AD-751 287

ELECTRON QUENCHANT LITERATURE

W. G. Prowne, et al

General Electric Company

Prepared for:

Space and Missile Systems Organization

September 1971

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

SAMSO TR-71-309

ELECTRON QUENCHANT LITERATURE

W.G. Browne G.R. Smookler

General Electric Company
Environmental Sciences Laboratory
Re-Entry and Environmental Systems Division

TECHNICAL REPORT SAMSO TR-71-309 September 1971

Approved for public release; distribution unlimited

Prepared for
Space & Missile Systems Organization
Air Force Systems Command
P.O. Box 92950
Worldway Postal Center
Los Angeles, California 90009

NATIONAL TECHNICAL INFORMATION SERVICE
US Deportment of Commerce
Ser regiring VA 77151

Security Classification				
DOCUMENT CONTROL DATA - R & D				
(Security classification of title, body of abstract and indexing				
1. ORIGINATING ACTIVITY (Corporate author)	2e. R\$	EPORT SE	CURITY CLASSIFICATION	
General Electric Company	1	ט		
Re-entry & Environmental Systems Division	25. 61	26. GROUP		
Philadelphia, Pennsylvania 19101				
3. REPORT TITLE		····		
ELECTRON QUENCHANT LITERATURE				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Final Report				
S AUTHOR(S) (First name, middle initial, last name)				
Browne, W. G.				
Smookler, G. R.				
Smooklei, G. K.				
6. REPORT DATE	78. TOTAL NO. OF PAGE	E5	7b. NO. OF REFS	
September 1971	1 \$529	ì	31	
SE. CONTRACT OR GRANT NO.	90. ORIGINATOR'S REPO			
F04701-70-C-0179	Jac. Saldina Ton Sage	JK I NUMB	ERIO,	
b. PROJECT NO.	SAMSO TR 71-3	309		
	l			
¢	SP. OTHER REPORT NO	(3) (Any oth	er numbers that may be assigned	
	this report)			
d.	1			
	<u> </u>			
10. DISTRIBUTION STATEMENT				
Approved for public release; distri	bution unlimited			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITA	DV ACTIV		
	ŧ		tems Organization	
	Air Force Syste	sus Com	nand	
	F. O. BOX 92960) - WOI	ldway Postal Center	
13. ABSTRACT	Los Angeles, Ca	iliforn	Ia 90009	
Data on the high temperature behavior				
identified as effective electron quenchant				
directed to the physical, chemical, thermo				
acids of rhenium, molybdenum, tungsten an				
acids, ~100 kcal/gmol, are the highest va	lues of any gase	ous sp	ecies in the	
literature. An important mode of electron				
tive-attachment. The existence of two negative ions in H/O/metal systems appears				
to be common.				
	. •			

The vapor pressure of HBO₂, n.h.p. 1390°K, is too low to volatilize sufficient boric acid inco a reentry boundary layer at high altitudes. It is suggested that more volatile boron-containing materials, such as cyclic B-N-H compounds, can be incorporated as an integral part of the structure of a low temperature ablator by a process of co-polymerization.

DD FORM 1473

TATE OF THE PROPERTY OF THE PR

I-A

UNCLASSIFIED

Security Classification

			· 75	SE CONT	*:		
M	ASSIFIED						
<u> </u>	Security Classification				 		
	KEY WORDS .	ROLE	K A	ROLE	K B	ROLE	K C
	Electron Quenchants						 -
	Electron Affinities of oxides/acids of						
	Re, Mo, W and B Thermuchemistry of oxides/acids of Re, Mo,	1					
	W and B						ĺ
	Vapor Pressures of oxides/acids of Re, Mo, W and B	1					
	Rhenium compounds					ł	
	Molybeenum compounds	1					
	Tungsten compounds Boron compounds						
	por our components					l	
						ļ	
						1	•
		1				1	
				į		}	
						j	{
						ļ	
						1	
		1				1	
						1	j
	•					1	
						1	
		1		Ì		l	
		1					
		l					
		1					
					ļ		
				!	!		
				į			
				1			
			l				l
		!					
		j		1			
			Ì			1	
			1				
			j				
	_	l	1	1	l .	1	1

IB .

