ВОЛНОВАЯ ОПТИКА

Глава 1. Электромагнитные волны.

1.1. Плоские электромагнитные волны.

1.1.1. Введение.

Существование электромагнитных волн было предсказано Максвеллом в1862-1864 г.г. (Джеймс Клерк Максвелл, великий английский физик, 1831–1879), как прямое следствие уравнений электромагнитного поля. Экспериментальное доказательство существование электромагнитных волн было проведено Герцем в 1888 г. (Генрих Рудольф Герц, немецкий физик, 1857–1894).

Представление о свете существенно изменялось со временем и со степенью развития других физических представлений. Какова природа света – волновая или корпускулярная. Ньютон (Исаак Ньютон, великий английский физик, 1643–1727) отдавал предпочтение корпускулярной теории, Гюйгенс (Христиан Гюйгенс, голландский физик, 1629–1695) – волновой теории. С начала XIX века положение начало складываться в пользу волновой теории в связи с открытием интерференции и дифракции, наибольший вклад в исследования которых внесли Юнг, Френель (Томас Юнг, английский ученый, 1773–1829; Огюстен Жан Френель, французский физик, 1788–1827).

После опытов Герца получает признание гипотеза об электромагнитной природе света. Подтверждением этому послужили опыты по поляризации света, в частности, по вращению плоскости поляризации и совпадение скорости света с электродинамической постоянной.

Итак, световые колебания тождественны колебаниям электромагнитного поля, поэтому оптика рассматривается как раздел учения об электромагнитных явлениях, описываемых системой уравнений Максвелла.

Однако в начале XX века появилась необходимость выхода из рамок классических представлений. Этому способствовали исследования излучения абсолютно черного тела, введение квантов энергии и формула Планка (Макс Карл Эрнст Людвиг Планк, немецкий физик-теоретик, 1858—1947), опыты Комптона (Артур Холли Комптон, американский физик, 1892—1962), исследование фотоэффекта и т.д. Было введено понятие частиц света — фотонов, обладающих энергией, импульсом, моментом импульса.

Современное представление о фотоне как о частице и электромагнитной волне одновременно. Поскольку в различных опытах фотон проявляет те или другие свойства — то часто ранее говорили о "дуализме волны и частицы". Однако такое представление происходит из-за нашей попытки понять микрообъекты с помощью понятий макромира. Поэтому правильнее сказать, что это просто такова внутренняя природа фотонов.

Электромагнитные волны (фотоны) имеют различные длины волн, фактически простирающиеся от бесконечности до нуля. Вводится в рассмотрение шкала электромагнитных волн, в рамках которой волны классифицируются. В зависимости от длины волны электромагнитные волны носят различные названия (радиоволны, инфракрасный и видимый свет, ультрафиолет и рентгеновское излучение, гамма - кванты).

Приложение 1: Рекомендуемая литература

А.Н.Матвеев "Оптика" (например Высшая школа, 1985)

Д.В.Сивухин "Оптика" – 4-й том "Общего курса физики, (например Наука, 1980)

И.Е.Иродов

Н.И.Калитеевский "Волновая оптика" (например Высшая школа, 1978)

Г.С.Ландсберг "Оптика" (например Наука, 1970)

М.Борн, Э.Вольф "Основы оптики" Наука, 1970

1 / 1

1.1.2. Плоские и гармонические волны.

Пусть имеем неограниченную однородную среду, характеризуемую диэлектрической постоянной ϵ и магнитной проницаемостью μ . Будем считать, что:

- 1) поглощение равно 0, т.е. в среде проводимости нет $\sigma = 0$, следовательно, нет потери на джоулево тепло, поскольку ток проводимости отсутствует $\vec{j} = 0$,
- 2) объемная плотность сторонних зарядов равна нулю $\rho = 0$. Тогда из системы уравнений Максвелла (см формулы (4.8.1)–(4.8.2) §§ 4.7,4.8 в главе 4 раздела "Электромагнетизм") получаем *волновые уравнения* для векторов \vec{E} и \vec{H} (см (4.8.4)–(4.8.5)):

$$\Delta \vec{E} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0, \qquad \Delta \vec{H} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \tag{1.1.1}$$

