

ATTACCHI A RETI WIRELESS

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2015/2016

Prof. Simon Pietro Romano spromano@unina.it

METODOLOGIA STANDARD DI ATTACCO

- Fase di preparazione:
 - footprinting, scanning, enumeration
- Fase di attacco:
 - penetration
 - Denial of Service

MECCANISMI DI SICUREZZA PER RETI WIRELESS

- Meccanismi base
 - tipicamente associati alla cosiddetta "security by obscurity"
 - MAC filtering
 - reti wireless "nascoste"
 - meccanismi di risposta a "probe request" di tipo broadcast
- Autenticazione
 - fondamentale per:
 - stabilire l'identità del client che cerca di connettersi ad un Access Point
 - produrre una chiave di sessione da utilizzare per il processo di crittografia
- Crittografia
 - processo di codifica delle informazioni scambiate, a livello 2, tra client ed Access Point

MAC FILTERING

- Gli Access Point possono esaminare il MAC address della sorgente durante la fase di autenticazione del processo di creazione di una sessione in una rete 802.11
- Con il MAC filtering, è possibile negare la connessione a stazioni il cui MAC address non sia noto a priori e contenuto in una lista di indirizzi preconfigurati
- Si tratta di un meccanismo efficace, ma che richiede la conoscenza pregressa di tutti i possibili indirizzi delle stazioni client
- Non risulta efficace nel caso di attacchi di tipo "impersonation", basati sullo spoofing dell'indirizzo MAC della sorgente

RETI WIRELESS NASCOSTE

- Per annunciare la propria presenza, un Access Point tipicamente invia, ad intervalli regolari, delle frame speciali, chiamate "beacon"
 - informazione principale: SSID dell'Access Point
- Per nascondere la presenza della rete, è dunque sufficiente evitare di inserire l'SSID all'interno delle beacon frame
 - dato che l'SSID è necessario per connettersi ad una rete, questa semplice soluzione rende le procedure di attacco <u>un po'</u> più complesse
 - Perché solo <u>un po'</u>?
 - perché mediante tecniche di monitoraggio passivo risulta semplice aggirare questo tipo di contromisura (come vedremo più avanti...)

BROADCAST PROBE REQUEST

- Le stazioni client possono inviare richieste di tipo probe in broadcast, senza inserire nessun SSID, allo scopo di individuare eventuali reti wireless nel proprio raggio di azione
- In ambienti sicuri, gli Access Point possono essere configurati in modo tale da ignorare richieste di questo tipo
 - client autorizzati:
 - preconfigurati per associarsi ad un SSID noto a priori
 - client non autorizzati:
 - incapaci di "scoprire" la presenza della rete wireless nelle proprie vicinanze
- Anche in questo caso, l'impiego di tecniche di monitoraggio passivo consente di aggirare questa semplice misura di sicurezza!

AUTENTICAZIONE

- Obiettivi:
 - stabilire l'identità del client
 - produrre una "chiave di sessione" da utilizzare nel successivo processo di crittografia delle comunicazioni:
 - tra stazione wireless ed Access Point (unicast)
 - tra gruppi di stazioni wireless collegate al medesimo Access Point (multicast e broadcast)
- Autenticazione e crittografia avvengono entrambe a livello 2:
 - prima, cioè, che la stazione wireless abbia ottenuto la sua configurazione di rete (IP)

WiFi Protected Access: WPA

- Una certificazione della WiFi Alliance
- Identifica il livello di compatibilità di una stazione wireless con l'amendment 802.11i:
 - WPA ("draft amendment"):
 - almeno TKIP (Temporal Key Integrity Protocol)
 - WPA2 ("non-draft amendment"):
 - sia TKIP che AES (Advanced Encryption Standard)
- Oggi parliamo genericamente di WPA per intendere la compatibilità con TUTTI i meccanismi di sicurezza contenuti in 802.11i
- Due modalità di funzionamento:
 - WPA Pre-Shared Key (WPA-PSK)
 - WPA Enterprise

