3 Affine algebraische Mengen

Definition 4.

- $\mathbb{A}^n(k)$, der affine Raum der Dimension n (über k), bezeichne k^n mit der Zariski-Topologie.
- \bullet Abgeschlossene Teilmengen von $\mathbb{A}^n(k)$ heißen affine abgeschlossene Mengen.

Beispiel 5. Da k[T] ein Hauptidealring ist, sind die abgeschlossen Mengen in $\mathbb{A}^1(k)$: \emptyset , \mathbb{A}^1 , Mengen der Form V(f), $f \in k[T] \setminus \{k\}$ (endliche Teilmengen). Insbesondere sieht man, dass die Zariski-Topologie im Allgemeinen nicht Hausdorff ist.

Beispiel 6. $\mathbb{A}^2(k)$ hat zumindestens als abgeschlossene Mengen:

- \emptyset , \mathbb{A}^2 ;
- Einpunktige Mengen: $\{(x_1, x_2) = V(T_1 x_1, T_2 x_2);$
- V(f), $f \in k[T_1, T_2]$ irreduzibel.

Ferner alle endliche Vereneigungen dieser Liste. (Dies sind in der Tat alle, denn später sehen wir: "irreduzibele" abgeschlossene Mengen entsprechen den Primidealen, und $k[T_1, T_2]$ hat "Krull-Dimension 2".)