1 nalen

f(x,y)=1 המקיימים x,y המעיאת נתחיל במציאת א.

. f(-1,-4) = -15 + 16 = 1 : לא קשה לגלות כאלה

 $n \in \mathbb{Z}$ יהי כולו: יהי לתשובה לסעיף כולו נחשב $n \in \mathbb{Z}$

f(-n,-4n) = -15n + 16n = n

. ${f Z}$ משמע הפונקציה היא על , $n\in {f Z}$

$$g(g(X)) = (X \oplus K) \oplus K$$
 ...

לפי שאלה 22.1ב (אסוציאטיביות ההפרש הסימטרי) בעמי 27 בספר

 $=X\oplus (K\oplus K)$

לפי טענה נוספת באותו סעיף שם (הפרש סימטרי של קבוצה עם עצמה)

 $=X\oplus\varnothing$

ולפי טענה נוספת שם (הפרש סימטרי עם קבוצה ריקה)

= X

g:A
ightarrow A מקיימת g:A
ightarrow A מקיימת מחנית פונקציה עבור קבוצה כלשהי

$$g(g(x)) = x$$
 , $x \in A$ לכל

אז g חד-חד-ערכית ועל.

הוכחת חד-חד-ערכיות:

x = y -ש עלינו להראות שg(x) = g(y) המקיימים, $x, y \in A$

g(x) = g(y) היא פונקציה, ניתן להפעיל g בשני האגפים של השוויון g היא פונקציה,

g(g(x)) = g(g(y)) נקבל

הוכחת על:

(g(x) האיבר ב- A (האיבר היים איבר ב- g(g(x)) = x מכיוון ש- A (האיבר A

x שתמונתו היא

2 nalen

(מדועי) Y-B=Y אז $Y\subseteq X-B$ (מדועי)

f(Y) = Y מתקיים $Y \in P(X - B)$ לכן לכל

לכן לכל (ייתכנו כמובן עוד מקור תחת f: המקור תחת $Y \in P(X-B)$ לכן לכל לכל מספיק שמצאנו אחד).

ב. X-B=Y-B הם אורק אס ורק אס מחלקת הם באותה באותה X,Y הם בממיין 11, X-B=Y-B היא זו במלים אחרות X,Y הם באותה מחלקת שקילות אס ורק אס X,Y הם באותה בתחילת השאלה הנוכחית.

לפי הקובץ ייחס שקילות המושרה על ידי פונקציה" בתוספת התוצאה שקיבלנו בסעיף א כאן, $P(X-B) \ .$ מספר מחלקות השקילות הוא כגודלה של

(מדוע!) גודל זה הוא 2^{n-k}

3 nalen

- $R=A\times A$, $A=\{1,2\}$: אינה של דינה לטענה לטענה אותו אין ... אין מעל אין אין אין אותו (מדועי) אותו אין אבל אין אין אין מעל R
- $R = \{(1,2),\,(2,3),(3,1)\}$, $A = \{1,2,3\}$: ב. דוגמא נגדית לטענה של שמעון אין פון אין מעל R אנטי-סימטרי אבל אין מעל R יחס סדר-חלקי שמכיל אותו (מדועי)

4 22167

$$0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 0 + 1 + 4 + 9 + 16 + 25 = 55$$
 : $n = 0$ בדיקה עבור $n = 0$: $n = 0$. $55 = 12 \cdot 4 + 7$

,12 - מעבר: נניח שהטענה נכונה עבור n, כלומר נניח ש- נותן שארית בחילוק ב- 12 מעבר: נניח שהטענה נכונה עבור a_n בחילוק ב- 12.

:נחשב

$$a_{n+1} = (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2 + (n+6)^2$$

= $a_n + (n+6)^2 - n^2 = a_n + 12n + 36$

אותה ב- 12 מתחלק ב- 12 ללא שארית, לכן $a_n+12n+36$ נותן בחילוק ב- 12 אותה $a_n+12n+36=12(n+3)$ שארית כמו a_n לפי הנחת האינדוקציה שארית זו היא 7.

.12 -בחילוק דחית מותן מארית a_{n+1} -ש הראינו אפוא הראינו

. טבעיn טבעיה והמעבר, לפי עקרון האינדוקציה בטבעיים, הטענה נכונה לכל

איתי הראבן