

Female Fertility and Polymorphism Panel

Patient name : Mrs. XXX PIN : XX

Gender/ Age : Female/ 26 years Sample number : XX

Hospital/Clinic : XX Sample collection date : XX

Specimen : Peripheral blood Sample receipt date : XX

Report date : XX

CLINICAL HISTORY

Mr. YYY and Mrs. XXX are a non-consanguineous couple presented with a history of pregnancy losses. Their previous pregnancy was miscarried at 14 weeks GA. Chromosomal Microarray Analysis in Product of Conception was indicative of Trisomy 21. Peripheral Blood Karyotyping in both the partners was indicative of normal chromosome complement. Genetic Thrombophilia Recurrent Pregnancy Loss panel in the female partner was indicative of heterozygous polymorphism in Factor V gene. Mrs. XXX have been evaluated for carrier status of pathogenic variations.

RESULTS

FEMALE FERTILITY SINGLE NUCLEOTIDE VARIATION

No pathogenic or likely pathogenic variant causative of the reported phenotype was detected

*Genetic test results are based on the recommendation of American college of Medical Genetics [1-3].

No other variant that warrants to be reported for the given clinical indication was identified.

FEMALE POLYMORPHISM ANALYSIS

DISORDER/COMMON	VARIANT	ZYGOSITY/GENOTYPE	DESCRIPTION
NAME			
Factor V Leiden	F5: c.1601G>A	Heterozygous	Heterozygous Polymorphisr
	(p.Arg534Gln)		
Factor VR2	F5:c.3980A>G	Normal	
	(p.His1327Arg)		
Factor XIII	F13A1:c.103G>T	Normal	
	(p.Val35Leu)		
HPA-1	ITGB3:c.176T>C	Normal	
	(p.Leu59Pro)		
HPA-2	GP1BA:c.482C>T	Normal	
	(p.Thr161Met)		
HPA-3	ITGA2B):c.2621T>G	Normal	
	(p.lle8745er		
HPA-4	ITGB3:c.506G>A	Normal	
	(p.Arg169Gln)		
HPA-5	ITGA2:c.1600G>A	Normal	
	(p.Glu534Lys)		
HPA-6	ITGB3:c.1544G>A	Normal	
	(p.Arg515Gln)		
PAI-1 4G/5G	SERPINE1:c-		
	820G[(4_5)]		
MTHFR	MTHFR:c.665C>T	Normal	
	(p.Ala222Val)		
MTHFR	MTHFR:c.1286A>C	Normal	
	(p.Glu429Ala)		
ACE (I/D)	ACE:c.2306-117 2306-		
	116insAF118569.1:		
	g.14094_14382		
Аро В	APOB:c.10580G>A	Normal	
	(p.Arg3527Gln)		

Аро Е	APOE:c.526C>T (p.Arg176Cys)	Normal	
Аро Е	APOE:c.388T>C (p.Cys130Arg)	Heterozygous	Heterozygous polymorphism
MTR	MTR:c.2756A>G (p.Asp919Gly)	Heterozygous	Heterozygous polymorphism
MTRR	MTRR:c.66A>G (p.lle22Met)	Normal	
AGT	AGT:c.803T>C (p.Met268Thr)		
AGTR1	AGTR1:c.*86A>C		
GSTP1	GSTP1:c.313A>G (p.lle105Val)	Normal	
Prothrombin	F2:c.*97G>A	Normal	

FEMALE POLYMORPHISM - FSHR & LHCGR [10-25]

DISORDER/COMMON NAME	VARIANT	ZYGOSITY/GENOTYPE	DESCRIPTION
LHCGR	c.54_55ins6bp (ins18LQ)	-/ ins6bp	No association with controlled ovarian hyperstimulation No association with PCOS
		-/-	Susceptible to IVF failure
		ins6bp/ins6bp	Lower AMHR2 No association with controlled ovarian hyperstimulation Protective genotype for PCOS
LHCGR	c.935 A>G (Asn312Ser)	A/G	Increased risk for PCOS No association with IVF
		A/A	Increased risk for PCOS High basal FSH Protective effect on IVF
		G/G	Susceptible to IVF Failure Risk of developing PCOS

