Aplicaciones Web y Lenguajes de Marcas Tema 1a: Introducción a los Lenguajes de Marcas

1º Parcial - LMSGI
1º de Ciclo Superior de DAM

Objetivos: conocer cómo surgen los lenguajes de marcas y su evolución, e identificar las características generales.

- Identificar las características generales de los lenguajes de marcas
- Clasificar los lenguajes de marcas e identificar los más importantes
- Estudiar las ventajas y ámbitos de aplicación de los lenguajes de marcas

Origen de los Lenguajes de Marcas:

- ✓ Tradicionalmente, en la época de la imprenta, los **manuscritos** de autor incluían instrucciones que indicaban el tipo de letra, el estilo y el tamaño con que debía ser representado el texto, etc.
- ✓ A estas indicaciones se les llamaba *marcas*, y existía un buen número de ellas conocidas y manejadas informalmente por los tipógrafos.
- ✓ Con la introducción de las computadoras, y sobre todo de la web, se trasladó este concepto al mundo de la informática.
- ✓ Cualquier información se puede representar en un ordenador: imágenes, texto, música, vídeos, mapas, ...
 - Recuerda: ¿sabes cómo se almacenan los datos en un ordenador?

- Formas de representar la información en un ordenador:
 - ✓ Los ordenadores digitales son máquinas binarias => trabaja con todos los datos utilizando 0 y 1.
 - ✓ Toda información almacenada lo hace de forma binaria.
 - **Ej** (utilizando un sistema 8 bits):

✓ Nº 19: 00010011

✓ **Letra A**: 01000001

- ✓ **Color Azul**, modelo RGB (0,0,255): 0..0 0..0 11111111
- ✓ Imagen: cada píxel de la imagen a binario
- √ Vídeo: codificar cada muestra de sonido e imagen.

¿Como surge la necesidad de crear lenguajes de marcas?

Un ordenador sólo es capaz de representar información de forma binaria => toda información a guardar debe ser previamente **codificada** en binario

- ✓ Codificación: proceso de transformación de datos a otro código (binario).
- ✓ La codificación crea problemas si no existe un estándar.
- ✓ Existan varios estándares de codificación.

Datos binarios:

- ✓ **Todo es binario menos el texto**: cualquier fichero que no sea texto se considera binario.
- ✓ La forma de **codificación** es **variable**, dependiendo del programa que la produce y el sistema elegido.
- ✓ Para poder acceder a información existente es necesario un proceso de **decodificación**: pasar de datos binarios a algo entendible por las personas.
 - Ej: presentar en pantalla una fotografía.

¿Como surge la necesidad de crear lenguajes de marcas?

Texto:

- ✓ Forma más natural para representar la información desde el punto de vista de las personas.
 - **Ej**: libro en papel, imagen borrosa que representa una palabra,
- ✓ Para introducir los textos en un ordenador es necesario **codificar** los caracteres en secuencias binarias.
- ➤ **Debate**: ¿cómo crees que un ordenador interpreta el "número" inferior? ¿qué ocurre si dos ordenadores utilizan distinto sistema de codificación?

¿Como surge la necesidad de crear lenguajes de marcas?

- Problemas de codificar texto: cada sistema codifica de una manera diferente.
 - **Ej: ñ** es el 241 (11101101) y el 164 (10100100)
- Sistemas de Codificación:
 - ASCII (American Standard Code for Information Interchange):
 - ✓ Código estándar unificado que permite la compatibilidade entre ordenadores de diferentes fabricantes.
 - ✓ Hecho en 1967 por ANSI.
 - ✓ Usa 7 bits para codificar las letras=> representa 128 caracteres.
 - ✓ Utiliza el alfabeto inglés.
 - Problema: cuando se usa en países de habla no inglesa.
 - ASCII extendido: se expande a 8 bits => representa 256 caracteres.
 - ✓ Tiene caracteres obsoletos (los de control para impressoras y otros periféricos).
 - Problema: hay muchos ASCII extendidos.

