

LIPS Projektplan

Version 1.2

Status

Granskad	Fredrik Olsson	2016-02-26
Godkänd		

PROJEKTIDENTITET

2016/VT, Grupp 1 Linköpings Tekniska Högskola, ISY

Gruppdeltagare

Namn	Ansvar	Telefon	E-post*
Albin Detterfelt	Kommunikationmodul och Blåtand	070-655 25 99	albde282
Klas Gudmundsson	Persondatoransvarig	072-714 06 66	klagu863
Martin Haugsbakk	Buss- och integrationsansvarig	070-270 63 36	marha996
Milton Johansson	Sensormodulsansvarig	073-037 01 64	miljo274
Sandy Klaff	Dokument- och mjukvaruansvarig	070-293 77 49	sankl660
Fredrik Olsson	Projektledare och testansvarig	072-315 38 68	freol454
Martin Prage	Styrmodulsansvarig	073-694 95 24	marpr146

^{*}avslutas med @student.liu.se

Kund: ISY, Linköpings universitet, 581 83 Linköping Kontaktperson hos kund: Mattias Krysander, 013-282198, matkr@isy.liu.se Kursansvarig: Tomas Svensson, 013-281368, tomas.svensson@liu.se

Innehåll

Dokumenthistorik

1	Beställare	1
2	Översiktlig beskrivning av projektet2.1 Syfte och mål2.2 Leveranser2.3 Begränsningar	1 1 1
3	Fasplan3.1 Före projektstart3.2 Under projektet3.3 Efter projektet	3 3 3
4	Organisationsplan för hela projektet 4.1 Villkor för samarbetet inom projektgruppen	3 3
5	Dokumentplan	6
6	Utvecklingsmetodik6.1 Projektmetodik6.2 Teknisk metodik	6 6 7
7	Utbildningsplan7.1 Egen utbildning	7 7 7
8	Rapporteringsplan	7
9	Mötesplan	8
10	Resursplan 10.1 Personer	8 8 8 8
11	Milstolpar och beslutspunkter 11.1 Milstolpar	9 9
	EA56, Kandidatprojekt i elektronik PS Projektplan Grupp	p 1

Undsättningsrobot

2016-03-03

12	Aktiviteter	9
13	Tidplan	12
14	Förändringsplan	12
15	Kvalitétsplan15.1 Granskningar15.2 Testplan	12 12 12
16	Prioriteringar	12
17	Projektavslut	13
A	AppendixA.1 Ban- och tävlingsspecifikationA.2 KravspecifikationA.3 GruppkontraktA.4 Tidplan	13 13 16 34 37
R۵	ferenser	37

Undsättningsrobot

2016-03-03

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2016-02-14	Första utkast	alla	FO
0.2	2016-02-18	Andra utkast	alla	FO
1.0	2016-02-19	Första version	alla	FO
1.1	2016-02-23	Uppdaterad tidplan samt tider i aktivitetslista	FO	FO
1.2	2016-02-25	Tidplan, aktivitetslista och milstolpar	alla	FO

1 Beställare

Beställare av projektet är Mattias Krysander från Institutionen för systemteknik (ISY) vid Linköpings Universitet.

Telefon: +4613282198

E-post: mattias.krysander@liu.se

Postadress: Mattias Krysander

Linköpings universitet

Institutionen för systemteknik

581 83 Linköping

2 Översiktlig beskrivning av projektet

Avsnittet syftar till att ge en övergripande bild av projektet och dess mål samt vad som ingår respektive inte ingår.

2.1 Syfte och mål

Syftet och målet med projektet är att leverera ett robotsystem som möter de krav som parterna kommit överens om (se kravspecifikation i Appendix A.2), samt att implementera LIPS-modellen i praktiken.

Projektgruppen har som mål att dess medlemmar skall få fördjupa sig inom specifika tekniska lösningar och verktyg som de finner intressanta och som är nödvändiga för att säkerställa projektets framgång.

2.2 Leveranser

Nedan i Tabell 2.2 listas de del- och slutleveranser med datum som skall genomföras i projektet.

2.3 Begränsningar

Projektet är begränsat till att endast omfatta ett förutbestämt antal timmar, dessa finns i detalj i avsnitt 10.4. Systemet kommer att vara begränsat till att endast kunna verka i en miljö som liknar den som beskrivs i Ban- och Tävlingsspecifikationen, se Appendix A.1

Datum	Leverans
2016-02-02	Kravspecifikation v1.0
2016-02-03	Tidrapport kravspec
2016-02-09	Val av förstudier inlämnad till beställaren
2016-02-15	Projektplan, tidplan och systemskiss v0.1
2016-02-19	Projektplan, tidplan och systemskiss v1.0, BP2
2016-02-22	Tidrapport planering
2016-03-03	Förstudier v0.1
2016-03-07	Tidrapport
2016-03-11	Designspecifikation v0.1
2016-03-14	Tidrapport
2016-04-04	Tidrapport
2016-04-05	Designspecifikation v1.0, BP3
2016-04-08	Förstudier v1.0
2016-04-11	Tidrapport
2016-04-15	Design godkänd av handledaren vid BP4-möte
2016-04-18	Tidrapport
2016-04-25	Tidrapport
2016-05-02	Tidrapport
2016-05-09	Tidrapport
2016-05-16	Tidrapport
2016-05-19	Kappa v1.0
2016-05-23	Tidrapport
2016-05-25	Verifiering av kraven, BP5
2016-05-26	Teknisk dokumentation och användarhandledning v1.0
2016-05-30	Tidrapport
2016-06-01	Muntlig presentation och opposition
2016-06-02	Muntlig presentation och opposition
2016-06-02	Tävling
2016-06-03	Efterstudie
2016-06-07	Tidrapport
2016-06-10	Återlämning av utrustning och nycklar, BP6

Tabell 1: Leveranser

3 Fasplan

Detta avsnitt beskriver grovt de aktiviteter som ingår i varje fas.

3.1 Före projektstart

Fasen före projektstarten består av aktiviteter som att bilda projektgrupp, tillse en godkänd kravspecifikation. Fördela ansvar samt ta reda på de resurser som finns och behövs i projektet är också aktiviteter som görs innan projektstarten.

En annan aktivitet som ingår i före-fasen är att planera projektet efter de direktiv som tillhandahållts.

3.2 Under projektet

Under projektet är fasen där den större delen av arbetet ska utföras. Här ska designplaneras, programmeras, konstrueras robot, planeras om, hållas möten och så vidare.

3.3 Efter projektet

Efter projektet ska roboten tävla i en tävling som beställaren arrangerar. Utöver det ska det levereras dokumentation, projektet avslutas och delarna skall lämnas tillbaka till beställaren.

