Intro to Markov Chain Monte Carlo

Module 7

Gibbs sampling

Instead of moving into the Metropolis algorithm, we now move into Gibbs sampling, which is a special case of it.

We will return back to the Metropolis algorithm later and go through the actual algorithm and implementation in detail!

Two-stage Gibbs sampler

- Suppose p(x,y) is a p.d.f. or p.m.f. that is difficult to sample from directly.
- ▶ Suppose, though, that we *can* easily sample from the conditional distributions p(x|y) and p(y|x).
- ▶ The Gibbs sampler proceeds as follows:
 - 1. set x and y to some initial starting values
 - 2. then sample x|y, then sample y|x, then x|y, and so on.

Two-stage Gibbs sampler

- 0. Set (x_0, y_0) to some starting value.
- 1. Sample $x_1 \sim p(x|y_0)$, that is, from the conditional distribution $X \mid Y = y_0$.

Current state: (x_1, y_0)

Sample $y_1 \sim p(y|x_1)$, that is, from the conditional distribution $Y \mid X = x_1$.

Current state: (x_1, y_1)

2. Sample $x_2 \sim p(x|y_1)$, that is, from the conditional distribution $X \mid Y = y_1$.

Current state: (x_2,y_1) Sample $y_2 \sim p(y|x_2)$, that is, from the conditional distribution $Y \mid X = x_2$.

Current state: (x_2, y_2)

Repeat iterations 1 and 2, M times.

This procedure defines a sequence of pairs of random variables

$$(X_0, Y_0), (X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \dots$$

Markov chain and dependence

$$(X_0, Y_0), (X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \dots$$

satisfies the property of being a Markov chain.

The conditional distribution of (X_i, Y_i) given all of the previous pairs depends only on (X_{i-1}, Y_{i-1})

 $(X_0,Y_0),(X_1,Y_1),(X_2,Y_2),(X_3,Y_3),\ldots$ are not iid samples (Think about why).

Ideal Properties of MCMC

- (x_0, y_0) chosen to be in a region of high probability under p(x, y), but often this is not so easy.
- ▶ We run the chain for M iterations and discard the first B samples $(X_1, Y_1), \ldots, (X_B, Y_B)$. This is called *burn-in*.
- ► Typically: if you run the chain long enough, the choice of B doesn't matter.
- ▶ Roughly speaking, the performance of an MCMC algorithm—that is, how quickly the sample averages $\frac{1}{N}\sum_{i=1}^{N}h(X_i,Y_i)$ converge—is referred to as the *mixing rate*.
- ► An algorithm with good performance is said to "have good mixing", or "mix well".

Suppose we want to sample from the bivariate distribution:

$$p(x,y) \propto e^{-xy} \mathbb{1}(x,y \in (0,c))$$

where c>0, and (0,c) denotes the (open) interval between 0 and c. (This example is due to Casella & George, 1992.)

- ▶ The Gibbs sampling approach is to alternately sample from p(x|y) and p(y|x).
- Note p(x,y) is symmetric with respect to x and y.
- ▶ Hence, only need to derive one of these and then we can get the other one by just swapping *x* and *y*.
- ▶ Let's look at p(x|y).

$$p(x,y) \propto e^{-xy} \mathbb{1}(x,y \in (0,c))$$

$$p(x|y) \underset{x}{\propto} p(x,y) \underset{x}{\propto} e^{-xy} \mathbb{1}(0 < x < c) \underset{x}{\propto} \operatorname{Exp}(x|y) \mathbb{1}(x < c).^{1}$$

- ▶ p(x|y) is a *truncated* version of the Exp(y) distribution
- ▶ It is the same as taking $X \sim \text{Exp}(y)$ and conditioning on it being less than c, i.e., $X \mid X < c$.
- ▶ Let's refer to this as the TExp(y, (0, c)) distribution.

¹Under \propto , we write the random variable (x) for clarity.

An easy way to generate a sample from $Z \sim \text{TExp}(\theta, (0, c))$, is:

1. Sample $U \sim \text{Uniform}(0, F(c|\theta))$ where

$$F(x|\theta) = 1 - e^{-\theta x}$$

is the $\text{Exp}(\theta)$ c.d.f.

