Differential Cryptanalysis, and some Encipherment Modes

Part III: Attacks on Block-Ciphers, and use of Block Ciphers as Stream Ciphers

Priyank Kalla
Professor
Electrical & Computer Engineering

Differential Cryptanalysis Attack

- While it is non-trivial to break DES, particularly, double- or triple DES, attacks on Block Ciphers have been studied
- One interesting attack on early block ciphers: Differential Cryptanalysis attack
- Belongs to the class of "Chosen Plain Text" Attacks
 - Known/Published Cipher, Eve has access to Alice's Computer
 - Eve can generate (P_i, C_i) pairs. Objective: find out the key K

Differential Cryptanalysis Attack

- First Step: Analyze the encryption, collect some information about (P_i, C_i) relationships
- Try to guess some bits of the key
- Use this information to try brute-force attacks on a smaller problem
- Differential Cryptanalysis: how do the "differences in plaintext" relate to the "differences in ciphertext"?

$$C_1 = P_1 \oplus K$$

$$C_2 = P_2 \oplus K$$

$$C_1 \oplus C_2 = P_1 \oplus P_2$$

Differential Cryptanalysis Attack

- Non-linearity is added by S-Boxes
- S-Box functions are known (published)
- Relationship between P & C = relationship between X & C
- Build a Differential Distribution Table (also called XOR profile)

$$X_1 \oplus X_2 = P_1 \oplus P_2$$

 $C_1 \oplus C_2 \neq P_1 \oplus P_2$

Differential Distribution Table (DDT)

 $P_1 \oplus P_2$

	$c_1 \circ c_2$					
	00	01	10	11		
000	8					
001	2	2		4		
010	2	2	4			
011		4	2	2		
100	2	2	4			
101		4	2	2		
110	4		2	2		
111			2	6		

 $C_1 \oplus C_2$

- $P_1 \oplus P_2 = (000) \implies C_1 \oplus C_2 = (00)$
- When $P_1 \oplus P_2 = 100$
 - Two cases $C_1 \oplus C_2 = 00$
 - Two cases 01 output diff
 - Four cases 10 output diff

- E.g.: Two cases for the 1st column
- P1 = 001, P2 = 101; C1=00,
 C2 = 00: Diff = 00
- P1 = 101, P2 = 001, C1 = 00, C2 = 00: Diff 00
- And so on....

Differential Distribution Table (DDT)

 $P_1 \oplus P_2$

	1 2				
	00	01	10	11	
000	8				
001	2	2		4	
010	2	2	4		
011		4	2	2	
100	2	2	4		
101		4	2	2	
110	4		2	2	
111			2	6	

 $C_1 \oplus C_2$

	$c_1 \circ c_2$					
	00	01	10	11		
000	1	0	0	0		
001	0.25	0.25	0	0.50		
010	0.25	0.25	0.50	0		
011	0	0.50	0.25	0.25		
100	0.25	0.25	0.50	0		
101	0	0.50	0.25	0.25		
110	0.50	0	0.25	0.25		
111	0	0	0.25	0.75		

 $C_1 \oplus C_2$

- First build a DDT
- Then launch a chosen plaintext attack...

 $P_1 \oplus P_2$

DDT

Launch Chosen Plaintext Attack

- If P1 xor P2 = 001, then C1 xor
 C2 = 11 with 50% probability
- Choose C1 = 00, and suppose that the obtained P1 = 010
- X1 = 001, or 101, or 111 $X \oplus P = K$ $001 \oplus 010 = 011$
- $101 \oplus 010 = 000$ $111 \oplus 010 = 101$

- Choose C2 = 11, and suppose the obtained P2 = 011
- X1 = 000, or 110,

$$X \oplus P = K$$

$$000 \oplus 011 = 011$$

$$110 \oplus 011 = 101$$

- Maybe K = 011 or 101
- Last bit of K = 1

Extending to Rounds

DDT for multiple rounds of DES

a. Differential Profile

a. P = 1

c. P = 1/4

b. P = 1/234

d. P = 14/64

- Examples of chosen plaintext and DDTs for DES
- It has been shown using DDTs: $2^{47}(P_i, C_i)$ pairs needed to break 16-round DES using DDTs

Modes of Encipherment

- When data is not 64-bits (DES) or 128 bits (AES):
- Instead of using just one Block Cipher, use different modes
- Simplest: Electronic CodeBook (ECB)

E: Encryption D: Decryption

 P_i : Plaintext block i C_i : Ciphertext block i

K: Secret key

Encryption

Decryption

Modes of Encipherment

- Cipher Block Chain to enhance security
- Share IV, in addition to Key

E: Encryption D: Decryption

 P_i : Plaintext block i C_i : Ciphertext block i K: Secret key IV: Initial vector (C_0)

Decryption

Modes of Encipherment

- Cipher Feedback Mode
- When data $r \ll 64$ or 128 bits. E.g. ASCII code = r = 8 bits

E: Encryption

P: Plaintext block

K: Secret key

D: Decryption

C_i: Ciphertext block

IV: Initial vector (S_I)

S: Shift register

T_i: Temporary register

Encryption

Cipher Feedback Mode = Stream Cipher

E : Encryption P_i: Plaintext block

D: Decryption C_i: Ciphertext block

S_i: Shift register T_i: Temporary register

K: Secret key

IV: Initial vector (S_I)

Encryption

