SLAM — part 2 Empirical Analysis

EDAA - GO6

João Costa — João Martins Henrique Ribeiro Tiago Duarte

Why sets

- Brief C++ history
- Rationale
- Set concepts

Rationale

→ Related to C++ inception

Rationale – Brief C++ history

- Back when C++ was being standardized:
 - Open hashing was still a new topic (not mature enough);
 - C++ sets and maps were based on a paper from 2003 by Matt Austern, which leveraged closed hashing;
 - This was the safe approach at the time.
- At the beginning, the API didn't require the implementation to use **closed hashing**:
 - From C++17 onwards, with the introduction of "extract" capabilities, it became required.
- The API requires the following:
 - Iterator increment must be (amortized) constant time;
 - The erase method must be constant time on average.

Rationale – Opportunities for improvements

- Our use case needs unordered sets as containers for very small objects:
 - Objects are 48-bit < 64-bit pointers;
 - C++ sets are for general usage, so they are optimized for big objects (> 64-bit);
 - We can leverage the better cache locality of open hashing.
- C++ sets use buckets:
 - Increases memory usage;
 - Nodes needs an extra pointer to the next object (using more memory).
- *N* is the number of elements. *B* is the number of buckets:
 - \circ 16 *N* + 8 *B* (hash caching);
 - \circ 8 N + 8 B (no hash caching).

Collision resolution strategies

→ A recap

What happens during an insert

- Set data structures are supported by hash tables;
- During the insertion operations:
 - We calculate the hash of the object;
 - From the hash we obtain an index;
 - The element is stored at the **index**.
- It is possible to obtain the same hash/index from an object:
 - When this happens, we have a collision.

Collision resolution strategies

- One of the simplest ways to deal with collisions is closed hashing:
 - Each index is a bucket;
 - A bucket is a linked list of elements with the same hash;
 - This has performance problems.
- The group implemented 3 open hashing techniques:
 - Linear probing on collision, we check the next buckets (one-by-one) until we find a free one;
 - Quadratic probing similar to *linear probing*. We check buckets in jumps of *power-of-two* size,
 e.g.,: 1 2 4 8...
 - Double hashing we have 2 hash functions: 1 for the object hash and another for the offset.

Future work:

- Try Cuckoo hashing and Robin Hood hashing;
- Apply fast modulo: https://arxiv.org/abs/1902.01961

Implementation details - Quadratic probing

- Quadratic probing as described can lead to cycles;
- The basis of the solution to this problem is: keep the hash table size a power of 2;
- The quadratic probing offset becomes: $i^2 \Rightarrow (i^2 + i)/2;$
- These guarantee that a free slot can always be found.

Implementation details - Double Hashing

- Double hashing can lead to cycles;
- We can't use the same hash function to hash the element and to calculate the offset;
- The cycle size is the LCM of the result of the offset function and the hash table size;
- If these 2 numbers aren't relatively prime, this number can be significantly low:
 - This is achievable by making one of the numbers prime: i.e., the table size;
 - This has a significant overhead for set resizing, and the modulo operation;
 - The other approach is keeping the **hash table size** a **power of 2** and guarantee that the offset always returns an **odd number**.

Implementation details - Set dynamic resizing

- When resizing the hash table:
 - We create a **new one** with double the size;
 - Re-insert all elements into this new table.
- This process uses an alternative insert function (move function) optimized for this operation:
 - Reduces the overhead of memory management;
 - Performs fewer checks: we know there aren't tombstones;
 - All hash values are cached (no need to re-calculate them).
- Resizing is triggered when an insert causes the **load factor** to go over **75%**: i.e., 75% of the hash table contains an element (not a tombstone);
- Future work:
 - Explore other dynamic resizing methods that explore possibilities that aren't all-at-once.

Set performance analysis

- Set operation's performance analysis
- Collision resolution strategy comparison

Insert operation

→ Performance analysis

Insert — Linear probing

- Insertion of randomly generated objects;
- Collision resolution using Linear probing;
- Blue line ≈ 0 duplicated objects;
- Orange line = 58%
 duplicated insertions;

Insert — Quadratic probing

- Insertion of randomly generated objects;
- Collision resolution using Quadratic probing;
- Blue line ≈ 0 duplicated objects;
- Orange line ≈ 58%
 duplicated insertions;

Insert — Double hashing

- Insertion of randomly generated objects;
- Collision resolution using Double hashing;
- Blue line ≈ 0 duplicated objects;
- Orange line = 58%
 duplicated insertions;

Insert — Comparison of all strategies

- Insertion of randomly generated objects;
- Performance is similar between all methods;
- Quadratic probing is consistently the best.

Insert — Impact of set resizing

- In the previous examples, the sets were resized multiple times;
- This also affects the comparisons:
 - Smaller sets suffer fewer resizes.
- Resize is triggered by a threshold of how full the set is (75%);

Insert — Number of collisions

- Quadratic probing has the best performance:
 - In par with the fact that it suffers a low amount of collisions.
- Double hashing delivers on the promised reduced number of collisions, but performance is hurt:
 - It as the worst performance.

