기본 컴퓨터 설계

5.8 컴퓨터에 대한 완전한 기술

• 인터럽트 사이클과 명령어 사이클을 포함한 흐름도

5.9 기본 컴퓨터의 설계

- 1. 16비트의 4096 워드를 갖는 메모리 장치
- 2. 9개의 레지스터 : AR, PC, DR, AC, IR, TR, OUTR, INPR,SC
- 3. 7개의 플립플롭 : I, S, E, R, IEN, FGI, FGO
- 4. 2개의 디코더 : 3x8 동작 디코더와 4x16 타이밍 디코더
- 5. 16비트 공통버스(common bus)
- 6. 제어논리 게이트
- 7. AC의 입력에 연결된 가산 논리 회로

제어 논리 게이트

- 제어 논리 회로의 출력
 - 9개 레지스터의 입력을 제어하는 신호
 - 메모리의 쓰기 및 읽기 입력을 제어하는 신호
 - 플립플롭을 세트, 클리어, 보수화 시키는 신호
 - 버스선택선 S₂, S₁, S₀ 에 대한 신호
 - AC에 대해 가산 논리 회로를 제어하는 신호

제어함수

Fetch	$R' T_0$:	$AR \leftarrow PC$		
		$IR \leftarrow M[AR], PC \leftarrow PC + 1$		
Decede	$R' T_2$:	$D_0, \dots, D_7 \leftarrow Decode\ IR(12-14),$		
Decode		$AR \leftarrow IR(0-11), I \leftarrow IR(15)$		
Indirect	$D_7'IT_3$:	$AR \leftarrow M[AR]$		
Interrupt				
$T_0' T_1' T_2' (IEN) (FC)$	GI+FGO):	<i>R</i> ←1		
	RT_0 :	$AR \leftarrow 0, TR \leftarrow PC$		
	RT_1 :	$M[AR] \leftarrow TR, PC \leftarrow 0$		
	RT_2 :	$PC \leftarrow PC + 1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0$		
Memory-reference:				
AND	D_0T_4 :	$DR \leftarrow M[AR]$		
	D_0T_5 :	$AC \leftarrow AC \land DR, SC \leftarrow 0$		
ADD	D_1T_4 :	$DR \leftarrow M[AR]$		
	D_1T_5 :	$AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0$		
LDA	D_2T_4 :	$DR \leftarrow M[AR]$		
	D_2T_5 :	$AC \leftarrow DR, SC \leftarrow 0$		
STA	D_3T_4 :	$M[AR] \leftarrow AC, SC \leftarrow 0$		
BUN	D_4T_4 :	$PC \leftarrow AR, SC \leftarrow 0$		
BSA	D_5T_4 :	$M[AR] \leftarrow PC$, $AR \leftarrow AR + 1$		
	D_5T_5 :	$PC \leftarrow AR, SC \leftarrow 0$		
ISZ	D_6T_4 :	$DR \leftarrow M[AR]$		
	D_6T_5 :	$DR \leftarrow DR + 1$		
	D_6T_6 :	$M[AR] \leftarrow DR$, if $(DR = 0)$ then $(PC \leftarrow PC + 1)$, $SC \leftarrow 0$		

Register-reference:						
	$D_7I'T_3=r$	(common to all register-reference instruction)				
	$IR(i) = B_i$	$(i = 0,1,2,\cdots,11)$				
	r:	SC←0				
αλ	rB_{11} :	$AC \leftarrow 0$				
O.E	rB_{10} :	$E \leftarrow 0$				
OWA	rB₀:	$AC \leftarrow \overline{AC}$				
Œ	<i>rB</i> _S ∶	$E \leftarrow \overline{E}$				
CIR	rB_7 :	$AC \leftarrow shrAC, AC(15) \leftarrow E, E \leftarrow AC(0)$				
CIL	rB_{δ} :	$AC \leftarrow shlAC, AC(0) \leftarrow E, E \leftarrow AC(15)$				
INC	rB_{δ} :	$AC \leftarrow AC + 1$				
SPX	<i>rB</i> _↓ :	if $(AC(15) = 0)$ then $(PC \leftarrow PC + 1)$				
SNA	rB_3 :	if $(AC(15) = 1)$ then $(PC \leftarrow PC + 1)$				
SZA	rB_2 :	if $(AC = 0)$ then $(PC \leftarrow PC + 1)$				
SZE	rB_1 :	if $(E = 0)$ then $(PC \leftarrow PC + 1)$				
HLT	rB_0 :	$S \leftarrow 0$ (S is a start-stop flip-flop)				
Input-output:						
	$D_7IT_3=p$	(common to all input-output instruction)				
	$IR(i) = B_i$	(i = 6,7,8,9,10,11)				
	p:	SC ← 0				
INP	pB ₁₁ :	$AC(0-7) \leftarrow INPR, FGI \leftarrow 0$				
OUT .	<i>pB</i> ₁₀ :	$OUTR \leftarrow AC(0-7), FGO \leftarrow 0$				
SKI	pB_0 :	If $(FGI = 1)$ then $(PC \leftarrow PC + 1)$				
SK0	pB_{S} :	If $(FGO = 1)$ then $(PC \leftarrow PC + 1)$				
ION	<i>pB</i> ₇ :	IEN←1				
IOF	pB_{δ} :	IEN←0				