UNCLASSIFIED

Security Classification

ELECTRON QUENCHANT LITERATURE

W.G. Browne G.R. Smookler

General Electric Company
Environmental Sciences Laboratory
Re-Entry and Environmental Systems Division

TECHNICAL REPORT SAMSO TR-71-309 September 1971

Approved for public release; distribution unlimited

Prepared for
Space & Missile Systems Organization
Air Force Systems Command
P.O. Box 92960
Worldway Postal Center
Los Angeles, California 90009

THE PARTY OF THE P

FOLEWORD

This report summarizes the work performed on the Strategic Re-Entry Technology (STREET-G) Study, Task 4.10 conducted from January 1971 to September 1971 and is prepared under Contract No. F04701-70-C-0179. The prime contractor is the General Electric Company, Re-Entry and Environmental Systems Division, Philadelphia, Pennsylvania. This work was monitored by RSSE, Space and Missile Systems Organization, Los Angeles, California.

This report is approved for public release, distribution unlimited.

This technical report has been reviewed and is approved.

ESTREMENT HER PROPERTY AND A PROPERTY OF PROPERTY OF PROPERTY OF THE PROPERTY AND A PROPERTY OF THE PROPERTY O

Lt. Col. D. Shover, RSSE
Space & Missile Systems Organization
Air Force Systems Command
P.O. Box 92960
Worldway Postal Center
Los Angeles, California 90009

TABLE OF CONTENTS

		Page No.
Abstr	ect	
I. n	TRODUCTION	
II. L	ITERATURE REVIEW	1 2
	Rhenium Compounds	3
	Molybdenum Compounds	5
	Tungsten Compounds	6
	Boron Compounds	6
TA	BLES	-
ı.	Electron Affinities	9
II.	Bond Strengths	10
III.	Equilibrium Constants	10
IV.	Vapor Pressure of MoO3(S)	11
V.	Vapor Composition of WO ₃ System	12
VI.	Equilibrium Composition Computations for Borof Quenchant + Abiation Products	13
VII.	Reaction Scheme for H/B/O System	14
VIII.	Volatile Boron-containing Carriers	15

			Page No.
FIG	FURES		
1.	Vapor	Pressure of Rhenium Compounds	16.
2.	Vapor	Pressure of Wake Quenchants	17
3.	Vapor	Pressure of Tungsten Compounds	18
4.	Vapor	Pressure of Boron Compounds	19
ref	ERENCES	3	20

men emminimist innererensi inertelitiken meninererenentarina, entrekkelerkeler i Higher Michellerkeler i Higher Michellerkeler i

I. INTRODUCTION

The objective of this work was to characterize the behavior of molecules which have been identified as effective wake electron quenchants. A wake quench candidate is deemed to be effective if it efficiently attaches free electrons to produce negative ions when the candidate is added in small quantities to a high temperature plasma containing heat shield ablation products. The interest in wake electron quenchants stems from their use in applications related to the obfuscation of reentry observables.

In order to attach rapidly free electrons in a reentry ablation environment a quench or should possess all of the fillowing attributes:

- 1. Ta ge cleature of finity,
- 2. (and thermal associatity,
- 3. Resistance to chemical attack by H. O and OH,
- 4. Large electron attachment closs-section,
- Be compatible with heat shield material with regard thermal,
 mechanical, ablative and V & H characteristics.

Experimental electron suppression studies in atmospheric $\rm H_2/air$ and $\rm H_2/N_2O$ flames in the Meker burner-microwave cavity apparatus by Dr. R. Carabetta have identified the oxides/acids of rhenium, molybdenum, tungsten, boron, chromium, vanadium, titanium and iron as effectively lowering the free electron concentration by the processes of either electron attachment and/or compound formation.

