多重振り子の運動方程式と数値的解法

中山大樹

2018年12月23日

1 はじめに

n 個の振り子が直列に繋がった系について、運動方程式やハミルトニアンを導出し、n が大きいときに数値計算でいい感じに振り子を動かすことを目指す。

ハミルトニアンやラグランジュ運動方程式の導出は [1] を大いに参考にした。数値計算の具体的な手法については [2],[3] を参考にした。

2 ハミルトニアン、ラグランジアン、運動方程式の導出

2.1 n 質点 2 次元

n 個の重りが直列に連結された多重振り子がある。これらは重力と逆向きを y 軸とする xy 平面内で回転運動するものとする。重力加速度を g とする。

各重りiは質量 m_i を持つ。重り1は原点Oに固定された長さ l_1 の糸で吊るされている。その他の重り $i(i=2,3,\ldots,n)$ は重りi-1に固定された長さ l_i の糸で吊るされている。

この系のラグランジュ運動方程式を求めていく。

重り $i(i=1,2,\ldots,n)$ の y 軸に対する角度を θ_i とする。重り i の位置 (x_i,y_i) は

$$x_i = \sum_{j=1}^i l_j \sin \theta_j \tag{1}$$

$$y_i = -\sum_{j=1}^i l_j \cos \theta_j \tag{2}$$

となる。n=3のときに具体的に書き下してみると

$$\begin{split} &(x_1,y_1) = (l_1\sin\theta_1, -l_1\cos\theta_1) \\ &(x_2,y_2) = (l_1\sin\theta_1 + l_2\sin\theta_2, -l_1\cos\theta_1 - l_2\cos\theta_2) \\ &(x_3,y_3) = (l_1\sin\theta_1 + l_2\sin\theta_2 + l_3\sin\theta_3, -l_1\cos\theta_1 - l_2\cos\theta_2 - l_3\cos\theta_3) \end{split}$$

となる。

運動エネルギーを求めたいので、重りiの速度 v_i の2乗 $(=v_i^2)$ を考える。 v_i^2 は位置の各成分の時間微分

の2乗の和なので

$$v_{i}^{2} = \dot{x}_{i}^{2} + \dot{y}_{i}^{2}$$

$$= \left(\sum_{j=1}^{i} l_{j} \dot{\theta}_{j} \cos \theta_{j}\right)^{2} + \left(\sum_{j=1}^{i} l_{j} \dot{\theta}_{j} \sin \theta_{j}\right)^{2}$$

$$= \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} \left(\cos^{2} \theta_{j} + \sin^{2} \theta_{j}\right) + 2 \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \left(\cos \theta_{j} \cos \theta_{k} + \sin \theta_{j} \sin \theta_{k}\right)$$

$$= \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} + 2 \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \cos (\theta_{j} - \theta_{k})$$
(3)

となる。n=3 のときに具体的に書き下してみると

$$\begin{split} v_1^2 &= l_1^2 \dot{\theta}_1^2 \\ v_2^2 &= l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + 2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos{(\theta_1 - \theta_2)} \\ v_3^2 &= l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + l_3^2 \dot{\theta}_3^2 \\ &+ 2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos{(\theta_1 - \theta_2)} + 2 l_2 l_3 \dot{\theta}_2 \dot{\theta}_3 \cos{(\theta_2 - \theta_3)} + 2 l_3 l_1 \dot{\theta}_3 \dot{\theta}_1 \cos{(\theta_3 - \theta_1)} \end{split}$$

となる。

ここで、重り $i(i=1,2,\ldots,n)$ の運動エネルギー T_i および位置エネルギー U_i は

$$T_{i} = \frac{1}{2} m_{i} v_{i}^{2}$$

$$= \frac{1}{2} m_{i} \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} + m_{i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \cos (\theta_{j} - \theta_{k})$$
(4)