FSHR	c29G>A	G/A	Lower FSH consumption
			Increased testosterone level
		A/A	Reduced FSHR level
			Lower number of oocytes and low
			pregnancy rate
			Require high rFSH dose
			Poor responders to ovarian
			hyperstimulation
			Increased androstenedione
		G/G	Reduced AMH level
			Require high rFSH dose per oocyte
			Poor responders to ovarian
			hyperstimulation
			пуреганнинация
FSHR	c.919G>A (Ala307Thr)	G/A	Stimulation duration is longer
		A/A	More oocytes retrieved after controlled
		,,,,	ovarian hyperstimulation Stimulation
			duration is shorter
			duration is shorter
		G/G	Lower AMHR2
		·	Higher LHCGR
			Low pregnancy rate
			Poor responders to ovarian hyperstimulation
FCLID	- 2020C: A		Require high rFSH dose
FSHR	c.2039G>A	G/A	Generate higher number of follicles and oocytes
	(Ser680Asn)	·	No association with controlled ovarian hyperstimulation
			Lower LHCGR
			Lower levels of estradiol,
		A/A	follicle and oocytes High
		,	risk for ovarian
			hyperstimulation
			syndrome
			No association with controlled ovarian
			hyperstimulation
			Risk of developing PCOS
			Poor response to FSH stimulation Lower rate of oocyte retrieval after ovarian stimulation Lower AMHR2 Higher LHCGR
		G/G	Increased basal FSH level; Require high rFSH dose Resistance to insulin in PCOS Low pregnancy rate
		,	Risk of endometriosis in fertile women

^{*}This test panel covers only the most common LHCGR and FSHR polymorphisms associated with infertility.

	Ovarian an	d Uterine Conditions	.
DISORDER/COMMON NAME	VARIANT	ZYGOSITY/GENOTYPE	DESCRIPTION/RECOMMENDATION
Premature Ovarian Insufficiency - POI			
Follicle Count and Quality	ESR1(: c.453-397T>C)		May have low follicle count Higher gonadotropin dose favorable
Polycystic Ovarian Syndrome – PCOS(LHCGR)	LHCGR(c.935A>G)		2-3 fold elevated risk for PCOS Clinical Correlation
Endometriosis			
	Fertility	/ ART implications	<u> </u>
DISORDER/COMMON NAME	VARIANT	ZYGOSITY/GENOTYPE	DESCRIPTION/RECOMMENDATION
Idiopathic Female Infertility			
Controlled Ovarian Stimulation - COS	LHCGR(: c.935A>G)		Slow response to ovarian stimulation LH stimulation favorable
	ESR1(: c.453-397T>C)		Poor response to ovarian stimulation Higher gonadotropin dose favorable
Ovarian Hyper Stimulation Syndrome			
Oocyte Number and Quality	LHCGR(c.935A>G)		Immature oocytes may be retrieved LH stimulation favorable
	ESR1(: c.453-397T>C)		Immature oocytes may be retrieved
Oocyte Maturation			
ART Fertilization Rates			
Embryo Quality and Development			
Aneuploidy Risk			
Implantation Rates	MDM2(: c412T>G)		RIF risk–High Oxidative Stress Supplementation of Anti Oxidants

	IL10: c627A>C	RIF risk-Dysregulated immunity Anti-inflammatory Immune support
	IL21: c.204+1115G>T	RIF risk-Dysregulated immunity Anti-inflammatory Immune support
	MTHFR: c.665C>T	RIF risk-Dysregulated thrombophilia Anti-Coagulant therapy favourable
Genuine Empty Follicle Syn - GEFS		

