

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L2	2	("4968940" "5892361").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:54
L3	5	("5144245" "6430509" "6591195" "6618876" "6631328").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:56
L4	5	("5144245" "6430509" "6591195" "6618676" "6631328").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:58
L5	110	("5144245" "6430509" "6591195" "6618676" "6631328" "4968940" "5892361")	US-PGPUB; USPAT	OR	ON	2006/06/09 13:08
L7	17	("5144245" "6430509" "6591195" "6618676" "6631328" "4968940" "5892361") and model and ((look same up same table) or look-up or look same up)	US-PGPUB; USPAT	OR	ON	2006/06/09 13:05
L8	18	("5144245" "6430509" "6591195" "6618676" "6631328" "4968940" "5892361") and look-up	US-PGPUB; USPAT	OR	ON	2006/06/09 13:09
L9	47	("6366858" "6591195" "6631328" "6163155" "6476609" "6777940" "6216090" "6216090" "5966013" "6184685" "6218842" "6211678" "6218842" "6538447" "5661402" "6092024" "4451789" "4553097" "5811973" "6297639" "6384605" "6411087" "6211678" "6353321" "5867806" "6377050" "4899112" "4949045" "4968940" "5495174" "4278941" "4360778" "4916400" "5963036" "6703837" "5469062" "4107597" "4300098" "4511843" "4529938" "5187661" "5210495" "5233522" "5345179" "5892460" "6020741" "6026913" "6181138" "6188222" "5626200").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 15:32

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	281	earth same formation same borehole same model\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/06/08 17:26
S2	22	earth same formation same borehole same model\$3 and estimat\$3 same electrical same parameter\$3 and earth same formation and (borehole or (bore same hole) or well same bore or wellbore)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/06/08 17:28
S3	21	earth same formation same borehole same model\$3 and estimat\$3 same electrical same parameter\$3 and earth same formation and (borehole or (bore same hole) or well same bore or wellbore) and (conductivity or dielectric or electric)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/06/09 12:52
S4	5	earth same formation same borehole same model\$3 and estimat\$3 same electrical same parameter\$3 and earth same formation and (borehole or (bore same hole) or well same bore or wellbore) and (conductivity or dielectric or electric) and transform\$4	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/06/08 17:34
S5	5	earth same formation same borehole same model\$3 and estimat\$3 same electrical same parameter\$3 and earth same formation and (borehole or (bore same hole) or well same bore or wellbore) and (resistivity or conductivity or dielectric or electric) and transform\$4	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/06/08 17:34

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L2	2	("4968940" "5892361").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:54
L3	5	("5144245" "6430509" "6591195" "6618876" "6631328").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:56
L4	5	("5144245" "6430509" "6591195" "6618676" "6631328").pn.	US-PGPUB; USPAT	OR	ON	2006/06/09 12:58
L5	110	("5144245" "6430509" "6591195" "6618676" "6631328" "4968940" "5892361")	US-PGPUB; USPAT	OR	ON	2006/06/09 12:58
L7	17	("5144245" "6430509" "6591195" "6618676" "6631328" "4968940" "5892361") and model and ((look same up same table) or look-up or look same up)	US-PGPUB; USPAT	OR	ON	2006/06/09 13:05

[Web](#) [Images](#) [Groups](#) [News](#) [Froogle](#) [Maps](#) [more »](#)

infinitesimal

[Advanced Search](#)
[Preferences](#)
WebResults 1 - 10 of about 4,870,000 for **infinitesimal** [definition]. (0.10 seconds)

Tip: Save time by hitting the return key instead of clicking on "search"

Infinitesimal - Wikipedia, the free encyclopedia

In mathematics, an **infinitesimal**, or infinitely small number, is a number that ... With an **infinitesimal** such as this, algebraic proofs using infinitesimals ...
en.wikipedia.org/wiki/Infinitesimal - 17k - [Cached](#) - [Similar pages](#)

Calculus - Wikipedia, the free encyclopedia

7.; John L. Bell: A Primer of **Infinitesimal** Analysis, Cambridge University Press, 1998.
 ISBN 0521624010. Uses synthetic differential geometry and nilpotent ...
en.wikipedia.org/wiki/Infinitesimal_calculus - 54k - [Cached](#) - [Similar pages](#)
[\[More results from en.wikipedia.org \]](#)

infinitesimal. The American Heritage® Dictionary of the English ...

infinitesimal. The American Heritage® Dictionary of the English Language: Fourth Edition. 2000.
www.bartleby.com/61/96/I0129600.html - 21k - [Cached](#) - [Similar pages](#)

Infinitesimal -- From MathWorld

"**Infinitesimal**." From MathWorld--A Wolfram Web Resource. <http://mathworld.wolfram.com/Infinitesimal.html>. © 1999 CRC Press LLC, © 1999-2006 Wolfram Research ...
mathworld.wolfram.com/Infinitesimal.html - 16k - [Cached](#) - [Similar pages](#)

