Exercice 1 : Extraction de racine carrée modulo N

Notons p un nombre premier et $f \geq 1$ un entier. Nous rappelons le critère d'Euler généralisé qui garantit qu'un entier x premier avec p est un carré modulo p^f si et seulement si $x^{(p-1)/2} \equiv 1 \mod p$. Soit N un entier dont la décomposition en facteur premiers est $N = q_1^{f_1} \dots q_d^{f_d}$ où $q_i \in \mathbb{P}$ sont des nombres premiers deux à deux distincts et $f_i \geq 1$ pour $i \in \{1, \dots, d\}$.

- **1.a**] Montrer qu'un entier x est un carré modulo N dès que $x^{(q_j-1)/2} \equiv 1 \mod q_j$ pour tout $j \in \{1, \ldots, d\}$.
- **1.b**] Montrer qu'un tel carré modulo N a exactement 2^d racines carrées.
- **1.c**] Montrer que s'il existe un algorithme \mathcal{A} capable d'extraire des racines carrées dans $(\mathbb{Z}/N\mathbb{Z})$ en temps τ , alors il existe un algorithme \mathcal{B} qui retourne un diviseur propre de N en temps espéré $O(\tau)$.

Exercice 2: Factorisation et logarithme discret

Soient p et q deux nombres premiers distincts et soit N=pq. Soit α un élément inversible de $(\mathbb{Z}/N\mathbb{Z})$. Notons α_p et α_q les images de α dans $(\mathbb{Z}/p\mathbb{Z})^*$ et $(\mathbb{Z}/q\mathbb{Z})^*$ (respectivement).

- **2.a**] Montrer que l'ordre de α dans $(\mathbb{Z}/N\mathbb{Z})^*$ est égal au plus petit multiple commun de l'ordre de α_p dans $(\mathbb{Z}/p\mathbb{Z})^*$ et de l'ordre de α_q dans $(\mathbb{Z}/q\mathbb{Z})^*$.
- **2.b**] Notons $d = \operatorname{pgcd}(p-1, q-1)$. Montrer qu'il existe un élément d'ordre $\varphi(N)/d$ dans $(\mathbb{Z}/N\mathbb{Z})^*$ où $\varphi(N) = (p-1)(q-1) = \#(\mathbb{Z}/N\mathbb{Z})^*$ est la fonction indicatrice d'Euler de N. Dans la suite nous supposons que p > 3 et q > 3 et que $\operatorname{pgcd}(p-1, q-1) = 2$.
- **2.c**] Soit γ un élément d'ordre $\varphi(N)/2$ de $(\mathbb{Z}/N\mathbb{Z})^*$ et soit a le logarithme discret de γ^N mod N en base γ . Montrer que $N-a=\varphi(N)$.
- ${f 2.d}$] Écrire un algorithme polynomial qui prend en entrée N et a et retourne les facteurs premiers p et q de N.

Exercice 3 : Sécurité des bits de la fonction RSA

Soient N un module RSA, e un nombre entier premier avec $\varphi(N)$ et $f_{N,e}$ la fonction RSA associée. Considérons la fonction $\delta: \mathbb{Z}_N \longrightarrow \{0,1\}$ définie par

$$\delta(x^e) = \begin{cases} 0 & \text{si } 0 \le x \bmod N \le N/2, \\ 1 & \text{si } N/2 \le x \bmod N \le N-1. \end{cases}$$

3.a] Montrer l'équivalence

$$\delta((2x)^e \mod N) = 0 \iff x \in \left[0, \frac{N}{4}\right] \cup \left[\frac{N}{2}, \frac{3N}{4}\right]$$

et généraliser en caractérisant les $x \in \mathbb{Z}_N^*$ tels que $\delta((2^t x)^e) \bmod N) = 0$.

3.b] Montrer comment transformer tout algorithme polynomial calculant $\delta(z)$ pour tout $z \in \mathbb{Z}_N^*$ en un algorithme polynomial qui inverse la fonction RSA.

 ${\bf 3.c}\,]\quad {\rm Considérons}$ la fonction $\gamma:\mathbb{Z}_N\longrightarrow \{0,1\}$ définie par

$$\gamma(x^e) = \begin{cases} 0 & \text{si } x \text{ est pair,} \\ 1 & \text{si } x \text{ est impair.} \end{cases}$$

Montrer comment transformer tout algorithme polynomial calculant $\gamma(z)$ pour tout $z \in \mathbb{Z}_N^*$ en un algorithme polynomial qui inverse la fonction RSA.