

28
8-A49
1989
C.3

1989 AMBIENT AIR QUALITY REPORT

North Carolina Department of Environment, Health, and Natural Resources
Division of Environmental Management / Air Quality Section

DOCUMENTS
CLEARINGHOUSE

AUG 1 1991

N.C. STATE LIBRARY
RALEIGH

1989 AMBIENT AIR QUALITY REPORT

STATE OF NORTH CAROLINA
James G. Martin, Governor

**DEPARTMENT OF
ENVIRONMENT, HEALTH,
AND NATURAL RESOURCES**
William W. Cobey, Jr., Secretary

DIVISION OF ENVIRONMENTAL MANAGEMENT
George T. Everett, Director

AIR QUALITY SECTION
Lee A. Daniel, Chief

PUBLISHED
MAY 1991

Digitized by the Internet Archive
in 2011 with funding from
State Library of North Carolina

<http://www.archive.org/details/ambientairqualit1989nort>

**State of North Carolina
Department of Environment, Health, and Natural Resources
512 North Salisbury Street • Raleigh, North Carolina 27611**

James G. Martin, Governor

William W. Cobey, Jr., Secretary

May 1991

My Fellow North Carolinians:

Air quality affects us all. Maintaining excellent air quality is a challenge we face daily. From acid rain in our mountains to ozone problems in the Piedmont, North Carolinians must deal with air degradation. We must identify and prevent these problems to keep our air clean.

The Department of Environment, Health, and Natural Resources and four local air pollution control agencies monitor air pollution across the state. This information, together with information on amounts of air pollutants emitted by commercial and industrial sources, gives us the basis for regulations that will protect our state's air quality.

We are dedicated to preserving, maintaining, and improving the quality of the air we breathe.

A handwritten signature in black ink, appearing to read "William W. Cobey Jr." The signature is fluid and cursive, with "William" and "W." being more formal, while "Cobey" and "Jr." are more stylized.

William W. Cobey, Jr., Secretary

North Carolina Department of
Environment, Health, and Natural Resources

FOREWORD

This report is issued by the Division of Environmental Management of the Department of Environment, Health, and Natural Resources to inform the public of air pollution levels throughout the state of North Carolina. It presents the results of the monitoring that was conducted in 1989 to measure the outdoor concentrations of the following pollutants for which the U.S. Environmental Protection Agency and the State of North Carolina have established ambient air quality standards:

Particulate Matter	Sulfur Dioxide	Ozone
Carbon Monoxide	Nitrogen Dioxide	Lead

The data are presented graphically and as statistical summaries, including comparisons to the ambient air quality standards. The report discusses the recorded data, seasonal variability of some pollutants, and the sources and effects of each pollutant. Data and areas exceeding the ambient air quality standards are identified. Factors which have contributed to those exceedances are also described.

A brief discussion of the ambient air monitoring program, including a description of the monitoring network, is provided. Acid rain data from the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) for North Carolina is also included for 1989.

Additionally, current air pollution information is available 24 hours a day in four areas of the state through the use of the air quality index telephone numbers listed below:

Charlotte	704-333-SMOG
Durham	919-733-DATA
Fayetteville	919-486-9413
Raleigh	919-733-DATA

Additional copies of this report and the previous reports are available from:

Department of Environment, Health, and Natural Resources
Division of Environmental Management
Air Quality Section
512 North Salisbury Street
PO Box 27687
Raleigh, North Carolina 27611

Comments regarding this report or suggestions for improving future reports are welcomed.

George T. Everett
Division of Environmental Management

CONTENTS

SECTION		PAGE
Executive Summary		1
I AMBIENT AIR QUALITY STANDARDS.....		3
II 1989 AMBIENT AIR QUALITY DATA.....		4
II A Particulate Matter - Total Suspended Particulate.....		5
II B Particulate Matter - PM 10.....		12
II C Carbon Monoxide.....		15
II D Ozone.....		21
II E Sulfur Dioxide		27
II F Nitrogen Dioxide		30
II G Lead		31
III DESCRIPTION OF POLLUTANTS.....		32
III A Particulate Matter		32
III B Carbon Monoxide.....		33
III C Ozone.....		33
III D Sulfur Dioxide		34
III E Nitrogen Oxides.....		35
III F Lead		35
IV AMBIENT AIR MONITORING PROGRAM DESCRIPTION		36
V AIR QUALITY INDEX		38
VI ACID RAIN		41
Appendix		
A Air Pollution Monitoring Agencies		43
B Exceptional Events		46
C Nonattainment and North Carolina		47
D Ozone Exceedances In The Last Three Years		49
List of Tables		
I Summary of National and N.C. Ambient Air Quality Standards		3
II Total Suspended Particulate (Data)		6
III TSP Exceedances		9
IV PM-10 (Data).....		12
V Carbon Monoxide (Data)		16
VI Ozone (Data).....		23
VII Sulfur Dioxide (Data)		28
VIII Nitrogen Dioxide (Data)		30
IX Lead Concentrations (Data)		31
X North Carolina Air Monitoring Sites (Listing)		39
XI North Carolina Acid Rain Report (Data)		42
List Of Figures		
1 Total Suspended Particulate (24-Hour Data)		10
2 Total Suspended Particulate (Annual Data).....		11
3 PM-10 (24-Hour Data).....		13
4 PM-10 (Annual Data)		14
5 Carbon Monoxide (1-Hour Data)		17
6 Carbon Monoxide (8-Hour Data).....		18
7 Areas With Excessive Carbon Monoxide		19
8 Carbon Monoxide Frequency of Exceedances		20
9 Ozone Frequency of High Values		24
10 Ozone (1-Hour Data)		25
11 Areas With Excessive Ozone.....		26
12 Sulfur Dioxide (3-Hour Data)		29
13 Nitrogen Dioxide (Annual Data).....		30
14 Locations of Monitoring Sites (Map)		37
15 Locations of Acid Rain Monitoring Sites (Map).....		42

EXECUTIVE SUMMARY

Ambient air monitoring is performed by the North Carolina Division of Environmental Management (DEM) and four local air pollution agencies. A listing of these agencies is provided in Appendix A.

A total of 296,365 air quality measurements were made in 1989 for all criteria pollutants except lead. Data summaries, graphs, maps, and discussions of the reported data as well as a description of each pollutant are presented.

Particulate Matter (PM) of two different types was collected in North Carolina during 1989. One type, Total Suspended Particulate (PM-TSP), includes particles in a size range of 0.3 micrometers to about 45 micrometers. The other type of particulate matter, Particulate Matter-10 micrometers (PM-10), includes particles in a size range of 0.3 micrometers to 10 micrometers (aerodynamic diameter). A micrometer is approximately 1/25,000 of an inch. There were four exceedances of the state TSP ambient air quality standard ($150 \mu\text{g}/\text{m}^3$) in 1989. Of these, three were affected by exceptional events including pollen and construction activities. One TSP exceedance occurred in 1989 that was not affected by exceptional events. This exceedance occurred at the Mecklenburg County Arrowood site during normal sampling conditions and is not affected by exceptional events. The site is located one half mile from a quarry that was undergoing mining activities at the time of the exceedance. The sampling site is also near a major interstate and heavily traveled intersection. This area contains convenience stores and gas stations which are used by large trucks. When entering and exiting this area, these large trucks disturb dust from the roadsides and are also a source of fine diesel particulate matter. The quarry and dust from roadsides are likely the contributing sources to the heavy concentration of particulates on the sample filter. The microscopic analysis demonstrated that 85% of the particulate matter was quartz and calcite composition. The high mineral content can be attributed to the local quarry and commercial traffic activities.

On July 31, 1987, the federal Environmental Protection Agency (EPA) replaced the national TSP ambient air quality standard with a national standard for PM-10. Subsequently, the North Carolina PM-10 standard became effective July 1, 1988. Thirteen sites collected PM-10 data in 1989. Of the 661 samples collected, there were no exceedances of the PM-10 National Ambient Air Quality Standard. A gradual phase-in of more PM-10 monitoring to replace TSP monitoring will be seen in 1990 and 1991. Based upon the average PM-10 to TSP ratio, there is a likelihood that some of the TSP sites replaced will exceed the PM-10 annual standard when PM-10 monitors are installed. More PM-10 monitoring is needed to determine if a PM-10 problem exists.

Carbon monoxide (CO) is the most abundant air pollutant in North Carolina. More than 80% of the CO is believed to be emitted by motor vehicles. The most likely areas to have excessive CO concentrations are the larger cities where there are more cars and congested city streets.

In Charlotte, no exceedances were reported in 1986, 1987, 1988, or 1989. The motor vehicle Inspection and Maintenance program, in operation in Mecklenburg County since December 1982, deserves some of the credit for this CO improvement.

Excessive CO readings continue to be reported in Wake and Durham Counties. There were a total of four eight-hour average CO exceedances in the Raleigh and Durham areas in 1989. This is relatively unchanged when compared to a total of five eight-hour averages above the ambient air quality standard reported in 1988. The combined effects of newer cars in the vehicle fleet, traffic control strategies, and the Wake County Inspection and Maintenance program have helped to reduce the number and intensity of CO exceedances from that of earlier years. However, more ambient monitoring data will need to be collected and evaluated to confirm this improvement.

Ozone (O₃) is a major component of smog and forms when numerous chemical compounds react in the presence of sunlight. Hydrocarbons and nitrogen dioxide are important reactants in the formation of ozone; therefore, nationwide the main emphasis in control of ozone has been to control hydrocarbon emissions. More ozone exceedances occurred at higher concentrations in 1988 than in any prior year. There were a total of 69 exceedances of the ozone air quality standard in 1988. Six exceedances of the ozone air quality standard occurred in North Carolina during 1989.

In 1989, Mecklenburg was the only county designated as an ozone nonattainment area. In 1988, at three Mecklenburg County ozone sites, 24 values exceeded the ambient air quality standard. In 1989, the air quality standard was exceeded a total of three times at two sites in Mecklenburg County. More strict hydrocarbon control strategies are being used in Mecklenburg County to reduce the ozone problem. Six exceedances at the Granville County Butner ozone site in 1988 and three exceedances in 1989 establish the need for development of ozone control strategies in Raleigh and Durham. In 1988, Winston-Salem, Fayetteville and Wake Forest monitors reported at least three exceedances each. In 1989, each of these sites reported no exceedances.

As part of the strategy development, a special monitoring study began in 1989 for Charlotte and Raleigh for nitrogen dioxide (NO₂) and nonmethane organic carbon (NMOC) compounds. NO₂ and NMOC are precursor pollutants which react together to form ozone. Ozone has become the most widespread and most serious criteria air pollutant problem in North Carolina.

Sulfur dioxide (SO₂) ambient concentrations did not exceed the ambient air quality standard at local agency monitoring sites during in 1989. However, one exceedance of the 24 hour standard was measured by the Washington Regional Office. Overall, sulfur dioxide values are well below state and federal standards. The sites measuring the highest concentrations are near major sulfur dioxide sources such as those burning large quantities of fossil fuels and manufacturing sulfuric acid. Remote and rural SO₂ concentrations are very low, frequently near the lower measurement capability of the monitors. SO₂ data continues to be collected and evaluated to aid new and expanding industry in the permitting process.

Nitrogen oxides (NO_x) are emitted into the atmosphere as a result of burning fuel by both stationary sources and motor vehicles. These nitrogen oxides, particularly nitric oxide, convert to nitrogen dioxide (NO₂) in the atmosphere. In 1988, only limited ambient air monitoring for nitrogen dioxide was conducted. Two sites were operated in Winston-Salem for the entire year. No exceedances of the nitrogen dioxide ambient air quality standard have been measured at these sites or at other sites in recent years. NO₂ monitoring began in 1989 in Charlotte and Raleigh as a part of data gathering for development of control strategies for ozone nonattainment areas.

Lead (Pb) analysis was performed routinely at five North Carolina TSP sites. Lead emissions from sandblasting of bridges, overpasses, and water tanks and coal combustion are the most significant sources of lead contamination in the state. There have been no exceedances of the lead ambient air quality standard in recent years. The ambient air lead concentrations continue to decrease due to a steady decrease in the use of leaded fuels which were the most significant source of airborne lead in North Carolina.

Acid Rain is formed when nitrogen oxides and sulfur dioxide change into nitrate and sulfates ions. These ions reach the upper atmosphere and absorb moisture to form acid precipitation. Acid rain data is available for 10 sites in and around North Carolina for 1989. Monitoring for acid rain will help to identify trends and reflect efforts made towards reduction in emissions from mobile and industrial sources.

I. AMBIENT AIR QUALITY STANDARDS

Ambient air quality progress is determined by measuring ambient pollutant concentrations and comparing the measured concentrations to the corresponding standard. The "ambient air" is defined by the Environmental Protection Agency (EPA) as "that portion of the atmosphere, external to buildings, to which the general public has access." The ambient air quality standards are classified as primary standards, secondary standards, or both. The primary standards were established allowing an adequate margin of safety for protection of public health. Secondary standards were established with an adequate margin of safety to protect the public welfare from adverse effects associated with pollutants in the ambient air. In protecting public welfare, air pollution effects on the following are considered:

soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility, climate, property, transportation, economy, personal comfort, and well-being. The scientific criteria upon which the standards are based are periodically reviewed by EPA and the standards are re-established or changed based upon the findings. An "exceedance" is defined as a measurement that is greater than the ambient air quality standard for a specific averaging time.

The national primary and secondary standards and the North Carolina ambient air quality standards are summarized in Table I. Brief descriptions of air pollutants for which ambient air quality standards exist are included in Section III of this report.

