# The relationship between a translational cognitive measure of negative bias and self-reported psychiatric symptoms in a large online sample

## Background

This study builds on prior work developing a measure of negative affective bias as indexed by proportion of mid tones interpreted as high reward ('p(mid as high)') in A) a rat pharmacological model of mood and anxiety disorders (Hales et al., 2016) and B) humans with mood and anxiety disorders relative to healthy controls (Aylward et al., 2019).

#### Task details

In both cases, the 2-alternative-forced-choice task involved training participants to press a button/lever (left or right) when they heard a tone (high or low) to receive a reward (1 or 3 £/rat pellets). The stimulus-response-outcome contingencies were 100% (but counterbalanced across individuals). Following training, participants were then also played tones of a frequency exactly equidistant between the high and low tones. The primary outcome of interest is the proportion of times the participant pressed the button/lever associated with the high reward outcome for the ambiguous mid tone (referred to as 'p(mid as high)'). Of note, the rat study is a within-subject anxiogenic manipulation, whereas the human study is a case control design. Both A) symptomatic ('Symptom') rats and B) humans both demonstrate significantly increased negative affective bias (i.e. reduced prediction that ambiguous outcomes will lead to higher rewards: 'p(mid as high)') relative to non-symptomatic controls ('HC').

## Next steps

This prior work suggests that this cognitive measure is sensitive to pathological symptoms. We have three objectives for the present study. Firstly we wanted to explore and remove sources of between-subject bias within the task so as to maximise our chances of measuring individual differences in task performance. Secondly, we wanted to explore factors which contribute to individual differences in task performance in a large cross-sectional sample. Specifically, we are interested in which specific psychiatric-relevant symptoms/traits contribute to task performance. Finally, once we identify relevant traits, can we re-capitulate the effect of clinical screening in a large unscreened online sample?

# 1: Piloting to explore sources of between-subject bias

To speed up data collection and facilitate the collection of larger samples we adapted the task for online use. To this end, we decided to switch the task from the auditory domain (which would require us to check/trust that remote participants could hear the stimuli) to the visual domain. In the first pilot A) we tested N=264 participants in a version of the task which substituted high and low frequency tones of large and small area circles. This lead to four counterbalancing versions (labelled 1-4 below; sorted by level of bias). Following discovery of clear between-subject bias we next tested B) N=158 individuals on a task that involved orientation of a line. Instead of high/low we had vertical/horizontal. The intermediate stimuli were either 45 or 135 degrees, which lead to 8 counterbalancing versions (labelled 1-8 below; sorted by level of bias).



```
##
               Df Sum Sq Mean Sq F value Pr(>F)
## group
                3 3.964 1.3215
                                   35.28 <2e-16 ***
              260 9.739 0.0375
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
           eta.sq eta.sq.part
## group 0.2893019 0.2893019
##
               Df Sum Sq Mean Sq F value Pr(>F)
                7 0.929 0.13267
                                  3.077 0.00475 **
## group
              143 6.165 0.04311
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
           eta.sq eta.sq.part
## group 0.1309089
                    0.1309089
##
     Tukey multiple comparisons of means
      95% family-wise confidence level
##
##
## Fit: aov(formula = Pmid ~ group, data = pilot1cb)
##
## $group
##
             diff
                          lwr
                                    upr
                                            p adj
```

```
0.03319086 -0.05510565 0.1214874 0.7655217
  2-0 -0.24185068 -0.33400241 -0.1496990 0.0000000
  3-0 -0.21067170 -0.29843425 -0.1229092 0.0000000
  2-1 -0.27504154 -0.36251921 -0.1875639 0.0000000
  3-1 -0.24386256 -0.32670376 -0.1610213 0.0000000
  3-2 0.03117898 -0.05575969 0.1181177 0.7902342
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
  Fit: aov(formula = Pmid ~ group, data = pilot2cb)
##
## $group
##
               diff
                            lwr
                                                 p adj
                                         upr
       0.116847213 -0.10133355
                                 0.33502797 0.7205659
## 2-1
       0.076216643 -0.12842007
                                 0.28085336 0.9453463
  4-1 -0.150419157 -0.34381573
                                 0.04297742 0.2529895
       0.033392280 -0.17124444
                                 0.23802900 0.9996371
  6-1 -0.012709407 -0.20800766
                                 0.18258885 0.9999993
## 7-1 -0.002821500 -0.22100226
                                 0.21535926 1.0000000
## 8-1 -0.057236747 -0.27148600
                                 0.15701251 0.9916272
  3-2 -0.040630570 -0.26125829
                                 0.17999715 0.9991964
## 4-2 -0.267266370 -0.47751061 -0.05702213 0.0034682
## 5-2 -0.083454933 -0.30408266
                                 0.13717279 0.9407917
## 6-2 -0.129556620 -0.34155147
                                 0.08243823 0.5668175
  7-2 -0.119668713 -0.35291376
                                 0.11357633 0.7624254
## 8-2 -0.174083960 -0.40365562
                                 0.05548770 0.2834033
## 4-3 -0.226635800 -0.42278876 -0.03048284 0.0117584
## 5-3 -0.042824363 -0.25006802
                                 0.16441930 0.9983082
  6-3 -0.088926050 -0.28695422
                                 0.10910212 0.8642912
  7-3 -0.079038143 -0.29966587
                                 0.14158958 0.9554490
## 8-3 -0.133453390 -0.35019400
                                 0.08328722 0.5571819
        0.183811438 -0.01234152
                                 0.37996440 0.0838114
       0.137709750 -0.04868018
                                 0.32409968 0.3158952
       0.147597657 -0.06264658
                                 0.35784190 0.3824994
       0.093182411 -0.11297903
                                 0.29934385 0.8602737
  6-5 -0.046101687 -0.24412986
                                 0.15192649 0.9964027
## 7-5 -0.036213780 -0.25684150
                                 0.18441394 0.9996228
  8-5 -0.090629027 -0.30736963
                                 0.12611158 0.9025639
       0.009887907 -0.20210694
                                 0.22188275 0.9999999
## 8-6 -0.044527340 -0.25247376
                                 0.16341908 0.9978766
## 8-7 -0.054415247 -0.28398691
                                 0.17515642 0.9959758
```

#### Interpretation

Both tasks demonstrate clear sources of between-subject bias. In short, individuals demonstrated 'higher' bias when large (or vertical) stimuli were paired with large rewards on the right hand side. These reflect pre-potent biases (e.g. bigger things usually cost more and in latinate languages we read from left to right etc.). Smaller biases were observed when the stimulus-response-outcome contingencies were incongruent with these pre-potent biases. These biases add to the noise in within-subject or case-control designs, but effects can still be observed over and above these effects. Unfortunately if we care about within-subject differences in a cross-sectional design we have to remove this. We decided to restrict further testing to the intermediate bias scores on pilot 2 (counterbalancing 1 and 7). Thus we would need to control for counterbalancing but would only have two groups (rather than 8). Of note, we chose pilot 2 design rather than pilot 1 because a

circle has both area and diameter that a participant may attend to, whereas there is only one interpretation of line orientation.

# 2: Exploring contributors to bias in cross-sectional data

We next collected data from N=1066 using counterbalancing 1 and 7 from pilot 2. As in the pilot the full sample demonstrate a) affective bias (p(mid) as high) and d) drift rate that are significantly biased towards highest reward (see results of one sample t-tests below figure). Drift rate is a parameter from a 'drift diffusion model' of decision making that we discussed in Aylward et al. 2019. The effects are strongly correlated with p(mid as high), but presented for completeness. Since the internal reliability of a measure puts an upper limit on relationship between that measure and other measures we also determined the split-half reliability (for 100000 random splits) of individual's responses to the 40 ambigous trials.



```
##
## One Sample t-test
##
## data: combineditemdata$propmedhigh
## t = 12.089, df = 993, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
## 0.5671525 0.5931778
## sample estimates:
## mean of x
## 0.5801652</pre>
```

```
##
## One Sample t-test
##
## data: combineditemdata$driftrate
## t = 12.113, df = 993, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.003843921 0.005330160
## sample estimates:
## mean of x
## 0.00458704</pre>
```

| n      | nean | std | lower range | upper range |
|--------|------|-----|-------------|-------------|
| Age    | 3    | 34  | 10          | 18          |
| Ravens |      | 4   | 3           | 0           |
| OCIR   | 4    | 12  | 18          | 18          |
| SZ     | 1    | .6  | 9           | 0           |
| BDI    | 1    | .5  | 12          | 0           |
| STAI   | 4    | 15  | 12          | 20          |

```
## Split half reliabilities
## Call: splitHalf(r = dataforsh, raw = T, brute = FALSE, n.sample = 1e+05,
##
       covar = FALSE, check.keys = TRUE, key = NULL, ci = 0.05,
##
       use = "pairwise")
##
## Maximum split half reliability (lambda 4) =
                                               0.94
## Guttman lambda 6
                                                0.92
## Average split half reliability
                                                0.91
## Guttman lambda 3 (alpha)
                                                0.91
## Minimum split half reliability (beta)
                                             = 0.85
## Average interitem r = 0.21 with median = 0.21
##
                                                2.5% 50% 97.5%
   Quantiles of split half reliability
                                             = 0.9 0.92 0.93
```

## Simple Linear Regression of measures

To explore the impact of trait/demographic measures on task performance we next ran a linear regression (using Robust ML estimator for consistency with SEM below) to predict p(mid as high)('propmedhigh' variable). The variables we included are:

- Spreadsheet (categorical): represents the counterbalancing condition
- Ravens (continuous): IQ measure (visual matrices)
- Age (continuous): years old
- BDI (continuous): Beck depression inventory (suicide question removed)
- STAI2 (continuous): Spielberger Trait Anxiety
- OCIR (continuous): Obsessive-Compulsive Inventory (Revised)
- $\bullet~$  SZ (continuous): Schizotypal short scale
- GenderMF (categorical): Self-reported gender

```
NegBiasmodel.1 <- 'propmedhigh ~ GenderMF + Age + Ravens + spreadsheet +BDI + STAI2 + SZ + OCIR'
NegBiasmodel.2 <- 'driftrate ~ GenderMF + Age + Ravens + spreadsheet +BDI + STAI2 + SZ + OCIR'
fit1 <- sem(NegBiasmodel.1, data=combineditemdata, meanstructure=TRUE, estimator = "MLR")
fit2 <- sem(NegBiasmodel.2, data=combineditemdata, meanstructure=TRUE, estimator = "MLR")
fit1miss <- sem(NegBiasmodel.1, data=combineditemdata, meanstructure=TRUE, estimator = "MLR", missing
fit2miss <- sem(NegBiasmodel.2, data=combineditemdata, meanstructure=TRUE, estimator = "MLR", missing
summary(fit1, standardized=TRUE, rsquare=T, fit.measures=F) #listwise delete missing
## lavaan 0.6-3 ended normally after 59 iterations
##
##
     Optimization method
                                                    NLMINB
##
     Number of free parameters
                                                        10
##
##
                                                      Used
                                                                 Total
##
     Number of observations
                                                       990
                                                                  1066
##
##
     Estimator
                                                        ML
                                                                Robust
                                                     0.000
                                                                 0.000
##
     Model Fit Test Statistic
##
     Degrees of freedom
                                                         0
                                                                     0
##
    Minimum Function Value
                                          0.000000000000
##
     Scaling correction factor
                                                                    NA
##
       for the Yuan-Bentler correction (Mplus variant)
##
## Parameter Estimates:
##
##
     Information
                                                  Observed
##
     Observed information based on
                                                  Hessian
##
     Standard Errors
                                       Robust.huber.white
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
     propmedhigh ~
       GenderMF
                        -0.005
                                  0.013
                                          -0.390
                                                     0.697
                                                             -0.005
                                                                      -0.012
##
                        -0.002
                                  0.001
                                                     0.000
##
                                          -3.822
                                                            -0.002
                                                                      -0.120
       Age
                         0.010
                                  0.002
                                           4.323
##
       Ravens
                                                     0.000
                                                              0.010
                                                                       0.144
##
                         0.006
                                  0.002
                                                     0.006
       spreadsheet
                                           2.744
                                                              0.006
                                                                       0.085
##
       BDI
                        -0.002
                                  0.001
                                         -2.373
                                                     0.018
                                                            -0.002
                                                                      -0.121
                                  0.001
##
       STAI2
                         0.001
                                           0.789
                                                     0.430
                                                              0.001
                                                                       0.037
##
       SZ
                        -0.001
                                  0.001
                                          -1.145
                                                     0.252
                                                             -0.001
                                                                      -0.056
       OCIR
                                  0.001
                                           0.087
                                                     0.931
                                                              0.000
                                                                       0.004
##
                         0.000
##
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv
                                                                     Std.all
##
                         0.663
                                  0.042
                                          15.791
                                                     0.000
                                                              0.663
                                                                       3.166
      .propmedhigh
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
      .propmedhigh
                         0.041
                                  0.002
                                          24.796
                                                     0.000
                                                              0.041
                                                                       0.943
```

```
## R-Square:
##
                      Estimate
##
                          0.057
       propmedhigh
summary(fit2, standardized=TRUE, rsquare=T, fit.measures=F) #listwise delete missing
## lavaan 0.6-3 ended normally after 124 iterations
##
     Optimization method
                                                     NLMINB
##
##
     Number of free parameters
                                                         10
##
                                                                  Total
##
                                                       Used
##
     Number of observations
                                                        990
                                                                   1066
##
##
     Estimator
                                                         ML
                                                                 Robust
##
     Model Fit Test Statistic
                                                      0.000
                                                                  0.000
##
     Degrees of freedom
                                                                      0
                                                                     NA
     Scaling correction factor
##
       for the Yuan-Bentler correction (Mplus variant)
##
##
## Parameter Estimates:
##
     Information
                                                   Observed
##
     Observed information based on
##
                                                    Hessian
                                        Robust.huber.white
##
     Standard Errors
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
     driftrate ~
##
       GenderMF
                         -0.000
                                   0.001
                                           -0.421
                                                      0.674
                                                              -0.000
                                                                       -0.013
                        -0.000
                                                              -0.000
##
       Age
                                   0.000
                                           -3.611
                                                      0.000
                                                                       -0.113
##
       Ravens
                          0.001
                                   0.000
                                            4.348
                                                      0.000
                                                               0.001
                                                                        0.146
##
                          0.000
                                   0.000
                                                      0.006
       spreadsheet
                                            2.766
                                                               0.000
                                                                        0.086
##
       BDI
                         -0.000
                                   0.000
                                           -2.533
                                                      0.011
                                                              -0.000
                                                                       -0.127
##
       STAI2
                          0.000
                                   0.000
                                            0.876
                                                      0.381
                                                               0.000
                                                                        0.040
##
       SZ
                         -0.000
                                   0.000
                                           -1.355
                                                      0.175
                                                              -0.000
                                                                       -0.066
##
       OCIR
                          0.000
                                   0.000
                                            0.392
                                                      0.695
                                                               0.000
                                                                        0.018
##
## Intercepts:
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv
                                                                      Std.all
##
                          0.009
                                   0.002
##
      .driftrate
                                            3.707
                                                      0.000
                                                               0.009
                                                                        0.740
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv
                                                                      Std.all
##
      .driftrate
                          0.000
                                   0.000
                                           21.371
                                                      0.000
                                                               0.000
                                                                        0.943
##
## R-Square:
##
                      Estimate
```

##

##

driftrate

summary(fit1miss, standardized=TRUE, rsquare=T, fit.measures=F) #estimate missing

0.057

```
##
##
     Optimization method
                                                    NLMINB
     Number of free parameters
##
                                                         10
##
##
                                                                  Total
                                                      Used
##
     Number of observations
                                                        990
                                                                   1066
     Number of missing patterns
##
                                                          1
##
##
                                                         ML
                                                                 Robust
     Estimator
##
     Model Fit Test Statistic
                                                     0.000
                                                                  0.000
                                                                      0
##
     Degrees of freedom
                                                          0
                                                                     NA
##
     Scaling correction factor
       for the Yuan-Bentler correction (Mplus variant)
##
##
## Parameter Estimates:
##
##
     Information
                                                   Observed
     Observed information based on
##
                                                   Hessian
     Standard Errors
##
                                        Robust.huber.white
##
## Regressions:
                      Estimate Std.Err z-value P(>|z|)
##
                                                              Std.lv Std.all
     propmedhigh ~
##
##
       GenderMF
                        -0.005
                                   0.013
                                           -0.390
                                                     0.697
                                                              -0.005
                                                                       -0.012
##
       Age
                        -0.002
                                   0.001
                                           -3.822
                                                     0.000
                                                             -0.002
                                                                       -0.120
##
       Ravens
                         0.010
                                   0.002
                                            4.323
                                                     0.000
                                                               0.010
                                                                        0.144
       spreadsheet
                         0.006
                                   0.002
                                            2.744
                                                     0.006
                                                               0.006
                                                                        0.085
##
                                   0.001
##
       BDI
                        -0.002
                                         -2.373
                                                     0.018
                                                             -0.002
                                                                       -0.121
       STAI2
                                   0.001
##
                         0.001
                                            0.789
                                                     0.430
                                                               0.001
                                                                        0.037
##
       SZ
                         -0.001
                                   0.001
                                           -1.145
                                                     0.252
                                                              -0.001
                                                                       -0.056
##
       OCIR
                         0.000
                                   0.001
                                            0.087
                                                     0.931
                                                               0.000
                                                                        0.004
##
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv
                                                                      Std.all
##
                         0.663
                                   0.042
                                           15.791
                                                     0.000
                                                               0.663
                                                                        3.166
      .propmedhigh
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv
                                                                      Std.all
##
                         0.041
                                   0.002 24.796
                                                     0.000
                                                               0.041
                                                                        0.943
      .propmedhigh
##
## R-Square:
                      Estimate
##
##
                         0.057
       propmedhigh
summary(fit2miss, standardized=TRUE, rsquare=T, fit.measures=F) #estimate missing
## lavaan 0.6-3 ended normally after 120 iterations
##
##
     Optimization method
                                                    NLMINB
##
     Number of free parameters
                                                         10
##
##
                                                       Used
                                                                  Total
##
     Number of observations
                                                       990
                                                                   1066
```

## lavaan 0.6-3 ended normally after 59 iterations

| ##<br>## | Number of missi                       | 1           |           |           |          |        |         |
|----------|---------------------------------------|-------------|-----------|-----------|----------|--------|---------|
| ##       | Estimator                             |             |           |           | ML       | Robu   | st.     |
| ##       | Model Fit Test S                      | Statistic   |           |           | 0.000    | 0.0    |         |
| ##       | Degrees of free                       |             |           |           | 0        |        | 0       |
| ##       | Scaling correct:                      |             |           |           | -        |        | NA      |
| ##       | for the Yuan-l                        |             | rection ( | Mplus var | iant)    |        |         |
| ##       |                                       |             |           | •         |          |        |         |
| ##       | Parameter Estimate                    | es:         |           |           |          |        |         |
| ##       |                                       |             |           |           |          |        |         |
| ##       | Information                           |             |           |           | Observed |        |         |
| ##       | Observed information                  | ation based | on        |           | Hessian  |        |         |
| ##       | Standard Errors                       |             | R         | obust.hub | er.white |        |         |
| ##       |                                       |             |           |           |          |        |         |
| ##       | Regressions:                          |             |           |           |          |        |         |
| ##       |                                       | Estimate    | Std.Err   | z-value   | P(> z )  | Std.lv | Std.all |
| ##       | driftrate ~                           |             |           |           |          |        |         |
| ##       | GenderMF                              | -0.000      | 0.001     | -0.421    | 0.674    | -0.000 |         |
| ##       | Age                                   | -0.000      | 0.000     | -3.611    | 0.000    | -0.000 |         |
| ##       | Ravens                                | 0.001       | 0.000     | 4.348     | 0.000    | 0.001  | 0.146   |
| ##       | spreadsheet                           | 0.000       | 0.000     | 2.766     | 0.006    |        |         |
| ##       | BDI                                   | -0.000      | 0.000     | -2.533    | 0.011    |        |         |
| ##       | STAI2                                 | 0.000       | 0.000     | 0.876     |          |        |         |
| ##       | SZ                                    | -0.000      | 0.000     | -1.355    |          | -0.000 |         |
| ##       | OCIR                                  | 0.000       | 0.000     | 0.392     | 0.695    | 0.000  | 0.018   |
| ##       | Tutana                                |             |           |           |          |        |         |
| ##       | Intercepts:                           | Estimate    | Std.Err   | z-value   | P(> z )  | Std.lv | Std.all |
| ##       | .driftrate                            | 0.009       | 0.002     | 3.707     | 0.000    | 0.009  | 0.740   |
| ##       | .urirtrate                            | 0.009       | 0.002     | 3.101     | 0.000    | 0.009  | 0.740   |
|          | Variances:                            |             |           |           |          |        |         |
| ##       | variances.                            | Estimate    | Std.Err   | z-value   | P(> z )  | Std.lv | Std.all |
| ##       | .driftrate                            | 0.000       | 0.000     | 21.371    | 0.000    | 0.000  | 0.943   |
| ##       | . al li ol a o                        | 0.000       | 0.000     | 21.011    | 0.000    | 0.000  | 0.010   |
|          | R-Square:                             |             |           |           |          |        |         |
| ##       | · · · · · · · · · · · · · · · · · · · | Estimate    |           |           |          |        |         |
| ##       | driftrate                             | 0.057       |           |           |          |        |         |

#### Interpretation

Affective bias and drift rate are both significantly influenced by IQ, Age, BDI and counterbalancing only. Thus of mental health relevant symptoms, task performance appears to be more driven by depresson than anxiety, OCD, or psychosis related traits.

#### Correlation between task performance and depression symptoms

To illustrate the effect of depression in the regression we plot the correlation between BDI and pmidhigh/drift rate in raw scores. Consistent with our prior work, increased depression is associated with reduced p(mid as high)(i.e. increased negative bias).



```
##
    Pearson's product-moment correlation
##
##
## data: combineditemdata$BDI and combineditemdata$propmedhigh
## t = -4.1239, df = 992, p-value = 4.036e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
    -0.19046936 -0.06819752
## sample estimates:
##
         cor
## -0.129827
##
    Pearson's product-moment correlation
##
##
## data: combineditemdata$BDI and combineditemdata$driftrate
## t = -4.2639, df = 992, p-value = 2.2e-05
\#\# alternative hypothesis: true correlation is not equal to 0
  95 percent confidence interval:
   -0.19471183 -0.07258157
## sample estimates:
          cor
## -0.1341561
```

#### Exploring latent variable structure of the Questionnaires

The linear regression assumes that the summary scores of the questionnaires represent discrete categories. However, it is possible that effects are driven by a generic 'mental ill health' factor (sometimes referred to as a P factor model). Or, some questionnaires (e.g. BDI and trait anxiety, which are usually highly correlated) actually measure a single latent 'negative affect' factor. To test for these possibilities we explore four confirmatory factor analyses feeding the individual items from the questionnaires into 1-4 latent factors. The 4 latent factor CFA represents the items feeding into the original questionnaires.

```
###Testing different measurement models
pFactor1<-'#specifying measurement model
   =~ BDI_Appetite_quantised
       BDI_Attractive_quantised +
       BDI_Blame_quantised +
       BDI_Cry_quantised
       BDI_Decisions_quantised +
       BDI Disappointment quantised +
      BDI Failure quantised
       BDI Future quantised +
       BDI_Guilty_quantised +
       BDI_Health_quantised +
      BDI Interest In People quantised +
       BDI Irritated quantised +
       BDI_Libido_quantised +
       BDI_Punished_quantised
       BDI_Sad_quantised +
       BDI_Satisfaction_quantised
       BDI Sleep quantised +
       BDI_Tired_quantised +
       BDI_weight_quantised +
       BDI_Work_quantised
        STAI2_Calm_quantised +
        STAI2_Content_quantised +
        STAI2 Desicions quantised +
        STAI2 Difficulties quantised +
        STAI2 DisappointmentsSelf quantised +
        STAI2_Failure_quantised +
        STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2 Inadequate quantised +
        STAI2_Nervous_quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
        STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
        STAI2_Steady_quantised +
        STAI2_Tension_quantised +
        STAI2 Thoughts quantised +
        STAI2_UnimportantThought_quantised +
        STAI2 Worry quantised +
       OCIR_14_quantised
```

```
OCIR_15_quantised
OCIR_16_quantised
 OCIR 17 quantised
 OCIR_18_quantised
 OCIR 2 quantised +
OCIR_3_quantised +
OCIR_4_quantised +
OCIR_5_quantised +
 OCIR_6_quantised +
 OCIR_7_quantised +
 OCIR_8_quantised +
 OCIR_9_quantised +
 OCIR_1_quantised +
OCIR_10_quantised
OCIR_11_quantised
 OCIR_12_quantised
OCIR_13_quantised +
SZ_1_quantised
SZ_10_quantised +
SZ_11_quantised +
SZ 12 quantised +
SZ 13 quantised +
SZ_14_quantised +
SZ_15_quantised +
SZ_16_quantised +
SZ 17 quantised +
SZ_18_quantised +
SZ_19_quantised +
SZ_2_quantised +
SZ_20_quantised +
SZ_21_quantised +
SZ_22_quantised +
SZ_23_quantised +
SZ_24_quantised +
SZ_25_quantised +
SZ_26_quantised +
SZ_27_quantised +
SZ 28 quantised +
SZ 29 quantised +
SZ_3_quantised +
SZ_30_quantised +
SZ_31_quantised +
SZ_32_quantised +
SZ_33_quantised +
SZ_34_quantised +
SZ_35_quantised +
SZ_36_quantised +
SZ_37_quantised +
SZ_38_quantised +
SZ_39_quantised +
SZ_4_quantised +
SZ_40_quantised +
SZ_41_quantised +
```

```
SZ_42_quantised +
      SZ_5_quantised +
      SZ 6 quantised +
      SZ_7_quantised +
      SZ_8_quantised +
      SZ_9_quantised
BiFactor2<- '#specifying measurement model
ANXDEP =~ BDI_Appetite_quantised
       BDI_Attractive_quantised +
       BDI_Blame_quantised +
      BDI_Cry_quantised
      BDI_Decisions_quantised +
       BDI_Disappointment_quantised +
      BDI_Failure_quantised
      BDI_Future_quantised +
      BDI_Guilty_quantised +
       BDI_Health_quantised +
      BDI_Interest_In_People_quantised +
      BDI Irritated quantised +
      BDI_Libido_quantised +
       BDI_Punished_quantised
      BDI_Sad_quantised +
       BDI Satisfaction quantised
       BDI_Sleep_quantised +
       BDI_Tired_quantised +
       BDI_weight_quantised +
       BDI_Work_quantised +
       STAI2_Calm_quantised +
       STAI2_Content_quantised +
       STAI2_Desicions_quantised +
        STAI2_Difficulties_quantised +
       STAI2_DisappointmentsSelf_quantised +
       STAI2_Failure_quantised +
       STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2_Inadequate_quantised +
        STAI2_Nervous_quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
        STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
        STAI2_Steady_quantised +
        STAI2_Tension_quantised +
        STAI2_Thoughts_quantised +
        STAI2_UnimportantThought_quantised +
       STAI2_Worry_quantised
OTH =~ OCIR_14_quantised
      OCIR_15_quantised
```

```
OCIR_16_quantised
OCIR_17_quantised
 OCIR 18 quantised
 OCIR_2_quantised +
 OCIR 3 quantised +
OCIR_4_quantised +
 OCIR_5_quantised +
OCIR_6_quantised +
 OCIR_7_quantised +
 OCIR_8_quantised +
 OCIR_9_quantised +
 OCIR_1_quantised +
 OCIR_10_quantised
 OCIR_11_quantised
OCIR_12_quantised
OCIR_13_quantised +
SZ_1_quantised
SZ_10_quantised
SZ_11_quantised +
SZ_12_quantised +
SZ_13_quantised +
SZ 14 quantised +
SZ_15_quantised +
SZ_16_quantised +
SZ_17_quantised +
SZ 18 quantised +
SZ_19_quantised +
SZ_2_quantised +
SZ_20_quantised +
SZ_21_quantised +
SZ_22_quantised +
SZ_23_quantised +
SZ_24_quantised +
SZ_25_quantised +
SZ_26_quantised +
SZ_27_quantised +
SZ_28_quantised +
SZ 29 quantised +
SZ 3 quantised +
SZ_30_quantised +
SZ_31_quantised +
SZ_32_quantised +
SZ_33_quantised +
SZ_34_quantised +
SZ_35_quantised +
SZ_36_quantised +
SZ_37_quantised +
SZ_38_quantised +
SZ_39_quantised +
SZ_4_quantised +
SZ_40_quantised +
SZ 41 quantised +
SZ_42_quantised +
```

```
SZ_5_quantised +
      SZ_6_quantised +
      SZ 7 quantised +
      SZ_8_quantised +
      SZ_9_quantised
TriFactor3<-'#specifying measurement model</pre>
ANXDEP =~ BDI_Appetite_quantised
      BDI_Attractive_quantised +
       BDI_Blame_quantised +
       BDI_Cry_quantised
      BDI_Decisions_quantised +
      BDI_Disappointment_quantised +
       BDI_Failure_quantised
      BDI_Future_quantised +
      BDI_Guilty_quantised +
      BDI_Health_quantised +
       BDI_Interest_In_People_quantised +
      BDI_Irritated_quantised +
      BDI Libido quantised +
      BDI_Punished_quantised
       BDI_Sad_quantised +
      BDI_Satisfaction_quantised
       BDI Sleep quantised +
       BDI_Tired_quantised +
       BDI_weight_quantised +
       BDI_Work_quantised +
        STAI2_Calm_quantised +
        STAI2_Content_quantised +
        STAI2_Desicions_quantised +
        STAI2_Difficulties_quantised +
        STAI2_DisappointmentsSelf_quantised +
        STAI2_Failure_quantised +
        STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2_Inadequate_quantised +
        STAI2 Nervous quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
        STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
        STAI2_Steady_quantised +
        STAI2_Tension_quantised +
        STAI2_Thoughts_quantised +
        STAI2_UnimportantThought_quantised +
        STAI2_Worry_quantised
OCD =~ OCIR_14_quantised
      OCIR 15 quantised
       OCIR_16_quantised
```

```
OCIR_17_quantised
      OCIR_18_quantised
       OCIR 2 quantised +
       OCIR_3_quantised +
       OCIR 4 quantised +
      OCIR_5_quantised +
      OCIR_6_quantised +
      OCIR_7_quantised +
       OCIR_8_quantised +
       OCIR_9_quantised +
       OCIR_1_quantised +
       OCIR_10_quantised
       OCIR_11_quantised
       OCIR_12_quantised
      OCIR_13_quantised
SZ =~ SZ_1_quantised
     SZ_10_quantised
      SZ_11_quantised +
      SZ_12_quantised +
      SZ_13_quantised +
      SZ 14 quantised +
      SZ_15_quantised +
      SZ_16_quantised +
      SZ_17_quantised +
      SZ 18 quantised +
      SZ_19_quantised +
      SZ_2_quantised +
      SZ_20_quantised +
      SZ_21_quantised +
      SZ_22_quantised +
      SZ_23_quantised +
      SZ_24_quantised +
      SZ_25_quantised +
      SZ_26_quantised +
     SZ_27_quantised +
      SZ_28_quantised +
      SZ 29 quantised +
      SZ 3 quantised +
      SZ_30_quantised +
      SZ_31_quantised +
      SZ_32_quantised +
      SZ_33_quantised +
      SZ_34_quantised +
      SZ_35_quantised +
      SZ_36_quantised +
      SZ_37_quantised +
      SZ_38_quantised +
      SZ_39_quantised +
      SZ_4_quantised +
      SZ_40_quantised +
      SZ_41_quantised +
      SZ_42_quantised +
```

```
SZ_5_quantised +
      SZ_6_quantised +
      SZ 7 quantised +
      SZ_8_quantised +
      SZ_9_quantised
Quaires4 <- '#specifying measurement model
BDI =~ BDI_Appetite_quantised
      BDI_Attractive_quantised +
      BDI_Blame_quantised +
       BDI_Cry_quantised
      BDI_Decisions_quantised +
      BDI_Disappointment_quantised +
      BDI_Failure_quantised
      BDI_Future_quantised +
      BDI_Guilty_quantised +
      BDI_Health_quantised +
      BDI_Interest_In_People_quantised +
      BDI_Irritated_quantised +
      BDI_Libido_quantised +
      BDI Punished quantised +
      BDI_Sad_quantised +
      BDI_Satisfaction_quantised +
      BDI_Sleep_quantised +
       BDI Tired quantised +
       BDI_weight_quantised +
       BDI_Work_quantised
OCD =~ OCIR_14_quantised
      OCIR_15_quantised
      OCIR_16_quantised
      OCIR_17_quantised
      OCIR_18_quantised
      OCIR_2_quantised +
      OCIR_3_quantised +
      OCIR_4_quantised +
      OCIR_5_quantised +
      OCIR_6_quantised +
      OCIR_7_quantised +
      OCIR_8_quantised +
       OCIR_9_quantised +
       OCIR_1_quantised +
       OCIR_10_quantised
       OCIR_11_quantised
       OCIR_12_quantised
       OCIR_13_quantised
SZ =~ SZ_1_quantised
     SZ_10_quantised
      SZ_11_quantised +
     SZ_12_quantised +
      SZ_13_quantised +
```

```
SZ_14_quantised +
      SZ_15_quantised +
      SZ 16 quantised +
      SZ_17_quantised +
      SZ_18_quantised +
      SZ_19_quantised +
      SZ_2_quantised +
      SZ_20_quantised +
      SZ_21_quantised +
      SZ_22_quantised +
      SZ_23_quantised +
      SZ_24_quantised +
      SZ_25_quantised +
      SZ_26_quantised +
      SZ_27_quantised +
      SZ_28_quantised +
      SZ_29_quantised +
      SZ_3_quantised +
      SZ_30_quantised +
      SZ_31_quantised +
      SZ_32_quantised +
      SZ 33 quantised +
      SZ_34_quantised +
      SZ_35_quantised +
      SZ_36_quantised +
      SZ 37 quantised +
      SZ_38_quantised +
      SZ_39_quantised +
      SZ_4_quantised +
      SZ_40_quantised +
      SZ_41_quantised +
      SZ_42_quantised +
      SZ_5_quantised +
      SZ_6_quantised +
      SZ_7_quantised +
      SZ_8_quantised +
      SZ_9_quantised
STAI =~ STAI2_Calm_quantised +
        STAI2_Content_quantised +
        STAI2_Desicions_quantised +
        STAI2_Difficulties_quantised +
        STAI2_DisappointmentsSelf_quantised +
        STAI2_Failure_quantised +
        STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2_Inadequate_quantised +
        STAI2_Nervous_quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
        STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
```

```
STAI2_Steady_quantised +
        STAI2_Tension_quantised +
        STAI2 Thoughts quantised +
        STAI2_UnimportantThought_quantised +
        STAI2_Worry_quantised
FitpFactor1<- cfa(pFactor1, data = combineditemdata, estimator = "MLR", se='robust.huber.white')
FitBiFactor2<- cfa(BiFactor2, data = combineditemdata, estimator = "MLR", se='robust.huber.white')
FitTriFactor3<- cfa(TriFactor3, data = combineditemdata, estimator = "MLR", se='robust.huber.white')
FitQuaires4<- cfa(Quaires4, data = combineditemdata, estimator = "MLR", se='robust.huber.white')
FitpFactor1vars <-data.frame(fitMeasures(FitpFactor1, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea.ci
names(FitpFactor1vars) <- "P Factor"</pre>
FitBiFactor2vars<- data.frame(fitMeasures(FitBiFactor2, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea.
names(FitBiFactor2vars) <- "Bi Factor (AnxDep vs. not)"</pre>
FitTriFactor3vars<- data.frame(fitMeasures(FitTriFactor3, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea
names(FitTriFactor3vars) <- "Tri Factor (AnxDep vs. SZ or OCD)"</pre>
FitQuaires4vars<- data.frame(fitMeasures(FitQuaires4, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea.ci
names(FitQuaires4vars) <- "Four Factor (All questionnaires)"</pre>
Allfits <- cbind.data.frame(FitpFactor1vars, FitBiFactor2vars, FitTriFactor3vars, FitQuaires4vars)
rownames(Allfits) <- c("BIC", "AIC", "RMSEA", "RMSEA CI-", "RMSEA CI+")
kable(t(Allfits), digits = 3)
```

|                         | BIC       | AIC  | RMSEA    | RMSEA CI- | RMSEA CI+ |       |       |
|-------------------------|-----------|------|----------|-----------|-----------|-------|-------|
| P Factor                |           |      | 206756.6 | 205762.2  | 0.071     | 0.071 | 0.072 |
| Bi Factor (AnxDep vs.   | not)      |      | 199828.5 | 198829.1  | 0.061     | 0.060 | 0.062 |
| Tri Factor (AnxDep vs   | . SZ or 0 | OCD) | 196936.3 | 195927.1  | 0.056     | 0.056 | 0.057 |
| Four Factor (All questi | onnaires  | s)   | 195624.0 | 194599.8  | 0.054     | 0.053 | 0.055 |

## Interpretation

As demonstrated by the lowest BIC/AIC the 4 factor (original questionnaire structure) solution is the best description of the data. This also has the lowest RMSEA, which is in turn below 0.08 and hence a good fit to the data.

