ГЛАВА З

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

Комбинаторика — это раздел математики, в котором изучаются методы построения комбинаций элементов конечных множеств в соответствии со специальными правилами. Такие комбинации принято называть комбинаторными конфигурациями. Простейшими примерами комбинаторных конфигураций являются перестановки элементов конечного множества и его конечные подмножества с наперед заданным числом элементов. При изучении комбинаторных конфигураций принципиально важными проблемами являются задачи существования таких конфигураций, нахождения методов их построения и определения правил подсчета числа таких конфигураций.

3.1. Основные правила комбинаторики

Простейшими правилами подсчета числа комбинаторных конфигураций являются следующие правила суммы, произведения и степени.

Правило суммы: если элемент можно выбрать способами и элемент x_2 можно выбрать способами, причем все эти способы выбора попарно различны, то выбор одного из элементов можно осуществить $n_1 + n_2$ способами.

В общем случае, если элемент можно выбрать n_1 способами, элемент x_2 можно выбрать способами и т.д., наконец, x_m можно выбрать способами, причем все эти способы выбора попарно различны, то выбор одного из элементов можно осуществить $n_1 + n_2 + \cdots + n_m$ способами.

В теоретико-множественной трактовке правило суммы означает, что для любых конечных взаимно непересекающихся множеств A, выполняется равенство: $|A_1 \cup A_2 \cup ... \cup A_m| = |A_1| + |A_2| + \cdots + |A_m|$.

Правило произведения: если элемент x_1 можно выбрать n_1 способами и элемент x_2 можно выбрать n_2 способами, то упорядоченный набор (x_1, x_2) можно выбрать $n_1 \cdot n_2$ способами.

В общем случае, если элемент x_1 можно выбрать n_1 способами и элемент x_2 можно выбрать n_2 способами и т.д., наконец, элемент x_m можно выбрать n_m способами, то упорядоченный набор $(x_1, x_2, ..., x_m)$ можно выбрать $n_1.n_2 \cdot ... \cdot n_m$ способами.

В теоретико-множественной трактовке правило произведения означает, что для любых конечных множеств $A_1, A_2, ..., A_m$ выполняется равенство: $|A_1 \times A_2 \times ... \times A_m| = |A_1| \cdot |A_2| \cdot ... \cdot |A_m|$.

Правило степени: если каждый из элементов $x_1, x_2, ..., x_m$ можно выбрать n способами, то упорядоченный набор $(x_1, x_2, ..., x_m)$ можно выбрать n^m способами.

В теоретико-множественной трактовке правило степени означает, что для любых конечных множеств A, B множество A^B всех отображений B в A имеет $|A|^{|B|}$ элементов, т.е. выполняется равенство: $|A^B| = |A|^{|B|}$.

Задача 1. Рассматривается алфавит $A = \{0,1\}$. Конечная последовательность $a_1 \dots a_n$ символов алфавита A называется словом длины n. Определить число слов: а) длины 3; б) длины не больше 4. Решение. Обозначим N_k — число слов длины k и $N_{\leq k}$ — число слов длины не больше k.

Слово $a_1a_2a_3$ длины 3 определяется комбинаторной конфигурацией (a_1,a_2,a_3) . Так как каждый из элементов можно выбрать двумя способами, то по правилу произведения: $N_3=2\cdot 2\cdot 2=2^3$. По правилу суммы: $N_{\leq 4}=N_1+N_2+N_3+N_4=2+2^2+2^3+2^4=30$.

Задача 2. Какой длины слова из символов 0,1 достаточны для кодировки 33 букв русского алфавита?

Решение. Так как $N_{\leq 4}=30<33$, то словами длины не больше 4 невозможно закодировать 33 буквы русского алфавита. С другой стороны, $N_{\leq 5}=N_{\leq 4}+N_5=30+2^5=62>33$. Значит, для кодировки букв русского алфавита достаточны слова длины не больше 5.

Задача 3. В замке на общей оси 5 дисков, каждый из которых разделен на 7 секторов. Сколько наборов имеет такой замок? *Решение*. Наборы замка моделируются комбинаторными конфигурациями вида $(x_1, x_2, x_3, x_4, x_5)$, где x_1, x_2, x_3, x_4, x_5 — установленные на 5 дисках некоторые значения из 7 секторов. Значит, по правилу степени число таких наборов равно 7^5 .

