Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. Supposons qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que $I(\lambda)$ et $I(\mu)$ convergent. Par différence, $\int_a^{+\infty} \left(\frac{\lambda - f(t)}{t} - \frac{\lambda - f(t)}{t}\right) dt = \int_a^{+\infty} \frac{\lambda - \mu}{t} dt$ converge. Comme $\int_a^{+\infty} \frac{dt}{t}$ diverge, ceci n'est possible que si $\lambda - \mu = 0$ i.e. $\lambda = \mu$.

2. Supposons H_{λ} bornée sur \mathbb{R} . D'après le théorème fondamental de l'analyse, H_{λ} est de classe \mathcal{C}^1 sur $[a, +\infty[$ de dérivée $t\mapsto \lambda-f(t)$. Par ailleurs, $t\mapsto \frac{1}{t}$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ de dérivée $t\mapsto -\frac{1}{t^2}$. Par intégration par parties, on obtient sous réserve de convergence :

$$I(\lambda) = \left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty} + \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^{2}} dt$$

Comme H_{\(\lambda\)} est bornée,

$$\left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty} = \lim_{t \to +\infty} \frac{H_{\lambda}(t)}{t} - \frac{H_{\lambda}(a)}{a} = 0$$

De plus, $H_{\lambda}(t) = \mathcal{O}(1/t^2)$ donc H_{λ} est intégrable sur $[a, +\infty[$. A fortiori, $\int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$ converge.

On en déduit que $I(\lambda)$ converge et que

$$I(\lambda) = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$$

3. a. Posons $G_{\lambda}(x) = H_{\lambda}(x+T) - H_{\lambda}(x)$ pour $x \in \mathbb{R}$. On a déjà montré que H_{λ} était de classe \mathcal{C}^1 donc G_{λ} également et

$$\forall x \in \mathbb{R}, G'_{\lambda}(x) = H'_{\lambda}(x+T) - H'_{\lambda}(x) = (\lambda - f(x+T)) - (\lambda - f(x)) = f(x) - f(x+T) = 0$$

Ainsi G_{λ} est constante sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ H_{\lambda}(x+T) - H_{\lambda}(x) = G_{\lambda}(0) = H_{\lambda}(T) - H_{\lambda}(0)$$

$$= \int_{a}^{T} (\lambda - f(t)) \ dt - \int_{a}^{0} (\lambda - f(t)) \ dt$$

$$= \int_{0}^{T} (\lambda - f(t)) \ dt \qquad \text{d'après la relation de Chasles}$$

$$= \lambda T - \int_{0}^{T} f(t) \ dt$$

b. Par télescopage

$$H_{\lambda}(a+nT) = H_{\lambda}(a+nT) - H_{\lambda}(a) = \sum_{k=0}^{n-1} H_{\lambda}(a+(k+1)T) - H_{\lambda}(a+kT) = \sum_{k=0}^{n-1} \lambda T - \int_{0}^{T} f(t) dt = n \left(\lambda T - \int_{0}^{T} f(t) dt\right)$$

1

Ainsi la suite $(H_{\lambda}(a + nT))$ est bornée si et seulement si $\lambda T - \int_0^T f(t) dt$ i.e. si et seulement si $\lambda = \lambda_0 = \frac{1}{T} \int_0^T f(t) dt$.

c. Dans ce cas,

$$\forall x \in \mathbb{R}, \ H_{\lambda_0}(x+T) - H_{\lambda_0}(x) = 0$$

Ainsi H_{λ_0} est T-périodique. Comme H_{λ_0} est continue, elle est bornée sur le segment [0,T]. Par T-périodicité, elle est bornée sur \mathbb{R} .

