2.55.
$$y = \left[\log_{1/2} x^2\right];$$
2.64. $y = 3\left|\sin\left(2x + \frac{\pi}{3}\right)\right| - 2;$
2.73. $y = \arccos\frac{1-x^2}{1+x^2};$
2.56. $y = \sin^2 x - 1;$
2.57. $y = \cos^2 x + \sin 2x;$
2.65. $y = 3\sin\left[\left(2x + \frac{\pi}{3}\right)\right] - 2;$
2.74. $y = \frac{1}{\arctan \left(\|x\| - 1\right)};$
2.58. $y = x + \sin x;$
2.66. $y = x + \operatorname{sign} \sin x;$
2.75. $y = \arctan\left(x - \left[x\right]\right);$
2.59. $y = x \cdot \sin x;$
2.67. $y = \arcsin\frac{1}{x};$
2.76. $y = \arctan \left(x - \left[\arctan \left(x\right]\right);$
2.60. $y = \frac{\sin x}{x};$
2.68. $y = \arccos(\cos x);$
2.77. $y = \frac{2^{1/x}}{1+2^{1/x}};$
2.69. $y = \arccos(\cos x);$
2.78. $y = \left[1/x\right];$
2.79. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.62. $y = \left|3\sin\left(2x + \frac{\pi}{3}\right) - 2\right|;$
2.71. $y = \arctan\left(\frac{x+1}{x+2};$
2.80. $y = \operatorname{sign}\left(\frac{2-x}{2+x};$
2.63. $y = 3\sin\left(2|x| + \frac{\pi}{3}\right) - 2;$
2.75. $y = \arctan\left(x^3 - 4x\right);$
2.77. $y = \frac{2^{1/x}}{1+2^{1/x}};$
2.79. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.80. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.81. $y = \max\left(x^3, \frac{1}{x}\right);$
2.82. $y = \min\left(\cos x, \cos 2x\right).$

2.3 Полярные координаты

Кроме декартовых координат используют и другие координаты точки на плоскости или в пространстве. В частности, на плоскости часто пользуются полярными координатами.

Будем говорить, что на плоскости заданы *полярные координаты*, если заданы

- 1) точка O, называемая *полюс*;
- 2) луч с началом в этой точке, называемый полярной полуосью;
- 3) отрезок, длина которого объявляется равной единице;
- 4) направление вращения полярной полуоси вокруг полюса.

Тогда каждой точке плоскости M можно сопоставить два числа (см. рис.):

 $r\,$ - длина вектора $\mathit{OM}\,$ - $\mathit{paduyc}\,$ и

 φ - угол между вектором \overrightarrow{OM} и полярной полуосью — **полярный угол** (положительный, если он отсчитывается в направлении вращения полуоси и отрицательный, если против).

Числа r и φ , соответствующие данной точке, будем называть **полярны- ми координатами** этой точки.

Очевидно, что каждой паре чисел (r, φ) , $r \ge 0$ соответствует единственная точка на плоскости, но каждой точке можно сопоставить бесконечное множество углов вида $\{\varphi_0 + 2\pi n, n \in \mathbb{N}\}$, где φ_0 - какой-нибудь угол, соответствующий данной точке. Иногда для взаимной однозначности соответствия точек плоскости и пар полярных координат (r, φ) полагают, что φ лежит в пределах одного оборота полярной полуоси, например, что $0 \le \varphi < 2\pi$ или $-\pi < \varphi \le \pi$.

Часто на одной и той же плоскости вводят полярную и декартову системы координат, где начало декартовой системы совпадает с полюсом, положительная полуось OX совпадает с полярной полуосью и совпадают единицы длины

и направление отсчета угла. Такие системы будем называть *согласованными системами*. Для каждой точки плоскости существуют две пары координат (x,y) и (r,φ) , между которыми существует очевидная зависимость:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \lg \varphi = y/x, \end{cases}$$
 или
$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$$

Пример 2.17. На плоскости заданы согласованные полярная и декартова системы координат. Найти полярные координаты точек, если известны их декартовы координаты. (Считать, что $-\pi < \phi \le \pi$).

a)
$$A(2,2)$$
; **b)** $B(5,0)$; **c)** $C(-5,0)$; **d)** $D(0,0)$; **e)** $E(-1,\sqrt{3})$; **f)** $F(-3,-4)$.

