CS 154

Cook-Levin Continued, More NP-Complete Problems

Theorem (Cook-Levin): 3SAT is NP-complete Proof Idea:

- (1) $3SAT \in NP$ (already done)
- (2) Every language A in NP is polynomial time reducible to 3SAT (this is the challenge)

Poly-time reduction which converts a string w into a 3cnf formula ϕ such that $w \in A$ iff $\phi \in 3SAT$

For any A ∈ NP, let N be a nondeterministic TM deciding A in n^k time

f turns any string w into a 3-cnf formula ϕ such that $\mathbf{w} \in \mathbf{A} \Leftrightarrow \phi$ is satisfiable

will simulate an NP machine N on w, where A = L(N)

Let $L(N) \in NTIME(n^k)$. A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of *some* possible computation history of N on w

A tableau is accepting if the last row of the tableau is an accepting configuration

N accepts w if and only if there is an accepting tableau for N on w

Given w, we'll construct a 3cnf formula ϕ with $O(|w|^k)$ clauses, describing logical constraints that every accepting tableau for N on w must satisfy

The 3cnf formula ϕ will be satisfiable *if and only if* there is an accepting tableau for N on w

Variables of formula ϕ will *encode* a tableau

```
Let C = Q \cup \Gamma \cup \{\#\}
```

Each of the (nk)2 entries of a tableau is a cell

For every i and j ($1 \le i$, $j \le n^k$) and for every $s \in C$ we have a Boolean variable $x_{i,i,s}$ in ϕ

Total number of variables = $|C|n^{2k}$, which is $O(n^{2k})$

These $x_{i,j,s}$ are the variables of ϕ and represent the contents of the cells

We will have: for all i,j,s, $x_{i,i,s} = 1 \Leftrightarrow cell[i,j] = s$

Idea: Make ϕ so that every *satisfying assignment* to the variables $x_{i,j,s}$ corresponds to an *accepting tableau* for N on w (an assignment to all cell[i,j]'s of the tableau)

The formula • will be the AND of four CNF formulas:

$$\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$$

 ϕ_{cell} : for all i, j, there is a unique $s \in C$ with $x_{i,j,s} = 1$

\$\psi_{\text{start}}\$: the first row of the table equals the start configuration of N on w

\$\phi_{\text{accept}}\$: the last row of the table has an accept state

\$\phi_{\text{move}}\$: every row is a configuration that yields the configuration on the next row

 ϕ_{cell} : for all i, j, there is a unique $s \in C$ with $x_{i,j,s} = 1$

φ_{start}: the first row of the table equals the *start* configuration of N on w

$$\phi_{\text{start}} = X_{1,1,\#} \wedge X_{1,2,q_0} \wedge \\
X_{1,3,w_1} \wedge X_{1,4,w_2} \wedge \dots \wedge X_{1,n+2,w_n} \wedge \\
X_{1,n+3,\square} \wedge \dots \wedge X_{1,n^{k-1,\square}} \wedge X_{1,n^k,\#}$$

$$\Rightarrow \frac{\# q_0 w_1 w_2 \dots w_n \square \#}{\# \square \square \square \#}$$

\$\phi_{\text{accept}}\$: the last row of the table has an accept state

$$\phi_{accept} = \sqrt{X_{n^k,j,q_{accept}}}$$
 $1 \le j \le n^k$

\$\psi_{\text{move}}\$: every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!

#	b	a	a	q_1	b	C	b	#
#	b	a	q_2	a	C	С	b	#

\$\phi_{move}\$: every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!

\$\phi_{move}\$: every row is a configuration that yields the configuration on the next row

Idea: check that every 2×3 "window" of cells is legal (consistent with the transition function of N)

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ which of the following windows are legal?

	q_1		a	q_1		а		q_1
q_2	a	С	q ₁	a	a	a	a	b
#	b	a	а	b	а	b	q_1	b
#	b	a	а	b	q_2	72	b	7,
a	b	a	а	q_1	b	b	b	b
а	a	a	а		q_2		b	b

Key Lemma:

IF Every window of the tableau is legal, and The 1st row is the start configuration of N on w
THEN for all i = 1,...,n^k - 1, the ith row of the tableau is a configuration which yields the (i+1)th row.

Proof Sketch: (Strong) induction on i.

