AT2401C

产品说明书

文件编号: AT2401C-20180305

版本	日期	撰写人	更新内容
1. 0	2017/05/05	LYB, QM	初稿
1. 1	2018/01/05	QM	更新信息

概述

AT2401C是一款面向 Zigbee, 无线传感网络以及其他 2.4GHz 频段无线系统的全集成射频功能的射频前端单芯片。AT2401C 是采用CMOS 工艺实现的单芯片器件, 其内部集成了功率放大器 (PA), 低噪声放大器 (LNA), 芯片收发开关控制电路, 输入输出匹配电路以及谐波滤波电路。

该芯片的常规应用主要包括工业控制自动化,智能家居和符合 RF4CE 协议的射频系统中。由于该芯片有非常优越的性能,高灵敏度和效率,低噪声,产品尺寸小以及低成本,使得 AT2401C 对于频率带宽内的应用而言成为完美的解决方案。AT2401C 的功能控制逻辑电路非常简单,而且使用了少量的外围器件,可以非常方便系统的整体集成设计。

主要应用

- ▶ ZigBee 及其相关应用
- ▶ ZigBee 智能电源方案
- ▶ 无线音频系统
- ▶ 智能家居和工业自动化
- ▶ 无线传感网络
- ▶ 2.4 GHz 射频系统

特性

- ▶ 2.4 GHz ZigBee 高效单芯片射频前端集成芯片
- ▶ 集成 TX/RX 收发器端口和天线端口
- ▶ 带谐波抑制的 2.4GHz 功率放大器
- ▶ 低噪声放大器
- > 发射/接收开关切换电路
- ▶ 满足发射符合 OQPSK 调制标准的高线性信号的应用要求
- ▶ 低电压 CMOS 逻辑控制
- ▶ 所有端口的 ESD 保护电路
- ▶ RF 端口均有 DC 隔直电路
- ▶ 电源信号 VDD 与射频信号有良好地内部隔离电路
- ▶ 接收通道有低的噪声系数
- ▶ 非常低的直流功耗
- ▶ 集成全部的匹配以及隔离电路
- ▶ 仅需少量的外部器件
- ▶ 输入输出匹配到 50-0hm
- ➤ 采用性能稳定的 CMOS 工艺
- ▶ 采用 QFN 3*3*0.55 mm 的下极板接地的小封装

芯片引脚分配

引脚编号	引脚名称	引脚描述					
4	TXRX	发射/接收射频收发器信号的端口:直流到地					
5	TXEN	发射使能的 CMOS 控制端					
6	RXEN	接收使能的 CMOS 控制端					
10	ANT	功率放大器信号输出端或低噪声放大器信号输入					
		端: 直流到地					
1, 2, 3, 7, 8, 9,							
	GND	地电位:使用中需全部连接到地					
11, 12, 15, 17							
13	DNC	悬空端口					
14	VDD	可选连接输入,内部已经连接到引脚16,可不连接					
16	VDD	电源电压输入引脚					

芯片引脚分配图

绝对最大额定值:

参数	单位	最小值	最大值	条件
电源电压	V	0	4. 0	
芯片控制 引脚电压	V	0	3. 6	通过1 KOhm 的电阻
电流	mA		350	当发射控制引脚 TXEN 为高电平时, 通过电源电压的芯片引脚电流
芯片控制 引脚电流	μΑ		1	

发射信号	dBm		+5	所有工作状态
强度	abili		13	7月 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
天线接收	dBm		+5	接收控制链路开启
信号强度	abili		+3	接权在前挺路月石
芯片存储				没有射频输入以及直流供电的情况
	°C	-50	+125	下,以及需要根据晶体管结温的要求
温度范围				做一些适当的保护措施

备注:超出上述一个或者几个绝对最大额定值可能会导致器件永久性损坏,建议在表中所列范围内使用。射频输入端信号强度最大值对应为射频输入阻抗为500hm。

芯片工作条件:

参数	单位	最小值	典型值	最大值	条件
电源电压	٧	2. 0	3. 3	3. 6	所有芯片引脚
控制电压"高电平"	٧	1. 2		VDD	通过 1K0hm 电阻
控制电压"低电平"	V	0		0. 3	
工作温度范围	°C	-40		85	

发射链路典型性能参数

参数	单位	典型值	条件
工作频率范围	GHz	2. 4-2. 52	所有的射频引脚对应的阻抗为50
工作频十亿国		5	Ohm
饱和输出功率	dBm	+22	
小信号增益	dB	25	

二阶谐波	dBm	-10	Pout=+20dBm
三阶谐波	dBm	-20	Pout=+20dBm
输入回损	dB	-10	
输出回损	dB	-6	
单端输入/输出阻 抗	Ohm	50	
发射链路电流	mA	17	没有射频信号输入的静态工作电流
发射大功率电流	mA	90	Pout=+20dBm

接收链路典型性能参数

参数	单位	典型值	条件
工作频率范围	GHz	2. 4–2. 52	所有的射频引脚对应的阻抗为 50
	Q. I.Z	5	Ohm
增益	dB	12	
噪声系数	dB	2. 5	
输入回损	dB	-10	
输出回损	dB	-12	
射频端口阻抗	0hm	50	
接收链路电流	mA	8	没有射频信号输入的静态工作电流
输入 1dB 压缩点	dBm	-8	对应芯片 ANT 端口的信号强度

待机模式性能参数

参数	参数 单位		条件	
直流关断电流	μA	<1		
TXRX-ANT 插入损耗	dB	− 50	输入信号强度 Pin<-20dBm	
ANT-TXRX 插入损耗	dB	− 50	输入信号强度 Pin<-20dBm	
回损	dB	−1. 5	TXRX 端口	

发射-接收开关时间	nsec	800	
关断开启时间	nsec	800	

控制信号逻辑真值表

TXEN	RXEN	工作状态
1	Х	发射链路工作
0	1	接收链路工作
0	0	芯片关断休眠状态

备注:"1"表示控制引脚高电平状态(>1.2V)

"0"表示控制引脚低电平状态(<0.3V)

"X"表示状态随意:"1"或者"0"均可以

芯片应用电路设计建议

PCB 设计尺寸规格图

封装规格

TOP VIEW

BOTTOM VIEW

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	Α	0.7	0.75	0.8	
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.55	
L/F THICKNESS		А3		0.203 REF	
LEAD WIDTH		b	0.18	0.23	0.28
BODY SIZE	×	D		3 BSC	
BODT SIZE	Y	E		3 BSC	
LEAD PITCH		е		0.5 BSC	
EP SIZE	X	D2	1.6	1.7	1.8
LI SIZE	Υ	E2	1.6	1.7	1.8
LEAD LENGTH		L	0.3	0.4	0.5
LEAD TIP TO EXPOSED	PAD EDGE	К	0.275 REF		
PACKAGE EDGE TOLER	ANCE	aaa	0.1		
MOLD FLATNESS		ccc	0.1		
COPLANARITY		eee	0.08		
LEAD OFFSET		bbb	0.1		
EXPOSED PAD OFFSET	fff		0.1		