TABLE I: Summary Of National And N.C. Ambient Air Quality Standards

POLLUTANT	TIME OF AVG.	NAT. PRIM. STD	NAT. SEC. STD	N.C. STD
TSP ^a	Ann. Geo. Mean 24 Hour ^b	75 $\mu\text{g}/\text{m}^3$ ^a 260 $\mu\text{g}/\text{m}^3$ ^a	None 150 $\mu\text{g}/\text{m}^3$ ^a	75 $\mu\text{g}/\text{m}^3$ 150 $\mu\text{g}/\text{m}^3$
PM-10	Ann. Arith. Mean ^a 24 Hour ^{a,c}	50 $\mu\text{g}/\text{m}^3$ ^a 150 $\mu\text{g}/\text{m}^3$ ^a	Same as prim. ^a Same as prim. ^a	50 $\mu\text{g}/\text{m}^3$ ^a 150 $\mu\text{g}/\text{m}^3$ ^a
SO ₂	Ann. Arith. Mean 24 Hour ^b 3 Hour ^b	80 $\mu\text{g}/\text{m}^3$ 365 $\mu\text{g}/\text{m}^3$ None	None None 1300 $\mu\text{g}/\text{m}^3$	80 $\mu\text{g}/\text{m}^3$ 365 $\mu\text{g}/\text{m}^3$ 1300 $\mu\text{g}/\text{m}^3$
NO ₂	Ann. Arith. Mean	.053 ppm	Same as prim.	.053 ppm
CO	8 Hour ^b 1 Hour ^b	9 ppm 35 ppm	None None	9 ppm 35 ppm
O ₃	1 Hour ^c	0.12 ppm	Same as prim.	0.12 ppm
Pb	Quarterly Arith. Mean ^b			
		1.5 $\mu\text{g}/\text{m}^3$	Same as prim.	1.5 $\mu\text{g}/\text{m}^3$

a. The National Total Suspended Particulate (TSP) standards were replaced by National Particulate Matter-10 micrometer, aerodynamic diameter, (PM-10) standards on 7-31-87 by EPA. The North Carolina PM-10 standard is effective July 1, 1988.

b. Not to be exceeded more than once per year.

c. Not to be exceeded on more than an average of one day per year.
(Four days with an exceedance at a site in three years or less is a violation.)

$\mu\text{g}/\text{m}^3$ - micrograms per cubic meter of air

microgram - one millionth of a gram, where 454 grams = 1 pound

ppm - parts per million

II. 1989 AMBIENT AIR QUALITY DATA

There are many factors that affect the quality of air in an area. Air quality is a function of meteorological conditions, location and amount of pollutants emitted from pollution sources. The speed and direction of air movement determine whether pollutant emissions cause exceedances of the ambient air quality standards and where those exceedances occur. Other meteorological factors that affect pollutant concentrations include atmospheric stability, precipitation, solar radiation and temperature. Geographic factors that affect concentrations include variables such as whether an area is urban or rural, has mountains, valleys or plains. Economic factors that are important include concentration of industries, conditions of the economy, or day of the week. All of these variables may affect air pollution patterns either on a short-term or long-term basis.

Air quality may also be influenced by an "exceptional event." Such an event may be natural or man-made and may cause the data to be biased.

Most high data and all exceedances are examined to detect "exceptional events" and to avoid misuse or misinterpretation of the data. All valid data, whether "exceptional events" or not, are included in these data summaries. Data known to have been affected by exceptional events are not included in the figures and graphs, but are included in tables in this report. A listing of typical exceptional events is given in Appendix B.

Ambient Data

There were 129 air pollutant monitors operated by state and local agencies in North Carolina in 1989.* A summary of the valid 1989 ambient air quality data collected is presented followed by a discussion of the data. To save operating costs, the monitor operations at some sites are suspended for two years and operated on the third year. For those monitors not operating during 1989, data for the most recent sampling year (1987 or 1988) are included in this report.

*A listing of these agencies is provided in Appendix A.

WARM CLEANER AIR

COOL DIRTIER AIR

II. A. Particulate Matter Total Suspended Particulate

Total Suspended Particulate (TSP) matter is collected on filters using a "high volume" sampler method. The "high volume" motor is set and calibrated to an air flow rate of 40 ± 4 feet³/min. Gravimetric analysis (EPA Reference Method) is performed by comparing the exposed filter weight to the unexposed filter weight. The difference in exposed and unexposed weight is the amount of particulate collected from a specified volume of air. Weighings are made to the nearest tenth of a milligram.

There were 68 network sites measuring TSP in 1989 across the state. A total of 3,744 TSP samples were collected. A summary of these data appears in Table II. Of these, four samples exceeded the TSP ambient air quality standards. This compares to 15 samples which exceeded the standard in 1988. Three of these exceedances were affected by exceptional events, such as dust from construction activities and naturally occurring pollen. Pollen biases are considered exceptional events, and are not used to determine an area's attainment status with the ambient air quality standard. Detail analyses were performed on the exceedance samples to determine the kind and amount of particulate matter present. Microscopic analysis, wind data, and reports of events near the sites are also used to identify and confirm data affected by exceptional events. A listing of all exceedances and a comment about each is given in Table III.

The TSP exceedance which was not affected by an exceptional event, occurred at the Mecklenburg County Arrowood site on February 3, 1989. The site is located one half mile from an active quarry. The sampling site is also located near a major interstate and busy intersection. This area contains convenience stores and gas stations

which are used by large trucks. When entering and exiting this area, these large trucks disturb dust from the roadsides and are also a source of fine diesel particulate matter. The quarry and dust from roadsides are likely the contributing sources to the heavy concentration of particulates on the sample filter. The microscopic analysis demonstrated that 85% of the particulate matter was of quartz and calcite composition. The high mineral content can be attributed to the local quarry and commercial traffic. Because of this exceedance at the site, a PM-10 monitor should replace the TSP monitor. The remaining three exceedances were affected by exceptional events (i.e. pollen and construction/demolition.)

The second highest 24-hour measurement, not affected by an exceptional event, is compared to the ambient air quality standard to determine attainment status. Figure 1 presents these second highest values with the data affected by exceptional events excluded for each county monitored. No site measured two nonbiased valid exceedances; therefore, there are no sites violating the 24-hour TSP ambient air quality standard. All areas of the state are considered to be attaining the state ambient air quality standards for total suspended particulate.

The annual geometric mean is also compared to the annual ambient air quality standard to determine attainment status. There are no sites violating the state annual TSP ambient air quality standard. Figure 2 presents the highest annual geometric mean for each county monitored.

A description of the sources and health effects of TSP are provided in Section III.A.

TABLE II: Total Suspended Particulates^(A) In Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) For 1989

SITE NUMBER	COUNTRY	CITY	ADDRESS		NUM OHS	24-HOUR MAXIMA			ARITH MEAN	GEO MEAN	GEO STD	PRIMARY ^(B)	SECONDARY ^(B)
						1ST	2ND	3RD					
37-001-0001	Alamance	Burlington	1136 E. Webb Ave.		54	108	86	72	42	38	1.6		
37-003-0003	Alexander	Taylorsville	SR 1107 & 1117		51	102	75	66	38	34	1.6		
37-013-1003	Beaufort	Washington	400 E. Third St.		60	101	93	76	43	39	1.6		
37-021-0003	Buncombe	Asheville	Health & Social Services Bldg.		61	76	73	67	35	31	1.7		
37-021-0025	Buncombe	Regional Airport	I-26 S.		51	115	75	72	39	33	1.8		
37-021-0026	Buncombe	Grovestone	WNC Shopping Center		61	86	68	62	37	33	1.7		
37-021-0027	Buncombe	Candler	US 19-23		61	95	86	69	42	38	1.6		
37-025-0004	Cabarrus	Kannapolis	Floyd St.		57	110	107	101	51	45	1.8		
37-027-0003	Caldwell	Lenoir	Hwy 321 N.		59	100	80	78	41	37	1.7		
37-031-0003	Carteret	Morehead City	Arendell & 4th Streets		60	118	109	97	48	43	1.6		
37-035-0004	Catawba	Hickory	1650 First St.		57	127	111	106	56	52	1.5		
37-047-0001	Columbus	Acme Delco	SR 1878		55	85	70	69	36	33	1.5		
37-051-0004	Cumberland	Fayetteville	Fire Sta. 5, 3296 Village Dr.		58	88	80	76	45	42	1.5		
37-057-0002	Davidson	Lexington	S. Salisbury St.		57	133	106	100	51	47	1.6		
37-057-1001	Davidson	Thomasville	City Hall, 7 West Guilford St.		52	108	99	78	50	47	1.4		
37-063-0001	Durham		Health Dept, 300 E. Main St.		59	98	89	78	43	38	1.6		
37-065-0002	Edgecombe	Rocky Mount	Leggett Rd., Waste Treatment		56	155	113	106	50	45	1.6		
37-067-0001	Forsyth	Walkertown	Grubbs Road		61	124	80	79	38	33	1.7		
37-067-0009	Forsyth	Winston-Salem	Indiana Ave. & Akron Dr.		38	143	91	89	52	49	1.5		
37-067-0013	Forsyth	Winston-Salem	720 Ridge Avenue		61	124	119	91	50	46	1.6		
37-067-0014	Forsyth	Winston-Salem	Stadium Drive		31	132	93	76	51	47	1.6		
37-067-0015	Forsyth	Winston-Salem	Hutton Street		33	110	81	77	47	44	1.5		
37-067-0020	Forsyth	Winston-Salem	Silas Creek Pkwy At Hawthorn		56	115	92	81	48	44	1.5		
37-067-0021	Forsyth	Winston-Salem	Sixth & Broad St., Friends Ch.		59	133	88	76	43	39	1.5		
37-067-0023	Forsyth	Winston-Salem	1401 Corporation Parkway		27	109	106	83	60	56	1.5		

(A) This Table includes all valid TSP Data, including those affected by exceptional events.

(B) A more detailed listing of exceedances is given in Table II.

(TABLE II: Continued Next Page)

TABLE II: Total Suspended Particulates (A) In Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) For 1989 (Continued)

SITE NUMBER	COUNTRY	CITY	ADDRESS		NUM OBS	24-HOUR MAXIMA			ARITH MEAN	GEO MEAN	GEO STD	PRIMARY (B) CM>75	SECONDARY (B) CM>150
						1ST	2ND	3RD					
37-067-1001	Forsyth	Kernersville	Bodenheimer St.		57	146	100	99	51	47	1.5		
37-071-0014	Gaston	Castonia	Rankin Lake Rd.		59	76	75	67	39	35	1.6		
37-081-0004	Guilford	High Point	650 Francis St.		60	97	92	72	41	37	1.6		
37-081-0009	Guilford	Greensboro	Edgeworth & Bellemeade St.		61	105	78	68	42	38	1.6		
37-081-0010	Guilford	Greensboro	1305 Merritt Dr.		59	121	113	82	47	42	1.7		
37-081-0012	Guilford	Greensboro	Western Guilford High School		61	110	104	88	42	37	1.7		
37-081-1003	Guilford	High Point	National Guard Armory		56	141	111	110	49	43	1.7		
37-081-1005	Guilford	High Point	E. Green & S. Centennial St.		60	104	103	102	55	49	1.6		
37-083-0002	Halifax	Roanoke Rapids	Fifth & Carolina Streets		56	102	92	79	49	46	1.5		
37-085-0001	Harnett	Dunn	Municipal Building		61	99	91	90	51	46	1.6		
37-087-0002	Haywood	Canton	Roof, Canton Fire Dept		59	130	99	96	57	52	1.6		
37-087-0006	Haywood	Hazelwood	Fire Station Brown Ave.		57	98	93	82	46	43	1.5		
37-089-1005	Henderson	Hendersonville	US 25 & US 64		58	89	87	75	42	38	1.6		
37-107-0003	Lenoir	Kinston	1700 Market St.		59	79	73	64	36	32	1.6		
37-109-0002	Lincoln	Lincolnton	Jail		57	114	89	88	50	46	1.6		
37-111-0002	McDowell	Marion	Courthouse		58	122	98	97	51	46	1.6		
37-119-0001	Mecklenburg	Charlotte	600 E. Trade St.		49	155	119	114	49	45	1.5		1
37-119-0002	Mecklenburg	Charlotte	Community Hospital 801, S. Gr		59	113	97	91	49	45	1.5		
37-119-0003	Mecklenburg	Charlotte	Fire Sta. #11, 620 Moretz St.		58	148	131	127	58	52	1.6		
37-119-0010	Mecklenburg	Charlotte	Fire Sta. #10, 2136 Remount Rd.		56	93	92	86	42	39	1.5		
37-119-0011	Mecklenburg	Charlotte	Co. Hlt. Dept. Roof, 1200 Blythe		56	147	78	69	42	38	1.6		
37-119-0026	Mecklenburg	Charlotte	Woodlawn, Nations Ford Rd.		56	99	88	86	42	38	1.6		
37-119-0028	Mecklenburg	Charlotte	1501 N. 1-85		54	87	74	72	40	36	1.6		

(A) This Table includes all valid TSP Data, Including those affected by exceptional events.
(B) A more detailed listing of exceedances is given in Table III.

