ПЗ-1-2. Свойства числовых рядов. Сходимость рядов с неотрицательными членами.

Определение 20. $\bar{1}$. Пусть задана числовая последовательность $\{u_n\}=u_1,\,u_2,\,\ldots,u_n,\,\ldots$ Выражение вида

$$u_1 + u_2 + \ldots + u_n + \ldots$$
 (20.1)

называют числовым рядом (или просто рядом), числа u_1, u_2, \ldots чиснами ряда, u_n — общим членом ряда.

Ряд (20.1) обозначают символом $\sum_{n=1}^{\infty} u_n$ и пишут

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n.$$

Например, рядами будут следующие выражения:

1)
$$1+2+3+\ldots+n+\ldots=\sum_{n=1}^{\infty}n;$$

2)
$$1 + \frac{1}{3} + \frac{1}{9} + \ldots + \frac{1}{3^{n-1}} + \ldots = \sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$
.

Определение 20.2. *Частной* (или *частичной*) *суммой* S_n ряда $\sum_{n=1}^{\infty} u_n$ называется сумма первых n членов ряда, т.е.

$$S_n = u_1 + u_2 + \ldots + u_n = \sum_{k=1}^n u_k.$$

Например, для ряда $\sum_{n=1}^{\infty} \frac{1}{2^n}$ имеем

$$S_1 = u_1 = \frac{1}{2};$$
 $S_2 = u_1 + u_2 = \frac{1}{2} + \frac{1}{2^2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4};$
 $S_4 = u_1 + u_2 + u_3 + u_4 = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}.$

Исследование сходимости числового ряда

1. По определению сходящегося ряда.

1.1.

Определение 20.3. Ряд $\sum_{n=1}^{\infty} u_n$ называется *сходящимся*, если сходится последовательность $\{S_n\}$ его частных сумм, т. е. если существует конечный предел $\lim_{n\to\infty} S_n = S$. При этом пишут $\sum_{n=1}^{\infty} u_n = S$.

Пример 20.7. Исследовать на сходимость ряд

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n(n+1)} + \ldots = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

Решение. Составим частную сумму S_n :

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{n(n+1)}$$

Так как $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ при любом k, то

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

Найдем $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1-\frac{1}{n+1}\right) = 1$. Следовательно, данный ряд сходится, и его сумма $S = \lim_{n\to\infty} S_n = 1$, т. е.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1. \quad \blacksquare$$

 Π р и м е р 6. Доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ и найти его сумму S, используя определение сходящегося ряда.

Решение. Преобразуем общий член u_n ряда. Для этого разложим $u_n = \frac{1}{n(n+2)}$ на сумму элементарных дробей с неопределенными коэффициентами, т.е. $\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$, где A и B

подлежат определению. Приведем дроби в правой части к общему знаменателю и приравняем числители. Сравнивая коэффициенты при одинаковых степенях n, получим систему уравнений относительно коэффициентов A и B:

$$\begin{cases} A + B = 0; \\ 2A = 1. \end{cases}$$

Отсюда $A=\frac{1}{2},\ B=-\frac{1}{2}$. Тогда $u_n=\frac{1}{n(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)$. Используя полученное разложение, запишем члены ряда в виде $u_1=\frac{1}{1\cdot 3}=\frac{1}{2}\left(1-\frac{1}{3}\right),\ u_2=\frac{1}{2\cdot 4}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right),\ u_3=\frac{1}{3\cdot 5}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right),\ \dots,\ u_{n-2}=\frac{1}{(n-2)n}=\frac{1}{2}\left(\frac{1}{n-2}-\frac{1}{n}\right),\ u_{n-1}=\frac{1}{(n-1)(n+1)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).$

Составим частную сумму S_n данного ряда:

$$S_n = u_1 + u_2 + u_3 + \dots + u_{n-2} + u_{n-1} + u_n =$$

$$= \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n-2} - \frac{1}{n} + \frac{1}{n-1} - \frac{1}{n+1} + \frac{1}{n-1} - \frac{1}{n+1} + \frac{1}{n-1} - \frac{1}{n+2} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right).$$

В скобках после преобразований остались только четыре слагаемых. Найдем

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) =$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - 0 - 0 \right) = \frac{3}{4}.$$

Так как $\lim_{n\to\infty} S_n$ конечен, то ряд сходится, причем его сумма $S==\frac{3}{4}$. \blacksquare

1.2.

Определение 20.4. Ряд $\sum_{n=1}^{\infty} u_n$ называется расходящимся, если расходится последовательность $\{S_n\}$ его частных сумм, т. е. если последовательность $\{S_n\}$ не имеет конечного предела при $n \to \infty$ (предел не существует или он бесконечен).

Пример 20.8. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Решение. Запишем частную сумму $S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots$ $\dots + \frac{1}{\sqrt{n}}$. Очевидно, что $1 > \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}} > \dots > \frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n}}$ (n > 1). Учитывая эти неравенства, будем иметь

$$S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} >$$

$$> \underbrace{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}}}_{n} = n \cdot \frac{1}{\sqrt{n}} = \sqrt{n},$$

или $S_n > \sqrt{n}$. Отсюда следует, что частные суммы S_n с ростом n возрастают, т.е. $S_n \to \infty$ при $n \to \infty$. Следовательно, данный ряд расходится.

