Report No. NAWCADWAR-92042-60

A NEURAL NETWORK PROTOTYPE FOR PREDICTING F-14B STRAINS AT THE B.L. 10 LONGERON

Margery E. Hoffman Air Vehicle and Crew Systems Technology Department (Code 6042) NAVAL AIR WARFARE CENTER-AIRCRAFT DIVISION Warminster, PA 18974-0591

JUNE 1992

FINAL REPORT
Task No. A5002530/001 -4/266000001
Work Unit No. RU510
Program Element No. OMN

Approved for Public Release; Distribution is Unlimited.

Prepared For NAVAL AIR SYSTEMS COMMAND (AIR-5302) Department of the Navy Washington, DC 20361-0001

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Officer or the Functional Department responsible for the report. For example: Report No. NADC-88020-60 indicates the twentieth Center report for the year 1988 and prepared by the Air Vehicle and Crew Systems Technology Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
05	Computer Department
10	AntiSubmarine Warlare Systems Department
20	Tactical Air Systems Department
30	Wartare Systems Analysis Department
40	Communication Navigation Technology Department
50	Mission Avionics Technology Department
60	Air Vehicle & Crew Systems Technology Department
70	Systems & Software Technology Department
80	Engineering Support Group
90	Test & Evaluation Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

Reviewed By:

Date: 6-17-92

Branch Head

Date: 6-17-92

Date: 6-17-92

Date: 6-17-92

Date: 6-17-92

Date: 6-17-92

Director/Deputy Director

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0/04 0188

Public reporting burden for this collection of information is estimated to average. I how per response, including the time for reviewing instructions, searching data sources, pathering and maintaining the data receded, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any cities aspect of this collection of information, including suggestions for reducing this burden. It whitegoth the adquarters Services, Directorate for information Operations and Populss, 1215 seffers on Davis Highway, Suite 12.4, Arlington VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0784-0188), Washington, DC 23503.

1. AGENCY USE ONLY (Leave blo	ank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES	COVERED
<u> </u>		May 1992	Final	3/92	- 5/92
4. TITLE AND SUBTITLE				S. FUNC	DING NUMBERS
A Neural Network Pro at the B.L. 10 Longe		pe for Predicting	F-14B Strains		
6. AUTHOR(S)				•	
Margery E. Hoffman				l	

7. PERFORMING ORGANIZATION			- (0.1-(0/0)		ORMING ORGANIZATION
Air Vehicle and Crew Naval Air Warfare Ce			pt. (Code 6042)	MAUCI	ADWAR-92042-60
Aircraft Division	inrer			MAWCA	1DWAIN-92042-00
Warminster, PA 1897	74-50	00			
9. SPUNSORING / MONITORING A	GENCY	NAME(S) AND ADDRESS(E	3)		NSORING / MONITORING
Naval Air Systems Co	mman	d		AUE	NCY REPORT NUMBER
AIR-5302		-		ł	
Washington, DC 2036	61-00	01			
11. SUPPLEMENTARY NOTES		·····			
12a. DISTRIBUTION / AVAILABILITY	V STAT	FMENT		12h Di	TRIBUTION CODE
				1.20. 0.3	TRIBOTION CODE
Approved for public	rele	ase; distribution	is unlimited.		A
				l	
:				l	
13. AUSTRACT (Maximum 200 wo		······································		<u> </u>	
A neural network pro	ras) ototv	pe was developed t	o predict strain	from	data obtained from
an F-14 flight test					
consisted of standar					
performed during typ					
flight, including Nz					
attack, a weight-on-					
neural network was t stepwise-regression					
tested on Flight 401			LITRUE 400 Bud 6	,IIE 9E1	ected model was
Results were evaluat			rrelation coeffi	cients	between the
predicted and measur	red s	trains. The corre	elation coefficie	ent obt	ained by the neural
network was 0.93 and	i by	the regression equ	ation was 0.94.	Based	on these
preliminary results,	, the	conclusion is made	le that the neura	ıl netw	ork approach offers
a viable alternative airframes.	e to	standard regression	on analysis for p	redict	ing strains on
allitames.					
14. SUBJECT TERMS					Las augusto de passe
Neural networks, loa	ads,	strain, aircraft.	airframe, struct	ural	15. NUMBER OF PAGES
components, linear r	egre	ssion, F-14 flight	test data.		16. PRICE CODE
		•		ļ	
17. SICURITY CLASSIFICATION OF REPORT		ECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT
		F THIS PAGE	OF ABSTRACT	_	unclassified/
unclassified		unclassified	unclassifie	ed l	unlimited

CONTENTS

	Page
LIST OF FIGURES	ii
ABBREVIATIONS	iii
SYMBOLS	iii
INTRODUCTION	1
BACKGROUND	1
DESCRIPTION OF THE DATA	3
APPROACH	3
ANALYSIS	4
RESULTS	4
conclusions	5
REFERENCES	5
APPENDIX A	A-1
APPENDIX B	B-1
APPENDIX C	C-1
APPENDIX D	D-1

Accesio	n For		
NTIS	CRA&I	Ŋ	
DITIC	TAB	ĩ.	
Unanno	our.ced	ت	
Justific	ation 🔣		
By Dirt ib			
A	ravability	Code:	
Dist	Avair ar Spec		
A-1			

FIGURES

	Page
A sample neural network	6
Linear Regression of B.L. 10 strain measured during Flight 400 versus strain predicted from a neural network trained on Flight 400 data.	7
Linear regression of B.L. 10 strain measured during Flight 400 versus strain predicted from a forward-stepwise-regression on Flight 400 data.	8
Linear regression of B.L. 10 strain measured during Flight 401 versus strain predicted from a neural network trained on Flight 400 data.	9
Linear regression of B.L. 10 strain measured during Flight 401 versus strain predicted from a forward-stepwise-regression on Flight 400 data.	10
	Linear Regression of B.L. 10 strain measured during Flight 400 versus strain predicted from a neural network trained on Flight 400 data. Linear regression of B.L. 10 strain measured during Flight 400 versus strain predicted from a forward-stepwise-regression on Flight 400 data. Linear regression of B.L. 10 strain measured during Flight 401 versus strain predicted from a neural network trained on Flight 400 data. Linear regression of B.L. 10 strain measured during Flight 401 versus strain predicted from a forward-stepwise-regression on

ABBREVIATIONS

ALT Altitude

AOA Angle of Attack

B.L. Butt Line

DOS Disk Operating System

MACHNO Mach Number

Nz Acceleration in the vertical direction

PC Personal Computer

SEI Systems & Electronics, Incorporated

SDRS Structural Data Recording System

SYMBOLS

L Indicator for Landing Record

P Indicator of Peak Nz Record

T Indicator for Take-off Record

V Indicator for Valley Nz Record

True Indicator for Weight-on-Wheels

False Indicator for Weight-off-Wheels

INTRODUCTION

Neural networks offer a new tool for predicting strains of structural components at critical locations of an airframe. Frequently, strain response to loads occurring in flight are nonlinear and difficult to calculate from sets of linear equations. Accurate load or strain equations at fatigue critical locations are sensitive to weight, stores, and geometry configurations. Neural networks can use flight variables as input to predict strains needed for fatigue life calculations. No traditional programming is needed, so there is no need to try to model the strain relationships. A well-trained network is good at generalizing from one set of conditions to another, which gives it a distinct advantage over a set of equations. The successful use of neural networks depends the availability of large amounts of data to train with. Data from the SEI (Systems & Electronics, Incorporated) F-14B SDRS (Structural Data Recording System) is available from a flight test aircraft and can be used to investigate the potential of neural networks to predict strain at critical locations on the airframe.

The purpose of this paper is to explore the potential of neural networks to calculate strains on fatigue-critical aircraft components. The B.L. 10 longeron located on the F-14B aircraft was selected as an example component to demonstrate the technique.

BACKGROUND

Neural networks are patterned after the human brain. Input neurons are selected and connected in the network and given facts to learn. Facts are input-output pairs. They can be numbers, words, or symbols. Neural networks learn by example and repetition, not programmed rules as with an artificial intelligence system. They are not encumbered by linear or nonlinear equations; instead they are composed of an input layer, one or more hidden layers, and an output layer. The addition of the hidden layers provides the flexibility needed to make it a non-linear system, but are hardly ever needed. Figure 1 contains a diagram of a sample, feed-forward, neural network. Each neuron in a layer is connected to every neuron of the succeeding layer. In a feed-forward network, no neurons in the same layer are connected. Neural network software is readily available commercially. A software program which runs on a PC (386 machine) was used for this project [1].

Most neural network commercial software use a supervised learning scheme known as back propagation. Each input to a neuron has a connection strength. Initially, the connection strengths are set to random values. The network learns to fire

with sufficient strength to achieve a response which matches the output pattern. When it doesn't, the network makes corrections to itself by adjusting the connection strengths and goes over the entire list of facts again. The amount of adjustment to the connection strengths is determined by the magnitude of error and the setting of a parameter called the learning rate, which supplies stability to the learning process. A transfer function is applied to each neuron's activation value to generate each neuron's output. Neuron transfer functions usually take on values between 0 to 1. A sigmoid function is recommended because it is continuous and monotonic and its derivatives are continuous everywhere. The process is repeated until it gets all the facts correct. The more data it has to train on, the better it is at predicting new situations. The neural network will be better at generalizing if the training facts represent a broad range of experiences and responses.

