HOMEWORK 5

JASON MEDCOFF

97iii. We want to show that if $f:(H\times K)\to H$ is an homomorphism, K^* is the kernel of f and therefore a normal subgroup of $(H\times K)$ by the first isomorphism theorem. In addition, we must show that the image of f is H; then it follows from the first isomorphism theorem that $(H\times K)/K^*$ is isomorphic to H. Namely, we take f that maps $(h,k)\mapsto h$ for $h\in H$ and $k\in K$. First, f is a homomorphism since

$$f((h_1, k_1)(h_2, k_2)) = f(h_1h_2, k_1k_2) = h_1h_2 = f(h_1, k_1)f(h_2, k_2).$$

We know that we can write

$$\ker f = \{(h, k) \in (H \times K) : f(h, k) = 1_H\}$$
$$= \{(1_H, k) \in (H \times K)\}$$
$$= K^*$$

and therefore K* is a normal subgroup of $(H \times K)$. Next, we want to show that the image of f is the entirety of H. In particular,

$$im f = \{h \in H : \exists (h, k) \in (H \times K), f(h, k) = h\}$$

$$= \{h \in H\}$$

$$= H$$

since the first element in (h, k) can be chosen from H arbitrarily. Thus, H is the image of f, and so is isomorphic to the quotient group $(H \times K)/K^*$.

98. Suppose G/Z(G) is cyclic with generator g. Then the cosets of Z(G) are of the form $g^iZ(G)$. Since these cosets partition G, every element of G belongs to one coset. Take $a=g^iz_1$ and $b=g^jz_2$ for some $z_1, z_2 \in Z(G)$. Then we can write

$$ab = g^{i}z_{1}g^{j}z_{2} = g^{i}g^{j}z_{1}z_{2} = g^{i+j}z_{1}z_{2} = g^{j+i}z_{2}z_{1} = g^{j}g^{i}z_{2}z_{1} = g^{j}z_{2}g^{i}z_{1} = ba$$

since z_1 and z_2 belong to the center and thus commute with every element in G. Thus G is abelian. The conclusion is exactly the contrapositive of this.

99. Since every element in G appears in one coset of H, it follows from Lagrange's theorem that

$$|G| = |G/H||H|.$$

Write $|G/H| = p^x$ and $|H| = p^y$. Then

$$|G| = |G/H||H| = p^x p^y = p^{x+y}$$

and so the order of G is a power of p.

105. Let H be any other subgroup of G with order |K|. Define $f: G \to G/K$. Then f(H) is a quotient group of H and thus |f(H)| divides |H| = |K|. By the first isomorphism theorem, f(H) is a subgroup of G/K so |f(H)| also divides [G:K]. Then it must be that |f(H)| = 1. Then $H \subseteq K$, but since they have the same cardinality, H = K.

1

106. First, suppose HK is a subgroup of G, with $h \in H$ and $g \in G$. Then $h = h1 \in HK$ and $k = 1k \in HK$, therefore $kh \in HK$. So $KH \subseteq HK$. We must also have $(hk)^{-1} \in HK$, so it must follow that $(hk)^{-1} = h'k'$ for $h' \in H$, $k' \in K$. Then $hk = (h'k')^{-1} = k'^{-1}h'^{-1} \in KH$ since $k'^{-1} \in K$, $h'^{-1} \in H$. Thus $HK \subseteq KH$, so if HK is a subgroup in G, HK = KH.

Conversely, suppose that HK = KH. Then let $a, b \in HK$. Then $a = h_a k_a$ and $b = h_b k_b$ for $h_a, h_b \in H$ and $k_a, k_b \in K$. Then $k_a h_b \in KH = HK$, so $k_a h_b = hk$ for some $h \in H$ and $k \in K$. Therefore

$$ab = h_a k_a h_b k_b = h_a h k k_b \in HK$$

as $h_a h \in H$ and $k k_b \in K$. Then

$$a^{-1} = (h_a k_a)^{-1} = k_a^{-1} h_a^{-1} \in KH = HK$$

so HK is closed under multiplication and inverses. Thus, HK is a subgroup of G.

