封卫兵, wbfeng@shu.edu.cn

- 本学期内容:第6章、第7章1节、第14章1-3节
- 作业10%, 考勤10%, 考试80%
- 作业:

每节课后留一次作业,单双学号轮流交作业;

- 答疑地点: 计算机楼1015室

第6章 图

计算机工程与科学学院 封卫兵

第6章 图

- 6.1 图的基本概念
- 6.2 图的连通性
- 6.3 图的矩阵表示
- 6.4 几种特殊的图

6.1 图的基本概念

- 6.1.1 无向图与有向图
- 6.1.2 顶点的度数与握手定理
- 6.1.3 简单图、完全图、正则图、圈图、轮图、方体图
- 6.1.4 子图、补图
- 6.1.5 图的同构

无序对与无序积

无序对: 2个元素构成的集合,记作 (a, b)

无序积: 设 A, B 为两个集合, $A \& B = \{(x, y) \mid x \in A \land y \in B\}$.

例: $A = \{a, b, c\}, B = \{1, 2\}$

 $A \& B = B \& A = \{(a,1), (b,1), (c,1), (a,2), (b,2), (c,2)\}$

 $A \& A = \{(a,a), (a,b), (a,c), (b,b), (b,c), (c,c)\}$

 $B \& B = \{(1,1), (1,2), (2,2)\}$

注: 当 $A \cap B = \emptyset$ 时, |A & B| = |A| |B|, 而|A & A| = |A| (1+|A|)/2.

多重集合

定义: 元素可以重复出现的集合.

重复度: 元素在多重集合中出现的次数.

例: $S = \{a, b, b, c, c, c\}$,

- a 的重复度为 1
- b 的重复度为 2
- c 的重复度为 3

无向图

定义 无向图 $G = \langle V, E \rangle$, 其中 $V \neq \emptyset$ 称为顶点集,其元素称为顶点或结点; $E \neq V \otimes V$ 的多重子集,称为边集,其元素称为无向边,简称边。有时用 V(G) 和 E(G) 分别表示 V 和 E .

例: $G = \langle V, E \rangle$ 如图所示, 其中 $V = \{v_1, v_2, ..., v_5\}$ $E = \{(v_1, v_1), (v_1, v_2), (v_2, v_3), (v_2, v_3), (v_2, v_3), (v_2, v_5), (v_1, v_5), (v_4, v_5)\}$

有向图

定义 有向图 $D = \langle V, E \rangle$, 其中 $V \neq \emptyset$ 称为顶点集, 其元素称为

顶点或结点; $E \neq V \times V$ 的多重子集, 称为边集, 其元素

称为有向边, 简称边. 有时用 V(D) 和 E(D) 分别表示 V 和 E.

例: $D = \langle V, E \rangle$ 如图所示,

其中
$$V = \{a, b, c, d\}$$

$$E = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, b \rangle, \langle a, d \rangle, \langle c, b \rangle, \langle c, d \rangle, \langle d, c \rangle \}$$

注:

- 1) 在无向图中, (a, b) 是顶点 a = b 之间的线段, 无方向; 在有向图中, (a, b) 是顶点 a = b 的有向线段, 从 a 指到 b;
- 2) 无论在无向图还是有向图中,常用字母 e_k 表示边. 如 $e_k = (v_i, v_j)$,或 $e_k = < v_i, v_j >$;
- 3) 在定义中,用 G 表示无向图,D 表示有向图,但有时用 G 泛指一个图(无向的或有向的). 可是 D 只能表示有向图;

注 (续):

- 4) 有限图: V, E 都是有穷集合的图;
- 5) 若 G 的顶点集 V 的元素个数 |V| = n, 则称 G 为 n **阶图**;
- 6) 若边集 $E = \emptyset$, 则称 G 为零图; 若此时 |V| = n, 则称 G 为 n 阶零图; 特别是, 若 |V| = 1, 则称 G 为平凡图; 其实, n 阶零图是具有 n 个 顶点无边的图, 平凡图是具有1个顶点无边的图.

