

Renato Maia Silva

Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Marco Antonio Grivet Mattoso Maia

Rio de Janeiro Abril de 2005

Renato Maia Silva

Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marco Antonio Grivet Mattoso Maia Orientador Centro de Estudos em Telecomunicações – PUC-RIO

Prof. Rodolfo Sabóia Lima de Souza Centro de Estudos em Telecomunicações – PUC-Rio

> Prof. Ewerton Longoni Madruga Universidade Estácio de Sá

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 26 de abril de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Renato Maia Silva

Graduado em Engenharia Eletrônica e de Telecomunicações pela Pontifícia Universidade Católica de Minas Gerais. Atuação profissional e pesquisa em aspectos de segurança da informação aplicados a redes de computadores e sistemas de telecomunicações.

Ficha Catalográfica

Silva, Renato Maia

Redes neurais artificiais aplicadas à detecção de intrusão em redes TCP/IP / Renato Maia Silva ; orientador: Marco Antonio Grivet Mattoso Maia. – Rio de Janeiro : PUC, Departamento de Engenharia Elétrica, 2005.

144 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

1. Engenharia elétrica – Teses. 2. Internet. 3. Detecção de Intrusos. 4. Segurança da Informação. 5. Redes Neurais. 6. Inteligência Computacional. I. Maia, Marco Antonio Grivet Mattoso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

Para Matheus, antes mesmo de nascer, já transformou minha vida enchendo-a de alegria.

Agradecimentos

Ao meu orientador, Professor Marco Antônio Grivet Mattoso Maia pelo apoio, enorme paciência e incentivo para a realização deste trabalho.

À minha querida esposa Kiuza, pelo amor incondicional e companheirismo.

Para meu pai, minha mãe e minhas irmãs por sempre estarem ao meu lado

Ao Professor João Célio Barros Brandão pelo incentivo, e amizade.

Aos amigos e colegas que tanto me ajudaram e apoiaram. Em especial, agradeço ao Tiago Vinhoza, Luis Resende e Arthur Góes. Espero um dia poder retribuir o apoio recebido.

Aos meus sócios Helio e Soraya pela paciência e compreensão durante minhas ausências.

A CAPES pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Silva, Renato Maia; Maia, Marco Antonio Grivet Mattoso (Orientador). **Redes Neurais Aplicadas à Detecção de Intrusão em Redes TCP/IP.** Rio de Janeiro, 2005. 144p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Ataques e intrusões são uma ameaça constante para empresas e organizações interconectadas através de redes de pacotes e da Internet. Ferramentas tradicionais de detecção de ataques e intrusões dependem de conhecimento prévio sobre as técnicas de ataque não sendo capazes de detectar novas técnicas de ataques. Este trabalho investiga a aplicação de redes neurais artificiais no auxílio à detecção de intrusão em redes de pacotes TCP/IP. Utilizando a capacidade de generalização das redes neurais, espera-se que o sistema detecte novos ataques mantendo uma alta taxa de acertos. É empregado também técnica de comitê de redes neurais especialistas para obtenção de maior precisão e menor taxa alarmes falsos.

Palavras-chave

Internet; Detecção de Intrusos; Segurança da Informação; Redes Neurais; Inteligência Computacional;

Abstract

Silva, Renato Maia; Maia, Marco Antonio Grivet Mattoso (Advisor). **Artificial Neural Networks Applied to Intrusion Detection on TCP/IP Networks.** Rio de Janeiro, 2005. 144p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Computer attacks and intrusions poses significant threats to companies and organizations interconnected through packet networks and the Internet. Most current approaches to intrusion detection rely on previous knowledge of attack patterns and are not capable of detecting new intrusion techniques. This work presents the application of artificial neural networks as a component of an intrusion detection system. Exploring neural networks generalization capabilities the system should be able to detect new attack patterns and sustain a high detection rate. Neural networks ensembles are also used in order to achieve higher accuracy and lower false-positive rates.

Keywords

Internet; Intrusion Detection; Neural Networks; Information Security; Computational Intelligence

Sumário

1 Introdução	15
1.1. Segurança em Redes de Computadores	15
1.2. Trabalhos anteriores	
1.3. Organização do texto	
2 Sistemas de Detecção de Intrusão	22
2.1. O que é Detecção de Intrusão ?	
2.2. Tipos de Sistemas de Detecção de Intrusão	23
2.2.1. Método de detecção	24
2.2.2. Arquitetura	
2.2.3. Pós-detecção	
•	
3 Ataques e Intrusões	35
3.1. Taxonomia para Ataques e Intrusões	
3.1.1. Níveis de Privilegio	
3.1.2. Métodos de Transição e Exploração	
3.1.3. Transição entre níveis de privilégio	
3.1.4. Ações	
3.1.5. Uso da taxonomia para descrever ataques	
3.2. Categorias de Ataques / Intrusões	
3.2.1. Negação de Serviço (DOS ou <i>Denial of Service</i>)	
3.2.2. Usuário para Superusuário (<i>User to Root</i>)	
3.2.3. Remoto para usuário (Remote to User)	
3.2.4. Reconhecimento (<i>Probing</i>)	
5,	
4 Redes Neurais Artificiais	46
4.1. Modelo de neurônio artificial	
4.2. Topologia e Arquitetura de Redes Neurais	
4.3. Redes Neurais Multicamadas	49
4.3.1. Redes Neurais Multicamadas Perceptron (MLP)	
4.4. Algoritmos de Aprendizado	
4.4.1. Aprendizado Supervisionado	
4.4.2. Aprendizado Não-supervisionado	
4.4.3. Aprendizado em lote ("batch")	
4.4.4. Aprendizado Sequencial	
7 Promat <u>a</u> udo Goquericiani	
5 Cenários Analisados	59
5.1. Projeto MIT/DARPA 1998-1999	
5.2. Base de dados para treinamento e testes	
5.3. Pré-processamento da base de dados	
5.4. Treinamento e Simulação das redes neurais	
o	/ 1
6 Resultados	7/
6.1. Matriz de Confusão e Curvas ROC	7 <i>4</i> 7 <i>1</i>
6.2. Classificador Binário	
6.2.1. Características intrínsecas como entrada	

