TAREA 3 - Análisis de Algoritmos

Gabriela N. Gongora Svartzman, Karen L. Poblete Rodríguez, Salvador B. Medina Maza, Victor R. Martinez Palacios

¿Cuál es la forma óptima de calcular x⁷⁷, x¹⁹⁵ y x⁶³¹, con dos posiciones de memoria? Encontrar un método.

Hint: Uso en Public Key Encryption. El cómputo requerido para descifrar claves públicas, es el cálculo de x^e modN, para x, e y N enteros positivos de hasta 1000 dígitos.

Espacios de memoria = 2

A.
$$x^{77}$$
. n=8.

M1	M2	
x		
	$\mathbf{x} * \mathbf{x} = x^2$	
	$x^{2} * x^{2} = x^{4}$	
	$x^{4} * x^{4} = x^{8}$	
$x^8 \star x = x^9$		
	$x^{8} * x^{9} = x^{17}$	
	$x^{17} * x^{17} = x^{34}$	
$x^{34} * x^9 = x^{43}$		
	$x^{43} * x^{34} = x^{77}$	

B.
$$x^{195}$$
. n = 9

M1	M2
X	
	$\mathbf{x} * \mathbf{x} = x^2$
$x^2 * x = x^3$	
	$x^{3} * x^{3} = x^{6}$
	$x^{6} * x^{6} = x^{12}$
	$x^{12} * x^{12} = x^{24}$
	$x^{24} * x^{24} = x^{48}$
	$x^{48} * x^{48} = x^{96}$
$x^{96} * x^3 = x^{99}$	
	$x^{99} * x^{96} = x^{195}$

C. x^{631} . n = 12

M1	M2	
X		
	$\mathbf{x} * \mathbf{x} = x^2$	
	$x^2 * x = x^3$	
	$x^{3} * x^{3} = x^{6}$	
$x^6 \star x = x^7$		
	$x^{7} * x^{6} = x^{13}$	
	$x^{13} * x^{13} = x^{26}$	
	$x^{26} * x^{26} = x^{52}$	
	$x^{52} * x^{52} = x^{104}$	
	$x^{104} * x^{104} = x^{208}$	
$x^{208} * x^7 = x^{215}$		
$x^{215} * x^{208} = x^{423}$		
	$x^{423} * x^{208} = x^{631}$	

Algoritmos de Exponenciación:

- 1) Técnicas Básicas
- 2) Exponente Fijo
- 3) Base Fija

Exponenciación Modular

```
MODULAR-EXPONENTIATION (a, b, n)
 1 c = 0
 2 d = 1
 3 let \langle b_k, b_{k-1}, \dots, b_0 \rangle be the binary representation of b
 4 for i = k downto 0
 5 	 c = 2c
        d = (d \cdot d) \bmod n
        if b_i == 1
             c = c + 1
              d = (d \cdot a) \mod n
     return d
```

Exponenciación Modular

def modularExp(a,b,n):

c=0 %Inicialización de variable c (Representa un espacio de memoria).

d=1 %Inicialización de variable d. (Representa un espacio de memoria).

bk=parseBin(b) %Valor de exponente en binario.

temp=d %Variable temporal para ir guardando el valor de a^b

for i in range(len(bk)):

c=2*c %c por dos.

d=int((d*d)%n) % Se obtiene el módulo n del cuadrado de d. temp=temp*temp %Realiza misma operación que arriba pero

% sin el módulo para obtener su valor

if(bk[i]=='1'): %IF Sí bk(i) == 1 en su representación binaria.

c=c+1 % c se incrementa en 1.

d=int((d*a)%(n)) % Se obtiene el módulo n de la multiplicación de "a" con "d".

temp=temp*a %Realiza misma operación que arriba pero

% sin el módulo para obtener su valor

return (temp) %END IF, END FOR.

Algorithm Right-to-left binary exponentiation

INPUT: an element $g \in G$ and integer $e \ge 1$. OUTPUT: g^e .