② а) Вычислим радиус и тангенс полярного угла:

$$r = \sqrt{x^2 + y^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
, $tg \varphi = y/x = 1$.

Так как точка A находится в первой четверти, то $\varphi=\pi/4$. Таким образом, полярные координаты точки A будут $\left(2\sqrt{2},\pi/4\right)$.

- **b)** Здесь можно использовать графические соображения: длина вектора \overrightarrow{OB} равна 5 и угол, который составляет вектор с полярной полуосью, равен нулю, поэтому полярные координаты точки B(5,0).
- **c)** Аналогично, используя графические соображения, получим $C(5,\pi)$.
- **d)** Длина вектора \overrightarrow{OD} равна нулю. Что касается угла, то угол в данной ситуации не определен. Будем считать, что этой точке соответствует любой угол.

е) $r = \sqrt{1+3} = 2$, $\lg \varphi = y/x = -\sqrt{3}$. Так как точка E находится во второй четверти, то $\varphi = 2\pi/3$.

f) $r = \sqrt{9+16} = 5$, $\lg \varphi = 4/3$. Так как точка F находится в третьей четверти, то $\varphi = \arctan \frac{4}{3} - \pi$. (см. рис.) \bullet

Пример 2.18. На плоскости заданы согласованные полярная и декартова системы координат. Найти декартовы координаты точек, если известны их полярные координаты. **a)** $M\left(2,\frac{\pi}{6}\right)$; **b)** $N\left(4,-\frac{5\pi}{6}\right)$.

 \odot **a)** Координаты вычисляем по формулам: $x = r\cos \varphi = 2\cos\frac{\pi}{6} = \sqrt{3}$, $y = r\sin \varphi = 2\sin\frac{\pi}{6} = 1$.

b) Аналогично
$$x = r\cos\varphi = 4\cos\left(-\frac{5\pi}{6}\right) = -2\sqrt{3}$$
 и $y = r\sin\varphi = 4\sin\left(-\frac{5\pi}{6}\right) = -2$.

Функция $r = r(\varphi)$ задает кривую на плоскости. Рассмотрим несколько примеров построения таких кривых.

Пример 2.19. Построить кривую $r = 2\phi$ (спираль Архимеда).

 \odot Заметим, что в силу определения $r \ge 0$, поэтому аргумент φ изменяется на промежутке $[0,+\infty)$, т.е. вращение полярной полуоси происходит только в положительном направлении и при этом радиус точки возрастает с ростом угла φ . Вычислим координаты нескольких точек:

φ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π	$9\pi/4$
r	0	$\pi/3 \approx 1$	$\pi/2 \approx 1.5$	$2\pi/3 \approx 2$	$\pi \approx 3$	$2\pi \approx 6$	$3\pi \approx 9,4$	$4\pi \approx 12,5$	$9\pi/2 \approx 14$

Теперь по этим точкам строим кривую. •

Пример 2.20. Построить кривую $r = \sin 3\phi$ (Трехлепестковая роза).

 \odot Из условия $r \ge 0$ следует, что кривая определена в секторах $0 \le \varphi \le \pi/3$, $2\pi/3 \le \varphi \le \pi$ и $4\pi/3 \le \varphi \le 5\pi/3$, причем, очевидно, что в каждом секторе кривая выглядит одинаково, поэтому достаточно построить ее только в одном секторе.

Составим таблицу значений радиуса для углов, находящихся в первом секторе.

φ	0	$\pi/18$	$\pi/12$	$\pi/9$	$\pi/6$	$2\pi/9$	$\pi/4$	$5\pi/18$	$\pi/3$
r	0	0,5	$\sqrt{2}/2 \approx 0.7$	$\sqrt{3}/2 \approx 0.9$	1	$\sqrt{3}/2 \approx 0.9$	$\sqrt{2}/2 \approx 0.7$	0,5	0

По этим точкам построим кривую. Лучи $\varphi = 0$ и $\varphi = \pi/3$ являются касательными к кривой.

Пример 2.21. Построить кривую $(x^2 + y^2)^2 = a^2(x^2 - y^2)$, a > 0, перейдя к полярным координатам. (Лемниската Бернулли).

