# Tema 4 Distribuciones de probabilidad (II)

- 1. La distribución binomial.
- 2. La distribución multinomial
- 3. La distribución de Poisson
- 4. La distribución uniforme.
- 5. La distribución exponencial.
- 6. La distribución normal.
- 7. La distribución binormal.
- 8. La distribución multinormal



- 1. La distribución de chi-cuadrado
- 2. La distribución t de Student
- 3. La distribución F



Sea un conjunto de *n* variables aleatorias independientes  $x_1, x_2, \dots, x_n$  distribuidas normalmente con medias  $\mu_1, \mu_2, ..., \mu_n$  y varianzas  $\sigma_1^2, \sigma_2^2, ..., \sigma_k^2$  respectivamente. La pdf conjunta viene dada por:

$$f(\overline{x}, \overline{\mu}, \overline{\sigma}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_i}} \exp \left[ -\frac{1}{2} \left( \frac{x_i - \mu_i}{\sigma_i} \right)^2 \right] = \exp \left[ -\frac{1}{2} \sum_{i=1}^{n} \left( \frac{x_i - \mu_i}{\sigma_i} \right)^2 \right] \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_i}}$$

Se define la variable aleatoria  $\chi^2$  como:  $\chi^2(n) = \sum_{i=1}^n \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2$ 

$$\chi^{2}(n) = \sum_{i=1}^{n} \left(\frac{x_{i} - \mu_{i}}{\sigma_{i}}\right)^{2}$$

Donde el parámetro n se denomina número de grados de libertad pues cada variable aleatoria puede variar independientemente del resto.

La nueva variable así definida se distribuye de acuerdo

Con la función:

$$f(\chi^{2}, n) = \frac{\left(\chi^{2}\right)^{\frac{n}{2}-1} e^{-\frac{\chi^{2}}{2}}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)}$$

$$\Gamma(x+1) = x\Gamma(x); \Gamma(\frac{1}{2}) = \sqrt{\pi}; \Gamma(1) = 1$$



Distribuciones de Probabilidad (II)

#### Función chi-cuadrado con 1 grado de libertad

Para n=1 tenemos solo una variable gaussiana. Hacemos el cambio de variable  $z=\left(\frac{x-\mu}{\sigma}\right)$ Con lo que la pdf queda como:

$$f(z) = f(x) \left| \frac{dx}{dz} \right| = \frac{f(x)}{\left| \frac{dz}{dx} \right|} = \sigma f(x) = \sigma \frac{1}{\sqrt{2\pi}\sigma} \exp\left[ -\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2 \right] = \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{1}{2} z^2 \right)$$

Para pasar a una variable  $\chi^2$  hacemos un nuevo cambio de variable:  $q=z^2$ Con lo que la pdf de la nueva variable q queda como:

¡Cuidado! Función bivaluada

$$f(q)dq = f\left(z\right)\left(\left|J_{+}\right| + \left|J_{-}\right|\right)dq = \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}z^{2}\right)\left(\frac{dq}{2\sqrt{q}} + \frac{dq}{2\sqrt{q}}\right) = \frac{1}{\sqrt{2\pi q}}\exp\left(-\frac{q}{2}\right)dq$$

$$f\left(\chi^{2}, n\right) = \frac{\left(\chi^{2}\right)^{\frac{n}{2}-1}e^{-\frac{\chi^{2}}{2}}}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}$$
Distribución de  $\chi^{2}$ 



con 1 grado de libertad



La pdf es: 
$$f(x_1, x_2) = f_1(x_1) f_2(x_2) = \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2\right]\right) \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left[-\frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]\right)$$