- **d.** Comme H_{λ_0} est bornée sur \mathbb{R} , $I(\lambda_0)$ converge d'après la question **2**. D'après la question **1**, λ_0 est l'unique valeur de λ pour laquelle $I(\lambda)$ converge.
- e. Soit $x \in [a, +\infty[$. Alors

$$\int_{a}^{x} \frac{f(t)}{t} dt = -\int_{a}^{x} \frac{\lambda_{0} - f(t)}{t} dt + \int_{a}^{x} \frac{\lambda_{0}}{t} dt = -\int_{a}^{x} \frac{\lambda_{0} - f(t)}{t} dt + \lambda_{0} (\ln x - \ln a)$$

Or $\lim_{x \to +\infty} \int_{a}^{x} \frac{\lambda_0 - f(t)}{t} dt = I(\lambda_0)$ et $\lim_{x \to +\infty} \lambda_0 \ln x = \pm \infty$ car $\lambda_0 \neq 0$. On en déduit que

$$\int_{a}^{x} \frac{f(t)}{t} dt \underset{x \to +\infty}{\sim} \lambda_0 \ln x$$

- **4.** Soit $n \in \mathbb{N}^*$. L'application $t \mapsto \frac{|\sin(nt)|}{\sin(t)}$ est continue sur $]0,\pi/2]$ et comme $\sin u \underset{u \to 0}{\sim} u$, $\lim_{t \to 0^+} \frac{|\sin(nt)|}{\sin(t)} = n$. Ainsi $t \mapsto \frac{|\sin(nt)|}{\sin(t)}$ se prolonge en une application continue sur le *segment* $[0,\pi/2]$. L'intégrale A_n est donc bien définie. Le même argument montre également que B_n est bien définie.
- **5.** On utilise le fait que $\sin(t) = t \frac{t^3}{6} + o(t^3)$:

$$\varphi(t) = \frac{\sin(t) - t}{t \sin(t)} \sim \frac{-t^3/6}{t^2} = -\frac{t}{6}$$

6. D'après la question précédente, φ est prolongeable par continuité sur le segment $[0, \pi/2]$. Elle y est donc intégrable. Par inégalité triangulaire,

$$\forall n \in \mathbb{N}, |A_n - B_n| \le \int_0^{\frac{\pi}{2}} |\sin(nt)| |\varphi(t)| dt \le \int_0^{\frac{\pi}{2}} |\varphi(t)| dt$$

La suite $(A_n - B_n)$ est donc bornée.

7. Via le changement de variable linéaire u = nt,

$$B_n = \int_0^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du = \int_0^{\frac{\pi}{2}} \frac{|\sin(u)|}{u} du + \int_{\frac{\pi}{2}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du = B_1 + \int_{\frac{\pi}{2}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du$$

Remarquons que $|\sin|$ est π -périodique donc, avec les notations de la question 3 et $a=\frac{\pi}{2}$, on a :

$$\lambda_0 = \frac{1}{\pi} \int_0^{\pi} |\sin(t)| dt = \frac{1}{\pi} \int_0^{\pi} \sin(t) dt = \frac{2}{\pi} \neq 0$$

On en déduit que

$$\int_{\frac{\pi}{2}}^{x} \frac{|\sin(u)|}{u} du \underset{x \to +\infty}{\sim} \lambda_0 \ln(x) = \frac{2}{\pi} \ln(x)$$

et donc

$$\int_{\frac{\pi}{2}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du \sim \frac{2}{n \to +\infty} \ln\left(\frac{n\pi}{2}\right) \sim \frac{2\ln(n)}{\pi}$$

Comme
$$\lim_{n \to +\infty} \frac{2 \ln(n)}{\pi} = +\infty,$$

$$B_n \underset{n \to +\infty}{\sim} \frac{2 \ln(n)}{\pi}$$

Puisque $(A_n - B_n)$ est bornée et que $\lim_{n \to +\infty} B_n = +\infty$ d'après l'équivalent précédente,

$$A_n = B_n + (A_n - B_n) \underset{n \to +\infty}{\sim} B_n \underset{n \to +\infty}{\sim} \frac{2 \ln(n)}{\pi}$$