Пример 20.9. Исследовать на сходимость ряд

$$1 - 1 + 1 - 1 + \dots + (-1)^n + \dots = \sum_{n=1}^{\infty} (-1)^{n+1}.$$

Решение. Найдем частные суммы данного ряда: $S_1=1,\ S_2=0,\ S_3=1,\ S_4=0,\ \dots,\ S_{2n-1}=1,\ S_{2n}=0.$ Так как частные суммы с нечетным номером равны единице, а с четным номером равны нулю, то предела S_n при $n\to\infty$ не существует. Следовательно, данный ряд расходится.

Пример 7. Доказать, что следующие ряды расходятся, используя определение расходящегося ряда: 1) $\sum_{n=1}^{\infty} \sin \frac{\pi n}{2}$, 2) $\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$.

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \sin \frac{\pi n}{2}$ составим частную сумму $S_n = 1 + 0 - 1 + 0 + \dots$ Так как S_n равна либо 1, либо 0, то $\lim_{n \to \infty} S_n$ не существует. Поэтому ряд расходится.

2) Для ряда
$$\sum\limits_{n=1}^{\infty} \ln \, \frac{n+1}{n} \,$$
 частная сумма

$$S_n = \ln \frac{1+1}{1} + \ln \frac{2+1}{2} + \dots + \ln \frac{n}{n-1} + \ln \frac{n+1}{n} =$$

$$= \ln \frac{2}{1} + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n}{n-1} + \ln \frac{n+1}{n} =$$

$$= \ln \left(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n}{n-1} \cdot \frac{n+1}{n} \right) = \ln \frac{2 \cdot 3 \cdot \dots \cdot n \cdot (n+1)}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} = \ln(n+1).$$

Найдем $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \ln(n+1) = +\infty$. Следовательно, ряд расходится.

2. Нарушение необходимого признака сходимости.

Теорема 20.2 (необходимый признак сходимости ряда). Если ряд $\sum_{n=1}^{\infty} u_n$ сходится, то $\lim_{n\to\infty} u_n = 0$.

Нарушение необходимого признака сходимости ряда.

Из теоремы 20.2 следует, что если $\lim_{n\to\infty}u_n\neq 0$, то ряд $\sum_{n=1}^{\infty}u_n$ расходится.

Например, ряд
$$\sum\limits_{n=1}^{\infty} \frac{n}{1000n+1}$$
 расходится, так как

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n}{1000n + 1} = \frac{1}{1000} \neq 0.$$

Пример 8. Доказать расходимость следующих рядов, используя необходимый признак сходимости: 1) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{3n}$, 2) $\sum_{n=1}^{\infty} \frac{n^4 \sqrt{n}}{n^3+1}$.

Решение. Найдем для каждого ряда предел общего члена u_n при $n \to \infty$.

1) Для ряда
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{3n}$$

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{\sqrt{n^2+1}}{3n} = \frac{1}{3} \neq 0.$$

Ряд расходится, так как нарушен необходимый признак сходимости.

2) Так как для ряда
$$\sum_{n=1}^{\infty} \frac{n^4 \sqrt{n}}{n^3 + 1}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n^4 \sqrt{n}}{n^3 + 1} = \infty \neq 0,$$

то ряд расходится.

3. Критерий Коши сходимости ряда.

Теорема 20.9 (необходимый и достаточный признак сходимости ряда). Для того чтобы ряд $\sum_{n=1}^{\infty} u_n$ сходился, необходимо и достаточно, чтобы $\forall \varepsilon > 0 \quad \exists$ номер $N(\varepsilon)$ такой, что $\forall n > N$ и $\forall p \in \mathbf{N}$ выполнялось бы неравенство

$$|u_{n+1} + u_{n+2} + \ldots + u_{n+p}| < \varepsilon.$$
 (20.2)

Для доказательства следует использовать определение 20.3 сходящегося ряда, критерий Коши сходимости последовательности $\{S_n\}$ (см. теорему 2.8) и учесть, что $|u_{n+1}+u_{n+2}+\ldots+u_{n+p}=|S_{n+p}-S_n|$.

Сумму нескольких последовательных членов ряда $u_{n+1} + u_{n+2} + \ldots + u_{n+p}$ называют иногда *отрезком ряда «длины р»*. Как следует из критерия Коши, для сходимости ряда необходимо и достаточно, чтобы все достаточно далекие отрезки ряда были как угодно малы по модулю.

Пример 20.11. Рассмотрим так называемый гармонический ряд

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots = \sum_{n=1}^{\infty} \frac{1}{n}$$
.

