Projet VLSI

Processeur ARM v3 pipeline 5 étages

Sommaire

1) Présentation des étages

2) DECOD

3) EXEC

4) Résultats

Présentation des étages

1) FETCH

-> Aller chercher en mémoire une instruction

2) DECOD

-> Décoder l'instruction et donner aux étages suivants quoi faire

3) EXEC

-> S'occuper de tous les calculs à effectuer

4) MEM

-> Aller écrire ou lire en mémoire

5) WB

-> Modifer les valeurs contenues dans les registres

Structure complète

Banc de Registre

- •16 registres accesible utilisateur
 - -> PC (r15) lr (r14) accessibles comme n'importe quel registre
- ·2 ports d'écriture, 4 de lecture
- -> lecture instantanée
- -> écriture différée demande un cycle pour invalider la valeur du registre
- •4 flags (C, Z, N, O)
- -> écriture et lecture comme dans un registre
- Registre PC accessible à tout moment

State Machine

- •FSM (state machine)
- -> machine à état pour le decodage et le process des instructions

•FSM_ST

-> machine à état de type Mealy pour le stockage de l'état de la FSM pour le cycle suivant

FIFO

dec2if

-> une fifo de 32 bits contenant l'adresse d'une instruction à transmettre à l'étage IFETCH

dec2exe

-> une fifo 128 bits contenant RD, RS, op1, op2.

DECOD

STATE MACHINE

STATE MACHINE INST

STATE MACHINE MEM

STATE MACHINE Branch/ Branch&Link

EXEC

Résultat

Tous les composants réalisés

REG, EXE implémenté et entièrement testés

DECOD implementation machine à état (sauf multiples transferts)

Ne synthétise pas entièrement

Résultat

Tous les composants réalisés

REG, EXE implémenté et entièrement testés

DECOD implementation machine à état (sauf multiples transferts)

Ne synthétise pas entièrement