Tabla ASCII

(Caraci	teres ASCII
	de	control
00	NULL	(carácter nulo)
01	SOH	(inicio encabezado)
02	STX	(inicio texto)
03	ETX	(fin de texto)
04	EOT	(fin transmisión)
05	ENQ	(consulta)
06	ACK	(reconocimiento)
07	BEL	(timbre)
80	BS	(retroceso)
09	HT	(tab horizontal)
10	LF	(nueva línea)
11	VT	(tab vertical)
12	FF	(nueva página)
13	CR	(retorno de carro)
14	SO	(desplaza afuera)
15	SI	(desplaza adentro)
16	DLE	(esc.vinculo datos)
17	DC1	(control disp. 1)
18	DC2	(control disp. 2)
19	DC3	(control disp. 3)
20	DC4	(control disp. 4)
21	NAK	(conf. negativa)
22	SYN	(inactividad sinc)
23	ETB	(fin bloque trans)
24	CAN	(cancelar)
25	EM	(fin del medio)
26	SUB	(sustitución)
27	ESC	(escape)
28	FS	(sep. archivos)
29	GS	(sep. grupos)
30	RS	(sep. registros)
31	US	(sep. unidades)
127	DEL	(suprimir)

	Caracteres ASCII imprimibles					
32	espacio	64	@	96	•	
33		65	A	97	a	
34		66	В	98	b	
35	#	67	С	99	С	
36	S	68	D	100	d	
37	%	69	E	101	е	
38	8	70	F	102	f	
39		71	G	103	g	
40	(72	Н	104	h	
41	ì	73	1	105	i	
42	*	74	J	106	j	
43	+	75	K	107	k	
44	,	76	L	108	1	
45		77	M	109	m	
46		78	N	110	n	
47	- 1	79	0	111	0	
48	0	80	P	112	р	
49	1	81	Q	113	q	
50	2	82	R	114	r	
51	3	83	S	115	s	
52	4	84	T	116	t	
53	5	85	U	117	u	
54	6	86	V	118	٧	
55	7	87	W	119	w	
56	8	88	Х	120	х	
57	9	89	Y	121	у	
58	- :	90	Z	122	Z	
59	- ;	91	1	123	{	
60	<	92	1	124	1	
61	=	93]	125	}	
62	>	94	٨	126	~	
63	?	95	: 	210740900		

		AS	CII e	xtend	ido		
128	ç	160	á	192	L	224	Ó
129	ü	161	í	193	1	225	ß
130	é	162	ó	194	т	226	Ô
131	â	163	ú	195	Ţ	227	Ò
132	ä	164	ñ	196	_	228	õ
133	à	165	Ñ	197	+	229	Õ
134	á	166	3	198	ã	230	μ
135	ç	167	0	199	ã	231	þ
136	ê	168	5	200	L	232	Þ
137	ë	169	®	201	F	233	Ú
138	è	170	7	202	1	234	Û
139	ï	171	1/2	203	TE	235	Ù
140	î	172	1/4	204	T	236	ý
141	i	173	1	205	=	237	Ý
142	A	174	ec	206	#	238	-
143	A	175	30	207	п	239	烈
144	É	176	88	208	ð	240	=
145	æ	177	200	209	Đ	241	±
146	Æ	178		210	Ê	242	-
147	ô	179		211	Ë	243	3/4
148	Ö	180	+	212	È	244	1
149	ò	181	Á	213	1	245	§
150	û	182	Â	214	i	246	+
151	ù	183	À	215	Î	247	
152	ÿ	184	0	216	Ï	248	0
153	Ö	185	1	217		249	445
154	Ü	186		218	F	250	*3
155	Ø	187	7	219		251	4
156	£	188	1	220		252	3
157	Ø	189	¢	221	Ī	253	2
158	×	190	¥	222	i	254	
159	f	191	٦	223		255	nbsp

Sistemas de Codificación

ISO 8859-1 ○ Alfabeto Latino n.º 1 ○ ISO Latín 1:

- ✓ Norma de la ISO que define la codificación del alfabeto latino.
- ✓ Los 8 bits de *ASCII* no llegan para representar todas las lenguas del planeta.
- ✓ Cada región usaba una parte extendida de ASCII distinta.
- ✓ Se crean nuevos estándares de 256 caracteres.
- ✓ Los 128 primeros son iguales a ASCII.
- ✓ Incluye los diacríticos (como letras acentuadas, ñ, ç), y letras especiales (como ß, Ø), necesarios para la escritura de las lenguas originarias de Europa occidental.

