IN THE CLAIMS

Claims 1-19 (Cancelled).

Claim 20 has been amended as follows:

20. (Currently amended) A method for extracting an EMG signal out of a raw signal, said raw signal being obtained by a plurality of electrodes adapted to interact with a patient to capture signals from the diaphragm of the patient, each electrode having an associated signal channel in which a raw signal is received from the associated electrode, said method comprising the steps of:

for each of said channels, automatically electronically determining a signal-tonoise ratio for the raw signal in that channel;

for each of said channels, automatically electronically determining a weighting factor for that channel dependent on the signal-to-noise ratio of that channel; and

weighting the respective raw signals from the channels by the respective weighting factors determined for the channels, to obtain weighted raw signals, and summing the weighted raw signal signals to obtain a summed signal representing a total EMG signal in said raw signals.

21. (Previously presented) A method as claimed in claim 20 comprising, for each channel:

automatically electronically estimating a level of ECG activity in the raw signal; automatically electronically estimating a level of EMG activity in the raw signal;

automatically electronically determining said signal-to-noise ratio based on the estimated level of ECG activity and the estimated level of EMG activity; and

normalizing said summed signal representing the total EMG signal.

- 22. (Previously presented) A method as claimed in claim 21 comprising automatically electronically calculating said signal-to-noise ratio according to the equation $R^n/(R+S)$, wherein R is the estimated level of EMG activity, S is the estimated level of ECG activity, and n is an integer greater than 1.
- 23. (Previously presented) A method as claimed in claim 21 comprising estimating the level of ECG activity by filtering an estimated ECG signal out of the raw signal and comparing the estimated ECG signal with a threshold value.

Claim 24 has been amended as follows:

- 24. (Currently amended) A method as claimed in claim 22 wherein 21 comprising estimating the level of ECG activity comprises automatically electronically calculating a probability function indicating a probability that an ECG signal is included in the raw signal of the channel.
- 25. (Previously presented) A method as claimed in claim 24 comprising estimating the level of ECG activity only if said probability function indicates a predetermined level of probability that an ECG signal is included in the raw signal of the channel.

Claim 26 has been amended as follows:

26. (Currently amended) A device for extracting an EMG signal out of a raw signal, said raw signal being obtained by a plurality of electrodes adapted to interact with a patient to capture signals from the diaphragm of the patient, each

electrode having an associated signal channel in which a raw signal is received from the associated electrode, said device comprising:

an analysis unit that, for each of said channels, automatically electronically determines a signal-to-noise ratio for the raw signal in that channel, and automatically electronically determines a weighting factor for that channel dependent on the signal-to-noise ratio of that channel, and weights the respective raw signals from the channels by the respective weighting factors determined for the channels, to obtain weighted raw signals, and sums the weighted raw signal signals to obtain a summed signal representing a total EMG signal in said raw signals.

Claim 27 has been amended as follows:

27. (Currently amended) A device as claimed in claim 20 26 wherein said analysis unit, for each channel, automatically electronically estimates a level of ECG activity in the raw signal, automatically electronically estimates a level of EMG activity in the raw signal, automatically electronically determines said signal-to-noise ratio based on the estimated level of ECG activity and the estimated level of EMG activity, and normalizes said summed signal representing the total EMG signal.

Claim 28 has been amended as follows:

28. (Currently amended) A device as claimed in claim 24 27 wherein said analysis unit automatically electronically calculates said signal-to-noise ratio according to the equation Rⁿ/(R+S), wherein R is the estimated level of EMG activity, S is the estimated level of ECG activity, and n is an integer greater than 1.

Claim 29 has been amended as follows:

29. (Currently amended) A device as claimed in claim 21 27 wherein said analysis unit estimates the level of ECG activity by filtering an estimated ECG signal out of the raw signal and comparing the estimated ECG signal with a threshold value.

Claim 30 has been amended as follows:

30. (Currently amended) A device as claimed in claim 22 27 wherein said analysis unit estimates the level of ECG activity by automatically electronically calculating a probability function indicating a probability that an ECG signal is included in the raw signal of the channel.

Claim 31 has been amended as follows:

31. (Currently amended) A device as claimed in claim 24 30 wherein said analysis unit estimates the level of ECG activity only if said probability function indicates a predetermined level of probability that an ECG signal is included in the raw signal of the channel.

Claim 32 has been amended as follows:

32. (Currently amended) A computer-readable medium encoded with a computer program loadable into a computer for extracting an EMG signal out of a raw signal, said raw signal being obtained by a plurality of electrodes adapted to interact with a patient to capture signals from the diaphragm of the patient, each electrode having an associated signal channel in which a raw signal is received from the associated electrode, said computer program causing said computer to:

for each of said channels, determine a signal-to-noise ratio for the raw signal in that channel;

for each of said channels, determine a weighting factor for that channel dependent on the signal-to-noise ratio of that channel; and

weight the respective raw signals from the channels by the respective weighting factors determined for the channels, to obtain weighted raw signals, and sum the weighted raw signal signals to obtain a summed signal representing a total EMG signal in said raw signals.

Claim 33 has been amended as follows:

33. (Currently amended) A computer readable medium as claimed in claim 29 32 wherein said computer program causes said computer to, for each channel:

estimate a level of ECG activity in the raw signal;

estimate a level of EMG activity in the raw signal;

determine said signal-to-noise ratio based on the estimated level of ECG activity and the estimated level of EMG activity; and

normal said summed signal representing the total EMG signal.

Claim 34 has been amended as follows:

34. (Currently amended) A computer readable medium as claimed in claim 24 33 wherein said computer program causes said computer to calculate said signal-to-noise ratio according to the equation Rⁿ/(R+S), wherein R is the estimated level of EMG activity, S is the estimated level of ECG activity, and n is an integer greater than 1.

Claim 35 has been amended as follows:

35. (Currently amended) A computer readable medium as claimed in claim 21 33 wherein said computer program causes said computer to estimate the

level of ECG activity by filtering an estimated ECG signal out of the raw signal and comparing the estimated ECG signal with a threshold value.

Claim has been amended as follows:

36. (Currently amended) A computer readable medium as claimed in claim 22 33 wherein said computer program causes said computer to estimate the level of ECG activity by calculating a probability function indicating a probability that an ECG signal is included in the raw signal of the channel.

Claim 37 has been amended as follows:

37. (Currently amended) A computer readable medium as claimed in claim 24 36 wherein said computer program causes said computer to estimate the level of ECG activity only if said probability function indicates a predetermined level of probability that an ECG signal is included in the raw signal of the channel.