Infinitesimal Rotation -- From MathWorld

(Note that the **infinitesimal** transformation may not correspond to an inversion, ... Since we are defining our **infinitesimal** transformation to be a rotation, ...
mathworld.wolfram.com/InfinitesimalRotation.html - 25k - [Cached](#) - [Similar pages](#)

infinitesimal: Definition, Synonyms and Much More From Answers.com

infinitesimal adj. Immeasurably or incalculably minute. Mathematics. Capable of having values approaching zero as a limit.
www.answers.com/topic/infinitesimal - 52k - [Cached](#) - [Similar pages](#)

[PDF] Mathematical Background: Foundations of Infinitesimal Calculus

File Format: PDF/Adobe Acrobat
 a is infinitely close to b if the number $b - a \approx 0$ is **infinitesimal**. This definition is intended to include 0 as "**infinitesimal**." ...
www.cs.uiowa.edu/~stroyan/InfsmlCalculus/FoundInfsmlCalc.pdf - [Similar pages](#)

Amazon.com: A Primer of Infinitesimal Analysis: Books: John L. Bell

Amazon.com: A Primer of **Infinitesimal** Analysis: Books: John L. Bell by John L. Bell.
www.amazon.com/exec/obidos/tg/detail/-/0521624010?v=glance - 113k - [Cached](#) - [Similar pages](#)

Definition of infinitesimal - Merriam-Webster Online Dictionary

Definition of **infinitesimal** from the Merriam-Webster Online Dictionary with audio pronunciations, thesaurus, Word of the Day, and word games.
www.m-w.com/dictionary/infinitesimal - 20k - [Cached](#) - [Similar pages](#)

Mathwords: Infinitesimal

infinitesimal. A hypothetical number that is larger than zero but smaller ... The word **infinitesimal** is occasionally used for tiny positive real numbers ...
www.mathwords.com/i/infinitesimal.htm - 15k - [Cached](#) - [Similar pages](#)

Infinitesimal

From Wikipedia, the free encyclopedia

In mathematics, an **infinitesimal**, or infinitely small number, is a number that is smaller in absolute value than any positive real number. A number x is an infinitesimal if and only if for every integer n , $|nx|$ is less than 1, no matter how large n is. In that case, $1/x$ is larger in absolute value than any positive real number. Nonzero infinitesimals, obviously, are not real numbers, so "operations" on them are not familiar.

History of the infinitesimal

The first mathematician to make use of infinitesimals was Archimedes, although he did not believe in their existence. See the article on how Archimedes used infinitesimals. The Archimedean property is the property of an ordered algebraic structure of having no nonzero infinitesimals.

In India from the 12th century until the 16th century, infinitesimals were discovered for use with differential calculus by Indian mathematician Bhaskara and various Keralae mathematicians.

When Newton and Leibniz developed the calculus, they made use of infinitesimals. A typical argument might go:

To find the derivative $f'(x)$ of the function $f(x) = x^2$, let dx be an infinitesimal. Then,

$$\begin{aligned} f'(x) &= \frac{f(x + dx) - f(x)}{dx} \\ &= \frac{x^2 + 2x \cdot dx + dx^2 - x^2}{dx} \\ &= 2x + dx \\ &= 2x \end{aligned}$$

since dx is infinitesimally small.

This argument, while intuitively appealing, and producing the correct result, is not mathematically rigorous. The use of infinitesimals was attacked as incorrect by Bishop Berkeley in his work *The Analyst: or a discourse addressed to an infidel mathematician*. The fundamental problem is that dx is first treated as non-zero (because we divide by it), but later discarded as if it were zero.

It was not until the second half of the nineteenth century that the calculus was given a formal mathematical foundation by Karl Weierstrass and others using the notion of a limit. In the 20th century, it was found that infinitesimals could after all be treated rigorously. Neither formulation is right or wrong, and both give the same results if used correctly.

Modern uses of infinitesimals

Infinitesimals are legitimate quantities in the non-standard analysis of Abraham Robinson, which makes use of hyperreal numbers. In this theory, the above computation of the derivative of $f(x) = x^2$ can be justified with a minor modification: we have to talk about the *standard part* of the difference quotient, and the standard part of $x + dx$ is x .

