Astrophysics with joint Fermi-LIGO detections

Daniel Holz

The University of Chicago

Worst case scenario

- We don't detect any binaries at full sensitivity with years of observations
- What do we learn?
 - Gravitational waves don't exist.

No way.

Worst case scenario

- We don't detect any binaries at full sensitivity with years of observations
- What do we learn?
 - short GRBs are not binary systems
 - equivalent to beaming angle being larger than 90°
 - this takes 2 years for 90% confidence (HLV 2019)
 - puts pressure on population synthesis?
 - natal kicks are large?
 - binary does not survive common envelope evolution
 - constraints on star formation/evolution

Short GRBs are binary systems

- Plenty of evidence:
 - no supernova
 - far from centers of host galaxies
 - not associated with star formation
 - timescales appropriate
 - simulations might be consistent

In what follows we assume all short GRBs are the result of stellar mass compact binary progenitors

Short GRBs are binary systems

- Things we can learn from joint detections:
 - Which engine: NS-NS or NS-BH? Or maybe BH-BH?!
 - What distribution of masses? Correlation between masses and timescales? Total energy? Energy spectrum?
 - What is the beaming angle of the gamma rays?
 - Correlation of beaming angle with total energy? Spectrum? Timescale?
 - Distinguish popsyn models, and elucidate underlying astrophysics

Waiting for first detection

- Constantly improving upper limit on the event rate
- For a fixed configuration/sensitivity, the estimate of the upper limit to the rate scales as 1/time
 - This sets a lower limit to the beaming angle, which increases with time
 - At some point the beaming angle increases to 90°, at which point BNS systems are ruled out as progenitors for short GRBs

LIGO limits on GRB beaming

■ LIGO S6/V2 didn't see any binaries: constrains beaming

How well do we know the short GRB rate?

- Significant improvements since Nakar, Gal Yam, & Fox 2006?
 - conservative lower limit: 10 /Gpc^3/year
 - Can we do better?

Predicted rate this summer

Rate can approach one per year!

Fermi trigger, no GW detection

- Sets a limit on a combination of distance, mass, sky position, and inclination angle of the binary
- Golden event:

- Known redshift places it well within range of GW network, with all detectors operating and sensitive
- No GW signal implies
 - Not face on?
 - Source is NOT a binary system

GW detection, no Fermi trigger

- Sets a limit on a combination of beaming angle (upper limit) and gamma ray flux (upper limit)
- Even if all short GRBs are BNS, this does not mean all BNS are short GRBs
 - Lots of interesting physics in the discrepancies between these rates

Blind search for EM counterparts

- Use theoretical models for kilonovae lightcurves
- Search existing observational data for these
- Lack of detection puts lower limit on beaming angle
 - Preliminary version of this in process with DES
 SN data

Joint GW+Fermi sky localization

- Error boxes for LIGO can be large:
 - median: ~150 deg² (for 50% likelihood)
- Error boxes for GBM can be large:
 - ~100 deg² (for 50% likelihood)
- But these are bananas and oranges!
 - Joint approach significantly improves localization:
 - < 100 deg² (90% likelihood)</p>

LIGO localization area

Joint GW+Fermi sky localization

First joint detection

- CBC in GWs and gamma-rays
- What do we learn?
 - Compact binary progenitor for short GRBs
 - Improved GW parameter fitting?:
 - sky position prior
 - jet break/inclination angle?
 - Event rates
 - relate to popsyn models
 - Host galaxies, environment, redshift

First joint detection

- In some cases can distinguish NS-NS from NS-BH
 - If you assume you know the underlying distribution of mass from population synthesis, then measuring chirp mass is sufficient
 - If anomalously high SNR, then single systems provide more information
 - Should follow universal distribution