A TAXONOMIC REVISION OF *OCTOPUS AUSTRALIS* HOYLE, 1885 (OCTOPODIDAE: CEPHALOPODA), WITH A REDESCRIPTION OF THE SPECIES

By R. W. TAIT

Department of Invertebrate Zoology, National Museum of Victoria, 285-321 Russell Street, Melbourne, Victoria, 3000

Abstract

Octopus australis Hoyle from South Eastern Australian waters is fully redescribed. Several species from New Zealand previously synonymised with it are recognised as distinct and their nomenclatural status is discussed.

Introduction

Octopus australis was described by Hoyle, based on one female and one immature specimen from Port Jackson, N.S.W. Subsequently, Massey (1916), Robson (1929), Benham (1942) and Dell (1952) have described material from New Zealand, which they have synonymised with O. australis Hoyle. Dell's synonymy includes Polypus campbelli Smith, 1902; Polypus australis Massey, 1916; Polypus cf australis Berry, 1918; and Robsonella australis Benham, 1942. Specimens from South Eastern Australian waters match closely with the brief type description, but differ to the descriptions of Smith, Massey, Robson, Benham and Dell. To clarify this situation, the type specimens of O. australis were borrowed from the British Museum for comparison with other Australian and New Zealand material.

The identity of the S.E. Australian species is confirmed as *Octopus australis* Hoyle, and a complete redescription is given. The New Zealand species *Polypus campbelli* Smith, *Polypus australis* Massey and *Robsonella*

australis Benham are identified as a separate species group, and their nomenclatural status is discussed.

Measurements and Abbreviations

The measurements and abbreviations used are the same as given in Voss (1963), with the exception of head length. Head length (H.L.) is taken from the junction of the dorsal pair of arms to the midpoint between the eyes. Measurements are given in Table 1, indices are expressed in Table 2. Other abbreviations used are BM(NH)—British Museum (Natural History); NMV—National Museum of Victoria.

Octopus australis Hoyle, 1885 Plate 1-a, b Figures 1-2.

1885a Octopus australis Hoyle, p. 224.
1885b Octopus australis Hoyle, pp. 98-99.
1886 Octopus australis Hoyle, pp. 88-89, pl. 3, figs. 4-5.

Materials examined:

Sex	M.L. (mm)	Reg. No.	Location	Date coll.	Depth (m)
Holotype Q	22	BM(NH)1889.4.24.28.9	Port Jackson, N.S.W.	April 1874	11-28
Paratype O	12	BM(NH)1889.4.24.28.9	Port Jackson, N.S.W.	April 1874	11-28
Other material or or or or	16 21 27 37 42	NMV F25247 NMV F30860 NMV F31265 NMV F31003 NMV F31265	Western Port Bay, Vic. 40°34'S, 144°46'E 37°55'S, 144°58'E 32°24'S, 133°30'E 37°55'S, 144°58'E	4. 2.1981 18. 3.1980 23. 8.1973 18. 3.1980	 68 7 49 7

Sex	M.L. (mm)	Reg. No.	Location	Date coll.	Depth (m)
Materials					
O"	45	NMV F21911	38°02′S, 145°04′E	1961	11
O*	45	NMV F21911	38°02′S, 145°04′E	1961	11
O'	46	NMV F31267	32°24′S, 133°24′E	26.10.1973	40
O*	54	NMV F31002	39°38′S, 145°06′E	3. 2.1981	66
O*	56	NMV F21911	38°02′S, 145°04′E	1961	11
O"	67	NMV F31260	32°13′S, 133°52′E	27. 4.1973	8
O*	67	NMV F25436	38°07′S, 145°06′E	1964	_
ď	72	NMV F31002	39°38′S, 145°06′E	3. 2.1981	66
O'	73	NMV F31264	38°03′S, 145°06′E	7. 6.1978	
Q	9	NMV F31263	38°55′S, 145°55′E	9.11.1972	12
o o	14	NMV F31262	35°23′S, 137°17′E	21. 1.1971	54
φ̂	17	NMV F25247	Western Port Bay, Vic.	_	_
	17	NMV F30927	40°50′S, 146°07′E	4, 2,1981	66
<u>о</u>	19	NMV F25247	Western Port Bay, Vic.	_	
Ŷ.	25	NMV F31265	35°55′S, 144°58′E	18. 3.1980	7
	28	NMV F31265	37°55′S, 144°58′E	18. 3.1980	7
φ φ	34	NMV F31265	37°55′S, 144°58′E	18. 3.1980	7
Ç.	34	NMV F31003	32°24′S, 133°30′E	23. 8.1973	49
Ç	37	NMV F31265	37°55′S, 144°58′E	18. 3.1980	7
φ 	37	NMV F31003	32°24′S, 133°30′E	23. 8.1973	49
Ç	41	NMV F24485	37°51′S, 144°57′E	15, 1,1930	_
Q	44	NMV F25245	Western Port Bay, Vic.	1963	_
Q	47	NMV F24492	37°59′S, 145°01′E	10.11.1973	_
Ф Ф	49	NMV F31002	39°38′S, 145°06′E	3. 2.1981	66
Ç	49	NMV F31002	39°38′S, 145°06′E	3. 2.1981	66
φ 	62	NMV F31265	37°55′S, 144°58′E	18. 3.1980	7
	88	NMV F24437	38°13′S, 145°02′E	3.10.1957	

