

### Part 6

#### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it



Mauro Dell'Amico



# Matrix notation

### Matrix notation



Mauro Dell'Amico



### Matrix notation

$$\max z = 80x_1 +70x_2$$
s.t
$$3x_1 +2x_2 +x_3 = 15$$

$$2x_1 +3x_2 +x_4 = 15$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$c^T = [80, 70, 0, 0], x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$z = \sum_{j=1}^4 c_j x_j = 80_1 x_1 + 70x_2 + 0x_3 + 0x_4 = c^T x$$

$$z = \sum_{j=1}^{4} c_j x_j = 80_1 x_1 + 70 x_2 + 0 x_3 + 0 x_4 = c^T x$$



Mauro Dell'Amico

first row 
$$\sum_{j=1}^4 a_{1j}x_j = b_1 \Leftrightarrow 3x_1 + 2x_2 + x_3(+0x_4) = 15$$
  
second row  $\sum_{j=1}^4 a_{2j}x_j = b_2 \Leftrightarrow 2x_1 + 3x_2 + (0x_3) + x_4 = 15$ 

first row 
$$\sum_{j=1}^4 a_{1j}x_j = b_1 \Leftrightarrow 3x_1 + 2x_2 + x_3(+0x_4) = 15$$
  
second row  $\sum_{j=1}^4 a_{2j}x_j = b_2 \Leftrightarrow 2x_1 + 3x_2 + (0x_3) + x_4 = 15$ 

$$Ax = b$$

Mauro Dell'Amico



A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx: Ax = b, x \geq 0\} \text{ (Let } m = \operatorname{rank}(A)\text{)}$$



A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx: Ax = b, x \geq 0\} \text{ (Let } m = \operatorname{rank}(A)\text{)}$$

• Basis of A: collection B of m linearly independent columns;



Mauro Dell'Amico



A generic PLC problem in standard form in matrix notation is:

$$\max\{c^T x : Ax = b, x \ge 0\}$$
 (Let  $m = \operatorname{rank}(A)$ )

• <u>Basis</u> of A: collection B of m linearly independent columns; <u>basic variables</u>: variables  $x_j$  associated with the columns of B <u>non basic variables</u>: variables associated to  $A \setminus B$ 



A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx: Ax = b, x \ge 0\}$$
 (Let  $m = \operatorname{rank}(A)$ )

<u>Basis</u> of A: collection B of m linearly independent columns;
 <u>basic variables</u>: variables x<sub>j</sub> associated with the columns of B non basic variables: variables associated to A\B

$$A = [A_1, \dots, A_n] \Rightarrow A = [B, F] \text{ con } B = [A_1, \dots, A_m]$$

$$x = \begin{bmatrix} x_B \\ x_F \end{bmatrix}$$

$$Ax = b \Rightarrow Bx_B + Fx_F = b \Rightarrow x_B = B^{-1}b - B^{-1}Fx_F$$



Mauro Dell'Amico



A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx: Ax = b, x \ge 0\}$$
 (Let  $m = \operatorname{rank}(A)$ )

• <u>Basis</u> of A: collection B of m linearly independent columns; <u>basic variables</u>: variables  $x_j$  associated with the columns of B <u>non basic variables</u>: variables associated to  $A \setminus B$ 

$$A = [A_1, \dots, A_n] \Rightarrow A = [B, F] \text{ con } B = [A_1, \dots, A_m]$$

$$x = \begin{bmatrix} x_B \\ x_F \end{bmatrix}$$

$$Ax = b \Rightarrow Bx_B + Fx_F = b \Rightarrow x_B = B^{-1}b - B^{-1}Fx_F$$

• Basic solution:  $x_F = 0$ ,  $x_B = B^{-1}b$ feasible:  $x_B = B^{-1}b \ge 0$ 







$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$



Mauro Dell'Amico



$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{3}{5} & -\frac{2}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}b = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{3}{5} & -\frac{2}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}b = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$Ax = b \quad \Rightarrow \quad Bx_B + Fx_F = b \quad \Rightarrow \quad B^{-1}Bx_B + B^{-1}Fx_F = B^{-1}b$$

$$x_B = B^{-1}b - B^{-1}Fx_F$$

UNIMORE DESERT MESS TALL

Mauro Dell'Amic

$$x_B = B^{-1}b - B^{-1}Fx_F$$

$$x_B = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

$$x_B = B^{-1}b - B^{-1}Fx_F$$

$$x_{B} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix}$$
$$\begin{cases} x_{1} = 3 & -\frac{3}{5}x_{3} & +\frac{2}{5}x_{4} \\ x_{2} = 3 & +\frac{2}{5}x_{3} & -\frac{3}{5}x_{4} \end{cases}$$



