Package 'mAFT'

August 23, 2018

Type Package			
Title Multi-threshold Accelerate Failure Time Model Version 0.1 Author Yaguang Li [aut, cre], Baisuo Jin [aut], Jialiang Li [aut] Maintainer Yaguang Li liyg@mail.ustc.edu.cn> Depends R (>= 3.5.0), grpreg, plus, lars Suggests MASS, knitr, rmarkdown			
		ple thresholds and ure time (AFT) m lection problem s	age developed a two-stage procedure for simultaneously detecting multi- d achieving model selection in the segmented accelerate fail- odel. In the first stage, the threshold problem is formulated as a group model se- o that a concave 2-norm group selection method can be applied. In the sec- esholds are finalized via a refining method.
		License GPL (>= 2)	
		Encoding UTF-8	
		LazyData true	
		RoxygenNote 6.1.0	
R topics docum	ented:		
TSMCP			
Index	6		
TSMCP	Two stage multiple change points detection for AFT model.		

Description

This function first formulate the threshold problem as a group model selection problem so that a concave 2-norm group selection method can be applied using the grpreg in R packages grpreg, and then finalized via a refining method.

Usage

```
TSMCP(Y, X, delta, c)
```

Arguments

Y the censored logarithm of the failure time

X design matrix without intercept

delta the censoring indicator

c ceiling(c*sqrt(length(Y))) is the length of each segments in spliting stage.

Value

Returns an object with

cp the change points

coef the estimated coefficients

sigma the variance of error

residuals the residuals

Yn weighted Y by Kaplan-Meier weight
Xn weighted Xn by Kaplan-Meier weight

Note

Here Y, X and delta need be re-sorted firstly by the thresholding variable

References

Jialiang Li, Baisuo Jin (2018) Multi-threshold Accelerate Failure Time Model. *The Annals of Statistics*, in press.

See Also

grpreg

Examples

```
## example 1, two thresholds.
## generate data
n=100

X=matrix(rnorm(n*5,0,1),n,5)

#Real threshods (qnorm(0.3),qnorm(0.6))=(-0.5244,0.2533)
id1=which(X[,1]<=qnorm(0.3))
id2=which(X[,1]<=qnorm(0.6) & X[,1]>qnorm(0.3))
id3=which(X[,1]>qnorm(0.6))

C=apply(X,1,sum)+rnorm(n,2,4)
beta01=2
```

```
beta11=c(rep(1,5))
beta02=1
beta12=c(1,1,0,rep(0,2))
beta03=1
beta13=c(0,2,0,rep(0,2))
#Real coefficeints:(beta01,beta11,beta02-beta01,beta12-beta11,beta03-beta02,beta13-beta12)
\#=(2,1,1,1,1,1,-1,0,0,-1,-1,-1,0,-1,1,0,0,0)
X1=X[id1,]
n1=length(id1)
T1=X1%*%beta11+beta01+rnorm(n1,0,sqrt(0.5))
C1=C[id1]
delta1=C1
Y1=T1
for(i in 1:n1)
  if(T1[i]<C1[i])
  {
    delta1[i]=1
  if(T1[i]>=C1[i])
    delta1[i]=0
    Y1[i]=C1[i]
  }
}
Z11=cbind(Y1,X1,delta1,C1)
X2=X[id2,]
n2=length(id2)
T2=X2%*%beta12+beta02+rnorm(n2,0,sqrt(0.5))
C2=C[id2]
delta2=C2
Y2=T2
for(i in 1:n2)
{
  if(T2[i]<C2[i])
    delta2[i]=1
  if(T2[i]>=C2[i])
    delta2[i]=0
    Y2[i]=C2[i]
  }
}
Z12=cbind(Y2,X2,delta2,C2)
```

```
X3=X[id3,]
n3=length(id3)
T3=X3%*%beta13+beta03+rnorm(n3,0,sqrt(0.5))
C3=C[id3]
delta3=C3
Y3=T3
for(i in 1:n3)
  if(T3[i]<C3[i])
    delta3[i]=1
  }
  if(T3[i]>=C3[i])
    delta3[i]=0
    Y3[i]=C3[i]
  }
}
Z13=cbind(Y3,X3,delta3,C3)
ZZ=rbind(Z11,Z12,Z13)
## ZZ[,2] is the thresholding variable
ord=order(ZZ[,2])
ZZ=ZZ[ord,]
n=dim(ZZ)[1]
p=dim(ZZ)[2]-3
Y=ZZ[,1]
X=ZZ[,2:(p+1)]
delta=ZZ[,p+2]
n=length(Y)
p=dim(X)[2]
id1=which(delta==1)
n1=length(id1)
##estimate thresholds
c=seq(0.5,1.5,0.1)
m=ceiling(c*sqrt(n1))
c=c[which(m>p+1)]
bicy=c
tsmc=NULL
```

```
for(i in 1:length(c))
{
   tsm=TSMCP(Y,X,delta,c[i])
   bicy[i]=log(n)*((length(tsm[[1]])+1)*(p+1))+n*log(tsm[[3]])

   tsmc[[i]]=tsm
}

tsmcp=tsmc[[which(bicy==min(bicy))[1]]]
#choose the optimal results by BIC
tsmcp[[1]] # change points
X[tsmcp[[1]],1] #thresholds. Real threshods (qnorm(0.3),qnorm(0.6))=(-0.5244,0.2533)
tsmcp[[2]] # coefficients. Real value:(2,1,1,1,1,1,-1,0,0,-1,-1,-1,0,0,0)
tsmcp[[3]] #variance of error. real variance of error is 0.5
min(bicy) # bic
```

Index

grpreg, *1*TSMCP, 1