# Kalman Filter와 CNN을 이용한 거리 측정 최적화 방안 연구

수학과 201621120 최동헌 수학과 201621136 이재협 수학과 201621138 허창현 수학과 201621148 백현규

# Contents

- 1 이론적 배경
  - Blutooth Beacon
  - Kalman Filter
  - Convolutional Neural Network (CNN)
- **7** 연구 방법
- **3** 결과
- **⚠** 참고문헌

#### 1. Blutooth Beacon and RSSI



#### 1. 이론적 배경 - Blutooth Beacon

$$RSSI = -10n\log_{10}(d) + A,$$

- RSSI를 통해 거리를 측정하는 데 노이즈로 인해 정확도가 낮음.

- RSSI값이 1만 변해도 거리는 몇 m씩 변함

- 정확도를 높일 수 있는 방법을 연구.

#### 1. 이론적 배경 - Kalman Filter

$$\overline{x}_k = \alpha \overline{x}_{k-1} + (1-\alpha)x_k$$

- 1차 저주파 필터

- α는 weight를 뜻함.

## 1. 이론적 배경 - Kalman Filter



- 일정 기간 주가의 산술 평균값을 이어서 만든 선
- 주식에서 일정기간의 평균을의미 있는 보조 지표로 활용



## 1. 이론적 배경 - Kalman Filter



- 1) 한 센서로 추정값 계산
- 2) 추정 오차를 최소화 하는 칼만 상수 계산
- 3) 다른 센서의 값을 칼만 상수를 통해 반영하여 보정
- 4) 보정하고 나서 줄어든 추정 오차의 분포 계산

# 1. 이론적 배경 - Convolutional Neural Network



# 1. 이론적 배경 - Convolutional Neural Network

| 0 | 1 | 7 | 5 |
|---|---|---|---|
| 5 | 5 | 6 | 6 |
| 5 | 3 | 3 | 0 |
| 1 | 1 | 1 | 2 |



| 40 | 1 |
|----|---|
| 10 | - |
|    | l |
|    |   |

| 1 | 0 | 1 |   | 40 | 32 |
|---|---|---|---|----|----|
| 1 | 2 | 0 | _ | 40 | 32 |
| 1 | 2 | 0 | _ | 26 |    |
| 3 | 0 | 1 |   | 20 |    |

| 0 | 1 | 7 | 5 |
|---|---|---|---|
| 5 | 5 | 6 | 6 |
| 5 | 3 | 3 | 0 |
| 1 | 1 | 1 | 2 |



|   |   |   |   | ı |    |    |
|---|---|---|---|---|----|----|
|   | 1 | 0 | 1 |   | 40 | 32 |
| * | 1 | 2 | 0 | = |    |    |
|   | 3 | 0 | 1 |   | 26 | 23 |

| l | 0 | 1 | 7 | 5 |
|---|---|---|---|---|
|   | 5 | 5 | 6 | 6 |
|   | 5 | 3 | 3 | 0 |
|   | 1 | 1 | 1 | 2 |

## 1. 이론적 배경 - Convolutional Neural Network

# 1) Stride

# 2) Padding

| 0 | 1 | 7 | 5 |
|---|---|---|---|
| 5 | 5 | 6 | 6 |
| 5 | 3 | 3 | 0 |
| 1 | 1 | 1 | 2 |

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 7 | 5 | 0 |
| 0 | 5 | 5 | 6 | 6 | 0 |
| 0 | 5 | 3 | 3 | 0 | 0 |
| 0 | 1 | 1 | 1 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

|   | 1 | 0 | 0 |   | 26 | 42 | 55 | 35 |
|---|---|---|---|---|----|----|----|----|
|   | 1 | 0 |   |   | 34 | 41 | 33 | 28 |
| 9 | 1 | 2 | 1 | = | 18 | 25 | 23 | 14 |
|   | 1 | 2 | 3 |   | 3  | 9  | 8  | 8  |



e2c56db5-dffb-48d2-b060-d0f5a71096e0]

e2c56db5-dffb-48d2-b060-d0f5a71096e0]





