

CURSO:Engenharia de SoftwareSEMESTRE:01/2020DISCIPLINA:Fundamentos de Arquitetura de ComputadoresCÓDIGO:193674CARGA HORÁRIA:60 horasCRÉDITOS:4

PROFESSOR: John Lenon C. Gardenghi Turma: B

PLANO DE ENSINO

1 Objetivos da Disciplina

O objetivo da disciplina é introduzir ao aluno o funcionamento de um sistema computacional do ponto de vista da relação entre hardware e software.

2 Ementa do Programa

1. Introdução

2. Aritmética Computacional

Introdução à programação em linguagem de montagem

4. Arquitetura interna de um processador

5. Hierarquia de memória

6. Barramento de dados

3 Horário das aulas e atendimento

AULAS: segundas e sextas-feiras, das 8h às 9h50, na sala I3.

ATENDIMENTO: segundas e sextas-feiras, das 10h às 12h, na sala 22-UED.

E-MAIL: john.gardenghi@unb.br.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e eventualmente de projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe. Também contaremos com conteúdos disponibilizados na página web^1 da disciplina e eventualmente na plataforma Aprender², cuja chave de inscrição é FAC_B_FGA@20_1.

5 Critérios de Avaliação

A média final de cada aluno será baseada na média de provas $M_{\rm P}$ e na média de trabalhos $M_{\rm T}$.

Serão realizadas quatro provas. As provas P_1 , P_2 e P_3 versarão sobre o conteúdo dado até a data da prova, excluindo-se o conteúdo da prova anterior (exceto aquele que deve ser inerentemente cobrado), e são

Ihttp://john.pro.br/courses/fac-20-1/

²https://aprender.ead.unb.br/course/view.php?id=6211

obrigatórias a todos os alunos. A prova substitutiva P_{sub} só poderá ser feita pelo aluno que tiver falta justificada na data de alguma das outras 3 provas.

Deste modo, a média das provas M_P será dada por

$$M_{\rm P} = 0.3 \times P_1 + 0.4 \times P_2 + 0.3 \times P_3.$$

Por outro lado, realizaremos n trabalhos $T_i, i=1,2,\ldots,n$ e m listas de exercícios $L_j, j=1,2,\ldots,m$ ao longo do semestre, que também receberão nota de 1 a 10. As listas serão consideradas como 1 ponto extra na média de trabalhos. Ou seja, teremos uma média de listas

$$M_{\rm L} = \frac{\sum_{j=1}^{m} L_j}{m}$$

e a média de trabalhos $M_{\rm T}$ será calculada como

$$M_{\rm T} = rac{\sum_{i=1}^{n} T_i}{n} + rac{M_{\rm L}}{10}.$$

A média final será calculada da seguinte forma:

$$M_{\rm F} = 0.6 \times M_{\rm P} + 0.4 \times M_{\rm T}.$$

Os trabalhos e listas serão divulgados ao longo do semestre, com prazo hábil para conclusão e entrega. Não há trabalho nem lista substitutiva. Ao aluno que deixar de fazer um trabalho ou uma lista, será atribuída nota zero ao correspondente. Também será atribuído zero em uma lista ou trabalho a todos os envolvidos se for detectado plágio.

Para ser aprovado na disciplina, o aluno deve

- obter $M_{\rm F} \geq 5.0$ e
- ter frequência igual ou superior a 75%.

A menção final do curso será dada em função da nota $M_{\rm F}$, de acordo com a tabela abaixo.

$\mathbf{M}_{\scriptscriptstyle{\mathrm{F}}}$	Menção	Descrição
0,0	SR	Sem rendimento
de 0,1 a 2,9	II	Inferior
de 3,0 a 4,9	MI	Médio Inferior
de 5,0 a 6,9	MM	Médio
de 7,0 a 8,9	MS	Médio Superior
9,0 ou maior	SS	Superior

Importante: Será atribuída menção SR ao aluno que tiver menos que 75% de presença ao longo do semestre, mesmo que obtenha $M_{\rm F} > 0$.

6 Cronograma

Sem.	Aula	Data	Conteúdo	
01	1	09/03	Apresentação do curso · Introdução à arquitetura de computadores	
	2	13/03	Linguagem de montagem	
02	3	16/03	Linguagem de montagem	
	4	20/03	Linguagem de montagem	
03	5	23/03	Linguagem de montagem	
	6	27/03	Linguagem de montagem	
04	7	30/03	Linguagem de montagem	
	8	03/04	Linguagem de montagem	
05	9	06/04	Prova 1	
	_	10/04	Feriado	
06	10	13/04	Aritmética computacional	
	11	17/04	Aritmética computacional	
07	12	20/04	Aritmética computacional	
	13	24/04	Aritmética computacional	
08	14	27/04	Aritmética computacional	
	_	01/05	Feriado	
09	15	04/05	Aritmética computacional	
	16	08/05	Aritmética computacional	
10	17	11/05	Prova 2	
	18	15/05	Arquitetura interna de um processador	
11	19	18/05	Arquitetura interna de um processador	
	20	22/05	Arquitetura interna de um processador	
12	21	25/05	Arquitetura interna de um processador	
	22	29/05	Arquitetura interna de um processador	
13	23	01/06	Hierarquia de memória	
	24	05/06	Hierarquia de memória	
14	25	08/06	Hierarquia de memória	
	26	12/06	Hierarquia de memória	
15	27	15/06	Hierarquia de memória	
	28	19/06	Hierarquia de memória	
16	29	22/06	Barramentos de dados	
	30	26/06	Prova 3	
17	31	29/06	Revisão de notas	
	32	03/07	Prova Substitutiva	
18	33	06/07	Revisão final de notas e menções	

7 Bibliografia

BIBLIOGRAFIA BÁSICA

PATTERSON, D. A.; HENNESSY, J. L. **Organização e projeto de computadores**. 3 ed. Elsevier, 2005. TANEMBAUM, A. A. **Organização estruturada de computadores**. 5 ed. Prentice Hall, 2007.

BIBLIOGRAFIA COMPLEMENTAR

STALLINGS, W. Arquitetura e organização de computadores. 8 ed. Prentice Hall. 2010.

WEBER, R.F. Fundamentos de arquitetura de computadores. 3 ed. Editora Sagra, 2004.

WIKINSON, B. Computer Architecture: Design and Performance. 2 ed. Prentice Hall, 1996.

BRYANT, R. E.; O'HALLARON, D. R. **Computer Systems**: A Programmer's Perspective. 2 ed. Addison-Wesley Publishing Company, 2010.