Topology Qualifying Exam Notes

D. Zack Garza

Friday 29th May, 2020

Contents

	0.1 Conventions	1				
1	Table of Homotopy and Homology Structures					
2	Useful Facts and Techniques					
3	Other Interesting Things To Consider					
4	Spheres					
5	Definitions					
6	Examples6.1 Common Spaces and Operations6.2 Alternative Topologies					
7	Theorems 7.1 Point-Set 7.2 Algebraic					

0.1 Conventions

- $\pi_0(X)$ is the set of path components of X, and I write $\pi_0(X) = \mathbb{Z}$ if X is path-connected (although it is not a group). Similarly, $H_0(X)$ is a free abelian group on the set of path components of X.
- Lists start at entry 1, since all spaces are connected here and thus $\pi_0 = H_0 = \mathbb{Z}$. That is,

$$-\pi_*(X) = [\pi_1(X), \pi_2(X), \pi_3(X), \cdots] -H_*(X) = [H_1(X), H_2(X), H_3(X), \cdots]$$

• For a finite index set I, it is the case that $\prod_I G = \bigoplus_I G$ in \mathbf{Grp} , i.e. the finite direct product and finite direct sum coincide. Otherwise, if I is infinite, the direct sum requires cofinitely many zero entries (i.e. finitely many nonzero entries), so here we always use \prod .

In other words, there is an injective map

$$\bigoplus_I G \hookrightarrow \prod_I G$$

which is an isomorphism when $|I| < \infty$

- $\mathbb{Z}^n := \prod_{i=1}^n \mathbb{Z} = \mathbb{Z} \times \mathbb{Z} \times \dots \mathbb{Z}$ is the free abelian group of rank n.
 - $-x \in \mathbb{Z}^n = \langle a_1, \cdots, a_n \rangle \implies x = \sum_n c_i a_i \text{ for some } c_i \in \mathbb{Z} \text{ , i.e. } a_i \text{ form a basis.}$
 - Example: $x = 2a_1 + 4a_2 + a_1 a_2 = 3a_1 + 3a_2$.
- $\mathbb{Z}^{*n} := \mathbb{Z} * \mathbb{Z} * \dots \mathbb{Z}$ is the free product of n free abelian groups, i.e. a free (nonabelian) group on n generators.
 - $-x \in \mathbb{Z}^{*n} = \langle a_1, \ldots, a_n \rangle$ implies that x is a finite word in the noncommuting symbols a_i^k
 - Example: $x = a_1^2 a_2^4 a_1 a_2^{-2}$
- \bullet K(G, n) is an Eilenberg-MacLane space, the homotopy-unique space satisfying

$$\pi_k(K(G, n)) = \begin{cases} G & k = n, \\ 0 & k \neq n. \end{cases}$$

- $-K(\mathbb{Z},1) = S^1$ $-K(\mathbb{Z},2) = \mathbb{CP}^{\infty}$ $-K(\mathbb{Z},1) = \mathbb{RP}^{\infty}$
- M(G, n) is a Moore space, the homotopy-unique space satisfying

$$H_k(M(G,n);G) = \begin{cases} G & k = n, \\ 0 & k \neq n. \end{cases}$$

- $-M(\mathbb{Z},n)=S^n$
- $-M(\mathbb{Z}_2,1)=\mathbb{RP}^2$
- $-M(\mathbb{Z}_p,n)$ is made by attaching e^{n+1} to S^n via a degree p map.
- $T^n = \prod S^1$ is the *n*-torus
- D(k,X) is the space X with $k \in \mathbb{N}$ distinct points deleted, i.e. the punctured space X $\{x_1, x_2, \dots x_k\}$ where each $x_i \in X$.
- $\bullet \ \mathbb{RP}^n = S^n/S^0 = S^n/\mathbb{Z}_2$
- $\mathbb{CP}^n = S^{2n+1}/S^1$
- $B^n = \{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v}|| \le 1 \} \subset \mathbb{R}^n$
- $S^{n-1} = \partial B^n = \left\{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v}|| = 1 \right\} \subset \mathbb{R}^n$

