Place-Based Redistribution

AUTORES: CECILE GAUBERT, PATRICK KLINE Y DANNY YAGAN

PRESENTACIÓN: FIDEL GONZÁLEZ PARRA

Motivación

Los gobiernos alrededor del mundo redistribuyen dinero condicionando impuestos y/o transferencias a ubicación. Redistribución basada en lugares (PBR - Place based redistribution)

¿Hace sentido? ¿Mejora el bienestar?

Racionales:

- Eficiencia

 relacionado a costos por mobilidad y productivad de fuerza laboral.
- Equidad
 relacionado a los beneficios por la heterogeneidad de los lugares.

Motivos detrás de la redistribución: la pobreza esta concentrada espacialmente

Chicago West/South tiene 50% de tasa de pobreza.

Ejemplo de política pública en US: Empowerment zones desde 1993

 Cubre al 1% de la población, otorga \$3000 USD por trabajador de tiempo completo.

EMPOWERMENT ZONES

Tax incentives to locate businesses in, and hire residents of, economically disadvantaged areas.

Ya existe una redistribución por ingreso (independiente del lugar) actualmente

Los habitantes con un impuesto negativo estan en su mayoría en las zonas Sur y Oeste.

Pregunta: ¿Los habitantes de las zonas pobres de Chigago deberían recibir una transferencia extra?

La vision tradicional dice que no, debido a costos de eficiencia

"Help poor people, not poor places"...is something of a mantra for many urban and regional economists... [Place-based] aid is inefficient because it increases economic activity in less productive places and decreases economic activity in more productive places.

-Glaeser (2008).

Pero este paper desafía esa visión al decir que los PBR pueden complementar la redistribución por ingreso.

-También el impuesto negativo tiene costos de eficiencia.

Resultado adelantado: PBR óptimo a las secciones censales **1% más pobres** son de alrededor de **\$5500 USD**, complementando un impuesto óptimo redistributivo sobre el ingreso.

Descripción básica del modelo

Hogares tienen habilidad heterogénea (θ), no observada

Oferta laboral que define el ingreso bruto - z* (antes de impuestos) endógenos.

Los hogares tienen preferencias heterogéneas basadas en lugar (choques-no observados).

Los hogares deciden donde situarse j*, se observa.

Preferencias del consumidor

$$u_j(\Theta) = U\left(c, h, a_j, \frac{z}{w_j(\theta)}\right) + \varepsilon_j.$$

Restricción presupuestal:

$$c + r_i h = z - T_i(z),$$

Dos ubicaciones: j pertenece {0,1} = {Elsewhere (zonas ricas), Distressed (zonas pobres)}

- Las amenidades (a_i) en zonas ricas son mayores.
- La productividad en zonas ricas es mayor (salaries más altos w_i (θ)).
- Rentas en zonas ricas son mayores.

Problema del planificador utiliario

El planificador maximiza el bienestar social:

$$SWF = \int \omega (\Theta) v^* (\Theta) dF (\Theta) = \mathbb{E} [\omega v^*],$$

Y el peso del bienestar social marginal:

$$\lambda^* (\Theta) \equiv \frac{\omega (\Theta) \frac{\partial v^*(\Theta)}{\partial I}}{\phi}$$

Esto es una expresión que representa el beneficio en bienestar de darle 1\$ al hogar θ .

Las herramientas de redistribución: impuesto sobre el ingreso y PBR

•T(z) impuesto sobre el ingreso, no depende del lugar. Se supone que el planificador elabora una reforma fiscal óptima, independiente al lugar (place-blind):

$$\tilde{T}(\cdot) = T(\cdot) + q\tilde{T}(\cdot),$$

- •Un esquema de redistribución basada en lugar (PBR).
 - \circ Los residente en zonas pobres reciben un subsidio "lump-sum". $\frac{\Delta}{S}$
 - \circ Los residente en zonas ricas pagan un impuesto "lump-sum" $\frac{\Delta}{1-S}$
 - o Por diseño, el impacto al balance presupuestal es neutro.

¿Qué impacto tiene el PBR en el bienestar social?

Cambio en bienestar social con PBR = Ganancias en equidad + Costos de eficiencia

$$\frac{dSWF}{d\Delta} = \bar{\lambda}_1 - \bar{\lambda}_0 + \mathbb{E}\left\{\frac{dS\left(\cdot,0\right)}{d\Delta}\left[T\left(z_1^*\right) - T\left(z_0^*\right)\right]\right\}$$

Ganancias en equidad:

• Estos se cumplen cuando el peso del bienestar social marginal (λ) es mayor en promedio en las zonas pobres.

$$\frac{dW}{d\Delta} = \mathbb{E}\left[\lambda^* \left(\frac{j^*}{S} - \frac{1 - j^*}{1 - S}\right)\right] = \bar{\lambda}_1 - \bar{\lambda}_0$$

Costos de eficiencia:

• Estos dependen de la movilidad y de los ingresos que dejan de ganar por trabajo en caso de que se muevan a otra zona.

$$\frac{dB}{d\Delta} = \mathbb{E}\left\{\frac{dS\left(\cdot,0\right)}{d\Delta}\left[T\left(z_{1}^{*}\right) - T\left(z_{0}^{*}\right)\right]\right\}.$$

Hechos estilizados: ¿en qué casos el PBR viene sin costos de eficiencia?

