Homework 4 Key

Dr. Purna Gamage

10/7/2020

Question 1: 16 points

Assume there are a total of 20 congressional seats up for election across the Unites States which has a multinomial distribution. We will assume that for every seat there are 3 candidates running, 1 from the Democratic party, 1 from the Republican party and 1 from an Independent party. We will also assume that for every seat there is a 45% chance the Democratic candidate will win, a 45% the Republican candidate will win and a 10% chance the Independent will win.

Let Democrat be denoted as D, Republican as R and Independent as I

Use a simulation with rmultinom to show that $P(D=9,R=9,I=2)\approx 0.0529$. Confirm your results using dmultinom.

Question 2: 18 points

Suppose $X = (X_1, X_2, X_3)$ has a multinomial distribution with size n = 10 and probabilities $p_1 = .3, p_2 = .4, p_3 = .3$. Use a simulation with sample (not rmultinom) to show that $P(X_1 = 3, X_2 = 4, X_3 = 3) \approx 0.0784$. Confirm your results using **dmultinom**.

Question 3: 14 points

Let X_1, \ldots, X_{12} be a random sample of size 12 from the U(0,1) distribution. Explain why $Z = X_1 + X_2 + \cdots + X_{12} - 6$ has an approximate standard normal distribution. You can either prove this theoretically by using CLT, or can use a simulation. You will have to find or look up the variance of a single X_i .

Question 4: 20 points

Problem 4.4 #14 a (8) and b(12) in Chihara/Hesterberg.

14. Let
$$X_1, X_2, \ldots, X_9 \stackrel{i.i.d.}{\sim} N(7, 3^2)$$
 and $Y_1, Y_2, \ldots, Y_{12} \stackrel{i.i.d.}{\sim} N(10, 5^2)$. Let $W = \bar{X} - \bar{Y}$.

- (a) Give the exact sampling distribution of W.
- (b) Simulate the sampling distribution of W in \mathbb{R} and plot your results (adapt code from the previous exercise). Check that the simulated mean and the standard error are close to the theoretical mean and the standard error.
- (c) Use your simulation to find P(W < -1.5). Calculate an exact answer and compare.

Hint:

Corollary A.2 Let $X_1, X_2, ..., X_n$ be independent normal random variables with common mean μ and common variance σ^2 . Let \bar{X} denote the sample mean. Then \bar{X} is normally distributed with mean μ and variance (σ^2/n) .

Theorem A.10 Let X be a normal random variable with mean μ_1 and variance σ_1^2 , and let Y be a normal random variable with mean μ_2 , and variance σ_2^2 . Assume that X and Y are independent. Then $X \pm Y$ is a normal random variable with mean $\mu_1 \pm \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$.

Question 5: 32 points, 8 for each

Problem 4.4 #18 in Chihara/Hesterberg.

- 18. Let $X_1, X_2, \ldots, X_{30} \stackrel{i.i.d.}{\sim} \text{Exp}(1/3)$ and let \bar{X} denote the sample mean.
 - (a) Simulate the sampling distribution of \bar{X} in R.
 - (b) Find the mean and standard error of the sampling distribution and compare to the theoretical results.
 - (c) From your simulation, find $P(\bar{X} \le 3.5)$.
 - (d) Estimate $P(\bar{X} \le 3.5)$ by assuming that the CLT approximation holds. Compare this result with the one in part (c).

Problem 6 (Bonus, 10 Points)

Let X_1, \ldots, X_n be a random sample of size n from a U(0, a) distribution, where a > 0. Find $E(X_1 + X_2 + \cdots + X_n)$ and find the approximate distribution of the sample mean, if n is large.