System Identification LTI

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

from impulse response sequence to get system G(s) and G(z)

Classical identification for linear time invariant systems

Xing Chao

School of Astronautics, Northwestern Polytechnical University

classical identification method definition

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

from impulse response sequence to get system G(s) and G(z)

A method for obtaining a mathematical model of a system from three classical input signals.

- sinusoidal input frequency response
- step input step response
- impulse input impulse response

The focus of this course is on the method of obtaining the mathematical model of the system by using the impulse input signal.

Classic identification of content, purpose and method

Classical
identification
for linear
time invariant
systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{c} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

- Classic identification content and purpose:
 - How to get the impulse response of the system?
 - How to determine the transfer function and impulse transfer function of the system from the impulse response of the system?

• Solution:

- To get the impulse response of the system, use the correlation method;
- To find the parameter model of the system from the impulse response, use pure analytical method.

Correlation method to obtain the impulse response of the system: system model

Refer to the SISO system impulse response function as $g(\tau)$. According to the convolution theorem of linear systems:

$$y(t) = \int_{-\infty}^{\infty} g(\sigma)x(t - \sigma)d\sigma$$

Let x(t) be a stationary stochastic process with a mean of 0, then y(t) is also a stationary stochastic process with a mean of 0. At any time, t_2 , when $t=t_2$, the above formula is

$$y(t_2) = \int_{-\infty}^{\infty} g(\sigma)x(t_2 - \sigma)d\sigma$$

Multiply the above formula with the input $x(t_1)$ at another time to get:

$$x(t_1)y(t_2) = \int_{-\infty}^{\infty} g(\sigma)x(t_1)x(t_2 - \sigma)d\sigma$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\label{eq:from_impulse} from impulse \\ response \\ sequence to get \\ system G(s) \\ and G(z)$

Correlation method to obtain the impulse response of the system: Wiener-Hoff equation

Take mathematics expectations on both sides and get:

$$E[x(t_1)y(t_2)] = \int_{-\infty}^{\infty} g(\sigma)E[x(t_1)x(t_2 - \sigma)]d\sigma$$

The Wiener-Hoff equation can be obtained:

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} g(\sigma) R_x(\tau)]d\sigma$$

Where: $\tau = t_2 - t_1$ If R_{xy} and R_x are known in the equation, then the above equation can be solved to get $g(\tau)$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:from_impulse} \begin{split} & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

Correlation method to obtain the impulse response of the system: Wiener-Hoff equation solving

When x(t) is a white noise signal, there is $R_x(\tau) = K\delta(\tau)$, and $R_x(\tau - \sigma) = K\delta(\tau - \sigma)$

After substituting the Wiener Hof equation, it is available

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} g(\sigma)K\delta(\tau - \sigma)d\sigma$$
$$= Kg(\tau)$$
$$g(\tau) = \frac{R_{xy}(\tau)}{K}$$

For the solution of $g(\tau)$, just calculate R_{xy} . If the observation time T_m is sufficiently large, then

$$\begin{split} R_{xy}(\tau) &= \frac{1}{T_m} \int_0^{T_m} x(t) y(t+\tau) dt \\ R_{xy}(k) &= \frac{1}{N} \sum_{i=0}^{N-1} x_i y_{i+k} \end{split}$$

Where x_i, y_{i+k} is the sequence of data recorded.

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

white noise process

If the mean of the random process w(t) is 0, the autocorrelation function is:

$$R_w(t) = \sigma^2 \delta(t)$$

The process is called a white noise process. among them:

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\label{eq:continuous} from impulse \\ response \\ sequence to get \\ system G(s) \\ and G(z)$

Problems in the engineering practice

- To use impulse input to get impulse response, is not possible in engineering
- white noise is artificially unproducible in engineering;

Therefore, the system's impulse response sequence must be identified by an input signal that can be repeatedly generated in the engineering practice.