注 (续):

- 4) 有限图: V, E 都是有穷集合的图;
- 5) 若 G 的顶点集 V 的元素个数 |V| = n, 则称 G 为 n **阶图**;
- 6) 若边集 $E = \emptyset$, 则称 G 为零**图**; 若此时 |V| = n, 则称 G 为 n **阶零图**; 特别是, 若 |V| = 1, 则称 G 为**平凡图**; 其实, n 阶零图是具有 n 个 顶点无边的图,平凡图是具有1个顶点无边的图.

顶点和边的关联与相邻

设无向图 $G = \langle V, E \rangle$, $e_k = (v_i, v_j) \in E$:

关联的顶点称作孤立点. 若 $v_i \neq v_j$,则称 e_k 与 $v_i(v_j)$ 的关联次数为 1;

若 $v_i = v_j$, 则称 e_k 与 v_i 的关联次数为 2; 若 v_i 不是边 e_k 的端点, 则称 e_k 与 v_i 的关联次数为 0.

设 $v_i, v_j \in V$, $e_k, e_l \in E$: 若 $(v_i, v_j) \in E$, 即 $e = (v_i, v_j)$, 则称 v_i, v_j 相邻; 若 e_k , e_l 至少有一个公共端点,则称 e_k , e_l 相邻.

顶点和边的关联与相邻 (续)

设有向图 $D = \langle V, E \rangle$, $e_k = \langle v_i, v_j \rangle \in E$:

称 v_i , v_j 为 e_k 的端点, v_i 是 e_k 的始点, v_j 是 e_k 的终点, e_k 与 v_i (v_j) 关联.

又称 v_i 与 v_j 相邻, v_i 邻接到 v_j , v_j 邻接于 v_i . 若边 e_k 的终点是 e_l 的始点,

即 e_k 与 e_l 首尾相连, 则称 e_k 与 e_l 相邻.

在无向图和有向图中, 若两个端点重合的边称为环. 无边关联的顶点称

作孤立点. 无向图中, $e_{k_1}=(v_i,v_j)$, $e_{k_2}=(v_i,v_j)$, 称 e_{k_1} 和 e_{k_2} 是平行的;

有向图同理, 但要注意方向。

顶点的度数

设 $G = \langle V, E \rangle$ 为无向图, $v \in V$,

v 的度数(度) d(v): v 作为边的端点次数之和 (注意: 环)

例: $d(v_5) = 3$, $d(v_2) = 4$, $d(v_1) = 4$, e_1 是环

悬挂顶点: 度数为1的顶点, v4是悬挂顶点;

悬挂边:与悬挂顶点关联的边, e_7 是悬挂边;

G 的最大度: $\Delta(G) = \max\{d(v)|v \in V\}$, $\Delta(G) = 4$;

G 的最小度: $\delta(G) = \min\{d(v) | v \in V\}, \delta(G) = 1$.

顶点的度数 (续)

设 $D = \langle V, E \rangle$ 为有向图, $v \in V$,

v 的出度 $d^+(v)$: v 作为边的始点次数之和;

例:
$$d^+(a) = 4$$
, $d^+(b) = 0$

v 的入度 $d^-(v)$: v 作为边的终点次数之和;

$$d^{-}(a) = 1$$
, $d^{-}(b) = 3$

$$\Delta^+(D) = 4$$
, $\delta^+(D) = 0$, $\Delta^-(D) = 3$, $\delta^-(D) = 1$, $\Delta(D) = 5$, $\delta(D) = 3$,

握手定理 (欧拉定理)

定理6.1 任何图(无向图和有向图)的所有顶点度数之和都等于边数

的 2 倍, 即 $G = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, 边的条数 |E| = m, 则

$$\sum_{i=1}^{n} d(v_i) = 2m$$

证明: 图中每条边(包括环)均有两个端点,所以在计算各顶点度数之和时,每条边均提供 2 度,m 条边共提供 2m 度 .

握手定理(欧拉定理) (续)

推论 任何图 (无向图和有向图)都有偶数个奇度顶点.

