INVJAC

Table of Contents

Calling Syntax
/O Variables
Example
Hypothesis
Limitations
Version Control
Group Members
Function
Validity
Main Calculations
Output Data
out pur pure

Para o exercício 4, calcula a matriz $J^{-1}(\Theta)$ para determinação do vetor de velocidades relativas das juntas $\dot{\Theta}$ a partir de ${}^k\dot{X}={}^kJ\dot{\Theta}$, em que kJ é a matriz jacobiana e kX é o vetor de velocidades cartesianas comandadas (de translação e de rotação).

Calling Syntax

[invjac]=invjac(theta,L)

I/O Variables

```
IN Double Array theta: Joint angles [\theta_1 \theta_2 \theta_3] [degrees degrees degrees]

IN Double Array L: Ligaments length [L_1 L_2] [meters meters]

OU Double Matrix invjac: sistem {3} inverse jacobian 6x3 Matrix
```

Example

```
theta = [10 20 30]
L = [0.5 0.3]
[invjac]=invjac(theta,L)
```

Hypothesis

RRR planar robot.

Limitations

A "Forma do usuário" é específica para o exercício de simulação e não tem validade para qualquer configuração de robô.

Version Control

1.0; Grupo 04; 2025/31/05; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

· João Pedro Dionizio Calazans

13673086

Function

```
function [invjac]=invjac(theta,L)
```

Validity

Not apply

Main Calculations

```
jac = zeros(3,3);
```

Output Data

```
referenciando o J(3) utilizado no exercicio 3

    jac(1,1:3) = [L(1)*sind(sum(theta(2:3)))+L(2)*sind(theta(3))
L(2)*sind(theta(3)) 0];
    jac(2,1:3) = [L(1)*cosd(sum(theta(2:3)))+L(2)*cosd(theta(3))
L(2)*cosd(theta(3)) 0];
    jac(3,1:3) = [1 1 1];
    invjac = inv(jac);

end

ans =

    5.0642    -2.9238     0.0000
    -11.3288     10.3897     -0.0000
```

6.2646 -7.4659 1.0000

Published with MATLAB® R2024b