Projet de fin d'étude

Rétro-ingénierie d'un modèle déterministe

Sommaire

- Introduction et contexte
- Analyse des données
- Data processing
- Modélisations
- Critiques et améliorations
- Conclusion

Introduction et contexte

Contexte et rétro-ingénierie

- Estimer les frais d'acquisitions lors de l'achat/location d'un bien immobilier
- Données issue d'un modèle déterministe
- Rétro-ingénierie du modèle avec du machine-learning

Environnement technique

Traitements et analyses

- Numpy, Pandas
- Searborn

Machine Learning

Scikit-learn et Keras

Intégration continue

- Circle CI
- AWS S3

Gestion de projet et "industrialisation"

- Gestion de version et développement en groupe avec Git
- Tests unitaires et intégration continue avec Circle CI
- Règles stylistiques en respectant la norme PEP8

Analyses des données

Les variables

Une vingtaine de variables dont :

- Le prix du bien
- Le type de bien (nouveau/ancien)
- La situation marital
- Les crédits d'impôts
- Le taux d'imposition
- etc...

Corrélations

Distributions des variables binaires

Data processing

Encodage des variables qualitatives

input-marital-status
single
single
married

single	married
1	0
1	0
0	1

Exemple d'une fonction de processing

Processing modulaire

Modélisations

Evaluation des modèles

$$MAE = \frac{1}{n} \sum |y_i - \hat{y}_i|$$

$$RMSE = \sqrt{\frac{1}{n}} \sum_{i} (y_i - \hat{y}_i)^2$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y}_{i})^{2}}$$

Régression linéaire

$$y = \sum a_i . x_i$$

MAE	RMSE	R2
12 000	15 000	0,833

Régressions linéaires selon le type de bien

Régressions linéaires selon le type de bien

$$n_{ew}(x) = \sum \alpha_i x_i , m_{existing}(x) = \sum \beta_i x_i$$

$$f(x) = m_{new}(x).x_{|homeType=new} + m_{existing}(x).x_{|homeType=existing}$$

MAE	RMSE	R2
3 100	4 200	0,986

Split Discret Features Model (SDFM)

Split Discret Features Model (SDFM)

MAE	RMSE	R2
2 000	3 100	0,9927

Pour des modèles de régressions

Arbres de décisions et Random Forest

Arbres de décisions et Random Forest

Modèle	MAE	RMSE	R2
Arbre de décision	700	1000	0,99921
Random Forest	300	450	0,99984

Réseaux de neurones

- Processing & Workflow
- Architectures
- Résultats

Normalisation

Encapsulation avec Keras

- Interface Keras scikit-learn
- Utilisation des Pipelines scikit-learn

Architectures

Résultats

Critiques et améliorations

Modèle	MAE	RMSE	R2
Régression linéaire	12 000	15 000	0,833
Régression selon homeType	3 100	4 200	0,986
SDFM (régression)	2 000	3 100	0,9927
Arbre de décision	700	1000	0,99921
Random Forest	300	450	0,99984
Réseaux de neurones (entrainement court)	30	50	0,9999
Réseaux de neurones (entrainement long)	6	8	0,9999

Conclusion

Merci de votre attention