0.1 半群、幺半群和群

定义 0.1 (二元运算)

如果 G 是一个非空集合, 每个函数 $G \times G \to G$ 叫作 G 上的一个**二元运算**. 对 (a,b) 在一个二元运算之下的象有许多常用的记号:ab(乘法记号),a+b(加法记号), $a\cdot b$, $a\times b$ 等等.

 $\dot{\mathbf{z}}$ 为方便起见, 我们在本章中一般采用乘法记号, 并且把 ab 叫作 a 和 b 的积. 一个集合上可以有许多个不同的二元运算 (例如在 \mathbb{Z} 上由 $(a,b) \longmapsto a+b$ 和 $(a,b) \longmapsto ab$ 分别给出**通常的加法**和**乘法运算**).

定义 0.2 (半群和交换半群)

设G是一个非空集合,如果G上满足

(i) 结合律: $a(bc) = (ab)c(对所有 a, b, c \in G)$ 的一个二元运算, 便称 G 是一个半群.

如果一个半群 G 包含有一个

(ii)(双侧) 幺元素 $e \in G$, 使得 ae = ea = a(对所有 $a \in G$), 便称 G 是一个幺半群.

如果幺半群 G 满足

(iii) 对于每个 $a \in G$ 均存在 (双侧) 逆元素 $a^{-1} \in G$, 使得 $a^{-1}a = aa^{-1} = e$, 便称 G 是一个群.

如果半群 G 的二元运算满足

(iv) 交换律:ab = ba(对所有 $a, b \in G$), 便称 G 为交换半群或者 Abel 半群.

注 如果 G 是幺半群而其上的二元运算写成乘法,则 G 的幺元素永远写成 e. 如果二元运算写成加法,则 $a+b(a,b\in G)$ 叫做 a 与 b 的和,并且幺元素写成 0. 这时又如果 G 是群,则 $a\in G$ 的逆元素表示成 -a. 我们以 a-b 表示 a+(-b). Abel 群常常写成加法形式.

例题 $0.1(M_n(\mathbb{R}),\cdot)$ 是一个含幺(乘法)半群.

证明 $\forall A, B, C \in (M_n(\mathbb{R}), \cdot)$,则不妨设 $A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n}, C = (c_{ij})_{n \times n}$. 再设 $A \cdot B = (d_{ij})_{n \times n}, B \cdot C = (e_{ij})_{n \times n}, (A \cdot B) \cdot C = (f_{ij})_{n \times n}, A \cdot (B \cdot C) = (g_{ij})_{n \times n}$. 于是

$$d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kl}, e_{ij} = \sum_{k=1}^{n} b_{ik} c_{kl}.$$

其中 $i, j = 1, 2, \cdots, n$.

从而

$$f_{ij} = \sum_{l=1}^{n} d_{il}c_{lj} = \sum_{l=1}^{n} \left(\sum_{k=1}^{n} a_{ik}b_{kl} \right) \cdot c_{lj} = \sum_{l=1}^{n} \sum_{k=1}^{n} a_{ik}b_{kl}c_{lj},$$

$$g_{ij} = \sum_{k=1}^{n} a_{ik} e_{kj} = \sum_{k=1}^{n} a_{ik} \cdot \left(\sum_{l=1}^{n} b_{kl} c_{lj}\right) = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik} b_{kl} c_{lj}.$$

由二重求和号的可交换性, 可知 $f_{ij}=g_{ij}, \forall i,j\in\{1,2,\cdots,n\}$. 故 $(A\cdot B)\cdot C=A\cdot (B\cdot C)$.

记
$$I_n = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \in M_n(\mathbb{R}),$$
 于是 $\forall X \in M_n(\mathbb{R}),$ 则不妨设 $X = (x_{ij})_{n \times n}, I_n = (\delta_{ij})_{n \times n}.$ 其中 $\delta_{ij} = (\delta_{ij})_{n \times n}$ 是 $\delta_{ij} = ($

 $\begin{cases} 1, \exists i = j \text{ 时,} \\ 0, \exists i \neq j \text{ 时.} \end{cases}$. 再设 $I_n \cdot X = (x'_{ij})_{n \times n}, X \cdot I_n = (x''_{ij})_{n \times n},$ 于是由矩阵乘法的定义可知

$$x'_{ij} = \sum_{k=1}^{n} x_{ik} \delta_{kj} = x_{ij} \delta_{jj} = x_{ij}.$$

$$x_{ij}^{"} = \sum_{k=1}^{n} \delta_{ik} x_{kj} = \delta_{ii} x_{ij} = x_{ij}.$$

