

"Space Data Processing: Making Sense of Experimental Data"

Topic 4 "Process reconstruction free from any constraints and assumptions"

Tatiana Podladchikova Rupert Gerzer Term 4, March 28 – May 27, 2016 t.podladchikova@skoltech.ru

Analysis of running mean errors

Running mean may significantly distort the dynamics of the process

Measurements Smoothed, window size =13

9-months variation

13-months variation

32-months variation

Inverse variations
with periods from
6 to 12 months.
Convex curve is
replaced by concave
curve and vice versa

Total loss
of 6- and 12-month
variations decreasing
them to zero

Period greater than running window size (13 months).
The process in general is not distorted

Distortion of physics in sunspot cycle 12

Performed analysis allows us to anticipate the errors of smoothing and getting false conclusions

Reconstruct process free from any assumptions

13-month optimal running mean

How reconstruct a process free from any assumptions?

Approximating curve \widehat{X}_i has to be close to measurements z_i

$$I_d = \sum_{i=1}^{N} (z_i - \widehat{X}_i)^2$$

 z_i - measurements

 \widehat{X}_i - estimation

How reconstruct a process free from any assumptions?

Deviation indicator

$$I_d = \sum_{i=1}^{N} (z_i - \widehat{X}_i)^2$$

 $oldsymbol{Z_i}$ - measurements \widehat{X}_i - estimation

$$|I_d| = 0$$
No filtration of measurement noise $\widehat{X}_i = z_i$

Not enough to use only deviation indicator.
Additional criterion is needed

How reconstruct a process free from any assumptions?

Absolute value of second derivative is maximal at points of the greatest "variability" of approximating curve

Maximal rate of change of the process

$$I_{v} = \sum_{j=1}^{N-2} (\widehat{X}_{j+2} - 2\widehat{X}_{j+1} + \widehat{X}_{j})^{2}$$

 \widehat{X}_i - estimation

Optimality criteria to find best approximation

 z_i - measurements, \widehat{X}_i - estimation

1 Deviation indicator
$$I_d = \sum_{i=1}^{N} (z_i - \widehat{X}_i)^2$$

Variability indicator
$$I_{v} = \sum_{i=1}^{N-2} (\widehat{X}_{j+2} - 2\widehat{X}_{j+1} + \widehat{X}_{j})^{2} \longrightarrow I_{v} \rightarrow min$$

Optimality criterion combining I_d and I_v ?

Optimality criteria to find best approximation

 z_i - measurements, \widehat{X}_i - estimation

Deviation indicator
$$I_d = \sum_{i=1}^{N} (z_i - \widehat{X}_i)^2$$

2 Variability indicator
$$I_v = \sum_{i=1}^{N-2} (\widehat{X}_{j+2} - 2\widehat{X}_{j+1} + \widehat{X}_j)^2 \Rightarrow I_v \rightarrow min$$

Optimality criterion
$$J = \beta I_d + I_v \Rightarrow J \rightarrow min$$

Smoothing coefficient
$$\widehat{X}_i$$
 Closer to measurements Z_i

Goal 1

Optimality criteria to find best approximation

Deviation indicator I_d

Variability indicator I_v

 $J \rightarrow min$

Fidelity to measurements z_i

Smoothness of \widehat{X}_i

G. Bohlmann, 1899 E.T. Whittaker, 1923 **Balance**

Minimization of functional J to find best estimation

Minimization of functional J to find best estimation

Minimization of functional I to find best estimation

Goal 1

Minimization of functional I to find best estimation

 \widehat{X}_i Estimation

n Dbservation interval

Z Measurement vector $Z = |z_1, z_2, ..., z_n|^T$

 $oldsymbol{n}$ equations with $oldsymbol{n}$ unknowns

 β Smoothing constant

$$A = \begin{vmatrix} 1+\beta & -2 & 1 & 0 & 0 & \dots & 0 \\ -2 & 5+\beta & -4 & 1 & 0 & \dots & 0 \\ 1 & -4 & 6+\beta & -4 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & -4 & 6+\beta & -4 & 1 \\ 0 & \dots & 0 & 1 & -4 & 5+\beta & -2 \\ 0 & \dots & 0 & 0 & 1 & -2 & 1+\beta \end{vmatrix}$$

 $n \times n$ five diagonal banded matrix

Minimization of functional I to find best estimation

$$\widehat{X} = \beta A^{-1} Z$$

Approximation \widehat{X} - weighted sum of measurements Z

Reconstruction of a process free from any assumptions

13-month running mean

13-month sequent measurements Z

13-month running mean \widehat{X}

$$\widehat{X}_{i} = \frac{1}{24} z_{i-6} + \frac{1}{12} (z_{i-5} + z_{i-4} + \dots + z_{i-1} + z_{i} + z_{i+1} + \dots + z_{i+5}) + \frac{1}{24} z_{i+6}$$

13-month sequent Measurements Z

$$Z = |z_{i-6}, z_{i-5}, \dots z_i, \dots, z_{i+5}, z_{i+6}|^T$$

13-month sequent Measurements Z $Z = |z_{i-6}, z_{i-5}, \dots z_i, \dots, z_{i+5}, z_{i+6}|^T$

13-month optimal running mean \widehat{X} $\widehat{X} = |x_{i-6}, x_{i-5}, \dots x_i, \dots, x_{i+5}, x_{i+6}|^T$?