The input for training the neural network using the reference software consisted of three files: the definition, fact, and test files [1]. The training facts were placed into the end of the definition file. The software randomly selected about 10% of the data to test later before it trained on the fact file. This percentage can be changed by the user.

The definition file contains a list of the input neurons, display attributes, and the maximum and minimum values of the input data which are used by the program to scale the input data into the range of the transfer function, typically 0 to 1. A smaller range of maximum and minimum values will improve the predictive ability of the network. Note that neural networks are very good at identifying trends in data, but they are not as good at precision. Like humans, they are better at picking up large numeric differences than small differences. The results of a neural network will be good to within a few percent of the right answer, given that it trained with a reasonable tolerance. The definition file also describes how many output neurons there are, what kind of data will be output, and attributes of the display. It also can contain the training facts. Training facts are the input data together with their output, with which the neural network uses to train.

The test file, like the training file, contains facts together with their corresponding output. The testing of the neural network involves testing the predicted output from the facts against the known output and reporting the number of good and bad matches according to a designated testing tolerance. The neural network does not adjust its connection strengths during testing, it merely reports the results. When the network has been trained satisfactorily, it can be used to make predictions with a running fact file. The running fact file is identical in format to the testing fact file, but contains only the input.

The trained network can be executed a few different ways. It can be run from within the neural network software. It can also

be run in the batch mode by anyone who has a copy of the software, either called from DOS (Disk Operating System) or from within another program. There is a third option to create an executable version of the network from a "C" source code, which could then be distributed as needed. These options involve running facts through the network in a feed-forward mode. No additional training or testing can be done in the batch mode.

A neural network works best when it is given a lot of information with which to train. It is not desirable to presuppose which variables the network will need to establish patterns. The neural network has a better ability than a human to recognize complex patterns among many variables, so it trains more quickly and better when it is supplied with all the available information and left to decide what is relevant. The relationship between the input and the output may be perceived to be non-linear by a human, but the neural network considers only what firing strength is needed to achieve the output pattern.

We decided to investigate the potential of neural networks by training one to predict strains on the F-14B airframe at the B.L. 10 longeron.

DESCRIPTION OF THE DATA

Flight test data were obtained from an instrumented F-14B aircraft (referred to as Aircraft #7) from the Grumman Corporation, Calverton, NY. In particular, SDRS data from Flights 400 and 401 were provided to the Navy on floppy disk. Flight 400 was composed of a series of "standard" structural maneuvers while Flight 401 was composed of maneuvers typical of fleet operations. A neural network was trained on Flight 400 and tested on Flight 401. These data were appropriate for neural network application because they included in-flight variables and the corresponding B.L. 10 strain. The measured variables included Nz, wingsweep angle, roll rate, Mach number, altitude, angle of attack, and a weight-on-wheels indicator, among others. Unfortunately, remaining fuel weight was not monitored, which would greatly increase the effectiveness of the neural network to predict strain. The angle of attack input appeared to compensate for the lack of weight information. In the future, weight should be monitored, to enhance the capability of the network to predict strains.

APPROACH

Flight test data from Flight 400 were used to train a neural network and perform a forward step-wise multiple regression analysis. The merit of the neural network approach was assessed by comparing the correlation between the predicted and the strain measured during Flight 401 to that achieved using the regression equation.

ANALYSIS

A training fact file was assembled from the data from Flight 400, which contained only the records which triggered on Nz peaks. These records produce the peak strains which cause fatique damage. The input variables used for this analysis were Nz, wingsweep angle, angle of attack (AOA), roll rate, Mach number, altitude (ALT), a true-false indicator for weight-onwheels (True or False), and an indicator for take-off, landing, peak or valley (T,L,P or V), for a total of six numeric neurons and six symbolic neurons. The program set up one hidden layer with twelve neurons. The output was the single neuron, B.L.10 strain. The facts were originally ordered sequentially as they occurred in flight, but they were randomized before presenting them for training. Networks learn most effectively when facts are presented randomly. [1]

The neural network was trained on 158 of the 159 facts in the definition file. One fact was discarded because it contradicted another fact, which was determined to have a more typical response. It was tested on 18 facts in the test file. (A listing of the definition and test files appear in Appendix A). The learning rate was set equal to 1.0 and the smoothing factor was 0.9, the program defaults. The network successfully trained on the 158 facts in approximately seventeen minutes, to within It successfully tested on the eighteen test cases 10% tolerance. within a 40% tolerance (a default of the program). The default tolerances will be tightened when more flights are available to train on. The defaults were acceptable for the proof of the concept, as gauged by the correlation coefficients. correlation coefficient between the measured strains and the predicted strains at the B.L. 10 longeron was 0.97 for Flight 400 (Figure 2). Based on these results, the network was considered trained.

A forward stepwise regression was performed on the same variables used for the neural network analysis [2]. The following model was selected on the basis of its high correlation coefficient (0.96) to the measured B.L. 10 strains of Flight 400: Strain = 218.3*Nz - 9.2*AOA + 260.9*Mn - 229.9. The relationship between predicted and measured strains appears in Figure 3. Notice the neural network and the regression equation have a similar high level of correlation with the measured strains, based on the same data set. The measured and estimated strains for Flight 400 appear in Appendix B. Next, it was necessary to measure their predictive capabilities with the Flight 401 data.

RESULTS

The trained network was used to predict the B.L. 10 strains resulting from Nz peaks during Flight 401. There were 123 facts in the test file. The correlation coefficient between the predicted and measured strains at the B.L. 10 longeron was 0.93.

This relationship is shown in Figure 4. A listing of the test file for Flight 401 appears in Appendix C.

The predictive capability of the regression equation was also checked. The equation cited in the ANALYSIS section was used to predict the B.L. 10 strains occurring in Flight 401. The correlation coefficient between the predicted and measured strains was 0.94. This relationship is shown in Figure 5. There was no significant difference in the predictive capability of the regression equation over the neural network as determined by the value of the correlation coefficients. The measured and estimated strains from Flight 401 appear in Appendix D.

CONCLUSIONS

These preliminary results indicate that neural networks can be used to predict strains at critical locations. The neural network needs to train with several variables and facts to cover many maneuvers and points-in-the-sky.

More flight and strain data need to be made available so that a general network can trained. A neural network should be better at extrapolating beyond its training regime than a regression equation, and therefore, more useful. The example presented here worked well for both the regression and neural network approaches. There will be other cases that will be too complex for a regression approach, where the neural network will shine. These cases need to be identified so that the advantage of neural networks can be fully appreciated.

REFERENCES

- 1. Brainmaker Professional, v.2.02, User's Guide and Reference Manual, California Scientific Software, Grass Valley, CA 95945, 2nd Edition, Dec. 1990.
- 2. SYSTAT, v.5.0, Statistics Reference Manual, Systat, Inc., 1800 Sherman Avenue, Evanston, IL 60201-3793, 1990.

Figure 1. A sample neural network.

Figure 2. Linear regression of B.L. 10 strains measured during Flight 400 versus strains predicted from a neural network trained on Flight 400 data.

Linear regression of B.L. 10 strains measured from Flight 400 versus strains Figure 3. Linear regression of B.L. 10 strains measured from Fl predicted from a forward-stepwise-regression on Flight 400 data.

Figure 4. Linear regression of B.L. 10 strains measured during Flight 401 versus strains predicted from a neural network trained on Flight 400 data.

Figure 5. Linear regression of B.L. 10 strains measured during Flight 401 versus strains predicted from a forward-stepwise-regression on Flight 400 data.

APPENDIX A

APPENDIX A: THE DEFINITION FILE FOR FLIGHT 400.

The following pages contain the definition file for flight 400. The first ten lines of text tell the neural network what input and output variables will be used, the number of neurons in the hidden layer, and the display attributes. This file specifies 12 input neurons, one hidden layer with 12 hidden neurons, and one output neuron. The next set of lines dictate exactly how the neurons will be displayed on the screen. Following the display information, there is a line identifying the columns of input, and a line which identifies the output. The next four lines of data contain the minimum and maximum values of each variable. The values are selected by the program to include ninety percent of the data within their range for each column. These values are used to scale the data in each column to fall within the range of 0 to 1. The outlying five percent on either side are brought back into range at its endpoints. There is a line for the input, followed by a line for the output for both the minimum and maximum statements.