- 1. $A\leftarrow 1$, $S\leftarrow g$.
- 2. While $e \neq 0$ do the following:
 - 2.1 If e is odd then $A \leftarrow A \cdot S$.
 - $2.2 \ e \leftarrow \lfloor e/2 \rfloor$.
 - 2.3 If $e \neq 0$ then $S \leftarrow S \cdot S$.
- 3. Return(A).

def RLbinary(g,e):

A=1 %Inicializamos el primer espacio de memoria A en 1

S=g %Ponemos en S el valor de la base g.

while (e!=0): %WHILE e (exponente) sea diferente de 0

if ((e%2)!=0): %IF Modulo de e diferente de 0

A=A*S % A lo que había en A se multiplica por lo que hay en S.

e=int(e/2) %e es función piso de e/2.

if e!=0: %IF e diferente de 0

S=S*S %S vale su cuadrado.

return (A) %END WHILE y RETURN

Ejemplo: 2⁷⁷

Iteraciones / Operaciones	Iteración	Num Mult.	
A= A*S = 1*2 =2 S = S*S = 2 *2 =4	1	1 2	e = 77/2 = 38 Even
S = 4 *4 =16	2	3	e = 38/2 = 19 Odd
A= 2*16 = 32 S = 16*16 = 256	3	4 5	e = 19/2 = 9 Odd
A = 32 * 256 = 8192 S = 256 * 256 = 65536	4	6 7	e = 9/2 = 4 Even
S = 65536 * 65536 = 4294967296	5	8	e = 4/2 = 2 Even
S = 4294967296 * 4294967296 = 18446744073709551616	6	9	e = 2/2 = 1 Odd
A = 8192 * 18446744073709551616 = 151115727451828646838272	7	10	e = 1/2 = 0 Stop

Algorithm Left-to-right binary exponentiation

INPUT: $g \in G$ and a positive integer $e = (e_t e_{t-1} \cdots e_1 e_0)_2$. OUTPUT: g^e .

- 1. *A*←1.
- 2. For i from t down to 0 do the following:
 - $2.1 A \leftarrow A \cdot A$.
 - 2.2 If $e_i = 1$, then $A \leftarrow A \cdot g$.
- 3. Return(A).

Función auxiliar para manejar números binarios.

```
def parseBin(num):
  divs=num
  numB=[]
  temp=divs
  while (divs!=0):
    if((temp!=1)&((divs\%2)==0)):
       numB.append(str(0))
    else:
       numB.append(str(1))
    temp=divs
    divs=int(divs/2)
  return numB[::-1]
```

def LRbinary(g,e):

A=1 % Inicialización de variable A.

% (Representa un espacio de memoria).

E=parseBin(e) % Valor de exponente en binario.

for i in range(len(E)): %FOR Para cada valor en E

A=A*A %A es igual a A al cuadrado.

if (E[i]=='1'): %IF Sí E(i) == 1 en su representación binaria.

A=A*g %A es igual a A*g, g siendo la base

return (A) %END IF, END FOR.