3.2. Основные комбинаторные конфигурации

Рассмотрим *n*-элементное множество $M = \{a_1, ..., a_n\}$.

Определение. Упорядоченный набор $(x_1, ..., x_m)$ m различных элементов $x_1, ..., x_m$ множества M называется размещением из n элементов по m. Другими словами, размещения из n элементов по m — это комбинации из m различных элементов n-элементного множества M, которые различаются либо составом элементов, либо порядком их расположения в комбинации.

Число всех таких размещений обозначается A_n^m или $(n)_m$ (читается: «число размещений из n по m»). Из определения по правилу произведения получаем формулу:

$$A_n^m = n \cdot (n-1) \cdot \dots \cdot (n-m+1),$$

для значений $1 \le m \le n$. В остальных случаях считаем: $A_n^0 = A_0^0 = 1$ и $A_n^m = 0$ при m > n.

В частности, при m = n получим размещение из n по n элементов $(x_1, ..., x_n)$ — упорядоченный набор всех n различных элементов множества M. Такие наборы называются nерестановками n-элементного mножества M. Другими словами, перестановки n элементов — это комбинации из всех элементов n-элементного множества M, которые различаются порядком расположения элементов.

Число всех таких перестановок обозначается P_n (читается «число перестановок n элементов»).

Из определения получаем формулу вычисления числа перестановок:

$$P_n = A_n^n = n \cdot (n-1) \cdot ... \cdot 2 \cdot 1 = n!$$
 (читается: « n факториал»).

В случае n = 0 считаем: $P_0 = 0! = 1$.

Определение. Подмножество $\{x_1, ..., x_m\}$ множества M, состоящее из m различных элементов $x_1, ..., x_m$, называется сочетанием из n элементов по m. Другими словами, сочетания из n элементов по m — это комбинации из m различных элементов n-элементного множества M, которые различаются составом элементов.

Число всех таких сочетаний обозначается C_n^m (читается: «число сочетаний из n по m»).

Поскольку в случае $1 \le m \le n$ каждое сочетание из n элементов по m можно упорядочить m! способами и получить из такого сочетания m! размещений из n элементов по m, то выполняется равенство $A_n^m = C_n^m \cdot m!$ Отсюда получаем формулу вычисления числа сочетаний:

$$C_n^m = \frac{A_n^m}{m!} = \frac{n \cdot (n-1) \cdot ... \cdot (n-m+1)}{m!}.$$

В остальных случаях считаем: $C_n^0 = C_0^0 = 1$ и $C_n^m = 0$ при m > n.

После умножения числителя и знаменателя последней дроби на выражение (n-m)! получаем компактную формулу вычисления числа сочетаний:

$$C_n^m = \frac{n!}{m! (n-m)!}$$

для значений $1 \le m \le n$.

Свойства числа сочетаний.

- $1)C_n^m = C_n^{n-m};$
- $2)C_n^m = C_{n-1}^m + C_{n-1}^{m-1};$ $3)(1+x)^n = \sum_{m=0}^n C_n^m x^m$ эта формула называется биномом $\it Hьютона$ (в силу чего комбинаторные числа $\it C^m_n$ называются также биномиальными коэффициентами),

$$4)C_n^0 + C_n^1 + \dots + C_n^n = 2^n.$$

Первые два свойства легко доказываются с помощью последней формулы вычисления числа сочетаний. Третье свойство доказывается индукцией по переменной n (см. раздел 3.3). Последнее свойство получается из бинома Ньютона подстановкой значения x = 1.

Заметим, что второе свойство дает рекуррентное соотношение для последовательного вычисления биномиальных коэффициентов C_n^m с помощью таблицы, которая называется треугольником Паскаля.

Определение. Упорядоченный набор $(x_1, ..., x_m)$ элементов $x_1, ..., x_m$ множества M называется размещением c повторением из n элементов $no\ m$. В отличие от обычных размещений из n элементов по m, в этом случае элементы $\mathbf{x}_1,\dots,\mathbf{x}_m$ не обязательно различные.

Число всех таких размещений с повторением обозначается \overline{A}_n^m (читается: «число размещений с повторением из n по m»).

Так как на каждом из m мест в размещении с повторением $(x_1, ..., x_m)$ может стоять любой из n элементов множества M, то по правилу произведения получаем формулу:

$$\overline{A}_n^m = n^m$$
.

