Muon decay

The following muon data is from Particle Data Group.

μ MEAN LIFE τ

Measurements with an error $> 0.001 \times 10^{-6}$ s have been omitted.

<i>VALUE</i> (10 ⁻⁶ s)	DOCUMENT ID		TECN	CHG	COMMENT			
2.1969811±0.0000022 OUR AVERAGE								
$2.1969803 \pm 0.0000021 \pm 0.0000007$	¹ TISHCHENKO	13	CNTR	+	Surface μ^+ at PSI			
$2.197083 \pm 0.000032 \pm 0.000015$	BARCZYK	80	CNTR	+	Muons from π^+ decay at rest			
$2.197013 \pm 0.000021 \pm 0.000011$	CHITWOOD	07	CNTR	+	Surface μ^+ at PSI			
2.197078 ± 0.000073	BARDIN	84	CNTR	+				
2.197025 ± 0.000155	BARDIN	84	CNTR	_				
2.19695 ± 0.00006	GIOVANETTI	84	CNTR	+				
2.19711 ± 0.00008	BALANDIN	74	CNTR	+				
2.1973 ± 0.0003	DUCLOS	73	CNTR	+				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
2.1969803 ± 0.0000022	WEBBER	11	CNTR	+	Surface μ^+ at PSI			
1 TISHCHENKO 13 uses $1.6 \times 10^{12} \ \mu^{+}$ events and supersedes WEBBER 11.								

From "V minus A" theory we have the following formula for muon lifetime τ .

$$\tau = \frac{96\pi^2 h}{G_F^2 \left(m_\mu c^2\right)^5}$$

Symbol G_F is Fermi coupling constant, m_{μ} is muon mass.

From NIST we have

$$G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$$

 $m_{\mu} = 1.883531627 \times 10^{-28} \text{ kilogram}$
 $h = 6.62607015 \times 10^{-34} \text{ joule second (exact)}$
 $c = 299792458 \text{ meter second}^{-1} \text{ (exact)}$
 $1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ joule (exact)}$

Hence

$$\tau = \frac{96\pi^2 h}{G_F^2 (m_\mu c^2)^5} = 2.18735 \times 10^{-6} \text{ second}$$

The result is a bit smaller than the observed value from Particle Data Group.

$$\frac{\tau}{\text{observed value}} = \frac{2.18735 \times 10^{-6} \, \text{second}}{2.19698 \times 10^{-6} \, \text{second}} = 0.9956$$

As the following diagram shows, a muon decays into a muon neutrino, an electron antineutrino, and an electron.

Particle	Symbol	Momentum	Spinor (up)	Spinor (down)
Muon	μ^-	p_1	u_{11}	u_{12}
Muon neutrino	$ u_{\mu}$	p_2	u_{21}	u_{22}
Electron anti-neutrino	$ar{ u}_e$	p_3	v_{31}	v_{32}
Electron	e^{-}	p_4	u_{41}	u_{42}

We have the following momentum vectors for the muon decay process.

$$p_{1} = \begin{pmatrix} E_{1} \\ p_{1x} \\ p_{1y} \\ p_{1z} \end{pmatrix} \qquad p_{2} = \begin{pmatrix} E_{2} \\ p_{2x} \\ p_{2y} \\ p_{2z} \end{pmatrix} \qquad p_{3} = \begin{pmatrix} E_{3} \\ p_{3x} \\ p_{3y} \\ p_{3z} \\ \bar{\nu}_{e} \end{pmatrix} \qquad p_{4} = \begin{pmatrix} E_{4} \\ p_{4x} \\ p_{4y} \\ p_{4z} \\ \bar{\nu}_{e} \end{pmatrix}$$

Spinors for the muon.

$$u_{11} = \frac{1}{\sqrt{E_1 + m_1}} \begin{pmatrix} E_1 + m_1 \\ 0 \\ p_{1z} \\ p_{1x} + ip_{1y} \end{pmatrix} \qquad u_{12} = \frac{1}{\sqrt{E_1 + m_1}} \begin{pmatrix} 0 \\ E_1 + m_1 \\ p_{1x} - ip_{1y} \\ -p_{1z} \end{pmatrix}$$

$$\mu^{-} \text{ spin up} \qquad \qquad \mu^{-} \text{ spin down}$$

Spinors for the muon neutrino.

