LLIURAMENT 2 EXERCICIS

M. Àngela Grau Gotés

6 de març de 2020

Resum

Data límit d'entrega: 16 de març de 202 a les 15h. pel campus virtual.

 $\begin{array}{c} \textbf{Opció A}: \text{Exercici I, Exercici II, Exercici III-A i Exercici IV-A.} \\ \textbf{Estudiantat}: 54166069b, 21778190l, 48105541y, 48089260d, \\ 47965972r, 48084213e, 53865649v, x6258982s, \\ y6164102r, 39413034g, 43209894r, 53835939t. \end{array}$

Opció B: Exercici I, Exercici II, Exercici III-B i Exercici IV-B. **Estudiantat**: 38882615b, 26066187b, 46483191f, 44744122z, y1224783r, 21783837p, x9675421b, 48089777c, y1407753y, 53830720w, x4964494j, 46496869t.

 $\begin{array}{c} \textbf{Opció C} : \text{Exercici I, Exercici II, Exercici III-C i Exercici IV-C.} \\ \textbf{Estudiantat} : 23876848l, 51288090e, 45692952w, 47917412v, \\ 21786812q, 47801653v, 47187365j, 43224767q, \\ 74392309m, 49871302b, y0591640w, x4545134n. \end{array}$

Normes

Sobre els lliuraments (si no es diu el contrari a classe):

- Escriviu un breu informe que contingui, per cada exercici o apartat:
 - 1. Enunciat.
 - 2. Estratègies emprades: precisió, criteri, iteracions, etc.
 - 3. Resultats (taula, gràfic, etc)
 - 4. Conclusions i comentaris.
 - 5. Annex amb el codi de MATLAB® emprat per l'exercici.
- En cas de no acabar, cal descriure els problemes tinguts.

Puntuació

Cada ítem dés púntua en l'escala 0-1-2-3-4-5 éssent 0 sense fer i 5 fet amb excel·lència; exepte per l'**exercici IV** que puntuen el doble.

- 1. Al campus virtual la nota es reflexarà sobre 90 punts.
- 2. Sense el codi de MATLAB® emprat per l'exercici l'entrega es qualificarà amb 0.
- 3. En cas de còpia l'entrega es qualificarà amb 0 i no podreu fer ús del mètode d'avaluació contínua.

Dates

Data límit d'entrega: 16 de març de 2020 a les 15h. pel campus virtual.

Abans del dia i hora indicats heu de penjar a la intranet de l'assignatura un fitxer que contingui tots els fitxers de Matlab necessaris per a resoldre la pràctica i un document de texte amb les explicacions segons les normes publicades.

El nom del fitxer ha d'èsser **DNI_prac1_A.zip**, o **DNI_prac1_B.zip** segons correspongui.

No s'accepten pràctiques fora campus virtual No s'accepten pràctiques amb retard. No s'accepten pràctiques SENSE els fitxers d'instruccions de Matlab.

M. Àngela Grau Gotés Professora responsable de l'assignatura

ENUNCIATS

Exercici I Norma IEEE-754

- 1. Consulta la documentació sobre l'l'aritmètica de punt flotant i l'aritmètica de MATLAB® disponible al campus virtual, enllac documentació.
- 2. Escriu una explicació (màxim 3 fulls Din-A4) sobre l'aritmètica de punt flotant, la norma IEEE-754 i l'aritmètica de MATLAB $^{\circledR}$.
- 3. Cita **totes** les fonts bibliogràfiques consultades.

