5. Devre Teoremleri

Devre Teoremleri neden kullanılır?

- Temel elektrik yasaları (Ohm yasası, KAY, KGY) çok fazla eşitlik kullandığı için karmaşık devrelerin analizinde pratik değildir.
- Devre Teoremleri devreyi basitleştirerek analizi kolaylaştırmaya yardım eder.

Lineer Devre Elemanları

- Direnç gibi bir lineer, doğrusal devre elemanı aşağıdaki özelliklere sahiptir:
 - Homojenlik
 - Eğer bir elemanın girişi bir sabit ile çarpılırsa çıkışı aynı sabitle çarpılmış olur.
 - \bullet Ör: Direnç için, $V = I \cdot R$ ve $k V = k I \cdot R$ olur.
 - Toplamsallık
 - Bir elemana uygulanan girişlerin toplamı, girişlerin elemana ayrı ayrı uygulanması durumundaki toplama eşittir.
 - Ör: Direnç için, $V1 = I1 \cdot R$, $V2 = I2 \cdot R$ ve $V1 + V2 = (I1 + I2) \cdot R$ olur

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

3

5.1 Lineer Devre

- Bir lineer devre yalnız lineer elemanlar, lineer bağımlı kaynaklar ve bağımsız kaynaklar içerir.
- Bir lineer devrenin, girişine bağlı olarak çıkışı doğrusaldır.
- Bu dersin kapsamında yalnız lineer devreler ile çalışılacaktır.

5 Aralık 2006 Y.Doc.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Örnek 5.1 V3=6V ve V3=12V için Vx=?

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

.

Örnek 5.1 çevre akımları yöntemi ile çözüm

```
-V3 + V4 + V5 = 0 (1.çevreye KGY uygulandı!)
```

$$-V3 + I1 \cdot R4 + (I1-I2) \cdot R5 = 0$$
 (Ohm yasası uygulandı!)

$$-6 + I1 \cdot 2 + (I1 - I2) \cdot 3 = 0$$
 (bilinenler yerine koyuldu!)

$$5 \cdot I1 - 3 \cdot I2 = 6$$
 (1.eşitlik düzenlendi!)

$$V5 + V6 + V7 = 0$$
 (2.çevreye KGY uygulandı!)

$$(I2-I1)\cdot R5 + I2\cdot R6 + I2\cdot R7 = 0$$
 (Ohm yasası uygulandı!)

$$(I2-I1)\cdot 3 + I2\cdot 2 + I2\cdot 4 = 0$$
 (bilinenler yerine koyuldu!)

$$-3 \cdot I1 + 9 \cdot I2 = 0$$
 (2.eşitlik düzenlendi!)

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Örnek 5.1 çevre akımları yöntemi ile çözüm

$$5 \cdot \text{I1} - 3 \cdot \text{I2} = 6$$
 (1) x 3
 $+ -3 \cdot \text{I1} + 9 \cdot \text{I2} = 0$ (2)
 $(15-3)\text{I1} + 0 = 18$ II=1,5A
(1)'den $5 \cdot 1,5 - 3 \cdot \text{I2} = 6$ I2=0,5A
 $Vx = \text{I2} \cdot \text{R7} = 0,5 \cdot 4$ Vx = 2V
 $-12 + \text{I1} \cdot 2 + (\text{I1} - \text{I2}) \cdot 3 = 0$ (V3=12V yerine koyuldu!)
 $5 \cdot \text{I1} - 3 \cdot \text{I2} = 12$ (1) ve (15-3)I1 = 36 I1=3A
(1)'den $5 \cdot 3 - 3 \cdot \text{I2} = 12$ ve I2=1A ve Vx = 4V
⁵ Aralık 2006 Elektrik Devreleri - Devre Teoremleri 7

5.2. Toplamsallık Teoremi

Toplamsallık Teoremi (süperpozisyon)

Bir lineer devredeki her bir bağımsız kaynağın bir elemanın üzerindeki gerilime (veya içinden akan akıma) ayrı ayrı etkilerinin cebirsel toplamı, bütün bağımsız kaynaklar devrede bulunduğundaki etkiye eşittir.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

(

Toplamsallık Teoremi işlem basamakları

- Biri dışında bütün bağımsız kaynaklar devre dışı bırakılır. Gerilim kaynakları kısa devre (0V) ve akım kaynakları açık devre (0A) yapılarak bağımlı kaynaklar olduğu gibi bırakılır.
- Aktif kaynak için çevre veya düğüm analizi kullanılarak, bilinmeyen değişken (gerilim veya akım) bulunur.
- 3) Yukarıdaki ilk iki akım diğer bağımsız kaynaklar için tekrarlanır.
- Elde edilen bütün bağımsız kaynakların etkileri cebirsel olarak toplanarak sonuç elde edilir.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Örnek 5.2

I5 akımını toplamsallık teoreminden yararlanarak bulunuz.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

11

1.adım

V3 bağımsız gerilim kaynağı kısa devre edilerek I51 akımı bulunur.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