Solution 2

1. Soit $x \in \mathbb{K}^n$ tel que $||x||_p = 0$. Alors $\sum_{k=1}^n |x_k|^p = 0$. Mais comme tous les termes de cette somme sont positifs, ils sont nuls et x est également nul. Soit $(\lambda, x) \in \mathbb{K} \times \mathbb{K}^n$. Alors

$$\|\lambda x\|_p = \left(\sum_{k=1}^n |\lambda x_k|^p\right)^{\frac{1}{p}} = \left(\sum_{k=1}^n |\lambda|^p |x_k|^p\right)^{\frac{1}{p}} = \left(|\lambda|^p \sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = |\lambda| \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = |\lambda| \|x\|_p$$

2. a. Soit $(u, v) \in (\mathbb{R}_+)^2$. L'inégalité est clairement vraie si l'un des deux réels u et v est nul. Supposons donc u > 0 et v > 0. Par concavité du logarithme

$$\ln\left(\frac{1}{p}u^{p} + \frac{1}{q}v^{q}\right) \ge \frac{1}{p}\ln(u^{p}) + \frac{1}{q}\ln(v^{q}) = \ln(u) + \ln(v) = \ln(uv)$$

On en déduit l'inégalité demandée par croissance de l'exponentielle.

b. Soit $(x, y) \in (\mathbb{K}^n)^2$. Supposons d'abord $||x||_p = ||y||_q = 1$. D'après la question précédente, pour tout $k \in [[1, n]]$,

$$|x_k y_k| = |x_k||y_k| \le \frac{|x_k|^p}{p} + \frac{|y_k|^q}{q}$$

En sommant ces inégalités, on obtient

$$||x.y||_1 \le \frac{||x||_p^p}{p} + \frac{||y||_q^q}{q} = \frac{1}{p} + \frac{1}{q} = 1$$

Revenons maintenant au cas général : x et y sont donc quelconques. Remarquons que l'inégalité demandée est vraie si l'un des vecteurs x et y est nul. Supposons donc x et y non nuls. Alors $\|x\|_p \neq 0$ et $\|y\|_q \neq 0$ par propriété de séparation. Posons alors $x' = \frac{x}{\|x\|_p}$ et $y' = \frac{y}{\|y\|_q}$. Par homogénéité, $\|x'\|_p = \|y'\|_q = 1$. D'après ce qui précède, $\|x'.y'\|_1 \leq 1$. Mais il est clair que $x'.y' = \frac{x.y}{\|x\|_p \|x\|_q}$ et par homogénéité de $\|.\|_1$, $\|x'.y'\|_1 = \frac{\|x.y\|_1}{\|x\|_p \|x\|_q}$ d'où tra de $\|x'.y'\|_1 \leq 1$.

l'inégalité demandée.

3. C'est du cours lorsque p=1. Supposons donc p>1. Soit $(x,y)\in (\mathbb{K}^n)^2$. Posons $q=\frac{p}{p-1}$ de sorte que q>0 et $\frac{1}{p}+\frac{1}{q}=1$.

$$\|x + y\|_p^p = \sum_{k=1}^n |x_k + y_k|^p = \sum_{k=1}^n |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^n |y_k| |x_k + y_k|^{p-1}$$

D'après la question 2.b,

$$\begin{split} \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} & \leq \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{\frac{1}{q}} \\ \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1} & \leq \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{\frac{1}{q}} \end{split}$$

En tenant compte du fait que (p-1)q = p et $\frac{1}{q} = \frac{p-1}{p}$, ces deux inégalités peuvent également s'écrire

$$\begin{split} &\sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} \leq \|x\|_p \|x + y\|_p^{p-1} \\ &\sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1} \leq \|y\|_p \|x + y\|_p^{p-1} \end{split}$$

En sommant ces deux inégalités, on obtient

$$||x + y||_p^p \le (||x||_p + ||y||_p)||x + y||_p^{p-1}$$

Si $\|x+y\|_p=0$, alors on a clairement $\|x+y\|_p\leq \|x\|_p+\|y\|_p$. Sinon, il suffit de diviser l'inégalité précédente par $\|x+y\|_p^{p-1}$ pour aboutir au même résultat.

