PROJECT1 DAY05

I	丿	3		<u> </u>	
_		_	_		

	09:00 ~ 09:30	作业讲解和回顾	
上午	09:30 ~ 10:20		
	10:30 ~ 11:20	STP	
	11:30 ~ 12:00		
	14:00 ~ 14:50		
 下 午	15:00 ~ 15:50	HSRP	
	16:10 ~ 17:00		
	17:10 ~ 18:00	总结和答疑	

STP生成树算法

广播风暴的产生

- 交换机工作原理
 - 根据MAC地址表转发数据帧,如果地址未知,则广播
 - 如果交换机接收到广播帧也会向所有接口发送

广播风暴的产生(续1)

• 当网络中存在物理环路,会产生广播风暴

知识讲解

广播风暴的产生(续2)

• 当网络中存在物理环路,会产生广播风暴

-+

STP概述

知识讲解

• STP简介

- STP - Spanning Tree Protocol(生成树协议) 逻辑上断开环路,防止广播风暴的产生 当线路故障,阻塞接口被激活,恢复通信,起备份线路的作用

选择根网桥

- 网桥ID(BID)
 - 网桥ID是唯一的,交换机之间选择BID值最小的交换机作为网络中的根网桥

取值范围: 0~65535

缺省值: 32768

STP配置

PVST+的配置命令

- 启用生成树命令
 Switch(config)#spanning-tree vlan vlan-list
- 指定根网桥

Switch(config)#spanning-tree vlan *vlan-list* priority *Bridge-priority*

或

Switch(config)#spanning-tree vlan *vlan-list* root { primary | secondary }

++

PVST+的配置命令(续1)

查看生成树的配置Switch#show spanning-tree

• 查看某个VLAN的生成树详细信息 Switch#show spanning-tree vlan vlan-id

知识讲解

案例1:STP的基本配置

• 配置Switch1为vlan1的主根, Switch2为vlan1的次根

案例2:配置阻塞接口

配置生成树协议,按需求阻塞接口

PPT

PVST+配置的意义

- PVST+配置的意义
 - 配置网络中比较稳定的交换机为根网桥
 - 利用PVST+实现网络的负载分担

VLAN 6~10

Tedu.cn

PVST+配置的意义(续1)

- PVST+配置的意义
 - 配置网络中比较稳定的交换机为根网桥
 - 利用PVST+实现网络的负载分担

案例3:配置STP实现负载均衡

• 通过配置PVST+实现MS1负责转发VLAN1的数据, MS2负责转发VLAN2的数据

课堂练习

2018/12/29 F

HSRP的相关概念

- 热备份路由选择协议
 - HSRP (Hot Standby Routing Protocol)
 - Cisco私有协议

+*

2018/12/29 P

HSRP配置

HSRP的配置命令

• 配置为HSRP的成员 Switch(config-if)#standby *group-number* ip *virtual-ip-address*

HSRP备份组号

• 配置HSRP的优先级

Switch(config-if)#standby *group-number* priority *priority-value*

查看HSRP摘要信息
 Switch(config-if)#show standby brief

范围0~255,默认100

- HSRP占先权
 - 当本身优先级大于其他设备时立刻抢占活跃路由器身份
 - HSRP占先权配置

Switch(config-if)#standby group-number preempt

2018/12/29 P

HSRP的配置案例(续1)

知

识讲

解

• MS1与MS2配置

MS1(config)#interface vlan 1 MS1(config-if)#ip address 192.168.1.252 255.255.255.0 MS1(config-if)#standby 1 ip 192.168.1.254

配置虚拟IP

MS1(config-if)#standby 1 priority 105

配置优先级

MS2(config)#interface vlan 1 MS2(config-if)#ip address 192.168.1.253 255.255.255.0 MS2(config-if)#standby 1 ip 192.168.1.254

++

知识

讲

HSRP的配置案例(续2)

• 查看HSRP信息

MS1#show standby brief

P indicates configured to preempt.

Interface Grp Pri P State Active Standby Virtual IP VI2 1 105 P Active Iocal 192.168.1.253 192.168.1.254

++

HSRP的配置案例(续3)

• 查看HSRP信息

MS2#show standby brief

P indicates configured to preempt.

Interface Grp Pri P State Active Standby Virtual IP VI2 1 100 P Standby 192.168.1.252 local 192.168.1.254

案例4:三层交换配置HSRP

在三层交机配置热备份路由协议使组内两个出口设备共享一个虚拟IP地址192.168.1.254为内网主机的网关

课堂练习

案例5:完善网络负载均衡

• 通过之前配置的STP加上HSRP完善网络的负载均衡功能。

PPT

课堂练习

总结和答疑