HOMEWORK #5 – MANDELBROT SET

TABLE A: 1 COMPUTER

Communication Latency Optimization	Workers	Avg. time as seen by the client (Tc milliseconds)	Parallel Efficiency : T1/C.Tc
On	Multiple	14119 (T1)	1
On	Single	13009 (T1)	1
Off	Multiple	4876 (T1)	1
Off	Single	3376 (T1)	1

TABLE B: 16 COMPUTERS

Communication Latency Optimization	Workers	Avg. time as seen by the client (Tc milliseconds)	Parallel Efficiency : T1/C.Tc
On	Multiple	6023	0.147
On	Single	5777	0.141
Off	Multiple	4435	0.068
Off	Single	3498	0.060

TABLE C: AVERAGE EXECUTION BASED ON LATENCY OPTIMIZATION

Communication		Avg. execution time across different worker	
Latency	Computers	types viz. multiple/single (milliseconds)	
Optimization			
On	1	13564	Diff. = 9.4 s
Off	1	4126	DIII. – 3.4 3
On	16	5900	Diff. = 1.9 s
Off	16	3966.5	

GRAPH A - EXECUTION TIMES

CLO – Communication Latency Optimization MW – Multiple Workers SW – Single Worker

GRAPH B - EFFICIENCY PLOT

In the case: C=16, it can be seen that the parallel efficiency decreases with increase in number of parallel processors. This suggests that the degree of parallelization keeps decreasing and approaches zero as more parallel computational power is added to the infrastructure. This was an expected result. Not all tasks can achieve perfect parallelization, and this also holds good for the Mandelbrot Set task which we experimented with.

All other numbers are consistent with the expectations. Mandelbrot Set Task has very few decompositions in the 'Divide' phase and hence there is no sufficient overhead seen when optimizations are switched off in Tables A and B.