136. Single Number

企 14.1K **只** 553 **公** O

Companies

Given a non-empty array of integers nums, every element appears twice except for one. Find that single one.

You must implement a solution with a linear runtime complexity and use only constant extra space.

Example 1:

Input: nums = [2,2,1]Output: 1

Example 2:

Input: nums = [4,1,2,1,2]Output: 4

Example 3:

Input: nums = [1]Output: 1

Constraints:

- 1 <= nums.length <= 3 * 10⁴
- $-3 * 10^4 \le nums[i] \le 3 * 10^4$
- Each element in the array appears twice except for one element which appears only once.

Accepted 2.2M

Submissions 3.1M | Acceptance Rate 71.0%

 \odot

pproach 1:

Using unordered map

3 6

unordered map <int, int > m;

clement frequency

Traverse the array and fill the unordered map.

Scan this map and return the key whose frequency is

Approach 2:

Using Borting

3	(6	6	3	1	2 5	B
Sort							
\checkmark							
1 1	6	ર	2	3	3	5 6	6

After sorting, start checking from index 1 and see whether

nums (i) = = nums (i-1)its not then return nums (i-1).

0 = 1

O(nlogn)

Approach 8:

Using xor

Single number =
$$3^{1}1^{6}6^{6}3^{1}1^{3}2^{5}$$

(n)