

IPS Perú - Conectaton 2024

Oficina General de Tecnologías de la Información

NOVIEMBRE 2024

IPS Peru Tipos de Arquitecturas con FHIR

Introducción

El desafío de la interoperabilidad en salud

Contexto actual en Perú:

- Sistemas fragmentados en hospitales y clínicas.
- Problemas de integración y falta de estándares comunes.

Objetivo de la presentación:

- Explorar diferentes arquitecturas para implementar FHIR.
- Analizar ventajas, desventajas y una ruta gradual para la adopción.

¿Qué es FHIR?

Breve Repaso

Principios clave:

- Es un estándar moderno para la interoperabilidad
- Basado en recursos (e.g., Patient, Observation, Encounter).
- API RESTful para comunicación entre sistemas.
- Adaptable a tecnologías modernas y legados.
- Tipos de datos manejados: Estructurados (JSON, XML).
- Acceso en tiempo real y por lotes.

JSON / XML

Dispositivo

Citas

Paciente

Medicación

Tipos de Arquitectura para Implementar FHIR

Opciones arquitectónicas

Arquitectura Monolítica:

• Todos los componentes (servidor FHIR, base de datos, APIs) en un solo sistema.

Ventajas:

- Implementación simple.
- Menores costos iniciales.

Desventajas:

- Escalabilidad limitada.
- Difícil integración con múltiples sistemas.

Arquitectura Basada en Microservicios:

 Componentes separados (servidor FHIR, autenticación, gestión de datos).

Ventajas:

- Alta escalabilidad y flexibilidad.
- Mejor integración con sistemas externos.

Desventajas:

 Requiere mayor infraestructura y experiencia técnica.

Arquitectura Distribuida (Híbrida):

• Servidores FHIR descentralizados en hospitales, sincronizados con un servidor central.

Ventajas:

- Reducción de latencia local.
- Independencia operativa en caso de fallos de red.

Desventajas:

 Complejidad en la sincronización de datos.

Arquitectura Monolítica

Implementación centralizada inicial

Descripción:

• Un solo servidor FHIR con PostgreSQL para todas las funciones.

Componentes:

- Servidor HAPI-FHIR.
- Base de datos PostgreSQL.
- API RESTful para acceso.
- Sistema o ejecutable único

Casos de uso:

- Pilotos en una clínica u hospital pequeño.
- Desafíos:
- Escalabilidad limitada cuando se aumenta la carga de trabajo.

Arquitectura Basada en Microservicios

Modularidad y flexibilidad

Descripción:

 Un solo servidor FHIR con PostgreSQL para todas las funciones.

Componentes:

- Servidor HAPI-FHIR.
- Base de datos PostgreSQL.
- API RESTful para acceso.
- Servicios independientes

Casos de uso:

- Pilotos en una clínica u hospital pequeño.
- Desafíos:
- Escalabilidad limitada cuando se aumenta la carga de trabajo.

Arquitectura Distribuida

Sincronización entre servidores locales y centrales

Descripción:

- Cada institución tiene un servidor FHIR local.
- Sincronización periódica con un servidor central en la nube o on-premises.

Ventajas:

- Operatividad local sin necesidad de conexión constante a internet.
- Reducción de latencia para datos locales.

Desafíos:

- Manejo de conflictos en la sincronización.
- Necesidad de un protocolo robusto de replicación.

Proceso de Implementación Gradual

Ruta hacia la interoperabilidad total

Fase 1: Piloto centralizado

- Implementación monolítica en un hospital o Clínica de referencia.
- Validación de flujos de datos y compatibilidad.

Fase 2: Expansión modular

- Migración a microservicios.
- Implementación de un API Gateway y servicios adicionales.

Fase 3: Despliegue distribuido

- Servidores FHIR locales en hospitales regionales.
- Sincronización con el servidor central.

Desafíos Técnicos

Consideraciones clave para la implementación

Escalabilidad:

• Elección de infraestructura adecuada (virtualización, contenedores, Kubernetes).

Interoperabilidad:

Mapeo entre sistemas legados y FHIR.

Seguridad:

• Encriptación, control de acceso y cumplimiento normativo.

Capacitación:

• Formación técnica para los equipos de TI y clínicos.

Caso Práctico (Arquitectura Basada en Servicios)

Caso Práctico (Detalle de las Herramientas Tecnológicas)

App móvil bajo Kotlin

Base de Datos FHIR

Sentry

SDK-Open Health Stack

Keycloak

Grafana

FHIR- Engine

Kubernetes

Graylog

Base de Datos relacional SQLite/PostgreSQL

Docker

Prometheus

Servicio (microservicio) Java

Base de Datos Externa

APIs REST Hapi-Fhir

Java enterprise

GraciasMiguel Verastegui