CS21 Decidability and Tractability

Lecture 13 February 5, 2014

February 5, 2014

CS21 Lecture 13

Outline

- undecidable problems
 - computation histories
- surprising contrasts between decidable/undecidable
- · Rice's Theorem
- Post Correspondence problem
- · a non-RE and non-co-RE language
- the Recursion Theorem

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

- two problems regarding Context-Free Grammars:
 - does a CFG generate all strings:

 $ALL_{CFG} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \}$

- CFG emptiness:

 $E_{CFG} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \emptyset \}$

Both decidable? both undecidable? one decidable?

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

<u>Theorem</u>: E_{CFG} is decidable.

Proof:

- observation: for each nonterminal A, the set

 $S_A = \{w : A \Rightarrow^* w\}$

is non-empty iff there is some rule:

 $A \rightarrow x$

and \forall non-terminals B in string x, $S_B \neq \emptyset$

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Proof:

- on input <G>
- mark all terminals in G
- repeat until no new non-terminals get marked:
 - if there is a production $A {\to} x_1 x_2 x_3 ... x_k$
 - and each symbol $\mathbf{x_1},\,\mathbf{x_2},\,...,\,\mathbf{x_k}$ has been marked
 - then mark A
- if S marked, reject (G∉E_{CFG}), else accept (G∈E_{CFG}).
- terminates? correct?

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Theorem: ALL_{CFG} is undecidable.

Proof:

- reduce from co- A_{TM} (i.e. show co- $A_{TM} \leq_m ALL_{CFG}$)
- what should f(<M, w>) produce?
- Idea:
 - produce CFG G that generates all strings that are not accepting computation histories of M on w

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Proof:

- build a NPDA, then convert to CFG
- want to accept strings not of this form,

#C1#C2#C3#...#Ck#

plus strings of this form but where

- C₁ is not the start config. of M on input w, or
- Ck is not an accept. config. of M on input w, or
- C_i does not yield in one step C_{i+1} for some i

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Proof:

- our NPDA nondeterministically checks one of:
 - C₁ is not the start config. of M on input w, or
 - Ck is not an accept. config. of M on input w, or
 - C_i does not yield in one step C_{i+1} for some i
 - input has fewer than two #'s
- details of first two?
- to check third condition:
 - nondeterministically guess C_i starting position
- how to check that C_i doesn't yield in 1 step C_{i+1}?

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Proof:

- checking:
 - C_i does not yield in one step C_{i+1} for some i
- push C_i onto stack
- at #, start popping C_i and compare to C_{i+1}
 - · accept if mismatch away from head location, or
 - symbols around head changed in a way inconsistent with M's transition function.
- is everything described possible with NPDA?

February 5, 2014

CS21 Lecture 13

Dec. and undec. problems

Proof

- Problem: cannot compare C_i to C_{i+1}
- could prove in same way that proved

 $\{ww:\ w\in \Sigma^*\}\ not\ context\text{-free}$

recall that

 $\{ww^R\colon w\in \Sigma^*\} \text{ is context-free }$

- free to tweak construction of G in the reduction
- solution: write computation history:

#C₁#C₂R#C₃#C₄R...#C_k#

February 5, 2014 CS21 Lecture 13 10

Dec. and undec. problems

Proof:

-f(<M, w>) = <G> equiv. to NPDA below:

on input x, accept if not of form: $\#C_1\#C_2^R\#C_3\#C_4^R...\#C_k\#$

- \bullet accept if C_1 is the not the start configuration for M on input w
- accept if check that C_i does not yield in one step C_{i+1}
- accept if C_k is not an accepting configuration for M
- is f computable?
- YES maps to YES? <M, w> \in co-A_{TM} \Rightarrow $f(M, w) \in ALL_{CFG}$
- NO maps to NO?

<M, w> \notin co-A_{TM} \Rightarrow $f(M, w) \notin ALL_{CFG}$

February 5, 2014

CS21 Lecture 13

Rice's Theorem

- We have seen that the following properties of TM's are undecidable:
 - TM accepts string w
 - TM halts on input w
 - TM accepts the empty language
 - TM accepts a regular language
- Can we describe a single generic reduction for all these proofs?
- Yes. Every property of TMs undecidable!

February 5, 2014

CS21 Lecture 13

2

Rice's Theorem

- · A TM property is a language P for which - if $L(M_1) = L(M_2)$ then $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$
- TM property P is nontrivial if
 - there exists a TM M_1 for which $\langle M_1 \rangle \in P$, and
 - there exists a TM M_2 for which $\langle M_2 \rangle \notin P$.

Rice's Theorem: Every nontrivial TM property is undecidable.

February 5, 2014

CS21 Lecture 13

13

Rice's Theorem

- · The setup:
 - let T_{\emptyset} be a TM for which $L(T_{\emptyset}) = \emptyset$
 - technicality: if $< T_{\varnothing} > \in P$ then work with property co-P instead of P.
 - conclude co-P undecidable; therefore P undec. due to closure under complement
 - so, WLOG, assume <T_Ø> ∉ P
 - non-triviality ensures existence of TM M₁ such that $< M_1 > \in P$

February 5, 2014

CS21 Lecture 13

Rice's Theorem

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m P$)
- what should f(<M, w>) produce?
- f(<M, w>) = <M'> described below:

on input x, · accept iff M accepts w and M₁ accepts x (intersection of two RE languages)

- · f computable?
- YES maps to YES?

<M, w> \in A $_{TM}$ \Longrightarrow $L(f(M, w)) = L(M_1) \Rightarrow$ $f(M, w) \in P$

February 5, 2014 CS21 Lecture 13

Rice's Theorem

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m P$)
- what should f(<M, w>) produce?
- -f(<M, w>) = <M'> described below:

on input x, · accept iff M accepts w and M₁ accepts x (intersection of two RE languages)

• NO maps to NO?

<M, w $> \notin A_{TM} \Rightarrow$ $\mathsf{L}(\mathsf{f}(\mathsf{M},\mathsf{w})) = \mathsf{L}(\mathsf{T}_\varnothing) \Rightarrow$ $f(M, w) \notin P$

16

February 5, 2014

CS21 Lecture 13

Post Correspondence Problem

- · many undecidable problems unrelated to TMs and automata
- · classic example: Post Correspondence Problem

PCP = { $<(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)>$: $x_i, y_i \in \Sigma^*$ and there exists $(a_1, a_2, ..., a_n)$ for which $x_{a_1}x_{a_2}...x_{a_n} = y_{a_1}y_{a_2}...y_{a_n}$

February 5, 2014

CS21 Lecture 13

Post Correspondence Problem

Post Correspondence Problem

Theorem: PCP is undecidable.

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m PCP$)
- two step reduction makes it easier
- first, show A_{TM} ≤_m MPCP

(MPCP = "modified PCP")

- next, show MPCP ≤_m PCP

February 5, 2014

CS21 Lecture 13

19

Post Correspondence Problem

$$\begin{split} & \text{MPCP} = \{<(\textbf{x}_1, \textbf{y}_1), \, (\textbf{x}_2, \textbf{y}_2), \, ..., \, (\textbf{x}_k, \textbf{y}_k)>: \\ & \textbf{x}_i, \, \textbf{y}_i \in \, \Sigma^* \text{ and there exists } (\textbf{a}_1, \textbf{a}_2, \, ..., \, \textbf{a}_n) \text{ for } \\ & \text{which } \, \textbf{x}_1 \textbf{x}_{\textbf{a}_1} \textbf{x}_{\textbf{a}_2} ... \textbf{x}_{\textbf{a}_n} = \textbf{y}_1 \textbf{y}_{\textbf{a}_1} \textbf{y}_{\textbf{a}_2} ... \textbf{y}_{\textbf{a}_n} \} \end{split}$$

Proof of MPCP \leq_m PCP:

- notation: for a string $u = u_1u_2u_3...u_m$
 - *u means the string *u₁*u₂*u₃*u₄...*u_m
 - u* means the string u₁*u₂*u₃*u₄...*u_m*
 - *u* means the string *u₁*u₂*u₃*u₄...*u_m*
- February 5, 2014 CS21 Lecture 13

Post Correspondence Problem

Proof of MPCP \leq_m PCP:

- given an instance $(x_1, y_1), ..., (x_k, y_k)$ of MPCP
- produce an instance of PCP:

 $(*x_1, *y_1*), (*x_1, y_1*), (*x_2, y_2*), ..., (*x_k, y_k*), (* •, •)$

- YES maps to YES?
 - given a match in original MPCP instance, can produce a match in the new PCP instance
- NO maps to NO?
 - given a match in the new PCP instance, can produce a match in the original MPCP instance

February 5, 2014

CS21 Lecture 13

Post Correspondence Problem

- YES maps to YES?
 - given a match in original MPCP instance, can produce a match in the new PCP instance

22

February 5, 2014 CS21 Lecture 13

Post Correspondence Problem can't match unless start - NO maps to NO? with this tile • given a match in the new PCP instance, can produce a match in the original MPCP instance *X2 *X₁ *X3 *X4 "*" symbols must align X_2 X_1 X_3 X_4 X_4 can only appear at the end February 5, 2014 CS21 Lecture 13