الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

ير د ر ي د دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التالبين: الموضوع الأوّل

التمرين الأول: (04 نقاط)

. $P(z) = z^3 - 24\sqrt{3}$: z عدد مرکب z = -1

. $P(2\sqrt{3})=0$ أَنَ اللَّهِ أَن اللَّهِ أَن اللَّهُ أَن اللَّهُ أَن اللَّهُ أَن اللَّهُ أَن اللَّهُ أَن اللَّهُ أَن

 $P(z) = (z - 2\sqrt{3})(z^2 + az + b): z$ با جد العددين الحقيقيين a و d بحيث من أجل كل عدد مركب z

. P(z)=0 المعادلة $\mathbb C$ ، المعادلة الأعداد المركبة المعادلة المعادلة المركبة المعادلة المعادلة المركبة المعادلة المركبة المعادلة المركبة المعادلة المعادلة المركبة المعادلة المعادلة المعادلة المعادلة المركبة المعادلة المعادلة المعادلة المعادلة المركبة المركبة المعادلة المركبة المعادلة المركبة المعادلة المركبة المركبة

-2 المستوي منسوب إلى المعلم المتعامد والمتجانس $z_B = -\sqrt{3} - 3i$ و $z_A = -\sqrt{3} + 3i$ الترتيب: $z_C = 2\sqrt{3}$ و $z_B = -\sqrt{3} - 3i$ و $z_A = -\sqrt{3} + 3i$

. $\frac{z_C - z_A}{z_B - z_A}$ اكتب على الشكل الجبري العدد المركب $z_B - z_A$

. بين أنّه يوجد دوران r مركزه A و يحول النقطة B إلى النقطة C ، يطلب تعيين زاويته

ج) استنتج طبيعة المثلث ABC .

ABDC عين z_D لاحقة النقطة D صورة النقطة C بالانسحاب الذي شعاعه \overline{AB} ، ثمّ حدد بدقة طبيعة الرباعي

 $k \in \mathbb{Z}$ عين $arg\left(\frac{z}{\overline{z}}\right) = 2k\pi$ عين z عين z عين المستوي ذات اللاحقة غير المعدومة z بحيث: z عين z عين z العدد z هو مرافق العدد z).

التمرين الثاني: (04 نقاط)

Aig(1;0;2ig) المستقيم الذي يشمل النقطة المتعامد والمتجانس $ig(\Deltaig)$ ، $ig(O;ec{i},ec{j},ec{k}ig)$

 $x=\lambda$ وشعاع توجيه له u(2;1;-1) وليكن u(2;1;-1) المستقيم المعرّف بالتمثيل الوسيطي التالي u(2;1;-1) وليكن u(2;1;-1) وليكن u(2;1;-1) المستقيم المعرّف بالتمثيل الوسيطي التالي u(2;1;-1)

1-1) اكتب تمثيلا وسيطيا للمستقيم (Δ) .

 (Δ') بيّن أنّ المستقيمين (Δ) و (Δ') ليسا من نفس المستوي .

A' بيّن أنّ النقطة B(-1;3;1) هي المسقط العمودي للنقطة A على المستقيم B(-1;3;1) على المستقيم A'

 (Δ') عمودي على كل من المستقيمين (ΔB) عمودي على كل من المستقيمين (Δ') و

ج) استنتج المسافة بين المستقيمين (Δ) و (Δ) .

 $h(t)=AN^2$ به نقطة إحداثياتها $(t\in\mathbb{R})$ حيث $(t\in\mathbb{R})$ ولتكن h الدالة المعرفة على \mathbb{R} به به المعرفة $(t\in\mathbb{R})$ عين أنّ النقطة $(t\in\mathbb{R})$ بين أنّ النقطة $(t\in\mathbb{R})$ بن المستقيم (Δ') ، ثم اكتب عبارة (t) بين أنّ النقطة (t) بنتمي إلى المستقيم (Δ') ، ثم اكتب عبارة (t) بدلالـة (t)

ب) استنتج قيمة العدد الحقيقي t التي تكون من أجلها المسافة AN أصغر ما يمكن. ثمّ قارن بين القيمة الصغرى للدالة h والمسافة AB.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2016