1 Table of Homotopy and Homology Structures

Figure 1: sphere ball correct

X	$\pi_*(X)$	$H_*(X)$	CW Structure	$H^*(X)$
\mathbb{R}^1	0	0	$\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot x$	0
\mathbb{R}^n	0 k	0	$(\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot x)^n$	0
$D(k,\mathbb{R}^n)$	$\pi_* \bigvee^{\kappa} S^1$	$\bigoplus H_*M(\mathbb{Z},1)$	1 + kx	?
B^n	$\pi_*(\mathbb{R}^n)$	$\overset{k}{H_*(\mathbb{R}^n)}$	$1 + x^n + x^{n+1}$	0
S^n	$[0\ldots,\mathbb{Z},?\ldots]$	$H_*M(\mathbb{Z},n)$	$1+x^n$	$\mathbb{Z}[nx]/(x^2)$
$D(k, S^n)$	$\pi_* \bigvee^{\kappa-1} S^1$	$\bigoplus H_*M(\mathbb{Z},1)$	$1 + (k-1)x^1$?
T^2	$\pi_* S^1 \times \pi_* S^1$	$(H_*M(\mathbb{Z},1))^2 \times H_*M(\mathbb{Z},2)$	$1 + 2x + x^2$	$\Lambda(_1x_1,_1x_2)$
T^n	$\prod \pi_*S^1$	$\prod^{n} (H_*M(\mathbb{Z},i))^{\binom{n}{i}}$	$(1+x)^n$	$\Lambda(_1x_1,_1x_2,\ldots_1x_n)$
$D(k,T^n)$	$[0,0,0,0,\ldots]$?	$i=1 \\ [0,0,0,0,\dots]$?	1+x	?
$S^1 \vee S^1$	$\pi_* S^1 * \pi_* S^1$	$(H_*M(\mathbb{Z},1))^2$	1+2x	?
$\bigvee S^1$	$*^n \pi_* S^1$	$\prod H_*M(\mathbb{Z},1)$	1+x	?
\mathbb{RP}^1	π_*S^1	$H_*M(\mathbb{Z},1)$	1+x	$_0\mathbb{Z} \times {}_1\mathbb{Z}$
\mathbb{RP}^2	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^2$	$H_*M(\mathbb{Z}_2,1)$	$1 + x + x^2$	$_0\mathbb{Z} \times _2\mathbb{Z}/2\mathbb{Z}$
\mathbb{RP}^3	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^3$	$H_*M(\mathbb{Z}_2,1) + H_*M(\mathbb{Z},3)$	$1 + x + x^2 + x^3$	$_{0}\mathbb{Z} \times _{2}\mathbb{Z}/2\mathbb{Z} \times _{3}\mathbb{Z}$
\mathbb{RP}^4	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^4$	$H_*M(\mathbb{Z}_2,1) + H_*M(\mathbb{Z}_2,3)$		$_0\mathbb{Z} imes (_2\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{RP}^n, n \ge 4$	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^n$	$\prod H_*M(\mathbb{Z}_2,i)$	$\sum x^i$	$_0\mathbb{Z} imes_2\mathbb{Z}/2\mathbb{Z}$
even		odd $i < n$	$\frac{1}{i-1}$	i=1
$\mathbb{RP}^n, n \geq 4$ odd	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) + \pi_*S^n$	$\prod H_*M(\mathbb{Z}_2,i)\times H_*S^n$	$\sum_{n=1}^{n-1} x^i$	$H^*(\mathbb{RP}^{n-1}) \times {}_n\mathbb{Z}$
\mathbb{CP}^1	$\pi_*K(\mathbb{Z},2) + \pi_*S^3$	odd $i \le n-2$ H_*S^2	$x^{0} + x^{2}$	$\mathbb{Z}[2x]/(2x^2)$
\mathbb{CP}^2	$\pi_*K(\mathbb{Z}, 2) + \pi_*S^5$	$H_*S^2 \times H_*S^4$	$x^{0} + x^{2} + x^{4}$	$\mathbb{Z}[2x]/(2x^3)$ $\mathbb{Z}[2x]/(2x^3)$
$\mathbb{CP}^n, n \geq 2$	$\pi_* K(\mathbb{Z}, 2) + \pi_* S^{2n+1}$	$\prod^n H_*S^{2i}$	$\sum_{i=1}^{n} x^{2i}$	$\mathbb{Z}[2x]/(2x^{n+1})$
Mobius Band	π_*S^1	$\overset{i=1}{H_*}S^1$	i=1 $1+x$?
Klein Bottle	$K(\mathbb{Z} \rtimes_{-1} \mathbb{Z}, 1)$	$H_*S^1 \times H_*\mathbb{RP}^{\infty}$	$1 + 2x + x^2$	· ?