证明:设 $G = \langle V, E \rangle$ 为任一图, |E| = m.设

$$V_1 = \{ v \mid v \in V \land d(v)$$
为奇数}

$$V_2 = \{ v \mid v \in V \land d(v) 为偶数 \}$$

显然, $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 = V$,

握手定理(欧拉定理) (续)

由握手定理知

$$2m = \sum_{v \in V} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v)$$

由于 2m, $\sum_{v \in V_2} d(v)$ 为偶数,所以 $\sum_{v \in V_1} d(v)$ 也为偶数. 可是当 $v \in V_1$ 时,

时,d(v)为奇数,偶数个奇数之和才能为偶数,所以 $|V_1|$ 为偶数。

握手定理(欧拉定理) (续)

定理6.2 有向图所有顶点的入度之和等于出度之和等于边数.

证明:每条边恰好提供 1 个入度和 1 个出度,从而,m 条边

恰好提供 m 个入度和 m 个出度.

图的度数列

设无向图 G 的顶点集 $V = \{v_1, v_2, ..., v_n\}$

G 的度数列: $d(v_1)$, $d(v_2)$, ..., $d(v_n)$

如右图度数列: 4, 4, 2, 1, 3

设有向图 D 的顶点集 $V = \{v_1, v_2, ..., v_n\}$

D 的度数列: $d(v_1)$, $d(v_2)$, ..., $d(v_n)$

D的出度列: $d^+(v_1)$, $d^+(v_2)$, ..., $d^+(v_n)$

D的入度列: $d^-(v_1)$, $d^-(v_2)$, ..., $d^-(v_n)$

如右图度数列: 5, 3, 3, 3

出度列: 4, 0, 2, 1 入度列: 1, 3, 1, 2

例:给出图的度数列,一定可以画图吗?

如: 度数列为: 1, 1, 3, 4, 4, 5

一定可以。

例:下述2组数能成为无向图的度数列吗?

(1) 3,3,3,4; (2) 1,2,2,3

解: (1) 不可能. 有奇数个奇数.

(2) 能,且不唯一

例: 已知图 G 有 10 条边, 4 个 3 度顶点, 其余顶点的度数均小于等于 2, 问 G 至少有多少个顶点?

解: 设 G 有 n 个顶点. 由握手定理,

$$4 \times 3 + 2 \times (n-4) \ge 2 \times 10$$

解得 $n \ge 8$

例: 已知 5 阶有向图的度数列和出度列分别为 3, 3, 2, 3, 3 和 1, 2, 1, 2, 1, 求它的入度列

解: 2, 1, 1, 1, 2

例:证明不存在证具有奇数个面且每个面都具有奇数条棱的多面体.

证明: (反证法) 假设存在这样的多面体, 作无向图 $G = \langle V, E \rangle$:

在每个面中任取一点,如果某两个面有公共棱,则连接这两个面上的点,这样:

 $V = \{ v | v 为多面体的面 \},$

 $E = \{(u, v) \mid u, v \in V \land u = v \}$ 有公共的棱 $\land u \neq v \}$.

根据假设, |V| 为奇数且 $\forall v \in V$, d(v)为奇数.

这与握手定理的推论矛盾.

例: 设 9 阶无向图的每个顶点的度数为 5 或 6,证明它至少有 5 个 6 度顶点或者至少有 6 个 5 度顶点.

证明:方法一:讨论所有可能的情况.

设有a个6度顶点和b个5度顶点. 因为任何图都有偶数个奇度顶点, 所以b为偶数, a+b=9.

1)
$$b = 0$$
, $a = 9$;

2)
$$b = 2$$
, $a = 7$;

3)
$$b = 4$$
, $a = 5$;

4)
$$b = 6$$
, $a = 3$;

5)
$$b = 8$$
, $a = 1$

(1)~(3) 至少 5 个 6 度顶点, (4)和(5) 至少 6 个 5 度顶点.

方法二: 假设 a < 5, 则 b > 9 - 5 = 4. 由握手定理的推论, $b \ge 6$.

