IB Groups, Rings and Modules

Martin von Hodenberg (mjv43@cam.ac.uk)

January 23, 2022

These are my notes for the IB course 'Groups, Rings and Modules', which was lectured in Lent 2022 at Cambridge by Dr R.Zhou. These notes are written in IATEX for my own revision purposes. Any suggestions or feedback is welcome.

Contents

0) Introduction	2
1	Groups	2
	1.1 Recall of IA Groups	2
	1.2 Simple groups	6

§0 Introduction

This course will contain several sections:

- 1. Groups; this will be a continuation from IA, focusing on simple groups, p-groups, and p-subgroups. The main result in this part of the course will be the Sylow theorems.
- 2. Rings; these are sets where you can add, subtract and multiply (e.g \mathbb{Z} or $\mathbb{C}[X]$). We will study rings of integers such as $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}]$. These also generalise to polynomial rings. We will also study fields, which are rings where you can divide (e.g $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or $\mathbb{Z}/p\mathbb{Z}$ for p prime).
- 3. Modules; these are an analogue of vector spaces where the scalars belong to a ring instead of a field. We will classify modules over certain "nice" rings. This allows us to prove Jordan Normal Form, and classify finite abelian groups.

§1 Groups

§1.1 Recall of IA Groups

Definition 1.1 (Group)

A group is a pair (G, \cdot) where G is a set and $\cdot : G \times G \to G$ is a binary operation satisfying:

- 1. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity)
- 2. $\exists e \in G$ such that $e \cdot g = g \cdot e = g$ for all $g \in G$ (identity)
- 3. $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e \text{ (inverses)}$

Remark. • In practice, one often needs to check closure in order to check that \cdot is well-defined.

- If using additive (respectively multiplicative) relations, we will often write 0 (or 1) for the identity.
- We write |G| for the number of elements in G.

Definition 1.2 (Subgroup)

A subset $H \subseteq G$ is a subgroup (written $H \subseteq G$) if H is closed under \cdot and (H, \cdot) is a group.

Remark. A non-empty subset H of G is a subgroup if $a, b \in H \implies a \cdot b^{-1} \in H$ (see IA Groups for the proof).

Example 1.3 (Examples of groups)

Groups we have already seen include:

- Additive groups $(\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+)$.
- Cyclic and dihedral groups C_n and D_{2n} .

- Abelian groups: those groups G such that $a \cdot b = b \cdot a$ for all $a, b \in G$.
- Symmetric and alternating groups S_n = group of all permutations of $\{1, \ldots, n\}$ and $A_n \leq S_n$, the group of all even permutations.
- Quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ where i, j, k are quaternions.
- General and special linear groups $GL_n(\mathbb{R}) = n \times n$ matrices on \mathbb{R} with det $\neq 0$, where the group operation is matrix multiplication. This contains the subgroup $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$, which is the subgroup of matrices with det = 1.

Definition 1.4 (Direct product)

The direct product of groups G and H is the set $G \times H$ with operation

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

Theorem 1.5 (Lagrange's theorem)

Let $H \leq G$. Then the left cosets of H in G are the sets $gH = \{gh : h \in H\}$ for $g \in G$. These partition G, and each has the same cardinality as H. From this we can deduce Lagrange's theorem:

If G is a finite group and $H \leq G$, then |G| = |H|[G:H] where [G:H] is the number of left cosets of H in G (the index of H in G).

Remark. Can also carry this out with right cosets. A corollary of Lagrange's theorem is thus that the number of left cosets = number of right cosets.

Definition 1.6 (Order of an element)

Let $g \in G$. If $\exists n \geq 1$ such that $g^n = 1$, then the least such n is the order of g in G. If no such n exists, g has infinite order.

Remark. If g has order d, then

- $q^n = 1 \implies d|n$.
- $\{1, g, \dots, g^{d-1}\} \le G$ and so if G is finite, then d||G| (Lagrange).

Definition 1.7 (Normal subgroup)

A subgroup $H \leq G$ is normal if $g^{-1}Hg = H$ for all $g \in G$. We write $H \leq G$.

Proposition 1.8

If $H \leq G$ then the set G/H of left cosets of H in G is a group (called the quotient group) with operation

$$g_1H \cdot g_2H = g_1g_2H.$$

Proof. Check \cdot is well-defined:

Suppose $g_1H = g_1'H$ and $g_2H = g_2'H$ for some $g_1, g_1', g_2, g_2' \in G$. Then $g_1' = g_1h_1$ and $g_2' = g_2h_2$ for some $h_1, h_2 \in H$. Therefore

$$g_1'g_2' = g_1h_1g_2h_2$$

$$= g_1g_2\underbrace{(g_2^{-1}h_1g_2)}_{\in H}\underbrace{h_2}_{\in H}$$

Therefore $g_1'g_2'H = g_1g_2H$. Associativity is inherited from G, the identity is H = eH, and the inverse of gH is $g^{-1}H$.

Definition 1.9 (Homomorphism)

If G, H are groups, then a function $\phi : G \to H$ is a group homomorphism if $\phi(g_1g_2) = \phi(g_1g_2) = \phi(g_1)\phi(g_2)$. It has kernel

$$\ker \phi = \{g \in G : \ \phi(g) = e\} \le G.$$

and image

$$\operatorname{Im} \phi = \{\phi(g): g \in G\} \le H.$$

Remark. If $a \in \ker \phi$ and $g \in G$, then

$$\phi(g^{-1}ag) = \phi(g^{-1})\phi(a)\phi(g)$$
$$= \phi(g^{-1})\phi(g)$$
$$= \phi(g^{-1}g) = \phi(e) = e.$$

So $g^{-1}ag \in \ker \phi$ and hence $\ker \phi$ is a normal subgroup of G.