Problema:

✓ En cada documento es necesario especificar qué codificación se usa.

Sistemas de Codificación

Unicode:

- ✓ Trata de resolver los problemas anteriores y almacenar todos los caracteres de todas las lenguas del planeta.
- ✓ Estándar de codificación de caracteres universal utilizado para la representación de texto para procesamiento del equipo.
- ✓ Proporciona una manera consistente de codificación de texto multilingüe y facilita el intercambio de archivos de texto internacionales.
- ✓ El tamaño del carácter es variable, usando hasta un máximo de 32 bits.
- ✓ Los 128 primeros son iguales a ASCII
- ✓ Los 256 primeros son iguales a ISO-8859-1

Formas de codificar los caracteres:

- a) UTF-8: tamaño variable para cada carácter (8, 16, 24 o 32 bits) según carácter que se quiera representar.
- **b) UTF-16**: tamaño variable para cada carácter (16 o 32).
- c) UTF-32: cada carácter ocupa 32 bits.

Archivos binarios versus archivos de texto

Ventajas de archivos binarios:

- ✓ Ocupan **menos espacio** que los archivos de texto, ya que optimizan mejor su codificación a binario.
 - Ej: el número 213 ocupa un byte y no tres si se codificase como texto
- ✓ Son más **rápidos** de manipular por parte del ordenador, ya que se parecen más al lenguaje nativo de los ordenadores.
- ✓ Permiten el **acceso directo** a los datos, el cual es más rápido que el acceso secuencial de los archivos de texto.
- ✓ Permiten **cifrar** el contenido y que no sea visible de accesos indebidos.

Ventajas de archivos de texto:

- ✓ Fácilmente interpretables: ideales para almacenar datos para **exportar/importar** información a cualquier dispositivo electrónico.
- ✓ Compatibles con cualquier dispositivo.
- ✓ Directamente modificables, sin necesidad de tener software específico.
- ✓ Manipulación más sencilla que la de los archivos binarios.
- ✓ Transportables y entendibles por todo tipo de redes.

El problema de compartir datos

- ¿Qué ocurre cuando creamos un cierto tipo de datos en una aplicación y necesito/quiero compartirlos con otra aplicación/ordenador diferente?
 - ✓ Para exportar/importar datos binarios => utilizar conversores de formato.
 - **Ej**: una foto almacenada como tipo .jpg, .tiff, .gif, ...

Creación de estándares para compartir datos:

- ✓ Si se universalizan dichos estándares, compartir información entre diferentes aplicaciones y dispositivos es más sencillo.
- ✓ Cada formato tiene sus peculiaridades.
 - Ej: para música utilizar el mp3, para documentos el pdf, para imágenes el jpg

Problema:

- ✓ Creación de nuevos estándares de formato mejores que sustituyan a los anteriores.
- ✓ Formatos propietarios de empresas.
- Averigua: ¿sabes qué ocurrió con Flash Player de Adobe? Lee este artículo de la web Xataka para saber cuándo desaparecerá: https://www.xataka.com/aplicaciones/siempre-flash-player-adobe-confirma-que-dejara-funcionar-a-finales-2020

- Formato de archivo que cualquier dispositivo es capaz de entender: el texto
- En los archivos de texto plano se intenta almacenar otro tipo de datos.
 - Metadatos: datos que sirven para describir otros datos
 - Ej: información de formato de texto, escrita como palabras marcadas de forma especial
- Hay procesadores que comienzan a almacenar los datos de formato en texto:
 - ✓ Utilizan caracteres marcados de forma especial.
 - ✓ El programa interpreta esos datos como operaciones de formato.
- ¿De dónde surgió la idea? ¿ y el nombre?
 - ✓ El nombre proviene del inglés *marking up* que consistía en hacer marcas de colores en manuscritos.
 - ✓ Supone una evolución de las marcas en el margen que se empleaban para anotar manuscritos.
 - ✓ En los sistemas digitales, estas marcas a mano fueron sustituídas por *etiquetas*.
 - ✓ Las distintas formas de hacer las *marcas* dieron lugar a los llamados *lenguajes de marcas*.

