11. Optimization

11.1. Gradient descent in one variable

Definition 11.1

Let $J:\mathbb{R}^n o\mathbb{R}$ be a function. A vector $m{ heta}^\star$ is a *local minimizer* of $J(m{ heta})$ provided that

$$J({m{ heta}}^\star) \leq J({m{ heta}})$$

for all θ in a neighborhood of θ^* ; if this inequality holds for all θ , then θ^* is called a global minimizer of $J(\theta)$. If we flip the inequality the other direction, then we obtain the definitions of local and global maximizers. Collectively, local and global minimizers and maximizers of $J(m{ heta})$ are called *extremizers*, and the values $J(m{ heta}^\star)$ of the function where $m{ heta}^\star$ is an extremizer are called extrema or extreme values.

Algorithm 11.1 (Single-variable gradient descent)

Input: A differentiable objective function $J:\mathbb{R} o \mathbb{R}$, an initial guess $heta_0 \in \mathbb{R}$ for a local minimizer $heta^\star$, a learning rate lpha>0, and the number N of gradient steps.

Output: An approximation to a local minimizer θ^* .

$$\theta := \theta_0$$

For t from 0 to N-1, do:

$$\theta := \theta - \alpha J'(\theta)$$

Return θ

Observation 11.1

- ullet The negative derivative -J'(heta) always "points downhill."
- When the gradient descent algorithm works, it locates a minimizer by following the negative derivative "downhill."

Do problem 1 on the worksheet.

Do problems 2 and 3 on the worksheet.

Algorithm 11.2 (Single-variable gradient descent with learning rate decay)

Input: A differentiable objective function $J:\mathbb{R} o \mathbb{R}$, an initial guess $heta_0 \in \mathbb{R}$ for a local minimizer $heta^\star$, a learning rate lpha>0, a decay rate $eta\in[0,1)$, and the number N of gradient steps.

Output: An approximation to a local minimizer θ^* .

$$\theta := \theta_0$$

For t from 0 to N-1, do:

$$heta:= heta-lpha(1-eta)^{t+1}J'(heta)$$

Return θ

Do problem 4 on the worksheet.

11.2. Differential geometry

Definition 11.2

Let $J:\mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 , $m{ heta} \in \mathbb{R}^n$ a point, and $\mathbf{v} \in \mathbb{R}^n$ a vector. We define the directional first derivative of J at $m{ heta}$ in the direction \mathbf{v} to be

$$J_{\mathbf{v}}'(oldsymbol{ heta}) \stackrel{ ext{def}}{=} rac{ ext{d}}{ ext{d}t}igg|_{t=0} J(t\mathbf{v}+oldsymbol{ heta}),$$

while we define the directional second derivative to be

$$J_{\mathbf{v}}''(oldsymbol{ heta}) \stackrel{ ext{def}}{=} rac{ ext{d}^2}{ ext{d}t^2}igg|_{t=0} J(t\mathbf{v}+oldsymbol{ heta}).$$

In this context, the vector \mathbf{v} is called the *directional vector*.

Do problem 5 on the worksheet.

Definition 11.3

Let $J:\mathbb{R}^n o\mathbb{R}$ be a function of class C^2 and $m{ heta}\in\mathbb{R}^n$ a point. We define the *gradient* vector to be

$$abla J(oldsymbol{ heta}) \stackrel{ ext{def}}{=} \left[rac{\partial J}{\partial heta_i}(oldsymbol{ heta})
ight] = egin{bmatrix} rac{\partial J}{\partial heta_1}(oldsymbol{ heta}) \ dots \ rac{\partial J}{\partial heta_n}(oldsymbol{ heta}) \end{bmatrix} \in \mathbb{R}^n,$$

while we define the the Hessian matrix to be

$$abla^2 J(oldsymbol{ heta}) \stackrel{ ext{def}}{=} \left[rac{\partial^2 J}{\partial heta_i \partial heta_j}(oldsymbol{ heta})
ight] = \left[egin{array}{ccc} rac{\partial^2 J}{\partial heta_1^2}(oldsymbol{ heta}) & \cdots & rac{\partial^2 J}{\partial heta_1 \partial heta_n}(oldsymbol{ heta}) \ dots & \ddots & dots \ rac{\partial^2 J}{\partial heta_n \partial heta_1}(oldsymbol{ heta}) & \cdots & rac{\partial^2 J}{\partial heta_n^2}(oldsymbol{ heta}) \end{array}
ight] \in \mathbb{R}^{n imes n}.$$

4

Theorem 11.1 (Slopes, curvatures, and partial derivatives)

Let $J:\mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 , $m{ heta} \in \mathbb{R}^n$ a point, and $\mathbf{v} \in \mathbb{R}^n$ a directional vector.

1. We have

$$J'_{\mathbf{v}}(\boldsymbol{\theta}) = \mathbf{v}^{\intercal} \nabla J(\boldsymbol{\theta}).$$

2. We have

$$J_{\mathbf{v}}''(oldsymbol{ heta}) = \mathbf{v}^{\intercal}
abla^2 J(oldsymbol{ heta}) \mathbf{v}.$$

Do problem 6 on the worksheet.