Diagnosis

Size up to 90 mm M.L., arms long, mantle sculpture fine dorsally, smooth ventrally, lateral integumental ridge usually present. 7-8 gill lamellae in outer demibranch; funnel organ with closely opposed, occasionally partially fused VV units. Hectocotylised arm 58-75% of A_{LIII} length; ligula robust, 12-18% of arm length, with double row of fine papillae along median oral excavation.

Description

Mantle globular, quite broad, well demarked from head; mantle aperture wide; head narrow; eyes small, protuberant (Fig. 1a, Plate 1b). Funnel free for about half its length; funnel organ with two closely opposed V shaped units, ventral and dorsal limbs of approximately equal lengths; units may be partially fused medially (Figs. 1, b-d).

Arms long, subequal, tapering to fine tips; suckers moderate in size, no enlarged suckers in males. Web shallow, extends up the ventral side of the arms for almost their entire length. Web formula D.C.B.E.A. to C.D.B.A.E., dorsal and ventral sectors always shallowest.

Third right arm of males hectocotylised, 58-75% length of its opposite member; spermatophoral groove well developed but without any conspicuous thickening of the interbrachial web. Ligula large (Figs, 1e, f), deeply excavated, usually curved orally; medially two rows of very small papillae are present along the excavation. Calamus short, acutely pointed.

Gills moderate in length, outer demibranch with 7-8 primary lamellae, plus a terminal lamella.

Reproductive system of males typical of the genus; penis (Fig. 2a) long with a single coiled diverticulum on the right hand side, genital aperture subterminal, on right hand side. Spermatophores (Fig. 2, b-e) long, thin; horn with 2-3 coils close to oral end, oral cap expanded. Female reproductive system without distinctive features; eggs large, length 9-14 mm, attached singly by a stalk approximately 8 mm in length; each clutch of 80-130 eggs (Tait 1980).

Fig. 1. Octopus australis Hoyle, 1885, a. Ventral view, male, NMV F31267, 46 mm M.L. b-d. Funnel organs. b. Holotype, female, 22 mm M.L. c. NMV F31265, female, 28 mm M.L. d. NMV F31265, male, 42 mm M.L. e-f. Ligula. NMV F31267, 46 mm M.L. g. Radula. Holotype.

AUSTRALIS 19

Alimentary canal of normal octopodan type; crop with an anterior caecum of about 10% of its length; posterior oesophegus short; posterior salivary glands elongate, connect to buccal mass by a common duct, ducts to crop separate. Stomach bipartite; caecum strongly coiled; ducts to stomach and caecum originate separately from hepatopancreas, intestine without conspicuous differentiation. Ink sac large, embedded in surface of hepatopancreas, connected to intestine near anus by a short duct.

Beaks (Fig. 2f) typically octopodan; dorsal rostrum curved, wings transparent in small individuals; ventral beak with very blunt rostrum, wings with small anterior protuberances.

Radula (Fig. 1g) with B_{3-4} seriation (holotype B_4); rhachidian tooth asymmetrical, 1-2 cusps on each side; first laterals with one sharp cusp, second laterals with one cusp, third laterals long, straight or slightly curved; marginal plates oblong, elongate.

Dorsal mantle surface covered by fine tubercles, supraocular cirri often present, ventral surface smooth. Depending on condition of preservation, a ventro-lateral integumental ridge may be present (Fig. 1a, Plate b), most evident adjacent to mantle aperture, often disappearing posteriorly. In live animals this may be extended into a shallow web, or evident only as a fine, light coloured line.

