BEST AVAILABLE COPY

NO 2005/011474

TO A COOLUMN TO A STATE OF THE PARTY OF THE

Multiple High resolution Serum Proteomic Features for Overtan Camer Detection

Background

[1001] Serum proteomic pattern analysis by mass spectrometry (MS) is in emerging technology that is being used to identify biomarker disease profiles. Using this MS-based approach, the mass spectra generated from a training set of serum analysis is malyzed by approach the mass spectra generated from a training set of serum analysis is malyzed by a biquitorization algorithm to identify dispractic signature patterns comprised of a subject of key mass-to-charge (m/z) species and their relative intensities. Must appear from the key mass-to-charge (m/z) species and their relative intensities. Must appear from unknown samples are subsequently classified by likeness to the pattern found in mass spectra used in the training set. The number of key m/z species whose combined relative intensities define the pattern represent a very small subset of the online number of species present in my given serim mass spectrum.

(1902) The fearibility of using MS proteomic pattern analysis for the disgress overing, breast, and prosists tember has been demonstrated. While investigators have overing, breast, and prosists tember has been demonstrated. While investigators have overing of different bioinformatic algorithms; for pattern discovery, the most common analytical platform to compitated of a low-resolution time-or-flight (TOF) mass spectrometer where samples are longered by surface enhanced inser description/ionization spectrometer where samples are longered by surface enhanced them description/ionization (SELDI), a ProteinChip army-based chromatographic retention to the army direct mass spectrometric analysis of suchlytes retained in the army.

[3043] Oyprim suspect is the leading onter of gargeological malignment and is the [3044] most common cause of cancin related death in women. The American Cancer fifth most common cause of cancin related death in women. The American Cancer seeds of evidence that that there will be 23300 new cases of eviding cancer and 13000 deaths in 2002. Unfortunately, almost 80% of women with common spitialial ownion cancer are institutions of until the disease is solvated in engel let, has spread to the upper shelment stage. III) or boyend (stage IV). The 55 jets survival me for these wanted is only 15 to 20%, whereas the 5 year survival rate for grants cancer at stage. If approaches 95% with surgical intercention. The early diagnosis of ovarian cancer, therefore, could dismissibility degrees the number of deaths from this cancer.

Canada Santa

PCT/US1004/014413

[1004] The most widely used diagnostic; blomarker for ovarian cancer is Cancer Andigan 125 (CA 125) as detected by the monocomal authority OC 125. Though 80% of patients with ovarian cancer passess elevated lovers of CA 125, it is elevated to only 50-60% of patients at stage I lending it a positive-predictive value of 10%. Monocom, CA 125, can be elevated in other non-gynecologic and benign conditions. A combined 125 can be elevated in other non-gynecologic and benign conditions. A combined state of CA 125 determination with ultrasonography increases the positive predictive value to approximately 20%;

1005] Log molecular weight serum protoomic patterns from low-resolution SBLD1-TOP MS that can distinguish inequisatic from non-recognistic disease within the owary see Petricoin, E. P. III. et al. Use of protocomic patterns in serum to identify ovarian cancer. The Lancet 359, 572-577 (2002). The protocomic patterns can be identified by application of an artificial intelligence thombrematics tool that employs an unsupervised system (self-organizing cluster mapping) as a fibrest lest for a supervised system (a specific algorithm). A relating sel comprised of SBLD1-TOF mass spectra from serum derived from either unaffected women or women with ovarian cancer is employed so that the most fit combination of ms. tentures (along with five relative intensities) plotted in a pace, can reliably distinguish the cohords used in triuming. The "trained" algorithm is applied to a maked set of agusts the cohords used in similarity of 100% and a specificity of 25%. This bearingues is described in more detail in MO 02/06829A2 "A Process for 1186/fm/luning, Benyary Indopated, Sings, Braydon, Friends, Pour Britishing Date." ("Hidden Failerns") the disclosure of which is hereby expressly incorporated based by reference.

[1006] Although this lechnique works well; the low-resolution mass spectromistic instrumentation and thus the data that comes from the instrument may limit the attainable reproductibility, sensitivity, and specificity the proteomic pattern malyses for routine clinical use.

Summary

[1007] The protein patient unitysis concept of Hidden Patients is citizated to a highresolution MS platform to generate dispressio models possessing higher sensitivities and

WO.2005/011474

specificities on a format that generates more stable speam, has a true time-of-flight mass accuracy; and its information more reproducible machine-to-machine and day-fo-day because of the increase in mass sequency. Sea from a large, well-controlled foration curies acceptaing trial were used and proteomic pattern analysis was conducted on the same samples on two mass special, platforms differing in their effective resolution and mass no curracy. The data was analyzed to as to rank the sensitivity and specificity of the cases of diagnostic models that emerged.

1008) The spectra firm a high-resolution and a low-resolution mass spectrometer with the same patterns; seen samples applied and sandyzed on the same SELDI proteinGip same very compared. Although the building analysis spectra may generate more distinguishable setti of disgnostic features; the increased complexity and dimensionality of data may, reduce the likelihood of fruitful pattern discovery. Diagnostic proteomic feature sets can be discovery within the high-resolution spectra from the clinically relevant patient study set, and the modeling outcomes between the transment platforms can be compared. The number and character of the diagnostic models emerging from data mining operations can be income to income the income the income the income of multiple, highly accurate models under a being controlled on the generation of multiple, highly accurate models in single a brown maybe can be used for the generation of multiple, highly accurate models in the generation of multiple, highly accurate and the generation of the generation of multiple with the generation of multiple with the generation of the generation of

Real Description of the Promes

(1009) FIGS. (A and 1B compare the mass appetrations control second prepared on a wCCC. ProteinChip erroy and smallyzed with a PBS-II-TOF (pinel A) or a Qq-TOF (panel-B) mass spectrometer.

1000) PIGS 2A and 2B show histograms representing this testing results of scattlivity (2A) and specificity (2B) of 108 models for MS data sequired an elibera Oquirol or a PBS-II TOP mass specificance:

053011474 PCT/US2004/024413

[1013] FIGS. 3A, and 3B show histograms representing the testing and blinded validation results of sensitivity (3A) and specificity (3B) of 108 models for MS, data acquired on either a Qq-TOF or a PBS-II TOF mass spectrometer.

[1012] FIGS. 4A and 4B compare SELDI Q4-TOF mass spectra of serum from an unaffected individual (4A) and an ovarian cancer pattern (4B).

Detailed Description

Analysis of Serum Samples

[1013] A total of 248 serum simples were provided from the National Ovarian cancer Early Detection Program (NOCEDP) clinic at Northwestern University Hospital (Chicago, Illinius). The samples were processed and their proteomic patterns sequired by MS as described below in the description of the illethods used. The serum samples in the present study were analyzed on the same protein clip arrays by both a PBS-II and a QTFOF MS fined with a SEIDI ProteinChip array interface. While the specina acquired from both instruments are qualitatively similar, the higher resolution afforded by the QTFOF MS is apparent from PIG. 1. This increased registrion allows species close in not unresolved by the PBS-II TOS MS is, be distingly observed in the QTFOF MS (registres southern - RDG) to completely resolves picture difficition in National Completes resolution of species difficition in National Completes resolution of species difficition in National Completes resolution of species difficition in National Completes resolution of the latter by rate of 20 (simulation rations).

