DIALOG(R)File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

011956725 **Image available**
WPI Acc No: 1998-373635/199832

XRPX Acc No: N98-293280

Information copyright protection method for audio and video information transmission through network - involves multiplexing copyright

information by changing value of frequency component of digital image

Patent Assignee: NIPPON TELEGRAPH & TELEPHONE CORP (NITE)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 10150517 A 19980602 JP 96305370 A 19961115 199832 B

Priority Applications (No Type Date): JP 96305370 A 19961115 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes JP 10150517 A 22 H04N-001/00

Abstract (Basic): JP 10150517 A

The method involves converting frequency of a digital image (1) sent to a centre (3) by a person (2). A copyright information is registered into a database (17) at the centre.

The copyright information is then multiplexed by changing the value of frequency component of the digital image. Based on multiplexing, a copyright management number multiplexing image (15) is obtained.

ADVANTAGE - Prevents degradation of image quality. Improves safety. Eases multiplexing of digital image data.

Dwg.1/15

Title Terms: INFORMATION; PROTECT; METHOD; AUDIO; VIDEO; INFORMATION; TRANSMISSION; THROUGH; NETWORK; MULTIPLEX; INFORMATION; CHANGE; VALUE; FREQUENCY; COMPONENT; DIGITAL; IMAGE

Derwent Class: T01; W02

International Patent Class (Main): H04N-001/00

International Patent Class (Additional): G06F-012/14; H04N-001/44

File Segment: EPI

Manual Codes (EPI/S-X): T01-H01C2; W02-J03C1; W02-J03C6

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平10-150517

(43)公開日 平成10年(1998)6月2日

(51)Int.CL"	識別記号	ΡI	
H04N 1/00	102	H04N 1/00	102Z
G06F 12/14	320	G06F 12/14	320E
H 0 4 N 1/44		H 0 4 N 1/44	

審査請求 未請求 請求項の数11 OL (全 22 頁)

(21)出職番号	特職平8-305370	(71)出版人 000004226
		日本電信電話株式会社
(22)出顧日 平	平成8年(1996)11月15日	東京都新宿区西新宿三丁目19番2号
		(72)発明者 中村 高雄
		東京都新宿区西新宿三丁目19番2号 日
		電信電話株式会社内
		(72)発明者 小川 宏
		東京都新宿区西新宿三丁目19番2号 日
		電信電話株式会社内
		(72)発明者 高嶋 洋一
		東京都新宿区西新宿三丁目19番2号 日
		電信電話株式会社内
		(74)代理人 弁理士 鈴木 誠

(54) 【発明の名称】 著作権保護方法およびシステム

(57)【要約】

【課題】 著作権に関する情報の多重化による画質の劣化が少く、多重化した情報が正しく残るようにしてデジタル画像の著作権保護を実現する。

【解決手段】 著作権者2は自分のデジタル画像1をセンタ3に送付し、登録を依頼する。センタ3は、デジタル画像1に多重化済みフラグが既に多重化されていない助訊へ(二重登録防止)、多重化されていない場合、著作権情報をデータベース17に登録するとともに、デジタル画像を周波数変換し、周波数成分の値を変更することで、多重化済みフラグ、著作権管理番号をデジタル画像に多重化し、著作権管理番号多重化画像15を得て流通用画像18とする。利用者20は流通用画像18をセンタ3に送り、検証を受けることにより、著作権情報16を得る。

1

【特許請求の範囲】

【請求項1】 流通するデジタル画像の著作権を保護する方法において、デジタル画像を周波数変換し、周波数成分の値を変更することで、著作権に関する情報を多重化し、該多重化されたデジタル画像を流通させることを特徴とする著作権保護方法。

【請求項2】 請求項1記載の著作権保護方法において、著作権者IDや利用許諾条件等からなる著作権情報をデジタル画像に多重化することを特徴とする著作権保護方法。

【請求項3】 請求項1記載の著作権保護方法において、著作権情報を別途保存し、該保存された著作権情報を特定するための著作権管理番号をデジタル画像に多重化することを特徴とする著作権保護方法。

【請求項4】 請求項1乃至3記載の著作権保護方法に おいて、情報を多重化する際に、秘密情報とデジタル画 像に固有な特性値を用いて情報多重化済みを示すフラグ を多重化して追加することを特徴とする著作権保護方 法。

【請求項5】 請求項1乃至3記載の著作権保護方法に 20 おいて、情報をデジタル画像に多重化する際に、同一情報を繰り返し多重化し、情報を抽出する場合、情報の各ビット位置に対し最尤法を用いて当該ビット位置の値を決定することを特徴とする著作権保護方法。

【請求項6】 請求項1乃至3記載の著作権保護方法において、情報をデジタル画像に多重化する際に、乱数列を生成し、該乱数列を用いて、あらかじめ設定された多重化候補周波数の粗の中から変更箇所を決定し、任意の変更量で周波数を変更することで情報を多重化することを特徴とする著作権保護方法。

【請求項7】 請求項1乃至3記載の著作権保護方法に おいて、情報をデジタル画像に多重化する際に、情報を 誤り訂正符号化してから多重化することを特徴とする著 作権保護方法。

【請求項8】 請求項1乃至3記載の著作権保護方法において、情報をデジタル画像に多重化する際に、変更する周波数成分の取り得る値を求め、変更値が周波数成分の取り得る値の範囲の外にある場合に、デジタル画像の画素値を変更し、周波数成分の取り得る値の範囲を変更してから周波数成分を変更することを特徴とする著作権 40 保護方法。

