GROUP THEORY

$\Phi \ddot{\mathbb{E}} \mathbb{Д} \mathrm{OP}$ АЛЕКСЕЕВ

Содержание

Част	ь 1.	Лекция 1. Группа, подгруппа. Изоморфизм групп.	2
1.	Груп	ша	2
2.	Подг	группы. Изоморфизмы	2

Часть 1. Лекция 1. Группа, подгруппа. Изоморфизм групп.

1. ГРУППА

Определение. $\Gamma pynna$ — это множество G с определённой на нём бинарной операцией (т. е. $\forall a,b\in G$ определён результат операции $a\cdot b\in G$)

- **1.** Ассоциативность: $\forall a, b, c \in G \rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c);$
- **2.** Наличие нейтрального элемента: $\exists e \in G : \forall a \in G \rightarrow a \cdot e = e \cdot a;$
- **3.** Наличие обратного элемента: $\forall g \in G \to \exists g^{-1} \in G : g \cdot g^{-1} = g^{-1} \cdot g = e$.

Группа абелева (коммутативная), если $\forall a, b \in G \rightarrow a \cdot b = b \cdot a$.

3амечание. Произведение $g_1 \cdot g_2 \cdot \dots \cdot g_n$ также не зависит от порядка.

Утверждение 1. $\forall g \in G \to \exists! g^{-1}$.

Доказатель ство. Пусть a — левый обратный к g (т. е. ag=e), b — правый обратный к g (т. е. gb=e). Докажем, что a=b:

$$b = eb = (ag)b = a(gb) = ae = a$$

Упражнение 1. Условие 3 из определения можно заменить на $\forall g \in G \to \exists g^{-1}$ — правый обратный.

Пример 1. $(\mathbb{Z},+)$

Пример 2. $(\mathbb{R}, +)$, и даже (F, +).

Пример 3. ($\mathbb{R}\setminus\{0\},0$), и даже $F^* = (F\setminus\{0\},\cdot)$.

Замечание. Более общо, если R — кольцо, то (R,+) и (R^*,\cdot) — абелевы группы $(R^*$ — множество обратимых элементов R). Хорошо бы доказать, впрочем, что если $a,b \in R^*$, то $ab \in R^*$:

$$ab(ab)^{-1} = abb^{-1}a^{-1} = aa^{-1} = e$$

Пример 4. $M_{n\times n}(F)$ — кольцо. $(M_{n\times n})^* = GL(F)$ — мультипликативная группа невырожденных матриц $n\times n$.

Пример 5. $(\mathbb{Z}_n, +)$ и (\mathbb{Z}_n^*, \cdot) , где \mathbb{Z}_n^* — все взаимно простые с n.

Доказательство. Если $(a,n) \neq 1$, то $ka \not\equiv 1 \pmod n$. Если (a,n) = 1, то $\exists u,v : au + nv = a \Rightarrow au \equiv 1 \pmod n$

Значит $|\mathbb{Z}_n^*| = \varphi(n)$.

Определение. Порядок группы G — это количество её элементов |G|.

Пример 6. Пусть S_n — все перестановки множества $[n] = \{1, \ldots, n\}$, т. е. биекции $[n] \to [n]$. Тогда (S_n, \circ) — группа.

Если Ω — произвольное множество, то аналогичное множество будем обозначать $S(\Omega)$. Это тоже группа.

2. Подгруппы. Изоморфизмы

Определение. Пусть G — группа, $\varnothing \neq H \subset G$. H — nodepynna G, если $\forall a,b \in H \to ab \in H, a^{-1} \in H$. Обозначается как $H \leqslant G$.

Определение. $\{e\} \leqslant G, \, G \leqslant G$ — несобственные подгруппы.

Пример 7. $D_n(F^*) \leq GL_n(F)$, где $D_n(F)$ — множество диагональных матриц над F.

Пример 8. $GL_n(F) \ge SL_N(F) = \{A \in GL_n(F) | \det A = 1\}.$

Упражнение 2. $GL_n(F) \ge T_n(F)$ (T — верхнетреугольные. Здесь с не нулями на диагонали.).

Пример 9. $GL_n(R) \geqslant O_n$ — группа ортогональных матриц $(A^{-1} = A^T)$.

Пример 10. $O_n \geqslant \mathcal{D}_n = \{f \in O_n : f(P_n) = P_n\}$ $(P_n - \text{это многоугольник})$ — группа диэдра.

GROUP THEORY ФЁДОР АЛЕКСЕЕВ

Упражнение 3. $|\mathcal{D}_n| = 2n$ (по n поворотов и симметрий).

Определение. Пусть G и H — две группы. $\varphi:G \to H$ — изоморфизм, если φ — биекция, и $\forall a,b \to$

- (1) $\varphi(ab) = \varphi(a)\varphi(b)$
- (2) $\varphi(a^{-1}) = (\varphi(a))^{-1}$.

Определение. Две группы *изоморфны*, если $\exists \varphi$ — изоморфизм.

Пример 11. $\mathcal{D}_3 \cong S_3$

Пример 12. $\mathbb{C}^*\geqslant \mathbb{C}_n=\{z\in\mathbb{C}:z^n=1\}.$ $\mathbb{Z}_n\cong \mathbb{C}_n\cong$ группе вращений правильного n-угольника.

Упражнение 4. Свойство 2 определения изоморфизма не нужно.

Определение. G — группа, $M \subset G$ — подмножество. Π одгруппой, порождённой множеством M называется пересечение всех подгрупп в G содержащих M:

$$(M) = \bigcap_{H \leqslant G, M \leqslant H} H$$

Утверждение 2. Пересечение любого семейства подгрупп — подгруппа. (в т. ч., (M) — подгруппа)

Доказательство. Пусть $K = \bigcap_{H_i \leqslant G, i \in I} H_i$. Если $a,b \in K$, то $a,b \in H_i \Rightarrow \begin{cases} ab \in H_i \Rightarrow & ab \in K \\ a^{-1} \in H_i \Rightarrow & a^{-1} \in K \end{cases}$ кроме того, $e \in k$.

Утверждение 3. $(M) = \{a_1, \ldots, a_k : \forall i \leqslant k \to a_i \in M \lor a^{-1} \in M\}.$

- $N \subset (M)$: если $a_i, \ldots, a_k \in N$, то $a_i \in (M) \Rightarrow a_1, \ldots, a_k \in (M)$.
- $(M) \subset N$: это так, ибо N подгруппа, содержащая M.