${\it Class 12-Physics-CBSE-Exam-Formulas}$

October 20, 2025

Chapter	Concept	Formula / Key Point	Explanation of Variables
Electric Charges and Fields	Coulomb's Law	$\left[F = k \frac{q_1 q_2}{r^2}\right] \left[k = \frac{1}{4\pi\varepsilon_0}\right]$	$F = \text{force}; q_1, q_2 = \text{charges}; r = \text{distance};$ $k = \text{constant}$
	Electric Field	$[\vec{E} = \frac{\vec{F}}{q} = \frac{kQ}{r^2}]$	$\vec{E} = \text{field}; Q = \text{source}$ charge; q = test charge
	Electric Dipole	$[E_{\rm axial} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2p}{r^3}]$	p = dipole moment; r $= distance$
Electrostatic Potential and Capacitance	Potential Due to Point Charge	$[V = \frac{kQ}{r}]$	V = potential; Q = charge; r = distance
		$[C = \frac{Q}{V}] \ [C_{\text{parallel plate}} = \varepsilon_0 \frac{A}{d}]$	C = capacitance; Q = charge; V = potential; A = area; d = separation
	Series & Parallel Capacitors	$\begin{split} [C_{\text{series}}^{-1} &= C_1^{-1} + C_2^{-1} + \ldots] \\ [C_{\text{parallel}} &= C_1 + C_2 + \ldots] \end{split}$	Capacitors combined in series and parallel
Current Electricity	Ohm's Law	[V = IR]	V = voltage; I = current; $R = $ resistance
	Resistance & Resistivity	$[R = \rho \frac{l}{A}]$	$R = \text{resistance}; \ \rho = $ $\text{resistivity}; \ l = \text{length};$ $A = \text{area}$
	Series & Parallel Resistors	$[R_{\text{series}} = R_1 + R_2 + \dots]$ $[R_{\text{parallel}}^{-1} = R_1^{-1} + R_2^{-1} + \dots]$	Resistors combined in series and parallel
Moving Charges and Magnetism	Power Magnetic Force	$[P = VI = I^{2}R = \frac{V^{2}}{R}]$ $[F = qvB\sin\theta] [F = IlB\sin\theta]$	P = power $q = \text{charge}; v = \text{velocity}; B = \text{magnetic field}; \theta = \text{angle}; I = \text{current}; l = \text{length}$

Chapter	Concept	Formula / Key Point	Explanation of Variables
	Magnetic Field (Wire, Loop)	[Straight wire: $B = \frac{\mu_0 I}{2\pi r}$] [Loop: $B = \frac{\mu_0 I}{2R}$]	$ \mu_0 = \text{permeability}; I $ = current; $r, R = $ radius
	Ampere's Law	$[\oint \vec{B} \cdot d\vec{l} = \mu_0 I]$	Line integral of magnetic field around current I
Magnetism and Matter	Magnetic Dipole Moment	$[M=m\times 2l]\ [U=-\vec{M}\cdot\vec{B}]$	M = dipole moment; m = magnetic pole strength; $l = \text{half}$ length; $U = \text{potential}$ energy
	Gauss's Law for Magnetism	$[\vec{\nabla} \cdot \vec{B} = 0]$ (No magnetic monopoles)	Divergence of magnetic field is zero
Electromagnet	_	$\left[e = -\frac{d\Phi}{dt}\right]$	$e = \text{induced emf; } \Phi =$
Induction	Law	t at 1	magnetic flux
	Lenz's Law	Direction of induced current opposes cause	Conservation of energy principle
	Self Inductance	$[e = -L\frac{di}{dt}]$ Energy: $[U = \frac{1}{2}LI^2]$	L = inductance; I = current
Alternating Current	AC Voltage	$[V=V_0\sin\omega t]$ RMS: $[V_{\rm rms}=\frac{V_0}{\sqrt{2}}]$	V_0 = peak voltage; ω = angular frequency
	Reactance & Impedance	$\begin{split} [X_L &= \omega L, X_C = \frac{1}{\omega C}] \\ [Z &= \sqrt{R^2 + (X_L - X_C)^2}] \end{split}$	$X_L, X_C = \text{inductive},$ capacitive reactance; Z = impedance
	Power in AC	$[P = VI\cos\phi]$ (cos ϕ = power factor)	ϕ = phase difference between voltage and
Electromagneti Waves	icSpeed of EM Waves	$[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}] \ [c = 3 \times 10^8 \ \mathrm{m/s}]$	current Speed of light in vacuum
	EM Spectrum	Radio < Microwave < Infrared < Visible < UV < X-rays < Gamma rays	Order of EM waves by wavelength
Ray Optics and Optical Instruments	Mirror Formula	$\left[\frac{1}{f} = \frac{1}{v} + \frac{1}{u}\right] \left[m = \frac{h'}{h} = \frac{-v}{u}\right]$	f = focal length; v, u = image and object distances; $m = \text{magnification}$
	Lens Formula	$\left[\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\right] \left[m = \frac{v}{u}\right]$	Same as above
	Power of Lens	$[P = \frac{100}{f(\text{cm})}]$	P in diopters; f in cm
Wave Optics	Young's Double Slit Experiment	Fringe width: $\left[\beta = \frac{\lambda D}{d}\right]$	$\lambda =$ wavelength; $D =$ screen distance; $d =$ slit separation

Chapter	Concept	Formula / Key Point	Explanation of Variables
	Diffraction Polarization	Central maximum width $\left[\frac{\lambda}{a}\right]$ Only transverse waves show polarization	a = slit width Property of waves
Dual Nature of Radiation and Matter	De Broglie Wavelength	$\left[\lambda = \frac{h}{mv}\right]$	h = Planck's constant; $m = \text{mass}$; $v = \text{velocity}$
	Photoelectric Equation	$[E_k = h\nu - \phi]$	E_k = kinetic energy; ν = frequency; ϕ = work function
Atoms	Radius (Bohr Model)	$[r_n = n^2 \cdot a_0], [a_0 = 0.529 \text{ Å}]$	$n = \text{energy level}; a_0 = \text{Bohr radius}$
	Energy Levels	$[E_n = -13.6 \frac{Z^2}{n^2} \text{ eV}]$	Z = atomic number
Nuclei	Binding Energy	$[BE = [Zm_p + (A-Z)m_n - m_{\rm nucleus}]c^2]$	Z = proton number; A = mass number; $m_p, m_n = \text{proton/neutron}$ masses
	Radioactive Decay	$[N=N_0 e^{-\lambda t}] \ [t_{1/2}={0.693\over \lambda}]$	N = nuclei remaining; $\lambda = \text{decay constant}$
Semiconductors	Diode Current	$[I = I_0(e^{\frac{eV}{kT}} - 1)]$	I = current; V = voltage; k = Boltzmann constant; $T = temperature$
	Logic Gates	AND, OR, NOT, NAND, NOR — Truth tables	Basic logic gate operations