3TB4 Lab 1 Report

Lin Fu ful10 400234794

Keyin Liang liangk10 400236736

D flip-flop simulation:

D flipflop with active low synchronous reset:

D flipflop with active low synchronous reset and active low enable:

D latch:

Multiplexer:

Counter:

Lab1part3 RTL view:

Lab1part3 Pin Planner:

Top View - Wire Bond Cyclone V - 5CSEMA5F31C6

Node Name	Direction	Location	I/O Bank	VREF Group	itter Location	I/O Standard	Reserved	ırrent Streng	Slew Rate	ifferenti
₩ HEX0[6]	Output	PIN_AH28	5A	B5A_N0	PIN_AH28	2.5 V		12mAault)	1 (default)	
□ HEX0[5]	Output	PIN_AG28	5A	B5A_N0	PIN_AG28	2.5 V		12mAault)	1 (default)	
□ HEX0[4]	Output	PIN_AF28	5A	B5A_N0	PIN_AF28	2.5 V		12mAault)	1 (default)	
[™] HEX0[3]	Output	PIN_AG27	5A	B5A_N0	PIN_AG27	2.5 V		12mAault)	1 (default)	
[™] HEX0[2]	Output	PIN_AE28	5A	B5A_N0	PIN_AE28	2.5 V		12mAault)	1 (default)	
□ HEX0[1]	Output	PIN_AE27	5A	B5A_N0	PIN_AE27	2.5 V		12mAault)	1 (default)	
□ HEX0[0]	Output	PIN_AE26	5A	B5A_N0	PIN_AE26	2.5 V		12mAault)	1 (default)	
- KEY[3]	Input	PIN_Y16	3B	B3B_N0	PIN_Y16	2.5 V		12mAault)		
KEY[2]	Input				PIN_F8	2.5 Vfault)		12mAault)		
- KEY[1]	Input				PIN_AJ16	2.5 Vfault)		12mAault)		
L KEY[0]	Input	PIN_AA14	3B	B3B_N0	PIN_AA14	2.5 V		12mAault)		
<u>-</u> SW[9]	Input	PIN_AE12	3A	B3A_N0	PIN_AE12	2.5 V		12mAault)		
<u>-</u> SW[8]	Input	PIN_AD10	3A	B3A_N0	PIN_AD10	2.5 V		12mAault)		
<u>-</u> SW[7]	Input				PIN_B12	2.5 Vfault)		12mAault)		
- SW[6]	Input				PIN_K8	2.5 Vfault)		12mAault)		
SW[5]	Input				PIN_H13	2.5 Vfault)		12mAault)		
SW[4]	Input				PIN_AH29	2.5 Vfault)		12mAault)		
<u>-</u> SW[3]	Input	PIN_AF10	3A	B3A_N0	PIN_AF10	2.5 V		12mAault)		
- SW[2]	Input	PIN_AF9	3A	B3A_N0	PIN_AF9	2.5 V		12mAault)		
<u>-</u> SW[1]	Input	PIN_AC12	3A	B3A_N0	PIN_AC12	2.5 V		12mAault)		
<u>□</u> SW[0]	Input	PIN_AB12	3A	B3A_N0	PIN_AB12	2.5 V		12mAault)		
- clk_50	Input	PIN_AF14	3B	B3B_N0	PIN_AF14	2.5 V		12mAault)		
< <new node="">></new>										

Lab1part3 complication report:

Answers to lab questions:

1. The DE1-SoC.qsf file includes all the available pin assignments on the DE1-SoC board. By importing this file to the Assignment Editor, it automatically assign pins with names pre-defined in the file, it simplifies the pin assignment process during the lab so we don't have to assign every pin manually.

2.

- Total number of logic elements used by your circuit: 24
- Total number of registers: 38
- Total number of pins: 22
- The maximum number of logic elements that can fit on the FPGA you used: 32,070

Code for lab1part3:

```
🔷 Text Editor - C:/Users/LinF/Documents/School/Winter2023/3TB4/lab1/lab1part3/lab1part3 - lab1part3 - [lab1part3.v]
                                                                                                                                                                                                                                                                                                                                                   File Edit View Project Processing Tools Window Help
                                                                                                                                                                                                                                                                                                                             Search altera.com
               module lab1part3 (input [9:0] SW, input [3:0] KEY, input clk_50, output [6:0] HEXO);
                        reg [6:0] reg_LEDs;
wire [3:0] key_counter;
wire [3:0] disp_in;
wire [6:0] disp_out;
  3
4
5
6
7
                        wire [29:0]clk_count;
wire [3:0] off = 4'b1111;
assign HEXO = disp_out;
   8
                        \label{lem:keycounter} $$ keycounter c1(.reset(KEY[0]), .key\_press(KEY[3]), .result(key\_counter)); $$ timer t1(.clk(clk_50), .reset(KEY[0]), .result_50(clk\_count)); $$ fourBitMultipexer m1(.sel(SW[9:8]), .a(SW[3:0]), .b(key\_counter), .c(clk\_count[29:26]), .d(off), .q(disp\_in)); $$ sevenSegDecoder d1(.SW(disp\_in), .HEXO(disp\_out)); $$ $$ $$ hexcelled to the counter of the count
10
11
12
14
15
               endmodule
16
              module keycounter(input reset, key_press, output reg[3:0] result);
always @(posedge key_press, negedge reset) begin
if (!reset) begin
result <= 4'b0;</pre>
18
           19
           20
21
22
23
24
25
26
27
            else if (key_press) begin
result <= result + 1'b1;
            1
                                end
else if (result == 4'b1111 && key_press) begin
result <= 4'b0;
28
29
                        end
               endmodule
 30
               module timer(input clk, reset, output reg[29:0] result_50);
always @(posedge clk, negedge reset) begin
if (!reset) begin
 32
33
            result_50 <= 30'b0;
                                 end
 35
            上日
                                else begin
result_50 <= result_50 + 1'b1;
 36
37
 38
                                 end
39
40
                        end
               endmodule
 41
42
               module fourBitMultipexer (sel, a, b, c, d, q);
43
44
                        input [1:0]sel;
input [3:0]a;
input [3:0]b;
input [3:0]c;
input [3:0]d;
45
46
47
48
49
                         output reg [3:0]q;
 50
 51
                        always @ (sel) begin
                                case (sel)
2'b00: q <= a;
2'b10: q <= b;
2'b10: q <= c;
2'b11: q <= d;
52
53
54
            55
 56
57
58
                                 endcase
                        end
               endmodule
60
61
62
               module sevenSegDecoder (input [3:0] SW, output [6:0] HEXO);
63
                        reg [6:0] reg_LEDs;
64
65
                        66
 67
68
                        always @(*) begin
 69
           case (SW)
4'b0000: reg_LEDs[6:2]=5'b10000; //7'b1000000 decimal 0
4'b0001: reg_LEDs[6:2]=5'b11110: //7'b1111001 decimal 1
 70
           71
72
                                                                                                                                                                                                                                                                                                                                                     00:00:01
```