Series de Potencia y de Taylor

Pedro Villar Análisis Numérico - Primer Cuatrimestre 2024

Series de Taylor

Sea f una función infinitamente derivable en un intervalo I y sea $x_0 \in I$. La serie de Taylor de f centrada en x_0 es

$$T_f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

¿Como obtener la serie de Taylor?

Para obtener la serie de Taylor de una función f(x) centrada en a, se deben seguir los siguientes pasos:

- 1. Calcula las derivadas sucesivas de la función f(x) respecto a x: $f'(x), f''(x), f'''(x), f'''(x), f(4)(x), \dots, f(n)(x)$.
- 2. Evalúa cada una de estas derivadas en el punto x = a: $f(a), f'(a), f''(a), f'''(a), \dots, f^{(n)}(a)$.
- 3. Forma el polinomio de Taylor utilizando los valores evaluados en el paso 2: $f(x) \approx f(a) + f'(a)(x a) + (f''(a)/2!)(x a)^2 + (f'''(a)/3!)(x a)^3 + \cdots + (f^(n)(a)/n!)(x a)^n$ Este es el **polinomio de Taylor** de grado n centrado en x = a.
- 4. Expresa el polinomio de Taylor como una suma infinita: $f(x) = f(a) + f'(a)(x a) + (f''(a)/2!)(x a)^2 + (f'''(a)/3!)(x a)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x a)^n$. Este es el **desarrollo en serie de Taylor** de f(x) centrado en x = a.

Teorema del Resto de Lagrange

Sea f una función n+1 veces derivable en un intervalo I y sea $x_0 \in I$. Entonces, para cada $x \in I$, existe un número c entre x y x_0 tal que

$$f(x) = T_f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

A esta expresión se la conoce como la **fórmula de Taylor con resto de Lagrange**.

¿Como obtener el resto de Lagrange?

Cuando una serie de Taylor se trunca en el término k-ésimo, el error cometido al aproximar la función f(x) por el polinomio de Taylor de grado k, se obtiene de la siguiente manera:

1. Que la serie este truncada en k términos hace referencia a que la función f(x) se aproxima por el polinomio de Taylor de grado k centrado en x=a, es decir

$$f(x) = \sum_{n=0}^{k} \frac{f(n)(a)}{n!} (x - a)^n + R_k(x)$$

y lo que debemos calcular es el error $R_k(x)$, que se expresa como $R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1}$.

- 2. El número c es un número real que pertenece al intervalo [a, x].
- 3. Calcular la derivada (k+1)-ésima de la función $f(x): f^{(k+1)}(x)$.
- 4. Encontrar un valor c entre a y x. Si se conoce que $f^{(k+1)}(x)$ no cambia de signo en el intervalo [a, x], se puede tomar c = a. De lo contrario, se debe aplicar el **teorema del valor medio** para encontrar c.
- 5. Evaluar $f^{(k+1)}(c)$.
- 6. Sustituir los valores encontrados en la fórmula del resto de Lagrange: $R_k(x) = (f^{(k+1)}(c)/(k+1)!)(x-a)^{(k+1)}$.

Ejemplo

Obtener la serie de Taylor centrada en 0 para la función f(x) = ln(x+1). Escribir la serie usando la notación de sumatorias. Dar una expresión para el resto cuando la serie es truncada en k términos.

- 1. Calcular las derivadas sucesivas de la función f(x) respecto a x: f'(x) = 1/(x+1), $f''(x) = -1/(x+1)^2$, $f'''(x) = 2/(x+1)^3$, $f''''(x) = -6/(x+1)^4$, Con esto podemos ver que la derivada n-ésima de la función f(x) es $f^{(n)}(x) = (-1)^{n-1}(n-1)!/(x+1)^n$.
- 2. Evaluar cada una de estas derivadas en el punto x = 0: f(0) = 0, f'(0) = 1, f''(0) = -1, f'''(0) = 2, f''''(0) = -6, ... Si tomamos la expresión general de la derivada n-ésima de la función f(x), se tiene que $f^{(n)}(0) = (-1)^{n-1}(n-1)!$.
- 3. Ahora desarrollo los términos del polinomio de taylor y reemplazo con los valores obtenidos en el paso 2:

$$\frac{f^{0}(0)}{1}x^{0} + \frac{f^{1}(0)}{1!}x^{1} + \frac{f^{2}(0)}{2!}x^{2} + \frac{f^{3}(0)}{3!}x^{3} + \frac{f^{4}(0)}{4!}x^{4} + \dots$$

$$= 0 + x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{n}}{n}$$

Otra forma es reemplazar la expresión general en la fórmula de Taylor y simplificar:

$$T_f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!} x^n = \sum_{n=1}^{k} \frac{(-1)^{n-1}x^n}{n}$$

Ahora para dar una expresión para el resto cuando la serie es truncada en k términos, se hace lo siguiente:

1. Que la serie este truncada en k términos hace referencia a que la función f(x) se aproxima por el polinomio de Taylor de grado k centrado en x=0, es decir

$$f(x) = \sum_{n=1}^{k} \frac{(-1)^{n-1}x^n}{n} + R_k(x)$$

y lo que debemos calcular es el error $R_k(x)$, que se expresa como $R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!}x^{k+1}$.

- 2. La derivada (k+1)-ésima de la función f(x) es $f^{(k+1)}(x) = (-1)^k \frac{k!}{(x+1)^{k+1}}$, pero tomando el c = a, se tiene que $f^{(k+1)}(c) = (-1)^k \frac{k!}{(1)^{k+1}} = (-1)^k k!$.
- 3. Entonces reemplazando en la fórmula del resto de Lagrange, se obtiene que

$$R_k(x) = \frac{(-1)^k k!}{(k+1)!} x^{k+1} = \frac{(-1)^k}{k+1} x^{k+1}$$

Estimar el número de términos que deberán incluirse en la serie para aproximar ln(1.5) con un margen de error no mayor que 10^{-10} .

- 1. Se busca el valor de k tal que $|R_k(0.5)| \le 10^{-10}$, esto es ya que ln(1.5) = ln(1+0.5).
- 2. Por lo tanto primero hay que evaluar $R_k(0.5)$

$$R_k(0.5) = \frac{(-1)^k}{k+1} \cdot 0.5^{k+1}$$

Y se tiene que buscar que $|R_k(0.5)| \leq 10^{-10}$, es decir

$$\frac{0.5^{k+1}}{k+1} \le 10^{-10}$$

A partir de acá se puede buscar el valor de k que cumpla con la desigualdad.