

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

This memorandum consists of 19 pages.

1.1.1	(x-3)(x+5) = 9	
1.1.1	$x^2 + 2x - 15 = 9$	✓ expansion
	$x^2 + 2x - 24 = 0$	✓ standard form
	(x+6)(x-4)=0	Standard form
		✓ factorisation
	x = 4 or $x = -6$	✓ answers
		(4)
1.1.2	$2x^2 - 3x - 2 \le 0$	✓ factors
	$(2x+1)(x-2) \le 0$	ractors
	Critical values : $-\frac{1}{2}$ and 2	✓ critical values
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$-\frac{1}{2} \le x \le 2$	✓✓ answer (4)
1.2	y = -2x - 2(1)	$\checkmark y = -2x - 2$
	$-2x^2 + 8xy + 42 = y(2)$	
	$-2x^2 + 8x(-2x - 2) + 42 = -2x - 2$	✓ substitution
	$-2x^2 - 16x^2 - 16x + 42 + 2x + 2 = 0$	
	$-18x^2 - 14x + 44 = 0$	✓simplification
	$9x^2 + 7x - 22 = 0$	
	(9x - 11)(x + 2) = 0	✓ factors
	$\therefore x = \frac{11}{9} \qquad \text{or} \qquad x = -2$	\checkmark answers for x
	$\therefore y = -2\left(\frac{11}{9}\right) - 2 \qquad \therefore y = -2(-2) - 2$ $\therefore y = -\frac{40}{9} \qquad \therefore y = 2$	
	$\therefore y = -\frac{40}{9} \qquad \qquad \therefore y = 2$	✓ answers for y (7)
	OR	

Copyright reserved

$$y = -2x - 2......(1)$$

$$-2x^{2} + 8xy + 42 = y.....(2)$$

$$y = -2(x+1) = \frac{-2(x^{2} - 21)}{1 - 8x}$$

$$\therefore (x+1)(1-8x) = x^{2} - 21$$

$$x - 8x^{2} + 1 - 8x = x^{2} - 21$$

$$9x^{2} + 7x - 22 = 0$$

$$(9x-11)(x+2) = 0$$

$$\therefore x = \frac{11}{9} \quad \text{or} \quad x = -2$$

$$\therefore y = -2\left(\frac{11}{9}\right) - 2 \quad \therefore y = -2(-2) - 2$$

$$\therefore y = -\frac{40}{9} \quad \therefore y = 2$$

OR
$$y = -2x - 2.....(1)$$

$$-2x^{2} + 8xy + 42 = y.....(2)$$

$$x = \frac{(-y-2)}{2}$$

$$-2\left(\frac{(-y-2)}{2}\right)^{2} + 8y\left(\frac{(-y-2)}{2}\right) + 42 - y = 0$$

$$-2\left(\frac{y^{2} + 4y + 4}{4}\right) + 4y(-y - 2) + 42 - y = 0$$

$$y^{2} + 4y + 4 + 8y^{2} + 16y - 84 + 2y = 0$$

$$y^{2} + 22y - 80 = 0$$

$$(y-2)(9y + 40) = 0$$

$$y = 2 \quad \text{or} \quad y = -\frac{40}{9}$$

$$x = -2 \quad \text{or} \quad x = \frac{11}{9}$$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$
 $x = -2 \quad \text{or} \quad x = \frac{11}{9}$

Copyright reserved

(7)

$g(x) = x^2$ $g(9) = 81$	✓ g(9) = 81
$f(x) = \sqrt{4x}$ $f(g(9)) = f(81) = \sqrt{4(81)}$ $= 2(9)$ $= 18$	✓ substitution ✓ answer (3)
OR $g(9) = 9^{2}$ $\therefore f(g(9)) = \sqrt{2^{2} \cdot 9^{2}} = 18$	✓ $g(9) = 9^2$ ✓ substitution ✓ answer (3)
OR $f(g(x)) = \sqrt{4g(x)}$ $= \sqrt{4x^2}$ $= 2x$ $f(g(9)) = 2(9)$ $= 18$	$f(g(x)) = \sqrt{4g(x)}$ $\checkmark \text{ substitution}$ $\checkmark \text{ answer}$ (3)
1.4 $\frac{14}{\sqrt{63} - \sqrt{28}}$ $= \frac{14}{3\sqrt{7} - 2\sqrt{7}}$ $= \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$ $= 2\sqrt{7}$	✓ simplification ✓ simplification ✓ rationalising the denominator
a = 2 and $b = 7But 2\sqrt{7} = \sqrt{28}So a = 1 and b = 28 is also a solution.$	✓ answer (4)
	[22]