Pregnancy loss & Other

DISORDER/COMMON NAME	VARIANT	ZYGOSITY/GENOTYPE	DESCRIPTION/RECOMMENDATION
Recurrent Pregnancy Loss	MDM2(: c412T>G)		RPL risk—High Oxidative Stress Supplementation of Anti Oxidants
	MTHFR:c.665C>T		RIF risk-Dysregulated thrombophilia Anti-Coagulant therapy favourable
	IL10: c627A>C		RIF risk-Dysregulated immunity Anti-inflammatory Immune support
	IL21: c.204+1115G>T		RIF risk-Dysregulated immunity Anti-Coagulant therapy favourable
Fetal Neural Defects	MTHFR:c.665C>T		High risk for Neural Tube Defects Folic acid supplement & B12 helpful
Ectopic Pregnancy	MTHFR:c.665C>T		Higher risk of Ectopic pregnancy EP responsive to MTX injection
Premature Membrane Rupture	MTHFR:c.665C>T		Elevated Risk for PROM Preventive Management
Pre-Eclampsia			
Intra hepatic Cholestasis			
Gestational Diabetes			

FEMALE THROMBOPHILIA & NAIT PANEL - 27 GENES

Genes: NM 000130.4(F5):c.1601G>A (p.Arg534Gln). NM 000130.4(F5):c.3980A>G (p.His1327Arg). NM 000129.3(F13A1):c.103G>T (p.Val35Leu). NM 000212.2(ITGB3):c.176T>C (p.Leu59Pro). NM_000173.7(GP1BA):c.482C>T NM 000419.5(ITGA2B):c.2621T>G (p.Thr161Met). (p.lle874Ser). NM 000212.2(ITGB3):c.506G>A (p.Arg169Gln). NM 002203.4(ITGA2):c.1600G>A (p.Glu534Lys). NM 000602.5(SERPINE1):c.-820G[(4 5)]. NM 000212.2(ITGB3):c.1544G>A (p.Arg515Gln). NM 005957.5(MTHFR):c.665C>T (p.Ala222Val). NM 005957.4(MTHFR):c.1286A>C (p.Glu429Ala). NM_000789.3(ACE):c.2306-117_2306-116insAF118569.1:g.14094_14382. NM 000384.3(APOB):c.10580G>A (p.Arg3527Gln). NM 000041.2(APOE):c.526C>T (p.Arg176Cys). NM 000254.2(MTR):c.2756A>G NM_000041.4(APOE):c.388T>C (p.Cys130Arg). (p.Asp919Gly). NM 002454.3(MTRR):c.66A>G NM 000029.4(AGT):c.803T>C (p.lle22Met). (p.Met268Thr). NM_031850.3(AGTR1):c.*86A>C. NM_000852.4(GSTP1):c.313A>G (p.lle105Val). NM_000506.5(F2):c.*97G>A, NM_000233.4(*LHCGR*): c.56_57insC(p.Pro19_Pro20insCysSer), NM 000233.4(*LHCGR*): c.935A>G(p. Asn312Ser), NM 000145.4(*FSHR*): c.-29G>A, NM 000145.4(*FSHR*): c.919G>A(p. Ala307Thr), NM_000145.4(FSHR): c.2039G>A(p. Ser680Asn)

