STAT 5700 formulas

$$\begin{split} \binom{n}{r} &=_n C_r = \frac{nP_r}{r!} = \frac{n!}{(n-r)!r!} \\ P(B|A) &= \frac{P(A\cap B)}{P(A)} \\ P(B'|A) &= 1 - P(B|A) \\ \text{Bayes Rule: } P(A|B) &= \frac{P(B|A)P(A)}{P(B)} \\ \mu &= E(Y) = \sum_{y \in \mathbb{S}} yp(y) \\ \sigma^2 &= V(Y) = \sum_{y \in \mathbb{S}} (y-\mu)^2 p(y) \end{split}$$

Distribution	Probability Function	Mean	Variance
Binomial	$\binom{n}{y}p^y(1-p)^{n-y}$	np	$\overline{np(1-p)}$
Geometric	$\binom{n}{y}p^y(1-p)^{n-y}$ $p(1-p)^{y-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hypergeometric	$\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}{\lambda^y e^{-\lambda}}$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-r}{N-r}\right)$
Poisson	$\frac{\lambda^y e^{-\lambda}}{y!}$	λ	λ
Negative Binomial	$\binom{y-1}{r-1}p^r(1-p)^{y-r}$	$rac{r}{p}$	$\frac{r(1-p)}{p^2}$

Geometric series: $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$

For geometric random variable, $P(Y > k) = (1 - p)^k$

Maclaurin series expansion: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Binomial expansion: $(a+b)^n = \sum_{y=0}^n \binom{n}{y} a^y b^{n-y}$