레지스터와 메모리에 대한 제어

 $R'T_0: AR \leftarrow PC$

 $R'T_2: AR \leftarrow IR(0-11)$ $D_7'IT_3: AR \leftarrow M[AR]$

 $RT_0: AR \leftarrow 0$

 D_5T_4 : $AR \leftarrow AR + 1$

처음 세개의 문장 : LD 제어 입력을 인에이블하여 메모리나 다른 레지스터의 내용을 AR로 전송

위의 제어 함수를 세 개의 부울식으로 변경하면

$$LD(AR) = R' T_0 + R' T_2 + D_7' IT_3$$

 $CLR(AR) = R T_0$
 $INR(AR) = D_5 T_4$

Fetch	$R' T_0$:	$AR \leftarrow PC$
	$R'T_1$:	$IR \leftarrow M[AR]$ $PC \leftarrow PC + 1$
Decede	$R' T_2$:	$D_0, \cdots, D_7 \leftarrow Decode\ IR(12-14),$
Decode		$AR \leftarrow IR(0-11), I \leftarrow IR(15)$
Indirect	$D_7'IT_3$:	$AR \leftarrow M[AR]$
Interrupt		
$T_0' T_1' T_2' (IEN) (FC)$	GI + FGO:	<i>R</i> ←1
	RT_0 :	$AR \leftarrow 0, TR \leftarrow PC$
	RT_1 :	$M[AR] \leftarrow TR, PC \leftarrow 0$
	RT_2 :	$PC \leftarrow PC + 1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0$
Memory-reference:		
AND	D_0T_4 :	$DR \leftarrow M[AR]$
	D_0T_5 :	$AC \leftarrow AC \land DR, SC \leftarrow 0$
ADD	D_1T_4 :	$DR \leftarrow M[AR]$
	D_1T_5 :	$AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0$
LDA	D_2T_4 :	$DR \leftarrow M[AR]$
	D_2T_5 :	$AC \leftarrow DR, SC \leftarrow 0$
STA	D_3T_4 :	$M[AR] \leftarrow AC, SC \leftarrow 0$
BUN	D_4T_4 :	$PC \leftarrow AR, SC \leftarrow 0$
BSA	D_5T_4 :	$M[AR] \leftarrow PC$, $AR \leftarrow AR + 1$
		$PC \leftarrow AR, SC \leftarrow 0$
ISZ		$DR \leftarrow M[AR]$
	D_8T_5 :	$DR \leftarrow DR + 1$
	$D_{6}T_{6}$:	$M[AR] \leftarrow DR$, if $(DR = 0)$ then $(PC \leftarrow PC + 1)$, $SC \leftarrow 0$

메모리 읽기 제어입력($\leftarrow M[AR]$)

 $R' T_1 : IR \leftarrow M[AR]$

 $D_7'IT_3$: $AR \leftarrow M[AR]$

 D_0T_4 : $DR \leftarrow M[AR]$

 $D_1 T_4 : DR \leftarrow M[AR]$

 D_2T_4 : $DR \leftarrow M[AR]$

 D_6T_4 : $DR \leftarrow M[AR]$

$$Read = R' T_1 + D_7' I T_3 + (D_0 + D_1 + D_2 + D_6) T_4$$

메모리 쓰기 제어입력($M[AR] \leftarrow$)

 $RT_1: M[AR] \leftarrow TR$

 D_3T_4 : $M[AR] \leftarrow AC$

 D_5T_4 : $M[AR] \leftarrow PC$

 $D_6T_6\colon M[AR]\!\leftarrow\!DR$

$$Write = RT_1 + D_3T_4 + D_5T_4 + D_6T_6$$

PC(Program Counter)

$$Z_{DR} = 1$$
 if $DR = 0$, $Z_{AC} = 1$ if $AC = 0$

$$R' T_1: PC \leftarrow PC + 1$$

$$RT_1: PC \leftarrow 0$$

$$RT_2: PC \leftarrow PC + 1$$

$$D_AT_A: PC \leftarrow AR$$

$$D_5T_5: PC \leftarrow AR$$

$$D_6T_6$$
:if($DR = 0$) then $PC \leftarrow PC + 1$

$$rB_4$$
: if $(AC(15) = 0)$ then $PC \leftarrow PC + 1$

$$rB_3$$
: if $(AC(15) = 1)$ then $PC \leftarrow PC + 1$

$$rB_1$$
: if $(E=0)$ then $PC \leftarrow PC+1$

$$pB_0$$
: if $(FGI=1)$ then $PC \leftarrow PC+1$

$$pB_8$$
: if $(FGO=1)$ then $PC \leftarrow PC+1$

$$\mathit{INR}(\mathit{PC}) = R'T_0 + RT_2 + D_6T_6Z_{\mathit{DR}} + \mathit{pB}_9(\mathit{FGI}) + \mathit{pB}_8(\mathit{FGO}) + \mathit{rB}_4(\mathit{AC}_{15})' + \mathit{rB}_3(\mathit{AC}_{15}) + \mathit{rB}_2Z_{\mathit{AC}} + \mathit{rB}_1E'$$

$$LD(PC) = D_4 T_4 + D_5 T_5$$

$$CLR(PC) = RT_1$$

단일 플립플롭에 대한 제어(IEN의 예)