 $U_i = m_i g y_i$

$$= -m_i g \sum_{i=1}^i l_j \cos \theta_j \tag{5}$$

となる。全運動エネルギーTおよび全位置エネルギーUは

$$T = \sum_{i=1}^{n} T_{i}$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2} m_{i} \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} + m_{i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \cos (\theta_{j} - \theta_{k}) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} m_{i} \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} + \sum_{i=1}^{n} m_{i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \cos (\theta_{j} - \theta_{k})$$

$$U = \sum_{i=1}^{n} U_{i}$$

$$= \sum_{i=1}^{n} \left(-m_{i} g \sum_{j=1}^{i} l_{j} \cos \theta_{j} \right)$$

$$= -\sum_{i=1}^{n} m_{i} g \sum_{j=1}^{i} l_{j} \cos \theta_{j}$$

$$(6)$$

となる。n=3のときに具体的に書き下してみると

$$\begin{split} T &= \frac{1}{2} \left((m_1 + m_2 + m_3) l_1^2 \dot{\theta}_1^2 + (m_2 + m_3) l_2^2 \dot{\theta}_2^2 + m_3 l_3^2 \dot{\theta}_3^2 \right) \\ &+ m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) \\ &+ m_3 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) + m_3 l_2 l_3 \dot{\theta}_2 \dot{\theta}_3 \cos \left(\theta_2 - \theta_3 \right) + m_3 l_3 l_1 \dot{\theta}_3 \dot{\theta}_1 \cos \left(\theta_3 - \theta_1 \right) \\ &= \frac{1}{2} \left((m_1 + m_2 + m_3) l_1^2 \dot{\theta}_1^2 + (m_2 + m_3) l_2^2 \dot{\theta}_2^2 + m_3 l_3^2 \dot{\theta}_3^2 \right) \\ &+ (m_2 + m_3) l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) + m_3 l_1 l_3 \dot{\theta}_1 \dot{\theta}_3 \cos \left(\theta_1 - \theta_3 \right) \\ &+ m_3 l_2 l_3 \dot{\theta}_2 \dot{\theta}_3 \cos \left(\theta_2 - \theta_3 \right) \\ U &= -(m_1 + m_2 + m_3) g l_1 \cos \theta_1 - (m_2 + m_3) g l_2 \cos \theta_2 - m_3 g l_3 \cos \theta_3 \end{split}$$

となる。これを見ると後のことを考えてT,Uを変形しておいた方が良さそうに見える。新たに

$$M_d = \sum_{i=d}^n m_i \tag{7}$$

とおいて T,U を整理すると

$$T = \frac{1}{2} \sum_{i=1}^{n} m_{i} \sum_{j=1}^{i} l_{j}^{2} \dot{\theta}_{j}^{2} + \sum_{i=1}^{n} m_{i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i} l_{j} l_{k} \dot{\theta}_{j} \dot{\theta}_{k} \cos(\theta_{j} - \theta_{k})$$

$$= \frac{1}{2} \sum_{i=1}^{n} \left(M_{i} l_{i}^{2} \dot{\theta}_{i}^{2} + \sum_{j=1}^{i-1} M_{i} l_{i} l_{j} \dot{\theta}_{i} \dot{\theta}_{j} \cos(\theta_{i} - \theta_{j}) + \sum_{j=i+1}^{n} M_{j} l_{i} l_{j} \dot{\theta}_{i} \dot{\theta}_{j} \cos(\theta_{i} - \theta_{j}) \right)$$

$$U = -\sum_{i=1}^{n} M_{i} g l_{i} \cos \theta_{i}$$
(8)

となる。ハミルトニアン H は H=T+U で求まる。ここではハミルトニアンについてこれ以上書き下さない。

一般にラグランジュ関数 L は L=T-U であり、 $\theta_d(d=1,2,\ldots,n)$ に関するラグランジュ運動方程式は以下の関係式から求めることができる。

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}_d} - \frac{\partial L}{\partial \theta_d} = 0 \tag{10}$$

今回の多重振り子について具体的に求めると

$$\frac{\partial L}{\partial \dot{\theta}_{d}} = M_{d} l_{d}^{2} \dot{\theta}_{d} + \left(\frac{1}{2} \sum_{i=1}^{d-1} M_{d} l_{d} l_{i} \dot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right) + \frac{1}{2} \sum_{i=d+1}^{n} M_{i} l_{d} l_{i} \dot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right)\right) \times 2$$

$$= M_{d} l_{d}^{2} \dot{\theta}_{d} + \sum_{i=1}^{d-1} M_{d} l_{d} l_{i} \dot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right) + \sum_{i=d+1}^{n} M_{i} l_{d} l_{i} \dot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right)$$

$$\Rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_{d}} = M_{d} l_{d}^{2} \ddot{\theta}_{d}$$

$$+ \sum_{i=1}^{d-1} M_{d} l_{d} l_{i} \ddot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right) - \sum_{i=1}^{d-1} M_{d} l_{d} l_{i} \dot{\theta}_{i} \left(\dot{\theta}_{d} - \dot{\theta}_{i}\right) \sin\left(\theta_{d} - \theta_{i}\right)$$

