Biomedical Imaging Methods II: Nuclear Medicine and Magnetic Resonance Imaging

BME 4420/7450 Fall 2022

Biomedical Imaging Methods

- Ultrasound (US)
- Computed Tomography (CT)
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)
- Magnetic Resonance Imaging (MRI)

Nuclear Medicine

cartoonstock.com

Nuclear Medicine

- Images the distribution of radioactive decay events
 - High energy photons produced by decay of radioactive nuclei
- A radiopharmaceutical is a solution containing:
 - 1. A carrier: specific molecule or microscopic particle
 - 2. A radionuclide (radioactive atom), bound to #1
- The radiopharmaceutical is injected in a vein
- The spatial distribution of the radioactive tracer is measured some time later
 - Displayed as an image
 - Quantitatively analyzed to find uptake rate
- High SNR due to high detection efficiency

Imaging organ function

- Accumulation of radioactive atoms depends on
 - Uptake by tissue
 - Metabolic rate
 - Pathology
 - Radioactive decay rate
 - Half life measures the time in which (on average) half the nuclei decay
 - Excretion by kidneys

Target specific tissues with matching molecules

- Metabolic activity
- Thyroid gland
- Lung airways
- Blood
- Capillaries

- Glucose (¹⁸FDG)
- Iodine (123I)
- Noble gas (¹³³Xe)
- Albumin (99mTc)
- Albumin particles (99mTc)

Radioactive atom denoted by

Atomic mass

Metastable form

Symbol for species (# of protons)

The gamma camera

- Measures distribution of radionuclides in 2 dimensions
- Detector has three parts
 - Collimator passes photons traveling perpendicular to detector face
 - Large crystal (NaI) converts a gamma photon to many visible photons ('scintillator')
 - Photomultiplier tubes localize the visible photons
- A computer accumulates the photon positions to make a map of radionuclide activity

What makes a good radionuclide?

- Half life
 - minutes to hours
- Decay route
 - gamma emission only
- Decay energy
 - High enough to escape body
 - Low enough to be absorbed in scintillator
- Chemistry
 - Biologically active or
 - Easily bound to active molecules

The SPECT camera

- One, two, or three detectors
- Detectors rotate around the subject
- Activity mapped in 2D slices through the subject (tomography)

Positron emission tomography

- Isotopes that emit positrons
 - ¹¹C (CO₂)
 - ¹⁵O (H₂O, O₂)
 - ¹⁸F (fluorodeoxyglucose)
- Annihilation creates 2 photons
 - Travel in (nearly) opposite directions
 - Coincidence of photons in the two detectors identifies a line on which the source lies
- Detectors encircle the subject
- Image can be reconstructed by backprojection

Applications

- Bone metabolism
- Tumor metabolism
- Lung physiology
- Myocardial perfusion
- Receptor density

Bone studies

- 99mTc labeled phosphonate accumulates in proportion to bone turnover
 - Fractures
 - Tumors
 - Inflammation
 - Infection

Stress fracture in right foot

Bone Tumor imaging

Metastatic carcinoma

99mTc study

Myocardial perfusion

- Thallium (K analog)
 accumulates in muscle
 cells
- Uptake in muscle is proportional to blood flow rate
- ²⁰¹Tl images show ischemic/infarcted myocardium

Cardiac stress test

Stress: rows 1, 3, 5

Rest: rows 2, 4, 6

Tumor growth

- Fluoro-deoxy-glucose (FDG) is a glucose analogue
- FDG is partially metabolized and trapped in cells
- Accumulates in proportion to glucose consumption
- Indicator of metabolic rate
- Image ¹⁸FDG using PET

Hodgkins lymphoma

Receptor density

- Concentration is 10⁻⁷
 to 10⁻¹⁰ mol/liter of
 homogenized tissue
- Need high detection efficiency
- Uptake of radio tracer is proportional to receptor density

