Concetti Fondamentali

Definizione di Derivata

La derivata di una funzione f(x) nel punto x_0 è definita come:

$$f'(x_0) = \lim_{h o 0} rac{f(x_0 + h) - f(x_0)}{h}$$

Questo limite, se esiste, rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel punto $(x_0, f(x_0))$.

Rapporto Incrementale

Il rapporto incrementale di una funzione f(x) nel punto x_0 con incremento h è:

$$\frac{f(x_0+h)-f(x_0)}{h}$$

Rappresenta il coefficiente angolare della retta secante passante per i punti $(x_0, f(x_0))$ e $(x_0 + h, f(x_0 + h))$.

Derivata Destra e Sinistra

- ullet Derivata destra: $f'_+(x_0) = \lim_{h o 0^+} rac{f(x_0+h) f(x_0)}{h}$
- Derivata sinistra: $f'_-(x_0) = \lim_{h o 0^-} rac{f(x_0+h) f(x_0)}{h}$

Una funzione è derivabile in x_0 se e solo se esistono entrambe le derivate destra e sinistra e sono uguali tra loro.

Derivate Fondamentali

Funzione	Derivata
f(x) = c (costante)	f'(x)=0
f(x) = x	f'(x)=1
$f(x)=x^n$	$f'(x) = n \cdot x^{n-1}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$
$f(x) = e^x$	$f'(x)=e^x$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$
$f(x)=a^x$	$f'(x) = a^x \cdot \ln(a)$
$f(x) = \log_a(x)$	$f'(x) = rac{1}{x \cdot \ln(a)}$

Funzione	Derivata
f(x) = an(x)	$f'(x)=rac{1}{\cos^2(x)}=1+ an^2(x)$

Regole di Derivazione

Linearità

- (f(x) + g(x))' = f'(x) + g'(x)
- $(k \cdot f(x))' = k \cdot f'(x)$ dove k è una costante

Prodotto

Se $h(x) = f(x) \cdot g(x)$, allora:

$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quoziente

Se $h(x) = \frac{f(x)}{g(x)}$, allora:

$$h'(x) = rac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

Funzione Composta (Regola della Catena)

Se h(x) = f(g(x)), allora:

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Interpretazione Geometrica

La derivata $f'(x_0)$ rappresenta:

- La pendenza della retta tangente alla curva nel punto $(x_0, f(x_0))$
- Il tasso di variazione istantanea della funzione f rispetto a x nel punto x_{0}

Punti di non derivabilità

Una funzione può non essere derivabile in un punto x_0 quando:

- 1. Il grafico presenta una cuspide in x_{0}
- 2. Il grafico presenta un punto angoloso in x_{0}
- 3. La funzione presenta una discontinuità in x_{0}
- 4. La tangente al grafico in x_0 è verticale

Applicazioni delle Derivate

1. Crescenza e decrescenza:

- Se f'(x) > 0 in un intervallo, f(x) è crescente in quell'intervallo
- Se f'(x) < 0 in un intervallo, f(x) è decrescente in quell'intervallo

2. **Punti stazionari**: Sono i punti in cui f'(x) = 0. Possono essere:

- Massimi relativi: se f'(x) passa da positiva a negativa
- Minimi relativi: se f'(x) passa da negativa a positiva
- Punti di flesso a tangente orizzontale: se f'(x) non cambia segno

3. Concavità e convessità:

- Se f''(x) > 0 in un intervallo, il grafico è concavo verso l'alto
- Se f''(x) < 0 in un intervallo, il grafico è concavo verso il basso
- I punti in cui f''(x) = 0 e f''(x) cambia segno sono flessi