Transformation et équilibre chimique

Son	nmaire					
I Avancement d'une réaction	3					
I/A Présentation						
I/B Coefficients steechiométriques algébriques						
II États finaux d'un système chimique .						
II/A Types d'avancements						
II/B Réaction totale						
$\mathrm{II/C}$ Réaction limitée						
III Évolution d'un système chimique						
$\mathrm{III/A}$ Quotient réactionnel et sens d'évolutio	n					
$\rm III/B~$ Cas des ruptures d'équilibre						
$\mathrm{III/C}$ Résumé						
% Capacite	és exigibles					
Décrire qualitativement et quantitative-	☐ Identifier un état d'équilibre chimique.					
ment un système chimique dans l'état initial ou dans un état d'avancement quelconque.	☐ Déterminer une constante d'équilibre.					
Exprimer l'activité d'une espèce chimique pure ou dans un mélange dans le cas de	Prévoir le sens de l'évolution spontanée d'un système chimique.					
solutions aqueuses très diluées ou de mé- langes de gaz parfaits avec référence à l'état standard.	Déterminer la composition chimique du système dans l'état final, en distinguant les cas d'équilibre chimique ou de transformation					
○ Exprimer le quotient réactionnel.	totale, pour une transformation modélisée par une réaction chimique unique.					

I | Avancement d'une réaction

I/A Présentation

On considère la réaction de combustion du méthane :

$$CH_{4(g)} + 2 O_{2(g)} = CO_{2(g)} + 2 H_2 O_{(g)}$$

Lorsqu'une molécule de méthane réagit, deux molécules de dioxygène sont consommées et il se créé une molécule de dioxyde de carbone et une d'eau. Cette réaction part de conditions initiales et avance dans le temps, jusqu'à ce qu'elle s'arrête. Pour rendre compte de cette évolution, on introduit une grandeur : l'avancement molaire.

Définition TM2.1: Avancement molaire

La grandeur ξ est appelée avancement molaire de la réaction, et elle permet de suivre l'évolution des quantités de matière des réactifs et des produis au cours d'une transformation chimique.

 ξ est homogène à une quantité de matière et s'exprime en mol.

Ainsi, quand ξ (se prononce « ksi ») moles de CH₄ réagissent, 2ξ moles de O₂ sont consommées pour augmenter de ξ moles la quantité de matière de CO₂ et de 2ξ moles celle de l'eau.

On détermine cet avancement grâce à un tableau d'avancement :

Définition TM2.2 : Tableau d'avancement

Le **tableau d'avancement** est l'outil central pour étudier une réaction chimique. Il est composé de 3 ou 4 lignes, comprenant

- 1) L'équation bilan avec les états, équilibrée grâce aux nombres stœchiométriques;
- 2) L'état initial de la réaction avec les quantités de matière des éléments;
- 3) L'état en cours de réaction avec l'évolution des n déduite des nombres stœchiométriques;
- 4) L'état final de la réaction avec les quantités de matières à l'instant final.

Équa	ation	$aA_{(\text{\'etat})}$	$-bB_{(ext{\'etat})}$ -	\rightarrow $cC_{(\text{\'etat})}$ -	$+$ $dD_{(\text{\'etat})}$
État	$Avance^{\underline{t}}$	$n_{ m A}(t)$	$n_{ m B}(t)$	$n_{ m C}(t)$	$n_{\mathrm{D}}(t)$
Initial	$\xi = 0$	$n_{ m A,0}$	$n_{ m B,0}$	$n_{\mathrm{C},0}$	$n_{\mathrm{D},0}$
Interm.	ξ	$n_{\rm A,0} - a\xi$	$n_{\mathrm{B},0} - b\xi$	$n_{\mathrm{C},0} + c\xi$	$n_{\mathrm{D},0} + d\xi$
Final	ξ_f	$n_{\rm A,0} - a\xi_f$	$n_{\mathrm{B},0} - b\xi_f$	$n_{\mathrm{C},0} + c\xi_f$	$n_{\mathrm{D},0} + d\xi_f$

