

Facultad de Ciencias

Doble Grado en Ingeniería Informática y Matemáticas

Estructuras diferenciables sobre una superficie topológica y la visualización computacional de superficies.

Presentado por:

Norberto Fernández de la Higuera

Tutor:

Francisco José López Fernández Departamento de Geometría y Topología

Carlos Ureña Almagro
Departamento de Lenguajes y Sistemas Informáticos

Curso académico 2020-2021

Estructuras diferenciables sobre una superficie topológica y la visualización computacional de superficies.

Norberto Fernández de la Higuera

Norberto Fernández de la Higuera *Estructuras diferenciables sobre una superficie topológica y la visualización computacional de superficies*..

Trabajo de fin de Grado. Curso académico 2020-2021.

Responsable de tutorización

Francisco José López Fernández Departamento de Geometría y Topología

Carlos Ureña Almagro Departamento de Lenguajes y Sistemas Informáticos Doble Grado en Ingeniería Informática y Matemáticas Facultad de Ciencias Universidad de Granada Declaración de originalidad

D./Dña. Norberto Fernández de la Higuera

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2020-2021, es original, entendida esta, en el sentido de que no ha utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 5 de agosto de 2021

Fdo: Norberto Fernández de la Higuera

Índice general

Re	esumen	IX
Su	ummary	ΧI
Int	troducción	XIII
Ob	bjetivos	χv
l.	Teorema clásico de Moise	1
1.	Conceptos previos	3
2.	Resultados previos 2.1. Teoría de recubridores 2.2. Teoría de Morse 2.3. Hechos utilizados para los teoremas 2.4. Teorema de Alisamiento de Asas	5 6 7
3.	Resultados principales 3.1. Enunciados	15 15 15 19
II.	. Visualización de superficies	21
4.	Estudio de la teselación 4.1. Geometry shader 4.2. Tessellation shader 4.2.1. Medida basada en el volumen 4.2.2. Medida basada en el área 4.2.3. Medida basada en la curvatura	23 24 24 25 25
Pla	anificación y presupuesto	27
An	nálisis y diseño 1. Especificación de requisitos	29 29 30 30
	Diagramas	30 30

Índice general

Implementación y pruebas	31
Instalación del software	33
Guía de uso del programa	35
Conclusiones	37
Glosario	39

Resumen

Resumen en español (recomendado de 800 a 1500 palabras). Fichero: preliminares/resumen.tex

Summary

An english summary of the project (around 800 and 1500 words are recommended). File: preliminares/summary.tex

Introducción

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/introduccion.tex

Objetivos

Objetivos propuestos junto con los métodos inicialmente previsto). Objetivos alcanzados junto con los métodos usados finalmente. Se pueden indicar los aspectos formativos previos más usados.

Parte I.

Teorema clásico de Moise

Si el trabajo se divide en diferentes partes es posible incluir al inicio de cada una de ellas un breve resumen que indique el contenido de la misma. Esto es opcional.

1. Conceptos previos

Definición 1.1. Una variedad topológica 2-dimensional es un espacio de Hausdorff localmente Euclídeo que verifica el segundo axioma de numerabilidad, es decir, su topología tiene una base numerable.

Definición 1.2. Un **embebimiento o encaje** es una aplicación continua e inyectiva de un espacio topológico en otro. La restricción de su imagen aporta un homeomorfismo.

Definición 1.3. Un **sistema coordenado** sobre S es un embebimiento $h: \mathbb{R}^2 \to S$.

Definición 1.4. Sea S un espacio topoógico Hausdorff, un **atlas** 2- *dimensional* sobre S es una familia de cartas $E = \{h_i\}_{i \in \Lambda}$ verificando:

- 1. $\{h_i(\mathbb{R}^2)\}_{i\in\Lambda}$ es un recubrimiento abierto de S.
- 2. Si $h_i(\mathbb{R}^2) \cap h_j(\mathbb{R}^2) \neq \emptyset$ entonces $h_j^{-1} \circ h_i : h_i^{-1}(h_i(\mathbb{R}^2) \cap h_j(\mathbb{R}^2)) \rightarrow h_j^{-1}(h_i(\mathbb{R}^2) \cap h_j(\mathbb{R}^2))$ es un difeomorfismo.

Definición 1.5. Sea *S* un espacio topoógico Hausdorff, una **estructura diferenciable** 2 – *dimensional* sobre *S* es un atlas maximal.

Definición 1.6. Una **variedad diferenciable** 2-dimensional es una variedad topológica 2 - dimensional S junto con una estructura diferenciable E, es decir, el par (S, E).

Definición 1.7. Una **inmersión** es una aplicación diferenciable entre variedades diferenciables cuya derivada es inyectiva en todo punto.

Definición 1.8. Una **celda** *C* es un subconjunto abierto de un espacio topológico *X* tal que *C* homeomorfa a la bola unidad n-dimensional, que se puede extender de forma continua al borde. Dicho homeomorfismo se denomina **aplicación celda**. Si esta aplicación es diferenciable, se dice que la celda es diferenciable.

Definición 1.9. Una **triangulación diferenciable** de una variedad *X* es un conjunto de celdas diferenciables tal que la unión de todas ellas es *X* y cuyas intersecciones son únicamente los lados, es decir, los interiores son disjuntos 2 a 2.

Definición 1.10. Sean f y g homeomorfismos entre los espacios topológicos X e Y. Una **isotopía** es una homotopía entre f y g, H : $X \times [0,1] \rightarrow Y$, con:

- 1. $H_0 = f$.
- 2. $H_1 = g$.
- 3. $\forall t \in [0,1], H_t$ es un homeomorfismo.

Definición 1.11. Sean f y g embebimientos entre las variedades N e M. Una **isotopía de embebimientos** es un homeomorfismo $H: M \times [0,1] \to M \times [0,1]$ cumpliendo:

1.
$$H(y,0) = (y,0) \ \forall y \in M$$
.

1. Conceptos previos

- 2. $H(f(x), 1) = (g(x), 1) \forall x \in N$.
- 3. $H(M \times \{t\}) = M \times \{t\} \ \forall t \in [0,1].$

Equivalentemente podemos decir que H es la isotopía de Id_M en $g \circ f^{-1}$ donde tenga sentido.

Definición 1.12. Sea M una variedad diferenciable y $f: M \to \mathbb{R}$ una función diferenciable en M. Un punto $p \in M$ se dice que es un **punto crítico** de f si Df(p) = 0 en T_pM . A su imagen por f, f(p), se le dice **valor crítico** de f.

Definición 1.13. Sea M una variedad diferenciable y $f: M \to \mathbb{R}$ una función diferenciable en M. Un punto crítico $p \in M$ se dice que es **no degenerado** si $H_{\phi}(f)(p)$ es regular para cualquier parametrización ϕ centrada en p, donde $H_{\phi}(f) = H(f \circ \phi)$ la matriz Hessiana de $f \circ \phi$.

El **índice** de dicho punto es la dimensión del mayor subespacio de T_pM donde $H_\phi(f)$ es definida negativa. No depende de ϕ por la regla de Sylvester, ya que H para otra parametrización ψ cumple $H_\psi(f) = J^t(\theta)H_\phi(f)J(\theta)$, con θ el cambio de coordenadas y J la matriz Jacobiana.

