234 Fonctions et espaces de fonctions Lebesgue-intégrable

On se place dans un espace mesuré (X, \mathcal{A}, μ) . Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , que l'on munit de sa tribu borélienne $\mathscr{B}(\mathbb{K})$.

I - L'intégrale de Lebesgue

1. Définition abstraite

Définition 1. Soit f une fonction étagée positive sur (X, \mathscr{A}) . **L'intégrale** de f sur X par rapport à la mesure μ est définie par

[**B-P**] p. 120

$$\int_X f \, \mathrm{d}\mu = \sum_{\alpha \in f(X)} \alpha \mu(\{f = \alpha\}) \in \overline{\mathbb{R}^+}$$

Proposition 2. Soit f une fonction étagée. Pour toute décomposition de la forme $f = \sum_{i \in I} \alpha_i \mathbb{I}_{A_i}$ (où $(A_i)_{i \in I}$ désigne une partition \mathscr{A} -mesurable finie de X), on a :

$$\int_X f \, \mathrm{d}\mu = \sum_{i \in I} \alpha_i \mu(A_i)$$

Exemple 3. Soit $f: X \to \mathbb{R}^+$ une fonction ne prenant qu'un nombre fini de valeurs.

— On se place dans le cas où $\mu = \delta_a$, la mesure de Dirac en un point $a \in X$. Alors,

$$\int_X f \, \mathrm{d}\mu = f(a)$$

— On se place dans le cas où $\mu = m$, la mesure de comptage sur $(X, \mathcal{P}(X))$. Alors,

$$\int_{X} f \, \mathrm{d}m = \sum_{\alpha \in f(X)} \alpha |\{f = \alpha\}|$$

Définition 4. Soit f une fonction mesurable positive (finie ou non) sur (X, \mathcal{A}) . On pose

$$\int_X f \, \mathrm{d}\mu = \sup \left\{ \int_X \varphi \, \mathrm{d}\mu \mid \varphi \text{ étagée positive telle que } \varphi \le f \right\}$$

on dit que f est μ -intégrable si $\int_X f d\mu < +\infty$.

2. Propriétés

Théorème 5 (Convergence monotone). Soit (f_n) une suite croissante de fonctions mesurables positives. Alors, la limite f de cette suite est mesurable positive, et,

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu$$

Corollaire 6. Soient *f* , *g* deux fonctions mesurables positives.

- (i) $f \le g \implies \int_X f \, d\mu \le \int_X g \, d\mu$ (l'intégrale est croissante).
- (ii) $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$ (l'intégrale est additive).
- (iii) $\forall \lambda \ge 0$, $\int_X \lambda f \, d\mu = \lambda \int_X f \, d\mu$ (l'intégrale est positivement homogène).
- (iv) Si f = g pp., alors $\int_X f d\mu = \int_X g d\mu$.

Au vu de la linéarité de l'intégrale, on peut maintenant donner la définition suivante.

Définition 7. Soit $f: X \to \mathbb{K}$ mesurable.

- f est dite μ -intégrable si |f| est μ -intégrable.
- Dans ce cas, si $\mathbb{K}=\mathbb{R}$, en notant f^+ et f^- les parties positives et négatives de f, on définit

$$\int_X f \, \mathrm{d}\mu = \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu$$

— Si $\mathbb{K} = \mathbb{C}$, en reprenant le point précédent, on définit

$$\int_X f \, \mathrm{d}\mu = \int_X \mathrm{Re}(f) \, \mathrm{d}\mu + i \int_X \mathrm{Im}(f) \, \mathrm{d}\mu$$

Proposition 8. Soit $f: X \to \mathbb{K}$ intégrable. Alors,

$$\left| \int_{X} f \, \mathrm{d}\mu \right| \leq \int_{X} |f| \, \mathrm{d}\mu$$

avec égalité,

- si $\mathbb{K} = \mathbb{R}$, si f est de signe constant pp.
- si $\mathbb{K} = \mathbb{C}$, si $f = \alpha | f |$ pp. pour $\alpha \in C(0, 1)$.

