1. (a) Let $Y \sim \text{Pois}(\lambda)$. We look to find $\lambda = \lambda_U$ such that

$$\mathbb{P}(Y \le y) = \mathbb{P}(\chi_{2u+2}^2 > 2\lambda_U) = \alpha$$

By evaluating this integral, we can find a compact expression that λ_U satisfies.

$$\alpha \stackrel{set}{=} \mathbb{P}(\chi_{2y+2}^2 > 2\lambda_U)$$

$$= \int_{2\lambda_U}^{\infty} \frac{1}{2^{y+1}\Gamma(y+1)} x^y e^{-x/2} dx$$

$$= \frac{1}{2\Gamma(y+1)} \int_{2\lambda_U}^{\infty} \left(\frac{x}{2}\right)^y e^{-x/2} dx$$

$$= \frac{1}{\Gamma(y+1)} \int_{\lambda_U}^{\infty} w^{(y+1)-1} e^{-w} dw$$

$$= \frac{\Gamma(y+1,\lambda_U)}{\Gamma(y+1)}$$

Here we used the substitution w = x/2 and the incomplete upper gamma function denoted by $\Gamma(\cdot, \cdot)$. Therefore, we see that the right bound for the $(1 - \alpha)\%$ confidence interval, λ_U satisfies

$$\Gamma(y+1,\lambda_U) = \alpha\Gamma(y+1)$$

(b) Assuming that we observe Y = 0, we can calculate λ_U as follows

$$\Gamma(0+1,\lambda_U) = \alpha \Gamma(0+1)$$

$$\int_{\lambda_U}^{\infty} w^{(0+1)-1} e^{-w} dw = \alpha$$

$$\int_{\lambda_U}^{\infty} e^{-w} dw = \alpha$$

$$-e^{-w} \Big|_{\lambda_U}^{\infty} = \alpha$$

$$e^{-\lambda_U} = \alpha$$

$$\lambda_U = -\log(\alpha)$$

Hence for a $\alpha = 0.05$ confidence region, we have $\lambda_U = -\log(0.05) \approx 2.995732$ and the interval is given by (0, 2.995732).

(c) Assuming that $\lambda = te^{\beta_0}$ for some known $t \in \mathbb{R}$ and parameter β_0 , we can build a confidence interval for β_0 when we observe Y = 0. By the same logic as above we see that

$$\Gamma(0+1, te^{\beta_U}) = \alpha \Gamma(0+1)$$

$$\vdots$$

$$\exp\{-te^{\beta_U}\} = \alpha$$

$$\beta_U = \log\left(-\frac{\log(\alpha)}{t}\right)$$

For $\alpha = 0.05$ we have $\beta_U = \log\left(\frac{\lambda_U}{t}\right) = \log\left(\frac{2.995732}{t}\right)$ and our interval is given by $\left(-\infty, \log\left(\frac{0.05129}{t}\right)\right)$

2. (a) First let $\lambda_i = \exp\{\beta_0 - cy_{i-1}\}$. Then using a conditional argument along with the Markovian properties of this process, we can write the joint likelihood function as follows

$$\mathcal{L}(\beta_0; Y_1, Y_2, \dots, Y_n) = \mathbb{P}(Y_1 = y_1 | Y_0 = 0) \prod_{i=2}^n \mathbb{P}(Y_i = y_i | Y_{i-1} = y_{i-1}, \dots, Y_1 = y_1)$$

$$= \frac{\lambda_1^{y_1} e^{-\lambda_1}}{y_1!} \prod_{i=2}^n \mathbb{P}(Y_i = y_i | Y_{i-1} = y_{i-1})$$

$$= \prod_{i=1}^n \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}$$

Using this expression, we can write the log-likelihood function as follows

$$\ell(\beta_0; Y_1, \dots, Y_n) = \log(\mathcal{L}(\beta_0; Y_1, \dots, Y_n))$$

$$= \log\left(\prod_{i=1}^n \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}\right)$$

$$= \sum_{i=1}^n y_i \log(\lambda_i) - \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \log(y_i!)$$

$$= \sum_{i=1}^n y_i (\beta_0 - cy_{i-1}) - \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \log(y_i!)$$

$$= \beta_0 \sum_{i=1}^n y_i - \sum_{i=1}^n \lambda_i - c \sum_{i=1}^n y_i y_{i-1} - \sum_{i=1}^n \log(y_i!)$$

Using this expression, we can find the maximum likelihood estimate for β_0 . First notice that $\frac{d}{d\beta_0}\lambda_i = \lambda_i$ then we can write the following

$$0 \stackrel{\text{set}}{=} \frac{d}{d\beta_0} \ell(\beta_0; Y_1, \dots, y_n) = n\overline{y} - \sum_{i=1}^n \lambda_i$$

$$\sum_{i=1}^n \exp{\{\hat{\beta}_0 - cy_i\}} = n\overline{y}$$

$$\exp{\{\hat{\beta}_0\}} \sum_{i=1}^n \exp{\{-cy_i\}} = n\overline{y}$$

$$\hat{\beta}_0 = \log\left(\frac{n\overline{y}}{\sum_{i=1}^n \exp{\{-cy_i\}}}\right)$$

(b) At c = 0, (i.e. observations are independent) we have that

$$\hat{\beta}_0 = \log \left(\frac{n\overline{y}}{\sum_{i=1}^n \exp\{-cy_i\}} \right) \Big|_{c=0} = \log(\overline{y})$$

This matches our intuition as the maximum likelihood estimator of the Poisson rate parameter for an iid sample is given by the sample mean. In our case, with c=0 this rate is $\lambda=e^{\beta_0}$. Due to invariance of MLE's, we expect our estimator of β_0 to be $\hat{\beta}_{0,ML}=\log(\hat{\lambda}_{ML})=\log(\bar{y})$.

