This document contains some problems where we hope that further progress will be possible duing the summer research session. They are roughly classified by subject.

1 Groups and graphs

This is a very big area. We will concentrate on a few specific topics.

1.1 Power graph and commuting graph

Let G be a group. We define three graphs on the vertex set of G as follows:

The power graph P(G) of G has an (undirected) edge from x to y if one of them is a power of the other. There is also a directed version $\vec{P}(G)$, which has an arc $x \to y$ if y is a power of x.

The enhanced power graph $P_e(G)$ of G has an edge from x to y if there exists $z \in G$ such that both x and y are powers of z.

The commuting graph of G has an edge from x to y if xy = yx.

It is easy to see that the power graph is a subgraph of the enhanced power graph, which is itself a subgraph of the commuting graph. In [1], the finite groups are determined in which the power graph is equal to the enhanced power graph, or the enhanced power graph is equal to the commuting graph.

Problem 1.1 What about the infinite groups satisfying one or other of these equalities?

Problem 1.2 Let G be a finite group such that $P(G) \neq P_e(G)$. Is it true that the graph whose edges are those in $P_e(G)$ but not in P(G) is connected? What about other pairs from the list above?

One of the main questions is: for which groups G, H is it the case that, if $P(G) \cong P(H)$ implies $\vec{P}(G) \cong \vec{P}(H)$? This is true for finite groups [2]. It is false in general for groups, but in [3] it is proved for some classes of torsion-free groups.

Problem 1.3 Find further classes of torsion-free groups for which power graph isomorphism implies directed power graph isomorphism. What happens for mixed groups?

1.2 Cayley graphs

This is a well-worked area, but there is probably still room for some experimentation and possibly some theorems.

Let G be a group, and S a subset of G satisfying $S = S^{-1}$ and $1 \notin S$. Form a graph $\operatorname{Cay}(G,S)$ by the rule that, for every $g \in G$ and $s \in S$, there is an edge from g to sg. Our assumptions on S imply that this graph has no loops and that its edges are undirected. It is easy to see that $\operatorname{Cay}(G,S)$ is connected if and only if S generates G.

The main property of Cayley graphs is that G, acting on itself by right multiplication, is a group of automorphisms of Cay(G, S).

Many of the open problems concern random Cayley graphs for a group G: that is, we form S by choosing inverse pairs of non-identity elements of G independently with fixed probability p, where 0 .

Problem 1.4 What can be said about the spectrum (the eigenvalues of the adjacency matrix) of a random Cayley graph for the finite group G? Related to this are various properties measuring how good a graph is as a communications network, such as expansion properties. How do these properties depend on the structure of G?

There is a wide class of countably infinite groups G with the property that a random Cayley graph for G is the famous countable random graph or Rado graph. However, not every countable group has this property.

Problem 1.5 Which countable groups G have the property that a random Cayley graph for G is not almost surely isomorphic to the countable random graph? An example of such a graph is the group

$$G = \langle a, b \mid b^4 = 1, b^{-1}ab = a^{-1} \rangle;$$

what does a random Cayley graph for this group look like?

1.3 Other algebraic structures

The notions of commuting graph and power graph can be extended to other algebraic structures; sometimes care is required, since if the associative law fails then powers are not uniquely defined. However, there are non-associative structures such as *Moufang loops* for which all 2-generated subloops are associative.

Problem 1.6 Is it true that, if the power graphs of two Moufang loops are isomorphic, then their directed power graphs are isomorphic? Does this extend to wider classes of loops?

Problem 1.7 What about semigroups? (Note that the power graph was originally defined for a semigroup.)

2 Permutation group polynomials

Let G be a permutation group of degree n (a subgroup of the symmetric group S_n). Any element of G has an essentially unique cycle decomposition into disjoint cycles (we always include cycles of length 1, that is, fixed points, in this decomposition).

The cycle index of G is a polynomial Z_G in indeterminates s_1, \ldots, s_n defined by

$$Z_G(s_1, \dots, s_n) = \frac{1}{|G|} \sum_{q \in G} s_1^{c_1(g)} s_2^{c_2(g)} \cdots s_n^{c_n(G)},$$

where $c_i(g)$ is the number of cycles of length i in the cycle decomposition of G. (The factor 1/|G| is just a normalising factor, which is convenient in applications of the cycle index to orbit counting.)

Problem 2.1 For which permutation groups G is the cycle index polynomial reducible, that is, have a factorisation into polynomials of smaller degree?

For example, if $G = G_1 \times G_2$, where the groups G_1 and G_2 act on disjoint sets whose union is $\{1, \ldots, n\}$, then

$$Z_G = Z_{G_1} Z_{G_2}$$
.

Apart from this, very few examples are known!

It is easier to think about polynomials in a single indeterminate. Two examples have been considered:

The fixed point polynomial [6], the generating polynomial for the numbers of fixed points, which is

$$\frac{1}{|G|} \sum_{g \in G} x^{c_1(g)}.$$

The cycle polynomial [5], the generating function for the total number of cycles, which is

$$\frac{1}{|G|} \sum_{g \in G} x^{c(g)},$$

where
$$c(g) = c_1(g) + c_2(g) + \cdots + c_n(g)$$
.

These can be obtained from the cycle index by the substitutions

$$s_1 = x$$
, $s_2 = \cdots = s_n = 1$, and $s_1 = s_2 = \cdots = s_n = x$,

respectively.

We can ask many questions about reducibility, location of roots, and so on, for these polynomials.

Here is a specific question about the cycle polynomial. It relates it to the chromatic polynomial P_{Γ} of a graph Γ , the polynomial whose value at a positive integer q is equal to the number of proper q-colourings of the vertices of Γ ("proper" means that vertices joined by an edge must get different colours). In [4], an orbital chromatic polynomial $OP_{\Gamma,G}$ was associated with a graph Γ and a group G of automorphisms of Γ ; its value at a positive integer q is equal to the number of orbits of G on the set of proper q-colourings of Γ .

The authors of [5] point out that, in a number of interesting cases, given a permutation group G, there is a graph Γ containing G as a group of automorphisms, such that

$$(-1)^n C_G(-x) = OP_{\Gamma,G}(x),$$

where $C_G(x)$ is the cycle polynomial of G. This relation between combinatorial polynomials was invented by Richard Stanley in the 1960s and is referred to as reciprocity.

Problem 2.2 For which permutation groups G does there exist a graph Γ such that the above reciprocity holds between the cycle polynomial of G and the orbital chromatic polynomial of Γ and G? In cases where this does not hold, is there a combinatorial interpretation of the polynomial $(-1)^n C_G(-x)$?

References

- [1] Ghodratollah Aalipour, Saieed Akbari, Peter J. Cameron, Reza Nikandish and Farzad Shaveisi, On the structure of the power graph and the enhanced power graph of a group, https://arxiv.org/abs/1603.04337
- [2] Peter J. Cameron, The power graph of a finite group, II, *J. Group Theory* 13 (2010), 779–783.
- [3] Peter J. Cameron, Horacio Guerra and Šimon Jurina, The power graph of a torsion-free group, https://arxiv.org/abs/1705.01586
- [4] Peter J. Cameron, Bill Jackson and Jason D. Rudd, Orbit-counting polynomials for graphs and codes, *Discrete Math.* **308** (2008), 920–930.
- [5] Peter J. Cameron and Jason Semeraro, The cycle index of a permutation group, https://arxiv.org/abs/1701.06954
- [6] C. M. Harden and D. B. Penman, Fixed point polynomials of permutation groups, *Electronic J. Combinatorics* **20(2)** (2013), #P26.