WPA-PSK vs WPA ENTERPRISE

- WPA-PSK:
 - La chiave crittografica è nota a priori sia alla stazione wireless che all'AP e viene utilizzata come input per la funzione crittografica con cui si calcolano le chiavi di codifica impiegate nella comunicazione
- WPA Enterprise:
 - si basa sul protocollo 802.1x:
 - l'AP fa da ponte (relay) tra la stazione wireless ed un server di autenticazione basato sul protocollo RADIUS
 - si sfrutta il protocollo EAP (Extensible Authentication Protocol), in una delle versioni supportate per il trasporto delle informazioni di autenticazione:
 - EAP-TTLS (EAP Tunneled Transport Layer Security), PEAP (Protected EAP), EAP-FAST (EAP Flexible Authentication via Secure Tunneling)
- Con entrambi i metodi, client ed AP effettuano un 4-way handshake per calcolare due coppie di chaivi:
 - PTK: Pairwise Transient Key → unicast
 - GTK: Group Temporal Key → multicast e broadcast

CRITTOGRAFIA

- Wired Equivalent Privacy (WEP)
- Temporal Key Integrity Protocol (TKIP)
- Advanced Encryption Standard Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (AES-CCMP)
- cfr. lezione del corso di Protocolli per Reti Mobili (Prof. Avallone)...

DISCOVERY E MONITORING

- Strumenti di "scoperta" di reti wireless
 - basati sull'analisi di:
 - frame di probing (richieste e risposte)
 - frame di tipo "beacon"
- Indirizzi sorgente e destinazione SEMPRE in chiaro nelle frame 802.11
 - agevole identificare "chi parla con chi":
 - mappa completa dei client e degli AP cui questi ultimi si collegano
- Disponibilità di tecniche sia di tipo "attivo" che di tipo "passivo"

ACTIVE DISCOVERY

- Tecnica molto semplice:
 - Invio di richieste di probe in broadcast
 - Attesa di risposta da parte di evenuali AP presenti nel campo di azione della postazione di attacco
 - Registrazione delle informazioni sugli AP identificati (tramite le risposte ai probe)
- Approccio da molti considerato obsoleto
 - come visto, gli AP possono essere configurati in modo tale da non rispondere alle "probe request"

PASSIVE DISCOVERY

- Piuttosto che inviare richieste di probe in broadcast...
- ...ci si mette in modalità passiva e si "ascoltano" tutti i canali 802.11 disponibili:
 - raccolta dati
 - analisi dei dati per:
 - scoprire relazioni tra le frame catturate
 - costruirsi una "fotografia" delle reti wireless nel raggio di azione della postazione di attacco

IDENTIFICAZIONE DEGLI AP

- Se un AP è configurato in modo tale da...
 - non annunciare il proprio SSID nei messaggi beacon
 - non rispondere alle richieste di probe di tipo broadcast
- ...un tool di passive discovery potrà:
 - registrare il BSSID (vale a dire, il MAC address) dell'AP
 - marcare (inizialmente) l'SSID di tale AP come "sconosciuto"
- Dato che i client DEVONO indicare l'SSID di una rete wireless per connettersi ad essa:
 - il tool di passive discovery, quando 'vede' richieste di connessione da parte dei client (legittimi):
 - controlla il MAC dell'AP destinazione
 - ricava il campo SSID dalla richiesta
 - associa l'SSID così ricavato al BSSID dell'AP recuperato in precedenza!

