- 1. 为最终证明如下的定理: \mathbb{F}_{q^n} 在 \mathbb{F}_q 上的自同构集是一个阶为 n 的循环群,其生成元为自同构 $\sigma_q(\alpha)=\alpha^p$,请依次完成以下四个小问的问题。
 - (a) 证明: Frobenius 映射 $\sigma_q: \alpha \mapsto \alpha^q \not\in \mathbb{F}_{q^n}$ 的 \mathbb{F}_{q^-} 自同构,其中 $\alpha \in \mathbb{F}_{q^n}, q = p^m$,p 为素数。
 - (b) 取 β 是 \mathbb{F}_{q^n} 中的生成元,即 $\mathbb{F}_{q^n} = \{0\} \cup <\beta >$,证明: $\beta, \sigma_q(\beta), \dots, \sigma^{n-1}(\beta)$ 是 β 的共轭根。
 - (c) 证明: $\forall \tau \in G = Aut_{\mathbb{F}_q}\mathbb{F}_{q^n}$,存在 i 使得 $\tau(\beta) = \sigma_q^i(\beta), \ 0 \le i \le n-1$
 - (d) 取定整数 d 使得 d|n,对所有满足条件 $\sigma^d(\alpha) = \alpha, \alpha \in \mathbb{F}_{q^n}$ 的 α ,在正规基底 $[\beta, \sigma(\beta), \sigma^2(\beta), \dots, \sigma^{n-1}(\beta)]$ 下写出元素 α 的坐标: $\alpha = a_0\beta + a_1\sigma(\beta) + a_2\sigma^2(\beta) + \dots + a_{n-1}\sigma^{n-1}(\beta)$,其中 $a_0, a_1, a_2, \dots, a_{n-1} \in \mathbb{F}_q$ 。请确定系数 $a_0, a_1, a_2, \dots, a_{n-1}$ 之间的关系。