- \mathbb{R}^n is a contractible space, and so $[S^m, \mathbb{R}^n] = 0$ for all n, m which makes its homotopy groups all zero.
- All calculations follow from the fact that $D(k, \mathbb{R}^n) = \mathbb{R}^n \{x_1 \dots x_k\} \simeq \bigvee_{i=1}^k S^1$ by a deformation retract.
- This uses the fact that $S^n \cong B^n/\partial B^n$ and employs an attaching map

$$\phi: (D^n, \partial D^n) \longrightarrow S^n$$
$$(D^n, \partial D^n) \mapsto (e^n, e^0)$$

- $B^n \simeq \mathbb{R}^n$ by normalizing vectors.
- Use the inclusion $S^n = B^{n+1}$ as the attaching map.
- $\mathbb{CP}^1 \simeq S^2$.
- $\bullet \ \mathbb{RP}^1 \simeq S^1.$
- Use $\pi_1 \prod = \prod \pi_1$ and the universal cover $\mathbb{R}^1 \twoheadrightarrow S^1$ to yield the cover $\mathbb{R}^n \twoheadrightarrow T^n$.

Use the fact that $D(1,S^n)\cong\mathbb{R}^n$ and thus $D(k,S^n)\cong D(k-1,\mathbb{R}^n)\cong\bigvee^{k-1}S^1$ # Euler Characteristics - Only surfaces with positive $\chi\colon$ - $\chi S^2=2$ - $\chi\mathbb{RP}^2=1$ - $\chi B^2=1$ - Manifolds with zero χ - $T^2,K,M,S^1\times I$ - Manifolds with negative χ - $\Sigma_{g\geq 2}$ by $\chi(X)=2-2g$.

2 Useful Facts and Techniques

- Fundamental group:
 - Van Kampen
- Homotopy Groups
 - Hurewicz map
- Homology
 - Mayer-Vietoris $* (X = A \bigcup B) \mapsto (\bigcap, \oplus, \bigcup) \text{ in homology}$ LES of a pair $* (A \hookrightarrow X) \mapsto (A, X, X/A)$
 - Excision
- $\pi_{i>2}(X)$ is always abelian.
- The ranks of π_0 and H_0 are the number of path components, and $\pi_0(X) = \mathbb{Z}$ iff X is simply connected.
 - X simply connected implies $\pi_k(X) \cong H_k(X)$ up to and including the first nonvanishing H_k
 - $-H_1(X) = \pi_1 X/[\pi_1 X, \pi_1 X]$, the abelianization.
- General mantra: homotopy plays nicely with products, homology with wedge products. ¹

In general, homotopy groups behave nicely under homotopy pull-backs (e.g., fibrations and products), but not homotopy push-outs (e.g., cofibrations and wedges). Homology is the opposite.

- $\pi_k \prod X = \prod \pi_k X$ by LES.²
- $H_k \prod X \neq \prod H_k X$ due to torsion.

