Binary operations on sets

- The **Union** of the sets A and B, denoted $A \cup B$, is the set of all objects that are a member of A, or B, or both. The union of $\{1, 2, 3\}$ and $\{2, 3, 4\}$ is the set $\{1, 2, 3, 4\}$.
- The **Intersection** of the sets A and B, denoted $A \cap B$, is the set of all objects that are members of both A and B. The intersection of $\{1, 2, 3\}$ and $\{2, 3, 4\}$ is the set $\{2, 3\}$.
- The Set difference of U and A, denoted U\A, is the set of all members of U that are not members of A.
 The set difference {1,2,3} {2,3,4} is {1}, while, conversely, the set difference {2,3,4} {1,2,3} is {4}.
- When A is a subset of U, the set difference $U \setminus A$ is also called the **complement** of A in U. In this case, if the choice of U is clear from the context, the notation A' is sometimes used instead of $U \setminus A$, particularly if U is a universal set as in the study of Venn diagrams.
- The **Symmetric difference** of sets A and B, denoted $A \oplus B$, is the set of all objects that are a member of exactly one of A and B (elements which are in one of the sets, but not in both). For instance, for the sets $\{1,2,3\}$ and $\{2,3,4\}$, the symmetric difference set is $\{1,4\}$. The Symmetric difference is the set difference of the union and the
- The Cartesian product of A and B, denoted $A \times B$, is the set whose members are all possible ordered pairs (a,b) where a is a

intersection, $(A \cup B)$ $(A \cap B)$ or $(A B) \cup (B A)$.

member of A and b is a member of B. The cartesian product of $\{1, 2\}$ and $\{\text{red}, \text{ white}\}$ is $\{(1, \text{ red}), (1, \text{ white}), (2, \text{ red}), (2, \text{ white})\}$.

• The **Power set** of a set A is the set whose members are all possible subsets of A. For example, the power set of $\{1, 2\}$ is $\{\{\}, \{1\}, \{2\}, \{1,2\}\}\}$.