II. LITERATURE REVIEW

Chemical abstracts has been searched from 1965 to 1971 for physical, chemical, thermodynamic and kinetic data on the oxides/acids/ions/fragments containing Re, Mo, W, B, Cr, V, Ti and Fe. The list of electron affinities for the various quenchants compiled from the chemical literature is cited in Table I.

Several features are noteworthy. First, the electron affinities of the acids,

100 kcal (4.3 ev), are the highest values of any gaseous species in the literature. Second, the existence of two negative ions in an elemental system appears to be common. Electron affinities for H₂MoO₄ and H₂WO₄ reported by Dr. W. Miller,

Aerochem, are dependent upon an accounsed bond dissociation energy for H-HMoO₄ and H-HWO₄ of 110 kcal/gmol. The identification of the negative ions in the chromium and vanadium systems is tentative at this time. The bond strengths of the acids and alkali salts of quenchants are listed in Table II.

The equilibrium constants Keq, where

$$A + e = B + C \tag{1}$$

$$Keq = \frac{\begin{bmatrix} B^{-} \end{bmatrix} \begin{bmatrix} C \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} e^{-} \end{bmatrix}}$$
 (2)

and [] represents the concentration of the individual species, for electron attachment and alkali salt formation are listed in Table III. Dissociative — attachment and charge transfer are the modes for electron capture. The machanism for rhenium oxide quenching is thought to be as follows:

$$Re_2O_7 + H_2O \rightarrow 2HReO_4$$
 (3)

$$HReO_4 + e^- \rightarrow H + ReO_4$$
 (4)

It has been suggested by Zavitsanos¹ that dissociative attachment to Re207 occurs at low electron energies,

$$Re_2O_7 + e^- \rightarrow ReO_3 + ReO_4^-$$
 (5)

At 2800° K and one atmosphere pressure in a fuel lean (R = 0.635) H_2/N_20 flame the electron suppression effectiveness (by either electron attachment and/or compound formation) for the candidates on a per atom basis was reported by Dr. Carabetta to be in the progression Re> Mo> W>B. On a mass basis, the greatest electron reduction occurred with boron compounds. Particular attention has been focused on compounds of Re, Mo, W and B in reviewing the chemical literature. Rhenium Compounds

The pertin it species in the H/Re/O system appear to include the following molecules: HReO4, ReO4, ReO4, ReO4, ReO4, ReO3, and ReO. The vapor pressures of HReO₄, Re₂O₇, ReO₃, and ReO₂ are shown in Figure 1. The normal boiling point of Repo; is~635°K. Skinner has recently studied the major vapor species present in the Re-O system using Knudsen cell-mass spectrometry. The sublimation of $Re_2O_{7(s)}$ yields Re_2O_7 according to the vapor pressure relation log $P_{Re_2O_7}$ = - $(7.437 \pm 0.081) \pm 1000 + (12.350 \pm 0.209)$ over the temperature range 327-463°K where the pressure is in atmospheres. Mass spectrometry of the vapors from the Re-ZnO reaction revealed evidence of ReO3 and Re206. Measurements as a function of temperature yielded values for the enthalpies of formation at 298°K of ReO3 and Re206 of -67.0 ± 3.5 and -209 ± 20 kcal/gmole, respectively. Similar MgO-Re measurements permitted upper limits to the dissociation energies of ReO and ReO2 to be established. At 1980°K the following values pertain: ReO₂ $\Delta H_f > -5.5 \pm 5.0$ kcsl and Re O $\Delta H_f > 51.8 \pm 5.0$ kcal/gmol. For ReC, the upper dissociation limit is 155 kcal, which is higher than the average bond energy of ReO3, 144 kcal/bond. gmole

Brewer and Rosenblatt⁶ estimated the free energy function from 298-3000°K for ReO2. They evaluated the electronic partition function, where possible, by calculating the electronic partition function for the Re⁴⁺ ion or, lacking this, to calculate the electronic partition function for an isoelectronic ion. The free energy function of ReO as a function of temperature has also been estimated by Brewer and Rosenblatt⁷. The electron partition function of the gaseous diatomic oxide was taken to be the same as the electronic partition function of the isoelectronic ion W⁺ as calculated from electronic levels listed by Moore⁸.