(TABLE II: Continued Next Page)

TABLE II: Total Suspended Particulates (A) In Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) For 1989 (Continued)

SITE NUMBER	COUNTY	CITY	ADDRESS	NUM OBS	24-HOUR MAXIMA			ARITH MEAN	GEO MEAN	GEO STD	PRIMARY ^(B) #>260	SECONDARY ^(B) #>150	EXCEEDANCES
					1ST	2ND	3RD						
37-119-0901	Mecklenburg	Charlotte	7400 Tuckasegee	57	120	75	74	39	35	1.6			
37-119-1001	Mecklenburg	Davidson	Filter Plant	33	80	74	62	37	34	1.6			
37-119-1003	Mecklenburg	Huntersville	Holbrook Road	58	85	83	62	36	32	1.6			
37-119-1005	Mecklenburg	Charlotte	400 Arrowood Blvd.	59	206	125	119	58	49	1.8			1
37-119-1006	Mecklenburg	Charlotte	Neck Road, Duke Power #2	50	109	76	74	35	30	1.8			
37-119-2001	Mecklenburg	Mint Hill	Telephone Substation	57	94	84	76	39	35	1.6			
37-121-0001	Mitchell	Spruce Pine	City Hall, Summit St.	60	130	112	103	53	48	1.6			
37-129-0005	New Hanover	Wilmington	Ninth And Orange Streets	61	78	77	76	40	37	1.5			
37-133-0004	Onslow	Jacksonville	2553 Onslow Drive	60	117	90	84	47	42	1.6			
37-139-0001	Pasquotank	Elizabeth City	Water Plant, N. Wilson St.	61	145	92	80	41	36	1.7			
37-147-0002	Pitt	Greenville	North Plant St.	7	80	41	26	33	29	1.7			
37-151-0003	Randolph	Asheboro	1462 Winslour St.	57	83	77	71	36	32	1.7			
37-155-0003	Robeson	Lumberton	South Water St.	61	84	81	75	40	37	1.5			
37-159-1005	Rowan	Salisbury	Church St.	56	96	95	89	48	44	1.5			
37-165-0003	Scotland	Laurinburg	Waste Treatment Plant	57	72	65	65	39	37	1.5			
37-175-0002	Transylvania	Brevard	Hwy 64	53	117	87	79	42	38	1.6			
37-183-0003	Wake	Raleigh	Fire Station #9, Six Forks Rd.	60	105	95	91	42	37	1.7			
37-187-0002	Washington	Plymouth	Old Acre Rd.	59	125	87	79	39	35	1.6			
37-191-0004	Wayne	Goldsboro	Hwy 70 West, Patrol Station	55	176	110	103	45	39	1.7			
37-195-0002	Wilson	Wilson	Kenan St. & Tarboro St.	58	106	94	88	47	42	1.6			1

(A) This Table includes all valid TSP Data, including those affected by exceptional events.
 (B) A more detailed listing of exceedances is given in Table III.

Table III: 1989 TSP Exceedances

Site Number	Site Name	Date	TSP Value ($\mu\text{/m}^3$)	Exceptional Event(s)
37-191-0004	Goldsboro	2-03-89	176	Pollen
37-119-0001	Mecklenburg Co. City Hall	3-17-89	155	Pollen
37-119-1005	Mecklenburg Co. Arrowood	2-03-89	206	None ^(A)
37-065-0002	Rocky Mount	9-13-89	155	Construction/ Demolition

(A) This sample was a valid exceedance of the ambient air quality standard, but since a second exceedance was not measured at this site no violation occurred.

FIGURE 1
TOTAL SUSPENDED PARTICULATE
1989 Second Highest 24-Hour Averages*

Values given are in $\mu\text{g}/\text{m}^3$.

N.C. Ambient Air Quality Standard is $150 \mu\text{g}/\text{m}^3$.

For Counties with more than one sample site,
the highest sample site is shown.

*Data known to have been affected by exceptional
events are not included in this figure.

**Incomplete data year for 1989 because site was moved.

FIGURE 2
TOTAL SUSPENDED PARTICULATE
1989 Maximum Annual Geometric Means*

Values given are in $\mu\text{g}/\text{m}^3$.

Federal and State Ambient Air Quality Standard is $75 \mu\text{g}/\text{m}^3$.

For counties with more than one sample site,
the highest sample site is shown.

*Data known to have been affected by exceptional
events are not included in this figure.

**Incomplete data for 1989 because site was moved.

II. B. Particulate Matter - PM-10

Particulate Matter-10 micrometers or less (PM-10) is collected using high volume samplers and size selective inlets and is analyzed using a gravimetric analysis procedure (EPA Reference Method) by the state and four local program agencies. A description of PM-10 sources and health effects is included in Section III-A. There were thirteen sample sites measuring PM-10 during all or part of 1989. The PM-10 monitors are installed in areas expected to experience PM-10 problems as indicated by complaints and TSP data. Most of these monitors are in major cities.

The special study PM-10 monitoring at Shallotte in Brunswick County has not shown any excessive readings. With the reduction of open burning in this area, this project was discontinued at the end of 1990.

A total of 722 PM-10 samples were collected. A summary of these data appears in Table IV. **There were no PM-10 values exceeding the national ambient air quality 24-hour or annual standards.** Figure 3 presents the second highest 24-hour values for each county monitored. The

highest 24-hour value is 79 $\mu\text{g}/\text{m}^3$ which is 53 % of the ambient air quality standard of 150 $\mu\text{g}/\text{m}^3$. Figure 4 presents the annual arithmetic mean for each county monitored. The highest annual arithmetic mean is 34 $\mu\text{g}/\text{m}^3$ or 68 % of the ambient air quality annual standard of 50 $\mu\text{g}/\text{m}^3$.

PM-10 to TSP ratios are useful in estimating PM-10 concentrations from existing TSP data. Based on the 1989 annual arithmetic means, the PM-10 to TSP ratios vary from 58/100 to 83/100 with an average ratio of 69/100 - meaning that generally 69 percent of the TSP collected is PM-10. At the highest of these ratios, sites having TSP annual arithmetic means equal to or above 60 $\mu\text{g}/\text{m}^3$ have a reasonable likelihood of exceeding the PM-10 annual standard. In 1989, there was one TSP site having annual arithmetic means above 60 $\mu\text{g}/\text{m}^3$. The potential for PM-10 exceedances exists at some TSP sites. As a gradual changeover towards the federal reference monitoring method takes place, more PM-10 monitoring will be instituted.

TABLE IV: PM-10 In Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) For 1989*

SITE NUMBER	COUNTY	CITY	ADDRESS	NUM OBS	24-HOUR MAXIMA				ARITH MEAN
					1st	2nd	3rd	4th	
37-019-0004	Brunswick	Shallotte	State Road 1163	107	68	64	57	57	26
37-021-0003	Buncombe	Asheville	Health & Social Services	57	55	53	52	51	29
37-051-0004	Cumberland	Fayetteville	Fire Sta. #5, 3296 Village Dr.	58	55	52	50	49	29
37-063-0001	Durham	Durham	Health Dept. 300 E. Main St.	58	62	62	58	86	30
37-067-0009	Forsyth	Winston-Salem	Indiana Ave. & Akron Dr.	52	77	75	62	60	31
37-067-0013	Forsyth	Winston-Salem	720 Ridge Ave.	13	60	42	42	39	31
37-067-0014	Forsyth	Winston-Salem	Stadium Drive	39	66	58	57	53	33
37-067-0020	Forsyth	Winston-Salem	Silas Creek Pkwy. at Hawthorne	51	66	63	55	48	28
37-067-1001	Forsyth	Kernersville	Bodenheimer Street	48	70	70	69	61	34
37-081-0009	Guilford	Greensboro	Edgeworth & Bellemeade	61	74	68	62	62	33
37-119-0010	Mecklenburg	Charlotte	Fire Sta. #10, 2136 Remount Rd.	57	79	54	31	50	34
37-129-0005	New Hanover	Wilmington	Ninth and Orange Streets	60	63	59	48	46	27
37-183-0003	Wake	Raleigh	Fire Sta. #9, Six Forks Rd.	61	58	57	55	49	29

* There were no exceedances of the 24 hour standard (150 $\mu\text{g}/\text{m}^3$) or the annual arithmetic mean (50 $\mu\text{g}/\text{m}^3$) for 1989.

FIGURE 3
PM-10
1989 Second Highest 24-Hour Values

Values given are in $\mu\text{g}/\text{m}^3$

Federal and State Ambient Air Quality Standard is $150 \mu\text{g}/\text{m}^3$.

Data shown are from only size selective inlet/high volume samplers.
 For counties with more than one sample site,
 the highest sample site is shown.

FIGURE 4
PM-10
1989 Maximum Annual Arithmetic Means

Values given are in $\mu\text{g}/\text{m}^3$.

Ambient Air Quality Standard is $50 \mu\text{g}/\text{m}^3$

Data shown are from only size selective inlet/high volume samplers.

For counties with more than one sample site,
the highest sample site is shown.

II.C. Carbon Monoxide

Carbon monoxide (CO) concentrations are measured using EPA reference or equivalent continuous monitors in Raleigh, Durham, Fayetteville and Greensboro by the state and in Forsyth, and Mecklenburg counties by the local program agencies.

There were 16 carbon monoxide monitoring sites in six major cities in 1989. A total of 112,319 CO hourly measurements were made. A summary of these data appears in Table V. The second highest one-hour CO measurement is compared to the one-hour ambient air quality standard to determine attainment status. A discussion of CO and ozone nonattainment in North Carolina is provided in Appendix C. Figure 5 presents these second highest one-hour CO measurements. There were no periods exceeding the hourly ambient air quality standard of 35 parts per million.

The second highest eight-hour average CO value is compared to the ambient air quality standard of nine parts per million to determine attainment status. Figure 6 presents these second highest values for each county monitored. The eight-hour CO ambient air quality standard was exceeded a total of four times in 1989 in the Durham and Raleigh areas as compared to five exceedances each year in 1987 and 1988. In Forsyth County, two CO exceedances were reported in 1989 as compared to two exceedances in 1988 and none in 1987. Mecklenburg County reported no CO exceedances in 1989, 1988, and 1987.

The causes for these CO exceedances include the following: the number of vehicles traveling in nearby streets, the amount of stop and go traffic, and the existence of meteorological conditions which promote poor dispersion of the carbon monoxide. The daily patterns of highest carbon monoxide measurements further confirm these as the major causes. Carbon monoxide measurements are high during morning and evening "rush" hours with high measurements extending into late evening and early morning hours due to poor atmospheric dispersion which frequently occurs during the night.

The number of CO exceedances in Durham and Raleigh in 1989 were much lower than the 39

exceedances reported in 1986 and the 15 exceedances reported in 1985. The reduction in the number of CO exceedances is attributable to a number of factors in Durham and Raleigh. Some of these factors were increased news media interest and reporting of the air quality index (refer to Section V), and greater public awareness of the problem. This increased awareness has contributed to more people keeping their cars in better running condition; therefore, operating cleaner. Older, more polluting vehicles, are gradually being replaced with newer and more efficient vehicles. New streets and roads, improved traffic signal coordination that reduces long idling times, and reduced onstreet parking in some areas have improved traffic flow. Additionally, in Raleigh/Wake County, a motor vehicle Inspection and Maintenance (I/M) program was started in November of 1986, and has been in full operation since fall of 1987. Motor vehicle I/M programs will likely be a part of control strategies for all areas reporting CO exceedances in the near future.

Even though ambient carbon monoxide exceedances are occurring at a lower frequency than in prior years, changes in the control strategies will be needed for the Raleigh and Durham areas. The collection of more CO data will be useful in ensuring the success of these control strategies. Figure 7 identifies the areas not attaining the CO ambient air quality standard in recent years.

The Fayetteville CO site began operation in late 1988. Fayetteville had no exceedances in 1988 and only one in 1989. This monitoring site was installed to provide seasonal CO Air Quality Index (AQI) information and data for the second largest urbanized area in North Carolina. The monitor is located off a heavily travelled city street and near a major four-way intersection. The areas immediately surrounding the monitor are primarily commercial businesses followed by residential areas. The Fayetteville CO monitor is not part of the regular ambient monitoring network and is defined as a special purpose monitor (SPM). The monitor will be operated as a State and Local Monitoring (SLAMS) site in 1990.

The new Guilford County SLAMS CO monitor-

ing site was added to the network in late 1989. The site is located in Greensboro near a major four-way intersection and city park. The purpose of monitoring at this location is to measure the impact of CO in a worst case situation and determine population exposure.

In 1987, 1988, and 1989 no CO eight-hour violations were reported in Mecklenburg County. The motor vehicle Inspection and Maintenance program, traffic flow improvements, and the gradual "turn-over" in the motor vehicle fleet to better controlled vehicles are helping to improve the air quality in Mecklenburg County.

The 1989 and historical data demonstrate that in the autumn and winter more frequent and higher CO exceedances occur than during the warmer seasons. There are several reasons for these seasonal variations:

a. In the colder months, North Carolina usually experiences more atmospheric inversions which means a lower atmospheric "mixing height" resulting in poor dispersion of air pollutants.

These air pollutants become trapped under a warm layer of air in our atmosphere. People become exposed to higher and higher concentrations until the atmospheric mixing improves. (See diagram on page 4.)

b. In colder months, motor vehicles emit more CO due to inefficient combustion during cold starts and warmups. Due to seasonal shopping, particularly in November and December, there are also more cars operating in the urban areas. It is estimated that more than 80 percent of the CO found in urban areas results from motor vehicle emissions.

c. During colder temperatures, there is more fuel being burned in urban areas for comfort heating which adds to the total CO emitted into the atmosphere.

The monthly frequency of CO exceedances from all sites for 1987, 1988, and 1989 is shown in Figure 8. Additional information about CO sources and exposure effects is provided in Section III-B Carbon Monoxide.

