Wprowadzenie do METODY SIMPLEKS

A. Pilawski

WIT Warszawa, 2024

Spis Tresći

- Graficzna metoda rozwiązywania problemów programowania liniowego
- 2. Podstawowe definicje w postacie zadań programowania liniowego
- 3. Elementy algebry liniowej
- 4. Zbiory wypukłe

TWIERDZENIE 1

Dla dowolnej funkcji z = f(x) spełnione są równości

(min)
$$f(x) = -(\max)[-f(x)]$$

(max) $f(x) = -(\min)[-f(x)]$

$$(max)z = f(x) \tag{1}$$

przy warunkach ograniczająncych

$$g_i(x) = 0 \quad (i = 1, 2, ..., m)$$
 (2)

Gdzie $z \in R$, a $x \in R^n$ jest wektorem zmiennych decyzyjnych

DEFINICJA

Rozwiązanie $x_0 \in X$ nazywamy rozwiązaniem optymalnym zadania programowania matematycznego (1)-(2) jeżeli dla dowolnego $x \in X$ spełniony jest warunek $f(x_0) \ge f(x)$ (3)

DEFINICJA

Dwa zadania programowania matematycznego nazywamy równoważnymi, jeżeli rozwiązań optymalnych tych zadań są identyczne.

Jeżeli w zadaniu (1)-(2) funkcja celu oraz warunki ograniczające są liniowe, to zadanie takie nazywamy zadaniem programowania liniowego

Jego postać ogólna jest zatem następująca (4) (min albo max)
$$z = c^T x$$
 przy warunkach ograniczających \leq $Ax = b$,

gdzie $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $z \in \mathbb{R}$, A jest macierzą typu $m \times n$.

Zadaniem o postaci **standardowej** nazywamy zadanie

$$(\max) z = c^T x \tag{6}$$

przy warunkach ograniczających

$$Ax = b (b \ge 0) \tag{7}$$

$$x \ge \mathbf{0} \tag{8}$$

Zadaniem o postaci *klasycznej* (zwaną czasem postacią kanoniczną) nazywamy zadanie

$$(\max) z = c^T x \tag{9}$$

przy warunkach ograniczających

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{10}$$

$$x \ge \mathbf{0} \tag{11}$$

Postać *mieszaną*

Zadanie o postaci ogólnej można przekształcić do postaci standardowej, klasycznej lub mieszanej za pomocą następujących operacji:

OPERACJA (1) - Zmiana rodzaju ekstremum. Zgodnie z twierdzeniem1 zadanie na minimum (maksimum) można przekształcić w zadanie na maksimum (minimum) zmieniając funkcję celu na przeciwną (tzn. mnożąc ją przez -1).

OPERACJA (2) - Zamiana zmiennych dowolnych co do znaku na zmienne nieujemne. Jeżeli pewna zmienna \boldsymbol{x} jest dowolna co do znaku, to podstawiając $\boldsymbol{x} = \boldsymbol{x}^+ - \boldsymbol{x}^-$

gdzie $x+=\max\{0,x\}, x^-=\max\{0,-x\}$ otrzymujemy przedstawienie tej zmiennej za pomocą nieujemnych zmiennych x^+ i $x^-(x^+,x^-\geq 0)$.

OPERACJA (3) - Zamiana nierówności na równość. Nierówność $a^Tx \le \text{lub } a^Tx \ge \text{można zastąpić równościami odpowiednio:}$

$$a^Tx + x^d = b$$
 lub $a^Tx - x^d = b$

Zmienna x^d nosi nazwę zmiennej dodatkowej. Zmienne dodatkowe nie występują w funkcji celu.

OPERACJA (4) - Zamiana równości na nierówność. Równanie

$$a^Tx = b$$

jest równoważne dwóm nierównościom

$$a^Tx \leq b$$

$$-a^Tx \leq -b$$

Dowolna postać wyjściowa zadania oraz postać otrzymana z niej w wyniku zastosowania zdefiniowanych powyżej operacji (I)-(4) są sobie równoważne.

Zgodnie z tradicją, przez R^n będzemy oznaczać n-wymariarową przestrzeń euklidesową, tzn. Przestrzeń, której elementami są wektory o postaci

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

o składnikach rzeczowistych $x_i \in R$ dla i - 1.2, ..., n).