♥ Attention TM2.1 : Tableau avancement et gaz

On remarquera que pour déterminer l'avancement d'une réaction avec des gaz, il faut avoir à tout instant la **quantité de matière totale de gaz** pour calculer les pressions partielles nécessaires au calcul de l'activité de chacun des gaz : c'est pourquoi il est d'usage d'**ajouter une colonne** $n_{\text{tot,gaz}}$ dans les tableaux d'avancement.

Remplissez le tableau suivant pour la combustion du méthane :

Équa	tion	$\mathrm{CH}_{4(\mathrm{g})}$ -	⊢ 2O _{2(g)} –	\rightarrow $CO_{2(g)}$ -	+ 2H ₂ O _(g)	$n_{ m tot,\ gaz}$
Initial	$\xi = 0$	$n_{\mathrm{CH_4,0}}$	$n_{\mathrm{O}_2,0}$	$n_{\mathrm{CO}_2,0}$	$n_{ m H_2O,0}$	$\sum_{\mathrm{gaz}} n_{\mathrm{X},0}$
Interm.	ξ	$n_{\mathrm{CH_4,0}} - \xi$	$n_{\rm O_2,0} - 2\xi$	$n_{\mathrm{CO}_2,0} + \xi$	$n_{\rm H_2O,0} + 2\xi$	$\sum_{\mathrm{gaz}} n_{\mathrm{X}}(t)$

Quand on travaille à volume fixe, il peut être utile de travailler directement avec les concentrations, donc avec $c_i = n_i/V$ avec V le volume. On peut donc définir l'avancement volumique :

Définition TM2.3 : Avancement volumique

On définit x l'avancement volumique de la réaction, tel que

$$x = \frac{\xi}{V}$$

Unités

x est homogène à une concentration et s'exprime en mol·L⁻¹.

I/B Coefficients stœchiométriques algébriques

Comme il est maintenant d'usage de le faire, on peut généraliser l'écriture d'une réaction en faisant passer tous les termes d'un même côté. Par exemple, pour la combustion du méthane :

$$0 = CO_{2(g)} + 2 H_2O_{(g)} - CH_{4(g)} - 2 O_{2(g)}$$

Ceci fait apparaître les **coefficients stœchiométriques algébriques**, que l'on note ν_{X_i} (se lit « nu »). Une équation bilan peut donc se mettre sous la forme générale

$$\sum_{i} \nu_{\mathbf{X}_{i}} \mathbf{X}_{i} = 0$$

avec X_i les espèces intervenant dans la réaction. On a donc $\nu_{X_i} > 0$ si X_i est un produit, et $\nu_{X_i} < 0$ si c'est un réactif. Dans l'exemple de la combustion du méthane, on a

$$\nu_{\text{CH}_4} = -1 \qquad \text{et} \qquad \nu_{\text{O}_2} = -2 \\
\nu_{\text{CO}_2} = 1 \qquad \text{et} \qquad \nu_{\text{H}_{20}} = 2$$

On peut donc généraliser la quantité de matière d'un composant directement avec les coefficients algébriques :

$$n_{\mathbf{X}_i}(t) = n_{\mathbf{X}_i,0} + \nu_{\mathbf{X}_i} \xi(t)$$

avec $n_{X_i}(t)$ la quantité de matière de l'élément X_i , $n_{X_i,0}$ sa quantité initiale et ξ l'avancement.

Transition

On peut trouver différents états finaux selon les propriétés des réactions et la composition initiale de celles-ci. Introduisons un peu de vocabulaire pour distinguer ces cas et les étudier.