- pseudo-random noise;
- discrete two-bit white noise sequence;
- pseudo-random discrete two-bit sequence; (M-sequence)
- two-level M sequence;

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:constraints} \begin{split} & from \ impulse \\ & response \\ & sequence \ to \ get \\ & system \ G(s) \\ & and \ G(z) \end{split}$$

Pseudo-random noise identification impulse response

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{l} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

Pseudorandom noise is truncated by white noise and is a periodic signal.

$$R_x(\tau) = R_x(\tau + T)$$

= $\delta(nT + \tau)$

Where $n = 0, \pm 1, \pm 2, \cdots$

Pseudo-random noise identification impulse response: Calculate R_{xv}

Pseudo-random noise signals as input signals , then: $\,$

$$\begin{split} R_{xy} &= \int_{-\infty}^{\infty} g(\sigma) R_x(\tau - \sigma) d\sigma \\ &= \int_{0}^{T} g(\sigma) R_x(\tau - \sigma) d\sigma + \int_{T}^{2T} g(\sigma) R_x(\tau - \sigma) d\sigma + \cdots \\ &= \int_{0}^{T} g(\sigma) K \delta(\tau - \sigma) d\sigma + \int_{T}^{2T} g(\sigma) K \delta(T + \tau - \sigma) d\sigma \\ &+ \cdots \\ &= Kg(\tau) + Kg(\tau + T) + Kg(\tau + 2T) + \cdots \end{split}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:constraints} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

Pseudorandom noise identification impulse response: Calculate $g(\tau)$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

Select the appropriate truncation period so that $g(\tau)$ has decayed to zero at $\tau < T$. then:

$$R_{xy}(\tau) = Kg(\tau) + 0$$
$$= Kg(\tau)$$
$$g(\tau) = R_{xy}(\tau)/K$$

The same identification result as white input is obtained.

Calculate $R_x(\tau), R_{xy}(\tau)$

$$R_{x}(\tau) = \lim_{n \to \infty} \frac{1}{nT} \int_{0}^{nT} x(t)x(t+\tau)dt$$

$$= \lim_{n \to \infty} \frac{n}{nT} \int_{0}^{T} x(t)x(t+\tau)dt$$

$$= \frac{1}{T} \int_{0}^{T} x(t)x(t+\tau)dt$$

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} g(\sigma)R_{x}(\tau-\sigma)d\sigma$$

$$= \int_{-\infty}^{\infty} g(\sigma) \left[\frac{1}{T} \int_{0}^{T} x(t)x(t+\tau-\sigma)dt\right]d\sigma$$

$$= \frac{1}{T} \int_{0}^{T} x(t) \left[\int_{-\infty}^{\infty} g(\sigma)x(t+\tau-\sigma)d\sigma\right]dt$$

$$= \frac{1}{T} \int_{0}^{T} x(t)y(t+\tau)dt$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{ll} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

 $R_{xy}(\tau)$ only needs one cycle calculation.

discrete white noise

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

A random sequence of consecutive white noise samples at equal intervals. Has the same statistical properties of continuous white noise, ie

$$E(x_ix_j) = \begin{cases} \sigma^2 & i = j \\ 0 & i \neq j \end{cases}$$

Where $i, j = 1, 2, 3, \dots$

discrete two-bit white noise

Main properties:

- -1 and 1 appear equal times;
- The total number of total runs (the segments in which the states "1" and "-1" appear consecutively are called runs) are (N+1)/2, and the runs of -1 and 1 are equal, up to one difference. (N is the length of the sequence)
- its autocorrelation function is

$$R_{xx}(\tau) = \begin{cases} 1 & \tau = 0 \\ 0 & \tau \neq 0 \end{cases}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

Features of the M sequence

In engineering practice, the M sequence is often used instead of the white noise input signal to identify the impulse response sequence of the system. Features of the M sequence:

- pseudo-random two-position sequence;
- The digital features of the M sequence are similar to white noise;
- deterministic sequence;
- can be easily regenerated in engineering practice.

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{c} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

M sequence generation method and its properties

M sequence: A pseudo-random sequence constructed by truncating a discrete two-bit noise sequence. Notable features:

- M sequence is a deterministic sequence that can be repeated;
- M sequence has similar properties to discrete two-bit white noise.

