CS 215 Data Analysis and Interpretation

Estimation

Suyash P. Awate

Sample

Definition:

If random variables X_1 , ..., X_N , are **i.i.d.**, then they constitute a random **sample** of size N from the common distribution

- N = "sample size"
- One set of observed data is one instance/realization of the sample
 - i.e., {x₁, ..., x_N}
- The common distribution from which data was "drawn" is usually unknown

Statistic

Definition:

Let X_1 , ..., X_N denote a sample associated with random variable X (i.e., all of X_1 , ..., X_N have the same distribution as X). Let $T(X_1, ..., X_N)$ be a **function of the sample.** Then, random variable T is called the **statistic.**

• For the drawn sample $\{x_1, ..., x_N\}$, the value $t := T(x_1, ..., x_N)$ is an instance of the statistic

Model

Statistical model

- Typically, a probabilistic description of real-world phenomena
- Description involves a distribution that may involve some parameters
 - e.g., P(X; θ)
- Describes/represents a data-generation process
- Designed by people
 - Unlike data that is observed/measured/acquired
 - Nature doesn't generate models

Estimation

Estimation theory

- A branch of statistics that deals with estimating the values of parameters (underlying a statistical model) based on measured/empirical data
- While data generation starts with parameters and leads to data, estimation starts with data and leads to parameters

Estimation problem

- Given: Data
- Assumption: Data was generated from a parametric family of distributions (i.e., a family of models)
- Goal: To infer the distribution parameters

 (i.e., the distribution/model instance from the family of distributions/models)
 that the data was generated from

Estimator, Estimate

Estimator

- A deterministic (not stochastic) rule/formula/algorithm for calculating/computing an estimate of a given quantity (e.g., a parameter value) based on observed data
- An estimator is also a statistic

Estimate

A value resulting from applying the estimator to data

Estimator Mean, Variance, Bias

- Let $X_1, ..., X_N$ be a sample on a random variable X with PDF/PMF P(X; θ)
- Let T(X₁, ..., X_N) be a statistic
- Mean of the estimator (definition): Expected value of T, i.e., E[T]
- Variance of the estimator (definition): Var(T) := E[(T E[T])²]
- Bias of the estimator (definition): Bias(T) := $E[T] \theta$
- Mean squared error (MSE) of the estimator (definition)
 - Expected value of the squared error MSE(T) := $E[(T \theta)^2]$
- Unbiased estimator (definition): T is unbiased if Bias(T) = 0
- Consistent estimator (definition)
 - Estimator is $T_N = T(X_1, ..., X_N)$ is consistent if $\forall \epsilon > 0$, $\lim_{N \to \infty} P(|T_N \theta| \ge \epsilon) = 0$
 - Thus, T_N is said to "converge in probability" to θ

Estimator MSE, Bias, Variance

- MSE(T) := $E[(T \theta)^2]$
- $= E[(T E[T] + E[T] \theta)^2]$
- $= E[(T E[T])^{2}] + E[(E[T] \theta)^{2}] + E[2(T E[T])(E[T] \theta)]$

Probability

Reference value

Accuracy

- $= Var(T) + (Bias(T))^2 + 0$
- : Variance + Bias²
- Bias-variance density decomposition/"tradeoff":
 - If two estimators T_1 and T_2 have same MSE, then if one estimator (say, T_1) has a smaller bias magnitude, it (i.e., T_1) also has a larger variance

Likelihood Function

- Let $X_1, ..., X_N$ be a sample on a random variable X with PDF/PMF P(X; θ)
- **Definition:** Likelihood function L(θ ; X₁, ..., X_N) := $\prod_{i=1}^{N} P(X_i; \theta)$
- We want to use the likelihood function to estimate θ from the sample
- Sometimes, analysis relies on $log(L(\theta; X_1, ..., X_N))$, leveraging that log(.) is strictly monotonically increasing
- Some assumptions (#)
 - 1. Different values of θ correspond to different CDFs associated with P(X; θ)
 - i.e., parameter θ identifies a unique distribution
 - 2. All PMFs/PDFs have common support for all parameters θ
 - i.e., support of X cannot depend on θ
 - Under these assumptions, the likelihood function has a nice property (as discussed next)

Likelihood Function

• **Theorem:** Let θ_{true} be the parameter value that led to sample X_1 , ..., X_N . Assume $E_{P(X;\theta_{\text{true}})}[P(X;\theta)/P(X;\theta_{\text{true}})]$ exists (e.g., it is finite). Then, $\lim_{N\to\infty} P(L(\theta_{\text{true}};X_1,\cdots,X_N)>L(\theta;X_1,\cdots,X_N);\theta_{\text{true}})=1, \forall \theta\neq\theta_{\text{true}}$