Definición 1.14. Sea f una función diferencaible en una superficie S, se dice que es una **función de Morse** si todos sus puntos críticos son no degenerados.

Definición 1.15. Sea f una función de Morse, dados a < b valores regulares de f en \mathbb{R} definimos:

- $V(a) = f^{-1}(a)$, se puede ver como una curva de nivel.
- $M(a) = f^{-1}((-\infty, a])$, el conjunto que hay "debajo" de la curva de nivel cuyo valor es a.
- $M'(a) = f^{-1}([a, \infty))$, el conjunto que hay "encima" de la curva de nivel cuyo valor es a.
- $W(a,b) = f^{-1}([a,b])$, el conjunto contenido entre 2 curvas de nivel.

2. Resultados previos

2.1. Teoría de recubridores

A continuación se enuncian los resultados utilizados de la Teoría de Recubridores.

Teorema 2.1 (de Levantamiento de aplicaciones). Sea (\tilde{X}, π) recubrimiento de X, Y espacio topológico y $f: Y \to X$ aplicación continua. Sea $y_0 \in Y$, $x_0 = f(y_0) \in X$ y $\tilde{x_0} \in \pi^{-1}(x_0)$ entonces son equivalentes:

- 1. $\exists ! \tilde{f} : Y \to \tilde{X}$ continua tal que $\tilde{f}(y_0) = \tilde{x_0} \ y \ \pi \circ \tilde{f} = f$.
- 2. $f_*(\Pi_1(Y, y_0)) \subset \pi_*(\Pi_1(\tilde{X}, \tilde{x_0})).$

2.2. Teoría de Morse

A continuación se enuncian resultados de la Teoría de Morse, principalmente utilizados para la demostración de los Hechos.

Teorema 2.2. Sea S superficie $y \ f: S \to \mathbb{R}$ función de Morse. Tomamos a < b valores regulares tal que W(a,b) no contiene ningún punto crítico de f. Entonces:

- M(b) es difeomorfo a M(a).
- V(b) es difeomorfo a V(a).
- W(a,b) es difeomorfo a $V(a) \times [a,b]$, o de forma equivalente, cada componente conexa de W(a,b) es difeomorfa a un anillo de \mathbb{R}^2 .

Demostración. Se demuestra en el artículo "Clasification of Surface via Morse Theory", el teorema 8. □

Teorema 2.3. Sea S superficie y $f: S \to \mathbb{R}$ función de Morse. Sea p un punto crítico y a < b valores regulares tal que W(a,b) no contiene ningún punto crítico de f aparte de p. Entonces:

- Si el índice de p es 0 o 2, M(b) es difeomorfo a la unión disjunta de M(a) con un disco D, es decir, W(a,b) es difeomorfo a un disco D.
- Si el índice de p es 1, M(b) es difeomorfo a M(a) junto con un rectángulo pegado en dos segmentos disjnutos de V(a), que se puede ver como unos "pantalones" si el pegado se realiza de acuerdo a la orientación, o unos "pantalones cruzados" en caso contrario.

Figura 2.1.: Pantalones normales y cruzados

Demostración. El primer punto se demuestra en el artículo "Clasification of Surface via Morse Theory", el teorema 13. El punto siguiente se demuestra en el mismo artículo, el teorema 16. □

2.3. Hechos utilizados para los teoremas

A continuación se enuncian los "hechos" utilizados para las demostraciones de los teoremas. Su demostración detallada en varios casos se escapa de los límites del proyecto, en cuyos casos se aportarán demostraciones que suponen ciertos aquellos elementos propios de la teoría de Morse.

Hecho 2.1. Todo $W \subset \mathbb{R}^2$ abierto tiene una triangulación clásica tal que el diámetro euclídeo de los triángulos se aproxima a 0 en la frontera topológica de W.

Demostración. Tomamos la cuadrícula generada de forma natural por \mathbb{Z}^2 sobre \mathbb{R}^2 . Vamos a definir de forma incremental el conjunto de cuadrados que cubren todo W.

Tomamos primero todos los cuadrados (cerrados) que estén contenidos estrictamente en *W*. Vamos a llamar *U* a la parte cubierta por el conjunto de cuadrados actual.

Dado un $p \in W$ y $p \notin U$ entonces existe un cuadrado que lo contiene pero que no está contenido estrictamente en W. Por ser W abierto sabemos que para p existe una bola abierta $B \subset W$ que lo contiene. De forma equivalente podemos subdividir el cuadrado inicial en 4 cuadrados iguales, $8 \dots$ y así sucesivamente hasta encontrar una subdivisión en la que algún cuadrado contenga a p y sea lo suficientemente pequeño como para que esté contenido en la bola $B \subset W$. Añadimos al conjunto todos los cuadrados anteriores que estén contenidos en W. Realizamos esta operación de manera indefinida.

Una vez definido el conjunto de cuadrados, podemos definir la triangulación como los triángulos resultantes de dividir por la diagonal dichos cuadrados. De esta forma tenemos una triangulación T tal que la unión de sus triángulos, U, está contenida en W pero todo punto $p \in W$ está en algún triángulo, por lo que U = W. Además, cuando tomamos p tendiendo a ∂W , la bola $B \subset W$ que lo contiene tiene radio ϵ tendiendo a 0, es decir, el cuadrado necesario para cubrirlo correctamente tiende a 0, y como consecuencia los dos triángulos de los que se compone también.

Hecho 2.2. Toda variedad diferenciable S tiene una triangulación diferenciable.

Demostración. Vamos a contruir una malla de polígonos diferenciables, que nos dará paso de forma trivial a una malla de triángulos diferenciables.

Podemos tomar $f:S\to\mathbb{R}$ función de Morse apropiada, es decir, los inversos de compactos son compactos y todos sus puntos críticos están a distintos niveles (es posible porque están aislados). Cortamos S por los niveles de puntos no críticos, para separar los puntos críticos entre sí, obteniendo así una descomposición de S en piezas difeomorfas a:

- Discos, tiene un punto crítico de orden 0 o 2.
- Anillos, no tiene puntos críticos.
- "Pantalones", o de forma equivalente, medio toro al que se le ha quitado un disco en el interior. Tiene un punto crítico de orden 1.
- "Pantalones cruzados", o también se pueden ver como medio toro suma conexa con un espacio proyectivo \mathbb{RP}^2 . Por ello, se puede dividir en unos "pantalones" normales y una cinta de Möbius. Tiene un punto crítico de orden 1.

2. Resultados previos

Por la teoría de Morse tenemos una división de *S* en conjuntos difeomorfos a alguno de los anteriores, todos ellos pegados por circunferencias (los bordes de los conjuntos descritos). Podemos obtener una malla añadiendo un vértice a cada circunferencia y seguidamente si es:

- Un disco, se toma el centro y se divide el disco en 3 partes, teniendo 3 sectores difeomorfos a un triángulo.
- Un anillo, se unen los 2 vértices (uno de cada circunferencia del borde) mediante un arco, obteniendo así un cuadrilátero.
- Unos "pantalones", se unen los 3 vértices mediante 2 arcos (un vértice común a los 2 arcos), dando lugar a un heptágono.
- Una cinta de Möbius, se une el vértice con él mismo mediante un arco, el cual recorre la mitad de la cara de la cinta, obteniendo así un triángulo.