Hacemos el cambio de variables a coordenadas polares:

$$\frac{x_{1} - \mu_{1}}{\sigma_{1}} = \rho \cos \phi \\
\frac{x_{2} - \mu_{2}}{\sigma_{2}} = \rho \sin \phi$$

$$J = \begin{vmatrix} \frac{\partial x_{1}}{\partial \rho} & \frac{\partial x_{1}}{\partial \phi} \\ \frac{\partial x_{2}}{\partial \rho} & \frac{\partial x_{2}}{\partial \phi} \end{vmatrix} = \begin{vmatrix} \sigma_{1} \cos \phi & -\rho \sigma_{1} \sin \phi \\ \sigma_{2} \sin \phi & \rho \sigma_{2} \cos \phi \end{vmatrix} = \rho \sigma_{1} \sigma_{2}$$

La nueva pdf en coordenadas polares será:

$$f(\rho,\phi) = f_1(x_1) f_2(x_2) |J| = \left( \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left[ -\frac{1}{2} \left( \frac{x_1 - \mu_1}{\sigma_1} \right)^2 \right] \right) \left( \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left[ -\frac{1}{2} \left( \frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \right) \rho \sigma_1 \sigma_2 = \frac{1}{2\pi} e^{-\frac{1}{2}\rho^2} \rho$$

Integrando para  $\phi$ :  $f(\rho) = \rho e^{-\frac{1}{2}\rho^2}$  Y haciendo el cambio de variable:  $\chi^2 = \rho^2$   $\rho = \sqrt{\chi^2}$ 

$$f(\chi^2)d\chi^2 = f(\rho)|J|d\chi^2 = \rho e^{-\frac{1}{2}\rho^2} \frac{1}{2\rho}d\chi^2 = \frac{1}{2}e^{-\frac{1}{2}\chi^2}d\chi^2$$
 Distribución de  $\chi^2$  con 2 grados de libertad 
$$(\chi^2)^{\frac{n}{2}-1}e^{-\frac{\chi^2}{2}}$$

$$|J| = \left| \frac{\partial \rho}{\partial \chi^2} \right| = \left| \frac{1}{2\sqrt{\chi^2}} \right| = \left| \frac{1}{2\rho} \right|$$

$$f(\chi^{2}, n) = \frac{(\chi^{2})^{\frac{n}{2}-1} e^{-\frac{\chi^{2}}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$

#### Función chi-cuadrado con 3 grados de libertad

$$z_i = \left(\frac{x_i - \mu_i}{\sigma_i}\right)$$



Definimos: 
$$z_i = \left(\frac{x_i - \mu_i}{\sigma_i}\right)$$
 La nueva pdf viene dada por::

$$f(z_1, z_2, z_3)dz_1dz_2dz_3 = f(x_1, x_2, x_3)|J|dz_1dz_2dz_3 = \frac{1}{(2\pi)^{3/2}} \exp\left(-\frac{R^2}{2}\right)dz_1dz_2dz_3$$

El cambio de variables a coordenadas esféricas equivale a:



R viene a ser el radio de una esfera tridimensional

 $dz_1dz_2dz_3 = R^2dRd\cos\theta d\phi$ 

Integrando para  $cos(\theta) \lor \phi$ :

$$f(R)dR = \frac{2}{\sqrt{2\pi}}R^2 \exp\left(-\frac{R^2}{2}\right)dR$$

Probabilidad de que R se encuentre entre R y R+dR

Por último haciendo el cambio de variable:

$$\chi^2 = R^2$$

$$R = \sqrt{\chi^2}$$

$$\longrightarrow$$

$$\chi^2 = R^2$$
  $\longrightarrow$   $|J| = \left| \frac{dR}{d\chi^2} \right| = \frac{1}{2\sqrt{\chi^2}}$ 



$$f(\chi^2)d\chi^2 = \frac{2}{\sqrt{2\pi}}R^2 \exp\left(-\frac{R^2}{2}\right)|J|d\chi^2 = \frac{(\chi^2)^{1/2}}{\sqrt{2\pi}}\exp\left(-\frac{\chi^2}{2}\right)d\chi^2$$

