

〔12〕发明专利申请公开说明书

B24

〔21〕申请号 93100115.3

〔51〕Int.Cl⁸

C12P 21/02

〔43〕公开日 1993年7月14日

〔22〕申请日 93.2.6

〔71〕申请人 北京中化生物技术研究所

地址 100850 北京市海淀区太平路 27 号

〔72〕发明人 赵春华 唐佩兹 王嘉盈

〔74〕专利代理机构 北京师范学院专利事务所

代理人 林 强

C12N 15/64 C12N 15/66

C12N 15/70 A61K 37/42

THE BRITISH LIBRARY

17 SEP 1993

SCIENCE REFERENCE AND
INFORMATION SERVICE

说明书页数：5 附图页数：3

〔54〕发明名称 白介素 6-白介素 2 融合蛋白及其制法
和用途

〔57〕摘要

本发明公开了一种具有抗癌性白介素 6 活性及白介素 2 活性的融合蛋白，通过优化转译起始序列，合成 IL6、IL2 功能区上、下游引物及中间接头一对寡核苷酸，将天然终止密码子 TAG 换成大肠杆菌偏性密码子 TAA，PCR 扩增获得 IL-6、中链接头、IL-2 基因片段，经酶切、连接重组至表达载体 PBV220，诱导高效表达，分离包涵体，变性、复性获得具有 IL2、IL6 双活性融合蛋白。它较 IL6、IL2 单因子或双因子联合在多领域的研究有更多的生物学效应。

<02>

权利要求书

1、一种白介素6—白介素2的融合蛋白，其特征在于是由白介素6—中间接头—白介素2多肽序列组成，分子量为36—38KDa。

2、根据权利要求1所述的融合蛋白，其特征在于所述中间接头序列的长度为15—45个氨基酸。

3、根据权利要求1和2的融合蛋白，其特征在于所述的中间接头是由天门冬酰胺、丝氨酸、甘氨酸、苏氨酸、丙氨酸所组成。

4、根据权利要求1的融合蛋白，其特征在于含有图1(B)序列。

5、根据权利要求1的融合蛋白，其特征在于含有图1(C)序列相应的氨基酸序列。

6、一种白介素6—白介素2融合蛋白的制备方法，其特征在于：

(1) 白介素6功能区基因的克隆

(2) 中间接头与白介素2功能区基因的克隆

(3) 融合蛋白的表达载体 pET20 进行表达

(4) 大肠杆菌的高效表达融合蛋白

(5) 纯化，经分子筛凝胶过滤及高压液相而获得纯品

7、根据权利要求1的融合蛋白，可应用于免疫调节抗癌、抗淋巴瘤的药剂。

说 明 书

白介素6—白介素2融合蛋白及其制法和用途

本发明涉及一种具有功能蛋白的白介素6(II-6)一白介素2(II-2)融合蛋白及其制法和用途，特别涉及具有免疫调节抗癌、淋巴瘤等功能的白介素6—白介素2融合蛋白及采用生物高技术制备方法。

以往研究表明：II-2是由T细胞分泌的一种细胞因子，具有广泛的免疫活性，临床应用可使25—30%的淋巴瘤、肾癌、黑色素瘤病员达到治愈或有效。结肠癌及非何杰金氏淋巴病也有较好疗效，而且可增强免疫力，提高抗B型肝炎病毒免疫力。II-6是继II-2等细胞因子后又一具有明显抗癌活性的生物免疫调节剂，属参与造血、免疫的多功能因子，其特点为抗肿瘤活性高，毒性作用小。新近实验证实，II-6可诱导的ILK活性也可直接作用于杀伤细胞，促进其功能分化。[Gazzan RC, et al, Proc. Natl. Acad. Sci. USA, 1987; 84: 7629] [Okada Ketal, J. Immunol., 1988; 141: 1543] 这些都是II-2、II-6单因子在某些领域的研究，目前尚未见具有II-2—II-6融合蛋白的报道。

