ATTACHMENT A

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-190374

(43)Date of publication of application: 31.07.1989

(51)Int.CI.

A63B 53/04

(21)Application number: **63-015652**

(71)Applicant: HITACHI CHEM CO LTD

(22)Date of filing:

26.01.1988

(72)Inventor:

TSUMURA KOHEI

INOUE MITSUHIRO ONOSE KATSUHIRO

(54) GOLF CLUB HEAD

(57) Abstract:

PURPOSE: To obtain a lightwt. and impact-resistant golf club head which is moldable by injection molding by using fiber reinforced plastics having a thermoplastic resin matrix, by integrally arranging, at a face part, a reinforced layer composed of fiber reinforced plastics contg. continuous fibers.

CONSTITUTION: In a golf club head which is an outer shell, formed by injection molding, composed of fiber reinforced plastics having thermoplastic resin as a matrix, and which has a head body 1 with a face part 5 and a back part 6, the face part 5 consists of an integrally reinforced layer composed of fiber reinforced plastics contg. continuous fibers. Glass fibers, carbon fibers, or Kevlar fibers are preferable for continuous fibers, and cloth or unidirectional material in combination with suitable angles is preferable. Although thermoplastic resin used in the head body is the most preferable material for the matrix of the above described continuous fibers, a different material may also be employed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁(JP)

①特許出願公開

⑫公開特許公報(A)

平1-190374

@Int, Cl. 4

識別記号

庁内整理番号

❸公開 平成1年(1989)7月31日

A 63 B 53/04

A-7339-2C

審査請求 未請求 請求項の数 4 (全5頁)

図発明の名称 ゴルフクラブのヘッド

> 204F 頤 昭63-15652

愛出 顧 昭63(1988)1月26日

個発 明 者 津 村 航 並

茨城県下館市大字小川1500番地 日立化成工業株式会社下 館研究所内

個発 明 井 上 * 弘

茨城県下館市大字小川1500番地 日立化成工業株式会社下

館研究所内

(72)発 明 老 小 野 瀬

茨城県下館市大字小川1500番地 日立化成工業株式会社下

館研究所内

勿出 窗 人 日立化成工業株式会社

100代 理 人 弁理士 廣瀬 東京都新宿区西新宿2丁目1番1号

明

1. 発明の名称 ゴルフクラブのヘッド

- 2. 特許請求の範囲
 - 1. 熱可塑性樹脂をマトリックスとする繊維強 化プラスチックからなり、射出成形により形 成した外殼であってフェイス部とバック郎を 有するヘッド本体を備えたゴルフクラブのヘ ッドにおいて、上記フェイス部に連続繊維を 用いた繊維強化プラスチックよりなる補強層 を一体に設けたことを特徴とするゴルフクラ ブのヘッド。
 - 2 捕強層が、熱可塑性樹脂をマトリックスと した繊維強化プラスチックを用いたものであ ることを特徴とする特殊事 1 載のゴルフタラブのヘッド。
- a 精強脂が、熱硬化性樹脂をマトリックスと する皺離強化プラスチックであることを特徴 ラブのヘッド。

- ヘッド本体が、内部に比重 0.2以下のウレ タン発泡体を充塡したものであることを特徴 □ 東京 1 . 東京 2
 とする特許解末の範囲第1項、第2項又は第 3項記載のゴルフクラブのヘッド。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、繊維強化熱可塑性プラスチックよ りなるヘッド本体を有するゴルフクラブのヘッ ドの改良に関するものである。

(従来の技術)

ゴルフクラブのヘッドの機能はポールを安定 して違くへ飛ばすてとであり、従来ゴルフクラ ブのウッドクラブと通称されるヘッドには、打 球音や外観の良さからパーシモン材(柿材)が 用いられてきた。 しかしながら近年特性の優れ たパーシモン材が入手困難となったことや、ッ ーピースポールの出現によりパーシモン材に代 る耐久性に優れたヘッド材が要求されるように なってきた。

そこでパーシモン材より強度が高いために中

空構造が可能であり、かつ重心調整などの設計 自由度が大きい金属材、線維強化熱硬化性樹脂 (PRP)、又繊維強化熱可塑性樹脂(PRT P)などの新材料が注目され、これらをヘッド 材とするゴルフクラブが製作されている。

(発明が解決しようとする問題点)