¹More generally, in **Top**, we can look at $A \leftarrow \{\text{pt}\} \longrightarrow B$ – then $A \times B$ is the pullback and $A \vee B$ is the pushout. In this case, homology $h : \textbf{Top} \longrightarrow \textbf{Grp}$ takes pushouts to pullbacks but doesn't behave well with pullbacks. Similarly, while π takes pullbacks to pullbacks, it doesn't behave nicely with pushouts.

²This follows because $X \times Y \twoheadrightarrow X$ is a fiber bundle, so use LES in homotopy and the fact that $\pi_{i \geq 2} \in \mathbf{Ab}$.

- Nice case: $H_k(A \times B) = \prod_{i+j=k} H_i A \otimes H_j B$ by Kunneth when all groups are torsion-free.³
- $H_k \bigvee X = \prod H_k X$ by Mayer-Vietoris.⁴
- $\pi_k \bigvee X \neq \prod \pi_k X$ (counterexample: $S^1 \vee S^2$)
 - Nice case: $\pi_1 \bigvee X = *\pi_1 X$ by Van Kampen.
- $\pi_i(\widehat{X}) \cong \pi_i(X)$ for $i \geq 2$ whenever $\widehat{X} \twoheadrightarrow X$ is a universal cover.
- Groups and Group Actions
 - $-\pi_0(G) = G$ for G a discrete topological group.
 - $-\pi_k(G/H) = \pi_k(G) \text{ if } \pi_k(H) = \pi_{k-1}(H) = 0.$
 - $-\pi_1(X/G) = \pi_0(G)$ when G acts freely/transitively on X.
- Manifolds
 - $-H^n(M^n)=\mathbb{Z}$ if M^n is orientable and zero if M^n is nonorientable.
 - Poincare Duality: $H_i M^n = \cong H^{n-i} M^n$ iff M^n is closed and orientable.

3 Other Interesting Things To Consider

- The "generalized uniform bouquet"? $\mathcal{B}^n(m) = \bigvee_{i=1}^n S^m$
- Lie Groups
 - The real general linear group, $GL_n(\mathbb{R})$
 - * The real special linear group $SL_n(\mathbb{R})$
 - * The real orthogonal group, $O_n(\mathbb{R})$
 - · The real special orthogonal group, $SO_n(\mathbb{R})$
 - * The real unitary group, $U_n(\mathbb{R})$
 - · The real special unitary group, $SU_n(\mathbb{R})$
 - * The real symplectic group Sp(n)
- "Geometric" Stuff
 - Affine n-space over a field $\mathbb{A}^n(k) = k^n \rtimes GL_n(k)$
 - The projective space $\mathbb{P}^n(k)$
 - * The projective linear group over a ring R, $PGL_n(R)$
 - * The projective special linear group over a ring R, $PSL_n(R)$

$$H_n(\prod_{i=1}^k X_j) = \bigoplus_{\alpha \in \mathcal{P}(n,k)} \bigotimes_{i=1}^k H_{x_i}(X_i).$$

 $^4\bigvee$ is the coproduct in the category \mathbf{Top}_0 of pointed topological spaces, and alternatively, $X\vee Y$ is the pushout in \mathbf{Top} of $X\leftarrow \{\mathrm{pt}\}\longrightarrow Y$

³The generalization of Kunneth is as follows: write $\mathcal{P}(n,k)$ be the set of partitions of n into k parts, i.e. $n \in \mathcal{P}(n,k) \implies n = (x_1,x_2,\ldots,x_k)$ where $\sum x_i = n$. Then