[1014] The mass spectra were analyzed using the ProteomeQuest^{MA} bidiplomatics tool employing ASCII files constring of mr and intensity values of citize the PES-II TOP or the Qq-TOP meas spectra as the input. The mass spectral data sequenced using the Qq-TOP MS were blanted to precisely define the number of features in each spectrum to 7,084 with each feature being comprised of a binned mr and amplitude value. The algorithm examines the data to find a set of features at precise blanted mr values whose combined, normalized reliaity intensity values in n-space but segregate the data derived

from the training set. Mass species acquired on the Qr.TOR and the PBS:II TOR coquired from the serum samples was divided this turied data sees a) & training set than to instruments, from the same assirble southwest instructed to the 11/2 rings from 1700 to the algorithm had not previously "seen" the spectra in the testing and validation sets racioned uning the reliating set were used to closely the testing and valuation sets, and With this approach only the normalized intensities of the key mister of mix values uerd to discover the hidden diagnosites patterns, b) a tening set, ind () a villditten set 11,893 for direct comparison between the two platforms. The culture set of specim

clissification. D) a feature sett size of 3, 10, or 15 modern we values whose combined each of the 27 permusions was dailyed and granted with the same instinct. Sensitivity psitem generation by the general elepatitim. Loui sets of randomly generated models, for intensities comprise each puttern and c) e learning mic of 01%, 02%, of 0.3% for modeling parameters: 6) a thailmily space of 185%, 90%, or 95% themess for cluster women with overlin cancer. The training and leating set mass specim which individually of the 27 permutations) were generalist, as aboun in FIGS, 23/ and 229. These results the did in the state of models and the grant of the contract o modeling conditions. Dan Analysia Now York: John Wiley and Soms (1999)) to Treat) impuging it image of lemonstrate that the Qq-TOP MS data produced better results than the lower resolution ind specificity, testing remits for each of the 108 models (four comits of training for each The indicing set was comprised of serum from 28 unaffected would and 56

tange of the modeling parameters above. Models from the training set were validated were levied spatial the model frund in thining previously discussed. As strong in specific constituting of an additional 37 normal and 40 ovarian cancer securivities specific Auther validate the ability to diagnose ovarion carror, a set of blinded sample mass FIGS. 3.A. and 3B, the results show the ability of the mass spectra from the Higher using testing ed consisting of 31 unaffected and 63 overless concer ferting samples. To was emissically ovelusted as multiple models was generated and convey using the entire [1016] The ability to generate the best performing models for issing and validation

> over the lower resolution PBS-II mass spectra. resolution Oq. TOP MS to generate statistically significant (P < 0.00001) superfor models

PCT/US2004/024413

correctly distriminate unaffected women from those sufficing from overline cancer, that through Model 15. Of these models from were found that were both 100% sensitive and the validation set. These models are shown in Appendix A, and identified as Model i [1017] Tifteen models were found that were 100% sensitive in their ability to specific for both sets (Models 4, 9, 10, and 15). wes 100% specific in disc immaing women in the test set, and at least 97% specific in

[1018] Appendix A identifies the each model the following information. First the identified 36 of the 37 women as having a normal state in the Validity set. ed. The number of samples for which the model connectly grouped women with penficity and semativity for each model is shown for the Test set and for the Validity samples in the corresponding sets. For example, in Model 1, the model correctly then shown in each of the test and validity tests, compared to the total number of Normal Sides (i.e., not having ovarien cancer) and with an "Oyarian Cancer State"!

top of the collision. The amplitudes are shown for each feature, for each pattern, and are nomalized to 1.0. The remaining four columns in such table are labeled "Count," constituent franker of the patterns, with the mile value for each pattern identified at the having the disease). "StrieSum" is the sum of the state values for all of the correctly that correspond to the identified node. "State" indicates the state of the node, where I "Sing," "Suite Sum," and "Percot." "Count" is the number of samples in the Training set being in a row identified by a "Node" number. The lable also includes columns for the therefore above the each model a table containing the consultant betterns, each pettern commissing the model. Each pattern, corresponds to a point; or node, in the 'N-[610I] classified members of the indicated node, while "Hings" is the number of incorrectly indicates diseased (in this case, having overing cancer) and 0 indicates normal (not actionism is a set of remine each remine paying an amplitude: Appendix A rimally, for each model a table is set forth showing the constituent patterns space defined by the N m's values (or "features") included in the model

WO.2005011474

chassified members of the indicated node. Thus, for node 8 in Model 1, 13 samples were assigned to the node, whereas 1) samples were actually diseased. StateSim is thus 11 (rather than 13) and Britis 1,2.

[1020] Examination of the key mix features that contribe ing four feet performing models (Models 4, 9, 19, and 19), reveals certain features (Les, combined within mix bins 7060,121, 8005,678 and 8706,065) that are consistently present as classifies in those models.

While a single key, m/s species is insufficient to slobally distinguish all of the massicine brackets) identified by the algorithm as belonging to the optimum discriminatory pattern. intensity differences of the pentation the mix bits 7060;121 and 8005 678 (indicated by 7060.121 and 186951678 are diffurialfally abundant in a selection of the serum samples patienis mins the Q4-TOF M8 are quite similar (as seen by comparing FIGS: 4A' to 4B). allow the two data sets to be completely distinguished. and ovarian cancer puttents, taken together the combined peak interested of key long does These results indicate these NS peaks originate from species that may be consistent The lines in Plas. 4d, and Anyagon expended met regions lighting algoriform teatures that this protocomeQuest^M software selected are Teal's features and not noise. bhained from ovarior cancer patients as compared to unaffected individuals and that the ndicators of the presence of overtan cancer. The billity in distinguish seen from an mental imposed and of the movement species reveals that peaks within the bimodified values estiform unics of the southead printed build reason the united southead southead ffected individual or an individual with ovarion cancer based on a single perum Although the protocule patterns generated from both healthy and cancer

[1022] The four best performing models that are 100% sensitive and specific for the blanded testing, and validation tests were chosen for further analysis. Table 1 shows blingsmaght classification results of serial samples from makest testing and validation tests by proteomic pattern classification using the best performing models.

				. 9
	٠. ٠		-	. 6
Ovarian Cancer Stage II, III, IV		-71	7	-2
O!	OI	ᅃ	ľ	В
SI	S١	91	. ľ	ō
51	ӹ	×Ι	•1	***
51	21	31		- 6
₹1	Overlan Cance	-1	- 1	₩.
ΩI	ΩI	/ Unaffected		- 14
막	۲.	21	- 1	
5	o I	뙤	- 1	2
91	열	œ.	1	7
*	10	ΩI	- 1	- 22
×	×	뛰	- 1	- 2
ă.	Ď.		- 1	- 5
ø	₽		- 1	. 2
=	_	1	- 1	. 8
"			- 1	H
Ξ		1	_1	
-		1	71	4
٠.	١٠,			∴ 5
. 7	1.1			00
. !				
		. 1	1.5	
	. "			- 2
-	-	***	antow: Same Same	- 6
3	1.5	- 68	2	- 4
81	13		3	100
-	١.,	-	듄	. 2
3	IJ,	6		25 (
		1.5		1.1
١.	1.4		34	415
	Г.		. 15	
$\overline{}$	13		7.3	Ó
1	1 2	1.2	P	
11,	١.	12	œ.	J
12	12	宏	÷	13.
三	1=	J.	li:	
81 (100)	1	H	Predicted (%)	oteomic petiern classification using the our performance more and
ເຮ	18	ಠ	K	
ı÷	۳	r	125	
Ι.,	1	1 -	Т	
т.				100

O 2005/011474

Table

Each of these models was able to successfully disgnose the presence of ovarian cancer in all of the terum samples from affected women. Further, no false positive or false negative classifications occurred with these best performing models.