King, et a1⁹. reported the heats of formation at 298°K for ReO₂₍₈₎, ReO₃₍₈₎ and Re₂O₇₍₈₎ as ~107.3 ± 0.8, ~140.8 ± 0.9 and ~301.9 ± 1.8 kcal/gmole respectively. Kazenas, et a1¹⁰, measured mass spectrometrically the vapor phases above ReO₃₍₈₎ at 620°K and ReO₂₍₈₎ at 1030°K. They identified the species Re₂O₇, Re₂O₃ and HReO₄ (ostensibly formed from water vapor). Foster ¹¹ has measured the free energy of formation of ReO₂₍₈₎ from 950°-1100°K. The entropy of ReO₄~ has been calculated by Krestov ¹² over a wide range of temperature. Yatsimirskii's rule is invoked, "the entropy of gaseous species with the same steric configuration and the same number of electrons but differing from one another by their charge is approximately the same (to within 0.5 e.v.)". Consequently, the entropy of ReO₄~ should be similar to 0sO₄. Raman spectra and force constants for 0sO₄ have been reported recently ¹³. McDowell and Goldblatt ¹⁴ have computed thermal function for 0sO₄ from 273-600°K. Semenov and Skolkova ¹⁵ in a mass spectrometric study of the Re-O system at 1300-1600°K report ΔH_f (1500°K) of ReO = -3 ± 0.7 kcal/mole. In the

reaction of ReO₃ and Re₂O₇ with sceam at 370-700°K HReO₄ molecules were observed in the gas phase.

Infra-red and Raman spectra for Na ReO4(s) 16,18 HReO4 17 (crystalline), Re $_2^{07}$ 18 have been measured. For HReO4 crystalline

- (A) 999 & 990 cm⁻¹
- (A) 996 & 955 cm⁻¹
- (E) 905 & 901 cm⁻¹

HOReO₃ has C_{3v} symmetry. In Re₂O₇ the arrangement appears to _= O₃Re-O-ReO₃ with the Re-O-Re stretch frequencies being 870 & 690 cm⁻¹. All alkali perrhenates have broadbands at 900 cm⁻¹ due probably to monomers and dimers. Drowart, et al¹⁹ have reported a thermochemical study of the vaporization of sodium perrhenate using a mass spectrometer. The vapor contains comparable amounts of monomer and dimer molecules.

An interesting organo-metallic compound containing rhenium has been synthesized by Sinitsyn, et al²⁰ by extraction of HReO4 with tri-n-octylamine. Tri-n-octylamnonium perrhenate is a colorless, viscous product insoluble in water but quite soluble in benzene, alcohol and acetone. It decomposed exothermically, beginning at 310°C; first eliminating 3 octyl radicals, second, splitting off ammonia. This compound may have value for passive quench applications where a water insoluble, but organic soluble, rhenium compound is desired. Conceivably, it could be incorporated as an integral part of the heat shield by the process of copolymerization with a low temperature ablator.

Molybdenum Compounds

A CONTRACTOR OF THE PROPERTY O

Considerable thermochemical data 21 is available on molybdenum oxides/acids. The saturated vapor of solid MoO3, consists of Mo3C9, Mo4O12 and Mo5O15 molecules. The partial pressures have been determined in the temperature range 800° -1900°K

by Kazenas and Tsvetkov²². These data are shown in Table IV. The formative equilibrium for molybdic acid is as follows:

$$HoO_3(c) + H_2O \longrightarrow H_2McO_4$$
 (6)

The vapor pressure of H_2MoO_4 is shown as a function of temperature in Figure 2. The original work on the bond strength of MoO, MoO₂, MoO₃ and the oxidation characteristics of Mo were reported by Drowart, et al²³ and Berkowitz-Mattuck, et al²⁴. Porter²⁵ has measured the vapor phase in equilibrium with Na₂MoO₄ by the mass spectrometry - Knudsen effusion technique in the temperature range 1200-1800°K.