Definición de los Lenguajes de Marcas

- Definición de los lenguajes de marcas:
 - sistema que permite hacer anotaciones en un documento de forma que puedan distinguirse sintácticamente del texto del documento
- Es un modo de codificar un documento donde, junto con el texto, se incorporan etiquetas, marcas o anotaciones con información adicional relativa a la estructura del texto o su formato de presentación.
- Cada lenguaje de marcas debe especificar las siguientes características:
 - ✓ **Etiquetas** posibles
 - ✓ Dónde colocarlas
 - ✓ Significado de cada una de ellas
 - ✓ Hacer explícita la estructura de los documentos
 - ✓ Definir su contenido semántico o cualquier otra información lingüística o extralingüística que se quiera expresar.

Definición de los Lenguajes de Marcas

- Todo lenguaje de marcas está definido en un documento denominado DTD (Document Type Definition).
- En el **DTD** se establecen las marcas, los elementos utilizados por dicho lenguaje y sus correspondientes etiquetas y atributos, su sintaxis y normas de uso.
 - Ej: Aspecto de un documento realizado con un lenguaje de marcas

- GML (Generalized Markup Language):
 - ✓ Desarrollado entre 1969 y 1970 por Charles Goldfarb de IBM.
 - ✓ En el propio documento de texto, se almacenaba el formato del mismo.
 - ✓ Los elementos marcados con símbolos ":" y "." delimiten marcas de formato.
 - ✓ Base para el SGML.

Ej:

```
:h0.El reino de los animales
:h1.Mamíferos
:p.Los mamíferos (:hp1.Mammalia:ehp1.) son una clase de
vertebrados :hp2.amniotas homeotermos:ehp2. que poseen
glándulas mamarias productoras de leche con las que
alimentan a las crías
:h1.Aves
:p. Las aves son animales vertebrados, de sangre
caliente, que caminan, saltan o se mantienen solo sobre
las extremidades posteriores
```

TeX ():

- ✓ Una de las primeras aplicaciones prácticas de esta idea fue el estándar TeX, creado y mantenido por *Donald Knuth* en los años 70 y 80.
- ✓ Se creó para hacer textos científicos, utilizando una tipografía y capacidades que fuera igual en todos los ordenadores, asegurando gran calidad en los resultados.
- ✓ Se necesita un programa que traduzca el fichero TeX a un formato de impresión.
- ✓ TeX requiere amplios conocimientos para ser utilizado, por lo que sólo se utiliza en entornos científicos a través de **LaTeX**, el cual simplifica su uso.
- ✓ La aparición de procesadores de texto tipo WYSIWYG relegó estos sistemas al olvido.
 - WYSIWYG -What You See Is What You Get-: se aplica a procesadores de texto
 y otros editores de texto con formato, como los editores de HTML, que
 permiten escribir un documento viendo directamente el resultado final.
- Amplía: lee el siguiente <u>artículo</u> completo sobre TeX para entender mejor su utilidad (http://www.cervantex.es/queestex).

Ejemplos de LaTex y su resultado impreso:

```
\documentclass[12pt]{article}
\usepackage{amsmath}
\title{\Ejemplo}
\begin{document}
Este es el texto ejemplo de \LaTeX{}
Con datos en \emph{cursiva} o \textbf{negrita}.
Ejemplo de f\'ormula
\begin{align}
E &= mc^2
\end{align}
\end{document}
```

Este es el texto ejemplo de La Con datos en cursiva o negrita. Ejemplo de formula

$$E = mc^2$$

Ej facilitado por un alumno de Daw:

$$\begin{equation} y = \inf_{x=0}^{x=2 \neq 10} f(x) \cdot dx \\ end{equation} \end{equation}$$

$$y = \int_{x=0}^{x=2\pi+10} f(x) \cdot dx$$

- RTF (Rich Text Format):
 - ✓ Creado por *Microsoft* en 1987 por varios miembros del equipo de desarrollo de *Microsoft Word*.
 - ✓ Crea documentos de texto que incluye anotaciones de formato.
 - ✓ Es un formato casi estándar para procesadores de texto.
 - ✓ El formato de los documentos lo almacena como *metadatos*.
 - ✓ Se utiliza como formato de intercambio entre diferentes procesadores.
 - ✓ Su éxito procede de que las indicaciones de formato son potentes y son más legibles por las personas que el formato nativo de los procesadores de textos.
 - ✓ Su inconveniente es que es un lenguaje de marcado complejo.

