Содержание

1	Ma	Матрица достижимости									
	1.1	Композиция бинарных отношений	2								
		Матрица достижимости									
2	За,	дачи об обходах графа	4								
	2.1	Поиск в глубину (англ. Depth-first search, DFS)	4								
	2.2	Поиск в ширину (англ. Breadth-first search, BFS)	5								
	2.3	Алгоритм Косарайю для поиска компонент сильной связности	6								
	2.4	Конденсация и база графа	7								
3	Pac	стояния в графе	8								
	3.1	Определения	8								
	3.2	Алгоритм Дейкстры	9								

1 Матрица достижимости

1.1 Композиция бинарных отношений

Пусть на множествах A, B и C определены бинарные отношения

$$R \subseteq A \times B$$
,

$$Q \subseteq B \times C$$
.

Тогда композицией отношений R и Q называется такое отношение $(R \circ Q)$, что

$$\forall a \in A, c \in C : a(R \circ Q)c \Leftrightarrow \exists b \in B : (aRb) \land (bQc).$$

Пример

$$A = \{a, b, c, d\}, B = \{1, 2, 3, 4\}, C = \{!, ?, *, \backslash\}.$$

$$R = \{(a, 2), (b, 2), (c, 3), (c, 4)\}, Q = \{(1, !), (2, *), (4, \backslash)\}.$$

Pис. 1: Бинарные отношения R и Q

Матрицы бинарных отношений имеют вид

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad M_Q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Рассмотрим композицию отношений $R \circ Q = \{(a,*), (b,*), (c, \backslash)\}.$

Матрицу композиций можно определить с помощью булева произведения матриц M_R и M_Q

$$M_{R \circ Q} = M_R \cdot M_Q = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Рис. 2: Композиция отношений

Рис. 3: G = (V, E)

1.2 Матрица достижимости

Рассмотрим ориентированный граф G = (V, E) на рисунке 3. Его матрица смежности имеет вид

$$S(G) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Элемент $s_{ij}=1$ в том случае, если вершины v_1 и v_j смежны, а значит существует путь длины 1 из v_1 в v_j .

Для поиска путей длины 2 можно рассмотреть композицию отношения смежности с собой, матрица такого отношения будет определяться как

Для поиска путей длины 3 можно воспользоваться матрицей $S^3 = S^2 \cdot S$.

Мы можем определить матрицу достижимости R(G) как матрицу рефлексивно-транзитивного замыкания отношения смежности, тогда

$$R(G) = E \vee S \vee S^2 \vee \dots \vee S^{n-1}.$$

Для нашего графа S^4 =0, поэтому

$$R(G) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

2 Задачи об обходах графа

Для определения количества и состава компонент связности используют алгоритмы обхода графов: поиск в глубину и поиск в ширину.

Рассмотрим алгоритмы обхода на примере графа G = (V, E) с рисунка 4.

2.1 Поиск в глубину (англ. Depth-first search, DFS)

Идея DFS состоит в том, чтобы идти «вглубь» графа, насколько это возможно.

Алгоритм поиска описывается рекурсивно: перебираем все исходящие из рассматриваемой вершины рёбра. Если ребро ведёт в вершину, которая не была посещена ранее, то запускаем алгоритм от этой непосещённой вершины, а после возвращаемся и продолжаем перебирать рёбра. Возврат происходит в том случае, если не осталось смежных с рассматриваемой вершиной непосещённых вершин.

Если после завершения алгоритма не все вершины были рассмотрены, то необходимо запустить алгоритм от одной из нерассмотренных вершин.

Описание алгоритма.

1. Пронумеруем все вершины.

Рис. 4: Граф G = (V, E)

- 2. Выбираем вершину с наименьшим номером и отмечаем как посещённую.
- 3. Выбираем смежную к текущей вершину с наименьшим номером и помечаем её посещённой, она станет текущей на следующем шаге. Если таких вершин нет, возвращаемся к предыдущей посещённой вершине.
- 4. Повторяем шаг 3, пока не произойдёт возврат в начальную вершину.
- 5. Если после этого остались непройденные вершины, значит граф несвязный. В этом случае берём непройденную вершину с наименьшим номером, из которой производим обход следующей компоненты связности.