Distribución de  $\chi^2$  con 3 grados de libertad

$$f(\chi^{2}, n) = \frac{(\chi^{2})^{\frac{n}{2} - 1} e^{-\frac{\chi}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$

#### Función chi-cuadrado con n grados de libertad

$$\chi^2 = \sum_{i=1}^n \left( \frac{x_i - \mu_i}{\sigma_i} \right)^2$$

La densidad de probabilidad será:  $f(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \sigma_1 \sigma_2 \dots \sigma_n} e^{-\frac{\chi^2}{2}}$  con  $\chi^2 = \sum_{i=1}^n \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2$  Pasando a coordenadas tipificadas:  $z_i = \left(\frac{x_i - \mu_i}{\sigma_i}\right)$ ;  $dz_i = \frac{dx_i}{\sigma_i}$  la pdf se transforma en:



$$f(z_1, z_2, \cdots, z_n) dz_1 dz_2 \cdots dz_n = \frac{1}{\left(2\pi\right)^{n/2} \sigma_1 \sigma_2 \cdots \sigma_n} e^{-\frac{\chi^2}{2}} |J| dz_1 dz_2 \cdots dz_n = \frac{e^{-\frac{\chi^2}{2}}}{\left(2\pi\right)^{n/2}} dz_1 dz_2 \cdots dz_n$$

$$|J| = \sigma_1 \sigma_2 \cdots \sigma_n$$

$$\chi^2 = z_1^2 + z_1^2 + \cdots + z_n^2$$
a probabilidad de que  $\chi$  esté entre  $\chi_{\chi_1} \chi_2 + d\chi_2$  es proporcional a:
$$\chi^2 = z_1 + z_1 + \cdots + z_n^2$$





La probabilidad de que  $\chi$  esté entre  $\chi$  y  $\chi + d\chi$  es proporcional a:

origen y el punto  $(z_1, z_2, \dots, z_n)$  en un espacio de n dimensiones

$$f(\chi)d\chi \propto \exp\left(-\frac{\chi^2}{2}\right)\chi^{n-1}d\chi$$

$$d\chi^2 = 2\chi d\chi$$

$$\text{Cambio de variable}$$

$$y = \frac{\chi^2}{2}; \quad dy = \frac{d\chi^2}{2}$$
En función de  $\chi^2$ :
$$f(\chi^2)d\chi^2 = K \exp\left(-\frac{\chi^2}{2}\right)(\chi^2)^{\frac{n}{2}-1}d\chi^2$$

$$y = \frac{\chi^2}{2}; \quad dy = \frac{d\chi^2}{2}$$

$$f(\chi^2)d\chi^2 = K \exp\left(-\frac{\chi^2}{2}\right) \left(\chi^2\right)^{\frac{n}{2}-1} d\chi^2$$

$$f(\chi^2)d\chi^2 = K \exp\left(-\frac{\chi^2}{2}\right) \left(\chi^2\right)^{\frac{n}{2}-1} d\chi^2$$

Normalizando:  $\int_{0}^{\infty} f(\chi^{2}; n) d\chi^{2} = \int_{0}^{\infty} Ke^{-\frac{\chi^{2}}{2}} (\chi^{2})^{\frac{n}{2}-1} d\chi^{2} = K2^{n/2} \int_{0}^{\infty} e^{-y} y^{\frac{n}{2}-1} dy = K2^{n/2} \Gamma\left(\frac{n}{2}\right) = 1$   $K = \frac{1}{2^{n/2} \Gamma\left(\frac{n}{2}\right)}$ 

$$y = \frac{\chi^2}{2}; \quad dy = \frac{d\chi^2}{2}$$

$$\int_{-y}^{n} y^{\frac{n}{2}-1} dy = K 2^{n/2} \Gamma\left(\frac{n}{2}\right) = 1$$

$$K = \frac{1}{2^{n/2} \Gamma\left(\frac{n}{2}\right)}$$

Distribución de 
$$\chi^2$$
 con  $n$  grados de libertad

$$f(\chi^{2}, n) = \frac{(\chi^{2})^{\frac{n}{2}-1} e^{-\frac{\chi^{2}}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$