- * The modular groups $PSL_n(\mathbb{Z})$ · Specifically $PSL_2(\mathbb{Z})$
- The real Grassmannian, $Gr(n, k, \mathbb{R})$, i.e. the set of k dimensional subspaces of \mathbb{R}^n
- The Stiefel manifold $V_n(k)$
- Possible modifications to a space X:
 - Remove k points by taking D(k, X)
 - Remove a line segment
 - Remove an entire line/axis
 - Remove a hole
 - Quotient by a group action (e.g. antipodal map, or rotation)
 - Remove a knot
 - Take complement in ambient space
- Assorted info about other Lie Groups:
- \bullet $O_n, U_n, SO_n, SU_n, Sp_n$
- $\pi_k(U_n) = \mathbb{Z} \cdot \mathbb{1} [k \text{ odd}]$

$$-\pi_1(U_n)=1$$

•
$$\pi_k(SU_n) = \mathbb{Z} \cdot \mathbb{1} [k \text{ odd}]$$

$$- \pi_1(SU_n) = 0$$

•
$$\pi_k(U_n) = \mathbb{Z}_2 \cdot \mathbb{1} [k = 0, 1 \mod 8] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \mod 8]$$

•
$$\pi_k(SP_n) = \mathbb{Z}_2 \cdot \mathbb{1} [k = 4, 5 \mod 8] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \mod 8]$$

4 Spheres

- $\pi_i(S^n) = 0$ for $i < n, \pi_n(S^n) = \mathbb{Z}$
 - Not necessarily true that $\pi_i(S^n) = 0$ when i > n!!!

* E.g.
$$\pi_3(S^2) = \mathbb{Z}$$
 by Hopf fibration

- $H_i(S^n) = \mathbb{1}[i \in \{0, n\}]$
- $H_n(\bigvee_i X_i) \cong \prod_i H_n(X_i)$ for "good pairs"

- Corollary:
$$H_n(\bigvee_k S^n) = \mathbb{Z}^k$$

• $S^n/S^k \simeq S^n \vee \Sigma S^k$

$$- \Sigma S^n = S^{n+1}$$

• S^n has the CW complex structure of 2 k-cells for each $0 \le k \le n$.

5 Definitions

- Topology: Closed under arbitrary unions and finite intersections.
- Basis: A subset $\{B_i\}$ is a basis iff

 - $\begin{array}{ll} -x \in X \implies x \in B_i \text{ for some } i. \\ -x \in B_i \bigcap B_j \implies x \in B_k \subset B_i \bigcap B_k. \\ -\text{ Topology generated by this basis: } x \in N_x \implies x \in B_i \subset N_x \text{ for some } i. \end{array}$
- Dense: A subset $Q \subset X$ is dense iff $y \in N_y \subset X \implies N_y \cap Q \neq \emptyset$ iff $\overline{Q} = X$.
- Neighborhood: A neighborhood of a point x is any open set containing x.
- Hausdorff
- Second Countable: admits a countable basis.
- Closed (several characterizations)
- Closure in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Bounded
- Compact: A topological space (X, τ) is **compact** if every open cover has a *finite* subcover.

That is, if $\{U_j \mid j \in J\} \subset \tau$ is a collection of open sets such that $X \subseteq \bigcup_{j \in J} U_j$, then there exists

- a finite subset $J' \subset J$ such that $X \subseteq \bigcup_{j \in J'} U_j$.
- Locally compact For every $x \in X$, there exists a $K_x \ni x$ such that K_x is compact.
- Connected: There does not exist a disconnecting set $X = A \coprod B$ such that $\emptyset \neq A, B \subsetneq$, i.e. Xis the union of two proper disjoint nonempty sets.

Equivalently, X contains no proper nonempty clopen sets.

- Additional condition for a subspace $Y \subset X$: $\operatorname{cl}_Y(A) \cap V = A \cap \operatorname{cl}_Y(B) = \emptyset$.
- Locally connected: A space is locally connected at a point x iff $\forall N_x \ni x$, there exists a $U \subset N_x$ containing x that is connected.
- Retract: A subspace $A \subset X$ is a retract of X iff there exists a continuous map $f: X \longrightarrow A$ such that $f \Big|_{A} = \mathrm{id}_{A}$. Equivalently it is a *left* inverse to the inclusion.
- Uniform Continuity: For $f:(X,d_x)\longrightarrow (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

• Lebesgue number: For (X, d) a compact metric space and $\{U_{\alpha}\} \rightrightarrows X$, there exist $\delta_L > 0$ such that

$$A \subset X$$
, diam $(A) < \delta_L \implies A \subseteq U_\alpha$ for some α .