4 Organisationsplan för hela projektet

I Figur 1 ges en överskådlig bild över hur projektet är organiserat och i avsnittet ges en mer detaljerad beskrivning av de olika ansvarsområden som projektets medlemmar förfogar över.

4.1 Villkor för samarbetet inom projektgruppen

Projektgruppen har enats om ett gruppkontrakt (se Appendix A.3) vilket utgör grunden för samarbetet inom gruppen.

4.2 Definition av arbetsinnehåll och ansvar

Ytterligare ansvarsområden med beskrivning än de som anges nedan kommer att beslutas om vid projektmötet 2016-02-18.

Figur 1: Organisationsschema

Namn	Ansvar
Albin Detterfelt	Kommunikationmoduls- och Blåtandansvarig
Klas Gudmundsson	Persondatoransvarig
Martin Haugsbakk	Buss- och integrationsansvarig
Milton Johansson	Sensormodulsansvarig
Sandy Klaff	Dokument- och mjukvaruansvarig
Fredrik Olsson	Projektledare och testansvarig
Martin Prage	Styrmodulsansvarig

Roll	Ansvar	
Projektledare	Leda, rapportera och se till så att arbetet	
	fortskrider. Ansvarar för att sammanställa,	
	uppdatera och i tid skicka in tidsrapporter-	
	na.	
Dokumentansvarig	Upprätta dokumentmallar	
Persondatoransvarig	Ansvarig för hantering av data till och från	
	robot samt kartritning.	
Kommunikationmudulsansvarig	Ansvarig för kommunikationsmodulen,	
	kommunikationen till och från modulen och	
	hanteringen av signalerna som kommer in.	
Blåtandsansvarig	Ansvarig för att upprätta en kommunikation	
_	via blåtand mellan robot och persondator.	
Bussansvarig	Huvudansvar för att det finns en fungerande	
	buss i systemet.	
Integrationsansvarig	Ansvara för alla integration mellan de olika	
	delsystemen.	
Sensormodulsansvarig	Huvudansvar för sensorerena och kommika-	
	tionen från sensormodulen.	
Mjukvaruansvarig	Har huvudansvar för all kod som skrivs, att	
	den skriv på rätt sätt och på rätt ställe. Sätter	
	även upp miljöer där kod ska sparas.	
Testansvarig	Har huvudansvar för de slutgiltiga testerna	
	och ser till att den gör som den ska. Men ska	
	även vara ansvarig för testrutiner och miljö-	
	er där tester kan göras.	
Styrmodulsansvarig	Har huvudansvaret för styrmodulen och	
	kommunikationen till och ifrån styrmodu-	
	len.	

Dokument	Ansvarig	Distribueras till	Färdigdatum
Kravspec.	MJ	MK	2016-02-02
Projektplan	FO	MK	2016-02-19*
Systemskiss	MP	MK	2016-02-19
Tidsplan	FO	MK	2016-02-19*
Förstudier	MJ, KG, MH	MK, resp. handledare	2016-04-08
Designspec.	MH	OA, MK	2016-04-15
Kappa	MP	MK	2016-05-19
Teknisk dok.	MH	MK	2016-05-26
Användarhandl.	KG	MK	2016-05-26
Efterstudie	SK	MK	2016-06-03
Tidsrapport	FO	MK	Veckovis
Mötesprotokoll	SK	MK vid efterfrågan	Veckovis

^{*} uppdateras veckovis

Tabell 2: Dokumentplan

5 Dokumentplan

I Tabell 2 ges dokumentplanen med ansvarsfördelning distributionslista samt färdigdatum. En djupare beskrivning av respektive dokuments syfte ges i kravspecifikationen, se Appendix A.2. Alla dokument i dokumentplanen kommer att distribueras internt till samtliga medlemmar i projektgruppen.

6 Utvecklingsmetodik

Projektets metodik kan delas upp i två delar, dels en teknisk del som beskriver den tekniska delen av projektmetodiken och dels en projektmetodik som behandlar hur projektgruppen lägger upp arbetet. Dessa två delar beskrivs närmre nedan.

6.1 Projektmetodik

Projektgruppen använder sig av LIPS-modellen som utgångspunkt för att organisera projektarbetet. Vi kommer också att dela upp arbetet i självständiga aktiviteter för att kunna delegera arbetsuppgifter och därmed möjliggöra parallellt arbete. En tydlig ansvarsfördelning säkerställer att aktiviteterna ansvaras av någon eller några inom projektgruppen. Detta kräver att informationsdelning inom gruppen fungerar på ett bra sätt och att gruppen har information om hur projektarbetet ligger till jämfört med plan. Detta kommer att uppnås genom att gruppen varje

vecka stämmer av hur arbetet ligger till under ett gemensamt möte där eventuella svårigheter eller problem kan tas upp för diskussion.

För att kunna ha en tydlig översikt över pågående, utförda och framtida aktiviteter har projektgruppen också valt att använda sig av ett s.k. Kanban-board. Ett sådant verktyg visualiserar arbetsflödet och tydliggör aktiviteter som utförs, har utförts samt ska utföras. Även prioritering av aktiviteter och ansvarig projektmedlem kommer på detta sett tydlig kunna kommuniceras inom projektgruppen och förse den med en bra översikt över projektprocessen.

6.2 Teknisk metodik

Den tekniska utvecklingen av roboten kommer främst att utföras genom mjukvaruutveckling samt sammansättning av hårdvarukomponenter. Hårdvarukomponenterna, såsom robotplattform samt sensorer, kommer att tillhandahållas av Institutionen för Systemteknik vid Linköpings Universitet, och behöver alltså inte utvecklas av projektgruppen. Mjukvaruutvecklingen kommer att till stor del ske genom programmering i språket C.

7 Utbildningsplan

Detta avsnitt tar upp de utbildningar som ingår i projektet.

7.1 Egen utbildning

Projektgruppen får utbildning i AVR-processorer, VHDL samt mätteknik i form av föreläsningar som hålls på Linköpings Universitet. Projektgruppen ska också utföra tre stycken laborationer som har med föreläsningsinnehållet att göra.

7.2 Kundens utbildning

Kunden erbjuds utbildning i form av en användarmanual samt teknisk dokumentation som levereras i slutet av projeketet. Utöver det kommer projektgruppen visa upp roboten för kunden i den robottävling som är i slutet av terminen.

8 Rapporteringsplan

Under projektet ska mötesprotokoll, tidrapport och statusrapport skrivas. Tidrapport och statusrapport skriva av projektledaren och ska skickas in till beställaren.

Mötesprotokoll skrivs på torsdagar varje vecka av den, under mötet, utsedda sekreteraren. Statusrapporten lämnas in på begäran av beställaren och tidrapporten ska lämnas in följande datum: 3 februari, 22 februari, 7 mars, 14 mars, 4 april, 11 april, 18 april, 25 april, 2 maj, 9 maj, 16 maj, 23 maj, 30 maj och 7 juni.