$$+ \sum_{i=d+1}^{n} M_{i} l_{d} l_{i} \ddot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right) - \sum_{i=d+1}^{n} M_{i} l_{d} l_{i} \dot{\theta}_{i} \left(\dot{\theta}_{d} - \dot{\theta}_{i}\right) \sin\left(\theta_{d} - \theta_{i}\right)$$

$$- \frac{\partial L}{\partial \theta_{d}} = \sum_{i=1}^{d-1} M_{d} l_{d} l_{i} \dot{\theta}_{d} \dot{\theta}_{i} \sin\left(\theta_{d} - \theta_{i}\right) + \sum_{i=d+1}^{n} M_{i} l_{d} l_{i} \dot{\theta}_{i} \cos\left(\theta_{d} - \theta_{i}\right)$$

$$+ M_{d} g l_{d} \sin\theta_{d}$$
(12)

となる。ゆえに、 $\theta_d(d=1,2,\ldots,n)$ に関するラグランジュ運動方程式は

$$0 = M_{d}l_{d}^{2}\ddot{\theta}_{d}$$

$$+ \sum_{i=1}^{d-1} M_{d}l_{d}l_{i}\ddot{\theta}_{i}\cos(\theta_{d} - \theta_{i}) + \sum_{i=1}^{d-1} M_{d}l_{d}l_{i}\dot{\theta}_{i}^{2}\sin(\theta_{d} - \theta_{i})$$

$$+ \sum_{i=d+1}^{n} M_{i}l_{d}l_{i}\ddot{\theta}_{i}\cos(\theta_{d} - \theta_{i}) + \sum_{i=d+1}^{n} M_{i}l_{d}l_{i}\dot{\theta}_{i}^{2}\sin(\theta_{d} - \theta_{i})$$

$$+ M_{d}gl_{d}\sin\theta_{d}$$
(13)

となる。

n=3 について具体的に書き下すと

$$\begin{cases}
0 &= M_1 l_1^2 \ddot{\theta}_1 + M_1 g l_1 \sin \theta_1 \\
+ M_2 l_1 l_2 \ddot{\theta}_2 \cos (\theta_1 - \theta_2) + M_3 l_1 l_3 \ddot{\theta}_3 \cos (\theta_1 - \theta_3) \\
+ M_2 l_1 l_2 \dot{\theta}_2^2 \sin (\theta_1 - \theta_2) + M_3 l_1 l_3 \dot{\theta}_3^2 \sin (\theta_1 - \theta_3) \\
0 &= M_2 l_2^2 \ddot{\theta}_2 + M_2 g l_2 \sin \theta_2 \\
+ M_2 l_2 l_1 \ddot{\theta}_1 \cos (\theta_2 - \theta_1) + M_2 l_2 l_1 \dot{\theta}_1^2 \sin (\theta_2 - \theta_1) \\
+ M_3 l_2 l_3 \ddot{\theta}_3 \cos (\theta_2 - \theta_3) + M_3 l_2 l_3 \dot{\theta}_3^2 \sin (\theta_2 - \theta_3) \\
0 &= M_3 l_3^2 \ddot{\theta}_3 + M_3 g l_3 \sin \theta_3 \\
+ M_3 l_3 l_1 \ddot{\theta}_1 \cos (\theta_3 - \theta_1) + M_3 l_3 l_2 \ddot{\theta}_2 \cos (\theta_3 - \theta_2) \\
+ M_3 l_3 l_1 \dot{\theta}_1^2 \sin (\theta_3 - \theta_1) + M_3 l_3 l_2 \dot{\theta}_2^2 \sin (\theta_3 - \theta_2)
\end{cases}$$

となる。

数値計算がしやすいように上記のラグランジュ運動方程式を $\ddot{\theta},\dot{\theta}^2,h\in\mathbb{R}^n,C,S\in\mathbb{R}^{n\times n}$ を使って書き直すと

$$C\ddot{\boldsymbol{\theta}} = S\dot{\boldsymbol{\theta}}^2 - \boldsymbol{h} \tag{15}$$

