Ecuaciones Diferenciales

Hugo Del Castillo Mola

18 de septiembre de 2022

Índice general

1.	Teoremas de Existencia y Continuidad	2
	1.1. Preliminares	2

Capítulo 1

Teoremas de Existencia y Continuidad

1.1. Preliminares

Lema 1.0.1 (Lema de Gronwall). *Sea* $J \subset \mathbb{R}$, $t_0 \in J$ y $a, \beta, u \in C(J, \mathbb{R}_+)$. *Si*

$$u(t) \le a(t) + \Big| \int_{t_0}^t \beta(s) u(s) ds \Big|, \forall t \in J,$$

Entonces,

$$u(t) \le a(t) + \left| \int_{t_0}^t a(s)\beta(s)e^{\left| \int_s^t \beta(\sigma)d\sigma \right|} ds \right|, \forall t \in J.$$

Demostración. Sea $v(t) = \int_{t_0}^t \beta(s) u(s) ds$. Entonces,

$$\dot{v}(t) = \beta(t)u(t)$$

$$\leq \beta(t)a(t) + \beta(t) \Big| \int_{t_0}^t B(s)u(s)ds \Big|, \forall t \in J.$$

$$\leq a(t)\beta(t) + \operatorname{sgn}(t - t_0)\beta(t)v(t), \forall t \in J.$$

Ahora, sea
$$\gamma = \exp\big\{-\left|\int_{t_0}^t \beta(s)ds\right|\big\} = \exp\big\{-\int_{t_0}^t \mathrm{sgn}(t-t_0)\beta(s)ds\big\}$$
,

 $\gamma \dot{v} \leq a \beta \gamma - \dot{\gamma} v \Rightarrow \dot{\gamma v} - a \beta \gamma \leq 0$ donde integrando tenemos que

$$\operatorname{sgn}(t - t_0)v(t) \le \operatorname{sgn}(t - t_0) \int_{t_0}^t \frac{a\beta\gamma}{\gamma(t)} ds, \forall t \in J.$$

$$= \Big| \int_{t_0}^t \frac{a(s)\beta(s)\gamma(s)}{\gamma(t)} ds \Big|, \forall t \in J.$$

Sustituyendo en la hipótesis inicial, nos queda

$$u(t) \le a(t) + \operatorname{sgn}(t - t_0)v(t)$$

$$\leq a(t) \Big| \int_{t_0}^t a(s)\beta(s) \exp\Big\{ \Big| \int_s^t \beta(\sigma)dgks \Big| \Big\} ds \Big|, \forall t \in J.$$

Corolario 1.0.1. Sea $a(t) = a_0(|t - t_0|)$ donde $a_0 \in C(\mathbb{R}_+, \mathbb{R}_+)$ es una función monótona crecient tal que

$$u(t) \le a(t) + \Big| \int_{t_0}^t \beta(s)u(s)ds \Big|, \forall t \in J.$$

Entonces.

$$u(t) \le a(t)e^{\left|\int_{t_0}^t \beta(\sigma)ds\right|}, \forall t \in J.$$

Demostración. content

Definición 1.1 (Función uniformemente Lipschitz continua). Sean X,Y espacios métricos y T un espacio topológico. Una función $f:T\times X\to Y$ se llama uniformemente Lipschitz continua respecto a $x\in X$, si $\exists \lambda\in\mathbb{R}_+$ tal que

$$d(f(t,x), f(t,x')) \le \lambda d(x,x'), \forall x, x' \in X, \forall t \in T.$$

Definición 1.2 (Función localmente Lipschitz continua). Sean X,Y espacios métricos y T un espacio topológico. Una función $f: T \times X \to Y$ se llama localmente Lipschitz continua con respecto a $x \in X$, si $\forall (t_0, x_0) \in T \times X$ tiene un vecino $U \times V \subset T \times X$ tal que $f|_{U \times V}$ es uniformemente Lipschitz continua con respecto a $x \in X$.

Notación. Conjunto de funciones localmente Lipschitz continuas

$$C^{0,1-}(T \times X, Y) = \{ f : T \times X \to Y | f \in C(T \times X, Y),$$

f Lipschitz continua respecto a $x \in X$

Si $f: X \to Y$, entonces

$$C^{1-}(X,Y) = \{f: X \to Y | f \text{ es Lipschitz continua } \}.$$

Conjunto de funciones continuas con dereivas parciales respecto a $x \in X$

$$C^{0,1}(T \times X, Y) = \{ f \in C(T \times X, Y) : D_2 f \in C(T \times X, \mathcal{L}(E, F)) \}.$$

Observación.
$$C^{-1}(X,Y) = C(X,Y)$$
 y $C^{0,1-}(T \times X,Y) \subset C(T \times X,Y)$.