1. Zonas Residenciales

- Ambas zonas (ricas y pobres) tienen el mismo acceso a los distritos de negocio.
- Si nadie pierde ingresos por trabajo, no hay costos de eficiencia.

2. Costos de moverse

- Los costos de moverse son lo suficientemente altos para que los hogares no se muevan a las zonas pobres.
- Si nadie se mueve, no hay costos de eficiencia.
- 3. Ventajas comparativas y trabajos de alta habilidad
- Los trabajos que requiere alta habilidad no se encuentran en zonas pobres. Los trabajos de baja habilidad se encuentran en ambas zonas.
- Los trabajadores de alta habilidad no se mueven a las zonas pobres. Quizás algunos trabajadores se muevan a zonas pobres para aprovechar el subsidio. Por lo tanto no hay pérdidas de ingreso por trabajo, no hay costos de eficiencia.

¿Cuándo se debe ayudar a las zonas pobres?

$$\frac{dSWF}{d\Delta} - \frac{dSWF}{dq} = \underbrace{\left(\frac{dW}{d\Delta} - \frac{dW}{dq}\right)}_{\text{equity}} + \underbrace{\left(\frac{dB}{d\Delta} - \frac{dB}{dq}\right)}_{\text{efficiency}}.$$

Básicamente, la ganancia en bienestar por PBR viene del signo de esta expresión. Es decir, hace sentido cuando las diferencias en equidad le ganan a las diferencias en costos de eficiencia.

Motivos de equidad espacial: ¿porqué sería deseable la resdistribución basada en lugar?

$$\mathbb{C}\left(\lambda^{*}, j^{*}\right) = \underbrace{\mathbb{C}\left(\mathbb{E}\left[\lambda^{*}|z^{*}\right], \mathbb{E}\left[j^{*}|z^{*}\right]\right)}_{\text{between earnings}} + \underbrace{\mathbb{E}\left[\mathbb{C}\left(\lambda^{*}, j^{*}|z^{*}\right)\right]}_{\text{within earnings}}.$$

Se busca determinar cuándo la λ (el beneficio en bienestar de darle 1\$ al hogar θ) de los hogares viendo en zonas pobres son mayores a los hogares en zonas ricas, dado un ingreso z.

- 1) Efectos de costo de vida:
- El hecho que los precios son más bajos en zonas pobres, puede llevar a ganancias de bienestar mayores en zonas pobres.
- 2) Efectos de amenidades:
- Manteniendo todo lo demas constante, las amenidades son menores en zonas pobres. Utilidad marginal mayor por consumo en zonas pobres.
- Ejemplo: si hay mucho crimen, tomas coche/taxi para evitar caminar.

Áreas con alta pobreza tienen desamenidades que elevan la utilidad marginal del consumo

Condiciones cuando el PBR es deseable, partiendo de un impuesto al ingreso óptimo

En resumen:

- Cuando el beneficio de equidad por PBR es mayor a costos de eficiencia.
- La migración/movilidad es limitada.
- Las diferencias en productividad que surgen por movilidad es limitada.
- Respuestas en la oferta laboral son grandes.

Ejercicio de calibración

El objetivo es computar el PBR óptimo al 1% de los lugares más pobres basado en los datos de 2013-2017 del American Community Survey.

Procedimiento:

- Se rankean las secciones censales en US por tasa de pobreza.
- Se combinan en 100 grupos, cada uno con 1% de población.
- Planificador Benevolente que maximiza bienestar social, que cuenta con:
 - 1. Impuesto redistributivo por ingreso
 - 2. Esquema PBR
 - 3. Existe balance presupuesta.

