ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

PITANJA

- 1. Izlazna karakteristika nekog tranzistora prikazana je na slici. Odrediti strminu g_m i ulazni dinamički otpor r_{be} u radnoj točki A. $U_T = 25$ mV. (1 bod)
 - a) $g_m = 200 \text{ mA/V}, r_{be} = 100 \Omega,$
 - **b)** $g_m = 196 \text{ mA/V}, r_{be} = 250 \Omega,$
 - c) $g_m = 196 \text{ mA/V}, r_{be} = 5 \Omega,$
 - **d)** $g_m = 8 \text{ mA/V}, r_{be} = 250 \Omega,$
 - e) $g_m = 1200 \text{ mA/V}, r_{be} = 5 \Omega.$

- 2. Tranzistor radi u normalnom aktivnom području. Ako se, uz nepromijenjen napon U_{CB} , po iznosu poveća napon U_{BE} , što će se dogoditi sa iznosom struje kolektora i faktorom efikasnosti emitera γ ? (1 bod)
 - a) Struja kolektora će se povećati, γ ostaje isti.
 - b) Struja kolektora će se smanjiti, γ ostaje isti.
 - c) Struja kolektora ostaje ista, γ ostaje isti.
 - d) Struja kolektora će se povećati, γ će se povećati.
 - e) Struja kolektora će se povećati, y će se smanjiti.
- 3. Kakvo je naponsko pojačanje pojačala na slici te u kakvom su faznom odnosu signali u_{ul} i u_{iz} ? (1 bod)
 - (a) $|A_V| < 1$; u_{ul} i u_{tz} su u fazi.
 - b) $|A_{V}| > 1$; u_{ul} i u_{iz} su u fazi.
 - c) $|A_V| = 1$; u_{ul} i u_{iz} su u fazi.
 - d) $|A_{\nu}| > 1$; u_{ul} i u_{iz} su u protufazi.
 - e) $|A_{\nu}| < 1$; u_{ul} i u_{iz} su u protufazi.

- **4**. Za sklop prikazan na slici vrijedi da je $R_C = R_T = 1$ kΩ. Što se dešava ako R_C ostane isti, a R_T se promijeni na 2 kΩ? (1 **bod**)
 - Struja I_{CQ} u statičkog radnoj točki ostaje ista, naponsko pojačanje $|A_{\nu}|$ pada.
 - b) Struja I_{CQ} u statičkog radnoj točki ostaje ista, naponsko pojačanje $|A_{\nu}|$ raste.
 - c) Struja I_{CQ} u statičkog radnoj točki pada, naponsko pojačanje $|A_{\nu}|$ raste.
 - d) Struja I_{CQ} u statičkog radnoj točki pada, naponsko pojačanje $|A_F|$ pada.
 - e) Struja I_{CQ} u statičkog radnoj točki raste, naponsko pojačanje $|A_{r}|$ raste.

5. Na diferencijsko pojačalo na slici priključeni su naponi u_{g1} =-5sin ωt mV i u_{g2} =15sin ωt mV. Koliki su zajednički napon u_z i iznos diferencijskog napona u_d ? (1 bod)

- (a) $u_z = 10\sin\omega t \,\mathrm{mV}$, $|u_d| = 20\sin\omega t \,\mathrm{mV}$,
- **b)** $u_z = 0 \text{ mV}, |u_d| = 10 \sin \omega t \text{ mV},$
- c) $u_1 = 5\sin \omega t \text{ mV}$, $|u_d| = 20\sin \omega t \text{ mV}$,
- d) $u_z = 5\sin\omega t \,\text{mV}$, $|u_d| = 10\sin\omega t \,\text{mV}$,
- e) $u_{-} = 10 \sin \omega t \text{ mV}$, $|u_{d}| = 10 \sin \omega t \text{ mV}$.

6. U simetričnom diferencijskom pojačalu sa slike iz prethodnog pitanja pojačanja za asimetrične izlaze su $A_{Vz1} = u_{iz1} / u_z \;, \; A_{Vz2} = u_{iz2} / u_z \;, \; A_{Vd1} = u_{iz1} / u_d \; \; \text{i} \; \; A_{Vd2} = u_{iz2} / u_d \;, \; \text{a za simetrični izlaz} \; \; A_{Vz} = (u_{iz2} - u_{iz1}) / u_z \; \; \text{i} \; \; \text{i} \; \; A_{Vd2} = u_{iz2} / u_d \;, \; \text{i} \; \; \text{i}$ $A_{Vd} = (u_{i=2} - u_{iz1})/u_d$. Uz $|A_{Vz1}| = |A_{Vz2}| = 0,1$ i $|A_{Vd1}| = |A_{Vd2}| = 50$ iznosi pojačanja A_{Vz} i A_{Vd} su (1 bod):

- **a)** $|A_{V^-}| = 0,1$ i $|A_{Vd}| = 100$,
- **b)** $|A_{Vz}| = 0.1 \text{ i } |A_{Vd}| = 50,$ **c)** $|A_{Vz}| = 0.2 \text{ i } |A_{Vd}| = 50,$
- **(d)** $|A_{Vz}| = 0 \text{ i } |A_{Vd}| = 100$,
- e) $|A_{V-}| = 0.2 \text{ i } |A_{Vd}| = 100.$

7. U sklopu bipolarne sklopke na slici tranzistor radi točno na granici zasićenja i normalnog aktivnog područja uz $u_{UL} = U_{CC}$. Što će se dogoditi ako tranzistor zamijenimo s tranzistorom koji ima weći β ? (1 bod)

- (a) Tranzistor će raditi u normalnom aktivnom području i struja I_C bit će manja.
- b) Tranzistor će raditi u zapiranju i struja I_C bit će manja.
- Tranzistor će raditi u zasićenju i struja I_C bit će veća.
- d) Tranzistor će raditi u zasićenju i struja i I_C bit će manja.
- Tranzistor će raditi u normalnom aktivnom području i struja I_C bit će veća.