【請求項9】 請求項1乃至3記載の著作権保護方法において、情報をデジタル画像に多重化する際に、任意に周波数成分の変更幅を決め、周波数成分を変更幅で量子化し、ビット値によって変更値を定め、変更値が量子化のステップの中間値になるように決定することを特徴とする著作権保護方法。

【請求項10】 請求項4記載の著作権保護方法におい 検討されている。この方法では、一般利用者が、人手して、情報をデジタル画像に多重化する際に、情報の多重 た著作物から多重化された著作権情報を無理矢理削除、 化済みを示すフラグを多重化する際のパラメータと、情 50 改ざんしようとすると、著作物自体が激しく劣化して情

2 報を多重化する際のパラメータをそれぞれ別々に設定することを特徴とする著作権保護方法。

【請求項11】 流通するデジタル画像の著作権を保護 するシステムにおいて、

デジタル画像の著作権情報を登録するセンタを設け、 前記センタにて、著作権者からの依頼のデジタル画像の 著作権情報をデータベースに保存し、該データベース内 の著作権情報を特定するための著作権管理番号をデジタ ル画像に多重化し、該多重化されたデジタル画像を流通 10 させ、

流通しているデジタル画像を手に入れた利用者が著作権 情報を前記センタに問い合わせ、該センタ内で、デジタ ル画像に多重化された著作権管理番号を抽出し、データ ベースから対応する著作権情報を読み出し、利用者に返 答することを特徴とする著作権保護システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、デジタル著作物を 流通させる際に有効な著作権保護方法およびシステムに 関する。

[0002]

【従来の技術】コンピュータの処理能力やメディア処理、情報圧縮技術などの進歩により、画像や音声などをデジタルデータとして扱うことが容易になり、通信ネットワークによる画像、音声などの伝送も可能となっている。このことにより、従来は情報の受手であった一般利用者が、既存の著作物を二次利用するなどして、新たな著作物を創造することが可能となった。

【0003】従来の著作物については、著作権が誰に帰 30 属するのかを調べるのが困難で、他人の著作物を二次利 用する場合、その承諾等の必要な著作権処理ができない といった問題があった。そこで、デジタル著作物につい ては、著作権者や権利処理の問い合わせ先などの著作権 情報を著作物に付加をすることが考えられるが、コピー や編集が容易であるというデジタル情報の特徴により、 著作権に関する情報部分のみの削除、改ざんといったこ とが可能になってしまう。著作権情報の削除、改ざんの なされたデジタル著作物が流通されると、正当に著作権 の権利承諾処理等を行って二次利用を行いたいと考えて 40 いる利用者が、あやまって著作権侵害をしてしまう危険 性がある。

[0004]

【発明が解決しようとする課題】上述の事情により、デジタル著作物の著作権保護方式として、画像や音声などの冗長度のある著作物を、視覚・聴覚など人間の知覚能力では知覚されないように若干変更し、この変更によって著作権情報を著作物自体に多重化するといった方法が検討されている。この方法では、一般利用者が、人手した著作物から多重化された著作権情報を無理矢理削除、改ざんしようとすると、著作物自体が激しく劣化して情

報としての価値が無くなる様に仕掛けが施してあるた め、事実上、著作権情報の削除、改ざんが不可能とな

【0005】しかし、画像、音声などのデジタル著作物 は、何らかの情報圧縮が施されて伝送されることが普通 であり、圧縮・伸長後のデータが元のデータに比べて劣 化するような、非可逆圧縮方式も広く用いられている。 画像について言えば、従来までの方法は画素値を表すど ット列の低位ピットを、多重化する著作権情報にしたが って変更するなどの多重化方法であり、このような方法 10 を用いた場合、多重化後の画像を非可逆圧縮・伸長した 後では、画像自体の劣化は気にならない程度でも、多重 化された著作権情報が残らないといった問題が生じる。 【0006】本発明の目的は、著作権情報や該著作権情 報を特定する著作権管理情報等の著作権保護のための情 報の多重化による画質の劣化が少なく、非可逆圧縮に対 しても多重化された情報が正しく残ることを可能とし、 デジタル画像の著作権保護を実現できる著作権保護方法 およびシステムを提供することである。

[0007]

【課題を解決するための手段】上記目的を達成するた め、本発明の著作権保護方法では、非可逆画像圧縮の際 に情報量の減少の程度の少ない画像の低周波成分の値を 変更して、著作権保護のための情報をデジタル画像に多 重化する。さらに、該情報を多重化したことを示すフラ グ(多重化済みフラグ)をデジタル画像に多重化する。 【0008】また、本発明の著作権保護システムでは、 デジタル画像の著作権情報を登録するセンタを設け、前 記センタにて、著作権者からの依頼のデジタル画像の著 作権情報をデータベースに保存し、該データベース内の 30 著作権情報を特定するための著作権管理番号をデジタル 画像に多重化し、該多重化されたデジタル画像を流通さ せ、流通しているデジタル画像を手に入れた利用者が著 作権情報を前記センタに問い合わせ、該センタ内で、デ ジタル画像に多重化された著作権管理番号を抽出し、デ ータベースから対応する著作権情報を読み出し、利用者 に返答する.

