# Mecânica e Campo Eletromagnético - Trabalho Prático 1

Universidade de Aveiro

Tiago Garcia, Rúben Gomes, Bruno Santos



## Mecânica e Campo Eletromagnético -Trabalho Prático 1

Dept. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

Tiago Garcia, Rúben Gomes, Bruno Santos (114184) tiago.rgarcia@ua.pt, (113435) rlcg@ua.pt, (113446) brunommsantos@ua.pt

19 de outubro de 2023

#### Resumo

O principal objetivo deste trabalho é estudar o comportamento de uma esfera em diferentes tipos de movimentos. Para alcançar os objetivos pretendidos, foi necessário realizar 3 experiências, sendo estas o lançamento horizontal, lançamento com ângulo variável e por último lançamento contra um pêndulo balístico. As medições de comprimentos apresentam um erro de 1mm, medições de massas apresentam um erro de 0.1g e medições de ângulos apresentam um erro de 0.1 $^{\circ}$ . A exatidão na primeira parte foi de 97.9%.

# Conteúdo

| Inti | rodução                                                                                         |
|------|-------------------------------------------------------------------------------------------------|
| Det  | alhes Experimentais Relevantes                                                                  |
| 2.1  | Parte A                                                                                         |
|      | 2.1.1 Material                                                                                  |
|      | 2.1.2 Procedimento                                                                              |
| 2.2  | Parte B                                                                                         |
|      | 2.2.1 Material                                                                                  |
|      | 2.2.2 Procedimento                                                                              |
| 2.3  | Parte C                                                                                         |
|      | 2.3.1 Material                                                                                  |
|      | 2.3.2 Procedimento                                                                              |
|      |                                                                                                 |
| TIL  | álise e Discussão                                                                               |
| 3.1  |                                                                                                 |
|      |                                                                                                 |
|      | Parte A                                                                                         |
|      | Parte A                                                                                         |
| 3.1  | Parte A     3.1.1 Análise     3.1.2 Discussão                                                   |
| 3.1  | Parte A     3.1.1 Análise     3.1.2 Discussão     Parte B                                       |
| 3.1  | Parte A     3.1.1 Análise     3.1.2 Discussão     Parte B     3.2.1 Análise                     |
| 3.1  | Parte A     3.1.1 Análise     3.1.2 Discussão     Parte B     3.2.1 Análise     3.2.2 Discussão |
|      | Det 2.1 2.2 2.3                                                                                 |

# Introdução

Os conhecimentos necessários para as realizações da primeira e segunda parte do trabalho (lançamentos horizontal e com ângulo variável) foram obtidos na aula respetiva aos conteúdos do momento linear e lançamento oblíquo enquanto que para a terceira parte (lançamento contra um pêndulo balístico) foram obtidos na aula relativa às colisões.

# Detalhes Experimentais Relevantes

#### 2.1 Parte A

#### 2.1.1 Material

- 1. Lançador de projéteis
- 2. Suporte para o lançador de projéteis
- 3. Sensor de movimento
- 4. Sensor de movimento
- 5. Sistema de controlo dos sensores
- 6. Fita-métrica
- 7. Bola metálica



#### 2.1.2 Procedimento

Antes de iniciar qualquer procedimento experimental é necessário certificar que o lançador de projéteis está devidamente montado e que o sistema de controlo dos sensores está ligado e a funcionar corretamente.

- 1. Preparar a montagem experimental como ilustrado na figura 2.1.1;
- 2. Medir a distância entre os sensores de movimento;
- 3. Carregar o lançador de projéteis com a bola metálica na posição de tiro curto (SHORT RANGE);
- 4. Colocar o sistema de controlo dos sensores na posição de TWO GATES e carregar em START/STOP;
- 5. Disparar o projétil e registar o valor de tempo obtidos;
- 6. Efetuar 3 disparos e registar as respetivas medições.

#### 2.2 Parte B

#### 2.2.1 Material

- 1. Lançador de projéteis
- 2. Suporte para o lançador de projéteis
- 3. Alvo
- 4. Fita-métrica
- 5. Bola metálica



#### 2.2.2 Procedimento

Antes de efetuar os lançamentos, é necessário verificar rigorosamente o ângulo de lançamento e fixar devidamente o alvo de modo a evitar imprecisões relacionadas com o mesmo.