本发明的目的是提供一种白介素6—白介素2融合蛋白。

本发明的另一目的是提供一种采用生物高技术来制备白介素

6—白介素2融合蛋白的制备方法。

本发明的又一目的是提供采用白介素6—白介素2融合蛋白作为高效的抗癌药物。

本发明的目的是通过下述的方法实现的。

我们通过优化转译起始序列，合成IL-6功能区上、下游引物，中间接头一对寡核苷酸，IL-2下游引物，将天然终止密码子TAA换成大肠杆菌偏性密码子TAA，PCR扩增获得IL-6，IL-2功能区片段，经纯化后酶切，连接重组至表达载体PBV220，诱导表达、分离纯化包涵体，变性复性获得具有IL-2、IL-6双活性融合蛋白。

IL-6-IL-2融合蛋白较IL-6、IL-2单因子或双因子联合有更多生物学效应。

图1为IL-6-IL-2融合蛋白DNA序列图，碱基对bp。

图2为融合蛋白表达载体构造图。其中1是PUC19-IL2，2是PBV220，3是PST-IL2，4是PUC19-IL6，5是PST-IL6IL2，6是IL2基因片段，7是IL6基因片段。

下面结合附图对本实施例作详细说明。

图1，IL-6-IL-2融合蛋白由IL-6序列(DNA序列1—541bp)中间接头(DNA序列541—585bp)IL-2序列(586—990bp)接头15—45bp不等，可由甘、苏、丙、丝及天门冬酰胺组成，IL-2，IL

—6指与天然因子实质上一致，可与相应配基结合，转导生物信息引起生物活性，并可与相应抗体进行反应。

一、IL-6功能区基因克隆。

利用Sequence程序通过计算机分析确定转译的最佳起始区域，使其具有最小自由能，最佳碱基排列，避免可能干扰转译起始的RNA二级结构；确保两个引物之间，引物与模板之间具有最少的配对以避免扩增不必要的序列；在上游和下游引物中分别导入EcoRI和MdeI酶切位点加入起始密码子ATG。MdeI酶切位点是将IL-6 5'末端CAA ATG突变为CAT ATG而致。人工合成寡核苷酸引物：左侧（上游）引物5' CCG AAT TC ATG CAACAT TCC AA A GAT 3'，右侧（下游）引物5' TAC ATA TCC CGA ACA CCC CCT 3'。以IL-6 cDNA为模板，PCR扩增IL-6基因片段，获得约540bp产物，将上述片段经蛋白酶K消化处理后、酚/氯仿、乙醇沉淀萃取RNA经EcoRI酶切后与PUC19载体EcoRI, SmaI双酶切后重组，转化JM101受体菌，筛选白斑菌落，酶切鉴定获得阳性克隆PUC19-IL6。

二、中间接头与IL-2功能区基因克隆。

我们将天然终止密码子TAC换成大肠杆菌偏性密码子TAA，中间接头为内侧12bp互补的一对寡核苷酸，其中3'端寡核苷酸17bp与IL-2 5'端互补。5'端寡核苷酸5' ATCAT ATG TCC C

GA GGC CGT TCT GGC CGT CGA CGT 13'，3'端寡核苷酸5' ACCTCC ACT CCA CCC ACC TCC TCA ACC TCC ACC 6C3'。IL-2功能区下游引物导入BamHI 酶切位点引物为5' CCC CA TCC TTA A TCA CGT CAG TGT 3' 在最适条件下中间接头由一对寡核苷酸自身退火，延伸产生，利用5' 端寡核苷酸及IL-2下游引物，以IL-2及中间接头为双模板，PCR基因重组获得约150bp IL-2及接头共同片段，该片段上游含有XbaI酶切位点，(图DNA序列535—540碱基(bp)，经纯化后BamHI酶切与BamHI/SmaI双酶切PUC19载体重组，获得阳性克隆PUC19-IL2。

三、融合蛋白表达载体构造。

图2显示PBV220为表达载体，由温度诱导抑制子基因CI857ts，PR与IL串联启动子，SD序列后面紧跟多克隆位点依次为 EcoRI、BamHI。将PUC19-IL2质粒纯化，EcoRI/BamHI双酶解消化，回收IL-2片段(在近EcoRI端含有XbaI至EcoRI小片段PEV多克隆基因区)与BamHI/EcoRI双酶切CIIP去磷酸化PBV220载体重组，酶切鉴定获得PEV-IL2重组质粒。继而纯化该质粒，EcoRI及XbaI双酶切除去小片段，将保留的载体及IL2片段与EcoRI/XbaI双酶切PUC19-IL2的IL-2功能区片段重组，由此获得融合蛋白表达载体PBI-IL2-IL2。

