Problem / Overview

Course: Networking Fundamentals

Module: Transport

Ethernet Addressing

- Recall:
 - Each NIC has a MAC address
 - Each frame contains src and dest MAC address

IP Addressing

- In Ethernet we saw table had 1 entry per destination
- That doesn't scale to billions of devices worldwide
- Solution add structure to addresses so devices can be grouped

Problem 1: Multiplexing

We have multiple applications running –
 which application is a packet for?

Service Model of the Internet Protocol

- Best Effort
 - Delivery packets may get dropped
 - Timing no guarantee on how long it takes to deliver a packet
 - Order packets may get re-ordered in the network
- Reasoning: inter-connecting different link layers, so needs to be lowest common denominator

Problem 2: Reliable Transfer

• Goal - Allow an application to be assured that what they send is what is received (same data, same order).

Problem 3: Congestion Control

- Congestion in the network will occur leading to packets being dropped
- Goal: What if senders could detect this and backoff as needed?

Transport Overview

- Multiplexing
- Reliable Transfer
- Congestion Control

Multiplexing

Course: Networking Fundamentals

Module: Transport

Ethernet Addressing

- Recall:
 - Each NIC has a MAC address
 - Each frame contains src and dest MAC address

IP Addressing

- In Ethernet we saw table had 1 entry per destination
- That doesn't scale to billions of devices worldwide
- Solution add structure to addresses so devices can be grouped

Problem 1: Multiplexing

We have multiple applications running –
 which application is a packet for?

Transport

- Networking layer is for communication between hosts
- Transport layer is for communication between processes

Transport Addressing - Ports

Main Transport Protocols

- UDP
- TCP

Aside – Message Naming

- Link layer Frame
- Network layer Packet
- Tansport layer Datagram
- Application layer (next module) Message

Connectionless vs Connection-oriented

Connectionless

- Host uses Dest IP and Dest Port to demultiplex to specific process
- Doesn't require establishment
- Only state is (IP, port) → process mapping
- Connection-oriented
 - 4 tuple of Src IP, Dest IP, Src Port, Dest Port identifies the connection
 - Requires establishment before data transfer
 - Host keeps more state about the connection

User Datagram Protocol (UDP)

- Connectionless
- Simple multiplexing / demultiplexing
- Inherits IP's service best effort delivery of each datagram

UDP datagram header

Offsets	Octet	0								1								2									3								
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
0	0	·	Source port												Destination port																				
4	32		Length																(Chec	ksur	n													

Transport Control Protocol (TCP)

- Connection-oriented
- Single process can have multiple connections
 - (src IP, dest IP, src Port, dest Port) identifies the connection
- In-order reliable stream (more in next lessons)

TCP segment header																																					
Offs	ets	0								1									2									3									
Octet	Bit	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0		1 2	3	4	5	6	7				
0	0		Source port																	С)es	tina	tior	n	port												
4	32		Sequence number																																		
8	64		Acknowledgment number (if ACK set)																																		
12	96	Dá	Data offset Reserved C E U A P R S F W C R C S S Y I Window Size Window Size																																		
16	128					•			C	hec	ksur	n										Urç	gen	рс	inte	er (i	f١	URG	se	et)							
20	160																																				
:	:							Ор	tior	ns (if	dat	a off	set >	> 5.	Pado	ded	at th	e e	nd	with	า "0)" b	its	f ne	ece	ssa	ary	/.)									
56	448																																				

Reliable Transfer

Course: Networking Fundamentals

Module: Transport

Problem 2: Reliable Transfer

• Goal - Allow an application to be assured that what they send is what is received (same data, same order).

Motivation 1: Frame/Packet Error

- Recall at link layer errors may occur (e.g., from interference)
- Ethernet has a CRC field to be able to detect errors
- But not fix errors so, drop frames that are in error

Motivation 2: Dropping due to Congestion

- Recall router architecture queues packets for transmission.
- If incoming rate > outgoing rate then buffer will fill up

Motivation 3: Packet Re-ordering

- Recall routing calculates best path, and can change over time
- In example new path is shorter transmission delay than old

TCP Mechanisms for Reliable Transfer

• Recall – TCP provides abstraction of a reliable in order stream

TCP Mechanisms for Reliable Transfer (1)

Sequence Number

56

448

 Indicates which bytes in the stream the datagram contains

Offsets 0 2 3 0 1 2 3 4 5 6 Octet Destination port Source port 0 0 Sequence number 32 4 8 64 Acknowledgment number (if ACK set) E C E S Y Reserved Window Size 12 Data offset 0000 Urgent pointer (if URG set) 128 16 Checksum 20 160 Options (if *data offset* > 5. Padded at the end with "0" bits if necessary.)

