Билет 19

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	билет 19: предел посл	едовательности в	з метрическом	пространстве.	Определение	
	и основные свойства.					L

Билет 19 СОДЕРЖАНИЕ

0.1. Билет 19: Предел последовательности в метрическом пространстве. Определение и основные свойства.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $x_n \in X$.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \rho(x_n, a) < \varepsilon.$$

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $E \subset X$.

E называется ограниченным если $\exists r > 0 \quad \exists a \in X \quad E \subset B_r(a)$.

Свойства.

1. Предел единственнен

Доказательство.

Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$, $a \neq b$.

Возьмём $\varepsilon = \frac{\rho(a,b)}{2}, \ a \neq b \implies \varepsilon > 0$, возьмём $N = \max\{N_a,N_b\}$, где N_a,N_b - N из соответствующих определений предела при подстановке ε .

Тогда, $\rho(x_N, a) < \varepsilon$ и $\rho(x_N, b) < \varepsilon$.

Но тогда $\rho(a,b) \stackrel{\triangle}{\leqslant} \rho(a,x_N) + \rho(x_N,b) < 2\varepsilon = \rho(a,b)$. Противоречие, значит предел единствененн.

2.
$$\lim_{n \to \infty} x_n = a \iff \lim_{n \to \infty} \rho(x_n, a) = 0$$

Доказательство.

Определения посимвольно совпадают.

3. Если последовательность имеет предел, она ограничена

Доказательство.

$$\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} \rho(x_n, a) = 0$$

$$\implies \rho(x_n, a) - \text{ограниченная последовательность вещественных чисел}$$

$$\implies \exists R > 0 \quad \rho(x_n, a) < R$$

$$\implies \{x_n\} \subset B_R(a)$$

4. Если a - предельная точка множества A, то можно выбрать последовательность $x_n \in A$, такую что $\lim_{n \to \infty} x_n = a$, и $\rho(x_n, a)$ строго монотонно убывает.

Доказательство.

По определению предельной точки, $\forall r > 0 \quad \mathring{B}_r(a) \neq \varnothing$.

Пусть $r_1 = 1, \, r_n = \min\{\frac{1}{n}, \rho(x_{n-1}, a)\}, \, x_n \in \mathring{B}_{r_n}(a)$ - такой x_n всегда можно выбрать, так-как окрестность непуста. Тогда $\rho(x_n, a) < r \implies \rho(x_n, a) < \frac{1}{n} \implies \rho(x_n, a) \to 0 \implies \lim_{n \to \infty} x_n = a,$ и при этом $\rho(x_n, a) < r_n < \rho(x_{n-1}, a)$.

Билет 19 COДЕРЖАНИЕ

5. $A \subset X$, $x_n \in A$, $\lim_{n \to \infty} x_n = a \implies a \in A \cup A' = \operatorname{Cl} A$.

Доказательство.

Если $a \notin A$:

Предположим что $a \not\in A' \implies \exists \varepsilon > 0 \quad \mathring{B}_{\varepsilon}(a) \cap A = \varnothing \implies \not\exists x \in A \quad 0 < \rho(x,a) < \varepsilon.$

Но, если подставить этот ε в определение предела, то получим что $\exists N \quad \rho(x_N,a)<\varepsilon$ и $x_N\in A\implies x_N\neq a\implies \rho(x_N,a)>0.$ Противоречие, значит $a\in A'$.