In [14]:

```
# Set up environment with correct dependencies
using Pkg
Pkg.activate(".")
Pkg.instantiate()
```

Activating environment at `~/GitHub/MathSys/teaching/MA934/MA934-slid es/Project.toml`

In [15]:

```
using Plots
using LaTeXStrings
pyplot()
# Set default fonts for all plots
fnt = Plots.font("DejaVu Sans", 8.0)
default(titlefont=fnt, guidefont=fnt, tickfont=fnt, legendfont=fnt)
```

MA934

Recursive functions and sorting algorithms

How your choice of algorithm can really make a difference

Iteration vs recursion

- An iterative function is one that loops to repeat some part of the code.
- A recursive function is one that calls itself again to repeat the code.

Recursive functions are a natural framework for implementing divide and conquer algorithms.

Anatomy of recursive functions

Every recursive function consists of:

- one or more recursive cases: inputs for which the function calls itself
- one or more **base cases**: inputs for which the function returns a (usually simple) value.

In [16]:

```
1  function f(n)
2    if n==1
3        return 1
4    else
5        return n*f(n-1)
6    end
7  end
```

Out[16]:

f (generic function with 1 m
ethod)

```
In [17]:
```

```
1 print([f(n) for n in 1:10])
```

```
[1, 2, 6, 24, 120, 720, 504
0, 40320, 362880, 3628800]
```

Recursive function calls incur additional computational overheads.

Overheads: call stack and recursion depth

$$f(4) = 4 * f(3)$$

$$= 4 * (3 * (f(2)))$$

$$= 4 * (3 * (2 * f(1)))$$

$$= 4 * (3 * (2 * (1 * f(0))))$$

$$= 4 * (3 * (2 * (1 * 1)))$$

$$= 4 * (3 * (2 * 1))$$

$$= 4 * (3 * 2)$$

$$= 4 * 6 = 24.$$

- Variables and information associated with each call stored on the call stack until base case is reached.
- Recursion depth: maximum size of the call stack.
- Infinite (or excessive) recursion depth leads to stack overflow.

Example : iterative calculation of the Fibonacci sequence

The Fibonacci numbers are defined by the recursion:

$$F_n = F_{n-1} + F_{n-2}$$

with $F_1 = 0$, $F_2 = 1$.

Obvious approach by iteration:

```
In [18]:
```

```
function Fib1(n)
 1
 2
        if n==1 || n ==2
 3
            return n-1
 4
 5
        a = zeros(Int64,n)
        a[1] = 0; a[2] = 1
 6
 7
        for i in 3:n
8
            a[i] = a[i-1] + a[i-2]
 9
        end
10
        return a[n]
11
   end
12
13
```

In [19]:

```
1 print(Fib1.(1:10))
[0, 1, 1, 2, 3, 5, 8, 13, 2
1, 34]
```

Out[18]:

Fib1 (generic function with 1 method)

Example: recursive calculation of the Fibonacci sequence

This can also by done recursively:

In [20]:

```
function Fib2(n)
if n == 1 || n == 2
return n-1
else
return Fib2(n-1) + Fib2(n-2)
end
end
```

Out[20]:

Fib2 (generic function with 1 method)

In [21]:

```
1 print(Fib2.(1:10))
```

```
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```

Aside: memoization

Memoization is a technique that uses a lookup table to "remember" the values returned by a function for previously evaluated inputs. Avoids repeated evaluations with the same input.

Here is another Fibonacci function that combines memoization with recursion:

In [22]:

```
memo = Dict()
 2
   memo[1] = 0
 3
   memo[2] = 1
 4
 5
   function Fib3(n)
 6
        if !(n in keys(memo))
 7
            memo[n]=Fib3(n-1)+Fib3(n-2)
 8
 9
        return memo[n]
10
   end
11
```

Out[22]:

Fib3 (generic function with 1 method)

In [23]:

```
1 print(Fib3.(1:10))

[0, 1, 1, 2, 3, 5, 8, 13, 2
1, 34]
```

Take home: there are often lots of ways of doing the same thing. Now let's look at something less trivial.

Sorting

Sorting is the task of placing an unordered list of integers in order with as few comparisons as possible.

There are lots of ways of doing this.

Insertion sort - an iterative sort

Computational complexity of insertion sort

Consider sorting an array of length n.

- **Best case**: if input array is already in order? *n* comparisons.
- Worst case: if input array is in reverse order? $\frac{1}{2} n(n+1)$ comparisons. Why? Computational complexity of insertion sort is therefore $\mathcal{O}(n^2)$.

Typical case $\sim n^2$. Can we do better?

Partial sorts

A partial q-sort of a list of numbers is an ordering in which all subsequences with stride q are sorted.

A trivial modification of insertion sort does partial q-sorts

ShellSort - improving on insertion sort

- ShellSort: do a succession of partial q-sorts, with q taken from a pre-specified list, Q.
- Start from a large increment and finish with increment 1, which produces a fully sorted list.
- Performance depends on Q but generally faster than insertion sort.

Example. $Q = \left\{2^i : i = i_{max}, i_{max} - 1, \dots, 2, 1, 0\right\}$ where i_{max} is the largest i with $2^i < \frac{n}{2}$. Typical case $n^{\frac{3}{2}}$ (although worst case still n^2 .).

- Surprising (at first) that ShellSort beats insertion sort since the last pass is a full insertion sort. Why is this?
- A better choice of increments is $Q=\left\{\frac{1}{2}(3^i-1):i=i_{max},i_{max}-1,\ldots,2,1\right\}$. This gives typical case $\sim n^{\frac{5}{4}}$ and worst case $\sim n^{\frac{3}{2}}$.
- General understanding of the computational complexity of ShellSort is an open problem.

Mergesort - a recursive sort

- divide-and-conquer sorting strategy invented by Von Neumann.
- Mergesort interlaces two **sorted** arrays into a larger sorted array.
- Given the interlace() function, mergesort is very simple:

Mergesort: the interlace() function

```
In [24]:
```

```
function interlace(A::Array{Int64,1}, B::Array{Int64,1})
1
2
         if length(A) == 0
 3
            return B
         elseif length(B) == 0
 4
5
            return A
6
         elseif A[1] < B[1]
7
            return vcat([A[1]], interlace(A[2:end], B))
8
9
            return vcat([B[1]], interlace(A, B[2:end]))
10
         end
11
       end
```

Out[24]:

interlace (generic function with 1 method)

```
In [25]:
```

```
1 print(interlace([1,3,5],[2,4,6,8]))
```

```
[1, 2, 3, 4, 5, 6, 8]
```

Complexity of Mergesort

The interlace() function can be shown to be $\mathcal{O}(n)$ where n is the size of the output array. At level k, there are 2^{k-1} interlace() calls of size $\frac{n}{2^{k-1}}$.

Therefore, each level is $\mathcal{O}(n)$. Number of levels, L, satisfies $n=2^L$ so $L=\log_2 n$.

Heuristically, expect

$$F(n) = \mathcal{O}(n \log_2 n)$$

Complexity of Mergesort

We can also write a recursion equation for F(n) based on the function definition:

$$F(n) = 2F(\frac{n}{2}) + n^1$$

with F(1) = 1.

This is the "Master theorem" case 2 so $\mathcal{O}(n \log_2 n)$.

In []:

1

In []:

1