FEMALE INFERTILITY GENES - 679 GENES

PROKR2,ANOS1,FGFR1,CHD7,SEMA3A,CYP17A1,CYP21A2,PATL2,TUBB8,TRIP13,ZP3,CBS,ZP1,ZP2,PADI6,TLE6,KHDC 3L,NLRP7,NLRP5,BTG4,CHEK1,WEE2,PANX1,LHX1,WNT4,SHOX,HNF1B,TBX6,WNT9B,TBC1D1,AMH,AMHR2,CLPP,HS D17B4,DNAH5,DNAH1,DNAH2,DNAL1,BRCA1,CFTR,LHCGR,DLX3,FGG,LIG4,COX4I2,AR,CBX2,CYP11A1,CYP19A1,DHH,F GF8,FSHB,HESX1,HSD17B3,LHB,LHX3,LHX4,MAP3K1,NR0B1,NSMF,POU1F1,PROP1,SRD5A2,AAAS,ABCA12,ABCA4,A BCB11,ABCB4,ABCC6,ABCC8,ABCD1,ACAD9,ACADM,ACADS,ACADSB,ACADVL,ACAT1,ACOX1,ACSF3,ADA,ADAMTS2, ADGRG1,AGA,AGL,AGPS,AGXT,AIRE,ALDH3A2,ALDH7A1,ALDOB,ALG6,ALPL,AMT,AP1S1,AQP2,ARG1,ARSA,ARSB,ASL ASNS,ASPA,ASS1,ATM,ATP6V1B1,ATP7A,ATP7B,ATP8B1,ATRX,BBS1,BBS10,BBS2,BBS4,BBS9,BCHE,BCKDHA,BCKDH, B,BCS1L,BLM,BRIP1,BSND,BTD,BTK,CANT1,CAPN3,CASQ2,CC2D1A,CDH23,CEP290,CERKL,CHM,CHRNE,CHRNG,CIITA, CLN3, CLN5, CLN6, CLN8, CLRN1, CNGA3, CNGB3, COL11A2, COL4A3, COL4A4, COL4A5, COL7A1, CPS1, CPT1A, CPT2, CRB1, C TNS,CTSC,CTSD,CTSK,CYBA,CYBB,CYP11B2,CYP1B1,CYP27A1,CYP27B1,DBT,DCLRE1C,DDB2,DHCR7,DHDDS,DKC1,DL D,DMD,DOK7,DPYD,DYSF,EDA,EDAR,EIF2AK3,EMD,ERCC2,ERCC3,ERCC4,ERCC5,ERCC8,ESCO2,ETFA,ETFB,ETFDH,ETH E1,EVC,EVC2,EXOSC3,EYS,F11,F2,F8,F9,FAH,FAM161A,FANCA,FANCC,FANCG,FH,FKRP,FKTN,G6PC,G6PD,GAA,GALC, GALE, GALK1, GALNS, GALNT3, GAMT, GBA, GBE1, GCDH, GCH1, GDF5, GFM1, GH1, GHRHR, GJB1, GJB2, GJB3, GJB6, GLA, GL B1,GLDC,GLE1,GNE,GNPTAB,GNPTG,GNS,GORAB,GP1BA,GP1BB,GP9,GRHPR,GUCY2D,GUSB,HADHA,HADHB,HAX1, HBA1,HBA2,HBB,HEXA,HEXB,HFE,HFE2(HJV),HGD,HGSNAT,HLCS,HMGCL,HMOX1,HOGA1,HPD,HPS1,HPS3,HPS4,HS D3B2,HYLS1,IDS,IDUA,IKBKAP(ELP1),IL2RG,ITGB3,IVD,KCNJ11,LAMA2,LAMA3,LAMB3,LAMC2,LCA5,LDLR,LDLRAP1,LI FR,LIPA,LIPH,LOXHD1,LPL,LRPPRC,LYST,MAN2B1,MAT1A,MCCC1,MCCC2,MCOLN1,MECP2,MED17,MEFV,MESP2,MF SD8,MKS1,MLC1,MLYCD,MMAA,MMAB,MMACHC,MMADHC,MOCS1,MPI,MPL,MPV17,MRE11,MTHFR,MTM1,MTR R,MTTP,MUT(MMUT),MYO15A,MYO7A,NAGLU,NAGS,NBN,NDRG1,NDUFAF5,NDUFS4,NDUFS6,NEB,NEU1,NPC1,NP C2,NPHP1,NPHS1,NPHS2,NR2E3,NTRK1,OAT,OCRL,OPA3,OTC,PAH,PANK2,PC,PCCA,PCCB,PCDH15,PDHA1,PDHB,PEP D,PET100,PEX1,PEX10,PEX12,PEX2,PEX6,PEX7,PFKM,PHGDH,PIGN,PKHD1,PLA2G6,PNPO,POLG,POLH,POMGNT1,PO R,PPT1,PREPL,PRPS1,PSAP,PTS,PUS1,PYGM,RAB23,RAG1,RAG2,RAPSN,RARS2,RDH12,RLBP1,RMRP(NME1),RNASEH 2C,RPE65,RPGRIP1L,RS1,RTEL1,SACS,SAMD9,SAMHD1,SBDS,SEPSECS,SERPINA1,SGCA,SGCB,SGCD,SGCG,SGSH,SLC1 2A3,SLC12A6,SLC17A5,SLC19A2,SLC22A5,SLC25A13,SLC25A15,SLC25A20,SLC26A2,SLC26A3,SLC26A4,SLC35A3,SLC3 7A4,SLC39A4,SLC3A1,SLC45A2,SLC4A11,SLC6A8,SLC7A7,SLC7A9,SMARCAL1,SMN1,SMPD1,ST3GAL5,STAR,STRC,SUC LA2,SUMF1,SURF1,TAT,TCIRG1,TECPR2,TFR2,TGM1,TH,TMC1,TMEM216,TPO,TPP1,TREX1,TRIM32,TRMU,TSEN54,T SFM,TSHB,TSHR,TTC37,TTN,TTPA,TYMP,TYR,TYRP1,UGT1A1,UPB1,USH1C,USH2A,VPS13A,VPS13B,VPS45,VPS53,VR K1, VSX2, VWF, WAS, WISP3(CCN6), WNT10A, WRN, XPA, XPC, ZFYVE26, AKR1C4, AXL, BBS5, BBS7, CAPN10, DUSP6, EIF2B1, EIF2B3,F10,F12,F13A1,F13B,F2R,F5,F7,FGA,FGB,FGF17,FGFR2,GNAS,HOXA13,HS6ST1,INS,INSR,IRS1,IRS2,ITGA2,KLK B1,LEP,LEPR,LMNA,MTR,NOS1,PCSK1,PLAT,PLG,PRLR,PROC,PROCR,PROS1,RSPO1,SEMA3E,SERPINC1,SERPINE1,SER PINF1,SHBG,SOX10,SOX9,SPRY4,SRA1,THBD,TTC8,WWOX,ABCA3,AFF2,AHI1,ANO10,ARX,CC2D2A,CCDC88C,CLCN1, DYNC2H1,ELP1,FMO3,FMR1,FXN,G6PC1(G6PC),GALT,GRIP1,L1CAM,LRP2,MCPH1,MID1,MMUT,MVK,NAGA,OCA2,P