4. a. Soit $x \in \mathbb{K}^n$. Alors on a clairement

$$||x||_{\infty}^{p} \le \sum_{k=1}^{n} |x_{k}|^{p} = ||x||_{p}^{p}$$

On en déduit que $||x||_{\infty} \le ||x||_{n}$.

b. Soit $x \in \mathbb{K}^n$.

$$\|x\|_q^q = \sum_{k=1}^n |x_k|^q \le \|x\|_{\infty}^{q-p} \sum_{k=1}^n |x_k|^p = \|x\|_{\infty}^{q-p} \|x\|_p^p$$

D'après la question **4.a**, $\|x\|_{\infty} \leq \|x\|_p$ donc $\|x\|_q^q \leq \|x\|_p^q$ puis $\|x\|_q \leq \|x\|_p$. Posons $M = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|x\|_q}{\|x\|_p}$. L'inégalité précédente montre que $M \leq 1$. De plus, cette inégalité est une égalité lorsque x est un vecteur de la base canonique de \mathbb{K}^n donc M = 1 et cette borne supérieure est atteinte.

5. a. Posons $p' = \frac{p}{r}$ et $q' = \frac{q}{r}$ de sorte que $\frac{1}{p'} + \frac{1}{q'}$. D'après la question **2.b**

$$\sum_{k=1}^{n} |x_k y_k|^r \le \left(\sum_{k=1}^{n} |x_k|^{rp'}\right)^{\frac{1}{p'}} \left(\sum_{k=1}^{n} |y_k|^{rq'}\right)^{\frac{1}{q'}}$$

Puisque rp' = p et rq' = q, on obtient l'inégalité demandée en élevant la dernière inégalité à la puissance $\frac{1}{r}$.

b. Puisque p < q, il existe $r \in \mathbb{R}_+^*$ tel que $\frac{1}{r} = \frac{1}{p} - \frac{1}{q}$ i.e. $\frac{1}{q} + \frac{1}{r} = \frac{1}{p}$. Soit $x \in \mathbb{K}^n$ et $y = (1, \dots, 1)$. D'après la question précédente,

$$||x.y||_p \le ||x||_q ||y||_r$$

Ce qui s'écrit encore

$$||x||_p \le ||x||_q n^{\frac{1}{p} - \frac{1}{q}}$$

Posons $M = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|x\|_p}{\|x\|_a}$. L'inégalité précédente montre que $M \le n^{\frac{1}{p} - \frac{1}{q}}$. De plus, cette inégalité est une égalité

lorsque $|x_k| = 1$ pour tout $k \in [1, n]$ donc $M = n^{\frac{1}{p} - \frac{1}{q}}$ et cette borne supérieure est atteinte.

6. On a vu à la question **4.a** que $||x||_{\infty} \le ||x||_p$ De plus,

$$||x||_p^p = \sum_{k=1}^n |x_k|^p \le n||x||_{\infty}^p$$

donc $||x||_p \le n^{\frac{1}{p}}$. Finalement

$$||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}} ||x||_{\infty}$$

Le théorème des gendarmes permet alors d'affirmer que $\lim_{n\to\infty}\|x\|_p=\|x\|_\infty$.

Solution 3

1. Si PQ est nul, alors $u_n=0$ pour tout $n\in\mathbb{N}$ et alors $\sum u_n$ converge. Sinon, en notant d le degré de PQ, PQ(n)=0 comme (n)=0. Comme (n)=0 est bornée, (n)=0 est une série convergente à termes positifs, $\sum u_n$ converge.

- **2.** La symétrie, la bilinéarité et la positivité sont évidentes (à faire néanmoins). Si l'on se donne $P \in E$ tel que $\langle P, P \rangle = 0$, alors P(n) = 0 pour tout $n \in \mathbb{N}$ car une somme de termes positifs ne peut être nulle que si chacun des termes est nul. Ainsi P possède une infinité de racines : il est nul.
- 3. Tout d'abord, la symétrie, la bilinéarité et la positivité restent conservées même si les a_n sont positifs ou nul. On va montrer que ⟨·,·⟩ définit encore un produit scalaire si et seulement si il existe une infinité d'entiers n tels que a_n > 0.
 Si c'est le cas, un polynôme P vérifiant ⟨P, P⟩ = 0 s'annule encore en tous les entiers n tels que a_n > 0. Il possède donc encore une infinité de racines et il est nul.
 Si ce n'est pas le cas, notons A l'ensemble fini des entiers n tels que a_n > 0. Posons alors P = ∏(X − n). On vérifie
- **4.** Posons $P_k = X^k$ pour $k \in \mathbb{N}$. Il est clair que $N_2(P_k) = 1$ pour tout $k \in \mathbb{N}$. De plus,