Producing method: The M sequence is generated by engineering using the shift register method.

$$\begin{array}{rcl} X_0(k+1) & = & a_0x_0(k) \oplus a_1x_1(k) \oplus \cdots \oplus a_nx_n(k) \\ X_1(k+1) & = & x_0(k) \\ & & \cdots \\ X_n(k+1) & = & x_{n-1}(k) \end{array}$$

Pseudo-random sequence generating conditions: the initial state of each register is not all zero.

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

M sequence generation method and its properties

$$x_0(k+1) = x_2(k) \oplus x_3(k)$$

 $x_1(k+1) = x_0(k)$
 $x_2(k+1) = x_1(k)$
 $x_3(k+1) = x_2(k)$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{c} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

M sequence methods and their properties

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & from \ impulse \\ & response \\ & sequence \ to \ get \\ & system \ G(s) \\ & and \ G(z) \end{split}$$

When the initial state is all 1, the status of each register is

X0: 100010011010111 X1: 110001001101011 X2: 111000100110101

X3: 111100010011010

The output sequence is: 111100010011010 (length N=15)

M sequence generation method and its properties

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

from impulse response sequence to get system G(s) and G(z)

If the number of registers is n, then there is

- period length $N = 2^n 1$;
- total run = 2^{n-1} ;
- The number of occurrences of "0" is (N-1)/2, and the number of occurrences of "1" is (N+1)/2. The difference is 1 time.

two-level M sequence and its properties

- turns the M sequence into a level signal,
 - "0" is taken as a, and "1" is taken as -a. The
 - shift pulse period is Δ , and the period of the two-level M sequence is N Δ .
- numeric features: In a period of $N\Delta$, its mean m_x is

$$\begin{array}{rcl} M_x & = & \displaystyle \frac{1}{N\Delta} \left(\frac{N-1}{2} a \Delta - \frac{N+1}{2} a \Delta \right) = -\frac{a}{N} \\ \lim_{N \to \infty} m_x & = & 0 \end{array}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

autocorrelation function $R_x(\tau)$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

$$R_{x}\tau = \begin{cases} \frac{-a^{2}}{N} & (kN+1)\Delta < \tau < ((k+1)N-1)\Delta \\ a^{2} \left[1 - \frac{(N+1)|\tau|}{N\Delta}\right] & (kN-1)\Delta < \tau < (kN+1)\Delta \end{cases}$$

Triangular impulse component and DC component

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{l} from \ impulse \\ response \\ sequence \ to \ get \\ system \ G(s) \\ and \ G(z) \end{array}$

$$R_x(\tau) = R_x^1(\tau) + R_x^2(\tau)$$

where:

$$R_x^2(\tau) = \frac{-a^2}{N}$$
 is DC component $R_x^1(\tau) = R_x(\tau) - R_x^2(\tau)$ is triangular pulse component

When Δ is small, $R_x^1(\tau)$ can be considered as a impulse function, then there is

$$\begin{split} R_x^1(\tau) &= \frac{N+1}{N} a^2 \Delta \delta(\tau) \\ R_x(\tau) &= \frac{N+1}{N} a^2 \Delta \delta(\tau) - \frac{a^2}{N} \end{split}$$

Therefore, the M sequence has a digital characteristic of a white noise sequence.

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\label{eq:continuous} from impulse \\ response \\ sequence to get \\ system G(s) \\ and G(z)$

two-level M-sequence recognize system impulse response sequence $g(\tau)$: graphical method

The two-level M-sequence recognizes $g(\tau)$ in two ways: the graphical method and the formula method. First introduce the graphical method:

$$\begin{split} R_{xy}(\tau) &= \int_{-\infty}^{\infty} g(\sigma) R_x(\tau - \sigma) d\sigma \\ &= \int_{0^+}^{N\Delta^-} g(\sigma) R_x(\tau - \sigma) d\sigma \\ &= \int_{0^+}^{N\Delta^-} \left[\frac{N+1}{N} a^2 \Delta \delta(\tau - \sigma) - \frac{a^2}{N} \right] g(\sigma) d\sigma \\ &= \frac{N+1}{N} a^2 \Delta g(\tau) - \int_{0^+}^{N\Delta^-} g(\sigma) d\sigma \\ &= \frac{N+1}{N} a^2 \Delta g(\tau) - A \end{split}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:continuous} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

where: $A = \int_{0+}^{N\Delta^{-}} g(\sigma) d\sigma$

 $R_{xy}(\tau)$ can be calculated from the input and output data sequence:

$$R_{xy}(\tau) = \frac{1}{N} \sum_{i=1}^{N-1} x(i)y(i+\tau)$$

Simply pan the $R_{xy}(\tau)$ curve up by A to get $g(\tau)$.