3. Lien avec l'intégrale de Riemann

Proposition 9. Soit [a,b] un intervalle de \mathbb{R} . Soit f une fonction intégrable au sens de Riemann sur [a,b].

(i) Il existe une fonction $g \lambda$ -intégrable sur [a, b] telle que f = g pp. De plus,

$$\int_{a}^{b} f = \int_{[a,b]} g \, \mathrm{d}\lambda$$

(ii) En particulier, si *f* est borélienne,

$$\int_{a}^{b} f = \int_{[a,b]} f \, \mathrm{d}\lambda$$

Contre-exemple 10. La réciproque est fausse. Par exemple, $\mathbb{1}_{\mathbb{Q} \cap [0,1]}$ est intégrable au sens de Lebesgue, mais pas au sens de Riemann.

II - Construction des espaces L_p

1. L'espace vectoriel \mathscr{L}_1

Définition 11. On note

$$\mathcal{L}_1(X, \mathcal{A}, \mu) = \{ f : X \to \mathbb{K} \mid f \text{ est } \mu\text{-intégrable} \}$$

l'ensemble des fonctions μ -intégrables. En l'absence d'ambiguïté, on notera simplement $\mathscr{L}_1(\mu)$ ou \mathscr{L}_1 . Cette définition s'étend aux ensembles de fonctions intégrables à valeurs dans \mathbb{R}^+ , $\overline{\mathbb{R}}$, etc.

Exemple 12. Si μ est la mesure de comptage sur $(\mathcal{P}(\mathbb{N}), \mathbb{N})$, alors

$$\mathcal{L}_1 = \ell_1 = \left\{ (u_n) \in \mathbb{R}^n \mid \sum_{n \ge 0} |u_n| < +\infty \right\}$$

Théorème 13. (i) $f \mapsto \int_X f \, d\mu$ est une forme linéaire positive (au sens où $f \ge 0 \implies \int_X f \, d\mu \ge 0$) et croissante sur \mathcal{L}_1 .

- (ii) \mathcal{L}_1 est un espace vectoriel sur \mathbb{K} .
- (iii) $\|.\|_1: f \mapsto \int_X |f| \, \mathrm{d}\mu$ est une semi-norme sur \mathcal{L}_1 .

Théorème 14 (Lemme de Fatou). Soit (f_n) une suite de fonctions mesurables positives. Alors,

$$0 \le \int_X \liminf f_n \, \mathrm{d}\mu \le \liminf \int_X f_n \, \mathrm{d}\mu \le +\infty$$

Exemple 15. Soit f croissante sur [0,1], continue en 0 et dérivable en 1 et dérivable pp. dans [0,1]. Alors,

 $\int_0^1 f'(x) \, \mathrm{d}x \le f(1) - f(0)$

Théorème 16 (Convergence dominée). Soit (f_n) une suite d'éléments de \mathcal{L}_1 telle que :

- (i) pp. en x, $(f_n(x))$ converge dans \mathbb{K} vers f(x).
- (ii) $\exists g \in \mathcal{L}_1$ positive telle que

$$\forall n \in \mathbb{N}$$
, pp. en x , $|f_n(x)| \le g(x)$

Alors,

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu \text{ et } \lim_{n \to +\infty} \int_X |f_n - f| \, \mathrm{d}\mu = 0$$

Exemple 17. — On reprend l'Exemple 15 et on suppose f partout dérivable sur [0,1] de dérivée bornée. Alors l'inégalité est une égalité.

— Soit $\alpha > 1$. On pose $\forall n \ge 1$, $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\alpha x} dx$. Alors,

$$\lim_{n \to +\infty} I_n(\alpha) = \int_0^{+\infty} e^{(1-\alpha)x} \, \mathrm{d}x = \frac{1}{\alpha - 1}$$

Application 18 (Lemme de Borel-Cantelli). Soit (A_n) une famille de parties de \mathscr{A} . Alors,

$$\sum_{n=1}^{+\infty} \mu(A_n) < +\infty \implies \mu\left(\limsup_{n \to +\infty} A_n\right) = 0$$

2. Les espaces vectoriels \mathcal{L}_p

Définition 19. Pour tout réel p > 0, on définit

$$\mathcal{L}_p(X,\mathcal{A},\mu) = \left\{ f: X \to \mathbb{K} \mid |f|^p \in \mathcal{L}_1(X,\mathcal{A},\mu) \right\}$$

on a les mêmes remarques qu'à la Définition 11.

