

Ibarra García Juan Pablo

Facultad de Ciencias

5 de Junio 2019

Objetivos

En este proyecto se hicieron pruebas en actividades rítmicas como la caminata o carrera en humanos para así obtener las variables fisiológicas de éstas, con ellas se observó la relación entre los 3 ejes axiales (lateral, vertical y horizontal).

Para la segunda etapa se utilizó la transformada rápida de Fourier para encontrar la relación que tienen estas en el cuerpo humano y con esto observar la respuesta en los diferentes ritmos de la actividad.

First Section Second Section Third Section Fourth Section

○●○

Procedimiento

Para la primera parte se obtuvieron resultados con el acelerometro. Este se tendría que colocar en el centro de masa del cuerpo, para tener un mejor resultado de los 3 ejes axial pero para este experimento se utilizó uno diferente, que se ajustaba mejor al cuerpo a la hora de una actividad.

Procedimiento

Por protocolo las pruebas se hicieron en un mismo circuito para controlar la distancia.

Figure: Circuito de 1.3km aproximadamente

 First Section
 Second Section
 Third Section
 Fourth Section

 000
 00000

Resultados

Actividad

Para esta parte se tienen dos archivos, uno con los datos de los 3 ejes axiales y otro donde te muestra las variables fisiológicas.

Figure: Aceleración de toda la actividad

Figure: Pulsaciones por minuto en toda la actividad

Figure: Plano de los ejes que cortan al cuerpo humano

First Section Second Section Third Section Fourth Section 0000

Caminata

3 ejes axiales

Con el segundo archivo, se consiguio un mayor número de datos, 100 datos por segundo, en comparación con el primero que fue de 1 dato por segundo, con estos se pudo observar como era la actividad en cada eje.

Figure: Actividad en el eje x

Figure: Actividad en el eje y

Carrera

3 ejes axiales

Figure: Actividad en el eje x

Figure: Actividad en el eje y

Figure: Actividad en el eje z

Transformada de Fourier

T.F.D

La Transformada de Fourier es el análisis espectral que descompone una señal en sus frecuencias constitutivas y que además almacena la amplitud de cada componente en el dominio de la frecuencia.

Figure: Descomposición de una serie compleja

Transformada de Fourier

EET

Con la FFT, se logra un cálculo más rápido, esto es gracias a que pasa de n^2 a $n \cdot log_2(n)$, lo único que es requisito es que el número de puntos en la serie tiene que ser una potencia de $2(2^n)$ puntos).

N	N de operaciones usando cálculo directo (N ²)	N de operaciones usando FFT $(N.log_2N)$	Factor de Mejora
4	8	4 7 4	2,0
8	64	12	5,3
16	256	32	8,0
64	4096	192	21,3
256	65536	1024	64,0
1024	1048576	5120	204,8

Table: Tabla comparativa que muestra la cantidad de operaciones a realizar con calculo directo y con para diversos valores de N.

Caminata

Transformada Rápida de Fourier

Figure: F.F.T en el eje x

Figure: F.F.T en el eje y

Figure: F.F.T en el eje z

Carrera

Transformada Rapida de Fourier

Figure: F.F.T en el eje x

Figure: F.F.T en el eje y

Figure: F.F.T en el eje z

Trabajo a futuro

Teorema de Parseval

El teorema de Parseval define que la potencia de las señales es equivalente a la suma de la potencia de sus componentes espectrales y se toma dependiendo de si la señal es periódica o no ya que para su análisis se implementa la serie y la transformada de Fourier respectivamente.

$$\frac{1}{T} \int_{-T/2}^{T/2} \{f(t)\}^2 dt = \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Figure: Teorema de Parseval

Referencias

- ▶ Ruel C.. (2002). Serie de Fourier y problemas de contorno. Michigan, E.U.A: Prentice Hall.
- ▶ Dennis G. Zill y Warren S. Wright Dennis G. y (2015). Ecuaciones Diferenciales con problemas con valores a la frontera, Octava Edición: CENGAGE Learning.
- PLato R. (2000). Concise Numerical Mathematics. German: Board.

