Soluciones Ayudantía 1 - Modelos Probabilísticos

Facultad de Matemáticas, PUCC

2025

Ejercicio 1

[a)]Demostrar que

$$A = (A \cap B) \cup (A \cap B^c).$$

1. Proof. Observamos que

$$(A\cap B)\cup (A\cap B^c)=A\cap (B\cup B^c)=A\cap \Omega=A.$$

Aquí usamos la distributividad de la intersección sobre la unión y que $B \cup B^c = \Omega$.

2. Demostrar que

$$A^c - B^c = B - A.$$

Proof. Por definiciones,

$$A^c - B^c = A^c \cap (B^c)^c = A^c \cap B = B \cap A^c = B - A.$$

3. Demostrar que

$$A \cap B^c = A - (A \cap B).$$

Proof. Usando que $X - Y = X \cap Y^c$, tenemos

$$A-(A\cap B)=A\cap (A\cap B)^c=A\cap (A^c\cup B^c)=(A\cap A^c)\cup (A\cap B^c)=A\cap B^c.$$

Ejercicio 2

Sea Ω el espacio de resultados de n lanzamientos de un dado, y

$$A_i = \{ \text{sale 2 en el lanzamiento } i \}, \quad i = 1, \dots, n.$$

Describa los eventos:

[a)]B = "En ninguno de los n lanzamientos sale 2"

$$B = \bigcap_{i=1}^{n} A_i^c.$$

C= "En al menos un lanzamiento sale 2"

$$C = \bigcup_{i=1}^{n} A_i.$$

D = "En exactamente un lanzamiento sale 2"

$$D = \bigcup_{i=1}^{n} \left(A_i \cap \bigcap_{j \neq i} A_j^c \right).$$

E= "En a lo más un lanzamiento sale 2"

$$E = B \cup D = \left(\bigcap_{i=1}^{n} A_i^c\right) \cup \bigcup_{i=1}^{n} \left(A_i \cap \bigcap_{j \neq i} A_j^c\right).$$

Ejercicio 3

Sea $\Omega = \{a, b, c\}$ y consideremos

$$F = \{\Omega, \{a\}, \{b\}, \emptyset\}, \qquad G = \{\Omega, \emptyset, \{a, b\}, \{c\}\}.$$

[a)] F no es σ -álgebra, pues $\{a\} \in F$ pero su complementario $\{b,c\} \notin F$. G sí es σ -álgebra: está cerrado bajo complementos y uniones finitas. $F \cup G$ no es σ -álgebra: p.ej. $\{a\} \in F \subset F \cup G$ y $\{c\} \in G \subset F \cup G$, pero $\{a\} \cup \{c\} = \{a,c\} \notin F \cup G$. $F \cap G = \{\Omega,\emptyset\}$, que es la σ -álgebra trivial, por lo que sí lo es.

Ejercicio 4

Sean F_1, F_2, F_3 tres σ -álgebras en Ω tales que $F_3 \subseteq F_2 \subseteq F_1$.

[a)] $F_1 \cup F_2 = F_1$, que es σ -álgebra. $F_3 \cap (F_1 - F_2)$ no es σ -álgebra en general, pues puede no contener a Ω o no cerrarse por complementos. $F_1 \cap (F_2 \cup F_3) = F_1 \cap F_2 = F_2$, que es σ -álgebra.

Ejercicio 5

Sea A_1, \ldots, A_k eventos en Ω y definamos

$$B_1 = A_1, \quad B_i = A_i - \bigcup_{j=1}^{i-1} A_j, \ i = 2, \dots, k.$$

[a)]Demostrar que

$$\bigcup_{i=1}^k A_i = \bigcup_{i=1}^k B_i.$$

- **3.** Proof. Por construcción, cada $B_i \subseteq A_i$, y los B_i son disjuntos. Toda realización en $\cup_i A_i$ pertenece al primer A_m en que aparece, luego pertenece a B_m . Así, ambos lados coinciden.
- 2. Se sigue que $B_i \cap B_j = \emptyset$ para $i \neq j$, y por construcción $B_i \subseteq A_i$.

Ejercicio 6

Sea P medida de probabilidad con P(A) = 1/3 y $P(B^c) = 1/4$ (entonces P(B) = 3/4). ¿Pueden A y B ser disjuntos?

Proof. Si fuesen disjuntos, $P(A \cup B) = P(A) + P(B) = 1/3 + 3/4 = 13/12 > 1$, lo cual contradice la axioma de probabilidad. Por tanto, no pueden ser disjuntos.