Indice - Taux d'évolution moyen

Ce que dit le programme :

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Indice simple en base 100.	Passer de l'indice au taux d'évolution, et réciproquement.	Le calcul d'un indice synthétique, comme par exemple l'indice des prix, n'est pas au programme.
Racine <i>n</i> -ième d'un nombre réel positif. Notation $a^{1/n}$	- Déterminer avec une calculatrice ou un tableur la solution positive de l'équation $x^n = a$, lorsque a est un réel positif.	La notation $\sqrt[n]{a}$ n'est pas exigible.
Taux d'évolution moyen.	Trouver le taux moyen connaissant le taux global.	Exemple : taux mensuel équivalent à un taux annuel.

1. Indice simple en base 100

1.1) Activité:

- 1°) En 2011, Vincent a acheté une calculatrice scientifique pour le prix de 59,90 euros. En 2012, la même calculatrice coûtait 62,90 euros.
 - a) Calculer le coefficient multiplicateur k et le taux d'évolution t de $y_1 = 59,90$ à $y_2 = 62,90$.
 - b) Calculer le nouveau prix de la calculatrice, si elle avait coûté 100 euros, en 2011.
 - c) Avec la même évolution, calculer le prix de cette calculatrice en 2013.
- 2°) Tiphanie a acheté une calculatrice plus performante en 2011 pour 119,90 euros. En 2012, elle coûtait 110,31 euros.
 - a) Calculer le coefficient multiplicateur k et le taux d'évolution t' de $y'_1 = 119,90$ à $y'_2 = 110,31$.
 - b) Calculer le nouveau prix de la calculatrice, si elle avait coûté 100 euros, en 2011.
 - c) Avec la même évolution, calculer le prix de cette calculatrice en 2013.

1.2) Rappels de 1ère STMG

On considère deux nombres réels strictement positifs y_1 et y_2 . y₁ représente la valeur d'une grandeur à une époque 1 et y₂ représente la valeur de la même grandeur à une époque 2. Alors le coefficient multiplicateur k de

$$y_1$$
 à y_2 est défini par : $k = \frac{y_2}{y_1}$. Ce qui donne $y_2 = k \times y_1$ ou $y_1 = \frac{y_2}{k}$. On passe de y_1 à y_2 en multipliant par k .

Le taux d'évolution de y_1 à y_2 est défini par : $t = \frac{y_2 - y_1}{y_1}$ ou encore : $t = \frac{Valeur finale - Valeur initiale}{valeur initiale}$

$$t = \frac{Valeur\ finale - Valeur\ initiale}{valeur\ initiale}$$

Ce qui donne t=k-1 ou encore k=1+t.

1.3) Définitions

On considère deux nombres réels strictement positifs y₁ et y₂.

On note k le coefficient multiplicateur et t le taux d'évolution de y_1 à y_2 .

On appelle *indice simple en base 100 de y₂ par rapport à y₁*, ou simplement *indice de y₂ par rapport à y₁*, *le nombre I* tel que l'évolution qui fait passer de y₁ à y₂ fait passer de 100 à *I* proportionnellement. On obtient le tableau de proportionnalité :

Ce qui donne : (1)
$$I = \frac{100 \times y_2}{y_1}$$
 ou (2) $I = 100 \times \frac{y_2}{y_1}$.

1.4) Relation entre l'indice et le coefficient multiplicateur

Propriété n°1: On considère deux nombres réels strictement positifs y_1 et y_2 . On note k le coefficient multiplicateur de y_1 à y_2 et I l'indice de y_2 par rapport à y_1 , alors on a les deux relations :

(3)
$$I = 100 \times k$$
 ou encore : (4) $k = \frac{I}{100}$

Exemple 1:

Le chiffre d'affaire d'une entreprise est passé de 65 500 € en 2011 à 72 050 € en 2012.

- 1°) Calculer l'indice d'évolution du chiffre d'affaire.
- 2°) Calculer le coefficient multiplicateur de 65 500 à 72 050.
- 3°) En déduire le taux d'évolution du chiffre d'affaire.
- 1°) Par définition de l'indice de y₂ par rapport à y₁, on a :

$$I = \frac{100 \times y_2}{y_1} = \frac{100 \times 72050}{65500} = 110$$
 donc $I = 110$

2°) Attention, la question 2° dit « <u>Calculer le coefficient multiplicateur de 65 500 à 72 050</u> », je dois donc faire un *calcul direct*. Or, par définition, le coefficient multiplicateur de y₁ à y₂, on a :

$$k = \frac{y_2}{y_1} = \frac{72050}{65500} = 1,1$$
 donc $k = 1,1$

Si la question était « <u>En déduire le coefficient multiplicateur de 65 500 à 72 050</u> », il faut calculer k à partir de la formule de I :

$$I = 100 \times k$$
 donc, $k = \frac{I}{100} = \frac{110}{100} = 1,1$. On obtient bien $k = 1,1$.

3°) Pour « déduire » la valeur du taux d'évolution du chiffre d'affaire, on applique la formule qui relie le taux d'évolution au coefficient multiplicateur de y₁ à y₂, vue en classe de 1ère STMG.