9 Mötesplan

Projektmöten hålls varje torsdag lunch (kl 12.15-13.00), i en sal som bokas av projektledaren. Projektledaren meddelar gruppen om var mötet ska hållas genom en chattgrupp, samt skickar ut dagordning. Det är varje torsdag som gäller med reservation av att inte hålla möten torsdagar under tentaperiod och påsk. Frånvaro meddelas till projektgruppen så snart som möjligt.

Rollen som mötessekreterare är en rullade roll inom gruppen, detsamma gäller justerare. Mötesprotokollmall för LIPS-modellen används och protokollen läggs upp i gruppens Drive.

10 Resursplan

Detta avsnitt innehåller beskrivning av de resurser som finns att tillgå i projektet.

10.1 Personer

De sju projektmedlemmarna är den största tillgången vad gäller personer i projekt. Det finns även flera experter och en handledare för projektmedlemmarna att rådfråga under projektets gång.

10.2 Material

Projektgruppen kommer att få tillgång till ett eget skåp med diverse komponenter och delar som kan användas i byggandet av roboten.

10.3 Lokaler

Det finns två arbetsbänkar för projektgruppen att arbeta på, i lokalen Muxen (Bhuset, Linköpings universitet). Projektgruppen får tillträde till Muxen andra perioden på terminen.

10.4 Ekonomi

Varje gruppmedlem har 230 timmar att spendera på projektet efter BP2.

TSEA56, Kandidatprojekt i elektronik 8 LIPS Projektplan

11 Milstolpar och beslutspunkter

11.1 Milstolpar

Dessa två avsnitt beskriver vilka milstolpar gruppen ska uppnå samt vilka beslutspunkter som ska genomföras eller klaras av.

Nr	Beskrivning	Datum
1	Designspecifikation klar	1/4 2016
2	Förstudie klar	8/4 2016
3	Bussen klar	15/4 2016
4	Roboten kan fjärrstyras från persondator	20/4 2016
5	Roboten ska kunna manövrera autonomt	13/5 2016
6	Roboten ska kunna återvända till startposition efter körning	15/5 2016
7	En karta ska kunna målas upp på persondatorn över den ut-	17/5 2016
	forskade miljön	
8	Roboten är redo för att tävla	20/5 2016

11.2 Beslutspunkter

Nr	Beskrivning	Datum
0	Val av projektuppgift	22/1 2016
1	Godkännande utav kravspecifikation	2/2 2016
2	Efter inlämnande utav projektplan, tidplan och systemskiss	19/2 2016
	sker ett formellt beslutmöte med beställare.	
3	Designspecifikation godkänd av beställare	5/4 2016
4	Kontruktionsgranskning	15/4 2016
5	Verifiering utav krav i kravspecifikation innan leverans	25/5 2016
6	Godkännande utav projekt	10/6 2016

12 Aktiviteter

Aktiviteter är de delar av projektet efter belsutspunkt 2 som ska genomföras på planerad tid för hela gruppen enligt tabell.

Nr	Aktivitet	Beskriving	Tid
1	Designspecifikation	Designspecifikationen ska skrivas	80
2	Teknisk dokumenta-	Teknisk rapport samt användarhandled-	80
	tion	ning ska skrivas	

3	Projektledning	Projektledaren uppdaterar projektplan samt sammanställer och skickar in tidrapporter	18
4	Dokumenthantering	Dokumentansvarig hanterar alla dokument	9
5	Projektmöten	Gruppen möts och diskuterar hur det går	85
6	Blåtand	Skicka och ta emot data från dator till robot via Blåtand	40
7	Montering av sen- sormodul	Montera sensormodul	20
8	Kalibrering av US- sensor	Testa och översätta insignalens spän- ningsvärde till mätvärde	35
9	Kalibrering av IR- sensor	Testa och översätta insignalens spän- ningsvärde till mätvärde	35
10	Kalibrering av laser- sensor	Testa och översätta insignalens spän- ningsvärde till mätvärde	35
11	Kalibrering Gyro	Testa och översätta insignalens spän- ningsvärde till mätvärde	40
12	Skicka mätdata från sensormodulen	Modulens AVR skall kunna skicka mätdata ut på bussen	10
13	Montering av styr- modul	Bygga ihop styrmodul	15
14	Styra motorer	Motorena på roboten ska kunna styras från processorn	15
15	Framdrivning och styrkommandon	Utveckla styrkommando för motorer; sväng höger och vänster, rakt fram samt backning och rotation	50
16	Ta emot signaler till styrmodulen	Styrmodulen ska kunna ta emot signaler ifrån bussen och hantera dem	20
17	Måldetektering och - positionering	Kalibrering och testning av IR-detektorn, utveckla detektions- och målsökningsal- goritm	40
18	Testning av fjärr- styrd körning	Kontinuerlig testning av styrmodulen	20
19	Gripklo	Gripklon ska kunna öppnas och stängas	10
20	Display	Display som visar sensorvärden	15
21	Algoritmer för av- sökning	Programmera kartläggningsalgoritmer	50

22	Montering av kom- munikationsmodul	Bygga ihop en kommunikationsmodul	20
23	Skicka och ta emot signaler mellan per- sondator och Kom- munikationsmodul	Kunna ta emot kommandon till kommunikationsmodul från persondator via blåtand och skicka information via blåtand	40
24	Kommunikations- modulens integra- tion	Modulens AVR skall kunna skicka mätvärden ut på bussen och kunna ta emot och hantera värden från bussen	20
25	Kortaste vägen ut eller in	Roboten ska hitta ut eller in den kortaste vägen	40
26	Kartläggning	Algoritmer för att sköta kartläggningen	60
27	Utveckla styralgorit- mer	Kommunikationsenheten ska ta styrbeslut genom styralgoritmer och styra styrenhe- ten med dessa	45
28	Buss	Programmera bussen för att länka samman styr, sensor och kommunikationsmodul	50
29	Testning av buss	Testning av buss och testning av integrering mellan moduler	30
30	Kartritning	Rita ut en karta på persondatorn utifrån den matris roboten har skapat	40
31	Sätta ihop roboten	Sätta ihop modulerna på robotchassit	20
32	Reglera robotens rörelse	Få roboten att köra rakt längs en vägg med hjälp utav PID-reglering	60
33	Köra autonomt	Roboten ska kunna köra helt autonomt	90
34	Offlinekörning	Roboten ska kunna fortsätta körning trots förlorad kontakt med persondator	30
35	Testning av bankör- ning i korridor	Testa roboten i en relevant korridors-bana	70
36	Testning av bankör- ning påöppna ytor	Testa roboten i en relevant bana med öpp- na ytor	50
37	Presentation	Förbereda inför slutpresentationen	25
38	Användarhandledning	Skriva användarhandledning	15
39	Efterstudie	Utvärdering utav projektet	14

Tabell 2. Aktivitetstabell

13 Tidplan

Se Appendix A.4

14 Förändringsplan

Om projektet skulle bli försenat utav oförutsedd anledning så kan en kravomförhandling ske. Denna omförhandling sker tilsammans med beställaren och inget krav får strykas om inte beställaren samtycker.

