Problem 1. Section 3.5 #176

For the following exercises, find $\frac{dy}{dx}$ for the given functions. Here $y = 3\csc(x) + \frac{5}{x}$.

We have
$$\left[\frac{dy}{dx} = -3\csc(x)\cot(x) - \frac{5}{x^2}\right]$$
.

Problem 2. Section 3.5 #180

For the following exercises, find $\frac{dy}{dx}$ for the given functions. Here $y = \sin(x)\tan(x)$.

We have
$$\frac{dy}{dx} = \cos(x)\tan(x) + \sin(x)\sec^2(x) = \sin(x)(1 + \sec^2(x))$$

Problem 3. Section 3.5 #182

For the following exercises, find $\frac{dy}{dx}$ for the given functions. Here $y = \frac{\tan(x)}{1-\sec(x)} = \frac{\sin(x)}{\cos(x)-1}$.

Here
$$y = \frac{\tan(x)}{1-\sec(x)} = \frac{\sin(x)}{\cos(x)-1}$$

We have
$$\frac{dy}{dx} = \frac{\cos(x)(\cos(x)-1)+\sin^2(x)}{(1-\cos(x))^2} = \frac{1}{1-\cos(x)}$$
.

Section 3.5 #196 Problem 4.

For the following exercises, find
$$\frac{d^2y}{dx^2}$$
 for the given functions.
Here $y = \sec^2(x)$. Therefore, $\frac{dy}{dx} = 2\sec^2(x)\tan(x)$.

Further we have
$$ag{d^2y \over dx^2} = 2(2\sec^2(x)\tan^2(x) + \sec^4(x)) = 2\sec^2(x)(2\tan^2(x) + \sec^2(x))$$

Section 3.5 #198 Problem 5.

Find all x values on the graph of $f(x) = x - 2\cos(x)$ for $0 < x < 2\pi$ where the tangent line has slope 2.

Given that
$$f(x) = x - 2\cos(x)$$
, we immediately have $f'(x) = 1 + 2\sin(x)$.

Solve the equation
$$f'(x) = 2$$
 for x , where $0 < x < 2\pi$. We get $x = \frac{\pi}{6}$ or $x = \frac{5\pi}{6}$

Problem 6. Section 3.5 #204

The amount of rainfall per month in Phoenix, Arizona, can be approximated by $y(t) = 0.5 + 0.3\cos(t)$, where t is months since January. Find y' and determine the intervals where the amount of rain falling is decreasing.

As $y(t) = 0.5 + 0.3\cos(t)$, we get $y' = -0.3\sin(t)$. We need to find when y' < 0. That is to say, we need to find when $\sin(t) > 0$ as t varies from 1 to 12.

After some calculating, we obtain the intervals, which are [1,3] and [7,9], that is, from January to March and from July to September.

Problem 7. Section 3.5 #206

For the following exercises, use the quotient rule to derive the given equations. We need to show that $\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$.

Rewrite
$$sec(x) = \frac{1}{\cos(x)}$$
. Then we have $\frac{d}{dx}(\sec(x)) = \frac{d}{dx}\frac{1}{\cos(x)}$.

Using the quotient rule, we get
$$\frac{d}{dx} \frac{1}{\cos(x)} = \frac{\sin(x)}{\cos^2(x)} = \sec(x)\tan(x)$$

Problem 8. Section 3.5 #210

For the following exercises, find the requested higher-order derivative for the given functions. Here we have $y = 3\sin(x) + x^2\cos(x)$.

Therefore, we get
$$\frac{dy}{dx} = 3\cos(x) + 2x\cos(x) - x^2\sin(x)$$
.

Further we obtain
$$\frac{d^y}{dx^2} = -3\sin(x) + 2\cos(x) - 2x\sin(x) - 2x\sin(x) - x^2\cos(x)$$
. That is to say, $\left[\frac{d^2y}{dx^2} = -(4x+3)\sin(x) - (x^2-2)\cos(x)\right]$.