1	1. (Amende							
2	type having a							
3 (property of or t							
4 /	fluid, and havi							
5	passed at select							
6	(a)]							
7	respon							
8	passa							
9	(b)							
1 <u>0</u>	aliqu							
11	character.							
12	(c)							
# 1:3	at a							
1 <u>4</u>	sample							
· (

1

2

- 1. (Amended) A method of regenerating a biosensor of the type having a signal generating portion responsive to some property of or to the presence of some component in a biological fluid, and having a flow passage through which fluid is being passed at selectable flow rates, the method comprising:
 - (a) passing a background flow of fluid without response generating components through the flow passage;
 - (b) at a selected point in time introducing a sample aliquot into said background flow; and [characterized by]
 - (c) increasing the flow rate of the background fluid at a point in time when at least a fraction of said sample aliquot has entered said flow passage.
- 3. (Amended) The method of claim 1 [or 2], wherein said flow rate is increased by 5-100%, preferably 10-50%, most preferably 15-30%.
- 4. (Amended) The method of claim 1 [or 2], comprising maintaining the increased flow rate until the signal from the sensor has reached a preselected value.

1

2

1	6.	(Ame	ended)	The	metho	d of	[any	preceding	claim]	<u>claim</u>	_1
2	Mwherein	the	increas	ed	flow	rate	is	maintained	i for	10-60	s,
3	1 preferably 20-40 s										

- 7. (Amended) The method of [any preceding claim] claim 1,
 wherein said background flow is 0.1 10 ml/min., preferably
 1 ml/min.
 - 8. (Amended) The method of [any preceding claim] claim 1, wherein said increase in flow rate is initiated when the entire sample has entered said flow passage.
 - 9. (Amended) The method of [any preceding claim] <u>claim 1</u>, wherein sample is continuously drawn from a sample source, and when not being analyzed it is disposed as waste.
 - 10. (Amended) The method of [any preceding claim] <u>claim 1</u>, wherein the sample is blood, optionally premixed with anticoagulant.
- 12. (Amended) A system for continuous monitoring of analytes in a biological fluid, the system having increased life

22

23

- by virtue of inherent regeneration of sensors employed, the system comprising:
 - (a) a biosensor [(26, 30, 32)] of the type having a flow passage through which fluid is being passed at selectable flow rates, and a signal generating portion located in said flow passage and responsive to some component or property of a biological fluid;
 - (b) a sampling device [(4)] for providing a sample of said biological fluid;
 - (c) means [(10, 15, 18, 24)] for passing a flow of a background fluid through said flow passage at selectable flow rates;
 - (d) means [(20, 50, 55)] for injecting said sample into said flow of background fluid at selectable points in time to provide a combined flow;
 - (e) means [(50, 55)] for increasing the flow rate of said combined flow at a selectable point in time during passage of the sample through said flow passage in order to achieve a washing action on the signal generating portion; and
 - (f) means [(30, 32)] for providing a signal from said signal generating portion.

1 2

3

4

13. (Amended) The system of claim 12, wherein said sampling device comprises a catheter [(4)] insertable in a blood vessel of a human or an animal, and tubing [(8)] connecting the catheter to the system.

2

3

4

1

- 14. (Amended) The system of claim 12 [or 13], wherein said means for passing a flow of a background fluid through said flow passage at selectable flow rates comprises a pump [(10)] and appropriate tubing [(18, 24)].
- 15. (Amended) The system of claim 12[, 13 or 14], wherein said means for injecting said sample into said flow of background fluid, comprises a valve [(20)] switchable between injection and waste disposal modes.
- 16. (Amended) The system of [any of claims 12-15] claim 12, wherein said means for increasing the flow rate comprises a control unit [(50)] programmed to respond to signals from said sensor.
- 17. (Amended) The system of [any of claims 12-16] claim 12, wherein said means for providing a signal from said

signal generating portion comprises at least one thermistor [(30, 32)].

18. (Amended) The system of [any of claims 12-17] claim 12, further comprising a connector [(100)], for connecting said sampling device [(4)] to said pump [(10)], the connector comprising:

a male [(102)] and a female [(104)] part,

a tube [(108)] of a hard material such as steel having an inner diameter, and being inserted in the center of one of said male [(102)] and female [(104)] parts and protruding from an end surface [(118)] of said part [(104; 102)];

a catheter [(106)] of a soft material inserted in the center of the other of said male [(102)] and female [(104)] parts and having an inner diameter substantially smaller than the inner diameter of said tube [(108)], and having an essentially flat end surface [(126)], wherein

the protruding end of said tube is ground such as to form a sharp circumferential edge [(112)], and wherein

the positions of said tube [(108)] and said catheter [(106)] in their respective male or female part, are such that when said male and female parts are connected, said sharp edge

1

2

3

4

5

14

15

.16

17

18