Transporte de Calor e Massa Lista 1

Rafael Lima

October 4, 2016

Questão 1

(a)

Transiente pois $\frac{\delta T}{\delta t} \neq 0$

(b)

Unidimensional pois $\frac{\delta^2 T}{\delta y^2} = \frac{\delta^2 T}{\delta z^2} = 0$

(c)

Variável pois $\frac{\delta T}{\delta t} \neq 0$

Questão 2

Condições de contorno são Sendo necessário especificar apenas 2 condições de contorno para um problema de calor unidimensional.

Questão 3

Assumindo que o calor é distribuído uniformemente ao longo do fundo da panela e tomando a panela com formato de um cilíndro com base circular e com o diâmetro bem maior que a altura, podemos desconsiderar os efeitos da troca de calor das paredes na lateral da panela com a água e modelar, para uma primeira aproximação, o problema de maneira unidimensional, avaliando apenas as trocas de calor ocorridas na direção vertical. Desta forma temos:

$$\frac{d}{dt}Q = \frac{\pi h}{4}D^2\left(-T_a + T_f\right) \tag{1}$$

Questão 4

(a)

Dado o calor fornedido pela resistência do ferro \dot{Q} , as temperaturas na parede interna e na superfície da base do ferro T_0 e T_f , a condutividade térmica no ferro k Pela lei de Fourier da condução de calor temos:

$$\dot{Q}(x) = \frac{d}{dt}Q = -Ak\frac{d}{dx}T\tag{2}$$

Isolando $\frac{d}{dx}T$:

$$\frac{\dot{Q}}{Ak} = \frac{d}{dx}T$$

 (\mathbf{b})

Assumindo \dot{Q} constante ao longo de todo o ferro e resolvendo a equação diferencial temos

$$T = -\left(\frac{\dot{Q}}{Ak}\right)x + T_0\tag{3}$$

Em x=0, temos $\dot{Q}(0)=800.0~W$, em x=L temos $T(x=L)=T_f=112.0^\circ$ e a espessuara da placa L=0.006. Logo, a partir da equação 4:

$$T(L) = -\left(\frac{\dot{Q}}{Ak}\right)L + T_0 = -\frac{800.0 \cdot 0.006}{60.0 \cdot 0.016} + T_0$$
$$T(L) = T_0 - 5.0$$

Isolando T_0 e substituindo o valor de T(L):

$$T_0 = 833.3333L + T_f = 5.0 + 112.0 \Rightarrow T_0 = 117.0$$

Substituindo o valor de T_0 na equação 4, encontramos T(x):

$$T(x) = -5.0x + 117.0 (4)$$

(c)

Questão 5

Considerando uma espessura L tal que x=L e sabendo se que a temperatura T(x)=65x+25 e que $T(x=L)=38^{\circ}C$ temos que L será dado por:

$$L = \frac{T(x=L) - 25}{65} = \frac{(38) - 25}{65} \Rightarrow L = 0.2$$

Questão 6

Considerando $R_{cond} = \frac{L}{Ak}$ e $R_{conv} = \frac{1}{Ah}$ podemos modelar o sistema como duas resistências em série:

A partir do modelo temos que o fluxo de calor \dot{Q} é

$$\dot{Q} = \frac{T_0 - T_{amb}}{R_{cond} + R_{conv}} = \frac{T_0 - T_{amb}}{\frac{L}{Ak} + \frac{1}{Ab}}$$

Logo, o valor de T_f pode ser encontrado por $T_f = \dot{Q} R_{conv}$ e portanto:

$$T_f = \frac{T_0 - T_{amb}}{Ah\left(\frac{L}{Ak} + \frac{1}{Ah}\right)} = \frac{k\left(T_0 - T_{amb}\right)}{Lh + k} = 54.9725$$
$$T_f = \frac{60.0(80.0 - 25.0)}{0.002 \cdot 15.0 + 60.0} = 54.9725$$

Questão 7

Considerando $R_{cond} = \frac{L}{Ak}$, $R_{conv} = \frac{1}{Ah}$ e $R_{rand} = \frac{1}{AE\delta(T_{amb} + T_f)(T_{amb}^2 + T_f^2)}$ podemos modelar o sistema como duas resistências em série:

A partir do modelo temos que o fluxo de calor \dot{Q} é ??????????

