Chapter 1 Introduction

What is physics?

Physics deals with the behavior and composition of *matter* and its interactions at the most fundamental level.

Curiosity to understand and describe the nature

Key contents:

- * Fundamentals
- * Units
- * Coordinate systems

Classical physics: (1600 - 1900)

Classical Mechanics

Thermodynamics

Electromagnetism

Modern physics: (1900 – now)

Special Relativity

Quantum Mechanics

(General Relativity)

The basic interactions

TABLE 1.1 THE BASIC INTERACTIONS

Interaction	Relative Strength	Range	
Strong	1	10 ⁻¹⁵ m	
Electromagnetic	10^{-2}	Infinite	
Weak	10^{-6}	10^{-17} m	
Gravitational	10^{-38}	Infinite	

The elementary particles

graviton(?)

s = 2

$$s = 0 \quad Higgs \, boson \quad H^0$$

$$fermions \, (half-integer \, spin)$$

$$bosons \, (integer \, spin)$$

$$s = \frac{1}{2}$$

$$quark \quad \begin{array}{c} u, s, t \\ d, c, b \end{array} \qquad \parallel \quad \triangleright \quad hadron \quad \begin{array}{c} baryon \, (q, q, q) \\ meson \, (q, \overline{q}) \end{array}$$

$$s = 1 \quad gauge \, boson \quad W^{\pm}, Z^0 \quad gluons$$

Concepts, Models, and Theories

- Concepts: A concept is an idea or a physical quantity that is used to analyze natural phenomena. (operational definitions)
- Laws and Principles: A law is a mathematical relationship among some physical quantities; a principle is a very general statement about how nature operates.
- Models: A model is a convenient analog or representation of a physical system and can be useful even if it is incomplete or incorrect.
- Theories: A theory uses combined principles, a model, and initial assumptions to deduce specific consequences or laws (always tentative).

Units: Système International

- The value of any physical quantity must be expressed in terms of some standard or unit.
- MKS (SI) unit system: All physical quantities can be expressed in terms of three fundamental quantities: Length (m), mass(kg), and time (s).
- The Gaussian (cgs) unit system is also often used.

Time

Repeated events can be used as a possible time interval standard, such as Earth rotation.

Atomic clocks give very precise time measurements.

In 1967 the standard second was defined to be the time taken by 9 192 631 770 oscillations of the light emitted (at a certain atomic transition) by cesium-133 atom.

(That is, the frequency of that specific electromagnetic wave is defined to be 9 192 631 770 Hz.)

Even more precise clocks are being developed.

Time

Table 1-4

Some Approximate Time Intervals

Measurement	Time Interval in Seconds
Lifetime of the proton (predicted)	3×10^{40}
Age of the universe	5×10^{17}
Age of the pyramid of Cheops	1×10^{11}
Human life expectancy	2×10^{9}
Length of a day	9×10^{4}
Time between human heartbeats	8×10^{-1}
Lifetime of the muon	2×10^{-6}
Shortest lab light pulse	1×10^{-16}
Lifetime of the most unstable particle	1×10^{-23}
The Planck time ^a	1×10^{-43}

This is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Length

Redefining the meter:

In 1792 the unit of length, the meter, was defined as one ten-millionth of the distance from the north pole to the equator.

Later, the meter was defined as the distance between two finely engraved lines near the ends of a standard platinum-iridium bar, the standard meter bar. This bar is placed in the International Bureau of Weights and Measures near Paris, France.

In 1960, the meter was defined to be 1 650 763.73 wavelengths of a particular orange-red light emitted by krypton-86 in a discharge tube that can be set anywhere in the world.

In 1983, the meter was defined as the length of the path traveled by light in a vacuum during the time interval of 1/299 792 458 of a second. The speed of light is then exactly 299 792 458 m/s.

Some examples of lengths

Table 1-3

Some Approximate Lengths

Measurement	Length in Meters		
Distance to the first galaxies formed	2×10^{26}		
Distance to the Andromeda galaxy	2×10^{22}		
Distance to the nearby star Proxima Centauri	4×10^{16}		
Distance to Pluto	6×10^{12}		
Radius of Earth	6×10^{6}		
Height of Mt. Everest	9×10^{3}		
Thickness of this page	1×10^{-4}		
Length of a typical virus	1×10^{-8}		
Radius of a hydrogen atom	5×10^{-11}		
Radius of a proton	1×10^{-15}		

Mass

A platinum-iridium cylinder, kept at the International Bureau of Weights and Measures near Paris, France, has the standard mass of 1 kg. (since 1889)

Another unit of mass is used for atomic mass measurements.

Carbon-12 atom is defined to have a mass of 12 atomic mass units (amu, or simply u).

1 u = $1.660 539 040(20) \times 10^{-27} \text{ kg}$

The definition of the mass unit, the kilogram, looks 'out dated'.

Table 1-5

Some Approximate Masses

Object	Mass in Kilograms
Known universe	1×10^{53}
Our galaxy	2×10^{41}
Sun	2×10^{30}
Moon	7×10^{22}
Asteroid Eros	5×10^{15}
Small mountain	1×10^{12}
Ocean liner	7×10^{7}
Elephant	5×10^{3}
Grape	3×10^{-3}
Speck of dust	7×10^{-10}
Penicillin molecule	5×10^{-17}
Uranium atom	4×10^{-25}
Proton	2×10^{-27}
Electron	9×10^{-31}

ALL CHANGE

Under the revised SI system, every unit will be defined in relation to a constant, whose value will become fixed. Many of the units will be defined in relation to each other: for example, definition of the kilogram requires Planck's constant, and definitions of the second and metre.

