Tipos abstractos de datos bi
¿ $\frac{1}{2}$ sicos

Algoritmos y Estructuras de Datos II, DC, UBA.

$\mathbf{\acute{I}ndice}$

1.	TAD PJ	2
2.	TAD FANTASMA	2
3.	TAD JUEGO	2
4.	TAD Accion	3
5.	TAD DIRECCION	5

1. TAD PJ

2. TAD FANTASMA

3. TAD JUEGO

TAD JUEGO

géneros juego

exporta TODO

usa Habitacion

igualdad observacional

$$(\forall j, j': \text{juego}) \ \left(j =_{\text{obs}} j' \Longleftrightarrow \begin{pmatrix} (n = 0? =_{\text{obs}} m = 0?) \land_{\text{L}} \\ (\neg (n = 0?) \Rightarrow_{\text{L}} (\text{pred}(n) =_{\text{obs}} \text{pred}(m))) \end{pmatrix} \right)$$

igualdad observacional

$$(\forall j,j': \text{juego}) \left(j =_{\text{obs}} j' \iff \begin{pmatrix} (\text{accionesPJs}(j) =_{\text{obs}} \text{accionesPJs}(j')) \land \\ (\text{accionesFan}(j) =_{\text{obs}} \text{accionesFan}(j')) \land \\ (\text{localizarJugadores}(j) =_{\text{obs}} \text{localizarJugadores}(j')) \land \\ (\text{hab}(j) =_{\text{obs}} \text{hab}(j')) \land \\ ((\forall \text{ p: pj}) \text{ (vivePJ?}(j, \text{ p)} =_{\text{obs}} \text{ vivePJ?}(j', \text{ p)})) \land \\ ((\forall \text{ f: fantasma}) \text{ ((viveFan?}(j, \text{ p)} =_{\text{obs}} \text{ viveFan?}(j', \text{ p)})) \land \\ (\text{ubicacionInicialFan}(j, \text{ f}) =_{\text{obs}} \text{ ubicacionInicialFan}(j', \text{ f}))) \end{pmatrix} \right)$$

observadores básicos

accionesPJs : juego \longrightarrow dicc(pj, secu(accion))

accionesFan : juego \longrightarrow dicc(pj, secu(accion))

hab : juego \longrightarrow hab

vivePJ? : juego $j \times pj p \longrightarrow bool$ { $p \in jugadores(j)$ }

viveFan? : juego $j \times \text{fantasma} f \longrightarrow \text{bool}$ $\{f \in \text{fantasmas}(j)\}$

ubicacion Inicial
Fan : juego $j \times \text{fantasma} f \longrightarrow \text{ubicacion}$ $\{f \in \text{fantasmas}(f)\}$

localizar Jugadores : juego \longrightarrow dicc(pj, ubicacion)

generadores

iniciar : $conj(pj) pjs \times secu(accion) as \longrightarrow juego$

 \times ubicacion $u \times$ hab h

 $\{esConexa?(h) \land \neg \emptyset?(as) \land \neg \emptyset?(pjs) \land esValida?(h, pos(u))\}$

prox Paso : juego $j \times \operatorname{pj} p \times \operatorname{accion} a \longrightarrow \operatorname{juego}$

 $\{p \in jugadores(j) \land_L vivePJ?(j, p) \land \neg termino?(j) \land \neg esMirar(a)\}$

otras operaciones

axiomas $\forall n, m$: nat 0 = 0? \equiv true

Fin TAD

4. TAD ACCION

TAD ACCION

géneros accion

exporta observadores, generadores, genero, otras operaciones

igualdad observacional

$$(\forall a, a' : accion) \left(a =_{obs} a' \iff \begin{pmatrix} esNada(a) =_{obs} esNada(a') \land \\ esDisparar(a) =_{obs} esDisparar(a') \land \\ esMover(a) =_{obs} esMover(a') \land \\ esMirar(a) =_{obs} esMirar(a') \land \\ ((esMover(a) \lor esMirar(a)) \Rightarrow_{\mathsf{L}} direccion(a) =_{obs} direccion(a')) \end{pmatrix} \right)$$