15 Kvalitétsplan

I avsnittet beskrivs hur projektet skall kvalitetssäkras.

15.1 Granskningar

Alla dokument-leveranser som levereras av gruppen ska läsas igenom av samtliga inblandade och efter det ha en slutgiltig granskare som korrekturläser innan det skickas in. All kod som skrivs inom projektet ska noggarant kollas igenom och testas innan det pushas, behöver inte gå igenom av hela projektgruppen utan av de som är ansvariga för den delen där koden är relevant. Inför presentationer ska hela gruppen vara insatt i alla delar av projektet samt minst två ha djupare förståelse för varje delsystem.

15.2 Testplan

All hårdvara och mjukvara måste testas kontinuerligt efter varje gjord förändring för att se att den beter sig så som den borde. På grund av att bara en robot tillhandahålls så är planen att tester ska kunna genomföras, samtidigt som tester görs på roboten, genom att kunna simulera kod, detta så att de andras arbete i gruppen inte stannar upp varje gång någon testar på roboten.

16 Prioriteringar

En detaljerad beskrivning av priotiteringar finns i projektets kravspecifikation, där kraven på systemet har rangordnats efter prioritet på en skala från 1 till 3 där 1 har högsta prioritet och ska vara en del av roboten när projektet är avslutan, medan de med prioritet 2 respektive 3 är krav som ska uppfyllas om det finns tid över till det när alla med prioritet 1 är uppnådda.

Skulle det bli tidsbrist eller förseningar under projektets gång gäller det att tänka på vilka aktiviteter som är viktigare för projektet som helhet eller är viktiga för att efterföljande aktiviteter som är kritiska för projektets utgång fortfarande kan utföras i tid.

Delsystem i roboten som identifieras som extra viktiga för projektets gång och/eller slutresultatet är:

- Databussen för överföring mellan robotens moduler
- Reglersystemet i styrningen
- Styrning från kommunikationsmodulen
- Ultraljudssensorer

När förseningar uppkommer ska fler resurser tillsättas för att kritiska aktiviteter snabbare ska genömförs.

17 Projektavslut

Projektet avslutas med den slutgiltiga tävlingen där roboten bedöms efter hur väl den kartlägger roboten och sedan hur snabbt den hittar ut igen när målet identifierats och sedan åker tillbaka till målet. Framförallt ska roboten klara av alla moment i tävlingen. När tävlingen sedan är över och beställaren är nöjd ska de slutgiltiga dokumenten lämnas in och blir godkända varefter projektgruppen upllöses. Efter tävlingen ska all utrustning och nycklar lämnas tillbaka.

A Appendix

A.1 Ban- och tävlingsspecifikation

Ban- och tävlingsspecifikation

Tävlingsspecifikation

Tävlingen går ut på att alla robotar under två körningar ska genomgöra 3 olika tävlingsmoment, enligt beskrivning nedan. Beställare agerar domare i alla tävlingsmoment. För varje tävlingsmoment delas poäng ut enligt principen 5 poäng till vinnare, 3 poäng till andra plats, 2 poäng till tredje plats och 1 poäng till sista platsen. Vinnare av hela tävlingen blir den robot som samlat flest poäng efter alla tävlingsmoment. Vid lika vinner den robot som klarat moment 1 och 2 på den sammanlagt kortaste tiden. Vid lika placering i ett tävlingsmoment så delas den lägre poängen ut till båda lagen. Tävlingsbanan kan modifieras till att antingen ha öppna rum eller endast korridorer, men oavsett vilken bana som väljes så deltar robotarna i samma tävling.

Tävlingsmoment:

- På kortast tid utforska en bana och finna ett målobjekt för att sedan ta sig tillbaka till startpunkten. Inga övriga krav finns, men roboten bör säkerställa att även kortaste vägen till målobjektet är funnen för att kunna utföra moment 2 och 3 på bästa sätt.Kortast tid för körningen vinner tävlingsmomentet.
- På kortast tid ta sig direkt från startpunkten till målobjektet, öppna gripklon,släppa förnödenheter max 30 cm ifrån objektet och sedan åka tillbaka till startpunkten. Kortast tid för körningen vinner tävlingsmomentet.
- Under lämning av förnödenheter ska roboten åka kortaste vägen till målobjektet.
 Kortast väg vinner tävlingsmoment.

Om en robot misslyckas att hitta någon väg till målobjektet i tävlingsmoment 1 så får körningen göras om, men roboten diskvalificeras och får 0 poäng i momentet.

Om roboten rör vid någon vägg eller målobjekt vid någon av körningarna blir roboten diskvalificerad i tidtagningsmomentet för gällande körning och får då automatiskt 0 poäng i momentet.

Banspecifikation

Banan ska byggas upp så att den testar robotarnas manövreringsförmåga, kartläggningsförmåga och beslutsförmåga så mycket som möjligt. Det ska gärna finnas flera vägar till målet så att det går att urskilja att en robot både väljer den kortaste vägen samt väljer att inte utforska vägar som omöjligen kan vara kortare än de redan funna vägarna.

YI-100t

vänstervarv framför högervarv inte kraftigt missgynnas.

Beställaren ska på tävlingsdagen presentera en bana som uppfyller specifikationerna nedan.

- 1. Alla väggmoduler måste vara minst 40 cm * 40 cm. Papperstunna hörn får alltså förekomma, men inte väggar.
- 2. Ska finnas öppna rum, alltså ytor som är bredare och djupare än 40 cm.
- 3. Banan ska kunna modifieras så att rummen övergår till endast korridorer, utan att målobjektet behöver flyttas
- 4. Endast en in- och utgång på banan ska finnas.
- 5. Det kan finnas korridorer med tre- och fyrvägskorsningar.
- 6. Det kan finnas återvändsgränder som är minst 40 cm djupa.
- 7. Målet ska kunna sättas ut på valfri plats mitt i en 40 cm* 40 cm -modul.
- 8. Det ska kunna finnas godtyckligt antal 40 cm * 40 cm -moduler mitt i rummen.
- 9. Det ska finnas minst två vägar till målet.
- 10. Banan ska rymmas på en 6 * 6 m stor yta, vilket ger ett rutnät på 15 * 15 moduler.

