A Survey on Transfer Learning in NLP

Shannon Phu

Based on A Survey on Transfer Learning in Natural Language Processing

Architectures

- Recurrent Neural Networks
- LSTM
- Encoder-Decoder
- Attention

Recurrent Neural Networks

- processes sequential data by passing the previous state along with each input
- Problem:
 - Issues with carrying information from previous steps in a long sequence
 - vanishing gradient problem: backpropagation causes error to decay as the losses are propagated backwards through all the layers causing little to no adjustments in the network weights
 - exploding gradient problem: errors accumulate as they are propagated backwards and cause network weights to overflow

LSTM

- Long Short Term Memory
- consists of gates and activations which prevent both vanishing and exploding gradients
- layers which can keep long term information or forget anything it doesn't need
- bidirectional LSTM architecture takes advantage of chaining many LSTM units together in both a left-to-right and right-to-left direction

LSTM

input gate output gate

Encoder-Decoder

- sequence to sequence model
- encoder component encodes textual input into a context vector
- decoder component decodes the vector back into the output sequence text

Attention

- encoder remains the same
- decoder on the other hand attends to different parts of the source sentence at each step of the output generation
- hidden state is computed with the context vector, the previous output and the previous hidden state

Types of Transfer Learning

Transductive Transfer Learning

 same task to learn, but the target domain is different from the domain trained on

Inductive Transfer Learning

 different task to learn, but we have labelled data in the target domain

Transfer Learning

- Fine-tuning
 - A pre-trained model's weights will be reused to learn a new task. The original model's parameters at each layer may change
- Feature Embeddings
 - We can learn vector representations for words or sentences and use these as input to a model to learn additional weights for a downstream task.
- Zero-Shot Learning
 - We can also apply a pre-trained model to a brand new task without any further finetuning or training and evaluate its performance as-is on the new task. This means we can apply a model to a problem it was not explicitly trained to do.

Examples of Language Models

ULMFIT

• LSTM model with few extra layers for text classification

BERT

- Bidirectional Encoder Representations from Transformers
- transformer-based architecture which learns bidirectional representations of words
- trained on a masked language task and a next sentence prediction task

RoBERTa

 optimizes on top of BERT by training on longer sequences with more data after finding that BERT was undertrained

ELMo

• bidirectional LSTM model which learns deep representations of natural language

GPT-2

- transformer architecture and can perform zero-shot learning on a variety of downstream tasks
- recommended for generative tasks

Conclusion

- Recent advances in natural language processing have continuously improved the stateof-the-art results in common natural language tasks such as question-and-answer, text summarization, translation, and text classification
- There are popular NLP datasets to compare for SOTA evaluation
- From recurrent neural networks, to LSTMs, to the newer transformer architectures, improvements are being made on models to allow for improved model fine-tuning on downstream tasks