Definicja.

Wektor $z \in \mathbb{R}^n$ nazywamy kombinacią liniową wektorów $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ jeżeli

$$x = \sum_{i=1}^{k} \mu_i x_i \quad (\mu_i \in R, \qquad i-1.2...,k)$$

<u>Definicja.</u>

Mówimy , że wektory $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ tworzą układ liniowo zależny jeżeli

$$\sum_{i=1}^{k} \lambda_i x_i = \mathbf{0} \qquad (\lambda_i \in R, \quad i = 1.2..., k)$$

Przy czym nie wszystkie λ_i są równe zeru (symbol $\bf 0$ oznacza wektor zerowy przestrzeni \mathbb{R}^n)

TWIERDZENIE 2

Dowolny układ wektorów zawierający wektor zerowy jest układem liniowo zależnym

Definicja.

Układ wektorów $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ nazywamy liniowo niezależnym jeżeli równość

$$\sum_{i=1}^{k} \lambda_i x_i = \mathbf{0} \qquad (\lambda_i \in R, \quad i = 1.2..., k)$$

zachodzi tylko wtedy, gdy wszystkie ($\lambda_i = 0 \ (i = 1.2...., k)$

TWIERDZENIE 3.

Maksymalna liczba liniowo niezależnych wektorów w przestrzeni R^n wynosi n.

Definicja.

Mówimy ze układ wektorów $\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_k \in \mathcal{F}$ rozpina zbiór \mathcal{F} , jeżeli dla każdego $\boldsymbol{a} \in \mathcal{F}$ istnieją takie $\lambda_i \in R \ (i=1,2,\dots,k)$, że

$$a = \sum_{i=1}^{k} \lambda_i b_i$$

tzn. każdy element zbioru \mathcal{F} można przedstawić jako kombinacię liniową wektorów b_1, b_2, \dots, b_k .

Definicja.

Bazą zbioru \mathcal{F} nazywamy liniowo niezależny układ wektorów $\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_k \in \mathcal{F}$ rozpinający zbiór \mathcal{F} .

TWIERDZENIE 4

Liczba wektorów stanowiących bazę zbioru ${\cal F}$ jest równa maksymalnej liczbie wektorów liniowo niezależnych należących do ${\cal F}$.

Wniosek.

Dowolny zbiór n liniowo niezależnych wektorów należących do przestrzeni R^n jest bazą przestrzen

DEFINICJA

Zbiór $C \in \mathbb{R}^n$ nazywamy wypukłym, jeżeli dla dowolnych $x_1, x_2 \in C$ oraz dla dowolnego $0 \le \lambda \le 1$ zachodzi

$$\lambda x_1 + (1 - \lambda) x_2 \in C$$

DEFINICJA

Punkt $x \in C$ nazywamy punktem wierzchołkowym (ekstremalnym) zbióru wypukłego C wtedy i tylko wtedy, jeżeli nie istnieją takie dwa różne punkty $x_1, x_2 \in C$ ($x_1 \neq x_2$) i różne od punktu x ($x_1 \neq x, x_2 \neq x$) oraz takie $\lambda x_1 + (1-\lambda) x_2$, że $x = \lambda x_1 + (1-\lambda) x_2$

TWIERDZENIE

Hiperpłaszczyzna H o postaci $a^Tx = d(x, a \in \mathbb{R}^n, d \in \mathbb{R})$ jest zbiorem wypukłym.

TWIERDZENIE

Półprzestrzeń postaci $a^Tx \le d(x, a \in R^n, d \in R)$ jest zbiórem wypukłym.

TWIERDZENIE

Zbiór rozwiązań układu równań liniowych postaci Ax = b (A jest macierz typu $m \times n, x \in R'', b \in R^m$) jest zbiorem wypukłym.

TWIERDZENIE

Część wspólna zbiorów wypukłych jest zbioórem wypukłym.

WNIOSEK

Zbiór nieujemnych rozwiązań układu równań A x = b jest zbiorem wypukłym. Zbiór nieujemnych rozwiązań układu Ax = b jest zbiorem rozwiązań układu

równań i nierówności postaci Ax = b, $x \ge 0$.

Na mocy twierdzeń odpowiednio 2, 3, 4: zbiór tych rozwiązań jest zbiorem wypukłym.