- 1. Preparar a montagem experimental como ilustrado na figura 2.2.1;
- 2. Colocar o alvo a uma distância tal que a esfera caia sobre a sua superfície;
- 3. Carregar o lançador de projéteis com a bola na posição de tiro curto (SHORT RANGE);
- 4. Medir a altura de lançamento do projétil;
- 5. Disparar o projétil e registar o alcance obtido;
- 6. Efetuar 3 disparos e registar as respetivas medições para cada valor de ângulo (sendo esses ângulos:  $34^{\circ}$ ,  $38^{\circ}$ ,  $40^{\circ}$  e  $43^{\circ}$ ).

#### 2.3 Parte C

#### 2.3.1 Material

- 1. Suporte para o lançador de projéteis
- 2. Lançador de projéteis
- 3. Bola metálica
- 4. Pêndulo balístico
- 5. Balança
- 6. Fita-métrica



#### 2.3.2 Procedimento

- 1. Preparar a montagem experimental como ilustrado na figura 2.3.1;
- 2. Medir as massas do projétil e do pêndulo balístico;
- 3. Medir o comprimento do pêndulo;
- 4. Carregar o lançador de projéteis com a bola na posição de tiro curto (SHORT RANGE);
- 5. Disparar o projétil e registar o ângulo máximo descrito pelo pêndulo;
- 6. Efetuar 5 disparos e registar as respetivas medições.

### Análise e Discussão

#### 3.1 Parte A

#### 3.1.1 Análise

#### Distância

Esta distância é 10cm e será constante para todos os lançamentos sendo ela a distância entre os dois sensores de movimento. O erro associado a esta medição é de 1mm.

#### Tempo

O tempo é medido pelo sistema de controlo dos sensores e é medido em segundo. O erro associado a esta medição é de 0.0001s. Este tempo é em média 0.04447s. A variação máxima do tempo é 0.0005s.

#### Velocidade

Para calcular a velocidade utilizamos a seguinte fórmula:

$$v = \frac{d}{t} \tag{3.1}$$

O erro associado a esta medição é de  $0.0001 \mathrm{m/s}$ . A velocidade média é  $2.249 \mathrm{m/s}$ . A variação máxima da velocidade é  $0.04778 \mathrm{m/s}$ .

#### 3.1.2 Discussão

Tendo em conta as medições anteriores da distância e do tempo, verifica-se que a distância foi constante e a variação do tempo bastante baixa (variação máxima de 0.0005s) o que implica uma exatidão alta nos valores da velocidade calculados (exatidão de 97.9%).

Entre os possíveis motivos para a variação nos valores medidos de tempo podem se mencionar:

- A falta de consistência da força da mola;
- A forma como a pessoa que dispara pode não o fazer exatamente da mesma forma em todos os disparos.

#### 3.2 Parte B

#### 3.2.1 Análise

#### Altura

O valor da altura será constante e será medido desde o nível do alvo até ao ponto de lançamento verticalmente. No caso desta experiência, a altura medida foi 26cm.

#### Ângulo

Este ângulo varia de lançamento para lançamento, sendo medido utilizando as marcações do lançador. O erro associado a esta medição é de  $0.5^{\circ}$ . Os valores usados foram  $30^{\circ}$ ,  $34^{\circ}$ ,  $38^{\circ}$ ,  $40^{\circ}$  e  $43^{\circ}$ .

#### Alcance

A figura 3.1 representa o alcance em função do ângulo. No eixo x temos o ângulo de lançamento enquanto que no eixo y temos o alcance médio de cada ângulo.



Figura 3.1: Gráfico do alcance em função do ângulo

#### 3.2.2 Discussão

Tendo em conta os valores obtidos, verifica-se uma maior discrepância entre esses mesmos valores, especialmente para os três primeiros ângulos usados  $(30^{\circ}, 34^{\circ} \text{ e } 38^{\circ})$  com variações de 0.051, 0.046 e 0.046, respetivamente.

