CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Circuit complexity of a binary language

- Let $Y \subseteq \{0, 1\}^*$
- For each $n \in \mathbb{N}$, we define $Y_n: \{0, 1\}^n \to \{0, 1\}$ by the rule

$$Y_n(w) = \begin{cases} 1 & \text{if } w \in Y \\ 0 & \text{if } w \notin Y \end{cases}$$

- **Definition:** The circuit complexity of Y is the function $S: \mathbb{N} \to \mathbb{N}$ defined by $S(n) = \text{the size of the smallest circuit that computes } Y_n$
- Note: Each circuit only handles a single input length! Different from TMs

Turing machines vs. circuits

- Let M be a Turing machine that decides a language Y
- Let T(n) be M's time complexity; let S(n) be M's space complexity

Theorem: The circuit complexity of Y is $O(T(n) \cdot S(n))$.

$TM \Rightarrow Circuit$

- Let NEXT $(c_1c_2 \dots c_\ell) = c_1'c_2' \cdots c_\ell'$
- There is a circuit C_M that computes $\langle c_i' \rangle$ given $\langle c_{i-1} \rangle$, $\langle c_i \rangle$, $\langle c_{i+1} \rangle$, $\langle c_{i+2} \rangle$

$TM \Rightarrow Circuit$

- Let $\operatorname{NEXT}(c_1c_2 \dots c_\ell) = c_1'c_2' \cdots c_\ell'$
- There is a circuit C_M that computes $\langle c_i' \rangle$ given $\langle c_{i-1} \rangle$, $\langle c_i \rangle$, $\langle c_{i+1} \rangle$, $\langle c_{i+2} \rangle$

$TM \Rightarrow Circuit$

- Size: $O(S(n) \cdot T(n))$
- Assume WLOG:
 - $\langle 0 \rangle = 0^r$ and $\langle 1 \rangle = 10^{r-1}$
 - *M* halts in starting cell
 - NEXT(C) = C if C is a halting configuration
 - $\langle q_{\rm accept} \rangle = 1^r$
 - $\langle q_{\text{reject}} \rangle = 01^{r-1}$

Turing machines vs. circuits

- Let $Y \subseteq \{0, 1\}^*$
- We just proved: If $Y \in P$, then Y has polynomial circuit complexity
- Converse?

Theorem: There exists an undecidable language $Y \subseteq \{0, 1\}^*$ with circuit complexity O(n)

An undecidable language with small circuits

- **Definition:** A unary language is a subset $Y \subseteq \{1\}^*$
- Exercise 13: There exists an undecidable unary language
- Claim: Every unary language Y has circuit complexity O(n)
 - **Proof:** If $1^n \in Y$, then $Y_n(w) \equiv w_1 \wedge w_2 \wedge \cdots \wedge w_n$
 - If $1^n \notin Y$, then $Y_n(w) \equiv 0$
 - Either way, # gates is $\leq n$

The complexity class PSIZE

• Let $S: \mathbb{N} \to \mathbb{N}$ be a function

Definition:

 $SIZE(S) = \{Y \subseteq \{0, 1\}^* : \text{the circuit complexity of } Y \text{ is } O(S)\}$

Definition:

PSIZE = $\{Y \subseteq \{0, 1\}^* : \text{the circuit complexity of } Y \text{ is poly}(n)\} = \bigcup_{k=1}^{\infty} \text{SIZE}(n^k)$

How to interpret PSIZE

- We proved $P \subseteq PSIZE$ and $P \neq PSIZE$
- Circuits are more powerful than Turing machines

- No! Something is "wrong" with the circuit model!
- PSIZE is not a good model of tractable languages!

Nonuniformity

- Let $Y \subseteq \{0, 1\}^*$
- " $Y \in PSIZE$ " means that there is a family of polynomial-size circuits that decide Y (one circuit for each input length)
- Each circuit performs only a polynomial amount of "work..."
- But what about the work required to construct these circuits?