Definition 1.10 (Isomorphism)

An isomorphism of groups is a group homomorphism that is also a bijection. We say G and H are isomorphic and write $G \cong H$ if there exists an isomorphism $\phi: G \to H$. (Note it follows from the definition that ϕ^{-1} is also a group homomorphism)

Theorem 1.11 (First Isomorphism Theorem)

Let $\phi:G\to H$ be a group homomorphism. Then $\ker\phi\unlhd G$ and

$$G/\ker\phi\cong\operatorname{Im}\phi.$$

Proof. Let $K = \ker \phi$. We have already checked K is normal. Now we define $\Phi: G/K \to \operatorname{Im} \phi$ by

$$gK \to \phi(g)$$
..

To show Φ is well defined and injective:

$$g_1K = g_2K \iff g_2^{-1}g_1 \in K$$

 $\iff \phi(g_2^{-1}g_1) = e$
 $\iff \phi(g_1) = \phi(g_2).$

To show Φ is a group hom.:

$$\Phi(g_1 K g_2 K) = \Phi(g_1 g_2 K)$$

$$= \phi(g_1 g_2) = \phi(g_1) \phi(g_2)$$

$$= \Phi(g_1 K) \Phi(g_2 K)$$

Showing Φ is surjective:

Let $x \in \text{Im } \phi$, say $x = \phi(g)$ for some $g \in G$. Then $x = \phi(gR)$.

Example 1.12

Let $\phi : \mathbb{C} \to \mathbb{C}^x = \{x \in C : x \neq 0\}$ given by $z \mapsto e^z$.

Since $e^{z+w} = e^z e^w$, this is a group homomorphism from $(\mathbb{C}, +) \to (\mathbb{C}^x, \times)$. We have that

$$\ker \phi = \{z \in \mathbb{C} : e^x = 1\} = 2\pi i \mathbb{Z}$$

 $\operatorname{Im} \phi = \mathbb{C}^x \text{ by existence of log}$

Hence $\mathbb{C}/2\pi i\mathbb{Z} \cong \mathbb{C}^x$.

Theorem 1.13 (Second Isomorphism Theorem)

Let $H \leq G$, and $K \leq G$. Then $HK = \{hk : h \in H, k \in K\} \leq G$ and $H \cap K \leq H$. Moreover,

$$HK/K \cong H/(H \cap K)$$
.

Proof. Let $h_1k_1, h_2k_2 \in HK$ (so $h_1h_2 \in H$, $k_1k_2 \in K$). Now

$$h_1 k_1 (h_2 k_2)^{-1} = \underbrace{h_1 h_2^{-1}}_{\in H} (\underbrace{h_2 k_1 k_2^{-1} h_2^{-1}}_{\in K}) \in HK.$$

Thus $HK \leq G$ (by our previous remark). Let $\phi: H \to G/K$ be given by $h \to hK$. This is the composite of $H \to G$ and the quotient map $G \to G/K$; hence ϕ is a group homomorphism. Thus

$$\ker \phi = \{ h \in H : hK = K \} = H \cap K \le H$$
$$\operatorname{Im} \phi = \{ hK : h \in H \} = HK/K$$

Now by the First Isomorphism Theorem

$$HK/K \cong H/(H \cap K)$$
.

Remark. Suppose $K \subseteq G$. There is a bijection

{subgroups of G/K} \leftrightarrow {subgroups of G containing K},

where $X \mapsto \{g \in G : gK \in X\}$ and $H/K \leftarrow H$. This further restricts to a bijection

{normal subgroups of G/K} \leftrightarrow {normal subgroups of G containing K},

Theorem 1.14 (Third Isomorphism Theorem)

Let $K \leq H \leq G$ be normal subgroups of G. Then

$$\frac{G/K}{H/K} \cong G/H.$$

Proof. Let $\phi: G/K \to G/K$ be defined by $gK \mapsto gH$. If $g_1K = g_2K$, then $g_2^{-1}g_1 \in K \leq H \implies g_1H = g_2H$. Thus ϕ is well-defined.

Thus ϕ is a surjective homomorphim with kernel H/K. Now just apply the First Isomorphism Theorem.

§1.2 Simple groups

If $K \subseteq G$, then studying the groups K and G/K gives some information about G. However, this approach is not always available. This is the case when a group is simple.

Definition 1.15 (Simple group)

A group G is simple if $\{e\}$ and G are its only normal subgroups.

Remark. It is convention to not consider the trivial group a simple group.

Lemma 1.16

Let G be an abelian group. G is simple iff $G \cong C_p$ for some prime p.

Proof. \Leftarrow : Let $H \leq C_p$. Lagrange's theorem says that $|H| ||C_p| = p$. Since p is prime, |H| = 1 or p. So H is the trivial group or C_p .

 \implies : Let $g \in G$ where $g \neq e$. Consider the subgroup generated by g:

$$\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, e, g, g^2, \dots \}.$$

This is normal in G since G is abelian. Since G is simple, $\langle g \rangle = G$. If G is infinite, $G \cong (\mathbb{Z}, +)$ and $2\mathbb{Z} \leq \mathbb{Z}$ which gives a contradiction.

Otherwise, we now know $G \cong C_n$ for some n. Let g be a generator. If m|n then $g^{n/m}$ generates a subgroup of order m and so G simple \Longrightarrow the only factors of n are 1 and n. Therefore n is prime.

Lemma 1.17

If G is a finite group, then G has a composition series

$$e = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_m = G,$$

with each quotient G_i/G_{i-1} simple.