DISCOVERY TOOLS

- Due software molto famosi:
 - Kismet (<u>www.kismetwireless.net</u>)
 - identifica reti wireless tramite 'sniffing' passivo dei pacchetti
 - riesce a identificare reti nascoste ("decloaking")
 - si "accorge" della presenza di reti che non inviano frame di beacon tramite l'analisi del traffico dati
 - airodump-ng
 - un tassello fondamentale della suite aircrack-ng, lo standard "de facto" nel campo dell'hacking delle reti wireless
 - un'ottima alternativa a Kismet se si è in cerca di uno strumento più leggero e subito pronto all'uso

KISMET IN AZIONE

airodump-ng (1/2)

Step 1: configurare l'interfaccia di rete wireless in modalità "monitor"

```
<mark>∵oot@kali:~#</mark> airmon-ng start wlan0
Found 4 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!
  PID Name
 1641 NetworkManager
 1749 wpa supplicant
 2001 avahi-daemon
 2002 avahi-daemon
PHY
        Interface
                        Driver
                                         Chipset
phy0
        wlan0
                         iwl4965
                                         Intel Corporation PRO/Wireless 4965 AG or AGN [Kedron] (rev 61)
                (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)
                (mac80211 station mode vit disabled for [phy0]wlan0)
```


airodump-ng (2/2)

- Step 2: attivare il monitoraggio passivo sulla scheda così configurata:
 - comando: "airodump-ng wlan0mon"

CH 7][Elapsed:	48 s][2015-10-	14 15:5	3						
BSSID	PWR	Beacons	#Data,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID
5C:A4:8A:68:B9:60	-1	Θ	1	0	1	-1	OPN			<length: 0=""></length:>
44:E4:D9:3E:3E:10	- 1	0	0	0	-1	-1				<length: 0=""></length:>
1C:1D:86:2A:5E:70	-1	0	0	0	11	-1				Wi-Fi_UniNa
4E:48:C4:8C:24:63	-1	16	0	Θ	1	54	0PN			Portthru
7C:0E:CE:B9:73:10	-1	0	0	Θ	1	-1				<length: 0=""></length:>
00:30:BD:96:5D:CC	-36	175	Θ	Θ	11	54	WEP	WEP		belkin54g
5C:A4:8A:1F:05:31	-64	34	Θ	Θ	1	54e.	WPA2	CCMP	MGT	eduroam
5C:A4:8A:1F:05:32	-65	30	0	0	1	54e.	WPA2	CCMP	PSK	Convention_UniNa
5C:A4:8A:1F:05:34	-65	32	64	0	1	54e.	WPA2	CCMP	PSK	Guest_Dieti
5C:A4:8A:1F:05:30	-65	32	6	0	1	54e.	WPA2	CCMP	MGT	Wi-Fi_UniNa
5C:A4:8A:1F:11:C4	-82	17	0	0	6	54e.	WPA2	CCMP	PSK	Guest_Dieti
5C:A4:8A:1F:11:C1	-82	20	Θ	Θ	6	54e.	WPA2	CCMP	MGT	eduroam
5C:A4:8A:1F:11:C2	-82	17	0	0	6	54e.	WPA2	CCMP	PSK	Convention_UniNa
C8:D3:A3:06:64:5C	-83	48	Θ	Θ	11	54e.	WPA2	CCMP	PSK	WiFi0spiti
5C:A4:8A:1F:11:C0	-82	19	0	0	6	54e.	WPA2	CCMP	MGT	Wi-Fi_UniNa
00:15:6D:4E:AE:31	-84	50	0	0	1	54 .	WPA2	TKIP	PSK	Sala Riunioni
90:84:0D:D9:3B:25	-86	33	Θ	Θ	11	54e.	WPA2	CCMP	PSK	<length: 0=""></length:>
00:25:86:D3:EE:40	-86	45	0	Θ	11	54e.	WPA2	CCMP	PSK	Bozza-guest
00:3A:98:4F:60:72	-86	6	Θ	Θ	11	54e.	WPA2	CCMP	PSK	Convention_UniNa
44:E4:D9:3E:47:B2	-87	3	0	Θ	11	54e.	0PN			ISPContractor
44:E4:D9:3E:47:B3	-87	3	0	0	11	54e.	WPA2	CCMP	MGT	<length: 1=""></length:>