II | États finaux d'un système chimique

II/A Types d'avancements

lacksquare Définition ${ m TM2.4:Types~d'avance^{\underline{t}}}$ et de réactions

Avancements

- \diamond À l'état final, **quel qu'il soit**, les quantités des matières sont données par l'**avancement final** : $\xi(t \to \infty) = \xi_f$.
- \diamond L'avancement <u>maximal</u> ξ_{max} est l'avancement obtenu quand au moins un des réactifs est épuisé : $\exists \mathbf{R}_i : n_{\mathbf{R}_i,f} = 0$.
- ♦ S'il n'est pas maximal, alors l'avancement final est l'avancement à l'équilibre, où coexistent tous les constituants.

Réactions

- \diamond Quand $\xi_f = \xi_{\text{max}}$, la réaction et alors **totale**. Une réaction totale se note avec un signe \rightarrow .
- ♦ Sinon, la réaction est **limitée**, et on a $\xi_f = \xi_{eq}$ (attention aux ruptures d'équilibre, voir III/B). Normalement, une réaction limitée ne s'écrit **pas** avec →.

II/B Réaction totale

Reprenons l'exemple initial, et déterminons l'avancement final en supposant que l'on part avec

$$n_{\text{CH}_4,0} = 2 \,\text{mol}$$
 et $n_{\text{O}_2,0} = 3 \,\text{mol}$

et que la réaction est totale.

Outils TM2.1: Réactif limitant

Pour trouver quel réactif et limitant, on cherche quelle expression entre $n_{\text{CH}_4,0} - \xi_{\text{max}}$ et $n_{\text{O}_2,0} - 2\xi_{\text{max}}$ donne le plus petit ξ_{max} .

- \diamond si CH₄ est limitant, alors $\xi_{\text{max}} = n_{\text{CH}_4,0} = 2 \,\text{mol}$;
- \diamond si O_2 est limitant, alors $\xi_{\text{max}} = \frac{n_{O_2}, 0}{2} = 1,5 \,\text{mol}.$

C'est donc le dioxygène qui est limitant, et l'avancement maximal est de 1,5 mol.

On complète alors le tableau d'avancement :

Équation	n	$\mathrm{CH}_{4(\mathrm{g})}$ -	$-2O_{2(g)}$ -	\rightarrow $CO_{2(g)}$ -	+ 2H ₂ O _(g)	$n_{ m tot,\ gaz}$
Initial (mol)	$\xi = 0$	2	3	0	0	5
Interm. (mol)	ξ	$2-\xi$	$3-2\xi$	$0+\xi$	$0 + 2\xi$	5
Final (mol)	$\xi_{ m max}$	0,5	0	1,5	3	5

Il existe des situations où **tous les réactifs** sont limitants, c'est-à-dire que l'avancement maximal met à 0 toutes les quantités de matière dans l'état final. On dit alors que les réactifs ont été introduits en **proportions stœchiométriques**:

Définition TM2.5: Proportions stœchiométriques

On dit que les réactifs ont été introduits dans des proportions stœchiométriques si les **quantités** de matière de tous les réactifs s'annulaient <u>en cas d'avancement était maximal</u>.

Démonstration TM2.1:

On écrit les quantités de matière dans ce cas :

$$\begin{cases} n_{\text{A},0} - a\xi_{\text{max}} = 0\\ n_{\text{B},0} - b\xi_{\text{max}} = 0 \end{cases}$$

Propriété TM2.1 : Proportions stœchiométriques

Si c'est le cas, alors les réactifs vérifient

$$\boxed{\frac{n_0(\mathbf{A})}{a} = \frac{n_0(\mathbf{B})}{b} = \xi_{\text{max}}} \Leftrightarrow n_0(\mathbf{B}) = \frac{b}{a}\mathbf{A}$$

Outils TM2.2: Réactions totales

Pour répondre à un exercice avec une réaction totale :

- 1) Dresser le tableau d'avancement;
- 2) Écrire et équilibrer la réaction;
- 3) Déterminer les quantités initiales des constituants;
- 4) Déterminer l'avancement maximal;
- 5) Conclure.