The 1st row is a configuration. If it *didn't* yield the 2nd row, there's a 2 x 3 "illegal" window on 1st and 2nd rows Assume rows 1,...,L are all configurations which yield the next row, and assume every window is legal. If row L+1 did *not* yield row L+2, then there's a 2 x 3 window along those two rows which is "illegal"

The (i, j) window of a tableau is the tuple $(a_1,...,a_6) \in \mathbb{C}^6$ such that

col. j

col. j+1 col. j+2

row i

 a_1

 a_3

row i+1

 a_4

a₆

\$\phi_{move}\$: every row is a configuration that legally follows from the previous configuration

$$\phi_{\text{move}} = \bigwedge$$
 (the (i, j) window is legal)
$$1 \le i \le n^k - 1$$

$$1 \le j \le n^k - 2$$

(the (i, j) window is legal) =

$$\sqrt{(X_{i,j,a_1} \wedge X_{i,j+1,a_2} \wedge X_{i,j+2,a_3} \wedge X_{i+1,j,a_4} \wedge X_{i+1,j+1,a_5} \wedge X_{i+1,j+2,a_6})}$$
(a₁, ..., a₆)

is a legal window

$$\equiv \bigwedge_{\substack{(\mathbf{x}_{i,j,a_{1}} \vee \mathbf{x}_{i,j+1,a_{2}} \vee \mathbf{x}_{i,j+2,a_{3}} \vee \mathbf{x}_{i+1,j,a_{4}} \vee \mathbf{x}_{i+1,j+1,a_{5}} \vee \mathbf{x}_{i+1,j+2,a_{6}})}$$

is NOT a legal window

How do we get 3SAT?

We got a CNF formula, but not a 3CNF... how do we convert the CNF into a 3CNF formula?

A nice trick to "shorten" clauses:

$$(a_1 \lor a_2 \lor ... \lor a_t)$$
 is equivalent to

$$(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2)$$
$$\land (\neg z_2 \lor a_4 \lor z_3) \dots \land (\neg z_{t-3} \lor a_{t-1} \lor a_t)$$

where z are new variables

What's the total length of ϕ ?

$$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$$

$$\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right]$$

O(n^{2k}) clauses

$$\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q_0} \wedge \\ \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ \mathbf{X}_{1,n+3,\square} \wedge \dots \wedge \mathbf{X}_{1,nk-1,\square} \wedge \mathbf{X}_{1,nk},\#$$

O(n^k) clauses

$$\phi_{accept} = \sqrt{\mathbf{X}_{n^k,j,q}}_{accept}$$

$$1 \le j \le n^k$$

$$(a_1\vee a_2\vee\vee a_t) \text{ is equivalent to} \\ (a_1\vee a_2\vee z_1)\wedge (\neg z_1\vee a_3\vee z_2)\wedge (\neg z_2\vee a_4\vee z_3) \ldots \\ \text{yields O(t) new 3cnf clauses}$$

O(n^k) clauses

$$\phi_{\text{move}} = \bigwedge$$
 (the (i, j) window is legal)
 $1 \le i, j \le n^k$

the (i, j) window is legal =

O(n^{2k}) clauses

Summary. We wanted to prove: Every A in NP has a polynomial time reduction to 3SAT

For every A in NP, A is decided by some nondeterministic n^k time Turing machine N

We gave a generic way to reduce (N, w) to a 3CNF formula φ of O(|w|^{2k}) clauses such that satisfying assignments to the variables of φ directly correspond to accepting computation histories of N on w

The formula of is the AND of four 3CNF formulas:

$$\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$$

Reading Assignment

Read Luca Trevisan's notes for an alternative proof of the Cook-Levin Theorem!

Sketch:

- 1. Define CIRCUIT-SAT: Given a logical circuit C(y), is there an input a such that C(a)=1?
- 2. Show that CIRCUIT-SAT is NP-hard:
 The n^k x n^k tableau for N on w can be simulated using a logical circuit of O(n^{2k}) gates
- 3. Reduce CIRCUIT-SAT to 3SAT in polytime
- 4. Conclude 3SAT is also NP-hard

Theorem (Cook-Levin):
SAT and 3SAT are NP-complete

Corollary: SAT \in P if and only if P = NP

Is 3SAT solvable in O(n) time on a multitape TM?

Are there logic circuits of size 6n for 3SAT?

If yes, then not only is P=NP,
but there would be a "dream machine" that could
crank out short proofs of theorems,
quickly optimize all aspects of life...
recognizing quality work is all you need to produce

THESE ARE OPEN QUESTIONS!

There are thousands of NP-complete problems

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!

Theorem (Cook-Levin): SAT and 3SAT are NP-complete

Corollary: SAT \in P if and only if P = NP

Given a favorite problem $\Pi \in NP$, how can we prove it is NP-hard?