Шаги алгоритма показаны на рисунке 5.

2.2 Поиск в ширину (англ. Breadth-first search, BFS)

Идея алгоритма состоит в распределении вершин по уровням, характеризующим удалённость от первой вершины.

Описание алгоритма.

- 1. Возьмём вершину v_1 , как вершину нулевого уровня, отмечаем её как пройденную.
- 2. Формируем уровень i+1 из непройденных вершин, смежных с вершинами на i-го уровня.
- 3. Если множество вершин i+1 уровня не пусто, помечаем их как пройденные и формируем следующий уровень.

Рис. 5: Поиск в глубину

- 4. Если уровень оказывается пустым, обход компоненты связности завершён.
- 5. Если пройдены не все вершины, выполняют обход других компонент.

Шаги алгоритма показаны на рисунке 6.

2.3 Алгоритм Косарайю для поиска компонент сильной связности Описание алгоритма

- 1. Запускаем DFS на исходном графе G, запоминая времена выхода $\tau(v)$ для каждой вершины.
- 2. Транспонируем граф $G^T = (G)^T$, меняя направление дуг на противоположное.
- 3. Запускаем DFS на транспонированном графе G^T , выбирая в качестве стартовой непосещённую вершину с максимальным значением $\tau(v)$.
- 4. Полученные в шаге 3 подграфы и образуют компоненты сильной связности.

Рис. 6: Поиск в ширину

2.4 Конденсация и база графа

Введём обозначение R(v) для множества вершин, достижимых из вершины v.

Множество вершин $\{v_1, v_2, \dots, v_k\} \subseteq V$ ориентированного графа G = (V, E) называется его базой, если из вершин этого множества достижимы все остальные вершины и оно минимально по включению.

База существует в любом ориентированном графе. Любые две вершины базы не достижимы одна из другой.

Вершины с нулевыми степенями захода обязаны принадлежать базе.

Для построения базы используется конденсация графа, то есть такой граф G^c , в котором каждая сильно связная компонента исходного графа стянута в одну вершину.

Граф конденсации $G^c = (V^c, E^c)$ ориентированного графа G = (V, E) – ориентированный граф с множеством вершин

$$V^c = \{V_1, V_2, \dots, V_k\},\$$

где каждая V_i – множество вершин сильно связной компоненты орграфа G.

Вершины V_i и V_j графа конденсаций соединяются дугой, если в исходном ориентированном графе существовала дуга (v, u), где $v \in V_i$, $u \in V_j$.

При построении графа конденсаций можем выделить следующие шаги:

- 1. Определить для каждой вершины v множество достижимых из неё вершин R(v).
- 2. Выделить наибольшие по включению классы вершин V_1, V_2, \ldots, V_k , достижимых друг из друга. Эти классы будут вершинами графа G^c .
- 3. Построить множество дуг графа конденсации по определению.

Множество вершин, содержащих ровно одну вершину из множества новых вершин $\{V_1, V_2, \dots, V_k\}$, имеющих нулевую полустепень захода, образует базу.

3 Расстояния в графе

3.1 Определения

Длиной $l(v_1, v_k)$ пути $P = (v_1, \{v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \dots, v_{k-2}, \{v_{k-2}, v_{k-1}\}, v_{k-1}, \{v_{k-1}, v_k\}, v_k)$ называется суммарный вес рёбер, входящих в путь.

$$l(v_1, v_k) = \sum_i \omega_i.$$

Расстоянием $\rho(u,v)$ между двумя вершинами v и u называется длина кратчайшего пути, соединяющего эти вершины.

$$\rho(u, v) = \min_{i} l(u, v).$$

Эксцентриситетом $\varepsilon(v)$ вершины v называют расстояние до максимально удаленной от нее вершины. Для графа, у которого не определен вес его ребер, расстояние определяется в виде числа ребер.

