Problem 27 (Understanding Jacobians)

(a) In order to interpret the entries of the Jacobian, we can fix all generalized coordinates but one and understand how the end-effector would move if the remaining coordinate is varied. Let's fix q_2 and

 q_3 and vary q_1 . In this case, the end-effector would mode along a circle around the fixed pivot point of the mechanism, as shown in Figure 5. Positive rate of change of q_1 corresponds to the direction of motion of the end-effector shown by the blue arrow in the figure: negative in the x direction, positive in the y direction, and such that the rate of change along y is larger in magnitude than along x. This vector of virtual displacement corresponds to the entries J_{11} (displacement along x) and J_{12} (along y). Hence, we have that $J_{11} < 0$, $J_{21} > 0$, and $\left| J_{11} \right| < J_{21}$. This corresponds to the matrix (4).

(b) Recall that
$$_{I}\dot{\mathbf{x}}=\frac{df}{dt}$$
 and $_{I}\mathbf{J}=\frac{\partial f}{\partial\mathbf{q}}$. Equation (2)

is not correct because it uses the full derivative of f with respect to time, not a partial derivative. The same holds for 4, which additionally is expressed in a moving coordinate frame, which makes the derivative ill-defined. Formula (3) also cannot be used because, for non-holonomic constraints, the constraint function f does not exist. Hence, ${}_I\dot{\mathbf{x}}$ has to include the term $\frac{\partial f}{\partial \dot{\mathbf{q}}}\ddot{\mathbf{q}}$. Thus, only the formula (1) is correct.

(c) Differentiating the constraint $_{I}\mathbf{x}=f_{c}\left(\mathbf{q},t\right)$ twice, we get

$${}_{I}\dot{\mathbf{x}} = {}_{I}\mathbf{J}_{c} \cdot \dot{\mathbf{q}} + \frac{\partial f_{c}}{\partial t},$$

$${}_{I}\ddot{\mathbf{x}} = \frac{d}{dt} \left({}_{I}\mathbf{J}_{c} \cdot \dot{\mathbf{q}} + \frac{\partial f_{c}}{\partial t} \right) = {}_{I}\dot{\mathbf{J}}_{c} \cdot \dot{\mathbf{q}} + {}_{I}\mathbf{J}_{c} \cdot \ddot{\mathbf{q}} + \frac{d}{dt} \left(\frac{\partial f_{c}}{\partial t} \right)$$

The bias acceleration corresponds to the case $\ddot{\mathbf{q}} = 0$, and so we get

$${}_{I}\mathbf{\sigma}_{c} = {}_{I}\dot{\mathbf{J}}_{c}\cdot\dot{\mathbf{q}} + \frac{d}{dt}\left(\frac{\partial f_{c}}{\partial t}\right)$$

which is exactly the statement (3). Next, we can write the expression for \vec{x} above as

$$_{I}\ddot{\mathbf{x}} =_{I} \mathbf{\sigma}_{c} +_{I} \mathbf{J}_{c} \cdot \ddot{\mathbf{q}}$$

This proves the statement (2) correct. Finally, since $_{I}\mathbf{x}=f_{c}\left(\mathbf{q},t\right)$, the statement (4) is equivalent to the statement (2) and is thus also correct.

Thus, the statement (1) is the only one that is not correct.

- (d) Similar to the question (a), we estimate the Jacobian entries by fixing one generalized coordinate and perturbing the other. Let's fix $\,\varphi\,$ and vary $\,\gamma\,$. As we can see from the picture in the 1- and 2-axis plane, if $\,\gamma\,$ increases, the ball on the right moves away from the 2-axis; its positions along both the 1-axis and the 2-axis increase and the 3-axis position stays unchanged. Therefore, the Jacobian entries $\,J_{12}\,$ and $\,J_{22}\,$ must be positive, while $\,J_{32}\,$ must be zero. This corresponds to the answer (3).
- **(e)** The statement (2) is not correct, as both the position and acceleration are given in the inertial coordinate frame and thus there should be no cross-product term.