1

CH: CHEMICAL ENGINEERING

EE25BTECH11042 - Nipun Dasari

c) $3\hat{i} + 4\hat{j}$

c) rank of A<n

d) A is an identity matrix

c) 1

3) The system of linear equations Ax = 0, where textbfA is an nxn matrix, has a non-trivial solution

4) A dehumidifier (shown below) is used to completely remove water vapour from air

Dehumidifier

Water

d) $3\hat{i} + 4\hat{j}$

d) $\sqrt{2}$

(GATE CH 2009)

(GATE CH 2009)

(GATE CH 2009)

1) The direction of largest increase of the function $xy^3 - x^2$ the point (1, 1) is -

b) $3\hat{i} + 4\hat{j}$

b) $1/\sqrt{2}$

2) The modulus of the complex number is $(1+i)/\sqrt{2}$

Wet air

a) $3\hat{i} + 4\hat{j}$

a) 1/2

ONLY if-

a) rank of A>n

b) rank of A=n

		Fig. 1		
Which ONE of	the following statemen	nts is TRUE		
a) Water is the C	ONLY tie component			
b) Air is the ON	LY tie component			
c) BOTH water a	and air are tie compor	nents		
d) There are NO	tie components			
tank reactor (CS	TR) The feed is pure		is carried out in a continu stream contains unconve	
a) 1	b) 2	c) 3	d) 4	
			(GATE	CH 2009)

(GATE CH 2009)

in a closed syst			isothermally to pressure P_2 (> P_1) internal energy (U) and Gibbs free
a) $U_1 = U_2$, G_1 ; b) $U_1 = U_2$, G_1 ; c		c) $U_1 \ U_2, G_1 =$ d) $U_1 \ U_2, G_1 =$	
	coulent flow conditions, the relocity (V) of the fluid a	-	(GATE CH 2009) op across a packed bed varies with
a) V^{-1}	b) V	c) $V^{3/2}$	d) V^2
8) For a mixing to number (<i>Re</i>) as	ank operating in the lan	ninar regime, the power	(GATE CH 2009) number varies with the Reynolds
a) $Re^{\frac{-1}{2}}$	b) $Re^{\frac{1}{2}}$	c) Re	d) Re^-1
a) uniform temp b) negligible con c) significant the d) significant ten 10) The Prandtl nur a) thermal diffus b) momentum d c) conductive re	sient convective cooling of the erature throughout the objection at surface of the ermal resistance within the imperature gradient within the inher of a fluid is the rational sivity to momentum diffurity in the influence to convective resisivity to kinematic viscos	oject object ne object ne object o of sivity sistance	(GATE CH 2009)
_	the penetration theory of ient (D) of the diffusing		(GATE CH 2009) transfer coefficient (k) varies with
a) D	b) $D^{\frac{-1}{2}}$	c) $D^{rac{1}{2}}$	d) $D^{rac{3}{2}}$
otherwise identi a) The operating b) The operating c) The concentra	e liquid to gas flow rate cal conditions. Which Og line shifts towards the g line shifts away from thation of the absorbed specialine does not shift	NE of the following state equilibrium curve ne equilibrium curve	

13) For a homogeneous reaction system, where

 C_j is the concentration of j at time t N_j is the number of moles of j at time t V is the reaction volume at time t 1 is the reaction time The rate of reaction for species j is defined as

a) $\frac{dC_j}{dt}$	b) - $\frac{dC_j}{dt}$	c) $\frac{1}{V}\frac{dN_j}{dt}$	d) $-\frac{1}{V}\frac{dN_j}{dt}$	
14) The half-life of a) 0.0231 b) 0.602 c) 1.386 d) 2.0	a first order liquid phase	e reaction is 30 seconds. Th	(GATE CHen the rate constant, in m	
15) For a solid catal	yzed reaction, the Thiel	e modulus is proportional to	(GATE CH	I 2009)
a) $\sqrt{\frac{intrinsic:reaction}{diffusion:rai}}$ b) $\sqrt{\frac{diffusion:rai}{intrinsic:reaction}}$	arate e e arate	c) intrinsic:reactionrate diffusion:rate diffusion:rate intrinsic:reactionrate		
process (<i>T</i> > 180 a) Type J thermo b) Thermistor c) Resistance ter	00°C) ?	used for the measurement	(GATE CH of temperature in a com	
d) Pyrometer 17) The roots of the a) real, negative b) real, negative c) real, positive d) complex conju	and equal and unequal and unequal	of an underdamped second	(GATE CE order system are	I 2009)
	-	is Rs. 10.0 lakhs; the inters. The annualised cost of p		,
a) 1.8	b) 2.6	c) 3.5	d) 4.3	
19) In petroleum refi	ning operations, the proc	ess used for converting para	(GATE CH ffins and naphthenes to are	,
a) catalytic reforb) catalytic crack	· ·	c) hydrocrackingd) alkylation		
20) The active comp	onent of catalysts used	in steam reforming of meth	(GATE CHane to produce synthesis	
a) Nickel	b) Iron	c) Platinum	d) Palladium	
21) The value of the	: limit		(GATE CH	I 2009)

 $\lim_{x \to \pi/2} \frac{\cos x}{(x - \pi/2)^3}$