Dependency

METRE (m)

Measures: Length Requires: Speed

of light

Definition: Length of the path travelled by light in a vacuum in 1/299,792,458

seconds

SECOND (s)

Measures: Time

That is, to define the Planck constant Requires:

Hyperfine-transition frequency of the

caesium-133 atom

Definition: Duration of 9.192.631.770 cycles of the radiation corresponding to the transition between two hyperfine levels of caesium-133

KILOGRAM (kg)

Measures: Mass

Requires: Planck's

constant

Definition: One

kilogram is Planck's

constant divided by

 $6.626\,070\,15\times10^{-34}\,\text{pm}^2\text{s}$

to be exactly

6.626 070 15 x 10⁻³⁴ kg m² s⁻¹

m² s⁻¹

Change of the SI unit definition:

Voted in General Conference on Weights and Measure in Versailles, France, on Nov 16, 2018; Effective from May 20, 2019. (Nature, Nov 16, 2018; doi: 10.1038/d41586-018-07424-8)

Units: Derived Units

DERIVED UNITS WITH SPECIAL NAMES

Quantity	Derived Unit	Name	
Activity	1 decay/s	Bequerel (Bq)	
Capacitance	C/V	farad (F)	
Charge	A.s	coulomb (C)	
Electric Potential; EMF	J/C	volt (V)	
Energy, work	N.m	joule (J)	
Force	kg.m/s ²	newton (N)	
Frequency	1/s	hertz (Hz)	
Inductance	V.s/A	henry (H)	
Magnetic flux density	Wb/m ²	tesla (T)	
Magnetic flux	V.s	weber (Wb)	
Power	J/s	watt (W)	
Pressure	N/m^2	pascal (Pa)	
Resistance	V/A	ohm (Ω)	

Units: Conversion of Units

$$25 \frac{km}{h} = \left(\frac{25 \ km}{h}\right) \left(\frac{1000 \ m}{1 \ km}\right) \left(\frac{1 \ h}{3600 \ s}\right)$$
$$\left(= 6.9444 \dots \frac{m}{s}\right)$$

$$\approx 6.9 \frac{m}{S}$$

Power of Ten Notation and Significant Figures

Scientific notation uses the power of 10.

Example:

 $3 560 000 000 \text{ m} = 3.56 \text{ x } 10^9 \text{m}.$

Sometimes special names are used to describe very large or very small quantities.

For example,

 $2.35 \times 10^{-9} \text{ s} = 2.35 \text{ nanoseconds (ns)}$

Numerical values obtained from the measurement always have some uncertainty.

Significant figures indicate the precision of data.

Power of Ten Notation and Significant Figures

Table 1-2

Prefixes for SI Units

Factor	Prefix ^a	Symbol	Factor	Prefix^a	Symbol
10 ²⁴	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	10^{-2}	centi-	с
10^{18}	exa-	E	10^{-3}	milli-	m
10^{15}	peta-	P	10^{-6}	micro-	μ
10^{12}	tera-	Т	10^{-9}	nano-	n
10^{9}	giga-	G	10^{-12}	pico-	р
10^{6}	mega-	M	10^{-15}	femto-	f
10^{3}	kilo-	k	10^{-18}	atto-	a
10^{2}	hecto-	h	10^{-21}	zepto-	Z
10^{1}	deka-	da	10^{-24}	yocto-	y

[&]quot;The most frequently used prefixes are shown in bold type.

Dimensional Analysis

- Each derived unit in mechanics can be reduced to factors of the base units mass (M), length (L), and time (T).
- If one ignores the unit system, that is, whether it is SI or British, then the factors are called **dimension**.
- An equation must be dimensionally consistent. It provides a quick check. One can also use that to infer possible relations.
- One example: the period of a pendulum

$$P = k m^x l^y g^z \longrightarrow T = M^x L^y (\frac{L}{T^2})^z \longrightarrow x = 0, y = +\frac{1}{2}, z = -\frac{1}{2}$$

$$P = k \sqrt{\frac{l}{g}}$$

Reference Frames and Coordinate System

- The position of a body has meaning only in relation to a frame of reference, which is something physical, such as a tabletop, a room, a ship, or the earth itself.
- The position is specified with respected to a coordinate system that consists of a set of axes, each of which specifies a direction in space.
- Three commonly employed coordinate systems are shown in the right.

Key contents:

- * Fundamentals
- * Units
- * Coordinate systems

Standard Abbreviations for Units

STANDARD ABBREVIATIONS FOR UNITS

Ampere	A	Inch	in.
Angstrom	Å	Joule	J
Atomic mass unit	u	Kelvin	K
Atmosphere	atm	Kilocalorie	kcal (Cal)
British thermal unit	Btu	kilogram	kg
Coulomb	C	Pound	lb
Degree Celsius	°C	Meter	m
Electronvolt	eV	Minute	min
Degree Fahrenheit	°F	Mole	mol
Farad	F	Newton	N
Foot	ft	Ohm	Ω
Gauss	G	Pascal	Pa
Gram	g	Second	S
Henry	H	Tesla	T
Hour	h	Volt	V
Horsepower	hp	Watt	w
Hertz	Hz	Weber	Wb

The Greek Alphabet

THE GREEK ALPHABET

Alpha	A	α	Iota	I	ι	Rho	P	ρ
Beta	В	β	Kappa	K	κ	Sigma	Σ	σ
Gamma	Γ	γ	Lambda	Λ	λ	Tau	T	τ
Delta	Δ	δ	Mu	M	μ	Upsilon	Y	υ
Epsilon	E	ε	Nu	N	ν	Phi	Φ	φ
Zeta	Z	ζ	Xi	Ξ	ξ	Chi	X	x
Eta	H	η	Omicron	O	o	Psi	Ψ	ψ
Theta	Θ	θ	Pi	П	π	Omega	Ω	ω