Application TM2.1 : Réaction totale

Lorsque l'on met du zinc solide dans un solution d'acide chlorhydrique, on observe un dégagement de dihydrogène et la formation d'ions zinc Zn^{2+} .

Le système initial est composé de $0.11\,\mathrm{g}$ de zinc et d'une solution de $20\,\mathrm{mL}$ d'acide chlorhydrique à $5.0\,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

Déterminer le volume de dihydrogène formé.

Le volume molaire des gaz est $24.5 \,\mathrm{L \cdot mol^{-1}}$, et la masse molaire du zinc est $M(\mathrm{Zn}) = 65.38 \,\mathrm{g \cdot mol^{-1}}$.

On traduit l'énoncé avec l'équation

$$Zn_{(s)} + 2H_{(aq)}^+ \rightarrow Zn_{(aq)}^{2+} + H_{2(g)}$$

Les quantités initiales de réactifs sont

$$n_{\rm Zn,0} = \frac{m}{M({\rm Zn})} = 1.7 \times 10^{-3} \,\text{mol}$$
 et $n_{\rm H^+,0} = [{\rm H^+}]V = 1.0 \times 10^{-1} \,\text{mol}$

Équation		$\mathrm{Zn}_{(\mathrm{s})}$ -	$+ 2 H_{(aq)}^{+} -$	\rightarrow $Zn_{(aq)}^{2+}$ -	$+$ $H_{2(g)}$
Initial (mmol)	$\xi = 0$	1,7	100	0	0
Interm. (mmol)	ξ	$1,7-\xi$	$100 - 2\xi$	ξ	ξ
Final (mmol)	$\xi_{ m max}$	0	96,6	1,7	1,7

On trouve l'avancement maximal $\xi_{\rm max}=1.68\times 10^{-3}\,{\rm mol},$ et on obtient le volume de ${\rm H}_{2(g)}$ avec son volume molaire

$$V_{\rm H_2} = n_{\rm H_2} V_m = 41 \,\rm mL$$

II/C Réaction limitée

Une transformation limitée veut dire qu'il reste toujours un peu de réactif et un peu de produit. Ceci est possible puisqu'il peut se produire la réaction

mais dès que les produits sont présents, il peut aussi se passer

$$réactifs \leftarrow produits$$

On dit alors qu'il y a **équilibre chimique** lorsque les **deux réactions ont des actions inverses** l'une de l'autre. On voit donc les écritures suivantes :

$$\alpha_1 R_1 + \alpha_2 R_2 + \dots \xrightarrow{\text{direct}} \beta_1 P_1 + \beta_2 P_2 + \dots$$
 ou $\alpha_1 R_1 + \alpha_2 R_2 + \dots = \beta_1 P_1 + \beta_2 P_2 + \dots$

II/C) 1 Quantifications de l'avancement

Il y a d'autres grandeurs utilisées pour décrire l'avancement :

Définition TM2.6 : Quant		
Taux de conversion	Coefficient de dissociation	Rendement
On définit le taux de conversion d'un réactif R_i comme $\tau(t) = \frac{n_{R_i,0} - n_{R_i}(t)}{n_{R_i,0}}$ Il vaut 0 à $t=0$, et 1 s'il a complètement été consommé.	Le coefficient de dissociation α est le taux de conversion dans le cas où seul un réactif se dissocie.	Le rendement instantané est le rapport entre l'avancement à un instant t et l'avancement $maximal \ \xi_{max}.$ On a $ \boxed{ \eta(t) = \frac{\xi(t)}{\xi_{max}} } \text{et} \boxed{ \eta = \frac{\xi_f}{\xi_{max}} } $

II/C) 2 Quotient de réaction

Pendant une réaction chimique, réactifs et produits s'opposent dans leur action vis-à-vis de l'évolution du système. Pour quantifier la tendance évolutive du l'équation, on fait appel aux activités des éléments mis en jeu, *via* une grandeur appelée **quotient de réaction**.