QUEST		
2.1	$ 399; 360; 323; 288; 255 $ $ -39 -37 -35 -33 $ $ 2 2 2 $ Let $T_n = an^2 + bn + c$ Then $ 2a = 2 $ $ a = 1 $ $ T_1 = 399: a + b + c = 399; b + c = 398 $ $ T_2 = 360: 4a + 2b + c = 360; 2b + c = 356 $ $ b = -42 $ $ c = 440 $	✓ 2^{nd} difference constant ✓ $a = 1$ ✓ $b + c = 398$ ✓ $2b + c = 356$ ✓ $b = -42$ ✓ $c = 440$
		(6)
	$T_n = n^2 - 42n + 440$	
	$ \mathbf{OR} \\ 2a = 2 \\ a = 1 $	
	$T_2 - T_1 = -39$	✓ 2 nd difference
	4a + 2b + c - a - b - c = -39	constant
	3a+b=-39	$\checkmark a = 1$
	3 + b = -39	$\checkmark 3a + b = -39$
	b = -42	$\checkmark b = -42$
	a+b+c=399	
	1-42+c=399	$\checkmark a + b + c = 399$
	c = 440	$\checkmark c = 440$
	$T_n = n^2 - 42n + 440$	(6)
	$I_n - n = 42n \mp 440$	
	OR	
	2a=2	✓ 2 nd difference
	a=1	constant
	$399 - T_0 = -41$	$\checkmark a = 1$
	$T_0 = 440.$	$\checkmark 399 - T_0 = -41$
	$But T_0 = c$	$\checkmark c = 440$
	\therefore c = 440	√
	$T_n = n^2 + bn + 440$	$399 = 1^2 + b(1) + 440$
	$399 = 1^2 + b(1) + 440$. ,
	399 - 441 = b	$\checkmark b = -42$
	-42 = b	
	$T_n = n^2 - 42n + 440$	
	\mathbf{OR}	(6)
	<u>l - </u>	l · · · · · · · · · · · · · · · · · · ·

	The sequence is $20^2 - 1$; $19^2 - 1$; $18^2 - 1$; $17^2 - 1$; $T_1 = 20^2 = (20 - 0)^2 - 1$ $T_2 = 19^2 = (20 - 1)^2 - 1$ $T_3 = 18^2 = (20 - 2)^2 - 1$ $T_n = (20 - (n - 1))^2 - 1 = (21 - n)^2 - 1$	✓ rewriting terms as squares ✓ ✓ ✓ establishing that $T_n = (20 - (n-1))^2$ ✓ $T_n = (21 - n)^2$ (6)
2.2	$n^{2} - 42n + 440 = 0$ $(n - 22)(n - 20) = 0$ $n = 22 \text{ and } n = 20$ both terms 22 and 20 have values of 0. OR $(21-n)^{2} - 1 = 0$	✓ equation ✓ answers (3)
	21-n=1 or $-1n=20$ or $n=22$	✓ equation ✓ answers (3)
2.3	$n = \frac{-(-42)}{2(1)}$ $n = 21$ At the 21 st term, the lowest value is obtained.	✓ answer (1)
	OR 2n - 42 = 0 2n = 42 n = 21 \therefore At the 21^{st} term, the lowest value is obtained. OR $T_n = (21 - n)^2 - 1 \therefore$	✓ answer (1)
	For $n = 21$, $T_n = (21 - n)^2 - 1 = (21 - 21)^2 - 1 = -1$ For $n = 21$, the lowest value $(= -1)$ is obtained.	✓ answer (1) [10]

