Metódy asociačných pravidiel a ich aplikácie

Vasyl Khorev

Vedúci bakalárskej práce: doc. RNDr. Ľubomír Antoni, PhD. Konzultant: prof. RNDr. Stanislav Krajči, PhD. Oponent: prof. RNDr. Gabriel Semanišin, PhD.

Prírodovedecká fakulta Univerzita Pavla Jozefa Šafárika v Košiciach

Obhajoba bakalárskej práce Košice, 19. jún 2024

Motivácia

- Hľadanie vzťahov (súvislosti) medzi atribútmi v dátach.
- Analýza nákupného koša môže zlepšiť marketingové stratégie a zvýšiť predaj.
- Aplikácia v zdravotníctve, napríklad nájdenie vzťahov medzi vykonanými procedúrami a stanovenými diagnózami.
- Zlepšenie bezpečnosti na cestách pomocou identifikácie vzťahov medzi podmienkami a nehodami.

Príklad

Asociačné pravidlo $\{zemiakové lupienky\} \Rightarrow \{nápoj\}.$

Ciele

- Popísať známe algoritmy pre generovanie asociačných pravidiel.
- Implementovať známe algoritmy pre generovanie asociačných pravidiel a porovnať ich výhody a nevýhody.
- Aplikovať implementované algoritmy na vybranú údajovú sadu.

Základné definície

Definícia

Uvažujme množinu $\mathcal{I}=\{i_1,i_2,\ldots,i_m\}$, pričom m je prirodzené číslo a prvky tejto množiny sú literály, ktoré budeme nazývať aj položky. Ľubovoľnú podmnožinu \mathcal{T} množiny \mathcal{I} budeme nazývať množina položiek alebo transakcia.

Príklad

Uvažujme množinu $\mathcal{I} = \{ \text{mlieko}, \text{maslo}, \text{vajcia}, \text{chlieb} \}$. Potom transakciou môže byt množina $\{ \text{vajcia}, \, \text{maslo}, \, \text{chlieb} \}$.

Základné definície

Definícia

Databáza \mathcal{D} je postupnosť transakcií (položkových množín).

Príklad

Uvažujme postupnosť

 $\mathcal{D} = (\{\text{chlieb}, \text{maslo}\}, \{\text{mlieko}\}, \{\text{vajcia}, \text{maslo}, \text{chlieb}\}).$

Tabuľka: Ekvivalentná reprezentácia databázy \mathcal{D} .

Transakcia	mlieko	maslo	vajcia	chlieb
1	0	1	0	1
2	1	0	0	0
3	0	1	1	1

Podpora pravidla (support)

Definícia

Definujme funkciu $\operatorname{support}(X)$ pre množinu položiek X takto:

$$\operatorname{support}(X) = \frac{\operatorname{počet\ transakci\'i}\ v\ \mathcal{D}\ \operatorname{obsahuj\'ucich}\ X}{\operatorname{celkov\'y}\ \operatorname{počet\ transakci\'i}}$$

Príklad

Uvažujme databázu z predošlej snímky. Potom

$$support(\{maslo\}) = \frac{2}{3}.$$

Definícia

Množina X je frekventovaná, ak platí $\operatorname{support}(X) \ge \min_{\cdot} \sup_{\cdot} X$

Spoľahlivosť pravidla (confidence)

Definícia

Definujme funkciu confidence($X \Rightarrow Y$) pre pravidlo $X \Rightarrow Y$ takto:

$$\operatorname{confidence}(X \Rightarrow Y) = \frac{\operatorname{support}(X \cup Y)}{\operatorname{support}(X)}$$

Príklad

Uvažujme databázu z predošlej snímky. Potom

$$\operatorname{confidence}(\{\operatorname{maslo}\}\Rightarrow \{\operatorname{chlieb}\}) = \frac{\operatorname{support}(\{\operatorname{maslo},\operatorname{chlieb}\})}{\operatorname{support}(\{\operatorname{maslo}\})} = 1.$$

Asociačné pravidlo

Definícia

Asociačné pravidlo $X \Rightarrow Y$ je dvojica disjunktných množín $X, Y \subseteq \mathcal{I}$, takých že:

• množiny X a Y sú frekventované:

$$\operatorname{support}(X \cup Y) \ge \min \sup$$

 $oldsymbol{\circ}$ ak je X frekventovaná, tak aj Y je frekventovaná:

$$\operatorname{confidence}(X \Rightarrow Y) \ge \min_{\cdot} \operatorname{conf}$$

Hľadanie asociačných pravidiel

Problém hľadania asociačných pravidiel je možné rozdeliť do dvoch etáp:

- Nájsť všetky frekventované množiny položiek.
- Použitím nájdených frekventovaných položiek Y vygenerovať pravidlá:

$$X \Rightarrow Y \setminus X$$
 pre $X \subset Y$, $X \neq \emptyset$.

