课程编号: 21-081200-108-07 北京理工大学 2010 - 2011 学年第一学期

研究生《人工智能》期末试题

班级	学号	姓名	成绩
	• • — — — — — — — — — — — — — — — — — —		

四、计算题(45分,每小题15分)

- 1. 兹有以下知识:
 - (1) 约翰喜欢吃牛排,或者约翰喜欢吃土豆。
 - (2) 如果约翰既喜欢吃牛排又喜欢吃土豆,那么约翰是一个不偏食的人。
 - (3) 如果某人喜欢吃牛排,那么他喜欢吃土豆。
 - (4) 如果某人喜欢吃土豆,那么他喜欢吃牛排。

应用归结演绎推理方法证明:约翰是一个不偏食的人。

- 2. 给定布尔函数: $(A \land \neg B) XNOR C$ 。 (注: XNOR 表示同或运算)。
 - (1) 设计一个实现 $A \land \neg B$ 的两层感知器; (7分)
 - (2) 在第 1 小题设计的两层感知器基础上,增加一个径向基函数网络,实现 $(A \land \neg B) XNOR C$ 。(8 分)
- 3. 给定如下函数:

$$f(x) = x^3 - 60x^2 + 900x + 100$$

其中限定x为[0,31]区间中的整数。现要求使用遗传算法求解f(x)的最大值(最优x=10),采用二进制串进行编码。

- 1)给出编码方案 (2分)
- 2)根据编码方案,将下表中4个个体表示为相应二进制串,填在表中。(3分)

Individual	Value	Binary String
\mathbf{P}_1	28	
P_2	15	
P ₃	23	

D	4	
P_4	1 4	

- 3)设二进制串中位置编号方式是从左至右,且从0 开始按顺序编号。选择上表中 P_3 和 P_2 作为父代个体,执行单点交叉(交叉位置在第1位)得到子代个体 C_1 和 C_2 .继续选择 P_4 和 P_2 作为父代个体,执行单点交叉(交叉位置在第2位)得到子代个体 C_3 和 C_4 。写出这些交叉过程和结果。(7分)
- 4) 计算 C_1 对应的 x 和 f(x)。(3 分)