Appunti di Algebra Lineare e Analisi Matematica 2

Mattia Ruffini

Febbraio 2022

Indice

Ι	Al	gebra Lineare
1	Ινε	ettori
	1.1	Somma di vettori geometrici
		Prodotto di un vettore per uno scalare
	1.3	Spazio Vettoriale
		1.3.1 \mathbb{R}^n
	1.4	Spazi vettoriali astratti
	1.5	Combinazione lineare di vettori
	1.6	Sottospazio Vettoriale

Parte I Algebra Lineare

L'algebra Lineare studia gli **spazi vettoriali** e le **funzioni lineari tra spazi vettoriali**.

Capitolo 1

Spazi vettoriali e vettori

Chiamiamo con *E* l'insieme dei vettori geometrici nello spazio. I vettori nascono in fisica per secrivere grandezze che oltre un numero necessitano una direzione e un verso. Dato un segmento orientato, un'unità di misura, due segmenti orientati sono equivalenti se hanno la stessa lunghezza, stessa direzione e stesso verso. Si chiama vettore la famiglia formata da tutti i segmenti orientati tra di loro equivalenti.

Un vettore particolare è il vettore nullo $\underline{v} = \underline{0}$ ed è chiamato **vettore** nullo. E' l'unico vettore ad avere modulo 0.

1.1 Somma di vettori geometrici

Dati due vettori \underline{v} e \underline{u} allora la loro somma è il vettore seguente:

Per trovare la somma di due vettori si può utilizzare o la regola del parallelogramma, o la regola punto-coda.

1.2 Prodotto di un vettore per uno scalare

Consideriamo $t \in \mathbb{R}$ e $\vec{v} \in E$. Allora sappiamo che se t = 0 oppure se $\vec{v} = \vec{0}$, allora l'operazione

$$t \cdot \vec{v} = \vec{0} \tag{1.1}$$

altrimenti vale che

$$t \cdot \vec{v} = \vec{p} \tag{1.2}$$

con $|\vec{p}| = t \cdot |\vec{v}|$, ovvero \vec{p} è un vettore con direzione identica a \vec{v} e verso identico a \vec{v} se t > 0, altrimenti l'opposto.

I vettori \vec{v} e $t\vec{v}$ sono paralleli. In generale: "due vettori di cui uno non sia il vettore nullo sono paralleli se e solo se $\exists t \in \mathbb{R} : \vec{u} = t\vec{v}$ ". Inoltre $t = \frac{|\vec{u}|}{|\vec{v}|}$. Il segno di t dipende se i vettori sono discordi.

1.3 Spazio Vettoriale

Definizione "Un insieme V si dice che è uno spazio vettoriale se sono definite in V due operazioni: somma e prodotto per uno scalare. La somma di due elementi di V corrisponde a un terzo elemento di V, il prodotto per uno scalare $t \in \mathbb{R}$ e \vec{v} con $t \cdot \vec{v} \in V$ soddisfa le seguenti proprietà:"

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 3. $\forall \vec{u} \in V, \vec{u} + \vec{0} = \vec{u}$
- 4. $\forall \vec{u} \in V, \vec{u} \vec{u} = \vec{0}$
- 5. $\forall \vec{u} \in V, t \in \mathbb{R}, t(\vec{u} + \vec{v}) = \vec{u}t + \vec{v}t$
- 6. $(t+s)\vec{u} = t\vec{u} + t\vec{v}$
- 7. $ts\vec{u} = t(s\vec{u})$
- 8. $1 \cdot \vec{u} = \vec{u}$

Se valgono queste proprietà, allora V è uno spazio vettoriale.

1.3.1 \mathbb{R}^n

L'insieme \mathbb{R}^n è l'insieme formato dalle n-uple coordinate di numeri reali.

$$\vec{x} \in \mathbb{R}^n, \vec{x} = (x_1, x_2, ..., x_n)$$

Dati due elementi \vec{x} e \vec{y} di \mathbb{R}^n si vuole definire l'operazione somma:

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

mentre il prodotto con $t \in \mathbb{R}$:

$$t\vec{x} = (tx_1, tx_2, ..., tx_n)$$

Dunque \mathbb{R}^n è uno spazio vettoriale perchè valgono le 8 proprietà che definiscono uno spazio vettoriale. Nei casi particolari in cui n = 1, n = 2, n = 3 è presente un'interpretazione geometrica dello spazio vettoriale. In particolare si afferma che lo spazio vettoriale dei vettori nel piano si identifica in \mathbb{R}^2 . Analogamente lo spazio con \mathbb{R}^3 .

