Name Entity Recognition (NER) in microblogs

Supervisor: Diego Esteves
Omid Najaee

Terminologies

- → Entity Recognition: the discovery entities such as people, locations, organizations and products in text.
 - example: microsoft_ORG, Merkel_PERSON

Modern NER models

- → Early experiments on state-of-the-art algorithms which are mostly trained on news datasets, demonstrates they have 30-50% accuracy on tweets, in contrast to 80-90% accuracy on longer and well-written text.
- → Major obstacles
 - ♦ Short messages: as a source of lack of context
 - ♦ Noisy content: social media content often has unusual spelling (e.g. 2moro).
 - ◆ User-generated content: users are rich source of information about the user, e.g. demographics, friendships.
 - ◆ Capitalization: e.g. eat an apple vs. Apple Inc.
 - Multilingual: social media content is strongly multilingual.

Modern NER models: accuracy experiment

- A study has been ran on 9 different NER systems
- Each of the proposed approaches employ a different approach
- The experiment is ran on three different datasets

	Ritter Dataset			
System	P	R	F1	
ANNIE	36.14	16.29	22.46	
DBpedia Spotlight	34.70	28.35	31.20	
Lupedia	38.85	18.62	25.17	
NERD-ML	52.31	50.69	51.49	
Stanford	59.00	32.00	41.00	
Stanford-Twitter	54.39	44.83	49.15	
TextRazor	36.33	38.84	37.54	
Zemanta	34.94	20.07	25.49	

NER in Twitter using Images and Text

- A hybrid multi-level approach to discover named entities
- combes text and image features with a final classifier based on a decision tree model
- This model intents to produce biased indicators to certain classes (LOC, PER, and ORG)
- The proposed features for each class
 - LOC: building, suburb, street, city, country, mountain, highway, forest, coast, map
 - o ORG: company logo
 - PER: human face

- (A) POS Tagging and Shallow Parsing to filter out tokens.
- (B) Query from search engine (bing)
- (C) Cache top *N* images for each term in the *S*.

- (A) POS Tagging and Shallow Parsing to filter out tokens.
- (B) Query from search engine (bing)
- (C) Cache top *N* images for each term in the *S*.

- (A) POS Tagging and Shallow Parsing to filter out tokens.
- (B) Query from search engine (bing)
- (C) Cache top *N* images for each term in the *S*.

(D. 1) detect objects in each picture with a probability P(x_i)

(D. 2) we perform clustering to group texts together that are "distributively" similar.

(D. 1) detect objects in each picture with a probability P(x_i)

(D. 2) we perform clustering to group texts together that are "distributively" similar.

(E) A decision tree classifier for inferring from the data features.

Experiments

→ Performance obtained from this approach on ritter dataset with 4-fold cross-validation.

NER System	Description	Precision	Recall	F-measure
Bontcheva et al., 2013	Stanford-twitter	0.54	0.45	0.49
Etter et al., 2013	SVM-HMM	0.65	0.49	0.54
this approach	Cluster (images and texts) $+$ DT	0.82	0.46	0.59

Topic Modeling

- Motivation: organize, search and understand vast quantities of information.
- Definition: a method for finding a group of words (aka topic) from a collection of documents that best represents the information in the collection.

Capacity

- Discovering hidden topical patterns that are present across the collection.
- Annotating documents according to these topics.
- Using these annotations to organize, search and summarize texts.

Latent Dirichlet Allocation (LDA)

- One of the techniques for Topic Modeling
- It tells what topics are present in any given document by observing all the words in it and producing a topic distribution
- Developed in 2013, David M. Blei, Andrew NG, Michael Jordan, University of California, Berkeley
- Gensim, a python-based freely available implementation by Radim Rehurek and Petr Sojka

LDA Model

• The LDA model for words, topics and documents

w_n: observed words in a document i

z_n: the topic for j-th word in document i

theta_d: the topic distribution for document i

LDA Model

Alpha and Beta hyperparameters of the model

Alpha: a parameter that sets the prior on the per-document topic distrib

Thank you for your attention.

Questions?

References

- Isabelle Augenstein, Leon Derczynski, Kalina Bontcheva, Generalisation in Named Entity Recognition: A Quantitative Analysis, University of Sheffield, 2016
- Diego Esteves, Rafael Peres, Jens Lehmann, and Giulio Napolitano, Named Entity Recognition in Twitter using Images and Text, University of Bonn, 2017
- David M. Blei and Andrew Y. Ng and Michael I. Jordan, Latent Dirichlet
 Allocation, Journal of Machine Learning Research, 2013

