

Math Feature Encodings

Sourajyoti Datta

Project – Collaborative Intelligence (DFKI)

Department of Computer Science
Technische Universität Kaiserslautern, Germany

Major encoding techniques

- Numerical Mapping
- Numerical Mapping and Fourier Transform
- Chaos Game Representation
- Entropy
- Graphs
- K-mer
- Accumulated Nucleotide Frequency (ANF)
- Open Reading Frame (ORF)
- Fickett score
- Pseudo K-tuple nucleotide composition
- Xmer k-Spaced Ymer Composition Frequency (kGap)

Numerical Mapping

Binary

- Encodes like one-hot encoding, except the dimension is flattened out as (A + C + T + G).
 - Dimensions: L*4 (L is the length of longest sequence). Zero Padding done at the end, if required.

Real

- Encodes each nucleotide to a fixed real value, keeping sequence intact.
 - Mapping: (A:-1.5, C:0.5, G:-0.5, T:1.5)
 - Dimensions: L (L is the length of longest sequence). Zero Padding done at the end, if required.
 - E.g., AACTGT = [-1.5, -1.5, 0.5, 1.5, -0.5, 1.5]

Integer

- Encodes each nucleotide to a fixed integer value, keeping sequence intact.
 - Mapping: (A:2, C:1, G:3, T:0)
 - Dimensions: L (L is the length of longest sequence). Zero Padding done at the end, if required.
 - E.g., AACTGT = [2, 2, 1, 0, 3, 0]

Numerical Mapping

Electron-Ion Interaction Pseudopotential (EIIP)

- Encodes each nucleotide to a fixed real value, keeping sequence intact.
 - Mapping: (A: 0.1260, C: 0.1340, G: 0.0806, T: 0.1335)
 - Dimensions: L (L is the length of longest sequence). Zero Padding done at the end, if required.
 - E.g., AACTGT = [0.1260, 0.1260, 0.1340, 0.1335, 0.0806, 0.1335]

Atomic Number

- Encodes each nucleotide to a fixed integer value, keeping sequence intact.
 - Mapping: (A:70, C:58, G:78, T:66)
 - Dimensions: L (L is the length of longest sequence). Zero Padding done at the end, if required.
 - E.g., AACTGT = [70, 70, 58, 66, 78, 66]

Complex Number

- Encodes each nucleotide to a fixed complex value, keeping sequence intact.
 - Mapping: (A: (1+1j), C: (-1+1j), G: (-1-1j), T: (1-1j))
 - Dimensions: L (L is the length of longest sequence). Zero Padding done at the end, if required.
 - E.g., AACTGT = [(1+1j), (1+1j), (-1+1j), (1-1j), (-1-1j), (1-1j)]

Numerical Mapping

Z-curve

Encodes each mol nucleotide ecule to three dimensions, and then flattened out.

$$\hat{\mathbf{X}}_1(i) = \begin{cases} \mathbf{X}(i-1)+1 & \text{if } X(i) = T \vee G \\ \mathbf{X}(i-1)+(-1) & \text{otherwise} \end{cases}$$

$$\hat{\mathbf{X}}_2(i) = \begin{cases} \mathbf{X}(i-1)+1 & \text{if } X(i) = A \vee C \\ \mathbf{X}(i-1)+(-1) & \text{otherwise} \end{cases}$$

$$\hat{\mathbf{X}}_3(i) = \begin{cases} \mathbf{X}(i-1)+1 & \text{if } X(i) = A \vee T \\ \mathbf{X}(i-1)+(-1) & \text{otherwise} \end{cases}$$

- Dimensions: *L*3* (L is the length of longest sequence). Zero Padding done at the end, if required.
- E.g., AACTGT = [1,2,1,0,1,0 1,2,3,2,1,0, 1,2,1,2,1,2]

Numerical Mapping - Fourier Transform

- First, all the numerical mappings are generated as before.
- Then, Discreet Fourier Transform (DFT) is applied using Fast Fourier Transform (FFT)
 - Reveals hidden periodicities after transformation of time domain (sequence) data to frequency domain space.
 - Statistical features are then extracted to generate the dimensions
- Dimensions: 19
 - Average
 - Median
 - Maximum
 - Minimum
 - Peak
 - Non-Elevated Peak
 - Sample Standard Deviation

- Population Standard Deviation
- 15th Percentile
- 25th Percentile
- 50th Percentile
- 75th Percentile
- Amplitude
- Variance

- Interquartile range
- Semi interquartile range
- Coefficient of variation
- Skewness
- Kurtosis

Chaos Game Representation

- Makes use of Chaos Game and fractals, providing numerical as well as visual representation
- Encodes nucleotide as well as sequence mapping
 - Begin with a square, where each vertex represents a nucleotide. Define an initial point.
 - CGR position of each nucleotide of the DNA sequence is calculated by moving a pointer to half the distance between the previous point and the corner square of the current nucleotide.

Classical CGR

- The basic CGR representation as explained above.
- Dimensions: **L*2** (*L* is the length of longest sequence)

Classical CGR - Fourier

- Once, the CGR representation is extracted, Discreet Fourier Transform is performed to map from time to frequency domain.
 - Statistical features are then extracted to generate the dimensions
- Dimensions: 19

Chaos Game Representation

Frequency CGR (FCGR)

- From the CGR representation, provides a matrix that contains the frequency of the k-mers extracted from the DNA sequences, normalized by the total number of windows
 - Dimensions: **L-k+1** (L is the length of longest sequence, k is length of kmer).