Mathematics/P1

3.1	Let	
	$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} $ (1)	\checkmark writing S_n as a
	Then	series
	$r \times S_n = r(a + ar + ar^2 + ar^3 + \dots + ar^{n-1})$	(): G
	$= ar + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + ar^{n} $ (2)	✓ writing $r.S_n$ as a series
	(2)-(1) gives:	
	$rS_n - S_n = ar^n - a$	✓ subtracting
	$S_n(r-1) = a(r^n - 1)$	✓ removing
	$a(r^n-1)$	common factors
	$S_n = \frac{a(r^n - 1)}{(r - 1)}$	(4)
2.2		
3.2	$a = 3$; $r = \frac{1}{3}$	$\checkmark r = \frac{1}{3}$
	$S = \frac{a}{a}$	3
	$\int_{-\infty}^{\infty} 1-r$	
	$=\frac{3}{1}$	✓ substitution
	$S_{\infty} = \frac{a}{1 - r}$ $= \frac{3}{1 - \frac{1}{3}}$	
	0	√ ongwor
	$=\frac{9}{2}$	✓ answer (3)
	2	[7]

QUESTION 4

4.1	Term	Income	Expenses	Savings	✓ 30 000	
	1	120 000	90 000	30 000	✓ 27 000	
	2	132 000	105 000	27 000	✓ 24 000	
	3	144 000	120 000	24 000		
	30 000 +	27 000 + 24	000 ++ 0.		✓ series	(4)
4.2	_	= Income – E				
		2	$20\ 000 + 12\ 00$	· /		
	Expenses	s in year $n = 9$	90 000 + 15 0	00(n-1)		
	12000	0 + 12000(n -	-1) = 90000 +	15000(<i>n</i> – 1)	✓✓ equating	
	30000+	12000n - 120	000 = 15000n	-15000		
		330	000 = 3000n			
			n = 11		✓ answer	
	∴ After	11 years.				(3)
	OR					

	a = 30 000 d = -3000	✓✓ equation
	$T_n = 30000 + (n-1)(-3000)$ 0 = 30000 - 3000n + 3000 3000n = 33000 $\therefore n = 11$ \therefore After 11 years	✓ answer (3)
4.3	120000 + 12000(25 - 1) = 90000 + x(25 - 1) $x = 13250$	✓ equating ✓ answer
		(2) [9]

5.1	y = 1	✓ answer	
	x = 3	✓ answer	
		(2	2)
	$\frac{2}{0-3}+1$ $=\frac{1}{3}$ $y-int\left(0;\frac{1}{3}\right)$ $y = \frac{x-1}{x-3}$ $\therefore f(0) = \frac{1}{3}$	✓ answer ✓ substitution	
	x-int: $0 = \frac{2}{x-3} + 1$	y = 0	
	$ 0 = 2 + (x - 3) 1 = x $ $ (1; 0) $ $ f(x) = 0 \Rightarrow x - 1 = 0 \Rightarrow x = 1 $	✓ answer (3	3)

6.1	$-x^2 + 7x + 8 = 0$ $x^2 - 7x - 8 = 0$	✓ = 0	
	(x-8)(x+1) = 0	✓ factors	
	x = 8 or $x = -1A(-1; 0)B(8; 0)$	✓ answer A ✓ answer B	
	(- , -)		(4)
6.2	$-x^2 + 7x + 8 = -3x + 24$	✓ equating	
	$-x^2 + 10x - 16 = 0$	✓ standard form	
	$x^2 - 10x + 16 = 0$	(f4	
	(x-8)(x-2) = 0	✓ factors	
	x = 8 or $x = 2$	✓ answer	
	x-value of D is 2. (i.e. $a = 2$)		(4)
6.3	$ST = (-x^2 + 7x + 8) - (-3x + 24)$	✓ subtraction	
	$=-x^2+10x-16$	✓ answer	(2)
6.4		✓ method	(2)
0.4	Maximum length of ST is at $x = \frac{-10}{2(-1)} = 5$.	• method	
	Maximum langth of ST is $5^2 + 50 = 16 = 0$	✓ answer	
	Maximum length of ST is $-5^2 + 50 - 16 = 9$.		(2)
	OR	(mantha a d	
	$A = \frac{1}{2} = \frac{4(-1)(-16) - 10^2}{2}$	✓ method ✓ answer	
	Maximum length of ST is $\frac{4(-1)(-16)-10^2}{4(-1)} = 9$	ans wor	(2)
			[12]

