Algoritmi e Strutture Dati

Sessione invernale A.A. 2003/2004 Appello 26.01.04

Prima parte

1. Per un certo problema sono stati trovati due possibili algoritmi risolutivi. I loro tempi di esecuzione soddisfano alle due relazioni di ricorrenza riportate nei seguenti punti (a) e (b). Si dica, giustificando la risposta, quale dei due algoritmi è da preferire nel caso si debbano risolvere problemi di grandi dimensioni.

(a)
$$T_1(n) = 3T_1(\frac{n}{2}) + 3n^2 lg^2 n$$

(b)
$$T_2(n) = 4T_2(\frac{n}{2}) + 2n^2 + n + 2lg^2n$$

Utilizziamo il Master Theorem per valutare la complessità asintotica dei due algoritmi.

- (a) Si ha: a=3, b=2, quindi $1<\log_2 3<2$. Poiché $3n^2\lg^2 n=\Omega(n^2)=\Omega(n^{\log_2 3+\epsilon})$ se vale la condizione di regolarità ($\exists c<1$ tale che $af(\frac{n}{b})< cf(n)$) siamo nel caso 3 del Master Method. La condizione vale in quanto scelto c=3/4 è facile vedere che $3(3\frac{n^2}{4}\lg^2(\frac{n}{2}))<\frac{3}{4}(3n^2\lg^2 n)$. Allora $T_1(n)=\Theta(3n^2\lg^2 n)$.
- (b) Si ha: a = 4, b = 2, quindi $\log_2 4 = 2$. Poiché $2n^2 + n + 2\lg^2 n = \Theta(n^2)$ siamo nel caso 2 del Master Method. Allora $T_2(n) = \Theta(n^2 \lg n)$.

Dobbiamo quindi confrontare $3n^2\lg^2n$ con $n^2\lg n$. Poiché $n^2\lg n=O(3n^2\lg^2n)$ ma non vale il viceversa, l'algoritmo da scegliere è il secondo.

2. Data la seguente procedura Fun se ne determini la complessità asintotica al crescere di $n \in N$

```
\begin{aligned} & \operatorname{Fun}(A,n) \\ & 1 & \text{if } n < 1 \text{ return } 1 \\ & 2 & s \leftarrow 0 \\ & 3 & \text{for } j \leftarrow 1 \text{ to } n \\ & 4 & \text{do } s \leftarrow s + A[j] \\ & 5 & \text{return } s + 2 \operatorname{Fun}(A,n/2) \end{aligned}
```

```
\begin{array}{lll} & \text{Fun}(A,n) \\ 1 & \text{if } n < 1 \text{ return } 1 \\ 2 & s \leftarrow 0 & 1 \\ 3 & \text{for } j \leftarrow 1 \text{ to } n & n+1 \\ 4 & \text{do } s \leftarrow s + A[j] & \sum_{j=1}^{n} 1 \\ 5 & \text{return } s + 2 \text{ Fun}(A,n/2) & T(n/2) \end{array}
```

Poiché $T_{\text{Fun}}(n)$ soddisfa la ricorrenza $T_{\text{Fun}}(n) = T_{\text{Fun}}(n/2) + kn$ la complessità asintotica della procedura Fun si trova risolvendo tale ricorrenza. Questo si ottiene facilmente utilizzando il Master Method. Si ha a = 1, b = 2, $\log_b a = 0, kn = \Omega(n^{0+\epsilon})$, e kn soddisfa la proprietà di regolarità. Quindi siamo nel caso 3 ed abbiamo $T_{\text{Fun}}(n) = \Theta(n)$.

3. Si consideri la struttura dati albero (posizionale e generale) con gli attributi key[x], child[x], sibling[x] asociati ad ogni nodo x. Si descriva un algorimo che dato un intero k ed un albero T, calcola il numero dei nodi di T che hanno esattamente k figli.

Si può risolvere con una visita in ampiezza breadth-first-search contando le iterazioni del ciclo while che visita ciascun gruppo di fratelli. Usiamo una variabile globale tot posta uguale a 0 prima della chiamata esterna Children-Count(root[T], k).

```
CHILDREN-COUNT(x, k)
     if x = NIL return
 2
     ENQUEUE(x,Q)
 3
     while not QUEUE-EMPTY[Q]
             \mathbf{do}\ y \leftarrow \text{HEAD}[\mathbf{Q}]
 4
 5
                 DEQUEUE[Q]
 6
                 s \leftarrow 1
 7
                 while y \neq NIL
 8
                        \operatorname{do} s \leftarrow s + 1
                            if CHILD[y] \neq NIL
 9
                                then ENQUEUE[CHILD[y], Q]
10
                            y \leftarrow \text{SIBLING}[y]
11
12
                 if s = k
13
                     then tot \leftarrow tot + 1
```