Пусть вектора
$$\vec{E}$$
 и \vec{H} для простоты зависят только от одной координаты x и времени t :
$$\frac{\partial^2 \vec{E}}{\partial x^2} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0, \qquad \frac{\partial^2 \vec{H}}{\partial x^2} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$
 (1.1.2)

Общим решением этих уравнений является функция $\Phi = \Phi(x \pm vt)$ или $\vec{E} = \vec{E}(x \pm vt)$, где v - скорость электромагнитных волны

$$v = \frac{c}{\sqrt{\varepsilon \mu}} \,. \tag{1.1.3}$$

Значение функции \vec{E} (и \vec{H}) для фиксированных координаты x и времени t является постоянным на плоскости, перпендикулярной к оси x. Поэтому такие волны $\vec{E} = \vec{E}(x \pm vt)$ и $\vec{H} = \vec{H}(x \pm vt)$ называются плоскими.

Если Ц - гармоническая функция (колебательный процесс), то она описывает гармоническую или монохроматическую волну. Волна называется монохроматической (по-гречески - одноцветной), если поле волны является гармонической (синусоидальной) функцией времени. Монохроматическая волна, распространяющаяся в положительном направлении оси X, описывается уравнениями

$$\vec{E} = \vec{E}_0 \cos \left[\omega \left(t - \frac{x}{v}\right)\right]; \qquad \vec{H} = \vec{H}_0 \cos \left[\omega \left(t - \frac{x}{v}\right)\right], \tag{1.1.4}$$

где $ec{E}_0$ и $ec{H}_0$ - амплитуды волны: ω - частота электромагнитных колебаний или круговая частота. Вводя обозначение

$$k = \frac{\omega}{v},\tag{1.1.5}$$

где k - волновое число ($k=\frac{2\pi}{\lambda}$, т.е. равно числу длин волн, укладывающихся на отрезке 2π *см* - отсюда его название), уравнение монохроматической волны можем записать в виде:

$$\vec{E} = \vec{E}_0 \cos(\omega t - kx) \qquad \text{или} \qquad \vec{E} = \vec{E}_0 \cos(\omega t - kx + \phi_0). \tag{1.1.6}$$

Аргумент косинуса $\varphi = \omega t - kx + \varphi_0$ называется фазой волны; φ_0 - начальная фаза. Если зафиксировать момент времени t , то получаем синусоидальное распределение полей \vec{E} и \vec{H} в пространстве (вдоль оси x) в данный момент времени. Если зафиксируем значение координаты x, то получим синусоидальное распределение полей $ec{E}$ и $ec{H}$ в зависимости от времени - гармонические колебания с частотой ω .

изменения напряженности поля пространстве - это длина волны λ , величину которой можно записать в виде:

$$\lambda = \frac{2\pi}{k} = v \frac{2\pi}{\omega} = vT \,, \tag{1.1.7}$$

т.е. длина волны представляет собой то расстояние, на которое перемещается плоскость постоянной фазы за время, равное одному периоду колебаний:

$$T = \frac{2\pi}{\omega} = \frac{1}{V},\tag{1.1.8}$$

где в отличие от круговой частоты $\nu = \frac{\omega}{2\pi}$ - обычная частота (количество колебаний в единицу времени).

1.1.3. Разные записи уравнения плоской монохроматической волны.