Memeralor

1023] A limitation of individual cancer biomarkers is the lack of sensitivity, and specialistly when applied to large helerogeneous populations. Biomarker pattern analysis seeds to overcome the limitation of individual biomarkers: Serum proteomic pattern analysis is provide new tools for early diagnosis, therapeutic monitoring and outcome analysis. Its usefulness is enhanced by the ability of a selected set of features to transcend the biologic heterogeneity and methodological background notes." This diagnosite goal is aided by employing a genetic algorithm coupled with a self-organizing cluster analysis to discover diagnostic subsists of m/s features and their relative intensities conjudical within high festition Oq-TOF mass specified dain.

1024] It is believed that diagnostic serum proteomic feature sets exist within contentions of small proteins and populate. A given signature pattern reflects changes in the physiologic or pathologic state of a target tissue. With regard to concernmakers, it is believed that serum diagnostic patterns are a product of the complex turnor-host reflected from multiple modified host proteins rather than ementing exclusively from the cancer cells. The bloomater profile may be implified by turnor-host interactions. This amplification includes for example, the gardetion of populate, or independent, sets of proteins/peptides that reflect the underlying tissue pathology. Hence, the discuss related proteomic pattern information content in blood imight be richer than previously anticipated. Stating than's single beard feature set, multiple profession feature sets may exist that achieve highly accurate discrimination and hence diagnostic power. This possibility is supported by the data described above.

ECT/DS2004/024413

8000 (at mis = 1500) for the Q4-TOP MS and 150 (at mis = 1500) for the PBS-UTOP maiostus Ciphagan PBS-A TOP Wil. The routing resolution obtained is in access of spectrometer would be expected to discriminate and discover patterns only resolvable by species that very in mass by as little as a few Dallons. Thus a lighter resolution mass that discess-associated species are comprised of low molecular weight proude/protein though this is the mass region where MS 19 best suited for analysis. Whi thought likely speciful profile is similar, a single peak on the FBS-II TOO MS to recover into it lower resolution instrument. The spectra produced by QRTOP MS were compared to lower mass drift over time and instruments at the same time as generating more complex, multimité of peuts on the Oq: TORMS (seem by companing FIGS) (Namil 18 to FIGS. 4A same sample our district regions of the protein cup paray but surface. While the overall mass spectrometer. A SBLDI source was med so that both instruments analyzed the highly resolved data. liener spectra as this will suppress combutting, mensiable ling, generate spectra with stuniculation that has uncompled the mass analyzes man the source will provide for The low molecular weight serum proteoms to an marpland archive, even Moreover, the inferent increase in mass accuracy by higher resolution

Sensitivity and specificity, testing, results for each of the 108 modals (shown in FIGS 2A (1026) In the first please of comparison, protessinto putterns from mass spectra derived sizes chosen, and three different mustion rates for a total of 27 modeling permutations. modeling constraints in which palled with granding wind lines also and degree of resolution TOP-MS specim (P < 0,00001) independent of the modeling criteria week demonstrate that the Qq.TOP MS generated spectra consistently outperformed the lower and 2B), produced from four rounds of Gaining for each of the 27 permissions, from the same braining sets and generated on the high and low-resolution mass lienty, space for the self-organizing educies to form, three different self of feature

models with a Mighet degree of smallinity and specificity. Unit he smeath the best higher level of sensitivity and specificity, thosospectus could gardens more accurate [1027] Since the spectra from the ligher resolution plantour generate parame will be

> scoursey. The ligher resolution spectra consistently produced alguificantly many that an additional marked validation set was employed after testing to determine overall and 3B). The models derived from the Qo TOPAS were commisseally more sensitive and diagnostic models. These results were generated using even more stringent criteria, in (6)? Three m's bla values were found in two of these four models and two m's bins were of key met values used as classifiers in the four best dispositio models ranged from 5 specific (P < 0.00001) thus those from the PBS-II TORIMS. Four models were generated that subtreed 100% sensitivity and specificity in both resting and validation. The number components in serum that may be key disease progression indicators. bins 7060,121, 8605,678 and 8706.065 may be good candidates for low molecular Weight course models as been to both the testing and validation studies (as shown in FIGS: 3A found in three of the four best models. The distinct peaks present in the recurring me

proteomic feature sols that can accurately distinguish gratian cancer. To screen for to convert which 22/22 in gravitan cancer, 81/81, evention cancer stage II, III and eroeds 99% sensitivity and specificity to minimize thise positives, while correctly specificity. In blinded lesting and validation studies my one of these models were used generated using high-resolution Oq-TOP MS data achieved 100% sensitivity and flictics of iclatively low prevalence, such as ovarion conject, a diagnostic test protectably custing early ringe discuss when it is present. As discussed above, four models These data support the existence of multiple highly accurate and distinct

errenns, which, taken together, could achieve an even higher degree of accuracy in a lighly accurate diagnostic protermic patterns arising concombantly from the same dam [620] such as the Qq-TOP MS employed in this study, is professed based on the present results screening setting white a diagnostic test will fine large population lieterogeneity and potertial variability, in sample quality and handling. Hence, a high-resolution system, This, a cliffical test could simultaneously cappoy several combinations of

のできます。 一般のできる (Anna Maria Ma

Cancer Early Detection Program (NOCEDP) citalised from the National Oyatian (Chicago, Illinois). Two hundred and forty eight samples were proposed using a Phomas 2000 robbite liquid handler (Beckman Coulter, line, Palot Alto, California). All analyses were performed using ProteinChip week cation exchange interaction chips (WCXX, Ciphergen Biosystems Inc., Fremont, California). A control sample was randomly applied in one spot on each protein unity as a quality cannol for sample preparation and mass spectrometer function. The country sample, SRM 1951A, which is comprised of pooled human sera, was provided by the National Institute of Standards and Technology (NIST):

surfaces were appliated. Five ill of may untill need securives applied to easy Problemship wash, 150 pt of either PBS or ddHaO was comentally dispensed, mixed by aspirating washed 3 times with Dulbergo's phosphere buffered saline (PBS) and idditio. For each uring a Binmek Laboratory workerschön (Beekman-Coulter) modified to make use of a and dispensed for a total of 10 times in the bioprocessor after which the solution was WCX2 but suffice and allowed to imphite for 55 minutes. Beat Protenting with was allowed to incubate for 5 minutes after which the solution was alphinist and disconded.
Anyogend application of 100 mL of 10 max NHAPCO, with 01146 (plany \$5.100 was
abilities and allowed to incubate the 5 minutes after which the Protein Cup army built minute. The ddHiO.was espirated, discurded, sud respliced to another minute. One pl of distilled, deionized water (ddff,O) was applied and allowed to incutate for t arrays and allowed to incubate for 5 minutes. The HCI was applying discussed and 100 processed in parallel. One mindred in of 10 may HOL was applied to the WCCO protein ProteinChip array bioprocessor (Ciphergen Mios) stame (1963). The bioprocessor holds: [2 provent cross contamination when the bioprocessor gasket was removed. After removing appraised to waste. This want process was appealed for a total of 6 washes per ProteinChips, each baving 8 chromatographic spots allowing 96 samples to be mich Chip may bait surison. The Protein Chip stray batterings were vacuum dried unded abort 10 mM NH4HCO; with 011% Thion X 100 was applied to the surface and Sample Preparation WCX2 ProteinChip armys were processed in parallel

2008011474

the bioprocessor gaster, 1.0 µl of a submitted solution of a cyano-5-bydroxyclanamic acid in 50% (v/v) actomittle, 0.5% (v/v) triflioroscetic acid was supplied to each spot on the ProteinChip array force, allowing the solution to dry between spelications.

phs. 11 Individual Projetic Chip strays were placed in the Protein Biological System II time-of-filight mass appearameter (PBS-II, Ciphergen Biosystems Inc.) and mass spectra were recorded using the following settings: 195 laser shots/spectrum collected in positive mode, laser intensity 220, detector setistivity 5, detector voltage 1850, and a mass focus of 6,000 Da. The PBS-II was orderably calibrated using the "All-In-One" poptide mass standard (Ciphergen Biosystems, Inc.).

