INTERPOLACIÓN

El objetivo de la interpolación es hallar valores que se encuentren dentro del rango de datos experimentales que se estén evaluando.

INTERPOLACION DIFERENCIAS DIVIDAS FINITAS DE NEWTON

Hay ocasiones en las que resulta útil construir varios polinomios aproximantes $B1(x), B2(x), \ldots, BN(x)$ y, después, elegir el más adecuado a nuestras necesidades. Si usamos los polinomios de interpolación de Lagrange, uno de los inconvenientes es que no se pueden utilizar los cálculos realizados en la construcción de $B_{N-1}(x)$ para la de $B_N(x)$; cada polinomio debe construirse individualmente y para calcular polinomios de grado elevado es necesario hacer muchas operaciones.

Formula:

$$y = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0) \dots (x - x_{n-1})$$

$$b_0 = f(x_0)$$

$$b_1 = f(x_0, x_1)$$

$$b_2 = f(x_0, x_1, x_2)$$

$$b_n = f(x_0, x_1, \dots, x_n)$$

$$f(x_i, x_j) = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

$$f(x_i, x_j, x_k) = \frac{f(x_i, x_j) - f(x_j, x_k)}{x_k - x_i}$$

$$f(x_i, x_j, x_n) = \frac{f(x_i, x_j, x_n) - f(x_j, x_k, x_n)}{x_n - x_0}$$

Ejemplo de uso:

Solución:

INTERPOLACIÓN

El objetivo de la interpolación es hallar valores que se encuentren dentro del rango de datos experimentales que se estén evaluando.

INTERPOLACION LAGRANGE

Dado un conjunto de k+1 puntos $(x_0,y_0),\ldots,(x_k,y_k)$

Donde todos los x_j se asumen distintos, el polinomio interpolador en la forma de Lagrange es la combinación lineal

$$L(x) = \sum_{j=0}^k y_j \ell_j(x)$$

Formula: $l_j = \frac{\prod (x - x_i)}{\prod (x_i - x_i)}$

$$\ell_j(x) = \prod_{i=0,\,i
eq j}^k rac{x-x_i}{x_j-x_i} = rac{x-x_0}{x_j-x_0} \cdots rac{x-x_{j-1}}{x_j-x_{j-1}} rac{x-x_{j+1}}{x_j-x_{j+1}} \cdots rac{x-x_k}{x_j-x_k}$$

Ejemplo de uso:

Solución:

