Fundamental Limits of Coded Caching: From Uncoded Prefetching to Coded Prefetching

Kai Zhang and Chao Tian

Texas A&M University

ISIT 2018

Coded Caching and Its Applications

- A data management strategy to reduce delay during peak-traffic time,
- ► Single user setting, e.g. on-CPU caches, RAM in computers,
- ▶ Multiple user setting, e.g. networked system.

When the CPU needs data, it looks first in cache memory.

Coded Caching and Its Applications

- A data management strategy to reduce delay during peak-traffic time,
- ► Single user setting, e.g. on-CPU caches, RAM in computers,
- ▶ Multiple user setting, e.g. networked system.

An Information-theoretic Formulation

- N files of same size, K users, each with a local cache of size M,
- Prefetching phase: users fill their cache without knowing the requests,
- Delivery phase: each user requests a single file, server multicasts information to accommodate the requests.

Maddah-Ali & Niesen¹, improved by Yu et al², proved being optimal,

- Prefetching strategy:
 - Partition each file into $\binom{K}{t}$ segments, each associated with a cardinality-t subset,
 - Each user caches $\binom{K-1}{t-1}$ segments,
 - E.g.: (N, K) = (3, 4), t = 2,

User 1	A ₁₂	A_{13}	A_{14}	B_{12}	B ₁₃	B_{14}	C ₁₂	C ₁₃	C_{14}
User 2	A ₁₂	A_{23}	A_{24}	B_{12}	B_{23}	B_{24}	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B_{13}	B_{23}	B ₃₄	C ₁₃	C_{23}	C_{34}
User 4	A ₁₄	A ₂₄	A ₃₄	B ₁₄	B ₂₄	B ₃₄	C ₁₄	C ₂₄	C ₃₄

- Delivery strategy
 - For any (t+1) users subset \mathcal{B} , send the XOR of requested segments.

 $^{^2}$ Yu Q, Maddah-Ali M A, Avestimehr A S. The exact rate-memory tradeoff for caching with uncoded prefetching[J]. IEEE Transactions on Information Theory, 2017.

¹Maddah-Ali M A, Niesen U. Fundamental limits of caching[J]. IEEE Transactions on Information Theory, 2014, 60(5): 2856-2867

Server transmits:

$$\mathcal{B} = \{1,2,3\} : A_{23} + A_{13} + B_{12}, \ \mathcal{B} = \{1,2,4\} : A_{24} + A_{14} + C_{12}$$

$$\mathcal{B} = \{1,3,4\} : A_{34} + B_{14} + C_{13}, \ \mathcal{B} = \{2,3,4\} : A_{34} + B_{24} + C_{23}$$

Using a brief moment, let's look at the decoding steps for the 1st user, when demand is (A,A,B,C):

▶ Demand (A,A,B,C), server transmits:

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

User 1	A_{12}	A_{13}	A_{14}	B_{12}	B_{13}	B_{14}	C_{12}	C_{13}	C_{14}
User 2	A ₁₂	A_{23}	A ₂₄	B_{12}	B_{23}	B_{24}	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B ₁₃	B ₂₃	B ₃₄	C ₁₃	C_{23}	C ₃₄
User 4	A ₁₄	A_{24}	A ₃₄	B ₁₄	B ₂₄	B ₃₄	C ₁₄	C_{24}	C_{34}

Step 1: using A_{13} and B_{12} to decode A_{23} ;

▶ Demand (A,A,B,C), server transmits:

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

User 1	A ₁₂	A_{13}	A ₁₄	B_{12}	B_{13}	B ₁₄	C_{12}	C_{13}	C_{14}
User 2	A ₁₂	A_{23}	A ₂₄	B_{12}	B_{23}	B ₂₄	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B ₁₃	B_{23}	B ₃₄	C_{13}	C_{23}	C_{34}
User 4	A ₁₄	A_{24}	A ₃₄	B ₁₄	B ₂₄	B ₃₄	C_{14}	C_{24}	C_{34}

Step 2: using A_{14} and C_{12} to decode A_{24} ;

▶ Demand (A,A,B,C), server transmits

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

User 1	A ₁₂	A_{13}	A ₁₄	B_{12}	B_{13}	B_{14}	C_{12}	C ₁₃	C_{14}
User 2	A ₁₂	A_{23}	A ₂₄	B_{12}	B_{23}	B_{24}	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B ₁₃	B_{23}	B ₃₄	C_{13}	C_{23}	C_{34}
User 4	A ₁₄	A_{24}	A ₃₄	B ₁₄	B ₂₄	B ₃₄	C ₁₄	C ₂₄	C ₃₄

Step 3: using B_{14} and C_{13} to decode A_{34} ; User 1 now decodes the entire file A.

