Arithmétique : DS du 2 novembre 2009

Durée : 1h30. Sans document. Les exercices sont indépendants.

- Exercice 1.

- a) Que pouvez-vous dire de la factorisation du polynôme $X^{25} X$ sur $\mathbb{F}_5[X]$? En déduire le nombre de polynômes unitaires irréductibles de degré 2 dans $\mathbb{F}_5[X]$.
- b) Combien de générateurs admet le groupe multiplicatif du corps \mathbb{F}_{25} à 25 éléments? En déduire le nombre de polynômes unitaires irréductibles primitifs de degré 2 sur $\mathbb{F}_5[X]$.
- c) Calculer l'ordre de X dans $K = \mathbb{F}_5[X]/(X^2 + X + 2)$. En déduire que K est un corps et que $X^2 + X + 2$ est irréductible sur \mathbb{F}_5 .
- d) Soit α une racine de $X^2 + X + 2$ dans K. Trouver le polynôme minimal de α^2 . Est-il primitif?

- Solution.

- a) Le polynôme $X^{25}-X$ est égal au produit de tous les polynômes unitaires irréductibles de degré 1 et de tous les polynômes unitaires irréductibles de degré 2 de $\mathbb{F}_5[X]$. Comme il y a 5 polynômes unitaires irréductibles de degré 1 (soit $X, X-1,\ldots,X-4$), il y a donc 20/2=10 polynômes irréductibles unitaires de degré 2.
- b) Le groupe multiplicatif de \mathbb{F}_{25} est cyclique à 24 éléments. Il admet donc $\phi(24)$ générateurs, soit 8 éléments. Chaque polynôme unitaire irréductible primitif de degré 2 admet deux de ces éléments comme racines. Il y a donc 4 tels polynômes.
- c) On remarque que dans K on a $X^2=-X+3, X^3=-X+2, X^4=3X+2, X^5=-X-1, X^6=2$. On en déduit que $X^{24}=2^4=1$ et que $X^i\neq 1$ pour $1\leqslant i<24$. L'ordre de X est donc 24, ce qui veut dire qu'il y a 24 puissances de X distinctes et qu'elles sont toutes inversibles, i.e. dans le groupe multiplicatif de K. Tous les 24 éléments non nuls de K sont donc inversibles, et K est un corps. Or K est un corps si et seulement si X^2+X+2 est irréductible.
- d) Le polynôme minimal de α^2 est le polynôme $P_{\alpha^2}(X)=(X-\alpha^2)(X-\alpha^{10})$. Or $\alpha^2=-\alpha-2$ et $\alpha^{10}=(-\alpha-2)^5=-\alpha^5-2^5=\alpha-1$. Par ailleurs nous avons déjà vu que $\alpha^{12}=(\alpha^6)^2=4$. Nous avons donc

$$P_{\alpha^2}(X) = X^2 + 3X - 1.$$

Enfin nous avons $(\alpha^2)^{12}=\alpha^{24}=1$ donc α^2 n'est pas primitif.

- Exercice 2.

- a) Trouver les facteurs irréductibles du polynôme $X^4 + X^3 + X + 1$ dans $\mathbb{F}_2[X]$.
- b) Soit A l'anneau $A = \mathbb{F}_2[X]/(X^4 + X^3 + X + 1)$. Combien le groupe multiplicatif A^* contient-il d'éléments? Montrer qu'il est cyclique et en exhiber un générateur.

- Solution.

- a) $X^4 + X^3 + X + 1 = (X^2 + X + 1)(X + 1)^2$.
- b) Il s'agit de trouver le nombre de polynômes de degré au plus 3 qui ne sont ni multiples de (X+1) (c'est-à-dire qui ont un nombre impair de coefficients), ni multiples de X^2+X+1 . Au 8 polynômes non multiples de X+1 il faut donc enlever X^2+X+1 et $X(X^2+X+1)$. Il reste 6 éléments et $A^*=6$. On a $X\in A^*$ et manifestement $X^2\neq 1$ et $X^3\neq 1$. Or l'ordre de X doit être un diviseur de 6, et comme ce n'est ni 1 ni 2 ni 3, ce ne peut être que 6. Le groupe A^* est donc cyclique et X en est un générateur.
- EXERCICE 3. Soient dans $\mathbb{F}_3[X]$ les deux polynômes $P_1(X) = X^3 X 1$ et $P_2(X) = X^3 + X^2 1$.
 - a) Montrer que $P_1(X)$ et $P_2(X)$ sont irréductibles.
 - **b)** Calculer les ordres de X dans $\mathbb{F}_3[X]/(P_1)$ et dans $\mathbb{F}_3[X]/(P_2)$.
 - c) Soit α la classe de X dans $K_1 = \mathbb{F}_3[X]/(P_1)$. Montrer sans calculs qu'il existe une puissance α^i de α qui est une racine du polynôme $P_2(X)$ dans K_1 . On pourra utiliser le théorème de l'élément primitif.
 - d) Montrer que α^4 est bien une racine de $P_2(X)$ dans K_1 . Quelles sont les autres racines de $P_2(X)$ dans K_1 ?
 - e) Exhiber un isomorphisme de corps entre K_1 et $\mathbb{F}_3[X]/(P_2)$.
 - f) Combien y a-t-il d'autres polynômes unitaires irréductibles de degré 3 dans $\mathbb{F}_3[X]$ dont les racines dans K_1 sont du même ordre que α ?
 - g) Trouver le polynôme minimal de α^2 .

