Forma Jordan Come Colombar of Marine A, A' \(\mathbb{A}_n(1K) \) sunt echivalente ANA' \(> \) JCEGL(M, IK) aî A'= C'AC ~ " este o relatie de echivalenta". (End(V), +, ·) \simeq (Mon(IK), +, ·) i yomorfism de inde. $\mathcal{R} = \{e_{j,\cdots}, e_{n}\}$ reper $\hat{i}_{n} \vee \int_{\mathcal{A}} A_{-}(\alpha_{ji})_{j,i=1,\overline{n}} matricea$ associata lui $f \in End(V)$ in raport ou \mathcal{R} . $\forall A \in \mathcal{M}_{m}(\mathbb{C})$, $\exists C \in GL(m, \mathbb{C})$ ai A' = C'AC este a) diagonala (SAU) $\forall f \in End(V)$, $\exists un reper R in Vai matricea assciatà lui <math>f$ in raport su R este a) diagonala b), aproape diagonala $J_n(x) = (x)$ In. matrice Jordan de ord no matrice $\mathcal{J} = \left(\frac{\partial p_1(\lambda_1)}{\partial p_{\mathcal{T}}(\lambda_1)} \right), \quad p_1 + \dots + p_{\mathcal{T}} = m.$

Scarial cu Carriscaririe

Jeorema Y f∈ End(4), ∃ un reper in V ai matrice fordan Frt (at), P1+... + Pt = m = dim V (SAU) Y AE Mon (C), I CE GL(M, C) ai A'= C'AC este o matrice fordan J. Icrierea blowilor Jordan pe diagonala este unica, modulo permutarea blodurelor Gordan pe PASI

f∈ End(Y) aî ∃m∈/N*aî fo...of = f=0. i.e. endomorfism nilpotent. Prop. I un reper ai matricea assciatà lui f este matricea Gordan. $J = (J_{P_1}(0), J_{P_2}(0), J_{P_2}(0), \text{ unde } p_1 + ... + p_k = M.$ $m_1 = mr.$ blocurilor Jordan de ord 1 $m_2 = -1 - 2$ $m_{R} = -1 - 1$ $1 \cdot m_{1} + 2 \cdot m_{2} + \dots + R \cdot m_{R} = M_{1}$ $m_{i} = rg(A^{i-1}) - 2rg(A^{i}) + rg(A^{i+1}), \forall i = \overline{1,2}$ A matricea arc. lui f. in rap.cu un

Aplicative

$$f \in End(\mathbb{R}^{4})$$
 $f(\mathbb{R}^{4} \longrightarrow \mathbb{R}^{4})$
 $f(\mathbb{R}^{4})$
 $f(\mathbb{R$