Paracompact

- Components: Set $x \sim y$ iff there exists a connected set $U \ni x, y$ and take equivalence classes.
- Path Components: Set $x \sim y$ iff there exists a path-connected set $U \ni x, y$ and take equivalence classes.
- Separable: Contains a countable dense subset.
- Limit Point: For $A \subset X$, x is a limit point of A if every punctured neighborhood P_x of x satisfies $P_x \cap A \neq \emptyset$, i.e. every neighborhood of x intersects A in some point other than x itself.

Equivalently, x is a limit point of A iff $x \in \operatorname{cl}_X(A \setminus \{x\})$.

6 Examples

6.1 Common Spaces and Operations

Point-Set:

- Finite discrete sets with the discrete topology
- Subspaces of \mathbb{R} : $(a,b),(a,b],(a,\infty)$, etc.

$$- \{0\} \bigcup \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1} \right\}$$

- **(**)
- The topologist's sine curve
- One-point compactifications
- R^α
- Hawaiian earring
- Cantor set

Non-Hausdorff spaces:

- The cofinite topology on any infinite set.
- $\bullet \mathbb{R}/\mathbb{Q}$
- The line with two origins.

General Spaces:

$$S^n, \mathbb{D}^n, T^n, \mathbb{RP}^n, \mathbb{CP}^n, \mathbb{M}, \mathbb{K}, \Sigma_q, \mathbb{RP}^{\infty}, \mathbb{CP}^{\infty}.$$

"Constructed" Spaces

- Knot complements in S^3
- Covering spaces (hyperbolic geometry)
- Lens spaces
- Matrix groups
- Prism spaces
- Pair of pants
- Seifert surfaces

- Surgery
- Simplicial Complexes
 - Nice minimal example:

Exotic/Pathological Spaces

- \mathbb{HP}^n
- Dunce Cap
- Horned sphere

Operations

- Cartesian product $A \times B$
- Wedge product $A \vee B$
- Connect Sum A # B
- Quotienting A/B
- Puncturing $A \setminus \{a_i\}$
- Smash product
- Join
- Cones
- Suspension
- Loop space
- Identifying a finite number of points

6.2 Alternative Topologies

- Discrete
- Cofinite
- Discrete and Indiscrete
- Uniform

The cofinite topology:

- Non-Hausdorff
- Compact

The discrete topology:

- Discrete iff points are open
- Always Hausdorff
- Compact iff finite
- Totally disconnected
- If the domain, every map is continuous

The indiscrete topology:

- Only open sets are \emptyset, X
- Non-Hausdorff
- If the codomain, every map is continuous
- Compact

7 Theorems

7.1 Point-Set

• Closed subsets of Hausdorff spaces are compact? (check)

- Cantor's intersection theorem?
- Tube lemma
- Properties pushed forward through continuous maps:
 - Compactness?
 - Connectedness (when surjective)
 - Separability
 - Density **only when** f is surjective
 - Not openness
 - Not closedness
- A retract of a Hausdorff/connected/compact space is closed/connected/compact respectively.

Proposition 7.1.

A continuous function on a compact set is uniformly continuous.

Proof.

Take $\left\{B_{\frac{\varepsilon}{2}}(y) \mid y \in Y\right\} \rightrightarrows Y$, pull back to an open cover of X, has Lebesgue number $\delta_L > 0$, then $x' \in B_{\delta_L}(x) \implies f(x), f(x') \in B_{\frac{\varepsilon}{2}}(y)$ for some y.

- Lipschitz continuity implies uniform continuity (take $\delta = \varepsilon/C$)
 - Counterexample to converse: $f(x) = \sqrt{x}$ on [0, 1] has unbounded derivative.
- Extreme Value Theorem: for $f: X \longrightarrow Y$ continuous with X compact and Y ordered in the order topology, there exist points $c, d \in X$ such that $f(x) \in [f(c), f(d)]$ for every x.

