Correction des exercices du TD 3

Exercices du 6 à 10

Exercice 6

Etudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$

CORRECTION: Posons

$$f(x) = \frac{4x+5}{x+3}, \qquad x \neq -3,$$

ainsi nous avons que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. Une récurrence immédiate nous permet de dire de suite que $u_n > 0$ pour tout $n \in \mathbb{N}$. En effet $u_0 = 4 > 0$, et si $u_n > 0$ pour un certain n, alors $u_{n+1} = f(u_n) = \frac{4u_n + 5}{u_n + 3} > 0$, d'où la conclusion. Déterminons la monotonie de f. Si $x \neq -3$ on a:

$$f'(x) = \frac{4x + 5 - 4(x + 3)}{(x + 3)^2} = \frac{2}{(x + 3)^2} > 0$$

donc f est croissante sur $]-\infty, -3[$ et sur $]-3, +\infty[$. En particulier elle est croissante sur $[0, +\infty[$. Observons que $u_1 = \frac{4\times 4+5}{4+3} = \frac{21}{7} = 3 < 4 = u_0$. Posons donc la propriété

$$\mathcal{P}(n): \qquad 0 < u_{n+1} < u_n.$$

<u>Initialisation</u>: Pour n = 0 on a $0 < u_1 = 3 < u_0 = 4$, donc $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: Supposons $\mathcal{P}(n)$ satisfaite por un certain $n \in \mathbb{N}$. La fonction f est étant strictement croissante sur $[0, +\infty[$, puisque par hypothèse de récurrence $0 < u_{n+1} < u_n$, nous avons que 0 < f(0) = 5/3 < $f(u_{n+1}) = u_{n+2} < f(u_n) = u_{n+1}$, donc $\mathcal{P}(n+1)$ est aussi satisfaite.

Grâce au Théorème de la récurrence on peut donc dire que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$, et donc $(u_n)_n$ est une suite décroissante et minorée par 0. D'après le Théorème de la convergence monotone, on peut dire que $(u_n)_n$ est une suite convergente. Notons l sa limite. Nous savons donc que $\lim_{n\to+\infty}u_n=0$

 $\lim_{n \to +\infty} u_{n+1} = l, \text{ donc}$

$$l = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} \frac{4u_n + 5}{u_n + 3} = \frac{4l + 5}{l + 3} = f(l),$$

et de plus $l \geq 0$ car $u_n > 0$ pour tout $n \in \mathbb{N}$. Cherchons donc les solutions de l'équation f(l) = l. Si on suppose $l \neq -3$ on a:

$$f(l) = l \Leftrightarrow \frac{4l+5}{l+3} = l \Leftrightarrow l^2 - l - 5 = 0 \Leftrightarrow l = l_{1,2} = \frac{1 \pm \sqrt{21}}{2}.$$

Mais $\frac{1-\sqrt{21}}{2} < 0$, donc on a forcement que $l = \frac{1+\sqrt{21}}{2}$.

Exercice 7

Montrer que les suites de termes $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{2}{n+1}$ sont adjacentes.

CORRECTION: La suite $(u_n)_n$ est clairement croissante, car $u_{n+1} - u_n = \frac{1}{(n+1)^2} > 0$ pour tout $n \in \mathbb{N}$. Étudions maintenant la suite $(v_n)_n$. Nous avons

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{2}{n+2} - \frac{2}{n+1} = \frac{1}{(n+1)^2} + \frac{2}{n+2} - \frac{2}{n+1}$$

$$= \frac{n+2+2(n+1)^2 - 2(n+1)(n+2)}{(n+2)(n+1)^2}$$

$$= \frac{n+2-2n-2}{(n+2)(n+1)^2} = -\frac{n}{(n+2)(n+1)^2} \le 0,$$

pour tout $n \in \mathbb{N}$, donc la suite $(v_n)_n$ est décroissante. De plus

$$\lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} \frac{2}{n+1} = 0,$$

donc les suites $(u_n)_n$ et $(v_n)_n$ sont bien adjacentes.

