Supplementary Material - Fast and Accurate PARAFAC2 Decomposition for Time Range Queries on Irregular Tensors

Anonymous Author(s)

ABSTRACT

In this supplementary document, we provide theoretical proofs omitted from the main paper.

1 PROOFS OF LEMMAS AND THEOREMS

We provide proofs of Lemmas and Theorems described in the main document.

1.1 Proof of Lemma 1

Proof. The factor matrix $\tilde{\mathbf{H}}$ is updated by efficiently computing $\tilde{\mathbf{Y}}_{(1)}(\tilde{\mathbf{W}} \odot \tilde{\mathbf{V}})(\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{V}}^T \tilde{\mathbf{V}})^{-1}$.

$$\tilde{\mathbf{H}} \leftarrow \tilde{\mathbf{Y}}_{(1)}(\tilde{\mathbf{W}} \odot \tilde{\mathbf{V}})(\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{V}}^T \tilde{\mathbf{V}})^{-1} \\
= \left(\|_{k=S}^E \mathbf{F}_k \mathbf{V}_{(b)}^T \right) \left(\vee_{k=S}^E (\tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{V}}) \right) (\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{V}}^T \tilde{\mathbf{V}})^{-1} \tag{1}$$

where \parallel and \vee are the horizontal and vertical concatenation operations, respectively. With block matrix multiplication (i.e., $\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix}$ = AC + BD), we re-express the above equation similarly to incremental update techniques [1,2]:

$$\left(\|_{k=S}^{E} \mathbf{F}_{k} \mathbf{V}_{(b)}^{T} \right) \left(\vee_{k=S}^{E} (\tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{V}}) \right) (\tilde{\mathbf{W}}^{T} \tilde{\mathbf{W}} * \tilde{\mathbf{V}}^{T} \tilde{\mathbf{V}})^{-1}
= \left(\sum_{k=S}^{E} \mathbf{F}_{k} \mathbf{V}_{(b)}^{T} (\tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{V}}) \right) (\tilde{\mathbf{W}}^{T} \tilde{\mathbf{W}} * \tilde{\mathbf{V}}^{T} \tilde{\mathbf{V}})^{-1}$$
(2)

We obtain Equation (7) of the main paper from Equation (1) of this document using $(\tilde{\mathbf{W}}(k,:) \odot \mathbf{V}_{(b)}^T \tilde{\mathbf{V}})$ instead of $\mathbf{V}_{(b)}^T (\tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{V}})$ since $\mathbf{A}(\mathbf{b}^T \odot \mathbf{C})$ is equal to $(\mathbf{b}^T \odot \mathbf{AC})$ where \mathbf{b} is a column vector.

1.2 Proof of Lemma 2

PROOF. The factor matrix $\tilde{\mathbf{V}}$ is updated by $\tilde{\mathbf{Y}}_{(2)}(\tilde{\mathbf{W}} \odot \tilde{\mathbf{H}})(\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1}$:

$$\tilde{\mathbf{V}} \leftarrow \tilde{\mathbf{Y}}_{(2)}(\tilde{\mathbf{W}} \odot \tilde{\mathbf{H}})(\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1}
= \left(\|_{k=S}^E \mathbf{V}_{(b)} \mathbf{F}_k^T \right) \left(\vee_{k=S}^E \tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{H}} \right) (\tilde{\mathbf{W}}^T \tilde{\mathbf{W}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1}$$
(3)

where $\tilde{\mathbf{Y}}_{(2)}$ is equal to $\|_{k=S}^{E} \mathbf{V}_{(b)} \mathbf{F}_{k}^{T}$. To efficiently update the factor matrix $\tilde{\mathbf{V}}$, we re-express the above term using the block matrix multiplication as follows:

$$\left(\|_{k=S}^{E} \mathbf{V}_{(b)} \mathbf{F}_{k}^{T} \right) \left(\vee_{k=S}^{E} \tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{H}} \right) (\tilde{\mathbf{W}}^{T} \tilde{\mathbf{W}} * \tilde{\mathbf{H}}^{T} \tilde{\mathbf{H}})^{-1}
= \sum_{k=S}^{E} \mathbf{V}_{(b)} \mathbf{F}_{k}^{T} \left(\tilde{\mathbf{W}}(k,:) \odot \tilde{\mathbf{H}} \right) \left(\tilde{\mathbf{W}}^{T} \tilde{\mathbf{W}} * \tilde{\mathbf{H}}^{T} \tilde{\mathbf{H}} \right)^{-1}$$
(4)

by which we obtain Equation (8) of the main paper.