Prvé vlastné výsledky v práci:

- Príprava vlastných príkladov, tabuliek, diagramov a obrázkov pre metódu Apriori a FP-growth.
- Programátori väčšinou používajú tieto metódy priamo z knižníc, naším cieľom bolo tieto metódy matematicky popísať a simulovať ich výpočet do posledného detailu.
- Niektoré časti týchto algoritmov naprogramované aj od úplného základu.

Apriori

Poznámka

Ak je množina Y nefrekventovaná, potom každá nadmnožina $X \supseteq Y$ je nefrekventovaná.

Postup algoritmu:

- 1 začíname jednoprvkovými frekventovanými množinami.
- e generujeme (k+1)-prvkové množiny, tak že zjednotíme k-prvkové množiny, ak máju spoločných prvých k-1 prvkov.
 - odstránime tie, ktoré nespĺňajú minimálnu prahovú hodnotu podpory.
- takto pokračujeme, kým nedostaneme prázdnu množinu.

Množina	Podpora
$\{I_1, I_2\}$	4
$\{I_1, I_3\}$	4
$\{I_1, I_5\}$	2
$\{I_2, I_3\}$	4
$\{I_2, I_4\}$	2
$\{I_2, I_5\}$	2

_		7.	
Iа	hu	ľka:	1 -
	o u	·····	2

Množina	Podpora
$\{I_1, I_2, I_3\}$	2
$\{I_1, I_2, I_5\}$	2
$\{I_1, I_3, I_5\}$	1
$\{I_2, I_3, I_4\}$	0
$\{I_2, I_4, I_5\}$	0
$\{I_2, I_3, I_4\}$	0

Tabuľka: C₃

Trai	ารล	akci	a
I_1 , I	2,	<i>I</i> ₅	
I_2 , I	4		
I_2 , I	3		
I_1 , I	2,	I_4	
I_1 , I	3		
I_2 , I	3		
I_1 , I	3		
I_1 , I	2,	<i>I</i> ₃ ,	I_5
I_1 , I	2,	I_3	

Tabuľka: DB

FP-growth

Umožňuje hľadanie frekventovaných množín bez generovania kandidátnych množín.

- Krok 1: dvoma prechodmi databázou zostrojiť kompaktný FP-strom.
 - zostupne usporiadať položky v transakciách podľa hodnoty podpory; nefrekventovane položky vymazať.
 - 2 zostrojiť strom.
- Krok 2: Vyextrahovať frekventované množiny z FP-stromu.
 - od listov smerom ku koreňu (zdola nahor): najprv nájsť frekventované množiny obsahujúce $\{e\}$, $\{e,a\}$..., potom $\{e,c\}$, $\{e,c,b\}$ atď...

Zostupne usporiadame frekventované položky $i \in \mathcal{I}$ podlá hodnoty $\operatorname{support}(i)$.

Transakcie	Usporiadané
a,d,f	d,a
a,c,d,e	d,c,a,e
b,d	d,b
b,c,d	d,b,c
b,c	b,c
a,b,d	d,b,a
b,d,e	d,b,e
b,c,e,g	b,c,e
c,d,f	d,c
a,b,d	d,b,a

 $\rm f$ a $\rm g$ nie sú frekventované pri $\min_\sup = 3$

Transakcie	Usporiadané
a,d,f	d,a
a,c,d,e	d,c,a,e
b,d	d,b
b,c,d	d,b,c
b,c	b,c
a,b,d	d,b,a
b,d,e	d,b,e
b,c,e,g	b,c,e
c,d,f	d,c
a,b,d	d,b,a

Usporiadané
d,a
d,c,a,e
d,b
d,b,c
b,c
d,b,a
d,b,e
b,c,e
d,c
d,b,a

Usporiadané
d,a
d,c,a,e
d,b
d,b,c
b,c
d,b,a
d,b,e
b,c,e
d,c
d,b,a

Usporiadané
d,a
d,c,a,e
d,b
d,b,c
b,c
d,b,a
d,b,e
b,c,e
d,c
d,b,a

Transakcie	Usporiadané
a,d,f	d,a
a,c,d,e	d,c,a,e
b,d	d,b
b,c,d	d,b,c
b,c	b,c
a,b,d	d,b,a
b,d,e	d,b,e
b,c,e,g	b,c,e
c,d,f	d,c
a,b,d	d,b,a

Transakcie	Usporiadané
a,d,f	d,a
a,c,d,e	d,c,a,e
b,d	d,b
b,c,d	d,b,c
b,c	b,c
a,b,d	d,b,a
b,d,e	d,b,e
b,c,e,g	b,c,e
c,d,f	d,c
a,b,d	d,b,a