TABLE V: Carbon Monoxide In Parts Per Million (PPM) For 1989

SITE NUMBER	COUNTY	CITY	ADDRESS	NUM OBS	1-HOUR		8-HOUR		EXCEEDANCES	
					MAXIMA 1st	MAXIMA 2nd	MAXIMA 1st	MAXIMA 2nd	1-hour #>35	8-hour #>9
37-051-0007	Cumberland	Fayetteville	Cumberland Co., ABC Board	4311	12.0	11.4	9.8	8.0	1	
37-063-0008	Durham	Durham	302 East Main St.	8682	18.3	15.8	12.1	8.6	1	
37-063-0010	Durham	Durham	City Park on University	8671	10.7	9.4	6.6	6.1	0	
37-067-0018	Forsyth	Winston-Salem	301 N. Main St.	8482	9.7	7.6	6.2	4.4	0	
37-067-0019	Forsyth	Winston-Salem	Queen Street, Miller Park	8586	9.6	9.3	7.6	7.0	0	
37-067-0023	Forsyth	Winston-Salem	1401 Corp. Parkway	7511	15.9	13.6	9.8	9.7	2	
37-081-1011	Guilford	Greensboro	401 W. Wendover	0737	7.2	7.1	6.5	5.6	0	
37-119-0029	Mecklenburg	Charlotte	401 South Tryon	0248	3.6	3.1	2.1	1.8	0	
37-119-0032	Mecklenburg	Charlotte	5137 Central Ave.	8544	14.0	13.2	8.6	7.3	0	
37-119-0034	Mecklenburg	Charlotte	Plaza Road and Lakedell	8447	13.9	11.0	8.2	7.4	0	
37-119-0035	Mecklenburg	Charlotte	Greenville Neighborhood Ctr.	7967	11.4	10.8	9.4	7.9	0	
37-119-0037	Mecklenburg	Charlotte	415 E. Woodlawn Road	8509	13.1	11.3	6.9	5.9	0	
37-119-0038	Mecklenburg	Charlotte	301 N. Tryon Street	5687	11.3	11.3	8.2	6.5	0	
37-183-0010	Wake	Raleigh	309 S. Wilmington St.	8673	12.6	12.1	9.7	7.2	1	
37-183-0011	Wake	Raleigh	420 S. Person St.	8673	16.1	13.7	11.9	10.9	2	
37-183-0012	Wake	Raleigh	EF Hutton, Hwy 70 West	8591	9.6	9.4	7.7	6.4	0	

FIGURE 5
CARBON MONOXIDE
1989 Second Highest 1-Hour Average

Values given are in ppm.

Ambient Air Quality Standard is 35 ppm.

The highest sample site data is shown for each county.

FIGURE 6
CARBON MONOXIDE
1989 Second Highest Non-overlapping 8-Hour Average

Values given are in ppm.

Ambient Air Quality Standard is 9 ppm (values greater than 9.4 ppm exceed standard).

The highest sample site data is shown for each county.

FIGURE 7
AREAS WITH EXCESSIVE CARBON MONOXIDE

Areas not attaining the CO Ambient Air Quality Standard
 in 1988 and 1989.

Areas where CO control strategies are expected.

FIGURE 8. FREQUENCY OF EXCEEDANCES
OF THE 8-HOUR CARBON MONOXIDE STANDARD

II. D. Ozone

Ozone (O₃) is a seasonal pollutant. Ozone is formed in the atmosphere as a result of many chemical reactions that occur in sunlight (photochemical reactions) mostly during the warmer months. For this reason, most of the ozone monitors only operate April through October. The number of days with high ozone readings from 1989 (readings 0.099 ppm) is shown on a monthly basis in Figure 9. Section III-C provides information about the sources of ozone precursors and health effects of ozone.

Ozone concentrations are measured using EPA reference or equivalent continuous monitors by the state and three local program agencies. There were 19 ozone monitoring sites operated in 1989. All of these sites operated only during the ozone season, April through October. A total of 89,808 O₃ hourly measurements were made during 1989. A summary of these data appears in Table VI. Prior years' data from other sites which did not operate in 1989 are also included in Table VI. For some sites, monitor operations are suspended for two years and operated on the third year. By using this rotational operating strategy, data current within the last three years is available and operating costs are kept to a minimum.

The ozone ambient air quality standard is exceeded when one valid one-hour measurement exceeds 0.124 parts per million (ppm) at a site and a statistically derived expected number of exceedances exceeds one. (0.124 ppm when rounded to two decimal places is not greater than the standard of 0.12 ppm; however, 0.125 ppm, when rounded to two decimal places is 0.13 and is greater than 0.12 ppm.) Three ozone monitoring sites exceeded 0.124 ppm on at least one occasion during 1989. There were six exceedances occurring at these three sites. These six exceedances occurred from June through August.

The 1989 ozone season reported six exceedances, as compared to 12 and 15 reported in 1986 and 1987 respectively. Hot, dry meteorological conditions of 1988 likely contributed to the 69 exceedances measured that year.

According to National Weather Service reports, April and May of 1989 were cooler and wetter

than normal for most of North Carolina. June was one of the wettest months on record, with temperatures two to three degrees above normal in the Piedmont and Coastal Plains. There were no extended periods of extremely hot temperatures in August. An increase in rainfall accounts for some of the decrease in the number of ozone exceedances for 1989, as compared to 1988.

Examination of the second highest measurement each year is a way to simply estimate the attainment status of an area. The second highest one hour values are shown in Figure 10 for the most recent season of data for all monitored areas. The areas for which ozone control strategies must be developed are shown in Figure 11.

Mecklenburg County has been designated as an ozone nonattainment area. [See Appendix C for a discussion of ozone nonattainment in North Carolina.] At three Mecklenburg County ozone monitoring sites, the ambient air quality standard was exceeded three times between June and September as compared to 24 times in 1988. More strict hydrocarbon control strategies are being used in Mecklenburg County to reduce the ozone problem. The control strategies that have been developed as a result of the exceedances measured at the Charlotte area monitors will effect the surrounding counties in the Charlotte-Gastonia-Rock Hill, NC-SC metropolitan statistical area (MSA). These are Cabarrus, Gaston, Lincoln, Mecklenburg, Rowan, Union counties in North Carolina and York county, South Carolina. Listed below are the days of ozone exceedances in 1988 and 1989 for this MSA.

Site	County	# of days	
		.125 ppm	ozone
		'88	'89
37-109-0099	Lincoln	2	na
37-119-1005	Mecklenburg	8	0
37-119-0034	Mecklenburg	7	1
37-119-1009	Mecklenburg	9	2

For the Durham area, the ambient air quality standard was violated at the "downwind" ozone site in Butner three times between June and August 1989 as compared to six times in 1988. Ten exceedances were measured in 1988 for the

Raleigh area at the ozone monitor located in Wake Forest, with no exceedances in 1989. No Raleigh area exceedances occurred "downwind" between June and August, though high levels of ozone were measured on several occasions. Ambient air quality standard control strategies are still being developed for the entire metropolitan statistical area represented by the Butner and Wake Forest ozone sites. The five counties affected are Durham, Granville, Orange, Franklin and Wake. Listed below are the days of ozone exceedances in 1988 and 1989 for this MSA.

Site	County	# of days	
		.125 ppm '88	'89
37-077-0001	Granville	6	3
37-183-2001	Wake	10	0
37-183-0014	Wake	na	0

Monitoring data was collected for ozone, nitrogen dioxide (NO_2) and nonmethane organic carbon (NMOC) at a new site (37-183-0014) in northeast Raleigh area in 1989. The NO_2 and NMOC data will be used in a computerized air quality model to determine which pollutant contributes most to the ozone problem and what control strategies should be developed to reduce the presence of that pollutant.

During the summer of 1989, the ozone monitors located in Forsyth, and Guilford counties measured no exceedances of the ambient air standard as compared to 23 exceedances in 1988. Control strategies are being developed for the Greensboro/Winston-Salem/High Point metropolitan statistical area. Counties in this area are Davidson, Davie, Forsyth, Guilford, Randolph, Stokes and Yadkin. Listed below are the days of ozone exceedances in 1988 and 1989 for this MSA.

Site	County	# of days	
		.125 ppm '88	'89
37-059-0099	Davie	7	na
37-081-0011	Guilford	8	0
37-067-0006	Forsyth	3	0
37-067-0007	Forsyth	3	0
37-067-1008	Forsyth	2	0

An additional ozone monitoring site was installed and operated for the 1989 ozone season for the Fayetteville area. The ozone monitors located in the Fayetteville metropolitan statistical area measured no exceedances in 1989 as compared to three exceedances in 1988. Control strategies are also being developed for Cumberland County.

Site	County	# of days	
		.125 ppm '88	'89
37-051-0001	Cumberland	3	0
37-051-1002	Cumberland	na	0

An ozone monitoring site was installed and operated during the 1988 ozone season in Camden. The Camden site, which also ran in 1989, is located on the northeast coast downwind from the Virginia coast. The purpose of monitoring at this location is to determine the impact of nitrogen oxides and hydrocarbons originating in Virginia on formation of ozone in North Carolina. The Camden site reported no exceedances in the 1988 or 1989 ozone seasons. Since the Camden site is operated only for this special purpose, it is defined as a special purpose monitor and is not part of the regular monitoring network. This site will be operated on a seasonal basis for the next several years.

A preliminary look at the 1990 ozone data is included in Appendix D of this report, "Ozone Exceedances in the Last Three Years." In 1985, there were no reported ozone exceedances in the state. From 1985 through 1988, there were progressively more frequent ozone exceedances with 69 occurring in 1988. More and higher ozone exceedances occurred in more areas in 1988 than any other year on record. However, in 1989, ozone exceedances fell below the number of exceedances reported in 1986. Drought conditions contributed to the high number of exceedances in 1987 and 1988. There were fewer exceedances in 1989 because of overall wetter conditions. Ozone remains the criteria pollutant of greatest concern in North Carolina.

TABLE VI: Most Recent Ozone Data in Parts Per Million (PPM) From All Sites For 1989, 1988 and 1987

Site Number	County	City	Address	OBS	DAILY 1-HOUR MAXIMA			VAIS ≥ 125		
					1st	2nd	3rd	4th	MEAS	EST
1989 Data										
37-021-0030	Buncombe	Asheville	Route 191 S. Brevard	5004	.087	.079	.078	.078	0	0
37-027-0003	Caldwell	Lenoir	Hwy 321 N. Lenoir	4806	.092	.090	.089	.088	0	0
37-029-0099	Camden	Camden	Co. Rds. 1134 & 1136	4205	.095	.082	.081	.080	0	0
37-037-0098	Chatham	Moncure	Allied Fibers Inc.	4593	.096	.092	.089	.089	0	0
37-051-0001	Cumberland	Eastover	Old US Hwy 301 N.	4862	.118	.105	.103	.103	0	0
37-051-1002	Cumberland	Fayetteville	Hope Mills Police Sta.	4796	.099	.098	.094	.094	0	0
37-067-0006	Forsyth	Winston-Salem	Goodwill Church Rd.	4836	.106	.103	.094	.093	0	0
37-067-0007	Forsyth	Winston-Salem	5337 Old Rural Hall Rd.	5067	.101	.098	.098	.093	0	0
37-067-1008	Forsyth	Winston-Salem	3656 Pied. Mem. Drive	4970	.099	.097	.094	.091	0	0
37-077-0001	Granville	Butner	Water Treatment Plt.	4783	.133	.129	.127	.119	3	3.0
37-081-0011	Guilford	Mcleansville	Keely Park	4853	.113	.092	.091	.091	0	0
37-117-0099	Martin	Farmlife	NC 171	4769	.087	.086	.086	.083	0	0
37-119-0034	Mecklenburg	Charlotte	Plaza & Lakewood	4651	.162	.122	.110	.107	1	1.0
37-119-1005	Mecklenburg	Charlotte	Arrowood Blvd	4400	.107	.106	.102	.099	0	0
37-119-1009	Mecklenburg	Charlotte	29 N. at County Line	4492	.147	.132	.113	.110	2	2.2
37-145-0099	Person	Gordonton	US 49 & SR 1102	4634	.089	.088	.087	.084	0	0
37-147-0099	Pitt	Farmville	US 264 Water Tank	4833	.100	.099	.091	.091	0	0
37-183-0014	Wake	Raleigh	E. Millbrook Jr. High	4434	.114	.111	.109	.109	0	0
37-183-2001	Wake	Wake Forest	Hwy 98 Wake Forest	4820	.103	.100	.099	.097	0	0
1988 Data										
37-003-0003	Alexander	Taylorsville	SR 1107 & 1117	1131	.117	.094	.086	.086	7	7.2
37-059-0099	Davie	Fork	Recreation Center	7980	.153	.151	.145	.139	2	2.0
37-109-0099	Lincoln	Iron Station	SR 1315 & SR 131	4875	.141	.126	.117	.115		
37-129-0002	New Hanover	Castle Hayne	Blue Berry Farm	4740	.097	.091	.090	.088		
37-155-0099	Robeson	St. Pauls	Nat. Guard Armory	4748	.120	.119	.112	.111		
1987 Data										
37-065-0099	Edgecombe	Leggett	NC 97	4845	.105	.103	.100	.100		
37-067-0004	Forsyth	Winston-Salem	Old Walkertown Rd.	5051	.129	.103	.100	.098	1	1.0
37-101-0099	Johnston	Micro	SR 2141	4715	.116	.112	.112	.110		

FIGURE 9. FREQUENCY OF HIGH OZONE VALUES
FOR 1989

FIGURE 10
OZONE
1989, 1988, or 1987 Second Highest 1-Hour Averages*

Values given are in ppm.

Ambient Air Quality Standard is 12 ppm (Values greater than .124 ppm exceed standard).

*The most recent year of data are shown, because some sites do not operate every year.

