Aspectos Formais da Computação

Prof. Sergio D. Zorzo

Departamento de Computação – UFSCar

1º semestre / 2017

Aula 06

Autômatos denotam linguagens

Autômatos possuem duas notações

Diagrama de estados

Tabela de transições

Vimos apenas uma notação para linguagens Notações de conjuntos / formadores de conjuntos

Ex: {w | regra sobre w}

Existe outra notação Expressões regulares

Definição de álgebra:

Um conjunto A e uma coleção de operações sobre A

Operações que podem ser k-árias:

0-árias: ex: constantes, 2, x, y

1-árias: ex: -10

2-árias: ex: 2+2, 3*y

Na teoria da computação

Álgebra envolve

Conjunto A = alfabeto

Operações = operações regulares

Operações regulares

Operações sobre membros de um alfabeto

Linguagens regulares são fechadas sob as operações regulares

Conjuntos fechados sob uma operação

Exemplo:

 $N = \{1,2,3,...\}$ (conjunto de números naturais)

N é fechado sob multiplicação

Ou seja: para quaisquer x e y em N

x * y também está em N

N não é fechado sob divisão

Contra-exemplo: 1 e 2 estão em N, mas ½ não está!

Definição:

Uma coleção de objetos é fechada sob alguma operação se, aplicando-se essa operação a membros da coleção, recebe-se um objeto ainda na coleção

Operações que:

Aplicadas sobre elementos de linguagens regulares Resultam em linguagens regulares

Em outras palavras:

Sejam L1 e L2 duas linguagens regulares L1 op_{req} L2 é regular

São 3 as operações regulares:

União: A \cup B = {x | x \in A ou x \in B}

Concatenação: A.B = $\{xy \mid x \in A \text{ e } y \in B\}$

Estrela (ou fechamento, ou fechamento de Kleene):

 $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ e cada } x_i \in A\}$

União e concatenação são operações binárias

Estrela é uma operação unária

```
União L = \{001, \ 10, \ 111\} \ e \ M = \{\epsilon, \ 001\}  L \cup M = \{\epsilon, \ 10, \ 001, \ 111\}  Concatenação L = \{001, \ 10, \ 111\} \ e \ M = \{\epsilon, \ 001\}  L.M \ (ou \ LM) = \{001, 10, 111, 001001, 10001, 111001\}  Estrela L = \{0, \ 11\}
```

L* = {ε, 0, 00, 000, 000, 11, 011, 1111, 00011011, ... (não há uma ordem lógica aqui)}

Teorema: A classe de linguagens regulares é fechada sob a operação de união

Em outras palavras: se A1 e A2 são linguagens regulares, A1 ∪ A2 é regular

Prova por construção:

A1 é regular, existe um autômato M1

A2 é regular, existe um autômato M2

Construímos um autômato M que simula M1 e M2, aceitando se uma das simulações aceita

$$L(M) = L(M1) \cup L(M2)$$

Teorema: A classe de linguagens regulares é fechada sob a operação de concatenação

 Em outras palavras, se A1 e A2 são linguagens regulares, A1.A2 é regular

Prova por Construção

- A1 é regular, existe um autômato M1
- A2 é regular, existe um autômato M2
- Construímos um autômato M que simula M1 e em seguida M2, passando de M1 para M2 quando M1 aceita, e aceitando quando M2 aceita

$$L(M) = L(M1) \cdot L(M2)$$

Teorema: A classe de linguagens regulares é fechada sob a operação de estrela

Em outras palavras, se A é uma linguagem regular,
 A* é regular

Prova por Construção

- A é regular, existe um autômato M
- Construímos um autômato M' que simula M, com a possibilidade de ir direto para o estado de aceitação, e a possibilidade de voltar de um estado de aceitação para o inicial

$$L(M') = L(M)^*$$

Definição: Expressões Regulares

Constantes:

```
ε e Ø são expressões regulares
    L(\varepsilon) = \{\varepsilon\}
     L(\emptyset) = \emptyset
  Se a é um símbolo qualquer, a é uma expressão
    regular
    L(a) = \{a\}
União
  Se E e F são expressões regulares, E + F é uma
    expressão regular
    L(E+F) = L(E) \cup L(F)
```

