

UNIVERSITÁ DI PADOVA ESAME DI BIOELETTROMAGNETISMO

Prova scritta – Completa

Cognome	Nome	Numero Matricola	Numero post
Esercizio 1		,	•
da un vettore unitario nor	male a Sv in ogni punto ed us	ficie chiusa S_V tempo invariante cente da V , la densità volumet lensità di corrente elettrica nel V	rica di carica
$\nabla \cdot \bar{j}(\bar{r},t) > 0$	$\nabla \cdot \bar{j}(\bar{r}, t) = 0$	$\nabla \cdot \bar{j}(\bar{r},t) < 0$	
permettività dielettriche re un versore \hat{n} ortogonale a	elative ε _{r1} =16 ed ε _{r2} =1. La supe alla superficie stessa in ogni p	mezzi <u>dielettrici</u> , lineari ed on erficie è orientata dal mezzo 1 a ounto. In un punto p della supe o) la densità superficiale di cari	al mezzo 2 da erficie vale la
p anora.			
$\rho_{\rm S}(\mathbf{p}) > 0$	$\rho_{\rm S}(\mathbf{p})=0$	$\rho_{\rm S}(\mathbf{p}) < 0$	
orientata da un versore \hat{n}	uscente. La regione è sede di sono correnti impresse. Detto	na superficie chiusa S_V tempo mezzo lineare, omogeneo, non \overline{P} il vettore di Poynting com	dispersivo e
$\oint_{Sv} \operatorname{Re} \left\{ \overline{P} \right\} \cdot \hat{n} dr$	$ds > 0$ $\oint_{Sv} \operatorname{Re}\left\{\overline{P}\right\} \cdot \hat{n} a$	$ds = 0 \qquad \oint_{Sv} \operatorname{Re}\left\{\overline{P}\right\} \cdot \hat{n} ds < 0$	
d) Un' antenna filiforme a	mezz'onda irradia:		
in tutte le direzioni in egual maniera		nodo sul principalmo onale alla stessa il suo asse	ente lungo

Cognome	Nome	Numero Matricola	Numero posto

Esercizio 2

Con frasi e formule appropriate descrivere la proprietà della polarizzazione delle onde elettromagnetiche monocromatiche.

Cognome	Nome	Numero Matricola	Numero posto
Esercizio 3			
a) In elettrofisiologia, il modello	o a conduttanze parallele descrive:		
le proprietà dielettriche della membrana cellulare	la propagazione di uno stimolo lungo l'assone	la costituzione de di trans-membrai	
b) Il "potenziale di azione" (PA	.) è:		
lo stimolo elettrico generato da un pacemaker	una variazione temporale del potenziale di trans-membrana	il potenziale della singola s	
c) Le radiazioni non-ionizzanti ((NIR) producono nei tessuti biolog	gici:	
solo effetti termici	circolazione di correnti e/o effetti termici	accertati effett termici	i non-
d) Il metodo alle differenze finit	e nel dominio del tempo (FDTD)	è:	
una tecnica numerica che risolve le equazioni di Maxwell	una tecnica numerica per la valutazione del SAR	una tecnica nu risolve le equa	

Giustificare le risposte

Cognome	Nome	Numero Matricola	Numero posto

Esercizio 4

Definire il tasso di assorbimento specifico (SAR) "locale" e di "corpo intero" relazionandolo all'equazione del bio-calore.

Nome	Numero Matricola Numero posto
	Nome

Esercizio 5

a) Nel software commerciale CST, come si imposta il "criterio di stop" del metodo FDTD implementato dal solutore elettromagnetico.

Siccome il metodo è iterativo e parte da una conoscenza dei campi in un certo istante, il criterio si stop è quando il programma si deve arrestare quando capisce che l'energia all'interno della scatola numerica è pari a zero.

b) Descrivere i passaggi necessari nell'utilizzo del software di simulazione CST per arrivare alla stima numerica dell'innalzamento di temperatura in un tessuto biologico.