2. Set $Z = F^{-1}(U|\theta)$ where

$$F^{-1}(u|\theta) = -(1/\theta)\log(1-u)$$

is the inverse c.d.f. for $u \in (0,1)$.

Verify the last step on your own.

Let's apply Gibbs sampling, denoting S = (0, c).

- 0. Initialize $x_0, y_0 \in S$.
- 1. Sample $x_1 \sim \text{TExp}(y_0, S)$, then sample $y_1 \sim \text{TExp}(x_1, S)$.
- 2. Sample $x_2 \sim \text{TExp}(y_1, S)$, then sample $y_2 \sim \text{TExp}(x_2, S)$.
- N. Sample $x_N \sim \text{TExp}(y_{N-1}, S)$, sample $y_N \sim \text{TExp}(x_N, S)$.

Figure 1 demonstrates the algorithm, with c=2 and initial point $(x_0,y_0)=(1,1).$

Figure 1: (Left) Schematic representation of the first 5 Gibbs sampling iterations/sweeps/scans. (Right) Scatterplot of samples from 10^4 Gibbs sampling iterations.

Example: Normal with semi-conjugate prior

Consider $X_1, \ldots, X_n | \mu, \lambda \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \lambda^{-1})$. Then independently consider

$$\boldsymbol{\mu} \sim \mathcal{N}(\mu_0, \lambda_0^{-1})$$

 $\boldsymbol{\lambda} \sim \operatorname{Gamma}(a, b)$

This is called a semi-conjugate situation, in the sense that the prior on μ is conjugate for each fixed value of λ , and the prior on λ is conjugate for each fixed value of μ .

For ease of notation, denote the observed data points by $x_{1:n}$.

We know that for the Normal–Normal model, we know that for any fixed value of λ ,

$$\mu | \lambda, x_{1:n} \sim \mathcal{N}(M_{\lambda}, L_{\lambda}^{-1})$$

where

$$L_{\lambda} = \lambda_0 + n\lambda$$
 and $M_{\lambda} = \frac{\lambda_0 \mu_0 + \lambda \sum_{i=1}^n x_i}{\lambda_0 + n\lambda}$.

²do this on your own

We know that for the Normal–Normal model, we know that for any fixed value of $\lambda,\,$

$$\mu | \lambda, x_{1:n} \sim \mathcal{N}(M_{\lambda}, L_{\lambda}^{-1})$$

where

$$L_{\lambda} = \lambda_0 + n\lambda$$
 and $M_{\lambda} = \frac{\lambda_0 \mu_0 + \lambda \sum_{i=1}^n x_i}{\lambda_0 + n\lambda}$.

For any fixed value of μ , it is straightforward to derive² that

$$\lambda | \mu, x_{1:n} \sim \text{Gamma}(A_{\mu}, B_{\mu})$$
 (1)

where $A_{\mu} = a + n/2$ and

$$B_{\mu} = b + \frac{1}{2} \sum_{i} (x_i - \mu)^2 = n\hat{\sigma}^2 + n(\bar{x} - \mu)^2$$

where
$$\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$$
.

²do this on your own

To implement Gibbs sampling in this example, each iteration consists of sampling:

$$\mu | \lambda, x_{1:n} \sim \mathcal{N}(M_{\lambda}, L_{\lambda}^{-1})$$

 $\lambda | \mu, x_{1:n} \sim \operatorname{Gamma}(A_{\mu}, B_{\mu}).$

Pareto example

Distributions of sizes and frequencies often tend to follow a "power law" distribution.

- wealth of individuals
- size of oil reserves
- size of cities
- word frequency
- returns on stocks

Power Law Distribution

The Pareto distribution with shape $\alpha > 0$ and scale c > 0 has p.d.f.

Pareto
$$(x|\alpha,c) = \frac{\alpha c^{\alpha}}{x^{\alpha+1}} \mathbb{1}(x>c) \propto \frac{1}{x^{\alpha+1}} \mathbb{1}(x>c).$$

This is referred to as a power law distribution, because the p.d.f. is proportional to x raised to a power. Notice that c is a lower bound on the observed values. In this example, we'll see how Gibbs sampling can be used to perform inference for α and c.