التمرين الثالث: (05 نقاط)

 $f(x) = \frac{13x}{9x+13}$: كما يلي I = [0;4] المعرّفة على المجال المجال المجال المجال المجال

. I بين أنّ الدالة f متزايدة تماما على المجال -1

. I ينتمى إلى f(x) ، I من المجال x عدد حقيقى x من المجال أنه من أجل كل عدد حقيقى x

 $u_{n+1}=f\left(u_n\right)$ و $u_0=4$ و كل عدد طبيعي $u_0=1$ عدد طبيعي $u_0=1$ عدد طبيعي $u_0=1$ المعرّفة على $u_0=1$ عدد طبيعي $u_0=1$ و $u_0=1$ عدد طبيعي $u_0=1$ عدد طبيعي $u_0=1$ برهن بالتراجع أنه من أجل كل عدد طبيعي $u_0=1$ ، $u_0=1$ و $u_0=1$

. با ادرس اتجاه تغیر المتتالیة (u_n) ، ثمّ استتج أنها متقاربه (u_n)

 $u_n \neq 0$: n عدد طبیعي انه من أجل كل عدد طبیعي -3

 $v_n = 2 + \frac{13}{u_n}$: كما يلي كما يلي المعرّفة على المعرّفة على المعرّفة على \mathbb{N}

أ) برهن أنّ المتتالية (v_n) حسابية يطلب تعيين أساسها وحدّها الأول v_0

 $\cdot n$ اکتب v_n بدلاله با

 $\lim_{n \to +\infty} u_n$ وذلك من أجل كل عدد طبيعي $u_n = \frac{52}{36n+13}$: أن أجل أب استنتج أن $u_n = \frac{52}{36n+13}$

التمرين الرابع: (07 نقاط)

 $g(x) = -1 + (x+1)e + 2\ln(x+1)$ ب: $g(x) = -1 + (x+1)e + 2\ln(x+1)$ با $g(x) = -1 + (x+1)e + 2\ln(x+1)e +$

. ادرس تغيرات الدالة g ، ثمّ شكّل جدول تغيراتها -1

 $-0.34 < \alpha < -0.33$: حيث $\alpha = g(x) = 0$ حلا وحيدا $\alpha = -2$

.] $-1;+\infty$ [ستنتج إشارة g(x) حسب قيم العدد الحقيقي x من المجال g(x)

. $f(x) = \frac{e}{x+1} + \frac{\ln(x+1)}{(x+1)^2}$: $-1;+\infty$ المعرّفة على المجال $-1;+\infty$ المعرّفة على المجال $-1;+\infty$

. $\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلّم المتعامد والمتجانس $\left(C_f
ight)$

. این أن $\lim_{x \to +\infty} f(x)$ واحسب $\lim_{x \to +\infty} f(x)$ ، ثمّ فسّر النتیجتین هندسیا واحسب (1 – 1) بیّن أن

. (f) بيّن أنه من أجل كل عدد حقيقي x من $[-1;+\infty]$ $= (x+1)^3$ $= (x+1)^3$ الدالة $(x+1)^3$

. ادرس اتجاه تغیّر الدِالة f علی المجال $]\infty+;1-[$ ، ثمّ شكّل جدول تغیّراتها f

 $(f(\alpha) \simeq 3.16)$: (نقبل أنّ: (C_f) د) ارسم المنحنى (C_f

.] $-1;+\infty$ [المجال $x\mapsto \frac{\ln(x+1)}{(x+1)^2}$ على المجال $x\mapsto \frac{-1}{x+1}[1+\ln(x+1)]$ على المجال $x\mapsto \frac{-1}{(x+1)^2}$

ب) احسب مساحة الحيّز المستوي المحدّد بالمنحنى (C_f) وحامل محور الفُواصل والمستقيمين اللّذين معادلتاهما على التوالي: x=1 و x=0 على التوالي: x=0

. و الدالة العددية k المعرفة على -1;1 [ب-1;1 [ب-1;1 و k و تمثيلها البياني في المعلم السابق -3 المعلم السابق k و بيّن أنّ الدالة k زوجية.