Напомним, что число c есть $cpednee\ гармоническое\ чисел\ a\ u\ b,$ если имеет место равенство

$$\frac{1}{c} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right).$$

Легко проверить, что общий член ряда $u_n = \frac{1}{n}$ есть среднее гармоническое членов $u_{n-1} = \frac{1}{n-1}$ и $u_{n+1} = \frac{1}{n+1}$, т.е. $\frac{1}{u_n} = \frac{1}{2} \left(\frac{1}{u_{n-1}} + \frac{1}{u_{n+1}} \right)$, или $n = \frac{1}{2} \left((n-1) + (n+1) \right)$. Докажем расходимость гармонического ряда, используя критерий Коши. Рассмотрим отрезок ряда длины p = n:

$$u_{n+1} + u_{n+2} + \dots + u_{n+p} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(p-1)} + \frac{1}{n+p} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(n-1)} + \frac{1}{n+n}.$$

Очевидно, что
$$\frac{1}{n+k} > \frac{1}{n+n}$$
 при $k=1,\,2,\,\ldots,n-1,\,$ т.е.
$$\frac{1}{n+1} > \frac{1}{n+n}\,, \quad \frac{1}{n+2} > \frac{1}{n+n}\,, \quad \ldots, \quad \frac{1}{n+(n-1)} > \frac{1}{n+n}\,.$$

Учитывая эти неравенства, получим

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(n-1)} + \frac{1}{n+n} >$$

$$> \underbrace{\frac{1}{n+n} + \frac{1}{n+n} + \dots + \frac{1}{n+n} + \frac{1}{n+n}}_{n} = n \cdot \frac{1}{2n} = \frac{1}{2},$$

или

$$u_{n+1} + u_{n+2} + \ldots + u_{n+n} > \frac{1}{2}$$
.

Следовательно, для $\varepsilon = \frac{1}{2}$ отрезок ряда длины p = n оказался больше ε . В силу критерия Коши гармонический ряд расходится.

Знакопостоянные ряды

Определение 21.1. Ряд $\sum_{n=1}^{\infty} u_n$, у которого $u_n \geqslant 0$ $(u_n \leqslant 0)$ $\forall n$, называется рядом с неотрицательными (неположительными) членами или знакопостоянным рядом.

Достаточные признаки сходимости и расходимости рядов с неотрицательными членами.

Типовые ряды:

1. Геометрическая прогрессия:

$$a + aq + aq^{2} + \dots + aq^{n-1} + \dots = \sum_{n=1}^{\infty} aq^{n-1} = \frac{a}{1-q}$$

Сходится при |q| < 1

Например, прогрессия $\sum_{n=1}^{\infty} \frac{1}{3^n}$ сходится, так как $q = \frac{1}{3} < 1$;

$$S = \frac{a}{1 - q} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$$

прогрессия
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$
 расходится, так как $q = \left[\frac{3}{2} > 1\right]$.

2. Гармонический ряд расходится:

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots = \sum_{n=1}^{\infty} \frac{1}{n}$$

3. Ряд Дирихле:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \qquad \text{сходится при } \alpha > 1$$

$$\text{расходится при } \alpha \leqslant 1$$

1. <u>Теорема 21.2 (признак сравнения).</u> Пусть даны два ряда

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n \quad (u_n \ge 0),$$
 (21.1)

$$v_1 + v_2 + \ldots + v_n + \ldots = \sum_{n=1}^{\infty} v_n \quad (v_n \ge 0),$$
 (21.2)

причем

$$u_n \le v_n \quad \forall \, n = 1, 2, 3, \dots$$
 (21.3)

Тогда

- 1) если ряд (21.2) сходится и имеет сумму σ , то сходится и ряд (21.1), причем его сумма $S \leqslant \sigma$;
 - 2) если ряд (21.1) расходится, то расходится и ряд (21.2).

Пример Исследовать на сходимость ряды:

1)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ его общий член $u_n = \frac{1}{(n+1)^2} < \sum_{n=1}^{\infty} \frac{1}{n^2}$. $\forall n \in \mathbf{N}$.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, т.к. для ряда Дирихле степень 2 > 1.

Следовательно, по признаку сравнения сходится и ряд $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$.

2)
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot 5^n}$$
; 3) $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$;

Решение. 2) Для ряда $\sum_{n=1}^{\infty} \frac{1}{n \cdot 5^n}$ его общий член $u_n = \frac{1}{n \cdot 5^n} \leqslant$ $\leqslant \frac{1}{5^n} \ \forall n$. Ряд $\sum_{n=1}^{\infty} \frac{1}{5^n}$ сходится как геометрическая прогрессия со знаменателем $q = \frac{1}{5} < 1$ Следовательно, по признаку сравнения сходится и ряд $\sum_{n=1}^{\infty} \frac{1}{n \cdot 5^n}$.

3) Рассмотрим ряд $\sum\limits_{n=1}^{\infty} \frac{1}{\ln(n+1)}$. Так как $\ln(n+1) < n+1 \ \forall n,$ то $\frac{1}{\ln(n+1)} > \frac{1}{n+1} \ \forall n.$ Ряд $\sum\limits_{n=1}^{\infty} \frac{1}{n+1}$ (гармонический ряд $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ без первого члена) расходится. Следовательно, по признаку сравнения ряд $\sum\limits_{n=1}^{\infty} \frac{1}{\ln(n+1)}$ также расходится.

Пример 3. Исследовать на сходимость ряды, используя признак сравнения:

1)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$$
; 2) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$;

3)
$$\sum_{n=1}^{\infty} (\sqrt{n} - \sqrt{n-1});$$
 4) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+1)\ln(n+1)}}.$

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ имеем $u_n = \frac{1}{2n-1} \cdot \frac{1}{2^n} \leqslant \frac{1}{2^n} = q^n \quad (q = \frac{1}{2})$. Так как ряд $\sum_{n=1}^{\infty} q^n$ сходится при q < 1, то по признаку сравнения ряд $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ также сходится.

