За да определим множеството \emptyset , използваме, че за всяко множество A е изпълнено равенството:

$$A \cup \emptyset = A$$
.

Твърдим, че и обратно ако $B\subseteq\mathbb{N}$ е такова, че за всяко $A\subseteq\mathbb{N}$ е в сила, че $A\cup B=A$, то $B=\emptyset$. Наистина, нека $A=\emptyset\subseteq\mathbb{N}$. Тогава $B=\emptyset\cup B=\emptyset$, откъдето $B=\emptyset$.

Следователно $\{\emptyset\}$ е определимо чрез формулата:

$$\phi_{\emptyset}(X) \rightleftharpoons \forall A(p(A, X, A)).$$

Определяме $\mathbb N$ дуално. За всяко $B\subseteq \mathbb N$ е вярно, че $\mathbb N\cup B=\mathbb N$. Обратно, ако за някое $A\subseteq \mathbb N$ за всяко множество B е изпълнено, че $A\cup B=A$, то в частност при $B=\mathbb N$ получаваме, че $\mathbb N=A\cup \mathbb N=A$, тоест $\mathbb N=A$. Така формула, определяща $\mathbb N$ е следната:

$$\phi_{\mathbb{N}}(X) \rightleftharpoons \forall B(p(X, B, X)).$$

Ясно е, че ако $A\subseteq B$, то $B=A\cup (B\setminus A)$, тоест има множество C, за което $B=A\cup C$. Обратно, ако $B=A\cup C$, то очевидно е, че $A\subseteq B$. Така получихме, че множеството $\{\langle A,B\rangle\,|\, A\subseteq B, B\subseteq \mathbb{N}\}$ се определя от формулата:

$$\phi_{\subset}(X,Y) \rightleftharpoons \exists C(p(X,C,Y)).$$

Накрая, $C=A\cap B$ тогава и само тогава, когато $C\subseteq A,\ C\subseteq B$ и C е най-голямото по включване множество, изпълняващо тези условия. Така може да определим множеството $\{\langle A,B,C\rangle\,|\,A,B\subseteq \mathbb{N},C=A\cap B\}$ чрез формулата:

$$\phi_{\cap}(X,Y,Z) \rightleftharpoons \phi_1(X,Y,Z) \& \forall T(\phi_1(X,Y,T) \Rightarrow \phi_{\subseteq}(T,Z)),$$

където:

$$\phi_1(X,Y,Z) \rightleftharpoons \phi_{\subset}(Z,X) \& \phi_{\subset}(Z,Y).$$

Нека $A \neq \emptyset$ и $A \neq \mathbb{N}$. Ще докажем, че A не е определимо. Наистина, нека $a \in A$ и $b \in \mathbb{N} \setminus A$ са произволни. Такива има, защото A не е празно и A не съвпада с цялото множество \mathbb{N} . Нека $f: \mathbb{N} \to \mathbb{N}$ е функцията, зададена чрез:

$$f(n) = \begin{cases} a \text{ ако } n = b \\ b \text{ ако } n = a \\ n \text{ ако } n \notin \{a, b\} \end{cases}$$

Дефинираме функцията $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ като:

$$F(X) = \{ f(x) \mid x \in X \}.$$

Ясно е, че f е биекция. Наистина, нека f(n) = f(m). От дефиницията на f следва, че $n \in \{a,b\} \iff f(n) \in \{a,b\}$. Следователно, ако $f(n) \not\in \{a,b\}$, то $n \not\in \{a,b\}$, откъдето f(n) = n. Аналогично f(m) = m и следователно n = m. Нека $f(n) \in \{a,b\}$. Тогава $n \in \{a,b\}$ и $f(n) \not= n$. Очевидно, същото свойство има и m, тоест $f(m) \not= m$. Тъй като $m,n \in \{a,b\} \setminus \{f(n)\}$. то n = m. С това показахме, че f е инекция. От дефиницията се вижда, че f примеа стойностите a и b, а ако $n \not\in \{a,b\}$, то f(n) = n, следователно f е сюрекция върху \mathbb{N} .

Сега е ясно, че F е биекция. Наистина F(X) = F(Y) е изпълнено тогава и само тогава, когато за всяко $x \in X(f(x) \in F(Y))$ и $y \in Y(f(y) \in F(X))$. Но тъй като f е инекция $f(x) \in F(Y)$ точно когато $x \in Y$, така че $X \subseteq Y$. Аналогично се съобразява, че и $Y \subseteq X$. Накрая F и сюрекция, защото за всяко множество X е изпълнено:

$$X = \{ f(f^{-1}(x)) \mid x \in X \} = F(\{ f^{-1}(x) \mid x \in X \}).$$

Нещо повече имаме, че:

$$F(X \cup Y) = \{f(x) \mid x \in X \cup Y\} = \{f(x) \mid x \in X\} \cup \{f(x) \mid x \in Y\} = F(X) \cup F(Y).$$

Следователно $p(X,Y,Z) \to p(F(X),F(Y),F(Z))$. И обратно, ако $F(X) \cup F(Y) = F(Z)$, то:

$$F(Z) = \{f(x) \, | \, x \in X\} \cup \{f(y) \, | \, y \in Y\} = \{f(x) \, | \, x \in X \cup Y\} = F(X \cup Y)$$

и тъй като F е биекция, то $X \cup Y = Z$. Следователно, получихме, че и $p(F(X), F(Y), F(Z)) \to p(X, Y, Z)$.

С това проверихме, че F е автоморфизъм в структурата A.

От друга страна $F(A) = \{f(x) \mid x \in A\}$ и тъй като $a \in A$, то $f(a) \in F(A)$. Така получихме, че $b \in F(A)$, което показва, че $F(A) \neq A$. Следователно A не е определимо.