となる。ただし

$$\ddot{\boldsymbol{\theta}} = {}^{t}(\ddot{\theta}_{1}, \ddot{\theta}_{2}, \dots, \ddot{\theta}_{n}) \tag{16}$$

$$\dot{\theta}^2 = {}^t(\dot{\theta}_1^2, \dot{\theta}_2^2, \dots, \dot{\theta}_n^2) \tag{17}$$

$$\boldsymbol{h} = {}^{t}(M_{1}gl_{1}\sin\theta_{1}, M_{2}gl_{2}\sin\theta_{2}, \dots, M_{n}gl_{n}\sin\theta_{n})$$
(18)

$$C_{i,j} = M_{\max(i,j)} l_i l_j \cos(\theta_i - \theta_j) \tag{19}$$

$$S_{i,j} = \begin{cases} M_i l_i l_j \sin(\theta_i - \theta_j) & i \ge j \\ M_j l_j l_i \sin(\theta_j - \theta_i) & i < j \end{cases}$$
(20)

である。ただし $\cos(\theta_d-\theta_d)=1$, $\sin(\theta_d-\theta_d)=0$ に注意。また $R_{i,j}$ において $j\to j+1$ とすると行列 R の要素を 1 つ右に進むことに対応する(これいつまで経っても覚えられない)。

n=3 のときに(対称性を意識しつつ)具体的に書き下して見ると

$$\begin{bmatrix} M_{1}l_{1}^{2} & M_{2}l_{1}l_{2}\cos(\theta_{2}-\theta_{1}) & M_{3}l_{1}l_{3}\cos(\theta_{3}-\theta_{1}) \\ M_{2}l_{2}l_{1}\cos(\theta_{1}-\theta_{2}) & M_{2}l_{2}^{2} & M_{3}l_{2}l_{3}\cos(\theta_{3}-\theta_{2}) \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \\ M_{3}l_{3}l_{1}\cos(\theta_{1}-\theta_{3}) & M_{3}l_{3}l_{2}\cos(\theta_{2}-\theta_{3}) & M_{3}l_{3}^{2} \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \\ \ddot{\theta}_{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & M_{2}l_{1}l_{2}\sin(\theta_{2}-\theta_{1}) & M_{3}l_{1}l_{3}\sin(\theta_{3}-\theta_{1}) \\ M_{2}l_{2}l_{1}\cos(\theta_{1}-\theta_{2}) & 0 & M_{3}l_{2}l_{3}\cos(\theta_{3}-\theta_{2}) \\ M_{3}l_{3}l_{1}\cos(\theta_{1}-\theta_{3}) & M_{3}l_{3}l_{2}\cos(\theta_{2}-\theta_{3}) & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1}^{2} \\ \dot{\theta}_{2}^{2} \\ \dot{\theta}_{3}^{2} \end{bmatrix} - \begin{bmatrix} M_{1}gl_{1}\sin\theta_{1} \\ M_{2}gl_{2}\sin\theta_{2} \\ M_{3}gl_{3}\sin\theta_{3} \end{bmatrix}$$
(21)

となる。

また、各角速度に比例する抵抗などの減衰や強制振動のような外力がある場合は、式(13)より

$$M_{d}l_{d}^{2}\ddot{\theta}_{d}$$

$$+\sum_{i=1}^{d-1}M_{d}l_{d}l_{i}\ddot{\theta}_{i}\cos\left(\theta_{d}-\theta_{i}\right)+\sum_{i=1}^{d-1}M_{d}l_{d}l_{i}\dot{\theta}_{i}^{2}\sin\left(\theta_{d}-\theta_{i}\right)$$

$$+\sum_{i=d+1}^{n}M_{i}l_{d}l_{i}\ddot{\theta}_{i}\cos\left(\theta_{d}-\theta_{i}\right)+\sum_{i=d+1}^{n}M_{i}l_{d}l_{i}\dot{\theta}_{i}^{2}\sin\left(\theta_{d}-\theta_{i}\right)$$

$$+M_{d}gl_{d}\sin\theta_{d}$$

$$=f_{d}$$
(22)

となる。 f_d の具体形は特に決まってはいないが、典型的にありがちな力として、角速度に比例する抵抗 $\lambda_d\dot{ heta}_d$ と外力 σ_d がある場合は

$$f_d = \sigma_d - \lambda_d \dot{\theta}_d \tag{23}$$

となる。

2.2 n 質点 3 次元

n 個の重りが直列に連結された多重振り子がある。これらは重力と逆向きを z 軸、とする xyz 空間内で回転運動するものとする。系は右手系にとる。重力加速度を g とする。