FIGURE 11
AREAS WITH EXCESSIVE OZONE

II. E. Sulfur Dioxide

Sulfur dioxide (SO_2) concentrations were measured using EPA reference or equivalent continuous monitors by the state and two local program agencies. Nine SO_2 monitoring sites reported a total of 65,056 SO_2 hourly measurements during 1989. A summary of these data appears in Table VII. Prior years' data from other sites which did not operate in 1989 are also included in Table VII. For some sites, monitor operations are suspended for two years and operated on the third year. Using this rotating schedule, data current within the last three years are available for use and operating costs are kept to a minimum. Source and health effects information for SO_2 are included in Section III-D.

To determine attainment status with the SO_2 ambient air quality standard, the data are evaluated in three ways: three-hour averages; 24-hour averages; and an annual arithmetic mean. One 24-hour exceedance of the SO_2 ambient air quality standard was reported in 1989. High ambient SO_2 concentrations do not exist over large areas (e.g. county wide), as ozone does. The highest ambient SO_2 concentrations existed for short periods near major SO_2 sources.

On December 23, 1989, the Aurora site in Beaufort County reported a 24-hour average of $406 \mu\text{g}/\text{m}^3$. This value exceeded the 24-hour ambient air quality standard of $365 \mu\text{g}/\text{m}^3$. The monitor that measured this exceedance is located near a major sulfuric acid production facility on the Pamlico River at Lee Creek. The facility reported having maintenance trouble with an existing sulfuric acid plant and required the use of repeated start-up procedures in order to bring the plant back on line. That same facility's own monitor reported a 24-hour exceedance on January 18, 1989. In instances where a single isolated facility is monitored by a network of monitors, a violation of the standard occurs when any monitor in that network reports the second exceedance of the year.

At other sites statewide, SO_2 values were well below the state and federal standards for 1989. It appears that the size of an urban area has little effect on the ambient concentrations of SO_2 in North Carolina. Further, there do not appear to be large seasonal variations in average SO_2 concentrations as evident with carbon monoxide or ozone. Major source characteristics such as type, size, distribution, control devices, operating conditions, and dispersion situations significantly affect the amount of SO_2 present in ambient air. The second highest three-hour values are shown in Figure 12 for the most recent year of data for all monitored areas.

Note:

Block Averages - In 1987, EPA began using three-hour block averages to summarize sulfur dioxide data. Using the block averaging technique, eight three-hour block averages represent each day. These three-hour block averages begin at midnight and continue in multiples of three hours. This report and future reports will use the block average method.

Running Averages - Sulfur dioxide maximum three-hour and 24-hour averages for 1985 and 1986 found in the 1987 and 1988 North Carolina Ambient Air Quality Reports are running averages taken from EPA's Standards Comparisons Report. The running three-hour averages are determined hourly. The highest three-hour values are selected from these running averages. Persons using these older reports may need to consider these different averaging methods. Contact the Air Quality section if block averages are needed.

TABLE VII: Most Recent Sulfur Dioxide Data in Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) From All Sites For 1989, 1988 and 1987

SITE ID	CITY	ADDRESS	NUM OBS	MAX 1-HR		MAX 3-HR		MAX 24-HR		ARITH MEAN
				1st	2nd	1st	2nd	1st	2nd	
1989 Data										
37-013-0003	Beaufort	Aurora	NC Highway 306	7971	1418	1300	956	827	406*	81
37-029-0099	Camden	Camden	County Rd. 1136	1202	112	107	109	69	66	33
37-037-0098	Chatham	Moncure	Moncure Plant S.	7781	632	587	331	329	203	154
37-047-0001	Columbus	Acme	Delco Tel. Substation	8146	403	317	273	241	130	104
37-067-0007	Forsyth	Winston-Salem	Ferguson School	8316	254	246	157	134	67	62
37-067-0022	Forsyth	Winston-Salem	1300 Block Hattie St.	8148	247	242	164	140	70	64
37-081-0010	Guildford	Greensboro	1305 Merritt Dr.	7603	191	191	189	133	56	52
37-117-0099	Martin	Farmlife	NC 171 & State Rd. 1538	8230	65	61	60	55	35	35
37-145-0099	Person	Gordonton	NC 49 & State Rd. 1102	7659	230	211	166	157	72	58
1988 Data										
37-059-0099	Davie	Fork	Recreation Center	7980	219	192	149	111	61	52
37-097-0002	Iredell	Troutman	SR 2350 Troutman	2019	462	274	164	163	71	20
37-109-0099	Lincoln	Iron Station	SR 1315 & SR 1313	7987	327	278	157	137	62	9
37-147-0099	Pitt	Farmville	US 264 Water Tank	8048	136	131	104	101	81	50
1987 Data										
37-003-0003	Alexander	Taylorsville	SR 1107 & 1117	8294	102	90	67	64	43	42
37-065-0099	Edgecombe	Leggett	NC 97	8013	222	90	47	47	26	23
37-097-0002	Iredell	Troutman	SR 2350 Troutman	8223	403	372	204	189	82	60
37-101-0099	Johnston	Micro	US 301 & SR 2141	8065	55	54	51	49	37	29
37-155-0099	Robeson	St. Pauls	National Guard Armory	8194	64	60	46	46	36	35

*There was one 24-hour exceedance of the SO2 ambient air standard at this site for 1989.

FIGURE 12
SULFUR DIOXIDE
 Second Highest 3-Hour Averages for Most Recent Year

Values given are in $\mu\text{g}/\text{m}^3$.

Ambient Air Quality Standard is 1300 $\mu\text{g}/\text{m}^3$.

For counties with more than one sample site, the highest sample site data is shown.

II. F. Nitrogen Dioxide

Nitrogen dioxide (NO_2) concentrations were measured using EPA reference or equivalent continuous monitors at two new sites in 1989 in addition to the two existing sites in Forsyth County. One new site is in Mecklenburg County and operated by the local program, and the other new site is in Wake County and operated by the state. A total of 24,777 NO_2 hourly measurements were reported. A summary of these data appears in Table VIII. Section III-E contains source and health effects information for NO_2 .

Nitrogen dioxide levels measured in North Carolina, based on recent continuous monitor data and a long history of manually collected data, show NO_2 levels are far below federal and

state standards. No exceedances of the NO_2 ambient air quality standard have ever been reported from continuous air monitors operated at state, local, and industrial sites in the state.

While labor-intensive to operate, NO_x monitoring is important in measuring levels of reactive nitrogen oxides. Nitrogen oxides play an important role in the formation of ozone. Therefore, NO_x monitors are currently operated in large metropolitan areas. The NO_x monitoring begun in 1989 will gather data needed to develop an ozone control strategy in the Raleigh/Durham, Charlotte/Mecklenburg and Winston Salem/Greensboro areas. The 1989 NO_2 data is compared with the standard in Figure 13.

TABLE VIII: Nitrogen Dioxide In Parts Per Million (PPM) For 1989

SITE ID	COUNTY	CITY	ADDRESS	OBS	NUM	MAX 1-HR	ARITH
					1st	2nd	MEAN
37-067-0007	Forsyth	Winston-Salem	Ferguson School	8340	.113	.100	.014
37-067-0022	Forsyth	Winston-Salem	1300 Hattie Avenue	8241	.072	.064	.016
37-119-0034	Mecklenburg	Charlotte	Plaza/Lakedell	3333*	.069	.067	.019
37-183-0014	Wake	Raleigh	E. Millbrook Jr. High	4863*	.070	.066	.012

*Monitor became operational mid-year.

FIGURE 13. 1989 NITROGEN DIOXIDE
COMPARISON TO ANNUAL STANDARD, .053 PPM

II. G. Lead

The state and local program agencies have not performed routine lead (Pb) analysis in North Carolina since 1982. This ambient air lead monitoring was stopped as a result of the low values measured and a continuing decrease in the lead concentrations being reported. The 1982 ambient lead concentrations were approximately one-half of the 1979 levels. Lead sources and health effects are discussed in III.F.

Five sites from the state and local agencies provide particulate filter samples to EPA. EPA performs lead analysis on these filters as part of the National Particulate Analysis program (NPA) formerly the National Filter Analysis Network (NFAN). The most recent year of data available is 1987. The 1987 data is included below in Table

IX. Lead concentrations in 1987 are approximately one-quarter of the 1982 levels. The 1988 lead concentrations are expected to continue to decrease, but at a slower rate. No quarterly arithmetic means for lead concentrations are yet available for 1988 or 1989 from EPA.

This decrease in the ambient air lead concentrations is due to the reduction and elimination of leaded gasoline used in North Carolina. Thus, less lead is emitted from cars burning leaded fuel.

Other sources of lead in the ambient environment are from sandblasting lead paint from water tanks, bridges, and overpasses. Ambient lead can also come from coal combustion and acid battery manufacturing plants.

TABLE IX: Lead in Micrograms Per Cubic Meter ($\mu\text{g}/\text{m}^3$) For 1987

SITE ID	COUNTY	CITY	ADDRESS	QUARTERLY ARITH MEANS				MEANS > 1.5
				1st	2nd	3rd	4th	
37-063-0001	Durham	Durham	300 East Main St.	.05	.04	.03	.05	0
37-067-0021	Forsyth	Winston-Salem	Sixth & Broad St.	.06	.03	.02	.03	0
37-081-0009	Guilford	Greensboro	Edgeworth & Bellemeade St.	.06	.04	.03	.03	0
37-119-0001	Mecklenburg	Charlotte	600 East Trade St.	.06	.04	.11	.11	0
37-183-0003	Wake	Raleigh	Fire Station #9, Six Forks Rd.	.04	.03	.03	.03	0

III. DESCRIPTION OF POLLUTANTS

III. A. Particulate Matter

Atmospheric particulate matter is defined as any airborne material, except uncombined water, (water, mist, steam, etc.) which exists in a finely divided form as a liquid or solid at standard temperature and pressure (25° C and 760 mm mercury) and has an aerodynamic diameter of less than 100 micrometers. Currently, the monitoring network is measuring two sizes of particulate matter - total suspended particulate (TSP), and PM-10. Total suspended particulate is any particulate matter measured by the method described in EPA regulation 40CFR50, Appendix B and is generally believed to be particles having an aerodynamic diameter of 45 micrometers or less. A 21-year history of TSP measurements exists in North Carolina.

PM-10 is defined as particulate matter with an aerodynamic diameter of less than or equal to a nominal 10 micrometers as measured by the method described in EPA regulation 40CFR50, Appendix J. PM-10 monitoring was conducted in North Carolina during 1989. More PM-10 monitoring is being planned for the future. On July 31, 1987, the Environmental Protection Agency adopted new ambient air quality standards for PM-10 which replace the national TSP ambient air quality standards. However, the state TSP ambient air quality standard has been retained. The state adopted the new PM-10 standard effective July 1, 1988.

Particulate Sources

Particulates are emitted by many of man's activities, such as fuel used in combustion, motor vehicle operation, industrial processes, grass mowing, agricultural tilling and open burning. Natural sources include wind-blown dust, forest fires, volcanic eruptions and vegetation which releases pollen.

Particles that are emitted directly from a source may be either fine or coarse, but particles which are formed in the atmosphere will usually be fine. Generally, coarse particles (2.5 - 60 micrometers) have very slow settling velocities

and are characterized as suspended particulate matter. Fine particles (less than 2.5 micrometers) typically originate by condensation of materials produced during combustion or atmospheric transformation.

Particulate Effects

Health effects of particulate matter include: effects on the breathing system, aggravation of existing lung and heart disease, effects on lung clearance; changes in form and structure of organisms; and development of cancer. Individuals most sensitive to the effects of particulate matter include: individuals with chronic obstructive lung or heart disease; those suffering from the flu; asthmatics; the elderly; children; and mouth breathers. Health effects from inhaled particles are influenced by the depth of penetration of the particles into the respiratory system, the amount of particles deposited in the respiratory system, and by the biological reaction to the deposited particles. The risks of adverse health effects are greater when particles enter the tracheobronchial and alveolar (bronchial tubes and lungs) portions of the respiratory system. Small particles can penetrate into these deeper regions of the respiratory system. For the particles larger than 10 micrometers, healthy respiratory systems can trap the particles more efficiently before they move deep into the system and can more effectively remove those that do move deep into the system.

Particulate matter can also form a film on plant leaves, reducing sunlight and subsequently interfering with photosynthesis. Other effects of particles include soiling and degradation of property, which can be costly in terms of cleaning and maintaining surfaces. Reduction of visibility occurs when small particles absorb or scatter visible light. Visibility is a national concern, particularly in areas such as national parks, historic sites, and scenic attractions visited by sightseers.

III. B. Carbon Monoxide

Carbon monoxide (CO) is the most commonly occurring air pollutant. CO is a colorless, and poisonous gas produced by incomplete burning of carbon-containing fuel. It is estimated that total CO emissions to the atmosphere comprise approximately 60 percent of all pollutant emissions in North Carolina.

CO Sources

Most atmospheric CO is produced by incomplete combustion of fuels used for vehicles, space heating, industrial processes and solid waste combustion. Transportation activities account for the majority of the CO emissions. Boilers and other fuel burning heating systems are also significant sources of CO.

CO Effects

Breathing carbon monoxide affects the oxygen carrying capacity of the blood in both sick and healthy individuals. Hemoglobin in the blood attaches to CO more readily than it does to oxygen, thus depriving the body of vital oxygen.

Carbon monoxide diminishes the function of even healthy individuals. Individuals with anemia, lung, and heart diseases are particularly sensitive to CO effects. At low concentrations, mental function, vision, and alertness are affected. At high concentrations, CO exposure can increase fatigue, reduce work capacity, and may adversely effect fetal development. Cardiac damage may result from chronic exposure to CO at levels as low as 70 ppm (80 mg/m^3). Other health effects associated with exposure to CO include central nervous system effects and pulmonary function difficulties.

