Pa23,2010Ga14]. The B(E2) systematic trend approaching N=50 indicates strong sensitivity of its values to the effective interaction.

3.17. ^{68,70,72,82,84}Se

Recently B(E2) values have been deduced from the Coulomb excitation of 68,82,84 Se at MSU and RIKEN [20090b02,2005]w03, 2010Ga14]. It was found that the 68 Se transition strength is similar to that of the triaxial 64 Ge nucleus [2007St16]; in sharp contrast to the much stronger collectivity observed for the oblate 72 Kr nucleus [2005Ga22]. Meanwhile, a 84 Se measurement [2010Ga14] has helped to complete the B(E2) systematics for the N=50 isotones from zinc to molybdenum. 70,72 Se lifetimes were measured with the recoil-distance method at Legnaro [2008Lj01]. The Legnaro results reveal considerable discrepancies with the literature values [1986He17]. The HFB-based configuration-mixing calculations indicate an oblate rotational ground-state band in 68 Se [2008Lj01]. The collectivity in 68,70 Se was recently verified at MSU using the recoil distance Doppler shift technique [2014Ni09]. This trend is consistent with shell model calculations using the GXPF1A interaction in an fp-model space including the Coulomb, spin–orbit and isospin non-conserving interactions.

3.18. ^{72,74,76,78,88,90,92,94,96}Kr

A B(E2) \uparrow value of 0.4997(647) e^2b^2 for the N=Z nucleus ⁷²Kr was measured with the Coulex technique at MSU [2005Ga22]. This value is in agreement with the self-consistent models that predict an oblate shape for the ground state of ⁷²Kr. Quadrupole collectivity of ^{74,76,78} Kr was studied with the Coulomb excitation and recoil distance methods. The ^{74,76}Kr results [2005Go43] resolve discrepancies between lifetime and Coulomb excitation measurements. A series of ⁷⁸Kr measurements [2005Ga22,2006Be18,2009Ob02] agree well with one another. A GRETINA array lifetime measurement of ^{72,74}Kr [2014lw01] agrees with the previous values [2005Ga22,2005Go43] and indicates a future potential use of this detector. Results for ^{88,92}Kr were reported at a recent conference [2009MuZW], and may require further experimental work. The ⁹⁰Kr lifetime was measured by cold-neutron-induced fission of 235 U [2014Re15]. B(E2) values of 0.247(28) and 0.436(93) e^2b^2 for 94,96 Kr, respectively, were measured with Coulex at the CERN REX-ISOLDE facility [2012Al03]. This measurement helped to clarify energies of the first excited states and the erroneous statements on sudden onset of deformation in ⁹⁶Kr.

3.19. ^{76,78,84,86,88,96}Sr

The lifetimes of the first excited states in ^{76,78}Sr and ^{84,86,88}Sr were measured with the Doppler shift attenuation technique at MSU [2012Le05] and Yale [2012Ku14], respectively. The former results highlight the importance of the mixing of coexisting shapes for the description of well-deformed nuclei, and the latter data are consistent with the large-scale shell-model calculations using the JUN45 interaction. The B(E2) value of ⁹⁶Sr was measured in

a Coulex experiment at the REX-ISOLDE facility [2011Cl03]. The combination of a rather large B(E2) value with a large spectroscopic quadrupole moment in ⁹⁶Sr suggests a quasi vibrator character and excludes static quadrupole deformation. These results are reproduced with Gogny D1S force calculations.

3.20. 88,92,96,104,106 Zr

Lifetimes of 3.6(4) and 0.82(10) ps for the first 2⁺ states in ^{88,96}Zr, respectively, were measured at Yale with the Doppler shift attenuation method [2012Ku14,2003Ku11]. These data are in fair agreement with shell-model calculations. ⁹²Zr collectivity was investigated at Darmstadt and Köln [2013Sc01,2002We15]. A combination of experimental data and shell model calculations shows that both, single particle and collective degrees of freedom are present in ⁹²Zr. The first excited state lifetime in ¹⁰⁴Zr was deduced to be 2885(435) ps at Argonne by employing a ²⁵²Cf(SF) decay technique [2006Hw01]. This experiment indicates that ¹⁰⁴Zr has one of the most deformed 2⁺ state among medium and heavy even–even nuclei. The deformation can also be reproduced with HFB calculations. Fast timing in beta decay results were published recently for ^{104,106}Zr [2015Br13].

3.21. 106,108 Mo

The ¹⁰⁶Mo lifetime of 173(14) ps was deduced at Lawrence Berkeley National Laboratory with a delayed coincidence (DC) technique [2006Hw01]. This result helped to resolve ambiguities in previous measurements. The previously discussed preliminary results have helped to shed more light on ^{106,108}Mo [2015Br03].

3.22. 96,98,106Ru

Lifetimes of 96,98 Ru were extracted with the Doppler shift attenuation technique at Köln [2002Kl07] and Yale [2012To01, 2012Ra03]. The Köln measurement is well reproduced with shell model calculations, and the Yale experimental ratio of $4^+/2^+$ transition strengths agrees well with the vibrational character of the low-energy excitations in 98 Ru. A time-delayed technique at Jyvaskyla, Finland was used to deduce a lifetime of 249(5) ps in 106 Ru [2008Sa05]. This value is consistent with the General Collective Model and Interacting Boson Approximation (IBA) calculations.

3.23. 98,100,110,114Pd

The recoil distance method (RDM) was employed at Köln to set a lifetime limit of $<\!16.3$ ps for 98 Pd [2009FrZZ] and a value of 9.0(4) ps for 100 Pd [2009Ra28]. The 98 Pd nucleus is not very collective due to its closeness to doubly-magic 100 Sn, and 100 Pd is well reproduced by shell model calculations. The Yale RDM value [2012An17] is rather preliminary in nature, and was excluded from the evaluation process. The identical technique was used at MSU to deduce lifetimes of 67(8) and 118(20) ps for 110,114 Pd nuclei, respectively [2008De30]. The new B(E2) values are described in the framework of the Interacting Boson Model (IBM), and 114 Pd data fit nicely into the systematic trends deduced from the lighter Pd isotopes.

3.24. 100,102,104,110,122,124,126Cd

Coulomb excitation and recoil distance techniques were used to measure excitation strength in ^{100,102,104}Cd [2009Ek01,2007Bo17, 2001Li24]. These data could be described within the shell-model

using realistic matrix elements obtained from a G-matrix renormalized CD-Bonn interaction. The recoil distance Doppler shift technique was used to deduce a lifetime of 8.7(12) ps in 110 Cd at Köln [2001Ha09]. The E2-transition probabilities in 110 Cd are in rather good agreement with the predictions of the U(5)-limit of the IBM-1. The REX-ISOLDE collaboration employed the Coulex technique to deduce B(E2) values in 122,124,126 Cd [2014Il01]. These data agree well with other preliminary results [2006KrZV,2008KrZZ], and clarify the onset of collectivity in the vicinity of the Z=50 and N=82 shell closures.

3 25 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134 ς_n

Quadrupole collectivity of even-A tin isotopes was extensively studied during the last decade. The intermediate-energy Coulomb excitation technique was used to deduce the B(E2) value in ¹⁰⁴Sn [2013Ba57,2014Do19]. Both results are consistent, and show the enhanced collectivity below the midshell, approaching N = Z = 50. These results disagree with the modern many-body calculations. The same technique was used to measure B(E2) values in 106,108,110 Sn at GSI RISING, MSU, and REX-ISOLDE at CERN [2005Bb09,2007Va22,2008Ek01,2008EkZZ]. These results show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. For spectroscopic purposes, ^{112,114}Sn nuclei were re-measured at MSU, and IUAC in New Delhi, India [2007Va22,2010Ku07,2011Ku05]. Precise measurements of the first 2⁺ excited states lifetimes in ^{112,114,116,122}Sn and B(E2) values in ^{116,118,120,124}Sn were conducted with the Doppler shift attenuation technique at GSI and Australian National University, respectively [2011]u01]. For the isotopes 112,114,116Sn, the E2 transition strengths, deduced from the measured lifetimes, are in disagreement with the previous values and indicate a shallow minimum at N = 66. A series of Coulomb excitation and Doppler shift attenuation measurements were conducted at Oak Ridge National Laboratory to measure collectivity in ^{124,126,128,130,132,134}Sn, employing carbon and titanium targets [2012Ku24,2011Al25,2004Ra27,2005Va31]. The Oak Ridge data were compared to large-scale shell-model and quasiparticle random-phase calculations. The shell model predictions are consistent with a generalized-seniority scheme, which predicts relatively constant 2⁺₁ energies and a parabolic trend in the matrix elements for A = 102-130.

3.26. 108,112,114,118,120,122,128,130,132,134,136 Te

The lifetime of the first excited 2⁺ state in ¹⁰⁸Te has been measured, using a combined recoil decay tagging and recoil distance Doppler shift technique at Jyvaskyla (JYFL), Finland [2011Ba37]. In contrast to the earlier results for the light tin isotopes, ¹⁰⁸Te does not show any enhanced transition probability with respect to the theoretical predictions and the tellurium systematics. The lifetime in the neutron-deficient nucleus ¹¹²Te has been measured using the DPUNS plunger and the recoil distance Doppler shift technique [2015Do04]. 114Te lifetimes were determined using the recoil distance Doppler-shift technique with a plunger device at Köln [2005Mo20]. The energy spectrum of ¹¹⁴Te is a slightly anharmonic vibrator, however, the obtained B(E2) values are in strong contradiction with the theoretical predictions of the U(5) limit of IBM. Lifetimes of excited states in ¹¹⁸Te have been measured using the Doppler Shift Attenuation method (DSAM) and Recoil Distance method (RDM) at the Niels Bohr Institute in Denmark [2002Pa19]. The excitation energies and B(E2) values are satisfactorily interpreted in the framework of IBM. ¹²⁰Te was recently studied at Yale with a plunger device and inverse kinematics Coulomb excitation with heavy beams [2010We12], and at IUAC, New Delhi by DSAM [2014Sa49]. 122 Te excitations have been investigated using γ -ray

spectroscopy following inelastic neutron scattering at Kentucky [2005Hi04]. The energies of low-lying levels of tellurium are described by the IBM. 126,128,130,132 Te collectivities were measured with time correlation between fission fragments and γ -rays at Grenoble [2001Ge07]. Independently, B(E2) values of 132,134,136 Te were studied with Coulomb excitation at Oak Ridge [2002Ra21], and explained within the shell model formalism. The results of this measurement were further re-analyzed by the Oak Ridge group and updated values were published in a subsequent measurement publication [2011Da21]. Complementary B(E2) values in 130,132,134 Te were determined through Coulomb excitation in inverse kinematics [2003Ba01]. This led to the extension of systematics of experimental quadrupole collectivities from the ground state to the first excited state to the N=82 shell closure.

3.27. 114,124,126,128,130,132,134,138,140,142,144Xe

Quadrupole collectivity in 114 Xe was studied using the 4π spectrometer, EUROBALL IV and Cologne plunger device [2002De26], then explained with a total Routhian surfaces calculation. As a first test of SeGA Ge-array, the MSU group has conducted a Coulex experiment at the Argonne tandem [2006Mu04] to study 124,126,128,130,132,134 Xe. These results agree well with the previously published data. Preliminary values for the B(E2) values in 138,140,142,144 Xe were deduced using the Coulex technique and MINIBALL Ge-array [2007Kr12,2007Kr19,2008KrZZ]. The 140 Xe value agrees well with a previously published measurement [1999Li18], while the 138 Xe experimental value exceeds that predicted by the quasiparticle random phase approximation.

 122 Ba lifetime was studied with RDM using the Cologne plunger device [2010Bi11]. The corresponding B(E2) value agreed with the predictions of the X(5) model and calculations performed in the framework of the IBA-1 and IBA-2 models. A 136 Ba stable beam Coulex measurement at Oak Ridge yielded a reduced transition probability of 0.46(4) $\rm e^2b^2$ [2002Ra21]. The transition probability is in agreement with the adopted value [13]. A B(E2) value and lifetime of 0.484($^{+38}_{-101}$) $\rm e^2b^2$ and 10.4($^{+22}_{-8}$) ps, respectively, were measured at REX-ISOLDE and MINIBALL setup at CERN using 140 Ba particle beams [2012Ba40]. The present result agrees with predictions of Monte Carlo shell-model and energy density functional calculations.

A 252 Cf(SF) radioactive source and the Gammasphere array were employed to measure lifetimes of 130(43) and 360(24) ps in 148,152 Ce [2006Hw01,2005Fo17], respectively. The 148 Ce lifetime is marginally lower but still consistent with the previously reported values, while 152 Ce was measured for the first time.

A relativistic Coulex technique was employed to deduce a B(E2) strength of 80(11) W.u. in $^{136}{\rm Nd}$ at Darmstadt [2008Sa35]. The comparison with the asymmetric rotor and the Geometrical Collective Model (GCM) yields information on the nuclear shape, quadrupole deformation parameters, and indicates γ -softness of the N=76 isotone. A low-energy Coulex experiment was used to deduced a B(E2)↑ value of 0.72(5) ${\rm e}^2{\rm b}^2$ in $^{140}{\rm Nd}$ using the Miniball array at the REX-ISOLDE-CERN facility [2013Ba38]. The quasiparticle phonon and large-scale shell model calculations of N=80 isotones could not reproduce an E2 strength enhancement in $^{140}{\rm Nd}$.

3.31. 140,142,152 Sm

Lifetime of the first 2⁺ excited state at 530.7 keV was measured from recoil-distance Doppler shift method [2015Be25] at the Heavy Ion Laboratory of the University of Warsaw. The Coulomb excitation technique was used to investigate evolution of quadrupole collectivity in ¹⁴²Sm [2015St08]. A recent in-flight fast-timing measurement of the ¹⁵²Sm lifetime [2014Pl01] agrees well with the ENSDF recommendation.

3.32. ^{138,148,160,162,164}Gd

The first excited state lifetime, 308(17) ps, for 138 Gd was confirmed using RDM with the Cologne plunger at the Jyvaskyla facility [2011Pr10]. The excitation energies in 138 Gd can be reproduced with X(5) critical-point calculations, however, large experimental B(E2) uncertainties cannot rule out contributions from rotational and vibrational modes of excitation. The same technique was applied to measure a lifetime of 6.0(19) ps in 148 Gd using the EU-ROBALL array [2003Po02], and results were reproduced with shell model calculations. 148 Gd has the smallest B(E2) value among the N>82 nuclei in the region. Lifetimes in 160,162,164 Gd were recently measured using a $\beta-\gamma$ timing technique at JAEA [2010NaZY]. These results suggest that the deformation of nuclear shape would be enhanced at N=98.

To test the X(5) model, the lifetime for ¹⁵⁶Dy was measured to be 106(15) ps with the recoil distance Doppler-shift method using the Cologne coincidence plunger apparatus at Legnaro [2006Mo22]. A fit of the data using the general collective model suggests contribution of a deeper collective potential.

A lifetime of 341(10) ps for ¹⁵⁸Er was measured with the recoil distance technique and the Gammasphere array [2002Sh09]. This result is consistent with the previous measurement [1986Os02] and was reproduced using Ultimate Cranker model calculations. The Coulex technique was used to deduce properties of ¹⁷⁰Er at Legnaro [2011Di07]. The reduced matrix elements extracted with the Coulomb excitation code GOSIA are in agreement with collective model predictions.

3.35. ^{168,170,172,174,176}Hf

Preliminary values of the lifetimes for the first 2^+ states in 168,172 Hf, were measured using the delayed-coincidence technique at Yale [2011We08,2010We12] to be 1237(10) and 2655(79) ps, respectively. The results for 168 Hf and 172 Hf are in agreement and slightly higher than ENSDF adopted values, respectively. These results and the transition strengths in 174,176 Hf were tested at the university of Cologne [2011ReZZ,2015Ru03]. A lifetime of 1740(60) ps for 170 Hf was deduced at the Stony Brook University TANDEM-LINAC facility with the help of a pulsed beam technique [2006Co20]. The corresponding E2 transition rate follows the expected trend and empirically confirms the correlation between deformation and the filling of major shells. An extended e^- - e^- lifetime measurement of 174 Hf has been performed at the Cologne Tandem Van-de-Graaff accelerator [2009Re20]. This measurement suggests a value lower than previously reported.

3.36. ^{172,174,176,178,188}W

The first excited 2^+ state lifetimes of 970(29), 1431(9), and 1642(21) ps in 172,176,178 W, respectively, were measured in fast timing experiments using conversion electron spectroscopy at Köln [2010Ru12,2009Re20]. IBM calculations reproduce systematics of energy levels for the tungsten isotopes, however, transition rates could only be satisfactorily reproduced with individual adjustments of the effective charge. The preliminary value of the 174 W lifetime was deduced using a DC technique at Yale [2011We08]. The IFIN-HH, Romania facility was used to measure a lifetime of 1255(173) ps in 188 W with a fast-timing technique [2013Ma66]. This result, in combination with systematics and Woods–Saxon potential energy surface calculations, suggests a prolate deformed minima with rapidly increasing γ -softness for tungsten isotopes.

3.37. 174,176,178,180,188,190 Os

The first excited 2^+ state lifetime of 513(20) ps in 174 Os was measured with a DC technique at the China Institute of Atomic Energy [2012Li50]. The low uncertainty makes this value sufficiently precise to serve as a normalization parameter for meaningful tests of nuclear models. The DC technique was also employed to deduce the lifetimes of 176,178,180 Os at Köln [2005Mo33]. Data for the even–even osmium isotopes transition strengths show a maximum value at the N=104 midshell that corresponds to the simple expectation of the $N_\pi N_\nu$ rule of the IBA. Lifetimes of 930(140) and 540(36) ps in 188,190 Os, respectively, were measured with the recoil distance technique at Yale [2001Wu03]. The measured lifetimes confirm the E2 properties derived from prior heavy-ion induced Coulomb excitation experiments [1996Wu07]. The previously known 190 Os lifetime was verified at the IFIN-HH facility [2012MaZP].

3.38. 178,182,186,196 Pt

The lifetime of the 2_1^+ state in 178 Pt was measured by using fast-timing techniques with the high-purity Ge and LaBr $_3$ scintillator at the China Institute of Atomic Energy [2014Li45]. The first excited 2^+ state lifetime of 590(102) ps in 182 Pt was measured with RDM at Köln [2012Gl01]. Calculations within the IBM and the GCM indicate shape coexistence in 182 Pt. This is consistent with the previous measurement lifetimes of 709(43) and 318(24) ps in 182,186 Pt, which were deduced using the same method at the ATLAS facility [2012Wa16]. The experimental lifetime value in 196 Pt has been revisited recently [2015]001].

3.39. 180,182,184,186 Hg

The first excited 2⁺ state lifetimes of 17.5(25) and 41(3) ps in ^{180,182}Hg were measured with RDM at Jyvaskyla [2009Gr09]. These results support the shape coexistence of weak prolate and intruding prolate structures in neutron-deficient Hg nuclei. ^{184,186}Hg lifetimes were measured using the recoil distance Doppler-shift method using the Köln plunger device [2014Ga04]. These more precise lifetime values have been used in the analysis of Coulomb excitation of ^{182,184,186,188}Hg measurements at the REX-ISOLDE facility [2014Br05]. Further analysis of properties of the low-lying states in ^{182–188}Hg indicates a partial agreement with beyond mean field and IBM-based models and a possible interpretation within a two-state mixing model.

3.40. 186, 188, 208 Pb

Lifetimes of prolate intruder states in 186,188 Pb were measured with RDM at Jyvaskyla [2008Gr04]. Reduced transition probabilities, derived from the measured lifetimes confirm the high collectivity of the intruder states in this region, and shed more light on shape coexistence typical for the nuclei near Z=82 and N=104. A lifetime of 0.00147(10) ps and $B(E2)\uparrow$ value of 0.25(6) e²b² in 208 Pb were deduced with nuclear resonance fluorescence technique at Darmstadt [2003En07] and the NIAIS, Japan [2008Sh23], respectively. The latter result was compared with an estimation of self-consistent random phase approximation using a semi-realistic interaction.

3.41. ^{194, 196, 198, 200, 202} Po

The first excited 2⁺ state lifetimes, 37(7) and 11.6(15) ps, in ^{194,196}Po, respectively, were measured with RDM at Jy-vaskyla [2008Gr04,2009Gr08]. Self-consistent mean-field calculations suggest that oblate intruder states in ¹⁹⁴Po could dominate the ground state. A calculated collectivity in ¹⁹⁶Po, considerably smaller than the experimental value of 47(6) W.u., indicates a contribution from the intruder structures. E2 matrix elements for ^{196,198,200,202}Po have been extracted at Leuven with GOSIA analysis [2015KeZZ]. The values of nuclear matrix elements hint towards mixing of a spherical structure with a weakly-deformed rotational structure.

3.42. ^{202,204,220}Rn

Shape coexistence in 202,204 Rn [2015Ga19] has been studied at CERN. The same facility also measured a B(E2) \uparrow value of 1.88(11) e^2b^2 in the 'octupole deformed' or distorted pear-shaped nucleus 220 Rn [2013Ga23].

3.43. ²²⁴Ra

In another pear-shaped nucleus, 224 Ra, quadrupole collectivity was investigated in the same work at CERN [2013Ga23]. Its B(E2) \uparrow value of 3.96(12) e^2b^2 provides evidence for a stronger octupole deformation than in 220 Rn.

4. B(E2)↑ evaluation policies

The current evaluation represents the recommended values of B(E2) \uparrow in e²b², mean lifetimes (τ) in picoseconds (ps) and deformation parameters (β_2) for the first 2⁺ states in Z=2–104, even N nuclei. These quantities are mutually related:

$$\tau = 40.81 \times 10^{13} E_{\nu}^{-5} [B(E2) \uparrow /e^2 b^2]^{-1} (1 + \alpha_T)^{-1}$$
 (1)

$$\beta_2 = (4\pi/3ZR_0^2)[B(E2) \uparrow /e^2]^{1/2},\tag{2}$$

where E_{γ} and α_T are the γ -ray energy in keV and the total conversion electron coefficient, respectively, and $R_0^2=(1.2\times 10^{-13}\,{\rm A}^{1/3}\,{\rm cm})^2$. To introduce an additional measure of collectivity for nuclear excitations, Weisskopf units (W.u.) are added. Transition quadrupole moment values Q_0 in barns (b) are not included in the current evaluation, however can be deduced from the presented work

$$Q_0 = [16\pi B(E2) \uparrow /5e^2]^{1/2}. \tag{3}$$

All the measured values can be organized using three classes of experimental techniques:

- Model-independent or traditional types of measurements [13]: transmission Doppler-shift attenuation lifetime (TDSA), recoil distance Doppler-shift (RDM or RDDS), delayed coincidences (DC or TCS), low-energy and intermediate-energy Coulomb excitation (CE) and nuclear resonance fluorescence (γ , γ').
- Low model-dependent: electron scattering (E,E'), hyperfine splitting.
- Model-dependent: inelastic scattering of light and heavy ions (IN-EL).

4.1. B(*E2*)↑ *Evaluation Procedure*

This evaluation is based on the analysis of results from 2579 quadrupole collectivity measurements and 1273 experimental references. The literature cut-off date is September 2015. This number includes 120 pre-2000 experimental references that were not listed in the previous compilation of S. Raman [13]. These data span more than sixty years, and experimental techniques have evolved over time. It is worth noting that in the older measurements results may have been affected by the lack of side-feeding corrections, and the newer measurements should take precedence. The evaluation procedure for deducing the adopted (recommended) $B(E2)\uparrow$ values is presented below:

- Compile a list of experimental B(E2)↑, ↓ or W.u., τ and β₂ values as reported in the original papers. Reported values depend on the measured quantities and are deduced from experimental data in the offline analysis.
- Convert experimental values into $B(E2)\uparrow$ in e^2b^2 .
- Analyze B(E2) ↑ values. In a few of the older results, where uncertainties were not quoted by the authors, we have taken the values as adopted by Raman et al. [13]. The experimental values listed in Table 3, with the original uncertainties as quoted by the authors (not adjusted for evaluation purposes).
- Round uncertainties to two (rarely three) significant digits.
- Accept asymmetric uncertainties, if necessary.
- Direct communication with authors in discrepant cases, if possible.
- Deduce B(E2)↑ recommended values using model-independent or traditional, combined (model-independent and low modeldependent) and model-dependent datasets with the visual averaging library software package [22] using the selected datasets.

4.2. Asymmetric uncertainties

In this work, evaluated $B(E2)\uparrow$ values are deduced from the measured values of B(E2), mean lifetime, and, in rare cases, deformation parameters. Note that the first two quantities are inversely dependent. Previous evaluations of S. Raman et al. [12,13] contain two different treatments of central values and uncertainties. Originally, S. Raman et al. [12] used a standard mathematical procedure to convert a particular τ value to the corresponding B(E2) \downarrow value. Later, this procedure was changed in favor of converting the central τ value [13] to a value between the upper and lower bounds, by extracting the mean of the two values and assigning an uncertainty so that the value overlapped the two bounds. This treatment produced symmetric uncertainties, however the original lifetime values could not be directly reproduced from the modified B(E2)↑ central values. To resolve this discrepancy, we kept central values and accepted asymmetric uncertainties that arise from the inverse dependence described above. In addition, original measurements may contain asymmetric uncertainties due to particular experimental conditions and analyses.

Fig. 1. The ratio of the present B(E2) values to Raman's evaluation and inverse squared to inverse (linear) averages for 135 nuclides are shown in the upper and lower panels, respectively. The majority of calculated values lie within a $\pm 5\%$ band near unity.

4.3. A brief review of the previous results

Consistency between the present results and the work of S. Raman et al. [13] is an important issue. The authors of Ref. [13] indicate: "Where several B(E2)↑ values are available for a given nuclide, we have generally used weighting values that are inversely proportional to the quoted uncertainty rather than inversely proportional to the square of the quoted uncertainty, which would be the correct procedure if the uncertainties were purely statistical. We believe that our weighting procedure results in a more reliable average value. We did not, however, adhere religiously to the weighting procedure outlined above in all cases."

We do not know the exact course of action taken by S. Raman and his collaborators for the evaluation of B(E2) values in each particular case. However, in the present work we rely on the general statistical and uncertainty handling procedures employed in nuclear data evaluations such as in the ENSDF database, or in Particle Data Project [23], and employ the Visual Averaging Library code [22] where weighting values are inversely proportional to the square of the quoted uncertainty. To check the validity of S. Raman's claim to have used an inverse weighting procedure, we developed a custom extension for the Visual Averaging Library that produces values using averaging weights which are inversely proportional to the quoted uncertainty. This approach is also used to make an overall consistency check as described below between our results and those in Raman et al. [13] where no new experimental values are available.

In this work, we have selected 135 nuclides where no new measurements have been reported since the previous evaluation, and $B(E2)\uparrow$ value for each nuclide value was measured at least twice. The ratio of these data are shown in the upper panel of Fig. 1. The majority of the $B(E2)\uparrow$ values are within 5% agreement. Notable deviations from unity in ^{126}Ce and ^{164}Hf are due to missing data and adoption by Raman of the earliest results, respectively.

To extend this analysis we calculate both the inverse squared and inverse $B(E2)\uparrow$ averages for these nuclides. A comparative analysis of the current inverse squared, current inverse, and Raman's $B(E2)\uparrow$ results for Z=2-104 isotopes is shown in Table 2 and Fig. 1. The data analysis indicates that we have a good agreement between the present inverse squared averages and Raman's values, and the inverse averaging often results in comparable values with the corresponding inverse squared averages values. These facts and comments in the table clearly indicate that S. Raman et al. [13] were not following their practice of linear weighting consistently.

Fig. 2. Total conversion coefficients (α_T) for even–even Z=2-104 nuclei. The coefficients have been deduced using the frozen orbital (FO) version of the BrIcc code.

Fig. 3. Energies of 2_1^+ states $(E(2_1^+))$ for even–even Z=2–104 nuclei, in keV.

5. Adopted values

The recommended values for Z=2–104 isotopes from this work are shown in Table 3. These data extend the previous work of S. Raman et al. [13] with 119 new B(E2) \uparrow values as well as a large number of updated values. The current work also contains 646 γ -ray energies for the first 2^+ states in even–even nuclei. A comparative analysis of the two evaluations is presented below.

In the present evaluation, we used the latest version of the visual averaging library [22], Band–Raman calculation of Internal conversion coefficients (α_T) [24] and presently available data. The visual averaging library program includes unweighted and weighted averages as well as the limitation of relative statistical weights (LWM) [25], normalized residual (NRM) [26], Rajeval technique (RT) [27], the Expected Value (EVM) [28], bootstrap and Mandel–Paule (MP) [29] statistical methods to calculate averages of experimental data with uncertainties. In our evaluation, we

generally adopted the weighted average, using NRM in some discrepant cases. We accepted reduced $\chi^2 < 2$ as a reasonable fit for available datasets. Previously, S. Raman et al. [13] used an averaging procedure based on the inverse of the quoted uncertainties, while current evaluation uses statistical methods based on the inverse squared value of the quoted uncertainties. Our procedure, in addition to being mathematically justifiable, is consistent with the general methodology used in treatment of data for ENSDF database and horizontal evaluations.

The Band–Raman method [24] was used in this work, while the previous evaluation [13] employed the internal conversion coefficients code (ICCDF) [30]. The former code incorporates the Dirac–Fock atomic model with the exchange interaction between atomic electrons and the free electron receding to infinity during the conversion process. Total conversion coefficients for the Z = 2-104—region were calculated using the Australian National University Brlcc code http://bricc.anu.edu.au/ and shown in Fig. 2. The

Fig. 4. Quadrupole deformation parameter (β_2) values for even–even Z=2–104 nuclei.

coefficient values increase over eight orders of magnitude across the nuclear chart, and reach maximum values in the actinide region.

For low Z values and relatively high $2_1^+ \to 0_1^+$ transition energies, the total E2 conversion coefficients are relatively small ($\alpha_T < 0.002$) and do not substantially affect the adopted values. A complementary comparison between the present model-independent and the previous evaluation adopted values for 14 C, 28,34,36,38 Si, 38,40,42 S and 38 Ca, where no new data were added, shows good agreement. Consequently, the differences between the current work and S. Raman et al. [13] evaluation for light and medium nuclei are mainly due to the addition of new experimental results.

We recommend using model-independent or traditional B(E2) \uparrow adopted values as the most reliable. If a model-independent value is not available, a low model-dependent value should be used. Finally, a model-dependent value can be used if no other values are available. Table 3 recommended values for Coulomb excitation and in-elastic scattering measurements in 28 Ne and 30,32,34 Mg isotopes support this conclusion. This is consistent with the previous evaluation of Raman et al. [13], who treated data as follows: "However, our adopted B(E2) \uparrow values are based only on the traditional types of measurements because these are more direct and involve essentially model-independent analyses". Our new recommended values are interpreted within the scope of large-scale shell-model calculations which are presented in the following sections.

5.1. Analysis of adopted values

Evaluated values are traditionally given in a tabular format as in Table 3. In addition, we will also show these data in the two, and three-dimensional graphic form and conduct a brief "visual inspection". Plots of evaluated 2^+_1 state energies, quadrupole deformation parameters, and quadrupole collectivities in ${\rm e}^2{\rm b}^2$ and W.u. units as functions of N and Z are shown in Figs. 3, 4 and 5, respectively. Fig. 3 shows that energies of the 2^+_1 states are relatively high near the closed shells at Z=20, Z=28 and N=28, Z=50 and Z=50, Z=28 and Z=28, and Z=28,

Furthermore, a combination of the transition energy and quadrupole deformation plots supplies a more compelling picture

of nuclear shell closure of atomic nuclei. The deformation parameter chart indicates an anti-correlation effect between its values and the 2_1^+ state energies, as shown in Figs. 4 and 3, respectively. The nuclear shell closure effects result in small deformation parameter values and relatively large first excited state energies. These effects near Z = N = 8, Z = 20, Z = 40 and N = 50, Z = 50 and N = 82, and Z = 82, and the deformation regions are shown in Fig. 4 using a verticalline pattern. To gain additional insights on nuclear collectivity a complementary analysis of the B(E2)↑ adopted values has been conducted in Fig. 5. The last Figure clearly demonstrates distinct nuclear properties for light (Z < 30), medium (Z < 50), heavy (Z < 84), and actinide (Z > 88) nuclides. In addition, systematic trends of evaluated B(E2) \uparrow and E₂ $_{1}^{+}$ values are shown in Graphs 1– 52. These Graphs demonstrate the evolution of nuclear properties of even-even nuclei and could motivate new measurements.

6. Shell model calculations

The experimental data presented in this paper covers regions of the nuclear chart that are best treated by a diversity of nuclear structure models, including ab initio models such as Green's Function Monte Carlo (GFMC) [31], No-Core Shell Model (NCSM) [32], and Coupled-Cluster model [33], but also effective models such as the traditional shell model with effective interactions, Quasi-Particle Random Phase Approximation [34], Generator-Coordinate Method [35], etc. Attempting to describe the data using all these models is clearly a tall goal. Therefore, we confine ourselves to the description of a limited amount of data using the traditional shell model with effective interactions. This model seems to have a wide range of applicability, from light pshell nuclei to nuclei around ²⁰⁸Pb, provided that good effective interactions are available. Here, we only use the shell model to give some examples for *p*-shell nuclei, *sd*-shell nuclei, *sdpf* -shell nuclei, and pf-shell nuclei, for which effective shell model interactions are established. In that vein, we avoided cases where protons or neutrons are near closed shells or in the "island of inversion".

For the p-shell examples we used the CKIHE interaction [36] for 6 He and PWT interaction [37] for Be and C. For the sd-shell nuclei we used the USDB interaction [38] and for cases with protons in sd-shell and neutrons in the pf-shell we used the SDPFU interaction [39]. Finally, for the few cases of pf-shell nuclei we used the

Fig. 5. $B(E2)\uparrow$ in e^2b^2 and W.u. for even-even Z=2-104 nuclei.

GXPF1A interaction [40,41]. A few other cases for the A=60-100 region could be also considered using the JUN45 interaction [42] in a model space that includes the $1p_{3/2}$, $1p_{1/2}$, $0f_{5/2}$, $0g_{9/2}$ orbitals, but more insight into this region of nuclei is required for higher reliability. Isolated cases of Sn, Te, Xe, and Ba isotopes could be considered, but the effective interactions need to be further refined to show consistent reliability. Results of these calculations are shown in Table 4, and complementary details of shell model calculations and analysis of Cr, Fe, Ni and Zn nuclei could be found in our previous publication [14]. These results were produced with "canonical" effective charges: 0.5e for neutrons and 1.5e for protons.

Finally, the shell model and evaluated 2_1^+ state energies and quadrupole collectivities, are plotted in Graphs 1–52 for Z=2,8,20, and 28, respectively. These values and their mutual correlations provide strong evidence for nuclear shell model across the nuclear chart. The strong correlations between transition energies and quadrupole collectivities are, particularly, evident for doubly-magic nuclei 40,48 Ca, 56 Ni, 132 Sn, and 208 Pb. In addition, analysis of Graph 1 data indicates "magic" properties for neutron-rich nucleus 24 O. There are other theoretical calculations of the B(E2) \uparrow values and first excited states in even–even nuclei [44,45]. These

calculations could be used for nuclei where present shell model calculations are missing.

7. Future plans and complementary analyses

There is a large volume of B(E2) experimental activities worldwide; a new nucleus has been measured every month in the last 10–15 years. In such an active field of experimental work, constant compilation and evaluation work is required. A compilation of the latest experimental results will be posted on the B(E2) project website (http://www.nndc.bnl.gov/be2), and the next evaluation published in about ten years.

Due to space limitation, Grodzins systematics [46] and comparison of evaluated values based on the different types of measurements [47] are not presented here. These analyses will be addressed in subsequent publications.

8. Conclusions

A new $B(E2;0_1^+ \rightarrow 2_1^+)$ compilation and evaluation of even–even nuclei has been performed under the auspices of the USNDP. It is a continuation of the nuclear data work by P.H. Stelson and L. Grodzins, and S. Raman et al. on quadrupole transition probabilities [11–13]. The current evaluation literature cut-off date is September 2015, it includes experimental $B(E2)\uparrow$ values for 119 new nuclei, a large number of updates and extends the previous evaluation to 447 nuclei. The evaluation incorporates many features requested by nuclear data users and broadens the list of compiled experimental quantities. The present evaluated results are compared with the previous evaluation, and large-scale shell model calculations, where available.

Note added in Proof: After the acceptance of our paper we came across a recent publication of J.M. Allmond et al., Phys. Rev. C 92, 041303 (2015) [48] on the determination of B(E2) \uparrow values for the first 2^+ states by measurement of Coulomb excitation cross sections for even-even $^{112-124}$ Sn nuclei, using Sn beams at Oak Ridge National Laboratory. These results are consistently higher than those of Ref. [2011Ju01] who measured lifetimes of the first 2^+ states using Doppler-Shift attenuation and line-shape methods. Reason for this discrepancy is not clear, and further experiments for Sn isotopes are warranted.

Acknowledgments

The authors are grateful to Dr. M. Herman (BNL) for his constant support of this project, J. Choquette and B. Karamy (Mc-Master University) for the help with compilation work in early stages of this project. We acknowledge Profs. T. Glasmacher, V.G. Zelevinsky (MSU), T. Motobayashi (RIKEN), V. Denisov (KINR) and J. Totans and M. Blennau (BNL) for productive discussions, help with the references and careful reading of the manuscript and useful suggestions, respectively. Finally, we would like to thank many authors, who provided valuable insights on their data. These communications have helped to resolve many experimental discrepancies. This work was funded by the Office of Nuclear Physics, Office of Science of the US Department of Energy grant KB0301042, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. Work at McMaster University was also supported by DOE grant DE-FG02-98-ER41080. M.H. acknowledges U.S. NSF Grant No. PHY-1404442 and U.S. Department of Energy Grant No. DE-SC0008529.

References

- [1] M. Goeppert-Mayer, Phys. Rev. 78 (1950) 16.
- [2] E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41 (1990) 1147.
- [3] Isotope Science Facility at Michigan State University. Upgrade of the NSCL Rare Isotope Capabilities, Michigan State University Cyclotron Laboratory Report MSU-CL-1435, 2006.
- O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61 (2008) 602.
- [5] R. Capote, M. Herman, P. Obložinský, et al., Nucl. Data Sheets 110 (2009) 3107.
- [6] M. Herman, R. Capote, B.V. Carlson, et al., Nucl. Data Sheets 108 (2007) 2655.
- [7] A.J. Koning, D. Rochman, Nucl. Data Sheets 113 (2012) 2841.
- [8] M.B. Chadwick, M.W. Herman, P. Obložinský, et al., Nucl. Data Sheets 112 (2011)2887
- A.J. Koning, E. Bauge, C.J. Dean, et al., J. Korean Phys. Soc. 59 (2) (2011) 1057.
- [10] K. Shibata, T. Kawano, T. Nakagawa, et al., J. Nucl. Sci. Technol. 48 (2011) 1.
- [11] P.H. Stelson, L. Grodzins, Nucl. Data A1 (1965) 21.
- [12] S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor Jr., P.H. Stelson, At. Data Nucl. Data Tables 36 (1987) 1.
- [13] S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 98 (2001) 1.
- [14] B. Pritychenko, J. Choquette, M. Horoi, B. Karamy, B. Singh, At. Data Nucl. Data Tables 98 (2012) 798.
- [15] B. Pritychenko, M. Birch, M. Horoi, B. Singh, Nucl. Data Sheets 120 (2014) 112.
- [16] B. Pritychenko, E. Běták, M.A. Kellett, B. Singh, J. Totans, Nucl. Instrum. Methods A 640 (2011) 213. Available from http://www.nndc.bnl.gov/nsr.
- T.W. Burrows, Nucl. Instrum. Methods A286 (1990) 595
- [18] J.K. Tuli, Nucl. Instrum. Methods A369 (1996) 506. Available from http://www.nndc.bnl.gov/ensdf.
- [19] Experimental Unevaluated Nuclear Data List (XUNDL). Available from http://www.nndc.bnl.gov/xundl.
- [20] A.L. Nichols, O. Schwerer, S. Dunaeva, Bul. Russian Acad. Sci.: Phys. 71 (2007)
- [21] V. Zagrebaev, A. Kozhin, JINR-E10-99-151 (1999). Available from http://nrv. iinr.ru/nrv
- [22] Available from http://www.nndc.bnl.gov/nndcscr/ensdf_pgm/utility/vavglib/.
- [23] K.A. Olive, K. Agashe, C. Amsler, et al., Chin. Phys. C 38 (2014) 090001.

- [24] T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, et al., Nucl. Instrum. Methods A 589 (2008) 202. BrIcc v2.2b, Conversion Coefficient Calculator". Available from http://physics.anu.edu.au/nuclear/bricc/.
- [25] A.L. Nichols, Appl. Radiat. Isot. 60 (2004) 247.
- [26] M.F. James, R.W. Mills, D.R. Weaver, Nucl. Instrum, Methods in Phys. Res. A313
- [27] M.U. Rajput, T.D. MacMahon, Nucl. Instrum. Methods Phys. Res. A312 (1992)
- [28] M. Birch, B. Singh, Nucl. Data Sheets 120 (2014) 106.
- [29] A.L. Rukhin, M.G. Vangel, J. Amer. Statist. Assoc. 93 (1998) 303.
- [30] I.M. Band, M.B. Trzhaskovskaya, At. Data Nucl. Data Tables 55 (1993) 43.
- S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70 (2004) 054325.
- [32] P. Navratil, V.G. Gueorguiev, J.P. Vary, et al., Phys. Rev. Lett. 99 (2007)
- [33] G.R. Jansen, M. Hjorth-Jensen, G. Hagen, T. Papenbrock, Phys. Rev. C 83 (2011) 054306.
- [34] J. Terasaki, J. Engel, G.F. Bertsch, Phys. Rev. C 78 (2008) 044311.
- [35] L.M. Robledo, G.F. Bertsch, Phys. Rev. C 86 (2012) 054306.
 [36] J. Stevenson, B.A. Brown, Y. Chen, et al., Phys. Rev. C 37 (1988) 2220.
- [37] E.K. Warburton, B.A. Brown, Phys. Rev. C 46 (1992) 923.
- [38] B.A. Brown, W. Richter, Phys. Rev. C 74 (2006) 034315.
- [39] F. Nowacki, A. Poves, Phys. Rev. C 79 (2009) 014310.
- [40] M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 69 (2004) 034335.
- [41] M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Eur. Phys. J. A 25 (Suppl. 1)
- [42] M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, Phys. Rev C 80 (2009) 064323.
- [43] B.A. Brown, N.J. Stone, J.R. Stone, et al., Phys. Rev. C 71 (2005) 044317. Erratum Phys. Rev. C 72, 029901 (2005).
- [44] L.M. Robledo, R. Bernard, G.F. Bertsch, Phys. Rev. C 86 (2012) 064313.
- [45] G. Scamps, D. Lacroix, Phys. Rev. C 88 (2013) 044310.
- [46] L. Grodzins, Phys.Lett. 2 (1962) 88.
- [47] J.M. Cook, T. Glasmacher, A. Gade, Phys. Rev. C 73 (2006) 024315.
- [48] J.M. Allmond, A.E. Stuchbery, A. Galindo-Uribarri, et al., Phys. Rev. C 92 (2015)

Explanation of Tables

```
Table 1.
                   Experimental B(E2)\uparrow-, \tau- and \beta_2-values for Z=2-104 nuclei.
                   (Throughout this table, bracketed numbers refer to the uncertainties in the last digits of the quoted values.)
                                                                          The even Z, even N nuclide studied
                   B(E2)↑
                                                                          Reduced electric quadrupole transition rate for the ground state to 2<sup>+</sup> state transition in units of
                                                                          e^2h^2
                                                                          Mean lifetime of the state in ps
                                                                          Quadrupole deformation parameter or \delta deformation length
                   Bo
                   Target
                                                                          Target nuclide
                   Beam
                                                                          Incident beam
                                                                          Incident beam energy
                   Energy
                   Method
                                                                          CE: Coulomb excitation
                                                                          CE*: Coulomb excitation with beam energy above the Coulomb barrier
                                                                          EE (e, e'): Inelastic electron scattering
                                                                          DC: Delayed Coincidence
                                                                          GG (\gamma, \gamma'): Resonance fluorescence IN-EL: Inelastic scattering of light and heavy ions
                                                                          PB: Pulsed beam
                                                                          RDM, RDDS, TRDM: Recoil distance method
                                                                          RSM: Recoil shadow method
                                                                          SCATT: Neutron scattering
                                                                          TDSA, DSAM: Doppler shift attenuation
                                                                          TCS: Time coincidences
                   Reference
                                                                          NSR database [16] keynumber
                                                                          ENSDF: ENSDF analysis
                   Comments
                                                                          Ex: excluded
                                                                          Gos: GOSIA code
                                                                          MD: model dependent
                                                                          NR: not in Raman
                                                                          Rad: Raman adjusted
                                                                          Su: superseded
                                                                          Un: uncertainty introduced by Raman
Table 2.
                   Comparative analysis of the present and S. Raman et al. [13] results.
                                                                          The even Z, even N nuclide studied
                   Nuclide
                   Inverse squared B(E2)↑
                                                                          Reduced electric quadrupole transition rate for the ground state to 2+ state transition in units of
                   Inverse B(E2)↑
                                                                          Reduced electric quadrupole transition rate for the ground state to 2<sup>+</sup> state transition in units of
                                                                          e^2b^2
                   Raman's B(E2)↑ [13]
                                                                          Reduced electric quadrupole transition rate for the ground state to 2+ state transition in units of
                                                                          e^2b^2
                   Comments on Raman's values [13]
                                                                          Description
                   Adopted (recommended) B(E2)\uparrow-, \tau- and \beta_2-values for Z=2-104 nuclei.
Table 3.
                   (Throughout this table, bracketed numbers refer to the uncertainties in the last digits of the quoted values.)
                   Nuclide
                                                                          The even Z, even N nuclide studied
                   E(level)
                                                                          Energy of the first excited 2<sup>+</sup> state in keV either from a compilation or from current literature
                   B(E2)↑
                                                                          Reduced electric quadrupole transition rate for the ground state to 2<sup>+</sup> state transition in units of
                                                                          Reduced electric quadrupole transition rate for the ground state to 2<sup>+</sup> state transition in W.u.
                                                                          (Weisskopf units); the Weisskopf
                                                                          single-particle value is B(E2) \uparrow_{(sp)} = 2.97 \times 10^{-5} A^{4/3} e^2 b^2 [13]
                                                                          Comments: Multiply B(E2)\uparrow by a factor of 0.2 to convert it to B(E2)\downarrow,
                                                                          (B(E2) \downarrow = \frac{(2J_i+1)}{(2I_f+1)}B(E2)\uparrow, where J_i = 0 and J_f = 2);
                                                                          use formula (3) to extract transition quadrupole moment values
                                                                          Mean lifetime of the state in ps
                   τ
                                                                          \tau = 40.81 \times 10^{13} E^{-5} [B(E2)\uparrow/e^2b^2]^{-1} (1+\alpha)^{-1}, where \alpha- Band-Raman internal conversion
                                                                          coefficients
                                                                          Quadrupole deformation parameter
                   \beta_2
                                                                          \beta_2 = (4\pi/3ZR_0^2)[B(E2)\uparrow/e^2]^{1/2}, where
                                                                          R_0^2 = (1.2 \times 10^{-13} \text{Å}^{1/3} \text{ cm})^2
                                                                             = 0.0144A^{2/3}b
Table 4.
                   Shell model E(2_1^+)-, B(E2\uparrow)-values for even-even nuclei.
                                                                          The even Z, even N nuclide studied
                   Nuclide
                   E(level)
                                                                          Energy of the first excited 2+ state in MeV
                   B(E2)↑
                                                                          Reduced electric quadrupole transition rate for the ground state to 2+ state transition in units of
                                                                          e^2b^2
                   Model Space
                                                                          Description
                   Effective Interaction
                                                                          Description
                                                                          Description
                   Comments
```

Explanation of Graphs

Graph 1. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for He nuclei

Theory CKIHE [36]

Evaluation

```
Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Be nuclei.
Graph 2.
                    Theory
                                                                            PWT [37]
                    Evaluation
Graph 3.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for C nuclei.
                                                                            PWT [37], USDB [38]
                    Evaluation
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E;0_1^+ \rightarrow 2_1^+) values for O nuclei.
Graph 4.
                                                                            USDB [38]
                    Theory
Graph 5.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ne nuclei.
                                                                            USDB [38]
                    Theory
                    Evaluation
Graph 6.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Mg nuclei.
                    Theory
                    Evaluation
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Si nuclei.
Graph 7.
                    Theory
                                                                            SDPFU [39]
                    Evaluation
Graph 8.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E;0_1^+ \to 2_1^+) values for S nuclei.
                    Theory
                    Evaluation
Graph 9.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ar nuclei.
                    Theory
                    Evaluation
Graph 10.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E;0_1^+ \rightarrow 2_1^+) values for Ca nuclei.
                    Theory
                                                                            GXPF1A [40,41]
                    Evaluation
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E;0_1^+ \rightarrow 2_1^+) values for Ti nuclei.
Graph 11.
                    Theory
                                                                            GXPF1A [40,41]
Graph 12.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Cr nuclei.
                                                                            GXPF1A [40,41]
                    Theory
                    Evaluation
Graph 13.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Fe nuclei.
                                                                            GXPF1A [40,41]
                    Theory
                    Evaluation
Graph 14.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ni nuclei.
                                                                            GXPF1A [40,41]
                    Theory
                    Evaluation
Graph 15.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E;0_1^+ \rightarrow 2_1^+) values for Zn nuclei.
                                                                            GXPF1A [40,41]
                    Theory
                    Evaluation
Graph 16.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ge nuclei.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Se nuclei.
Graph 17.
Graph 18.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Kr nuclei.
                    Evaluation
Graph 19.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) v alues for Sr nuclei.
Graph 20.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) v alues for Zr nuclei.
                    Evaluation
Graph 21.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Mo nuclei.
                    Evaluation
Graph 22.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ru nuclei.
                    Evaluation
Graph 23.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Pd nuclei.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Cd nuclei.
Graph 24.
                    Evaluation
Graph 25.
                    Evaluated and shell model calculated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Sn nuclei.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Te nuclei.
Graph 26.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Xe nuclei.
Graph 27.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ba nuclei.
Graph 28.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Ce nuclei.
Graph 29.
                    Evaluation
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) values for Nd nuclei.
Graph 30.
Graph 31.
                    Evaluated energies, E(2_1^+), and B(E; 0_1^+ \rightarrow 2_1^+) v alues for Sm nuclei.
                    Evaluation
```

Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Gd nuclei.

Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Dy nuclei.

Graph 32. Graph 33.

Graph 34.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Er nuclei.
	Evaluation
Graph 35.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Yb nuclei.
	Evaluation
Graph 36.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Hf nuclei.
-	Evaluation
Graph 37.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for W nuclei.
•	Evaluation
Graph 38.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Os nuclei.
	Evaluation
Graph 39.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pt nuclei.
Graph Go.	Evaluation
Graph 40.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Hg nuclei.
Grupii io.	Evaluation
Graph 41.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pb nuclei.
Graph 41.	Evaluation Evaluation $E(z_1)$, and $E(z_1)$
Graph 42.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Po nuclei.
Graph 42.	Evaluation Evaluation $E(z_1)$, and $E(z_1)$, and $E(z_1)$ values for Fo nuclei.
Graph 43.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Rn nuclei.
Graph 45.	Evaluation Evaluation $E(z_1)$, and $E(z_1)$, and $E(z_1)$ values for Kill nuclei.
Cuamb 44	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ra nuclei.
Graph 44.	
	Evaluation
Graph 45.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Th nuclei.
	Evaluation
Graph 46.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for U nuclei.
	Evaluation
Graph 47.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pu nuclei.
	Evaluation
Graph 48.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Cm nuclei.
	Evaluation
Graph 49.	Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Cf nuclei.
	Evaluation
Graph 50.	Evaluated energies, $E(2_1^+)$ for Fm nuclei.

Evaluated energies, $E(2_1^+)$ for No nuclei. Evaluated energy, $E(2_1^+)$ for Rf nuclei.

Graph 50. Graph 51. Graph 52.

Table 1 Experimental B(E2) \uparrow -, τ - and β_2 -values in Z=2-104 nuclei (* —above the Coulomb barrier experiments). Beam energy units are in MeV or (A)-MeV. NSR database keynumbers [16] are shown in the reference column.

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
ŀе	0.00054(7)			⁶ He	209 _{Bi}	22.5	CE?*	[2007Ko23]	MD
le			$\delta = 1.7(3)$	⁶ He	p 7 _{Li}	240A	IN-EL	[1999Au01]	Ex, NR
Be		0.205(5)(7)		⁷ Li	7 _{Li}	8,10	TDSA	[2009Mc02]	
3e		0.189(20)		d	9 _{Be}	1.7	TDSA	[1968Fi09]	
3e		0.190(30)		d	9 _{Be}	2.8	TDSA	[1966Wa10]	
3e		2.5(7)(3)		12 _{Re}	Au	42.9A	TDSA	[2009Im01]	
3e		==-(-)(=)	0.67(5)	12 _{Be}		53.8A	IN-EL	[2000Iw02]	NR
3e			$\delta = 1.18 (13)$		р 12 _С	68A	IN-EL	[2007Su20]	
2		0.219(12)	0 = 1.10(13)	10 _B		95	TDSA		
2					р 10 _В			[2012Mc03]	
2		0.155(25)		p	11 _B	2-9.5	TDSA	[1968Fi09]	
		0.060(13)		p 12 -		1.781	TDSA	[1988Lu04]	
С		0.058(5)		¹² C	Au 27 20	0.4,0.8,1.4A	TDSA	[1988Ku33]	
С		0.061(18)		α	²⁷ Al, ²⁸ Si	720	TDSA	[1980Li14]	
С		0.045(10)		n	27 _{Al}	fast	TDSA	[1976Be64]	
С		0.10(6)		γ	¹² C	<6.75	GG	[1971Fa14]	
c		0.065(9)		α	15 _N	0.898,1.640	TDSA	[1970Co09]	
c	0.00397(33)	,		e	40 _{Ca}	28-60	EE	[1970St10]	
C	0.00307(33)	0.055(7)		p	12 _C	4.1, 4.125, 4.55	TDSA	[1968Ri16]	
C	0.00200(27)	0.033(7)			12 _C				
	0.00386(37)			e	10 _B	100-200	EE	[1967Cr01]	
C		0.060(20)		n		<5.3	TDSA	[1967Ca02]	
C		$0.057(^{+23}_{-17})$		α	9 _{Be}	3.2	TDSA	[1966Wa10]	
C	0.00406(41)	.,,		e	12 _C	250	EE	[1964Cr11]	
C	` '	0.050(6)		α	9 _{Be}	2	TDSA	[1961De38,1956De22	1
c		0.066(13)		р	15 N	4.43	GG	[1958Ra14]	
C	0.0047(10)	(11)000.0	0.40(8)		12 _C	187	EE		
C			0.40(8)	e	14 _C			[1956He83]	
	0.00187(25)	⊥11		e 17		101.2	EE	[1972CrZN]	
C		$11.4(^{+11}_{-19})$		¹⁷ N	9 _{Be}	72A	RDM	[2012Pe16]	
c		18.3(14)(48)		¹⁶ C	9 _{Be}	40A	RDM	[2008On02]	
c		11.7(20)		9 _{Be}	9 _{Be}	40	RDM	[2008Wi04]	
c		77(14)(19)		¹⁶ C	9 _{Be}	34.6A	RDM	[2004Im01]	Su
c		$22.4(^{+34}_{-24})$		¹⁹ Ne	9 _{Be}	72A			54
							RDM	[2012Vo05]	
C		18.9(9)(44)		¹⁸ C	9 _{Be}	79A	RDM	[2008On02]	
C		$9.8(^{+28}_{-30})$		²² 0	9 _{Be}	101A	RDM	[2011Pe21]	
o	0.00372(40)	30		γ	¹⁶ 0	6.92	GG	[1977La15]	
io	0.00392(16)			e	16 _O	38-60	EE	[1975Mi08]	
90	0.00512(36)			e	16 _O	100-126	EE		
50					160			[1973Be49]	
	0.00432(20)	⊥10		γ		6.92	GG	[1970Sw03]	
o o		$0.0064(^{+19}_{-16})$		p	19 _F	0.874	TDSA	[1970Co09]	
⁵ 0					¹⁶ 0	Low mo-			
0	0.00368(42)			e	100	mentum	EE	[1968St04]	
o o	0.00317(27)				16 ₀	transfer	GG	[10000,02]	
50				γ	16 ₀	6.8-7.3		[1968Ev03]	
	0.0028(8)			γ	16 _O	7	GG	[1960Re05]	
o	0.0023(6)			γ 18 ₀	100	6.91,7.12	GG	[1957Sw17]	
o				180	197 _{Au}	46A	CE*	[2000Ri15]	
o		2.80(7)		¹⁸ 0	⁴ He, ¹ H	34, 47	TDSA	[1982Ba06]	
o	0.00448(13)			e	¹⁸ O	90-370	EE	[1982No04]	
о	0.00390(18)			¹⁸ 0	208 _{Pb}	57-86	CE	[1979Fe06]	
o	0.00410(14)			18 ₀	196 _{Pt,} 208 _{Pb}	58-75	CE	[1977Vo07]	
80	3.00 110(17)	3.10(20)		16 ₀	3 _H	10	TDSA		
0	0.00453(36)	5.10(20)		180				[1977LiZS]	
	0.00453(26)				Au	60	CE	[1977Fl10]	
О		2.90(12)		¹⁸ 0	p	47.3	RDM	[1976As07]	
0		2.99(12)		¹⁸ 0	р 209 _{Ві}	47.3	RDM	[1976As04]	Su
О	0.0048(2)			¹⁸ 0	²⁰⁹ Bi	58-63	CE	[1975Kl09]	
во		2.79(11)		¹⁶ 0	³ H	20	TDSA	[1975He25]	
o		3.35(20)		¹⁶ 0	3 _H	25	RDM	[1974Mc17]	
0		3.58(18)		α	¹⁸ 0	6.0,8.5	RDM	[1974Be25]	
0		2.9(+9)		t	19 _F	2.6	TDSA	[19730l02]	
		2.9(-6)							
0	0.00390(40)			¹⁸ 0	208 _{Pb}	65	CE	[1971HaXH]	
0		3.25(20)		10	25		TDSA	[1968LaZZ]	
o	0.0046(14)			18 ₀	27 Al	21	CE*	[1968An20]	
o	0.0049(11)			18 _O	116 _{Sn,} 208 _{Pb}	23-55	CE	[1967DeZW]	
0	. ,	$6.1(^{+50}_{-20})$		12 _C	7 _{Li}	11	TDSA	[1964Es02]	
О				¹⁶ 0	3 _H				
O O	0.0054/553	3.7(7)		18 ₀		11-16	TDSA	[1963Li07]	
0	0.0051(23)				e 3	150	EE	[1961La09]	
О		10.3(8)		¹⁸ 0	³ H	24.5	RDM	[1980Ru01]	
0		9.8(7)		¹⁸ 0	³ H	20	TDSA	[1977He12]	
0		14.2(8)		¹⁸ 0	³ H	30	RDM	[1975Be15]	
0			0.24(7)	22 _O	2 _H	34A	IN-EL	[2006EI05]	
20			0.24(7)	220		46.6	IN-EL	[2006Be04]	
20	0.0021/01		0.20(4)	220	p 197 _{Au}				
0	0.0021(8)					50.6A	CE*	[2000Th11]	
O			0.15(4)	²⁴ 0	p	62A	IN-EL	[2012Ts03]	
Ne	0.0180(26)			¹⁸ Ne	Pb	50A	CE*	[2006YaZV]	
Ne		$0.77(^{+9}_{-7})$		16 _O	³ He	38	TDSA	[2003Ri08]	
140		`-/'		18 _{Ne}					
Ne	0.0125(22)			lδ _{Ne}	197 _{Au}	60A	CE*	[2000Ri15]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
8 _{Ne}		0.63(13)		¹⁶ 0	³ H	25	TDSA	[1974Mc17]	
8 _{Ne}		$0.49(^{+17}_{-9})$		³ He	16 ₀	8.5-13.15	TDSA	[1969Ro08]	
0 _{Ne}		1.14(24)		¹² C	12 _C	32.6,33.5	TDSA	[1982Sp02]	
Ne Ne	0.0322 (26) (22)			32 s	20 _{Ne}	41.3-51	CE*	[1977Sc36]	
) _{Ne}	0.037(3)			20 _{Ne}	Au	4.15A	CE	[19740l01]	NR
Ne								[1973ScWZ]	Su
) _{Ne}								[1969ScZV]	Su
Ne		0.8(2)		12 _C	¹² C	36.7	RDM	[1975Ho15]	
Ne Ne	0.0280(40)			e	20 _{Ne}	102	EE	[1973Si31]	
Ne		1.15(20)		12 _C	12 _C	20-30	TDSA	[1971Ha26]	
Ne	0.048(7)			20 _{Ne}	120 _{Sn,} 130 _{Te,} 148 _{Sm}	50-75	CE	[1970Na07]	
Ne		0.84(20)		α	16 ₀	2.9-3.2	TDSA	[1969Gr03]	
Ne		1.25(35)		³ He	19 _F	8-10	TDSA	[1969An08]	
Ne		1.27(24)		Li	0	5.1-6.3	TDSA	[1969Th01]	
Ne		1.23(12)		12 _C	12 _C	12.8-16.6	TDSA	[1965Ev03]	
Ne		0.64(20)		12 _C	12 _C	17-18	TDSA	[1961Cl06]	Su
Ne	0.047(9)			14 _N	20 _{Ne}	21.3, 27.9	CE*	[1960An07]	
Na							CE*	[1960Le07]	Su
Na	0.041(10)			20 _{Ne}	Be,B, C,Mg, Al,Si, MgO, ScO	23.5	CE*	[1959Al91]	NR
Ne		0.76(33)		p	23 _{Na}	1.22	TDSA	[1956De22]	
Ne	0.0243(26),			²² Ne	Ni, ¹⁰⁷ Ag	2.25A, 2.86A	CE	[2005NiZS]	
Ne	0.0220(16)				19 _F			-	
Ne Ne		5.16(13)		α ¹⁸ 0		6.3-7.3	RDM	[1984Bh03]	
Ne Ne		5.1(2)			⁷ Li 4	10-60	RDM	[1983Ko01]	
Ne		5.15(31)		19 _F	⁴ He	23.25,28.5	TDSA	[1979Fo02]	
Ne	0.0271(36)			e 19	²² Ne	60-110	EE	[1979Ma13]	
Ne		5.2(3)		19 _F	⁴ He	38.5	RDM	[1977Ho01]	
Ne	0.0223(6)			32 _S	²² Ne	41.3-51	CE*	[1977Sc36]	
Ne								[1973ScWZ]	Su
Ne					10			[1969ScZV]	Su
Ne Ne		5.62(20)		α	19 _F	5.65	RDM	[1977Ra01]	
Ne		5.0(7)		α	19 _F	6.48	RDM	[1977Og03]	
Ne	0.025(2)			²² Ne	Au	4.15A	CE	[19740l01]	NR
Ne	0.0220(20)			e	²² Ne	102	EE	[1973Si31]	
Ne		5.4(4)		α	19 _F	5.5,8.6	RDM	[1973An01]	
Ne		5.9(6)		α	19 _F	2.9,4	RDM	[1972Sz05]	
Ne		5.9(11)		α	19 _F	6.4	RDM	[1972Sn01]	
Nο	0.033(6)			²² Ne	120 _{Sn,} 130 _{Te,} 148 _{Sm}	50-75	CE	[1970Na07]	
2 _{NI}		4.6(5)		α	19 _F	5.5	RDM	[1969Jo10]	
Nο		6(4)		¹⁸ 0	9 _{Be}	15	RDM	[1969Ni09]	
Ne Ne		8(3)		α	19 _F	5.2	TDSA	[1966Li07]	
Ne Ne		$6.1(^{+46}_{-26})$		¹⁶ 0	⁷ Li	14.3	TDSA	[1964Es02]	
2 _{Ne}	0.039(8)	-20		N	²² Ne	16.3	CE*	[1960An07]	
Ne Ne	0.055(0)			.,	Tree	10.5	CE*	[1960Le07]	Su
Ne	0.025(6)			²² Ne	Be,B, C,Mg, Al,Si, MgO, ScO	25.8	CE*	[1959Al91]	NR
¹ Ne	0.025(0)	$0.89(^{+36}_{-29})$		t	22 _{Ne}	2.8	TDSA	[1974Wa04]	1410
Ne Ne		0.83(-29)							
'Ne		$1.0(^{+2}_{-4})$		²² Ne	³ H	30	TDSA	[1969Bh01]	
Ne	0.0141(18)			26 _{Ne}	Pb	54A	CE?*	[2007Gi06]	MD
Ne	0.0228(41)			26 _{Ne}	¹⁹⁷ Au	41.7A	CE*	[1999Pr09]	
Ne			0.39(2)	28 _{Ne}	Н	53.5A	IN-EL	[2014Mi09]	
Ne	0.0132(23)			28 Ne	Pb	46A	CE*	[2005Iw02]	
Ne	0.0269(136)			28 Ne	¹⁹⁷ Au	53A	CE*	[1999Pr09]	
Ne			0.45(4)	³⁰ Ne	Н	44A	IN-EL	[2014Mi09]	
Ne			$0.58(^{+16}_{-22})$	30 _{Ne}	p	48A	IN-EL	[2003Ya05]	
Mg	0.0177(32)		0.44(4)	$^{20}{ m Mg}$	Pb	58A	IN-EL	[2008Iw04]	
Mg		4.2(15)		3 _{He}	²⁰ Ne	10	TDSA	[1975Gr04]	
Mg		$1.0(^{+22}_{-5})$		3 _{He}	20 _{Ne}	4.3-11.5	TDSA	[1972Ro20]	
Mg	0.0467(28)	-5		24 _{Mg}	197 _{Au}	54.5A	CE*	[2001Co20]	
Mg	0.0407(20)	1.97(16)		-	23 _{Na}	0.7,1.7			
Mg Mg				p	24 _{Mg}		TDSA	[1989Ke04]	
Mg Mg	0.0445(2.4)	1.76(21)		$^{\gamma}_{24}_{\mathrm{Mg}}$	24Mg 208 _{Pb}	0.5-1.65	GG	[1981Ca10]	
ivig	0.0445(24)			_{IVI} g 28 c:	ru	80-110	CE	[1979Fe05]	
¹ Mg		1.92(10)		28 _{Si} , 29 _{Si} , 31 _P , 32,33,34 _S ,	$^{24}\mathrm{Mg}$	39.5-42	TDSA	[1977Sc36]	
¹ Mg				35,37Cl				[1973ScWZ]	Su
⁴ Mg	0.0420(14)			²⁸ Si, ²⁹ Si, ³¹ P, ³² , ³³ , ³⁴ S, ³⁵ , ³⁷ Cl	$^{24}\mathrm{Mg}$	39.5-42	CE*	[1977Sc36]	
⁴ Mg	0.048(5)				$^{24}{ m Mg}$		GG	[1977Ca14]	
lΜσ	(5)	2.09(13)		γ 16 ₀	12 _C	41.7	RDM	[1975Ho15]	
Mα	0.044(3)	2.03(13)		24 _{Mg}	197 Au,Pt	102.6	CE	[1975Bi03]	
Ma	0(5)	1.82(14)		24 _{Mg}	⁴ He	40	TDSA	[1974Fo13]	
Ma	0.0420(25)	1.02(17)		e	24 _{Mg}	65-116	EE	[1974Jo10]	
Mo	0.0420(23)	2.25(9)		CV.	24 _{Mg}	6.18	RDM	[1974]010] [1973Br33]	
Mg				α 23 _{Na}		0.6-1.5	TDSA		NR
Mg	0.0227(25)	2.00(45)			p ²⁴ Mg			[1973Le15]	INK
Mg	0.0327(35) 0.0440(30)			e ²⁴ Mg	208 _{Pb}	183 90	EE	[1972Na06] [1972HaYA]	
₹ ъ " ~				IVIO	11 PD	20	CE	LIM//HIVAI	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.)	τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
⁴ Mg			1.8(6)		p, α	$^{24}{ m Mg}$	22,42-50	TDSA	[1972Ba93]	
l _{Mσ}			1.4(4)		p	²³ Na	0.3-1.9	TDSA	[1972Me09]	
Mσ			1.92(15)		γ	24 _{Mg}	< 1.6	GG	[1971Sw07]	
Mσ	0.042(2)		1.52(15)		16 ₀	24 _{Mg}	20-22	CE*	[1971Vi01]	
Mg	0.042(2)		2.07(34)		¹⁶ 0	12 _C	25	TDSA	[1970Cu02]	
Mg	0.0412(42)		2.07(34)			24 _{Mg}		EE		
vig VIg	0.0412(43)		2.44(46)		e 12 _C	16 _O	25		[1970Kh05]	
VIg			2.11(16)			24	17	RDM	[1970Al10]	
Mg			1.11(13)		γ ³⁵ Cl	²⁴ Mg	1.37	GG	[1970He01]	
Mg	0.0425(29)				³⁵ Cl	²⁴ Mg	62	CE*	[1970Ha04]	
Mg			$1.7(^{+10}_{-5})$		³ He	23 _{Na}	8-10	TDSA	[1969An08]	
Mg	0.036(7), 0.047(6)		_5		e	$^{24}{ m Mg}$	100-250	EE	[1969Sa14]	
Mg	0.030(7), 0.0 17(0)		1.65(15)		³⁵ Cl	24 _{Mg}	52-61	TDSA	[1969Pe11]	
Mg	0.0455(13)		1.05(15)			24 _{Mg}	54	EE		
vig	0.0455(12)		±11.		e				[1969Ti01]	
Mg			$1.44(^{+11}_{-9})$		α	²⁴ Mg	22	TDSA	[1968Ro05]	
Mg			1.60(20)		16 ₀	¹² C	26	TDSA	[1968Cu05]	
Mσ	0.044(6)				γ	$^{24}{ m Mg}$	0.1368	GG	[1966Sk01]	
Mσ	0.080(15)				γ	24 _{Mg}	1.37	GG	[1965Ka15]	
Mσ			1.3(4)		γ	²⁴ Mg	1.37	GG	[1964Bo22]	
Mg			2.2(8)			24 _{Mg}	1.37	GG	[1962Bo17]	
Иg	0.002(22)		2.2(0)		γ	24 _{Mg}				
vig	0.062(23)				γ 16 ₀	74	1.37	GG	[1960Me06]	
Mg	0.034(7)					24 _{Mg}	19	CE*	[1960Go08]	
Иg	0.065(13)				¹⁴ N	24 _{Mg}	16.3	CE*	[1960An07]	
Mσ			1.1(4)		γ	²⁴ Mg	1.37	GG	[19590f14]	
Лσ			0.95(86)		γ	$^{24}{ m Mg}$	1.37	GG	[1959Ar56]	
Mg	0.054(14)				N,O	C	15.9, 18.1	CE*	[1958Al22]	NR
Mg	0.053(12)				γ	^{24}Mg	1.37	GG	[1958De33]	
Mg			1.90(17)		e e	24 _{Mg}	187	EE	[1956He83]	
Mg	0.0215/20)		1.30(17)		26 _{Mg}	209 _{Bi}				
Mg Mg	0.0315(28)				26 _{Mg}	208 _{Pb}	78.6A	CE*	[2005Ch66]	
ivig	0.0322(16)				23 Mg		80-120	CE	[1982Sp05]	
Mg			0.653(39)		23 _{Na}	⁴ He	43.3	TDSA	[1981Dy01]	
					28,29 _{Si,}					
Mg	0.0296(13)				31 _P , 32,33,34 _S ,	$^{26}{ m Mg}$	39.5-42	CE*	[1977Sc36]	
					35,37 _{Cl}					
Mg					33,37 Cl				[10726-14/7]	C
ivig					28,29 _{Si,}				[1973ScWZ]	Su
					^{26,29} Si,					
Mg			0.69(5)		31 _P 32,33,34 _S	$^{26}{ m Mg}$	39.5-42	TDSA	[1977Sc36]	
					35,37 _{Cl}					
Mg			0.705(110)			26_{Mg}	16	TDSA	[1975Wa10]	
Mg					α	26 _{Mg}	10			
ivig			0.72(3)		α	26 Mg		TDSA	[1975Eb01]	
Mg	0.0275(20)				e	26 _{Mg}	57-111	EE	[1974Le17]	
Mg	0.0299(29)				e	26 _{Mg}		EE	[1973Le17]	
Mg			0.61(10)		α	23 _{Na}	4.6-7.5	TDSA	[1972Du05]	
Mg			0.70(30)		19 _F	¹² C	25	RDM	[1971Mc20]	
Mg	0.0349(30)				e	$^{26}{ m Mg}$	25	EE	[1970Kh05]	
Mg	` '		$0.30(^{+10}_{-6})$		p	26 _{Mg}	2.8-5.5	TDSA	[1970De01]	
Mg						26				
Mg			0.53(10)		p	²⁶ Mg	3.8-8.3	TDSA	[1968Ha18]	
Mg			$0.570(^{+39}_{-36})$		α	26 _{Mg}	22	TDSA	[1968Ro05]	
Mg			0.70(30)		ν	$^{26}{ m Mg}$	1.8	GG	[1964Bo22]	
Μσ	0.035(9)				γ 14 _{N,} 20 _{Ne}	26 _{Mg}	18, 25.8	CE	[1961An07]	
Mσ	(-/		0.7(3)		1/	26 _{Mg}	1.8	GG	[1961Ra05]	
иg Иg	0.0444(66)		3.7(3)		^γ 28 _{Mg}					
vig	0.0444(66)		20(4)		ivig	Pb 26 _{Mg}	53A	CE*	[2012To06]	
Mg			2.0(4)		·	26 Mg	2.54-3.20	TDSA	[1974Ra15]	
Mg			1.6(2)		t	26 _{Mg}	2.9	TDSA	[1973Fi03]	
Mg	0.0241(31)				30 _{Mg}	Ni 12	2.25A	CE*	[2005Ni11]	
Mg	0.0435(58)				30 Mg	12 _{C,} 208 _{Pb}	32A	IN-EL	[2001Ch56]	
Mg	0.0295(26)				30_{Mg}	197 _{Au}	50A	CE*	[1999Pr09]	
Mσ	0.0432(51)				32 _{Mg}	Pb	195A	CE*	[2015Li28]	
Mg				0.51(6)	32 _{Mg}	Н	58.9A	IN-EL	[2014Mi09]	
Mσ				0.41(3)	32 _{Mg}	n.	190A	IN-EL	[2012Li45]	
Mg	0.0434(52)			5.41(3)	32 _{Mg}	107 _{Ag}	2.84A	CE*	[2005NiZS]	
Mg	0.0434(32)		22.1/50\		ivig	³² Mg(β ⁻)	∠.0 1 ∩			
ivig	0.0445′`		23.1(58)		37	-2 Mg(β) 197 ·	04.55	TCS	[2005Ma81]	
Mg	0.0447(57)				32 _{Mg}	197 Au	81.1A	CE*	[2005Ch66]	
Mg	0.0622(90)				32 _{Mg}	208 _{Pb}	32A	IN-EL	[2001Ch56]	
Mσ	0.0449(3)				³² Mg	208 _{Pb}	44A*	CE*	[2001Iw07]	Ex
Mσ	0.0440(55)				32 _{Mg}	197 _{Au}	50A	CE*	[1999Pr09]	
Mσ	0.0333(70)				³² Mg	197 _{Au}	50A	CE*	[1999Pr09]	Ex
Mσ	0.0454(78)				32 _{Μσ}	208 _{Pb}	49.2A	CE*	[1995Mo16]	NR
Mg	0.0737(70)			0.63(0)	34 _{Mg}					INIX
ivig				0.62(6)	_{IV} Ig 34	Н	51.1A	IN-EL	[2014Mi09]	
Mg				0.68(16)	³⁴ Mg	р 209 _{Ві}	50A	IN-EL	[2006El03]	
Mg	0.0541(102)				³⁴ Mg	²⁰⁹ Bi	76.4A	CE*	[2005Ch66]	
Mg	0.0631(126)				34 _{Mg}	Ph	44.9A	CE*	[2001Iw07]	
Mσ	< 0.0670				34 _{Mg}	¹⁹⁷ Au	50A	CE*	[1999Pr09]	
Mg				0.50(6)	36 _{Mg}	и	44.5A	IN-EL	[2014Mi09]	
si Si	0.00055(305)			0.50(0)	24 _{Si}	208 _{Pb}				
51	0.00955(295)					PD 197.	58.9A	CE*	[2002Ka80]	
Si Si	0.0336(36)				26 _{Si}	¹⁹⁷ Au	54.5A	CE*	[2001Co20]	
c:			$0.62(6)$ $1.4(^{+7}_{-5})$		²⁴ Mg ³ He	³ He 24 _{Mg}	50	TDSA	[1982Al15]	
Si										

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.)	τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
28 _{Si}	0.0350(18)				28 _{Si}	208 _{Pb}	105	CE	[1980Ba40]	
8 _{ci}	0.0326(20)				28 _{Si}	208 _{Pb}	94.88-104.86, 109.85-139.81	CE	[1980Sp09]	
8 _{Si}	0.0320(20)		0.688(26)		²⁸ Si	⁴ He	53	TDSA	[1980Sc25]	
Si Si			0.697(39)		28 _{Si}	⁴ He	46.8, 28.0, 48.2	TDSA	[1979Po01]	
Si					28 _{Si}	⁴ He				
		•	0.667(35)			24,25,26 _{Mg,}	55	TDSA	[1979Fo02]	
³ Si			0.733(50)		28 _{Si}	24,23,20 Mg,	39.5-42	TDSA	[1977Sc36]	
³ Si	0.0007(00)					27 Al 28 Si	105 1151		[40770 46]	
	0.0337(30)				e	24.25.26	18.5-117.1	EE	[1977Br16]	
³ Si	0.0331(12)				28 _{Si}	24,25,26 _{Mg} ,	39.5-42	CE*	[1977Sc36]	
	` '					27 _{Al}				
Si						27			[1973ScWZ]	Su
³ Si		(0.83(17)		p	27 Al	3	TDSA	[1977MiZM]	
Si		(0.70(8)		α	28 _{Si}	7.5	TDSA	[1975Eb01]	
Si	0.0280(38)				e	28 _{Si}	183, 250	EE	[1972Na06]	
³ Si	0.0330(28)				1/	28 _{Si}		GG	[1972ArZD]	
Si	0.033(4)				28 _{Si}	206 _{Pb}	100-120	CE	[1970Na05]	
Si	0.055(4)		0.50(12)			27 _{Al}				
Si			0.59(13)		p	27 Al	1.317	TDSA	[1970Hu14]	
Sı			0.78(15)		p	27 AI	0.7-2.0	TDSA	[1970Al05]	
Si		(0.87(22)		α	²⁴ Mg	2.9-3.2	TDSA	[1969Gr03]	
³ Si		(0.73(5)		³² S	28 _{Si}	60	TDSA	[1969Pe08]	
³ Si		($0.56(^{+40}_{-22})$		p	27 Al	1-3	TDSA	[1969Bi09]	
Si						27 _{Al}				
			$0.59(^{+60}_{-15})$		p		0.29-1.01	TDSA	[1969Me14]	
³ Si		(0.86(11)		³ He	²⁷ Al	8-10	TDSA	[1969An08]	
Si	0.0317(17)				28 _{Si}	62 _{Ni}	70	CE*	[1969Ha31]	
Si	` '		0.62(15)		γ	27 AI	1.8-3.6	GG	[1968Cr07]	
Sci			0.706(+24 – 2	23)		28 _{Si}	22	TDSA	[1968Ro05]	
Si Si				,	α	28 _{Si}				
51			0.71(6)		p		9-10	TDSA	[1968Ma05]	
Si		(0.58(+10-9)		p	27 _{Al}	1.2-2.4	TDSA	[1968Gi05]	
³ Si	0.040(8)				γ 12 _C	28 _{Si}	1-2	GG	[1967Be39]	
Si	0.034(7)				¹² C	²⁸ Si	36.8	CE*	[1967Af03]	
³ Si	0.0428(40)				e	²⁸ Si	30-56	EE	[1966Li08]	
Si	0.0329(46)					28 _{Si}	1.772	GG	[1966Sk01]	
Si	0.0329(40)		0.50(15)		γ	28 _{Si}				
			0.56(15)		γ		0.5-3	GG	[1964Bo22]	
Si		(0.72(6)		γ	28 _{Si}	1.8	GG	[1963Sk01]	
³ Si	0.029(10)				γ	28 _{Si}	4	GG	[1962Bo17]	
⁸ Si	0.027(9)				16 _O	28 _{Si}		CE	[1960Ad01]	
3 si	0.044(9)				20_{Ne}	28 _{Si}	23-28	CE*	[1960An07]	
⁸ Si								CE	[1960Le07]	Su
Si Si	0.035(5)				¹⁶ 0	28 _{Si}	25	CE*		54
	0.025(5)						25		[1960Go08]	
8 _{Si}			0.73(22)		γ	28 _{Si}	1.8	GG	[19590f14]	
8 _{Si}		(0.60(10)		e	28 _{Si}		EE	[1956He83]	
o _{Si}			0.358(18)		28 _{Si}	3 _H	33	TDSA	[1980Sc25]	
0_{Si}			0.310(40)		α	²⁷ Al	12,14.1,15	TDSA	[1980Bi14]	
o _{Si}	0.0257(34)		,		30 _{Si}	208 _{Pb}	106-136	CE	[1979Fe08]	
o _{Si}	0.0237(34)		0.27(14)		32 _S	30 _{Si}	41.3-51	TDSA		
o _{Si}		'	0.27(14)		3	31	41.5-31	IDSA	[1977Sc36]	
					22	20			[1973ScWZ]	Su
⁰ Si	0.029(7)				32 _S	³⁰ Si	41.3-51	CE*	[1977Sc36]	
O _{Si}	0.0216(30)				e	30 _{Si}	18.5-117.1	EE	[1977Br16]	
Si			0.36(4)		α	30 _{Si}	8.5	TDSA	[1975Eb01]	
Si			0.351(19)		28 _{Si}	3 _H	33	TDSA	[1975He25]	
Si						27 _{Al}	9-10			
Si Si			0.35(7)		α	27 Al		TDSA	[1972Ga05]	
Si			0.330(50)		α	2' AI	5.0,6.3,8.0	TDSA	[1971Sh11]	
Si			0.332(21)		α	27 _{Al}	4.5-8.2	TDSA	[1970Cu02]	
Si		(0.300(40)		p	30 _{Si}	3.435	TDSA	[1969Bi11]	
) Si			0.26(6)		α	²⁷ Al	3.47-4.55	TDSA	[1967Li05]	
O _{Si}			0.46(5)		α	²⁷ Al	4.1	TDSA	[1967Br01]	
2 _{si}	0.0113(33)	`			32 _{Si}	197 Au	37.4-48.2A	CE*	[1998Ib01]	
Si Si	0.0113(33)		0.49(7)			30 _{Si}				F
51			0.48(7)		t	30	2.5-3.3	TDSA	[1974Gu11]	Ex
² Si		(0.92(32)		t 24	30 _{Si}	2.7,2.8	TDSA	[1972Pr18]	
⁴ Si	0.0085(33)				³⁴ Si	197 _{Au}	37.4-48.2A	CE*	[1998Ib01]	
⁶ Si				0.25(4)	36 _{Si}	p	0.4c	IN-EL	[2007Ca35]	
6 c;	0.0193(59)			- ()	36 _{Si}	p ¹⁹⁷ Au	37.4-48.2A	CE*	[1998Ib01]	
Si				0.36(3)	38 _{Si}	n	0.4c	IN-EL		
31 3c:	0.0102(71)			0.30(3)	38 _{Si}	p 197 _{Au}			[2007Ca35]	
Si	0.0193(71)						37.4-48.2A	CE*	[1998Ib01]	
Si				0.37(5)	40 _{Si}	p	0.4c	IN-EL	[2007Ca35]	
3s	0.0181(31)				28 _S	Pb	53A	CE*	[2012To06]	
S	0.0350(33)				30 _S	¹⁹⁷ Au	45.9A	CE*	[2002Co09]	
o _s			0.254(23)		²⁸ Si	³ He-implanted Au	60	TDSA	[1982Al22]	
) _S					3 _{He}	28 _{Si}		TDSA		
			0.14(5)		3		7.0-10.0		[1973Ku15]	
0 _S			0.31(8)		³ He	Si	6.5-10	TDSA	[1972Ca22]	
⁰ S		(0.175(35)		t	28 _{Si}	4-8	TDSA	[1970Bi08]	
2 S			0.258(8)		32 _S	С	65	TDSA	[2006Sp01]	
2 _S			0.212(35)			32 _S	9.9	GG	[2002Ba28]	
- s ² s					γ 31 _P					\$1D
			0.252(40)			p	0.21c	TDSA	[1998Ka31]	NR
² s		(0.236(16)		32 _S	⁴ He implanted in Cu	70	TDSA	[1980Ba40]	
2 S		(0.240(27)		32 _S	Si	47-51	TDSA	[1977Sc36]	
	0.0300(13)		•		32 _S	Si	47-51	CE*	[1977Sc36]	
2 _S						31 _P				
2 _S 2 _S	0.0300(13)		0.195(70)		р 32 _S	Jib	0.811, 1.117	TDSA	[1974Ch09]	