Attacchi DoS in reti wireless

- 802.11 "consente", da specifica, almeno un paio di attacchi di tipo DoS!
 - ...questo perché ci sono spesso delle buone ragioni per cui un AP possa decidere di forzare la disconnessione di uno o più client
 - sovraccarico
 - chiavi crittografiche non (più) valide
 - •
- Tipologia di attacco maggiormente diffusa:
 - de-authentication:
 - l'attaccante sfrutta in modo malevolo le funzionalità di 802.11 sopramenzionate, per far sì che un client 'legittimo' perda la connessione con l'AP

DE-AUTHENTICATION ATTACK

- L'attaccante:
 - invia frame di de-autenticazione (con indirizzo forgiato ad arte) nei seguenti versi:
 - tra ("spoofed") client ed AP:
 - per far credere all'AP che il client in questione voglia disconnettersi
 - tra ("spoofed") AP e client:
 - per far credere al client che l'AP voglia farlo disconnettere
 - il processo tipicamente viene reiterato:
 - 802.11 non specifica quale sia l'intervallo che un client debba attendere, dopo una disconnessione, prima di cercare di ricollegarsi all'AP
- NB: per sferrare questo attacco, NON è necessario che l'attaccante sia autenticato all'interno della rete target!

DE-AUTHENTICATION ATTACK IN PRATICA...

- "aireplay-ng"
- un altro tool della suite aircrack-ng
- tra le varie funzioni che svolge, rientra anche il deauthentication attack

Usage

aireplay-ng -0 1 -a 00:14:6C:7E:40:80 -c 00:0F:B5:34:30:30 ath0

Where

- -0 means deauthentication
- = 1 is the number of deauths to send (you can send multiple if you wish); 0 means send them continuously
- a 00:14:6C:7E:40:80 is the MAC address of the access point
- -c 00:0F:B5:34:30:30 is the MAC address of the client to deauthenticate; if this is omitted then all clients are deauthenticated
- ath0 is the interface name

Usage Examples

Typical Deauthentication

First, you determine a client which is currently connected. You need the MAC address for the following command:

aireplay-ng -0 1 -a 00:14:6C:7E:40:80 -c 00:0F:B5:AE:CE:9D ath0

Where:

- -0 means deauthentication
- 1 is the number of deauths to send (you can send multiple if you wish)
- a 00:14:6C:7E:40:80 is the MAC address of the access point
- -c 000:0F:B5:AE:CE:9D is the MAC address of the client you are deauthing
- ath0 is the interface name

aireplay-ng (1/2)

- 1. Scheda in modalità "monitor": root@kali:~# airmon-ng start wlan0
- 2. Analisi generale dell'ambiente ed individuazione AP target: "airodump-ng wlan0mon"

