

MÉTODO DE ELGAMAL

ALAN REYES-FIGUEROA CRIPTOGRAFÍA Y CIFRADO DE INFORMACIÓN

(AULA 19) 26.OCTUBRE.2021

Recordemos que un sistema de clave pública es una tripla (G, E, D), donde

- G: es un algoritmo aleatorizado. Emite un par de claves (**pk**, **sk**).
- $E(\mathbf{pk}, \mathbf{m})$ es un algoritmo aleatorizado que toma $\mathbf{m} \in \mathcal{M}$ y produce $\mathbf{c} \in \mathcal{C}$
- $D(\mathbf{sk}, \mathbf{c})$ es un algoritmo determinista que toma $\mathbf{c} \in \mathcal{C}$ y produce $\mathbf{m} \in \mathcal{M}$.

Esquema general de un sistema de clave pública.

- Intercambio de claves (web, HTTPS, ...)
- Encripción en ambientes no interactivos:
 - Envío de Email.
 - Encripción de archivos.

- Intercambio de claves (web, HTTPS, ...)
- Encripción en ambientes no interactivos:
 - Envío de Email.
 - Encripción de archivos.

- Intercambio de claves (web, HTTPS, ...)
- Encripción en ambientes no interactivos:
 - Envío de Email,
 - Encripción de archivos,
 - Depósito de llaves (key escrow), para decriptar sin la clave de Bob.

- Intercambio de claves (web, HTTPS, ...)
- Encripción en ambientes no interactivos:
 - Envío de Email,
 - Encripción de archivos,
 - Depósito de llaves (key escrow), para decriptar sin la clave de Bob.

Es un sistema de clave pública, construido con base en el protocolo de intercambio de DIFFIE-HELLMAN.

Puede ser utilizado tanto para generar firmas digitales como para cifrar o descifrar.

Fue creado por Taher ElGamal en 1984 (estudiante de Martin Hellman).

La seguridad del algoritmo se basa en la suposición que la función utilizada es de un solo sentido debido a la dificultad de calcular un logaritmo discreto.

- Protocols GPG (GnuPG, GNU Private Guard).
- Sistemas recientes de PGP (*Pretty Good Privacy*).
- Firmas digitales.

Recordemos el esquema de intercambio de DIFFIE-HELLMAN:

- Elegimos un grupo cíclico G de orden n, por ejemplo $G = (\mathbb{Z}/p\mathbb{Z})^* = U(p)$.
- Elegimos un generador g en G, esto es $G = \{1, g, \mathbf{g}^2, \mathbf{g}^3, \dots, \mathbf{g}^{n-2}, \mathbf{g}^{n-1}\}$.
- Alice y Bob eligen claves aleatorias $\mathbf{a}, \mathbf{b} \in \{1, 2, \dots, n-1\}$.

El cifrado ElGamal funciona de manera similar a Diffie-Hellman:

- Elegimos un grupo cíclico G de orden n, por ejemplo $G = (\mathbb{Z}/p\mathbb{Z})^* = U(p)$.
- Elegimos un generador **g** en *G*, esto es $G = \{1, g, g^2, g^3, \dots, g^{n-2}, g^{n-1}\}$.
- Alice y Bob eligen claves aleatorias $\mathbf{a}, \mathbf{b} \in \{1, 2, \dots, n-1\}$.

Alice

choose random **a** in {1,...,n}

$$A = g^a$$

se trata a $A = \mathbf{g}^{\mathbf{a}}$ como una clave pública.

Bob

choose random **b** in {1,...,n}

$$B = g^b$$

Bob calcula $\mathbf{g}^{\mathbf{a}\mathbf{b}} = \mathbf{A}^{\mathbf{b}}$, y deriva una clave simétrica \mathbf{k} a partir de ello,

Bob envía $\mathbf{c} = (B, E(\mathbf{k}, \mathbf{m}))$, donde $B = \mathbf{g}^{\mathbf{b}}$ y $E(\mathbf{k}, \mathbf{m})$ es el mensaje encriptado con un cifrado simétrico.

Luego, Alice calcula $\mathbf{g}^{ab} = B^a$, deriva \mathbf{k} y decripta el mensaje $\mathbf{m} = D(\mathbf{k}, E(\mathbf{k}, \mathbf{m}))$.

Más concretamente, el sistema de encripción del ElGamal consiste de tres componentes:

- G es un grupo finito cíclico de orden n (e.g. G = U(p)),
- (E_s, D_s) un cifrado simétrico, sobre el espacio $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, (e.g. AES, DES, ...)
- $H: G \times G \to \mathcal{K}$, una función hash. (e.g. SHA-256, se deben concatenar las dos entradas).

Construimos un esquema de cifrado de clave pública (G, E, D), como sigue:

- G el generador de claves:
 - Elegimos un generador aleatorio $\mathbf{g} \in$, y un valor aleatorio $\mathbf{a} \in \mathbb{Z}/n\mathbb{Z}$.
 - Definimos las claves secreta y pública, como

$$\mathbf{sk} = \mathbf{a}, \qquad \mathbf{pk} = (\mathbf{g}, \mathbf{h}), \text{ con } \mathbf{h} = \mathbf{g}^{\mathbf{a}}.$$

- G el generador de claves:
 - Elegimos un generador aleatorio $\mathbf{g} \in$, y un valor aleatorio $\mathbf{a} \in \mathbb{Z}/n\mathbb{Z}$.
 - Definimos las claves secreta y pública, como

$$\mathbf{sk} = \mathbf{a}, \qquad \mathbf{pk} = (\mathbf{g}, \mathbf{h}), \text{ con } \mathbf{h} = \mathbf{g}^{\mathbf{a}}.$$

• Las funciones de encripción E y decripción D:

$$\begin{split} \underline{\textbf{E(pk=(g,h), m)}}: \\ & b \overset{\mathbb{R}}{\leftarrow} Z_n, \ u \overset{}{\leftarrow} g^b, \ v \overset{}{\leftarrow} h^b \\ & k \overset{}{\leftarrow} H(u,v), \ c \overset{}{\leftarrow} E_s(k,m) \\ & \text{output } (u,c) \end{split}$$

$$\begin{array}{c} \underline{D(\ sk=a,(u,c)\)}:\\ \\ v\longleftarrow u^a\\ \\ k\longleftarrow H(u,v)\,,\ m\longleftarrow D_s(k,c)\\ \\ output\ m \end{array}$$

En figuras:

Desempeño:

$$\begin{array}{c|c} \underline{E(\ pk=(g,h),\ m)}: \\ b \leftarrow Z_n,\ u \leftarrow g^b,\ v \leftarrow h^b \end{array} \qquad \begin{array}{c|c} \underline{D(\ sk=a,(u,c)\)}: \\ v \leftarrow u^a \end{array}$$

- Encripción: 2 esponentes (base fija)
 - Podemos precalcular $(\mathbf{h}^{(2^i)}, \mathbf{g}^{(2^i)})$, $i = 1, 2, \dots, \log_2 n$.
 - Esto gana cerca de 3x velocidad (o más).
- Decripción: 1 exponente (base variable).