$$u_{21} = \frac{1}{\sqrt{E_2 + m_2}} \begin{pmatrix} E_2 + m_2 \\ 0 \\ p_{2z} \\ p_{2x} + ip_{2y} \end{pmatrix} \qquad u_{22} = \frac{1}{\sqrt{E_2 + m_2}} \begin{pmatrix} 0 \\ E_2 + m_2 \\ p_{2x} - ip_{2y} \\ -p_{2z} \\ \nu_{\mu} \text{ spin down} \end{pmatrix}$$

Spinors for the electron anti-neutrino.

$$v_{31} = \frac{1}{\sqrt{E_3 + m_3}} \begin{pmatrix} p_{3z} \\ p_{3x} + ip_{3y} \\ E_3 + m_3 \\ 0 \end{pmatrix} \qquad v_{32} = \frac{1}{\sqrt{E_3 + m_3}} \begin{pmatrix} p_{3x} - ip_{3y} \\ -p_{3z} \\ 0 \\ E_3 + m_3 \end{pmatrix}$$

$$\bar{\nu}_e \text{ spin up}$$

$$\bar{\nu}_e \text{ spin down}$$

Spinors for the electron.

$$u_{41} = \frac{1}{\sqrt{E_4 + m_4}} \begin{pmatrix} E_4 + m_4 \\ 0 \\ p_{4z} \\ p_{4x} + ip_{4y} \end{pmatrix} \qquad u_{42} = \frac{1}{\sqrt{E_4 + m_4}} \begin{pmatrix} 0 \\ E_4 + m_4 \\ p_{4x} - ip_{4y} \\ -p_{4z} \end{pmatrix}$$

$$e^{-} \text{ spin up} \qquad e^{-} \text{ spin down}$$

The probability amplitude \mathcal{M}_{abcd} for spin state abcd is

$$\mathcal{M}_{abcd} = \frac{G_F}{\sqrt{2}} \left(\bar{u}_{4d} \gamma^{\mu} (1 - \gamma^5) v_{3c} \right) \left(\bar{u}_{2b} \gamma_{\mu} (1 - \gamma^5) u_{1a} \right)$$

The expected probability $\langle |\mathcal{M}|^2 \rangle$ is the average of spin states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{2} \sum_{a=1}^{2} \sum_{b=1}^{2} \sum_{c=1}^{2} \sum_{d=1}^{2} |\mathcal{M}_{abcd}|^2$$

The Casimir trick uses matrix arithmetic to sum over spin states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{G_F^2}{4} \operatorname{Tr} \left(p_4 \gamma^{\mu} (1 - \gamma^5) p_3 \gamma^{\nu} (1 - \gamma^5) \right) \operatorname{Tr} \left(p_2 \gamma_{\mu} (1 - \gamma^5) p_1 \gamma_{\nu} (1 - \gamma^5) \right)$$

The result is a simple formula.

$$\langle |\mathcal{M}|^2 \rangle = 64G_F^2(p_1 \cdot p_3)(p_2 \cdot p_4)$$

In component notation

$$\langle |\mathcal{M}|^2 \rangle = 64 G_F^2 (p_1^{\mu} g_{\mu\nu} p_3^{\nu}) (p_2^{\rho} g_{\rho\sigma} p_4^{\sigma})$$

where

$$g_{\mu\nu} = g_{\rho\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

In the muon rest frame p_1 is fixed at $p_1 = (m_\mu, 0, 0, 0)$. The remaining momenta p_2 , p_3 , and p_4 can have any values that conserve energy and momentum. Muon decay rate Γ is the expectation value for all possible decay momenta. By Fermi's golden rule

$$\Gamma = \frac{1}{512\pi^5 m_{\mu}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \langle |\mathcal{M}|^2 \rangle \, \delta(p_1 - p_2 - p_3 - p_4) \, \frac{d^3 p_2}{E_2} \, \frac{d^3 p_3}{E_3} \, \frac{d^3 p_4}{E_4}$$

Altogether there are nine integrals, three for each of p_2 , p_3 , and p_4 . The delta function restricts the integration space to values that conserve energy and momentum.

It can be shown that

$$\Gamma = \frac{G_F^2 m_\mu^5}{192\pi^3}$$

Muon lifetime τ is the inverse of decay rate.

$$\tau=\frac{1}{\Gamma}=\frac{192\pi^3}{G_F^2m_\mu^5}$$

Change natural units to h and c.

$$\tau = \frac{96\pi^2 h}{G_F^2 \left(m_\mu c^2\right)^5}$$