

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

概述

FM5059A 电路是一款高精度的单节内置 MOSFET 可充电锂电池的保护电路,它集高精度过电压充电保护、过电 压放电保护、过电流放电保护等性能干一身。

正常状态下,FM5059A的 VDD 端电压在过电压充电保护阈值(V_{oc})和过电压放电保护阈值(V_{ob})之间,且其 V_{M} 检测端电压在充电器检测电压(V_{CBG})与过电流放电保护阈值(V_{EDI})之间,此时 FM5059A 使内置 N-MOS 管导通。这时, 既可以使用充电器对电池充电,也可以通过负载使 电池放电。

FM5059A 通过检测 VDD 或 VM 端电压(相对于 GND 端)来进行过充/放电保护。当充/放电保护条件发生时, 内置 N-MOS 由导通变为截止,从而充/放电过程停止。

FM5059A 对每种保护状态都有相应的恢复条件,当 恢复条件满足以后,内置 N-MOS 由截止变为导通,从而 进 入正常状态。

FM5059A 对每种保护/恢复条件都设置了一定的延迟时间,只有在保护/恢复条件持续到相应的时间以后, 才 进行相应的保护/恢复。如果保护/恢复条件在相应的 延迟时间以前消除,则不进入保护/恢复状态。

FM5059A 工作时功耗非常低,采用非常小的 S0T23-5 的封装,使得该芯片非常适合应用于空间限制小的可充电 电池组应用。

本产品不适用与无线及射频信号排布及屏蔽太差的产品,另请客户使用本产品前务必做成品整机验证。

特性

- 单节锂离子或锂聚合物电池的理想保护电路
- 内置低导通内阻 N-MOSFET
- 高精度的过充电保护电压检测 4.275V±25mV
- 高精度的过放保护电压检测 $2.425V \pm 75mV$
- 高精度过电流放电保护检测
- 电池短路保护

- ▶ 有 0V 充电
- 带有过充、过放自动恢复功能
- 内部集成 RC、内置 MOSFET
- ▶ 超小型化的 SOT23-5 封装
- MOSFET: RSS (on) $\langle 18m \Omega \text{ (VGS=3. 7V, ID=1A)} \rangle$

产品应用

- ▶ 锂电池的充电、放电保护电路
- 电话机电池或其它锂电池高精度保护器

订购信息

型号	封装形式	管脚数目	功能区别		
FM5059A	S0T23-5	5	过温保护带载可自恢复,无需去除负载		

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

引脚示意图及说明

VM VM 4	序号	引脚名称	I/0	说明
	1	GND	POW	电源接地端,与供电电源(电池)的负极相连。
	2	GND	POW	电源接地端,与供电电源(电池)的负极相连。
1 2 3	3	VDD	POW	电源输入端,与供电电源(电池)的正极连接。
GND GND VDD S0T23-5	4、5	VM	I	充/放电电流检测输入端

功能框图

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

电压检测阈值及延迟时间

参数名称	FM5059A	精度范围
过电压充电保护阈值 VOCTYP	4. 275V	±25mV
过电压充电恢复阈值 VOCRTYP	4.075V	±50mV
过电压放电保护阈值 VODTYP	2. 425V	±75mV
过电压放电恢复阈值 VODRTYP	2.825V	±50mV
过电流放电保护阈值 VEDITYP	0.150V	±30mV
过电流充电保护阈值 VECITYP	-0. 150V	±30mV
过电压充电保护延迟时间 tOCTYP	110ms	± 50%
过电压放电保护延迟时间 tODTYP	55ms	± 50%
过电流放电保护延迟时间 tEDITYP	7.0ms	±30%
过电流充电保护延迟时间 tECITYP	7.0ms	±30%
0V 充电功能	允许	
自动恢复功能	允许	

极限参数

参数	符号	数值	单位
VDD 供电电源	VDD	-0.3 [~] +10	V
VM 端允许输入电压.	VM	VDD-6~VDD+0.3	V
工作温度	$T_{\scriptscriptstyle A}$	-40 [~] +85	${\mathbb C}$
结温		125	${\mathbb C}$
贮存温度		-55 [~] 125	$^{\circ}$
功耗	PD (TA=25°C)	500	mW
封装热阻	θ Jy	250	°C/W
焊接温度(锡焊,10秒)		260	$^{\circ}$
防静电保护(人体模式)	ESD	4	kV

注:超出所列的极限参数可能导致器件的永久性损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器 件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MADE ELECTRICAL

 FM5059A(文件编号: S&CIC1627)
 高精度内置 MOSFET 锂电池保护电路

电气参数(除非特别注明,典型值的测试条件为: VDD = 3.6V, TA = 25℃。标注"■"的工作温度为: -40℃≤TA≤85℃)