Al número de grados de libertad se acostumbra llamarlo por *v* 



$$f(\chi^{2}, \nu) = \frac{(\chi^{2})^{\frac{\nu}{2} - 1} e^{-\frac{\chi^{2}}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

#### Función característica

$$\Phi(t) = E\left[e^{it\chi^2}\right] = \int_0^\infty e^{it\chi^2} f\left(\chi^2, \nu\right) d\chi^2 = \left(1 - 2it\right)^{-\frac{\nu}{2}}$$

A partir de la función característica es fácil obtener los momentos:

#### Valor medio

#### **Varianza**

$$E\left[\chi^{2}\right] = \frac{\partial\Phi}{\partial(it)}\bigg|_{t=0} = V$$

$$E\left[\chi^{2}\right] = \frac{\partial\Phi}{\partial(it)}\Big|_{t=0} = v \qquad V\left[\chi^{2}\right] = E\left[\left(\chi^{2}\right)^{2}\right] - E\left[\chi^{2}\right]^{2} = \frac{\partial^{2}\Phi}{\partial(it)^{2}}\Big|_{t=0} - v^{2} = v\left(v+2\right) - v^{2} = 2v$$

$$E\left[\chi^2\right] = v$$

$$V\left[\chi^2\right] = 2\nu$$

#### **Skewness**

#### **Kurtosis**

La distribución de 
$$\chi^2$$
 tiende a la distribución normal en el límite de  $\nu \to \infty$ 

$$\gamma_1 = \left(\frac{8}{\nu}\right)^{\frac{1}{2}}$$

$$\gamma_2 = \frac{12}{\nu}$$

Visualmente para  $v \ge 20$  va se puede considerar gaussiana

#### Comportamiento asintótico gaussiano

La distribución de  $\chi^2$ tiende a la distribución normal en el límite de  $\nu o \infty$ 

Definimos la variable estandarizada  $y = \frac{\chi^2 - v}{\sqrt{2v}}$  y calculamos su función característica

$$\Phi_{y}(t) = E\left[e^{ity}\right] = E\left[\exp\left(it\left(\frac{\chi^{2} - \nu}{\sqrt{2\nu}}\right)\right)\right] = \exp\left(-\frac{it\nu}{\sqrt{2\nu}}\right)E\left[\exp\left(\frac{it\chi^{2}}{\sqrt{2\nu}}\right)\right] = \exp\left(-\frac{it\nu}{\sqrt{2\nu}}\right)E\left[\exp\left(\frac{it\chi^{2}}{\sqrt{2\nu}}\right)\right] = \exp\left(-\frac{it\nu}{\sqrt{2\nu}}\right)E\left[\exp\left(\frac{it\chi^{2}}{\sqrt{2\nu}}\right)\right] = \exp\left(-\frac{it\nu}{\sqrt{2\nu}}\right)\left(1 - \frac{2it}{\sqrt{2\nu}}\right)^{\frac{\nu}{2}}$$



Tomando logaritmos y expandiendo

$$\ln \Phi_{y}(t) = -\frac{itv}{\sqrt{2v}} - \frac{v}{2} \ln \left(1 - \frac{2it}{\sqrt{2v}}\right) = -\frac{itv}{\sqrt{2v}} + \frac{v}{2} \left[\left(\frac{2it}{\sqrt{2v}}\right) + \frac{1}{2}\left(\frac{2it}{\sqrt{2v}}\right)^{2} + \frac{1}{3}\left(\frac{2it}{\sqrt{2v}}\right)^{3} + \cdots\right] = -\frac{t^{2}}{2} + 9\left(\frac{1}{\sqrt{v}}\right)$$

