Typst 大学数学

这是 Jim Hefferon 的《本科生 LAT_PX 数学》的 Typst 版本,适 用的 typst 版本为 0.13.1。 原始版本可以在此链接中找到: https://gitlab.com/jim.hefferon/undergradmatho

记号的含义

可以复杂实现, 需要更简单的方法。

Rule One 任何数学内容,哪怕只有一个字符,都需要使 用数学环境。因此, 对于[x] 的值为 7_{J} , 输入 xx 的值为 7x

模板 您的文档至少应包含以下内容。

-- document body here --

常见结构

书法字母 使用 \$cal(A)\$.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

通过将 text()的 stylistic-set 参数更改为相应的集合, 可 以获取手写字母:

#show math.equation: set text(stylistic-set: 1) \$ cal(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z) \$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

希腊字母

	-1-6-	ć –	·
α	alpha	ξ , Ξ	xi, Xi
β	beta	0	omicron
γ , Γ	gamma, Gamma	π , Π	pi, Pi
δ , Δ	delta, Delta	ϖ	pi.alt
ϵ	epsilon.alt	ho	rho
ε	epsilon	ϱ	rho.alt
ζ	zeta	σ, Σ	sigma, Sigma
η	eta	ς	sigma.alt
θ , Θ	theta, Theta	au	tau
ϑ	theta.alt	v , Υ	upsilon, Upsilon
ι	iota	ϕ , Φ	phi.alt, Phi
κ	kappa	φ	phi
λ , Λ	lambda, Lambda	χ	chi
μ	mu	ψ , Ψ	psi, Psi
ν	nu	ω , Ω	omega, Omega

集合与逻辑

\cup	union	\mathbb{R}	RR, bb(R)	\forall	forall
\cap	inter	$\mathbb Z$	ZZ, bb(Z)	∃	exists
\subset	subset	\mathbb{Q}	QQ, bb(Q)	\neg	not
\subseteq	subset.eq	\mathbb{N}	NN, bb(N)	V	or
\supset	supset	\mathbb{C}	CC, bb(C)	\wedge	and
\supseteq	supset.eq	Ø	diameter	⊢	tack.r
\in	in	Ø	nothing	F	models
∉	in.not	×	alef	\	without

想要否定一个运算符,如 ⊄,要写成 subset.not。集合的补 集 A^c 写法是 A° (sans(c)) (A° 的写法是 A° (complement), 而 \overline{A} 的写法是 overline(A))。

备注 在使用 diameter 代表 \varnothing 可能会导致一 些困惑。然而, 在 LAT_FX 中, 通过字符变体 cv01 提供 的\varnothing 也是 diameter (参见 newcm §14.5)。因 此,使用默认数学字体 New Computer Modern Math 的 简单解决方案是定义一个新符号 varnothing 为 #let varnothing = math.diameter。其他解决方案可以在 Typst Examples Book 中找到。

装饰符号

$$f'$$
 f', f prime \dot{a} dot(a) \tilde{a} tilde(a) f'' f prime.double \ddot{a} diaer(a) \bar{a} macron(a) Σ^* Sigma * \hat{a} hat(a) \vec{a} arrow(a)

如果修饰的字母是 i 或 j, 那么某些修饰需要 使用 dotless.i 和 dotless.j, 例如 i, 可以使用 arrow(dotless.i)。 一些作者在表示向量时使用粗体: bold(x)_o

输入 overline(x + y) 会生成 $\overline{x+y}$, 而 hat(x + y) 会给 出 $\widehat{x+y}$ 。 可以在表达式中添加注释,例如在这里(还 有 overbrace(..))。

$$\underbrace{x+y}_{|A|} \quad \mathsf{underbrace}(\mathsf{x}\,+\,\mathsf{y},\,\,|\mathsf{A}|\,)$$

点号 在列表中使用低点号表示为 $\{0,1,2,...\}$,输入为 $\{0,1,2,...\}$ 1, 2, ...}。在求和或乘积中使用居中点号表示为1+…+ 100, 输入为 1 + dots.h.c + 100。您还可以使用垂直点号 dots.v, 对角线点号 dots.down 和反对角线点号 dots.up。

函数名称 直接输入!

