

Endsem Review NN&DL

Done By: Saikumar Dande Chandravaran Kunjeti



### METHODS TO OBTAIN DEPTH

#### Deep Learning

Using Deep learning we can either use supervised learning or unsupervised learning to find the depth

#### IR

Uses a IR Transmitter and receiver to determine the depth

#### **STEREO**

This works on the principle of reconstruction of an image using 2 images

#### LIDAR

Uses light transmitted to calculate the distance usually ground truth images are found using this method.

### Preprocessing - Camera Calibration

If we want understand the point in an Image we need to know what transforms are involved in the process, there are many types of parameters which are as follows



- Extrinsic parameters
  - Rotation matrix
  - Translation matrix
- Intrinsic parameters
  - -Intrinsic matrix
  - -Focal length
  - -Optical centre

### Preprocessing - Image Rectification

- After taking the images, they need to be rectified.
- Rectification process
  - Removes lens distortion.
  - Turns the stereo pair into
    standard form where images are
    perfectly aligned horizontally.



### Disparity

$$\frac{b}{Z} = \frac{(b + x_T) - x_R}{Z - f} \longrightarrow Z = \frac{b \cdot f}{x_R - x_T} = \frac{b \cdot f}{d}$$

Disparity = 
$$X_R - X_T$$

### Depth



Depth = Base\_length\*Focal\_length/Disparity

Base\_length = Distance between left and right camera

#### Dataset

#### > NYU Dataset

- The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft <u>Kinect</u>. It features:
- o **1449** densely labeled pairs of aligned RGB and depth images
- 464 new scenes taken from 3 cities
- **407,024** new unlabeled frames
- o Dataset is split into 1024 train, 201 test and 224 validation

#### ➤ KITTI Dataset

- The depth completion and depth prediction evaluation are related to our work published in Sparsity Invariant CNNs (THREEDV 2017)
- It contains over 93 thousand depth maps with corresponding raw LiDaR scans and RGB images,
  aligned with the raw data of the KITTI dataset







### Previous year work

Sum of Absolute Difference(SAD)

$$s = \sum_{(u,v)\in\mathbf{I}} |\mathbf{I}_1[u,v] - \mathbf{I}_2[u,v]|$$

#### Census Transform(CT)



## Multi Block Matching (MBM)

Reason to use Multi Block Matching





# Locally Consistent Disparity Map Generation



# Unsupervised Monocular Depth Estimation with Left-Right Consistency





- This model is an unsupervised method of finding the depth of an Image. It uses a stereo image as an input
- > The depth is found for a single image, and then the other image is used to evaluate it

# Coarse & Fine Net



- This network has 2 parts: Coarse net and fine net.
- Coarse net predicts the depth of a scene at a global level.
- > Fine net is used to refine within the local regions.

# UNet



- Unet is a famous model that can be used for segmentation. It is also used for depth estimation.
- Unet consists of two parts: Encoder and a Decoder.



Proposed Model 1: Onet





# **Convolution Block** 5x5 Output to the Input to the block block 3x3 3x3 1x1

# Proposed Convolution block









# Previous year method results



| Models | l     | Delta 2<br>(<1.25 <sup>2</sup> ) |       | RMSE<br>Linear | RMSE<br>Log | ABS rel | Square<br>Relative |
|--------|-------|----------------------------------|-------|----------------|-------------|---------|--------------------|
| IVP    | 0.462 | 0.634                            | 0.851 | 4.393          | 0.346       | 0.78    | 0.835              |

# Previous year method results









# Coarse & Fine Net



| Models           | Delta 1<br>(<1.25) | Delta 2<br>(<1.25 <sup>2</sup> ) | Delta 3<br>(<1.25 <sup>3</sup> ) | RMSE<br>Linear | RMSE<br>Log | ABS rel | Square<br>Relative |
|------------------|--------------------|----------------------------------|----------------------------------|----------------|-------------|---------|--------------------|
| Coarse           | 0.4797             | 0.8064                           | 0.9449                           | 0.8961         | 0.1465      | 0.3709  | 0.5530             |
| Coarse<br>+ Fine | 0.5230             | 0.8268                           | 0.9470                           | 0.8283         | 0.1415      | 0.3831  | 0.5373             |