Colour of preserved specimens brown to purplish dorsally, ventral surface cream. Faint pair of roughly circular ocelli present in some specimens posterior to the eyes; each ocellus comprises a dark ring with a lighter centre; they are most apparent in live animals and fade during preservation.

Males have spermatophores in the Needhams Sac when larger than 20-25 mm M.L. (10-13 g), and may reach 70-80 mm M.L. (250 g). Females have large, white and translucent eggs in the ovary when larger than 30-40 mm M.L. (40-60 g), and do not usually grow beyond 50 mm M.L. (100 g).

Fig. 2. Octopus australis Hoyle, 1885. a. Penis. NMV F31002, 72 mm M.L. b-e. Spermatophore. NMV F31002, 54 mm M.L. b. Whole spermatophore. c. Cement body. d. Oral end of cement body. e. Oral end. f. Beaks. NMV F31002, female, 49 mm M.L.

Distribution

The collections of the National Museum of Victoria contain specimens of this species from New South Wales, Victorian, Tasmanian and South Australian waters, to depths of 70 m.

Discussion

The confusion relating to the identity of *Octopus australis* Hoyle is due largely to the lack of a mature male type specimen. Although their external morphology is somewhat similar, New Zealand and Australian species may be readily separated by the form of the hectocotylus. Details of the funnel organ, radula, surface sculpture and number of gill lamellae of the holotype indicate that it is conspecific with the Australian material studied.

Of the four species synonymised with Octopus australis Hoyle in Dell (1952), detailed descriptions exist for three. Robson (1929) redescribed the holotype of *Polypus campbelli* Smith, from Campbell Island (N.Z.) as having a W-type funnel organ, 10 lamellae in each gill demibranch, enlarged suckers in the male and a L.L.I. of only 8.5%. Massey's (1916) Polypus australis, from New Zealand, has a L.L.I. of 11%, a W type funnel organ and symmetrical seriation of the radula. Robsonella australis. also from New Zealand, was described by Benham (1942) and Dell (1952). It has a W type funnel organ, stronger cusps on the radula than O. australis Hoyle, and eggs of only 2.5-2.8 mm in length (Brough 1965). Further, I have remeasured the five mature males described by Benham and one other from 38°10'S, 147°49'E (NMV F31259) and these have the hectocotylus indices given in Table 3.

TABLE 3
Hectocotylus indices of Robsonella australis
Benham

	n	mean	S.D.(n-1)	range
HcA1	5*	77.5	3.5	73-81
LLI	6	8.1	1.5	6-10
CLI	6	39.1	7.4	33-53

^{*} ALIII of one specimen regenerating.

These are quite distinct from the corresponding indices given for *O. australis* Hoyle in Table 2. Therefore, all the New Zealand species previously considered to be synonyms of *O. australis* Hoyle appear to be separate and distinct. The description of *Polypus* of *australis* from South East Australia, by Berry (1918), is not detailed enough to confirm his tentative identification.

Robson (1929) synonymised *Polypus campbelli* Smith and *Octopus australis* Hoyle by comparing, in part, the ligula of each. Robson's material included the types of *O. australis* Hoyle and Massey's *Polypus australis*. As a mature male type is lacking, Robson's synonymy was therefore based on Massey's material, already shown to be distinct from *O. australis* Hoyle. Furthermore, Robson's description of the radula of the *O. australis* holotype could not have been from the types, as both type specimens had buccal masses intact when loaned by the British Museum.

Nomenclatural Status of the New Zealand Species

The New Zealand species Polypus australis Massey and Robsonella australis Benham are both junior homonyms of Octopus australis Hoyle. This follows the renaming of the genus Polypus as Octopus by Robson (1929), and the regrouping of Robsonella under Octopus by Pickford (1955). If the synonymy of these two species and *Polypus campbelli* Smith, as given in Benham (1942) and Dell (1952) is correct, then Octopus campbelli (Smith) is the correct senior synonym. However, the differences in the radula of P. australis Massey and the enlarged suckers in male P. campbelli Smith make it probable that these species and R. australis Benham are distinct from each other. Robsonella australis Benham and Polypus australis Massey must then be renamed to prevent the occurrence of two homonyms of Octopus australis in close geographic proximity. A review of this New Zealand species group is urgently required to remove this problem.