Exercici II Representació de nombres en coma flotant

L'algoritme següent de $\mathsf{MATLAB}^{\circledR}$ talla la representació a t xifres d'un nombre en coma flotant x.

```
function y=tallar(x,t)
  if (x==0), y=0; return; end
  e=fix(log10(abs(x)));
  if e>=0, e=e+1; end
  y=fix(x*10^(t-e))*10^(e-t);
return
```

- 1. Comprova el funcionament amb un joc de proves. Per exemple
 - (a) t = 5, x = 123.041 i x = 123.046.
 - (b) t = 5, x = -123.041 i x = -123.046.
 - (c) t = 2, x = 0.00123 i x = 0.00128.
 - (d) t = 2, x = -0.00123 i x = -0.00128.
 - (e) t = 4, $x = \pi i x = -\pi$.
- 2. Escriu una rutina semblant per arrodonir a t xifres un nombre en coma flotant x
- 3. Comprova el funcionament amb un joc de proves.
 - (a) t = 5, x = 123.041 i x = 123.046.
 - (b) t = 5, x = -123.041 i x = -123.046.
 - (c) t = 2, x = 0.00123 i x = 0.00128.
 - (d) t = 2, x = -0.00123 i x = -0.00128.
 - (e) t = 4, $x = \pi i x = -\pi$.

Exercici III Opció A

Les tres expressions següents:

$$P(x) = x^3 - 3x^2 + 3x - 1$$
, $Q(x) = ((x - 3)x + 3)x - 1$, $R(x) = (x - 1)^3$.

són tres fórmules diferents per a calcular el mateix polinomi.

- 1. Fent ús de l'aritmètica de quatre xifres arrodonint calculeu el valor de les tres expressions per a x=2.72. Per què donen diferent P, Q i R?
- 2. Fent ús de l'aritmètica de quatre xifres arrodonint calculeu el valor de les tres expressions per a x=0.975. Per què donen diferent P, Q i R?
- 3. Calculeu en cada cas l'error relatiu percentual. Quina expressió dona una millor aproximació?

Exercici IV Opció A

Siguin $A(N) = (a_{ij})_{N \times N}$ i $B(N) = (b_{i1})_{N \times 1}$ la matriu i el vector d'ordre N definits per

$$a_{ij} = \begin{cases} 2 & |i-j| \le 2, \\ -4 & i=j, \\ 0 & |i-j| > 2, \end{cases} \quad i \quad b_{i1} = \begin{cases} 2 & i=1,N, \\ 0 & i \ne 1,N, \end{cases}$$

$$per \ a \ i = 1, \dots, N, \quad j = 1, \dots, N.$$

Per a tots els ordres **N** tals que $6 \le N \le 25$ es demana:

- 1. Calculeu el determinant i el nombre de condició de les matrius A. Comproveu la simetria d'aquestes matrius. Comproveu que $X=(1,1,\ldots,1)$ és solució exacte per a qualsevol N (sense fer ús de MATLAB®)
- 2. Fent ús de MATLAB® i d'un mètode d'eliminació gaussiana, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 3. Fent ús de MATLAB[®] i del mètode QR de resolució de sistemes d'equacions lineals, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 4. Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Prèviament feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N. Expliqueu els avantages i inconvenients del mètodes per aquest cas concret.
- 5. Compareu la solució X del sistema Ax = b pels diferents mètodes experimentats en aquest exercici. Quantes iteracions calen en cada cas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

Exercici III Opció B

Les dues expressions següents:

$$f(x) = 1.01e^{4x} - 4.62e^{3x} - 3.11e^{2x} + 12.2e^x - 1.99,$$

$$F(x) = (((1.01z - 4.62)z - 3.11)z + 12.2)z - 1.99, \quad z = e^x.$$

són dues fórmules diferents per avaluar la mateixa funció.

- 1. Fent ús de l'aritmètica de **tres xifres** arrodonint calculeu el valor de les dues expressions per a x = 1.53. Per què donen diferent f(1.53) i F(1.53)?
- 2. Fent ús de l'aritmètica de **quatre xifres** arrodonint calculeu el valor de les tres expressions per a x = 0.925. Per què donen diferent f(0.925) i F(0.925)?
- 3. Calculeu en cada cas l'error relatiu percentual. Quina expressió dona una millor aproximació?