Описать плоскую монохроматическую волну можно иначе, используя общий подход. Пусть распространяется волна в произвольном направлении, определяемом единичным вектором \vec{n} , перпендикулярным к плоскости волны, т.е. плоскости постоянной фазы $\omega t - kx = const$. Тогда можно записать $kx = \vec{k}\vec{r}$, если $\vec{k} = k\vec{n}$. Вектор

$$\vec{k} = \frac{\omega}{v} \vec{n} \,, \tag{1.1.9}$$

направленный в сторону распространения волны, называется волновым вектором. Теперь записывая $kx = k\vec{r}$ и абстрагируясь от системы координат, получаем

$$\vec{E} = \vec{E}_0 \cos(\omega t - \vec{k}\vec{r}); \qquad \vec{H} = \vec{H}_0 \cos(\omega t - \vec{k}\vec{r}). \tag{1.1.10}$$

Эти уравнения описывают плоскую монохроматическую волну, распространяющуюся в направлении волнового вектора k.

Часто зависимость векторов электромагнитного поля от координат и времени удобно записывать в комплексной форме. Используем для перехода к комплексной форме записи формулу Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi. \tag{1.1.11}$$

Тогда общее решение волнового уравнения для плоской монохроматической волны можно представить в виле:

$$\vec{E} = Re \left[\vec{E}_0 e^{-i\left(\omega t - \vec{k}\vec{r}\right)} \right] \qquad \text{if} \qquad \vec{H} = Re \left[\vec{H}_0 e^{-i\left(\omega t - \vec{k}\vec{r}\right)} \right]. \tag{1.1.12}$$

Знак "Re" мы, как это принято, в дальнейшем будем опускать, не забывая при этом, что физический смысл имеет лишь вещественная часть используемых комплексных выражений:

$$\vec{E} = \vec{E}_0 e^{-i(\omega t - \vec{k}\vec{r})}$$
 и $\vec{H} = \vec{H}_0 e^{-i(\omega t - \vec{k}\vec{r})}$. (1.1.13)

Амплитуды \vec{E}_0 и \vec{H}_0 в общем случае являются комплексными величинами и могут быть представлены как

$$E_0 = |\vec{E}_0| e^{i\varphi_0} \,, \tag{1.1.14}$$

где модуль $\left| \vec{E}_0 \right|$ равен амплитуде колебаний, а аргумент ϕ_0 - начальной фазе колебаний в точке $\, \vec{r} = 0 \,$.

Аналогично может быть записана комплексная амплитуда \hat{H}_0 .

Комплексная запись особенно удобна, как мы увидим далее, при применении к векторам $ec{E}$ и $ec{H}$ дифференциальных операторов.

Резюмируя сказанное, отметим, что из уравнений Максвелла следует вывод о существовании принципиально нового физического явления: электромагнитное поле способно существовать самостоятельно, т.е. отдельно от электрических зарядов и токов. Изменение состояния электромагнитного поля носит волновой характер. Поля такого рода называют электромагнитными

Любая электромагнитная волна (гармоническая или электромагнитное возмущение произвольной формы) характеризуется следующими общими свойствами.

1.1.4. Основные свойства плоских электромагнитных волн.

1) Поперечность. Запишем уравнения плоских монохроматических волн (хотя свойство поперечности можно показать для любых плоских волн): $\vec{E} = \vec{E}_0 \exp \left[-i \left(\omega t - \vec{k} \vec{r} \right) \right], \qquad \vec{H} = \vec{H}_0 \exp \left[-i \left(\omega t - \vec{k} \vec{r} \right) \right]$

$$\vec{E} = \vec{E}_0 \exp\left[-i(\omega t - \vec{k}\vec{r})\right], \qquad \vec{H} = \vec{H}_0 \exp\left[-i(\omega t - \vec{k}\vec{r})\right]$$
(1.1.15)

и подставим их в уравнения системы уравнений Максвелла. Сначала подставим в первое уравнение системы уравнений (4.8.2):

$$rot\vec{H} = \frac{\varepsilon}{c} \frac{\partial \vec{E}}{\partial t}.$$
 (1.1.16)

