

고효율 효능검색 기술

가상검색을통한 약물설계와 검색방법론

한국보건복지인력개발원

제1기 의약품 후보물질발굴 심화과정

2020. 9. 1.

한국화학연구원 의약바이오연구본부 채종학

(chchae@krict.re.kr; 010-9509-8740)

Demonstration

- RDKit
 - Google colab
 - Introduction, molecules, fingeprints, descriptors
 - Substructure, similarity search
- LBDD : EGFR activity prediction modeling
 - RDKit, SKLearn을 이용한 solubility 예측모델 만들기 (Linear regression)
 - RDKit, Keras /Tensorflow 를 이용한 EGFR 활성예측모델 구축 및 스크리닝
 - DeepChem/GCN을 이용한 solubility 예측모델 만들기 (Deep learning)
- SBDD : EGFR homology & virtual screening
 - Homology modeling
 - Ligand preparation
 - Glide docking
 - Post processing

RDKit/Tensorflow on Google Colab

- Google colab
 - Google drive + Jupyter notebook (https://colab.research.google.com/)
 - 최대 12시간 가상머신 상태 유지
- Rdkit/DeepChem 환경 구축 : <u>https://pythonforundergradengineers.com/new-virtual-environment-</u>

with-conda.html

```
! wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
! chmod +x Miniconda3-latest-Linux-x86_64.sh
! bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local
! conda install -q -y -c rdkit rdkit
! pip install git+https://github.com/keras-team/keras-tuner.git
! pip install -upgrade deepchem
import sys
sys.path.append('/usr/local/lib/python3.7/site-packages/')
```

Google drive 연결

```
from google.colab import drive
drive.mount('./MyDrive')
```

Colab + Google drive + Github 연결

RDKit Basics

RDKit

- An open source collection of chemoinformatics, computational chemistry, and predictive modeling software written in C++ and Python
- http://www.rdkit.org

RDKit: Open-Source Cheminformatics Software

Useful Links

- · GitHub page
 - · Git source code repository
 - · The bug tracker
 - · The releases (downloads)
- Sourceforge page
 - · The mailing lists
 - · Searchable archive of rdkit-discuss
 - · Searchable archive of rdkit-devel

General Molecular Functionality

- Input/Output: SMILES/SMARTS, mol. SDF, TDT
- "Cheminformatics":
 - Substructure searching
 - Canonical SMILES
 - Chirality support
 - Chemical transformations
 - Chemical reactions
 - Molecular serialization (e.g. mol <-> text)
- 2D depiction, including constrained depiction and mimicking 3D coords
- 2D->3D conversion/conformational analysis via distance geometry
- UFF implementation for cleaning up structures
- Fingerprinting (Daylight-like, circular, atom pairs, topological torsions, "MACCS keys", etc.)

* functional implementations, but

not really recommended for use

- Similarity/diversity picking (include fuzzy similarity)
- 2D pharmacophores
- Gasteiger-Marsili charges
- Hierarchical subgraph/fragment analysis
- Hierarchical RECAP implementation
- Feature maps and feature-map vectors
- Shape-based similarity
- Molecule-molecule alignment
- Shape-based alignment (subshape alignment)*
- Very fast 3D pharmacophore searching
- Integration with PyMOL for 3D visualization
- Database "cartridge" (PostgreSQL, sqlite coming) *

General "QSAR" Functionality

- Molecular descriptor library:
 - Topological (κ3, Balaban J, etc.)
 - Electrotopological state (EState)
 - clogP, MR (Wildman and Crippen approach)
 - "MOE like" VSA descriptors
 - Feature-map vectors
- Machine Learning:
 - Clustering (hierarchical)
 - Information theory (Shannon entropy)

 - Decision trees, naïve Bayes*, kNN*
 - Bagging, random forests

 - Infrastructure:
 - data splitting
 - shuffling (y scrambling)
 - out-of-bag classification
 - serializable models and descriptor calculators
 - enrichment plots, screening, etc.