Tungsten Compounds

TO THE PROPERTY OF THE PROPERT

The JANAF tables 21 have a rather complete thermochemical description of the species W, W0, W0₂, W0₃, (W0₃)₂, (W0₃)₃, W₃0₈, (W0₃)₄ and H₂W0₄. The vapor pressures of W0₃, (W0₃)₃ where n is 2-4, and H₂W0₄ are shown in Figure 3. We have performed vapor composition calculations at 10^{-2} and 10^{-4} atmospheres for the W0₃ system. These computations at various temperatures are presented in Table V. The prevalence of the dimer, trimer and tetramer at high temperatures is characteristic of the W-O and Mo-O systems as noted previously 26 , 27 . Porter 25 has examined the thermochemical behavior of Na₂W0₄ at $1200-1800^{\circ}$ K.

Boron Compounds

Under the impetus of the high energy fuels program in the 1950's the neutral thermochemistry of species in the B-H-O system has been investigated thoroughly. The JANAF tables²¹ contain a complete thermochemical description of the following gaserus boron-containing species: B, BO, B₂O, BO₂, B₂O₃, HBO₂, H₃BO₃. Finch and Gardner²⁸ have recently reviewed the status of the thermochemistry of boron compounds.

Measurements in flame system by Jensen^{29,30} reveal that the two significant negative ions in H-B-O mixture are BO₂ and BO. Ostensibly, the important negative ion reactions include the following:

$$B_2O_3 + H_2O \implies 2HEO_2$$
 (7)

$$HBO_2 + e^- \longrightarrow H + BO_2^-$$
 (8)

$$HBO_2 + e^- \longrightarrow OH + BO^-$$
 (9)

$$BO_2^- + H \longrightarrow OH + BO^-$$
 (10)

$$BO_2$$
" + 0 \longrightarrow O_2 + BO ". (11)

Thermodynamic properties have been generated for B0 using $\Delta H_{f_0} = -58 \text{ kcal/}$ gmole, D(B-0) = 215 kcal/gmol; $\angle g$ ground state; Be = 1.85 cm⁻¹; $\angle g = 0.017 \text{ cm}^{-1}$; $\omega_e = 2000 \text{ cm}^{-1}$; $\omega_e = 13$.

Equilibrium composition computations have been performed for a boron quenchant in the presence of ablation products. The conditions examined and the conclusions drawn are shown in Table VI. In examining the probable reactions involving the important boron-containing species HBO2, BO2, BO and B we posit the mechanism cited in Table VII.

Figure 4 depicts the vapor pressure of HBO2 and B2O3 as a function of temperature. It is noteworthy that the vapor pressure of HBO2, normal boiling point of 1390°K, is too low to vaporize sufficient boric acid into the boundary layer at high altitudes. A survey of more volatile boron-containing compounds reveals that cyclic B-N-H compounds appear to be attractive, see Table VIII.

Conceivably, an organically substituted borazine can be incorporated as an integral part of the structure of a low-temperature ablator, such as epoxy, by a process of copolymerization starting with a halogenated borazine.

Seshadri et al 31 have examined spectroscopically the structure of sodium metaborate. The propensity to form NaBO $_2$ in sodium-contaminated systems is quite pronounced since D(Na-BO $_2$) is 114 kcal/gmol.

Zavitsanos' has reported an attachment cross section for HBO₂ (reaction 8) of 3 x 10^{-17} cm². Combining the cross section with the mean thermal speed of the electron yields a rate coefficient $k_8 = 3.7 \times 10^{14}$ cm³/gmol sec at 1373°K.

