Corso di Laurea in Informatica - A.A. 2011 - 2012 Scritto di Fisica - 13/06/2012

Esercizio 1

Siano dati due vettori in componenti cartesiane: $\vec{a} = 3\vec{i} + 4\vec{j}$ e $\vec{b} = 5\vec{i}$. Determinare le componenti cartesiane ed il modulo del vettore differenza $\vec{d} = \vec{a} - \vec{b}$, ed il prodotto scalare $\vec{a} \cdot \vec{b}$.

Esercizio 2

Siano dati, come in figura, due corpi puntiformi con carica $Q_A = +54$ mC e $Q_C = +128$ mC posti rispettivamente nei punti A e C di un piano cartesiano. Determinare:

- a) in quale punto tra A e C il campo elettrico è nullo;
- b) se esiste un punto tra A e C in cui il potenziale elettrico è nullo (assumendo che all'infinito il potenziale sia nullo);
- c) quanto deve valere una carica elettrica puntiforme Q_D che posta nel punto D fa sì che il campo elettrico totale nel punto B sia nullo;
- d) qual è il lavoro fatto dal campo elettrico per portare Q_D dall'infinito al punto D.

Esercizio 3

Nel circuito in figura i resistori valgono rispettivamente R_1 =120 Ω , R_2 =600 Ω , R_3 =100 Ω e R_4 =400 Ω , il condensatore C=10 μ F, l'induttore L=10 mH e la f.e.m.=10 V. Dopo essere stato a lungo aperto, all'istante t_1 l'interruttore T viene portato in posizione P_1 . All'istante t_2 , in cui il circuito ha raggiunto le condizioni stazionarie, l'interruttore viene spostato in posizione P_2 . Determinare la d.d.p tra i punti A e B:

- a) subito dopo l'istante t_1 ;
- b) subito dopo l'istante t_2 ;
- c) molto tempo dopo t_2 .

Si determini inoltre l'impedenza totale della maglia in cui circola corrente se la f.e.m. fosse stata alternata di frequenza 50 Hz nei due casi: interruttore in posizione P_1 ed interuttore in posizione P_2 .