[1033] Qq-TOF MS Analysis: ProteinChip arrays were analyzed using a hybrid qualrapole time-of-flight mass spectrometer (QSTAR pulsar). Applied Biosystems Inc., Framingham, Massachusetts) filted with a ProteinChip irray lightrines. (Ciphergen Biosystems Inc., Framont; California). Samples were jourized with a 397 mm pulsod mirogen laser (Thermol area Sciences model NSL 337/ND-S, Walthum, Massachusetts) operating at 30 Hz. Approximately 20 mTorr of mirogen gas with used for collisional ion cooling. Each spectrum represents 100 multi-channel averaged scans (1 667 min acquisition/spectrum). The mass spectrometer was externally childrened using a mixture of known populses.

1933] District Will Depthics with Solution States (1932) Will Depthics by exporting the raw days, file generated from the Qq-TOF mass spectrum litte a fat-delimited format that generated symmethanely 350,000 data points per spectrum. The data files were binned using a function of 400 parts per million (ppm) such that all data files points; identical rate values (e.g. the rate bin sizes) linearly increased from 0.28 at rate 700 to 475 at rate 12,000. The internation in each 400 ppm bin were summed. This binning process condenses the number of data points to exactly 7,084 points per sample. The binned appeared data were separated into approximately three equal groups for training testing and blind validation. The training set consisted of 28 normal and 56 overlam cancer samples. The models were built on the training set using the ProtocomeQuest** (Correlogio Systems inc., Bethesda, Maryland) and yalidated using the

the binned data and not the actual my values from the raw mass spectra. oca samples. These m/z values that were found to be class el was validated using blinded samples, which consisted

IS was performed using the most Commis Armin Sufferical significance of the results generated many the Qq-TOP and PRS-I

Appendix A

10 12 Miles (2016)	- 13	Barrell Comment
Model 1	Test	Validity
Sensitivity	100%	100%
Specificity	100%	97%
Normal State	30/30	36/37
	(100%)	(97%)
	57/57	
Cancer State	(100%)	(100%)

	Ť			m/z		
	Count	State	StateSum Empr	8688.674 860	2.237 4844.793 7660	.121 -1464.593
	, , , , , ,	7	7 7	0 0.129292	1 0.404121 0.57	7349 0
	i :	3	0 0	0.0.666873	1 0.238548 0.24	2727: 0
٠٠. ا			8 7		1 0.381099 0.311	
		46	18	0 0.157213	1 0.091906 0.14	8974 C
	Anna an An Anna an An				14489 0.108038	
		42	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 .0.123428 .0.3	
				1:0.425972	1 0 178253 0 19	1287 0
	\$.			0-0-232833	1 0.146285 0:7	9188
	<i>g</i>	1	- 1	0.0893164.08	13282 0.408828	31. 3
- 1		2			66812 0.115333	
	9	.Z		0.02110-0.0	54457 0.170029 0.82	A189 (
্ৰ	0	5	0 0		1 0.443244 0.36	
- 1	1	3	0 1			
	2	2	3 7	0 0.14915	1-0.890447-0.34	OEGE .
্	3	"2"	0 9 3	0 0.682325	1 0.359043 0.55	234
- 1	4	1	0 0	0 0.85921310.	724638 0.26087	
. 1	5	1	0 0		1 0.502083 0.83	15417
• •	6	1	0 0		94737 0.894236	22.22
. 3	7	2 .	· 0 7 · 0 ·		1 0,423408 0.0	
. 1	В	2	2	0 0.448107	1 0.163052 0.75	53369

or neutrons	1,1,11	5,070,000		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1	27.00	1 - E.	ं
4 1 7	7,4			m/z ·					
×	Count	State	StateSum Error	8605.678 5773.642	6256.91 7	360.121 B	706.065	748.048	ir.
. O		7		0.936245 0.103496				0	<u>, </u>
14		3 2	0 0 0	0.991918 0.304599	0.273147 0	468784:0	965088	. 0	5.
	40	0	1	1 0.069882	0.10322110	545584 D	405998	Ü	ř.
	· · · · · · · · · · · · · · · · · · ·		n n 7-70	0.668897 0.155636	0.241726 0	B65208 0	984241	C	Ü
. 2				0.968501 0.107261					ř.
				0.595203 : 0.103657				Č	ř.
11 .	1.4	* V		0.810908 - 0.26603					
				0.894977 0.117567			818855		i.
				1.0112112					ï
ેંં ક	i de	Service of		0.59096 0.178288					ì.
Yn				1 0.047377			'AORDOS		1
****				1 0 133102					S
11.	2.5			0.59657 0.158346					T.
1.5									
1.11		distance of		0.411765*10.12549					
	1. 1. 1.	Tip		0.81995100.317436			13010/1	F 3	
ે 15			0 0) D.865909 0.315909	0.404545 (.711364		10.1	,

(100%) (97%) 40/40

Model 4	Test:	Validity
Sensitivity	100%	100%
Specificity	100%	100X
Normal State	30/30	37/37
		(100%) 40/40
Ovartan Cancer State		(100%)

Node/	Count	State	StateSum, Error
AMES	0	B	
	2 1	0	10.5
	3.		0 0
	5 1 6	0	事。 かっかい (機ない) アイ
	1		0 1 4 0 0
	9		1 1
	44	B D	0 70
	12 13	3	0 0
	14	2	0 1

<u>:</u> +	m/z			han in the second	- T		75		11,	3 -
i	7060.121	7096.922	8605.678	6548.771	8708.085	818.480	1 8540.	536 B	352.72	
ŝ	0 0.917113	0.21551	0.981398	.0.121208	0,444445		0 0.518	113:0	1,11081	Ζ.
1)	0.0.492091	0.305348	0.966398	0.205158	0.894171		0 0.851			
þ	0 0.547669	0.173669	5 <i>2</i> 74	0.104231	0.409816	ن ئەنىدۇر	0 0.51			
(1	0.0.929844						0.90			
: P	0 0.732832						0 0.683			
	3 0.648923	0.304081	0.883209	0.148318	0.82462		0-0.916	506	0.124	35 (
	0 0.346591						0 0.827	509	1.17911	37
١.	0 1	0.262028	0.56584	0.124258	0.40720		0 0.422	2331	0.108	47 .
3.7	0:0.794377						0 .		0.297	89
្	0 1						0 0.040	5252 ·	0,1329	58
í.	0 0.437313	0.281307	0.815518	0.170126	0.890092	K., 4	0 0.88			
	0.0.282386						0.0.50	7878	0.0471	64
Ņ,	0 0.652298						0.0.87			
4-	0 0.663094						0	ių: 1,	0.1918	13
- 1		0.638476					0 0.96	5217	0.3112	08
GC.	0						0 0.75	6258	0.1027	67

