Benzinkút üzemeltetés

Egy autópálya mentén N pihenő helyet képeztek ki. Egyes pihenő helyekre benzinkutat építhetünk, de két benzinkút távolsága környezetvédelmi okok miatt legalább K kilométer kell legyen. Tudjuk, hogy melyik pihenőnél mekkora haszonnal működhet benzinkút.

Készíts programot, amely kiszámolja a maximális elérhető hasznot és meghatározza, hogy ehhez hova kell benzinkutakat építeni!

Bemenet

A standard bemenet első sorában a pihenő helyek száma ($1 \le N \le 1000$) és a benzinkutak minimális távolsága ($1 \le K \le 1000$) van. A következő N sorban az egyes pihenőhelyek távolsága az autópálya elejétől ($1 \le T_i \le 1000000$) és a várható haszon értéke ($1 \le H_i \le 10000$) szerepel, távolság szerint növekvő sorrendben.

Kimenet

A standard kimenet első sorába a maximálisan elérhető hasznot kell írni! A második sorba az ehhez megépítendő benzinkutak B száma kerüljön, amit a B pihenőhely sorszáma kövessen, ahova benzinkutat építhetünk, növekvő sorrendben, a sorszámozást 1-től kezdve! Több megoldás esetén bármelyik megadható.

Példa

Bemenet	Kimenet
5 20 10 10	70 2 2 5
20 40 30 10 40 20 50 30	Megjegyzés: a távolságok miatt 1,3,5 is lehetne, de az csak 50 értékű.

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Bimm, bamm, bumm

Matekszakkörre várva a tanulók egy egyszerű játékkal ütik el az időt. Körbe állnak, majd 1-től kezdve számolnak. Ha a szám osztható 3-mal, akkor a szám helyett azt kell mondani, hogy BIMM, ha a szám osztható 5-tel, akkor helyette a BAMM szót kell mondani, ha pedig 3-mal és 5-tel is osztható, akkor BUMM-ot.

Készíts programot, amely a bemenetben megadott játékra megadja, hogy melyik volt az első helytelen bemondás!

Bemenet

A standard bemenet első sorában a játék hossza van (1≤N≤1 000). A következő N sorban egy-egy bemondás található, abban a sorrendben, ahogy a játékban elhangzott. Egy bemondás négyféle értéket vehet fel: BIMM, BAMM, BUMM vagy SZAM. Ha a SZAM szó szerepel, akkor az adott játékos a körének megfelelő számot mondta ki.

Kimenet

A standard kimenet első sorába az első helytelen bemondásnak a sorszámát kell írni! Ha senki sem hibázott, akkor 0-t kell kiírni!

Példák

Bemenet	Kimenet
4 SZAM SZAM BIMM BIMM	4 (A 4. játékosnak 4-et kellett volna mondania, mert az sem 3-mal, sem 5-tel nem osztható, azaz SZAM szónak kellene szerepelnie a bemenetben.)
Bemenet	Kimenet
5	3
SZAM SZAM BAMM SZAM SZAM	(A 3. játékosnak BIMM-et kellett volna mondania, mert a száma osztható 3-mal.)

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Fasor

A Százholdas Pagonyban van egy N fából álló fasor, a szomszédos fák távolsága 1 pagométer. Bagoly akkor boldog, ha olyan fa tetején ül, ahonnan nem lát magasabb fát. Mivel Bagoly öregszik, ezért csak a legfeljebb K pagométer távolságra lévő fákat látja. Egy sajátjánal magasabb fát tehát pontosan akkor lát, ha a fasorban a sorszámuk különbsége nem nagyobb, mint K.

Készíts programot, amely megadja a sorban az első olyan fát, amelynek tetején Bagoly boldogan ücsöröghet!

Bemenet

A standard bemenet első sorában a fák száma ($1 \le N \le 200000$) és Bagoly látótávolsága ($1 \le K \le 200000$) található. A második sorban az egyes fák magassága van sorrendben, amelyek pozitív egész számok ($1 \le H_{1} \le 1000000$).

Kimenet

A standard kimenet első sorába a legelső Bagoly számára megfelelő fa sorszámát kell írni. Ha nincs ilyen, akkor -1-et.

Példa

Bemenet Kimenet
10 3 4
6 2 1 8 4 8 7 12 9 3

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A pontok 50%-a szerezhető olyan tesztekre, ahol N≤10 000 és K≤100.