alors que $\langle P, P \rangle = 0$ mais P n'est pas nul.

$$\forall k \in \mathbb{N}, \ N_1(P_k)^2 = \sum_{n=0}^{+\infty} \frac{n^{2k}}{2^n} \ge \frac{2^{2k}}{2^2}$$

car une somme de termes positifs est supérieure à chacun de ses termes (ici le terme d'indice n=2). Ainsi $N_1(P_k) \ge 2^{k-1}$ pour tout $k \in \mathbb{N}$ puis $\frac{N_1(P_k)}{N_2(P_k)} \xrightarrow[n \to +\infty]{} +\infty$ de sorte que N_1 et N_2 ne sont pas équivalentes.

Problème 1

Remarquons déjà que dans tout le problème, $t\mapsto \frac{f(t)-f(2t)}{t}$ est continue sur \mathbb{R}_+^* .

I.1 I.1.a Etude en $+\infty$. Clairement, $f(t) = \underset{t \to +\infty}{=} \mathcal{O}(1/t^2)$ donc $f(2t) = \underset{t \to +\infty}{=} \mathcal{O}(1/t^2)$ puis $\frac{f(t) - f(2t)}{t} = \underset{t \to +\infty}{=} \mathcal{O}(1/t^3)$. Puisque $t \mapsto \frac{1}{t^3}$ est intégrable sur $[1, +\infty[$, $t \mapsto \frac{f(t) - f(2t)}{t}$ l'est également.

Etude en 0+. Puisque $\frac{1}{1+u} = 1 + \mathcal{O}(u)$, $f(t) = 1 + \mathcal{O}(t^2)$ puis $f(2t) = 1 + \mathcal{O}(t^2)$ et enfin $\frac{f(t) - f(2t)}{t} = \mathcal{O}(t)$. Comme $t \mapsto t$ est intégrable sur]0,1], $t \mapsto \frac{f(t) - f(2t)}{t}$ l'est également.

Finalement, $t \mapsto \frac{f(t) - f(2t)}{t}$ est intégrable sur \mathbb{R}_+^* : l'intégrale $\mathrm{I}(f)$ converge (absolument).

I.1.b Décomposition en éléments simples :

$$\frac{f(t) - f(2t)}{t} = \frac{1}{t(t^2 + 1)} - \frac{1}{t(4t^2 + 1)} = \frac{1}{t} - \frac{t}{t^2 + 1} - \frac{1}{t} + \frac{4t}{4t^2 + 1} = \frac{4t}{4t^2 + 1} - \frac{t}{t^2 + 1}$$

Une primitive de $t \mapsto \frac{f(t) - f(2t)}{t}$ est donc

$$t \mapsto \frac{1}{2}\ln(4t^2+1) - \frac{1}{2}\ln(t^2+1) = \frac{1}{2}\ln\left(\frac{4t^2+1}{t^2+1}\right)$$

Ainsi

$$I(f) = \frac{1}{2} \left[\ln \left(\frac{4t^2 + 1}{t^2 + 1} \right) \right]_0^{+\infty} = \frac{1}{2} \ln 4 = \ln 2$$

I.2

$$\frac{f(t) - f(2t)}{t} = \frac{1}{t^2 + 1} - \frac{2}{4t^2 + 1}$$

Ainsi

$$I(f) = \left[\arctan(t) - \arctan(2t)\right]_0^{+\infty} = \frac{\pi}{2} - \frac{\pi}{2} = 0$$