The facts are listed following the word "facts". The number of the fact is given as a comment for convenience, then a line of input appears. In this example, there is both numeric and symbolic input. The numeric input occurs first, followed by a left bracket and the symbolic data. The third line of each entry contains the output. There are 159 facts listed, fact 121 was commented out during training because it contradicted fact 99.

input number 1 12 NZ ACROLLRT WNGSWEEP AOA MACHNO ALTITUDE P T V L False True

output number 1 1
BL10STR

hidden 12

display input thermom 5 1 20 20 2 display output thermom 5 25 3 10 3 display pattern thermom 6 25 3 10 3 display attribute bold 5 25 3 10 3 display screen 4 14 NZ ACROLLRT BL10STR

Out:

WNGSWEEP AOA Ptn:

MACHNO ALTITUDE

P T

V L

False True

NZ ACROLLR BL10STR minimum	WNGSWEE	AOA	MACHNO	ALTITUD	P	T V	L False True
-1.0826 -38.273 -225.16 maximum	19.97	-10.23	0.46803	722.288	0	0 0	0 0 0
5.78212 37.9936 1151.95 facts	64.4954	14.6917	1.00048	23837	1	1 1	1 1 1
áááááááá 1 6.22 2.48 1381	60.59	6.88	0.896	7055	[P	False
áááááááá 2 1.09 0	19.97	11.21	0.25	613	{	T	False
4444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	58.48	-4.82	0.882	7145	(V	False
2.86 2.48 429 áááááááá 5	19.97	13.16	0.395	893	[P	False
3.65 4.95 857 áááááááá 6	61.11	-0.49	0.905	6252	(P	False
0.5 34.65 238 ááááááá 7	57.95	-6.77	0.874	6830	1	v	False
3.06 0 429 ááááááá 8	21.55	10.34	0.451	1806	[P	False
4.34 7.43	58.48	1.89	0.882	6785	I	P	False

			104	MCADMA	n-92042-c	NO .		
1048								
<u> </u>								
0.5	168.31	44.23	-3.09	0.782	16535	[V	False
48						•		
áááááááá	i 10							
0.99	-2.48	56.37	-5.47	0.859	7625	ſ	77	False
286				0.000	,023	L	٧	LGIPE
ááááááá	11							
	_	42 10	-1.57	0.760	17007		_	
286	-121.20	42.10	-1.5/	0.769	17027	L	P	False
444444								
	12.38	52.67	-1.14	0.829	8064	[P	False
667								
áááááááá	13							
0.69	0	43.18	-4.82	0.773	17121	ſ	V	False
143						•	•	
áááááááá	14							
-1.08	0	46 34	-10.02	0 779	7809	r	**	False
-381	•	40.54	10.02	0.775	7603	ı	٧	torse
ááááááá	15							
		40.00	0 02			_	_	
	2.48	48.98	-0.27	0.801	6651	[P	False
714								
áááááááá								
	-19.8	52.67	-3.52	0.837	16596	ſ	V	False
238						•		
áááááááá	17							
0.4	0	46.34	-6.33	0.778	7304	r	v	False
48	_			31170	1304	ı	٧	Larse
ááááááá	1 0							
		E2 67	2 54	0 00		_	_	
	-2.48	52.67	2.54	0.83	15588	[P	False
572								
áááááááá								
	2.48	46.87	1.89	0.781	6920	[P	False
857						_		
áááááááá	20							
0.5	7.43	22.08	-4.82	0.658	20935	ſ	V	False
0						·	•	. 0.100
áááááááá	21							
	-7.43	47 93	-4.82	0.795	6020	•	77	70.1-c
286	7.43	47.33	-4.02	0.795	6830	ι	V	False
	22							
ááááááá	-			_				
2.17	2.48	67.44	0.81	1.185	22275	[P	False
667								
áááááááá	23							
3.26	0	48.45	0.16	0.793	5945	ſ	P	False
714					~~~		•	
áááááááá	24							
0.5	9.9	43.18	-5.9	0.751	7236	•	77	B-1
48	3.3	43.10	-3.9	0.751	1230	[V	False
8888888	25							
5.82	4.95	67.44	10.34	1.118	16322	[P	False
1286								
áááááááá	26							
6.22	2.48	50.04	7.31	0.809	6808	ſ	P	False
1334					3040	L	•	
6666666	27							
1.58	-44.55	67.44	-1.35	1 112	17000	r	**	Pales
619	77.00	0/.44	-1.35	1.113	17090	[V	False
	20							
áááááááá	-		_					_
1.98	0	48.98	-3.09	0.8	6897	[V	False

4/0								
áááááááá	á 29							
4.84	-2.48	67.44	6.88	1 10	10506		_	
1143	2.40	07.44	0.00	1.12	13596	[₽	False
	< 20							
444444								
6.22	2.48	50.04	7.31	0.809	6808.	ſ	P	False
1334							_	
áááááááá	i 31							
0.5	17.33	67.44	-4.82	1 120	00000	_		<u>.</u>
286	47.55	07.44	-4.02	1.128	20012	Į	ν	False
6666666						-		
1.98	0	48.98	-3.09	0.8	6897	ſ	v	False
476							•	
áááááááá	i 33							
4.54	2.48	48.98	2.76	0 300		_	_	
905	2.40	40.30	2.70	0.798	5728	[P	False
á áááááá								
4.64	-4.95	48.45	12.51	0.821	20588	ſ	V	False
953					20000	L	•	.4156
áááááááá	35							
0.5	0	36.32	. .			_		
	U	30.32	~5.9	0.698	9591	[V	False
-48						-		
áááááááá								
5.82	-7.43	34.74	23.12	0.749	20688	I	P	False
905				01.45	20000	Ĺ	F	ratse
áááááááá	37							
2.17		45 05						
	-2.48	45.82	-2.44	0.776	7878	ſ	P	False
381						•		_
áááááááá	38							
-1.08	-2.48	59	-10.23	0.884	21870	•	**	
-286			10.23	0.004	210/0	[V	False
ááááááá	30							
0.79	0	46.34	-5.47	0.779	7936	ſ	V	False
95						•	•	
áááááááá	40							
3.06	0	63.75	3.84	0 005	00000	_	_	
762	· ·	03.75	3.64	0.925	20270	[P	False
áááááááá								
4.15	-4.95	48.45	2.54	0.796	7510	r	D	False
905					,,,,	L	•	ratee
áááááááá	42							
-0.98	0	27.0	40.00					
	U	37.9	-10.02	0.71	7809	Į	V	False
-429						-		
áááááááá	43							
6.12	7.43	56.89	19	0.872	20225		-	
1096			13	0.672	20235	L	P	False
8888888	A A							
	-2.48	39.49	-1.35	0.722	7032	ſ	P	False
476						•	_	
ááááááá á	45							
0.6	2.48	51.09	-4.82	0 025	20566			
286	_,,,	~~.03	-4.02	0.835	20566	Ţ	V	False
	4.5							
aaaaaaaa aaaaaa								
0.3	0	38.96	-6.33	0.715	7602	ſ	V	False
-48			- -			L	•	* ~ TB&
áááááááá	47							
4.54		F.C. 0						
	0	56.37	8.82	0.869	17434	[P	False
953						•		-
áááááááá	48							
3.75	2.48	36 85	2.76	0 600	7/05	•	-	10 m 3 m =
· -		JU. 05	4.10	0.699	7625	[P	False

476

			1 47	~ 11 OND 111	-21-95045-	DU		
762								
áááááááá								
-1.18	-2.48	55.31	-10.23	0.864	21999	ſ	V	False
-333						•	•	
áááááááá	i 50							
1.19	-2.48	37 38	-3.95	0.709	7740	•	••	D-1
238	2.40	37.36	~3.55	0.709	7740	ĺ	V	False
aaaaaaaa	- -							
2.47	-4.95	37.38	-1.35	0.704	7350	ſ	P	False
429						•	_	
áááááááá	i 52							
0.1	2.48	54 26	-7.2	0.856	21870	•	••	
0	2.40	34.20	-7.2	0.656	210/0	L	V	False
_								
aanaaaaa								
0.79	0	36.85	-5.04	0.699	7602	ſ	V	False
48						•		
áááááááá	54							
6.32	2.48	48 98	23.55	0.821	20062		-	D-1
953	2.40	40.50	23.33	0.621	20063	E	P	False
áááááááá								
	-2.48	38.96	10.34	0.715	6307	ſ	P	False
1143						•	_	
áááááááá	. 56							
0.69		43.71	-4.6	0 901	20540		••	
238	4.33	43.71	-4.0	0.801	20548	l	V	False
áááááááá								
1.58	2.48	37.38	-2.87	0.702	6429	ſ	V	False
381						•	-	
áááááááá	58							
4.44	0	56.89	8.39	0 070	10000		_	
	U	50.69	0.39	0.872	18328	[P	False
1000								
ááááááá á								
3.65	-14.85	40.01	1.68	0.721	5771	ſ	P	False
714					- · · · -		-	
áááááááá	60							
-1.08	0	25.25	-10 22	0 (15	7600	_		
	U	25.25	-10.23	0.615	7602	[V	False
-476								
áááááááá								
2.67	-2.48	56.89	2.11	0.878	20723	ſ	P	False
619						·	•	. 4.150
áááááááá	62							
2.86		27 25	• ••			_	_	
	0	27.35	1.03	0.629	6362	[P	False
476								
áááááááá	63							
0.3	0	55.31	-6.55	0.862	21291	ſ	V	False
48					7-4/-	r	•	10106
444444	64							
		05 55						
0.6	0	25.77	-5.25	0.616	6718	[V	False
0								
aaaaaaaa	65							
3.55	-2.48	55.84	5.79	0.874	20970	ſ	Ð	False
810	• -	- 3 - 3 - 3	J., J	J. J. T	203/0	L	•	tares
4444444	66							
		0=						
3.75	0	27.35	3.41	0.629	6274	[P	False
714						-		
áááááááá	67							
0.79	24.75	53.73	-4.17	0.853	21507	ſ	37	False
286			4.41	~.633	ETOU!	ı	٧	t o T 2 G
4444444	60							
0.99	-9.9	27.88	-4.17	0.635	6362	[V	False
						-		

