Ch 8. Hypothesis testing: Part I

Motivating example

- Suppose that we have a coin and we want to test whether or not this coin is fair. To get sample, we flip a coin six times and get results.
 - Suppose we have three Heads and three Tails. Can we say a given coin is fair?

Suppose we have six Heads. Can we say a given coin is fair?

Terminologies

- Hypothesis: A statement about parameter
- Null hypothesis (H_0) : A hypothesis that the parameter takes a particular value.
- Alternative hypothesis (H_1) : A hypothesis that the parameter falls in some alternative range of values.
- ▶ Type I error: H_0 is rejected when H_0 is true
- ▶ Type II error: H_0 is not rejected when H_0 is false
- Significance level (α) : Probability that Type I error occurs
- \triangleright β : Probability that Type II error occurs
- ▶ Power (1β) : Probability that H_0 is rejected when H_0 is false
- ightharpoonup Critical region(\mathcal{C}): A subset of sample space that results in rejection of H_0
- $ightharpoonup \gamma_{\mathcal{C}}(\theta)$: Power function defined on a range of θ

Type I error and Type II error

- ▶ Type I error probability (α): The probability that we reject H_0 when H_0 is true.
- ▶ Type II error probability (β): The probability that we accept H_0 when H_0 is not true.

			True	
		H_0		H_1
	H_0	No error		Type II error
Decision				
	H_1	Type I error		No error

- Example 8.1
 - $\blacktriangleright X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} b(1, \theta), \ \theta \in \Omega = \{1/3, 2/3\}$
 - $H_0: \theta = 1/3 \text{ versus } H_1: \theta = 2/3$
 - Critical region:

$$\mathcal{C} = \{(X_1, X_2, X_3, X_4) : X_1 + X_2 + X_3 + X_4 \ge 2\}$$

▶ Type I error probability(α):

▶ Type II error probability(β):

- Example 8.2
 - ▶ Suppose we have 10 random samples from $N(\mu, 2.5^2)$.
 - $H_0: \mu = 50$ versus $H_1: \mu \neq 50$
 - Critical (or rejection) region:

$$C = \{X_1, \dots, X_n | Z_0 < -1.9 \text{ or } Z_0 > 1.9\}, \text{ where}$$

$$Z_0 = \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} = \frac{\bar{X}_n - 50}{2.5/\sqrt{10}}$$

Ch 8. Hypothesis testing: Part I

Critical value

Acceptance region

Critical (Rejection) region

Under alternative hypothesis

Type I error and Type II error

Power

What if H_0 and H_1 are too close

Sample size and power

- Exercises: 4.5.3, 4.5.4, 4.5.8

How to find the critical region C?

- ▶ Question 1: Can you construct a test with $\alpha = 0$ or $\beta = 0$?
- Question 2: Can you construct a "best" test?
- ▶ Question 3: What is "best"?
- In general, we cannot control both type I and type II erros for a given data. Our strategy to find a test is
 - (i) Fix α
- (ii) Find a test that makes β as small as possible

Definition (p. 484)

For hypothesis testing $H_0: \theta = \theta'$ versus $H_1: \theta = \theta''$, we will say that C is a best critical region of size α if

- (a) $P(\mathbf{X} \in \mathcal{C} | \theta = \theta') = \alpha$
- (b) For any critical region \mathcal{A} that satisfies $P(\mathbf{X} \in \mathcal{A} | \theta = \theta') = \alpha$, we have $P(\mathbf{X} \in \mathcal{C} | \theta = \theta'') \geq P(\mathbf{X} \in \mathcal{A} | \theta = \theta'')$

- Example 8.3: $X \sim b(5,\theta)$, $H_0: \theta = \frac{1}{2}$ versus $H_1: \theta = \frac{3}{4}$

$\underline{\hspace{1cm}}$	0	1	2	3	4	5
$P\left(X = x \theta = \frac{1}{2}\right)$	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$
$P\left(X = x \theta = \frac{3}{4}\right)$	$\frac{1}{1024}$	$\frac{15}{1024}$	$\frac{90}{1024}$	$\frac{270}{1024}$	$\frac{405}{1024}$	$\frac{243}{1024}$

▶ What is the best critical region of size $\alpha = \frac{1}{32}$?

- Example 8.3: $X \sim b(5,\theta)$, $H_0: \theta = \frac{1}{2}$ versus $H_1: \theta = \frac{3}{4}$

$\underline{\hspace{1cm}}$	0	1	2	3	4	5
$P\left(X = x \theta = \frac{1}{2}\right)$	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$
$P\left(X = x \theta = \frac{3}{4}\right)$	$\frac{1}{1024}$	$\frac{15}{1024}$	$\frac{90}{1024}$	$\frac{270}{1024}$	$\frac{405}{1024}$	$\frac{243}{1024}$

▶ What is the best critical region of size $\alpha = \frac{6}{32}$?