: IEN은 ION과 IOF의 결과로 그 값이 변하며 인턴립트 사이클의 마지막에서 0으로 클리어된다.

 $pB_7: IEN \leftarrow 1$ $pB_6: IEN \leftarrow 0$ $RT_2: IEN \leftarrow 0$

여기에서 $p=D_7IT_3$ 을 나타내고 B_7 , B_6 는 IR의 비트 7과 6이다.

	Q(t+1)	K	J
No change	Q(t)	0	0
Clear to 0	0	1	0
Set to 1	1	0	1
Complement	Q'(t)	1	1

Common bus system

공통 버스에 대한 제어

Inputs					Outputs			Register		
<i>x</i> . <i>x</i> -	r_{\circ}	<i>x</i> .	x-	œ.	To.	S_2	S_1	S_0	Selected	
x_1	x_2	x_3	x_4	x_5	x_6	x_7		ν_1		for bus
0	0	0	0	0	0	0	0	0	0	None
1	0	0	0	0	0	0	0	0	1	AR
0	1	0	0	0	0	0	0	1	0	PC
0	0	1	0	0	0	0	0	1	1	DR
0	0	0	1	0	0	0	1	0	0	AC
0	0	0	0	1	0	0	1	0	1	IR
0	0	0	0	0	1	0	1	1	0	TR
0	0	0	0	0	0	1	1	1	1	Memory

$$S_0 = x_1 + x_3 + x_5 + x_7$$

$$S_1 = x_2 + x_3 + x_6 + x_7$$

$$S_2 = x_4 + x_5 + x_6 + x_7$$

 x_1 은 AR(Address Register)의 데이터를 공통 버스를 통해 다른 레지스터에 전송하고자 하는 것이므로 표 5-6에서 소스(source)가 AR인 레지스터 전송문을 찾는다.

 $D_4T_4:PC\leftarrow AR$;

 $D_5T_5:PC\leftarrow AR$

$$x_1 = D_4 T_4 + D_5 T_5$$

 x_2 는 PC(Program Counter)의 데이터를 공통 버스를 통해 다른 레지스터에 전송하고자 하는 것이므로 표 5-6에서 소스(source)가 PC인 레지스터 전송문을 찾는다.

 $R'T_0: AR \leftarrow PC$

 $RT_0: TR \leftarrow PC$

 D_5T_4 : $M[AR] \leftarrow PC$

$$x_2 = R' T_0 + R T_0 + D_5 T_4$$

동일한 방법으로 x_3 , x_4 , x_5 , x_6 , x_7 을 찾는다.

 x_7 의 경우는 메모리의 내용을 공통 버스를 통해 다른 레지스터에 전송하고자 하는 것이므로 표 5-6에서 소스(source)가 메모리인 즉 M[AR]인 레지스터 전송문을 찾는다.

 $R' T_1: IR \leftarrow M[AR]$

 $D_7'IT_3:AR \leftarrow M[AR]$

 $D_0T_4: DR \leftarrow M[AR]$

 $D_1 T_4 : DR \leftarrow M[AR]$

 $D_2T_4: DR \leftarrow M[AR]$

 $D_6T_4: DR \leftarrow M[AR]$

$$x_7 \! = R' \; T_1 \! + \; D_7 ' \; I \; T_3 \! + \! (D_0 + D_1 + D_2 + D_6) \; T_4$$

5.10 누산기(AC) 논리의 설계

마이크로 연산에서 목적지 레지스터가 AC 인 레지스터 전송문: 이 문장들의 구현은 곧 AC의 LD 제어입력을 액티브 시키는 것이다. $D_0T_5: AC \leftarrow AC \land DR$ $D_1T_5: AC \leftarrow AC + DR$

 $D_2T_5:AC\leftarrow DR$

 $pB_{11}: AC(0-7) \leftarrow INPR$

 $rB_9:AC\leftarrow\overline{AC}$

 $rB_7: AC \leftarrow shrAC, AC(15) \leftarrow E$

 $rB_6: AC \leftarrow shlAC, AC(0) \leftarrow E$

 $rB_{11}:AC \leftarrow 0$

 $rB_5: AC \leftarrow AC + 1$

가산 논리 회로

Adder and Logic 회로의 1단을 표시

수고하셨습니다!