1.4 Spazi vettoriali astratti

Esistono degli spazi vettoriali che non hanno un'interpretazione geometria, tuttavia esistono. Chiamiamo con F l'insieme delle funzioni reali di variabile reale, cioè le funzioni del tipo $\mathbb{R} \to \mathbb{R}$. La somma di due elementi di F è definita come:

$$f, g \in F, f + g \in F, (f + g)(x) = f(x) + g(x)$$

mentre il prodotto con uno scalare è definito come:

$$c \cdot f \in F, c(f)(x) = cf(x)$$

Di conseguenza F è uno spazio vettoriale rispetto queste operazioni e i suoi elementi sono vettori. Dunque con il termine vettore si intende un elemento di uno spazio vettoriale.

Un altro esempio di spazio vettoriale astratto è l'insieme $\mathbb{R}[x]$ come insieme dei polinomi di variabile x a coefficienti reali è uno spazio vettoriale rispetto alla somma e al prodotto con uno scalare.

1.5 Combinazione lineare di vettori

Dato uno spazio vettoriale V fissati i vettori $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in V$ e fissati $c_1, c_2, ..., c_k \in \mathbb{R}$ scalari, allora si chiama **combinazione lineare di** $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ **con coefficienti** $c_1, c_2, ..., c_k$ **il vettore**

$$\vec{v} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} \tag{1.3}$$

Generalizzazione in \mathbb{R}^n Ogni vettore di \mathbb{R}^n si può scrivere come combinazione lineare dei vettori fondamentali con coefficienti:

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e_i} \tag{1.4}$$

dove i vettori fondamentali sono:

$$\vec{e_1} = (1, 0, 0, 0, ..., 0)$$

 $\vec{e_2} = (0, 1, 0, 0, ..., 0)$
...
$$\vec{e_n} = (0, 0, 0, 0, ..., 1)$$

Inoltre il vettore nullo è sempre combinazione lineare di una qualunque combinazione di vettori.

1.6 Sottospazio Vettoriale

Definisco V come spazio vettoriale, e $W\subseteq V, W\neq\varnothing$. W è uno spazio vettoriale di V se:

- $\forall \vec{w_1}, \vec{w_2} \in \vec{w_1} + w_2 \in W$ ovvero W è chiuso rispetto la somma;
- $\forall t \in \mathbb{R}, \forall \vec{w} \in W, t \cdot \vec{w} \in W$, ovvero W è chiuso rispetto il prodotto per uno scalare.

W è un sottospazio vettoriale di V se è uno spazio vettoriale.

La condizione necessaria affinchè W sia un sottospazio vettoriale di V è che $\vec{0} \in W$.

Consideriamo $\vec{w} \in W, t = 0$. Se $t\vec{w} \in W$, allora per la proprietà ***** $\vec{0} \in W$.

Dimostrazione $0 \cdot w = 0$

$$w + 0w = w$$
$$w - w + 0w = w - w$$
$$0 + 0w = 0$$
$$0w = 0$$

Se V è uno spazio vettoriale, allora il più piccolo sottospazio vettoriale è quello il cui elemento è esclusivamente il vettore nullo. Mentre il sottospazio vettoriale più grande è quello che coincide con V. Questi sottospazi sono chiamati **banali**.

Esempi I sottospazi di \mathbb{R}^3 sono: \mathbb{R}^3 , (0,0,0), i piani per l'origine, le rette per l'origine. I sottospazi di \mathbb{R}^2 sono \mathbb{R}^2 , (0,0) e le rette passanti per l'origine.

Se consideriamo lo spazio vettoriale dei polinomi $\mathbb{R}[x]$, lo spazio vettoriale dei polinomi con grado minore o uguale a n è sottospazio vettoriale di $\mathbb{R}[x]$. Un polinomio di quinto grado sommato ad un altro polinomio di quinto grado, è sempre di quinto grado. Un polinomio di quinto grado moltiplicato per un numero è un polinomio di quinto grado.

Anche il sottoinsieme delle funzioni reali di variabile reale che appartengono a C^1 è un sottospazio vettoriale dello spazio vettoriale delle funzioni reali di variabile reale:

$$f, g \in C^1(\mathbb{R}), f + g \in C^1$$

 $c \in \mathbb{R}, f \in C^1(\mathbb{R}), cf \in C^1$

ovvero ${\cal C}^1$ è chiuso rispetto le operazioni di somma e prodotto con uno scalare.