			N	AWCADW	AR-92042	-60		
95								
āāāāāāā 3.55		20 5-						
667		30.52	2.54	0.653	5793	[P	False
ääääääää								
0.69		FF 21						
286		55.31	-4.39	0.862	21327	[V	False
áááááá								
0.2	_	28.94	-6 65	0 600				
- 95		20.94	-6.55	0.638	6897	[V	False
ā ā ā āāāā								
4.34		58.48	9.04	0.001				
810		20.40	9.04	0.881	20080	[P	False
444444								
6.32		25.25	14.45	0 607	====	_	_	
1000		23.23	14.43	0.607	5663	Į.	P	False
ááááááá								
	44.55	55.84	-1.57	0.859	20566			
381		23101	1.37	0.659	20566	Ţ	V	False
ááááááá	á 75							
1.78	-27.23	25,25	-1.57	0.61	5576			
381			1.57	0.61	5576	ĺ	V	False
áááááááá	5 76							
2.77	-4.95	53.2	2.76	0.85	20723	•	-	m- 1 -
619			21.0	0.65	20123	[P	False
áááááááá	§ 77							
6.22	2.48	50.04	7.31	0.81	6808	ſ	P	Dele-
1334				0.01	0000	ı	P	False
áááááááá	i 78							
1.98	. 0	48.98	-3.09	0.8	6897	ſ	v	False
476					0037	L	٧	raise
áááááááá	· -							
6.02	4.95	52.67	18.14	0.837	19468	ſ	P	False
1000						L	•	raise
ááááááá á								
4.54	2.48	48.98	2.76	0.8	5728	r	P	False
905						L	•	14156
<u> </u>								
0.69	42.08	42.65	-3.95	0.784	20759	ſ	V	False
286						L	•	14100
&&&& & & & & & &								
0.5	0	36.32	-5.9	0.7	9591	ſ	V	False
-48						•	-	
444444								
3.26	0	48.45	4.93	0.825	20166	ſ	P	False
810	0.4					•		
aááááááá	-							
2.17 381	-2.48	45.82	-2.44	0.78	7878	[P	False
4444444	05							
_								
0.6 191	0	53.2	-5.47	0.852	21417	[V	False
444444	06					-		
0.79	-	40	_					
95	0	46.34	-5.47	0.78	7936	[V	False
aaaaaaaa aaaaaaaa	07					-		-
	~4.95	40 4-	_					
905	74.95	48.45	2.54	0.8	7510	[P	False
aaaaaaaa aaaaaaaa	9.0					-		
-1.08		E0 4-						
1.00	0	52.15	-10.23	0.85	22238	[V	False

-3/13						•		
444444	5 00							
		27.0	10.00			_		
-0.98	0	37.9	-10.02	0.71	7809	[V	False
-429	_							
<u> áááááááá</u>								
3.26	0	57.95	5.14	0.879	21041	ſ	P	False
810						•	_	
áááááááá	91							
2.57	–	39.49	-1.35	0 72	7022	•	-	Ŕ-1
476	2.40	051.15	2.55	0.72	7032	L	P	tarse
444444	6 0 2							
0.89		46 24	4 45			_		
	-4.95	40.34	-4.17	0.815	22799	[V	False
191								
444444	-							
0.3	0	38.96	-6.33	0.72	7602	[V	False
-48								
áááááááá								
2.08	-2.48	50.56	0.81	0.835	22127	ſ	P	False
524						•	_	
ááááááá á	95							
3.75	2.48	36.85	2.76	0.7	7625	r	Ð	False
762	•			•••	,023	Ł	#	raise
aaaaaaaa	96							
		37 30	-2 05	0 71	7740		••	
238	-2.40	31.36	-3.95	0.71	7/40	ι	V	False
á ááááááá	0.7							
		44.00						
	7.43	44.23	24.85	0.795	20566	[P	False
953								
ááááááá								
2.47	-4.95	37.38	-1.35	0.7	7350	ſ	P	False
429						•		
áááááááá	99							
0.6	7.43	34.21	-4.82	0.752	20988	ſ	v	False
429						L	•	
áááááááá	100							
0.79	0	36.85	-5.04	0.7	7602	r	v	False
48	•		3.04	0.,	7002	[V	rarse
ááááááá	101							
		42 3 3	0 12	0.700			_	
857	-2.40	43.18	8.17	0.789	19050	[P	False
	100							
áááááááá								
	-2.48	38.96	10.34	0.72	6307	[P	False
1143						_		
áááááááá								
0.1	0	41.07	-6.98	0.782	20374	ſ	V	False
0						•		
<u> </u>	104							
1.58	2.48	37.38	-2.87	0.7	6429	ſ	v	Pales
381				•••	V743	Ĺ	•	TATBE
aaaaaaaa	105							
	-14.85	40 01	1 60	0.72	£774	•	-	B-1-
714	14.00	40.01	7.00	0.72	2//1	Ĺ	P	False
444444	106							
		25 65					_	
0.4	-4.95	35.27	-5.69	0.755	20864	[V	False
143								
444444	107							
-1.08	0	25.25	-10.23	0.62	7602	ſ	V	False
-476						٠	-	-
ááááááá	108							
4.44	0	51.09	10.34	0.837	20287	r	Ð	Fales
						L	•	

050				N.	AWCADWA	AR-92042	-60		_
953 ááááááá	. 100								
2.86	1 109	0	27 25						
476		U	27.35	1.03	0.63	6362	Į	P	False
444444	i 110								
0.5		0	40.54	-5.47	0 701	21226			
143			40.54	-3.47	0.781	21006	ĺ	V	False
ááááááá	111								
0.6		0	25.77	-5.25	0.62	6718		**	÷-3
0		-		0.25	0.02	0,10	[V	False
áááááááá	112								
6.32		0	43.18	21.17	0.791	19350	ſ	P	False
1000					01.71	19330	L	•	Lates
áááááááá	113								
3.75		0	27.35	3.41	0.63	6274	ſ	P	False
714							r	•	raree
áááááááá									
0.99		9.9	27.88	-4.17	0.64	6362	ſ	V	False
95							•	•	
ááááááá	115	_							
4.05		0	46.87	7.09	0.804	17655	[P	False
953 áááááááá						•			
3.55	-2.	4.0	20 50						
667	-2.	. 48	30.52	2.54	0.65	5793	[P	False
áááááááá	117								
0.89	11/	0	37.9	2 74					
286		U	37.9	-3.74	0.747	18037	[V	False
ááááááá	118								
0.2	12.	3.8	28.94	-6. 55	0.64	6000	_		
-95	 .		20.34	-6.55	0.64	6897	[V	False
ááááááá	119								
2.37		0	37.38	1.68	0.746	18231	r	-	Dala-
619				2.00	0.740	10231	[P	False
áááááááá	120								
6.32	-4.	95	25.25	14.45	0.61	5663	r	D	False
1000					0.01	5005	Ĺ	F	raise
áááááááá	121								
0		0	33.68	-7.2	0.747	21779	ſ	v	False
-48							·	•	·uise
áááááááá									
1.78	-27.	23	25.25	-1.57	0.61	5576	ſ	V	False
381							٠	•	- 4200
áááááááá	123								
5.13		0	32.1	6.01	0.67	4671	ſ	P	False
1048	• • •						•		
áááááááá		_							
0.2 191	-9	. 9	21.55	-6.12	0.628	22573	[V	False
ááááááá	125								
0.4	123	^	25 25		_				
-48		U	25.25	-5.69	0.6	7925	ſ	V	False
aaaaaaaa aaaaaaaa	126								
		00	21 55						
143	-01.6	90	21.55	-1.57	0.618	22724	[P	False
ááááááá	127								
4.24	161	^	20 00	4 22			_	_	
857		U	29.99	4.93	0.65	7464	[P	False
aaaaaaaa	128								
0.79		1	21 55	-2 07	0.604	0000		•-	
9.13	17.4	. 1	21.55	-2.87	0.604	23256	[V	False