On sait que
$$k = 1 + t$$
 ou encore $t = k - 1$. Ce qui donne $t = k - 1 = 1, 1 - 1 = 0, 1 = \frac{10}{100} = +10\%$

Conclusion: Lc chiffre d'affaire a subi une augmentation de 10%.

1.5) Relation entre l'indice et le taux d'évolution

Propriété n°2: On considère deux nombres réels strictement positifs y_1 et y_2 . On note t le taux d'évolution de y_1 à y_2 et I l'indice de y_2 par rapport à y_1 , alors on a les deux relations :

(5)
$$I = 100 \times (1+t)$$
 ou encore: (6) $t = \frac{I - 100}{100}$.

Exercices résolus n°1 et 2 p.13 faits en classe.

A faire: Exercices n°2, 4 et 5 p. 20

Exemple 2:

En 2012, le chiffre d'affaire d'une entreprise a baissé de 15% par rapport à 2011.

- 1°) Calculer le coefficient multiplicateur du chiffre d'affaire entre 2011 et 2012.
- 2°) En déduire l'indice d'évolution du chiffre d'affaire pour la même période.

1°) On note y_1 et y_2 les chiffre d'affaire de l'entreprise en 2011 et 2012 respectivement. D'après l'énoncé, le taux d'évolution du chiffre d'affaire entre y_1 et y_2 est :

$$t = -15\% = \frac{-15}{100} = -0.15$$

Donc, le coefficient multiplicateur est donné par : k=1+t=1+(-0.15)=0.85

Conclusion: Le coefficient multiplicateur est : k = 0.85.

- 2°) Nous avons deux méthodes à notre disposition pour calculer l'indice :
 - soit à partir du taux d'évolution en appliquant la formule (5)

$$I = 100 \times (1+t)$$

$$I = 100 \times [1+(-0.15)]$$

$$I = 100 \times 0.85$$

$$I = 85$$

- soit à partir du taux d'évolution en appliquant la formule (3)

$$I = 100 \times k$$

 $I = 100 \times 0.85$
 $I = 85$

Conclusion: L'indice d'évolution du chiffre d'affaire est : I = 85

CQFD.

A faire: Exercices n°6, 7 et 8 p. 20

2. Racine n-ième d'un nombre réel positif

- 2.1) Activité sur Géogebra
- 1°) Recherche (du nombre de) des solutions positives des équations : (1) $x^2=5$,
- (2) $x^3=5$, (3) $x^4=5$ puis généralisation.

Exercices n°14, 15 p.21

2.2) Théorème et définitions

Théorème: Soit a un nombre réel positif et n un entier naturel non nul. Alors, l'équation $(x^n = a)$ admet une unique solution dans l'intervalle $[0; +\infty[$. **Définition**: Cette solution unique se note $a^{1/n}$ et s'appelle <u>la racine n-ième</u> de a.

Remarques:

1°) Cette solution positive unique se note également : $\sqrt[n]{a}$.

Par défaut : $a^{1/2} = \sqrt[2]{a} = \sqrt{a}$, c'est-à-dire que « la racine 2-ème d'un nombre réel positif a est égale à la racine carrée de a ».

 $a^{1/3} = \sqrt[3]{a}$, c'est-à-dire que « la racine 3-ème d'un nombre réel positif a s'appelle aussi la racine cubique de a ».

2°) La notation $\sqrt[n]{a}$ n'est pas exigible au BAC.

2.3) Exemple

Résoudre l'équation suivante $x^3 = 5$, dans l'intervalle $[0; +\infty[$.

Dans l'intervalle $[0; +\infty[$, cette équation admet une solution unique : $x=5^{1/3}$ qu'on peut calculer à l'aide d'une calculatrice ou d'un tableur :

<u>Mais attention!</u> Ne pas oublier les parenthèses ; sinon le résultat serait faux car la puissance est prioritaire par rapport à la division (classe de 5ème).

Utilisation de la calculatrice

Utilisation d'un tableur

2.4) Propriétés

Pour tout nombre réel positif a et tout entier naturel n, non nul, on a :

 (\mathbf{P}_1) : $x^n = a$ équivant à $x = a^{1/n}$.

(P₂): $(a^{1/n})^n = a$.

 $(\mathbf{P_2}): (a^n)^{1/n} = a .$

Exemples: 1°) $2^{10} = 1024$ donc $1024^{1/10} = 2$ 2°) $243^{1/5} = 3$ donc $3^5 = 243$

3. Taux d'évolution global

3.1) Activité

Étude d'un exemple

Le prix d'une calculatrice scientifique a augmenté de 10% de 2010 à 2011, diminué de 5% de 2011 à 2012 et diminué de 10% de 2012 à 2013.

- 1°) Calculer le taux d'évolution global T de 2010 à 2013.
- 2°) Sachant que la calculatrice coûtait 49,90 € en 2010, calculer son nouveau prix en 2013.

1°) On calcule d'abord le coefficient multiplicateur pour chaque période :

$$t_1 = +10\% = \frac{10}{100} = 0.1$$
. Donc $k_1 = 1 + t_1 = 1.1$. De même : $k_2 = 1 + t_2 = 0.95$ et $k_3 = 1 + t_3 = 0.90$.