♥ Définition TM2.7 : Quotient de réaction

Soit une réaction

$$\alpha_1 R_1 + \alpha_2 R_2 + \dots = \beta_1 P_1 + \beta_2 P_2 + \dots$$
 ou $\sum_i \nu_i X_i = 0$

Le quotient de réaction Q_r est alors

$$Q_r = \frac{a(P_1)^{\beta_1} \times a(P_2)^{\beta_2} \times \dots}{a(R_1)^{\alpha_1} \times a(R_2)^{\alpha_2} \times \dots} \quad \text{ou} \quad Q_r = \prod_i a(X_i)^{\nu_i}$$

Application TM2.2: Quotients simples

Écrire les quotients de :

1)
$$2I_{(aq)}^- + S_2O_{8(aq)}^{2-} = I_{2(aq)} + 2SO_{4(aq)}^{2-}$$

2)
$$Ag_{(aq)}^{+} + Cl_{(aq)}^{-} = AgCl_{(s)}$$

3)
$$2 \operatorname{FeCl}_{3(g)} = \operatorname{Fe}_2 \operatorname{Cl}_{6(g)}$$

1)
$$Q_r = \frac{a(I_{2(aq)}) \cdot a(SO_4^{2-}_{(aq)})}{a(I_{(aq)}^-)^2 \cdot a(S_2O_8^{2-}_{(aq)})} = \frac{[I_2] \times [SO_4^{2-}]^2}{[I^-]^2 \times [S_2O_8^{2-}]}$$

2)
$$Q_r = \frac{\overline{a(\operatorname{AgCl}_{(s)})}}{a(\operatorname{Ag}_{(aq)}^+) \cdot a(\operatorname{Cl}_{(aq)})} = \frac{c^{\circ 2}}{[\operatorname{Ag}^+] \times [\operatorname{Cl}^-]}$$

3)
$$Q_r = \frac{P_{\text{Fe}_2\text{Cl}_6}/P^{\circ}}{P_{\text{Fe}_2\text{Cl}_3}^2/P^{\circ 2}} = \frac{P_{\text{Fe}_2\text{Cl}_6P^{\circ}}}{P_{\text{Fe}_2\text{Cl}_3}^2}$$

II/C) 3 Constante d'équilibre

À l'équilibre chimique, les produits et réactifs se combinent dans des sens opposés tout à fait équilibres. On définit donc la constante d'équilibre :

♥ Définition TM2.8 : Constante d'équilibre

À toute réaction chimique est associée une grandeura appelée **constante d'équilibre**, notée K° , qui ne dépend **que de la réaction considérée et de la température**. Elle est égale au quotient réactionnel à l'équilibre chimique (état final) :

$$K^{\circ} = Q_{r,eq}$$

On l'appelle aussi la relation de Guldberg-Waage ou loi d'action de masse.

Le quotient de réaction va évoluer de telle sorte à être égal à la constante de réaction à l'équilibre : celle-ci permet de <u>déterminer l'état d'équilibre</u> du système, puisqu'elle donnera le lien entre les activités des composants à l'avancement final et donc la composition du système.

igoplusPropriété TM2.2 : K° réaction composée

Soient (1) et (2) deux réactions de constantes K_1° et K_2° . Alors, pour une réaction (3) telle que (3) = $\alpha(1) + \beta(2)$, on a

$$K_3^{\circ} = (K_1^{\circ})^{\alpha} \cdot (K_2^{\circ})^{\beta}$$

Démonstration TM2.2 : K° réaction composée

(1)
$$\sum_{i} \nu_{\mathbf{X}_{i}} \mathbf{X}_{i} = 0 \qquad K_{1}^{\circ} = \prod_{i} a(\mathbf{X}_{i})^{\nu_{\mathbf{X}_{i}}}$$