Table 1 (continued)

Nuclide	$B(E2)(e^2b^2)$	B(E2) (W.u.)	τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
32 _S			0.18(8)		р	Р	0.35-2.03	TDSA	[1972Co13]	
2 _S	0.0284(20)		,		р 32 _S	112 _{Cd}	90, 100	CE	[1971Ha47]	
2 _S	0.020 1(20)		0.23(6)		α	32 _S	14.39, 14.50	TDSA	[1971Ga01]	
2 S			0.175(30)			31 _P				
2 _S					p		439, 541, 642	TDSA	[1971Re15]	
25			0.35(6)		p	P, S	9.275, 1.555	TDSA	[1971In02]	
2 _S			0.23(5)		e	32 _S	28-60	EE	[1970St10]	
2 S	0.033(5)				32 _S	206 _{Pb}	130-150	CE	[1970Na05]	
^{2}s			0.26(8)		p	31 _P	0.811-1.555	TDSA	[1969Th03]	
2 S			0.30(8)		α	28 _{Si}	2.9-3.2	TDSA	[1969Gr03]	
2 _S	0.042(9)		0.50(0)		12 _C	S	36.8	CE*	[1967Af03]	
2 S	0.042(3)		0.22(0)			32 _S				
2 _S			0.33(8)		γ		2.24	GG	[1964Ma01]	
S S			0.27(9)		γ	³² S	0.5 to 3.0	GG	[1964Bo22]	
^{2}s	0.0200(22)				e	S	120-180	EE	[1964Lo08]	
2s			0.26(9)		γ	S	3	GG	[1962Bo17]	
S			0.160(15)		e	32 _S	187	EE	[1956He83]	
1 _S	0.0193(7)		()		³⁴ S	e	120, 240, 320	EE	[1985Wo06]	
S	0.0133(7)		0.442(20)		34 _S					
			0.442(26)			⁴ He implanted in Cu	70	TDSA	[1980Ba40]	
S			0.490(30)		32 _S	2,3 _H	38	TDSA	[1977He12]	NR
l _S			0.465(50)		34 _S	Si	49-52.5	TDSA	[1977Sc36]	
l _S	0.0203(13)				34 _S	Si	49-52.5	CE*	[1977Sc36]	
l _S	0.0250(40)				34 _S	206 _{Pb}	122	CE	[19740102]	
4 _S	5,0250(40)		0.400(40)			31 _p				
			0.400(40)		α		7.2-8.0	TDSA	[1974Gr06]	
S			0.47(9)		α	31 _p	8.05, 8.14, 8.35	TDSA	[1970Cu02]	
S			0.46(10)		α	31 _P	4.67	TDSA	[1970Br18]	
S			0.400(32)		α	31 _P	5.0-7.3	TDSA	[1970Ra17]	
4 _S			0.44(5)		α	31 _P	5.0-7.3	TDSA	[1970Gr11]	
1 _S			0.35(6)		α	31 _p	4.5-6.1	TDSA		
is					α 36 _S	12 _C			[1969Gr03]	
			0.12(1)		305		70	TDSA	[2008Sp01]	
S			0.110(30)		t	³⁴ S	3.1	TDSA	[1972Sa09]	
³ s				0.35(4)	38 _S	p ¹⁹⁷ Au	39A	IN-EL	[1997Ke07]	NR
8 _S	0.0235(30)				38 _S	197 Au	39.2A	CE*	[1996Sc31]	
o _S	,			0.35(5)	40 _S	n	30A	IN-EL	[1999Ma63]	NR
) _S	0.0004(00)			0.55(5)	40 _S	p 197 _{Au}				IVIC
	0.0334(36)					107	39.5A	CE*	[1996Sc31]	
S	0.0397(63)				42 _S	197 _{Au}	40.6A	CE*	[1996Sc31]	
^{1}S	0.0314(88)				44 _S	¹⁹⁷ Au	35A	CE*	[1997Gl02]	
² Ar	0.0266(68)				³² Ar	¹⁹⁷ Au	50.9A	CE*	[2002Co09]	
4 Ar	` ,		0.46(6)		³² S	³ He-implanted Au	80	TDSA	[1985Al18]	
⁴ Ar					3 _{He}	32 _S	8			
4 Ar			0.33(8)		3			TDSA	[1974Be18]	
*Ar			0.20(6)		³ He	S	8-12	TDSA	[1974Gr19]	Ex
⁴ Ar			0.15(5)		³ He	Si	6.5-10	TDSA	[1972Ca22]	Ex
6 _{Ar}			0.65(2)		32 _S	С	65	TDSA	[2006Sp01]	
6 Ar	0.0310(31)		,		³⁶ Ar	197 _{Au}	56.1A	CE*	[1999Co23]	
6 _{Ar}					³⁶ Ar	197 _{Au}				
Ar S	0.0286(23)					36 .	50A	CE*	[1999Pr09]	
Ar	0.0280(16)				e	³⁶ Ar	65-115	EE	[1977Fi09]	
Ar			0.34(11)		p	³⁵ Cl	0.4-3.0	TDSA	[1974Jo02]	
٥,٠			0.35(12)		p	³⁵ Cl	0.8-2.3	TDSA	[1972Ho40]	
Ar	0.032(5)		` '		36 _{Ar}	206 _{Pb}	150	CE	[1971Na06]	
Ar	0.032(3)		0.40(10)			³⁵ Cl				
Ar			0.40(10)		p		1.7-2.6	TDSA	[1970Th04]	
'Ar			0.46(11)		α	S	3.189	TDSA	[1969Gr03]	
Ar			0.71(3)		34 _S	С	67	TDSA	[2006Sp01]	
3 Ar			0.68(3)		³⁵ Cl	⁴ He implanted in Ti,	55	TDSA	[1976Fo12]	
			0.00(3)		Ci	Fe. Ni. Cu. Ag. Au	33	יונטו	[13/01012]	
³ Ar			0.76(24)		α	³⁷ Cl	6.25	TDSA	[1971Ja15]	
3 Ar			0.93(27)		α	35 _{Cl}	8.00	TDSA	[1971Ja10]	
³ Ar										
Αľ			$0.47(^{+15}_{-11})$		α	Cl	8.10	TDSA	[1970Cu02]	
³ Ar			0.54(7)		α	Cl	7.61	TDSA	[1969En04]	
3 4.			0.45(11)		α	Cl	6.1	TDSA	[1969Gr03]	
3			0.65(9)		α	Cl	5.9, 10.5	TDSA	[1968Li04]	
D					36 _s	C	70			1
O _{Ar}	0.027/23		1.8(2)		¹⁹⁷ Au	40 _{Ar}		TDSA	[2008Sp01,2008Sp04	ı,
Ar	0.037(7)					** Ar	38.4A	CE*	[1998Ib01]	
Ar			2.00(40)		α	³⁷ Cl	11	TDSA	[1983Bi08]	
Ar Ar			$1.04(^{+116}_{-4})$		p	40 _{Ar}	5.75	TDSA	[1979Be41]	
۸	0.0382(13)		-4			³⁸ Ar	65-115	EE	[1977Fi09]	
Ar	0.0302(13)		4.05(45)		e	40.				
Ar			1.95(15)		p	40 _{Ar}	6.75	TDSA	[1976So03]	
JΔr			1.20(37)		α	³⁷ Cl	6.25	TDSA	[1971Ja15]	
Ar			$2\binom{+18}{-1}$		α	Cl	8.4	TDSA	[1970Cu02]	Ex
Ar	0.022(5)		`-1 '		40 _{Ar}	130 _{Te,} 120 _{Sn,} 206 _{Pb}				
Ar	0.032(5)				Ar 40		110-125	CE	[1970Na05]	
) Ar	0.049(10)				40 _{Ar}	Al	48	CE*	[1965Gu10]	
Ar			$3.8(^{+10}_{-8})$		t	⁴⁰ Ar	2.8	TDSA	[1974Fi01]	
¹ Ar					⁴⁸ Ca	208 _{Pb}				
·Ar	1.24		5.9(20)			200 Pb	310	RDM	[2010Me07]	
Ar	$0.0378(^{+34}_{-55})$				⁴⁴ Ar	109 _{Ag,} 208 _{Pb}	2.68A, 3.68A	CE*	[2009Zi01]	
Ar	0.0345(41)				⁴⁴ Ar	197 _{Au}	80A	CE*	[1996Sc31]	
ΛI										
Ar	$0.0271(^{+22}_{-26})$				⁴⁶ Ar	Pb	60A	CE*	[2014Ca10]	
Ar	20		$0.8(^{+3}_{-4})$		⁴⁸ Ca	208 _{Pb}	310	RDM	[2010Me07]	Ex
 i.	0.0045/51		(-4)		⁴⁶ Ar	197 _{Au}				LA
Ar	0.0218(31)				Ar Ac	107 Au	76.4A	CE*	[2003Ga20]	
5 Ar	0.0196(39)				46 _{Ar}	197 _{Au}	80A	CE*	[1996Sc31]	
8 _{Ar}					48 _{Ar}	9 _{Be}	96A	CE*	[2012Wi05]	

Table 1 (continued)

	e B(E2) (e ² b ²)	B(E2) (W.u.) τ (ps)	β_2 Beam	Target	Energy (MeV)	Method	Reference	Commen
³⁸ Ca	0.0096(21)		³⁸ Ca	¹⁹⁷ Au	56.1A	CE*	[1999Co23]	
³⁸ Ca		$0.098(^{+43}_{-40})$	36 _{Ar}	³ He	9,10,10.5	TDSA	[1975HaYU]	NR
⁴⁰ Ca		0.042(12)	γ	⁴⁰ Ca	9.9	GG	[2002Ha13]	
40 _{Ca}		0.052(20)	n	40 Ca	E=fast	TDSA	[1989Ge09]	Su, NR
40_{Ca}		0.052(20)	n	40 _{Ca}	E=fast	TDSA	[1984El12]	
⁴⁰ Ca	0.0090(10)		e	Ca	120	EE	[1973Ha13]	
⁴⁰ Са		0.040(16)	p	Ca	9.86, 10.81	TDSA	[1972Si01]	
⁴⁰ Ca		0.048(10)	p	40 Ca	7.2	TDSA	[1971Ma03]	
⁴⁰ Ca		0.058(10)	p	³⁹ K	1.344	TDSA	[1971Ma03]	
⁴⁰ Ca		0.054(14)				TDSA	[1970StZP]	
⁴⁰ Ca	0.0112(24)		e	40 _{Ca}	28-60	EE	[1970St10]	
⁴⁰ Ca		0.045(5)				GG	[1970RaZC]	
⁴⁰ Ca	0.00720(30)		e	40 _{Ca}	183, 250	EE	[1970It01]	
¹⁰ Ca		0.07(5)	p	40 _{Ca}	8.5, 9	TDSA	[1969Po04]	
40 _{Ca}	0.0084(11)		e	40 _{Ca}	20-60	EE	[1969Ei03]	
¹⁰ Ca		0.064(19)	p	40 _{Ca}	8-10	TDSA	[1968Ma05]	
10 _{Ca}		0.025(6)	p	³⁹ K	1.1-2.5	TDSA	[1968Li12]	
¹⁰ Ca ¹⁰ Ca		0.019(6)	p	³⁹ K	4	TDSA	[1968Do12]	
¹² Ca	0.0029(9)	. ==/.=>	e ⁴² Ca	40 _{Ca}	120, 150, 180 220	EE	[1963Bl04]	
Ca		1.52(10)		C ⁴² Ca	95	TDSA,CE	[2003Sc21]	
12 Ca	0.0418(15)		e 32 _S	⁴² Ca ⁴² Ca	62.5-250	EE CE*	[1989It02]	
⁴² Ca	0.0412(15)	±5		32 Ca 42 -	60	CE*	[1973To07]	
¹² Ca		$0.75(^{+5}_{-4})$	γ	⁴² Ca	1.524	GG	[1972KaXR]	
¹² Ca	0.0320(20)		e	⁴² Ca	297.5	EE	[1971He08]	
¹² Ca		0.90(30)	α	K ⁴² Ca	7.5	TDSA	[1971Ha12]	
¹² Ca		1.60(30)	p		7.8	TDSA	[1969Ko03]	
¹² Ca		0.75(30)	α	K	7.5, 9.0, 10.6	TDSA	[1969Ha02]	
¹² Ca		1.00(30)		42		TDSA	[1969Ca24]	
¹² Ca	0.037(8)		γ ⁴⁴ Ca	⁴² Ca	1.52	GG	[1966Me11]	
⁴⁴ Ca		4.4(4)		C	95	TDSA,CE	[2003Sc21]	
¹⁴ Ca	0.0550(20)		e 32 _S	44 _{Ca}	62.5-250	EE	[1989It02]	
¹⁴ Ca	0.0473(20)		³² s	44 _{Ca}	55	CE*	[1973To07]	
¹⁴ Ca		5.1(10)	α	K	9	TDSA	[1973Mc16]	
¹⁴ Ca		4.60(38)	³⁵ Cl	Ca	56-68	TDSA	[1973Fi15]	
¹⁴ Ca		$2.9(^{+11}_{-7})$	p	Ca	4.235	TDSA	[1972Gr04]	
¹⁴ Ca	0.0545(35)	-,	α	44 _{Ca}	4.5, 4.75, 5	CE	[1972Bi17]	
¹⁴ Ca	0.0480(30)		e	44 _{Ca}	297.5	EE	[1971He08]	
14 _{Ca}	0.035(7)		14 _{N,} 20 _{Ne}	44 _{Ca}	16.8, 21.5, 26	CE	[1961An07]	
⁴⁶ Ca		7.3(13)	48 _{Ca}	64 _{Ni.} 208 _{Pb}	282,310	RDM	[2012Mo11]	
⁴⁶ Ca		5.5(22)	48 Ca	208 _{Pb}	310	RDM	[2009Me23]	
⁴⁶ Ca		6.6(15)	46 _{Ca}	12 _C	95	TDSA,CE*	[2003Sp04]	
⁴⁶ Ca	0.0182(13)		α	46 _{Ca}	4.5, 4.75, 5	CE	[1972Bi17]	
⁴⁸ Ca		0.051(6)	γ	⁴⁸ Ca	5.5, 8, 9.9	GG	[2002Ha13]	
¹⁸ Ca		$0.060(\overset{+}{-}11_{2})$	n	⁴⁸ Ca	4.8-8	TDSA	[1992Va06]	NR
48 Ca	0.0082(5)	-12	e	⁴⁸ Ca	240.1	EE	[1985Wi06]	NR
48 ca	0.0082(3)	0.053(24)	р	⁴⁸ Ca	7-9	TDSA	[1970Be39]	IVIC
¹⁸ Ca	0.0086(12)	0.055(24)	e e	⁴⁸ Ca	20-60	EE	[1969Ei03]	
18 Ca	0.0000(12)	0.065(27)		⁴⁸ Ca	7-9	TDSA	[1968SeZZ]	
50 _{C2}		99(8)	р 50 _{Са}	1 _H	90A	DSAM	[2014Ri04]	Ex
O _{Ca}		96(3)	48 Ca	208 _{Pb}	310	RDDS	[2009Va06]	LA
2 _{Ti}		0.56(16)	3 _{He}	40 _{Ca}	10.0-11.5	TDSA	[1973Ha10]	
2 _{Ti}		0.75(30)	3 _{He}	40 Ca	8.0	TDSA	[1973Co38]	
¹¹ Ti		$0.49(^{+23}_{-18})$	³ He	40 _{Ca}	6.0, 6.5, 10.0	TDSA	[1971FoZV]	
¹¹ ¹² Ti			3 _{He}	40 _{Ca}				
		$0.55(^{+30}_{-20})$			5.8, 7.5	TDSA	[1971BrYK]	
¹² Ti		$1.7(^{+3}_{-5})$	3 _{He}	Ca	9-10	TDSA	[1971Bo23]	Ex
¹⁴ Ti		3.97(28)	40 Ca	C	95	TDSA	[2003Sc19]	
¹⁴ Ti		4.5(11)	α	40 _{Ca}	4.5-6.0	TDSA	[1977Di07]	Su, NR
¹⁴ Ti		4.5(11)	α	⁴⁰ Ca	4.00, 4.26, 4.52	TDSA	[1973Di04]	
¹⁴ Ti		5.0(20)	32 _S	14 _N	28	RDM	[1971HuZR]	
16 _{ті}		7.3(4)	²⁸ Si	24 _{Mg}	110	RDM	[2006Je04]	
6 _{Ti}		7.63(7)	16 _O	32 _S	38	RDM	[2003Mo02]	
^{l6} Ti		8.1(4)	С	46 _{Ti}	110-120	TDSA,CE*	[2000Er01,2000Er06]	NR
6 _{Ti}		$2.0(^{+50}_{-10})$	p	45 Sc	1.8	TDSA	[1983Ra17]	NR
6 _{Ti}		6.7(5)	-			TCS	[1976KI04]	
6 _{Ti}	0.0855(40)	5 (5)	32 _S	46 _{Ti}	60	CE*	[1975To06]	
6 _{Ti}	(10)	6.5(7)	16 _O	32 _S	34.5	RDM	[1973De09]	
l6 _{ті}	0.0740(20)	5.5(1)	e	46 _{Ti}	250	EE	[1971He08]	
16 _{Ti}	0.0740(20)		16 ₀	46 _{Ti}	26-31	CE*	[1971De29]	
16 _{ті}	0.097(7)		³⁵ Cl	46 _{Ti}	54	CE*		
16 _{Ti}	0.111(10)		³⁵ Cl	46 _{Ti}	70.35-74	CE*	[1970MiZQ] [1970Ha24]	
16 _{Ti}	0.10/(10)	0.7(24)						
16 _{Ti}		9.7(24)	γ	Ti Ti	0.885	GG	[1967TaZZ]	Ev
6 _{Ti}		14.2(20)	γ	11	0.885	GG	[1963Ka29]	Ex
- 11	0.003(47)	7.8(22)	14 _N	46 _{Ti}	102.20.20	GG	[1963Ak01]	
6-	0.083(17)		1-1N		16.3, 26, 36	CE*	[1960An07]	
			**	46				
16 _{Ti}	0.130(40)		N 3	46 _{Ti}	15.9-35	CE*	[1959Al95]	r.
46 _{Ti} 46 _{Ti} 46 _{Ti} 48 _{Ti}		5.7(2)	N ³ He C	46 _{Ti} 46 _{Ti} 48 _{Ti}	15.9-35 6-7 110-120	CE* CE TDSA,CE	[1959Al95] [1956Te26] [2000Er01,2000Er06]*	Ex

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.)	τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comm
Γi			6.7(6)		γ	48 _{Ti}	0.5-1.65	GG	[1981Ca10,1977Ca14]	
Γi			4.3(20)		ά	⁴⁵ Sc	9.6	TDSA	[1978Li13]	
Γi			$4.2(^{+30}_{-17})$		р	48 _{Ti}	6	TDSA	[1978DeYT]	
Гі			8.29(36)		35 _{Cl}	Ti	56-68	TDSA	[1973Fi15]	
Γi			6.0(13)		³⁵ Cl	48 _{Ti}	64	TDSA	[1973Ba02]	
Γi			5.3(8)		16 ₀	48 _{Ti}	0-1	TDSA	[1972WaYZ]	
Γi	0.0537(15)		3.5(0)		e	48 _{Ti}	250	EE	[1971He08]	
Ti	0.0720(40)				16 _O	48 _{Ti}	26-31	CE*	[1971De29]	
Γi	0.0720(40)				³⁵ Cl	48 _{Ti}	54	CE*	[1970MiZQ]	
Γi	0.069(6)				³⁵ Cl	48 _{Ti}	70.35-74	CE*	[1970Ha24]	
Ti	0.003(0)		12(+20)			48 _{Ti}				ND
Ti			$1.2(^{+20}_{-3})$		р 12 _С	48 _{Ti}	7.8	TDSA	[1969Ka10]	NR
Ii Ti	0.080(16)						38.6	CE*	[1967Af03]	
I1			3.6(15)		γ	Ti	0.5-3	GG	[1964Bo22]	
Ti			7.1(22)		14	48 _{Ti}		GG	[1963Ak02]	
Ti	0.070(14)				14 _N		16.3, 26, 36	CE*	[1960An07]	
Ti	0.140(40)				N	⁴⁸ Ti	15.9-35	CE*	[1959Al95]	
Ti			6.0(20)		γ	Ti	0.910-1.070	GG	[1958Kn36]	
Ti	0.031(6)				3 _{He}	48 _{Ti}	6-7	CE	[1956Te26]	Ex
Ti			1.73(20)		⁴⁶ Ca	С	95	TDSA	[2003Sp04]	
Ti			1.62(7)		50_{Ti}	C	110	TDSA,CE*	[2000Sp08]	NR
Ti			1.30(40)		γ 32 _S	50 _{Ti}	1.3-4.7	GG	[1976Ra03]	
Γi	0.0315(30)					50 _{Ti}	57	CE*	[1975To06]	
Ti			1.10(15)		¹⁶ 0	50 _{Ti}		TDSA	[1972WaYZ]	
Ti	0.0307(10)				e	50 _{Ti}	250	EE	[1971He08]	
Ti	0.0330(30)				³² S	50 _{Ti}	67	CE*	[1970Ha24]	
Ti	0.0173(35)				¹² C	50 _{Ti}	38.6	CE*	[1967Af03]	
Ti	0.024(2)				¹⁶ 0	⁵⁰ Ti	31-33	CE*	[1965Si02]	
Ti	0.040(8)				N	50 _{Ti}	30	CE*	[1962Va22]	
Ti			5.2(2)		⁴⁸ Ca	C	100	TDSA,CE*	[2006Sp02]	
Ti	0.0567(51)				52 _{Ti}	¹⁹⁷ Au	89A	CE*	[2005Di05]	
Ti	. ,		$4.8(^{+80}_{-21})$		t	50 _{Ti}	2.9	TDSA	[1974Pr04]	NR
Ti	0.0357(63)		-21		⁵⁴ Ti	197 _{Au}	89A	CE*	[2005Di05]	
Ti	0.060(20)				56 _{Ti}	197 _{Au}	89A	CE*	[2005Di05]	
	0.000(20)			$\delta = 0.83$						
Ti				(+22,-30)	p	⁵⁸ Ti	42A	IN-EL	[2013Su20]	
Cr	0.093(20)				⁴⁶ Cr	208 _{Pb}	44A	CE*	[2005Ya26]	
Cr			10.6(11)		14 _N	³⁶ Ar	29-36	TRDM	[1979Ek03]	
Cr			16.7(22)		16 ₀	34 _S	30-36	TRDM	[1975Ha04]	
Cr			9.7(26)		10 _B	40 Ca	19-25	TRDM	[1973Ku10]	
Cr			13.2(4)		50 _{Cr}	12 _C	110-120	CE*	[2000Er01,2000Er06]	NR
Cr	0.093(5)		. ,		e	50 _{Cr}	30-400	EE	[1983Li02]	
Cr	0.102(5)				32 _S	50 _{Cr}	60	CE*	[1975To06]	
Cr	(-)		12.6(21)		16 ₀	40 _{Ca}	47	TDSA	[1974Br04]	
Cr			12.1(12)		12 _C	40 _{Ca}	28	TRDM	[1973De09]	
Cr			10(2)		р	52 _{Cr}	31.4	TDSA	[1972Ra14]	
Cr	0.115(10)		(2)		35 _{Cl}	50 _{Cr}	54	CE	[1972Ra14]	
Cr	0.092(10)				³⁵ Cl	50 _{Cr}	21-79	CE*	[1972Ka14] [1971DaZM]	
Cr	0.092(10)			α	Ci	50 _{Cr}	2175	CE	[1961Mc18,1966Mc18]	NR
Cr	0.115(12)			α	Ne	50 _{Cr}	23.2			
Cr	0.13(3)		1 12/2)		Ne 52 _{Cr}	C		CE?	[1960An09]	NR ND
Cr	0.0633(40)		1.13(3)			52 _{Cr}	110-120	CE*	[2000Er01,2000Er06]	NR
Cr Cr	0.0632(40)				e	52 _{Cr}	30-400	EE	[1983Li02]	
Cr	0.0687(13)				γ	52 _{Cr}	1.431	GG	[1981Ah02]	
Cr Cr	0.080(8)				e	52 Cr 52 Cr	90, 120, 226	EE	[1978Po04]	
Cr Cr	0.0634(39)				e 32 _S	52 Cr 52 Cr	40-110	EE CE*	[1976Li19]	
cr	0.0660(30)					52 Cr 52 Cr	60	CE*	[1975To06]	
Cr Cr	0.076(8)		0.00(:::)		e 16 _{O;} 35 _{Cl}	52 Cr 52 Cr	50-100	EE	[1975DeXW]	
Cr	0.074(**)		0.86(13)			52 Cr 52 ~	21,79	TDSA	[1972WaYZ]	
Cr	0.071(9)				e 2	52 _{Cr}	60, 150, 180, 250	EE	[1971Pe11]	
Cr			$0.99(^{+45}_{-25})$		3 _{He}	51 _V	11	TDSA	[1971Sp12]	
Cr	0.072(8)				¹⁶ O; ³⁵ Cl	52 _{Cr}	21-30; 60-79	CE*	[1971DaZM]	
Cr	0.043(9)				¹² C	⁵² Cr	36.8	CE*	[1967Af03]	
Cr	0.048(2)				16 ₀	52 _{Cr}	33.8, 35.6	CE*	[1965Si02]	
Cr.	0.0520(40)				e	⁵² Cr	150-180	EE	[1964Be32]	
Cr			1.02(13)		γ	⁵² Cr	0.5-3.0	GG	[1964Bo22]	
Cr	0.072(9)				α	⁵² Cr		CE	[1961Mc18,1966Mc18]	NR
Cr	0.062(12)				Ne	⁵² Cr	23.2	CE?	[1960An09]	NR
Cr	0.060(15)				¹⁶ 0	⁵² Cr	39	CE*	[1960Ad01]	
Cr			0.8(2)		γ	⁵² Cr	<2	GG	[19590f14]	
Cr	0.095(5)		. /		e	54 _{Cr}	30-400	EE	[1983Li02]	
Cr	0.0850(30)				32 _S	54 _{Cr}	60	CE*	[1975To06]	
Cr	0.096(9)				35 _{Cl}	54 _{Cr}	54	CE	[1970MiZQ]	
Cr	0.10(1)				α	54 _{Cr}	54	CE	[1961Mc18,1966Mc18]	NP
Cr					α 14 _N	54 _{Cr}	16.26			1417
Cr	0.057(11)				14 _N	54 _{Cr}	16, 26	CE	[1960An07]	
Cr Cr	0.079(20)	0.7(5.5)					15.9-35	CE	[1959Al95]	
Cr		8.7(30)			56 _{Cr}	197 _{Au}	100A	CE*	[2005Bu29]	
Cr			6.8(9)		⁵⁹ Mn	9 _{Be}	92.1A	RDM	[2015Br10]	
Cr Cr	0.0860(125)				58 _{Cr}	¹⁹⁷ Au	81.1A	CE*	[2012Ba31]	
c		14.8(42)			58 _{Cr}	197 _{Au}	100A	CE*	[2005Bu29]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference Com
Cr		26.5(32)		⁶¹ Mn	9 _{Be}	91.9A	RDM	[2015Br10]
Cr	0.1105(145)			⁶⁰ Cr	¹⁹⁷ Au	81.7A	CE*	[2012Ba31]
Cr			0.23(3)	60 _{Cr}	р	63A	IN-EL	[2009Ao01]
Cr		125(13)		⁶³ Mn	p 9 _{Be}	98A	RDM	[2015Br10]
Cr	0.1625(220)	()		62 _{Cr}	¹⁹⁷ Au	79A	CE*	[2012Ba31]
Cr	0.1023(220)		0.27(3)	60 _{Cr}		63A	IN-EL	[2009Ao01]
2r	0.15(1(200)		0.27(3)	64 _{Cr}	p p:			
r	0.1561(396)			50	Bi	<130A	CE*	[2013Cr02]
Fe	0.1400(300)			50 _{Fe}	Pb	41A	CE*	[2005Ya26]
Fe	0.0817(102)			⁵² Fe	¹⁹⁷ Au	59.6A	CE*	[2004Yu07]
Fα	0.0676(38)			40 Ca	⁵⁴ Fe	86	CE	[1981Le02]
e e	0.060(6)			e	54 _{Fe}	50,60, 80,90	EE	[1975DeXW]
-e		$1.10(^{+50}_{-32})$		p	54 _{Fe}	10	TDSA	[1972Mo31]
_				16 _{O,} 35 _{Cl}	54 _{Fe}			
e.		0.95(14)			54Fe	21-30, 60-79	TDSA	[1972WaYZ]
₹e	0.0532(33)			e	54 _{Fe}	150, 225	EE	[1972Li28]
e e	0.0595(60)			¹⁶ O, ³⁵ Cl	⁵⁴ Fe	21-30, 60-79	CE*	[1971DaZM]
ē.	0.061(14)			12 _C	54 _{Fe}	36.8	CE*	[1967Af03]
e e	0.051(2)			16 _O	54 _{Fe}	38.1	CE*	[1965Si02]
70	0.0533(24)			e	⁵⁴ Fe	150	EE	[1962Be18]
e e				⁵² Cr	12 _{C;} 56 _{Fe}			
·e	0.1022(55)			7	51 _V	22; 110-120	CE*	[1981Le02]
e		7.9(12)		7 _{Li}		25	RDM	[1974Po15]
e e	0.111(6)			α , ^{16}O	56 _{Fe}	8, 28	CE	[1972Ca05]
Fe .	0.0970(20)			32 _S	⁵⁶ Fe	65	CE*	[1972Le19]
Fe	0.0678(48)			e	56 _{Fe}	150, 225	EE	[1972Li28]
e :	0.0945(45)			e	56 _{Fe}	299.5	EE	[1971He08]
e e				¹⁶ 0, ³⁵ Cl	56 _{Fe}		CE*	
٠.	0.1176(118)					21-30, 60-79		[1971DaZM]
-e	0.125(27)			e 16	56 _{Fe}	60.2	EE	[1970Pe15]
e		10.3(20)		¹⁶ 0	56 _{Fe}	14-35	TDSA	[1969Sp05]
-e		$11.3(^{+40}_{-24})$		16 ₀	56 _{Fe}	34	TDSA	[1965Es01]
- A	0.097(10)	`-24'		¹⁶ 0	56 _{Fe}	33	CE*	[1964El03]
re Fe	0.037(10)	0.5(20)			56 _{Fe}			
-e		8.5(29)		γ	56-	0.5-3	GG	[1964Bo22]
Fe .		9.6(18)		γ	56 _{Fe}	0.5-2.4	GG	[1963Be29]
e e	0.0720(35)			e	56 _{Fe}	150	EE	[1962Be18]
e		10.6(17)		γ	⁵⁶ Fe		GG	[1961Me11]
-e		8.6(29)			56 _{Fe}		GG	[1961Ke06]
e e	0.100(20)	()		γ 16 ₀	56 _{Fe}	36	CE	[1960Go08]
e e				14 _N	56 _{Fe}			
re	0.061(12)					16.3, 36	CE*	[1960An07]
Fe	0.100(25)			¹⁶ 0	56 _{Fe}	39	CE*	[1960Ad01]
Fe	0.070(18)			N	56 _{Fe}	15.9-35	CE*	[1959Al95]
Fe	0.100(20)			α	56 _{Fe}	7	CE	[1956Te26]
Fe	0.1234(36)			¹² C; ⁵² Cr	58 _{Fe}	22; 110-120	CE*	[1981Le02]
Fe		$3.4(^{+10}_{-9})$		α	58 _{Fe}	10	TDSA	[1978Bo35]
Fe		3.4(_9		40 Ca	58 _{Fe}			
Fe	0.086(5)					76	CE*	[1974ToZJ]
Fe	0.094(8)			e	58 _{Fe}	150, 225	EE	[1972Li28]
Fe	0.110(22)			¹⁴ N	58 _{Fe}	16.3	CE	[1960An07]
Fe	0.20(5)			N	58 _{Fe}	15.9-35	CE*	[1959Al95]
-e		11.6(22)		¹⁵ N; ¹⁸ O	48 _{Ca}	25-55	RDM	[1977Wa10]
Fe .		11.4(12)		238 _U	⁶⁴ Ni	6.5A	RDM	[2010Lj01]
e :				62 _{Fe}	197 _{Au}			
-e -e		8.0(10)		238 _{IJ}	64	97.8A	RDM	[2011Ro02]
		7.4(9)			64 _{Ni}	6.5A	RDM	[2010Lj01]
-e		10.3(10)		64 _{Fe}	197 _{Au}	95A	RDM	[2011Ro02]
-e		7.4(26)		238 _U	⁶⁴ Ni	6.5A	RDM	[2010Lj01]
۵.	0.1445(124)			66 _{Fe}	Bi	<130A	CE*	[2013Cr02]
e.	` '	39.4(40)		64 _{Fe}	¹⁹⁷ Au	88.3A	RDM	[2011Ro02]
-e	0.1777(216)	33.7(70)		68 _{Fe}	Bi	<130A	CE*	[2013Cr02]
Ni				54 _{Ni}			CE*	
Ni Ni	0.0590(170)			54 _{Ni}	Pb ¹⁹⁷ Au	42A		[2005Ya26]
N1	0.0626(169)			Ni 56	107 Au	70.3A	CE*	[2004Yu10]
Ni	0.0494(119)			⁵⁶ Ni	197 Au	85.8A	CE*	[2004Yu10]
Ni			0.144(34)	56 _{Ni}	208 _{Pb}	70.7A	CE*	[1998YaZR] NR
Ni		$0.076(^{+49}_{-24})$		³ He	⁵⁴ Fe	10	TDSA	[1973Sc28]
Vi	0.0620(40)	(-24)		58 _{Ni}				
NI.	0.0630(40)	⊥15			C	1.8A	CE	[2014Al20]
Ni		$1.00(^{+15}_{-10})$		n	Ni	1.6, 1.8	TDSA	[2008Or02]
Ni	0.0707(145)	**		58 _{Ni}	¹⁹⁷ Au	77.8A	CE*	[2004Yu10]
Ni		1.27(2)		58 _{Ni}	¹² C	155, 160	TDSA	[2001Ke08]
٧i		0.042(12)		n	Ni	fast	TDSA	[1989Ge09,1983El03] Ex, N
NI Ni	0.0500(40)	0.042(12)			58 _{Ni}			
	0.0588(40)			e		124, 180	EE	[1983Kl09]
٧i		0.90(11)		γ	⁵⁸ Ni	0.5-1.65	GG	[1981Ca10]
٧i		0.92(17)		p	58 _{Ni}	8	TDSA	[1973BeYD]
٧i	0.0660(40)			р 16 _О	⁵⁸ Ni	35-60	CE*	[1973Ch13]
Ni		1.07(8)			58 _{Ni}		GG	[1972ArZD]
Ni	0.0680(20)			γ 16 ₀	58 _{Ni}	30, 32, 34	CE*	
N1 Ni	J.JUOU(2U)	0.00(0)						[1971ChZF]
N1		0.98(9)		^γ 12 _{C,} 16 _{O,} 32 _S	58 _{Ni}	<4.5	GG	[1970Me18]
٧i	0.0725(20)			¹² C, ¹⁶ O, ³² S	⁵⁸ Ni	21-22, 25-30, 60-70	CE*	[1970Le17,1974Le13] NR
Ni.	0.0554(30)			e	⁵⁸ Ni	150, 225	EE	[1969Af01]
Ji	` '	0.94(12)		p	⁵⁸ Ni	7-9	TDSA	[1969Be48]
Ni Ni	0.0657(11)	0.54(12)			58 _{Ni}			
NI	0.0657(11)			e		40-70	EE	[1967Du07]
		0.62(20)		γ	⁵⁸ Ni	0.5-3.0	GG	[1964Bo22]
Ni					28	0.40	CE	[40000.00]
Ni Ni Ni	0.072(7)			α	⁵⁸ Ni ⁵⁸ Ni	3-10	CE	[1962St02]

Table 1 (continued)

	$B(E2) (e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
Ni	0.063(13)			¹⁶ 0	58 _{Ni}	36	CE*	[1960Go08]	
Ni	0.080(16)			¹⁴ N	58 Ni	36	CE*	[1960An07]	
Ni	0.071(14)			α	58 _{Ni}		CE?	[1960An07]	
	0.100(25)			N ions	58 _{Ni}	15.9-35	CE	[1959Al95]	Su
Ni	0.0906(41)			60 _{Ni}	C	1.8A	CE	[2014Al20]	
Vi	0.0000(11)	>0.500(17)		γ	60 _{Ni}	<6	GG	[2013Sc20]	
۷i		$1.30(^{+30}_{-20})$			60 _{Ni}				
				n 60		1.8	TDSA	[2008Or02]	
Ni		1.31(3)		⁶⁰ Ni	¹² C	160	TDSA	[2001Ke02,2001Ke08]	
Ni		1.30(36)		N/A	N/A	N/A	TCS	[1976Kl04]	
	0.1020(40)			e	60 _{Ni}	30-60	EE	[1974Ye01]	
Ni	0.087(7)			e	60 _{Ni}	45-250	EE	[1974Si01]	
Ni		1.00(7)		35 _{Cl}	60 _{Ni}	56-68	TDSA	[1973Fi15]	
Ni		$0.8(\frac{+15}{-3})$		p	60 _{Ni}	12	TDSA	[1973Ro20]	NR
		0.8(_3)			60 _{Ni}	12			IVIX
N1	0.082(6)			γ 16 ₀			GG	[1972ArZD]	
Ni	0.0910(30)			100	60 _{Ni}	36	CE	[1971ChZF]	
Ni	0.092(12)			γ	60 _{Ni}	<4.5	GG	[1970Me18]	
٧i	0.0938(20)			^γ 16 _{0,} 32 _S	60 _{Ni}	1.333	GG	[1970Me08]	
Ni	0.0930(20)			16 _{0,} 32 _S	60 _{Ni}	70	CE*	[1969Cl05,1974Le13]	NR
Ji	0.0603(28)			e	60 _{Ni}	150,225	EE	[1969Af01]	
Ji.	0.077(8)			e	60 _{Ni}	183,250	EE	[1969To08]	
	0.112(23)				60 _{Ni}				
				γ	60 _{Ni}	1-2	GG	[1967Be39]	
	0.0845(9)			e		40-70	EE	[1967Du07]	
N1	0.091(5)			α	60 _{Ni}	3-10	CE	[1962St02]	
Ni	0.123(15)			e	60 _{Ni}	183	EE	[1961Cr01]	
Ji.	0.11(1)			¹⁴ N	60 _{Ni}	36	CE*	[1960An07]	
٧i	0.120(24)			16 ₀	60 _{Ni}	36	CE*	[1960Go08]	
٧i		1.0(3)		γ	60 _{Ni}	133	GG	[1959Bu12]	
li.	0.160(40)	ζ- /		γ 14 _N	60 _{Ni}	15.9-35	CE	[1959Al95]	
٧i	()	1.1(2)			60 _{Ni}	U	GG	[1956Me59]	
٧i	0.0906(37)	1.1(2)		γ 62 _{Ni}	c	1.8A	CE	[2014Al20]	
Ni Ni	0.0900(37)	1.70(+86)			62 _{Ni}				
		$1.79(^{+86}_{-48})$		n	INI	2.8-4.1	TDSA	[2011Ch05]	
Ni		2.01(7)		62 _{Ni}	12 _C	160	TDSA	[2001Ke02]	
Ni		2.15(42)		γ	62 _{Ni}	0.5-1.65	GG	[1981Ca10]	
١i		1.55(25)		α	59Co	10	TDSA	[1978Ke11]	
Ni		1.55(25)		α	59Co	10	TDSA	[1978KIZR]	Su
Ni		$1.6(^{+4}_{-6})$		α	59Co	8	TDSA	[19780h04]	NR
Ni					62 _{Ni}				
N1		2.1(5)		γ		0.5-1.65	GG	[1977Ca14]	Su
Ni	0.102(10)			e	62 _{Ni}	50-100	EE	[1975DeXW]	
Ni	0.0618(42)			e	⁶² Ni	150, 225	EE	[1972Li28]	
Ni	0.0880(30)			¹⁶ 0	⁶² Ni	34	CE	[1971ChZF]	
Ni	0.0895(30)			¹⁶ 0	62 _{Ni}	70	CE*	[1970Le17,1974Le13]	NR
Ni	0.084(5)			²⁸ Si	62 _{Ni}	70	CE*	[1969Ha31]	
Ni	0.0877(11)			e	62 _{Ni}	65	EE	[1967Du07]	
Ni		2.28(18)		¹⁶ 0	62 _{Ni}	36	TDSA	[1965Es01]	
Ni	0.083(8)	2.20(10)			62 _{Ni}	6	CE		
Ni				α 14 _N	62 _{Ni}			[1962St02]	
N1	0.085(17)					36	CE*	[1960An07]	
	0.140(35)			¹⁴ N	62 _{Ni}	15.9-35	CE	[1959Al95]	Su
Ni	0.0718(29)			⁶⁴ Ni	C	1.8A	CE	[2014Al20]	
١i		1.57(5)		⁶⁴ Ni	¹² C	155, 160	TDSA	[2001Ke08]	
Ni		0.025(12)		n	64 _{Ni}	fast	TDSA	[1989Ge09,1983El03]	Ex, NR
Ni	0.0744(20)	. ,		e	64 _{Ni}	147.4-356.0	EE	[1988Br10]	
Ni .		0.40(15)		α	64 _{Ni}	13	TDSA	[1974Iv01]	
	0.0650(40)	0.40(13)		α 16 ₀	64 _{Ni}	30, 32, 34	CE	[1974IV01] [1971ChZF]	
					64 _{Ni}				
NI ,.	0.0650(34)			e 14		150, 225	EE	[1969Af01]	
٧i	0.087(17)			14 _N	64 _{Ni}	36.0	CE*	[1960An07]	
	0.077(15)			α	64 _{Ni}		CE*	[1960An07]	
Ni	0.090(18)			N ions	64 _{Ni}	15.9-35	CE	[1959Al95]	Su
٧i	0.06(1)			66 _{Ni}	208 _{Pb}	50A	CE*	[2002So03]	
Ji	0.028(11)			68 Ni	108 _{Pd}	2.9A	CE*	[2008Br18]	
٧i	0.0255(60)			66 _{Ni}	208 _{Ph}	50A	CE*	[2002So03]	
Ji	0.0255(00)			70 _{Ni}	208 _{Pb}	0.28c	CE*	[2006Pe13]	
Ni Ni	0.0642(+216			74 _{Ni}	197 _{Au}				
N I	$0.0642(^{+216}_{-226})$					95.8A	CE*	[2014Ma85]	
Ni			0.21(3)	⁷⁴ Ni	p	81A	IN-EL	[2010Ao01]	
'n		4.2(7)		63 _{Zn}	C	9450	RDM	[2007St16]	
'n		4.3(3)		⁶² Zn	Fe	160	TDSA	[2002Ke02]	
'n		4.20(30)		6 _{Li}	58 _{Ni}	15-24	TDSA	[1981Wa09]	
'n		$1.7(^{+7}_{-14})$		α	61 _{Ni}	30	TDSA		
								[1977BrYO]	
'n		2.85(9)		64 _{Zn}	С	180	TDSA	[2005Le12]	
'n		2.70(8)		64_{Zn}	Fe	160	TDSA	[2002Ke02]	
Zn	0.112(6)			p	⁶⁴ Zn	2-4.5	CE	[1998Si25]	NR
Zn	0.168(4)			α, ¹⁶ 0, ¹⁸ 0	64 _{Zn}	8,35,30	CE	[1988Sa32]	
Zn		2.97(25)			64 _{Zn}	1.65	GG	[1981Ca10]	
.n .n				γ	64 _{Zn}				C
n.		3.00(30)		γ 16 ₀		1.65	GG	[1977Ca14]	Su
'n		4.0(10)			51 _V	49	RDM	[1977Al14]	
'n	0.162(9)			e	64_{Zn}	100-275	EE	[1977Ne05]	
'n	0.155(9)			e	⁶⁴ Zn	40-112	EE	[1976Ne06]	
'n	. /	2.9(7)		α	61 _{Ni}	6.4-8	TDSA	[1976Ch11]	
		2.3(1)		~		00		[10,001.1]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Commen
⁶⁴ Zn ⁶⁴ Zn	0.161(12)			α 25	64 _{Zn}	3-5	CE*	[1975Th01]	
⁴ Zn	0.176(21)			³⁵ Cl	64 _{Zn}	56-68	CE	[1973Fi15]	
¹ Zn	0.155(11)			γ	64 _{Zn}	U	GG	[1972ArZD]	
⁴ Zn		3.11(22)		γ	64 _{Zn}		GG	[1971ImZY]	NR
⁴ Zn	0.170(16)			e	64 _{Zn}	150-225	EE	[1970Af04]	
⁴ Zn	0.108(5)			γ	64 _{Zn}	U	GG	[1965Ta13]	
⁴ Zn	0.162(10)			α	64 _{Zn}	3-10	CE	[1962St02]	
⁴ Zn	0.110(22)			14 _N	⁶⁴ Zn	36	CE*	[1960An07]	
⁴ Zn	0.110(22)			α	⁶⁴ Zn	<7	CE	[1956Te26]	
6 _{Zn}		2.5(1)		⁶⁶ Zn	C	180	TDSA	[2006Le24]	
66 Zn	0.144(9)			⁶⁶ Zn	Pb	274.2	CE*	[2003Ko51]	
⁶ Zn		2.43(5)		66 _{Zn}	Fe	160	TDSA	[2002Ke02]	
⁶ Zn	0.135(8)			p	⁶⁶ Zn	2-4.5	CE*	[1998Si25]	NR
6 _{Zn}		2.71(23)		γ	⁶⁶ Zn	1.65	GG	[1981Ca10]	
6 _{Zn}		2.0(10)		α	⁶³ Cu	16.7	TDSA	[1981Zh07]	
6 _{Zn}		2.70(20)		γ	⁶⁶ Zn	1.65	GG	[1977Ca14]	Su
6 _{Zn}	0.141(8)	2.76(20)		e	66 _{Zn}	100-275	EE	[1977Ne05]	Ju
6 _{Zn}	0.1.11(0)	$2.5(^{+5}_{-2})$		α	66 _{Zn}	27,30	TDSA	[1977Mo20]	
6 _{Zn}	0.407(40)	2.5(-2)			66 _{Zn}				
⁶ Zn	0.137(10)			e		40-112	EE	[1976Ne06]	
^o Zn	0.154(13)			α	66 _{Zn}	3-5	CE	[1975Th01]	
⁶ Zn	0.180(15)			e	⁶⁶ Zn	225	EE	[1973Li24]	
⁶ Zn	0.155(13)			35 _{Cl}	66 _{Zn}	56-68	CE	[1973Fi15]	
6 _{Zn}		2.2(9)		α	⁶⁶ Zn	25	TDSA	[1972Yo01]	
6 _{Zn}	0.156(21)			γ	⁶⁶ Zn	1.037	GG	[1972Ka22]	
⁶ Zn	0.138(16)			γ	⁶⁶ Zn	U	GG	[1972ArZD]	
⁶ Zn	0.145(15)			e	⁶⁶ Zn	150-225	EE	[1970Af04]	
⁶ Zn	0.15(6)			γ	⁶⁶ Zn	U	GG	[1967Be39]	
6 _{Zn}	0.145(13)			α	⁶⁶ Zn	3-10	CE	[1962St02]	
67.n	0.110(22)			14 _N	⁶⁶ Zn	36	CE*	[1960An07]	
6 _{Zn}	0.087(17)			α	⁶⁶ Zn	<7	CE	[1956Te26]	
8 _{7n}		2.34(4)		68 _{Zn}	С	180	TDSA	[2005Le12,2005Le38	1
8 _{7n}	0.129(8)			⁶⁸ Zn	Pb	276	CE*	[2004Ko03]	
⁸ Zn		2.32(7)		⁶⁸ Zn	Fe	161	TDSA	[2002Ke02]	
8 _{7n}	0.105(7)			p	⁶⁸ Zn	2-4.5	CE*	[1998Si25]	NR
8 _{7n}	,	2.71(23)		γ	⁶⁸ Zn	1.65	GG	[1981Ca10]	
8 _{Zn}	0.125(11)	=(==)		e	68 _{Zn}	100-275	EE	[1977Ne05]	
8 _{Zn}	0.105(8)			γ	68 _{Zn}	1.65	GG	[1977Ca14]	Su
8 _{Zn}	0.111(8)			e	68 _{Zn}	40-112	EE	[1976Ne06]	Ju
8Zn	0.111(8)	1.3(3)		α	68 _{Zn}	13	TDSA	[1974Iv01]	
8Zn	0.126(13)	1.5(3)		35 _{Cl}	68 _{Zn}	56-68			
88 _{Zn}	0.128(13)				68 _{Zn}	225	CE	[1973Fi15]	
8 _{Zn}				e	68 _{Zn}	225	EE	[1973Li24]	
88 Zn	0.140(16)			γ	68 _{Zn}	2.40	GG	[1972ArZD]	
58 Zn	0.125(11)			α 14 _N	68 _{Zn}	3-10	CE	[1962St02]	
⁷⁰ Zn	0.110(22)	/ /		72 _{Zn}	238 _U	36	CE*	[1960An07]	
OZn		5.3(17)		238 _U		<540	RDM	[2013Lo04]	
OZn		5.2(5)			72 _{Zn}	6.76A	TDSA	[2013Ce01]	
0 _{Zn}	0.164(28)			72 _{Zn}	58 _{Ni}	4613	CE*	[2002So03]	
o_{Zn}		5.3(3)		72_{Zn}	Fe	162	TDSA	[2002Ke02]	
0 _{Zn}	0.235(25)			p	72 _{Zn}	2-4.5	CE*	[1998Si25]	NR
0_{Zn}	0.205(19)			e	72 _{Zn}	40-112	EE	[1976Ne06]	
⁰ Zn	0.160(14)			α	72 _{Zn}	3-10	CE	[1962St02]	
² Zn		17.6 (14)		72_{Zn}	238 _U	<540	RDM	[2013Lo04]	
² Zn		19.4(55)		238 _U	72 Zn	6.76A	TDSA	[2013Ce01]	
² Zn		17.9(18)		73 Zn	9 _{Be}	<60A	RDM	[2012Ni09]	
2 Zn	0.174(21)			72 Zn	Pb	2520	CE*	[2002Le17]	
⁴ Zn		28.5 (36)		^{74}Zn	238 _U	<540	RDM	[2013Lo04]	
4 Zn		27.0(24)		74 _{Zn}	9 _{Be}	<60A	RDM	[2012Ni09]	
⁴ Zn	0.201(16)			⁷⁴ Zn	108 _{Pd,} 120 _{Sn}	212.38	CE*	[2007Va20,2009Va01]
4_{7n}	0.204(15)			^{74}Zn	208 _{Pb}	0.28c	CE*	[2006Pe13]	
⁶ Zn	0.145(18)			76 _{Zn}	108 _{Pd} , 120 _{Sn}	218.12	CE*	[2007Va20,2009Va01	1
8 _{7n}	0.077(19)			78 _{7n}	108 _{Pd,} 120 _{Sn}	223.86	CE*	[2007Va20,2009Va01	-
0_{7n}	0.077(13)			80 _{Zn}	108 _{Pd,} 120 _{Sn}	229.6	CE*	[2007Va20,2009Va01	
4 _{Ge}	0.5(5)	3.3(5)		64 _{Ge}	C C	<150A	RDM	[2007 va20,2003 va01	1
600	0.1401(69)	(0)0,0		66 _{Ge}	197 Au	70A	CE*	[2013Co23]	
6 _{Ge}	3.1-101(03)	3 0(E)		10 _B	58 _{Ni}	28			
°Ge 6 _{Ge}		3.8(5)		10 _B	58 _{Ni}		RDM	[2012Lu03]	F
⁸ Ge		5.3(10)		12 _C	58 Ni	29	RDM	[1979Wa23]	Ex
-Ge 8.c		3.1(3)			12 _C	38	RDM	[2012Lu03]	
⁸ Ge		3.1(2)		⁶⁴ Zn	•∸C 64-	180	TDSA	[2005Le19]	
⁸ Ge		2.6(3)		7 _{Li}	64 _{Zn}	15-18	TDSA	[1982Pa03]	
8 _{Ge}		3(1)		¹² C	⁵⁸ Ni	39	TDSA	[1981De03]	
⁸ Ge		$5(^{+3}_{-2})$		α	66 _{Zn}	30	TDSA	[1977Mo20]	
⁸ Ge		2(1)		¹² C	58 _{Ni}	36	RDM	[1977Gu08]	
0 _{Ge}		1.9(2)		66 _{Zn}	12 _C	180	TDSA	[2006Le31]	
U Ce		1.9(5)		n Zii	70 _{Ge}	fast	TDSA	[1988DoZU]	NR
GC					67 _{Zn}				INK
) C ~		1.9(5)		α 6 _{Li,} 16 _O	70 _{Ge}	10-16 10.5, 29.9	RDM CE	[1984Ef01] [1980Le16]	
OGe	0.170(2)					1115 79 9	(F	1.19801.6161	
⁰ Ge	0.179(3)	_ ±1			68 –				
O _{Ge} O _{Ge} O _{Ge} O _{Ge}	0.179(3)	2.2 (⁺² ₋₁) 1.92(5)		α 18 _O	68 _{Zn} 56 _{Fe}	30 60	TDSA RDM	[1977Mo20] [1976He05]	Ex

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u	.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comm
⁷⁰ Ge		19.7(12)			e	70 _{Ge}	84-120	EE	[1975Kl10]	
⁷⁰ Ge	0.1790(30)				α ; ¹⁸ 0	70 _{Ge}	8.0,8.5; 32.8-40	CE	[1969Si15]	
00	0.150(30)							CE	[1962Ga19]	
⁰ Ge	0.18(6)				¹⁴ N	70 _{Ge}	36	CE*	[1962Ga13]	
Ge	0.180(27)				14 _N	⁷⁰ Ge	36	CE*	[1962Er05]	
Ge	$0.172 \begin{pmatrix} +21 \\ -15 \end{pmatrix}$				α	70 _{Ge}	6-8	CE	[1962St02]	
Ge Ge						70 _{Ge}				
'Ge	0.098(20)				α 72 59	70Ge 200 72	7	CE	[1956Te26]	
² Ge	0.212(5)				72 _{Ge,} 58 _{Ni}	²⁰⁸ Pb, ⁷² Ge	270, 155	CE*	[1990Ko38]	
Ge Ge			5.2(4)		n	72 _{Ge}	fast	TDSA	[1988DoZU]	NR
Ge	0.208(3)				α , ^{16}O	72 _{Ge}	7.0, 29.9	CE	[1980Le16]	
² Ge			$4\binom{+3}{-1}$		α	^{72}Zn	22-35	TDSA	[1979Mo01]	
Ge					18 ₀	58 _{Fe}				-
Ge			4.54(10)			re 72 -	60	RDM	[1976He05]	Ex
Ge		26.8(20)			e	72 _{Ge}	84-120	EE	[1975Kl10]	
Ge			4.6(8)		γ	72 _{Ge}		GG	[1973KaZV]	
Ge	0.18(2)				α	Ge	2.6, 3.0, 3.4,	CE	[1972Sa27]	
							3.6, 3.8, 4.0		-	
Ge	$0.230 ({+28 \atop -21})$				α	72 Ge	4.5-8	CE	[1962St02]	
Ge	0.21(7)				¹⁴ N	72 Ge	36	CE*	[1962Ga13]	
Ge	0.210(30)				¹⁴ N	72 _{Ge}	36	CE*	[1962Er05]	
Ca	()		4.6(12)		γ	72 _{Ge}	0.834	GG	[1956Me13]	
Ge	0.100(22)		4.0(12)			72 _{Ge}				
Ge	0.160(32)				α 74 -		7	CE	[1956Te26]	
Ge	0.302(2)		1.10		74 Ge	Pb	300	CE*	[2000To12]	NR
Ge			$17.0(^{+16}_{15})$		n	74_{Ge}	fast	TDSA	[1988DoZU]	NR
Ge	0.305(3)		15		α , ^{16}O	74_{Ge}	7.0, 29.9	CE	[1980Le16]	
<u>ـ</u>							2.6, 3.0, 3.4,			
Ge	0.29(2)				α	Ge	3.6, 3.8, 4.0	CE	[1972Sa27]	
Ge	$0.317(^{+38}_{-29})$				α	74 Ge	3-10	CE	[1962St02]	
						⁷⁴ Ge				
Ge	0.32(3)				14 _N		36	CE*	[1962Ga13]	
Ge	0.300(45)				14 _N	74 _{Ge}	36	CE*	[1962Er05]	
Ce	0.32(3)				d, p	74 Ge	3.5-4	CE	[1960Wi18]	
Ce			19(3)		γ	74_{Ge}	0.834	GG	[1956Me13]	
Ca	0.250(38)		-(-)		Of .	74 _{Ge}	7	CE	[1956Te26]	
Ge	0.230(38)		20.0(0)		76 _{Ge}	238 _{[J}				
Ge			26.6(6)		76 Ge		<540	RDM	[2013Lo04]	
Ge	0.299(27)				76 _{Ge}	208 _{Pb}	60A	CE*	[2006Pe13]	
Ge	0.2923(346)				76 _{Ge}	197 Au	81A	CE*	[2005Di05]	
Ce			26.3(30)		n	76 _{Ge}	fast	TDSA	[1988DoZU]	NR
Ge	0.278(3)		()		α , 16 O	76 _{Ge}	7.0, 29.9	CE	[1980Le16]	
GC:							2.6, 3.0, 3.4,			
Ge	0.27(2)				α	Ge	3.6, 3.8, 4.0	CE	[1972Sa27]	
Ge	0.260(5)				α , ^{18}O	76 _{Ge}	5-11, 34.0	CE	[1969Si15]	
Ge Ge						76 _{Ge}				
Ge	$0.263 ({+32 \atop -24})$				α	, o Ge	3-10	CE	[1962St02]	
Ge	0.280(42)				¹⁴ N	76 _{Ge}	36	CE*	[1962Er05]	
Ce	0.29(3)				d, p	⁷⁶ Ge	3.5-3.8	CE	[1960Wi18]	
00	0.230(35)				α	76 _{Ge}	7	CE	[1956Te26]	
Ge					78 _{Ge}	С	2.24A	CE*		
Ge	0.222(14)				78 _{Ge}				[2005Pa23]	_
Ge	≈0.2				, o Ge	Pb	40A	CE*	[2005Iw03]	Ex
Ge			23(4)			$^{78}_{Ga(\beta^{-})}$		DC	[1993Ch05]	NR
Ge	0.139(27)				80 _{Ge}	C	2.24A	CE*	[2005Pa23]	
Ca	≈0.1				78 Ge	Pb	40A	CE*	[2005Iw03]	Su
C0	0.128(22)				82 _{Ge}	197 Au	89.4A	CE*	[2010Ga14]	
Ge					82 _{Ge}	48 _{Ti}				
ьe	0.115(20)						220	CE*	[2005Pa23]	
Ge	≈0.1				⁷⁸ Ge	Pb	40A	CE*	[2005Iw03]	Ex
Sa.			4.60(82)		68 Se	9 _{Be}	<150A	RDM	[2014Ni09]	
Ca.	0.2158(290)				68 co	197 Au	92A	CE*	[2009Ob02]	
Sa			3.28(37)		70 _{Se}	9 _{Be}	<150A	RDM	[2014Ni09]	
Sa			3.2(2)		36 _{Ar}	40 _{Ca}	136	RDM	[2008Lj01]	
Se					³⁶ Ar and ¹⁴ N	40 _{Ca,} 58 _{Ni}				-
se			1.5(3)				115 and 39	RDM	[1986He17]	Ex
Se			1.60(40)		¹⁴ N	58 _{Ni}	36	RDM	[1975GuYV]	Ex
Se		22.9(16)						GG	[2011Mc01]	
Se			4.2(3)		36 _{Ar}	⁴⁰ Ca	136	RDM	[2008Lj01]	
Se					$^{24}{ m Mg}$	54 _{Fe}	104	RDM	[2001Pa03]	Ex
Se			26(1)		24 _{Mg}	54 _{Fe}	75, 80	TDSA		Ex, NR
			2.6(1)		ivig	re	73,00		[1998Sk01]	EX, INK
Se			4.3(5)		26 14	40 00		TDSA	[1988MyZY]	
Se			3.8(7)		³⁶ Ar, ¹⁴ N	40 _{Ca,} 60 _{Ni}	115, 39	RDM	[1986He17]	
Se			4.8(6)		16 ₀	58 _{Ni}	42	TDSA	[1979Ki17]	
Se			5.2(5)		16 ₀	58 _{Ni}	46, 48, 56, 58	RDM	[1978He13]	
S _A			5.7(12)		16 _O	58 _{Ni}	46, 46, 36, 36	TDSA	[1976Ha01]	NR
se Se					16 ₀	58 _{Ni}				INK
se			3.1(6)		.~0 14 12	50 NI	40, 42, 45	RDM	[1975Lo08]	
Se			5.1(6)		¹⁴ N, ¹² C	58,60 _{Ni}	36, 42	TDSA	[1975GuYW]	
Se			5.7(12)		¹⁶ 0	⁵⁸ Ni	44-46	RDM	[1974SaZH]	Su
۵2	0.36(2)		. /		70 _{Se}	104 _{Pd}	206	CE*	[2007Hu03]	
Se	5.30(2)		14(4)		α, ¹² C	73 _{Ge,} 65 _{Cu}				MD
se			14(4)		α,		40, 42	RDM	[1989Ad01]	NR
Se			10.6(8)		¹⁴ N	⁶³ Cu	50	TDSA	[1979Ki17]	
Se	0.387(5)				α , ^{16}O	⁷⁴ Se	7.3, 33-34	CE	[1978Le22]	
Se	0.370(15)				¹⁶ 0	74 _{Se}	39.2	CE*	[1974Ba80]	
Se						⁷⁴ Se				
	0.42(13)				α	ઝલ 74 -	5	CE	[1970AgZV]	
se					α 14	74 _{Se}	8.5	CE	[1962Ga13]	
Se	0.44(15)									
⁴ Se ⁴ Se ⁴ Se	0.44(15) 0.44(8)				14 _N	⁷⁴ Se ⁷⁴ Se	18	CE	[1961An07]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Commer
⁴ Se		6(3)		40 200	70		GG	[1955Me10]	
6 _{Se}	0.419(43)			⁴⁸ Ti, ²⁰⁸ Pb	⁷⁶ Se	186, 934	CE*	[1995Ka29]	
⁶ Se	0.425(9)			α	74 _{Ge}	18, 21, 24, 25.5	RDM/ TDSA	[1984ZoZZ]	NR
⁶ Se	0.423(6)			16 _{0, α}	76 _{Se}	30.0, 6.6-7.3	CE	[1977Le11]	
⁶ Se	0.42(2)			$^{16}_{0,\alpha}$	76 _{Se}	39.2, 6.6-7.3	CE*	[1974Ba80]	Su
6 _{Se}	0.390(40)			α	⁷⁶ Se	5	CE	[1970AgZV]	
6 _{Se}		$15.5(^{+13}_{-19})$		γ	76 _{Se}	0.559	GG	[1963Pr04]	
6 _{Se}	0.45(4)	-19		α	76 _{Se}	8.5	CE	[1962Ga13]	
6 _{Se}	0.480(43)			α	76 _{Se}	5-8	CE	[1962St02]	
6se	0.42(8)			14 _N	76 _{Se}	16.3, 36.0	CE*	[1960An07]	
6 _{Se}	0.42(0)	13(2)			76 _{Se}	10.5, 50.0	GG	[1960De08]	
6 _{Se}	0.43(6)	15(2)		γ α	76 _{Se}	7	CE	[1956Te26]	
6 _{Se}	0.45(0)	33(22)		u	SC	,	DC		
'8 _{Se}	0.225(45)	33(22)		78 _{Se}	Dis	220	CE*	[1955Co55]	
'8 _{Se}	0.325(45)	12(2)			Pb 78 _{Se}	320		[2003Ha15]	
'8 _{Se}	0.227(7)	12(2)		α 16 _{0, α}	78 _{Se}	16-27	RDM	[1987Sc07]	
°5e	0.327(7)			16 _{O, α}	78 _{Se}	33-34, 6.6-7.3	CE	[1977Le11]	_
8 _{Se}	0.32(2)			100, α 14	78 Se	39.2, 6.6-7.3	CE*	[1974Ba80]	Su
8 _{Se}	0.35(3)			14 _{N, α}	78 Se	36, 8.5	CE*	[1962Ga13]	
8 _{Se}	0.385(35)			α	78 _{Se}	5-8	CE	[1962St02]	
8 _{Se}	0.36(6)			14 _N	78 _{Se}	36	CE*	[1960An07]	
⁸ Se	0.36(7)						CE	[1960Le07]	Su
8 _{Se}	0.36(5)			α	78 _{Se}	7	CE	[1956Te26]	
¹⁰ Se	0.25(3)			80 _{Se}	Pb	40A	CE*	[2005Iw03]	
¹⁰ Se	$0.236 \begin{pmatrix} +28 \\ -24 \end{pmatrix}$			⁴⁸ Ti, ¹⁶ O; ⁸⁰ Se	80 _{Se;} 208 _{Pb}	195, 34; 312	CE*	[1995Ka29]	
0 _{Se}				16 _{0, α}	80 _{Se}				
⁰ Se	0.252(4)	40.0(40)		υ, α	80 _{Se}	33, 7.3	CE	[1977Le11]	ND
~se ∩_		12.0(12)		γ 16 _{0, α}	80 _{Se}	0.667	GG	[1976KaYY]	NR
0 _{Se}	0.25(1)			100, α	so se	39.2, 6.6-7.3	CE*	[1974Ba80]	Su
0 _{Se}	0.240(30)			α	80 _{Se}	5	CE	[1970AgZV]	
¹⁰ Se	0.283(25)			α	80 _{Se}	5-8	CE	[1962St02]	
10 _{Se}	0.26(2)			14 _{N, α}	80 _{Se}	36, 8.5	CE*	[1962Ga13]	
USA	0.230(46)			14 _N	80 _{Se}	36	CE*	[1960An07]	
o _{Se}	0.230(34)			α	80 _{Se}	7	CE	[1956Te26]	
200	0.17(3)			82 _{Se}	Ph	40A	CE*	[2005Iw03]	
2 _{Se}	0.179(19)			⁴⁸ Ti, ¹⁶ O; ⁸² Se	82 _{Se;} 208 _{Pb}	195, 34; 312	CE*	[1995Ka29]	
2 _{Se}	0.180(3)			$^{16}_{O, \alpha}$	82 _{Se}	33, 7.3	CE	[1977Le11]	
2 _{Se}	0.175(9)			16 ₀	82 _{Se}	39.2	CE*	[1974Ba80]	Su
2 _{Se}	0.170(40)			α	82 _{Se}	5	CE		54
2 _{Se}				$^{4}_{14}_{N,\alpha}$	82 _{Se}	36, 8.5	CE*	[1970AgZV]	
³² Se	0.19(7)				82 _{Se}			[1962Ga13]	
2 _{Se}	0.213(19)			α 14 _N	82 _{Se}	5-8	CE	[1962St02]	
2 Se	0.190(38)				80 _{Se}	36	CE*	[1960An07]	
² Se	0.056(9)			α	⁶⁰ Se	7	CE	[1956Te26]	
⁴ Se	0.105(15)			84 _{Se}	197 _{Au}	95.4A	CE*	[2010Ga14]	
² Kr		5.6(10)		72 _{Kr}	9 _{Be}	0.37c	RDM	[2014Iw01]	
2 _{Kr}	0.4997(647)			72 _{Kr}	197 _{Au}	57.4A	CE*	[2005Ga22]	
⁴ Kr		32.2(22)		74 _{Kr}	9 _{Be}	0.37c	RDM	[2014Iw01]	
^{'4} Kr	0.61(1)			⁷⁴ Kr	208 _{Pb}	4.4A	CE*	[2007Cl02]	
^{'4} Kr		33.8(5)		⁴⁰ Ca	⁴⁰ Ca	147	RDM	[2005Go43]	
4 _{Kr}		23.5(20)		19 _F	⁵⁸ Ni	62	RDM	[1990Ta12]	
4 _{Kr}		28.8(57)		19 _F	58 _{Ni}	56-68	RDM	[1984Ro01]	
4_{Kr}		14.0(43)		16 _O	60 _{Ni}	42	RDM	[1976AIYY]	Ex, NR
6 _{Kr}	0.72(1)	14.0(45)		76 _{Kr}	208 _{Ph}	4.4A	CE*	[2007Cl02]	24,111
6 _{Kr}	0.12(1)	A1 E(0)		40 _{Ca}	40 _{Ca}				
6 _{Kr}		41.5(8)		24 _{Mg}	58 _{Ni}	147	RDM	[2005Go43]	
6 _{Kr}		37.7(30)		16 _O	63 _{Cu}	80, 85	RDM	[1990He04]	
Kr 6		36(1)		19 _F	63Cu	49-58	RDM	[1984Wo10]	
6 _{Kr}		35(3)		15 F	62	58	RDM	[1982Ke01]	
6 _{Kr}		53(7)		16 ₀	62 _{Ni}	42	RDM	[1974No08]	Ex
8 _{Kr}	0.5951(481)			78 _{Kr}	9 _{Be}	150A	CE*	[2009Ob02]	
8 _{Kr}	0.670(25)			⁷⁸ Kr	²⁶ Mg, ⁴⁸ Ti, ²⁰⁸ Pb	180, 200, 350	CE*	[2006Be18]	
8 _{Kr}	0.6244(738)			72 _{Kr}	78 Kr	57.4A	CE*	[2005Ga22]	
8 _{Kr}		32.0(14)		²⁷ Al	58 _{Ni}	115	TDSA	[2002Jo07]	
⁸ Kr		27.5(25)		78 _{Kr}	26 _{Mg}	220.5	TDSA	[2001Me20]	
8 _{Kr}		30.4(13)		19 _F	63 _{C11}	70	RDM	[1990Ga22]	
8 _{Kr}		33(3)		12 _C	68 _{7.n}	36	RDM	[1985Wi01]	
8 _{Kr}		32.5(25)		12 _{C, α}	68 _{Zn,} 76 _{Se}	36, 27	TDSA	[1982An06]	Su, NR
8 _{Kr}	0.55(2)	32,3(23)							ou, INK
8 Kr	0.55(3)	22/21		α 16 _O	Kr ⁶⁵ Cu	6-8	CE	[1981Ca01]	
⁸ Kr		32(2)			cu 64	50, 58	RDM	[1979He07]	
Kr 8		36.1(43)		¹⁶ 0	64 _{Ni}	42	RDM	[1974No08]	
8 _{Kr}	0.51(13)			α	78 Kr	6.1, 6.6	CE	[1957He48]	
0_{Kr}		12.1(10)		19 _F	⁶⁵ Cu	74	TDSA	[2001Mu25]	Ex
0 _{Kr}	0.4044(256)			80 _{Kr}	26 _{Mg}	246.7	TDSA	[2001Me20]	
	0.39(2)			α	Kr	6-8	CE	[1981Ca01]	
0 Kr		12(1)		α , ¹⁸ 0	⁷⁷ Se, ⁶⁵ Cu	13.5, 46	TDSA	[1981Fu03]	
0 _{Kr} 0 _{Kr}		12.7(7)		18 ₀	65 _{Cu}	52.5	RDM	[1975Fr04]	
O _{Kr}		14./(/)		J	78 _{Kr}				
⁰ Kr ⁰ Kr ⁰ Kr	0.24(0)	* *		64					
⁰ Kr ⁰ Kr ⁰ Kr ⁰ Kr	0.34(9)			α 82 μ	76 Kr 26 M	6.1, 6.6	CE	[1957He48]	
⁰ Kr ⁰ Kr ⁰ Kr ⁰ Kr ² Kr	0.34(9)	6.69(20)		α 82 _{Kr}	$^{26}\mathrm{Mg}$	240.7	TDSA	[2001Me20]	
O _{Kr}	0.34(9) 0.225(9)			α 82 _{Kr} α 82 _{Kr}	26 _{Mg} 80 _{Se} Al, Zn, Ge				NR

Table 1 (continued)

	$B(E2) (e^2 b^2)$	B(E2) (W.u.)	τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comm
2 _{Kr}			6.9(11)		γ	Kr	776	GG	[1966Be16]	
2 _{Kr}	0.19(5)				α	78 _{Kr}	6.1, 6.6	CE	[1957He48]	
⁴ Kr	0.120(15)				84 _{Kr}	98 _{Mo, Ta}	250	CE*	[2002Os07]	
4 Kr			5.84(18)		84 _{Kr}	26 _{Mg}	235.0	TDSA	[2001Me20]	
⁴ Kr			5(2)		01	82 _{Se}	<27	RDM	[1990Ro10]	NR
l _{Kr}	0.122(5)				84 _{Kr}	Al, Zn, Ge	1.41A	CE	[1982Ke01]	
Kr	0.13(1)				α	Kr	6-8	CE	[1981Ca01]	
Kr	0.16(4)				α	78 Kr	6.1, 6.6	CE	[1957He48]	
Kr	(-)		0.444(25)		86 _{Kr}	26 _{Mg}	261.1	TDSA	[2001Me20]	
l/r	0.11(3)		()		α	Kr	6-8	CE	[1981Ca01]	
Kr	0.128(10)				16 _O	86 _{Kr}	42-52	CE*	[1981Ji03]	
3 v.	0.120(10)	7.7(8)			88 _{Kr}	12 _C	2.19A	CE	[2009MuZU]	
V-		~8.0			88 _{Kr}	12 _C	2.13/1	CE	[2009MuZW]	Su
Kr		- 0.0	15(10)			235 _U	anld	TMC		Su
Kr		42.0(+28)	15(10)		n 92 _{Kr}	196 _{Pt}	cold		[2014Re15]	
		$13.6(^{+28}_{-33})$			92 Kr	100 100	262.2	CE	[2013Al05]	
Kr		16.9(5)			92 _{Kr}	109 _{Ag}	2.19A	CE	[2009MuZU]	
Kr		~17.0			92 _{Kr}	109 Ag		CE	[2009MuZW]	Su
¹ Kr	0.247(28)				94 _{Kr}	196 _{Pt}	267.9	CE	[2012Al03]	
Kr	0.436(93)				96 _{Kr}	194, 196 _{Pt}	273.6	CE	[2012Al03]	
Sr			296(36)		⁷⁶ Rb	9 _{Be}	104.5A	DSA	[2012Le05]	
Sr			276(39)		78 _{Rb}	9 _{Be}	101.6A	DSA	[2012Le05]	
Sr			224(27)		24 _{Mo}	58 _{Ni}	100	RDM	[1982Li08]	
Sr			49.4(18)		24 _{Mg}	58 _{Ni}	80, 85	RDM	[1990He04]	
Sr			58(10)		66 Zn. 78 Kr	16 _{0, α}	55, 28	RDM	[1982HiZT]	
Sr			53.4(43)		24 _{Μσ}	58 _{Ni}	100	RDM	[1982Li08]	
Sr			63(9)		16 ₀	66 _{Zn}	42	RDM	[1974No08]	
Sr			15.4(31)		27 _{Al}	58 _{Ni}	90	RDM	[1996]o05]	
Sr			44(15)		711	82 _{Y(β} +)	50	DC	[1982De36]	Ex, NR
Sr			12.8(5)		19 _F	66 _{Zn}	65	RDM		EX, INK
1 _{Sr}					84 _{Sr}	12 _C			[1981DeYW]	
·sr ¹ Sr			4.2(2)		12 _C	76 _{Ge}	275	DSAM	[2012Ku14]	
·sr ¹ Sr			9(3)			76 e 76 e	60	RDM	[1994Ch28]	Ex, NR
			4.6(5)		¹² C	76 _{Ge}	60	RDM	[1982De05]	
Sr			$6(^{+4}_{-2})$		α	82 _{Kr}	14, 18	TDSA	[1980Ek03]	
Sr	0.16(5)				N	84 _{Sr}	44	CE*	[1963Al31]	
Sr			2.0(1)		86 _{Sr}	12 _C	250	DSA	[2012Ku14]	
Sr	0.121(5)				e	86 _{Sr}	100-370	EE	[1992Ki20]	
Sr			2.10(22)		28 _{Si}	86 _{Sr}	88	TDSA	[1988Ku01]	
Sr	0.118(16)				¹⁶ 0	86 _{Sr}	35-42	CE	[1964Sy01]	
S _{Sr}	0.087(26)				N	86 _{Sr}	44	CE*	[1963Al31]	
Sr	()		0.219(18)		88 _{Sr}	12 _C	270	DSA	[2012Ku14]	
8 _{Sr}			0.214(11)		n	88 _{Sr}	fast	TDSA	[2008Go25]	
3 _{Sr}			0.219(23)		28 _{Si}	88 _{Sr}	88	TDSA	[1988Ku01]	
Sr			0.213(23)			88 _{Sr}	2.0-2.31	GG		
Sr	0.0022(2.4)		0.224(11)		γ	88 _{Sr}	45-121		[1977Me10]	
Sr	0.0822(24)				e 16 ₀	88 _{Sr}		EE CE*	[1974Fi05]	
Sr	0.114(15)					88 _{Sr}	45-60	CE*	[1973Ch13]	
Sr	0.099(5)				e 16 ₀	88 _{Sr}	65,70	EE	[1968Pe02]	
Sr	0.092(17)					88 _{Sr}	35-42	CE	[1964Sy01]	
Sr			0.155(40)		γ	oo Sr		GG	[1959Of14]	
Sr	0.140(10)				e	88 _{Sr}	187	EE	[1956He83]	
Sr			10(3)					DC	[1991Ma05]	
Sr			12(5)					DC	[1991Ma05]	
Sr			10(4)		0.0	100 100		DC	[1991Ma05]	
C.	0.2310(55)				96 _{Sr}	109 _{Ag,} 120 _{Sn}	~4.5A	CE*	[2011Cl03]	
Sr			7(4)					DC	[1991Ma05]	
Sr			4040(110)					DC	[1989Ma38]	
Sr			3952(173)					DC	[1987Oh05]	
Sr.			5800(1400)					DC	[1980Sc13]	
Sr			4700(2200)					DC	[1980ChZM]	
Sr			5200(600)					DC	[1979Az01]	
⁰⁰ Sr			5640(230)					DC	[1990Lh01]	
00_{Sr}			7430(290)					DC	[1979Az01]	
Zr			32(13)		27 Al	⁵⁸ Ni	92	RDM	[1997Pa07]	
Zr			40(4)		28 _{Si}	58 Ni	120-125	RDM	[1993Ch41]	
Zr			24(2)		²⁸ Si	59 _{C0}	98	RDM	[1996Ch02]	NR
7r			20.3(11)		28 _{Si,} 29 _{Si}	58 _{Ni}	95-110	RDM	[1983Pr08]	
Zr			11.2(28)		32 _S	58 _{Ni}	130	RDM	[1998Ka19]	NR
Zr			10.6(20)		16 ₀	73Ge	52.0	RDM	[1978Av02]	IVIX
Zr					88 _{Sr}	12 _C	52.0 275			
۲۲ 3			3.6(4)			90 _{Zr}		DSA	[2012Ku14]	-
³ Zr			1.33(43)		p	90	7	TDSA	[1973BeYD]	Ex
Zr			$0.125(^{+7}_{-6})$		n	90 _{Zr}	2.5	DSAM	[2013Pe16]	
Zr			0.121(20)		p	89 _Y	4	TDSA	[1993Sa38]	
⁾ Zr	0.0517(88)				n	90_{Zr}	8, 10, 24	SCATT	[1990Wa13]	NR
) _{7.r}	0.0653(21)				e	90_{Zr}	70-368	EE	[1984He02]	NR
Zr	0.067(6)				e	90 _{7.r}	53.75-112.2	EE	[1975Si21]	
Zr	0.060(6)				e	90 _{Zr}	50-100	EE	[1975DeXW]	
Zr	0.067(6)				e	90 _{7r}	45-250	EE	[1974Si01]	Su
			0.135(8)		γ	90 _{Zr}	<5.6	GG	[1974Me13]	Ju
Zr										

