Mathématiques du signal

LSI 1

Évaluation intermédiaire 2

$40 \ minutes$

- 1. Démontrer que la T.F. d'une fonction f est continue sur \mathbb{R} , en retrouvant la ou les hypothèse(s) convenable(s) $(2,5 \ pts)$.
- 2. Soit a > 0. On considère la fonction $f_a(t) = e^{-at^2}$ (gaussienne).
 - (a) En déterminant une équation différentielle dont la T.F. de f_a est solution, calculer $\widehat{f}_a(\omega)$ (on rappelle que $\int_{-\infty}^{+\infty} f_a(t) dt = \sqrt{\frac{\pi}{a}}$) (2 pts).
 - (b) En déduire $f_a * f_b$ (1 pt).
- 3. Après avoir justifié son existence, calculer le produit de convolution des fonctions $f(t) = H(t)e^{-t}$ et $g(t) = t\mathbf{1}_{[-1,1]}(t)$ $(1,5 \ pt)$.