identification for linear time invariant systems

Classical

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:constraints} \begin{split} & from \ impulse \\ & response \\ & sequence \ to \ get \\ & system \ G(s) \\ & and \ G(z) \end{split}$$

Analytical method to get $g(\tau)$

$$\begin{split} &-\frac{a^2}{N}N\Delta\int_0^{N\Delta}g(\sigma)d\sigma & \text{Basic concepts}\\ &=\frac{\Delta a^2}{N}\int_0^{N\Delta}g(\tau)d\tau & \text{commonly used}\\ &=\frac{N+1}{N}a^2\Delta g(\tau)-\frac{1}{\Delta}\int_0^{N\Delta}R_{xy}(\sigma)d\sigma & \text{M sequence}\\ &g(\tau)&=\frac{N}{(N+1)\Delta a^2}\left[R_{xy}(\tau)+\frac{1}{\Delta}\int_0^{N\Delta}R_{xy}(\sigma)d\sigma & \text{from impulse}\\ &\frac{N}{N}\log(n) + \frac{1}{N}\left(\frac{N}{N}\log(n)\right) + \frac{1}{N}\left($$

 $R_{xy}(\tau) = \frac{N+1}{N} a^2 \Delta g(\tau) - \frac{a^2}{N} \int^{N\Delta} g(\sigma) d\sigma$

 $R_{xy}(\tau)d\tau \ = \ \frac{N+1}{N}a^2\Delta \, \int_{0}^{N\Delta}g(\tau)d\tau$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence

and G(z)

Analytical method to get $g(\tau)$

$$\begin{split} g(\tau) &= \frac{N}{(N+1)\Delta a^2} R_{xy}(\tau) + g_0 \\ g_0 &= \frac{N}{(N+1)\Delta^2 a^2} \int_0^{N\Delta} R_{xy}(\tau) d\tau \\ \int_0^{N\Delta} R_{xy}(\tau) d\tau &\approx \Delta \sum_{i=0}^{N-1} R_{xy}(i) \\ R_{xy}(\tau) &= \frac{1}{N} \sum_{i=0}^{N-1} x(i) y(i+\tau) \end{split}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:constraints} \begin{split} & from \ impulse \\ & response \\ & sequence \ to \ get \\ & system \ G(s) \\ & and \ G(z) \end{split}$$

Matrix representation for $g(\tau)$

Discrete Wiener-Hoff equation:

$$\begin{split} R_{xy}(i\Delta) &= \sum_{k=0}^{N-1} \Delta g(k\Delta) R(i\Delta - k\Delta) \\ R_{xy} &= Rg\Delta \\ g &= \frac{R^{-1}R_{xy}}{\Delta} \end{split}$$

where:

$$\begin{array}{rcl} g & = & [g(0),g(1),\cdots,g(N-1)]^T \\ R_{xy} & = & [R_{xy}(0),R_{xy}(1),\cdots,R_{xy}(N-1)]^T \\ \\ R & = & \begin{bmatrix} R_x(0) & R_x(-1) & \cdots & R_x(-N+1) \\ R_x(1) & R_x(0) & \cdots & R_x(-N+2) \\ \vdots & \vdots & & \vdots \\ R_x(N-1) & R_x(N-2) & \cdots & R_x(0) \end{bmatrix} \end{array}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

$$\label{eq:constraints} \begin{split} & \text{from impulse} \\ & \text{response} \\ & \text{sequence to get} \\ & \text{system } G(s) \\ & \text{and } G(z) \end{split}$$

Matrix representation for $g(\tau)$:calculate R^{-1}

 $R^{-1} = \frac{N}{a^{2}(N+1)} \begin{bmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 2 \end{bmatrix}$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