- 2) Для ряда $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$ общий член $u_n = \frac{1}{(n+1)(n+4)} < \frac{1}{n^2}$. Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то по признаку сравнения сходится и ряд $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$.
 - 3) Перепишем общий член ряда $\sum\limits_{n=1}^{\infty}\left(\sqrt{n}-\sqrt{n-1}\right)$ в виде $u_n=\sqrt{n}-\sqrt{n-1}=\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}.$ Очевидно, что $\sqrt{n-1}<\sqrt{n},\ \sqrt{n}+\sqrt{n-1}<2\sqrt{n}.$ Следовательно, $u_n=\frac{1}{\sqrt{n}+\sqrt{n-1}}>\frac{1}{2\sqrt{n}}.$ Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{2\sqrt{n}}=\frac{1}{2}\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится , то по признаку сравнения расходится и ряд $\sum\limits_{n=1}^{\infty}\left(\sqrt{n}-\sqrt{n-1}\right).$

4) Для ряда
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+1)\ln(n+1)}}$$
 его общий член $u_n = \frac{1}{\sqrt{(n+1)\ln(n+1)}} > \frac{1}{n+1}$, так как $\ln(n+1) < n+1 \ \forall n \in \mathbb{N}$. Из расходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n+1}$ (гармонического ряда без первого члена) следует расходимость данного ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+1)\ln(n+1)}}$.

2. <u>Теорема 21.3 (предельный признак сравнения).</u> Пусть даны два ряда:

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n \quad (u_n > 0),$$
 (21.5)

$$v_1 + v_2 + \ldots + v_n + \ldots = \sum_{n=1}^{\infty} v_n \quad (v_n > 0).$$
 (21.6)

Если существует конечный и отличный от нуля предел

$$\lim_{n \to \infty} \frac{u_n}{v_n} = A \quad (A \neq 0, A \neq \infty), \tag{21.7}$$

то оба ряда (21.5) и (21.6) сходятся или расходятся одновременно.

Рассмотрим

1)
$$\sum_{n=1}^{\infty} \frac{2}{n}$$
 и 2) $\sum_{n=1}^{\infty} \frac{1}{2n}$ гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$

1)
$$\sum_{n=1}^{\infty} \frac{2}{n^2}$$
 и 2) $\sum_{n=1}^{\infty} \frac{1}{2n^2}$ Ряд Дирихле $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{\frac{2}{n}}{\frac{1}{n}} = 2 \quad (2 \neq 0, 2 \neq \infty), \quad \text{расходятся}$$

$$\lim_{n\to\infty}\frac{u_n}{v_n} = \lim_{n\to\infty} \frac{\frac{1}{2n}}{\frac{1}{n}} = \frac{1}{2} \left(\frac{1}{2}\neq 0, \frac{1}{2}\neq \infty\right), \quad \text{расходятся}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\frac{2}{n^2}}{\frac{1}{n^2}} = 2 \quad (2 \neq 0, 2 \neq \infty), \qquad \text{сходятся}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\frac{1}{2n^2}}{\frac{1}{n^2}} = \frac{1}{2} \left(\frac{1}{2} \neq 0, \frac{1}{2} \neq \infty \right), \quad \text{сходятся}$$

Пример 21.5. Исследовать на сходимость ряды:

1)
$$\sum_{n=1}^{\infty} \frac{5n+2}{2n^3+n+1}$$
; 2) $\sum_{n=1}^{\infty} \frac{3n+1}{4n^2+2n+3}$.

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \frac{5n+2}{2n^3+n+1}$ его общий член $u_n=\frac{5n+2}{2n^3+n+1} \to 0$ при $n \to \infty$. Обозначим $v_n=\frac{1}{n^2}$. Найдем $\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \left(\frac{5n+2}{2n^3+n+1} : \frac{1}{n^2}\right) = \lim_{n\to\infty} \frac{5n^3+2n^2}{2n^3+n+1} = \frac{5}{2} \ (\neq 0, \neq \infty)$. Так как ряд $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (см. пример 21.2), то и ряд $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{5n+2}{2n^3+n+1}$ также сходится.

2) Сравним ряд $\sum_{n=1}^{\infty} \frac{3n+1}{4n^2+2n+3}$ с гармоническим рядом $\sum_{n=1}^{\infty} \frac{1}{n}$. Пусть $u_n = \frac{3n+1}{4n^2+2n+3}$ $(u_n \to 0 \text{ при } n \to \infty)$, $v_n = \frac{1}{n}$. Тогда $\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \left(\frac{3n+1}{4n^2+2n+3} : \frac{1}{n}\right) = \lim_{n\to\infty} \frac{3n^2+n}{4n^2+2n+3} = \frac{3}{4}$ $(\neq 0, \neq \infty)$. Следовательно, ряд $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{3n+1}{4n^2+2n+3}$ расходится, так как расходится гармонический ряд $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$.

