Neural Networks 2023-2024

Task 1 Dry Beans

Prepared by:

Team 15

abdulrhmansayed70@gmail.com

TEAM MEMBERS

NAME	ID	DEPARTMENT
هبه طارق كمال عبدالمطلب	20201700959	CS
عبدالرحمن سيد جابر أحمد	20201701089	CS
نورهان ايمن محمد عبدالرحمن	20201700939	CS
حنین ابراهیم امام عکاشه	20201700230	CS
مريم احمد اسماعيل محمود	20201700800	CS
رقيه محمد ابراهيم مصطفي عبده	20201701253	CS

PRE-PROCESSING

1. Null Handling

Fill nulls with the mean

2. Normalize Train Data

Normalize using **Min Max Scaler**

3. Normalize Test Data

Normalize using **Min Max Scaler**

4. Label Encoder

Label the output classes

5. Data Splitting

Split the data set into train & test

First Case

- Features: Area, and Major Axis Length.
- Classes: class 1 (BOMBAY), and class 3 (SIRA).
- The <u>decision boundary</u> separated the samples with **zero** error in training.
- The model is capable of generalization because it also performed well on testing data.

Second Case

- **Features**: Area, and Perimeter.
- Classes: class 1(BOMBAY), and class 3 (SIRA)
- The <u>decision boundary</u> separated the samples with **zero** error in training.
- The model is capable of **generalization** because it also performed well on testing data.

Third Case

- **Features**: Area, and Roundness.
- Classes: class 1 (BOMBAY), and class 3 (SIRA)
- The <u>decision boundary</u> separated the samples with zero error in training.
- The model is capable of **generalization** because it also performed well on testing data.

Fourth Case

Accuracy = 76%

Features: Perimeter, and Major Axis Length.

Classes: class 1 (BOMBAY), and class 2 (CALI)

The <u>decision boundary</u> could not separate the samples even when they are **linearly separable** because there is **no bias**.

Fifth Case

Accuracy = 0.96%

- **Features**: Area, and Perimeter.
- Classes: class 1(BOMBAY), and class 2(CALI)
- The <u>decision boundary</u> separated the samples with minimal error in training. Since the data is linearly separable, adding bias could result zero error.

First Case

- Those 2 features are highly correlated to each other, they are linearly separable as figured
- This means that these features have the most useful information for classifying data

Second Case

Accuracy = 85%

Here we do not use bias so the line did not fit the data although it is linearly separable

Third Case

Accuracy = 100%

Here we use bias with the previous case features and classes Now The line is able to separate data and get high accuracy

Fourth Case

Accuracy = 100%

In the training, we can see that there is an outlier, but in testing the algorithm gets high accuracy

Fifth Case

Accuracy = 100%

The selected 2 features are highly correlated with the selected 2 classes

CONCLUSION

- Almost all combinations of features discriminate classes that are <u>Linearly Separable</u>
- Using <u>bias</u> improves the results.

Area & Perimeter have the most useful information for classifying data

THANK YOU