secu(accion)

observadores básicos

esMover: accion \longrightarrow boolesMirar: accion \longrightarrow boolesDisparar: accion \longrightarrow boolesNada: accion \longrightarrow bool

direction : accion $a \longrightarrow direction$ {esMirar(a) \vee esMover(a)}

generadores

otras operaciones

ubicacionLuegoDe : accion $a \times hab \ h \times ubicacion \ u \longrightarrow conj(pos)$ {esValida?(h, pos(u))} posicionesAfectadasPor : accion $a \times hab \ h \times ubicacion \ u \longrightarrow conj(pos)$ {esValida?(h, pos(u))}

 $\neg \bullet \qquad : accion \qquad \longrightarrow accion \qquad \longrightarrow accion$

invertir : hab $h \times \text{ubicacion } u \times \text{secu(accion)} \longrightarrow \text{secu(accion)}$ {esValida?(h, pos(u))}

axiomas $\forall n, m: \text{nat}, \forall u: \text{ubicacion}, \forall a: \text{habitacion}$

 $\begin{aligned} & posiciones A fectadas Por(mover(d), \, h, \, u) & \equiv \, \emptyset \\ & posiciones A fectadas Por(mirar(d), \, h, \, u) & \equiv \, \emptyset \\ & posiciones A fectadas Por(nada, \, h, \, u) & \equiv \, \emptyset \end{aligned}$

posiciones Afectadas Por(disparar, h, u) \equiv **if** esValida?(h, proxPosEnDir(dir(u), pos(u)) \land_L \neg estaOcupada?(h, proxPosEnDir(dir(u), pos(u)))

then

$$\begin{split} & \operatorname{Ag}(\operatorname{proxPosEnDir}(\operatorname{dir}(u),\,\operatorname{pos}(u)),\\ & \operatorname{posicionesAfectadasPor}(\operatorname{disparar},h,\\ & \left\langle \operatorname{proxPosEnDir}(\operatorname{dir}(u),\,\operatorname{pos}(u)),\,\operatorname{dir}(u)\right\rangle)) \end{split}$$

else

 \emptyset

fi

```
invertir(h, u, as)
                                                 \equiv if vacia?(as) then
                                                        <>
                                                    else
                                                        invertir(h, ubicacionLuegoDe(prim(as), h, u), fin(as)) \vee
                                                        \neg(\text{prim}(\text{as}), \text{h}, \text{u})
\neg(mover(d), h, u)
                                                \equiv if pos(ubicacionLuegoDe(mover(d), h, u)) = pos(u)
                                                        mirar(opuesta(d))
                                                    else
                                                        mover(opuesta(d))
                                                    fi
                                                 \equiv mirar(opuesta(d))
\neg(mirar(d), h, u)
¬(disparar, h, u)
                                                 ≡ disparar
\neg(nada, h, u)
                                                 \equiv nada
ubicacionLuegoDe(nada, h, u)
                                                 = u
ubicacionLuegoDe(disparar, h, u)
                                                \equiv u
ubicacionLuegoDe(mirar(d), h, u)
                                                \equiv \langle pos(u), d \rangle
ubicacionLuegoDe(mover(d), h, u)
                                                \equiv \langle (\mathbf{if} \text{ esValida?}(h, proxPosEnDir(d, pos(u))) \wedge_L \rangle
                                                    ¬estaOcupada?(h, proxPosEnDir(d, pos(u)))
                                                    then
                                                        proxPosEnDir(d, pos(u))
                                                    else
                                                        pos(u)
                                                    \mathbf{fi}), \mathbf{d}
esMirar(mirar(d))
                                                \equiv true
esMirar(mover(d))
                                                \equiv false
esMirar(disparar)
                                                \equiv false
esMirar(nada)
                                                \equiv false
esMover(mirar(d))
                                                \equiv false
esMover(mover(d))
                                                ≡ true
esMover(disparar)
                                                \equiv false
esMover(nada)
                                                \equiv false
esDisparar(mirar(d))
                                                \equiv false
esDisparar(mover(d))
                                                \equiv false
esDisparar(disparar)
                                                \equiv true
esDisparar(nada)
                                                 \equiv false
esNada(mirar(d))
                                                 \equiv false
esNada(mover(d))
                                                 \equiv false
esNada(disparar)
                                                 \equiv false
esNada(nada)
                                                 ≡ true
direction(mirar(d))
                                                \equiv d
direction(mover(d))
                                                \equiv d
```

