Réseaux de neurones

IFT 780

Réseaux de neurones par graphe

Par Pierre-Marc Jodoin

1

Documentation

Wu et al. **A Comprehensive Survey on Graph Neural Networks**, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 1, 2021 https://arxiv.org/pdf/1901.00596.pdf

W. Hamilton *Graph Representation Learning*, Morgan & Claypool www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv:2104.13478 geometricdeeplearning.com/

Petar Velickovic, Everything is Connected: Graph Neural Networks https://arxiv.org/pdf/2301.08210.pdf

https://www.youtube.com/playlist?list=PLnyQfwIuLcvBqxVqPF2UvILRqOFLuO4PM

Concepts fondamentaux

Un graph (G) est constitué de nœuds (V) et d'arêtes (E) :

$$G = (V, \mathcal{E})$$

$$\begin{split} \mathcal{V} &= \{a,b,c,....,k\} \\ \mathcal{E} &= \{ab,ad,bf,...,kj\} \end{split}$$

Matrice d'adjacence $A \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$

5

5

Matrice d'adjacence

$$A \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$$
 tel que $a_{ij} = \begin{cases} 1, & (i,j) \in \mathcal{E} \\ 0, & sinon \end{cases}$

$$A = \begin{pmatrix} & & i & & & & & \\ & & & i & & & & \\ & & a_{ij} & ---- \end{pmatrix} j$$

 $|\mathcal{V}|$: nombre de nœuds dans le graphe

A est symétrique pour tout graphe non orienté

6

Concepts fondamentaux

Exemple

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{e} \\ \end{pmatrix}$$

7

7

Différentes configurations

Orienté vs non orienté

• Non orienté : $A = A^T$

• Orienté : *A* est assimétrique

Ex: dans un réseau social, les relations d'amis peuvent être bidirectionnelles ou non.

Poids: Une arête peut avoir un poids $w_{ij} \in R$

Ex: dans une molécule, un poids peut être la force d'attraction entre 2 atomes.

Caractéristiques: les nœuds/arêtes peuvent avoir des caractéristique $\vec{x}_i \in R^d$ Ex: dans une molécule, un noeud peut contenir le nombre d'électrons, protons, neutrons (donc 3 caractéristiques).

Multi-relationnel: différents types d'arêtes $(i, j, t) \in \mathcal{E}$ Ex: dans un graph social, t est la relation (parent, époux, etc)

Hétérogène : différents types de nœuds

Ex: dans un réseau d'interactions sociales (personnes, institutions, objets, etc)₈

Différentes tâches

Graphe Nœuds Arrêtes

Graph Classification

Déterminer si une molécule est soluble dans l'eau basé sur les atomes qui la constitue et des liens entre eux.

11

Différentes tâches

Graphe Nœuds

Arrêtes Étiquettes

Link Prediction

Déterminer dans un atlas routier si une rue entre deux endroits est bloquée (ou non)

Invariance et équivariance

Pourquoi les CNNs ont ces propriétés?

19

Convolution

$$(x*h)(i,j) = \sum_{n} \sum_{m} x(i-n,j-m)h(n,m)$$

- implique un produit scalaire + une translation
- les poids du filtre sont fixes pour l'ensemble des pixels

30	3,	22	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

https://www.jie-tao.com/types-of-convolutionstranslation/

Convolution

$$(x*h)(i,j) = \sum_{n} \sum_{m} x(i-n,j-m)h(n,m)$$

Par conséquent

- La sortie d'une convolution (et CNN) est prévisible lorsque le signal est translaté
- Les calculs sont **locaux** (fenêtre NxN)
 - > Les petites variations locales ne contaminent pas la sortie
 - C'est l'intérêt d'avoir des petites convolutions (3x3) à travers plusieurs couches d'un réseau profond

https://www.jie-tao.com/types-of-convolutionstranslation/

Le graphe le plus simple:

un ensemble de points

(un graphe sans arête)

Très pertinent : conduite autonome, reconstruction 3D, Lidar...

B. Anostol, C. Mihalache, V. Manta, Using spin images for hand gesture recognition in 3D point clouds, ICSTCC 201

25

Graphes sans arête

Que des nœuds

$$G = (V,)$$

Soit $\vec{x_i} \in \mathbb{R}^d$ le vecteur de caractéristiques du nœud i.