PCT/US2004/02441

7	Model 5	Test	Validity
:	Sensitivity	100%	100%
	Specificity	100%	97%
	Normal State:		
	1 0 5 2 6 2 8	(100%)	(97%)
	Overlan:		40/40
j,	Concer State	(100%)	(100%)

Node	Count	State	State9	um Erb
	0 :	30	1	30
	2	;2 ;2≎	0	0
	3 .	17.	(1) The contract of the contra	11
	5.	2 5		. 5
	6		0	.0
	8	2	0	0
9.5	9.	3 ,40%	Ö -	0
	9 10 11 12 13	3	0	0
	12	2:	0	0
	44	41 742	0	0
	45.	Ť.	0	0.
	10	4	0	0.

m/z					ากกับ กับ คนนี้จะกรรษย์	e de la companya de La companya de la co	P . 2-47
11601.83 87	18.517 3419.20	5 4260:403	1229,752	2007.145	8602.237	7060.121	848.10
O 0 045073 0	IRAR25: D 03133	IB:0.084657	0.008804	0.010191	# 36° 24.	0.232181	0.0142
0 0:190458:0.	752349 0.2064	4 0.438551	- 0	0.0639	1	0.321633	0.3765
0:0:195637 0	728544 · 0.1569	7 0.355362	0	0.029894	0.730036	·	0.052C
R 0.078998 *0	33797 0.0889	8 0.20709	0.029195	0.022459	(1) (1)	0.437262	0.0432
0:0:115091-0.4	512947 0.1102	7 0.353618	0.002046	0.043823		0,230496	0.2096
. O 197591 O	287811 0 0872	15 · O. 154745	0.015448	0.049325	. A. C. S.	.0.740332	0.0144
0-0.202229 0.	542894 0.4028I	6 0.52707	0.197452	0	0.621019	30 a 1	0.2595
0.0.106417 0.	226812 0.1658	19 0.205581	0.014039	0,018811	0.69384	5.5 J. 12	0.0350
0.0149113	1 0.2147	48 0.826275	0.086988	0	0.92163	0.582268	0.4830
0-0-178571 D	921053 0.2744	38:0.744381	. 0	0.087689		0.772558	0.24
A A 427722 A	855385 0 308 3	RD : D: 341074	L.O.000R43	0.066154	. 0.973585	0.601901	0.5552
A A ABAMAA A	TORONG P SOME	OF A ROSEO	O MASRINE	n 074148	· n 754434		0.104
						VA D7E 460	~ 100V
0.0127701.0	762553	37 D 87583	0.037328	: 0	•	0.844794	0.149:
0.0138095.0	784127 6 1634	92 0 47777	i c	0.014288		0.760317	0.063
0.0201045-0	808458 0.2711	44 04179		0.014925	0.895522	9	0.383
A A 450463 A	78571A : 0 31RA	78' A 55887'	3 (1 0.035714		0.612245	1308/4
0 0.154471 0	472129 0.1311	58 0.21648	0.02769			0.784209	0.167

CT/US2004/02441

CELCOL CHAIR	1,007,03	K-2-00	J	أراك المقايمون فا			200			
2 To 1			Acres 60 Sec. 18 val	m/z	months in the	A Store	فيالكاك			
Node	Count	State	StateSum Embri	8688.674	8602.237					π.
1	D 12	2 :	12 13	0 0.212098	?} ³ 1¶ .	0.44328	- 0.05893	0.243359		0
		2 📑	1 0 × 0	0 0.7195	্তি প্র	0.320393	0.194065	0.325502	PN N 💽	0,
	Ž 1	9)	1 19	0 0 181351	91	D:188047	0.02468	0.074401	(0
	3	B 1	j j	0.0.721687	0.728508	(36772)	0.146458	0.244383		Ö
		7	i	2 0.326961	10	0.392833	0.054395	0.118492	Si i	0
医氯二丁基	6		4.35 TE	2 0.430797	110	0.446852	0.061423	0.253657		0
			0 0	0 0.479383	S - C - 18	0.241389	× 0.13775	0.184372		0
	7	3	1 3:	0 0.265618	1	0.781812	0.070789	0.199972		Ó.
	R	•	10.4 (新漢):	0.0.264708						Ö.
	Š.		10.10	0.0.218579						0 .
	ñ		0 0	0 0.979239						٥
	Ĭ	5	ក់	0 0.687882						: D
8.5	2		福达中附近。	0*0.195426						Ö.
	3		o o	0 0.686347						0
		医性性炎		0/0.786458						0
			n in	0 0 987805						0
S	ě.	24		0 0.486765				0.448526	(1)	0:-
	ž.	4	\$ 1 T	0 0.478368				0.2595		0.

(95%) 40/40 (100%)

Đ .	Cou	n S	tate	StateSum	Error	1708.1657	8605.678	6606,648	7060.121	6761.677	2472.108	8708.065	5511.917	1195.325	500
	O	9	THE 19	g.	0	- o	0.978759	0.129335	0:890026	0.141874	0.08438	0.465115	0.117084	0.112831	0.01
- 1	- F	15				1 0	0.994064	0.168514	0.384269	0.247893	0.078075	0.898872	0.147354	0.126049	0.11
1		15	N. A.	37	. A	1. 0							0.081717		
97.		11.03		e and the de	Ã	1							0.184698		
		< `∰ .		1,100		In monene	0.068228	0.460728	0.635568	0.230458	0.048255	0.860368	0.09372	0.147285	0.0
•	*₹	12		et komen i de	12	14.00000	0.500220	0.100720		0.420720	0.048344	0.384022	0.087314	n n84237	άn
12.	5		1	A	Y										
	6.		1,387) E) 0	1 0	0.289539	0.283537	UB12301	0.169183	U IUGO I		0.181402	0.000071	
	7	1	. 1.75	100	P								0.038462		
1,000	8	. 3			3 0								0.091038		
٠.	, Q	5		ò * ```````````````````````````````````	Ö	1 0	0.67702	0.16947	0.449973	0.283484	0.093472		0.116758	0.184678	0.1
	10	10		1 10	ាំកំ	0.001145		0.062602	0.272852	0.076581	0.027031	0.397883	0.035259	0.049178	0.0
						17.							0.270312		
			. 30	X ()									0.153016		
4.14	72			If a sun									0.269231		
`t.	13	٠	3.0	D	Ď Ú								0.289979		
٠, :	14	1		0:(0 0		0.8742	0.347548	10./29211	0.663173	0.132190		0.204919	0,245401	0.2
									A Section 1			1.7	*		

1	e i tota	A. 4	To The State of	m/z	. Alexandra de la compansión de la compa	
lode	Count	State	StateSum Emp	7048.018 8602.237		
erran	6 2	3.7.4 × ×	28	0 0.117795		0.098848
			0 0 0	0 0,44898	0.724911 0	0.518048
2 . 5	3	3	0 0 0	010.618288-0.993434	0.914925 0	0.472577
	4	,	1 9	3: 0.191145 1	0.325081 0	0.169693
	4		n i	1 0.214739 1	0.50704 0	0.340581
400			6.10		0.389951	0.221401
	2	N O.	o o			0.634987
	5 V X		0 0	0 1 0.740741	0.618519	0.522222
	S			· · · · · · · · · · · · · · · · · · ·		0.303711
			0 0.	0 0.46337 0.846888	1 1	0.897436
12.00	10	5	o	0:0.515608		0.728896
		37 32	0 0.	0 0 739768 1	0.882573	0.94444
	12	2.5			0.25989	0.108527
	13	ME.		0, 0.348457		0.675197
		3 (8)		0.0933148		0-0.465181
1. 2.50	STATE OF THE SECOND	建造工品 (1)	THE RESERVE OF THE SECOND	To State Street	PARTITION TO THE PERTITION OF THE PERTIT	*** **********************************

