Junming DUAN (段俊明)

HUMBOLDT RESEARCH FELLOW

Room 03.017, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

■ +49 931 31-82837 | ■ junming.duan@uni-wuerzburg.de | ★ junmingduan.github.io | ● 0000-0002-3532-9995

Academic Positions ___

October 2023 – September 2025 Humboldt Research Fellow

Institut für Mathematik, Universität Würzburg, Germany

Host Professor: Prof. Dr. Christian Klingenberg

September 2021 – September 2023 Postdoctoral Researcher

MCSS, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Mentor: Prof. Jan S. Hesthaven

Education _

September 2016 - July 2021 Ph.D. in Computational Mathematics

Peking University, China

Entropy stable numerical methods for special relativistic (magneto)hydrodynamics

Advisor: Prof. Huazhong Tang

September 2012 - July 2016 B.Sc. in Information and Computing Science

Peking University, China

Research Interests

- Numerical methods for hyperbolic conservation laws
- Computational fluid dynamics
- High-order accurate numerical methods
- Structure-preserving methods
- Moving mesh methods
- Active flux methods
- Model order reduction
- Reduced-order modeling
- Machine-learning-enhanced data-driven methods

Research Publications _

PREPRINTS

- 21. **Junming Duan**, Wasilij Barsukow, and Christian Klingenberg, An asymptotic-preserving active flux scheme for the hyperbolic heat equation in the diffusive scaling, *in preparation*.
- Junming Duan, Praveen Chandrashekar, and Christian Klingenberg, Active flux for ideal magnetohydrodynamics: A positivity-preserving scheme with the Godunov-Powell source term, submitted, 2025. arXiv:2506.04857.
- 19. Jie Wang, Yao Zhou, **Junming Duan**, Zhiwei Ma, and Wei Zhang, Adaptive moving mesh CLT code for stellarator MHD simulations, submitted to *Computer Physics Communications*, 2024.
- 18. **Junming Duan**, Bartul Kovacic, and Jan S. Hesthaven, Multi-GPU accelerated high-order schemes for hyperbolic conservation laws on adaptive moving meshes, *in preparation*.

JOURNAL ARTICLES

- 17. **Junming Duan***, Wasilij Barsukow, and Christian Klingenberg, Active flux methods for hyperbolic conservation laws flux vector splitting and bound-preservation, *SIAM Journal on Scientific Computing*, 47(2): A811-A837, 2025. *arXiv:2411.00065*.
- Zhihao Zhang, Huazhong Tang, and Junming Duan*, High-order accurate well-balanced energy stable finite
 difference schemes for multi-layer shallow water equations on fixed and adaptive moving meshes, Journal
 of Computational Physics, 517: 113301, 2024. arXiv:2311.08124.

- 15. Junming Duan, Qian Wang, and Jan S. Hesthaven, Machine-learning-enhanced aerodynamic forces prediction based on sparse pressure sensor inputs, *AIAA Journal*, 62(7): 2601-2621, 2024. arXiv:2305.09199.
- 14. Junming Duan* and Jan S. Hesthaven, Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems, Journal of Computational Physics, 497: 112621, 2024. arXiv:2303.02986.
- 13. Jie Wang, Junming Duan, Zhiwei Ma, and Wei Zhang, An adaptive moving mesh finite difference scheme for tokamak magneto-hydrodynamic simulations, Computer Physics Communications, 294: 108951, 2024.
- 12. Zhihao Zhang, **Junming Duan***, and Huazhong Tang, High-order accurate well-balanced energy stable adaptive moving mesh finite difference schemes for the shallow water equations with non-flat bottom topography, Journal of Computational Physics, 492: 112451, 2023. arXiv:2303.06924.
- 11. Shangting Li, Junming Duan, and Huazhong Tang, High-order accurate entropy stable adaptive moving mesh finite difference schemes for (multi-component) compressible Euler equations with the stiffened equation of state, Computer Methods in Applied Mechanics and Engineering, 399: 115311, 2022. arXiv:2202.07989.
- 10. Junming Duan and Huazhong Tang, High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto) hydrodynamics, Journal of Computational Physics, 456: 111038, 2022. arXiv:2107.12027.
- 9. Junming Duan and Huazhong Tang, An analytical solution of the isentropic vortex problem in the special relativistic magnetohydrodynamics, Journal of Computational Physics, 456: 110903, 2022. arXiv:2107.01966.
- 8. Junming Duan and Huazhong Tang, High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics, Journal of Computational Physics, 431: 110136, 2021. arXiv:2003.10081.
- 7. Junming Duan and Huazhong Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, Journal of Computational Physics, 426: 109949, 2021. arXiv:2007.12884.
- 6. Junming Duan and Huazhong Tang, High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics, Journal of Computational Physics, 421: 109731, 2020. arXiv:1911.03825.
- 5. Junming Duan and Huazhong Tang, High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics, Advances in Applied Mathematics and Mechanics, 12(1): 1-29, 2020. arXiv:1905.06092.
- 4. Junming Duan and Huazhong Tang, An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation, *Journal of Computational Mathematics*, 38(1): 58-83, 2020. arXiv:1901.10228.
- 3. Dan Ling, Junming Duan, and Huazhong Tang, Physical-constraints-preserving Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamics, Journal of Computational Physics, 396: 507-543, 2019. arXiv:1901.10625.
- 2. **Junming Duan** and Huazhong Tang, A second-order accurate scheme for a kinetic equation of two-dimensional Vicsek swarming model, Natural Science Journal Xiangtan University, 41(1): 1-14, 2019. (in Chinese)
- 1. Junming Duan, Yangyu Kuang, and Huazhong Tang, Model reduction of a two-dimensional kinetic swarming model by operator projections, East Asian Journal on Applied Mathematics, 8(1): 151-180, 2018. arXiv:1701.02888.