Soit $X \in R^{|\mathcal{V}| \times d}$ la matrice de caractéristiques contenant les vecteurs de tous les nœuds i

$$\boldsymbol{X} = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n)^T$$

Ensemble de points

Ex.: ensemble de 5 nœuds avec des caractéristiques 2D

$$\vec{x}_{a} = \begin{pmatrix} 12 \\ 25 \end{pmatrix}$$

$$\vec{x}_{b} = \begin{pmatrix} -4 \\ 33 \end{pmatrix} \bigcirc \qquad \vec{x}_{e} = \begin{pmatrix} 8 \\ -23 \end{pmatrix}$$

$$\vec{x}_{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \bigcirc \bigcirc \qquad \qquad X = \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

27

Graphes sans arête

Remarque: en faisant cela, nous avons **imposé un ordre** dans la matrice $X : \vec{x}_e$ est en premier et \vec{x}_d est en dernier

$$\vec{x}_{a} = \begin{pmatrix} 12 \\ 25 \end{pmatrix}$$

$$\vec{x}_{b} = \begin{pmatrix} -4 \\ 33 \end{pmatrix} \bigcirc \qquad \vec{x}_{e} = \begin{pmatrix} 8 \\ -23 \end{pmatrix}$$

$$\vec{x}_{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \bigcirc \bigcirc \qquad \qquad X = \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

Graphes sans arête

Remarque: l'ordre dans lequel les nœuds sont inscrits ne change pas la nature de l'ensemble des nœuds.

$$\mathbf{X} = \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 8 & -23 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 8 & -23 \\ 7 & 33 \\ 1 & 2 \end{bmatrix}$$

Toujours le même ensemble de nœuds

29

Ce qu'on souhaite

(pour la classification)

$$f(\mathbf{i}) = f(\mathbf{i})$$

Ce qu'on souhaite

(pour la classification)

$$f\left(\begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}\right) = f\left(P\left(\begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}\right)\right)$$

On veut que le réseau de neurones soit **invariant** à la permutation des lignes de X

31

Permutation matricielle

Une matrice de permutation contient des 0 et des 1 permettant de permuter des lignes.

$$\mathbb{P}_{21345}\boldsymbol{X} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} = \begin{bmatrix} 12 & 25 \\ 8 & -23 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

$$\mathbb{P}_{32514} \boldsymbol{X} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 7 & 33 \\ 8 & -23 \\ 1 & 2 \end{bmatrix}$$

Réseau invariant à la permutation

Un réseau de neurones est invariant à la permutation si pour toute matrice de permutation $\mathbb P$

$$f(\mathbb{P}X) = f(X)$$

33

Réseau invariant à la permutation

Un réseau de neurones est invariant à la permutation si pour toute matrice de permutation $\mathbb P$

Deep Sets

Un réseau très générique et invariant à la permutation est celui proposé par [Zaheer et al 2017]

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

 $\phi(.)$ et $\psi(.)$ sont des réseaux de neurones, e.g. Perceptron

M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos 1, R. Salakhutdinov, A.J. Smola Deep Sets, NeuRIPS 2017.

35

Deep Sets

Un réseau très générique et invariant à la permutation est celui proposé par [Zaheer et al 2017]

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

 $\phi(.)$ et $\psi(.)$ sont des réseaux de neurones, e.g. MLP 2 couches (ou plus)

$$\begin{split} & \rightarrow \quad \phi(\vec{v}) = \sigma(W_\phi^2 \sigma \left(W_\phi^1 \vec{v} + \vec{b}_\phi^1\right) + \vec{b}_\phi^2) \\ & \rightarrow \quad \psi(\vec{v}) = \sigma(W_\psi^2 \sigma \left(W_\psi^1 \vec{v} + \vec{b}_\psi^1\right) + \vec{b}_\psi^2) \end{split}$$

$$\rightarrow \quad \psi(\vec{v}) = \sigma(\mathbf{W}_{\psi}^2 \sigma(\mathbf{W}_{\psi}^1 \vec{v} + \mathbf{b}_{\psi}^1) + \mathbf{b}_{\psi}^2)$$

M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos1, R. Salakhutdinov, A.J. Smola Deep Sets, NeuRIPS 2017.