Nedan finns en illustrerande bild på hur banan skulle kunna se ut (ej slutgiltig bana, men gällande principer), där gröna linjer indikerar hur banan kan modifieras till att endast innefatta korridorer.

A.2 Kravspecifikation

LIPS Kravspecifikation

Version 1.0

Status

Granskad	Fredrik Olsson	2016-02-01
Godkänd	Mattias Krysander	2016-02-01

TSEA56, Kandidatprojekt i elektronik LIPS Kravspecifikation

PROJEKTIDENTITET

2016/VT, Grupp 1 Linköpings Tekniska Högskola, ISY

Gruppdeltagare

or apparting are				
Namn	Ansvar	Telefon	E-post	
Albin Detterfelt		070-655 25 99	albde282@student.liu.se	
Klas Gudmundsson		072-714 06 66	klagu863@student.liu.se	
Martin Haugsbakk		070-270 63 36	marha996@student.liu.se	
Milton Johansson		073-037 01 64	miljo274@student.liu.se	
Sandy Klaff	Dokumentansvarig	070-293 77 49	sankl660@student.liu.se	
Fredrik Olsson	Projektledare	072-315 38 68	freol454@student.liu.se	
Martin Prage		073-694 95 24	marpr146@student.liu.se	

Kund: ISY, Linköpings universitet, 581 83 Linköping Kontaktperson hos kund: Mattias Krysander, 013-282198, matkr@isy.liu.se Kursansvarig: Tomas Svensson, 013-281368, tomas.svensson@liu.se

TSEA56, Kandidatprojekt i elektronik LIPS Kravspecifikation

2016-03-03

Innehåll

Dokumenthistorik

1.1 Parter 1.2 Syfte och mål 1.3 Användning 1.4 Bakgrundsinformation 1.5 Definitioner 2 Översikt av systemet 2.1 Grov beskrivning av produkten 2.2 Produktkomponenter	. 1
1.3 Användning	. 1
1.3 Användning	. 1
1.5 Definitioner	
2 Översikt av systemet 2.1 Grov beskrivning av produkten	. 2
2.1 Grov beskrivning av produkten	
2.1 Grov beskrivning av produkten	2
2.3 Beroenden till andra system	
2.4 Ingående delsystem	
2.5 Avgränsningar	
2.6 Designfilosofi	
2.7 Generella krav på hela systemet	
3 Styrmodul	4
3.1 Inledande beskrivning av styrsystemet	. 4
3.2 Gränssnitt	. 5
3.3 Designkrav	. 5
3.4 Funktionella krav för styrmodulen	. 5
4 Kommunikationsmodul	5
4.1 Inledande beskrivning av kommunikationsmodulen	. 5
4.2 Gränssnitt	
5 Sensormodul	6
5.1 Inledande beskrivning av sensormodulen	. 6
5.2 Gränssnitt	
5.3 Designkrav	
5.4 Funktionella krav	
6 Persondator	7
6.1 Inledande beskrivning av persondatormodulen	. 7
6.2 Gränssnitt	
6.3 Designkrav	
6.4 Funktionella krav	
	. 0
TSEA56, Kandidatprojekt i elektronik	3rupp 1

LIPS Kravspecifikation

Undsättningsrobot
Undsättningsrobot 2016-03-03 2016-02-14 7 Prestandakrav 8 Krav på möjlighet att uppgradera 8 9 Tillförlitlighet 8 10 Ekonomi 8 11 Krav på säkerhet 8 12 Leveranskrav och delleveranser 9 13 Dokumentation 10 14 Utbildning 11 15 Kvalitetskrav 12 16 Underhållsbarhet 12 12 A Appendix 12 Referenser **12**

TSEA56, Kandidatprojekt i elektronik LIPS Kravspecifikation

2016-03-03

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2016-01-26	Första utkast.	AD, FO, KG, MH, MJ, MP, SK	SK
0.2	2016-01-26	Andra utkast.	AD, FO, KG, MH, MJ, MP, SK	FO
1.0	2016-02-01	Första version.	SK	FO

TSEA56, Kandidatprojekt i elektronik LIPS Kravspecifikation

1 Inledning

Systemet som ska levereras är en undsättningsrobot som ska klara av att söka av en fysisk miljö, hitta nödställda i denna miljö samt klara av att leverera förnödenheter till dessa. Detta system är en del av examinationen i kursen TSEA56 vid Linköpings Universitet, kandidatarbete i elektronik.

Detta dokument fungerar som kravspecifikation för detta system och beskriver i mer detalj vilka krav leverabeln (systemet) ska klara av samt en allmän beskrivning av projektet som ska resultera i denna leverabel.

I dokumentet beskrivs kraven med en tabellrad enligt nedan. Kravnummer är löpande genom hela dokumentet. Den andra kolumnen beskriver huruvida kravet är orginal eller blivit reviderat. Kolumn tre innehåller själva kravet och kolumn fyra vilken prioritet kravet har.

1.1 Parter

Denna kravspecifikation är en överenskommelse mellan beställaren och projektmedlemmarna om vad som ska uppnås. Dessa två parter består av följande personer:

Beställare: Mattias Krysander (Institutionen för systemteknik, ISY, vid Linköpings Universitet).

Projektmedlemmar: Albin Detterfelt, Klas Gudmundsson, Martin Haugsbakk, Milton Johansson, Sandy Klaff, Fredrik Olsson (Projektledare), Martin Prage.

1.2 Syfte och mål

Syftet och målet med projektet är att leverera ett robotsystem som möter de krav som parterna ovan kommit överens om, samt att implementera LIPS-modellen i praktiken under detta projekt.

1.3 Användning

Systemet kommer att användas i en simulerad nödsituation, där uppgiften är att lokalisera nödställda och förse dessa med förnödenheter på kortast möjliga tid. Att detta uppfylls kommer att verifieras i slutet av projektet med en demonstration för beställaren.

TSEA56, Kandidatprojekt i elektronik 1 LIPS Kravspecifikation

1.4 Bakgrundsinformation

Beställaren vill producera en robot som kan förse nödställda i till exempel en grotta med förnödenheter. Projektets uppdrag är således att producera en prototyp för att undersöka hur det problemet kan lösas.

1.5 Definitioner

Med huvudenhet avses kommunikationsmodulen.

Krav av prioritet 1 skall uppnås till leverans. Krav av prioritet 2 och 3 skall uppfyllas om det finns tid efter att krav av prioritet 1 är uppfyllt. Krav av prioritet 2 prioriteras då före krav av prioritet 3.

2 Översikt av systemet

Systemet ska bestå utav fyra delsystem; en styrmodul, en sensormodul, en persondatormodul samt en kommunikationsmodul som utgör huvudenhet.

Figur 1: Denna bild visar en översikt av systemet.