四、大肠杆菌高效表达融合蛋白。

将上述阳性克隆，制备过夜培养物，再以 1% 接种量种子于含多种微量元素 LB 培养基中， 30°C 振摇约 1 小时OD 600 达到 $0.4-0.6$ 转移至 42°C 诱导 $1-2$ 小时，常规收菌、裂解、SDS-PAGE电泳，用薄层扫描仪测得表达蛋白占菌体总蛋白 20% ，蛋白带的分子量为 $36-38\text{kD}$ ，与理论计算分子量相符。融合蛋白氨基酸序列与图 10III 序列相应氨基酸一致。

五、活性测定。

将诱导细菌清洗后超声破碎 $1000\text{rpm } 4^\circ\text{C } 10'$ 离心后， 10mM 脲素洗涤后，多种变性条件， 1M 盐酸胍变性(含 10mM EDTA)在 $25^\circ\text{C} 1$ 小时在一定蛋白保护剂下还原型谷胱甘肽及氧化型谷胱甘肽复性，分别以 IL-1 依赖小鼠杂交瘤细胞系 10III 及 IL-2 依赖细胞株 10I ，测得 IL-1 、 IL-2 活性。

六、纯化

在变性条件下将包涵体经分子筛凝胶过滤后，收集主峰复性后再经反相疏水柱纯化，获得 95% 左右的纯品。

本发明的优点是：

- 1、 IL-1 - IL-2 融合蛋白的抗癌抗淋巴瘤效果比单独的 IL-1 或 IL-2 好。
- 2、本制备方法精确可靠，产品纯度高。

1	ATGGAACTT	CCAAAGATCT	ACCCCCCCC
31	CACAGACAGC	CACTCACTTC	TTCAGAACGA
61	ATTGACAAAC	AAATTCCGTA	CATCTCTCGAC
91	GGCATCTCAG	CCCTGACAAA	GGAGACATGT
121	AAAGAAGACTA	AATTCTCTCA	AAACGACCAA
151	GAGGCCACTGC	CAGAAAAACAA	CCCTGAACTT
181	CCAAAGATGG	CTCAAAATAAGA	TGGATCTTC
211	CAATCTGGAT	TCAATGACCA	CACTTGCTTG
241	CTGAAATACTA	TCACCTGCCT	TTTGGACTTT
271	GAGCTATACTC	TAGAGTACCT	CCAGAAACAA
301	TTTGAGACTA	GTGAGGAACA	ACCCAGACCT
331	GTGCCAGATGA	GTACAAAGT	CCCTATCCAG
361	TTCCTGCACA	AAAAGGCAGA	GAATCTAGT
391	CCAAATAACCA	CCCTCACCC	AAACGACAA
421	GCCAGCCCTG	TCACGGAGCT	GGAGCCACAC
451	AACCAGTGCC	TGGAGGACAT	CAACACTCAI
481	CTCAATTCTCC	CCAGCTTTAA	GGAGTTCCTG
511	CAGTCCAGCC	TGAAECCCTCT	TCGGCATAAC

说 明 书 附 图

541	TGAGGAGGGCG	GTTCTGGGGG	TGGAGGGTCA
571	GGAGGTGGGT	CGAGTGACCT	ACTTCAAAGTT
602	CTACAAAAGAA	AACACAGCTA	CAAATGGAGC
632	ATTTACTGCT	GGATTTACAG	ATGATTTGA
662	ATGGAATTAA	CAATTACAAG	AATCCUAAAC
692	TGACCCAGGAT	GCTCACATT	AAGTTTTACA
722	TGCCCAAGAA	GGCCACAGAA	CTGAAACATC
752	TTCAAGTGTCT	AGAAGAAGAA	CTCAAACCTC
782	TGGAGGAAGT	GCTAAATTAA	GCTCAAAGCA
812	AAAACTTCA	CTTAAGACCC	AGGGACTTAA
842	TGAGCAATAT	CAACGTAATA	GTTCTGGAAC
872	TAAAGGGATC	TGAAACAAACA	TTCATGTGTG
902	AATATGCTGA	TGAGACAGCA	AQCATTGTAG
932	AATTTCTGAA	CAGATGGATT	ACCTTTGTC
962	AAAGCATCAT	CTCAACACTG	ACCTGATAA

图 1

圖 2