Deep Sets

Ex: MLP à 3 couches + 1 somme

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi_2(\psi_1(\vec{x}_i)))$$

$$X \longrightarrow \psi_1 \xrightarrow{H} \psi_2 \xrightarrow{H^{(2)}} \Sigma \xrightarrow{\overrightarrow{g}} \phi \longrightarrow f(X)$$

$$\psi_1(\vec{x}_i) = W_1 \vec{x}_i + \vec{b}_1$$

$$\psi_2(\vec{h}_i) = W_2 \vec{h}_i + \vec{b}_2$$

$$\phi(\vec{g}) = W_3 \vec{g} + \vec{b}_3$$

37

Deep Sets Ex: MLP à 3 couches + 1 somme $\psi_{1}(\vec{x}_{i}) = W_{1}\vec{x}_{i} + \vec{b}_{1} \\ \psi_{2}(\vec{h}_{i}) = W_{2}\vec{h}_{i} + \vec{b}_{2} \\ \phi(\vec{g}) = W_{3}\vec{g} + \vec{b}_{3}$ $X \longrightarrow \psi_{1} \longrightarrow \psi_{2} \longrightarrow \psi_{1} \longrightarrow \psi_{2} \longrightarrow \psi_{3} \longrightarrow \psi_{4} \longrightarrow \psi_{5} \longrightarrow \psi_$

Deep Sets

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

Comme la somme, d'autres opérateurs sont invariants aux permutations (ex. min, max, moyenne, etc.)

41

Deep Sets

$$f(X) = \phi(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

Comme la somme, d'autres opérateurs sont invariants aux permutations (ex. min, max, moyenne, etc.).

Il est d'usage de représenter l'opérateur d'agrégation par $\bigoplus_{i \in \mathcal{V}}$

Graphes sans arête : classification des nœuds (segmentation)

On cherche un réseau de neurones équivariant à la permutation

Matrice de

43

Graphes sans arête : classification des nœuds (segmentation)

$$f(X) = \mathbf{\Phi} \big(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i) \big)$$

On a qu'à retirer l'opérateur d'agrégation

$$f(\mathbf{X}) = \begin{pmatrix} \boldsymbol{\psi}(\vec{\mathbf{x}}_1) \\ \boldsymbol{\psi}(\vec{\mathbf{x}}_2) \\ \dots \\ \boldsymbol{\psi}(\vec{\mathbf{x}}_N) \end{pmatrix}$$

et c'est le mieux qu'on puisse faire avec des graphes sans arête.

En résumé

l'apprentissage sur des ensembles de points se fait en appliquant une fonction équivariante ψ sur chaque nœud indépendamment

$$\vec{h}_i = \psi(\vec{x}_i)$$

auquel on ajoute un agrégateur invariant si nécessaire

$$f(X) = \mathbf{\Phi} \Big(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i) \Big)$$

47

Apprentissage sur des graphes

Apprentissage sur des graphes

 $G = (V, \mathcal{E})$

a d

Matrice d'adjacence

 $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{e} \end{array}$

On souhaite toujours avoir un réseau invariant/équivariant

53

Ce qu'on souhaite

Ensemble de points

$$f(\mathbf{i}) = f(\mathbf{i})$$

Graphe

$$f(\checkmark) = f(\checkmark)$$

Apprentissage sur des graphes

Matrice de caractéristiques

$$X = \begin{bmatrix} \vec{x}_a \\ \vec{x}_b \\ \vec{x}_c \\ \vec{x}_d \\ \vec{x}_e \end{bmatrix}$$

Matrice d'adjacence

$$A = \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{e} \end{array}$$

On souhaite toujours avoir un réseau invariant/équivariant

55

Permutation des nœuds a et c

Matrice de caractéristiques

$$G = (V, \mathcal{E})$$

$$\begin{array}{c} a \\ c \\ \end{array}$$

$$X = \begin{bmatrix} \vec{x}_c \\ \vec{x}_b \\ \vec{x}_a \\ \vec{x}_d \\ \vec{x}_e \end{bmatrix}$$

Matrice d'adjacence

$$A = \begin{pmatrix} \mathbf{c} & \mathbf{b} & \mathbf{a} & \mathbf{d} & \mathbf{e} \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{d} \\ \mathbf{e} \end{pmatrix}$$

On souhaite toujours avoir un réseau invariant/équivariant

Permutation

La permutation de 2 (ou plus) éléments dans un graphe implique la permutation de la matrice X