(2)
$$\sum_{j} \nu_{\mathbf{Y}_{j}} \mathbf{Y}_{j} = 0 \qquad K_{2}^{\circ} = \prod_{j} a(\mathbf{Y}_{j})^{\nu_{\mathbf{Y}_{j}}}$$

$$(3) = \alpha(1) + \beta(2) \qquad \alpha \sum_{i} \nu_{\mathbf{X}_{i}} \mathbf{X}_{i} + \beta \sum_{j} \nu_{\mathbf{Y}_{j}} \mathbf{Y}_{j} = 0 \qquad K_{3}^{\circ} = \prod_{i} a(\mathbf{X}_{i})^{\alpha \nu_{\mathbf{X}_{i}}} \cdot \prod_{j} a(\mathbf{Y}_{j})^{\beta \nu_{\mathbf{Y}_{j}}}$$

$$\Rightarrow K_3^{\circ} = \left(\prod_i a(\mathbf{X}_i)^{\nu_{\mathbf{X}_i}}\right)^{\alpha} \cdot \left(\prod_j a(\mathbf{Y}_j)^{\nu_{\mathbf{Y}_j}}\right)^{\beta}$$
$$\Leftrightarrow K_3^{\circ} = (K_1^{\circ})^{\alpha} \cdot (K_2^{\circ})^{\beta}$$

On constate alors que la **constante** d'équilibre d'une réaction opposée d'une autre est l'**inverse** de la constante d'équilibre de première : $(2) = -(1) \Rightarrow K_2^{\circ} = (K_1^{\circ})^{-1}$.

II/C) 4 Application

Application TM2.3: Réaction limitée

Soit la réaction de l'acide éthanoïque avec l'eau :

$$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$$

de constante $K^{\circ} = 1.78 \times 10^{-5}$. On introduit $c = 1.0 \times 10^{-1} \,\mathrm{mol \cdot L^{-1}}$ d'acide éthanoïque et on note V le volume de solution. Déterminer la composition à l'état final.

Équa	ation	CH ₃ COOH _(aq)	+ H ₂ O _(l) =	$(1) = CH_3COO_{(aq)}^- + H_3O_{(aq)}$	
Initial	x = 0	c	excès	0	0
Interm.	x	c-x	excès	x	x
Final	$x = x_{\rm eq}$	$c-x_f$	excès	ξ_f	ξ_f

Par définition,

$$K^{\circ} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]_{\mathrm{eq}} \times [\mathrm{CH}_{3}\mathrm{COO}^{-}]_{\mathrm{eq}}}{c^{\circ}[\mathrm{CH}_{3}\mathrm{COOH}]_{\mathrm{eq}}} = \frac{x_{\mathrm{eq}}^{2}}{c^{\circ}(c - x_{\mathrm{eq}})}$$
$$\Leftrightarrow x_{\mathrm{eq}}^{2} + K^{\circ}c^{\circ}x_{\mathrm{eq}} - cK^{\circ}c^{\circ} = 0$$

Ainsi ce polynôme a deux racines :

$$x_{\rm eq,1} = \frac{-K^{\circ}c^{\circ} - \sqrt{(K^{\circ}c^{\circ})^2 + 4cK^{\circ}c^{\circ}}}{2} \quad \text{ et } \quad x_{\rm eq,2} = \frac{-K^{\circ}c^{\circ} + \sqrt{(K^{\circ}c^{\circ})^2 + 4cK^{\circ}c^{\circ}}}{2}$$
$$x_{\rm eq,1} = -1,34 \times 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1} \quad \text{ et } \quad x_{\rm eq,2} = 1,32 \times 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$$

dont seule la seconde fait sens, étant donné qu'il n'y a pas de produit au départ : on garde donc

$$x_f = x_{\text{eq}} = 1.32 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1} < x_{\text{max}}$$

D'où la composition finale : $\overline{[CH_3COOH]_{eq}} \approx 1.0 \times 10^{-1} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$

$$[CH_3COO^-]_{eq} = [H_3O^+]_{eq} = 1.32 \times 10^{-3} \, mol \cdot L^{-1}$$

Dans cet exemple, on pouvait effectuer une simplification en considérant la valeur de la constante d'équilibre.