#### Structural Equation Model of the factor structure with regression

We can now feed this factor structure into a structural equation model with the original regression analysis in it. This is similar to the linear regression, although it allows the different items of the questionnaire to have varying influence over the summary questionnaire 'factors'.

```
BDI_Decisions_quantised +
      BDI_Disappointment_quantised +
      BDI Failure quantised
      BDI_Future_quantised +
       BDI Guilty quantised +
      BDI_Health_quantised +
      BDI_Interest_In_People_quantised +
      BDI_Irritated_quantised +
      BDI Libido quantised +
      BDI_Punished_quantised
       BDI_Sad_quantised +
       BDI_Satisfaction_quantised
       BDI_Sleep_quantised +
       BDI_Tired_quantised +
       BDI_weight_quantised +
       BDI_Work_quantised
OCD =~ OCIR_14_quantised
      OCIR_15_quantised
       OCIR_16_quantised
      OCIR_17_quantised
      OCIR 18 quantised
      OCIR_2_quantised +
      OCIR_3_quantised +
      OCIR_4_quantised +
      OCIR_5_quantised +
       OCIR_6_quantised +
       OCIR_7_quantised +
       OCIR_8_quantised +
       OCIR_9_quantised +
       OCIR_1_quantised +
       OCIR_10_quantised
       OCIR_11_quantised
       OCIR_12_quantised
       OCIR_13_quantised
SZ =~ SZ_1_quantised
      SZ 10 quantised +
      SZ 11 quantised +
      SZ_12_quantised +
      SZ_13_quantised +
      SZ_14_quantised +
      SZ_15_quantised +
      SZ_16_quantised +
     SZ_17_quantised +
      SZ_18_quantised +
      SZ_19_quantised +
      SZ_2_quantised +
     SZ_20_quantised +
      SZ_21_quantised +
      SZ_22_quantised +
      SZ 23 quantised +
      SZ_24_quantised +
```

```
SZ_25_quantised +
      SZ_26_quantised +
      SZ 27 quantised +
      SZ_28_quantised +
      SZ_29_quantised +
      SZ_3_quantised +
      SZ_30_quantised +
      SZ_31_quantised +
      SZ_32_quantised +
      SZ_33_quantised +
      SZ_34_quantised +
      SZ_35_quantised +
      SZ_36_quantised +
      SZ_37_quantised +
      SZ_38_quantised +
      SZ_39_quantised +
      SZ_4_quantised +
      SZ_40_quantised +
     SZ_41_quantised +
      SZ_42_quantised +
     SZ_5_quantised +
      SZ_6_quantised +
      SZ_7_quantised +
      SZ_8_quantised +
      SZ_9_quantised
STAI =~ STAI2_Calm_quantised +
        STAI2_Content_quantised +
        STAI2_Desicions_quantised +
        STAI2_Difficulties_quantised +
        STAI2_DisappointmentsSelf_quantised +
        STAI2_Failure_quantised +
        STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2_Inadequate_quantised +
        STAI2_Nervous_quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
        STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
        STAI2_Steady_quantised +
        STAI2_Tension_quantised +
        STAI2_Thoughts_quantised +
        STAI2_UnimportantThought_quantised +
        STAI2_Worry_quantised
#Regressions
propmedhigh ~ spreadsheet + Ravens + Age + GenderMF + BDI + OCD + SZ + STAI
#residual correlations
spreadsheet ~~ Ravens + Age + GenderMF + BDI + OCD + SZ + STAI
```

```
Ravens ~~ Age + GenderMF + BDI + OCD + SZ + STAI
Age ~~ GenderMF + BDI + OCD + SZ + STAI
GenderMF ~~ BDI + OCD + SZ + STAI
BDI ~~ OCD + SZ + STAI
OCD ~~ SZ + STAI
SZ ~~ STAI
QuaireSEMdrift <- '#specifying measurement model
BDI =~ BDI_Appetite_quantised
      BDI_Attractive_quantised +
       BDI_Blame_quantised +
      BDI_Cry_quantised
      BDI_Decisions_quantised +
       BDI_Disappointment_quantised +
      BDI_Failure_quantised
      BDI_Future_quantised +
      BDI_Guilty_quantised +
      BDI_Health_quantised +
      BDI_Interest_In_People_quantised +
      BDI Irritated quantised +
      BDI_Libido_quantised +
      BDI_Punished_quantised
      BDI_Sad_quantised +
      BDI_Satisfaction_quantised
       BDI_Sleep_quantised +
       BDI_Tired_quantised +
       BDI_weight_quantised +
       BDI_Work_quantised
OCD =~ OCIR_14_quantised
      OCIR_15_quantised
      OCIR_16_quantised
      OCIR_17_quantised
      OCIR_18_quantised
      OCIR_2_quantised +
      OCIR_3_quantised +
      OCIR_4_quantised +
      OCIR_5_quantised +
      OCIR_6_quantised +
      OCIR_7_quantised +
       OCIR_8_quantised +
       OCIR_9_quantised +
       OCIR_1_quantised +
       OCIR_10_quantised
       OCIR_11_quantised
       OCIR_12_quantised
      OCIR_13_quantised
SZ =~ SZ_1_quantised
     SZ_10_quantised
      SZ_11_quantised +
```

```
SZ_12_quantised +
      SZ_13_quantised +
      SZ 14 quantised +
      SZ_15_quantised +
      SZ_16_quantised +
      SZ_17_quantised +
      SZ_18_quantised +
      SZ_19_quantised +
      SZ_2_quantised +
      SZ_20_quantised +
      SZ_21_quantised +
      SZ_22_quantised +
      SZ_23_quantised +
      SZ_24_quantised +
      SZ_25_quantised +
      SZ_26_quantised +
      SZ_27_quantised +
      SZ_28_quantised +
      SZ_29_quantised +
      SZ_3_quantised +
      SZ_30_quantised +
      SZ 31 quantised +
      SZ_32_quantised +
      SZ_33_quantised +
      SZ_34_quantised +
      SZ 35 quantised +
      SZ_36_quantised +
      SZ_37_quantised +
      SZ_38_quantised +
      SZ_39_quantised +
      SZ_4_quantised +
      SZ_40_quantised +
      SZ_41_quantised +
      SZ_42_quantised +
      SZ_5_quantised +
      SZ_6_quantised +
      SZ_7_quantised +
      SZ_8_quantised +
      SZ_9_quantised
STAI =~ STAI2_Calm_quantised +
        STAI2_Content_quantised +
        STAI2_Desicions_quantised +
        STAI2_Difficulties_quantised +
        STAI2_DisappointmentsSelf_quantised +
        STAI2_Failure_quantised +
        STAI2_Happy_quantised +
        STAI2_HappyOthers_quantised +
        STAI2_Inadequate_quantised +
        STAI2_Nervous_quantised +
        STAI2_Pleasant_quantised +
        STAI2_Rested_quantised +
        STAI2_SatisfiedSelf_quantised +
```

```
STAI2_Secure_quantised +
        STAI2_SelfConfidence_quantised +
        STAI2 Steady quantised +
        STAI2 Tension quantised +
        STAI2 Thoughts quantised +
        STAI2_UnimportantThought_quantised +
        STAI2_Worry_quantised
#Regressions
driftrate ~ spreadsheet + Ravens + Age + GenderMF + BDI + OCD + SZ + STAI
#residual correlations
spreadsheet ~~ Ravens + Age + GenderMF + BDI + OCD + SZ + STAI
Ravens ~~ Age + GenderMF + BDI + OCD + SZ + STAI
Age ~~ GenderMF + BDI + OCD + SZ + STAI
GenderMF ~~ BDI + OCD + SZ + STAI
BDI ~~ OCD + SZ + STAI
OCD ~~ SZ + STAI
SZ ~~ STAI
FitQuaireSEMpmid <- sem(QuaireSEMpmid, data = combineditemdata, estimator = "MLR", se='robust.huber.whi
FitQuaireSEMdrift <- sem(QuaireSEMdrift, data = combineditemdata, estimator = "MLR", se='robust.huber.w
FitQuaireSEMpmidmiss <- sem(QuaireSEMpmid, data = combineditemdata, estimator = "MLR", se='robust.huber
FitQuaireSEMdriftmiss <- sem(QuaireSEMdrift, data = combineditemdata, estimator = "MLR", se='robust.hub
summary(FitQuaireSEMpmid, standardized=TRUE, rsquare=T, fit.measures=F) #listwise delete missing
## lavaan 0.6-3 ended normally after 223 iterations
##
##
                                                   NLMINB
     Optimization method
##
    Number of free parameters
                                                      241
##
##
                                                     Used
                                                                 Total
##
     Number of observations
                                                      990
                                                                  1066
##
##
    Estimator
                                                       MT.
                                                                Robust
##
    Model Fit Test Statistic
                                                19683.727
                                                            17260.394
##
    Degrees of freedom
                                                     5324
                                                                  5324
    P-value (Chi-square)
                                                    0.000
                                                                 0.000
##
    Scaling correction factor
                                                                 1.140
##
##
       for the Yuan-Bentler correction (Mplus variant)
##
## Parameter Estimates:
##
##
     Information
                                                  Observed
     Observed information based on
##
                                                  Hessian
##
    Standard Errors
                                       Robust.huber.white
##
## Latent Variables:
```

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

##

| ## | BDI =~                               |       |       |        |       |       |       |
|----|--------------------------------------|-------|-------|--------|-------|-------|-------|
| ## | BDI_Apptt_qnts                       | 1.000 |       |        |       | 0.584 | 0.651 |
| ## | BDI_Attrctv_qn                       | 1.045 | 0.057 | 18.241 | 0.000 | 0.611 | 0.647 |
| ## | BDI_Blam_qntsd                       | 1.142 | 0.057 | 19.909 | 0.000 | 0.667 | 0.760 |
| ## | BDI_Cry_quntsd                       | 0.997 | 0.050 | 20.093 | 0.000 | 0.583 | 0.666 |
| ## | BDI_Dcsns_qnts                       | 1.109 | 0.056 | 19.787 | 0.000 | 0.648 | 0.731 |
| ## | BDI_Dsppntmnt_                       | 1.126 | 0.062 | 18.274 | 0.000 | 0.658 | 0.745 |
| ## | BDI_Falr_qntsd                       | 1.142 | 0.061 | 18.655 | 0.000 | 0.667 | 0.730 |
| ## | BDI_Futr_qntsd                       | 1.131 | 0.059 | 19.162 | 0.000 | 0.661 | 0.741 |
| ## | BDI_Glty_qntsd                       | 1.004 | 0.053 | 18.944 | 0.000 | 0.587 | 0.690 |
| ## | BDI_Hlth_qntsd                       | 0.771 | 0.045 | 16.978 | 0.000 | 0.451 | 0.583 |
| ## | BDI_Intrs_I_P_                       | 1.075 | 0.055 | 19.385 | 0.000 | 0.628 | 0.694 |
| ## | BDI_Irrttd_qnt                       | 1.072 | 0.051 | 20.852 | 0.000 | 0.626 | 0.706 |
| ## | BDI_Libd_qntsd                       | 0.868 | 0.048 | 18.244 | 0.000 | 0.507 | 0.574 |
| ## | BDI_Pnshd_qnts                       | 1.060 | 0.055 | 19.294 | 0.000 | 0.620 | 0.665 |
| ## | BDI_Sad_quntsd                       | 0.945 | 0.048 | 19.683 | 0.000 | 0.552 | 0.714 |
| ## | BDI_Stsfctn_qn                       | 1.097 | 0.059 | 18.534 | 0.000 | 0.641 | 0.689 |
| ## | BDI_Slep_qntsd                       | 0.889 | 0.050 | 17.721 | 0.000 | 0.520 | 0.579 |
| ## | BDI_Tird_qntsd                       | 0.971 | 0.052 | 18.753 | 0.000 | 0.567 | 0.664 |
| ## | BDI_wght_qntsd                       | 0.558 | 0.043 | 12.882 | 0.000 | 0.326 | 0.456 |
| ## | BDI_Work_qntsd                       | 1.068 | 0.053 | 20.171 | 0.000 | 0.624 | 0.723 |
| ## | OCD =~                               |       |       |        |       |       |       |
| ## | OCIR_14_quntsd                       | 1.000 |       |        |       | 1.111 | 0.826 |
| ## | OCIR_15_quntsd                       | 0.833 | 0.029 | 29.075 | 0.000 | 0.925 | 0.713 |
| ## | OCIR_16_quntsd                       | 0.931 | 0.029 | 32.283 | 0.000 | 1.033 | 0.788 |
| ## | OCIR_17_quntsd                       | 1.013 | 0.028 | 36.734 | 0.000 | 1.125 | 0.840 |
| ## | OCIR_18_quntsd                       | 0.980 | 0.028 | 34.839 | 0.000 | 1.089 | 0.820 |
| ## | OCIR_2_quantsd                       | 0.834 | 0.028 | 30.262 | 0.000 | 0.926 | 0.714 |
| ## | OCIR_3_quantsd                       | 0.810 | 0.028 | 28.552 | 0.000 | 0.900 | 0.714 |
| ## | $\mathtt{OCIR}\_4\mathtt{\_quantsd}$ | 0.934 | 0.027 | 35.234 | 0.000 | 1.037 | 0.805 |
| ## | $\mathtt{OCIR}_5\mathtt{\_quantsd}$  | 0.894 | 0.030 | 29.657 | 0.000 | 0.993 | 0.767 |
| ## | OCIR_6_quantsd                       | 0.849 | 0.030 | 28.000 | 0.000 | 0.942 | 0.735 |
| ## | OCIR_7_quantsd                       | 0.799 | 0.029 | 27.687 | 0.000 | 0.887 | 0.720 |
| ## | OCIR_8_quantsd                       | 0.982 | 0.025 | 39.513 | 0.000 | 1.090 | 0.816 |
| ## | OCIR_9_quantsd                       | 0.819 | 0.028 | 29.298 | 0.000 | 0.910 | 0.719 |
| ## | OCIR_1_quantsd                       | 0.856 | 0.027 | 32.152 | 0.000 | 0.950 | 0.743 |
| ## | OCIR_10_quntsd                       | 0.975 | 0.025 | 38.418 | 0.000 | 1.083 | 0.845 |
| ## | OCIR_11_quntsd                       | 0.972 | 0.027 | 35.748 | 0.000 | 1.079 | 0.829 |
| ## | OCIR_12_quntsd                       | 0.900 | 0.030 | 29.821 | 0.000 | 0.999 | 0.770 |
| ## | OCIR_13_quntsd                       | 0.780 | 0.028 | 27.801 | 0.000 | 0.866 | 0.687 |
| ## | SZ =~                                |       |       |        |       |       |       |
| ## | SZ_1_quantised                       | 1.000 |       |        |       | 0.304 | 0.624 |
| ## | SZ_10_quantisd                       | 0.832 | 0.042 | 19.768 | 0.000 | 0.253 | 0.598 |
| ## | SZ_11_quantisd                       | 0.813 | 0.044 | 18.281 | 0.000 | 0.247 | 0.500 |
| ## | SZ_12_quantisd                       | 0.789 | 0.045 | 17.483 | 0.000 | 0.240 | 0.501 |
| ## | SZ_13_quantisd                       | 0.904 | 0.048 | 18.685 | 0.000 | 0.274 | 0.557 |
| ## | SZ_14_quantisd                       | 0.872 | 0.053 | 16.390 | 0.000 | 0.265 | 0.530 |
| ## | SZ_15_quantisd                       | 0.923 | 0.051 | 17.936 | 0.000 | 0.280 | 0.562 |
| ## | SZ_16_quantisd                       | 0.716 | 0.051 | 13.956 | 0.000 | 0.217 | 0.435 |
| ## | SZ_17_quantisd                       | 0.840 | 0.049 | 17.252 | 0.000 | 0.255 | 0.514 |
| ## | SZ_18_quantisd                       | 0.972 | 0.050 | 19.599 | 0.000 | 0.295 | 0.599 |
| ## | SZ_19_quantisd                       | 0.842 | 0.049 | 17.290 | 0.000 | 0.256 | 0.514 |
| ## | SZ_2_quantised                       | 0.949 | 0.044 | 21.519 | 0.000 | 0.288 | 0.591 |
| ## | SZ_20_quantisd                       | 0.951 | 0.044 | 21.644 | 0.000 | 0.289 | 0.637 |

```
##
       SZ_21_quantisd
                           0.894
                                     0.050
                                              17.929
                                                         0.000
                                                                   0.272
                                                                             0.549
##
                           0.871
       SZ_22_quantisd
                                     0.052
                                              16.717
                                                         0.000
                                                                   0.265
                                                                             0.532
                                              17.998
##
       SZ_23_quantisd
                           0.885
                                     0.049
                                                         0.000
                                                                   0.269
                                                                             0.548
##
       SZ_24_quantisd
                           0.883
                                     0.046
                                                         0.000
                                                                   0.268
                                                                             0.546
                                              19.057
##
       SZ_25_quantisd
                           0.800
                                     0.046
                                              17.379
                                                         0.000
                                                                   0.243
                                                                             0.491
##
       SZ_26_quantisd
                          -0.009
                                     0.047
                                              -0.193
                                                         0.847
                                                                  -0.003
                                                                           -0.006
       SZ_27_quantisd
##
                                     0.048
                           0.059
                                               1.242
                                                         0.214
                                                                   0.018
                                                                             0.039
##
       SZ_28_quantisd
                          -0.049
                                     0.055
                                              -0.897
                                                         0.370
                                                                  -0.015
                                                                           -0.031
##
       SZ_29_quantisd
                           0.602
                                     0.049
                                              12.279
                                                         0.000
                                                                   0.183
                                                                             0.371
##
       SZ_3_quantised
                           0.792
                                     0.043
                                              18.237
                                                         0.000
                                                                   0.240
                                                                             0.548
##
       SZ_30_quantisd
                           0.115
                                     0.055
                                               2.100
                                                         0.036
                                                                   0.035
                                                                             0.071
##
                                     0.046
       SZ_31_quantisd
                           0.038
                                               0.829
                                                         0.407
                                                                   0.012
                                                                             0.026
##
       SZ_32_quantisd
                           0.697
                                     0.050
                                              13.975
                                                         0.000
                                                                   0.212
                                                                             0.429
##
       SZ_33_quantisd
                                     0.050
                                               9.104
                                                         0.000
                           0.459
                                                                   0.139
                                                                             0.289
##
                          -0.052
                                     0.047
                                                         0.262
                                                                  -0.016
       SZ_34_quantisd
                                              -1.122
                                                                           -0.035
##
       SZ_35_quantisd
                           0.784
                                     0.042
                                              18.515
                                                         0.000
                                                                   0.238
                                                                             0.569
##
       SZ_36_quantisd
                           0.846
                                     0.048
                                              17.786
                                                         0.000
                                                                   0.257
                                                                             0.516
##
       SZ_37_quantisd
                          -0.206
                                     0.050
                                              -4.076
                                                         0.000
                                                                  -0.062
                                                                           -0.136
##
                                     0.043
       SZ_38_quantisd
                           0.907
                                              21.043
                                                         0.000
                                                                   0.275
                                                                             0.597
##
       SZ_39_quantisd
                          -0.010
                                     0.048
                                              -0.201
                                                         0.841
                                                                  -0.003
                                                                           -0.006
##
       SZ_4_quantised
                           0.837
                                     0.041
                                              20.321
                                                         0.000
                                                                   0.254
                                                                             0.549
##
       SZ_40_quantisd
                           0.702
                                     0.049
                                              14.432
                                                         0.000
                                                                   0.213
                                                                             0.432
##
       SZ_41_quantisd
                                     0.046
                           0.851
                                              18.573
                                                         0.000
                                                                   0.258
                                                                             0.522
##
       SZ_42_quantisd
                           0.955
                                     0.045
                                                                   0.290
                                              21.264
                                                         0.000
                                                                             0.584
##
       SZ_5_quantised
                           0.878
                                     0.044
                                              20.165
                                                         0.000
                                                                   0.267
                                                                             0.597
##
       SZ_6_quantised
                           0.900
                                     0.044
                                              20.478
                                                         0.000
                                                                   0.273
                                                                             0.606
##
       SZ_7_quantised
                           0.870
                                     0.045
                                              19.529
                                                         0.000
                                                                   0.264
                                                                             0.535
##
       SZ_8_quantised
                           0.842
                                     0.042
                                              20.206
                                                         0.000
                                                                   0.256
                                                                             0.566
##
                           0.902
                                     0.046
                                                         0.000
                                                                   0.274
       SZ_9_quantised
                                              19.716
                                                                             0.565
##
     STAI =~
##
       STAI2_Clm_qnts
                           1.000
                                                                   0.541
                                                                             0.589
##
       STAI2_Cntnt_qn
                           0.928
                                     0.042
                                              22.300
                                                         0.000
                                                                   0.502
                                                                             0.548
##
       STAI2_Dscns_qn
                           0.844
                                     0.044
                                              18.994
                                                         0.000
                                                                   0.456
                                                                             0.502
##
                          -1.273
       STAI2_Dffclts_
                                     0.169
                                              -7.551
                                                         0.000
                                                                  -0.688
                                                                           -0.715
##
       STAI2_DsppntS_
                          -1.134
                                     0.172
                                              -6.582
                                                         0.000
                                                                  -0.613
                                                                           -0.649
##
       STAI2_Flr_qnts
                          -1.340
                                     0.158
                                              -8.459
                                                         0.000
                                                                  -0.724
                                                                           -0.756
##
       STAI2_Hppy_qnt
                           0.975
                                     0.044
                                              22.183
                                                         0.000
                                                                   0.527
                                                                            0.570
##
                          -1.062
                                     0.155
                                              -6.841
                                                         0.000
                                                                  -0.574
                                                                           -0.574
       STAI2_HppyOth_
##
                          -1.329
                                     0.170
                                              -7.808
                                                         0.000
                                                                  -0.719
                                                                           -0.735
       STAI2_Indqt_qn
##
       STAI2_Nrvs_qnt
                          -1.244
                                     0.164
                                              -7.595
                                                         0.000
                                                                  -0.672
                                                                           -0.719
##
                           0.926
                                     0.039
                                                         0.000
       STAI2_Plsnt_qn
                                              23.904
                                                                   0.501
                                                                             0.586
##
       STAI2_Rstd_qnt
                           0.683
                                     0.052
                                              13.229
                                                         0.000
                                                                   0.369
                                                                             0.413
##
       STAI2_StsfdSl_
                           1.054
                                     0.043
                                              24.243
                                                         0.000
                                                                   0.569
                                                                             0.588
##
                                     0.045
                                                         0.000
                                                                             0.567
       STAI2_Scr_qnts
                           1.000
                                              22.181
                                                                   0.541
##
       STAI2_SlfCnfd_
                          -1.142
                                     0.159
                                              -7.157
                                                         0.000
                                                                  -0.617
                                                                           -0.600
##
                           1.065
                                     0.044
                                              24.470
                                                         0.000
                                                                   0.576
                                                                             0.641
       STAI2_Stdy_qnt
##
       STAI2_Tnsn_qnt
                          -1.214
                                     0.191
                                              -6.357
                                                         0.000
                                                                  -0.656
                                                                           -0.683
##
       STAI2_Thghts_q
                          -1.018
                                     0.170
                                              -5.989
                                                         0.000
                                                                  -0.550
                                                                           -0.610
##
       STAI2_UnmprtT_
                          -1.134
                                     0.179
                                              -6.352
                                                         0.000
                                                                  -0.613
                                                                           -0.643
##
       STAI2_Wrry_qnt
                          -1.183
                                     0.173
                                              -6.819
                                                         0.000
                                                                  -0.639
                                                                           -0.653
##
## Regressions:
##
                        Estimate Std.Err z-value P(>|z|)
                                                                  Std.lv
                                                                          Std.all
##
     propmedhigh ~
```

| ##       | spreadsheet           | 0.006    | 0.002   | 2.731   | 0.006   | 0.006  | 0.085   |
|----------|-----------------------|----------|---------|---------|---------|--------|---------|
| ##       | Ravens                | 0.010    | 0.002   | 4.254   | 0.000   | 0.010  | 0.143   |
| ##       | Age                   | -0.002   | 0.001   | -3.757  | 0.000   | -0.002 | -0.118  |
| ##       | GenderMF              | -0.005   | 0.013   | -0.411  | 0.681   | -0.005 | -0.013  |
| ##       | BDI                   | -0.057   | 0.024   | -2.358  | 0.018   | -0.033 | -0.159  |
| ##       | OCD                   | -0.001   | 0.010   | -0.085  | 0.932   | -0.001 | -0.004  |
| ##       | SZ                    | 0.026    | 0.041   | 0.624   | 0.533   | 0.008  | 0.037   |
| ##       | STAI                  | -0.026   | 0.025   | -1.032  | 0.302   | -0.014 | -0.067  |
| ##       |                       |          |         |         |         |        |         |
|          | Covariances:          |          | a       | _       | 56.1.13 | a      | a       |
| ##       |                       | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ##       | spreadsheet ~~        | 0.005    | 0.000   | 4 400   | 0.450   | 0 005  | 0.045   |
| ##       | Ravens                | -0.395   | 0.280   | -1.408  | 0.159   | -0.395 | -0.045  |
| ##       | Age                   | 1.278    | 0.974   | 1.312   | 0.190   | 1.278  | 0.042   |
| ##       | GenderMF              | 0.059    | 0.047   | 1.264   | 0.206   | 0.059  | 0.040   |
| ##       | BDI ~~                | 0 000    | 0 057   | 0 110   | 0.010   | 0 011  | 0 004   |
| ##<br>## | spreadsheet<br>OCD ~~ | -0.006   | 0.057   | -0.113  | 0.910   | -0.011 | -0.004  |
| ##       | spreadsheet           | 0.125    | 0.108   | 1.162   | 0.245   | 0.113  | 0.038   |
| ##       | SZ ~~                 | 0.125    | 0.100   | 1.102   | 0.240   | 0.115  | 0.030   |
| ##       | spreadsheet           | -0.022   | 0.030   | -0.736  | 0.462   | -0.073 | -0.024  |
| ##       | STAI ~~               | 0.022    | 0.000   | 0.100   | 0.102   | 0.010  | 0.021   |
| ##       | spreadsheet           | -0.006   | 0.054   | -0.111  | 0.911   | -0.011 | -0.004  |
| ##       | Ravens ~~             |          |         |         |         |        |         |
| ##       | Age                   | 2.696    | 0.986   | 2.734   | 0.006   | 2.696  | 0.090   |
| ##       | GenderMF              | -0.070   | 0.046   | -1.529  | 0.126   | -0.070 | -0.048  |
| ##       | BDI ~~                |          |         |         |         |        |         |
| ##       | Ravens                | -0.323   | 0.059   | -5.457  | 0.000   | -0.552 | -0.188  |
| ##       | OCD ~~                |          |         |         |         |        |         |
| ##       | Ravens                | -1.108   | 0.100   | -11.101 | 0.000   | -0.998 | -0.339  |
| ##       | SZ ~~                 |          |         |         |         |        |         |
| ##       | Ravens                | 0.200    | 0.030   | 6.737   | 0.000   | 0.657  | 0.223   |
| ##       | STAI ~~               |          |         |         |         |        |         |
| ##       | Ravens                | 0.209    | 0.053   | 3.920   | 0.000   | 0.387  | 0.131   |
| ##       | Age ~~                |          |         |         |         |        |         |
| ##       | GenderMF              | -0.061   | 0.160   | -0.379  | 0.705   | -0.061 | -0.012  |
| ##       | BDI ~~                | 1 216    | 0 000   | 6 F21   | 0 000   | 0.053  | 0 000   |
| ##<br>## | Age<br>OCD ~~         | -1.316   | 0.202   | -6.531  | 0.000   | -2.253 | -0.220  |
| ##       | Age                   | -3.814   | 0.341   | -11.173 | 0.000   | -3.434 | -0.336  |
| ##       | SZ ~~                 | -3.014   | 0.341   | -11.173 | 0.000   | -3.434 | -0.330  |
| ##       | Age                   | 0.838    | 0.107   | 7.824   | 0.000   | 2.760  | 0.270   |
| ##       | STAI ~~               | 0.000    | 0.107   | 7.024   | 0.000   | 2.700  | 0.210   |
| ##       | Age                   | 1.300    | 0.208   | 6.262   | 0.000   | 2.405  | 0.235   |
| ##       | BDI ~~                |          |         |         |         |        |         |
| ##       | GenderMF              | 0.010    | 0.009   | 1.049   | 0.294   | 0.017  | 0.035   |
| ##       | OCD ~~                |          |         |         |         |        |         |
| ##       | GenderMF              | 0.042    | 0.017   | 2.426   | 0.015   | 0.038  | 0.077   |
| ##       | SZ ~~                 |          |         |         |         |        |         |
| ##       | GenderMF              | -0.008   | 0.005   | -1.560  | 0.119   | -0.025 | -0.051  |
| ##       | STAI ~~               |          |         |         |         |        |         |
| ##       | GenderMF              | -0.009   | 0.009   | -0.968  | 0.333   | -0.016 | -0.032  |
| ##       | BDI ~~                |          |         |         |         |        |         |
| ##       | OCD                   | 0.340    | 0.027   | 12.653  | 0.000   | 0.525  | 0.525   |

| ## | SZ                                    | -0.116   | 0.008   | -14.095 | 0.000   | -0.654 | -0.654  |
|----|---------------------------------------|----------|---------|---------|---------|--------|---------|
| ## | STAI                                  | -0.260   | 0.027   | -9.522  | 0.000   | -0.822 | -0.822  |
| ## | OCD ~~                                |          |         |         |         |        |         |
| ## | SZ                                    | -0.247   | 0.015   | -16.995 | 0.000   | -0.733 | -0.733  |
| ## | STAI                                  | -0.281   | 0.023   | -11.999 | 0.000   | -0.468 | -0.468  |
| ## | SZ ~~                                 |          |         |         |         |        |         |
| ## | STAI                                  | 0.104    | 0.007   | 14.084  | 0.000   | 0.632  | 0.632   |
| ## |                                       |          |         |         |         |        |         |
| ## | Variances:                            |          |         |         |         |        |         |
| ## |                                       | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | .BDI_Apptt_qnts                       | 0.464    | 0.028   | 16.534  | 0.000   | 0.464  | 0.576   |
| ## | .BDI_Attrctv_qn                       | 0.518    | 0.028   | 18.727  | 0.000   | 0.518  | 0.581   |
| ## | .BDI_Blam_qntsd                       | 0.325    | 0.019   | 16.993  | 0.000   | 0.325  | 0.422   |
| ## | .BDI_Cry_quntsd                       | 0.426    | 0.029   | 14.932  | 0.000   | 0.426  | 0.556   |
| ## | .BDI_Dcsns_qnts                       | 0.367    | 0.022   | 16.762  | 0.000   | 0.367  | 0.466   |
| ## | .BDI_Dsppntmnt_                       | 0.347    | 0.022   | 16.017  | 0.000   | 0.347  | 0.445   |
| ## | .BDI_Falr_qntsd                       | 0.389    | 0.023   | 17.136  | 0.000   | 0.389  | 0.466   |
| ## | .BDI_Futr_qntsd                       | 0.357    | 0.023   | 16.558  | 0.000   | 0.357  | 0.450   |
| ## | .BDI_Glty_qntsd                       | 0.379    | 0.022   | 16.479  | 0.000   | 0.379  | 0.524   |
| ## | .BDI_Hlth_qntsd                       | 0.373    | 0.023   | 18.344  | 0.000   | 0.394  | 0.660   |
| ## | .BDI_Intrs_I_P_                       | 0.425    | 0.021   | 17.828  | 0.000   | 0.425  | 0.519   |
| ## | .BDI_Intis_i_rBDI_Irrttd_qnt          | 0.423    | 0.024   | 18.359  | 0.000   | 0.394  | 0.513   |
|    | .BDI_Libd_qntsd                       |          | 0.021   | 17.082  | 0.000   | 0.525  | 0.671   |
| ## | =                                     | 0.525    |         |         |         |        |         |
| ## | .BDI_Pnshd_qnts                       | 0.485    | 0.031   | 15.829  | 0.000   | 0.485  | 0.558   |
| ## | .BDI_Sad_quntsd                       | 0.294    | 0.020   | 14.599  | 0.000   | 0.294  | 0.491   |
| ## | .BDI_Stsfctn_qn                       | 0.455    | 0.027   | 17.158  | 0.000   | 0.455  | 0.525   |
| ## | .BDI_Slep_qntsd                       | 0.536    | 0.027   | 19.826  | 0.000   | 0.536  | 0.665   |
| ## | .BDI_Tird_qntsd                       | 0.409    | 0.022   | 18.625  | 0.000   | 0.409  | 0.560   |
| ## | .BDI_wght_qntsd                       | 0.404    | 0.029   | 13.738  | 0.000   | 0.404  | 0.792   |
| ## | .BDI_Work_qntsd                       | 0.356    | 0.020   | 17.788  | 0.000   | 0.356  | 0.477   |
| ## | .OCIR_14_quntsd                       | 0.573    | 0.038   | 14.887  | 0.000   | 0.573  | 0.317   |
| ## | .OCIR_15_quntsd                       | 0.830    | 0.048   | 17.266  | 0.000   | 0.830  | 0.492   |
| ## | .OCIR_16_quntsd                       | 0.651    | 0.043   | 15.273  | 0.000   | 0.651  | 0.379   |
| ## | .OCIR_17_quntsd                       | 0.528    | 0.036   | 14.758  | 0.000   | 0.528  | 0.294   |
| ## | $.0CIR\_18\_quntsd$                   | 0.577    | 0.041   | 13.927  | 0.000   | 0.577  | 0.327   |
| ## | $.0CIR\_2\_quantsd$                   | 0.825    | 0.040   | 20.713  | 0.000   | 0.825  | 0.490   |
| ## | $.0CIR\_3\_quantsd$                   | 0.779    | 0.044   | 17.654  | 0.000   | 0.779  | 0.490   |
| ## | $.0CIR\_4\_quantsd$                   | 0.585    | 0.036   | 16.313  | 0.000   | 0.585  | 0.352   |
| ## | $.0\mathtt{CIR}\_5\_\mathtt{quantsd}$ | 0.692    | 0.045   | 15.355  | 0.000   | 0.692  | 0.412   |
| ## | $.0\mathtt{CIR}\_6\_\mathtt{quantsd}$ | 0.758    | 0.043   | 17.759  | 0.000   | 0.758  | 0.460   |
| ## | $.0CIR_7_quantsd$                     | 0.732    | 0.041   | 17.761  | 0.000   | 0.732  | 0.482   |
| ## | .OCIR_8_quantsd                       | 0.596    | 0.039   | 15.269  | 0.000   | 0.596  | 0.334   |
| ## | $.\mathtt{OCIR}_9\mathtt{\_quantsd}$  | 0.773    | 0.043   | 18.192  | 0.000   | 0.773  | 0.483   |
| ## | $.0\mathtt{CIR}\_1\_\mathtt{quantsd}$ | 0.731    | 0.040   | 18.186  | 0.000   | 0.731  | 0.447   |
| ## | $.0CIR\_10\_quntsd$                   | 0.469    | 0.030   | 15.742  | 0.000   | 0.469  | 0.285   |
| ## | .OCIR_11_quntsd                       | 0.532    | 0.033   | 16.121  | 0.000   | 0.532  | 0.313   |
| ## | .OCIR_12_quntsd                       | 0.685    | 0.042   | 16.420  | 0.000   | 0.685  | 0.407   |
| ## | .OCIR_13_quntsd                       | 0.838    | 0.044   | 18.923  | 0.000   | 0.838  | 0.528   |
| ## | $.SZ_1_quantised$                     | 0.144    | 0.006   | 22.369  | 0.000   | 0.144  | 0.610   |
| ## | .SZ_10_quantisd                       | 0.114    | 0.005   | 21.692  | 0.000   | 0.114  | 0.642   |
| ## | .SZ_11_quantisd                       | 0.183    | 0.006   | 29.281  | 0.000   | 0.183  | 0.750   |
| ## | .SZ_12_quantisd                       | 0.171    | 0.006   | 26.849  | 0.000   | 0.171  | 0.749   |
| ## | .SZ_13_quantisd                       | 0.168    | 0.006   | 26.425  | 0.000   | 0.168  | 0.690   |
| ## | .SZ_14_quantisd                       | 0.179    | 0.007   | 26.901  | 0.000   | 0.179  | 0.719   |
|    |                                       |          |         |         |         |        |         |

| ## | .SZ_15_quantisd                                | 0.170 | 0.006 | 26.215 | 0.000 | 0.170 | 0.684 |
|----|------------------------------------------------|-------|-------|--------|-------|-------|-------|
| ## | .SZ_16_quantisd                                | 0.170 | 0.006 | 34.131 | 0.000 | 0.170 | 0.811 |
|    |                                                |       |       |        |       | 0.181 | 0.736 |
| ## | .SZ_17_quantisd                                | 0.181 | 0.006 | 28.689 | 0.000 |       |       |
| ## | .SZ_18_quantisd                                | 0.156 | 0.006 | 24.312 | 0.000 | 0.156 | 0.641 |
| ## | .SZ_19_quantisd                                | 0.182 | 0.006 | 28.686 | 0.000 | 0.182 | 0.736 |
| ## | $.SZ\_2\_quantised$                            | 0.154 | 0.006 | 24.189 | 0.000 | 0.154 | 0.650 |
| ## | $.SZ\_20\_quantisd$                            | 0.122 | 0.006 | 22.159 | 0.000 | 0.122 | 0.595 |
| ## | $.SZ\_21\_quantisd$                            | 0.171 | 0.007 | 26.247 | 0.000 | 0.171 | 0.699 |
| ## | $.\mathtt{SZ}\_\mathtt{22}\_\mathtt{quantisd}$ | 0.177 | 0.007 | 26.748 | 0.000 | 0.177 | 0.717 |
| ## | $.SZ_23$ quantisd                              | 0.168 | 0.006 | 26.158 | 0.000 | 0.168 | 0.699 |
| ## | $.SZ_24_quantisd$                              | 0.169 | 0.006 | 26.538 | 0.000 | 0.169 | 0.701 |
| ## | .SZ_25_quantisd                                | 0.186 | 0.006 | 29.895 | 0.000 | 0.186 | 0.759 |
| ## | .SZ_26_quantisd                                | 0.212 | 0.006 | 37.150 | 0.000 | 0.212 | 1.000 |
| ## | .SZ_27_quantisd                                | 0.208 | 0.006 | 35.154 | 0.000 | 0.208 | 0.998 |
| ## | .SZ_28_quantisd                                | 0.237 | 0.004 | 66.525 | 0.000 | 0.237 | 0.999 |
| ## | .SZ_29_quantisd                                | 0.209 | 0.006 | 36.886 | 0.000 | 0.209 | 0.862 |
| ## | .SZ_3_quantised                                | 0.134 | 0.006 | 21.758 | 0.000 | 0.134 | 0.699 |
| ## | .SZ_30_quantisd                                | 0.242 | 0.003 | 87.996 | 0.000 | 0.242 | 0.995 |
| ## | .SZ_31_quantisd                                | 0.205 | 0.006 | 33.773 | 0.000 | 0.205 | 0.999 |
| ## | .SZ_32_quantisd                                | 0.199 | 0.006 | 32.917 | 0.000 | 0.199 | 0.816 |
| ## | .SZ_33_quantisd                                | 0.213 | 0.005 | 41.178 | 0.000 | 0.213 | 0.916 |
| ## | .SZ_34_quantisd                                | 0.216 | 0.006 | 33.906 | 0.000 | 0.216 | 0.999 |
| ## | .SZ_35_quantisd                                | 0.200 | 0.006 | 21.176 | 0.000 | 0.118 | 0.676 |
| ## | .SZ_36_quantisd                                | 0.118 | 0.006 | 28.550 | 0.000 | 0.110 | 0.733 |
| ## | .SZ_37_quantisd                                | 0.101 | 0.006 | 35.313 | 0.000 | 0.101 | 0.733 |
| ## | .SZ_37_quantisd                                | 0.207 | 0.006 | 23.224 | 0.000 | 0.207 | 0.643 |
| ## | <b>-</b>                                       | 0.137 | 0.006 | 33.964 | 0.000 | 0.137 | 1.000 |
|    | .SZ_39_quantisd                                |       |       | 23.952 |       | 0.200 |       |
| ## | .SZ_4_quantised                                | 0.149 | 0.006 |        | 0.000 |       | 0.698 |
| ## | .SZ_40_quantisd                                | 0.199 | 0.006 | 33.029 | 0.000 | 0.199 | 0.814 |
| ## | .SZ_41_quantisd                                | 0.178 | 0.006 | 28.089 | 0.000 | 0.178 | 0.728 |
| ## | .SZ_42_quantisd                                | 0.162 | 0.006 | 25.102 | 0.000 | 0.162 | 0.659 |
| ## | .SZ_5_quantised                                | 0.128 | 0.006 | 21.713 | 0.000 | 0.128 | 0.643 |
| ## | .SZ_6_quantised                                | 0.129 | 0.006 | 22.847 | 0.000 | 0.129 | 0.633 |
| ## | .SZ_7_quantised                                | 0.174 | 0.006 | 26.838 | 0.000 | 0.174 | 0.714 |
| ## | .SZ_8_quantised                                | 0.139 | 0.006 | 22.293 | 0.000 | 0.139 | 0.680 |
| ## | .SZ_9_quantised                                | 0.160 | 0.006 | 26.000 | 0.000 | 0.160 | 0.681 |
| ## | $.\mathtt{STAI2\_Clm\_qnts}$                   | 0.549 | 0.055 | 9.977  | 0.000 | 0.549 | 0.653 |
| ## | .STAI2_Cntnt_qn                                | 0.587 | 0.055 | 10.616 | 0.000 | 0.587 | 0.700 |
| ## | .STAI2_Dscns_qn                                | 0.618 | 0.047 | 13.167 | 0.000 | 0.618 | 0.748 |
| ## | .STAI2_Dffclts_                                | 0.453 | 0.036 | 12.650 | 0.000 | 0.453 | 0.489 |
| ## | .STAI2_DsppntS_                                | 0.516 | 0.043 | 12.006 | 0.000 | 0.516 | 0.579 |
| ## | $.{	t STAI2\_Flr\_qnts}$                       | 0.394 | 0.027 | 14.735 | 0.000 | 0.394 | 0.429 |
| ## | $.\mathtt{STAI2\_Hppy\_qnt}$                   | 0.578 | 0.059 | 9.826  | 0.000 | 0.578 | 0.675 |
| ## | $.\mathtt{STAI2\_HppyOth\_}$                   | 0.670 | 0.044 | 15.382 | 0.000 | 0.670 | 0.670 |
| ## | $.\mathtt{STAI2\_Indqt\_qn}$                   | 0.440 | 0.039 | 11.350 | 0.000 | 0.440 | 0.460 |
| ## | .STAI2_Nrvs_qnt                                | 0.423 | 0.032 | 13.274 | 0.000 | 0.423 | 0.483 |
| ## | $.\mathtt{STAI2}_\mathtt{Plsnt}_\mathtt{qn}$   | 0.479 | 0.051 | 9.369  | 0.000 | 0.479 | 0.657 |
| ## | .STAI2_Rstd_qnt                                | 0.662 | 0.045 | 14.675 | 0.000 | 0.662 | 0.829 |
| ## | .STAI2_StsfdSl_                                | 0.615 | 0.065 | 9.464  | 0.000 | 0.615 | 0.655 |
| ## | .STAI2_Scr_qnts                                | 0.618 | 0.062 | 10.010 | 0.000 | 0.618 | 0.679 |
| ## | .STAI2_SlfCnfd_                                | 0.678 | 0.045 | 15.093 | 0.000 | 0.678 | 0.641 |
| ## | .STAI2_Stdy_qnt                                | 0.476 | 0.052 | 9.185  | 0.000 | 0.476 | 0.589 |
| ## | .STAI2_Tnsn_qnt                                | 0.494 | 0.050 | 9.931  | 0.000 | 0.494 | 0.534 |
| ## | .STAI2_Thghts_q                                | 0.512 | 0.041 | 12.385 | 0.000 | 0.512 | 0.628 |
|    |                                                |       |       |        |       |       |       |

```
##
                           0.533
                                    0.044
                                                        0.000
                                                                  0.533
                                                                           0.587
      .STAI2_UnmprtT_
                                             12.107
##
      .STAI2_Wrry_qnt
                          0.550
                                    0.043
                                             12.931
                                                        0.000
                                                                  0.550
                                                                           0.574
##
      .propmedhigh
                                    0.002
                                                        0.000
                                                                  0.041
                           0.041
                                             24.690
                                                                           0.942
##
       spreadsheet
                          9.000
                                                                  9.000
                                                                           1.000
                                    0.003 2595.756
                                                        0.000
##
       Ravens
                          8.672
                                    0.335
                                             25.891
                                                        0.000
                                                                  8.672
                                                                           1.000
##
       Age
                        104.591
                                    6.150
                                             17.008
                                                        0.000
                                                               104.591
                                                                           1.000
##
       GenderMF
                           0.242
                                    0.003
                                             86.073
                                                        0.000
                                                                  0.242
                                                                           1.000
##
       BDI
                          0.341
                                    0.030
                                             11.258
                                                        0.000
                                                                  1.000
                                                                           1.000
##
       OCD
                           1.233
                                    0.060
                                             20.613
                                                        0.000
                                                                  1.000
                                                                           1.000
##
       SZ
                           0.092
                                    0.007
                                             14.003
                                                        0.000
                                                                  1.000
                                                                           1.000
##
       STAI
                           0.292
                                    0.061
                                              4.811
                                                        0.000
                                                                  1.000
                                                                           1.000
##
##
  R-Square:
##
                       Estimate
##
                          0.424
       BDI_Apptt_qnts
##
       BDI_Attrctv_qn
                          0.419
##
       BDI_Blam_qntsd
                          0.578
##
       BDI Cry guntsd
                           0.444
##
       BDI_Dcsns_qnts
                           0.534
##
       BDI_Dsppntmnt_
                          0.555
##
       BDI_Falr_qntsd
                          0.534
##
       BDI_Futr_qntsd
                          0.550
##
       BDI_Glty_qntsd
                          0.476
##
       BDI_Hlth_qntsd
                          0.340
##
       BDI_Intrs_I_P_
                          0.481
##
       BDI_Irrttd_qnt
                          0.499
##
       BDI_Libd_qntsd
                          0.329
##
       BDI_Pnshd_qnts
                           0.442
##
                          0.509
       BDI_Sad_quntsd
##
                           0.475
       BDI_Stsfctn_qn
##
       BDI_Slep_qntsd
                          0.335
##
       BDI_Tird_qntsd
                          0.440
##
                          0.208
       BDI_wght_qntsd
##
       BDI_Work_qntsd
                          0.523
       OCIR_14_quntsd
##
                           0.683
##
       OCIR_15_quntsd
                           0.508
##
       OCIR_16_quntsd
                          0.621
##
       OCIR_17_quntsd
                          0.706
##
       OCIR_18_quntsd
                          0.673
##
       OCIR_2_quantsd
                          0.510
##
       OCIR 3 quantsd
                           0.510
##
       OCIR_4_quantsd
                          0.648
##
       OCIR_5_quantsd
                           0.588
##
       OCIR_6_quantsd
                          0.540
##
       OCIR_7_quantsd
                           0.518
##
                          0.666
       OCIR_8_quantsd
##
                          0.517
       OCIR_9_quantsd
##
       OCIR_1_quantsd
                          0.553
##
       OCIR_10_quntsd
                          0.715
##
                          0.687
       OCIR_11_quntsd
##
       OCIR_12_quntsd
                           0.593
```