Mauro Dell'Amico





# Part 7

### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

# Standard and other forms of an LP

**STANDARD** 

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

**CANONICAL** 

$$\min\{c^T x : Ax \ge b, x_i \ge 0, j = 1, \dots, n\}$$

**GENERAL** 

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}\$$

The three forms are equivalent!



Mauro Dell'Amico



# From General to Standard

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}$$

$$\downarrow \downarrow$$

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$



### From General to Standard

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}$$

$$\downarrow \downarrow$$

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

An inequality is transformed into and equation adding a slack variable



Mauro Dell'Amico



# From General to Standard

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}$$

$$\downarrow \downarrow$$

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

An inequality is transformed into and equation adding a slack variable

An unconstrained variable  $x_j$  is substituted by two nonnegative variables  $x_j^+, x_j^- \geq 0$ 

$$x_j = x_j^+ - x_j^-$$



# From Standard to Canonical

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

$$\downarrow \downarrow$$

$$\min\{c^T x : \widehat{A}x \ge \widehat{b}, x_j \ge 0, j = 1, \dots, n\}$$



Mauro Dell'Amico



# From Standard to Canonical

$$\min\{c^{T}x : Ax = b, x_{j} \ge 0, j = 1, \dots, n\}$$

$$\downarrow \downarrow$$

$$\min\{c^{T}x : \widehat{A}x \ge \widehat{b}, x_{j} \ge 0, j = 1, \dots, n\}$$

An equation is transformed into two inequalities





# Part 8

#### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it



Mauro Dell'Amico



# Geometry of the LP

Let  $x \in \Re^n$ 

Hyperplane :  $\alpha^T x = \alpha_0$ Halfspace :  $\alpha^T x \le \alpha_0$ 



# Geometry of the LP

Let  $x \in \Re^n$ 

Hyperplane :  $\alpha^T x = \alpha_0$ Halfspace :  $\alpha^T x \leq \alpha_0$ 

- ► Hyperplanes and halfspaces are convex sets
- ▶ The intersection of a finite number of hyperplanes and halfspaces is a convex sets

The solution space of an LP is a convex set



Mauro Dell'Amico

◆□▶◆□▶◆臺▶◆臺▶ 臺 めQ@

Polyhedron: intersection of a finite number of hyperplanes and

halfspaces

 $P = \{x \in \Re^n : Ax = b, A'x \ge b'\}$ 

Polytope: a bounded polyhedron

 $(\exists M > 0 : ||x|| \le M \ \forall x \in P)$ 

Vertex : a point x of a polyhedron P such that  $\not\exists x^1, x^2 \in P$  with  $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$ 

Polyhedron: intersection of a finite number of hyperplanes and

halfspaces

 $P = \{x \in \Re^n : Ax = b, A'x \ge b'\}$ 

Polytope: a bounded polyhedron

 $(\exists M > 0 : ||x|| \le M \ \forall x \in P)$ 

Vertex : a point x of a polyhedron P such that  $\not\exists x^1, x^2 \in P$ 

with  $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$ 

A polyhedron has a finite number of vertices.



Mauro Dell'Amico



### Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

#### Theorem

Given a PLC problem  $\min\{c^Tx:x\in P\}$ , where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution.

Proof.



#### Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

#### Theorem

Given a PLC problem  $\min\{c^Tx : x \in P\}$ , where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution

**Proof.** Let  $x^1, \ldots, x^k$  be the vertices of P, let  $y \in P$  be any point of P and set  $z^* := \min\{c^T x^i : i = 1, \ldots, k\}$ 

$$y \in P \Rightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1 : y = \sum_{i=1}^k \lambda_i x^i$$
 (Minkowski-Weyl)



Mauro Dell'Amico



#### Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

#### Theorem

Given a PLC problem  $\min\{c^Tx : x \in P\}$ , where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution.