 $(k \mid C_k)$ بيّن كيف يمكن استنتاج المنحنى (C_k) انطلاقا من المنحنى (C_f) ثم ارسمه (دون دراسة تغيّرات الدالة

k(x)=m: عدد وإشارة حلول المعادلة m فيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة

انتهى الموضوع الأوّل

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2016

الموضوع الثاني

التمرين الأول: (05 نقاط)

C(-3;-1;-1) و B(0;-1;2) ، A(2;1;-3) ونعتبر النقط $\left(o;\vec{i},\vec{j},\vec{k}\right)$ ونعتبر النقط B ، A النقط B ، A و B ، A النقط B ، B ، B ، A النقط B ،

(ABC) بيّن أن المعادلة: 2x - 7y - 2z - 3 = 0 معادلة ديكارتية للمستوي

 \cdot (BC) ويعامد المستوي (P) الذي يشمل النقطة A ويعامد المستقيم -2

 $\cdot (P)$ و (ABC) و المستويين (D) تقاطع المستويين (ABC) و (BC)

ABC بيّن أن المستقيم (D) عمود في المثلث ب

-ABC في المتوسط المتعلق بالضلع [AC] في المثلث -4

$$x=-rac{1}{2}-rac{1}{2}k$$
 . (Δ) بيّن أنّ الجملة $x=-rac{1}{2}-rac{1}{2}k$; $k\in\mathbb{R}$: مثيل وسيطي للمستقيم (أ $z=-2-4k$

بين أنّ المستقيمين (D) و (Δ) يتقاطعان في نقطة G يطلب تعيين إحداثياتها.

بيّن أنّ المثلث ABC متساوي الساقين .

 $^{\circ}$ ABC بالنسبة للمثلث $^{\circ}$ ماذا تمثل النقطة $^{\circ}$ بالنسبة للمثلث

-5 عين طبيعة وعناصر المجموعة E للنقط E من الفضاء التي تحقق E عين طبيعة وعناصر المجموعة E للنقط E عين طبيعة وعناصر المجموعة E

التمرين الثاني: (4.50 نقاط)

 $2\overline{z}^3 + 3\overline{z}^2 - 3\overline{z} + 5 = 0...(E)$: z المعادلة ذات المجهول z المعادلة z المعادلة ذات المجهول z المعادلة z المعادلة ألم المركب z المعادلة ألم المركب z المعادلة ألم المركب z المحدد المركب z المر

 $\cdot(2\overline{z}+5)(\overline{z}^2-\overline{z}+1)=0$ أثبت أن المعادلة (E) تكافئ المعادلة (E)

 $\cdot(E)$ حل في المجموعة $\mathbb C$ المعادلة

 $C \cdot B \cdot A$ و $C \cdot B \cdot A$ نعتبر النقط $(o; \vec{u}, \vec{v})$ و التي -2

$$z_D = -\frac{5}{2}$$
 ، $z_c = -1$ ، $z_B = \overline{z}_A$ ، $z_A = \frac{1}{2} - \frac{\sqrt{3}}{2}i$: لواحقها على الترتيب

أ) اكتب كلا من العددين z_A و z_B على الشكل الأسي.

ب) أنشئ النقط C ، B ، A و D

 $z_B - z_C = z_B(z_A - z_C)$: أثبت أن (ج

د) استنتج طبيعة المثلث (ABC

S ليكن S التشابه المباشر الذي مركزه C وزاويته G و نسبته S ولتكن S التشابه المباشر الذي مركزه C وزاويته G و نسبته S النقطة S ثمّ حدّد طبيعة المثلث S

k من المستوي ذات اللاحقة z حيث طبيعة المجموعة z للنقط z من المستوي ذات اللاحقة z حيث z المجموعة z الما يتغير z في المجموعة z

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2016

التمرين الثالث: (4,50 نقاط)

n متتالیة عددیة معرفة علی \mathbb{N} مجموعة الأعداد الطبیعیة بحدها الأول $u_0=0$ ومن أجل كلّ عدد طبیعی $u_n=0$ متتالیة عددیة معرفة علی $u_n=1$