TCP segment header

TCP Mechanisms for Reliable Transfer (2)

- Acknowledgement Number
 - Specifies what is the next byte in the stream receiver expects

TCP Mechanisms for Reliable Transfer (3)

Re-transmission

• Sender can re-send unacknowledged bytes in the stream

TCP segment header																																	
Offs	ets	0				1									2									3									
Octet	Bit	0 1 2 3	3 4	5 6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7				
0	0	Source port																	D	est	ina	tion	pc	rt									
4	32	Sequence number																															
8	64	Acknowledgment number (if ACK set)																															
12	96	Data offse	Data offset Reserved C E U A P R S F W C R C S S Y I Window Size W E G K H T N N																														
16	128				С	hecl	ksun	n									ι	Jrge	ent	poi	inte	er (i	f UI	RG	set)							
20	160																																
1	ŧ			Ор	tion	ıs (if	data	a offs	set >	> 5.	Pad	ded	at th	e e	nd \	with	"0	" bit	s if	ne	ces	ssa	ry.)										
56	448																																

When to Re-transmit

- Timeout
- ACK

Aside – Message Exchange Diagram

Aside – Message Exchange Diagram

Aside – Message Exchange Diagram

When to Re-transmit - Timeout

When to Re-transmit – Duplicate Ack

What about drops at the Receiver?

- Sender may be able to send at higher rates than receiver can accept
- Goal: Make it so the sender cannot overwhelm the receiver

Flow Control

- TCP receiver "advertises" free buffer space in rwnd field in TCP header
- sender limits amount of unACKed ("in-flight") data to received rwnd

TCP receiver-side buffering

Flow Control – TCP Header

Window Size field –how many bytes the host is currently able to receive

TCP segment header																																		
Offse	0							1									2									3								
Octet	Bit	0 1 2 3 4 5 6 7								1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0		1 2	3	4	5	6	7		
0	0	Source port														Destination port																		
4	32	Sequence number																																
8	64		Acknowledgment number (if ACK set)																															
12	96	Data offset Reserved C E U A P R S F W C R C S S Y I Window Size																																
16	128		Checksum														Urgent pointer (if URG set)																	
20	160																																	
:	÷						Op	tior	ns (if	dat	a off	set >	> 5.	Pad	ded	at th	e e	nd v	with	n "O	" bi	ts i	f ne	ece	ssa	ary	/.)							
56	448																																	

Summary – Reliable Transfer

Sequence Number

Acknowledgement Number

• Re-transmission

Flow Control

TCP Connection Establishment

Course: Networking Fundamentals

Module: Transport

Problem 2: Reliable Transfer

• Goal - Allow an application to be assured that what they send is what is received (same data, same order).

Summary – Reliable Transfer

Sequence Number

Acknowledgement Number

• Re-transmission

Flow Control

Process

Send Buffer

Received Ack for 0-199, still has 200-299 in buffer to retransmit

Connection Establishment

- TCP is connection oriented
- Connection establishment is an exchange of messages where each process agree to form a connection
- Uniquely identified by (src IP, dest IP, src Port, dest Port)
- Three way handshake
 Basically: A to B) I'd like to connect, B to A) Ok, A to B) Thanks.

TCP Flags Used in Connection Establishment

- SYN synchronize sequence number
- ACK the acknowledgement number field is valid

TCP segment neader																																			
Offs	ets	0								1								2									3								
Octet	Bit	0 1 2 3 4 5 6 7									1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	1 2	3	4	5	6	7		
0	0		Source port														Destination port																		
4	32		Sequence number																																
8	64		Acknowledgment number (if ACK set)																																
12	96	Da	Data offset Reserved C E W A R R S F W C R C S S Y W R E C K H T N N																																
16	128		Checksum														Urgent pointer (if URG set)																		
20	160																																		
1	÷							Op	otior	ns (it	f dat	a off	set >	> 5.	Pad	ded	at th	e e	nd \	with	n "O	" bits	s if	f ne	eces	ssa	ry.	.)							
56	448																																		

TCP segment header

TCP Connection Establishment (3-way handshake)

TCP Connection Establishment (3-way handshake)

SYN, seq# = 1000

ACK, ack# = 1001 SYN, seq# = 600 В

Host B picks its own starting sequence number.