В частности, при m = n получим размещения с повторением из nэлементов по п, которые называются также перестановками с повторениями из п элементов. Если рассматриваются перестановки с повторением из n элементов, в которых имеется k различных элементов,

каждый из которых встречается соответственно $n_1, ..., n_k$ раз, то число всех таких перестановок обозначается $P_n(n_1, ..., n_k)$ и вычисляется по формуле:

$$P_n(n_1, ..., n_k) = \frac{n!}{n_1! ... n_k!}$$

Определение. Неупорядоченный набор $\{x_1, ..., x_m\}$ элементов $x_1, ..., x_m$ множества M называется сочетанием с повторением из n элементов по m. В отличие от обычных сочетаний из n элементов по m, в этом случае элементы $x_1, ..., x_m$ не обязательно различные.

Число всех таких сочетаний с повторением обозначается \overline{C}_n^m (читается: «число сочетаний с повторением из n по m»).

Формула вычисления числа сочетаний с повторением имеет вид:

$$\bar{C}_n^m = C_{n+m-1}^m = \frac{(n+m-1)!}{m! (n-1)!}.$$

Задача 1. Группе из пяти сотрудников выделено три путевки. Сколько существует способов распределения путевок, если: а) все путевки различны (т.е. трех категорий); б) все путевки одинаковы (т.е. одной категории)?

Решение. В случае а) элементарные исходы моделируются комбинаторными конфигурациями вида (x_1, x_2, x_3) , где x_1 – сотрудник, получивший путевку 1-й категории, x_2 – сотрудник, получивший путевку 2-й категории, и x_3 – сотрудник, получивший путевку 3-й категории. Так как эта конфигурация является размещением из 5 элементов по 3, то общее число способов распределения путевок равно значению $A_5^3 = 5 \cdot 4 \cdot 3 = 60$. В случае б) элементарные исходы моделируются комбинаторными конфигурациями вида $\{x_1, x_2, x_3\}$, где x_1, x_2, x_3 – сотрудники, получившие путевки одной категории. Так как эта конфигурация является сочетанием из 5 элементов по 3, то общее число способов распределения путевок равно значению $C_5^3 = \frac{5 \cdot 4 \cdot 3}{3!} = 10$.

Задача 2. Во взводе 3 сержанта и 30 солдат. Сколько существует способов выделения одного сержанта и трех солдат для патрулирования?

Решение. Назначения патрулей моделируются комбинаторными конфигурациями вида $(x_1, \{y_1, y_2, y_3\})$, где x_1 – один сержант,

выделенный в патруль, и — три солдата, выделенных в патруль. Элемент можно выбрать 3 способами, а конфигурация $\{y\}$ ввляется сочетанием из 30 элементов по 3, которую можно выбрать способами. Тогда по правилу произведения общее число патрулей равно ——

Следовательно, всего существует 12180 способов выделения одного сержанта и трех солдат для патрулирования.

3.3. Методы вычисления комбинаторных конфигураций

Принцип включения и исключения.

Обобщением правила суммы на произвольные два множества A, B является очевидное равенство: $|A \cup B| = |A| + |B| - |A \cap B|$.

В общем случае, для произвольных множеств $A_1, ..., A_n$ значение $|A_1 \cup ... \cup A_n| = |\bigcup_{i=1}^n A_i|$ вычисляется по следующему правилу, которое называется *принципом включения и исключения*:

$$\left|\bigcup \quad \left| = \sum |A_i| \quad \sum \quad |A \quad | \right.$$

$$\left. + \sum \quad \left| A \quad \right| \quad \left| A \quad \right| \right.$$

Пример. Найдем количество трехзначных чисел, в записи которых есть хотя бы одна цифра 5.

Для каждого $1 \le i \le 3$ обозначим A_i множество всех трехзначных чисел, в записи которых цифра 5 стоит на i-м месте. Тогда искомое количество трехзначных чисел вычисляется по принципу включения и исключения следующим образом:

$$|A| = |A_1| + |A_2| + |A_3| - |A| = |-|A| - |A|$$

Пусть элементы множества A могут обладать n свойствами и — число элементов множества A, обладающих свойствами . Тогда число элементов множества A, обладающих ровно r свойствами вычисляется по формуле:

 \sum

где
$$S_0=|A|;\; S_k=\sum_{1\leq i_1<\dots< i_k\leq n}N_{i_1,\dots,i_k}$$
 , $k=\overline{1,n}.$