As $c \to \infty$, we see that $\exp\{-cy_i\} \to 0$ and $\frac{n\overline{y}}{\sum_{i=1}^n \exp\{-cy_i\}} \to \infty$ so $\hat{\beta}_0 \to \infty$. As we require $Y_i|Y_{i=1}=y$ to be a RV, as $c \to \infty$, the rate here goes to zero but recall that $\lambda > 0$ for this to be a valid density. So by necessity $\beta_0 \to \infty$ to ensure this rate does not go to 0.

(c) Assume there exists $N \in \mathbb{N}$ such that for all $i \geq N$ we have $Y_i \stackrel{D}{=} Y_{i-1}$. Using this, we can find the marginal distribution as follows

$$\mathbb{P}(Y_i = k) = \sum_{n=0}^{\infty} \mathbb{P}(Y_i = k | Y_{i-1} = n) \mathbb{P}(Y_{i-1} = n)$$
$$= \mathbb{P}(Y_i = k | Y_{i-1} = 0) \mathbb{P}(Y_i = 0) + \sum_{n=1}^{\infty} \mathbb{P}(Y_i = k | Y_{i-1} = n) \mathbb{P}(Y_i = n)$$

Now notice as $c \to \infty$ $e^{\beta_0 - cy} \to 0$. Therefore, the Poisson rate is zero and $\mathbb{P}(Y_i = k | Y_{i-1} = n) = 0$ for $n \ge 1$ and $k \ge 1$. Moreover $\mathbb{P}(Y_i = 0 | Y_{i-1} = n) = 1$ for $n \ge 1$. Hence, for $\lambda = e^{\beta_0}$ and $k \ge 1$ we have

$$\mathbb{P}(Y_i = k) = \frac{e^{-\lambda} \lambda^k}{k!} \mathbb{P}(Y_i = 0)$$

Therefore, we see that the marginal distribution of Y_i can be characterized relative to a base probability $\mathbb{P}(Y_i = 0)$. Now, first note that $\mathbb{P}(Y_i = 0|Y_{i-1} = n) = 1$ for $n \geq 1$. Using this fact we can write

$$\mathbb{P}(Y_i = 0) = \mathbb{P}(Y_i = 0 | Y_{i-1} = 0) \mathbb{P}(Y_i = 0) + \sum_{n=1}^{\infty} \mathbb{P}(Y_i = 0 | Y_{i-1} = n) \mathbb{P}(Y_{i-1} = n)$$

$$= e^{-\lambda} \mathbb{P}(Y_i = 0) + \sum_{n=1}^{\infty} \mathbb{P}(Y_{i-1} = n)$$

$$= e^{-\lambda} \mathbb{P}(Y_i = 0) + \sum_{n=1}^{\infty} \mathbb{P}(Y_i = n)$$

$$= e^{-\lambda} \mathbb{P}(Y_i = 0) + 1 - \mathbb{P}(Y_i = 0)$$

Rearranging we see that

$$\mathbb{P}(Y_i = 0) = \frac{1}{2 - e^{-\lambda}}$$

All together we define the marginal distribution as

$$\mathbb{P}(Y_i = k) = \begin{cases} \frac{1}{2 - e^{-\lambda}} & k = 0\\ \frac{e^{-\lambda} \lambda^k}{k! (2 - e^{-\lambda})} & k \ge 1 \end{cases}$$

To evaluate the mean and variance of this RV first let $X \sim \text{Pois}(\lambda) = \text{Pois}(\exp(\beta_0))$. From here we see that

$$\mathbb{E}[Y_i] = \sum_{k=0}^{\infty} k \mathbb{P}(Y_i = k) = \sum_{k=1}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k! (2 - e^{-\lambda})} = \frac{1}{2 - e^{-\lambda}} \mathbb{E}(X) = \frac{\lambda}{2 - e^{-\lambda}}$$

$$\mathbb{E}[Y_i^2] = \sum_{k=0}^{\infty} k^2 \mathbb{P}(Y_i = k) = \sum_{k=1}^{\infty} k^2 \frac{e^{-\lambda} \lambda^k}{k! (2 - e^{-\lambda})} = \frac{1}{2 - e^{-\lambda}} \mathbb{E}(X^2) = \frac{\lambda + \lambda^2}{2 - e^{-\lambda}}$$

$$\mathbb{V}(Y_i) = \mathbb{E}(Y_i^2) - [\mathbb{E}(Y_i)]^2 = \frac{(\lambda + \lambda^2)(2 - e^{-\lambda}) - \lambda^2}{(2 - e^{-\lambda})^2} = \frac{1}{2 - e^{-\lambda}} \lambda + \frac{1 - e^{-\lambda}}{2 - e^{-\lambda}} \lambda^2$$

Having calculated the variance of this model, we note that the original Poisson would model have variance λ . We note that for over dispersion we require that $\mathbb{V}(Y_i) > \lambda$. That is

$$\frac{1}{2 - e^{-\lambda}} \lambda + \frac{1 - e^{-\lambda}}{2 - e^{-\lambda}} \lambda^2 > \lambda$$
$$\frac{1}{2 - e^{-\lambda}} + \frac{1 - e^{-\lambda}}{2 - e^{-\lambda}} \lambda > 1$$
$$1 + \lambda - e^{-\lambda} > 2 - e^{-\lambda}$$
$$\lambda > 1$$

Hence we see that this model is under dispersed for $\lambda < 1$ and overdispersed for $\lambda > 1$.