Alternatively, we can have synthetic differential geometry or smooth infinitesimal analysis with its roots in category theory. This approach departs dramatically from the classical logic used in conventional mathematics by denying the law of the excluded middle--i.e., *not* ($a \neq b$) does not have to mean $a = b$. A *nilsquare* or *nilpotent* infinitesimal can then be defined. This is a number x where $x^2 = 0$ is true, but $x \neq 0$ can also be true at the same time. With an infinitesimal such as this, algebraic

Infinitesimal

From Wikipedia, the free encyclopedia

In mathematics, an **infinitesimal**, or infinitely small number, is a number that is smaller in absolute value than any positive real number. A number x is an infinitesimal if and only if for every integer n , $|nx|$ is less than 1, no matter how large n is. In that case, $1/x$ is larger in absolute value than any positive real number. Nonzero infinitesimals, obviously, are not real numbers, so "operations" on them are not familiar.

History of the infinitesimal

The first mathematician to make use of infinitesimals was Archimedes, although he did not believe in their existence. See the article on how Archimedes used infinitesimals. The Archimedean property is the property of an ordered algebraic structure of having no nonzero infinitesimals.

In India from the 12th century until the 16th century, infinitesimals were discovered for use with differential calculus by Indian mathematician Bhaskara and various Keralese mathematicians.

When Newton and Leibniz developed the calculus, they made use of infinitesimals. A typical argument might go:

To find the derivative $f'(x)$ of the function $f(x) = x^2$, let dx be an infinitesimal. Then,

$$\begin{aligned} f'(x) &= \frac{f(x + dx) - f(x)}{dx} \\ &= \frac{x^2 + 2x \cdot dx + dx^2 - x^2}{dx} \\ &= 2x + dx \\ &= 2x \end{aligned}$$

since dx is infinitesimally small.

This argument, while intuitively appealing, and producing the correct result, is not mathematically rigorous. The use of infinitesimals was attacked as incorrect by Bishop Berkeley in his work *The Analyst: or a discourse addressed to an infidel mathematician*. The fundamental problem is that dx is first treated as non-zero (because we divide by it), but later discarded as if it were zero.

It was not until the second half of the nineteenth century that the calculus was given a formal mathematical foundation by Karl Weierstrass and others using the notion of a limit. In the 20th century, it was found that infinitesimals could after all be treated rigorously. Neither formulation is right or wrong, and both give the same results if used correctly.

Modern uses of infinitesimals

Infinitesimals are legitimate quantities in the non-standard analysis of Abraham Robinson, which makes use of hyperreal numbers. In this theory, the above computation of the derivative of $f(x) = x^2$ can be justified with a minor modification: we have to talk about the *standard part* of the difference quotient, and the standard part of $x + dx$ is x .

Alternatively, we can have synthetic differential geometry or smooth infinitesimal analysis with its roots in category theory. This approach departs dramatically from the classical logic used in conventional mathematics by denying the law of the excluded middle--i.e., *not* ($a \neq b$) does not have to mean $a = b$. A *nilsquare* or *nilpotent* infinitesimal can then be defined. This is a number x where $x^2 = 0$ is true, but $x \neq 0$ can also be true at the same time. With an infinitesimal such as this, algebraic

PLUS Search Results for S/N 10673843, Searched June 09, 2006

The Patent Linguistics Utility System (PLUS) is a USPTO automated search system for U.S. Patents from 1971 to the present. PLUS is a query-by-example search system which produces a list of patents that are most closely related linguistically to the application searched. This search was prepared by the staff of the Scientific and Technical Information Center, SIRA.

6366858
6591195
6631328
6163155
6476609
6777940
6216090
6216090
5966013
6184685
6218842
6211678
6218842
6538447
5661402
6092024
4451789
4553097
5811973
6297639
6384605
6411087
6211678
6353321
5867806
6377050
4899112
4949045
4968940
5495174
4278941
4360778
4916400
5963036
6703837
5469062
4107597
4300098
4511843
4529938
5187661
5210495
5233522
5345179
5892460
6020741
6026913
6181138
6188222
5626200

10673843_CLS.txt

Most Frequently Occurring Classifications of Patents Returned
From A Search of 10673843 on June 09, 2006

Original Classifications

27 324/338
9 702/7
8 324/339
2 324/341

Cross-Reference Classifications

11 324/339
11 702/7
6 324/335
6 324/343
5 324/338
5 324/341
2 175/45
2 175/50
2 324/342
2 702/11

Combined Classifications

32 324/338
20 702/7
19 324/339
7 324/341
6 324/335
6 324/343
3 175/45
2 175/40
2 175/50
2 324/342
2 702/11

10673843_CLSTITLES.txt
Titles of Most Frequently Occurring Classifications of Patents Returned
From A Search of 10673843 on June 09, 2006