# UNet







| Models | l      | Delta 2<br>(<1.25 <sup>2</sup> ) | Delta 3<br>(<1.25 <sup>3</sup> ) | RMSE<br>Linear | RMSE<br>Log | ABS rel | Square<br>Relative |
|--------|--------|----------------------------------|----------------------------------|----------------|-------------|---------|--------------------|
| Unet   | 0.5625 | 0.8605                           | 0.9571                           | 0.7873         | 0.1278      | 0.3582  | 0.6016             |

# ONet





| Models |        |        | Delta 3<br>(<1.25 <sup>3</sup> ) | l      | RMSE<br>Log | ABS rel | Square<br>Relative |
|--------|--------|--------|----------------------------------|--------|-------------|---------|--------------------|
| Onet   | 0.6298 | 0.8984 | 0.9704                           | 0.6924 | 0.1057      | 0.3125  | 0.5097             |

# YNet



| Models |        | l      | Delta 3<br>(<1.25 <sup>3</sup> ) | l      | RMSE<br>Log | ABS rel | Square<br>Relative |
|--------|--------|--------|----------------------------------|--------|-------------|---------|--------------------|
| Ynet   | 0.6560 | 0.9092 | 0.9725                           | 0.6652 | 0.1009      | 0.3074  | 0.5118             |

# YNet + New Convolution Block



| Models   |          | Delta 1<br>(<1.25) | Delta 2<br>(<1.25 <sup>2</sup> ) | Delta 3<br>(<1.25 <sup>3</sup> ) | RMSE<br>Linear | RMSE Log | ABS rel | Square<br>Relative |
|----------|----------|--------------------|----------------------------------|----------------------------------|----------------|----------|---------|--------------------|
| Ynet + N | ew block | 0.6745             | 0.9119                           | 0.9772                           | 0.6537         | 0.0985   | 0.2971  | 0.4910             |



### Results

| - |                            |                    |                                  |                                  |                |             |                  |                    |
|---|----------------------------|--------------------|----------------------------------|----------------------------------|----------------|-------------|------------------|--------------------|
|   | Models                     | Delta 1<br>(<1.25) | Delta 2<br>(<1.25 <sup>2</sup> ) | Delta 3<br>(<1.25 <sup>3</sup> ) | RMSE<br>Linear | RMSE<br>Log | AB\$<br>relative | Square<br>relative |
|   | Coarse + Fine<br>(Paper)   | 0.611              | 0.887                            | 0.971                            | 0.907          | 0.285       | 0.215            | 0.212              |
|   | Coarse + Fine<br>(Trained) | 0.5230             | 0.8268                           | 0.9470                           | 0.8283         | 0.1415      | 0.3831           | 0.5373             |
|   | Unet                       | 0.5625             | 0.8605                           | 0.9571                           | 0.7873         | 0.1278      | 0.3582           | 0.6016             |
|   | Onet                       | 0.6298             | 0.8984                           | 0.9704                           | 0.6924         | 0.1057      | 0.3125           | 0.5097             |
|   | Ynet                       | 0.6560             | 0.9092                           | 0.9725                           | 0.6652         | 0.1009      | 0.3074           | 0.5118             |
|   | Ynet + New block           | 0.6745             | 0.9119                           | 0.9772                           | 0.6537         | 0.0985      | 0.2971           | 0.4910             |

#### Results





#### References

- > Dataset: https://cs.nyu.edu/~silberman/datasets/nyu\_depth\_v2.html
- David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from a single image using a multi-scale deep network. In Proceedings of the 27th International Conference on Neural Information Processing Systems -Volume 2 (NIPS'14). MIT Press, Cambridge, MA, USA, 2366–2374
- Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4\_28
- Godard, Clement & Aodha, Oisin & Gabriel, Jourdan. (2017). Unsupervised Monocular Depth Estimation with Left-Right Consistency. 10.1109/CVPR.2017.699.







# FUTURE WORK

### FUTURE WORK

- We plan to improve the model by using altros convolution as part of the new-convolution block
- Also we use the full image size if we are able to get enough compute power
- Try to deploy this in a real life scenario using a webcam, also add preprocessing for real world images.

# THANKS!

Saikumar Dande Chandravaran Kunjeti