Dopamine receptors imaged with ¹¹C N-methylspiperone PET

Radionuclide imaging

- Most established technique for molecular imaging in humans
- Advantages
 - Sensitive to nano- to femtomolar target concentrations
 - Labeling molecules with a radionuclide does not alter the physical or chemical properties of the molecule
- Disadvantages
 - Time resolution
 - Spatial resolution
 - Requires correction for photon absorption from deep sources
 - Poor structural information
 - Cost
 - Safety
 - Half-life of tracer

Attenuation correction using PET/CT

Kinahan (AAPM)

Attenuation correction using PET/CT

Kinahan (AAPM)

In-class exercise: what caused this artifact?

Attenuation
-corrected
image

Uncorrected image

Magnetic Resonance Imaging

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

cartoonstock.com

Magnetic Resonance Imaging (MRI)

- MRI maps water in the body
 - (Mobile hydrogen, really)
- Sensitive to interactions of water molecules with their environment
 - Molecular environment -> contrast between gray and white matter in the brain
 - Cellular environment -> tissue structure
 - Metabolic environment -> blood oxygenation
- All possible because the hydrogen nucleus is sensitive to magnetic fields (it's a mini magnetometer!)

Magnetic moments

- Protons and neutrons
 - Have angular momentum (spin)
 - Generate small magnetic fields
- Magnetic dipole moment
 - Field of a small bar magnet
 - Due to circulating electric charge
 - Allows <u>detection</u> and <u>control</u> of orientation
- Hydrogen nucleus (proton) is most used
 - Relatively large magnetic moment
 - Plentiful in tissues (water)

Magnetization

- Many magnetic dipoles within a volume of tissue
- Net magnetic moment per unit volume:
 - Magnetization, M
- Reflects
 - Density of spins and
 - How well they are aligned

MRI in a nutshell

- MRI is a map of magnetization
- To make an image, we need to
 - Create net magnetization
 - Tag it with position information
 - Detect it
- We can do this with 3 magnetic fields
 - Static field (B₀)
 - Polarizing spins
 - Detecting spins
 - Oscillating field (B_1)
 - Exciting spins
 - Gradient field (G)
 - Spatially encoding spins
- Let's see how these work

MRI in a nutshell

- MRI is a map of magnetization
- To make an image, we need to
 - Create net magnetization
 - Tag it with position information
 - Detect it
- We can do this with 3 magnetic fields
 - Static field (B₀)
 - Polarizing spins
 - Detecting spins
 - Oscillating field (B_1)
 - Exciting spins
 - Gradient field (G)
 - Spatially encoding spins
- Let's see how these work

Equilibrium Magnetization

- Sample is placed in a strong polarizing magnetic field, B₀
- Individual nuclear spins preferentially align with B₀
 - Energy:

$$E = -\vec{\mu} \cdot \vec{B}$$

- The net magnetization, M_0 , of the sample is parallel to B_0
- Represents an equilibrium between
 - The <u>aligning</u> influence of the external (B₀) field
 - The <u>disordering</u> influence of thermal energy (random motion)

Spin precession

- When a magnetic moment μ
 with spin is placed in an
 external magnetic field
 - The magnetic moment precesses
 - Similar to motion of a spinning top in a gravitational field

In-class exercise: composite pulses

- Goal: tip spins by 180 degrees
- Rotate spins by π around -y axis: $R_{-v}(\pi)$
 - Apply a constant magnetic field
 - Direction: along -y
 - Duration: ½ period of precession
 - What if the field strength is not uniform?
 - Some spins are over- or under-tipped
- What is the effect of $R_{-y}(\pi/2)R_x(\pi)R_{-y}(\pi/2)$?

How can spins be detected?