しかしながら、金属ヘッドは耐久性には優れるが比重が大きいためにパーシモンヘッド並の大きさにできにくいという問題がある。 これに対しFRP、FRTPヘッドは比強度や比弾性率を金属ヘッドよりも大きくでき、軽量化が可能であり設計自由度を大きくできる特徴がある。

ととろで、ゴルフクラブのヘッドはポールの打撃時にフェイス面に約1000時1 の力がかかるためにフェイス部とネック部を上記 新聞に耐えられるように設計する必要がある。 むほいながら、FRP材を使用したものは損撃のでは、 で 強化繊維を配向されるように強化繊維を配向が作りにとなり均一なものが作りに

能であり、軽量でかつ衝撃荷重に耐えうるゴルフクラブのヘッドを提供することを目的とした ものである。

(問題点を解決するための手段)

本発明を実施例に対応する第1~2図を用いて以下に説明する。

本発明は、熱可塑性樹脂をマトリックスとする 繊維強化プラステックからなり、射出成形形成した外殻であってフェイス部、(5)とパック部(6)を有するヘッド本体(1)を備えたゴルフクラブのヘッドにおいた繊維に設けてよる。

本発明における射出成形により外殻を形成する熱可型性樹脂をマトリックスとする繊維強化プラスチックにおける熱可塑性樹脂に特に限定はないが、例えば、ナイロン、ABS、アタリル樹脂、ポリフェニレンサルファイド樹脂 (P PS)、ポリスーテルエーテル樹脂 (PEK) くく又高価なものとなる欠点があった。

これに対し、FRTP材を使用した場合には 機械成形が可能なために成形時間が短かがある かり質のヘッドを安価に製作しうる利点がある が、FRTP材の比強度や比弾性率がFRP材 よりも低いために中空構造体の肉厚をPRP材 よりも厚くする必要があり、これがヘッドの軽 量化や設計の自由度を阻害するという問題があった。

また、発泡体を主材料とし、中央に中空球を 設けた構造のヘッド本体の中央より後方の 金属製リングを設け、該リングにシャフトを取り付けたゴルフヘッドが提案されているためは は、シャフトが金属に挿入されているためはなっ ク部は強となり生産性が低く高価なものとなる 欠点がある。

本発明は上記問題点に鑑みなされたものであり、熱可数性樹脂をマトリックスとする繊維強化プラスチックを用い、射出成形により成形可

などである。又、強化繊維としては、例えばガラス短繊維、カーボン短繊維、ケブラー短繊維などの短繊維が用いられる。

上記の熱可塑性樹脂と強化繊維からなる繊維強化プラスチック材は射出成形機を使用し均一な製品を短時間で形成しうる特徴がある。

さらに、本発明における射出成形によりフェイス部・バック部を構成する外殻としては、地面と接するソール側のみを開口した形状であってもよいし、又両者を接合して中空体が形成される形状の2体のフェイス部とバック部などであってもよい。

トリックスとした強化級維を用いて射出成形機 によりヘッド本体を作る場合には、フェイス部 に十分な強度と開性がえられずしたがってフェ イス部の肉厚を20四以上にする必要があり重 載上中空体の成形は困難であったが、 運続機能 を用いた繊維強化プラスチックよりなる補強層 の形成によりこれを解決することができた。例 えば熱可塑性樹脂であるナイロンをマトリック スとする30% wt のガラス短畿維材の射出成 形品の機械的特性は、曲げ強度が25㎏化画、 曲げ弾性率が800㎏幻場であり、これに対し 連続繊維強化材として例えば熱硬化性のエポキ シ樹脂をマトリックスとするカーボン繊維の一 方向材では曲げ強度が160時1/11点、曲げ弾性 率が12000㎏1/耐であり、又同上組成のク ロス材では曲げ強度85㎏1/量、曲げ弾性率6 0 0 0 10 11/ 페である。上記はマトリックスに熱 硬化性樹脂を用いた連続強化繊維の場合を示し たが、熱可塑性樹脂をマトリックスとした連続 強化繊維の場合にも短線維を用いた場合よりも

さらに、フェイス部における補致層の位置は、ポールと衝突する面に屢くのが強度に対する補強効果が最も大きいが、上記補強層と射出成形したフェイス部との界面における層間剥離による強度低下を考えるとフェイス部の中間層とした方が耐疲労性は向上する。

