Frühjahr 24 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Sei $M \subset \{x \in \mathbb{R} \mid x > 0\}$ eine nicht-leere Teilmenge der positiven reellen Zahlen. Zeigen Sie, dass die Menge

$$A := \left\{ \frac{1}{x} \mid x \in M \right\}$$

genau dann nach oben beschränkt ist, wenn $\inf(M) > 0$ gilt.

- b) Es sei $f: \mathbb{R} \to \mathbb{R}$ zweimal differenzierbar. Es gelte $f(\frac{1}{n}) = \frac{1}{n}$ für alle $n \in \mathbb{N}$. Zeigen Sie:
 - (i) Es gilt: f'(0) = 1.
 - (ii) Es existiert eine Folge $(x_n)_{n\in\mathbb{N}}$ von Zahlen $x_n > 0$ mit $f'(x_n) = 1$ für alle $n \in \mathbb{N}$ und $\lim_{n\to\infty} x_n = 0$.
 - (iii) Es gilt: f''(0) = 0.

Lösungsvorschlag:

a) " \Longrightarrow : " Sei A nach oben beschränkt durch C > 0. Für alle $x \in M$ gilt

$$x = \frac{1}{\frac{1}{x}} \ge \frac{1}{C},$$

weil $\frac{1}{x} \in A$ ist. Damit ist $\frac{1}{C} > 0$ eine untere Schranke von M. Das Infimum erfüllt nun $\inf(M) \ge \frac{1}{C} > 0$, ist also positiv.

" \Leftarrow : " Ist $\inf(M) > 0$, so ist $\frac{1}{\inf(M)}$ eine wohldefinierte, positive reelle Zahl und eine obere Schranke an A, weil $x \geq \inf(M)$ für alle $x \in M$ gilt, also $\frac{1}{x} \leq \frac{1}{\inf(M)}$ für alle $\frac{1}{x} \in A$ folgt. Damit ist A nach oben (durch $\frac{1}{\inf(M)}$) beschränkt.

- b) (i) Weil f differenzierbar ist, gilt für jede Nullfolge $(x_n)_{n\in\mathbb{N}}$ schon $f'(0) = \lim_{n\to\infty} \frac{f(x_n) f(0)}{x_n}$. Weil f als differenzierbare Funktion auch stetig ist, folgt $f(0) = \lim_{n\to\infty} f(\frac{1}{n}) = \lim_{n\to\infty} \frac{1}{n} = 0$ und für die Nullfolge $(\frac{1}{n})_{n\in\mathbb{N}}$ folgt $f'(0) = \lim_{n\to\infty} \frac{1}{n} = 1$.
 - (ii) Sei $n \in \mathbb{N}$ eine natürliche Zahl, die Funktion f ist stetig auf $\left[\frac{1}{n}, \frac{1}{n-1}\right]$ und differenzierbar auf $\left(\frac{1}{n}, \frac{1}{n-1}\right)$. Nach dem Mittelwertsatz existiert ein $x_n \in \left(\frac{1}{n}, \frac{1}{n-1}\right)$ mit $f'(x_n) = \frac{f\left(\frac{1}{n-1}\right) f\left(\frac{1}{n}\right)}{\frac{1}{n-1} \frac{1}{n}} = \frac{\frac{1}{n-1} \frac{1}{n}}{\frac{1}{n-1} \frac{1}{n}} = 1$. Wegen $x_n > \frac{1}{n} > 0$ sind alle Folgeglieder positiv und wegen $\lim_{n \to \infty} \frac{1}{n} = 0 = \lim_{n \to \infty} \frac{1}{n-1}$ konvergiert die Folge nach dem Sandwichlemma/Schachtelungssatz gegen 0.
 - (iii) Für die Folge aus (ii) gilt wegen $f'(0) = 1 = f'(x_n)$ analog zu (i)

$$f''(0) = \lim_{n \to \infty} \frac{f'(x_n) - f'(0)}{x_n} = \lim_{n \to \infty} 0 = 0.$$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$