Questão 8

(a)

Com base na equação 2 e a partir dos valores da condutância, espessura e área podemos calcular a resistência térmica para cada uma das partes do bloco. Desta forma obtemos os valores relacionados na tabela 1

	L[m]	$A [m^2]$	$k [W/m^{\circ}C]$	R_{cond}
A	0.001	0.096	2.0	0.0052
В	0.005	0.032	8.0	0.0195
C	0.005	0.032	20.0	0.0078
D	0.01	0.048	15.0	0.0139
E	0.01	0.048	35.0	0.006
F	0.006	0.096	2.0	0.0313

Table 1: Valores calculados para resistência térmica

Desta forma podemos avaliar a resistência do bloco como associação das resistências para cada uma das partes conforme a figura 1

Figure 1: Circuito Equivalente

Definindo as resistências térmicas intermediárias R_1 e R_2 , a partir das camadas formadas pelos materiais C, D e E temos:

$$R_1 = \frac{R_B R_C}{2R_B + R_C} = 0.0033$$

$$R_2 = \frac{R_D R_E}{R_D + R_E} = 0.0042$$

Deste modo, podemos definir a resistência térmica do bloco da parede como:

$$R_{eq_1} = R_A + R_1 + R_2 + R_F$$

$$R_{eq_1} = R_A + \frac{R_B R_C}{2R_B + R_C} + \frac{R_D R_E}{R_D + R_E} + R_F$$

$$R_{eq_1} = 0.0439$$

Para parede toda a resistência será $R_{eq} = R_{eq_1} \cdot (800cm)/(12cm) = 2.9253$. Logo, a partir da resistência térmica podemos calcular a taxa de transferência de calor \dot{Q} , para as temperaturas $T_1 = 300^{\circ}C$ e $T_2 = 100^{\circ}C$ nas superficies da parede:

$$\dot{Q} = \frac{(T_1 - T_2)}{R_{eq}} = \frac{(300 - 100)}{2.9253} = 68.368 \ W$$

(b)

Assumindo a taxa de transferência de calor constante ao longo do bloco, a temperatura no ponto em que as seções B, D e E se encontram pode ser calculada como:

$$T_3 = T_1 - \dot{Q}(R_A + R_1)$$

$$T_3 = 300 - 68.368 \cdot (0.0052 + 0.0033) = 299.4214^{\circ}C$$

(c)

De maneira similar, a queda de temperatura ao longo do bloco F pode ser calculada como

$$\Delta T_f = \dot{Q} \cdot R_F = 68.368 \cdot 0.0313 = 2.1365^{\circ} C$$

Questão 9

Ao modelar a troca de calor por meio de resistências elétricas, a convecção e a radiação são modelas como resistências em paralelo devido representarem as trocas ocorridas da superfície externa com o meio.

Questão 10

Com base na equação 2 e a partir dos valores da condutância, espessura e área podemos calcular a resistência térmica para cada uma das partes do bloco. Desta forma obtemos os valores relacionados na tabela 4

	L[in]	A	$k \left[Btu/h \cdot in^{\circ} F \right]$	R_{cond}
Sheetrock	8.4	1.0	0.1	84.0
Fiberglass	84.0	1.0	0.02	4200.0

Table 2: Valores calculados para resistência térmica

Desta forma podemos avaliar a resistência do bloco como associação das resistências para cada uma das partes conforme a figura 2

Figure 2: Circuito Equivalente

Deste modo, podemos definir a resistência térmica do bloco da parede como:

$$R_{eq} = R_F + R_S + R_F$$

$$R_{eq} = (84.0 + 4200.0 + 84.0) Btu/h^{\circ}F$$

$$R_{eq} = 4368.0 Btu/h^{\circ}F$$

Questão 11

Questão 12

Com base na equação 2 e a partir dos valores da condutância, espessura e área podemos calcular a resistência térmica para cada uma das partes do bloco. Desta forma obtemos os valores relacionados na tabela 4

	L[m]	$A [m^2]$	$k [W/m^{\circ}C]$	R_{cond}
Fibra	0.0001	1.1	0.06	0.0015
Camada de Ar	0.001	1.1	0.026	0.035