CH 10][Elapsed:	2 min	s][2015-1	10-14 18	:15]	[WP	A han	dshake	e: 44:E4	4:D9:	3E:47:B0
BSSID	PWR	Beacons	#Data,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID
5C:A4:8A:68:BA:00	-1	Θ	12	0	1	-1	WPA			<length: 0=""></length:>
4E:48:C4:8C:24:63	- 1	15	Θ	0	1	54	0PN			Portthru
5C:A4:8A:1F:05:34	-64	100	0	0	1	54e.	WPA2	CCMP	PSK	Guest_Dieti
5C:A4:8A:1F:05:32	-65	98	0	0	1	54e.	WPA2	CCMP	PSK	Convention_UniNa
5C:A4:8A:1F:05:31	-64	105	0	0	1	54e.	WPA2	CCMP	MGT	eduroam
5C:A4:8A:1F:05:30	-65	91	23	0	1	54e.	WPA2	CCMP	MGT	Wi-Fi_UniNa
00:30:BD:96:5D:CC	-64	489	339	6	11	54	WEP	WEP		belkin54g
5C:A4:8A:1F:11:C0	-81	68	3	0	6	54e.	WPA2	CCMP	MGT	Wi-Fi_UniNa
5C:A4:8A:1F:11:C1	-81	79	0	0	6	54e.	WPA2	CCMP	MGT	eduroam
5C:A4:8A:1F:11:C2	-81	72	0	0	6	54e.	WPA2	CCMP	PSK	Convention_UniNa
5C:A4:8A:1F:11:C4	-81	82	2	0	6	54e.	WPA2	CCMP	PSK	Guest_Dieti
00:15:6D:4E:AE:31	-82	104	0	0	1	54 .	WPA2	TKIP	PSK	Sala Riunioni
90:84:0D:D9:3B:25	-85	215	0	0	11		WPA2		PSK	<length: 0=""></length:>
C8:D3:A3:06:64:5C	-84	260	4	0	11	54e.	WPA2	CCMP	PSK	WiFi0spiti
00:25:86:D3:EE:40	-87	124	0	0	11	54e.	WPA2	CCMP	PSK	Bozza-guest
00:3A:98:4F:60:71	-87	15	0	0	11		WPA2		MGT	eduroam
00:3A:98:4F:60:70	-87	16	6	0	11	54e.			MGT	Wi-Fi_UniNa
00:3A:98:4F:60:72	-87	17	0	0	11	54e.	WPA2	CCMP	PSK	Convention_UniNa

aireplay-ng (2/2)

3. Selezione canale di monitoraggio (in base all'AP target):

```
root@kali:~# iwconfig wlan0mon channel 11
```

4. Individuazione stazione client da "de-autenticare" (ancora tramite "airodump-ng")

```
root@kali:~# airodump-ng -c 11 --bssid 00:30:BD:96:5D:CC wlan0mon
```

5. Invio frame di deautenticazione tramite aireplay-ng

```
oot@kali:~# aireplay-ng -0 10 -a 00:30:Bd:96:5d:CC -c 00:23:12:0F:82:DE wlan0mon
         Waiting for beacon frame (BSSID: 00:30:BD:96:5D:CC) on channel 11
18:26:30
18:26:31
          Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:31
          Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:32
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:32
        Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:33
18:26:33
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:34
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:34
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:35
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE]
18:26:35
         Sending 64 directed DeAuth. STMAC: [00:23:12:0F:82:DE] [
 oot@kali:~#
```


ENCRYPTION ATTACKS

- Sfruttano "difetti" nel modo di operare di un algoritmo o di un protocollo di codifica
- Contrariamente a quanto si possa immaginare, nel caso di reti WPA, gli attacchi sono:
 - di difficile attuazione
 - raramente portati a termine con successo
 - basati sulla presenza di un ben preciso insieme di precondizioni per poter andare in porto
- Discorso diverso nel caso dell'approccio WEP!
 - attacchi semplici e con elevatissime possibilità di successo

ATTACCHI A RETI WPA

- Il meccanismo di crittografia dipende fortemente dalla fase di autenticazione
- Un attaccante potrebbe sfruttare eventuali falle dei protocolli TKIP o AES—CCMP per:
 - decodificare, modificare, ricodificare e trasmettere dati di rete "impersonando" l'utente target
- Fortunatamente (per noi) le chiavi di codifica, nelle reti WPA, "ruotano":
 - il periodo di validità dell'approccio è limitato dal valore dell'intervallo di rotazione delle chiavi

ATTACCHI A RETI WEP

- Nessuna reale fase di autenticazione
- Nessun meccanismo di rotazione delle chiavi (eccezion fatta per il "dynamic WEP")
- Una volta decodificata la chiave, l'attacker ha la vita facile:
 - collegarsi alla rete (join)
 - decodifica trasmissioni di terze parti
 - iniezione di traffico in rete