- Spins precess around an applied field
- Magnetic dipole field precesses also
 - Precession rate
 - Larmor relation: $\omega = -\gamma B$
- Detected by induction

$$V = -\frac{d}{dt} \int_{S} B_{spin} \cdot da$$

- Frequency of the measured voltage
 - Equals the spin precession frequency
 - Reveals the applied field strength

Spin detection

- If the net B field is different in each position, x
 - Frequency of the detected field-> reveals the spin's position
- Spins <u>parallel</u> to B don't make a time-varying field and hence are invisible
- Spins <u>perpendicular</u> to B produce the largest signals
- In equilibrium, magnetic moments are aligned with *B* on average
 - How can we detect the spins?

MRI in a nutshell

- MRI is a map of magnetization
- To make an image, we need 3 magnetic fields
 - Static field (B_0)
 - Polarization
 - Detection
 - Oscillating field (B_1)
 - Excitation
 - Gradient field (G)
 - Spatial encoding

Spin excitation

- To be detectable, spins must be tipped away from the B₀ axis
 - Dipole field precesses
 - Spin 'excitation'
- Tipping is accomplished with another magnetic field (B₁)
- Spin excitation is the first step in an MR measurement

Spin excitation

- B_1 field should be $\bot B_0$ to tip spins into the transverse plane
- A static B₁ just tilts the polarizing field
 - Does not create large transverse magnetization, M₁
- A time-varying B₁ field can create large
 M_|

At time = 0

At time = $\tau/2$

At time = τ

At time = $3\tau/2$

Tip angle = 90°

Time dependence of B₁ field

Frequency =
$$\omega = \gamma B_0$$

Spin excitation

- A time-varying B₁ field can create large M₁
 - If the B₁ field precesses with the spins, slow tipping can accumulate over time
- Frequency of B₁ field must match spin precession frequency to have a significant effect
 - B₁ must be resonant with spin precession

MRI in a nutshell

- MRI is a map of magnetization
- To make an image, we need 3 magnetic fields
 - Static field (B_0)
 - Polarization
 - Detection
 - Oscillating field (B_1)
 - Excitation
 - Gradient field (G)
 - Spatial encoding

Magnetic Field Gradients

- Spin precession frequency depends on the local field strength ($\omega = -\gamma B_z$)
- If the local field strength varies with position, then so will precession frequency
- Simplest position dependence => linear
 - Precession frequency proportional to spin's displacement from origin

A gradient of B_z in the x direction

A gradient of B_z in the y direction

A gradient of B_z in the z direction

A gradient of B_z in the x+y direction

The rotating frame

- Analyze spin motion in a coordinate frame (x',y',z') precessing around z at the Larmor frequency $-\gamma B_0$
- Spin motion is simpler in the rotating frame
 - If B_z=B₀, spins are motionless in the rotating frame
 - If $B_z = B_0 + dB_z$, spins precess at frequency $\omega' = -\gamma \cdot dB_z$
- In the rotating frame, we can ignore the effect of B₀

The rotating frame

- Analyze spin motion in a coordinate frame (x',y',z') precessing around z at the Larmor frequency $-\gamma B_0$
- Spin motion is simpler in the rotating frame
 - If B_z=B₀, spins are motionless in the rotating frame
 - If $B_z = B_0 + dB_z$, spins precess at frequency $\omega = -\gamma \cdot dB_z$
- In the rotating frame, we can ignore the effect of B₀
 - A ${\rm B_1}$ field rotating in the lab frame at the frequency $-\gamma B_0$ is stationary in the rotating frame

Effects of a field gradient

• If the applied field, B_z, depends linearly on position

$$B_z(\vec{r}) = B_0 + \vec{G} \cdot \vec{r}$$

then it has a constant gradient

$$\vec{G} = \nabla B_z$$

In the rotating frame, the field is

$$B'(\vec{r}) = \vec{G} \cdot \vec{r}$$

which implies the precession frequency in this frame is

$$\omega' = -\gamma \vec{G} \cdot \vec{r}$$

Application 1: Selective Excitation

- To excite spins uniformly in the range $z=z_1$ to z_2 , apply a $B_1(t)$ pulse that covers the frequency range $\omega=\omega_1$ to ω_2 uniformly.
- What function of time has a uniform spectrum over a finite frequency range?