[0009]

【発明の実施の形態】以下、本発明の一実施例を図面を 夕において著作権情報をデータベースに保存し、該デー タベース内の著作権情報を特定するための著作権管理番 号を、著作権に関する情報としてデジタル画像に多重化 し、さらに、該情報を多重化したことを示すフラグ(多 重化済みフラグ)をデジタル画像に多重化し、該多重化 されたデジタル画像を流通させる場合を示す。

【0010】図1は、本発明の一実施例における著作権 保護システムの全体的ブロック図である。本システムの 動作概要は以下の通りである.デジタル画像1の著作権 者2は、信頼できる第三者機関である著作権管理センター

3にデジタル画像1を送付し、著作権情報(著作権者1 D、利用許諾条件等)の登録を依頼する。著作権管理セ ンタ3では、まず、多重化済みフラグ検出部6におい て、デジタル画像1に既に多重化済みフラグが多重化さ れていないか調べ、多重化済みであれば、デジタル画像 1をそのまま依頼元に返送する。これにより、著作権情 報の二重登録を防ぐことができる。多重化済みフラグが 多重化されていない場合、多重化処理部9において、著 作権情報やその著作権管理番号等を著作権管理データベ ース17に格納すると共に、まず、デジタル画像に多重 化済みフラグを多重化し、次に、著作権管理番号を多重 化し、著作権管理番号多重化画像15を著作権者1に返 送する。著作権者1は、該著作権管理番号多重化画像1 5を流通用画像18として著作物流通市場19に公表・ 頒布する。一方、著作物流通市場19から流通用画像1 8を入手した利用者は、その画像を二次利用する際な ど、該流通用画像18を著作権管理センタ3に送付して 検証を依頼する。著作権管理センタ3では、検証処理部 21において、該流通用画像18に多重化された著作権 20 管理番号を抽出し、著作権管理データベース17に格納 された著作権管理番号と一致する場合、該当著作権情報 をデータベース17から読み出して利用者20に返答す

【0011】ここで、著作権者2と著作権管理センタ3 との間は、デジタル画像1や著作権管理多重化画像15 を通信回線と無線等でオンラインで送受信するか、ある いは、CD-ROM等の記憶媒体により送付するが、い ずれでもよい。利用者20と著作権管理センタ3との間 も同様である。

【0012】以下、図1の本発明の一実施例の著作権保 護システムにおける著作権情報の登録処理および検証処 理について詳述する。

【0013】図2は、図1のシステム中の著作権情報の 登録処理に関係する構成の詳細ブロック図である。デジ タル画像1の著作権者2は、著作権管理センタ3にデジ タル画像1を送付し、著作権情報の登録を依頼する。著 作権管理センタ3は、他のエンティティには秘密の、当 該著作権管理センタ3の秘密情報4と多重化済みフラグ 多重化強度パラメータ5を有している。ここで、パラメ 参照して説明する。なお、実施例では、著作権管理セン 40 ータ5は、多重化済みフラグをデジタル画像に多重化す る際の強度を設定するもので、該パラメータ5の値を変 更することで多重化情報の強度を任意に設定できる。 【0014】登録を依頼された著作権管理センタ3は、 まず、多重化済みフラグ検出部6で、当該著作権管理セ

ンタ3の秘密情報4と、多重化済みフラグ多重化強度パ ラメータ5と、多重化処理で不変な画像の特性情報7を 用いて、受理したデジタル画像1に多重化済みフラグ8 が多重化されていないかを調べる。もし、デジタル画像 1に多重化済みフラグ8が多重化されていると判断した 50 場合は、多重化済み画像に対する二重登録の依頼とみな

し、多重化処理をせずに依頼主である著作権者2にデジ タル画像1を返送する、多重化済みフラグ8が多重化さ れていないと判断した場合は、続いて多重化処理を行

【0015】多重化処理は多重化処理部9で行われる。 多重化処理部9は、まず、受理したデジタル画像1に対 し著作権管理番号10を一意に付与する。次に、著作権 管理番号10をデジタル画像1に多重化する際に必要な デジタル画像1に固有な多重化鍵11を生成し、さら に、著作権管理番号多重化強度パラメータを設定する。 ここで、パラメータ12は、西質が著作権者2の依頼に 則した程度の非可逆圧縮に耐え得るような値に設定す

【0016】該多重化処理部9内では、まず、多重化フ ラグ多重化部13で、当該著作権管理センタ1の秘密情 報4と多重化済みフラグ多重化強度パラメータ5と画像 の特性情報7を用いて、デジタル画像1に多重化済みフ ラグを多重化し、多重化済みフラグ多重化画像33を得 る。次に、著作権管理番号多重化部14で、多重化鍵1 1と著作権管理番号多重化強度パラメータ12を用い て、著作権管理番号10を多重化済みフラグ画像33に 多重化し、著作権管理番号多重化画像15を得る。後述 するように、実施例では、著作権管理番号10の多重化 は、デジタル画像1内の多重化済みフラグの多重化領域 を除く領域を対象に繰り返し実施する。さらに、著作権 管理番号10と多重化鍵11と著作権管理番号多重化強 度パラメータ12を、著作権者2のIDや利用許諾条件 等からなる著作権情報16と一緒に組にして著作権管理 データベース17に格納する。 この著作権管理データベ ース17は、著作権管理センタ3以外のエンティティか 30 といった現状と同じ方法をとることになる。 らはアクセスできないようになっている。

【0017】著作権管理センタ3は、著作権管理番号多 重化画像15のヘッダ部分に、著作権管理番号10を付 加して流通用画像18とし、著作権者2に返送して登録 を終了する。流通用画像18を受け取った著作権者2 は、これを著作物流通市場19において公表・頒布し流 通を行う。

【0018】図3は、図1のシステム中の検証処理に関 係する構成の詳細ブロック図である。利用者20が、著 作物流通市場19で流通している流通用画像18を入手 40 し、流通用画像18を利用者20自身の作品に二次利用 する際など、利用許諾条件を知りたい場合や著作権につ いての許諾処理等を行いたい場合に、著作権管理センタ 3へ入手した流通用画像18を送付し、検証を依頼す

【0019】検証を依頼された著作権管理センタ3は、 検証処理部21において、まず、受理した流通用画像1 8のヘッダ部分に記述されている著作権管理番号10を 読み取り、著作権管理データベース17の中に同じ著作 失敗処理部74において検証失敗処理を行う。著作権管 理データベース17の中に同じ著作権管理番号10があ った場合、この著作権管理番号10と組になっている多 重化鍵11と著作権管理番号多重化強度パラメータ12 を、著作権管理データベース17から得る。また画像の 特性情報7を抽出する.