6.2.2. Todas as características como entrada	84
6.2.3. Características Especialistas como Entrada	
6.2.4. Características Temporais como Entrada	97
6.3. Classificador por Classes	
6.4. Classificador Preciso para Classe DoS	
6.5. Classificador Preciso para Classe Reconhecimento	
6.6. Classificador Preciso para Classe U2R	
6.7. Classificador Preciso para Classe R2L	
6.8. Comitê de Redes Especialistas	
6.8.1. Decisão por voto majoritário	
6.8.2. Decisão pela Média	
6.8.3. Decisão por algoritmo adaptativo proposto	
6.8.4. Curvas ROC	117
7 Conclusão	119
Referências Bibliográficas	121
Troising Dibliogranous	
An ân dias A. Dados an de atamas. Namas a de Occida	404
Apêndice A Padrões de ataque – Negação de Serviço	124
Apêndice B Padrões de ataque – Reconhecimento	131
Apêndice C Padrões de ataque – Remoto para local	133
7 periales o Faurese de alaque - Remete para lecalificialism	
Anândias D. Dadus as de etenus - Haufuis naus Curs es escretis	407
Apêndice D Padrões de ataque – Usuário para Super-usuario	137
Apêndice E Código fonte desenvolvido	139

Lista de figuras

Figura 1-1 : Vulnerabilidades CERT/CC	16
Figura 1-2 : Incidentes CERT/CC	17
Figura 1-3 : Incidentes NBSO (mês)	18
Figura 1-4 : Ataques NBSO (Acumulado)	19
Figura 2-1 : Classificação SDI	23
Figura 2-2 : Transição de estados	. 25
Figura 2-3: Exemplo clássico de solução de detecção de intrusos	28
Figura 2-4 – Cabeçalho IP	29
Figura 2-5 – Cabeçalho TCP	30
Figura 2-6 – Cabeçalho UDP	30
Figura 2-7 : Módulos de um SDI	32
Figura 3-1 : Descrevendo ataques com a Taxonomia	.39
Figura 4-1 : Neurônio Artificial	47
Figura 4-2 : Funções de ativação: (a) Sinal. (b) Linear por partes.	
(c) Sigmoidal	48
Figura 4-3 : Redes Multicamadas	.49
Figura 4-4 : Treinamento Supervisionado	.53
Figura 4-5 : Condição de Parada	57
Figura 5-1 – Diagrama da Rede de Simulação	.60
Figura 5-2 : Pré-processamento dos dados	.68
Figura 6-1 – Diagrama Venn	74
Figura 6-2 : Treinamento 1. DS1	78
Figura 6-3 : Treinamento 1. DS2	79
Figura 6-4 : Treinamento 1. DS3	80
Figura 6-5 : Treinamento 1. DS4	81
Figura 6-6 : Treinamento 1. DS5	.82
Figura 6-7: 1. ROC: TP x FP	.83
Figura 6-8 : 1. Variação ROC – AC x FP	.84
Figura 6-9 : Treinamento 2. DS1	85
Figura 6-10 : Treinamento 2. DS2	.86
Figura 6-11 : Treinamento 2. DS3	87
Figura 6-12 : Treinamento 2. DS4	88

Figura 6-13 : Treinamento 2. DS5	89
Figura 6-14 : 2. ROC – TP x FP	90
Figura 6-15 : 2. Variação ROC – AC x FP	90
Figura 6-16 : Treinamento 3. DS1	91
Figura 6-17 : Treinamento 3. DS2	92
Figura 6-18 : Treinamento 3. DS3	93
Figura 6-19 : Treinamento 3. DS4	94
Figura 6-20 : Treinamento 3. DS5	95
Figura 6-21 : 3. ROC – TP x FP	96
Figura 6-22 : 3. Variação ROC – AC x FP	97
Figura 6-23 : Treinamento 4. DS1	98
Figura 6-24 : Treinamento 4. DS2	99
Figura 6-25 : Treinamento 4. DS3	100
Figura 6-26 : Treinamento 4. DS4	101
Figura 6-27 : Treinamento 4. DS5	102
Figura 6-28 : 4. ROC – TP x FP	103
Figura 6-29 : 4. Variação ROC – AC x FP	103
Figura 6-30 : Treinamento RN por classe – DS1	104
Figura 6-31 : Treinamento RN Classe DoS – DS1	106
Figura 6-32 : Treinamento RN Classe DoS – DS3	107
Figura 6-33 : Treinamento RN Classe "Probe" – DS1	109
Figura 6-34 : ROC para Comitês – TP x FP	117
Figura 6-35 : Variação ROC para Comitês – AC y FP	118