故 $x'_{ij} = x''_{ij} = x_{ij}$, $\forall i, j \in \{1, 2, \dots, n\}$. 从而 $X = I_n \cdot X = X \cdot I_n$. 因此 I_n 是 $(M_n(\mathbb{R}), \cdot)$ 的单位元. 综上所述, $(M_n(\mathbb{R}), \cdot)$ 是一个含幺 (乘法) 半群.

例题 0.2 常见的群

- 1. 我们称只有一个元素的群为平凡群,记作 e. 其中的二元运算是 $e \cdot e = e$.
- 2. 常见的加法群有 (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +), (\mathbb{C} , +) 等. 这些加法群分别称为整数加群、有理数加群、实数加群、复数加群.
- 3. 常见的乘法群有 (\mathbb{Q}^{\times} ,+), (\mathbb{R}^{\times} ,+), (\mathbb{C}^{\times} ,+) 等, 其中 \mathbb{Q}^{\times} = $\mathbb{Q}\setminus 0$, 类似地定义其余两个集合. 这些乘法群分别称 为有理数乘群、实数乘群、复数称群.
- 4. 在向量空间中,n 维欧式空间对加法构成群即 (\mathbb{R}^n , +). 类似地 (\mathbb{C}^n , +), (\mathbb{Q}^n , +), (\mathbb{Z}^n , +) 也是群. 对于这些群, 单位元都是零向量, 加法逆元则是对每个坐标取相反数, 如 (x_1, \dots, x_n) 的加法逆元是 ($-x_1, \dots, -x_n$).
- 5. 所有的 $m \times n$ 矩阵也对加法构成群, 单位元都是零矩阵, 加法逆元则是对每一项取相反数. 对于 $n \times n$ 的实矩阵加法群, 我们记作 ($M(n, \mathbb{R})$, +), 类似地我们将 $n \times n$ 的复矩阵加法群记作 ($M(n, \mathbb{C})$, +).

证明 证明都是显然的.

定义 0.3 (阶)

势 |G| 叫作群 G 的**阶**. 如果 |G| 是有限的或者是无限的,则群 G 也分别叫做**有限的**或者**无限的**,也分别叫做**有限群**或者**无限群**.

定理 0.1

- (1) 如果 G 是幺半群, 则幺元素 e 是唯一的.
- (2) 如果 G 是群, 则
 - (i) $c \in G$ 并且 $cc = c \Rightarrow c = e$;
 - (ii) 对于所有的 $a,b,c \in G,ab = ac \Rightarrow b = c$, 同样地 $ba = ca \Rightarrow b = c$ (左消去律和右消去律);
- (iii) 对于每个 $a \in G$, 逆元素 a^{-1} 是唯一的;
- (iv) 对于每个 $a \in G,(a^{-1})^{-1} = a$;
- (v) 对于 $a, b \in G, (ab)^{-1} = b^{-1}a^{-1}$;
- (vi) 对于 $a, b \in G$, 方程 ax = b 和 ya = b 均在 G 中有唯一解: $x = a^{-1}b, y = ba^{-1}$.

证明 (1) 若 e' 也是 (双侧) 幺元素, 则 e' = e'e = e. 下证 (2).