- 32 324/338 (27 OR, 5 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/338 ...Within a borehole
- 20 702/7 (9 OR, 11 XR)
Class 702 : DATA PROCESSING: MEASURING, CALIBRATING, OR
TESTING
702/1 MEASUREMENT SYSTEM IN A SPECIFIC ENVIRONMENT
702/2 .Earth science
702/6 ..Well logging or borehole study
702/7 ...By induction or resistivity logging tool
- 19 324/339 (8 OR, 11 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/338 ...Within a borehole
324/339By induction logging
- 7 324/341 (2 OR, 5 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/338 ...Within a borehole
324/339By induction logging
324/341To measure dielectric constant
- 6 324/335 (0 OR, 6 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/335 ...Employing multiple frequencies
- 6 324/343 (0 OR, 6 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/338 ...Within a borehole
324/339By induction logging
324/343Using angularly spaced coils
- 3 175/45 (1 OR, 2 XR)
Class 175 : BORING OR PENETRATING THE EARTH
175/40 WITH SIGNALING, INDICATING, TESTING OR
MEASURING
175/45 .Tool position direction or inclination
measuring or indicating within the bore

10673843_CLSTITLES.txt

2 175/40 (1 OR, 1 XR)
Class 175 : BORING OR PENETRATING THE EARTH
175/40 WITH SIGNALING, INDICATING, TESTING OR
MEASURING

2 175/50 (0 OR, 2 XR)
Class 175 : BORING OR PENETRATING THE EARTH
175/40 WITH SIGNALING, INDICATING, TESTING OR
MEASURING
175/50 .Indicating, testing or measuring a condition
of the formation

2 324/342 (0 OR, 2 XR)
Class 324 : ELECTRICITY: MEASURING AND TESTING
324/323 OF GEOPHYSICAL SURFACE OR SUBSURFACE IN SITU
324/332 .with radiant energy or nonconductive-type
transmitter
324/334 ..With separate pickup
324/338 ...Within a borehole
324/339By induction logging
324/342Using a toroidal coil

2 702/11 (0 OR, 2 XR)
Class 702 : DATA PROCESSING: MEASURING, CALIBRATING, OR
TESTING
702/1 MEASUREMENT SYSTEM IN A SPECIFIC ENVIRONMENT
702/2 .Earth science
702/6 ..Well logging or borehole study
702/11 ...Formation characteristic

Infinitesimal

From Wikipedia, the free encyclopedia

In mathematics, an **infinitesimal**, or infinitely small number, is a number that is smaller in absolute value than any positive real number. A number x is an infinitesimal if and only if for every integer n , $|nx|$ is less than 1, no matter how large n is. In that case, $1/x$ is larger in absolute value than any positive real number. Nonzero infinitesimals, obviously, are not real numbers, so "operations" on them are not familiar.

History of the infinitesimal

The first mathematician to make use of infinitesimals was Archimedes, although he did not believe in their existence. See the article on how Archimedes used infinitesimals. The Archimedean property is the property of an ordered algebraic structure of having no nonzero infinitesimals.

In India from the 12th century until the 16th century, infinitesimals were discovered for use with differential calculus by Indian mathematician Bhaskara and various Keralae mathematicians.

When Newton and Leibniz developed the calculus, they made use of infinitesimals. A typical argument might go:

To find the derivative $f'(x)$ of the function $f(x) = x^2$, let dx be an infinitesimal. Then,

$$\begin{aligned} f'(x) &= \frac{f(x + dx) - f(x)}{dx} \\ &= \frac{x^2 + 2x \cdot dx + dx^2 - x^2}{dx} \\ &= 2x + dx \\ &= 2x \end{aligned}$$

since dx is infinitesimally small.

This argument, while intuitively appealing, and producing the correct result, is not mathematically rigorous. The use of infinitesimals was attacked as incorrect by Bishop Berkeley in his work *The Analyst: or a discourse addressed to an infidel mathematician*. The fundamental problem is that dx is first treated as non-zero (because we divide by it), but later discarded as if it were zero.

It was not until the second half of the nineteenth century that the calculus was given a formal mathematical foundation by Karl Weierstrass and others using the notion of a limit. In the 20th century, it was found that infinitesimals could after all be treated rigorously. Neither formulation is right or wrong, and both give the same results if used correctly.

Modern uses of infinitesimals

Infinitesimals are legitimate quantities in the non-standard analysis of Abraham Robinson, which makes use of hyperreal numbers. In this theory, the above computation of the derivative of $f(x) = x^2$ can be justified with a minor modification: we have to talk about the *standard part* of the difference quotient, and the standard part of $x + dx$ is x .

Alternatively, we can have synthetic differential geometry or smooth infinitesimal analysis with its roots in category theory. This approach departs dramatically from the classical logic used in conventional mathematics by denying the law of the excluded middle--i.e., *not* ($a \neq b$) does not have to mean $a = b$. A *nilsquare* or *nilpotent* infinitesimal can then be defined. This is a number x where $x^2 = 0$ is true, but $x \neq 0$ can also be true at the same time. With an infinitesimal such as this, algebraic