Recipe:

- 1. Take a problem Σ that you know to be NP-hard (3-SAT)
- 2. Prove that $\Sigma \leq_{\mathsf{P}} \Pi$

Then for all $A \in NP$, $A \leq_P \Sigma$ and $\Sigma \leq_P \Pi$ We conclude that $A \leq_P \Pi$, and Π is NP-hard

The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

Theorem: CLIQUE is NP-Complete

$3SAT \leq_{p} CLIQUE$

Transform a 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a *logic* problem as a *graph* problem?

3SAT ≤_P CLIQUE

We transform a 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$$

Let m be the number of clauses of ϕ . Set k=m. Make a graph G with m *groups* of 3 nodes each.

Group *i* corresponds to a clause C_i of ϕ

Each node in group i is labeled with a literal of Ci

We put edges between all pairs of nodes in different groups, except those pairs of nodes with labels x and ¬x

We put no edges between nodes in the same group When done putting in all the edges, erase the labels

|V| = 3(number of clauses)

k = number of clauses 34

$(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land$ $(x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)$ $\neg X_1$ $\neg x_1$ X_2 X_1 X_2 X_2 X_1

Claim: $\phi \in 3SAT \Leftrightarrow (G,m) \in CLIQUE$

Claim: If $\phi \in 3SAT$ then $(G,m) \in CLIQUE$

Proof: Given a SAT assignment A of ϕ , for every clause C there is at least one literal in C that's set true by A For each clause C, let v_C be a vertex from group C whose label is a literal that is set true by A

Claim: $S = \{v_C : C \in \emptyset\}$ is an m-clique

Proof: Let $v_{c'}v_{c'}$ be in S. Suppose $(v_{c'}v_{c'}) \notin E$.

Then v_c and v_{c'} must label inconsistent literals, call them x and ¬x

But assignment A cannot satisfy both x and $\neg x$ Therefore $(v_c, v_{c'}) \in E$, for all $v_c, v_{c'} \in S$.

Hence S is an m-clique, and (G,m) ∈ CLIQUE

Claim: $\phi \in 3SAT \Leftrightarrow (G,m) \in CLIQUE$

Claim: If $(G,m) \in CLIQUE$ then $\phi \in 3SAT$

Proof: Let **S** be an m-clique of **G**.

We construct a satisfying assignment A of ϕ .

Claim: S contains exactly one node from each group.

Now for each variable x of ϕ , make assignment A: Assign x to 1 \Leftrightarrow There is a vertex $v \in S$ with label x

For all i = 1,...,m, at least one vertex from group i is in S. Therefore, for all i = 1,...,m

A satisfies at least one literal in the ith clause of ϕ Therefore A is a satisfying assignment to ϕ

Independent Set

```
IS: Given a graph G = (V, E) and integer k,
    is there S ⊆ V such that |S| ≥ k and
    no two vertices in S have an edge?
```

```
CLIQUE: Given G = (V, E) and integer k,
    is there S ⊆ V such that |S| ≥ k
    and every pair of vertices in S have an edge?
```

```
CLIQUE \leq_P IS: Given G = (V, E), output G' = (V, E') where E' = \{(u,v) \mid (u,v) \notin E\}. (G, k) \in CLIQUE iff (G', k) \in IS
```

Vertex Cover

vertex cover = set of nodes C that cover all edges For all edges, at least one endpoint is in C VERTEX-COVER = { (G,k) | G is a graph with a vertex cover of size at most k}

Theorem: VERTEX-COVER is NP-Complete

- (1) VERTEX-COVER ∈ NP
- (2) IS \leq_{P} VERTEX-COVER

$IS \leq_{P} VERTEX-COVER$

Want to transform a graph G and integer k into G' and k' such that

$$(G,k) \in IS \Leftrightarrow (G',k') \in VERTEX-COVER$$

$IS \leq_{P} VERTEX-COVER$

Claim: For every graph G = (V,E), and subset $S \subseteq V$, S is an independent set if and only if (V - S) is a vertex cover

Proof: S is an independent set \Leftrightarrow $(\forall u, v \in V)[(u \in S \text{ and } v \in S) \Rightarrow (u,v) \notin E]$ \Leftrightarrow $(\forall u, v \in V)[(u,v) \in E \Rightarrow (u \notin S \text{ or } v \notin S)]$

 \Leftrightarrow (V – S) is a vertex cover

Therefore $(G,k) \in IS \Leftrightarrow (G,|V|-k) \in VERTEX-COVER$

Our polynomial time reduction: f(G,k) := (G, |V| - k)