Definição: Expressões Regulares

Concatenação

- Se E e F são expressões regulares, EF é uma expressão regular
 - L(EF) = L(E).L(F)

Estrela

- Se E é uma expressão regular, E* é uma expressão regular
 - $L(E^*) = (L(E))^*$

Parêntesis

- Se E é uma expressão regular, (E) é uma expressão regular
 - L((E)) = L(E)

Definição: Expressões Regulares

Precedência

Estrela → concatenação → união

Ex: 01*+1

Parêntesis

Mudam a precedência

Ex: (01)*+1 ou 0(1*+1)

Exemplos de expressões regulares

```
Alfabeto = \{0,1\}
  0*10* = \{w \mid w \text{ contém um único } 1\}
  01 + 10 = \{01, 10\}
  (\varepsilon + 0)1^* = \{w \mid w \text{ é uma sequência de zero ou mais}\}
    1s, começando opcionalmente com 0}
  (0+1)* = Conjunto das partes do alfabeto ou conjunto
    de todas as cadeias possíveis sobre o alfabeto,
    incluindo a cadeia vazia (|w| ≥ 0)
  (0+1)(0+1)^* = Idem ao exemplo acima, mas sem a
    cadeia vazia (|w| ≥ 1)
```

Exercícios

```
Escreva expressões regulares correspondentes às
  seguintes linguagens:
  {w | w começa com um 1 e termina com um 0}
    Resp: 1(0+1)*0
  {w | w contém pelo menos três 1s}
    Resp: 0*10*10*1(0+1)*
  {w | o comprimento de w é no máximo 5}
    Resp: (0+1+\epsilon)(0+1+\epsilon)(0+1+\epsilon)(0+1+\epsilon)
  {w | toda posição ímpar de w é um 1}
    Resp: (1(0+1))^* + 1((0+1)1)^* ou (1(0+1))^*(1+\epsilon)
```

É possível (e muitas vezes necessário) simplificar expressões regulares

Ex: $1*0 + 1*0(\epsilon+0+1)*(\epsilon+0+1) = 1*0(0+1)*$

Existem algumas leis algébricas que facilitam esse processo

Identidades (elemento neutro) e aniquiladores Ø+L=L+Ø=L (Ø é identidade para união) εL=Lε=L (ε é identidade para concatenação) ØL=LØ=Ø (Ø é aniquilador para concatenação)

Exs:

$$\epsilon a(b+c)+aa\epsilon = a(b+c)+aa$$

 $\emptyset(\epsilon+1)^*(1+0(01^*10(0+1))) + 01 = \emptyset + 01 = 01$

```
Leis distributivas

L(M+N)=LM+LN

(M+N)L=ML+NL

Exs:

0(0+1)=00+01

(0+1)(0+1)=(0+1)0+(0+1)1

(0+1)(0+1)=0(0+1)+1(0+1)
```

Lei da idempotência L+L=L

Exs:

$$(0+1+\epsilon) + (0+1+\epsilon)=(0+1+\epsilon)$$

 $(0+1+\epsilon)+01*0+(\epsilon+0+1)+(\epsilon+1+0)=(0+1+\epsilon)+01*0$

Leis envolvendo fechamentos

```
(L^*)^*=L^*
Ex:((01)^*)^*=(01)^*
\emptyset^*=\varepsilon
\varepsilon^*=\varepsilon
```

Operadores de fechamento adicionais

```
L+=LL*=L*L
L*=L++ε
L?=ε+L
```

Exemplos de simplificação

```
0+010
  0ε+010
  0(\epsilon + 10)
  0(10)?
ab*b(a+\epsilon)
  ab*ba?
  ab†a?
```

```
a+(b+c+\varepsilon)a(b+c)+ca+ba
  a+(b+c)?a(b+c)+ca+ba
  a+(b+c)?a(b+c)+(c+b)a
  \varepsilona+(b+c)?a(b+c)+(c+b)a
  εa+(c+b)a+(b+c)?a(b+c)
  (\epsilon + c + b)a+(b+c)?a(b+c)
  (b+c)?a+(b+c)?a(b+c)
  (b+c)?a\varepsilon+(b+c)?a(b+c)
  (b+c)?a(\varepsilon+b+c)
  (b+c)?a(b+c)?
```