Tian-Chen scheme¹,

- Prefetching strategy:
 - A file is partitioned into ${K \choose t}$ segments, each user allocated ${K-1 \choose t-1}$ segments,
 - User encodes file segments using a rank metric code and stores the parities,
 - E.g.: (N, K) = (3, 4), t = 2, user 1 caches

In the example, a (14.9) systematic rank metric code is used, user 1 stores the 5 parities.

Tian C, Chen J. Caching and delivery via interference elimination[C]. Information Theory (ISIT), 2016 IEEE International Symposium on. IEEE, 2016: 830-834.

- Delivery strategy: Linear combination of segments from one file.
 - E.g.: demand (A,A,B,C), transmits 9 (coded) symbols:

$$A_{34}, B_{12}, B_{14}, B_{24}, C_{12}, C_{13}, C_{23}, A_{13} + A_{23}, A_{14} + A_{24}$$

- Each symbol serves two roles:
 - 1) content delivery for some users;
 - 2) help resolve coded symbols for some other users.

To be clear, let's check user 1,

▶ Demand (A,A,B,C), server transmits:

Step 1: user 1 collects 4 symbols B_{12} , B_{14} , C_{12} , C_{13} ; Together with 5 (coded) symbols in his cache, he can decode all 9 symbols.

▶ Demand (A,A,B,C), server transmits:

$$A_{34}$$
, B_{12} , B_{14} , B_{24} , C_{12} , C_{13} , C_{23} , A_{13} + A_{23} , A_{14} + A_{24}

Step 2: user 1 already resolved all symbols in the cache, as following:

He then collects $A_{13} + A_{23}$, $A_{14} + A_{24}$, he can decode A_{23} , A_{24} ;

▶ Demand (A,A,B,C), server transmits:

$$A_{34}$$
, B_{12} , B_{14} , B_{24} , C_{12} , C_{13} , C_{23} , $A_{13} + A_{23}$, $A_{14} + A_{24}$

Step 3: user 1 collects A_{34} , now he decodes the entire file A;

Two Quite Different Schemes

- Uncoded prefetching vs. coded prefetching,
- ▶ Binary code *vs.* non-binary code,
- Encoding/decoding using simple combinatorics vs.
 sophisticated coding techniques (rank metric codes),
- Uncoded prefetching performs better at high cache memory regime vs. coded prefetching performs better at low cache memory regime.

Largely unrelated...
Are there any connections?

Some Backgrounds

▶ Linearized Polynomial: A degree- q^{P-1} linearized polynomial in the finite field \mathbb{F}_{q^m}

$$f(x) = \sum_{i=1,2,...,P} v_i x^{q^{i-1}}, v_i \in \mathbb{F}_{q^m}$$
 (1)

can be uniquely identified from evaluations at any P points $x=\theta_i\in\mathbb{F}_{q^m}, i=1,2,\ldots,P$, that are linearly independent over \mathbb{F}_q .

Some Backgrounds

Lemma

Let f(x) be a degree- q^{P-1} linearized polynomial in \mathbb{F}_{q^m} , and $\theta_i \in \mathbb{F}_{q^m}$, $i=1,2,\ldots,P_o$, be linearly independent over \mathbb{F}_q . Let G be a $P_o \times P$ full rank (rank P) matrix with entries in \mathbb{F}_q , then f(x) can be uniquely identified from

$$[f(\theta_1), f(\theta_2), \dots, f(\theta_{P_o})] \cdot G. \tag{2}$$

- (v_1, \ldots, v_P) are information symbols to be encoded; $[f(\theta_1), \ldots, f(\theta_{P_o})]$ are coded symbols;
- A (P_o, P) MDS code in terms of rank metric.

A Hidden Connection

Continuing example (N, K) = (3, 4), t = 2, demand = (A, A, B, C):

▶ Yu et al scheme transmits (4 symbols):

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

Separate different files & remove repeated transmissions, $\ \, \mathop{\Downarrow} \,$

▶ Tian-Chen scheme (9 symbols):

$$A_{23} + A_{13}$$
, B_{12} , $A_{24} + A_{14}$, C_{12}
 A_{34} , B_{14} , C_{13} , B_{24} , C_{23}

Instead of fully decomposing a transmission, what if we partially decompose them?

