S.C.No.—2009305

B.Sc. (Hons.) EXAMINATION, Dec. 2024

(Third Semester)

(Main/Re-appear)

MATHEMATICS

BHM-235(I)

Probability Distributions

Time: 3 Hours

Maximum Marks: 60

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks. प्रत्येक इकाई से एक प्रश्न चुनते हुए, कुल पाँच प्रश्नों के उत्तर दीजिए । प्रश्न संख्या 9 अनिवार्य है । सभी प्रश्नों के अंक समान हैं ।

Unit I

इकाई I

1. (a) Prove that a discrete random variable 'x' with probability function:

$$f(x) = \begin{cases} \frac{1}{x(x+1)}; & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

have no moments although its moment generating function exist.

6

सिद्ध कीजिए कि एक असतत् यादृच्छिक चर 'x' जिसका प्रायिकता फलन :

$$f(x) = \begin{cases} \frac{1}{x(x+1)}; & x = 1, 2, 3, \dots \\ 0 & \text{अन्यथा} \end{cases}$$

का कोई आघूर्ण नहीं है, यद्यपि इसका आघूर्ण जनक फलन विद्यमान है ।

(b) Find first four four cummulants. 6 पहले चार संचय ज्ञात कीजिए । 2. (a) The probability density function of the random variable X follows the probability law:

$$p(x) = \frac{1}{2\theta} \exp\left(-\frac{|x-\theta|}{\theta}\right), -\infty < x < \infty$$

find M.G.F. of X. Hence or otherwise find E(X) and V(X).

यादृच्छिक चर X का प्रायिकता घनत्व फलन प्रायिकता नियम का अनुसरण करता है :

$$p(x) = \frac{1}{2\theta} \exp\left(-\frac{|x-\theta|}{\theta}\right), -\infty < x < \infty$$

X का आधूर्ण जनक फलन ज्ञात कीजिए । अतः या अन्यथा E(X) और V(X) ज्ञात कीजिए ।

(b) Prove that if characteristic function $\phi(t)$ is continuous then $\phi(t)$ is uniformly continuous in t.

सिद्ध कीजिए कि यदि अभिलाक्षणिक फलन $\phi(t)$ सतत है तो $\phi(t)$, t में समान रूप से सतत है।

Unit II इकाई II

- 3. (a) In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter 'p' of the distribution.
 6
 - 5 स्वतंत्र परीक्षणों वाले द्विपद वितरण में, 1 और 2 सफलताओं की प्रायिकताएँ क्रमश: 0.4096 और 0.2048 हैं। वितरण का प्राचल 'p' ज्ञात कीजिए।
 - (b) Find first four moments of the PoissonDistribution.प्वासाँ वितरण के पहले चार आघूर्ण ज्ञात कीजिए।
 - 4. (a) Suppose X is a non-negative integral valued random variable. Show that the distribution of X is geometric if it 'lacks memory' i.e. if for each K ≥ 0 and Y = X K, one has P(Y = t | X ≥ K) = P(X = t), for t ≥ 0.

मान लीजिए X एक गैर-ऋणात्मक पूर्णांक मान वाला यादृच्छिक चर है । दिखाइए कि X का वितरण ज्यामितीय है यदि इसमें 'स्मृति का अभाव' है, अर्थात् यदि प्रत्येक $K \geq 0$ और Y = X - K के लिए, $t \geq 0$ के लिए $P(Y = t \mid X \geq K) = P(X = t)$ है ।

(b) Find the mean and variance of the Hypergeometric distribution. 6 हाइपर ज्यामितीय वितरण का माध्य और प्रसरण ज्ञात कीजिए।

Unit III इकाई III

5. (a) Show that for rectangular distribution:

$$f(x) = \frac{1}{2a}, -a < x < a$$

moment generating function about origin

is $\frac{1}{at}(\sinh at)$. Also show that moments

of even order are given by:

$$\mu_{2n} = \frac{a^{2n}}{2n+1}$$

दिखाइए कि आयताकार वितरण के लिए:

$$f(x) = \frac{1}{2a}, -a < x < a$$

मूल बिन्दु आघूर्ण जनक फलन $\frac{1}{at}(\sinh at)$ के लगभग है । यह भी दिखाइए कि सम क्रम के आघूर्ण निम्न द्वारा दिए जाते हैं :

$$\mu_{2n} = \frac{a^{2n}}{2n+1}$$

- (b) If X_1 , X_2 are independent rectangular variates on [0, 1], find the distributions of (i) X_1/X_2 (ii) X_1X_2 . 6 यदि X_1 , X_2 [0, 1] पर स्वतंत्र आयताकार चर हैं, तो (i) X_1/X_2 (ii) X_1X_2 का वितरण ज्ञांत कीजिए ।
- 6. (a) If $X \sim N(\mu, \sigma^2)$, obtain the p.d.f. of:

$$U = \frac{1}{2} \left(\frac{X - \mu}{\sigma} \right)^2$$

यदि $X \sim N(\mu, \sigma^2)$ है, तो निम्न का प्रायिकता घनत्व फलन (p.d.f.) प्राप्त कीजिए :

$$U = \frac{1}{2} \left(\frac{X - \mu}{\sigma} \right)^2$$

(b) Prove that if X_1 , X_2 ,, X_n are independent random variables, X_i having an exponential distribution with parameter Q_i ; $i = 1, 2, \dots, n$; then $Z = \min(X_1, X_2, \dots, X_n)$ has exponential distribution with parameter $\sum_{i=1}^{n} Q_i$.

सिद्ध कीजिए कि यदि X_1, X_2, \dots, X_n स्वतंत्र यादृच्छिक चर हैं, X_i का प्राचल Q_i के साथ एक घातांकीय वितरण है; $i=1,2,\dots,n$; तो $Z=\min(X_1,X_2,\dots,n)$

 X_n) का प्राचल $\sum_{i=1}^n Q_i$ के साथ घातांकीय वितरण है ।

Unit IV

इकाई IV

- 7. (a) Prove that a linear combination of independent normal variates is also a normal variates.

 सिद्ध कीजिए कि स्वतंत्र प्रसामान्य चरों का एक रैखिक संयोजन भी एक प्रसामान्य चर है।
 - (b) If X is normally distributed and mean of X is 12 and S.D. is 4, then find out the probability (i) $X \ge 20$ (ii) $0 \le X \le 12$ and find x', when P(X > x') = 0.24. 6 यदि X सामान्य रूप से वितरित है और X का माध्य 12 है तथा मानक विचलन 4 है, तो प्रायिकता ज्ञात कीजिए (i) $X \ge 20$ (ii) $0 \le X \le 12$ तथा x' ज्ञात कीजिए, जब P(X > x') = 0.24 हो ।
 - 8. (a) A sample of 100 items is taken at random from a batch known to contain 40% defectives. What is the probability that the sample contains?
 - (i) at least 44 defectives
 - (ii) exactly 44 defectives.
 6

 100 वस्तुओं का एक नमूना एक बैच से

यादृच्छिक रूप से लिया जाता है, जिसमें 40% दोषपूर्ण वस्तुएँ होती हैं। इस बात की क्या प्रायिकता है कि नमूने में निम्न वस्तुएँ हों?

- (i) कम से कम 44 दोषपूर्ण वस्तुएँ
- (ii) ठीक 44 दोषपूर्ण वस्तुएँ ।
- (b) Check, whether the central limit theorem holds for the sequence of independent random variables X_r , with distribution defined as $P(X_r = 1) = p_r$ and $P(X_r = 0)$ $1 p_r$. 6 जाँच कीजिए कि क्या केंद्रीय सीमा प्रमेय स्वतंत्र यादृच्छिक चर X_r के अनुक्रम के लिए मान्य है, जिसका वितरण $P(X_r = 1) = p_r$ तथा $P(X_r = 0)$ $1 p_r$ के रूप में परिभाषित है ।

Compulsory Question अनिवार्य प्रश्न

9. (a) Define probability distribution function and moment generating function.

प्रायिकता वितरण फलन तथा आधूर्ण जनक फलन को परिभाषित कीजिए।

- (b) Find the moment generating function of exponential distribution.

 घातांकीय वितरण का आघूर्ण जनक फलन ज्ञात कीजिए।
- (c) The mean and variance of binomial distribution are 4 and $\frac{4}{3}$ respectively. Find P (X \geq 1). द्विपद वितरण का माध्य और प्रसरण क्रमश: 4 और $\frac{4}{3}$ हैं । P (X \geq 1) ज्ञात कीजिए ।
- (d) A continuous random variable X has a p.d.f. $f(x) = 3x^2$, $0 \le x \le 1$. Find a and b s.t.:
 - (i) $P(X \le a) = P(X > a)$
 - (ii) P(X > b) = 0.05

एक सतत यादृच्छिक चर X का प्रायिकता घनत्व फलन (p.d.f.) $f(x) = 3x^2, 0 \le x \le 1$ है । a और b ज्ञात कीजिए प्रतिबन्ध के अधीन :

- (i) $P(X \le a) = P(X > a)$
- (ii) P(X > b) = 0.05

- (e) Define uniform distribution. समान वितरण को परिभाषित कीजिए।
- (f) Ten coins are thrown simultaneously. Find the probability of getting at most seven heads.

 6×2=12

 दस सिक्के एक साथ फेंके जाते हैं। अधिकतम सात चित्त आने की प्रायिकता ज्ञात कीजिए।