\sin	sin	\sinh	sinh	\arcsin	arcsin
\cos	cos	\cosh	cosh	arccos	arccos
\tan	tan	anh	tanh	\arctan	arctan
\sec	sec	\coth	coth	\min	min
\csc	CSC	\det	det	\max	max
\cot	cot	\dim	dim	\inf	inf
\exp	exp	ker	ker	\sup	sup
\log	log	\deg	deg	lim inf	liminf
ln	ln	arg	arg	\limsup	limsup
\lg	lg	gcd	gcd	\lim	lim

如果您想要使用的函数名不存在,您可以使用 math.op 来 定义。例如,定义 cosec 函数:

#let cosec = math.op("cosec") \$ cosec
$$x = 1/(\sin x)$$
 \$
$$\csc x = \frac{1}{\sin x}$$

其他符号 / . 1<u>+</u>

<	<, lt	_	angle	•	dot
\leq	<=, lt.eq	4	angle.arc	\pm	plus.minus
>	>, gt	ℓ	ell	Ŧ	minus.plus
\geq	>=, gt.eq		parallel	×	times
\neq	!=, eq.not	45°	45 degree	÷	div
«	<<, lt.double	\cong	tilde.equiv	*	*, ast
\gg	>>, gt.double	\cong	tilde.nequiv		divides
\approx	approx	\sim	~	Ì	divides.not
\asymp	asymp	\simeq	tilde.eq	n!	n!
=	equiv	\nsim	tilde.not	∂	diff
\prec	prec	\oplus	plus.circle	∇	nabla
\preceq	prec.eq	\ominus	minus.cirle	\hbar	planck.reduce
\succ	succ	\odot	dot.circle	0	compose
\succeq	succ.eq	\otimes	times.circle	*	star
\propto	prop	\bigcirc	\u{2298} 💦	$\sqrt{2}$	sqrt(2)

使用 a divides b 表示整除, $a \mid b$,使用 a divides.not b 表示不能整除, $a \mid b$ 。使用 | 来表示集合构建符号, $\{a \in S \mid a \text{ is odd}\}$ 可以表示为 $\{a \text{ in S } \mid a \text{ "is odd"}\}$ 。

箭头

第一列中的右箭头有相应的左箭头,例如 arrow.l.not, 还有一些其他匹配的向下箭头等。

可变大小的运算符 求和符号 $\sum_{j=0}^{3} j^2 \operatorname{sum}_{(j=0)^3} j^2$ 和积分符号 $\int_{x=0}^{3} x^2 dx$ integral_(x = 0)^3 x^2 dif x 在行间模式会展开。

$$\sum_{j=0}^{3} j^2 \qquad \int_{x=0}^{3} x^2 \, \mathrm{d}x$$

下面这些同理。

括号

使用 lr 函数来固定大小。

$$\left[\sum_{k=0}^{n} e^{k^2}\right]$$
 lr([sum_(k = 0)^n e^(k^2)], size: #50%)

为使它们与括号中的公式一起增长, 也可以使用 lr 函数。

$$\left\langle i,2^{2^{i}}\right
angle$$
 lr(angle.l i, 2^(2^i) angle.r)

如果直接输入为代码点,则括号默认会按比例缩放,而如果以符号表示法输入,则括号不会自动缩放。

$$\left(rac{1}{n^{lpha}}
ight)$$
 (1 / n^(alpha))
$$\left(rac{1}{n^{lpha}}
ight)$$
 paren.l 1 / n^(alpha) paren.r

1r 函数还允许对不匹配的定界符和单侧括号进行缩放。

$$\left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_0} = \ln(\mathrm{frac}(\mathrm{dif}\ \mathrm{f},\ \mathrm{dif}\ \mathrm{x})\ |)_{x_0} = 0$$

