

Otimização do Preparo de Pipocas: Análise dos Fatores Influentes no Estouro de Grãos

Luiz Felipe de Oliveira Enzo Putton Felipe Camilo Felipe Dosso

Introdução

O objetivo deste experimento é aplicar conceitos teóricos de planejamento de experimentos para analisar a eficácia de diferentes métodos de preparo de pipocas. Buscamos identificar como diversos fatores influenciam a quantidade de pipocas não estouradas, com o intuito de otimizar o processo de preparo e reduzir o desperdício.

um experimento fatorial 2^k com bloco completo e balanceado, onde k representa o número de fatores estudados. No nosso caso, temos cinco fatores: tipo de pipoca (normal ou premium), quantidade de óleo (com ou sem), intensidade da chama (baixa ou média), mexer durante o cozimento (sim ou não), e blocos (dia 1 e dia 2). Cada fator possui dois níveis, resultando em 32 combinações de tratamentos. A variável resposta é a quantidade de piruás, medida através do logaritmo do peso dos grãos não estourados. Após cada teste, contamos manualmente os piruás e medimos seu peso. Este procedimento foi repetido duas vezes para cada combinação de tratamento, assegurando a confiabilidade dos dados coletados.

Materias e Modelo

Para conduzir o experimento, utilizamos uma quantidade fixa de 50g de milho de pipoca para cada teste, controlando o tempo de cozimento ao desligar o fogo após quatro segundos sem que nenhuma pipoca estourasse. Mantivemos o tipo de óleo constante em todos os testes para evitar variações não controladas. Após cada sessão de cozimento, contamos manualmente o número de pipocas que não estouraram e medimos seu peso. Adicionalmente, a panela foi lavada após cada experimento para garantir condições de limpeza e resfriamento adequadas.

Resultados

Inicialmente, foi realizada a análise descritiva dos dados utilizando gráficos que representam a quantidade de piruás por níveis de cada fator. Os gráficos descritivos mostram a variação da quantidade de piruás em relação aos fatores Tipo, Óleo, Fogo e Mexer.

Gráficos descritivos dos fatores

Para melhorar a normalidade dos dados e a homocedasticidade dos resíduos, foi realizada uma transformação logarítmica na variável resposta. Esta transformação ajuda a estabilizar a variância e a tornar os dados mais próximos de uma distribuição normal, o que é uma suposição importante para a ANOVA.

Em seguida, foi conduzido um teste ANOVA para identificar quais fatores e interações são significativos, bem como para verificar se há interação entre os fatores e os blocos experimentais. Apenas os fatores significativos foram mantidos na análise subsequente.

Como foram identificadas interações significativas entre alguns fatores, foi realizada uma ANOVA excluindo o fator Tipo e as interações não significativas. As médias dos níveis de cada fator foram plotadas e testadas quanto a diferenças significativas utilizando o teste de Tukey para todas as combinações dos níveis dos outros fatores.

Tabela de Análise de Variância

Fonte de Variaçã	o GL S	ioma dos Quadrados	Média dos Quadrados	Valor F	Pr(>F)
Óleo	1	2.8467	2.8467	19.7905	0.000184 ***
Fogo	1	0.7560	0.7560	5.2560	0.031350 *
Mexer	1	4.8769	4.8769	33.9050	6.213e-06 ***
Replicação	1	0.0939	0.0939	0.6528	0.427390
Óleo:Fogo	1	0.3028	0.3028	2.1050	0.160324
Óleo:Mexer	1	1.2274	1.2274	8.5331	0.007684 **
Fogo:Mexer	1	0.1038	0.1038	0.7219	0.404295
Óleo:Fogo:Mexer	1	0.6742	0.6742	4.6870	0.041013 *
Resíduos	23	3.3083	0.1438		

Gráficos do teste de Tukey

Gráficos de interação

Por fim, a análise dos resíduos foi realizada através de diversos gráficos: QQ plot, resíduos por ordem de coleta de dados, resíduos por valores ajustados e resíduos por cada um dos fatores.

Análise de resíduos

Conclusão

A partir da ANOVA, identificamos que a presença de óleo, a intensidade do fogo e o ato de mexer a pipoca são fatores altamente significativos.

Os gráficos de interação mostraram que a presença de óleo reduz a quantidade de piruás de maneira mais acentuada quando combinada com mexer a pipoca e fogo baixo.

Os testes de Tukey confirmaram que as combinações de níveis de óleo e mexer a pipoca têm um efeito significativo na quantidade de piruás, especialmente quando o fogo é alto.

Em resumo, para obter pipoca com menos piruás, recomenda-se usar óleo e mexer os grãos durante o cozimento, especialmente em fogo alto.