Finalmente tenemos la malla de polígonos diferenciables, la cual podemos convertir en una triangulación diferenciable dividiendo de forma adecuada los polígonos. \Box

Hecho 2.3. Para toda estructura diferenciable E del toro punteado T'_E existe un subconjunto compacto suyo cuyo complemento es difeomorfo a $S^1 \times \mathbb{R}$ con la estructura diferenciable usual.

Demostración. Dividimos T'_S tal y como lo hicimos en el **Hecho 2.2**, obteniendo así que está formado por piezas P_j separadas por circunferencias C_j . Las piezas pueden ser discos, anillos o pantalones (cintas de Möbius no puesto que T'_S es orientable y la orientabilidad es una propiedad topológica).

La forma en la que se pegan esas piezas P_j , se asocia a un grafo G donde los vértices representan a cada P_j y las aristas indican adyacencia (existe un C_j entre las piezas que representan los vértices). Existe una aplicación cociente $q:T_S'\to G$ que lleva cada punto del entorno de una circunferencia C_j a la correspondiente proyección sobre el arco de G que representa a C_j . Por consiguiente, los C_j van a los vértices del grafo G.

La aplicación $q_*: \Pi_1(T_S') \to \Pi_1(G)$ es un homomorfismo sobreyectivo con inversa a la izquierda, viendo q como una homotopía. Por tanto, $\Pi_1(G)$ es un cociente de $\Pi_1(T_S')$, por lo que está finitamente generado. Esto implica que existe un subgrafo $G_0 \subset G$ tal que la clausura de $G - G_0$ consiste en un número finito de árboles (G se puede retraer a G_0). Sólo uno de esos árboles puede no ser compacto puesto que a T_S' le falta un único punto. Además, el no ser compacto implica que ese árbol está compuesto por un subárbol homeomorfo a $[0,\infty)$ junto con subárboles finitos pegados a él.

Podemos eliminar estos árboles finitos quitando las circunferencias que corresponden a dichos segmentos, cuyos vértices están asociados a discos P_j . Estas simplificaciones en G se pueden ver como simplificaciones en la función de Morse entendiendo los C_j como curvas de nivel, cancelando "sillines" con extremos locales (si es un disco que se adhiere a unos "pantalones") y anillos (si un C_j separa un anillo de un disco).

Finalmente tenemos que G tiene un subárbol no compacto G_f , homeomorfo a $[0, \infty)$ y la única posibilidad es que los segmentos correspondan a anillos, debido a que a T_S' sólo le falta

un punto, que se puede entender como el límite de dicha sucesión de P_j y C_j . Tenemos que existe un compacto (la unión de los P_j y C_j correspondientes a $G - G_f$) cuyo complementario (los correspondientes a G_f) es una sucesión de anillos "pegados" de forma diferenciable en el sentido usual y por tanto es difeomorfo al cilindro con la estructura usual.

Hecho 2.4. Toda estructura diferenciable E del toro $(S^1 \times S^1)_E$ es difeomorfa a la estructura usual del toro $S^1 \times S^1$.

Demostración. Partiendo de la demostración del hecho anterior, el grafo asociado G ahora es finito con $\Pi_1(G)$ el cociente del grupo abeliano $\Pi_1(T_S)$, es decir, necesariamente $\Pi_1(G) = \mathbb{Z}$. Podemos reducir G a una circunferencia, retrayendo los árboles finitos tal y como se hizo en la demostración anterior y haciendo los cambios necesarios en la función de Morse. La única posibilidad es que T_S sea una sucesión de anillos pegados diferenciablemente, así que T_S es difeomorfo a T con la estructura usual o a una botella de Klein, pero no puede ser éste último por ser $\Pi_1(T_S)$ abeliano (ya que el grupo fundamental de la botella de Klein no es abeliano y no es posible siquiera un homeomorfismo entre ellos).

Hecho 2.5. Sea E una estructura diferenciable en $D^1 \times \mathbb{R}$ tal que es la usual en un entorno del borde. Entonces existe un difeomorfismo $g:(D^1 \times \mathbb{R})_E \to (D^1 \times \mathbb{R})_U$, con U la estructura usual, que además es la identidad entorno a $\partial D^1 \times \mathbb{R}$.

Demostración. Tomamos la proyección $\pi:(D^1\times\mathbb{R})_S\to\mathbb{R}$ que ya es diferenciable en un entorno del borde. Si vemos $(D^1\times\mathbb{R})_S$ como una variedad sabemos que existe una función de Morse $f:(D^1\times\mathbb{R})_S\to\mathbb{R}$, a la que podemos obligar que coincida con $|\pi|$ en un entorno del borde más pequeño que en el que es diferenciable π , donde no tendrá puntos críticos.

La función f es una función de Morse propia, con todos sus puntos críticos en distintos niveles. Los niveles de puntos no críticos están formados por un único arco y una o varias circunferencias. Al cortar por dichos niveles obtenemos discos, anillos, "pantalones", rectángulos y rectángulos con un "agujero" (un rectángulo menos un disco abierto). El grafo asociado G es un árbol debido a que $\Pi_1(D^1 \times \mathbb{R}) = 0$, y procedemos como en la demostración del hecho 2.3, alterando f de forma que el G asociado sea homeomorfo a \mathbb{R} .

La nueva función f no tiene puntos críticos, por lo que puede ser la segunda componente de un difeomorfismo $g:(D^1\times\mathbb{R})_S\to D^1\times\mathbb{R}$, que coincidirá con la identidad en un entorno del borde. La primera componente se puede obtener a partir del campo de vectores gradientes de f, de forma similar a como se prosigue en la demostración del teorema 2.2 de la teoría de Morse.

Hecho 2.6. Sea E una estructura diferenciable en D^2 tal que es la usual en un entorno del borde. Entonces existe un difeomorfismo $g: D_E^2 \to D_U^2$, con U la estructura usual, que además es la identidad entorno a ∂D^2 .

Demostración. Tomamos la función que devuelve el radio (distancia al origen) en un entorno de ∂D_S^2 y como es diferenciable, la extendemos a una función de Morse propia $f: D_S^2 \to (0,1]$, cuyos puntos críticos están en el interior y $f^{-1}(1) = \partial D_S^2$.

El grafo asociado G es un árbol por ser $\Pi_1(D^2)=0$ y deformando f como se hizo anteriormente, podemos simplificar G a un único punto. Entonces, f sólo tiene un punto crítico p, que necesariamente debe de ser de índice 0 porque coincide con la función "radio" en el

2. Resultados previos

borde (f decrece a medida que nos acercamos p, es decir, en p la matriz Hessiana es definida positiva y por tanto el índice es 0).

Construimos $g:D_S^2\to D^2$ difeomorfismo a partir de f de manera similar a como se hizo en el apartado anterior, reproduciendo parte de la demostración del teorema 2.2 (siguiendo el flujo del campo de vectores gradientes de f). En particular, tenemos que g es la identidad en un entorno de ∂D_S^2 .