 $\ln(1-x) = -\left[x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\right]$ 

$$\ln \Phi_{y}(t) = -\frac{t^{2}}{2} + \mathcal{G}\left(\frac{1}{\sqrt{v}}\right)$$

$$V \to \infty$$

$$\Phi_{z}(t) = e^{-\frac{t^{2}}{2}}$$
Función característica de una distribución normal con media 0 y varianza unidad

varianza unidad

En el límite de infinitos grados de libertad la variable y se distribuye como una variable N(0,1)

En el límite de infinitos grados de libertad la variable  $\chi^2$  se distribuye como una variable  $N(\nu,2\nu)$ 

#### Teorema de adición de variables distribuidas chi-cuadrado

La suma de variables distribuidas según  $\chi^2$ es una variable  $\chi^2$ 

"Sea  $\chi_1^2, \chi_2^2, \dots, \chi_k^2$  un conjunto de k variables independientes distribuidas  $\chi^2$  con  $v_1, v_2, \dots, v_k$  grados de libertad respectivamente. La suma  $\chi_s^2 = \chi_1^2 + \chi_2^2 + \dots + \chi_k^2$  se distribuye también como una  $\chi^2$  distribución de con  $v = v_1 + v_2 + \dots + v_k$  grados de libertad."

#### Demostración

Basta con demostrar que la función característica de la variable  $\chi_s^2$  tiene la misma forma que la función característica de una variable chi-cuadrado

$$\Phi_{\chi_{s}^{2}}(t) = \Phi_{\chi_{1}^{2}}(t)\Phi_{\chi_{2}^{2}}(t)\cdots\Phi_{\chi_{k}^{2}}(t) = (1-2it)^{\frac{v_{1}}{2}}(1-2it)^{\frac{v_{2}}{2}}\cdots(1-2it)^{\frac{v_{k}}{2}} = (1-2it)^{\frac{(v_{1}+v_{2}+\cdots+v_{k})}{2}}$$
Variables independientes

Función característica de una función de chi-cuadrado con  $v_1 + v_2 + ... + v_k$  grados de libertad

$$\chi_s^2 = \chi^2 (\nu_1 + \nu_2 + ... + \nu_k)$$

### Contenido de probabilidad

La función acumulativa de  $\chi^2$  resulta muy útil en el cálculo de intervalos de confianza y en los test de hipótesis

$$F(\chi^2, \nu) = \int_0^{\chi_\alpha^2} f(\chi^2, \nu) d\chi^2 = 1 - \alpha$$

#### **Routine functions ROOT**

TMath::Prob(chi2,ndf)

<u>Double t Prob(Double t chi2, Int t ndf)</u>

Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf).

Calculations are based on the incomplete gamma function P(a,x), where a=ndf/2 and x=chi2/2. P(a,x) represents the probability that the observed Chi-squared for a correct model should be less than the value chi2.

The returned probability corresponds to 1-P(a,x), which denotes the probability that an observed Chi-squared exceeds the value chi2 by chance, even for a correct model.

#### Valores tabulados

Entry is area A under the standard normal curve from  $-\infty$  to z(A)



| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| .0  | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| .1  | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| .2  | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| .3  | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| .4  | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| .5  | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| .6  | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| .7  | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| .8  | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .813  |
| .9  | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 0.1 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .862  |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .883  |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .901  |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .917  |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .944  |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .954  |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .963  |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .970  |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .976  |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .981  |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .985  |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .989  |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .991  |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .993  |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .995  |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .996  |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .997  |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .998  |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .998  |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .999  |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .999  |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .999  |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .999  |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .999  |

#### Relación con la distribución de Poisson

Existe una relación muy útil entre las distribuciones acumulativas de Poisson y de chi-cuadrado