В частности, число N(0) элементов множества A, не обладающих ни одним из n свойств, вычисляется по формуле:

$$N(0) = S_0 - S_1 + S_2 - \dots + (-1)^n S_n.$$

Пример. Если |X| = n и |Y| = m, то число $F_{n,m}$ всех отображений множества X на множество Y, вычисляется по формуле:

$$F_{n,m} = \sum_{k=0}^{m-1} (-1)^k C_m^k (m-k)^n$$
,

так как любое отображение $f: X \to Y$ может обладать m свойствами α_i — множество значений f(X) не содержит элемент $y_i \in Y$ $(i=\overline{1,m})$ и число отображений $f: X \to Y$, обладающих свойствами $\alpha_{i_1}, \ldots, \alpha_{i_k}$, вычисляется по формуле

$$N_{i_1,...,i_k} = |(Y \setminus \{y_{i_1},...,y_{i_k}\})^X| = (m-k)^n.$$

Тогда $S_k = C_m^k (m-k)^n$ и $F_{n,m} = N(0)$ вычисляется по приведенной выше формуле.

Производящие функции.

Определение. Производящей функцией последовательности $a_0, a_1, \dots, a_n, \dots$ называется формальный степенной ряд $\sum_{k=0}^{\infty} a_k x^k$.

Если такой ряд имеет сумму f(x), то по формуле Тейлора коэффициенты исходного степенного ряда вычисляются по формуле:

$$a_n = \frac{f^{(n)}(0)}{n!},$$

где n = 0,1,...

Примеры.

- 1. Так как $\sum_{k=0}^{\infty} x^k = (1-x)^{-1}$, то $f(x) = (1-x)^{-1}$ производящая функция последовательности 1,1,...
- 2. Так как $\sum_{k=0}^{\infty} C_n^k x^k = \sum_{k=0}^n C_n^k x^k = (1+x)^n$, то $f(x) = (1+x)^n$ производящая функция последовательности C_n^0 , C_n^1 , ..., C_n^n .

Математическая индукция.

Одним из главных свойств системы натуральных чисел является следующий принцип.

Принцип математической индукции. Если P = P(n) — такое свойство натуральных чисел n, что n=1 обладает этим свойством P и вместе с любым натуральным числом n этим свойством P обладает следующее за ним число n+1, то данным свойством P обладает каждое натуральное число.

Пример. Докажем формулу бинома Ньютона индукцией по переменной n. В этом случае для произвольного значения $x \in \mathbf{R}$ свойство P = P(n) натуральных чисел n выражается равенством $(1+x)^n = \sum_{m=0}^n C_n^m x^m$.

При n=1 это свойство имеет вид очевидного равенства: $(1+x)^1=\sum_{m=0}^1 C_1^m x^m=C_1^0 x^0+C_1^1 x^1=1+x$. Предположим теперь, что свойство P выполняется для натурального числа n, и докажем, что этим свойством P обладает следующее за ним число n+1, т.е. выполняется равенство:

$$(1+x)^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m x^m.$$

Тогда по нашему предположению с учетом второго свойства числа сочетаний получаем равенства:

$$(1+x)^{n+1} = (1+x)^n (1+x) = \left(\sum_{m=0}^n C_n^m x^m\right) (1+x) =$$

$$= \sum_{m=0}^n C_n^m x^m + \sum_{m=0}^n C_n^m x^{m+1} =$$

$$= C_n^0 x^0 + \sum_{m=1}^n C_n^m x^m + \sum_{m=1}^n C_n^{m-1} x^m + C_n^m x^{n+1} =$$

$$= C_{n+1}^0 x^0 + \sum_{m=1}^n (C_n^m + C_n^{m-1}) x^m + C_{n+1}^{n+1} x^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m x^m.$$

Контрольные вопросы для среза знаний

- 1) Правило суммы и его теоретико-множественное истолкование.
- 2) Правило произведения и его теоретико-множественное истолкование.
 - 3) Правило степени и его теоретико-множественное истолкование.
- 4) Определение основных комбинаторных конфигураций и формулы вычисления их количества.
 - 5) Свойства числа сочетаний и их приложения.
 - 6) Треугольник Паскаля.
 - 7) Доказательство формулы бинома Ньютона.
- 8) Формулировка и обоснование принципа включения и исключения.
 - 9) Определение, примеры и приложения производящей функции.
 - 10) Принцип математической индукции.