Solubility Prediction: Linear Regression

Delaney solubility database (1,128 compounds)

Experimental LogS

- Linear regression model
- Descriptors: MW, LogP, NumRotatableBonds, AromaticPortion

```
data = pd.read_csv('./MyDrive/My Drive/Colab Notebooks/data/delaney-processed.csv')
                [ [ 'Compound ID', 'smiles', 'measured log solubility in mols per litre' ] ]
data['mw'] = [ Descriptors.MolWt(mol) for mol in data[ 'Molecule' ] ]
data['MolLogP'] = [ Descriptors.MolLogP(mol) for mol in data[ 'Molecule' ] ]
data['NumRotatableBonds'] = [ Descriptors.NumRotatableBonds(mol) for mol in data[ 'Molecule' ] ]
data['AromP'] = [ AromaticAtoms(mol) for mol in data[ 'Molecule' ] ]
x = data[['mw', 'MolLogP', 'NumRotatableBonds', 'AromP']]
v = data[ 'solv' ]
X_train, X_test, Y_train, Y_test = train_test_split( x, y, test_size=0.3 )
model = linear model.LinearRegression()
model.fit( X_train, Y_train )
Y_train_pred = model.predict( X_train )
Y_test_pred = model.predict( X_test )
                                                                MSE = 0.91
                                                                R2 = 0.79
                                                                MSE = 1.27
                                                                B2 = 0.72
                                                                LogS = 0.265 + -0.749 LogP + -0.007 MW + -0.007 RB + -0.380 AP
                                                                Delaney: LogS = 0.16 - 0.63 cLogP - 0.0062 MW + 0.066 RB - 0.74 AP
```

Solubility Prediction: DeepChem GCN

DeepChem

- Deep learning + chemical data sets
- Opensource python library for drug discovery


```
delaney_tasks = [ 'measured log solubility in mols per litre' ]
featurizer = dc.feat.ConvMolFeaturizer()
loader = dc.data.CsvLoader( tasks=delaney_tasks, feature_field="smiles", featurizer=featurizer )
dataset_file = '../data/delaney-processed.csv'
dataset = loader.featurize( dataset_file, shard_size=8192 )

transformers = [ dc.trans.NormalizationTransformer( transform_y = True, dataset=dataset ) ]
for transformer in transformers:
    dataset = transformer.transform(dataset)

splitter = dc.splits.Indexsplitter()
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(dataset)

metric = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)

batch_size = 128
model = GraphConvModel( len(delaney_tasks), batch_size=batch_size, mode='regression')
model.fit(train_dataset, nb_epoch=100)
```


 Keras Models Losses Optimizers KerasModel MultitaskRegressor MultitaskFitTransformRegressor MultitaskClassifier TensorflowMultitaskIRVClassifier RobustMultitaskClassifier RobustMultitaskRegressor ProgressiveMultitaskClassifier ProgressiveMultitaskRegressor WeaveModel DTNNModel DAGModel GraphConvModel MPNNModel ScScoreModel SegToSeg GAN CNN TextCNNModel AtomicConvModel Smiles2Vec ChemCeption

ML-QSAR for EGFR

- 2,664 EGFR inhibitors from ChEMBL having pChembl_Value
- RDKit/Mogan fingerprint 2048, Keras/Tensorflow
- DNN topology : [2048, 2048, 1]

```
moles_train, moles_test = readAndSplitMolecules( sdf_name, frac_test=0.3 )
fps_train = GetMorganFingerprintAsBitVect( moles, radius=2, nBits=2048 )
model, history = make_regression_model( fps_train, activity_train, epochs=epochs, validation_split=0.1 )
    nfeatures = X_train.shape[1]
    model = Sequential()
    model.add(Dense(nfeatures, input_dim=nfeatures, activation='relu'))
    model.add(Dense(nfeatures, activation='relu'))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'] )
    history = model.fit(X_train, Y_train, epochs=epochs, batch_size=64, validation_split=validation_split, verbose=1)
model = models.load_model( fname_model )
fp = GetMorganFingerprintAsBitVect( m, radius=2, nBits=nBits )
yp = model.predict( fps.reshape(1,-1) )[0]
```