$$\varepsilon(v) = \max_{i} \rho(u_i, v).$$

Радиус r(G) графа G = (V, E) – минимальный эксцентриситет его вершин.

$$r(G) = \min_{i} \varepsilon_{i}.$$

Диаметр d(G) графа G = (V, E) – максимальный эксцентриситет его вершин.

$$d(G) = \max_{i} \varepsilon_{i}.$$

Центром O(G) связного графа G = (V, E) называют множество вершин, у которых эксцентриситет равен радиусу графа.

$$O(G) = \{v | v \in V, \varepsilon(v) = r(G)\}.$$

Пример.

Дан граф G = (V, E) (рисунок 7).

Пусть веса всех его рёбер равны единице.

Внесём расстояния между вершинами в таблицу.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	$\varepsilon(v_i)$
v_1	0	1	1	1	1	2	2	2
v_2	1	0	2	1	1	3	3	3
v_3	1	2	0	2	2	1	1	2
v_4	1	1	2	0	1	3	3	3
v_5	1	1	2	1	0	3	3	3
v_6	2	3	1	3	3	0	1	3
v_7	2	3	1	3	3	1	0	3

Тогда

$$d(G) = 3,$$

 $r(G) = 2,$
 $O(G) = \{v_1, v_3\}.$

Рис. 7: Граф G = (V, E)

3.2 Алгоритм Дейкстры

Алгоритм позволяет построить кратчайшие пути от корневой вершины до остальных вершин графа.

Алгоритм работает на как на неориентированных, так и на ориентированных графах (в этом случае учитывается направление) в том случае, если все веса графа неотрицательны.

Описание алгоритма.

- 1. Корневой вершине приписывают метку $\mu_1 = 0$, а остальным вершинам метку ∞ .
- 2. На i-м шаге выбирают вершину v_i , метка которой минимальна. Метку этой вершины называют постоянной.
- 3. Перебирают все смежные с v_i вершины, метка которых не является постоянной.
- 4. Если вершина v_j смежна с v_i и имеет метку μ_j , тогда метку вершины v_j изменяют по правилу

$$\mu_j = \min(\mu_i + \rho(v_i, v_j), \mu_j).$$

5. Алгоритм заканчивает работу, когда все вершины имеют постоянные метки.

Постоянную метку будем выделять прямоугольником, а в качестве индекса будем указывать вершину-предка. Так, запись 1_{v_1} говорит о том, что значение метки равно единице, а вершина-предок в дереве кратчайших путей $-v_1$.

Пример.

Дан граф G = (V, E) (рисунок 8).

Рис. 8: Граф G = (V, E)

Пусть v_1 – корневая вершина, выполним первый шаг алгоритма

$$v_1$$
 v_2 v_3 v_4 v_5 v_6 v_7 Шаг 10 ∞ ∞ ∞ ∞ ∞

Вершина v_1 смежна с v_2 , v_3 , v_4 и v_5 .

$$\mu_2 = \min(\mu_1 + \rho(v_1, v_2), \mu_2) = \min(0 + 1, \infty) = 1,$$

$$\mu_3 = \min(\mu_1 + \rho(v_1, v_3), \mu_3) = \min(0 + 2, \infty) = 2,$$

$$\mu_4 = \min(\mu_1 + \rho(v_1, v_4), \mu_4) = \min(0 + 3, \infty) = 3,$$

$$\mu_5 = \min(\mu_1 + \rho(v_1, v_5), \mu_5) = \min(0 + 2, \infty) = 2.$$

Минимальная метка у вершины v_2 , она становится постоянной.