参数名称	符号	测试条件	最小值	典型值	最大值	单位
供电电源	V_{cc}		1. 5		10	V
过电压充电保护阈值			V _{остур} -0. 025	V _{OCTYP}	V _{OCTYP} +0. 025	V
(由低到高)	V_{oc}		V _{OCTYP} -0. 080	V _{OCTYP}	V _{OCTYP} +0. 080	V
过电压充电恢复阈值			V _{OCRTYP} -0. 050	V_{ocrtyp}	V _{OCRTYP} +0.050	V
(由高到低)	V_{ocr}		V _{OCRTYP} -0. 080	$ m V_{ m ocrtyp}$	V _{OCRTYP} +0. 080	V
过电压充电保护延迟时间	t_{oc}	VCC=3. 6V→4. 5V	$0.7 \times t_{octyp}$	toctyp	$1.3 \times t_{OCTYP}$	ms
过电压放电保护阈值			V _{ODTYP} -0. 050	V_{ODTYP}	$V_{\text{ODTYP}} + 0.050$	V
(由高到低)	V_{od}		V _{ODTYP} -0. 105	V _{ODTYP}	V _{ODTYP} +0. 105	V
过电压放电恢复阈值			V_{ODRTY} -0.050	V _{ODRTYP}	$V_{ODRTYP} + 0.050$	V
(由低到高)	V_{odr}		V_{ODRTY} -0. 105	V _{ODRTYP}	$V_{ODRTYP} + 0.105$	V
过电压放电保护延迟时间	t _{oD}	VCC=3. 6V→2. 4V	$0.7 \times t_{ODTYP}$	todtyp	$1.3 \times t_{ODTYP}$	ms
过电流放电保护阈值	$V_{\scriptscriptstyle EDI}$		V _{EDITYP} -0.020	V_{edityp}	V _{EDITYP} +0.020	V
持续带载电流	$\mathbf{I}_{\text{\tiny Iov}}$	VDD=3.8V		4. 5		A
过放电电流检测	$\mathbf{I}_{\text{\tiny Iov}}$	VDD=3.8V		11		A
过电流放电保护延迟时间	$t_{\scriptscriptstyle{\mathrm{EDI}}}$		$0.7 \times t_{\text{edityp}}$	T_{edityp}	$1.3 \times t_{\text{EDITYP}}$	ms
过电流放电恢复延迟时间	$t_{\scriptscriptstyle{\mathtt{EDIR}}}$		1. 20	1.80	2.40	ms
过电流充电保护阈值	V_{ECI}		V _{ECITYP} -0.020	V _{ECITYP}	V _{ECITYP} +0.020	V
过电流充电保护延迟时间	$t_{\scriptscriptstyle{\mathrm{ECI}}}$		$0.7 \times t_{\text{ECITYP}}$	T_{ECITYP}	$1.3 \times t_{\text{ECITYP}}$	ms
过电流充电恢复延迟时间	$t_{\scriptscriptstyle ECIR}$		1. 20	1.80	2. 40	ms
负载短路保护阈值	$V_{\scriptscriptstyle SHORT}$	Voltage of VM	0.82	1. 36	1.75	V
负载短路检测电流	$I_{ ext{SHORT}}$	VDD=3. 5V		20		A
充电器检测电压	V_{CHG}	VCC=3. 0V	-0. 27	-0.5	-0.86	V
电源电流	${ m I}_{ m cc}$	VCC =3.9V		4. 0	6. 0	μА
0V 充电允许电压阈值	$V_{\rm ov_CHG}$					

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

		Charger Voltage	1.2			V
过温保护					135	$^{\circ}$ C
过温保护恢复					110	$^{\circ}$ C
静态源-源极通态电阻 (VM 至 GND)	R _{SS (ON)}	VDD=3.7V, I ₀ =1A		14. 5	18	mΩ

注: 1. 除非特别注明,所有电压值均相对于 GND 而言

2. 参见应用线路图

典型应用电路图

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

功能描述

FM5059A 是一款高精度的锂电池保护电路。正常状态下,如果对电池进行充电,则 FM5059A 可能会进入过电压 充电保护状态:同时,满足一定条件后,又会恢复到正常状态。如果对电池放电,则可能会进入过电压放电保护状 态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。

正常状态

在正常状态下,FM5059A由电池供电,其VDD端电压在过电压充电保护阈值Vc和过电压放电保护阈值Vo之 间,VM 端电压在充电器检测电压(V_{CHG})与过电流放电保护阈值(V_{EDI})之间,内置 N-MOS 管导通。此时,既可 以使用充电器对电池充电、也可以通过负载使电池放电。

过电压充电保护状态

保护条件

正常状态下,对电池进行充电,如果使 VDD 端电压 升高超过过电压充电保护阈值 Voc,且持续时间超过过 电 压充电保护延迟时间 t_{∞} ,则 FM5059A 将使内置 N-MOS 管关闭,充电回路被"切断",即 FM5059A 进入过电压 充电保护状态。

恢复条件

有以下两种条件可以使 FM5059A 从过电压充电保 护状态恢复到正常状态:

- 1) 电池由于"自放电"使 VDD 端电压低于过电压充电恢复阈值 Voc;
- 2) 通过负载使电池放电(注意,此时虽然 内置 N-MOS 管 关闭,但由于其体内二极管的存在,使放电回路仍然存 在),当VDD端电压低于过电压充电保护阈值 V_{cr} ,且VM端电压高于过电流放电保护阈值 V_{cr} (在内置N-MOS管导 通以前,VM 端电压将比GND端高一个二极管的导通压降)。

FM5059A 恢复到正常状态以后,内置 N-MOS 管回到导通状态。

过电压放电保护/低功耗状态

保护条件

正常状态下,如果电池放电使 VDD 端电压降低至过 电压放电保护阈值 V_{00} ,且持续时间超过过电压放电保护延迟时间 t_m,则 FM5059A 内置 N- MOS 管关闭,放电回路被"切断",即 FM5059A 进入过电压放电保护状态。同时, VM 端电压将 通过内部电 阻 RVMD 被上拉到 VDD。

▶ 恢复条件

当充电器连接上,并且VM 电压低于充电器检测电压 V_{CRC} 时,电池电压升高到过电压放电保护阈值 V_{OD} 以上时,FM5059A内置 N- MOS 管导通,芯片进入正常模式。如果 VM 电压不低于充电器检测电压 V_{cs}, 那么电池电压升高到过电压放电恢复 阈值 Vore以上时,FM5059A 内置 N- MOS 管导通,芯片进入正常模式。

过电流放电/负载短路保护状态

▶ 保护条件

正常状态下,通过负载对电池放电,FM5059A 电路的 VM 端电压将随放电电流的增加而升高。如果放电电流 增加使 VM 端电压超过过电流放电保护阈值 $V_{ ext{DI}}$,且持续时间超过过电流放电保护延迟时间 tEDI,则 FM5059A 进入过电流放电保护状态;如果放电电流进一步增加使 VM 端电压超过电池短路保护阈值 V_{suort},且持续时间超

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

过短路延迟时间 t_{short},则 FM5059A 进入电池短路保护状态。

FM5059A 处于过电流放电/负载电池短路保护状态时, 内置 N-MOS 管关闭,放电回路被"切断":同时,VM 端将通过内部电阻 RVMS 连接到 GND, 放电负载取消后, VM 端电平即变为 GND 端电平。

> 恢复条件

在过电流放电/电池短路保护状态下,当 VM 端电压 由高降低至低于过电流放电保护阈值 Vm, 且持续时间 超过过电流放电恢复延迟时间 tmp,则 FM5059A 可恢复 到正常状态。因此,在过电流放电/电池短路保护状态 下, 当所有的放电负载取消后, FM5059A 即可"自恢复"。

FM5059A恢复到正常状态以后,内置 N-MOS 回到导通状态。

过电流充电保护状态

▶ 保护条件

正常状态下,通过电源对电池充电,FM5059A 电路的 VM 端电压将随充电电流的增加而下降。如果充电电流 增加使 VM 端电压超过过电流充电保护阈值 V_{ECI}, 且持续时间超过过电流充电保护延迟时间 t_{ECI},则 FM5059A 进 入过电流充电保护状态。

> 恢复条件

在过电流充电保护状态下,当 VM 端电压 由低升高至高于过电流充电保护阈值 V_{ECI},且持续时间超过过电 流充电恢复延迟时间 t_{ECIR},则 FM5059A 可恢复 到正常状态。

FM5059A恢复到正常状态以后,内置 N-MOS 回到导通状态。

0V 电池充电

▶ 0V 电池充电允许

对于 OV 电池充电允许的电路,如果使用充电器对电池充电,使 FM5059A 电路的 VDD 端相对 VM 端的电压 大于 OV 充电允许阈值 $V_{OV CHG}$ 时,则通过内置 N-MOS 管的体内二极管可以形成一个充电回路,使电池电压升高; 当电池电压升高至使 VDD 端电压超过过电压放电保护阈值 VOD 时,FM5059A将回到正常状态,同时内置 N-MOS 回到导通状态。

注: 当电池第一次接上保护电路时,可能不会进入正常模式,此时无法放电。如果产生这种现象,使 VM 管脚电压 等于 GND 电压(将 VM 与 GND 短接)或连接充电器,就可以进入正常模式。

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

状态转换波形图

▶ 过电压充电保护和过电压放电保护状态

> 过电流放电保护状态

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

异常充电电流检测

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM5059A(文件编号: S&CIC1627)

高精度内置 MOSFET 锂电池保护电路

封装信息

➤ S0T23-5

SYMBOL -	MILLIMETER					
	MIN	NOM	MAX			
A	_	1. 19	1. 24			
A1	-	0, 05	0.09			
A2	1.05	1. 10	1. 15			
A3	0.31	0.36	0.41			
ь	0.35	0.40	0.45			
С	0.12	0. 17	0. 22			
D	2.85	2. 90	2.95			
Е	2.80	2. 90	3.00			
E1	1. 55	1.60	1. 65			
е	0. 95BSC					
L	0.37	0.45	0. 53			
L1	0. 65BSC					
θ	0°	2°	8°			