ી	9
	linton, 2012) 修改 AdaGrad 以在非凸设定下效果更好,改
变梯度积累为指数加权的	的移动均值。OAdaGrad 旨在应用于凸问题时快速收敛。当应
用于非凸函数训练神经网	网络时, 学习轨迹可能穿过了很多不同的结构, 最终到达一
	AdaGrad 根据平方梯度的整个历史收缩学习速率,可能使
	口凸结构前就变得太小了。\$\footnote{\text{q}}\text{RMSProp} 使用指数衰减平均以丢
	其能够在找到凸碗状结构后快速收敛,它就像一个初始化于
开声起过云的历义,使为	实的现在分词的现在分词形式的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人