PCT/USZIO40Z4

м	odel 10	Test	Validity
S	ensitivity :	100%	100%
S	pecificity ;	100%	100%
7	ornial State		
	vartan ancer Stata	Te	40/40 (100%)

	1-2-7-0	. Xallich!	o i distribu	- 1-1-1
	Count	2000	Suiesu	
	9		(T)	
		2	.0	U
	2	10	₩	10.
	3″ . ∵	2	0.	\$100 m
	4	2	1	2
- 1	5	4	4.	1 2
;	6	3	.1	3
. :	7	7	1	5
1	8	2:	4.	2
	9-	2:	~ Ó;	0
. 1	0	1	0	0
į.	1	1		1
	2	.2		Ž.
	13	2	4	2
	Ž.	्रिक् }ः	4	4
-,	(S	44		199
	i A	2	'n	0
	7		- -	3
- 3		3	n.	ä
	40	* *		R.
	NA			0
•	eu.	Suite 422022737221122111222382	Ÿ	4 00 0 1 2 1 3 5 2 0 0 1 2 2 1 1 0 2 0 8 0

m/z			te le profes			
7202.718 6004417 7060.121	1001.654	255.593	9367,113	4377.854	8605.878	8709.5
1 0 173100 0 574063 0 670497	0.003208	0.042568	0.29361	0.14722	0.858894	0.371
0 0.319725 0.176894 0.393018 0 0.199442 0.082052 0.660658	0.	0,164671	0.825989	0.379272	0.917131	0.9672
0 0.199442 0.082052 0.660658	0	0.055131	0.403149	0.151314		0.4595
1-0.361857 0.113685 1	0	0.121266	0.562181	0.202878	0.70216	0.9290
0 0.213106 0.072628 0.578867	0	0.050348	0,662743	0.155164	. 1	0.5021
0 0.284091 0.113636 0.940341	0)	0.150568	0.605114	0.207388		0.4711.
0 0.263962 0.121837 0.831316	0	0.080509	0.411379	0.183044		0.6010
0 0.198442 (0.082082 0.660658 1 0.361857 (0.113685 0.072628 0.578867 0 0.284091 (0.113638 0.940341 0 0.264091 (0.113638 0.940341 0 0.263962 0.121837 0.831316 2 0.235242 0.08713 0.676821 0 0.227143 0.128887 1	0	0.0B2517	0.506915	0.140705	Section 1	0.866
0 0.227143 0.128887	0	0.061198	0.421919	0,159605	:0.819174	0.3850
0 0.280298 0.087375 0.746658	. 0	0,066565	0.418376	0.128141	0.52401	-
0 0.564168 0.180432 0.791814 0 0.383361 0.168028 0.71615 0 0.254143 0.094635 1	0	0.15758	0.302414	0.123253	0.472681	
0 0 383381 0 168026 0.71615	0	0.174551	0.597064	0.17292	0.882055	
0.0254143 0.094635	0	0.04466	0.198108	0.105066	0.483184	0.430
0 0.464788 0.101004 0.647496 0 0.303093 0.053808 0.485979	0	0.086878	0.386489	0.190463	11	0.822
0 0.303093 0.053808 0.485979	Ö	0.083505	0.313402	0.130928	(1	0.904
0 0.237762 0.167832 1	" o	0.125874	0.454545	0.202797	0.B25175	0.573
0 0.237782 0.187832 1 0 0.335049 0.16408 0.489544 0 0.359858 0.068285 1	0	0.070396	0.522135	0.26255	0.033444	0.971
0 0.359959 0.068265 1	0	0.105538	0.508054	0.173701	0.830654	0.874
0 0.123575 0.048128 0.311115		0.045892	0.286063	0.113572	2 1	0:382
0 0.211598 0.059312 0.548008	0	0.11359	3 D.450127	0.13282	3.0.790771	i .

PCT/US2004/024

, .	
	7
Protection	
12	

0 0.132027 0.484959 0.19387 0.567533 0.011098 0.5183 0.20307 1 0.9185 0.069847 0.86036 0.461882 0.878378 0 0.078191 0.274074 0.111111 0.394709 0.0118823 0.618036 0.254696 0.552077 0.0082636 0.204772 0.145723 1 0.2959 0.0101345 0.617489 0.220825 0.873543 0.010345 0.617489 0.220825 0.873543 0.010345 0.61843 0.317814 0.720848 0 0.02797 0.11882 0.058356 1, 0.3080 0 0.125786 0.074423 0.400419 0.698113 0.0125784 0.601266 0.398734 0.8794747 0 0.063281 0.35622 0.138528 1 0.60844

	Model 11	Test	Validity	
	Sensitivity	100%	100%	重新하는 처음 문문에는 한다는 하는 이렇게 되어 하는 말이 되는 사람들이 불굴하를 불굴하를 들었다.
	Specificity,	100%	97%	40
	Normal State	30/30 (100%)	35/37 (97%)	
	Overlan Cancer State	57/57 (100%)	40/40 (100%)	
>	Node	Count	State	StateSum Error MSJ 882 8619.455 1151.684 890.8988 8688.674 4620.708 4280.403 6848.765 1439.047 10485.
		0	5	5 0 0 48439: 1-0.249501 5 0.0.340138 0.141393 0.173882 0.219088 0.066197 0.2212
		1,	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
٠,		78: I	2	1 2 0 0 22668 0.75439 0.351176 0.0.304239 0.211129 0.215195 1 0.061103 0.1517 1 0 003943 0.454698 0.096057 0.0.162752 0.097735 0.097315 1 0.020554 0.0645
į.		3	1	0 0 0 0.528752 0.666483 0.686268 0 0.0390888 0.326104 0.594814 0.382 0.146411 0.4047
Z	机步光电影	5		1 8 0 00 92401 1:0.497082 0 0.64152 0.256213 0.315258 +0.32085 0.122937 0.3916
		-	1	1 0: 0.184718 1: 0.843894 0:0.574257 0.339834 0:277228 0.749175 0.052805 0:3663
				1 2 0 0 212839 1 0.329502 0 0.556867 0.202088 0.235864 0.628961 0.031436 0.1279
		8	\$ 1. S	2 022784 1 0.410498 0 0.0725693 0.218632 0.324713 0.331147 0.089938 0.2191
. ,		л. Ф	3	3 0 h 18 335 0.945748 0.666252 0 0.438843 0.294054 0.316824 0.965705 0.028208 0.2972
ં.		lo .	1.70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	·· ,- ·	11	1	1 0.244728 0 0.447257 0.35865 0.329114 0.227848 0.046414 0.4216
		12	2	0 0 0 13223 0.831889 0.881855 0 0.99322 0.441818 0.734281 0.576025 0.165179 0.2780
		13	1	1 0,03 86281 1 0.785124 0.0.444215 0.289250 0.340909 0.21281 0.115702 0.3883
		14	4	1 4 0 624548 1 0.686665 0.0887229 0.222129 0.419095 0.487583 0.148942 0.378
		15	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
j.		18	2	2 0 0 2 2 7 6 0 2 2 7 6 0 2 2 7 6 1 5 1 6 1 7 6 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
•		17	2	1 2 0 0 57544 0.81331 0.338888 0 0.561209 0.1897874 0.31758 0.987784 0.056328 0.1354
		18	1	1 1 0 0 64549 0.678112 71 0 0.274678 0.206009 0.27897,0.077253 0.128755 0.283
		19	. 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	•	20	.1	1 0 0 5 5 6 8 1 0 8 7 6 7 1 2 0 0 4 7 1 2 3 0 3 0 4 1 1 0 3 5 6 8 5 0 7 4 5 2 0 5 0 2 1 0 9 5 9 0 2 5 2 1
•				