**Proof.** Let  $x^1, ..., x^k$  be the vertices of P, let  $y \in P$  be any point of P and set  $z^* := \min\{c^T x^i : i = 1, ..., k\}$ 

$$y \in P \Rightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1 : y = \sum_{i=1}^k \lambda_i x^i (\mathsf{Minkowski-Weyl})$$

$$c^{T}y = c^{T} \sum_{i=1}^{k} \lambda_{i} x^{i} = \sum_{i=1}^{k} \lambda_{i} (c^{T} x^{i}) \ge \sum_{i=1}^{k} \lambda_{i} z^{*} = z^{*} \quad \Box$$

### Theorem

Given a PLC problem  $\max\{c^Tx: Ax = b, x \geq 0\}$  and a basis B, if the basic solution  $x_B = B^{-1}b$ ,  $x_F = 0$  is feasible, then it defines a vertex of  $P := \{x: Ax = b, x \geq 0\}$ 



Mauro Dell'Amico







Vertex **O**: 
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$ 



Mauro Dell'Amico





Vertex **O**: 
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$ 

Vertex **A**: 
$$B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ 



Vertex **O**: 
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$ 

Vertex **A**: 
$$B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ 

Vertex **E**: 
$$B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$
  $x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3/5 & -2/5 \\ -2/5 & 3/5 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 

Vertex C...



Mauro Dell'Amico





# Part 9

### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

# Simplex algorithm

**Simplex algorithm**: (first version - maximization ) Find a basis B giving a basic feasible solution x while ("x is not optimal and not unlimited") begin

transform the current basis B into a new basis by changing one column, and so that the objective function increases

#### end

• The algorithm terminates in a finite number of iterations:

$$\left(\begin{array}{c}n\\m\end{array}\right)=\frac{n!}{m!(n-m)!}$$



Mauro Dell'Amico



# Optimality condition

Maximization problem

$$\max\{c^{T}x : Ax = b, x \ge 0\}$$
$$x_{B} = B^{-1}b - B^{-1}Fx_{F}, \quad B^{-1}b \ge 0$$



# **Optimality** condition

Maximization problem

$$\max\{c^{T}x : Ax = b, x \ge 0\}$$

$$x_{B} = B^{-1}b - B^{-1}Fx_{F}, \quad B^{-1}b \ge 0$$

$$z = c^{T}x = \begin{bmatrix} c_{B}^{T}, c_{F}^{T} \end{bmatrix} \begin{bmatrix} x_{B} \\ x_{F} \end{bmatrix} = c_{B}^{T}(B^{-1}b - B^{-1}Fx_{F}) + c_{F}^{T}x_{F}$$

$$= c_{B}^{T}B^{-1}b + (c_{F}^{T} - c_{B}^{T}B^{-1}F)x_{F} = c_{B}^{T}B^{-1}b + \overline{c}_{F}^{T}x_{F}$$



Mauro Dell'Amico



# Optimality condition

Maximization problem

$$\max\{c^{T}x : Ax = b, x \ge 0\}$$

$$x_{B} = B^{-1}b - B^{-1}Fx_{F}, \quad B^{-1}b \ge 0$$

$$z = c^{T}x = \begin{bmatrix} c_{B}^{T}, c_{F}^{T} \end{bmatrix} \begin{bmatrix} x_{B} \\ x_{F} \end{bmatrix} = c_{B}^{T}(B^{-1}b - B^{-1}Fx_{F}) + c_{F}^{T}x_{F}$$

$$= c_{B}^{T}B^{-1}b + (c_{F}^{T} - c_{B}^{T}B^{-1}F)x_{F} = c_{B}^{T}B^{-1}b + \overline{c}_{F}^{T}x_{F}$$

 $\overline{c}^T = c^T - c_B^T B^{-1} A$  : reduced costs with respect to basis B

 $\triangleright$  The cost of the current basic solution is  $c_B^T B^{-1} b \quad (x_F = 0)$ 



# Selection of the column entering the basis

#### Theorem

A basic feasible solution of a PLC problem in maximization form is optimal if the reduced costs are non-positive ( $\overline{c}^T \leq 0$ ).

