

UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI CURSO DE ENGENHARIA DA COMPUTAÇÃO

Aplicação da IA nas tecnologias de Redes de Computadores

Aluno: Epitácio Pessoa de Brito Neto

Matrícula: 11506856

Professor: Guido Lemos de Souza Filho

Introdução

- Objetivos
- Discussões

Big Data

- Volume
- Velocidade de geração
- Multi-fonte heterogênea
- Valor

Big Data

- Plataforma de Dados
- Plataforma de Análise de Dados
- Plataforma de Display

A importância da IA para Redes

 Tecnologias de redes de modelos de paralelismo

Figura 1: Arquitetura de uma plataforma de machine learning.

Modelos de Redes

- Modelo BSP
- Modelo ASP
- Modelo SSP

Tabela 1: Comparação das plataformas de machine learning.

Platform	Data Structure	Parallel model	Fault Tolerance Mechanism	Extensibility	Communicatio n efficiency	stability	Applicable scene
Mahout	1111	BSP	Checkpoint	low	low	Higher	Recommended System + Small- scale Machine Learning
Spark	RDD	BSP	Checkpoint Lineage	Higher	Higher	High	Large-scale data processing + small-scale machine learning
Graph Lab	Graph Table	AP	Checkpoint	Higher	High	Higher	Large-scale graph calculation
Petuum	None	SSP	5	High	High	low	Large-scale machine learning

O desenvolvimento coletivo da IA com as Redes

- Avanços tecnológicos
- O papel da IA na segurança das redes

Tecnologias de segurança

- Tecnologia de detecção de intrusão
- Tecnologia anti-spam
- Tecnologia de firewall

Experimento de tecnologias de detecção de intrusão

- Back propagation
- Descrição do experimento
- Resultados obtidos

Tabela 2: Resultados obtidos dos experimentos contidos no artigo.

	Optimized	Traditional	
Detection rate	86.81%	81.3%	
False alarm rate	2.87	3.4	
Training time	37	65	
The number of hidden layer nodes	23	34	

Conclusão

Avanços das Redes em conjunto com o avanço da IA

Sugestão de conteúdo para aprofundamento: Entrevista do Roda Viva com o professor Yuval Harari, com relação à importância dos dados e a segurança dos mesmos.

Big Data algorithms might create digital dictatorships in which all power is concentrated in the hands of a tiny elite while most people suffer not from exploitation, but from something far worse – irrelevance.

Referências Bibliográficas

WANG, Qingjun. Título: Research on Application of Artificial Intelligence in Computer Network Technology. Disponível em: https://sci-hub.se/10.1142/s0218001419590158>. Acesso em: 7 de Jun. de 2021.

YANG, Lin. Título: Research on Application of Artificial Intelligence Based on Big Data Background in Computer Network Technology. Disponível em: . Acesso em: 7 de Jun. de 2021.

ZHAO, Xing. et al. Título: Dynamic Stale Synchronous Parallel Distributed Training for Deep Learning.

Disponível

em:

https://www.researchgate.net/publication/334469507_Dynamic_Stale_Synchronous_Parallel_Distribut ed_Training_for_Deep_Learning>. Acesso em: 10 de Jun. de 2021.

RODA VIVA. Roda Viva | Yuval Harari | 11/11/2019. Youtube, 11 de Nov. de 2019. Disponível em: https://www.youtube.com/watch?v=pBQM085lxOM&t=281s&ab_channel=RodaViva. Acesso em: 8 de Mai. de 2021.

Referências Bibliográficas

ZINKEVIC, Martin A. et al. Título: Parallelized Stochastic Gradient Descent. Disponível em: . Acesso em: 13 de Jun. de 2021.

STRINIVASAN, Aishwarya. Título: Stochastic Gradient Descent - Clearly Explained. Disponível em: https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31. Acesso em: 12 de Jun. de 2021.

Perguntas?