I.3 Remarquons que

$$f(t) = \frac{t^2}{t^2 + 1} = 1 - \frac{1}{1 + t^2}$$

On se ramène donc à la question I.1 : I(f) converge et $I(f) = -\ln 2$

I.4 Lorsque $n \ge 3$,

$$\frac{f(t) - f(2t)}{t} = \frac{t^{n-1}}{1 + t^2} - \frac{2^n t^{n-1}}{1 + 4t^2} \underset{n \to +\infty}{\sim} \frac{4 - 2^n}{4t^{3-n}}$$

 $\operatorname{car} 4 - 2^n \neq 0$. Or $3 - n \leq 0 \leq 1$ donc $\int_0^{+\infty} \frac{\mathrm{d}t}{t^{3-n}}$ diverge. De plus, $t \mapsto \frac{4 - 2^n}{4t^{3-n}}$ est positive sur \mathbb{R}_+^* donc on peut affirmer que I(f) diverge également.

Partie II -

II.5 Etude en $+\infty$. Par croissances comparées, $\frac{f(t)-f(2t)}{t} = o(1/t^2)$. Par conséquent, $t \mapsto \frac{f(t)-f(2t)}{t}$ est

Etude en 0⁺. On sait que $e^{-t} = 1 - t + o(t)$ et $e^{-2t} = 1 - 2t + o(t)$ donc $\frac{f(t) - f(2t)}{t} = 1 + o(1)$ i.e.

 $\lim_{t\to 0} \frac{f(t)-f(2t)}{t}$. Ainsi f est intégrable en 0⁺.

Finalement, $t \mapsto \frac{f(t) - f(2t)}{t}$ est intégrable sur \mathbb{R}_+^* : l'intégrale I(f) converge (absolument).

II.6

$$\int_{\varepsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt - \int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt \quad \text{par linéarité de l'intégrale}$$

$$= \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt - \int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt \quad \text{par linéarité de l'intégrale}$$

$$= \int_{\varepsilon}^{+\infty} \frac{e^{-u}}{u} dt - \int_{2\varepsilon}^{+\infty} \frac{e^{-u}}{u} du \quad \text{par le changement de variable } u = 2t$$

$$= \int_{\varepsilon}^{2\varepsilon} \frac{e^{-u}}{u} du \quad \text{via la relation de Chasles}$$

$$= \int_{\varepsilon}^{2\varepsilon} \frac{e^{-u} - 1}{u} du + \int_{\varepsilon}^{2\varepsilon} \frac{du}{u}$$

- **II.7** h est continue sur \mathbb{R}^* . Il suffit de constater que $\lim_{t \to 0} h = -1$ pour affirmer que h est prolongeable en une fonction continue sur \mathbb{R} .
- **II.8** On note H une primitive du prolongement continu de h sur \mathbb{R} . Alors pour tout $\varepsilon > 0$,

$$\int_{\varepsilon}^{+\infty} \frac{f(t) - f(2t)}{t} dt = \int_{\varepsilon}^{2\varepsilon} \frac{e^{-u} - 1}{u} du + \int_{\varepsilon}^{2\varepsilon} \frac{du}{u} = H(2\varepsilon) - H(\varepsilon) + \ln 2$$

Comme H est continue (et même de classe \mathcal{C}^1) sur \mathbb{R} en tant que primitive d'une fonction continue sur \mathbb{R} ,

$$\lim_{\epsilon \to 0^+} H(2\epsilon) = \lim_{\epsilon \to 0^+} H(\epsilon) = H(0)$$

Par conséquent,

$$I(f) = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{+\infty} \frac{f(t) - f(2t)}{t} dt = \ln 2$$

II.9 On effectue le changement de variable $t = -\ln u$. Celui-ci est valide car $-\ln$ est une bijection strictement décroissante de classe \mathcal{C}^1 de]0,1] sur $[0,+\infty[$. Ainsi

$$I = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_1^0 \frac{u - u^2}{-\ln u} \cdot \frac{-du}{u} = \int_0^1 \frac{u - 1}{\ln u} du$$

Ainsi

$$J = I(f) = \ln 2$$