(In a minimization problem the solution is optimal if  $\overline{c}^T \geq 0$ )

ullet To increase the current solution value select a variable of  $x_F$  with positive reduced cost.



Mauro Dell'Amico



# Selection of the column leaving the basis

Let 
$$\overline{A} = B^{-1}A$$
,  $\overline{F} = B^{-1}F$  and  $\overline{b} = B^{-1}b$ .

A basic solution is 
$$x_B = B^{-1}b - B^{-1}Fx_F = \overline{b} - \overline{F}x_F$$

Let  $x_B = [x_{[1]}, \dots, x_{[m]}]^T$ . If  $x_h$  (column h) enters the basis:



# Selection of the column leaving the basis

Let 
$$\overline{A} = B^{-1}A$$
,  $\overline{F} = B^{-1}F$  and  $\overline{b} = B^{-1}b$ .

A basic solution is 
$$x_B = B^{-1}b - B^{-1}Fx_F = \overline{b} - \overline{F}x_F$$

Let  $x_B = [x_{[1]}, \dots, x_{[m]}]^T$ . If  $x_h$  (column h) enters the basis:

$$\left\{ \begin{array}{ll} x_{[1]} & = & \overline{b}_1 - \overline{a}_{1h} x_h \geq 0 \\ & \dots & \\ x_{[i]} & = & \overline{b}_i - \overline{a}_{ih} x_h \geq 0 \\ & \dots & \\ x_{[m]} & = & \overline{b}_m - \overline{a}_{mh} x_h \geq 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \overline{a}_{1h} x_h \leq \overline{b}_1 \\ \dots & \\ \overline{a}_{ih} x_h \leq \overline{b}_i \\ \dots & \\ \overline{a}_{mh} x_h \leq \overline{b}_m \end{array} \right.$$

$$\begin{array}{lll} \rhd \, \overline{a}_{ih} \leq 0 & \Rightarrow & \text{no constraint for } x_h \\ \rhd \, \overline{a}_{ih} > 0 & \Rightarrow & x_h \leq \overline{b}_i / \overline{a}_{ih} \end{array}$$

$$x_h \le \min \left\{ \frac{\overline{b}_i}{\overline{a}_{ih}} : \overline{a}_{ih} > 0, i = 1, \dots, m \right\}$$
 (1)

UNIMORE SEEKY SEES LOLD

Mauro Dell'Amico

4□ > 4個 > 4 目 > 4目 > 目 り Q (で)

Let t be the row giving min  $\left\{rac{\overline{b}_i}{\overline{a}_{ih}}: \overline{a}_{ih}>0, i=1,\ldots,m
ight\}$ 

Since 
$$x_{[t]} = \overline{b}_t - \overline{a}_{th}x_h$$

$$x_h = \frac{\overline{b}_t}{\overline{a}_{th}} \Rightarrow x_{[t]} = 0$$
 leaves the basis

Let t be the row giving min  $\left\{rac{\overline{b}_i}{\overline{a}_{ih}}: \overline{a}_{ih}>0, i=1,\ldots,m
ight\}$ 

Since 
$$x_{[t]} = \overline{b}_t - \overline{a}_{th}x_h$$

$$x_h = rac{\overline{b}_t}{\overline{a}_{th}} \Rightarrow x_{[t]} = 0$$
 leaves the basis

..if instead...

$$\overline{a_{ih}} \leq 0, \ \forall i = 1, \dots, m$$

 $x_h$  can increase indefinitely while  $Ax = b, x \ge 0$  remains satisfied



### The problem is unlimited



Mauro Dell'Amico

max 
$$80x_1 + 70x_2$$
  
s.t  $3x_1 + 2x_2 + x_3 = 15$   
 $2x_1 + 3x_2 + x_4 = 15$   
 $x_i \ge 0$   $i = 1, ..., 4$ 