Application 1: Selective Excitation

- To excite spins uniformly in the range $z=z_1$ to z_2 , apply a $B_1(t)$ pulse that covers the frequency range $\omega=\omega_1$ to ω_2 uniformly.
- What function of time has a uniform spectrum over a finite frequency range?

Application 2: Spatial encoding

- Spin orientation in a gradient field is proportional to position
- The proportionality constant is -k

Define the transverse magnetization as a complex quantity:

$$M_{\perp} \equiv M_{\chi} + iM_{\chi}$$
$$= \rho \cdot e^{i\varphi}$$

 The signal voltage is proportional to the net magnetic moment of the sample. Define the signal:

$$S = \int M_{\perp}(x)dx = \int \rho(x) e^{i\varphi(x)} dx = \int \rho(x) e^{-ikx} dx$$

The (inverse) Fourier Transform gives the spatial distribution of magnetization

$$\rho(x) = F^{-1}\{S(k)\}$$

MRI System Design

- Static magnet
 - Uniform B₀
- Gradient subsystem
 - Spatially dependent B_z
- Radio frequency (RF) subsystem
 - RF pulse generator
 - RF receiver

Patient handling

What caused these artifacts?

Case courtesy of Dr Ayush Goel, Radiopaedia.org

Ogbole et al, Niger Postgrad Med J (2017)

MRI in a nutshell

- MRI is a map of magnetization
- To make an image, we need 3 magnetic fields
 - Static field (B_0)
 - Polarization
 - Detection
 - Oscillating field (B_1)
 - Excitation
 - Gradient field (G)
 - Spatial encoding
- What determines the brightness of the image at each point?

Transverse relaxation

- No net M_x or M_v in equilibrium state
- After spins are put in the xy plane, large transverse magnetization:

• Over time, spin orientations become randomized:

• Occurs at rate $R_2 = 1/T_2$

Multiple decay time measurements of T₂

- Acquire a series of images, each at a different time after the tipping B₁ pulse
- Signal intensity decays exponentially with rate constant
 1/T₂

T₂ measurement

Magnetic Resonance Imaging (MRI)

- MRI maps water in the body
 - (Mobile hydrogen, really)
- Pros
 - Diverse sources of contrast
 - Soft tissue contrast
 - Structure and function
 - Non-ionizing radiation
- Cons
 - Cost
 - Safety for metal objects

For more information

- Spin precession and Nuclear Magnetic Resonance (NMR)
 - https://youtu.be/TQegSF4ZiIQ

Summary of medical imaging methods

- Each method relies on mapping the interaction of tissues with some form of energy or material
 - Acoustic (US)
 - Electromagnetic
 - Radiofrequency (MRI)
 - X-ray (CT)
 - Radiopharmaceutical (SPECT and PET)
- Each method has advantages and disadvantages
 - Understand these in terms of image resolution, sensitivity (the topics we'll turn to next...)

Sources

- C Buchbender, V Hartung-Knemeyer, M Forsting, G Antoch, TA Heusner.
 Positron Emission Tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol 86:20120570 (2013).
- Kinahan, lecture slides downloaded from www.aapm.org.
- P Suetens, Fundamentals of Medical Imaging (Cambridge University Press, 2009).
- W Sureshbabu and O Mawlawi, PET/CT Imaging Artifacts, Journal of Nuclear Imaging Technology (2005).
- MN Wernick, JN Aarsvold, *Emission Tomography: The Fundamentals of PET an SPECT*, (Elsevier, 2004).
- AB Wolbarst, Looking Within: How X-Ray, CT, MRI, Ultrasound, and other Medical Images Are Created, and How They Help Physicians Save Lives (Univ. California Press, 1999).
- Radiopaedia.org
- Cartoonstock.com