|             |       |          |      |           |      |      |   |       |                     | _                  |                                           |                                     |                                              |
|-------------|-------|----------|------|-----------|------|------|---|-------|---------------------|--------------------|-------------------------------------------|-------------------------------------|----------------------------------------------|
| Н           | 1     | J        | K    | L         | М    | N    |   | 0     | O P                 | O P Q              | O P Q R                                   | O P Q R S                           | O P Q R S T                                  |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -70 u | -70 u id            | -70 u iid e2c56db5 | -70 u <mark>l</mark> id e2c56db5-dffb-48d | -70 u iid e2c56db5-dffb-48d2-b060-d | -70 ulid e2c56db5-dffb-48d2-b060-d0f5a71096  |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -73 u | -73 u iid           | -73 u iid e2c56db5 | -73 u <mark>l</mark> id e2c56db5-dffb-48d | -73 u lid e2c56db5-dffb-48d2-b060-d | -73 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 4    | proximity | near | rssi |   | -61 u | -61 u id            | -61 u iid e2c56db5 | -61 u <mark>l</mark> id e2c56db5-dffb-48d | -61 u iid e2c56db5-dffb-48d2-b060-d | -61 ulid e2c56db5-dffb-48d2-b060-d0f5a71096  |
| major       | 100   | ) minor  | 2    | proximity | near | rssi | ı | -64 u | -64 u iid           | -64 u iid e2c56db5 | -64 u <mark>u</mark> id e2c56db5-dffb-48d | -64 u iid e2c56db5-dffb-48d2-b060-d | -64 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -66 u | -66 u iid           | -66 u iid e2c56db5 | -66 u <mark>t</mark> id e2c56db5-dffb-48d | -66 u iid e2c56db5-dffb-48d2-b060-d | -66 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -67 u | -67 u id            | -67 u id e2c56db5  | -67 ulid e2c56db5-dffb-48d                | -67 ulid e2c56db5-dffb-48d2-b060-d  | -67 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 2    | proximity | near | rssi | ı | -62 u | -62 u iid           | -62 u iid e2c56db5 | -62 u <mark>l</mark> id e2c56db5-dffb-48d | -62 u lid e2c56db5-dffb-48d2-b060-d | -62 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 2    | proximity | near | rssi |   | -61 u | -61 u iid           | -61 u iid e2c56db5 | -61 ulid e2c56db5-dffb-48d                | -61 u lid e2c56db5-dffb-48d2-b060-d | -61 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 2    | proximity | near | rssi |   | -60 u | -60 u iid           | -60 u iid e2c56db5 | -60 ulid e2c56db5-dffb-48d                | -60 u lid e2c56db5-dffb-48d2-b060-d | -60 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi | ı | -66 u | -66 u iid           | -66 u iid e2c56db5 | -66 u <mark>l</mark> id e2c56db5-dffb-48d | -66 u lid e2c56db5-dffb-48d2-b060-d | -66 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -67 u | -67 u id            | -67 u iid e2c56db5 | -67 u <mark>l</mark> id e2c56db5-dffb-48d | -67 ulid e2c56db5-dffb-48d2-b060-d  | -67 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -67 u | -67 u iid           | -67 u iid e2c56db5 | -67 u <mark>l</mark> id e2c56db5-dffb-48d | -67 u lid e2c56db5-dffb-48d2-b060-d | -67 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 2    | proximity | near | rssi | I | -61 u | -61 u iid           | -61 u iid e2c56db5 | -61 uhid e2c56db5-dffb-48d                | -61 u iid e2c56db5-dffb-48d2-b060-d | -61 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | minor    | 3    | proximity | near | rssi |   | -65 u | -65 u iid           | -65 u iid e2c56db5 | -65 u <mark>l</mark> id e2c56db5-dffb-48d | -65 u lid e2c56db5-dffb-48d2-b060-d | -65 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 2    | proximity | near | rssi |   | -64 u | -64 u iid           | -64 unid e2c56db5  | -64 u <mark>l</mark> id e2c56db5-dffb-48d | -64 ulid e2c56db5-dffb-48d2-b060-d  | -64 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -70 u | -70 u id            | -70 u id e2c56db5  | -70 u <mark>l</mark> id e2c56db5-dffb-48d | -70 ulid e2c56db5-dffb-48d2-b060-d  | -70 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -70 u | -70 u id            | -70 u id e2c56db5  | -70 u <mark>l</mark> id e2c56db5-dffb-48d | -70 ulid e2c56db5-dffb-48d2-b060-d  | -70 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -73 u | -73 u id            | -73 u id e2c56db5  | -73 u <mark>l</mark> id e2c56db5-dffb-48d | -73 ulid e2c56db5-dffb-48d2-b060-d  | -73 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 4    | proximity | near | rssi | I | -61 u | -61 u iid           | -61 u iid e2c56db5 | -61 u <mark>l</mark> id e2c56db5-dffb-48d | -61 u iid e2c56db5-dffb-48d2-b060-d | -61 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
| major       | 100   | ) minor  | 3    | proximity | near | rssi |   | -67 u | -67 u iid           | -67 u iid e2c56db5 | -67 u iid e2c56db5-dffb-48d               | -67 u iid e2c56db5-dffb-48d2-b060-d | -67 u iid e2c56db5-dffb-48d2-b060-d0f5a71096 |
|             |       |          |      |           |      |      |   |       | d                   | d e2c56db5         | d e2c56db5-dffb-48d                       | d e2c56db5-dffb-48d2-b060-d         | d e2c56db5-dffb-48d2-b060-d0f5a71096         |
| <b>=</b> 01 | 一人「   | ᆙᇀ포      | OI H | 10 p      | CCI  | 데이티  |   | 네르 저  | l르 저 <mark>네</mark> | l르저 d e2c56db5     | □르 저 d e2c56db5-dffb-48d                  | a e2c56db5-dffb-48d2-b060-d         | 니르 저 d e2c56db5-dffb-48d2-b060-d0f5a71096    |
| II ~ I =    | تجيلة | - المسار |      |           | 221  |      |   |       |                     | d e2c56db5         | d e2c56db5-dffb-48d                       | d e2c56db5-dffb-48d2-b060-d         | e2c56db5-dffb-48d2-b060-d0f5a71096           |