.
$$v_n = \frac{u_n - 1}{u_n + 2}$$
: ب n عدد طبیعي عدد (v_n) المعرفة من أجل كلّ عدد طبیعي $u_{n+1} = \frac{2u_n + 2}{u_n + 3}$: ب

. v_0 هندسية يطلب تعيين أساسها q وحدّها الأول -1

 v_n عبر بدلالة n عن عبارة الحد العام -2

ب) استنج عبارة الحد العام u بدلالة n ب

 $\lim_{n\to+\infty}u_n$ (=

 $S_n = v_0 + v_1 + \dots + v_n$ | large |

n يحقق أن: $\frac{1}{u_n+2} = \frac{1}{3}(1-v_n)$ وذلك من أجل كلّ عدد طبيعي $\frac{1}{u_n+2} = \frac{1}{3}(1-v_n)$

$$S_n' = \frac{1}{u_0 + 2} + \frac{1}{u_1 + 2} + \dots + \frac{1}{u_n + 2}$$
 : (+) استنتج بدلالة n المجموع: (+)

التمرين الرابع: (06 نقاط)

 $g(x)=2e^x-x^2-x$ بنكن g الدالة العددية المعرّفة على \mathbb{R} بـ الدالة العددية المعرّفة على g

(gا احسب g'(x) من أجل كل x من \mathbb{R} ، ثم ادرس اتجاه تغير الدالة g'(x) (حيث g'(x) هي مشتقة الدالة g'(x) بيّن أنه، من أجل كل x من g'(x)>0 ، g'(x)>0

ج) احسب نهایتی الداله g عند کل من ∞ و ∞ ، ثمّ شکّل جدول تغیراتها .

-1,38<lpha<-1,37: حيث أنّ المعادلة g(x)=0 تقبل حلا وحيدا lpha حيث -2

x حسب قيم العدد الحقيقي g(x) حسب -3

. $f(x) = \frac{x^2 e^x}{e^x - x}$:ب \mathbb{R} بنكن f الدالة المعرّفة على \mathbb{R} بنكن f الدالة المعرّفة على

. $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f\right)$

. $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (أ-1)

.(f الدالة $f'(x) = \frac{xe^x g(x)}{\left(e^x - x\right)^2}$ ، g(x) من g(x) من أجل كل g(x) من g(x) من g(x)

. ادرس اتجاه تغیّر الداله f علی $\mathbb R$ ، ثمُّ شکّل جدول تغیّراتها f

. $f(\alpha)$ بين أنّ $f(\alpha)=\alpha^2+2\alpha+2+\frac{2}{\alpha-1}$ ، ثمّ استنج حصرا للعدد (أ–2) بين أن