Model 12	Test	Validity :
Sensitivity	100%	100%
	100%	95%
Normal State	30/30	35/37
	(100%)	(95%)
	67/57	
Cancer State	(100%)	(100%)

10 NOTE 1	10.79 2.996 1 (1.997)	n/2	Manual Agency
Count	State StateSum Error	B885.2 :8709.548 :7065.771 :1132	049 8605.678
o Total	8 14	0 0.227355 0.285099 0.294878	0 1
김 씨를 살려보는	2 0 4	1:0.579419 0.996678 0.249831	0:0,904368
2 4	5. 4 . 5	0 0.288212 0.48104 0.337354	· 0 = 3
3	2 0 0	0 0.839955 1 0.545907	0 0.694338
	2 2	0 0.444594 0.494724 0.255931	0 1
	7	0 0 328118 0 404857 0 471929	0 4
6	81-4	0 0 420976 0 599319 0 470769	- 0 1
7	8 1 4	2 - 0.51664 0.902203 0.355835	0 1
R	3 O	0 0.653035 0.84379 0.223522	0 1
Ã.		0 0.545 0.645 0.9675	0 51
10/	4 0 0	0 0.430854 1 0.405585	0 0.471429
44	1 0 0	0:0.155009 1 0.449905	0:0:215501
12	n (a) 118	0 0.281647 0.357539 0.14863	0 1
133	11: 11: 1	0 0.650505 1 0.39596	
*14	ender in de la company de	0/0.313343 0.812504 1	0.0,830585
45	.2 1 2	0 0.640593 0.804083 0.442778	0. 1
16	1 0 0	0:0.771379 1 0.319372	0, 0.91274
17	2 1 2:	0 0.395313 0.746361 0.349265	0 1
18	2 0 0	0 0 358251 1 0 141059	0:0:455628
19	2 0 0	0 0.357038 1 0.251898	0: 0:762878
20	1 0 0	0.0.966008 1 0.68272	0 0.847026

O 2005/011474

PCT/US2004/02441

	Model 13	Test	Validity
	Sensitivity	100%	100%
	Specificity	100%	95%
			35/37
		Ch. 24 P. 122 P	(85%)
			40/40
d	Cancer State	(100%)	(100%)

		12.00		π√z,		Sold (March 1)	· Art of the Market
Node	Cou	nt State	StateSum En	11098.07	6501,799 2087.37	:8605.678 :8688.674	.7048.838 -4262.107
	- 0	8.	1 8	0 0.053B42	0.050306	0.277113	0.258017 0.126978
Arra 🔐	1.	••	0 0	0 0.194368	0.016901 (1 0.780282	0:24507:0.416901
	2	1 .	0 0	0 0.230024	√0.179177 (1 0.990315	0.736077 0.493947
	-3	8	1 6	2.0.047783	0.03069 0.00075	1 0.473931	0.24506 0.11983
	44	.10	1 9	1 0.074636	0.064462	1 0.43221	0.343755 0.20137
	-5	8 .	4 . T.	1 0.094925	0.130769	1 0.671894	0.378017, 0.273367
	- 6	2 1 3	dr (, , , , , , , , , , , , , , , , , ,	0 0.059567	0.032491	1.0.644404	0.355596 0.034296
	7	<i>3</i> 3 3 5 5 5 5	0 0	0.0.230797	0.139693	0 1 0.830324	0.189319 0.459966
7 T 2	8	4	4 4 3	0 0.205333		1 0.514687	0.794687 0.122687
	. 9	, (i	0 0 1	0.0.108926	0.123214	0 0:921429 1	0.883929 0.457143
	10	. 1	0 0	0 0.068063	0.408377	0 0.832461 : 0.997382	7048-836-4252-107- 0.256017-0.126978- 0.24507-0.416901 0.73607-0.445947- 0.24506-0.11983- 0.345755-0.20137- 0.375617-0.273367- 0.355556-0.034296- 0.189318-0.455946- 0.794687-0.122697- 0.85329-0.457143- 1-0.505228- 0.108974-0.075537-
	11	12.	1 12	0 0.0376	0.018129 0.00573	5. 1 0.292722	0.108974 0.075537
C. 1	12	. di ca	1 4	0.0066488	3 0.115332: 🛴 🦳	0. 0.82768 0.499322	1 0.238806
	13	a Hara	1 9		0.082474 0.19587	6 1 0 402062	0.237113 0.154639
	14	.a.s.∰	0 00	0 0.12320	0.280318	0 1 0.852883	0.274354 0.310139
	15	.2	0 0	0 0.04345	2 0.068573	0 1 0.935869	0.380821 0.614702
	168	1	0 0	0 0.12445	7,0,859334	0 1 0.609262	0.357453 0.444284
	17	1	ò a.	0 0 19239	4 0 127517	0 0.876957 1	0.10874 0.07537 1 0.238806 0.237133 0154839 0.274354 0.310139 0.357453 0.44284 0.438479 0.628635 0.181258 0.282367 0.650327 0.441176 0.650327 0.441176
	·318	11	0 0	0 20.09124	5/0.165228	0 1 0.641184	0.181258 0:282387
	19	11	0.0	. 0	0.313726 0.12418	3 0.85098	0.650327 '0.441176 0.566038 0.235849
	20	ì	1. 1.	0-0.15330	2 0.179245	0 1 0.415094	0.566038 0.235849

011474

PCT/US2004/024413

E

21	11	0	0	0 0 128713 0 165842	0 0.759901	1	0,675743 0,537129	į.
22 .	2	0	O.	0 0.194312 0.20655	0 0.84264	4	0.528225: 0.430212	3
23	- F	- S	31	0 0.2125 0.2	0 0.905	0.47	1 0.19	ķ.
24	1 1	0	0	0 0.270089 0.084821	0 0.841518	1	0.870538 0.548875	<u>;</u>
25	4.	0	0	0:0.134441 0.128399	0 0.080383	1	0.311178 0.303825	
26,	4.	ō.	0	0:0.397436 0.339744	0.0.858974	- 1	0.903846 0.490385	ì
77	(a)	0.	0	0 0:0.257908	0 0.924574		0.491484 0.593874	Į.
28	4	.0	0.	0-10.29085-0.382745	0 1	0.973856	0.990196 0.470588	3
29	y v	0	0 -	0 0 147287 0.0	36176 0.976744	• 1	0.50646 0.423773	3
30	£.	.0.	0.5	0 0.047222 0.175	0 0.75	. 1	0.497222 0.48055	2
31	4.	1.	-1 ⁷ *	0 0.16998 0.278658	0 1	0.733202	0.743083 0.320158	3
32	3	0	0	0 0.061404 0.285088	0 0.813596		0.598684 0.33114	ŧ.
33		1	13	0 0,090909 0.130165	0 1	0.733471	0,607438 0.20867	8
		2 4 3 24	A	The second secon		77.	2000	100