안드로이드 스마트폰이 받은 RSSI 데이터를 정리하기 위해 만들어진 어플리케이션임.





```
class Beacon:
    x, y, N, M_{Power} = 0, 0, 0, 0
    mu_RSS, sigma_RSS = 0, 0
    dataset = []
    def __init__(self, x, y, N, M_Power):
        self.N = N
        self.M_Power = M_Power
    def RSSI_to_distance(self, RSSI):
        return math.pow(10, ((self.M_Power - RSSI) / (10 * self.N)))
    def Dist_to_RSSI(self, Dist):
        return ((-10) * self.N * math.log(Dist, 10) + self.M_Power)
    def set_mu_sigma_RSS(self, a, b, c):
        temp = []
        temp.append(a)
        temp.append(b)
        temp.append(c)
        self.mu_RSS, self.sigma_RSS = np.mean(temp), np.std(temp)
    def add_RSS(self, RSS):
        self.dataset.append(RSS)
        self.mu_RSS = np.mean(self.dataset)
        self.sigma_RSS = np.std(self.dataset)
```

1. RSSI를 통해서 거리를 구하는 함수

2. 거리를 이용해서 RSSI를 구하는 함수

3. 평균, 표준편차

| 실제 거리 | RSSI로 측정한 거리 | 오차율 |
|-------|--------------|-----|
| 0.5m  | 0.73         | 46% |
| 0.8m  | 0.91         | 14% |
| 1.2m  | 1.25         | 4%  |
| 1.6m  | 1.15         | 28% |
| 2.0m  | 1.23         | 39% |
| 2.4m  | 2.06         | 14% |
| 2.8m  | 1.36         | 51% |

1.2M일 때, 이론 상 RSSI



N개의 RSSI 입력 받음

입력 받은 RSSI 값을 Kalman Filter로 1차 보정

보정된 Kalman Filter 값을 CNN에 적용

#### 2. 연구 내용 - Kalman Filter



(출처: https://github.com/tbmoon/kalman\_filter)

