Guia de Estudo Detalhado: Ângulos e Relações Métricas

Objetivo: reconhecer, classificar e calcular ângulos em configurações básicas, aplicar as somas de ângulos internos e externos de polígonos e dominar vocabulário e propriedades essenciais para resolver problemas de nível vestibular / olimpíada.

1 | Tipos de Ângulos

Tipo	Medida (°)	Propriedades & Observações	Exemplo rápido
Nulo	0	coincidente com a semirreta de origem	ponteiro de relógio às 12 h
Agudo	0 < θ < 90	"menor que reto"	30°, 45°
Reto	90	dois segmentos perpendiculares	canto de um papel
Obtuso	90 < θ < 180	"maior que reto"	120°
Raso	180	em linha reta	meia-volta
Côncavo / Reentrante	180 < θ < 360	interior maior que semiplano	270°
Completo	360	volta inteira	rotação completa

Dica de fixação: desenhe um círculo graduado (ou use um transferidor) e marque exemplos de cada tipo. Depois, peça a um colega que aponte um ângulo qualquer para você nomear.

2 | Bissetriz, Ângulos Relacionados

1. Bissetriz de um ângulo

- o **Definição:** semirreta que divide o ângulo em duas partes congruentes.
- Construção clássica (régua e compasso):
 - Com centro no vértice A, trace um arco que intercepte as duas semirretas em B e C.

- 2. Com centros B e C, mesmo raio, trace dois arcos que se cortam em D.
- 3. A reta AD é a bissetriz.
- o **Teorema da bissetriz interna do triângulo:** num △ABC, se AD é bissetriz de ∠A, então

$$\frac{BD}{DC} = \frac{AB}{AC}$$

 Exemplo: num triângulo com lados 6 cm, 8 cm e 10 cm (hipotenusa), a bissetriz do ângulo reto divide o lado oposto em segmentos BD e DC. Calcule BD e DC.

Solução: BD/DC =
$$6/8 \Rightarrow$$
 BD = $3x$, DC = $4x$ e

BD + DC =
$$10 \Rightarrow 3x + 4x = 10 \Rightarrow x = 10/7$$
.

Logo, BD =
$$30/7$$
 cm e DC = $40/7$ cm.

2. Ângulos opostos pelo vértice

- o **Definição:** dois ângulos cujos lados são extensões um do outro (formam um X).
- o **Propriedade:** são sempre congruentes (mesma medida).
- \circ **Exemplo:** se um dos ângulos mede $(5x + 16)^\circ$ e o oposto mede $(7x 8)^\circ$, determine xx.

Igualando:
$$5x + 16 = 7x - 8 \Rightarrow 2x = 24 \Rightarrow x = 12$$
. Medida = 76°.

3. Ângulos complementares e suplementares

Relação	Soma	Situações típicas problemas com triângulo retângulo, bússola, relógio	
Complementares	90°		
Suplementares	180°	retas paralelas cortadas por transversal, poligonais	

Exemplo complementar: um ângulo agudo mede (3y–5)°. O complementar mede (y+41)°. Ache y.

$$3y - 5 + y + 41 = 90 \Rightarrow 4y = 54 \Rightarrow y = 13.53$$
.

Exemplo suplementar: em uma reta, dois ângulos adjacentes são 2z° e (z+30)°. Encontre z.

$$2z + z + 30 = 180 \Rightarrow 3z = 150 \Rightarrow z = 50$$
.

3 | Soma dos Ângulos Internos de Polígonos

1. Fórmula geral

$$\sum {
m \hat{A}ng. \ Internos} = (n-2) imes 180\degree, \quad n \geq 3.$$

Derivação rápida: parta do vértice de um polígono convexo, trace diagonais até todos os outros vértices; obtêm-se n-2 triângulos, cada um somando 180°.

2. Ângulos externos (um por vértice, orientados no mesmo sentido)

 $\sum \hat{A} ng. \; Externos = 360 \, ^{\circ} \quad (v\'alido para qualquer polígono convexo).$

3. Aplicações comuns

- **Triângulo:** 3 lados \Rightarrow (3 2) × 180 = 180°.
- **Quadrilátero:** 4 lados \Rightarrow 360.
- **Pentágono:** 5 lados \Rightarrow 540°.
- $\circ \quad \text{ \^{A}ngulo interno regular: } \quad \alpha = \frac{(n-2)\,180^{\circ}}{n}.$
- \circ Ângulo externo regular: $\varepsilon = \frac{360^{\circ}}{n}$.

4. Exemplos resolvidos

a) Quanto mede cada ângulo interno de um octógono regular?

$$\alpha = \frac{(8-2)\,180}{8} = \frac{6 \times 180}{8} = 135$$
°.

b) Num hexágono convexo, cinco ângulos medem 110°, 120°, 95°, 135°, 125°. Calcule o sexto.

```
Soma esperada: (6-2) 	imes 180 = 720^\circ. 
 Soma fornecida: 110+120+95+135+125=585^\circ. 
 Sexto = 720-585=135^\circ.
```

4 | Conexão entre Tópicos & Problemas de Fixação

1. Rede de relações:

- Ângulos suplementares + opostos pelo vértice aparecem juntos em retas paralelas cortadas por transversal.
- Complementaridade surge em triângulos retângulos: os catetos formam dois ângulos complementares.
- Bissetriz liga-se à soma de ângulos: em um triângulo isósceles, a bissetriz do ângulo do vértice é também mediana e altura.

2. Problema-desafio (nível OBMEP):

Em um quadrilátero convexo ABCD, prolongue o lado AB além de B até E de forma que \angle CBE = 45°. Sabendo que \angle ABC = 70° e \angle BCD = 110°, calcule \angle BAD.

Solução-guia:

- Construir todos os ângulos dados.
- Usar que \angle CBE = \angle CBA + \angle ABE (70 ° + ?).
- o Empregar soma dos internos do quadrilátero (360 °) para achar ∠BAD.
- o Resultado final: 135 °.

5 | Check-list de domínio

- Nomeio corretamente qualquer ângulo apresentado.
- Traço a bissetriz com régua e compasso e aplico o Teorema da Bissetriz.
- Calculo ângulos opostos, complementares e suplementares sem erro.

- Aplico fórmulas de soma de internos/externos para qualquer polígono.
- Resolvo problemas em que vários conceitos aparecem combinados.