. ب) احسب $\int_{x \to +\infty} \left[f(x) - x^2 \right]$ بتم فسر النتيجة بيانيا

 $(f(\alpha) \simeq 0.29$ جـ) . (C_f) انشئ المنحنى (C_f

العلامة		عناصر الإجابة
مجموع	مجزأة	
01.50	0,25	التمرين الأول (4) نقط) $P(2\sqrt{3}) = 0 : P(z)$ هو جذر لكثير الحدود $P(2\sqrt{3}) = 0 : P(z)$ هو جذر الكثير الحدود $P(2\sqrt{3}) = 0 : P(z)$
	0,50	$P(z) = (z - 2\sqrt{3})(z^2 + 2\sqrt{3}z + 12)$ $a = 2\sqrt{3}; b = 12$: b و a ایجاد a و a
	0,75	$S=\left\{2\sqrt{3};-\sqrt{3}+3i;-\sqrt{3}-3i ight\}$: هي \mathbb{C} هي $P(z)=0$ المعادلة $P(z)=0$
	0,50	$\frac{z_C - z_A}{z_B - z_A} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$: $\frac{z_C - z_A}{z_B - z_A}$ بالشكل الجبري العدد المركب $\frac{z_C - z_A}{z_B - z_A} = \frac{1}{2}$: $\frac{z_C - z_A}{z_B - z_A}$
02.00	0,50	ب) لدينا $\frac{z_C-z_A}{z_B-z_A}=e^{irac{\pi}{3}}$ أي $\frac{z_C-z_A}{z_A-z_B}=e^{irac{\pi}{3}}$ ومنه $\frac{z_C-z_A}{z_B-z_A}=e^{irac{\pi}{3}}$ الذي $\frac{z_C-z_A}{z_B-z_A}=e^{irac{\pi}{3}}$ مركزه $\frac{\pi}{3}$ زاويته $\frac{\pi}{3}$.
02.00	7 XX 17 XX 12 XX	S 72 10% (0.00)
	0,25	ABC ج $\left(\overrightarrow{AB};\overrightarrow{AC}\right) = \frac{\pi}{3}$ و $AC = AB$ متقایس الأضلاع لأن $AC = AB$ و ABC
	0,75	$z_D=2\sqrt{3}-6i$: ادينا $z_D=\overline{AB}=\overline{CD}$ يعني $t_{\overline{AB}}$ يعني $t_{\overline{AB}}$
		-الرباعي ABDC معيّن
00.50	0,50	C المجموعة Γ) هي حامل محور الفواصل باستثناء المبدأ C
		التمرين الثاني: (04نقاط)
	0,50	$x=1+2t$ $y=t$ $z=2-t$ $(t\in\mathbb{R}):$ هو (Δ) هو (Δ) التمثيل الوسيطي للمستقيم (Δ)
01.00	0,50	$\begin{cases} 5=-2 \\ \lambda=-2 \end{cases}$ ومنه $\begin{cases} \lambda=1+2t \\ 4+\lambda=t \end{cases}$ و $\overrightarrow{\mathbf{u}}_{(\Delta)} \neq k \overrightarrow{\mathbf{u}}$ لاينا $\mathbf{u}_{(\Delta)} \neq k \overrightarrow{\mathbf{u}}$ ومنه $t=2$ $t=2$ المستقيمين $t=2$ $t=2$ المستقيمين $t=2$ $t=2$
-	0,50	(Δ') بيان أن $(B(-1;3;1)$ هي المسقط العمودي لــ A على المستقيم (Δ')
01.50	0,50	(Δ') التحقق أن المستقيم (AB) عمو دي على كل من (Δ) و (Δ')
01.50		$\overrightarrow{ABu}_{(\Delta)}=0$ و $\overrightarrow{ABu}=0$ يكفي أن نبين أنّ المستقيم
12	0,50	$\mathrm{d}ig((\Delta');(\Delta')ig)=\sqrt{14}\left(\Delta' ight)$ و $\left(\Delta' ight)$ و $\left(\Delta' ight)$
	0,25	$N\in \left(\Delta' ight)$ التحقق أن التحقق أن (3
	0,50	$h(t)\!=\!3t^2-6t+17:t$ كتابة عبارة $h(t)$ بدلالة
01.50	0,50	ب) استنتج قيمة العدد الحقيقي t التي تكون من أجلها المسافة AN أصغر ما يمكن $t=1$ من اتجاه تغير $h'(t)=0$ معناه $t=1$ معناه $t=1$ معناه $t=1$
	0,25	${ m AB}=\sqrt{ m h\left(1 ight)}=\sqrt{14}$ المقارنة بين القيمة الصغرى للدالة h و المسافة AB الدينا :