2.4. Teorema de Alisamiento de Asas

Teorema 2.4. (de "alisamiento de asas") Sea S una variedad diferenciable, entonces:

- 1. Un embebimiento $\mathbb{R}^2 \to S$ puede isotoparse a un embebimiento diferenciable en un entorno compacto del origen. Además, la isotopía coincide con la identidad fuera de un entorno compacto que contiene al anterior.
- 2. Un embebimiento $D^1 \times \mathbb{R} \to S$ que es diferenciable entorno a $\partial D^1 \times \mathbb{R}$ puede isotoparse a un embebimiento diferenciable entorno a $D^1 \times 0$. Dicha isotopía coincide con la identidad fuera de un entorno compacto de $(D^1 \times 0) \cup (\partial D^1 \times \mathbb{R})$.
- 3. Un embebimiento $D^2 \to S$ que es diferenciable entorno a ∂D^2 puede isotoparse a un embebimiento diferenciable en todo D^2 . La isotopía coincide con la identidad en un entorno de ∂D^2 .

Demostración. Voy a proceder a la demostración de cada uno de los apartados:

1. La idea de la demostración es arrastrar la estructura diferenciable de S (E_S) a una estructura diferenciable sobre el Toro (T_S), y aprovechar que en tales condiciones existe un difeomorfismo de T_S al Toro con la estructura diferenciable estándar (por el **Hecho** 4), que nos permitirá construir la isotopía deseada.

Vamos a utilizar el "truco del toro" de Kirby, para ello veremos el toro T como el espacio de órbitas $\mathbb{R}^2/\mathbb{Z}^2$ con su estructura topológica y diferenciable estándar, tomando el 0 como imagen del $0 \in \mathbb{R}^2$. Eliminamos un punto del toro distinto del 0, y a esta nueva variedad la llamamos T'.

Consideremos una inmersión $q:T'\to\mathbb{R}^2$ diferenciable que fija el 0. Dicha inmersión se puede construir partiendo del embebimiento del toro punteado T' en un disco con dos "1-asas" en \mathbb{R}^3 y seguidamente "aplanando" la figura, es decir, llevar diferenciablemente el disco con asas a \mathbb{R}^2 . Las asas se embeben por separado ya que como se observa, se solapan en \mathbb{R}^2 .

Sea $h: \mathbb{R}^2 \to S$ el embebimiento del enunciado, por el cual, haciendo "pull-back", S induce una estructura diferenciable en \mathbb{R}^2 , que denotaremos E_1 . Por el mismo razonamiento pero para la inmersión q, \mathbb{R}^2 con la estructura E_1 induce una estructura diferenciable en T' que llamaremos E_2 .

Sabemos por el **Hecho 3** que existe un conjunto compacto en T'_{E_2} cuyo complemento

2. Resultados previos

es difeomorfo a $S^1 \times \mathbb{R}$ con su estructura diferenciable estándar, equivalentemente es difeomorfo a $D^2 - (0,0)$ como abierto de \mathbb{R}^2 con su estructura diferenciable estándar. Si vemos el disco punteado como un subconjunto del plano complejo \mathbb{C} , el 0 se puede añadir de forma natural puesto que la estructura diferenciable usada hasta el momento es la usual en el cilindro (que induce la usual en D^2 , en el plano complejo y en la esfera de Riemann). Esto nos permite extender la estructura diferenciable E_2 de E_2 de E_3 de E_4 de E_4 de E_5 de E_5 de E_6 de E_7 de E_7

Por el **Hecho** 4 sabemos que toda estructura diferenciable del toro ($T \equiv S^1 \times S^1$) es difeomorfa a la estándar. Por tanto, existe un difeomorfismo $g: T_{E_2} \to T$. Para poder utilizar el Teorema de Levantamiento de aplicaciones de la teoría de recubridores, necesitamos normalizar dicha función g:

- Aplicando rotaciones en el toro T (lo vemos como $S^1 \times S^1$) podemos hacer que g lleve el 0 en el 0.
- Necesitamos que el homomorfismo g_* sea la identidad a nivel de grupos fundamentales para que el difeomorfismo g pueda ser levantado a un difeomorfismo $\widehat{g}: \mathbb{R}^2_{E_1} \to \mathbb{R}^2$ fijando el origen. Para ello basta con componer g con el automorfismo lineal $L \in GL_2(\mathbb{Z})$ apropiado, es decir, aquel tal que al componerlo con g_* queden fijos los dos generadores del grupo fundamental del toro topológico. La nueva g sigue llevando el 0 en el 0 y g_* es la identidad.

$$\left(\mathbb{R}^2/\mathbb{Z}^2\right)_{E_1} \xrightarrow{\hspace*{1cm} g \hspace*{1cm}} \mathbb{R}^2/\mathbb{Z}^2 \xrightarrow{\hspace*{1cm} L \hspace*{1cm}} \mathbb{R}^2/\mathbb{Z}^2$$

$$\pi_1(0,\ T_{E_1}) \xrightarrow{\hspace*{1cm} g_* \hspace*{1cm}} \pi_1(0,\ T) \xrightarrow{\hspace*{1cm} L \hspace*{1cm}} \pi_1(0,\ T)$$

De esta forma construimos un difeomorfismo $\widehat{g}: \mathbb{R}^2_{E_1} \to \mathbb{R}^2$ como el levantamiento de g fijando el origen, que de forma natural es doblemente periódico.

Identifiquemos \mathbb{R}^2 con el interior del disco unidad de \mathbb{R}^2 mediante una reparametrización radial que es la identidad entorno al 0, haciendo "pull-back" para cada disco de \mathbb{R}^2 para así obtener la estructura diferenciable inducida por E_1 , que llamaremos E. Entonces aplicando esta identificación en el dominio y la imagen de \widehat{g} obtenemos $G:D_E^2\to D^2$ automorfismo diferenciable, que sigue siendo \widehat{g} entorno al 0 y tiende a ser la identidad en el borde (por la periodicidad $\|\widehat{g}(x)-x\|$ está acotado para todo

x, y por consiguiente al tender x a infinito las variaciones tienden a 0 con la reparametrización, es decir, G(x) tiende a x). Podemos extender G a un homeomorfismo $G: \mathbb{R}^2_F \to \mathbb{R}^2$, siendo la identidad fuera del interior del disco.

Por el truco de Alexander, G es isotópica a la identidad. Se puede obtener la isotopía G_t variando el radio del disco de origen y destino $(G_t(x) = tG(\frac{x}{t}) \text{ para } x \in D((0,0),t)$ y es la identidad fuera), por lo que G_0 es la identidad y $G_1 = G$.

Definimos la isotopía que resuelva el problema como $h_t = h \circ G_t^{-1}$, teniendo que $h_0 = h$ por ser G_0 la identidad. Además, h_t se queda fija fuera del disco unidad ya que G_t es la identidad en dicho conjunto. También tenemos que $h_t(0) = h(0) = 0$ ya que para todo t, $G_t^{-1} = \widehat{g}^{-1}$ entorno al 0 y $\widehat{g}(0) = 0$. Finalmente, h_1 es diferenciable entorno al 0 porque $G_1^{-1} = G^{-1} = \widehat{g}^{-1}$ entorno al 0, que localmente es un difeomorfismo de la estructura usual de \mathbb{R}^2 en la inducida por S mediante h, que habíamos denotado por E_1 .