\blacktriangledown Propriété TM2.3 : Constante d'équilibre et avance $^{\underline{t}}$

- \diamond si $K^{\circ} > 1$, alors la réaction est **favorisée** dans le sens $\rightarrow (a(P_i)_{eq} > a(R_i)_{eq})$, et si $K^{\circ} \gtrsim 10^3$, alors la réaction est (quasi-)**totale** dans le sens \rightarrow ;
- \diamond si K° < 1, la réaction est **défavorisée** $(a(P_i)_{eq} < a(R_i)_{eq})$ dans le sens \rightarrow (favorisée dans l'autre sens), et si $K^{\circ} \lesssim 10^{-3}$, alors la réaction est (quasi-)**nulle** dans le sens \rightarrow .

Il faut savoir repérer les situations d'avancement (quasi-)total/nul

Application TM2.3 : Réaction limitée, simplification quasi-nulle

Ainsi, dans l'exercice précédent, on sait que $x_{\rm eq} \ll c$ puisque $K \ll 10^{-3}$: on peut donc écrire

$$K^{\circ} \approx \frac{{x_{\rm eq}}^2}{cc^{\circ}} \Leftrightarrow x_{\rm eq} \approx \sqrt{cKc^{\circ}} = 1.33 \times 10^{-3} \, {\rm mol \cdot L^{-1}}$$

III Évolution d'un système chimique

III/A Quotient réactionnel et sens d'évolution

Étant donné que la constante d'équilibre est égale au quotient réactionnel à l'équilibre, les activités des éléments chimiques vont évoluer de telle sorte à ce que le quotient réactionnel atteigne l'équilibre : s'il est inférieur à K° au départ, il doit augmenter au cours de la réaction et donc augmenter les produits et réduire les réactifs, et inversement. On retiendra :

Propriété TM2.4 : Sens d'évolution d'un système

 \diamond Si $Q_r < K^{\circ}$, la réaction se déroule dans le sens direct;

 \diamond Si $Q_r > K^{\circ}$, la réaction se déroule dans le sens indirect.

FIGURE TM1

Exemple TM2.1: Sens d'évolution: précipitation

Soit la réaction

$$Ag_{(aq)}^+ + Cl_{(aq)}^- = AgCl_{(s)}$$

 $K^{\circ} = 10^{9.7}$

1) Si $[Ag^+]_i = [Cl^-]_i = 10^{-3} \,\mathrm{mol} \cdot L^{-1}$, alors

$$Q_{r,0} = \frac{c^{\circ 2}}{[Ag^+]_i \times [Cl^-]_i} = 10^6 < K^{\circ}$$

et la réaction se passe dans le sens direct : on forme du précipité.

2) Si $[Ag^+]_i = [Cl^-]_i = 10^{-6} \text{ mol} \cdot L^{-1}$, alors

$$Q_{r,0} = \frac{c^{\circ 2}}{[Ag^+]_i \times [Cl^-]_i} = 10^{12} > K^{\circ}$$

et la réaction se passe dans le sens indirect : on dissout le précipité.

♥ Attention TM2.2 : Réaction favorisée et directe

Il est très commun de confondre le sens d'évolution avec le fait qu'une réaction soit favorisée. Ces deux notions sont proches mais il faut savoir les distinguer.

Une réaction favorisée signifie qu'à l'équilibre, le rapport des activités est plus grand que 1. En revanche, **selon l'état initial**, on va arriver à ce rapport de différentes manières (consommation des réactifs ou des « produits ».

$$K^{\circ} > 1 \implies \text{sens direct}$$

Application TM2.4 : Sens de réaction

Soit la synthèse de l'ammoniac :

$$N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)}$$
 $K^{\circ} = 0.5$

On introduit 3 mol de diazote, 5 mol de dihydrogène et 2 mol d'ammoniac sous une pression de 200 bars.