ChEMBL Target Prediction

- Predict targets of new ligands
 - based on the structure and activity against >1,500 targets in ChEMBL,
 - RDKit/Morgan fingerprint (2048), Scikit-learn/Naive Bayesian
 - https://github.com/madgpap/notebooks/blob/master/target_pred_21_demo.ipynb
 - https://iwatobipen.wordpress.com/2017/04/07/target-prediction-using-chembl/

```
morgan_nb = joblib.load( 'models_25/10uM/mNB_10uM_all.pkl' )

smiles = 'C1CN2C(=NN=C2C(F)(F)F)CN1C(=0)C[C@@H](CC3=CC(=C(C=C3F)F)F)N'
mol = Chem.MolFromSmiles( smiles )

fp = AllChem.GetMorganFingerprintAsBitVect( mol, 2, nBits=2048 )
    res = numpy.zeros( len(fp), numpy.int32 )
    DataStructs.ConvertToNumpyArray( fp, res )

probas = list( morgan_nb.predict_proba( res.reshape(1,-1))[0] )
    predictions.sort_values( by='proba', ascending = False).head(10)
```


	id	proba	name	organism
0	CHEMBL5414	0.999912	Beta-2 adrenergic receptor	Cavia porcellus
1	CHEMBL210	0.994003	Beta-2 adrenergic receptor	Homo sapiens
2	CHEMBL3252	0.836839	Beta-1 adrenergic receptor	Rattus norvegicus
3	CHEMBL213	0.747240	Beta-1 adrenergic receptor	Homo sapiens
4	CHEMBL275	0.660680	Phosphodiesterase 4B	Homo sapiens
5	CHEMBL4697	0.000231	Hexose transporter 1	Plasmodium falciparum
6	CHEMBL3864	0.000114	Protein-tyrosine phosphatase 2C	Homo sapiens
7	CHEMBL3397	0.000102	Cytochrome P450 2C9	Homo sapiens
8	CHEMBL2535	0.000058	Glucose transporter	Homo sapiens
9	CHEMBL340	0.000031	Cytochrome P450 3A4	Homo sapiens

Demo: Pharmacophore Screening

- Pharmacophore modeling from single, multiple, protein-bound ligands
- Schrodinger Phase

Demo: SBDD-VS

- Target : a protein kinase
 - No crystal structures in PDB
 - 28/450 compounds in ChEMBL
- Homology modeling chimeric
- Virtual screening by docking
- Visual selection
- SW: Schrodinger / Maestro, Prime, Glide, Desmond

Homology Modeling (Kinase)

No protein crystal structures published, but homologs

DRNFEVEADDLYTISEL.GRGAYGVVEKVRHAGSGTIMAVKRIRATVINSQ EGKRLLMDLINMRTVDGFYTVTFYGALFREGOVWIGNELMDTSLDKFY RKVLDKMMTIPEDIL.GEIAVSIVRALEHLHSKLSVIHRDVKPSNVLINKEG HVKMCDFGISGYLVDSVAKTMDAGCKFYMAPERINPEL.NG GYDVKSD WWS.LGITMIEMAILRFPYESWGTPFOQLKGVVEEPSPQLPADRFSPEFVD FTAGCLRKPAERMSYLELMEHPFFTLHKTKKTDIAAFVEILGEDS

3VN9: MAP2K6, 2.6A, 84%

3ENM: MAP2K6, 2.35A, 84% 3FME: MEK6, 2.26A, 84%

- SWISSModel에서 homology model 검색
- 3VN9 Structure is fairly good overall, but ...
- Complexed ligand of 3FME is more suited
- ChEMBL contains 28/450 ligands and activity data → for validation
- Core from 3FME, missing loop (198-225) from 3VN9

Homology Modeling (ChEMBL DB)

