МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 2

по дисциплине «Операционные системы»

Тема: Исследование интерфейсов программных модулей.

Студентка гр.8383	 Сырцова Е.А.
Преподаватель	 Ефремов М.А
Дата выполнения работы	20.03.2020

г. Санкт-Петербург 2020 г.

1. Постановка задачи

1.1. Цель работы:

Исследование интерфейса управляющей программы и загрузочных модулей. Этот интерфейс состоит в передаче запускаемой программе управляющего блока, содержащего адреса и системные данные. Так загрузчик строит префикс сегмента программы (PSP) и помещает его адрес в сегментные регистр. Исследование префикса сегмента программы (PSP) и среды, передаваемой программе.

1.2. Сведения о функциях и структурах данных управляющей программы

Функции управляющей программы

Имя функции	Описание функции	
TETR_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Функция	
	переводит половину байта в	
	шестнадцатеричную систему.	
BYTE_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Байт в	
	регистре AL переводится в два	
	символа шестнадцатеричного числа	
	в регистре АХ.	
WRD_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Функция	
	переводит в шестнадцатеричную	
	систему счисления 16-ти разрядное	
	число.	
BYTE_TO_DEC	Функция шаблона, приведенного в	
	методических указаниях. Функция	
	переводит в десятичную систему	
	счисления.	
PRINT	Функция выводит сообщение на	
	экран.	
ADDRES_OF_MEMORY	Функция определяет сегментный	
	адрес недоступной памяти.	
	Переводит в шестнадцатеричную	
	систему счисления, используя	
	функцию WRD_TO_HEX. Затем	
	вызывает функцию для вывода	
ENAME OF COMMENTS ADDRESS	сообщения на экран.	
ENVIROMENT_ADDRES	Функция определяет сегментный	
	адрес среды, передаваемой	

	программе. Переводит в	
	шестнадцатеричную систему	
	счисления, используя функцию	
	WRD_TO_HEX. Затем вызывает	
	функцию для вывода сообщения на	
	экран.	
GET_TAIL	Функция определяет хвост	
	командной строки. Если хвост	
	отсутствует на экран с помощью	
	функции PRINT выводится	
	сообщение "Empty line", иначе	
	выводится хвост командной строки	
	в символьном виде.	
GET_CONTENT_AND_PATH	Функция определяет содержимое	
	области среды в символьном виде и	
	путь загружаемого модуля.	
	Полученная информация выводится	
	на экран с помощью вызова	
	функции PRINT.	

Структура данных управляющей программы

Имя	Тип	Назначение
ADDRES_OF_UNAVALIABLE_MEM	db	Вывод строки 'Segment
		address of unavailable
		memory: '
ADDRES_OF_ENVIRONMENT	db	Вывод строки 'Segment
		address of environment: '
TAIL	db	Вывод строки 'Tail of
		comand line '
NEW_LINE	db	Вывод строки 'Empty line'
CONTENT	db	Вывод строки 'Content of the
		environment:'
EMPTY	db	Вывод пустой строки
PATH	db	Вывод строки 'Path:'
		_

1.3. Последовательность действий, выполняемых утилитой

- 1) Определение и вывод сегментного адреса недоступной памяти
- 2) Определение и вывод сегментного адреса среды
- 3) Определение и вывод хвоста командной строки
- 4) Определение и вывод содержимого области среды
- 5) Определение и вывод пути загружаемого модуля

2. Ход работы

В ходе выполнения лабораторной работы был написан модуль типа .СОМ, который определяет и выводит на экран необходимую информацию.

```
C:N>LR2.COM
Segment address of unavailable memory: 9FFF
Segment address of environment: 0188
Empty line

Content of the environment:
PATH=Z:N
COMSPEC=Z:NCOMMAND.COM
BLASTER=A220 I7 D1 H5 T6

Path:
C:NLR2.COM
C:N>
```

Рис.1 Результат работы программы с пустым хвостом командной строки.

```
C:N>LR2.COM Hello World!
Segment address of unavailable memory: 9FFF
Segment address of environment: 0188
Tail of comand line Hello World!

Content of the environment:
PATH=Z:N
COMSPEC=Z:NCOMMAND.COM
BLASTER=A220 I7 D1 H5 T6

Path:
C:NLR2.COM
C:N>_
```

Рис.2 Результат работы программы с хвостом командной строки "Hello World!"

3. Ответы на контрольные вопросы

3.1. Сегментный адрес недоступной памяти

- 3.1.1. На какую область памяти указывает адрес недоступной памяти? **Ответ:** Адрес недоступной памяти указывает на сегментный адрес первого байта за памятью, отведенной программе. Данная область недоступна для загрузки программ и выделения памяти для них.
- 3.1.2. Где расположен этот адрес по отношению области памяти, отведенной программе?

Ответ: Адрес недоступной памяти расположен сразу после области памяти, отведенной программе. Начиная с адреса 9FFF.

3.1.3. Можно ли в эту область памяти писать?

Ответ: Запись с эту область памяти возможна, так как в MS DOS общее адресное пространство и отсутствует механизм защиты памяти.

3.2. Среда передаваемая программе

3.2.1. Что такое среда?

Ответ: Среда – это область памяти, в которой в виде символьных строк записаны значения переменных. Они содержат данные о некоторых директориях операционной системы и конфигурации компьютера, которые передаются программе, когда она запускается.

3.2.2. Когда создается среда? Перед запуском приложения или в другое время?

Ответ: Среда создаётся при загрузке MS DOS. При запуске программы эта среда только копируется в новую область памяти.

3.2.3. Откуда берется информация, записываемая в среду?

Ответ: Информация для записи среды берётся частично из системного файла AUTOEXEC.BAT.

4. Заключение

В процессе выполнения данной лабораторной работы были исследованы интерфейс управляющей программы и загрузочных модулей, префикс сегмента программы (PSP) и среда, передаваемая программе.