Fin TAD

5. TAD DIRECCION

TAD DIRECCION

géneros direccion

exporta observadores, generadores, otras operaciones

igualdad observacional

$$(\forall d, d': \text{direccion}) \left(d =_{\text{obs}} d' \iff \begin{pmatrix} \text{esArriba}(\mathbf{d}) =_{\text{obs}} \text{esArriba}(\mathbf{d}') \land \\ \text{esAbajo}(\mathbf{d}) =_{\text{obs}} \text{esAbajo}(\mathbf{d}') \land \\ \text{esIzquierda}(\mathbf{d}) =_{\text{obs}} \text{esIzquierda}(\mathbf{d}') \land \\ \text{esDerecha}(\mathbf{d}) =_{\text{obs}} \text{esDerecha}(\mathbf{d}') \end{pmatrix} \right)$$

observadores básicos

esArriba : direccion \longrightarrow bool esAbajo : direccion \longrightarrow bool esIzquierda : direccion \longrightarrow bool esDerecha : direccion \longrightarrow bool

generadores

arriba : \longrightarrow direccion abajo : \longrightarrow direccion izquierda : \longrightarrow direccion derecha : \longrightarrow direccion

otras operaciones

opuesta : direccion \longrightarrow direccion proxPosEnDir : direccion \times posicion \longrightarrow posicion

axiomas

opuesta(arriba) \equiv abajo opuesta(abajo) \equiv arriba opuesta(izquierda) \equiv derecha opuesta(derecha) \equiv izquierda

 $\begin{array}{lll} \operatorname{proxPosEnDir}(\operatorname{arriba},\,\mathbf{p}) & \equiv & \langle \Pi_1(\mathbf{p}),\,\Pi_2(\mathbf{p})\,+\,1\rangle \\ \\ \operatorname{proxPosEnDir}(\operatorname{abajo},\,\mathbf{p}) & \equiv & \langle \Pi_1(\mathbf{p}),\,\Pi_2(\mathbf{p})\,-\,1\rangle \\ \\ \operatorname{proxPosEnDir}(\operatorname{izquierda},\,\mathbf{p}) & \equiv & \langle \Pi_1(\mathbf{p})\,-\,1,\,\Pi_2(\mathbf{p})\rangle \\ \\ \operatorname{proxPosEnDir}(\operatorname{derecha},\,\mathbf{p}) & \equiv & \langle \Pi_1(\mathbf{p})\,+\,1,\,\Pi_2(\mathbf{p})\rangle \end{array}$

esArriba(arriba) ≡ true esArriba(abajo) \equiv false esArriba(izquierda) false esArriba(derecha) \equiv false esAbajo(arriba) false esAbajo(abajo) true esAbajo(izquierda) false esAbajo(derecha) \equiv false esIzquierda(arriba) false

esIzquierda(abajo)	\equiv	false
es Iz quier da (iz quier da)	=	${\rm true}$
es Iz quier da (derecha)	=	false
esDerecha(arriba)	=	false
esDerecha(abajo)	≡	false
${\rm esDerecha}({\rm izquierda})$	≡	false
esDerecha(derecha)	=	true

Fin TAD