【0020】次に、検証処理部21では、当該著作権管 理センタ3の秘密情報4と画像の特性情報7を用いて、 流通用画像18のヘッダ部分を取り除いた著作者管理番 10 号多重化画像15の中の著作権管理番号の多重化されて いる位置を決定し、多重化鍵11を用いて、著作権管理 番号多重化画像15から著作権管理番号検証用データ2 2を抽出し、この著作権管理番号検証用データ22が著 作権管理番号10と一致するか否かを調べる。一致する 場合、検証を依頼された流通用画像18は著作権管理セ ンタ3で登録された正当な画像であると判断して、対応 する著作権情報16を著作権管理データベース17から 取りだし、検証を依頼した利用者20に送付する。一致 しなかった場合、検証失敗処理部74において検証失敗 20 処理を行う。

【0021】検証失敗処理部74では、検証を依頼され た流通用画像18については登録されていないか、ある いは、多重化された著作権管理番号10が消去または改 ざんされた可能性があると判断し、検証できなかったこ とを依頼した利用者20に伝える。

【0022】利用者20は、著作権情報16が得られた 場合は、二次利用に際し必要な処理を行う。また、著作 権情報16が得られなかった場合は、別の手段で著作権 処理の問い合わせ先を入手するか、二次利用を諦める、

【0023】図1乃至図3のシステムによって、利用者 20が入手した流通用画像18を二次利用したい場合 に、容易に権利許諾処理等についての問い合わせ先を知 ることが可能となり、さらに、利用者18が、過失によ ってあやまって著作権を侵すことを防ぐことができる。 以下に、著作権管理センタ3の各部の動作・処理につい て説明する。

【0024】図4に多重化済みフラグ検出部6の構成例 を示す。多重化済みフラグ検出部6では、当該著作権管 理センタ3の秘密情報4と、多重化処理を行っても不変 な画像の特性情報7、例えば画像の低周波成分値を量子 化したもの、を組にし、乱数生成器23に疑似乱数の種 として入力し、乱数列24を得る。

【0025】多重化済みフラグ検出部6は、まず、デジ タル画像1を1ブロックが例えば縦8画素横8画素の複 数ブロックに細分し、乱数列24から多重化対象ブロッ ク25を決定する。一般に、8×8画素のブロックに対 し離散コサイン変換を施すと、図5のように8×8の周 波数成分行列26が得られる。この64個の周波数成分 権管理番号10があるかを調べる。無かった場合、検証 50 の内、あらかじめ幾つかの周波数の組を交流成分から選

8

び、これを多重化候補周波数の組27とする。この多重 化候補周波数の組27の中から、先に生成した乱数列2 4の次の項によって、多重化対象周波数28を決定す

【0026】次に、あらかじめ決まっている多重化済み フラグ多重化強度パラメータうと、先に求めた多重化対 象周波数28と、多重化対象ブロック25の画素値を多 重化ビット抽出部29に送り、抽出ビット値30を得 ъ.

【0027】後述するように、多重化済みフラグは、い 10 くつかのブロックに繰り返し多重化されているので、画 像のサイズから繰り返し数nを、

n=i nt ((h*v/64)*0.25)ただし、

int(x)=(xの小数点以下切り捨て)

h = (画像の水平方向の画素数)

v=(画像の垂直方向の画素数)

のように、画像のサイズが大きければ大きいほどnが大 きくなるように求めて、乱数列24の続きの項から再び 抽出ビット値30を得る処理を、全部でn回繰り返す。 【0028】さらに、多重化処理を施していないデジタ ル画像1を、多重化済みであると誤認識しないように、 (n回繰り返した際に抽出ビット値30が"1"だった 回数)/nの値が、多重化済みフラグ検出用しきい値T 1 (0≤T1≤1)より大きい場合には、デジタル画像 1には多重化済みフラグ8が多重化されているとみな す。逆に、(n回繰り返した際に抽出ビット値30が "1"だった回数)/nの値が、多重化済みフラグ検出 用しきい値T1以下の場合には、デジタル画像1には多 重化済みフラグが多重化されていないとみなす。

【0029】次に、図6に多重化処理部9の構成を示 す。多重化処理部9は、多重化済みフラグ多重化部13 と、著作権管理番号多重化部14によって構成されてい る.