Major Awards & Honors _

Humboldt Research Fellowship Alexander von Humboldt Foundation July 2023 Outstanding Graduate of Peking University | Peking University July 2021 National Scholarship for Graduate Student | Ministry of Education of P.R. China December 2020 The First Prize in Outstanding Youth Paper Award | Beijing Society of Computational Mathematics August 2020 BICMR Scholarship for Graduate Student | Beijing International Center for Mathematical Research 2019-2020 President Scholarship for PhD Student | Peking University 2018-2020 Founder Scholarship | Peking University September 2019 DTZ Cushman & Wakefield Scholarship | Peking University September 2017 Outstanding Undergraduate of Peking University | Peking University July 2016

Conferences & Talks	
Numerical Methods for Hyperbolic Problems, NumHyp Darmstadt, Germany	June 09-13, 2025
Poster: On An Asymptotic-Preserving Active Flux Scheme	,
Mobility Innovation eXchange in Aero/Acoustics (MIXA) The Ohio State University, USA (online)	May 06, 2025
Keynote Speaker: Machine-learning-enhanced aerodynamic forces prediction based on sparse pressure	•
sensor inputs	
High-Order NOnlinear numerical Methods for evolutionary PDEs: theory and applications,	September 08-13, 2024
HONOM Chania, Crete Island, Greece	•
Talk: On limiting for the Active Flux methods for hyperbolic conservation laws	
Lecture Series of Modern Computational Methods Beijing Institute of Applied Physics and	July 27, 2024
Computational Mathematics (online)	
Talk: Entropy stable schemes for hyperbolic conservation laws	
Seminar Talk Southern University of Science and Technology, Shenzhen, China	March 21, 2024
Talk: Bound-preserving active flux methods for one-dimensional hyperbolic conservation laws and flux	
vector splitting for point value update	
Development of High-Order Methods for Hyperbolic PDEs Southern University of Science and	March 15-19, 2024
Technology, Shenzhen, China	·
Simultaneously used Point values, Averages and Moments and their Inter-Relation: Active Flux,	March 06-08, 2024
Multi-Moment Method, Virtual Finite Elements and related numerical methods Maxwell	
Center, Cambridge, UK (online)	
Talk: Flux-vector splitting for point value update in active flux methods and limiting	
XVII. Würzburg Workshop on Stellar Astrophysics Heidelberg Institute for Theoretical Studies	December 18-19, 2023
(HITS), Heidelberg, Germany	
Plenary talk: Adaptive moving mesh methods in hydrodynamics	
CAM Seminar Southern University of Science and Technology, Shenzhen, China	July 01, 2023
Talk: Machine learning based non-intrusive reduced-order modeling and aerodynamic forces prediction	
ECCOMAS YIC 2023: 7th Young Investigators Conference University of Porto, Porto, Portugal	June 19-21, 2023
Talk: Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems	
Swiss Numerics Day 2023 Universität Bern, Bern, Switzerland	June 07, 2023
Talk: Machine learning enhanced aerodynamic forces prediction based on sparse pressure sensor inputs	
Oberseminar hosted by Prof. Christian Klingenberg (online)	November 17, 2022
Talk: Data-driven reduced-order modeling for time-dependent parametrized problems	·
MultiMat 2022: 10th International Conference on Numerical Methods for Multi-Material Fluid	August 22-26, 2022
Flow Universität Zürich, Zürich, Switzerland	,
Talk: High-order accurate entropy stable adaptive moving mesh methods	
Symposium on High-Fidelity Numerical Simulation of Fluid Problems Peking University,	June 05-07, 2021
Beijing, China	
Talk: Entropy stable schemes for RHD	
Forum of Numerical Methods and Applications in Fluids Xiangtan University, Xiangtan, China	December 11-13, 2020
Talk: Entropy stable adaptive moving mesh schemes for RHD	
Annual Meeting on High Resolution Method for Multi-Material Hydrodynamics of Science	November
Challenge Project Xiamen University, Xiamen, China	29-December 01, 2019
Talk: PCP Lagrangian scheme for RHD	·
Workshop on Numerical Methods for Complex Physical Problems Nanjing University of	August 28-30, 2019
Aeronautics and Astronautics, Nanjing, China	
Talk: High-order entropy stable finite difference schemes for RHD	
The 12th National Annual Meeting of Computational Mathematics Harbin, China	July 31-August 04, 2019
Talk: High-order entropy stable finite difference schemes for RHD	
Annual Meeting of Science Challenge Project Jilin University, Changchun, China	November 17-19, 2018
Talk: PCP Lagrangian scheme for RHD (with Dan Ling), selected as one of the five best posters	,