Distribución de Poisson  $P(x, \mu) = \frac{\mu^x}{x!} e^{-\mu}$  y función acumulativa de  $\chi^2$ 

$$\sum_{x=0}^{n} P(x,\mu) = \sum_{x=0}^{n} \frac{\mu^{x}}{x!} e^{-\mu} = 1 - \int_{0}^{2\mu} f(\chi^{2}, \nu = 2(n+1)) d\chi^{2} = \int_{2\mu}^{\infty} f(\chi^{2}, \nu = 2(n+1)) d\chi^{2}$$

$$\sum_{x=0}^{n} P(x,\mu) = \int_{2\mu}^{\infty} f(\chi^{2}, \nu = 2(n+1)) d\chi^{2}$$

## Relación con el estimador de la varianza

$$\frac{(n-1)s^2}{\sigma^2}$$

Sea  $x_1, x_2, \dots, x_n$  una muestra de medidas distribuidas como  $N(\mu, \sigma^2)$ 

Los estimadores de la media y la varianza vienen dados por:

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

#### **Helmert Transformation**

$$y_{1} = \frac{x_{1} - x_{2}}{\sqrt{2}}$$

$$y_{2} = \frac{x_{1} + x_{2} - 2x_{3}}{\sqrt{6}}$$

$$\vdots$$

$$y_{n-1} = \frac{x_{1} + x_{2} + \dots + x_{n-1} - (n-1)x_{n}}{\sqrt{n(n-1)}}$$

$$y_{n} = \frac{x_{1} + x_{2} + \dots + x_{n}}{\sqrt{n}} = \sqrt{n}\overline{x}$$

Queremos demostrar que la variable  $\frac{(n-1)s^2}{-2}$  se distribuye como  $\chi^2(n-1)$ 

$$(n-1)s^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} = \sum_{i=1}^{n} y_{i}^{2} - n\overline{x}^{2} = \sum_{i=1}^{n} y_{i}^{2} - y_{n}^{2} = \sum_{i=1}^{n-1} y_{i}^{2}$$

$$\begin{cases} \vdots \\ y_{n-1} = \frac{x_1 + x_2 + \dots + x_{n-1} - (n-1)x_n}{\sqrt{n(n-1)}} \end{cases} \begin{cases} \sum_{i=1}^n y_i^2 = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij}x_j\right) \left(\sum_{k=1}^n a_{ik}x_k\right) = \sum_{j=1}^n \sum_{k=1}^n \left(\sum_{i=1}^n a_{ij}a_{ik}\right) x_k x_j = \sum_{j=1}^n \sum_{k=1}^n \delta_{jk} x_k x_j = \sum_{j=1}^n x_j^2 \end{cases}$$

 $\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^{n-1} \left(\frac{y_i}{\sigma_i}\right)^2$ 

El número de términos independientes es n-1 Luego se distribuye como  $\chi^2(n-1)$ 

 $y_i = \sum_{i=1}^{n} a_{ij} x_j$  ;  $\sum_{i=1}^{n} a_{ij} a_{ik} = \delta_{jk}$ 

## 9.2 La distribución t de Student

Sea x una variable aleatoria normal estándar: N(0,1) y sea  $\chi^2$  una variable aleatoria de chi-cuadrado con v grados de libertad. Supongamos que son independientes entre si. Entonces la nueva variable:

$$t=rac{x}{\sqrt{\chi^2/v}}$$
 ;  $-\infty \le t \le \infty$  ;  $v>0$  Cociente entre una variable normal y raíz de una variable de chi-cuadrado reducida, independientes entre sí

Cociente entre una variable normal y la

se distribuye de acuerdo a la distribución **t de Student** que viene dada por:

$$f(t,\nu) = \frac{\Gamma\left(\frac{1}{2}(\nu+1)\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)}$$

$$\Gamma(x+1) = x\Gamma(x); \Gamma(\frac{1}{2}) = \sqrt{\pi}; \Gamma(1) = 1$$

El parámetro *v* número de grados de libertad.