7.1	$y = \log_3 x$	✓ answer	
	A		(1)
7.2	$y = f^{-1}(x)$	$y = f^{-1}(x)$ $\checkmark x\text{-intercept}$	
	$y = f^{-1}(x-2)$	$\checkmark \text{ shape}$ $y = f^{-1}(x-2)$	
		✓ x-intercept ✓ shape	(4)
7.3	$2 \le x \le 5$	✓✓ answer	
			(2) [7]

QUESTION 8

9.1.1	Total amount = $P(1 + in)$	✓ substitution into
	$= 55\ 000(1+0,1275(4))$ $= 83\ 050$	simple interest formula ✓ answer
		✓ answer ✓ ÷ 48
	Monthly instalment $=\frac{83050}{4 \times 12}$	V - 40
		✓ answer (4)
9.1.2	= R 1730,21	✓ substitution into
7.1.2	$x \mid 1 - \left(1 + \frac{0.2}{1}\right)$	formula
	55000	
	$33000 = {0,2}$	$\checkmark i = \frac{3}{12}$
	$55000 = \frac{x \left[1 - \left(1 + \frac{0.2}{12} \right)^{-12 \times 4} \right]}{\frac{0.2}{12}}$	$\checkmark i = \frac{0.2}{12}$ $\checkmark n = 48$
	$x = R \ 1 \ 673,67$	✓ answer
	a better option because monthly repayments are less.	(4)
9.1.3	1673,67 × 48	
	= 80336,16	✓ 80336,16
	80336,16 = 55000(1+4i)	√
	1,460657455 = 1 + 4i	80336,16 = 55000(1+4i)
	i = 0.11516436	
	Rate = 11,52%	
	,	✓ answer
		(3)
9.2	$80000 = \frac{25000 \left[1 - (1 + 0.1375)^{-n} \right]}{0.1375}$	✓ substitution into
	0,1375	correct formula
	$\frac{11}{25} = 1 - (1 + 0.1375)^{-n}$	✓ simplification
	$\frac{14}{25} = (1+0.1375)^{-n}$	
		✓ taking log of both
	$\log \frac{14}{25} = -n\log(1{,}1375)$	sides
	n = 4,50054779	✓ answer
	The money will last for 4 full years	(4)
		(4)
	OR	
	Candidate guesses 4 years.	
	Then balance available at the end of 4 years (after the 4 th	✓ guesses 4 years
	withdrawal) is	J J T T
	$80000(1+0.1375)^4 - 25000\left(\frac{(1+0.1375)^4 - 1}{0.1375}\right) = R11354,86.$	✓✓ calculates balance at end of 4 th year
	At the end of the 5 th year cannot have grown to R25000.	✓ conclusion about
		balance.
		(4)

9.3.1	A = P + (Pi)n which is a linear function of n .	✓ linear	(1)
9.3.2	P O n	✓ $P > 0$ ✓ slope >0	(2)
	Accept also: A P		
9.3.3	The slope is Pi . Therefore this is the increase for A for each	✓ Pi	
7.3.3	The slope is Pi . Therefore this is the increase for A for each increase of 1 in n . OR $A(n+1) - A(n) = [P + Pi(n+1)] - [P + Pin]$ $= Pi[(n+1) - n]$ $= Pi$	Y Ft	(1)
	OR A(1) A(0) (B + B;) (B + 0) B;		
	A(1) - A(0) = (P + Pi) - (P + 0) = Pi		[19]

10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$=\lim_{h\to 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$	✓ substitution into correct formula	
	$= \lim_{h \to 0} \frac{\frac{x - (x + h)}{x(x + h)}}{h}$	✓ expansion	
	$= \lim_{h \to 0} \frac{-h}{x(x+h)} \times \frac{1}{h}$	✓ simplification	
	$= \lim_{h \to 0} \frac{1}{x(x+h)}$ $= -\frac{1}{x^2}$ $y = (2-5x)^2$	✓ answer	4)
10.2	$y = (2-5x)^{2}$ $y = 4-20x+25x^{2}$	✓ simplification	
	$\frac{dy}{dx} = -20 + 50x$	✓✓ answers	3)
	OR		
	$y = (2-5x)^2$ By the chain rule	✓ simplification	
	$\frac{dy}{dx} = (2)(2 - 5x)(-5)$ $= -20 + 50x$		3) 7]

11.1	0 = x - 2		
	x=2		
	A(2;0)	✓ answer	(1)
11.2	f(-1) = 0: $-a + c = 2$	$\checkmark -a+c=2$	(1)
	f(2) = 0: $8a - 2c = 2$	$\checkmark 8a - 2c = 2$	
	a = 1, c = 3	$\checkmark a = 1$ $\checkmark c = 3$	
		$\mathbf{v} c = 3$	
	OR		
	a(x+1)(x+1)(x-2) = 0	(f4	
	a(0+1)(0+1)(0-2) = -2	✓ factors ✓ substitution	
	-2a = -2	Substitution	
	a=1		
	$f(x) = (x^2 + 2x + 1)(x - 2)$	$\checkmark a$ $\checkmark c = -3$	
	$= x^3 - 3x - 2$	V C3	
	c=-3		(4)
11.3	f'(x) = 0	$\checkmark f'(x) = 0$	
	$3x^2 - 3 = 0$	$\checkmark x^2-1$	
	$x^2 - 1 = 0$		
	(x+1)(x-1) = 0	✓ answer	
	B(1;-4)		(3)
11.4	3 2 2	(time - C 1	
11.4	$x - 2 = x^3 - 3x - 2$	✓ equating f and g ✓ standard form	
	$0 = x^3 - 4x$	Staridard Torrir	
	$0 = x(x^2 - 4)$		
	0 = x(x-2)(x+2)	✓ factors	
	$x_C = -2, \ y_C = (-2)^2 - 3(-2) - 2 = -4$	$\checkmark x_C = -2$	
	C(-2;-4)	$\checkmark x_C = -2$ $\checkmark y_C = -4$	
	$m_{BC} = \frac{-4 - (-4)}{1 - (-2)}$		
		\checkmark m = 0 \checkmark conclusion	
	= 0 BC is parallel to the <i>x</i> -axis.	✓ conclusion	(7)
	Be is paramer to the x-axis.		(7)
	OR		
	Following from $C(-2; -4)$, B and C have the same y – coordinate,		
	viz. -4 . So BC is parallel to the <i>x</i> -axis.		(7)
	OR		

	$(x-2) = (x-2)(x+1)^2$		
	$\therefore (x+1)^2 = 1 \text{ for } x \neq 2$		
	$\therefore x+1=\pm 1$		
	$\therefore x = 0 \text{ or } x = -2$		4-5
	y = -4		(7)
11.5	f''(x) = 0	$\checkmark f''(x) = 0$	"
	6x = 0		
	x = 0	✓ answer	(2)
11.6	k < -4 or $k > 0$	✓✓ answer	(-)
		✓ or	(2)
11.7	f'(x) < 0		(3)
11.7	-1 < x < 1	✓✓answer	
			(2)
	OR		
	$3(x^2-1) < 0$		
	if $(x+1)(x-1) < 0$	✓✓answer	(2)
	-1 < x < 1		(2) [22]

This alternative memo must be used for students who follow through using c=-3. This marking memo must be used independently of the one provided in the existing memorandum.

QUESTION 11

11.1	0 = x - 2 $x = 2$ $A(2:0)$	✓ answer (1)
11.2	f'(-1) = 0; $-a + c = 2f(2) = 0$; $8a - 2c = 2$	$\checkmark f'(-1) = 0; -a + c = 2$ $\checkmark f(2) = 0; 8a - 2c = 2$ (4)
11.3	$f(x) = x^{2} + 3x - 2$ $f'(x) = 0$ $3x^{2} + 3 = 0$	$\checkmark f'(x) = 0$ $\checkmark 3x^2 + 3 = 0$ (3)