2. La idea es, al igual que en el punto anterior, encontrar un automorfismo diferenciable del dominio de *h* con diferentes estructuras diferenciables y restringirlo para que esté fijo donde lo solicite el enunciado.

Tenemos $h: D^1 \times \mathbb{R} \to S$ embebimiento diferenciable en un entorno del borde del dominio. Dicho embebimiento induce una estructura diferenciable E_1 en $D^1 \times \mathbb{R}$ que coincidirá con la estructura diferenciable estándar de $D^1 \times \mathbb{R}$ entorno al borde ya que h es diferenciable en el sentido usual ahí.

Por el **Hecho 5** tenemos que existe un difeomorfismo g entre la estructura inducida E_1 y la estructura estándar de $D^1 \times \mathbb{R}$ que es la identidad entorno al borde del conjunto. Tomamos el homeomorfismo $g:D^1 \times \mathbb{R} \to (D^1 \times D^1) - (0 \times \partial D^1)$ que es la identidad entorno $D^1 \times 0$. El comportamiento del homeomorfismo g se muestra en la siguiente figura:

Definimos $G:((D^1\times D^1)-(0\times\partial D^1))_{E_1}\to (D^1\times D^1)-(0\times\partial D^1)$ por $G=q\circ g\circ q^{-1}$, que como es la identidad entorno al borde del dominio, se puede extender a $G:\mathbb{R}^2_{E_1}\to\mathbb{R}^2$. No hay problema en los dos puntos de $0\times\partial D^1$ ya que por como se define q, en ambos tiene límite y es la identidad. Su comportamiento entorno a $D^1\times 0$ es igual que el de g (q es la identidad) y es la identidad fuera de $D^1\times D^1$ y entorno a $\partial D^1\times \mathbb{R}$.

2. Resultados previos

Podemos adaptar el truco de Alexander definiendo una isotopía G_t de homemomorfismos en \mathbb{R}^2 rescalando el cuadrado $D^1 \times D^1$ al igual que en el apartado anterior hicimos con el disco, de forma que G sea isotópica a la identidad en \mathbb{R}^2 .

Finalmente basta con definir $h_t = h \circ G_t^{-1}$. Cumple claramente que $h_0 = h$, h_1 es diferenciable en un entorno de $D^1 \times 0$ y h_t es la identidad en un entorno de $\partial D^1 \times \mathbb{R}$.

3. Tenemos $h: D^2 \to S$ embebimiento que es diferenciable entorno al borde del dominio. Este embebimiento induce mediante "pull-back" la estructura diferenciable de S a D^2 que coincide con la estructura diferenciable estándar de D^2 en un entorno del borde, ya que h es diferenciable en dicha zona en el sentido usual.

Por el **Hecho 6** existe un difeomorfismo g entre D^2 con la estructura estándar y la inducida, que además es la identidad entorno al borde. Una adaptación del truco de Alexander al disco nos aporta la isotopía g_t de homeomorfismos de D^2 , donde t va variando el tamaño de los discos de dominio e imagen de g y extendiendo por la identidad, por lo que g_0 sería la identidad y $g_1 = g$. Tomando la isotopía $h_t = h \circ g_t$ tendríamos lo solicitado, ya que $h_0 = h$ y h_1 es igual que h en un entorno del borde y es diferenciable en todo el disco.

Corolario 2.1. El primer apartado del teorema anterior sigue siendo cierto para un abierto W de \mathbb{R}^2 en vez de para todo \mathbb{R}^2 , con el objetivo de suavizarlo en un punto $p \in W$.

Demostración. Se restringe h a B_p ⊂ W, una bola cerrada con centro p. Sabemos que existe $f: D^2 \to B_p$ difeomorfismo y $g = h \circ f$ se puede extender continuamente a \mathbb{R}^2 (al punto q fuera de D^2 se le asigna el mismo valor que al punto de intersección de la circunferencia con el segmento del origen a q). Aplicamos el teorema anterior a $g: \mathbb{R}^2 \to S$ de manera que el entorno del origen V donde se altera g sea menor que la bola cerrada unidad, obteniendo así una isotopía g_t .

Definimos la isotopía deseada como $h_t(x)=(g_t|_{D^2}\circ f^{-1})(x)$ si $x\in B_p$ y $h_t(x)=h(x)$ si $x\not\in B_p$. Está bien definida puesto que $g_t|_{D^2}\circ f^{-1}$ es la identidad fuera de un entorno de p contenido en B_p y simplemente extendemos por la identidad. Además, de forma natural $h_0=h$ por ser $g_0=g$ y h_1 es diferenciable en un entorno de p contenido en B_p por serlo g_1 en un entorno del origen.

3. Resultados principales

3.1. Enunciados

Teorema A. Toda variedad topológica 2-dimensional tiene una estructura diferenciable.

Teorema B. Todo homeomorfismo entre variedades diferenciables 2-dimensionales es isotópico a un difeomorfismo.

Suponiendo ciertos los teoremas anteriores, es directa la obtención del siguiente resultado, ya que por A tenemos que toda variedad topológica 2-dimensional tiene una estructura diferenciable y por B sabemos que es única salvo difeomorfismos:

Corolario 3.1. (Teorema clásico de Moise) Toda variedad topológica 2-dimensional tiene una única estructura diferenciable salvo difeomorfismos.

3.2. Demostración del Teorema A

Teorema A. Toda variedad topológica tiene una estructura diferenciable.

Demostración. Sea S una variedad topológica, podemos coger un atlas $\{h_i|1 \le i \le N\}$ con $N \in \mathbb{N}$ si es finito o $N = \infty$ si no lo es. Vamos a construir por inducción una estuctura diferenciable en el conjunto $U_n = \bigcup_{i \le n} h_i(\mathbb{R}^2)$, que por ser un sistema coordenado su límite debe de ser S, probando así el resultado. Cabe destacar que cada U_i contiene a todos los anteriores.

La inducción empieza tomando una carta cualquiera del sistema, $U_1 = h_1(\mathbb{R}^2)$ por ejemplo. Si se considera la variedad U_1 con el atlas $\{h_1\}$ entonces h_1 es diferenciable para ésta de forma trivial (se compone con la inversa y queda la identidad en \mathbb{R}^2).

Una vez arrancada la inducción, suponiendo cierto para el paso n-1 vamos a extender la diferenciabilidad de U_{n-1} a U_n . Sea la carta h_n , tomamos entonces $W=h_n^{-1}(U_{n-1})=h_n^{-1}(U_{n-1}\cap h_n(\mathbb{R}^2))$, que es un abierto de \mathbb{R}^2 por ser h_n continua.

Tenemos $W \subset \mathbb{R}^2$ abierto, por el **Hecho 1** sabemos que existe una triangulación geométrica suya y al ir acercándose a la frontera topológica los triángulos convergen a puntos. Queremos aplicar el "Teorema de alisamiento de asas" en los vértices de los triángulos, seguidamente en los lados y finalmente en el interior de cada uno (aplicar los 3 apartados del teorema de forma consecutiva), pero para ello es necesario partir de un embebimiento de \mathbb{R}^2 :

1. Para todos y cada uno de los vértices de la triangulación elegimos una bola $B(p, \epsilon_p) \subset W$ cuyos cierres topológicos en \mathbb{R}^2 no se corten mutuamente. $B(p, \epsilon_p)$ es abierto y queremos obtener \hat{h} diferenciable entorno a p.