$\mathbb{P}X$

la double permutation de la matrice d'adjacence

$$\mathbb{P}A\mathbb{P}^T$$

57

$$X = \begin{bmatrix} \vec{x}_c \\ \vec{x}_b \\ \vec{x}_d \\ \vec{x}_e \end{bmatrix}$$
Matrice A d'origine
$$\mathbb{P}_{32145} A \mathbb{P}_{32145}^T = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
Matrice A permutée

Permutation sur les graphes

Invariance (pour la classification du graphe)

$$f(\mathbb{P}X, \mathbb{P}A\mathbb{P}^T) = f(X, A)$$

Équivariance (pour la classification des nœuds)

$$f(\mathbb{P}X, \mathbb{P}A\mathbb{P}^T) = \mathbb{P}f(X, A)$$

59

Voisinage (neighbourhood)

Le voisinage d'un nœud i dans un graphe est généralement constitué de nœuds avec lesquels il partage une arête

$$\mathcal{N}_i = \{j : (i, j) \in \mathcal{E} \ \lor (j, i) \in \mathcal{E}\}$$

On peut mettre les vecteurs de caractéristiques du voisinage dans une matrice

$$\boldsymbol{X}_{\mathcal{N}_i} = \left\{ \vec{x}_j \colon \in j \in \mathcal{N}_i \right\}$$

Et définir une fonction sur le voisinage

$$\phi(\vec{x}_i, X_{\mathcal{N}_i})$$

Rappel

 $\phi(.), \psi(.)$ et $\rho(.)$ sont des réseaux de neurones, e.g.

67

GNN à convolution

$$\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{id} \psi(\vec{x}_i)\right)$$

 $avec \ c_{id} \in \mathcal{R}$

En général,

- c_{id} est une **constante** issue de A **non apprise** par le réseau
- $\bigoplus_{i \in \mathcal{N}_d}$ est une sommation/moyenne

M. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NeuRIPS 2016 F. Wu et al Simplifying Graph Convolutional Networks, ICLR 2019

GNN à convolution

$$\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{id} \psi(\vec{x}_i)\right)$$

 $avec \ c_{id} \in \mathcal{R}$

Exemple d'une solution viable

$$\vec{h}_d = \phi \left(c_{ad} \psi(\vec{x}_a) + c_{bd} \psi(\vec{x}_b) + c_{cd} \psi(\vec{x}_c) + c_{dd} \psi(\vec{x}_d) \right)$$

M. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NeuRIPS 2016 F. Wu et al Simplifying Graph Convolutional Networks, ICLR 2019

71

GNN à convolution

Plusieurs variantes possibles...

$$\vec{h}_d = \phi(\Sigma_{i \in \mathcal{N}_d} c_{id} \vec{x}_i)$$

Somme ponderee des voisins

et si $c_{id} = A_{id}$ (contenu de la matrice d'adjacence)

$$\vec{h}_d = \phi(A_d X)$$

Pour le graph au complet

$$H=\phi(AX)$$

 $Thomas\ N.\ Kipf\ and\ Max\ Welling\ \textit{Semi-Supervised Classification with Graph\ Convolutional\ Networks,\ 2016}$

Plusieurs variantes possibles...

 \vec{h}_d

Très utile pour les **graphes homophiles** (le poids des arêtes encodent la similarité)

Et si

Très utilisé industriellement

Pour le graph au complet

$$H = \phi(AX)$$

M. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NeuRIPS 2016 F. Wu et al Simplifying Graph Convolutional Networks, ICLR 2019

73

GNN d'attention

$$\vec{h}_d = \phi \left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \alpha(\vec{x}_i, \vec{x}_d) \psi(\vec{x}_i) \right)$$

 $avec \ \alpha(\vec{x}_i,\vec{x}_d) \in \mathcal{R}$

 $\alpha(\vec{x}_i, \vec{x}_d)$ est une fonction qui détermine **l'intensité du lien** entre les nœuds i et d.

M. Velickovic et al. *Graph Attention Network*, ICLR 2018 S. Brody et al *How Attentive are Graph Attention Networks?* ICLR 2022

GNN convolutif vs GNN d'attention

$$\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{di} \psi(\vec{x}_j)\right)$$

$$\vec{h}_d = \phi \left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{di} \psi \left(\vec{x}_j \right) \right) \qquad \qquad \vec{h}_d = \phi \left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \alpha (\vec{x}_i, \vec{x}_d) \psi \left(\vec{x}_j \right) \right)$$

Dans les 2 cas, on a une **somme pondérée** des vecteurs transformés par un réseau ψ

Dans le cas d'un GNN multicouches

- Les coefficients c_{di} sont fixes et les mêmes pour toutes les couches
- Les coefficients $\alpha(\vec{x}_i, \vec{x}_d)$ s'adaptent au contenu de chaque couche.