TABLE I

ELECTRON AFFINITIES

Ion Formed	Electron Affinity kcal/gmol	<u>Technique</u>	Reference
BO ₂	94 98	ESP, microwave mass spect.	2 3
BO*	58	mass spect.	3
нм о04	(98)	mass spect., ESP	4
MoO3~	60	mass spect., ESP	4
HWO4	(96)	mass spect., ESP	1
wo ₃ -	73	mass spect., ESP	1
HCro3	?	mass spect., ESP	1
cro ₂	?	mass spect., ESP	1
H ₂ VO ₄	?	mass spect., ESP	. 1
HVO3	?	mass spect., ESP	1

REFERENCES

propositional commences and the commences of the commence

- 1. Dr. W. J. Miller (Aerochem), Wake Quench Technical Exchange Meeting, Aerospace/ SAMSO, San Bernardino, November 6, 1970.
- 2. Jensen, D. E., Trans. Faraday Soc., 65, 2123 (1969).
- 3. Jensen, D. E., J. Chem. Phys., 52, 3305 (1970)...
- Jensen, D. E. and Miller, W. J., Thirteen Symposium (International) on Combustion, U. Utah, August 23-29, 1970.
- 5. JANAF Thermochemical Tables.

TABLE II

BOND STRENGTHS

Bond	Dissociation Energy (9°K) kcal/gmol	Reference
Na-BO ₂	114	5
н-во ₂	117	5
K-BO ₂	114	2
K-HMo0 ₄	121 ·	4
н-нмо04	· 110	4

TABLE III

EQUILIBRIUM CONSTANTS

Reaction	K(eq)
$HBO_2 + e^- = H + BO_2$	1500 exp (-10,000/T)
$H_2Mo0_4 + e^- = H + HMc0_4^-$	24 exp (500/T)
$H_2WO_4 + e^- = H + HWO_4^-$	25 exp (1300/T)
$K + HBO_2 = H + KBO_2$	37 exp (-2500/T)
$K + H_2 MoO_4 = H + KHMoO_4$	3.5 exp (3500/T)
$K + H_2WO_4 = H + KHWO_4$	4.0 exp (2900/T)
	• • • • • • • • • • • • • • • • • • • •
	K(2000°K)
H ₂ Cro ₃ + e = HCro ₃ + H	K(2000°K)
$H_2Cro_3 + e^- = HCro_3^- + H$ $H_3VO_4 + e^- = H_2VO_4^- + H$	
	2.0
$H_3VO_4 + e^- = H_2VO_4^- + H$	2.0
$H_3 VO_4 + e^- = H_2 VO_4^- + H$ $H_2 VO_4^- = HVO_3^- + H_2 O$	2.0 1.8 50
$H_3VO_4 + e^- = H_2VO_4^- + H$ $H + H_2VO_4^- = HVO_3^- + H_2O$ $H + HCrO_3^- = CrC_2^- + H_2O$	2.0 1.8 50 10

TABLE IV

VAPOR PRESSURE OF MOO3(s)

$$LOG P (Mo_3O_9) = \frac{14900}{T} - 14.39 MM HG$$

$$LOG P (Mo_4o_{12}) = \frac{17300}{T}$$
 16.88 MM HG

$$LOG P (Mo_5o_{15}) = \frac{20240}{T} - 19.47 MM HG$$

SATURATED VAPOR COMPOSITION, 7

T, OK	Mo ₃ O ₉	Mo4012	Mo ₅ 0 ₁₅
800	75.5	23.2	1.3
850	65.5	30.0	4.5
905	54.5	37.6	7.9
950	45.7	42.5	11.8
1000	36.0	44.5	19.5

TABLE V

VAPOR COMPOSITION OF WO3 SYSTEM

A COMPANY OF THE STATE OF THE S

Press =	1.0 x 1.0	² ATM.		MOL	FRAC	TIONS	
T OK	WO	WO ₂	WO3	¥206	W309	W4012	02
1200	0	0	1.65-10	2.292-4	2.393-1	7.604-1	1.068-6
2000	2.68-10	1.527-6	4.992-4	5.137-1	4.350-1	3.349-2	5.749-3
3000	6.184-3	1.273-1	1.186-1	6.611-1	3.081-3	7.255-6	7.446-2
						•	
Press -	1.0 x 10-4	4 ATM.		•			
TOK	WO	wo ₂	wo ₃	w ₂ 0 ₆	W ₃ O ₉	W4012	02
1200	0	1.76-15	4.56-9	1.787-3	5.264-1	4.718-1	8.322-6
2000	1.977-7	1.487-4	6.407-3	8.669-1	9.651-2	9.767-4	9.749-3
3000	1.055-1	4.619-1	9.154-2	3.937-3	1.416-7	2.573-12	3.369-1