За да определим множеството \emptyset , използваме, че за всяко множество A е изпълнено равенството:

$$A \cap \emptyset = \emptyset$$
.

Твърдим, че и обратно ако $B\subseteq \mathbb{N}$ е такова, че за всяко $A\subseteq \mathbb{N}$ е в сила, че $A\cap B=B$, то $B=\emptyset$. Наистина, нека $A=\emptyset\subseteq \mathbb{N}$. Тогава $\emptyset=\emptyset\cap B=B$, откъдето $B=\emptyset$.

Следователно $\{\emptyset\}$ е определимо чрез формулата:

$$\phi_{\emptyset}(X) \rightleftharpoons \forall A(p(A, X, X)).$$

Определяме $\mathbb N$ дуално. За всяко $B\subseteq \mathbb N$ е вярно, че $\mathbb N\cap B=B$. Обратно, ако за някое $A\subseteq \mathbb N$ за всяко множество B е изпълнено, че $A\cap B=B$, то в частност при $B=\mathbb N$ получаваме, че $A=A\cap \mathbb N=\mathbb N$, тоест $\mathbb N=A$. Така формула, определяща $\mathbb N$ е следната:

$$\phi_{\mathbb{N}}(X) \rightleftharpoons \forall B(p(X, B, B)).$$

Ясно е, че ако $A\subseteq B$, то $A=A\cap B$, тоест има множество C, за което $A=C\cap B$. Обратно, ако $A=C\cap B$, то очевидно е, че $A\subseteq B$. Така получихме, че множеството $\{\langle A,B\rangle\,|\, A\subseteq B, B\subseteq \mathbb{N}\}$ се определя от формулата:

$$\phi_{\subset}(X,Y) \rightleftharpoons \exists C(p(C,Y,X)).$$

Накрая, $C=A\cup B$ тогава и само тогава, когато $A\subseteq C$, $B\subseteq C$ и C е най-малкото по включване множество, изпълняващо тези условия. Така може да определим множеството $\{\langle A,B,C\rangle\,|\,A,B\subseteq\mathbb{N},C=A\cup B\}$ чрез формулата:

$$\phi_{\cap}(X,Y,Z) \rightleftharpoons \phi_1(X,Y,Z) \& \forall T(\phi_1(X,Y,T) \Rightarrow \phi_{\subseteq}(Z,T)),$$

където:

$$\phi_1(X,Y,Z) \rightleftharpoons \phi_{\subset}(X,Z) \& \phi_{\subset}(Y,Z).$$

Нека $A \neq \emptyset$ и $A \neq \mathbb{N}$. Ще докажем, че A не е определимо. Наистина, нека $a \in A$ и $b \in \mathbb{N} \setminus A$ са произволни. Такива има, защото A не е празно и A не съвпада с цялото множество \mathbb{N} . Нека $f: \mathbb{N} \to \mathbb{N}$ е функцията, зададена чрез:

$$f(n) = \begin{cases} a \text{ ако } n = b \\ b \text{ ако } n = a \\ n \text{ ако } n \notin \{a, b\} \end{cases}$$

Дефинираме функцията $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ като:

$$F(X) = \{ f(x) \mid x \in X \}.$$

Ясно е, че f е биекция. Наистина, нека f(n) = f(m). От дефиницията на f следва, че $n \in \{a,b\} \iff f(n) \in \{a,b\}$. Следователно, ако $f(n) \not\in \{a,b\}$, то $n \not\in \{a,b\}$, откъдето f(n) = n. Аналогично f(m) = m и следователно n = m. Нека $f(n) \in \{a,b\}$. Тогава $n \in \{a,b\}$ и $f(n) \not= n$. Очевидно, същото свойство има и m, тоест $f(m) \not= m$. Тъй като $m,n \in \{a,b\} \setminus \{f(n)\}$. то n = m. С това показахме, че f е инекция. От дефиницията се вижда, че f примеа стойностите a и b, а ако $n \not\in \{a,b\}$, то f(n) = n, следователно f е сюрекция върху \mathbb{N} .

Сега е ясно, че F е биекция. Наистина F(X) = F(Y) е изпълнено тогава и само тогава, когато за всяко $x \in X(f(x) \in F(Y))$ и $y \in Y(f(y) \in F(X))$. Но тъй като f е инекция $f(x) \in F(Y)$ точно когато $x \in Y$, така че $X \subseteq Y$. Аналогично се съобразява, че и $Y \subseteq X$. Накрая F и сюрекция, защото за всяко множество X е изпълнено:

$$X = \{ f(f^{-1}(x)) \mid x \in X \} = F(\{ f^{-1}(x) \mid x \in X \}).$$

Нещо повече имаме, че:

$$F(X \cap Y) = \{ f(x) \mid x \in X \cap Y \} = \{ f(x) \mid x \in X \} \cap \{ f(x) \mid x \in Y \} = F(X) \cap F(Y),$$

защото f е биекция. Следователно $p(X,Y,Z) \to p(F(X),F(Y),F(Z))$. И обратно, ако $F(X) \cup F(Y) = F(Z)$, то:

$$F(Z) = \{f(x) \, | \, x \in X\} \cap \{f(y) \, | \, y \in Y\} = \{f(x) \, | \, x \in X \cap Y\} = F(X \cup Y),$$

защото f е биекция и тъй като F е биекция, то $X \cap Y = Z$. Следователно, получихме, че и $p(F(X), F(Y), F(Z)) \to p(X, Y, Z)$.

С това проверихме, че F е автоморфизъм в структурата A.

От друга страна $F(A) = \{f(x) \mid x \in A\}$ и тъй като $a \in A$, то $f(a) \in F(A)$. Така получихме, че $b \in F(A)$, което показва, че $F(A) \neq A$. Следователно A не е определимо.