 \odot Положим $x=r\cos\varphi,y=r\sin\varphi$. Тогда уравнение кривой примет вид $r^4=a^2r^2\cos2\varphi$ или $r=a\sqrt{\cos2\varphi}$. Кривая определена в секторах $-\pi/4\le\varphi\le\pi/4$ и $3\pi/4\le\varphi\le5\pi/4$, причем, как и в предыдущем примере, она одинаково выглядит в каждом из этих секторов.

Составим таблицу значений в секторе $-\pi/4 \le \varphi \le \pi/4$:

φ	$-\pi/4$	$-\pi/6$	$-\pi/8$	$-\pi/12$	0	$\pi/12$	$\pi/8$	$\pi/6$	$\pi/4$
r	0	$a/\sqrt{2}$	$a/\sqrt[4]{2}$	$a\sqrt[4]{3}/\sqrt{2}$	а	$a\sqrt[4]{3}/\sqrt{2}$	$a/\sqrt[4]{2}$	$a/\sqrt{2}$	0

Теперь кривую можно построить. •

Пример 2.22. Построить кривую $x^4 + y^4 = x^2 + y^2$, перейдя к полярным координатам.

 \odot Полагая, $x = r \cos \varphi$, $y = r \sin \varphi$, получим

$$r = \frac{1}{\sqrt{\cos^4 \varphi + \sin^4 \varphi}} = \frac{1}{\sqrt{1 - \frac{1}{2}\sin^2 2\varphi}}.$$

Очевидно, что r существует для любого значения φ и период данной функции равен $\pi/2$. Кроме того, заметим, что график функции $\sin^2 2\varphi$ будет симметричен относительно прямой $\varphi = \pi/4$. Поэтому достаточно проследить изменение радиуса в промежутке от нуля до $\pi/4$:

φ	0	$\pi/12$	$\pi/8$	$\pi/6$	$\pi/4$
r	1	$\sqrt{8/7} \approx 1,07$	$\sqrt{4/3} \approx 1,16$	$\sqrt{8/5} \approx 1,27$	$\sqrt{2} \approx 1,41$

Теперь строим кривую в секторе от нуля до $\pi/4$, отображаем ее симметрично относительно луча $\varphi = \pi/4$ и поворачиваем полученную кривую на угол $\pi/2$ три раза, пока не получим замкнутую кривую.

Упражнения

2.83. Построить точки в полярной системе координат и найти их согласованные декартовы координаты:

a)
$$A(1,\pi/4)$$
;

d)
$$D(3,7\pi/6)$$
;

g)
$$G(6,0)$$
;

b)
$$B(2,-\pi/3);$$
 e) $E(7,-\pi);$

e)
$$E(7,-\pi)$$
;

h)
$$H(0,\sqrt{\pi});$$

c)
$$C(\sqrt{2}, 3\pi/4);$$

f)
$$F(2,7\pi/2);$$

i)
$$I(2,-\pi/2)$$
.

2.84. Найти полярные координаты точек, заданных в согласованной декартовой системе:

a)
$$A(3,4)$$
;

d)
$$D(-\sqrt{2}, -\sqrt{2});$$

g)
$$G(-\sqrt{6}, \sqrt{2});$$

b)
$$B(-4,3)$$
;

e)
$$E(1,-\sqrt{3});$$

h)
$$H(-1,-2)$$
;

c)
$$C(0,-2);$$

e)
$$E(1,-\sqrt{3})$$

f) $F(-1,0)$;

i)
$$I(2,-1)$$
.

2.85. Нарисовать кривую, заданную в полярных координатах

a)
$$r = 1$$
;

e)
$$r = 1 + \cos \varphi$$
;

h)
$$r = \varphi^2 - \pi^2$$
;

b)
$$r = \cos 3\varphi$$
;

$$f) r = \cos 4\varphi;$$

i)
$$r = a\sqrt{\varphi}$$
;

c)
$$r = e^{\varphi}$$
;
d) $r = \pi/\varphi$;

$$\mathbf{g)} \ r = \left| \sin 2\varphi \right|;$$

j)
$$\varphi = (r-1)^2$$
.

2.86. Записать в полярных координатах уравнения, задающие следующие множества точек:

а) окружность с центром в полюсе;

b) прямая, проходящая через полюс;

с) окружность, проходящая через полюс, с центром на полярной полуоси;