## Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 4 am 28 07 2020

|        | Mikroklausur 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | am 28.07.2020                                                                                     |                                                              |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Name:  | Matrike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lnummer:                                                                                          | Punkte: /9                                                   |  |  |  |
| rechnu | Sie bitte Ihre Daten ein und machen Sie jeweils genau ein Krungen nutzen, aber bitte geben Sie am Ende nur dieses Blatt ale 0 Punkte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                 |                                                              |  |  |  |
| 1.     | Ein LTI-System wird durch die Übertragungsfunktion $G(s)$ = Was können wir über die Eingang/Ausgangs (E/A) Stabilität u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $=\frac{3s+4}{(s+2)(s+5)}$ beschrieben. Betrachten Sigund die innere (I) Stabilität des geschloss | e den Regler $K(s) = \frac{s+5}{s+4}$<br>enen Kreises sagen? |  |  |  |
|        | (a) x E/A-stabil, I-stabil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) E/A-stabil, I-instabil                                                                        |                                                              |  |  |  |
|        | (c) E/A-instabil, I-instabil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) E/A-instabil, I-stabil                                                                        |                                                              |  |  |  |
|        | Regelungstechnik 1 (In 9. Auflage: Abschnitt 8.4.2 Innere Kreises bestimmen: $p_{1,2} = -\frac{9}{2} \pm \frac{\sqrt{32}}{2} < 0 \Rightarrow \text{E/A-stabil} \Rightarrow \text{I}$ Betrachten Sie das folgende Bode Diagramm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I-stabil.                                                                                         | lstellen des geschlossener                                   |  |  |  |
|        | Wagnitude (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5) -135 -<br>90 -180 -<br>180 -<br>180 -                                                         |                                                              |  |  |  |
|        | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -270 10 <sup>-1</sup> 10 <sup>-2</sup> 10 <sup>-1</sup>                                           | 10 <sup>0</sup> 10 <sup>0</sup>                              |  |  |  |
|        | Das System hat die folgende Phasenreserve:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                              |  |  |  |
|        | (a) keine (b) 160 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) x 20 deg (d)                                                                                  | -160 deg                                                     |  |  |  |
| 3.     | Das Amplitudendiagramm schneidet bei $\omega\approx 1,1$ $\frac{rad}{s}$ die 0 dB-Linie. Im Phasendiagramm ist nun die Phasenreserve abzuleser (Differenz der Phase zu -180 deg): $\Phi_R=20$ deg Der geschlossene Kreis eines geregelten LTI-Systems wird durch die Sensitivitätsfunktionen $S(j\omega)$ und die komplementäre Sensitivitätsfunktion $T(j\omega)$ beschrieben.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                              |  |  |  |
|        | $(\widehat{\mathbf{Q}})^{-10}$ $(\widehat{\mathbf{Q})^{-10}$ $(\widehat{\mathbf{Q}})^{-10}$ $(\widehat{\mathbf{Q})^{-10}$ $(\widehat{\mathbf{Q})^{-10}$ $(\widehat{\mathbf{Q})^{-10}$ $(\widehat{\mathbf{Q})^{-10}$ $(\widehat{\mathbf{Q}})^{-10}$ $(\widehat{\mathbf{Q}})^{-10}$ | 10 <sup>1</sup> 10 <sup>2</sup> uency (rad/sec)                                                   |                                                              |  |  |  |
|        | Dieses System hat ein schlechtes Verhalten für                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                              |  |  |  |
|        | (a) Störungen mit Frequenz $\omega = 0.3 \frac{\text{rad}}{\text{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) Messrauschen mit Frequenz                                                                     | $\omega = 95 \frac{\mathrm{rad}}{\mathrm{s}}$                |  |  |  |
|        | (c) $\overline{\mathbf{x}}$ Referenzsignale mit Frequenz $\omega = 100 \frac{\mathrm{rad}}{\mathrm{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) Referenzsignal mit Frequenz                                                                   | $z \omega = 4 rac{\mathrm{rad}}{\mathrm{s}}$                |  |  |  |

Referenzsignale mit Frequenz  $\omega=100\frac{\rm rad}{\rm s}$  werden stark gedämpft ( $|T(j100\frac{\rm rad}{\rm s})|\approx-18{\rm dB}$ )  $\Rightarrow$  Regler ungeeignet für diese Frequenzen.