WEP: TIPOLOGIE DI ATTACCO

- Obiettivo dell'attacco in breve:
 - "raccogliere" un elevato numero di frame:
 - Initialization Vector (IV)
 - specifici tipi di frame dati (es: pacchetti ARP)
 - contenuto poco variabile
 - possibilità di "indovinare" il "plain text", il quale, combinato con il "cypher text" della frame iniziale, consente di identificare il "keystream"
- Approccio passivo:
 - basato sul semplice "ascolto" delle frame trasmesse nell'etere
- Approccio attivo:
 - es: "ARP Replay con Fake Authentication"

WEP: ATTACCO PASSIVO

- 1. Configurare l'interfaccia wireless in modalità "monitor"
- Mettersi in ascolto di frame 802.11
- 3. Registrare un elevato numero di frame dati
- Impiegare un tool di "cracking" per scoprire la chiave WEP a partire dai vettori di inizializzazione (IV) contenuti nelle frame catturate
- Quanti IV bisogna raccogliere perché l'attacco abbia successo?
 - con tool avanzati, poco più di 50.000 vettori di inizializzazione risultano di solito sufficienti!
- Quanto tempo occorre per raccogliere 50.000 IV?
 - dipende da quanto traffico c'è sulla rete:
 - ore, giorni, settimane (nel caso di reti poco utilizzate)!

WEP: ARP REPLAY CON FAKE AUTHENTICATION

- Spesso capace di identificare la chiave WEP di una rete wireless in pochi minuti
- WEP non ha meccanismi di rilevamento di attacchi di tipo "replay"
- Un attaccante può:
 - catturare traffico crittografato 'valido' in una rete wireless
 - riiniettare nella rete il traffico catturato
- La stazione ricevente elaborerà le frame ritrasmesse come se fossero dati "freschi"

ARP-REPLAY: PASSI

- L'attaccante:
 - cattura frame broadcast di tipo ARP:
 - destinazione: FF:FF:FF:FF:FF;
 - lunghezza: 86 (o 68) byte
 - modifica le informazioni di indirizzamento
 - invia all'AP copie multiple del pacchetto così modificato
- L'AP, alla ricezione della frame modificata:
 - la decodifica (si tratta di una frame codificata correttamente!)
 - la elabora
 - prepara una risposta (broadcast)
 - la codifica con un nuovo IV
 - la spedisce!
- Il processo viene iterato, per cui:
 - l'AP invierà in broadcast, in un intervallo temporale di pochi minuti, migliaia di frame (e di IV)
 - l'attaccante avrà a disposizione materiale prezioso per la fase di "cracking"

PREREQUISITO: FAKE AUTHENTICATION

- Le richieste ARP inviate all'AP DEVONO contenere un MAC address "valido"
- Soluzioni possibili:
 - 1. recuperare (tramite "sniffing") un MAC address di un client legittimo ed inviare pacchetti ARP con indirizzo IP "spoofed"
 - 2. stabilire una connessione "fasulla" con l'AP:
 - l'attaccante sarà, in questo caso, un client "valido", ma con funzionalità limitate
- Il caso 2. è comunemente denominato "fake authentication"
 - richiede che l'AP sia configurato in modalità "Open Authentication"
 - i client si possono sempre collegare all'AP, ma, in caso di invio di dati non correttamente codificati, vengono "buttati fuori" dalla rete
 - con la fake authentication, il client dell'attaccante si autentica con l'AP e, per evitare di essere estromesso dalla rete, si astiene dall'inviare frame dati

WEP CRACKING: RISORSE UTILI

- 1. How to crack WEP with no wireless clients:
 - http://www.aircrack-ng.org/doku.php?id=how_to_crack_wep_with_no_clients
- 2. ARP Request Replay Attack:
 - http://www.aircrack-ng.org/doku.php?id=arp-request_reinjection
- Fake authentication:
 - http://www.aircrack-ng.org/doku.php?id=fake_authentication

WEP: CONTROMISURE

- Una sola azione risulta efficace per contrastare gli attacchi in questo tipo di scenario:
 - non usare WEP come soluzione prescelta per garantire la sicurezza della propria rete wireless... mai!
- Una rete WEP è in tutto e per tutto assimilabile ad una comune rete wireless di tipo aperto