Ejemplo: 2^{77}, E = 1001101

Iteraciones / Operaciones	Rep. Binaria	Num Multiplicación
A*A = 1*1 =1 A = A*g = 1*2 = 2	1	1 2
A = 2*2 = 4	0	3
A = 4*4 = 16	0	4
A = 16 * 16 = 256 A = 256 * 2 = 512	1	5 6
A = 512 * 512 = 262144 A = 262144 * 2 = 524288	1	7 8
A = 524288 * 524288 = 274877906944	0	9
A = 274877906944 * 274877906944 = 75557863725914323419136 A = A* 2 = 151115727451828646838272	1	10 11

```
TIR BINARY
TIME: 24 microseconds
Result: 151115727451828646838272
Number of mult = 11
Add Chain = [0, 1, 2, 4, 8, 9, 18, 19, 38, 76, 77]
RT, BINARY
RLbinary 151115727451828646838272
TIME: 16 microseconds
mults 10
Add Chain = [1, 2, 4, 5, 8, 13, 16, 32, 64, 77]
Modular Exponentiation
TIME: 31 microseconds
Result: 151115727451828646838272
Number of mult = 11
Add Chain = [0, 1, 2, 4, 8, 9, 18, 19, 38, 76, 77]
```

```
RL BINARY
            TTME: 16 microseconds
            Result:
50216813883093446110686315385661331328818843555712276103168
            Number of mult = 11
            Add Chain = [1, 2, 3, 4, 8, 16, 32, 64, 67, 128, 195]
            Modular Exponentiation
            TIME: 31 microseconds
            Result:
50216813883093446110686315385661331328818843555712276103168
            Number of mult = 12
            Add Chain = [0, 1, 2, 3, 6, 12, 24, 48, 96, 97, 194, 195]
            LR BINARY
            TIME: 26 microseconds
            Result:
50216813883093446110686315385661331328818843555712276103168
            Number of mult = 12
            7dd Chain - [0 1 2 3 6 12 24 48 96 97 194 195]
```

Modular Exponentiation

```
TIME: 41 microseconds
                Result:
891101683129335003640853829238338149393208692821984361441248538652202181095444802051936095960424
1015192660760885926576778688876408936402340337229140082449586429677098359892480630613656731648
                Number of mult = 17
               Add Chain = [0, 1, 2, 4, 8, 9, 18, 19, 38, 39, 78, 156, 157, 314, 315, 630, 631]
                LR BINARY
                TIME: 32 microseconds
                Result:
891101683129335003640853829238338149393208692821984361441248538652202181095444802051936095960424
1015192660760885926576778688876408936402340337229140082449586429677098359892480630613656731648
                Number of mult = 17
                Add Chain = [0, 1, 2, 4, 8, 9, 18, 19, 38, 39, 78, 156, 157, 314, 315, 630, 631]
                RL BINARY
                TIME: 20 microseconds
                Result:
891101683129335003640853829238338149393208692821984361441248538652202181095444802051936095960424
1015192660760885926576778688876408936402340337229140082449586429677098359892480630613656731648
                Number of mult = 16
               Add Chain = [1, 2, 3, 4, 7, 8, 16, 23, 32, 55, 64, 119, 128, 256, 512, 631]
```

Exponente	x ⁷⁷	x ¹⁹⁵	x ⁶³¹
LRbinary			
Tiempo (microsegundos)	24	26	32
Num. Mult	11	12	17
RLbinary			
Tiempo (microsegundos)	16	16	20
Num. Mult	10	11	16
Modular Exp			
Tiempo (microsegundos)	31	31	41
Num. Mult	11	12	17

Producto de Cadenas Matriciales

Producto de cadena de matrices. Dada las matrices $A_1 \times A_2 \times ...A_n$, donde las matrices tienen dimensiones compatibles - pero no son cuadradas - ¿en qué orden deben ser multiplicadas para minimizar el tiempo de computación?

$$A_1 = 100 \times 4$$

$$A_2 = 4 \times 50$$

$$A_3 = 50 \times 20$$

$$A_4 = 20 \times 100$$

Exponer ejemplos, mejor y peor caso, y describir el método empleado.

Programación Dinámica

- 1. Caracterizar la estructura de una solución óptima
- 2. Definir recursivamente el valor de una solución óptima
- 3. Computar el valor de la solución óptima
- 4. Construir una solución óptima de la información computada

Caracterizar la estructura

- A_{i...j} matriz resultante del producto A_iA_{i+1}...A_j
- A_{i...j} se puede dividir en A_{i...k} y A_{k+1...j}
- El costo es:

$$C(A_{i...j}) = C(A_{i...k}) + C(A_{k+1...j}) + C(A_{i...k} \times A_{k+1...j})$$

$$C(A_{i...k}): Costo de computar A_{i...k}$$

$$C(A_{k+1...j}): Costo del producto entre A_{i...k} \times A_{k+1...j}$$

$$C(A_{i...k} \times A_{k+1...j}): Costo del producto entre A_{i...k} \times A_{k+1...j}$$