	0,5	التمرين الثالث : (5نقاط)
		. I انبيّن أنّ الدالة f متز ايدة تماما على المجال f
		. I من أجل كل x من f من أجل كل $f'(x) = \frac{169}{(9x+13)^2} > 0$ ، f متزايدة تماما على المجال المحال
01.00		ب) نبيّن أنّه، من أجل كل عدد حقيقي x من المجال I ، فإنّ $f(x)$ ينتمي إلى I الدالة f متز ايدة
	0,5	ثماما على المجال $[0;4]$ ومنه من أجل $[0;4]$ $x \in [0;4]$ فإن $x \in [0;4]$ أي
		$\left[0; \frac{52}{49}\right] \subset \left[0; 4\right], f\left(x\right) \in \left[0; \frac{52}{49}\right]$
		$\cdot f\left(x\right)$ اذِن من أجل $x\in [0;4]$ فإن $x\in [0;4]$
	1 + 1	، $0 \le u_n \le 4$ ، n عدد طبیعی عدد $0 \le u_n \le 4$ ، n عدد طبیعی انه من أجل كل عدد $0 \le u_n \le 4$ ، $0 \le u_n \le 4$
02.00		$\mathbb N$ دراسة اتجاه تغيّر المثتالية (u_n) : المتتالية (u_n) متزايدة على (u_n)
		 المنتالية متقاربة لأنها متزايدة ومحدودة من الأعلى .
00.25	0,25	$u_n eq 0$: n عدد طبیعی (3) بیان انه من اجل کل عدد طبیعی
	0,50	. $ u_0$ أ) البرهان أنَ (v_n) متتالية حسابية يطلب تعيين أساسها وحدّها الأول أ
	+	21
	0,25	$v_0=rac{21}{4}$ وحدَها الأول $v=9$ منتالية حسابية أساسها $v=9$ وحدَها الأول v_n
1.75	0,25	$\mathbf{v_n} = \frac{21}{4} + 9 \mathbf{n}$ ومنه $\mathbf{v_n} = \mathbf{v_0} + \mathbf{n} \mathbf{r}$: n بدلالة v_n
	0,75	$\lim_{n \to +\infty} u_n = 0$ و $u_n = \frac{52}{36n+13}$ ج) البرهان أنّه من أجل كل عدد طبيعي و $u_n = \frac{52}{36n+13}$

		التمرين الرابع: (07نقاط)
	0,25	ا) 1) دراسة تغيّرات الدالة $ g$ ، ثمّ تشكّيل جدول تغيّراتها .
01.25	×	$\lim_{x \to +\infty} g(x) = +\infty g(x) = -\infty$ $\lim_{x \to +\infty} g(x) = -\infty$
	5	الدالة g قابلة للاشتقاق على $g'(x)=e+rac{2}{x+1}$ ، ولدينا: $g'(x)=e+rac{2}{x+1}$ ومنه الدالة g متزايدة تماما
	11.	على $]-1;+\infty$ ، جدول التغيرات
00.50	0,50	$-0.34 < lpha < -0.33$: حيث $g(x) = 0$ تقبل حلا وحيدا α حيث $g(x) = 0$ نبين أنّ المعادلة و α
00.50		(مبرهنة القيم المتوسطة)
00.50	0,50	.] $-1;+\infty$ من المجال x من المجال $g(x)$ استنتاج إشارة $g(x)$ من أجل كل x من المجال
00.50		$\mathbf{x} \in \! \left[\alpha; +\infty\right[$ من أجل $\mathbf{g}\!\left(\mathbf{x}\right) \! \geq \! 0$ و $\mathbf{g}\!\left(\mathbf{x}\right) \! \leq \! 0$ من أجل $\mathbf{g}\!\left(\mathbf{x}\right) \! \leq \! 0$

الإجابة النموذجية لموضوع امتحان البكالوريا اختبار مادة: الرياضيات الشعبة : علوم تجريبية دورة: 2016

