Теоретические ("малые") домашние задания

Теория типов, ИТМО, М3235-М3239, весна 2020 года

Домашнее задание №1: «вводная лекция для ТТ и ФП»

1. Напомним определения с лекций:

Обозначение	лямбда-терм	название
\overline{T}	$\lambda a.\lambda b.a$	истина
F	$\lambda a. \lambda b. b$	ЛОЖЬ
Not	$\lambda x.x F T$	отрицание
And	$\lambda x.\lambda y.x\ y\ F$	конъюнкция

Проредуцируйте следующие выражения и найдите нормальную форму:

- (a) *T F*
- (b) $(T \ Not \ (\lambda t.t)) \ F$
- (c) And FT
- (d) And TT
- 2. Постройте лямбда-выражения для следующих булевских выражений:
 - (а) Дизъюнкция
 - (b) Штрих Шеффера («и-не»)
 - (с) Исключающее или
- 3. Напомним определения с лекций:

$$f^{(n)} X ::= \begin{cases} X, & n = 0 \\ f^{(n-1)} (f X), & n > 0 \end{cases}$$

Обозначение	лямбда-терм	название
\overline{n}	$\lambda f.\lambda x.f^{(n)}$ x	чёрчевский нумерал
(+1)	$\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$	прибавление 1
IsZero	$\lambda n.n \ (\lambda x.F) \ T$	проверка на 0

Используя данные определения, постройте выражения для следующих операций над числами:

- (а) Сложение
- (b) Умножение на $2 \, (Mul2)$
- (с) Умножение
- (d) Возведение в степень
- (е) Проверка на чётность
- (f) Деление на 3 (могут потребоваться пары и/или вычитания)
- (g) Сравнение двух чисел (IsLess) истина, если первый аргумент меньше второго (могут потребоваться пары и/или вычитания)
- 4. Проредуцируйте выражение и найдите его нормальную форму:
 - (a) $\overline{2}$ $\overline{2}$
 - (b) $\overline{2} \overline{2} \overline{2}$
 - (c) $\overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} \overline{2}$
- 5. Напомним определения с лекций:

Обозначение	лямбда-терм	название
MkPair	$\lambda a.\lambda b.(\lambda x.x \ a \ b)$	создание пары
PrL	$\lambda p.p T$	левая проекция
PrR	$\lambda p.p F$	правая проекция
Case	$\lambda l.\lambda r.\lambda c.c\ l\ r$	case для алгебраического типа
InL	$\lambda l.(\lambda x.\lambda y.x\ l)$	левая инъекция
InR	$\lambda r.(\lambda x.\lambda y.y \ r)$	правая инъекция

- (a) Убедитесь, что PrL $(MkPair\ a\ b) \rightarrow_{\beta} a$.
- (b) Убедитесь, что $Case\ (\lambda x.T)\ (\lambda y.y)\ (InR\ p) \twoheadrightarrow_{\beta} p.$
- (с) Постройте операцию вычитания 1 из числа
- (d) Постройте операцию вычитания чисел
- (е) Постройте опреацию деления чисел
- 6. Напомним определение Y-комбинатора: $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x)).$
 - (a) Покажите, что выражение $Y\ f$ не имеет нормальной формы;
 - (b) Покажите, что выражение $Y(\lambda f.\overline{0})$ имеет нормальную форму.
 - (c) Покажите, что выражение $Y(\lambda f.\lambda x.(IsZero\ x)\ \overline{0}\ (f\ Minus1\ x))\ 2$ имеет нормальную форму.
 - (d) Какова нормальная форма выражения Y ($\lambda f.\lambda x.(IsZero\ x)\ \overline{0}\ ((+1)\ (f\ Minus1\ x)))$ \overline{n} ?
 - (e) Какова нормальная форма выражения $Y(\lambda f.\lambda x.(IsZero\ x)\ \overline{1}\ (Mul2\ (f\ Minus1\ x)))\ \overline{n}?$
 - (f) Определите с помощью Y-комбинатора функцию для вычисления n-го числа Фибоначчи.
- 7. Пусть $\eta = (\alpha \to \alpha) \to (\alpha \to \alpha)$. Покажите (т.е. постройте соответствующее доказательство в исчислении по Карри), что:
 - (a) $\vdash \overline{2} : \eta$.
 - (b) \vdash (+1) : $\eta \to \eta$.
 - (c) $\vdash Plus : \eta \to \eta$.
 - (d) $\vdash Mul: \eta \to \eta$ (не каждая реализация умножения будет удовлетворять этому свойству; вам требуется найти нужную)
- 8. Определим на языке Хаскель следующую функцию: show_church n = show (n (+1) 0) Убедитесь, что show_church (\f -> \x -> f (f x)) вернёт 2. Пользуясь данным определением и его идеей, реализуйте следующие функции:
 - (a) int_to_church возвращает чёрчевский нумерал (т.е. функцию от двух аргументов) по целому числу. Каков точный тип результата этой функции?
 - (b) сложение двух чёрчевских нумералов.
 - (с) умножение двух чёрчевских нумералов.
 - (d) можно ли определить вычитание 1 и вычитание? Что получается, а что нет?
- 9. Типы для конъюнкции и дизъюнкции на Хаскеле. Списки.