4. Welche der folgenden Aussagen über das Wind-Up ist falsch?

| (a) Durch das I-Glied im PID-Regler kann es zu reglerinduzierten Oszillationen kommen.                      | (b) Für den P- und den D-Regler ist die Saturation ein marginales Problem.                          |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| (c) Der Integrationsanteil bei einem PI- bzw. PID-Regler kann im ungünstigsten Fall ins Unendliche steigen. | (d) $\boxed{x}$ Wind-Up kann durch die geeignete Wahl des Parameters $K_{\rm D}$ verhindert werden. |

Vgl. Skript Abschnitt 10.3 (S. 121ff)

5. Betrachten Sie das folgende Nyquist Diagramm einer stabilen offenen Kette.



Das System hat die folgende Amplitudenreserve:



Der Schnittpunkt mit der reellen Achse liegt bei etwa -2/3. Somit ist  $GM = \frac{1}{|-2/3|} = 1, 5.$ 

6. Betrachten Sie die Systeme  $G_1(s)=\frac{1}{s^2+s+3}$  und  $G_2(s)=\frac{1}{s^2+0.1s+3}$ . Wir definieren die Überschwinghöhe  $\Delta h$ , die statische Verstärkung als  $h(\infty)$  und die Abklingzeit als  $T_{ab}$ . Welche der folgenden Aussagen ist falsch?



Es handelt sich um zwei  $PT_2$ -Glieder mit  $k_{s,1}=k_{s,2}=\frac{1}{3},\,T_1=T_2=\frac{1}{\sqrt{3}}$  und  $d_1=\frac{\sqrt{3}}{2}$  und  $d_2=0.1d_1$ . Da es sich in beiden Fällen um oszillierende Dämpfung handelt, aber  $G_2$  schwächer gedämpft ist (bei gleichem T), ist sowohl dessen Überschwinghöhe als auch Abklingzeit größer.

7. Betrachten Sie das folgende Nyquist-Diagramm einer stabilen offenen Kette, in dem außerdem der Einheitskreis eingezeichnet ist.



Das System hat die folgende Phasenreserve:



Der nächste Schnittpunkt mit dem Einheitskreis liegt bei  $20 \, \deg$  (bezogen auf die negative reelle Achse). Somit ist  $\Phi_R = 20 \, \deg$ .

8. Betrachten Sie das folgende Nyquistdiagramm.



Welcher Übertragungsfunktion entspricht es?

| (a) $ \frac{s^2+8}{s^2+s+2} $ | $(b) \boxed{\mathbf{x}}  \frac{8}{s^2 + s + 2}$ | (c) $\frac{4s}{s^2+s+1}$ | (d) $\frac{1}{s^2+s+2}$ |
|-------------------------------|-------------------------------------------------|--------------------------|-------------------------|

Polüberschuss = 2 (Nähert sich dem Ursprung von links)

Statische Verstärkung = 4

$$\Rightarrow G(s) = \frac{8}{s^2 + s + 2}$$

9. Ein LTI-System wird durch die Übertragungsfunktion  $G(s)=\frac{s^3+2}{(s+2)(s+3)}$  beschrieben. Wenn der Regler K(s)=1+s benutzt wird, ist die Sensitivitätsfunktion S(s) gegeben durch

| (a) $\boxed{\mathbf{x}}$ $\frac{s^2 + 5s + 6}{s^4 + s^3 + s^2 + 7s + 8}$ (b) $\boxed{}$ $\frac{(s+2)(s+3)}{s^3 + s^2 + 7s + 8}$ | (c) $\frac{(s+2)(s+3)}{s^4+s^3+2+2s}$ | (d) $\frac{s^2 + 5s + 6}{3s^2 + 5s + 10}$ |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|

$$G_0(s) = K(s)G(s) = \frac{(1+s)(s^2+2)}{(s+2)(s+3)}$$

$$S(s) = \frac{1}{1+G_0(s)} = \frac{1}{1+\frac{(1+s)(s^2+2)}{(s+2)(s+3)}} = \frac{s^2+5s+6}{s^4+s^3+s^2+7s+8}$$