An Alternative Scheme

- ▶ A partial decomposition: deliver 5 coded symbols:
 - Demand (A,A,B,C), transmits

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34}, \quad B_{14} + C_{13}, \quad B_{24} + C_{23}$

• Demand (A,A,B,B), transmits

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + B_{12}$$

 $A_{34}, \quad B_{14} + B_{13}, \quad B_{24} + B_{23}$

An Alternative Scheme

- ▶ A partial decomposition: deliver 5 coded symbols:
 - Demand (A,A,A,C), transmits

$$A_{23} + A_{13} + A_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34}, \quad A_{14} + C_{13}, \quad A_{24} + C_{23}$

• Demand (A,A,A,A), transmits

$$A_{23} + A_{13} + A_{12}, \quad A_{24} + A_{14} + A_{12}$$

 $A_{34}, \quad A_{14} + A_{13}, \quad A_{24} + A_{23}$

An Alternative Scheme

- Each user only needs to cache 8 linear combinations,
- Every transmission could have different ways to be partially decomposed, i.e. decomposition patterns,
- Above is a good choice of decomposing, in fact produces a new corner point at (M, R) = (4/3, 5/6).

We will give a generalized scheme and code examples.

To facilitate understanding, we introduce some notions:

- ▶ Demand vector $\mathbf{d} = \{d_1, \dots, d_K\}$ denotes the demands by K users, $d_k \in [1 : N]$,
- ► Each transmission in Yu scheme can be represented as

$$\bigoplus_{k\in\mathcal{B}}W_{d_k,\mathcal{B}\setminus k},\quad |\mathcal{B}|=t+1,$$

a transmission type $\boldsymbol{t}=(t_1,\ldots,t_N)$ is associated with a transmission where t_n denotes the number of users in subset $|\mathcal{B}|$ requesting file W_n . Set $\mathcal{T}_{\boldsymbol{d}}^{(t)}$ denotes all valid transmission types for a demand \boldsymbol{d} .

- A partial decomposition $\mathcal{P}_{t,d}$ of transmission type t is a partition of $\mathrm{supp}(t)$. The full set of decomposition patterns is $\mathcal{P}_d^{(t)} = \{\mathcal{P}_{t,d} | t \in \mathcal{T}_d^{(t)}\}.$
- ▶ The collection of all possible $\mathcal{P}_{t,d}$ is $\mathfrak{P}_{t,d}$.
- ► E.g.: (N, K) = (3, 4), t = 2, d = (1, 1, 2, 3), $\mathcal{T}_{d}^{(t)} = \{(2, 1, 0), (2, 0, 1), (1, 1, 1)\}, \text{ for } t = (1, 1, 1):$ $\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13} \xrightarrow{\text{decompose}} \{A_{34}, B_{14} + C_{13}\}$ $\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23} \qquad \{A_{34}, B_{24} + C_{23}\}$

Decomposition pattern $\mathcal{P}_{t,d} = \mathcal{P}_{(1,1,1)(1,1,2,3)} = \{\{1\}, \{2,3\}\}.$

Partial decomposition could produce new memory-rate points:

- ▶ For each demand **d**, using multiple coding instances,
- ▶ Fix a decomposition pattern $\mathcal{P}_{t,d}$ for each t,
- ▶ Set an auxiliary variable $\alpha_{d,\mathcal{P}_d^{(t)}}$ for each decomposition pattern, s.t.

$$\begin{split} &\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}} \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} = 1, \quad \boldsymbol{d} \in \mathcal{D}, \\ &1 \geq \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \geq 0, \quad \boldsymbol{d} \in \mathcal{D}, \quad \mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}. \end{split}$$

- $\alpha_{d,\mathcal{P}_d^{(t)}}$: how much fraction of instances using a decomposition pattern;
- Intuitively same as "time sharing", but not equivalent.

Prefetching:

- Partition each file into $r\binom{K}{t}$ segments (r instances each of $\binom{K}{t}$ segments), each to be in \mathbb{F}_{2^m} for sufficiently large m,
- Each user is allocated $P = rN\binom{K-1}{t-1}$ symbols; caches $P_o P$ linear combinations:

$$P_o - P = rM_r'\binom{K}{t}$$

 (M'_r) to be defined later

- Using (P_o, P) systematic rank metric code to encode P symbols, caches the parities;
- m ≥ P_o suffices for existence of rank metric code.