- RTF (Rich Text Format):
 - **Ej**: contenido de documento rtf y cómo se visualizaría.

```
{\rtf\ansicpg1252\deff0\deflang3082
{\fonttbl
{\f0\fcharset0\froman Times New Roman}
{\f1\fcharset0\fswiss Arial Black}
{\pard \f1\fs48
El reino de los animales
\par}
{\pard \f1\fs40
Mamíferos
\par}
{\pard \f0\fs25
Los mamíferos ({\b Mammalia}) son una clase de
vertebrados {\i amniotas homeotermos} que poseen
glándulas mamarias productoras de leche con las que
alimentan a las crías
\par}
{\pard \f1\fs40
```

El reino de los animales

Mamíferos

Los mamíferos (Mammalia) son una clase de vertebrados *amniotas homeotermos*, que poseen glándulas mamarias productoras de leche con las que alimentan a las crías

- **SGML** (Standard Generalized Markup Language):
 - ✓ La idea de crear un lenguaje **estándar** de marcado de texto fue expuesta por *William W. Tunnicliffe* en 1967. La mayor novedad consistía en **separar presentación y estructura del texto**.
 - ✓ Realmente, *Charles Goldfarb* es el padre de la idea. Dirigió el comité que elaboró el estándar del lenguaje de marcado.
 - ✓ Es una mejora notable del lenguaje de **GML** que estandarizaba el lenguaje de marcado y que fue definida finalmente por ISO como **estándar mundial** en documentos de texto con etiquetas de marcado.
 - ✓ Es un metalenguaje: lenguaje para la definición de lenguajes de marcas.
 - ✓ Todos los lenguajes de marcas actuales descienden de él directamente, XML y HTML.
 - ✓ No tiene etiquetas concretas => los elementos SGML se crean a voluntad.
 - ✓ Su uso se materializó en los 80.

- SGML (Standard Generalized Markup Language):
 - ✓ Tras crear los elementos necesarios, hay que **determinar las reglas** e indicar cómo se va a presentar el formato final, es decir, hay que **definirlos**.
 - Ej: ¿cómo se van a mostrar los elementos <titulo1>

PostScript:

- ✓ Lenguaje de descripción de páginas.
- ✓ Desarrollado en 1976 por *John Warnock*, continuando desde *Xerox*, hasta que en 1985 funda *Adobe Systems*.
- ✓ Es el lenguaje más utilizado por los sistemas de impresión de alta gama.
- ✓ Es un lenguaje de programación que marca acciones a realizar, indicando cómo se va a mostrar la información en el dispositivo final.
- Ej:

Hola mundo!

- HTML (HiperText Markup Language):
- ✓ En 1991, la situación cambia drásticamente cuando Tim Berners-Lee, el inventor de la
 Web, utiliza la sintaxis SGML para crear un nuevo lenguaje de etiquetas: HTML.
- ✓ La extraordinaria sencillez del HTML, junto con el empleo de URLs y la distribución libre de los primeros navegadores, están en el origen del éxito de la World Wide Web.
- ✓ Documentos transportables por Internet en los que es posible el **hipertexto**: palabras marcadas que abren un documento relacionado.
- ✓ Se usa en la Web, siendo el tipo de documento más empleado en el mundo => páginas web.
- ✓ Inicialmente los documentos se veían con ayuda de *intérpretes o visores de texto* -Lynx de Unix- que simplemente coloreaban el texto y remarcaban el hipertexto.
- ✓ Después el software mejoró y aparecieron **navegadores** con capacidad más gráfica para mostrar formatos más avanzados y visuales.
- ✓ El motivo de su éxito es también su principal handicap.
- Razona: ¿cuáles crees que son las desventajas de HTML?

