Computational Methods in Physics (PHY 365) FA23

Dr. Muhammad Kamran

Department of Physics

COMSATS University Islamabad

Lab 20

Solver	DE	Method	When to use
ode45	NDEs *	RK	Most of the time. This should be
			the first solver you try.
ode23	NDEs	RK	For solving moderately stiff prob-
			lems.
ode113	NDEs	Adams	For solving computationally in-
			tensive problems.
ode15s	SDEs^{\dagger} &	NDF	If ode45 is slow because the prob-
	DAEs [‡]	(BDF) §	lem is stiff

^{*}Nonstiff DEs

[†]Stiff DEs

[‡]Diff. Algebraic Equations

[§]Numerical (Backward) Differentiation Formula

- An ODE problem is stiff if the solution being sought is varying slowly, but there are nearby solutions that vary rapidly.
- The numerical method must take small steps to obtain satisfactory results.
- Stiffness is an efficiency issue.
- Nonstiff methods can solve stiff problems; they just take a long time to do it.

 \blacksquare [T,Y] = solver(odefun,tspan,y0,options)

 \blacksquare [T,Y] = solver(odefun,tspan,y0,options)

solver	one of $ode45$, $ode23$, $ode113$, $ode15s$, $ode23s$,	
	ode23t, or ode23tb.	
odefun	A function handle that evaluates the right side	
	of the differential equations.	
tspan	A vector specifying the interval of integration.	
у0	A vector of initial conditions.	
options	Structure of optional parameters that change the	
	default integration properties.	

$$\frac{dy}{dx} = 0$$

$$y(0) = 2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \qquad \qquad y(0) = 2$$

■ Initial and final x

$$dy = 0 y(0) = 2$$

■ Initial and final x

■ Initial condition

$$IC = 2;$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \qquad \qquad y(0) = 2$$

■ Initial and final x

■ Initial condition

$$IC = 2;$$

■ Calling the ODE solver

$$[X, Y] = ode45 (func_1', x, IC);$$

■ Plotting the result

- Plotting the result plot(X, Y)
- The function file function dy = func_1(x , y) dy = 0;

$$y(0) = 10^{-3}$$

$$\frac{dy}{dx} = x^3 - \exp(3x^2 - 2) + \exp(x^3)$$

$$y(0) = 10^{-3}$$

■ Initial and final x

$$x_i = 0;$$

 $x_f = 1.5;$
 $x = [x_i, x_f];$

$$\frac{dy}{dx} = x^3 - \exp(3x^2 - 2) + \exp(x^3)$$

$$y(0) = 10^{-3}$$

■ Initial and final x

■ Initial condition

$$IC = 10^{-3}$$
;

$$\frac{dy}{dx} = x^3 - \exp(3x^2 - 2) + \exp(x^3)$$

$$y(0) = 10^{-3}$$

■ Initial and final x

■ Initial condition

$$IC = 10^{-3}$$
;

■ Calling the ODE solver

$$[X, Y] = ode45 ('func_2', x, IC);$$

 \blacksquare Plotting the result

plot(X, Y)

- Plotting the result plot(X, Y)
- The function file

function dy =
$$func_2(x,y)$$

dy = $x \cdot 3 - exp(3 * x \cdot 2 - 2) + exp(x \cdot 3);$

CMP

Dr. M. Kamran

$$y^2 \frac{dy}{dx} = x^2 + \exp(3x^4 - 2)$$

$$y(0) = 1$$

$$y^2 \frac{dy}{dx} = x^2 + \exp(3x^4 - 2)$$

$$y(0) = 1$$

■ Initial and final x

$$x_i = 0;$$

 $x_f = 1;$
 $x = [x_i, x_f];$

$$y^2 \frac{dy}{dx} = x^2 + \exp(3x^4 - 2)$$

$$y(0) = 1$$

■ Initial and final x

■ Initial condition

$$IC = 1;$$

$$y^2 \frac{dy}{dx} = x^2 + \exp(3x^4 - 2)$$
 $y(0) = 1$

■ Initial and final x

$$x_i = 0;$$

 $x_f = 1;$
 $x = [x i, x f];$

■ Initial condition

$$IC = 1;$$

■ Calling the ODE solver

$$[X, Y] = ode45 (@ func_3, x, IC);$$

■ Plotting the result plot (X, Y)

- Plotting the result plot (X , Y)
- The function file

function dy =
$$func_3(x,y)$$

dy = $(x ^2 + exp(3 * x ^4 - 2)) ./ y ^2;$

CMP

Dr. M. Kamran

References

- https://www.mathworks.com/help/matlab/math/ choose-an-ode-solver.html
- http://www.mathworks.com/company/newsletters/articles/ stiff-differential-equations.html
- http://www.mathworks.com/help/matlab/math/ ordinary-differential-equations.html
- http://www.mathworks.com/help/matlab/ref/ode45.html
- http: //mathworld.wolfram.com/OrdinaryDifferentialEquation.html
- https://web.mit.edu/10.001/Web/Course_Notes/Differential_ Equations_Notes/node6.html
- https:
 //en.wikipedia.org/wiki/Backward_differentiation_formula