Midterm Exam

- Outside scratch paper, formula sheets, and calculators are not allowed.
- Write your answers in the spaces following each question. If you need more room, use the reverse side of the page and check the box indicating I should look at the back.
- Circle or box important parts of your work and cross out portions you do not want evaluated.
- You may ask me questions, but unless there is an error on the exam I will probably refuse to answer.
- Unless told otherwise, show all your work.

Question:	1	2	3	4	Total
Points:	30	15	25	10	80
Score:					

W_{ork}	on	reverse	
VVUIIN	()	TEVELSE	1 1

- 1. (30 points) True/false questions. No justification required. Read the statements carefully. Each is worth 3 points.
 - (a) True or false: The irrational numbers form a countable set.
 - (b) True or false: A compact set in \mathbb{R} with the regular metric is closed and bounded.
 - (c) True or false: Let (X, d) be a metric space with the distance d(p, q) = 1 if $p \neq q$ and d(p, p) = 0. Then any subset $E \subset X$ is both open and closed.
 - (d) True or false: The rational numbers \mathbb{Q} do not have the least upper bound property: There exists $A \subset \mathbb{Q}$ such that A is bounded above but $\sup A$ does not exist.

supA doesn't exist in Q

- (e) True or false: The only connected subsets of \mathbb{R} (with the regular metric) are open, closed or half-open half-closed <u>intervals</u>.
- (f) True or false: The set $[0,1] \cup [2,3]$ is bounded, closed, and connected.
- (g) True or false: Given a subset E of a metric space (X,d), the closure \overline{E} is the intersection of all closed sets that contain E.
- (h) True or false: Let $K \subset Y \subset X$ where (X, d) is a metric space. Then K is compact with respect to (Y, d) if and only if K is compact with respect to (X, d).
- (i) True or false: Let (\mathbb{R}, d) be the metric space on \mathbb{R} with the distance d(p, q) = 1 if $p \neq q$ and d(p, p) = 0. Then the sequence $(p_n)_{n \in \mathbb{N}}$ with $p_n = \frac{1}{n}$ converges to 0.
- (j) True or false: The rationals \mathbb{Q} form a dense subset of the reals \mathbb{R} , that is $\overline{\mathbb{Q}} = \mathbb{R}$.

M	Jork	on	reverse	П

- 2. (15 points) (a) (5 points) Define what it means for two sets A and B to have the same cardinality.
 - (b) (10 points) Prove that $\mathbb{Z} \sim \mathbb{N}$, that is \mathbb{Z} and \mathbb{N} have the same cardinality.

- 3. (25 points) Suppose that (X, d) is a metric space and let $E = \{x\}$ be the set containing the single point $x \in X$.
 - (a) Define what it means for a set $O \subset X$ to be open.
 - (b) Show, using only the definition of open, that the set $E^c = X \setminus E$ is open in X.
 - (c) Define what it means for a set $K \subset X$ to be compact.
 - (d) Show, using only the definition of compact, that the set $E = \{x\}$ is compact.
 - (e) Generalize parts b) and d) to the setting where $E = \{x_1, \dots, x_n\}$.

- 4. (10 points) (Extra credit) Let (X, d) be a metric space. Let $p \in X$ and r > 0. Define $N_r(p) = \{q \in X \mid d(p, q) < r\}$ to be the neighborhood of radius r > 0 around p.
 - (a) If $X = \mathbb{R}$ with the normal metric prove that

$$\overline{N_r(0)} = \{ q \in X \mid d(0,q) \le r \}$$

(b) Let (X, d) be any metric space. Is it still true that

$$\overline{N_r(p)} = \{ q \in X \mid d(p,q) \le r \} ?$$

Prove it or give a counterexample.

Extra sheet