Le coefficient multiplicateur global (pour la période de 3 ans) est

$$K = k_1 \times k_2 \times k_3 = 1,1 \times 0,95 \times 0,90 = 0,9405$$

Or,
$$K = 1 + T$$
. Donc, $T = K - 1 = 0.9405 - 1 = -0.0595 = \frac{-5.95}{100}$. Donc $T = -5.95\%$.

Conclusion 1. Le taux d'évolution global de 2010 à 2013 est de -5.95%.

2°) Calcul du prix en 2013 :

$$P_{2013} = P_{2010} \times K = 49,90 \times 0,9405 = 46,93.$$

Conclusion 2. Le nouveau prix de la calculatrice en 2013 est de 46,93 €.

3.2) Théorème et Définitions

Soit *n* un nombre entier naturel, non nul.

Soit $y_0, y_1, y_2, ..., y_{n-1}, y_n$, des nombres réels strictement positifs et $t_1, t_2, ..., t_n$ les n évolutions successives pour passer de y_0 à y_1 , de y_1 à y_2 , ... et de y_{n-1} à y_n , respectivement. Alors

1°) Le *coefficient multiplicateur global* de y_0 à y_n , est donné par :

$$K = 1+T = (1+t_1)(1+t_2)...(1+t_n)$$

2°) Le *taux d'évolution global* de y_0 à y_n , est donné par :

$$T = K - 1 = (1+t_1)(1+t_2)...(1+t_n) - 1.$$

4. Taux d'évolution moyen

4.1) Activité

Étude d'un exemple

Vincent a déposé un capital à la Caisse d'Epargne à 3,5% d'intérêts par an.

- 1°) Les intérêts étant calculés par mois, calculer le *taux d'évolution mensuel moyen t_M* équivalent.
- 2°) Si les intérêts sont calculés par quinzaine, calculer le *taux d'évolution moyen par quinzaine t_Q* équivalent.
- 1°) Le taux d'évolution global est : T = +3.5% = +0.035. Un an = 12 mois.

On cherche un taux d'évolution mensuel t_M (le même chaque mois) pour obtenir le même taux d'évolution global. Donc, on aura : $(1+t_M)^{12} = 1+T$.

Ce qui donne : $(1+t_M)^{12} = 1,035$. Donc $1+t_M = 1,035^{1/12}$.

Par conséquent : $t_M = 1,035^{1/12} - 1$. A la calculatrice, on obtient : $t_M = +0,002870899...=0,287\%$. Conclusion 1. Le taux d'évolution mensuel moyen t_M équivalent est égal à +0,287% par mois.

2°) Le taux d'évolution global est : T = +3.5% = +0.035. Un an = 24 quinzaines.

On cherche un taux d'évolution par quinzaine t_Q (calculé le 1er et le 16 de chaque mois) pour obtenir le même taux d'évolution global. Donc, on aura : $(1+t_Q)^{24} = 1+T$.

Ce qui donne : $(1+t_O)^{24} = 1,035$. Donc $1+t_M = 1,035^{1/24}$.

Par conséquent : $t_Q = 1,035^{1/24} - 1$. A la calculatrice, on obtient : $t_Q = +0,001434421...=0,143\%$.

<u>Conclusion 2</u>. Le taux d'évolution moyen par quinzaine t_Q équivalent est égal à + 0,287% par quinzaine.

4.2) Théorème et Définitions

Soit *n* un nombre entier naturel, non nul.

Soit $y_0, y_1, y_2, \dots, y_{n-1}, y_n$, des nombres réels strictement positifs et t_1, t_2, \dots, t_n les n évolutions successives pour passer de y_0 à y_1 , de y_1 à y_2 , ... et de y_{n-1} à y_n , respectivement, et de taux d'évolution global T et de coefficient multiplicateur global K.

Alors, le *taux d'évolution moyen t_M* des *n* périodes de v_0 à v_n , est donné par :

 $(1+t_M)^n = 1+T$ ou $(1+t_M)^n = K$.

ou encore : $t_M = (1+T)^{1/n} - 1$ ou $t_M = K^{1/n} - 1$.

Exemple : Le chiffre d'affaire d'une entreprise a augmenté de 15% en 5 ans. Calculer le taux d'évolution annuel moyen du C.A. de cette entreprise.

Le taux d'évolution global est : T = +15% = +0.15.

On appelle t_M le taux d'évolution annuel moyen du CA de cette entreprise.

D'après le cours, nous savons que :

 $(1+t_M)^5 = 1+T$. $(1+t_M)^5 = 1,15$.

Donc: $(1+t_M)^5 = 1,15$. Donc: $1+t_M = 1,15^{1/5}$ Donc: $t_M = 1,15^{1/5}-1$

A la calculatrice, on obtient : $t_M = 0.028346722... = +2.83\%$.

Conclusion: Le taux d'évolution annuel moyen du CA de cette entreprise est de +2,83%.

Autrement dit: Le chiffre d'affaire de cette entreprise a augmenté de 2,83% par an en 5 ans.