Rank	City	Population
1	Charlotte	731424
2	Raleigh	403892
3	Greensboro	269666
4	Durham	228330
5	Winston-Salem	229618
6	Fayetteville	200564
7	Cary	135234
8	Wilmington	106476
9	High Point	104371
10	Greenville	84554
11	Asheville	85712
12	Concord	79066
:	:	:
44	Havelock	20735
45	Carrboro	19582
46	Shelby	20323
47	Clemmons	18627
48	Lexington	18931
49	Elizabeth City	18683
50	Boone	17122

Parameter Interpretations

- ightharpoonup lpha tells us the scaling relationship between the size of cities and their probability of occurring.
 - Let $\alpha = 1$.
 - ▶ Density looks like $1/x^{\alpha+1} = 1/x^2$.
 - ▶ Cities with 10,000–20,000 inhabitants occur roughly $10^{\alpha+1} = 100$ times as frequently as cities with 100,000–110,000 inhabitants.
- c represents the cutoff point—any cities smaller than this were not included in the dataset.

To keep things as simple as possible, let's use an (improper) default prior:

$$p(\alpha, c) \propto \mathbb{1}(\alpha, c > 0).$$

Recall from Module 4:

- An improper/default prior is a nonnegative function of the parameters which integrates to infinity.
- Often (but not always!) the resulting "posterior" will be proper.
- It is important that the "posterior" be proper, since otherwise the whole Bayesian framework breaks down.

Recall

$$p(x|\alpha,c) = \frac{\alpha c^{\alpha}}{x^{\alpha+1}} \mathbb{1}(x>c)$$

$$\mathbb{1}(\alpha,c>0)$$
(2)

Let's derive the posterior:

$$p(\alpha, c|x_{1:n}) \overset{\text{def}}{\underset{\alpha, c}{\otimes}} p(x_{1:n}|\alpha, c) p(\alpha, c)$$

$$\underset{\alpha, c}{\propto} \mathbb{1}(\alpha, c > 0) \prod_{i=1}^{n} \frac{\alpha c^{\alpha}}{x_{i}^{\alpha+1}} \mathbb{1}(x_{i} > c)$$

$$= \frac{\alpha^{n} c^{n\alpha}}{(\prod x_{i})^{\alpha+1}} \mathbb{1}(c < x_{*}) \mathbb{1}(\alpha, c > 0)$$
(4)

where $x_* = \min\{x_1, \dots, x_n\}$.

As a joint distribution on (α, c) ,

- this does not seem to have a recognizable form,
- ▶ and it is not clear how we might sample from it directly.

Let's try Gibbs sampling!

To use Gibbs, we need to be able to sample $\alpha | c, x_{1:n}$ and $c | \alpha, x_{1:n}$.

By Equation 4, we find that

$$p(\alpha|c, x_{1:n}) \underset{\alpha}{\propto} p(\alpha, c|x_{1:n}) \underset{\alpha}{\propto} \frac{\alpha^n c^{n\alpha}}{(\prod x_i)^{\alpha}} \mathbb{1}(\alpha > 0)$$

$$= \alpha^n \exp\left(-\alpha(\sum \log x_i - n \log c)\right) \mathbb{1}(\alpha > 0)$$

$$\underset{\alpha}{\propto} \operatorname{Gamma}\left(\alpha \mid n+1, \sum \log x_i - n \log c\right),$$

and

$$p(c|\alpha, x_{1:n}) \propto p(\alpha, c|x_{1:n}) \propto c^{n\alpha} \mathbb{1}(0 < c < x_*),$$

which we will define to be $Mono(\alpha, x_*)$

Defining the Mono distribution

For a>0 and b>0, define the distribution ${\rm Mono}(a,b)$ (for monomial) with p.d.f.