各重りiは質量 m_i を持つ。重り1は原点Oに固定された長さ l_1 の糸で吊るされている。その他の重り $i(i=2,3,\ldots,n)$ は重りi-1に固定された長さ l_i の糸で吊るされている。

この系のラグランジュ運動方程式を求めていく。

重り $i(i=1,2,\ldots,n)$ の z 軸に対する角度を θ_i 、x 軸に対する角度を ϕ_i とする。重り i の位置 (x_i,y_i,z_i) は

$$x_i = \sum_{j=1}^{i} l_j \sin \theta_j \cos \phi_j \tag{24}$$

$$y_i = \sum_{j=1}^{i} l_j \sin \theta_j \sin \phi_j \tag{25}$$

$$z_i = -\sum_{j=1}^i l_j \cos \theta_j \tag{26}$$

となる。重りiの速度 v_i の2乗 $(=v_i^2)$ は

$$\begin{aligned} v_i^2 &= \dot{x_i}^2 + \dot{y_i}^2 + \dot{z_i}^2 \\ &= \left(\sum_{j=1}^i \left(l_j \dot{\theta}_j \cos \theta_j \cos \phi_j - l_j \dot{\phi}_j \sin \theta_j \sin \phi_j \right) \right)^2 \\ &+ \left(\sum_{j=1}^i \left(l_j \dot{\theta}_j \cos \theta_j \sin \phi_j + l_j \dot{\phi}_j \sin \theta_j \cos \phi_j \right) \right)^2 \\ &+ \left(\sum_{j=1}^i l_j \dot{\theta}_j \sin \theta_j \right)^2 \end{aligned}$$

となるが、この先を人力で計算するのは無謀なのでプログラムで計算する。Python の記号計算ライブラリとして有名な sympy を用いて計算した。

運動方程式は以下の形になる。

$$\begin{bmatrix} A11 & A12 \\ A21 & A22 \end{bmatrix} \begin{bmatrix} \ddot{\boldsymbol{\theta}} \\ \ddot{\boldsymbol{\phi}} \end{bmatrix} = \begin{bmatrix} B11 & B12 \\ B21 & B22 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\theta}}^2 \\ \dot{\boldsymbol{\phi}}^2 \end{bmatrix} - \begin{bmatrix} C1 \\ C2 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\theta}}\dot{\boldsymbol{\phi}} \end{bmatrix} - \begin{bmatrix} \boldsymbol{g} \\ \boldsymbol{0} \end{bmatrix}$$
(27)

各成分は以下のようになる。

$$A11_{ij} = l_i l_j M_{\max(i,j)} \left(\cos \left(\phi_i - \phi_j \right) \cos \theta_i \cos \theta_j + \sin \theta_i \sin \theta_j \right) \tag{28}$$

$$A12_{ij} = l_i l_j M_{\max(i,j)} \sin(\phi_i - \phi_j) \cos\theta_i \sin\theta_j$$
(29)

$$A21_{ij} = -l_i l_j M_{\max(i,j)} \sin(\phi_i - \phi_j) \sin\theta_i \cos\theta_j \tag{30}$$

$$A22_{ij} = l_i l_j M_{\max(i,j)} \cos(\phi_i - \phi_j) \sin \theta_i \sin \theta_j \tag{31}$$

$$B11_{ij} = l_i l_j M_{\max(i,j)} \left(\cos \left(\phi_i - \phi_j \right) \cos \theta_i \sin \theta_j - \sin \theta_i \cos \theta_j \right) \tag{32}$$

$$B12_{ij} = l_i l_j M_{\max(i,j)} \cos(\phi_i - \phi_j) \cos\theta_i \sin\theta_j$$
(33)

$$B21_{ij} = B22_{ij} = -l_i l_j M_{\max(i,j)} \sin(\phi_i - \phi_j) \sin\theta_i \sin\theta_j$$
(34)

$$C1_{ij} = l_i l_j M_{\max(i,j)} \sin(\phi_i - \phi_j) \cos\theta_i \cos\theta_j \tag{35}$$

$$C2_{ij} = l_i l_j M_{\max(i,j)} \cos(\phi_i - \phi_j) \sin \theta_i \cos \theta_j$$
(36)

$$\mathbf{g}_i = l_i g M_i \sin \theta_i \tag{37}$$

ただし

$$\dot{\boldsymbol{\theta}}\dot{\boldsymbol{\phi}} = \begin{bmatrix} \dot{\theta}_1 \dot{\phi}_1 \\ \dot{\theta}_2 \dot{\phi}_2 \\ \vdots \\ \dot{\theta}_N \dot{\phi}_N \end{bmatrix}$$
(38)