Se divide el problema en 2 subproblemas
 Optimizar C(A_{i...k}) y Optimizar C(A_{k+1...i})

<u>Subproblemas</u>

Determinar la posición *k* del paréntesis para obtener el costo mínimo de A_iA_{i+1}...A_j

Acercamiento

Solución bottom-up tabular

Tabla

- Usamos matriz m
- m[i, j] almacena mínimo de multiplicaciones escalares
 Por lo tanto, buscamos m[1, n]
- i = j es un caso trivial A_{i...i} = A_i

			—
0	а	b	Opt
	0	d	е
		0	d
			0

- $m[i, j] = C(A_{i...k}) + C(A_{k+1...j}) + C(A_{i...k} \times A_{k+1...j})$
- Vector p define dimensiones de las matricés
- A_i tiene dimensiones p_{i-1} x p_i
- número de operaciones de $A_{i...k}A_{k+1...i}$ es $p_{i-1}p_kp_i$

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i$$

$$k = ???$$

$$k = i, i+1, ..., j-1$$

Solución:

Evaluar los valores de k

Definición:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

Datos extra

En una matriz s se almacenará el valor de k s[i,j] = k

para el valor mínimo encontrado de dividir A_iA_{i+1}...A_j

Producto de Cadenas Matriciales

```
def MatrixChain(p):
n=len(p)-1
                                                              %Establece el tamaño del arreglo de dimensiones
m=[[0 \text{ for } x \text{ in range}(0, n+1)] \text{ for } y \text{ in range}(0,n+1)]
                                                               %Inicialización de matriz de óptimos en 0
s=[0 \text{ for } x \text{ in range}(0, n+1)] \text{ for } y \text{ in range}(0,n+1)]
                                                               %Inicialización de matriz de posiciones en 0
for L in range(2, n+1):
                                                              %FOR (L controla la longitud del producto de mtz)
 for i in range(1, n-L+2):
                                                               %FOR (i depende del valor de L)
   i = i + L - 1
                                                        % Inicializa en un valor max, espacio actual de matriz.
   m[i][j] = sys.maxsize
   for k in range(i, j-1+1): # check all splits
                                                               %FOR k de i a j. Se evalúan todas las posiciones
                                                              % Calcula el costo de cálculo
    q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]
    if q < m[i][j]:
                                                              %IF el costo es menor que el almacenado
                                                              % Se actualiza el costo mínimo
     m[i][j] = q
     s[i][i] = k
                                                              % Se guarda la posición
                                                               %END IF, END FOR, END FOR, END FOR, RETURN
return m, s
```

Resultado

$$A_1 = 100 \times 4$$

 $A_2 = 4 \times 50$
 $A_3 = 50 \times 20$
 $A_4 = 20 \times 100$

El valor inicializado del vector con las dimensiones: p1=[100,4,50,20,100].

El resultado óptimo es para este caso:

```
(A1((A2A3)A4))
El número de multiplicaciones es: 52000
```

Mejor Caso

m =

0	20000	12000	52000
	0	4000	12000
		0	100000
			0

0	1	1	1
	0	2	3
		0	3
			0

$$A_1 ((A_2 A_3) A_4)$$

Producto de Cadenas Matriciales

```
def printParens(s,i,j):
   if i == j:
        print("A%d"%i, end="")
   else:
        print ("(", end="")
        k = s[i][j]
        printParens( s, i, k)
        printParens( s, k+1, j )
        print (")", end="")
```