Conferences & Talks (continued) Beijing Seminar on Computational Fluid Dynamics Beijing Institute of Applied Physics and Computational Mathematics, Beijing, China Talk: PCP Lagrangian scheme for RHD	November 11, 2018
Teaching Assistant	
Analysis III École Polytechnique Fédérale de Lausanne	Fall 2022
Advanced Analysis I École Polytechnique Fédérale de Lausanne	Fall 2021
Numerical Methods of Partial Differential Equations Peking University	Fall 2019
Linear Algebra B Peking University	Fall 2018
Advanced Algebra II Peking University	Spring 2018
Linear Algebra B Peking University	Fall 2017
Mathematical Modeling Peking University	Spring 2017
Partial Differential Equations Peking University	Fall 2016
Supervision	
Master thesis: Reduced order modeling for time dependent parametrized problems coupled with uncertainty quantification Andrea Lörke, University of Wuerzburg, with Prof. Christian Klingenberg	Fall, 2023 - Fall, 2024
Master thesis: GPU-accelerated numerical simulations of hyperbolic conservation laws using entropy stable schemes and adaptive moving mesh method Bartul Kovacic, EPFL, with Prof. Jan S. Hesthaven	Fall, 2023
Semester project: Scalable implementation of high-order entropy stable finite difference schemes Bartul Kovacic, EPFL, with Prof. Jan S. Hesthaven	Fall, 2022
Master thesis: High-order entropy stable discontinuous Galerkin schemes using artificial viscosity Louis Vincent Marie Jaugey, EPFL, with Prof. Jan S. Hesthaven	Fall, 2022
Master thesis: Investigation of the aerosol evolution and delivery into the upper airway under transient conditions Filippo Zacchei, EPFL, with Prof. Jan S. Hesthaven	Fall, 2022
Research Grants & Projects	
New Efficient Structure-Preserving Numerical Methods for the Multi-dimensional Euler Equations:	2023-2025
design efficient adaptive moving mesh methods and reduced-order models with structure	
preservation for solving the multi-dimensional Euler equations	
PI Supported by Alexander von Humboldt-Stiftung	
Sense Dynamics: construct precise surrogate models of transient nonlinear physical phenomena	2021-2022
related to aerodynamics	
PI: Dr. Doytchinov Iordan Supported by Swiss Data Science Center	
High-Order Accurate Adaptive Moving Mesh Methods for Compressible Fluid Flows: design and	2021-2022
verification of high-order accurate adaptive moving mesh methods for solving the Euler and	
Navier-Stokes equations in 2D and 3D	
PI: Prof. Huazhong Tang Supported by National Numerical Windtunnel Project	
Computational Methods for the Interface and Elastoplastic Fracture in Fluid Mechanics: design and verification of high-order accurate adaptive moving mesh methods for solving multi-material flows	d 2019-2020
PI: Prof. Huazhong Tang Supported by Science Challenge Project	
High-Order Accurate Robust Numerical Schemes for Multi-Material Implosion Hydrodynamics:	2016-2018
research on high-order accurate Lagrangian schemes for solving compressible hydrodynamics PI: Prof. Huazhong Tang Supported by Science Challenge Project	

Professional Services.

Reviewer/Referee for: AMS Mathematical Reviews, Journal of Computational Physics, Journal of Computational and Applied Mathematics, Communications in Nonlinear Science and Numerical Simulation, International Journal for Numerical Methods in Engineering, East Asian Journal on Applied Mathematics, Communications in Computational Physics, Journal of Scientific Computing, International Journal of Computational Methods, Computational Geosciences, Numerical Methods for Partial Differential Equations, AIAA Journal

Other Information _

- Programming skills: C, C++, Python, Julia, MATLAB, Fortran, MPI, PyTorch, OpenFOAM, PETSc, Linux shell, धтрХ, . . .
- Languages: English (proficient), Chinese (native)

References_

Prof. Dr. Huazhong Tang

School of Mathematical Sciences Peking University Beijing, China

■ hztang@math.pku.edu.cn

Prof. Dr. Christian Klingenberg

Institute of Mathematics
Julius-Maximilians-Universität Würzburg
Würzburg, Germany

Prof. Dr. Jan S. Hesthaven

Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne, Switzerland