CSR HW training

电流回路(低速信号)

- ≻RF
- **≻**Power
- **≻**Layout
- ➤RF 测试
- ▶天线

电流回路(低速信号)

➤当驱动源驱动电流经 PCB走线流向负载(红色) 电流必须经过GND回馈 到信号源. (蓝色)

电路回路(高速信号)

- ▶电流回路将会产生一个 磁场
 - ▶电感效应
- ▶对于高速信号来讲,感值比阻值更重要.
- ➤流经大地的电流回路将 会选择电感最小的路径.
- ➤最小电感的路径位于连 接大地的器件正下方.

褪耦电容(旁路电容)

- ▶褪耦电容能让大地回路电流快速回流到驱动源
- ▶ 回路不必再经过电源
- > 将褪耦电容尽可能近的放置在驱动源旁边.
- 这样可以减小总的回路面积
- ▶ 减小串扰和干扰

褪耦电容(旁路电容)

- ▶电源经褪耦电容后到BGA
- ▶电容可以阻止噪声回馈到电源层

按参考设计要求选用器件

推荐板层架构

▶推荐的四层板架构:

➤ Layer 1: 布线

➤ Layer 2: 完整的大地层

➤ Layer 3: 电源层

➤ Layer 4: 布线

➤ 50R线的匹配

0.1mm 的RF走线适合下面的板层结构(layer 1 to 2 = 63μ)

RF布线要求

- ▶确保RF走线下方保持完整的大地
- ➤ RF GND 单独分开下地(VSS_RADIO / VSS_LO)
- ➢ 尽量把Balan放在离IC比较近的位置
- > 尽量把褪耦电容放在离IC比较近的位置
- ▶ 尽量不要共用RF GND.
- ▶ 增加敏感信号之间的串扰
- ▶ 除非万不得已,不建议在RF线上打孔
- ▶ 电源走线尽可能的粗
- ▶ 减小阻抗

布局 走线参考

褪耦电容(旁路电容)

- ≻LX布线越短越好
- ▶确保LX布线的下方有完整的大地
- ➤把SMPS 的褪耦电容尽可能的放置在电感的附近
- ▶VBAT 的褪耦电容尽可能的放在IC相应电源脚附近
- ▶地的回流路径越短越好,这样可以减小回环面积
- ▶LX布线尽量不要打孔

硬件设计要求(CSR1000)

Layout设计要求(CSR1000)

Suggested Layout for CSR1000 A04

Layout设计要求(CSR8670)

Layout设计要求(CSR8670)

硬件设计总结

- ▶ 使用COG, X7R or X5R 陶瓷褪耦电容
- > 尽可能离相应的IC 引脚近的位置放置褪耦电容
- 电源线越粗越好
- 减小阻抗,减少噪声辐射
- ➤ 确保RF走线下方大地完整
- ➤ RF GND单独分开下地层(VSS_RADIO / VSS_LO)
- ▶ 减小SMPS的电磁干扰
- ▶ 尽量使LX布线越短越好
- ▶ 减小电流回路面积
- ▶ 确保SMPS 器件下方有完整的大地

硬件设计总结(音频)

- ▶音频差分走线
- 音频地以星形下地 ,不然音频质量会降低。
- ➤ 最佳的星形下地点是音频LDO的输出
- 避免回流噪声影响其他电路
- ➤ 确保音频(其他)电路远离RF部分

RF测试准备工作

- ➤ 将PCBA上的原天线从匹配电路处断开,焊上SMA 头的RF测试线。
- ▶天线匹配电路中下地的电感、电容需先去掉。

RF测试准备工作

> 焊出四根Debug-SPI线和地线,并标注。

RF测试内容标准

Test Title	Low(CH0)M	Med(CH39)N	High(CH78)	Lower Li	Upper Limit	Units
Average Power	4.82	6.11	5.22	-6	4	dBm
Peak Power	4.95	6.23	5.38	NO	23	dBm
Power Control	-22.43	-20.96	-22.54	2	8	dB
Modulation Characteristics(delta F1 max)	163075.5	163304.4	163580.1	NO	175	Hz
Modulation Characteristics(delta F1 min)	163075.5	163304.4	163580.1	140	NO	Hz
Modulation Characteristics(delta F2 min)	152728.2	152728.2	152728.2	115	NO	Hz
Modulation Characteristics(deltaF2/deltaF	0.974	0.971	0.973	0.8	NO	NO
Initial Carrier Frequency Tolerance	5299.64	593.28	873.39	-75	75	Hz
Carrier Frequency Drift(DH1)	-6312.4	4097.82	-7856	-25	25	Hz
Frequency Drift Rate	4646.97	3155.59	3499.79		20	Hz
Single-slot Sensitivity BER	0.02	0.01	0	NO	0.100000001	%
Single-slot Sensitivity PER	0.86	0	0	NO	100	%
Multi-slot Sensitivity BER	0.02	0.01	0	NO	0.100000001	%
Multi-slot Sensitivity PER	5.13	0	0	NO	0.100000001	%
Maximum Input BER	0	0	0	NO	0.100000001	%
Maximum Input PER	0.22	0	0.22	NO	100	%

RF测试内容标准

▶输出功率 (Average Power)

如果EUT的功率等级为1,平均功率> 0dBm;如果EUT的功率等级为2,-6dBm<平均功率<4dBm;如果EUT的功率等级为3,平均功率<0dBm。

▶功率控制 (Power Control)

测试功率控制步长的范围,规范要求在2dB和8dB之间。

➤频率范围 (Frequency Range)

对于79信道的系统,要求fL、fH位于2. $4\sim$ 2. 4835GHz范围内。

▶初始载波容限(ICFT)

要求与标称频率fTX的差小于75kHz。

➢调制特性 (Modulation Characteristics)

Df1max满足 140kHz< Df1max <175kHz; Df2max 3115kHz; Df2avg /Df1avg 30.8。

RF测试内容标准

▶载波频率漂移 (Carrier Frequency Drift(DH1))

对于DH1分组,要求每次的瞬时漂移小于25kHz,对于DH3、DH5分组,要求载波瞬时漂移小于40kHz。

▶单时隙灵敏度(Single-slot Sensitivity BER)

测试仪对误码率进行统计,要求误码率BER<0.1%。。

▶多时隙灵敏度(Multi-slot Sensitivity BER)

类似于单时隙灵敏度的测试,不过分组类型为DH3、DH5。测试仪进行误码率统计,要求BER<0.1%。

▶最大输入电平

使EUT收信机入口处的电平为-20dBm。测试仪统计误码率,要求BER 〈0.1%。

2. 4G天线设计参考

▶CSR建议两种PCB天线规格

倒 F 型天线、蛇形天线。可按下图规格设计。

▶天线摆放位置

天线周边应有较大禁空区域,不能有其它信号线,更不能靠近金属 外壳。

THE END