Ambient concentrations apparently do not adversely affect vegetation or materials. The effects on animals are similar to those on humans.

III. C. Ozone

The ozone ambient air quality standards and statewide ozone monitoring are concerned with the ozone concentrations in the lower atmosphere where we live and breathe. Ozone in the stratosphere acts to shield the earth from harmful effects of ultraviolet radiation. However, at

ground level, high concentrations of ozone are a major health and environmental concern. Ozone in the lower atmosphere is harmful to people, animals, vegetation, and materials even in low concentrations. Ozone has become the most widespread and serious criteria air pollutant problem in North Carolina.

Ozone Sources

Ozone (O_3) is the major compound of the complex mixture of compounds known as photochemical oxidants. Ozone is not usually emitted directly into the atmosphere as are the other criteria pollutants, but is formed by a series of complex reactions involving hydrocarbons, nitrogen oxides and sunlight. Ozone concentrations are higher during the daytime in late spring, summer and early autumn when the temperature is above 60°F and the sunlight is more intense. North Carolina's ozone season is April through October.

Two natural sources of ozone are electrical discharge during thunderstorms and solar radiation in the stratosphere. Those two sources are not believed to be significant in the lower atmosphere.

Ozone Effects

Ozone is a pulmonary irritant and affects the respiratory mucous membranes, as well as other lung tissues and respiratory functions. Studies have demonstrated ozone impairment of the normal function of the lung, causing shallow, rapid breathing and a decrease in pulmonary function. Other symptoms of ozone exposure include chest tightness, coughing and wheezing. People with asthma, bronchitis, or emphysema will probably experience breathing difficulty when exposed to short-term concentrations between 0.15 and 0.25 ppm. With continued or repeated long-term exposure, permanent lung structure damage may occur even in healthy people. Ozone has also been shown to interfere with the immune system function in animals. Recent studies have indicated that ozone concentrations of less than 0.12 ppm may have health effects on certain people. The federal EPA is continuing to evaluate the health effects data.

Ozone accelerates the aging of many materials, causing rubber cracking, dye fading, paint erosion, and plant damage. In general, ozone injury to vegetation develops initially at the tips of young leaves and becomes more widespread as the leaves mature. The most common ozone symptoms on broad-leaved plants are small flecks visible on the upper leaf surface. This problem has been severe on sensitive varieties of tobacco and is generally referred to as weather fleck. Some of the agricultural and garden vegetation affected include tobacco, corn, soybeans, tomato, rye, wheat, beans, potatoes, melons, alfalfa, spinach, onions and grapes. Other vegetation affected includes gladiolus, azalea, eastern white pine, loblolly pine, Virginia pine, locust, white oak and poplar. Many of these plants are of economic importance in North Carolina. Adverse effects on sensitive vegetation have been observed from exposure to ozone concentrations of 0.05 ppm ($100 \mu\text{g}/\text{m}^3$) for four hours.

Good Ozone

Not all ozone is bad. A high concentration of ozone in the upper atmosphere is needed to absorb the high energy sunlight (ultraviolet light). Without sufficient upper atmospheric ozone, more ultraviolet light will reach the surface of the earth. Too much exposure to ultraviolet light has been shown to cause skin cancer. It is believed many air pollutants are causing depletion of the upper atmospheric ozone. One type of chemical, chlorofluorocarbons, is believed to play a major part in the upper atmospheric ozone depletion. International studies and conferences are underway to develop strategies to reduce this problem.

III. D. Sulfur Dioxide

More than 90 percent of sulfur oxide emissions occur as sulfur dioxide (SO_2); the balance occurs as sulfur trioxide (SO_3) and various forms of sulfates. For this reason nearly all sulfur oxide ambient monitoring nationwide is for sulfur dioxide. It is a colorless gas that can be detected by taste at concentrations of 0.38 to 1.15 ppm.

SO_2 Sources

The main sources of SO_2 are the combustion of fossil fuels containing sulfur compounds and the

manufacturing of sulfuric acid. Other sources include refining of petroleum and smelting of sulfur containing ores.

SO_2 Effects

The most obvious health effects of sulfur dioxide are irritation and inflammation of body tissues that are contacted by the gas. Sulfur dioxide can increase the severity of existing respiratory diseases such as asthma, bronchitis, or emphysema. Breathing SO_2 causes bronchial constriction, which results in increased resistance to air flow, reduction of air volume and increased respiratory rate and heart rate. Asthmatics showed increases in airway resistance after exposures of only five to 10 minutes of SO_2 concentrations even below 0.5 ppm ($1300 \mu\text{g}/\text{m}^3$). The federal EPA is evaluating the health effects data and is considering adoption of a more "restrictive" one-hour ambient air quality standard. Transformation products of SO_2 , such as sulfuric acid aerosol and fine particulate sulfates, may also cause significant health problems.

Another effect of SO_2 transformation products is the reduction of visibility. Sulfates are a major component of atmospheric fine particulate material, and because some sulfates have a water absorbing capacity, their impact on visibility is greatly increased at high humidities. Observations of widespread hazes in the eastern United States appear to be increasing with SO_2 emissions.

Another of the principal concerns is the suspected role of sulfur dioxide in causing acid rain, which is usually observed in regions of high sulfate concentrations. Acid rain can lower the pH of soils and natural waters, cause mineral leaching, damage vegetation and deplete fish populations in some lakes.

Sulfur dioxide can damage many types of vegetation. The injury symptoms usually consist of a bleached appearance and can occur both between the veins and on the margins. Many plants of economic importance are sensitive to SO_2 , including cotton, sweet potatoes, wheat, cucumber, alfalfa, peas, oats, gladiolus, tulips, blue grass, violet, zinnia, apple trees and several types of pine trees.

III. E. Nitrogen Oxides

There are several oxides of nitrogen in the atmosphere, but the most prevalent ones are nitric oxide (NO) and nitrogen dioxide (NO₂). Nitrogen oxides play a role in the formation of ozone during the summer months. For this reason, new monitoring sites are scheduled to be established in areas exceeding the ozone standard.

NO₂ Sources

The most important nitrogen oxide emissions occur as a result of man's burning of fossil fuels such as coal, oil and gasoline. Air is used to support most combustion processes. The nitrogen in air is oxidized as well as the fuel being burned which forms nitrogen oxide compounds. Nitrogen oxides are emitted from combustion sources primarily as nitric oxide (NO). Through reactions with other atmospheric compounds such as hydrocarbons and ozone, the NO is converted to nitrogen dioxide. Nitrogen dioxide may undergo further transformation into gaseous nitric acid (HNO₃) and nitrate particulates.

Recent research conducted by the Georgia Institute of Technology, has indicated the role of nitrogen oxide compounds in the formation of ozone may be very significant. The control of NO_x emissions, rather than hydrocarbon emissions, may be more effective in the control of ozone. Nitrogen oxides may need improved controls even though the NO₂ standard is being met.

NO₂ Effects

Nitrogen dioxide has effects on human health, especially the sensitive members of the population. Asthmatics and children are likely to be affected by NO₂ concentrations as low as 0.5 ppm. Nitrogen oxides also indirectly affect human health by their contribution to the formation of ozone.

Some types of vegetation are very sensitive to nitrogen dioxide; they include oats, alfalfa, tobacco, peas and carrots. The one primary symptom of chronic NO₂ exposure is chlorosis (yellowing), while acute NO₂ exposure usually causes the appearance of irregular shaped lesions within the leaves. Earliest indications of injury

are gray-green water-soaked areas located on the upper leaf surface.

Nitrogen dioxide and particulate nitrates are among the pollutants that cause visibility impairment. In high concentrations NO₂ gas is reddish-brown and it is thought to contribute a significant portion of the brownish coloration often observed in polluted air in the colder months.

Nitrogen oxides also contribute to acid deposition by forming nitric acid. It has been estimated that nitric acid comprises approximately 25 to 30 percent of the acidity in precipitation.

III. F. Lead

Lead compounds exist in the atmosphere as gases or particles.

Lead Sources

For many years, the major source of atmospheric lead has been the combustion of leaded gasoline (tetraethyl lead is added as an antiknock agent). The continued decrease in the amount of leaded fuels and the decreased concentration of lead in those fuels have minimized the impact of gasoline combustion as a large lead source. Coal combustion and lead emissions from sandblasting of bridges, overpasses, and water tanks, have the potential to be the most significant sources of lead air contamination in the state. Lead exists in very small quantities as an impurity in coal. A portion of the lead from coal combustion is collected by control equipment on large boilers. The Department of Transportation (DOT) is studying ways to reduce lead emissions from sandblasting of bridges and overpasses.

Another source of lead includes battery manufacturers. Lead is also used in paints, insecticides and newspaper inks.

Lead Effects

Lead (Pb) persists and accumulates in the environment and in the human body. It enters the body through eating and breathing and is eventually absorbed into the blood stream and distributed to all body tissues. Exposure to low

concentrations interferes with specific enzyme systems and blood production. It is also believed to be a cause of kidney and nerve cell damage. Brain damage has been documented in cases of severe lead poisoning in children. Also noted were headaches, restlessness, tremors and

general symptoms of mental retardation. Convulsions are not uncommon and may be followed by coma. People at greatest risk include battery workers, solderers, sandblasters, and small children who play near lead sources.

IV. Ambient Air Monitoring Program Description

Ambient monitoring and analysis of samples were conducted by the Division of Environmental Management and four local air pollution control programs. These programs are listed in Appendix A. The collected air monitoring data are used to determine if air quality standards are being met, to assist in enforcement actions, to determine the improvement or decline of air quality, and to determine the extent of allowable industrial expansion. The sites are listed in alphabetic order by county in Table X at the end of this section. A map showing the general locations of the ambient air monitoring sites is shown in Figure 14.

Specific monitor siting involves several considerations: size of the area represented; distance from roadways and nearby sources; unrestricted air flow; safety; availability of electricity; and security.

All sites have a defined monitoring objective and annual evaluations are made to ensure that the objectives are met. The four basic monitoring objectives are:

1. to determine the highest concentration expected in an area,
2. to determine representative concentrations in areas of high population density,
3. to determine the impact of significant sources or source categories on ambient air quality, and
4. to determine general background concentration levels.

All monitors have known precision, accuracy, interferences and operational parameters. The monitors, as well as all measurement devices, are carefully calibrated at predetermined frequencies, varying from daily to quarterly. Measurements are traceable to the National Institute of Standards and Technology (NIST, formerly National Bureau of Standards) when standards are available.

Standard operating procedures are followed in monitoring and analyses. Field personnel visit the manual sites once every sixth day to replace sample media and check the operation and calibration of the monitors. Continuous monitors are checked at least twice weekly for correct instrument operation.

Quality assurance activities determine the quality of the collected ambient data, improve the quality of the data and evaluate how well the monitoring system operates. The objectives of the quality assurance activities are to produce high quality air pollution data with defined completeness, precision, accuracy, representativeness and comparability.

At most sites, microprocessors are being used to collect the data. The system assembles the data for submission to the U.S. Environmental Protection Agency. This enhances data validity, minimizes travel cost, and allows real-time data to be available by computer polling when needed. Numerous checks are performed to ensure that only valid data are reported.

FIGURE 14
LOCATIONS OF MONITORING SITES

Sites with more than one monitor are shown with overlayed symbols.

V. AIR QUALITY INDEX

In addition to this annual data report, up-to-date air quality information is available 24-hours a day in four areas of the state through the use of the air quality index (AQI) telephone numbers. These numbers are listed below:

Charlotte 704-333-SMOG
Durham 919-733-DATA
Fayetteville 919-486-9413
Raleigh 919-733-DATA

Citizens of these areas can check the quality of the air in their area on a nearly real-time basis by calling the listed telephone number. The Durham AQI is included as a part of the Raleigh AQI and is a long distance call from Durham, but the other numbers are local calls from the respective areas.

When any of the numbers are called, a recorded message will provide the current air quality report, which is updated every four hours based on information from the local area air pollutant monitors.

The report provides the air quality index for the pollutant with the highest concentration and a word describing the expected effect of the pollutant on human health. The descriptions are good, moderate, unhealthy, very unhealthy, and hazardous. Index levels do not normally exceed the unhealthy range (AQI>199), with most reports in the good-moderate range, between zero and 100. A nationwide method of assigning the index numbers is used so travelers from other parts of the country can interpret a local index.

The index rates the air quality from zero to 500. Index numbers of zero to 49 are considered good and indexes of 50-99 are considered moderate with no adverse health effects expected and no protective actions recommended.

An index of 100-199 is unhealthy and can produce mild aggravation of symptoms in susceptible persons and possible irritation in healthy persons. People with existing heart or lung ailments should reduce physical exertion and outdoor activity when the index is in this range.

Ratings of 200 to 299 are considered very unhealthy and can produce significant aggravation of symptoms and decreased exercise tolerance in persons with heart or lung disease. A variety of symptoms may occur in healthy persons. Elderly people and those with existing heart or lung problems should stay indoors and reduce physical activity.

An index above 299 is considered hazardous. When an index ranges from 300 to 399, premature onset of certain diseases can be expected in addition to significant aggravation of symptoms and decreased exercise capability in healthy persons. Elderly people and individuals with existing diseases should stay indoors and avoid physical exertion. The general population should avoid outdoor activity when the air quality index exceeds 299.

An index between 400 and 500 can be expected to cause premature death of ill and elderly people. Healthy persons will experience adverse symptoms that affect their normal activity. All persons should remain indoors, keeping windows and doors closed, and everyone should minimize physical exertion and avoid motor vehicle traffic.