1.40			147	NICADIIA	10-32 V427	5 0		
143								
áááááááá								
0.5	0	27.35	-5.69	0.63	7717	Г	V	False
-48						•		
<u>áááááááá</u>	130							
2.77	4.95	21.55	12.51	0.563	23759	[Ð	False
619			-2101	0.505	23/39	ŧ	F	Laise
ááááááá	131							
4.24	0	26.2	5.58	0.60	~	_	_	<u> </u>
810	U	20.3	5.58	0.62	7168	[P	False
	100							
<u> </u>								
0.6	0	25.25	-5.25	0.61	7855	ſ	V	False
0						•		
<u>áááááááá</u>	133							
1.98	4.95	22.08	1.68	0.677	22387	ſ	P	False
429		22,70	2.00	0.077	22301	ι	F	raise
ááááááá	124							
	_	04.40						
2.37	0	24.19	1.24	0.56	7157	[P	False
381								
áááááááá								
0.3	-2.48	25.77	~5.9	0.706	23837	ſ	V	False
48						L	•	14156
áááááááá	136							
0.5		67 44	- 2 00	0 50		_		
	2.40	67.44	-3.09	0.58	14284	[V	False
143								
ááááááá á	137							
2.37	0	32.63	2.11	0.744	22294	ſ	P	False
619						•	_	
áááááááá	138							
5.82	-2.48	67,44	14 45	0.69	6730			D-3
1048	2.40	07.44	14.45	0.69	5728	[P	False
444444	120							
0.79	0	27.35	-4.17	0.717	23141	[V	False
238						•		
<u> </u>	140							
0.69	2.48	67.44	-3.52	0.64	6241	ſ	V	False
143					0241	L	٧	raise
áááááááá	1 / 1							
		67 44	10 50			_	_	
9.62	-4.95	67.44	12.51	0.72	5858	[P	False
953								
áááááááá	_							
1.58	-47.03	29.99	-2	0.729	20201	ſ	V	False
572						·	•	- 4200
áááááááá	143							
0.69	0	23.66	-4 20	0 65	0707		••	
48	U	23.00	-4.39	0.55	9/8/	ι	V	raise
	444							
aaaaaaaa aaaaaaa								
3.85	2.48	42.12	6.66	0.77	17136	ſ	P	False
905						-		
áááááááá	145							
5.43		67.44	13.50	0.64	1720	r	D	Pale-
857				J. 07	1147	ι	-	r a r p G
aaaaaaaa	146							
		00 55		_			_	
0.69	-9.9	22.61	-4.39	0.686	21797	[V	False
143						-		
áááááááá	147							
0.69	2.48	19.97	0.16	0.25	529	ſ	v	False
191			J U	- 1 - 2 - 2	523	L	•	. 4756
444444	148							
	-7.43	22 /4	04.45			_	_	
3.02	-7.43	22.61	24.42	0.686	21417	[P	False

057					**************************************	-		
857	7.40							
áááááááá		10.07						
1.09	4.95	19.97	-2.65	0.25	557	[L	True
238	150							
444444								
1.09	2.48	19.97	-0.7	0.25	566	[T	False
238								
aaaaaaaa								
	2.48	21.55	3.84	0.63	22424	[P	False
476						_		
<u> </u>								
1.19	-2.48	19.97	-4.6	0.25	613	[L	True
238						_		
aaaaaaa		_						
0.69	0	26.83	-4.6	0.716	22387	[V	False
238						•		
<u> </u>								
1.19	0	19.97	-0.27	0.25	576	ſ	T	False
286						•		
aaaaaaaa								
4.74	2.48	31.57	12.94	0.735	21616	ſ	P	False
857						•		
áááááááá								
2.17	2.48	19.97	10.56	0.25	557	ſ	P	False
381						•		
áááááááá	-							
2.67	126.24	26.3	6.66	0.686	20900	ſ	V	False
810						٠	-	
ááááááá á								
1.78	4.95	19.97	9.91	0.25	520	ſ	L	True
381						•	_	
ááááááá á	159							
0.2	0	22.61	-6.33	0.693	20829	ſ	V	False
48						L	•	

			NA	WCADWA	H- YZ U42-6	i O		
facts								
áááááááá								
1.19	0	21.03	-0.7	0.433	1652	[V	False
191								
<u>áááááááá</u>								
3.16	0	52.67	3.63	0.841	16504	ſ	P	False
714						•		
áááááááá	162							
0.89	-2.48	66.92	-3.52	1.148	22275	ſ	V	False
476					32273	L	•	
áááááááá	163							
6.91	4.95	64.28	18.79	0.93	19687	ſ	ъ	False
1143				0.55	13007	L	*	ratee
ááááááá	164							
0.5	2.48	60.59	-5.9	0.895	21220		••	7-1
191	2.40	00.55	-3.5	0.635	21220	[V	False
ā ááááááá	165							
2.96		61 11	4 06	0 000		_		
714	0	61.11	4.06	0.902	20270	[P	False
aaaaaaaa	-							
0.4	2.48	49.51	-6.12	0.832	21291	[V	False
95								
áááááááá								
	-2.48	58.48	8.17	0.882	20794	ſ	P	False
857						•		
áááááááá	168							
1.29	-76.73	52.15	-3.09	0.849	20864	ſ	V	False
333						L	•	. 4150
áááááááá	169							
4.05	0	57.95	9.04	0.879	21363	ſ	P	False
905	•		3.04	0.075	21303	L	F	tarse
ááááááá	170							
0.3	-2.48	44.76	-6.12	0.802	22606	-	••	5-1
48	2.40	44.70	-0.12	0.802	22686	[V	False
áááááááá	171							
6.32		46 07	20.10					
	2.48	46.87	23.12	0.804	19451	[P	False
905								
aaaaaaaa								
0.4	-12.38	40.01	-4.82	0.77	19687	[V	False
333						-		
áááááááá								
5.62	-4.95	29.46	24.85	0.712	21113	ſ	P	False
810						•		
áááááááá	174							
0.69	0	21.55	-3.52	0.629	22761	r	v	False
95						L	•	14100
áááááááá	175							
6.32		27.35	23.55	0.715	20662	r	Ð	False
1143	· •	_,,,,,	23.33	0.719	4 J G J J	ι	F	tarse
aaaaaaaa	176							
		21.55	_6 49	0 570	00606			
238	44.33	41,33	-5.47	0.573	22686	ί	V	False
aaaaaaaa aaaaaaaa	177							
	_	25 22						
3.75	0	35.79	5.79	0.752	19199	[P	False
953								

APPENDIX B

APPENDIX B: The measured and predicted B.L 10 strains for Flight 400.

The following pages contain a listing of the 177 peak and valley B.L. 10 strains which occurred during Flight 400. Three strains are shown. The first (BL10STR) is the strain that was recorded by the SDRS system, the second (NETSTRAI) is the strain predicted by the trained neural network, and the third (STNEST) is the strain calculated from the regression equation: BL10STR= 218.3*Nz - 9.2*AOA + 260.9*MACHNO - 229.9. These data are plotted in Figures 2 and 3 of the paper.

		BL10STR	NETSTRAI	STNEST
CASE	1	0.000	106.130	-29.542
CASE	2	429.000	423.840	376.731
CASE	3	191.000		149.200
CASE	4	429.000	471.920	460.842
CASE	5	48.000		111.548
CASE	6	286.000		458.721
CASE	7	143.000		166.529
CASE	8	714.000	756.020	645.913
CASE	9	238.000		280.438
CASE	10	572.000		587.557
CASE	11	0.000		95.061
CASE	12	667.000	737.190	545.420
CASE	13	476.000		296.086
CASE	14	1286.000		1237.237
CASE	15	619.000		417.664
CASE	16	1143.000	1040.700	1055.580
CASE	17	286.000	362.650	217.664
CASE	18	1143.000	1099.900	1348.640
CASE	19	953.000	1023.900	882.321
CASE	20	905.000	1018.200	1023.826
CASE	21	-286.000	-102.900	-141.246
CASE	22	762.000	649.100	644.074
CASE	23	191.000	152.520	166.784
CASE	24	1096.000	1075.400	1159.159
CASE	25	286.000	219.430	163.059
CASE	26	953.000	973.540	906.842
CASE	27	-333.000	-114.400	-168.289
CASE	28	714.000	631.280	614.231

CASE	29	0.000	65.114	81.223
CASE	30	953.000	1067.300	1147.797
CASE	31	238.000	278.940	171.816
CASE	32	1000.000	954.040	889.740
CASE	33	95.000	161.940	130.541
CASE	34	619.000	550.260	562.550
CASE	35	48.000	107.140	120.482
CASE	36	810.000	775.180	719.843
CASE	37	286.000	331.050	203.265
CASE	38	857.000	856.880	809.243
CASE	39	286.000	287.680	185.804
CASE	40	810.000	943.960	864.303
CASE	41	381.000	501.840	246.475
CASE	42	619.000	578.160	571.114
CASE	43	333.000	319.960	301.452
CASE	44	1000.000	1070.700	1136.086
CASE	45	286.000	345.510	161.423
CASE	46	810.000	777.530	651.649
CASE	47	191.000	197.240	173.452
CASE	48	905.000	870.660	800.486
CASE	49	-333.000	-108.000	-150.115
CASE	50	810.000	707.940	663.810
CASE	50 51	191.000	327.690	215.179
CASE			405.020	
	52 53	524.000 48.000		434.476
CASE	53 54		149.830	100.889
CASE	54 55	953.000	1076.700	1214.220
CASE	55 56	429.000	291.710	141.407
CASE	56	857.000	920.420	784.984
CASE	57	0.000	102.090	59.903
CASE	58	905.000	1068.000	1147.305
CASE	59	143.000	212.370	106.513
CASE	60	953.000	959.090	862.735
CASE	61	143.000	234.890	133.105
CASE	62	1000.000	1070.300	1161.789
CASE	63	333.000	188.830	102.450
CASE	64	953.000	933.540	798.797
CASE	65	286.000	356.600	193.499
CASE	66	619.000	582.530	466.580
CASE	67	-48.000	97.390	30.963
CASE	68	810.000	990.020	954.663
CASE	69	191.000	55.027	33.673
CASE	70	143.000	278.270	441.157
CASE	71	143.000	223.130	126.395
CASE	72	619.000	518.990	406.870
CASE	73	95.000	179.760	117.048
CASE	74	429.000	389.210	363.459
CASE	75	48.000	166.980	73.830
CASE	76	619.000	563.710	462.117
CASE	77	238.000	326.340	167.789
CASE	78	1143.000	1047.500	1120.146
CASE	79	572.000	573.460	323.453
CASE	80	905.000	918.070	750.217
CASE	81	143.000	265.150	139.892
CASE	82	857.000	975.230	951.823
CASE	83	238.000	-44.150	13.368
CASE	84	476.000	381.820	372.868
	-			