- (i) $cc = c \Rightarrow c^{-1}(cc) = c^{-1}c \Rightarrow (c^{-1}c)c = c^{-1}c \Rightarrow ec = e \Rightarrow c = e$.
- (ii) $ab = ac \Rightarrow a^{-1}(ab) = a^{-1}(ac) \Rightarrow (a^{-1}a)b = (a^{-1}a)c \Rightarrow eb = ec \Rightarrow b = c.$ $ba = ca \Rightarrow (ba)a^{-1} = (ca)a^{-1} \Rightarrow b(a^{-1}a) = c(a^{-1}a) \Rightarrow be = ce \Rightarrow b = c.$
- (iii) 若 a' 也为 a 的逆元素, 则 $a^{-1}a = e = a'a$, 于是由 (ii) 可得 $a^{-1} = a'$.
- (iv) 由(双侧)逆元素的定义立得.
- (v) $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = (ae)a^{-1} = aa^{-1} = e$. 同理 $(b^{-1}a^{-1})(ab) = e$. 再根据 (iii) 可知 $(ab)^{-1} = b^{-1}a^{-1}$.
- (vi) 将 $x = a^{-1}b$ 代入方程 ax = b 可得 $ax = a(a^{-1}b) = (aa^{-1})b = eb = b$, 故 $x = a^{-1}b$ 是方程 ax = b 的解. 若 x = c 也是 ax = b 的解, 则 $ac = b \Rightarrow a^{-1}(ac) = a^{-1}b = (aa^{-1})c = a^{-1}b \Rightarrow ec = a^{-1}b \Rightarrow c = a^{-1}b$. 故 $x = a^{-1}b$ 是方程 ax = b 的唯一解. 类似可证 $y = ba^{-1}$ 是方程 ya = b 的唯一解.

命题 0.1

设 G 是半群,则 G 是群的充要条件是下面两条件成立:

(i) 存在一个元素 $e \in G$, 使得对所有 $a \in G$ 均有 ea = a(左幺元素);

(ii) 对于每个 $a \in G$, 均存在一个元素 $a^{-1} \in G$, 使得 $a^{-1}a = e(左逆)$.

注 如果改成"右幺元素"和"右逆",则类似的结果也成立.

证明 (⇒): 显然.

(\leftarrow): 先证若 $c \in G$ 且 cc = c, 则 c = e. 由 (i)(ii) 可知 $c^{-1}(cc) = c^{-1}c = e \Rightarrow (c^{-1}c)c = e \Rightarrow e = ec$, 从而再由 (i) 可得 c = e.

由于 $e \in G$, 从而 $G \neq \emptyset$. 如果 $a \in G$, 由 (ii) 可知 $(aa^{-1})(aa^{-1}) = a(a^{-1}a)a^{-1} = a(ea^{-1}) = aa^{-1}$, 从而由上述结论可知 $aa^{-1} = e$. 因此 a^{-1} 是 a 的双侧逆. 由于对每个 $a \in G$ 均有 $ae = (aa^{-1}a) = (aa^{-1})a = ea = a$, 从而 e 为双侧 幺元素. 因此 G 是群.

命题 0.2

设 G 是半群,则 G 是群的充要条件是对于所有 $a,b \in G$,方程 ax = b 和 ya = b 在 G 中均可解.

证明 (⇒): 由定理 0.1(iv)立得.

(\Leftarrow): 对 $\forall a \in G$, 取 b = a, 由 ya = b 可解, 故存在 $e \in G$, 使得对 $\forall a \in G$ 均有 ea = a. 对 $\forall a \in G$, 取 b = e, 由 ya = b 可解, 故对每个 $a \in G$, 都存在一个元素 $a^{-1} \in G$, 使得 $a^{-1}a = e$. 因此由命题 0.1可知 G 是群.
「例题 0.3 整数集合 \mathbb{Z} , 有理数集合 \mathbb{Q} 和实数集合 \mathbb{R} 对于通常加法都是无限 Abel 群. 对于通常的乘法都是幺半群但不是群 (0 没有逆). 但是 \mathbb{Q} 和 \mathbb{R} 的非零元素集合对于乘法分别形成无限 Abel 群. 偶整数集合对于乘法形成半群但

定理 0.2

不是幺半群.

假设 $R(\sim)$ 是幺半群 G 上的一个等价关系,并且对所有 $a_i,b_i\in G$,由 $a_1\sim a_2,b_1\sim b_2$ 可以导出 $a_1b_1\sim a_2b_2$.则 G 的所有 R 等价类组成的集合 G/R 对于二元运算 $(\bar{a})(\bar{b})=\overline{ab}$ 是幺半群.其中 \bar{x} 表示 $x\in G$ 的等价类. 幺半群 G 上满足此定理中条件的等价关系称作 G 上的一个**同余关系**.

如果 G 为 Abel 群, 则 G/R 也为 Abel 群.