Transakcie	Usporiadané		
a,d,f	d,a		
a,c,d,e	d,c,a,e		
b,d	d,b		
b,c,d	d,b,c		
b,c	b,c		
a,b,d	d,b,a		
b,d,e	d,b,e		
b,c,e,g	b,c,e		
c,d,f	d,c		
a,b,d	d,b,a		

Transakcie	Usporiadané		
a,d,f	d,a		
a,c,d,e	d,c,a,e		
b,d	d,b		
b,c,d	d,b,c		
b,c	b,c		
a,b,d	d,b,a		
b,d,e	d,b,e		
b,c,e,g	b,c,e		
c,d,f	d,c		
a,b,d	d,b,a		

Transakcie	Usporiadané		
a,d,f	d,a		
a,c,d,e	d,c,a,e		
b,d	d,b		
b,c,d	d,b,c		
b,c	b,c		
a,b,d	d,b,a		
b,d,e	d,b,e		
b,c,e,g	b,c,e		
c,d,f	d,c		
a,b,d	d,b,a		

Transakcie	Usporiadané
a,d,f	d,a
a,c,d,e	d,c,a,e
b,d	d,b
b,c,d	d,b,c
b,c	b,c
a,b,d	d,b,a
b,d,e	d,b,e
b,c,e,g	b,c,e
c,d,f	d,c
a,b,d	d,b,a

Podmienený FP-strom

Strom transakcií, ktoré obsahujú položku e.

Obr.: Podmienený FP-strom T|e

Dataset

Údaje o predaji z pekárne "The Bread Basket" v Edinburghu:

- 20507 záznamov
- viac ako 9000 riadkov
- 5 atribútov

No.	Items	DateTime	Daypart	DayType
1	Bread	30. 10. 2016 9:58	Morning	Weekend
2	Scandinavian	30. 10. 2016 10:05	Morning	Weekend
2	Scandinavian	30. 10. 2016 10:05	Morning	Weekend
:	:	:	:	:
9683	Coffee	04. 09. 2017 14:57	Afternoon	Weekend
9683	Pastry	04. 09. 2017 14:57	Afternoon	Weekend
9684	Smoothies	04.09.2017 15:04	Afternoon	Weekend

Tabuľka: Ukážka použitého dátového súboru

Parametre a výsledný dátový rámec

Prahové hodnoty parametrov:

• podpora: $\min_{\text{sup}} = 0.03$.

• spoľahlivosť: \min_{\cdot} conf = 0,5.

No.	Položka 1	 Položka 94	Afternoon	Evening	Morning	Night
1	0	 0	0	0	1	0
2	0	 0	0	0	1	0
i	:	 ÷	i	i	÷	÷
9683	0	 0	0	1	0	0
9684	0	 0	0	1	0	0

Tabuľka: Výsledná tabuľka po transformácii.

Výsledky

No.	Antecedents	Consequents	Support	Confidence
1	{Soup}	$\{Afternoon\}$	0,032647	0,947853
2	{Sandwich, Coffee}	$\{Afternoon\}$	0,033492	0,875691
:	:	:	:	:
12	{Medialuna}	{Coffee}	0,035182	0,569231
13	{Hot chocolate}	$\{Afternoon\}$	0,033069	0,567029
14	${Morning, Pastry}$	{Coffee}	0,033492	0,554196
:	:	:	:	:
18	{Sandwich}	{Coffee}	0,038246	0,532352
19	{Cake}	$\{Coffee\}$	0,054727	0,526958
:	:	:	:	:
22	{Morning}	{Coffee}	0, 223244	0,514989
23	$\{Bread\}$	$\{Afternoon\}$	0, 164395	0,502422

Tabuľka: Získané asociačné pravidla so spoľahlivosťou viac ako 50 %.

Porovnanie času behu v závislosti od rozmeru DB

Vplyv prahovej hodnoty podpory na čas behu

Literatúra

- Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 2 (June 2000), 1–12.
 https://doi.org/10.1145/335191.335372
- Christian Borgelt. 2005. An implementation of the FP-growth algorithm. In Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations (OSDM '05). Association for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/1133905.1133907
- Voroncov Konstantin. 2023. Mašynnoe obučenie (Strojové učenie, v ruštine) [online][cit. 02.04.2024]. Dostupne na: www.machinelearning.ru

Ďakujem za pozornosť

Otázky

- Vo výsledkoch uvádzate asociačné pravidlá, ktoré majú na pravej strane pravidla len jednu položku. Je možné generovať aj viacero položiek súčasne na pravej strane pravidla?
 - Áno, každý z implementovaných algoritmov dokáže generovať aj takéto pravidlá. Dôvod, prečo takéto pravidlá neboli vygenerované, spočíva v charakteristikách použitého datasetu.
- Zoznam použitej literatúry je pomerne dlhý. Používali ste ju naozaj v takom rozsahu?
- Poznáte metódu FCA Formal Concept Analysis? Líši sa nejako principiálne od vami skúmaných metód?