Járda I és L alakú járólapokkal

Egy N*2-es hosszúságú járdát az alábbi kétféle járólappal kell lefedni:

Készíts programot, amely megadja, hogy a járdát hányféleképpen fedhetjük le velük!

Bemenet

A standard bemenet első sorában a járda hossza van (1≤N≤28).

Kimenet

A standard kimenet első sorába a lehetséges járdalefedések számát kell írni!

Példa

Bemenet

State of the state of

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Síkság

Egy egyenes mentén ismerjük pontok tengerszint feletti magasságát. Síkságnak nevezzük azokat a szakaszokat, amelyeken belül bármely két pont magassága legfeljebb 1-gyel tér el egymástól.

Készíts programot, amely megadja a leghosszabb síkság hosszát és helyét!

Bemenet

A standard bemenet első sorában a mérések száma van (1≤N≤100000). A következő sorban az N mérés értéke szerepel (1≤M½≤100000).

Kimenet

A standard kimenet egyetlen sorába a leghosszabb síkság hosszát, valamint a síkság kezdetéhez tartozó mérés sorszámát kell írni! Több lehetséges megoldás esetén a legkisebb sorszámút kell megadni (a méréseket 1-től sorszámozzuk)!

Példa

Bemenet Kimenet

16 6 9

2 3 3 4 3 5 5 4 3 3 2 3 2 2 1 3

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A pontok 20%-a szerezhető olyan tesztekre, ahol N≤100.

A pontok további 25%-a szerezhető olyan tesztekre, ahol N≤10 000.

Tom és Jerry 1

Tom a macska, és Jerry az egér egy labirintusban él, amely csomópontjait különböző szélességű (1 vagy 2) járatok kötik össze. Jerry bármely szélességű járatban tud menni, Tom azonban csak a 2 szélességűekben. Azonos sebességgel haladnak. Ismerjük, hogy kezdetben hol van Tom és hol van Jerry, valamint azt is, hogy hol található az egérlyuk, amiben Jerry el tud bújni Tom elől. Jerry-nek ide kell eljutnia. Jerry több helyről is próbálkozik. Tom mindig ugyanarról a helyről indul, és ezt Jerry is tudja. Tom látja Jerry-t, de Jerry nem látja, hogy Tom merre mozog, tehát olyan útvonalon kell haladnia, amelynek csomópontjaiba mindenképpen Tom előtt tud odaérni.

Készíts programot, amely az egyes kezdőhelyekre megadja, hogy Jerry el tud-e jutni az egérlyuk-hoz, úgy, hogy Tom biztosan nem kapja el!

Bemenet

A standard bemenet első sorában a csomópontok száma ($1 \le N \le 100000$), a járatok száma ($1 \le M \le 100000$), Tom pozíciója ($1 \le T \le N$), Jerry próbálkozásainak száma ($1 \le P \le 10000$), valamint az egérlyuk pozíciója ($1 \le E \le N$) van. A következő M sorban az egyes járatok két végpontjának sorszáma ($1 \le A_i \ne B_i \le N$) és a járat szélessége ($1 \le S_i \le 2$) szerepel. A következő P sorban Jerry egy-egy kezdőpozíciója szerepel ($1 \le K_i \ne T \le N$).

Kimenet

A standard kimenet P sorába az IGEN vagy a NEM szót kell írni! Az i. sorban IGEN szerepeljen, ha az i. kezdőpozícióból Jerry el tud jutni az egérlyukig úgy, hogy közben biztosan nem találkozik Tom-mal, egyébként pedig a NEM szó.

Példa

Bemenet	Kimenet
9 11 6 3 1	IGEN
1 2 1	NEM
1 3 1	IGEN
2 4 1	
3 4 2	
3 5 2	$(2) \xrightarrow{i} (4) \xrightarrow{i} (7)$
4 7 1	
3 5 2	2/ 1/
5 6 2	(1) (1)
6 8 1	
7 9 1	$\frac{1}{2} \frac{3}{2} \frac{5}{1} \frac{8}{1} \frac{1}{1}$
8 9 1	
7	2
8	
9	6

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A pontok 20%-a szerezhető olyan tesztekre, ahol N≤100 és P≤10.

A pontok további 40%-a szerezhető olyan tesztekre, ahol P≤10.