证明 如果 $\bar{a}_1 = \bar{a}_2$ 并且 $\bar{b}_1 = \bar{b}_2(a_i, b_i \in G)$,由引论中第 4 节的 (20) 式有 $a_1 \sim a_2$ 和 $b_1 \sim b_2$. 由假设有 $a_1b_1 \sim a_2b_2$,从而再由 (20) 式 $\overline{a_1b_1} = \overline{a_2b_2}$. 因此可以定义 G/R 中的二元运算 (即与等价类代表元的选取无关). 这个二元运算 是满足结合律的,因为 $\bar{a}(\bar{b}\bar{c}) = \bar{a}(\bar{b}\bar{c}) = \overline{a(bc)} = \overline{(ab)c} = (\bar{a}\bar{b})\bar{c}$. 又由于 $(\bar{a})(\bar{e}) = \bar{ae} = \bar{a} = \bar{ea} = (\bar{e})(\bar{a})$,从而 \bar{e} 是幺元素,于是 G/R 为幺半群. 如果 G 为群,则 $\bar{a} \in G/R$ 显然有逆元素 $\overline{a^{-1}}$,因此 G/R 也是群. 类似地,G 的交换性导致 G/R 的交换性.

例题 0.4 假设 m 是固定的整数. 根据引论的定理 6.8 可知模 m 同余是加法群 \mathbf{Z} 上的同余关系. 以 \mathbf{Z}_m 表示 \mathbf{Z} 在模 m 同余之下的等价类集合. 由定理 0.2(采用加法记号) 知 \mathbf{Z}_m 是 Abel 群, 其加法由 $\bar{a}+\bar{b}=\overline{a+b}$ 给出 $(a,b\in\mathbf{Z})$. 引论中定理 6.8 的证明表明 $\mathbf{Z}_m=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}$, 从而 \mathbf{Z}_m 对于加法是 m 阶有限群, 叫作是模 m 整数 (加法) 群. 类似地, 由于 \mathbf{Z} 对于乘法是交换幺半群, 而模 m 同余对于乘法也是同余关系 (引论的定理 6.8), 从而 \mathbf{Z}_m 对于由 $(\bar{a})(\bar{b})=\overline{ab}(a,b\in\mathbf{Z})$ 给出的乘法是交换幺半群. 验证对于所有 $\bar{a},\bar{b},\bar{c}\in\mathbf{Z}_m$:

$$\bar{a}(\bar{b}+\bar{c})=\bar{a}\bar{b}+\bar{a}\bar{c},(\bar{a}+\bar{b})\bar{c}=\bar{a}\bar{c}+\bar{b}\bar{c}(分配律)$$

进而, 如果 p 为素数, 则 \mathbf{Z}_p 的非零元素形成 p-1 阶乘法群.

证明

例题 0.5 有理数加法群 Q 上的下列关系是同余关系:

$$a \sim b \iff a - b \in \mathbf{Z}$$

由定理 0.2, 等价类集合 (表示成 Q/Z) 对于由 $\bar{a}+\bar{b}=\overline{a+b}$ 给出的加法是 (无限)Abel 群.Q/Z 叫作模 1 有理数群.

证明

定义 0.4 (有意义乘积和标准 n 元乘积)

设 G 是一个半群, $\{a_1, a_2, \dots\}$ 是 G 中任意一个元素序列,

(i) 我们归纳地定义 a_1, \ldots, a_n (以这种排列次序) 的一个**有意义乘积**^{a_1}: 如果 n=1, 则唯一的有意义乘积为 a_1 . 如果 n>1, 则有意义乘积定义为形如 $(a_1\cdots a_m)(a_{m+1}\cdots a_n)$ 的任何一个乘积, 其中 m< n, 并且 $(a_1\cdots a_m)$ 和 $(a_{m+1}\cdots a_n)$ 分别是 m 元和 n-m 元的有意义乘积.

(ii) 我们如下归纳定义 a_1, \dots, a_n 的标准 n 元乘积 $^b \prod_{i=1}^n a_i$:

^a为了证明这个定义的良定义性, 需要逆归定理的更强的形式见 Burrill, C.; W, Foundations of Real Numbers. New York: McGraw-Hill, Inc, 1967.,57 页

 b 由逆归定理可以推出对每个 $n \in N^{*}$,G 中任意 n 个元素的标准 n 元乘积对应 G 中的唯一元素 (它显然是一个有意义乘积), 因此这个定义是良定义的

定理 0.3 (广义结合律)

如果 G 是半群而 $a_1, \ldots, a_n \in G$, 则 a_1, \ldots, a_n 以此排列次序的任意两个有意义乘积均彼此相等.

