# Aprendizado de Maquina

# Integrantes

Equipe 9

- Lucas Araujo Bourguignon
- Lucas Nascimento Brandão
- Luiz Eduardo de Freitas Von Schmalz
- Vinicius Seabra Lago Lima

# Entendimento do negócio

O **problema** central do nosso projeto está relacionado à análise de pedidos de empréstimo bancário. Muitas instituições financeiras enfrentam dificuldades para identificar, de forma rápida e precisa, quais clientes têm maior risco de inadimplência. Isso pode resultar em prejuízos financeiros, demora no processo de aprovação e concessão de crédito a perfis inadequados.

Nosso **objetivo** é desenvolver um modelo preditivo que auxilie na tomada de decisão, reduzindo esses riscos e otimizando a concessão de crédito de forma mais segura e eficiente.



# Entendimento do negócio

#### **Motivação:**

- Alta relevância para o setor financeiro.
- Necessidade de reduzir inadimplência e fraudes.
- Otimização dos processos de análise de crédito.

#### **Metas:**

- Criar um modelo preditivo eficiente.
- Reduzir riscos na concessão de crédito.
- Automatizar e agilizar a análise de pedidos.



## Entendimento dos dados

## Descrição da base de dados

- 13 features
  - 8 features numéricas
  - 5 features categóricas

• 45000 registros

Representação gráfica das features categóricas:



Representação gráfica das features numéricas:



Histograms of Continuous Features (Without Outliers)

## Entendimento dos dados



## Limpeza da base de dados

| Dados ausentes               | Não |  |
|------------------------------|-----|--|
| Presença de outliers         | Sim |  |
| Ocorrência de duplicatas     | Não |  |
| Desbalanceamento das classes | Sim |  |

- Base de dados consideravelmente "limpa"
- Presença de uma porcentagem relevantes de outliers entre as colunas, além do desbalanceamento das classes, que serão tratados na próxima etapa



 O primeiro passo no tratamento de dados foi a substituição dos outliers pela média das colunas, o resultado dessa limpeza foi:

### Outliers por coluna (método IQR):

person\_age: 2188 outliers

person\_income: 2218 outliers

person\_emp\_exp: 1724 outliers

loan\_amnt: 2348 outliers

loan\_int\_rate: 124 outliers

loan\_percent\_income: 744 outliers

cb\_person\_cred\_hist\_length: 1366 outliers

credit\_score: 467 outliers

### Balanceamento do dataset

• Fizemos uma verificação de quantas classes existiam dentro do dataset e esse foi o resultado:

Distribuição das classes (%):

loan\_status

0 77.77778

1 22.22222

Name: proportion, dtype: float64

- Presença de grande desbalanceamento dos dados
- Foi aplicado o método random oversampling, que balanceia as classes de forma que o treinamento não será afetado pela quantidade de ocorrências de cada classe:

Nova distribuição das classes após Random Oversampling:

Classe 1: 50.00%

Classe 0: 50.00%

## Categorizando colunas

- O próximo passo no tratamento foi categorizar certas colunas como idade, educação, tipo de moradia, crédito antigo etc.
- O objetivo desse passo é dividir colunas como idade em 'categorias' como jovem, adulto e idoso. Para isso consideramos um range de idades e trocamos os valores de idade por valores númericos representando as categorias.

## Representação de Categorias Não Ordenadas

- Colunas sem ordem natural (ex: tipo de moradia, faixas etárias) não devem ser tratadas como sequenciais.
- Utiliza-se codificação one-hot para representar essas variáveis.
- Cada categoria se torna uma nova coluna.
- Cada linha recebe:
  - 1 na coluna da sua categoria.
  - 0 nas demais colunas.
- Exemplo: "tipo de moradia" vira "Aluguel",
  "Proprietário", "Hipoteca" e "Outros".



Exemplo pós codificação one-hot

| INDEX\LOAN_INTENT | PERSONAL | EDUCATION | MEDICAL | VENTURE | HOME<br>IMPROVEMENT | DEBT<br>CONSOLIDATI<br>ON |
|-------------------|----------|-----------|---------|---------|---------------------|---------------------------|
| 0                 | 0        | 1         | O       | Ο       | O                   | O                         |
| 1                 | 0        | O         | 1       | O       | O                   | O                         |
| 2                 | 0        | O         | O       | 1       | O                   | O                         |
| 3                 | 0        | O         | O       | 1       | O                   | O                         |
| 4                 | 0        | O         | O       | 1       | O                   | O                         |