Model 14	Test	Validity
Sensitivity	100%	100%
Specificity	100%	97%
Normal State	30/30 (100%)	36/37 (97%)
Ovarian Cancer State		40/40 (100%)

A. 10.2			The same of the sa	mz	The person	4. 4. OF	British day his	4 miles . 1 4 miles	military Sec	a - Andrews	on make boys
Node	Count	State	StateSum Empri	4162-719	8588.487	8709.548	2664.385	1319.958	8605.678	2280.256	7060.121
ing F		2	4 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n n n95692	D 344858	0.318228	10.242550	0.007524	G'AGAGOR'		U.U38832
学された	a in the	續。	0 :0	0 0 488175	0.68894	2.00	0.626728	Ó	0.680184	0.004608	0.31106
	•		1 5	0.0 117272	0.439504	0.401233	0.30528	Ô	5 4 (E. 188	0.039692	0.653983
1877 B (2)	a .		0 0 1 5 1 6	0.00085018	0.499557	0.325584	0.28407	0.00115	The sale	0.014817	0.410254
	្ន		0 0 1 1 1 1 3	0 0 153071	0.58671	0.05824	0 684506	0	0.662885	0.006483	1
				0.000004	D 601887	0.604762	A 857143	5 A		0.105952	0.55
in the little of the contract	2			0 0 177000	0.00 foot	A 417544	0.0040	0.002772	0.084158	0.050381	0 925263
	6	经(3 3	U.U.12/900	0.403341	A COROTT	**************************************	DAULITZ	(Proposition)	0.037808	D R14917
	7.00	3	2	0 020/404	U.1 Z4001	1,002070	U.D.JZATO	IN ORDANA	0.00000	0.040480	0.650558
	8	7	4	2 0.176699	.0.710138	0.80204/	TODIBLE	0.005477	U.030302	0210100	0.00000
	9	11	0 0	0:0.697282	40.824477	0.827697	0.68599	2 . U	(2,2,2,3)	U.1 18103	nainten.
	10	11	1. 1. 1.	0 0.108787	0.428778	0.381227	0.403068		0.559275	0.026499	
4.5	11	2:	1, 2	0.0.108972	0.628005	0.453237	-0.363568	0.005034	· 1	0.030471	D:406813
- €1-	12	3	0 0 1	0 0 152024	0.439381		0.428457	0.005728	0.479396	0.0065	0.730046
	12. 13		લાં મેં જે	0 0 109208	0:304059	0.432548	0.248253	. 0	0.441114	0.068523	1
Sec. 8. 10.	14	12	4 101	1 0.253559	0.657705	0.891482	0.692764	0.013306		0.006591	0.449839
	18	4	1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0.242188	0.335938	0.523436	0.028125		0.804688	0.226562	
	48	4.4									
	12			0.0183000	0 597706	A 89055	A 605697	0.043478	0.928036	Ó	181 × 181 × 1
	10	125		0 0.102303	0.82105	0.789424	. A 40230	0.014035		Ò	0.817544
	10			0 0.182909 0 0.14269 0 0.172991	0.021000	- 10 A A A	0.404740	O COLAMA	0.484017	Ň	0.287822
	18	34 STA		0 0.062151							
*	:ZU –	(3	17 D	0 0.00275	U.4/4U.	. U, 60 / 84	U.32400	•	, .	.0.010104	ع ١٠٠١

WO 2005/01

T/US2004/02441

14	Model:15	Test :	Validity
	Sensitivity	100%	100%
	Specificity	100%	100%
	Normal State;	30/30	37/37
	11. 18. 18.	(100%)	(100%)
	Ovartan	57/57	40/40;;
. :	Cancer State	(100%) =	(100%)
	the second of the second	A - CONTRACT	Charles in the contract of

				1971	13.0						, m		P. 10 P. 1	- F	A41 - 751		100		
N	ode :		Co	unt '	- 5	ate -	Š	tateS	ım En	ðri -	1	9870.938	2374,244	1270.881	7080.121	4292.9	8708.065	8605.678	L
Ţ.		951	0	7	33	11	1		33	1:	0.1	0.120039	0.024623	0.01125	0.949945	0.171834	0:527519	0.872924	
i.			1		23		. 1		16	- 1	7 (0.141653						0.999723	
		ν.,	2		7	• "	0		2	: I	2 (0.186489		0.153321	0.882675	0.152271	0.953348	0.714632	. `
	·		3	o ji ş	16	. :	٥,		ି 1 ୍ଦ	٠ !.	·17.0	0.144659		0.181107	0.595845	0.178005		0.741938	
			4	. 30	3	100	1	1,7	*3: ·	•	0.1	0.056997		0.043224	1	0.088753	0.359943	0.468551	
			5		1	į (ž	1		4		0	0.04065	(0.076352				
	1.		6	200	d ^E		.	- 100	Ó		-0.1	0.358639	0.146597	,	0.337696	0.397906	. 1	0.984293	
	· ·	V: 10 1		Fig. 11	100	100					· 200	 32, 35, 76 	And the second	1 2 5 16					

.

What is claimed is:

 A, mödel meble in determining whether a prological sample taken from a subject indicates that the subject has overlan gance; comprising:

a vector space having at least three dimensions; and

at least one diagnostic citater defined in said vector space, said diagnostic citater corresponding to one of a diseased citater and a healthy cluster,

said vector space having a first dimension that corresponds to a first mass to charge ratio value from a mass spectrum, said first mass to charge ratio being about 7060, said vector space having a second dimension that corresponds to a second mass to charge ratio value from a mass spectrum, said second mass to charge ratio being about 500% and said vector space history a third dimension that corresponds to a third mass to charge ratio being about 5706.

- 2. The model of claim I, wherein the vector space has at least time dimensions, said vector, space having a fourth dimension that corresponds to a fourth mass to charge ratio value from a mass injectium, said thurth moss or charge ratio value from a mass injectium, said thurth moss or charge ratio.
- 3. A model mable in decembration whether a biological sample taken from a simperimatering utal the subject bas formation coincer comprising.

By State and See a see a Sukunganian and

nt least one dispussitio clurier defined in said vector space, said dispussito cluster sponding to one of a dispused duster and a healthy custer.

end vector space having a first dimension that corresponds to a there mass to charge ratio value from a mass spectrum; said that mass to charge ratio being about 9807, and vector space having a second dimension that corresponds to a second mass to charge ratio being about 2374, and said vector space having a third dimension that corresponds to a third mass to charge ratio being about 2374, and said vector space having a third dimension that corresponds to a third mass to charge ratio being about 1276.

PATITOSOT. O.M.

PCT/US2004/02441

- 4. The model of claim 3. wherein the vector space has at least four dimensions, said vector space his ring a fourth dimension that corresponds to a fourth mass to charge ratio value from 6 mass spectrum; said fourth mass to charge ratio being about 4292.
- A method of determining whether a biological sample taken from a subject indicates that the subject has ovarian cancer by analyzing the biological sample to obtain a data stream that describes the biological sample, comprising:
- in abstracting the data stream to produce a sample vector that characterizes the data stream in a producemined vector space containing a diagnostic character, the diagnostic character that diagnostic character that concer cluster, the ovarian cancer cluster corresponding to the presence of ovarian cancer;

 b. determining windther the sample vector rests within the ovarian
- c. If the sample ventor rests within the overion concer cluster, identifying the biglogical sample as being taken from a publicat that has overnon causer.

cancer cluster, and

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

tects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.