תרגיל 10־ טורים א'

חדו"א: סדרות וטורים

1

$$\sum_{n=1}^{\infty} a_n$$
 נתון טור

- מתכנס אם הגבול $\sum\limits_{n=1}^\infty a_n$ הטור החלקי הח־י של החלקי החרי, אם הגבול אם הגבול גדיר ה $S_n=a_1+\ldots+a_n$ מתכנס אם הגבול ולכל $\lim_{n\to\infty}S_n$
- 2. נתון טור נוסף S_n^a , S_n^b , ונניח כי $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty a_n$, מתכנסים. נסמן ב־ $\sum\limits_{n=1}^\infty b_n$ את הסכומים החלקיים ה־ $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty b_n$ ונניח כי $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty b_n$ מתכנסים נובע כי הגבולות $\{a_n\}$, $\{b_n\}$ של $\{a_n\}$, $\{b_n\}$ בהתאמה. מההנחנו כי $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty a_n$ מתכנסים נובע כי הגבולות $\{a_n\}$, $\{b_n\}$ פיימים וסופיים.

נשים לב כי לכל $\{a_n+b_n\}_{n=1}^\infty$ של ה־ח"י של החלקי ה־חכום החלקי $n\in\mathbb{N}$ הוא גשים לב כי לכל $S_n^{a+b}=a_1+b_1+a_2+b_2+\ldots+a_n+b_n=S_n^a+S_n^b$

מחשבון גבולות אנו מקבלים כי

$$,\lim_{n\to\infty}S_n^{\alpha+b}=\lim_{n\to\infty}\left(S_n^\alpha+S_n^b\right)=\lim_{n\to\infty}S_n^\alpha+\lim_{n\to\infty}S_n^b=\sum_{n=1}^\infty\alpha_n+\sum_{n=1}^\infty b_n$$

וגבול זה קיים וסופי.

 ca_1+ca_2+ הוא $\sum ca_{n=1}^\infty$ של ה־ת־י של החלקי ה־מכנס וכי מקלר. נשים לב כי הסכום החלקי ה־ת־י של כי $\sum_{n=1}^\infty a_n$ מתכנס ו־3. מחשבון גבולות נובע כי $c\in\mathbb{R}$

$$\sum_{n=1}^{\infty} c \cdot \alpha_n = \lim_{n \to \infty} c \cdot S_n^{\alpha} = c \cdot \lim_{n \to \infty} S_n^{\alpha} = c \cdot \sum_{n=1}^{\infty} \alpha_n$$

. מתכנס $\sum\limits_{n=1}^{\infty} a_n$ מתכנס

2

נתונים טורים $n>n_0\in\mathbb{N}$ בסעיף הטור $\sum_{n=1}^\infty a_n$ נניח כי הטור $\sum_{n=1}^\infty a_n$ נכיח כי שלכל $\sum_{n=1}^\infty a_n$ נסמן, כמו בסעיף קודם, ב $\sum_{n=1}^\infty a_n$ את הסכום החלקי ה־ח־י של $\{a_n\},\{b_n\}$ בהתאמה. $\{a_n\},\{b_n\}$ מתקיים כי מרכים כי

$$\begin{split} S_n^a &= a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_n \\ &= a_1 + \ldots + a_{n_0} + b_{n_0+1} + \ldots + b_n \\ &= (a_1 + \ldots + a_{n_0} - b_1 - \ldots - b_{n_0}) \\ &+ b_1 + \ldots + b_{n_0} + b_{n_0+1} + \ldots + b_n \\ &= C + S_n^b \end{split}$$

גם כן $\lim_{n\to\infty}S^b_n=\lim_{n\to\infty}S^a_n-C$ נובע כי אם S^a_n מתכנס אז $C=a_1+\ldots+a_{n_0}-b_1-\ldots-b_{n_0}$ כאשר מתכנס, ובדומה אם S^b_n מתכנס אז S^a_n מתכנס.