には注意。

N=1 の場合に具体的に書き下してみると

$$\begin{bmatrix} l_1^2 M_1 & 0 \\ 0 & l_1^2 M_1 \sin^2 \theta_1 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\phi}_2 \end{bmatrix} = \begin{bmatrix} 0 & l_1^2 M_1 \cos \theta_1 \sin \theta_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1^2 \\ \dot{\phi}_1^2 \end{bmatrix} - \begin{bmatrix} 0 \\ l_1^2 M_1 \dot{\theta}_1 \dot{\phi}_1 \sin \theta_1 \cos \theta_1 \end{bmatrix} - \begin{bmatrix} l_1 g M_1 \sin \theta_1 \\ 0 \end{bmatrix}$$
(39)

$$\Rightarrow \begin{cases} \ddot{\theta}_1 = \dot{\phi_1}^2 \cos \theta_1 \sin \theta_1 - \frac{g}{l_1} \sin \theta_1 \\ \ddot{\phi}_1 = \dot{\theta_1} \dot{\phi_1} \cot \theta_1 \end{cases}$$
(40)

となる。ただし $\cot x=1/\tan x$ 。 $\dot{\phi_1}=0$ では普通に 2 次元系の振り子になり、 $\theta_1=0$ だと ϕ_1 は不定になる様子も表されている。

運動エネルギーも重要なので求めたいが、sympy で一般項を求めるのは大変なので v_i^2 の最初の 3 項を書き下し、ここから一般の表現を類推する。i=1,2,3 の場合の v_i^2 は

$$v_{1}^{2} = l_{0}^{2} \left(\dot{\phi}_{0}^{2} \sin^{2}\theta_{0} + \dot{\theta}_{0}^{2} \right)$$

$$v_{2}^{2} = l_{0}^{2} \left(\dot{\phi}_{0}^{2} \sin^{2}\theta_{0} + \dot{\theta}_{0}^{2} \right) + l_{1}^{2} \left(\dot{\phi}_{1}^{2} \sin^{2}\theta_{1} + \dot{\theta}_{1}^{2} \right)$$

$$+ 2l_{0}l_{1}\dot{\theta}_{0}\dot{\theta}_{1} \left(\cos\left(\phi_{0} - \phi_{1}\right) \cos\theta_{0} \cos\theta_{1} + \sin\theta_{0} \sin\theta_{1} \right)$$

$$+ 2l_{0}l_{1}\dot{\phi}_{0}\dot{\phi}_{1} \cos\left(\phi_{0} - \phi_{1}\right) \sin\theta_{0} \sin\theta_{1}$$

$$- 2l_{0}l_{1}\dot{\phi}_{0}\dot{\theta}_{1} \sin\left(\phi_{0} - \phi_{1}\right) \sin\theta_{0} \cos\theta_{1}$$

$$+ 2l_{0}l_{1}\dot{\theta}_{0}\dot{\phi}_{1} \sin\left(\phi_{0} - \phi_{1}\right) \cos\theta_{0} \sin\theta_{1}$$

$$(42)$$

$$v_{3}^{2} = l_{0}^{2} \left(\dot{\phi}_{0}^{2} \sin^{2}\theta_{0} + \dot{\theta}_{0}^{2} \right) + l_{1}^{2} \left(\dot{\phi}_{1}^{2} \sin^{2}\theta_{1} + \dot{\theta}_{1}^{2} \right) + l_{2}^{2} \left(\dot{\phi}_{2}^{2} \sin^{2}\theta_{2} + \dot{\theta}_{2}^{2} \right)$$

$$+ 2l_{0}l_{1}\dot{\theta}_{0}\dot{\theta}_{1} \left(\cos\left(\phi_{0} - \phi_{1}\right) \cos\theta_{0} \cos\theta_{1} + \sin\theta_{0} \sin\theta_{1} \right)$$

$$+ 2l_{0}l_{2}\dot{\theta}_{0}\dot{\theta}_{2} \left(\cos\left(\phi_{0} - \phi_{2}\right) \cos\theta_{0} \cos\theta_{2} + \sin\theta_{0} \sin\theta_{2} \right)$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\theta}_{2} \left(\cos\left(\phi_{0} - \phi_{2}\right) \cos\theta_{1} \cos\theta_{2} + \sin\theta_{1} \sin\theta_{2} \right)$$