AUTHENTICATION ATTACKS

- Il target di questi attacchi è il processo di autenticazione
 - fase in cui l'utente fornisce al sistema delle credenziali che vengono utilizzate per stabilire la sua identità
- Il culmine di questo tipo di attacchi è, solitamente, una fase di password guessing con approccio a forza bruta
- Due scenari principali:
 - WPA Pre-Shared Key (PSK)
 - WPA Enterprise

WPA-PSK

- Conoscenza pregressa di una chiave di encryption nota sia ai client che all'AP
- La chiave è utilizzata per calcolare, tra le altre cose, le due chiavi crittografiche necessarie durante una specifica sessione utente
 - four-way handshake
- Le chiavi di sessione dipendono dalle chiave PSK:
 - un attaccante che cattura il 4-way handshake tra una stazione legittima e l'AP, può poi lanciare, off-line, un attacco a forza bruta sui dati raccolti per cercare di risalire alla chiave PSK
 - la cosa è tutt'altro che semplice:
 - la chiave PSK subisce un enorme numero (> 4.000!) di trasformazioni mediante funzioni hash
 - l'SSID della rete viene utilizzato come parte del processo di "hashing"
 - i tempi richiesti per "derivare" la chiave dai dati raccolti sono spesso proibitivi

CRACKING WPA-PSK

- Configurazione dell'interfaccia di rete wireless in modalità monitor, in ascolto sul canale relativo all'AP della rete target
- 2. Esecuzione di "airodump-ng" sul canale dell'AP target, con filtro sul BSSID, per catturare eventuali handshake di autenticazione
- [NB: passo opzionale] Impiego di "aireplay-ng" per sferrare un "deauthentication attack" nei confronti di un client legittimo della rete target
 - tale procedura serve a "stimolare" un nuovo tentativo di connessione (e quindi un nuovo 4-way handshake) da parte del client in questione
- 4. Esecuzione di "aircrack-ng" per derivare la chiave PSK a partire dai dati contenuti nel 4way handshake appena registrato:
 - come anticipato, l'approccio impiegato è di tipo "brute force"
 - successo ottenibile solo nel caso in cui la chiave cercata sia presente nel DB fornito in input all'algoritmo di cracking

WPA CRACKING: RISORSE UTILI

- How to Crack WPA/WPA2:
 - http://www.aircrack-ng.org/doku.php?id=cracking_wpa

BRUTE-FORCE GUESSING: APPROCCI UTILI

- Operazioni più onerose in caso di algoritmi a forza bruta:
 - calcolo della funzione hash sulla password di tentativo
- Alcuni rimedi:
 - Rainbow Tables (cfr prossima slide...)
 - GPU cracking:
 - impiego della Graphical Processing Unit per la fase di elaborazione della funzione hash
 - un tool di esempio (senza ridere!)
 - "pyrit": https://code.google.com/p/pyrit/

RAINBOW TABLES

- Idea molto semplice:
 - preelaborazione delle funzioni hash dei termini candidati
- Disponibilità di numerosi (corposissimi!) file contenenti questo tipo di informazioni per una serie di database di password diffuse
- Problema (nel caso di applicazione allo scenario WPA)
 - la funzione hash ingloba il valore dell'SSID, il che rende inutile la preelaborazione effettuata solo sulle password di tentativo
- Soluzione (parziale)
 - elaborazione di rainbow table che contemplino, oltre alla password di tentativo, anche uno specifico valore di SSID
 - approccio applicabile nel caso in cui l'SSID della rete target sia di tipo diffuso ("Linksys", "WLAN-AP", ecc.)

