Dimension d'un espace vectoriel (on se limitera 148 au cas de la dimension finie). Rang. Exemples et applications.

Soit *E* un espace vectoriel sur un corps commutatif \mathbb{K} .

I - Espaces vectoriels de dimension finie

1. Familles génératrices, familles libres

Définition 1. Soit $A \subseteq E$.

- On dit que A est une **partie génératrice** de E si E = Vect(A).
- On dit que A est une **partie libre** de E si

$$\forall (a_i)_{i \in I} \subseteq A, \forall (\lambda_i)_{i \in I} \subseteq \mathbb{K}, \sum_{i \in I} \lambda_i a_i = 0 \implies \forall i \in I, \lambda_i = 0$$

(ou de manière équivalente, si aucun vecteur de A n'est combinaison linéaire des autres).

On dit que *A* est une **partie liée** de *E* si *A* n'est pas libre.

Exemple 2. Dans le R-espace vectoriel des fonctions réelles continues, les familles suivantes sont libres:

- $$\begin{split} & (f_{\lambda}) \text{ où } \forall \lambda \in \mathbb{R}, f_{\lambda} : x \mapsto e^{\lambda x}. \\ & (g_{\lambda}) \text{ où } \forall \lambda \in \mathbb{R}, g_{\lambda} : x \mapsto \cos(\lambda x). \end{split}$$
- (h_{λ}) où $\forall \lambda \in \mathbb{R}, h_{\lambda} : x \mapsto |x \lambda|$.

Proposition 3 (Polynômes à degrés échelonnés). Une famille de polynômes non nuls de $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] \mid \deg(P) \leq n\}$ échelonnée en degré est libre dans $\mathbb{K}_n[X]$.

Application 4 (Théorème des extrema liés). Soit *U* un ouvert de \mathbb{R}^n et soient f, g_1, \dots, g_r : $U \to \mathbb{R}$ des fonctions de classe \mathscr{C}^1 . On note $\Gamma = \{x \in U \mid g_1(x) = \dots = g_r(x) = 0\}$. Si $f_{\mid \Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si les formes linéaires $\mathrm{d}(g_1)_a, \ldots, \mathrm{d}(g_r)_a$ sont linéairement indépendantes, alors il existe des uniques $\lambda_1, \dots, \lambda_r$ appelés **multiplicateurs de Lagrange**

tels que

$$df_a = \lambda_1 d(g_1)_a + \dots + \lambda_r d(g_r)_a$$

p. 117

[GOU20] p. 337

[ROM21]

p. 357

Définition 5. On dit que *E* est de **dimension finie** s'il existe une partie génératrice finie de *E*. Dans le cas contraire, *E* est dit de **dimension infinie**.

2. Bases

Définition 6. Une partie libre et génératrice de *E* est une **base** de *E*.

Exemple 7. — La famille $(e_i)_{i \in [1,n]}$ (où $e_i = (0, ..., 0, 1, 0, ... 0)$, le 1 se trouvant à la i-ième position) est une base de \mathbb{K}^n appelée **base canonique** de \mathbb{K}^n .

— La famille $(X^i)_{i \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$ appelée **base canonique** de $\mathbb{K}[X]$.

Proposition 8. Plus généralement, toute famille de polynômes non nuls de $\mathbb{K}_n[X]$ échelonnée en degré est une base de $\mathbb{K}_n[X]$.

[**ROM21**] p. 257

Proposition 9. Soit $B = (e_i)_{i \in I}$ une base de E. Alors, tout vecteur x de E s'écrit de manière unique $x = \sum_{i \in I} x_i e_i$ avec $\forall i \in I$, $x_i \in E$. Les x_i sont les **coordonnées** de x dans la base B.

[**GOU21**] p. 117

Théorème 10. On suppose E de dimension finie. Alors pour toute partie génératrice $\mathscr{G} \subseteq E$ et toute famille libre $\mathscr{L} \subseteq \mathscr{G}$, il existe une base B de E telle que $\mathscr{L} \subseteq B \subseteq \mathscr{G}$.

Corollaire 11. On suppose *E* de dimension finie.