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

max 
$$80x_1 + 70x_2$$
  
s.t  $3x_1 + 2x_2 + x_3 = 15$   
 $2x_1 + 3x_2 + x_4 = 15$   
 $x_i \ge 0$   $i = 1, ..., 4$ 

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{bmatrix} \ \overline{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \overline{c}^T = [0, 50/3, -80/3, 0]$$

UNIMORE

Mauro Dell'Amico



max 
$$80x_1 + 70x_2$$
  
s.t  $3x_1 + 2x_2 + x_3 = 15$   
 $2x_1 + 3x_2 + x_4 = 15$   
 $x_i \ge 0$   $i = 1, ..., 4$ 

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{bmatrix} \ \overline{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \overline{c}^T = [0, 50/3, -80/3, 0]$$

$$h = 2, x_h \le \min\{\frac{5}{2/3}, \frac{5}{5/3}\} = 3 \Rightarrow t = 2$$

max 
$$80x_1 + 70x_2$$
  
s.t  $3x_1 + 2x_2 + x_3 = 15$   
 $2x_1 + 3x_2 + x_4 = 15$   
 $x_i \ge 0$   $i = 1, ..., 4$ 

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{bmatrix} \ \overline{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \overline{c}^T = [0, 50/3, -80/3, 0]$$

$$h = 2, x_h \le \min\{\frac{5}{2/3}, \frac{5}{5/3}\} = 3 \Rightarrow t = 2$$

The second basic variable  $(x_{[2]}) = x_4$  leaves the basis



Mauro Dell'Amico





### Part 10

### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it



## Simplex algorithm summary

```
optimality non-positive reduced costs (maximization) entering variable a non-basic variable x_h with \overline{c}_h > 0 pivot row t = \operatorname{argmin}\{\overline{b}_i/\overline{a}_{ih}: \overline{a}_{ih} > 0\} (basic variable x_{[t]} exit the basis) unlimited problem \overline{a}_{ih} \leq 0 \ \forall i
```



Mauro Dell'Amico



#### **Symplex algorithm** (second version - maximization)

```
Find a feasible basis B = [A_{[1]}, \dots, A_{[m]}] unlimited := FALSE; optimal := FALSE; while (optimal = FALSE and unlimited = FALSE) do Compute B^{-1} and set u^T := c_B^T B^{-1}; Compute reduced costs \overline{c}_h = c_h - u^T A_h, \forall x_h : h \in A \setminus B if (\overline{c}_h \leq 0 \ \forall x_h) then optimal := TRUE else

Choose a non basic variable x_h such that \overline{c}_h > 0; Compute \overline{b} := B^{-1}b and \overline{A}_h := B^{-1}A_h; if (\overline{a}_{ih} \leq 0, i = 1, \dots, m) then unlimited:= TRUE else

Find t := \operatorname{argmin}\{\overline{b}_i/\overline{a}_{ih}, i = 1, \dots, m : \overline{a}_{ih} > 0\}; Update the basis setting [t] := h; endiferendwhile
```









### Part 11

#### Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it



Mauro Dell'Amico



# Finding a initial solution

| 80 | 70 | 0 | 0 | 0  |
|----|----|---|---|----|
| 3  | 2  | 1 | 0 | 15 |
| 2  | 3  | 0 | 1 | 15 |



UNIMORE DESERVED Mauro Dell'Amico

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $X_4$ |   |
|-------|-----------------------|-----------------------|-------|---|
| 1     | -4                    | 0                     | 0     | 0 |
| 1     | 1                     | -1                    | 0     | 4 |
| -1    | 2                     | 0                     | -1    | 2 |

Mauro Dell'Amico

No basis is immediately available



Add a dummy basis giving a small value to the obj. function artificial variables

| $x_1$ | <i>x</i> <sub>2</sub> | $x_3$ | $x_4$ | $a_1$ | $a_2$ |        |  |  |
|-------|-----------------------|-------|-------|-------|-------|--------|--|--|
| 1     |                       |       |       | ε     |       | 0      |  |  |
| 1     |                       |       |       | 1     |       |        |  |  |
| -1    | 2                     | 0     | -1    | 0     | 1     | 4<br>2 |  |  |



Add a dummy basis giving a small value to the obj. function artificial variables

|   | $x_1$ | <i>X</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $X_4$ | $a_1$         | $a_2$         |   |
|---|-------|-----------------------|-----------------------|-------|---------------|---------------|---|
|   | 1     | -4                    | 0                     | 0     | $\varepsilon$ | $\varepsilon$ | 0 |
| Ī | 1     | 1                     | -1                    | 0     | 1             | 0             | 4 |
|   | -1    | 2                     | 0                     | -1    | 0             | 1             | 2 |

Numerical problems!