Table 1 (continued)

Nuclide B(E2) (e	<u>e</u> b ≥) B(E2) (W	/.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
¹⁰ Zr		0.080(10)					TDSA	[1973RaWV]	
² Zr		0.135(8)		γ	90 _{Zr}	2.186	GG	[1972Me04]	Su
0.0400((30)			e	90_{Zr}		EE	[1971MiZK]	
¹⁰ 7r 0.0830(19)			e	90 _{Zr}	60	EE	[1970Be07]	
¹⁰ Zr 0.042(1				14 _N	90 _{Zr}	44	CE	[1965Ga05]	
¹² Zr 0.0762(e	92 _{Zr}	63	EE	[2013Sc01]	
¹² Zr		7.35(69)			92 _{Zr}		GG		
12	6.4(6)	7.25(68)		γ	92 _{Zr}	<4.3		[2002We15]	
¹² Zr 0.120(2				n 16	02 02	8, 10, 24	SCATT	[1990Wa13]	NR
¹² Zr 0.080(6	٠)			16 ₀	92 _{Zr}	46	CE*	[1981Yo07]	
¹² Zr 0.079(2	.0)			12 C, 14 N, α	92_{Zr}	31-46, 12	CE*	[1969Ga25]	
² Zr 0.094(1	.9)			N	92 _{Zr}	44	CE*	[1963Al31]	
¹² 7r 0.079(8	()			α	92 _{7r}	9	CE	[1958St32]	
⁴ Zr	,	10.47(61)		32 _S	94 _{Zr}	105	RDM	[1993Ho12]	NR
	(C)	10.47(01)			94 _{Zr}				
				n ¹² C, ¹⁴ N; α	94 _{Zr}	8, 10, 24	SCATT	[1990Wa13]	NR
⁴ Zr 0.056(1					04 04	31-46; 12	CE	[1969Ga25]	
⁴ Zr 0.081(1	.7)			N	94 _{Zr}	44	CE*	[1963Al31]	
⁴ Zr 0.079(8	.)			α	94 _{Zr}	9	CE	[1958St32]	
6 _{Zr}		$0.77(^{+18}_{-13})$		n	96 _{Zr}	2.0	DSAM	[2013Pe16]	
6 _{Zr}				96 _{Zr}	¹² C	274	TDSA		
- Zr S		0.82(10)			96 _{Zr}			[2003Ku11]	
⁶ Zr 0.055(2	.2)			¹⁴ N	³⁰ Zr	44	CE*	[1965Ga05]	
⁸ Zr		<16					DC	[2010Be30]	
⁸ Zr		<30					DC	[1989Ma38]	
⁰⁰ Zr		928(75)			252 _{Cf(SF)}		RDM	[2002Sm10]	Ex
00 _{Zr}		780(60)			- \- /		DC	[1989Oh06]	
00 _{Zr}									
³⁰ Zr		793(29)					DC	[1989Ma47]	
Zr		580(120)					DC	[1989Lh01]	
00 _{Zr}		286(46)					RDM	[1983MaYT]	
00 _{Zr}		890(140)					DC	[1980ChZM]	
00 _{7r}		1030(43)					DC	[1975JaYL,1974JaZN]	NR
00 _{Zr}		4040(1300)					DC	[1972CIZN]	Ex, NR
00 _{Zr}		750(160)					DC	[1970Ch11]	231, 1111
00 _{Zr}									E 1/D
⁰² Zr		10100(2900)					DC	[1970Jo20]	Ex, NR
^{J2} Zr		3610(430)					DC	[2015Br03]	
⁰² Zr		4300					DC	[2005Fo17]	Ex
⁰² Zr		2470(200)					DC	[1980ChZM]	
02 _{Zr}		3190(250)					DC	[1975JaYL,1974JaZN]	NR
02 _{Zr}		1240(250)					DC	[1970Ch11]	Su
02 _{Zr}									Ju
04 _{Zr}		2500(600)			106		DC	[1970Wa05]	
		$2900(^{+250}_{-200})$			$^{106}Y(\beta^{-})$		DC	[2015Br13]	
04_{Zr}		2885(435)					DC	[2006Hw01]	
04 _{Zr}		3300					DC	[2005Fo17]	Su
06 _{Zr}		2600(⁺²⁰⁰ ₋₁₅₀)			$^{106}Y(\beta^{-})$		DC		54
_		2600(-150)			1(p)			[2015Br13]	
² Mo 0.109(5	.)			e	92 _{Mo}	100-380	EE	[1987MiZL]	NR
² Mo		0.582(36)		γ	92 _{Mo}	2.0-5.1	GG	[1977Me01]	
2 _{Mo}		0.55(10)		p	92 _{Mo}	7, 8, 8.8	TDSA	[1973DoZB]	
2 _{Mo}		$0.43(^{+22}_{-14})$		α	92 _{Mo}	25	TDSA	[1971Yo02]	
		0.45(-14)			07				
² Mo 0.107(6	.)			α	92 _{Mo}	8	CE	[1971WaZP]	Rad
				4.0	92 _{Mo}	38-49			
² Mo 0.093(1				¹⁶ 0			CE	[1964St04]	
² Mo 0.093(1 ² Mo 0.19(8)	4)			¹⁶ 0 14 _N	92 _{Mo}				
² Mo 0.093(1 ² Mo 0.19(8)	4)	4 15(6)		¹⁶ 0	92 _{Mo}	40	CE*	[1962Af02]	Fx
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo	(4)	4.15(6)		¹⁶ 0 ¹⁴ N	92 _{Mo}	40	CE* TDSA	[1962Af02] [2002Kl07]	Ex
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo ⁴ Mo 0.1960((4)			16 _O 14 _N	92 _{Mo}	40 36, 8	CE* TDSA CE	[1962Af02] [2002Kl07] [1976Pa13]	Ex
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 4 ⁴ Mo 0.1960(4 ⁴ Mo	(30)	4.15(6) 4.30(20)		16 _O 14 _N 16 _{O, α} 35 _{Cl}	94 _{Mo} 94 _{Mo}	40 36, 8 100	CE* TDSA CE TDSA	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP]	
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1	(30)	4.30(20)		16 _O 14 _N 16 _{O, α} 35 _{Cl} 16 _O	92 _{Mo} 94 _{Mo} 94 _{Mo} 94 _{Mo}	40 36, 8 100 35-44.8	CE* TDSA CE TDSA CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59]	NR
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.218(1	(30)			16 _O 14 _N 16 _{O, α} 35 _{Cl}	92 Mo 94 Mo 94 Mo 94 Mo 94 Mo	40 36, 8 100	CE* TDSA CE TDSA	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP]	
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.208(1	(30)	4.30(20)		16 _O 14 _N 16 _{O, α} 35 _{Cl} 16 _O	94 _{Mo} 94 _{Mo} 94 _{Mo} 94 _{Mo} 94 _{Mo} 94 _{Mo}	40 36, 8 100 35-44.8	CE* TDSA CE TDSA CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59]	NR
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.208(1	(30)	4.30(20) 4.00(20)		16 _O 14 _N 16 _O , α 35 _{Cl} 16 _O 35 _{Cl} α	94 Mo	40 36, 8 100 35-44.8 100	CE* TDSA CE TDSA CE TDSA CE TDSA CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP]	NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.270(3	(30) (11) (2)	4.30(20)		16 _O 14 _N 16 _{O, α} 35 _{Cl} 16 _O 35 _{Cl} α	92 Mo 94 Mo	40 36, 8 100 35-44.8 100 8	CE* TDSA CE TDSA CE TDSA CE TDSA CE GG	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53]	NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.270(3	(30) (11) (2)	4.30(20) 4.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N	92 Mo 94 Mo	40 36, 8 100 35-44.8 100 8	CE* TDSA CE TDSA CE TDSA CE GG CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13]	NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.270(3 4 Mo 0.230(4	(30) (11) (22) (35) (40)	4.30(20) 4.00(20)		16 O 14 N 16 O, α 35 Cl 16 O 35 Cl α γ 14 N 14 N	92 Mo 94 Mo 94 Mo 94 Mo 94 Mo 94 Mo 94 Mo 94 Mo 94 Mo	40 36, 8 100 35-44.8 100 8 41	CE* TDSA CE TDSA CE TDSA CE GG CE CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05]	NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.1960(4 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.270(3 4 Mo 0.230(4 4 Mo 0.230(4 4 Mo 0.230(4 4 Mo 0.265(2)	(30) (11) (2) (55) (60) (11)	4.30(20) 4.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N	92 Mo 94 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32]	NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.203(4 4 Mo 0.250(2 4 Mo 0.250(2 4 Mo 0.265(2 4 Mo 0.265(2 4 Mo 0.265(2	(30) (11) (2) (55) (60) (11)	4.30(20) 4.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N	92 Mo 94 Mo	40 36, 8 100 35-44.8 100 8 41	CE* TDSA CE TDSA CE TDSA CE GG CE CE	[1962Af02] [2002Kl07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05]	NR Su
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.203(4 ⁴ Mo 0.230(4 ⁴ Mo 0.290(4 ⁴ Mo 0.270(0)	(30) (11) (2) (55) (10) (11) (14)	4.30(20) 4.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α 16 0, α	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32]	NR Su
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.208(1 ⁴ Mo 0.203(4 ⁴ Mo 0.265(2 ⁴ Mo 0.290(4 ⁶ Mo 0.270(0)	(30) (11) (2) (55) (10) (11) (14)	4.30(20) 4.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7	CE* TDSA CE TDSA CE TDSA CE GG CE CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Co5] [1958St32] [1956Te26]	NR Su
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(4 ⁴ Mo 0.218(1 ⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.270(3 ⁴ Mo 0.230(4 ⁴ Mo 0.230(4 ⁴ Mo 0.290(4 ⁶ Mo 0.2700(6 ⁶ Mo 0.284(1	(30) (1) (2) (35) (35) (30) (11) (44)	4.30(20) 4.00(20) 2.0(5)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α 16 0, α	92 Mo 94 Mo 96 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE TDSA	[1962Af02] [2002Kl07] [1976Pa13] [1971Ba59] [1971Bi74] [1971WaZP] [1966Be53] [1962Eo13] [1962Er05] [1958St32] [1958Te26] [1976Pa13] [1972SiZP]	NR Su Rad
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(4 ⁴ Mo 0.218(1 ⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.270(3 ⁴ Mo 0.230(4 ⁴ Mo 0.230(4 ⁴ Mo 0.290(4 ⁶ Mo 0.2700(6 ⁶ Mo 0.284(1	(30) (11) (12) (15) (10) (11) (14) (14) (14)	4.30(20) 4.00(20) 2.0(5)		16 O 14 N 16 O, α 35 Cl 16 O 35 Cl α γ 14 N 14 N α α α α 35 Cl	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ca13] [1962Er05] [1958St32] [195ETe26] [1976Pa13] [1977EsiZP]	NR Su
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(4 ⁴ Mo 0.218(1 ⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.270(3 ⁴ Mo 0.270(3 ⁴ Mo 0.230(4 ⁴ Mo 0.290(4 ⁶ Mo 0.290(4 ⁶ Mo 0.284(1 ⁶ Mo 0.288(1 ⁶ Mo 0.288(1	(30) (11) (12) (15) (10) (11) (14) (14) (14)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 O 14 N 16 O, α 35 Cl 16 O 35 Cl α γ 14 N 14 N α α 16 O, α 35 Cl 16 O 16	92 Mo 94 Mo 96 Mo 96 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32] [1958Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP]	NR Su Rad
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.203(4 4 Mo 0.25(2 4 Mo 0.290(4 5 Mo 0.290(4 5 Mo 0.284(1 5 Mo 0.288(1 5 Mo 0.288(1	(30) (31) (2) (35) (30) (31) (40) (41) (40) (41) (66)	4.30(20) 4.00(20) 2.0(5)		160 14N 160, \alpha 35 Cl 160 35 Cl \alpha 7 14N 14N \alpha \alpha 160, \alpha 35 Cl 160 35 Cl	92 Mo 94 Mo 96 Mo 96 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP]	NR Su Rad
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.208(1 ⁴ Mo 0.200(4 ⁴ Mo 0.200(4 ⁴ Mo 0.25(2 ⁴ Mo 0.290(4 ⁴ Mo 0.290(6 ⁶ Mo 0.288(1 ⁶ Mo 0.288(1 ⁶ Mo 0.302(3	(30) (11) (2) (55) (10) (11) (4) (40) (4) (6)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ γ 14 N 14 N α α 16 0, α 35 Cl 16 0	92 Mo 94 Mo 96 Mo 96 Mo 96 Mo 96 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE CE TDSA CE TDSA CE CE CE CE TDSA CE CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971WaZP] [1971SiYA] [1962Ga13]	NR Su Rad
² Mo 0.093(1 ² Mo 0.19(8) ⁴ Mo 0.1960(⁴ Mo 0.218(1 ⁴ Mo 0.208(1 ⁴ Mo 0.208(1 ⁴ Mo 0.200(4 ⁴ Mo 0.203(4 ⁴ Mo 0.205(2 ⁴ Mo 0.290(4 ⁴ Mo 0.290(4 ⁶ Mo 0.288(1 ⁶ Mo 0.288(1 ⁶ Mo 0.302(3 ⁶ Mo 0.302(3 ⁶ Mo 0.302(3	(30) (11) (12) (15) (10) (11) (14) (14) (14) (14) (16) (19) (19) (19) (19) (19)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		160 14N 160, \alpha 35 Cl 160 35 Cl \alpha 7 14N 14N \alpha \alpha 160, \alpha 35 Cl 160 35 Cl	92 Mo 94 Mo 96 Mo 96 Mo 96 Mo 96 Mo 96 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP]	NR Su Rad
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.200(4 4 Mo 0.200(4 4 Mo 0.200(4 6 Mo 0.200(4 6 Mo 0.284(1 6 Mo 0.302(3	(30) (11) (12) (15) (10) (11) (14) (14) (14) (14) (16) (19) (19) (19) (19) (19)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ γ 14 N 14 N α α 16 0, α 35 Cl 16 0	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE CE TDSA CE TDSA CE CE CE CE TDSA CE CE CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971WaZP] [1971SiYA] [1962Ga13]	NR Su Rad
² Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.208(1 4 Mo 0.230(4 4 Mo 0.230(4 4 Mo 0.270(3 4 Mo 0.270(3 4 Mo 0.270(3 6 Mo 0.288(1 6 Mo 0.288(1 6 Mo 0.284(1 6 Mo 0.284(1 6 Mo 0.200(6 6 Mo 0.200(6 6 Mo 0.302(3 6	(30) (30) (11) (12) (35) (30) (31) (40) (41) (40) (41) (61) (39) (42)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 O 14 N 16 O, α 35 Cl 16 O 35 Cl α γ 14 N 14 N α α 16 O, α 35 Cl 14 N α α α 16 O, α 35 Cl 14 N α α α	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE TDSA CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Ea13] [1962Er05] [1958St32] [195ETe26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ca13] [1962Ea13] [1962Er05]	NR Su Rad
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.230(4 4 Mo 0.230(4 4 Mo 0.270(3 4 Mo 0.270(3 4 Mo 0.270(3 4 Mo 0.270(6 Mo 0.284(1 6 Mo 0.288(1 6 Mo 0.284(1 6 Mo 0.284(1 6 Mo 0.240(4 6 Mo 0.302(3 6 Mo 0.3	(30) (31) (32) (35) (40) (41) (44) (40) (44) (60) (99) (10) (12) (17)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 O 14 N 16 O, α 35 Cl 16 O 35 Cl α γ 14 N 14 N α α 16 O, α 35 Cl 14 N α α α 16 O, α 35 Cl 14 N α α α	92 Mo 94 Mo 96 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1976Pa13] [1971Si2P] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972Si2P] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962Ga13] [1962CF05] [1958St32] [1958Te26]	NR Su Rad NR
2 Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 4 Mo 0.208(1 4 4 Mo 0.208(1 4 4 Mo 0.208(1 4 4 Mo 0.208(1 4 4 Mo 0.208(2 4 4 Mo 0.208(2 4 4 Mo 0.208(2 6 Mo 0.288(1 6 6 Mo 0.288(1 6 6 Mo 0.302(3 6 6 Mo 0.302(2 6 6 Mo 0.310(4 Mo 0.302(2 6 6 Mo 0.310(4 Mo 0.302(2 6 6 Mo 0.310(4 Mo 0.27(8 6 Mo 0.302(2 6 Mo 0.310(4 Mo 0.27(8 6 Mo	(30) (31) (32) (35) (40) (41) (41) (40) (44) (60) (42) (47) (61) (62) (77) (63)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ γ 14 N 14 N α α 16 0, α 35 Cl 16 0 35 Cl 14 N 14 N α α α α α α α α α α α α α α α α α α α	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962Co13] [1962Er05] [1958St32] [1958Te26] [1958St32] [1956Te26] [2002Zi06]	NR Su Rad
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 6 Mo 0.208(1 6 Mo 0.302(3 6 Mo 0.240(4 6 Mo 0.302(3 6 Mo 0.240(4 6 Mo 0.302(3 6 Mo 0.240(4 6 Mo 0.217(8 8 Mo 0.27(8 8 Mo 0.27(8 8 Mo 0.27(8 8 Mo 0.27(8))	(30) (31) (30) (31) (2) (35) (40) (41) (42) (43) (44) (40) (44) (45) (46)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α α 16 0, α 35 Cl 16 0 35 Cl 16 0 α 37 Cl 16 0 α 38 Cl 16 α	92 Mo 94 Mo 95 Mo 96 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962F05] [1978SX32] [1956Te26] [1976Pa13] [1972SiZP] [1971WaZP] [1971WaZP] [1971SiYA] [1962Ga13] [1962Er05] [1958ST32] [1958ST32] [1956Te26] [1958ST32] [1956Te26] [1979Pa11]	NR Su Rad NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 6 Mo 0.208(1 6 Mo 0.288(1 6 Mo 0.288(1 6 Mo 0.302(2 6 Mo 0.302(2 6 Mo 0.310(4 8 Mo 0.267(8 8 Mo 0.267(8 8 Mo 0.266(8 8 Mo 0.26(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.26(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.26(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.26(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.266(8 8 Mo 0.26(8 8 Mo 0.266(8 8 Mo 0.268(8 8 Mo 0.268(8 8 Mo 0.268(8 8 Mo 0.268	(30) (31) (30) (31) (2) (35) (40) (41) (42) (43) (44) (40) (44) (45) (46)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α α 35 Cl 16 0 35 Cl 16 0 35 Cl 14 N 14 N α α α α 20 Ne, 84 Kr, 136 Xe α, 16 0 16 0	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962Co13] [1962Er05] [1958St32] [1958Te26] [1958St32] [1956Te26] [2002Zi06]	NR Su Rad NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 Mo 0.208(1 4 Mo 0.209(4 6 Mo 0.209(4 6 Mo 0.284(1 6 Mo 0.288(1 6 Mo 0.302(2 6 Mo 0.30(2 6 Mo 0.310(4 8 Mo 0.270(8 8 Mo 0.266(0 8 Mo 0.26(0)	(30) (31) (30) (31) (2) (35) (40) (41) (42) (43) (44) (40) (44) (45) (46)	4.30(20) 4.00(20) 2.0(5) 5.00(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ γ 14 N 14 N α α 16 0, α 35 Cl 16 0 35 Cl 14 N 14 N α α α α α α α α α α α α α α α α α α α	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962F05] [1978SX32] [1956Te26] [1976Pa13] [1972SiZP] [1971WaZP] [1971WaZP] [1971SiYA] [1962Ga13] [1962Er05] [1958ST32] [1958ST32] [1956Te26] [1958ST32] [1956Te26] [1979Pa11]	NR Su Rad NR Su
2 Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 4 Mo 0.208(1 6 4 Mo 0.208(1 6 Mo 0.200(6	(30) (30) (31) (32) (35) (30) (31) (32) (35) (30) (31) (40) (41) (40) (41) (40) (42) (47) (50) (40) (50)	4.30(20) 4.00(20) 2.0(5) 5.00(20) 5.60(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α α 16 0, α 35 Cl 16 0 35 Cl 14 N 14 N α α α α α α α α α α α α α	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5 36, 8 100	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971SiYA] [1971WaZP] [1966Be53] [1962Er05] [1958St32] [195ETe26] [1976Pa13] [1972SiZP] [1971WaZP] [1971SiYA] [1962Ga13] [1962Er05] [1958St32] [195ETe36] [1971SiYA] [1962Ga13] [1962Er05] [1958St32] [195ETe36] [2002Zi06] [1979Pa11] [1976Pa13] [1972SiZP]	NR Su Rad NR Su Ex, Gos
2 Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 4 Mo 0.208(1 6 4 Mo 0.208(1 6 Mo 0.200(6	(30) (31) (30) (31) (31) (32) (35) (40) (41) (44) (40) (44) (40) (50)	4.30(20) 4.00(20) 2.0(5) 5.00(20) 5.60(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N α α α 35 Cl 16 0 35 Cl 16 0 35 Cl 14 N 14 N α α α α 20 Ne, 84 Kr, 136 Xe α, 16 0 16 0	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5 36, 8 100 35-44.8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [2002Zi06] [1979Pa11] [1976Pa13] [1972SiZP] [1971Ba59]	NR Su Rad NR Su
2 Mo 0.093(1 2 Mo 0.19(8) 4 Mo 0.1960(4 Mo 0.218(1 4 Mo 0.208(1 6 Mo 0.260(1 6 Mo 0	(30) (31) (32) (35) (40) (41) (44) (40) (44) (40) (40) (40) (50)	4.30(20) 4.00(20) 2.0(5) 5.00(20) 5.60(20)		160 14N 160, α 35 Cl 160 35 Cl α γ 14N 14N α α 160, α 35 Cl 160 35 Cl 14N 14N α α 160, α 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 α 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 160 160 160 160 160 160 160	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5 36, 8 100 35-44.8 8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE CE TDSA CE CE TDSA CE CE TDSA CE* CE CE TDSA CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962F05] [1958St32] [1956Te26] [2002Zi06] [1979Pa11] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1977SiZP] [1971Ba59] [1971WaZP]	NR Su Rad NR Su Ex, Gos
2 Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 4 Mo 0.208(1 6 Mo 0.200(4 4 Mo 0.208(1 6 Mo 0.208(1 6 Mo 0.302(2 6 Mo 0.301(4 8 8 Mo 0.2660(8 8 Mo 0.286(1 8 Mo 0.286(1 8 Mo 0.276(1 8 Mo 0.27	(30) (1) (2) (35) (30) (1) (2) (35) (30) (1) (1) (1) (1) (1) (1) (4) (4) (6) (39) (30) (22) (37) (31) (40) (50) (40) (50)	4.30(20) 4.00(20) 2.0(5) 5.00(20) 5.60(20)		16 0 14 N 16 0, α 35 Cl 16 0 35 Cl α γ 14 N 14 N 14 N 16 0, α 35 Cl 16 0 35 Cl 16 0 35 Cl 14 N 14 N 14 N 16 0, α 35 Cl 16 0 35 Cl 16 0 35 Cl 16 0 35 Cl 16 0 16 0, α 35 Cl 16 0 17 N 18	92 Mo 94 Mo 96 Mo 96 Mo 96 Mo 96 Mo 96 Mo 96 Mo 98 Mo 98 Mo 98 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5 36, 8 100 35-44.8 8 41	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE TDSA CE CE CE TDSA CE CE TDSA CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962Er05] [1958St32] [1958St32] [1956Te26] [2002Zi06] [1979Pa11] [1976Pa13] [1976Pa13] [1977SiZP] [1971Ba59] [1971Ba59] [1971Ba59] [1971Ba59] [1971Ba59] [1971WaZP]	NR Su Rad NR Su Ex, Gos
2 Mo 0.093(1 2 2 Mo 0.19(8) 4 Mo 0.1960(4 4 Mo 0.218(1 4 4 Mo 0.208(1 6 Mo 0.208(1 6 Mo 0.288(1 6 6 Mo 0.288(1 6 6 Mo 0.302(2 6 6 Mo 0.302(3 6 Mo 0.275(8 8 Mo 0.2660(8 8 Mo 0.2660(8 8 Mo 0.266(1 8 8 Mo 0.268(1 8 8 Mo 0.268(1 8 8 Mo 0.268(1 8 8 Mo 0.258(1 8 8 Mo 0.258(1 8 8 Mo 0.258(1 8 8 Mo 0.268(1 8 8 Mo 0.258(1 8 9 Mo	(30) (11) (22) (35) (30) (11) (35) (30) (31) (30) (31) (31) (40) (41) (40) (40) (40) (40) (40) (40) (40) (40	4.30(20) 4.00(20) 2.0(5) 5.00(20) 5.60(20)		160 14N 160, α 35 Cl 160 35 Cl α γ 14N 14N α α 160, α 35 Cl 160 35 Cl 14N 14N α α 160, α 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 α 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 35 Cl 160 160 160 160 160 160 160 160	92 Mo 94 Mo 96 Mo 98 Mo 98 Mo 98 Mo 98 Mo 98 Mo	40 36, 8 100 35-44.8 100 8 41 36 2.4, 2.7, 3.0 7 36, 8 100 35-44.8 8 100 41 36 2.4, 2.7, 3.0 7 50, 250, 614 8, 36.5 36, 8 100 35-44.8 8	CE* TDSA CE TDSA CE TDSA CE GG CE* CE CE CE CE CE CE CE TDSA CE CE TDSA CE CE TDSA CE* CE CE TDSA CE* CE	[1962Af02] [2002KI07] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1966Be53] [1962Ga13] [1962Ga13] [1962Er05] [1958St32] [1956Te26] [1976Pa13] [1972SiZP] [1971Ba59] [1971WaZP] [1971SiYA] [1962Ga13] [1962F05] [1958St32] [1956Te26] [2002Zi06] [1979Pa11] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1976Pa13] [1977SiZP] [1971Ba59] [1971WaZP]	NR Su Rad NR Su Ex, Gos

Table 1 (continued)

	$B(E2) (e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Commen
⁸ Mo	0.270(40)			α	98 _{Mo}	7	CE	[1956Te26]	
⁰⁰ Mo	0.511(9)			16 _{O, α}	100 _{Mo}	36, 8	CE	[1976Pa13]	
00 _{Mo}		19.6(10)		18 ₀	100 _{Mo}	20-61	RDM	[1975Bo39]	
¹⁰ Mo	0.526(26)			¹⁶ 0	100 _{Mo}	35-44.8	CE	[1971Ba59]	NR
¹⁰ Mo	0.61(6)			¹⁴ N	100 _{Mo}	41	CE*	[1962Ga13]	
0 _{M0}	0.63(10)			14 _N	100 _{Mo}	36	CE	[1962Er05]	
0 140	0.613(32)				100 _{Mo}	2.4, 2.7, 3.0	CE	[1958St32]	
0 1/10	0.66(10)			α	100 _{Mo}	7			
² Mo	0.66(10)		'	Ω	IVIO	,	CE	[1956Te26]	
² Mo		180(6)		10	100		DC	[1991Li39]	
⁰² Mo		164(19)		¹⁸ 0	100 _{Mo}	20-61	RDM	[1975Bo39]	
¹⁴ Mo		1396(112)			252 _{Cf(SF)}		RDM	[2002Sm10]	Ex
⁾⁴ Mo		1040(60)					DC	[1991Li39]	
⁴ Mo		1270(140)					DC	[1980ChZM]	
⁰⁴ Mo		1314(43)					DC	[1975]aYL,1974JaZN]	NR
¹⁴ Mo		650(130)					DC	[1970Ch11]	
¹⁴ Mo									ND
6 _{Mo}		1200(200)					DC	[1970Wa05]	NR
Mo		1876(289)					DC	[2015Br03]	
6 _{Mo}		1730(140)					DC	[2006Hw01]	
6 _{Mo}		540(80)					RDM	[1983MaYT]	
6 _{Mo}		1930(140)					DC	[1980ChZM]	
6 _{Mo}		1803(43)					DC	[1975JaYL,1974JaZN]	NR
6 _{Mo}		1080(220)					DC	[1970Ch11]	1110
¹⁸ Mo									
⁸ Mo		851(317)					DC	[2015Br03]	
ν Mo		940(270)					DC	[1998LhZZ]	
⁰⁸ Mo		720(430)		0.0	12		DC	[1996Pe25]	
Ru		4.5(2)		96 _{Ru}	¹² C	333	DSA	[2012To01]	
D.,		4.3(1)			$96_{Rh(\beta^+)}$		TDSA	[2002Kl07]	
D11		5.1(5)		36 _S	65 _{Cu}	142	CE*	[2000Kh02]	NR
R11	0.236(7)	(5)		α, ¹⁶ 0	96 _{R11}	8.5-9.5, 36-48	CE	[1980La01]	
Ru	0.266(26)			16 ₀	96 _{Ru}	44.8	CE		
6 Ru				16 ₀	96 _{Ru}			[1980La01]	
Ku 2	0.260(10)			16		37-48	CE	[1978Fa08]	
Ru	0.268(32)			¹⁶ Ο, α	96 _{Ru}	42-49, 10	CE	[1968Mc08]	
Ru	0.254(41)			p, α	96 _{Ru}	1.5-3.3, 8-10	CE	[1958St32]	
Ru		8.36(29)		98 _{Ru}	24 _{Mg}	300	RDM	[2012Ra03]	
D.,		8.0(12)		36	65	142	RDM/ TDSA	[2000Kh02]	NR
Ru	0.389(31)			¹⁶ 0	98 _{Ru}	44.8	CE	[1980La01]	
Ru	0.373(7)			α, ¹⁶ 0	98 Ru	8.5-9.5, 36-48	CE	[1980La01]	
Ru			'	16 _{0, α}	98 _{Ru}				
Ku R	0.411(35)				OR _	42-49, 10	CE	[1968Mc08]	
Ru	0.475(38)			ρ, α	98 _{Ru}	1.5-3.3, 8-10	CE	[1958St32]	
00 _{Ru}	0.4930(40)			α, ¹⁶ 0	100 _{Ru}	7.7-9, 35-39	CE	[1998Hi01]	
00 _{R11}	0.471(14)			α	100 _{Ru}	9-17	CE*	[1996Go36]	
$00_{R_{11}}$	0.494(6)			α, ¹⁶ 0	100 _{R11}	8.5-9.5, 36-48	CE	[1980La01]	
	0.482(26)			¹⁶ 0	100 _{Ru}	44.8	CE	[1980La01]	
00 p	0.482(20)			α, ¹⁶ 0	100 _{Ru}				
00_	0.4930(30)		'	χ, U 16 -	100 _{Ru}	8-9, 35-37	CE	[1980HiZV]	
Ru	0.520(44)			16 _{0, α}	100 Ru	42-49, 10	CE	[1968Mc08]	
Ru	0.572(40)			p, α	100 _{Ru}	1.5-3.3, 8-10	CE	[1958St32]	
00 Ru	0.30(6)			α	100 _{Ru}	7	CE	[1956Te26]	
D2 _{Ru}	0.614(5)			α, ¹⁶ 0	102 _{Ru}	7.7-9, 35-39	CE	[1998Hi01]	
02 p.,	0.585(16)			α	102 _{Ru}	9-17	CE	[1996Go36]	
D2 _{Ru}	0.505(10)	26.40(10)		a	100 _{Mo}	17-27	TDSA	[1995Ef01]	
D2 _{Ru}				40 _{Ar}	102 _{Ru}				
oz Ku		26.0(14)			102 KU	129	RDM	[1989Lo08]	
²² Ru	0.640(6)			α, ¹⁶ 0	102 _{Ru}	8.5-9.5, 36-48	CE	[1980La01]	
∪2 Ru	0.651(35)			¹⁶ 0	102 _{Ru}	44.8	CE	[1980La01]	
^{D2} Ru	0.617(5)			α, ¹⁶ 0	102 _{Ru}	8.5,9.0, 38-42	CE	[1979Bo28]	
02 _{Ru}	0.66(6)			¹⁶ 0, α	102 _{Ru}	42-49, 10	CE	[1968Mc08]	
02 _{Ru}		17.6(29)		d	Ru	•	DC	[1963De21]	
	0.73(5)	(25)		p, α	102 _{Ru}	1.5-3.3, 8-10	CE	[1958St32]	
D2 _{Ru}	0.73(3)				102 _{Ru}	1.5-5.5, 8-10 7			
- κu 04 -	0.03(10)			α 208 _{Pb,} 136 _{Xe,} 58 _{Ni}	104 _{Ru}		CE *	[1956Te26]	
~™Ku	0.840(45)				104-	954, 525, 165, 190	CE*	[2006Sr01]	
∪4Ru	0.807(8)			α, ¹⁶ 0	104 _{Ru}	7.7-9, 35-39	CE	[1998Hi01]	
^{J4} Ru	0.778(24)			α	104 _{Ru}	9-17	CE	[1996Go36]	
⁰⁴ Ru	0.834(7)			α, ¹⁶ 0	104 _{Ru}	8.5-9.5, 36-48	CE	[1980La01]	
⁰⁴ Ru	0.834(44)			16 ₀	104_{Ru}	44.8	CE	[1980La01]	
04 p,.	0.82(6)			16 _{0, α}	104 _{Ru}	42-49, 10	CE	[1968Mc08]	
14 _E	0.02(0)				104 _{Ru}				
- Ku	0.93(7)			p, α	- ·ки 104	1.5-3.3, 8-10	CE	[1958St32]	
Ru	1.04(16)			α	104 _{Ru}	7	CE	[1956Te26]	
⁰⁶ Ru		249(5)			$^{106}\text{Tc}(\beta^{+})$		Time-Delayed	[2008Sa05]	
⁰⁶ Ru		380(100)		n	²⁴⁹ Cf	thermal	DC	[1995Sc24]	
8 _{P1}		590(100)		n	²⁴⁹ Cf	thermal	DC	[1995Sc24]	
¹⁸ Ru		498(43)					DC	[1975JaYL,1974JaZN]	NR
08 _{Ru}					²⁵² Cf(SF)				INIX
Ru		320(70)					DC	[1970Ch11]	
10 _{Ru}		720(120)		n	²⁴⁹ Cf	thermal	DC	[1995Sc24]	
10 _{Ru}		433(29)			²⁵⁴ Cf		DC	[1980ChZM]	
10 _{Ru}		490(60)					DC	[1975JaYL,1974JaZN]	Su, NR
KII		330(70)			252 _{Cf(SF)}		DC	[1970Ch11]	, 1110
					254 _{Cf}				
10 _{Ru}		690(90)			~3~Ct		DC	[1980ChZM]	
10 _{Ru} 12 _{Ru}									
10 _{Ru} 12 _{Ru} 12 _{Ru}		462(43)					DC	[1975JaYL,1974JaZN]	Su, NR
O _{Ru}				10 _{В,} 3 _{Не}	²⁵² Cf(SF) 92 _{Mo,} 96 _{Ru}		DC DC	[1975JaYL,1974JaZN] [1970Ch11]	Su, NR

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
100 _{Pd}		13.3(9)		80 _{Se}	²⁴ Mg	268	RDM	[2011An04,2012An17]	Ex
100 _{Pd}		9.0(4)		11 _B	⁹² Mo	43	RDM	[2009Ra28]	
102 _{Pd}	0.460(30)			16 ₀	¹⁰² Pd	44	CE	[1980LuZT]	
102 _{Pd}	0.460(30)			p	102 _{Pd}	8	CE*	[1977La16]	
104 _{Pd}				e	104 _{Pd}	70-440	EE	[1991We15]	
104 _{Pd}	0.510(30)			¹⁶ 0	104 _{Pd}	44	CE	[1980LuZT]	
104Pd	0.531(40)			α	104 _{Pd}	8	CE	[1971Bo08]	
104 _{Pd}				α, ¹⁶ 0	104 _{Pd}	8.5-10, 30-42	CE	[1970Ch01]	
104 _{Pd}	0.55(5)			α, ¹⁶ 0	104 _{Pd}	2.1,2.4,2.7, 45.5,49.0	CE	[1968MiZZ]	
104 _{Pd}	0.61(9)			14 _N	104 _{Pd}	36	CE	[1962Er05]	
104 _{Pd}	0.547(38)			p, α	104 _{Pd}	1.5-3.3, 8-10	CE	[1958St32]	
104 _{Pd}	0.46(7)			a 16 50 200	104 _{Pd}	<7	CE	[1956Te26]	
106 _{Pd}		42(4)		¹⁶ O, ⁵⁸ Ni, ²⁰⁸ Pb	106 _{Pd}	48, 165.5, 878	CE*	[1995Sv01]	
106 _{Pd}	0.590(20)			e 40	106 _{Pd}	70-440	EE	[1991We15]	
106 _{Pd}		17.8(11)		40 _{Ar}	106 _{Pd}	129	RDM	[1989Lo08]	
106 _{Pd}				γ	106 _{Pd}	0.511	GG	[1977Ga06]	
106 _{Pd}	0.74(8)			e	106 _{Pd}	183,250	EE	[1973Ho05]	
106 _{Pd}	0.689(37)			α	106 _{Pd}	8	CE	[1971Bo08]	
				α, ¹⁶ 0	106 _{Pd}	8.5-10, 30-42	CE	[1970Ch01]	
106 _{Pd}	0.710(40)			α, ¹⁶ 0	106 _{Pd}	9-10, 42-49	CE	[1969Ro05]	
	0.61(9)			14 _N	106 _{Pd}	36	CE	[1962Er05]	
106 _{Pd}	0.646(45)			p, α	106 _{Pd}	1.5-3.3, 8-10	CE	[1958St32]	
400	0.59(9)	. 7		α	106 _{Pd}	<7	CE	[1956Te26]	
108 _{Pd}	0.76(9)	$50(^{+7}_{-5})$		¹⁶ O, ⁵⁸ Ni, ²⁰⁸ Pb	¹⁰⁸ Pd	48, 165.5, 878	CE*	[1995Sv01]	
108 _{Pd}	0.810(30)	<u> </u>		e	¹⁰⁸ Pd	70-440	EE	[1991We15]	
108_{Pd}	/	34.1(18)		40 _{Ar}	108 _{Pd}	129	RDM	[1989Lo08]	
108_{Pd}	0.805(29)	()		e	¹⁰⁸ Pd	21-121	EE	[1978Ar07]	NR
108 _{Pd}	0.70(7)			α , 16 O	108 _{Pd}	7-10, 28-42	CE	[1971Ha08]	
108 _{Pd}	0.792(50)			α	108 _{Pd}	8	CE	[1971Bo08]	
108 _{Pd}	0.76(5)			α 16 _O	108 _{Pd}	9-10, 42-49	CE	[1969Ro05]	
108 _{Pd}	0.78(6)			16 _O	108 _{Pd}	40	CE	[1962Ec01]	
108 _{Pd}	0.82(12)			14 _N	108 _{Pd}	36	CE	[1962Er05]	
108 _{Pd}	0.74(5)			p, α	108 _{Pd}	1.5-3.3, 8-10	CE	[1958St32]	
108 _{Pd}	0.78(12)			α	108 _{Pd}	<7	CE	[1956Te26]	
110_{Dd}	0.70(12)	67(8)		110 _{Pd}	9 _{Be}	66A	RDM/ TDSA	[2008De30]	
110 _{Pd}	0.870(30)	07(0)		e	110 _{Pd}	70-440	EE	[1991We15]	
110 _{Pd}	0.870(30)	65.6(25)		58 _{Ni}	110 _{Pd}	190	RDM	[1989Ko40]	
	$0.85(^{+2}_{-7})$	03.0(23)		16 _{O.} 58 _{Ni.} 208 _{Pb}	110 _{Pd}		CE*		Su Cos ND
110 _{Pd}	-,					48, 165.5, 954		[1989SvZZ]	Su, Gos, NR
	0.80(7)			e 16 -	110 _{Pd}	40-110	EE	[1976Li19]	
110 _{Pd}	0.82(8)			α , ^{16}O	110 _{Pd}	7-10, 28-42	CE	[1971Ha08]	
110 _{Pd}	0.88(6)			α	110 _{Pd}	8	CE	[1971Bo08]	
110 _{Pd}	0.91(6)			α, ¹⁶ 0	110 _{Pd}	9-10, 42-49	CE	[1969Ro05]	
440				14 _N	110 _{Pd}	36	CE	[1962Er05]	
110 _{Pd}				16 ₀	110 _{Pd}	40	CE	[1962Ec01]	
110 _{Pd}	0.86(6)			p, α	110 _{Pd}	1.5-3.3, 8-10	CE	[1958St32]	
110 _{Pd}	1.04(16)			α	110 _{Pd}	<7	CE	[1956Te26]	
112 _{Pd}		121(20)		114	252 Cf(SF)		RDM	[1986Ma22]	
114 _{Pd}		118(20)		¹¹⁴ Pd	9 _{Be}	69A	RDM/ TDSA	[2008De30]	
114 _{Pd}		500(100)			252 _{Cf(SF)}		RDM	[1986Ma22]	
114 _{Pd}		290(90)					DC	[1975JaYL,1974JaZN]	Su, NR
116 _{Pd}		153(43)		100	100		DC	[1975JaYL,1974JaZN]	NR
100 _{Cd}	0.33(2)			100 _{Cd}	109 _{Ag}	287	CE*	[2009Ek01]	
102 _{Cd}	0.28(3)			102 _{Cd}	109 Ag	292.7	CE*	[2009Ek01]	
102 _{Cd}		5.9(5)		12 _C	92 _{Mo}	41	RDDS	[2007Bo17]	
102 _{Cd}		<8.1		50 _{Cr}	58 _{Ni}	205	RDM/ TDSA	[2001Li24]	
104 _{Cd}	0.28(4)			¹⁰⁴ Cd	109 _{Ag}	298.7	CE*	[2009Ek01]	
104 _{Cd}		8.5(12)		¹² C	94 _{Mo}	44	RDDS	[2007Bo17]	
104 _{Cd}		9.0(37)		⁵⁰ Cr	⁵⁸ Ni	200,205	TDSA	[2001Mu19]	
104 _{Cd}		8.8(25)		12 _C	95 _{Mo}	48	RDM	[1989VoZT]	
106Cd	0.384(5)			α , 16 0	106 _{Cd}	8-17, 40-44	CE	[1976Es02]	
¹⁰⁶ Cd	0.403(29)			α , 16 0, 32 S	106 _{Cd}	9, 35-40, 49-55	CE	[1970Kl12]	
106 Cd	0.426(17)			$p, \alpha, ^{16}O$	106 _{Cd}	2.7,3.0, 9-11, 42-49	CE	[1969Mi07]	
400				ρ, α	106 _{Cd}	1.5-3.3, 8-10	CE	[1958St32]	
106 _{Cd}	0.47(5)			¹² C	100 _{Mo}	54	RDM	[1994Th01]	
106 _{Cd}		10.1(8)			¹⁰⁸ Cd	8-17, 40-44	CE	[1976Es02]	
106 _{Cd} 108 _{Cd} 108 _{Cd}	0.406(5)	10.1(8)		α , 16 0					
106 _{Cd} 108 _{Cd} 108 _{Cd} 108 _{Cd}	0.406(5) 0.442(18)	10.1(8)		α , ¹⁶ O p, α , ¹⁶ O	¹⁰⁸ Cd	2.7,3.0, 9-11, 42-49	CE	[1969Mi07]	
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd	0.406(5)	10.1(8)		p, α, ¹⁶ O p, α	¹⁰⁸ Cd 108Cd	2.7,3.0, 9-11, 42-49 1.5-3.3, 8-10	CE	[1969Mi07] [1958St32]	
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd 110 Cd	0.406(5) 0.442(18)	10.1(8) 8.7(12)		p, α, ¹⁶ Ο p, α ¹³ C	¹⁰⁸ Cd ¹⁰⁸ Cd ¹⁰⁰ Mo				
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd 110 Cd 110 Cd	0.406(5) 0.442(18) 0.54(11)			p, α, ¹⁶ O p, α	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo}	1.5-3.3, 8-10	CE	[1958St32]	
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd 110 Cd 110 Cd 110 Cd	0.406(5) 0.442(18) 0.54(11)	8.7(12)		p, α, ¹⁶ Ο p, α ¹³ C	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo} 110 _{Cd}	1.5-3.3, 8-10 50	CE TDSA	[1958St32] [2001Ha09]	
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd 110 Cd 110 Cd 110 Cd 110 Cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6)	8.7(12)		p, α, 16 ₀ p, α 13 _C 13 _C e	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo}	1.5-3.3, 8-10 50 44 70-440	CE TDSA RDM EE	[1958St32] [2001Ha09] [1993Pi16] [1991We15]	
106 Cd 108 Cd 108 Cd 108 Cd 108 Cd 110 Cd 110 Cd 110 Cd 110 Cd 110 Cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43)	8.7(12)		p, α, 16 ₀ p, α 13 _C 13 _C e p e	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo} 110 _{Cd} 110 _{Cd}	1.5-3.3, 8-10 50 44 70-440 2.7-4.2	CE TDSA RDM EE CE	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01]	
106 Cd 108 Cd 108 Cd 108 Cd 110 Cd 110 Cd 110 Cd 110 Cd 110 Cd 110 Cd 110 Cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43) 0.426(5)	8.7(12)		p, α, 16 ₀ p, α 13 _C 13 _C e p e	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo} 110 _{Cd} 110 _{Cd}	1.5-3.3, 8-10 50 44 70-440 2.7-4.2 68,112	CE TDSA RDM EE CE EE	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01] [1977Gi13]	
106 cd 108 cd 108 cd 108 cd 108 cd 110 cd 110 cd 110 cd 110 cd 110 cd 110 cd 110 cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43) 0.426(5) 0.432(6)	8.7(12)		p, α, ¹⁶ O p, α ¹³ C ¹³ C e p e α, ¹⁶ O	108 _{Cd} 108 _{Cd} 100 _{Mo} 100 _{Mo} 110 _{Cd}	1.5-3.3, 8-10 50 44 70-440 2.7-4.2 68,112 8-17, 40-44	CE TDSA RDM EE CE EE	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01] [1977Gi13] [1976Es02]	
106 cd 108 cd 108 cd 108 cd 108 cd 110 cd 110 cd 110 cd 110 cd 110 cd 110 cd 110 cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43) 0.426(5) 0.432(6)	8.7(12)		p, α, 16 0 p, α 13 C 13 C e p e α, 16 O α, 16 O	108 Cd 108 Cd 100 Mo 100 Mo 110 Cd 110 Cd 110 Cd 110 Cd 1110 Cd 1110 Cd	1.5-3.3, 8-10 50 44 70-440 2.7-4.2 68,112 8-17, 40-44 8-16, 36-45	CE TDSA RDM EE CE EE CE CE	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01] [1977Gi13] [1976Es02] [1972Be66]	
106 cd 108 cd 108 cd 108 cd 108 cd 110 cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43) 0.426(5) 0.432(6) 0.440(40)	8.7(12)		p, α, ¹⁶ O p, α ¹³ C ¹³ C e p e α, ¹⁶ O	108 Cd 108 Cd 100 Mo 100 Mo 110 Cd 110 Cd 110 Cd 110 Cd 1110 Cd 1110 Cd	1.5-3.3, 8-10 50 44 70-440 2.7-4.2 68,112 8-17, 40-44 8-16, 36-45 7-10, 28-42	CE TDSA RDM EE CE EE CC CE CC	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01] [1977Gi13] [1976Es02] [1972Be66] [1971Ha08]	
106 cd 108 cd 108 cd 108 cd 108 cd 110 cd	0.406(5) 0.442(18) 0.54(11) 0.447(35) 0.415(6) 0.454(43) 0.426(5) 0.432(6)	8.7(12)		p, α, 160 p, α 13 _C 13 _C e p e α, 16 _O α, 16 _O α, 16 _O	108 Cd 108 Cd 100 Mo 100 Mo 110 Cd 110 Cd 110 Cd 110 Cd 110 Cd	1.5-3.3, 8-10 50 44 70-440 2.7-4.2 68,112 8-17, 40-44 8-16, 36-45	CE TDSA RDM EE CE EE CE CE	[1958St32] [2001Ha09] [1993Pi16] [1991We15] [1985Si01] [1977Gi13] [1976Es02] [1972Be66]	

Table 1 (continued)

	n/ra) / 2.2.	P(F2) (111) ()		n	T	Page (25.12)	** .1 .	n-6	
	$B(E2) (e^2 b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
¹⁰ Cd	0.504(40)			p, α	¹¹⁰ Cd	1.5-3.3, 8-10	CE	[1958St32]	
10 _{Cd}	0.42(8)			p	110 _{Cd}	<7	CE	[1958Sh01]	
¹⁰ Cd	0.41(6)			α	¹¹⁰ Cd	<7	CE	[1956Te26]	
¹² Cd	0.486(5)			p	¹¹² Cd	2.7-4.2	CE	[1985Si01]	
¹² Cd	0.52(5)			e	¹¹² Cd	68,112	EE	[1977Gi13]	
¹² Cd	0.483(5)			α , 16 O	¹¹² Cd	8-17, 40-44	CE	[1976Es02]	
12 _{Cd}	0.486(8)			α	112 _{Cd}	8-17	CE	[1973WeYO]	
¹² Cd		10.20(40)		35 _{Cl}	¹¹² Cd	100	TDSA	[1972SiZP]	
	0.520(20)	10.20(10)		32 _S	112 _{Cd}	90,100	CE*	[1971Ha47]	
12 _{Cd}	0.320(20)	9.20(40)		3	Cu	90,100			
12 c.i	0.470(22)	8.30(40)		α , 16 O, 32 S, 40 Ar	¹¹² Cd	0.40.00.40.64.404	RDM	[1971NoZT]	
12 Cd	0.478(33)			α, 100, 32S, 40 Ar	112 _{Cd}	9-10, 38-40, 64, 101	CE	[1970St17]	
12 Cd	0.524(21)			p, α, ¹⁶ O		2.7,3.0, 9-11, 42-49	CE	[1969Mi07]	
12 Cd	0.514(60)			¹⁶ 0	¹¹² Cd	42-49	CE	[1965Mc05]	NR
¹² Cd	0.546(38)			16 ₀	¹¹² Cd	45	CE	[1962Ec03]	
¹² Cd	0.542(38)			p, α	¹¹² Cd	1.5-3.3, 8-10	CE	[1958St32]	
¹² Cd	0.42(8)			p	¹¹² Cd	<7	CE	[1958Sh01]	
12 _{Cd}	0.46(7)			α	112 _{Cd}	<7	CE	[1956Te26]	
				16 _{O,} 40 _{Ca,}	¹¹⁴ Cd				
	0.510(30)			58 _{Ni,} 208 _{Pb}		45,122, 184,916	CE*	[1988Fa07]	
¹⁴ Cd	0.574(18)			р	¹¹⁴ Cd	2.7-4.2	CE	[1985Si01]	
14_{Cd}	0.48(1)			α	¹¹⁴ Cd	21	CE*	[1979Sa05]	Ex, MD,
14ca	0.517(49)				114 _{Cd}	68,112	EE		EX, IVID,
14 _C 4	0.517(49)			e α, ¹⁶ Ο	114 _{Cd}			[1977Gi13]	
ca 14 c ·	0.328(3)				114 _{Cd}	8-17, 40-44	CE	[1976Es02]	
· Cd	0.575(48)			e	114	40-110	EE	[1976Li19]	
Cd	0.553(18)			e	114 _{Cd}	30-60	EE	[1974Ye01]	
4Cd	0.47(5)			e	¹¹⁴ Cd	183,250	EE	[1973Ho05]	
4 Cd	0.512(6)			α, ¹⁶ 0	¹¹⁴ Cd	8-16, 36-45	CE	[1972Be66]	
4 Cd	0.547(13)			α	¹¹⁴ Cd	8-18	CE	[1970Wa04]	
4 Cd	0.553(14)			α	¹¹⁴ Cd	8-16	CE	[1970Pr07]	
14 _{Cd}	0.502(31)			α , 16 O, 32 S	¹¹⁴ Cd	9, 35-40, 49-55	CE	[1970Kl12]	
404	0.560(17)			$^{16}_{0,\alpha}$	114 _{Cd}	42, 8-13			
1401	0.576(23)			p, α, ¹⁶ O	114 _{Cd}		CE	[1969Sa27]	
/ Cd	0.576(23)			α , 16 O		2.7,3.0, 9-11, 42-49	CE	[1969Mi07]	
⁺Cd	0.508(9)			α, 100	¹¹⁴ Cd	8.5-10, 36.2	CE	[1968Si05]	
4Cd	0.503(13)			α, ¹² C, ¹⁶ O	¹¹⁴ Cd	2-3A	CE	[1967St03]	
4Cd	0.48(5)			¹⁶ 0, ³² S	¹¹⁴ Cd	19-27, 41-54	CE	[1967Si03]	
⁴ Cd	0.572(18)			¹⁶ 0	¹¹⁴ Cd	42	CE	[1967Gl02]	
⁴ Cd	0.571(67)			¹⁶ 0	¹¹⁴ Cd	42-49	CE	[1965Mc05]	NR
4 Cd	. ,	15.3(55)		ν	¹¹⁴ Cd		GG	[1962Ak01]	NR
4 _{Cd}	0.523(37)	13.3(33)		16 _O	114 _{Cd}	45	CE	[1962Ec03]	••••
404	0.584(41)				114 _{Cd}				
1 - L	0.584(41)			p, α		1.5-3.3, 8-10	CE	[1958St32]	
"Cd	0.52(10)			p	114 _{Cd}	<7	CE	[1958Sh01]	
*Cd	0.55(8)			a	¹¹⁴ Cd	<7	CE	[1956Te26]	
6Cd	0.608(30)			p	¹¹⁶ Cd	2.7-4.2	CE	[1985Si01]	
⁶ Cd	0.501(47)			e	¹¹⁶ Cd	68,112	EE	[1977Gi13]	
⁶ Cd	0.532(5)			α , 16 0	¹¹⁶ Cd	8-17, 40-44	CE	[1976Es02]	
6 _{Cd}	0.533(8)			α	116 _{Cd}	8-17	CE	[1973WeYO]	
6 _{Cd}	0.653(35)			α , 16 O, 32 S, 40 Ar	116 _{Cd}	9-10, 38-40, 64, 101	CE	[1970St17]	
6 _{Cd}	0.581(23)			$p, \alpha, {}^{16}O$	116 _{Cd}	2.7,3.0, 9-11, 42-49	CE	[1969Mi07]	
Sca Sca	0.62(5)			α, ¹² C, ¹⁶ O	116 _{Cd}				
6	0.62(5)			α, 12C, 190 16 ₀	116 _{Cd}	2-3A	CE	[1967St03]	
°Cd	0.580(68)					42-49	CE	[1965Mc05]	NR
°Cd	0.68(14)			p	116 _{Cd}	<7	CE	[1958Sh01]	
o Cd	0.600(42)			p, α	¹¹⁶ Cd	1.5-3.3, 8-10	CE	[1958St32]	
6Cd	0.62(9)			α	116 _{Cd}	<7	CE	[1956Te26]	
8Cd	0.578(44)				$118_{Ag(\beta^{-})}$		DC	[1989Ma33]	
0 Cd	0.473(55)				$120_{\text{Ag}(\beta^-)}$		DC	[1989Ma33]	
	0.41(20)			¹²² Cd	108 _{Pd}	347.7	CE*	[2014II01]	
² Cd	/	15(7)			122 _{Ag(β} -)		DC	[1995Za01]	
4 _{C4}	0.35(19)	15(1)		¹²⁴ Cd	104 _{Pd} , 64 _{Zn}	353.4 MeV	CE*		
6 _{Cd}				126 _{Cd}	64 _{Zn}			[2014II01]	
- Cd	0.27(6)	⊥1¢ °			Zu	359.1 MeV	CE*	[2014II01]	
6 _{Cd}		$14.9(^{+16.8}_{-5.0})$		¹²⁴ Cd	64 _{Zn?}	359.1 MeV?	DSAM	[2014II01]	
⁴ Sn	0.180(37)			104 _{Sn}	¹⁹⁷ Au	67A	CE*	[2013Ba57]	
^{J4} Sn	0.173(28)			104 _{Sn}	Pb	131A	CE	[2014Do19]	
⁴ Sn	0.163(26)			104 _{Sn}	Pb	131A	CE	[2013DoZY]	Su
4 _{Sn}	0.10(4)			104 _{Sn}	197 Au	140A	CE*	[2013Gu13]	Su
511 6c-	0.10(4)			106 _{Sn}	58 _{Ni}				Ju
اند 6ء	0.133(39)			106 _{Sn}	197 _{Au}	2.8A	CE*	[2008Ek01]	
Sn	0.240(58)				58	81A	CE*	[2007Va22]	
Sn	0.222(19)			108 _{Sn}	58 _{Ni}	2.8A	CE*	[2008Ek01]	
ŏ Sn	0.230(39)			108 _{Sn}	197 _{Au}	78A	CE*	[2007Va22]	
8 _{Sn}	0.230(57)			108 _{Sn}	¹⁹⁷ Au	142	CE	[2005Bb09]	
⁰ Sn	0.220(22)			110 _{Sn}	58 _{Ni}	2.8A	CE*	[2008EkZZ]	
0_{Sn}	0.220(22)			110 _{Sn}	58 _{Ni}	2.8A	CE*	[2007Ce02]	Su
0 _{Sn}	0.240(32)			110 _{Sn}	197 _{Au}	79A	CE*	[2007Cc02] [2007Va22]	Ju
o _{Sn}	0.270(32)	10.7(10)		110 _{Sn}	58 _{Ni}				
~ Sn		19.7(18)		112 -		2.8A	CE*	[2006Ek01]	
2 _{Sn}		0.65(4)		112 _{Sn}	C,Gd,Cu	4A	TDSA	[2011Ju01]	
	0.242(8)			58 _{Ni}	112 _{Sn}	175	CE	[2010Ku07]	
² Sn	0.240(32)			112 _{Sn}	¹⁹⁷ Au	80A	CE*	[2007Va22]	
² Sn ² Sn	0.240(32)								
2 Sn	0.240(32)	0.750(+150)		n	112 _{Sn}	1.7	TDSA	[2007Or04]	
2 _{Sn} 2 _{Sn}	0.240(32)	$0.750(^{+150}_{-90})$		n 16 ₀	¹¹² Sn 112 _{Sn}	1.7 48	TDSA CE	[2007Or04] [1981Jo03]	NR

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2 Beam	Targ		ergy (MeV)	Method	Reference	Commer
112 _{Sn}	0.256(6)		α	112			CE*	[1970St20]	
112 _{Sn}	0.33(6)		20 _{Ne,}			26, 12-22, 36,53	CE	[1961An07]	
112 _{Sn}	0.180(40)		α	112	n 14.5	5	CE*	[1957Al43]	
14 Sn		0.60(4)	114 _{Sn}	C,Gd			TDSA	[2011Ju01]	
^{14}Sn	0.232(8)		114 _{Sn}	58 _N	3.4/	A	CE*	[2008Do19,2011Ku05]	
¹⁴ Sn		0.56(11)	¹⁸ 0	100 _I	1o 70		TDSA	[2001Ga52]	
^{14}Sn		0.45(15)	α	112	'd 27		TDSA	[1991ViZW]	
^{14}Sn	0.25(6)		16 ₀	114			CE	[1981Jo03]	NR
14_{Sn}	0.25(5)		20 _{Ne,}	14 _N 114 _s		26, 12-22,36,53	CE	[1961An07]	
14 _{Sn}	0.20(7)		α	114			CE*	[1957Al43]	
16 _{Sn}	0.20(1)	0.68(4)	116 _{Sn}	C,Gd		•	TDSA	[2011Ju01]	
16 _c	0.1883(171)	0.08(4)		116					NID
16	0.1883(1/1)		γ	116	n 4.1		GG	[2000Br05]	NR
16 Sn	0.190(19)		γ				GG	[1994Go25]	
16 _{Sn}		0.53(6)	γ	116	n 0.5-	-1.65	GG	[1981Ca10]	NR
16 Sn	0.216(5)		16 ₀	116	n 48		CE	[1981Jo03]	NR
¹⁶ Sn	0.215(24)		γ	116			GG	[1977Ca14]	Su
16 _{Sn}	0.229(15)		e	116	n 40-	110	EE	[1976Li19]	
16_{Sn}	0.195(7)		α	116	n 10.0	0, 10.5, 10.6	CE	[1975Gr30]	
16 _{Sn}	0.216(5)		α	116			CE*	[1970St20]	
16 sn	0.223(13)		α	116			CE	[1970Kl06]	
1600	0.183(37)			116		.JII	EE		
16.	0.183(37)		e					[1969Cu06]	
16 -	0.145(21)		e	116			EE	[1967Ba52]	
16 _{Sn}		0.48(10)	γ	116			GG	[1963Be14]	
16 _{Sn}		0.71(13)	γ	116			GG	[1962Li10]	
16 _{Sn}		0.64(27)	γ	116			GG	[1962Ka28]	
16_{Sn}	0.29(6)		20 _{Ne,}	14 _N 116 ₅	n 16-	26, 12-22, 36,53	CE	[1961An07]	
16 _{Sn}	0.207(27)		p, α	116	n 1.5-	-3.3, 8-10	CE	[1958St32]	
16 _{Sn}	0.19(6)		α	116	n 14.5		CE*	[1957Al43]	
18 _{Sn}	3.13(0)	0.79(4)	118 _{Sn}	C,Gd		•	TDSA	[2011Ju01]	
18.	0.2051(286)	0.79(4)		118					ND
10 Sn	0.2051(286)		γ				GG	[2000Br05]	NR
10 Sn	0.198(5)		e	118	n 252	2,376	EE	[1992Wi06]	
18 Sn	0.156(6)		e	118	n 147	7.4-356	EE	[1991Pe07]	
¹⁸ Sn	0.204(4)		¹² C	118	n 37-	38	CE	[1989Sp03]	
¹⁸ Sn		0.69(7)	γ	118	n 0.5-	-1.65	GG	[1981Ca10]	NR
18 _{Sn}	0.216(5)		16 ₀	118	n 48		CE	[1981Jo03]	NR
18 _{Sn}	0.212(22)		γ	118	n 1.2		GG	[1977Ca14]	Su
18 cm	0.199(6)			118	n 1,2		CE		Ju
18	0.199(6)		α	118	10.0	0, 10.5, 10.6		[1975Gr30]	
10 Sn	0.216(5)		α	110	n 10,	46	CE*	[1970St20]	
10 Sn	0.172(34)		e	118	n 60		EE	[1969Cu06]	
¹⁸ Sn	0.230(20)		γ	118			GG	[1966Hr03]	
¹⁸ Sn	0.240(40)		20 _{Ne,}	14 _N 118 ₉	n 16-:	26, 12-22, 36,53	CE	[1961An07]	
¹⁸ Sn	0.228(27)		ρ, α	118	n 1.5-	-3.3, 8-10	CE	[1958St32]	
18 _{Sn}	0.19(5)		α	118	n 14.5		CE*	[1957Al43]	
20 _{Sn}	0.15(5)	0.97(5)	120 _{Sn}	C,Gd			TDSA	[2011Ju01]	
20c.	0.2521(299)	0.57(5)		120					ND
20 _{Sn}	0.2521(299)		γ 12 _C	120			GG	[2000Br05]	NR
20 _{Sn}	0.194(3)			120	n 37-		CE	[1989Sp03]	
²⁰ Sn		1.04(9)	γ	120	n 0.5-	-1.65	GG	[1981Ca10]	
²⁰ Sn	0.203(4)		16 ₀	120	n 48		CE	[1981Jo03]	NR
²⁰ Sn	0.179(16)		γ	120			GG	[1977Ca14]	Su
20 Sn	0.1970(40)		α	120	n 10.0	0, 10.5, 10.6	CE	[1975Gr30]	
20_{Sn}	,	0.95(6)	35 _{Cl}	120	n 100		TDSA	[1972SiZP]	Su
20 _{Sn}		0.890(20)	35 _{Cl}	120	n 100		TDSA	[1972SiZI]	
20c-	0.2030(40)	0.050(20)		120					
20c	0.2030(40)		α	120	n 10,	TU	CE*	[1970St20]	
20 -	0.173(35)		e				EE	[1969Cu06]	
20 Sn	0.123(21)		e	120			EE	[1967Ba52]	
∠∪Sn	0.152(29)		γ	120			GG	[1966Hr03]	
^{2U} Sn	0.26(5)		20 _{Ne,}			26, 12-22, 36, 53	CE	[1961An07]	
20_{Sn}	0.220(22)		p, α	120		-3.3, 8-10	CE	[1958St32]	
20_{Sn}	0.170(40)		α	120			CE*	[1957Al43]	
22_{Sn}		1.29(8)	122 _{Sn}	C,Gd			TDSA	[2011Ju01]	
22 _{Sn}	0.2328(333)			122	n 4.1		GG	[2000Br05]	NR
22 cn	0.182(3)		γ 12 _C	122	n 37-1		CE		
22.5	0.182(3)		16 ₀	122	3/	טכ		[1989Sp03]	NP
Sn	U.196(4)						CE	[1981Jo03]	NR
22 Sn	0.1880(40)		α	122		0, 10.5, 10.6	CE	[1975Gr30]	
²² Sn	0.1960(40)		α	122			CE*	[1970St20]	
²² Sn	0.26(5)		20 _{Ne,}			26, 12-22, 36,53	CE	[1961An07]	
²² Sn	0.252(30)		p, α	122	n 1.5-	-3.3, 8-10	CE	[1958St32]	
22 _{Sn}	0.150(30)			122	n 14.5		CE*	[1957Al43]	
24 _{Sn}		1 50(10)	124 _{Sn}	12 _C	378				
эп 24-	0.102(6)	1.58(10)	124 _{Sn}	12 -	F0	1	TDSA	[2012Ku24]	
~~Sn	0.162(6)						CE*	[2011Al25]	
24 _{Sn}		1.48(15)	124 _{Sn}				TDSA	[2011Ju01]	
²⁴ Sn	0.1629(224)		γ	124			GG	[2000Br05]	NR
^{24}Sn	0.166(22)		ν	124	n 4.1.		GG	[1994Go25]	
24 _{Sn}	0.161(4)		16 ₀	124	n 48		CE	[1981Jo03]	NR
24c-	0.140(6)			124		5			
5n 24	U.14U(b)		α 3				CE*	[1979Sa05]	Ex, MD,
-¬Sn	0.140(3)		³ He	124			CE	[1979Sa05]	Ex, MD,
140	0.1700(40)		α	124	n 10.0	0, 10.5, 10.6	CE	[1975Gr30]	
Sn				124	n 2-2	.5A	CE	[1970Kl06]	
^{24}Sn	0.188(13) 0.1610(40)		α	124	11 22.		CL	[157011100]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
4 Sn	0.180(20)			14 _N	124 _{Sn}	44, 48	CE*	[1968La26]	
¹ Sn	0.133(22)			e	124 _{Sn}	150	EE	[1967Ba52]	
Sn	0.220(40)			²⁰ Ne, ¹⁴ N	124 _{Sn}	16-26, 12-22, 36, 53	CE	[1961An07]	
Sn	0.213(24)			p, α	124 _{Sn}	1.5-3.3, 8-10	CE	[1958St32]	
Cn	0.140(30)			ρ, α	124 _{Sn}		CE*		
Sn	0.140(30)	1.50(20)		126 _{Sn}	12 _C	14.5		[1957Al43]	
Sn		1.50(20)		126 _{Sn}	12 _{C,} 50 _{Ti}	378	TDSA	[2012Ku24]	
Sn	0.127(8)			120Sn		3A	CE*	[2011Al25]	
Sn	0.10(3)			126 _{Sn}	C	<3A	CE*	[2004Ra27]	
Sn	0.080(5)			128 _{Sn}	¹² C, ⁵⁰ Ti	3A	CE*	[2011Al25]	
Sn	0.073(6)			128 _{Sn}	C	<3A	CE*	[2004Ra27]	
Sn	0.023(5)			130 _{Sn}	С	<3A	CE*	[2004Ra27]	
2 Sn	0.11(3)			132 _{Sn}	48 _{Ti}	470-495	CE*	[2005Va31]	
Sn	0.14(5)			132 _{Sn}	C	<3A	CE*	[2004Ra27]	
	0.029(5)			134 _{Sn}	90 _{Zr}	400	CE*	[2005Va31]	
	. ,			134 _{Sn}	C				
Te	0.029(5)			58 _{Ni}	54 _{Fe}	<3A	CE*	[2004Ra27]	
Te		11.0(13)		50 NI	54Fe	245	RDM	[2011Ba37]	
Те		5.7(5)		58 _{Ni}	58 _{Ni}	250	RDM	[2015Do04]	
Te		4.09(33)		$^{24}{ m Mg}$	93 _{Nb}	90	TDSA	[2005Mo20]	
Te		8.8(14)		13 _C	109 _{Ag}	54	TDSA	[2002Pa19]	
Te	0.666(20)			58 _{Ni}	120 _{Te}	175	CE	[2014Sa49]	
Te		10.4(2)		120 _{Te}	С	300	RDM	[2010We12]	
	0.77(16)			α	120 _{Te}	<7	CE	[1956Te26]	
Te	(10)	10.70(7)		n	122 _{Te}	1.72-3.35	TDSA	[2005Hi04]	
Te	0.75(2)	10.70(7)		16 _{0,} 32 _S	122 _{Te}				F C
Te Te	0.75(3)				122 _{Te}	48,100	CE*	[1989SvZZ]	Ex, Gos,
	0.53(2)			³ He		19.52 8-10, 32-37,	CE*	[1979Sa05]	Ex, MD,
Te	0.6650(30)			α , 14 N, 16 O, 18 O	¹²² Te	8-10, 32-37, 30.5-42, 34-	CE	[1978Be10]	
				α, Ν, Ο, Ο		35	CL	[13760010]	
Te	0.664(20)			α	¹²² Te	8-18	CE*	[1977Sa04]	
Te	0.658(4)			α , 16 O	122 _{Te}	10-11, 30-54	CE	[1976Bo12]	
Ta	0.666(12)			α , 16 O	122 _{Te}	8,10, 42,44.8	CE	[1974Ba45]	
2.	0.610(30)			14 _N	122 _{Te}	48	CE*		
Te	0.010(30)	10.5(16)			122 _{Te}			[1970LaZM]	
1e		10.5(16)		γ	122 Ie 122_	0.56	GG	[1964Pa17]	
Te	0.57(14)			γ	122 _{Te}	0.56	GG	[1963Zi02]	
Te	0.63(16)			γ	122 _{Te}	0.56	GG	[1963Sh17]	
Te	0.65(6)			α	122 _{Te}	8,9,10	CE	[1961St02]	
² Te	0.47(10)			α	¹²² Te	<7	CE	[1956Te26]	
⁴ Te	0.48(1)			α	124 _{Te}	19.3*	CE	[1979Sa05]	Ex, MD,
1 _{Te}	0.46(2)			3 _{He}	¹²⁴ Te	19.52*	CE	[1979Sa05]	Ex, MD,
4 _{T0}	0.48(2)			³ He	124 _{Te}	12.5-21.0*	CE		
1e 4	0.46(2)				124 _{Te}			[1979Sa05]	Ex, MD,
Te	0.561(24)			α 16	124 Te	8-18	CE	[1977Sa04]	
Te.	0.567(6)			α , 16 O	124 _{Te}	8.5-17, 39-44	CE	[1975Kl07]	
⁴ Te	0.569(12)			α , 16 O	¹²⁴ Te	9,10, 42,44.8	CE	[1974Ba45]	
⁴ Te	0.470(40)			d, α	124 _{Te}	12, 14	CE	[1970Ch14]	
4 _{Te}	0.710(40)			¹⁴ N	124 _{Te}	48	CE*	[1970LaZM]	
4_{Te}		9.5(5)		γ	124 _{Te}	0.6	GG	[1968Sc13]	
	0.83(5)	-15(2)		γ	124 _{Te}	0.6	GG	[1963Zi02]	
4 _{T0}	0.61(20)			14 _N	124 _{Te}	36-53	CE*	[1962Ga13]	
1	0.01(20)				124 _{Te}				
'Te	0.75(10)			γ	124 Te	0.6	GG	[1961Ak02]	
*Te	0.39(8)			α	124 _{Te}	<7	CE	[1956Te26]	
Te	0.475			n	239-241 _{Pu}	thermal	Fission-Corr	[2001Ge07]	
⁵ Te	0.457(14)			α	¹²⁶ Te	8-18	CE	[1977Sa04]	
⁵ Te	0.466(8)			α , 16 O	126 _{Te}	8.5-17, 39-44	CE	[1975Kl07]	
e Te	0.479(12)			α , 16_0	126 _{Te}	9,10, 42,44.8	CE	[1974Ba45]	
î Te	0.510(25)			14 _N	126 _{Te}	48, 46	CE*	[1974ba45] [1970LaZM]	
îTa	0.420(40)			14 _N	126 _{Te}	44, 48	CE*	[1968La26]	
те 6т-	0.420(40)			α , 16 O	126 _{Te}				
ie Sr	0.40/(35)				126 _T .	2-3A	CE	[1967St16]	
o'l'e	0.532(37)			p	126 _{Te}	1.5-3.3	CE	[1958St32]	
Te	0.32(6)			α	126 _{Te}	<7	CE	[1956Te26]	
^S Te	0.346(26)			128 _{Te}	C	350, 396	CE*	[2002Ra21]	
⁸ Te	0.383			n	239-241 _{Pu}	thermal	Fission-Corr	[2001Ge07]	
				1/ 16 10	170	8-10, 32-37,			
°Te	0.3760(30)			α , 14 N, 16 O, 18 O	128 _{Te}	30.5-42, 34-	CE	[1978Be10]	
8-	0.200(0)				128 _{Te}	35	cr*	[40770 5 1]	
ie	0.380(9)			α 16 -	¹²⁶ Te 128 _{Te}	8-18	CE*	[1977Sa04]	
Te	0.378(7)			α , ${}^{16}_{16}$	120 Te	8.5-17, 39-44	CE*	[1975Kl07]	
Te	0.387(11)			α , 16 0	128 _{Te}	9,10, 42, 44.8	CE	[1974Ba45]	
³ Te	0.390(20)			14 _N	128 _{Te}	48	CE*	[1970LaZM]	
³ Te	0.390(29)			α , 16 0	128 _{Te}	2-3A	CE	[1967St16]	
3 _{Te}	0.412(33)			p p	128 _{Te}	1.5-3.3	CE	[1958St32]	
B _T	0.412(33)				128 _{Te}	1.5-5.5 <7			
1e	0.20(0)			α 130			CE	[1956Te26]	
Te	0.291(10)			¹³⁰ Te	C 220 241	342.8, 390	CE*	[2013St24]	
Te	0.295			n	239-241 _{Pu}	thermal	Fission-Corr	[2001Ge07]	
^U Te	0.295(7)			α	130 _{Te}	10-11, 30-54	CE*	[1976Bo12]	
^U Te	0.290(11)			α , 16 O	130 _{Te}	9,10, 42, 44.8	CE*	[1974Ba45]	
O _{Te}	0.302(16)			14 _N	130 _{Te}	46, 48.5	CE*	[1974ba45] [1970LaZM]	
O _{TC}	0.302(16)				130 _{Te}				
16	0.300(30)			α 14	130 _{Te}	8.5-10, 30-42	CE*	[1970Ch01]	
	0.340(30)			¹⁴ N		36-53	CE*	[1962Ga13]	NR
⁰Te				p	¹³⁰ Te	1.5-3.3	CE	[1958St32]	
⁾ Te	0.340(31) 0.26(5)			r	130 _{Te}	<7			

Table 1 (continued)