WPA ENTERPRISE

- In questo caso, gli attacchi sono rivolti al particolare tipo di protocollo di autenticazione cui la rete wireless si affida:
 - LEAP (Lightweight EAP)
 - EAP-TLS
 - PEAP (protected EAP)
- Perché l'attacco vada a buon fine, occorre necessariamente la presenza di almeno un client legittimo all'interno della rete target

LEAP

- Proposta Cisco (dicembre 2000)
- Altamente vulnerabile:
 - basato su un meccanismo MSCHAPv2 del tipo "challenge/response"
 - messaggi di "sfida" trasmessi <u>in chiaro</u> nella rete wireless
 - un attaccante può catturare i messaggi challenge/response e, successivamente, lanciare un attacco a forza bruta in modalità off-line
 - es di tool: "asleap"
- Soluzione oggi altamente sconsigliata, (quasi) al pari di WEP!
 - ... "quasi" perché, a differenza di WEP, in presenza di password sufficientemente complesse, LEAP può essere considerato "sicuro"

EAP-TTLS E PEAP

- Entrambi basati sulla creazione di un tunnel TLS tra il client che chiede l'autenticazione ed un server RADIUS su rete fissa
- L'AP non ha nessuna visibilità dei dati trasportati all'interno del tunnel
 - semplice funzione di relay tra il client ed il server di autenticazione
- Il tunnel serve a rendere inaccessibili a terze parti le informazioni di autenticazione
 - la fase di autenticazione vera e propria avviene, all'interno del tunnel, con un protocollo non necessariamente "nativamente sicuro"
 - es: MSCHAPv2, EAP-GTC (basato su password "one-time"), ecc.

OBIETTIVI DEGLI ATTACCHI IN PRESENZA DI TLS

- TLS è considerato estremamente sicuro
 - in virtù di questo, spesso il protocollo interno di autenticazione "viaggia" come testo in chiaro
- L'obiettivo di un attacco, in questo caso, è:
 - ottenere in qualche modo accesso al tunnel
 - accedere, all'interno del tunnel, alle informazioni scambiate tra client e server di autenticazione con il protocollo interno
- TLS è molto difficile da "bucare"...
- ...ma nelle reti wireless si può seguire un altro approccio!
 - "AP impersonation attack"

AP IMPERSONATION

- Il trucco è:
 - fingere di essere l'AP al quale il client target intende connettersi
 - agire come punto terminale del tunnel TLS (server RADIUS)
- Client (come spessissimo avviene) configurato male:
 - nessun meccanismo di validazione dell'identità del server RADIUS cui ci si connette
- Nelle ipotesi sopra descritte, l'attaccante
 - offre se stesso come punto terminale di tutte le procedure di autenticazione
 - ottiene un facile access al protocollo interno di autenticazione
 - …il tutto senza alcun bisogno di "bucare" TLS!

TOOL UTILI: FreeRADIUS-WPE

- WPE: Wireless Pwnage Edition
 - NB: "pwnage": 'pure ownage', cioè 'controllo completo'
 - termine molto di moda nella comunità degli hacker
- Una versione del server RADIUS concepita per l'hacking:
 - accetta automaticamente qualsiasi richiesta di connessione
 - salva su un file di log tutti i dati relativi al protocollo interno di autenticazione

IMPIEGO DI FreeRADIUS-WPE

- Utilizzato insieme a strumenti quali "hostapd" (configurazione della propria scheda di rete wireless in modalità AP), consente di usare un singolo host per:
 - ospitare i due componenti server-side della fase di autenticazione (AP e server RADIUS)
 - salvare i dati del protocollo interno di autenticazione su file
 - lavorare sui dati salvati per (a seconda del prototollo interno)
 - accedere in modo immediato a nomi utenti e password
 - accedere ai dati di tipo challenge/response per analizzarli off-line
 - approcci a forza bruta (cfr. tool "asleap" citato in precedenza)

EAP-TTLS E PEAP: CONTROMISURE

- Rispetto agli scenari descritti, è sufficiente imporre che il client "validi" il certificato del server RADIUS prima di avviare la negoziazione del tunnel TLS
- Un meccanismo semplice...
- ...e troppo spesso trascurato 😊

DOMANDE?

