Convolutional Neural Networks

PHYS 555

So far: vectorized inputs

- aka tabular data
- aka catalogues
- aka structured data

age	sex	<u>bmi</u>	children	smoker	region	charges
19	female	27.9	0	yes	southwest	16884.924
18	male	33.77	1	no	southeast	1725.5523
28	male	33	3	no	southeast	4449.462
33	male	22.705	0	no	northwest	21984.47061
32	male	28.88	0	no	northwest	3866.8552
31	female	25.74	0	no	southeast	3756.6216
46	female	33.44	1	no	southeast	8240.5896
37	female	27.74	3	no	northwest	7281.5056
37	male	29.83	2	no	northeast	6406.4107
60	female	25.84	0	no	northwest	28923.13692
25	male	26.22	0	no	northeast	2721.3208
62	female	26.29	0	yes	southeast	27808.7251
23	male	34.4	0	no	southwest	1826.843
56	female	39.82	0	no	southeast	11090.7178
27	male	42.13	0	yes	southeast	39611.7577
19	male	24.6	1	no	southwest	1837.237
52	female	30.78	1	no	northeast	10797.3362
23	male	23.845	0	no	northeast	2395.17155
56	male	40.3	0	no	southwest	10602.385
30	male	35.3	0	yes	southwest	36837.467
60	female	36.005	0	no	northeast	13228.84695
30	female	32.4	1	no	southwest	4149.736
18	male	34.1	0	no	southeast	1137.011
34	female	31.92	1	yes	northeast	37701.8768
37	male	28.025	2	no	northwest	6203.90175
59	female	27.72	3	no	southeast	14001.1338
63	female	23.085	0	no	northeast	14451.83515
55	female	32.775	2	no	northwest	12268.63225
23	male	17.385	1	no	northwest	2775.19215
31	male	36.3	2	yes	southwest	38711
22	male	35.6		yes	southwest	35585.576
18	female	26.315	0	no	northeast	2198.18985

What can we do with unstructured data?

Could we apply an MLP for images?

Take an RGB 640 x 480 image.

- First layer: as many as input data
- Second layer 1000 neurons

Number of parameters: 640×480×3×1000 + 1000 = 922M!

Spatial organization of the input is destroyed!

Convolutional Neural Network (CNN or ConvNet)

Motivations for convolutions

- Local connectivity
 - a neuron depends only on a few local input neurons
 - translation invariance
- Comparison to a fully connected
 - Parameter sharing: reduces overfitting
 - Make use of spatial structure, strong prior for vision

CNN are simpler than ANN

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

CNN are simpler than ANN

- this is an 1d convolution and generalizes to 2d
- this new mapping is a convolutional layer

Convolutions recap

Discrete convolution (actually cross-correlation) between two functions f and g:

$$(f\star g)(x)=\sum_{a+b=x}f(a).\,g(b)=\sum_af(a).\,g(x+a)$$

2D-convolutions (actually 2D cross-correlation):

$$(f\star g)(x,y)=\sum_n\sum_m f(n,m).\,g(x+n,y+m)$$

f is a convolution **kernel** or **filter** applied to the 2-d map g (our image)

Convolutions

CNNs slide the same kernel of weights across their input, thus have local sparse connectivity and tied weights Sparse connectivity + parameter sharing

Parameters are shared (tied weights) across all neurons

Channels and output dimensions

CNNs output dimensions

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Padding

- Padding: artificially fill borders of image
- Useful to keep spatial dimension constant across filters
- Useful with strides and large receptive fields
- Usually: fill with 0s

Strides

- Strides: increment step size for the convolution operator
- Reduces the size of the output map

Pooling

- Spatial dimension reduction
- Local invariance
- No parameters: max or average of inputs

1	1	2	4			
5	6	7	8			
3	2	1	0			
1	2	3	4			

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling adds some translation invariance

Ex: Max pooling

Pooling adds some translation invariance

Ex: Max pooling

Layer and filter shapes

Kernel or **Filter** shape (F,F,C^i,C^o)

- $F \times F$ kernel size,
- ullet C^i input channels
- ullet C^o output channels

Number of parameters: $(F imes F imes C^i + 1) imes C^o$

Activations or **Feature maps** shape:

- ullet Input (W^i,H^i,C^i)
- Output (W^o, H^o, C^o)

$$W^o = (W^i - F + 2P)/S + 1$$

Determining the sizes of the convolutional layers

Wi: size of input vector

F: size of filter

Wo: size of output

P: size of filter P: size of padding S: size of strides
$$W^o = \texttt{floor}\left(\frac{W^i - F + 2P}{S} + 1\right)$$

Putting it all together

Classic ConvNet architecture:

- Conv Blocks:
 - Convolution + ReLU
 - Convolution + ReLU
 - 0 ...
 - Max pooling
- Flatten output
- Fully connected layers
- Softmax (for multi-class)

CNN example architecture and code (keras)


```
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
# Add another conv laver with ReLU + GAP
model.add(Convolution2D(num_input_channels, 3, 3, activation='relu', border_mode="same"))
model.add(AveragePooling2D((14, 14)))
model.add(Flatten())
# Add the W layer
model.add(Dense(nb classes, activation='softmax'))
```

What do CNNs learn?

Duck or Rabbit?

CNN Helpers

Correct your sizes: https://ezyang.github.io/convolution-visualizer/index.html

A guide to convolution arithmetic in deep learning: in-depth practical guide.

Convolutions from first principles