Замечание 21.4. Из теоремы 21.3 следует, в частности, что если $\lim_{n\to\infty}\frac{u_n}{v_n}=1$, то оба ряда $\sum_{n=1}^\infty u_n$ и $\sum_{n=1}^\infty v_n$ сходятся или расходятся одновременно. Поэтому при исследовании на сходимость ряда $\sum_{n=1}^\infty u_n$ $(u_n>0, \lim_{n\to\infty}u_n=0)$ достаточно сравнить его с таким рядом $\sum_{n=1}^\infty v_n$ $(v_n>0, \lim_{n\to\infty}v_n=0)$, чтобы $\lim_{n\to\infty}\frac{u_n}{v_n}=1$, т. е. $u_n\sim v_n$ при $n\to\infty$ (см. определение 5.6 эквивалентных бесконечно малых). Например,

при исследовании на сходимость ряда

$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \sin \frac{\pi}{2n} \quad \left(\sin \frac{\pi}{2n} > 0, \lim_{n \to \infty} \sin \frac{\pi}{2n} = 0 \right)$$

достаточно рассмотреть ряд $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{\pi}{2n} = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n}$. Так как $u_n = \sin \frac{\pi}{2n} \sim \frac{\pi}{2n} = v_n$ при $n \to \infty$ и ряд $\sum_{n=1}^{\infty} v_n = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \sin \frac{\pi}{2n}$.

Рассмотрим ряд $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{\sqrt{n^3+2}}$, где $u_n \to 0$ при $n \to \infty$. Общий член $u_n = \frac{\sqrt{n^2+1}}{\sqrt{n^3+2}} \sim v_n = \frac{n}{n^{3/2}} = \frac{1}{\sqrt{n}}$ при $n \to \infty$, так как $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sqrt{n^2+1} \cdot \sqrt{n}}{\sqrt{n^3+2} \cdot 1} = 1$. Поскольку ряд $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится то исходный ряд также расходится.

Для ряда $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{\sqrt[3]{n+2}}{\sqrt{n^5+n^2}}$ его общий член $u_n \to 0$ при $n \to \infty$ и $u_n \sim v_n$ при $n \to \infty$, где $v_n = \frac{n^{1/3}}{n^{5/2}} = \frac{1}{n^{5/2-1/3}} = \frac{1}{n^{13/6}}$. Из сходимости ряда $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^{13/6}}$ следует сходимость данного ряда.

Пример 4. Используя предельный признак сравнения, установить сходимость или расходимость рядов:

1)
$$\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)};$$
 2)
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n};$$
 3)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} (\sqrt{n+1} - \sqrt{n-1});$$
 4)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n} + 1}{(n+1)\sqrt[3]{n}};$$
 5)
$$\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{n}}.$$

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$ его общий член $u_n = \frac{n+1}{n(n+2)} \to 0$ при $n \to \infty$. Сравним данный ряд с гармоническим рядом $\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} v_n$. Найдем

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \left(\frac{n+1}{n(n+2)} : \frac{1}{n} \right) = \lim_{n \to \infty} \frac{n^2 + n}{n^2 + 2n} = 1,$$

т. е. $\frac{n+1}{n(n+2)} \sim \frac{1}{n}$ при $n \to \infty$. Так как гармонический ряд $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ расходится, то и ряд $\sum\limits_{n=1}^{\infty} \frac{n^2+n}{n^2+2n}$ тоже расходится.

- 2) Для ряда $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ его общий член $u_n = \sin \frac{\pi}{2^n} \to 0$ при $n \to 0$. Сравним ряд $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ с рядом $\sum_{n=1}^{\infty} \frac{\pi}{2^n}$. Поскольку $\sin \frac{\pi}{2^n} \sim \infty$ ∞ при $n \to \infty$ и ряд $\sum_{n=1}^{\infty} \frac{\pi}{2^n} = \pi \sum_{n=1}^{\infty} \frac{1}{2^n}$ сходится, как бесконечно убывающая геометрическая прогрессия, то сходится и данный ряд $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$.
 - 3) Преобразуем общий член ряда $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n-1}}{n^2}$, переведя

иррациональность из числителя в знаменатель:

$$u_n = \frac{(\sqrt{n+1} - \sqrt{n-1})(\sqrt{n+1} + \sqrt{n-1})}{n^2(\sqrt{n+1} + \sqrt{n-1})} = \frac{n+1-n+1}{n^2(\sqrt{n+1} + \sqrt{n-1})} = \frac{2}{n^2(\sqrt{n+1} + \sqrt{n-1})}.$$

Очевидно, что $\lim_{n\to\infty}u_n=0$. Сравним данный ряд с рядом $\sum_{n=1}^\infty v_n=\sum_{n=1}^\infty \frac{1}{n^2\sqrt{n}}$. Найдем

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2n^2 \sqrt{n}}{n^2 (\sqrt{n+1} + \sqrt{n-1})} = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} = 1,$$

т. е. $u_n \sim v_n$ при $n \to \infty$. Так как ряд $\sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{n}}$ сходится (см. замечание 21.3), то сходится и ряд $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{n^2}$.