LP1,PMM2,PRF1,RNASEH2B,RPGR,SCO2,SLC19A3,TF,TNXB,APC,MYH11,ACTA2,TMEM43,DSP,PKP2,DSG2,DSC2,BRC A2,SCN5A,RYR2,FLNC,MYBPC3,COL3A1,APOB,MYH7,TPM1,PRKAG2,TNNI3,MYL3,MYL2,ACTC1,RET,PALB2,ENG,ACV RL1,MAX,TMEM127,PCSK9,BMPR1A,SMAD4,TNNT2,TP53,TGFBR1,TGFBR2,SMAD3,TRDN,KCNQ1,KCNH2,MLH1,MS H2,MSH6,PMS2,RYR1,CACNA1S,FBN1,HNF1A,MEN1,MUTYH,NF2,SDHD,SDHAF2,SDHC,SDHB,STK11,PTEN,RB1,TSC1,TSC2,VHL,WT1,FSHR,SRY,CYP11B1,NOBOX,GDF9,DLK1,DNMT1,FOXL2,SOHLH1,C3,FIGLA,BMP15,MCM8,MCM9,PSM C3IP,TRIM37,TG,IGSF10,MRPS22,NR5A1,MSH5,ERCC6,BMPR1B,GREM1,NOTCH2,STAG3,CAV1,NUP107,ATG7,ATG9 A,ESR2,KHDRBS1,PGRMC1,SPIDR,POF1B,EIF2B2,EIF2B4,EIF2B5,HFM1,SYCE1,TGFBR3,POU5F1,CITED2,NANOS3,EIF4 ENIF1,NOG,C14orh39,RAD51B,NPPC,FANCL,TP63,BUB1B,IL17RD,FLRT3,POLR3A,TUBB3,RAB3GAP2,SLC29A3,DCAF1 7,ALMS1,BBS12,MKKS,RAB3GAP1,PHF6,ARL6,FEZF1,PROK2,NDNF,KISS1R,GNRHR,KISS1,CCDC141,WDR11,TAC3,SOX 2,TACR3,GNRH1,CADM1