Table 3: Valores calculados para resistência térmica

A resistência de condução será dado por

$$R_{conv} = \frac{1}{Ah} = 0.0505$$

Desta forma podemos avaliar a resistência da jaqueta como associação das resistências térmica da fibra R_f e da camada de ar R_a somado da resitência de convecção:

$$R_{eq} = 5 \cdot R_f 4 \cdot R_a + R_{conv}$$

$$R_{eq} = 5 \cdot 0.0015 + 4 \cdot 0.035 + 0.0505$$

$$R_{eq} = 0.1979$$

Logo, a partir da resistência térmica, podemos calcular a taxa de transferência de calor \dot{Q} , para as temperaturas $T_1=25.0^{\circ}C$ e $T_a=0.0^{\circ}C$:

$$\dot{Q} = \frac{(T_1 - T_a)}{R_{eq}} = \frac{(25.0 - 0.0) \, ^{\circ}C}{0.1979 \, ^{\circ}C/W} = 126.3003 \ W$$

Logo a resposta é (c) 126 W

Questão 13

Com base na equação 2 e a partir dos valores da condutância, espessura e área podemos calcular a resistência térmica para cada uma das partes do bloco. Desta forma obtemos os valores relacionados na tabela 4

	L[m]	$A [cm^2]$	$k [W/m^{\circ}C]$	$R_{cond}[^{\circ}C\ W]$
Cobre	0.01	2.0	400.0	12.5
Epoxy	0.01	2.0	0.4	125.0
Cobre	0.001	20.0	400.0	12.5
Epoxy	0.001	20.0	0.4	125.0
Cobre	0.002	10.0	400.0	0.5
Epoxy	0.002	10.0	0.4	500.0

Table 4: Valores calculados para resistência térmica em cada sentido

(a) Taxa de transferência ao longo da barra

Desta forma podemos avaliar a resistência térmica da barra ao longo de seu comprimento como

$$R_{eq1} = \frac{R_{C1}R_{E1}}{R_{C1} + R_{E1}}$$

$$R_{eq1} = \frac{12.5 \cdot 12500.0}{12.5 + 12500.0}$$

$$R_{eq1} = 12.4875 \, ^{\circ}C \, W$$

E portanto a taxa de transferência de calor será $Q_1 = \Delta T/R_{eq1} = 4.004~W$

(b) Taxa de transferência de calor da esquerda para direita

Desta forma podemos avaliar a resistência térmica da barra ao longo de seu comprimento como

$$R_{eq2} = R_{c2} + R_{e2}$$

 $R_{eq2} = 12.5 + 125.0$
 $R_{eq2} = 137.5 \,^{\circ}C W$

E portanto a taxa de transferência de calor será $Q_1 = \Delta T/R_{eq2} = 0.3636~W$

(c) Taxa de transferência de calor de cima para baixo

Desta forma podemos avaliar a resistência térmica da barra ao longo de seu comprimento como

$$R_{eq3} = R_{c3} + R_{e3}$$

 $R_{eq3} = 0.5 + 500.0$
 $R_{eq3} = 500.5 \, ^{\circ}C W$

E portanto a taxa de transferência de calor será $Q_1 = \Delta T/R_{eq3} = 0.0999~W$

Questão 14

Questão 15

A taxa de transferência de calor do corpo 1 para o 2 é dado por

$$Q_{1\to 2} = \frac{\sigma T_1^4 + \sigma T_2^4}{\frac{1-E_1}{A_1 E_1} + \frac{1}{A_1 F_{12}} + \frac{1-E_2}{A_2 E_2}}$$
 (5)

Aonde A_1 e A_2 é obtido como $A_1=4\pi r_1^2=4\pi (0.3)^2=1.15$ e $A_2=4\pi r_2^2=4\pi (1.2)^2=4.52$. E $E_1=0.9$ e $E_1=0.5$. O fator de forma de 1 para 2 é

$$F_{12} = 0.5 \left\{ 1 - \left[1 + \left(\frac{R_2}{h} \right)^2 \right]^{-0.5} \right\} = 0.2764$$

Podemos relacionar o fator de forma de 1 para 2 com o fator de forma de 2 para 1 por $A_1F_{12}=A_2F_{21}$, a partir do qual temos que $F_{21}=0.0691$. Assim, substituindo os valores na equação 5, temos:

$$\dot{Q_{1\rightarrow2}}=8554W$$