DSA Project Report: Analyzing Brazilian E-Commerce Dataset (Olist)

DSA Project Report: Analyzing Brazilian E-Commerce Dataset (Olist)
Project Objective
The main objective of this project is to extract insights and build predictive models using the Olist Braziliar
E-Commerce dataset. Specifically, the focus is on:
- Predicting product price based on physical and logistical attributes.
- Predicting customer satisfaction.
- Predicting delivery performance.
Step-by-Step Methodology
1. Data Understanding & Loading
The dataset comprises multiple CSV files linked by key identifiers. These include information on customers
sellers, orders, products, payments, reviews, and geolocations. The initial step involves:
- Importing Python libraries
- Reading CSVs into DataFrames
- Understanding key files like orders, reviews, products, etc.
2. Data Merging & Preprocessing
To create a comprehensive dataset:
- Merged tables on keys

- Converted dates

- Calculated delivery metrics
- Handled missing data
- Engineered features like product volume, is_late, is_satisfied
- Encoded categorical variables
- 3. Exploratory Data Analysis (EDA)

Explored key trends:

- Product pricing distribution
- Freight and delivery delays
- Satisfaction trends and delivery impact
- Correlations using plots and heatmaps
- 4. Price Prediction (Regression Task)

Goal: Predict product price

- Model: Linear Regression

- Metrics: R = 19.6%, RMSE = R\$52.21, MAPE = 89.59%

- Key drivers: weight, freight value

- Limitations: lacks brand, category, and promotional info

5. Customer Satisfaction Prediction (Classification Task)

Goal: Classify satisfaction

- Model: Logistic Regression

- Metrics: Accuracy = 78.4%, AUC-ROC = 0.596

- Issue: Severe class imbalance, recall = 0 for dissatisfied customers

- Recommendation: Use SMOTE or cost-sensitive learning

6. Delivery Performance Prediction (Classification Task)
Goal: Predict late delivery
- Model: Logistic Regression
- Metrics: Accuracy = 96.7%, AUC-ROC = 0.859, F1 = 98.3%
- Key drivers: delivery time, distance, freight value
7. Model Evaluation & Cross-Validation
- Used 5-fold CV
- Stable performance for delivery model
- Satisfaction model remained weak
8. Business Recommendations
For Sellers:
- Optimize weight/volume
- Improve delivery speed
For Olist:
- Offer pricing tools
- Alert system for delays
For Logistics:
- Use delivery models for planning
- Dynamic routing

- 9. Regional Context: Brazils E-Commerce
- Distance is a major factor
- Strong logistics despite geography
- Delivery models succeed; satisfaction needs better features

Conclusion

Integrated data can generate powerful insights. Delivery prediction is strong; satisfaction and pricing models need richer features.