02.50	0,25	ا الهات $\infty = -\infty$ النتیجتین هندسیا. $\lim_{x \to +\infty} f(x)$ وحساب $\lim_{x \to +\infty} f(x)$ ، وتفسیر النتیجتین هندسیا.
	×	$\left(C_f ight)$ لدينا: $\left(C_f ight)$ ومنه $\left(x-1 ight)$ ومنه $\left(x-1 ight)$ مستقيم مقارب للمنحنى $\left(x-1 ight)$
	4	$+\infty$ عند C_f عند محور الفواصل مستقیم مقارب لـ C_f عند $\lim_{x o +\infty} f\left(x\right) = 0$ الدینا
	0,50	. $f'(x) = \frac{-g(x)}{(x+1)^3}$ ، $]-1;+\infty[$ من أجل كل x من أجل كل أحد
	0,50	ج) دراسة اتجاه تغیّر الدالمة f علی $[-1;+\infty]$ علی $[-1;+\infty]$ ، الدالمة f متناقصة تماما علی $[-1;+\infty]$ ، ومتناقصة $[-1;+\infty]$
	5 702=	تماما على [-1;α] ثمّ تشكّيل جدول تغيّراتها
	0,50	. $\left(C_f ight)$
	0,50	$x\mapsto \frac{\ln(x+1)}{\left(x+1\right)^2}$ المجال $(x+1)^2$
01.00	0,50	$S = \int_0^1 f(x) dx = \int_0^1 \left(\frac{e}{x+1} + \frac{\ln(x+1)}{(x+1)^2} \right) dx : \text{distance} (x) = \int_0^1 \left(\frac{e}{x+1} + \frac{\ln(x+1)}{(x+1)^2} \right) dx$
		$S = \left[e \ln(x+1) - \frac{1}{x+1} \left(1 + \ln(x+1)\right)\right]_0^1 = \frac{1 + (2e-1)\ln 2}{2} u.a : e^{-1} =$
		ه دالة زوجية $k(-x)=k(x)$ المجال $k(-x)=k(x)$ متناظر بالنسبة الى العدد $k(x)=k(x)$
01.25	0,75	$k\left(x\right) = \begin{cases} f\left(x\right); x \in]-1;0 \end{cases}$ برسم $\left(C_{k}\right)$ انظلاقا من $\left(C_{f}\right)$: لدينا $\left(C_{f}\right)$ انظلاقا من $\left(C_{f}\right)$ انظلاقا من $\left(C_{f}\right)$ انظلاقا من $\left(C_{f}\right)$
		إذن من أجل $[-1;0]$ ، $x \in [C_k)$ ينطبق من (C_f) ، ثم نتم الرسم باستعمال التناظر بالنسبة لمحور التراتيب
	0.5	ج) المناقشة البيانية
25	10 70	

الموضوع التاني

العلامة		
مجموع	مجزأة	عناصر الإجابة
01.25	0.75	التمرين الأول: (05 نقاط) 1- أ) C ، B ، A تعين مستويا
01.23	0.50	2x-7y-2z-3=0 هي (ABC) المعادلة الديكارتية للمستوي (ABC) هي
00.50	0.50	(p): x + z + 1 = 0 المعادلة الديكارتية للمستوي: $(p): x + z + 1 = 0$
00.75	0.50	: $\begin{cases} x=-t-1 \\ y=-\frac{4}{7}t-\frac{5}{7}/t \in \mathbb{R} \end{cases}$ هو (D) هو (D) تبيان التمثيل الوسيطي للمستقيم (D) هو (D)
	0.25	ABC عمود في المثلث (D) عمود (D) عمود عمود في المثلث
	0.50	4- أ) إثبات أن الجملة المعطاة تمثيل وسيطي لـ (۵)
02.00	0.75	$(D) \cap (\Delta) = \left\{ G\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{2}{3}\right) \right\}_{(\downarrow)}$
	0.25	ج) ABC مثلث متساوي الساقين
	0.50	ABC مرکز ثقل المثلث G (د
00.50	0.50	r=1 و G طبيعة وعناصر المجموعة: سطح كرة مركزها G

			التمرين الثاني: (4.50 نقاط)
	0.25		1- أ) تكافؤ المعادلتين
01.25	01		$S = \left\{ -\frac{5}{2}; \frac{1}{2} + \frac{\sqrt{3}}{2}i; \frac{1}{2} - \frac{\sqrt{3}}{2}i \right\} $ (E) خل المعادلة (ب)
	0.50		$z_B = e^{\frac{\pi}{3}i} \qquad z_A = e^{-\frac{\pi}{3}i} \qquad (1-2)$
02.00	0.50		D;C;B;A انشاء النقط (ب
	0.50		ج) اثبات المساواة
	0.50		د) المثلث ABC متقايس الاضلاع
00.75	0.25 0.50	AB = 0.5CF ن	AFC انشاء النقطة F وطبيعة المثلث (AFC قائم في F
00.50	0.50		4- طبيعة المجموعة (Γ) نصف مستقيم)