3. Resultados principales

Figura 3.1.: $B(p, \epsilon_p)$ para cada vértice.

Podemos aplicar el Corolario del apartado 1 del Teorema de Alisamiento de Asas ya que cumplimos todas las hipótesis necesarias. Así obtenemos una \widehat{h} isotópica a h, que es diferenciable en O_p entorno abierto de p y además queda fija fuera de otro entorno un poco mayor $O_p' \supset O_p$, con $O_p' \subset B(p, \epsilon_p)$.

De manera acumulativa, este procedimiento se puede realizar simultáneamente en todos los vértices p en la triangulación de W. Esto prueba que $h_n: \mathbb{R}^2 \to h_n(\mathbb{R}^2)$ es isotópica a un homeomorfismo $\widehat{h}_n: \mathbb{R}^2 \to h_n(\mathbb{R}^2)$ que es diferenciable, como aplicación sobre la superficie diferenciable U_{n-1} , en un entorno $O_p \subset W$ alrededor de cada vértice p de la triangulación de W. Además la isotopía coincide con h_n fuera de entornos $O_p' \subset W$ mayores que O_p para cada p, disjuntos 2 a 2.

Figura 3.2.: O_p para cada vértice.

2. Tenemos por el paso anterior un $h_n:\mathbb{R}^2\to h_n(\mathbb{R}^2)$ isotópico al original en las con-

diciones explicadas, y que es diferenciable como aplicación $W \to U_{n-1}$ entorno a los vértices de la triangulación de W. Queremos utilizar el apartado 2 del Teorema de Alisamiento de Asas para generar otra isotopía que nos lleve h_n a otro homeomorfismo (al que le daremos el mismo nombre) cuya restricción a $W \to U_{n-1}$ sea diferenciable además entorno a los lados de la triangulación anterior, coincidiendo con el h_n original fuera de un entorno del 1-esqueleto de esa triangulación.

Para ello, consideramos para cada lado l de la triangulación de W un subconjunto R_l (rectángulo) dentro de W que sea difeomorfo a $D^1 \times \mathbb{R}$, cumpliendo:

- a) R_l corta a l en un segmento compacto y es disjunto con cualquier otro lado de la triangulación de W. En particular, R_l no contiene ningún vértice de la triangulación de W.
- b) Si p_1 y p_2 son los vértices extremos de l, una componente del borde de R_l está contenida en O_{p_1} y la otra en O_{p_2} , es decir, h_n es diferenciable en 2 componentes de ∂R_l .
- c) Los cierres de los rectángulos R_l en \mathbb{R}^2 son disjuntos 2 a 2 y están contenidos en W

Figura 3.3.: Entorno de l donde h_n es diferenciable.

Ahora es evidente como en el apartado 2 del Teorema de Alisamiento de Asas nos produce la isotopía deseada realizando el trabajo simultáneamente en todos los rectángulos R_l , generando el nuevo $h_n : \mathbb{R}^2 \to h_n(\mathbb{R}^2)$ deseado.

Figura 3.4.: Entorno del 1-esqueleto donde h_n es diferenciable.

3. Resultados principales

- 3. El tercer paso es similar a los anteriores, pero ahora usando el apartado 3 del Teorema de Alisamiento de Asas. Lo que hacemos en considerar para cada triángulo T de la triangulación de W un dominio de Jordan D_T satisfaciendo:
 - a) $D_T \subset \mathring{T}$.
 - *b*) $h_n: W \to U_{n-1}$ es diferenciable sobre $T \mathring{D}_T$.
 - c) Los D_T son disjuntos dos a dos.

Aplicando el Teorema de Carathéodory obtenemos que es difeomorfo a la bola unidad y por tanto podemos proceder de manera similar a los apartados anteriores.

A continuación producimos otra isotopía que nos lleve el h_n generado en el apartado 2 a otro homeomorfismo (al que daremos el mismo nombre) cuya restricción $W \to U_{n-1}$ sea diferenciable sobre D_T , coincidiendo en cada instante con la h_n anterior en un entorno de ∂D_T y de hecho fuera de D_T , para cada triángulo T. Esto concluiría la prueba.

Para probar la existencia de D_T vamos a definir la curva de Jordan cuyo interior es de forma trivial un dominio de Jordan, que será dicho D_T . La curva debe ser diferenciable, cerrada y simple, que es la caracterización de una curva de Jordan. Reducimos el problema a buscar dicha curva para el entorno tubular de un triángulo equilátero, ya que es difeomorfo al de un triángulo cualquiera. Podemos simplificarlo más aportando únicamente una curva no cerrada cuyos extremos se puedan pegar consecutivamente, siendo infinitamente derivable en los puntos donde se unen.

Haciendo uso de una función meseta f que vale 0 en \mathbb{R}^- y 1 a partir de $\epsilon>0$, si tomamos $g(x)=tg(\frac{\pi}{3})xf(x)$ en el intervalo $[-1,\epsilon]$, tenemos que g(-1)=0 y $g(\epsilon)=tg(\frac{\pi}{3})\epsilon$ al igual que sus derivadas, por lo que si vamos alternando g(x) y g(-x) mediante rotaciones y traslaciones, tendremos una curva α diferenciable (suavización del triángulo equilátero).

Figura 3.5.: Curva de Jordan cercana al triángulo

Se puede observar que es válido $\forall \epsilon > 0$ y que al hacer tender ϵ a 0, la curva será el propio triángulo equilátero. Es por ello que podemos tomar el ϵ lo suficientemente pequeño como para que la curva α quepa en el entorno tubular y siga siendo una curva de Jordan. Como exigimos que $D_T \subset \mathring{T}$ podemos aplicar a la curva un factor de escala para así no contener ningún punto del borde del triángulo T. Además, de forma evidente obtenemos que los dominos D_T son disjuntos 2 a 2.

Todas las isotopías de los pasos anteriores coinciden por extensión continua con el homeomorfismo $h_n: \mathbb{R}^2 \to h_n(\mathbb{R}^2)$ original en la frontera de W en \mathbb{R}^2 por construcción, ya que el diámetro de los triángulos en W tiende a 0 al acercarnos a la frontera. Por tanto pueden ser extendidas como isotopías de $\mathbb{R}^2 \to h(\mathbb{R}^2)$ coincidentes con h_n en $\mathbb{R}^2 - W$.

Como conclusión, el homeomorfismo $h_n: \mathbb{R}^2 \to h_n(\mathbb{R}^2)$ resultante es compatible con la estructura diferenciable en U_{n-1} y junto con h_1, \ldots, h_{n-1} , nos define una estructura diferenciable sobre U_n . Esto cierra la inducción y prueba el teorema.

3.3. Demostración del Teorema B

Teorema B. Todo homeomorfismo entre variedades diferenciables 2-dimensionales es isotópico a un difeomorfismo.