Exercice 8

Soient a et b deux réels positifs tels que $a \le b$. Soient (a_n) et (b_n) les suites définies par : $a_0 = a$, $b_0 = b$ et $\forall n \in \mathbb{N}$

$$\begin{cases} a_{n+1} = \sqrt{a_n b_n} \\ b_{n+1} = \frac{1}{2} (a_n + b_n) \end{cases}$$

1) Montrer que, pour tout $n \in \mathbb{N}$, les réels a_n et b_n sont bien définis et vérifient $0 \le a_n \le b_n$. CORRECTION: On effectue une preuve par r'écurrence et on pose la propriété:

$$\mathcal{P}(n): 0 \le a_n \le b_n.$$

<u>Initialisation</u>: quand n = 0 on a $a_0 = a$ et $b_0 = b$, et par hypothèse $0 \le a \le b$, donc $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: supposons $\mathcal{P}(n)$ satisfaite pour un n donné, c'est-à-dire $0 \le a_n \le b_n$. Or $a_n b_n \ge 0$ et $\frac{a_n + b_n}{2} \ge 0$, donc $a_{n+1} = \sqrt{a_n b_n} \ge 0$ et $b_{n+1} = \frac{a_n + b_n}{2} \ge 0$. De plus

$$b_{n+1} - a_{n+1} = \frac{1}{2}(a_n + b_n) - \sqrt{a_n b_n} = \frac{1}{2}(\sqrt{b_n} - \sqrt{a_n})^2 \ge 0,$$

donc $b_{n+1} \geq a_{n+1} \geq 0$, et par conséquent $\mathcal{P}(n)$ est également satisfaite, ce qui prouve l'hérédité. Grâce au Théorème de la récurrence on peut donc affirmer que $\mathcal{P}(n)$ est satisfaite pour tout $n \in \mathbb{N}$, donc en particulier, les suites $(a_n)_n$ et $(b_n)_n$ sont bien définies et $0 \leq a_n \leq b_n$ pour tout $n \in \mathbb{N}$.

2) En déduire que (a_n) et (b_n) sont adjacentes (leur limite commune est appelée moyenne arithméticogéométrique de a et b)

CORRECTION : Évaluons le signe de $a_{n+1}-a_n$ et $b_{n+1}-b_n$. Pour tout $n \in \mathbb{N}$, grâce à la question 1) nous avons

$$a_{n+1} - a_n = \sqrt{a_n b_n} - a_n = \sqrt{a_n} (\sqrt{b_n} - \sqrt{a_n}) \ge 0,$$

donc $(a_n)_n$ est une suite croissante. De même:

$$b_{n+1} - b_n = \frac{a_n + b_n}{2} - b_n = \frac{a_n - b_n}{2} \le 0,$$

donc $(b_n)_n$ est une suite décroissante. Par hypothèse nous avons donc que

$$a \le a_n \le b_n \le b$$

pour tout $n \in \mathbb{N}$. Mais alors $(a_n)_n$ est une suite croissante et majorée, donc convergente, et de même $(b_n)_n$ est décroissante et minorée, donc également convergente. Notons donc $\alpha = \lim_{n \to +\infty} a_n$ et $\beta = \lim_{n \to +\infty} b_n$. Puisque $0 \le a_n \le b_n$ pour tout n, on peut dire que $0 \le \alpha \le \beta$, de plus

$$\alpha = \lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \sqrt{a_n b_n} = \sqrt{\alpha \beta},$$

$$\beta = \lim_{n \to +\infty} b_{n+1} = \lim_{n \to +\infty} \frac{a_n + b_n}{2} = \frac{\alpha + \beta}{2}.$$

La deuxième équation nous dit que $\alpha - \beta = 0$, d'où $\alpha = \beta$. Les suites $(a_n)_n$ et $(b_n)_n$ sont donc adjacentes, car $(a_n)_n$ est croissante, $(b_n)_n$ est décroissante, et elles ont la même limite.

Exercice 9

Soit $(u_n)_n$ une suite décroissante de réels positifs convergeant vers 0. On lui associe la suite $(v_n)_n$ définie par $v_n = u_0 - u_1 + u_2 + ... + (-1)^n u_n$.

1) Montrer que les suites $(v_{2n})_n$ et $(v_{2n+1})_n$ ont une limite commune l.