##

##

##

OCIR 13 quntsd

SZ\_1\_quantised

SZ\_10\_quantisd

0.472

0.390

0.358

```
0.250
##
       SZ_11_quantisd
##
       SZ_12_quantisd
                           0.251
##
                           0.310
       SZ_13_quantisd
##
       SZ_14_quantisd
                           0.281
##
       SZ_15_quantisd
                           0.316
##
       SZ_16_quantisd
                           0.189
##
       SZ_17_quantisd
                           0.264
##
       SZ_18_quantisd
                          0.359
##
       SZ_19_quantisd
                           0.264
##
       SZ_2_quantised
                          0.350
##
       SZ_20_quantisd
                           0.405
##
       SZ_21_quantisd
                           0.301
##
       SZ_22_quantisd
                           0.283
##
       SZ_23_quantisd
                           0.301
##
       SZ_24_quantisd
                           0.299
##
       SZ_25_quantisd
                          0.241
##
       SZ_26_quantisd
                          0.000
##
       SZ_27_quantisd
                           0.002
##
       SZ_28_quantisd
                           0.001
##
       SZ_29_quantisd
                           0.138
##
       SZ_3_quantised
                           0.301
##
       SZ_30_quantisd
                           0.005
##
       SZ_31_quantisd
                          0.001
##
       SZ_32_quantisd
                           0.184
##
       SZ_33_quantisd
                          0.084
##
       SZ_34_quantisd
                           0.001
##
       SZ_35_quantisd
                          0.324
##
       SZ_36_quantisd
                           0.267
##
       SZ_37_quantisd
                           0.019
##
       SZ_38_quantisd
                           0.357
##
       SZ_39_quantisd
                          0.000
##
       SZ_4_quantised
                          0.302
##
                           0.186
       SZ_40_quantisd
##
       SZ_41_quantisd
                           0.272
##
       SZ_42_quantisd
                           0.341
##
       SZ_5_quantised
                           0.357
##
       SZ_6_quantised
                           0.367
##
       SZ_7_quantised
                          0.286
##
       SZ_8_quantised
                           0.320
##
       SZ_9_quantised
                          0.319
##
       STAI2_Clm_qnts
                           0.347
##
       STAI2_Cntnt_qn
                          0.300
##
       STAI2_Dscns_qn
                           0.252
##
       STAI2_Dffclts_
                          0.511
##
       STAI2_DsppntS_
                           0.421
##
       STAI2_Flr_qnts
                          0.571
##
       STAI2_Hppy_qnt
                           0.325
##
       STAI2_HppyOth_
                           0.330
##
       STAI2_Indqt_qn
                           0.540
##
       STAI2_Nrvs_qnt
                           0.517
##
       STAI2_Plsnt_qn
                           0.343
##
       STAI2_Rstd_qnt
                           0.171
##
       STAI2_StsfdSl_
                           0.345
##
       STAI2_Scr_qnts
                           0.321
```

```
##
                          0.411
       STAI2_Stdy_qnt
       STAI2_Tnsn_qnt
##
                          0.466
##
       STAI2_Thghts_q
                          0.372
##
       STAI2_UnmprtT_
                          0.413
##
       STAI2_Wrry_qnt
                          0.426
##
       propmedhigh
                          0.058
summary(FitQuaireSEMdrift, standardized=TRUE, rsquare=T, fit.measures=F) #listwise delete missing
## lavaan 0.6-3 ended normally after 320 iterations
##
##
     Optimization method
                                                      NLMINB
                                                         241
##
     Number of free parameters
##
##
                                                        Used
                                                                   Total
##
     Number of observations
                                                         990
                                                                    1066
##
##
     Estimator
                                                          ML
                                                                  Robust
                                                  19684.334
##
     Model Fit Test Statistic
                                                               17263.958
##
     Degrees of freedom
                                                        5324
                                                                    5324
##
     P-value (Chi-square)
                                                      0.000
                                                                   0.000
##
     Scaling correction factor
                                                                   1.140
       for the Yuan-Bentler correction (Mplus variant)
##
##
## Parameter Estimates:
##
##
     Information
                                                    Observed
     Observed information based on
##
                                                    Hessian
##
     Standard Errors
                                         Robust.huber.white
##
## Latent Variables:
##
                                Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
                       Estimate
##
     BDI =~
##
                          1.000
                                                                0.584
                                                                          0.651
       BDI_Apptt_qnts
##
       BDI Attrctv qn
                          1.045
                                   0.057
                                            18.240
                                                      0.000
                                                                0.611
                                                                          0.647
##
                                            19.908
       BDI_Blam_qntsd
                          1.142
                                   0.057
                                                      0.000
                                                                0.667
                                                                          0.760
##
       BDI_Cry_quntsd
                          0.997
                                   0.050
                                            20.090
                                                      0.000
                                                                0.583
                                                                          0.666
##
       BDI_Dcsns_qnts
                          1.109
                                   0.056
                                            19.787
                                                      0.000
                                                                          0.731
                                                                0.648
##
       BDI_Dsppntmnt_
                          1.126
                                   0.062
                                            18.273
                                                      0.000
                                                                0.658
                                                                          0.745
##
       BDI_Falr_qntsd
                          1.142
                                   0.061
                                            18.655
                                                      0.000
                                                                0.667
                                                                          0.730
##
       BDI_Futr_qntsd
                          1.130
                                   0.059
                                            19.161
                                                      0.000
                                                                0.661
                                                                          0.741
##
       BDI_Glty_qntsd
                          1.004
                                   0.053
                                            18.943
                                                      0.000
                                                                0.586
                                                                          0.690
##
       BDI_Hlth_qntsd
                          0.771
                                   0.045
                                            16.978
                                                      0.000
                                                                0.451
                                                                          0.583
##
       BDI_Intrs_I_P_
                          1.075
                                   0.055
                                            19.385
                                                      0.000
                                                                0.628
                                                                          0.694
                                                      0.000
##
       BDI_Irrttd_qnt
                          1.072
                                   0.051
                                            20.853
                                                                0.626
                                                                          0.706
##
       BDI_Libd_qntsd
                          0.868
                                   0.048
                                            18.241
                                                      0.000
                                                                0.507
                                                                          0.574
##
                                   0.055
       BDI_Pnshd_qnts
                          1.061
                                            19.296
                                                      0.000
                                                                0.620
                                                                          0.665
##
       BDI_Sad_quntsd
                          0.945
                                   0.048
                                            19.684
                                                      0.000
                                                                0.552
                                                                          0.714
##
                          1.097
                                   0.059
       BDI_Stsfctn_qn
                                            18.535
                                                      0.000
                                                                0.641
                                                                          0.689
##
       BDI_Slep_qntsd
                          0.889
                                   0.050
                                            17.721
                                                      0.000
                                                                0.520
                                                                          0.579
##
       BDI_Tird_qntsd
                          0.971
                                   0.052
                                            18.752
                                                      0.000
                                                                0.567
                                                                          0.664
##
                          0.558
                                   0.043
                                            12.884
                                                      0.000
                                                                0.326
                                                                          0.456
       BDI wght qntsd
```

##

STAI2\_SlfCnfd\_

BDI\_Work\_qntsd

##

0.359

20.171

0.000

0.624

0.723

0.053

1.068

| ## | OCD =~           |        |       |        |       |        |        |
|----|------------------|--------|-------|--------|-------|--------|--------|
| ## | OCIR_14_quntsd   | 1.000  |       |        |       | 1.111  | 0.826  |
| ## | OCIR_15_quntsd   | 0.833  | 0.029 | 29.075 | 0.000 | 0.925  | 0.713  |
| ## | OCIR_16_quntsd   | 0.931  | 0.029 | 32.284 | 0.000 | 1.033  | 0.788  |
| ## | OCIR_17_quntsd   | 1.013  | 0.028 | 36.734 | 0.000 | 1.125  | 0.840  |
| ## | OCIR_18_quntsd   | 0.980  | 0.028 | 34.839 | 0.000 | 1.089  | 0.820  |
| ## | OCIR_2_quantsd   | 0.834  | 0.028 | 30.262 | 0.000 | 0.926  | 0.714  |
| ## | OCIR_3_quantsd   | 0.810  | 0.028 | 28.552 | 0.000 | 0.900  | 0.714  |
| ## | OCIR_4_quantsd   | 0.934  | 0.027 | 35.234 | 0.000 | 1.037  | 0.805  |
| ## | OCIR_5_quantsd   | 0.894  | 0.030 | 29.658 | 0.000 | 0.993  | 0.767  |
| ## | OCIR_6_quantsd   | 0.849  | 0.030 | 28.000 | 0.000 | 0.942  | 0.735  |
| ## | OCIR_7_quantsd   | 0.799  | 0.029 | 27.687 | 0.000 | 0.887  | 0.720  |
| ## | OCIR_8_quantsd   | 0.982  | 0.025 | 39.514 | 0.000 | 1.090  | 0.816  |
| ## | OCIR_9_quantsd   | 0.819  | 0.028 | 29.299 | 0.000 | 0.910  | 0.719  |
| ## | OCIR_1_quantsd   | 0.856  | 0.027 | 32.154 | 0.000 | 0.950  | 0.743  |
| ## | OCIR_10_quntsd   | 0.975  | 0.025 | 38.418 | 0.000 | 1.083  | 0.845  |
| ## | OCIR_11_quntsd   | 0.972  | 0.027 | 35.748 | 0.000 | 1.079  | 0.829  |
| ## | OCIR_12_quntsd   | 0.900  | 0.030 | 29.821 | 0.000 | 0.999  | 0.770  |
| ## | OCIR_13_quntsd   | 0.780  | 0.028 | 27.802 | 0.000 | 0.866  | 0.687  |
| ## | SZ =~            |        |       |        |       |        |        |
| ## | SZ_1_quantised   | 1.000  |       |        |       | 0.304  | 0.624  |
| ## | $SZ_10_quantisd$ | 0.832  | 0.042 | 19.767 | 0.000 | 0.253  | 0.598  |
| ## | $SZ_11_quantisd$ | 0.813  | 0.044 | 18.281 | 0.000 | 0.247  | 0.500  |
| ## | $SZ_12_quantisd$ | 0.789  | 0.045 | 17.482 | 0.000 | 0.240  | 0.501  |
| ## | SZ_13_quantisd   | 0.904  | 0.048 | 18.685 | 0.000 | 0.274  | 0.557  |
| ## | $SZ_14_quantisd$ | 0.872  | 0.053 | 16.391 | 0.000 | 0.265  | 0.530  |
| ## | $SZ_15_quantisd$ | 0.923  | 0.051 | 17.934 | 0.000 | 0.280  | 0.562  |
| ## | SZ_16_quantisd   | 0.716  | 0.051 | 13.955 | 0.000 | 0.217  | 0.435  |
| ## | SZ_17_quantisd   | 0.840  | 0.049 | 17.251 | 0.000 | 0.255  | 0.514  |
| ## | $SZ_18_quantisd$ | 0.972  | 0.050 | 19.598 | 0.000 | 0.295  | 0.599  |
| ## | $SZ_19_quantisd$ | 0.842  | 0.049 | 17.289 | 0.000 | 0.256  | 0.514  |
| ## | $SZ_2_quantised$ | 0.949  | 0.044 | 21.519 | 0.000 | 0.288  | 0.591  |
| ## | SZ_20_quantisd   | 0.951  | 0.044 | 21.643 | 0.000 | 0.289  | 0.637  |
| ## | SZ_21_quantisd   | 0.894  | 0.050 | 17.927 | 0.000 | 0.272  | 0.549  |
| ## | SZ_22_quantisd   | 0.871  | 0.052 | 16.716 | 0.000 | 0.265  | 0.532  |
| ## | SZ_23_quantisd   | 0.885  | 0.049 | 17.998 | 0.000 | 0.269  | 0.548  |
| ## | SZ_24_quantisd   | 0.883  | 0.046 | 19.056 | 0.000 | 0.268  | 0.546  |
| ## | SZ_25_quantisd   | 0.800  | 0.046 | 17.378 | 0.000 | 0.243  | 0.491  |
| ## | SZ_26_quantisd   | -0.009 | 0.047 | -0.193 | 0.847 | -0.003 | -0.006 |
| ## | SZ_27_quantisd   | 0.059  | 0.048 | 1.241  | 0.215 | 0.018  | 0.039  |
| ## | SZ_28_quantisd   | -0.049 | 0.055 | -0.897 | 0.370 | -0.015 | -0.031 |
| ## | SZ_29_quantisd   | 0.602  | 0.049 | 12.280 | 0.000 | 0.183  | 0.371  |
| ## | SZ_3_quantised   | 0.792  | 0.043 | 18.237 | 0.000 | 0.240  | 0.548  |
| ## | SZ_30_quantisd   | 0.115  | 0.055 | 2.100  | 0.036 | 0.035  | 0.071  |
| ## | SZ_31_quantisd   | 0.038  | 0.046 | 0.828  | 0.408 | 0.012  | 0.025  |
| ## | SZ_32_quantisd   | 0.697  | 0.050 | 13.975 | 0.000 | 0.212  | 0.429  |
| ## | SZ_33_quantisd   | 0.459  | 0.050 | 9.104  | 0.000 | 0.139  | 0.289  |
| ## | SZ_34_quantisd   | -0.052 | 0.047 | -1.123 | 0.262 | -0.016 | -0.035 |
| ## | SZ_35_quantisd   | 0.784  | 0.042 | 18.514 | 0.000 | 0.238  | 0.569  |
| ## | SZ_36_quantisd   | 0.846  | 0.048 | 17.785 | 0.000 | 0.257  | 0.516  |
| ## | SZ_37_quantisd   | -0.206 | 0.050 | -4.076 | 0.000 | -0.062 | -0.136 |
| ## | SZ_38_quantisd   | 0.907  | 0.043 | 21.042 | 0.000 | 0.275  | 0.597  |
| ## | SZ_39_quantisd   | -0.010 | 0.048 | -0.201 | 0.840 | -0.003 | -0.006 |
| ## | SZ_4_quantised   | 0.837  | 0.041 | 20.321 | 0.000 | 0.254  | 0.549  |

| ## | SZ_40_quantisd | 0.702    | 0.049   | 14.431  | 0.000        | 0.213  | 0.432   |
|----|----------------|----------|---------|---------|--------------|--------|---------|
| ## | SZ_41_quantisd | 0.851    | 0.046   | 18.572  | 0.000        | 0.258  | 0.522   |
| ## | SZ_42_quantisd | 0.955    | 0.045   | 21.264  | 0.000        | 0.290  | 0.584   |
| ## | SZ_5_quantised | 0.878    | 0.044   | 20.164  | 0.000        | 0.267  | 0.597   |
| ## | SZ_6_quantised | 0.900    | 0.044   | 20.478  | 0.000        | 0.273  | 0.606   |
| ## | SZ_7_quantised | 0.870    | 0.045   | 19.528  | 0.000        | 0.264  | 0.535   |
| ## | SZ_8_quantised | 0.842    | 0.042   | 20.203  | 0.000        | 0.256  | 0.566   |
| ## | SZ_9_quantised | 0.902    | 0.046   | 19.715  | 0.000        | 0.274  | 0.565   |
| ## | STAI =~        |          |         |         |              |        |         |
| ## | STAI2_Clm_qnts | 1.000    |         |         |              | 0.540  | 0.589   |
| ## | STAI2_Cntnt_qn | 0.928    | 0.042   | 22.297  | 0.000        | 0.502  | 0.548   |
| ## | STAI2_Dscns_qn | 0.844    | 0.044   | 18.993  | 0.000        | 0.456  | 0.502   |
| ## | STAI2_Dffclts_ | -1.273   | 0.169   | -7.551  | 0.000        | -0.688 | -0.715  |
| ## | STAI2_DsppntS_ | -1.134   | 0.172   | -6.583  | 0.000        | -0.613 | -0.649  |
| ## | STAI2_Flr_qnts | -1.340   | 0.158   | -8.460  | 0.000        | -0.724 | -0.756  |
| ## | STAI2_Hppy_qnt | 0.975    | 0.044   | 22.181  | 0.000        | 0.527  | 0.570   |
| ## | STAI2_HppyOth_ | -1.062   | 0.155   | -6.842  | 0.000        | -0.574 | -0.574  |
| ## | STAI2_Indqt_qn | -1.330   | 0.170   | -7.809  | 0.000        | -0.719 | -0.735  |
| ## | STAI2_Nrvs_qnt | -1.244   | 0.164   | -7.596  | 0.000        | -0.672 | -0.719  |
| ## | STAI2_Plsnt_qn | 0.926    | 0.039   | 23.902  | 0.000        | 0.500  | 0.586   |
| ## | STAI2_Rstd_qnt | 0.683    | 0.052   | 13.227  | 0.000        | 0.369  | 0.413   |
| ## | STAI2_StsfdSl_ | 1.054    | 0.043   | 24.243  | 0.000        | 0.569  | 0.588   |
| ## | STAI2_Scr_qnts | 1.000    | 0.045   | 22.179  | 0.000        | 0.541  | 0.567   |
| ## | STAI2_SlfCnfd_ | -1.142   | 0.160   | -7.158  | 0.000        | -0.617 | -0.600  |
| ## | STAI2_Stdy_qnt | 1.065    | 0.044   | 24.468  | 0.000        | 0.576  | 0.641   |
| ## | STAI2_Tnsn_qnt | -1.214   | 0.191   | -6.358  | 0.000        | -0.656 | -0.683  |
| ## | STAI2_Thghts_q | -1.019   | 0.170   | -5.990  | 0.000        | -0.550 | -0.610  |
| ## | STAI2_UnmprtT_ | -1.134   | 0.179   | -6.353  | 0.000        | -0.613 | -0.643  |
| ## | STAI2_Wrry_qnt | -1.183   | 0.173   | -6.819  | 0.000        | -0.639 | -0.653  |
| ## | biniz_wiiy_qii | 1.100    | 0.110   | 0.015   | 0.000        | 0.000  | 0.000   |
| ## | Regressions:   |          |         |         |              |        |         |
| ## | nogrobbiomb.   | Estimate | Std.Err | z-value | P(> z )      | Std.lv | Std.all |
| ## | driftrate ~    | Lbcimacc | Dua.LII | Z varuc | 1 (7   2   7 | Dua.iv | Dua.aii |
| ## | spreadsheet    | 0.000    | 0.000   | 2.751   | 0.006        | 0.000  | 0.086   |
| ## | Ravens         | 0.001    | 0.000   | 4.281   | 0.000        | 0.001  | 0.145   |
| ## | Age            | -0.000   | 0.000   | -3.530  | 0.000        | -0.000 | -0.111  |
| ## | GenderMF       | -0.000   | 0.001   | -0.445  | 0.656        | -0.000 | -0.014  |
| ## | BDI            | -0.003   | 0.001   | -2.557  | 0.030        | -0.002 | -0.171  |
| ## | OCD            | 0.000    | 0.001   | 0.086   | 0.931        | 0.002  | 0.005   |
| ## | SZ             | 0.000    | 0.001   | 0.614   | 0.539        | 0.000  | 0.036   |
| ## | STAI           | -0.001   | 0.002   | -1.103  | 0.270        | -0.001 | -0.072  |
| ## | DIAI           | 0.002    | 0.001   | 1.100   | 0.210        | 0.001  | 0.012   |
| ## | Covariances:   |          |         |         |              |        |         |
| ## | ooval lances.  | Estimate | Std.Err | z-value | P(> z )      | Std.lv | Std.all |
| ## | spreadsheet ~~ | Lbcimacc | Dua.LII | Z varuc | 1 (7   2   7 | Dua.iv | Dua.aii |
| ## | Ravens         | -0.395   | 0.280   | -1.407  | 0.159        | -0.395 | -0.045  |
| ## | Age            | 1.283    | 0.974   | 1.317   | 0.188        | 1.283  | 0.042   |
| ## | GenderMF       | 0.059    | 0.047   | 1.264   | 0.206        | 0.059  | 0.042   |
| ## | BDI ~~         | 0.003    | 0.041   | 1.204   | 0.200        | 0.003  | 0.040   |
| ## | spreadsheet    | -0.007   | 0.057   | -0.114  | 0.909        | -0.011 | -0.004  |
| ## | OCD ~~         | 0.001    | 0.001   | 0.114   | 0.303        | 0.011  | 0.004   |
| ## | spreadsheet    | 0.125    | 0.108   | 1.160   | 0.246        | 0.113  | 0.038   |
| ## | SZ ~~          | 0.120    | 0.100   | 1.100   | 0.240        | 0.113  | 0.000   |
| ## | spreadsheet    | -0.022   | 0.030   | -0.735  | 0.463        | -0.073 | -0.024  |
| ## | shreadsheer    | -0.022   | 0.030   | -0.735  | 0.403        | -0.073 | -0.024  |

| шш       | CTAT                     |          |         |         |         |        |         |
|----------|--------------------------|----------|---------|---------|---------|--------|---------|
| ##<br>## | STAI ~~<br>spreadsheet   | -0.006   | 0.054   | -0.110  | 0.912   | -0.011 | -0.004  |
| ##       | Ravens ~~                | 0.000    | 0.054   | 0.110   | 0.912   | 0.011  | 0.004   |
| ##       | Age                      | 2.698    | 0.986   | 2.735   | 0.006   | 2.698  | 0.090   |
| ##       | GenderMF                 | -0.070   | 0.046   | -1.529  | 0.126   | -0.070 | -0.048  |
| ##       | BDI ~~                   | 0.0.0    | 0.010   | 1.020   | 0.120   | 0.0.0  | 0.010   |
| ##       | Ravens                   | -0.323   | 0.059   | -5.457  | 0.000   | -0.552 | -0.188  |
| ##       | OCD ~~                   |          |         |         |         |        |         |
| ##       | Ravens                   | -1.108   | 0.100   | -11.102 | 0.000   | -0.998 | -0.339  |
| ##       | SZ ~~                    |          |         |         |         |        |         |
| ##       | Ravens                   | 0.200    | 0.030   | 6.737   | 0.000   | 0.657  | 0.223   |
| ##       | STAI ~~                  |          |         |         |         |        |         |
| ##       | Ravens                   | 0.209    | 0.053   | 3.921   | 0.000   | 0.387  | 0.131   |
| ##       | Age ~~                   |          |         |         |         |        |         |
| ##       | GenderMF                 | -0.061   | 0.160   | -0.379  | 0.705   | -0.061 | -0.012  |
| ##       | BDI ~~                   | 4 040    | 0.000   | C 504   | 0 000   | 0.050  | 0.000   |
| ##<br>## | Age<br>OCD ~~            | -1.316   | 0.202   | -6.531  | 0.000   | -2.253 | -0.220  |
| ##       | Age                      | -3.814   | 0.341   | -11.174 | 0.000   | -3.434 | -0.336  |
| ##       | SZ ~~                    | 3.014    | 0.041   | 11.1/4  | 0.000   | 0.404  | 0.550   |
| ##       | Age                      | 0.838    | 0.107   | 7.824   | 0.000   | 2.760  | 0.270   |
| ##       | STAI ~~                  |          |         |         |         |        |         |
| ##       | Age                      | 1.300    | 0.208   | 6.262   | 0.000   | 2.405  | 0.235   |
| ##       | BDI ~~                   |          |         |         |         |        |         |
| ##       | GenderMF                 | 0.010    | 0.009   | 1.049   | 0.294   | 0.017  | 0.035   |
| ##       | OCD ~~                   |          |         |         |         |        |         |
| ##       | GenderMF                 | 0.042    | 0.017   | 2.426   | 0.015   | 0.038  | 0.077   |
| ##       | SZ ~~                    | 0 000    | 0 005   | 4 500   | 0 110   | 0 005  | 0.054   |
| ##       | GenderMF                 | -0.008   | 0.005   | -1.560  | 0.119   | -0.025 | -0.051  |
| ##<br>## | STAI ~~<br>GenderMF      | -0.009   | 0.009   | -0.968  | 0.333   | -0.016 | -0.032  |
| ##       | BDI ~~                   | -0.009   | 0.009   | -0.900  | 0.333   | -0.010 | -0.032  |
| ##       | OCD                      | 0.340    | 0.027   | 12.654  | 0.000   | 0.525  | 0.525   |
| ##       | SZ                       | -0.116   | 0.008   | -14.096 | 0.000   | -0.654 | -0.654  |
| ##       | STAI                     | -0.260   | 0.027   | -9.521  | 0.000   | -0.822 | -0.822  |
| ##       | OCD ~~                   |          |         |         |         |        |         |
| ##       | SZ                       | -0.247   | 0.015   | -16.994 | 0.000   | -0.733 | -0.733  |
| ##       | STAI                     | -0.281   | 0.023   | -12.006 | 0.000   | -0.468 | -0.468  |
| ##       | SZ ~~                    |          |         |         |         |        |         |
| ##       | STAI                     | 0.104    | 0.007   | 14.080  | 0.000   | 0.632  | 0.632   |
| ##       | Vaniana.                 |          |         |         |         |        |         |
| ##       | Variances:               | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ##       | .BDI_Apptt_qnts          | 0.464    | 0.028   | 16.535  | 0.000   | 0.464  | 0.576   |
| ##       | .BDI_Attrctv_qn          |          | 0.028   | 18.728  | 0.000   | 0.518  | 0.581   |
| ##       | .BDI_Blam_qntsd          |          | 0.019   | 16.991  | 0.000   | 0.325  | 0.422   |
| ##       | .BDI_Cry_quntsd          |          | 0.029   | 14.930  | 0.000   | 0.426  | 0.556   |
| ##       | .BDI_Dcsns_qnts          | 0.367    | 0.022   | 16.761  | 0.000   | 0.367  | 0.466   |
| ##       | .BDI_Dsppntmnt_          | 0.347    | 0.022   | 16.018  | 0.000   | 0.347  | 0.445   |
| ##       | $.{	t BDI\_Falr\_qntsd}$ |          | 0.023   | 17.135  | 0.000   | 0.389  | 0.466   |
| ##       | $.{	t BDI\_Futr\_qntsd}$ |          | 0.022   | 16.559  | 0.000   | 0.357  | 0.450   |
| ##       | .BDI_Glty_qntsd          |          | 0.023   | 16.480  | 0.000   | 0.379  | 0.524   |
| ##       | .BDI_Hlth_qntsd          |          | 0.021   | 18.344  | 0.000   | 0.394  | 0.660   |
| ##       | .BDI_Intrs_I_P_          | 0.425    | 0.024   | 17.829  | 0.000   | 0.425  | 0.519   |

| ##       | DDT Trrttd ant                        | 0.394          | 0.021          | 18.357           | 0.000 | 0.394          | 0.501          |
|----------|---------------------------------------|----------------|----------------|------------------|-------|----------------|----------------|
| ##       | .BDI_Irrttd_qnt<br>.BDI_Libd_qntsd    | 0.525          | 0.021          | 17.081           | 0.000 | 0.525          | 0.671          |
|          |                                       |                |                |                  |       |                |                |
| ##       | .BDI_Pnshd_qnts                       | 0.485          | 0.031          | 15.831           | 0.000 | 0.485          | 0.558          |
| ##       | .BDI_Sad_quntsd                       | 0.294          | 0.020          | 14.599           | 0.000 | 0.294          | 0.491          |
| ##       | .BDI_Stsfctn_qn                       | 0.455          | 0.027          | 17.159           | 0.000 | 0.455          | 0.526          |
| ##       | $.{	t BDI\_Slep\_qntsd}$              | 0.536          | 0.027          | 19.827           | 0.000 | 0.536          | 0.665          |
| ##       | $.{	t BDI\_Tird\_qntsd}$              | 0.409          | 0.022          | 18.626           | 0.000 | 0.409          | 0.560          |
| ##       | $.{	t BDI\_wght\_qntsd}$              | 0.404          | 0.029          | 13.738           | 0.000 | 0.404          | 0.792          |
| ##       | $.{	t BDI\_Work\_qntsd}$              | 0.356          | 0.020          | 17.787           | 0.000 | 0.356          | 0.477          |
| ##       | $.{\tt OCIR\_14\_quntsd}$             | 0.573          | 0.038          | 14.887           | 0.000 | 0.573          | 0.317          |
| ##       | $.0\mathtt{CIR}\_15\_\mathtt{quntsd}$ | 0.830          | 0.048          | 17.267           | 0.000 | 0.830          | 0.492          |
| ##       | .OCIR_16_quntsd                       | 0.651          | 0.043          | 15.273           | 0.000 | 0.651          | 0.379          |
| ##       | .OCIR_17_quntsd                       | 0.528          | 0.036          | 14.759           | 0.000 | 0.528          | 0.294          |
| ##       | .OCIR_18_quntsd                       | 0.577          | 0.041          | 13.927           | 0.000 | 0.577          | 0.327          |
| ##       | $.0CIR_2_quantsd$                     | 0.825          | 0.040          | 20.714           | 0.000 | 0.825          | 0.490          |
| ##       | $.0CIR_3$ quantsd                     | 0.779          | 0.044          | 17.654           | 0.000 | 0.779          | 0.490          |
| ##       | $.0CIR\_4\_quantsd$                   | 0.585          | 0.036          | 16.313           | 0.000 | 0.585          | 0.352          |
| ##       | .OCIR_5_quantsd                       | 0.692          | 0.045          | 15.356           | 0.000 | 0.692          | 0.412          |
| ##       | .OCIR_6_quantsd                       | 0.758          | 0.043          | 17.759           | 0.000 | 0.758          | 0.460          |
| ##       | .OCIR_7_quantsd                       | 0.732          | 0.041          | 17.761           | 0.000 | 0.732          | 0.482          |
| ##       | .OCIR_8_quantsd                       | 0.596          | 0.039          | 15.269           | 0.000 | 0.596          | 0.334          |
| ##       | .OCIR_9_quantsd                       | 0.773          | 0.043          | 18.192           | 0.000 | 0.773          | 0.483          |
| ##       | .OCIR_1_quantsd                       | 0.731          | 0.040          | 18.186           | 0.000 | 0.731          | 0.447          |
| ##       | .OCIR_10_quntsd                       | 0.469          | 0.030          | 15.743           | 0.000 | 0.469          | 0.286          |
| ##       | .OCIR_11_quntsd                       | 0.532          | 0.033          | 16.121           | 0.000 | 0.532          | 0.313          |
| ##       | .OCIR_12_quntsd                       | 0.685          | 0.042          | 16.421           | 0.000 | 0.685          | 0.407          |
| ##       | .OCIR_13_quntsd                       | 0.838          | 0.044          | 18.924           | 0.000 | 0.838          | 0.528          |
| ##       | .SZ_1_quantised                       | 0.144          | 0.006          | 22.367           | 0.000 | 0.144          | 0.610          |
| ##       | .SZ_10_quantisd                       | 0.114          | 0.005          | 21.692           | 0.000 | 0.114          | 0.642          |
| ##       | .SZ_11_quantisd                       | 0.183          | 0.006          | 29.280           | 0.000 | 0.183          | 0.750          |
| ##       | .SZ_12_quantisd                       | 0.171          | 0.006          | 26.848           | 0.000 | 0.171          | 0.749          |
| ##       | .SZ_13_quantisd                       | 0.168          | 0.006          | 26.425           | 0.000 | 0.168          | 0.690          |
| ##       | .SZ_14_quantisd                       | 0.179          | 0.007          | 26.900           | 0.000 | 0.179          | 0.719          |
| ##       | .SZ_15_quantisd                       | 0.170          | 0.006          | 26.216           | 0.000 | 0.170          | 0.684          |
| ##       | .SZ_16_quantisd                       | 0.203          | 0.006          | 34.129           | 0.000 | 0.203          | 0.811          |
| ##       | .SZ_17_quantisd                       | 0.181          | 0.006          | 28.689           | 0.000 | 0.181          | 0.736          |
| ##       | .SZ_18_quantisd                       | 0.156          | 0.006          | 24.312           | 0.000 | 0.156          | 0.641          |
| ##       | .SZ_19_quantisd                       | 0.182          | 0.006          | 28.684           | 0.000 | 0.182          | 0.736          |
| ##       | .SZ_2_quantised                       | 0.152          | 0.006          | 24.188           | 0.000 | 0.152          | 0.650          |
| ##       | .SZ_2_quantised                       | 0.134          | 0.006          | 22.160           | 0.000 | 0.134          | 0.595          |
| ##       | .SZ_21_quantisd                       | 0.122          | 0.007          | 26.245           | 0.000 | 0.122          | 0.699          |
| ##       | .SZ_21_quantisd                       | 0.177          | 0.007          | 26.748           | 0.000 | 0.171          | 0.717          |
| ##       | .SZ_22_quantisd                       | 0.177          | 0.007          | 26.159           | 0.000 | 0.177          | 0.699          |
| ##       | .SZ_23_quantisd                       | 0.169          | 0.006          | 26.538           | 0.000 | 0.169          | 0.099          |
| ##       | .SZ_24_quantisd                       |                | 0.006          | 29.892           | 0.000 | 0.109          | 0.751          |
| ##       | .SZ_26_quantisd                       | 0.186<br>0.212 | 0.006          | 37.150           | 0.000 | 0.100          | 1.000          |
|          | .SZ_20_quantisd                       |                | 0.006          |                  |       |                |                |
| ##       | <b>_</b>                              | 0.208          |                | 35.155           | 0.000 | 0.208          | 0.998          |
| ##<br>## | .SZ_28_quantisd<br>.SZ_29_quantisd    | 0.237<br>0.209 | 0.004<br>0.006 | 66.525<br>36.886 | 0.000 | 0.237<br>0.209 | 0.999<br>0.862 |
|          | <b>-</b>                              |                |                |                  |       |                |                |
| ##       | .SZ_3_quantised                       | 0.134          | 0.006          | 21.758           | 0.000 | 0.134          | 0.699          |
| ##<br>## | .SZ_30_quantisd                       | 0.242          | 0.003          | 87.997           | 0.000 | 0.242          | 0.995          |
| ##       | .SZ_31_quantisd                       | 0.205          | 0.006          | 33.773           | 0.000 | 0.205          | 0.999          |
| ##       | .SZ_32_quantisd                       | 0.199          | 0.006          | 32.916           | 0.000 | 0.199          | 0.816          |
| ##       | .SZ_33_quantisd                       | 0.213          | 0.005          | 41.179           | 0.000 | 0.213          | 0.916          |