Demostración. Sea $f:S\to S'$ homeomorfismo entre variedades diferenciales 2-dimensionales, se puede utilizar el **Hecho 2**, que nos aporta una triangulación diferenciable de S. Por definición de triangulación diferenciable, tenemos que la aplicación celda φ_n es un difeomorfismo. Vamos a proseguir de forma similar a la demostración del Teorema A, pero esta vez la función a isotopar es $g_n=f\circ\varphi_n:\mathbb{R}^2\to f(\varphi(\mathbb{R}^2))\subset S'$ homeomorfismo. Sea $W_n=\varphi_n^{-1}(S)=\varphi_n^{-1}(S\cap\varphi_n(\mathbb{R}^2))$ abierto de \mathbb{R}^2 , vamos a isotopar f en 3 etapas:

1. Para todos los vértices de la triangulación de S, vistos en W_n mediante φ_n^{-1} , tomamos una bola $B(p,\epsilon)$ de tal forma que sus cierres no se corten 2 a 2 y estén contenidos en W_n . Acto seguido podemos proceder de forma idéntica al apartado 1 de la demostración del Teorema A, obteniendo como resultado un homeomorfismo $\widehat{g}_n: W_n \to g_n(W_n)$ isotópico a g_n , que es diferenciable en un entorno de cada vértice de la triangulación $O_p \subset W_n$, cuyos cierres no se cortan y quedan dentro de W_n y además \widehat{g}_n coincide con g_n en un entorno de cada vértice mayor al anterior (cuyos cierres tampoco se cortan y están contenidos en W_n).

Si deshacemos el cambio con φ_n , obtenemos que $f:\widehat{g}\circ\varphi_n:\varphi_n(W_n)\to g_n(W_n)$ homeomorfismo es isotópica a $\widehat{f}=\widehat{g}\circ\varphi_n:\varphi_n(W_n)\to g_n(W_n)$ homeomorfismo, cumpliendo lo descrito pero para $\varphi_n(W_n)$, por ser φ_n un difeomorfismo. Como \widehat{f} coincide con f en el borde de $\varphi_n(W_n)$, la isotopía se puede extender a $S\to S'$. Mantenemos el nombre f para la nueva \widehat{f} .

Realizamos de forma incremental este proceso, hasta conseguir una isotopía a una función que sea diferenciable en un entorno de todos los vértices de la triangulación de *S* que además queda fija en un entorno mayor (cuyos cierres no se cortan).

3. Resultados principales

- 2. Para todo lado l de la triangulación en W_n definimos un entorno R_l que es difeomorfo a un rectángulo, que a su vez es difeomorfo a $D^1 \times \mathbb{R}$, para así poder aplicar el apartado 2 del Teorema de Alisamiento de Asas. Para ello debe cumplir:
 - a) R_l corta a l en una curva compacta y es disjunto con cualquier otro lado de la triangulación diferenciable. En particular R_l no contiene ningún vértice de la triangulación en W_n .
 - b) Si p_1 y p_2 son los vértices extremos de l, una componente del borde está contenida en O_{p_1} y otra en O_{p_2} , con O_p entorno de p donde es diferenciable g_n , es decir, defimimos R_l de manera que g_n sea diferenciable en 2 componentes de su borde (∂R_l) .
 - c) Los cierres de los R_1 en \mathbb{R}^2 son disjuntos 2 a 2 y están contenidos en W_n .

Estamos en las condiciones necesarias para aplicar el apartado 2 del Teorema de Alisamiento de Asas, dando lugar a una isotopía a $\widehat{g}:W_n\to g(W_n)$ homemomorfismo diferenciable en un entorno de cada lado de la triangulación en W_n que coincide con g fuera de un entorno mayor al anterior. Procedemos de igual forma que en el apartado 1 de esta demostración, obteniendo una isotopía de f a $\widehat{f}:S\to S'$ homeomorfismo diferenciable en un entorno de cada lado de la triangulación diferenciable de S, que coincide con f fuera de un entorno mayor que el anterior.

3. En este último apartado queremos aplicar el punto 3 del Teorema de Alisamiento de Asas. Como la triangulación de S es diferenciable, sabemos que el interior de cada triángulo es difeomorfo al disco unidad de \mathbb{R}^2 , por lo que para utilizar un dominio de Jordan D_T para cada T triángulo de la triangulación de W_n de forma que no se corten 2 a 2, tomamos un conjunto más pequeño que el interior del triángulo (se puede tomar el mismo conjunto pero multiplicado por un factor de escala ligeramente menor que 1).

Tenemos que g_n es diferenciable en un entorno de ∂D_T y coincide con la g original fuera de un entorno del borde mayor que el anterior. De igual forma que en el apartado 3 de la demostración del Teorema B obtenemos una isotopía de g a $\widehat{g}:W_n\to g_n(W_n)$ homemorfismo que es diferenciable en la triangulación de W_n (en los vértices, los lados y en el interior de cada triángulo). Siguiendo el esquema de los apartados anteriores obtenemos que f es isotópica a $\widehat{f}:S\to S'$ homeomorfismo diferenciable en toda la triangulación diferenciable de S (vértices, lados e interiores). Como consecuencia \widehat{f} es, de forma natural, un difeomormismo, concluyendo así la prueba.

Parte II.

Visualización de superficies

Si el trabajo se divide en diferentes partes es posible incluir al inicio de cada una de ellas un breve resumen que indique el contenido de la misma. Esto es opcional.

4. Estudio de la teselación

En este capítulo se describe el estudio realizado para teselar de manera eficiente un triángulo. Esta técnica se implementará en shaders, para poder ejecutarlo directamente en la GPU, que ofrece mayor rendimiento que la CPU para dicho problema. En un principio se iba a realizar en un Geometry Shader pero más tarde se observó que era más acertado el uso de un Tessellation Shader.

Cabe destacar antes que la idea inicial era desarrollar un algoritmo de división recursiva de los triángulos, el cuál se detiene en el nivel en el que se cree que representa correctamente a la porción de superficie. Sin embargo, el lenguaje Glsl no permite realizar llamadas recursivas, por lo que era necesario buscar alternativas.

4.1. Geometry shader

La ventaja de este tipo de shader es que es muy flexible a la hora de generar nuevas primitivas, ya que permite añadir primitivas totalmente disconexas.

En primer lugar opté por describir de forma explícita un cierto número de niveles de la función recursiva deseada, 3 niveles concretamente. Los resultados eran aceptables pero se podía exceder el límite de vértices, quedando así una superficie incompleta. Además, el tiempo de compilación crecía de forma exponencial a medida que se añadían más niveles (para 2 niveles era de 10-15s y para 3 no concluía).

Puesto que este método era costoso temporalmente y tenía muchas limitaciones, decidí implementar un algoritmo similar pero en un bucle, cuyo esquema es el siguiente:

- Dado un lado, dividirlo en tantos segmentos como sea necesario, atendiendo a una cierta medida. Dicha medida sólo depende de las características del lado, para que el pegado sea el correcto con los triángulos adyacentes.
- 2. Se realiza una división hacia el baricentro, de forma similar al punto anterior.
- 3. Con los vértices de los dos puntos anteriores se genera una malla, es decir, para cada lado, se genera otro lado paralelo para cada subdivisión hacia el baricentro, manteniendo proporcionalmente las subdivisiones del lado original.
- 4. Se genera una tira de triángulos cuyos vértices sean los de la malla anterior.

