1

Assignment 16

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment16

1 Problem

True or false? If the triangular matrix A is similar to a diagonal matrix, then A is already diagonal.

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$
Theorem	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Then T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots (x - c_k) \tag{2.0.1}$ where $c_1, c_2,, c_k$ are distinct elements of F .
Diagonalizable	A is called diagonalizable if it is similar to diagnol matrix B i.e., if \exists an invertible matrix P such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \tag{2.0.2}$

TABLE 1: Definitions and theorem used

3 Solution

Given	The triangular matrix A is similar to a diagonal matrix.		
Example	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ We can see that A is triangular but not diagonal.	(3.0.1)	
Characteristic polynomial	$\begin{vmatrix} x\mathbf{I} - \mathbf{A} \end{vmatrix} = \begin{vmatrix} x - 1 & 2 \\ 0 & x - 3 \end{vmatrix}$ $= (x - 1)(x - 3)$	(3.0.2) (3.0.3)	
Minimal polynomial	As the eigen values are distinct, minimal polynom $m(x) = (x - 1)(x - 3)$	ial (3.0.4)	
Diagonalizable	From theorem (2.0.1), We can say that A diagonal it is similar to a diagnol matrix.	izable i.e.,	
Finding matrix similar to A	The eigen values are $\lambda_1 = 1, \lambda_2 = 3$ The eigen vectors are $(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x_i} = 0$ $\lambda_1 = 1 \implies \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} \mathbf{x_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \mathbf{x_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\lambda_2 = 3 \implies \begin{pmatrix} -2 & 2 \\ 0 & 0 \end{pmatrix} \mathbf{x_2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \mathbf{x_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ The invertible matrix $\mathbf{P} = \begin{pmatrix} \mathbf{x_1} & \mathbf{x_2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ The diagnol matrix similar to \mathbf{A}	(3.0.5) (3.0.6) (3.0.7) (3.0.8)	

	$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} $ (3.0.10) $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} $ (3.0.11)	
Conclusion	From above, we can say that A need not be diagonal to satisfy given conditions. So, given statement is false.	

TABLE 2: Finding minimal polynomial and simila