Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^{2}-2z+5=(1-2i)^{2}-2(1-2i)+5=$	2p
	$=1-4i+4i^2-2+4i+5=1-4-2+5=0$	3 p
2.	$M(2,8) \in G_f \Rightarrow f(2) = 8 \Rightarrow 4 + a = 8 \Rightarrow a = 4$	3p
	$M(2,8) \in G_g \Rightarrow g(2) = 8 \Rightarrow 2b + 2 = 8 \Rightarrow b = 3$	2 p
3.	$\log_3(4x+5) = \log_3 3(x+3) \Rightarrow 4x+5 = 3x+9$	3 p
	x = 4, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	Numărul numerelor naturale de două cifre, care au cifrele pare este egal cu 20, deci sunt 20 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{20}{90} = \frac{2}{9}$	2 p
5.	Punctul B este mijlocul segmentului AM , deci $M(6,0)$	3p
	CM = 10	2 p
6.	$\mathcal{A}_{ABCD} = 2\mathcal{A}_{\Delta ABC} = AB \cdot AC \cdot \sin\left(\angle BAC \right) = 6 \cdot 10 \cdot \sin\frac{\pi}{6} =$	3p
	$=6\cdot10\cdot\frac{1}{2}=30$	2p

SUBIECTUL al II-lea (30 de puncte)

	•	
1.a)	$M(-1) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow \det(M(-1)) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = $ $= (-1) + 0 + 1 - (-1) - 0 - 1 = 0$	2p 3p
b)	$\det(M(a)) = \begin{vmatrix} 1 & 1 & 1 \\ a+1 & -1 & 1 \\ 1 & 1 & -a \end{vmatrix} = (a+1)(a+2), \text{ pentru orice număr real } a$	3 p
	a = -2 sau $a = -1$	2 p
c)	Sistemul are soluție unică (x_0, y_0, z_0) , deci $a \in \mathbb{R} \setminus \{-2, -1\}$ și soluția sistemului este $\left(\frac{2a}{(a+1)(a+2)}, \frac{2a^2+3a+2}{(a+1)(a+2)}, \frac{1}{a+1}\right)$	2p
	$\frac{4a}{(a+1)(a+2)} + \frac{2a^2 + 3a + 2}{(a+1)^2(a+2)} = 0 \Leftrightarrow 6a^2 + 7a + 2 = 0, \text{ deci } a = -\frac{2}{3} \text{ sau } a = -\frac{1}{2}, \text{ care convin}$	3 p

2.a)	$x * y = \frac{1}{10}xy - x - y + 10 + 10 =$	2p
	$= \frac{1}{10}x(y-10) - (y-10) + 10 = \frac{1}{10}(x-10)(y-10) + 10$, pentru orice numere reale x și y	3p
b)	$\frac{1}{10}(x-10)^2 + 10 \le \frac{101}{10} \Leftrightarrow (x-10)^2 \le 1$	3p
	$x \in [9,11]$	2p
c)	x*10=10 și $10*x=10$, pentru orice număr real x	2p
	$\log_2 1 * \log_2 2 * \dots * \log_2 2018 = ((\log_2 1 * \dots * \log_2 1023) * 10) * \log_2 1025 * \dots * \log_2 2018 = (\log_2 1 * \log_2 1023) * 10) * \log_2 1025 * \dots * \log_2 1025$	2n
	$= 10 * (\log_2 1025 * \dots * \log_2 2018) = 10$	3 p

SUBIECTUL al III-lea

(30 de puncte)

Varianta 3

1.a)	$f'(x) = 6x^2 - 6x + 6 - \frac{6}{x+1} =$	3p
		ъp
	$= \frac{6x^3 + 6x^2 - 6x^2 - 6x + 6x + 6 - 6}{x + 1} = \frac{6x^3}{x + 1}, \ x \in (-1, +\infty)$	2 p
b)	$f'(x) = 0 \Leftrightarrow x = 0$	1.
D)		1p
	$f'(x) \le 0$, pentru orice $x \in (-1,0]$, deci f este descrescătoare pe $(-1,0]$ și $f'(x) \ge 0$,	2 p
	pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	2 p
	$f(x) \ge f(0)$, pentru orice $x \in (-1, +\infty)$ și, cum $f(0) = 0$, valoarea minimă a funcției f	2p
	este 0	- P
c)	$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{2x} = \lim_{x \to 0} \frac{3x^2}{x+1} = 0$	2 p
	$\lim_{x \to 0} \frac{\sqrt{f(x)}}{ x } = 0 \Rightarrow \lim_{x \to 0} \frac{\sqrt{f(x)}}{x} = 0$	3 p
2.a)	$\int_{0}^{1} f(x)e^{-x} dx = \int_{0}^{1} \left(x^{2} + x + 1\right) dx = \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} + x\right) \Big _{0}^{1} =$	3 p
	$= \frac{1}{3} + \frac{1}{2} + 1 - 0 = \frac{11}{6}$	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției $f \Rightarrow F'(x) = f(x) \Rightarrow F''(x) = (x^2 + 3x + 2)e^x$, $x \in \mathbb{R}$	2 p
	$F''(-2) = 0$, $F''(-1) = 0$, $F''(x) > 0$ pentru orice $x \in (-\infty, -2)$, $F''(x) < 0$ pentru orice	
	$x \in (-2,-1)$ și $F''(x) > 0$ pentru orice $x \in (-1,+\infty)$, deci F are exact două puncte de	3р
	inflexiune	•
c)	$\lim_{t \to 0} \frac{1}{t} \int_{0}^{t} f(x) dx = \lim_{t \to 0} \frac{F(t) - F(0)}{t} = \lim_{t \to 0} \frac{F'(t)}{1} =$	3p
	$=\lim_{t\to 0}f\left(t\right)=1$	2p