- Il existe une base de *E*.
- (Théorème de la base extraite) De toute partie génératrice de *E*, on peut extraire une base de *E*.
- (Théorème de la base incomplète) Toute partie libre de *E* peut-être complétée en une base de *E*.

3. Théorie de la dimension

Théorème 12. On suppose E de dimension finie. Toutes les bases de E ont le même cardinal n. L'entier n s'appelle **dimension** de E, noté $\dim_{\mathbb{K}}(E)$ (ou simplement $\dim(E)$ en l'absence d'ambiguïté sur le corps de base).

Dans toute la suite, on se limitera au cas où E est de dimension finie, et on notera $n = \dim(E)$.

Proposition 13. — Tout système libre de n vecteurs de E est une base de E.

— Tout système générateur de *n* vecteurs de *E* est une base de *E*.

Proposition 14. Soient E_1, \dots, E_k des sous-espaces vectoriels de E. Alors,

$$E = E_1 \oplus \cdots \oplus E_k \iff E = E_1 + \cdots + E_k \text{ et } n = \sum_{i=1}^k \dim(E_i)$$

Proposition 15 (Formule de Grassmann). Soient E_1 et E_2 deux sous-espaces vectoriels de E. Alors,

$$\dim(E_1 + E_2) = \dim(E_1) + \dim(E_2) - \dim(E_1 \cap E_2)$$

Corollaire 16. Soient E_1 et E_2 deux sous-espaces vectoriels de E. Les assertions suivantes sont équivalentes :

- (i) $E = E_1 \oplus E_2$.
- (ii) $\dim(E) = \dim(E_1) + \dim(E_2)$ et $E_1 \cap E_2 = \{0\}$.
- (iii) $\dim(E) = \dim(E_1) + \dim(E_2)$ et $E = E_1 + E_2$.

Exemple 17.

$$\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$$

II - Rang

1. Rang d'une application linéaire

Définition 18. Soient E et F deux espaces vectoriels sur \mathbb{K} . Soit $f \in \mathcal{L}(E,F)$. Si $\mathrm{Im}(f)$ est de dimension finie, on appelle **rang** de f l'entier $\mathrm{dim}(\mathrm{Im}(f))$, noté $\mathrm{rang}(f)$.

E de

p. 240

p. 120

Théorème 19 (Théorème du rang). Soient E et F deux espaces vectoriels sur \mathbb{K} avec E de dimension finie. Alors,

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rang}(f)$$

Corollaire 20. Soit $f \in \mathcal{L}(E,F)$ où E et F sont de même dimension finie. Alors :

$$f$$
 bijective \iff f injective \iff f surjective

Contre-exemple 21. L'application

$$\mathbb{R}[X] \to \mathbb{R}[X]
P \mapsto P'$$

agreg.skyost.eu

est linéaire surjective, mais pas injective.

Application 22. L'application

$$\begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K}) \\ A & \mapsto & (X \mapsto \operatorname{trace}(AX)) \end{array}$$

est un isomorphisme.

2. Rang d'une matrice

Définition 23. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$. On appelle **rang** de A la dimension du sous-espace vectoriel de \mathbb{K}^q engendré par les colonnes de A. Si A est la matrice d'une application linéaire f, on a rang $(A) = \operatorname{rang}(f)$.

Remarque 24. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$.

- rang(A) ≤ min(p, q).
- Si p = q, A est inversible si et seulement si rang(A) = p.

Théorème 25. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$. Si A est de rang $r \ge 1$, alors A est équivalente à

$$J_r = \begin{pmatrix} I_r & 0 \\ 0 & O \end{pmatrix}$$

Corollaire 26. Deux matrices A et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ sont équivalentes si et seulement si elles ont le même rang.

Théorème 27. Le rang d'une matrice est le plus grand des ordres des matrices carrées inversibles extraites de cette matrice.

Corollaire 28. Le rang de toute matrice est égal au rang de sa transposée.

Remarque 29. Autrement dit, la dimension du sous-espace engendré par les vecteurs colonnes d'une matrice est égal à la dimension du sous-espace engendré par ses vecteurs lignes.