- HTML (HiperText Markup Language):
- Ej página Html desde Lynx:

```
#search copyright
    Los resultados de la votación para el Consejo de Administración de
               la Fundación Wikimedia ya están disponibles.
Portada
De Wikipedia, la enciclopedia libre
  Saltar a navegación, búsqueda
      Bienvenido a Wikipedia, la enciclopedia libre!
  Edición en español de Wikipedia, iniciada en el 2001.
  Quarto - Libro de visitas - Acceso WAP - Contacto
  Explora Wikipedia
  Exploración Exploración Clasificación Sistemas de clasificación
  Búsqueda · indice alfabético · indice de categorías · Portales
  temáticos · Todos los artículos · Acceso WAP Decimal Universal* ·
  Unesco* (4 dígitos* · 6 dígitos*) · Listas (Acrónimos · Biografías ·
   Paises)
  Buscar título exacto Buscar en el texto
  En la columna de la izquierda de cada artículo hay una caja de
  búsqueda equivalente a esta.
               Use right-arrow or (return) to activate.
(NORMAL LINK)
 Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
 H)elp 0)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list
```

- HTML (HiperText Markup Language):
 - Desventajas de HTML:
 - ✓ Su extrema **simplicidad** en declaración e interpretación, impide restringir la generación de **documentos mal formados**.
 - ✓ Además, se comenzaron a **mezclar presentación y contenido**, por lo que hubo de crearse **CSS** como solución.
 - ✓ No soporta tareas de impresión y diseño.
 - ✓ El lenguaje no es flexible, ya que las **etiquetas** son **limitadas**.
 - ✓ No permite mostrar contenido dinámico.

- ✓ Para crear un documento HTML llega con tener un editor de texto.
- Programas capaces de visualizar un documento HTML: navegadores.
 - ✓ Mosaic: primer navegador, a principios de los 90.
 - ✓ Guerra de navegadores, a finales de los 90, en los que cada uno ampliaba HTML añadiendo etiquetas propias.
 - ✓ Se crea la **W3C** -World Wide Web Consortium- para estandarizar.

Evolución de HTML:

- ✓ Aparición de nuevas etiquetas -tablas, imágenes, capas, ...-
- ✓ Permite añadir "dinamismo" a las páginas gracias a lenguajes como JavaScript.
- ✓ Se puede generar de forma automática desde el *lado del servidor*.
- ✓ Se crean hojas de estilo que separan la presentación del contenido: CSS.
- ✓ Se permite la incrustación de objetos: Flash.
- ✓ Aparecen elementos semánticos.
- ✓ Permite el dibujo libre y generación de gráficos mediante el elemento canvas.
- ✓ Se puede añadir vídeo y audio de forma sencilla.

- HTML (HiperText Markup Language):
- Ej de HTML5:

• Ej de HTML 4:

!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

- XML (eXtensible Markup Language):
 - ✓ Desarrollado por el *World Wide Web Consortium*, es un **subconjunto** de **SGML**, ideado para **mejorarlo**, simplificándolo y adaptándolo a los documentos de Internet.
 - ✓ Es más **entendible**, logrando equilibrio entre simplicidad y flexibilidad, además de ser uno de los lenguajes de etiquetas más importantes.
 - ✓ Define lenguajes con sintaxis **más estricta**, indicando lo que esá permitido y lo que no.
 - ✓ Se trata de un **metalenguaje** que permite crear **etiquetas** adaptadas a las necesidades, **definiendo cómo pueden ser** y **qué** se puede hacer con ellas.
 - ✓ Todo documento debe cumplir dos condiciones: ser válido y estar bien formado.
 - ✓ Permite asignar atributos a las etiquetas.
 - ✓ La **estructura** y el **diseño** son **independientes**.
 - ✓ **Soluciona problemas** surgidos de la internacionalización y de la imposibilidad de validar (problemas de HTML).
 - ✓ Es uno de los formatos de documentos más populares para **exportación e importación** de datos.

