登录 | 注册

Coffee的博客

文章分类 软件工程心得 (1) 机器学习 (4) python (1) linux (9) PRML (1)

文章存档	
2017年05月	(1)
2017年04月	(4)
2017年03月	(3)
2017年02月	(3)
2017年01月	(1)
展开	

阅读排行					
Keras中自定义目标函数 (损	(5712)				
学习Pandas的一些记录	(571)				
网络程序设计课程总结	(567)				
网易云课堂 Linux内核分析 ((454)				
网易云课堂 Linux内核分析 ((423)				
anaconda环境下安装python包	(324)				

Keras中自定义目标函数(损失函数)的简单方法

标签:神经网络

2016-12-28 22:27 5734人阅读 评论(0)

≡ 分类:

机器学习(3) -

■版权声明:本文为博主原创文章,未经博主允许不得转载。

Keras作为一个深度学习库,非常适合新手。在做神经网络时,它自带了许多常用的目标函数,优化方法等等,基本能满足新手学习时的一些需求。具体包含目标函数和优化方法。但它也支持用户自定义目标函数,下边介绍一种最简单的自定义目标函数的方法。

要实现自定义目标函数,自然想到先看下Keras中的目标函数是怎么定义的。查下源码发现在 Keras/objectives.py中,Keras定义了一系列的目标函数。

```
def mean_squared_error(y_true, y_pred):
 1
        return K.mean(K.square(y_pred - y_true), axis=-1)
 2
 3
 4
    def mean_absolute_error(y_true, y_pred):
        return K. mean(K. abs(y_pred - y_true), axis=-1)
 6
 7
 8
    def mean_absolute_percentage_error(y_true, y_pred):
9
        diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
10
        return 100. * K. mean(diff, axis=-1)
11
12
13
    def mean_squared_logarithmic_error(y_true, y_pred):
14
        first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
15
        second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
16
17
        return K.mean(K.square(first_log - second_log), axis=-1)
18
19
    def squared_hinge(y_true, y_pred):
20
        return K. mean (K. square (K. maximum(1. - y_true * y_pred, 0.)), axis=-1)
21
22
23
24
    def hinge(y_true, y_pred):
        return K. mean(K. maximum(1. - y_true * y_pred, 0.), axis=-1)
25
26
27
28
    def categorical_crossentropy(y_true, y_pred):
        '''Expects a binary class matrix instead of a vector of scalar classes.
29
30
        return K. categorical_crossentropy(y_pred, y_true)
31
32
33
    def sparse_categorical_crossentropy(y_true, y_pred):
34
        "'expects an array of integer classes.
35
36
        Note: labels shape must have the same number of dimensions as output shape.
        If you get a shape error, add a length-1 dimension to labels.
```

学习软件工程(C编码实践篇	(255)
PRML读书笔记 (一)	(227)
网易云课堂 Linux内核分析 ((214)
网易云课堂 Linux内核分析 ((176)

评论排行 PRML读书笔记(一) (0)网易云课堂 Linux内核分析 (... (0)网易云课堂 Linux内核分析 (... (0)网易云课堂 Linux内核分析 (... (0)网易云课堂 Linux内核分析 (... (0) 网易云课堂 Linux内核分析 (... (0)anaconda环境下安装python包 (0)网络程序设计课程总结 (0)学习Pandas的一些记录 (0)Keras中自定义目标函数(损... (0)

推荐文章

- *【观点】第二十三期:程序员应该如何积累财富?
- * Android检查更新下载安装
- * 动手打造史上最简单的 Recycleview 侧滑 菜单
- *TCP网络通讯如何解决分包粘包问题
- * SDCC 2017之大数据技术实战线上峰会
- * 快速集成一个视频直播功能

```
38
39
        return K. sparse_categorical_crossentropy(y_pred, y_true)
40
41
42
    def binary_crossentropy(y_true, y_pred):
43
        return K. mean (K. binary_crossentropy (y_pred, y_true), axis=-1)
44
45
46
    def kullback_leibler_divergence(y_true, y_pred):
47
        y_true = K.clip(y_true, K.epsilon(), 1)
        y_pred = K.clip(y_pred, K.epsilon(), 1)
48
        return K. sum(y_true * K. log(y_true / y_pred), axis=-1)
49
50
51
52
   def poisson(y_true, y_pred):
        return K. mean(y_pred - y_true * K. log(y_pred + K. epsilon()), axis=-1)
53
54
55
56
   def cosine_proximity(y_true, y_pred):
57
        y_true = K.12_normalize(y_true, axis=-1)
58
        y_pred = K.12_normalize(y_pred, axis=-1)
59
        return -K. mean(y_true * y_pred, axis=-1)
```

看到源码后,事情就简单多了,我们只要仿照这源码的定义形式,来定义自己的loss就可以了。例如举个最简单的例子,我们定义一个loss为预测值与真实值的差,则可写为:

```
1 def my_koss(y_true, y_pred):
2 return K. mean((y_pred-y_true), axis = -1)
```

然后,将这段代码放到你的模型中编译,例如

```
1  def my_loss(y_true, y_pred):
2    return K.mean((y_pred-y_true), axis = -1)
3  model.compile(loss=my_loss,
4  optimizer='SGD',
5  metrics=['accuracy'])
```

有一点需要注意,Keras作为一个高级封装库,它的底层可以支持theano或者tensorflow,在使用上边代码时,首先要导入这一句

```
1 from keras import backend as K
```

这样你自定义的loss函数就可以起作用了。

- 上一篇 学习软件工程(C编码实践篇)心得
- 下一篇 学习Pandas的一些记录

相关文章推荐

- Keras学习笔记01——快速搭建神经网络结构

•

- 10小时深入掌握 Kubernetes
- Keras中几个重要函数用法
-
- 【免费直播】Python最佳学习路线--韦玮
- JDK9新特性