Proposition 20. \mathcal{L}_p est un espace vectoriel.

Proposition 21. (i) Si $\mu(X) < +\infty$, alors

$$0$$

(ii) Si $\mu = m$ est la mesure de comptage sur \mathbb{N} , alors

$$0$$

Définition 22. Pour tout p > 0, on définit

$$\|.\|_p: f \mapsto \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}$$

Théorème 23 (Inégalité de Hölder). Soient $p,q\in]1,+\infty[$ tels que $\frac{1}{p}+\frac{1}{q}=1,f\in \mathcal{L}_p$ et $g\in \mathcal{L}_q$. Alors $fg\in \mathcal{L}_1$ et

$$||fg||_1 \le ||f||_p ||g||_q$$

Théorème 24 (Inégalité de Minkowski).

$$\forall f,g \in \mathcal{L}_p, \, \|f+g\|_p \leq \|f\|_p + \|g\|_p$$

3. Les espaces vectoriels normés L_p

Définition 25. On définit pour tout p > 0,

$$L_p = \mathcal{L}_p / V$$

où $V = \{v \in \mathcal{L}_p \mid v = 0 \text{ pp.}\}.$

Théorème 26. Pour tout $p \in [1, +\infty]$, (L_p) , $\|.\|_p$ est un espace vectoriel normé.

Théorème 27 (Riesz-Fischer). Pour tout $p \in [1, +\infty]$, L_p est complet pour la norme $\|.\|_p$.

Théorème 28. Soit (f_n) une suite d'éléments de L_p qui converge vers f pour la norme $\|.\|_p$. Alors, il existe une sous-suite de (f_n) qui converge pp. vers f.

qui converge pp. vers f.

Proposition 29. Pour tout $p \in [1, +\infty[$, l'ensemble des fonctions étagées intégrables est dense dans L_p .

p. 176

Théorème 30. On se place sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Alors :

- (i) L'ensemble des fonctions en escalier à support compact est dense dans L_p pour tout $p \in [1, +\infty[$.
- (ii) L'ensemble des fonctions continues à support compact est dense dans L_p pour tout $p \in [1, +\infty[$.

4. L'espace L_{∞}

p. 180

Définition 31. — Soit $f: X \to \mathbb{K}$. On définit $||f||_{\infty}$ comme le supremum essentiel de la fonction |f| et $\mathscr{L}_{\infty}(\mu)$ (noté \mathscr{L}_{∞} en l'absence d'ambiguïté) l'ensemble des fonctions μ -essentiellement bornées.

On définit

$$L_{\infty} = \mathcal{L}_{\infty}/V$$

où
$$V=\{v\in\mathcal{L}_{\infty}\mid v=0 \text{ pp.}\}.$$

Théorème 32. L_{∞} , muni de $\|.\|_{\infty}$, est un espace vectoriel normé complet.

Remarque 33. L'inégalité de Hölder est encore vraie pour $q = +\infty$.

III - Grands théorèmes d'intégration

1. Régularité sous l'intégrale

Soit $f: E \times X \to \mathbb{C}$ où (E, d) est un espace métrique. On pose $F: t \mapsto \int_X f(t, x) d\mu(x)$.

[**Z-Q**]

a. Continuité

Théorème 34 (Continuité sous le signe intégral). On suppose :

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue en $t_0 \in E$.

(iii) $\exists g \in L_1(X)$ positive telle que

$$|f(t,x)| \le g(x) \quad \forall t \in E, \text{pp. en } x \in X$$

Alors F est continue en t_0 .

Corollaire 35. On suppose:

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue sur E.
- (iii) $\forall K \subseteq E$, $\exists g_K \in L_1(X)$ positive telle que

$$|f(t,x)| \le g_K(x) \quad \forall t \in E, \text{pp. en } x$$

Alors *F* est continue sur *E*.