Lista de tabelas

Tabela 3-1 : Privilêgios	36
Tabela 3-2 : Métodos de Transição e Ataque	37
Tabela 3-3 : Ações	38
Tabela 3-4 : Categorias de Padrões de Ataque	40
Tabela 3-5 : Negação de Serviço	42
Tabela 3-6 : User-to-Root	43
Tabela 3-7 : Remote-to-User	44
Tabela 3-8 : Reconhecimento	45
Tabela 5-1 : Características intrínsecas de conexões TCP/IP	61
Tabela 5-2 : Características de conexão por conhecimento especialista	62
Tabela 5-3 : Características temporais : janela de 2 segundos	64
Tabela 5-4 : Distribuição da base de treinamento	65
Tabela 5-5 : Distribuição da base de testes	67
Tabela 5-6 : Flags	69
Tabela 5-7 : Protocolos	69
Tabela 5-8 : Labels	69
Tabela 5-9 : Serviços	70
Tabela 5-10 : Subconjuntos de Treinamento	71
Tabela 5-11 : Cenários analisados para redes MLP	72
Tabela 6-1 : Exemplo de Matriz de Confusão	75
Tabela 6-2 : CM 1. DS1	78
Tabela 6-3 : Parâmetros 1. DS1	78
Tabela 6-4 : CM 1. DS2	79
Tabela 6-5 : Parâmetros 1. DS2	79
Tabela 6-6 : CM 1. DS3	80
Tabela 6-7 : Parâmetros 1. DS3	80
Tabela 6-8 : CM 1. DS4	81
Tabela 6-9 : Parâmetros 1. DS4	81
Tabela 6-10 : CM 1. DS5	82
Tabela 6-11 : Parâmetros : 1. DS5	82

Tabela 6-12 : Parâmetros 2. DS1	85
Tabela 6-13 : Parâmetros 2. DS1	85
Tabela 6-14 : CM 2. DS2	86
Tabela 6-15 : Parâmetros 2. DS2	86
Tabela 6-16 : CM 2. DS3	87
Tabela 6-17 : Parâmetros 2. DS3	87
Tabela 6-18 : CM 2. DS4	88
Tabela 6-19 : Parâmetros 2. DS4	88
Tabela 6-20 : CM 2. DS5	89
Tabela 6-21 : Parâmetros 2. DS5	89
Tabela 6-22 : CM 3. DS1	92
Tabela 6-23 : Parâmetros 3. DS1	92
Tabela 6-24 : CM 3. DS2	93
Tabela 6-25 : Parâmetros 3. DS2	93
Tabela 6-26 : CM 3. DS3	94
Tabela 6-27 : Parâmetros 3. DS3	94
Tabela 6-28 : CM 3. DS4	95
Tabela 6-29 : Parâmetros 3. DS4	95
Tabela 6-30 : CM 3. DS5	96
Tabela 6-31 : Parâmetros 3. DS5	96
Tabela 6-32 : CM 4. DS1	98
Tabela 6-33 : Parâmetros 4. DS1	98
Tabela 6-34 : CM 4. DS2	99
Tabela 6-35 : Parâmetros 4. DS2	99
Tabela 6-36 : CM 4. DS3	100
Tabela 6-37 : Parâmetros 4. DS3	100
Tabela 6-38 : CM 4. DS4	101
Tabela 6-39 : Parâmetros 4. DS4	101
Tabela 6-40: CM 4. DS5	102
Tabela 6-41 : Parâmetros 4. DS5	102
Tabela 6-42 : CM por classe - DS1	105
Tabela 6-43 : CM para técnica ganhadora do KDDCup 1	999105
Tabela 6-44 : CM Classe DoS – DS1	107
Tabela 6-45 : CM Classe DoS - DS3	108

Tabela 6-46 : CM Classe Reconhecimento – DS1	.109
Tabela 6-47 : CM Classe Reconhecimento – DS2	.109
Tabela 6-48 : CM Classe U2R – DS1	.110
Tabela 6-49 : CM Classe U2R – DS4	.111
Tabela 6-50 : CM Classe R2L - DS1	.112
Tabela 6-51 : CM Classe R2L – DS5	.113
Tabela 6-52 : CM Comitê por voto majoritário	.114
Tabela 6-53 : Parâmetros Comitê por voto majoritário	.115
Tabela 6-54 : CM Comitê pela média	.115
Tabela 6-55 : Parâmetros Comitê pela média	.115
Tabela 6-56 : CM para Algoritmo de decisão proposto	.116
Tabela 6-57 : Parâmetros para Algoritmo de decisão proposto	.117