CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 37

Posted Friday 21 March 2014. Due 1pm Friday 11 April 2014.

37. [25 points]

Let the symmetric bilinear form $(\cdot,\cdot):L^2(0,1)\times L^2(0,1)\to\mathbb{R}$ be defined by

$$(v,w) = \int_0^1 v(x)w(x) dx$$

and let the symmetric bilinear form $a(\cdot,\cdot):H^1(0,1)\times H^1(0,1)\to\mathbb{R}$ be defined by

$$a(v, w) = \int_0^1 v'(x)w'(x) dx.$$

Let $B(\cdot,\cdot):H^1(0,1)\times H^1(0,1)\to\mathbb{R}$ be defined by

$$B(v, w) = a(v, w) + (v, w).$$

Let the norm $|||\cdot|||: H^1(0,1) \to \mathbb{R}$ be defined by

$$|||v||| = \sqrt{B(v,v)}.$$

Let $f \in L^2(0,1)$, let $\rho \in \mathbb{R}$, let $H^1_D(0,1) = \{w \in H^1(0,1) : w(0) = 0\}$ and let $u \in H^1_D(0,1)$ be such that

$$B(u, v) = (f, v) + \rho v(1)$$
 for all $v \in H_D^1(0, 1)$.

Moreover, let N be a positive integer, let V_N be a subspace of $H_D^1(0,1)$ and let $u_N \in V_N$ be such that

$$B(u_N, v) = (f, v) + \rho v(1)$$
 for all $v \in V_N$.

- (a) Use the fact that (\cdot, \cdot) is a symmetric bilinear form on $L^2(0,1)$ and the fact that $a(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$ to show that $B(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$. Recall that $H^1(0,1) = \{v \in L^2(0,1) : v' \in L^2(0,1)\}$.
- (b) Show that

$$B(u - u_N, v) = 0$$
 for all $v \in V_N$.

(c) Show that

$$|||u - u_N|||^2 = |||u|||^2 - |||u_N|||^2$$
.

(d) Show that

$$|||u_N|||^2 \le |||u|||^2$$
.