		التمرين الثالث : (4.50 نقطة)
01.00	1.00	$v_{0}=-rac{1}{2}$ و $q=rac{1}{4}$ م.هندسیة آساسها $q=rac{1}{4}$ و و $q=1$
	0.25	$v_n = -rac{1}{2} \left(rac{1}{4} ight)^n : n$ عبارة v_n عبارة v_n عبارة v_n
01.25	0.75	$u_n = \frac{1 - (\frac{1}{2})^{2n}}{1 + (\frac{1}{2})^{2n+1}} \text{ مارة الحد العام } (-1)$
	0.25	$\lim_{n\to +\infty} u_n = 1 \ ($
	0.75	$S_n = -\frac{2}{3} \left[1 - \left(\frac{1}{4} \right)^{n+1} \right]$ Equation (1) -3
02.25	0.75	$\frac{1}{u_n+2} = \frac{1}{3}(1-v_n)$ التحقق ان (ب
	0.75	$S'_{n} = \frac{1}{9} \left[3n + 5 - 2 \left(\frac{1}{4} \right)^{n+1} \right]$ = $\frac{1}{9} \left[3n + 5 - 2 \left(\frac{1}{4} \right)^{n+1} \right]$

		التمرين الرابع (06نقط)
	0.25×3	$g'(x)=2e^x-2x-1$ ، $\mathbb R$ من أجل كل x من $g'(x)=1$ (I
		$g''(x)=2e^x-2$ ، $\mathbb R$ من أجل كل x من g' من أتجاه تغير الدالة g'
		$-$ ومنه الدالة g' متناقصة تماما على $-\infty;0$ ومتزايدة تماما على $g'+\infty$
02.00	0.25	$g'(x)>0$ ، \mathbb{R} من x من أجل كل x من x من y
		$g'(0)\!=\!1$ الدالة g' تقبل قيمة حدية صغري على $\mathbb R$ وهي وهي $g'(0)$
		$g'(x)>0$ ، \mathbb{R} من أجل كل x من x من x
	0.5	$\lim_{x \to +\infty} g(x) = +\infty \lim_{x \to -\infty} g(x) = -\infty (\exists$
	0.5	الدالة g متزايدة تماما على R جدول التغيرات
00.50	0.5	-1,38 < lpha < -1,37: حيث $lpha = 0$ تقبل حلا وحيدا $lpha = 0$ حيث والمعادلة $= 0$
00.50		(بتطبيق مبرهنة القيم المتوسطة)
00.25	0.25	x استنتاج إشارة $g(x)$ ، من أجل كل عدد حقيقي x
00.25	0.25	. $x\in [\alpha;+\infty[$ من أجل $g\left(x\right)\geq 0$. $x\in]-\infty;\alpha]$ من أجل $g\left(x\right)\leq 0$
	0.5	. $\lim_{x \to -\infty} f(x) = 0 \lim_{x \to +\infty} f(x) = +\infty (i-1) = 1$
01.50	0.5	$f'(x) = \frac{xe^x g(x)}{\left(e^x - x\right)^2}$ ، \mathbb{R} من x من أجل كل x من x

الإجابة النموذجية لموضوع امتحان البكالوريا اختبار مادة: الرياضيات الشعبة : علوم تجريبية دورة: 2016

	0.25×2	ج) در اسة اتجاه تغیر الدالة f علی $\mathbb R$ ، الدالة f متزایدة تماما علی کل من المجالین $-\infty$; α و متناقصة تماما علی α α . جدول التغیر ات α
	0.5+0.25	. $f\left(\alpha\right)$ بيان أن $f\left(\alpha\right)=\alpha^2+2\alpha+2+rac{2}{\alpha-1}$ ، ثمّ استنتاج حصر اللعدد (σ
01.75	0.25 + 0.25	$\lim_{x o +\infty} ig(f(x) - x^2ig) = 0$ (ب C_f) والمنحنى الممثل للدالة $x \mapsto x^2$ متقاربان عند C_f
	0.5	$\left(C_{f} ight)$ رسم المنحنى $\left(C_{f} ight)$