Methodology: Single Nucleotide Variation - Single Nucleotide Polymorphism

SNV analysis: DNA extracted from the blood, was used to perform targeted gene capture using a custom capture kit. The targeted libraries were sequenced to a targeted depth of 80 to 100X using Illumina sequencing platform. This kit has deep exonic coverage of all the coding regions including the difficult to cover regions. The sequences obtained are aligned to human reference genome (GRCh38.p13) using Sentieon aligner and analyzed using Sentieon for removing duplicates, recalibration and re-alignment of indels. Sentieon DNAscope has been used to call the variants. Detected variants were annotated and filtered using the VarSeq software with the workflow implementing the ACMG guidelines for variant classification. The variants were annotated using 1000 genomes (V2), gnomAD (3.1.2,2.1.1), ClinVar, OMIM, dbSNP, NCBI RefSeq Genes. *In-silico* predictions of the variant was carried out using VS-SIFT, VS-PolyPhen2, PhyloP, GERP++, GeneSplicer, MaxEntScan, NNSplice, PWM Splice Predictor. Only non-synonymous and splice site variants found in the coding regions were used for clinical interpretation. Silent variations that do not result in any change in amino acid in the coding region are not reported.

SNP analysis: Variant analysis and interpretation is done using VarSeq Software. Extensive scientific literature, Information from variant analysis and disease specific databases, population specific research are used to interpret and recommend. All results are finally approved by medical geneticists.

Disclaimer

- The classification of variants of unknown significance can change over time. Anderson Diagnostics and Labs cannot be held responsible for it.
- Intronic variants, UTR, Promoter region variants and CNV are not assessed using this assay.
- Certain genes may not be covered completely, and few mutations could be missed. Variants not detected by this assay may impact the phenotype.
- The variations have not been validated by Sanger sequencing.
- The above findings and result interpretation was done based on the clinical indication provided at the time of reporting.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.

- Genes with pseudogenes, paralog genes and genes with low complexity may have decreased sensitivity and specificity of variant detection and interpretation due to inability of the data and analysis tools to unambiguously determine the origin of the sequence data in such regions.
- Incidental or secondary findings that meet the ACMG guidelines can be given upon request [3].
- Result interpretation was done based on the literature evidence available at the time of reporting. The clinical significance of the polymorphic variants tested can change over time and Anderson Diagnostics & Labs cannot be held responsible for this.
- This is not a diagnostic test and so not to be considered as diagnosis of any disease. This test is meant only for understanding the polymorphism at a given position and its association with various clinical parameters.

References

- Richards, S, et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine: official journal of the American College of Medical Genetics. 17.5 (2015): 405-424.
- 2. Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 2009 Jan;37(Database issue):D793-6. doi: 10.1093/nar/gkn665. Epub 2008 Oct 8.
- 3. Kalia S.S. et al., Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med., 19(2):249-255, 2017.
- 4. Kujovich, J. Factor V Leiden thrombophilia. Genet Med 13, 1–16 (2011).
- 5. Whayne TF. Methylenetetrahydrofolate Reductase C677T Polymorphism, Venous Thrombosis, Cardiovascular Risk, and Other Effects. Angiology. 2015;66(5):401-404.
- 6. Machado M, Neto D, Nunes S, et al. The Importance of MTHFR C677T/A1298C Combined Polymorphism in Deep Vein Thrombosis: A Case Report. Cureus 14(9): e29265. (2022).
- 7. Fawzy, M.S., Toraih, E.A., Aly, N.M. et al. Atherosclerotic and thrombotic genetic and environmental determinants in Egyptian coronary artery disease patients: a pilot study. BMC Cardiovasc Disord 17, 26 (2017).
- 8. Nagato LC, De Souza Pinhel MA, De Godoy JMP, et al. Association of ApoE genetic polymorphisms with proximal deep venous thrombosis. J Thromb Thrombolysis 2012; 33: 116–119.
- 9. Rastogi P, Kumar N, Ahluwalia J, et al. Thrombophilic risk factors are laterally associated with Apolipoprotein E gene polymorphisms in deep vein thrombosis patients: An Indian study. Phlebology. 2019;34(5):324-335.
- 10. Laan, Maris et al. "Pharmacogenetics of follicle-stimulating hormone action." Current opinion in endocrinology, diabetes, and obesity vol. 19,3 (2012): 220-7.
- 11. Rod, Anne et al. "ESR1 and FSHR Gene Polymorphisms Influence Ovarian Response to FSH in Poor Responder Women with Normal FSH Levels." Endocrinology and Metabolic Syndrome 3 (2014): 1-5.
- 12. Javadi-Arjmand M, Damavandi E, Choobineh H, et al. Evaluation of the Prevalence of Exons 1 And 10 Polymorphisms of LHCGR Gene and Its Relationship with IVF Success. J ReprodInfertil. 2019;20(4):218-224.