Matrix representation for $g(\tau)$:calculate R_{xy}

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the

$$\begin{split} R_{xy} &= & [R_{xy}(0), R_{xy}(1), \cdots, R_{xy}(N-1)]^T \\ &= & \frac{1}{rN} XY \\ X &= & \begin{bmatrix} x(0) & x(1) & \cdots & x(rN-1) \\ x(-1) & x(0) & \cdots & x(rN-2) \\ \vdots & \vdots & & \vdots \\ x(-N+1) & x(-N+2) & \cdots & x(rN-N) \end{bmatrix} \\ Y &= & \begin{bmatrix} y(0) & y(1) & \cdots & y(rN-1) \end{bmatrix}^T \end{split}$$

Recursive algorithm for $g(\tau)$ (online identification)

Classical identification for linear

time invariant

systems Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence

from impulse response sequence to get system G(s) and G(z)

Recursive algorithm: Suppose we get the identification result g_{m-1} for the (m-1) observations, and now we have a new set of observations (x_m, y_m) . Now let's discuss how to get the new $g(\tau)$ estimate g_m for g_{m-1} and (x_m, y_m) data.

The formula for the general recursive algorithm is as follows:

$$G_m = Kg_{m-1} + \tilde{g}_m$$

Among them, \tilde{g}_m is the information added from the newly obtained data.

Recursive formula for R_{xy}

$$\begin{split} R_{xy}(i,m) &= \frac{1}{m+1} \sum_{k=0}^{m} y(k) x(k-i) \\ &= \frac{1}{m+1} \left[\sum_{k=0}^{m-1} y(k) x(k-i) + y(m) x(m-i) \right] \\ &= \frac{1}{m+1} \left[m R_{xy}(i,m-1) + y(m) x(m-i) \right] \\ R_{xy}(m) &= \frac{1}{m+1} \left[m R_{xy}(m-1) + y(m) x(m) \right] \end{split}$$

where:

$$\begin{aligned} R_{xy}(m) &= & [R_{xy}(0), R_{xy}(1), \cdots, R_{xy}(N-1)]^T \\ X(m) &= & [x(m), x(m-1), \cdots, x(m-N+1)]^T \end{aligned}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

 $\begin{array}{c} from \ impulse\\ response\\ sequence \ to \ get\\ system \ G(s)\\ and \ G(z) \end{array}$

Recursive formula for $g(\tau)$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the

$$\begin{split} g_m &= \frac{R^{-1}R_{xy}(m)}{\Delta} \\ &= \frac{R^{-1}}{\Delta} \frac{1}{m+1} \left[mR_{xy}(m-1) + y(m)X(m) \right] \\ &= \frac{mR^{-1}R_{xy}(m-1)}{(m+1)\Delta} + \frac{R^{-1}}{(m+1)\Delta} y(m)X(m) \\ &= \frac{m}{m+1} g_{m-1} + \frac{R^{-1}}{(m+1)\Delta} y(m)X(m) \end{split}$$

Impulse response sequence for G(z)

G(z) is called the pulse transfer function of the system and is a discrete mathematical model of the system.

$$G(z) = \frac{C(z)}{R(z)}$$

$$= \frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}}$$

get:

$$c_t + a_1c_{t-1} + \dots + a_nc_{t-n} = b_0r_t + \dots + b_nr_{t-n}^{\substack{identify \ th \\ response \ c}}$$

$$g(t) + a_1g(t-1) + \dots + a_ng(t-n) = b_0\delta(t) + \dots + b_n\delta(t-n)^{\substack{identify \ th \\ response \ c}}}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the response of the

and G(z)

$$\begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ a_1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & 1 \end{bmatrix} \begin{bmatrix} g(0) \\ g(1) \\ \vdots \\ g(n) \end{bmatrix}$$

$$\begin{bmatrix} g(1) & g(2) & \cdots & g(n) \\ g(2) & g(3) & \cdots & g(n+1) \\ \vdots & \vdots & & \vdots \\ g(n) & g(n+1) & \cdots & g(2n-1) \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_1 \end{bmatrix} = \begin{bmatrix} -g(n+1) \\ -g(n+2) \\ \vdots \\ -g(2n) \end{bmatrix}$$

Classical
identification
for linear
time invariant
systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

use impulse response sequence to get G(s)

G(s) is called the transfer function of the system and is a continuous mathematical model of the system.

$$G(s) = \frac{C(s)}{R(s)} = \frac{M(s)}{N(s)}$$

If the system has n closed-loop poles s_1, s_2, \dots, s_n . Then the above formula can be divided into:

$$G(s) = \frac{c_1}{s - s_1} + \frac{c_2}{s - s_2} + \dots + \frac{c_n}{s - s_n}$$

Task: $\{g(i)\}$ and n are known, find G(s) in the coefficients c_i and s_i .