【0030】まず、図7により多重化済みフラグ多重化 部13での処理について説明する。これは、基本的に多 重化済みフラグ検出部6での処理の配処理に相当する。 最初に、著作権管理センタの秘密情報4と、多重化処理 を行っても不変な画像の特性情報7を組にし、乱数生成 器23に乱数の種として入力し、乱数列24を得る。 - 40 方、デジタル画像1を1ブロックが縦8画素横8画素の 複数ブロックに細分し、乱数列24から多重化対象ブロ ック25を決定する。次に、乱数24の次の項によっ て、多重化候補周波数の組27の中から、多重化対象周 波数28を決定する。次に、他のエンティティには秘密 の多重化済みフラグ多重化強度パラメータ5と、多重化 対象ブロック25の64個の画素値と、先に求めた多重 化対象周波数28と、多重化済みを示すビット値"1" (多重化済みフラグ8)をピット多重化処理部31に送

画像1中の多重化対象ブロック25の画素値を多重化済 みブロック32の画素値に変更する。

【0031】ピット値"1"の多重化済みフラグ8の多 重化はいくつかのブロックに繰り返し実施する。このた め、画像のサイズから多重化繰り返し数nを、先に多重 化済みフラグ検出部6で説明したようにして求める。乱 数列24の続きの項から、再び多重化済みブロック32 を得る処理を、全部でn回繰り返し、多重化済みフラグ 多重化画像33を得る。

- 【0032】次に、図8により著作権管理番号多重化部 14での処理について説明する。まず、著作権管理番号 10を、当該デジタル画像を一意に示すように生成す る。次に、多重化済みフラグ多重化画像33を1ブロッ クが縦8画素機8画素の複数ブロックに細分する。細分 したブロックの内、先の多重化済みフラグ8を多重化し たブロックを除いた全てのブロックが著作権管理番号1 0の多重化対象ブロック34である。この多重化対象ブ ロック34に離散コサイン変換を施し、周波数成分行列 26を得る。
- 【0033】次に、著作権管理番号10を多重化するた め多重化鍵11を任意な値で生成する。この生成した多 重化鍵11を種として乱数列35を生成し、乱数の値に よって、あらかじめ決まっている多重化候補周波数の組 27の中から、多重化対象周波数40をブロックごとに 一つ決定する。

【0034】また、実施例では、著作権管理番号10に ハミング符号を付加したデータ36の最上位ビットから 順に1ビットずつ選び、このビット値37を多重化対象 ブロック34に多重化を行うこととする。この際、誤の 30 訂正に用いる符号は、ハミング符号以外のものでも構わ ない。

【0035】次に、著作権者2の要望に応じて設定した 著作権管理番号多重化強度パラメータ12と、多重化対 象ブロック34の64個の画素値と、多重化対象周波数 40と、当該ブロックに埋め込むビット値37をビット 多重化処理部31に送り、多重化済みブロック32の画 素値を得て、多重化済みフラグ多重化画像34中の多重 化対象ブロック34の画素値を多重化済みブロック32 の画値値に変更する。多重化処理では、1ブロックあた り1ビットの情報を多重化する。この多重化処理を、著 作権管理番号10にハミング符号を付加したデータ36 の全ピットを多重化するまで繰り返す。この際、ブロッ クのスキャンの方向は図9のようになっている。なお、 図9では斜線で囲ったブロックは多重化済みフラグ8の 強化ブロックを示し、該ブロックは著作権管理番号10 の多重化処理から除外される。また、著作権管理番号1 0にハミング符号を付加したデータ36の全ビットを多 重化した際に、まだ多重化処理を施していないブロック が残っている場合、再び著作権管理番号10にハミング り、多重化済みブロック32の画素値を得て、デジタル 50 符号を付加したデータ36の最上位ビットから多重化を

繰り返す。

【0036】このようにして、デジタル画像1の全ての ブロックに対し、多重化済みフラグ8、あるいは、著作 権管理番号10にハミング符号を付加したデータ36の いずれかが多重化されているところの、著作権管理番号 多重化画像15が得られることになる。

【0037】図8のビット多重化処理部31の詳細構成 例について図10に示す。ビット多重化処理部31は、 多重化強度パラメータ12と、多重化対象ブロック34 の64個の画素値と、多重化対象周波数40と、埋め込 10 0に送り、多重化を行い、多重化済み輝度ブロック51 むべきビット値37を入力とする。

【0038】ビット多重化処理部31は、まず、輝度・ 色差分解部42で多重化対象ブロック34を輝度と色差 に分解し、輝度ブロック43と色差ブロック44を得 る。輝度ブロック43に対し、離散コサイン変換を施 し、8×8の周波数成分行列26を得る。次に多重化対 象周波数40の周波数成分値45を読み取る。次に、こ の成分値45を量子化処理部46で、多重化強度パラメ ータ12を用いて量子化し、量子化値47を得る。この 量子化値47と、多重化強度パラメータ12と、周波数 20 49に変更できるかどうかを判定する。 成分値45と、多重化するビット値37を、周波数成分 変更値生成部48に送る。

【0039】周波数成分変更値生成部48では、次のよ うに規則でビット値37を多重化した後の周波数成分変 更値49を生成する。

- 3重化対象ブロック34に、ビット値"0"を多 重化する場合
- (a) (成分値45-量子化値47) < (多重化強度パ ラメータ12)*0.75のとき

量子化値47に、(多重化強度パラメータ12)*0. 25を加えて、これを多重化後の周波数成分変更値49 とする。

(b) (成分値45-量子化値47)≧(多重化強度パ ラメータ12) * 0.75のとき

量子化値47に、(多重化強度パラメータ12)*1. 25を加えて、これを多重化後の周波数成分変更値49

- 2) 多重化対象ブロック34に、ビット値"1"を多 重化する場合
- (a) (成分値45-量子化値47)≥(多重化強度パ 40 ラメータ12)*0.25のとき