Nuclide B(E	(2)(e ² b ²)	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
132 _{Te} 0.19		<i>S(22)</i> (***a:) ** (ps)	P2	132 _{Te}	C	350	CE*	[2003Ba01]	comme
132 _{Te} 0.19	9(3)			132 _{Te}			CE*	•	
132 Ie 0.2	16(21)				C 239–241 _{Pu}	350, 396		[2002Ra21,2011Da21]	
32 _{Te} 0.14	43			n 124		thermal	Fission-Corr	[2001Ge07]	
34Te 0.10	04(4)			134 _{Te}	С	390	CE*	[2013St24]	
³⁴ Te 0.13	3(4)			134 _{Te}	C	350	CE*	[2003Ba01]	
³⁴ Te 0.1	14(13)			134 _{Te}	С	350, 396	CE*	[2002Ra21,2011Da21]	
³⁶ Te 0.12	22(18)			136 _{Te}	С	350, 396	CE*	[2002Ra21,2011Da21]	
¹⁴ Xe 1.03	330(666)			58 _{Ni}	58 _{Ni}	210	RDM/ TDSA	[2002De26]	
¹⁴ Xe	()	23.8(16)		58 _{Ni}	58 _{Ni}	215	RDM	[1998De29]	
¹⁶ Xe		35.1(13)		60 _{Ni}	58 _{Ni}	215	RDM	[1998De29]	
¹⁸ Xe				29 _{Si}	93 _{Nb}				
18 _{Xe}		65(4)		2051	110	135	RDM	[2002Go36]	
10 Xe		63(6)		1.4	$^{118}_{Cs(\beta^+)}$		DC	[1992MaZR]	
¹⁸ Xe		65.0(30)		¹⁴ N	107 Ag	60	RDM	[1980KaZT]	
¹⁸ Xe		69(5)		14 _N	107 Ag	50-85	RDM	[1977BeYM]	
20 _{Xe}		64.0(40)			$120_{Cs(\beta^+)}$		DC	[1996Ma16]	
20 _{Xe}		64(5)		¹⁸ 0	106 _{Pd}	70	RDM	[1995Wa25]	
20 _{Xe}		75(7)					RDM	[1990DeZN]	
20 _{Xe}		89		19 _F	104 _{Pd}	81	RDM	[1985ChZY]	Ex, NR
¹⁰ Xe				14 _N	109 _{Ag}				
		122(12)			105 Ag	60	RDM	[1980KaZT]	Ex
⁰ Xe		124(15)		¹⁶ 0	108 _{Pd}	75,80	RDM	[1972Ku14]	Ex
² Xe		72.0(40)		16 _O	110 _{Pd}	66	RDM	[1998Go03]	
² Xe		70.0(20)		18 ₀	108 _{Pd}	76	RDM	[1994Pe02]	
² Xe		75(5)					RDM	[1993SaZT]	
² Xe		51(+10)		18 _O	107 _{Ag}	78	RDM	[1992Dr05]	
² Xe				160	110 _{Pd}				
		89.3(81)		-	hq	75,80	RDM	[1972Ku14]	
⁴ Xe		$64(^{+10}_{-8})$		¹²⁴ Xe	93 _{Nb}	55A	RDM	[2006Ch26]	
⁴ Xe 1.12	$2(^{+12}_{-9})$	Ü		¹²⁴ Xe	58 _{Ni}	550-580	CE*	[2006Mu04]	
¹⁴ Xe	`-9 '	(2.5(42)		18 _O	110 _{Pd}			[2004Sa47]	
¹⁴ Xe		67.5(17)		16 ₀	110 _{Pd}	80	TDSA/ RDM		
'Xe		82.0(40)		100	Pd	66	RDM	[1998Go03]	
⁴ Xe		60(5)					RDM	[1990DeZN]	
⁴ Xe		48(3)		α	122 _{Te}	23-27.2	Conversion e	[1982GaZH]	NR
⁴ Xe 0.90	0(7)			16 ₀	¹²⁴ Xe	36,42	CE	[1975Go18]	
⁶ Xe 1.02	$2(^{+13}_{-6})$			124 _{Xe}	⁵⁸ Ni	550-580	CE*	[2006Mu04]	
							Fusion	[======================================	
⁶ Xe 1.00	6(3)			α	123 _{Te}	15.5	evapora-	[2000Ga08]	NR
							tion		
²⁶ Xe 0.76	62(25)			¹⁶ 0	126 _{Xe}	36	CE	[1977Ar19]	
26 va n 70	9(6)			¹⁶ 0	126 _{Xe}	36,42	CE	[1975Go18]	
26 _{Xe}	- (-)	59.6(20)			$^{126}I(\beta^{-})$		DC	[1963De21]	
28 _{Xe}		26(6)		128 _{Xe}	Fe	525	RDM		
		20(0)		128 _{Xe}				[2011Ro53]	
²⁸ Xe 0.82	$\frac{25(-12)}{-12}$			120 Xe	58 _{Ni}	550-580	CE*	[2006Mu04]	
²⁸ Xe 0.90	0(10)			128 _{Xe}	Pb	4.3A	CE*	[1993Sr01]	NR
²⁸ Xe 0.70	67(32)			¹⁶ 0	128 _{Xe}	36	CE	[1977Ar19]	
²⁸ Xe 0.79	9(4)			α	128 _{Xe}	10-13	CE	[1975EdZY]	NR
²⁸ Xe 0.69	0(5)			¹⁶ 0	128 Xe	36,42	CE	[1975Go18]	
²⁸ Xe 0.89	0(33)				128 _{Xe}				NID
- Xe U.85	9(23) 0			α 120		6.45	CE	[1958Pi05]	NR
⁰ Xe 0.58	85(+3)			¹³⁰ Xe	⁵⁸ Ni	550-580	CE*	[2006Mu04]	
³⁰ Xe		37.1(17)		130 _{Xe}	Ti	485-508	CE	[2002Ja02]	
⁰ Xe 0.63	35(48)	, ,		¹⁶ 0	130 _{Xe}	36	CE	[1977Ar19]	
0Xe 0.58	8(5)			α	130 _{Xe}	10-13	CE	[1975EdZY]	NR
0.30 0Xe 1.00	0(8)			16 _O	130 _{Xe}	36,42	CE		1416
	u(o)	40.0(00)		- U		30,42		[1975Go18]	
^U Xe		12.0(30)			$^{130}I(\beta^{-})$		DC	[1974Bu13]	
0Xe 0.69	9(15)			γ	130 _{Xe}	0.390-0.530	GG	[1970Ke15]	
Xe 0.6	4			α	130 _{Xe}	6.45	CE	[1958Pi05]	NR
² Xe 0.49	99(+36)			132 _{Xe}	58 _{Ni}	550-580	CE*	[2006Mu04]	
² Xe	-32	23.7(6)		132 _{Xe}	Ti	485-508	CE	[2002Ja02]	
² Xe 0.47	73(20)	23 (0)		16 ₀	132 _{Xe}	36	CE	[1977Ar19]	
7.e 0.4.	/3(29)			16 ₀					
² Xe 0.4	40(30)				132 Xe	36,42	CE	[1975Go18]	
² Xe 0.3	5(11)			γ	132 _{Xe}	0.673	GG	[1961Ha36]	
⁴ Xe 0.32	$22(^{+41}_{-16})$			134 _{Xe}	58 _{Ni}	550-580	CE*	[2006Mu04]	
4 _{Xe}	10	14.7(1)		134Xe	Ti	485-508	CE	[2002Ja02]	
⁴ Xe		10.3(4)		134 _{Xe}	Ti	485-508	CE	[2002Ja02]	
4Xe 0.3	4(G)	10.3(4)			134 _{Xe}				
AC 0.34	120(C2)			α 136 _{Xe}		10-13	CE	[1975EdZY]	
6Xe 0.2	139(83)			130Xe	Ti 126	485	DC	[2002Ja02]	
6 _{Xe}		0.30(5)		³² S	136 _{Xe}	100	TDSA	[1993Sp01]	
⁶ Xe 0.18	8(8)			α	136 _{Xe}	10-13	CE	[1975EdZY]	
⁸ Xe 0.38	8(10)			138 _{Xe}	96 _{Mo}	2.84A	CE*	[2007Kr19,2008KrZZ]	
^O Xe 0.53	2(10)			140 _{Xe}	96 _{Mo}	2.84A	CE*	[2007Kr19,2008KrZZ]	
0.52 0 _{Xe}	_()	101 0/72)		AC	$140_{I(\beta^{-})}^{I(100)}$	2.0 41			NP
Λε 10 v -		101.0(72)			254 or on		DC	[1999Li18]	NR
0Xe		163(7)		142	254 _{Cf(SF)}		DC	[1980ChZM]	Ex
² Xe 0.69	9(10)			¹⁴² Xe	96 _{Mo}	2.84A	CE*	[2007Kr19,2008KrZZ]	
¹⁴ Xe 0.72	26(174)?							[2008KrZZ,2007Kr12]	
		536(30)		16 _{0,} 13 _C	108 _{Cd} , 112 _{Sn}	62-65, 59	RDM	[2010Bi11]	
∠Ba		430(39)		-, -	$122_{\text{La}(\beta^+)}$		DC	[1992Mo13]	
		275(12)		19 _F	109 _{Ag}	75			
² Ba				r	ng	75	RDM	[1998Uc01]	
² Ba ⁴ Ba							DE: 1	[40000 777]	
22 _{Ba} 24 _{Ba} 24 _{Ba}		286(6)		20	100		RDM	[1993SaZT]	
²² Ba ²² Ba ²⁴ Ba ²⁴ Ba ²⁴ Ba ²⁴ Ba				28 _{Si}	100 _{Mo} 124 _{La(β} +)	115	RDM RDM DC	[1993SaZT] [1992De60] [1992Mo13]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
26 _{Ba}		204(6)		30 _{Si}	100 _{Mo}	130	RDM	[1996De50]	
26 _{Ba}		203(20)			$^{126}La(\beta^{+})$		DC	[1992Mo13]	
26 _{Ba}		170(13)		30 _{Si}	100 _{Mo}	130	RDM	[1989Sc06]	
26 _{Ba}		$188(^{+10}_{-30})$		¹⁶ 0	114Cd	80	RDM	[1979Se03]	
26 _{Ba}					114 _{Cd}				
²⁰ Ba		173(28)		¹⁶ 0	114Cd	75-80	RDM	[1972Ku14]	
26 _{Ba}		270(50)		¹⁴ N	115 _{In}	3.7-7.5A	RDM	[1967Cl02]	
28 _{Ba}		152(13)		16 ₀	¹¹⁶ Cd	76	RDM	[2000Pe20]	NR
²⁸ Ba		$144(^{+4}_{-8})$		¹⁸ 0	¹¹⁴ Cd	76	RDM	[1992Pe06]	
28 _{Ba}				16 ₀	116 _{Cd}				
		140(30)			116 - 1	75-80	RDM	[1972Ku14]	
30 _{Ba}		62.3(7)		¹⁸ 0	116 _{Cd}	76	RDM	[2000St07]	NR
³⁰ Ba		62.0(14)		¹⁸ 0	¹¹⁶ Cd	76	RDM	[1998StZX]	Su
30 _{Ba}	1.162(16)			$_{\alpha}$, 12 C, 16 O	130 _{Ba}	10.8-11.8,	CE	[1000P07]	
	1.163(16)			α, ι, ι	Dd	32-38,	CE	[1989Bu07]	
⁸⁰ Ba		56(5)				43-49	RDM	[1985VoZY]	
80 _{Ba}	1 21/20)	30(3)		40 Ca, 32 S, α	130 _{Ba}	95 70 90 105	CE		
0 _{Ba}	1.21(38)			16 _O	130 _{Ba}	85, 70, 80, 10.5		[1973ToXW]	
Ba	1.36(14)			100	130 Ba	19-27	CE	[1967Si03]	
0 _{Ba}	0.75(18)			α	130 _{Ba}	< 5.6	CE	[1958Fa01]	
² Ba	0.86(6)			12 _C	132 _{Ba}	38-42	CE	[1985Bu01]	
2 _{Ba}	0.73(18)			α	132 _{Ba}	< 5.6	CE	[1958Fa01]	
	5.75(10)					10.8-11.8,	CL	[15501401]	
⁴ Ba	0.655(6)			α , 12 C, 16 O	134 _{Ba}	32-38,	CE	[1989Bu07]	
	. /					43-49			
⁴ Ba	0.671(18)			¹² C	134 _{Ba}	38-42	CE	[1985Bu01]	
4 Ba	0.700(15)			α , 12 C, 18 O, 16 O	134 _{Ba}	11.3, 35, 52.5, 48-52.5	CE	[1977Kl05]	
				40 _{Ca,} 32 _S	134 _{Ba}		CE		
ва Ва	0.50(7)			16 ₀	134 _{Ba}	85, 70, 80		[1973ToXW]	
-Ba	0.672(16)				134-	42, 47, 50	CE	[1972Ke16]	
⁴ Ba	0.75(25)			N	134 _{Ba}	52	CE*	[1963Al31]	
Ra	0.46(4)			136 _{Ba}	C	350, 396	CE*	[2002Ra21]	
s Ba	0.418(5)			α , 7 Li, 16 O	136 _{Ba}	11-11.8, 15,16, 45-49	CE	[1986Ro15]	
ō _R ₃	0.3990(30)			ov.	136Be	42-44.5	CE*	[1984Be20]	
Ba	0.5550(50)			35 _{Cl}	136 _{Ba}				
'Ba		3.14(44)		35 Cl		56-68	TDSA	[1973Fi15]	
Ba	0.418(11)			16 ₀	136 _{Ba}	42, 47, 50	CE	[1972Ke16]	
Ba	0.53(16)			N	136 _{Ba}	52	CE*	[1963Al31]	
Ba		0.265(29)		γ	138 _{Ba}	4.1	GG	[1995He25]	NR
Ba		0.200(25)			138 _{Ba}				
		$0.280(^{+180}_{-90})$		n	ва	1.75	TDSA	[1993Be03]	
8 _{Ba}	0.241(C)			$_{\alpha}$, 12 C, 16 O	138 _{Ba}	10.8-11.8,	CF	[10000-07]	
	0.241(6)			α, ι, υ	ъ	32-38,	CE	[1989Bu07]	
8 _{Ba}	0.226(11)			12 _C	138 _{Ba}	43-49	CE*	[1095B01]	
	0.236(11)				120 _	38-42	CE*	[1985Bu01]	
	0.2170(30)			α	138 _{Ba}	12.15-12.40	CE	[1978Ki09]	
⁸ Ba	0.238(17)			γ	138 _{Ba}	1.5-5.1	GG	[1977Sw03]	
8 _{Ba}	0.221(9)			γ 16 ₀	138 _{Ba}	42, 47, 50	CE	[1972Ke16]	
8 _{Ba}	0.249(13)			e	138 _{Ba}	40,60	EE	[1972LeYB]	
88 _{Ba}					138 _{Ba}				
°Ba	0.27(9)			N 20 14		52	CE*	[1963Al31]	
8 _{Ba}	0.38(11)			²⁰ Ne, ¹⁴ N	138 _{Ba}	16-26, 12-22,36,53	CE	[1961An07]	
0 _{Ba}	$0.484 \binom{+38}{-101}$			140 _{Ba}	⁹⁶ Mo	392	CE*	[2012Ba40]	
0 _{Ba}	_101 [']	40.4(+22)		140 _{Ba}	96 _{Mo}				
ъ ва		$10.4(^{+22}_{-8})$		140Ba	30 Mo	392	TDSA	[2012Ba40]	
) _{Ba}	0.4564			140 _{Ba}		~2.85A	CE*	[2008KrZZ,2007Kr12]	Ex
) _{R2}		14(6)			140 Cs(β^-)		DC	[1989Ma38]	
2 _{Ba}					252 _{Cf(SF)}		TDSA		
2 Ba		119(12)			142 (2)			[2005Bi02]	NID
- Ba		94(3)			$^{142}Cs(\beta^{-})$		DC	[1990Ma25]	NR
Ba		95.0(30)			142 Cs (β^-)		DC	[1989Mo06]	Su
² Ba		86(6)			252 _{Cf(SF)}		RDM	[1986Ma22]	
2 _{R2}		114(9)			254 _{Cf(SF)}		DC	[1980ChZM]	
2 _{Ra}		100(60)					DC	[1975JaYL,1974JaZN]	Su, NR
⁴ Ba					252 Cf(SF)		TDSA		Ju, 1410
		1140(70)			144 a (a –)			[2005Bi02]	NE
¹ Ba		1025(40)			144 _{Cs(β} -)		DC	[1990Ma25]	NR
⁴ Ba		1475(597)			252 _{Cf(SF)}		RDM	[1986Ma22]	
⁴ Ba		971(156)			252 _{Cf(SF)}		RDM	[1983MaYT]	
⁴ Ba		1010(100)			254 _{Cf(SF)}		DC	[1980ChZM]	
4 _{Ba}					144 _{Cs(β} -)				
•ва 4 _{Ва}		1230(220)			Cs(p)		DC	[1976MoZB]	
		1010(43)			252		DC	[1975JaYL,1974JaZN]	Su, NR
⁴ Ba		1440(290)			252 _{Cf(SF)}		DC	[1970Wa05]	
		1240(42)			$146_{Cs(\beta^{-})}$		DC	[1990Ma25]	NR
R ₂		1330(170)			254 _{Cf(SF)}		DC	[1980ChZM]	
Ba Ba		170(170)			CI(31)				Cu NIP
Ba Ba		12.40(00)		³⁵ Cl	92		DC	[1975JaYL,1974JaZN]	Su, NR
Ba Ba Ba		1240(90)		224	92 _{Mo}	145	RDM	[1995Ma96]	
Ba Ba Ba LCe		1270(280)		27		145	RDM	[1995Ma96]	
Ba Ba Ba Ce Ce				37 _{Cl}	⁹² Mo				
⁶ Ba ⁶ Ba ⁶ Ba ⁴ Ce ⁶ Ce		1270(280) 560(110)		37 _{Cl}	92 _{Mo} 92 _{Mo}			[1988Mo08]	Ex
6 _{Ba} 6 _{Ba} 6 _{Ba} 4 _{Ce} 6 _{Ce}		1270(280) 560(110) 949(53)		³⁷ Cl 40 _{Ca}	92 _{Mo}	150-200	RDM	[1988Mo08]	EX
6 _{Ba} 6 _{Ba} 6 _{Ba} 6 _{Ba} 4 _{Ce} 6 _{Ce} 6 _{Ce} 6 _{Ce}		1270(280) 560(110) 949(53) 949(53)		³⁷ Cl ⁴⁰ Ca ³⁵ Cl	92 _{Mo} 94 _{Mo}	150-200 150	RDM RDM	[1987IsZX]	Ex NR
Ba Ba Ba 4Ce Ce Ce Ce Ce Ce		1270(280) 560(110) 949(53) 949(53) 385(31)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca}	⁹² Mo ⁹⁴ Mo ⁹² Mo	150-200	RDM		
Ba Ba Ba 4Ce Ce Ce Ce Ce Ce		1270(280) 560(110) 949(53) 949(53) 385(31)		³⁷ Cl ⁴⁰ Ca ³⁵ Cl	92 _{Mo} 94 _{Mo}	150-200 150	RDM RDM	[1987IsZX] [1988Mo08]	
⁶ Ba ⁶ Ba ⁶ Ba ⁴ Ce ⁶ Ce ⁶ Ce ⁶ Ce ⁸ Ce ⁸ Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(+38)		37 _{CI} 40 _{Ca} 35 _{CI} 40 _{Ca} 40 _{Ar}	92 _{Mo} 94 _{Mo} 92 _{Mo} 92 _{Zr}	150-200 150 150-200 159	RDM RDM RDM RDM	[1987IsZX] [1988Mo08] [1984We17]	NR
6 Ba 6 Ba 4 Ce 6 Ce 6 Ce 6 Ce 8 Ce 8 Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(⁺³⁸ / ₃₄) 181.3(70)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca} 40 _{Ar} 28 _{Si}	92 Mo 94 Mo 92 Mo 92 Zr 110 Pd	150-200 150 150-200 159 125	RDM RDM RDM RDM RDM	[1987IsZX] [1988Mo08] [1984We17] [1999K111]	
⁶ Ba ⁶ Ba ⁴ Ce ⁶ Ce ⁶ Ce ⁶ Ce ⁸ Ce ⁸ Ce ⁹ Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(+38)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca} 40 _{Ar} 28 _{Si} 16 _O	92 Mo 94 Mo 92 Mo 92 Zr 110 Pd 117 Sp	150-200 150 150-200 159 125 76.5	RDM RDM RDM RDM	[1987IsZX] [1988Mo08] [1984We17]	NR
6 Ba 6 Ba 4 Ce 6 Ce 6 Ce 6 Ce 8 Ce 8 Ce 9 Ce 9 Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(⁺³⁸ / ₃₄) 181.3(70)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca} 40 _{Ca} 40 _{Ar} 28 _{Si} 16 _O 16 _O	92 Mo 94 Mo 92 Mo 92 Zr 110 Pd 117 Sn 118 Sp	150-200 150 150-200 159 125	RDM RDM RDM RDM RDM	[1987IsZX] [1988Mo08] [1984We17] [1999K111]	NR
6 Ba 6 Ba 4 Ce 6 Ce 6 Ce 6 Ce 8 Ce 8 Ce 0 Ce 0 Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(-34) 181.3(70) 180(15) 209(15)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca} 40 _{Ca} 40 _{Ar} 28 _{Si} 16 _O 16 _O	92 Mo 94 Mo 92 Mo 92 Zr 110 Pd 117 Sn 118 Sp	150-200 150 150-200 159 125 76.5 76	RDM RDM RDM RDM RDM RDM RDM	[1987lsZX] [1988Mo08] [1984We17] [1999Kl11] [1984To10] [1977Hu10]	NR
6 Ba 6 Ba 4 Ce 6 Ce 6 Ce 6 Ce 8 Ce 8 Ce 0 Ce 0 Ce 0 Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(+38) 181.3(70) 180(15) 209(15) 211(9)		37 CI 40 Ca 35 CI 40 Ca 40 Ar 28 Si 16 O 16 O	92 Mo 94 Mo 92 Mo 92 Zr 110 pd 117 Sn 118 Sn	150-200 150 150-200 159 125 76.5 76	RDM	[1987lsZX] [1988Mo08] [1984We17] [1999Kl11] [1984To10] [1977Hu10] [1975Bu08]	NR
66 Ba 66 Ba 66 Ce 66 Ce 66 Ce 68 Ce 60 Ce 60 Ce 60 Ce 60 Ce 60 Ce 60 Ce 60 Ce		1270(280) 560(110) 949(53) 949(53) 385(31) 427(-34) 181.3(70) 180(15) 209(15)		37 _{Cl} 40 _{Ca} 35 _{Cl} 40 _{Ca} 40 _{Ca} 40 _{Ar} 28 _{Si} 16 _O 16 _O	92 Mo 94 Mo 92 Mo 92 Zr 110 Pd 117 Sn 118 Sp	150-200 150 150-200 159 125 76.5 76	RDM RDM RDM RDM RDM RDM RDM	[1987lsZX] [1988Mo08] [1984We17] [1999Kl11] [1984To10] [1977Hu10]	NR

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
132 _{Ce}		57(4)		¹⁶ 0	120 _{Sn}	76	RDM	[1977Hu10]	
132 _{Ce}		68(10)		¹⁶ 0	120 _{Sn}	68-76	RDM	[1974De12]	
¹³⁴ Ce		32.7(28)		¹⁶ 0	122 _{Sn}	76	RDM	[1977Hu10]	
134 _{Ce}		36(8)		¹⁶ 0	122 _{Sn}	68-76	RDM	[1974De12]	
136 _{Ce}	0.814(90)			p	¹³⁶ Ce	3	CE*	[1989Ga24]	NR
¹³⁸ Ce		2.84(6)		138 _{Ce}	$^{24}{ m Mg}$	480	CE*	[2014Na15]	
138 _{Ce}	0.461(50)			p	¹³⁸ Ce	3	CE*	[1989Ga24]	NR
¹³⁸ Ce	0.450(30)			α	138 _{Ce}	9, 10	CE	[1989Lo01]	
140 _{Ce}		0.131(10)		γ	¹⁴⁰ Ce	4.1	GG	[1995He25]	NR
140 _{Ce}		$0.110(^{+4}_{-3})$	0)	n	Ce	1.75	TDSA	[1993Be03]	
140 _{Ce}	0.304(8)	3	u.	e	140 _{Ce}	190	EE	[1992Ki10]	NR
140 _{Ce}	-1 1(-)	0.129(4)		32 _S	Ce	110	TDSA	[1991Ba38]	
140 _{Ce}	0.2950(40)	(-)		α	140 _{Ce}	12.5-12.8	CE	[1978Ki09]	
140 _{Ce}	0.280(37)			e	140 _{Ce}	50, 65	EE	[1973Pi04]	
140 _{Ce}	0.27(5)			¹⁶ 0	140 _{Ce}	31-45	CE	[1966Ec02]	
140 _{Ce}	0.27(3)	0.216(87)		1/	140 _{Ce}	31.15	GG	[1964Be25]	NR
140 _{Ce}	0.27(5)	0.210(07)		⁷ 14 _{N, α}	Ce	52.5, 15	CE*	[1961An07]	
140_{Ce}		4.8(19)		.,,	cc	32.0, 13	GG	[1960Dz03]	Ex, NR
140 _{Ce}	0.31	4.0(13)		α	Ce	17	CE	[1960Na13]	Ex, NR
140 Ca	0.51	0.110(15)			cc	17	GG	[19590f14]	LA, IVIK
142 _{Ce}		8.19(9)		γ 142 _{Ce}	$^{24}{ m Mg}$	494	CE*	[2014Na15]	
142 _{Ce}		0.19(9)		Ce	ivig	454	CE		Ev.
142 _{Ce}	0.461(21)			Δ.	¹⁴² Ce	100-370 MeV	EE	[1995Va25]	Ex
142 _{Ce}	0.401(21)	0.00/400		e 32 _S				[1991Ki13]	NR Un
142 c-	0.480(6)	8.20(100)		α, ¹² C, ¹⁶ O	Ce ¹⁴² Ce	110	TDSA	[1991Ba38]	Un
142 _{Ce}	u.48U(b)	4.4/31		α, -20, 100	Ce	10-12, 32-35, 45-49	CE	[1989Sp07]	
142 c	0.400(6)	14(7)		α, ¹² C, ¹⁶ O	142 _{Ce}	10 10 01 00	DC	[1989Mo06]	C
142 c	0.480(6)				142 Ce 142 _{Ce}	10-12, 31-38, 44-50	CE	[1988Ve08]	Su
142 c	0.65(20) 0.459(6)			e 16 ₀	142 Ce 142 Ce	50, 65	EE	[1973Pi04]	
142 Ce	0.459(6)			16 _O	142 _{Ce}	42	CE	[1970En01]	
142 Ce	0.42(5)			14		31-45	CE	[1966Ec02]	
142 Ce	0.41(8)			¹⁴ Ν, α	Ce	52.5, 15	CE*	[1961An07]	
¹⁴² Ce	0.59			α	Ce	17	CE	[1960Na13]	Ex, NR
144 Ce		42(10)					DC	[1989Ma38]	
144 _{Ce}		51(5), 43(8)				DC	[1989Mo06]	Su
146 _{Ce}		273(15)					DC	[1989Ma38]	
146 _{Ce}		346(43)					DC	[1980ChZM]	
146 _{Ce}		380(70)					DC	[1975JaYL,1974JaZN]	NR
¹⁴⁸ Ce		1300(430)				DC	[2006Hw01]	
148 _{Ce}		1370(120)				DC	[1980ChZM]	
148 _{Ce}		1530(120)				DC	[1975JaYL,1974JaZN]	NR
148 _{Ce}		1880(290)				DC	[1970Wa05]	
150 _{Ce}		4400(800)				DC	[1980ChZM]	
¹⁵⁰ Ce		5200(140	0)				DC	[1975JaYL,1974JaZN]	NR
152 _{Ce}		3607.5(72	:15)				DC	[2005Fo17]	
130 _{Nd}		864(355)		⁴⁰ Ca	96 _{Ru}	180	RDM	[1989Mo10]	
132 _{Nd}		192(11)		32 _S	107 _{Ag}	170	RDM	[1995Ma96]	
132 _{Nd}		268(19)		40 _{Ca}	96 _{Ru}	180	RDM	[1989Mo10]	
132 _{Nd}		350(30)		92 _{Mo}	46 _{Ti,} 50 _{Cr}	210, 230	RDM	[1987Wa02]	Ex
132 _{Nd}		317(29)		32 _S	107 _{Ag}	160	RDM	[1986Ma39]	Su
134 _{Nd}		94.4(30)		28 _{Si}	110 _{Pd}	125	RDM	[1999Kl11]	NR
134 _{Nd}		80(10)		32 _S	107 _{Ag}	170	RDM	[1995Ma96]	
134 _{Nd}		92(6)		28 _{Si}	110 _{Pd}	120-125	RDM	[1987Bi13]	
134 _{Nd}		150(12)		46 _{Ti} 50 _{Cr}	92 _{Mo}	210, 230	RDM	[1987Wa02]	Ex
136 _{Nd}	1.66(23)	80(11)		136 _{Nd}	Au	126A	CE*	[2008Sa35]	
140 _{Nd}	0.72(5)	/		140 _{Nd}	48 _{Ti,} 64 _{Zn}	399	CE*	[2013Ba38]	
142 _{Nd}	\ - /	$0.130(^{+5}_{-3}$	<u> </u>	n	Nd	1.75	TDSA	[1993Be03]	
142 _{Nd}				32 _S	142 Nd				He
142		0.159(16)	572、			110-116	TDSA	[1991Ba38]	Un
142 _{Nd}		0.1687(_	344)	γ	142 _{Nd}	4.1	GG	[1990Pi04]	NR
142 _{Nd}	0.265(4)			α	142 _{Nd}	13.05-13.20	CE	[1978Ki09]	
142 _{Nd}		0.165(12)		γ	142 _{Nd}	1.85-5.0	GG	[1978Me16]	
142 Nd	0.437(37)			e	142 _{Nd}	40, 60, 80	EE	[1974MaYP]	
142 Nd	0.27(3)			¹⁶ 0	142 _{Nd}	54-72	CE	[1973Ch13]	
142 _{Nd}	0.289(8)			e	142 _{Nd}	40, 60	EE	[1971Ma27]	
¹⁴² Nd	0.57(17)			¹⁶ 0	¹⁴² Nd	50, 55, 60	CE	[1967BuZX]	
142 Nd	0.42(7)			¹⁶ 0	¹⁴² Nd	43.81	CE	[1966Ec02]	
142 _{Nd}	0.34			α	Nd	17	CE	[1960Na13]	Ex, NR
¹⁴⁴ Nd	0.460(40)			e	¹⁴⁴ Nd	112-400	EE	[1993Pe10]	
¹⁴⁴ Nd	0.491(5)			α, ¹² C, ¹⁶ O	144 _{Nd}	10.5-12.7, 32-36, 44-49	CE	[1989Sp07]	
144_{Nd}	0.580(10)			α, ε, σ	144 _{Nd}	10.5, 11	CE	[1988Ah01]	
144 _{Nd}	0.56(6)					,	CE	[1980FaZW]	
144 _{Nd}	0.510(16)			¹⁶ 0	144 _{Nd}	42	CE	[1971Cr01]	
144 _{Nd}	0.48(8)			16 _O	144 _{Nd}	50, 55, 60	CE	[1967BuZX]	
144 _{NIA}	0.44(5)			16 _O	144 _{Nd}	35-39			
144 N.J	0.44(5)			· U	Nu	-CC	CE	[1966Ec02]	
144 _{Nd}	0.23(3)			er.	Nd	17	CE	[1960Le07]	Ev ND
DNI	U.44	22/7)		α	Nd	17	CE	[1960Na13]	Ex, NR
146 NIJ		33(7)			146		DC	[1989Mo06]	
146 _{Nd}	0.700(10)								
146 _{Nd}	0.780(10) 0.81(7)			α	¹⁴⁶ Nd	10.5, 11	CE CE	[1988Ah01] [1980FaZW]	

Table 1 (continued)

	ontinued)									
	$B(E2)(e^2b^2)$	B(E2) (W.	.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
146 _{Nd}	0.616(28)				e	¹⁴⁶ Nd	40, 60, 80	EE	[1974MaYP]	
¹⁴⁶ Nd	0.705(34)				e	146 _{Nd}	40, 60	EE	[1971Ma27]	
146 _{Nd}	0.760(22)				16 ₀	¹⁴⁶ Nd	42	CE	[1971Cr01]	
146 _{Nd}	0.71(6)				α	146 _{Nd}	12, 14	CE	[1970Ch14]	
146 _{Nd}	0.68(10)				¹⁶ 0	146 _{Nd}	50, 55, 60	CE	[1967BuZX]	
146 _{Nd}	0.65(7)				¹⁶ 0	146 _{Nd}	35-39	CE	[1966Ec02]	
146 _{Nd}	0.85(25)				α	146 _{Nd}	6	CE	[1955He64]	Ex
148 Nd	1.30(6)				148 _{Nd}	208 _{Pb}	700	CE*	[1997Ib01]	LA
148 _{Nd}	1.30(0)		115(4)		58 _{Ni}	148 _{Nd}	220			
148	1.390(20)		115(4)			148 Nd		RDM	[1991Ib01]	
148	1.390(20)				α	Na	10.5, 11	CE	[1988Ah01]	
140 Nd	1.42(5)				16	1.40		CE	[1980FaZW]	
140 Nd	1.36(3)				¹⁶ 0	¹⁴⁸ Nd	42	CE	[1971Cr01]	
146 Nd	1.05(16)				¹⁶ 0	148 Nd	50, 55, 60	CE	[1967BuZX]	
148 Nd	0.96(10)				16 _O	148 _{Nd}	35-39	CE	[1966Ec02]	
148 Nd	1.58(47)				α	148 _{Nd}	6	CE	[1955He64]	Ex
148 _{Nd}			260(90)		p	Nd	0-3.4	CE	[1955Si12]	
150 Nd	2.82(4)				e	150 _{Nd}	112-450	EE	[1993Sa06]	Ex
150 _{Nd}	2.816(35)				α	150 _{Nd}	10.5, 11	CE	[1988Ah01]	
150 _{Nd}			2080(100)		40 _{Ar}	150 _{Nd}	149	RDM	[1978Ya02]	
150 _{Nd}	2.720(40)		(α	150 _{Nd}	11.5	CE	[1977Wo02]	
150 _{Nd}	1.49(13)				e	150 _{Nd}	40, 60, 80	EE	[1974MaYP]	
150 MZ	2.75(8)				32 _S	150Nd	86.95, 96.7, 102.0, 110.0		[1974Ma17] [1973FrZN]	
150 x	4.73(0)					150Nd 150 _{Nd}		CE		
150 Nd	1.49(10)				e	130 Nd	40, 60	EE	[1971Ma27]	_
150 Nd	2.64(8)		2240(80)		16 -	150		MuonicX-ray	[1970Hi03]	Ex
150 _{Nd}	2.72(6)				$^{16}_{O, \alpha}$	150 _{Nd}		CE	[1969KeZX]	
150 _{Nd}			2140(60)		p	150 _{Nd}	3.5	PB	[1968Ri09]	
150 Nd			2191(34)		p	150 _{Nd}		PB	[1967Ku07]	
150 _{Nd}	2.67(10)				p, d	150 _{Nd}	4	CE	[1963Bj04]	
150 _{Nd}			2200(100)		p	150 _{Nd}	2.8	PB	[1959Bi10]	
150 _{Nd}			7000(2300)		p	Nd	0-3.4	CE	[1955Si12]	
150 _{Nd}	2 3(8)		(====)		α	150 _{Nd}	6	CE	[1955He64]	Ex
152 _{Nd}	2.5(0)		5760(320)		u	Nu	0	DC	[1999To04]	LA
152 _{Nd}			6420(370)							
154 _{Nd}						252 _{Cf(SF)}		DC	[1991He03]	N.D.
134 _{Sm}			11111(2886)		⁹² Mo	46 _{Ti.} 50 _{Cr}		DC	[1974JaZN]	NR
134Sm			605(50)		³² Mo	107	210, 230	RDM	[1987Wa02]	
136 _{Sm}			128(12)		32 _S	107 Ag	125-150	RDM	[1988So06]	
136 _{Sm}			190(15)		92 _{Mo}	⁴⁶ Ti, ⁵⁰ Cr	210, 230	RDM	[1987Wa02]	Ex
136 _{Sm}			187(14)		32 _S	107 _{Ag}	160	RDM	[1986Ma39]	Ex
138 _{Sm}			65(9)		35 _{Cl}	107 _{Ag}	155	RDM	[1986Ma39]	
138 _{Sm}			48(10)		32 _S	108 _{Pd} 109 _{Ag} 110,112 _{Cd}	120-170	RDM	[1985Lu06]	
140 _{Sm}			9.1(6)		20 _{Ne}	124 _{Te}	82	RDM	[2015Be25]	
142 _{Sm}	0.70(9)	32(4)	(-)		142 _{Sm}	⁴⁸ Ti, ⁹⁴ Mo,	405	CE	[2015St08]	
144 _{Sm}	0.70(5)	32(1)	$0.55(^{+30}_{-15})$			144 _{Sm}	2-4.5	TDSA		NR
					n 22				[1993Ga16]	INK
144 _{Sm}			0.124(5)		³² S	144 _{Sm}	110-116	TDSA	[1991Ba38]	
144 _{Sm}			0.129(30)		γ	144 _{Sm}	< 5.2	GG	[1978Me08]	
144 Sm	0.262(6)				α	144 _{Sm}	12.15-12.40	CE	[1978Ki09]	
144 _{Sm}	0.25(5)				16 ₀	144 _{Sm}	44.29	CE	[1966Ec02]	
144 _{Sm}	0.39(12)				N	144 _{Sm}	52	CE	[1963Al31]	
146 _{Sm}			$7.3(^{+30}_{-73})$		11 _B	139 _{La}	54	RDM	[1982Ro05]	NR
148 _{Sm}			11.14(112)		32 _S	148 _{Sm}	110-116	TDSA		Un
148 c	0.725(25)		11.14(112)		α, ¹⁶ 0, ³² S	148 _{Sm}	110-110		[1991Ba38]	UII
- 5m 148 -	0.723(23)						40.00	CE	[1973CIZF]	
148 _{Sm}	0.811(37)		40.7/7		e 40 _{Ar}	148 _{Sm}	40, 60	EE	[1972LeYB]	
1.40 Sm			10.6(6)		Ar 16	148 _{Sm}		RDM	[1971Di02]	
140 Sm	0.705(25)				α , ^{16}O	148 _{Sm}	10-13, 34-50	CE	[1970Ge07]	
148 Sm	0.65(5)				α	148 _{Sm}	15	CE	[1968Ve01]	
148 Sm	0.63(5)				¹⁶ 0	148 _{Sm}	49	CE	[1968Ke04]	
¹⁴⁸ Sm	0.79(8)				16 ₀ , 32 _S	148 _{Sm}	19-27, 41-54	CE	[1967Si03]	
¹⁴⁸ Sm	0.70(8)				¹⁶ 0	¹⁴⁸ Sm	35.85, 39.21	CE	[1966Ec02]	
¹⁴⁸ Sm	0.89(10)				p, d	148 _{Sm}	4.5	CE	[1960El07]	
150 _{Sm}	1.47(9)				• •			MuonicX-ray	[1978Ya11]	Ex
150 _{Sm}	1.36(10)				16 _O	150 _{Sm}	46	CE	[1977Ho10]	LA
150 cm	1.43(5)				α, ¹⁶ 0, ³² S	150 _{Sm}		CE	[1977H010] [1973CIZF]	
150	1.43(5)					150 _{Sm}	40.60			
150 a	1.32(8)				e 40 .	150 -	40, 60	EE	[1972LeYB]	
150 _{Sm}			69.4(25)		$40_{ m Ar}$	150 _{Sm}		RDM	[1971Di02]	
150 Sm	1.33(3)				α	150 _{Sm}	9, 10	CE	[1971Ca35]	
150 Sm	1.29(7)				α	150 _{Sm}	15	CE	[1968Ve01]	
150 Sm	1.22(8)				¹⁶ 0	150 _{Sm}	48	CE	[1968Ke04]	
150 _{Sm}	1.44(15)				¹⁶ 0, ³² S	150 _{Sm}	19-27, 41-54	CE	[1967Si03]	
150 _{Sm}	1.31(21)				16 ₀	150 _{Sm}	49	CE	[1966Se06]	
150 _{Sm}	1.37(15)				¹⁶ 0	150 _{Sm}	31.09, 39.21	CE	[1966Ec02]	
150 _{Sm}	1.32(6)				p, d	150 _{Sm}	4.5	CE	[1960El07]	
152 _{Sm}	1.52(0)		2042(16)		136 _{Xe}	152 _{Sm}				
152 _{Sm}			2043(16)		VG	SIII	5.09A	DC	[2014Pl01]	
			2020(29)					DC	[1992De29]	
152 Sm			2128(50)					DC	[1991He03]	
152 _{Sm}			2014(9)					DC	[1988Ka21]	
152 _{Sm}			1980(70)					DC	[1981Is14]	
3111						157 -				-
152 _{Sm}	3.457(9) 3.43(4)				μ	152 _{Sm} 152 _{Sm}		MuonicX-ray	[1978Ya11]	Ex

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
² Sm	3.45(6)			e	152 _{Sm}	251.5	EE	[1977Na01]	
⁵² Sm	3.28(7)			μ	152 _{Sm}		MuonicX-ray	[1975Ba72,1979Po04]	Ex, NR
⁵² Sm	3.47(7)			α	152 _{Sm}	12	CE	[1974Wo01]	
⁵² Sm	3.46(5)			α	152 _{Sm}	8-17	CE	[1974Sh12]	
52 _{Sm}	3.46(11)			α	152 _{Sm}	11-18	CE	[1973Br02]	
52 cm	3.39(3)				152 _{Sm}	10.5-12	CE	[1972Sa42]	
52.c	3.35(20)			α	152 _{Sm}				
52 _{Sm}	3.35(20)			e	102Sm	40, 60	EE	[1972LeYB]	
Sm		1950(70)		10	150		DC	[1972El20]	
²² Sm	3.31(4)			¹⁶ 0	152 _{Sm}	23-35	CE	[1970KaZK]	
² Sm	3.32(8)						MuonicX-ray	[1970Hi03]	Ex
⁵² Sm	3.45(28)			α	152 _{Sm}	7, 8, 9, 10	CE	[1970Sa09]	
⁵² Sm		2030(60)					DC	[1968Ku03]	
52 _{Sm}	3.1(5)			α	152 _{Sm}	16	CE	[1968Ve01]	
² Sm	3.1(3)	2077(43)			152 Sm	3.5	PB	[1968Ri09]	
2 _{Sm}				p	152 _{Sm}	3.3			
2 Sm		2120(70)		p	102Sm		PB	[1967Wo06]	
Sm Sm		2060(60)					DC	[1967Ba27]	
² Sm		1960(90)					DC	[1966Mc07]	
2 Sm		2040(80)		16 ₀	152 _{Sm}	35	RDM	[1966As03]	
2 _{Sm}		2060(60)					DC	[1965Hu02]	
2 _{Sm}	3.4(2)			14 _N	152 _{Sm}	11.0	CE	[1964Ho25]	
2 cm	3.67(25)			160	152 _{Sm}	14-50	CE		
2 _{Sm}	(دع) ۱۵،د	1000(00)		U	3111	1 -1 -30		[1963Gr04]	
~5m		1980(60)					DC	[1963Fo02]	
2 _{Sm}		2050(70)					DC	[1962Ba38]	
2 _{Sm}		2120(220)					DC	[1961Sa21]	
2 _{Sm}	3.53(10)			p, d, α	152 _{Sm}	≈4	CE	[1961Be43]	
2 Sm	3.40(15)			p, d	152 _{Sm}	4.5	CE	[1960El07]	
2 _{Sm}	()	2090(80)			152 _{Sm}	2.8	PB	[1959Bi10]	
2000	3.20(36)	2030(00)		p					
² Sm	3.2U(3b)			p	Sm	7	CE	[1958Sh01]	
~Sm		1876					DC	[1956Be54]	Ex, NR
² Sm	3.3(8)						CE	[1956Hu49]	
S2 _{Sm}	3.3(10)			α	152 _{Sm}	6	CE	[1955He64]	
S2 _{Sm}		2020(140)					DC	[1955Su64]	
⁴ Sm			0.328(8)	μ	154 _{Sm}		MuonicX-ray	[1979Po04]	Ex, NR
4	4.45(39)		0.520(0)		154 _{Sm}	80-300	-		LA, IVI
3III 4 -	4.45(59)			e	154 _{Sm}		EE	[1977HoZF]	
₹Sm	4.49(5)			α	154Sm	11.25-12.00	CE	[1977Fi01]	
⁴ Sm	4.37(7)			α	154 _{Sm}	8-17	CE	[1974Sh12]	
⁴ Sm	4.39(9)			α	154 _{Sm}	11-20	CE	[1974Br31]	
⁵⁴ Sm	4.29(4)			α	154 _{Sm}	12	CE	[1974Wo01]	
4 _{Sm}	4.26(7)			α	154 _{Sm}	11-19	CE	[1973Be40,1975Le22]	
54 _{cm}	4.30(7)				154 _{Sm}	10.5-12	CE		
54	4.30(7)			α				[1972Sa42]	
Sm	4.46(8)			α	154 _{Sm}	10-18	CE	[1972BrYV]	
Sm	4.2(6)			α	154 _{Sm}	16	CE	[1968Ve01]	
54 _{Sm}		4330(90)		p	154 _{Sm}	3.5	PB	[1968Ri09]	
⁴ Sm		4370(70)		p	154 _{Sm}		PB	[1967Wo06]	
64 Sm	5.1(4)			14 _N	154 _{Sm}	11.0	CE	[1964Ho25]	
4 _{Sm}	4.53(35)				154 _{Sm}	3	CE	[1963Gr04]	
3111	4.38(30)			р 16 _О	154 _{Sm}				
-Sm	4.38(30)				15.1 15.4	14-50	CE	[1963Gr04]	
Sm	3.5(5)			p	154 _{Sm}	3.18, 1.8	CE	[1961Go09]	
⁹⁴ Sm	4.61(20)			p, d	154 _{Sm}	4.5	CE	[1960El07]	
⁴ Sm		3950(350)		p	154 _{Sm}	2.8	PB	[1959Bi10]	
4_{Sm}	3.45(40)			p	Sm	7	CE	[1958Sh01]	
4 _{cm}	6.8(17)			r		÷	CE	[1956Hu49]	
40	4.7(14)				154 _{Sm}	G			E
66 _{Sm}	4./(14)			α	2m	6	CE	[1955He64]	Ex
Sm		>3000		26	100		DC	[1970ChZH]	NR
⁸ Gd		308(17)		36 _{Ar}	106 _{Cd}	190	RDM	[2011Pr10]	
³⁸ Gd		305(30)		50 _{Cr}	92 _{Mo}	230	RDM	[1988Bi03]	NR
¹⁶ Gd		<1		α	144 _{Sm}	22-25	DSAM	[1978Og03]	NR
¹⁸ Gd		6.0(19)		11 _B	141 _{Pr}	49	RDM	[2003Po02]	
⁵² Gd		52(7)			-	-	DC	[1993Se08]	
² Gd				$40_{ m Ar}$	¹⁵² Gd	147.2			
⁵² Gd		49.3(22)		AI	Gu	147.2	RDM	[1982Jo04]	
~Gd		53(10)			152		DC	[1974El03]	
² Gd	1.97(13)			α	¹⁵² Gd	10	CE	[1970Be36]	
² Gd		40(14)					DC	[1967Ab06]	
² Gd		76(13)					DC	[1961Bu17]	
2 Cd		<144.3					DC	[1956Be54]	Ex, NR
⁴ Gd									LA, IN
G0 4	2.25	1708(7)		32 _S , 48 _{Ti} , 58 _{Ni}	154	44	DC	[1995Ma03]	
'Gd	3.36				154 _{Gd}	118, 178, 228	CE	[1993Su16]	Ex, Go:
4Gd	3.87(6)			e [—]	154 _{Gd}	78-380	EE	[1986He09,1983He21]	NR
⁴ Gd	3.81(15)			μ	¹⁵⁴ Gd		MuonicX-ray	[1983La08]	Ex
4 Gd	3.83(5)			α	154 _{Gd}	11.5	CE	[1977Wo02]	
54 _C 4	3.90(6)				154 _{Gd}				
4a.	3.50(0)			α		11.8	CE	[1977Sc33]	NIP
⁻¹Gd	3.85(8)			α	154 Gd	11-17	CE	[1977Ro08,1977Ro26]	NR
⁴ Gd		1700(70)					DC	[1973GrXX]	
⁴ Gd		1700(60)					DC	[1972Aw04]	
4 Cd		1750(60)					DC	[1968Ku03]	
4 _{Gd}									
⁴ Gd		1702(43)					DC	[1963Fo02]	
		1670(70)					DC	[1963Bu03]	
-Ga		1050(42)					DC	[1961Na06]	
⁴ Gd		1659(43)					50	[15011400]	

Table 1 (continued)

Nuclide	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
¹⁵⁴ Gd	3.43(30)			p, d	¹⁵⁴ Gd	4.5	CE	[1960El07]	
¹⁵⁴ Gd		1780(150)		p	¹⁵⁴ Gd	2.8	PB	[1959Bi10]	
¹⁵⁴ Gd	$3.4(^{+5}_{-3})$			p, d	¹⁵⁴ Gd	4	CE	[1958Ra12]	
154 _{Cd}	•	1587		•			DC	[1956Be54]	Ex, NR
154 _{Cd}	2.8(42)	1507					CE	[1956Hu49]	Ex, NR
154 _{Gd}		1730(140)					DC	[1955Su64]	21, 111
¹⁵⁴ Gd	5.1(15)	()		α	154 _{Gd}	6	CE	[1955He64]	Ex
156 Gd	4.16			32 _S	156 _{Gd}	118	CE	[1993Su16]	Ex,Gos, NI
¹⁵⁶ Gd	4.48(50)			e	¹⁵⁶ Gd	25-56	EE	[1985Bo31]	, ,
156 Gd	4.58(18)			μ	156 _{Gd}		MuonicX-ray	[1983La08]	Ex
156 _{Gd}	4.57(5)			α	156 _{Gd}	11-17	CE	[1977Ro08,1977Ro26]	NR
156 _{Gd}	4.63(5)			α	156_{Gd}	11.25-12.00	CE	[1977Fi01]	
156 _{Gd}	4.59(9)			α	156 _{Gd}	11.5	CE	[1977Wo02]	
156 _{Gd}		3190(90)					DC	[1968Ku03]	
156 _{Gd}		3247(722)					DC	[1968Wa08]	NR
156 _{Gd}		3290(80)		p	156 _{Gd}		PB	[1967Wo06]	
156 Gd		3200(120)					DC	[1966Mc07]	
156 156		3130(70)					DC	[1965Me08]	
156 _{Gd}		3120(90)					DC	[1963Fo02]	
156 156		3200(80)			156		DC	[1962Ba38]	
156 _{Gd}	3.6(5)			p	156 _{Gd}	3.18, 1.8	CE	[1961Go09]	
156 _{Gd}	4.57(25)			p, d	156 _{Gd}	4.5	CE	[1960El07]	
156 _{Gd}		2960(150)		p	156 _{Gd}	2.8	PB	[1959Bi10]	
156 Gd		3160(100)					DC	[1959Be57]	
156 _{Gd}		2740(140)			156		DC	[1958Na01]	
156 Gd	4.50(25)			p	¹⁵⁶ Gd	4	CE	[1958Ra12]	
156 Gd	7.7(19)				450		CE	[1956Hu49]	
156 Gd	9.3(29)			α	156 _{Gd}	6	CE	[1955He64]	Ex
158 Gd	5.07			³² S	158 _{Gd}	118	CE	[1993Su16]	Ex,Gos, NI
158 Gd	4.48(5)			e	158 _{Gd}	25-56	EE	[1985Bo31]	
158 Gd	4.94(20)			μ	158 _{Gd}		MuonicX-ray	[1983La08]	Ex
158 Gd	4.97(5)			α	158 _{Gd}	11-17	CE	[1977Ro08,1977Ro26]	NR
158 Gd	5.00(7)			α	158 _{Gd}	11-13	CE	[1974Sh12]	
158 Gd	5.03(8)			α	¹⁵⁸ Gd	12	CE	[1974Wo01]	
158 _{Gd}	4.97(14)			α	158 _{Gd}	11-13	CE	[1972Er04]	
158 _{Gd}		3740(170)		¹⁶ 0	¹⁵⁸ Gd	30	DC	[1969Av01]	
158 _{Gd}		3740(240)					DC	[1968Sc04]	
¹⁵⁸ Gd		3640(120)					DC	[1968Ku03]	
¹⁵⁸ Gd		3690(80)		p	158 _{Gd}		PB	[1967Wo06]	
¹⁵⁸ Gd		3560(140)					DC	[1966Fu03]	
158 _{Gd}		3370(150)		p	158 _{Gd}	2.8	PB	[1962Bi05]	
158 _{Gd}	4.5(7)			p	¹⁵⁸ Gd	3.18, 1.8	CE	[1961Go09]	
158 _{Gd}	5.44(25)			p, d	158 _{Gd}	4.5	CE	[1960El07]	
158 _{Gd}		4030(350)		p	¹⁵⁸ Gd	2.8	PB	[1959Bi10]	Su
158 _{Gd}	5.36(25)			p	158 _{Gd}	4	CE	[1958Ra12]	
158 Gd	6.5(16)						CE	[1956Hu49]	Ex, NR
158 Gd	12.2(37)			α	158 _{Gd}	6	CE	[1955He64]	Ex
160 _{Gd}		3940(120)					DC	[2010NaZY]	
160 _{Gd}	4.63			⁵⁸ Ni	160 _{Gd}	225	CE*	[1993Su16]	Ex,Gos, NI
¹⁶⁰ Gd	5.24(21)			μ	160 _{Gd}		MuonicX-ray	[1983La08]	Ex
¹⁶⁰ Gd	5.15(6)			α	160 _{Gd}	11-17	CE	[1977Ro08,1977Ro26]	NR
¹⁶⁰ Gd	5.23(8)			α	160 _{Gd}	11-13	CE	[1974Sh12]	
160 ca	5.24(10)			α	160 _{Gd}	11-13	CE	[1972Er04]	
160 _{Gd}		3920(10)		α	¹⁶⁰ Gd	4-4.5	PB	[1971Sp06]	
160 _{Gd}		3880(80)		¹⁶ 0	160 _{Gd}	30	DC	[1969Av01]	
160 _{Gd}		3870(90)		p	160 _{Gd}	3.5	PB	[1968Ri09]	
160 _{Gd}		3920(80)		p	160 _{Gd}		PB	[1967Wo06]	
160 Gd	5.43(40)			16 ₀	160 _{Gd}	14-50	CE	[1963Gr04]	
160 Cd	5.80(25)			p, d	160 _{Gd}	4.5	CE	[1960El07]	
¹⁶⁰ Gd		3640(200)		p	160 _{Gd}	2.8	PB	[1959Bi10]	
160 Gd	5.71(25)			p	160 _{Gd}	4	CE	[1958Ra12]	
160 _{Gd}	6.4(16)						CE	[1956Hu49]	Ex, NR
162 _{Gd}		3980(80)					DC	[2010NaZY]	
164 _{Gd}		4000(200)		40	4		DC	[2010NaZY]	
152 _{Dv}		15(8)		¹² C	144 _{Nd}	70	RDM	[1979DuZY]	
154 _{Dy}		37.4(15)		³⁴ S	124 _{Sn}	160	RDM	[1985Az02]	
154 _{Dy}		42.3(27)		134 _{Xe}	25 _{Mg}	686	RDM	[1985Az02]	
154 _{Dy}		37.4(15)		34 _S	124 _{Sn}	145-165	RDM	[1982Pa10]	
154 _{Dv}		58(29)		¹² C	146 _{Nd}	60	RDM	[1978DuZY]	
156 _{Dv}		1060(150)		36 _S	124 _{Sn}	155	RDM	[2006Mo22]	
156 _{Dv}	3.72(3)	. ,		α	156 _{Dy}	12-13	CE	[1977Ro27]	
156 Dv		1300(120)			-		DC	[1970Mo39]	
156 Dv		1180(70)					DC	[1966Ab02]	
156 _{Dv}	3.79(30)	()		p, d	156 _{Dy}	4	CE	[1963Bj04]	
158 Dv	4.67(4)			α	158 _{Dy}	12-13	CE	[1977Ro27]	
158 _{Dv}		2350(120)			Σy		DC	[1970Mo39]	
158 _{Dy} 158 _{Dy}		2540(140)					DC	[1968Sc04]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2 Beam	Target	Energy (MeV)	Method	Reference	Comme
⁸ Dy		2450(140)		150		DC	[1966Ab02]	
B _{Dy}	4.67(40)		p, d	158 _{Dy}	4	CE	[1963Bj04]	
Dy		3160(120)				DC	[1981Is14]	
0 _{Dv}		2929(29)				DC	[1972Lo01]	
0 _{Dv}		2840(60)				DC	[1971Ab05]	
) _{Dv}		2540(120)				DC	[1970Mo39]	
Dv		2890(170)				DC	[1969Fo08]	
Dy								
Dy Dy		2900(70)				DC	[1968Ku03]	
Dy		2910(130)				DC	[1966Fu03]	
Dy		2890(60)				DC	[1965Me08]	
Dy		2870(60)				DC	[1965Gu02]	
Dy		2730(70)				DC	[1964Do06]	
Dy		2971(23)	d	Gd		DC	[1963De21]	
Dy		2870(70)				DC	[1963Li04]	
Dy		2770(70)				DC	[1963Fo02]	
Dy								
Dy Dy		3230(90)				DC	[1962Ri07]	
Dу		2450(140)		160		DC	[1962Be46]	
Dy	4.46(30)		p, d	160 _{Dy}	4.5	CE	[1960El07]	
Dy		2600(290)				DC	[1952Mc03]	
Dy	5.2(3)		d	162 _{Dy}	12	CE*	[1974ThZG]	NR
Dv		3050(200)				DC	[1973Ch28]	
Dy	5.38(5)	,	α	162 _{Dy}	11-13	CE	[1972Er04]	
Dy			u	Dy	11 15			Ev
Dy Dy	5.39(10)	2460(50)	_	162 _{Dy}		MuonicX-ray	[1970Hi03]	Ex
υy		3160(50)	p 16 -	162 Dy		PB	[1967Ku07]	
Dy		2900(300)	16 ₀	162 _{Dy}	35	RDM	[1967As03]	
Dv	4.80(35)		p	162 _{Dy}	3	CE	[1963Gr04]	
Dv		3250(100)				DC	[1963Li04]	
Dv	4.68(35)		¹⁶ 0	162 _{Dy}	8-50	CE	[1963Gr04]	
Dv	5.0(8)		p, d	162 _{Dy}	3.18, 1.8	CE	[1961Go09]	
Dy				162 _{Dy}				
Dу	5.11(15)		p, d	162 Dy	4.5	CE	[1960El07]	
Dy		3200(200)	p, d	162 _{Dy}	2.8	PB	[1959Bi10]	
Dy	6.1(15)					CE	[1956Hu49]	Ex, NR
Dv	5.66(6)		α	164 _{Dy}	12	CE	[1974Wo01]	
	5.59(12)		α	164 _{Dv}	11-13	CE	[1974Sh12]	
Dy	5.55(9)			164 _{Dy}		CE		Su
			α				[1973Gr05]	Su
Dy	5.57(5)		α	164 _{Dy}	11-13	CE	[1972Er04]	
Dy	5.48(10)					MuonicX-ray	[1970Hi03]	Ex
Dy		3460(110)	¹⁶ 0	164 _{Dy}	30	DC	[1969Av01]	
Dv		3444(54)	p	164 _{Dy}		PB	[1967Ku07]	
Dv	5.64(25)	` '	p, d	164 _{DV}	4.5	CE	[1960El07]	
Dy	3.04(23)	2400(250)		164 _{Dy}	2.8	PB		
Dy		3490(350)	p, d	Dy	2.8		[1959Bi10]	_
Dy	6.1(15)		27	122		CE	[1956Hu49]	Ex
Er		48.3(23)	³⁷ Cl	123 _{Sb}	158,166	RDM	[1985AzZY]	NR
Er		50.1(18)	40 _{Ar}	120 _{Sn}	140-200	RDM	[1979Bo29]	
Er		47.9(25)	40 Ar.	120 _{Sn}		RDM	[1969Di02]	
Er		341(10)	40 _{Ar}	122 _{Sn}	185	RDM	[2002Sh09]	
Er		371(20)	34 _S	128 _{Te}	155	RDM	[1986Os02]	
Er			40 _{Ar}	122 _{Sn}	155			
Er		433(22)		124 124		RDM	[1969Di02]	
Er		1326(45)	$^{40}\mathrm{Ar}$	124 _{Sn}	140-200	RDM	[1979Bo29]	
Er		1230(220)				DC	[1978Ad03]	
Er		1310(200)	$40_{ ext{Ar}}$	124 _{Sn}		RDM	[1972Bo04]	
Er		1330(70)	$40^{\text{At}}_{\text{Ar}}$	124 _{Sn}		RDM	[1969Di02]	
Er		2200(400)		$162_{\text{Tm}(\beta^+)}$		DC	[2003Ca03]	
	5.01(3)	2200(400)	-:	162 _{Er}	12 12		[1977Ro27]	
Er Er	2.01(2)	100011111	α	EI	12-13	CE		
Eľ		1690(140)		162_		DC	[1970Mo39]	
Er	4.89(25)		p, d	162 _{Er}	4	CE	[1963Bj04]	
Er	5.48(4)		α	164 _{Er}	12-13	CE	[1977Ro27]	
Er		2140(120)				DC	[1970Mo39]	
Fr		2190(90)				DC	[1968Se02]	
Er		2060(70)				DC	[1963Fo02]	
Er				$^{164}\text{Ho}(\beta^{-})$				
Eľ		2499(46)		·но(<i>р</i>)		DC	[1963De21]	
Er	5.04(35)		p, d	164 _{Er}	4.5	CE	[1960El07]	
Er		2020(720)				DC	[1954Br96]	
Er	5.2(5)		32 _S , 58 _{Ni}	166 _{Er}	115,221	CE*	[1992Fa01]	NR
Fr	5.91(6)		α	166 _{Er}	11.25-12.00	CE	[1977Fi01]	
Er	5.80(6)			166 _{Er}	11-13			
Er Er			α	166 _{Er}		CE	[1974Sh12]	
EΓ	5.85(5)		α	Er	12	CE	[1974Wo01]	
Er		3000(140)		400		DC	[1973GrXX]	
Fr	5.65(6)		α	166 _{Er}	12.5-19.5	CE	[1973Be40,1975Le	22]
-	6.04(6)		α	166 _{Er}		CE	[1972GrYQ]	
Ŀr	5.76(10)		α	166 _{Er}	11-13	CE	[1972Er04]	
Er Er			α 16 ₀	166 _{Er}				
Fr	5.69(16)		100	Er	23-35	CE	[1970KaZK]	
Er Er		2870(130)				DC	[1970Mo39]	
Er Er Er		2640(70)				DC	[1968Ku03]	
Er Er Er		2640(70)		166 _{Er}	35	RDM	[1967As03]	
Er Er Er Er			16 _O	100 Fr				
Er Er Er Er Er		2680(150)	¹⁶ 0	166 Er	33			
Er Er Er Er Er Er		2680(150) 2696(42)	16 _O	166 _{Er}	33	PB	[1967Ku07]	
Er Er Er Er Er		2680(150) 2696(42) 2640(90)		166 _{Er}	33	PB DC	[1967Ku07] [1963Li04]	
Er Er Er Er Er		2680(150) 2696(42)		166 _{Er} 166 _{Ho(β} -)	33	PB	[1967Ku07]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
166 _{Er}		2740(140)					DC	[1962Ba30]	
166 _{Er}		2860(300)					DC	[1961Bo05]	
166 _{Er}	6.9(12)			p	166 _{Er}	3.18, 1.8	CE	[1961Go09]	
166 _{Er}		2810(100)					DC	[1961Ge14]	
166 _{Er}	5.66(25)			p, d	166 _{Er}	4.5	CE	[1960El07]	
166 _{Er}		2890(290)			100		DC	[1960Be28]	
166 _{Er}		2610(250)		p	166 _{Er}	2.8	PB	[1959Bi10]	
166 _{Er}		2886					DC	[1956Be54]	Ex, NR
166 _{Er}		2630(90)					DC	[1955Gr07]	
166 _{Er}		2450(290)		200 50	169		DC	[1950Mc79]	
168 _{Er} 168 _{Er}	5.90(34)			208 _{Pb,} 58 _{Ni}	168 _{Er} 168 _{Er}	950, 220	CE*	[1990Ko30]	Ex, Gos, NR
168 _{Er}	5.90(10)			α	168 _{Er}	12.5-19.5	CE	[1975Le22]	
168 _{Er}	6.00(13)	2.400(00)		α	Fr	11-13	CE	[1974Sh12]	
	F 7C(10)	2480(90)			168 _{Er}	11 12	DC	[1974Aw03]	
168 _{Er}	5.76(10)	2770(20)		α	El	11-13	CE	[1972Er04]	
168 _{Er}	6.00(12)	2770(29)					DC MuonicX-ray	[1972BeVM] [1970Hi03]	Ex
168 _{Er}	6.00(12)	2710(70)					DC	[1970Hl03] [1968Ku03]	EX
168 _{Er}		2664(42)		n	168 _{Er}		PB	[1967Ku07]	
168 _{Er}		2740(140)		p	Li		DC	[1964Ja09]	
168 _{Er}		2740(90)					DC	[1963Li04]	
168 _{Er}		2770(60)					DC	[1962Bo18]	
168 Fr	7.2(12)	2770(00)		n	168 _{Er}	3.18, 1.8	CE	[1962B018] [1961Go09]	
168 _{Er}	7.2(12) 5.72(20)			p p, d	168 _{Er}	3.18, 1.8 4.5	CE	[1961G009] [1960El07]	
168 _{Er}	3.12(20)	2650(250)		р, а р	168 _{Er}	2.8	PB	[1950Ei07] [1959Bi10]	
168 _{Fr}		2600(430)		Р	Li	2.0	DC	[1959Br10] [1959Be73]	
	$6.71(^{+26}_{-47})$	2000(430)		32 _S	170 _{Er}	117	CE		Ex,Gos,NR
					170 _{Er}			[2011Di07]	EX,GUS,NK
	5.81(10)			α	Er	11-13	CE Muoniay may	[1972Er04]	P
170 _{Er}	5.97(20)	2040(440)		16 ₀	170 _{Er}	20	MuonicX-ray	[1970Hi03]	Ex
170 _{Er}		2810(110)			170 _{Er}	30	DC	[1969Av01]	
170 Er 170 Er		2710(70)		p	170 _{Er}	3.5	PB	[1968Ri09]	
	0.40(45)	2734(42)		р 16 _О	170 _{Er}	44.50	PB	[1967Ku07]	
170 _{Er}	6.13(45)				170 _{Er}	14-50	CE	[1963Gr04]	
158 Yb	5.44(15)	20.4(42)		p, d 16 ₀	144 _{Sm}	4.5	CE	[1960El07]	
160 _{Yb}		36.1(43)		¹¹⁶ Cd. ⁴⁸ Ti	48 _{Ti.} 116 _{Cd}	73	RDM	[1975Tr08]	
160 _{Yb}		159(9)		40 _{Ar}	124 _{Te}	205, 495	RDM	[1988Fe01]	
162 _{Yb}		182(6)		Ar	162 _{Lu(β} +)	170-190	RDM	[1976Bo27]	
162 Yb		618(19)		50 _{Ti}	116 _{Cd}	245	DC	[2003Ca03]	
162 _{Yb}		577(19)		16 ₀	152 _{Sm}	215	RDM	[1992Mc02]	
162 _{Yb}		613(14)		16 ₀	152 _{Sm}	95	RSM	[1979Ri06]	
162 _{Yb}		633(53)		40 _{Ar}	126 _{Te}	90	RDM	[1978Ba16]	
164 _{Yb}		578(85)		16 _O	152 _{Sm}	170-190	RDM	[1976Bo27]	
164 _{Yb}		1380(100)		16 ₀	152 _{Sm}	95	RSM	[1979Ri06]	
164 _{Yb}		1401(45)		40 _{Ar}	128 _{Te}	90 170-190	RSM	[1978Ba16] [1976Bo27]	
166 _{Yb}		1272(50) 1760(100)		16 ₀	152 _{Sm}	95	RDM RSM	[1976B027] [1979Ri06]	
166 _{Yb}		1789(90)		40 _{Ar}	130 _{Te}	170-190	RDM	[1976Bo27]	
168 _{Yb}		2114(43)		/u	ic	170-130	DC	[2015Pa14]	
168 _{Yb}		2240(100)		16 ₀	152 _{Sm}	95	RSM	[1979Ri06]	
168 _{Yb}	5 77(4)	2240(100)		α	168 _{Yb}	12-13	CE	[1977Ro27]	
168 _{Yb}	5.7(4)			¹⁶ 0	168 _{Yb}	60	CE	[1971RiZJ]	
168 _{Vh}	5.43(25)			p, d	168 Yb	4	CE	[1963Bj04]	
170 vh	(20)	2337(29)		p, ~		•	DC	[1903BJ04] [1972Gu03]	
170 _{vb}		2308(29)					DC	[1972Gr05]	
170 _{Vh}		2279(43)					DC	[1967Ba27]	
170 _{Vh}		2250(120)					DC	[1966Fu03]	
170 _{Vh}		2310(70)					DC	[1966Ra04]	
170 _{Yb}		2370(70)					DC	[1965Me08]	
¹⁷⁰ Yb		2280(70)		p	170 _{Yb}		PB	[1965Ti02]	
170 _{Vh}		2250(70)		r	-		DC	[1965Ro17]	
170 _{Vh}		2120(60)					DC	[1963Fo02]	
170 _{Vh}		2160(290)		γ	170 _{Yb}	84	GG	[1962Wa19]	
170 _{Vh}		2320(90)		•	-		DC	[1962El03]	
170 _{vb}		2340(100)					DC	[1961Go24]	
170 _{vb}	5.53(25)	()		p, d	170 _{Yb}	4.5	CE	[1960El07]	
170 _{Yb}	/	2310(100)		• •	-		DC	[1959Si74]	
170 _{vb}		2310(140)					DC	[1956De57]	
170 _{Vh}		2270(70)					DC	[1952Gr18]	
172 _{Vh}	6.0(6)			16 _{0,} 32 _{S,} 58 _{Ni}	172 Yb	57, 115, 224	CE*	[1992Fa05]	
172 _{Yb}	6.702			μ	172 _{Yb}	,, 227	MuonicX-ray	[1979Ho23]	Ex, NR
172 _{Vh}	6.03(6)			α	172 _{Yb}	13	CE	[1975Wo08]	LA, MI
172 _{Vh}	5.05(0)	2600(70)		u	10	13	DC	[1975W008] [1970Ra18]	
172 _{Vh}	5.95(48)	2000(70)		α	172 _{Yb}	7, 8, 9, 10	CE	[1970Ka18] [1970Sa09]	
172 _{Yb}	3.33(40)	2280(90)		u	īD	7, 0, 3, 10	DC		
172 _{Yb}							DC	[1969Be34]	
		2440(60)			$^{172}\text{Tm}(\beta^{-})$		DC DC	[1969FuZX] [1969Fo07]	
172 _{Yb}		2310(160) 2410(115)			172 _{Lu(β} +)		DC	[1969Fo07]	

Table 1 (continued)

Table 1 (co	ntinued)								
	$B(E2) (e^2 b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
172 _{Yb}		2460(70)		p	172 _{Yb}		PB	[1966Ti01]	
172 _{Yb}		2270(60)		-			DC	[1964Gu01]	
172 Yh		2160(140)					DC	[1963He01]	
172 _{Yb}		2400(200)		α	172 _{Yb}	3	PB	[1962Bi05]	
172 _{Yb}	5.89(20)	, ,		p, d	172 _{Yb}	4.5	CE	[1960El07]	
174 _{Vh}	5.95(6)			α	174 _{Yb}	13	CE	[1975Wo08]	
174 _{Vh}	5.97(6)			α	174 _{Yb}	11-13	CE	[1974Sh12]	
174 _{Vh}	5.89(47)			α	174 _{Yb}	7, 8, 9, 10	CE	[1970Sa09]	
174 _{Vh}	5.65(17)	2597(144)		u.	174 _{Lu(EC)}	7, 0, 5, 10	DC	[1966Ja16]	NR
174 _{Yb}		2590(70)		p	174 _{Yb}		PB	[1966Ti01]	
174 _{Yb}		2510(130)		Р	10		DC	[1966Fu03]	
174 _{Yb}		2600(140)					DC	[1964Ja09]	
174 _{Yb}	5.54(30)	2000(140)		n d	174 _{Yb}	4	CE		
174 _{Yb}	3.34(30)	2750(300)		p, d	174 _{Yb}	3		[1963Bj04]	
174 _{Yb}	F 00(20)	2/30(300)		α	174 _{Yb}		PB	[1962Bi05]	
176 _{Yb}	5.89(20)			p, d	176 _{Yb}	4.5	CE	[1960El07]	
176 _{Yb}	5.41(9)	2720(50)		α	176 _{Yb}	13	CE	[1975Wo08]	
176 _{Yb}	5.05(40)	2720(50)		α	176 _{Yb}	4-4.5	PB	[1971Sp06]	
176 _{Yb}	5.35(43)			α		7, 8, 9, 10	CE	[1970Sa09]	
		2540(70)		p 16	176 _{Yb}		PB	[1966Ti01]	
176 _{Yb}	5.28(40)			16 _O	176 _{Yb}	14-50	CE	[1963Gr04]	
176 _{Yb}		2900(200)		α	176 _{Yb}	3	PB	[1962Bi05]	
176 _{Yb}	5.2(8)			p	176 _{Yb}	3.18, 1.8	CE	[1961Go09]	
176 _{Yb}	5.78(20)			p, d	176 _{Yb}	4.5	CE	[1960El07]	
162 _{Hf}		148(11)		40 _{Ca}	126 _{Te}	175	RDM	[1998We02]	
164 _{Hf}		497(29)		⁴⁰ Ca	128 _{Te}	175	RDM	[1998We02]	
164 _{Hf}		370(30)		20 _{Ne}	148 _{Sm}	117	RDM	[1989Mu13]	
166 _{Hf}		717(33)		⁴⁸ Ti	122 _{Sn}	195	RDM	[1977Bo14]	
168 _{Hf}		1237(10)					DC	[2011We08]	
168 _{Hf}		1278(54)		⁴⁸ Ti	124 _{Sn}	195	RDM	[1977Bo14]	
170 _{Hf}		1740(60)		16 _O	158 _{Gd}	80	PB	[2006Co20]	
170 _{Hf}		1771(396)		50 _{Ti}	124 _{Sn}	198	RDM	[1977Bo14]	
172 _{Hf}		1803(58)					DC	[2015Ru03]	
172 _{Hf}		1700(20)					DC	[2011ReZZ]	
172 _{Hf}		2655(79)					DC	[2010We12]	Ex
172 _{Hf}		2240(140)					DC	[1967Ab06]	Ex
174 _{Hf}		1847(58)					DC	[2015Ru03]	
174 _{Hf}		1797(10)		α	172 Yb	27	DC	[2009Re20]	
174 _{Hf}	5.35(35)	1121(12)		α	174 _{Hf}	15	CE	[1971Ej01]	
174 _{Hf}	()	2420(120)					DC	[1971Ch26]	
174 _{Hf}		2370(140)					DC	[1965Ab02]	
174 _{Hf}	5.26(35)	2370(110)		p, d	¹⁷⁴ Hf	4	CE	[1963Bj04]	
176 _{Hf}	5.29(10)			μ	176 _{Hf}	120 MeV/c	MuonicX-ray	[1984Ta10]	Ex
176 Hf	5.19(5)			α	176 _{Hf}	11-17	CE CE	[1977Ro08,1977Ro26]	
176 LLf	5.78(23)			α	176 _{Hf}	15	CE	[1977R008,1377R020] [1973Ha07]	IVIC
176 _{Hf}	3.76(23)	2010(60)		α	rii	15	DC	[1963Fo02]	
176 _{Hf}		2121(87)					DC		
176,16	5.27(25)	2121(87)		n d	176 _{Hf}	4.5	CE	[2015Ru03]	
178	4.91(10)			p, d	178 _{Hf}			[1961Ha21]	P
178	4.86(5)			μ	178 _{Hf}	120 MeV/c	MuonicX-ray	[1984Ta10]	Ex
178 _{Hf}	4.86(5)	2450(440)		α	··· HI	11-17	CE	[1977Ro08,1977Ro26]	NR
178	4.51(20)	2160(140)			178 _{Hf}		DC	[1967Ab06]	
178 _{Hf}	4.51(20)	2420(00)		p, d	··· HI	4	CE	[1963Bj04]	
178 Hf		2120(90)					DC	[1963Fo02]	
178 Hf		2164(43)					DC	[1962Ka14]	
178	4.2(7)	2150(70)			110	240.40	DC	[1962Bo13]	
178 _{Hf} 178 _{Hf}	4.3(/)			p	Hf	3.18, 1.8	CE	[1961Go09]	
170Hf		1800(120)			178		DC	[1961Ga05]	
178 _{Hf}	4.66(25)			p, d	178 _{Hf}	4.5	CE*	[1961Ha21]	NR
178 _{Hf}		2700(150)		p	178 _{Hf}	2.8	PB	[1959Bi10]	
180 _{Hf}		2204(14)			100		DC	[1996Al20]	
180 Hf	4.78(10)			μ	180 _{Hf}	120 MeV/c	MuonicX-ray	[1984Ta10]	Ex
180 Hf	4.73(5)			α	¹⁸⁰ Hf	11-17	CE	[1977Ro08,1977Ro26]	NR
180 _{Hf}		2210(70)		10	100		DC	[1963Li04]	
180 Hf	4.93(35)			¹⁶ O	180 _{Hf}	14-50	CE	[1963Gr04]	
180 _{Hf}		2160(60)			100		DC	[1962Fo05]	
180 _{Hf}	4.35(20)			p, d	180 _{Hf}	4.5	CE	[1961Ha21]	
180 Hf	4.3(7)			p	Hf	3.18, 1.8	CE	[1961Go09]	
180 _{Hf}		2210(90)					DC	[1961Bo25]	
180 _{Hf}		2136(72)					DC?	[1960De18]	NR
180 _{Hf}		2380(150)		p	180 _{Hf}	2.8	PB	[1959Bi10]	
180 _{Hf}	6.9(115)	. /		-			CE	[1956Hu49]	Ex, NR
180 _{Hf}	/	2020(140)					DC	[1955Su64]	
168 _W		307(15)		31 _P	141 _{Pr}	158	RDM	[1984Dr02]	
170		720(150)		52 _{Cr}	122 _{Sn}	230	TDSA	[1994Mc06]	
$^{170}_{W}$				20 _{Ne}	155 _{Gd}	105	RDM	[1980Mi16]	
				116					
170 _W 172 _W		718(14) 970(29)		16 _O	160 Dv	85	DC	[2010Rii12]	
170 _W 172 _W		970(29)		16 _O	160 _{Dy} 124 _{Sp}	85 225	DC PDM	[2010Ru12]	
170 _W 172 _W 172 _W		970(29) 1061(93)		16 ₀ 52 _{Cr}	124 _{Sn}	225	RDM	[1991Mc04]	Çı,
170 _W 172 _W 172 _W 172 _W		970(29) 1061(93) 890(60)		16 _O	160 _{Dy} 124 _{Sn} 124 _{Sn}		RDM RDM	[1991Mc04] [1986Ra07]	Su
170 _W 172 _W 172 _W		970(29) 1061(93)		16 ₀ 52 _{Cr}	124 _{Sn}	225	RDM	[1991Mc04]	Su

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comm
6 _W		1431(9)		11 _B	169 _{Tm}	55	DC	[2009Re20]	
8 _W		1642(21)		12 _C	170 _{Er}	62	DC	[2010Ru12]	
80 _W		1976(43)					DC	[1965Hu02]	
80 _W		1718(53)			$^{180}{\rm Ta}(\beta^{-})$		DC	[1963De21]	
80 _W		1760(40)					DC	[1963Cu03]	
⁸⁰ W		1920(70)					DC	[1962Fo05]	
82 _W		2185(90)		⁵⁸ Ni, ¹³⁶ Xe	182 _W	233,561	RDM	[1991Wu05]	NR
82 _W	3.76(16)			58 _{Ni,} 136 _{Xe}	182 _W	233,561	CE*	[1991Wu05]	NR
82 _W	5.02(54)			208 _{Pb}	182 _W	4.9A	CE*	[1989Ku04]	
82 _W	4.08(24)			136 _{Xe} , 58 _{Ni}	¹⁸² W	561, 235	CE*	[1989Wu04]	Su
82 _W	4.140(40)			e	182 _W	75-345	EE	[1988PeZW]	
82 _W		1991(43)					DC	[1983El02]	
⁸² W		2240(70)					DC	[1973GrXX]	
82 _W	4.21(7)			α	182 _W	13-21	CE	[1973Be40,1975Le22]	
82 _W		1991(29)					DC	[1971Ho14]	
⁸² W	4.29(12)						MuonicX-ray	[1970Hi03]	Ex
82 _W		2135(43)					DC	[1970Ab14]	
82 _W	4.30(8)			α	182 _W	8	CE	[1968St13]	
82 _W		2060(70)					DC	[1966Ra04]	
82 _W		1950(100)					DC	[1966Fu03]	
82 _W		2090(60)					DC	[1966Bl08]	
82 _W		1976(43)					DC	[1965Me08]	
82 _W		2005(43)					DC	[1965Do02]	
82 _W		2120(130)					DC	[1964Ro19]	
82 _W		2020(140)					DC	[1964Be36]	
82 _W		1980(20)		n	¹⁸² W	2.04	PB	[1964Sc21]	
82 _W	4.58(40)	1900(20)		р 16 _О	182 _W	2.04 14-50	CE PB	[1964SC21] [1963Gr04]	
82 _W	-1.JU(4U)	1020(60)		U	vv	1-1-70	DC	-	
82 _W		1820(60)						[1963Fo02]	
82 _W		2240(160)					DC	[1963Ba24]	
82 _W		2030(90)			182 _W	2	DC	[1963Ko02]	
82 _W		2060(60)		α .	182 _W	3	PB	[1962Bi05]	
82 82	4.00(20)			p, d	182	4.5	CE	[1961Ha21]	
82 _W 82 _W		1971(20)			$^{182}_{Ta(\beta^{-})}$ $^{182}_{W}$		DC	[1961Ke07]	NR
82 _W		2230(200)		p	102W	2.8	PB	[1959Bi10]	Su
02W	5.5(14)				100		CE	[1956Hu49]	Ex, NR
82 _W	4.47(54)			p	¹⁸² W	4	CE	[1958Mc02]	
82 _W		1830(140)		50 120	100		DC	[1954Su10]	
84 _W		1869(79)		⁵⁸ Ni, ¹³⁶ Xe	182 _W	233,561	RDM	[1991Wu05]	NR
84 _W	3.57(15)			⁵⁸ Ni, ¹³⁶ Xe	182 _W	233,561	CE*	[1991Wu05]	NR
84 _W	3.88(20)			136 _{Xe} , 58 _{Ni}	184 _W	561, 235	CE*	[1989Wu04]	Su
84 _W	4.49(47)			208 _{Pb}	¹⁸⁴ W	4.9A	CE*	[1989Ku04]	
⁸⁴ W	3.690(40)			e	184 _W	75-345	EE	[1988PeZW]	
84 _W		1804(17)					DC	[1984Al06]	
84 _W	3.76(8)			α	184 _W	12.5-19	CE	[1975Le22]	
84_{W}	3.67(37)	1860(170)		γ	¹⁸⁴ W	111	Mossbauer	[19710b02]	Ex
84 _W	3.70(40)	1850(190)		γ	¹⁸⁴ W	111	Mossbauer	[1970Me09]	Ex, Su
84 _W	3.91(10)	1730(60)					MuonicX-ray	[1970Hi03]	Ex
84_{W}	3.84(7)			α	184 _W	8	CE	[1968St13]	
84 _W		1760(130)		¹⁶ 0	184 _W	35	RDM	[1967As03]	
84 _W		1850(30)		p	¹⁸⁴ W	2	PB	[1965Sc05]	
84 _W		1790(60)					DC	[1964Ko13]	
84 _W	4.18(30)	()		16 _O	184 _W	14-50	CE	[1963Gr04]	
84w	,()	1790(50)		α	184 _W	3	PB	[1962Bi05]	
84 _W		1970(20)		-	••	-	DC	[1961KeZZ]	
84 _W	3.62(20)	1370(20)		p, d	184 _W	4.5	CE	[1961Ha21]	
84 _W	3.02(20)	1850(120)		p, u	vv	7.0	DC		
84 _W		1920(150)		n	184 _W	28	PB	[1960Bo07]	Ç.,
84 _W	1 27(11)	1920(130)		p	184 _W	2.8		[1959Bi10]	Su
84 _W	4.37(44)			p	vv	4	CE	[1958Mc02]	MP
86 _W	4(1)			208 _{Pb}	186 _W	4.04	CE*	[1956Hu49]	NR
86 _W	3.42(33)				186 _W	4.9A	CE*	[1989Ku04]	
86 _W	3.35(8)			α	W	13.25-19	CE	[1975Le22]	
86-		1495(14)			186		DC	[1975Ka11]	
86 _W	3.37(80)			α	186 _W 186 _W	11-20	CE	[1974Br31]	
86 _W	2.71(25)	2010(170)		γ		122	Mossbauer	[19710b02]	Ex
86 _W	2.73(26)	1990(170)		γ	186 _W	122	Mossbauer	[1970Me09]	Ex, Su
86 _W	3.46(12)	1560(70)			100		MuonicX-ray	[1970Hi03]	Ex
86 _W	3.50(6)			α	186 _W	8	CE	[1968St13]	
86 _W		1870(300)		¹⁶ 0	186 _W	35	RDM	[1967As03]	
86 _W		1610(30)		p	186 _W		PB	[1967Ku07]	
86 _W		1460(60)		α	186 _W	3	PB	[1962Bi05]	
86 _W	3.57(25)	. ,		p, d	186 _W	4.5	CE	[1961Ha21]	
86 _W	3.56(37)			p	186 _W	4	CE	[1961Mc01,1958Mc02]	
86 _W		1610(100)		p	186 _W	2.8	PB	[1959Bi10]	Su
86 _W	3.80(95)	.010(100)		r	••		CE	[1956Hu49]	NR
88 _W	3.00(33)	1255(173)					Fast-Timing	[2013Ma66]	. 410
72 _{Os}				32 _S	¹⁴⁴ Nd	162			
74 _{Os}		167(10)		28 _{Si}	150 _{Sm}	162	RDM	[1995Vi05]	
74 _{Os}		513(20)		127 ₁	51 _V	140	DC	[2012Li50]	
· Os		505(60)		16 _O		610	RDM	[1987Ga12]	
76 _{Os}		1210(180)		100	164 _{Er}	80	DC	[2005Mo33]	

