CG2023 Signals & Systems

AY2018/19-2

Midterm Quiz (Close Book)

Time Allowed: 1.5 Hours

INSTRUCTIONS TO CANDIDATES:

Date: 7 March 2019

- 1. This paper contains FOUR (4) questions and comprises TWELVE (12) printed pages.
- 2. Answer all 4 questions. Each question carries 10 marks.
- 3. This is a closed book quiz. You are allowed to bring **ONE** (1) crib sheet of A4 size.
- 4. Programmable and/or graphic calculators are not allowed.
- 5. Tables of formulas are given on Pages 11 & 12 which you may detach for easy reference.
- 6. Write your **answers** in the spaces indicated in this question paper. Attachment is not allowed.
- 7. Write your **name**, **matric number** and **seat number** in the spaces indicated below.

Name	:	 	 	
Matric #	ŧ:			
Seat #	•			

Q.1	A S	ıgna	if is modeled by $x(t) = 4 \operatorname{rect}(4t - 8)$ and its Fourier transform is denoted by $X(f)$.	
	(a)	Fin	and the expression of $X(f)$.	(2 marks)
	(b)	Let	$t y(t) = 2x(t)\cos(800\pi t).$	
		i	Find the Fourier transform, $Y(f)$, of $y(t)$.	(3 marks)
		ii.	What are the energy and 1 st -null bandwidth of $y(t)$?	(5 marks)
Q.1	ANS	SWE	ER .	

Q.1 ANSWER ~ continued

Q.2 The spectrum of a signal $x(t)$ is given by $X(f) = 2e^{-j\pi f}$	$\left[\operatorname{sinc}(f) - 2\operatorname{sinc}(2f)e^{-j3\pi f}\right].$	
(a) Find $x(t)$ in terms of 'rect' functions.	(2 marks	3)
(b) Find the energy of $x(t)$.	(2 marks	;)
(c) Let $y(t) = x(t) * \sum_{n=-\infty}^{\infty} \delta(t - 6n)$ where '*' denotes co	onvolution.	
i Sketch $y(t)$ with proper labelling.	(2 marks	;)
ii. Find the Fourier series coefficients and the average	ge power of $y(t)$. (4 marks	;)
Q.2 ANSWER		
		_
		_
		_
		_

Q.2 ANSWER ~ continued

Q.3 The discrete-frequency spectrum of a signal x(t) is shown in Figure Q3.

- (a) Is x(t) is a (real or complex), (energy or power) and (periodic or aperiodic) signal? Provide a reason for each of your answers. (3 marks)
- (b) What is the average power of $x(\alpha t)$ where α is an arbitrary non-zero real constant? Justify your answer. (4 marks)
- (c) Following the format used in Figure Q3, sketch the spectrum of x(-t). (3 marks)

Q.3 ANSWER

T. Control of the con	

Q.3 ANSWER ~ continued

Q.4 Consider the signal q(t) shown in Figure Q4(a).

(a) Draw the spectrum of q(t) with proper labelling.

(3 marks)

(b) Find the energy spectral density and the energy of q(t).

(3 marks)

(c) Let s(t) be as defined in Figure Q4(b). Find the spectrum of s(t) using the results from Part (a). (4 marks)

Q.4 ANSWER

Q.4 ANSWER ~ continued

This page is reserved for marks entry. Anything written on this page will not be graded.

Question #	Marks	Remarks
1		
2		
3		
4		
Total Marks		

Fourier Series:
$$\begin{cases} c_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:	$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} Y(f) \exp(-j2\pi ft) df \end{cases}$
	$ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(f - \frac{k}{T}\right)$

FOURIER TRANSFORM PROPERTIES			
	Time-domain	Frequency-domain	
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$	
Time scaling	$x(\beta t)$	$\frac{1}{ \beta } X \left(\frac{f}{\beta} \right)$	
Duality	X(t)	x(-f)	
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$	
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$	
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$	
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f-\zeta) d\zeta$ or $X_1(f) * X_2(f)$	
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$	
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)}{\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0}$	

Trigonometric Identities		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = 0.5 \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = -0.5j[\exp(j\theta) - \exp(-j\theta)]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2\left(\theta\right) + \cos^2\left(\theta\right) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$	
$\sin^2(\theta) = 0.5 \left[1 - \cos(2\theta)\right]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$	
$\cos^2(\theta) = 0.5 \left[1 + \cos(2\theta) \right]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos[\theta + \tan^{-1}(S/C)]$	

Complex Unit (j) \rightarrow $(j = \sqrt{-1} = e^{j\pi/2} = e^{j90^{\circ}})$ $(-j = \frac{1}{j} = e^{-j\pi/2} = e^{-j90^{\circ}})$ $(j^2 = -1)$

Definitions of Basic Functions

Rectangle:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & \text{elsewhere} \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - \left|t\right|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$