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

calculate ai

System impulse transfer function is

$$G(z) = \frac{b_0 + b_1 z + \cdots b_n z^n}{1 + a_1 z + \cdots + a_n z^n}$$

let $r(t) = \delta(t)$, then $c(t) = g(t)_{\circ}$ Substituting the above formula, write the difference equation as

$$g(k) + a_1g(k+1) + \cdots + a_ng(k+n) = 0$$

get:

$$a_1g(k+1) + \cdots + a_ng(k+n) = -g(k)$$

$$a_1g(k+n) + \dots + a_ng(k+2n-1) \ = \ -g(k+n-1)$$

solving above linear equation of n unknowns , get $a_{\rm i}.$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

calculate si

The inverse Laplace transform from G(s) gives:

$$g(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t} + ... + c_n e^{s_n t}$$

so:

$$\begin{array}{rcl} g(t) & = & c_1 e^{s_1(t)} + c_2 e^{s_2(t)} + ... + c_n e^{s_n(t)} \\ g(t+\Delta) & = & c_1 e^{s_1(t+\Delta)} + c_2 e^{s_2(t+\Delta)} + ... + c_n e^{s_n(t+\Delta)} \\ & \dots & \dots \end{array}$$

$$\begin{array}{lcl} g(t+n\Delta) & = & c_1 e^{s_1(t+n\Delta)} + c_2 e^{s_2(t+n\Delta)} + ... + c_n e^{s_n(t+n\Delta)} \\ 0 & = & c_1 e^{s_1 t} [1 + a_1 e^{s_1 \Delta} + \dots + a_n e^{s_1 n\Delta}] \\ & & + c_2 e^{s_2 t} [1 + a_1 e^{s_2 \Delta} + \dots + a_n e^{s_2 n\Delta}] + \dots \\ & & + c_n e^{s_n t} [1 + a_1 e^{s_n \Delta} + \dots + a_n e^{s_n n\Delta}] \end{array}$$

the linear equation of n unknowns is required for $e^{s_i \Delta}$:

$$1 + a_1 e^{s_i \Delta} + a_2 [e^{s_i \Delta}]^2 + \dots + a_n [e^{s_i \Delta}]^n = 0$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

from impulse response sequence to get system G(s) and G(z)

where $i = 1, 2, \dots, n$

calculate c_i

 $g(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t} + \dots + c_n e^{s_n t}$

get:

$$\begin{array}{lll} g(0) & = & c_1 + c_2 + \cdots c_n \\ g(1) & = & c_1 e^{s_1 \Delta} + c_2 e^{s_2 \Delta} + \cdots + c_n e^{s_n \Delta} \end{array}$$

. . .

$$g(n-1) = c_1 e^{s_1(n-1)\Delta} + c_2 e^{s_2(n-1)\Delta} + \dots + c_n e^{s_n(n-1)\Delta}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system

solution formula

$$\begin{bmatrix} g(k+1) & \cdots & g(k+n) \\ g(k+2) & \cdots & g(k+n+1) \\ \vdots & \vdots & \vdots & \vdots \\ g(k+n) & \cdots & g(k+2n-1) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \ = \ \begin{bmatrix} -g(k) \\ -g(k+1) \\ \vdots \\ -g(k+n-1) \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \ = \ \begin{bmatrix} a_1 \\ -g(k+1) \\ \vdots \\ -g(k+n-1) \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ \vdots \\ -g(k+n-1) \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ \vdots \\ -g(k+n-1) \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \ = \ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \vdots \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \vdots \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}$$

Classical identification for linear time invariant systems

Xing Chao

Basic concepts in classic identification

commonly used input signals in identification

M sequence identify the impulse response of the system