CASE	85	238.000	292.050	149.643
CASE	86	857.000	964.800	877.772
CASE	87	810.000	690.790	470.756
CASE	88	953.000	877.720	731.671
CASE	89	48.000	108.140	52.554
CASE	90	1381.000	1094.500	1298.349
CASE	91	476.000	401.320	347.746
CASE	92	857.000	882.770	807.325
CASE	93	238.000	106.130	169.281
CASE	94	1048.000	973.540	930.108
CASE	95	286.000	268.850	260.400
CASE	96	667.000	698.860	601.387
CASE	97	-381.000	-151.700	-170.561
CASE	98	714.000	736.850	649.404
CASE	99	48.000	56.708	118.379
CASE	100	857.000	904.290	796.813
CASE	101	286.000	282.640	281.399
CASE	102	714.000	770.140	687.028
CASE	103	48.000	70.829	129.221
CASE CASE	104	1334.000	1101.300	1271.713
CASE	105	476.000	550.590	439.271
CASE	106	1334.000	1101.300	1271.713
CASE	107 108	476.000	550.590	439.271
CASE	108	905.000	993.380	943.873
CASE	110	-48.000	79.234	115.395
CASE	111	381.000	446.370	468.522
CASE	112	95.000	167.320	195.879
CASE	113	905.000	939.920	860.246
CASE	113	-429.000	-164.500	-166.734
CASE	114	476.000	534.120	531.748
CASE	116	-48.000 763.000	12.665	80.119
CASE	117	762.000	860.580	745.621
CASE	118	238.000	286.000	250.990
CASE	119	429.000	483.690	505.227
CASE	120	48.000	141.760	171.068
CASE	121	1143.000	1095.900	1260.886
CASE	122	381.000	400.310	324.386
CASE	123	714.000 -476.000	803.090	739.434
CASE	124		-174.600	-211.417
CASE	125	476.000 0.000	551.600	548.967
CASE	126	714.000	45.277	109.872
CASE	127	95.000	770.470	721.403
CASE	128	667.000	160.260	190.051
CASE	129	- 95.000	760.050	691.986
CASE	130	1000.000	-24.310	40.224
CASE	131	381.000	1054.200	1175.393
CASE	132	1334.000	401.320	332.122
CASE	133	476.000	1101.600	1271.974
CASE	134	905.000	550.590	439.271
CASE	135	-48.000	994.730	944.395
CASE	136	381.000	80.915	115.917
CASE	137	95.000	453.430 168.330	469.565
CASE	138	905.000	168.330 942.950	196.140
CASE	139	-429.000	-164.500	861.290
CASE	140	476.000	530.090	-166.734
	- 	473.000	220.030	531.227

CASE	141	-48.000	16.027	81.423
CASE	142	762.000	862.260	745.882
CASE	143	238.000	287.680	251.251
CASE	144	429.000	476.630	504.183
CASE	145	48.000	142.440	171.329
CASE	146	1143.000	1097.200	1262.190
CASE	147	381.000	397.960	323.864
CASE	148	714.000	801.740	739.174
CASE	149	-476.000	-174.200	-210.113
CASE	150	476.000	552.950	549.228
CASE	151	0.000	47.967	110.916
CASE	152	714.000	772.490	721.664
CASE	153	95.000	165.640	191.355
CASE	154	667.000	755.350	691.204
CASE	155	-95.000	-23.640	40.745
CASE	156	1000.000	1055.500	1176.176
CASE	157	381.000	401.320	332.122
CASE	158	1048.000	1005.100	1009.465
CASE	159	-48.000	-1.455	66.080
CASE	160	857.000	894.540	819.895
CASE	161	-48.000	33.174	95.732
CASE	162	810.000	856.880	806.111
CASE	163	0.000	45.950	108.307
CASE	164	381.000	322.310	422.094
CASE	165	143.000	18.717	58.855
CASE	166	1048.000	993.380	1087.914
CASE	167	143.000	20.734	119.918
CASE	168	953.000	997.080	1113.523
CASE	169	48.000	35.191	104.416
CASE	170	857.000	928.490	997.632
CASE	171	191.000	61.415	-15.551
CASE	172	238.000	219.430	97.513
CASE	173	238.000	193.540	79.637
CASE	174	238.000	194.210	137.214
CASE	175	286.000	196.230	97.521
CASE	176	381.000	269.520	212.140
CASE	177	381.000	495.460	132.976

APPENDIX C

APPENDIX C: THE TEST FILES FOR FLIGHT 401.

The following pages contain the testing facts for flight 401. Following the word "facts", the facts are listed. The number of the fact is given as a comment for convenience, then a line of input appears. In this example, there is both numeric and symbolic input. The numeric input occurs first, followed by a left bracket and the symbolic data. The third line of each entry contains the output. They appear in the same order as dictated by the definition file which appears in Appendix A. One hundred twenty-three facts are listed.

			• • • • • • • • • • • • • • • • • • • •	,,,, OVD !!}	17-82U42.	'00		
facts								
áááááááá1								
1.19	2.48	19.97	12.29	0.25	837	ſ	T	False
50				0.20	03,	Ļ		raise
áááááááá2								
2.67	0	19.97	11.42	0.41		_	_	
446	U	13.37	11.42	0.41	1166	Į	P	False
áááááááa3								
0.3	12.38	19.97	-2.87	0.33	6076	r	·V	False
-99							-	
áááááááá4								
2.17 -	131.19	45.29	-2	0.77	46000		_	
396		40123	•	0.77	16020	[P	False
áááááááá5								
	-2.48	46.87	-4.82	0.79	16020	ſ	V	False
198						•		
áááááááá6								
3.16	2.48	49.51	3.41	0.81	15308	ſ	ъ	False
842				0.01	19308	ι	P	raise
áááááááá7								
	_14 05	E0 04	-4.17					
	-14.65	50.04	-4.17	0.81	15308	[V	False
297						_		
äääääääää								
2.96	0	50.56	2.54	0.81	14284	ſ	P	False
694			· · · · ·	0.02	74204	L	•	raise
áááááááá9								
	160 80	28.41	-4 17					_
~99	100.69	20.41	-4.17	0.73	20794	[V	False
	_							
áááááááá1(
2.08	-2.48	31.05	1.24	0.73	20391	ſ	P	False
495						·	•	14156
áááááááá11	L							
-0.19 -1	60.89	28 41	-6.12	0 70	20000	_		
-248		20.41	-0.12	0.72	20988	[V	False
áááááááá 12								
	=							
2.67	2.48	45.29	2.76	0.81	19417	ſ	P	False
743						•	-	
áááááááá13	3							
-0.09 1	85.64	58.48	-6.77	0.88	20750	_		
50		30.40	-0.77	0.00	20759	l	V	False
á ááááááá14								
	-2.48	61.11	0.16	0.9	20322	ſ	P	False
594						•	-	- 4200
áááááááá15	•							
-0.59	0	24.72	-10.02	0.7	21222	_		
-149		24.72	-10.02	0.7	21220	[V	False
444444416								
2.57	0	31.57	2.76	0.73	19552	ſ	P	False
743						•		
áááááááá 17								
-0.69	0	25.25	-10.23	0.7	20470	r	77	B-1
-149	-			J. /	20478	[٧	False
ááááááá 18								
2.57								
-	0	25.77	3.41	0.7	19670	ſ	P	False
694						•	_	
áááááááá19								
0.5	0	23.14	-5.25	0.69	20601		**	D-1
198	•		3.25	0.03	20601	[٧	False
ááááááá 20								
	0 40							
4.24	-2.48	27.35	13.16	0.71	19806	[P	False
						-		-