- XML (eXtensible Markup Language):
 - Ej:

- XHTML(eXtensible HiperText Markup Language):
 - ✓ Es una redefinición del HTML en clave XML => HTML **compatible** con XML: *un documento XHTML es un documento XML válido*.
 - ✓ Se creó como sustituto del HTML.
 - ✓ Al cumplir las restricciones de XML, mantiene sus etiquetas y características, añadiendo algunas restricciones y elementos propios de XML.
 - ✓ Los lenguajes basados en XML tienen múltiples aplicaciones => como el intercambio de datos entre servidores.

Ej:

```
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
   "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="es">
   <head>
        <title>Título del documento</title>
   </head>
   <body>
        <h1>Cabecera de documento</h1> <!-- Título de sección -->
        Un párrafo en el cuerpo<br/>hr />
        </body>
   </body>
   </body>
   </html>
```

- JSON (JavaScript Object Notation):
 - ✓ Es la forma en la que Javascript serializa los objetos.
 - ✓ Es **versátil**: permite definir datos complejos como *arrays* y código de funciones.
 - ✓ Los navegadores le daban soporte nativo.
 - ✓ Es uno de los competidores del XML. Muy popular para almacenar datos.
 - ✓ NO es exactamente un lenguaje de marcas.
 - ✓ El texto se divide en datos y metadatos:
 - El símbolo de los dos puntos separa el metadato del dato.
 - Los símbolos de llave y corchete permiten agrupar de diversas formas los datos.

- JSON (JavaScript Object Notation):
 - Ej:

```
"empinfo" :
{
           "employees" : [
              "name" : "Scott Philip",
"salary" : £44k,
"age" : 27,
           },
              "name" : "Tim Henn",
"salary" : £40k,
"age" : 27,
           },
            "name": "Long Yong",
"salary": £40k,
"age": 28,
```


Relación entre HTML y XML: XHTML

Comparativa entre XML y HTML:

XML	HTML
✓ Es un perfil de SGML.	Es una aplicación de SGML.
✓ Especifica cómo deben definirse conjuntos de etiquetas aplicables a µn tipo de documento.	Aplica un conjunto limitado de etiquetas sobre un único tipo de documento.
✓ Modelo de hiperenlaces complejo.	✓ Modelo de hiperentaces simple.
✓ El navegador es una plataforma para el desarrollo de aplicaciones.	✓ El navegador es un visor de páginas.
✓ Fin de la guerra de los navegadores y etiquetas propietarias.	El problema de la 'no compatibilidad' y las diferencias entre navegadores ha alcanzado un punto en el que la solución es difícil.

➤ **Debate:** ¿qué lenguaje describe el contenido de lo que etiqueta? ¿qué lenguaje usa etiquetas para presentar información?

Tipos de Lenguajes de Marcas

- Tipos de lenguajes de marcas:
 - a) Orientados a la presentación: sólo se muestra la presentación, pero es difícil extraer información.
 - **b)** Orientados a la descripción -descriptivos o semánticos-: no se especifica cómo hay que procesar el texto sino que se utilizan etiquetas que describen el texto indican el significado del contenido-.
 - c) Orientados a los procedimientos: se incluyen instruciones de cómo hay que procesar el texto.
- Debate: ¿crees que en un mismo documento se pueden combinar diferentes tipos de lenguajes de marcas?. A partir de los lenguajes de marcas que hemos visto, facilita un ejemplo de cada tipo. ¿Dónde encajarías a HTML en sus primeras versiones? ¿Y al HTML 5?. Utiliza un muro de padlet para añadir las conclusiones.

Tipos de Lenguajes de Marcas

- a) De presentación: Define el formato del texto. Al texto común se añaden palabras encerradas en símbolos especiales que contienen indicaciones de formato que permiten a los traductores generar un documento final en el que el texto aparece con el formato indicado.
 - Ej: primeras versiones de HTML, RTF, en el que se indica cómo debe presentarse el texto y no lo que significa, archivos generados por los procesadores de texto tradicionales, en los que al texto del documento se le acompaña de indicaciones de formato –negrita-
- b) **Descriptivo o semántico**: Describen las diferentes partes en las que se estructura el documento sin especificar cómo deben representarse.
 - **Ej**: **XML**, **JSON** en los que indica una semántica de contenido que lo hace ideal para almacenar datos, como el nombre de persona, su Nif,
- c) De procedemientos: Orientado también a la presentación pero, el programa que representa el documento debe *interpretar* el código en el mismo orden en que aparece. Incluye instrucciones a realizar con el texto.
 - Ej: LaTeX, PostScript, en los que se puede indicar una fórmula matemática.

