Gödel's Incompleteness Theorems

FORMAL METHODS SEMINAR – 25 NOVEMBER, 2020

EKANSHDEEP GUPTA

Early 20th Century Mathematics

- Foundational crisis of mathematics.
- Ripe with paradoxes:
 - Set of all sets that do not contain itself. Does this set contain itself?
 - Russel's Paradox
 - Axiom of Choice
 - Skolem's Paradox
- ► Two schools of thought:
 - Hilbert's Programme Establish solid foundations with finite, complete axioms.
 - Intuintionism Led by L. E. J Brouwer

Hilbert's Programme

- ▶ A formulation of all mathematics in a precise formal language and manipulated according to well defined rules.
- Completeness: all true mathematical statements can be proved.
- Consistency: no contradiction can be obtained in the formalism of mathematics.
- Decidability: algorithm for deciding the truth or falsity of any mathematical statement.

In other words, a fairy tale!

Peano's Arithmetic: (N, +, *, S, 0)

[Giuseppe Peano, 1889]

First order logic:

- ► Symbols: 0
- Unary functions: S
- ▶ Binary functions: +, *

Axioms:

$$(S(m) = S(n)) \to (m = n)$$
$$\neg (S(a) = 0)$$

Addition:

$$a + 0 = a$$
$$a + S(b) = S(a + b)$$

Multiplication

$$a * 0 = 0$$
$$a * S(b) = a + a * b$$

Induction Schema:

For any formula $\overline{\psi(x,y_1,y_2,...,y_k)}$:

$$\forall \overline{y} (\psi(0, \overline{y}) \land (\forall x (\psi(x, \overline{y}) \rightarrow \psi(S(x), \overline{y})))) \rightarrow (\forall z \psi(z, \overline{y}))$$

Examples

- -4 = S(S(S(S(O))))
- Not all numbers are perfect squares:

$$\exists x \ (\forall y \neg (y * y = x))$$

Every number other than 0 is the successor of some number:

$$\forall x \, (\neg(x=0) \to \exists y \, S(y) = x)$$

prime(x)

$$\forall y \ \forall z \ (y \ *z = x) \rightarrow (y = 1 \ \lor \ y = x)$$

power_of_two(x)

$$\forall y \ \forall z \ (y * z = x) \land prime(y) \rightarrow y = S(S(0))$$

Sidenote

<u>Löwenheim–Skolem theorem</u>: If a theory has a countable model, it has a model of every cardinality.

So non-standard models exist!

Replace first order induction schema:

For any formula $\psi(x, y_1, y_2, ..., y_k)$:

$$\forall \bar{y} (\psi(0, \bar{y}) \land (\forall x (\psi(x, \bar{y}) \rightarrow \psi(S(x), \bar{y})))) \rightarrow (\forall z \psi(z, \bar{y}))$$

With second order axiom of induction:

$$\forall X (0 \in X \land (\forall y (y \in X \rightarrow S(y) \in X))) \rightarrow (\forall z z \in X)$$

Gödel's Incompleteness Theorem

[Kurt Gödel, 1931]

- Any consistent formal system F
- within which a certain amount of elementary arithmetic can be carried out
- is incomplete
- i.e., there are statements of the language of F which can neither be proved nor disproved in F

Undecidability of Halting Problem

[Alan Turing, 1936]

▶ Given a Turing machine (read: a C++ program), there can be no algorithm to decide whether it will ever terminate or keep looping forever.

Proof:

- Suppose $halts({N}, inp)$ correctly determines if N halts on inp or not.
- Construct $M(\{N\})$ = if $halts(N, \{N\})$ then $loop_forever()$ else halt()
- Then, $M(\{M\})$ will do what?

Contradiction!

Proof Overview

- 1. Construct a way to talk about formulae from inside the logic.
 - ► For instance, FO doesn't allow us to write $\exists formula_1, formula_2: formula_1 \land formula_2 \rightarrow (\forall x \exists y \ x < y)$
 - ▶ In FO, we can only quantify over elements of the universe.
 - ▶ But Gödel crafted self-reference!
- 2. Use self reference to construct a sentence which says, "I cannot be proved".
- 3. Win.

Represent formulae and sequences of formulae by numbers, uniquely.

Number	Symbol	Meaning
666	0	zero
123	S	successor function
111	=	equality relation
212	<	less than relation
112	+	addition operator
236	×	multiplication operator
362	(left parenthesis
323)	right parenthesis

Number	Symbol	Meaning
262	х	a variable name
163	*	star (used to make more variables)
333	3	existential quantifier
626	\forall	universal quantifier
161	^	logical and
616	V	logical or
223	٦	logical not

$$G(x \land \neg x) = \underbrace{262}_{x} 0 \underbrace{161}_{\land} 0 \underbrace{223}_{\lnot} 0 \underbrace{262}_{x} \rightarrow 262,016,102,230,262$$

Use 0 to separate symbols.

$$G(x \land \neg x) = \underbrace{262}_{x} 0 \underbrace{161}_{\land} 0 \underbrace{223}_{\lnot} 0 \underbrace{262}_{x} \rightarrow 262,016,102,230,262$$

Use 00 to separate different formulae in a sequence

$$G((x \land \neg x), (x \lor x *)) = \underbrace{262}_{x} 0 \underbrace{161}_{161} 0 \underbrace{223}_{x} 0 \underbrace{262}_{x} 0 0 \underbrace{262}_{x} 0 \underbrace{161}_{161} 0 \underbrace{262}_{x} 0 \underbrace{163}_{x}$$

$$\rightarrow 26,201,610,223,026,200,262,016,102,620,163 \approx 2.62 * 10^{31}$$

Injective!

