Invariantes de los algoritmos

- 19. Solo para este ejercicio, la clase de los grafos densos está formada por todos los grafos con $\Omega(n^2)$ aristas, mientras que la clase de los grafos ralos está formada por todos los grafos con O(n) aristas. Justificar qué algoritmo de camino mínimo conviene usar para cada uno de los siguientes problemas, explicitando su implementación:
 - a. Encontrar un camino mínimo de uno a todos en un grafo ralo (resp. denso) cuyos pesos son todos iguales y no negativos.
 - b. Encontrar un camino mínimo de todos a todos en un grafo ralo (resp. denso) cuyos pesos son todos iguales y no negativos.
 - c. Encontrar un camino mínimo de uno a todos en un grafo ralo (resp. denso) cuyos pesos son no negativos.
 - d. Encontrar un camino mínimo de todos a todos en un grafo ralo (resp. denso) cuyos pesos son no negativos.
 - e. Determinar si un grafo ralo (resp. denso) tiene ciclos de peso negativo; no suponer que el grafo es conexo.
 - f. Encontrar un recorrido mínimo de uno a todos en un grafo ralo (resp. denso).

	g. Enco	ntrar u	ın rec	orrido	míni	mo de	todo	s a too	los en	un g	rafo ra	alo (re	esp. de	enso).				
	Disk	ta.	→ (1 1/2	١ .	ol v	· la	w (w)(m	+46	lga in)						
	J.	tra		Ĵ	, ,		1	. 1-1	01	e l								
			v	ector		Colo	se jk i a	(,000	#: bc	nacc	nesp							
	BI	-5 -	→ () (u	+w													
	BF	-5 -	· 0	lum)													
	FN	-9	0	(N ₃)														
	50	tig.					1											
		msø	\ - >	O(n	m ·	0	u)											
		. 1		_				_								_		
(6) Pro	blema		Graf	,	Pe	5 05	5	guo	peso	M	goriti BFS	uo	\mathcal{L}	oli	ged		
	5	55P		Ralo)	=			7/	0		BFS	,		Oli	^)		
				Dens	<u></u>	=			7, (0		BFS	5/		Ol	n ²)	<i>J</i> . 1	
												Dy25	tra		0 (n	2) 🚄	tibo h	-OL
												0						
	10	75P		01		_		7.	0			BF E			Olu	2\		
	74			Rolo					0	<u> </u>								
				Den	50			-7		(U	I/Da	ulia/	OFE) (0(N)	bo heop	
											Diy	estray	BFE Johson	($O(n^3)$)->F	bo hep	,

						a fibo heab
	565P	Rolo	<i>≠</i>	%0	Divestro	Olu lagu) . Cala de
		Denso	#	7/0	Divestra	O(n2) = fiko vedor
					8	
	APSP	Rolo	#	7,0	Dijkstra	O(n2lagn) Scob
		Deuso	#	7,0	FW/Danting	O(n²logn) scolo
					Digestra/Johson	O(n3)-Tbohep
					0	,
	Detector ciclos	Rolo	#	2	BF	0 (n²)
		Denso	<i>f</i>	72	BF/FW	O(N3)
					NO Coundes	
					Soluson XQ	
					No Coundes Sohnson XQ usa GF para detectar ciclos	
	566P	Roto	#	7	0F	O(v2)
		Deus	#	7	BF	$O(n_3)$
		2000	/			
	APSP	Rob	#	Z	Shara	Olichan
	/// 5/	Senso	<i>‡</i>	2	Johnson FW/Johnson/Dontzig	O(143)
		1200.50		2	W SMary Concide	