

FOUNDATIONS OF COMPUTER SCIENCE LECTURE 2: Non-deterministic Automata and Closure Properties

Prof. Daniele Gorla

Deterministic vs Non-deterministic Automata SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

- Automata defined and seen in the previous class are *deterministic* (in short DFA), in the sense that, when the machine is in a given state and reads the next input symbol, we exactly know what the next state will be.
- By contrast, in a non-deterministic automaton (in short NFA), several choices may exist for the next state at any point.

Epsilon means that you can move without receiving any imput

• Example:

Here

- State q_1 has one exiting arrow for 0, but it has two for 1;
- q_2 has one arrow for 0, but it has none for 1;
- q_2 is able to move without reading any input character (i.e., by reading ε) \rightarrow zero, one, or many arrows labeled with ε may exit from each state.
- This is in sharp contrast with DFA, where every state always has exactly one exiting transition arrow for each symbol in the alphabet (and doesn't move with ε).

Computing with NFA

- We run an NFA on an input string starting from the initial state (like for DFA)
- Let q be the current state and a the next input symbol
- For every *a*-transition, the machine splits into multiple copies of itself and follows *all* the Every time there's a transition or an epsilon transition you "fork" or do a "branch" of the automata and possible fitties in parallel. Each copy of the machine takes one of the possible ways to all these possible futures proceed and continues from the new state with the next input.
 - Furthermore, for every ε -transition, the machine splits into multiple copies without reading any input, one following each of the exiting ε -labeled arrows. Then the machine proceeds from the new state, still with input a (that has not been consumed in the transition).
 - If no a-transition nor any ε -transition exits from q in a copy of the machine, that copy dies, along with the branch of the computation associated with it.
 - if *any one* of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input string.

Hence, Non-determinism is a kind of parallel computation wherein multiple independent "threads" run concurrently. When the NFA splits to follow several choices, that corresponds to a process "forking" into several children, each proceeding separately.

If at least one of these processes accepts, then the entire computation accepts.

Computing with NFA (cont'd)

Another way to think of a non-deterministic computation is as a tree of possibilities:

- The root of the tree is the start of the computation
- Every branching point in the tree corresponds to a point in the computation at which the machine has multiple choices.
- The machine accepts if there exists at least one of the computation branches that ends in an accept state:

Example

Consider again the automaton:

The computation tree on input 010110 is:

Since <u>at least one</u> path in the tree terminates in an accepting state, the NFA accepts 010110

NFA: Formal definition

The formal definition of a NFA is similar to that of a DFA.

The crucial difference is in the transition function:

- In a DFA, the transition function takes a state and an input symbol and produces *the* next state;
- In an NFA, the transition function takes a state and an input symbol *or the empty string* and produces *the set of possible next states*.

Notation:

- For any set Q, we write $\mathcal{P}(Q)$ to be the set of all subsets of Q ($\mathcal{P}(Q)$ is called the **power set** of Q).
- For any alphabet Σ , we write Σ_{ε} to denote $\Sigma \cup \{\varepsilon\}$.

DEFINITION

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, P(Q) contains also the empty set, to model the dead branch
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

NFA: Acceptance

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w=y_1y_2\cdots y_m$, where each y_i is a member of Σ_{ε} and a sequence of states r_0,r_1,\ldots,r_m exists in Q with three conditions:

since we can also do an epsilon transition, we don't split w in characters, but in y, where each y can be either a character or an epsilon we interleave characters and epsilon

1.
$$r_0 = q_0$$
,

2.
$$r_{i+1} \in \delta(r_i, y_{i+1})$$
, for $i = 0, ..., m-1$, and

3.
$$r_m \in F$$
.

Notice that, in general, $m \ge |w|$ because some of the y_i 's can be ε (actually, m = |w| if and only if none of the y_i 's is ε)

Example

Let's again consider:

Its formal description is:

$$(Q, \Sigma, \delta, q_1, F)$$

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is given as

	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

Acceptance of 010110 can be obtained either

- by decomposing 010110 into 0-1-0-1-1-0 and having the path $q_1 q_2 q_3 q_4 q_4 q_4$, or
- by decomposing 010110 into 0-1-0-1- ε -1-0 and having the path $q_1 q_1 q_1 q_2 q_3 q_4 q_4$

Another example

We want to build an automaton that recognizes $\{0^k : k \text{ is multiple of 2 or of 3}\}$

Idea:

It is easy to recognize 0^k , for k multiple of 2:

Similarly, it is easy to recognize 0^k , for k multiple of 3:

Thus, by adding a new state and two ε -transitions, we can recognize the required language:

In particular,

- To accept 00 or 0000, the upper path must be taken
- To accept 000, the lower path must be taken
- To accept 000000, either path can be taken
- No path will lead to accept 0 or 00000

Every DFA is an NFA where you don't have any epsilon-transition and you will end up always in sets with singletons

Equivalence of NFA and DFA (1)

Thm.: For every NFA N there exists a DFA M such that L(N) = L(M)

PROOF Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing A. let's first consider the easier case wherein N has no ε arrows.