量子化値47に(多重化強度パラメータ12)*0.7 5を加えて、これを多重化後の周波数成分変更値49と する。

(b) (成分値45-量子化値47) < (多重化強度バ ラメータ12) * 0. 25のとき

量子化値47から、(多重化強度パラメータ12)* 0.25を引いて、これを多重化後の周波数成分変更値 49とする。

【0040】この変更の際、多重化対象周波数成分40 の取り得る最大値、あるいは最小値を越えた場合、上記 ルール1), 2) に従い、((a), (b) の条件分け

は無視し)、多重化対象周波数成分40の取り得る値の 範囲に収まって、最初に求めた多重化後の周波数成分変 更値49に最も近い値を、多重化後の周波数成分変更値

10

49とする。

【0041】次に、このようにして決定した周波数成分 変更値49と、輝度ブロック43の画素値を多重化部5 を得る。最後に、多重化済み輝度ブロック51と色差ブ ロック44を、輝度・色差合成部52で合成し、多重化 済みブロック32を得る。

【0042】図11は多重化部50の詳細構成を示す図 である。多重化部50は、多重化対象周波数40と、周 波数成分変更値49と輝度ブロック43の画素値を入力 とする。まず、輝度ブロック43を判定ブロック53と し、多重化可能判定部54において、判定ブロック53 の多重化対象周波数40の成分値を、周波数成分変更値

【0043】多重化可能判定部54において、判定ブロ ック53の多重化対象周波数40の成分値を、周波数成 分変更値49に変更可能と判定した場合、判定ブロック 53を変更可能輝度ブロック55として、周波数成分変 更処理部56に送り、多重化対象周波数40の成分値 を、周波数成分変更値49に変更し、多重化済み輝度ブ ロック51を得る。

【0044】多重化可能判定部54において、判定ブロ ック53の多重化対象周波数40の成分値を、周波数成 30 分変更値49に変更不可能と判定した場合、判定ブロッ ク53を輝度値変更部57に送り、輝度値を変更して変 更後輝度ブロック58を得て、これを再び判定ブロック 53として、多重化可能判定部54で再判定する。も し、再び多重化不可能と判定された場合、同様の処理を 多重化可能判定部54で多重化可能と判定されるまで繰 り返す。

【0045】周波数成分変更処理部56は、変更可能輝 度ブロック55を離散コサイン変換した後、多重化対象 周波数40の成分値を、周波数成分変更値49に変更 し、逆離散コサインを施し、多重化済み輝度ブロック5 1を得る。

【0046】ここで、図11の多重化可能性判定部54 の処理について、数式を用いて以下に詳細を示す。離散 コサイン変換成分値をSω(0≦u、v≦7)、判定ブ ロック53を [Pij] とする。また、多重化対象周波数 40の成分値をSuovaとする。

【0047】離散コサイン変換の定義式 [0048]

【数1】

$$\begin{cases} S_{uv} = \frac{1}{4} C_{(u)} C_{(v)} \sum_{i=0}^{7} \sum_{j=0}^{7} (P_{i,j} - \frac{Y}{2}) f_{(i,j,u,v)} \\ P_{i,j} = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C_{(u)} C_{(v)} S_{uv} f_{(i,j,u,v)} + \frac{Y}{2} \end{cases}$$
 (1)

ただし、 $C_{(x)} = \begin{cases} \frac{1}{\sqrt{2}} & (x=0) \\ 1 & (x\neq 0) \end{cases}$ f $(i,j,u,v) = \cos \frac{(2i+1) u\pi}{16} \cos \frac{(2j+1) v\pi}{16}$ Y = (輝度値の階調数)

さらに、 $P_{i,j}' = P_{i,j} - \frac{1}{4} C_{(u_0)} C_{(v_0)} S_{u_0} v_0 f_{(i,j,u,v)}$ とおく。

【0049】から次の連立不等式を導く、

[0050]

*
$$\begin{cases}
f(i,j,u_0,v_0) > 0 \text{ ob } & * \\
-\frac{4}{C(u_0)C(v_0)f(u,j,u_0,v_0)} P_{ij'} \leq S_{u_0v_0} \\
& \leq \frac{4}{C(u_0)C(v_0)f(i,j,u_0,v_0)} (Y - P_{ij'}) \\
f(i,j,u_0,v_0) > 0 \text{ ob } & * \\
-\frac{4}{C(u_0)C(v_0)f(u,j,u_0,v_0)} (Y - P_{ij'}) \leq S_{u_0v_0} \\
& \leq -\frac{4}{C(u_0)C(v_0)f(i,j,u_0,v_0)} P_{ij'}
\end{cases}$$
... (2)

【0051】この連立不等式(2)の解、つまり全ての **%**[0052] $i, j (0 \ge i, j \ge 7)$ についての交わりを求めて、 以下の不等式を得る。 L≤Su_nv_n≤M

... (3)

Lは Su_nv_n の取り得る値の下限値、Mは Su_nv_n の取り得る値の上限値を表す

【0053】この不等式(3)で、多重化対象周波数4 0の成分の取り得る値の範囲が分かる。すなわち、多重 化後の周波数成分変更値49が、上記不等式(3)の範 囲の中に収まっている場合は、変更可能、収まっていな い場合は、変更不可能と判定する。

ついて、以下に詳細を示す。

1) はじめて輝度値変更部57で輝度変更処理を行う 場合、多重化後の周波数成分変更値49を変更用変数に★ ★代入する。変更用変数をxで表す。

- 2) 2回目以降の場合、前回の最後の変更を行った変 更用変数を用いる。
- a)変更用変数xが不等式(3)の下限値よりも小さい
- 【0054】次に、図11の輝度値変更部57の処理に 40 判定ブロック53を[Pij]で表して、以下のように [Pij]を[Pij"]に変更する。