- Delivery:
 - For demand $\mathbf{d} = (A,A,B,C) = (1,1,2,3)$, let $\alpha_{\mathbf{d},\mathcal{P}_{\mathbf{d}}^{(t)}} = 1$, $\mathcal{P}_{\mathbf{d}}^{(t)} = \mathcal{P}_{(1,1,2,3)}^{(2)}$ are:

$$\begin{split} \mathcal{P}_{(2,1,0),(1,1,2,3)} &= \{\{1,2\}\} = \{\{A,B\}\} : A_{23} + A_{13} + B_{12}, \\ \mathcal{P}_{(2,0,1),(1,1,2,3)} &= \{\{1,3\}\} = \{\{A,C\}\} : A_{24} + A_{14} + C_{12}, \\ \mathcal{P}_{(1,1,1),(1,1,2,3)} &= \{\{1\},\{2,3\}\} = \{\{A\},\{B,C\}\} : \\ A_{34}, \quad B_{14} + C_{13}, \ B_{24} + C_{23} \end{split}$$

Thus
$$R_{d,\mathcal{P}_d^{(t)}} = 5$$
, $M_{d,\mathcal{P}_d^{(t)},k} = 8$, for $k \in [1:4]$.

- ▶ Delivery:
 - For demand $\mathbf{d} = (A,A,B,B) = (1,1,2,2)$, two decomposition patterns:

1st pattern: $\mathcal{P}_d^{(t)}$ without any decomposition, let $\alpha_{d,\mathcal{P}_d^{(t)}}=1/2$,

$$A_{23}^{(1)} + A_{13}^{(1)} + B_{12}^{(1)}, \quad A_{24}^{(1)} + A_{14}^{(1)} + B_{12}^{(1)}$$

 $A_{34}^{(1)} + B_{14}^{(1)} + B_{13}^{(1)}, \quad A_{34}^{(1)} + B_{24}^{(1)} + B_{23}^{(1)}$

For this pattern, $R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}}=4, M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k}=9, k\in[1:4].$

- Delivery:
 - For demand $\mathbf{d} = (A,A,B,B) = (1,1,2,2)$, two decomposition patterns:

2nd pattern: the following decompositions $\mathcal{P}_{d}^{(t)}$:

$$\mathcal{P}_{(2,1,0),(1,1,2,2)} = \{\{1\},\{2\}\} = \{\{A\},\{B\}\} : A_{23}^{(2)} + A_{13}^{(2)}, B_{12}^{(2)},$$

$$A_{24}^{(2)} + A_{14}^{(2)}, B_{12}^{(2)};$$

$$\mathcal{P}_{(1,2,0),(1,1,2,2)} = \{\{1\},\{2\}\} = \{\{A\},\{B\}\} : A_{34}^{(2)}, B_{14}^{(2)} + B_{13}^{(2)};$$

$$A_{24}^{(2)}, B_{24}^{(2)} + B_{23}^{(2)};$$

$$A_{24}^{(2)}, B_{24}^{(2)} + B_{23}^{(2)};$$

For this pattern, $R_{d,\mathcal{P}_d^{(t)}} = 6$, $M_{d,\mathcal{P}_d^{(t)},k} = 7$, for $k \in [1:4]$.

- ► Delivery:
 - For demand $\mathbf{d} = (A,A,A,A) = (1,1,1,1)$, two decomposition patterns:

1st pattern: $\mathcal{P}_d^{(t)}$ without any decomposition, let $\alpha_{d,\mathcal{P}_d^{(t)}}=5/6$,

$$A_{23}^{(i)} + A_{13}^{(i)} + A_{12}^{(i)}, \quad A_{24}^{(i)} + A_{14}^{(i)} + A_{12}^{(i)}$$

 $A_{34}^{(i)} + A_{14}^{(i)} + A_{13}^{(i)}, \quad \text{for } i = 1, 2, 3, 4, 5.$

For this pattern, $R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}}=3, M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k}=9, k\in[1:4].$

- Delivery:
 - For demand $\mathbf{d} = (A,A,A,A) = (1,1,1,1)$, two decomposition patterns:

2nd pattern: special uncoded decomposition pattern $\breve{\mathcal{P}}_d^{(t)}$, let $\alpha_{d,\mathcal{P}_d^{(t)}}=1/6$,

$$A_{23}^{(6)}, A_{13}^{(6)}, A_{24}^{(6)}, A_{14}^{(6)}, A_{12}^{(6)}, A_{34}^{(6)}$$

$$B_{23}^{(6)}, B_{13}^{(6)}, B_{24}^{(6)}, B_{14}^{(6)}, B_{12}^{(6)}, B_{34}^{(6)}$$

For this pattern, $R_{m{d},\mathcal{P}_{m{d}}^{(t)}}=12, M_{m{d},\mathcal{P}_{m{d}}^{(t)},k}=3, k\in[1:4].$

- ▶ The above example uses r = 6 instances of code,
- ▶ Of all 6 instances, $r_{d,\mathcal{P}_{d}^{(t)}}$ of them adopt decomposition $\mathcal{P}_{d}^{(t)}$,
- ► Memory-rate pair

$$(M,R) = \frac{1}{r\binom{K}{t}} \left(\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k}, \sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \right)$$

would be

$$(M,R) = (4/3,5/6).$$

A New Information-Theoretic Inner Bound

Figure: A new information-theoretic inner-bound for the example caching system (N, K) = (3, 4), t = 2.

A New Information-Theoretic Inner Bound

- For some demands, special uncoded transmission needed to keep the decomposition rule;
- As the parameters increase, number of decomposition patterns for each t grows;
- The best decompositions for all t? Exhaustive search, practically impossible to calculate by hand;
- We can use a computer-aided approach.

Before the details, we show a new corner point for caching system (N, K) = (4, 8), t = 2.

This time it is calculated using a computer program.

A New Information-Theoretic Inner Bound

Figure: A new information-theoretic inner-bound for the example caching system (N, K) = (4, 8), t = 2.

A Linear Programming Framework

The inner-bound of the new coding scheme can be calculated using linear programming:

▶ Define rate region $\mathcal{R}^{(t)}$: collection of memory-rate pairs (M,R) such that exists set of $\{\alpha_{d,\mathcal{P}_d^{(t)}}\}$ satisfying

$$\begin{split} &\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}} \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} = 1, \quad \boldsymbol{d} \in \mathcal{D}, \\ &1 \geq \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \geq 0, \quad \boldsymbol{d} \in \mathcal{D}, \quad \mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}, \\ &\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}} \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \leq R\binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, \\ &\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t},\boldsymbol{d}}} \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \leq M\binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, k \in [1:K]. \end{split}$$

A Linear Programming Framework

The inner-bound of the new coding scheme can be calculated using linear programming:

Further define

$$(M'_{\boldsymbol{d}}, R'_{\boldsymbol{d}}) = \frac{1}{r\binom{K}{t}} \left(\max_{k \in [1:K]} \sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} M_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}, k}, \sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} R_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} \right)$$

and

$$M'_r \triangleq \max_{\boldsymbol{d} \in \mathcal{D}} M'_{\boldsymbol{d}}, \qquad R'_r \triangleq \max_{\boldsymbol{d} \in \mathcal{D}} R'_{\boldsymbol{d}}.$$

A Linear Programming Approach

The inner-bound of the new coding scheme can be calculated using linear programming:

▶ The number of instances r can be chosen s.t. exists $\{r_{\mathbf{d},\mathcal{P}_{\mathbf{d}}^{(t)}}\}$

$$\left| \frac{{r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}}}}{r} - \alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} \right| \leq \epsilon.$$

By making r large and choosing appropriate $\{r_{d,\mathcal{P}_d^{(t)}}\}$ s.t. $\epsilon \geq 0$ being arbitrarily small. We have

$$\lim_{r\to\infty}(M'_r,R'_r)=(M,R),$$

it will be the effective memory-rate pair of the new code.

Conclusion

- A single scheme unifying two general classes of schemes (uncoded and coded),
- The Yu et al scheme and Tian-Chen scheme are two extreme points of the new scheme,
- ► The notion of Transmission type plays an important role and is overlooked before this work,
- ► The performance improvement is not quite large, and mostly reside in the middle *M* regime, which are not surprise.

Conclusion

- ► The new coding scheme can not incorporate the coding scheme of Gómez-Vilardebó¹, a more generalized code may exist?
- The complexity: certain decomposing patterns are obviously bad choice; Simplifying the proposed scheme appears worthwhile.

¹J. Gómez-Vilardebó, "Fundamental limits of caching: Improved bounds with coded prefetching," arXiv:1612.09071, Dec. 2016.