Define a new *minimization* problem where the obj. functions. ask to have the artificial variable not in the optimal basis

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |   |
|-------|-----------------------|-----------------------|-------|-------|-------|---|
| 0     | 0                     | 0                     | 0     | 1     | 1     | 0 |
| 1     | 1                     | -1                    | 0     | 1     | 0     | 4 |
| -1    | 2                     | 0                     | -1    | 0     | 1     | 2 |

Define a new minimization problem where the obj. functions. ask to have the artificial variable not in the optimal basis

| $x_1$ | <i>x</i> <sub>2</sub>               | $x_3$ | $X_4$ | $a_1$ | $a_2$ |    |  |  |
|-------|-------------------------------------|-------|-------|-------|-------|----|--|--|
| 0     | 0                                   | 0     | 0     | 1     | 1     | 0  |  |  |
| 1     | 1                                   | -1    | 0     | 1     | 0     | 4  |  |  |
| -1    | 2                                   | 0     | -1    | 0     | 1     | 2  |  |  |
|       | Transform the tableau in basis form |       |       |       |       |    |  |  |
| $x_1$ | <i>X</i> <sub>2</sub>               | $x_3$ | $x_4$ | $a_1$ | $a_2$ |    |  |  |
| 0     | -3                                  | 1     | 1     | 0     | 0     | -6 |  |  |
| 1     | 1                                   | -1    | 0     | 1     | 0     | 4  |  |  |
| -1    | 2                                   | 0     | -1    | 0     | 1     | 2  |  |  |

UNIMORE SEEKT MEETING

Mauro Dell'Amico



Define a new minimization problem where the obj. functions. ask to have the artificial variable not in the optimal basis

| $x_1$                 | <i>x</i> <sub>2</sub>               | <i>x</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |    |  |  |
|-----------------------|-------------------------------------|-----------------------|-------|-------|-------|----|--|--|
| 0                     | 0                                   | 0                     | 0     | 1     | 1     | 0  |  |  |
| 1                     | 1                                   | -1                    | 0     | 1     | 0     | 4  |  |  |
| -1                    | 2                                   | 0                     | -1    | 0     | 1     | 2  |  |  |
|                       | Transform the tableau in basis form |                       |       |       |       |    |  |  |
| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub>               | <i>x</i> <sub>3</sub> | $X_4$ | $a_1$ | $a_2$ |    |  |  |
| 0                     | -3                                  | 1                     | 1     | 0     | 0     | -6 |  |  |
| 1                     | 1                                   | -1                    | 0     | 1     | 0     | 4  |  |  |
| -1                    | 2                                   | 0                     | -1    | 0     | 1     | 2  |  |  |

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $a_1$ | $a_2$ |    |
|-------|-------|-------|-------|-------|-------|----|
| -3/2  | 0     | 1     | -1/2  | 0     | 3/2   | -3 |
| 3/2   | 0     | -1    | 1/2   | 1     | -1/2  | 3  |
| -1/2  | 1     | 0     | -1/2  | 0     | 1/2   | 1  |

| $x_1$ | <i>X</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |    |
|-------|-----------------------|-----------------------|-------|-------|-------|----|
| -3/2  | 0                     | 1                     | -1/2  | 0     | 3/2   | -3 |
| 3/2   | 0                     | -1                    | 1/2   | 1     | -1/2  | 3  |
| -1/2  | 1                     | 0                     | -1/2  | 0     | 1/2   | 1  |
| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |    |
| 0     | 0                     | 0                     | 0     | 1     | 1     | 0  |
| 1     | 0                     | -2/3                  | 1/3   | 2/3   | -1/3  | 2  |
| 0     | 1                     | -1/3                  | -1/3  | 1/3   | 1/3   | 2  |