$$+ 2l_{0}l_{1}\dot{\phi}_{0}\dot{\phi}_{1} \cos\left(\phi_{0} - \phi_{1}\right) \sin\theta_{0} \sin\theta_{1}$$

$$+ 2l_{0}l_{2}\dot{\phi}_{0}\dot{\phi}_{2} \cos\left(\phi_{0} - \phi_{2}\right) \sin\theta_{0} \sin\theta_{2}$$

$$+ 2l_{1}l_{2}\dot{\phi}_{1}\dot{\phi}_{2} \cos\left(\phi_{0} - \phi_{2}\right) \sin\theta_{0} \sin\theta_{2}$$

$$+ 2l_{0}l_{1}\dot{\phi}_{0}\dot{\theta}_{1} \sin\left(\phi_{0} - \phi_{1}\right) \sin\theta_{0} \cos\theta_{1}$$

$$+ 2l_{0}l_{1}\dot{\phi}_{0}\dot{\theta}_{1} \sin\left(\phi_{0} - \phi_{1}\right) \sin\theta_{0} \cos\theta_{1}$$

$$+ 2l_{0}l_{2}\dot{\phi}_{0}\dot{\phi}_{2} \sin\left(\phi_{0} - \phi_{2}\right) \sin\theta_{0} \cos\theta_{2}$$

$$+ 2l_{0}l_{2}\dot{\phi}_{0}\dot{\phi}_{2} \sin\left(\phi_{0} - \phi_{2}\right) \sin\theta_{0} \cos\theta_{2}$$

$$+ 2l_{0}l_{2}\dot{\phi}_{0}\dot{\phi}_{2} \sin\left(\phi_{0} - \phi_{2}\right) \sin\theta_{2} \cos\theta_{0}$$

$$- 2l_{1}l_{2}\dot{\phi}_{1}\dot{\theta}_{2} \sin\left(\phi_{0} - \phi_{2}\right) \sin\theta_{1} \cos\theta_{2}$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{1} \cos\theta_{2}$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{1} \cos\theta_{2}$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{2} \cos\theta_{0}$$

$$- 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{2} \cos\theta_{1}$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{2} \cos\theta_{1}$$

$$+ 2l_{1}l_{2}\dot{\theta}_{1}\dot{\phi}_{2} \sin\left(\phi_{1} - \phi_{2}\right) \sin\theta_{2} \cos\theta_{1}$$

となる。ここから v_i^2 を類推すると

$$v_i^2 = \sum_{j=1}^i l_j^2 \left(\dot{\phi_j}^2 \sin^2 \theta_j + \dot{\theta_j}^2 \right)$$

$$+ \sum_{j=1}^i \sum_{\substack{k=1\\k\neq j}}^i l_j l_k \dot{\theta_j} \dot{\theta_k} \left(\cos \left(\phi_j - \phi_k \right) \cos \theta_j \cos \theta_k + \sin \theta_j \sin \theta_k \right)$$

$$+ \sum_{j=1}^i \sum_{\substack{k=1\\k\neq j}}^i l_j l_k \dot{\phi_j} \dot{\phi_k} \cos \left(\phi_j - \phi_k \right) \sin \theta_j \sin \theta_k$$

$$+ 2 \sum_{j=1}^i \sum_{\substack{k=1\\k\neq j}}^i l_j l_k \dot{\theta_j} \dot{\phi_k} \sin \left(\phi_j - \phi_k \right) \cos \theta_j \sin \theta_k$$

$$(44)$$

3 数値計算

3.1 無次元化

基本的にはgに押し付ける。

3.2 陽解法

やる

3.3 **陰解法**

3.3.1 質点 2 重振り子

 $l=l_2/l_1$ 、 $m=m_2/(m_1+m_2)$ 、 $g\to g/l_1/(m_1+m_2)$ として無次元化する。 $(g[s^{-2}]$ の無次元化が不十分だが、時間の次元は適当に取ってくればいいだろう)