113. i) Suppose $x, y \in G$. Then their commutator is $xyx^{-1}y^{-1}$. Take $g \in G$, then

$$g(xyx^{-1}y^{-1})g^{-1} = gxg^{-1}gyg^{-1}gx^{-1}g^{-1}gy^{-1}g^{-1} = (gxg^{-1})(gyg^{-1})(gxg^{-1})^{-1}(gyg^{-1})^{-1}$$

and thus the conjugate of the commutator of x and y is the commutator of gxg^{-1} and gyg^{-1} . Then for x_i and y_i in G for $1 \le i \le n$ we have

$$g\left(\prod_{1}^{n} x_{i} y_{i} x_{i}^{-1} y_{i}^{-1}\right) g^{-1} = g(x_{1} y_{1} x_{1}^{-1} y_{1}^{-1}) \left(\prod_{2}^{n} x_{i} y_{i} x_{i}^{-1} y_{i}^{-1}\right) g^{-1} = \dots = \prod_{1}^{n} g x_{i} y_{i} x_{i}^{-1} y_{i}^{-1} g^{-1}$$

and since the conjugate of a commutator is a commutator, and the conjugate of a product of commutators is a product of commutators, and is therefore in G'. So G' is normal in G.

- ii) Let aG' and $bG' \in G/G'$. Then $aG'bG' = (ab)G' = ba(a^{-1}b^{-1}ab)G' = (ba)G'$ since the commutator is in G'. Thus G/G' is abelian.
 - iii) We want to show that every commutator maps to the identity.

$$\varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1}$$

and since these elements commute and cancel to the identity, $G' \leq \ker \varphi$.

- iv) Since G/G' is abelian, every subgroup of it is normal. Subgroups of G/G' correspond to subgroups of G that contain G', and normal subgroups of G/G' correspond to normal subgroups of G containing G'. Thus, any subgroup containing G' is also normal.
- **30.** Take $x \in R[x]$. If it had an inverse, say f(x), then xf(x) = 1. But then if f(x) is of degree n, 1 = xf(x) has degree n + 1. But $\deg(xf(x)) = \deg(1) = 0$, a contradiction. So x does not have an inverse, and therefore R[x] is not a field.
- **31.** i) Addition associativity is inherited from ordinary matrix addition. Commutativity of addition exists from the same reason. The additive identity is the zero matrix, taking $c_i = 0 \, \forall i$. Inverses exist, since every entry is in k, and everything in k has an inverse; let each entry a_{ij} in a matrix in k[A] be $-a_{ij}$ in the matrix's inverse. Multiplicative associativity is inherited from matrix multiplication; so is distributivity over addition. The multiplicative identity is inherited as the identity matrix, which is in k[A] as f(A) with $c_0 = 1$, all other $c_i = 0$. To demonstrate commutativity of multiplication, take $f(A) = a_0 I + a_1 A + \cdots + a_m A^m$ and $g(A) = b_0 I + b_1 A + \cdots + b_m A^m$. Then

$$f(A)g(A) = a_0b_0 + (a_1b_0 + a_0b_1)A + \dots$$

= $b_0a_0 + (b_1a_0 + b_0a_1)A + \dots$
= $g(A)f(A)$.

HOMEWORK 5

3

ii) Part i) showed that k[A] is a ring, for any choice in A over k. Then if f(x) factors into p(x)q(x) over k, f(A) factors into p(A)q(A) over k since they have the same underlying field.

iii) Let
$$A = I$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. $k[A]$ is a domain since every element will be of the form

iii) Let
$$A = I$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. $k[A]$ is a domain since every element will be of the form $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = kI$, and so no two elements kI and jI can multiply to zero since $kIjI = kjI^2 = kjI \neq 0$. $k[B]$ is not a domain since $B^2 = 0$ yet $B \neq 0$.

32. i) If R is a domain, so is R[x]. Then the degree of a product of two polynomials is the sum of the degree of each. Thus, f(x) can only be a unit if its degree is zero, and its inverse is thus of degree zero. But an invertible constant is a unit in R.

ii)
$$(2x+1)(2x+1) = 4x^2 + 4x + 1$$
. Modulo 4, the first two terms are zero, so this is always 1.

33. We know from Fermat's little theorem that for prime p and any x,

$$x^p \equiv x \mod p$$
.

In other words,

$$x^p - x \equiv 0 \mod p$$

for all x, so letting $f(x) = x^p - x$, we have that f^b will always evaluate to zero.