2.1 Grov beskrivning av produkten

Produkten kommer att ta sig framåt med hjälp av fyra hjul. Olika sensorer ska kunna skicka mätdata till användaren via kommunikationsmodulen och vidare genom

TSEA56, Kandidatprojekt i elektronik 2 LIPS Kravspecifikation

2016-03-03 2016-02-14

blåtand till persondatorn. Produkten ska kunna ställas in i två lägen; autonom- och manuellkörning.

2.2 Produktkomponenter

Systemet kommer att bestå av minst tre stycken processorer som styr alla elektroniska komponenter. Ljus- och avståndssensorer ska användas för att roboten ska kunna detektera väggar och hinder samt navigera genom labyrinten.

2.3 Beroenden till andra system

Produkten är beroende av att det finns en fungerande persondator som roboten kan kommunicera med. Däremellan ska det även upprättas en fungerande blåtandlänk.

2.4 Ingående delsystem

Systemet kommer att bestå av fyra delsystem, dessa är de fyra modulerna som visas i Figur 1. Alla dessa delsystem beskrivs djupare i avsnitt 3-6.

2.5 Avgränsningar

Projektet är begränsat till att endast omfatta ett förutbestämt antal timmar, dessa finns i detalj i avsnitt 10.

Antagande har gjorts att marken som roboten ska köra på är helt plan, i verkligheten är detta dock inte möjligt utan blir istället en begränsning.

2.6 Designfilosofi

De desingbeslut som tas ska dokumenteras i vår tekniska dokumentation. Inga tidigare verisioner utav projektet finns att tillgå utan allt ska skapas från grunden.

TSEA56, Kandidatprojekt i elektronik 3 LIPS Kravspecifikation

2.7 Generella krav på hela systemet

Krav nr 1	Original	Systemet ska autonomt kunna kartlägga bana enligt	1
IXI WY III I	Original	Appendix A.	•
V 2	0-1-11		
Krav nr 2	Original	Systemet ska hitta en nödställd i en okänd miljö	
Krav nr 3	Original	Systemet ska kunna identifiera en nödställd som in-	1
		dikeras enligt Appendix A.	
Krav nr 4	Original	Systemet ska kunna beräkna och köra den kortaste	1
		vägen mellan den nödställde och startpositionen.	
Krav nr 5	Original	Gränssnitten ska vara dokumenterade i den tekniska	1
		dokumentationen.	
Krav nr 6	Original	En karta med robotens aktuella position ska visas på	1
		persondatorn. Målet ska markeras när det identifie-	
		ras.	
Krav nr 7	Original	Systemet ska ha en gripklo.	1
Krav nr 8	Original	Systemet ska ha en brytare som väljer mellan auto-	1
		nomt och fjärrstyrningsläge	
Krav nr 9	Original	Systemet ska ha en knapp för att starta i tävlingen.	1
Krav nr 10	Original	Systemet ska kunna läsa av en svart markering.	1
Krav nr 11	Original	Systemet ska innehålla en styrmodul.	1
Krav nr 12	Original	Systemet ska innehålla en sensormodul.	1
Krav nr 13	Original	Systemet ska innehålla en kommunikationsmodul	1
Krav nr 14	Original	Varje modul ska ha en egen processor.	1
Krav nr 15	Original	Systemet ska vara uppbyggt av moduler som enkelt	1
		kan ersättas med nya.	

3 Styrmodul

Styrmodulen är robotens styrsystem. Detta delsystem har som syfte att föra roboten framåt eller bakåt i hjulens riktning, samt att rotera roboten i syfte att få roboten att kunna åka i en annan riktning.

Styrsystemet ska kunna föra roboten rakt fram genom labyrinten och med reglersystem kunna undvika att roboten åker för nära, eller in i, labyrintens sidoväggar. Delsystemet ska även kunna greppa, hålla fast i, och släppa ett objekt.

3.1 Inledande beskrivning av styrsystemet

Systemet består av en mikrodator som får kommandon om hur hjulen och gripklon ska röra sig från huvudenheten. Enheten har som uppgift att omtolka dessa kommandon till olika spänningar för gripklon samt motorerna och som driver de

TSEA56, Kandidatprojekt i elektronik 4 LIPS Kravspecifikation

 $\frac{2016\text{-}03\text{-}03}{2016\text{-}02\text{-}14}$

två hjulparen. Hjulparen består av de två hjulen på vänster respektive höger sida av roboten.

3.2 Gränssnitt

Krav nr 16	Original	Styrenheten ska ta kunna ta emot komandon från huvudenheten.	1
Krav nr 17	Original	Styrenheten ska skicka styrdata till huvudenheten.	1

3.3 Designkrav

Krav nr 18	Original	Styrenheten ska få plats på roboten.	1

3.4 Funktionella krav för styrmodulen

Krav nr 19	Original	Styrenheten ska kunna reagera på följande kom-	1
		mandon gällande förflyttning: fram, vänster fram,	
		höger fram, back, stop, rotera vänster, rotera höger	
		och kalibrering	
Krav nr 20	Original	Styrenheten ska kunna reagera på följande kom-	1
		mandon gällande gripklon: grip, släpp	
Krav nr 21	Original	Styrenheten ska reagera på kommandot diagonalt	2
Krav nr 22	Original	Styrenheten ska kunna visa robotposition på dis-	2
		play, detta i form av siffror. Detta är endast för test-	
		ningens skull.	

4 Kommunikationsmodul

Kommunikationsmodulen sköter kommunikationen mellan alla robotens moduler och ska därför agera som en huvudenhet. Syftet med delsystemet är att ta in data från både sensor- och styrmodulen samt skicka och ta emot data från användaren genom persondatorn.

4.1 Inledande beskrivning av kommunikationsmodulen

Modulen består av minst en processor. Denna modul kommer vara huvudenheten, här ska alltså mycket av beräkningarna utarbetas.

TSEA56, Kandidatprojekt i elektronik 5 LIPS Kravspecifikation

 $\frac{2016 \text{-} 03 \text{-} 03}{2016 \text{-} 02 \text{-} 14}$

Mätdata från sensormodulen ska översättas till en karta som användaren sedan kan använda för att styra roboten. Kartan kommer också användas för att roboten ska kunna hitta en snabbaste väg. Kommandona som användaren ger ska skickas tillbaka till kommunikationsmodulen där dessa översätts till spänningar som får motorerna i styrmodulen att agera.

4.2 Gränssnitt

Krav nr 23	Original	Kommunikationsmodulen ska kunna skicka och ta	
		emot data från styrmodulen.	
Krav nr 24	Original	Kommunikationsmodulen ska kunna skicka och ta	1
		emot data från sensormodulen.	
Krav nr 25	Original	Kommunikationsmodulen ska kunna ta emot och	1
		skicka data via blåtand till och från användaren.	