- 1) Dresser le tableau d'avancement.
- 2) Déterminer les pressions partielles des gaz.
- 3) Dans quel sens se produit la réaction?

1)	Équation		$N_{2(g)}$ -	+ 3H _{2(g)}	=	$2NH_{3(g)}$	$n_{{ m tot},gaz}$
	Initial (mol)	$\xi = 0$	3	5		2	10
	Interm. (mol)	ξ	$3-\xi$	$5-3\xi$		$2+2\xi$	$10 - 2\xi$

2) Pour déterminer les pressions partielles, il nous faut la quantité de matière totale de gaz : $n_{\rm tot}=2+3+5=10\,{\rm mol}.$ On a donc

$$p_{\text{N}_2} = x_{\text{N}_2} P = 60 \,\text{bar}$$
 $p_{\text{H}_2} = x_{\text{H}_2} P = 100 \,\text{bar}$ $p_{\text{NH}_3} = x_{\text{NH}_3} P = 40 \,\text{bar}$

3) Pour connaître le sens de réaction, il faut le quotient réactionnel :

$$Q_{r,0} = \frac{p_{\text{NH}_3}^2 \times p^{\circ 2}}{p_{\text{N}_2} \times p_{\text{H}_2}^3} = 2.7 \times 10^{-5}$$

Comme $Q_{r,0} < K$, la réaction se produit dans le sens **direct** : on consomme N_2 et H_2 et on produit NH_3 .

III/B Cas des ruptures d'équilibre

Définition TM2.9 : Rupture d'équilibre

Quand la réaction contient des **solides ou liquides purs**, les activités ne peuvent pas évoluer, elles restent égales à 1. Dans ce cas, on peut arriver à ce qu'on appelle une *rupture d'équilibre* : l'avancement final théorique serait supérieur à l'avancement final, ce qui n'est pas possible; l'avancement final **réel** est donc l'avancement **maximal**.

Application TM2.5: Rupture d'équilibre

Regardons la réaction de dissolution du chlorure de sodium, de masse molaire $M(\text{NaCl}) = 58,44\,\text{g}\cdot\text{mol}^{-1}$:

$$NaCl_{(s)} = Na_{(aq)}^{+} + Cl_{(aq)}^{-}$$
 ($K^{\circ} = 33$)

On introduit 2,0 g de sel dans 100 mL d'eau. Déterminer l'état d'équilibre.

$$n = \frac{m}{M(\text{NaCl})} = 0.034 \,\text{mol}$$

Équa	ation	NaCl _(s) =	$=$ $Na_{(aq)}^+$	+	$\mathrm{Cl}^{\mathrm{(aq)}}$
Initial	$\xi = 0$	n	0		0
Final	$\xi = \xi_f$	$n-\xi_f$	ξ_f		ξ_f

La constante d'équilibre est

$$K^{\circ} = \frac{[\mathrm{Na^{+}}]_{\mathrm{eq}} \times [\mathrm{Cl^{-}}]_{\mathrm{eq}}}{c^{\circ 2}} = \frac{1}{c^{\circ 2}} \left(\frac{\xi_{\mathrm{eq}}}{V}\right)^{2} \Leftrightarrow \boxed{\xi_{\mathrm{eq}} = Vc^{\circ}\sqrt{K^{\circ}} = 0.57\,\mathrm{mol}}$$

Or, l'avancement maximal est $\xi_{\text{max}} = 0.034 \,\text{mol} < \xi_{\text{eq}}$: on ne peut donc **pas atteindre** l'équilibre, le solide est dissout en totalité. On appelle ça une rupture d'équilibre.

III/C Résumé