| ## | .SZ_34_quantisd                              | 0.206    | 0.006 | 33.905   | 0.000 | 0.206   | 0.999 |
|----|----------------------------------------------|----------|-------|----------|-------|---------|-------|
| ## | $.SZ\_35\_quantisd$                          | 0.118    | 0.006 | 21.176   | 0.000 | 0.118   | 0.676 |
| ## | $.SZ\_36\_quantisd$                          | 0.181    | 0.006 | 28.549   | 0.000 | 0.181   | 0.733 |
| ## | $.SZ_37_quantisd$                            | 0.207    | 0.006 | 35.311   | 0.000 | 0.207   | 0.981 |
| ## | .SZ_38_quantisd                              | 0.137    | 0.006 | 23.224   | 0.000 | 0.137   | 0.643 |
| ## | .SZ_39_quantisd                              | 0.206    | 0.006 | 33.964   | 0.000 | 0.206   | 1.000 |
| ## | .SZ_4_quantised                              | 0.149    | 0.006 | 23.951   | 0.000 | 0.149   | 0.698 |
| ## | .SZ_40_quantisd                              | 0.199    | 0.006 | 33.029   | 0.000 | 0.199   | 0.814 |
|    | =                                            |          | 0.006 | 28.089   | 0.000 | 0.178   | 0.728 |
| ## | .SZ_41_quantisd                              | 0.178    |       |          |       |         |       |
| ## | .SZ_42_quantisd                              | 0.162    | 0.006 | 25.100   | 0.000 | 0.162   | 0.659 |
| ## | .SZ_5_quantised                              | 0.128    | 0.006 | 21.712   | 0.000 | 0.128   | 0.643 |
| ## | .SZ_6_quantised                              | 0.129    | 0.006 | 22.848   | 0.000 | 0.129   | 0.633 |
| ## | .SZ_7_quantised                              | 0.174    | 0.006 | 26.834   | 0.000 | 0.174   | 0.714 |
| ## | $.SZ\_8\_quantised$                          | 0.139    | 0.006 | 22.292   | 0.000 | 0.139   | 0.680 |
| ## | $.SZ\_9\_quantised$                          | 0.160    | 0.006 | 26.000   | 0.000 | 0.160   | 0.681 |
| ## | $.{	t STAI2\_Clm\_qnts}$                     | 0.549    | 0.055 | 9.980    | 0.000 | 0.549   | 0.653 |
| ## | $.\mathtt{STAI2}_\mathtt{Cntnt}_\mathtt{qn}$ | 0.587    | 0.055 | 10.619   | 0.000 | 0.587   | 0.700 |
| ## | .STAI2_Dscns_qn                              | 0.618    | 0.047 | 13.170   | 0.000 | 0.618   | 0.748 |
| ## | .STAI2_Dffclts_                              | 0.452    | 0.036 | 12.651   | 0.000 | 0.452   | 0.489 |
| ## | .STAI2_DsppntS_                              | 0.516    | 0.043 | 12.010   | 0.000 | 0.516   | 0.579 |
| ## | .STAI2_Flr_qnts                              | 0.394    | 0.027 | 14.739   | 0.000 | 0.394   | 0.429 |
| ## | .STAI2_Hppy_qnt                              | 0.578    | 0.059 | 9.828    | 0.000 | 0.578   | 0.675 |
| ## | .STAI2_HppyOth_                              | 0.670    | 0.044 | 15.384   | 0.000 | 0.670   | 0.670 |
| ## | .STAI2_Indqt_qn                              | 0.440    | 0.039 | 11.353   | 0.000 | 0.440   | 0.460 |
| ## | .STAI2_Nrvs_qnt                              | 0.423    | 0.032 | 13.277   | 0.000 | 0.423   | 0.483 |
| ## | .STAI2_Plsnt_qn                              | 0.429    | 0.051 | 9.372    | 0.000 | 0.479   | 0.657 |
| ## | .STAI2_Rstd_qnt                              | 0.473    | 0.045 | 14.678   | 0.000 | 0.473   | 0.829 |
| ## | <del>_</del>                                 | 0.615    | 0.045 | 9.467    | 0.000 | 0.615   | 0.655 |
|    | .STAI2_StsfdSl_                              |          |       |          |       |         |       |
| ## | .STAI2_Scr_qnts                              | 0.618    | 0.062 | 10.014   | 0.000 | 0.618   | 0.679 |
| ## | .STAI2_SlfCnfd_                              | 0.678    | 0.045 | 15.095   | 0.000 | 0.678   | 0.641 |
| ## | .STAI2_Stdy_qnt                              | 0.476    | 0.052 | 9.187    | 0.000 | 0.476   | 0.589 |
| ## | .STAI2_Tnsn_qnt                              | 0.494    | 0.050 | 9.932    | 0.000 | 0.494   | 0.534 |
| ## | .STAI2_Thghts_q                              | 0.512    | 0.041 | 12.388   | 0.000 | 0.512   | 0.628 |
| ## | .STAI2_UnmprtT_                              | 0.533    | 0.044 | 12.111   | 0.000 | 0.533   | 0.587 |
| ## | .STAI2_Wrry_qnt                              | 0.550    | 0.043 | 12.934   | 0.000 | 0.550   | 0.574 |
| ## | $. 	ext{driftrate}$                          | 0.000    | 0.000 | 21.330   | 0.000 | 0.000   | 0.942 |
| ## | spreadsheet                                  | 9.000    | 0.003 | 2594.686 | 0.000 | 9.000   | 1.000 |
| ## | Ravens                                       | 8.673    | 0.335 | 25.891   | 0.000 | 8.673   | 1.000 |
| ## | Age                                          | 104.594  | 6.150 | 17.007   | 0.000 | 104.594 | 1.000 |
| ## | GenderMF                                     | 0.242    | 0.003 | 86.073   | 0.000 | 0.242   | 1.000 |
| ## | BDI                                          | 0.341    | 0.030 | 11.259   | 0.000 | 1.000   | 1.000 |
| ## | OCD                                          | 1.233    | 0.060 | 20.614   | 0.000 | 1.000   | 1.000 |
| ## | SZ                                           | 0.092    | 0.007 | 14.002   | 0.000 | 1.000   | 1.000 |
| ## | STAI                                         | 0.292    | 0.061 | 4.811    | 0.000 | 1.000   | 1.000 |
| ## |                                              |          |       |          |       |         |       |
|    | R-Square:                                    |          |       |          |       |         |       |
| ## | n bquaro.                                    | Estimate |       |          |       |         |       |
| ## | BDI_Apptt_qnts                               | 0.424    |       |          |       |         |       |
| ## | BDI_Apptt_qnts BDI_Attrctv_qn                | 0.424    |       |          |       |         |       |
| ## | BDI_Blam_qntsd                               |          |       |          |       |         |       |
|    | <b>_</b>                                     | 0.578    |       |          |       |         |       |
| ## | BDI_Cry_quntsd                               | 0.444    |       |          |       |         |       |
| ## | BDI_Dcsns_qnts                               | 0.534    |       |          |       |         |       |
| ## | BDI_Dsppntmnt_                               | 0.555    |       |          |       |         |       |
| ## | BDI_Falr_qntsd                               | 0.534    |       |          |       |         |       |
|    |                                              |          |       |          |       |         |       |

```
BDI_Futr_qntsd
##
                          0.550
##
       BDI_Glty_qntsd
                          0.476
##
                          0.340
       BDI_Hlth_qntsd
##
       BDI_Intrs_I_P_
                          0.481
##
       BDI_Irrttd_qnt
                          0.499
##
       BDI_Libd_qntsd
                          0.329
##
       BDI_Pnshd_qnts
                          0.442
       BDI_Sad_quntsd
##
                          0.509
       BDI_Stsfctn_qn
##
                          0.474
##
       BDI_Slep_qntsd
                          0.335
##
       BDI_Tird_qntsd
                          0.440
##
                          0.208
       BDI_wght_qntsd
##
       BDI_Work_qntsd
                          0.523
##
       OCIR_14_quntsd
                          0.683
##
       OCIR_15_quntsd
                          0.508
##
       OCIR_16_quntsd
                          0.621
##
       OCIR_17_quntsd
                          0.706
##
       OCIR_18_quntsd
                          0.673
##
       OCIR_2_quantsd
                          0.510
##
       OCIR_3_quantsd
                          0.510
##
       OCIR_4_quantsd
                          0.648
##
       OCIR_5_quantsd
                          0.588
##
       OCIR_6_quantsd
                          0.540
##
       OCIR_7_quantsd
                          0.518
##
       OCIR_8_quantsd
                          0.666
##
       OCIR_9_quantsd
                          0.517
##
       OCIR_1_quantsd
                          0.553
##
       OCIR_10_quntsd
                          0.714
##
       OCIR_11_quntsd
                          0.687
##
                          0.593
       OCIR_12_quntsd
##
       OCIR_13_quntsd
                          0.472
##
       SZ_1_quantised
                          0.390
##
                          0.358
       SZ_10_quantisd
##
       SZ_11_quantisd
                          0.250
##
       SZ_12_quantisd
                          0.251
##
       SZ_13_quantisd
                          0.310
##
       SZ_14_quantisd
                          0.281
##
       SZ_15_quantisd
                          0.316
##
       SZ_16_quantisd
                          0.189
##
       SZ_17_quantisd
                          0.264
##
       SZ_18_quantisd
                          0.359
##
       SZ_19_quantisd
                          0.264
##
       SZ_2_quantised
                          0.350
##
       SZ_20_quantisd
                          0.405
##
       SZ_21_quantisd
                          0.301
##
                          0.283
       SZ_22_quantisd
##
       SZ_23_quantisd
                          0.301
##
       SZ_24_quantisd
                          0.299
##
       SZ_25_quantisd
                          0.241
##
       SZ_26_quantisd
                          0.000
##
       SZ_27_quantisd
                          0.002
##
       SZ_28_quantisd
                          0.001
##
       SZ_29_quantisd
                          0.138
##
       SZ_3_quantised
                          0.301
```

```
##
       SZ_30_quantisd
                          0.005
##
       SZ_31_quantisd
                          0.001
       SZ_32_quantisd
##
                          0.184
##
       SZ_33_quantisd
                          0.084
##
       SZ_34_quantisd
                          0.001
##
       SZ_35_quantisd
                          0.324
##
       SZ_36_quantisd
                          0.267
       SZ_37_quantisd
##
                          0.019
##
       SZ_38_quantisd
                          0.357
##
       SZ_39_quantisd
                          0.000
##
       SZ_4_quantised
                          0.302
##
       SZ_40_quantisd
                          0.186
##
       SZ_41_quantisd
                          0.272
##
       SZ_42_quantisd
                          0.341
##
       SZ_5_quantised
                          0.357
##
       SZ_6_quantised
                          0.367
##
       SZ_7_quantised
                          0.286
       SZ_8_quantised
##
                          0.320
##
       SZ_9_quantised
                          0.319
##
       STAI2_Clm_qnts
                          0.347
##
       STAI2_Cntnt_qn
                          0.300
##
       STAI2_Dscns_qn
                          0.252
##
       STAI2_Dffclts_
                          0.511
##
       STAI2_DsppntS_
                          0.421
##
       STAI2_Flr_qnts
                          0.571
##
       STAI2_Hppy_qnt
                          0.325
##
       STAI2_HppyOth_
                          0.330
##
                          0.540
       STAI2_Indqt_qn
##
       STAI2_Nrvs_qnt
                          0.517
##
       STAI2_Plsnt_qn
                          0.343
       STAI2_Rstd_qnt
##
                          0.171
##
       STAI2_StsfdSl_
                          0.345
##
       STAI2_Scr_qnts
                          0.321
##
       STAI2_SlfCnfd_
                          0.359
##
       STAI2_Stdy_qnt
                          0.411
##
       STAI2_Tnsn_qnt
                          0.466
##
       STAI2_Thghts_q
                          0.372
##
       STAI2_UnmprtT_
                          0.413
       STAI2_Wrry_qnt
##
                          0.426
##
       driftrate
                          0.058
```

summary(FitQuaireSEMpmidmiss, standardized=TRUE, rsquare=T, fit.measures=F) #estimate missing

```
## lavaan 0.6-3 ended normally after 273 iterations
##
##
     Optimization method
                                                     NLMINB
##
     Number of free parameters
                                                         346
##
##
     Number of observations
                                                       1066
##
     Number of missing patterns
                                                           3
##
##
     Estimator
                                                         ML
                                                                  Robust
##
     Model Fit Test Statistic
                                                  20575.009
                                                               18045.563
##
     Degrees of freedom
                                                       5324
                                                                    5324
```

```
##
     P-value (Chi-square)
                                                        0.000
                                                                     0.000
##
                                                                     1.140
     Scaling correction factor
##
       for the Yuan-Bentler correction (Mplus variant)
##
## Parameter Estimates:
##
                                                     Observed
##
     Information
##
     Observed information based on
                                                      Hessian
##
     Standard Errors
                                          Robust.huber.white
##
##
  Latent Variables:
##
                        Estimate
                                  Std.Err z-value P(>|z|)
                                                                 Std.lv
                                                                          Std.all
##
     BDI =~
##
                           1.000
       BDI_Apptt_qnts
                                                                  0.579
                                                                            0.645
##
                           1.059
       BDI_Attrctv_qn
                                     0.056
                                              19.030
                                                        0.000
                                                                  0.613
                                                                            0.651
##
       BDI_Blam_qntsd
                           1.144
                                     0.056
                                              20.520
                                                        0.000
                                                                  0.662
                                                                            0.757
##
       BDI_Cry_quntsd
                           1.001
                                     0.049
                                              20.350
                                                        0.000
                                                                  0.580
                                                                            0.660
##
       BDI_Dcsns_qnts
                           1.106
                                     0.054
                                              20.486
                                                        0.000
                                                                  0.640
                                                                            0.723
##
       BDI_Dsppntmnt_
                           1.117
                                     0.060
                                              18.656
                                                        0.000
                                                                  0.646
                                                                            0.739
##
       BDI_Falr_qntsd
                           1.152
                                     0.060
                                              19.171
                                                        0.000
                                                                  0.667
                                                                            0.729
##
       BDI_Futr_qntsd
                           1.127
                                     0.058
                                              19.581
                                                        0.000
                                                                  0.652
                                                                            0.734
##
       BDI_Glty_qntsd
                           1.015
                                     0.052
                                                        0.000
                                                                            0.690
                                              19.546
                                                                  0.588
##
       BDI_Hlth_qntsd
                           0.776
                                     0.044
                                              17.580
                                                        0.000
                                                                  0.449
                                                                            0.581
##
       BDI_Intrs_I_P_
                           1.070
                                     0.054
                                              19.645
                                                        0.000
                                                                  0.620
                                                                            0.688
##
       BDI_Irrttd_qnt
                           1.076
                                     0.051
                                             21.100
                                                        0.000
                                                                  0.623
                                                                            0.704
##
       BDI_Libd_qntsd
                           0.885
                                     0.048
                                              18.486
                                                        0.000
                                                                  0.513
                                                                            0.576
##
       BDI_Pnshd_qnts
                           1.058
                                     0.053
                                              19.813
                                                        0.000
                                                                  0.613
                                                                            0.664
##
       BDI_Sad_quntsd
                           0.964
                                     0.048
                                              20.019
                                                        0.000
                                                                  0.558
                                                                            0.717
##
                           1.096
                                     0.058
       BDI_Stsfctn_qn
                                              18.876
                                                        0.000
                                                                  0.634
                                                                            0.682
##
       BDI_Slep_qntsd
                           0.899
                                     0.049
                                              18.300
                                                        0.000
                                                                  0.521
                                                                            0.581
##
       BDI_Tird_qntsd
                           0.974
                                     0.051
                                              18.934
                                                        0.000
                                                                  0.564
                                                                            0.660
##
       BDI_wght_qntsd
                           0.563
                                     0.042
                                              13.538
                                                        0.000
                                                                  0.326
                                                                            0.456
##
       BDI_Work_qntsd
                           1.066
                                     0.052
                                              20.616
                                                        0.000
                                                                  0.617
                                                                            0.720
##
     OCD =~
##
       OCIR_14_quntsd
                           1.000
                                                                            0.828
                                                                  1.121
##
                           0.841
       OCIR_15_quntsd
                                     0.027
                                              30.771
                                                        0.000
                                                                  0.943
                                                                            0.719
##
       OCIR_16_quntsd
                           0.927
                                     0.027
                                              34.647
                                                        0.000
                                                                  1.039
                                                                            0.792
##
       OCIR_17_quntsd
                           1.007
                                     0.026
                                              38.524
                                                        0.000
                                                                            0.842
                                                                  1.130
##
                           0.973
                                     0.026
                                              36.850
                                                        0.000
                                                                  1.092
                                                                            0.817
       OCIR_18_quntsd
##
       OCIR_2_quantsd
                           0.821
                                     0.026
                                              31.545
                                                        0.000
                                                                  0.921
                                                                            0.709
##
       OCIR_3_quantsd
                           0.808
                                     0.027
                                              30.102
                                                        0.000
                                                                  0.906
                                                                            0.718
##
       OCIR_4_quantsd
                           0.932
                                     0.025
                                              37.186
                                                        0.000
                                                                  1.045
                                                                            0.808
##
       OCIR_5_quantsd
                           0.887
                                     0.028
                                              31.257
                                                        0.000
                                                                  0.995
                                                                            0.770
##
       OCIR_6_quantsd
                           0.836
                                     0.029
                                              29.023
                                                        0.000
                                                                  0.938
                                                                            0.732
##
       OCIR_7_quantsd
                           0.794
                                     0.027
                                              28.914
                                                        0.000
                                                                  0.891
                                                                            0.720
##
                           0.978
                                     0.023
                                              42.486
                                                        0.000
       OCIR_8_quantsd
                                                                  1.096
                                                                            0.817
##
       OCIR_9_quantsd
                           0.822
                                     0.027
                                              30.755
                                                        0.000
                                                                  0.922
                                                                            0.723
##
       OCIR_1_quantsd
                           0.835
                                     0.026
                                              32.413
                                                        0.000
                                                                  0.937
                                                                            0.729
##
       OCIR_10_quntsd
                           0.978
                                     0.024
                                              40.871
                                                        0.000
                                                                  1.097
                                                                            0.849
##
       OCIR_11_quntsd
                           0.975
                                     0.026
                                              37.625
                                                        0.000
                                                                  1.094
                                                                            0.833
##
                                     0.028
       OCIR_12_quntsd
                           0.892
                                              31.318
                                                        0.000
                                                                  1.000
                                                                            0.768
##
       OCIR_13_quntsd
                           0.776
                                     0.027
                                              28.703
                                                        0.000
                                                                  0.870
                                                                            0.686
##
     SZ =~
##
       SZ_1_quantised
                           1.000
                                                                  0.304
                                                                            0.622
```

| ## | $SZ_10_quantisd$   | 0.844  | 0.041 | 20.759 | 0.000 | 0.256  | 0.603  |
|----|--------------------|--------|-------|--------|-------|--------|--------|
| ## | SZ_11_quantisd     | 0.819  | 0.042 | 19.494 | 0.000 | 0.249  | 0.503  |
| ## | $SZ_12_quantisd$   | 0.786  | 0.043 | 18.355 | 0.000 | 0.239  | 0.499  |
| ## | $SZ_13_quantisd$   | 0.902  | 0.046 | 19.612 | 0.000 | 0.274  | 0.554  |
| ## | $SZ_14_quantisd$   | 0.846  | 0.051 | 16.735 | 0.000 | 0.257  | 0.515  |
| ## | $SZ_15_quantisd$   | 0.914  | 0.049 | 18.725 | 0.000 | 0.278  | 0.557  |
| ## | $SZ_16_quantisd$   | 0.720  | 0.049 | 14.806 | 0.000 | 0.219  | 0.437  |
| ## | $SZ_17_quantisd$   | 0.842  | 0.046 | 18.229 | 0.000 | 0.256  | 0.515  |
| ## | $SZ_18_quantisd$   | 0.973  | 0.047 | 20.786 | 0.000 | 0.296  | 0.598  |
| ## | SZ_19_quantisd     | 0.836  | 0.047 | 17.959 | 0.000 | 0.254  | 0.511  |
| ## | $SZ_2_quantised$   | 0.943  | 0.042 | 22.513 | 0.000 | 0.287  | 0.587  |
| ## | $SZ_20_quantisd$   | 0.948  | 0.042 | 22.495 | 0.000 | 0.288  | 0.631  |
| ## | $SZ_21_quantisd$   | 0.891  | 0.048 | 18.697 | 0.000 | 0.271  | 0.546  |
| ## | $SZ_22_quantisd$   | 0.864  | 0.049 | 17.689 | 0.000 | 0.263  | 0.528  |
| ## | $SZ_23_quantisd$   | 0.891  | 0.047 | 19.124 | 0.000 | 0.271  | 0.551  |
| ## | $SZ_24_quantisd$   | 0.877  | 0.045 | 19.675 | 0.000 | 0.267  | 0.541  |
| ## | $SZ_25_quantisd$   | 0.810  | 0.044 | 18.419 | 0.000 | 0.246  | 0.497  |
| ## | $SZ_26_quantisd$   | 0.011  | 0.046 | 0.246  | 0.805 | 0.003  | 0.007  |
| ## | $SZ_27_quantisd$   | 0.081  | 0.046 | 1.775  | 0.076 | 0.025  | 0.054  |
| ## | $SZ_28_quantisd$   | -0.025 | 0.052 | -0.478 | 0.633 | -0.008 | -0.016 |
| ## | $SZ_29_quantisd$   | 0.615  | 0.047 | 13.177 | 0.000 | 0.187  | 0.380  |
| ## | $SZ_3_quantised$   | 0.804  | 0.041 | 19.439 | 0.000 | 0.244  | 0.551  |
| ## | $SZ_30_quantisd$   | 0.133  | 0.053 | 2.538  | 0.011 | 0.041  | 0.082  |
| ## | $SZ_31_quantisd$   | 0.060  | 0.044 | 1.373  | 0.170 | 0.018  | 0.040  |
| ## | $SZ_32_quantisd$   | 0.718  | 0.047 | 15.188 | 0.000 | 0.218  | 0.441  |
| ## | $SZ_33_quantisd$   | 0.470  | 0.048 | 9.862  | 0.000 | 0.143  | 0.298  |
| ## | $SZ_34_quantisd$   | -0.043 | 0.045 | -0.960 | 0.337 | -0.013 | -0.029 |
| ## | $SZ_35_quantisd$   | 0.809  | 0.041 | 19.976 | 0.000 | 0.246  | 0.578  |
| ## | $SZ_36_quantisd$   | 0.826  | 0.045 | 18.308 | 0.000 | 0.251  | 0.504  |
| ## | $SZ_37_quantisd$   | -0.174 | 0.048 | -3.594 | 0.000 | -0.053 | -0.115 |
| ## | $SZ_38_quantisd$   | 0.914  | 0.041 | 22.280 | 0.000 | 0.278  | 0.602  |
| ## | $SZ_39_quantisd$   | 0.012  | 0.046 | 0.265  | 0.791 | 0.004  | 0.008  |
| ## | $SZ\_4$ _quantised | 0.844  | 0.039 | 21.454 | 0.000 | 0.257  | 0.553  |
| ## | $SZ_40_quantisd$   | 0.723  | 0.046 | 15.558 | 0.000 | 0.220  | 0.444  |
| ## | $SZ_41_quantisd$   | 0.855  | 0.044 | 19.487 | 0.000 | 0.260  | 0.524  |
| ## | $SZ_42_quantisd$   | 0.970  | 0.043 | 22.456 | 0.000 | 0.295  | 0.592  |
| ## | $SZ_5_quantised$   | 0.869  | 0.042 | 20.793 | 0.000 | 0.264  | 0.588  |
| ## | $SZ_6_quantised$   | 0.918  | 0.042 | 21.753 | 0.000 | 0.279  | 0.610  |
| ## | $SZ_7_quantised$   | 0.869  | 0.043 | 20.405 | 0.000 | 0.264  | 0.533  |
| ## | SZ_8_quantised     | 0.843  | 0.040 | 21.085 | 0.000 | 0.256  | 0.564  |
| ## | SZ_9_quantised     | 0.908  | 0.043 | 20.957 | 0.000 | 0.276  | 0.567  |
| ## | STAI =~            |        |       |        |       |        |        |
| ## | STAI2_Clm_qnts     | 1.000  |       |        |       | 0.511  | 0.559  |
| ## | STAI2_Cntnt_qn     | 0.918  | 0.042 | 21.713 | 0.000 | 0.469  | 0.515  |
| ## | STAI2_Dscns_qn     | 0.823  | 0.046 | 18.094 | 0.000 | 0.421  | 0.463  |
| ## | STAI2_Dffclts_     | -1.372 | 0.169 | -8.115 | 0.000 | -0.701 | -0.725 |
| ## | STAI2_DsppntS_     | -1.214 | 0.169 | -7.192 | 0.000 | -0.620 | -0.658 |
| ## | STAI2_Flr_qnts     | -1.432 | 0.163 | -8.775 | 0.000 | -0.732 | -0.754 |
| ## | STAI2_Hppy_qnt     | 0.975  | 0.044 | 22.105 | 0.000 | 0.498  | 0.541  |
| ## | STAI2_HppyOth_     | -1.116 | 0.150 | -7.441 | 0.000 | -0.570 | -0.574 |
| ## | STAI2_Indqt_qn     | -1.414 | 0.170 | -8.304 | 0.000 | -0.722 | -0.740 |
| ## | STAI2_Nrvs_qnt     | -1.348 | 0.167 | -8.079 | 0.000 | -0.688 | -0.731 |
| ## | STAI2_Plsnt_qn     | 0.930  | 0.039 | 23.841 | 0.000 | 0.475  | 0.554  |
| ## | STAI2_Rstd_qnt     | 0.685  | 0.051 | 13.385 | 0.000 | 0.350  | 0.393  |

| ## | STAI2_StsfdSl_  | 1.051    | 0.044    | 23.857  | 0.000     | 0.537  | 0.553   |
|----|-----------------|----------|----------|---------|-----------|--------|---------|
| ## | STAI2_Scr_qnts  | 1.020    | 0.045    | 22.733  | 0.000     | 0.521  | 0.547   |
| ## | STAI2_SlfCnfd_  | -1.227   | 0.159    | -7.725  | 0.000     | -0.627 | -0.609  |
| ## | STAI2_Stdy_qnt  | 1.074    | 0.044    | 24.232  | 0.000     | 0.549  | 0.616   |
| ## | STAI2_Tnsn_qnt  | -1.318   | 0.188    | -7.014  | 0.000     | -0.673 | -0.697  |
| ## | STAI2_Thghts_q  |          | 0.170    | -6.529  | 0.000     | -0.566 | -0.623  |
| ## | STAI2_UnmprtT_  | -1.229   | 0.177    | -6.938  | 0.000     | -0.628 | -0.659  |
| ## | STAI2_Wrry_qnt  | -1.273   | 0.172    | -7.402  | 0.000     | -0.650 | -0.664  |
| ## | 21112_1117_4110 | 2.2.0    | 0.1.1    |         | 0.000     | 0.000  | 0.001   |
| ## | Regressions:    |          |          |         |           |        |         |
| ## | nogrobbiomb.    | Estimate | Std.Err  | z-value | P(> z )   | Std.lv | Std.all |
| ## | propmedhigh ~   | Lbcimacc | DUG. LII | z varuc | 1 (>  2 ) | bca.iv | bua.aii |
| ## | spreadsheet     | 0.006    | 0.002    | 2.774   | 0.006     | 0.006  | 0.086   |
| ## | Ravens          |          | 0.002    | 4.276   | 0.000     | 0.000  |         |
|    |                 | 0.010    |          |         |           |        | 0.143   |
| ## | Age             | -0.002   | 0.001    | -3.716  | 0.000     | -0.002 | -0.117  |
| ## | GenderMF        | -0.005   | 0.013    | -0.407  | 0.684     | -0.005 | -0.013  |
| ## | BDI             | -0.059   | 0.024    | -2.457  | 0.014     | -0.034 | -0.163  |
| ## | OCD             | -0.001   | 0.010    | -0.138  | 0.891     | -0.002 | -0.007  |
| ## | SZ              | 0.025    | 0.041    | 0.617   | 0.537     | 0.008  | 0.037   |
| ## | STAI            | -0.030   | 0.027    | -1.145  | 0.252     | -0.016 | -0.075  |
| ## |                 |          |          |         |           |        |         |
| ## | Covariances:    |          |          |         |           |        |         |
| ## |                 | Estimate | Std.Err  | z-value | P(> z )   | Std.lv | Std.all |
| ## | spreadsheet ~~  |          |          |         |           |        |         |
| ## | Ravens          | -0.421   | 0.278    | -1.516  | 0.129     | -0.421 | -0.048  |
| ## | Age             | 1.351    | 0.973    | 1.389   | 0.165     | 1.351  | 0.044   |
| ## | GenderMF        | 0.060    | 0.047    | 1.282   | 0.200     | 0.060  | 0.041   |
| ## | BDI ~~          |          |          |         |           |        |         |
| ## | spreadsheet     | -0.004   | 0.056    | -0.062  | 0.950     | -0.006 | -0.002  |
| ## | OCD ~~          |          |          |         |           |        |         |
| ## | spreadsheet     | 0.142    | 0.109    | 1.301   | 0.193     | 0.127  | 0.042   |
| ## | SZ ~~           |          |          |         |           |        |         |
| ## | spreadsheet     | -0.027   | 0.030    | -0.890  | 0.373     | -0.088 | -0.029  |
| ## | STAI ~~         |          |          |         |           |        |         |
| ## | spreadsheet     | -0.011   | 0.050    | -0.225  | 0.822     | -0.022 | -0.007  |
| ## | Ravens ~~       |          |          |         |           |        |         |
| ## | Age             | 2.429    | 0.950    | 2.556   | 0.011     | 2.429  | 0.081   |
| ## | GenderMF        | -0.057   | 0.044    | -1.305  | 0.192     | -0.057 | -0.040  |
| ## | BDI ~~          |          |          |         |           |        |         |
| ## | Ravens          | -0.310   | 0.056    | -5.568  | 0.000     | -0.535 | -0.182  |
| ## | OCD ~~          |          |          |         |           |        |         |
| ## | Ravens          | -1.128   | 0.097    | -11.679 | 0.000     | -1.006 | -0.343  |
| ## | SZ ~~           |          |          |         |           |        |         |
| ## | Ravens          | 0.213    | 0.029    | 7.457   | 0.000     | 0.701  | 0.239   |
| ## | STAI ~~         |          |          |         |           |        |         |
| ## | Ravens          | 0.217    | 0.047    | 4.613   | 0.000     | 0.424  | 0.145   |
| ## | Age ~~          |          |          |         |           |        |         |
| ## | GenderMF        | -0.007   | 0.154    | -0.043  | 0.966     | -0.007 | -0.001  |
| ## | BDI ~~          |          |          |         |           |        |         |
| ## | Age             | -1.254   | 0.192    | -6.546  | 0.000     | -2.165 | -0.212  |
| ## | OCD ~~          |          |          |         |           |        |         |
| ## | Age             | -3.697   | 0.335    | -11.050 | 0.000     | -3.297 | -0.322  |
| ## | SZ ~~           |          |          |         |           |        |         |
| ## | Age             | 0.798    | 0.103    | 7.760   | 0.000     | 2.626  | 0.257   |
|    |                 |          |          |         |           |        |         |

| ##       | STAI ~~                               |          |         |         |         |        |                  |
|----------|---------------------------------------|----------|---------|---------|---------|--------|------------------|
| ##       | Age                                   | 1.261    | 0.191   | 6.601   | 0.000   | 2.469  | 0.241            |
| ##       | BDI ~~                                | 1.201    | 0.101   | 0.001   | 0.000   | 2.100  | 0.211            |
| ##       | GenderMF                              | 0.013    | 0.009   | 1.482   | 0.138   | 0.023  | 0.047            |
| ##       | OCD ~~                                | 0.010    | 0.000   | 1.102   | 0.100   | 0.020  | 0.011            |
| ##       | GenderMF                              | 0.047    | 0.017   | 2.752   | 0.006   | 0.042  | 0.085            |
| ##       | SZ ~~                                 | 0.041    | 0.017   | 2.102   | 0.000   | 0.042  | 0.000            |
| ##       | GenderMF                              | -0.008   | 0.005   | -1.643  | 0.100   | -0.026 | -0.052           |
| ##       | STAI ~~                               | 0.000    | 0.003   | 1.043   | 0.100   | 0.020  | 0.032            |
| ##       | GenderMF                              | -0.011   | 0.008   | -1.393  | 0.164   | -0.022 | -0.045           |
| ##       | BDI ~~                                | 0.011    | 0.000   | 1.555   | 0.104   | 0.022  | 0.045            |
| ##       | OCD                                   | 0.338    | 0.026   | 13.061  | 0.000   | 0.521  | 0.521            |
| ##       | SZ                                    | -0.113   | 0.028   | -14.607 | 0.000   | -0.641 | -0.641           |
| ##       | STAI                                  |          |         |         | 0.000   |        |                  |
| ##       | OCD ~~                                | -0.243   | 0.026   | -9.207  | 0.000   | -0.823 | -0.823           |
|          |                                       | 0.051    | 0 014   | 10 020  | 0.000   | 0.726  | 0.726            |
| ##       | SZ                                    | -0.251   | 0.014   | -18.039 | 0.000   | -0.736 | -0.736<br>-0.504 |
| ##       | STAI                                  | -0.289   | 0.019   | -15.514 | 0.000   | -0.504 | -0.504           |
| ##<br>## | SZ ~~<br>STAI                         | 0 100    | 0 000   | 12 051  | 0.000   | 0.642  | 0.642            |
| ##       | SIAI                                  | 0.100    | 0.008   | 13.251  | 0.000   | 0.042  | 0.042            |
|          | Intercenta                            |          |         |         |         |        |                  |
| ##<br>## | Intercepts:                           | Estimata | Std.Err | luo     | D(> - ) | C+4 1  | C+4 -11          |
| ##       | DDT A                                 | Estimate |         | z-value | P(> z ) | Std.lv | Std.all          |
|          | .BDI_Apptt_qnts                       | 1.670    | 0.027   | 60.777  | 0.000   | 1.670  | 1.861            |
| ##       | .BDI_Attrctv_qn                       |          | 0.029   | 64.228  | 0.000   | 1.852  | 1.967            |
| ##       | .BDI_Blam_qntsd                       |          | 0.027   | 70.431  | 0.000   | 1.886  | 2.157            |
| ##       | .BDI_Cry_quntsd                       |          | 0.027   | 60.051  | 0.000   | 1.615  | 1.839            |
| ##       | .BDI_Dcsns_qnts                       | 1.734    | 0.027   | 63.902  | 0.000   | 1.734  | 1.957            |
| ##       | .BDI_Dsppntmnt_                       |          | 0.027   | 68.667  | 0.000   | 1.840  | 2.103            |
| ##       | .BDI_Falr_qntsd                       |          | 0.028   | 65.660  | 0.000   | 1.841  | 2.011            |
| ##       | .BDI_Futr_qntsd                       |          | 0.027   | 68.459  | 0.000   | 1.862  | 2.097            |
| ##       | .BDI_Glty_qntsd                       |          | 0.026   | 63.611  | 0.000   | 1.659  | 1.948            |
| ##       | .BDI_Hlth_qntsd                       |          | 0.024   | 71.668  | 0.000   | 1.697  | 2.195            |
| ##       | .BDI_Intrs_I_P_                       |          | 0.028   | 68.089  | 0.000   | 1.879  | 2.085            |
| ##       | .BDI_Irrttd_qnt                       | 1.873    | 0.027   | 69.154  | 0.000   | 1.873  | 2.118            |
| ##       | .BDI_Libd_qntsd                       |          | 0.027   | 62.771  | 0.000   | 1.710  | 1.923            |
| ##       | .BDI_Pnshd_qnts                       | 1.659    | 0.028   | 58.726  | 0.000   | 1.659  | 1.799            |
| ##       | .BDI_Sad_quntsd                       |          | 0.024   | 70.968  | 0.000   | 1.691  | 2.174            |
| ##       | .BDI_Stsfctn_qn                       | 1.843    | 0.028   | 64.684  | 0.000   | 1.843  | 1.981            |
| ##       | .BDI_Slep_qntsd                       | 1.839    | 0.027   | 66.982  | 0.000   | 1.839  | 2.052            |
| ##       | .BDI_Tird_qntsd                       | 1.914    | 0.026   | 73.135  | 0.000   | 1.914  | 2.240            |
| ##       | .BDI_wght_qntsd                       | 1.378    | 0.022   | 62.946  | 0.000   | 1.378  | 1.928            |
| ##       | .BDI_Work_qntsd                       | 1.792    | 0.026   | 68.224  | 0.000   | 1.792  | 2.090            |
| ##       | .OCIR_14_quntsd                       | 2.213    | 0.041   | 53.357  | 0.000   | 2.213  | 1.634            |
| ##       | .OCIR_15_quntsd                       | 2.439    | 0.040   | 60.670  | 0.000   | 2.439  | 1.858            |
| ##       | .OCIR_16_quntsd                       | 2.144    | 0.040   | 53.341  | 0.000   | 2.144  | 1.634            |
| ##       | .OCIR_17_quntsd                       | 2.189    | 0.041   | 53.283  | 0.000   | 2.189  | 1.632            |
| ##       | .OCIR_18_quntsd                       | 2.265    | 0.041   | 55.361  | 0.000   | 2.265  | 1.696            |
| ##       | .OCIR_2_quantsd                       | 2.670    | 0.040   | 67.122  | 0.000   | 2.670  | 2.056            |
| ##       | .OCIR_3_quantsd                       | 2.491    | 0.039   | 64.423  | 0.000   | 2.491  | 1.973            |
| ##       | .OCIR_4_quantsd                       | 2.244    | 0.040   | 56.623  | 0.000   | 2.244  | 1.734            |
| ##       | .OCIR_5_quantsd                       | 2.165    | 0.040   | 54.721  | 0.000   | 2.165  | 1.676            |
| ##       | .OCIR_6_quantsd                       | 2.403    | 0.039   | 61.199  | 0.000   | 2.403  | 1.874            |
| ##       | .OCIR_7_quantsd                       | 2.212    | 0.038   | 58.368  | 0.000   | 2.212  | 1.788            |
| ##       | $.0\mathtt{CIR}\_8\_\mathtt{quantsd}$ | 2.294    | 0.041   | 55.812  | 0.000   | 2.294  | 1.709            |

| ## | .OCIR_9_quantsd                                | 2.557 | 0.039 | 65.482  | 0.000 | 2.557 | 2.006 |
|----|------------------------------------------------|-------|-------|---------|-------|-------|-------|
| ## | .OCIR_1_quantsd                                | 2.417 | 0.039 | 61.454  | 0.000 | 2.417 | 1.882 |
|    | <b>-</b>                                       |       |       |         | 0.000 |       | 1.562 |
| ## | .OCIR_10_quntsd                                | 2.018 | 0.040 | 51.003  |       | 2.018 |       |
| ## | .OCIR_11_quntsd                                | 2.222 | 0.040 | 55.253  | 0.000 | 2.222 | 1.692 |
| ## | .OCIR_12_quntsd                                | 2.347 | 0.040 | 58.849  | 0.000 | 2.347 | 1.802 |
| ## | .OCIR_13_quntsd                                | 2.459 | 0.039 | 63.259  | 0.000 | 2.459 | 1.937 |
| ## | $.SZ\_1\_quantised$                            | 1.606 | 0.015 | 107.311 | 0.000 | 1.606 | 3.287 |
| ## | $. {\tt SZ\_10\_quantisd}$                     | 1.763 | 0.013 | 135.271 | 0.000 | 1.763 | 4.143 |
| ## | $.\mathtt{SZ\_11\_quantisd}$                   | 1.573 | 0.015 | 103.845 | 0.000 | 1.573 | 3.181 |
| ## | $.\mathtt{SZ\_12\_quantisd}$                   | 1.644 | 0.015 | 112.037 | 0.000 | 1.644 | 3.431 |
| ## | $.SZ_13_quantisd$                              | 1.569 | 0.015 | 103.484 | 0.000 | 1.569 | 3.170 |
| ## | $.SZ_14_quantisd$                              | 1.521 | 0.015 | 99.382  | 0.000 | 1.521 | 3.044 |
| ## | $.SZ_15_quantisd$                              | 1.537 | 0.015 | 100.608 | 0.000 | 1.537 | 3.081 |
| ## | .SZ_16_quantisd                                | 1.506 | 0.015 | 98.323  | 0.000 | 1.506 | 3.011 |
| ## | .SZ_17_quantisd                                | 1.559 | 0.015 | 102.527 | 0.000 | 1.559 | 3.140 |
| ## | .SZ_18_quantisd                                | 1.572 | 0.015 | 103.754 | 0.000 | 1.572 | 3.178 |
| ## | .SZ_19_quantisd                                | 1.553 | 0.015 | 101.944 | 0.000 | 1.553 | 3.122 |
| ## | .SZ_2_quantised                                | 1.608 | 0.015 | 107.527 | 0.000 | 1.608 | 3.293 |
| ## | .SZ_20_quantisd                                | 1.704 | 0.014 | 121.793 | 0.000 | 1.704 | 3.730 |
| ## | .SZ_21_quantisd                                | 1.566 | 0.015 | 103.130 | 0.000 | 1.566 | 3.159 |
| ## | .SZ_22_quantisd                                | 1.553 | 0.015 | 101.944 | 0.000 | 1.553 | 3.122 |
| ## | .SZ_23_quantisd                                | 1.592 | 0.015 | 105.755 | 0.000 | 1.592 | 3.239 |
| ## | .SZ_24_quantisd                                | 1.585 | 0.015 | 105.066 | 0.000 | 1.585 | 3.218 |
| ## | .SZ_25_quantisd                                | 1.568 | 0.015 | 103.307 | 0.000 | 1.568 | 3.164 |
| ## | .SZ_26_quantisd                                | 1.309 | 0.014 | 92.496  | 0.000 | 1.309 | 2.833 |
| ## | .SZ_27_quantisd                                | 1.298 | 0.014 | 92.651  | 0.000 | 1.298 | 2.838 |
| ## | .SZ_28_quantisd                                | 1.386 | 0.014 | 92.943  | 0.000 | 1.386 | 2.847 |
| ## | .SZ_29_quantisd                                | 1.586 | 0.015 | 105.163 | 0.000 | 1.586 | 3.221 |
| ## | .SZ_25_quantised                               | 1.732 | 0.013 | 127.610 | 0.000 | 1.732 | 3.908 |
| ## | .SZ_30_quantisd                                | 1.421 | 0.014 | 93.978  | 0.000 | 1.421 | 2.878 |
| ## | .SZ_30_quantisd                                | 1.283 | 0.013 | 92.985  | 0.000 | 1.283 | 2.848 |
| ## | <b>-</b>                                       | 1.569 | 0.014 | 103.484 | 0.000 | 1.569 | 3.170 |
|    | .SZ_32_quantisd                                |       | 0.015 |         | 0.000 | 1.360 |       |
| ## | .SZ_33_quantisd                                | 1.360 |       | 92.510  |       |       | 2.833 |
| ## | .SZ_34_quantisd                                | 1.296 | 0.014 | 92.686  | 0.000 | 1.296 | 2.839 |
| ## | .SZ_35_quantisd                                | 1.763 | 0.013 | 135.271 | 0.000 | 1.763 | 4.143 |
| ## | .SZ_36_quantisd                                | 1.546 | 0.015 | 101.380 | 0.000 | 1.546 | 3.105 |
| ## | .SZ_37_quantisd                                | 1.304 | 0.014 | 92.559  | 0.000 | 1.304 | 2.835 |
| ## | .SZ_38_quantisd                                | 1.692 | 0.014 | 119.716 | 0.000 | 1.692 | 3.667 |
| ## | .SZ_39_quantisd                                | 1.295 | 0.014 | 92.722  | 0.000 | 1.295 | 2.840 |
| ## | .SZ_4_quantised                                | 1.687 | 0.014 | 118.725 | 0.000 | 1.687 | 3.636 |
| ## | .SZ_40_quantisd                                | 1.573 | 0.015 | 103.845 | 0.000 | 1.573 | 3.181 |
| ## | .SZ_41_quantisd                                | 1.567 | 0.015 | 103.218 | 0.000 | 1.567 | 3.161 |
| ## | .SZ_42_quantisd                                | 1.547 | 0.015 | 101.459 | 0.000 | 1.547 | 3.108 |
| ## | $.SZ\_5\_quantised$                            | 1.720 | 0.014 | 125.168 | 0.000 | 1.720 | 3.834 |
| ## | $.SZ\_6\_quantised$                            | 1.702 | 0.014 | 121.438 | 0.000 | 1.702 | 3.719 |
| ## | $.SZ_7_quantised$                              | 1.569 | 0.015 | 103.484 | 0.000 | 1.569 | 3.170 |
| ## | $.SZ\_8\_quantised$                            | 1.709 | 0.014 | 122.882 | 0.000 | 1.709 | 3.764 |
| ## | $.SZ\_9\_quantised$                            | 1.614 | 0.015 | 108.298 | 0.000 | 1.614 | 3.317 |
| ## | $.\mathtt{STAI2\_Clm\_qnts}$                   | 2.706 | 0.028 | 96.646  | 0.000 | 2.706 | 2.960 |
| ## | $.\mathtt{STAI2}\_\mathtt{Cntnt}\_\mathtt{qn}$ | 2.699 | 0.028 | 96.746  | 0.000 | 2.699 | 2.963 |
| ## | $.\mathtt{STAI2}\_\mathtt{Dscns}\_\mathtt{qn}$ | 2.658 | 0.028 | 95.608  | 0.000 | 2.658 | 2.928 |
| ## | .STAI2_Dffclts_                                | 2.218 | 0.030 | 74.925  | 0.000 | 2.218 | 2.295 |
| ## | .STAI2_DsppntS_                                | 2.210 | 0.029 | 76.562  | 0.000 | 2.210 | 2.345 |
| ## | $.{	t STAI2\_Flr\_qnts}$                       | 2.043 | 0.030 | 68.736  | 0.000 | 2.043 | 2.105 |