5 Sensormodul

Sensormodulen har som syfte att ta in mätvärden från sensorerna och översätta dessa till, för andra moduler användbara, storheter.

5.1 Inledande beskrivning av sensormodulen

Modulen utgörs av utbytbara sensorer som kopplas mot en mikroprocessor i vilken utsignalerna (spänningsnivåer) från sensorerna översätts till uppmätt storhet, exempelvis meter. Dessa skickas sedan vidare till huvudenheten i syfte att utgöra beslutsunderlag.

5.2 Gränssnitt

Krav nr 26	Original	Sensormodulen ska skicka mätvärden från senso-	1
		rer omvandlade till uppmätt storhet till kommuni-	
		kationsmodulen.	

TSEA56, Kandidatprojekt i elektronik 6 LIPS Kravspecifikation

 $\frac{2016\text{-}03\text{-}03}{2016\text{-}02\text{-}14}$

5.3 Designkrav

Krav nr 27	Original	Sensormodulen ska få plats på roboten.	1
Krav nr 28	Original	Mikrodatorn skall programmeras i C.	1
Krav nr 29	Original	Alla sensorerna skall kopplas till sensormodulen	1
Krav nr 30	Original	Sensorerna skall kopplas in till en grindmatris pro-	2
		grammerad i VHDL.	

5.4 Funktionella krav

Krav nr 31	Original	Sensormodulen skall översätta spänningsnivåerna	1
		från sensorerna till korrekt enhet för uppmätt stor-	
		het.	

6 Persondator

Persondatorn har till uppgift att sköta kommunikationen mellan robotens kommunikationsmodul och användaren.

6.1 Inledande beskrivning av persondatormodulen

Delsystemet består av en dator som ska kunna ta emot input från användaren och översätta detta till kommandon som skickas över till roboten samt kunna ta emot både mätvärden och den karta som roboten tagit fram. Datorn skall även kunna rita ut denna karta samt visa mätvärden på skärmen.

6.2 Gränssnitt

Krav nr 32	Original	Persondatorn ska kunna ta emot mätvärden och kar-	1
		ta från kommunikationsmodulen	
Krav nr 33	Original	Persondatorn ska kunna skicka kommandon till	1
		kommunikationsmodulen	

6.3 Designkray

Krav nr 34	Original	Mätdata och styrkommandon ska presenteras an-	1
		vändarvänligt på persondatorn.	

TSEA56, Kandidatprojekt i elektronik 7 LIPS Kravspecifikation

2016-03-03 2016-02-14

6.4 Funktionella krav

Krav nr 35	Original	Persondatorn skall kunna skicka de kommandon	1
		som anges i avsnitt 3.4	

7 Prestandakrav

Krav nr 36	Original	Roboten ska kunna greppa tag i ett objekt motsvarande en tom festisförpackning.	1
Krav nr 37	Original	Roboten ska kunna transportera ett objekt motsvarande en tom festisförpackning från startpunkten till den nödställde.	1
Krav nr 38	Original	Roboten ska ha en på och av-knapp.	1
Krav nr 39	Original	Roboten ska kunna manövrera genom en labyrint utan att kollidera med labyrintens väggar.	1

8 Krav på möjlighet att uppgradera

Roboten ska kunna uppgraderas till en mer energisnål enhet som ska kunna klara av längre och större undsättningsuppdrag. Ska även kunnas uppgraderas så den kan ta sig förbi möjliga hinder.

9 Tillförlitlighet

Krav nr 40 Original Roboten ska klara uppdraget 3 av 3 gånger 1	1	Roboten ska klara uppdraget 3 av 3 gånger	Krav nr 40 Original
---	---	---	---------------------

10 Ekonomi

Krav nr 41	Original	Projektet ska maximalt ta 230 arbetstimmar per per-	1	
		son att slutföra efter BP02.		

11 Krav på säkerhet

Roboten är konstruerad på så vis att den inte är farlig för de som använder den, ska till exempel inte avge hög spänning som kan skada folk som hanterar roboten.

TSEA56, Kandidatprojekt i elektronik 8 LIPS Kravspecifikation

12 Leveranskrav och delleveranser

Krav nr 42	Original	Projektmedlemmarna ska kontinuerligt utföra tids- redovisning som skickas till beställaren en gång i	1
		veckan.	
Krav nr 43	Original	Projektmedlemmarna ska skicka in statusrapport på begäran av beställaren.	1
Krav nr 44	Original	Kravspecifikationen ska vara klar, reviderad och inlämnad till beställaren senast den 2016-02-02.	1
Krav nr 45	Original	Första version av projektplan, systemskiss och tidsplan ska vara inlämnade till beställaren senast 2016-02-15.	1
Krav nr 46	Original	Slutgiltig version av projektplan, systemskiss och tidsplan ska vara inlämnade till beställaren senast 2016-02-19.	1
Krav nr 47	Original	Första versionen av gruppens förstudier ska vara inne till beställaren senast 2016-03-03.	1
Krav nr 48	Original	Första versionen av designspecifikationen ska vara inlämnad till beställaren och handledaren senast 2016-03-11.	1
Krav nr 49	Original	Slutgiltig version av designspecifikation ska vara inlämnad till beställaren och handledaren senast 2016-04-05.	1
Krav nr 50	Original	Version 1.0 av förstudierna ska vara vara inlämnade till beställaren senast 2016-04-08.	1
Krav nr 51	Original	2016-04-15 ska dåvarande design vara presenterad för handledaren och bli godkänd.	1
Krav nr 52	Original	Kappan version 1.0 ska vara inlämnad till beställaren senast 2016-05-19.	1
Krav nr 53	Original	Verifiering av beslutspunkt 5 ska ske innan redovisning av robot som sker 2016-05-25.	1
Krav nr 54	Original	Version 1.0 av teknisk dokumentation och användarhandledning ska vara lämnade till beställaren som senare skickar vidare till de som ska opponera på projektet senast 2016-05-26.	1
Krav nr 55	Original	Efterstudien ska vara inlämnad till beställaren senast 2016-06-03-06.	1
Krav nr 56	Original	All utrustning ska vara tillbakalämnad till handledaren senast 2016-06-10.	1

TSEA56, Kandidatprojekt i elektronik 9 LIPS Kravspecifikation

2016-03-03

Krav nr 57	Original	En tidsrapport ska även vara inne till beställaren innan kl 16.00 för följande datum: 2016-02-03 (tid på kravspecen), 2016-02-22 (tid på planeringsarbetet), 2016-03-07, 2016-03-14, 2016-04-04, 2016-04-11, 2016-04-18, 2016-04-25, 2016-05-02, 2016-05-09, 2016-05-16, 2016-05-23, 2016-05-30 och 2016-06-	1	
		2016-05-16, 2016-05-23, 2016-05-30 ocn 2016-06- 07.		