Nonuniformity

- PSIZE allows us to use different "algorithms" for different input lengths
- Computing in this "nonuniform" manner is cheating / unrealistic
- However, it is a valuable conceptual tool!
- Alternative perspective: "Advice"

Computing with advice

- Informal definition: A language is in P/poly if it can be computed in polynomial time with the help of an "advisor"
- Advisor can instantly solve any computational problem
- Advisor is benevolent/trustworthy and will give you advice...
- ...but the advice depends only on the length of your input!

Computing with advice

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in P/\text{poly}$ if there exist "advice strings" $a_0, a_1, a_2, ... \in \{0, 1\}^*$ and a polynomial-time Turing machine M such that:
 - $|a_n| \le \text{poly}(n)$
 - For every $w \in Y$, the machine M accepts $\langle w, a_{|w|} \rangle$
 - For every $w \notin Y$, the machine M rejects $\langle w, a_{|w|} \rangle$

Example: Unary languages

• Claim: If $Y \subseteq \{1\}^*$, then $Y \in P/\text{poly}$

• **Proof:** Advice:
$$a_n = \begin{cases} 1 & \text{if } 1^n \in Y \\ 0 & \text{otherwise} \end{cases}$$

- Given $\langle w, a \rangle$, the machine M operates as follows:
 - If a = 1 and w is all ones, accept
 - Otherwise, reject

Circuits vs. advice

Theorem: PSIZE = P/poly

• Step 1: Prove P/poly \subseteq PSIZE

Proof that $P/poly \subseteq PSIZE$

- Let $Y \in P/\text{poly}$ and let $n \in \mathbb{N}$
- Goal: Design a circuit of size poly(n) that decides Y_n
- There is a poly-time Turing machine M that decides Y using advice

$$\langle w, a_n \rangle \longrightarrow M$$
 Accept if $w \in Y$ Reject if $w \notin Y$

Proof that $P/poly \subseteq PSIZE$

Polynomial-Time Turing Machine ⇒ Polynomial-Size Circuits

• Size of C' is poly(n') where $n' = |\langle w, a_n \rangle| = poly(n)$

- Final step: "hard-code" the advice a_n
- Technicality: Use the encoding $\langle w, a \rangle = 1^{|w|} 0wa$

Circuits vs. advice

Theorem: PSIZE = P/poly

• Step 1: Prove P/poly ⊆ PSIZE ✓

• Step 2: Prove $PSIZE \subseteq P/poly$

Code as data III

- Recall principle: A Turing machine M can be encoded as a string $\langle M \rangle$
 - M is an algorithm, but at the same time, $\langle M \rangle$ can be an input to another algorithm!
- Similar idea: A circuit C can be encoded as a string $\langle C \rangle$
 - C is an "algorithm," but at the same time, $\langle C \rangle$ can be an input to another algorithm!
 - You'll explore encoding details in a homework exercise

Circuit value problem

- Let CIRCUIT-VALUE = $\{\langle x, C \rangle : C \text{ is a circuit and } C(x) = 1\}$
- **Lemma:** CIRCUIT-VALUE ∈ P
- **Proof sketch:** Suppose C has m nodes. To compute C(x):
 - 1) Mark all the input nodes with their values
 - 2) While there is an unmarked node:
 - For every gate g, find all the nodes that feed into g. If they are all marked with their values, then mark g with its value

Proof that $PSIZE \subseteq P/poly$

- Let $Y \in PSIZE$
- Y_n can be computed by a circuit C_n of size poly(n)
- Advice: $a_n = \langle C_n \rangle$
- Given w and $\langle C_n \rangle$, we can figure out whether $w \in Y$ by computing $C_n(w)$
 - This is exactly the circuit value problem

Circuits vs. advice

Theorem: PSIZE = P/poly

• Step 1: Prove P/poly ⊆ PSIZE ✓

Step 2: Prove PSIZE ⊆ P/poly