1. Wstęp

Niniejsza analiza miała na celu zbadanie i porównanie wydajności zapytań opartych na złączeniach i zagnieżdzeniach w przypadku tabeli geologicznej.

Badanie zostało przeprowadzone za pomocą systemu PostreSQL.

2. Konfiguracja sprzętowa

CPU: AMD Ryzen 5 5500GPU: GAINWARD RTX 3060

• RAM: 16 GB

OS: WINDOWS 10 HOME

3. Narzędzie pracy

PostgreSQL-15.3-1-WINDOWS-X64

4. Zapytania testowe

Zapytanie 1 miało na celu połączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej.

```
SELECT

COUNT(*)

FROM

liczby.milion m

INNER JOIN

tabela_stratygraficzna.TabelaStr t

ON
```

m.liczba%95=CAST(RIGHT(t.ID_pietra, LENGTH(t.ID_pietra)-3) AS INT);

Zapytanie 2 miało na celu połączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej.

```
SELECT
        COUNT(*)
FROM
        liczby.milion m
INNER JOIN
        tabela_stratygraficzna.GeoPietro geo_p
ON
        m.liczba%95=CAST(RIGHT(geo_p.id_pietro, LENGTH(geo_p.id_pietro)-3) AS INT)
INNER JOIN
        tabela_stratygraficzna.GeoEpoka geo_ep
ON
        geo_p.id_epoka=geo_ep.id_epoka
INNER JOIN
        tabela_stratygraficzna.GeoOkres geo_o
ON
        geo_ep.id_okres=geo_o.id_okres
INNER JOIN
        tabela_stratygraficzna.GeoEra geo_er
ON
        geo_o.id_era=geo_er.id_era
INNER JOIN
        tabela_stratygraficzna.GeoEon geo_eo
ON
        geo_er.id_eon=geo_eo.id_eon;
```

Zapytanie 3 ma na celu połączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w zdenormalizowanej postaci, przy czym połączenie jest realizowane poprzez zagnieżdżenie skorelowane.

```
SELECT

COUNT(*)

FROM

liczby.milion m

WHERE

m.liczba%95=
(SELECT

CAST(RIGHT(t.ID_pietra, LENGTH(t.ID_pietra)-3) AS INT)

FROM

tabela_stratygraficzna.TabelaStr t

WHERE

m.liczba%95=CAST(RIGHT(t.ID_pietra, LENGTH(t.ID_pietra)-3) AS INT));
```

Zapytanie 4 ma na celu połączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w znormalizowanej postaci. Połączenie to jest realizowane poprzez zagnieżdżenie skorelowane, przy czym zapytanie wewnętrzne obejmuje łączenie poszczególnych jednostek geochronologicznych z tabel.

```
SELECT

COUNT(*)

FROM

liczby.milion m

WHERE

m.liczba%95 IN

(SELECT

CAST(RIGHT(geo_p.id_pietro, LENGTH(geo_p.id_pietro)-3) AS INT)

FROM

tabela_stratygraficzna.GeoPietro geo_p

INNER JOIN

tabela_stratygraficzna.GeoEpoka geo_ep
```

```
ON
```

geo_p.id_epoka=geo_ep.id_epoka

INNER JOIN

tabela_stratygraficzna.GeoOkres geo_o

ON

geo_ep.id_okres=geo_o.id_okres

INNER JOIN

tabela_stratygraficzna.GeoEra geo_er

ON

geo_o.id_era=geo_er.id_era

INNER JOIN

tabela_stratygraficzna.GeoEon geo_eo

ON

geo_er.id_eon=geo_eo.id_eon);

5. Wyniki testów

	Pomiary bez indeksów			
	1	2	3	4
	371	351	23 780	385
	386	343	23690	392
	392	365	23567	366
	357	355	23954	305
	375	338	23321	389
	381	360	23564	382
	396	366	23332	317
	358	332	23754	334
	388	349	23645	397
	365	361	22456	371
Średnia	376,9	352	23 506	363,8

Pomiary z indeksami					
1	2	3	4		
364	355	23831	356		
394	396	23849	341		
399	308	23862	339		
347	344	23892	334		
318	363	23803	337		
308	387	23878	338		
384	312	23878	341		
371	330	23838	340		
315	319	23897	354		
397	372	23811	343		
359,7	348,6	23854	342,3		

Średnia

6. Wnioski

Na podstawie powyższych wyników można stwierdzić, że:

- Indeksacja poprawiła wydajność wykonywania zapytań dla skomplikowanych operacji, takich jak zagnieżdżanie, natomiast dla małych tabel i prostych zapytań wydłużyła czas wykonania.
- W większości przypadków forma zdenormalizowana jest lepsza.

Ostatecznym wnioskiem jest stwierdzenie, że normalizacja w większości przypadków prowadzi do spadku wydajności, ale umożliwia łatwe przechowywanie danych w zrozumiały sposób, zmniejsza szanse na wystąpienie błędów oraz porządkuje dane.