The new set of states is the power set, the starting state is a set with only one element and the a state is an acceptance state if that state contains one of the original acceptance states

$$Q' = \mathcal{P}(Q)$$
 $q_0' = \{q_0\}$ $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

For
$$R \in Q'$$
 and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$

Visually:

Since in a NFA we can end up in a set of states, we use as new states set of states, so that we remove the branch problem. We'll pass from a set of states to a set of states That will always belong to Q'. The collapse is done by taking the union

Equivalence of NFA and DFA (2)

If N has ε -transitions, let E(R) denote the ε -closure of $R \subseteq Q$:

 $E(R) = \{q | q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$

Visually:

If you don't have any epsilon arrow, then E(delta)=R, or else it will be R subset E(delta)

Then, the construction of the previous slide is modified as follows:

$$q_0' = E(\lbrace q_0 \rbrace)$$

$$\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$$

If we include epsilon-transitions, then we include also epsilon moves in the set

Q.E.D.

Cor.: L is regular if and only if there exists a NFA N such that L = L(N)

Remark: M can have a numb. of states that is 2^n , where n is the numb. of states of N!!

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

Equivalence of NFA and DFA: An example

Consider the NFA:

Its deterministic counterpart has as states the set $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Its starting state is $E(\{1\}) = \{1, 3\}$

whereas its final states are $\{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$

Finally, the transition relation is the following:

 $\{1\}$ and $\{1,2\}$ are unreachable, so we could remove them but this is the "official" construction

Notice that {1} and {1,2} are unreachable, and so the DFA can be simplified (we're not interested in this now)

DEFINITION

Let A and B be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- **Union**: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

A* is the concatenation with any element of A as many times as we want

EXAMPLE

Let the alphabet Σ be the standard 26 letters $\{a, b, ..., z\}$. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then

$$A \cup B = \{ \mathsf{good}, \mathsf{bad}, \mathsf{boy}, \mathsf{girl} \},$$

 $A \circ B = \{ \text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl} \}, \text{ and }$

In concatenation the order matters

 $A^* = \{ \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . . }.$

Closure properties for regular languages

A collection of objects is *closed* under some operation if applying that operation to members of the collection returns an object still in the collection.

EXAMPLE:

- Let $N = \{0,1,2,3,...\}$ be the set of natural numbers; then, N is *closed under sum and multiplication*, i.e., for any x and y in N, x+y and xy are also in N.
- By contrast, N is not closed under division, as 1 and 2 are in N but 1/2 is not.

We show that the collection of regular languages is closed under the three regular operations.

Because of what we've just proved, given two automata (deterministic or not) for A and B, it suffices to show that there exists NFA able to recognize $A \cup B$, $A \circ B$, and A^*

Closure under union

Thm.: if A_1 and A_2 are regular, then $A_1 \cup A_2$ is regular too.

PROOF

For simplicity we assume that the characters are the same. If now we have just to take as new character set the union of the two

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

Intuitively:

Formally:

$$Q = \{q_0\} \cup Q_1 \cup Q_2.$$

The state q_0 is the start state of N.

The set of accept states $F = F_1 \cup F_2$.

Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = oldsymbol{arepsilon} \ \emptyset & q = q_0 ext{ and } a
eq oldsymbol{arepsilon} \end{cases}$$

Closure under concatenation

Thm.: if A_1 and A_2 are regular, then $A_1 \circ A_2$ is regular too.

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

Intuitively:

Formally:

1.
$$Q = Q_1 \cup Q_2$$
.

- **2.** The state q_1 is the same as the start state of N_1 .
- **3.** The accept states F_2 are the same as the accept states of N_2 .
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
eq arepsilon F_2 ext{ and } a
eq arepsilon G_2 ext{ and }$$

Closure under star

Thm.: if A_1 is regular, then A_1^* is regular too.

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

Intuitively:

Formally:

1.
$$Q = \{q_0\} \cup Q_1$$
.

2. The state q_0 is the new start state.

3.
$$F = \{q_0\} \cup F_1$$
.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Q.E.D.

Other Closure Properties (complement, intersection, difference)

The complement of a language is equal to Sigma*-L, so all the possible combinations of characters minus the ones we found

Thm.: if A_1 and A_2 are regular, then $\overline{A_1}$, $A_1 \cap A_2$ and $A_1 \setminus A_2$ are regular.

Proof:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = A_1$.

Then, $M' = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA such that $L(M') = \overline{A_1}$.

If the normal automaton rejects a string, then its complement will accept that string so, in order to do this, all the finite states become normal states and all the normal states become final

By De Morgan's Law, $A_1 \cap A_2 = \overline{\overline{A_1} \cup \overline{A_2}}$. (Can be done only

Since regular languages are closed by union and complement, they are also closed by intersection.

By basic set theory, we have that $A_1 \setminus A_2 = A_1 \cap \overline{A_2}$.

Since regular languages are closed by intersection and complement, they are also closed by difference.

Q.E.D.

Closure under reversal

Recall that the reversal of a string w is the string w^R , where

$$w^{R} = a_n \dots a_I$$

$$w^{R} = a_n \dots a_1$$
 whenever $w = a_1 \dots a_n$

Clearly, $\varepsilon^{R} = \varepsilon$ (obatained from above whenever n = 0).

So, given a language L, we define $L^{R} = \{w^{R} \mid w \in L\}$.

Thm.: If L is regular, also L^R is regular.

Proof

Consider a NFA for L:

From it, we can derive a NFA (with ε moves) for L^{R} :

where S is a new state.

Q.E.D.

EXERCISE: Formalize this intuitive proof.