Equivalenza tra stati

Def. dato un DFA $A = (Q, \Sigma, \delta, q_0, F)$, $p,q \in Q$, s: dice the $p \in q$ some STATI EQUIVALENTI (p = q) se $\forall w \in Z^*$, $\hat{\delta}(p, w) \in F$ $(q, w) \in F$, altriment: s: dice the some STATI DISTINGUIBILE.

Algoritmo di riempimento-tabella

RA = Q × Q, relatione.

base $p \in F$, $q \notin F \implies p \not\equiv q$, $(P,q) \in R_A$ passo induttion $\exists a \in \Sigma \mid (S(P,a), S(q,a)) \in R_A \implies$ $\Rightarrow p \not\equiv q$, $(P,q) \in R_A$

$$(C,A)$$
, (C,B) ,..., (C,H) $\in R_A$
 (H,E) $\in R_A$ $<=$ $(\delta(H,1), \delta(E,1)) = (C,F)$ $\in R_A$
 (D,A) $\in R_A$ (B,E) $\in R_A$ (F,A) $\in R_A$...

in tabella:

Algoritmo di Hoperoft

- (i) considero Q/F e F, dette class:
- (ii) per ogni stato q di una classe controllo dato $\alpha \in \Sigma$ se ricade nella stessa classe; qualora cio una accadesse, creo un'altra partizione con gli elementi che con $\alpha \in \Sigma$ ricadono nella sua stessa classe; reitero $\forall \alpha \in \Sigma$
- (<u>;;i)</u> interseco le class; di ogn: stato e reitero (<u>;i)</u>

Supponiamo ∃ (p,q) & RA | ∃WEZ* | Ŝ(p,w) EF ∧ Ŝ(q,w) & F.

base w≠ €, attriment: (p,q) ∈ RA, \$

Passo induttive
$$\omega \neq \alpha_1 \cdots \alpha_n$$
. Siamo $r = \delta(p, \alpha_1) \in S = \delta(r, \alpha_2)$.

Allora $\hat{\delta}(p, \omega) = \hat{\delta}(r, \alpha_2 \cdots \alpha_n)$, $\hat{\delta}(q, \omega) = \hat{\delta}(S, \alpha_2 \cdots \alpha_n)$.

Tuttavia $(r, S) \in R_A$, altriment: si violerebbe il passo n-1.

Allora $(r, S) \in R_A \Rightarrow (p, q) \in R_A$, $\frac{1}{2}$.

Quindi non esiste tale w, pertanto p=q.

OSS. Per dimostrare the due automi sono equivalent: e' sufficiente d'imostrare the $q_{o_R} \equiv q_{o_R}$.

OSS. = e' relazione di equivalenza.

Algoritmo di minimizzazione

Dato l'automa $A = (Q, \Sigma, S, q_0, F)$, esso e' equivalente all'automa minimo $(Q = \Sigma, X, q_0 = F = 0)$, dove:

$$X(q/=, \alpha) = S(q, \alpha)/=$$

$$Q/= = \{ \{A, E\}, \{B, H\}, \{c\}, \{D, F\}, \{G\} \}$$

 $Q_0/= = \{A, E\}$
 $F/= = \{c\}$

$$L(A) = ((220^{2}1 + 000^{k}1)^{k} + \epsilon) (10+01)$$

055.	ુ∂!:	stat;	dell'automa	m:n:mo	So luo	tolt:	distinguibili.