

BLOOMFIELD, NEW JERSEY 07003

www.solidstateinc.com

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	25	Vdc	
Drain-Gate Voltage	V _{DG1} V _{DG2}	30 30	Vdc	
Drain Current	ΙD	50	mAdc	
Gate Current	G1 G2	± 10 ± 10	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0	Watt mW/°C	
Lead Temperature	TL	300	့	
Junction Temperature Range	TJ	-65 to +175	°C	
Storage Channel Temperature Range	T _{stq}	-65 to +175	°C	

3N201 3N202 3N203

TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (ID = 10 μ Adc, VS = 0, VG1S = VG2S = -5.0 Vdc)		V _{(BR)DSX}	25		_	Vdc
Gate 1-Source Breakdown Voltage(1) $(I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0)$		V(BR)G1SO	± 6.0	± 12	± 30	Vdc
Gate 2-Source Breakdown Voltage(1) $(I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0)$		V(BR)G2SO	± 6.0	± 12	±30	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$		^I G1SS		± .040 	± 10 – 10	nAdc μAdc
Gate 2 Leakage Current $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$ $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$		^I G2SS	<u>-</u>	±.050 —	± 10 – 10	nAdc μAdc
Gate 1 to Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 20 \mu Adc}$		VG1S(off)	- 0.5	- 1.5	- 5.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 20 μ Adc)		V _{G2S(off)}	-0.2	- 1.4	- 5.0	Vdc
ON CHARACTERISTICS					_	
Zero-Gate-Voltage Drain Current(2) $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, V_{G2S} = 4.0 \text{ Vdc})$	3N201,3N202 3N203	IDSS	6.0 3.0	13 11	30 15	mAdc
SMALL-SIGNAL CHARACTERISTICS	_					
Forward Transfer Admittance(3) $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	3N201,3N202 3N203	Y _{fs}	8.0 7.0	12.8 12.5	20 15	mmhos
Input Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = I_{DSS}, f = 1.0 \text{ MHz})$		C _{iss}	_	3.3		pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ N}$	IHz)	C _{rss}	0.005	0.014	0.03	pF
Output Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = I_{DSS}, f = 1.0 \text{ MHz})$		C _{oss}		1.7	_	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure $(V_{DD}=18\ Vdc,V_{GG}=7.0\ Vdc,f=200\ MHz)$ (Figure 1) $(V_{DD}=18\ Vdc,V_{GG}=6.0\ Vdc,f=45\ MHz)$ (Figure 3)	3N201 3N203	NF		1.8 5.3	4.5 6.0	dB

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Common Source Power Gain		Gps				dB
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	3N201	i '	15	20	25	
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	3N203		20	25	30	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz}) \text{ (Figure 2)}$	3N202	G _c (5)	15	19	25	
Bandwidth		BW				MHz
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	3N201		5.0	_	9.0	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz}) \text{ (Figure 2)}$	3N202		4.5	_	7.5	
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	3N203		3.0	_	6.0	
Gain Control Gate-Supply Voltage(4)		VGG(GC)				Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	3N201		0	- 1.0	- 3.0	
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{ps} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 3)}$	3N203	L	0	- 0.6	- 3.0	

- (1) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.
- (2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.
- (3) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
- (4) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG} = 7.0$ volts (3N201) and $V_{GG} = 6.0$ volts (3N203).
- (5) Power Gain Conversion

- L1 14 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core
- L2 10 Turns, #30 AWG Copper, Close-Wound 7/32" OD form with ARNOLD ENGINEERING "J" Tuning Core

TYPICAL CHARACTERISTICS

FIGURE 5 - DRAIN CURRENT versus GATE-ONE to SOURCE VOLTAGE 28 26 VDS = 15 V IDSS = 12.8 mA 24 VG2S = +4.0 V 22 10, DRAIN CURRENT (mA) 20 18 +2.0 V 16 14 12 +1.0 V 10 8.0 6.0 4.0 2.0 VG2S = -1.0 V 1.0 +0.5 VG1S, GATE-ONE-TO-SOURCE VOLTAGE (VOLTS)

6 + 18 V

FIGURE 6 — SMALL-SIGNAL COMMON-SOURCE GATE-ONE
FORWARD TRANSFER ADMITTANCE versus
DRAIN CURRENT

FIGURE 7 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE FORWARD TRANSFER ADMITTANCE versus GATE-ONE to SOURCE VOLTAGE

FIGURE 8 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE FORWARD TRANSFER ADMITTANCE versus GATE-TWO to SOURCE VOLTAGE

FIGURE 9 – SMALL-SIGNAL COMMON-SOURCE GATE-ONE
INPUT AND OUTPUT CAPACITANCE versus
GATE-TWO-to-SOURCE VOLTAGE

TYPICAL CHARACTERISTICS

FIGURE 10 – COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE versus DRAIN CURRENT

FIGURE 11 – COMMON-SOURCE POWER GAIN AND SPOT NOISE FIGURE versus GAIN CONTROL GATE-SUPPLY VOLTAGE – 3N201

FIGURE 12 - COMMON-SOURCE POWER GAIN

FIGURE 13 – SMALL-SIGNAL COMMON-SOURCE
CONVERSION POWER GAIN versus

FIGURE 14 – SMALL-SIGNAL COMMON SOURCE INSERTION POWER GAIN Versus GAIN CONTROL GATE-SUPPLY VOLTAGE – 3N203

TYPICAL CHARACTERISTICS

FIGURE 15 - SMALL-SIGNAL GATE ONE FORWARD TRANSFER ADMITTANCE versus FREQUENCY

FIGURE 16 - SMALL-SIGNAL GATE ONE INPUT ADMITTANCE versus FREQUENCY

FIGURE 17 - SMALL-SIGNAL GATE ONE OUTPUT
ADMITTANCE versus FREQUENCY

Package Outline Dimensions

Dimensions are in inches unless otherwise noted.

- 1	MILLIMETERS		INC	INCHES	
DIM	MIN	MAX	MIN	MAX	
Α	5 31	5.84	0 209	0.230	
В	4.52	4.95	0.178	0.195	
C	4.32	5 33	0.170	0.210	
D	0.41	0.53	0.016	0.021	
E	_	0.76	_	0.030	
F	0.41	0.48	0.016	0 0 1 9	
G	2.54 BSC		0.100 BSC		
Н	0.91	1.17	0.036	0.046	
j	0.71	1.22	0.028	0.048	
K	12.70	_	0.500	_	
L	6.35	_	0.250	-	
М	45° BSC		45° BSC		
N	1.27 BSC		0.050 BSC		
P	_	1.27		0.050	

All JEDEC dimensions and notes apply.

PIN 1. DRAIN
2. GATE 2
3. GATE 1
4. SOURCE,
SUBSTRATE
AND CASE