- Solution.

- a) Si $P_1(X)$ ou $P_2(X)$ étaient réductibles il auraient un facteur de degré 1, et auraient donc une racine dans \mathbb{F}_3 . On vérifie que ce n'est pas le cas : les polynômes sont donc irréductibles.
- b) On sait que $\mathbb{F}_3[X]/(P_1)$ et $\mathbb{F}_3[X]/(P_2)$ ont un groupe multiplicatif à $3^3-1=26$ éléments. Or $26=2\times 13$, et X n'a pas pour ordre 2, donc son ordre est soit 13 soit 26.
 - Il s'agit donc de calculer $X^{13} \mod P_1$ et $X^{13} \mod P_2$. Dans le premier cas on a $X^3 = X + 1$ donc $X^9 = (X+1)^3 = X^3 + 1 = X + 2$. Puis $X^4 = X^2 + X$ donc $X^{13} = (X+2)(X^2+X) = X^3 + 2X = 1$.

Par un calcul analogue on trouve $X^{13}=1 \bmod P_2$ également. Dans les deux cas l'ordre de X est donc 13.

- c) On sait (théorème de l'élément primitif) qu'il existe dans K_1 un élément γ primitif, c'est-à-dire générateur de K_1^* . On sait également que P_2 , diviseur de $X^{27}-X$, a une racine β dans K_1 , donc de la forme $\beta=\gamma^i$. Or $\alpha^{13}=\beta^{13}=1$ donc α et β sont des puissances paires de γ . Or le sous-groupe de K_1^* des puissances paires de γ est d'ordre 13 qui est premier, donc tout élément de ce sous-groupe est une puissance de n'importe quel autre élément.
- d) On vérifie $(\alpha^4)^3 + (\alpha^4)^2 1 = (\alpha^2 + 2) + (2\alpha^2 + 2) 1 = 0$. Les autres racines de $P_2(X)$ sont $(\alpha^4)^3 = \alpha^{12} = \alpha^2 + 2$ et $(\alpha^4)^9 = \alpha^{36} = \alpha^{10} = \alpha(\alpha^9) = \alpha^2 + 2\alpha$.
- e) Il suffit de s'assurer que X est l'image d'une racine de $P_2(X)$. L'application suivante est bien un isomorphisme de corps :

$$K_1 \rightarrow \mathbb{F}_3[X]/(P_2)$$

 $a + b\alpha^4 + c\alpha^8 + d\alpha^{12} \mapsto a + bX + cX^2 + dX^3$

- f) Comme nous l'avons vu, les éléments de K_1^* d'ordre 13 sont toutes les puissances de α différentes de 1. Il y en a donc 12. Si leur ordre est 13 ils ne sont pas dans \mathbb{F}_3 et leur polynôme minimal est donc de degré 3. Il y a donc 12/3=4 tels polynômes.
- **g**) On a:

$$(\alpha^2)^3 = (\alpha^3)^2 = (\alpha+1)^2 = \alpha^2 + 2\alpha + 1$$
$$(\alpha^2)^2 = \alpha(\alpha^3) = \alpha(\alpha+1) = \alpha^2 + \alpha$$
$$\alpha^2 = \alpha^2$$
$$1 = 1$$

D'où l'on déduit $(\alpha^2)^3+(\alpha^2)^2+\alpha^2+2=0.$ Le polynôme minimal de α^2 est donc :

$$P_{\alpha^2}(X) = X^3 + X^2 + X + 2.$$