Please turn over

11.4	If not attempted (3 marks)	
	OR	
	To calculate C $x-2 = x^3 + 3x - 2$ $x^3 + 2x = 0$ $x(x^2 + 2) = 0$ x = 0 y = -2	$\checkmark \checkmark x - 2 = x^3 + 3x - 2$ $\checkmark x^3 + 2x = 0$ $\checkmark x(x^2 + 2) = 0$ $\checkmark x = 0$ $\checkmark y = -2$ (7)
11.5	x = 0 (any method used)	\checkmark answer (2)
		unswer (2)
11.6	Not Attempted : 0 marks OR $k > 0$	✓✓✓ answer (3)
11.7	If $x > -1$, Maximum of 1 Mark OR x is between -1 and $(x - \text{value})$ of B $f(x) = x^3 + 3x - 2$ $f'(x) = 3x^2 + 3 < 0$	$f'(x) = 3x^2 + 3 < 0$ (2) [22]

Copyright reserved

12.1	Length of sides of square = $\frac{4-x}{4} = 1 - \frac{x}{4}$	✓ answer	(1)
12.2	$x = 2\pi r$		()
	$r = \frac{x}{2\pi}$	$\checkmark r = \frac{x}{2\pi}$	
	Areas = $\left(\frac{4-x}{4}\right)^2 + \pi \left(\frac{x}{2\pi}\right)^2$	✓ sum of areas	
	$= \frac{16 - 8x + x^2}{16} + \frac{x^2}{4\pi}$ $= 1 - \frac{1}{2}x + \left(\frac{1}{16} + \frac{1}{4\pi}\right)x^2$	✓ simplification ✓ simplification	
	OR	1	(4)
	$x = 2\pi r$		
	$r = \frac{x}{2\pi}$	√ r	
	$\left[\left(1 - \frac{x}{4} \right)^2 + \pi \left(\frac{x}{2\pi} \right)^2 \right]$	✓ sum of areas	
	$1 - \frac{1}{2}x + \frac{x^2}{16} + \frac{x^2}{4\pi}$	✓ simplification	
	$1 - \frac{1}{2}x + \left(\frac{\pi + 4}{16\pi}\right)x^2$	✓ simplification	(4)
12.3	$x = \frac{-b}{2}$		
	$=\frac{\frac{1}{2a}}{\frac{1}{2}}$	✓✓ substitution	
	$2\left(\frac{\pi+4}{16\pi}\right)$	✓ answer	(3)
	= 1,76 meter OR		

	$f'(x) = \frac{1}{2} + \frac{\pi + 4}{8\pi}x$ $f'(x) = 0$
$f'(x) = 0 = -\frac{1}{2} + \frac{\pi + 4}{8\pi}x$	
$4\pi = (\pi + 4)x$	
$x = \frac{4\pi}{\pi + 4}$	✓ answer (3)
x = 1,76 m for the circle and 2,24 m for the square	[8]

13.1	$4x + 2y \le 32 \therefore \ y \le -2x + 16$	✓ answer	
	x	✓ answer	
	$2x + 4y \le 36 \therefore \ y \le -\frac{x}{2} + 9$	✓ answer	
	$x + y \le 10 \qquad \therefore \ y \le -x + 10$		(3)
13.2	Attached graph	$\checkmark y = -2x + 16$	
		✓ $y = -\frac{x}{2} + 9$ ✓ $y = -x + 10$ ✓ feasible region	
		$\checkmark y = -x + 10$	
		✓ feasible region	
			(4)
13.3	P = 60x + 80y	✓ answer	
			(1)
13.4	80y = -60x + P	13.4	
	3 P	✓ search line	
	$y = -\frac{3}{4}x + \frac{P}{480}$		
	Maximum profit at (2; 8)	✓ ✓ (2;8)	
	:. Grade 10: 2 learners must be trained to give a maximum profit		
	Grade 11: 8 learners must be trained to give a maximum profit		(3)
13.5	$m=-\frac{4}{3}$	$\checkmark m = -\frac{4}{3}$ $\checkmark (6; 4)$	
	Since the gradient of the new profit function is not equal to the	√ (6 · 4)	
	gradient of the initial profit function, the new maximum point is	(0, 7)	
	(6; 4) that gives an optimal solution.		(2)
	(c, 1) 6- 1-3 with opening constitution.		(-)
			[13]

NSC – Memorandum

QUESTION 13.2 & 13.4

Grade 10 learners