TABLE VI

EQUILIBRIUM COMPOSITION COMPUTATIONS FOR BORON QUENCHANT + ABLATION PRODUCTS

 $c_2H_2 + o_2 + 1\% HBO_2 + TRACE CESIUM$

0.5 < R < 2.4 $2000^{\circ} < T < 4000^{\circ} K$ 0.025

INCLUDED HBO2, BO2, BO, B2O3, B2O2, HBO, B, BO2, BO, E^+ , HBO+

GENERATED DATA FOR BO: \sum STATE; D(B-O) = 215 KCAL GMOL

USED E.A.(BO₂) = 94 KCAL/GMOLF. E.A.(BO) = 57.5 KCAL/GMOLE

A THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

CONCLUSIONS

oos oo taalambarka kalabarka kalabarka kalabarka ka kalabarka ka kalabarka ka ka

- 1. HBO2, BO2, BO AND B ARE THE IMPORTANT BORON-CONTAINING SPECIES.
- 2. BO2 IS THE ONLY IMPORTANT NEGATIVE ION.

TABLE VII

REACTION SCHEME FOR H/B/O SYSTEM

$$HBO_2 + H \longrightarrow H_2 + BO_2$$

$$HBO_2 + OH \longrightarrow H_2O + BO_2$$

$$BO_2 + M \longrightarrow O + BO + M$$

$$BO + M \longrightarrow O + B + M$$

entre des des de la company de

TABLE VIII

VOLATILE BORON-CONTAINING CARRIERS

- The vapor pressure of HBO2, b.p. 1390°K, is too low to volatilize sufficient boric acid into the boundary layer at high altitudes.
- 2. A survey of known boron compounds reveals that cyclic B-N-H-X compounds have boiling points, $\sim 50^{\circ}$ -150°C.

(BORAZOLE)

3. $B_3H_6N_3$ is thermally stable at $500^{\circ}C$. $B_3H_6N_3$ reacts with O_2 .

Heat of Combustion	Kcal/G
в ₂ н ₆	19 2
л ₅ н ₉	17.5
B ₁₀ H ₁₄	16.7
B ₃ H ₆ N ₃	6.88

4. Cyclic B-N-H-X compounds polymerize to yield polycyclic molecules whose melting points are 100°-200°C higher than the monomer.

and the second of the second property of the second second second second second second second second second se

Figure 1. Vapor Pressure of Rhenium Compounds

countries selected and described assemblished the selections.