Proposición 1.1. Sean E, F espacios de Banach con $D \subset E$ abierto y T e.t. arbitrario. Entonces

$$C^{0,1}(T \times D, F) \subset C^{0,1-}(T \times D, F).$$

En particular,

$$C^1(D,F) \subset C^{1-}(T,F),$$

es decir, toda función diferenciable es Lipschitz continua.

Nota. La siguente proposición establece que toda función Lipschitz continua definida en un subconjunto compacto es uniformemente Lipschitz continua.

Proposición 1.2. Sea X,Y espacios métricos, T un e.t. compacto. Supongamos que $K \subset X$ es compacto y $f \in C^{0,1-}(T \times X,Y)$. Entonces, existe un vecindario abierto W de K en X tal que $f|_{T \times W}$ es uniformemente Lipschitz continua respecto a $x \in W$.

Notación. (I) $J \subset \mathbb{R}$ es un intervalo abierto.

- (II) E es un espacio de Banach sobre \mathbb{K} .
- (III) $D \subset E$ es un abierto.
- (IV) $f \in C(J \times D, E)$.

Definición 1.3 (Solución ecuación diferencial). Sea $u: J_u \to D$. Entonces, decimos que u es solución de la ecuación diferencial

$$\dot{x} = f(t, x)$$

Si se verifica

- (I) $J_u \subset J : (\mathring{J}_u) \neq \emptyset$.
- (II) $u \in C^1(J_u, D)$,
- (III) $\dot{u}(t) = f(t, u(t)), \forall t \in J_u$.

Definición 1.4 (Solución Aproximada de ecuación diferencial). Sea $\epsilon > 0$, $u:J_u\to D$. Entonces, decimos que u es solución ϵ -aproximada de la ecuación diferencial

$$\dot{x} = f(t, x)$$

Si se verifica

- (I) $J_u \subset J : (\mathring{J}_u) \neq \emptyset$.
- (II) $u \in C(J_u, D)$ y u es continuamente diferenciable a trozos.
- (III) $\forall I \subset J_u : u$ es continuamente diferenciable se tiene que

$$||\dot{u}(t) - f(t, u(t))|| \le \epsilon, \forall t \in I.$$

Proposición 1.3. (I) Sea J_u un subintervalo perfecto de J, $u:J_u\to D$. Entonces u es una solución de la ecuación diferencial $\dot{x}=f(t,x)\Leftrightarrow u\in C(J_u,D)$ y

$$u(t) = u(t_0) + \int_{t_0}^t f(s, u(s))ds, \forall t \in J_u$$

donde $t_0 \in J_u$.

(II) Sea $u:J_u o D$ una solución ϵ -aproximada de $\dot x=f(t,x)$. Entonces,

$$||u(t) - u(t_0) - \int_{t_0}^t f(s, u(s))ds|| \le \epsilon |t - t_0|, \forall t \in J_u$$

donde $t_0 \in J_u$.

Lema 1.0.2 (6.6). content

Teorema 1.1 (6.7). *content*

Definición 1.5 (Equicontinuidad). Sea K un espacio métrico compacto, F un espacio de Banach, $\mathcal{M} \subset C(K,F)$. Entonces, decimos que \mathcal{M} es equicontinuo si $\forall y \in K, \forall \epsilon > 0, \exists V$ entorno de y en K tal que

$$||f(x) - f(y)|| < \epsilon, \quad \forall x \in V, \forall f \in \mathcal{M}.$$

Proposición 1.4 (Compacto Relativo). Sea K un espacio métrico compacto, F un espacio de Banach, $\mathcal{M} \subset C(K,F)$. Entonces, \mathcal{M} es relativamente compacto $\Leftrightarrow \overline{\mathcal{M}}$ es compacto.

Teorema 1.2 (Arzéla-Ascoli). Sea K un espacio métrico compacto, F un espacio de Banach y $\mathcal{M} \subset (K,F)$. Entonces, \mathcal{M} es relativamente compacto si y solo si se cumple que

- (I) \mathcal{M} es equicontinua.
- (II) $\mathcal{M}(y) = \{f(y) : f \in \mathcal{M}\}$ es relativamente compacto en $F, \forall y \in K$.

Demostración. Ver desmostración Lang pg 73

Corolario 1.2.1 (Precompacidad). Sea K un espacio métrico compacto, F un espacio de Banach y $\mathcal{M} \subset C(K,F)$. Si F es de dimensión finita, entonces \mathcal{M} es precompacto $\Leftrightarrow \mathcal{M}$ es equicontinuo y acotado.