Proposition 30. On ne change pas le rang d'une matrice par opérations élémentaires.

p. 138

p. 128

Exemple 31. On peut utiliser l'algorithme du pivot de Gauss pour trouver le rang d'une matrice. Ainsi,

$$\operatorname{rang}\begin{pmatrix} 2 & 1 & 3 & -3 \\ -1 & 2 & 1 & 4 \\ 1 & 1 & 2 & -1 \end{pmatrix} = \operatorname{rang}\begin{pmatrix} 2 & 1 & 3 & -3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} = 2$$

III - Applications

1. Dualité

Soit E un espace vectoriel sur \mathbb{K} de dimension finie n.

Définition 32. L'ensemble $E^* = \mathcal{L}(E, \mathbb{K})$ est appelé **dual** de E. Ses éléments sont les **formes linéaires** sur E.

Définition 33. Soit $B = (e_1, \dots, e_n)$ une base de E. Pour tout $i \in [1, n]$, on définit

$$e_i^* : e_j \mapsto \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

la **forme linéaire coordonnée** d'indice *i*.

Théorème 34. $B^* = (e_1^*, \dots, e_n^*)$ est une base de E^* appelée **base duale** de B. B est alors la **base antéduale** de B^* .

Corollaire 35. — E^* est de dimension finie et $\dim(E^*) = n$.

$$-- \forall \varphi \in E^*, \varphi = \sum_{i=1}^n \varphi(e_i) e_i^*.$$

Application 36 (Formule de Taylor). On suppose \mathbb{K} de caractéristique nulle. Pour tout $j \in [0, n]$, on définit :

$$e_j: \begin{array}{ccc} \mathbb{K}_n[X] & \to & \mathbb{K} \\ P & \mapsto & \frac{P^{(j)}(0)}{i!} \end{array}$$

Alors, $(e_i)_{i \in [0,n]}$ est une base de $K_n[X]^*$, dont la base antéduale est $(X^i)_{i \in [0,n]}$.

[ROM21] p. 442

2. Classification des formes quadratiques

On se place sur le corps $\mathbb{K} = \mathbb{R}$.

[GOU21] p. 239

Définition 37. Soit $\varphi : E \times E \to \mathbb{K}$ une application.

- φ est une **forme bilinéaire** sur E si $\forall x \in E, \varphi(x, \cdot)$ est linéaire et de même pour $\varphi(\cdot, y), \forall y \in E$. Si $B = (e_i)_{i \in [\![1,n]\!]}$ est une base de E, on définit la matrice M de φ dans B par $M = (\varphi(e_i, e_i))_{i,j \in [\![1,n]\!]}$.
- Si de plus $\forall x, y \in E$, $\varphi(x, y) = \varphi(y, x)$, on dit que φ est **symétrique**.

Définition 38. On appelle **forme quadratique** sur E toute application q de la forme

$$q: \begin{array}{ccc} E & \rightarrow & \mathbb{K} \\ x & \mapsto & \varphi(x,x) \end{array}$$

où φ est une forme bilinéaire symétrique sur E.

Proposition 39. Soit q une forme quadratique sur E. Il existe une unique forme bilinéaire symétrique φ telle que pour tout $x \in E$, $q(x) = \varphi(x, x)$.

 φ est alors la **forme polaire** de q, et on a

$$\forall x, y \in E, \, \varphi(x, y) = \frac{1}{2}(q(x+y) - q(x) - q(y))$$

Définition 40. Soit q une forme quadratique sur E. On appelle **rang** de q (noté rang(q)) le rang de la matrice de sa forme polaire.

Lemme 41. Soit Φ une forme quadratique sur E. Il existe une base Φ-orthogonale (ie. si φ est la forme polaire de Φ, une base B où $\forall e, e' \in B$, $\varphi(e, e') = 0$ si $e \neq e'$).

