





# **NOSQL OVERVIEW**

Yunghans Irawan (yirawan@nus.edu.sg)







- Brief History of Database Models
  - Pre-relational
  - Relational
  - NoSQL
- NoSQL Classification
  - Key value
  - Document
  - Graph
  - Column Family



# **Navigational DBMS (1960s)**



- Sometimes called as pre-relational database
- Hierarchical Model
  - data is organized into a tree-like structure
  - mandates that each child record has only one parent, whereas each parent record can have one or more child records. In order to retrieve data from a hierarchical database the whole tree needs to be traversed starting from the root node.
  - E.g.: IBM IMS (Information Management System)

#### Network Model

- schema, viewed as a graph in which object types are nodes and relationship types are arcs, is not restricted to being a hierarchy
- allows each record to have multiple parent and child records
- E.g.: IDMS (Integration Database Management System



# Hierarchical Model



#### Hierarchical Model



#### Source:

http://www.ibm.com/support/knowledgecenter/SSEPH2\_1 3.1.0/com.ibm.ims13.doc.apg/ims\_comparehierandreldbs .htm

#### RDBMS Equivalent











Source: Next Generation Databases, NoSQL, NewSQL and Big Data



# Relational DBMS (1970s)



- Based on a paper from Edgar Codd: "A Relational Model of Data for Large Shared Data Banks"
- Essentially describes how a given set of data should be presented to the user, rather than how it should be stored on disk or in memory
- Levels of conformance to the relational model are described in the various "normal forms."
- Jim Gray: "A transaction is a transformation of state which has the properties of atomicity (all or nothing), durability (effects survive failures) and consistency (a correct transformation)."
- ACID transactions is strongly associated with relational databases





- 1NF
  - all attributes must be atomic and single-valued
- 2NF
  - every non-prime attribute of the table is dependent on the whole of every candidate key.
  - No partial dependency on the primary key or any of the candidate key(s)
- 3NF
  - Every non-key attribute must provide a fact about the key, the whole key, and nothing but the key





- Suppose you want to store price, area and tax rate for different land lots in multiple counties
- Each county have a fixed tax rate
- The land area of the lots are standardized.
   There are few standard sizes with different prices

















Source: http://www.cs.montana.edu/~halla/csci44 0/n15/n15.html#normal





#### Un-normalized data

# Student Name Test Name Test Date Answer 1 Answer 2 Answer 3 Answer 4 Answer 5 Answer 6 Answer N

#### Normalized data



Source: Next Generation Databases, NoSQL, NewSQL and Big Data







- The OODBMS Manifesto (Atkinson/Bancilhon/DeWitt/Dittrich/Maier/ Zdonik, '90)
- "A relational database is like a garage that forces you to take your car apart and store the pieces in little drawers"
  - Also SQL is ugly
- "A Object database is like a closet which requires that you hang up your suit with tie, underwear, belt socks and shoes all attached" (Dave Ensor)









- Due to success of Object Oriented Programming
  - Storing object into RDBMS is not simple
- Store objects without normalization
- Support complex objects, object identity, encapsulation, types or classes, inheritance, overriding combined with late binding, extensibility and computational completeness.
- https://www.cs.cmu.edu/~clamen/OODBMS/Manifesto/htM anifesto/Manifesto.html
- Failed to get market share
- Object-Relational Mapping (ORM) helps to solve part of the problems OODBMS tried to solve



# Object vs RDBMS Table







Source: https://simsonlive.wordpress.com/2008/03/09/how-inheritance-works-in-hibernate/





- Inadequacy of existing products to cope with volumes and velocity of data needed by massive web-scale applications (e.g. Google)
- Trigger many innovations
  - Google: Google File System (2003) → MapReduce (2004) → BigTable (2006)
  - Yahoo: Google Map Reduce → Hadoop (2007)
  - Amazon: DynamoDB (2007)
  - Facebook: Sharding with MySQL → Cassandra (2008)
  - Any many many others





#### Need a name:

- Distributed Non-Relational Database Management System (DNRDBMS)
- NoSQL most popular
- NewSQL

#### Some desired characteristics

- Availability
- Tolerant to network partition
- Low latency fast response time
- Run on commodity hardware
- Incremental scalability with no downtime





# THE THIRD PLATFORM

The Third Platform is described by IDC as the nextgeneration compute platform that is accessed from mobile devices, utilizes Big Data, and is cloud based.



