Sampling (ch.7)

- ☐ Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- ☐ Reconstruction of a Signal from Its Samples Using Interpolation
- ☐ The Effect of Undersampling: Aliasing
- ☐ Discrete-Time Processing of Continuous-Time Signals
- ☐ Sampling of Discrete-Time signals

General scheme

- □ C/D: continuous-to-discrete-time conversion
- □ D/C: discrete-to-continuous-time conversion

C/D conversion

Time domain

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \delta(t - nT)$$

$$x_d[n] = x_c(nT)$$

C/D conversion

Frequency domain: ω for continuous time and Ω for discrete time

 \square Spectrum of $x_d[n]$

$$X_d(e^{j\Omega}) = \sum_{-\infty}^{\infty} x_d[n]e^{-jn\Omega} = \sum_{-\infty}^{\infty} x_c(nT)e^{-jn\Omega}$$

 \square Spectrum of $x_p(t)$

$$x_p(t) = \sum_{n = -\infty}^{\infty} x_c(nT) \cdot \delta(t - nT) \implies X_p(j\omega) = \sum_{n = -\infty}^{\infty} x_c(nT) \cdot e^{-j\omega nT}$$

$$\Box$$
 If $\omega = \Omega/T$, $X_d(e^{j\Omega}) = X_p(j\Omega/T)$

 \square The spectrum of $x_d[n]$ can be obtained from $X_p(j\omega)$ by replacing ω with Ω/T .

C/D conversion

Frequency domain: ω for continuous time and Ω for discrete time

- ☐ Informally
 - t to n: time scaling by 1/T
 - ω to Ω : frequency scaling by T

D/C conversion

- $\square Y_d(e^{j\Omega})$: Spectrum of $y_d[n]$
- $\square Y_p(j\omega)$: Spectrum of $y_p(t)$
- \square $Y_p(j\omega)$ can be obtained from $Y_d(e^{j\Omega})$ by replacing Ω with ωT .

Overall system

- $\square x_c(t)$: input
- $\Box y_c(t)$: output
- \Box The overall system is equivalent to a continuous-time system with frequency response $H_c(j\omega)$
- $\Box H_c(j\omega) = ?$

Overall system

$$H_c(j\omega) = \begin{cases} H_d(e^{j\omega T}), |\omega| < \omega_s/2\\ 0, |\omega| > \omega_s/2 \end{cases}$$

Overall system

Digital differentiator: frequency response

☐ Corresponding DT differentiator ☐ Band-limited CT differentiator

$$H_c(j\omega) = \begin{cases} j\omega, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

$$\omega_c = \omega_s/2$$

Digital differentiator: impulse response

$$H_d(e^{j\Omega}) = j\frac{\Omega}{T}, |\Omega| < \pi$$

$$\square x_c(t) = \frac{\sin(\pi t/T)}{\pi t} \implies x_d[n] = x_c(nT) = \frac{1}{T}\delta[n]$$

$$y_d[n] = y_c(nT)$$
 $y_c(t) = \frac{d}{dt}x_c(t) = \frac{\cos(\pi t/T)}{Tt} - \frac{\sin(\pi t/T)}{\pi t^2}$

$$\Box y_d[n] = \begin{cases} \frac{(-1)^n}{nT^2}, n \neq 0 \\ 0, n = 0 \end{cases} \implies i \cdot h_d[n] = \begin{cases} \frac{(-1)^n}{nT}, n \neq 0 \\ 0, n = 0 \end{cases}$$

Sampling (ch.7)

- ☐ Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- ☐ Reconstruction of a Signal from Its Samples Using Interpolation
- ☐ The Effect of Undersampling: Aliasing
- ☐ Discrete-Time Processing of Continuous-Time Signals
- ☐ Sampling of Discrete-Time signals

Impulse train sampling

Time domain

N: sampling period

$$x_p[n] = x[n]p[n] = \sum_{-\infty}^{\infty} x[kN]\delta[n - kN]$$

 $= \begin{cases} x[n], & \text{if } n \text{ is an integer multiple of N} \\ 0, & \text{otherwise} \end{cases}$

Impulse train sampling Freque

$$P(e^{j\omega}) = \frac{2\pi}{N} \sum_{K=-\infty}^{\infty} \delta(\omega - k\omega_s) \ \omega_s = \frac{2\pi}{N}$$

 $X(e^{j\omega})$

$$X_p(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta$$

$$= \frac{1}{2\pi} \cdot \frac{2\pi}{N} \int_{2\pi} \left[\sum_{K=-\infty}^{\infty} \delta(\theta - k\omega_s) \right] X(e^{j(\omega - \theta)}) d\theta$$

 $\omega_M < \omega_S - \omega_M$

$$=\frac{1}{N}\sum_{K=0}^{N-1}\int_{2\pi}\delta(\theta-k\omega_{s})X(e^{j(\omega-\theta)})d\theta$$

$$X_p(e^{j\omega}) = \frac{1}{N} \sum_{K=0}^{N-1} X(e^{j(\omega - k \cdot \omega_S)})$$

Impulse train sampling Reconstruction of x[n]

$$x_r[n] = x_p[n] * h[n]$$
 Time domain
$$= \left[\sum_{k=-\infty}^{\infty} x[kN] \cdot \delta[n-kN]\right] * h[n]$$

$$=\sum_{k=-\infty}^{\infty}x[kN][\delta[n-kN]*h[n]]$$

$$=\sum_{k=-\infty}^{\infty}x[kN]h[n-kN]$$

$$x_r[n] = \sum_{k=-\infty}^{\infty} x[kN] \frac{N\omega_c}{\pi} \frac{\sin \omega_c(n-kN)}{\omega_c(n-kN)}$$

Frequency domain

Decimation (sample rate decrease, SRD)

Time domain

$$x_b[n] = x_p[nN]$$

$$x_b[n] = x[nN]$$

Frequency domain

$$X_b(e^{j\omega}) = \sum_{K=-\infty}^{\infty} x_b[n]e^{-j\omega k}$$

$$X_b(e^{j\omega}) = \sum_{K=-\infty}^{\infty} x_p[kN]e^{-j\omega k}$$

$$n = kN$$

$$X_b(e^{j\omega}) = \sum_{\substack{n = \text{integer} \\ \text{number of N}}} x_p[n]e^{-j\omega n/N}$$

$$X_b(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_p[n]e^{-j\omega n/N}$$

$$X_b(e^{j\omega}) = X_p(e^{j\omega/N})$$

Decimation

$$x_b[n] = x_p[nN]$$
 $X_b(e^{j\omega}) = X_p(e^{j\omega/N})$

Down-sampling if
$$\omega_S = \frac{2\pi}{N} > 2\omega_m$$

Sampling of Discrete-Time x_{c(t)}

$c(t) \longrightarrow \begin{array}{|c|c|} \hline C/D & x_d[n] \\ \hline conversion & Discrete time \\ \hline lowpass filter \\ \hline H_d(e^{j\omega}) & \\ \hline \end{array} \longrightarrow y_d[n]$

SH HARD ALES

Decimation

 Prevent aliasing by LPF in front of SRD ⇒ Decimator

Sampling of

<u>Interpolation</u> (SRI)

Prevent mirrors by LPF after SRI ⇒ Interpolator

Sampling of Discrete-

Interpolation (SRI)

Overall, SRI by factor of 4.5