1. adım

$$V4 + V5 = 0$$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN

 $I1 \cdot R4 + (I1 - I2) \cdot R5 = 0$ ise $I1 \cdot 2 + (I1 - I2) \cdot 3 = 0$

 $5 \cdot I1 - 3 \cdot I2 = 0$ (1.eşitlik) x 5

V5 + V6 + V7 = 0

 $(I2-I1)\cdot R5+I2\cdot R6+4=0$ $(I2-I1)\cdot 3+I2\cdot 2=-4$

 $-3 \cdot I1 + 5 \cdot I2 = -4$ (2.eşitlik) x 3

 $(25-9)\cdot I1=-12$ I1=-0.75A I2=-1.25A

I51=I1-I2=-0,75+1,25

Elektrik Devreleri - Devre Teoremleri

13

2.adım

V7 bağımsız gerilim kaynağı kısa devre yapılarak I52 akımı bulunur.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

2. adım

$$-V3 + V4 + V5 = 0$$

 $-V3+I1\cdot R4+(I1-I2)\cdot R5=0$ ise $-12+I1\cdot 2+(I1-I2)\cdot 3=0$

 $5 \cdot I1 - 3 \cdot I2 = 12$ (1.eşitlik) x 5

V5+V6=0 (I2-I1)·R5+I2·R6=0 (I2-I1)·3+I2·2=0

 $-3 \cdot \mathbf{I} + 5 \cdot \mathbf{I} = 0 \text{ (2.esitlik)} \times 3$

 $(25-9)\cdot I1=60$ $\underline{I1=3,75A}$ $\underline{I2=2,25A}$

I5=I51+I52=0,5+1,5

5 Aralık 2006 Elektrik Devreleri - Devre Teoremleri Y.Doç.Dr.Tuncay UZUN 15

Problem 5.2

I9 akımını toplamsallık teoreminden yararlanarak bulunuz.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

5.2 Thévenin Teoremi

Thévenin Teoremi

- ❖Bir lineer iki uçlu devre, bir gerilim kaynağı, VTh ve ona seri bir dirençten, RTh oluşan eşdeğer bir devre ile gösterilebilir.
 - $ightharpoonup V_{Th}$ = iki uç arasındaki açık devre gerilimidir.
 - ❖ R_{Th} = bütün bağımsız kaynaklar devre dışı bırakıldığında, iki uç arasındaki eşdeğer dirençtir.

RTh=?

 $R_{Th} = R_{AB} = (R4+R6)//R7$ $R_{Th}=2\Omega$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

21

$V_{Th}=?$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Örnek 5.3, düğüm gerilimleri yöntemi ile çözüm

$$I4 - I5 + I8 = 0$$

$$(V2-V1) \cdot G4 - I5 + V2 \cdot G8 = 0$$

$$(V2-8)/2 - 2 + V2/6 = 0$$

$$4 \cdot V2/6 = 6$$

$$V2=9V$$

$$VAB=R7 \cdot [V2/(R6+R7)]$$

$$VAB= 4 \cdot (V2/6)$$

$$VTh = VAB=6V$$

5.4 Norton Teoremi

Norton Teoremi

- ❖ Bir lineer iki uçlu devre, bir akım kaynağı (IN) ve ona paralel bir dirençten (RN) oluşan eşdeğer bir devre ile gösterilebilir.
 - I_N = iki uç arasındaki kısa devre akımıdır.
 - ❖ R_N = R_{Th} = bütün bağımsız kaynaklar devre dışı bırakıldığında, iki uç arasındaki eşdeğer dirençtir.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN

Elektrik Devreleri - Devre Teoremleri

Örnek 5.4

Yukarıda verilen devrenin AB uçlarında görünen eşdeğerini Norton teoremini kullanarak bulunuz.

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

27

$R_N=?$

$$R_N = R_{AB} = (R4+R6)//R7$$
 $R_N=2\Omega$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

5 Aralık 2006 Y Doç Dr Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

29

Örnek 5.4, düğüm gerilimleri yöntemi ile çözüm

$$I4 - I5 + I6 = 0$$
 (2.düğümden)

$$(V2-V1)\cdot G4 - I5 + V2\cdot G6 = 0$$

$$(V2-8)/2 - 2 + V2/2 = 0$$

$$V2 - 4 - 2 = 0$$

$$V2=6V$$

$$I_N=I_{AB}=V_2/R_6$$

$$I_N=3A$$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Thévenin ve Norton Eşdeğer Devreleri arasındaki ilişki

Bağımlı kaynaklı devrelerde eşdeğer direncin bulunması

- Bağımsız kaynaklar devre dışı (gerilim kaynakları kısa devre, akım kaynakları açık devre yapılır) bırakılır.
- ❖ A ile B ucu arasına Vk=1V değerinde bağımsız gerilim kaynağı bağlanır.
- ❖ Bu gerilim kaynağının akımı, Ik çözülür.
- ❖ R_{TH} = R_N = Vk/Ik=1/Ik olarak bulunur.

5.5 Maksimum Güç Transferi Teoremi

Güç Transferi

harcanan güç

RL yük direncinde
$$p = iV_L = i^2 R_L = (\frac{V}{R + R_L})^2 R_L$$
 harcanan güç

$$p = iV = i^2 R_L = (\frac{V_{Th}}{R_{Th} + R_L})^2 R_L$$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

Maksimum Güç Transferi

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri

35

Gücün maksimum olduğu yerde RL yük direncinin değerinin bulunması

$$\frac{dp}{dR_L} = 0$$

$$\frac{d((\frac{V}{R + R_L})^2 R_L)}{dR_L} = 0$$

$$R_L = R$$

$$p_{\text{max}} = \frac{V^2}{4R}$$

5 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - Devre Teoremleri