 $x_1$  and  $x_2$  in the solution  $a_1$  and  $a_2$  outside



| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $X_4$ | $a_1$ | $a_2$ |    |
|-------|-----------------------|-----------------------|-------|-------|-------|----|
| -3/2  | 0                     | 1                     | -1/2  | 0     | 3/2   | -3 |
| 3/2   | 0                     | -1                    | 1/2   | 1     | -1/2  | 3  |
| -1/2  | 1                     | 0                     | -1/2  | 0     | 1/2   | 1  |
| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |    |
| 0     | 0                     | 0                     | 0     | 1     | 1     | 0  |
| 1     | 0                     | -2/3                  | 1/3   | 2/3   | -1/3  | 2  |
| 0     | 1                     | -1/3                  | -1/3  | 1/3   | 1/3   | 2  |

 $x_1$  and  $x_2$  in the solution  $a_1$  and  $a_2$  outside

remove last two columns and restore the original obj. function

| $x_1$ | <i>X</i> <sub>2</sub> | $x_3$ | $x_4$ | $a_1$ | $a_2$ |   |
|-------|-----------------------|-------|-------|-------|-------|---|
| 0     | 0                     | 0     | 0     | 1     | 1     | 0 |
| 1     | 0                     | -2/3  | 1/3   | 2/3   | -1/3  | 2 |
| 0     | 1                     |       | -1/3  |       |       | 2 |

remove last two columns and restore the original obj. function NB original problem in *maximization* form



Mauro Dell'Amico



| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $a_1$ | $a_2$ |   |
|-------|-------|-------|-------|-------|-------|---|
| 0     | 0     | 0     | 0     | 1     | 1     | 0 |
| 1     | 0     | -2/3  | 1/3   | 2/3   | -1/3  | 2 |
| 0     | 1     | -1/3  | -1/3  | 1/3   | 1/3   | 2 |

remove last two columns and restore the original obj. function NB original problem in *maximization* form

| $x_1$ | $x_2$ | $x_3$ | $x_4$ |   |
|-------|-------|-------|-------|---|
| 1     | -4    | 0     | 0     | 0 |
| 1     | 0     | -2/3  | 1/3   | 2 |
| 0     | 1     | -1/3  | -1/3  | 2 |

| , | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $a_1$ | $a_2$ |   |
|---|-------|-------|-------|-------|-------|-------|---|
|   | 0     | 0     | 0     | 0     | 1     | 1     | 0 |
|   | 1     | 0     | -2/3  | 1/3   | 2/3   | -1/3  | 2 |
|   | 0     | 1     | -1/3  | -1/3  | 1/3   | 1/3   | 2 |

remove last two columns and restore the original obj. function NB original problem in *maximization* form

| $x_1$ | $x_2$ | $x_3$ | $x_4$ |   |
|-------|-------|-------|-------|---|
| 1     | -4    | 0     | 0     | 0 |
| 1     | 0     | -2/3  | 1/3   | 2 |
| 0     | 1     | -1/3  | -1/3  | 2 |

| $x_1$ | $x_2$ | $x_3$ | $x_4$ |   |
|-------|-------|-------|-------|---|
| 0     | 0     | -2/3  | -5/3  | 6 |
| 1     | 0     | -2/3  | 1/3   | 2 |
| 0     | 1     | -1/3  | -1/3  | 2 |



Mauro Dell'Amico



|   | $x_1$ | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | $x_4$ | $a_1$ | $a_2$ |    |
|---|-------|-----------------------|-----------------------|-------|-------|-------|----|
| Λ | 0     | -3                    | 1                     | 1     | 0     | 0     | -6 |
| U | 1     | 1                     | -1                    | 0     | 1     | 0     | 4  |
|   | -1    | 2                     | 0                     | -1    | 0     | 1     | 2  |

|   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $a_1$ | $a_2$ |    |
|---|-------|-------|-------|-------|-------|-------|----|
| ٨ | -3/2  | 0     | 1     | -1/2  | 0     | 3/2   | -3 |
| ~ | 3/2   | 0     | -1    | 1/2   | 1     | -1/2  | 3  |
|   | -1/2  | 1     | 0     | -1/2  | 0     | 1/2   | 1  |

|   | $x_1$ | $x_2$ | <i>X</i> <sub>3</sub> | $x_4$ |   |
|---|-------|-------|-----------------------|-------|---|
| В | 0     | 0     | -2/3                  | -5/3  | 6 |
| ט | 1     | 0     | -2/3                  | 1/3   | 2 |
|   | 0     | 1     | -1/3                  | -1/3  | 2 |