Tiende a la distribución normal para  $\nu \rightarrow \infty$ 

Las colas de la distribución son más pronunciadas



## 9.2 La distribución t de Student

#### **Demostración**

Como  $x \in \chi^2$  son independientes entre si, la pdf conjunta viene dada por:  $f(x; \chi^2, v) = \frac{e^{-\frac{1}{2}}}{\sqrt{2\pi}} \frac{(\chi^2)^{\frac{1}{2}} e^{-2}}{\sqrt{\frac{v}{2}} \Gamma(v)}$ Hacemos el cambio de variables a las nuevas coordenadas:

$$f(t,v) = \int_{0}^{\infty} f(t,\rho,v) d\rho = \frac{1}{\sqrt{\pi v} \Gamma\left(\frac{v}{2}\right) 2^{\frac{1}{2}(v+1)}} \int_{0}^{\infty} \rho^{\frac{1}{2}(v+1)-1} e^{-\frac{1}{2}\rho\left(1+\frac{t^{2}}{v}\right)} d\rho = \frac{\Gamma\left(\frac{1}{2}(v+1)\right)}{\sqrt{\pi v} \Gamma\left(\frac{v}{2}\right)} \left(1+\frac{t^{2}}{v}\right)^{-\frac{1}{2}(v+1)}$$

#### **Propiedades**

Valor esperado E[t] = 0

Skewness y Kurtosis

Distribución simétrica en torno a t = 0

Varianza

$$V[t] = \frac{v}{v - 2} \qquad v > 2$$

 $\gamma_1 = 0 \; ; \quad \gamma_2 = \frac{6}{\nu - 4} \quad \nu > 4$ 

Similaritud entre la distribución t de Student y la distribución normal estándar

## 9.2 La distribución t de Student. Aplicaciones

El contenido de probabilidad de la distribución t de Student permite:

- Calcular intervalos de confianza cuando la varianza es desconocida
- Realizar test de hipótesis cuando el estadístico se distribuye como una t de Student

En muchas ocasiones no conocemos la resolución de nuestras medidas y la dispersión procede de las propias medidas.

Consideremos una variable aleatoria x distribuida normalmente con media  $\mu$  y desviación estándar  $\sigma$ entonces:

$$x$$
  $N(\mu, \sigma^2)$   $z = \frac{x - \mu}{\sigma}$   $N(0,1)$   
Si no conocemos  $\sigma$  tenemos que estimarla:  $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ 

Pero entonces  $t = \frac{x - \mu}{\hat{\sigma}}$  ya no es una distribución normal estándar !!!!

Solución: 
$$t = \frac{x - \mu}{\hat{\sigma}} = \frac{(x - \mu)/\sigma}{\hat{\sigma}/\sigma} = \frac{(x - \mu)/\sigma}{\sqrt{\frac{(n-1)\hat{\sigma}^2}{\sigma^2} \frac{1}{(n-1)}}} = \frac{z}{\sqrt{\chi^2/(n-1)}}$$

es una variable aleatoria distribuida según la distribución t de Student con n-1 grados de libertad

## 9.2 La distribución t de Student. Aplicaciones

Extensión a la media. Si tenemos una muestra de medidas  $x_1,x_2,\dots,x_n$  de una distribución:  $N\left(\mu,\sigma^2\right)$  con valor medio  $\overline{x}~$  y  $s^2$ 

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \text{es una variable} \qquad N\left(\mu, \frac{\sigma^{2}}{n}\right)$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2} \qquad \frac{\left(n-1\right)s^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \frac{\left(x_{i} - \overline{x}\right)^{2}}{\sigma^{2}} \qquad \text{es una variable} \qquad \chi^{2}\left(n-1\right)$$

Además  $\overline{x}$  y  $s^2$  son variables independientes entre si, por tanto:

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \quad \text{y} \quad \frac{(n-1)s^2}{\sigma^2} \quad \text{también lo son} \qquad \qquad t = \frac{\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)s^2}{\sigma^2} / (n-1)}} = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

 $t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$  es una variable aleatoria distribuida según la distribución t de Student con n-1 grados de libertad