000				· · · · · · · · · · · · · · · · · · ·	11-0404P-	00		
892								
áááááááá21								
0.69 -	27.23	25.77	-3.52	0.7	20080	[V	False
347						•		
áááááááá22								
4.54	-2.48	29.46	13.16	0.71	19266	ſ	P	False
793	2.40	23.40	13.10	0.71	19200	ι	P	ratse
ááááááá 23								
	29.7	28.94	-3.52	0.71	19535	[V	False
446						-		
áááááááá24								
2.47	-2.48	31.05	2.54	0.72	18785	ſ	P	False
694		02.00	0.54	0.72	16/65	ι	-	Laise
ááááááá 25								
	2.48	37.9	-9.8	0.76	20409	[V	False
-99						_		
áááááááá26								
2.77	0	42.65	2.98	0.79	19283	ſ	P	False
842	-			01.75	27203	ι	•	raise
áááááááá27								
-0.49	_	25 70						
	0	35.79	-9.8	0.76	20935	[V	False
-99								
áááááááá28								
2.77	0	38.43	3.41	0.77	20080	ſ	P	False
793				••••	20000	L		rarse
áááááááá29								
	4 05	25 52						
	14.85	35.79	-3.95	0.76	20847	[V	False
347								
áááááááá30								
4.93	. 0	33.16	15.97	0.74	20478	ſ	P	False
842	-			••••	20470	ı	•	rarse
áááááááá31								
	7 42	20.46				_		
	7.43	29.46	-1.79	0.73	20970	[V	False
594								
áááááááá32								
4.74	2.48	29.46	15.32	0.72	20235	ſ	P	False
892						r	•	14156
áááááááá33								
	10.0	27 00	2 52			_		
	19.8	27.88	-3.52	0.72	20653	[V	False
446								
áááááááá34								
2.57	0	32.63	2.98	0.74	19943	ſ	P	False
793				••••	20040	ı	•	10156
áááááááá35								
	2 40	56 00	44 44			_		
	2.48	56.89	-10.23	0.87	20759	[V	False
-99								
aaaaaaaa36								
2.77	0	61.64	3.19	0.91	19670	[P	False
793	_			0.71	13070	r	-	raise
ááááááá 37								
	2.48	53.73	-10.23	0.85	20759	[V	False
-99						-		
áááááááá38								
2.77	0	56.37	2.98	0.87	20080	ſ	P	False
842	•		2.30	0.07	20000	L	F	tates
áááááááá39								
	2.48	51.09	-6.33	0.84	20917	[V	False
198					-	•		_
áááááááá 40								
4.34	0	60.59	9.47	0.9	20140	r	D	False
- 	•		J.71	0.5	20149	L	P	tarse

			N	AWCADW	AR-92042	-60		
1090								
ááááááá 4								
	-27.23	59	1.89	0.89	20132	Ī	v	False
694						•	•	
ááááááá á4	-							
4.84	14.85	61.11	11.42	0.9	19050	ſ	P	False
1139						ι	•	raise
áááááááá4	3							
0.89	14.85	58.48	-3.52	0.88	19535	1	v	False
545					2233	ι	•	raise
áááááááá4	4							
3.46	0	62.17	5.14	١.91	18118	ſ	P	P-1
941					10110	ι	F	False
áááááááá4	5							
-0.69	2.48	59.53	-10.23	0.89	20601	•	••	
-50			20.25	0.03	20601	[V	False
áááááááá4	6							
2.77	0	63.75	2.33	0.93	10700		_	
793	•	03.75	2.33	0.93	19789	[P	False
áááááááá 4	7							
-0.59	2.48	58.48	-10.23	0.88	20012	_		
-99	0.40	20.40	-10.23	0.68	20917	[V	False
ááááááá 48	R							
2.57	0	61.64	2.33	0 01	20540	_	_	
743	· ·	01.04	2.33	0.91	20548	[P	False
áááááááá49	a							
0.3	-2.48	59.53	-6.00	0.00		_		
149	2.40	39.33	-6.98	0.89	21327	E	V	False
444444450	1							
4.15	. 0	62.7	0 04					
1040	U	62.7	9.04	0.91	20723]	P	False
áááááááá51								
1.98 -1	_	61.64						
495	130.01	01.64	-2.44	0.91	21435	[V	False
ááááááá 52								
4.15		62.00						
1090	2.48	63.22	8.39	0.92	19620	[P	False
áááááááá53	•							
1.29								
495	U	61.11	-3.3	0.9	19789	[V	False
áááááááá 54								
2.77	-2.48	64.81	1.89	0.94	18752	[P	False
793						•		
áááááááá55								
0.5	0	22.08	~5.04	0.68	21327	ſ	V	False
99						•		
ááááááá 56								
	4.95	21.55	24.63	0.6	22035	ſ	P	False
793						•		
44444457								
0.6	-9.9	21.03	-3.09	0.55	20601	ſ	v	False
347					-	•	•	
8484844 58								
3.16	0	22.08	10.56	0.59	18802	ſ	P	False
793						•	-	
áááááááá 59								
0.3 -	24.75	21.55	-4.6	0.59	23294	r	v	False
99			-			·	•	- ~+96
áááááááá60								
4.44	0	21.55	24.42	0.6	22517	ſ	P	False
				-			-	- ~ 100

			NA	WCADWA	H-92042-	DU		
793								
áááááááá61								
	7.23	21.03	-3.3	0.56	21220	ĺ	V	False
347								
áááááááá62								
3.36	0	23.66	7.74	0.64	19183	L	T	False
991						•		
áááááááá63								
0.5	2.48	22.08	-4.82	0.63	20953	ſ	V	False
198						•		
áááááááá64								
3.65 -	2.48	21.55	24.85	0.57	21399	ſ	P	False
644						•	_	
áááááááá65								
0.1 -	4.95	21.03	-6.33	0.51	22220	[v	False
198				****		L	•	LUIDE
ááááááá 66								
2.27	0	21.03	7.74	0.56	20917	ſ	P	False
594	•	21.03	7.74	0.50	20917	L	F	raise
ááááááá á67						•		
0.69	0	21.55	-2.44	0.56	20704		••	
297	U	21.55	-2.44	0.56	20794	[V	False
áááááááá68								
3.36	^	01 55	04 60			_	_	
	0	21.55	24.63	0.55	20864	[P	False
594								
áááááááá69								
	2.48	21.03	-6.98	0.49	21489	Ĺ	V	False
198								
áááááááá70	_							
	2.48	21.55	23.98	0.56	21024	[P	False
842								
áááááááá71								
	2.48	20.5	-8.72	0.47	21006	ſ	V	False
149						•		
áááááááá72								
5.53 -	4.95	21.55	23.98	0.57	21077	ſ	P	False
842						L	_	
áááááááá73								
	4.95	20.5	-9.8	0.45	21399	ſ	77	False
99		2013	J.0	0.45	2.333	L	•	raise
ááááááá 474								
	4.95	24 72	1.24	0.67	19066	,	P	False
644	*. > >	24.72	1.24	0.67	13000	ι	P	raise
áááááááá75								
-1.18	0	22 61	-10.23	0 67	20017		**	D-1
-1.18 -198	U	22.61	-10.23	0.67	20917	L	V	False
áááááááá76								
	_	04.10				_	_	
4.54	0	24.19	16.84	0.65	18983	[P	False
991								
áááááááá77								
	2.48	22.08	-10.23	0.67	21291	[V	False
-198								
áááááááá78								
	2.48	22.61	24.85	0.65	20201	ſ	P	False
842						•		
áááááááá79								
-0.09	0	22.08	-8.28	0.61	20759	ſ	V	False
347			-	. —		•	-	
áááááááá80								
4.05	9.9	21.55	24.42	0.47	13763	ſ	P	False
-			W7 . 76	V••/	44/03	L	-	. ulbe

NAWC	ADWA	R-920	42-60
------	------	-------	-------

				MIICADI	MN-82042	:-DU		
644								
aaaaaaaa								
0.4	19.8	22.08	-4.17	0.49	17308	ſ	V	False
198						•		
áááááááá								
4.44	2.48	22.08	24.42	0.46	15103	ſ	P	False
644						·	•	. 0.196
áááááááá	83							
3.36	2.48	22.08	24.85	0.48	14284	ſ	v	False
842					44204	ι	•	ratse
ááááááááá	84							
5.23	4.95	23.14	24.63	0.53	12399		-	D-1-
892				0.55	12399	[P	False
áááááááá	85							
-1.08	0	22.08	-10.23	0 63		_		
-149	•	22.00	-10.23	0.67	21399	[V	False
4444444	8.6							
4.05	0	23.14	10.04					
941	J	23.14	12.94	0.68	19994	[P	False
4444444	3 ~							
~1.47								
= -	2.48	22.08	-10.23	0.67	21706	I	V	False
-248						•		
aaaaaaaaa								
4.24	2.48	22.08	17.05	0.66	20566	ſ	P	False
892							•	14156
áááááááá	39							
0.1	0	21.55	-6.98	0.62	21471	ſ	17	False
248				0.02	214/1	L	V	raise
áááááááá	0							
5.82	-2.48	22.61	24.85	0.65	10200		_	
1090			24.03	0.65	19300	[P	False
áááááááá9	1							
	-17.33	19.97	10.56	0 41		_		
793	27.00	19.37	10.56	0.41	9251	[V	False
áááááááa	າ							
4.44	0	22 61						
1238	U	22.61	12.07	0.52	7418	[P	False
áááááááá	3							
0.5	79.21	20.5	-0.7	0.44	16382	ſ	V	False
248						٠		
áááááááá	•							
3.95	4.95	21.55	24.2	0.45	16413	ſ	Ð	False
446			_		20125	L	•	raise
áááááááá	5							
0.5	2.48	19.97	-1.79	0.36	12802	r	77	20 1 ma
248			_,,,	0.50	12002	L	V	False
áááááááá9	6							
5.13	-2.48	22.61	24.63	0.51	12100		_	
793			24.05	0.51	13128	L	P	False
áááááááá97	7							
-1.18	0	22.08	10.00					
-198	U	22.00	-10.23	0.67	21238	[V	False
444444498	•							
4.44	-4.95	22	-	_				
	74.95	22.61	12.29	0.67	20012	[P	False
941						-		-
áááááááá99								
	-2.48	22.08	-7.2	0.64	20900	ſ	V	False
248	_					•	•	
áááááááá10								
5.53	7.43	22.08	24.42	0.65	22461	ſ	Þ	False
			• -			L	•	. 4106