Figure 2. Vapor Pressure of Wake Quenchants

Figure 3. Vapor Pressure of Tungsten Compounds

Figure 4. Vapor Pressure of Boron Compounds

THE CHARGE CONTRACTOR OF THE C

REFERENCES

- 1. Zavitsanos, P. D., "Electron Attachment and Thermodynamic Studies of Electrophilic Compounds," Technical Report SAMSO-TR-70-318, June 1971.
- Glemser, O., Muller, A., and Stocke, U., Zeit. Fur Anorg. and Allgem, Chem., Band 333, 25 (1964).
- 3. Battles, J. E., Gundersen, G. E., and Edwards, R. K., J. Phys. Chem. 72, 3963 (1968).
- 4. Smith, W. T., Line, Jr., L. E., and Bell, W. A., J. Amer. Chem. Soc. 74, 4946 (1952).
- 5. Skinner, H. B., "Mass Spectrometric Studies of Gaseous Oxides of Rhenium and of the Lanthanum Trifluoride Dimer," U. California Radiation Laboratory Report 19645, 1970.
- 6. Brewer, L., and Rosenblatt, G. M., "Dissociation Energies of Gaseous Metal Dioxides," Chemical Review 61, 257 (1961).
- 7. Brewer, L., and Rosenblatt, G. M., 'Dissociation Energies and Free Energy Functions of Gaseous Monoxides," Advanced in High Temperature Chemistry, Volume 2, 1969.
- Moore, C.: Atomic Energy Levels, N.B.S. Cir. No. 467, Vols. I, II, III,
 U. S. Gov't. P. O., Washington, D. C. (1949, 1952, 1958).
- 9. King, E. G., Richardson, D. W., and Mrazek, R. V., U. S. Bureau of Mines Rep. Invest. (1969), No. 7323.
- 10. Kazenas, E. K., Chizhikov, D. M., and Tsvelkov, Yu. V., "Mass Spectrometric Study of the Composition and Vapor Pressure of Rhenium Oxides," Issled. Protsessov Met. Tsvet. Redk. Metal, 1969, 30-4, Ed. by Chizhikov, D. M., Nauka, Moscow, USSR. (See Chemical Abstracts 72, 94462P) (1970).
- 11. Foster, J. S., "Thermodynamics of the Re-O and Mo-O Systems," Doctoral Dissertation, Ohio State University, 1964, (See Dissertation Abstracts 26, 7180) (1965).
- 12. Krestov, G. A., Zh. Fiz. Khim. 1968, 42 (4), 866-73.
- l3. Huston, J. L., Claassen, H. H., J. Chem. Phys. 1970, 52 (11), 5646-8.
- 14. McDowell, R. S., Goldblatt, M., J. Inorg. Chem. 10 (3), 625 (1971).
- Semenov, G. A., and Shalkova, E. K., Vestn. Leningrad University Fiz. Khim. 1969 (3), 111-15.
- Ulbricht, K., and Kriegsmann, H., Z. Anorg. Allg. Chem. 1968, 358 (5-6), 193.

- 17. Petrov, K. I., Bardin, V. A., and Kalyuzhnaya, V. G., Dokl. Akad. Nauk USSR, 1968, 178 (5), 1097-8.
- 18. Spoliti, M., and Stafford, F. E., Ino . Chem. Acta, 1968, 2(3), 301-4.
- 19. Skudlarski, K., Prowart, J., Exteen, G., and VanderAuwera-Mahiel, A., Trans. Far. Soc., 63, 1146 (1967).
- 20. Sinitsyn, et al, Zh. Neorg, Khim. 12(12), 3397-9 (1969).
- JANAF Thermochemical Tables, Dow Chemical Company, Midland, Michigan, June 30, 1970.
- 22. Kazenas, E. K., and Tsvetskov, Yu. V., Russian J. Inorg. Chem 14(1), 5, (1969).
- 23. DeMaria, G., Burns, R. P., Drowart, J., and Inghram, M. G., J. Chem. Phys. 32(5), 1373 (1960).
- 24. Berkowitz-Mattuck, J. B., Büchler, A., Engelke, J. L., and Goldstein, S. N., J. Chem. Phys. 39 (10), 2722 (1963).
- 25. Yamdagni, R., Pupp, E., and Porter, R. F., J. Inorg. Nucl. Chem. 1970, 32, 3509.
- 26. Kazenas, E. K. and Tsvetkov, Yu. V., Zh. Fiz. Khim. 41(12), 3112-14 (1967).
- 27. Kazenas, E. K., Chizhikov, D. M., Tsvetkov, Yu. V., Issled. Protsessov Met. Tsvet. Redk. Metal. 1969, 19-27. Ed. by Chizhikov, D. M., Izd. "Nauka": Moscow, USSR.
- 28. Finch, A., Gardner, P. J., "Thermochemistry of Boron Compounds," Chapter in Progress in Boron Chemistry V3 p. 177, Pegamon Press New York 1970. Ed. by R. J. Brotherton and H. Steinberg.
- 29. Jensen, D. E., Trans. Faraday Scc., 65, 2123 (1969).
- 30. Jensen, D. E., J. Chem. Phys., 52, 3305 (1970).
- 31. Seshadri, K. S., Nimon, L. A. and White, D., J. Mol. Spect. 30, 128 (1969).