CORRECTION: On pourra montre que les deux suites $(v_{2n})_n$ et $(v_{2n+1})_n$ sont adjacentes. Pour ce faire posons $x_n = v_{2n}$ et $y_n = v_{2n+1}$ pour $n \in \mathbb{N}$. Or,

$$x_{n+1} - x_n = v_{2n+2} - v_{2n} = \sum_{k=0}^{2n+2} (-1)^k u_k - \sum_{k=0}^{2n} (-1)^k u_k$$
$$= (-1)^{2n+1} u_{2n+1} + (-1)^{2n+2} u_{2n+2} = -u_{2n+1} + u_{2n+2} \le 0,$$

car $(u_n)_n$ est décroissante, donc la suite $(x_n)_n$ est décroissante. De même

$$y_{n+1} - y_n = v_{2n+3} - v_{2n+1} = \sum_{k=0}^{2n+3} (-1)^k u_k - \sum_{k=0}^{2n+1} (-1)^k u_k$$
$$= (-1)^{2n+2} u_{2n+2} + (-1)^{2n+3} u_{2n+3} = u_{2n+2} - u_{2n+3} \ge 0,$$

donc la suite $(y_n)_n$ est croissante. Montrons maintenant que $x_n - y_n \to 0$ lorsque $n \to +\infty$. En effet

$$x_n - y_n = \sum_{k=0}^{2n} (-1)^k u_k - \sum_{k=0}^{2n+1} (-1)^k u_k = -(-1)^{2n+1} u_{2n+1} = u_{2n+1},$$

mais par hypothèse $\lim_{n\to+\infty}u_n=0$, donc également

$$\lim_{n \to +\infty} x_n - y_n = \lim_{n \to +\infty} u_{2n+1} = 0,$$

ce qui prouve bien que $(x_n)_n$ et $(y_n)_n$ sont deux suites adjacentes, et par conséquent elles sont convergentes et elles ont la même limite, que l'on note l.

2) Que peut on en déduire pour la suite $(v_n)_n$?

On va voir que cette suite $(v_n)_n$ est convergente. Nous savons djà que $(v_{2n})_n$ et $(v_{2n+1})_n$ sont convergentes et elles ont la même limite l. On peut traduire cette information en disant que

$$\forall \epsilon > 0 \quad \exists N_1 \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \ge N_1 \Rightarrow |v_{2n} - l| < \epsilon, \tag{1}$$

et de même

$$\forall \epsilon > 0 \quad \exists N_2 \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \ge N_2 \Rightarrow |v_{2n+1} - l| < \epsilon. \tag{2}$$

Soit donc $\epsilon > 0$, et posons $N = 2 \operatorname{Max}\{N_1, N_2\} + 1$. Si $n \geq N$, alors il y a deux cas à considérer.

- Si n est pair, disons n=2m, avec $m \in \mathbb{N}$, puisque $n=2m \geq N \geq 2N_1+1 \geq 2N_1$, alors $m \geq N_1$, donc d'après (1) on peut dire que $|v_n-l|=|v_{2m}-l|<\epsilon$.
- Si m est impair, disons n=2m+1, avec $m \in \mathbb{N}$, puisque $n=2m+1 \geq N \geq 2N_2+1$, alors $m \geq N_2$, donc d'après (2) on peut dire que $|v_n-l|=|v_{2m+1}-l|<\epsilon$.

Quoi qu'il en soit, si $n \ge N$ on a bien que $|v_n - l| < \epsilon$, donc $(v_n)_n$ converge et sa limite est l.

3) Application : démontrer que la suite $(v_n)_n$ définie par : $v_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}$ est convergente.

CORRECTION: Posons la suite $(u_n)_n$ définie par $u_n = \frac{1}{n+1}$ pour $n \in \mathbb{N}$. Ainsi

$$v_n = \sum_{k=0}^{n-1} (-1)^k u_k.$$

Or, chaque u_n est un réel positif et $\lim_{n\to+\infty} u_n = 0$, donc d'après la question 2) on peut affirmer que $(v_n)_n$ est une suite convergente.

Exercice 10

Soit la suite $(u_n)_n$ définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{1+2u_n}$ pour $n \in \mathbb{N}$. Montrer que $(u_n)_n$ converge et déterminer sa limite (étudier les suites extraites de rang pair et impair).

