7. For the given functions (expressions)

(a)
$$f(x) = (2-x)^4$$
,

(b)
$$g(x) = \frac{1}{1+\sqrt{x}}$$
,

(c)
$$h(x) = 3 - |x|$$
,

(d)
$$u(x) = \frac{1}{1 - \sqrt{x}}$$
,

find the largest possible domain in \mathbb{R} and the corresponding range.

8. Let $f: D \to C$, defined as $x \mapsto x^2$, with $D, C \subset \mathbb{R}$.

- (a) Give an example for $D, C \subset \mathbb{R}$, such that f is injective. Find another example for $D, C \subset \mathbb{R}$, such that f is not injective.
- (b) Give an examples for $D, C \subset \mathbb{R}$, such that f is surjective. Find another example for $D, C \subset \mathbb{R}$, such that f is not surjective.
- (c) Consider $D = \mathbb{R}$ and $C = \mathbb{R}$.
 - i. For $S_1 := \{-1, 0, 1, 2, \pi\}$, $S_2 := \{x \in \mathbb{R} : -3 \le x \le 4\}$ and $S_3 := \{x \in \mathbb{R} : x < 0 \lor x > 16\}$, determine the image of S_i under f, i.e. compute $f(S_i)$, for i = 1, 2, 3.
 - ii. For $T_1 := \{0, 1, 2, \pi\}$, $T_2 := \{x \in \mathbb{R} : x \ge 0\}$ and $T_3 := \{x \in \mathbb{R} : x < 0\}$, determine the pre-image of T_i under f, i.e. compute $f^{-1}(T_i)$, for i = 1, 2, 3.
- 9. (a) Let $f: \mathbb{R} \to \mathbb{R}$, with f(x) = x + 3 and $g: \mathbb{R} \to \mathbb{R}$, g(x) = x 5. Determine $(g \circ f)(x)$ and $(f \circ g)(x)$.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$, with f(x) = 3x and $g: \mathbb{R} \to \mathbb{R}$, g(x) = -5x. Determine $(g \circ f)(x)$ and $(f \circ g)(x)$.
 - (c) Is function composition commutative, i.e. does $(g \circ f)(x) = (f \circ g)(x)$ hold in general? Justify your answer!
- 10. Investigate if the following functions are injective, surjective or bijective. Sketch the graph of each function and calculate its inverse if possible.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^4$,
 - (b) $g: \mathbb{R}_0^+ \to \mathbb{R}_0^-$ with $g(x) = -x^2$,
 - (c) $h: \mathbb{R}\setminus\{0\} \to \mathbb{R}\setminus\{0\}$ with $h(x) = -x^{-1}$.

- 11. (a) Show that the divisibility relation over \mathbb{N} , that is, $| \subset \mathbb{N} \times \mathbb{N}$, is a partial order. (Recall that the divisibility relation | is defined in the lecture notes as follows: Let m and n be integers. We say that m divides n, and write m|n, if there exists $k \in \mathbb{N}$ such that mk = n.)
 - (b) Restrict the relation above to the finite set $\{1, 2, 3, 4, 5, 6\}$ and give the pairs of elements which are in relation.
- 12. Let $f: M \to N$ be a function and $C, D \subset N$. By

$$f^{-1}(C) := \{x : f(x) \in C\} \subset M$$

we denote the preimage of C under f (Definition 1.8). Is the following statement true?

$$f^{-1}(C) \cap f^{-1}(D) = f^{-1}(C \cap D).$$

If true, provide a proof, and if false, a counterxample!