### **3RD PLATFORM**

Mobile Big Data Social

CLOUD



MILLIONS OF APPS



#### **2ND PLATFORM**

LAN/Internet Client/Server

DISTRIBUTED



TENS OF THOUSANDS OF APPS



#### **1ST PLATFORM**

Mainframe, Mini Computer

**MAINFRAMES** 



THOUSANDS OF APPS



# NoSQL Classification

















# Amazon Dynamo Model





DOI:10.1145/1435417.1435432

**Building reliable distributed systems** at a worldwide scale demands trade-offs between consistency and availability.

BY WERNER VOGELS

# **Eventually** Consistent







- Support primary key based lookup
- Schemaless no data model
- Some incorporate built-in data structure like sets and maps with their operations



## **Document Database**





- Non relational database that stores data as structured document
- Usually in XML or JSON formats
- Usually schemaless
- Relatively easy to transform object into JSON or XML

```
■ films.json 🖾
                                                x films.xml 23
                                                    <?xml version="1.0" encoding="UTF-8" ?> ^
        "Category": "Documentary",
                                                        <Category>Documentary</Category>
        "Description": "A Epic Drama of
                                                        <Description>A Epic Drama of a Femi
        "Length": "86",
                                                        <Length>86</Length>
        "Rating": "PG",
                                                        <Rating>PG</Rating>
        "Rental Duration": "6",
                                                        <Rental Duration>6</Rental Duration</pre>
         "Replacement Cost": "20.99",
                                                        <Replacement Cost>20.99</Replacemen
        "Special Features": "Deleted Sce
                                                        <Special Features>Deleted Scenes,Be
        "Title": "ACADEMY DINOSAUR",
                                                        <Title>ACADEMY DINOSAUR</Title>
                                                        < id>1</ id>
        " id": 1,
11
        "Actors":
                                                11
                                                        <Actors>
                                                             <First name>PENELOPE</First nam
13
                 "First name": "PENELOPE"
                                                13
                                                             <Last name>GUINESS</Last name>
14
                 "Last name": "GUINESS"
                                                14
                                                             <actorId>1</actorId>
15
                 "actorId": 1
                                                15
                                                        </Actors>
169
                                                        <Actors>
17
                 "First name": "CHRISTIAN
                                                             <First name>CHRISTIAN</First na
                 "Last name": "GABLE".
                                                             <Last name>GABLE</Last name>
19
                 "actorId": 10
                                                19
                                                             <actorId>10</actorId>
                                                        </Actors>
                 "First name": "LUCILLE",
                                                21
                                                        <Actors>
                 "Last name": "TRACY",
                                                             <First name>LUCILLE</First name
                 "actorId": 20
23
                                                             <Last name>TRACY</Last name>
240
                                                             <actorId>20</actorId>
                 "First name": "SANDRA",
                                                        </Actors>
26
                 "Last name": "PECK",
                                                26
                                                        <Actors>
                 "actorId": 30
                                                27
                                                             <First name>SANDRA</First name>
                                                             <Last name>PECK</Last name>
                 "First name": "JOHNNY",
                                               Design Source
```

21





- Relationship between things is the information that are of primary interest
- Graph can be modeled with RDBMS
  - Performance issue when dealing with large graph
  - SQL is not designed for graph data



# 😛 Column Family Database



ZSS INSTITUTE OF SYSTEMS SCIEN

- Store data in column families
  - Many column associated with a row key
- Column families are groups of related data that is often accessed together
  - Like a table in RDBMS
- Arguably more similar to RDBMS compared to other types of NoSQL databases
- Main motivation of the early products are high throughput and scalability using commodity hardware





- Polyglot persistence is about using different data storage technologies to handle varying data storage needs
- Polyglot persistence can apply across an enterprise or within a single application
- Encapsulating data access into services reduces the impact of data storage choices on other parts of a system
- Adding more data storage technologies increases complexity in programming and operations, so the advantages of a good data storage fit need to be weighed against this complexity



# Polyglot Persistence







25





- We have discussed development of database concepts over many decades
  - Some similarity between ideas
  - Some good ideas but doesn't get any market traction
- We are now at a time where there are various database concepts with reasonable traction and potentially useful features and applications
  - Many of them are proven by companies with very challenging requirements





- CS4221 Lecture Notes A Brief Introduction on Hierarchical and Network Data Models
  - https://www.comp.nus.edu.sg/~lingtw/hierarchical.
     network.models.pdf
- Next Generation Databases NoSQL,
   NewSQL and Big Data
  - Guy Harrison, Apress 2016