Predicting Concrete Strength

Daniele Grandi, Javier Rondon

W203

4/13/22

Overview

What is Concrete?

concrete = (cement + water) + aggregate binder filler

Filler -

Binder

 $2~{\rm Ca_3SiO_5} + 7~{\rm H_2O} ---> 3~{\rm CaO\cdot 2SiO_2\cdot 4H_2O} + 3~{\rm Ca(OH)_2} + 173.6 {\rm kJ}$

Thin section showing concrete microstructure

Research Question

Concrete strength is controlled by the Water-Cement (WC) ratio and curing conditions

WC = mass of water/ mass of cement

Low WC ratio → High strength, low workability High WC ratio → Low strength, good workability

We need a model for compressive strength of concrete

Dataset

UC Irvine - 1030 observations

Water Content VS. Workability

Concrete Strengthens as it Dries

Causal Graph

Best Model

- Practical ranges:
 - 0.3 < WC ratio < 0.8
- Categorical: Slag, Superplasticizer, Ash

	Compressive Strength
$\log(WC ratio)$	-23.948***
	(0.922)
$\log(age)$	8.233***
	(0.240)
Slag	8.995***
	(0.652)
Superplasticizer	9.267***
	(1.135)
Ash	-2.354**
	(1.130)
Constant	-8.633***
	(0.849)
Observations	721
\mathbb{R}^2	0.798
Adjusted R ²	0.796
Residual Std. Error	7.596 (df = 715)
F Statistic	$563.924^{***} (df = 5; 715)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Application of the Model

Given a specific mixture, when can construction continue?

Application of the Model

How do additives affect compressive strength?

Conclusion

- With our model we can design a concrete recipe to meet customer specifications, avoiding waste of materials.
- Our model is consistent with the physics of concrete compressive strength within practical limits.
 - The compressive strength is controlled by the quality of the binder and age.
 - The use of admixtures show an impact on the compressive strength of the concrete
- Even though the key parameter controlling the strength of concrete has been known for over 100 years, there is still debate about the mechanisms for it.

Thanks for listening!