Nesta experiência, estas variações podem se dever a diversos fatores, como por exemplo:

- A falta de consistência da força da mola;
- A forma como a pessoa que dispara pode não o fazer exatamente da mesma forma em todos os disparos;
- A resistência do ar;
- As marcas existentes no alvo que podem causar confusão à pessoa que as vai verificar;
- A pouca estabilidade do alvo;
- Pequenas variações na forma de medição do alcance.

Para calcular o ângulo para o qual o alcance é máximo, é necessário calcular a derivada da função do alcance em função do ângulo e igualar a zero. A função do alcance em função do ângulo foi obtida utilizando o software Microsoft Excel que aproximou uma função polinomial de segundo grau aos pontos respetivos aos nossos valores. A equação obtida foi, tal como se pode ver no gráfico da figura 3.1:

$$y = -0.0002x^2 + 0.0171x + 0.3381 (3.2)$$

A derivada desta função em x será:

$$y' = -0.0004x + 0.0171 (3.3)$$

Por sua vez, esta será igual a 0 quando  $x=42.75^{\circ}$ .

A altura de lançamento usada foi a mesma para todos os disparos de todos os ângulos o que implica que, baseado na experimentação, o ângulo para o qual se obtém maior alcance será  $42.75^{\circ}$ .

#### 3.3 Parte C

#### 3.3.1 Análise

#### Comprimento do pêndulo

Distância entre o ponto de suspensão e extremidade do centro. Este valor é obtido por medição direta com o erro associado de 1mm. O valor obtido foi de 24.4cm.

#### Massas

As massas são obtidas por medição direta com o erro associado de 0.1g. Os valores obtidos foram 237.2g para o pêndulo e 66.5g para o projétil.

#### Ângulo

Este é o ângulo máximo descrito pelo movimento do pêndulo. O erro associado a esta medição é de  $0.1^{\circ}$ . O valor médio foi  $17^{\circ}$ .

#### Altura

Este é o valor da altura máxima atingida pelo projétil, que é registada no ponto de maior ângulo. Pode ser calculada a partir da seguinte fórmula:

$$h = L(1 - \cos(\theta)) \tag{3.4}$$

O valor médio obtido foi 10.66mm.

#### Velocidade

Este é o valor da velocidade inicial do projétil. Pode ser calculada a partir da seguinte fórmula:

$$v = \left| \frac{m_{projetil} + m_{pendulo}}{m_{projetil}} * \sqrt{2 * g * h} \right|$$
 (SI)

Onde g é a aceleração gravítica e h é a altura máxima atingida pelo projétil (calculada anteriormente).

#### 3.3.2 Discussão

Tendo em conta os valores obtidos, verifica-se uma amplitude de  $1^{\circ}$ . Esta variação pode se dever a diversos fatores, como por exemplo:

- A falta de consistência da força da mola;
- A forma como a pessoa que dispara pode não o fazer exatamente da mesma forma em todos os disparos;
- Incerteza associada ao instrumento de medição;
- O atrito do pêndulo com o suporte.

Usando a fórmula 3.5 obtém-se para cada ângulo diferentes valores de velocidade inicial, sendo o valor da velocidade média 2.0879 m/s. Este resultado deverá ser semelhante ao obtido da Parte A (secção 3.1.1), que ao comparar verificase uma diferença de 0.1611 m/s.

# Conclusões

Em todas as experiências, os objetivos essenciais foram cumpridos, contudo, verificámos alguns erros, como erros relacionados com medições que levaram a alguma disperidade entre valores calculados e valores teóricos.

De forma a reduzir/minimizar a variação do fator humano no disparo (ex. O lançamento ser efetuado sempre pela mesma pessoa), nas medições de forma a aumentar a precisão. Podem ser efetuadas mais medições com instrumentos mais rigorosos. Um exemplo disto é o alvo utilizado para medir o alcance na Parte B.