 $\dot{\mathbf{L}}$ 根据这个定理, 我们可以将 $a_1, \ldots, a_n \in G(G)$ 为半群) 的任何有意义乘积写成 $a_1a_2 \ldots a_n$, 即不加任何括号也不会有任何混淆.

证明 我们归纳证明: 对于每个 n, 任意一个有意义乘积 $a_1 \dots a_n$ 均等于标准 n 元乘积 $\prod_{i=1}^n a_i$. 对于 n=1,2 这显然是对的. 如果 n>2, 由定义 $(a_1 \dots a_n)=(a_1 \dots a_m)(a_{m+1} \dots a_n)$, 其中 m< n. 从而根据归纳假设和结合性便有:

$$(a_1 \dots a_n) = (a_1 \dots a_m)(a_{m+1} \dots a_n) = \left(\prod_{i=1}^m a_i\right) \left(\prod_{i=1}^{n-m} a_{m+i}\right)$$

$$= \left(\prod_{i=1}^m a_i\right) \left(\left(\prod_{i=1}^{n-m-1} a_{m+i}\right) a_n\right) = \left(\left(\prod_{i=1}^m a_i\right) \left(\prod_{i=1}^{n-m-1} a_{m+i}\right)\right) a_n$$

$$= \left(\prod_{i=1}^{n-1} a_i\right) a_n = \prod_{i=1}^n a_i.$$

定理 0.4 (广义交换律)

如果 G 为交换半群而 $a_1, \ldots, a_n \in G$, 则对于 $1, 2, \ldots, n$ 的任意一个置换 i_1, \ldots, i_n , 均有

$$a_1a_2\cdots a_n=a_{i_1}a_{i_2}\cdots a_{i_n}$$
.

证明

定义 0.5 (方幂)

假设 G 为半群, $a \in G$, $n \in N^*$. 元素 $a^n \in G$ 定义为标准 n 元乘积 $\prod_{i=1}^n a_i$, 其中 $a_i = a(1 \le i \le n)$. 如果 G 是幺半群,则 a^0 定义为幺元素 e. 如果 G 是群,则对于每个 $n \in N^*$. a^{-n} 定义为 $(a^{-1})^n \in G$.

注 根据定义和广义结合律, $a^1 = a, a^2 = aa, a^3 = (aa)a = aaa, ..., a^n = a^{n-1}a = aa...a(n 个因子).$ 注意当 $m \neq n$ 时可能会有 $a^m = a^n$ (例如在 C 中, $-1 = i^2 = i^6$).

加法记号 如果 G 中的二元运算写成加法, 我们便用 na 代替 a^n . 因此 0a = 0,1a = a,na = (n-1)a + a, 如此 等等.

定理 0.5

如果 G 是群 [半群, 幺半群], 而 $a \in G$, 则对所有 $m, n \in \mathbb{Z}[N^*, N]$, 均有

- (i) $a^m a^n = a^{m+n} (m \pm i + na) = (m+n)a$;
- (ii) $(a^m)^n = a^{mn}$ (加法记号:n(ma) = nma).

证明 显然对每个 $n \in \mathbb{N}$ 均有 $(a^n)^{-1} = (a^{-1})^n$, 并且对每个 $n \in \mathbb{Z}$ 均有 $(a^{-1})^n = ((a^{-1})^{-1})^{-n} = a^{-n}$.

- (i) 对于 m > 0 和 n > 0 是对的, 因为标准 n 元乘积和标准 m 元乘积相乘是一个有意义乘积, 根据广义结合律, 它等于标准 (m+n) 元乘积. 将 a,m,n 改为 $a^{-1},-m,-n$ 并且利用上述推理就可得到 m < 0 和 n < 0 的情形. 情形 m = 0 或者 n = 0 是平凡的. 而情形 $m \ge 0, n < 0$ 和 $m < 0, n \ge 0$ 可以分别对 m 和 n 作归纳法.
 - (ii) 对于 m=0 是显然的. 当 $m>0,n\in \mathbb{Z}$ 时, 可以对 m 归纳证得. 然后用此结果证明 m<0 和 $n\in \mathbb{Z}$ 的情形.