Problema 10. Lo primero que observamos es que S es finito. Ahora, si $I \subsetneq S$, entonces

$$\begin{split} & \sum_{J \subsetneq S, I \subseteq J} (-1)^{|J|} = (-1)^{|I|} \left(\sum_{i=0}^{|S|-|I|} \binom{|S|-|I|}{i} (-1)^i \right) - (-1)^{|S|} \\ & = \left((-1)^{|I|} (1-1)^{|S|-|I|} \right) - (-1)^{|S|} = 0 - (-1)^{|S|} = (-1)^{|S|+1} \end{split}$$

Sabemos que,

$$\sum_{I \subset S} \frac{(-1)^{|I|}}{W_I(q)} = 0$$

luego,

$$\frac{(-1)^{|S|+1}}{W(q)} = \sum_{I \subseteq S} \frac{(-1)^{|I|}}{W_I(q)}$$

y tenemos

$$\frac{1}{W(q)} = \sum_{I \subsetneq S} \frac{(-1)^{|I|}}{W_I(q)} (-1)^{|S|+1} = \sum_{I \subsetneq S} \frac{(-1)^{|I|}}{W_I(q)} \sum_{J \subsetneq S, I \subseteq J} (-1)^{|J|}$$

$$= \sum_{J \subsetneq S} (-1)^{|J|} \sum_{I \subseteq J} \frac{(-1)^{|I|}}{W_I(q)} = \sum_{J \subsetneq S} (-1)^{|J|} \frac{q^{l(w_0(J))}}{W_J(q)} = \sum_{J \subsetneq S} \frac{(-1)^{|J|}}{W_J(1/q)}$$

$$= \frac{(-1)^{|S|+1}}{W(1/q)}$$