Для упрощения дальнейших вычислений заметим, что дифференцирование по времени векторов плоской волны сводится к умножению их на $-i\omega$, а дифференцирование по координате - к умножению на множители ik_x, ik_y, ik_z , соответственно. Тогда имеем:

$$rot\vec{H} = \begin{bmatrix} \vec{\nabla}, \vec{H} \end{bmatrix} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_{x} & H_{y} & H_{z} \end{vmatrix} = i \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ k_{x} & k_{y} & k_{z} \\ H_{x} & H_{y} & H_{z} \end{vmatrix} = i \begin{bmatrix} \vec{k}, \vec{H} \end{bmatrix}; \tag{1.1.17}$$

$$\frac{\partial \vec{E}}{\partial t} = -i\omega \vec{E}_0 e^{-i\left(\omega t - \vec{k}\vec{r}\right)} = -i\omega \vec{E} . \tag{1.1.18}$$

Таким образом, подставляя последние выражения в уравнение системы Максвелла, получаем соотношение:

$$\left[\vec{k}, \vec{H}\right] = -\frac{\varepsilon \omega}{c} \vec{E} \ . \tag{1.1.19}$$

Подставив (1.1.15) во второе уравнение системы (4.8.2)

$$rot\vec{E} = -\frac{\mu}{c}\frac{\partial \vec{H}}{\partial t},$$
(1.1.20)

таким же способом преобразуем его к следующему виду

$$\left[\vec{k}, \vec{E}\right] = \frac{\mu\omega}{c} \vec{H} \,. \tag{1.1.21}$$

Или можно последние два уравнения переписать следующим образом:

$$\left[\vec{k}, \vec{H}\right] = -\frac{\omega}{c}\vec{D}; \qquad \left[\vec{k}, \vec{E}\right] = \frac{\omega}{c}\vec{B}.$$
 (1.1.22)

Из полученных уравнений, которые справедливы для любых плоских волн, следует, что в плоской электромагнитной волне векторы напряженностей электрического и магнитного полей \vec{E}, \vec{H} и волновой вектор \vec{k} взаимно перпендикулярны и образуют правовинтовую систему. Из перпендикулярности векторов \vec{E} и \vec{H} к волновому вектору \vec{k} (к вектору скорости волны \vec{v}), т.е. направлению распространения волны, следует, что электромагнитные волны поперечные.

Это свойство следует также из двух других уравнений системы (4.8.2)

 $div\vec{D}=0$ и $div\vec{B}=0$, которые подстановкой (1.1.15) преобразуются к виду, соответственно: $\begin{pmatrix}\vec{k}\,,\vec{D}\end{pmatrix}=0 \qquad \text{и} \qquad \begin{pmatrix}\vec{k}\,,\vec{B}\end{pmatrix}=0\,.$ 2). Синфазность. Перепишем уравнения (1.1.19) и (1.1.21) в следующем виде, учитывая, что волновой

$$(\vec{k}, \vec{D}) = 0$$
 и $(\vec{k}, \vec{B}) = 0$

вектор и скорость волны равны $k=\frac{\omega}{v}$ и $v=\frac{c}{\sqrt{\varepsilon\mu}}$

$$\vec{E} = -\frac{c}{\varepsilon_0} \left[\vec{k}, \vec{H} \right] = -\frac{1}{k} \frac{\sqrt{\varepsilon_\mu}}{\varepsilon} \left[\vec{k}, \vec{H} \right] = -\frac{1}{k} \sqrt{\frac{\mu}{\varepsilon}} \left[\vec{k}, \vec{H} \right]$$
(1.1.23)

$$\vec{H} = \frac{c}{\mu\omega} \left[\vec{k}, \vec{E} \right] = \frac{1}{k} \sqrt{\frac{\varepsilon}{\mu}} \left[\vec{k}, \vec{E} \right]$$
 (1.1.24)

Поскольку векторы \vec{E}, \vec{H} и \vec{k} взаимно перпендикулярны, то можно взять соотношения (1.1.23) или (1.1.24) по модулю и тогда получаем следующее равенство модулей:

$$\sqrt{\mu}H = \sqrt{\varepsilon}E. \tag{1.1.25}$$

Таким образом, отношение численных значений векторов \vec{E} и \vec{H} пропорционально корню из отношения проницаемостей и, следовательно, от времени не зависит, следовательно, эти векторы имеют одинаковые фазы и изменяются синхронно (между мгновенными значениями E и H в любой точке существует

определенная связь $E = \sqrt{\frac{\mu}{\epsilon}} \, H = \frac{v}{c} B$).