Lookup/Delete operation

→ Performance analysis

Lookup/Delete — Performance

- Lookups and deletes are very similar operations in our set implementation:
 - A delete operation is a lookup that sets the entry as dead instead of returning it.
- Lookups for non-existent items on big sets are fast:
 - Because of the load factor control, there are numerous empty buckets ⇒ the search is quick to end.

	Existing	Non-existent	
100000	≃ 6ms	≃ 3ms	
200000	≃ 15ms ≃ 5ms		
300000	≃ 23ms	≃ 5ms	
400000	≃ 32ms	≃ 6ms	
500000	≃ 34ms	≃ 8ms	
600000	≃ 42ms	s ≃ 9ms	

Merge operation

→ Performance analysis

Merge — Performance and impact of resize

- In our project, we only need in-place merges;
- The merge operation consists of iterating over a set and inserting each object into the second one;
- By doing a pessimistic assumption, we can greatly increase the performance of the operation:
 - Assume that each element in the second set is new (not already part of the set);
 - Check that the **load factor is still ok** in that case (no resize needed).

Merge — Optimization with numerous duplicates

- Our use case leads to merges with numerous duplicate entries;
- In this test, the second set has
 250% of its elements in
 common with the first set;
- The optimization doesn't bring anything to the table performance-wise;
 - But can cause an increase in memory consumption.

Merge – The impact of duplicates

Merge operation

→ Comparison with C++

Merge - Comparison with C++ unordered_set

In-place dynamic resizing → Comparison with all-at-once

In-place dynamic resizing – comparison

- We implemented a way for sets to be dynamically resized in-place:
 - Less memory overhead;
 - Less time performance.
- Algorithm:
 - Grow the container (double size);
 - Re-evaluate all entries in first half;
 - If they fall on second half, place them there;
 - Otherwise, save them in a buffer for later;
 - Clear first half and insert the buffer elements

Real data test

→ Performance on the dataset

Real data test

- Tests on real data:
 - Ray-casts on a plane point cloud dataset;
 - Only considering the turbines;
 - About 1000 ray-casts covering 18000 cells each.
- Ray-casts are calculated 4 at a time in parallel:
 - o On a computer with 4 CPU cores.
- Our set implementation improved performance almost 2-fold.

	C++ sets	Our sets	In-place resize
Time taken	≃ 23 s	≃ 13 s	≃ 10 s

3D Scan Analysis

- Cell coverage analysis
- Time analysis

3D Scan Analysis

→ Quick Recap

Sonar Data & 2D Mapping

- Sonar rotates around itself;
- Sends/measures waves in a cone;
- Each beam has multiple intensities across several intervals.

3D - How to Cover a Volume?

- Estimate covered cells through 3D ray-casts
- Choose destination points to achieve maximum coverage
- Divide both horizontal and vertical plane
 - For the same AUV, Fula[1] uses 7 rays
 - But what is the optimal number of divisions to maximize coverage?
 - And what is their impact on performance?

Sonar Beam Spread

- Each sonar beam covers an area that spans over 3° horizontally and 35° vertically;
- As such, the vertical plane needs to be further divided to capture the same level of detail.

3D Scan Analysis

→ Division Analysis

Vertical Divisions – Coverage

- Results were as expected;
- Coverage increases linearly until 64 divisions;
- Subdividing the plane further doesn't lead to more coverage.

Vertical Divisions – Time

- Time increases linearly;
- Even though our point-cloud implementation is O(N²);
- We believe that this is due to most ray casts having a lot of points in common:
 - This leads to fast merges;
 - This is why the merge operation is extremely important.

Horizontal Divisions – Coverage

- Results were also as expected;
- Maximum coverage is reached sooner;
- Subdividing the plane further from 32 divisions doesn't lead to more coverage.

Horizontal Divisions – Time

- Time also increases linearly;
- Same conclusion as vertical performance.

Multivariable Analysis – Coverage

- High coverage is only possible with high horizontal and vertical Divisions;
- These parameters don't seem to affect performance by much:
 - At least in our dataset;
 - So this won't be much of a factor in our decision.

Number of Divisions – Results

1 horizontal and 2 vertical Division

Number of Divisions – Results

64 horizontal and 128 vertical Divisions

References

- [1] João Pedro Bastos Fula Underwater mapping using a SONAR
- [2] Virginia Tech Algorithm Visualization Research Group https://research.cs.vt.edu/AVresearch/hashing/quadratic.php
- [3] Carlos Moreno https://ece.uwaterloo.ca/~cmoreno/ece250/2012-02-01--hash tables.pdf
- [4] Wikipedia https://en.wikipedia.org/wiki/Hash table#Dynamic resizing
- [5] Tobias Maier https://github.com/TooBiased/DySECT
- [6] <u>Joaquín M López Muñoz</u> <u>https://bannalia.blogspot.com/2022/06/advancing-state-of-art-for.html</u>
- [7] <u>Daniel Lemire</u>, et al. <u>https://arxiv.org/abs/1902.01961</u>

Slide deck source

Slide deck