8. Koliko iznosi izlazni napon $u_{\rm IZI}$ sklopa na slici? (1 bod)

- a) 1 V
- **b)** 20 V
- c) -10 V
- -1 V
- -20 V

- 9. Koliko iznosi razlika izlaznih napona $u_{1Z1} u_{1Z2}$ u sklopu iz prethodnog pitanja? (1 bod)
 - a) +10 V
 - b) +1 V
 - c) 0 V
 - **d)** -20 V
 - e) -1 V
- 10. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon ± 2.8 V? Zadano je $U_D = 0.7$ V. (1 bod)
 - a) +2,8 V
 - b) +3,5 V
 - c) -1.4 V
 - d) -2.8 V
 - (e) +1,4 V

- 11. Ako se u sklopu iz prethodnog pitanja napon smanji s +2,8 V na 0 V, koliko će iznositi izlazni napon nakon promjene? (1 bod)
 - a) -1,4 V
 - **(b)** +1,4 V
 - c) -2.8 V
 - d) +2.8 V
 - e) +3,5 V

ZADACI

- **ZADATAK 1.** Za sklop na slici a) priključen je ulazni napon $u_{UL}(t)$ prema slici b). U t = 0 ms napon na kondenzatorima C_1 i C_2 iznosi 0 V.
- a) Odrediti vremensku konstantu. (0,5 boda)
- b) Napisati izraz za izlazni napon u_{lZ} u intervalu $0 < t < \infty$ ms, te izračunati vrijednosti izlaznog napona u t = 0 ms i 5 ms. (2 boda)
- c) Na istom grafu nacrtati ulazni i izlazni napon. (0,5 boda)

ZADATAK 2. Idealni *n*-kanalni silicijski MOSFET s parametrom modulacije dužine kanala λ =0 u radnoj točki A ima izlazni dinamički otpor 1 k Ω i faktor naponskog pojačanja 5. Napon U_{DSA} u radnoj točki A iznosi 1,67 V.

- a) Odrediti strujni koeficijent K, napon praga U_{GS0} te napon U_{GSA} u radnoj točki A, ako uz U_{GSB} =2 U_{GSA} i U_{DSB} = U_{DSA} struje poraste na I_{DB} =15 mA. (2 boda)
- b) U kojem području rada se nalazi točka A? (0,5 boda)
- c) Kojeg je tipa MOSFET? (0,5 boda)

ZADATAK 3. Silicijski *npn* tranzistor ima homogene koncentracije primjesa u emiteru i bazi iznosa $N_{DE} = 2 \cdot 10^{18}$ cm⁻³ i $N_{AB} = 3 \cdot 10^{16}$ cm⁻³. Pokretljivosti manjinskih nosilaca su $\mu_{pE} = 270$ cm²/Vs i $\mu_{nB} = 540$ cm²/Vs. Rekombinacijska struja baze iznosi $I_R = 10$ μA. Efektivna širina baze je 1,1 μm, a emitera 1,7 μm. Širine baze i emitera su puno manje od difuzijskih duljina manjinskih nosilaca. Površina tranzistora je 1 mm². Naponi na spojevima su $U_{BE} = 0.55$ V i $U_{CB} = 5$ V. Pretpostaviti $U_T = 25$ mV i $I_{CB0} \approx 0$.

- a) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora.(2 boda)
- b) Izračunati faktore pojačanja α i β , te bazni transportni faktor. (1 bod)
- c) Odrediti vrijeme života elektrona u bazi. (1 bod)
- d) Skicirati raspodjelu manjinskih nosilaca u tranzistoru (širina kolektora je puno veća od difuzijske duljine manjinskih nosilaca, $N_{DC} < N_{AB} < N_{DE}$). (1 bod)

ZADATAK 4. Za pojačalo sa slike zadano je: $U_{CC} = U_{EE} = 10 \text{ V}$, $R_g = 500 \Omega$, $R_C = 6 \text{ k}\Omega$, $R_{E1} = 500 \Omega$, $R_{E2} = 8 \text{ k}\Omega$ i $R_T = 4 \text{ k}\Omega$. Parametri tranzistora su $\beta \approx h_{fe} = 100$ i $U_{\gamma} = 0.7 \text{ V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Izračunati struju I_{CQ} i napon U_{CEQ} u statičkoj radnoj točki, te dinamički otpor r_{be} (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu, izvesti izraze za pojačanja $A_V = u_{iz}/u_{ul}$ i $A_I = i_{iz}/i_{ul}$, te izračunati pojačanja A_V i A_I (2 boda).
- c) Izvesti izraz i izračunati ulazni otpor $R_{ul} = u_{ul}/i_{ul}$ (1 bod).

ZADATAK 5. Za sklop na slici odrediti struju i_{iz} . Zadano je $u_{ul} = 0.5 \sin \omega t \, V$, $R_1 = 1 \, k\Omega$, $R_2 = 2 \, k\Omega$ i $R_T = 3 \, k\Omega$. Operacijsko pojačalo je idealno. (5 bodova)

