Immune repertoire forensics A RepSeg data analysis tutorial

Mikhail Shugay, PhD

Skoltech, MA03172 course [Term 2, 2017-2018]

December 1, 2017

Introduction

Getting started

Interactive part

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

TCR:pMHC structure

PDB:1ao7, rendered using UCSF chimera, colored by chain

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement mechanism can be efficiently recaptured with a probabilistic model [Murugan et al. PNAS 2012]

$$P(\sigma) = P(V)P(D, J)$$

$$\times P(\#del_V|V)P(\#del_J|J)P(\#del_{D5}, \#del_{D3}|D)$$

$$\times P(\#ins_{VD})P(\#ins_{DJ}) \prod_{i \in ins_{VD}} P(b_i|b_{i-1}) \prod_{i \in ins_{DJ}} P(b_i|b_{i+1})$$

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

The likely functions of these regions are:

- ► FR regions maintain TCR secondary structure and (possibly) play role in MHC binding
- CDR1,2 are germline encoded and play role in antigen recognition, as well as (possibly) MHC binding
- CDR3 plays a major role in antigen recognition and is extremely variable

TCR repertoire sequencing

An example of a RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

An example of a RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- ▶ UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

We finally get clonotype frequency tables that look like

1	Index	Frequency	Count	CDR3AA	٧	D	J	CDR3NT
1	1	1.0%	3913	CSAGGLGSTDTQYF	TRBV20- 1	TRBD1		TGCAGTGCTGGGGGGCTCGGTAGCACAGATACGCAGTATTTT
1 5	2	0.90%	3440	CASNSGSSYNEQFF	TRBV5-1	TRBD2	TRBJ2- 1	TGCGCCAGCAATAGCGGGAGCTCCTACAATGAGCAGTTCTTC
1 1 1 1 1 1 1 1 1 1	3	0.79%	3021	CSARQGNQPQHF	TRBV20- 1	TRBD1		TGCAGTGCGCGACAGGGGAATCAGCCCCAGCATTTT
1	4	0.65%	2490	CASSQEPGGEQFF	TRBV4-1	TRBD2	TRBJ2- 1	TGCGCCAGCAGCCAAGAGCCGGGCGGGGAGCAGTTCTTC
3 3 7 0.49% 1871 CASSQSQGSYEQYF TRBV5-1 TRBD1 TRBJ2- TGCGCCAGCAGCCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC 7 7 7 7 7 7 7 7 7	5	0.61%	2336	CASSYGMNTEAFF	TRBV6-6	TRBD2	TRBJ1- 1	TGTGCCAGCAGTTACGGGATGAACACTGAAGCTTTCTTT
7 7 8 0.48% 1847 CASSAPKSGRSGELFF TREV11- TRED2 TREJ2- TGTGCCAGCAGCCGACCCAAGAGCGGGAGAAGTGGGGAGAGTGTTTTTT	6	0.52%	1992	CASSQGGRAPHTQYF	TRBV4-3	TRBD2		TGCGCCAGCAGCCAAGGGGGGGGGGCCCCCATACGCAGTATTTT
	7	0.49%	1871	CASSQSQGGSYEQYF	TRBV5-1	TRBD1	TRBJ2- 7	TGCGCCAGCAGCCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC
	8	0.48%	1847	CASSRPKSGRSGELFF		TRBD2		TGTGCCAGCAGCCCAAGAGCGGGAGAAGTGGGGAGCTGTTTTTT

Introduction

Getting started

Interactive part

Downloading data

Navigate to https://github.com/antigenomics/repseq-forensics-tutorial and download the data + code bundle as zip

Executing R code

Open the tutorial.Rmd in RStudio, it can be found in the root folder of the bundle.

```
Plot diversity values
109
110 - ```{r message=FALSE}
111
     diversity %>%
       melt %>%
112
113
       # set what values we are going to plot
       # fct_reorder reorders sample id by value
114
115
       ggplot(aes(x=fct_reorder2(sample_id, variable, value), y=value)) +
116
       # we'll make a bar plot
117
       geom_bar(stat = "identity", fill = "#0570b0") +
118
       # show each index on different subplot
119
       facet_wrap(~variable, scales = "free_y", ncol = 1) +
       xlab("") + ylab("Diversity index") +
120
121
       theme_bw()
122
```

Executing R code

Introduction

Getting started

Interactive part

Interactive part

Introduction

Getting started

Interactive part

. . .