3

נסמן
$$N\in\mathbb{N}$$
 לכל $n\in\mathbb{N}$ לכל מ $a_n,b_n\geq 0$ בהם כהם הבח לכל $a_n,\sum_{n=1}^\infty a_n,\sum_{n=1}^\infty b_n$ נסמן

$$S_N^a = a_1 + a_2 + \ldots + a_N$$
 , $S_N^b = b_1 + b_2 + \ldots + b_N$

. בהתאמה $\sum_{n=1}^\infty b_n$ ו־ת בהתאמה את הסכום החלקי ה-N־י של החלקי הסכום את

- מונוטונית S^a_n ולכן ה $S^a_{n+1}-S^a_n=a_1+\ldots+a_{n+1}-a_1-\ldots-a_n=a_{n+1}\geq 0$ מונוטונית מתקיים כי 1. לכל אי־שלילית, כסכום של ערכים אי־שליליים. אי־שלילית, כסכום של ערכים אי־שליליים.
 - בדומה S_n^b מונוטונית עולה ואי־שלילית.
- 2. מההנחה כי $\sum_{n=1}^\infty b_n$ טור מתכנס אנו מקבלים כי $\sum_{n=1}^\infty b_n$ מתכנס ושווה ל־ $\sum_{n=1}^\infty b_n$ בנוסף, מהנתון כי $\sum_{n=1}^\infty b_n$ טור מתכנס אנו מקבלים כי $S_n^b \leq \lim_{n\to\infty} S_n^b \leq \lim_{n\to\infty} S_n^b$ מונוטונית וחסומה, אנחנו $a_n \leq b_n$ לכל מדים כי היא מתכנסת, ולכן הטור $\sum_{n=1}^\infty a_n$ מתכנס.
 - $n\in\mathbb{N}$ לכל $a_n=-1$ ו וי $b_n=rac{1}{n^2}$ לכל .3
- 4. מתרגיל 1 אנו יודעים כי הטור .n $\in \mathbb{N}$ לכל $\sqrt{a_nb_n} \leq \frac{1}{2}(a_n+b_n)$ פי הענים אנו יודעים אנו יודעים כי הטור . $\sum\limits_{n=1}^\infty \sqrt{a_nb_n}$ הוא מתכנס, ולכן גם הטור . $\sum\limits_{n=1}^\infty \sqrt{a_nb_n}$

4

בדקו אלו מהטורים הבאים מתכנסים.

נסמן $a_{
m n}=rac{1}{4{
m n}^2-1}$. מחישוב ישיר מקבלים כי

$$a_n = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

ולכן

$$S_n = a_2 + \ldots + a_n = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \ldots + \frac{1}{2n-1} - \frac{1}{2n-1} \right) = \frac{1}{6} - \frac{1}{2(2n-1)}$$

וסדרה זו מתכנסת ל $-\frac{1}{6}$. על כן הטור מתכנס.

 $a_n=\ln\left(\left(1+\frac{1}{n}\right)^n\right)$ נטמן לוגריתם ($a_1=2\ln(2)>0$ נשים לב כי $a_n=n\ln\left(1+\frac{1}{n}\right)$ מחוקי לוגריתם ($a_n=n\ln\left(1+\frac{1}{n}\right)$ מונוטונית עולה והפונקציה הלוגריתמית משמרת סדר, אנו מקבלים כי הסדרה מונוטונית עולה ובפרט גבולה (אם קיים) אינו $a_n=n\ln\left(1+\frac{1}{n}\right)$ מהמשפט לגבי האיבר הכללי של טור מתכנס, נובע כי הטור $\sum_{n=1}^{\infty}d_n$

- 3. הטורים $\sum\limits_{n=1}^{\infty} \left(\frac{2}{4}\right)^n$ ו־ $\sum\limits_{n=1}^{\infty} \left(\frac{2}{4}\right)^n$ מתכנסים, כטורים גיאומטריים עם יחס קטן מ־1. מתרגיל 1 נובע כי גם סכומם $\sum\limits_{n=1}^{\infty} \frac{3^n+2^n}{4^n}$ מתכנס, ולכן $\sum\limits_{n=1}^{\infty} \frac{3^n+2^n}{4^n}$ מתכנס.
 - .4 מתכנס, נובע כי גם $\sum\limits_{n=1}^{\infty} \frac{1}{n^3}$ מתכנס, נובע כי גם $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ מתכנס. $\frac{1}{n^3} \leq \frac{1}{n^2}$