4) Сравним ряд
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}+1}{(n+1)\sqrt{n^3}} = \sum_{n=1}^{\infty} u_n$$
, где $u_n \to 0$ при $n \to \infty$, с рядом $\sum_{n=1}^{\infty} \frac{1}{n^{5/2-1/3}} = \sum_{n=1}^{\infty} \frac{1}{n^{13/6}} = \sum_{n=1}^{\infty} v_n$. Вычислим

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{(\sqrt[3]{n} + 1)n^{13/6}}{(n+1)\sqrt{n^3}} = \lim_{n \to \infty} \frac{n^{15/6}}{n^{5/2}} = 1,$$

т. е.
$$u_n \sim v_n$$
 при $n \to \infty$. Из сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^{13/6}}$ следует сходимость ряда $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}+1}{(n+1)\sqrt{n^3}}$.

5) Сравним ряд
$$\sum\limits_{n=1}^{\infty} \arcsin\frac{1}{\sqrt{n}}$$
 с рядом $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. Так как $\arcsin\frac{1}{\sqrt{n}} \sim \frac{1}{\sqrt{n}}$ при $n \to \infty$ и ряд $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится , то расходится и ряд $\sum\limits_{n=1}^{\infty} \arcsin\frac{1}{\sqrt{n}}$.

3. <u>Теорема 21.4 (признак Даламбера</u>). Пусть дан ряд с положительными членами $\sum_{n=1}^{\infty} u_n (u_n > 0)$. Если существует предел отношения последующего члена u_{n+1} к предыдущему u_n при неограниченном возрастании номера n, т. е.

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho, \tag{21.9}$$

TO

- 1) при $\rho < 1$ ряд сходится;
- 2) при $\rho > 1$ ряд расходится.

(При $\rho=1$ вопрос о сходимости ряда остается открытым, т.е. ряд может как сходиться, так и расходиться.)

Пример 21.6. Исследовать на сходимость ряды:

1)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
; 2) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$.

Решение. Вычислим $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$ для каждого ряда.

1) Для ряда
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 имеем
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{n!}{(n+1)!} = \lim_{n\to\infty} \frac{1}{n+1} = 0 < 1.$$

Следовательно, по признаку Даламбера ряд $\sum_{n=1}^{\infty} \frac{1}{n!}$ сходится.

2) Для ряда
$$\sum\limits_{n=1}^{\infty} \, \frac{2^n}{n^2}$$
 найдем

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2^{n+1} \cdot n^2}{(n+1)^2 \cdot 2^n} = \lim_{n \to \infty} \frac{2n^2}{(n+1)^2} = 2 > 1.$$

По признаку Даламбера ряд $\sum_{n=1}^{\infty} \frac{2n}{n^2}$ расходится.

Пример 21.7. Исследовать на сходимость ряд

$$1 + \frac{1 \cdot 2}{1 \cdot 3} + \ldots + \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)} + \ldots$$

Решение. Используем признак Даламбера. Найдем

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot \dots \cdot n(n+1) \cdot 1 \cdot 3 \cdot \dots \cdot (2n-1)}{1 \cdot 3 \cdot \dots \cdot (2n-1)(2n+1) \cdot 1 \cdot 2 \cdot \dots \cdot n} = \lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{2} < 1.$$

Следовательно, исходный ряд сходится.

Пример 7. Используя признак Даламбера, исследовать на сходимость ряд $\sum_{n=1}^{\infty} u_n$, где: 1) $u_n = \frac{n^3+3}{3^n}$; 2) $u_n = \frac{1}{(2n+1)!}$;

3)
$$u_n = n \operatorname{tg} \frac{\pi}{2^{n+1}}$$
; 4) $u_n = \frac{1 \cdot 4 \cdot \ldots \cdot (3n-2)}{3 \cdot 5 \cdot \ldots \cdot (2n+1)}$.

Решение. 1) Запишем для ряда $\sum_{n=1}^{\infty} \frac{n^3+3}{3^n}$ член $u_{n+1}=\frac{(n+1)^3+3}{3^{n+1}}$. Найдем отношение

$$\frac{u_{n+1}}{u_n} = \frac{\left((n+1)^3 + 3\right)3^n}{3^{n+1}(n^3+3)} = \frac{(n+1)^3 + 3}{3(n^3+3)}.$$

Вычислим

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^3 + 3}{3(n^3 + 3)} = \frac{1}{3} < 1.$$

Следовательно, ряд сходится.

2) Так как для ряда
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$
 предел

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(2n+1)!}{(2n+3)!} = \lim_{n \to \infty} \frac{1}{(2n+2)(2n+3)} = 0 < 1,$$

то ряд сходится.

3) Учитывая, что tg $\frac{\pi}{2^n}\sim\frac{\pi}{2^n}$ при $n\to\infty$, для ряда $\sum\limits_{n=1}^\infty n$ tg $\frac{\pi}{2^{n+1}}$ получим

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1) \operatorname{tg} \frac{\pi}{2^{n+2}}}{n \cdot \operatorname{tg} \frac{\pi}{2^{n+1}}} = \lim_{n \to \infty} \frac{(n+1) \frac{\pi}{2^{n+2}}}{n \cdot \frac{\pi}{2^{n+1}}} = \frac{1}{2} < 1.$$

Следовательно, ряд сходится.