Exemple 36. La fonction

$$\Gamma: \begin{array}{ccc} \mathbb{R}^+_* & \to & \mathbb{R}^+_* \\ t & \mapsto & \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t \end{array}$$

est bien définie et continue sur \mathbb{R}_*^+ .

Exemple 37. Soit $f : \mathbb{R}^+ \to \mathbb{C}$ intégrable. Alors,

$$\lambda \mapsto \int_0^{+\infty} e^{-\lambda t} f(t) \, \mathrm{d}t$$

est bien définie et est continue sur \mathbb{R}^+ .

b. Dérivabilité

On suppose ici que E est un intervalle I ouvert de \mathbb{R} .

[Z-Q] p. 313

p. 318

[G-K]

p. 104

Théorème 38 (Dérivation sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est dérivable sur I. On notera $\frac{\partial f}{\partial t}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq I \text{ compact}, \exists g_K \in L_1(X) \text{ positive telle que}$

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g_K(x) \quad \forall t \in I, \text{pp. en } x$$

Alors $\forall\,t\in I,\,x\mapsto \frac{\partial f}{\partial t}(x,t)\in L_1(X)$ et F est dérivable sur I avec

$$\forall t \in I, F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) \, \mathrm{d}\mu(x)$$

— Si dans le Théorème 38, hypothèse (i), on remplace "dérivable" par " \mathscr{C}^1 ", alors la fonction F est de classe \mathscr{C}^1 .

On a un résultat analogue pour les dérivées d'ordre supérieur.

Théorème 40 (k-ième dérivée sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t,x) \in \mathcal{C}^k(I)$. On notera $\left(\frac{\partial}{\partial t}\right)^j f$ la j-ième dérivée définie presque partout pour $j \in [0, k]$.
- (iii) $\forall j \in [0, k], \forall K \subseteq I \text{ compact}, \exists g_{i,K} \in L_1(X) \text{ positive telle que}$

$$\left| \left(\frac{\partial}{\partial t} \right)^j f(x, t) \right| \le g_{j,K}(x) \quad \forall t \in K, \text{pp. en } x$$

Alors $\forall j \in [0, k], \ \forall t \in I, \ x \mapsto \left(\frac{\partial}{\partial t}\right)^j f(x, t) \in L_1(X) \text{ et } F \in \mathscr{C}^k(I) \text{ avec}$

$$\forall j \in [0, k], \forall t \in I, F^{(j)}(t) = \int_{X} \left(\frac{\partial}{\partial t}\right)^{j} f(x, t) d\mu(x)$$

Exemple 41. La fonction Γ de l'Exemple 36 est \mathscr{C}^{∞} sur \mathbb{R}_{*}^{+} .

Exemple 42. On se place dans l'espace mesuré
$$(\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{card})$$
 et on considère (f_n) une suite de fonctions dérivables sur I telle que

$$\forall x \in \mathbb{R}, \, \sum_{n \in \mathbb{N}} |f_n(x)| + \sup_{x \in I} |f_n'(t)| < +\infty$$

Alors $x \mapsto \sum_{n \in \mathbb{N}} f_n(x)$ est dérivable sur I de dérivée $x \mapsto \sum_{n \in \mathbb{N}} f'_n(x)$.

Application 43 (Transformée de Fourier d'une Gaussienne). En résolvant une équation différentielle linéaire, on a

$$\forall \alpha > 0, \forall x \in \mathbb{R}, \int_{\mathbb{R}} e^{-\alpha t^2} e^{-itx} dt = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{x^2}{\pi \alpha}}$$

p. 169

p. 318

[B-P]

p. 149

[G-K] p. 107 **Application 44** (Intégrale de Dirichlet). On pose $\forall x \ge 0$,

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$$

alors:

- (i) F est bien définie et est continue sur \mathbb{R}^+ .
- (ii) F est dérivable sur \mathbb{R}_*^+ et $\forall x \in \mathbb{R}_*^+$, $F'(x) = -\frac{1}{1+x^2}$.
- (iii) $F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

c. Holomorphie

On suppose ici que E est un ouvert Ω de \mathbb{C} .

