Paths-Cycles-Trees

August 11, 2024

Walks

- ✓ A walk in G is a finite non-null sequence $W = v_0 e_1 v_1 e_2 v_2 \cdots e_k v_k$, whose terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i .
- 2 We say that W is a walk from v_0 to v_k , or a (v_0, v_k) -walk.
- The vertices v_0 and v_k are called the origin and terminus of W, respectively, and v_1, v_2, \dots, v_{k-1} its internal vertices.
- \blacksquare The integer k is the length of W.

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ► Trail : A Walk in which no edge is repeated.
- ▶ Path: A Trail in which no vertex is repeated.
- Closed Walk: A Walk in which initial and final vertices are same.
- ► Circuit: A closed trail.
- ► Cycle: A closed path (Abuse of terminology).

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ▶ Trail: A Walk in which no edge is repeated.
- ▶ Path: A Trail in which no vertex is repeated.
- ► Closed Walk: A Walk in which initial and final vertices are same.
- ► Circuit: A closed trail.
- ► Cycle: A closed path (Abuse of terminology).

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ▶ Trail: A Walk in which no edge is repeated.
- ▶ Path : A Trail in which no vertex is repeated.
- ► Closed Walk: A Walk in which initial and final vertices are same.
- ► Circuit: A closed trail.
- ► Cycle: A closed path (Abuse of terminology).

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ▶ Trail : A Walk in which no edge is repeated.
- ▶ Path: A Trail in which no vertex is repeated.
- ► Closed Walk: A Walk in which initial and final vertices are same.
- ► Circuit: A closed trail.
- ► Cycle: A closed path (Abuse of terminology).

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ▶ Trail : A Walk in which no edge is repeated.
- ▶ Path : A Trail in which no vertex is repeated.
- ► Closed Walk: A Walk in which initial and final vertices are same.
- ▶ Circuit : A closed trail.
- ► Cycle: A closed path (Abuse of terminology).

- ► Walk : Sequence of alternating vertices and incident edges with no restriction.
- ▶ Trail: A Walk in which no edge is repeated.
- ▶ Path: A Trail in which no vertex is repeated.
- ► Closed Walk: A Walk in which initial and final vertices are same.
- Circuit: A closed trail.
- Cycle: A closed path (Abuse of terminology).

- ▶ Length of Walk, Path, Cycle: Number of edges in it.
- ▶ Notation of Path, Cycle of length n: P_{n+1} and C_n respectively.
- ▶ A cycle of length *k* is called a *k*-cycle.
- ▶ A *k*-cycle is odd or even according as *k* is odd or even.

- ▶ Length of Walk, Path, Cycle: Number of edges in it.
- ▶ Notation of Path, Cycle of length n: P_{n+1} and C_n respectively.
- ightharpoonup A cycle of length k is called a k-cycle.
- ▶ A *k*-cycle is odd or even according as *k* is odd or even.

- ▶ Length of Walk, Path, Cycle : Number of edges in it.
- ▶ Notation of Path, Cycle of length n: P_{n+1} and C_n respectively.
- ▶ A cycle of length *k* is called a *k*-cycle.
- ▶ A *k*-cycle is odd or even according as *k* is odd or even.

- ▶ Length of Walk, Path, Cycle : Number of edges in it.
- ▶ Notation of Path, Cycle of length n: P_{n+1} and C_n respectively.
- ▶ A cycle of length *k* is called a *k*-cycle.
- ▶ A *k*-cycle is odd or even according as *k* is odd or even.

Example

Example

- P₁ (v1)
- P₂ (v1)—(v2)
- P₃ (v1) (v2) (v3)
- P₄ (v1) (v2) (v3) (v4

Theorem

Theorem

A graph is bipartite if and only if it contains no odd cycle.

Proof.

" \Rightarrow ": Partition: $V = X \cup Y$. Then starting from a vertex in X, say v_0 , to form a cycle with v_0 , we need to visit even number of edges to come back to v_0 . Hence, every cycle is even.

Proof

Proof.

" ⇐ " :

- Given that all cycles are even.
- **2** To show that *G* is bipartitie.
- 3 d(u, v) = length of the shortest path between vertices u and v.
- 4 We find a bipartition of V. Choose a $u \in V$.
- 5 Define,

$$X = \{x : d(u, x) \text{ is even}\}$$

$$Y = \{x : d(u, x) \text{ is odd}\}$$

6
$$V = X \cup Y$$
.

- IIP, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- $\Rightarrow P_2$, Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.
- $|B| \Rightarrow |P_2| + |Q_2| + \text{ edge } vw = \text{ odd cycle. A contradiction.}$

- I P, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- 2 u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- $\Rightarrow P_2$, Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.
- $| | \Rightarrow |P_2| + |Q_2| + \text{edge } vw = \text{odd cycle. A contradiction.}$

- P, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- $\Rightarrow P_2$, Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.
- $|B| \Rightarrow |P_2| + |Q_2| + \text{ edge } vw = \text{ odd cycle. A contradiction.}$

- P, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- \blacksquare \Rightarrow P_2 , Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.
- $|B| \Rightarrow |P_2| + |Q_2| + \text{ edge } vw = \text{ odd cycle. A contradiction.}$

- P, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- $\mathbf{2}$ u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- $\blacksquare \Rightarrow P_2$, Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.
- $|B| \Rightarrow |P_2| + |Q_2| + \text{ edge } vw = \text{ odd cycle. A contradiction.}$

- P, Q shortest paths, $P = P_1 + P_2$, $Q = Q_1 + Q_2$.
- 2 u_1 last common vertex in P and Q.
- 3 P_1 , Q_1 shortest and $|Q_1| = |P_1|$.
- $\blacksquare \Rightarrow P_2$, Q_2 have same parity.
- $\Rightarrow |P_2| + |Q_2|$ is even.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- ightharpoonup \sim is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $ightharpoonup \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If *G* is not connected then it is disconnected.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- $\blacktriangleright \sim$ is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $ightharpoonup \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If *G* is not connected then it is disconnected.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- ightharpoonup is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $\blacktriangleright \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If *G* is not connected then it is disconnected.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- $\blacktriangleright \sim$ is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $ightharpoonup \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If G is not connected then it is disconnected.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- $\blacktriangleright \sim$ is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $ightharpoonup \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If *G* is not connected then it is disconnected.

- ▶ Two vertices u and v are said to be connected (denoted by $u \sim v$ if there is a path between them.
- $\blacktriangleright \sim$ is an equivalence relation and \sim partitions the vertices of a given graph into equivalence classes.
- ▶ The subgraph induced by each equivalence class is called a component of *G*.
- $\blacktriangleright \omega(G)$ denotes the number of components of G
- ▶ A graph G is said to be connected if every pair of distinct vertices are connected (i.e.) $\omega(G) = 1$.
- ▶ If G is not connected then it is disconnected.