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
⁷⁸ Os		1050(100)		¹⁶ O	166 _{Er}	80	DC	[2005Mo33]	
⁷⁸ Os		940(90)		¹⁶ 0	166 _{Er}	80	RDM	[2005Mo33]	
30 _{Os}		970(100)		¹⁶ 0	168 _{Er}	80	DC	[2005Mo33]	
30 _{Os}		$1160(^{+300}_{-200})$		34 _S	150 _{Nd}	157	RDM	[1990Ka11]	
32 _{Os}				3		137			
Os		1370(140)			182 Ir(EC)		DC	[1972HuZL]	NR
2 _{Os}		1370(140)					DC	[1970ErZY]	Su
2 _{Os}		1173(16)					DC	[1970BrZP]	
4 _{Os}	3.20(62)			α ; 16 0; 32 S	184 _{Os}	10, 12, 14; 36, 42, 48; 48, 52, 56	CE	[1972La16]	
4 _{Os}	, ,	1708(19)					DC	[1971Bb09]	
⁴ Os		1529(43)					DC	[1970BrZP]	
4 _{Os}		1700(70)					DC		
4 _{Os}		` '						[1970Be18]	
·US		1590(70)		40 _{Ca} ,			DC	[1970ErZY]	
6 _{Os}	$2.80(^{+8}_{-7})$			³⁶ Ni, 136 _{Va}	186 _{Os}	3.3-4.8A	CE*	[1996Wu07]	
600	3.15(3)			208 _{Pb}	186 _{Os}		MuonicV ray	[1001[402]	Ex, MD,
i os	3.13(3)			μ	186 _{Os}	40	MuonicX-ray	[1981Ho22]	EX, IVID,
Os	3.10(25)			α 16 22	100 Os	13	CE	[1976Ba06]	
Os	2.88(39)			α , 16 0, 32 S	186 _{Os}	10, 12, 14; 36, 42, 48; 48, 52, 56	CE	[1972La16]	
Os	3.21(28)			α	186 _{Os}	3-5	CE	[1971Mi08]	
Os	()	1332(26)					DC	[1971Bb09]	
Os									
Os		1210(70)					DC	[1970Be18]	
Os		1169(43)					DC	[1968Ma14]	
os.	2.95(40)			¹⁶ O	186 _{Os}	35.4	CE	[1967Gi02]	Ex
Os	3.10(40)			160	186 _{Os}	48.3, 62.1, 70.3	CE	[1967Ca08]	
Os	5.10(40)	1210/20)		J	03	10.5, 02.1, 70.5			
		1219(29)					DC	[1964Ro19]	
Os		1183(43)					DC	[1963Fo02]	
Os		1260(60)					DC	[1962Ba14]	
Os		1212(43)					DC	[1961Bo08]	
Os	4.3(11)	12.2(13)		a r	Os	3.5, 4.8	CE	[1961Re02]	
· OS	4.3(11)			α, p	US	3.3, 4.6			
Os		870(290)					DC	[1957Be73]	
Os		2600(580)					DC	[1953Mc39]	
Os		1150(140)					DC	[1951Mc14]	
Os		930(140)		58 _{Ni}	188 _{Os}	275	RDM	[2001Wu03]	
Os				188 _{Os}	C	270	DC		
US		1030(50)		40 _{Ca} ,	C	270	DC	[1997Bb08]	
Os	2.512(32)			⁵⁸ Ni, 136 vo	188 _{Os}	3.3-4.8A	CE*	[1996Wu07]	
R				208 _{Pb}	188 _{Os}				
Os	2.635(30)			e	100 Os	200, 500	EE	[1988Bo08]	
Os	2.82(3)			μ	188 _{Os}		MuonicX-ray	[1981Ho22]	Ex, MD,
3Os	2.52(13)			α	188 _{Os}	13	CE	[1976Ba06]	
300	2.69(27)			α , 16 O, 32 S	188 _{Os}	10, 12, 14; 36, 42, 48; 48, 52, 56		[1972La16]	
3 _{Os}					188 _{Os}				
- 08	2.78(15)			p	05	4.56-5.08	CE	[1971Mi08]	
3Os		1030(30)					DC	[1971Bo13]	
³ Os		1036(25)					DC	[1971Bb09]	
3Os	2.90(8)			α , 16 O	188 _{Os}	10-13; 42, 47	CE	[1970Pr09]	
3Os	. ,	1024(43)					DC	[1970Be18]	
Os									
US		981(43)		16	100		DC	[1968Ma14]	
Os	2.70(40)			¹⁶ 0	¹⁸⁸ Os	48.3, 62.1, 70.3	CE	[1967Ca08]	
Os		1020(50)		16 _O	188 _{Os}	35	RDM	[1966As03]	
Os		1024(29)					DC	[1963Fo02]	
300	2.43(24)	1024(23)			188 _{Os}	2			Ev
US	2.43(24)			p	US	2	CE	[1963Go05]	Ex
Os		1050(90)					DC	[1962Ba14]	
Os	3.7(5)			α , p	Os	3.5, 4.8	CE	[1961Re02]	
Os	3.17(33)						CE	[1961Mc18]	Rad
Oc.	2.80(31)			αn	Os		CE	[1958Mc02,1961Mc01]	-
os o	2.00(31)			α, p	188 _{Os}	2		-	
US	3.5(10)			α	· · · Os	3	CE	[1957Ba11]	
Os		940(220)					DC	[1955Su64]	
3 _{Os}		2450(280)					DC	[1953Mc39]	
Os		541(29)					Fast-Timing	[2012MaZP]	
Os		540(36)		58 _{Ni} 40 _{Ca,}	190 _{Os}	275	RDM	[2001Wu03]	
Os	2.355(48)			58 _{Ni,} 136 _{Xe,} 208 _{Pb}	190 _{Os}	3.3-4.8A	CE*	[1996Wu07]	
00-	2.315(27)				190 _{Os}	200 500	EE	[10000,00]	
US L	2.313(2/)			e	190 -	200, 500	EE	[1988Bo08]	
'Os	2.46(2)			μ	190 _{Os}		MuonicX-ray	[1981Ho22]	Ex, MD
Os	2.14(11)			α	190 _{Os}	13	CE	[1976Ba06]	
Os	2.48(25)			α , 16 0, 32 S	190 _{Os}	10, 12, 14; 36, 42, 48; 48, 52, 56		[1972La16]	
000	2.37(13)				190 _{Os}	4.56-5.08	CE		
US)	2.37(13)			p 16.0				[1971Mi08]	
Os .	2.39(6)			α, ¹⁶ 0	190 _{Os}	12, 42	CE	[1970Pr09]	
Os	2.55(25)			¹⁶ 0	190 _{Os}	42-80	CE	[1969Ca19]	NR
-		680(30)		¹⁶ 0	190 _{Os}		RDM	[1967As03]	
000	2.20(40)	000(30)				25.40			
Os	3.38(40)			α, p	Os	3.5, 4.8	CE	[1961Re02]	
Os Os	2 70(27)						CE	[1961Mc18]	Rad
Os Os Os	2.70(27)	350(60)					DC	[1958Su54]	
Os Os Os Os							-		
Os Os Os Os		330(00)		ov p	Os		CF	[1958Mc02 1061Mc01]	
Os Os Os Os	2.55(26)			α, p	Os		CE	[1958Mc02,1961Mc01]	
Os Os Os Os Os	2.55(26)	720(290)					DC	[1958Be72]	
Oos Oos Oos Oos Oos Oos				α, p α 192 _{Os}	Os 190 _{Os}	3			

Table 1 (continued)

Nuclide	$B(E2) (e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
192 _{Os}	2.119(25)			40 _{Ca} , 58 _{Ni} , 136 _{Xe} ,	192 _{Os}	3.3-4.8A	CE*	[1996Wu07]	
92 _{Os}	2.030(13)			208 _{Pb} α, ¹² C	¹⁹² Os	14.190-16.497, 40-55	CE	[1988Li22]	
92 _{Oc}	1.999(23)			e e	192 _{Os}	200, 500	EE	[1988Bo08]	
92 _{Oc}	2.009(32)			e	192 _{Os}	150, 250, 355, 364	EE	[1984Re10]	
92.0-	2.10(2)				192 _{Os}	150, 250, 355, 364			F. MD N
92 os	2.10(2)			μ	192 _{Os}		MuonicX-ray	[1981Ho22]	Ex, MD, N
02 US	1.90(9)			α	132 Os	13	CE	[1976Ba06]	
92 _{Os}		433(29)		16 22	102		DC	[1973Ch26]	
92 _{Os}	2.09(21)			α , 16 O, 32 S	192 _{Os}	10, 12, 14; 36, 42, 48; 48, 52, 56	5 CE	[1972La16]	
¹⁹² 0s	1.99(11)			p	192 _{Os}	4.56-5.08	CE	[1971Mi08]	
¹⁹² Os	2.04(6)			α . ^{16}O	192 _{Os}	12; 42,52.5	CE	[1970Pr09]	
92 _{Os}	2.21(22)			16 ₀	192 _{Os}	42-80	CE	[1969Ca19]	NR
92 _{Os}	1.92(25)			16 ₀	192 _{Os}	35.4	CE	[1967Gi02]	Ex
92 oc	2.92(40)				Os	3.5, 4.8	CE	[1961Re02]	LA
9200	2.32(23)			α, p	03	5.5, 4.0			Dad
92.0	2.05(21)						CE	[1961Mc18]	Rad
02 US	2.05(21)			α, p	Os 192 _{Os}		CE	[1958Mc02,1961Mc01]	
32 Os	2.1(6)			α		3	CE	[1957Ba11]	
76 _{Pt}		109(10)		³⁵ Cl	¹⁴⁴ Sm	173	RDM	[1986Dr05]	
78 _{Pt}		412(30)		28 _{Si}	¹⁵⁴ Gd	146	DC	[2014Li45]	
30 _{Pt}		540(50)		40 Ar	144 _{Nd}	192	RDM	[1990De04]	
32 _{Pt}		590(102)		16 _O	170 _{Yb}	87	RDM	[2012Gl01]	
³² Pt		709(43)		64 _{Ni}	122 _{Sn}	295	RDM	[2012Wa16]	
⁴ Pt		582(22)		34 _S	154 _{Sm}	160	RDM	[1986Ga21]	
⁴ Pt				3	3111	100			
⁻Pt 6 _{Pt}		519(17)		36-	154-	467	DC	[1972Fi12]	
°Pt		318(24)		36 _S	154 _{Sm}	167	RDM	[2012Wa16]	
6 _{Pt}		369(35)		36 _S	¹⁵⁴ Sm		RDM	[1990WeZZ]	Su
6 _{Pt}		375(14)					DC	[1972Fi12]	
8 _{Pt}		104(19)					DC	[1972Fi12]	
0 _{Pt}	1.82(9)			58 _{Ni}	190 _{Pt}	160	CE	[1995An15]	NR
o _{Pt}	(-)	65(22)		• • •			DC	[1972Fi12]	
00 _{Pt}	1.75(22)	03(22)		16 _O	190 _{Pt}	36			Pad
2 _{Pt}	1.75(22)			α, ¹² C, ¹⁶ O	192 _{Pt}		CE	[1966Gr20]	Rad
2 PT	1.833(20)					14.4-15.2, 41-48, 55-60	CE	[1987Gy01]	
2 _{Pt}	1.81(9)			α, p	Pt	5-6	CE	[1984Mu19]	Ex
2 _{Pt}	1.89(3)			α	192 _{Pt}	14.9	CE	[1977Ro16]	
² Pt		70.0(36)		40_{Ar}	192 _{Pt}	149	RDM	[1977Jo05]	
⁹² Pt		51(5)					DC	[1976Bu20]	
² Pt		61.7(21)					DC	[1973Sm01]	
Pt Pt	2.10(12)	()		p, ¹⁶ O	192 _{Pt}	4.5, 43.75	CE	[1971Mi08]	
2 _{Pt}	2.10(12)	40(7)		р, О	11	4.3, 43.73	DC		
Pt Pt	2.000(40)	49(7)		α , 16 O	ъ.	10.45.44		[1970Be08]	-
² Pt	2.000(40)			α, 100	Pt	10, 15; 41	CE	[1970Br26]	Ex
² Pt		51(4)		16	102		DC	[1966Sc06]	
2 _{Pt}	1.95(23)			16 _O	192 _{Pt}	36	CE	[1966Gr20]	Rad
² Pt		39(5)					DC	[1962De14]	NR
				40 _{Ca} ,					
4 Pt	$1.46(^{+12}_{-4})$			30 NI;	194 _{Pt}	3.3-4.8A	CE*	[1996Wu07]	
	-4			136 _{Xe,} 208 _{Pb}					
⁴ Pt	1.020(40)			200 Pb	194 _{Pt}	200 500	r.r	[1000D-00]	
	1.636(48)			e 12 - 16 -	194 _{Pt}	200, 500	EE	[1988Bo08]	
⁴ Pt	1.661(11)			α, ¹² C, ¹⁶ 0		14-18.6, 41-45, 55-63	CE	[1986Gy04]	
⁴ Pt		69.6(44)		32 _S	Pt	100	RDM	[1986Bi13]	
⁴ Pt	1.620(15)			α , 16 O	194 _{Pt}	7-17.5; 46, 54	CE	[1978Ba38]	
⁴ Pt	1.68(3)			α	194 _{Pt}	14.9	CE	[1977Ro16]	
4_{Dt}		64.9(35)		40_{Ar}	194 _{Pt}	149	RDM	[1977Jo05]	
4_{Pt}	1.67(13)	` '		α	194 _{Pt}	12-24	CE	[1976Ba23]	
4_{Dt}	- (-)	51(7)		γ	194 _{Pt}	0.7-1.8	GG	[1972Sh38]	
4 _{Pt}		50(5)		,		5 1.0	DC	[19728e53]	
⁴ Pt									
⁴Pt ⁴ Pt		73.0(30)		16.	194 _{Pt}		RDM	[1971NoZT]	
⁴Pt ₄	1.87(9)			p, ¹⁶ 0	104 104	4.5, 43.76	CE	[1971Mi08]	
⁴ Pt	1.64(4)			p, 16 _O	194 _{Pt}	6, 42	CE	[1969Gl08]	
⁴ Pt	1.94(20)			p	Pt	4-5	CE	[1961Mc01]	
6 _{Pt}		50(6)		n	196 _{Pt}	cold	TCS	[2015Jo01]	
⁵ Pt	1.368(3)			α , 7 Li, 12 C	196 _{Pt}	14.2-15.8, 22.0-22.5, 42-46	CE	[1992Li14]	
6 pr	1.49(21)			е е	196 _{Pt}	90-334	EE	[1992Po09]	NR
5 _{Pt}					196 _{Pt}				1417
rt Sp.	1.422(36)			e 12 c 16 c	196 p.	200, 500	EE	[1988Bo08]	
SPt	1.382(6)			α, ¹² C, ¹⁶ 0	196 _{Pt}	14-18.6, 41-45, 55-63	CE	[1986Gy04]	
Pt		54.5(37)		32 _S	Pt	100	RDM	[1986Bi13]	
⁶ Pt	1.382(6)			16 _{0,} 12 _C	196 _{Pt}	55-61, 41-56	CE	[1985Fe03]	
⁵ Pt	1.42(7)			α, p	Pt	5-6	CE	[1984Mu19]	Ex
S _{Pt}		46.5(21)		58 _{Ni}	196 _{Pt}	220	RDM	[1981Bo32]	
6 _{Pt}		50.8(22)		20 _{Ne,} 58 _{Ni}	196 _{Pt}	90, 220	RDM	[1979Bo31]	
6 _{Pt}	1 26(11)	30.0(22)			196 _{Pt}				
⁵ Pt	1.36(11)			α	Pť	14-24	CE	[1976Ba35]	
°Pt		43.6(30)		16	106		DC	[1972Be53]	
6 _{Pt}	1.55(8)			p, ¹⁶ O	196 _{Pt}	4.5, 43.75	CE	[1971Mi08]	
6 _{Pt}		51(5)					RDM	[1971NoZT]	
6 pr	1.350(40)			α , 16 O	Pt	10, 15; 41	CE	[1970Br26]	Ex
	1.49(5)			¹⁶ 0	196 _{Pt}	42	CE	[1969Gl08]	
3 _{Pt}					400				
Pt Pr				16 _O	196 _{Pf}	33	CF	[1967K=16]	Fx
Pt Pt Pt	1.39(15) 1.34(17)			16 ₀ 16 ₀	196 _{Pt} 196 _{Pt}	33 36	CE CE	[1967Ka16] [1966Gr20]	Ex Rad

Table 1 (continued)

	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comment
196 _{Pt}	1.27(13)			p	Pt	4-5	CE	[1961Mc01]	
198 _{Pt}	1.090(7)			α , 12 C, 16 O	198 _{Pt}	14-18.6, 41-45, 55-63	CE	[1986Gy04]	
198 _{Pt}	1.08(5)			α, p	Pt	5-6	CE	[1984Mu19]	Ex
198 _{Pt}		35.1(30)		58 _{Ni}	198 _{Pt}	220	RDM	[1981Bo32]	
198 pt		33.6(16)					RDM	[1980Ke04]	
198 _{Pt}	1.16(9)			α	198 _{Pt}	14-24	CE	[1976Ba35]	
198 _{Pt}	1.17(5)			p. ¹⁶ O	198 _{Pt}	4.5, 43.75	CE	[1971Mi08]	
198 _{Pt}	0.980(30)			α , 16 O	Pt	10, 15, 41	CE	[1970Br26]	Ex
198 _{Pt}	1.01(5)			¹⁶ 0	198 pt	42	CE	[1969Gl08]	
198 pt	1.04(16)			¹⁶ 0	198 _{Pt}	36	CE	[1966Gr20]	Ex
198 pt	1.40(16)			р	Pt	5	CE	[1955St57]	Rad
180 _{Ησ}		17.5(25)		88 _{Sr}	94 _{Mo}	300	RDM	[2009Gr09]	
182 _{Hg}	$1.66(^{+11}_{-7})$			182 _{Hg}	107 _{Ag}	2.85A	CE	[2014Br05]	
182 _{Hg}		42.1(23)		88 _{Sr}	96 _{Mo}	300	RDM	[2010Sc03]	
182 _{Hg}		41(3)		88 _{Sr}	96 _{Mo}	300	RDM	[2009Gr09]	Su
184 _{Hg}	$1.61(^{+8}_{7})$	41(3)		184 _{Hg}	112 _{Cd}				Su
184 _{Hg}	1.61(-7)			40 _{Ar}	148 _{Sm}	2.85A	CE	[2014Br05]	
Hg		35.7(15)				200	RDM	[2014Ga04]	
84 _{Hg}	126	30(7)		32 _S	156 _{Gd}	156	RDM	[1973Ru08]	
86 _{Hg}	$1.56(^{+26}_{-17})$			186 _{Hg}	¹¹⁴ Cd	2.85A	CE	[2014Br05]	
86 _{Hg}		24(3)		40 Ar	160 _{Sm}	195	RDM	[2014Ga04]	
86 Ha		20(25)					DC	[1994Jo13]	Ex, NR
186 _{Hσ}		26.0(43)		$^{20}\mathrm{Ne}$	170 _{Yb}	108	RDM	[1974Pr02]	
188 _{Hg}	$1.72(^{+27}_{-26})$	` '		188 _{Hg}	120 _{Sn}	2.85A	CE	[2014Br05]	
196 Hg	1 12(2)			α, ¹⁶ 0	196Hg	13-16, 56-60	CE	[1979Bo16]	
96 Ha		19.6(29)		u, U	196 Au(B-)	15 10, 50-00	DC	[1963De21]	
98 _{Hg}	0.991(6)	19.0(29)		α , 16 O	198 _{Hg}	13-16, 56-60	CE	[1963De21] [1979Bo16]	
98 _{Hg}	0.991(6)			α, 12 _{C,} 16 _O	198 _{Hg}	14.1-18, 43-54, 60-80	CE	[1979B016] [1977Es02,1984Fe08]	NR
98 _{Hg}	0.501(0)	31.7(14)		α, τ, σ	ng	14.1-16, 43-34, 00-80	DC		INIX
98 _{Hg}								[1974Bu13]	
98 _{Hg}	0.000(20)	22.0(12)					DC	[1970BaYH]	
98 _{Hg}	0.880(30)						CE	[1969GIZY]	
98 _{Hg}		38.9(39)					DC	[1968Ra32]	
98 _{Hg}		28.9(43)					DC	[1967Be62]	
oo Hg		36(7)			108		DC	[1966Go20]	
98 Hg		49.0(30)		γ	198 _{Hg}	0.412	GG	[1963Fr05]	
98 Hg		35(5)					DC	[1961Si01]	
98 Hg		30(10)			100		DC	[1958Su57]	
98 Hg	1.13(34)			p	198 _{Hg}	4.5	CE	[1956Ba45]	
198 _{Hg}		31.5(30)		γ	198 _{Hg}	0.411	GG	[1954Me55]	
198 _{Hg}		32(7)		γ	198 _{Hg}	0.412	GG	[1953Da23]	
²⁰⁰ Hg	0.853(7)			α , 12 C, 16 O	200 _{Hg}	13.5-16.5, 40-60, 59-65	CE	[1980Sp05]	
200 Hg	0.853(15)			α , 16 O	200 _{Hg}	13-16, 56-60	CE	[1979Bo16]	
200 Hg	0.80(10)			16 ₀	200 _{Hg}	33	CE	[1971Ka03]	
200 Hg	0.95(11)			¹⁶ 0	200 _{Hg}	33-38	CE	[1970Ka09]	
200 Hg	0.85(26)			p	200 _{Hσ}	4.5	CE	[1956Ba45]	
²⁰² Hg	0.605(5)			α , 12 C, 16 O	202 _{Hσ}	13.5-16.5, 40-60, 59-65	CE	[1980Sp05]	
202 _{Hg}	0.616(9)			α , 16 O	202 _{Hg}	13-16, 56-60	CE	[1979Bo16]	
.02 _{Hg}	0.65(8)			16 ₀	202 _{Hg}	33-38	CE	[1970Ka09]	
$102 \mathrm{H}_{\odot}$	0.59(18)			p	202 _{Hσ}	4.5	CE	[1956Ba45]	
¹⁰² Hg		34(7)		γ	202 _{Hg}	440	GG	[1955Me35]	
04_{Hg}	0.429(4)			e	204 _{Hg}	83-477	EE	[1989BuZP]	NR
04 _{Hg}	0.423(5)			α , 12 C, 16 O	204 _{Hg}	13.5-16.5, 45-56; 63, 65	CE	[1981Es03]	
¹⁰⁴ Hg	0.427(6)			α , 16 0	204 _{Hσ}	13-16, 56-60	CE	[1979Bo16]	
04 _{Hσ}	0.475(23)			α	204 _{Ho}	15-18	CE	[1971FoZW]	
04 _{Hσ}	0.37(4)			16 ₀	204 _{Hg}	33-38	CE	[1970Ka09]	
04 _{Hσ}	0.20(10)			J	115	55 55	CE	[1956Ba45]	
06 _{Hg}	3.20(10)	<30000		t	204 _{Hg}	16	DC	[1982Be38]	NR
86 _{Pb}		18(5)		83 _{Kr}	106 _{Pd}	340, 357, 375	RDM		1417
86 _{Pb}				83 _{Kr}	106 _{Pd}			[2008Gr04]	C11
88 _{Pb}		18(5)		83 _{Kr}	108 _{Pd}	340, 357, 375	RDM	[2006Gr16]	Su
88 _{Pb}		8.5(35)		83 _{Kr}	108 _{Pd}	340, 357, 375	RDM	[2008Gr04]	C
88 _{Pb}		8.5(35)			⁴⁰ Ca	340, 357, 375	RDM	[2006Gr16]	Su
02 _{Pb}		13(7)		152 _{Sm}		805	RDM	[2003De24]	ENCOE N
02 PB		<144.3		p	Tl 204 _{Pb}	50	DC	[1959Jo21]	ENSDF, N
04 _{Pb}	0.174(18)			e 12 - 16 -		52-502	EE	[1984Pa02]	
04 _{Pb}	0.166(2)			α, ¹² C, ¹⁶ 0	204 _{Pb}	13.8-18.5, 44-60, 59-85	CE	[1978Jo04]	
04 _{Pb}	0.166(9)			32 _S	204 _{Pb}	100, 112.5, 125	CE	[19740l02]	
∪4Pb	0.151(15)			α , ${}^{16}0$	204 _{Pb}	15-18, 69-80	CE	[1972Ha59]	
04 _{Pb}				α , ^{16}O	204 _{Pb}	15, 18; 70, 80	CE	[1971Gr31]	
06 _{Pb}	0.096(10)			e	206 _{Pb}	52-502	EE	[1984Pa02]	
06 _{Pb}	0.1030(10)			α , 12 C, 16 O	206 _{Pb}	13.8-18.5, 44-60, 59-85	CE	[1978Jo04]	
06 _{Ph}	0.095(5)			α , 16 O	206 _{Pb}	15-18, 69-80	CE	[1972Ha59]	
06 _{Pb}	0.103(8)			α , 16 0	206 _{Pb}	15, 18; 70, 80	CE	[1971Gr31]	
$06_{\rm ph}$		13.2(8)		40 Ar	206 _{Pb}	170	RDM	[1970Qu02]	
06 _{Pb}	0.108(10)	15.2(5)		12 _C	206 _{Pb}	45.5-60.2	CE	[1966Hr01]	
06 _{ph}	0.13(5)			α	206 _{Pb}	45.5-00.2	CE	[1962Na06]	
06 _{Pb}	0.13(5)				206 _{Pb}		CE*		NR
06 _{Pb}				p		4.67		[1960BaZZ]	INK
08 _{Pb}	0.125(35)			p	Pb 208 _{Pb}	4-5	CE	[1955St57]	
-~ ph	0.25(6)			γ		7.0-7.4	GG	[2008Sh23]	
208 _{Pb}		0.00147(10)		γ	208 _{Pb}	4-7	GG	[2003En07]	

Table 1 (continued)

	$B(E2) (e^2b^2)$	$B(E2)$ (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
³ Pb		0.00095(12)		γ	208 _{Pb}	9	GG	[2001RyZZ]	
Ph		0.0015(1)		ν	208 _{Pb}	4-7	GG	[2000En08]	Su, NR
Ph	0.275(7)	0.0015(1)		12 _{C,} 16 _O	208 _{Pb}	53-76	CE	[1984Ve07]	NR
Pb	0.318(32)			е, о	208 _{Pb}	52-502	EE	[1984Pa02]	1410
Pb					208 _{Pb}				
Pb	0.318(16)			e	208 _{Pb}	50-335	EE	[1982He03]	
Pb		0.00097(21)		γ	200 Pb	7.0, 7.6, 8.0, 8.5	GG	[1980Ch22]	
Pb		0.0013(5)		γ	208 _{Pb}	6.6, 9.7	GG	[1977Co10]	
Pb		0.00134(14)		γ	208 _{Pb}	4-5	GG	[1974Sw05]	
Pb	0.30(2)			e	208 _{Pb}	28-73	EE	[1968Zi02]	
Pb	$0.83(^{+0.18}_{-0.25})$			¹² C	208 _{Pb}	45.5-60.2	CE	[1966Hr01]	Ex
Pb	0.051(15)			t	210 _{Pb}	20	IN-EL	[1971El03]	
⁴ Po	0.051(15)	27/7)		83 _{Kr}	114 _{Cd}				
Po Po		37(7)		83		340-375	RDM	[2008Gr04]	_
*Po	. 14	37(7)		83 _{Kr}	114 _{Cd}	340-375	RDM	[2006Gr16]	Su
Po	$1.85(^{+14}_{-16})$			196 _{Po}	104 _{Pd}	2.85A	CE	[2015KeZZ]	Gos
Po		11.6(15)		86 _{Kr}	¹¹³ Cd	382	RDM	[2009Gr08]	
Ро	$1.30(^{+29}_{-24})$,		198 _{Po}	94 _{Mo}	2.85A	CE	[2015KeZZ]	Gos
Po				200 _{Po}	104 _{Pd}				
	1.06(6)					2.85A	CE	[2015KeZZ]	Gos
Po	$1.12(^{+34}_{-26})$			202 _{Po}	¹⁰⁴ Pd, ⁹⁴ Mo	2.85A	CE	[2015KeZZ]	Gos
Po	0.0200(40)			d, p, t	210 _{Po}	17.0, 17.8, 20.0	CE*	[1973El06]	
Ро	0.0200(10)	<6		а, р, с		17.0, 17.0, 20.0	DC	[2011ReZZ]	
ru D	1.00(+32)	<0		202 _{Rn}	109 . 120 .	204			-
Rn	$1.00(^{+32}_{-26})$				109 _{Ag,} 120 _{Sn}	2.9A	CE	[2015Ga19]	Gos
Rn	$1.51(^{+59}_{-45})$			204 _{Rn}	109 _{Ag,} 120 _{Sn}	2.9A	CE	[2015Ga19]	Gos
Rn	-45	<2000		9 _{Be}	208 _{Pb}	45-57	DC	[1987Dr08]	NR
Rn				DC		15 57			1417
Rn Rn	1.00/1:3	<115		220 _{Rn}	60 _{Ni,} 120 _{Sn}	2.024	DC	[1960Be25]	
Kn	1.88(11)			220Rn	Ni, 120Sn	2.82A	CE	[2013Ga23]	
Rn		209(7)					DC	[1965Ne03]	
Rn		211(7)					DC	[1960Be25]	
Rn		400(150)					DC	[1961Fo08]	
Rn		462(29)					DC	[1960Be25]	
Ra		43(4)		13 _C	208 _{Pb}	5.3A	RDM	[1988Ga33]	NR
Ra				13 _C	208 _{Pb}				
Ra		40(7)		13 _C		5.3A	RDM	[1984EnZY]	Su
Ra				1.3C	208 _{Pb}	59-67	RDM	[1983Ga11]	Su, NR
Ra		750(60)					DC	[1960Be25]	
Ra	3.96(12)			224 Ra	60 _{Ni,} 120 _{Sn}	2.83A	CE	[2013Ga23]	
Ra		1079(29)			$^{228}\text{Th}(\alpha)$		DC	[1970To08]	
Ra		1073(14)			$228 Th(\alpha)$		DC	[1965Ne03]	
Ra					···(u)		DC	[1961Fo08]	
1 _{Ra}		1150(100)							
ка		1096(43)					DC	[1960Be25]	
⁴ Ra		1000(150)					DC	[1959Si74]	
⁴ Ra		1080(220)					DC	[1959Si74]	
Ra	5.15(14)			α , 16 O, 32 S, 208 P	226 _{Ra}	15-17, 63, 135, 978	CE*	[1993Wo05]	
D _D		900(100)					DC	[1961Fo08]	
Ra		710(130)			230 Th(α)		DC	[1960Un02]	
Ra					m(a)		DC		
Ra		909(29)			230 Th(α)			[1960Be25]	
'Ka		910(100)			230 Th(α)		DC	[1958Va04]	
Ra		793(29)			$228_{\text{Fr}(\beta^-)}$		DC	[1998Gu09]	
Ra		790(60)					DC	[1960Be25]	
Th		346(29)		16 ₀	208 _{Pb}	94	RDM	[1985Bo32]	
Th		851(58)		α	226 _{Ra}	55	DC	[1986Sc18]	NR
Th		570(29)					DC	[1960Be25]	
Th					232 _{U(α)}				
Th		590(14)			υ(α)		DC	[1970To08]	
Th		580(14)			232 _{U(α)}		DC	[1965Ne03]	
Th		577(43)					DC	[1960Be25]	
Th	8.06(11)			α	230 _{Th}	16,17	CE	[1973Be44]	
Th	8.01(11)			α	230 _{Th}	17,18	CE	[1971Fo17]	Su
Th		511(13)			$234_{U(\alpha)}$		DC	[1965Ne03]	
Th	11.1(17)	3(.3)		α	230 _{Th}	2.2	CE	[1961Re02]	
Th	(. /)	E24/20)		u	111	2,2			
111	0.04/453	534(29)			232 _{Th}	40.5.55	DC	[1960Be25]	
Th	9.21(18)			α	232 Th	16.5,17.0	CE	[1974Ba43]	
Th	9.5(12)?			d	232 _{Th}	12	CE*	[1974ThZG]	Ex, NR
2 Th		462(35)		α	232 _{Th}	6	Mossbauer	[1973Ca29]	
Th	9.21(9)			α	232 _{Th}	16,17	CE	[1973Be44]	
Th	9.1(6)			d	232 _{Th}	16	CE*	[1972El08]	
Th	9.40(20)				232 _{Th}				c
111	5.40(20)			α	232 _{Th}	17,18	CE	[1971Fo17]	Su
Ih	11.5(17)			α	232 Th	2.2	CE	[1961Re02]	
Th	9.8(6)			p,d	232 _{Th}	3.5-4.5	CE	[1961Sk01]	
Th	6.3(12)			p	232 _{Th}	4-6	CE	[1960Mc13]	
Th	•	498(22)					DC	[1960Be25]	
Th		534(43)					DC	[1960Be25]	
111									
		375(43)					DC	[1960Be25]	
U		366(29)			224		DC	[1960Be25]	
U U	10.90(10)			α	234 _U	16-19	CE	[1973Be44]	
U U	10.50(10)			α	234 _U	17,18	CE	[1971Fo17]	Su
U U U U	10.33(26)				238 _{Pu(α)}		DC	[1970To08]	
U U U		364(10)			1 (1) (2)		DC	[13/01008]	
บ บ บ บ	10.33(26)	364(10)			234			[10055 11]	
ט ט ט	10.33(26) 9.7(8)	364(10)		d	234 _U		CE	[1965Fr11]	
U U U U	10.33(26)	364(10) 384(29)		d α	234 _U 234 _U	2.2		[1965Fr11] [1961Re02] [1960Be25]	

Table 1 (continued)

Nuclide I	$B(E2)(e^2b^2)$	B(E2) (W.u.) τ (ps)	β_2	Beam	Target	Energy (MeV)	Method	Reference	Comme
236 _U 1	11.60(15)			α	236 _U	16,17	CE	[1973Be44]	
236 _U 1	11.62(23)			α	236 _U	17,18	CE	[1971Fo17]	Su
236 _U		339(9)			240 Pu(α)		DC	[1970To08]	
236 _U 1	11.2(21)			d	236 _U		CE	[1965Fr11]	
236 _U 1	13.1(20)			α	236 _U	2.2	CE	[1961Re02]	
23611	, ,	335(29)					DC	[1960Be25]	
238 _U 1	12.7(17)	. ,		d, α	238 _U	12,13, 16,19,20	CE*	[1974ThZG]	
	12.30(15)			α	238 _U	16-18	CE	[1973Be44]	
238 _U 1	11.7(8)			d	238 _U	16	CE*	[1972El08]	
23811 1	11.70(15)			α	238 _U	17,18	CE	[1971Fo17]	Su
23811 1	13.2(20)			α	238 _U	2.2	CE	[1961Re02]	
23811 1	12.7(7)			p,d	238 _U	3.5-4.5	CE	[1961Sk01]	
23811	,	325(29)		1,,,			DC	[1960Be25]	
238 _{Pti} 1	12.63(17)			α	238 _{Pu}	17	CE	[1973Be44]	
238 _{Pu 1}	12.58(35)			α	238 _{Pu}	17,18	CE	[1971Fo17]	Su
238 _{Pu}	,	255(7)			242 Cm(α)	•	DC	[1970To08]	
238 _{Pt1}		264(22)			. ()		DC	[1960Be25]	
240 _{Pu} 1	13.33(18)	. ,		α	240_{Pu}	17	CE	[1973Be44]	
	12.57(35)			α	240 _{Pu}	17,18	CE	[1971Fo17]	Su
240 _{Pu}		237(7)			244 Cm(α)		DC	[1970To08]	
240 _{Pu} 1	12.90(30)			d	240 _{Pu}		CE	[1965Fr11]	
240 _{Pu}		231(29)			244 Cm(α)		TDSA	[1964No01]	
240 _{Pu}		250(22)					DC	[1960Be25]	
242 p ₁₁ 1	13.47(18)			α	242 _{Pu}	17	CE	[1973Be44]	
242 _{Pu} 1	16.5(14)			d	242 _{Pu}	16	CE*	[1972El08]	
242 _{Pu} 1	13.26(35)			α	242 _{Pu}	17,18	CE	[1971Fo17]	Su
²⁴² Pu 1	13.9(12)			d	242 _{Pu}		CE	[1965Fr11]	
²⁴⁴ Pu 1	13.61(18)			α	244 _{Pu}	17	CE	[1973Be44]	
244 _{Pu 1}	13.83(37)			α	244 _{Pu}	17,18	CE	[1971Fo17]	Su
240 _{Cm}	,	190(13)		α	239 _{Pu}	27,33	RDM	[1978Ul01]	
244 _{Cm} 1	14.58(19)			α	²⁴⁴ Cm	17	CE	[1973Be44]	
²⁴⁴ Cm 1	14.86(35)			α	²⁴⁴ Cm	17,18	CE	[1971Fo17]	Su
244 _{Cm}	()	140(7)			$244_{Am(\beta^{-})}$,	DC	[1962Ch19]	Ex
246 _{Cm} 1	14.94(19)			α	246 _{Cm}	17	CE	[1973Be44]	
246 _{Cm}	15.03(45)			α	²⁴⁶ Cm	17,18	CE	[1971Fo17]	Su
248 _{Cm} 1	13.7(8)			136 _{Xe} , 58 _{Ni}	248 _{Cm}	641, 260	CE	[1986Cz02]	
248 _{Cm} 1	14.99(19)			α	248 _{Cm}	17	CE	[1973Be44]	
248 _{Cm 1}	15.03(55)			α	²⁴⁸ Cm	17,18	CE	[1971Fo17]	Su
²⁴⁸ Cm	(55)	182(14)		<u></u>	$252_{\text{Cf}(\alpha)}$.,,.0	DC	[1970To08]	54
250 _{Cf} 1	16.0(16)	102(14)		d	250 _{Cf}	15	CE*	[1980Ah01]	
252 _{Cf} 1	16.7(11)			α	252 _{Cf}	17,18	CE	[1971Fo17]	
Ci i	(11)			u	Ci Ci	17,10	CL	[13,1101,]	

Table 2Comparative analysis of the present and S. Raman et al. [13] results. Both the present work and inverse B(E2)↑ have been calculated for the nuclides where multiple experimental results are available and no new measurements have been reported since the previous evaluation.

Nuclide	Inverse squared B(E2)↑ (e²b²)	Inverse B(E2) \uparrow (e ² b ²)	Raman's B(E2) \uparrow [13] (e^2b^2)	Comments on Raman's values
² C	0.00397(20)	0.00395(20)	0.00397(33)	
0	0.00371(39)	0.00354(22)	0.00406(38)	Different exclusions
30	0.00430(38)	0.00429(19)	0.00451(20)	
⁰ O	0.00298(26)	0.00265(22)	0.00281(20)	
⁰ Ne	0.0333(16)	0.0369(27)	0.0340(30)	
⁴ Ne	$0.0143(^{+57}_{-24})$	$0.01351(^{+50}_{-30})$	0.017(6)	au was symmetrized
² Mg	$0.034\binom{+16}{-11}$	0.038(44)	0.037(13)	- · · · · · · · · · · · · · · · · · · ·
⁸ Si	$0.034(_{-11})$ $0.03267(_{-45}^{+55})$	0.0325(16)	0.0326(12)	
^o Si	0.03207(₋₄₅) 0.02081(64)	0.0323(10)		
² Si		` '	0.0215(10)	
	$0.0122(^{+36}_{-21})$	0.0131(22)	0.0113(33)	Latest result was adopted
⁴ S	0.02083(120)	0.0215(10)	0.0212(12)	
⁴ Ar	0.0232(29)	0.0253(40)	0.0240(40)	
² Ti	0.086(16)	0.0877(81)	0.087(25)	
⁸ Cr	0.137(15)	0.133(16)	0.136(21)	
⁴ Cr	0.0853(42)	0.0848(30)	0.0870(40)	Extended dataset, EE included
⁴ Fe	0.0608 (31)	0.0596(20)	0.062(5)	
⁶ Fe	0.0981(20)	0.0978(20)	0.0980(40)	
³ Fe	0.122(6)	0.1160(57)	0.1200(40)	
^o Fe	0.0938(88)	0.094(10)	0.096(18)	
² Ge	0.2087(30)	0.2084(30)	0.213(6)	
⁶ Se	$0.432\binom{+15}{-6}$	0.4374(90)	0.420(10)	Missing data
⁰ Sr	$0.92(_{-6})$ 0.909(40)	0.890(48)	0.959(36)	Different exclusions
² Sr	$0.505(^{+29}_{-20})$	` '		Different exclusions
Sr Sr		0.497(26)	0.513(20)	
	1.240(61)	1.213(64)	1.282(39)	
⁰⁰ Sr	1.22(17)	1.22(16)	1.42(8)	Latest was adopted
² Zr	$0.91^{\left(+12\atop{-5}\right)}$	0.98(11)	0.91(9)	Earliest experiment was adopted
⁴ Zr	0.0629(45)	0.0660(35)	0.066(14)	Missing data
⁰⁰ Zr	$1.110(^{+51}_{-36})$	1.043(43)	1.11(6)	
² Mo	0.0975(43)	0.1009(56)	0.097(6)	
⁶ Mo	0.2775(59)	0.284(14)	0.271(5)	
⁰⁰ Mo	0.530(22)	0.546(24)	0.516(10)	Missing data
⁰² Mo	$0.976(^{+49}_{-40})$	0.995(48)	0.963(31)	
⁰⁴ Mo	1.28(11)	1.165(59)	1.34(8)	Missing data
⁰⁰ Ru	0.4927(41)	0.4895(30)	0.490(5)	wiissing data
⁰² Ru	0.632(12)	, ,	` ,	
⁰⁸ Ru		0.6430(290)	0.630(10)	3.611
	$0.894\binom{+80}{-58}$	0.954(80)	1.01(15)	Missing data
¹⁰ Ru	1.071(61)	0.989(74)	1.05(12)	
¹² Ru	1.107(96)	1.04(13)	1.17(23)	
⁰² Pd	0.460(23)	0.460(30)	0.460(30)	
⁰⁴ Pd	0.529(15)	0.528(30)	0.535(35)	
⁰⁶ Pd	0.660(17)	0.651(37)	0.660(35)	
⁰⁸ Pd	0.764(20)	0.763(41)	0.760(40)	
⁰⁶ Cd	0.407(12)	0.412(19)	0.410(20)	
¹² Cd	0.5012(220)	0.498(22)	0.510(20)	
¹⁴ Cd	0.5362(250)	0.537(25)	0.545(20)	
¹⁶ Cd	0.580(26)	0.588(26)	0.560(20)	Missing data
²⁴ Te	0.560(28)	0.588(28)	0.568(6)	
²⁰ Xe	1.739(110)	1.69(11)	1.73(11)	
²² Xe	1.349(68)	1.360(71)	1.40(6)	
²⁴ Ba	2.096(78)	1.958(70)	2.09(10)	
²⁶ Ba		1.761(85)		
³² Ва	1.740(80)		1.75(9)	
	0.847(57)	0.828(60)	0.86(6)	
³⁴ Ba	0.665(19)	0.658(33)	0.658(7)	
³⁸ Ba	0.2302(110)	0.235(11)	0.230(9)	
⁴⁶ Ba	1.350(68)	1.336(68)	1.355(48)	
²⁶ Ce	3.65(46)	$3.68(^{+46}_{-37})$	2.68(48)	Missing data
²⁸ Ce	2.27(13)	2.27(18)	2.28(22)	
³⁰ Ce	1.755(79)	1.804(79)	1.74(10)	
³² Ce	1.69(11)	1.676(74)	1.87(17)	Missing data
³⁴ Ce	1.062(85)	1.054(91)	1.04(9)	•
⁴⁰ Ce	0.2997(150)	0.298(15)	0.298(6)	Missing data
⁴² Ce	0.4572(50)	0.4547(50)	0.480(6)	
⁴⁴ Ce	$0.96(^{+30}_{-18})$	0.97(20)	0.83(9)	Different exclusions
⁴⁶ Ce		` ,	3 7	
⁵⁰ Ce	0.952 (90)	1.060(73)	1.14(12)	Missing data
	3.18(48)	3.16(60)	3.3(8)	Missing data
³² Nd	3.58(59)	3.54(59)	3.5(6)	
³⁴ Nd	$1.879(^{+58}_{-46})$	1.915(35)	1.83(37)	Missing data
⁴² Nd	0.2650(130)	0.279(13)	0.265(6)	
⁴⁴ Nd	0.504(15)	0.483(25)	0.491(5)	

Table 2 (continued)

Nuclide	Inverse squared $B(E2)\uparrow$ (e^2b^2)	Inverse B(E2) \uparrow (e ² b ²)	Raman's B(E2) \uparrow [13] (e^2b^2)	Comments on Raman's values
¹⁴⁶ Nd	0.748(22)	0.736(38)	0.760(25)	
¹⁴⁸ Nd	1.338(30)	1.298(68)	1.35(5)	
¹⁵⁰ Nd	2.707(30)	2.721(42)	2.760(40)	Different exclusions
⁵² Nd	4.10(22)	4.11(22)	4.20(28)	Missing data
³⁸ Sm	1.30(19)	1.37(22)	1.41(23)	Unweighted average
⁴⁴ Sm	0.259(19)	0.268(13)	0.262(6)	Missing data
⁴⁸ Sm	0.713(35)	0.718(35)	0.720(30)	
⁵⁰ Sm	1.347(26)	1.339(68)	1.350(30)	
⁵⁴ Sm	4.345(44)	4.370(69)	4.36(5)	Missing data
⁵² Gd	1.655(65)	1.626(82)	1.67(14)	wissing data
⁵⁴ Gd	3.872(16)	3.859(16)	3.89(7)	
⁵⁶ Gd	4.697(110)	4.70(11)	4.64(5)	Missing data
⁵⁸ Gd	, ,			Wilssing data
⁵⁴ Dv	5.093(110)	5.10(11)	5.02(5)	
⁵⁸ Dy	2.421(120)	2.40(12)	2.39(13)	
⁶⁰ Dy	4.66(11)	4.66(23)	4.66(5)	
62 –	5.049(40)	5.057(38)	5.13(11)	
⁶² Dy	5.227(84)	5.172(84)	5.35(11)	Missing data
¹⁶⁴ Dy	5.616(68)	5.607(88)	5.60(5)	
⁵⁶ Er	1.645(80)	1.647(81)	1.64(7)	Missing data
⁶⁰ Er	4.34(15)	4.36(22)	4.38(20)	
⁶⁴ Er	5.50(12)	5.433(92)	5.45(6)	
⁶⁶ Er	5.748(89)	5.732(89)	5.83(5)	Missing data
⁶⁸ Er	5.723(45)	5.804(59)	5.79(10)	Different exclusions
⁶⁰ Yb	2.44(16)	2.46(16)	2.66(16)	Latest result was adopted
⁶⁴ Yb	4.33(14)	4.32(21)	4.38(26)	
⁶⁶ Yb	5.20(20)	5.20(26)	5.24(31)	
⁷⁰ Yb	5.721(70)	5.753(70)	5.79(13)	
⁷² Yb				
⁷⁴ Yb	6.088(150)	6.10(15)	6.04(7)	and the land
	5.853(160)	5.85(16)	5.94(6)	Missing data
⁷⁶ Yb	5.189(89)	5.247(93)	5.30(19)	
¹⁶⁴ Hf	1.82(17)	1.79(25)	2.14(18)	Earlier result was adopted
¹⁷⁶ Hf	5.416(170)	5.42(17)	5.27(10)	Missing data
¹⁷⁸ Hf	4.736(63)	4.684(94)	4.82(6)	Missing data
¹⁸⁰ Hf	4.6470(30)	4.6486(30)	4.67(12)	Missing data
¹⁷⁰ W	3.50(17)	3.52(17)	3.51(10)	
¹⁸⁰ W	4.419(77)	4.224(86)	4.25(24)	
¹⁸² W	4.123(42)	4.108(42)	4.20(8)	Missing data
¹⁸⁴ W	3.706(35)	3.692(35)	3.78(13)	Missing data
⁸⁶ W	3.500(38)	3.468(33)	3.50(12)	
82Os	3.896(85)	3.83(13)	3.86(35)	Missing data
⁸⁴ Os	3.214(79)	3.196(34)	3.23(16)	wissing data
⁸⁶ Os		` '		Different exclusions
⁹² Os	3.064(72)	3.068(72)	2.90(10)	
⁸⁴ Pt	2.031(100)	2.07(10)	2.100(30)	Missing data
	3.79(20)	3.76(21)	3.78(27)	and the state of t
⁹⁰ Pt	1.854(90)	1.943(90)	1.75(22)	Missing data
⁹² Pt	1.908(68)	1.980(65)	1.870(40)	Missing data
¹⁹⁴ Pt	1.631(68)	1.634(68)	1.642(22)	
⁹⁸ Pt	1.072(50)	1.088(50)	1.080(12)	Different exclusions
⁹⁶ Hg	1.143(82)	1.19(11)	1.15(5)	Latest was adopted
⁹⁸ Hg	0.9612(70)	0.9674(60)	0.990(12)	Missing data
⁰⁰ Hg	0.855(28)	0.858(43)	0.853(11)	· ·
⁰² Hg	0.615(21)	0.624(30)	0.612(10)	
⁰⁴ Hg	0.424(21)	0.416(21)	0.427(7)	Missing data
⁰⁴ Pb	0.1587(69)	0.1569(90)	0.1620(40)	mooning data
⁰⁶ Pb	0.0989(28)	0.1009(50)	0.1020(40)	Rounded number
²⁶ Ra	• ,	, ,	` ,	Rounded Humber
²⁸ Th	5.16(13)	5.23(16)	5.15(14) 7.06(24)	
	7.05(12)	7.05(17)	7.06(24)	Double court 131
²³⁰ Th	8.14(21)	8.24(21)	8.04(10)	Double-counted the same experime
²³² Th	9.02(38)	9.05(38)	9.28(10)	Double-counted the same experime
²³⁴ U	10.22(50)	10.23(50)	10.66(20)	Double-counted the same experime
²³⁶ U	10.96(28)	11.17(28)	11.61(15)	Double-counted the same experime
²³⁸ U	12.19(62)	12.21(62)	12.09(20)	Double-counted the same experime
²³⁸ Pu	12.26(34)	12.25(34)	12.61(17)	Double-counted the same experime
²⁴⁰ Pu	13.13(39)	13.10(39)	13.02(30)	Double-counted the same experime
° Pu				
²⁴² Pu	14.01(75)	14.30(67)	13.40(16)	Double-counted the same experime

Table 3 Adopted (recommended) B(E2) \uparrow -, τ - and β_2 -values for Z=2-104 nuclei. Model-independent, combined (*) and model-dependent (**) values are compared with S. Raman et al. [13] evaluation.

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13]
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁴ He	27420(90)					
⁶ He	1797(25)	0.00054(7)**?	1.67(22)**?	$40.3(^{+60}_{-46})^{**}$?	1.024(66)**?	
⁸ He	3100(500)	0.0003 1(7)	1.07(22) .	10.5(-46)	1.02 1(00)	
¹⁰ He	3240(200)					
⁶ Be	1670(50)					
⁸ Be	3030(10)					
¹⁰ Be	3368.03 (3)	$0.00467(^{+23}_{-18})$	7 30(+36)	$0.2017(^{+79}_{-95})$	$1.071(^{+26}_{-20})$	0.0053(6)
¹² Be	2102(12)	$0.00407\binom{-18}{-11}$	$7.30(^{+36}_{-28})$ $4.9(^{+27}_{-13})$	$2.49(^{+94}_{-88})$	$0.88(^{+24}_{-12})$	0.0033(0)
¹⁴ Be	1540(130)	0.0040(_11)	4. 3(₋₁₃)	2.45(_88)	0.00(_12)	
¹⁰ C	3353.7 (6)	0.00450(42)	7.03(66)	$0.214(^{+22}_{-19})$	$0.701(^{+32}_{-34})$	0.0064(10)
¹² C	4438.91 (31)	0.00430(42)	4.86(25)	$0.0596(^{+31}_{-29})$	0.583(15)	0.00397(33)
C	4436.91 (31)	0.00397(20)*	4.86(25)*	$0.0596(_{-29}^{+31})^*$	0.363(13)	0.00397(33)
¹⁴ C	7012 (4)	0.00397(20)	4.00(23)	0.0390(_29)		0.00187(25)
C	7012 (4)	0.00187(25)*	1.87(25)*	$0.0129(^{+20}_{-15})^*$	0.361(24)*	0.00187(23)
¹⁶ C	1766 (10)					
¹⁸ C	1766 (10)	0.00179(20)	1.50(17)	$13.2(^{+16}_{-13})$	0.323(18)	
²⁰ C	1620 (20)	$0.00168(^{+23}_{-15})$	$1.20(^{+16}_{-11})$	$21.8(^{+22}_{-26})$	$0.289(^{+20}_{-13})$	
¹² 0	1618 (6)	$0.0038(^{+17}_{-8})$	$2.3(^{+10}_{-5})$	$9.8(^{+28}_{-30})$	$0.405(^{+89}_{-45})$	
	1800(400)?					
¹⁴ 0	6590(10)	/				
¹⁶ O	6917.1 (6)	0.00371(39)	3.098(326)	0.00694(82)	0.349(19)	0.00406(38)
10 -		0.00390(22)*	3.257(184)*	0.00660(35)*	0.358(10)*	/>
¹⁸ O	1982.07 (9)	0.00430(38)	3.07(27)	$3.10(^{+30}_{-25})$	0.347(16)	0.00451(20)
20		0.00431(39)*	3.08(28)*	$3.09(^{+31}_{-26})^*$	0.348(15)*	
²⁰ O	1673.60 (15)	0.00298(26)	1.85(16)	$10.4(^{+10}_{-8})$	$0.269(^{+10}_{-8})$	0.00281(20)
²² 0	3199 (8)	0.0021(8)	1.15(44)	$0.58(^{+36}_{-16})$	0.212(40)	0.0021(8)
²⁴ O	4720(110)			116		
		0.00118(63)**	0.57(31)**	$0.14(^{+16}_{-5})^{**}$	0.150(40)**	
²⁶ O	~1800					
¹⁶ Ne	1690(70)			. 40		
¹⁸ Ne	1887.3 (2)	0.0243(16)	17.4(11)	$0.700(^{+46}_{-43})$	0.661(21)	0.0269(26)
²⁰ Ne	1633.674 (15)	0.0333(16)	20.7(10)	$1.053(^{+54}_{-49})$	0.721(18)	0.0340(30)
		0.0327(15)*	20.29(96)*	$1.072(^{+53}_{-48})^*$	0.714(17)*	
²² Ne	1274.577 (7)	0.02298(42)	12.55(23)	5.281(98)	0.5616(51)	0.0230(10)
		0.02305(38)*	12.59(21)*	5.266(89)*	0.5625(47)*	
²⁴ Ne	1981.6 (4)	$0.0143(^{+57}_{-24})$	$6.9(^{+28}_{-12})$	$0.94(^{+19}_{-27})$	$0.418(^{+84}_{-35})$	0.017(6)
²⁶ Ne	2018.2(1)	0.0155(32)	6.8(14)	$0.79(^{+20}_{-13})$	0.413(43)	0.0228(41)
²⁸ Ne	1304(3)	0.0136(23)	5.37(90)	$8.0(^{+16}_{-11})$	0.367(31)	0.027(14)
		0.0153(16)**	6.06(63)**	$7.07(^{+83}_{-67})^{**}$	0.39(2)**	
³⁰ Ne	791 (26)					
		0.0226(35)**	8.2(13)**	58(⁺¹² ₋₈)**	0.453(37)**	
³² Ne	722(9)			Ü		
²⁰ Mg	1598 (10)					
		0.0179(33)**	11.1(20)**	$1.96(^{+44}_{-30})^{**}$	0.44(4)**	
²² Mg	1247.02(3)	$0.034(^{+16}_{-11})$	$18.4(^{+89}_{-61})$	$4.0(^{+20}_{-13})$	$0.57(^{+14}_{-9})$	0.037(13)
²⁴ Mg	1368.672 (5)	0.04372(90)	21.27(44)	1.944(41)	0.6092(62)	0.0432(11)
J	(*)	0.04339(80)*	21.10(39)*	1.959(37)*	0.6069(56)*	,
²⁶ Mg	1808.73(3)	0.03136(72)	13.71(31)	0.672(16)	0.4891(56)	0.0305(13)
Ü	(. ,	0.03113(67)*	13.61(29)*	0.677(15)*	0.4873(52)*	,
²⁸ Mg	1473.88 (18)	0.0366(46)	14.5(18)	$1.60(^{+23}_{-18})$	0.503(31)	0.035(5)
³⁰ Mg	1482.8 (3)	0.0273(26)	9.86(94)	$2.09(^{+22}_{-19})$	0.415(20)	0.0295(26)
8		0.0435(58)**	15.7(21)**	$1.31(^{+20}_{-16})^{**}$	0.524(36)**	3.3233(20)
³² Mg	885.3 (1)	0.0434(52)	14.4(17)	17 3(+24)	0.501(30)	0.039(7)
6	000.5 (1)	0.0406(62)**	13.5(22)**	$17.3(^{+24}_{-20})$ $18.5(^{+33}_{-26})^{**}$	0.0484(38)**	0.033(1)
³⁴ Mg	652(6)	0.0406(62)		56.9(+91)	0.553(37)	
ivig	652(6)	0.073(79)	17.5(24) 22.3(46)**	$56.9(^{+91}_{-69})$ $45(^{+12}_{-8})^{**}$	$0.624(^{+61}_{-68})^{**}$	
36 N/G	662(6)	0.075(15)	22.3(40)	45(-8)	0.024(_68)	
³⁶ Mg	662(6)	0.051(+13)**	14 2(+37)**	62(+19)**	0 E0(C)**	
		$0.051(^{+13}_{-11})^{**}$	$14.3(^{+37}_{-32})^{**}$	$63(^{+19}_{-13})^{**}$	0.50(6)**	, , , , , ,
						(continued on next pag

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁸ Mg	656(6)					
⁴ Si	1879 (11)	0.0096(30)	4.7(15)	$1.40(^{+64}_{-33})$	0.245(38)	
⁶ Si	1795.9 (2)	0.0344(25)	4.7(13) 15.1(11)	0.635(47)	0.439(16)	0.0356(34)
⁸ Si	1779.030 (11)	$0.0344(23)$ $0.03267(^{+55}_{-45})$	$12.94(^{+22}_{-18})$	$0.701(^{+10}_{-12})$	$0.4073(^{+34}_{-28})$	` '
31	1779.030 (11)					0.0326(12)
0.0	0005 000 (40)	$0.03281(^{+53}_{-44})^*$	$12.99(^{+21}_{-17})^*$	$0.698(^{+10}_{-11})^*$	$0.4082(^{+33}_{-27})^*$	0.0045(40)
⁰ Si	2235.322 (18)	0.02081(64)	7.52(23)	0.351(11)	0.3105(48)	0.0215(10)
2		0.02084(61)*	7.53(22)*	$0.351(^{+11}_{-10})^*$	0.3107(45)*	
² Si	1941.4(3)	$0.0122(^{+36}_{-21})$	$4.1(^{+12}_{-7})$	$1.21(^{+25}_{-28})$	$0.228(^{+34}_{-20})$	0.0113(33)
⁴ Si	3327.7 (5)	0.0085(33)	2.6(10)	$0.118(^{+75}_{-33})$	0.183(35)	0.0085(33)
⁶ Si	1399 (25)	0.0193(59)	5.5(17)	$4.0(^{+17}_{-9})$	0.265(40)	0.019(6)
⁸ Si	1084 (20)	0.0193(71)	5.1(19)	$14.1(^{+82}_{-38})$	0.255(47)	0.019(7)
⁰ Si	986 (5)?	0.043(12)	10.6(30)	$10.2(^{+39}_{-22})$	0.37(5)	
² Si	742(8)					
⁸ S	1512(8)	0.0181(31)	7.2(12)	$2.90(^{+60}_{-42})$	0.265(23)	
⁶⁰ S	2210.6 (5)	0.0324(22)	11.70(79)	$0.239(^{+17}_{-15})$	0.339(11)	0.0324(41)
² S	2230.57 (15)	$0.02958(^{+85}_{-44})$	$9.80(^{+28}_{-15})$	$0.2500(^{+38}_{-70})$	$0.3102(^{+44}_{-23})$	0.0300(13)
	(, ,	0.02914(95)*	9.66(31)*	$0.2538(^{+86}_{-80})^*$	0.3079(50)*	
⁴ S	2127.564 (13)	0.02083(120)	6.37(37)	$0.449(^{+27}_{-25})$	0.250(7)	0.0212(12)
-	2.2	0.02047(100)*	6.26(31)*	$0.457\binom{+23}{-21}^*$	$0.248(^{+5}_{-6})^*$	3.0212(12
⁶⁶ S	3290.9(3)	$0.00886(^{+87}_{-52})$	$2.51(^{+25}_{-15})$	$0.137(_{-21})$ $0.119(_{-11}^{+8})$	$0.1569(^{+77}_{-46})$	0.0104(28)
¹⁸ S	1292.0 (2)	0.0235(30)	6.19(79)	$4.82(^{+71}_{-55})$	0.1303(_46)	0.0235(30)
⁰ S	903.69 (7)	0.0233(30)	8.22(89)	$20.3(^{+24}_{-20})$	0.284(15)	0.0233(30)
² S						
	890 (15)	0.0397(63)	9.2(15)	$18.4(^{+35}_{-25})$	0.300(24)	0.040(6)
⁴ S	1329.0 (5)	0.0314(88)	6.8(19)	$3.1(^{+12}_{-7})$	0.258(36)	0.031(9)
⁶ S	952(8)					
² Ar	1867 (8)	0.0266(68)	8.8(23)	$0.68(^{+23}_{-14})$	0.261(33)	
⁴ Ar	2090.9(3)	0.0232(29)	7.10(88)	$0.440(^{+62}_{-48})$	0.235(14)	0.0240(40)
⁶ Ar	1970.39 (5)	$0.0301(^{+20}_{-11})$	$8.53(^{+58}_{-32})$	$0.456(^{+18}_{-29})$	$0.2573(^{+87}_{-48})$	0.0300(30)
		$0.0290(^{+14}_{-8})^*$	$8.22(^{+40}_{-22})^*$	$0.473(^{+13}_{-22})^*$	$0.2526(^{+62}_{-34})^*$	
⁸ Ar	2167.64(5)	0.01245(42)	3.28(11)	$0.685(^{+24}_{-23})$	0.1595(27)	0.0130(10)
⁰ Ar	1460.851(6)	0.0332(17)	8.18(43)	$1.85(^{+10}_{-9})$	0.2519(66)	0.0330(40)
		0.0355(15)*	8.73(37)*	$1.730(^{+76}_{-69})^*$	0.2602(54)*	
² Ar	1208.24 (13)	$0.042(^{+11}_{-9})$	$9.6(^{+26}_{-20})$	$3.8(^{+10}_{-8})$	$0.273(^{+36}_{-28})$	0.043(10)
⁴ Ar	1157.97 (11)	$0.0358(^{+36}_{-22})$	$7.77(^{+78}_{-47})$	$5.47(^{+36}_{-50})$	$0.246(^{+12}_{-8})$	0.0345(41)
⁶ Ar	1577 (1)	0.0243(22)	4.96(45)	$1.82(^{+18}_{-15})$	0.196(9)	0.0196(39)
⁸ Ar	1038(6)	0.0346(55)	6.7(11)	$3.08(^{+58}_{-42})$	0.228(18)	
⁰ Ar	1178(18)	0.03 10(00)	0.7(11)	3.00(_42)	0.220(10)	
⁶ Ca	3045.0(24)					
⁸ Ca	2213.13 (10)	0.0097(27)	2.56(71)	$0.79(^{+31}_{-17})$	$0.127(^{+16}_{-19})$	0.0096(21)
°Ca ⁰ Ca	3904.38 (3)		2.56(71)	$0.79(^{+39}_{-17})$ $0.0486(^{+39}_{-33})$		
-Ca	3904.38 (3)	0.00924(68)	2.28(17)		0.1196(44)	0.0099(17)
2.0	150 (50 (6)	0.00739(50)*	1.82(12)*	$0.0608(^{+44}_{-38})^*$	0.1069(36)*	0.0400(00)
² Ca	1524.70 (3)	0.0369(20)	8.51(45)	$1.343(^{+76}_{-68})$	0.2312(62)	0.0420(30)
		0.0368(17)*	8.48(40)*	$1.347(^{+66}_{-60})^*$	0.2309(54)*	
⁴ Ca	1157.019 (4)	0.0467(21)	10.13(46)	$4.21(^{+20}_{-18})$	0.2522(57)	0.0470(20)
		0.0485(18)*	10.52(40)*	$4.06(^{+16}_{-15})^*$	0.2570(49)*	
⁶ Ca	1346.0(3)	0.0168(13)	3.43(26)	$5.50(^{+46}_{-40})$	0.1468(58)	0.0182(13)
⁸ Ca	3831.72 (6)	$0.0092(^{+12}_{-5})$	$1.77(^{+23}_{-10})$	$0.0539(^{+31}_{-63})$	$0.1054(^{+70}_{-29})$	0.0095(32)
		$0.00844(^{+54}_{-23})^*$	$1.63(^{+10}_{-4})^*$	$0.0585(^{+16}_{-35})^*$	$0.1012(^{+32}_{-14})^*$	
⁰ Ca	1026.72 (10)	$0.00373(^{+20}_{-18})$	$0.682(^{+37}_{-33})$	96(5)	$0.0654(^{+18}_{-16})$	
² Ca	2563.1(10)	. 10*	. 55*	• •	. 10*	
⁴ Ca	2043(19)					
² Ti	1556.0 (8)	0.086(16)	19.8(37)	0.520(97)	0.321(30)	0.087(25)
¹⁴ Ti	1083.06 (9)	$0.0680(^{+59}_{-28})$	$14.7(^{+13}_{-6})$	$4.03(^{+18}_{-32})$	$0.277(^{+12}_{-6})$	0.065(16)
⁶ Ti	889.286 (3)	0.0050(₋₂₈)	19.42(52)	$7.72\binom{+21}{-20}$	0.277(₋₆) 0.3175(42)	0.005(10)
11	003.200 (3)	0.0901(23)*	19.42(52) 18.40(68)*	$8.15(^{+31}_{-29})^*$	0.3175(42)	0.033(3)
⁸ Ti	003 E300 (34)					0.0730/40
11	983.5390 (24)	0.0662(29)	12.77(56)	$6.70(^{+31}_{-28})$	0.2575(56)	0.0720(40)
		0.0627(27)*	12.11(53)*	$7.07(^{+32}_{-30})^*$	0.2507(55)*	
	1552 770 (7)	0.0275(16)	5.04(30)	$1.64(^{+10}_{-9})$	0.1617(48)	0.0290(40)
⁰ Ti	1553.778 (7)	0.0284(14)*	5.18(26)*	1.589(+82)*	0.1641(40)*	

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13]
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁵² Ti	1049.73 (10)	$0.0603(^{+29}_{-24})$	$10.46(^{+50}_{-41})$	$5.31(^{+22}_{-24})$	$0.2331(^{+56}_{-46})$	
⁵⁴ Ti	1494.8 (8)	0.0357(63)	5.9(10)	$1.53(^{+33}_{-23})$	0.175(15)	
⁵⁶ Ti	1128.2 (4)	0.060(20)	9.4(31)	$3.7(^{+19}_{-9})$	0.221(37)	
⁵⁸ Ti	1047(4)	$0.042(^{+26}_{-23})^{**}$	$6.3(^{+39}_{-35})^{**}$	$7.8(^{+94}_{-30})^{**}$	$0.18(^{+5}_{-6})^{**}$	
⁶⁰ Ti	866(5)	0.0 12(-23)	0.5(_35)	7.0(_30)	0.10(_6)	
¹⁶ Cr	892.16(10)	0.093(20)	19.0(41)	16.7(36)	0.288(31)	
¹⁸ Cr	752.19(11)	0.137(15)	26.4(29)	12.4(14)	0.340(19)	0.136(21)
50Cr	783.30(9)	0.1052(32)	19.23(58)	$13.15(^{+41}_{-29})$	0.2897(44)	0.108(6)
Ci	703.30(3)	0.1032(32)*	18.83(58)*	$13.43(^{+68}_{-40})^*$	0.2037(44)	0.100(0)
ⁱ² Cr	1434.094(14)	0.0622(24)	10.79(42)	$1.081(^{+44}_{-40})$	0.2170(42)	0.0660(30)
Ci	1434.034(14)	0.0623(19)*	10.81(33)*	$1.080(_{-40}^{+34})^*$	0.2170(42)	0.0000(30)
⁴ Cr	834.855(3)	0.0853(42)	14.07(70)	$11.79(^{+61}_{-55})$	0.2478(62)	0.0870(40)
Ci	634.633(3)	0.0874(38)*	14.42(63)*	11.79(₋₅₅) 11.51(⁺⁵² ₋₄₈)*	0.2478(02)	0.0870(40)
⁶ Cr	1006.61(20)	0.055(19)	8.7(30)		0.105(24)	
8Cr				7.1(25)	0.195(34)	
⁶⁰ Cr	880.7(2)	0.097(13)	14.6(19)	$7.9(^{+12}_{-9})$	0.252(16)	
°Cr	646(1)	0.121(15)	17.4(22)	$30.0(^{+42}_{-33})$	0.275(17)	
⁵² Cr	447(4)	0.173(17)	24.7(23)	$132(^{+11}_{-13})$	0.322(16)	
⁶⁴ Cr	430(2)	0.156(40)	20.5(52)	$200(^{+68}_{-40})$	0.200(28)	
¹⁸ Fe	430(2)	0.156(40)	20.5(52)	200(₋₄₀)	0.299(38)	
	969.5(5)					
⁰ Fe	765.0(10)	0.140(20)*	2E C(EE)*	11 1/24)*	0.200(22)*	
² Fe	0.40.45(10)	0.140(30)*	25.6(55)*	11.1(24)*	0.308(33)*	
re	849.45(10)	0.002/10)*	142/10*	11 2/14)*	0.220/14)*	
45	1400 10(10)	0.082(10)*	14.2(18)*	11.3(14)*	0.230(14)*	0.002(5)
⁴ Fe	1408.19(19)	0.0608 (31)	10.0(5)	1.21(6)	0.193(5)	0.062(5)
e _		0.0542(18)*	8.94(30)*	1.36(5)*		
⁶ Fe	846.776(5)	0.0981(20)	15.4(3)	9.56(19)	0.239(2)	0.0980(40)
0		0.0954(27)*	15.0(4)*	9.83(28)*		
⁸ Fe	810.7662(20)	0.122(6)	18.3(9)	9.6(5)	0.270(7)	0.1200(40)
_		0.0932(76)*	14.0(11)*	12.5(10)*		
⁰ Fe	823.63(15)	0.0938(88)	13.4(13)	11.5(11)	0.224(10)	0.096(18)
² Fe	876.8(3)	$0.102(^{+10}_{-8})$	$14.0(^{+14}_{-11})$	$7.74(^{+67}_{-71})$	$0.228(^{+12}_{-9})$	
⁴ Fe	746.40(10)	$0.173(^{+21}_{-10})$	$22.7(^{+27}_{-13})$	$10.2(^{+6}_{-11})$	$0.291(^{+18}_{-9})$	
⁶ Fe	574.4(10)	0.152(10)	19.2(13)	$42.9(^{+31}_{-27})$	0.2670(90)	
⁸ Fe	522(1)	0.178(22)	21.6(26)	$62.1(^{+86}_{-67})$	0.283(17)	
² Ni	1397(6)					
⁴ Ni	1392.3(4)	0.061(12)	10.0(20)	1.28(25)	0.179(18)	
⁵ Ni	2700.6(7)	0.0453(86)	7.1(13)	0.062(13)	0.151(14)	0.060(12)
		0.0502(70)*	7.9(11)*	0.057(8)*		
⁸ Ni	1454.21(9)	0.0650(12)	9.75(18)	$0.965(^{+18}_{-17})$	0.1768(16)	0.0695(20)
		0.0636(10)*	9.54(16)*	$0.987(^{+14}_{-15})^*$	0.1749(15)*	
⁰ Ni	1332.518(5)	0.0916(16)	13.13(23)	1.060(19)	0.2052(19)	0.0933(15)
		0.0886(17)*	12.70(25)*	1.096(21)*	0.2018(19)*	
² Ni	1172.91(9)	0.0889(30)	12.20(41)	2.068(67)	0.1977(18)	0.0890(25)
	` '	0.0881(11)*	12.09(15)*	2.086(26)*	0.1969(13)*	,
⁴ Ni	1345.75(5)	0.0674(32)	8.86(42)	1.370(70)	0.1686(40)	0.076(8)
	• • • • • • • • • • • • • • • • • • • •	0.0687(22)*	9.04(28)*	1.345(45)*	0.1702(27)*	. ,
⁶ Ni	1424.8(10)	0.06(1)	7.6(13)	$1.16\binom{+23}{-17}$	0.1558(25)	0.062(9)
8 m r:	2024.07(47)	0.0204 (50)	2.47(72)	0.440/+13\	0.101/11)	0.030(0)
⁸ Ni _{0 N1} :	2034.07(17)	0.0261 (60)	3.17(73)	$0.449(^{+13}_{-8})$	0.101(11)	0.026(6)
⁰ Ni	1259.6(2)	0.086(14)	10.0(16)	1.50(24)	0.179(15)	
² Ni	1096.0(20)					
⁴ Ni	1024(1)	0.064(22)	7.0(24)	$5.6(^{+31}_{-14})$	$0.149(^{+23}_{-29})$	
	. ,	0.127(38)**	13.8(41)**	2.86(85)**	0.21(3)**	
⁶ Ni	992(2)	V /	/	(/	\ -/	
	1356(3)					
⁸ Zn	1330(3)					

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13]
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁶² Zn	954.0(4)	0.1224(59)	16.79(81)	4.22(20)	0.2166(52)	0.124(9)
	,	0.1224(59)*	16.79(81)*	4.22(20)*	,	()
⁴ Zn	991.56(5)	0.1494(40)	19.65(53)	$2.849(^{+78}_{-74})$	0.2342(32)	0.160(15)
	,	0.1518(40)*	19.97(52)*	$2.804(^{+75}_{-72})^*$,	,
⁶⁶ Zn	1039.2279(21)	0.1370(33)	17.29(42)	2.458(59)	0.2198(26)	0.135(10)
	,	0.1389(31)*	17.53(39)*	2.424(54)*		,
ⁱ⁸ Zn	1077.37(4)	0.1199(21)	14.55(25)	2.345(41)	0.2015(17)	0.124(15)
	, ,	0.1195(20)*	14.50(25)*	2.352(40)*	, ,	, ,
^{'0} Zn	884.46(8)	0.1510(80)	17.62(94)	$4.98(^{+28}_{-25})$	0.2218(59)	0.160(14)
		0.1559(80)*	18.20(93)*	$4.82(^{+26}_{-23})^*$	0.2254(58)*	
² Zn	652.70(5)	0.188(17)	21.1(19)	$18.3(^{+18}_{-14})$	0.243(11)	
⁴ Zn	605.9(8)	0.195(15)	21.2(16)	$25.6(^{+21}_{-18})$	0.2430(94)	
⁶ Zn	598.68(10)	0.145(18)	15.2(19)	36.6(45)	0.206(12)	
⁸ Zn	730.2(4)	0.077(19)	7.8(19)	25.5(63)	0.147(18)	
⁰ Zn	1492(1)	0.073(9)	7.1(9)	0.76(9)	0.141(9)	
² Ge	964					
⁴ Ge	1128.2 (4)	$0.208(^{+37}_{-27})$	$27.4(^{+49}_{-36})$	3.3(5)	$0.259(^{+23}_{-17})$	
⁵ Ge	956.94(8)	0.134(11)	16.9(14)	$3.79(^{+34}_{-29})$	0.2038(80)	0.099(19)
³ Ge	1015.801(16)	$0.1242(^{+80}_{-30})$	$15.07(^{+97}_{-37})$	$3.05(^{+8}_{-18})$	$0.1923(^{+62}_{-24})$	0.143(21)
Ge	1039.485(22)	0.1790(30)	20.89(35)	1.878(30)	0.2264(19)	0.1760(40)
		0.1786(30)*	20.84(35)*	1.882(30)*	0.2262(19)*	
² Ge	834.011(19)	0.2087(30)	23.46(34)	4.84(7)	0.2400(17)	0.213(6)
		0.2092(30)*	23.52(34)*	4.83(7)*	0.2402(17)*	
⁴ Ge	595.850(6)	0.306(15)	33.1(16)	17.8(9)	0.285(7)	0.300(6)
		0.301(15)*	32.6(16)*	18.0(9)*	0.285(7)*	
Ge	562.93(3)	0.2735(30)	28.61(31)	26.35(30)	0.2650(15)	0.268(8)
		0.2734(30)*	28.61(31)*	26.35(30)*	0.2650(15)*	
⁸ Ge	619.36(12)	0.222(14)	22.4(14)	$20.1(^{+14}_{-12})$	0.2346(74)	
⁰ Ge	659.15(4)	0.139(27)	13.6(26)	$23.6(^{+57}_{-38})$	0.183(18)	
		0.107(15)*	10.5(15)*	30.5(⁺⁵¹ ₋₃₈)*	0.160(11)*	
² Ge	1347.51(7)	0.121(15)	11.4(14)	$0.76(^{+11}_{-8})$	0.167(10)	
⁴ Ge	624.3(7)					
⁶ Ge	527					
⁶ Se	929(2)					
⁸ Se	854.2(3)	0.211(29)	25.6(35)	$4.25(^{+68}_{-41})$	$0.236(^{+15}_{-17})$	
⁰ Se	944.52(5)	0.169(11)	19.7(13)	$3.21(^{+22}_{-20})$	0.207(7)	0.38(8)
^{'2} Se	862.07(8)	0.1895(79)	21.30(88)	$4.52(^{+20}_{-18})$	0.2152(45)	0.207(25)
⁴ Se	634.74(6)	0.357(20)	38.7(21)	$11.07(^{+64}_{-58})$	0.2902(80)	0.387(8)
Se	559.102(5)	$0.432(^{+15}_{-6})$	$45.1(^{+16}_{-6})$	$17.28(^{+23}_{-58})$	$0.3133(^{+55}_{-20})$	0.420(10)
⁸ Se	613.727(3)	0.343(12)	34.6(12)	13.66(47)	0.2744(49)	0.335(9)
⁰ Se	666.27(7)	0.2521(82)	24.62(80)	12.33(41)	0.2314(38)	0.253(6)
³² Se	654.75(16)	0.183(10)	17.3(9)	18.5(10)	0.1939(53)	0.182(5)
⁴ Se	1454.55(8)	0.105(15)	9.61(14)	0.597(85)	0.145(10)	
⁶ Se	704.1(3)					
² Kr	709.72(14)	0.466(65)	52.4(72)	$4.86(^{+78}_{-60})$	0.319(22)	
⁴ Kr	455.61(10)	0.627(31)	68.0(34)	$33.0(^{+17}_{-16})$	0.363(9)	0.84(10)
⁶ Kr	423.96(7)	0.758(26)	79.2(27)	$39.1(^{+14}_{-13})$	0.3920(66)	0.824(24)
8Kr	455.033(23)	0.634(16)	64.0(16)	32.89(85)	0.3524(44)	0.633(39)
⁸⁰ Kr	616.60(10)	0.381(12)	37.2(11)	12.00(37)	0.2686(41)	0.370(21)
³² Kr	776.520(3)	$0.2251(^{+67}_{-61})$	$21.28(^{+63}_{-58})$	6.42(19)	$0.2031(^{+30}_{-28})$	0.223(10)
³⁴ Kr	881.615(3)	$0.1268(^{+48}_{-27})$	$11.60(^{+44}_{-25})$	$6.04(^{+13}_{-22})$	$0.1500(^{+29}_{-16})$	0.125(6)
⁸⁶ Kr	1564.75(10)	0.1056(95)	9.36(84)	$0.412\binom{-22}{-34}$	0.1347(60)	0.122(10)
⁸⁸ Kr	775.31(4)	0.0895(93)	7.7(8)	$16.3(^{+19}_{-15})$	$0.1222(^{+72}_{-66})$, ,
⁹⁰ Kr	707.13(5)	$0.154(^{+307}_{-61})$	$12.8(^{+257}_{-51})$	15(10)	$0.158(^{+116}_{-36})$	
⁰² Kr	769.1(5)	0.2073(70)	16.81(57)	$7.30(^{+26}_{-23})$	$0.1805(^{+30}_{-27})$	
⁹⁴ Kr	666.1(3)	0.247(28)	19.5(22)	$12.6(^{+16}_{-13})$	0.194(11)	
⁹⁶ Kr	554.1(5)	0.436(93)	33.4(71)	$17.9(^{+48}_{-31})$	0.254(27)	
⁴ Sr	471(1)	\ <i>y</i>	,	\-31 <i>'</i>	, ,	
^{'6} Sr	262.3(2)	$1.08(^{+15}_{-12})$	$113(^{+16}_{-13})$	295(37)	$0.443(^{+31}_{-25})$	
	` '	\=12 <i>\</i>	\-I3/	, , ,		continued on next po
					(P