Con este método los problemas anteriores se solventan en gran medida, pero dicho algoritmo es semejante al del Tessellation shader, por lo que era natural estudiar el funcionamiento en tal shader.

Finalmente, los inconvenientes observados han sido los siguientes:

- El número de vértices de salida está limitado por una constante predefinida, con valor GL_MAX_GEOMETRY_OUTPUT_VERTICES=256 (depende del hardware), es decir, como mucho se puede devolver una tira de 254 triángulos, independientemente del tamaño del triángulo original.
- El shader tarda en compilarse de media entre 3 y 5 segundos.

4.2. Tessellation shader

Este shader tiene un pequeño problema y es que la subdivisión está predefinida (equal, fractional_odd o fractional_even spacing), por lo que los vértices generados en la fase de control del Tessellation shader tienen un esquema fijo, para un número de subdivisiones dado. No es un gran inconveniente puesto que en la fase de evaluación se pueden variar libremente dichos vértices, siempre que se haga con cuidado (en esta fase los vértices se generan mediante coordenadas baricéntricas).

Las ventajas con respecto al Geometry shader son las siguientes:

- El shader tarda en compilarse de media menos de 1s.
- El número de vértices de salida no está tan limitado (GL_MAX_PATCH_VERTICES= 36477 frente a 256).
- Está pensado para realizar directamente el algoritmo de teselación, por lo que no hay que implementarlo.

Al tener implementado el algoritmo de teselación, el estudio se reduce a encontrar una medida que nos indique cómo de buena es la representación de la superficie. Como la teselación se indica por cada lado (outer tessellation factor) y en el interior (inner tessellation), para cada tipo de medida hay que proporcionar una adicional para los lados, para que la teselación sólo dependa de lo que sucede en ellos y de esta forma pegue correctamente con el triángulo adyacente.

4.2.1. Medida basada en el volumen

Consiste en estimar el volumen de la diferencia entre el poliedro generado y la superficie original a nivel local. Esta medida está asociada al primer concepto de superficie bien representada:

Definición 4.1 (Superficie bien representada 1). Dada una superficie S y un poliedro P que la aproxima, se dice que la representa con una precisión de $\epsilon > 0$ si el volumen contenido entre ambos es menor que ϵ .

La medida equivalente para los lados es el área de la sección cuya base es el lado del triángulo y el borde restante es la curva original a aproximar con dicho lado.

Sin embargo, para las superficies no compactas esta definición puede no permitir la existencia de un *P* que la aproxime con una precisión finita.

Figura 4.1.: Medida en un lado DC

Además, aparece el problema de la no detección de picos, debido a que al estudiar el volumen, si la altura es grande y la base lo suficientemente pequeña se puede dar el caso de que el volumen quede por debajo de la precisión ϵ y no tesele, aun existiendo dicho pico.

Figura 4.2.: Pico no teselado

4.2.2. Medida basada en el área

Consiste en estimar el área de la superficie original localmente. Esta medida está asociada al segundo concepto de superficie bien representada:

Definición 4.2 (Superficie bien representada 2). Dada una superficie S y un poliedro P que la aproxima, se dice que la representa con una precisión de $\epsilon > 0$ si el ratio de área $r = \frac{A(S)}{A(P)}$ cumple que $r - 1 < \epsilon$ (siempre se tiene que $r \ge 1$).

La medida equivalente para los lados es $r=\frac{L(\alpha)}{L(l)}$ donde L es la longitud, l el lado del triángulo y α la curva a estimar.

Es una buena alternativa para poder detectar dichos picos, ya que cuando hay uno o varios picos mal aproximados el área original entorno al pico es mucho mayor que la de la superficie generada (el ratio es grande). Además, de esta forma estamos evitando la aparición del problema del farolillo de Schwarz (–CITAR–) debido a que buscamos estimar con una cierta precisión el área original.

4.2.3. Medida basada en la curvatura

Hablar de la medida final, curvatura de Gauss por unidad de área (en los lados es por unidad de longitud).

Planificación y presupuesto

Análisis y diseño

En este capítulo se especificará toda aquella información referente a la estructura del programa y los requisitos del mismo, aunque está mayormente enfocado a la definición de los algoritmos desarrollados.

1. Especificación de requisitos

1.1. Requisitos funcionales

- 1. Se podrán visualizar varias parametrizaciones a la vez, donde cada una representará una carta de una superficie específica, con el objetivo de representar homotopías e isotopías entre superficies.
 - *a*) El sistema debe permitir visualizar cualquier parametrización que se le indique, siempre que cumpla con la estructura del lenguaje definido.
 - b) Cada parametrización podrá admitir parámetros de "tiempo", para así modificar la porción de superficie que representa y así poder visualizar homotopías e isotopías.
- 2. El programa contará con una interfaz clara, sencilla y completa.
 - a) El usuario tendrá la posibilidad de indicar manualmente los parámetros adicionales de las cartas (t_i) . Además se incluirá la opción de que cada t_i se mueva de forma automática, para así generar animaciones fluidas.
 - *b*) El usuario podrá indicar ciertos parámetros del cálculo de la malla de la superficie, como:
 - 1) El tamaño de la malla inicial con la que se visualizará cada carta de la superficie.
 - 2) La precisión con la que se quiere representar la superficie actual.
 - c) El usuario podrá indicar si quiere visualizar ciertos atributos de la superficie, como:
 - 1) La curvatura de Gauss, asignando un color para la curvatura negativa y otro para la positiva, dependiendo de un parámetro de escala para resaltar las zonas.
 - 2) El área diferencial de la parametrización, junto con un umbral y un factor de escala que se podrán modificar.
 - 3) Se podrán visualizar los vectores tangente, normal y binormal de cada vértice generado.
 - *d*) El usuario tendrá la posibilidad de modificar los valores referentes a la iluminación.
 - 1) Los coeficientes del modelo de iluminación Phong.

- 2) El color del fondo de la escena y el color base del objeto visualizado.
- 3. El programa no renderizará nuevos frames si no se requieren nuevos cálculos, es decir, si no se detectan cambios en la entrada y la escena está estática.

1.2. Requisitos no funcionales

- 1. El programa debe renderizar las superficies con un tiempo de respuesta bajo, pensando en dispositivos con una GPU común, como por ejemplo una gráfica integrada.
 - a) El programa adaptará su rendimiento según el estado del propio programa.
- 2. Metodología
- 3. Diagramas
- 4. Principales desarrollos algorítmicos

Implementación y pruebas

Instalación del software

Los apéndices son opcionales.
Archivo: apendices/guia_instalacion.tex

Guía de uso del programa

Los apéndices son opcionales. Archivo: apendices/guia_uso.tex

Conclusiones

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/conclusiones.tex

Glosario

La inclusión de un glosario es opcional. Archivo: glosario.tex

- $\ensuremath{\mathbb{R}}$ Conjunto de números reales.
- ${\Bbb C}$ Conjunto de números complejos.
- ${\mathbb Z}$ Conjunto de números enteros.