Вершина v_2 смежна с v_4 и v_5 .

$$\mu_4 = \min(\mu_2 + \rho(v_2, v_4), \mu_4) = \min(1+3, 3) = 3,$$

 $\mu_5 = \min(\mu_2 + \rho(v_2, v_5), \mu_5) = \min(1+1, 2) = 2.$

Минимальная метка у вершины v_3 , она становится постоянной.

$$v_1$$
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7

 Шаг 1
 0
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞

 Шаг 2
 1_{v_1}
 2_{v_1}
 3_{v_1}
 2_{v_1}
 ∞
 ∞

 Шаг 3
 2_{v_1}
 3_{v_1}
 2_{v_1}
 ∞
 ∞

Вершина v_3 смежна с v_6 и v_7 .

$$\mu_6 = \min(\mu_3 + \rho(v_3, v_6), \mu_6) = \min(2+3, \infty) = 5,$$

 $\mu_7 = \min(\mu_3 + \rho(v_3, v_7), \mu_7) = \min(2+1, \infty) = 3.$

Минимальная метка у вершины v_5 , она становится постоянной.

$$v_1$$
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7

 Шаг 1
 0
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞

 Шаг 2
 1_{v_1}
 2_{v_1}
 3_{v_1}
 2_{v_1}
 ∞
 ∞

 Шаг 3
 2_{v_1}
 2_{v_1}
 2_{v_1}
 ∞
 ∞

 Шаг 4
 2_{v_1}
 2_{v_1}
 2_{v_1}
 2_{v_2}
 2_{v_3}
 2_{v_3}

Вершина v_5 смежна с v_4 .

$$\mu_4 = \min(\mu_5 + \rho(v_5, v_4), \mu_4) = \min(2 + 1, 3) = 3,$$

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
Шаг 1	0	∞	∞	∞	∞	∞	∞
Шаг 2		1_{v_1}	2_{v_1}	3_{v_1}	2_{v_1}	∞	∞
Шаг 3			$2v_1$	3_{v_1}	2_{v_1}	∞	∞
Шаг 4				3_{v_1}	$2v_1$	5_{v_3}	3_{v_3}
Шаг 5				3_{v_1}		5_{v_3}	3_{v_3}

Вершина v_4 не смежна ни с одной вершиной с непостоянной меткой. Минимальная метка у вершины v_7 , она становится постоянной.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
Шаг 1	0	∞	∞	∞	∞	∞	∞
Шаг 2		1_{v_1}	2_{v_1}	3_{v_1}	2_{v_1}	∞	∞
Шаг 3			$2v_1$	3_{v_1}	2_{v_1}	∞	∞
Шаг 4				3_{v_1}	2_{v_1}	$5v_3$	3_{v_3}
Шаг 5				3_{v_1}		$5v_3$	3_{v_3}
Шаг 6						5_{v_3}	3_{v_3}

Вершина v_7 смежна с v_6 .

$$\mu_6 = \min(\mu_7 + \rho(v_7, v_6), \mu_6) = \min(3 + 2, 5) = 5.$$

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
Шаг 1	0	∞	∞	∞	∞	∞	∞
Шаг 2		1_{v_1}	2_{v_1}	3_{v_1}	2_{v_1}	∞	∞
Шаг 3			$2v_1$	3_{v_1}	2_{v_1}	∞	∞
Шаг 4				3_{v_1}	$2v_1$	5_{v_3}	3_{v_3}
Шаг 5				3_{v_1}		5_{v_3}	3_{v_3}
Шаг 6						5_{v_3}	3_{v_3}
Шаг 7						$5v_3$	

Таким образом, значения постоянных меток указывают на кратчайшее расстояние от корневой вершины, а двигаясь в обратном направлении по меткам от потомков к предкам, можно восстановить дерево кратчайших путей.

Для вершины v_7 постоянная метка равна 3_{v_3} , следовательно, кратчайший путь из v_1 в v_7 имеет длину 3. Так как для вершины v_7 предком является v_3 , а для v_3 предком является v_1 , кратчайший путь имеет вид

$$P = (v_1, \{v_1, v_3\}, v_3, \{v_3, v_7\}, v_7),$$

$$\rho(v_1, v_3) + \rho(v_3, v_7) = 2 + 1 = 3.$$