#### 2. 연구 내용 - Kalman Filter

```
TestSimpleKalman2.m ×
                      Kalman_RSS.m × +
      ☐ function rss = Kalman_RSS(arr)
       persistent A H Q R
       persistent y P
       persistent flagRun
8
9 —
       if isempty(flagRun)
10 —
         A = 1; % 칼만 필터에서 필요한 parameter를 정의함.(A, H, Q, R)
         H = 1;
12
13 —
         0 = 1;
14 —
         R = 1000;
15
16 —
         length = size(arr,2) % arr 함수의 열의 갯수를 반환
         cut_ratio = 0.10
         num_of_cut = fix(length * cut_ratio) % 전체 열 갯수 중에서 cut_ratio 비율 만큼 잘라냄.
18 —
19
         for a=1:num_of_cut % for문을 돌면서 최대, 최솟값을 없앰
20 —
             min num = min(arr)
명령 창
  ans =
    -66.8940
```

```
def kalman_filter(z_meas, x_esti, P):
    # (1) Prediction.
    x_{pred} = A * x_{esti}
    P_pred = A * P * A + Q
    K = P_pred * H / (H * P_pred * H + R)
    x_{esti} = x_{pred} + K * (z_{meas} - H * x_{pred})
    # (4) Error Covariance.
    P = P_pred - K * H * P_pred
    return x_esti, P
time_end = 10
A = 1
H = 1
0 = 0
R = 4
x \cdot 0 = 12 + 14 for book.
P_0 = 6
```

# 2. 연구 내용 - Kalman Filter

```
function rss = Kalman_RSS(arr)
       persistent A H Q R
       persistent y P
       persistent flagRun
        if isempty(flagRun)
                % 칼만 필터에서 필요한
10 —
11 —
         H = 1;
12
13 —
14 —
          R = 1000;
```

| 이론상 RSSI  | -65.58     |       |
|-----------|------------|-------|
| (Q,R)     | 측정 RSSI 평균 | 표준편차  |
| (0,50)    | -66.95174  | 1.293 |
| (0, 100)  | -66.9471   | 1.33  |
| (0, 1000) | -66.81694  | 0.915 |
| (1,50)    | -67.07816  | 1.117 |
| (1, 100)  | -67.02378  | 1.157 |
| (1, 1000) | -66.84224  | 1.711 |
|           |            |       |

#### 2. 연구 내용 - Convolutional Neural Network

```
Idef Conv1D_Fit_and_PlotWeights(model, X, y, epochs, n_weights, freq=20):
    w, loss, mae = [], [], []
    for r in range(epochs):
        history = model.fit(X, y, verbose=0)
        if r%freq==0:
            w.append(np.sort(model.layers[0].get_weights()[0].reshape(n_weights)))
            loss.append(history.history['loss'][0])
    w = np.array(w)
    fig, ax = plt.subplots(figsize=(8,4))
    epoch = np.arange(0_{\star}len(w))*20
    for n in range(n_weights):
        label = "w_{} -> {}".format(n, n+1)
        ax.axhline(n+1, c='gray', linestyle='--')
    return w
```

## 3. 결과

```
Model: "sequential"
 Layer (type)
                             Output Shape
                                                       Param #
 c1d (Conv1D)
                             (None, 206, 1)
Total params: 5
Trainable params: 5
Non-trainable params: 0
Input RSS: -60 -61 -59 -58 -58
47.528821885585785
```

# 3. 결과

| 실제 거리(m) | 추정 RSSI로 측정한 거리 | 오차율   |
|----------|-----------------|-------|
| 0.5      | 0.475           | 5%    |
| 0.8      | 0.858           | 7.25% |
| 1.2      | 1.245           | 3.75% |
| 1.6      | 1.732           | 8.25% |
| 2.0      | 2.14            | 7%    |
| 2.4      | 2.7             | 12.5% |

# 3. 결과(한계점)

1) 제한된 Sample Data의 크기

2) 측정된 RSSI값 자체의 불안정성

3) 고정된 위치에서의 RSSI

#### 4. 참고문헌

[1]김우찬,이청길,곽호영,"위치측정을위한비콘의RSSI 안정화", 제주대학교, 2019

[2]박종형,박두익,염철민,강진수,원유재,"비콘의세기를이용한실내위치추적정확도개선에관한연구", 충남대학교,2018

[3]김지성,김용갑, "RSSI 측정결과필터링을이용한거리계산보정알고리즘에관한연구", IBC, 2017

[4]김지성,김용갑,황근창,"비콘의RSSI 특성을이용한실내위치추적시스템에관한연구", IIBC, 2017

[5]김정진,조성욱,지영민, "CNN을이용한이미지분류", 한국정보기술학회,2017

[6]최학영, "CNN기반결함검출", 서경대학교대학원, 2017

[7]이현수, "이미지컨텐츠검색을위한CNN의구조", 중앙대학교대학원, 2018

[8]김성필,2019, "칼만필터는어렵지않아:with MATLAB Examples", 한빛아카데미