Neyman-Pearson Theorem

Theorem (Neyman-Pearson Theorem, p.486)

$$X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta), \ \Omega = \{\theta', \theta''\}$$

For hypothesis testing $H_0: \theta = \theta'$ versus $H_1: \theta = \theta''$, \mathcal{C} is a best critical region of size α if

$$(a)\frac{L(\theta'; \mathbf{X})}{L(\theta''; \mathbf{X})} \le k \text{ for each } \mathbf{X} \in \mathcal{C}.$$

$$(b)\frac{L(\theta'; \mathbf{X})}{L(\theta''; \mathbf{X})} \ge k \text{ for each } \mathbf{X} \in \mathcal{C}^c.$$

$$(c)P(\mathbf{X} \in \mathcal{C}|\theta = \theta') = \alpha.$$

- Example 8.4 (p. 489)

$$X_1,\ldots,X_n \overset{iid}{\sim} N(\theta,1),\ \theta \in \Omega = \{0,1\}$$

$$H_0: \theta = 0 \text{ versus } H_1: \theta = 1$$

- Example 8.4 (continued)

$$X_1,\ldots,X_n \stackrel{iid}{\sim} N(\theta,1), \ \theta \in \Omega = [0,\infty)$$

 $H_0: \theta = 0$ versus $H_1: \theta > 0$

UMP test

Definition (p. 493)

For hypothesis testing $H_0: \theta = \theta'$ versus $H_1: \theta \in \Omega_1$, where $\Omega = \Omega_1 \cup \{\theta'\}$, we will say that C^{UMP} is a uniformly most powerful (UMP) critical region of size α if

- (a) $P(\mathbf{X} \in \mathcal{C}^{UMP} | \theta = \theta') = \alpha$
- (b) $P(\mathbf{X} \in \mathcal{C}^{UMP} | \theta = \theta'') \ge P(\mathbf{X} \in \mathcal{C} | \theta = \theta'')$ for all $\theta'' \in \Omega_1$ and all size α critical regison \mathcal{C} .

- Example 8.4 (continued)

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, 1), \ \theta \in \Omega = (-\infty, \infty)$$

Definition

 $L(\theta; \mathbf{X})$ is said to have monotone likelihood ratio(MLR) property in the statistic $Y = u(\mathbf{X})$ if $\frac{L(\theta_1, \mathbf{X})}{L(\theta_2; \mathbf{X})}$ is a monotone function of $Y = u(\mathbf{X})$ for $\theta_1 < \theta_2$.

- Example 8.4 (continued)

$$X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, 1), \ \theta \in \Omega = [0, \infty)$$

 $H_0: \theta = 0 \text{ versus } H_1: \theta > 0$

 $X_1,\ldots,X_n \overset{iid}{\sim} N(0,\theta),\ H_0: \theta=\theta' \ {
m versus}\ H_1: \theta>\theta'$

- UMP test for $H_0: \theta = \theta'$ versus $H_1: \theta > \theta'$ with a regular exponential family

$$-X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta) = \exp\{p(\theta)K(x) + H(x) + q(\theta)\}\$$

▶ If $p(\theta)$ is monotone increasing,

$$C^{UMP} = \left\{ \sum_{i=1}^{n} K(X_i) \ge c \right\} \text{ for some } c \text{ satisfying } P(\mathbf{X} \in C^{UMP}) = \alpha$$

▶ If $p(\theta)$ is monotone decreasing,

$$\mathcal{C}^{UMP} = \left\{ \sum_{i=1}^{n} K(X_i) \le c \right\} \text{ for some } c \text{ satisfying } P(\mathbf{X} \in \mathcal{C}^{UMP}) = \alpha$$

- Example 8.4 (revisited)

$$X_1,\ldots,X_n \stackrel{iid}{\sim} N(\theta,1), \ \theta \in \Omega = [0,\infty)$$

 $H_0: \theta = 0$ versus $H_1: \theta > 0$

- Example 8.5 (revisited)

$$X_1,\ldots,X_n \overset{iid}{\sim} N(0,\theta),\ H_0:\theta=\theta' \text{ versus } H_1:\theta>\theta'$$

- In fact, if X_1,\ldots,X_n is a random sample from a regular exponential family $f(x;\theta)=\exp\{p(\theta)K(x)+H(x)+q(\theta)\}$, then
 - ▶ The MLE is a fuction of $\sum K(X_i)$
 - $ightharpoonup \sum K(X_i)$ is a complete sufficient statistic for heta
 - ▶ If $p(\theta)$ is monotone function, it has MLR property
 - ▶ If $p(\theta)$ is monotone function, \mathcal{C}^{UMP} for one-sided test should be either $\{\sum_{i=1}^n K(X_i) \geq c\}$ or $\{\sum_{i=1}^n K(X_i) \leq c\}$

 $X_1,\dots,X_n \overset{iid}{\sim} Exp(\theta)$, $H_0: \theta=2$ versus $H_1: \theta>2$

 $X_1,\ldots,X_n \overset{iid}{\sim} Gamma(3,\theta),\ H_0: \theta=\theta_0 \ ext{versus}\ H_1: \theta<\theta_0$

$$X_1,\ldots,X_n \stackrel{iid}{\sim} U[0,\theta],\ H_0:\theta=\theta_0 \ {
m versus}\ H_1:\theta<\theta_0$$