| ##                                     |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ##                                     | .STAI2_Hppy_qnt                                                                                                                                                                                                                                                                                                                                             | 2.734                                                                                                                                                          | 0.028                                                                                                                                                          | 96.900                                                                                                                                                                                               | 0.000                                                                                                                      | 2.734                                                                                                                                                                            | 2.968                                                                                                                                                                            |
| ##                                     | .STAI2_HppyOth_                                                                                                                                                                                                                                                                                                                                             | 2.501                                                                                                                                                          | 0.030                                                                                                                                                          | 82.176                                                                                                                                                                                               | 0.000                                                                                                                      | 2.501                                                                                                                                                                            | 2.517                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2\_Indqt\_qn}$                                                                                                                                                                                                                                                                                                                                | 2.177                                                                                                                                                          | 0.030                                                                                                                                                          | 72.834                                                                                                                                                                                               | 0.000                                                                                                                      | 2.177                                                                                                                                                                            | 2.231                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2}_{\mathtt{Nrvs}}$ qnt                                                                                                                                                                                                                                                                                                                       | 2.232                                                                                                                                                          | 0.029                                                                                                                                                          | 77.357                                                                                                                                                                                               | 0.000                                                                                                                      | 2.232                                                                                                                                                                            | 2.369                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2\_Plsnt\_qn}$                                                                                                                                                                                                                                                                                                                                | 2.734                                                                                                                                                          | 0.026                                                                                                                                                          | 104.182                                                                                                                                                                                              | 0.000                                                                                                                      | 2.734                                                                                                                                                                            | 3.191                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2}_{\mathtt{Rstd}}\mathtt{qnt}$                                                                                                                                                                                                                                                                                                               | 2.481                                                                                                                                                          | 0.027                                                                                                                                                          | 91.038                                                                                                                                                                                               | 0.000                                                                                                                      | 2.481                                                                                                                                                                            | 2.788                                                                                                                                                                            |
| ##                                     | .STAI2_StsfdSl_                                                                                                                                                                                                                                                                                                                                             | 2.625                                                                                                                                                          | 0.030                                                                                                                                                          | 88.221                                                                                                                                                                                               | 0.000                                                                                                                      | 2.625                                                                                                                                                                            | 2.702                                                                                                                                                                            |
| ##                                     | .STAI2_Scr_qnts                                                                                                                                                                                                                                                                                                                                             | 2.712                                                                                                                                                          | 0.029                                                                                                                                                          | 92.892                                                                                                                                                                                               | 0.000                                                                                                                      | 2.712                                                                                                                                                                            | 2.845                                                                                                                                                                            |
| ##                                     | .STAI2_SlfCnfd_                                                                                                                                                                                                                                                                                                                                             | 2.405                                                                                                                                                          | 0.032                                                                                                                                                          | 76.310                                                                                                                                                                                               | 0.000                                                                                                                      | 2.405                                                                                                                                                                            | 2.337                                                                                                                                                                            |
| ##                                     | .STAI2_Stdy_qnt                                                                                                                                                                                                                                                                                                                                             | 2.768                                                                                                                                                          | 0.027                                                                                                                                                          | 101.471                                                                                                                                                                                              | 0.000                                                                                                                      | 2.768                                                                                                                                                                            | 3.108                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2}_\mathtt{Tnsn}_\mathtt{qnt}$                                                                                                                                                                                                                                                                                                                | 2.238                                                                                                                                                          | 0.030                                                                                                                                                          | 75.699                                                                                                                                                                                               | 0.000                                                                                                                      | 2.238                                                                                                                                                                            | 2.319                                                                                                                                                                            |
| ##                                     | $.\mathtt{STAI2\_Thghts\_q}$                                                                                                                                                                                                                                                                                                                                | 1.982                                                                                                                                                          | 0.028                                                                                                                                                          | 71.203                                                                                                                                                                                               | 0.000                                                                                                                      | 1.982                                                                                                                                                                            | 2.181                                                                                                                                                                            |
| ##                                     | .STAI2_UnmprtT_                                                                                                                                                                                                                                                                                                                                             | 2.217                                                                                                                                                          | 0.029                                                                                                                                                          | 75.991                                                                                                                                                                                               | 0.000                                                                                                                      | 2.217                                                                                                                                                                            | 2.327                                                                                                                                                                            |
| ##                                     | .STAI2_Wrry_qnt                                                                                                                                                                                                                                                                                                                                             | 2.280                                                                                                                                                          | 0.030                                                                                                                                                          | 76.075                                                                                                                                                                                               | 0.000                                                                                                                      | 2.280                                                                                                                                                                            | 2.330                                                                                                                                                                            |
| ##                                     | .propmedhigh                                                                                                                                                                                                                                                                                                                                                | 0.596                                                                                                                                                          | 0.027                                                                                                                                                          | 22.054                                                                                                                                                                                               | 0.000                                                                                                                      | 0.596                                                                                                                                                                            | 2.850                                                                                                                                                                            |
| ##                                     | spreadsheet                                                                                                                                                                                                                                                                                                                                                 | 3.976                                                                                                                                                          | 0.095                                                                                                                                                          | 41.773                                                                                                                                                                                               | 0.000                                                                                                                      | 3.976                                                                                                                                                                            | 1.325                                                                                                                                                                            |
| ##                                     | Ravens                                                                                                                                                                                                                                                                                                                                                      | 4.392                                                                                                                                                          | 0.090                                                                                                                                                          | 48.904                                                                                                                                                                                               | 0.000                                                                                                                      | 4.392                                                                                                                                                                            | 1.498                                                                                                                                                                            |
| ##                                     | Age                                                                                                                                                                                                                                                                                                                                                         | 34.220                                                                                                                                                         | 0.313                                                                                                                                                          | 109.292                                                                                                                                                                                              | 0.000                                                                                                                      | 34.220                                                                                                                                                                           | 3.347                                                                                                                                                                            |
| ##                                     | GenderMF                                                                                                                                                                                                                                                                                                                                                    | 0.591                                                                                                                                                          | 0.015                                                                                                                                                          | 39.181                                                                                                                                                                                               | 0.000                                                                                                                      | 0.591                                                                                                                                                                            | 1.203                                                                                                                                                                            |
| ##                                     | BDI                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            | 0.000                                                                                                                                                                            | 0.000                                                                                                                                                                            |
| ##                                     | OCD                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            | 0.000                                                                                                                                                                            | 0.000                                                                                                                                                                            |
| ##                                     | SZ                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            | 0.000                                                                                                                                                                            | 0.000                                                                                                                                                                            |
| ##                                     | STAI                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            | 0.000                                                                                                                                                                            | 0.000                                                                                                                                                                            |
| ##                                     |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                  |
| ##                                     | Variances:                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                  |
| ##                                     |                                                                                                                                                                                                                                                                                                                                                             | Estimate                                                                                                                                                       | Std.Err                                                                                                                                                        | z-value                                                                                                                                                                                              | P(> z )                                                                                                                    | Std.lv                                                                                                                                                                           | Std.all                                                                                                                                                                          |
| ##                                     | $.{	t BDI\_Apptt\_qnts}$                                                                                                                                                                                                                                                                                                                                    | 0.469                                                                                                                                                          | 0.027                                                                                                                                                          | 17.502                                                                                                                                                                                               | 0.000                                                                                                                      | 0.469                                                                                                                                                                            | 0.583                                                                                                                                                                            |
| ##                                     | $.	texttt{BDI\_Attrctv\_qn}$                                                                                                                                                                                                                                                                                                                                | 0.510                                                                                                                                                          | 0.026                                                                                                                                                          | 19.456                                                                                                                                                                                               | 0.000                                                                                                                      | 0.510                                                                                                                                                                            | 0.576                                                                                                                                                                            |
| ##                                     | $.{	t BDI\_Blam\_qntsd}$                                                                                                                                                                                                                                                                                                                                    | 0.326                                                                                                                                                          | 0.018                                                                                                                                                          | 17.868                                                                                                                                                                                               | 0.000                                                                                                                      | 0.326                                                                                                                                                                            | 0.427                                                                                                                                                                            |
| ##                                     | $.{	t BDI\_Cry\_quntsd}$                                                                                                                                                                                                                                                                                                                                    | 0.436                                                                                                                                                          | 0.028                                                                                                                                                          | 15.729                                                                                                                                                                                               | 0.000                                                                                                                      | 0.436                                                                                                                                                                            | 0.565                                                                                                                                                                            |
| ##                                     | $.{	t BDI\_Dcsns\_qnts}$                                                                                                                                                                                                                                                                                                                                    | 0.375                                                                                                                                                          | 0.022                                                                                                                                                          | 17.389                                                                                                                                                                                               | 0.000                                                                                                                      | 0.375                                                                                                                                                                            | 0.478                                                                                                                                                                            |
| ##                                     | $.{	t BDI\_Dsppntmnt\_}$                                                                                                                                                                                                                                                                                                                                    | 0.347                                                                                                                                                          | 0.020                                                                                                                                                          | 17.048                                                                                                                                                                                               | 0.000                                                                                                                      | 0.347                                                                                                                                                                            | 0.454                                                                                                                                                                            |
| ##                                     | .BDI_Falr_qntsd                                                                                                                                                                                                                                                                                                                                             | 0.393                                                                                                                                                          | 0 000                                                                                                                                                          | 47 000                                                                                                                                                                                               | 0 000                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                  |
| ##                                     | <b>_</b>                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                          | 0.022                                                                                                                                                          | 17.928                                                                                                                                                                                               | 0.000                                                                                                                      | 0.393                                                                                                                                                                            | 0.469                                                                                                                                                                            |
|                                        | .BDI_Futr_qntsd                                                                                                                                                                                                                                                                                                                                             | 0.363                                                                                                                                                          | 0.022                                                                                                                                                          | 17.390                                                                                                                                                                                               | 0.000                                                                                                                      | 0.363                                                                                                                                                                            | 0.469<br>0.461                                                                                                                                                                   |
| ##                                     | .BDI_Glty_qntsd                                                                                                                                                                                                                                                                                                                                             | 0.363<br>0.380                                                                                                                                                 | 0.021<br>0.022                                                                                                                                                 | 17.390<br>17.147                                                                                                                                                                                     | 0.000                                                                                                                      | 0.363<br>0.380                                                                                                                                                                   | 0.461<br>0.524                                                                                                                                                                   |
| ##<br>##                               | .BDI_Glty_qntsd<br>.BDI_Hlth_qntsd                                                                                                                                                                                                                                                                                                                          | 0.363                                                                                                                                                          | 0.021                                                                                                                                                          | 17.390                                                                                                                                                                                               | 0.000<br>0.000<br>0.000                                                                                                    | 0.363                                                                                                                                                                            | 0.461<br>0.524<br>0.662                                                                                                                                                          |
| ##<br>##                               | .BDI_Glty_qntsd<br>.BDI_Hlth_qntsd<br>.BDI_Intrs_I_P_                                                                                                                                                                                                                                                                                                       | 0.363<br>0.380<br>0.396<br>0.428                                                                                                                               | 0.021<br>0.022<br>0.021<br>0.023                                                                                                                               | 17.390<br>17.147<br>18.902<br>18.601                                                                                                                                                                 | 0.000<br>0.000<br>0.000<br>0.000                                                                                           | 0.363<br>0.380<br>0.396<br>0.428                                                                                                                                                 | 0.461<br>0.524<br>0.662<br>0.527                                                                                                                                                 |
| ##<br>##<br>##                         | .BDI_Glty_qntsd<br>.BDI_Hlth_qntsd<br>.BDI_Intrs_I_P_<br>.BDI_Irrttd_qnt                                                                                                                                                                                                                                                                                    | 0.363<br>0.380<br>0.396<br>0.428<br>0.394                                                                                                                      | 0.021<br>0.022<br>0.021<br>0.023<br>0.021                                                                                                                      | 17.390<br>17.147<br>18.902<br>18.601<br>19.129                                                                                                                                                       | 0.000<br>0.000<br>0.000<br>0.000                                                                                           | 0.363<br>0.380<br>0.396<br>0.428<br>0.394                                                                                                                                        | 0.461<br>0.524<br>0.662<br>0.527<br>0.504                                                                                                                                        |
| ##<br>##<br>##<br>##                   | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd                                                                                                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528                                                                                                             | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030                                                                                                             | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886                                                                                                                                             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                  | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528                                                                                                                               | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668                                                                                                                               |
| ##<br>##<br>##<br>##                   | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts                                                                                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476                                                                                                    | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029                                                                                                    | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386                                                                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                         | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476                                                                                                                      | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559                                                                                                                      |
| ##<br>##<br>##<br>##<br>##             | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd                                                                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294                                                                                           | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019                                                                                           | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217                                                                                                                         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294                                                                                                             | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486                                                                                                             |
| ##<br>##<br>##<br>##<br>##<br>##       | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn                                                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463                                                                                  | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026                                                                                  | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833                                                                                                               | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463                                                                                                    | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535                                                                                                    |
| ##<br>##<br>##<br>##<br>##<br>##       | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd                                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532                                                                         | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027                                                                         | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053                                                                                                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                       | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532                                                                                           | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662                                                                                           |
| ##<br>##<br>##<br>##<br>##<br>##       | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd                                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412                                                                | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027                                                                         | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565                                                                                           | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412                                                                                  | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565                                                                                  |
| ##<br>##<br>##<br>##<br>##<br>##       | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_wght_qntsd                                                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412                                                                | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021                                                                | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329                                                                                 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404                                                                         | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792                                                                         |
| ##<br>##<br>##<br>##<br>##<br>##<br>## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_wght_qntsd .BDI_wght_qntsd .BDI_Work_qntsd                                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354                                              | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019                                              | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602                                                                       | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354                                                                | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482                                                                |
| ##<br>##<br>##<br>##<br>##<br>##<br>## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_Tird_qntsd .BDI_wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576                                     | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037                                     | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698                                                             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576                                                       | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314                                                       |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_Tird_qntsd .BDI_Wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd                                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833                            | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037<br>0.047                            | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                            | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833                                              | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484                                              |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_wght_qntsd .BDI_wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd .OCIR_15_quntsd                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641                   | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037<br>0.047                            | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977                                         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641                                     | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373                                     |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Step_qntsd .BDI_Tird_qntsd .BDI_wght_qntsd .BDI_wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd .OCIR_15_quntsd .OCIR_16_quntsd                                                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641<br>0.523          | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037<br>0.047<br>0.040                   | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977<br>15.439                               | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641<br>0.523                            | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373<br>0.291                            |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | .BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_Wght_qntsd .BDI_Wght_qntsd .DCIR_14_quntsd .OCIR_15_quntsd .OCIR_16_quntsd .OCIR_17_quntsd .OCIR_17_quntsd                                                                                | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641<br>0.523<br>0.592 | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037<br>0.047<br>0.040                   | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977<br>15.439<br>14.859                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000          | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641<br>0.523<br>0.592                   | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373<br>0.291                            |
| ###################################### | BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Step_qntsd .BDI_Tird_qntsd .BDI_Wght_qntsd .BDI_Wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd .OCIR_15_quntsd .OCIR_16_quntsd .OCIR_17_quntsd .OCIR_18_quntsd .OCIR_18_quntsd                                                                 | 0.363 0.380 0.396 0.428 0.394 0.528 0.476 0.294 0.463 0.532 0.412 0.404 0.354 0.576 0.833 0.641 0.523 0.592 0.839                                              | 0.021 0.022 0.021 0.023 0.021 0.030 0.029 0.019 0.026 0.027 0.021 0.028 0.019 0.037 0.047 0.040 0.034 0.040 0.039                                              | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977<br>15.439<br>14.859<br>21.338           | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                            | 0.363 0.380 0.396 0.428 0.394 0.528 0.476 0.294 0.463 0.532 0.412 0.404 0.354 0.576 0.833 0.641 0.523 0.592 0.839                                                                | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373<br>0.291<br>0.332<br>0.497          |
| ###################################### | BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Pnshd_qnts .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Slep_qntsd .BDI_Tird_qntsd .BDI_Tird_qntsd .BDI_Work_qntsd .BDI_Work_qntsd .OCIR_14_quntsd .OCIR_15_quntsd .OCIR_15_quntsd .OCIR_17_quntsd .OCIR_18_quntsd .OCIR_18_quntsd .OCIR_2_quantsd .OCIR_2_quantsd .OCIR_2_quantsd | 0.363 0.380 0.396 0.428 0.394 0.528 0.476 0.294 0.463 0.532 0.412 0.404 0.354 0.576 0.833 0.641 0.523 0.592 0.839 0.772                                        | 0.021<br>0.022<br>0.021<br>0.023<br>0.021<br>0.030<br>0.029<br>0.019<br>0.026<br>0.027<br>0.021<br>0.028<br>0.019<br>0.037<br>0.047<br>0.040<br>0.034<br>0.040 | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977<br>15.439<br>14.859<br>21.338<br>18.275 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.363<br>0.380<br>0.396<br>0.428<br>0.394<br>0.528<br>0.476<br>0.294<br>0.463<br>0.532<br>0.412<br>0.404<br>0.354<br>0.576<br>0.833<br>0.641<br>0.523<br>0.592<br>0.839<br>0.772 | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373<br>0.291<br>0.332<br>0.497<br>0.485 |
| ###################################### | BDI_Glty_qntsd .BDI_Hlth_qntsd .BDI_Intrs_I_PBDI_Irrttd_qnt .BDI_Libd_qntsd .BDI_Sad_quntsd .BDI_Stsfctn_qn .BDI_Step_qntsd .BDI_Tird_qntsd .BDI_Wght_qntsd .BDI_Wght_qntsd .BDI_Work_qntsd .OCIR_14_quntsd .OCIR_15_quntsd .OCIR_16_quntsd .OCIR_17_quntsd .OCIR_18_quntsd .OCIR_18_quntsd                                                                 | 0.363 0.380 0.396 0.428 0.394 0.528 0.476 0.294 0.463 0.532 0.412 0.404 0.354 0.576 0.833 0.641 0.523 0.592 0.839                                              | 0.021 0.022 0.021 0.023 0.021 0.030 0.029 0.019 0.026 0.027 0.021 0.028 0.019 0.037 0.047 0.040 0.034 0.040 0.039                                              | 17.390<br>17.147<br>18.902<br>18.601<br>19.129<br>17.886<br>16.386<br>15.217<br>17.833<br>20.053<br>19.565<br>14.329<br>18.602<br>15.698<br>17.666<br>15.977<br>15.439<br>14.859<br>21.338           | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                            | 0.363 0.380 0.396 0.428 0.394 0.528 0.476 0.294 0.463 0.532 0.412 0.404 0.354 0.576 0.833 0.641 0.523 0.592 0.839                                                                | 0.461<br>0.524<br>0.662<br>0.527<br>0.504<br>0.668<br>0.559<br>0.486<br>0.535<br>0.662<br>0.565<br>0.792<br>0.482<br>0.314<br>0.484<br>0.373<br>0.291<br>0.332<br>0.497          |

| ##       | .OCIR_5_quantsd                              | 0.679 | 0.042 | 16.040 | 0.000 | 0.679 | 0.407 |
|----------|----------------------------------------------|-------|-------|--------|-------|-------|-------|
| ##       | .OCIR_6_quantsd                              | 0.764 | 0.042 | 18.730 | 0.000 | 0.764 | 0.465 |
| ##       | <b>-</b>                                     | 0.738 | 0.041 | 18.598 | 0.000 | 0.738 | 0.482 |
|          | .OCIR_7_quantsd                              |       |       |        |       |       |       |
| ##       | .OCIR_8_quantsd                              | 0.599 | 0.038 | 15.953 | 0.000 | 0.599 | 0.332 |
| ##       | .OCIR_9_quantsd                              | 0.777 | 0.041 | 18.919 | 0.000 | 0.777 | 0.478 |
| ##       | .OCIR_1_quantsd                              | 0.771 | 0.041 | 18.638 | 0.000 | 0.771 | 0.468 |
| ##       | .OCIR_10_quntsd                              | 0.465 | 0.028 | 16.495 | 0.000 | 0.465 | 0.279 |
| ##       | $. \mathtt{OCIR\_11\_quntsd}$                | 0.528 | 0.031 | 16.927 | 0.000 | 0.528 | 0.306 |
| ##       | $.0 {\tt CIR\_12\_quntsd}$                   | 0.695 | 0.040 | 17.274 | 0.000 | 0.695 | 0.410 |
| ##       | $.0 {\tt CIR\_13\_quntsd}$                   | 0.853 | 0.043 | 19.625 | 0.000 | 0.853 | 0.530 |
| ##       | $.SZ\_1\_quantised$                          | 0.146 | 0.006 | 23.781 | 0.000 | 0.146 | 0.613 |
| ##       | $.SZ\_10\_quantisd$                          | 0.115 | 0.005 | 22.843 | 0.000 | 0.115 | 0.637 |
| ##       | $.SZ\_11\_quantisd$                          | 0.183 | 0.006 | 30.651 | 0.000 | 0.183 | 0.747 |
| ##       | $.SZ_12_quantisd$                            | 0.172 | 0.006 | 28.307 | 0.000 | 0.172 | 0.751 |
| ##       | $.SZ_13_quantisd$                            | 0.170 | 0.006 | 27.946 | 0.000 | 0.170 | 0.694 |
| ##       | $.\mathtt{SZ\_14\_quantisd}$                 | 0.183 | 0.006 | 28.969 | 0.000 | 0.183 | 0.735 |
| ##       | $.SZ\_15\_quantisd$                          | 0.172 | 0.006 | 27.701 | 0.000 | 0.172 | 0.690 |
| ##       | $.SZ_16_quantisd$                            | 0.202 | 0.006 | 35.663 | 0.000 | 0.202 | 0.809 |
| ##       | $.SZ_17_quantisd$                            | 0.181 | 0.006 | 29.882 | 0.000 | 0.181 | 0.734 |
| ##       | $.SZ_18_quantisd$                            | 0.157 | 0.006 | 25.687 | 0.000 | 0.157 | 0.643 |
| ##       | .SZ_19_quantisd                              | 0.183 | 0.006 | 30.289 | 0.000 | 0.183 | 0.739 |
| ##       | .SZ_2_quantised                              | 0.156 | 0.006 | 25.491 | 0.000 | 0.156 | 0.655 |
| ##       | .SZ_20_quantisd                              | 0.126 | 0.005 | 23.402 | 0.000 | 0.126 | 0.602 |
| ##       | .SZ_21_quantisd                              | 0.172 | 0.006 | 27.561 | 0.000 | 0.172 | 0.702 |
| ##       | .SZ_22_quantisd                              | 0.178 | 0.006 | 28.256 | 0.000 | 0.178 | 0.721 |
| ##       | .SZ_23_quantisd                              | 0.168 | 0.006 | 27.386 | 0.000 | 0.168 | 0.696 |
| ##       | .SZ_24_quantisd                              | 0.172 | 0.006 | 28.172 | 0.000 | 0.172 | 0.707 |
| ##       | .SZ_25_quantisd                              | 0.185 | 0.006 | 30.863 | 0.000 | 0.185 | 0.753 |
| ##       | .SZ_26_quantisd                              | 0.213 | 0.005 | 39.408 | 0.000 | 0.213 | 1.000 |
| ##       | .SZ_27_quantisd                              | 0.209 | 0.006 | 36.929 | 0.000 | 0.209 | 0.997 |
| ##       | .SZ_28_quantisd                              | 0.237 | 0.003 | 69.267 | 0.000 | 0.237 | 1.000 |
| ##       | .SZ_29_quantisd                              | 0.208 | 0.006 | 37.531 | 0.000 | 0.208 | 0.856 |
| ##       | .SZ_3_quantised                              | 0.137 | 0.006 | 23.078 | 0.000 | 0.137 | 0.696 |
| ##       | .SZ_30_quantisd                              | 0.242 | 0.003 | 90.762 | 0.000 | 0.242 | 0.993 |
| ##       | .SZ_31_quantisd                              | 0.203 | 0.006 | 33.930 | 0.000 | 0.203 | 0.998 |
| ##       | .SZ_32_quantisd                              | 0.198 | 0.006 | 33.809 | 0.000 | 0.198 | 0.806 |
| ##       | .SZ_33_quantisd                              | 0.210 | 0.005 | 41.330 | 0.000 | 0.210 | 0.911 |
| ##       | .SZ_34_quantisd                              | 0.208 | 0.006 | 36.566 | 0.000 | 0.208 | 0.999 |
| ##       | .SZ_35_quantisd                              | 0.121 | 0.005 | 22.434 | 0.000 | 0.121 | 0.666 |
| ##       | .SZ_36_quantisd                              | 0.185 | 0.006 | 30.675 | 0.000 | 0.185 | 0.746 |
| ##       | .SZ_37_quantisd                              | 0.209 | 0.006 | 37.379 | 0.000 | 0.209 | 0.987 |
| ##       | .SZ_38_quantisd                              | 0.136 | 0.006 | 24.199 | 0.000 | 0.136 | 0.638 |
| ##       | .SZ_39_quantisd                              | 0.208 | 0.006 | 36.231 | 0.000 | 0.208 | 1.000 |
| ##       | .SZ_4_quantised                              | 0.149 | 0.006 | 24.996 | 0.000 | 0.149 | 0.694 |
| ##       | .SZ_40_quantisd                              | 0.196 | 0.006 | 33.688 | 0.000 | 0.196 | 0.803 |
| ##       | .SZ_41_quantisd                              | 0.178 | 0.006 | 29.264 | 0.000 | 0.178 | 0.725 |
| ##       | .SZ_42_quantisd                              | 0.161 | 0.006 | 25.971 | 0.000 | 0.161 | 0.649 |
| ##       | .SZ_5_quantised                              | 0.132 | 0.006 | 22.958 | 0.000 | 0.132 | 0.654 |
| ##       | .SZ_6_quantised                              | 0.132 | 0.005 | 24.152 | 0.000 | 0.132 | 0.628 |
| ##       | .SZ_7_quantised                              | 0.132 | 0.005 | 28.486 | 0.000 | 0.132 | 0.028 |
| ##       | .SZ_7_quantised                              | 0.173 | 0.006 | 23.539 | 0.000 | 0.173 | 0.713 |
| ##<br>## | .SZ_0_quantised                              | 0.141 | 0.006 | 27.201 | 0.000 | 0.141 | 0.678 |
| ##<br>## | .STAI2_Clm_qnts                              | 0.161 | 0.008 | 11.849 | 0.000 | 0.161 | 0.678 |
|          | <b>_</b>                                     |       |       |        |       |       |       |
| ##       | $.\mathtt{STAI2}_\mathtt{Cntnt}_\mathtt{qn}$ | 0.610 | 0.048 | 12.680 | 0.000 | 0.610 | 0.735 |

```
##
                           0.647
                                     0.042
                                                        0.000
                                                                  0.647
                                                                            0.785
      .STAI2 Dscns qn
                                              15.570
##
      .STAI2_Dffclts_
                           0.442
                                     0.030
                                              14.574
                                                        0.000
                                                                  0.442
                                                                            0.474
##
                           0.504
                                     0.037
                                                        0.000
                                                                            0.567
      .STAI2 DsppntS
                                              13.496
                                                                  0.504
##
      .STAI2_Flr_qnts
                           0.407
                                     0.024
                                                        0.000
                                                                  0.407
                                                                            0.432
                                              16.672
##
      .STAI2_Hppy_qnt
                           0.600
                                     0.051
                                              11.827
                                                        0.000
                                                                  0.600
                                                                            0.708
##
      .STAI2_HppyOth_
                           0.662
                                     0.039
                                              17.154
                                                        0.000
                                                                  0.662
                                                                            0.671
##
      .STAI2 Indqt qn
                           0.431
                                     0.033
                                              12.991
                                                        0.000
                                                                  0.431
                                                                            0.452
                                     0.028
##
      .STAI2_Nrvs_qnt
                           0.413
                                              14.854
                                                        0.000
                                                                  0.413
                                                                            0.466
      .STAI2_Plsnt_qn
##
                           0.508
                                     0.045
                                              11.179
                                                        0.000
                                                                  0.508
                                                                            0.693
      .STAI2_Rstd_qnt
##
                           0.669
                                     0.040
                                                        0.000
                                                                  0.669
                                                                            0.845
                                              16.576
##
      .STAI2_StsfdSl_
                           0.655
                                     0.057
                                              11.513
                                                        0.000
                                                                  0.655
                                                                            0.695
##
      .STAI2_Scr_qnts
                           0.637
                                     0.054
                                              11.819
                                                        0.000
                                                                  0.637
                                                                            0.701
##
                                     0.040
                                                        0.000
      .STAI2_SlfCnfd_
                           0.666
                                              16.497
                                                                  0.666
                                                                            0.629
##
      .STAI2_Stdy_qnt
                           0.492
                                     0.046
                                              10.686
                                                        0.000
                                                                  0.492
                                                                            0.620
##
      .STAI2_Tnsn_qnt
                           0.479
                                     0.042
                                              11.500
                                                        0.000
                                                                  0.479
                                                                            0.514
##
      .STAI2_Thghts_q
                           0.506
                                     0.036
                                              13.989
                                                        0.000
                                                                  0.506
                                                                            0.612
##
      .STAI2_UnmprtT_
                           0.513
                                     0.037
                                              13.674
                                                        0.000
                                                                  0.513
                                                                            0.565
##
                                     0.036
      .STAI2_Wrry_qnt
                           0.535
                                              14.684
                                                        0.000
                                                                  0.535
                                                                            0.558
##
      .propmedhigh
                           0.041
                                     0.002
                                             24.691
                                                        0.000
                                                                  0.041
                                                                            0.942
##
       spreadsheet
                           9.001
                                     0.006 1466.851
                                                        0.000
                                                                  9.001
                                                                            1.000
##
       Ravens
                           8.599
                                     0.321
                                             26.798
                                                        0.000
                                                                  8.599
                                                                            1.000
##
       Age
                         104.501
                                     5.876
                                              17.784
                                                        0.000
                                                                104.501
                                                                            1.000
##
                                     0.003
                                             87.697
       GenderMF
                           0.242
                                                        0.000
                                                                  0.242
                                                                            1.000
##
       BDI
                           0.335
                                     0.029
                                              11.585
                                                        0.000
                                                                  1.000
                                                                            1.000
##
       OCD
                           1.258
                                     0.057
                                              21.938
                                                        0.000
                                                                  1.000
                                                                            1.000
##
       SZ
                           0.092
                                     0.006
                                              14.750
                                                        0.000
                                                                  1.000
                                                                            1.000
##
       STAI
                           0.261
                                     0.053
                                               4.892
                                                        0.000
                                                                  1.000
                                                                            1.000
```

## R-Square:

##

## Estimate ## BDI\_Apptt\_qnts 0.417 ## BDI\_Attrctv\_qn 0.424 ## 0.573 BDI\_Blam\_qntsd ## BDI\_Cry\_quntsd 0.435 ## BDI Dcsns gnts 0.522 ## BDI\_Dsppntmnt\_ 0.546 ## BDI Falr qntsd 0.531 ## BDI\_Futr\_qntsd 0.539 ## BDI\_Glty\_qntsd 0.476 ## 0.338 BDI\_Hlth\_qntsd ## BDI Intrs I P 0.473 ## BDI\_Irrttd\_qnt 0.496 ## BDI Libd qntsd 0.332 ## BDI\_Pnshd\_qnts 0.441 ## BDI\_Sad\_quntsd 0.514 ## 0.465 BDI\_Stsfctn\_qn ## 0.338 BDI\_Slep\_qntsd ## BDI\_Tird\_qntsd 0.435 ## 0.208 BDI\_wght\_qntsd ## BDI\_Work\_qntsd 0.518 ## OCIR\_14\_quntsd 0.686 ## 0.516 OCIR 15 quntsd ## OCIR\_16\_quntsd 0.627 ## OCIR\_17\_quntsd 0.709

```
##
       OCIR_18_quntsd
                          0.668
##
       OCIR_2_quantsd
                          0.503
##
       OCIR_3_quantsd
                          0.515
##
       OCIR_4_quantsd
                          0.653
##
       OCIR_5_quantsd
                          0.593
##
       OCIR_6_quantsd
                          0.535
##
       OCIR_7_quantsd
                          0.518
##
       OCIR_8_quantsd
                          0.668
##
       OCIR_9_quantsd
                          0.522
##
       OCIR_1_quantsd
                          0.532
##
       OCIR_10_quntsd
                          0.721
##
       OCIR_11_quntsd
                          0.694
##
       OCIR_12_quntsd
                          0.590
##
       OCIR_13_quntsd
                          0.470
##
       SZ_1_quantised
                          0.387
##
       SZ_10_quantisd
                          0.363
##
       SZ_11_quantisd
                          0.253
##
       SZ_12_quantisd
                          0.249
##
       SZ_13_quantisd
                          0.306
##
       SZ_14_quantisd
                          0.265
##
       SZ_15_quantisd
                          0.310
##
       SZ_16_quantisd
                          0.191
##
       SZ_17_quantisd
                          0.266
##
       SZ_18_quantisd
                          0.357
##
       SZ_19_quantisd
                          0.261
##
       SZ_2_quantised
                          0.345
##
       SZ_20_quantisd
                          0.398
##
       SZ_21_quantisd
                          0.298
##
       SZ_22_quantisd
                          0.279
##
       SZ_23_quantisd
                          0.304
##
       SZ_24_quantisd
                          0.293
##
       SZ_25_quantisd
                          0.247
##
                          0.000
       SZ_26_quantisd
##
       SZ_27_quantisd
                          0.003
##
       SZ_28_quantisd
                          0.000
##
       SZ_29_quantisd
                          0.144
##
       SZ_3_quantised
                          0.304
##
       SZ_30_quantisd
                          0.007
##
       SZ_31_quantisd
                          0.002
##
       SZ_32_quantisd
                          0.194
##
       SZ_33_quantisd
                          0.089
##
       SZ_34_quantisd
                          0.001
##
       SZ_35_quantisd
                          0.334
##
       SZ_36_quantisd
                          0.254
##
       SZ_37_quantisd
                          0.013
##
       SZ_38_quantisd
                          0.362
##
       SZ_39_quantisd
                          0.000
##
       SZ_4_quantised
                          0.306
##
       SZ_40_quantisd
                          0.197
##
       SZ_41_quantisd
                          0.275
##
       SZ_42_quantisd
                          0.351
##
       SZ_5_quantised
                          0.346
##
       SZ_6_quantised
                          0.372
##
       SZ_7_quantised
                          0.285
```

```
##
       SZ_9_quantised
                          0.322
##
       STAI2_Clm_qnts
                          0.312
       STAI2_Cntnt_qn
                          0.265
##
##
       STAI2_Dscns_qn
                          0.215
##
       STAI2 Dffclts
                          0.526
##
       STAI2_DsppntS_
                          0.433
       STAI2_Flr_qnts
##
                          0.568
       STAI2_Hppy_qnt
##
                          0.292
##
       STAI2_HppyOth_
                          0.329
       STAI2_Indqt_qn
##
                          0.548
##
       STAI2_Nrvs_qnt
                          0.534
##
       STAI2_Plsnt_qn
                          0.307
##
       STAI2_Rstd_qnt
                          0.155
##
       STAI2_StsfdSl_
                          0.305
##
       STAI2_Scr_qnts
                          0.299
##
                          0.371
       STAI2_SlfCnfd_
##
       STAI2_Stdy_qnt
                          0.380
##
       STAI2_Tnsn_qnt
                          0.486
##
       STAI2_Thghts_q
                          0.388
##
       STAI2_UnmprtT_
                          0.435
##
       STAI2_Wrry_qnt
                          0.442
##
       propmedhigh
                          0.058
summary(FitQuaireSEMdriftmiss, standardized=TRUE, rsquare=T, fit.measures=F) #estimate missing
## lavaan 0.6-3 ended normally after 346 iterations
##
##
     Optimization method
                                                     NLMINB
##
     Number of free parameters
                                                        346
##
##
     Number of observations
                                                       1066
     Number of missing patterns
##
                                                          3
##
##
     Estimator
                                                         ML
                                                                  Robust
##
     Model Fit Test Statistic
                                                  20575.677
                                                               18049.313
     Degrees of freedom
                                                       5324
                                                                    5324
##
     P-value (Chi-square)
                                                      0.000
                                                                   0.000
##
##
     Scaling correction factor
                                                                   1.140
       for the Yuan-Bentler correction (Mplus variant)
##
##
## Parameter Estimates:
##
##
     Information
                                                   Observed
##
     Observed information based on
                                                    Hessian
##
     Standard Errors
                                        Robust.huber.white
##
## Latent Variables:
##
                       Estimate
                                Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
     BDI =~
##
       BDI_Apptt_qnts
                          1.000
                                                                0.579
                                                                         0.645
```