Acknowledge with the next sequence number its expecting

Time

TCP Connection Establishment (3-way handshake)

ACK, ack# = 1001

SYN, seq# = 600

A

SYN, seq# = 1000

B

Host A acknowledges

the next sequence number it's expecting

ACK, ack# = 601

Time

What if Packets are Lost during Connection Establishment?

SYN, seq# = 1000

ACK, ack# = 1001 SYN, seq# = 600

ACK, ack# = 601

Time

В

Pkt 1 lost - A won't get an ACK, will resend

Pkt 2 lost - A won't get an ACK (for pkt1), will resend pkt 1. B will ACK re-transmitted pkt1

Pkt 3 lost - B won't get an ACK (for pkt2), will resend pkt 2. A will ACK retransmitted pkt2

Congestion Control

Course: Networking Fundamentals

Module: Transport

Problem 3: Congestion Control

- Congestion in the network will occur leading to packets being dropped
- Goal: What if senders could detect this and backoff as needed?

How Congestion Happens

Send rate out of a link lower than the receive rate
 (e.g., different bandwidths, or forwarding from multiple ports to one)

Time

What Happens When Congestion Occurs

- Packets get dropped (by router)
- Then re-transmitted (by host)

End Result – Congestion Collapse

- When nearing capacity, goodput decreases rapidly
- Buffers get full, but sending keeps overloading them, so more and more packets getting dropped and re-transmitted

Congestion Control

- Can we get the network to operate just before it collapses?
- Goal efficient, fair

Fair and Efficient Illustrated

- Fair each flow receives an equal share of the bandwidth of a link
- Efficient full bandwidth of link is used

Resource Allocation Approaches

- Reservation in network, reserve bandwidth on each router
- Feedback and Adjust on hosts, detect congestion and adjust send rate

TCP Congestion Control Overview

Senders can increase sending rate until congestion occurs, then decrease sending rate

- Feedback implicit
- Adjust window-based

TCP Congestion Control

Course: Networking Fundamentals

Module: Transport

Problem 3: Congestion Control

- Congestion in the network will occur leading to packets being dropped
- Goal: What if senders could detect this and backoff as needed?

TCP Congestion Control Overview

Senders can increase sending rate until congestion occurs, then decrease sending rate

- Feedback implicit
- Adjust window-based

Feedback

- Packet Loss
 - Timeout
 - Duplicate ACK
- Packet Delay
- Explicit Congestion Notification (requires router support)

Window

 Host limits sending through a Congestion Window (cwnd)

lastByteSent – lastByteAck ≤ cwnd

Note: recall flow control – window size TCP header field. (rwnd)

cwnd is internal state on host

last byte ACKed ("in-flight")

| Cwnd | Ownd | Ownd

Adjusting Congestion Window

- Additive Increase Multiplicative Decrease (AIMD)
- Shown to:
 - optimize congested flow rates network wide!
 - have desirable stability properties

Additive Increase

increase sending rate by 1 maximum segment size every RTT until loss detected

Multiplicative Decrease

decrease sending rate by some multiplicative factor (e.g., by half) when loss detected

Additive Increase

 Timeline with increase cwnd by MSS for each RTT (but, do it partially with each ACK)

Increment = MSS x (MSS/CongestionWindow)
CongestionWindow += Increment

Multiplicative Decrease

- When detect congestion, decrease send rate
- Leads to sawtooth pattern
 - AI (probe for bandwidth), MD (rapidly correct)
- Multiplicative has been shown to be a necessary condition for stability

Why AIMD Conceptually Works

Increase is linear (all increase the same)

• Decrease is proportional to send rate, so converge towards fair line

TCP Slow Start

- Additive increase is too conservative (too slow to get to congestion)
- TCP Slow Start Increase cwnd every Ack (instead of every RTT)