[0055]

【数4】

$$egin{array}{lll} 13 & & & & & \\ & i) & f & (i,j,u_0,v_0) > 0 かつ & & & & \\ & & -\frac{4}{C(u_0)\,C(v_0)\,f\,\,(i,j,u_0,v_0)} P_{ij}'> & & & & \\ & P_{ij}'' = & -\frac{1}{4}\,C(u_0)\,C(v_0)\,f\,\,(i,j,u_0,v_0) \times & & & & \\ \end{array}$$

ii)
$$f(i,j,u_0,v_0) > 0$$
かつ
$$\frac{4}{C(u_0)C(v_0)f(i,j,u_0,v_0)} (Y-P_{ij}'> \times のとき P_{ij}''=Y-\frac{1}{4}C(u_0)C(v_0)f(i,j,u_0,v_0) \times とする.$$

iii) 上記 i), ii) のどちらでもないとき $P_{i,i}'' = P_{i,i}'$ $\succeq t \delta$.

【0056】上記変更処理を全てのi, j(0≤i, j ≤7) でおこない、判定ブロック53の値を [Pij"] に変更し、変更後輝度ブロック58を得る。この変更に よっても多重化可能性判定部54で変更不可能と判定さ 20 [Pij"]を変更する。 れて、再び輝度値の変更を行う場合に備えて、変更用変 数×の値から1を減じる。

*【0057】b)変更用変数が不等式(3)の上限値よ りも大きい場合

判定ブロック53を [Pij] で表して、以下のように

[0058]

【数5】

i) f (i,j,u0,v0) >0かつ

$$\frac{4}{C_{(u_0)}C_{(v_0)}f_{(i,j,u_0,v_0)}}(Y-P_{i,j'}) < x のときP_{i,j''} = Y - \frac{1}{4}C_{(u_0)}C_{(v_0)}f_{(i,j,u_0,v_0)} \times とする.$$

ii) f (i, J, u₀, v₀) < 0 かつ
$$-\frac{4}{C(u_0)C(v_0)f(i, j, u_0, v_0)}P_{ij'} < x \text{ のとき}$$

$$P_{ij''} = -\frac{1}{4}C(u_0)C(v_0)f(i, j, u_0, v_0) \times とする.$$

iii) 上記 i), ii) のどちらでもないとき

【0059】上記変更処理を全てのi, j (0≤i, j ≤7) でおこない、判定ブロック53の値を [Pij"] よっても多重化可能性判定部54で変更不可能と判定さ れて、再び輝度値の変更を行う場合に備えて、変更用変 数xの値に1を加える。

【0060】以上のようにして、デジタル画像1に多重 化処理を施して、著作権管理番号多重化画像15を得 る。該著作権管理番号多重化画像15のヘッダ部に著作 権管理番号10を書き込み、流通用画像18とする。

【0061】次に、著作権管理センタ3にて多重化情報 の検証を行う検証処理21の具体的な処理手順を図12 に示す。

- ※【0062】まず、検証処理部21において、利用者2 0から検証を依頼された流通画像18のヘッダ部から著
- に変更し、変更後輝度ブロック58を得る。この変更に 40 作権管理番号59を読み取る。この著作権管理番号59 と同じ番号が著作権管理データベース17に存在するか を調べ、もし、同じものが無かった場合、検証失敗処理 部74において検証失敗処理を行う。

【0063】流通画像18のヘッダ部に書いてある著作 権管理番号59と同じ著作権管理番号10が、著作権管 理データベース17の中に存在する場合、該著作権管理 データベース17の中でこの著作権管理番号10と組に なっている多重化鍵11と著作権管理番号多重化強度パ ラメータ12と著作権情報16を読み出す。検証処理の ※50 流通画像18は1ブロックがを縦8画素横8画素の複数

ブロックに細分する。

【0064】次に、図13に示すように、当該著作権管 理センタ1の秘密情報4と、多重化処理を行っても不変 な画像の特性情報7を粗にして、乱数生成器23に乱数 の種として入力し、乱数列24を得て、乱数列24から 多重化済みフラグ多重化対象プロック25を決定する。 検証対象ブロック60は、全てのブロックから多重化済 みフラグ多重化対象ブロック25を除いたブロックであ る.検証は、図9に示したと同様に、左上から順にスキ ャンする方向で行う。

【0065】図14に、検証処理部21の構成例を示 す。まず、先に読み出した多重化鍵11を種として乱数 生成器23で乱数列35を生成し、これによって、あら かじめ決まっている多重化候補周波数の組27の中か ら、検証対象周波数61を検証対象ブロック60ごとに 一つ決定する。次に、検証対象ブロック60と、検証対 象周波数61と、多重化強度パラメータ12を、多重化 ピット抽出部29に送り、ピット値62を抽出し、抽出 情報バッファ63に順に蓄える。この処理を、全ての検 証対象ブロック60からビット値62を抽出するまで行 20 ii)量子化差分71が、(多重化強度パラメータ38)*

【0066】次に、抽出情報パッファ63に蓄えられた 抽出ビット列を、著作権管理番号10にハミング符号を 付加したデータ36のビット長さ毎に区切って、各ビッ ト位置毎にビット"0"とビット"1"の数を数える。 抽出ビット列を区切った最後の部分で、著作権管理番号 10にハミング符号を付加したデータ36のビット長に 満たない部分についても同様に並べて数える。各ビット 位置についてビット"0"と"1"の数について多数決 を行い、当該ビット位置のビット値を決定して検証情報 30 64を得る。