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁷⁸ Sr	277.60(10)	0.97(10)	98(10)	248(+29)	0.413(21)	1.08(15)
30 Sr	385.88(8)	0.909(40)	88.8(39)	$52.1(^{+24}_{-22})$	0.3930(86)	0.959(36)
³² Sr	573.54(8)	$0.505(^{+29}_{-20})$	47.8(+28)	$12.97(^{+53}_{-71})$	$0.3930(80)$ $0.2884(^{+83}_{-57})$, ,
³⁴ Sr						0.513(20)
	793.22(6)	0.292(23)	26.7(21)	$4.45(^{+38}_{-32})$	0.2156(84)	0.289(44)
⁶⁶ Sr	1076.68(4)	0.1341(77)	11.89(68)	2.10^{+13}_{-11}	0.1439(41)	0.128(14)
		0.1278(58)*	11.34(52)*	$2.21(^{+11}_{-10})^*$	0.1405(32)*	
⁸⁸ Sr	1836.087(8)	$0.0903(^{+32}_{-23})$	$7.77(^{+27}_{-19})$	$0.2165(^{+56}_{-74})$	$0.1163(^{+20}_{-15})$	0.092(5)
		0.0897(24)*	7.72(21)*	$0.2179(^{+61}_{-58})^*$	0.1159(16)*	
⁹⁰ Sr	831.68(4)	$0.102(^{+44}_{-24})$	$8.5(^{+37}_{-20})$	10(3)	$0.122(^{+26}_{-14})$	0.113(34)
⁰² Sr	814.98(3)	$0.095(^{+68}_{-28})$	$7.7(^{+55}_{-23})$	12(5)	$0.116(^{+41}_{-17})$	0.114(48)
⁴ Sr	836.9(1)	$0.099(^{+66}_{-28})$	$7.8(^{+52}_{-22})$	10.0(40)	$0.117(^{+39}_{-16})$	0.118(47)
⁶ Sr	814.93(7)	$0.231(^{+16}_{-5})$	$17.7(^{+13}_{-4})$	$4.92(^{+10}_{-33})$	$0.1753(^{+62}_{-17})$	0.24(14)
8Sr	144.225(6)	1.240(61)	92.4(46)	4200(200)	0.4010(99)	1.282(39)
⁰⁰ Sr	129.16(9)	1.22(17)	88(12)	$6700(^{+1100}_{-800})$	0.392(27)	1.42(8)
⁰² Sr	126.0(2)	,	` ,	_800 <i>/</i>	,	` ,
⁰ Zr	288.9(2)					
² Zr	407.00(10)	$0.91(^{+12}_{-5})$	$86(^{+11}_{-5})$	$39.8(^{+24}_{-46})$	$0.368(^{+24}_{-10})$	0.91(9)
⁴ Zr	539.92(9)	$0.91(_{-5}^{+25})$ $0.437(_{-22}^{+25})$	$40.0(^{+23}_{-20})$	20.3(11)	$0.308(_{-10})$ $0.2506(_{-63}^{+72})$	0.438(25)
⁶ Zr	751.75(3)	$0.437(\frac{1}{-22})$ $0.157(\frac{+36}{-24})$	$40.0(\frac{1}{20})$ $13.9(\frac{1}{20})$	10.8(20)	$0.2506(^{+}_{-63})$ $0.148(^{+16}_{-12})$	
						0.166(31)
⁸ Zr	1057.03(4)	$0.086(^{+11}_{-9})$	$7.39(^{+92}_{-74})$	3.60(40)	$0.1077(^{+67}_{-54})$	0.26(8)
⁰ Zr	2186.274(15)	0.0627(34)	5.23(28)	$0.1302(^{+75}_{-67})$	0.0907(24)	0.0610(40
_		0.0631(30)*	5.27(25)*	$0.1294(^{+64}_{-59})^*$	0.0910(22)*	
² Zr	934.47(5)	0.0800(39)	6.49(31)	$7.15(^{+36}_{-33})$	0.1009(24)	0.083(6)
		0.0786(27)**	6.37(22)**	$7.29(^{+26}_{-24})^{**}$	0.1000(17)**	
⁴ Zr	918.75(5)	0.0629(45)	4.96(35)	$9.90(^{+76}_{-66})$	0.0882(31)	0.066(14)
		0.0646(58)**	5.09(46)**	$9.65(^{+95}_{-79})^{**}$	0.0894(40)**	
⁶ Zr	1750.497(15)	0.0314(33)	2.41(26)	0.79(9)	0.0615(33)	0.055(22)
¹⁸ Zr	1222.92(12)	>0.0093	>0.69	<16	>0.033	, ,
00Zr	212.530(9)	$1.110(^{+51}_{-36})$	$80.5(^{+37}_{-26})$	$791(^{+26}_{-35})$	$0.3556(^{+82}_{-57})$	1.11(6)
⁰² Zr	151.78(11)	1.35(12)	95.4(85)	$3000(^{+300}_{-200})$	0.387(17)	1.66(34)
⁰⁴ Zr	139.3(3)			$2931(^{+158}_{-143})$		1.00(54)
⁰⁶ Zr		1.958(100)	134.8(69)	2931(₋₁₄₃)	0.460(12)	
	152.1	1.55(5)	104.0(33)	$2600(^{+200}_{-150})$	0.36(1)	
⁰⁸ Zr	173.7					
³⁴ Mo	443.9(2)					
⁶ Mo	566.6(4)					
⁸⁸ Mo	740.54(4)					
⁰ Mo	947.97(2)					
² Mo	1509.51(3)	0.0975(43)	7.90(35)	$0.534(^{+24}_{-22})$	0.1061(23)	0.097(6)
⁴ Mo	871.098(16)	0.2072(74)	16.32(58)	$3.92(^{+14}_{-13})$	0.1525(27)	0.2030(40
⁶ Mo	778.237(10)	0.2775(59)	21.26(45)	5.15(11)	0.1740(19)	0.271(5)
⁸ Mo	787.384(13)	0.2695(57)	20.09(43)	5.00(11)	0.1692(18)	0.267(9)
⁰⁰ Mo	535.561(22)	0.530(22)	38.4(16)	$17.41(^{+77}_{-71})$	0.2340(49)	0.516(10)
⁰² Mo	296.610(4)	$0.976(^{+49}_{-40})$	$69.0(^{+35}_{-28})$	177 7(+76)	$0.2340(49)$ $0.3135(^{+79}_{-64})$	0.963(31)
⁰⁴ Mo	` '			$177.7(^{+76}_{-86})$ $1095(^{+102}_{-86})$	0.3135(₋₆₄) 0.354(15)	
⁰⁴ Mo	192.19(9)	1.28(11)	87.8(75)	1095(-86)	, ,	1.34(8)
	171.549(8)	1.290(65)	86.6(44)	$1817(^{+97}_{-87})$	0.351(9)	1.31(7)
⁰⁸ Mo	192.79(15)	1.74(46)	114(30)	$793(^{+281}_{-166})$	$0.403(^{+50}_{-57})$	1.6(5)
¹⁰ Mo	213.7(3)					
⁸ Ru	616.2*					
⁰ Ru	738.00(10)*					
² Ru	864.6(10)*					
⁴ Ru	1430.71(20)					
⁶ Ru	832.56(5)	0.2379(65)	18.22(50)	$4.28(^{+12}_{-11})$	0.1538(21)	0.251(10)
⁸ Ru	652.44(4)	0.401(13)	29.89(97)	$8.59(^{+29}_{-27})$	0.1970(32)	0.392(12)
⁰⁰ Ru	539.510(10)	0.4927(41)	35.74(30)	18.05(15)	0.21539(90)	0.490(5)
00	475.0962(10)	0.632(12)	44.68(88)	26.50(53)	0.2408(24)	0.630(10)
⁰² Ru		0.000(45)	EC 0(12)	82.8(17)	0.2717(28)	0.820(12)
⁰² Ru ⁰⁴ Ru	358.02(7)	0.826(17)	56.9(12)		0.2717(20)	0.020(12)
⁰⁴ Ru	358.02(7) 270.07(4)	0.826(17) 1.074(95)	72.1(64)	$255(^{+25}_{-21})$	0.306(14)	0.77(20)
⁰² Ru ⁰⁴ Ru ⁰⁶ Ru ⁰⁸ Ru						

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
¹⁰ Ru	240.71(10)	1.071(61)	68.4(39)	447(25)	0.2980(85)	1.05(12)
¹² Ru	236.66(17)	1.107(96)	69.0(60)	469(41)	0.299(13)	1.17(23)
14Ru	265.19(17)	1.107(30)	03.0(00)	403(41)	0.233(13)	1.17(23)
16Ru						
¹⁸ Ru	292.43(21)					
	327.6(3)					
² Pd	873.6(2)*					
⁴ Pd	813.8(1)*					
⁶ Pd ≈- ·	1415.31(10)					
⁸ Pd	862.89(10)	>0.0523	>3.897	<16.3	>0.06804	
⁰⁰ Pd	665.50(10)	$0.347(^{+16}_{-15})$	$25.1(^{+12}_{-11})$	9.0(4)	$0.1728(^{+40}_{-38})$	
⁰² Pd	556.44(5)	0.460(23)	32.5(16)	16.57(83)	0.1965(49)	0.460(30)
⁰⁴ Pd	555.81(4)	0.529(15)	36.4(10)	14.48(40)	0.2080(29)	0.535(35)
		0.529(15)*	36.4(10)*	14.48(40)*		
⁰⁶ Pd	511.850(23)	0.660(17)	44.3(12)	$17.50(^{+48}_{-45})$	0.2294(30)	0.660(35)
		0.646(15)*	43.3(10)*	17.89(42)*	0.2269(26)*	
⁰⁸ Pd	433.938(4)	0.764(20)	50.0(13)	34.42(90)	0.2437(33)	0.760(40)
		0.778(17)*	50.9(11)*	33.79(71)*	0.2459(26)*	
¹⁰ Pd	373.80(6)	0.865(23)	55.3(15)	63.7(17)	0.2562(34)	0.870(40)
	, ,	0.861(20)*	55.0(13)*	64.0(14)*	0.2556(29)*	,
¹² Pd	348.79(17)	$0.64(^{+13}_{-9})$	$40.1(^{+79}_{-57})$	121(20)	$0.218(^{+22}_{-15})$	0.66(11)
¹⁴ Pd	332.50(24)	$0.83(^{+17}_{-12})$	$51(^{+10}_{-7})$	118(20)	$0.245(^{+25}_{-18})$	0.38(12)
¹⁶ Pd	340.26(8)	$0.57(^{+22}_{-13})$	$34\binom{+13}{-8}$	153(43)	$0.201(^{+39}_{-23})$	0.62(18)
¹⁸ Pd	378.6(1)*	0.57(_13)	3-1(₋₈)	155(45)	0.201(_23)	0.02(10)
²⁰ Pd						
²² Pd	438(1)					
²⁴ Pd	499(9)					
	590(11)					
²⁶ Pd	686(17)					
²⁸ Pd	1311.4					
⁸ Cd	1394.7(3)*					
⁰⁰ Cd	1004.11(10)	0.33(2)	23.9(15)	1.211(73)	0.1616(49)	
⁰² Cd	776.55(14)	0.257(23)	18.2(16)	$5.61(^{+55}_{-46})$	0.1407(64)	
⁰⁴ Cd	658.00(20)	0.341(40)	23.5(28)	$9.7(^{+13}_{-10})$	0.160(10)	0.41(11)
⁰⁶ Cd	632.64(4)	0.407(12)	27.32(83)	9.86(30)	0.1726(26)	0.410(20)
⁰⁸ Cd	632.988(15)	0.419(14)	27.45(91)	$9.55(^{+33}_{-31})$	0.1730(29)	0.430(20)
¹⁰ Cd	657.7645(20)	0.426(21)	27.2(13)	$7.77(^{+40}_{-37})$	0.1723(43)	0.450(20)
		0.4283(93)*	27.36(59)*	$7.71(^{+18}_{-16})^*$	0.1728(19)*	
¹² Cd	617.520(10)	0.501(22)	31.3(14)	$9.04(^{+41}_{-38})$	0.1847(40)	0.510(20)
		0.502(22)*	31.3(14)*	$9.02(^{+41}_{-38})^*$	0.1848(40)*	
¹⁴ Cd	558.456(2)	0.536(25)	32.7(15)	$13.94(^{+68}_{-62})$	0.1888(44)	0.545(20)
-	550, 150(2)	0.536(25)*	32.7(15)*	$13.94(^{+68}_{-62})^*$	0.1888(44)*	0.0 .0(20)
¹⁶ Cd	513.490(15)	0.580(26)	34.5(16)	$19.59(^{+91}_{-89})$	0.1940(44)	0.560(20)
	5.15.150(15)	0.575(26)*	34.2(16)*	$19.76(^{+93}_{-86})^*$	0.1932(44)*	0.550(20)
¹⁸ Cd	197 77(0)					0 560(44)
²⁰ Cd	487.77(8)	0.578(44)	33.6(26) 26.9(31)	25.4(19)	0.1915(73)	0.568(44)
²⁰ Cd ²² Cd	505.94(17)	0.473(55)	, ,	25.9(30)	0.171(10)	0.48(6)
	569.45(8)	0.44(20)	24.5(111)	$15.4(^{+129}_{-48})$	$0.163(^{+34}_{-42})$	0.58(27)
²⁴ Cd	612.8(4)	0.35(19)	19.1(10)	13.4(+8)	0.144(4)	
²⁶ Cd	652.0(9)*	0.263(60)	14.0(32)	$13.1(^{+39}_{-24})$	0.124(14)	
²⁸ Cd	645.8(2)*					
³⁰ Cd	1325(1)*					
⁰² Sn	1472*					
⁰⁴ Sn	1260.1(3)	0.176(28)	12.1(19)	$0.73(^{+14}_{-10})$	$0.1104(^{+84}_{-92})$	
⁰⁶ Sn	1207.7(5)	0.209(33)	14.0(22)	0.76(12)	0.1187(94)	
⁰⁸ Sn	1206.07(10)	0.224(16)	14.7(11)	0.713(52)	0.1214(44)	
¹⁰ Sn	1211.88(15)	0.231(18)	14.7(11)	0.676(52)	0.1217(47)	
¹² Sn	1256.85(7)	0.232(11)	14.49(68)	$0.560(^{+28}_{-25})$	0.1207(29)	0.240(14)
¹⁴ Sn	1299.907(7)	0.215(13)	13.10(79)	$0.511(^{+33}_{-29})$	0.1147(34)	0.24(5)
¹⁶ Sn	1293.560(8)	0.2062(50)	12.27(30)	$0.546(^{+14}_{-13})$	0.1110(14)	0.209(6)
	.200,00(0)	0.2062(50)*	12.30(30)*	0.545(134)*	0.1112(14)*	0.200(0)
¹⁸ Sn	1229.666(16)	0.2000(30)	12.04(23)	$0.701(^{+14}_{-13})$	0.1100(10)	0.209(8)
		U.ZU/U(4U)	14.04(43)	V./VII 45 l		0.409(0)

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
		0.2041(40)*	11.07/33)*	0.711/14)*	0.1002/11)*	
²⁰ Sn	1171.265(15)	0.2041(40)* 0.1975(24)	11.87(23)*	0.711(14)*	0.1092(11)*	0.2020(40)
311	1171.203(13)	0.1973(24)	11.24(13) 11.19(17)*	0.937(12)	0.1063(7)	0.2020(40)
²² Sn	1140 51(2)		, ,	0.940(15)*	0.1061(8)*	0.1020(40)
²⁴ Sn	1140.51(3)	0.1887(45)	10.50(25)	1.120(27)	0.1027(13)	0.1920(40)
24Sn	1131.739(17)	0.1622(40)	8.83(22)	1.354(33)	0.0942(12)	0.1660(40)
26.5	4444-740	0.1626(40)*	8.85(22)*	1.351(33)*	0.0943(12)*	
²⁶ Sn	1141.15(4)	0.1269(73)	6.76(39)	$1.66(^{+10}_{-9})$	0.0825(24)	
²⁸ Sn	1168.82(4)	0.0771(38)	4.03(20)	$2.42(^{+13}_{-11})$	0.0636(16)	
³⁰ Sn	1221.26(5)	0.023(5)	1.18(26)	6.5(14)	0.0344(37)	
³² Sn	4041.20(15)	0.118(26)	5.9(13)	0.00321(71)	0.0771(85)	
³⁴ Sn	725.6	0.029(5)	1.42(28)	$69.8(^{+145}_{-103})$	0.0378(34)	
³⁶ Sn	688					
³⁸ Sn	715					
⁰⁶ Te	664.8(3)*					
⁰⁸ Te	625.20(20)	$0.387(^{+52}_{-41})$	$25.3(^{+34}_{-27})$	11.0(13)	$0.153(^{+10}_{-8})$	
¹⁰ Te	657.70(9)					
¹² Te	689.01(2)	0.46(4)	28.7(25)	5.7(5)	0.163(7)	
¹⁴ Te	708.74(15)	$0.556(^{+49}_{-41})$	$33.9(^{+30}_{-25})$	4.09(33)	$0.1774(^{+78}_{-65})$	
¹⁶ Te	678.92(3)					
¹⁸ Te	605.706(20)	$0.57(^{+11}_{-8})$	$32.9(^{+62}_{-45})$	8.8(14)	$0.175(^{+17}_{-12})$	
²⁰ Te	560.438(20)	0.685(33)	38.97(88)	$10.71(^{+54}_{-49})$	0.1903(46)	0.77(16)
²² Te	564.094(16)	0.650(30)	36.2(17)	$10.93(^{+52}_{-49})$	0.1834(44)	0.660(6)
²⁴ Te	602.7271(21)	0.560(28)	30.5(15)	$9.12(^{+48}_{-44})$	0.1684(42)	0.568(6)
²⁶ Te	666.352(10)	0.4738(93)	25.26(50)	6.53(13)	0.1532(15)	0.475(10)
²⁸ Te	743.219(7)	0.3800(71)	19.83(37)	4.724(88)	0.1358(13)	0.383(6)
³⁰ Te	839.494(17)	0.296(10)	15.12(51)	$3.30(^{+12}_{-11})$	0.1185(20)	0.295(7)
³² Te	974.22(9)	0.207(17)	10.39(86)	$2.24(^{+20}_{-17})$	0.0983(41)	-1(1)
³⁴ Te	1279.11(10)	0.1034(40)	5.08(20)	$1.152(^{+46}_{-53})$	0.0687(13)	
³⁶ Te	606.64(5)	0.122(18)	5.87(87)	$40.5(^{+70}_{-52})$	0.0739(55)	
³⁸ Te	443.1(10)*	0.122(10)	3.67(67)	40.5(₋₅₂)	0.0753(55)	
¹⁰ Xe	469.7(2)*					
¹² Xe						
14Xe	466.0(2)*	0.071/50)	EO 1/2E)	22.5(+14)	0.2257(67)	0.03(6)
¹⁶ Xe	450.08(19)	0.971(58)	59.1(35)	$22.5\binom{+14}{-13}$	0.2257(67)	0.93(6)
	393.6(2)	1.211(61)	72.1(36)	35.1(18)	0.2492(63)	1.21(6)
¹⁸ Xe	337.32(13)	1.383(+48)	$80.4(^{+28}_{-24})$	65.6(22)	$0.2633(^{+45}_{-40})$	1.40(7)
²⁰ Xe	332.61(4)	1.739(110)	98.9(63)	$65.2(^{+44}_{-39})$	0.2920(94)	1.73(11)
²² Xe	331.28(7)	1.349(68)	75.1(38)	$73.6(^{+39}_{-35})$	0.2544(64)	1.40(6)
²⁴ Xe	354.04(4)	1.072(44)	58.4(24)	$66.8(^{+29}_{-26})$	0.2243(46)	0.96(6)
²⁶ Xe	388.631(9)	0.826(60)	44.1(32)	$54.7(^{+43}_{-37})$	0.1949(70)	0.770(25)
²⁸ Xe	442.911(9)	0.790(38)	41.2(20)	$29.9(^{+15}_{-14})$	0.1885(46)	0.750(40)
³⁰ Xe	536.068(6)	0.634(29)	32.4(15)	$14.43(^{+60}_{-63})$	0.1671(39)	0.65(5)
³² Xe	667.715(2)	0.468(24)	23.5(12)	$6.54(^{+34}_{-33})$	0.1422(36)	0.460(30)
³⁴ Xe	847.041(23)	0.317(18)	15.57(88)	$2.95(^{+17}_{-16})$	0.1158(33)	0.34(6)
³⁶ Xe	1313.027(10)	0.217(33)	10.5(16)	$0.481(^{+86}_{-64})$	0.0949(75)	0.36(6)
³⁸ Xe	588.827(18)	0.38(10)	17.9(47)	15.1(40)	0.124(16)	
¹⁰ Xe	376.658(15)	0.522(40)	24.2(18)	$101.0(^{+84}_{-72})$	0.144(6)	0.324(14)
⁴² Xe	287.20(20)	0.69(10)	31.4(45)	289(42)	0.164(12)	
¹⁴ Xe	252.6*	0.73(17)	32.6(76)	$507(^{+154}_{-96})$	0.168(20)	
¹⁸ Ba	194*	, ,	` '	_30 <i>'</i>	, ,	
²⁰ Ba	186(1)*					
²² Ba	195.90(20)	2.34(22)	130(12)	$510(^{+54}_{-44})$	0.323(15)	2.81(28)
¹⁴ Ba	229.91(10)	2.096(78)	114.1(43)	$275(^{+11}_{-10})$	0.3024(56)	2.09(10)
²⁶ Ba	256.02(6)	1.740(80)	92.8(43)	$198.2(^{+96}_{-87})$	0.2726(63)	1.75(9)
²⁸ Ва					, ,	
	284.00(8)	$0.983(^{+52}_{-35})$	51.3(⁺²⁷ ₋₁₈)	$146.1(^{+54}_{-74})$	$0.2027(^{+54}_{-36})$	1.48(7)
³⁰ Ba	357.38(8)	1.138(46)	58.2(24)	$60.0(^{+25}_{-23})$	0.2159(44)	1.163(16)
³² Ba	464.508(12)	0.847(57)	42.4(29)	22.0(15)	0.1844(62)	0.86(6)
³⁴ Ba	604.7223(19)	0.665(19)	32.63(95)	7.55(22)	0.1617(23)	0.658(7)
³⁶ Ba	818.497(11)	0.413(11)	$19.87(^{+54}_{-53})$	2.684(73)	0.1262(17)	0.410(8)
³⁸ Ba	1435.816(10)	0.230(11)	10.87(52)	$0.290(^{+15}_{-13})$	0.0933(23)	0.230(9)
					(continued on next p

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
		0.233(11)*	11.00(48)*	$0.287(^{+14}_{-13})^*$	0.0939(23)*	
¹⁰ Ba	602.36(3)	0.484(38)	22.4(18)	$10.57\binom{+90}{-77}$	0.1340(52)	0.45(19)
¹² Ba	359.597(14)	0.676(35)	30.7(16)	$97.9(^{+54}_{-48})$	0.1549(32)	0.699(37)
¹⁴ Ba	199.326(6)	1.012(55)	45.2(25)	$1092(^{+63}_{-56})$	0.1902(52)	1.05(6)
⁴⁶ Ba				$1052(_{-56})$ $1252(_{-60}^{+66})$		
	181.05(5)	1.350(68)	59.1(29)	1232(_60)	0.2177(55)	1.355(48)
⁴⁸ Ba	141.8(1)					
²² Ce	136.4(5)	o = o(±100)	100(±54)	1050(000)	o o==(±50)	0.7(0)
²⁴ Ce	141.90(20)	$3.50(^{+100}_{-63})$	$190(^{+54}_{-34})$	1270(280)	$0.377(^{+50}_{-36})$	3.7(9)
²⁶ Ce	169.59(3)	3.65(46)	195(25)	$603(^{+87}_{-67})$	0.381(24)	2.68(48)
²⁸ Ce	207.09(18)	2.27(13)	118.5(68)	405(23)	0.2975(85)	2.28(22)
³⁰ Ce	253.85(16)	1.755(79)	89.7(40)	$203.8(^{+96}_{-88})$	0.2589(59)	1.74(10)
³² Ce	325.34(8)	1.69(11)	84.7(55)	$63.9(^{+44}_{-39})$	0.2515(84)	1.87(17)
⁴ Ce	409.20(10)	1.062(85)	52.1(42)	32.9(26)	0.1974(79)	1.04(9)
⁶⁶ Ce	552.20(11)	0.81(9)	39.0(43)	9.7(11)	0.1707(95)	0.81(9)
⁸ Ce	788.744(8)	0.467(10)	22.0(5)	2.85(6)	0.1283(14)	0.450(30)
¹⁰ Ce	1596.237(25)	0.300(15)	13.88(70)	$0.1313(^{+69}_{-63})$	0.1018(25)	0.298(6)
	- (- /	0.3016(80)*	13.97(37)*	$0.1305(^{+35}_{-34})^*$	0.1022(14)*	
¹² Ce	641.282(9)	0.4572(50)	20.8(2)	8.2(1)	0.1245(7)	0.480(6)
	(-)	0.4572(50)*	20.8(2)*	8.2(1)*	0.1245(7)*	2.300(0)
¹⁴ Ce	397.441(9)	$0.96(^{+30}_{-18})$	$43(^{+13}_{-8})$	42(10)	$0.1243(7)$ $0.179(^{+28}_{-17})$	0.83(9)
¹⁶ Ce	258.46(3)			$339(^{+43}_{-35})$		
	` '	0.97 (11)	42.5(48)		0.178(10)	1.14(12)
¹⁸ Ce	158.467(5)	2.02(11)	86.9(47)	1437(+83)	0.2548(69)	1.96(18)
⁵⁰ Ce	97.1	3.18(48)	134(20)	4530(680)	0.317(24)	3.3(8)
² Ce	81.7	$5.9(^{+15}_{-10})$	$246(^{+61}_{-41})$	3608(722)	$0.429(^{+51}_{-37})$	
²⁸ Nd	133.66(7)					
³⁰ Nd	159.05(14)	3.9(16)	199(81)	720(300)	0.373(77)	4.1(18)
³² Nd	213.16(12)	3.58(59)	179(30)	$224(^{+44}_{-32})$	0.354(29)	3.5(6)
³⁴ Nd	294.17(16)	$1.879(^{+58}_{-46})$	$92.3(^{+28}_{-23})$	$93.4(^{+24}_{-28})$	$0.2538(^{+39}_{-31})$	1.83(37)
⁶ Nd	373.72(16)	1.66(23)	80(11)	32.9(46)	0.236(16)	
³⁸ Nd	520.85(17)					
⁴⁰ Nd	773.73(6)	0.72(5)	33.3(23)	$2.04(^{+15}_{-13})$	0.1526(53)	
¹² Nd	1575.781(10)	0.265(13)	12.05(58)	$0.1583(^{+82}_{-72})$	0.0917(23)	0.265(6)
		0.272(13)*	12.36(59)*	$0.1543(^{+77}_{-70})^*$	0.0929(21)*	(-)
¹⁴ Nd	696.561(10)	0.504(15)	22.48(67)	4.92(15)	0.1253(19)	0.491(5)
Nu	090.301(10)	0.498(14)*	22.22(62)*		0.1255(19)	0.491(3)
¹⁶ Nd	4E2 77/E)			4.98(14)*	0.1512(22)	0.760(25)
·°ING	453.77(5)	0.748(22)	32.76(96)	27.90(82)	0.1512(22)	0.760(25)
10		0.705(22)*	30.88(96)*	29.61(92)*		
^{l8} Nd	301.702(16)	1.338(30)	57.5(13)	116.1(26)	0.2004(22)	1.35(5)
ⁱ⁰ Nd	130.21(8)	2.707(30)	114.4(13)	2168(24)	0.2825(16)	2.760(40)
		2.697(30)*	113.9(13)*	2176(24)*		
⁵² Nd	72.51(19)	4.10(22)	170.2(91)	6100(330)	0.3447(92)	4.20(28)
⁴ Nd	70.8(1)	$2.35(^{+82}_{-49})$	$96(^{+33}_{-20})$	11111(2886)	$0.258(^{+42}_{-58})$	
⁶ Nd	66.9					
⁰ Sm	122(3)					
³² Sm	131(1)					
³⁴ Sm	163	4.14(34)	203(17)	605(50)	0.365(15)	4.2(6)
³⁶ Sm	254.92(16)	$2.71(^{+28}_{-23})$	$130(^{+13}_{-11})$	128(12)	$0.292(^{+15}_{-12})$	2.73(27)
³⁸ Sm	346.75(20)	1.30(19)	61.4(90)	60.3(88)	0.200(15)	1.41(23)
^{l0} Sm	, ,	$1.053(^{+75}_{-65})$	$48.8(^{+35}_{-30})$	9.1(6)	, ,	1.71(23)
	530.68(10)				0.179(6)	
¹² Sm	768.0(2)	0.70(9)	32(4)	$2.17\binom{+32}{-25}$	0.144(9)	0.000
¹⁴ Sm	1660.027(10)	0.259(19)	11.55(85)	$0.1249(^{+99}_{-86})$	0.0869(32)	0.262(6)
^{l6} Sm	747.115(13)	0.24(_7)	10.5(_31)	$7.3(^{+30}_{-73})$	0.083(_ ₁₂)	
¹⁸ Sm	550.255(8)	0.713(35)	30.7(15)	$11.23(^{+58}_{-53})$	0.1416(35)	0.720(30)
		0.724(35)*	31.1(15)*	$11.06(^{+56}_{-51})^*$	0.1426(35)*	
⁵⁰ Sm	333.863(9)	1.347(26)	56.9(11)	70.1(14)	0.1929(19)	1.350(30)
		1.345(24)*	56.8(10)*	70.2(13)*		
⁵² Sm	121.7817(3)	3.4611(21)	143.67(8)	2042.7(16)	0.3065(1)	3.46(6)
	\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.4611(21)*	143.67(8)*	2042.7(16)*	0.3065(1)*	- (-)
⁵⁴ Sm	81.981(15)	4.345(44)	177.2(18)	4327(44)	0.3404(17)	4.36(5)
	001(10)	15(11)	(10)	1027(11)	0.5404(17)	1.50(5)

Table 3 (continued)

56 Sm 58 Sm 50 Sm 38 Gd 40 Gd	E ₂ ⁺ (keV) 75.89(5) 72.8 70.9	(e ² b ²) 4.347(43)* <7.2	(W.u.) 177.3(18)*	(ps)		(e^2b^2)
⁵⁸ Sm ⁵⁰ Sm ³⁸ Gd ⁴⁰ Gd ⁴² Gd	72.8		177 3(18)*			
⁵⁸ Sm ⁵⁰ Sm ³⁸ Gd ⁴⁰ Gd ⁴² Gd	72.8			4325(43)*	0.3405(16)*	
⁵⁸ Sm ⁵⁰ Sm ³⁸ Gd ⁴⁰ Gd ⁴² Gd	72.8		<289	>3000	< 0.434	
⁵⁰ Sm ³⁸ Gd ⁴⁰ Gd ⁴² Gd		\7.2	1203	> 3000	VO. 15 1	
³⁸ Gd ⁴⁰ Gd ⁴² Gd						
⁴⁰ Gd ⁴² Gd	220.79(20)	2.18(13)	102.9(61)	$307.5(^{+195}_{-173})$	0.2513(77)	
⁴² Gd	328.6(3)	2.13(13)	10210(01)	307.13(=1/3)	0.2013(77)	
	515.37(8)					
¹⁴ Gd	743.00(17)					
⁴⁶ Gd	1971.97(22)	>0.014	>0.60	<1	>0.019	
⁴⁸ Gd	784.432(15)	$0.228(^{+114}_{-55})$	$9.8(^{+45}_{-24})$	6.0(19)	$0.078(^{+16}_{-10})$	
⁵⁰ Gd	638.045(14)	\=33 <i>/</i>	\- <u>2</u> 47	, ,	\-10 <i>'</i>	
⁵² Gd	344.2789(12)	1.655(65)	68.7(27)	49.0(19)	0.2053(40)	1.67(14)
⁵⁴ Gd	123.0709(9)	3.872(16)	157.95(65)	1706.9(71)	0.3113(7)	3.89(7)
		3.872(16)*	157.95(65)*	1706.9(71)*	0.3113(7)*	,
⁵⁶ Gd	88.970(1)	4.70(11)	188.3(44)	$3194(^{+77}_{-73})$	0.3399(40)	4.64(5)
		4.70(11)*	188.3(44)*	3195(⁺⁷⁷ ₋₇₃)*	0.3399(40)*	(-)
⁵⁸ Gd	79.5128(15)	5.09(11)	200.8(43)	$3638(^{+23}_{-20})$	0.3510(38)	5.02(5)
⁵⁰ Gd	75.26(1)	5.183(13)	200.91(50)	3915.9(98)	0.3510(30)	5.25(6)
⁵² Gd	71.6	5.50(11)	$209.9(^{+43}_{-41})$	3980(80)	$0.3588(^{+36}_{-34})$	3.23(0)
⁵⁴ Gd	73.3(2)	$5.29(^{+28}_{-25})$	$198(^{+11}_{-9})$	4000(200)	$0.3489(^{+92}_{-82})$	
⁵⁶ Gd	70(1)	0.25/	.55(_9)	1500(200)	5.5 105(-82)	
⁴⁰ Dy	202.20(20)					
⁴² Dy	315.9(4)					
¹⁴ Dy	492.5(3)					
⁴⁶ Dy	682.9(3)					
⁴⁸ Dy	1677.3					
50 Dy	803					
⁵² Dy	613.82(7)	0.43(23)	17.8(95)	10.8(58)	0.101(27)	0.43(23)
⁵⁴ Dy				$38.6(^{+20}_{-18})$		
⁵⁶ Dy	334.34(3)	2.42(12)	98.8(49)		0.2387(59)	2.39(13)
⁵⁸ Dy	137.77(8)	3.72(12)	149.2(48)	1194(39)	0.2933(47)	3.710(40)
⁵⁰ Dy	98.9180(10)	4.66(11)	183.7(43)	2421(57)	0.3255(38)	4.66(5)
⁵² Dy	86.7878(3)	5.049(40)	195.7(16)	2916(233)	0.3360(13)	5.13(11)
⁵⁴ Dy	80.661(3)	5.227(84)	199.3(32)	$3203(^{+52}_{-50})$	0.3391(27)	5.35(11)
⁵⁶ Dy	73.392(5)	5.616(68)	210.1(26)	3452(42)	0.3486(21)	5.60(5)
⁵⁸ Dy	76.587(1)					
⁷⁰ Dy	74.96(6)					
¹⁴ Er	72(?)					
···Er ⁴⁸ Er	329(1)					
⁵⁰ Er	646.6(3)					
	1578.87(18)					
⁵² Er	808.27(10)					
⁵⁴ Er	560.8(1)	1 C 4E (00)	CC 0(22)	49.0(+25)	0.1003(40)	1.04(7)
⁵⁶ Er	344.51(6)	1.645(80)	66.0(32)	$48.9(^{+25}_{-23})$	0.1893(46)	1.64(7)
⁵⁸ Er	192.15(3)	3.41(13)	134.4(51)	355(14)	0.2703(52)	3.05(24)
⁵⁰ Er	125.8(1)	4.34(15)	168.2(58)	1322(46)	0.3024(52)	4.38(20)
⁵² Er	102.04(3)	5.04(25)	192.2(95)	$1966(^{+103}_{-93})$	0.3232(81)	5.01(6)
⁵⁴ Er	91.38(2)	5.50(12)	206.3(45)	2264(49)	0.3348(37)	5.45(6)
⁵⁶ Er	80.5776(20)	5.748(89)	212.2(33)	$2687(^{+42}_{-41})$	0.3396(26)	5.83(5)
⁵⁸ Er	79.804(1)	5.723(45)	207.9(16)	2741(22)	0.3361(13)	5.79(10)
⁷⁰ Er	78.599(22)	5.838(68)	208.7(24)	2747(32)	0.3368(20)	5.82(10)
⁷² Er	77.0(4)					
⁷⁴ Er	81.6					
⁵² Yb	1531.4(5)					
⁵⁴ Yb	821.3(2)					
⁵⁶ Yb	536.4(1)					
⁵⁸ Yb	358.2(1)	1.84(22)	72.5(87)	36.0(43)	0.193(12)	1.87(23)
⁶⁰ Yb	243.1(1)	2.44(16)	94.6(62)	172(11)	0.2202(72)	2.66(16)
⁵² Yb	166.72(4)	3.47(11)	132.4(42)	$609(^{+20}_{-19})$	0.2606(41)	3.53(15)
⁵⁴ Yb	123.310(23)	4.33(14)	162.4(53)	1345(43)	0.2886(47)	4.38(26)

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
⁶⁶ Yb	102.37(3)	5.20(20)	191.9(74)	1776(68)	0.3137(60)	5.24(31)
⁶⁸ Yb	87.73(1)	5.75(12)	208.8(44)	$2152(^{+46}_{-44})$	0.324(3)	5.58(30)
⁷⁰ Yb	84.25468(8)	5.721(70)	204.6(25)	2308(28)	0.3239(20)	5.79(13)
⁷² Yb	78.7427(6)		, ,	$2394(^{+61}_{-58})$		
⁷⁴ Yb		6.09(15)	214.3(53)		0.3315(41)	6.04(7)
⁷⁶ Yb	76.471(1)	5.85(16)	202.9(56)	2589(⁺⁷³ ₋₆₉)	0.3226(44)	5.94(6)
	82.135(15)	5.189(89)	177.1(30)	2645(45)	0.3014(26)	5.30(19)
⁷⁸ Yb	84.0(3)					
⁵⁴ Hf	1513					
⁵⁶ Hf	858					
⁵⁸ Hf	476.36(11)					
⁶⁰ Hf	389.40(10)					
⁶² Hf	285	1.34(10)	51.1(38)	148(11)	0.1574(59)	1.35(12)
⁶⁴ Hf	210.7(3)	1.82(17)	68.3(64)	435(41)	0.1819(85)	2.14(18)
⁶⁶ Hf	158.64(5)	$3.46(^{+17}_{-15})$	$127.7(^{+63}_{-55})$	717(33)	$0.2488(^{+61}_{-54})$	3.50(20)
⁶⁸ Hf	124.10(5)	4.393(36)	159.58(30)	1239(10)	0.2781(11)	4.30(23)
⁷⁰ Hf	100.80(17)	5.11(18)	182.7(64)	1740(61)	0.2976(52)	5.3(12)
⁷² Hf	95.22(4)	5.77(10)	203.1(35)	$1710(^{+31}_{-39})$	0.314(3)	4.47(33)
⁷⁴ Hf	90.985(19)	5.38(20)	186.5(70)	$1986(^{+77}_{-71})$	0.301(6)	4.88(31)
⁷⁶ Hf	88.349(24)	5.42(17)	184.9(58)	$2069(^{+67}_{-63})$	0.299(5)	5.27(10)
⁷⁸ Hf	93.1803(10)	4.736(63)	159.3(21)	2168(29)	0.2779(18)	4.82(6)
⁸⁰ Hf	93.3243(20)	4.6470(30)	153.953(99)	2203.9(14)	0.273190(88)	4.67(12)
82Hf	97.79(9)		133.003(00)		1.2.3120(00)	(12)
⁸⁴ Hf	107.1(1)					
⁶⁰ W	609.9(2)					
62W						
64W	449.4(3) 332.7					
⁶⁶ W						
	252.0(3)	0.00(4.0)	115.0(50)	0.05(4.5)	0.004=(50)	0.04(40)
⁶⁸ W	199.3(2)	3.22(16)	117.0(58)	307(15)	0.2317(58)	3.24(18)
⁷⁰ W	156.72(13)	3.50(17)	125.1(61)	716(35)	0.2396(58)	3.51(10)
⁷² W	123.2(1)	5.363(15)	188.78(53)	979.8(27)	0.29434(41)	5.02(48)
⁷⁴ W	113.0(1)	4.38(35)	152(12)	$1479(^{+128}_{-109})$	0.264(11)	3.97(28)
⁷⁶ W	108.3(7)	4.953(31)	169.1(11)	1431.1(90)	0.27856(87)	
⁷⁸ W	105.90(9)	4.552(58)	153.1(20)	1642(21)	0.2650(17)	
⁸⁰ W	103.531(10)	4.15(14)	137.5(66)	$1879(^{+66}_{-61})$	0.251(5)	4.25(24)
⁸² W	100.10598(7)	4.123(42)	134.6(14)	2014(21)	0.2485(13)	4.20(8)
		4.123(42)*	134.6(14)*	2014(21)*		
⁸⁴ W	111.2174(4)	3.706(35)	119.2(11)	1813(173)	0.2339(11)	3.78(13)
		3.705(35)*	119.2(11)*	1813(17)*	0.2339(11)*	
⁸⁶ W	122.630(15)	3.500(38)	111(12)	1519(16)	0.2257(12)	3.50(12)
88W	143.16(9)	$2.71(^{+42}_{-33})$	$85(^{+14}_{-12})$	1255(173)	$0.198(^{+15}_{-13})$	
90W	207	(-33)		55(1.5)		
92W	219 (?)					
⁶² Os	706.7(3)					
⁶⁴ Os						
	548.0(2)					
⁶⁶ Os	432.0(3)					
⁵⁸ Os	341.20(20)					
⁷⁰ Os	286.70(14)	121.				
⁷² Os	227.77(9)	$3.28(^{+21}_{-19})$	$115.5(^{+74}_{-67})$	167(10)	$0.2241(^{+72}_{-65})$	3.30(23)
⁷⁴ Os	158.60(10)	$4.55(^{+18}_{-15})$	$157.6(^{+64}_{-51})$	$512(^{+17}_{-20})$	$0.2618(^{+53}_{-43})$	4.7(6)
⁷⁶ Os	135.1(7)	3.20(48)	109(16)	1210(180)	0.218(16)	
⁷⁸ Os	132.20(17)	$4.12(^{+31}_{-25})$	$139(^{+10}_{-9})$	$999(^{+65}_{-69})$	$0.2456(^{+91}_{-75})$	
⁸⁰ Os	132.11(10)	4.07(38)	135(13)	1012(94)	0.242(11)	3.6(8)
⁸² Os	126.89(8)	3.896(85)	127.2(28)	1177(26)	0.2352(26)	3.86(35)
⁸⁴ Os	119.77(9)	3.214(79)	103.4(25)	1645(40)	0.2121(26)	3.23(16)
⁸⁶ Os	137.159(8)	3.064(72)	97.2(23)	$1208(^{+29}_{-28})$	0.2056(34)	2.90(10)
99 -			_,			
⁸⁸ Os	155.021(11)	2.500(36)	78.2(11)	1007(15)	0.1844(13)	2.55(5)
		2.518(36)*	78.7(11)*	1000(14)*		
⁹⁰ Os	186.718(2)	2.354(90)	72.6(28)	538(22)	0.1777(33)	2.35(6)
					(continued on next

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13]
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
		2.240(00)*	72.4/20)*	F20/22*	0.1775(26)*	
¹⁹² Os	205 70442(0)	2.348(90)*	72.4(28)*	539(22)* 418(⁺²² ₋₂₀)	0.1775(36)*	2 100(20)
US	205.79442(9)	2.03(10) 2.03(10)*	61.7(30)	$418(\frac{1}{20})$ $419(\frac{1}{20})^*$	0.1639(40)	2.100(30)
¹⁹⁴ Os	219 500(6)	2.03(10)	61.6(30)*	$419(_{-20})$	0.1637(40)*	
⁹⁶ Os	218.509(6)					
⁹⁸ Os	324.4(10)					
⁶⁸ Pt	465.4(5) 581.40(10)					
170 Pt	508.9(10)					
¹⁷² Pt	, ,					
174Pt	457.60(10)					
176 Pt	394.2(10)	2.55(22)	07.1/70)	100.0/00)	0.1000(00)	2.50(20)
⁷⁸ Pt	264.0(3)	$2.55(23) \\ 4.24(^{+33}_{-29})$	87.1(79) 143(⁺¹¹ ₋₁₀)	109.0(98)	$0.1896(86)$ $0.2427\binom{+94}{-84}$	2.58(28)
⁸⁰ Pt	170.30(10)			412(30)		4.01(40)
⁸² Pt	153.21(7)	4.66(43)	154(14)	540(50)	0.253(11)	4.81(49)
⁸⁴ Pt	154.97(9)	$3.46(^{+23}_{-17})$	$113.0(^{+76}_{-54})$	699(⁺³⁵ ₋₄₄)	$0.2160(^{+73}_{-52})$	2.70/27)
⁸⁶ Pt	162.98(6)	3.79(20)	121.9(64)	539(28)	0.2244(59)	3.78(27)
⁸⁸ Pt	191.53(4)	3.04(12)	96.4(38)	368(⁺¹⁵ ₋₁₄)	0.200(4)	2.99(13)
oo Pt	265.63(5)	2.60(47)	81(15)	104(19)	0.183(17)	2.69(49)
⁹⁰ Pt	295.80(4)	1.854(90)	57.2(28)	$88.2(^{+45}_{-41})$	0.1537(38)	1.75(22)
¹⁹² Pt	316.50714(15)	1.940(65)	59.0(20)	$61.1(^{+21}_{-20})$	0.1561(27)	1.870(40)
⁹⁴ Pt	328.464(5)	1.631(68)	48.9(20)	$60.9(^{+27}_{-24})$	0.1421(30)	1.642(22)
0.5		1.632(68)*	48.9(20)*	$60.8(^{+26}_{-24})^*$	0.1422(30)*	
⁹⁶ Pt	355.6841(20)	1.401(68)	41.4(20)	$48.3(^{+25}_{-22})$	0.1308(32)	1.375(16)
		1.405(68)*	41.6(20)*	$48.1(^{+25}_{-22})^*$	0.1310(32)*	
⁹⁸ Pt	407.22(5)	1.072(50)	31.3(15)	$32.6(^{+16}_{-15})$	0.1137(27)	1.080(12)
⁰⁰ Pt	470.10(20)					
²⁰² Pt	534.90(20)					
²⁰⁴ Pt	872(1)					
¹⁷² Hg	672.8(4)					
¹⁷⁴ Hg	647					
¹⁷⁶ Hg	613.3(10)					
¹⁷⁸ Hg	558.00(20)					
¹⁸⁰ Hg	434.30(10)	1.45(21)	48.0(70)	17.5(25)	0.1373(99)	
¹⁸² Hg	351.7(3)	1.677(88)	54.8(29)	$42.4(^{+24}_{-21})$	0.1466(38)	
¹⁸⁴ Hg	366.78(9)	1.623(71)	52.2(25)	$35.7(^{+19}_{-15})$	0.143(3)	2.05(49)
¹⁸⁶ Hg	405.33(14)	1.47(21)	46.6(66)	$24.3(^{+40}_{-31})$	0.135(10)	1.41(24)
¹⁸⁸ Hg	412.8(1)	$1.72(^{+27}_{-26})$	53.8(84)	$19.0(^{+26}_{-25})$	0.145(13)	
¹⁹⁰ Hg	416.32(14)					
¹⁹² Hg	422.79(10)					
¹⁹⁴ Hg	427.89(9)					
¹⁹⁶ Hg	425.98(10)	1.143(82)	33.8(24)	24.5(18)	0.1152(41)	1.15(5)
¹⁹⁸ Hg	411.80250(17)	0.9612(70)	28.05(20)	$34.34(^{+26}_{-24})$	0.1049(4)	0.990(12)
²⁰⁰ Hg	367.943(10)	0.855(28)	24.6(81)	66.8(22)	0.0983(16)	0.853(11)
²⁰² Hg	439.512(8)	0.615(21)	17.47(60)	39.0(1)	0.0828(14)	0.612(10)
²⁰⁴ Hg	436.552(8)	0.424(21)	11.89(59)	$58.5(^{+31}_{-28})$	0.0683(17)	0.427(7)
8		0.4288(44)*	12.02(12)*	57.84(⁺⁶⁰ ₋₅₉)*	0.06871(36)*	57-1-1 (17)
²⁰⁶ Hg	1068.20(20)	>0.0000097	>0.00027	<30000	>0.00033	
²⁰⁸ Hg	669.0(5)	> 0.0000037	> 0.00027	<30000	>0.00055	
²¹⁰ Hg	643					
¹⁸⁰ Pb	1168(1)					
¹⁸² Pb	888.3(3)					
184 Pb	701.5					
¹⁸⁶ Pb		0.190(53)	6.0(17)	16 6(46)	0.0475(66)	
¹⁸⁸ Pb	662.4(5)		6.0(17)	16.6(46)	0.0475(66)	
¹⁹⁰ Рb	723.90(20)	0.255(85)	8.0(27)	8.0(27)	0.0546(91)	
¹⁹⁰ РБ	773.9(4)					
	853.64(18)					
¹⁹⁴ Pb	965.08(15)					
¹⁹⁶ Pb	1049.20(9)					
¹⁹⁸ Pb	1063.5(2)					
²⁰⁰ Pb	1026.61(14)					
					(4	continued on next page

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13]
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
²⁰² Pb	960.67(5)	>0.0034	>0.0975	<144.3	>0.006036	
²⁰⁴ Pb	899.165(25)	0.1587(69)	4.45(19)	4.34(19)	0.04078(89)	0.1620(40)
	,	0.1607(64)*	4.51(18)*	4.29(17)*	,	` ,
²⁰⁶ Pb	803.054(25)	0.0989(28)	2.737(77)	12.23(35)	0.03198(45)	0.1000(20)
	` ,	0.0987(27)*	2.732(75)*	12.26(34)*	, ,	` ,
²⁰⁸ Pb	4085.52(4)	0.287(18)	7.84(49)	0.00125(8)	0.0541(17)	0.300(30)
	, ,	0.301(16)*	8.22(45)*	$0.00119(^{+7}_{-6})^*$	0.0554(15)*	, ,
²¹⁰ Pb	799.7(1)					
		0.051(15)**	1.38(40)**	24.2(71)**	0.0227(33)**	0.051(15)
²¹² Pb	804.9(5)					
²¹⁴ Pb	836(2)					
¹⁹⁰ Po	233					
¹⁹² Po	262					
¹⁹⁴ Po	319.8(3)	$2.99(^{+70}_{-48})$	$90(^{+20}_{-14})$	37(7)	$0.179(^{+18}_{-15})$	
¹⁹⁶ Po	463.12(9)	1.59(21)	47.0(62)	11.6(15)	0.1294(85)	
¹⁹⁸ Po	604.94(10)					
		$1.30(^{+29}_{-24})^{**}$	$37.9(^{+85}_{-70})^{**}$	$3.80(^{+86}_{-70})^{**}$	0.116(12)**	
²⁰⁰ Po	665.90(10)					
		1.06(6)**	30.5(17)**	$2.89(^{+17}_{-15})^{**}$	0.104(3)**	
²⁰² Po	677.20(20)					
		$1.12(^{+34}_{-26})^{**}$	$31.8(^{+97}_{-74})^{**}$	$2.52(^{+75}_{-59})^{**}$	$0.106(^{+15}_{-13})^{**}$	
²⁰⁴ Po	684.341(10)					
²⁰⁶ Po	700.66(3)					
²⁰⁸ Po	686.526(20)					
²¹⁰ Po	1181.40(2)	0.0200(40)	0.54(11)	8.8(18)	0.0138(14)	0.0200(40)
²¹² Po	727.330(9)					
²¹⁴ Po	609.316(4)	>0.794	>20.9	<6	>0.0863	
²¹⁶ Po	549.76(4)					
²¹⁸ Po	509.70(10)					
¹⁹⁸ Rn	339.0(2)					
²⁰⁰ Rn	432.60(20)					
²⁰² Rn	504.00(10)	$1.00(^{+32}_{-26})$	$28.4(^{+91}_{-84})$	$12.1(^{+43}_{-30})$	$0.098(^{+15}_{-14})$	
²⁰⁴ Rn	542.90(10)	$1.51(^{+59}_{-45})$	$42.3(^{+165}_{-126})$	$5.6(^{+24}_{-16})$	$0.120(^{+21}_{-20})$	
²⁰⁶ Rn	575.30(10)					
²⁰⁸ Rn	635.8(2)					
²¹⁰ Rn	643.8(1)					
²¹² Rn	1273.8(2)					
²¹⁴ Rn	694.7	>0.0012	>0.033	<2000	>0.0033	
²¹⁶ Rn	461.4(2)					
²¹⁸ Rn	324.320(18)	>0.89	>23	<115	>0.088	
²²⁰ Rn	240.986(6)	1.872(63)	47.46(60)	$210.2(^{+73}_{-68})$	0.1270(22)	1.86(7)
²²² Rn	186.211(13)	2.36(15)	59.1(37)	461(32)	0.1417(45)	2.37(16)
²⁰⁶ Ra	474.3(5)					
²⁰⁸ Ra	520.2(2)					
²¹⁰ Ra	603.5(5)					
²¹² Ra	629.3(1)					
²¹⁴ Ra	1382.3(1)					
²¹⁶ Ra	688.2(2)					
²¹⁸ Ra	388.90(10)	$1.00(^{+10}_{-9})$	$25.5(^{+26}_{-22})$	43.0(40)	$0.0910(^{+47}_{-39})$	1.10(20)
²²⁰ Ra	178.47(12)					
²²² Ra	111.12(2)	4.51(36)	113.0(90)	749(69)	0.1915(76)	4.54(39)
²²⁴ Ra	84.373(3)	3.990(52)	98.8(13)	1078(14)	0.1790(12)	3.99(15)
²²⁶ Ra	67.67(1)	5.16(13)	126.2(32)	905(35)	0.2024(25)	5.15(14)
²²⁸ Ra	63.823(20)	5.98(20)	144.7(48)	792(37)	0.2167(36)	5.99(28)
²³⁰ Ra	57.4(1)					
²³² Ra	54.5(10)					
²¹⁴ Th	623.0(10)					
²¹⁶ Th	1478.2(1)					
²¹⁸ Th	689.6(6)					

Table 3 (continued)

Nuclide	$E_{2_{1}^{+}}$	B(E2)↑	B(E2)	τ	eta_2	B(E2)↑ [13
	(keV)	(e^2b^2)	(W.u.)	(ps)		(e^2b^2)
²²⁰ Th	386.5(1)					
²²² Th	183.3	2.98(25)	74.6(63)	346(31)	0.1522(64)	3.01(32)
²²⁴ Th	98.1(3)	$3.96(^{+29}_{-25})$	$98.0(^{+72}_{-62})$	851(58)	$0.1744(^{+64}_{-55})$,
²²⁶ Th	72.20(4)	6.82(35)	170.9(87)	570(29)	0.2303(59)	6.85(42)
²²⁸ Th	57.759(4)	7.05(12)	170.3(29)	584(18)	0.2299(19)	7.06(24)
²³⁰ Th	53.227(11)	8.14(21)	194.5(50)	$512(^{+14}_{-13})$	0.2456(32)	8.04(10)
²³² Th	49.369(9)	9.02(38)	213.1(90)	$470(^{+21}_{-19})$	0.2571(54)	9.28(10)
²³⁴ Th	49.55(6)	7.92(64)	185(15)	534(51)	0.2395(97)	8.0(7)
²³⁶ Th	48.4(SY)	()	(,		-1(-: /	(- /
²²⁶ U	81.3(6)					
²²⁸ U	59(14)					
²³⁰ U	51.727(23)	9.5(11)	227(26)	376(49)	0.260(15)	9.7(12)
²³² U	47.573(8)	9.91(79)	234(19)	366(34)	0.264(11)	10.0(10)
²³⁴ U	43.4981(10)	10.22(50)	239(12)	$359(^{+19}_{-17})$	0.2662(66)	10.66(20)
²³⁶ U	45.2440(20)	10.96(28)	253.1(65)	332.9(+87)	0.2741(35)	11.61(15)
²³⁸ U	44.916(13)	12.19(62)	278(14)	$300(^{+16}_{-15})$	0.2741(36)	12.09(20)
²⁴⁰ U	45(1)	12110(02)	273(11)	300(-15)	0.27 11(30)	12.00(20)
²⁴² []	47.8(SY)					
²³⁶ Pu	44.63(10)					
²³⁸ Pu	44.076(18)	12.26(34)	279.9(78)	$253.9(^{+73}_{-69})$	0.2821(39)	12.61(17)
²⁴⁰ Pu	42.824(8)	13.13(39)	296.4(88)	$238.2(^{+73}_{-69})$	0.2904(42)	13.02(30)
²⁴² Pu	44.54(2)	14.01(75)	312.8(88)	$222(^{+13}_{-11})$	0.2983(80)	13.40(16)
²⁴⁴ Pu	44.2(4)	13.61(68)	301(15)	$228(^{+12}_{-11})$	0.2924(73)	13.68(16)
²⁴⁶ Pu	46.7(SY)	13.01(00)	301(13)	220(-11)	0.232 1(73)	13.00(10)
²³⁸ Cm	35(7)					
²⁴⁰ Cm	38(5)	14.26(98)	322(22)	190(16)	0.296(10)	14.3(6)
²⁴² Cm	42.13(5)	11.20(50)	322(22)	130(10)	0.230(10)	1 1.5(0)
²⁴⁴ Cm	42.965(10)	14.58(73)	322(16)	$181.9(^{+95}_{-87})$	0.2963(74)	14.67(17)
²⁴⁶ Cm	42.851(5)	14.94(75)	326(16)	$177.5(^{+94}_{-65})$	0.2983(75)	14.94(19)
²⁴⁸ Cm	43.40(3)	14.43(75)	312(16)	$183.5(^{+100}_{-91})$	0.2857(74)	14.99(19)
²⁵⁰ Cm	47.8(SY)	11.15(75)	312(10)	103.5(_91)	0.2037(71)	11.55(15)
²⁴⁴ Cf	41(20)					
²⁴⁶ Cf	44(20)					
²⁴⁸ Cf	41.53(6)					
²⁵⁰ Cf	42.721(5)	16.0(16)	338(34)	141(16)	0.298(15)	16.0(16)
²⁵² Cf	45.72(5)	16.7(11)	353(26)	133(11)	0.304(10)	16.7(11)
²⁴⁶ Fm	47(SY)	10.7(11)	333(20)	133(11)	0.307(10)	10.7(11)
²⁴⁸ Fm	44(10)					
²⁵² Fm	46.6(12)					
²⁵⁴ Fm	45.000(15)					
²⁵⁶ Fm	48.3					
²⁵² No	46.4(10)					
²⁵⁴ No	46.4(10) 44.2(4)					
256 Rf	44.2(4)					

Table 4 Shell model $E(2_1^+)$ -, $B(E2)\uparrow$ -values for even-even nuclei.

Nuclide	$E(2_1^+)$ (MeV)	$B(E2)\uparrow (e^2b^2)$	Model space	Effective interaction	Comments
⁶ He	1.894	0.000465	p	CKIHE	[36]
¹⁰ Be	3.704	0.007	p	PWT	P(5-16) interaction [37]
¹² Be	3.319	0.005465	p	PWT	
¹⁰ C	7589	0.0037945	p	PWT	
¹² C	1443	0.007215	p	PWT	
¹⁸ O	1.999	0.0016315	sd	USDB	[38]
²⁰ O	1.746	0.0020585		USDB	[50]
²² 0			sd		
1837	3.158	0.001984	sd	USDB	
¹⁸ Ne	1.999	0.001491	sd	USDB	
²⁰ Ne	1.7467	0.046	sd	USDB	
²² Ne	1.3629	0.0447	sd	USDB	
²⁴ Ne	2.1108	0.0363	sd	USDB	
²⁶ Ne	2.0633	0.0358	sd	USDB	
²⁸ Ne	1.6228	0.0311	sd	USDB	
³⁰ Ne					
²⁰ Mg	1.7461	0.035	sd	USDB	
²² Mg	1.3629	0.06	sd	USDB	
IVIG					
²⁴ Mg	1.5023	0.07	sd	USDB	
²⁶ Mg	1.8969	0.0605	sd	USDB	
²⁸ Mg	1.518	0.0548	sd	USDB	
30 Mg	1.5914	0.0443	sd	USDB	
²⁴ Si	2.1108	0.0422	sd		
²⁶ Si	1.8969	0.0414	sd		
²⁸ Si	1.9317	0.0707	sd		
³⁰ Si	2.2656	0.0409	sd		
³² Si	2.0526	0.0409	sd		
³⁴ Si					
	5.2452	0.0293	sd	an new t	
³⁶ Si	1.723	0.0271	sdpf	SDPFU	Not very good: shape coexistence [39]
³⁸ Si	1.395	0.03575	sdpf	SDPFU	
⁴⁰ Si	1.217	0.0541	sdpf	SDPFU	
³⁰ S	2.2656	0.0506	sd		
³² S	2.16	0.0413	sd		
³⁴ S	2.1314	0.0312	sd		
³⁶ S	3.3823	0.0176	sd		
³⁸ S	1.459	0.027	sdpf	SDPFU	
⁴⁰ S	0.942		sdpf	SDPFU	
⁴² S		0.0463	-		
2	0.999	0.0564	sdpf	SDPFU	
³² Ar	2.0526	0.0449	sd		
³⁴ Ar	2.1314	0.0383	sd		
⁴⁶ Ca	1.2799	0.0047	pf	GXPF1A	[40,41]
⁴⁸ Ca	3.7356	0.0061	pf	GXPF1A	
⁵⁰ Ca	1.1923	0.0047	pf	GXPF1A	
⁴⁴ Ti	1.2874	0.0535	pf	GXPF1A	
⁴⁶ Ti	1.0054	0.0635	pf	GXPF1A	
⁴⁸ Ti	1.01	0.0529	pf	GXPF1A	
⁵⁰ Ti	1.624	0.0511	pf	GXPF1A	
⁵² Ti	1.1064	0.0511	pf pf	GXPF1A GXPF1A	
			c		
⁵⁴ Ti	1.395	0.0519	pt f	GXPF1A	
⁵⁶ Ti	1.176	0.052	pf	GXPF1A	
⁴⁶ Cr	1.0054	0.0955	pf	GXPF1A	
⁴⁸ Cr	0.7887	0.1273	pf	GXPF1A	
⁵⁰ Cr	0.7872	0.1107	pf	GXPF1A	
⁵² Cr	1.5101	0.0849	pf	GXPF1A	
⁵⁴ Cr	0.8949	0.1138	pf	GXPF1A	
⁵⁶ Cr	1.0715	0.1109	pf	GXPF1A	
⁵⁸ Cr	0.9062	0.1143	pf	GXPF1A	
⁶⁰ Cr					
62.0	0.958	0.0972	pf	GXPF1A	
⁶² Cr	0.84	0.0793	pf	GXPF1A	
⁵⁰ Fe	0.787	0.1151	pf	GXPF1A	
⁵² Fe	0.883	0.1124	pf	GXPF1A	
⁵⁴ Fe	1.4483	0.0761	pf	GXPF1A	
⁵⁶ Fe	0.8903	0.1228	pf	GXPF1A	
⁵⁸ Fe	0.8478	0.1468	pf	GXPF1A	
⁶⁰ Fe	0.8173	0.1345	pf	GXPF1A	
⁶² Fe	0.8173	0.1101	pf	GXPF1A	
⁶⁴ Fe					
54x::	0.9008	0.0784	pf	GXPF1A	
⁵⁴ Ni	1.448	0.0375	pf	GXPF1A	
⁵⁶ Ni	2.599	0.0823	pf	GXPF1A	
⁵⁸ Ni	1.478	0.0599	pf	GXPF1A	
⁶⁰ Ni	1.474	0.0946	pf	GXPF1A	
⁶² Ni					

Table 4 (continued)

Nuclide	E(2 ₁ ⁺) (MeV)	$B(E2)\uparrow (e^2b^2)$	Model space	Effective interaction	Comments
⁶⁴ Ni	1.268	0.0706	pf	GXPF1A	
⁶⁶ Ni	1.265(1.624)	0.0365(0.0464)	•	GXPF1A(Jun-45)	
⁶⁸ Ni	1.963	0.0376		Jun-45	
⁷⁰ Ni	1.599	0.0427		Jun-45	
⁷² Ni	1.505	0.0483		Jun-45	
⁷⁴ Ni	1.442	0.044		Jun-45	
⁷⁶ Ni	1.374	0.0296		Jun-45	
⁶² Zn	1.013	0.1479	pf	GXPF1A	
⁶⁴ Zn	0.973	0.1492	pf	GXPF1A	
⁶⁶ Zn	0.95	0.129	pf	GXPF1A	
⁶⁸ Zn	0.879(1.104)	0.0799(1.493)		GXPF1A(Jun-45)	
⁷⁰ Zn	1.109	0.1581		Jun-45	
⁷² Zn	1.007	0.1773		Jun-45	
⁷⁴ Zn	0.966	0.1763		Jun-45	
⁷⁶ Zn	0.976	0.1521		Jun-45	
⁷⁸ Zn	1.045	0.1097		Jun-45	
¹⁰⁴ Sn	1.496	0.0225	jj55	jj55pn	jj55 model space: 1d5/2,1d3/2,2s1/2,0g7/2,0h11/2 [43]
¹⁰⁶ Sn	1.414	0.0345	jj55	jj55pn	

References used in the Tables

```
1950Mc79
               F.K. McGowan, Phys. Rev. 80, 923 (1950).
1951Mc14
               F.K. McGowan, Phys. Rev. 81, 1066 (1951).
1952Gr18
               R.L. Graham, J.L. Wolfson, R.E. Bell, CAN. J. PHYS. 30, 459 (1952).
1952Mc03
               F.K. McGowan, Phys. Rev. 85, 142 (1952).
1953Da23
               W.G. Davev. P.B. Moon. Proc. Phys. Soc. (London) 66A. 956 (1953).
1953Mc39
               C.C. McMullen, M.W. Johns, Phys. Rev. 91, 418 (1953).
1954Br96
               H.N. Brown, R.A. Becker, Phys. Rev. 96, 1372 (1954).
1954Me55
               F.R. Metzger, W.B. Todd, Phys. Rev. 95, 853 (1954).
1954Su10
               A.W. Sunyar, Phys. Rev. 93, 1122 (1954).
1955Co55
               C.F. Coleman, PHIL. MAG. 46, 1135 (1955).
1955Gr07
               R.L. Graham, J.L. Wolfson, M.A. Clark, Phys. Rev. 98, 1173A (1955).
1955He64
               N.P. Heydenburg, G.M. Temmer, Phys. Rev. 100, 150 (1955); Erratum Priv.Comm. (May 1956).
1955Me10
               F.R. Metzger, J. Franklin Inst. 260, 239 (1955).
1955Me35
               F.R. Metzger, Phys. Rev. 98, 200 (1955).
               B.E. Simmons, D.M. Van Patter, K.F. Famularo, R.V. Stuart, Phys. Rev. 97, 89 (1955).
1955Si12
1955St57
               P.H. Stelson, F.K. McGowan, Phys. Rev. 99, 112 (1955).
1955Su64
               A.W. Sunyar, Phys. Rev. 98, 653 (1955).
1956Ba45
               R. Barloutaud, T. Griebine, M. Riou, COMPT. REND. 242, 1284 (1956).
1956Be54
               E.E. Berlovich, Izvest. Akad. Nauk SSSR, Ser. Fiz. 20, 1438 (1956); Columbia Tech. Transl. 20, 1315 (1957).
1956De22
               S. Devons, G. Manning, J.H. Towle, Proc. Phys. Soc. (London) 69A, 173 (1956).
1956De57
               H. DeWaard, T.R. Gerholm, Nucl. Phys. 1, 281 (1956).
1956He83
               R.H. Helm, Phys. Rev. 104, 1466 (1956).
1956Hu49
               T. Huus, J.H. Bjerregaard, B. Elbek, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 30, No.17 (1956).
1956Me13
               F.R. Metzger, Phys. Rev. 101, 286 (1956).
1956Me59
               F.R. Metzger, Phys. Rev. 103, 983 (1956).
1956Te26
               G.M. Temmer, N.P. Heydenburg, Phys. Rev. 104, 967 (1956).
1957Al43
               D.G. Alkhazov, D.S. Andreev, K.I. Erokhina, I.K. Lemberg, Zhur. EKSPTL. I TEORET. FIZ. 33, 1347 (1957); SOVIET PHYS. JETP 6, 1036 (1958).
1957Ra11
               R. Barloutaud, P. Lehmann, A. Leveque, Compt. Rend. Acad. Sci. 245, 523 (1957).
               E.E. Berlovich, Zhur. Eksptl. i Teoret. Fiz. 33, 1522 (1957); Soviet Phys. JETP 6, 1176 (1958).
1957Be73
1957He48
               N.P. Heydenburg, G.F. Pieper, C.E. Anderson, Phys. Rev. 108, 106 (1957).
1957Sw17
               C.P. Swann, F.R. Metzger, Phys. Rev. 108, 982 (1957).
1958Al22
               D.G. Alkhazov, A.P. Grinberg, G.M. Gusinskii et al., Zhur. EKSPTL. i TEORET. Fiz. 35, 1056 (1958); Soviet Phys. JETP 8, 737 (1959)
1958Be72
               E.Y. Berlovich, K. Grotovski, M. Bonitz et al., Nucl. Phys. 6, 672 (1958).
1958De33
               N.N. Delyagin, V.S. Shpinel, Izvest. Akad. Nauk SSSR, Ser. Fiz. 22, 861 (1958); Columbia Tech. Transl. 22, 855 (1959).
               L.W. Fagg, Phys. Rev. 109, 100 (1958).
1958Fa01
1958Kn36
               V. Knapp, Proc. Phys. Soc. (London) 71 A, 194 (1958).
1958Mc02
               F.K. McGowan, P.H. Stelson, Phys. Rev. 109, 901 (1958).
1958Na01
               O. Nathan, Nucl. Phys. 5, 401 (1958).
1958Pi05
               G.F. Pieper, C.E. Anderson, N.P. Heydenburg, BULL. Am. PHYS. Soc. 3, No.1, 38, N13 (1958).
1958Ra12
               V. Ramsak, M.C. Olesen, B. Elbek, Nucl. Phys. 6, 451 (1958).
1958Ra14
               V.K. Rasmussen, F.R. Metzger, C.P. Swann, Phys. Rev. 110, 154 (1958).
1958Sh01
               R.D. Sharp, W.W. Buechner, Phys. Rev. 109, 1698 (1958).
1958St32
               P.H. Stelson, F.K. McGowan, Phys. Rev. 110, 489 (1958).
1958Su54
               A.W. Sunyar, Proc. U.N. Intern, Conf. Peaceful Uses At. Energy, 2nd, Geneva 14, 347 (1958); Priv. Comm. (November 1961).
1958Su57
               A.W. Sunyar, Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva 14, 347 (1958).
1958Va04
               H. Vartapetian, R. Foucher, COMPT. REND. 246, 939 (1958).
               D.G. Alkhazov, A.P. Grinberg, I.K. Lemberg, V.V. Rozhdestvenskii, Zhur. Eksptl. I Teoret. Fiz. 36, 322 (1959); Soviet Phys. JETP 9, 222 (1959).
1959Al91
1959Al95
               D.G. Alkhazov, A.P. Grinberg, K.I. Erokhina, I.Kh. Lemberg, Izvest. AKAD. NAUK SSSR, Ser. Fiz. 23, 223 (1959); COLUMBIA TECH. TRANSL. 23, 215 (1960).
1959Ar56
               R.G. Arns, R.E. Sund, M.L. Wiedenbeck, Phys. Rev. Letters 2, 50 (1959).
1959Be57
               R.E. Bell, M.H. Jorgensen, Nucl. Phys. 12, 413 (1959).
1959Re73
               E.E. Berlovich, V.G. Fleisher, V.I. Breslav, B.K. Preobrazhenskii, Zhur. Eksptl. i Teoret. Fiz. 36, 1589 (1959); Soviet Phys. JETP 9, 1128 (1959).
1959Bi10
               M. Birk, G. Goldring, Y. Wolfson, Phys. Rev. 116, 730 (1959).
1959Bu12
               N.A. Burgov, Y.V. Terekhov, G.E. Bizina, Zhur. Eksptl. i Teoret. Fiz. 36, 1612 (1959); Soviet Phys. JETP 9, 1146 (1959).
1959Io21
               B. Johansson, T. Alvager, W. Zuk, ARKIV FYSIK 14, 439 (1959).
19590f14
               S. Ofer, A. Schwarzschild, Phys. Rev. Letters 3, 384 (1959).
1959Si74
               J.G. Siekman, Thesis, State University of Groningen (1959).
1960Ad01
               B.M. Adams, D. Eccleshall, M.J.L. Yates, Proc. Conf. Reactions between Complex Nuclei, 2nd, Gatlinbrug, A.Zucker, E.C.Halbert, F.T.Howard, Eds., John
               Wiley and Sons, Inc., New York, 95 (1960).
1960An07
               D.S. Andreyev, A.P. Grinberg, K.I. Erokhina, I.Kh. Lemberg, Nucl. Phys. 19, 400 (1960).
1960An09
               D.S. Andreyev, A.P. Grinberg, G.M.Gusinskii, K.I. Erokhina, I.Kh. Lemberg, Izvest. Akad. Nauk SSSR, Ser. Fiz. 24, 1474 (1960); COLUMBIA TECH.
               Transl. 24, 1466 (1961).
1960BaZZ
               R. Barloutaud, CEA-1531 (1960).
               R.E. Bell, S. Bjornholm, J.C. Severiens, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 32, No.12 (1960).
1960Be25
1960Be28
               E.E. Berlovich, V.V. Ilin, A.I. Kislyakov et al., Izvest. Akad. Nauk SSSR, Ser. Fiz. 24, 1492 (1960); Columbia Tech. Transl. 24, 1483 (1961).
1960Bo07
               E. Bodenstedt, E. Matthias, H.J. Korner et al., Nucl. Phys. 15, 239 (1960).
1960De08
               N.N. Delyagin, Zhur. Eksptl. I Teoret. Fiz. 38, 1111 (1960); Soviet Phys. JETP 11, 803 (1960).
               M. Deutsch, A. Hrynkiewicz, R. Stiening, H. Wilson, MIT-LNS Progr. Report 116 (May 1960); TID-11592 (1960).
1960De18
1960Dz03
               B.S. Dzhelepov, M.A. Dolgoborodova, Izvest. Akad. Nauk. SSSR, Ser. Fiz. 24, 304 (1960); Columbia Tech. Transl. 24, 292 (1961).
1960El07
               B. Elbek, M.C. Olesen, O. Skilbreid, Nucl. Phys. 19, 523 (1960).
```

1962St02

1962Va22

P.H. Stelson, F.K. McGowan, Nucl. Phys. 32, 652 (1962).

```
1960Go08
               H.E. Gove, C. Broude, Proc. Conf. Reactions between Complex Nuclei, 2nd, Gatlinburg, A.Zucker, E.C.Halbert, F.T.Howard, Eds., John Wiley and
               Sons Inc. New York 57 (1960).
1960Le07
               I.Kh. Lemberg, Proc. Conf. Reactions between Complex Nuclei, 2nd, Gatlinburg, A.Zucker, E.C.Halbert, F.T.Howard, Eds., John Wiley and
               Sons, Inc., New York, 112 (1960).
1960Mc13
               F.K. McGowan, P.H. Stelson, Phys. Rev. 120, 1803 (1960).
1960Me06
               F.R. Metzger, C.P. Swann, V.K. Rasmussen, Nucl. Phys. 16, 568 (1960).
1960Na13
               O Nathan V.I. Popov Nuclear Phys. 21 631 (1960).
1960Re05
               K. Reibel, A.K. Mann, Phys. Rev. 118, 701 (1960).
1960Un02
               I.P. Unik, UCRL-9093, 41 (1960).
1960Wi18
               W.R. Wisseman, R.M. Williamson, Nucl. Phys. 21, 688 (1960).
1961Ak02
               A.F. Akkerman, D.K. Kaipov, Y.K. Shubnyi, Zhur. Eksptl. i Teoret. Fiz. 40, 1031 (1961); Soviet Phys. JETP 13, 725 (1961).
1961An07
               D.S. Andreev, V.D. Vasilev, G.M. Gusinskii et al., Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 832 (1961); COLUMBIA TECH. TRANSL. 25, 842 (1962).
1961Be43
               E.M. Bernstein, E.Z. Skurnik, Phys. Rev. 121, 841 (1961).
               E. Bodenstedt, H.J. Korner, C. Gunther, J. Radeloff, Nucl. Phys. 22, 145 (1961).
1961Bo05
1961Bo08
               E. Bodenstedt, H.-J. Korner, G. Strube et al., Z. Physik 163, 1 (1961).
1961Bo25
               E. Bodenstedt, H.J. Korner, E. Gerdau et al., Z. Physik 165, 57 (1961).
               J. Burde, M. Rakavy, S. Ofer, Phys. Rev. 124, 1911 (1961).
1961Bu17
1961Cl06
               M.A. Clark, H.E. Gove, A.E. Litherland, CAN. J. Phys. 39, 1241 (1961).
1961Cr01
               H. Crannell, R. Helm, H. Kendall, J. Oeser, M. Yearian, Phys. Rev. 123, 923 (1961).
1961De38
               S. Devons, Proc. Conf. Electromagnetic Lifetimes and Properties of Nuclear States, Gatlinburg, Tennessee (October 1961); NAS-974, p.86 (1962).
1961Fo08
               R. Foucher, Thesis, University of Paris (1961).
               C.J. Gallagher, Jr., H.L. Nielsen, O.B. Nielsen, Phys. Rev. 122, 1590 (1961).
1961Ga05
1961Ge14
               J.S. Geiger, R.L. Graham, G.T. Ewan, Proc. Conf. Electromagnetic Lifetimes and Properties Nuclear States, Gatlinburg, Tennessee (October 1961);
               NAS-NRC Publ. 974, 71 (1962).
1961Go09
               G. Goldring, Z. Vager, Nucl. Phys. 26, 250 (1961).
1961Go24
               S. Gorodetzky, R. Manquenouille, R. Richert, A.C. Knipper, Proc. Conf. Electromagnetic Lifetimes and Properties Nuclear States, Gatlinburg, Ten-
               nessee (October 1961); NAS-NRC Publ. 974, 79 (1962).
1961Ha21
               O. Hansen, M.C. Olesen, O. Skilbreid, B. Elbek, Nucl. Phys. 25, 634 (1961).
1961Ha36
               W.D. Hamilton, Proc. Phys. Soc. (London) 78, 1064 (1961).
1961Ke06
               W.H. Kelly, G.B. Beard, Nucl. Phys. 27, 188 (1961).
1961Ke07
               G. Kegel, MITS-LNS PROGR, REPORT 112 (May, 1961).
1961KeZZ
               G.H.R. Kegel, Thesis, Massachusetts Inst. Tech. (1961).
1961La09
               F. Lacoste, G.R. Bishop, Nucl. Phys. 26, 511 (1961).
1961Mc01
               F.K. McGowan, P.H. Stelson, Phys. Rev. 122, 1274 (1961).
1961Mc18
               F.K. McGowan, P.H. Stelson, R.L. Robinson, Proc. Conf. Electromagnetic Lifetimes and Properties Nuclear States, Gatlinburg, Tennessee (October
               1961); NAS-NRC Publ.974, 119 (1962).
1961Me11
               F.R. Metzger, Nucl. Phys. 27, 612 (1961).
1961Na06
               T.D. Nainan, Phys. Rev. 123, 1751 (1961).
1961Ra05
               V.K. Rasmussen, F.R. Metzger, C.P. Swann, Phys. Rev. 123, 1386 (1961).
1961Re02
               D.H. Rester, M.S. Moore, F.E. Durham, C.M. Class, Nucl. Phys. 22, 104 (1961).
1961Sa21
               J.-J. Samueli, A. Sarazin, J. Phys. Radium 22, 692 (1961).
               P.C. Simms, N. Benczer-Koller, C.S. Wu, Phys. Rev. 121, 1169 (1961).
1961Si01
1961Sk01
               E.Z. Skurnik, B. Elbek, M.C. Olesen, Nucl. Phys. 22, 316 (1961).
1961St02
               P.H. Stelson, F.K. McGowan, Phys. Rev. 121, 209 (1961).
1961St04
               R. Stiening, M. Deutsch, Phys. Rev. 121, 1484 (1961).
1962Af02
               O.F. Afonin, Y.P. Gangrskii, I.K. Lemberg et al., ZHUR. EKSPTL. I TEORET. Fiz. 43, 1995 (1962); SOVIET PHYS. JETP 16, 1406 (1963).
               A.F. Akkerman, E.Y. Vilkovskii, D.K. Kaipov, V.N. Chekanov, Zhur. EKSPTL. I TEORET. Fiz. 43, 1268 (1962); Sov. Phys, JETP 16, 899 (1963).
1962Ak01
1962Ba14
               E. Bashandy, M.S. El-Nesr, Nucl. Phys. 34, 483 (1962).
1962Ba30
               E. Bashandy, M.S. El-Nesr, Arkiv Fysik 22, 341 (1962).
1962Ba38
               R.W. Bauer, M. Deutsch, Phys. Rev. 128, 751 (1962).
               J. Bellicard, P. Barreau, Nucl. Phys. 36, 476 (1962).
1962Be18
1962Be46
               E.E. Berlovich, Y.K. Gusev, V.V. Ilin, M.K. Nikitin, ZHUR. EKSPTL. I TEORET. FIZ. 43, 1625 (1962); SOVIET PHYS. JETP 16, 1144 (1963).
1962Bi05
               M. Birk, A.E. Blaugrund, G. Goldring et al., Phys. Rev. 126, 726 (1962).
1962Bo13
               E. Bodenstedt, H.J. Korner, E. Gerdau et al., Z. Physik 168, 103 (1962).
1962Bo17
               E.C. Booth, K.A. Wright, Nucl. Phys. 35, 472 (1962).
1962Bo18
               E. Bodenstedt, H.J. Korner, E. Gerdau et al., Z. Рнузік 170, 355 (1962).
1962Ch19
               P.R. Christensen, Nucl. Phys. 37, 482 (1962).
1962De14
               T.J. De Boer, H. Voorthuis, J. Blok, Physica 28, 417 (1962).
1962Ec01
               D. Eccleshall, B.M. Hinds, M.J.L. Yates, Nucl. Phys. 32, 190 (1962).
1962Ec03
               D. Eccleshall, B.M. Hinds, M.J.L. Yates, N. MacDonald, Nucl. Phys. 37, 377 (1962).
1962El03
               M.S. El-Nesr, E. Bashandy, Z. Physik 168, 349 (1962).
               K.I. Erokhina, I.K. Lemberg, Izv. Акар. Nauk SSSR, Ser. Fiz. 26, 205 (1962); Columbia Tech. Transl. 26, 205 (1963).
1962Er05
1962Fo05
               D.B. Fossan, B. Herskind, Phys. Lett. 2, 155 (1962).
               Y.P. Gangrskii, I.K. Lemberg, Izvest. Akad. NAuk SSSR, Ser. Fiz. 26, 1001 (1962); COLUMBIA TECH. TRANSL. 26, 1009 (1963).
1962Ga13
1962Ga19
               Y.P. Gangrskii, I.K. Lemberg, Izvest. Akad. Nauk SSSR, Ser. Fiz. 26, 212 (1962); Columbia Tech. Transl. 26, 212 (1963).
1962Ka14
               E. Karlsson, E. Matthias, S. Ogaza, ARKIV FYSIK 22, 257 (1962).
1962Ka28
               D.K. Kaipov, Y.K. Shubnyi, R.B. Begzhanov, A.A. Islamov, Zhur. Eksptl. 1 Teoret. Fiz. 43, 808 (1962); Soviet Phys. JETP 16, 572 (1963).
1962Li10
               N. Lingappa, E. Kondaiah, C. Badrinathan et al., Nucl. Phys. 38, 146 (1962).
1962Na06
               O. Nathan, Nucl. Phys. 30, 332 (1962).
1962Ri07
               F.W. Richter, D. Wiegandt, Z. NATURFORSCH. 17a, 638 (1962).
```

V.D. Vasilev, K.I. Erokhina, I.K. Lemberg, Izvest. Aкad. Nauk SSSR 26, 999, (1962); Columbia Tech. Transl. 26, 1007 (1963).

```
1962Wa19
               F.E. Wagner, F.W. Stanek, P. Kienle, H. Eicher, Z. Physik 166, 1 (1962).
1963Ak01
               A.F. Akkerman, V.L. Kochetkov, V.N. Chekanov, Izv. Akad. Nauk SSSR, Ser. Fiz. 27, 862 (1963); Bull. Acad. Sci. USSR, Phys.Ser. 27, 852 (1964).
1963Ak02
               A.F. Akkerman, V.L. Kochetkov, V.N. Chekanov et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 27, 865 (1963); Bull. Acad. Sci. USSR, Phys.Ser. 27, 855 (1964).
1963Al31
               D.G. Alkhazov, D.S. Andreev, V.D. Vasilev et al., Izv. AKAD. NAUK SSSR, Ser. Fiz. 27, 1285 (1963); BULL. ACAD. SCI. USSR, Phys. Ser. 27, 1263 (1964).
1963Ba24
               E. Bashandy, M.S. El-Nesr, S.C. Pancholi, Nucl. Phys. 41, 346 (1963).
1963Be14
               G.B. Beard, W.H. Kelly, Nucl. Phys. 43, 523 (1963).
1963Be29
               R.B. Begzhanov, A.A. Islamov, D.K. Kaipov, Y.K. Shubnyi, Zh. EKSPERIM. I TEOR. FIZ. 44, 137 (1963); Soviet Phys. JETP 17, 94 (1963).
1963Bj04
               J. Bjerregaard, B. Elbek, O. Hansen, P. Salling, Nucl. Phys. 44, 280 (1963).
1963Bl04
               D. Blum, P. Barreau, J. Bellicard, Phys. Lett. 4, 109 (1963).
1963Bu03
               J. Burde, M. Rakavy, G. Rakavy, Phys. Rev. 129, 2147 (1963).
1963Cu03
               W.M. Currie, Nucl. Phys. 47, 551 (1963).
1963De21
               T.J. De Boer, E.W. Ten Napel, J. Blok, Physica 29, 1013 (1963).
1963Fo02
               D.B. Fossan, B. Herskind, Nucl. Phys. 40, 24 (1963).
1963Fr05
               E. Friedland, H.R. Lemmer, Z. Physik 174, 507 (1963).
1963Go05
               G. Goldring, D. Kedem, Z. Vager, Phys. Rev. 129, 337 (1963); G.Goldring, Priv. Сомм. (April 1972).
1963Gr04
               R. Graetzer, E.M. Bernstein, Phys. Rev. 129, 1772 (1963).
1963He01
               B. Herskind, D.B. Fossan, Nucl. Phys. 40, 489 (1963).
1963Ka29
               D.K. Kaipov, R.B. Begzhanov, A.V. Kuzminov, Y.K. Shubnyi, Zh. EKSPERIM. I TEOR. FIZ. 44, 1811 (1963); Soviet Phys. JETP 17, 1217 (1963).
1963Ko02
               H.I. Korner, I. Radeloff, E. Bodenstedt, Z. Physik 172, 279 (1963).
               A. Li, A. Schwarzschild, Phys. Rev. 129, 2664 (1963).
1963Li04
               A.E. Litherland, M.J.L. Yates, B.M. Hinds, D. Eccleshall, Nucl. Phys. 44, 220 (1963).
1963Li07
1963Pr04
               J.R. Pruett, Phys. Rev. 129, 2583 (1963).
               Y.K. Shubnyi, Zh. Eksperim. i Teor. Fiz. 45, 460 (1963); Soviet Phys. JETP 18, 316 (1964).
1963Sh17
1963Sk01
               S.J. Skorka, T.W. Retz-Schmidt, Nucl. Phys. 46, 225 (1963).
1963Zi02
               W. Zimmermann, Ann. Phys. (Leipzig) 12, 45 (1963).
1964Be25
               R.B. Begzhanov, A.A. Islamov, Zh. Eksperim. i Teor. Fiz. 46, 1486 (1964); Soviet Phys. JETP 19, 1005 (1964).
1964Be32
               J. Bellicard, P. Barreau, D. Blum, Nucl. Phys. 60, 319 (1964).
1964Be36
               E.E. Berlovich, Y.K. Gusev, D.M. Khai, I. Shenaikh, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 80 (1964); Bull. Acad. Sci. USSR, Phys. Ser. 28, 77 (1965).
1964Bo22
               E.C. Booth, B. Chasan, K.A. Wright, Nucl. Phys. 57, 403 (1964).
1964Cr11
               H.L. Crannell, T.A. Griffy, Phys. Rev. 136, B1580 (1964).
               M. Dorikens, L. Dorikens-Vanpraet, J. Demuynck, O. Segaert, Proc. Phys. Soc. (London) 83, 461 (1964).
1964Do06
1964El03
               B. Elbek, H.E. Gove, B. Herskind, Kgl. Danske Videnskab. Selskab., Mat.-Fys.Medd. 34, No.8 (1964).
1964Es02
               M.A. Eswaran, C. Broude, CAN. J. PHYS. 42, 1311 (1964).
1964Gu01
               C. Gunther, W. Engels, E. Bodenstedt, Phys. Lett. 10, 77 (1964).
1964Ho25
               B.W. Hooton, Nucl. Phys. 59, 332 (1964).
1964Ja09
               J. Jastrzebski, M. Moszynski, K. Pawlak, K. Stryczniewicz, Сомрт. Rend. Congr. Intern. Phys. Nucl., Paris, P.Gugenberger, Ed., Centre National de la
                Recherche Scientifique, Paris, II, 573 (1964).
1964Ko13
               H.J. Korner, E. Gerdau, J. Heisenberg, J. Braunsfurth, Perturbed Angular Correlations, E.Karlsson, E.Matthias, K.Siegbahn, Ed., North-Holland
               Publishing Co., 200 (1964).
19641.008
               R. Lombard, P. Kossanyi-Demay, G.R. Bishop, Nucl. Phys. 59, 398 (1964).
1964Ma01
               D.L. Malaker, L. Schaller, W.C. Miller, Bull, Am. Phys. Soc. 9, No.1, 9, AB7 (1964).
1964No01
               T. Novakov, J.M. Hollander, R.L. Graham, Bull. Am. Phys. Soc. 9, No.1, 9, AB6 (1964).
1964Pa17
               J.C. Palathingal, Phys. Rev. 136, B1553 (1964).
1964Ro19
               R. Rougny, J.J. Samueli, A. Sarazin, J. Phys. (PARIS) 25, 989 (1964).
               R.P. Scharenberg, J.D. Kurfess, G. Schilling et al., Nucl. Phys. 58, 658 (1964); R.P.Scharenberg, Priv. Comm. (April 1972).
1964Sc21
1964St04
               P.H. Stelson, F.K. McGowan, R.L. Robinson, J.L.C. Ford, Jr., Bull. Am. Phys. Soc. 9, No.4, 484, JA8 (1964).
1964Sy01
               G.D. Symons, J. De Boer, Bull. Am. Phys. Soc. 9, No.5, 554, N9 (1964).
1965Ab02
               H. Abou-Leila, N.N. Perrin, J. Valentin, Arkıv Fysik 29, 53 (1965).
1965Do02
               M. Dorikens, O. Segaert, J. Demuynck et al., Nucl. Phys. 61, 33 (1965).
1965Es01
               M.A. Eswaran, H.E. Gove, A.E. Litherland, C. Broude, Nucl. Phys. 66, 401 (1965).
1965Ev03
               H.C. Evans, M.A. Eswaran, H.E. Gove, CAN. J. Phys. 43, 82 (1965).
1965Fr11
               A.M. Friedman, J.R. Erskine, T.H. Braid, Bull. Am. Phys. Soc. 10, No.4, 540, KA13 (1965).
1965Ga05
               Y.P. Gangrskii, I.K. Lemberg, YADERN. Fiz. 1, 1025 (1965); SOVIET J. NUCL. PHYS. 1, 731 (1965).
1965Gu02
               C. Gunther, G. Strube, U. Wehmann et al., Z. Physik 183, 472 (1965).
1965Gu10
               G.M. Gusinskii, K.I. Erokhina, I.K. Lemberg, YADERN. Fiz. 2, 794 (1965); SOVIET J. NUCL. PHYS. 2, 567 (1966)
1965Hu02
               A. Hubner Z. Physik 183 25 (1965).
               D.K. Kaipov, Y.K. Shubnyi, V.M. Amerbaev et al., ZH. EKSPERIM. I TEOR. FIZ. 48, 1221 (1965); SOVIET PHYS. JETP 21, 815 (1965).
1965Ka15
1965Mc05
               F.K. McGowan, R.L. Robinson, P.H. Stelson, J.L.C. Ford, Jr., Nucl. Phys. 66, 97 (1965).
1965Me08
               W. Meiling, F. Stary, Nucl. Phys. 74, 113 (1965).
1965Ne03
               W.R. Neal, H.W. Kraner, Phys. Rev. 137, B1164 (1965).
               R. Rougny, J.J. Samueli, A. Sarazin, J. Phys. (PARIS) 26, 63 (1965).
1965Ro17
1965Sc05
               R.P. Scharenberg, J.D. Kurfess, G. Schilling et al., Phys. Rev. 137, B26 (1965).
1965Si02
               J.J. Simpson, J.A. Cookson, D. Eccleshall, M.J.L. Yates, Nucl. Phys. 62, 385 (1965).
1965Ta13
               G.K. Tandon, THESIS, Yale University (1965).
1965Ti02
               J.W. Tippie, R.P. Scharenberg, Phys.Lett. 16, 154 (1965); R.P. Scharenberg, Priv.Comm. (April 1972).
1966Ab02
               H. Abou-Leila, J. Treherne, J. Phys. (Paris) 27, 5 (1966).
1966As03
               D. Ashery, N. Assaf, G. Goldring et al., Nucl. Phys. 77, 650 (1966).
1966Be16
               G.B. Beard, Phys. Rev. 145, 862 (1966).
```

R.B. Begzhanov, A.A. Islamov, Program and Theses, Proc. 16th All-Union Conf. Nucl. Spectroscopy and Struct. Of At. Nuclei, Moscow, 21 (1966).