Seconda parte

- 4. Si consideri l'array A[1..7] contenente gli elementi 3,25,10,50,2,5,7.
 - (a) Dire se A soddisfa la proprietà di max-heap o di quasi-max-heap o nessuna delle due. Giustificare la risposta.
 - Non è né un max-heap né un quasi-max-heap. Infatti A[1] < A[LEFT[1]] e quindi non è un max-heap, inoltre A[LEFT[1]] < A[LEFT[LEFT[1]]] e quindi non è neppure un quasi-max-heap.
 - (b) Nel caso in cui A non sia uno heap descrivere il risultato dell'applicazione della procedura Build-Max-Heap(A).
 - L'array che si ottiene dopo l'applicazione di Build-Max-Heap(A) è A = [50, 25, 10, 3, 2, 5, 7].
 - (c) Descrivere infine quale è il risultato dell'applicazione della procedura HEAP-EXTRACT-MAX(A) al max-heap risultante dai punti precedenti. Dopo l'estrazione del massimo l'array diviene è A = [25, 7, 10, 3, 2, 5].
- 5. Scrivere un algoritmo che dato un albero binario di ricerca T ed una chiave k restituisce il numero di chiavi di T il cui valore è minore di k. Valutare la complessità dell'algoritmo proposto.

Proseguiamo come per una ricerca della chiave k contando tutti i nodi che vengono lasciati alla sinistra del cammino percorso durante la ricerca. Si noti che la stessa procedura può essere utilizzata anche per *contare* i nodi che vengono lasciati alla sinistra dato che alla sinistra di una chiave minore di k ci sono solo nodi minori di k. La chiamata esterna saraà LESS(ROOT[T],K).

```
LESS(x, k)
1 if x = \text{NIL}
2 then return 0
3 if \text{KEY}[x] \ge k
4 then return LESS(LEFT[x])
5 else return 1 + LESS(LEFT[x]) + LESS(RIGHT[x]).
```

6. Descrivere le proprietà della procedura di partizione di una array che viene utilizzata dall'algoritmo $\mathrm{QUICKSORT}(A,p,q)$.

L'algoritmo di quicksort si basa su di una procedura di partizione che deve soddisfare la seguente proprietà.

Partiziona [A,p,q] riorganizza la porzione $p\cdots q$ dell'array A e restituisce un indice r compreso tra p e q in modo che nell'array riorganizzata tutti gli elementi in $A[p\cdots r]$ siano minori o uguali a tutti gli elementi in $A[r+1\cdots q]$. Formalmente

precondizione: A[1..n] è una array di lunghezza $n, 1 \le p \le q \le n$. $r \leftarrow \text{Partiziona}[A, p, q]$

postcondizione: $p \le r \le q$ e $A[p \cdots r] \le A[r+1 \cdots q]$.

Si osservi che l'uso del pivot nelle realizzazioni studiate *serve* a garantire questa proprietà.

7. Sia x un nodo in un albero Rosso/Nero T tale che colore[x]=nero, colore[left[x]]=rosso, colore[right[x]]=nero. Dire, giustificando formalmente la risposta, se l'applicazione di una rotazione a destra al nodo x distrugge la proprietà di albero Rosso/Nero o no.

La rotazione non mantiene la proprietà (N.B. in nessun caso).

Chiamiamo altezza nera estesa di T l'altezza nera di T incrementata di 1 se la radice di T è nera e la denotiamo con $bh^*(T)$.

Siano α e β i figli di left[x] e chiamiamo δ il nodo right[x]. Poiché T è un albero Rosso/Nero, e colore[left[x]]=rosso, deve essere $bh^*(\alpha) = bh^*(\beta) = bh^*(\delta)$.

Chiamiamo y la nuova radice del sottoalbero dopo la rotazione.

Il figlio sinistro di y è α e quindi la sua altezza nera estesa è proprio $bh^*(\alpha)$. I figli di right[y] sono β e δ che hanno la stessa altezza nera estesa, cioè $bh^*(\beta)$. Pertanto right[y], che è nero ha altezza nera estesa $bh^*(\beta) + 1$.

Poiché $bh^*(\beta) + 1 = bh^*(\alpha) + 1 \neq bh^*(\alpha)$ l'albero dopo la rotazione non gode più della proprietà sulle altezza nere.