[DEV]

Théorème 42 (Loi d'inertie de Sylvester). Soit Φ une forme quadratique sur E.

$$\exists p, q \in \mathbb{N} \text{ et } \exists f_1, \dots, f_{p+q} \in E^* \text{ tels que } \Phi = \sum_{i=1}^p |f_i|^2 - \sum_{i=p+1}^{p+q} |f_i|^2$$

où les formes linéaires f_i sont linéairement indépendantes et où $p+q \le n$. De plus, ces entiers ne dépendent que de Φ et pas de la décomposition choisie.

Le couple (p,q) est la **signature** de Φ et le rang Φ est égal à p+q.

Exemple 43. La signature de la forme quadratique $\Phi: (x, y, z) \mapsto x^2 - 2y^2 + xz + yz$ est (2, 1), donc son rang est 3.

3. Extensions de corps

Définition 44. On appelle **extension** de \mathbb{K} tout corps \mathbb{L} tel qu'il existe un morphisme de corps de \mathbb{K} dans \mathbb{L} . On notera \mathbb{L}/\mathbb{K} pour signifier que \mathbb{L} est une extension de \mathbb{K} par la suite.

[**GOZ**] p. 21

Définition 45. Soit \mathbb{L}/\mathbb{K} une extension de \mathbb{K} . On appelle **degré** de \mathbb{L}/\mathbb{K} et on note $[\mathbb{L} : \mathbb{K}]$, la dimension de \mathbb{L} comme \mathbb{K} -espace vectoriel.

Théorème 46 (Base télescopique). Soient \mathbb{L}/\mathbb{K} une extension de \mathbb{K} et E un espace vectoriel sur \mathbb{L} . Soient $(e_i)_{i \in I}$ une base de E en tant que \mathbb{L} -espace vectoriel et $(\alpha_j)_{j \in J}$ une base de \mathbb{L} en tant que \mathbb{K} -espace vectoriel.

Alors $(\alpha_j e_i)_{(i,j) \in I \times J}$ est une base de E en tant que \mathbb{K} -espace vectoriel.

Corollaire 47 (Multiplicativité des degrés). Soient \mathbb{L}/\mathbb{K} une extension de \mathbb{K} et \mathbb{M}/\mathbb{L} une extension de \mathbb{L} . Alors, sont équivalentes :

- (i) M est un K-espace vectoriel de dimension finie.
- (ii) $\mathbb M$ est un $\mathbb L$ -espace vectoriel de dimension finie et $\mathbb L$ est un $\mathbb K$ -espace vectoriel de dimension finie.

On a alors:

$$\dim_{\mathbb{K}}(M) = \dim_{\mathbb{K}}(M) \dim_{\mathbb{K}}(L) \iff [\mathbb{M} : \mathbb{K}] = [\mathbb{M} : \mathbb{L}][\mathbb{L} : \mathbb{K}]$$

Exemple 48.

$$[\mathbb{Q}[i+\sqrt{2}]:\mathbb{Q}]=4$$

p. 46

4. Commutant

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Lemme 49. Si $\pi_A = \chi_A$, alors *A* est cyclique :

[**GOU21**] p. 289

$$\exists x \in \mathbb{K}^n \setminus \{0\} \text{ tel que } (x, Ax, \dots, A^{n-1}x) \text{ est une base de } \mathbb{K}^n$$

[**FGN2**] p. 160

Notation 50. — On note $\mathcal{T}_n(\mathbb{K})$ l'ensemble des matrices carrées triangulaires supérieures d'ordre n à coefficients dans le corps \mathbb{K} .

— On note $\mathscr{C}(A)$ le commutant de A.

Lemme 51.

$$\dim_{\mathbb{K}}(\mathcal{C}(A)) \geq n$$

Lemme 52. Le rang de *A* est invariant par extension de corps.

[DEV]

Théorème 53.

$$\mathbb{K}[A] = \mathcal{C}(A) \iff \pi_A = \chi_A$$

Bibliographie

Oraux X-ENS Mathématiques

[FGN2]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 2.* 2^e éd. Cassini, 16 mars 2021.

https://store.cassini.fr/fr/enseignement-des-mathematiques/111-oraux-x-ens-mathematiques-nouvelle-serie-vol-2.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

 $\label{limits} https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.$

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.