# Anexos

| Horizontal |             |     |     |     |                |        |         |         |        |        |            |         |  |
|------------|-------------|-----|-----|-----|----------------|--------|---------|---------|--------|--------|------------|---------|--|
| Distância  | a ~L +- ∆lı | m   |     |     | Tempo ~t+- Δtm |        |         |         |        |        | Velocidade |         |  |
| L          | Δli         | ~L  | d~L | ΔLm | t              | ∆ti    | ~t      | d~t ∆tm |        | V      | ΔV         | %       |  |
| mm         | mm          | mm  | mm  | mm  | s              | S      | S       | S       | S      | m/s    | m/s        |         |  |
| 100        | 1           |     | 0   |     | 0.0445         | 0.0001 |         | 0       |        |        |            |         |  |
| 100        | 1           | 100 | 0   | 1   | 0.044          | 0.0001 | 0.04447 | 0.0005  | 0.0005 | 2.2489 | 0.04778    | 97.8756 |  |
| 100        | 1           | 1   | 0   |     | 0.0449         | 0.0001 | 1       | 0.0004  | 1      |        |            |         |  |

Figura 4.1: Tabela de resultados - Parte A

|           | Ângulo | Distância ~L +- Δlm |       |       |       |       |  |  |  |
|-----------|--------|---------------------|-------|-------|-------|-------|--|--|--|
| Altura    |        | L Δli               |       | ~L    | d∼L   | ΔLm   |  |  |  |
|           |        | m                   | m     | m     | m     | m     |  |  |  |
|           |        | 0.653               | 0.001 |       | 0.018 |       |  |  |  |
| <u>26</u> | 30     | 0.638               | 0.001 | 0.671 | 0.033 | 0.051 |  |  |  |
|           |        | 0.722               | 0.001 |       | 0.051 | ]     |  |  |  |
|           |        | 0.723               | 0.001 |       | 0.02  |       |  |  |  |
| 26        | 34     | 0.73                | 0.001 | 0.703 | 0.027 | 0.046 |  |  |  |
|           |        | 0.657               | 0.001 |       | 0.046 | ]     |  |  |  |
|           |        | 0.658               | 0.001 |       | 0.023 |       |  |  |  |
| 26        | 38     | 0.659               | 0.001 | 0.681 | 0.022 | 0.046 |  |  |  |
|           |        | 0.727               | 0.001 |       | 0.046 | ]     |  |  |  |
|           |        | 0.722               | 0.001 |       | 0.002 |       |  |  |  |
| 26        | 40     | 0.729               | 0.001 | 0.724 | 0.005 | 0.005 |  |  |  |
|           |        | 0.721               | 0.001 |       | 0.003 | ]     |  |  |  |
|           | 43     | 0.709               | 0.001 |       | 0.002 |       |  |  |  |
| 26        |        | 0.699               | 0.001 | 0.707 | 0.008 | 0.008 |  |  |  |
|           |        | 0.712               | 0.001 |       | 0.005 |       |  |  |  |

Figura 4.2: Tabela de resultados - Parte B

| Gravidade(m/s^2):<br>L(mm): | 9.804<br>244         |                    |       | Parte C           |                         |        |        |                            |                           |          |
|-----------------------------|----------------------|--------------------|-------|-------------------|-------------------------|--------|--------|----------------------------|---------------------------|----------|
| Massa do pêndulo(g)         | Massa do projétil(g) | Ângulos(º)         | ~α(º) | <b>Δ</b> α(º)     | h(mm)                   | Δh(mm) | ~h(mm) | V <sub>0</sub> (m/s)       | Δv0(m/s)                  | ~v0(m/s) |
|                             |                      | 17.5<br>16.9       |       | 0.1<br>0.1        | 11.29<br>10.54          | 1      |        | 2.1488<br>2.0762           | 0.1001<br>0.1727          |          |
| 237.2                       | 66.5                 | 17<br>17.5<br>16.5 | 17    | 0.1<br>0.1<br>0.1 | 10.66<br>11.29<br>10.05 | 1 1 1  | 10.66  | 2.0879<br>2.1488<br>2.0273 | 0.161<br>0.1001<br>0.2216 | 2.0879   |

Figura 4.3: Tabela de resultados - Parte C