[Z-Q] p. 314

Théorème 45 (Holomorphie sous le signe intégral). On suppose :

- (i) $\forall z \in \Omega, x \mapsto f(z, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $z \mapsto f(z, x)$ est holomorphe dans Ω . On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$|f(x,z)| \le g_K(x) \quad \forall z \in K$$
, pp. en x

Alors F est holomorphe dans Ω avec

$$\forall z \in \Omega, F'(z) = \int_{X} \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z)$$

Exemple 46. La fonction Γ de l'Exemple 36 est holomorphe dans l'ouvert $\{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$.

p. 318

2. Intégration sur un espace produit

Théorème 47 (Fubini-Tonelli). Soient (Y, \mathcal{B}, v) un autre espace mesuré et $f: (X \times Y) \to \overline{\mathbb{R}^+}$. On suppose μ et v σ -finies. Alors :

(i) $x \mapsto \int_{V} f(x, y) \, dv(y)$ et $y \mapsto \int_{X} f(x, y) \, d\mu(x)$ sont mesurables.

(ii) Dans \mathbb{R}^+ ,

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) = \int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right)$$

Théorème 48 (Fubini-Lebesgue). Soient (Y, \mathcal{B}, v) un autre espace mesuré et $f \in \mathcal{L}_1(\mu \otimes v)$. Alors :

- (i) Pour tout $y \in Y$, $x \mapsto f(x, y)$ et pour tout $x \in X$, $y \mapsto f(x, y)$ sont intégrables.
- (ii) $x \mapsto \int_Y f(x, y) \, d\nu(y)$ et $y \mapsto \int_X f(x, y) \, d\mu(x)$ sont intégrables, les fonctions étant définies pp.
- (iii) On a:

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_X \left(\int_Y f(x, y) \, \mathrm{d}\nu(y) \right) = \int_Y \left(\int_X f(x, y) \, \mathrm{d}\mu(x) \right)$$

Contre-exemple 49. On considère $f:(x,y)\mapsto 2e^{-2xy}-e^{-xy}$. Alors, $\int_{[0,1]}\left(\int_{\mathbb{R}^+}f(x,y)\,\mathrm{d}x\right)\mathrm{d}y=0$, mais $\int_{\mathbb{R}^+}\left(\int_{[0,1]}f(x,y)\,\mathrm{d}y\right)\mathrm{d}x=\ln(2)$.

Exemple 50. Soient $f:(x,y)\mapsto xy$ et $D=\{(x,y)\in\mathbb{R}^2\mid x,y\geq 0\text{ et }x+y\leq 1\}.$ Alors,

$$\int \int_D = f(x, y) \, dx dy = \int_0^1 x \frac{(1 - x)^2}{2} \, dx = \frac{1}{24}$$

IV - L'espace L_2

1. Aspect hilbertien

Définition 51. L'application

$$\langle .,. \rangle : (f,g) \mapsto \int_X f\overline{g} \,\mathrm{d}\mu$$

définit un produit scalaire hermitien sur L_2 . Muni de ce produit scalaire précédent, L_2 est un espace de Hilbert.

a. Conséquences

Théorème 52 (Projection orthogonale). Soit F un sous-espace vectoriel fermé de L_2 . Alors,

$$L_2 = F \oplus F^{\perp}$$

Corollaire 53 (Théorème de représentation de Riesz). Soit $\varphi \in L_2'$ une forme linéaire continue. Alors,

$$\exists ! g \in L_2 \text{ telle que } \forall f \in L_2, \varphi(f) = \int_X f\overline{g} \,\mathrm{d}\mu$$

[DEV]

Application 54 (Dual de L_p). Soit (X, \mathcal{A}, μ) un espace mesuré de mesure finie. On note $\forall p \in]1,2[,L_p=L_p(X,\mathcal{A},\mu).$ L'application

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g : f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

Remarque 55. Plus généralement, si l'on identifie g et φ_g :

- L_q est le dual topologique de L_p pour p ∈]1, +∞[.
- L_{∞} est le dual topologique de L_1 si μ est σ -finie.

b. Base hilbertienne de L_2

Soit *I* un intervalle de \mathbb{R} . On pose $\forall n \in \mathbb{N}$, $g_n : x \mapsto x^n$.