##

##

##

##

BDI\_Attrctv\_qn

BDI Blam qntsd

BDI\_Cry\_quntsd

1.059

1.144

1.001

0.056

0.056

0.049

SZ\_8\_quantised

0.318

19.028

20.517

20.346

0.000

0.000

0.000

0.613

0.662

0.580

0.651

0.757

0.660

| ## | BDI_Dcsns_qnts                      | 1.106 | 0.054 | 20.485 | 0.000 | 0.640 | 0.723 |
|----|-------------------------------------|-------|-------|--------|-------|-------|-------|
| ## | BDI_Dsppntmnt_                      | 1.117 | 0.060 | 18.655 | 0.000 | 0.646 | 0.739 |
| ## | BDI_Falr_qntsd                      | 1.152 | 0.060 | 19.171 | 0.000 | 0.667 | 0.729 |
| ## | BDI_Futr_qntsd                      | 1.127 | 0.058 | 19.579 | 0.000 | 0.652 | 0.734 |
| ## | BDI_Glty_qntsd                      | 1.015 | 0.052 | 19.545 | 0.000 | 0.588 | 0.690 |
| ## | BDI_Hlth_qntsd                      | 0.776 | 0.044 | 17.580 | 0.000 | 0.449 | 0.581 |
| ## | BDI_Intrs_I_P_                      | 1.070 | 0.054 | 19.645 | 0.000 | 0.620 | 0.688 |
| ## | BDI_Irrttd_qnt                      | 1.076 | 0.051 | 21.101 | 0.000 | 0.623 | 0.705 |
| ## | BDI_Libd_qntsd                      | 0.886 | 0.048 | 18.483 | 0.000 | 0.513 | 0.576 |
| ## | BDI_Pnshd_qnts                      | 1.058 | 0.053 | 19.814 | 0.000 | 0.613 | 0.664 |
| ## | BDI_Sad_quntsd                      | 0.963 | 0.048 | 20.019 | 0.000 | 0.558 | 0.717 |
| ## | BDI_Stsfctn_qn                      | 1.096 | 0.058 | 18.877 | 0.000 | 0.634 | 0.682 |
| ## | BDI_Slep_qntsd                      | 0.899 | 0.049 | 18.300 | 0.000 | 0.521 | 0.581 |
| ## | BDI_Tird_qntsd                      | 0.974 | 0.051 | 18.933 | 0.000 | 0.564 | 0.660 |
| ## | BDI_wght_qntsd                      | 0.563 | 0.042 | 13.539 | 0.000 | 0.326 | 0.456 |
| ## | BDI_Work_qntsd                      | 1.066 | 0.052 | 20.615 | 0.000 | 0.617 | 0.720 |
| ## | OCD =~                              |       |       |        |       |       |       |
| ## | OCIR_14_quntsd                      | 1.000 |       |        |       | 1.121 | 0.828 |
| ## | OCIR_15_quntsd                      | 0.841 | 0.027 | 30.771 | 0.000 | 0.943 | 0.719 |
| ## | OCIR_16_quntsd                      | 0.927 | 0.027 | 34.648 | 0.000 | 1.039 | 0.792 |
| ## | OCIR_17_quntsd                      | 1.007 | 0.026 | 38.524 | 0.000 | 1.130 | 0.842 |
| ## | OCIR_18_quntsd                      | 0.973 | 0.026 | 36.849 | 0.000 | 1.092 | 0.817 |
| ## | OCIR_2_quantsd                      | 0.821 | 0.026 | 31.544 | 0.000 | 0.921 | 0.709 |
| ## | OCIR_3_quantsd                      | 0.808 | 0.027 | 30.103 | 0.000 | 0.906 | 0.718 |
| ## | $\tt OCIR\_4\_quantsd$              | 0.932 | 0.025 | 37.186 | 0.000 | 1.045 | 0.808 |
| ## | OCIR_5_quantsd                      | 0.887 | 0.028 | 31.257 | 0.000 | 0.995 | 0.770 |
| ## | OCIR_6_quantsd                      | 0.836 | 0.029 | 29.023 | 0.000 | 0.938 | 0.732 |
| ## | OCIR_7_quantsd                      | 0.794 | 0.027 | 28.915 | 0.000 | 0.891 | 0.720 |
| ## | $\mathtt{OCIR}_8\mathtt{\_quantsd}$ | 0.978 | 0.023 | 42.488 | 0.000 | 1.096 | 0.817 |
| ## | OCIR_9_quantsd                      | 0.822 | 0.027 | 30.756 | 0.000 | 0.922 | 0.723 |
| ## | OCIR_1_quantsd                      | 0.835 | 0.026 | 32.415 | 0.000 | 0.937 | 0.729 |
| ## | OCIR_10_quntsd                      | 0.978 | 0.024 | 40.871 | 0.000 | 1.097 | 0.849 |
| ## | OCIR_11_quntsd                      | 0.975 | 0.026 | 37.624 | 0.000 | 1.094 | 0.833 |
| ## | OCIR_12_quntsd                      | 0.892 | 0.028 | 31.318 | 0.000 | 1.000 | 0.768 |
| ## | OCIR_13_quntsd                      | 0.776 | 0.027 | 28.705 | 0.000 | 0.870 | 0.686 |
| ## | SZ =~                               |       |       |        |       |       |       |
| ## | SZ_1_quantised                      | 1.000 |       |        |       | 0.304 | 0.622 |
| ## | SZ_10_quantisd                      | 0.844 | 0.041 | 20.758 | 0.000 | 0.256 | 0.603 |
| ## | SZ_11_quantisd                      | 0.819 | 0.042 | 19.494 | 0.000 | 0.249 | 0.503 |
| ## | SZ_12_quantisd                      | 0.786 | 0.043 | 18.355 | 0.000 | 0.239 | 0.499 |
| ## | SZ_13_quantisd                      | 0.902 | 0.046 | 19.612 | 0.000 | 0.274 | 0.554 |
| ## | SZ_14_quantisd                      | 0.846 | 0.051 | 16.735 | 0.000 | 0.257 | 0.515 |
| ## | SZ_15_quantisd                      | 0.914 | 0.049 | 18.724 | 0.000 | 0.278 | 0.557 |
| ## | SZ_16_quantisd                      | 0.720 | 0.049 | 14.805 | 0.000 | 0.219 | 0.437 |
| ## | SZ_17_quantisd                      | 0.842 | 0.046 | 18.228 | 0.000 | 0.256 | 0.515 |
| ## | SZ_18_quantisd                      | 0.973 | 0.047 | 20.785 | 0.000 | 0.296 | 0.598 |
| ## | SZ_19_quantisd                      | 0.836 | 0.047 | 17.958 | 0.000 | 0.254 | 0.511 |
| ## | SZ_2_quantised                      | 0.943 | 0.042 | 22.513 | 0.000 | 0.287 | 0.587 |
| ## | SZ_20_quantisd                      | 0.948 | 0.042 | 22.494 | 0.000 | 0.288 | 0.631 |
| ## | SZ_21_quantisd                      | 0.891 | 0.048 | 18.696 | 0.000 | 0.271 | 0.546 |
| ## | SZ_22_quantisd                      | 0.864 | 0.049 | 17.689 | 0.000 | 0.263 | 0.528 |
| ## | SZ_23_quantisd                      | 0.891 | 0.047 | 19.123 | 0.000 | 0.271 | 0.551 |
| ## | SZ_24_quantisd                      | 0.877 | 0.045 | 19.674 | 0.000 | 0.267 | 0.541 |
| ## | SZ_25_quantisd                      | 0.810 | 0.044 | 18.418 | 0.000 | 0.246 | 0.497 |

| ## | SZ_26_quantisd                   | 0.011    | 0.046   | 0.246            | 0.806   | 0.003           | 0.007   |
|----|----------------------------------|----------|---------|------------------|---------|-----------------|---------|
| ## | SZ_27_quantisd                   | 0.081    | 0.046   | 1.773            | 0.076   | 0.025           | 0.054   |
| ## | SZ_28_quantisd                   | -0.025   | 0.052   | -0.478           | 0.633   | -0.008          | -0.016  |
| ## | SZ_29_quantisd                   | 0.615    | 0.047   | 13.178           | 0.000   | 0.187           | 0.380   |
| ## | SZ_3_quantised                   | 0.804    | 0.041   | 19.438           | 0.000   | 0.244           | 0.551   |
| ## | SZ_30_quantisd                   | 0.133    | 0.053   | 2.538            | 0.011   | 0.041           | 0.082   |
| ## | SZ_31_quantisd                   | 0.060    | 0.044   | 1.372            | 0.170   | 0.018           | 0.040   |
| ## | SZ_32_quantisd                   | 0.718    | 0.047   | 15.188           | 0.000   | 0.218           | 0.441   |
| ## | SZ_33_quantisd                   | 0.470    | 0.048   | 9.862            | 0.000   | 0.143           | 0.298   |
| ## | SZ_34_quantisd                   | -0.043   | 0.045   | -0.960           | 0.337   | -0.013          | -0.029  |
| ## | SZ_35_quantisd                   | 0.809    | 0.041   | 19.975           | 0.000   | 0.246           | 0.578   |
| ## | SZ_36_quantisd                   | 0.826    | 0.045   | 18.307           | 0.000   | 0.251           | 0.504   |
| ## | SZ_37_quantisd                   | -0.174   | 0.048   | -3.594           | 0.000   | -0.053          | -0.115  |
| ## | SZ_38_quantisd                   | 0.914    | 0.041   | 22.279           | 0.000   | 0.278           | 0.602   |
| ## | SZ_39_quantisd                   | 0.012    | 0.046   | 0.264            | 0.792   | 0.004           | 0.002   |
| ## | SZ_4_quantised                   | 0.844    | 0.039   | 21.454           | 0.000   | 0.257           | 0.553   |
| ## | SZ_40_quantisd                   | 0.723    | 0.046   | 15.558           | 0.000   | 0.220           | 0.444   |
| ## | SZ_41_quantisd                   | 0.855    | 0.044   | 19.486           | 0.000   | 0.260           | 0.524   |
| ## | SZ_42_quantisd                   | 0.970    | 0.044   | 22.456           | 0.000   | 0.295           | 0.524   |
| ## | SZ_5_quantised                   | 0.869    | 0.042   | 20.791           | 0.000   | 0.264           | 0.588   |
| ## | SZ_6_quantised                   | 0.918    | 0.042   | 21.753           | 0.000   | 0.279           | 0.610   |
| ## | SZ_7_quantised                   | 0.869    | 0.042   | 20.405           | 0.000   | 0.264           | 0.533   |
| ## | SZ_8_quantised                   | 0.843    | 0.043   | 21.082           | 0.000   | 0.256           | 0.564   |
| ## | SZ_9_quantised                   | 0.908    | 0.040   | 20.957           | 0.000   | 0.236           | 0.567   |
| ## | STAI =~                          | 0.908    | 0.043   | 20.951           | 0.000   | 0.270           | 0.507   |
| ## | STAI2_Clm_qnts                   | 1.000    |         |                  |         | 0.511           | 0.559   |
| ## | STAI2_Cim_qnts<br>STAI2_Cntnt_qn | 0.918    | 0.042   | 21.710           | 0.000   | 0.469           | 0.535   |
| ## | STAI2_Dscns_qn                   | 0.823    | 0.042   | 18.093           | 0.000   | 0.421           | 0.463   |
| ## | STAI2_Dschs_qn<br>STAI2_Dffclts_ | -1.373   | 0.169   | -8.116           | 0.000   | -0.701          | -0.725  |
| ## | STAI2_DITCIUS_<br>STAI2_DsppntS_ | -1.214   | 0.169   | -7.194           | 0.000   | -0.701          | -0.725  |
| ## |                                  |          | 0.163   | -7.194<br>-8.776 | 0.000   | -0.732          | -0.754  |
| ## | STAI2_Flr_qnts                   | -1.432   | 0.163   | 22.103           | 0.000   |                 | 0.541   |
|    | STAI2_Hppy_qnt                   | 0.975    |         |                  |         | 0.498<br>-0.570 |         |
| ## | STAI2_HppyOth_                   | -1.116   | 0.150   | -7.442           | 0.000   |                 | -0.574  |
| ## | STAI2_Indqt_qn                   | -1.414   | 0.170   | -8.305           | 0.000   | -0.722          | -0.740  |
| ## | STAI2_Nrvs_qnt                   | -1.348   | 0.167   | -8.080           | 0.000   | -0.688          | -0.731  |
| ## | STAI2_Plsnt_qn                   | 0.930    | 0.039   | 23.839           | 0.000   | 0.475           | 0.554   |
| ## | STAI2_Rstd_qnt                   | 0.685    | 0.051   | 13.382           | 0.000   | 0.350           | 0.393   |
| ## | STAI2_StsfdSl_                   | 1.051    | 0.044   | 23.856           | 0.000   | 0.537           | 0.553   |
| ## | STAI2_Scr_qnts                   | 1.020    | 0.045   | 22.731           | 0.000   | 0.521           | 0.547   |
| ## | STAI2_SlfCnfd_                   | -1.227   | 0.159   | -7.726           | 0.000   | -0.627          | -0.609  |
| ## | STAI2_Stdy_qnt                   | 1.074    | 0.044   | 24.234           | 0.000   | 0.549           | 0.616   |
| ## | STAI2_Tnsn_qnt                   | -1.318   | 0.188   | -7.015           | 0.000   | -0.673          | -0.697  |
| ## | STAI2_Thghts_q                   | -1.109   | 0.170   | -6.530           | 0.000   | -0.566          | -0.623  |
| ## | STAI2_UnmprtT_                   | -1.229   | 0.177   | -6.939           | 0.000   | -0.628          | -0.659  |
| ## | STAI2_Wrry_qnt                   | -1.273   | 0.172   | -7.403           | 0.000   | -0.650          | -0.665  |
| ## |                                  |          |         |                  |         |                 |         |
| ## | Regressions:                     | <b>.</b> | a       | -                | 5611    | Q. 1. 7         | a. 1 11 |
| ## | 1                                | Estimate | Std.Err | z-value          | P(> z ) | Std.lv          | Std.all |
| ## | driftrate ~                      | 0.000    | 0 000   | 0 500            | 0 00-   | 0 000           | ^ ^~=   |
| ## | spreadsheet                      | 0.000    | 0.000   | 2.792            | 0.005   | 0.000           | 0.087   |
| ## | Ravens                           | 0.001    | 0.000   | 4.301            | 0.000   | 0.001           | 0.145   |
| ## | Age                              | -0.000   | 0.000   | -3.491           | 0.000   | -0.000          | -0.109  |
| ## | GenderMF                         | -0.000   | 0.001   | -0.441           | 0.659   | -0.000          | -0.014  |
| ## | BDI                              | -0.004   | 0.001   | -2.661           | 0.008   | -0.002          | -0.175  |

| ##       | OCD                      | 0.000    | 0.001   | 0.029   | 0.977   | 0.000  | 0.002   |
|----------|--------------------------|----------|---------|---------|---------|--------|---------|
| ##       | SZ                       | 0.001    | 0.002   | 0.608   | 0.543   | 0.000  | 0.036   |
| ##       | STAI                     | -0.002   | 0.002   | -1.223  | 0.222   | -0.001 | -0.080  |
| ##       | <b>a</b> .               |          |         |         |         |        |         |
| ##       | Covariances:             | Fatimata | C+ J E  |         | D(> - ) | C+3 7  | Std.all |
| ##<br>## | annoodahoot              | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ##       | spreadsheet ~~<br>Ravens | -0.421   | 0.277   | -1.519  | 0.129   | -0.421 | -0.048  |
| ##       | Age                      | 1.350    | 0.277   | 1.319   | 0.125   | 1.350  | 0.048   |
| ##       | GenderMF                 | 0.060    | 0.047   | 1.282   | 0.200   | 0.060  | 0.044   |
| ##       | BDI ~~                   | 0.000    | 0.011   | 1.202   | 0.200   | 0.000  | 0.011   |
| ##       | spreadsheet              | -0.003   | 0.056   | -0.062  | 0.951   | -0.006 | -0.002  |
| ##       | OCD ~~                   |          |         |         |         |        |         |
| ##       | spreadsheet              | 0.143    | 0.109   | 1.303   | 0.193   | 0.127  | 0.042   |
| ##       | SZ ~~                    |          |         |         |         |        |         |
| ##       | spreadsheet              | -0.027   | 0.030   | -0.891  | 0.373   | -0.088 | -0.029  |
| ##       | STAI ~~                  |          |         |         |         |        |         |
| ##       | ${	t spreadsheet}$       | -0.011   | 0.050   | -0.226  | 0.821   | -0.022 | -0.007  |
| ##       | Ravens ~~                |          |         |         |         |        |         |
| ##       | Age                      | 2.429    | 0.950   | 2.557   | 0.011   | 2.429  | 0.081   |
| ##       | GenderMF                 | -0.057   | 0.044   | -1.305  | 0.192   | -0.057 | -0.040  |
| ##       | BDI ~~                   | 0.210    | 0 050   | F F60   | 0 000   | 0 505  | 0 100   |
| ##<br>## | Ravens<br>OCD ~~         | -0.310   | 0.056   | -5.568  | 0.000   | -0.535 | -0.182  |
| ##       | Ravens                   | -1.128   | 0.097   | -11.679 | 0.000   | -1.006 | -0.343  |
| ##       | SZ ~~                    | 1.120    | 0.031   | 11.073  | 0.000   | 1.000  | 0.040   |
| ##       | Ravens                   | 0.213    | 0.029   | 7.458   | 0.000   | 0.701  | 0.239   |
| ##       | STAI ~~                  |          |         |         |         |        |         |
| ##       | Ravens                   | 0.217    | 0.047   | 4.614   | 0.000   | 0.424  | 0.145   |
| ##       | Age ~~                   |          |         |         |         |        |         |
| ##       | GenderMF                 | -0.007   | 0.154   | -0.043  | 0.965   | -0.007 | -0.001  |
| ##       | BDI ~~                   |          |         |         |         |        |         |
| ##       | Age                      | -1.253   | 0.192   | -6.545  | 0.000   | -2.165 | -0.212  |
| ##       | OCD ~~                   |          |         |         |         |        |         |
| ##       | Age                      | -3.697   | 0.335   | -11.051 | 0.000   | -3.297 | -0.323  |
| ##       | SZ ~~                    | 0.700    | 0 102   | 7.760   | 0 000   | 0.606  | 0.057   |
| ##<br>## | Age<br>STAI ~~           | 0.798    | 0.103   | 7.760   | 0.000   | 2.626  | 0.257   |
| ##       | Age                      | 1.261    | 0.191   | 6.601   | 0.000   | 2.469  | 0.241   |
| ##       | BDI ~~                   | 1.201    | 0.131   | 0.001   | 0.000   | 2.403  | 0.241   |
| ##       | GenderMF                 | 0.013    | 0.009   | 1.482   | 0.138   | 0.023  | 0.047   |
| ##       | OCD ~~                   |          |         |         | ***     | ****   |         |
| ##       | GenderMF                 | 0.047    | 0.017   | 2.752   | 0.006   | 0.042  | 0.085   |
| ##       | SZ ~~                    |          |         |         |         |        |         |
| ##       | GenderMF                 | -0.008   | 0.005   | -1.644  | 0.100   | -0.026 | -0.052  |
| ##       | STAI ~~                  |          |         |         |         |        |         |
| ##       | GenderMF                 | -0.011   | 0.008   | -1.393  | 0.163   | -0.022 | -0.045  |
| ##       | BDI ~~                   |          |         |         |         | ، نم   |         |
| ##       | OCD                      | 0.338    | 0.026   | 13.061  | 0.000   | 0.521  | 0.521   |
| ##       | SZ                       | -0.113   | 0.008   | -14.607 | 0.000   | -0.641 | -0.641  |
| ##<br>## | STAI<br>OCD ~~           | -0.243   | 0.026   | -9.208  | 0.000   | -0.823 | -0.823  |
| ##       | SZ                       | -0.251   | 0.014   | -18.039 | 0.000   | -0.736 | -0.736  |
| ##       | STAI                     | -0.289   |         | -15.517 | 0.000   | -0.504 | -0.504  |
|          | ~ · · · · ·              | 3.200    | 0.010   | 10.017  | 0.000   | 0.001  | 0.001   |

| ##       | SZ ~~                                 |                |                |                   |         |                |                |
|----------|---------------------------------------|----------------|----------------|-------------------|---------|----------------|----------------|
| ##       | STAI                                  | 0.100          | 0.008          | 13.251            | 0.000   | 0.642          | 0.642          |
| ##       |                                       |                |                |                   |         |                |                |
| ##       | Intercepts:                           |                |                |                   |         |                |                |
| ##       |                                       | Estimate       | Std.Err        | z-value           | P(> z ) | Std.lv         | Std.all        |
| ##       | .BDI_Apptt_qnts                       | 1.670          | 0.027          | 60.776            | 0.000   | 1.670          | 1.861          |
| ##       | $.{	t BDI\_Attrctv\_qn}$              | 1.852          | 0.029          | 64.228            | 0.000   | 1.852          | 1.967          |
| ##       | $.{	t BDI\_Blam\_qntsd}$              | 1.886          | 0.027          | 70.431            | 0.000   | 1.886          | 2.157          |
| ##       | .BDI_Cry_quntsd                       | 1.615          | 0.027          | 60.050            | 0.000   | 1.615          | 1.839          |
| ##       | .BDI_Dcsns_qnts                       | 1.734          | 0.027          | 63.902            | 0.000   | 1.734          | 1.957          |
| ##       | .BDI_Dsppntmnt_                       | 1.840          | 0.027          | 68.667            | 0.000   | 1.840          | 2.103          |
| ##       | .BDI_Falr_qntsd                       | 1.841          | 0.028          | 65.660            | 0.000   | 1.841          | 2.011          |
| ##       | .BDI_Futr_qntsd                       | 1.862          | 0.027          | 68.459            | 0.000   | 1.862          | 2.097          |
| ##       | .BDI_Glty_qntsd                       | 1.659          | 0.026          | 63.611            | 0.000   | 1.659          | 1.948          |
| ##       | .BDI_Hlth_qntsd                       | 1.697          | 0.024          | 71.668            | 0.000   | 1.697          | 2.195          |
| ##       | .BDI_Intrs_I_P_                       | 1.879          | 0.028          | 68.089            | 0.000   | 1.879          | 2.085          |
| ##       | .BDI_Irrttd_qnt                       | 1.873          | 0.027          | 69.155            | 0.000   | 1.873          | 2.118          |
| ##       | .BDI_Libd_qntsd                       | 1.710          | 0.027          | 62.771            | 0.000   | 1.710          | 1.923          |
| ##       | .BDI_Pnshd_qnts                       | 1.659          | 0.028<br>0.024 | 58.726            | 0.000   | 1.659          | 1.799          |
| ##       | .BDI_Sad_quntsd<br>.BDI_Stsfctn_qn    | 1.691<br>1.843 | 0.024          | 70.968<br>64.684  | 0.000   | 1.691<br>1.843 | 2.174<br>1.981 |
| ##       | .BDI_Stsictn_qn                       | 1.839          | 0.028          | 66.982            | 0.000   | 1.839          | 2.052          |
| ##       | .BDI_Siep_qntsd                       | 1.914          | 0.027          | 73.135            | 0.000   | 1.039          | 2.240          |
| ##       | .BDI_TITU_qntsd                       | 1.378          | 0.020          | 62.945            | 0.000   | 1.378          | 1.928          |
| ##       | .BDI_Wgnt_qntsd                       | 1.792          | 0.022          | 68.224            | 0.000   | 1.792          | 2.090          |
| ##       | .OCIR_14_quntsd                       | 2.213          | 0.041          | 53.357            | 0.000   | 2.213          | 1.634          |
| ##       | .OCIR_15_quntsd                       | 2.439          | 0.040          | 60.670            | 0.000   | 2.439          | 1.858          |
| ##       | .OCIR_16_quntsd                       | 2.144          | 0.040          | 53.341            | 0.000   | 2.144          | 1.634          |
| ##       | .OCIR_17_quntsd                       | 2.189          | 0.041          | 53.284            | 0.000   | 2.189          | 1.632          |
| ##       | .OCIR_18_quntsd                       | 2.265          | 0.041          | 55.361            | 0.000   | 2.265          | 1.696          |
| ##       | .OCIR_2_quantsd                       | 2.670          | 0.040          | 67.123            | 0.000   | 2.670          | 2.056          |
| ##       | .OCIR_3_quantsd                       | 2.491          | 0.039          | 64.424            | 0.000   | 2.491          | 1.973          |
| ##       | .OCIR_4_quantsd                       | 2.244          | 0.040          | 56.623            | 0.000   | 2.244          | 1.734          |
| ##       | .OCIR_5_quantsd                       | 2.165          | 0.040          | 54.721            | 0.000   | 2.165          | 1.676          |
| ##       | .OCIR_6_quantsd                       | 2.403          | 0.039          | 61.199            | 0.000   | 2.403          | 1.874          |
| ##       | $.0CIR_7_quantsd$                     | 2.212          | 0.038          | 58.368            | 0.000   | 2.212          | 1.788          |
| ##       | $.0 {\tt CIR\_8\_quantsd}$            | 2.294          | 0.041          | 55.813            | 0.000   | 2.294          | 1.709          |
| ##       | $.0CIR\_9\_quantsd$                   | 2.557          | 0.039          | 65.483            | 0.000   | 2.557          | 2.006          |
| ##       | $.0\mathtt{CIR}\_1\_\mathtt{quantsd}$ | 2.417          | 0.039          | 61.454            | 0.000   | 2.417          | 1.882          |
| ##       | $.0CIR\_10\_quntsd$                   | 2.018          | 0.040          | 51.003            | 0.000   | 2.018          | 1.562          |
| ##       | .OCIR_11_quntsd                       | 2.222          | 0.040          | 55.253            | 0.000   | 2.222          | 1.692          |
| ##       | .OCIR_12_quntsd                       | 2.347          | 0.040          | 58.849            | 0.000   | 2.347          | 1.802          |
| ##       | .OCIR_13_quntsd                       | 2.459          | 0.039          | 63.259            | 0.000   | 2.459          | 1.937          |
| ##       | .SZ_1_quantised                       | 1.606          | 0.015          | 107.310           | 0.000   | 1.606          | 3.287          |
| ##       | .SZ_10_quantisd                       | 1.763          | 0.013          | 135.269           | 0.000   | 1.763          | 4.143          |
| ##       | .SZ_11_quantisd                       | 1.573          | 0.015          | 103.845           | 0.000   | 1.573          | 3.181          |
| ##       | .SZ_12_quantisd                       | 1.644          | 0.015          | 112.036           | 0.000   | 1.644          | 3.431          |
| ##       | .SZ_13_quantisd                       | 1.569          | 0.015          | 103.484           | 0.000   | 1.569          | 3.170          |
| ##       | .SZ_14_quantisd                       | 1.521          | 0.015          | 99.381            | 0.000   | 1.521          | 3.044          |
| ##<br>## | .SZ_15_quantisd .SZ_16_quantisd       | 1.537<br>1.506 | 0.015<br>0.015 | 100.608<br>98.323 | 0.000   | 1.537<br>1.506 | 3.081<br>3.011 |
| ##       | .SZ_16_quantisd                       | 1.506          | 0.015          | 102.527           | 0.000   | 1.506          | 3.140          |
| ##       | .SZ_17_quantisd                       | 1.572          | 0.015          | 102.527           | 0.000   | 1.572          | 3.178          |
| ##       | .SZ_19_quantisd                       | 1.553          | 0.015          | 101.944           | 0.000   | 1.553          | 3.122          |
| π π      | 10_qaano18d                           | 1.500          | 0.010          | 101.017           | 3.000   | 1.000          | J. 122         |

| ## | .SZ_2_quantised                                | 1.608 | 0.015 | 107.526 | 0.000 | 1.608 | 3.293 |
|----|------------------------------------------------|-------|-------|---------|-------|-------|-------|
| ## | .SZ_20_quantisd                                | 1.704 | 0.014 | 121.792 | 0.000 | 1.704 | 3.730 |
| ## | .SZ_21_quantisd                                | 1.566 | 0.014 | 103.130 | 0.000 | 1.566 | 3.159 |
| ## | .SZ_22_quantisd                                | 1.553 | 0.015 | 101.944 | 0.000 | 1.553 | 3.122 |
|    | <b>-</b>                                       |       | 0.015 | 101.944 | 0.000 | 1.592 | 3.239 |
| ## | .SZ_23_quantisd                                | 1.592 |       |         |       |       |       |
| ## | .SZ_24_quantisd                                | 1.585 | 0.015 | 105.066 | 0.000 | 1.585 | 3.218 |
| ## | .SZ_25_quantisd                                | 1.568 | 0.015 | 103.306 | 0.000 | 1.568 | 3.164 |
| ## | .SZ_26_quantisd                                | 1.309 | 0.014 | 92.496  | 0.000 | 1.309 | 2.833 |
| ## | .SZ_27_quantisd                                | 1.298 | 0.014 | 92.651  | 0.000 | 1.298 | 2.838 |
| ## | .SZ_28_quantisd                                | 1.386 | 0.015 | 92.943  | 0.000 | 1.386 | 2.847 |
| ## | .SZ_29_quantisd                                | 1.586 | 0.015 | 105.163 | 0.000 | 1.586 | 3.221 |
| ## | .SZ_3_quantised                                | 1.732 | 0.014 | 127.608 | 0.000 | 1.732 | 3.908 |
| ## | .SZ_30_quantisd                                | 1.421 | 0.015 | 93.978  | 0.000 | 1.421 | 2.878 |
| ## | .SZ_31_quantisd                                | 1.283 | 0.014 | 92.985  | 0.000 | 1.283 | 2.848 |
| ## | .SZ_32_quantisd                                | 1.569 | 0.015 | 103.484 | 0.000 | 1.569 | 3.170 |
| ## | .SZ_33_quantisd                                | 1.360 | 0.015 | 92.510  | 0.000 | 1.360 | 2.833 |
| ## | .SZ_34_quantisd                                | 1.296 | 0.014 | 92.685  | 0.000 | 1.296 | 2.839 |
| ## | .SZ_35_quantisd                                | 1.763 | 0.013 | 135.269 | 0.000 | 1.763 | 4.143 |
| ## | .SZ_36_quantisd                                | 1.546 | 0.015 | 101.380 | 0.000 | 1.546 | 3.105 |
| ## | .SZ_37_quantisd                                | 1.304 | 0.014 | 92.559  | 0.000 | 1.304 | 2.835 |
| ## | $.SZ\_38\_quantisd$                            | 1.692 | 0.014 | 119.715 | 0.000 | 1.692 | 3.667 |
| ## | $.SZ\_39\_quantisd$                            | 1.295 | 0.014 | 92.722  | 0.000 | 1.295 | 2.840 |
| ## | $.SZ\_4$ _quantised                            | 1.687 | 0.014 | 118.724 | 0.000 | 1.687 | 3.636 |
| ## | $.SZ\_40\_quantisd$                            | 1.573 | 0.015 | 103.845 | 0.000 | 1.573 | 3.181 |
| ## | $.SZ\_41\_quantisd$                            | 1.567 | 0.015 | 103.218 | 0.000 | 1.567 | 3.161 |
| ## | $.SZ\_42\_quantisd$                            | 1.547 | 0.015 | 101.459 | 0.000 | 1.547 | 3.107 |
| ## | $.SZ\_5\_quantised$                            | 1.720 | 0.014 | 125.167 | 0.000 | 1.720 | 3.834 |
| ## | $.SZ\_6\_quantised$                            | 1.702 | 0.014 | 121.437 | 0.000 | 1.702 | 3.719 |
| ## | $.SZ\_7\_quantised$                            | 1.569 | 0.015 | 103.484 | 0.000 | 1.569 | 3.170 |
| ## | $.SZ\_8\_quantised$                            | 1.709 | 0.014 | 122.881 | 0.000 | 1.709 | 3.764 |
| ## | $.SZ\_9\_quantised$                            | 1.614 | 0.015 | 108.297 | 0.000 | 1.614 | 3.317 |
| ## | $.{	t STAI2\_Clm\_qnts}$                       | 2.706 | 0.028 | 96.646  | 0.000 | 2.706 | 2.960 |
| ## | $.{	t STAI2\_Cntnt\_qn}$                       | 2.699 | 0.028 | 96.745  | 0.000 | 2.699 | 2.963 |
| ## | $.\mathtt{STAI2}\_\mathtt{Dscns}\_\mathtt{qn}$ | 2.658 | 0.028 | 95.608  | 0.000 | 2.658 | 2.928 |
| ## | .STAI2_Dffclts_                                | 2.218 | 0.030 | 74.925  | 0.000 | 2.218 | 2.295 |
| ## | .STAI2_DsppntS_                                | 2.210 | 0.029 | 76.563  | 0.000 | 2.210 | 2.345 |
| ## | .STAI2_Flr_qnts                                | 2.043 | 0.030 | 68.737  | 0.000 | 2.043 | 2.105 |
| ## | .STAI2_Hppy_qnt                                | 2.734 | 0.028 | 96.900  | 0.000 | 2.734 | 2.968 |
| ## | .STAI2_HppyOth_                                | 2.501 | 0.030 | 82.177  | 0.000 | 2.501 | 2.517 |
| ## | $.\mathtt{STAI2\_Indqt\_qn}$                   | 2.177 | 0.030 | 72.835  | 0.000 | 2.177 | 2.231 |
| ## | .STAI2_Nrvs_qnt                                | 2.232 | 0.029 | 77.358  | 0.000 | 2.232 | 2.369 |
| ## | $.\mathtt{STAI2\_Plsnt\_qn}$                   | 2.734 | 0.026 | 104.182 | 0.000 | 2.734 | 3.191 |
| ## | .STAI2_Rstd_qnt                                | 2.481 | 0.027 | 91.038  | 0.000 | 2.481 | 2.788 |
| ## | .STAI2_StsfdSl_                                | 2.625 | 0.030 | 88.220  | 0.000 | 2.625 | 2.702 |
| ## | .STAI2_Scr_qnts                                | 2.712 | 0.029 | 92.892  | 0.000 | 2.712 | 2.845 |
| ## | .STAI2_SlfCnfd_                                | 2.405 | 0.032 | 76.311  | 0.000 | 2.405 | 2.337 |
| ## | .STAI2_Stdy_qnt                                | 2.768 | 0.027 | 101.471 | 0.000 | 2.768 | 3.108 |
| ## | .STAI2_Tnsn_qnt                                | 2.238 | 0.030 | 75.699  | 0.000 | 2.238 | 2.319 |
| ## | .STAI2_Thghts_q                                | 1.982 | 0.028 | 71.203  | 0.000 | 1.982 | 2.181 |
| ## | .STAI2_UnmprtT_                                | 2.217 | 0.029 | 75.991  | 0.000 | 2.217 | 2.327 |
| ## | .STAI2_Wrry_qnt                                | 2.280 | 0.030 | 76.075  | 0.000 | 2.280 | 2.330 |
| ## | .driftrate                                     | 0.005 | 0.002 | 3.327   | 0.001 | 0.005 | 0.431 |
| ## | spreadsheet                                    | 3.976 | 0.095 | 41.773  | 0.000 | 3.976 | 1.325 |
| ## | Ravens                                         | 4.392 | 0.090 | 48.903  | 0.000 | 4.392 | 1.498 |
|    |                                                |       |       |         |       |       |       |

| ##<br>## | Age<br>GenderMF                       | 34.219<br>0.591 | 0.313<br>0.015 | 109.293<br>39.181 | 0.000   | 34.219<br>0.591 | 3.347<br>1.203 |
|----------|---------------------------------------|-----------------|----------------|-------------------|---------|-----------------|----------------|
| ##       | BDI                                   | 0.000           | 0.010          | 00.101            | 0.000   | 0.000           | 0.000          |
| ##       | OCD                                   | 0.000           |                |                   |         | 0.000           | 0.000          |
| ##       | SZ                                    | 0.000           |                |                   |         | 0.000           | 0.000          |
| ##       | STAI                                  | 0.000           |                |                   |         | 0.000           | 0.000          |
| ##       | DIMI                                  | 0.000           |                |                   |         | 0.000           | 0.000          |
| ##       | Variances:                            |                 |                |                   |         |                 |                |
| ##       | variances.                            | Estimate        | Std.Err        | z-value           | P(> z ) | Std.lv          | Std.all        |
| ##       | .BDI_Apptt_qnts                       | 0.469           | 0.027          | 17.502            | 0.000   | 0.469           | 0.583          |
| ##       | .BDI_Attrctv_qn                       | 0.510           | 0.026          | 19.458            | 0.000   | 0.510           | 0.576          |
| ##       | .BDI_Blam_qntsd                       | 0.326           | 0.018          | 17.866            | 0.000   | 0.326           | 0.427          |
| ##       | .BDI_Cry_quntsd                       | 0.436           | 0.028          | 15.727            | 0.000   | 0.436           | 0.565          |
| ##       | .BDI_Dcsns_qnts                       | 0.375           | 0.022          | 17.388            | 0.000   | 0.375           | 0.478          |
| ##       | .BDI_Dsppntmnt_                       | 0.347           | 0.020          | 17.048            | 0.000   | 0.347           | 0.454          |
| ##       | .BDI_Falr_qntsd                       | 0.393           | 0.022          | 17.927            | 0.000   | 0.393           | 0.469          |
| ##       | .BDI_Futr_qntsd                       | 0.363           | 0.021          | 17.391            | 0.000   | 0.363           | 0.461          |
| ##       | .BDI_Glty_qntsd                       | 0.380           | 0.022          | 17.148            | 0.000   | 0.380           | 0.524          |
| ##       | .BDI_Hlth_qntsd                       | 0.396           | 0.021          | 18.902            | 0.000   | 0.396           | 0.662          |
| ##       | .BDI_Intrs_I_P_                       | 0.428           | 0.023          | 18.602            | 0.000   | 0.428           | 0.527          |
| ##       | .BDI_Irrttd_qnt                       | 0.394           | 0.021          | 19.127            | 0.000   | 0.394           | 0.504          |
| ##       | .BDI_Libd_qntsd                       | 0.528           | 0.030          | 17.886            | 0.000   | 0.528           | 0.668          |
| ##       | .BDI_Pnshd_qnts                       | 0.476           | 0.029          | 16.388            | 0.000   | 0.476           | 0.559          |
| ##       | .BDI_Sad_quntsd                       | 0.294           | 0.019          | 15.217            | 0.000   | 0.294           | 0.486          |
| ##       | .BDI_Stsfctn_qn                       | 0.463           | 0.026          | 17.833            | 0.000   | 0.463           | 0.535          |
| ##       | .BDI_Slep_qntsd                       | 0.532           | 0.027          | 20.054            | 0.000   | 0.532           | 0.662          |
| ##       | .BDI_Tird_qntsd                       | 0.412           | 0.021          | 19.566            | 0.000   | 0.412           | 0.565          |
| ##       | .BDI_wght_qntsd                       | 0.404           | 0.028          | 14.330            | 0.000   | 0.404           | 0.792          |
| ##       | .BDI_Work_qntsd                       | 0.354           | 0.019          | 18.601            | 0.000   | 0.354           | 0.482          |
| ##       | .OCIR_14_quntsd                       | 0.576           | 0.037          | 15.698            | 0.000   | 0.576           | 0.314          |
| ##       | .OCIR_15_quntsd                       | 0.833           | 0.047          | 17.667            | 0.000   | 0.833           | 0.484          |
| ##       | .OCIR_16_quntsd                       | 0.641           | 0.040          | 15.977            | 0.000   | 0.641           | 0.373          |
| ##       | $.0CIR\_17\_quntsd$                   | 0.523           | 0.034          | 15.440            | 0.000   | 0.523           | 0.291          |
| ##       | .OCIR_18_quntsd                       | 0.592           | 0.040          | 14.858            | 0.000   | 0.592           | 0.332          |
| ##       | $.0CIR_2_quantsd$                     | 0.839           | 0.039          | 21.339            | 0.000   | 0.839           | 0.497          |
| ##       | $.0CIR\_3\_quantsd$                   | 0.772           | 0.042          | 18.274            | 0.000   | 0.772           | 0.485          |
| ##       | $.\mathtt{OCIR}\_4\mathtt{\_quantsd}$ | 0.582           | 0.034          | 17.207            | 0.000   | 0.582           | 0.347          |
| ##       | $.0\mathtt{CIR}\_5\_\mathtt{quantsd}$ | 0.679           | 0.042          | 16.040            | 0.000   | 0.679           | 0.407          |
| ##       | $.0\mathtt{CIR}\_6\_\mathtt{quantsd}$ | 0.764           | 0.041          | 18.730            | 0.000   | 0.764           | 0.465          |
| ##       | $.0CIR\_7\_quantsd$                   | 0.738           | 0.040          | 18.598            | 0.000   | 0.738           | 0.482          |
| ##       | $.0\mathtt{CIR}\_8\_\mathtt{quantsd}$ | 0.599           | 0.038          | 15.953            | 0.000   | 0.599           | 0.332          |
| ##       | $.0CIR\_9\_quantsd$                   | 0.776           | 0.041          | 18.919            | 0.000   | 0.776           | 0.478          |
| ##       | .OCIR_1_quantsd                       | 0.771           | 0.041          | 18.639            | 0.000   | 0.771           | 0.468          |
| ##       | .OCIR_10_quntsd                       | 0.465           | 0.028          | 16.496            | 0.000   | 0.465           | 0.279          |
| ##       | .OCIR_11_quntsd                       | 0.528           | 0.031          | 16.928            | 0.000   | 0.528           | 0.306          |
| ##       | .OCIR_12_quntsd                       | 0.695           | 0.040          | 17.275            | 0.000   | 0.695           | 0.410          |
| ##       | .OCIR_13_quntsd                       | 0.853           | 0.043          | 19.626            | 0.000   | 0.853           | 0.530          |
| ##       | .SZ_1_quantised                       | 0.146           | 0.006          | 23.780            | 0.000   | 0.146           | 0.613          |
| ##       | .SZ_10_quantisd                       | 0.115           | 0.005          | 22.843            | 0.000   | 0.115           | 0.637          |
| ##       | .SZ_11_quantisd                       | 0.183           | 0.006          | 30.650            | 0.000   | 0.183           | 0.747          |
| ##       | .SZ_12_quantisd                       | 0.172           | 0.006          | 28.306            | 0.000   | 0.172           | 0.751          |
| ##       | .SZ_13_quantisd                       | 0.170           | 0.006<br>0.006 | 27.946            | 0.000   | 0.170           | 0.694          |
| ##<br>## | .SZ_14_quantisd .SZ_15_quantisd       | 0.183<br>0.172  | 0.006          | 28.968<br>27.702  | 0.000   | 0.183<br>0.172  | 0.735<br>0.690 |
| ##       | .bz_15_quant1sd                       | 0.172           | 0.000          | 21.102            | 0.000   | 0.172           | 0.090          |