Заметим, что список (например, целых чисел) — это алгебраический тип:

```
List = Nil | Cons Integer List.
```

Можно сконструировать значение данного типа: Cons 3 (Cons 5 Nil). Можно, например, вычислить его длину:

```
length Nil = 0
length (Cons _ tail) = length tail + 1
```

Определим $Nil = InL\ 0$, а $Cons\ a\ b = InR\ (MkPair\ a\ b)$. Заметим, что теперь списки могут быть впрямую перенесены в лямбда выражения. Тогда, используя данную идею, реализуйте в Хаскеле:

- (a) определите конструкции mkpair, prl, prr на Хаскеле какой тип у данных конструкций? Сравните его с типом конъюнкции с лекции.
- (b) определите конструкции case, inl, inr какой тип у данных конструкций? Сравните его с типом дизъюнкции с лекции.
- (с) постройте список целых чисел из данных конструкий.
- (d) определите функцию вычисления длины списка целых чисел с помощью данных конструкций (к сожалению, скомпилировать это выражение на Хаскеле не получится поэтому достаточно написать исходный код).

Домашнее задание №2: «формализация лямбда-исчисления»

- 1. На лекции было использовано понятие свободы для подстановки.
 - (а) Найдите лямбда-выражение, которое при однократной редукции требует переименования связанных переменных (редукция невозможна без переименования).
 - (b) Заметим, что даже если мы запретим использовать одни и те же переменные в разных лямбдаабстракциях, это не будет решением проблемы переименований. Предложите лямбда-выражение, в котором (a) все лямбда-абстракции указаны по разным переменным; но (б) через некоторое количество редукций потребуется переименование связанных переменных.
- 2. Дадим определение: комбинатор лямбда-выражение без свободных переменных.

Также напомним определение:

$$S := \lambda x.\lambda y.\lambda z.x \ z \ (y \ z)$$

$$K := \lambda x.\lambda y.x$$

$$I := \lambda x \ r$$

Известна теорема о том, что для любого комбинатора X можно найти выражение P (состоящее только из скобок, пробелов и комбинаторов S и K), что $X =_{\beta} P$. Будем говорить, что комбинатор P выражает комбинатор X в базисе SK.

Выразите в базисе SK:

- (a) $F = \lambda x.\lambda y.y$
- (b) $\overline{1}$
- (c) Not
- (d) Xor
- (e) InL
- (f) \overline{n}
- 3. Бесконечное количество комбинаторов неподвижной точки. Дадим следующие определения

$$\begin{split} L := \lambda abcdefghijklmnopqstuvwxyzr.r(this is a fixed point combinator) \\ R := LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL \end{split}$$

В данном определении терм R является комбинатором неподвижной точки: каков бы ни был терм F, выполнено R $F =_{\beta} F$ (R F).

- (а) Докажите, что данный комбинатор действительно комбинатор неподвижной точки.
- (b) Пусть в качестве имён переменных разрешены русские буквы. Постройте аналогичное выражение по-русски: с 33 параметрами и осмысленной русской фразой в терме L; покажите, что оно является комбинатором неподвижной точки.
- 4. Пусть задано $n \in \mathbb{N}$. Постройте лямбда-выражение, которое преобразуется в нормальную форму в n раз медленнее с помощью нормального порядка редукции, чем с помощью какого-то другого (самого быстрого) порядка редукции.
- 5. Чёрчевские нумералы соответствуют натуральным числам в аксиоматике Пеано.
 - (a) Предложите «двоичные нумералы» способ кодирования чисел, аналогичный двоичной системе (такой, при котором длина записи числа соответствует логарифму числового значения).
 - (b) Предложите реализацию функции (+1) в данном представлении.
 - (c) Предложите реализацию лямбда-выражения преобразования числа из двоичного нумерала в чёрчевский.
 - (d) Предложите реализацию функции сложения в данном представлении.
 - (е) Предложите реализацию функции вычитания в данном представлении.
 - (f) Какова вычислительная сложность арифметопераций с двоичными нумералами?
- 6. Предложим альтернативные аксиомы для конъюнкции:

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \& \beta} \text{ Введ. \&} \qquad \frac{\Gamma \vdash \alpha \& \beta \quad \Gamma, \alpha, \beta \vdash \gamma}{\Gamma \vdash \gamma} \text{ Удал. \&}$$

- (a) Предложите лямбда-выражения, соответствующие данным аксиомам; поясните, как данные выражения абстрагируют понятие «упорядоченной пары».
- (b) Выразите изложенные в лекции аксиомы конъюнкции через приведённые в условии.
- (с) Выразите приведённые в условии аксиомы конъюнкции через изложенные в лекции.
- 7. Как мы уже разбирали, $\forall x \; x : \tau$ в силу дополнительных ограничений аксиомы

$$\overline{\Gamma, x : \tau \vdash x : \tau} \ x \notin FV(\Gamma)$$

Найдите лямбда-выражение N, что $\forall N : \tau$ в силу ограничения аксиомы

$$\frac{\Gamma, x : \sigma \vdash N : \sigma \to \tau}{\Gamma \vdash \lambda x \ N : \tau} \ x \notin FV(\Gamma)$$

Домашнее задание №3: «вывод типов; алгоритм унификации»

- 1. Вполне упорядоченным множеством назовём такое линейно-упорядоченное отношением (\prec) множество S (и такой порядок назовём *полным*), что какое бы ни было множество $U \subseteq S$, в U найдётся наименьший элемент.
 - (a) Покажите, что неотрицательные вещественные числа $[0, +\inf)$ не вполне упорядоченное множество. Существуют ли конечные и счётные не вполне упорядоченные множества?
 - (b) Определим лексикографический порядок на \mathbb{N}^n : положим, что $\langle a_1, a_2, \dots a_n \rangle \prec \langle b_1, b_2, \dots b_n$, если найдётся такой k, что $a_1 = b_1, \dots, a_{k-1} = b_{k-1}$, но $a_k < b_k$. Покажите, что такой порядок полный.
 - (c) Пусть S вполне упорядочено отношением (\prec), определим $a \succ b := b \prec a$. Пусть $a_1 \succ a_2 \succ a_3 \succ \ldots$ строго монотонно убывающая последовательность значений из S. Покажите, что данная последовательность всегда имеет конечную длину.
- Рассмотрим полное интуиционистское исчисление высказываний. Дополните алгоритм вывода типов дополнительными функциональными символами для связок &, ∨ и ⊥ (а также сделайте дополнительные необходимые исправления в нём) и продемонстрируйте вывод типов для выражения, использующего хотя бы две из данных трёх конструкций.
- 3. Поясним название «алгебраические типы» это семейство составных типов, позволяющих строить «алгебраические» выражения на типах:

название	обозначение	алгебраический смысл
тип-сумма, «алгебраический»	$\alpha \vee \beta$	$\alpha + \beta$
тип-произведение, пара	$\alpha \& \beta$	$\alpha \times \beta$
тип-степень, функция	$\alpha \to \beta$	eta^{lpha}

Название «алгебраический» закрепилось в первую очередь за типом-суммой (видимо потому, что остальные типы имеют устоявшиеся названия), однако, может быть отнесено и к другим типам.

Поясните «типовый» (программистский) смысл следующих алгебраических тождеств — и постройте программы, их доказывающие:

- (a) $\gamma \times (\alpha + \beta) = \gamma \times \alpha + \gamma \times \beta$.
- (b) $\gamma^{\alpha \times \beta} = \gamma^{\alpha^{\beta}}$. Как называется данное тождество?
- (c) $\gamma^{\alpha+\beta} = \gamma^{\alpha} \times \gamma^{\beta}$.
- 4. Найдите лямбда-выражения, доказывающие:
 - (a) Формулу де-Моргана $\neg(\alpha \lor \beta) \to \neg \alpha \& \neg \beta$.
 - (b) Контрапозицию $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$.
 - (c) Закон исключённого третьего после применения теоремы Гливенко $\neg \neg (\alpha \lor \neg \alpha)$.