Anderson Clinical Genetics is a division of Anderson Diagnostics and Labs

- 13. Carlo Alviggi, Alessandro Conforti, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis, Human Reproduction Update, Volume 24, Issue 5, September-October 2018, Pages 599–614.
- 14. Valkenburg O, van Santbrink EJ, König TE, et al. Follicle-stimulating hormone receptor polymorphism affects the outcome of ovulation induction in normogonadotropic (World Health Organization class 2) anovulatory subfertility. FertilSteril. 2015;103(4):1081-1088.e3.
- 15. Zou J, Wu D, Liu Y, Tan S. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. GynecolEndocrinol. 2019;35(1):81-85.
- 16. Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genet Test Mol Biomarkers. 2015;19(3):128-132.
- 17. Čuš M, et al. Could polymorphisms of some hormonal receptor genes, involved in folliculogenesis help in predicting patient response to controlled ovarian stimulation?. J Assist Reprod Genet. 2019;36(1):47-55.
- 18. Conforti, Alessandro et al. "Management of Women With an Unexpected Low Ovarian Response to Gonadotropin." Frontiers in endocrinology vol. 10 387. 27 Jun. 2019.
- 19. Paschalidou, Chrysa, et al. (2020). The effects of follicle-stimulating hormone receptor (FSHR) -29 and Ser680Asn polymorphisms in IVF/ICSI. Hormone Molecular Biology and Clinical Investigation. 10.1515/hmbci-2019-0058.
- 20. García-Jiménez, G., Zariñán, T., Rodríguez-Valentín, R. et al. Frequency of the T307A, N680S, and 29G>A single-nucleotide polymorphisms in the follicle-stimulating hormone receptor in Mexican subjects of Hispanic ancestry. ReprodBiolEndocrinol 16, 100 (2018).
- 21. Pabalan, Noel et al. "Evaluating influence of the genotypes in the follicle-stimulating hormone receptor (FSHR) Ser680Asn (rs6166) polymorphism on poor and hyper-responders to ovarian stimulation: a meta- analysis." Journal of ovarian research vol. 7 285. 20 Dec. 2014.
- 22. Paskulin, Diego Davila et al. "ESR1 rs9340799 is associated with endometriosis-related infertility and invitro fertilization failure." Disease markers vol. 35,6 (2013): 907-13.
- 23. M'Rabet N, et al. The CC-allele of the Pvull polymorphic variant in intron 1 of the α -estrogen receptor gene is significantly more prevalent among infertile women at risk of premature ovarian aging. FertilSteril. 2012 Oct;98(4):965-72.e1-5.
- 24. De Mattos CS, et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J Ovarian Res. 2014 Dec 20;7:114.
- 25. El-Shal AS, Zidan HE, Rashad NM, Abdelaziz AM, Harira MM. Association between genes encoding components of the Leutinizing hormone/Luteinizing hormone-choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. IUBMB Life. 2016;68(1):23-36.

This report has been reviewed and approved by:

S Swalankar

S-Mitherturosaye

Sadi

a Set

Sivasankar.S, Ph.D Molecular Biologist Muthukumaran. S, Ph.D Clinical Bioinformatician

Sachin. D.Honguntikar, Ph.D, Molecular Geneticist Dr. G. Suriyakumar Director

Anderson Clinical Genetics is a division of Anderson Diagnostics and Labs