なお、ポールを打った時の打撃音を変えるために比重 0.2以下の低比重の発泡ポリウレタンをヘッド本体内に充塡しても差支えない。ただし比重 0.2以上では重量が増加し設計の自由度が低下して好ましくない。

(奥施 例)

以下、図面に基づき本発明の内容を説明する。 第1図は本発明によるゴルフクラブのヘッドの 実施例を示す斜視図、第2図は第1図のA-A 断面図である。

突 脑 份 一 1

1は外殻であるフェイス部5とパック部6を 接合して中空部4を設けてなるヘッド本体である。フェイス部5とパック部6はそれぞれガラ 強度の大きいものがえられるからである。

上記逆統繊維の種類としては、ガラス繊維、カーボン繊維及びケブラー繊維が良く、又形態はクロスあるいは一方向材を便宜角度を変えて組合せたものがよい。

金属枠 2 は鋳鉄製で、リング状の枠の部分の 厚さ約 1.2 ㎜、幅 1 0 ㎜である。又リング部分 は幅 8 0 ㎜、高さ 4 4 ㎜のほぼ楕円形状であり、 フェイス部 5 後方に数けられる切込部 5 b に嵌合する。

金周枠2に設けられたシャフト挿込部2aは

外径11mで内径 8.1mm、深さ50mの孔が設けられている。なお金属枠2の宜量は67gである。

上記のように構成したヘッドは、厚さ44mm、フェイス面5aの幅80mm、フェイス面5aから金属枠2までの長さ15mm、金属枠2からサイドソール9までの長さ35mm、サイドソール9の幅10mm、フェイス面5aから後端までの長さ70mm、重量195g、体積210cdである。

奥施例一2

実施例―Iで作成したヘッド本体の中空部 4 に比重 0.15 となるように配合した硬質ポリウレタン液を 10gに注入し発泡体を形成し重量 205gのヘッドを作製した。

実施例一3

実施例1における補強層7として熱硬化性樹脂であるエポキシ樹脂を含浸したカーボン繊維一方向性プリブレグを積層し厚さ6 mmでフェイス面5 s の形状に成形した積層板を用いた。そ

ドは従来のパーシモン材の 1.6 倍であり、方向 性が良くなることが確認できた。

又、各ヘッドに同一仕様のシャフトを挿入し、 ウッド用ゴルフクラブに組立て試打をした。

ボールと衝突する時のヘッドスピードを40.

TM を打ち続けた結果、比較例のクラブでは約500打でフェイス部に
わずかなくほみが生じ、約1000打でヘアクラックを生じた。

これに対し実施例1.2、3のゴルフヘッドでは3000打まで試打したが異常はなかった。

の他は実施例-1と全く同一のヘッドである。 比較例-1

フェイス部5に補強層7を設けていないがそ の他は実施例―1と全く同一のヘッドである。 次に上記それぞれのゴルフヘッドの慎性モー メントを測定した。この慣性モーメントはゴル フヘッドとボールが貧突したときのポールの方 向性に影響を及ぼし、慣性モーメントの大きい 方が衝突時におけるゴルフヘッドのぶれが少な くポールの方向性がよくなる。測定は各ゴルフ ヘッドの重心をピアノ線で吊し、ソール面が水 平となるように回転させその時の固有振動数を **顔定し、との顔定値から慣性モーメントを計算** した。また比較のために従来のパーシモン材の ゴルフヘッドで重量と体積がほぼ等しいものを 選び同様に測定した。その結果、実施例1、2、 3及び比較例の射出成形によるゴルフヘッドの 復姓モーメントは 2.1 × 1 0寸砂fmS' で、パー シモン材によるゴルフへッドの場合には 1.3 × 1 0⁻¹ by f mm S* であり、本発明によるゴルフへッ

(発明の効果)

4. 図面の簡単な説明

第1回は本発明によるゴルフクラブのヘッド の実施例を示す斜視図、第2回は第1回のAー A断面図である。

符号の説明

1 …ヘッド本体 2 … 金属枠・

2 * …シャフト挿入部 3 …シャフト

4 … 中空部 5 … フェイス部

-442-

5mツェイス面

· 5 b ··· 切込部

6 … パック部

7 … 補 強 腳

8…サイドソール

9 … 固定ネジ

代理人 弁理士 廣凝

*

第 | 図

第 2 図