- Proof:
 - Event $L(\theta_{\text{true}}; X_1, \dots, X_N) > L(\theta; X_1, \dots, X_N) \equiv \frac{1}{N} \sum_{i=1}^N \log \left| \frac{P(X_i; \theta)}{P(X_i; \theta_{\text{true}})} \right| < 0$
 - We want to show that, as $N \rightarrow \infty$, this event has prob. 1 (i.e., inequality is true)

Law of large numbers:

Because of the law of large numbers:

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{P(X_i;\theta)}{P(X_i;\theta_{\text{true}})} \right] \to E_{P(X;\theta_{\text{true}})} \left[\log \frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right]$$
For all $\varepsilon > 0$, as $n \to \infty$, $P(|\overline{X} - \mu| \ge \varepsilon) \to 0$

• Because log(.) is a (strictly) concave function, Jensen's inequality makes the above expectation $< \log \left(E_{P(X;\theta_{\text{true}})} \left[\frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right] \right) = \log(1) = 0$

Maximum Likelihood (ML) Estimation

Definition:

An estimator $T = T(X_1, ..., X_N)$ is a "maximum likelihood (ML) estimator" if $T := arg max_\theta L(\theta; X_1, \cdots, X_N)$

- "arg max $_{\theta}$ g(θ)": the argument (i.e., θ) that maximizes the function g(.)
- "max_{θ} g(θ)": the maximum possible value of the function g(.) across all θ
- Properties of ML estimation
 - Sometimes, ML estimator may not exist, or it may not be unique
 - When assumptions (#) hold, and max of likelihood function exists & is unique, then ML estimator is a consistent estimator
 - When sample size is finite, it loses guarantee to find true parameter value
 - When sample size is finite, this behavior holds for most methods, unless very strong assumptions (usually not holding in practice) are made on the data
 - In practice, a large enough sample size take ML estimate T sufficiently close to θ_{true} so that the ML estimate T is still useful

MLE for Bernoulli

- Let θ := probability of success
 - θ must lie within [0,1]
- Likelihood function L(θ) := $\prod_{i=1}^{N} \theta^{X_i} (1-\theta)^{(1-X_i)}$
- ML estimate for θ is what ?
 - At maximum of $L(\theta)$:
 - First derivative must be zero
 - This gives one equation in one unknown θ
 - Second derivative must be negative
 - ML estimate is sample mean, i.e., $\sum_{i=1}^{N} X_i / N$

MLE for Binomial

- Let θ := probability of success
 - θ must lie within [0,1]
- Let M := number of Bernoulli tries for each Binomial random variable
- Let $\{X_i : i = 1, ..., N\}$ model repeated draws from Binomial, where X_i models number of successes in i-th draw from Binomial
- ML estimate for θ is sample mean $\sum_{i=1}^{N} X_i / (NM)$
- Interpretation:
 - N independent Binomials draws, where each Binomial has M independent Bernoulli draws, is equivalent to NM independent Bernoulli draws
 - Total number of successes in NM Bernoulli trials is $\sum_{i=1}^{N} X_i$

MLE for Poisson

- Parameter is average rate of arrivals/hits λ
- ML estimate is sample mean
- Note that λ is both mean and variance of the Poisson random variable

MLE for Gaussian

- Parameters are mean μ and standard deviation σ
- Likelihood function $L(\mu, \sigma)$ is a function of 2 variables
- Maximizing likelihood function $L(\mu, \sigma)$ is equivalent to maximizing log-likelihood function $log(L(\mu, \sigma))$
 - Because log(.) function is a (strictly) monotonically increasing
- Need to solve for 2 equations in 2 unknowns
- ML estimate for μ is sample mean
- ML estimate for σ^2 is sample variance

MLE for Uniform Distribution

- Parameters are lower limit 'a' and upper limit 'b' (a < b)
- Let sample instance be $\{x_1, ..., x_N\}$, sorted in increasing order, $\{x_1, ..., x_N\}$
- What are ML estimates?
 - First, $a \le x_1$, else likelihood function is zero
 - Also, $x_N \le b$, else likelihood function is zero
 - Likelihood function L(a,b) := (1/(b-a))^N
 - Log-likelihood function log(L(a,b)) = -N.log(b-a)
 - Partial derivative w.r.t. 'a' is N/(b-a) > 0
 - Partial derivative w.r.t. 'b' is (-N/(b-a)) < 0
 - L(a,b) is maximum when $a = x_1$ and $b = x_N$

On Preparation for Events (Exams) in Life

- From the Iron Man
 - "I don't really prepare for anything like an event."
 - "The goal is to be at a certain level of fitness."
 - "I should be able to run a full marathon whenever I want."
 - "That is the constant level of fitness that I aspire to."
 - "I keep my fitness level as a goal, not an event as a goal."
 - "There is no such thing as a good shortcut."
 - "If you want to be healthy, and you want to be fit, and you want to be happy, you have to work hard."
 - https://youtu.be/x_96xVfdzu0?t=303

