

FISPACT-II Worked example

November 19, 2020 David Foster

Introduction

FISPACT-II is a nuclear inventory simulation code .

Exercise: Irradiation of Cobalt for 3 days

- Configure FISPACT-II to irradiate 1kg of Cobalt and produce a plot of its activity and heat output
- Use Tendl 17, GEFY 6.1 and the fluxes from the FNS getting started example
- 3. Configure one input file (to show a different approach)

Step by step example: Please proceed at your own pace - I will proceed slowly to keep things moving. Prerequisite: *Previously ran the FNS example in getting started.*

Step zero

All at the same place

- Make a new folder called Cobalt_Workshop
 \$mkdir Cobalt_Workshop
- Move into Cobalt_Workshop\$cd Cobalt_Workshop

Step one

Configure the **files** file: The files file tells FISPACT-II the location of required inputs for a simulation (page 30 of the 2018 users manual)

- We need to point FISPACT-II to the correct Tendl-17 and GEFY files
- ind_nuc, xs_endf need to point at TENDL2017data within nuclear data
- fy_endf, sf_endf need to point at GEFY61data
- we also need to point the decay data, dk_endf, to decay
- Point fluxes at fluxes

Try doing this. Hint: look at the getting_started examples

Step one

files settings			
ind_nuc	index of nuclides to be included in simulation		
xs_endf	Binary compressed cross-section and covariance		
	data		
fluxes	Projectile spectrum and wall loading for a standard		
	group structure		
dk_endf	Decay and its uncertainty data		
fy_endf	Induced fission yield data		
sf_endf	Spontaneous fission yield data		
collapxi	Input collapsed cross-section library		
collapxo	Output collapsed cross-section library		
arrayx	Input and output condensed decay library		

Point these to the required locations; i.e. ind_nuc /Pathto/nuclear_data/TENDL2017data/tendl17_decay12_index Hint: Look at FNS example


```
# index of nuclides to be included
ind_nuc /Users/fosterd/nuclear_data/TENDL2017data/tendl17_decay12_index
```

```
# Library cross section data
xs_endf /Users/fosterd/nuclear_data/TENDL2017data/tal2017-n/gxs-709
```

```
#fluxes
fluxes fluxes
```

```
# Library decay data
dk_endf /Users/fosterd/nuclear_data/decay/decay_2012
```

```
# Library fission data
fy_endf /Users/fosterd/nuclear_data/GEFY61data/gefy61_nfy
sf_endf /Users/fosterd/nuclear_data/GEFY61data/gefy61_sfy
```

```
# collapsed cross section data (in and out)
collapxi COLLAPX
collapxo COLLAPX
```

condensed decay and fission data (in and out)
arrayx ARRAYX

Your files file should look like mine

The input file tells FISPACT-II what to do.

In the getting started examples we see that the input files are separated into four separate *files*, *collapse*, *condense*, *print_lib*, inventory.

Here we are making one file to do it all, called **combine.i**

Initial settings			
CLOBBER	Allows Fispact-II to overwrite output files		
GETXS 1 709	(1) tells Fispact to collapse the cross sections		
	from the ENDF library, (709) states that the 709		
	group energy multi-group should be used		
GETDECAY 1	causes the decay data to be read from the de-		
	cay library files connected to dk endf		
FISPACT	separates the library input from the initial con-		
	ditions		
* Cobalt	key word information about the particular run -		
	used in graph titles		

Material definition				
MASS 1.0E-3 4	total mass (kg) and the number of elements in			
	the material to be irradiated			
CO 100.0	100% Cobalt			

Output settings				
GRAPH 2 2 1 1	Graph output settings. (2) plots, (2) use gnu-			
3	plot, (1) include uncertainty data, (1) activity,			
	(3) Heat output			
UNCERTAINTY	Uncertainty settings, (2) both estimates of un-			
2	certainty and the pathway information are out-			
	put			
HALF	include half-life of each nuclide in output			

