Henri Lebesgue a jeho integrál

Fubiniho věta, věta o substituci

- 1. Převedte $\int_{\Omega} f(x+y) dx dy$ na jednoduchý integrál, jestliže f je spojitá a $\Omega = \{(x, y); |x| + |y| < 1\}.$
- 2. Převeďte $\int_{\Omega} f(x \cdot y) dx dy$ na jednoduchý integrál, jestliže f je spojitá a Ω je ohraničeno křivkami $xy=1,\,xy=2,\,y=x,\,y=4x$ a $x,\,y>0.$
- 3. Přepište $\int_0^1 (\int_u^1 f(x) dx) dy$ pomocí jednoho integrálu.
- 4. Určete plošný obsah části roviny omezené následujícími křivkami:

a)
$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2)$$

b)
$$(x^3 + y^3)^2 = xy$$

c)
$$x + y = a$$
, $x + y = b$, $y = \alpha x$, $y = \beta x$, $0 < a < b$, $0 < \alpha < \beta$

5. Určete objem tělesa omezeného následujícími plochami:

a)
$$x + y + z = a$$
, $x^2 + y^2 = R^2$, $x = 0$, $y = 0$, $z = 0$, $a \ge R\sqrt{2} > 0$

b)
$$z = xy$$
, $z = 0$, $x + y + z = 1$

c)
$$z = x^{2}$$
, $z = 0$, $x + y + z = 1$
c) $z = x^{2} + y^{2}$, $x^{2} + y^{2} = x$, $x^{2} + y^{2} = 2x$, $z = 0$
d) $z = e^{-(x^{2} + y^{2})}$, $z = 0$, $x^{2} + y^{2} = R^{2}$

d)
$$z = e^{-(x^2+y^2)}$$
, $z = 0$, $x^2 + y^2 = R^2$

e)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$, $a, b, c > 0$

f)
$$(\frac{x}{a} + \frac{y}{b})^2 + \frac{z^2}{c^2} = 1$$
, $x = 0$, $y = 0$, $z = 0$, $a, b, c > 0$
g) $(x^2 + y^2 + z^2)^3 = 3xyz$

g)
$$(x^2 + y^2 + z^2)^3 = 3xyz$$

6. Spočtěte následující integrály:

a)
$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy$$

b)
$$\int_{\Omega}^{\infty} x^{-p} y^{-q} dx dy$$
, $\Omega = \{(x, y); xy \ge 1, x \ge 1\}$

b)
$$\int_{\Omega}^{\infty} x^{-p} y^{-q} dx dy$$
, $\Omega = \{(x, y); xy \ge 1, x \ge 1\}$
c) $\int_{\Omega} (x + y)^{-p} dx dy$, $\Omega = \{(x, y); x + y \ge 1, 0 \le x \le 1\}$

- 7. Najděte souřadnice hmotného středu homogenní desky ohraničené $x^{\frac{2}{3}}$ + $y^{\frac{2}{3}} = a^{\frac{2}{3}}, x, y, a > 0.$
- 8. Najděte momenty setrvačnosti I_x a I_y homogenní desky s hustotou $\varrho = 1$ ohraničené $(x - a)^2 + (y - a)^2 = a^2, x = 0, y = 0, 0 \le x \le a$.

- 9. Najděte souřadnice hmotného středu homogenního tělesa ohraničeného $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2},\ z=c,\ a,\ b,\ c>0.$
- 10. Kruhový válec s osou ve směru osy z kartézských souřadnic je naplněn plynem, jehož hustota se řídí barometrickou formulí

$$\varrho = \varrho_0 \exp(-\frac{\varrho_0}{p_0} gz),\,$$

kde p_0 je tlak na spodní základně $z=0,\,g$ je tíhové zrychlení. Výška válce je h, poloměr R. Určete hmotnost vzduchu ve válci.