4) Для ряда
$$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot \ldots \cdot (3n-2)}{3 \cdot 5 \cdot \ldots \cdot (2n+1)}$$
 запишем

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left(\frac{1 \cdot 4 \cdot \dots \cdot (3n-2)(3n+1)}{3 \cdot 5 \cdot \dots \cdot (2n+1)(2n+3)} \cdot \frac{3 \cdot 5 \cdot \dots \cdot (2n+1)}{1 \cdot 4 \cdot \dots \cdot (3n-2)} \right) = \lim_{n \to \infty} \frac{3n+1}{2n+3} = \frac{3}{2} > 1.$$

Ряд расходится. ■

1)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n} \cdot 2$$
) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n} \cdot 3$) $\sum_{n=1}^{\infty} \frac{e^n n!}{n^n} \cdot 3$

1)
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{1}{(n+1)!} \frac{1}{(n+1)!} \frac{1}{n} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{(n+1)!} \frac{1}{(n+1)!} = \lim_{n \to \infty} \frac{1}{(n+1)!} \frac{1}{(n+1)!} = \lim_{n \to \infty} \frac{1}{(n+1)!} \frac{1}{(n+1)!} = \lim_{n \to \infty} \frac{1}{(n+1$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{3}{2} \times 1- \text{расходится}$$

3)
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \frac{e}{e} = 1 - ?$$

4. <u>Теорема 21.5 (признак Коши).</u> Пусть дан ряд с неотрицательными членами $\sum_{n=1}^{\infty} u_n \ (u_n \geqslant 0)$. Если существует предел корня n-й степени из общего члена u_n при $n \to \infty$, т. е.

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \rho, \tag{21.12}$$

то

- 1) при $\rho < 1$ ряд сходится;
- 2) при $\rho > 1$ ряд расходится.

(При $\rho = 1$ вопрос о сходимости ряда остается открытым, т.е. ряд может как сходиться, так и расходиться.)

Пример 21.8. Исследовать на сходимость ряды:

1)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
; 2) $\sum_{n=1}^{\infty} \left(\frac{3n+1}{n+2}\right)^n$.

Решение. Вычислим $\lim_{n\to\infty} \sqrt[n]{u_n}$ для каждого ряда.

1) Для ряда $\sum_{n=1}^{\infty} \frac{1}{n^n}$ имеем

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0 < 1.$$

Следовательно, по признаку Коши ряд $\sum_{n=1}^{\infty} \frac{1}{n^n}$ сходится.

2) Для ряда $\sum_{n=1}^{\infty} \left(\frac{3n+1}{n+2} \right)^n$ находим

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{3n+1}{n+2}\right)^n} = \lim_{n \to \infty} \frac{3n+1}{n+2} = 3 > 1.$$

По признаку Коши ряд $\sum\limits_{n=1}^{\infty} \left(\frac{3n+1}{n+2}\right)^n$ расходится. \blacksquare

Пример 8. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} u_n$, используя

признак Коши, если 1) $u_n = \frac{1}{\ln^n(n+1)};$ 2) $u_n = \left(\frac{n-1}{2n+1}\right)^n;$

3)
$$u_n = \ln^n(2n+1);$$
 4) $u_n = \left(1 + \frac{1}{n}\right)^{n^2}.$

Решение. 1) Для ряда $\sum_{n=1}^{\infty} \frac{1}{\ln^n (n+1)}$ запишем $\sqrt[n]{u_n} =$

$$=\sqrt[n]{rac{1}{\ln^n(n+1)}}=rac{1}{\ln(n+1)}$$
. Так как $\lim_{n\to\infty}\sqrt[n]{u_n}=\lim_{n\to\infty}rac{1}{\ln(n+1)}=0<<<1$, то ряд $\sum_{n=1}^{\infty}rac{1}{\ln^n(n+1)}$ сходится.

2) Для ряда $\sum_{n=1}^{\infty} \left(\frac{n-1}{2n+1}\right)^n$ вычислим

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n-1}{2n+1}\right)^n} = \lim_{n \to \infty} \frac{n-1}{2n+1} = \frac{1}{2} < 1.$$

Следовательно, ряд сходится.

3) Так как для ряда $\sum_{n=1}^{\infty} \ln^n (2n+1)$ имеем $\lim_{n\to\infty} \sqrt[n]{\ln^n (2n+1)} = \lim_{n\to\infty} \ln(2n+1) = \infty > 1$, то ряд расходится.

4) Для ряда
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$
 найдем

$$\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \sqrt[n]{\left(1+\frac{1}{n}\right)^{n^2}} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e > 1.$$

Следовательно, ряд расходится. ■

5. Теорема 21.6 (интегральный признак сходимости и расходимости рядов с положительными членами). Пусть f(x) — непрерывная, положительная и убывающая функция на промежутке $[1, +\infty)$. Тогда несобственный интеграл $\int_{1}^{+\infty} f(x) \, dx$ и ряд $\sum_{n=1}^{\infty} u_n$, $u_n = f(n)$ либо одновременно сходятся, либо одновременно расходятся.

Пример 21.9. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ (ряд Дирихле).

Решение. В данном случае $u_n = \frac{1}{n^{\alpha}} = f(n), \ f(x) = \frac{1}{x^{\alpha}}$. Функция $f(x) = \frac{1}{x^{\alpha}}$ удовлетворяет условиям теоремы 21.6. Поскольку ин-

теграл $\int\limits_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ сходится при $\alpha>1$ и расходится при $\alpha\leqslant 1$ (см. пример 24.5), то ряд $\sum\limits_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ сходится при $\alpha>1$ и расходится при $\alpha\leqslant 1$.