Acknowledgements

I wish to thank Dr. C. C. Lu, Curator,

Department of Invertebrate Zoology, National Museum of Victoria, for his advice and reading of the manuscript. For providing material either by loan or donation I gratefully acknowledge: Mr. F. Naggs, British Museum (Natural History); Dr. A. C. Harris, Otago Museum, New Zealand and the National Museum of Victoria Bass Strait Survey. Funding for the Bass Strait Survey was generously provided by A.M.S.T.A.C. Thanks also to Mrs. J. Andrewartha who provided the illustrations and Mrs. L. Anderson for typing the manuscript.

References

Benham, W. B., 1942. The octopodous Mollusca of New Zealand. 1. The midget octopus of the coastal waters. *Trans. R. Soc. N.Z.* 72: 226-236.

Berry, S. S., 1918. Report on the Cephalopoda obtained by the F.1.S. 'Endeavour' in the Great Australian Bight and other Southern Australian localities. *Zool. (biol.)* Results Fish. Exp. 'Endeavour'. 4(5): 203-298, pls. 59-88.

Brough, E. J., 1965. Egg care, eggs and larvae in the midget octopus *Robsonella australis* (Hoyle). *Trans. R. Soc. N.Z. Zool.*, 6: 7-19.

Dell, R. K., 1952. The recent Cephalopoda of New Zealand. Dom. Mus. Bull. 16: 157 pp., 35 pls.

Hoyle, W. E., 1885a. Diagnoses of new species of Cephalopoda collected during the cruise of H.M.S. 'Challenger'. Part 1. The Octopoda. *Ann. Mag. nat. Hist.*, ser. 5, 15: 222-236.

HOYLE, W. E., 1885b. Preliminary report on the Cephalopoda collected during the cruise of H.M.S. 'Challenger'. Part I. The Octopoda. *Proc. R. Soc. Edinb.* 13: 94-114.

HOYLE, W. E., 1886. Report on the Cephalopoda collected by H.M.S. 'Challenger' during the years 1873-76. *Rep.* scient. Results Voy. Challenger Zool. 16(44): 245 pp., 33 pls.

Massey, A. L.., 1916. Cephalopoda. *Br. Antarct. Terra Nova Exped. 1910 Zool.* 2(7): 141-175.

Pickford, G. E., 1955. A revision of the Octopodinae in the collections of the British Museum. *Bull. Br. Mus. nat. Hist. Zool.* 3(3): 151-167.

Robson, G. E., 1929. A monograph of the recent Cephalopoda, based on the collections in the British Museum (Natural History). Part I, Octopodinae. London.

Tait, R. W. 1980. Aspects of the ecology and life history of Octopus australis Hoyle, from Northern Port Phillip Bay. B.Sc.(Hons) thesis, Monash University, Clayton, 69 pp., 13 pls.

Voss, G. L., 1963. Cephalopods of the Philippine Islands.

Bull. U.S. natn. Mus. 234: 180 pp.

Table 1
Measurements (in mm) of Octopus australis Hoyle

NMV F25247 NMV F31002 NMV F31003 NMV F30860 NMV F31264 NMV F24485 NMV F31265 NMV F31263 NMV F25245 NMV F31003 NMV F31262 NMV F24492 NMV F31265 NMV F25247 NMV F31002 NMV F21911 NMV F30927 NMV F31002 NMV F31267 BM(NH) 1889.4.24.28.9 NMV F24437 NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31002 NMV F31265 NMV F31003 NMV F31003	BM(NH) 1889.4.24.28.9	NMV F25436	NMV F31265
NMV F31265 NMV F31263 NMV F31263 NMV F31262 NMV F31203 NMV F31262 NMV F31265 NMV F31265 NMV F31265 NMV F25247 NMV F31002 NMV F21911 NMV F30927 NMV F31002 NMV F21911 NMV F31265 NMV F31267 NMV F31265 NMV F31265 NMV F31265 NMV F31265 NMV F31265 NMV F31265	NMV F25247	NMV F31002	NMV F31003
NMV F31003 NMV F31262 NMV F24492 NMV F31265 NMV F25247 NMV F31002 NMV F21911 NMV F30927 NMV F31002 NMV F21911 NMV F25247 NMV F31265 NMV F31267 BM(NH) 1889.4.24.28.9 NMV F24437 NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F30860	NMV F31264	NMV F24485
NMV F31265 NMV F25247 NMV F31002 NMV F21911 NMV F30927 NMV F31002 NMV F21911 NMV F31265 NMV F31267 NMV F31267 NMV F31265 NMV F31002 NMV F31265 NMV F31265 NMV F31265 NMV F31265 NMV F31265	NMV F31265	NMV F31263	NMV F25245
NMV F21911 NMV F30927 NMV F31002 NMV F21911 NMV F25247 NMV F31265 NMV F31267 BM(NH) 1889.4.24.28.9 NMV F24437 NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F31003	NMV F31262	NMV F24492
NMV F21911 NMV F25247 NMV F31265 NMV F31267 BM(NH) 1889.4.24.28.9 NMV F24437 NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F31265	NMV F25247	NMV F31002
NMV F31267 BM(NH) 1889.4.24.28.9 NMV F24437 NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F21911	NMV F30927	NMV F31002
NMV F31002 NMV F31265 NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F21911	NMV F25247	NMV F31265
NMV F21911 NMV F31265 NMV F31260 NMV F31265	NMV F31267	BM(NH) 1889.4.24.28.9	NMV F24437
NMV F31260 NMV F31265	NMV F31002	NMV F31265	
	NMV F21911	NMV F31265	
NMV F31003	NMV F31260	NMV F31265	
1444 7 1 5 1005		NMV F31003	