[**BMP**] p. 110

[LI]

p. 140

Définition 56. On appelle **fonction poids** une fonction $\rho : I \to \mathbb{R}$ mesurable, positive et telle que $\forall n \in \mathbb{N}, \rho g_n \in L_1(I)$.

Soit $\rho: I \to \mathbb{R}$ une fonction poids.

Notation 57. On note $L_2(I,\rho)$ l'espace des fonctions de carré intégrable pour la mesure de densité ρ par rapport à la mesure de Lebesgue.

Proposition 58. Muni de

$$\langle .,. \rangle : (f,g) \mapsto \int_{I} f(x) \overline{g(x)} \rho(x) dx$$

 $L_2(I, \rho)$ est un espace de Hilbert.

Théorème 59. Il existe une unique famille (P_n) de polynômes unitaires orthogonaux deux-à-deux telle que $\deg(P_n) = n$ pour tout entier n. C'est la famille de **polynômes orthogonaux** associée à ρ sur I.

Exemple 60 (Polynômes de Hermite). Si $\forall x \in I$, $\rho(x) = e^{-x^2}$, alors

$$\forall n \in \mathbb{N}, \forall x \in I, P_n(x) = \frac{(-1)^n}{2^n} e^{x^2} \frac{\partial}{\partial x^n} \left(e^{-x^2} \right)$$

Lemme 61. On suppose que $\forall n \in \mathbb{N}$, $g_n \in L_1(I, \rho)$ et on considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I. Alors \forall $n \in \mathbb{N}$, $g_n \in L_2(I, \rho)$. En particulier, l'algorithme de Gram-Schmidt a bien du sens et (P_n) est bien définie.

[DEV]

Application 62. On considère (P_n) la famille des polynômes orthogonaux associée à ρ sur Iet on suppose qu'il existe a > 0 tel que

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

alors (P_n) est une base hilbertienne de $L_2(I, \rho)$ pour la norme $\|.\|_2$.

Contre-exemple 63. On considère, sur $I = \mathbb{R}^+_*$, la fonction poids $\rho : x \mapsto x^{-\ln(x)}$. Alors, la famille des g_n n'est pas totale. La famille des polynômes orthogonaux associée à ce poids particulier n'est donc pas totale non plus : ce n'est pas une base hilbertienne.

2. Application aux séries de Fourier

Notation 64. — Pour tout $p \in [1, +\infty]$, on note $L_p^{2\pi}$ l'espace des fonctions $f : \mathbb{R} \to \mathbb{C}$, 2π -périodiques et mesurables, telles que $||f||_p < +\infty$.

— Pour tout $n \in \mathbb{Z}$, on note e_n la fonction 2π -périodique définie pour tout $t \in \mathbb{R}$ par $e_n(t) = e^{int}$.

Proposition 65. $L_2^{2\pi}$ est un espace de Hilbert pour le produit scalaire

$$\langle .,. \rangle : (f,g) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} \, \mathrm{d}t$$

Théorème 66. La famille $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne de $L_2^{2\pi}$.

p. 123

[Z-Q]

Corollaire 67 (Égalité de Parseval).

$$\forall f \in L_2^{2\pi}, f = \sum_{n=-\infty}^{+\infty} \langle f, e_n \rangle e_n$$

Exemple 68. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

 $\frac{\pi^4}{90} = \|f\|_2 = \sum_{n=0}^{+\infty} \frac{1}{n^4}$

[GOU20] p. 272

Remarque 69. L'égalité du Corollaire 67 est valable dans $L_2^{2\pi}$, elle signifie donc que

[**BMP**] p. 124

$$\left\| \sum_{n=-N}^{N} \langle f, e_n \rangle e_n - f \right\|_2 \longrightarrow_{N \to +\infty} 0$$