Exercici IV Opció B

Siguin $A(N) = (a_{ij})_{N \times N}$ i $B(N) = (b_{i1})_{N \times 1}$ la matriu i el vector d'ordre N definits per

$$a_{ij} = \begin{cases} -1 & |i-j| \le 2, \\ 5 & i=j, \\ 0 & |i-j| > 2, \end{cases}$$
 i
$$b_{i1} = \begin{cases} 3 & i=1,N, \\ 2 & i=2,N-1, \\ 1 & i \ne 1,2,N-1,N, \end{cases}$$
 per a $i=1,\ldots,N, \quad j=1,\ldots,N.$

Per a tots els ordres **N** tals que $6 \le N \le 30$ es demana:

- 1. Calculeu el determinant i el nombre de condició de les matrius A. Comproveu la simetria d'aquestes matrius. Comproveu que X = (1, 1, ..., 1) és solució exacte per a qualsevol N (sense fer ús de MATLAB®)
- 2. Fent ús de $\mathsf{MATLAB}^{\circledR}$ i d'un mètode d'eliminació gaussiana, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 3. Fent ús de MATLAB® i del mètode QR de resolució de sistemes d'equacions lineals, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 4. Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Prèviament feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N. Expliqueu els avantages i inconvenients del mètodes per aquest cas concret.
- 5. Compareu la solució X del sistema Ax = b pels diferents mètodes experimentatss en aquest exercici. Quantes iteracions calen en cada cas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

Exercici III Opció C

Calculeu:
$$\sum_{k=1}^{6} \frac{1}{3^k}$$
 i $\sum_{k=1}^{6} \frac{1}{3^{(7-k)}}$

- 1. Fent ús de l'aritmètica de tres xifres arrodonint.
- 2. Fent ús de l'aritmètica de quatre xifres arrodonint.
- 3. Per què donen diferent? Calculeu en cada cas l'error relatiu percentual.

Exercici IV Opció C

Sigui A la matriu i b el vector definits per:

$$A = (a_{ij})_{N \times N}$$
 amb $a_{ij} = i^{j-1}$ per a $i = 1, ..., N$ $j = 1, ..., N$

$$b = (b_i)_{N \times 1}$$
 amb $b_1 = N$, $b_i = \frac{i^N - 1}{i - 1}$, per a $i = 2, \dots, N$.

Per a tots els ordres N tals que $2 \le N \le 20$ es demana:

- 1. Calculeu el determinant i el nombre de condició de les matrius A. Comproveu la simetria d'aquestes matrius. Comproveu que $X = (-1, -1, \dots, -1)$ és solució exacte per a qualsevol N (sense fer ús de MATLAB®)
- 2. Fent ús de MATLAB® i d'un mètode d'eliminació gaussiana, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 3. Fent ús de MATLAB® i del mètode QR de resolució de sistemes d'equacions lineals, determineu la solució x del sistema Ax = b. Expliqueu els avantages i inconvenients del mètode per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.
- 4. Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Prèviament feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N. Expliqueu els avantages i inconvenients del mètodes per aquest cas concret.
- 5. Compareu la solució X del sistema Ax = b pels diferents mètodes experimentatss en aquest exercici. Quantes iteracions calen en cada cas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

Referències

- [1] Abramowitz, M. and Stegun, I.A. Hanbook of Mathematical Functions. Ed. Dover.
- [2] Grau, Miquel i Noguera, Miquel. Càlcul Numèric. Edicions U.P.C. 1993
- [3] Forshythe, G.E.; Malcom, M.A.; Moler, C. B.: Computer Methods for Mathematical Computations. Prentice Hall. 1977
- [4] Moler, Cleve, Numerical Computing with MATLAB. Electronic edition: The MathWorks, Inc., Natick, MA, 2004. http://www.mathworks.es/moler/chapters.html
- [5] Help online de Matlab.