MAST20005/MAST90058: Week 12 Solutions

1. (a) Working with just a single observation to start with. The score function is,

$$\frac{\partial}{\partial p}\log p^x(1-p)^{1-x} = \frac{x}{p} - \frac{1-x}{1-p}.$$

Differentiating once more gives,

$$\frac{\partial}{\partial p} \left(\frac{x}{p} - \frac{1-x}{1-p} \right) = -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}.$$

Recall that $\mathbb{E}(X) = p$. Therefore the Fisher information is,

$$-\mathbb{E}\left[-\frac{X}{p^2} - \frac{1-X}{(1-p)^2}\right] = \frac{p}{p^2} + \frac{1-p}{(1-p)^2} = \frac{1}{p(1-p)}.$$

Thus the Cramér–Rao lower bound, using the full sample, is p(1-p)/n.

- (b) Since $\operatorname{var}(\bar{X}) = n^{-2}(\operatorname{var}(X_1) + \cdots + \operatorname{var}(X_n)) = p(1-p)/n$, the sample proportion \bar{X} attains the Cramér–Rao lower bound.
- 2. (a) The score function is,

$$\frac{\partial}{\partial \theta} \log \left\{ \left(\frac{1}{\sqrt{2\pi\theta}} \right)^n e^{-\sum_i (x_i - \mu)^2 / (2\theta)} \right\} = -\frac{n}{2\theta} + \sum_i \frac{(x_i - \mu)^2}{2\theta^2}.$$

Setting this equal to 0 and solving for θ gives the result.

(b) Working with just a single observation to start with,

$$\frac{\partial^2}{\partial \theta^2} \log \left\{ \left(\frac{1}{\sqrt{2\pi\theta}} \right) e^{-(x-\mu)^2/(2\theta)} \right\} = \frac{\partial}{\partial \theta} \left\{ -\frac{1}{2\theta} + \frac{(x-\mu)^2}{2\theta^2} \right\} = \frac{1}{2\theta^2} - \frac{(x-\mu)^2}{\theta^3}.$$

Since $\mathbb{E}[(X - \mu)^2] = \theta$, the Fisher information is,

$$-\mathbb{E}\left[\frac{1}{2\theta^{2}} - \frac{(X - \mu)^{2}}{\theta^{3}}\right] = -\frac{1}{2\theta^{2}} + \frac{1}{\theta^{2}} = \frac{1}{2\theta^{2}},$$

and the Cramér-Rao lower bound, using the full sample, is $2\theta^2/n$.

- (c) $N(\theta, 2\theta^2/n)$
- (d) Note that $(X_i \mu)^2/\theta \sim \chi_1^2$. Thus, $n\hat{\theta}/\theta = \sum_i (X_i \mu)^2/\theta \sim \chi_n^2$.
- 3. (a) Writing out the likelihood,

$$f(x_1, \dots, x_n \mid \theta) \propto \theta^{-2n} \left(\prod_{i=1}^n x_i \right) e^{-\sum_{i=1}^n x_i / \theta}$$
$$= \left(\prod_{i=1}^n x_i \right) e^{-y/\theta - 2n \log \theta}$$

and the factorisation theorem yields that $Y = \sum_{i=1}^{n} X_i$ is sufficient for θ .

1

(b) The log-likelihood and score functions are, respectively:

$$\ell(\theta) = -2n \log(\theta) - \frac{y}{\theta} + \text{const.}$$

$$s(\theta) = \frac{\partial \ell}{\partial \theta} = -\frac{2n}{\theta} + \frac{y}{\theta^2}$$

- (c) Solving $s(\theta) = 0$ gives the MLE, $\hat{\theta} = \bar{X}/2$.
- (d) Differentiating the score function and treating the data as random gives,

$$-\frac{\partial^2 \ell}{\partial \theta^2} = -\frac{2n}{\theta^2} + \frac{2Y}{\theta^3},$$

which has expected value,

$$\mathbb{E}\left(-\frac{\partial^2 \ell}{\partial \theta^2}\right) = -\frac{2n}{\theta^2} + \frac{2n(2\theta)}{\theta^3} = \frac{2n}{\theta^2}.$$

Hence the Cramér–Rao lower bound is $\theta^2/(2n)$.

(e) The maximum likelihood estimate is $\hat{\theta} = 10.5/2 = 5.25$ and an approximate 95% confidence interval is $5.25 \pm 1.96 \times \sqrt{5.25^2/70} = (4.02, 6.48)$.

For questions 4–6, only the answers are given below. For full details of the derivation see the video consultation *Understanding Sufficiency* on the LMS.

- 4. Let the first five tosses of the coin be X_1, \ldots, X_5 and the second five be Y_1, \ldots, Y_5 . Then $T = \sum_{i=1}^5 X_i \sum_{i=1}^5 Y_i$ is sufficient for p.
- 5. Suppose we observe a random sample of size n.
 - (a) $X_{(n)}$ is sufficient for θ .
 - (b) $X_{(1)}$ and $X_{(n)}$ are jointly sufficient for θ .
- 6. Suppose we observe a random sample of size n.
 - (a) $\sum_{i} X_{i}$ is sufficient for θ .
 - (b) $X_{(1)}$ is sufficient for θ .
 - (c) $\sum_{i} X_{i}$ and $X_{(1)}$ are jointly sufficient for θ .
- 7. (a) Let the sample frequencies (counts) of the three possible observations be f_0 , f_1 , f_2 . Note that $f_0 + f_1 + f_2 = n$. The likelihood function is, $L(\theta) = (1 - \theta)^{f_0} (\frac{3}{4}\theta)^{f_1} (\frac{1}{4}\theta)^{f_2} = [3^{f_1}] [(1 - \theta)^{f_0} (\frac{1}{4}\theta)^{n-f_0}]$. Therefore, by the factorisation theorem we see that f_0 is sufficient for θ . (Note that we referred to this statistic as Z in the week 3 problems.)
 - (b) We want to use an estimator based on this statistic in order to most efficiently capture the relevant information. This explains why the esimator based on \bar{X} was not optimal: it is trying to use information that distinguishes between observations of 1 and 2, which is irrelevant information.