Capítulo II

PROBLEMAS DE PROGRAMAÇÃO LINEAR

Formulação do modelo e resolução gráfica

Exemplo 1

Um fazendeiro deseja otimizar as plantações de arroz e milho da sua quinta, ou seja, quer saber que áreas deve plantar de arroz e milho de modo a ser máximo o lucro obtido das plantações.

O lucro por unidade de área plantada de arroz e de milho é de, respetivamente, 5 e 2 unidades monetárias (UM).

O consumo total de mão-de-obra (medido em homens/hora) nas duas plantações não deve ser maior do que 9. Cada unidade de área plantada de arroz necessita de 1 homem/hora e cada unidade de área plantada de milho necessita de 2 homens/hora.

Variáveis de decisão:

- nº de unidades de área a plantar de arroz;
- n° de unidades de área a plantar de milho.

Função objetivo:

maximizar o lucro a obter das plantações.

Restrições:

- área dos terrenos;
- mão de obra disponível.

	Arroz	Milho	Disponibilidades
Área 1	X		3
Área 2		X	4
Mão-de-obra	1	2	9
Lucro	5	2	max

Ou seja, o problema consiste em:

Determinar

 $x_1 = n^o$ de unidades de área a plantar de arroz

 $x_2 = n^o$ de unidades de área a plantar de milho

de modo a maximizar o lucro, ou seja, maximizar $z = 5 x_1 + 2 x_2$ sujeito a

$$x_1 \leq 3$$

$$x_2 \le 4$$

$$x_1 + 2 x_2 \le 9$$

$$x_1 \ge 0, x_2 \ge 0$$

Exemplo 2

Uma empresa de mobiliário de escritório pretende lançar um modelo de secretárias e de estantes.

Pensa-se que o mercado pode absorver toda a produção de estantes, mas aconselha-se a que a produção mensal de secretárias não ultrapasse as 160 unidades.

Ambos os produtos são processados em duas unidades diferentes: unidade de estampagem (UE) e unidade de montagem e acabamento (UMA). A disponibilidade mensal de cada uma destas unidades é de 720 horas/máquina na UE e de 880 horas/máquina na UMA. Cada secretária necessita de 2 horas/máquina na UE e 4 horas/máquina na UMA; cada estante necessita de 4 horas/máquina na UE e 4 horas/máquina na UMA.

Estima-se que o lucro obtido por cada secretária é de 6 unidades monetárias (UM) e por cada estante é de 3 unidades monetárias (UM).

Pretende-se saber qual o plano de produção mensal de secretárias e de estantes que maximiza o lucro (assumindo que toda a produção é vendida).

Variáveis de decisão:

- número de secretárias a produzir por mês;
- número de estantes a produzir por mês.

Função objetivo:

maximizar o lucro mensal.

Restrições:

- disponibilidades das UE e UMA;
- mercado.

Logo, o problema consiste em:

Determinar

 x_1 = número de secretárias a produzir por mês

 x_2 = número de estantes a produzir por mês

de modo a $maximizar z = 6 x_1 + 3 x_2$

sujeito a

$$2 x_1 + 4 x_2 \le 720$$

$$4 x_1 + 4 x_2 \le 880$$

$$x_1 \le 160$$

$$x_1 \ge 0, x_2 \ge 0$$

Exemplo 3

Uma companhia de navegação possui um navio com três porões de carga: à proa, ao centro e à ré.

Os limites de capacidade dos porões são os da seguinte tabela:

Porão	Tonelagem (toneladas)	Volume (m ³)
Proa	2.000	100.000
Centro	3.200	14.000
Ré	1.800	80.000

À empresa são oferecidas duas cargas (A e B), cada uma das quais pode aceitar total ou parcialmente.

As caraterísticas das cargas são apresentadas na tabela que se segue:

Carga	Peso (toneladas)	Volume (m ³ /tonelada)	Lucro (UM/tonelada)
A	7.000	60	20
В	4.000	25	16

De modo a preservar-se o equilíbrio do navio, deve manter-se a proporção entre o peso em cada um dos porões e as tonelagens respetivas.

A empresa pretende saber qual é a melhor maneira de carregar o navio de modo a maximizar o lucro.

Assim, o problema consiste em:

Determinar

 $x_{ij}=$ n° de toneladas da carga i (i = A, B) a transportar no porão j (j = 1 (\rightarrow proa), 2 (\rightarrow centro), 3 (\rightarrow ré))

de modo a

maximizar
$$z = 20(x_{A1} + x_{A2} + x_{A3}) + 16(x_{B1} + x_{B2} + x_{B3})$$

sujeito a

Modelo de Programação Linear

Genericamente, pode formular-se um problema de programação linear como se segue:

a) Forma Cartesiana

```
Determinar
        x_1, x_2, ..., x_i, ..., x_n
de modo a
        maximizar z = c_1 x_1 + c_2 x_2 + ... + c_j x_j + ... + c_n x_n
sujeito a
            a_{11} x_1 + a_{12} x_2 + \dots + a_{1j} x_j + \dots + a_{1n} x_n \le b_1
            a_{21} x_1 + a_{22} x_2 + \dots + a_{2j} x_j + \dots + a_{2n} x_n \le b_2
            a_{i1} \ x_1 \ + a_{i2} \ x_2 \ + \ldots \ + a_{ij} \ x_j \ + \ldots \ + a_{in} \ x_n \ \leq b_i
            a_{m1} \; x_1 \, + a_{m2} \; x_2 \, + \ldots \, + a_{mj} \; x_j + \ldots \, + a_{mn} \; x_n \leq b_m
            x_1, x_2, \ldots, x_j, \ldots, x_n \ge 0
```

b) Forma Matricial

Determinar

X

de modo a

maximizar z = c'x

sujeito a

$$Ax \le b$$

$$x \ge 0$$

Sendo:

 \mathbf{x} – vetor $\mathbf{n}_x \mathbf{1}$

 $\mathbf{0}$ – vetor $n_x 1$

z – escalar

 \mathbf{c} – vetor $n_x 1$

 $A - matriz m_x n$

 \mathbf{b} – vetor $m_x 1$

Notar que:

- a operação de otimização pode ser uma *minimização*;
- as restrições podem ser do tipo "≥" ou "=";
- algumas das variáveis de decisão podem não ser *não negativas*.

Casos particulares

> Solução inexistente (problema impossível)

(não existe região admissível)

> Ótimos alternativos

(o valor ótimo da função objetivo pode ser obtido através de múltiplas combinações de valores das variáveis de decisão)

➤ Solução não limitada

(valor ótimo não finito)

➤ Solução ótima finita

(embora região admissível não limitada)

➤ Solução ótima finita

(com variáveis a poderem assumir valores arbitrariamente grandes)

