CS 302 Recitation 9

December 7, 2020

- a) Construct a PDA accepted by empty stack for the language contains only the palindrome strings.
- b) Construct a PDA accepted by final state for the same language.

- a) Construct a PDA accepted by empty stack for the language contains only the palindrome strings.
- b) Construct a PDA accepted by final state for the same language.

Accepted by empty stack:

- a) Construct a PDA accepted by empty stack for the language contains only the palindrome strings.
- b) Construct a PDA accepted by final state for the same language. Accepted by empty

- a) Construct a PDA accepted by empty stack for the language contains only the palindrome strings.
- b) Construct a PDA accepted by final state for the same language.

Determine whether the language

 $L = \{a^n b^n c^j : n \le j\}$ is context-free or not.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

Determine whether the language $L = \{a^n b^n c^j : n \le j\}$ is context-free or not.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$
- With pumping length p, $a^p b^p c^p$ is in the language.

Determine whether the language

$$L = \{a^n b^n c^j : n \le j\}$$
 is context-free or not.

Pumping Lemma Reminder

- 1) $u.v^i.w.x^i.y \in L, i = 0, 1, 2, ...$
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$
- With pumping length p, $a^p b^p c^p$ is in the language.
- Case 1: vx is a^q , b^q , c^q , or has only a and b with different numbers, or has only b and c: For i = 0, $u.w.y \notin L$.

Determine whether the language

 $L = \{a^n b^n c^j : n \le j\}$ is context-free or not.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$
- With pumping length p, $a^p b^p c^p$ is in the language.
- Case 1: vx is a^q , b^q , c^q , or has only a and b with different numbers, or has only b and c: For i = 0, $u.w.y \notin L$.
- Case 2: vx only has a and b with equal numbers: For i = 2, $u.v^2.w.x^2.y \notin L$.

Determine whether the language $L = \{a^n b^j c^k : k = jn\}$ is context-free or not.

Pumping Lemma Reminder

- **1**) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- 3) $|v.w.x| \le p$

With pumping length p, $a^p b^p c^{p^2}$ is in the language.

Pumping Lemma Reminder

1)
$$u.v^i.w.x^i.y \in L$$
, $i = 0, 1, 2, ...$

2)
$$|v.x| > 0$$
,

3)
$$|v.w.x| \le p$$

With pumping length p, $a^pb^pc^{p^2}$ is in the language.

Pumping Lemma Reminder

For $s = u.v.w.x.y \in L$ and pumping length p,

1)
$$u.v^i.w.x^i.y \in L$$
, $i = 0, 1, 2, ...$

Contradiction!

2)
$$|v.x| > 0$$
,

Case 1: vx is a^q , b^q , c^q , or only has a and b: For i = 0, $u.w.y \notin L$.

Changing the length of only one type of letter is enough.

Changing the length of only a and b parts are enough.

Case 2: vx has only b and c: For i = 2, $u.v^2.w.x^2.y \notin L$. Let #b's and #c's in vx are q and r. $u.v^2.w.x^2.y = a^pb^{p+q}c^{p^2+r}$ $p(p+q) = p^2 + r$ $p^2 + pq = p^2 + r$

pq = r, 0 < q < p and 0 < r < p

Determine whether the language $L = \{a^n : n \text{ is a prime}\}$ is context-free or not.

Pumping Lemma Reminder

- **1**) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

$$|vx| = k > 0$$

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

$$|vx| = k > 0$$

 $|u.v^{i}.w.x^{i}.y| = m + (i - 1)k$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

- **1**) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

$$|vx| = k > 0$$

$$|u.vi.w.xi.y| = m + (i - 1)k$$

$$i = m + 1$$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

$$|vx| = k > 0$$

 $|u.v^{i}.w.x^{i}.y| = m + (i - 1)k$
 $i = m + 1$
 $|u.v^{m+1}.w.x^{m+1}.y| = m + (m + 1 - 1)k = m + mk = m(k + 1)$

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

$$|vx| = k > 0$$

 $|u.v^i.w.x^i.y| = m + (i-1)k$
 $i = m+1$
 $|u.v^{m+1}.w.x^{m+1}.y| = m + (m+1-1)k = m + mk = m(k+1)$
Since $k > 0$, $m(k+1)$ is not prime.

With pumping length p, choose m s.t. $m \ge p$ and m is prime. a^m is in the language.

Pumping Lemma Reminder

For $s = u.v.w.x.y \in L$ and pumping length p,

- **1** 1) $u.v^i.w.x^i.y \in L$, i = 0, 1, 2, ...
- 2)|v.x| > 0,
- **3**) $|v.w.x| \le p$

$$|vx| = k > 0$$

 $|u.v^i.w.x^i.y| = m + (i - 1)k$
 $i = m + 1$
 $|u.v^{m+1}.w.x^{m+1}.y| = m + (m + 1 - 1)k = m + mk = m(k + 1)$
Since $k > 0$, $m(k + 1)$ is not prime.

Contradiction!