76

GNN avec passage de messages

 $\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \psi(\vec{x}_i, \vec{x}_d)\right)$

Passage de messages

Les arêtes apprennent l'information à combiner à chaque nœud

P. Battaglia et al. Relational inductive biases, deep learning, and graph networks, arXiv:1806.01261

GNN avec passage de messages

Passage de messages

Différences

- GNN conv : Les coefficients c_{di} sont fixes et sont des scalaires GNN attention : Les coefficients $\alpha(\vec{x}_i, \vec{x}_d)$ s'adaptent et sont des scalaires
- GNN PM : Les éléments $\psi(\vec{x}_j, \vec{x}_d)$ s'adaptent et sont des vecteurs

P. Battaglia et al. Relational inductive biases, deep learning, and graph networks, arXiv:1806.01261

78

Les 3 approches implémentent une combinaison de MLPs

Les 3 approches respectent les principes

- d'invariance aux permutations $\rightarrow \bigoplus_{i \in \mathcal{N}_d}$ opérateur d'agrégation d'invariance aux perturbations locales mineures $\rightarrow \mathcal{N}_d$ voisinage d'équivariance $\rightarrow \psi(\vec{x}_j, \vec{x}_d)$ est le même pour tous les nœuds

80

- GNN d'attention : cas particulier de GNN Passage de messages
- GNN convolutif: cas particulier de GNN d'attention
- GNN sans arête : cas particulier de GNN de convolutif
- CNN sur une grille régulière: cas particulier de GNN convolutif

Version la plus générique des GNNs à ce jour

Graph Nets*

* P.W Battaglia et al. **Relational inductive biases, deep learning, and graph networks,** arXiv:1806.01261 2018 github.com/deepmind/graph_nets

82

Version générique des GNNs

Mise à jour des arêtes

$$\vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E}$$

86

Version générique des GNNs

Mise à jour des arêtes

$$\vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E}$$

Agrégation des arêtes de chaque nœud

$$\vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} \qquad \forall k \in \mathcal{V}$$

Version générique des GNNs

Mise à jour des arêtes

$$\vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E}$$

Agrégation des **arêtes** de chaque nœud

$$\vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} \qquad \forall k \in \mathcal{V}$$

Mise à jour des nœuds

$$\vec{h}_k = \phi(\vec{x}_k, \vec{h}_{N_k}, \vec{x}_g) \qquad \forall k \in \mathcal{V}$$

88

Version générique des GNNs

Mise à jour des arêtes

$$\vec{h}_{ij} = \psi(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g), \qquad \forall ij \in \mathcal{E}$$

Agrégation des arêtes de chaque nœud

$$\vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} \qquad \forall k \in \mathcal{V}$$

Mise à jour des nœuds

$$\vec{h}_k = \phi(\vec{x}_k, \vec{h}_{N_k}, \vec{x}_g) \qquad \forall k \in \mathcal{V}$$

Agrégation des nœuds

$$\vec{h}_n = \bigoplus_{k \in \mathcal{V}} \vec{h}_k$$

Version générique des GNNs

Mise à jour des arêtes

$$\vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E}$$

Agrégation des arêtes de chaque nœud

$$\vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} \qquad \forall k \in \mathcal{V}$$

Mise à jour des **nœuds**

$$\vec{h}_k = \phi(\vec{x}_k, \vec{h}_{N_k}, \vec{x}_g) \qquad \forall k \in \mathcal{V}$$

Agrégation des nœuds

$$\vec{h}_n = \bigoplus_{k \in \mathcal{V}} \vec{h}_k$$

Mise à jour du graph

$$\vec{h}_g = \rho \big(\vec{h}_n, \vec{h}_{N_k}, \vec{x}_g \big)$$

90

En conclusion...

94

Principe d'invariance Principe d'équivariance

3 familles

- GNN convolutif
- GNN d'attention
- GNN passage de messages

Graph Nets = le GNN le plus générique qui soit

GNN = des MLP bien agencés!