| ## | C7 16 guantical                                | 0.202 | 0.006 | 35.661 | 0.000 | 0.202 | 0.809 |
|----|------------------------------------------------|-------|-------|--------|-------|-------|-------|
|    | .SZ_16_quantisd                                |       |       | 29.882 |       | 0.202 | 0.734 |
| ## | .SZ_17_quantisd                                | 0.181 | 0.006 |        | 0.000 |       |       |
| ## | .SZ_18_quantisd                                | 0.157 | 0.006 | 25.687 | 0.000 | 0.157 | 0.643 |
| ## | .SZ_19_quantisd                                | 0.183 | 0.006 | 30.288 | 0.000 | 0.183 | 0.739 |
| ## | $.SZ\_2\_quantised$                            | 0.156 | 0.006 | 25.490 | 0.000 | 0.156 | 0.655 |
| ## | $.SZ\_20\_quantisd$                            | 0.126 | 0.005 | 23.402 | 0.000 | 0.126 | 0.602 |
| ## | $.\mathtt{SZ}\_\mathtt{21}\_\mathtt{quantisd}$ | 0.172 | 0.006 | 27.559 | 0.000 | 0.172 | 0.702 |
| ## | $.\mathtt{SZ}\_\mathtt{22}\_\mathtt{quantisd}$ | 0.178 | 0.006 | 28.255 | 0.000 | 0.178 | 0.721 |
| ## | .SZ_23_quantisd                                | 0.168 | 0.006 | 27.387 | 0.000 | 0.168 | 0.696 |
| ## | .SZ_24_quantisd                                | 0.172 | 0.006 | 28.172 | 0.000 | 0.172 | 0.707 |
| ## | .SZ_25_quantisd                                | 0.185 | 0.006 | 30.861 | 0.000 | 0.185 | 0.753 |
| ## | .SZ_26_quantisd                                | 0.213 | 0.005 | 39.408 | 0.000 | 0.213 | 1.000 |
| ## | .SZ_27_quantisd                                | 0.209 | 0.006 | 36.930 | 0.000 | 0.209 | 0.997 |
| ## | .SZ_28_quantisd                                | 0.237 | 0.003 | 69.267 | 0.000 | 0.237 | 1.000 |
| ## | .SZ_29_quantisd                                | 0.208 | 0.006 | 37.530 | 0.000 | 0.208 | 0.856 |
| ## | .SZ_3_quantised                                | 0.137 | 0.006 | 23.079 | 0.000 | 0.137 | 0.696 |
| ## | .SZ_30_quantised                               |       |       | 90.763 |       | 0.137 |       |
|    |                                                | 0.242 | 0.003 |        | 0.000 |       | 0.993 |
| ## | .SZ_31_quantisd                                | 0.203 | 0.006 | 33.930 | 0.000 | 0.203 | 0.998 |
| ## | .SZ_32_quantisd                                | 0.198 | 0.006 | 33.809 | 0.000 | 0.198 | 0.806 |
| ## | .SZ_33_quantisd                                | 0.210 | 0.005 | 41.330 | 0.000 | 0.210 | 0.911 |
| ## | $.SZ\_34\_quantisd$                            | 0.208 | 0.006 | 36.565 | 0.000 | 0.208 | 0.999 |
| ## | $.SZ\_35\_quantisd$                            | 0.121 | 0.005 | 22.435 | 0.000 | 0.121 | 0.666 |
| ## | $.SZ\_36\_quantisd$                            | 0.185 | 0.006 | 30.675 | 0.000 | 0.185 | 0.746 |
| ## | $.SZ\_37\_quantisd$                            | 0.209 | 0.006 | 37.378 | 0.000 | 0.209 | 0.987 |
| ## | $.SZ\_38\_quantisd$                            | 0.136 | 0.006 | 24.199 | 0.000 | 0.136 | 0.638 |
| ## | .SZ_39_quantisd                                | 0.208 | 0.006 | 36.231 | 0.000 | 0.208 | 1.000 |
| ## | .SZ_4_quantised                                | 0.149 | 0.006 | 24.995 | 0.000 | 0.149 | 0.694 |
| ## | .SZ_40_quantisd                                | 0.196 | 0.006 | 33.688 | 0.000 | 0.196 | 0.803 |
| ## | .SZ_41_quantisd                                | 0.178 | 0.006 | 29.264 | 0.000 | 0.178 | 0.725 |
| ## | .SZ_42_quantisd                                | 0.161 | 0.006 | 25.969 | 0.000 | 0.161 | 0.649 |
| ## | .SZ_5_quantised                                | 0.132 | 0.006 | 22.958 | 0.000 | 0.132 | 0.654 |
| ## | .SZ_6_quantised                                | 0.132 | 0.005 | 24.153 | 0.000 | 0.132 | 0.628 |
| ## | .SZ_7_quantised                                | 0.175 | 0.006 | 28.483 | 0.000 | 0.175 | 0.715 |
| ## | .SZ_8_quantised                                | 0.141 | 0.006 | 23.538 | 0.000 | 0.141 | 0.682 |
| ## |                                                | 0.141 | 0.006 | 27.201 | 0.000 | 0.141 | 0.678 |
| ## | .SZ_9_quantised<br>.STAI2_Clm_qnts             | 0.101 | 0.049 | 11.853 | 0.000 | 0.101 | 0.688 |
|    | <b>-</b>                                       |       |       | 12.683 |       | 0.610 |       |
| ## | .STAI2_Cntnt_qn                                | 0.610 | 0.048 |        | 0.000 |       | 0.735 |
| ## | .STAI2_Dscns_qn                                | 0.647 | 0.042 | 15.572 | 0.000 | 0.647 | 0.785 |
| ## | .STAI2_Dffclts_                                | 0.442 | 0.030 | 14.574 | 0.000 | 0.442 | 0.474 |
| ## | .STAI2_DsppntS_                                | 0.504 | 0.037 | 13.498 | 0.000 | 0.504 | 0.567 |
| ## | .STAI2_Flr_qnts                                | 0.407 | 0.024 | 16.675 | 0.000 | 0.407 | 0.432 |
| ## | $.\mathtt{STAI2\_Hppy\_qnt}$                   | 0.600 | 0.051 | 11.830 | 0.000 | 0.600 | 0.708 |
| ## | $.\mathtt{STAI2\_HppyOth\_}$                   | 0.662 | 0.039 | 17.156 | 0.000 | 0.662 | 0.671 |
| ## | $.\mathtt{STAI2\_Indqt\_qn}$                   | 0.431 | 0.033 | 12.994 | 0.000 | 0.431 | 0.452 |
| ## | $.{	t STAI2\_Nrvs\_qnt}$                       | 0.413 | 0.028 | 14.856 | 0.000 | 0.413 | 0.466 |
| ## | $.\mathtt{STAI2\_Plsnt\_qn}$                   | 0.508 | 0.045 | 11.182 | 0.000 | 0.508 | 0.693 |
| ## | $.{	t STAI2\_Rstd\_qnt}$                       | 0.669 | 0.040 | 16.579 | 0.000 | 0.669 | 0.845 |
| ## | .STAI2_StsfdSl_                                | 0.656 | 0.057 | 11.516 | 0.000 | 0.656 | 0.695 |
| ## | .STAI2_Scr_qnts                                | 0.637 | 0.054 | 11.822 | 0.000 | 0.637 | 0.701 |
| ## | .STAI2_SlfCnfd_                                | 0.666 | 0.040 | 16.498 | 0.000 | 0.666 | 0.629 |
| ## | .STAI2_Stdy_qnt                                | 0.492 | 0.046 | 10.689 | 0.000 | 0.492 | 0.620 |
| ## | .STAI2_Tnsn_qnt                                | 0.479 | 0.042 | 11.501 | 0.000 | 0.479 | 0.514 |
| ## | .STAI2_Thghts_q                                | 0.506 | 0.036 | 13.992 | 0.000 | 0.506 | 0.612 |
| ## | .STAI2_UnmprtT_                                | 0.513 | 0.037 | 13.678 | 0.000 | 0.513 | 0.565 |
| πĦ | .p.rvis_ommbrci                                | 0.013 | 0.031 | 10.010 | 0.000 | 0.010 | 0.505 |

```
##
                          0.535
                                    0.036
                                             14.686
                                                       0.000
                                                                 0.535
                                                                           0.558
      .STAI2_Wrry_qnt
##
                          0.000
      .driftrate
                                    0.000
                                             21.340
                                                       0.000
                                                                 0.000
                                                                           0.942
##
       spreadsheet
                          9.001
                                    0.006 1466.150
                                                       0.000
                                                                 9.001
                                                                           1.000
##
       Ravens
                          8.599
                                    0.321
                                             26.798
                                                       0.000
                                                                 8.599
                                                                           1.000
##
       Age
                        104.502
                                    5.876
                                             17.784
                                                       0.000
                                                               104.502
                                                                           1.000
##
       GenderMF
                          0.242
                                    0.003
                                             87.697
                                                       0.000
                                                                 0.242
                                                                           1.000
##
       BDI
                          0.335
                                    0.029
                                             11.585
                                                       0.000
                                                                 1.000
                                                                           1.000
##
       OCD
                                    0.057
                          1.258
                                             21.938
                                                       0.000
                                                                 1.000
                                                                           1.000
##
       SZ
                          0.092
                                    0.006
                                             14.749
                                                       0.000
                                                                 1.000
                                                                           1.000
##
       STAI
                          0.261
                                    0.053
                                              4.893
                                                       0.000
                                                                 1.000
                                                                           1.000
##
## R-Square:
##
                       Estimate
##
       BDI_Apptt_qnts
                          0.417
##
       BDI_Attrctv_qn
                          0.424
##
       BDI_Blam_qntsd
                          0.573
##
       BDI_Cry_quntsd
                          0.435
##
                          0.522
       BDI Dcsns gnts
##
       BDI_Dsppntmnt_
                          0.546
       BDI_Falr_qntsd
##
                          0.531
##
       BDI_Futr_qntsd
                          0.539
##
       BDI_Glty_qntsd
                          0.476
##
       BDI_Hlth_qntsd
                          0.338
##
       BDI Intrs I P
                          0.473
##
       BDI_Irrttd_qnt
                          0.496
##
       BDI_Libd_qntsd
                          0.332
##
       BDI_Pnshd_qnts
                          0.441
##
       BDI_Sad_quntsd
                          0.514
##
                          0.465
       BDI_Stsfctn_qn
##
                          0.338
       BDI_Slep_qntsd
##
       BDI_Tird_qntsd
                          0.435
##
       BDI_wght_qntsd
                          0.208
##
                          0.518
       BDI_Work_qntsd
##
       OCIR_14_quntsd
                          0.686
##
       OCIR_15_quntsd
                          0.516
##
       OCIR_16_quntsd
                          0.627
##
       OCIR 17 quntsd
                          0.709
##
       OCIR_18_quntsd
                          0.668
##
       OCIR_2_quantsd
                          0.503
##
       OCIR_3_quantsd
                          0.515
##
       OCIR 4 quantsd
                          0.653
##
       OCIR_5_quantsd
                          0.593
##
       OCIR_6_quantsd
                          0.535
##
       OCIR_7_quantsd
                          0.518
##
       OCIR_8_quantsd
                          0.668
##
       OCIR_9_quantsd
                          0.522
##
                          0.532
       OCIR_1_quantsd
##
       OCIR_10_quntsd
                          0.721
##
       OCIR_11_quntsd
                          0.694
##
       OCIR_12_quntsd
                          0.590
##
       OCIR_13_quntsd
                          0.470
##
       SZ_1_quantised
                          0.387
##
       SZ_10_quantisd
                          0.363
##
       SZ_11_quantisd
                          0.253
```

```
SZ_12_quantisd
                           0.249
##
##
       SZ_13_quantisd
                           0.306
##
                           0.265
       SZ_14_quantisd
##
       SZ_15_quantisd
                           0.310
##
       SZ_16_quantisd
                           0.191
##
       SZ_17_quantisd
                          0.266
##
       SZ_18_quantisd
                           0.357
##
       SZ_19_quantisd
                          0.261
##
       SZ_2_quantised
                           0.345
##
       SZ_20_quantisd
                          0.398
##
       SZ_21_quantisd
                           0.298
##
                           0.279
       SZ_22_quantisd
##
       SZ_23_quantisd
                           0.304
##
       SZ_24_quantisd
                           0.293
##
       SZ_25_quantisd
                           0.247
##
       SZ_26_quantisd
                          0.000
##
       SZ_27_quantisd
                          0.003
##
                           0.000
       SZ_28_quantisd
##
       SZ_29_quantisd
                           0.144
##
       SZ_3_quantised
                           0.304
##
       SZ_30_quantisd
                           0.007
##
       SZ_31_quantisd
                           0.002
##
       SZ_32_quantisd
                          0.194
##
       SZ_33_quantisd
                           0.089
##
       SZ_34_quantisd
                          0.001
##
       SZ_35_quantisd
                           0.334
##
       SZ_36_quantisd
                          0.254
##
       SZ_37_quantisd
                           0.013
##
       SZ_38_quantisd
                           0.362
##
       SZ_39_quantisd
                           0.000
##
       SZ_4_quantised
                          0.306
##
       SZ_40_quantisd
                          0.197
##
       SZ_41_quantisd
                           0.275
##
       SZ_42_quantisd
                           0.351
##
       SZ 5 quantised
                           0.346
##
       SZ_6_quantised
                           0.372
##
       SZ_7_quantised
                          0.285
##
       SZ_8_quantised
                          0.318
##
       SZ_9_quantised
                          0.322
##
       STAI2_Clm_qnts
                          0.312
##
       STAI2_Cntnt_qn
                           0.265
##
       STAI2_Dscns_qn
                          0.215
##
       STAI2_Dffclts_
                           0.526
##
       STAI2_DsppntS_
                          0.433
##
       STAI2_Flr_qnts
                           0.568
##
       STAI2_Hppy_qnt
                           0.292
##
       STAI2_HppyOth_
                           0.329
##
       STAI2_Indqt_qn
                           0.548
##
       STAI2_Nrvs_qnt
                           0.534
##
       STAI2_Plsnt_qn
                           0.307
##
       STAI2_Rstd_qnt
                           0.155
##
       STAI2_StsfdSl_
                           0.305
##
       STAI2_Scr_qnts
                           0.299
##
       STAI2_SlfCnfd_
                           0.371
```

```
##
       STAI2_Stdy_qnt
                           0.380
##
       STAI2_Tnsn_qnt
                           0.486
##
       STAI2_Thghts_q
                           0.388
##
       STAI2_UnmprtT_
                           0.435
##
       STAI2_Wrry_qnt
                           0.442
##
       driftrate
                           0.058
```

```
Fitpmidvars <-data.frame(fitMeasures(FitQuaireSEMpmid, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea.c
names(Fitpmidvars) <- "p(mid as high)"
Fitdriftvars<- data.frame(fitMeasures(FitQuaireSEMdrift, c("bic", "aic", "rmsea", "rmsea.ci.lower", "rmsea
names(Fitdriftvars) <- "Drift Rate"
SEMfits <- cbind.data.frame(Fitpmidvars, Fitdriftvars)
rownames(SEMfits) <- c("BIC", "AIC", "RMSEA", "RMSEA CI-", "RMSEA CI+")
kable(t(SEMfits), digits = 3)</pre>
```

|               | BIC   | AIC    | RMSEA    | RMSEA CI- | RMSEA CI+ |      |
|---------------|-------|--------|----------|-----------|-----------|------|
| p(mid as high | ) 199 | 9600.0 | 198419.6 | 0.052     | 0.051     | 0.05 |
| Drift Rate    | 193   | 3931.5 | 192751.1 | 0.052     | 0.051     | 0.05 |

We replicate the basic linear regression, demonstrating the BDI depression symptoms and no other scales significantly influence task performance.

# 3: 'Replication' of prior group effects

Finally, as a sanity check, we should be able to 'replicate' the case control study in our original paper by selecting 'symptomatic' and 'healthy control' individuals from this large cross-sectional sample. We attempted to do this in two ways. I) A very simple BDI symptom scale cut-off (theory-based grouping) and then II) a more data-driven way using latent mixture modelling to identifying latent classes.

# I) Symptom cut-offs (theory-based)

We defined control individuals as those with BDI less than 3 and symptomatic as those with BDI greater than 28 (this cut off is based on Beck's original cut off for severe depression of 29)

# 

```
## [1] "The number of patients is N = 170"
## [1] "The number of controls is \mathbb{N} = 198"
##
##
    Two Sample t-test
##
## data: Pmid by group
## t = 2.766, df = 349, p-value = 0.005976
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   0.01762747 0.10438403
## sample estimates:
##
        mean in group HC mean in group Symptom
##
               0.6087543
                                      0.5477486
## [1] "The effect size of the Human group difference on p(mid as high) is d= 0.3"
##
    Two Sample t-test
##
## data: driftrate by group
## t = 2.78, df = 349, p-value = 0.005731
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## 0.001015933 0.005930341

## sample estimates:

## mean in group HC mean in group Symptom

## 0.006236747 0.002763610
```

## [1] "The effect size of the Human group difference on driftrate is d= 0.3"

### II) Latent mixture modelling (data-driven)

In a more data driven approach we ran an exploratory latent class analysis based on the symptoms/traits (BDI, Age, IQ) that are predict task performance in the regression. Notably we do not include task performance in our class analysis so that classes are defined orthogonal to task performance. Optimal class breakdown (N=5 classes) is plotted below, but ordered by those with the higest postive bias based on the symptom defined latent classes. We then defined the 'symptomatic group' as those with the lowest p(mid)as high score, whilst the control group is those with the highest p(mid as high) score. The distributions of the other latent classes are plotted in gray.

| ##<br>## | fitting           |   |     |
|----------|-------------------|---|-----|
|          | <br>              | 1 | 0%  |
|          | <br> =<br>        | 1 | 1%  |
|          | <br> =<br>        | 1 | 2%  |
|          | <br> ==<br>       | 1 | 2%  |
|          | <br> ==<br>       | I | 3%  |
|          | <br> ===<br>      | I | 4%  |
|          | <br> ===<br>      | 1 | 5%  |
|          | <br> ====<br>     | I | 6%  |
|          | <br> =====<br>    | I | 7%  |
|          | <br> =====<br>    | I | 8%  |
|          | <br> =====<br>    | I | 9%  |
|          | <br> ======<br>   | I | 10% |
|          | <br> ======<br>   | I | 11% |
|          | <br> =======<br>  | I | 12% |
|          | <br> =======<br>  | I | 13% |
|          | <br> ========<br> | I | 13% |
|          | <br> =======      | 1 | 14% |

| <br> ========<br>                        | 1 | 15% |
|------------------------------------------|---|-----|
| <br> =======<br>                         | I | 16% |
| <br> ========<br>                        | I | 17% |
| <br> =========<br>                       | 1 | 18% |
| <br> =========<br>                       | 1 | 19% |
| <br> ===========<br>                     | 1 | 20% |
| <br> =============<br>                   | 1 | 21% |
| <br> =============<br>                   | 1 | 22% |
| <br> =================================== | 1 | 23% |
| <br> =================================== | 1 | 24% |
| <br> =================================== | 1 | 24% |
| <br> =================================== | 1 | 25% |
| <br> =================================== | I | 26% |
| <br> =================================== | 1 | 27% |
| <br> =================================== | 1 | 28% |
| <br> =================================== | 1 | 29% |
| <br> =================================== | 1 | 30% |
| <br> =================================== | 1 | 31% |
| <br> =================================== | 1 | 32% |
| <br> =================================== | 1 | 33% |
| <br> =================================== | 1 | 34% |
| <br> =================================== | 1 | 35% |
| <br> =================================== | 1 | 36% |
| <br> =================================== | 1 | 37% |
| <br> =================================== | I | 38% |
| <br> =================================== | 1 | 39% |
| <br> =================================== | 1 | 39% |
|                                          |   |     |

| <br> =================================== | I | 40% |
|------------------------------------------|---|-----|
| <br> =================================== | I | 41% |
| <br> =================================== | 1 | 42% |
| <br> =================================== | 1 | 43% |
| <br> =================================== | I | 44% |
| <br> =================================== | 1 | 45% |
| =======================================  | I | 46% |
| <br>  <del>======</del><br>              | 1 | 47% |
| <br>  <del>======</del>                  | I | 48% |
|                                          | 1 | 49% |
| <br>  <del>======</del>                  | I | 50% |
| =======================================  | I | 50% |
| =======================================  | I | 51% |
|                                          | 1 | 52% |
|                                          | 1 | 53% |
| <br>  <del></del>                        | 1 | 54% |
|                                          | 1 | 55% |
|                                          | 1 | 56% |
|                                          | 1 | 57% |
|                                          | 1 | 58% |
|                                          | 1 | 59% |
|                                          | 1 | 60% |
|                                          | 1 | 61% |
| <br> ======== <br>                       | I | 61% |
|                                          | 1 | 62% |
| <br> ======== <br>                       | I | 63% |
|                                          | 1 | 64% |

| <br> ===================================   | I | 65% |
|--------------------------------------------|---|-----|
| <br> ===================================   | 1 | 66% |
| <br> ===================================   | 1 | 67% |
| <br> ===================================   | I | 68% |
| ı<br> ==================================== | 1 | 69% |
| ı<br> ==================================== | 1 | 70% |
| '<br> ==================================== | 1 | 71% |
| '<br> ==================================== | 1 | 72% |
| ı<br> ==================================== | 1 | 73% |
| '<br> ==================================== | I | 74% |
| '<br> ==================================== | 1 | 75% |
| '<br> ==================================== | 1 | 76% |
| ı<br> ==================================== | 1 | 76% |
| '<br> ==================================== | 1 | 77% |
| '<br> ==================================== | 1 | 78% |
| '<br> ==================================== | 1 | 79% |
| '<br> ==================================== | 1 | 80% |
| ı<br> ==================================== | 1 | 81% |
| '<br> ==================================== | I | 82% |
| '<br> ==================================== | 1 | 83% |
| '<br> ==================================== | 1 | 84% |
| <br> ===================================   | I | 85% |
| '<br> ==================================== | I | 86% |
| '<br> ==================================== | 1 | 87% |
| ı<br> ==================================== | 1 | 87% |
| <br> ===================================   | 1 | 88% |
| <br>                                       | ı | 89% |









## -----

```
## Gaussian finite mixture model fitted by EM algorithm
## -----
##
## Mclust VVI (diagonal, varying volume and shape) model with 4 components:
##
##
  log-likelihood n df
                               BIC
         -9629.49 994 27 -19445.33 -19841.74
##
##
## Clustering table:
##
   1 2 3 4
## 219 233 266 276
##
##
   Two Sample t-test
##
## data: Pmid by group
## t = -5.8731, df = 497, p-value = 7.836e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.13813301 -0.06887991
## sample estimates:
##
       mean in group HC mean in group Symptom
##
              0.5310236
                                    0.6345301
## [1] "The effect size of the Human group difference on driftrate is d= 0.53"
##
##
   Two Sample t-test
##
## data: BDI by group
## t = 32.016, df = 497, p-value < 2.2e-16
\mbox{\tt \#\#} alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 19.31422 21.83977
## sample estimates:
##
       mean in group HC mean in group Symptom
              22.259398
                                     1.682403
## [1] "The effect size of the Human group difference is d= 2.87"
##
##
   Two Sample t-test
##
## data: Age by group
## t = -10.506, df = 497, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.246439 -3.593246
## sample estimates:
##
       mean in group HC mean in group Symptom
               28.20677
##
                                     32.62661
```

##

```
## Two Sample t-test
##
## data: Ravens by group
## t = -20.409, df = 497, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.137983 -3.411244
## sample estimates:
## mean in group HC mean in group Symptom
## 1.560150 5.334764</pre>
```

This approach identified 5 latent classes. Confirming our initial study, the group with the highest mean depression scores are those with the greatest negative bias, while those with the highest bias have very low depression scores. Interestingly, the 'symptomatic' latent class is also particularly low IQ relative to the other classes. These results are (highly!) exploratory and should be approached with caution, but they perhaps suggest that IQ can protect against negative bias in depressed individuals (which has been speculated in therapy research before). They also provide predictions about the distributions of relevant variables within those who may be currently or at risk of developping clinically-relevant behavioural symptoms.

#### Supplementary Analysis

#### **Exploratory Factor Analysis of questionnaires**

The simple regression above, however, collapses across the individual responses to the different items on the questionnaires and just uses summary scores. However, it may be that there is a simpler underlying structure to the data. For instance BDI and STAI are often highly correlated - so may actually be measuring the same latent construct. In this next section (inspired by Gillan et al 2016) we first run an exploratory factor analysis on the individual items from the questionnaires in an attempt to reduce the amount of latent variables.

```
###EFA
#Determine facrors using Cattell-Nelson-Gorsuch CNG Indices (claire's approach)
determinefactors <- nCng(combineditemdata[44:143], cor=TRUE, model="factors")
#Do an EFA using N factors from CNG
efaQaires <- fa(combineditemdata[44:143], nfact = determinefactors$nFactors, rotate = "geominQ", fm = "nate = "geominQ", fm = "geominQ
efaQaires.loadmat <- zapsmall(matrix(round(efaQaires$loadings, 2), nrow = 100, ncol = 3))
rownames(efaQaires.loadmat) <- names(combineditemdata[44:143])</pre>
#heatmap
efaQairesdataf <- data.frame(efaQaires.loadmat)</pre>
row.names(efaQairesdataf) <- gsub("_quantised", "", row.names(efaQairesdataf))</pre>
names(efaQairesdataf)<-c("AnxDepression","ObsessiveCompulsive","Schizotypy")</pre>
annotation <- substr(row.names(efaQairesdataf), start=1, stop=3)</pre>
annotationdf <- data.frame(Questionnaire = annotation)</pre>
levels(annotationdf$Questionnaire) <- c('BDI', 'OCIR', 'STAI', 'SZ')</pre>
rownames(annotationdf) <- rownames(efaQairesdataf)</pre>
countqs <- summary(annotationdf$Questionnaire)</pre>
qbreaks <- c(countqs[1], (countqs[1]+countqs[2]), (countqs[1]+countqs[2]+countqs[4]))
```

ancol = list(Questionnaire =c(BDI ="lavenderblush4", OCIR ="darkolivegreen3", STAI ="plum3", SZ = "golden



We Identify 3 latent factors using Cattell-Nelson-Gorsuch Indices (as in Gillan et al.). One factor we name "AnxDepression" as it maps closely onto the BDI and STAI, "ObsessiveCompulsive" which is a mix of the OCIR and STAI (and not Schizotypy), and "Schizotypy" which loads positively almost exclusively on the Schizotypy questionnaire.

#### Exploratory Structural Equation Model using latent factors

We can now use these factor loadings in an Exploratory Structural Equation Model (ESEM) and run the same regression as above but instead of feeding in the summary questionnaire scores, we can create a latent variable that represents each factor. Of note we use the 'Robust maximum likelihood' (MLR) estimator as it is robust to non-normality and the individual items for the questionnaires are not continuous.

```
##ESEM which mimics regression - this takes the loadings from the EFA and uses them to weight the relat
terms <- vector()
for (i in 1:3) {
  terms[i] <-
    paste0("F",i,"=~ ", paste0(c(efaQaires.loadmat[,i]), "*", names(efaQaires.loadmat[,1]), collapse =
}
efaQaires.esem <- paste(terms, collapse = "\n")</pre>
##adding the regression and covariances to match the original regression analysis
terms[4] <- "propmedhigh ~ spreadsheet + Ravens + Age + GenderMF + F1 + F2 + F3"
##adding residual correlations
terms[5] <- "spreadsheet ~~ Ravens + Age + GenderMF + F1 + F2 + F3"
terms[6] <- "Ravens ~~ Age + GenderMF + F1 + F2 + F3"
terms[7] <- "Age ~~ GenderMF + F1 + F2 + F3"
terms[8] <- "GenderMF ~~ F1 + F2 + F3"
terms[9] <- "F1 ~~ F2 + F3"
terms[10] <- "F2 ~~ F3"
semFactorsMatch <- paste(terms, collapse = "\n")</pre>
#Fit the model (this takes a while!)
fititem.factors <- sem(semFactorsMatch, data=combineditemdata, meanstructure=TRUE, estimator = "MLR")
#This plots loads of fit indices, but we are mostly intersted in the regression
summary(fititem.factors, standardized=TRUE, rsquare=F, fit.measures=F)
## lavaan 0.6-3 ended normally after 267 iterations
##
##
     Optimization method
                                                    NLMINB
     Number of free parameters
                                                       241
##
##
##
                                                      Used
                                                                  Total
##
     Number of observations
                                                       990
                                                                   1066
##
##
     Estimator
                                                        ML
                                                                Robust
                                                              17207.926
     Model Fit Test Statistic
                                                 19555.630
##
##
     Degrees of freedom
                                                      5429
                                                                   5429
##
     P-value (Chi-square)
                                                     0.000
                                                                  0.000
##
                                                                  1.136
     Scaling correction factor
##
       for the Yuan-Bentler correction (Mplus variant)
##
## Parameter Estimates:
##
##
     Information
                                                  Observed
##
     Observed information based on
                                                   Hessian
     Standard Errors
                                        Robust.huber.white
##
```

##

| ##       | Latent Variables:                |          |         |         |         |                |                |
|----------|----------------------------------|----------|---------|---------|---------|----------------|----------------|
| ##       |                                  | Estimate | Std.Err | z-value | P(> z ) | Std.lv         | Std.all        |
| ##       | F1 =~                            |          |         |         |         |                |                |
| ##       | BDI_Attrctv_qn                   | 0.620    |         |         |         | 0.540          | 0.595          |
| ##       | BDI_Blam_qntsd                   | 0.680    |         |         |         | 0.592          | 0.677          |
| ##       | BDI_Cry_quntsd                   | 0.470    |         |         |         | 0.409          | 0.465          |
| ##       | BDI_Dcsns_qnts                   | 0.590    |         |         |         | 0.513          | 0.587          |
| ##       | BDI_Dsppntmnt_                   | 0.690    |         |         |         | 0.600          | 0.682          |
| ##       | BDI_Falr_qntsd                   |          |         |         |         | 0.618          | 0.684          |
| ##       | BDI_Futr_qntsd                   |          |         |         |         | 0.583          | 0.658          |
| ##       | BDI_Glty_qntsd                   |          |         |         |         | 0.426          | 0.481          |
| ##       | BDI_Hlth_qntsd                   |          |         |         |         | 0.374          | 0.463          |
| ##       | BDI_Intrs_I_P_                   | 0.590    |         |         |         | 0.513          | 0.584          |
| ##       | BDI_Irrttd_qnt                   | 0.600    |         |         |         | 0.522          | 0.588          |
| ##       | BDI_Libd_qntsd                   |          |         |         |         | 0.470          | 0.540          |
| ##       | BDI_Pnshd_qnts                   | 0.500    |         |         |         | 0.435          | 0.467          |
| ##       | BDI_Sad_quntsd                   |          |         |         |         | 0.540          | 0.647          |
| ##       | BDI_Stsfctn_qn                   |          |         |         |         | 0.557          | 0.606          |
| ##       | BDI_Slep_qntsd                   |          |         |         |         | 0.418          | 0.469          |
| ##       | BDI_Tird_qntsd                   |          |         |         |         | 0.496          | 0.586          |
| ##       | BDI_wght_qntsd                   |          |         |         |         | 0.191          | 0.253          |
| ##       | BDI_Work_qntsd                   |          |         |         |         | 0.566          | 0.645          |
| ##       | OCIR_1_quantsd                   |          |         |         |         | 0.061          | 0.053          |
| ##       | OCIR_10_quntsd                   |          |         |         |         | 0.000          | 0.000          |
| ##       | OCIR_11_quntsd                   |          |         |         |         | 0.017          | 0.015          |
| ##<br>## | OCIR_12_quntsd                   |          |         |         |         | 0.261<br>0.061 | 0.231<br>0.054 |
| ##       | OCIR_13_quntsd                   |          |         |         |         | 0.001          | 0.004          |
| ##       | OCIR_14_quntsd                   |          |         |         |         | -0.035         | -0.029         |
| ##       | OCIR_15_quntsd                   |          |         |         |         | 0.044          | 0.038          |
| ##       | OCIR_16_quntsd<br>OCIR_17_quntsd |          |         |         |         | -0.009         | -0.008         |
| ##       | OCIR_18_quntsd                   |          |         |         |         | 0.183          | 0.162          |
| ##       | OCIR_2_quantsd                   |          |         |         |         | 0.103          | 0.102          |
| ##       | OCIR_3_quantsd                   |          |         |         |         | 0.052          | 0.045          |
| ##       | OCIR_4_quantsd                   |          |         |         |         | 0.002          | 0.015          |
| ##       | OCIR_5_quantsd                   |          |         |         |         | 0.052          | 0.045          |
| ##       | OCIR_6_quantsd                   | 0.350    |         |         |         | 0.305          | 0.273          |
| ##       | OCIR_7_quantsd                   | 0.110    |         |         |         | 0.096          | 0.087          |
| ##       | OCIR_8_quantsd                   | 0.040    |         |         |         | 0.035          | 0.029          |
| ##       | OCIR_9_quantsd                   | 0.110    |         |         |         | 0.096          | 0.083          |
| ##       | SZ_1_quantised                   | 0.000    |         |         |         | 0.000          | 0.000          |
| ##       | SZ_10_quantisd                   | 0.020    |         |         |         | 0.017          | 0.035          |
| ##       | SZ_11_quantisd                   | -0.140   |         |         |         | -0.122         | -0.249         |
| ##       | SZ_12_quantisd                   | 0.050    |         |         |         | 0.044          | 0.090          |
| ##       | SZ_13_quantisd                   | -0.130   |         |         |         | -0.113         | -0.234         |
| ##       | SZ_14_quantisd                   | -0.340   |         |         |         | -0.296         | -0.556         |
| ##       | SZ_15_quantisd                   | -0.280   |         |         |         | -0.244         | -0.463         |
| ##       | SZ_16_quantisd                   | -0.220   |         |         |         | -0.191         | -0.374         |
| ##       | SZ_17_quantisd                   | -0.230   |         |         |         | -0.200         | -0.393         |
| ##       | SZ_18_quantisd                   | -0.290   |         |         |         | -0.252         | -0.472         |
| ##       | SZ_19_quantisd                   | -0.190   |         |         |         | -0.165         | -0.332         |
| ##       | SZ_2_quantised                   | 0.040    |         |         |         | 0.035          | 0.065          |
| ##       | SZ_20_quantisd                   | -0.070   |         |         |         | -0.061         | -0.130         |
| ##       | $SZ_21_quantisd$                 | -0.190   |         |         |         | -0.165         | -0.335         |
|          |                                  |          |         |         |         |                |                |

| ## | SZ_22_quantisd              | -0.370 | -0.322 | -0.583 |
|----|-----------------------------|--------|--------|--------|
| ## | $SZ_23_quantisd$            | -0.160 | -0.139 | -0.283 |
| ## | $SZ_24_quantisd$            | -0.160 | -0.139 | -0.254 |
| ## | SZ_25_quantisd              | -0.090 | -0.078 | -0.156 |
| ## | SZ_26_quantisd              | 0.210  | 0.183  | 0.336  |
| ## | SZ_27_quantisd              | 0.220  | 0.191  | 0.359  |
| ## | SZ_28_quantisd              | 0.490  | 0.426  | 0.727  |
| ## | SZ_29_quantisd              | -0.070 | -0.061 | -0.124 |
| ## | SZ_3_quantised              | 0.080  | 0.070  | 0.137  |
| ## | SZ_30_quantisd              | 0.390  | 0.339  | 0.600  |
| ## | SZ_31_quantisd              | 0.270  | 0.235  | 0.463  |
| ## | SZ_32_quantisd              | -0.150 | -0.131 | -0.264 |
| ## | SZ_33_quantisd              | -0.130 | -0.113 | -0.232 |
| ## | $SZ_34_quantisd$            | 0.170  | 0.148  | 0.274  |
| ## | SZ_35_quantisd              | 0.000  | 0.000  | 0.000  |
| ## | SZ_36_quantisd              | -0.150 | -0.131 | -0.266 |
| ## | SZ_37_quantisd              | 0.380  | 0.331  | 0.524  |
| ## | SZ_38_quantisd              | -0.090 | -0.078 | -0.152 |
| ## | SZ_39_quantisd              | 0.140  | 0.122  | 0.202  |
| ## | $SZ_4_quantised$            | 0.020  | 0.017  | 0.037  |
| ## | $SZ_40_quantisd$            | -0.160 | -0.139 | -0.280 |
| ## | $SZ_41_quantisd$            | -0.160 | -0.139 | -0.283 |
| ## | $SZ_42_quantisd$            | -0.100 | -0.087 | -0.170 |
| ## | SZ_5_quantised              | 0.140  | 0.122  | 0.208  |
| ## | $SZ_6_quantised$            | -0.020 | -0.017 | -0.033 |
| ## | SZ_7_quantised              | 0.020  | 0.017  | 0.036  |
| ## | SZ_8_quantised              | 0.130  | 0.113  | 0.186  |
| ## | SZ_9_quantised              | -0.070 | -0.061 | -0.123 |
| ## | STAI2_Clm_qnts              | -0.770 | -0.670 | -0.769 |
| ## | STAI2_Cntnt_qn              | -0.740 | -0.644 | -0.737 |
| ## | STAI2_Dscns_qn              | -0.640 | -0.557 | -0.643 |
| ## | STAI2_Dffclts_              | 0.540  | 0.470  | 0.508  |
| ## | STAI2_DsppntS_              | 0.440  | 0.383  | 0.420  |
| ## | STAI2_Flr_qnts              | 0.640  | 0.557  | 0.605  |
| ## | STAI2_Hppy_qnt              | -0.810 | -0.705 | -0.807 |
| ## | $\mathtt{STAI2\_HppyOth\_}$ | 0.420  | 0.365  | 0.376  |
| ## | $STAI2\_Indqt\_qn$          | 0.580  | 0.505  | 0.542  |
| ## | STAI2_Nrvs_qnt              | 0.540  | 0.470  | 0.519  |
| ## | $STAI2_Plsnt_qn$            | -0.820 | -0.714 | -0.847 |
| ## | ${\tt STAI2\_Rstd\_qnt}$    | -0.610 | -0.531 | -0.607 |
| ## | STAI2_StsfdSl_              | -0.800 | -0.696 | -0.789 |
| ## | STAI2_Scr_qnts              | -0.770 | -0.670 | -0.756 |
| ## | STAI2_SlfCnfd_              | 0.440  | 0.383  | 0.387  |
| ## | $STAI2\_Stdy\_qnt$          | -0.790 | -0.687 | -0.800 |
| ## | $STAI2\_Tnsn\_qnt$          | 0.450  | 0.392  | 0.422  |
| ## | STAI2_Thghts_q              | 0.380  | 0.331  | 0.366  |
| ## | STAI2_UnmprtT_              | 0.400  | 0.348  | 0.384  |
| ## | STAI2_Wrry_qnt              | 0.450  | 0.392  | 0.417  |
| ## | ${\tt STAI\_Anxs\_qnts}$    | 0.450  | 0.392  | 0.407  |
| ## | F2 =~                       |        |        |        |
| ## | BDI_Attrctv_qn              | -0.070 | -0.067 | -0.074 |
| ## | BDI_Blam_qntsd              | 0.070  | 0.067  | 0.076  |
| ## | BDI_Cry_quntsd              | 0.240  | 0.229  | 0.260  |
| ## | BDI_Dcsns_qnts              | 0.140  | 0.134  | 0.153  |
|    |                             |        |        |        |

```
##
       BDI_Dsppntmnt_
                           0.060
                                                                  0.057
                                                                            0.065
##
                           0.060
                                                                  0.057
                                                                            0.063
       BDI_Falr_qntsd
##
       BDI_Futr_qntsd
                           0.090
                                                                  0.086
                                                                            0.097
##
       BDI_Glty_qntsd
                           0.300
                                                                  0.287
                                                                            0.323
##
       BDI_Hlth_qntsd
                           0.170
                                                                  0.162
                                                                            0.201
##
                           0.070
                                                                           0.076
       BDI_Intrs_I_P_
                                                                  0.067
##
       BDI_Irrttd_qnt
                           0.130
                                                                  0.124
                                                                            0.140
##
       BDI_Libd_qntsd
                          -0.030
                                                                 -0.029
                                                                          -0.033
##
       BDI_Pnshd_qnts
                           0.240
                                                                  0.229
                                                                            0.246
##
       BDI_Sad_quntsd
                           0.140
                                                                  0.134
                                                                            0.160
##
       BDI_Stsfctn_qn
                           0.070
                                                                  0.067
                                                                            0.073
##
                           0.060
                                                                  0.057
                                                                            0.064
       BDI_Slep_qntsd
##
       BDI_Tird_qntsd
                           0.010
                                                                  0.010
                                                                            0.011
##
       BDI_wght_qntsd
                                                                  0.277
                                                                            0.367
                           0.290
##
                           0.080
                                                                  0.076
                                                                            0.087
       BDI_Work_qntsd
##
       OCIR_1_quantsd
                           0.710
                                                                  0.678
                                                                            0.593
##
       OCIR_10_quntsd
                           0.860
                                                                  0.821
                                                                            0.740
##
       OCIR_11_quntsd
                           0.840
                                                                  0.802
                                                                            0.699
##
                           0.620
                                                                  0.592
                                                                            0.525
       OCIR_12_quntsd
##
       OCIR_13_quntsd
                           0.580
                                                                  0.554
                                                                            0.487
##
       OCIR_14_quntsd
                           0.830
                                                                  0.793
                                                                            0.677
##
                           0.740
                                                                  0.707
                                                                            0.592
       OCIR_15_quntsd
##
       OCIR_16_quntsd
                           0.790
                                                                  0.755
                                                                            0.654
##
                           0.860
                                                                            0.713
       OCIR_17_quntsd
                                                                  0.821
##
       OCIR_18_quntsd
                           0.710
                                                                  0.678
                                                                            0.601
##
       OCIR_2_quantsd
                           0.640
                                                                  0.611
                                                                            0.516
##
                           0.650
                                                                  0.621
                                                                            0.540
       OCIR_3_quantsd
##
       OCIR_4_quantsd
                           0.830
                                                                  0.793
                                                                            0.692
##
                           0.770
                                                                            0.635
       OCIR_5_quantsd
                                                                  0.735
##
       OCIR_6_quantsd
                           0.550
                                                                  0.525
                                                                            0.471
##
       OCIR_7_quantsd
                           0.610
                                                                  0.583
                                                                            0.531
##
       OCIR_8_quantsd
                           0.800
                                                                  0.764
                                                                            0.645
##
       OCIR_9_quantsd
                           0.630
                                                                  0.602
                                                                            0.522
##
                          -0.390
       SZ_1_quantised
                                                                 -0.373
                                                                          -0.668
       SZ_10_quantisd
##
                          -0.350
                                                                 -0.334
                                                                          -0.667
##
                          -0.040
                                                                 -0.038
                                                                          -0.078
       SZ_11_quantisd
##
    [ reached getOption("max.print") -- omitted 161 rows ]
##
## Regressions:
##
                                  Std.Err z-value P(>|z|)
                                                                 Std.lv Std.all
                       Estimate
##
     propmedhigh ~
##
       spreadsheet
                           0.006
                                    0.002
                                              2.767
                                                        0.006
                                                                  0.006
                                                                           0.086
##
                           0.010
                                    0.002
                                                        0.000
                                                                  0.010
       Ravens
                                              4.339
                                                                           0.145
##
                                    0.001
       Age
                          -0.003
                                             -3.900
                                                        0.000
                                                                -0.003
                                                                          -0.124
                                             -0.388
##
                          -0.005
                                    0.013
                                                                 -0.005
       GenderMF
                                                        0.698
                                                                          -0.012
##
                                    0.009
       F1
                          -0.023
                                             -2.624
                                                        0.009
                                                                 -0.020
                                                                          -0.097
       F2
                                    0.009
##
                          -0.009
                                             -1.011
                                                        0.312
                                                                 -0.008
                                                                          -0.040
##
       F3
                           0.006
                                    0.018
                                                                  0.002
                                                                           0.011
                                              0.309
                                                        0.757
##
##
   Covariances:
##
                                  Std.Err z-value
                       Estimate
                                                      P(>|z|)
                                                                Std.lv
                                                                         Std.all
##
     spreadsheet ~~
##
       Ravens
                          -0.395
                                    0.280
                                             -1.408
                                                        0.159
                                                                 -0.395
                                                                          -0.045
##
       Age
                           1.278
                                    0.974
                                              1.312
                                                        0.190
                                                                  1.278
                                                                            0.042
```

