Řešení

Potom

Vyberme l'ubovol'né dva prvky: $f(x) = \frac{x}{1+ax}$, $g(x) = \frac{x}{1+bx}$.

[editovat]

 $(f \circ g)(x) = f(g(x)) = \frac{g(x)}{1 + ag(x)} = \frac{\frac{x}{1 + bx}}{1 + a\frac{x}{1 + bx}} = \frac{\frac{x}{1 + bx}}{1 + bx + ax} = \frac{x}{1 + (a + b)x}, \ a + b \in \mathbb{Z}.$ f(x) nemôže byť definované pre $=\frac{1}{a}$, g(x) pre $=\frac{1}{b}$, f(g(x)) pre $=\frac{1}{a+b}$, čo sú však všetko racionálne čísla, takže f(x), g(x) aj f(g(x)) sú definované pre

všetky iracionálne čísla. Teda $f \circ g \in M$.

Operácia zloženia zobrazení je vždy asociatívna (pre tento konkrétny prípad ľahko dokázateľné - zvolíme tri funkcie, a bez ohľadu na zátvorkovanie nám

vyjde $\frac{x}{1+(a+b+c)x}$. Teda (M,\circ) je pologrupa. V tomto konkrétnom prípade je operácia aj komutatívna - $(f \circ g)(x) = (g \circ f)(x) = \frac{x}{1 + (a+b)x}$, teda (M, \circ) je komutatívna

pologrupa.

Prvok $e(x)=rac{x}{1+0x}=x$ je neutrálny prvok, teda (M,\circ) je (komutatívny) monoid.

Pre ľubovoľný prvok $\frac{x}{1+ax}$ je zrejme $\frac{x}{1+(-a)x}$ inverzný prvok, teda (M,\circ) je (komutatívna) grupa.

 (M,\circ) má teda všetky z uvedených vlastností.