3). Φ азовая скорость - скорость распространения одинаковой фазы (см (1.1.3) или ранее Глава 4 (4.8.11)). Выразим из уравнения (1.1.21) $\left[\vec{k}\,,\vec{E}\,\right] = \frac{\mu\omega}{c}\vec{H}$ вектор \vec{H} и подставим в уравнение (1.1.19)

$$\left[\vec{k}\,,\vec{H}\,
ight] = -rac{arepsilon\omega}{c}\,\vec{E}$$
 . Получаем

$$\left[\vec{k}\left[\vec{k},\vec{E}\right]\right] = -\varepsilon\mu \frac{\omega^2}{c^2}\vec{E}. \tag{1.1.26}$$

Расписывая двойное векторное произведение по правилу $\left[\vec{a}\left[\vec{b},\vec{c}\right]\right] = \vec{b}\left(\vec{a},\vec{c}\right) - \vec{c}\left(\vec{a},\vec{b}\right)$, имеем $\left[\vec{k}\left[\vec{k},\vec{E}\right]\right] = \vec{k}\left(\vec{k},\vec{E}\right) - \vec{E}\left(\vec{k},\vec{k}\right) = -k^2\vec{E}$,

т.к. $(\vec{k}\,,\vec{E}\,)=0\,$ из-за перпендикулярности векторов $\vec{k}\bot\vec{E}\,$. Получаем следующее соотношение

$$k^2 \vec{E} = \varepsilon \mu \frac{\omega^2}{c^2} \vec{E}$$
,

и откуда имеем

$$\frac{c^2}{\varepsilon\mu} = \frac{\omega^2}{k^2} = v^2 \qquad \text{if} \qquad v = \frac{c}{\sqrt{\varepsilon\mu}}.$$
 (1.1.27)

Опять получаем фазовую скорость (4.8.11), т.е. скорость распространения колебаний одинаковой фазы, которая уже появлялась выше (см. (1.1.3)). В вакууме ($\varepsilon = \mu = 1$) скорость распространения поля численно равняется электродинамической постоянной, определяющей силу взаимодействия токов и имеющей размерность скорости. Значение электродинамической постоянной, найденное опытным путем, в пределах ошибок эксперимента равно скорости света в вакууме. Численное совпадение этих величин является доказательством, как электромагнитной природы света, так и справедливости уравнений Максвелла, по крайней мере, в применении их к вакууму.

Отметим, что в признании конечности скорости распространения поля заключается основное отличие фактического содержания теорий близкодействия и, прежде всего теории Максвелла, от теорий мгновенного дальнодействия начала прошлого столетия.

4). Поляризация. Если в электромагнитной волне поведение векторов \vec{E} и \vec{H} в пространстве и времени подчиняется определенному закону, то такую волну называют *поляризованной*. Если направить ось z системы координат вдоль волнового вектора \vec{k} , то вследствие поперечности электромагнитных волн векторы \vec{E} и \vec{H} будут иметь отличные от нуля проекции только на оси x и y.

Уравнения Максвелла допускают, в частности, такое решение, когда каждый из векторов \vec{E} и \vec{H} совершает колебания только вдоль одной из взаимно перпендикулярных осей. Тогда говорят, что волна имеет линейную, или плоскую поляризацию. Плоскость, в которой лежит вектор напряженности электрического поля волны \vec{E} и волновой вектор \vec{k} , называют плоскостью поляризации или плоскостью колебаний.

Линейной поляризацией не исчерпываются виды поляризации электромагнитных волн. О других видах поляризации разговор пойдет ниже.