Nuestra ignorancia sobre  $\sigma$  en el numerador cancela nuestra ignorancia sobre  $\sigma$  en el denominador de manera que t solo contienen cantidades observadas  $\overline{x}$ , s, y además sabemos como se distribuye t

## 9.2 La distribución t de Student. Aplicaciones

#### INTERVALOS DE CONFIANZA

La probabilidad de que  $t = \frac{x - \mu}{s / \sqrt{n}}$  se encuentre en un intervalo [a,b] de confianza con un (1-y) CL:

#### Intervalo simétrico a = -b

$$P\left[a \le \frac{\overline{x} - \mu}{s / \sqrt{n}} \le b\right] = \int_{a}^{b} f\left(t, n - 1\right) dt = 1 - \gamma \quad \longrightarrow \quad P\left[-b \le \frac{\overline{x} - \mu}{s / \sqrt{n}} \le b\right] = \int_{-b}^{b} f\left(t, n - 1\right) dt = 1 - \gamma$$

Para obtener b basta con llamar a la función de ROOT

b = TMath::StudentQuantile (p, ndf)

$$p = 1 - \gamma/2$$

$$P\left[\overline{x} - \frac{bs}{\sqrt{n}} \le \mu \le \overline{x} + \frac{bs}{\sqrt{n}}\right] = 1 - \gamma$$

Para un intervalo de confianza del (1-
$$\gamma$$
) = 68.27 % (one sigma)  
 $n = 1 - \frac{\gamma}{2} = 0.84135$ 

$$x_1 = 2.2$$
  $\overline{x} = \frac{1}{4} \sum_{i=1}^{4} x_i = 3.70$  b = T

**EJEMPLO**

Para un intervalo de confianza del (1-γ) = 68.27 % (one 
$$p = 1 - \gamma/2 = 0.84135$$
 $x_1 = 2.2$ 
 $\overline{x} = \frac{1}{4} \sum_{i=1}^4 x_i = 3.70$ 
 $x_2 = 4.3$ 
 $x_3 = 1.7$ 
 $x_4 = 6.6$ 
 $x_5 = 2.237$ 

Para un intervalo de confianza del (1-γ) = 68.27 % (one  $p = 1 - \gamma/2 = 0.84135$ 

b = TMath::StudentQuantile (0.84135, 3)=1.197

 $x_5 = 6.6$ 
 $x_6 = 6.6$ 
 $x_6 = 2.237$ 

Para un intervalo de confianza del (1-γ) = 68.27 % (one  $p = 1 - \gamma/2 = 0.84135$ 

$$x_4 = 6.6$$
  $s = 2.237$   $\left[ \overline{x} - \frac{bs}{\sqrt{n}}, \overline{x} + \frac{bs}{\sqrt{n}} \right] = [3.70 - 1.34, 3.70 + 1.34] = [2.36, 5.04]$ 

# 9.3 La distribución F

Sean  $\chi_1^2$  y  $\chi_2^2$  dos variables aleatorias de chi-cuadrado con  $v_1$  y  $v_2$  grados de libertad respectivamente, se define la variable F como:

$$F = \frac{\chi_1^2 / \nu_1}{\chi_1^2 / \nu_2} \quad ; \quad 0 \le F \le \infty \quad ; \quad \nu_1, \nu_2 > 0$$

Cociente entre dos variables de chi-cuadrado

se distribuye de acuerdo a la distribución F:

$$f(F; v_1, v_2) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} \frac{F^{\frac{v_1}{2} - 1}}{\left(1 + \frac{v_1 F}{v_2}\right)^{\frac{v_1 + v_2}{2}}}$$

$$\Gamma(x+1) = x\Gamma(x); \Gamma(\frac{1}{2}) = \sqrt{\pi}; \Gamma(1) = 1$$

Se denomina función distribución F con  $\left(v_1,v_2\right)$  grados de libertad

Tiende a la distribución normal para  $v \to \infty$ 

Las colas de la distribución son más pronunciadas

