

Visualisation

Week 3
Smoothing and Convolution

Smoothing

Temperature in Birmingham

aka Moving Average aka Box(car) Smoothing

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1 = 7

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1 = 7

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1 = 7

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1 = 11

Larger window gives:

- Smoother result
- Larger areas without estimate

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$

Window size is w = 2m + 1 = 21

Rolling Average Smoothing - Computation

Naïve implementation:

$$s_t = \frac{1}{w} \sum_{k=-m}^{m} x_{t+k}$$
$$= \sum_{k=-m}^{n} \frac{x_{t+k}}{w}$$

Recursive implementation:

$$s_t = s_{t-1} - \frac{x_{t-k}}{w} + \frac{x_{t+k}}{w}$$
$$O(n)$$

Very efficient!

Rolling Average Smoothing - Downsides

Rolling Average Smoothing - Downsides

Strange behaviour depending on frequency and window size.

Strange behaviour depending on frequency and window size

Strange behaviour depending on frequency and window size

Rolling Average Smoothing - Downsides

Date

$$s_t = \sum_{k=-m}^{m} x_{t+k} g(k)$$

This type of efficient implementation is not possible.

$$s_t = \sum_{k=-m}^{m} x_{t+k} g(k)$$

$$s_t = \sum_{k=-m}^{m} x_{t+k} g(k)$$

$$\sum_{k=-m}^{m} g(k) = 1$$

$$s_t = \sum_{k=-m}^{m} x_{t+k} g(k) \qquad g(k) = \frac{1}{w}$$

Advantages of Gaussian Smoothing

Gaussian Filter Downsides

Weighted Average Smoothing as Convolution

Definition of Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - k)g(k)dk$$

Discrete Version

$$g(k) = 0$$
 outside $[-m, m]$

$$(f * g)(t) = \sum_{k = -\infty}^{\infty} f(t - k) g(k)$$
Flipped $g(k)$

$$s_t = \sum_{k=-m}^{m} x_{t+k} g(k)$$

Weighted averaging is a convolution

Convolutions - Properties

Commutativity

$$f * g = g * f$$

Associativity

$$(f * g) * h = f * (g * h)$$
$$a(f * g) = (af) * g$$

Distributivity

$$(f+g)*h = (f*h) + (g*h)$$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

0

50

100

150

-150

-100

-50

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

Remember Associativity

$$(f * g) * h = f * (g * h)$$

$$f * g_{\text{Gaussian}} \approx f * g_{\text{box}} * g_{\text{box}} * \cdots * g_{\text{box}}$$
Very efficient

Summary

- Rolling Average:
 - Simple
 - Very fast/time-efficient
 - Unexpected behaviour for some frequencies (flipping)
- Weighted Average:
 - Generalisation of moving average
- Gaussian smoothing
 - Weighted averaging with Gaussian Kernel
 - No flipping behaviour
 - Less time-efficient

• Convolutions:

- Mathematical description of weighted averaging
- Rolling average and Gaussian smoothing are special cases