An example of an Air Quality Index Report is as follows:

This is the North Carolina Department of Environment, Health and Natural Resources Air Quality Report.

The air quality index for most of Cumberland County is 88 for the four-hour period ending at 12 noon. This index is regarded as moderate. The responsible pollutant is ozone.

This report will be updated at 4 pm. Thank you for calling.

AIR QUALITY INDEX

HAZARDOUS	500
	400
VERY UNHEALTHFUL	300
UNHEALTHFUL	200
MODERATE	100
GOOD	50
	0

TABLE X: North Carolina Ambient Air Monitoring Sites Operating in 1989

County	Site	Site Number	Pollutant(s)
Alamance	Burlington, 1136 E. Webb Ave.	37-001-0001	TSP
Alexander	Taylorsville, SR 1107 & 1117	37-003-0003	TSP
Beaufort	Aurora, NC HWY 306	37-013-0003	SO ₂
Beaufort	Washington, 400 E. Third St.	37-013-1003	TSP
Brunswick	Shallotte, State Road 1163	37-019-0004	PM-10
Buncombe	Airport, Airport Rd.	37-021-0025	TSP
Buncombe	Asheville Health & Welfare Bldg.	37-021-0003	TSP, PM-10
Buncombe	Candler, Candler	37-021-0027	TSP
Buncombe	Asheville, Rt. 191 S. Brevard Rd.	37-021-0030	O ₃
Buncombe	Grove Stone, Grove Stone	37-021-0026	TSP
Cabarrus	Kannapolis, Floyd St.	37-025-0004	TSP
Caldwell	Lenoir, HWY 321 N.	37-027-0003	TSP, O ₃
Camden	Camden, County Rd. 1136	37-029-0099	SO ₂ , O ₃
Carteret	Morehead City, Arendell & 4th	37-031-0003	TSP
Catawba	Hickory, 1650 1st Street	37-035-0004	TSP
Chatham	Moncure, Moncure Plant S.	37-037-0098	SO ₂ , O ₃
Columbus	Acme, Acme-Delco	37-047-0001	TSP, SO ₂
Cumberland	Eastover, Old U.S. Hwy 301	37-051-0001	O ₃
Cumberland	Hope Mills, Rockfish Rd., Police Station	37-051-1002	O ₃
Cumberland	Fayetteville, 3296 Village Dr.	37-051-0004	TSP, PM-10
Cumberland	Fayetteville, ABC Board	37-051-0007	CO
Davidson	Lexington, S. Salisbury St.	37-057-0002	TSP
Davidson	Thomasville, City Hall 7 W. Guilford	37-057-1001	TSP
Durham	Durham, Old Sears Bldg, Dillard & Main St.	37-063-0001	TSP, PM-10
Durham	Durham, Old Health, Roxboro Rd. & Main St.	37-063-0008	CO
Durham	Durham Park, 1639 University Dr.	37-063-0010	CO
Edgecombe	Rocky Mount, Leggett Rd. WTP	37-065-0002	TSP
Forsyth	Kernersville, Bodeheimer St.	37-067-1001	TSP, PM-10
Forsyth	Walkertown, Grubbs Rd.	37-067-0001	TSP
Forsyth	Belews Creek Rd., Goodwill Church	37-067-0006	O ₃
Forsyth	Winston-Salem, Ferguson Sch., 5337 Old Rural	37-067-0007	SO ₂ , NO ₂ , O ₃
Forsyth	Winston-Salem, Friends Church, Sixth & Broad	37-067-0021	TSP
Forsyth	Winston-Salem, 1401 Corporation Parkway	37-067-0023	CO, TSP
Forsyth	Winston-Salem, Hanes Park, Indiana Ave.	37-067-0009	TSP, PM-10
Forsyth	Winston-Salem, Hutton St.	37-067-0015	TSP
Forsyth	Winston-Salem, Main St.	37-067-0018	CO
Forsyth	Winston-Salem, Queen St. & Leisure Lane	37-067-0019	CO
Forsyth	Winston-Salem, 720 Ridge Ave.	37-067-0013	TSP, PM-10
Forsyth	Winston-Salem, Silas Creek Pkwy	37-067-0020	TSP, PM-10
Forsyth	Winston-Salem, Stadium Dr.	37-067-0014	TSP, PM-10
Forsyth	Winston-Salem, 13th & Hattie St.	37-067-0022	SO ₂ , NO ₂
Forsyth	Winston-Salem, 3657 Piedmont Memorial Dr.	37-067-1008	O ₃
Gaston	Gastonia, Rankin Lake Rd.	37-071-0014	TSP
Granville	Butner, Water Treatment Plant	37-077-0001	O ₃
Guilford	Greensboro, Edgeworth & Bellemead	37-081-0009	TSP, PM-10
Guilford	Greensboro, 409 Friendway Dr.	37-081-0012	TSP
Guilford	Greensboro, 1305 Merritt Dr.	37-081-0010	TSP, SO ₂
Guilford	High Point, 650 Francis St.	37-081-0004	TSP
Guilford	High Point, National Guard Armory 2210	37-081-1003	TSP
Guilford	High Point, East Green & S. Centennial	37-081-1005	TSP
Guilford	McLeansville, Keely Park	37-081-0011	O ₃
Guilford	Greensboro, Latham Park, 401 W. Wendover	37-081-1011	CO

(Table X: Continued Next Page)

TABLE X: North Carolina Ambient Air Monitoring Sites Operating in 1989 (Continued)

County	Site	Site Number	Pollutant(s)
Halifax	Roanoke Rapids, NE Corner of 5th & Carolina	37-083-0002	TSP
Harnett	Dunn, Municipal Bldg.	37-085-0001	TSP
Haywood	Canton, Canton Fire Dept.	37-087-0002	TSP
Haywood	Hazelwood, Brown Ave.	37-087-0006	TSP
Henderson	Hendersonville, US 25 & US 64	37-089-1005	TSP
Lenoir	Kinston, 2700 Market St.	37-107-0003	TSP
Lincoln	Lincolnton, Jail	37-109-0002	TSP
McDowell	Marion, Courthouse	37-111-0002	TSP
Martin	Farmlife, State R. 1538 & NC 171	37-117-0099	SO ₂ , O ₃
Mecklenburg	Arrowood, 400 Arrowood Blvd.	37-119-1005	TSP, O ₃
Mecklenburg	Cabarrus Co. Line, 29 N.	37-119-1009	O ₃
Mecklenburg	Charlotte, Central Ave.	37-119-0032	CO
Mecklenburg	Charlotte, 600 E. Trade St.	37-119-0001	TSP
Mecklenburg	Charlotte, 800 S. Graham St.	37-119-0002	TSP
Mecklenburg	Charlotte, Co. Health Dept., 1200 Blyth	37-119-0011	TSP
Mecklenburg	Charlotte, Federal Reserve	37-119-0029	CO
Mecklenburg	Charlotte, 2136 Remount Rd.	37-119-0010	TSP, PM-10
Mecklenburg	Charlotte, 620 Moretz St.	37-119-0003	TSP
Mecklenburg	Charlotte, Greenville Neighborhood Ctr.	37-119-0035	CO
Mecklenburg	Charlotte, 1501 N I-85	37-119-0028	TSP
Mecklenburg	Charlotte, 415 E. Woodlawn	37-119-0037	CO
Mecklenburg	Charlotte, 301 N. Tryon St.	37-119-0038	CO
Mecklenburg	Charlotte, Plaza Rd. & Lakedale	37-119-0034	CO, O ₃ , NO ₂
Mecklenburg	Charlotte, Woodlawn VFD	37-119-0026	TSP
Mecklenburg	Charlotte, W. Mecklenburg, 7400 Tuckasegee	37-119-0901	TSP
Mecklenburg	Davidson, Filter Plant	37-119-1001	TSP
Mecklenburg	Duke Power, Neck Road	37-119-1006	TSP
Mecklenburg	Huntersville, Holbrook Rd.	37-119-1003	TSP
Mecklenburg	Mint Hill, Telephone Substation	37-119-2001	TSP
Mitchell	Spruce Pine, Summit St.	37-121-0001	TSP
New Hanover	Wilmington, Ninth & Orange	37-129-0005	TSP, PM-10
Onslow	Jacksonville, 2553 Onslow Dr.	37-133-0004	TSP
Pasquotank	Elizabeth City, N. Wilson St.	37-139-0001	TSP
Person	Gordonton, SR 1102 & NC 49	37-145-0099	O ₃ , SO ₂
Pitt	Farmville, US 264	37-147-0099	O ₃
Pitt	Greenville, N. Plant St.	37-147-0002	TSP
Randolph	Asheboro, 1462 Winslow St.	37-151-0003	TSP
Robeson	Lumberton, S. Water St.	37-155-0003	TSP
Rowan	Salisbury, Church St.	37-159-1005	TSP
Scotland	Laurinburg, Laurinburg WTP	37-165-0003	TSP
Transylvania	Brevard, HWY 64	37-175-0002	TSP
Wake	Raleigh, Crabtree HWY 70 West	37-183-0013	CO
Wake	Raleigh, Person St., 420 S. Person St.	37-183-0011	CO
Wake	Raleigh, North Hills, Six Forks Rd.	37-183-0003	TSP, PM-10
Wake	Raleigh, 309 S. Wilmington St	37-183-0010	CO
Wake	Raleigh, E. Millbrook Junior High	37-183-0014	O ₃ , NO ₂
Wake	Wake Forest, HWY 98 Wake Forest Rd.	37-183-2001	O ₃
Washington	Plymouth, Old Acre Rd.	37-187-0002	TSP
Wayne	Goldsboro, HWY 70 W. Patrol Sta.	37-191-0004	TSP
Wilson	Wilson, S.W. Corner of Kenan & Pine St.	37-195-0002	TSP

VI. ACID RAIN

Acid rain is produced when nitrate and sulfate ions from automobile and industrial sources are released into the upper atmosphere, undergo a reaction with moisture in the air and are deposited as acid precipitation. Acid ions are produced when sulfur dioxide and nitrogen oxides reach equilibrium with water to form sulfuric acid and nitric acid.

Many crops in North Carolina are sensitive to rain precipitation which is considered more acidic than "normal." Forests are subject to mineral loss from acid rain exposure and may also suffer root damage. Acid fogs and mists, typical in the mountains of North Carolina, can expose trees and plants to even higher acid concentrations and cause direct damage to foliage. Lakes, rivers and streams that are too acidic impede fish and plant growth.

Since 1978, routine acid rain monitoring has been performed in North Carolina and the nation by the National Atmospheric Deposition (NADP) and the National Trends Network (NTN) which merged with NADP in 1982.

There are seven NADP/NTN monitoring sites in North Carolina and two mountain sites within 10 miles of the North Carolina's western border. EPA's National Dry Deposition Network (NDDN) shares one of these sites as a collocated site with NADP/NTN at Ceweeta, North Carolina. There is also an NDDN site in Cranberry near Boone. An NDDN site at Candor near Troy is slated for 1991 operation. The data from these sites are shown in Table XI and Figure 15.

Acid deposition monitoring is conducted using a wet/dry bucket type sampler. When

rain begins to fall, a sensor is activated and an automatic metal lid covers and protects the dry sample, leaving the "wet" bucket exposed to collect precipitation.

Acid precipitation is measured using a "pH scale" which is a mathematical term for the negative logarithm of the hydronium ion concentration of water. The hydronium ion is measured on a scale from 1 to 14, with 1 being extremely acidic and 14 being extremely basic. Vinegar has a pH of approximately 2.8, lemon juice has a pH of approximately 2.3 and ammonia has a pH of approximately 12.

A neutral water sample, with equal acid and base ions has a pH of 7. Pure water in equilibrium with the air is slightly acidic and has a pH of approximately 5.6. The logarithmic scale is measured in orders of magnitude - such that a pH of 6 is ten times more acidic than a pH of 7. A pH of 9 is one hundred times more basic than a pH of 7.

In 1989, the average annual pH of rainfall for the acid rain monitors operated by the NADP/NTN/NDDN in North Carolina ranged between 4.4 and 4.9, or about ten times more acidic than "normal." Some rainfalls have been more than one hundred times more acidic than normal.

The annual pH average for the 10 sites in and around North Carolina for 1989 is 4.56.

