EDTA(乙二胺四乙酸,简写为 H_4Y ,结构如下所示),是分析化学滴定操作中常用的螯合剂,其 pK_a 数据如下表所示。 $\left(pK_a=-\lg\left(K_a\right)\right)$ 。定义金属离子 $\left(M^{n+}\right)$ 的稳定常数为 $K_f=\frac{\left[MY^{n-4}\right]}{\left[M^{n+}\right]\left[Y^{4-}\right]}$,某情况下部分金属离子 $\left(M^{n+}\right)$ 的 K_f 有关数据如下表所示。对 EDTA 进行核磁共振使用的核磁标定物的结构如下, X、Y、Z为三种元素。EDTA 各组分的分布系数。 δ 随溶液pH的变化如图所示,(已知 $c(EDTA)=\frac{c(EDTA)}{c(H_6Y^{2+})+c(H_5Y^+)+c(H_4Y)+c(H_3Y^-)+c(H_2Y^{2-})+c(HY^{3-})+c(Y^{4-})}$),则下列说法正确的是

M^{n+}	K ⁺	Mg^{2+}	Ca^{2+}	Zn^{2+}	Fe ³⁺
$-pK_f$	0.80	8.79	10.65	16.5	25.10

pK_{a_1}	pK_{a_2}	pK_{a_3}	pK_{a_4}	pK_{a_5}	pK_{a_6}
0.00	1.50	2.00	2.69	6.13	10.37

A.EDTA 在溶液 pH 低时中有 H_6Y^{2+} 的形式存在是因为有配位键的形成,其酸性较强的部位位于乙酸基上。EDTA 的络合物大多很稳定, Y^{4-} 是 EDTA 络合常用作配体的形式,乙二胺四乙酸二钠 $\left(Na_2H_2Y\right)$ 水溶液的pH 约为 4.42。 B.X 的简单氢化物为气体,电负性:Y>Z>X,原子半径:X>Y>Z,与核磁标定物相对

分子质量相同的物质可以为: O C

C.EDTA 体系中金属离子络合物的稳定性: $Zn^{2+} > K^+$,合适条件下在 EDTA 体系下可以利用稳定常数的不同分离 Fe^{3+} 和 Ca^{2+} , 调整体系 pH 可以将螯合的金属中心原子 $\left(M^{n+}\right)$ 置换出来, Mg^{2+} 的不稳定平衡常数为 $K_{\pi \bar{\theta}} = \frac{[Mg^{2+}][\text{EDTA}^{4-}]}{[Mg\text{EDTA}^{2-}]} = 1.0 \times 10^{-8.79} \ .$

D.
$$pK_{a_{\varsigma}}$$
 点满足: $c(HY^{3-})+2c(OH^{-})+3c(Y^{4-})>c(H_{3}Y^{-})+2c(H^{+})+3c(H_{4}Y)$;

$$\frac{n\left(H_6EDTA^{2+}\right)}{n\left(EDTA^{4-}\right)}=1$$
的溶液中, $c(H_4Y)+2c(H_5Y^+)+3c(H_6Y^{2+})>c(H_2Y^{2-})+2c(HY^{3-})+3c(Y^{4-})$;

满足 $c(HY^{3-}) > c(Y^{4-}) > c(H_2Y^{2-})$ 的pH范围: 8.25<pH<10.37,

满足 $c(H_2Y^{2-}) > c(H_3Y^{-}) > c(HY^{3-})$ 的pH范围: 2.69 < pH < 4.41。

答案: ABCD

解析: A.溶液 pH 较低时 $c(H^+)$ 高,与 EDTA 分子接触的机会大, H^+ 的 Is 轨道为空轨道,EDTA 分子两个氮原子含有孤对电子,符合形成配位键的条件,可形成 H_cY^{2+} 。两个氮原子类似于氨基结构,羧基显酸性,氨基显碱性,

乙酸基酸性更强。 Y^4 适应的 pH 范围比广,可配位原子较多,故 Y^4 是 EDTA 络合常用作配体的形式。由经验公式 $pH = \frac{1}{2} \Big(pK_{a_4} + pK_{a_5} \Big)$ 可得乙二胺四乙酸二钠水溶液的 pH。

B. X、Y、Z分别为Si、C、H,四甲基硅烷 $Si\left(CH_3\right)_4$ 为核磁标定物,定其化学位移(ppm)为 0,其相对分子质量为 88,二氧六环的相对分子质量同为 88,满足条件。

C.注意 $-pK_f$, 该值越大, 其结构就越稳定, K_f 越大。

D.需要列出质子平衡方程(Proton balance equation, PBE), 即质子守恒, 得出在 pK_a 点:

$$2c(OH^{-})+c(HY^{3-})+3c(Y^{4-})=2c(H^{+})+c(H_{3}Y^{-})+3c(H_{4}Y)+5c(H_{5}Y^{+})+7c(H_{6}Y^{2+})+3c(H_{5}Y$$

易得
$$c(HY^{3-})+2c(OH^-)+3c(Y^{4-})>c(H_3Y^-)+2c(H^+)+3c(H_4Y)$$
;

$$\frac{n(H_6EDTA^{2+})}{n(EDTA^{4-})}=1$$
即该溶液为 H_3Y^- 溶液,列出 PBE ,得:

$$c(H^+) + c(H_4Y) + 2c(H_5Y^+) + 3c(H_6Y^{2+}) = c(OH^-) + c(H_2Y^{2-}) + 2c(HY^{3-}) + 3c(Y^{4-}) + 3c(H_5Y^{2-}) + 3c(H_5Y^$$

$$H_3Y^-$$
溶液显碱性, 故 $c(H^+) < c(OH^-)$, 所以 $c(H_4Y) + 2c(H_5Y^+) + 3c(H_6Y^{2+}) > c(H_2Y^{2-}) + 2c(HY^{3-}) + 3c(Y^{4-})$;

下面给出求算 $c(HY^{3-}) > c(Y^{4-}) > c(H_2Y^{2-})$ 对应pH范围的过程:

对
$$c(HY^{3-}) > c(Y^{4-}) > c(H_2Y^{2-})$$
同时除 $c(Y^{4-})$,

得
$$\frac{c(HY^{3-})}{c(Y^{4-})} > 1 > \frac{c(H_2Y^{2-})}{c(Y^{4-})};$$
 即 $\frac{c(HY^{3-})}{c(Y^{4-})} > 1$, $\frac{c(H_2Y^{2-})}{c(Y^{4-})} < 1$

对
$$\frac{c(HY^{3-})}{c(Y^{4-})} = \frac{c(HY^{3-})}{c(H^+)c(Y^{4-})} \cdot c(H^+) = \frac{c(H^+)}{K_{a_6}} > 1$$
两边进行 - lg操作,

得
$$pH < pK_{ac} = 10.37$$

两边进行 - lg 操作,得
$$pH > \frac{pK_{a_5} + pK_{a_6}}{2} = 8.25$$

所以
$$c(HY^{3-}) > c(Y^{4-}) > c(H_2Y^{2-})$$
的 pH 范围: $8.25 < pH < 10.37$

同理,
$$c(H_2Y^{2-})>c(H_3Y^-)>c(HY^{3-})$$
的 pH 范围: $pK_{a_4}< pH< \frac{pK_{a_4}+pK_{a_5}}{2}$

即
$$c(H_2Y^{2-}) > c(H_3Y^-) > c(HY^{3-})$$
的 pH 范围:2.69 < pH < 4.41