1.3 Proof of Lemma 3

PROOF. The factor matrix $\tilde{\mathbf{W}}$ is updated by $\tilde{\mathbf{Y}}_{(3)}(\tilde{\mathbf{V}} \odot \tilde{\mathbf{H}})(\tilde{\mathbf{V}}^T \tilde{\mathbf{V}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1}$:

$$\tilde{\mathbf{W}} \leftarrow \tilde{\mathbf{Y}}_{(3)}(\tilde{\mathbf{V}} \odot \tilde{\mathbf{H}})(\tilde{\mathbf{V}}^T \tilde{\mathbf{V}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1} \\
= \left(\vee_{k=S}^E vec(\mathbf{F}_k \mathbf{V}_{(b)}^T)^T \right) \left(\tilde{\mathbf{V}} \odot \tilde{\mathbf{H}} \right) (\tilde{\mathbf{V}}^T \tilde{\mathbf{V}} * \tilde{\mathbf{H}}^T \tilde{\mathbf{H}})^{-1}$$
(5)

where $vec(\mathbf{F}_k \mathbf{V}_{(b)}^T)$ is the vectorization of the matrix $\mathbf{F}_k \mathbf{V}_{(b)}^T$. By utilizing the property (i.e., $vec(\mathbf{AB}) = (\mathbf{B}^T \otimes \mathbf{I})vec(\mathbf{A})$) of the vectorization, we obtain the following equation:

Since we can re-express $(\mathbf{V}_{(b)}^T \otimes \mathbf{I})(\tilde{\mathbf{V}} \odot \tilde{\mathbf{H}})$ as $(\mathbf{V}_{(b)}^T \tilde{\mathbf{V}} \odot \tilde{\mathbf{H}})$ using a mixed product property (i.e., $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \odot \mathbf{D}) = (\mathbf{AC}) \odot (\mathbf{BD})$), we obtain Equation (9) of the main paper from the right term above. \square

1.4 Proof of Theorem 1

PROOF. Using the Gram-Schmidt process on \mathbf{Q}_k , we can find a matrix $\mathbf{R}_k \in \mathbb{R}^{I_k \times (I_k - R)}$ that satisfies $\mathbf{T}_k^T \mathbf{T}_k = \mathbf{T} \mathbf{T}_k^T = \mathbf{I}$, where $\mathbf{T}_k = \begin{bmatrix} \mathbf{Q}_k & \mathbf{R}_k \end{bmatrix}$. In particular, $\mathbf{Q}_k^T \mathbf{Q}_k = \mathbf{I}$ and $\mathbf{R}_k^T \mathbf{Q}_k = \mathbf{O}$. Then, we derive the equation using the unitarily invariant property $\|\mathbf{T}_k^T \mathbf{B}\|_F^2 = \|\mathbf{B}\|_F^2$ and $\tilde{\mathbf{Q}}_k = \mathbf{Q}_k \mathbf{A}_k \mathbf{C}_k^T$ as follows:

$$\sum_{k=S}^{E} \|\mathbf{Q}_{k}\mathbf{H}_{(b)}\mathbf{S}_{k}\mathbf{V}_{(b)}^{T} - \tilde{\mathbf{Q}}_{k}\tilde{\mathbf{H}}\tilde{\mathbf{S}}_{k}\tilde{\mathbf{V}}^{T}\|_{F}^{2}$$