Autômatos finitos e expressões regulares

Autômatos finitos e expressões regulares

São diferentes na notação

Mas tanto autômatos finitos como expressões regulares representam exatamente o mesmo conjunto de linguagens

Linguagens regulares

Ou seja:

Toda linguagem definida por um autômato finito também é definida por uma expressão regular

Toda linguagem definida por uma expressão regular é definida por um autômato finito

Autômatos finitos e expressões regulares

→ Já demonstrado
 → A demonstrar

Teorema: Se L = L(A) para algum DFA A, então existe uma expressão regular R tal que L = L(R)

Conversão é surpreendentemente complicada Método 1: n³ expressões, com 4ⁿ símbolos (pior caso)

Método 2: eliminação de estados

Mais simples, porém também trabalhosa

Envolve uma notação mista: autômatos + ERs

Autômato finito não-determinístico generalizado

Transições são expressões regulares

Autômatos + ERs

Método da eliminação de estados
Eliminamos todos os estados, um por um
Ao eliminar um estado s, todos os caminhos que
passam por s não mais existem no autômato
Substituiremos símbolos por ER nas transições,
para representar as transições eliminadas

- Para cada estado de aceitação q, elimine todos os estados, com exceção de q e q0 (estado inicial)
 - Resultado = um autômato para cada estado de aceitação

Cada autômato terá uma ER equivalente

Basta fazer a união de todas as expressões

$$01*(1+0)*11 \\ 0 \\ 0+1* \\ 01*(1+0)*110 + 0 + \\ 1* + 111 + 1(0+\epsilon)10 \\ 1(0+\epsilon)10$$

 Eliminando um estado s (caso não haja um determinado arco, considerar que existe um arco com rótulo Ø)

Repetir esse procedimento para todos os estados No final, existem duas possibilidades:

$$q0=q$$

Resta um único estado, com uma transição R

R é a expressão regular equivalente

Restam dois estados, no seguinte formato genérico:

A expressão regular final é (R+SU*T)*SU*

 Exemplo: cadeias com símbolo 1 a duas ou três posições a partir do final

Primeiro passo, substituir as transições rotuladas 0,1 por 0 + 1

Eliminando B (assim dá para reaproveitar em outras reduções)

Q1=1

P1=0+1

R11=Ø

S=Ø

Arco de A para C = R11+Q1S*P1 = \emptyset +1 \emptyset *(0+1) Simplificando: 1(0+1)


```
Eliminando C

Q1=1(0+1)

P1=0+1

R11=\emptyset

S=\emptyset

Arco de A para D = R11+Q1S*P1 = \emptyset+1(0+1)\emptyset*(0+1)

Simplificando: 1(0+1)(0+1)
```


Restou um autômato de 2 estados

R=0+1
S=1(0+1)(0+1)
U=
$$\emptyset$$

T= \emptyset

Fórmula: (R+SU*T)*SU*

Resultado: (0+1+1(0+1)(0+1)Ø*Ø)*1(0+1)(0+1)Ø*

Simplificando: (0+1)*1(0+1)(0+1)

Eliminando D agora

Não há sucessor, portanto não haverá mudanças de arcos

Da mesma forma, restou um autômato de 2 estados Expressão regular resultante: (0+1)*1(0+1)

Haviam dois estados de aceitação

Foram obtidos dois autômatos

Duas expressões regulares equivalentes

A expressão regular final é a união dessas duas:

$$(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)$$

Simplificando

$$(0+1)*1(0+1)(0+1)$$
?

Teorema: Toda linguagem definida por uma expressão regular também é definida por um autômato finito

Prova por construção: ER→ε-NFA

Base + indução

Base: ϵ , \emptyset e a (um símbolo qualquer)

Indução: Os mesmos autômatos das provas sobre o fechamento das operações regulares

Características do ε-NFA:

Possui exatamente um estado de aceitação

Nenhum arco chega no estado inicial

Nenhum arco sai do estado de aceitação

Questões sobre linguagens regulares

Questões sobre linguagens regulares

Linguagens regulares existem sob muitas formas

DFA

NFA

ε-NFA

Expressões regulares

Cada uma tem suas características

DFA = rápida execução

NFA (e ε-NFA) = mais fácil projeto, porém execução mais lenta

ER = boa legibilidade e projeto fácil

É possível passar de uma para outra

Conversão entre representações