Sex	0"	O'	O,	0"	O"	O"	O*	O*	O*	0"	0"	0"
M.L.	12	16	21	27	37	42	45	45	46	54	56	67
Tot. L.	38	47	86	107	170	184	158	163	220	280	200	245
MW	10	12	17	21	29	31	33	27	35	48	35	36
H.L.	3	5	9	10	17	16	17	15	22	20	17	22
H.W.	8	10	12	16	18	21	21	18	27	26	22	23
A_{RI}	20	30	54	72	119	115	_	113	160	190	138	142
ALI	22	30	60	69	120	121	100	110	155	202	120	163
A _{RII}	26	33	63	77	119	115	106	134	158		_	179
ALII	24	32	59	76	105	_	106	114	156	230	163	_
ARIII	23	30	51	59	97	101	108	108	96	146	121	138
ALIII	23	31	65	_	140	135	_	_	141	229	_	155
ARIV	22	27	54	70	_	123	118	118	157	202	138	162
ALIV	25	30	56	70	152	125	101	115	172	210	142	150
HcAL	23	30	51	59	97	101	108	108	96	146	121	138
Lig. L.	0.8	3.6	4.0	8.3	16.2	17.5	13.3	14.5	17.0	19.0	19.3	20
Cal. L.	0.1	0.7	0.9	2.1	3.6	3.3	2.8	2.7	3.3	3.4	3.1	4.0
Web A	6	8	13	15	19	23	24	17	33	36	21	28
Web B _R	7	9	16	17	23	26	27	27	39	41	28	32
B_L	7	9	17	17	20	28	23	27	35	47	30	35
Web C _R	8	9	18	16	22	29	35	28	37	45	33	36
$C_{\rm L}$	8	9	17	17	22	33	32	28	38	48	32	37
Web D _R	7	10	17	18	22	33	35	30	34	44	37	35
Web DI.	7	10	15	16	25	28	27	29	40	45	33	37
Web E	7	8	11	14	20	24	24	25	32	37	27	27
Web Form.	CBDEA	DCBAE	CDBAE	CDBAE	DCBEA	CDBEA	CDBAE	DCBEA	DCBAE	CDBEA	DCBEA	CDBAE
S normal	1.2	1.5	1.9	2.7	3.3	3.6	3.6	4.0	4.5	4.8	4.5	4.8
Sp. L.	_	_	_	_	_	_	36.0	31	_	49	45	42
Sp. R.L.	_	_	_	_	_	_	16.5	14	_	20	13	18
Sp. R.W.	_	_	_	_	****	_	1.6	1.1	-	1.0	1.3	1.3
Penis L.	2	3	3	_	10	_	16	17	14	13	16	17
Gill No.	8	7	7	7	7	8	7	7	8	7	8	7