Output settings						
Irradiation phase						
FLUX	total energy-integrated projectile flux (in					
10.116E+20	$cm^{-2}s^{-1}$)					
ATOMS	starts the initial solution of the inventory equa-					
	tions					
TIME 2 DAYS	sets the first time interval for the inventory cal-					
	culation and terminates the initial conditions					
	section					
ATOMS	restarts the solution of the inventory equations					

cooling phase					
FLUX 0.		total energy-integrated projectile flux (in			
		$cm^{-2}s^{-1}$) for this time period			
ZERO		reset the time value to zero after an irradiation			
TIME	36	Inventories after 36s are output			
ATOMS					
END		terminates the input of data for a particular run.			
		Must be preceded by the * with a title.			

```
CLOBBER
GETXS 1 709
GETDECAY 1
FISPACT
* Cobalt
MASS 1.0 1
CO 100.0
GRAPH 2 2 1 1 3
UNCERTAINTY 2
HALF
<< ---->>>
FLUX 10.116E+20
ATOMS
TIME 2 DAYS
ATOMS
<< ---- >>
FLUX 0.
ZER0
TIME
       36 ATOMS
TIME
       15 ATOMS
TIME
       16 ATOMS
TIME
       15 ATOMS
TIME
       15 ATOMS
TTMF
       26 ATOMS
TIME
       33 ATOMS
TTMF
       36 ATOMS
TIME
       53 ATOMS
TIME
       66 ATOMS
TIME
       66 ATOMS
TIME
       97 ATOMS
TIME
      127 ATOMS
TIME
      126 ATOMS
TIME
      187 ATOMS
TIME
      246 ATOMS
TTMF
      244 ATOMS
TIME
      246 ATOMS
TTMF
      428 ATOMS
TIME
       606 ATOMS
TIME
      607 ATOMS
TTMF
      707 ATOMS
END
```

Step three: Run FISPACT-II

Now we have the input files we simply type:

\$/Pathto/fispact combine

this will produce a print out like:

```
combine: cpu time = 530. secs. 1196 errors/warnings, for details see log file.
```

and a file called **combine.gra**.

Step three: Output, combine.gra

```
Run timestamp = 11:16:22 19 November 2020
 Cobalt
Time after irradiation (years)
         Activity (Ba/k
index
  time
                value
                              uncert
0.00000F+00
              1.01669F+19 0.00000F+00
1.14077F-06
              2.49546F+16
                            0.00000F+00
1.61609F-06
              1.20301F+16
                           0.00000F+00
2.12310F-06
              5.68792F+15
                            0.00000F+00
2.59842F-06
              2.96459F+15
                           0.00000F+00
3.07374F-06
              1.66735F+15
                            0.00000F+00
3.89763F-06
              8.38871E+14
                            0.00000F+00
4.94334F-06
              5.98039F+14
                            0.00000F+00
6.08411E-06
              5.45864F+14 0.00000F+00
7.76358E-06
              5.37935E+14
                            0.00000E+00
9.85500E-06
              5.37059E+14
                            0.00000E+00
1.19464E-05
              5.36596E+14
                            0.00000E+00
1.50202E-05
              5.35989E+14
                            0.00000E+00
1.90445E-05
              5.35291E+14
                            0.00000E+00
2.30372E-05
              5.34703E+14
                            0.00000E+00
2.89629E-05
              5.33999E+14
                            0.00000E+00
3.67582E-05
              5.33222E+14
                            0.00000E+00
4.44901E-05
              5.32638E+14
                            0.00000E+00
  22853E-05 5.32201E+14
SPACT-II Worked example
58478E-05 5.31680E+14
                            0.00000E+00
                            0.00000E+00
```

Step three: Plotting

Now we have the **.gra** file we can extract the two columns and plot. On Linux and Mac (if installed) we can simply type:

\$gnuplot combine.plt

(if installed).

(Or copy the two columns into a plotting program (such as Excel)). Producing, a file called **combine.gra.ps**

file name = combine.gra run timestamp = 11:16:22 19 November 2020

file name = combine.gra run timestamp = 11:16:22 19 November 2020

Conclusion

We now have the Activation and Heat output

Extensions

- Change the irradiation time, and then adding those new curves to the plots. How does the activity change with increased irradiation time?
- Change the neutron flux.
- Did we need to include the GEFY fission data?