MCR3U Trig Identities Assignment McKinnell		Name: Date:
	Proving Identities Par	
	Proving identities Par	1.1.2
When proving	Identities, here are some strategies to consider:	
a.	All reciprocal trig ratios ($csc\theta$, $sec\theta$, $cot\theta$) can ratios ($sin\theta$, $cos\theta$, $tan\theta$) by flipping the fraction	
b.	It is usually recommended to change any insta $tan\theta =$	
c.	When sine or cosine is squared, they can easily $sin^2\theta = 1$ $cos^2\theta = 1$	$-cos^2\theta$
d.	The right side of the two identities above are daccordingly: eg: $1 - cos^2\theta = (1 - cos\theta)(1 + cos\theta)$	
e.	Compare both sides of the equation; identify viright and what is different.	what the left side has in common with the
f.	When proiving an identity, start working with simplify it down to the side that seems to have	

$tanx = \frac{sinx + sin^2x}{}$	$\frac{1}{\cos x} = \sin x \tan x$
$\frac{tanx - cosx(1 + sinx)}{cosx(1 + sinx)}$	$\frac{1}{\cos x} - \cos x = \sin x \tan x$
$tan\theta + cot\theta = sec\theta csc\theta$	$sin\theta + sin\theta cot^2\theta = csc\theta$
	Sino Sinocor o esco

$\frac{2\sin\theta - \cos^2\theta - 2}{\sin\theta + 3} = \sin\theta - 1$	$\frac{tan\theta}{1 - cos\theta} = \frac{1 + cos\theta}{sin\theta cos\theta}$

 $\frac{\sin x}{\tan x} = \cos x$ $\sin x \div \tan x$ $\sin x \div \frac{\sin x}{\cos x}$ $\sin x \times \frac{\cos x}{\sin x}$ $\cos x = \cos x$ $\cos x = \cos x$ $\therefore LS = RS \quad 11$

$$2 \sin^{2} x - 1 = \sin^{2} x - \cos^{2} x$$

$$2 \sin^{2} x - \sin^{2} x - 1 = -\cos^{2} x$$

$$3 \sin^{2} x - 1 = -\cos^{2} x$$

$$3 \sin^{2} x + \cos^{2} x = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$\frac{\sin^2 x}{(1-\cos x)} = 1+\cos x$$

$$\sin^2 x \qquad (1+\cos x)(1-\cos x)$$

$$1-\cos^2 x$$

$$\sin^2 x$$

$$1-\cos^2 x$$

$$\sin^2 x$$

$$1-\cos^2 x$$

$$\frac{1 \cdot \cos^2 x}{\sin^2 x \cdot \cos^2 x} \cdot \frac{1 \cdot \sin^2 x}{\cos^2 x \cdot \sin^2 x} = \frac{1}{\cos^2 x \sin^2 x}$$

$$\frac{\cos^2 x + \sin^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x \cos^2 x}$$

$$\frac{1}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x \cos^2 x}$$

$$LS = RS \quad U$$

$$tanx = \frac{\sin x + \sin^2 x}{\cos x (1 + \sin x)}$$

$$= \frac{\sin x (1 + \sin x)}{\cos x (1 + \sin x)}$$

$$= \frac{\sin x}{\cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x$$

$$U = Rs$$

$$\frac{1}{\cos x} - \cos x \cdot \frac{\cos x}{\cos x} = \sin x + \sin x$$

$$\frac{1}{\cos x} - \frac{\cos^2 x}{\cos x} = \sin x \cdot \frac{\sin x}{\cos x}$$

$$\frac{1 - \cos^2 x}{\cos x} = \frac{\sin^2 x}{\cos x}$$

$$\frac{\sin^2 x}{\cos x} = \frac{\sin^2 x}{\cos x}$$

$$\frac{\sin \theta + \cot \theta}{\sin \theta + \cot \theta} = \frac{\sec \theta - \csc \theta}{\cos \theta} = \frac{1}{\cos \theta} \times \frac{1}{\sin \theta}$$

$$\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta + \sin \theta} = \frac{1}{\cos \theta} \times \sin \theta$$

$$\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta + \sin \theta}$$

$$\frac{\cos \theta + \sin \theta}{\cos \theta} = \frac{1}{\cos \theta} \times \sin \theta$$

$$sin\theta + sin\theta \cot^2\theta = csc\theta$$

 $sin\theta (1 + cot^2\theta) = \frac{1}{sin\theta}$
 $sin\theta (csc^2\theta) = \frac{1}{sin\theta}$
 $sin\theta (\frac{1}{sin^2\theta}) = \frac{1}{sin\theta}$

$$\frac{2\sin\theta - \cos^2\theta - 2}{(\sin\theta + 3)} = \sin\theta - 1$$

$$2\sin\theta - \cos^2\theta - 2 = (\sin\theta - 1)(\sin\theta + 3)$$

$$2\sin\theta - (1 - \sin^2\theta - 2 = \sin^2\theta + 2\sin\theta - 3)$$

$$2\sin\theta - 1 + \sin^2\theta - 2 = \sin^2\theta + 2\sin\theta - 3$$

$$2\sin\theta - 1 + \sin^2\theta - 2 = \sin^2\theta + 2\sin\theta - 3 = \sin^2\theta + 3\cos\theta - 3\cos\theta -$$

$$\frac{\tan \theta}{1 - \cos \theta} = \frac{1 + \cos \theta}{\sin \theta \cos \theta}$$

$$\tan \theta (\sin \theta \cos \theta) = (1 - \cos \theta)(1 + \cos \theta)$$

$$\frac{\sin \theta}{\cos \theta} \times (\sin \theta \cos \theta) = 1 - \cos^2 \theta$$

$$\sin^2 \theta = \sin^2 \theta$$

$$LS = RS \quad ||$$