Monitoring for acid rain will help to identify atmospheric deposition trends. Hopefully continued monitoring will reflect efforts made towards reduction of sulfates and nitrates from mobile and industrial sources.

pH SCALE

STATE AVERAGE RAINFALL

NORMAL RAINFALL

VINEGAR

WATER

AMMONIA

TABLE XI: 1989 NATIONAL ATMOSPHERIC DEPOSITION PROGRAM/NATIONAL TRENDS NETWORK

County	Site	Milligrams per Liter											
		% Comp. ¹	Ca	Mg	K	Na	NH4	NO3	Cl	SO4	pH	Cond. ²	Inches
Wake	Finley	98	.07	.03	.07	.14	.39	1.14	.27	1.86	4.52	18.7	57.1
Yancey	Clingman	90	.04	.01	.01	.06	.15	.55	.10	1.17	4.68	11.6	71.2
Sevier, Tn.	Elkmont	82	.09	.02	.03	.08	.19	.89	.13	1.63	4.52	16.3	69.1
Smyth, Va.	White Top Mtn.	83	.06	.01	.01	.04	.17	.75	.07	1.44	4.59	14.2	56.2
Scotland	Jordan Creek	92	.08	.02	.24	.13	.22	1.13	.25	1.76	4.45	19.4	56.5
Sampson	Clinton	93	.06	.03	.03	.24	.21	.93	.44	1.53	4.58	16.3	50.2
Rowan	Piedmont	99	.09	.03	.08	.10	.30	1.16	.19	2.15	4.45	20.7	47.4
Macon	Coweeta ⁺	91	.05	.01	.03	.08	.16	.65	.14	1.16	4.66	12.2	92.0
Bertie	Lewiston	98	.08	.04	.05	.18	.15	.87	.36	1.42	4.59	15.4	57.2
Avery	Cranberry ⁺⁺	92	.07	.01	.01	.03	.12	.18	.08	1.45	4.56	19.2	42.7
Montgomery	Candor ⁺	not operating in 1989											

*Cranberry did not operate for the first quarter of 1989

+ NDDN sites

1 completeness

2 conductivity

FIGURE 15
pH values of North Carolina NADP/NTN/NDDN sites for 1989

Appendix A
AIR POLLUTION MONITORING AGENCIES
(May 1991)

NORTH CAROLINA HEADQUARTERS

Division of Environmental Management
Archdale Building
512 North Salisbury Street
P O Box 29535
Raleigh, North Carolina 27604
(919) 733-3340

NORTH CAROLINA REGIONAL OFFICES

Asheville Regional Office
Interchange Building
59 Woodfin Place
Asheville, North Carolina 28801
(704) 251-6208

(Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Graham, Haywood, Henderson, Jackson, Macon, Madison, McDowell, Mitchell, Polk, Rutherford, Swain, Transylvania, and Yancey Counties)

Fayetteville Regional Office
Wachovia Building
Suite 714
Fayetteville, North Carolina 28301
(919) 486-1541

(Anson, Bladen, Cumberland, Harnett, Hoke, Montgomery, Moore, Robeson, Richmond, Sampson, and Scotland Counties)

Mooresville Regional Office
PO Box 950
Mooresville, North Carolina 28115
(704) 663-1699

(Alexander, Cabarrus, Catawba, Cleveland, Gaston, Iredell, Lincoln, Mecklenburg, Rowan, Stanly, and Union Counties)

(Continued Next Page)

Raleigh Regional Office
3800 Barrett Drive
PO Box 27687
Raleigh, North Carolina 27611
(919) 733-2314

(Chatham, Durham, Edgecombe, Franklin, Granville, Halifax, Johnston, Lee, Nash, Northhampton, Orange, Person, Vance, Wake, Warren, and Wilson Counties)

Washington Regional Office
PO Box 1507
Washington, North Carolina 27889
(919) 946-6481

(Beaufort, Bertie, Camden, Chowan, Craven, Currituck, Dare, Gates, Greene, Hertford, Hyde, Jones, Lenoir, Martin, Pamlico, Pasquotank, Perquimans, Pitt, Tyrrell, Washington, and Wayne Counties)

Wilmington Regional Office
1275 Cardinal Drive Extension
Wilmington, North Carolina 28405-3345
(919)-395-3900

(Brunswick, Carteret, Columbus, Duplin, New Hanover, Onslow and Pender Counties)

Winston-Salem Regional Office
Suite 100
8025 North Point Boulevard
Winston-Salem, North Carolina 27106
(919) 896-7007

(Alamance, Alleghany, Ashe, Caswell, Davidson, Davie, Forsyth, Guilford, Rockingham, Randolph, Stokes, Surry, Yadkin, Watauga and Wilkes Counties)

>
(Continued Next Page)

LOCAL AGENCIES

Western North Carolina Regional Air Pollution Control Agency

(Buncombe & Haywood Counties)
Buncombe County Courthouse Annex
Asheville, North Carolina 28801-3569
(704) 255-5655

Forsyth County Environmental Affairs Department

(Forsyth County)
537 North Spruce Street
Winston-Salem, North Carolina 27101
(919) 727-8064

Mecklenburg County Department of Environmental Protection

(Mecklenburg County)
1200 Blythe Boulevard
Charlotte, North Carolina 28203
(704) 376-4603

Guilford County Department of Environmental Health*

(Guilford County)
301 North Eugene Street
Greensboro, North Carolina 27401
(919) 373-3771

* Monitoring activities were transferred to the Winston-Salem Regional Office in January of 1991. The Guilford County local agency ceased monitoring activities in December of 1990.

Appendix B

EXCEPTIONAL EVENTS

1. Natural Events

Sustained high windspeeds (PM)*
Stagnations/inversions (all pollutants)
Unusual lack of precipitation (PM)
Stratospheric ozone intrusion (O_3)
Volcanic eruption (CO, SO_2 , PM)
Forest fires (CO, PM)
High pollen count (PM)

2. Unintentional Man-made Events

Large accidental structural fires (CO, PM)
Major traffic congestion due to accident or nonrecurring obstruction (CO)
Chemical spills (SO_2 , NO_2 , PM, CO)
Industrial accidents (SO_2 , NO_2 , PM, CO)

3. Intentional Man-made Events

Short-term construction/demolition (PM)
Sandblasting (PM)
High-sulfur oil refining (SO_2)
Roofing operations (PM, SO_2)
Salting or sanding of streets (PM)
Infrequent large gatherings (PM, CO)
Soot blowing from ships (PM)
Agricultural tilling (PM)
Prescribed burning (CO, PM)
Noncompliance-local source (CO, SO_2)

* PM = particulate matter results affected
CO = carbon monoxide results affected
 NO_2 = nitrogen dioxide results affected
 SO_2 = sulfur dioxide results affected
 O_3 = ozone results affected

APPENDIX C

NONATTAINMENT AND NORTH CAROLINA

What is nonattainment and what are the sources of the pollutants?

The United States Environmental Protection Agency (EPA) sets National Ambient Air Quality Standards. North Carolina monitors concentrations of air pollutants in the ambient air. Some of these monitors have measured concentrations of ozone and carbon monoxide exceeding the Standards. Areas that have not met the National Ambient Air Quality Standards can be classified by EPA as "nonattainment."

Mobile sources are the primary cause of carbon monoxide and ozone precursors. Around 90 percent of the carbon monoxide emissions come from motor vehicles. 30 percent to 50 percent of the man-made hydrocarbons or volatile organic compound emissions come from motor vehicles; the rest comes from petroleum marketing, factories, businesses, and households. Volatile organic compounds react with nitrogen oxides and sunlight in warm weather to produce ozone.

Why is my county nonattainment?

Unless the state can demonstrate a better alternative, EPA has indicated that they will designate nonattainment areas based on Metropolitan Statistical Areas (MSAs). These MSAs were established by the Office of Management and Budget. Monitors showing violations of Standards may not be in every county. Previous emission control programs instituted in single counties across the nation have often failed to produce compliance with Standards. Pollution from one county blows into neighboring counties (especially ozone). EPA concluded that the control plans must cover metropolitan areas, not single counties.

Once we are nonattainment, what is the process for becoming attainment?

North Carolina is required by the federal Clean Air Act and EPA to produce and implement emission reduction plans and show that these plans are strong enough to produce compliance with the Standards. The plans could involve resource-intensive monitoring, emissions inventory, modeling, public participation, and strategy formulation efforts. There are deadlines for producing the plans and for achieving compliance with the Standards. EPA must approve the plans.

How does the public get involved in the formulation of the emission reduction plans, known as State Implementation Plan (SIP) revisions?
Local agencies and officials, as well as state agencies, will be involved in drawing up the SIP revisions. It is likely that there will be public meetings or ad hoc citizen panels. When draft SIP revisions are done, there will be public hearings on them. The SIP revisions must be approved by the Environmental Management Commission and possibly by local bodies as well. EPA's approval process includes an opportunity for public comment.

How will it affect the citizen?

Emission reduction strategies fall into several categories. Motor vehicle inspection/maintenance may be required for hydrocarbons or carbon monoxide or both. Traffic patterns may be altered by changing roads or traffic signals. Both new and existing factories and business may have to reduce emissions by installing control equipment or changing processes. This might include requiring that gas stations trap vapors that escape when a vehicle is refueled or that gasoline contain pollution-reducing additives.

What happens if North Carolina refuses to address these air pollution problems?

Under the Clean Air Act, EPA has the authority to apply sanctions. EPA can ban the construction of major pollutant sources, and may withhold federal highway construction funds in the nonattainment areas.

What is the likelihood of receiving sanctions if we are showing progress in reducing pollution?

If North Carolina were to produce SIP revisions that EPA can approve by the deadlines and were to carry out those plans, sanctions could be avoided. If pollution concentrations did not recede and attain the Standards as projected, construction bans could be imposed. EPA has some discretion about imposing sanctions. Sanctions are a last step to persuade states to take required positive action.

What does inspection/maintenance cost?

The inspection/maintenance (I/M) of motor vehicle tailpipe testing process costs the motorist \$ 15.40 as of October 1, 1990. If a vehicle fails the test, it must be repaired. A waiver is available if a vehicle still fails after \$50.00 worth of repairs have been done. The \$50.00 limit does not apply to tampered or misfueled vehicles. The inspection/maintenance program includes tests for hydrocarbon (HC) and carbon monoxide (CO) emissions. Currently Mecklenburg and Wake Counties have I/M programs. Testing for HC began in April of 1991. Guilford and Forsyth counties start I/M programs in July of 1991. Only gasoline powered motor vehicles built after 1974, excluding the current model year and motorcycles, are inspected in these counties. Inspection/maintenance pass-fail levels vary with vehicle age and pollutant.

Appendix D
OZONE EXCEEDANCES IN THE LAST THREE YEARS*

SITE NAME / NUMBER	CONC	1988	NUM	CONC	1989	NUM	CONC	1990	NUM	EXCEDANCE
	PPM	DATE	EXCD	PPM	DATE	EXCD	PPM	DATE	EXCD	3-YR TOTAL
STATE AGENCY SITES										
Butner (Durham)	0.137	6-22	6	0.133	7-11	3			0	9
37-077-0001 SLAMS	0.128	7-07		0.129	6-26					
	0.132	7-09		0.127	6-27					
	0.128	8-17								
	0.131	8-19								
	0.129	8-26								
Eastover (Fayetteville)	0.133	5-31	3			0			0	3
37-051-0001 NAMS	0.130	6-01								
	0.141	6-02								
Farmville (Pitt County)										
37-147-0099 SPM	0.125	6-08	1			0	NOT OPERATING			1
Fork (Davie County)	0.126	6-14	7	NOT OPERATING			NOT OPERATING			7
37-059-0099 SPM	0.145	7-07								
	0.153	7-08								
	0.151	7-09								
	0.135	7-10								
	0.125	7-16								
	0.139	8-17								
Iron Station (Lincoln Co.)	0.126	7-07	2	NOT OPERATING			NOT OPERATING			2
37-109-0099 SPM	0.141	7-08								
McLeansville (Greensboro)	0.139	6-08	8			0	0.127	6-28	1	9
37-081-0011 SLAMS	0.132	6-22								
	0.144	7-07								
	0.144	7-08								
	0.131	7-09								
	0.128	7-10								
	0.150	7-16								
	0.144	8-19								
Wake Forest (Raleigh)	0.137	6-01	10			0			0	10
37-183-2001 NAMS	0.157	6-08								
	0.126	6-13								
	0.125	6-21								
	0.141	6-22								
	0.137	6-23								
	0.142	7-07								
	0.140	7-09								
	0.135	8-18								
	0.159	8-19								
Millbrook (Raleigh)	Not Operating					0			0	0
37-183-0014 NAMS										
STATE AGENCY TOTALS		37			3		1		41	

(Continued)

* For a complete listing of ozone sites for 1989, see TABLE VI.

Appendix D
OZONE EXCEEDANCES IN THE LAST THREE YEARS*

SITE NAME/NUMBER	CONC PPM	1988 DATE	NUM EXCD	CONC PPM	1989 DATE	NUM EXCD	CONC PPM	1990 DATE	NUM EXCD	EXCEDANCE 3-YR TOTAL
LOCAL AGENCY SITES										
Arrowood (Mecklenburg)	0.130	6-01	8			0			0	8
37-119-1005 SLAMS	0.149	6-08								
	0.140	6-13								
	0.137	6-21								
	0.143	7-07								
	0.167	7-08								
	0.125	7-15								
	0.158	8-18								
CountyLine(Mecklenburg)	0.132	6-08	9	0.147	8-04	2	0.152	7-10	1	12
37-119-1009 NAMS	0.126	6-16		0.132	6-01					
	0.144	6-17								
	0.127	7-07								
	0.169	7-08								
	0.127	7-09								
	0.156	7-10								
	0.134	8-18								
	0.126	9-14								
Plaza (Mecklenburg)	0.169	6-08	7	0.162	8-04	1			0	8
37-119-0034 NAMS	0.148	6-17								
	0.131	6-22								
	0.125	7-07								
	0.158	7-08								
	0.126	7-10								
	0.158	8-18								
Belews Creek (Forsyth)	0.142	6-14	3			0			0	3
37-067-0006 SLAMS	0.137	7-07								
	0.128	7-09								
Ferguson School (Forsyth)										
37-067-0007 SLAMS	0.134	6-14	3			0	0.133	8-03	1	4
	0.137	7-07								
	0.134	7-09								
Union Cross (Forsyth)	0.128	7-07	2			0			0	2
37-067-1008 SLAMS	0.138	7-08								
LOCAL AGENCY TOTALS				32		3			2	37
ALL STATE TOTALS				69		6			3	78

* For a complete listing of ozone sites for 1989, see TABLE VI.

750 copies of this public document were printed on recycled paper at a total cost of \$1,161.69 or \$1.55 per copy.

STATE LIBRARY OF NORTH CAROLINA

3 3091 00747 4661