Normalização dos Valores Numéricos

 Depois de passar por todos esses passos, nos resta normalizar o dataset para garantir que os valores númericos teram o mesmo peso durante o treinamento e assim acabamos nosso tratamento de dados. Para a normalização, ultilizamos o método MIN-MAX

## Exemplo pós normalização

| INDEX\NORMALIZED<br>COLUMNS | loan_amnt | loan_int_rate | loan_percent_inco<br>me | cb_person_cred_hist_len<br>gth |
|-----------------------------|-----------|---------------|-------------------------|--------------------------------|
| 0                           | 0.361767  | 0.748059      | 0.364746                | 0.076923                       |
| 1                           | 0.022173  | 0.403670      | 0.216216                | 0.00000                        |
| 2                           | 0.221729  | 0.525759      | 0.364746                | 0.076923                       |
| 3                           | 0.361767  | 0.692308      | 0.364746                | 0.00000                        |
| 4                           | 0.361767  | 0.624559      | 0.364746                | 0.153846                       |

 Por fim, separamos o dataset em treino, validação e teste, para garantir que durante os experimentos os mesmos dados fossem utilizados.



# Modelagem

Modelos escolhidos

LVQ

MLP

SVM

Decision tree

Heterogeneous ensemble

KNN

LightGBM

nn comitee

Randon florest

Xgboost

Vamos analisar os modelos com melhor desempenho, são eles: **Árvore de decisão**, **SVM**, **XGBoost**, **LightGBM**.





# Árvore de Decisão

Árvore de Decisão é um algoritmo supervisionado de aprendizado de máquina utilizado para classificação e regressão.

#### Espaço de busca

```
max_depth: randint(1, 21), min_samples_split: randint(2, 21), min_samples_leaf: randint(1, 21), criterion: ['gini', 'entropy'],
```

#### Melhores hiperparâmetros encontrados

```
max_depth: randint(1, 21), min_samples_split: randint(2, 21), min_samples_leaf: randint(1, 21), criterion: ['gini', 'entropy'],
```

# Árvore de Decisão

Melhor média de acurácia nos folds: 0.9163



## **SVM**

O modelo SVM (Máquinas de Vetores de Suporte) é um algoritmo de que busca encontrar o hiperplano que melhor separa as classes de dados, maximizando a margem entre os pontos de classes diferentes.

### Espaço de busca

C: (1e-3, 1e3), gamma: (1e-3, 1e1),

kernel: ['linear', 'rbf']

## Melhores hiperparâmetros encontrados

C: 9.4435, gamma: 0.01765,

kernel: 'rbf'

# **SVM**



## **XGBoost**

XGBoost (Extreme Gradient Boosting) é baseado em árvores de decisão que utiliza a técnica de boosting para combinar vários modelos fracos, corrigindo erros iterativamente e otimizando o desempenho por meio de regularização e paralelização.

#### Espaço de busca

subsample: (0.5, 0.5), colsample\_bytree: (0.5, 0.5), gamma: (0, 0.5)

#### Melhores hiperparâmetros encontrados

n\_estimators: 235, max\_depth: 7, learning\_rate: 0.14152,

subsample: 0.76924, colsample\_bytree: 0.5381, gamma: 0.3899

## **XGBoost**

Melhor média de acurácia nos folds: 0.9303



# LightGBM

LightGBM (Light Gradient Boosting Machine) é baseado em árvores desenvolvido para ser rápido e eficiente, que usa técnicas como histogramas e crescimento de árvore por folhas (leaf-wise) para melhorar a velocidade e a acurácia em grandes volumes de dados.

#### Espaço de busca

n\_estimators: (50, 200), subsample: (0.6, 1.0), colsample\_bytree: (0.6, 1.0)

#### Melhores hiperparâmetros encontrados

num\_leaves: 139, max\_depth: 13, learning\_rate: 0.05,

n\_estimators: 183, subsample: 0.6, colsample\_bytree: 0.6

# LightGBM





# Avaliação



## Conclusão

Concluímos que, por meio de um cuidadoso processo de tratamento de dados e avaliação de diversos algoritmos de machine learning, foi possível desenvolver modelos preditivos robustos e eficientes para apoiar a análise de pedidos de empréstimo bancário.

Dentre os modelos testados, o **XGBoost** e o **LightGBM** se destacaram, alcançando as melhores métricas de desempenho.



**Lucas Araujo Bourguignon** lab9@cin.ufpe.br



Luiz Eduardo Schmalz lefvs@cin.ufpe.br



Lucas Nascimento Brandão Inb@cin.ufpe.br



Vinícius Seabra Lago Lima vsll@cin.ufpe.br