Taller 5

1.

Es una función constante, lo cual permite calcular aproximaciones de cuanto se demorará y es óptima para valores grandes.

Su complejidad es (2n/2 + 6n/2) = 4n

Tamaño:	Tiempo:
100000	5049
110000	6486
120000	7427
130000	8560
140000	10226
150000	11548
160000	13047
170000	15551
180000	15846
190000	18307
200000	20339
210000	22010
220000	23934
230000	27289
240000	29193
250000	31926
260000	34378
270000	37203
280000	39882
290000	42232
300000	45676

2. Complejidad asintótica:

Con ciclos: 2+3n Con recursión: 3n

Conclusión de las pruebas:

A la simple vista pareciera que recursión es un poco mejor que ciclos, sin embargo ciclos tiene una ventaja muy grande, al testear la suma con arrays de 10mil-20mil los resultados llegaban instantáneamente para los dos métodos, debido a que es solo suma el computador no se demora casi nada; sin embargo, al testearlo con arrays de 100mil-200mil, recursión sufría un stack over flow, se llenaba la memoria más de lo esperado, mientras tanto ciclos mantuvo su velocidad instantánea.