TP2: Redressement monophasé en pont PD2

mixte asymétrique sur charge résistive et inductive

I. Objectifs

- ✓ Représentation et analyse des tensions aux bornes de la charge et des semi-conducteurs de puissance pour différentes charges et différents angle de retard.
- ✓ Relevé des caractéristiques de commande.
- ✓ Calcul du facteur de forme et de l'ondulation de la tension de charge.

II. Manipulations

1. Montage en pont monophasé PD2 mixte asymétrique sur charge RL

a. Réaliser le montage suivant :

Variantes de la charge

b. Allure des tensions et des courants

- ✓ Observer à l'oscilloscope canal I les courbes: de la tension continue u_d et de la tension v_{T1} aux bornes de T1, pour des angles de retard $\alpha = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$.
- Observer à l'oscilloscope canal II avec ampli séparateur les courbes dans le temps de : courant de ligne i_s , courant i_{T1} du thyristor T_1 et le courant continu i_d pour des angles de retard $\alpha = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$.

c. Mesure des courants et tensions

✓ Mesurer les grandeurs suivantes et les reporter dans le tableau suivant

lpha en degrés	0°	30°	60°	90°	120°	150°
U_{s01}						
I_{slpha}						
$U_{d ext{AV}lpha}$						
$U_{d\mathit{RMS}lpha}$						
$I_{d ext{AV}lpha}$						
$I_{dRMSlpha}$						
$I_{T1AVlpha}$						

✓ Résultats d'exploitation :

lpha en degrés	0°	30°	60°	90°	120°	150°
$\begin{array}{c} U_{\rm dAV\alpha}/U_{\rm dAV0} \\ {\rm exp\'{e}rimentale} \end{array}$						

d. Analyses et commentaires

- ✓ Décrire brièvement les courbes obtenues à partir de l'observation sur oscilloscope.
- ✓ Calculer les rapports de tensions et de courants demandés et les comparer avec les valeurs théoriques. Déterminer l'ondulation du courant et celle de la tension.
- ✓ Représenter la caractéristique de commande de la tension de sortie $\frac{U_{dAV\alpha}}{U_{dAV0}} = f(\alpha)$

2. Montage en pont monophasé PD2 mixte asymétrique débit sur moteur

Le moteur MCC à excitation séparée utilisé a les caractéristiques suivantes :

Puissance	Vitesse	Tension d'induit	Courant d'induit	Tension d'excitation	Courant d'excitation
0.3kW	2000tr/min	220V	2.2A	220V CC	0.45A

F.H Page 2

Le MCC est alimenté par la sortie CC 220V/1A se trouvant sur la plaque du transformateur d'alimentation. Puisque le moteur ne supporte pas un courant qui dépasse 0.3A, il faut alimenter l'inducteur par une alimentation à courant continu 220V/0.3A

- ✓ Pole positif du convertisseur à la borne A1
- ✓ Pole négatif du convertisseur à la borne A2

✓ Faites varier l'angle d'amorçage et visualiser la tension aux bornes du moteur ainsi que le courant correspondant.

F.H Page 3