Lecture 5: Normal Distribution Practice Problems STAT 310, Spring 2021

Exercise 1. Suppose $Z \sim N(\mu = 0, \sigma = 1)$ is a random variable following a standard normal distribution. Use the R function pnorm() to compute the following probabilities:

(a)
$$P(Z < 1.4) = p norm (1.4) = [0.919]$$

(b)
$$P(Z > 2.2) = |-P(7 < 2.2)$$

$$= 1 - pnorm(2.2)$$

$$= [0.0139]$$
0 2.2

(c)
$$P(-0.5 < Z < 1.5) = P(2 < 1.5) - P(2 < 0.5)$$

$$= pnorm(1.5) - pnorm(-0.5)$$

$$= [0.625]$$

Exercise 2. Use the R function qnorm() to find 85^{th} percentile of the standard normal distribution $N(\mu = 0, \sigma = 1)$.

$$Z = q norm(0.85) = 1.036$$

Exercise 3. The SAT score X closely follows a normal distribution with mean $\mu = 1100$ and standard deviation $\sigma = 200$. That is, $X \sim N(\mu = 1100, \sigma = 200)$

(a) About what percent of test takers score below a 750?

$$Z = 750 - 1100 = -1.75$$

$$P(\chi \angle 150) = P(Z(-1.75))$$
 $= P(Z(-1.75))$
 $= P(Z(-1.75))$
Fore above a 1500?
 $= [0.04]$

(b) About what percent of test takers score above a 1500?

$$Z = 1500 - 1100 = 2$$

$$P(X>1500) = 1 - P(X < 1500)$$

= $1 - P(Z < Z)$
= $1 - pnorm(Z) = [0.023]$

(c) About what percent of test takes score between 800 and 1400?

$$Z = \frac{806 - 1100}{200} = -1.5$$

$$Z = 1400 - 1100 = 1.5$$

2

$$P(860 < x < 1400) = P(x < 1400) - P(x < 800)$$

= $P(2 < 1.5) - P(2 < -1.5)$
= pnorm(1.5) - pnorm(-1.5)
= $[0.866]$

(d) What is the 95^{th} percentile for SAT scores?

Solve for
$$X$$

$$\frac{7}{2} = \frac{X - M}{\sigma}$$

$$1.64 = \frac{1100}{200}$$

$$1.64(200) = X - 1100$$

$$X = 1100 + 1.64(200) = 1428$$