Theorem 7.2.

Points are closed in T_1 spaces.

Theorem 7.3.

A metric space X is sequentially compact iff it is complete and totally bounded.

Theorem 7.4.

A metric space is totally bounded iff every sequence has a Cauchy subsequence.

Theorem 7.5.

A metric space is compact iff it is complete and totally bounded.

Theorem 7.6(Baire).

If X is a complete metric space, then the intersection of countably many dense open sets is dense in X.

Theorem 7.7.

A continuous bijective open map is a homeomorphism.

Theorem 7.8.

A closed subset A of a compact set B is compact.

Proof.

- Let $\{A_i\} \rightrightarrows A$ be a covering of A by sets open in A.
- Each $A_i = B_i \cap A$ for some B_i open in B (definition of subspace topology)
- Define $V = \{\dot{B}_i\}$, then $V \rightrightarrows A$ is an open cover.
- Since A is closed, $W := B \setminus A$ is open
- Then $V \bigcup W$ is an open cover of B, and has a finite subcover $\{V_i\}$
- Then $\{V_i \cap A\}$ is a finite open cover of A.

Theorem 7.9.

The continuous image of a compact set is compact.

Theorem 7.10.

A closed subset of a Hausdorff space is compact.

7.2 Algebraic

Todo: Merge the two van Kampen theorems.

Theorem 7.11 (Van Kampen).

The pushout is the northwest colimit of the following diagram

$$A \coprod_{Z} B \longleftarrow A$$

$$\downarrow_{A} \downarrow$$

$$B \longleftarrow_{LB} Z$$

For groups, the pushout is given by the amalgamated free product: if $A = \langle G_A \mid R_A \rangle$, $B = \langle G_B \mid R_B \rangle$, then $A *_Z B = \langle G_A, G_B \mid R_A, R_B, T \rangle$ where T is a set of relations given by $T = \{\iota_A(z)\iota_B(z)^{-1} \mid z \in Z\}$.

Example: $A = \mathbb{Z}/4\mathbb{Z} = \langle x \mid x^4 \rangle$, $B = \mathbb{Z}/6\mathbb{Z} = \langle y \mid x^6 \rangle$, $Z = \mathbb{Z}/2\mathbb{Z} = \langle z \mid z^2 \rangle$. Then we can identify Z as a subgroup of A, B using $\iota_A(z) = x^2$ and $\iota_B(z) = y^3$. So

$$A *_{Z} B = \langle x, y \mid x^{4}, y^{6}, x^{2}y^{-3} \rangle$$

Suppose $X = U_1 \bigcup U_2$ such that $U_1 \cap U_2 \neq \emptyset$ is path connected. Then taking $x_0 \in U := U_1 \cap U_2$ yields a pushout of fundamental groups

$$\pi_1(X; x_0) = \pi_1(U_1; x_0) *_{\pi_1(U; x_0)} \pi_1(U_2; x_0).$$

7 THEOREMS

13

Theorem 7.12 (Van Kampen).

If $X = U \bigcup V$ where $U, V, U \cap V$ are all path-connected then

$$\pi_1(X) = \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: If we have presentations

$$\pi_1(U, w) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, w) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \langle u_{1}, \dots, u_{k}, v_{1}, \dots, v_{m} \rangle$$

$$\mod \langle \alpha_{1}, \dots, \alpha_{l}, \beta_{1}, \dots, \beta_{n}, I(w_{1}) J(w_{1})^{-1}, \dots, I(w_{p}) J(w_{p})^{-1} \rangle$$

$$= \frac{\pi_{1}(U) * \pi_{1}(B)}{\langle \{I(w_{i})J(w_{i})^{-1} \mid 1 \leq i \leq p\} \rangle}$$

where

$$I: \pi_1(U \cap V, w) \to \pi_1(U, w)$$
$$J: \pi_1(U \cap V, w) \to \pi_1(V, w).$$