Impresión Recursiva

```
i=1 j=4 level=1 [(]
i=1 j=1 level=1 [A1]
i=2 j=4 level=2 [(]
i=2 j=3 level=3 [(]
i=2 j=2 level=3 [A2]
i=3 j=3 level=3 [A3]
i=2 j=3 level=3 [)]
i=4 j=4 level=2 [A4]
i=2 j=4 level=2 [)]
i=1 j=4 level=1 [)]
```

0	1	1	1
	0	2	3
		0	3
			0

Impresión Recursiva

```
i=1 j=4 level=1 [(]
i=1 j=1 level=1 [A1]
      i=2 j=4 level=2 [(]
             i=2 j=3 level=3 [(]
             i=2 j=2 level=3 [A2]
             i=3 j=3 level=3 [A3]
             i=2 j=3 level=3 [)]
      i=4 j=4 level=2 [A4]
      i=2 j=4 level=2 [)]
i=1 j=4 level=1 [)]
```

0	1	1	1
	0	2	3
		0	3
			0

Primer nivel

```
i=1 j=4 level=1 [(]
i=1 j=1 level=1 [A1]
      i=2 j=4 level=2 [(]
             i=2 j=3 level=3 [(]
             i=2 j=2 level=3 [A2]
             i=3 j=3 level=3 [A3]
             i=2 j=3 level=3 [)]
      i=4 j=4 level=2 [A4]
      i=2 j=4 level=2 [)]
i=1 j=4 level=1 [)]
```

0	1	1	1
	0	2	3
		0	3
			0

Segundo nivel

```
i=1 j=4 level=1 [(]
i=1 i=1 level=1 [A1]
      i=2 j=4 level=2 [(]
            i=2 j=3 level=3 [(]
            i=2 j=2 level=3 [A2]
            i=3 j=3 level=3 [A3]
            i=2 j=3 level=3 [)]
      i=4 j=4 level=2 [A4]
      i=2 j=4 level=2 [)]
i=1 j=4 level=1 [)]
```

0	1	1	1
	0	2	3
		0	3
			0

Tercer nivel

```
i=1 j=4 level=1 [(]
i=1 j=1 level=1 [A1]
      i=2 j=4 level=2 [(]
            i=2 j=3 level=3 [(]
            i=2 j=2 level=3 [A2]
            i=3 j=3 level=3 [A3]
            i=2 j=3 level=3 [)]
      i=4 j=4 level=2 [A4]
      i=2 j=4 level=2 [)]
i=1 j=4 level=1 [)]
```

0	1	1	1
	0	2	3
		0	3
			0

Producto de Cadenas Matriciales

```
def MatrixChain(p):
n=len(p)-1
                                                               %Establece el tamaño del arreglo de dimensiones
m=[[0 \text{ for } x \text{ in range}(0, n+1)] \text{ for } y \text{ in range}(0,n+1)]
                                                               %Inicialización de matriz de óptimos en 0
s=[[0 \text{ for } x \text{ in range}(0, n+1)] \text{ for } y \text{ in range}(0,n+1)]
                                                               %Inicialización de matriz de posiciones en 0
for L in range(2, n+1):
                                                               %FOR (L controla la longitud del producto de mtz)
 for i in range(1, n-L+2):
                                                               %FOR (i depende del valor de L)
   i = i + L - 1
   m[i][j] = -1
                                                        % Inicializa en un valor max, espacio actual de matriz.
   for k in range(i, j-1+1): # check all splits
                                                        %FOR k de i a j. Se evalúan todas las posiciones
                                                               % Calcula el costo de cálculo
    q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]
    if q >= m[i][j]:
                                                                     %IF el costo es menor que el almacenado
                                                               % Se actualiza el costo mínimo
     m[i][j] = q
     s[i][i] = k
                                                               % Se guarda la posición
                                                               %END IF, END FOR, END FOR, END FOR, RETURN
return m, s
```

Peor Caso

m =

0	20000	12000	620000
	0	4000	120000
		0	100000
			0

0	1	2	2
	0	2	2
		0	3
			0

$$(A_1 A_2)(A_3 A_4)$$

¡GRACIAS!