SVD

Note Title LECTURE 14

Formal Definition

Let $A \in \mathbb{R}^{m \times n}$ Then SVD of A is a factorization $SVD \rightarrow A = U \sum V^{T}$

where $U \in IR^{m \times m}$ orthogonal $\Sigma \in IR^{m \times n}$ diagonal $V \in IR^{m \times n}$ orthogonal diag $(\Sigma) = [\sigma_1, \sigma_2, \dots, \sigma_p]^T$ $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0$. $p = \min(m, n)$ $rank(A) = r \leq p$.

A & Z are the same shape.

Geometrically,

S S hyper- U hyperellipsoid ellipsoid

IR IR IR IR IR

rotation or stretching or rotation or
reflection in IR squeezing reflection in IR

So if we prove every $A \in \mathbb{R}^{m \times n}$ has an SVD, then we shall have proved that A maps the unit sphere in \mathbb{R}^n to a hyperellipsoid in \mathbb{R}^m .

★ Existence & Uniqueness of SVD
→ We can get peace of mind
if we know that ∃! SVD for any
given matrix.

Thm Every matrix $A \in \mathbb{R}^{m \times n}$ has an SVD. Furthermore, the singular values $\{\sigma_j\}$ are uniquely determined. If A is square and σ_j 's are distinct, then singular vectors $\{U_j\}$, $\{V_j\}$ are uniquely determined up to signs (i.e., ± 1 factor).

(Proof: Existence)

Let's check the largest action of A first, then do induction.

Control of A definition

Set o, = || A ||, = sup || A v ||, v∈S

Because we are dealing with vectors in \mathbb{R}^n (i.e., finite dimensional space), of the space and $\mathbb{R}^n \in \mathbb{R}^n$ (i.e., finite dimensional space), and $\mathbb{R}^n \in \mathbb{R}^n$ a continuous fon, alled " $\mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n$ is "confeatures" $\mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n$. Now set $\mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n$,

$$\begin{array}{c}
U_{1} = \begin{bmatrix} u_{1} & u_{2} & \cdots & u_{m} \end{bmatrix} \in \mathbb{R}^{m \times m} \\
\text{where } u_{1} = \frac{1}{\sigma_{1}} \widetilde{u}_{1}, \\
\text{Note } \| u_{1} \| = \frac{1}{\sigma_{1}} \| \widetilde{u}_{1} \| = \frac{1}{\sigma_{1}} \| A v_{1} \| \\
= \frac{1}{\sigma_{1}} \cdot \sigma_{1} = 1
\end{array}$$

$$\begin{array}{c}
U_{1}^{T} A V_{1} = \begin{bmatrix} u_{1}^{T} \\ u_{1}^{T} \end{bmatrix} A \begin{bmatrix} v_{1} & \cdots & v_{n} \end{bmatrix} \\
\vdots & \vdots & \vdots & \vdots \\ u_{1}^{T} \end{bmatrix} \underbrace{A v_{1}}_{u_{1}} \cdots A v_{n} \end{bmatrix} \\
= \begin{bmatrix} u_{1}^{T} \\ u_{1}^{T} \end{bmatrix} \underbrace{A v_{1}}_{u_{1}} \cdots A v_{n} \\
\vdots & \vdots & \vdots \\ u_{1}^{T} A v_{2} \cdots u_{1}^{T} A v_{n} \end{bmatrix} \in \mathbb{R}$$

$$\begin{array}{c}
u_{1}^{T} u_{1} = 0 \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{2} \cdots u_{2}^{T} A v_{n} \\
\vdots \\ u_{1}^{T} A v_{2} \cdots u_{2}^{T} A v_{2} \cdots u_{2$$

From 0 & 2, we can conclude that w = 0, i.e.,

$$U_i^T A V_i = \begin{bmatrix} \sigma_i & \phi \\ \phi & B \end{bmatrix}$$

Hence if m=1 or n=1, we are done! In general case, we can use the induction hypothesis:

Suppose an SVD exists for any $m-1 \times n-1$ matrix. Then the above matrix B has its SVD: $B = U_2 \sum_z V_z^T$ Then $A = U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & V_z \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V_z \end{bmatrix}^T$

This is an SVD of A! ///

(Proof: Uniqueness)

Let $\Psi_i \in S \subset \mathbb{R}^n$ s.t. $\|A\|_2 = \|\tilde{W}_i\|_2 = \|A\Psi_i\|_2 = \sigma_i$ Suppose $\exists w \in S$, s.t., $w \neq \psi_i$,

w is linearly independent from Ψ_i ,

and $\|Aw\|_2 = \sigma_i$.

Let's define a unit vector $\Psi_2 \in S$ by $\Psi_2 := \frac{(I - P_{\Psi_i})w}{\|(I - P_{\Psi_i})w\|_2}$ $\Psi_2 \perp \Psi_i$

Since $\|A\|_2 = \sigma_1$, by definition $\|A \forall_2\|_2 \le \sigma_1$ ---- (a)

We now claim $\|A \forall_2\|_2 = \sigma_1$.

Exercise: why? Because $w = P_v$ or $+ (I - P_v)$ or $= C \forall_1 + S \forall_2$ why where c, S: constants satisfying $c^2 + S^2 = 1 - - (b)$ $\sigma_1^2 = \|Aw\|_2^2 = \|cA \forall_1 + SA \forall_2\|_2^2$ $= c^2 \|A \forall_1\|_2^2 + 2cs (A \forall_1)^T A \forall_2 + S^2 \|A \forall_2\|_2^2$ $= c^2 \sigma_1^2 + S^2 \|A \forall_2\|_2^2 \le c^2 \sigma_1^2 + S^2 \sigma_1^2 = \sigma_1^2$ This means that the inequality above must be an equality, and hence $\|A \forall_2\|_2 = \sigma_1$

Hence, what we have proved is:

if vi is not unique, then the corresp.

singular value o, is not simple

(i.e., has some multiplicity).

After determining o, wi, vi,

we can use the induction argument.

In particular, for A: square, {o; } are

Listinct (no multiple singular values),

then it's clear that {vi; }, {v; }

are uniquely Letermined up to signs.