Características de los Lenguajes de Marcas

- Características que representan ventajas en los lenguajes de marcas:
 - ✓ **Texto plano**: Un documento escrito con lenguajes de marcas puede ser editado con un simple **editor de textos**, ya que las *marcas* se intercalan entre el contenido.
 - También se pueden utilizar programas más complejos que faciliten el trabajo.
 - Al ser sólo texto, los documentos son independientes de la plataforma, sistema operativo o programa con el que fueron creados.
 - ✓ **Compactos**: las instruciones de marcado se intercalan com el propio contenido, en un **único archivo** o flujo de datos.
 - ✓ **Facilidad de procesamiento**: las etiquetas de estos lenguajes son fácilmente interpretables y tratables informáticamente.
 - ✓ **Flexibilidad**: aunque originalmente estos lenguajes se idearon para documentos de texto, se empezaron a utilizar con éxito en otras áreas, como gráficos vectoriales, servicios web e interfaces de usuario, aprovechando su **simplicidad** y **potencia**.
 - ➤ Razona: ¿crees que las características indicadas representan una ventaja o un inconveniente?

Ámbitos de aplicación de los Lenguajes de Marcas

- El lenguaje de marcas por excelencia ha sido XML: descendiente directo de SGML, es multipropósito y permite definir otros lenguajes de marcas, estandarizados por W3C.
- Clasificación de los lenguajes de marcas según su ámbito de aplicación:
 - a) **Contenidos web**: permiten definir las estructuras de los docu-mentos web. **Ej**: **HTML** y **XHTML**.
 - b) **Procesadores de textos**: emplean lenguajes de marcas para definir el formato y apariencia de los documentos. **Ej**: formatos de archivo **ODF** o **RTF**.
 - c) **Sindicación de contenidos**: permite difundir información actualizada frecuentemente a usuarios subscritos a una fuente de contenidos. **Ej**: **RSS** utiliza lenguajes de marcas para este propósito.
 - d) **Servicios web**: se utiliza para definir la información que intercambian distintos servicios web, facilitando la transferencia de información. **Ej**: el lenguje **SOAP**
 - e) **Gráficos vectoriales**: **Ej**: **SVG** (*Scalable Vector Graphics*), permite describir completamente complejas imágenes de 2D empleando únicamente texto.

Ámbitos de aplicación de los Lenguajes de Marcas

- Clasificación de los lenguajes de marcas según su ámbito de aplicación (cont.):
 - f) Listas de reprodución: los reproductores multimedia emplean lenguajes de marcas para definir sus listas de reproducción. Ej: ASX, PLA, WPL.
 - **g)** Archivos de configuración: muchos programas y servicios utilizan lenguajes de marcas para sus archivos de configuración. Ej: el servidor de aplicaciones Tomcat.
 - h) Lenguaje de marcas de propósito general: los lenguajes anteriormente citados están basadas en XML. Este es un lenguaje de marcas de propósito general que permite definir lenguajes concretos de representación de documentos.

Ámbitos de aplicación de los Lenguajes de Marcas

Ej de lenguajes de marcas especializados:

Área	Lenguaje	Descripción / Ejemplo
Matemática:	MathML y OpenMath	Su objetivo es expresar notación matemática
Geomática:	Geography ML	Su objetivo es el modelaje, transporte y almacenamiento de información geográfica
Aeronáutica:	Spacecraft ML	
Multimedia:	Synchronized Multimedia Integration Language	El lenguaje SMIL permite integrar audio, video, imágenes, texto o cualquier otro contenido multimedia
Voz:	VoiceXML	
Mensajería instantánea:	XMPP	Con el protocolo XMPP queda establecida una plataforma para el intercambio de datos XML que puede ser usada en aplicaciones de mensajería instantánea
Gráficos 3D:	VRML/X3D, STEP	formato de archivo normalizado que tiene como objetivo la representación de escenas u objetos interactivos tridimensionales