【0067】この検証情報64を著作権管理番号10に ハミング符号を付加したデータ36とみなして、ハミン グ処理を行って、著作権管理番号検証用データ65を得 る。この著作権管理番号検証用データ65と、著作権管 理データベース17から読み出した著作権管理番号10 が一致するとき、検証を依頼された流通画像18は正し く著作権管理センタ3に登録されていると判断し、著作 権管理データベース17から先に読み出した、著作権管 理番号10と組になっている著作権情報16を、依頼主 40 である利用者20に送付する。また、著作権管理番号検 証用データ65と、著作権管理データベース17から読 み出した著作権管理番号10が一致しないとき、検証失 敗処理部74において検証失敗処理を行う。

【0068】検証失敗処理部74では、検証時におい て、検証を依頼されたデジタル画像1と、著作権管理セ ンタ3の著作権管理データベース17にある著作権管理 番号10とのマッチングに、何らかの理由で失敗した場 合に、検証の依頼主である利用者20に、検証に失敗し た旨を伝える。

【0069】図14の多重化ビット抽出部29について 図15に示す。多重化ビット抽出部29は、多重化強度 パラメータ12と、検証対象ブロック60の画案値と、 検証対象周波数61を入力としている。

16

【0070】多重化ビット抽出部29では、まず、輝度 ・色差分解部42で抽出対象ブロック67を輝度・色差 分解し、輝度ブロック43と色差ブロック44を得る。 輝度ブロック43を離散コサイン変換し、8×8の周波 数成分行列26を得る.次に検証対象周波数61の周波 10 数成分値69を読み取る。次に、周波数成分値69を、 多重化強度パラメータ12で量子化して量子化値70を 得て、周波数成分値69から量子化値70を引き宜して 量子化差分71を得る。

【0071】この量子化差分71の値をもとに、抽出ビ ット決定部72で、以下の規則にしたがって、検証対象 ブロック60に多重化されている抽出ビット値62を求 める.

- i)量子化差分71が、(多重化強度パラメータ38) *0.5より小のとき、抽出ピット値62は"0"
- 0.5より以上のとき、抽出ビット値63は"1" 以上、本発明の一実施例について説明したが、著作権情 報16自体を多重化する場合は、これまでの説明中の著 作権管理番号10を著作権情報16と置き換えるだけ で、それ以外の説明はまったく同じである。また、多重 化する情報を著作権情報やその管理番号ではなく、配布 先の利用者 I Dにすることもできる。この場合利用者が 不正コピーを行った際に、不正コピー元を特定でき、不 正コピーの抑止となる。

[0072]

【発明の効果】以上説明したように、本発明によると、 デジタル画像を周波数変換し、周波数成分の値を変更す ることで、情報を多重化することにより、デジタル画像 の中に視覚的には気づかれないように著作権に関する情 報を多重化することができ、該情報から直接あるいは該 情報をキーとして利用者が手に入れたデジタル画像を2 次利用する際などに権利許諾処理等の正しい問い合わせ 先を得ることができるようになる。また、多重化済みフ ラグを追加し、デジタル画像を著作権管理センタで登録 する際に著作権に関する情報が多重化済みかどうかをチ ェックすることによって、二重登録を防止できる。さら に、多重化強度パラメータにより、情報を多重化する際 に、非可逆画像圧縮によっても、どの程度の圧縮率まで なら著作権が消えずに残るかということを任意に設定す ることが可能となり、該多重化強度パラメータを画像圧 縮で用いられる量子化係数より十分に大きくとれば、画 像圧縮によっても多重化した情報が消失することはな い。また、著作権に関する情報を繰り返し多重化し、該 情報を抽出する際に、各ピット位置に対して最尤法 (多 50 数決法)を用いて当該ビット位置の値を決定することに

17 より、一部にビット誤りがあっても情報を正しく検出で きる.

【図面の簡単な説明】

【図1】本発明の一実施例における著作権保護システム の全体的ブロック図である。

【図2】図1の著作権保護システムにおける登録処理に 関係する構成のブロック図である。

【図3】図1の著作権保護システムにおける検証処理に 関係する構成のブロック図である。

【図4】多重化済みフラグ検出部を示すブロック図であ 10 2 著作権者

【図5】離散コサイン変換による周波数成分行列と多重 化候補周波数の粗を示す図である.

【図6】多重化処理部の全体構成を示す図である。

【図7】多重化済みフラグ多重化部の構成を示す図であ

【図8】著作権管理番号多重化部の構成を示す図であ

【図9】多重化ブロックのスキャン方向を示す図であ

【図10】図8のビット多重化処理部の構成を示す図で

ある。

【図11】図10の多重化部の構成を示す図である。

18

【図12】検証処理部の処理を示す図である。

【図13】検証処理部の処理の続きを示す図である。

【図14】検証処理部の構成を示す図である。

【図15】図14の多重化ビット抽出部の構成を示す図 である。

【符号の説明】

1 デジタル画像

3 著作権管理センタ

6 多重化済みフラグ検出部

9 多重化処理部

15 著作権管理番号多重化画像

16 著作権情報

17 著作権管理データベース

18 流通用画像

19 著作物流市場

20 利用者

20 21 検出処理部

【図5】

周波數成分行列

[図1]

•

【図2】

【図3】

【図4】

【図15】

【図7】

【図8】

【図10】

【図11】

【図12】

[図13]

【図14】