数组、矩阵 使用 mat 函数可以创建一个矩阵。可以将一个数组传递给它。

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 \$ mat(a, b; c, d) \$

在 Typst 中, array 是一组数值, 而在 欧_EX 中, array 是 没有括号的矩阵, 相当于在 Typst 中使用 \$mat(delim: #none, ...)\$。

对于行列式,可以使用 |A|, 文本运算符 det det 或者 mat(delim: "|", ..)。

使用 cases 函数可以轻松定义分段函数。

$$f_n = \begin{cases} a & \text{if } n = 0 \\ r \cdot f_{n-1} \text{ else} \end{cases} \quad \begin{array}{c} \$ \text{ f_n = cases(} \\ a \text{ \&"if" n = 0,} \\ r \text{ dot f_(n - 1) \&"else"} \\ \end{cases}$$

数学中的间距 将 $\sqrt{2}x$ 改进为带有细小间距的 $\sqrt{2}x$, 要写成 sqrt(2) thin x。 稍宽一些的间距是 med 和 thick(它们的比例是 3:4:5)。 更大的间距是 quad 和 wide,效果分别是 \rightarrow ← 和 \rightarrow ←,在行间公式的不同部分之间非常有用。使用 h 函数可以获取任意间距。例如,使用 #h(-0.1667em) 可以得到 $\text{ET}_{\mathbf{r}}$ X 中的 \!。

行间公式 将行间公式以块级形式使用 \$... \$, 其中数学 内容和 \$ 之间至少有一个空格分隔。

$$S = k \cdot \lg W \quad \text{\$ S = k dot lg W \$}$$

你可以写成多行。

$$\sin(x) = x - \frac{x^3}{3!} \\ + \frac{x^5}{5!} - \cdots \\ + x^5 / 5! - \text{dots.h.c}$$

用 & 来对齐公式

$$abla \cdot D =
ho$$
 \$ nabla dot bold(D) &= rho \ $abla \cdot B = 0$ nabla dot bold(B) &= 0 \$

(对齐的左侧或右侧可以为空)。 通过 #set math.equation(numbering: ..) 给公式加编号。

微积分例子 最后三个是行间公式形式。

$$\begin{array}{lll} f : \mathbb{R} \to \mathbb{R} & \text{f: RR -> RR} \\ 9.8 \, \text{m/s}^2 & 9.8 \, \text{thin "m/s"^2 of} \\ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} & \lim_{t \to \infty} (h \to 0) \, (f(x+h) \to f(x)) \, / \, h \\ \int x^2 \, \mathrm{d}x = x^3/3 + C & \text{integral x^2 dif x = x^3 \/ 3 + C} \\ \nabla = i \frac{\mathrm{d}}{\mathrm{d}x} + j \frac{\mathrm{d}}{\mathrm{d}y} + k \frac{\mathrm{d}}{\mathrm{d}z} & \text{nabla = bold(i) dif / (dif x)} \\ & \text{bold(b) dif / (dif z)} \end{array}$$

离散数学例子 对于模运算,可以使用 equiv 来输入 \equiv ,用 mod 来输入文本运算符 mod。

对于组合,可以使用 binom(n, k) 中的二项式符号 $\binom{n}{k}$ 。在行间模式下会自动调整大小。

对于排列,可以使用 $n^{(underline(r))}$ 来输入 n^{r} 符号 (有 些作者用 P(n,r) 或 $_{n}P_{r}$ 来表示,可以使用 ""_n P_r)。

统计学例子

$$\begin{split} \sigma^2 &= \sqrt{\sum (x_i - \mu)^2/N} & \text{sigma^2 = sqrt(sum(x_i - \mu)^2/N)} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - \mu) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - \mu) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - \mu) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \sum (x_i - \mu) & \text{E(X) = mu_X = sum(x_i - \mu)^2/N} \\ E(X) &= \mu_X = \mu_$$

$$\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \hspace{1cm} 1 \text{ / sqrt(2 sigma^2 pi)} \\ e^{-(-(x-mu)^2)} \text{ e^-(-(x-mu)^2)} \text{ (2 sigma^2))}$$

更多 参见 Typst 文档: https://typst.app/docs.