1966Be53

1966Ec02

D. Bloess, A. Krusche, F. Munnich, Z. Physik 192, 358 (1966).

D. Eccleshall, M.J.L. Yates, J.J. Simpson, Nucl. Phys. 78, 481 (1966).

```
1966Fu03
               E.G. Funk, H.J. Prask, J.W. Mihelich, Phys. Rev. 141, 1200 (1966).
1966Go20
               S. Gorodetzky, N. Schulz, E. Bozek, A.C. Knipper, Nucl. Phys. 85, 529 (1966).
1966Gr20
               L. Grodzins, R.R. Borchers, G.B. Hagemann, Nucl. Phys. 88, 474 (1966).
1966Hr01
               A.Z. Hrynkiewicz, S. Kopta, S. Szymczyk, T. Walczak, Nucl. Phys. 79, 495 (1966).
1966Hr03
               B. Hrastnik, V. Knapp, M. Vlatkovic, Nucl. Phys. 89, 412 (1966).
               J. Jastrzebski, M. Moszynski, A. Zglinski, Nukleonika 11, 471 (1966).
1966Ia16
1966Li07
               K.P. Lieb, Nucl. Phys. 85, 461(1966).
1966Li08
               H. Liesem, Z. Phys. 196, 174 (1966).
1966Mc07
               R.E. McAdams, E.N. Hatch, Nucl. Phys. 82, 372 (1966).
1966Mc18
               F.K. McGowan, P.H. Stelson, R.L. Robinson et al., Proc.Conf.Bases for Nucl.Spin-Parity Assignments, Gatlinburg, Tenn. (1966), N.B. Gove, R.L.
               Robinson, Eds., Academic Press, New York, 222 (1966)
1966Me11
               F.R. Metzger, G.K. Tandon, Phys. Rev. 148, 1133 (1966).
1966Ra04
               B.V.N. Rao, S. Jnanananda, Nucl. Phys. 75, 109 (1966).
19665006
               A. Schwarzschild, Phys. Rev. 141, 1206 (1966).
1966Se06
               G.G. Seaman, J.S. Greenberg, D.A. Bromley, F.K. McGowan, Phys. Rev. 149, 925 (1966).
1966Sk01
               S.J. Skorka, D. Evers, J. Hertel et al., Nucl. Phys. 81, 370 (1966).
               J.W. Tippie, R.P. Scharenberg, Phys. Rev. 141, 1062 (1966).
1966Ti01
1966Wa10
               E.K. Warburton, J.W. Olness, K.W. Jones et al., Phys. Rev. 148, 1072 (1966)
1967Ab06
               H. Abou-Leila, Ann. Phys. (Paris) 2, 181 (1967).
1967Af03
               O.F. Afonin, A.P. Grinberg, I.K. Lemberg, I.N. Chugunov, Yadern. Fiz. 6, 219 (1967); Soviet J. Nucl. Phys. 6, 160 (1968).
1967As03
               D. Ashery, N. Bahcall, G. Goldring et al., Nucl. Phys. A 101, 51 (1967).
1967Ba27
               A. Backlin, S.G. Malmskog, H. Solhed, ARKIV FYSIK 34, 495 (1967).
1967Ba52
               P. Barreau, J.B. Bellicard, Phys. Rev. Lett. 19, 1444 (1967).
1967Be39
               R.B. Begzhanov, A.A. Islamov, Yadern. Fiz. 5, 483 (1967); Soviet J. Nucl. Phys. 5, 339 (1967).
1967Be62
               E.E. Berlovich, V.V. Lukashevich, Izv. Акар. Nauk SSSR, Ser. Fiz. 31, 1603 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 1643 (1968).
1967Br01
               C. Broude, P.J.M. Smulders, T.K. Alexander, Nucl. Phys. A 90, 321 (1967).
               G.A. Burginyon, J.S. Greenberg, R.F. Casten, D.A. Bromley, Contrib. Intern. Conf. Nucl. Struct., Tokyo, 155 (1967).
1967BuZX
1967Ca02
               A.L. Catz, S. Amiel, Nucl. Phys. A 92, 222 (1967).
               R.F. Casten, J.S. Greenberg, G.A. Burginyon, D.A. Bromley, Phys. Rev. Lett. 18, 912 (1967).
1967Ca08
1967Cl02
               J.E. Clarkson, R.M. Diamond, F.S. Stephens, I. Perlman, Nucl. Phys. A 93, 272 (1967).
1967Cr01
               H. Crannell, T.A. Griffy, L.R. Suelzle, M.R. Yearian, Nucl. Phys. A 90, 152 (1967).
1967DeZW
               J.de Boer, A.M. Kleinfeld, R. Covello-Moro, H.P. Lie, Bull. Am. Phys. Soc. 12, No.4, 535, GD8 (1967).
1967Du07
               M.A. Duguay, C.K. Bockelman, T.H. Curtis, R.A. Eisenstein, Phys. Rev. 163, 1259 (1967).
1967Gi02
               P. Gilad, G. Goldring, R. Herber, R. Kalish, Nucl. Phys. A 91, 85 (1967); G.Goldring, Priv. Comm. (April 1972).
1967Gl02
               J.E. Glenn, J.X. Saladin, Phys. Rev. Lett. 19, 33 (1967).
               R. Kalish, L. Grodzins, R.R. Borchers et al., Phys. Rev. 161, 1196 (1967); R.R.Borchers, Priv. Comm. (May 1972).
1967Ka16
1967Ku07
               J.D. Kurfess, R.P. Scharenberg, Phys. Rev. 161, 1185 (1967).
1967Li05
               K.P. Lieb, H. Grawe, H. Ropke, Nucl. Phys. A 98, 145 (1967).
1967Si03
               J.J. Simpson, D. Eccleshall, M.J.L. Yates, N.J. Freeman, Nucl. Phys. A 94, 177 (1967).
1967St03
               R.G. Stokstad, I. Hall, G.D. Symons, J. de Boer, Nucl. Phys. A 92, 319 (1967).
1967St16
               R.G. Stokstad, I. Hall, Nucl. Phys. A 99, 507 (1967).
1967TaZZ
               G.K. Tandon, Bull. Am. Phys. Soc. 12, No.5, 683, DE14 (1967).
1967Wo06
               P.J. Wolfe, R.P. Scharenberg, Phys. Rev. 160, 866 (1967).
1968An20
               D.S. Andreev, O.F. Afonin, V.K. Bondarev et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 1671 (1968); Bull. Acad. Sci. USSR, Phys.Ser. 32, 1543 (1969).
1968Cr07
               W.L. Creten, R.J. Jacobs, H.M. Ferdinande, Nucl. Phys. A 120, 126 (1968).
1968Cu05
               W.M. Currie, C.H. Johnson, Nucl. Instr. Methods 63, 221 (1968).
1968Do12
               K.W. Dolan, D.K. McDaniels, Phys. Rev. 175, 1446 (1968).
1968Ev03
               D. Evers, G. Flugge, J. Morgenstern et al., Phys. Letters B 27, 423 (1968).
               T.R. Fisher, S.S. Hanna, D.C. Healey, P. Paul, Phys. Rev. 176, 1130(1968)
1968Fi09
1968Gi05
               E.F. Gibson, K. Battleson, D.K. McDaniels, Phys. Rev. 172, 1004 (1968).
1968Ha18
               O. Hausser, T.K. Alexander, C. Broude, CAN. J. PHYS. 46, 1035 (1968).
1968Ka01
               G. Kaye, Nucl. Phys. A 108, 625 (1968).
               R.J. Keddy, Y. Yoshizawa, B. Elbek et al., Nucl. Phys. A 113, 676 (1968).
1968Ke04
1968Ku03
               H.W. Kugel, E.G. Funk, J.W. Mihelich, Phys. Rev. 165, 1352 (1968).
1968La26
               J.M. Lagrange, G. Albouy, M. Pautrat et al., J. Phys. (PARIS) 29, Suppl.No.1, Colloq.C1-191 (1968).
1968LaZZ
               P.G. Lawson, Thesis, Oxford Univ. (1968); Quoted by 1976As04.
1968Li04
               K.P. Lieb, H. Ropke, H. Grawe et al., Nucl. Phys. A 108, 233(1968).
               H. Lindeman, G.A.P. Engelbertink, M.W. Ockeloen, H.S. Pruys, Nucl. Phys. A 122, 373(1968).
19681i12
1968Ma05
               J.R. MacDonald, D.F.H. Start, R. Anderson et al., Nucl. Phys. A 108, 6 (1968).
1968Ma14
               S.G. Malmskog, M. Hojeberg, ARKIV FYSIK 35, 229 (1968).
1968Mc08
               F.K. McGowan, R.L. Robinson, P.H. Stelson, W.T. Milner, Nucl. Phys. A 113, 529 (1968).
               W.T. Milner, THESIS, Univ. Tennessee (1968); ORNL-TM-2121 (1968).
1968MiZZ
1968Pe02
               G.A. Peterson, J. Alster, Phys. Rev. 166, 1136 (1968).
1968Ra32
               B.V.N. Rao, K.M.M.S. Ayyangar, S. Jianananda, Indian J. Pure Appl. Phys. 6, 358 (1968).
1968Ri09
               F.W. Richter, J. Schutt, D. Wiegandt, Z. Physik 213, 202 (1968).
1968Ri16
               F. Riess, P. Paul, J.B. Thomas, S.S. Hanna, Phys. Rev. 176, 1140 (1968).
1968Ro05
               S.W. Robinson, R.D. Bent, Phys. Rev. 168, 1266 (1968).
1968Sc04
               D. Schroeer, P.S. Jastram, Phys. Rev. 166, 1212 (1968).
1968Sc13
               M. Schumacher, Phys. Rev. 171, 1279 (1968).
```

В. Sethi, S.K. Mukherjee, PHys. Rev. 166, 1227 (1968).

G.G. Seaman, M.C. Bertin, J.W. Tape et al., Bull. Am. Phys. Soc. 13, No.11, 1384, BD15 (1968); Priv.Comm. (1969).

1968Se02 1968Se7Z

```
J.J. Simpson, U. Smilansky, J.P. Wurm, Phys. Lett. B 27, 633 (1968); Erratum Phys.Letters B 28, 422 (1969).
1968Si05
1968St04
               M. Stroetzel, Phys. Letters B 26, 376 (1968).
1968St13
               R.G. Stokstad, B. Persson, Phys. Rev. 170, 1072 (1968).
               E. Veje, B. Elbek, B. Herskind, M.C. Olesen, Nucl. Phys. A 109, 489 (1968).
1968Ve01
1968Wa08
               H.K. Walter, A. Weitsch, Z. Physik 211, 304 (1968).
1968Zi02
               J.F. Ziegler, G.A. Peterson, Phys. Rev. 165, 1337 (1968).
1969Af01
               V.D. Afanasev, N.G. Afanasev, I.S. Gulkarov et al., YADERN. Fiz. 10, 33 (1969); SOVIET J. NUCL. PHYS. 10, 18 (1970).
1969An08
               J.H. Anderson, R.C. Ritter, Nucl. Phys. A 128, 305 (1969).
1969Av01
               R. Avida, Y. Dar, P. Gilad et al., Nucl. Phys. A 127, 412 (1969).
1969Be31
               R.A.L. Bell, J. L'Ecuyer, R.D. Gill et al., Nucl. Phys. A 133, 337 (1969).
               R.A. Belt, H.W. Kugel, J.M. Jaklevich, E.G. Funk, Nucl. Phys. A 134, 225 (1969).
1969Re34
1969Be48
               M.C. Bertin, N. Benczer-Koller, G.G. Seaman, J.R. MacDonald, Phys. Rev. 183, 964 (1969).
1969Bh01
               K. Bharuth-Ram, K.P. Jackson, K.W. Jones, E.K. Warburton, Nucl. Phys. A 137, 262 (1969).
1969Bi09
               M. Bister, A. Anttila, J. Rasanen, CAN. J. Phys. 47, 2539 (1969).
1969Bi11
               P.G. Bizzeti, A.M. Bizzeti-Sona, A. Cambi et al., Nuovo Cimento Lett. 2, 775 (1969).
1969Ca19
               R.F. Casten, J.S. Greenberg, S.H. Sie et al., Phys. Rev. 187, 1532 (1969).
1969Ca24
               L.E. Carlson, Priv. Comm., quoted by 1969Fl03 (1969).
1969Cl05
               D.Cline, H.S.Gertzman, H.E.Gove et al., Nucl. Phys. A 133, 445 (1969).
1969Cu06
               TH Curtis RA Fisenstein DW Madsen CK Bockelman Phys Rev 184 1162 (1969).
               R.M. Diamond, F.S. Stephens, W.H. Kelly, D. Ward, Phys. Rev. Letters 22, 546 (1969).
1969Di02
               R.A. Eisenstein, D.W. Madsen, H. Theissen et al., Phys. Rev. 188, 1815 (1969).
1969Ei03
1969En04
               G.A.P. Engelbertink, G. van Middelkoop, Nucl. Phys. A 138, 588 (1969).
1969Fo07
               M. Forker, H.F. Wagner, Nucl. Phys. A 138, 13 (1969).
1969Fo08
               M. Forker, H.F. Wagner, G. Schmidt, Nucl. Phys. A 138, 97 (1969).
1969FuZX
               E.G. Funk, Priv. Comm., quoted by 1970Ra18 (1969).
               L.N. Galperin, A.Z. Ilyasov, I.K. Lemberg, G.A. Firsanov, YAD. Fiz. 9, 225 (1969); Sov. J. Nucl. Phys. 9, 133 (1969).
1969Ga25
1969Gl08
               J.E. Glenn, R.J. Pryor, J.X. Saladin, Phys. Rev. 188, 1905 (1969).
1969GlZY
               J.E. Glenn, COO-535-603, 28 (1969).
1969Cr03
               H.Grawe, K.P.Lieb, Nucl. Phys. A 127, 13 (1969).
1969Ha02
               R. Hartmann, K.P. Lieb, H. Ropke, Nucl. Phys. A 123, 437 (1969).
1969Ha31
               O. Hausser, T.K. Alexander, D. Pelte et al., Phys. Rev. Lett. 23, 320 (1969).
               K.W. Jones, A.Z. Schwarzschild, E.K. Warburton, D.B. Fossan, Phys. Rev. 178, 1773 (1969).
1969Io10
1969Ka10
               C.D. Kavaloski, W.J. Kossler, Phys. Rev. 180, 971 (1969).
1969KeZX
               J.R. Kerns, Thesis, Univ.Pittsburgh (1969); Diss. Abstr. Int. 31B, 336 (1970).
1969Ko03
               W.J. Kossler, J. Winkler, C.D. Kavaloski, Phys. Rev. 177, 1725(1969).
1969Me14
               M.A. Meyer, N.S. Wolmarans, Nucl. Phys. A 136, 663 (1969).
1969Mi07
               W.T. Milner, F.K. McGowan, P.H. Stelson et al., Nucl. Phys. A 129, 687 (1969).
1969Ni09
               R.J. Nickles, Nucl. Phys. A 134, 308 (1969).
1969Pe08
               D. Pelte, O. Hausser, T.K. Alexander et al., Phys. Lett. B 29, 660 (1969).
1969Pe11
               D. Pelte, O. Hausser, T.K. Alexander, H.C. Evans, Can. J. Phys. 47, 1929 (1969).
1969Po04
               A.R. Poletti, A.D.W. Jones, J.A. Becker, R.E. McDonald, Phys. Rev. 181, 1606 (1969).
               R.L. Robinson, F.K. McGowan, P.H. Stelson et al., Nucl. Phys. A 124, 553 (1969).
1969Ro05
1969Ro08
               B.C. Robertson, R.A.I. Bell, J. L'Ecuyer et al., Nucl. Phys. A 126, 431 (1969).
1969Sa14
               G.A. Savitskii, N.G. Afanasev, I.V. Andreeva et al., Izv. AKAD. NAUK SSSR, Ser. Fiz. 33, 53 (1969); BULL. ACAD. SCI. USSR, Phys.Ser. 33, 50 (1970).
1969Sa27
               J.X. Saladin, J.E. Glenn, R.J. Pryor, Phys. Rev. 186, 1241 (1969).
1969ScZV
               D. Schwalm, B. Povh, Contrib. Intern. Conf. Properties Nucl. States, Suppl., Montreal, Canada, 15 (1969).
1969Si15
               J.J. Simpson, U. Smilansky, D. Ashery, Nucl. Phys. A 138, 529 (1969).
1969Sp05
               G.D. Sprouse, S.S. Hanna, Nucl. Phys. A137, 658 (1969).
1969Th01
               M.J. Throop, Phys. Rev. 179, 1011 (1969).
1969Th03
               J.P. Thibaud, M.M. Aleonard, D. Castera et al., Nucl. Phys. A 135, 281 (1969).
1969Ti01
               O. Titze, Z. Physiк 220, 66 (1969).
               Y. Torizuka, Y. Kojima, M. Oyamada et al., Phys. Rev. 185, 1499 (1969).
1969To08
1970Ab14
               H. Abou-Leila, S.M. Darwish, A. Abd El-Haliem, Z. Awwad, Nucl. Phys. A 158, 568 (1970).
1970Af04
               V.D. Afanasev, N.G. Afanasev, A.Y. Buki et al., YAD. Fiz. 12, 885 (1970); Sov. J. NUCL. PHYS. 12, 480 (1971).
1970AgZV
               A.P. Agnihotry, K.P. Gopinathan, M.C. Joshi, K.G. Prasad, Proc. Nucl. Phys., And Solid State Phys. Symp., Nucl. Phys., Madurai, 161 (1970).
1970Al05
               M.M. Aleonard, D. Castera, P. Hubert et al., Nucl. Phys. A 146, 90 (1970).
1970Al10
               T.K. Alexander, A. Bell, Nucl. Instrum. Methods 81, 22 (1970).
1970BaYH
               R.D. Barton, J.S. Wadden, V.K. Carriere, Bull. AMER. Phys. Soc. 15, No.6, 806, EE6 (1970).
1970Be07
               J. Bellicard, P. Leconte, T.H. Curtis et al., Nucl. Phys. A 143, 213 (1970).
1970Be08
               R. Beraud, I. Berkes, R. Cherv et al., Phys. Rev. C 1, 303 (1970).
1970Be18
               T. Bedike, N.G. Zaitseva, V.A. Morozov et al., YAD. Fiz. 11, 481 (1970); Sov. J. NUCL. PHYS. 11, 269 (1970).
1970Be36
               I. Ben-Zvi, P. Gilad, M.B. Goldberg et al., Nucl. Phys. A 151, 401 (1970); G.Goldring, Priv.Comm. (April 1972).
               N. Benczer-Koller, G.G. Seaman, M.C. Bertin et al., Phys. Rev. C 2, 1037 (1970).
1970Be39
1970Bi08
               M. Bini, P.G. Bizzeti, A.M. Bizzeti-Sona et al., LETT. NUOVO CIMENTO 3, 235 (1970).
1970Br18
               F. Brandolini, C. Signorini, Nuovo Cimento 67 A, 247 (1970).
1970Br26
               E.J. Bruton, J.A. Cameron, A.W. Gibb et al., Nucl. Phys. A 152, 495 (1970).
1970BrZP
               R. Broda, J. Golczewski, A.Z. Hrynkiewicz et al., JINR-E6-5070 (1970).
1970Ch01
               A. Christy, I. Hall, R.P. Harper et al., Nucl. Phys. A 142, 591 (1970).
```

E. Cheifetz, R.C. Jared, S.G. Thompson, J.B. Wilhelmy, Phys. Rev. Lett. 25, 38 (1970).

P.R. Christensen, G. Lovhoiden, J. Rasmussen, Nucl. Phys. A 149, 302 (1970).

1970Ch11

1970Ch14

1971FoZW

1971Ga01

```
1970ChZH
               E. Cheifetz, R.C. Jared, S.G. Thompson, J.B. Wilhelmy, Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, 2, 883
               (1970): CERN 70-30 (1970)
1970Co09
               P.M. Cockburn, W.J. Stark, R.W. Krone, Phys. Rev. C 1, 1757 (1970).
1970Cu02
               W.M. Currie, L.G. Earwaker, J. Martin, A.K. Sen Gupta, J. Phys. A 3, 73 (1970).
1970De01
               P.R. de Kock, J.W. Koen, W.L. Mouton, Nucl. Phys. A 140, 190 (1970).
1970En01
               G. Engler, Phys. Rev. C 1, 734 (1970).
1970ErZY
               B.R. Erdal, M. Finger, R. Foucher et al., Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, 2, 1031 (1970); CERN-70-30
1970Ge07
               H.S. Gertzman, D. Cline, H.E. Gove et al., Nucl. Phys. A 151, 273 (1970).
1970Gr11
               M.W. Greene, P.R. Alderson, D.C. Bailey et al., Nucl. Phys. A 148, 351 (1970).
1970Ha04
               O. Hausser, B.W. Hooton, D. Pelte et al., CAN. J. Phys. 48, 35 (1970).
1970Ha24
               O. Hausser, D. Pelte, T.K. Alexander, H.C. Evans, Nucl. Phys. A 150, 417 (1970).
1970He01
               D. Herrmann, J. Kalus, Nucl. Phys. A 140, 257 (1970).
               D. Hitlin, S. Bernow, S. Devons et al., Phys. Rev. C 1, 1184 (1970).
1970Hi03
1970Hu14
               F.C.P. Huang, D.K. McDaniels, Phys. Rev. C 2, 1342 (1970).
1970It01
               K. Itoh, M. Oyamada, Y. Torizuka, Phys. Rev. C 2, 2181 (1970).
1970Jo20
               W. John, F.W. Guy, J.J. Wesolowski, Phys. Rev. C 2, 1451 (1970).
               R. Kalish, R.R. Borchers, H.W. Kugel, Nucl. Phys. A 147, 161 (1970); R.R.Borchers, Priv. Comm. (May 1972).
1970Ka09
               G. Kaspar, W. Knupfer, W. Ebert et al., Proc. Intern. Conf. Nucl. Reactions Induced by Heavy Ions, Heidelberg, Germany (1969);
1970KaZK
                R.Bock, W.R.Hering, Eds, North-Holland Publishing Co., Amsterdam, 471 (1970).
1970Ke15
               P.F. Kenealy, G.B. Beard, K. Parsons, Phys. Rev. C 2, 2009 (1970).
               V.M. Khvastunov, N.G. Afanasev, V.D. Afanasev et al., YAD. FIZ. 12, 9 (1970); SOV. J. NUCL. PHYS. 12, 5 (1971).
1970Kh05
1970Kl06
               A.M. Kleinfeld, R. Covello-Moro, H. Ogata et al., Nucl. Phys. A 154, 499 (1970).
1970Kl12
               A.M. Kleinfeld, J.D. Rogers, J. Gastebois et al., Nucl. Phys. A 158, 81 (1970).
               J.M. Lagrange, Thesis, Univ.Paris (1970); NP-18447 (1970); PRIV. COMM. (1973).
1970LaZM
1970Le17
               P.M.S. Lesser, D. Cline, J.D. Purvis, Nucl. Phys. A 151, 257 (1970).
1970Me08
               F.R. Metzger, Nucl. Phys. A 158, 88 (1970).
1970Me09
               M.W. Mekshes, N. Hershkowitz et al., Phys. Rev. C 2, 289 (1970).
1970Me18
               F.R. Metzger, Nucl. Phys. A 148, 362 (1970).
1970MiZQ
               W.T. Milner, F.K. McGowan, P.H. Stelson, R.L. Robinson, Bull. Amer. Phys. Soc. 15, No.11, 1358, DF11 (1970).
1970Mo39
               V.A. Morozov, T.M. Muminov, A.B. Khalikulov, JINR-P6-5201 (1970).
1970Na05
               K. Nakai, J.L. Quebert, F.S. Stephens, R.M. Diamond, Phys. Rev. Lett. 24, 903 (1970).
1970Na07
               K. Nakai, F.S. Stephens, R.M. Diamond, Nucl. Phys. A 150, 114 (1970).
1970Pe15
               R.J. Peterson, H. Theissen, W.J. Alston, Nucl. Phys. A153, 610 (1970).
1970Pr07
               R.J. Pryor, F. Rosel, J.X. Saladin, K. Alder, Phys. Lett. B 32, 26 (1970).
               R.I. Prvor. I.X. Saladin. Phys. Rev. C 1, 1573 (1970).
1970Pr09
1970Qu02
               J.L. Quebert, K. Nakai, R.M. Diamond, F.S. Stephens, Nucl. Phys. A 150, 68 (1970).
1970Ra17
               C.E. Ragan III, R.V. Poore, N.R. Roberson et al., Phys. Rev. C 1, 2012 (1970).
1970Ra18
               R.L. Rasera, A. Li-Scholz, Phys. Rev. B 1, 1995 (1970).
1970RaZC
               V.K. Rasmussen, Priv. Comm., quoted by 1971Ma03 (1970).
1970Sa09
               R.O. Sayer, P.H. Stelson, F.K. McGowan et al., Phys. Rev. C 1, 1525 (1970).
1970St10
               P. Strehl, Z. Phys. 234, 416 (1970).
1970St17
               S.G. Steadman, A.M. Kleinfeld, G.G. Seaman et al., Nucl. Phys. A 155, 1 (1970).
               P.H. Stelson, F.K. McGowan, R.L. Robinson, W.T. Milner, Phys. Rev. C 2, 2015 (1970).
1970St20
1970StZP
               D.F.H. Start, Priv. Comm., quoted by 1971Ma03 (1970).
1970Sw03
               C.P. Swann, Nucl. Phys. A 150, 300 (1970).
1970Th04
               J.P. Thibaud, M.M. Aleonard, D. Castera et al., J. Phys. (PARIS) 31, 131 (1970).
1970To08
               H. Ton, W. Beens, S. Roodbergen, J. Blok, Nucl. Phys. A 155, 235 (1970).
1970Wa04
               B. Wakefield, I.M. Nagib, R.P. Harper et al., Phys. Lett. B 31, 56 (1970).
1970Wa05
               R.L. Watson, J.B. Wilhelmy, R.C. Jared et al., Nucl. Phys. A 141, 449 (1970).
1971Ab05
               H. Abou-Leila, A. Abd El-Haliem, S.M. Darwish, Nucl. Phys. A 175, 663 (1971).
1971Ba59
               J. Barrette, M. Barrette, A. Boutard et al., Nucl. Phys. A 172, 41 (1971).
1971Bb09
               T. Badica, Stud. Cercet. Fiz. 23, 877 (1971).
1971Bo08
               H.H. Bolotin, D.A. McClure, Phys. Rev. C 3, 797 (1971).
1971Bo13
               P.D. Bond, J.D. McGervey, S. Jha, Nucl. Phys. A 163, 571 (1971).
1971Bo23
               M. Bocciolini, P. Sona, N. Taccetti, Lett. Nuovo Cim. 1, 695 (1971).
1971BrYK
               B.A. Brown, M. Marmor, D.B. Fossan, Proc. Topical Conf. Struct. of 157/2 Nuclei, R.A.Ricci, Ed., Editrice Compositori, Bologna, p.123 (1971).
1971Ca35
               J.A. Cameron, Z. Zamori, CAN. J. PHYS. 49, 2690 (1971).
               A. Charvet, Do Huu Phuoc, R. Duffait et al., J. Phys. (PARIS) 32, 359 (1971).
1971Ch26
1971ChZF
               J. Charbonneau, N.V.De Castro Faria, J. L'Ecuyer, D. Vitoux, Bull. Amer. Phys. Soc. 16, No.4, 625, JH2 (1971).
1971Cr01
               P.A. Crowley, J.R. Kerns, J.X. Saladin, Phys. Rev. C 3, 2049 (1971).
1971DaZM
               W.G. Davies, J.S. Forster, I.M. Szoghy, D. Ward, AECL-3996, 16 (1971).
1971De29
               N.V. de Castro Faria, J. Charbonneau, J. L'Ecuyer, R.J.A. Levesque, Nucl. Phys. A 174, 37 (1971).
               R.M. Diamond, F.S. Stephens, K. Nakai, R. Nordhagen, Phys. Rev. C 3, 344 (1971).
1971Di02
1971Ej01
               H. Ejiri, G.B. Hagemann, Nucl. Phys. A 161, 449 (1971).
1971El03
               C. Ellegaard, P.D. Barnes, E.R. Flynn, G.J. Igo, Nucl. Phys. A 162, 1 (1971).
               J. Fagot, R. Lucas, H. Nifenecker, M. Schneeberger, Nucl. Instrum. Methods 95, 421 (1971).
1971Fa14
1971Fo17
               J.L.C. Ford, Jr., P.H. Stelson, C.E. Bemis et al., Phys. Rev. Lett. 27, 1232 (1971).
               J.S. Forster, G.C. Ball, W.G. Davies, Bull. Amer. Phys. Soc. 16, No.4, 555, EE8 (1971).
1971FoZV
```

J.L.C. Ford, Jr., P.H. Stelson, R.L. Robinson et al., Bull. AMER. Phys. Soc. 16, No.4, 515, BG11 (1971); Priv. COMM. (July 1971).

G.T. Garvey, K.W. Jones, L.E. Carlson et al., Nucl. Phys. A 160, 25 (1971).

```
1971Gr31
               E. Grosse, M. Dost, K. Haberkant et al., Nucl. Phys. A 174, 525 (1971).
1971Ha08
               R.P. Harper, A. Christy, I. Hall et al., Nucl. Phys. A 162, 161 (1971).
1971Ha12
               R. Hartmann, H. Grawe, Nucl. Phys. A 164, 209 (1971).
               O. Hausser, T.K. Alexander, A.B. McDonald et al., Nucl. Phys. A 168, 17 (1971).
1971Ha26
               O. Hausser, T.K. Alexander, A.B. McDonald, W.T. Diamond, Nucl. Phys. A 175, 593 (1971).
1971Ha47
1971HaXH
               O. Hausser, D.L. Disdier, A.I. Ferguson, T.K. Alexander, AECL-4068, 12 (1971).
1971He08
               J. Heisenberg, J.S. McCarthy, I. Sick, Nucl. Phys. A164, 353 (1971).
               A. Hoglund, S.G. Malmskog, A. Marelius et al., Nucl. Phys. A 169, 49 (1971).
1971Ho14
1971HuZR
               R.B. Huber, W. Kutschera, C. Signorini, J. Phys. (Paris) Suppl. C6-207 (1971).
1971In02
               F. Ingebretsen, B.W. Sargent, A.J. Ferguson et al., Nucl. Phys. A 161, 433 (1971).
               H. Imada, Thesis, Texas A and M Univ. (1971); Diss. Abstr. Int. B 32, 1772 (1971).
1971Im7Y
1971 Ja 10
               A.N. James, P.R. Alderson, D.C. Bailey et al., Nucl. Phys. A 168, 56 (1971).
1971Ja15
               A.N.James, P.R.Alderson, C.D.Bailey et al., Nucl. Phys. A 172, 401 (1971).
1971Ka03
               R. Kalish, R.R. Borchers, H.W. Kugel, Nucl. Phys. A 161, 637 (1971).
1971Ma03
               J.R. MacDonald, D.H. Wilkinson, D.E. Alburger, Phys. Rev. C 3, 219 (1971).
1971Ma27
               D.W. Madsen, L.S. Cardman, J.R. Legg, C.K. Bockelman, Nucl. Phys. A 168, 97 (1971).
1971Mc20
               A.B. McDonald, T.K. Alexander, O. Hausser, G.T. Ewan, Can. J. Phys. 49, 2886 (1971).
1971Mi08
               W.T. Milner, F.K. McGowan, R.L. Robinson et al., Nucl. Phys. A 177, 1 (1971).
               W.T. Mills, Priv. Comm., quoted by 1972Me04 (1971).
1971Mi7K
               K. Nakai, F.S. Stephens, R.M. Diamond, Phys. Lett. B 34, 389 (1971).
1971Na06
               R.H. Nord, Thesis, Univ. Wisconsin (1971); Diss. Abstr. 32B, No.6, 3572 (1971).
1971NoZT
19710b02
               L.W. Oberley, N. Hershkowitz, S.A. Wender, A.B. Carpenter, Phys. Rev. C 3, 1585 (1971).
1971Pe11
               R.J. Peterson, Ann. Phys. (N.Y.) 65, 125 (1971).
1971Re15
               M.J. Renan, R.J. Keddy, Nuovo Cimento 3 A, 347 (1971).
1971RiZI
               L.L. Riedinger, G. Schilling, A.E. Rainis et al., Nucl. Struct. Lab., Univ. Notre Dame, Ann. Rep. 1971, 121 (1971).
1971Sh11
               J.F. Sharpey-Schafer, P.R. Alderson, D.C. Bailey et al., NUCL. PHYS. A 167, 602 (1971).
1971SiYA
               S.H. Sie, J.S. Geiger, R.L. Graham et al., AECL-4068, 50 (1971).
1971Sp06
               H. Spehl, N. Wertz, Z. Phys. 243, 431 (1971).
1971Sp12
               S.W. Sprague, R.G. Arns, B.J. Brunner et al., Phys. Rev. C4, 2074 (1971).
1971Sw07
               C.P. Swann, Phys. Rev. C 4, 1489 (1971).
1971Vi01
               D. Vitoux, R.C. Haight, J.X. Saladin, Phys. Rev. C 3, 718 (1971).
               D. Ward, A. Christy, J.S. Geiger, R.L. Graham, AECL-3912, 17 (1971).
1971WaZP
1971Yo02
               D.H. Youngblood, R.L. Kozub, J.C. Hill, Nucl. Phys. A 166, 198 (1971).
1972ArZD
               R.G. Arnold, Thesis, Univ. Boston (1972); Diss. Abst. Int. 33B, 1723 (1972).
1972Aw04
               Z. Awwad, O.E. Badawy, M.R. El-Aasser, A.H. El-Farrash, Indian J. Pure Appl. Phys. 10, 870 (1972).
1972Ba93
               S.I. Baker, C.R. Gossett, P.A. Treado et al., Nucl. Phys. A 196, 197 (1972).
1972Be53
               I. Berkes, R. Rougny, M. Meyer-Levy et al., Phys. Rev. C 6, 1098 (1972).
1972Be66
               Z. Berant, R.A. Eisenstein, Y. Horowitz et al., Nucl. Phys. A 196, 312 (1972).
               R.B. Begzhanov, T. Boranov, D.A. Gladyshev et al., Program and Theses, Proc. 22ND Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kiev, 128 (1972).
1972BeVM
1972Bi17
               M. Bini, P.G. Bizzeti, A.M. Bizzeti-Sona et al., LETT, NUOVO CIM. 5, 913 (1972).
1972Bo04
               B. Bochev, S.A. Karamian, T. Kutsarova et al., COMPT. REND. ACAD. BULG. Sci. 25, 905 (1972).
               W. Bruckner, D. Pelte, B. Povh et al., Contrib. Int. Conf. Nuclear Moments and Nuclear Structure, Osaka, Japan, 107 (1972).
1972BrYV
1972Ca05
               J.A. Cameron, A.W. Gibb, T. Taylor, Z. Zamori, CAN. J. Phys. 50, 475 (1972).
1972Ca22
               J.M.G. Caraca, R.D. Gill, A.J. Cox, H.J. Rose, Nucl. Phys. A 193, 1 (1972).
1972CIZN
               R.G. Clark, Thesis, Iowa State Univ. (1972); See Also 1974ClZX.
1972Co13
               W.F. Coetzee, M.A. Meyer, D. Reitmann, Nucl. Phys. A 185, 644 (1972).
1972CrZN
               H. Crannell, P.L. Hallowell, J.T. O'Brien et al., Proc. Int. Conf. Nucl. Struct. Studies Using Electron Scattering and Photoreac-
               TION, Sendai, Japan, K.Shoda, H.Ui, Eds., Res.Rep.Lab.Nucl.Sci.Tohoku Univ. 5, Suppl. p.375 (1972).
1972Du05
               J.L. Durell, P.R. Alderson, D.C. Bailey et al., J. Phys. (London) A 5, 302 (1972).
1972El08
               T.W. Elze, J.R. Huizenga, Nucl. Phys. A 187, 545 (1972).
1972El20
               M.R. El-Aasser, O.E. Badawy, Z. Awwad, A.H. El-Farrash, Z. Naturforsch. 27a, 1229 (1972).
1972Er04
               K.A. Erb, J.E. Holden, I.Y. Lee et al., Phys. Rev. Lett. 29, 1010 (1972).
1972Fi12
               M. Finger, R. Foucher, I.P. Husson et al., Nucl. Phys. A 188, 369 (1972).
1972Ga05
               A. Gallmann, F. Haas, M. Toulemonde, CAN. J. PHYS. 50, 278 (1972).
1972Gr04
               H. Gruppelaar, P.J.M. Smulders, Nucl. Phys. A 179, 737 (1972).
1972Gr05
               M.I. Green, P.F. Kenealy, G.B. Beard, Nucl. Instrum. Methods 99, 445 (1972).
1972GrYQ
               J.S. Greenberg, A.H. Shaw, Contrib. Int. Conf. Nuclear Moments and Nuclear Structure, Osaka, Japan, 113 (1972).
1972Gu03
               D.K. Gupta, G.N. Rao, Nucl. Phys. A 182, 669 (1972).
1972Ha59
               O. Hausser, F.C. Khanna, D. Ward, Nucl. Phys. A 194, 113 (1972).
1972HaYA
               O. Hausser, A.J. Ferguson, D.L. Disdier, AECL-4205, 10 (1972).
1972Ho40
               G.A. Hokken, J.A.J.G. Hendricx, J. de Kogel, Nucl. Phys. A 194, 481 (1972).
               J.P. Husson, Thesis, Univ. Paris (1972); FRNC-TH-355 (1972).
1972HuZL
               D.K. Kaipov, Y.G. Kosyak, L.N. Smirin, Y.K. Shubnyi, Izv. Akad. NAUK SSSR, Ser. Fiz. 36, 137 (1972); Bull. Acad. Sci. USSR, Phys.Ser. 36, 128 (1973).
1972Ka22
1972KaXR
               D.K. Kaipov, Y.G. Kosyak, D.N. Smirin, Y.K. Shubny, Program and Theses, Proc. 22nd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kiev, 48 (1972).
1972Ke16
               J.R. Kerns, J.X. Saladin, Phys. Rev. C 6, 1016 (1972).
1972Ku14
               W. Kutschera, W. Dehnhardt, O.C. Kistner et al., Phys. Rev. C 5, 1658 (1972).
1972La16
               S.A. Lane, J.X. Saladin, Phys. Rev. C 6, 613 (1972).
1972Le19
               P.M.S. Lesser, D. Cline, P. Goode, R.N. Horoshko, Nucl. Phys. A190, 597 (1972).
1972LeYB
               J.R. Legg, THESIS, Yale Univ. (1972).
```

A.S. Litvinenko, N.G. Shevchenko, O.Y. Buki et al., UKR. Fiz. ZH. 17, 1197 (1972).

P.C. Lopiparo, R.L. Rasera, M.E. Caspari, Nucl. Phys. A 178, 577 (1972).

1972Li28

1972Lo01

```
1972Me04
               F.R. Metzger, Nucl. Phys. A 182, 213 (1972).
1972Me09
               M.A. Meyer, J.P. Reinecke, D. Reitmann, Nucl. Phys. A 185, 625 (1972); Erratum Nucl. Phys. A 196, 635 (1972).
1972Mo31
               J.M. Moss, D.L. Hendrie, C. Glashausser, J. Thirion, Nucl. Phys. A194, 12 (1972).
1972Na06
               A. Nakada, Y. Torizuka, J. Phys. Soc. JAP. 32, 1 (1972).
1972Pr18
               J.G. Pronko, R.E.McDonald, Phys. Rev. C 6, 2065 (1972).
1972Ra14
               S. Raman, R.L. Auble, W.T. Milner et al., AECL-4314, 9 (1972).
1972Ro20
               C. Rolfs, R. Kraemer, F. Riess, E. Kuhlmann, Nucl. Phys. A 191, 209 (1972).
1972Sa09
               E.A. Samworth, J.W. Olness, Phys. Rev. C 5, 1238 (1972).
1972Sa27
               G.C. Salzman, A. Goswami, D.K. McDaniels, Nucl. Phys. A 192, 312 (1972).
1972Sa42
               T.K. Saylor, J.X. Saladin, I.Y. Lee, K.A. Erb, Phys. Lett. B 42, 51 (1972).
1972Sh38
               Y.K. Shubnyi, Y.A. Lysikov, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2531 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 2199 (1973).
1972Si01
               C.H. Sinex, R.S. Cox, C.M. Class, Nucl. Phys. A 178, 612 (1972).
1972SiZI
               S.H. Sie, R.L. Graham, J.S. Geiger et al., AECL-4205, 12 (1972).
               S.H. Sie, J.S. Geiger, R.L. Graham et al., AECL-4147, 14 (1972).
1972SiZP
1972Sn01
               F.D. Snyder, Phys. Rev. C 6, 204 (1972).
1972Sz05
               H. Sztark, J.L. Quebert, P. Gil, L. Marquez, J. Phys. (PARIS) 33, 841 (1972).
1972WaYZ
               D. Ward, I.M. Szoghy, J.S. Forster, W.G. Davies, AECL-4314, 9 (1972).
1972Yo01
               D.H. Youngblood, R.L. Kozub, J.C. Hill, Nucl. Phys. A183, 197 (1972).
1973An01
               N. Anyas-Weiss, R. Griffiths, N.A. Jelley et al., Nucl. Phys. A 201, 513 (1973).
               T.T. Bardin, J.A. Becker, T.R. Fisher, Phys. Rev. C 7, 190 (1973).
1973Ba02
               C.E. Bemis, Jr., P.H. Stelson, F.K. McGowan et al., Phys. Rev. C 8, 1934 (1973).
1973Be40
1973Be44
               C.E. Bemis, Jr., F.K. McGowan, J.L.C. Ford et al., Phys. Rev. C 8, 1466 (1973).
1973Be49
               J.C. Bergstrom, I.P. Auer, F.J. Kline, H.S. Caplan Nucl. Phys. A 213, 609 (1973).
1973ReYD
               W. Beens, Thesis, Vrije Univ., Amsterdam (1973).
1973Br02
               W. Bruckner, J.G. Merdinger, D. Pelte et al., Phys. Rev. Lett. 30, 57 (1973).
1973Br33
               C. Broude, F.A. Beck, P. Engelstein, Nucl. Phys. A 216, 603 (1973).
1973Ca29
               A.B. Carpenter, N. Hershkowitz, Phys. Rev. C 8, 2302 (1973).
1973Ch13
               P.R. Christensen, I. Chernov, E.E. Gross et al., Nucl. Phys. A 207, 433 (1973).
               R.C. Chopra, P.N. Tandon, S.H. Devare, H.G. Devare, Nucl. Phys. A 209, 461 (1973).
1973Ch26
1973Ch28
               A. Charvet, R. Chery, R. Duffait et al., Nucl. Phys. A 213, 117 (1973).
1973ClZF
               D. Cline, P. Jennens, C.W. Towsley, H.S. Gertzman, Proc. Int. Conf. Nucl. Moments and Nucl. Struct., Osaka, Japan
               (1972), H.Horie, K.Sugimoto, Eds., 443 (1973); J. Phys. Soc. JAPAN 34 Suppl. (1973).
1973Co38
               A.J. Cox, J.M.G. Caraca, B. Schlenk et al., Nucl. Phys. A 217, 400 (1973).
1973De09
               W. Dehnhardt, O.C. Kistner, W. Kutschera, H.J. Sann, Phys. Rev. C7, 1471 (1973).
1973Di04
               W.R. Dixon, R.S. Storey, J.J. Simpson, Nucl. Phys. A 202, 579 (1973).
1973DoZB
               R. Doerr, E. Obst, F. Rauch et al., IKF-32, 22 (1973).
1973El06
               C. Ellegaard, P.D. Barnes, R. Eisenstein et al., Nucl. Phys. A 206, 83 (1973).
1973Fi03
               T.R. Fisher, T.T. Bardin, J.A. Becker et al., Phys. Rev. C 7, 1878 (1973).
1973Fi15
               T.R. Fisher, P.D. Bond, PART. Nucl. 6, 119 (1973).
               I. Fraser, J.S. Greenberg, Priv. Comm. (September 1973).
1973Fr7N
1973Gr05
               J.S. Greenberg, PRIV. COMM. (March 1973).
1973GrXX
               M.I. Green, Thesis, Wayne State Univ. (1973); Diss. Abstr. Int. 34B, 2845 (1973).
1973Ha07
               T. Hammer, H. Eiiri, G.B. Hagemann, Nuci., Phys. A 202, 321 (1973).
1973Ha10
               R. Hartmann, H. Grawe, K. Kandler, Nucl. Phys. A 203, 401 (1973).
1973Ha13
               P.L. Hallowell, W. Bertozzi, J. Heisenberg et al., Phys. Rev. C 7, 1396 (1973).
1973Ho05
               K. Hosoyama, Y. Torizuka, Y. Kawazoe, H. Ui, Phys. Rev. Lett. 30, 388 (1973).
1973KaZV
               D.K. Kaipov, Y.A. Lysikov, Y.K. Shubnyi, Program and Theses, Proc. 23rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tbilisi, 46 (1973).
1973Ku10
               W. Kutschera, R.B. Huber, C. Signorini, P. Blasi, Nucl. Phys. A210, 531 (1973).
1973Ku15
               E. Kuhlmann, W. Albrecht, A. Hofmann, Nucl. Phys. A 213, 82 (1973).
1973Le15
               F. Leccia, M.M. Aleonard, D. Castera et al., J.Phys.(Paris) 34, 147 (1973).
1973Le17
               E.W. Lees, A. Johnston, S.W. Brain et al., J. Phys. (LONDON) A 6, L116 (1973).
1973Li24
               A.S. Litvinenko, N.G. Shevchenko, N.G. Afanasev et al., YAD. Fiz. 18, 250 (1973); Sov. J. Nucl. Phys. 18, 128 (1974).
1973Mc16
               J.D. McCullen, D.J. Donahue, PHYS. REV. C 8, 1406 (1973).
19730102
               J.W. Olness, E.K. Warburton, J.A. Becker, Phys. Rev. C 7, 2239 (1973).
1973Pi04
               R. Pitthan, Z. Phys. 260, 283 (1973).
1973RaWV
               F. Rauch, Priv. Comm., quoted by 1973BeYD (1973).
1973Ro20
               H. Ronsin, P. Beuzit, J. Delaunay et al., Nucl. Phys. A 207, 577 (1973).
               N. Rud, D. Ward, H.R. Andrews et al., Phys. Rev. Lett. 31, 1421 (1973).
1973Ru08
1973Sc28
               N. Schulz, J. Chevallier, B. Haas et al., Phys. Rev. C 8, 1779 (1973).
1973ScWZ
               D. Schwalm, Thesis, Univ. Heidelberg (1973).
               R.P. Singhal, H.S. Caplan, J.R. Moreira, T.E. Drake, CAN. J. PHYS. 51, 2125 (1973).
1973Si31
                G.J. Smith, P.C. Simms, Nucl. Phys. A 202, 409 (1973).
1973Sm01
1973To07
               C.W. Towsley, D. Cline, R.N. Horoshko, Nucl. Phys. A 204, 574 (1973).
1973ToXW
               C.W. Towsley, R. Cook, D. Cline, R.N. Horoshko, Proc. Int. Conf. Nucl. Moments and Nucl. Struct., Osaka, Japan (1972), H.Horie, K.Sugimoto, Eds., 442
                (1973); J. Phys. Soc. Jap. 34 Suppl. (1973).
1973WeYO
               D. Werdecker, A.M. Kleinfeld, J.S. Greenberg, Proc. Int. Conf. Nucl. Moments and Nucl. Struct., Osaka, Japan (1972), H.Horie, K.Sugimoto, Eds., 195
```

(1973); J. Phys. Soc. Jap. 34 Suppl. (1973).

C. Baktash, J.X. Saladin, Phys. Rev. C 10, 1136 (1974).

Z. Awwad, A. Abdel-Haliem, M.R. El-Aasser, Acta Phys. 37, 141 (1974).

I. Barrette, M. Barrette, R. Haroutunian et al., Phys. Rev. C 10, 1166 (1974).

J. Barrette, M. Barrette, G. Lamoureux et al., Nucl. Phys. A 235, 154 (1974).

1974Aw03

1974Ba43

1974Ba45

1974Ba80

```
1974Be18
               R.A.I. Bell, J.V. Thompson, I.G. Graham, L.E. Carlson, Nucl. Phys. A 222, 477 (1974).
1974Be25
               Z. Berant, C. Broude, G. Engler, D.F.H. Start, Nucl. Phys. A 225, 55 (1974).
1974Br04
               B.A. Brown, D.B. Fossan, J.M. McDonald, K.A. Snover, Phys. Rev. C9, 1033 (1974).
1974Br31
               W. Bruckner, D. Husar, D. Pelte et al., Nucl. Phys. A 231, 159 (1974).
1974Bu13
               J. Burde, S. Eshhar, A. Ginzburg, E. Navon, Nucl. Phys. A 229, 387 (1974).
1974Ch09
               Y.T. Cheng, A. Goswami, M.J. Throop, D.K. McDaniels, Phys. Rev. C 9, 1192 (1974).
1974De12
               W. Dehnhardt, S.J. Mills, M. Muller-Veggian et al., Nucl. Phys. A 225, 1 (1974).
1974El03
               M.R. El-Aasser, Z. Awwad, ATOMKI Kozlem, 16, 141 (1974).
1974Fi01
               T.R. Fisher, T.T. Bardin, I.A. Becker, B.A. Watson, Phys. Rev. C 9, 598 (1974).
1974Fi05
               S.P. Fivozinsky, S. Penner, J.W. Lightbody, Jr., D. Blum, Phys. Rev. C 9, 1533 (1974).
1974Fo13
               J.S. Forster, D. Ward, G.J. Costa et al., Phys. Lett. B 51, 133 (1974).
1974Gr06
               H. Grawe, R. Konig, Z. Phys. 266, 41 (1974).
               H. Grawe, U. Lohle, R. Konig, Z. Phys. 268, 419 (1974).
1974Gr19
1974Gu11
               G. Guillaume, B. Rastegar, P. Fintz, A. Gallmann, Nucl. Phys. A 227, 284 (1974).
1974Iv01
               M. Ivascu, D. Popescu, E. Dragulescu et al., NUCL. PHYS. A 218, 104 (1974).
1974Ia7N
               R.C. Jared, H. Nifenecker, S.G. Thompson, LBL-2366, 38 (1974).
1974Jo02
               P.M. Johnson, M.A. Meyer, D. Reitmann, Nucl. Phys. A 218, 333 (1974).
1974Jo10
               A. Johnston, T.E. Drake, J. Phys. (London) A 7, 898 (1974).
1974Le13
               P.M.S. Lesser, D. Cline, C. Kalbach-Cline, A. Bahnsen, Nucl. Phys. A 223, 563 (1974).
1974Le17
               E.W. Lees, A. Johnston, S.W. Brain et al., J. Phys. (London) A 7, 936 (1974).
1974MaYP
               R. Maas, C.W. de Jager, Proc. Int. Conf. Nucl. Struct. and Spectrosc., Amsterdam, H.P.Blok, A.E.L.Dieperink, Eds., Scholar's Press, Amsterdam 1, 204
1974Mc17
               A.B. McDonald, T.K. Alexander, O. Hausser et al., CAN. J. PHYS. 52, 1381 (1974).
1974Me13
               F.R. Metzger, Phys. Rev. C 9, 1525 (1974).
1974No08
               E. Nolte, Y. Shida, W. Kutschera et al., Z. Phys. 268, 267 (1974).
19740101
               D.K. Olsen, A.R. Barnett, S.F. Biagi et al., Nucl. Phys. A 220, 541 (1974).
19740102
               A. Olin, O. Hausser, T.K. Alexander et al., Nucl. Phys. A 221, 555 (1974).
1974Po15
               A.R. Poletti, B.A. Brown, D.B. Fossan, E.K. Warburton, Phys. Rev. C10, 2329 (1974).
1974Pr02
               D. Proetel, R.M. Diamond, F.S. Stephens, Phys. Lett. B 48, 102 (1974).
1974Pr04
               J.G. Pronko, T.T. Bardin, J.A. Becker et al., Phys. Rev. C 9, 1430 (1974); ERRATUM PHYS. Rev. C 10, 1249 (1974).
1974Ra15
               B. Rastegar, G. Guillaume, P. Fintz, A. Gallmann, Nucl. Phys. A 225, 80 (1974).
1974SaZH
               R.O. Sayer, R.L. Robinson, N.C. Singhal et al., ORNL-4937, 117 (1974).
1974Sh12
               A.H. Shaw, J.S. Greenberg, Phys. Rev. C 10, 263 (1974).
1974Si01
               R.P. Singhal, S.W. Brain, W.A. Gillespie et al., Nucl. Phys. A 218, 189 (1974).
1974Sw05
               C.P. Swann, J. Franklin Inst. 298, 321 (1974).
1974ThZG
               T.F. Thorsteinsen, F. Videbaek, BUP-65 (1974).
1974ToZI
               C.W. Towsley, THESIS, Univ.Rochester (1974); Diss.Abstr.Int. 35B, 1864 (1974).
1974Wa04
               B.A. Watson, J.A. Becker, T.R. Fisher, Phys. Rev. C9, 1200 (1974).
1974Wo01
               H.J. Wollersheim, W. Wilcke, T.W. Elze, D. Pelte, Phys. Lett. B 48, 323 (1974).
1974Ye01
               R. Yen, L.S. Cardman, D. Kalinsky et al., Nucl. Phys. A 235, 135 (1974).
1975Ba72
               P. Barreau, P. Bertin, B. Bihoreau et al., J. Phys. (Paris), Colloq. 36, C5-77 (1975).
1975Be15
               Z. Berant, C. Broude, G. Engler et al., Nucl. Phys. A 243, 519 (1975).
1975Bi03
               S.F. Biagi, W.R. Phillips, A.R. Barnett, Nucl. Phys. A 242, 160 (1975).
1975Bo39
               H. Bohn, P. Kienle, D. Proetel, R.L. Hershberger, Z. Phys. A 274, 327 (1975).
1975Bu08
               P.A. Butler, J. Meyer-Ter-Vehn, D. Ward et al., Phys. Lett. B 56, 453 (1975).
1975DeXW
               J.E.P. de Bie, C.W. de Jager, A.A.C. Klaasse et al., IKO Progr. Rept. 1975, 3 (1975).
1975Eb01
               J.L. Eberhardt, R.E. Horstman, H.A. Doubt, G. Van Middelkoop, Nucl. Phys. A 244, 1 (1975).
1975EdZY
               L.-O. Edvardson, L.O. Norlin, PRIV. COMM. (March 1975); UUIP-895 (1975).
               H.-G. Friederichs, A. Gelberg, B. Heits et al., Phys. Rev. Lett. 34, 745 (1975).
1975Fr04
               D.M. Gordon, L.S. Eytel, H. de Waard, D.E. Murnick, Phys. Rev. C 12, 628 (1975).
1975Go18
1975Gr04
               H. Grawe, K. Holzer, K. Kandler, A.A. Pilt, Nucl. Phys. A 237, 18 (1975).
1975Gr30
               R. Graetzer, S.M. Cohick, J.X. Saladin, Phys. Rev. C 12, 1462 (1975).
1975GuYV
               G.M. Gusinskii, M.A. Ivanov, A.S. Mishin, Program and Theses, Proc. 25th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, 380 (1975).
1975GuYW
               G.M. Gusinskii, M.A. Ivanov, M.K. Kudoyarov et al., Program and Theses, Proc. 25TH Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, 379
               (1975).
               B. Haas, P. Taras, J.C. Merdinger, R. Vaillancourt, Nucl. Phys. A238, 253 (1975).
1975Ha04
1975HaYU
               E.C. Hagen, Thesis, Duke Univ. (1974); Diss. Abstr. Int. 35B, 4101 (1975).
1975He25
               J.A.J. Hermans, G.A.P. Engelbertink, M.A. van Driel et al., Nucl. Phys. A 255, 221 (1975).
               R.E. Horstman, J.L. Eberhardt, H.A. Doubt et al., Nucl. Phys. A 248, 291 (1975).
1975Ho15
1975 JaYL
               R.C. Jared, H. Nifenecker, E. Cheifetz et al., PRIV. COMM. (1975).
1975Ka11
               H. Karwowski, S. Majewski, B. Pietrzyk et al., J. Phys. (Paris) 36, 471 (1975).
1975Kl07
               A.M. Kleinfeld, H.G. Maggi, D. Werdecker, Nucl. Phys. A 248, 342 (1975).
1975Kl09
               A.M. Kleinfeld, K.P. Lieb, D. Werdecker, U. Smilansky, Phys. Rev. Lett. 35, 1329 (1975).
1975Kl10
               F.J. Kline, I.P. Auer, J.C. Bergstrom, H.S. Caplan, Nucl. Phys. A 255, 435 (1975).
1975Le22
               I.Y. Lee, J.X. Saladin, J. Holden et al., Phys. Rev. C 12, 1483 (1975).
               K.E.G. Lobner, G. Dannhauser, D.J. Donahue et al., Z. Phys. A 274, 251 (1975).
1975Lo08
1975Mi08
               H. Miska, H.D. Graf, A. Richter et al., Phys. Lett. 58 B, 155 (1975).
1979Sa05
               S. Salem Vasconcelos, M.N. Rao, N. Ueta, C.R. Appoloni, Nucl. Phys. A 313, 333 (1979).
1975Si21
               R.P. Singhal, S.W. Brain, C.S. Curran et al., J. Phys. (London) G 1, 558 (1975).
```

1975Th01

1975To06

M.J.Throop, Y.T.Cheng, D.K.McDaniels, Nucl. Phys. A239, 333 (1975).

C.W. Towsley, D. Cline, R.N. Horoshko, Nucl. Phys. A250, 381 (1975).

```
1975Tr08
               W. Trautmann, D. Proetel, O. Hausser et al., Phys. Rev. Lett. 35, 1694 (1975).
1975Wa10
               P. Wagner, M.A. Ali, J.P. Coffin, A. Gallmann, Phys. Rev. C 11, 1622 (1975).
1975Wo08
               H.J. Wollersheim, W. Wilcke, T.W. Elze, Phys. Rev. C 11, 2008 (1975).
1976AlYY
               A.A. Aleksandrov, M.A. Ivanov, V.G. Kiptilyi et al., Program and Theses, Proc. 26th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Baku, 412 (1976).
1976As04
               J. Asher, M.A. Grace, P.D. Johnston et al., J. Phys. (London) G2, 477 (1976).
1976As07
               J. Asher, M.A. Grace, P.D. Johnston et al., Hyperfine Interactions 2, 378 (1976).
1976Ba06
               F.T. Baker, T.H. Kruse, W. Hartwig et al., Nucl. Phys. A 258, 43 (1976).
1976Ba23
               F.T. Baker, A. Scott, T.H. Kruse et al., Phys. Rev. Lett. 37, 193 (1976).
1976Ba35
               F.T. Baker, A. Scott, T.H. Kruse et al., Nucl. Phys. A 266, 337 (1976).
1976Be64
               R.B. Begzhanov, F.S. Akilov, A.K. Khalikov, M.S. Rakhmankulov, Izv. AKAD. NAUK Uzb. SSR, Ser. Fiz.-Mat.Nauk No.4, 59 (1976).
1976Bo12
               A. Bockisch, A.M. Kleinfeld, Nucl. Phys. A 261, 498 (1976).
1976Bo27
               B. Bochev, S.A. Karamian, T. Kutsarova et al., Nucl. Phys. A 267, 344 (1976).
1976Bu20
               D.K. Butt, M.A. Raoof, S.A. Raoof, J. Phys. (London) G 2, 823 (1976).
1976Ch11
               A. Charvet, R. Duffait, T. Negadi et al., Phys. Rev. C13, 2237 (1976).
1976Es02
               M.T. Esat, D.C. Kean, R.H. Spear, A.M. Baxter, Nucl. Phys. A 274, 237 (1976).
1976Fo12
               J.S. Forster, G.C. Ball, C. Broude et al., Phys. Rev. C 14, 596 (1976).
1976Ha01
               J.H. Hamilton, H.L. Crowell, R.L. Robinson et al., Phys. Rev. Lett. 36, 340 (1976).
1976He05
               B. Heits, H.-G. Friederichs, A. Gelberg et al., Phys. Lett. B 61, 33 (1976).
1976KaYY
               D.K. Kaipov, Yu.A. Lysikov, L.M. Dautov, N.N. Lashkul, Program and Theses, Proc. 26th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku, 62
               (1976).
1976Kl04
               A. Kluge, W. Thomas, Nucl. Instrum. Methods 134, 525 (1976).
1976Li19
               J.W. Lightbody, Jr., J.W. Lightbody, S. Penner et al., Phys. Rev. C14, 952 (1976).
1976Mc02
               A.B. McDonald, T.K. Alexander, C. Broude et al., Nucl. Phys. A 258, 152 (1976).
               E. Monnand, B. Fogelberg, Proc. Int. Conf. Nuclei Far from Stability, 3RD, Cargese, France, R.Klapisch, Ed., CERN-76-13, 503 (1976).
1976MoZB
1976Ne06
               R. Neuhausen, J.W. Lightbody, Jr., J.W. Lightbody et al., Nucl. Phys. A263, 249 (1976).
1976Pa13
               P. Paradis, G. Lamoureux, R. Lecomte, S. Monaro, Phys. Rev. C 14, 835 (1976).
1976Ra03
               V.K. Rasmussen, Phys. Rev. C 13, 631 (1976); Erratum Phys. Rev. C 13, 2596 (1976).
1976So03
               J.R. Southon, L.K. Fifield, A.R. Poletti, J. Phys. (London) G 2, 117 (1976).
               A.A.Aleksandrov, V.S.Zvonov, M.A.Ivanov et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 49 (1977); Bull. Acad. Sci. USSR, Phys.Ser. 41, No.1, 39 (1977).
1977Al14
1977Ar19
               A. Arnesen, K. Johansson, E. Karlsson et al., Hyperfine Interactions 5, 81 (1977).
               A.M. Bergdolt, J. Chevallier, J.C. Merdinger et al., Proc. Int. Conf. Nucl. Structure, Tokyo, Japan, Int. Academic Printing Co., Ltd. Japan, 1, 359 (1977).
1977BeYM
1977Bo14
               B. Bochev, S. Iliev, R. Kalpakchieva et al., Nucl. Phys. A 282, 159 (1977).
1977Br16
               S.W. Brain, A. Johnstons, W.A. Gillespie et al., J. Phys. (London) G3, 821 (1977).
               J.F. Bruandet, Tsan Ung Chan, C. Morand et al., Int. SYMP. HIGH-SPIN STATES, Nucl. Struct., Dresden, L.Funke, Ed., ZfK-336, p.119 (1977).
1977BrYO
1977Ca14
               Y. Cauchois, H. ben Abdelaziz, Y. Heno et al., C.R. Acad. Sci., Ser. B 284, 65 (1977).
1977Co10
               D.F. Coope, L.E. Cannell, M.K. Brussel, Phys. Rev. C 15, 1977 (1977).
1977Di07
               W.R. Dixon, R.S. Storey, J.J. Simpson, Phys. Rev. C 15, 1896 (1977).
1977Es02
               M.T. Esat, D.C. Kean, R.H. Spear et al., Phys. Lett. B 72, 49 (1977).
1977Fi01
               H. Fischer, D. Kamke, H.J. Kittling et al., Phys. Rev. C 15, 921 (1977).
               J.M. Finn, H. Crannell, P.L. Hallowell et al., Nucl. Phys. A 290, 99 (1977).
1977Fi09
1977Fl10
               C. Flaum, J. Barrette, M.J. LeVine, C.E. Thorn, Phys. Rev. Lett. 39, 446 (1977).
1977Ga06
               M.G. Gavrilov, A.B. Davydov, M.M. Korotkov, YAD. Fiz. 25, 240 (1977); Sov. J. Nucl. Phys. 25, 131 (1977).
1977Gi13
               W.A. Gillespie, M.W.S. Macauley, A. Johnston et al., J. Phys. (London) G 3, L-169 (1977).
1977Gu08
               G.M. Gusinskii, M.A. Ivanov, I.K. Lemberg et al., Izv. AKAD. NAUK SSSR, Ser. Fiz. 41, 66 (1977); Bull. ACAD. Sci. USSR, Phys. Ser. 41, No.1, 52 (1977).
1977He12
               J.A.J. Hermans, G.A.P. Engelbertink, L.P. Ekstrom et al., Nucl. Phys. A 284, 307 (1977).
1977Ho01
               R.E. Horstman, J.L. Eberhardt, P.C. Zalm et al., Nucl. Phys. A 275, 237 (1977).
1977Ho10
               M. Hoshi, Y. Yoshizawa, J. Phys. Soc. JAP. 42, 1106 (1977).
1977HoZF
               R. Hofmann, H.G. Andresen, B. Dreher et al., PROC. INT. CONF. NUCL. STRUCTURE, Tokyo, Japan, Int. Academic Printing Co., Ltd.Japan, 1, 387 (1977).
1977Hu10
               D. Husar, S.J. Mills, H. Graf et al., Nucl. Phys. A 292, 267 (1977).
1977Jo05
               N.R. Johnson, P.P. Hubert, E. Eichler et al., Phys. Rev. C 15, 1325 (1977).
1977Kl05
               A.M. Kleinfeld, A. Bockisch, K.P. Lieb, Nucl. Phys. A 283, 526 (1977).
1977La15
               H. Lancman, A.P.M. van't Westende, H.D. Graber, Nucl. Phys. A 291, 293 (1977).
1977La16
               J. Lange, A.T. Kandil, J. Neuber et al., Nucl. Phys. A 292, 301 (1977).
1977Le11
               R. Lecomte, P. Paradis, J. Barrette et al., Nucl. Phys. A 284, 123 (1977).
1977LiZS
               J.S. Lilley, A.R. Barnett, M. Franey et al., Bull. AMER. Phys. Soc. 22, No.4, 552, BJ11 (1977).
               F.R. Metzger, Phys. Rev. C 15, 193 (1977).
1977Me01
1977Me10
               F.R. Metzger, Phys. Rev. C 15, 2253 (1977).
               V.K. Mittal, D.K. Avasthi, I.M. Govil, Proc. Nucl. Phys. and Solid State Phys. Symp., Nucl. Phys., Pune, 20 B, p.151 (1977).
1977MiZM
1977Mo20
               C. Morand, J.F. Bruandet, A. Giorni, Tsan Ung Chan, J. Phys. (Paris) 38, 1319 (1977).
1977Na01
               A. Nakada, N. Haik, J. Alster et al., Phys. Rev. Lett. 38, 584 (1977).
               R. Neuhausen, Nucl. Phys. A282, 125 (1977).
1977Ne05
19770g03
               M. Ogawa, E. Arai, J. Phys. Soc. JAP. 42, 376 (1977).
1977Ra01
               D.C. Radford, A.R. Poletti et al., Nucl. Phys. A 275, 141 (1977).
1977Ro08
                R.M. Ronningen, J.H. Hamilton, A.V. Ramayya et al., Phys. Rev. C 15, 1671 (1977).
1977Ro16
                R.M. Ronningen, R.B. Piercey, A.V. Ramayya et al., Phys. Rev. C 16, 571 (1977).
1977Ro26
                R.M. Ronningen, J.H. Hamilton, L. Varnell et al., Phys. Rev. C 16, 2208 (1977).
1977Ro27
                R.M. Ronningen, R.B. Piercey, J.H. Hamilton et al., Phys. Rev. C 16, 2218 (1977).
1977Sa04
               M. Samuel, U. Smilansky, B.A. Watson et al., Nucl. Phys. A 279, 210 (1977).
1977Sc33
               R. Schormann, H. Fischer, E. Kuhlmann, Phys. Rev. C 16, 2165 (1977).
```

D. Schwalm, E.K. Warburton, J.W. Olness, Nucl. Phys. A 293, 425 (1977).

C.P. Swann, Phys. Rev. C 15, 1967 (1977).