$$\begin{bmatrix} 1 & ml\cos\left(\theta_{2} - \theta_{1}\right) \\ ml\cos\left(\theta_{1} - \theta_{2}\right) & ml^{2} \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \end{bmatrix} = \begin{bmatrix} 0 & ml\sin\left(\theta_{2} - \theta_{1}\right) \\ ml\sin\left(\theta_{1} - \theta_{2}\right) & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1}^{2} \\ \dot{\theta}_{2}^{2} \end{bmatrix} - \begin{bmatrix} g\sin\theta_{1} \\ mgl\sin\theta_{2} \end{bmatrix}$$
$$= \begin{bmatrix} ml\dot{\theta}_{2}^{2}\sin\left(\theta_{2} - \theta_{1}\right) - g\sin\theta_{1} \\ ml\dot{\theta}_{1}^{2}\sin\left(\theta_{1} - \theta_{2}\right) - mgl\sin\theta_{2} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} = \frac{1}{ml^2 - m^2l^2\cos^2\left(\theta_2 - \theta_1\right)} \begin{bmatrix} ml^2 & -ml\cos\left(\theta_2 - \theta_1\right) \\ -ml\cos\left(\theta_1 - \theta_2\right) & 1 \end{bmatrix} \begin{bmatrix} ml\dot{\theta}_2^2\sin\left(\theta_2 - \theta_1\right) - g\sin\theta_1 \\ ml\dot{\theta}_1^2\sin\left(\theta_1 - \theta_2\right) - mgl\sin\theta_2 \end{bmatrix} \tag{45}$$

$$\Rightarrow \begin{cases} \ddot{\theta}_{1} &= \frac{ml\dot{\theta}_{2}^{2}\sin(\theta_{2}-\theta_{1})-g\sin\theta_{1}-m\cos(\theta_{2}-\theta_{1})\left(\dot{\theta}_{1}^{2}\sin(\theta_{1}-\theta_{2})-g\sin\theta_{2}\right)}{1-m\cos^{2}(\theta_{2}-\theta_{1})}\\ \ddot{\theta}_{2} &= \frac{\dot{\theta}_{1}^{2}\sin(\theta_{1}-\theta_{2})-g\sin\theta_{1}-\cos(\theta_{1}-\theta_{2})\left(ml\dot{\theta}_{2}^{2}\sin(\theta_{2}-\theta_{1})-g\sin\theta_{1}\right)}{l-ml\cos^{2}(\theta_{2}-\theta_{1})} \end{cases}$$
(46)

これを $ec{x}={}^t\left(heta_1, heta_2,\dot{ heta}_1,\dot{ heta}_2
ight)$ に対する微分方程式

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = f(\vec{x})\tag{47}$$

$$f(\vec{x}) = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \ddot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \frac{ml\dot{\theta}_2^2 \sin(\theta_2 - \theta_1) - g\sin\theta_1 - m\cos(\theta_2 - \theta_1) \left(\dot{\theta}_1^2 \sin(\theta_1 - \theta_2) - g\sin\theta_2\right)}{1 - m\cos^2(\theta_2 - \theta_1)} \\ \frac{\dot{\theta}_1^2 \sin(\theta_1 - \theta_2) - g\sin\theta_1 - \cos(\theta_1 - \theta_2) \left(ml\dot{\theta}_2^2 \sin(\theta_2 - \theta_1) - g\sin\theta_1\right)}{l - ml\cos^2(\theta_2 - \theta_1)} \end{bmatrix}$$
(48)

と解釈する。これに対して Gauss-Legendre 求積法に基づく Runge-Kutta 法を適用して数値解を求める。 時間を t から t+h まで進める。 2 段 4 次の場合は

$$\vec{k}_1 = f(\vec{x}(t) + ha_{11}\vec{k}_1 + ha_{12}\vec{k}_2)$$
(49)

$$\vec{k}_2 = f(\vec{x}(t) + ha_{21}\vec{k}_1 + ha_{22}\vec{k}_2)$$
(50)

$$\vec{x}(t+h) = \vec{x}(t) + h\frac{\vec{k}_1 + \vec{k}_2}{2} \tag{51}$$

$$a_{11} = 1/4 (52)$$

$$a_{12} = 1/4 - \sqrt{3}/6 \tag{53}$$

$$a_{21} = 1/4 + \sqrt{3}/6 \tag{54}$$

$$a_{22} = 1/4 \tag{55}$$

を用いる。 k_1, k_2 はニュートン法で求める。

参考文献

- [1] 山田泰司. カオス人形のしくみ. https://www.aihara.co.jp/~taiji/pendula-equations/present. html, 1996.
- [2] 牧野淳一郎. システム数理 IV. http://jun.artcompsci.org/kougi/system_suuri4_1999/all/all. html, 1998.
- [3] シキノ. 陰的 RUNGE-KUTTA 法. http://slpr.sakura.ne.jp/qp/implicit-runge-kutta/, 2018.