$$= \sum_{k=S}^{E} \|\begin{bmatrix} \mathbf{Q}_{k}^{T} \\ \mathbf{R}_{k}^{T} \end{bmatrix} \mathbf{Q}_{k}\mathbf{H}_{(b)}\mathbf{S}_{k}\mathbf{V}_{(b)}^{T} - \begin{bmatrix} \mathbf{Q}_{k}^{T} \\ \mathbf{R}_{k}^{T} \end{bmatrix} \tilde{\mathbf{Q}}_{k}\tilde{\mathbf{H}}\tilde{\mathbf{S}}_{k}\tilde{\mathbf{V}}^{T}\|_{F}^{2}$$

$$= \sum_{k=S}^{E} \|\mathbf{H}_{(b)}\mathbf{S}_{k}\mathbf{V}_{(b)}^{T} - \mathbf{A}_{k}\mathbf{C}_{k}^{T}\tilde{\mathbf{H}}\tilde{\mathbf{S}}_{k}\tilde{\mathbf{V}}^{T}\|_{F}^{2}$$
(7)

Finally, we obtain Equation (11) of the main paper by re-expressing the above term with the property of the trace, i.e., $\|\mathbf{A} - \mathbf{B}\|_F^2 = tr(\mathbf{A}\mathbf{A}^T) - 2tr(\mathbf{A}\mathbf{B}^T) + tr(\mathbf{B}\mathbf{B}^T)$.

1.5 Proof of Theorem 2

PROOF. We need to perform PARAFAC2 decomposition $\frac{K}{l_b}$ times since there are $\frac{K}{l_b}$ of block tensors. Therefore, the time complexity is $\mathcal{O}(\frac{K}{l_b}T)$.

1.6 Proof of Theorem 3

PROOF. There are four types of preprocessed data: Q_k , $H_{(b)}$, W, and $V_{(b)}$. The sizes of all the factor matrices Q_k , $H_{(b)}$, W, and $V_{(b)}$

are IKR, $\frac{KR^2}{l_b}$, KR, and $\frac{JKR}{l_b}$, respectively. Therefore, the size of preprocessed result is $\mathcal{O}(IKR + \frac{KR^2}{l_b} + KR + \frac{JKR}{l_b})$.

1.7 Proof of Theorem 4

PROOF. At each iteration, the main components to affect the time complexity are 1) $\mathbf{V}_{(b)}^T \mathbf{V}_{(b)}$ for all b, and 2) L matrix multiplications between matrices of the size $R \times R$. There are $\lceil \frac{L}{l_b} \rceil$ blocks in the query range, thus $\mathfrak{O}(\frac{JLR^2}{l_b})$ is required for computing $\mathbf{V}_{(b)}^T \mathbf{V}_{(b)}$. In addition, $\mathfrak{O}(LR^3)$ is required for L matrix multiplications between matrices of the size $R \times R$. After the iterations, we need to compute $\tilde{\mathbf{Q}}_k$ by multiplying \mathbf{Q}_k with \mathbf{A}_k and \mathbf{C}_k^T , which requires $\mathfrak{O}(ILR^2)$. Therefore, the time complexity of the query phase is $\mathfrak{O}(NLR^3 + N\frac{JLR^2}{l_b} + ILR^2)$.

1.8 Proof of Theorem 5

PROOF. A collection of $\mathbf{V}_{(b)}$ for all b requires a large space cost $\mathfrak{O}(\frac{JLR}{l_b})$ in the query phase. In addition, there are L matrices of size $R \times R$, thereby they require $\mathfrak{O}(LR^2)$. Finally, after the iterations, we need to use \mathbf{Q}_k for obtaining $\tilde{\mathbf{Q}}_k$, which requires $\mathfrak{O}(ILR)$ for k = S, ..., E. Therefore, the space cost that the query phase requires at each iteration is $\mathfrak{O}(LR^2 + \frac{JLR}{l_b} + ILR)$.

REFERENCES

- [1] Milos Nikolic, Mohammed Elseidy, and Christoph Koch. 2014. LINVIEW: incremental view maintenance for complex analytical queries. In *International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014*, Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 253–264.
- [2] Sebastian Schelter. 2020. "Amnesia" Machine Learning Models That Can Forget User Data Very Fast. In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org.