Parámetros

TABLE 1
Parameters for the Baseline Calibration

A. Community-Invariant Parameters								
			Value		Sources			
			(1)		(2)			
Housing expenditure share ($lpha$)			0.3		Davis-Ortalo-Magne (2011)			
_abor supply elasticity (η)			0.5		Chetty-Guren-Manoli-Weber (2011)			
Scale (κ) governing migration elasticity			0.5		Kennan-Walker (2011)			
Current place-blind lump-sum transfer ($-T(0)$)			11,300		Piketty-Saez-Zucman (2018)			
Current marginal tax rate below \$20K			43.8%		Piketty-Saez-Zucman (2018)			
Current marginal tax rate \$20K-\$80K			16.1%		Piketty-Saez-Zucman (2018)			
Current marginal tax rate above \$80K			27.1%		Piketty-Saez-Zucman (2018)			
Mean of the lognormal skill dist. $(\mu_{ heta})$			2.73		Calibrated to ACS earnings dist.			
Std. dev. of the lognormal skill dist. $(\sigma_{\scriptscriptstyle{ heta}})$			0.67		Calibrated to ACS earnings dist.			
B. Community-Varying Parameters								
	Poorest community (Distressed)	25th-poorest community	50th-poorest community	75th-poorest community	Least-poor community	Sources		
	(3)	(4)	(5)	(6)	(7)	(8)		
Rent (r_j)	0.38	0.50	0.59	0.72	1	2013-2017 American Community Survey		
Community productivity ($oldsymbol{W}_j$)	0.78	0.84	0.87	0.92	1	Hornbeck-Moretti (2019)		
Community amenity level, least-skilled $(a_i(\underline{\theta}))$	2.48	8 0.78 0.00 -0.81 -3.06 Calibrated to		Calibrated to ACS tract pop. shares				
Community amenity level, most-skilled $(a_i(\overline{\Theta}))$	-3.77	-1.21	0.00	0.78	2.81	Calibrated to ACS tract pop. shares		

Notes - This table lists the parameters underlying our baseline numerical exercise and their sources. Our numerical exercise considers 100 communities j, each of which is a collection of tracts grouped into centiles by poverty rate in the 2013-2017 American Community Survey (ACS). The lognormal skill distribution is discretized into 50 skill types (θ). Amenity levels $a_j(\theta)$ have been recentered within skill types to equal zero in the 50th-poorest community. See Online Appendix C for details.

Resultados

TABLE 2
How Large Might Optimal Place-Based Transfers Be?

		Under Opti	mal Income Tax a	nd No PBR	Under Optimal Income Tax and Optimal PBR					
	Optimal level of PBR	Value of redistributon from Elsewhere to Distressed	Marginal value of public funds (MVPF) of PBR	MVPF of analogous income tax reform	Value of redistributon from Elsewhere to Distressed	Redistribution value narrowed	Increase in population of Distressed	Place-blind lump-sum transfer	Place-blind marginal tax rate above \$80K	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
A. Lump-Sum PBR										
Baseline	\$5,500	1.29	0.98	0.72	1.09	71%	9%	\$22,357	46.5%	
No productivity differences	\$5,800	1.30	1.01	0.72	1.08	74%	9%	\$22,325	46.4%	
2x productivity differences	\$4,800	1.29	0.94	0.65	1.11	63%	8%	\$22,309	46.3%	
2x migration	\$4,000	1.29	0.97	0.72	1.14	53%	13%	\$22,378	46.4%	
No prod. diffs. + 4x migration	\$3,200	1.30	1.03	0.62	1.17	42%	23%	\$22,380	46.4%	
Change top income tax bracket only	\$3,600	1.29	0.98	0.72	1.15	49%	6%	\$22,447	47.0%	
Targeting the bottom 10%	\$4,700	1.24	0.98	0.78	1.07	69%	6%	\$21,716	46.2%	
B. Capped Earnings Subsidy PBR										
Baseline	36%	1.29	0.98	0.77	1.14	54%	7%	\$22,383	46.5%	
No productivity differences	39%	1.31	1.01	0.71	1.13	58%	7%	\$22,344	46.4%	
2x productivity differences	29%	1.29	0.93	0.70	1.16	44%	5%	\$22,332	46.3%	
2x migration	25%	1.29	0.96	0.77	1.18	39%	10%	\$22,399	46.4%	
No prod. diffs. + 4x migration	24%	1.30	1.03	0.67	1.19	37%	19%	\$22,363	46.3%	
Change top income tax bracket only	30%	1.29	0.98	0.76	1.16	46%	6%	\$22,447	47.0%	
Targeting the bottom 10%	26%	1.24	0.98	0.83	1.12	48%	4%	\$21,963	46.4%	

Conclusión

La redistribución basada en lugar (PBR) puede llevar a ganancias de equidad y eficiencia. Se justifica aún más cuando:

- Cuando la productividad es uniforme espacialmente.
- Oferta laboral elástica.
- Ingresos difieren por lugares.

Basado en un ejercicio de calibración en US, se encuentra que el PBR óptimo es significativo (alrededor de \$5500 en el caso base), aún partiendo de un redistribución basada en ingreso óptima.

Hay motivos para ayudar a gente en condición de pobreza Y lugares pobres.