Frequency CGR - Fourier

- Once, the FCGR representation is extracted, Discreet Fourier Transform is performed to map from time to frequency domain.
 - Statistical features are then extracted to generate the dimensions
- Dimensions: 19

Entropy

- Entropy is a measure of the uncertainty associated with a probabilistic experiment
- In this method, each sequence is mapped in the frequency of neighboring bases k, generating statistical information.
 - Histograms with short bins are adopted, that occur for k = 1 [{A}, {C}], up to histograms with long sequence counting bins such as k = 7 [{AACCGTG, AGAGAAC}]
 - Generate relative frequencies from absolute frequencies of each k
 - Then the respective entropies are applied
 - Dimensions: **k** (k is the maximum length of k-mers)

Shannon

- Quantifies the amount of information in a variable
- Reaches a single value that quantifies the information contained in different observation periods (k-mers)

Tsallis

Generalized form of the Shannon's entropy

Graphs

- Feature extraction model based on complex networks
- Each sequence is mapped in the frequency of neighboring bases k (k = 3)
- This mapping is converted to an undirected graph represented by an adjacency matrix
- Feature extraction is performed using a threshold scheme

Complex Networks (with threshold)

- Dimension: 12 * t (t is the threshold i.e.,
 the number of subgraphs)
- Complex Networks (without threshold v2)
 - Dimension: 27 * k (k in k-mers)

K-mer

Basic K-mer

- Generate all k-mers (for k = 1 .. k), for all sequences
- Calculate their probabilities (i.e., count_of_kmers/windows_in_sequence)
 - Dimensions: **4^k** (k is the maximum length of k-mers)

Reverse Complement K-mer

- Generate all (complement of) k-mers (for k = 1 .. k), for all sequences
 - Complements are:
 - A <-> T
 - C <-> G
 - G <-> C
 - T <-> A
- Calculate their probabilities (i.e., count_of_kmers/windows_in_sequence)
 - Dimensions: **4^k** (k is the maximum length of k-mers)

K-mer

Nucleic Acid Composition (NAC)

- Generate all 1-mers, for all sequences
- Calculate their probabilities (i.e., count_of_kmers/windows_in_sequence)
 - Dimensions: 4

Di-nucleotide Composition (DNC)

- Generate all 2-mers (for k = 2), for all sequences
- Calculate their probabilities (i.e., count_of_kmers/windows_in_sequence)
 - Dimensions: 16

Tri-nucleotide Composition (TNC)

- Generate all 3-mers (for k = 3), for all sequences
- Calculate their probabilities (i.e., count_of_kmers/windows_in_sequence)
 - Dimensions: 64

Accumulated Nucleotide Frequency

Accumulated Nucleotide Frequency (ANF)

- For each nucleotide in the sequence, their cumulative frequency (nucleotide-wise) is calculated
- The frequency is standardized by dividing by their individual position in the sequence.
 - Dimensions: L (L is the length of longest sequence, k is length of kmer)
 - Example:
 - Seq: "AAGTAC"
 - Mapping: [1/1, 2/2, 1/3, 1/4, 3/5, 1/6] = [1, 1, 0.333, 0.25, 0.6, 0.167]

Accumulated Nucleotide Frequency with Fourier (ANFF)

- First, the ANF is generated.
- Then, Discreet Fourier Transform (DFT) is applied using Fast Fourier Transform (FFT)
 - Reveals hidden periodicities after transformation of time domain (sequence) data to frequency domain space.
 - Statistical features are then extracted to generate the dimensions
 - Dimensions: 19 (Similar to the numerical-mapping Fourier transformed dimensions)

Open Reading Frame (ORF)

- Features for discovering coding sequences
- An ORF is a continuous stretch of codons that begins with a start codon (usually AUG/ATG) and ends at a stop codon (usually UAA/TAA, UAG/TAG or UGA/TGA)
- For each sequence, the first codon is extracted for the lengths (k = 1,2,3), and moving forward, all non-overlapping 3-mers are extracted, for each of the start codons as follows:
 - 1. ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT TAA
 - 2. A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG TAA GAC AGA TTT AA
 - 3. AT GCA <mark>ATG</mark> GGG AAA TGT TAC CAG GTC CGA ACT TAT <mark>TGA</mark> GGT AAG ACA GAT TTA A
- Then, the metrics are generated per sequence. Dimensions: 10
- Maximum ORF Length
- Minimum ORF Length
- Mean of ORF Length
- Standard deviation of ORF Lengths
- Coefficient of variation of ORF Lengths

- Maximum GC Measure
- Minimum GC Measure
- Mean of GC Measures
- Standard deviation of GC Measures
- Coefficient of variation of GC Measures

^{*} Where, ORF is each possible start/end combination as shown above

^{*} Where, GC Measure is the percentage of G and C nucleotides in each of the ORFs

Fickett score

- Measures the coding potential based on compositional bias between codon positions by estimating how asymmetric is the distribution of nucleotides at the three triplet positions in the sequence
- Used to evaluate each base's unequal content frequency and asymmetrical distribution in the positions of codons in one sequence
- The Fickett score is computed for both the ORF's and the complete sequence
 - Dimensions: 2

Xmer k-Spaced Ymer Composition Frequency (kGap)

• For every sequence, generates features as the frequency of k-gapped mers characterized by the following parameters:

```
    Frequency of kgap
    Before
    After
    1 = A_A, 2 = A_A, 3 = A_A...
    2 = AA_A, 3 = AAA_A...
    2 = A_AA, 3 = AAA_A...
    2 = A_AA, 3 = A_AAA...
```

• For all sequences, every possible combination of nucleotides is generated with the above parameters, and their counts as value for the dimension.

Dimensions: $4^X * 4^Y$ [X = before, Y=after]