Dados não Estruturados

Processamento digital de imagens e visão computacional

Informações - Calendário

Aulas a Distância (Zoom)

- Todas as aula ficarão gravadas
- Comunicação: Class
- Material de Aula: Class
- Horários:
 - Início: 19h
 - Pausa de 15 min (~20:45h)
 - Fim: 22:00h
- Avaliação:
 - 3 Projetos (em squads)
 - Prova Final (individual)

Informações - Ementa

Dados Não Estruturados

- PDI Processamento Digital de Imagens (6 aulas)
- PDS Processamento Digital de Sinais (4 Aulas)
- PLN Processamento de Linguagem Natural (5 Aulas)
- Revisão
- Prova

Informações - Calendário

Aula	Data		Ementa
1	28/06/2021	Segunda - 19h	PDI
2	30/06/2021	Quarta - 19h	PDI
3	02/07/2021	Sexta - 19h	PDI
4	05/07/2021	Segunda - 19h	PDI
5	07/07/2021	Quarta - 19h	PDS
6	09/07/2021	Sexta - 19h	PDS
7	12/07/2021	Segunda - 19h	PDS
8	14/07/2021	Quarta - 19h	PLN
9	16/07/2021	Sexta - 19h	PLN
10	21/07/2021	Segunda - 19h	PLN - Projeto
11	23/07/2021	Quarta - 19h	Revisão
12	26/07/2021	Sexta - 19h	Prova

Dado estruturado

Dado estruturado

Dados que foram inseridos numa estrutura rígida, previamente planejada

```
- Banco de dados (MySql, Postgres, MongoDB, etc)
```

```
- Arquivos (XLS, XLSX, CSV, XML, JSON, etc)
```

Dado não estruturado

Dado não estruturado

- Processamento digital de imagem e vídeo
 - Imagem (JPEG, PNG, etc)
 - Vídeo (MP4, MOV, etc)
 - Áudio (mp3, wav, etc)
 - Texto (txt, pdf, etc)

Objetivos) Processamento digital de imagens

Armazenar, Transmitir

Objetivos) Processamento digital de imagens

e Interpretar

Aplicações) OCR - Optical Character Recognition

Aplicações) Detecção e reconhecimento de objetos

Aplicações) Carros Autônomos

Aplicações) Video Games (interação)

Aplicações) Segurança

Aplicações) Medicina

Desafios

Desafios

Por que é difícil?

- No exemplo anterior a Medida é a mesma nos dois casos
- Mas nossa visão nos engana pois a medida de intensidade de pixels é a mesma
- Nosso cérebro conta uma história a partir das medidas

O que é uma imagem?

Como uma imagem é formada, gerada?

- Sensores
 - Photoeletric (CMOS, CCD)

Processo químico

MRI, X-Ray

Imagem representado com uma função 2d

Imagem representado com uma função 2d

Imagem representado com uma função 2d

Imagem Digital - Amostragem, Resolução

16x16

Imagem Digital - Quantização

- 16 bits = 2^16 = 65536
- 8 bits = 2^8 = 256 [0,255]
- 4 bits = 2^4 = 16 [0,15]
- $2 \text{ bits} = 2^2 = 4 [0,3]$

2 bits / pixel

Imagem Digital - Quantização

OpenCV

- Código Aberto Escrito em C++ com wrappers para Python, Java e etc
- Lançamento pela Intel Research 1999
- Versão 1.0 lançada em 2006
- Hoje está na versão 4.3.0

exercicio

- Instalar OpenCV
- Carregar a imagem na memória com o comando cv2.imread
- Qual é a amostragem da imagem?
- Qual é o valor da posição/pixel (2,3)
- Qual é a quantização utilizada?

Como representamos imagens coloridas?

- RGB [0-255][0-255][0-255]
- HSV (Hue, saturation e value/brightness) hue 0 179, saturation 0-255, value 0-255

Armazenamento das Imagens digitais

Monocromática

- 1 Bit/pixel
- 2 (0,1) níveis
- 640x480 imagem = 39 KB

Níveis de cinza

- 1 Byte/pixel
- 256 níveis cinzento
- 640x480 imagem = 307 KB

Cor 24 bits

- 3 Bytes/pixel
- 16 Milhões cores
- 640x480 imagem = 921 KB

Exercício

- Carregar imagem colorida numa variável
- Converter de RGB para HSV

Pré processamento

Problema: Ruído aleatório de aquisição ou transmissão;

Solução: Filtros espaciais.

Imagem Ruidosa

Filtro mediano

Pré processamento

- **Problema**: Imagem com pouca variedade de cores;
- **Solução**: Equalização de histograma.

Pré processamento

Problema: Imagem corrompida devido a um movimento na câmera;

Solução: Realizar uma restauração a partir de um filtro de Wiener.