N.B. Not in all cases we arrive immediately at the optimal solution





$$\begin{array}{cccccc} \max z = & -2x_1 & +x_2 \\ & x_1 & -2x_2 & \geq & 5 \\ & 2x_1 & +5x_2 & = & 6 \\ & x_1, & x_2 & \geq & 0 \end{array}$$

### Phase I

| min и | / =                   |           |        | $a_1$  | $+a_2$ |        |   |
|-------|-----------------------|-----------|--------|--------|--------|--------|---|
|       | $x_1$                 | $-2x_{2}$ | $-s_1$ | $+a_1$ |        | =      | 5 |
|       | $2x_{1}$              | $+5x_{2}$ |        |        | $+a_2$ | =      | 6 |
|       | $x_1$ ,               | $x_2$ ,   | $s_1,$ | $a_1,$ | $a_2$  | $\geq$ | 0 |
| $x_1$ | <i>x</i> <sub>2</sub> | $s_1$     | $a_1$  | $a_2$  |        |        |   |
| 0     | 0                     | 0         | 1      | 1      |        | 0      |   |
| 1     | -2                    | -1        | 1      | 0      |        | 5      |   |
| 2     | 5                     | 0         | 0      | 1      |        | 6      |   |
| -3    | -3                    | 1         | 0      | 0      |        | -11    |   |
| 1     | -2                    | -1        | 1      | 0      |        | 5      |   |
| 2     | 5                     | 0         | 0      | 1      |        | 6      |   |



Mauro Dell'Amico



| $x_1$ | $x_2$ | $s_1$ | $a_1$ | $a_2$ |     |
|-------|-------|-------|-------|-------|-----|
| -3    | -3    | 1     | 0     | 0     | -11 |
| 1     | -2    | -1    | 1     | 0     | 5   |
| 2     | 5     | 0     | 0     | 1     | 6   |

| 0 | 9/2  | 1  | 0 | 3/2  | -2 |
|---|------|----|---|------|----|
| 0 | -9/2 | -1 | 1 | -1/2 | 2  |
| 1 | 5/2  | 0  | 0 | 1/2  | 3  |

w = +2 Impossible! ( $a_1$  is in the optimal base)

| $x_1$ | <i>x</i> <sub>2</sub> | $s_1$ | $a_1$ | $a_2$ |     |
|-------|-----------------------|-------|-------|-------|-----|
| -3    | -3                    | 1     | 0     | 0     | -11 |
| 1     | -2                    | -1    | 1     | 0     | 5   |
| 2     | 5                     | 0     | 0     | 1     | 6   |

| 0 | 9/2  | 1  | 0 | 3/2  | -2 |
|---|------|----|---|------|----|
| 0 | -9/2 | -1 | 1 | -1/2 | 2  |
| 1 | 5/2  | 0  | 0 | 1/2  | 3  |

w = +2 Impossible! ( $a_1$  is in the optimal base)



# Two phases method: summary

Let  $(x^*, a^*)$  be the optimal solution of an artificial problem (Phase I), and let  $w^*$  be its value

- $w^* > 0$ : No solution exists in which all the artificial variables are outside the basis: UNFEASIBLE
- $w^* = 0$ : and all artificial variables outside the basis:  $x^*$  defines an optimal basis for the original problem
- $w^* = 0$ : and an artificial variable  $a_h$  is in the basis
  - a) if the row of the tableau having coefficient 1 in column h is zero elsewere: delete the row (linearly dependent in the original problem)
  - b) if the row of the tableau having coefficient 1 in column h has another nonzero value : pivot on this element (also if it is negative)