Dynamic multipoles of the Tender in-vacuum undulator

Erik Wallén ejwallen@lbl.gov

Tue 18 Feb 2020

Contents

- 1 Introduction
- 2 Tender in-vacuum undulator of hybride type
- 3 Magnetic field strength
- 4 Power of emitted synchrotron radiation
- 5 Dynamic multipoles of the Tender in-vacuum undulator

 Intro
 Tender
 Field
 Power
 Kick

 □
 □
 □
 □
 □

Introduction

- ► The Tender beamline in straight section 8 of the ALS-U will have a full length in-vacuum undulator that is 4 m long.
- The undulator will be procured from industry.
- As a reference design for the procurement process, the in-vacuum undulator has been modeled using conservative design parameters for the magnet material and the pole and magnet dimensions.
- ► The final undulator design will have narrower poles and magnets then in the reference design, still keeping the low transverse field roll-off.
- Radia [1] has been used for the magnet model calculations.
- ► The dynamic multiples and the corresponding kick map have been calculated using the method described in [2].
- O. Chubar, P. Elleaume and J. Chavanne, "A 3D Magnetostatics Computer Code for Insertion devices". Journal of Synchrotron Radiation, 5:481-484, 1998.
- P. Elleaume, "A New Approach to the Electron Beam Dynamics in Undulators and Wigglers", Proc. of European.
 Particle Accelerator Conference 1992, EPAC 1992, Berlin, Germany, pp 661-663.

Description of the Tender in-vacuum undulator

Undulator Parameters

19.0	mm
4.4	mm
4.0	mm
4.0	m
	4.4 4.0

Magnet Parameters

Material		NdFeB
r_{m}	1.24 T	Remanence
χ_{\parallel}	0.05	\parallel Susceptibility
χ_{\perp}	0.17	\perp Susceptibility
Width	66 mm	Ŷ
Thickness	3.2 mm	Ŝ
Height	38 mm	Ź
Chamfer	0.8 mm	Edge 45 $^{\circ}$ \hat{X}

Pole Parameters

Materiai			vaconux	50	
Width	43 r	nm	Ŷ		
Thickness	3.0 r	nm	Ŝ		
Height					
Chamfer	3.0 r	nm	Corner 4	5°	Ŝ
Chamfer	0.6 r	nm	Corner 3	0°	

Magnetic field strength of the Tender undulator

Vertical magnetic field along the e-beam axis.

$\begin{tabular}{ll} \hline \textbf{Parameters} \\ \hline \textbf{B}_{eff} & 1.2333 \text{ T Effective Field} \\ \textbf{B}_{peak} & 1.3011 \text{ T Peak Field} \\ \textbf{r}_{m} & 1.2400 \text{ T Remanace} \\ \hline \textbf{χ}_{\parallel} & 0.05 & \parallel \text{Susceptibility} \\ \hline \textbf{χ}_{\perp} & 0.17 & \bot \text{Susceptibility} \\ \hline \end{tabular}$

Fourier Analysis			
Term	Strength		
Harm. Nr. 1	1.23300 T		
Harm. Nr. 3	3 0.07925 T		
Harm. Nr. 5	5 -0.00526 T		
Harm. Nr. 7	7 -0.00196 T		
Harm. Nr. 9	9 -0.00036 T		
Harm. Nr. 1	1 -0.00002 T		

Field roll-off for the Tender undulator

Fields

Vertical magnetic field in a central pole along the horizontally transverse direction $\mathsf{S} = \mathsf{Z} = \mathsf{0}.$

Transverse field roll-off				
X-Position	B_Z Field	Roll-off		
\pm 0 mm	1.301 T			
\pm 5 mm	1.301 T	0.002 %		
\pm 10 mm	1.301 T	0.006 %		
\pm 15 mm	1.295 T	0.451 %		
\pm 20 mm	0.888 T	31.770 %		

Map of radiated power at the magnetic gap 4.4 mm

Radiated power Magnetic gap 4.4 mm K_X from B_7 2.189 Filament beam Beam current 0.5 Α Beam energy 2.0 GeV Radiated power 7.7 kW On-axis power 22.2 $kW/mrad^2$

Power

Dynamic multipoles of the Tender in-vacuum undulator

Focusing potential

Kick map used for tracking [T²m²]

Kick

Dynamic multipoles of the Tender in-vacuum undulator

Kick map in the units $[\mu {\rm rad}]$ for a 2.0 GeV beam

Kick

Kick ...