CORRECTION: Posons $x_n = u_{2n}$ et $y_n = u_{2n+1}$, pour $n \in \mathbb{N}$, et posons aussi $f(x) = \frac{1}{2x+1}$, pour $x \neq -1/2$. On a donc $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, donc en particulier

$$x_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = g(x_n),$$

 $y_{n+1} = u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = g(y_n),$

où l'on pose

$$g(x) = (f \circ f)(x)) = \frac{1}{1 + 2f(x)} = \frac{1}{1 + \frac{2}{1 + 2x}} = \frac{1 + 2x}{3 + 2x} = 1 - \frac{2}{3 + 2x}, \quad x \neq -3/2.$$

La fonction g est bien définie sur $\mathbb{R} \setminus \{-3/2\}$, et si x appartient è cet ensemble on a :

$$g'(x) = \frac{4}{(3+2x)^2} > 0,$$

donc g est croissante sur $]-\infty,-3/2[$ et sur $]-3/2,+\infty[$. Observons que $u_0=x_0=1$ et $u_1=y_0=\frac{1}{1+2}=\frac{1}{3}$. De plus

$$x_1 = g(x_0) = 1 - \frac{2}{3+2} = 1 - \frac{2}{5} = \frac{3}{5} < 1 = x_0,$$

 $y_1 = g(y_0) = 1 - \frac{2}{3+2/3} = 1 - \frac{6}{11} = \frac{5}{11} > \frac{1}{3} = y_0.$

Posons la propriété:

$$\mathcal{P}(n): \quad 0 < y_n < y_{n+1} < x_{n+1} < x_n.$$

<u>Initialisation</u>: si n = 0 on a déjà vérifié que $x_1 < x_0$ et $0 < 1/3 = y_0 < y_1$, et de plus $y_1 = 5/11 < 3/5 = x_1$, donc $\mathcal{P}(0)$ est satisfaite.

<u>Hérédité</u>: Supposons $\mathcal{P}(n)$ satisfaite pour un certain n, ainsi $0 < y_n < y_{n+1} < x_{n+1} < x_n$. Puisque g est croissante sur $[-3/2, +\infty[$ on a que

$$0 < q(0) = 1/3 < y_{n+1} = q(y_n) < y_{n+2} = q(y_{n+1}) < x_{n+2} = q(x_{n+1}) < x_{n+1} = q(x_n),$$

donc $\mathcal{P}(n+1)$ est bien satisfaite.

Grâce au Théorème de la récurrence on peut dire que $\mathcal{P}(n)$ est satisfaite pour tout $n \in \mathbb{N}$, en particulier, $(x_n)_n$ est décroissante et minorée, et $(y_n)_n$ est croissante et majorée. En particulier les deux suites sont convergentes. Il reste à montrer que les deux suites ont la même limite. Notons $a = \lim_{n \to +\infty} x_n$ et $b = \lim_{n \to +\infty} y_n$. Puisque $y_n \leq x_n$ pour tout $n \in \mathbb{N}$, on a bien que $b \leq a$, et puisque $x_{n+1} = g(x_n)$ et $y_{n+1} = g(y_n)$, en passant à la limite pour $n \to +\infty$ on obtient

$$a = \lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} \frac{1+2x_n}{3+2x_n} = \frac{1+2a}{3+2a}$$

$$b = \lim_{n \to +\infty} y_{n+1} = \lim_{n \to +\infty} \frac{1+2y_n}{3+2y_n} = \frac{1+2b}{3+2b}$$

Les limites a et b sont donc des solutions de l'équation $x = \frac{1+2x}{3+2x}$. Or, si $x \neq -3/2$ on a :

$$x = \frac{1+2x}{3+2x} \qquad \Leftrightarrow \quad x(3+2x) = 1+x, \quad \Leftrightarrow \quad 2x^2 + 2x - 1 = 0,$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{3}}{2}$$

D'autre part, puisque $1/3 \le y_n < x_n$, en passant à la limite nous avons que $1/3 \le b \le a$, et en particulier a > 0 et b > 0, donc au final $a = b = \frac{\sqrt{3}-1}{2}$. Nous savons donc que $(x_n)_n = (u_{2n})_n$ et $(y_n)_n = (u_{2n+1})_n$ sont convergentes et elles ont la même limite. En raisonnant comme dans la question 2) de l'exercice 9, on peut dire que $(u_n)_n$ converge et sa limite est $\frac{\sqrt{3}-1}{2}$.