13 Dokumentation

De officiella dokumenten i projektet skall vara i PDF-format i syfte att göra läsning plattformsoberoende. Dokumentationsspråket är svenska. Enskilda brödtexter skrivs i det dokumentationsverktyg som författaren behagar men dessa skall sammanställas i LaTeX.

TSEA56, Kandidatprojekt i elektronik 10 LIPS Kravspecifikation

Dokument	Syfte
Kravspecifikation	Entydlig beskrivning av vad som ska produceras. Utgör grund
	för systemskiss samt övriga spefikationer och konstruktionsdoku-
	ment
Projektplan	Möjliggöra för projektdeltagarna att få en enhetlig bild av projek-
	tets genomförande samt hur projektdirektivet samt kravspecifika-
	tionen skall realiseras
Systemskiss	Utgöra underlag för uppdelning av delsystem och arbetsuppgifter
	genom att samla idéer på lösningar till specifika detaljer i desig-
	nen
Tidsplan	Möjliggöra kontroll av använd tid mot planerad tid i syfte att hålla
	projektet inom dess ekonomiska ramar
Förstudier	Fördjupa projektmedlemmarnas kunskaper inom områden som är
	relevanta och nödvändiga i projektet
Designspecifikation	I detalj beskriva hur roboten skall konstrueras
Kappa	Sammanfatta och sammanfoga dokumentationens olika delar
Teknisk dokumentation	Utgöra konstruktionsunderlag för annan part som vill bygga ro-
	boten samt utgöra dokumentation för underhåll och felsökning av
	både hård- och mjukvara.
Användarhandledning	Utgöra beskrivning av hur roboten används
Efterstudie	Sammanställa erfarenheter och utgöra underlag inför kommande
	projekt
Tidsrapport	Möjliggöra kontroll av använd tid mot planerad tid i syfte att hålla
	projektet inom dess ekonomiska ramar
Mötesprotokoll	Utgöra underlag för projektuppföljning

14 Utbildning

Under läsperiod ett kommer tre obligatoriska laborationstillfällen hållas där målet är att utbilda gruppen i VHDL, göra gruppen förtrogen med utvecklingshjälpmedel och hårdvara och ge övning att arbeta praktisk i en projektgrupp.

- Laboration 1: Asynkron seriell överföring via optisk länk (4 tim)
- Laboration 2: AVR-lab. (2 tim)
- Laboration 3: Mätteknik (2 tim)

TSEA56, Kandidatprojekt i elektronik 11 LIPS Kravspecifikation

15 Kvalitetskrav

Krav nr 58	Original	Projektet ska bedrivas enligt LIPS-modellen.	
Krav nr 59	Original	I projektet ska samtliga mallar utgå från LIPS-mallar.	1

16 Underhållsbarhet

Roboten ska under perioden underhållas för att alltid kunna prestera på sin högsta nivå genom att utföra regelbundna kontroller av roboten och dess delar se till att alla kopplingar sitter som de ska och att allt är rent och se till att batteriet alltid är fulladdat innan tester.

A Appendix

A.1 Tävlingsregler

Referenser

[1] *Projektmodellen LIPS* (2011), Tomas Svensson och Christian Krysander, uppl. 1:1, Studentlitteratur AB, Lund. ISBN 978-91-44-07525-9.

TSEA56, Kandidatprojekt i elektronik 12 LIPS Kravspecifikation

A.3 Gruppkontrakt

Gruppkontrakt kandidatprojekt grupp 1

Version 1 0

Detta är ett kontrakt som upprättas inom grupp 1. Genom att skriva under detta kontrakt samtycker man till nedanstående punkter under tiden som man är medlem i gruppen (18/1 2016 till 15/6 2016). Detta kontrakt kan komma att revideras under arbetets gång, om så blir fallet sker det efter diskussion och kontraktet skrivs på en gång till. Under tiden som kontraktet gäller skall man behandla varandra med respekt och vara trevlig mot varandra.

Det ska hållas en god ton mellan medlemmarna. På möten och i beslut är alla vänner, ev. med olika åsikter. Personliga konflikter löses mellan parterna i första hand, utanför möten. Gruppledaren har tystnadsplikt om det efterfrågas av berörd part, och är objektiv i största möjliga utsträckning.

1. Rutiner

- 1.1. Återkommande möten (från projektstart vt16). Varje vecka hålls återkommande möte torsdagar kl 12:15. Kan man ej närvara vid ett mötestillfälle ska man vid kännedom av detta kontakta någon medlem men helst hela gruppen. Plats för möte bokas och meddelas av projektledaren till resterande grupp via chattgrupp.
- 1.2. Mötesprotokoll förs vid möten och protokollförare ansvarar för att dessa är renskrivna och finns på driven senast 24h efter avslutat möte.
- 1.3. Samtliga av gruppens viktiga dokument ska finnas på driven.
- 1.4. Tider för möten ska anges med exakt klockslag. Skrivs bara heltal så syftas det alltid på akademisk kvart. [T.ex. Kl 12 = 12:15, kl 12.00=12.00]
- 1.5. Gruppens medlemmar ska komma förberedda inför alla möten.

2. Överenskommelse

2.1. Förseningskassa

Vid försening bestraffas de försenade med en avgift på 5kr om personerna i fråga inte är där den utsatta tiden. Efter ytterligare 5 minuter så läggs 5kr till osv. Maximalt kan 50 kr tas ut vid ett närvarotillfälle. Pengarna går till den gemensamma förseningskassan som används till samkväm sammanfattas i ett excel-dokument.

2.2. Vid eventuell försening undviks avgiften om man meddelat senast 2h innan och/eller har en förklaring som verkar rimlig enligt de som närvarar vid mötets början. Vid nödfall så undviks bestraffning helt.

3. Beslut

- Vid diskussioner som rör beslut anses man hålla med om man närvarar men är tvst.
- Majoritetsbeslut gäller vid frågor. Om ett jämt antal personen närvarar och det blir lika i votering väger gruppledarens röst tyngst.

Underskrifter grupp 1 Jag samtycker med bestämmelserna i <i>Gruppkontrakt kandidatprojekt grupp 1, version 1.0</i>			
Fredrik Olsson	-		
Klas Gudmundsson			
Madia Passa			
Martin Prage			
Sandy Klaff	-		
Milton Johansson	-		
 Martin Haugsbakk	-		
Watti Haagasakk			
Albin Detterfelt	-		

A.4 Tidplan

Referenser

[1] *Projektmodellen LIPS* (2011), Tomas Svensson och Christian Krysander, uppl. 1:1, Studentlitteratur AB, Lund. ISBN 978-91-44-07525-9.