1977Sc36

1977Sw03

```
1977Vo07
               P.B. Vold, D. Cline, P. Russo et al., Phys. Rev. Lett. 39, 325 (1977).
1977Wa10
               E.K.Warburton, J.W.Olness, A.M.Nathan et al., Phys. Rev. C16, 1027 (1977).
1977Wo02
               H.I. Wollersheim, T.W. Elze, Nucl. Phys. A 278, 87 (1977).
               I. Adam, W. Andrejtscheff, K.Y. Gromov et al., Nucl. Phys. A 311, 188 (1978).
1978Ad03
1978Ar07
               R.G. Arthur, R.P. Singhal, S.W. Brain et al., J. Phys. (LONDON) G 4, 961 (1978).
1978Av02
               M. Avrigeanu, V. Avrigeanu, D. Bucurescu et al., J. Phys. (London) G 4, 261 (1978).
1978Ba16
               H. Backe, L. Richter, R. Willwater et al., Z. Phys. A 285, 159 (1978).
1978Ba38
               C. Baktash, J.X. Saladin, J.J. O'Brien, J.G. Alessi, Phys. Rev. C 18, 131 (1978).
1978Be10
               M.J. Bechara, O. Dietzsch, M. Samuel, U. Smilansky, Phys. Rev. C 17, 628 (1978).
1978Bo35
               H.H. Bolotin, A.E. Stuchbery, K. Amos, I. Morrison, Nucl. Phys. A311, 75 (1978).
               G. de Villiers, J.W. Koen, W.J. Naude, N.J.A. Rust, SUNI-55, SOUTH. UNIV. NUCL. INST., (S.Africa), 1977 Ann.Rept., p.21 (1978).
1978DeYT
1978DuZY
               E.H. du Marchie Van Voorthuysen, M.J.A. de Voigt, J.F.W. Jansen, KVI Ann. Rept. 1977, 47 (1978).
1978Fa08
               C. Fahlander, L. Hasselgren, G. Possnert, J.E. Thun, Phys. Scr. 18, 47 (1978).
1978He13
               H.P. Hellmeister, E. Schmidt, M. Uhrmacher et al., Phys. Rev. C 17, 2113 (1978).
1978Jo04
               A.M.R. Joye, A.M. Baxter, S. Hinds et al., Phys. Lett. B 72, 307 (1978).
1978Ke11
               D.L. Kennedy, H.H. Bolotin, I. Morrison, K. Amos, Nucl. Phys. A 308, 14 (1978).
1978Ki09
               G. Kindleben, T.W. Elze, Z. Phys. A 286, 415 (1978).
1978KIZR
               D.L. Kennedy, H.H. Bolotin, I. Morrison, K. Amos, UM-P-88, 9 (1978).
1978Le22
               R. Lecomte, S. Landsberger, P. Paradis, S. Monaro, Phys. Rev. C 18, 2801 (1978).
               B.J. Linard, D.L. Kennedy, I. Morrison et al., Nucl. Phys. A 302, 214 (1978).
1978Li13
               F.R. Metzger, Phys. Rev. C 17, 939 (1978).
1978Me08
1978Me16
               F.R. Metzger, Phys. Rev. C 18, 1603 (1978).
1978Og03
               M. Ogawa, R. Broda, K. Zell et al., Phys. Rev. Lett. 41, 289 (1978).
19780h04
               H. Ohnuma, J. Kasagi, Y. Iritani, N. Kishida, J.Phys.Soc.Jpn. 45, 1092 (1978).
1978Po04
               V.N. Polishchuk, N.G. Shevchenko, N.G. Afanasev et al., YAD. Fiz. 27, 1145 (1978); Sov. J. Nucl. Phys. 27, 607 (1978).
1978Ul01
               G. Ulfert, D. Habs, V. Metag, H.J. Specht, Nucl. Instrum. Methods 148, 369 (1978).
1978Ya02
               S.W. Yates, N.R. Johnson, L.L. Riedinger, A.C. Kahler, Phys. Rev. C 17, 634 (1978).
1978Ya11
               Y. Yamazaki, E.B. Shera, M.V. Hoehn, R.M. Steffen, Phys. Rev. C 18, 1474 (1978).
1979Az01
               R.E. Azuma, G.L. Borchert, L.C. Carraz et al., Phys. Lett. B 86, 5 (1979).
1979Be41
               D.J. Beale, A.R. Poletti, J.R. Southon, Aust. J. Phys. 32, 195 (1979).
1979Bo16
               A. Bockisch, K. Bharuth-Ram, A.M. Kleinfeld, K.P. Lieb, Z. Phys. A 291, 245 (1979).
1979Bo28
               A. Bockisch, M. Miller, A.M. Kleinfeld et al., Z. Phys. A 292, 265 (1979).
1979Bo29
               B. Bochev, S. Iliev, R. Kalpakchieva et al., YAD. Fiz. 30, 593 (1979); Sov. J. NUCL. PHYS. 30, 305 (1979).
1979Bo31
               H.H. Bolotin, I. Katayama, H. Sakai et al., J. Phys. Soc. Jpn. 47, 1397 (1979).
1979DuZY
               E.H. du Marchie van Voorthuysen, W. Moonen, J.F.W. Jansen, M.J.A. de Voigt, KVI Ann.Rept., 1978, 63 (1979).
1979Ek03
               L.P. Ekstrom, G.D. Jones, F. Kearns et al., J. Phys. (London) G5, 803 (1979).
1979Fe05
               M.P. Fewell, S. Hinds, D.C. Kean, T.H. Zabel, Nucl. Phys. A 319, 214 (1979).
1979Fe06
               M.P. Fewell, A.M. Baxter, D.C. Kean et al., Nucl. Phys. A 321, 457 (1979).
1979Fe08
               M.P. Fewell, D.C. Kean, R.H. Spear et al., Phys. Rev. Lett. 43, 1463 (1979).
1979Fo02
               I.S. Forster, T.K. Alexander, G.C. Ball et al., Nucl. Phys. A 313, 397 (1979).
1979He07
               H.P. Hellmeister, U. Kaup, J. Keinonen et al., Phys. Lett. B 85, 34 (1979).
1979Ho23
               M.V. Hoehn, E.B. Shera, Phys. Rev. C 20, 1934 (1979).
1979Ki17
               V.G. Kiptilyi, I.Kh. Lemberg, A.S. Mishin, A.A. Pasternak, Izv. Akad. Nauk SSSR, Ser. Fiz. 43, 2276 (1979); Bull. Acad. Sci. USSR, Phys.Ser. 43, No.11, 26
               (1979).
1979Ma13
               X.K. Maruyama, F.J. Kline, J.W. Lightbody et al., Phys. Rev. C 19, 1624 (1979).
1979Mo01
               C. Morand, J.F. Bruandet, B. Chambon et al., Nucl. Phys. A 313, 45 (1979).
1979Pa11
               P. Paradis, R. Lecomte, S. Landsberger, S. Monaro, Phys. Rev. C 20, 1201 (1979).
               A.R. Poletti, L.K. Fifield, J. Asher, B.E. Cooke, J. Phys. (London) G5, 575 (1979).
1979Po01
               R.J. Powers, P. Barreau, B. Bihoreau et al., Nucl. Phys. A 316, 295 (1979).
1979Po04
1979Ri06
               L. Richter, Z. Phys. A 290, 213 (1979).
1979Se03
               G. Seiler-Clark, D. Husar, R. Novotny et al., Phys. Lett. B 80, 345 (1979).
1979Wa23
               R. Wadsworth, L.P. Ekstrom, G.D. Jones et al., J. Phys. (London) G5, 1761 (1979).
1980Ah01
               I. Ahmad, A.M. Friedman, S.W. Yates, Phys. Rev. C 21, 874 (1980).
1980Ba40
               G.C. Ball, O. Hausser, T.K. Alexander et al., Nucl. Phys. A 349, 271 (1980).
1980Bi14
               E. Bitterwolf, P. Betz, A. Burkard et al., Z. Phys. A 298, 279 (1980)
1980Ch22
               T. Chapuran, R. Vodhanel, M.K. Brussel, Phys. Rev. C 22, 1420 (1980).
1980ChZM
               E. Cheifetz, H.A. Selic, A. Wolf et al., Proc. Conf. Nucl. Spectr. Fission Products, Grenoble, 1979, 193 (1980).
1980Fk03
               L.P. Ekstrom, G.D. Jones, F. Kearns et al., J. Phys. (London) G 6, 1415 (1980).
1980FaZW
               C. Fahlander, A. Backlin, L. Hasselgren et al., Proc. 6th European Phys. Soc. Nucl. Div. Conf. on Structure of Medium-Heavy Nu-
               CLEI. Rhodes, Greece, 1979, 291 (1980).
1980HiZV
               J.H. Hirata, O. Dietzsch, Proc. Int. Conf. on Nucl. Phys., Berkeley, 102 (1980).
1980KaZT
               T.Katou, Y.Tendow, H.Kumagai et al., Proc. Int. Conf. on Nucl. Phys., Berkeley, 751 (1980).
1980Ke04
               D.L. Kennedy, A.E. Stuchbery, H.H. Bolotin, Nucl. Instrum. Methods 171, 361 (1980).
1980La01
               S. Landsberger, R. Lecomte, P. Paradis, S. Monaro, Phys. Rev. C 21, 588 (1980).
1980Le16
               R. Lecomte, M. Irshad, S. Landsberger et al., Phys. Rev. C 22, 1530 (1980).
1980Li14
               B.J. Lieb, H.S. Plendl, H.O. Funsten et al., Phys. Rev. C 22, 1612 (1980).
1980LuZT
               M. Luontama, A. Backlin, L. Westerberg et al., JYFL Ann. REPT., 1980, 44 (1980).
1980Mi16
               C. Michel, Y. El Masri, R. Holzmann et al., Z. Phys. A 298, 213 (1980).
1980Ru01
               A.J. Rutten, A. Holthuizen, J.A.G. De Raedt et al., Nucl. Phys. A 344, 294 (1980).
1980Sc13
               F. Schussler, J.A. Pinston, E. Monnand et al., Nucl. Phys. A 339, 415 (1980).
```

D.E.C. Scherpenzeel, G.A.P. Engelbertink, H.J.M. Aarts et al., Nucl. Phys. A 349, 513 (1980).

1980Sc25

1984ZoZZ

1985Al18

```
1980Sp05
                R.H. Spear, M.T. Esat, M.P. Fewell et al., Nucl. Phys. A 345, 252 (1980).
1980Sp09
               R.H. Spear, M.P. Fewell, Aust. J. Phys. 33, 509 (1980); Corrigendum Aust. J. Phys. 34, 609 (1981).
1981Ah02
               I. Ahlert M. Schumacher, Z. Phys. A301, 75 (1981).
1981Bo32
               H.H. Bolotin, A.E. Stuchbery, I. Morrison et al., Nucl. Phys. A 370, 146 (1981).
1981Ca01
               C.M. Cartwright, P.D. Forsyth, I. Hall et al., J. Phys. (London) G 7, 65 (1981).
1981Ca10
               Y. Cauchois, H. Ben Abdelaziz, R. Kherouf, C. Schloesing-Moller, J. Phys. (London) G 7, 1539 (1981).
1981De03
               A.P.de Lima, A.V. Ramayya, J.H. Hamilton et al., Phys. Rev. C 23, 213 (1981); Erratum Phys. Rev. C 23, 2380 (1981).
1981DeYW
               A. Dewald, U. Kaup, W. Gast et al., Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, 2, 418 (1981); CERN-81-09 (1981).
1981Dy01
               K. Dybdal, J.S. Forster, P. Hornshoj et al., Nucl. Phys. A 359, 431 (1981).
1981Es03
               M.T. Esat, M.P. Fewell, R.H. Spear et al., Nucl. Phys. A 362, 227 (1981).
               L. Funke, J. Doring, F. Dubbers et al., Nucl. Phys. A 355, 228 (1981).
1981Fu03
               M.V. Hoehn, E.B. Shera, H.D. Wohlfahrt et al., Phys. Rev. C 24, 1667 (1981).
1981Ho22
1981Is14
               H.A. Ismail, A. El-Naem, S.A. El-Malalk et al., Rev. Roum. Phys. 26, 461 (1981).
1981Ji03
               Jiang Cheng-lie, S. Pontoppidan, Phys. Rev. C 24, 1350 (1981).
1981Jo03
               N.-G. Jonsson, A. Backlin, J. Kantele et al., Nucl. Phys. A 371, 333 (1981).
1981Le02
               M.J. LeVine, E.K. Warburton, D. Schwalm, Phys. Rev. C23, 244 (1981).
1981Wa09
               N.J. Ward, L.P. Ekstrom, G.D. Jones et al., J. Phys. (London) G7, 815 (1981).
1981Yo07
               Y. Yoshizawa, B. Herskind, M. Hoshi, J. Phys. Soc. Jpn. 50, 2151 (1981).
19817h07
               U.Yu. Zhovliev, M.F. Kudoyarov, I.Kh. Lemberg, A.A. Pasternak, Izv. Акад. Nauk SSSR, Ser. Fiz. 45, 1879 (1981).
               T.K. Alexander, G.C. Ball, W.G. Davies et al., Phys. Lett. B 113, 132 (1982).
1982Al15
1982Al22
               T.K. Alexander, G.C. Ball, J.S. Forster et al., Phys. Rev. Lett. 49, 438 (1982).
1982An06
               D.S. Andreev, K.I. Erokhina, I.Kh. Lemberg et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 30 (1982).
1982Ba06
               G.C. Ball, T.K. Alexander, W.G. Davies et al., Nucl. Phys. A 377, 268 (1982).
1982Be38
               I.A. Becker, I.B. Carlson, R.G. Lanier et al., Phys. Rev. C 26, 914 (1982).
               A. Dewald, U. Kaup, W. Gast et al., Phys. Rev. C 25, 226 (1982).
1982De05
               S. Della Negra, H. Gauvin, D. Jacquet, Y. Le Beyec, Z. Phys. A 307, 305 (1982).
1982De36
1982GaZH
               K.F.W. Gast, THESIS, Univ.Koln (1982).
1982He03
               J. Heisenberg, J. Lichtenstadt, C.N. Papanicolas, J.S. McCarthy, Phys. Rev. C 25, 2292 (1982).
1982Hi7T
               T. Higo, S. Matsuki, T. Oshawa et al., Contrib. Intern. Symp. Dynamics of Nucl. Collective Motion, Yamanishi, Japan, 27 (1982).
1982Jo04
               N.R. Johnson, I.Y. Lee, F.K. McGowan et al., Phys. Rev. C 26, 1004 (1982).
1982Ke01
               J. Keinonen, K.P. Lieb, H.P. Hellmeister et al., Nucl. Phys. A 376, 246 (1982).
1982Li08
               C.J. Lister, B.J. Varley, H.G. Price, J.W. Olness, Phys. Rev. Lett. 49, 308 (1982).
1982No04
               B.E. Norum, M.V. Hynes, H. Miska et al., Phys. Rev. C 25, 1778 (1982).
1982Pa03
               T. Paradellis, C.A. Kalfas, Phys. Rev. C 25, 350 (1982).
1982Pa10
               A. Pakkanen, Y.H. Chung, P.J. Daly et al., Phys. Rev. Lett. 48, 1530 (1982).
1982Ro05
               S. Rozak, E.G. Funk, J.W. Mihelich, Phys. Rev. C 25, 3000 (1982).
1982Sp02
               K.-H. Speidel, P.N. Tandon, V. Mertens et al., Nucl. Phys. A 378, 130 (1982).
1982Sp05
                R.H. Spear, T.H. Zabel, M.T. Esat et al., Nucl. Phys. A 378, 559 (1982).
1983Bi08
               E. Bitterwolf, A. Burkard, P. Betz et al., Z. Phys. A 313, 123 (1983).
1983El02
               M.S.S. El-Daghmah, N.M. Stewart, Z. Phys. A 309, 219 (1983).
1983El03
               D.V. Elenkov, D.P. Lefterov, G.Kh. Tumbev, Izv. AKAD. NAUK SSSR, Ser. Fiz. 47, 56 (1983).
1983Ga11
               M. Gai, J.F. Ennis, M. Ruscev et al., Phys. Rev.Lett. 51, 646 (1983).
1983He21
               F.W. Hersman, W. Bertozzi, T.N. Buti et al., Phys. Lett. B 132, 47 (1983).
1983Kl09
               R. Klein, P. Grabmayr, Y. Kawazoe et al., Nuovo Cim. 76 A, 369 (1983).
1983Ko01
               R.L. Kozub, J. Lin, J.F. Mateja et al., Phys. Rev. C 27, 158 (1983).
1983La08
                D.B. Laubacher, Y. Tanaka, R.M. Steffen et al., Phys. Rev. C 27, 1772 (1983).
1983Li02
               J.W. Lightbody, Jr., J.W. Lightbody, J.B. Bellicard et al., PHYS. Rev. C27, 113 (1983).
1983MaYT
               G. Mamane, THESIS, Weizmann Inst. Science, Rehovot (1983).
1983Pr08
               H.G. Price, C.J. Lister, B.J. Varley et al., Phys. Rev. Lett. 51, 1842 (1983).
1983Ra17
               M. Rahman, H.P. Nottrodt, F. Rauch, Nucl. Phys. A 401, 253 (1983).
               A. Alzner, D. Best, E. Bodenstedt et al., Z. Phys. A 316, 87 (1984).
1984Al06
1984Be20
               M.J. Bechara, O. Dietzsch, J.H. Hirata, Phys. Rev. C 29, 1672 (1984).
1984Bh03
               R.K. Bhalla, A.R. Poletti, Nucl. Phys. A 420, 96 (1984).
1984Dr02
               G.D. Dracoulis, G.D. Sprouse, O.C. Kistner, M.H. Rafailovich, Phys. Rev. C 29, 1576 (1984).
1984Ff01
               A.D. Efimov, K.I. Erokhina, V.G. Kiptilyi et al., Izv. AKAD. NAUK SSSR, Ser. Fiz. 48, 10 (1984).
1984El12
               D. Elenkov, D. Lefterov, G. Toumbev, Nucl. Instrum. Methods 228, 62 (1984).
1984EnZY
               J.F. Ennis, M. Gai, D.A. Bromley et al., BULL. Am. Phys. Soc. 29, No.7, 1050, DC10 (1984).
1984Fe08
               M.P. Fewell, Nucl. Phys. A 425, 373 (1984).
               J. Heisenberg, J. Dawson, T. Milliman et al., Phys. Rev. C 29, 97 (1984).
1984He02
1984Ke10
               P. Kemnitz, P. Ojeda, J. Doring et al., Nucl. Phys. A 425, 493 (1984).
1984Mu19
               S.J. Mundy, J. Lukasiak, W.R. Phillips, Nucl. Phys. A 426, 144 (1984).
1984Pa02
               C.N. Papanicolas, J. Heisenberg, J. Lichtenstadt et al., Phys. Rev. Lett. 52, 247 (1984).
               W. Reuter, E.B. Shera, M.V. Hoehn et al., PHys. Rev. C 30, 1465 (1984).
1984Re10
1984Ro01
               J. Roth, L. Cleemann, J. Eberth et al., J. Phys. (London) G 10, L25 (1984).
1984Ta10
               T. Tanaka, R.M. Steffen, E.B. Shera et al., Phys. Rev. C 30, 350 (1984).
1984To10
               D.M. Todd, R. Aryaeinejad, D.I.G. Love et al., J. Phys. (London) G 10, 1407 (1984).
1984Ve07
               W.J. Vermeer, M.T. Esat, J.A. Kuehne et al., Aust. J. Phys. 37, 123 (1984).
1984We17
               J.C. Wells, N.R. Johnson, J. Hattula et al., Phys. Rev. C 30, 1532 (1984).
1984Wo10
               B. Wormann, K.P. Lieb, R. Diller et al., Nucl. Phys. A 431, 170 (1984).
```

A.E. Zobov, V.G. Kiptily, I.Kh. Lemberg et al., Program and Theses, Proc. 34th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Alma-Ata, 73 (1984).

T.K. Alexander, G.C. Ball, D. Horn et al., Nucl. Phys. A 444, 285 (1985).

```
1985Az02
               F. Azgui, H. Emling, E. Grosse et al., Nucl. Phys. A 439, 573 (1985).
1985AzZY
               F. Azgui, Thesis, Univ. Louis Pasteur de Strasbourg (1985); CRN/PN 85 31 (1985).
1985Bo31
               D. Bohle, A. Richter, K. Heyde et al., Phys. Rev. Lett. 55, 1661 (1985).
1985Bo32
               W. Bonin, H. Backe, M. Dahlinger et al., Z. Phys. A 322, 59 (1985).
1985Bu01
               S.M. Burnett, A.M. Baxter, S. Hinds et al., Nucl. Phys. A 432, 514 (1985).
1985ChZY
               A. Chaudhury, M.W. Drigert, E.G. Funk et al., Bull. Am. Phys. Soc. 30, No.4, 742, DE9 (1985).
1985Fe03
               M.P. Fewell, G.J. Gyapong, R.H. Spear et al., Phys. Lett. B 157, 353 (1985).
1985Lu06
               S. Lunardi, F. Scarlassara, F. Soramel et al., Z. Phys. A 321, 177 (1985).
1985Si01
               K.P. Singh, D.C. Tayal, G. Singh, H.S. Hans, Phys. Rev. C 31, 79 (1985).
1985VoZY
               P. von Brentano, Priv.Comm. (June 1985).
1985Wi01
               G. Winter, F. Dubbers, J. Doring et al., J. Phys. (London) G 11, 277 (1985).
1985Wi06
               J.E. Wise, J.S. McCarthy, R. Altemus et al., Phys. Rev. C 31, 1699 (1985).
1985Wo06
               U. Worsdorfer, H.J. Emrich, H. Miska et al., Nucl. Phys. A 438, 711 (1985).
1986Bi13
               I. Billowes, Hyperfine Interactions 30, 265 (1986).
1986Cz02
               T. Czosnyka, D. Cline, L. Hasselgren et al., Nucl. Phys. A 458, 123 (1986).
1986Dr05
               G.D. Dracoulis, A.E. Stuchbery, A.P. Byrne et al., J. Phys. (London) G 12, L97 (1986).
1986Ga21
               U. Garg, A. Chaudhury, M.W. Drigert et al., Phys. Lett. B 180, 319 (1986).
1986Gy04
               G.J. Gyapong, R.H. Spear, M.T. Esat et al., Nucl. Phys. A 458, 165 (1986).
1986He09
               F.W. Hersman, W. Bertozzi, T.N. Buti et al., Phys. Rev. C 33, 1905 (1986).
1986He17
               J. Heese, K.P. Lieb, L. Luhmann et al., Z. Phys. A 325, 45 (1986).
1986Ma22
               G. Mamane, E. Cheifetz, E. Dafni et al., Nucl. Phys. A 454, 213 (1986).
1986Ma39
               A. Makishima, M. Adachi, H. Taketani, M. Ishii, Phys. Rev. C 34, 576 (1986).
1986Os02
               M. Oshima, N.R. Johnson, F.K. McGowan et al., Phys. Rev. C 33, 1988 (1986).
1986Ra07
               M.N. Rao, N.R. Johnson, F.K. McGowan et al., Phys. Rev. Lett. 57, 667 (1986).
1986Ro15
               P.J. Rothschild, A.M. Baxter, S.M. Burnett et al., Phys. Rev. C 34, 732 (1986).
1986Sc18
               P. Schuler, Ch. Lauterbach, Y.K. Agarwal et al., Phys. Lett. B 174, 241 (1986).
1987Bi13
               J. Billowes, K.P. Lieb, J.W. Noe et al., Phys. Rev. C 36, 974 (1987).
1987Dr08
               G.D. Dracoulis, A.P. Byrne, A.E. Stuchbery et al., Nucl. Phys. A 467, 305 (1987).
1987Ga12
               J. Gascon, F. Banville, P. Taras et al., Nucl. Phys. A 470, 230 (1987).
1987Ga14
               J. Gascon, P. Taras, P. van Esbroek et al., Nucl. Phys. A 472, 558 (1987).
1987Gy01
               G.J. Gyapong, R.H. Spear, M.P. Fewell et al., Nucl. Phys. A 470, 415 (1987).
1987Is7X
               T. Ishii, M. Ishii, K. Yanagida, M. Ogawa, Japan Atomic Energy Res. Inst. Tandem Linac VDG, Ann. Rept., 1986, 167 (1987).
1987MiZL
               T.E. Milliman, Thesis, Univ. New Hampshire (1987).
19870h05
               H. Ohm, G. Lhersonneau, K. Sistemich et al., Z. Phys. A 327, 483 (1987).
1987Sc07
               R. Schwengner, G. Winter, J. Doring et al., Z. Phys. A 326, 287 (1987).
1987Wa02
               R. Wadsworth, J.M. O'Donnell, D.L. Watson et al., J. Phys. (LONDON) G 13, 205 (1987).
1988Ah01
               A. Ahmad, G. Bomar, H. Crowell et al., Phys. Rev. C 37, 1836 (1988).
1988Bi03
               P.J. Bishop, M.J. Godfrey, A.J. Kirwan et al., J. Phys. (London) G 14, 995 (1988).
1988Bo08
               W. Boeglin, P. Egelhof, I. Sick et al., Nucl. Phys. A 477, 399 (1988).
1988Br10
               M.R. Braunstein, J.J. Kraushaar, R.P. Michel et al., Phys. Rev. C 37, 1870 (1988).
1988DoZU
               G.A. Dostemesova, D.K. Kaipov, Yu.G. Kosyak, Program and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku, 59 (1988).
1988Fa07
               C. Fahlander, A. Backlin, L. Hasselgren et al., Nucl. Phys. A 485, 327 (1988).
1988Fe01
               M.P. Fewell, N.R. Johnson, F.K. McGowan et al., Phys. Rev. C 37, 101 (1988).
1988Ga33
               M. Gai, J.F. Ennis, D.A. Bromley et al., Phys. Lett. B 215, 242 (1988).
1988Ka21
               W. Karle, M. Knopp, K.-H. Speidel, Nucl. Instrum. Methods Phys. Res. A 271, 507 (1988).
1988Ku01
               A.I. Kucharska, J. Billowes, M.A. Grace, J. Phys. (London) G 14, 65 (1988).
1988Ku33
               A. Kuronen, J. Raisanen, J. Keinonen et al., Nucl. Instrum. Methods Phys. Res. B35, 1 (1988).
1988Li22
               C.S. Lim, R.H. Spear, W.J. Vermeer et al., Nucl. Phys. A 485, 399 (1988).
1988Lu04
               Lu Xiting, Ban Yong, Liu Hongtao et al., Nucl. Instrum. Methods Phys. Res. A272, 909 (1988).
1988Mo08
               R. Moscrop, M. Campbell, W. Gelletly et al., Nucl. Phys. A 481, 559 (1988).
               T. Mylaeus, J. Busch, J. Eberth et al., HMI-466, 210 (1988).
1988MyZY
1988PeZW
               B.A. Peterson, G.A. Rebka, S. Kowalski et al., Bull. Am. Phys. Soc. 33, No.4, 1097, KI2 (1988).
1988Sa32
               S. Salem-Vasconcelos, M.J. Bechara, J.H. Hirata, O. Dietzsch, Phys. Rev. C38, 2439 (1988).
1988So06
               F. Soramel, S. Lunardi, S. Beghini et al., Phys. Rev.C 38, 537 (1988).
1988Ve08
               W.J. Vermeer, C.S. Lim, R.H. Spear, Phys. Rev. C 38, 2982 (1988).
1989Ad01
               J. Adam, M. Honusek, A. Spalek et al., Z. Phys. A 332, 143 (1989).
1989Bu07
               S.M. Burnett, A.M. Baxter, G.J. Gyapong et al., Nucl. Phys. A 494, 102 (1989).
1989BuZP
               A.J.C. Burghardt, Thesis, Univ.Amsterdam (1989); INIS-MF-11407 (1989).
1989Ga24
               Yu.P. Gangrsky, S.G. Zemlyanoi, N.N. Kolesnikov et al., YAD. Fiz. 50, 1217 (1989).
1989Ge09
               M.K. Georgieva, D.V. Elenkov, D.P. Lefterov, G.H. Toumbev, Fiz. Elem. Chastits At. Yadra 20, 930 (1989); Sov. J. Part. Nucl. 20, 393 (1989).
1989It02
               K. Itoh, Y.M. Shin, W.J. Gerace, Y. Torizuka, Nucl. Phys. A 492, 426 (1989).
1989Ke04
               J. Keinonen, P. Tikkanen, A. Kuronen et al., Nucl. Phys. A 493, 124 (1989).
               A.J. Kirwan, P.J. Bishop, D.J.G. Love et al., J. Phys. (London) G 15, 85 (1989).
1989Ki01
1989Ko40
               B. Kotlinski, D. Cline, A. Backlin, D. Clark, Nucl. Phys. A 503, 575 (1989).
1989Ku04
               R. Kulessa, R. Bengtsson, H. Bohn et al., Phys. Lett. B 218, 421 (1989).
1989Lh01
               G. Lhersonneau, H. Gabelmann, N. Kaffrell et al., Z. Phys. A 332, 243 (1989).
1989Lo01
               G. Lo Bianco, K.P. Schmittgen, K.O. Zell, P. v. Brentano, Z. Phys. A 332, 103 (1989).
19891.008
               M. Loiselet, O. Naviliat-Cuncic, J. Vervier, Nucl. Phys. A 496, 559 (1989).
1989Ma33
               H. Mach, M. Moszynski, R.F. Casten et al., Phys. Rev. Lett. 63, 143 (1989).
1989Ma38
               H. Mach, R.L. Gill, M. Moszynski, Nucl. Instrum. Methods Phys. Res. A 280, 49 (1989).
```

H. Mach, M. Moszynski, R.L. Gill et al., Phys. Lett. B 230, 21 (1989).

1989Ma47

1994Mc06

F.K. McGowan, N.R. Johnson, M.N. Rao et al., Nucl. Phys. A 580, 335 (1994).

```
1989Mo06
                M. Moszynski, H. Mach, Nucl. Instrum. Methods Phys. Res. A 277, 407 (1989).
1989Mo10
               R. Moscrop, M. Campbell, W. Gelletly et al., Nucl. Phys. A 499, 565 (1989).
1989Mu13
               M. Murzel, S.C. Pancholi, U. Birkental et al., Z. Pнуs. A 334, 125 (1989).
19890h06
               H. Ohm, M. Liang, G. Molnar, K. Sistemich, Z. Phys. A 334, 519 (1989).
1989Sc06
               K. Schiffer, S. Harissopulos, A. Dewald et al., J. Phys. (London) G 15, L85 (1989).
1989Sp03
               R.H. Spear, A.M. Baxter, S.M. Burnett, C.L. Miller, Aust. J. Phys. 42, 41 (1989).
1989Sp07
                R.H. Spear, W.J. Vermeer, S.M. Burnett et al., Aust. J. Phys. 42, 345 (1989).
1989SvZZ
               L.E. Svensson, Thesis, Uppsala Univ. (1989).
1989VoZT
               D.A. Volkov, A.I. Kovalenko, A.I. Levon et al., Program and Thesis, Proc. 39th Ann. Conf. Nucl. Spectrosc, Struct. At. Nuclei, Tashkent, 74 (1989).
1989Wu04
               C.Y. Wu, D. Cline, E.G. Vogt et al., PHys. Rev. C 40, R3 (1989); Erratum Phys. Rev. C 40, 2431 (1989).
1990De04
               M.J.A. De Voigt, R. Kaczarowski, H.J. Riezebos et al., Nucl. Phys. A 507, 472 (1990).
1990DeZN
               A. Dewald, P. Petkov, R. Wrzal et al., Proc. Intern. Conf. Nuclear Structure, 24TH ZAKOPANE SCHOOL on Physics, Zakopane, Poland, 28 April-12
                May, 1990, 152 (1990).
1990Ga22
                G. Garcia Bermudez, M.A. Cardona, A. Filevich, Nucl. Instrum. Methods Phys. Res. A 292, 367 (1990).
1990He04
               J. Heese, K.P. Lieb, S. Ulbig et al., Phys. Rev. C 41, 603 (1990).
1990Ka11
               R. Kaczarowski, U. Garg, A. Chaudhury et al., Phys. Rev. C 41, 2069 (1990).
               B. Kotlinski, D. Cline, A. Backlin et al., Nucl. Phys. A 517, 365 (1990).
1990Ko30
1990Ko38
               B. Kotlinski, T. Czosnyka, D. Cline et al., Nucl. Phys. A 519, 646 (1990).
               G. Lhersonneau, H. Gabelmann, N. Kaffrell et al., Z. Phys. A 337, 143 (1990).
1990Lh01
1990Ma25
               H. Mach, W. Nazarewicz, D. Kusnezov et al., Phys. Rev. C 41, R2469 (1990).
1990Pi04
               H.H. Pitz, R.D. Heil, U. Kneissl et al., Nucl. Phys. A 509, 587 (1990); Errata Nucl. Phys. A 514, 749 (1990).
1990Ro10
               H. Rotter, J. Doring, L. Funke et al., Nucl. Phys. A 514, 401 (1990).
1990Ta12
               S.L. Tabor, P.D. Cottle, J.W. Holcomb et al., Phys. Rev. C 41, 2658 (1990).
1990Wa13
               Y. Wang, J. Rapaport, Nucl. Phys. A 517, 301 (1990).
1990WeZZ
               J. Wei, K.B. Beard, J.C. Walpe et al., Bull. Am. Phys. Soc. 35, No.4, 1016, H6 7 (1990).
1991Ba38
               D. Bazzacco, F. Brandolini, K. Loewenich et al., Nucl. Phys. A 533, 541 (1991).
1991He03
               M. Hellstrom, H. Mach, B. Fogelberg et al., Phys. Rev. C 43, 1462 (1991).
1991Ib01
               R.Ibbotson, B.Kotlinski, D.Cline et al., Nucl. Phys. A 530, 199 (1991).
1991Ki13
               W. Kim, J.R. Calarco, J.P. Connelly et al., Phys. Rev. C 44, 2400 (1991).
               M. Liang, H. Ohm, B. De Sutter et al., Z. Phys. A 340, 223 (1991).
1991Li39
               H. Mach, F.K. Wohn, G. Molnar et al., Nucl. Phys. A 523, 197 (1991)
1991Ma05
               F.K. McGowan, N.R. Johnson, I.Y. Lee et al., Nucl. Phys. A 530, 490 (1991).
1991Mc04
1991Pe07
               R.J. Peterson, J.J. Kraushaar, M.R. Braunstein, J.H. Mitchell, Phys. Rev. C 44, 136 (1991).
1991ViZW
               I.N. Vishnevsky, M.F. Kudoyarov, E.V. Kuzmin et al., Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, 71 (1991).
1991We15
               J. Wesseling, C.W. de Jager, J.B. van der Laan et al., Nucl. Phys. A 535, 285 (1991).
1991Wu05
               C.Y. Wu, D. Cline, E.G. Vogt et al., Nucl. Phys. A 533, 359 (1991).
1992De29
               C.C. Dey, N.R. Das, B.K. Sinha, R. Bhattacharya, CAN. J. PHYS. 70, 268 (1992).
1992De60
               A. Dewald, Prog. Part. Nucl. Phys. 28, 409 (1992).
1992Dr05
               Ch. Droste, T. Morek, S.G. Rohozinski et al., J. Phys. (London) G 18, 1763 (1992).
1992Fa01
               C. Fahlander, I. Thorslund, B. Varnestig et al., Nucl. Phys. A 537, 183 (1992).
1992Fa05
               C. Fahlander, B. Varnestig, A. Backlin et al., Nucl. Phys. A 541, 157 (1992).
1992Ki10
               W. Kim, B.L. Miller, J.R. Calarco et al., Phys. Rev. C 45, 2290 (1992).
1992Ki20
               W. Kim, J.P. Connelly, J.H. Heisenberg et al., Phys. Rev. C 46, 1656 (1992).
1992Li14
                C.S. Lim, R.H. Spear, M.P. Fewell, G.J. Gyapong, Nucl. Phys. A 548, 308 (1992).
               P.F. Mantica, P.K. Joshi, S.J. Robinson et al., Contrib. 6TH Intern. Conf. on Nuclei Far from Stability + 9TH Intern. Conf. on Atomic Masses and
1992MaZR
                FUNDAMENTAL CONSTANT, Bernkastel-Kues, Germany, PE27 (1992).
               F.K. McGowan, N.R. Johnson, C. Baktash et al., Nucl. Phys. A 539, 276 (1992).
1992Mc02
1992Mo13
               T. Morikawa, M. Oshima, T. Sekine et al., Phys. Rev. C 46, R6 (1992).
1992Pe06
               P. Petkov, S. Harissopulos, A. Dewald et al., Nucl. Phys. A 543, 589 (1992).
1992Po09
               V.Yu. Ponomarev, W.T.A. Borghols, S.A. Fayans et al., Nucl. Phys. A 549, 180 (1992).
1992Va06
               J.R. Vanhoy, M.T. McEllistrem, S.F. Hicks et al., Phys. Rev. C 45, 1628 (1992).
               J.E. Wise, J.P. Connelly, F.W. Hersman et al., Phys. Rev. C 45, 2701 (1992).
1992Wi06
1993Be03
               T. Belgya, D. Seckel, E.L. Johnson et al., Phys. Rev. C 47, 392 (1993).
1993Ch05
               W.-T. Chou, D.S. Brenner, R.F. Casten, R.L. Gill, Phys. Rev. C 47, 157 (1993).
1993Ch41
               A.A. Chishti, P. Chowdhury, D.J. Blumenthal et al., Phys. Rev. C 48, 2607 (1993).
1993Ga16
               R.A. Gatenby, E.L. Johnson, E.M. Baum et al., Nucl. Phys. A 560, 633 (1993).
1993Ho12
               D.J. Horen, R.L. Auble, C.Y. Wu et al., Phys. Rev. C 48, 433 (1993).
1993Pe10
               R. Perrino, N. Blasi, R. De Leo et al., Nucl. Phys. A 561, 343 (1993).
1993Pi16
               M. Piiparinen, R. Julin, S. Juutinen et al., Nuci., Phys. A 565, 671 (1993).
1993Sa06
                R.K.J. Sandor, H.P. Blok, M. Girod et al., Nucl. Phys. A 551, 349 (1993).
1993Sa38
               G.P.S. Sahota, V.K. Mittal, H.S. Sahota, J. Phys. Soc. Jpn. 62, 2958 (1993).
1993SaZT
               P. Sala da Milano, THESIS, Universitat Kohn (1993).
1993Se08
               T. Seo, Nucl. Instrum. Methods Phys. Res. A 325, 176 (1993).
1993Sp01
               K.-H. Speidel, H. Busch, S. Kremeyer et al., Nucl. Phys. A 552, 140 (1993).
1993Sr01
               J. Srebrny, T. Czosnyka, W. Karczmarczyk et al., Nucl. Phys. A 557, 663c (1993).
1993Su16
               M. Sugawara, H. Kusakari, T. Morikawa et al., Nucl. Phys. A 557, 653c (1993).
               H.J. Wollersheim, H. Emling, H. Grein et al., Nucl. Phys. A 556, 261 (1993).
1993Wo05
1994Ch28
               S. Chattopadhyay, H.C. Jain, M.L. Jhingan, C.R. Praharaj, Phys. Rev. C 50, 93 (1994).
               K. Govaert, L. Govor, E. Jacobs et al., Phys. Lett. B 335, 113 (1994).
1994Go25
1994Jo13
               P.K. Joshi, E.F. Zganjar, D. Rupnik et al., INT. J. Mod. Phys. E 3, 757 (1994).
```

```
1994Pe02
                P. Petkov, R. Kruecken, A. Dewald et al., Nucl. Phys. A 568, 572 (1994).
1994Th01
                I. Thorslund, C. Fahlander, J. Nyberg et al., Nucl. Phys. A 568, 306 (1994).
                S.S. Anderssen, A.E. Stuchbery, S. Kuyucak, Nucl. Phys. A 593, 212 (1995).
1995An15
1995Ef01
                A.D. Efimov, M.F. Kudoyarov, A.S. Li, YAD. Fiz. 58, No 1, 3 (1995); Phys. Atomic Nuclei 58, 1 (1995).
1995He25
                R.-D. Herzberg, I. Bauske, P. von Brentano et al., Nucl. Phys. A 592, 211 (1995).
1995Ka29
                A.E. Kavka, C. Fahlander, A. Backlin et al., Nucl. Phys. A 593, 177 (1995).
1995Ma03
                H. Mach, B. Fogelberg, Phys. Rev. C 51, 509 (1995).
1995Ma96
                A. Makishima, T. Ishii, M. Ogawa, M. Ishii, Nucl. Instrum. Methods Phys. Res. A 363, 591 (1995).
1995Mo16
                T. Motobayashi, Y. Ikeda, Y. Ando et al., Phys.Lett. B 346, 9 (1995).
1995Sc24
                S. Schoedder, G. Lhersonneau, A. Wohr et al., Z. Phys. A 352, 237 (1995).
1995Sv01
                L.E. Svensson, C. Fahlander, L. Hasselgren et al., Nucl. Phys. A 584, 547 (1995).
1995Va25
                J.R. Vanhoy, J.M. Anthony, B.M. Haas et al., Phys. Rev. C 52, 2387 (1995).
                A. Virtanen, N.R. Johnson, F.K. McGowan et al., Nucl. Phys. A 591, 145 (1995).
1995Vi05
1995Wa25
                J.C. Walpe, B.F. Davis, S. Naguleswaran et al., Phys. Rev. C 52, 1792 (1995).
1995Za01
                N.V. Zamfir, R.L. Gill, D.S. Brenner et al., Phys. Rev. C 51, 98 (1995).
1996AI20
                I. Alfter, E. Bodenstedt, W. Knichel et al., Z. Phys. A 355, 363 (1996).
1996Ch02
                S. Chattopadhyay, H.C. Jain, J.A. Sheikh, Phys. Rev. C 53, 1001 (1996).
1996De50
                A. Dewald, D. Weil, R. Krucken et al., Phys. Rev. C 54, R2119 (1996).
1996Go36
                L.C. Gomes, L.B. Horodynski-Matsushigue, T. Borello-Lewin et al., Phys. Rev. C 54, 2296 (1996).
                G.D. Johns, K.A. Christian, R.A. Kaye et al., Phys. Rev. C 53, 1541 (1996).
1996Jo05
1996Ma16
                P.F. Mantica, W.B. Walters, Phys. Rev. C 53, R2586 (1996).
1996Pe25
                H. Penttila, P. Dendooven, A. Honkanen et al., Phys. Rev. C 54, 2760 (1996).
1996Sc31
                H. Scheit, T. Glasmacher, B.A. Brown et al., Phys. Rev. Lett. 77, 3967 (1996).
1996W1107
                C.Y. Wu, D. Cline, T. Czosnyka et al., Nucl. Phys. A 607, 178 (1996).
1997Bb08
                C.J. Barton, R.L. Gill, R.F. Casten et al., Nucl. Instrum. Methods Phys. Res. A 391, 289 (1997).
1997Gl02
                T. Glasmacher, B.A. Brown, M.J. Chromik et al., Phys. Lett. B 395, 163 (1997).
1997Ib01
                R.W. Ibbotson, C.A. White, T. Czosnyka et al., Nucl. Phys. A 619, 213 (1997).
1997Ke07
                J.H. Kelley, T. Suomijarvi, S.E. Hirzebruch et al., Phys. Rev. C 56, R1206 (1997).
1997Pa07
                S.D. Paul, H.C. Jain, J.A. Sheikh, Phys. Rev. C 55, 1563 (1997).
                J. DeGraaf, M. Cromaz, T.E. Drake et al., Phys. Rev. C 58, 164 (1998); Erratum Phys. Rev. C 59, 1818 (1999).
1998De29
1998Go03
                I.M. Govil, A. Kumar, H. Iyer et al., Phys. Rev. C 57, 632 (1998).
1998G1109
                K. Gulda, and the ISOLDE Collaboration, Nucl. Phys. A 636, 28 (1998).
1998Hi01
                J.H. Hirata, S. Salem-Vasconcelos, M.J. Bechara et al., Phys. Rev. C 57, 76 (1998).
1998Ib01
                R.W. Ibbotson, T. Glasmacher, B.A. Brown et al., Phys. Rev. Lett. 80, 2081 (1998).
1998Ka19
                R.A. Kaye, J.B. Adams, A. Hale et al., Phys. Rev. C 57, 2189 (1998).
1998Ka31
                A. Kangasmaki, P. Tikkanen, J. Keinonen et al., Phys. Rev. C 58, 699 (1998).
1998LhZZ
                G. Lhersonneau, P. Dendooven, A. Honkanen et al., JYFL Ann. Rept., 1997, 21 (1998).
1998Si25
                K.P. Singh, D.C. Tayal, H.S. Hans, Phys. Rev. C58, 1980 (1998).
1998Sk01
                S. Skoda, F. Becker, T. Burkardt et al., Nucl. Phys. A 633, 565 (1998).
1998StZX
                O. Stuch, K. Jessen, A. Dewald et al., Contrib. Nuclear Structure '98, Gatlinburg, 128 (1998).
1998Uc01
                K. Uchiyama, K. Furuno, T. Shizuma et al., Eur. Phys. J. A 2, 13 (1998).
1998We02
                L. Weissman, M. Hass, C. Broude, Phys. Rev. C 57, 621 (1998).
                Y. Yanagisawa, T. Motobayashi, S. Shimoura et al., Proc.Conf on Exotic Nuclei and Atomic Masses, Bellaire, Michigan, June 23-27, 1998, 610 (1998);
1998Ya7R
                AIP CONF. PROC. 455 (1998).
1999Au01
                T. Aumann, D. Aleksandrov, L. Axelsson et al., Phys. Rev. C 59, 1252 (1999).
1999Co23
                P.D. Cottle, M. Fauerbach, T. Glasmacher et al., Phys. Rev. C 60, 031301 (1999).
1999Kl11
                T. Klemme, A. Fitzler, A. Dewald et al., Phys. Rev. C 60, 034301 (1999).
1999Li18
                A. Lindroth, B. Fogelberg, H. Mach et al., Phys. Rev. Lett. 82, 4783 (1999).
                F. Marechal, T. Suomijarvi, Y. Blumenfeld et al., Phys. Rev. C 60, 034615 (1999).
1999Ma63
                B.V. Pritychenko, T. Glasmacher, P.D. Cottle et al., Phys. Lett. B 461, 322 (1999); Erratum Phys. Lett. B 467, 309 (1999).
1999Pr09
1999To04
                Y. Toh, S. Yamada, A. Taniguchi, Y. Kawase, Eur. Phys. J. A 4, 233 (1999).
2000Br05
                J. Bryssinck, L. Govor, V.Yu. Ponomarev et al., Phys. Rev. C 61, 024309 (2000).
2000En08
                I. Enders, P. von Brentano, I. Eberth et al., Nucl. Phys. A 674, 3 (2000).
2000Er06
                R. Ernst, K.-H. Speidel, O. Kenn et al., Phys. Rev. C 62, 024305 (2000); COMMENT Phys. Rev. C 64, 069801 (2001).
2000Er01
                R. Ernst, K.-H. Speidel, O. Kenn et al., Phys. Rev. Lett. 84, 416 (2000).
2000Ga08
                A. Gade, I. Wiedenhover, J. Gableske et al., Nucl. Phys. A 665, 268 (2000).
2000Iw02
                H. Iwasaki, T. Motobayashi, H. Akiyoshi et al., Phys. Lett. 481B, 7 (2000).
2000Kh02
                B. Kharraja, U. Garg, S.S. Ghugre et al., Phys. Rev. C 61, 024301 (2000).
2000Pe20
                P. Petkov, A. Dewald, R. Kuhn et al., Phys. Rev. C 62, 014314 (2000).
2000Ri15
                L.A. Riley, P.D. Cottle, M. Fauerbach et al., Phys. Rev. C 62, 034306 (2000).
2000Sp08
                K.-H. Speidel, R. Ernst, O. Kenn et al., Phys. Rev. C 62, 031301 (2000).
2000St07
                O. Stuch, K. Jessen, R.S. Chakrawarthy et al., Phys. Rev. C 61, 044325 (2000).
2000Th11
                P.G. Thirolf, B.V. Pritychenko, B.A. Brown et al., Phys. Lett. B 485, 16 (2000).
2000To12
                Y. Toh, T. Czosnyka, M. Oshima et al., Eur. Phys. J. A 9, 353 (2000).
2001Ch56
                V. Chiste, A. Gillibert, A. Lepine-Szily et al., Phys. Lett. B 514, 233 (2001).
                P.D. Cottle, B.V. Pritychenko, J.A. Church et al., Phys. Rev. C 64, 057304 (2001).
2001Co20
2001Ga52
                J. Gableske, A. Dewald, H. Tiesler et al., Nucl. Phys. A 691, 551 (2001).
2001Ge07
                J. Genevey, J.A. Pinston, C. Foin et al., Phys. Rev. C 63, 054315 (2001).
2001Ha09
                S. Harissopulos, A. Dewald, A. Gelberg et al., Nucl. Phys. A 683, 157 (2001).
```

2001Iw07

2001Ke02

H. Iwasaki, Т. Motobayashi, H. Sakurai et al., Рнуз. Lett. **В 522**, 227 (2001).

O. Kenn, K.-H. Speidel, R. Ernst et al., Phys. Rev. C 63, 021302 (2001).

2005Ya26

2006Be04

```
2001Ke08
                O. Kenn, K.-H. Speidel, R. Ernst et al., Phys. Rev. C 63, 064306 (2001).
2001Li24
                K.P. Lieb, D. Kast, A. Jungclaus et al., Phys. Rev. C 63, 054304 (2001).
2001Me20
                T.J. Mertzimekis, N. Benczer-Koller, J. Holden et al., Phys. Rev. C 64, 024314 (2001).
2001Mu19
                G.A. Muller, A. Jungclaus, O. Yordanov et al., Phys. Rev. C 64, 014305 (2001).
2001Mu25
                G. Mukherjee, H.C. Jain, R. Palit et al., Phys. Rev. C 64, 034316 (2001).
2001Pa03
                R. Palit, H.C. Jain, P.K. Joshi et al., Phys. Rev. C 63, 024313 (2001).
2001RvZZ
                N. Ryezayeva, Thesis, Technische Universitat Darmstadt, Germany (2001).
2001Wu03
                C.Y. Wu, D. Cline, A.B. Hayes et al., Phys. Rev. C 64, 014307 (2001); COMMENT Phys. Rev. C 66, 039801 (2002).
2002Ba28
                M. Babilon, T. Hartmann, P. Mohr et al., Phys. Rev. C 65, 037303 (2002).
2002Co09
                P.D. Cottle, Z. Hu, B.V. Pritychenko et al., Phys. Rev. Lett. 88, 172502 (2002).
2002De26
                G. de Angelis, A. Gadea, E. Farnea et al., Phys. Lett. B 535, 93 (2002).
2002Go36
                I.M. Govil, A. Kumar, H. Iyer et al., Phys. Rev. C 66, 064318 (2002).
2002Ha13
                T. Hartmann, J. Enders, P. Mohr et al., Phys. Rev. C 65, 034301 (2002).
2002Ja02
                G. Jakob, N. Benczer-Koller, G. Kumbartzki et al., Phys. Rev. C 65, 024316 (2002).
2002Jo07
                P.K. Joshi, H.C. Jain, R. Palit et al., Nucl. Phys. A 700, 59 (2002).
2002Ka80
                S. Kanno, T. Gomi, T. Motobayashi et al., Prog. Theor. Phys. (Kyoto), Suppl. 146, 575 (2002).
2002Ke02
                O. Kenn, K.-H. Speidel, R. Ernst et al., Phys. Rev. C65, 034308 (2002).
2002Kl07
                H. Klein, A.F. Lisetskiy, N. Pietralla et al., Phys. Rev. C 65, 044315 (2002).
2002Le17
                S. Leenhardt, O. Sorlin, M.G. Porquet et al., Eur. Phys. J. A 14, 1 (2002).
                A. Osa, T. Czosnyka, Y. Utsuno et al., Phys. Lett. B 546, 48 (2002).
2002Os07
2002Pa19
                A.A. Pasternak, J. Srebrny, A.D. Efimov et al., Eur. Phys. J. A 13, 435 (2002).
2002Ra21
                D.C. Radford, C. Baktash, J.R. Beene et al., Phys. Rev. Lett. 88, 222501 (2002).
2002Sh09
                S.L. Shepherd, J. Simpson, A. Dewald et al., Phys. Rev. C 65, 034320 (2002).
2002Sm10
                A.G. Smith, R.M. Wall, D. Patel et al., J.Phys. (London) G 28, 2307 (2002).
2002So03
                O. Sorlin, S. Leenhardt, C. Donzaud et al., Phys. Rev. Lett. 88, 092501 (2002).
2002We15
                V. Werner, D. Belic, P. von Brentano et al., Phys. Lett. B 550, 140 (2002).
2002Zi06
                M. Zielinska, T. Czosnyka, J. Choinski et al., Nucl. Phys. A 712, 3 (2002).
2003Ba01
                C.J. Barton, M.A. Caprio, D. Shapira et al., Phys. Lett. B 551, 269 (2003).
                M.A. Caprio, N.V. Zamfir, E.A. McCutchan et al., Eur. Phys. J. A 16, 177 (2003).
2003Ca03
2003De24
                A. Dewald, R. Peusquens, B. Saha et al., Phys. Rev. C 68, 034314 (2003).
2003En07
                J. Enders, P. von Brentano, J. Eberth et al., Nucl. Phys. A 724, 243 (2003).
2003Ga20
                A. Gade, D. Bazin, C.M. Campbell et al., Phys. Rev. C 68, 014302 (2003).
2003Ha15
                T. Hayakawa, Y. Toh, M. Oshima et al., Phys. Rev. C 67, 064310 (2003).
2003Ko51
                M.Koizumi, A.Seki, Y.Toh et al., Eur. Phys. J. A 18, 87 (2003).
2003Ku11
                G. Kumbartzki, N. Benczer-Koller, J. Holden et al., Phys. Lett. B 562, 193 (2003).
2003Mo02
                O. Moller, K. Jessen, A. Dewald et al., Phys. Rev. C 67, 011301 (2003).
2003Po02
                Zs. Podolyak, P.G. Bizzeti, A.M. Bizzeti-Sona et al., Eur. Phys. J. A 17, 29 (2003).
2003Ri08
                L.A. Riley, P.D. Cottle, M. Brown-Hayes et al., Phys. Rev. C 68, 044309 (2003).
2003Sc19
                S. Schielke, K.-H. Speidel, O. Kenn et al., Phys.Lett. B 567, 153 (2003).
2003Sc21
                S.Schielke, D.Hohn, K.-H.Speidel et al., Phys. Lett. B 571, 29 (2003).
2003Sp04
                K.-H. Speidel, S. Schielke, O. Kenn et al., Phys. Rev. C 68, 061302 (2003).
2003Ya05
                Y. Yanagisawa, M. Notani, H. Sakurai et al., Phys. Lett. B 566, 84 (2003).
                N. Imai, H.J. Ong, N. Aoi et al., Phys. Rev. Lett. 92, 062501 (2004); Comment Phys. Rev. Lett. 94, 199201 (2005).
2004Im01
2004Ko03
                M. Koizumi, A. Seki, Y. Toh et al., Nucl. Phys. A730, 46 (2004).
2004Ra27
                D.C. Radford, C. Baktash, J.R. Beene et al., Nucl. Phys. A 746, 83c (2004).
2004Sa47
                B. Saha, A. Dewald, O. Moller et al., Phys. Rev. C 70, 034313 (2004); ERRATUM Phys. Rev. C 71, 039902 (2005); COMMENT Phys. Rev. C 72, 029801 (2005).
2004Y1107
                K.L. Yurkewicz, D. Bazin, B.A. Brown et al., Phys. Rev. C 70, 034301 (2004).
2004Yu10
                K.L. Yurkewicz, D. Bazin, B.A. Brown et al., Phys. Rev. C 70, 054319 (2004).
2005Bb09
                A. Banu, J. Gerl, C. Fahlander et al., Phys. Rev. C 72, 061305 (2005).
2005Bi02
                D.C. Biswas, A.G. Smith, R.M. Wall et al., Phys. Rev. C 71, 011301 (2005); Erratum Phys. Rev. C 71, 019901 (2005).
2005Bu29
                A. Burger, T.R. Saito, H. Grawe et al., Phys. Lett. B 622, 29 (2005).
2005Ch66
                J.A. Church, C.M. Campbell, D.-C. Dinca et al., Phys. Rev. C 72, 054320 (2005).
2005Di05
                D.-C. Dinca, R.V.F. Janssens, A. Gade et al., Phys. Rev. C 71, 041302 (2005).
2005Fo17
                D. Fong, J.K. Hwang, A.V. Ramayya et al., Eur. Phys. J. A 25, Supplement 1, 465 (2005).
                A. Gade, D. Bazin, A. Becerril et al., Phys. Rev. Lett. 95, 022502 (2005); Erratum Phys. Rev. Lett. 96, 189901 (2006).
2005Ga22
2005Go43
                A. Gorgen, E. Clement, A. Chatillon et al., Eur. Phys. J. A 26, 153 (2005).
2005Hi04
                S.F. Hicks, G.K. Alexander, C.A. Aubin et al., Phys. Rev. C 71, 034307 (2005).
2005Iw02
                H. Iwasaki, T. Motobayashi, H. Sakurai et al., Phys. Lett. B 620, 118 (2005).
2005Iw03
                H. Iwasaki, N. Aoi, S. Takeuchi et al., Eur. Phys. J. A 25, Supplement 1, 415 (2005).
2005Le12
                I. Leske, K.-H. Speidel, S. Schielke et al., Phys. Rev. C 71, 034303 (2005).
2005Le19
                J. Leske, K.-H. Speidel, S. Schielke et al., Phys. Rev. C 71, 044316 (2005).
2005Le38
                J. Leske, K.-H. Speidel, S. Schielke et al., Phys. Rev. C 72, 044301 (2005).
2005Ma81
                H. Mach, P.M. Walker, R. Julin et al., J. Phys. (London) G 31, S1421 (2005).
2005Mo20
                O. Moller, N. Warr, J. Jolie et al., Phys. Rev. C 71, 064324 (2005).
2005Mo33
                O. Moller, P. Petkov, B. Melon et al., Phys. Rev. C 72, 034306 (2005).
2005Ni11
                O. Niedermaier, H. Scheit, V. Bildstein et al., Phys. Rev. Lett. 94, 172501 (2005).
2005NiZS
                O.T. Niedermaier, Thesis, Univ. Heidelberg, Germany (2005).
2005Pa23
                E. Padilla-Rodal, A. Galindo-Uribarri, C. Baktash et al., Phys. Rev. Lett. 94, 122501 (2005).
2005Va31
                R.L. Varner, J.R. Beene, C. Baktash et al., Eur. Phys. J. A 25, Supplement 1, 391 (2005).
```

K. Yamada, T. Motobayashi, N. Aoi et al., Eur. Phys. J. A 25, Supplement 1, 409 (2005).

E. Becheva, Y. Blumenfeld, E. Khan et al., Phys. Rev. Lett. 96, 012501 (2006).

```
2006Be18
               F. Becker, A. Petrovici, J. Iwanicki et al., Nucl. Phys. A 770, 107 (2006).
2006Ch26
                A. Chester, P. Adrich, A. Becerril et al., Nucl. Instrum. Methods Phys. Res. A 562, 230 (2006).
2006Co20
                A Costin T Ahn B Bochev et al. Phys Rev. C 74 067301 (2006).
2006Ek01
                A. Ekstrom, J. Cederkall, A. Hurst et al., Phys. Scr. T 125, 190 (2006).
2006El03
               Z. Elekes, Zs. Dombradi, A. Saito et al., Phys. Rev. C 73, 044314 (2006).
2006El05
                Z. Elekes, Zs. Dombradi, N. Aoi et al., Phys. Rev. C 74, 017306 (2006).
2006Gr16
                T. Grahn, A. Dewald, O. Moller et al., Phys. Rev. Lett. 97, 062501 (2006).
2006Hw01
               J.K. Hwang, A.V. Ramayya, J.H. Hamilton et al., Phys. Rev. C 73, 044316 (2006).
2006Je04
                K. Jessen, O. Moller, A. Dewald et al., Phys. Rev. C 74, 021304 (2006).
2006KrZV
                Th.Kroll, and the REX-ISOLDE and MINIBALL Collaborations, Proc. Frontiers in Nuclear Structure, Astrophysics, and Reactions, Isle of
                Kos, Greece, 12-17 Sept. 2005, S.V Harissopulos, P.Demetriou, R.Julin, Eds., 119 (2006); AIP Conf. Proc. 831 (2006).
2006Le24
               J. Leske, K.-H. Speidel, S. Schielke et al., Phys. Rev. C 73, 064305 (2006).
2006Le31
                J. Leske, K.-H. Speidel, S. Schielke et al., Phys. Rev. C 74, 024315 (2006).
2006Mo22
                O. Moller, A. Dewald, P. Petkov et al., Phys. Rev. C 74, 024313 (2006).
2006Mu04
                W.F. Mueller, M.P. Carpenter, J.A. Church et al., Phys. Rev. C 73, 014316 (2006).
2006Pe13
                O. Perru, O. Sorlin, S. Franchoo et al., Phys. Rev. Lett. 96, 232501 (2006).
2006Sp01
                K.-H. Speidel, S. Schielke, I. Leske et al., Phys. Lett. B 632, 207 (2006).
2006Sp02
                K.-H. Speidel, J. Leske, S. Schielke et al., Phys. Lett. B 633, 219 (2006).
2006Sr01
               I. Srebrny, T. Czosnyka, Ch. Droste et al., Nucl. Phys. A 766, 25 (2006).
2006YaZV
                K. Yamada, N. Iwasa, S. Bishop et al., RIKEN Accelerator Progress Report 2005, 55 (2006).
2007Bo17
                N. Boelaert, A. Dewald, C. Fransen et al., Phys. Rev. C 75, 054311 (2007); Erratum Phys. Rev. C 77, 019901 (2008).
2007Ca35
                C.M. Campbell, N. Aoi, D. Bazin et al., Phys. Lett. B 652, 169 (2007); Addendum Phys.Lett. B 656, 272 (2007).
2007Ce02
               J. Cederkall, A. Ekstrom, C. Fahlander et al., Phys. Rev. Lett. 98, 172501 (2007).
2007/102
               E. Clement, A. Gorgen, W. Korten et al., Phys. Rev. C 75, 054313 (2007).
2007Gi06
               J. Gibelin, D. Beaumel, T. Motobayashi et al., Phys. Rev. C 75, 057306 (2007).
2007Hu03
                A.M. Hurst, P.A. Butler, D.G. Jenkins et al., Phys. Rev. Lett. 98, 072501 (2007).
2007Ko23
               I.I. Kolata, H. Amro, F.D. Becchetti et al., Phys. Rev. C 75, 031302 (2007).
2007Kr12
                Th.Kroll, on behalf of the MINIBALL and REX-ISOLDE Collaborations, Phys. Atomic Nuclei 70, 1369 (2007).
2007Kr19
               Th. Kroll, T. Behrens, R. Krucken et al., Eur. Phys. J. Special Topics 150, 127 (2007).
2007Or04
               J.N. Orce, S.N. Choudry, B. Crider et al., Phys. Rev. C 76, 021302 (2007); Erratum Phys. Rev. C 77, 029902 (2008).
2007St16
                K. Starosta, A. Dewald, A. Dunomes et al., Phys. Rev. Lett. 99, 042503 (2007).
200751120
                T. Sugimoto, T. Nakamura, Y. Kondo et al., Phys. Lett. B 654, 160 (2007).
2007Va20
               J. Van de Walle, F. Aksouh, F. Ames et al., Phys. Rev. Lett. 99, 142501 (2007).
2007Va22
                C. Vaman, C. Andreoiu, D. Bazin et al., Phys. Rev. Lett. 99, 162501 (2007).
2008Br18
               N. Bree, I. Stefanescu, P.A. Butler et al., Phys. Rev. C 78, 047301 (2008).
2008De30
                A. Dewald, K. Starosta, P. Petkov et al., Phys. Rev. C 78, 051302 (2008).
2008Do19
               P. Doornenbal, P. Reiter, H. Grawe et al., Phys. Rev. C 78, 031303 (2008).
2008Ek01
                A. Ekstrom, J. Cederkall, C. Fahlander et al., Phys. Rev. Lett. 101, 012502 (2008).
2008EkZZ
                A. Ekstrom, J. Cederkall, C. Fahlander et al., Proc. Frontiers in Nuclear Structure, and Reactions (FINUSTAR 2), Crete, Greece, 10-14 Sept.
                2007, P.Demetriou, R.Julin, S.V.Harissopulos, Eds. 296 (2008); AIP CONF. PROC 1012 (2008)
2008Go25
               L.I. Govor, A.M. Demidov, V.A. Kurkin, I.V. Mikhailov, Phys. Atomic Nuclei 71, 1339 (2008); YAD, Fiz. 71, 1367 (2008).
2008Gr04
                T. Grahn, A. Dewald, O. Moller et al., Nucl. Phys. A 801, 83 (2008).
2008Iw04
                N. Iwasa, T. Motobayashi, S. Bishop et al., Phys. Rev. C 78, 024306 (2008); Publishers's Note Phys. Rev. C 78, 029902 (2008).
2008KrZZ
                Th.Kroll, for the REX-ISOLDE and MINIBALL collaborations, Proc. Frontiers in Nuclear Structure, and Reactions (FINUSTAR 2), Crete, Greece, 10-14
                Sept. 2007, P.Demetriou, R.Julin, S.V.Harissopulos, Eds. 84 (2008); AIP CONF. Proc. 1012 (2008).
2008Li01
               J. Ljungvall, A. Gorgen, M. Girod et al., Phys. Rev. Lett. 100, 102502 (2008).
2008On02
                H.J. Ong, N. Imai, D. Suzuki et al., Phys. Rev. C 78, 014308 (2008)
20080r02
                J.N. Orce, B. Crider, S. Mukhopadhyay et al., Phys. Rev. C 77, 064301 (2008).
2008Sa05
                M. Sanchez-Vega, H. Mach, R.B.E. Taylor et al., Eur. Phys. J. A 35, 159 (2008).
2008Sa35
                T.R. Saito, N. Saito, K. Starosta et al., Phys. Lett. B 669, 19 (2008).
2008Sh23
               T. Shizuma, T. Hayakawa, H. Ohgaki et al., Phys. Rev. C 78, 061303 (2008).
2008Sp01
                K.-H.Speidel, S.Schielke, J.Leske et al., Phys. Lett. B 659, 101 (2008).
2008Sp04
                K.-H. Speidel, S. Schielke, J. Leske et al., Phys. Rev. C 78, 017304 (2008).
2008Wi04
                M. Wiedeking, P. Fallon, A.O. Macchiavelli et al., Phys. Rev. Lett. 100, 152501 (2008).
2009Ao01
                N. Aoi, E. Takeshita, H. Suzuki et al., Phys. Rev. Lett. 102, 012502 (2009).
2009Ek01
               A. Ekstrom, J. Cederkall, D.D. DiJulio et al., Phys. Rev. C 80, 054302 (2009).
2009El03
                Z. Elekes, Zs. Dombradi, T. Aiba et al., Phys. Rev. C 79, 011302 (2009).
2009FrZZ
                C. Fransen, A. Blazhev, A. Dewald et al., Proc. 13th Intern. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Ger-
                many, 25-29 Aug. 2008, J. Jolie, A. Zilges, N. Warr, A. Blazhev, Eds., 529 (2009); AIP Conf. Proc. 1090 (2009).
2009Gr08
                T. Grahn, A. Dewald, P.T. Greenlees et al., Phys. Rev. C 80, 014323 (2009).
2009Gr09
                T. Grahn, A. Petts, M. Scheck et al., Phys. Rev. C 80, 014324 (2009).
2009Im01
                N. Imai, N. Aoi, H.J. Ong et al., Phys. Lett. B 673, 179 (2009).
2009Mc02
                E.A. McCutchan, C.J. Lister, R.B. Wiringa et al., Phys. Rev. Lett. 103, 192501 (2009).
2009Me23
                D. Mengoni, J.J. Valiente-Dobon, E. Farnea et al., Eur. Phys. J. A 42, 387 (2009).
2009MuZU
                D. Mucher. Thesis Koln Universitat (2009).
2009MuZW
                D. Mucher, J. Iwanicki, J. Jolie et al., Proc. 13TH INTERN. SYMPOSIUM ON CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, Cologne, Germany, 25-29
                Aug.2008, I.Jolie, A.Zilges, N.Warr, A.Blazhev, Eds., 587 (2009); AIP CONF. PROC. 1090 (2009).
2009Ob02
                A. Obertelli, T. Baugher, D. Bazin et al., Phys. Rev. C 80, 031304 (2009).
2009Ra28
                D. Radeck, A. Blazhev, M. Albers et al., Phys. Rev. C 80, 044331 (2009).
               J.-M. Regis, Th. Materna, S. Christen et al., Nucl. Instrum. Methods Phys. Res. A 606, 466 (2009).
2009Re20
```

2009Va01

2009Va06

I. Van de Walle, F. Aksouh, T. Behrens et al., Phys. Rev. C 79, 014309 (2009).

J.J. Valiente-Dobon, D. Mengoni, A. Gadea et al., Phys. Rev. Lett. 102, 242502 (2009).

2014Al20

```
2009Zi01
               M. Zielinska, A. Gorgen, E. Clement et al., Phys. Rev. C 80, 014317 (2009).
2010Ao01
               N. Aoi, S. Kanno, S. Takeuchi et al., Phys. Lett. B 692 302 (2010).
2010Be30
               L. Bettermann, J.-M. Regis, T. Materna et al., Phys. Rev. C 82, 044310 (2010).
2010Bi11
               P.G. Bizzeti, A.M. Bizzeti-Sona, D. Tonev et al., Phys. Rev. C 82, 054311 (2010).
2010Ga14
               A. Gade, T. Baugher, D. Bazin et al., Phys. Rev. C 81, 064326 (2010).
2010Ku07
               R. Kumar, P. Doornenbal, A. Jhingan et al., Phys. Rev. C 81, 024306 (2010).
2010Li01
               J. Ljungvall, A. Gorgen, A. Obertelli et al., Phys. Rev. C 81, 061301 (2010).
2010Me07
               D. Mengoni, J.J. Valiente-Dobon, A. Gadea et al., Phys. Rev. C 82, 024308 (2010).
2010NaZY
                D. Nagae, T. Ishii, R. Takahashi et al., Proc. Intern. Symposium Exotic Nuclei, Sochi, (Russia), 28 Sept.-2 Oct.
                2009, Yu.E.Penionzhkevich, S.M.Lukyanov, Eds., 156 (2010); AIP Conf. Proc. 1224 (2010).
2010Ru12
                M. Rudigier, J.-M. Regis, J. Jolie et al., Nucl. Phys. A 847, 89 (2010).
2010Sc03
               M. Scheck T. Grahn, A. Petts et al., Phys. Rev. C 81, 014310 (2010).
2010We12
               V. Werner, J.R. Terry, M. Bunce, Z. Berant, J. Phys.: Conf. Ser. 205, 012025 (2010).
2011Al25
               J.M. Allmond, D.C. Radford, C. Baktash et al., Phys. Rev. C 84, 061303 (2011).
2011An04
               V. Anagnostatou, P.H. Regan, M.R. Bunce et al., ACTA PHYS. Pol. B 42, 807 (2011).
2011Ba37
               T. Back, C. Qi, F. Ghazi Moradi et al., Phys. Rev. C 84, 041306 (2011).
2011Ch05
               A. Chakraborty, I.N. Orce, S.F. Ashley et al., Phys. Rev. C 83, 034316 (2011).
2011Cl03
                E. Clement, G. De France, J.M. Casandjian et al., INT. J. Mod. Phys. E 20, 415 (2011).
2011Da21
               M. Danchev, G. Rainovski, N. Pietralla et al., Phys. Rev. C 84, 061306 (2011).
2011Di07
               D.D. DiJulio, J. Cederkall, C. Fahlander et al., Eur. Phys. J. A 47, 25 (2011).
2011Ju01
               A. Jungclaus, J. Walker, J. Leske et al., Phys. Lett. B 695, 110 (2011).
2011Ku05
                R.Kumar, P.Doornenbal, A.Ihingan et al., ACTA Phys. Pol. B 42, 813 (2011).
2011Mc01
                E.A. McCutchan, C.J. Lister, T. Ahn et al., Phys. Rev. C 83, 024310 (2011).
2011Ni03
               M. Niikura, B. Mouginot, F. Azaiez et al., Acta Phys. Pol. B 42, 537 (2011).
2011Pe21
               M. Petri, P. Fallon, A.O. Macchiavelli et al., Phys. Rev. Lett. 107, 102501 (2011).
2011Pr10
                M.G. Procter, D.M. Cullen, P. Ruotsalainen et al., Phys. Rev. C 84, 024314 (2011).
2011Re77
               I.-M.Regis, Thesis Univ. Cologne (2011).
2011Ro02
               W. Rother, A. Dewald, H. Iwasaki et al., Phys. Rev. Lett. 106, 022502 (2011).
2011Ro53
               W. Rother, A. Dewald, G. Pascovici et al., Nucl. Instrum. Methods Phys. Res. A 654, 196 (2011).
2011We08
               V. Werner, N. Cooper, M. Bonett-Matiz et al., J. Phys.: Conf. Ser. 312, 092062 (2011).
2012Al03
               M. Albers, N. Warr, K. Nomura et al., Phys. Rev. Lett. 108, 062701 (2012); Erratum Phys. Rev. Lett. 109, 209904 (2012).
2012An17
               V. Anagnostatou, P.H. Regan, V. Werner et al., Appl. Radiat, Isot. 70, 1321 (2012).
2012Ba31
               T. Baugher, A. Gade, R.V.F. Janssens et al., Phys. Rev. C 86, 011305 (2012), Erratum Phys. Rev. C 86, 049902 (2012).
2012Ba40
               C. Bauer, T. Behrens, V. Bildstein et al., Phys. Rev. C 86, 034310 (2012).
2012GI01
               K.A. Gladnishki, P. Petkov, A. Dewald et al., Nucl. Phys. A 877, 19 (2012).
2012Ku14
               G.J. Kumbartzki, K.-H. Speidel, N. Benczer-Koller et al., Phys. Rev. C 85, 044322 (2012).
2012Ku24
               G.J. Kumbartzki, N. Benczer-Koller, D.A. Torres et al., Phys. Rev. C 86, 034319 (2012).
2012Le05
               A. Lemasson, H. Iwasaki, C. Morse et al., Phys. Rev. C 85, 041303 (2012).
2012Li45
                K.-A.Li, Y.-L.Ye, H.Scheit et al., CHIN. PHYS. LETT. 29, 102301 (2012).
2012Li50
               C.B. Li, X.G. Wu, X.F. Li et al., Phys. Rev. C 86, 057303 (2012).
2012Lu03
               R. Luttke, E.A. McCutchan, V. Werner et al., Phys. Rev. C 85, 017301 (2012).
2012MaZP
               P.J.R. Mason, Zs. Podolyak, N. Marginean et al., AIP Conf. Proc. 1491, 93 (2012).
                E.A. McCutchan, C.J. Lister, Steven C. Pieper, et al., Phys. Rev. C 86, 014312 (2012).
2012Mc03
2012Mo11
                D. Montanari, S. Leoni, D. Mengoni et al., Phys. Rev. C 85, 044301 (2012).
2012Ni09
               M. Niikura, B. Mouginot, S. Franchoo et al., Phys. Rev. C 85, 054321 (2012).
2012Pe16
               M. Petri, S. Paschalis, R.M. Clark et al., Phys. Rev. C 86, 044329 (2012).
2012Ra03
                D. Radeck, V. Werner, G. Ilie et al., Phys. Rev. C 85, 014301 (2012).
2012St03
               I. Strojek, W. Czarnacki, W. Gawlikowicz et al., Acta Phys. Pol. B 43, 339 (2012).
2012To01
               D.A. Torres, G.J. Kumbartzki, Y.Y. Sharon et al., Phys. Rev. C 85, 017305 (2012).
2012To06
               Y. Togano, Y. Yamada, N. Iwasa et al., Phys. Rev. Lett. 108, 222501 (2012).
2012Ts03
               K. Tshoo, Y. Satou, H. Bhang et al., Phys. Rev. Lett. 109, 022501 (2012).
2012Vo05
               P. Voss, T. Baugher, D. Bazin et al., Phys. Rev. C 86, 011303 (2012).
2012Wa16
               J.C. Walpe, U. Garg, S. Naguleswaran et al., Phys. Rev. C 85, 057302 (2012).
2012Wi05
               R. Winkler, A. Gade, T. Baugher et al., Phys. Rev. Lett. 108, 182501 (2012).
2013Al05
               M.Albers, K.Nomura, N.Warr et al., Nucl. Phys. A 899, 1 (2013).
2013Ba38
               C. Bauer, G. Rainovski, N. Pietralla et al., Phys. Rev. C 88, 021302 (2013).
2013Ba57
                V.M. Bader, A. Gade, D. Weisshaar et al., Phys. Rev. C 88, 051301(R) (2013).
2013Ce01
               I. Celikovic, A. Dijon, E. Clement et al., ACTA PHYS. POL. B 44, 375 (2013).
2013Co23
               A. Corsi, J.-P. Delaroche, A. Obertelli et al., Phys. Rev. C 85, 044311 (2013).
2013Cr02
               H.L. Crawford, R.M. Clark, P. Fallon et al., Phys. Rev. Lett. 110, 242701 (2013).
2013DoZY
               P. Doornenbal, S. Takeuchi, N. Aoi et al., ARXIV 1305.2877 (2013).
2013Ga23
               L.P. Gaffney, P.A. Butler, M. Scheck et al., NATURE 497, 199 (2013)
2013Gu13
               G. Guastalla, D.D. DiJulio, M. Gorska et al., Phys. Rev. Lett. 110, 172501 (2013).
2013Lo04
               C. Louchart, A. Obertelli, A. Gorgen et al., Phys. Rev. C 87, 054302 (2013).
2013Ma66
               P.J.R. Mason, Zs. Podolyak, N. Marginean et al., Phys. Rev. C 88, 044391 (2013).
2013Pe16
               E.E. Peters, A. Chakraborty, B.P. Crider et al., Phys. Rev. C 88, 024317 (2013).
2013Sc01
               A. Scheikh-Obeid, O. Burda, M. Chernykh et al., Phys. Rev. C 87, 014337 (2013).
2013Sc20
               M. Scheck, V.Yu. Ponomarev, M. Fritzsche et al., Phys. Rev. C 88, 044304 (2013).
2013St24
               A.E. Stuchbery, I.M. Allmond, A. Galindo-Uribarri et al., Phys. Rev. C 88, 051304(R) (2013).
               H.Suzuki, N.Aoi, E.Takeshita et al., Phys. Rev. C 88, 024326 (2013).
2013Su20
```

J.M. Allmond, B.A. Brown, A.E. Stuchbery et al., Phys. Rev. C 90, 034309 (2014).

2014Br05	N. Bree, K. Wrzosek-Lipska, A. Petts et al., Phys. Rev.Lett. 112 , 162701 (2014).
2014Ca10	S.Calinescu, L.Caceres, S.Grevy et al., Acta Phys.Pol. B 45, 199 (2014).
2014Do19	P. Doornenbal, S. Takeuchi, N. Aoi et al., PHys. Rev. C 90, 061302(R) (2014).
2014Ga04	L.P. Gaffney, M. Hackstein, R.D. Page et al., Phys. Rev. C 89, 024307 (2014).
2014Il01	S. Ilieva, M. Thurauf, Th. Kroll et al., Phys. Rev. C 89, 014313 (2014).
2014Iw01	H. Iwasaki, A. Lemasson, C. Morse et al., Phys. Rev.Lett. 112 , 142502 (2014).
2014Li45	C.B. Li, F.Q. Chen, X.G. Wu et al., PHys. Rev. C 90, 047302 (2014).
2014Ma85	T. Marchi, G. de Angelis, I.I. Valiente-Dobon et al., Phys. Rev.Lett. 113, 182501 (2014).
2014Mi09	S. Michimasa, Y. Yanagisawa, K. Inafuku et al., Phys. Rev. C 89, 054307 (2014).
2014Na15	F. Naqvi, V. Werner, P. Petkov et al., Phys. Lett. B 728, 303 (2014).
2014Ni09	A.J. Nichols, R. Wadsworth, H. Iwasaki et al., Phys.Lett. B 733, 52 (2014).
2014Pl01	C. Plaisir, L. Gaudefroy, V. Meot et al., Phys. Rev. C 89, 021302 (2014).
2014Re15	JM. Regis, J. Jolie, N. Saed-Samii et al., Phys. Rev. C 90 , 067301 (2014).
2014Ri04	L.A. Riley, M.L. Agiorgousis, T.R. Baugher et al., PHYS. REV. C 90 , 011305 (2014).
2014Sa49	M. Saxena, R. Kumar, A. Jhingan et al., Phys. Rev. C 90 , 024316 (2014).
2015Be25	F.L. Bello Garrote, A. Gorgen, J. Mierzejewski et al., Phys. Rev. C 92 , 024317 (2015).
2015Br03	F. Browne, A.M. Bruce, T. Sumikama et al., Acta Phys.Pol. B 46 , 721 (2015).
2015Br10	T. Braunroth, A. Dewald, H. Iwasaki et al., Phys. Rev. C 92 , 034306 (2015).
2015Br13	F. Browne, A.M. Bruce, T. Sumikama et al., Phys. Lett. B 750 , 448 (2015).
2015Do04	M. Doncel, T. Back, D.M. Cullen et al., Phys. Rev. C 91 , 061304 (2015).
2015Ga19	L.P. Gaffney, A.P. Robinson, D.G. Jenkins et al., PHys. Rev. C 91 , 064313 (2015).
2015Jo01	J. Jolie, JM. Regis, D. Wilmsen et al., Nucl. Phys. A 934 , 1 (2015).
2015KeZZ	N. Kesteloot, Thesis, Katholieke Universiteit Leuven Belgium (2015); N. Kesteloot, B. Bastin, K. Auranen et al., Phys. Rev. C (2015), in Press.
2015Li28	K. Li, Y. Ye, T. Motobayashi et al., Phys. Rev. C 92 , 014608 (2015)
2015Pa14	S. Pascu, D. Bucurescu, Gh. Cata-Danil et al., Phys. Rev. C 91 , 034321 (2015).
2015Ru03	M. Rudigier, K. Nomura, M. Dannhoff et al., Рнуs. Rev. С 91 , 044301 (2015).

R. Stegmann, C. Bauer, G. Rainovski et al., Phys. Rev. C **91**, 054326 (2015).

2015St08

 $\textbf{Graph 1.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+), \text{ and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for He nuclei.}$

 $\textbf{Graph 2.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+) \text{, and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for Be nuclei.}$

 $\textbf{Graph 3.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+) \text{, and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for C nuclei.}$

 $\textbf{Graph 4.} \ \ \, \text{Evaluated and shell model calculated energies, } E(2_1^+), \text{and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for O nuclei}.$

Graph 5. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ne nuclei.

Graph 6. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Mg nuclei.

 $\textbf{Graph 7.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+) \text{, and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for Si nuclei}.$

Graph 8. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for S nuclei.

 $\textbf{Graph 9.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+), \text{ and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for Ar nuclei}.$

 $\textbf{Graph 10.} \ \ \text{Evaluated and shell model calculated energies, } E(2_1^+), \text{and } B(E; 0_1^+ \rightarrow 2_1^+) \text{ values for Ca nuclei.}$

Graph 11. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ti nuclei.

Graph 12. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Cr nuclei.

Graph 13. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Fe nuclei.

Graph 14. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ni nuclei.

Graph 15. Evaluated and shell model calculated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Zn nuclei.

Graph 16. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ge nuclei.

Graph 17. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Se nuclei.

Graph 18. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Kr nuclei.

Graph 19. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Sr nuclei.

Graph 20. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Zr nuclei.

Graph 21. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Mo nuclei.

Graph 22. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ru nuclei.

Graph 23. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Pd nuclei.

Graph 24. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Cd nuclei.

Graph 25. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Sn nuclei.

Graph 26. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Te nuclei.

Graph 27. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Xe nuclei.

Graph 28. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ba nuclei.

Graph 29. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ce nuclei.

Graph 30. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Nd nuclei.

Graph 31. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Sm nuclei.

Graph 32. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Gd nuclei.

Graph 33. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Dy nuclei.

Graph 34. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Er nuclei.

Graph 35. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Yb nuclei.

Graph 36. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Hf nuclei.

Graph 37. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for W nuclei.

Graph 38. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Os nuclei.

Graph 39. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Pt nuclei.

Graph 40. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Hg nuclei.

Graph 41. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Pb nuclei.

Graph 42. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Po nuclei.

Graph 43. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Rn nuclei.

Graph 44. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Ra nuclei.

Graph 45. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Th nuclei.

Graph 46. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for U nuclei.

Graph 47. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Pu nuclei.

Graph 48. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \to 2_1^+)$ values for Cm nuclei.

Graph 49. Evaluated energies, $E(2_1^+)$, and $B(E;0_1^+ \rightarrow 2_1^+)$ values for Cf nuclei.

Graph 50. Evaluated energies, $E(2_1^+)$ for Fm nuclei.

Graph 51. Evaluated energies, $\mathrm{E}(2_1^+)$ for No nuclei.

Graph 52. Evaluated energies, $E(2_1^+)$ for Rf nuclei.