| ## | GenderMF                     | 0.059    | 0.047   | 1.264   | 0.206   | 0.059  | 0.040   |
|----|------------------------------|----------|---------|---------|---------|--------|---------|
| ## | F1 ~~                        | 0.040    | 0 004   | 0 110   | 0.000   | 0 014  | 0 005   |
| ## | spreadsheet                  | -0.012   | 0.084   | -0.143  | 0.886   | -0.014 | -0.005  |
| ## | F2 ~~                        |          |         |         |         |        |         |
| ## | spreadsheet                  | 0.090    | 0.093   | 0.968   | 0.333   | 0.094  | 0.031   |
| ## | F3 ~~                        |          |         |         |         |        |         |
| ## | spreadsheet                  | -0.021   | 0.043   | -0.497  | 0.619   | -0.052 | -0.017  |
| ## | Ravens ~~                    |          |         |         |         |        |         |
| ## | Age                          | 2.696    | 0.986   | 2.734   | 0.006   | 2.696  | 0.090   |
| ## | GenderMF                     | -0.070   | 0.046   | -1.528  | 0.126   | -0.070 | -0.048  |
| ## | F1 ~~                        |          |         |         |         |        |         |
| ## | Ravens                       | -0.410   | 0.080   | -5.142  | 0.000   | -0.471 | -0.160  |
| ## | F2 ~~                        |          |         |         |         |        |         |
| ## | Ravens                       | -0.983   | 0.086   | -11.432 | 0.000   | -1.029 | -0.349  |
| ## | F3 ~~                        |          |         |         |         |        |         |
| ## | Ravens                       | -0.073   | 0.043   | -1.702  | 0.089   | -0.176 | -0.060  |
| ## | Age ~~                       |          |         |         |         |        |         |
| ## | GenderMF                     | -0.061   | 0.160   | -0.379  | 0.705   | -0.061 | -0.012  |
| ## | F1 ~~                        |          |         |         |         |        |         |
| ## | Age                          | -2.154   | 0.310   | -6.941  | 0.000   | -2.476 | -0.242  |
| ## | F2 ~~                        |          |         |         |         |        |         |
| ## | Age                          | -3.192   | 0.281   | -11.367 | 0.000   | -3.341 | -0.327  |
| ## | F3 ~~                        |          |         |         |         |        |         |
| ## | Age                          | 0.024    | 0.131   | 0.184   | 0.854   | 0.058  | 0.006   |
| ## | F1 ~~                        |          |         |         |         |        |         |
| ## | GenderMF                     | 0.014    | 0.014   | 0.992   | 0.321   | 0.016  | 0.032   |
| ## | F2 ~~                        |          |         |         |         |        |         |
| ## | GenderMF                     | 0.040    | 0.015   | 2.645   | 0.008   | 0.041  | 0.084   |
| ## | F3 ~~                        |          |         |         |         |        |         |
| ## | GenderMF                     | 0.004    | 0.007   | 0.627   | 0.531   | 0.011  | 0.022   |
| ## | F1 ~~                        |          |         |         |         |        |         |
| ## | F2                           | 0.386    | 0.022   | 17.289  | 0.000   | 0.465  | 0.465   |
| ## | F3                           | -0.070   | 0.012   | -6.097  | 0.000   | -0.196 | -0.196  |
| ## | F2 ~~                        |          |         |         |         |        |         |
| ## | F3                           | -0.007   | 0.016   | -0.474  | 0.635   | -0.019 | -0.019  |
| ## |                              |          |         |         |         |        |         |
| ## | Intercepts:                  |          |         |         |         |        |         |
| ## |                              | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | $.\mathtt{BDI\_Attrctv\_qn}$ | 1.851    | 0.030   | 61.691  | 0.000   | 1.851  | 2.042   |
| ## | .BDI_Blam_qntsd              | 1.880    | 0.028   | 67.386  | 0.000   | 1.880  | 2.149   |
| ## | .BDI_Cry_quntsd              | 1.608    | 0.028   | 57.827  | 0.000   | 1.608  | 1.827   |
| ## | .BDI_Dcsns_qnts              | 1.730    | 0.028   | 61.375  | 0.000   | 1.730  | 1.979   |
| ## | .BDI_Dsppntmnt_              | 1.838    | 0.028   | 65.497  | 0.000   | 1.838  | 2.087   |
| ## | .BDI_Falr_qntsd              | 1.838    | 0.029   | 63.321  | 0.000   | 1.838  | 2.034   |
| ## | .BDI_Futr_qntsd              | 1.865    | 0.028   | 65.850  | 0.000   | 1.865  | 2.103   |
| ## | .BDI_Glty_qntsd              | 1.649    | 0.027   | 61.055  | 0.000   | 1.649  | 1.862   |
| ## | .BDI_Hlth_qntsd              | 1.691    | 0.025   | 68.835  | 0.000   | 1.691  | 2.094   |
| ## | .BDI_Intrs_I_P_              | 1.868    | 0.029   | 64.901  | 0.000   | 1.868  | 2.125   |
| ## | .BDI_Irrttd_qnt              | 1.867    | 0.028   | 66.237  | 0.000   | 1.867  | 2.103   |
| ## | .BDI_Libd_qntsd              | 1.694    | 0.028   | 60.268  | 0.000   | 1.694  | 1.946   |
| ## | .BDI_Pnshd_qnts              | 1.660    | 0.030   | 56.017  | 0.000   | 1.660  | 1.780   |
| ## | .BDI_Sad_quntsd              | 1.682    | 0.025   | 68.386  | 0.000   | 1.682  | 2.017   |
| ## | .BDI_Stsfctn_qn              | 1.836    | 0.030   | 62.084  | 0.000   | 1.836  | 1.998   |
| ## | .BDI_Slep_qntsd              | 1.836    | 0.029   | 64.377  | 0.000   | 1.836  | 2.060   |
|    | rq                           |          |         |         | 2.300   | 500    |         |

| ## | .BDI_Tird_qntsd                                | 1.914 | 0.027 | 70.442  | 0.000 | 1.914 | 2.263 |
|----|------------------------------------------------|-------|-------|---------|-------|-------|-------|
| ## | .BDI_TITA_qntsd                                | 1.374 | 0.023 | 60.476  | 0.000 | 1.374 | 1.819 |
| ## | .BDI_Wgnt_qntsd                                | 1.788 | 0.023 | 65.179  | 0.000 | 1.788 | 2.040 |
|    |                                                |       |       |         |       |       |       |
| ## | .OCIR_1_quantsd                                | 2.392 | 0.041 | 58.871  | 0.000 | 2.392 | 2.090 |
| ## | .OCIR_10_quntsd                                | 1.991 | 0.041 | 48.896  | 0.000 | 1.991 | 1.793 |
| ## | .OCIR_11_quntsd                                | 2.203 | 0.041 | 53.208  | 0.000 | 2.203 | 1.918 |
| ## | .OCIR_12_quntsd                                | 2.316 | 0.041 | 56.177  | 0.000 | 2.316 | 2.052 |
| ## | .OCIR_13_quntsd                                | 2.424 | 0.040 | 60.536  | 0.000 | 2.424 | 2.130 |
| ## | .OCIR_14_quntsd                                | 2.186 | 0.043 | 51.180  | 0.000 | 2.186 | 1.865 |
| ## | .OCIR_15_quntsd                                | 2.398 | 0.041 | 58.107  | 0.000 | 2.398 | 2.010 |
| ## | .OCIR_16_quntsd                                | 2.127 | 0.042 | 51.049  | 0.000 | 2.127 | 1.844 |
| ## | .OCIR_17_quntsd                                | 2.178 | 0.043 | 51.149  | 0.000 | 2.178 | 1.890 |
| ## | $.0CIR\_18\_quntsd$                            | 2.231 | 0.042 | 52.896  | 0.000 | 2.231 | 1.977 |
| ## | .OCIR_2_quantsd                                | 2.642 | 0.041 | 64.103  | 0.000 | 2.642 | 2.229 |
| ## | $.{\tt OCIR\_3\_quantsd}$                      | 2.466 | 0.040 | 61.560  | 0.000 | 2.466 | 2.143 |
| ## | $.{\tt OCIR\_4\_quantsd}$                      | 2.220 | 0.041 | 54.210  | 0.000 | 2.220 | 1.938 |
| ## | $.{\tt OCIR\_5\_quantsd}$                      | 2.155 | 0.041 | 52.331  | 0.000 | 2.155 | 1.859 |
| ## | $.{\tt OCIR\_6\_quantsd}$                      | 2.380 | 0.041 | 58.370  | 0.000 | 2.380 | 2.132 |
| ## | $.{\tt OCIR\_7\_quantsd}$                      | 2.189 | 0.039 | 55.883  | 0.000 | 2.189 | 1.995 |
| ## | $.{\tt OCIR\_8\_quantsd}$                      | 2.266 | 0.042 | 53.357  | 0.000 | 2.266 | 1.912 |
| ## | $.\mathtt{OCIR}\_9\_\mathtt{quantsd}$          | 2.520 | 0.040 | 62.668  | 0.000 | 2.520 | 2.185 |
| ## | $.{\tt SZ\_1\_quantised}$                      | 1.615 | 0.015 | 104.447 | 0.000 | 1.615 | 2.896 |
| ## | $.{\tt SZ\_10\_quantisd}$                      | 1.768 | 0.013 | 131.700 | 0.000 | 1.768 | 3.524 |
| ## | $.\mathtt{SZ\_11\_quantisd}$                   | 1.579 | 0.016 | 100.608 | 0.000 | 1.579 | 3.231 |
| ## | $.\mathtt{SZ\_12\_quantisd}$                   | 1.645 | 0.015 | 108.227 | 0.000 | 1.645 | 3.398 |
| ## | $.SZ_13_quantisd$                              | 1.583 | 0.016 | 101.001 | 0.000 | 1.583 | 3.279 |
| ## | $.{\tt SZ\_14\_quantisd}$                      | 1.522 | 0.016 | 95.886  | 0.000 | 1.522 | 2.859 |
| ## | $.SZ\_15\_quantisd$                            | 1.537 | 0.016 | 97.016  | 0.000 | 1.537 | 2.924 |
| ## | $.SZ\_16\_quantisd$                            | 1.512 | 0.016 | 95.184  | 0.000 | 1.512 | 2.951 |
| ## | $.SZ_17_quantisd$                              | 1.561 | 0.016 | 98.936  | 0.000 | 1.561 | 3.063 |
| ## | $.SZ\_18\_quantisd$                            | 1.583 | 0.016 | 101.001 | 0.000 | 1.583 | 2.958 |
| ## | $.SZ\_19\_quantisd$                            | 1.555 | 0.016 | 98.413  | 0.000 | 1.555 | 3.120 |
| ## | $.\mathtt{SZ}\_\mathtt{2}\_\mathtt{quantised}$ | 1.612 | 0.015 | 104.099 | 0.000 | 1.612 | 2.998 |
| ## | $.SZ\_20\_quantisd$                            | 1.710 | 0.014 | 118.592 | 0.000 | 1.710 | 3.647 |
| ## | $.SZ\_21\_quantisd$                            | 1.572 | 0.016 | 99.939  | 0.000 | 1.572 | 3.186 |
| ## | $.SZ\_22\_quantisd$                            | 1.554 | 0.016 | 98.327  | 0.000 | 1.554 | 2.815 |
| ## | $.SZ_23_quantisd$                              | 1.598 | 0.016 | 102.547 | 0.000 | 1.598 | 3.250 |
| ## | $.\mathtt{SZ}\_\mathtt{24}\_\mathtt{quantisd}$ | 1.595 | 0.016 | 102.228 | 0.000 | 1.595 | 2.909 |
| ## | $.SZ\_25\_quantisd$                            | 1.571 | 0.016 | 99.846  | 0.000 | 1.571 | 3.120 |
| ## | $.SZ\_26\_quantisd$                            | 1.305 | 0.015 | 89.183  | 0.000 | 1.305 | 2.397 |
| ## | .SZ_27_quantisd                                | 1.296 | 0.015 | 89.329  | 0.000 | 1.296 | 2.431 |
| ## | .SZ_28_quantisd                                | 1.386 | 0.015 | 89.575  | 0.000 | 1.386 | 2.362 |
| ## | .SZ_29_quantisd                                | 1.585 | 0.016 | 101.200 | 0.000 | 1.585 | 3.236 |
| ## | .SZ_3_quantised                                | 1.740 | 0.014 | 124.906 | 0.000 | 1.740 | 3.418 |
| ## | .SZ_30_quantisd                                | 1.419 | 0.016 | 90.497  | 0.000 | 1.419 | 2.509 |
| ## | .SZ_31_quantisd                                | 1.289 | 0.014 | 89.474  | 0.000 | 1.289 | 2.541 |
| ## | .SZ_32_quantisd                                | 1.577 | 0.016 | 100.414 | 0.000 | 1.577 | 3.189 |
| ## | .SZ_33_quantisd                                | 1.368 | 0.015 | 89.248  | 0.000 | 1.368 | 2.804 |
| ## | .SZ_34_quantisd                                | 1.290 | 0.014 | 89.452  | 0.000 | 1.290 | 2.390 |
| ## | .SZ_35_quantisd                                | 1.774 | 0.013 | 133.384 | 0.000 | 1.774 | 3.018 |
| ## | .SZ_36_quantisd                                | 1.551 | 0.016 | 98.073  | 0.000 | 1.551 | 3.165 |
| ## | .SZ_37_quantisd                                | 1.302 | 0.015 | 89.227  | 0.000 | 1.302 | 2.064 |
| ## | .SZ_38_quantisd                                | 1.693 | 0.015 | 115.476 | 0.000 | 1.693 | 3.280 |
| ## | .SZ_39_quantisd                                | 1.290 | 0.014 | 89.452  | 0.000 | 1.290 | 2.135 |
|    |                                                |       |       |         |       |       |       |

| ##       | $.SZ\_4\_quantised$                          | 1.690    | 0.015   | 114.957 | 0.000   | 1.690  | 3.577   |
|----------|----------------------------------------------|----------|---------|---------|---------|--------|---------|
| ##       | $.SZ\_40\_quantisd$                          | 1.577    | 0.016   | 100.414 | 0.000   | 1.577  | 3.172   |
| ##       | .SZ_41_quantisd                              | 1.570    | 0.016   | 99.753  | 0.000   | 1.570  | 3.188   |
| ##       | $.SZ\_42\_quantisd$                          | 1.559    | 0.016   | 98.760  | 0.000   | 1.559  | 3.049   |
| ##       | $.SZ\_5\_quantised$                          | 1.725    | 0.014   | 121.607 | 0.000   | 1.725  | 2.940   |
| ##       | $.SZ\_6\_quantised$                          | 1.715    | 0.014   | 119.568 | 0.000   | 1.715  | 3.252   |
| ##       | $.SZ_7_quantised$                            | 1.580    | 0.016   | 100.705 | 0.000   | 1.580  | 3.260   |
| ##       | $.SZ\_8\_quantised$                          | 1.714    | 0.014   | 119.370 | 0.000   | 1.714  | 2.820   |
| ##       | $.SZ\_9\_quantised$                          | 1.620    | 0.015   | 105.037 | 0.000   | 1.620  | 3.269   |
| ##       | $.STAI2\_Clm\_qnts$                          | 2.697    | 0.029   | 92.505  | 0.000   | 2.697  | 3.094   |
| ##       | $.\mathtt{STAI2}_\mathtt{Cntnt}_\mathtt{qn}$ | 2.684    | 0.029   | 92.224  | 0.000   | 2.684  | 3.070   |
| ##       | .STAI2_Dscns_qn                              | 2.654    | 0.029   | 91.842  | 0.000   | 2.654  | 3.065   |
| ##       | .STAI2_Dffclts_                              | 2.204    | 0.031   | 72.065  | 0.000   | 2.204  | 2.382   |
| ##       | .STAI2_DsppntS_                              | 2.194    | 0.030   | 73.103  | 0.000   | 2.194  | 2.404   |
| ##       | $.\mathtt{STAI2\_Flr\_qnts}$                 | 2.026    | 0.030   | 66.523  | 0.000   | 2.026  | 2.199   |
| ##       | $.\mathtt{STAI2\_Hppy\_qnt}$                 | 2.725    | 0.029   | 92.690  | 0.000   | 2.725  | 3.121   |
| ##       | .STAI2_HppyOth_                              | 2.491    | 0.032   | 78.398  | 0.000   | 2.491  | 2.562   |
| ##       | $.\mathtt{STAI2\_Indqt\_qn}$                 | 2.172    | 0.031   | 69.873  | 0.000   | 2.172  | 2.332   |
| ##       | $.STAI2\_Nrvs\_qnt$                          | 2.206    | 0.030   | 74.217  | 0.000   | 2.206  | 2.434   |
| ##       | .STAI2_Plsnt_qn                              | 2.727    | 0.027   | 100.458 | 0.000   | 2.727  | 3.239   |
| ##       | .STAI2_Rstd_qnt                              | 2.469    | 0.028   | 86.925  | 0.000   | 2.469  | 2.823   |
| ##       | .STAI2_StsfdSl_                              | 2.610    | 0.031   | 84.756  | 0.000   | 2.610  | 2.957   |
| ##       | .STAI2_Scr_qnts                              | 2.716    | 0.030   | 89.572  | 0.000   | 2.716  | 3.063   |
| ##       | .STAI2_SlfCnfd_                              | 2.395    | 0.033   | 73.220  | 0.000   | 2.395  | 2.419   |
| ##       | .STAI2_Stdy_qnt                              | 2.767    | 0.029   | 96.893  | 0.000   | 2.767  | 3.219   |
| ##       | .STAI2_Tnsn_qnt                              | 2.218    | 0.031   | 72.603  | 0.000   | 2.218  | 2.389   |
| ##       | .STAI2_Thghts_q                              | 1.960    | 0.029   | 68.317  | 0.000   | 1.960  | 2.167   |
| ##       | .STAI2_UnmprtT_                              | 2.199    | 0.030   | 72.575  | 0.000   | 2.199  | 2.424   |
| ##       | .STAI2_Wrry_qnt                              | 2.266    | 0.031   | 72.806  | 0.000   | 2.266  | 2.415   |
| ##       | .STAI_Anxs_qnts                              | 2.136    | 0.032   | 67.610  | 0.000   | 2.136  | 2.223   |
| ##       | .propmedhigh                                 | 0.601    | 0.027   | 21.984  | 0.000   | 0.601  | 2.870   |
| ##       | spreadsheet                                  | 3.982    | 0.095   | 41.762  | 0.000   | 3.982  | 1.327   |
| ##       | Ravens                                       | 4.458    | 0.094   | 47.626  | 0.000   | 4.458  | 1.514   |
| ##       | Age                                          | 34.293   | 0.325   | 105.506 | 0.000   | 34.293 | 3.353   |
| ##       | GenderMF                                     | 0.590    | 0.016   | 37.736  | 0.000   | 0.590  | 1.199   |
| ##       | F1                                           | 0.000    |         |         |         | 0.000  | 0.000   |
| ##       | F2                                           | 0.000    |         |         |         | 0.000  | 0.000   |
| ##       | F3                                           | 0.000    |         |         |         | 0.000  | 0.000   |
| ##       | Vanianaa                                     |          |         |         |         |        |         |
| ##<br>## | Variances:                                   | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ##       | .BDI_Attrctv_qn                              | 0.555    | 0.027   | 20.415  | 0.000   | 0.555  | 0.675   |
| ##       | .BDI_Blam_qntsd                              | 0.333    | 0.027   | 18.704  | 0.000   | 0.372  | 0.486   |
| ##       | .BDI_Cry_quntsd                              | 0.372    | 0.020   | 16.465  | 0.000   | 0.372  | 0.602   |
| ##       | .BDI_Dcsns_qnts                              | 0.417    | 0.020   | 18.928  | 0.000   | 0.417  | 0.545   |
| ##       | .BDI_Dcsns_qnts                              | 0.382    | 0.022   | 18.076  | 0.000   | 0.382  | 0.492   |
| ##       | .BDI_Dsppntmnt_                              | 0.403    | 0.021   | 19.317  | 0.000   | 0.403  | 0.494   |
| ##       | .BDI_Futr_qntsd                              | 0.393    | 0.021   | 18.722  | 0.000   | 0.393  | 0.500   |
| ##       | .BDI_Glty_qntsd                              | 0.408    | 0.021   | 18.337  | 0.000   | 0.408  | 0.520   |
| ##       | .BDI_Hlth_qntsd                              | 0.408    | 0.022   | 19.988  | 0.000   | 0.408  | 0.655   |
| ##       | .BDI_Intrs_I_P_                              | 0.427    | 0.021   | 19.789  | 0.000   | 0.427  | 0.606   |
| ##       | .BDI_Intis_i_rBDI_Irrttd_qnt                 | 0.439    | 0.024   | 20.558  | 0.000   | 0.439  | 0.557   |
| ##       | .BDI_Libd_qntsd                              | 0.545    | 0.021   | 18.813  | 0.000   | 0.545  | 0.719   |
| ##       | .BDI_Pnshd_qnts                              | 0.537    | 0.023   | 17.148  | 0.000   | 0.537  | 0.617   |
| ıı m     | .DDI_I HBHQ_qHtb                             | 0.007    | 0.001   | 11.140  | 0.000   | 0.001  | 0.011   |

| шш | DDT G-1+-1                            | 0 200 | 0.010 | 10 000 | 0 000 | 0 200 | 0 400 |
|----|---------------------------------------|-------|-------|--------|-------|-------|-------|
| ## | .BDI_Sad_quntsd                       | 0.320 | 0.019 | 16.896 | 0.000 | 0.320 | 0.460 |
| ## | .BDI_Stsfctn_qn                       | 0.500 | 0.026 | 19.209 | 0.000 | 0.500 | 0.592 |
| ## | .BDI_Slep_qntsd                       | 0.594 | 0.028 | 21.251 | 0.000 | 0.594 | 0.747 |
| ## | $.{	t BDI\_Tird\_qntsd}$              | 0.459 | 0.023 | 20.059 | 0.000 | 0.459 | 0.641 |
| ## | $.{	t BDI\_wght\_qntsd}$              | 0.405 | 0.029 | 14.015 | 0.000 | 0.405 | 0.711 |
| ## | $.{	t BDI\_Work\_qntsd}$              | 0.403 | 0.020 | 20.155 | 0.000 | 0.403 | 0.525 |
| ## | $.\mathtt{OCIR}\_1\_\mathtt{quantsd}$ | 0.807 | 0.037 | 22.069 | 0.000 | 0.807 | 0.617 |
| ## | .OCIR_10_quntsd                       | 0.558 | 0.034 | 16.194 | 0.000 | 0.558 | 0.453 |
| ## | .OCIR_11_quntsd                       | 0.662 | 0.037 | 17.861 | 0.000 | 0.662 | 0.502 |
| ## | .OCIR_12_quntsd                       | 0.710 | 0.032 | 21.876 | 0.000 | 0.710 | 0.557 |
| ## | .OCIR_13_quntsd                       | 0.947 | 0.043 | 22.104 | 0.000 | 0.947 | 0.731 |
| ## | .OCIR_14_quntsd                       | 0.738 | 0.043 | 17.077 | 0.000 | 0.738 | 0.538 |
| ## | .OCIR_15_quntsd                       | 0.946 | 0.048 | 19.654 | 0.000 | 0.946 | 0.664 |
| ## | .OCIR_16_quntsd                       | 0.730 | 0.041 | 17.883 | 0.000 | 0.730 | 0.548 |
| ## | .OCIR_17_quntsd                       | 0.660 | 0.038 | 17.356 | 0.000 | 0.660 | 0.497 |
| ## | .OCIR_18_quntsd                       | 0.664 | 0.034 | 19.238 | 0.000 | 0.664 | 0.521 |
| ## | .OCIR_2_quantsd                       | 0.961 | 0.039 | 24.461 | 0.000 | 0.961 | 0.684 |
| ## | .OCIR_3_quantsd                       | 0.905 | 0.043 | 20.819 | 0.000 | 0.905 | 0.683 |
| ## | <b>-</b>                              | 0.903 | 0.043 | 18.375 | 0.000 | 0.903 | 0.511 |
|    | .OCIR_4_quantsd                       |       |       | 17.253 |       | 0.764 | 0.569 |
| ## | .OCIR_5_quantsd                       | 0.764 | 0.044 | 22.511 | 0.000 | 0.764 |       |
| ## | .OCIR_6_quantsd                       | 0.723 | 0.032 |        | 0.000 |       | 0.581 |
| ## | .OCIR_7_quantsd                       | 0.797 | 0.038 | 21.000 | 0.000 | 0.797 | 0.662 |
| ## | .OCIR_8_quantsd                       | 0.795 | 0.042 | 18.805 | 0.000 | 0.795 | 0.566 |
| ## | .OCIR_9_quantsd                       | 0.904 | 0.042 | 21.668 | 0.000 | 0.904 | 0.679 |
| ## | .SZ_1_quantised                       | 0.149 | 0.008 | 18.601 | 0.000 | 0.149 | 0.480 |
| ## | .SZ_10_quantisd                       | 0.119 | 0.006 | 18.757 | 0.000 | 0.119 | 0.475 |
| ## | .SZ_11_quantisd                       | 0.178 | 0.006 | 31.630 | 0.000 | 0.178 | 0.745 |
| ## | .SZ_12_quantisd                       | 0.169 | 0.007 | 25.862 | 0.000 | 0.169 | 0.720 |
| ## | .SZ_13_quantisd                       | 0.165 | 0.005 | 30.114 | 0.000 | 0.165 | 0.706 |
| ## | .SZ_14_quantisd                       | 0.163 | 0.007 | 22.702 | 0.000 | 0.163 | 0.574 |
| ## | .SZ_15_quantisd                       | 0.162 | 0.007 | 24.800 | 0.000 | 0.162 | 0.588 |
| ## | .SZ_16_quantisd                       | 0.190 | 0.006 | 29.799 | 0.000 | 0.190 | 0.722 |
| ## | $.SZ\_17\_quantisd$                   | 0.177 | 0.006 | 28.241 | 0.000 | 0.177 | 0.683 |
| ## | $.SZ\_18\_quantisd$                   | 0.154 | 0.007 | 23.008 | 0.000 | 0.154 | 0.539 |
| ## | $.SZ\_19\_quantisd$                   | 0.177 | 0.006 | 29.102 | 0.000 | 0.177 | 0.713 |
| ## | $.SZ\_2\_quantised$                   | 0.154 | 0.008 | 20.034 | 0.000 | 0.154 | 0.531 |
| ## | $.SZ\_20\_quantisd$                   | 0.123 | 0.006 | 21.571 | 0.000 | 0.123 | 0.557 |
| ## | $.SZ\_21\_quantisd$                   | 0.164 | 0.006 | 27.710 | 0.000 | 0.164 | 0.674 |
| ## | $.SZ\_22\_quantisd$                   | 0.163 | 0.007 | 22.434 | 0.000 | 0.163 | 0.535 |
| ## | $.SZ_23_quantisd$                     | 0.165 | 0.006 | 27.641 | 0.000 | 0.165 | 0.682 |
| ## | $.SZ\_24\_quantisd$                   | 0.178 | 0.008 | 23.352 | 0.000 | 0.178 | 0.593 |
| ## | $.SZ_25_quantisd$                     | 0.187 | 0.006 | 30.150 | 0.000 | 0.187 | 0.737 |
| ## | $.SZ_26_quantisd$                     | 0.226 | 0.009 | 26.341 | 0.000 | 0.226 | 0.764 |
| ## | .SZ_27_quantisd                       | 0.218 | 0.009 | 24.766 | 0.000 | 0.218 | 0.766 |
| ## | .SZ_28_quantisd                       | 0.206 | 0.009 | 22.723 | 0.000 | 0.206 | 0.597 |
| ## | .SZ_29_quantisd                       | 0.207 | 0.005 | 40.205 | 0.000 | 0.207 | 0.864 |
| ## | .SZ_3_quantised                       | 0.135 | 0.007 | 17.980 | 0.000 | 0.135 | 0.519 |
| ## | .SZ_30_quantisd                       | 0.208 | 0.008 | 24.841 | 0.000 | 0.208 | 0.651 |
| ## | .SZ_31_quantisd                       | 0.206 | 0.008 | 25.839 | 0.000 | 0.206 | 0.799 |
| ## | .SZ_32_quantisd                       | 0.193 | 0.006 | 33.945 | 0.000 | 0.193 | 0.791 |
| ## | .SZ_33_quantisd                       | 0.204 | 0.005 | 37.434 | 0.000 | 0.204 | 0.857 |
| ## | .SZ_34_quantisd                       | 0.222 | 0.009 | 25.307 | 0.000 | 0.222 | 0.761 |
| ## | .SZ_35_quantisd                       | 0.147 | 0.009 | 17.302 | 0.000 | 0.147 | 0.427 |
| ## | .SZ_36_quantisd                       | 0.178 | 0.006 | 31.427 | 0.000 | 0.178 | 0.741 |
|    |                                       | •     |       |        |       | 0     |       |

```
##
      .SZ_37_quantisd
                           0.232
                                     0.010
                                             22.767
                                                        0.000
                                                                  0.232
                                                                            0.584
##
      .SZ_38_quantisd
                           0.144
                                     0.007
                                                        0.000
                                                                            0.541
                                             21.426
                                                                  0.144
                                             21.095
                                                                  0.235
                                                                            0.643
##
      .SZ_39_quantisd
                           0.235
                                     0.011
                                                        0.000
##
      .SZ_4_quantised
                           0.146
                                     0.007
                                             22.383
                                                        0.000
                                                                            0.656
                                                                  0.146
##
      .SZ_40_quantisd
                           0.193
                                     0.006
                                             32.916
                                                        0.000
                                                                  0.193
                                                                            0.780
##
      .SZ_41_quantisd
                                     0.006
                                                        0.000
                           0.175
                                             30.163
                                                                  0.175
                                                                            0.723
##
      .SZ_42_quantisd
                                     0.007
                                                        0.000
                           0.165
                                             25.171
                                                                  0.165
                                                                            0.630
##
      .SZ_5_quantised
                           0.135
                                     0.008
                                             16.056
                                                        0.000
                                                                  0.135
                                                                            0.391
##
      .SZ_6_quantised
                           0.137
                                     0.007
                                             19.494
                                                        0.000
                                                                  0.137
                                                                            0.493
##
      .SZ_7_quantised
                           0.170
                                     0.006
                                             30.022
                                                        0.000
                                                                  0.170
                                                                            0.724
##
      .SZ_8_quantised
                           0.144
                                     0.009
                                             16.425
                                                        0.000
                                                                  0.144
                                                                            0.390
##
      .SZ_9_quantised
                           0.161
                                     0.006
                                             25.920
                                                        0.000
                                                                            0.654
                                                                  0.161
##
      .STAI2_Clm_qnts
                           0.403
                                     0.019
                                             21.337
                                                        0.000
                                                                  0.403
                                                                            0.530
##
                                     0.021
                                             20.284
                                                        0.000
      .STAI2_Cntnt_qn
                           0.432
                                                                  0.432
                                                                            0.566
##
                           0.451
                                     0.020
                                                        0.000
                                                                            0.602
      .STAI2_Dscns_qn
                                             22.621
                                                                  0.451
##
      .STAI2_Dffclts_
                           0.467
                                     0.022
                                             21.139
                                                        0.000
                                                                  0.467
                                                                            0.546
##
                                     0.025
                                                        0.000
      .STAI2_DsppntS_
                           0.529
                                             21.370
                                                                  0.529
                                                                            0.635
##
      .STAI2_Flr_qnts
                           0.417
                                     0.021
                                             19.576
                                                        0.000
                                                                  0.417
                                                                            0.491
##
                           0.363
                                     0.017
                                                        0.000
      .STAI2_Hppy_qnt
                                             21.707
                                                                  0.363
                                                                            0.476
##
      .STAI2_HppyOth_
                           0.687
                                     0.030
                                             22.652
                                                        0.000
                                                                  0.687
                                                                            0.727
##
      . {\tt STAI2\_Indqt\_qn}
                           0.509
                                     0.027
                                             19.094
                                                        0.000
                                                                  0.509
                                                                            0.586
##
      .STAI2_Nrvs_qnt
                           0.440
                                     0.021
                                             20.725
                                                        0.000
                                                                  0.440
                                                                            0.536
##
                                     0.016
                                                        0.000
      .STAI2_Plsnt_qn
                           0.310
                                             19.604
                                                                  0.310
                                                                            0.437
##
                                     0.025
                                                        0.000
                                                                            0.689
      .STAI2_Rstd_qnt
                           0.527
                                             20.869
                                                                  0.527
##
      .STAI2_StsfdSl_
                           0.367
                                     0.016
                                             23.098
                                                        0.000
                                                                  0.367
                                                                            0.471
##
      .STAI2_Scr_qnts
                           0.420
                                     0.020
                                             20.737
                                                        0.000
                                                                  0.420
                                                                            0.535
##
      .STAI2_SlfCnfd_
                           0.738
                                     0.031
                                             23.624
                                                        0.000
                                                                  0.738
                                                                            0.753
##
                                     0.020
                                                        0.000
      .STAI2_Stdy_qnt
                           0.365
                                             18.468
                                                                  0.365
                                                                            0.493
##
      .STAI2_Tnsn_qnt
                                     0.022
                                                        0.000
                                                                            0.522
                           0.450
                                             20.459
                                                                  0.450
##
      .STAI2_Thghts_q
                           0.376
                                     0.019
                                             20.080
                                                        0.000
                                                                  0.376
                                                                            0.460
##
      .STAI2_UnmprtT_
                           0.498
                                     0.022
                                             22.233
                                                        0.000
                                                                  0.498
                                                                            0.605
##
      .STAI2_Wrry_qnt
                           0.568
                                     0.025
                                             23.055
                                                        0.000
                                                                  0.568
                                                                            0.645
##
      .STAI_Anxs_qnts
                           0.533
                                     0.027
                                             20.016
                                                        0.000
                                                                  0.533
                                                                            0.577
##
                                     0.002
                                                        0.000
      .propmedhigh
                           0.041
                                             24.811
                                                                  0.041
                                                                            0.947
##
       spreadsheet
                           9.000
                                     0.003 2595.746
                                                        0.000
                                                                  9.000
                                                                            1.000
##
       Ravens
                                                        0.000
                           8.672
                                     0.335
                                             25.891
                                                                  8.672
                                                                            1.000
##
       Age
                         104.591
                                     6.150
                                             17.008
                                                        0.000
                                                               104.591
                                                                            1.000
##
       GenderMF
                                     0.003
                                             86.073
                                                        0.000
                                                                  0.242
                                                                            1.000
                           0.242
##
                           0.757
                                     0.029
                                             26.127
                                                        0.000
                                                                  1.000
                                                                            1.000
       F1
##
                                     0.036
                                                        0.000
                                                                  1.000
       F2
                           0.912
                                             25.590
                                                                            1.000
##
                           0.170
                                     0.012
                                                        0.000
                                                                  1.000
                                                                            1.000
                                             14.421
```

```
ESEMfits <-data.frame(fitMeasures(fititem.factors, c("bic", "aic", "rmsea", "rmsea.ci.lower", names(ESEMfits) <- "p(mid as high)"
rownames(ESEMfits) <- c("BIC", "AIC", "RMSEA", "RMSEA CI-", "RMSEA CI+")

kable(t(ESEMfits), digits = 3)
```

|               | BIC   | AIC    | RMSEA    | RMSEA CI- | RMSEA CI+ |
|---------------|-------|--------|----------|-----------|-----------|
| p(mid as high | ) 199 | 9655.2 | 198474.8 | 0.051     | 0.05      |

In this ESEM we show that the AnxDepression factor (F1) alone significantly influences task performance. Zooming out, both the simple regression and the ESEM agree that of mental health-relevant symptoms, task performance is driven by symptoms of mood and anxiety disorders and not OCD or Psychosis symptoms. This suggests that our original clinical study in mood and anxiety disorders did not reflect a generic pathology, but rather that effects may be selective to the mood and anxiety symptom group that we originally tested. This also suggests that we must also control for age and IQ if we ever want to use this to inform clinical decision-making.