Например, ряды $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}} \ \left(\alpha = \frac{1}{4} < 1\right), \ \sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ \left(\alpha = \frac{1}{2} < 1\right),$ $\sum\limits_{n=1}^{\infty} \frac{1}{n} \ \left(\alpha = 1, \ \text{гармонический ряд}\right)$ расходятся.

Ряды $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} \left(\alpha = \frac{3}{2} > 1\right), \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\alpha = 2 > 1\right),$

 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ ($\alpha = 4 > 1$, сходятся)

 Π р и м е р 21.10. Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Решение. Так как $u_n = \frac{1}{n \ln n} = f(n)$, то $f(x) = \frac{1}{x \ln x}$. Функция $f(x) = \frac{1}{x \ln x}$ удовлетворяет условиям теоремы 21.6 на промежутке $[2, +\infty)$. Найдем несобственный интеграл

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to +\infty} \int_{2}^{b} \frac{dx}{x \ln x} = \lim_{b \to +\infty} \int_{2}^{b} \frac{d \ln x}{\ln x} = \lim_{b \to +\infty} \left(\left. \ln \ln x \right|_{2}^{b} \right) = \lim_{b \to +\infty} (\ln \ln b - \ln \ln 2) = +\infty.$$

Следовательно, интеграл расходится. Поэтому исходный ряд $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ также расходится. \blacksquare

Пример 9. Используя интегральный признак, исследовать на сходимость ряд $\sum_{n=2}^{\infty} u_n$, если: 1) $u_n = \frac{1}{n \cdot \ln^2 n}$; 2) $u_n = \frac{1}{n \cdot \sqrt{\ln n}}$. Решение. 1) Для ряда $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^2 n}$ его общий член $u_n = \frac{1}{n \cdot \ln^2 n} = f(n)$. Поэтому $f(x) = \frac{1}{x \cdot \ln^2 x}$. Функция f(x) положительна, непрерывна и монотонно убывает на промежутке $[2, +\infty)$, т. е. удовлетворяет условиям теоремы 21.6. Исследуем на сходимость несобственный интеграл

$$\begin{split} \int\limits_2^\infty \frac{dx}{x \cdot \ln^2 n} &= \lim_{b \to +\infty} \int\limits_2^b \frac{dx}{x \cdot \ln^2 x} = \lim_{b \to +\infty} \int\limits_2^b \frac{d\ln x}{\ln^2 x} = \\ &= \lim_{b \to +\infty} \left(-\frac{1}{\ln x} \right) \Big|_2^b = \lim_{b \to +\infty} \left(-\frac{1}{\ln b} + \frac{1}{\ln 2} \right) = \frac{1}{\ln 2}. \end{split}$$

Так как интеграл сходится, то сходится и ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^2 n}$.

2) Для ряда $\sum_{n=2}^{\infty} \frac{1}{n \cdot \sqrt{\ln n}}$ его общий член $u_n = \frac{1}{n \cdot \sqrt{\ln n}} = f(n)$. Функция $f(x) = \frac{1}{x \cdot \sqrt{\ln x}}$ удовлетворяет условиям теоремы 21.6 на промежутке $[2, +\infty)$. Исследуем на сходимость несобственный интеграл

$$\int\limits_{2}^{+\infty} f(x) \, dx = \int\limits_{2}^{+\infty} \frac{dx}{x \sqrt{\ln x}} = \lim_{b \to +\infty} \int\limits_{2}^{b} \frac{d \ln x}{\sqrt{\ln x}} =$$

$$= \lim_{b \to +\infty} \left(2 \sqrt{\ln x} \, \Big|_{2}^{b} \right) = 2 \lim_{b \to +\infty} \left(\sqrt{\ln b} - \sqrt{\ln 2} \right) = \infty.$$

Поскольку несобственный интеграл расходится, то расходится и данный ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \sqrt{\ln n}}$.

Задачи для самостоятельного решения

2562.
$$1 + \frac{1}{3^{3}} + \frac{1}{5^{2}} + \cdots + \frac{1}{(2n-1)^{2}} + \cdots$$
2563. $\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}} + \cdots$

$$2578. \frac{1000}{1!} + \frac{1000^{3}}{2!} + \frac{1000^{3}}{3!} + \cdots + \frac{1000^{n}}{n!} + \cdots$$
2579. $\frac{(1!)^{2}}{2!} + \frac{(2!)^{3}}{4!} + \cdots + \frac{(n!)^{2}}{(2n!)} + \cdots$
2583. $\frac{1000}{1} + \frac{1000 \cdot 1001}{1 \cdot 3} + \frac{1000 \cdot 1001 \cdot 1002}{1 \cdot 3 \cdot 5} + \cdots$
2584. $\frac{4}{2} + \frac{4 \cdot 7}{2 \cdot 6} + \frac{4 \cdot 7 \cdot 10}{2 \cdot 6 \cdot 10} + \cdots$

Литература

Демидович Б.П.

Сборник задач и упражнений по математическому анализу: Учеб. пособие. — 14-е изд. испр. — М.: Изд-во Моск. ун-та, 1998. — 624 с.