13-month sequent Measurements
$$Z$$
 $Z = |z_{i-6}, z_{i-5}, \dots z_i, \dots, z_{i+5}, z_{i+6}|^T$

13-month optimal running mean
$$\widehat{X}$$

$$\widehat{X} = |x_{i-6}, x_{i-5}, \dots x_i, \dots, x_{i+5}, x_{i+6}|^T$$
?

Optimal approximation \widehat{X} - weighted sum of measurements Z $\widehat{X} = \beta A^{-1}Z$

Optimal approximation \widehat{X} - weighted sum of measurements Z

$$\widehat{X} = \beta A^{-1} Z$$

 $A \longrightarrow 13 \times 13$ five diagonal banded matrix

Optimal approximation \widehat{X} - weighted sum of measurements Z

$$\widehat{X} = \beta A^{-1} Z$$

$$\widehat{X} = egin{bmatrix} x_{i-6} \\ x_{i-5} \\ \dots \\ x_{i} \\ \dots \\ x_{i+5} \\ x_{i+6} \end{bmatrix} = eta A^{-1} egin{bmatrix} Z_{i-6} \\ Z_{i-5} \\ \dots \\ Z_{i} \\ \dots \\ Z_{i+5} \\ Z_{i+6} \end{bmatrix}$$

 $A \longrightarrow 13 \times 13$ five diagonal banded matrix

 c_{ij} Elements of matrix A^{-1}

Optimal approximation \widehat{X} - weighted sum of measurements Z

$$\widehat{X} = \beta A^{-1} Z$$

$$A \longrightarrow 13 \times 13$$
 five diagonal banded matrix

 c_{ij} Elements of matrix A^{-1}

Optimal approximation \widehat{X} - weighted sum of measurements Z

$$\widehat{X} = \beta A^{-1} Z$$

$$\widehat{X} = egin{bmatrix} x_{i-6} \ x_{i-5} \ \dots \ x_{i} \ x_{i+5} \ x_{i+6} \ \end{bmatrix} = eta egin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,7} & \dots & c_{1,12} & c_{1,13} \ c_{2,1} & c_{2,2} & \dots & c_{2,7} & \dots & c_{2,12} & c_{2,13} \ \vdots & \vdots & \ddots & \ddots & \dots \ c_{2,12} & c_{2,13} \ \vdots & \vdots & \ddots & \vdots \ c_{12,1} & c_{7,2} & \dots & c_{7,7} & \dots & c_{7,12} & c_{7,13} \ \vdots & \vdots & \ddots & \vdots \ c_{13,1} & c_{13,2} & \dots & c_{13,7} & \dots & c_{13,12} & c_{13,13} \ \end{bmatrix} egin{bmatrix} z_{i-6} \ z_{i-5} \ \vdots \ z_{i-5} \ \vdots \ z_{i+5} \ z_{i+6} \ \end{bmatrix}$$

 $A \longrightarrow 13 \times 13$ five diagonal banded matrix

Elements of matrix A^{-1}

How to get estimation x_i at time i?

Optimal approximation \widehat{X} - weighted sum of measurements Z

$$\widehat{X} = \beta A^{-1} Z$$

$$\widehat{X} = \begin{bmatrix} x_{i-6} \\ x_{i-5} \\ \dots \end{bmatrix} \begin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,7} & \dots & c_{1,12} & c_{1,13} \\ c_{2,1} & c_{2,2} & \dots & c_{2,7} & \dots & c_{2,12} & c_{2,13} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ x_i & = \beta & c_{7,1} & c_{7,2} & \dots & c_{7,7} & \dots & c_{7,12} & c_{7,13} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ x_{i+5} & c_{12,1} & c_{12,2} & \dots & c_{12,7} & \dots & c_{12,12} & c_{12,13} \\ x_{i+6} & c_{13,1} & c_{13,2} & \dots & c_{13,7} & \dots & c_{13,12} & c_{13,13} \end{bmatrix} \begin{bmatrix} z_{i-6} \\ z_{i-5} \\ \vdots \\ z_{i-5} \\ \vdots \\ z_{i+5} \\ z_{i+6} \end{bmatrix}$$

$$A = 13 \times 13$$
 five diagonal banded matrix

 c_{ii} Elements of matrix A^{-1}

$$x_i = \beta C(\beta) Z$$
 $C(\beta) = |c_{7,1}, c_{7,2}, ..., c_{7,7}, ... c_{7,12}, c_{7,13}|$

Smoothing weights in 13-month running mean and 13-month optimal running mean

13-month sequent measurements Z

The optimal weights monotonously increase when measurements approach step *i*

Approximation of sunspot cycle 12

The optimal filter provides more adequate presentation of the sunspot cycle and doesn't distort the short-term variations of sunspot numbers

Comparative analysis of optimal and non-optimal techniques

To analyze qualitatively advantages of optimal smoothing technique compared to the 13-month running mean

Determine and compare deviation indicator I_d and variability indicator I_v