- $well_formed(x) = formula encoded by x is well-formed.$
- proof(x, y) =sequence of formulae encoded by y forms a proof of the formula encoded by x.
- $provable(x) \equiv \exists y \ proof(x, y)$

Sequences in PA

- ▶ Chinese Remainder Theorem: Given $n_1, n_2, ..., n_k$ relatively prime, and $m_1, ..., m_k$, there exists x such that for all $i, x \equiv m_i \pmod{n_i}$
- Encode sequence $(m_1, ..., m_k)$. Let n be big enough.
- Then n + 1, 2n + 1, 3n + 1, ..., kn + 1 are coprime. Set $n_i = n.i + 1$
- Let x satisfy $x \equiv m_i \pmod{n_i}$
- So, (x,n) encodes $(m_1,...,m_k)$.
- Define $\beta(x,n,k) = remainder(x,n,k+1)$. Then $\beta(x,n,i) = m_i$ Primitive Recursion!

Primitive Recursion

```
Suppose want factorial(d, m) := (m = d!)
Encode by the sequence (1!, 2!, 3!, 4!, ..., d!)
Check following:
```

- First term is 1.
- (k+1)th term is (k+1)*kth term.
- Last term is m.

$$factorial(d,m) \equiv \exists x \,\exists n \,\beta(x,n,1) = 1 \land \beta(x,n,d) = m \land \forall k \,k < d \rightarrow \beta(x,n,k+1) = (k+1).\beta(x,n,k)$$

Switching from predicates to functions:

$$function(a, b) = \alpha(a, b)$$
 where $\beta(a, b)$

is equivalent to

$$\exists c \ predicate(a,b,c) = \beta(a,b) \land c = \alpha(a,b)$$

Some useful formulae

- ▶ $pow(a,b) := (a^b) \equiv \beta(x,n,b+1)$ where $\exists x \exists n \beta(x,n,1) = 1 \forall k k < b \rightarrow \beta(x,n,k+1) = b.\beta(x,n,k)$
- ▶ $append(a,b) \coloneqq$ the seq of formulae a appended with the formula b, where a: a seq of formulae, b: a formula $append(a,b) \equiv a * pow(10,x) * 100 + b$ where $\exists x \ pow(10,x-1) < b \le pow(10,x)$
- ▶ find(a,b) := Holds if a : a seq of formulae, b : a formula contained in the sequence.

```
find(a,b) \equiv \exists x \, \exists y : a = append(append(x,b),y)
```

For proof(x, y):

- Given formula F(x), number m, can define $substitute(n_1, m, n_2)$ where $n_1 = G(F(x))$, and $n_2 = G(F(m))$
- For deduction rules, example Modus Ponens:

$$\frac{P; \quad P \to Q}{Q}$$

Encode relation

 $\mathsf{MP}(m,n) \coloneqq G^{-1}(m)$ is a seq of formulae containing $P,P \to Q$ and $G^{-1}(n)$ is the seq of formulae $G^{-1}(m)$ appended with Q

```
\begin{split} MP(m,n) \\ \equiv \exists p \ \exists q \ \exists r \ well\_formed(p) \land well\_formed(q) \land \underbrace{substitute_2(G(x \rightarrow y), p, q, r)} \land find(p, m) \\ \land find(r, m) \land n = append(m, q) \end{split}
```

For proof(x, y):

- ▶ Suppose we have such relations $R_1, R_2, ..., R_d$ for all the axioms + deduction rules.
- ▶ Check if proof(x, y) holds as follows:
 - There exists some sequence $(m_1, ..., m_k)$ such that for all i: $R_1(m_i, m_{i+1}) \vee ... \vee R_d(m_i, m_{i+1})$
 - ▶ Check if $y = m_k$

Gödel Sentence

"this statement is false"

 $not_provable(x) = \neg provable(x)$ Let N be the Gödel number of $not_provable(x)$.

Consider statement $p = not_provable(N)$

Then p literally says: "this statement is not provable".

Gödel's 2nd Incompleteness Theorem

- No proof system can prove its own consistency.
- ▶ Can encode Cons(PA) = "no proof exists for 0=1" in PA using Gödel Numbering. This statement is not provable.

Proof by contradiction:

- Suppose Cons(PA) is provable.
- If PA is consistent, then p cannot be proved.
- Formalize the entire discussion in PA to prove in PA that p cannot be proved.
- But that is a proof of p! Contradiction!

▶ Sidenote: Cons(PA) can be proved in ZFC, but Cons(ZFC) can't.

Gödel's Completeness Theorem

- ► First order logic is complete.
- ▶ If a formula is a syntactic consequence of our axioms, then it can be proved in the system.

Apparent contradiction!

Semantic consequence vs syntactic consequence.

References

- ▶ Gödel, Escher, Bach: an Eternal Golden Braid by Douglas R. Hofstadter
- Wikipedia: https://w.wiki/nRE
- Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/goedel-incompleteness/
- Kurt Gödel, On Formally Undecidable Propositions of Principia Mathematica and Related Systems 1, 1931
- ▶ My friend's YouTube video: https://youtu.be/EL4njRlv8pl

Thank you!