TENTATIVE COURSE SCHEDULE

Please Note: Note "()" are equations

Day	Reading for HW	Problems Due (Worked in Class)
Week 1		
Monday 1:30PM	Morning: Lecture 1(Part I), Read Chapter 1 on the fly—per class discussion— while doing problems. Verify all the equations before we regroup in the afternoon. Do the same for DiCenzo's handout. Afternoon: Lecture 1(Part II), work on remainder of HW. Read Ch2, pp. 25-39 Download "MathToKnow" and "MathChecklist" handout and Equation Sheet. Keep the "MathChecklist" near your Equation Sheet when you do homework. We'll be reading MathToKnow as schedule dictates.	Due first afternoon (1.12), (1.33), (1.25), (1.27). Prof. DiCenzo's Handout: 2,4,6c,7,8,11a,12a,c,14, 15,17
Tuesday	Lecture 2 (Infinite square well (ISW) /time-independent solutions; Do pb#2.5 together) Read Ch2, pp. 39-48, and MathOverview Sections 1 and 2.	DiCenzo's Handout: 19,21a,23a,b,24a,b,25c,d, 26,27,28, Verify all of Section VI, and Section VIII. 33,34(Hint: Rewrite equations with A and B switched around) 1.1,3,5, 7(Hint: Do integration by parts like we did in Lecture 1). (2.30), (2.31)
Wednesday	Lecture 3 (Harmonic Oscillator, Pt 1) Reading tonight: Work through of "Math Overview" up to Hydrogen atom section. Try all Examples.	1. 14,18, Ex. 2.2, 2 .2(Test that V(x)=0 and E<0 results in a non-normalizable wave function),2.4
Thursday	Lecture 4 (Harmonic Oscillator, Pt 2),Math to consider/"MathToKnow Overview" Lecture Phil, don't forget to talk about why H $^{\psi}$ =E $^{\psi}$ is an eigenvalue problem if not already). Free style lecture, go over handout(s). Read pp. 96-102, pp. 119	2.6 (We will have done pb#2.5 in class), 2.7 (Hint: Of the odds/evens, can contribute to the story; also use "Cute Tricks in MathChecklist"), 2.9, (2.33), (2.37), (2.58) Find the Hermitian conjugates (see lecture $\frac{d^2}{dx^2}, i\frac{d}{dx}, x$ which, if any of these three operators is Hermitian? Show that $a_{-}^{\dagger} = a_{+}$, 2.10 ,3.4,3.5

Friday	Lecture 5(Cold presentation of Uncertainty Principle and Hermitian Operator Properties) Read Chapter 3 up to pp. 108	3.26, Examples and problems of MathToKnow (Avoid H-atom pbs./examples). Will try some together in class.
--------	--	--

Week 2				
Monday	Lecture 6 (Lecture on Commutation+Catch up?)	2.11, 12, 17, and 13. (2.68), (2.60), (2.69). Verify that (2.86) agrees with (2.68) for n=0,1,2,3. Does Figure 2.7 agree with our intuition about when the wiggles should be extra wiggly? Hint: See Section 1 of MathToKnow. Ex. 3.1 and 3.2, pbs.#3.7a,3.28,3.14, 3.15		
Tuesday	Lecture 7 (Catch up?) Read Chapter 4 up to pp. 138.	2.39,2.37,2.40 (these 3 problems review HO and ISW) 2.18 (Notice $J \neq J(x)$), 2.20, 2.21(Take $< p^2 >$ as a given and do integral if time permits)		
Wednesday	Lecture 8 (Lecture 8 Angular Eqn.) Read Chapter 4, pp. 138-156 (skip the power series biz) Finish MathToKnow on H-atom	4.1, 4.2, 4.4, 4.7, (4.14), (4.16), (4.17), Show, geometrically, why $d^3r = dxdydz = r^2drd\Omega = r^2sin(\theta)d\theta d\phi$		
Thursday	Lecture 9 Finish H-atom biz, do Pb. 4.18 together.	Do H-atom Examples and problems—if any, yetof MathToKnow.		
Friday	Review for Midterm	4.13,4.15,4.16, 4.18(lecture?),4.19		
Week 3 (Te	ntative)			
Monday	Morning: Midterm Read pp. 157-162			
Tuesday	Lecture 10 Angular Momentum Read pp. 162-164	(4.99),(4.100),(4.102), (4.106), (4.107), 4.21, 4.22(part d) takes some thought!)		
Wednesday	Lecture 11 Eigenfunctions Read pp. 165-75	Get (4.109) from (4.104), (4.113) from (4.112), (4.116) from (4.112)		
Thursday	Lecture 12: Spin Read pp. 176-180	(4.124), (4.125),(4.126)—justify them visually using geometry skills; check them for specific angles. (4.127),(4.128), (4.129) 4.25(Do part c) if you have time; save it for last. It requires the reduction formula integral, kinda fun!),4.26,4.27a,b		
Friday	Lecture 13: Addition of L /Clebsch-Gordon [Read pp.55-59 (Free particle) Ch3 pp.108-113]?	4.28, 4.30,4.31,4.32, 4.34(Play! Have fun trying!), Ex.4.3, Ex. 4.4		
Week 4				
Monday	Lecture 14: Visualizing Traveling Wave/Free Particle	4.35; 4.37, 4.38,4.39,4.40 [Examples 3.5-3.7]?		
Tuesday	Review			
Wednesday	Final			