Mono
$$(x|a, b) \propto x^{a-1} \mathbb{1}(0 < x < b).$$

Since $\int_0^b x^{a-1} dx = b^a/a$, we have

Mono
$$(x|a, b) = \frac{a}{b^a} x^{a-1} \mathbb{1}(0 < x < b),$$

and for 0 < x < b, the c.d.f. is

$$F(x|a,b) = \int_0^x \text{Mono}(y|a,b)dy = \frac{a}{b^a} \frac{x^a}{a} = \frac{x^a}{b^a}.$$

To use the inverse c.d.f. technique, we solve for the inverse of F on 0 < x < b: Let $u = \frac{x^a}{b^a}$ and solve for x.

$$u = \frac{x^a}{b^a} \tag{5}$$

$$b^a u = x^a \tag{6}$$

$$bu^{1/a} = x (7)$$

Can sample from ${\rm Mono}(a,b)$ by drawing $U\sim {\rm Uniform}(0,1)$ and setting $X=bU^{1/a}.^3$

 $^{^3 \}text{lt}$ turns out that this is an inverse of the Pareto distribution, in the sense that if $X \sim \operatorname{Pareto}(\alpha,c)$ then $1/X \sim \operatorname{Mono}(\alpha,1/c).$

So, in order to use the Gibbs sampling algorithm to sample from the posterior $p(\alpha, c|x_{1:n})$, we initialize α and c, and then alternately update them by sampling:

$$\alpha | c, x_{1:n} \sim \text{Gamma}(n+1, \sum \log x_i - n \log c)$$

 $c | \alpha, x_{1:n} \sim \text{Mono}(n\alpha + 1, x_*).$

Ways of visualizing results

Traceplots. A traceplot simply shows the sequence of samples, for instance $\alpha_1, \ldots, \alpha_N$, or c_1, \ldots, c_N . Traceplots are a simple but very useful way to visualize how the sampler is behaving.

Figure 2: Traceplot of α

Figure 3: Traceplot of c.

Estimated density. We are primarily interested in the posterior on α , since it tells us the scaling relationship between the size of cities and their probability of occurring.

By making a histogram of the samples $\alpha_1, \ldots, \alpha_N$, we can estimate the posterior density $p(\alpha|x_{1:n})$.

The two vertical lines indicate the lower ℓ and upper u boundaries of an (approximate) 90% credible interval $[\ell,u]$ —that is, an interval that contains 90% of the posterior probability:

$$\mathbb{P}(\boldsymbol{\alpha} \in [\ell, u] | x_{1:n}) = 0.9.$$

Figure 4: Estimated density of $\alpha|x_{1:n}$ with \approx 90 percent credible intervals.

Running averages. Panel (d) shows the running average $\frac{1}{k} \sum_{i=1}^k \alpha_i$ for $k=1,\ldots,N$.

In addition to traceplots, running averages such as this are a useful heuristic for visually assessing the convergence of the Markov chain.

The running average shown in this example still seems to be meandering about a bit, suggesting that the sampler needs to be run longer (but this would depend on the level of accuracy desired).

Figure 5: Running average plot

Survival function

A survival function is defined to be

$$S(x) = \mathbb{P}(X > x) = 1 - \mathbb{P}(X \le x).$$

Power law distributions are often displayed by plotting their survival function S(x), on a log-log plot.

Why? $S(x) = (c/x)^{\alpha}$ for the $Pareto(\alpha, c)$ distribution and on a log-log plot this appears as a line with slope $-\alpha$.

The posterior survival function (or more precisely, the posterior predictive survival function), is $S(x|x_{1:n}) = \mathbb{P}(X_{n+1} > x \mid x_{1:n})$.

Figure 6(e) shows an empirical estimate of the survival function (based on the empirical c.d.f., $\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(x \geq x_i)$) along with the posterior survival function, approximated by

$$S(x|x_{1:n}) = \mathbb{P}(X_{n+1} > x \mid x_{1:n}) \tag{8}$$

$$= \int \mathbb{P}(X_{n+1} > x \mid \alpha, c) p(\alpha, c | x_{1:n}) d\alpha dc \tag{9}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{P}(X_{n+1} > x \mid \alpha_i, c_i) = \frac{1}{N} \sum_{i=1}^{N} (c_i/x)^{\alpha_i}. \quad (10)$$

This is computed for each x in a grid of values.

[Think about why each line is true on your own].

Figure 6: Empirical vs posterior survival function

How could we get a better empirical approximation?