Final Exam: Topics in Cosmology

- 1. Via the χ^2 -statistics, fit the Sheth-Tormen analytic formula to the numerically obtained mass function from the MDPL2 Rockstar halo catalog by simultaneously adjusting the values of Ω_m and σ_8 . For this fitting, you may fix the three characteristic parameters of the Sheth-Tormen formula at the original values given in Sheth & Tormen (1999), and fix the other cosmological parameters at the values of the Planck cosmology (provided in the MDPL2 website). Plot the 68% contour of $\chi^2(\Omega_m, \sigma_8)$ in the Ω_m - σ_8 plane, and show that the contour shape is indeed well approximated by the relation of $\sigma_8 \approx A\Omega_m^\beta$ with $A \approx 0.5$ and $\beta \approx 0.5(30 \text{ pt.})$. Find the best-fit values of A and β (30 pt.).
- 2. Analyze the MDPL2 Rockstar halo catalog at z=2 to determine the cumulative mass function, N(>M), in the mass range of $M \ge 10^{14} \, h^{-1} \, M_{\odot}$. Fit the numerically obtained N(>M) with the cumulative Sheth-Tormen mass function by adjusting the value of Ω_m with the above relation between Ω_m and σ_8 . Find the best-fit value of Ω_m (20 pt.).
- 3. As you learned during the class, the linear growth rate, f, can be approximately expressed as $f = \Omega_m^{\alpha}$ where α depends on the dark energy equation of state, w. Using the approximate expression for $\alpha(w)$ along with the expression for the linear growth factor D(z) in terms of $f(\alpha)$ for a wCDM case, all of which you learned during the class, perform the following.
 - (a) Via the χ^2 -statistics, fit the Sheth-Tormen analytic formula to the numerically obtained mass function from the MDPL2 Rockstar halo catalog at z=0.5 in the mass range of $M \geq 10^{14} \, h^{-1} \, M_{\odot}$ by adjusting w and Ω_m . For this task, you may use the relation between Ω_m and σ_8 that you find in Problem 2. (20 pt.)
 - (b) Plot the 68%, 95% and 99% contours of $\chi^2(\Omega_m, w)$ in the Ω_m -w plane. (10 pt.)
 - (c) Fix the value of Ω_m and σ_8 at the Planck values, and parameterize w as $w = w_0 + w_a(1-a)$. Then, do the same calculation as 3.(a) but by adjusting w_0 and w_a . Plot the 68%, 95% and 99% contours of $\chi^2(w_0, w_a)$. (15 pt.)
 - (d) Can you figure out why the cluster mass function at fixed redshift is not good enough to precisely constrain both of w_a and w_0 ? (5 pt.)