		NA	WCADWAR	1-92042-0	U		
892							
ááááááá101							
	21.03	24.63	0.51	19350	[V	False
842							
ááááááá1 02							
4.93 14.85	22.61	24.42	0.51	15455	[P	False
842					•		
ááááááá 103							
2.08 -29.7	22.61	4.71	0.49	12506	ſ	. V	False
743		• • • •			ŀ	•	
ááááááá104							
4.24 0	24.19	9.69	0.56	11220	ſ	P	False
	24.13	9.09	0.56	11220	L	F	Lathe
1139							
áááááááá105					_		
0.79 0	22.61	-3.09	0.58	18719	Į	V	False
297							
ááááááá106							
2.08 0	22.08	4.06	0.58	19384	[P	False
545							
ááááááá1 07							
0.5 2.48	21.55	-4.6	0.62	21273	ſ	1.	False
198					•	•	
ááááááá108							
2.96 0	22.08	3.84	0.68	20444	r	D	False
793	22.00	3.64	0.00	20444	£	F	raise
áááááááá109		4 00		24255	_		
0.79 17.33	22.08	-4.39	0.68	21255	Ĺ	V	False
297							
ááááááá110							
4.15 -4.95	22.08	9.26	0.68	20794	[P	False
1139							
ááááááá111							
2.37 0	22.08	2.33	0.67	21184	ſ	V	False
743					٠		
ááááááá112							
4.34 -4.95	22 NR	10.34	0.67	20305	ſ	P	False
1189	22.00	10.34	0.07	20303	L	•	ruisc
áááááááá113	00 00	40.00			_		
	22.08	-10.23	0.67	21616	L	V	False
-198							
ááááááá114							
4.34 -7.43	22.08	15.54	0.64	20688	[P	False
941							
áááááááá115							
0.3 0	21.55	-5.04	0.56	22875	ſ	V	False
149					٠		
<u> </u>							
2.08 4.95	31.05	-0.7	0.72	18950	ſ	Ð	False
644	34.03	0.,	0.72	10330	L	•	
áááááááá117							
	21 55	2 52	0.46	11207		**	B-1
0.5 12.38	21.55	-3.52	U.46	11207	l	٧	False
149							
áááááááá118							
2.67 0	67.44	7.96	0.54	2077	[P	False
545					•		
ááááááá119							
0.99 -2.48	67.44	-3.3	0.64	1864	ſ	V	False
198					•		
ááááááá 120							
5.13 0	67.44	14.45	0.6	1585	ſ	Þ	False
0.25	~,,,,,	44.47		1303	r	•	

NAWCA	DWAR	-92042	-60
-------	------	--------	-----

941		NAWCADWAH-92042-60						
áááááááá 12 1.39 396	-7.43	19.97	11.21	0.25	837	[L	True
áááááááá12 1.39 347	0	19.97	6.01	0.25	818	ſ	T	False
áááááááá12 0.99 347	3	19.97	1.03	0.25	790	ĺ	, L	True

APPENDIX D

APPENDIX D: The measured and predicted B.L 10 strains for Flight 401.

The following pages contain a listing of the 123 peak and valley B.L. 10 strains which occurred during Flight 401. Three strains are shown. The first (BL10STR) is the strain that was recorded by the SDRS system, the second (NETSTRAI) is the strain predicted by the trained neural network, and the third (STNEST) is the strain calculated from the regression equation: BL10STR= 218.3*Nz - 9.2*AOA + 260.9*MACHNO - 229.9. These data are plotted in Figures 4 and 5 of the paper.

		BL10STR	NETSTRAI	STNEST
CASE	1	50.00	0 112.510	-17 (16
CASE	2	446.00		-17.616 355.124
CASE	3	-99.00		-52.029
CASE	4	396.00		462.923
CASE	5	198.00		170.964
CASE	6	842.00		639.843
CASE	7	297.00	283.310	235.701
CASE	8	694.00	717.690	604.166
CASE	9	-99.00	10.648	20.579
CASE	10	495.00		403.144
CASE	11	-248.000		-27.450
CASE	12	743.000		538.854
CASE CASE	13	50.000		42.072
CASE	14 15	594.000		457.390
CASE	16	-149.000		-84.221
CASE	17	743.000		496.159
CASE	18	-149.000		-104.122
CASE	19	694.000 198.000		482.374
CASE	20	892.000		107.350
CASE	21	347.000		760.102
CASE	22	793.000		135.569
CASE	23	446.000		825.581
CASE	24	694.000		181.830
CASE	25	-99.000		473.741 -70.586
CASE	26	842.000		553.446
CASE	27	-99.000		-48.760
CASE	28	793.000		544.287
CASE	29	347.000		176.989
CASE	30	842.000		892.770
CASE	31	594.000		258.493
CASE	32	892.000	969.510	852.041
CASE	33	446.000	334.410	184.439
CASE	34	793.000	639.020	496.751
CASE	35	-99.000	-71.720	-59.776
CASE	36	793.000	596.650	582.824
CASE	37	-99.000	-64.660	-43.167
CASE	38	842.000	605.060	574.315
CASE	39 40	198.000	119.570	112.726
CASE	40	1090.000	915.380	865.318
CASE	41	694.000	580.850	480.393

CASE	42	1139.000	1021.200	956.573
CASE	43	545.000	306.510	226.176
CASE	44	941.000	766.780	715.549
CASE	45	-50.000	-64.660	-54.559
CASE	46	793.000	593.970	595.925
CASE	47	-99.000	-58.270	-35.341
CASE	48	743.000	532.100	547.055
CASE	49	149.000	98.398	131.728
CASE	50	1040.000	867.300	830.398
CASE	51	495.000	464.520	462.007
CASE	52	1090.000	889.830	838.966
CASE	53	495.000	371.060	316.681
CASE	54	793.000	600.350	602.567
CASE	55	99.000	179.420	102.816
CASE	56	793.000	867.640	669.915
CASE	57	347.000	81.924	72.855
CASE	58	793.000	635.320	516.911
CASE	59	99.000	74.191	31.653
CASE	60	793.000	842.090	671.840
CASE	61	347.000	98.398	55.563
CASE	62 63	991.000	704.580	599.457
CASE	63	198.000	111.170	87.756
CASE	64	644.000	759.720	487.645
CASE CASE	65 66	198.000	-68.360	-17.009
CASE	67	594.000	369.710	340.683
CASE	68	297.000	107.470	89.149
CASE	69	594.000 198.000	740.890	421.149
CASE	70	842.000	-91.550 919.750	-16.268
CASE	71	149.000	-132.900	859.692
CASE	72	842.000	918.740	-68.830 905.953
CASE	73	99.000	-160.800	-151.452
CASE	74	644.000	403.000	365.667
CASE	75	-198.000	-131.900	-218.896
CASE	76	991.000	913.030	776.195
CASE	77	-198.000	-137.200	-240.722
CASE	78	842.000	934.540	809.716
CASE	79	347.000	-49.860	-14.517
CASE	80	644.000	830.660	552.806
CASE	81	198.000	-42.470	23.452
CASE	82	644.000	840.070	635.320
CASE	83	842.000	749.290	400.872
CASE	84	892.000	947.990	824.082
CASE	85	-149.000	-123.400	-197.070
CASE	86	941.000	866.290	712.824
CASE	87	-248.000	-146.600	-282.192
CASE	88	892.000	880.750	711.400
CASE	89	248.000	1.907	17.644
CASE	90	1090.000	996.070	982.143
CASE	91	793.000	445.700	319.355
CASE	92	1238.000	799.720	764.184
CASE	93	248.000	16.700	0.425
CASE	94	446.000	790.980	527.780
CASE	95	248.000	-60.960	-10.451
CASE	96	793.000	919.410	797.038
CASE	97	-198.000	-130.800	-218.896
		_		

CASE	98	941.000	885.120	801.296
CASE	99	248.000	35.527	
CASE	100	892.000	974.890	46.704
CASE	101	842.000	791.660	922.788
CASE	102	842.000	925.470	495.837
CASE	103	743.000	467.210	755.311
CASE	104	1139.000		308.729
CASE	105	297.000	808.470	752.783
CASE	106	545.000	135.710	122.151
CASE	107		309.870	338.165
CASE	108	198.000	101.760	83.131
CASE	109	793.000	635.650	558.338
CASE		297.000	217.750	160.154
CASE	110	1139.000	843.430	768.384
	111	743.000	722.730	440.797
CASE	112	1189.000	866.290	797.345
CASE	113	-198.000	-122.400	-197.070
CASE	114	941.000	834.020	741.851
CASE	115	149.000	8.295	27.861
CASE	116	644.000	475.960	418.320
CASE	117	149.000	-30.030	31.494
CASE	118	545.000	360.640	420.754
CASE	119	198.000	36.200	183.380
CASE	120	941.000	877.720	913.836
CASE	121	396.000	306.170	35.937
CASE	122	347.000	169.330	
CASE	123	347.000	219.090	83.605
		21000	213.030	41.952