Sex	O*	O"	ď	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
M.L. Tot. L. MW H.L. H.W. ARI ALI ARII ARIII ARIII ALIIII ARIIV ALIV HCAL	67 250 49 20 29 172 175 187 206 — 205 —	72 395 65 22 34 326 	73 285 37 24 25 201 — 202 229 162 215 190 — 162 21.8	9 29 9 3 7 15 16 18 19 18 18 18	14 57 12 7 10 37 38 37 40 39 43 33 39	17 57 14 6 11 31 33 32 35 37 36 36 34	17 75 14 7 10 - 52 35 43 57 50 53 53	19 57 14 8 12 - 37 43 44 40 42 41 -	22 87 19 7 13 47 50 55 58 59 58 —	25 88 19 10 15 56 59 62 - 59 65 61 59	28 82 26 11 16 65 65 - 76 65 76 - 73	34 121 222 13 18 - 78 85 86 86 76 83 80	34 140 24 12 16 86 79 - 109 101 110 101 92
Lig. L. Cal. L. Web A Web BR BL Web CR CL Web DR DL Web E Web Form. S normal Sp. L. Sp. R.L. Sp. R.W. Penis L. Gill No.	38 39 50 38 65 40 55 38	3.5 55 60 61 60 60 54 55 43	2.6 40 42 50 44 50 46 52 40	5 6 6 6 6 6 5 DCBAE D 0.7	10 10 12 10 12 12 11 11 11 CBEA 1.3	9 10 10 12 11 10 11 9 CDBAE 1.6	10 11 11 12 14 12 14 11 E DCBEA 1 1.4	10 10 10 11 12 12 13 9 DCBAE 1.7	11 15 16 17 18 17 16 14 CDBE. 2.4		15 18 18 19 20 16 20 16 CDBEA 2.5	19 22 22 25 26 24 22 18 CDBAF 2.8	
Sex	Q		Q	Q		<u> </u>	Q	Ç)	Q	Q		Q
M.L. Tot. L. MW H.L. H.W. ARI ALII ARIII ARIII ARIII ALIII ARIIV H.CAL Lig. L.	37 152 31 11 20 86 94 108 108 112 106 106		37 208 33 13 21 136 140 159 156 146 147 132 158	41 180 24 15 18 115 — 130 129 131 134 135	1 1 1 1 1 1	44 62 31 14 21 09 09 26 19 25 17 —	47 168 27 11 18 100 — 119 113 115 124 113 125	49 21: 33 1 20 144 144 162 155 166 158 157	7 7 7 8 2 9 2 1	49 250 44 14 25 177 175 191 — 201 198 186 179	62 149 40 18 23 120 122 141 133 140 136 126 134		88 248 32 19 24 132 109 156 156 166 163 154 162
Cal. L. Web A Web BR BL Web CR CL Web DR DL Web E Web Form. S. normal	20 26 27 29 27 26 25 23 CBDI		23 31 31 35 34 33 35 25 CDBEA 3.4	21 19 25 29 29 26 30 21 DCBAE 3.1		26 26 30 29 29 32 25 23 CBAE 3.2	21 28 28 30 28 27 35 21 DCBAE 3.1	25 31 28 35 34 39 30 DCB	1 3 5 5 4 9	35 41 35 45 47 40 46 31 CDBAE 4.6	26 29 29 28 36 29 34 27 CDBE 3.		26 38 35 48 50 46 42 30 CDBEA 4.6
Sp. L. Sp. R.L. Sp. R.W. Penis L. Gill No.	8		7	7		7	7		7	7	8		7

Table 2

Means, Standard Deviations and Ranges of Indices of Octopus australis Hoyle

		l	Males		Females						
	n	mean	S.D.(n-1)	range	n	mean	S.D.(n-1)	range			
MWI	15	73.3	11.8	51-90	19	75.8	15.2	36-100			
HLI	15	35.3	6.6	23-48	19	33.5	7.2	22-50			
HWI	15	48.8	9.5	34-62	19	53.0	12.4	27-77			
AL1	15	78.5	6.9	68-93	19	75.4	7.7	65-95			
WD1	15	24.2	4.8	16-32	19	26.8	3.2	22-32			
SI (normal)	15	8.9	0.1	7-10	19	8.1	1.3	5-11			
HcAI	6	68.2	6.6	58-75							
LLI	11	14.7	1.9	12-18							
CLI	11	18.5	3.9	12-25							
PLI	10	28.5	4.6	23-37							
SpL (mm)	6	40.7	6.4	31-49							
SpLI	6	73.1	12.8	56-91							
SpRI	6	39.3	6.4	29-46							
SpWI	6	3.1	0.6	2.0-3.9							

Explanation of Plate

PLATE 1

Octopus australis Hoyle, 1885. Holotype, female, 22 mm M.L. a. Dorsal view. b. Lateral view.