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图简单图

定义6.4 在无向图中, 关联同一对顶点的2条或2条以上的边,

称为平行边,平行边的条数称为重数;

在有向图中,具有相同始点和终点的2条或2条以上的边

称为有向平行边, 简称平行边, 平行边的条数称为重数;

多重图: 含平行边的图 简单图: 既无平行边也无环的图

思考: 给度数列, 一定可以画简单图吗? 注: 1) 无向简单图 $d(v) \le n-1$;

例: 度数列为 3, 3 2) 有向简单图 $d^+(v) \le n-1$,

 $d^-(v) \le n - 1.$

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图

平行边: e_5 和 e_6

重数: 2

是简单图?

平行边: e_2 和 e_3 e_6 和 e_7 🗶

重数: 2

是简单图? 💥

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图

完全图与正则图

无向完全图: 每对顶点之间都有一条边的无向简单图.

n 阶无向完全图记作 K_n , 顶点数 n,

则边数
$$m = n(n-1)/2$$
, $\Delta = \delta = n-1$

有向完全图: 每对顶点之间均有

两条方向相反的边的有向简单图.

顶点数 n, 则边数 m = n(n-1),

$$\Delta^{+}=\delta^{+}=\Delta^{-}=\delta^{-}=n-1$$
, $\Delta=\delta=2(n-1)$

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图完全图与正则图(续)

k-**正则图**:每个顶点的度数均为k的无向简单图,

顶点数 n , 则边数 m = kn/2 .

无向完全图与正则图的关系? n 阶无向完全图 K_n 是 n-1-正则图.

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图

圈图与轮图

无向圈图: $C_n = \langle V, E \rangle$, 其中 $V = \{v_1, v_2, ..., v_n\}$,

$$E = \{(v_1, v_2), (v_2, v_3), \dots, (v_{n-1}, v_n), (v_n, v_1)\}, \quad n \ge 3$$

有向圈图:
$$C_n = \langle V, E \rangle$$
, 其中 $V = \{v_1, v_2, ..., v_n\}$,

$$E = \{ \langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle, \dots, \langle v_{n-1}, v_n \rangle, \langle v_n, v_1 \rangle \}, \quad n \ge 2$$

轮图 W_n : 无向圈图 C_{n-1} 内放一个顶点, 且与圈图的

每个顶点之间恰有一条边,
$$n \ge 4$$

什么样的轮图是正则图? W_4

6.1.3 简单图、完全图、正则图、圈图、轮图、方体图方体图

n 方体图: $Q_n = \langle V, E \rangle = 2^n$ 阶无向简单图, 其中

$$V = \{ v \mid v = a_1 a_2 ... a_n, \underline{a_i} = 0 \text{ } \underline{\text{st}} 1, i = 1, 2, ..., n \}$$

6.1.4 子图、补图

子图

定义6.10 设 $G = \langle V, E \rangle$, $G' = \langle V', E' \rangle$ 是 2 个图(同为无向图或有向图). 若 $V' \subset V$ 或 $E' \subset E$, 称 G' 为 G 的真子图; 若 $G' \subset G \coprod V' = V$, 则称 G' 为 G 的生成子图; 设 $V' \subset V \sqcup V' \neq \emptyset$, 以V'为顶点集, 以两端点都在V'中的所有边 为边集的 G 的子图称作V'的导出子图, 记作 G[V']; 设 $E' \subset E \coprod E' \neq \emptyset$, 以E' 为边集, 以E' 中边关联的所有顶点为 顶点集的 G 的子图称作 E' 的导出子图, 记作 G[E'].

6.1.4 子图、补图

(1)的子图: (1),(2),(3) 真子图: (2),(3) 母图: (1) 生成子图: (1),(3)

 $\{d,e,f\}$ 的导出子图: (2) $\{e_5,e_6,e_7\}$ 的导出子图: (2)

 $\{e_1, e_3, e_5, e_7\}$ 的导出子图: (3)

6.1.4 子图、补图

补图

定义6.11 设 $G = \langle V, E \rangle$ 为 n 阶无向简单图,记 $\overline{E} = V \& V - E$, 称 $\overline{G} = \langle V, \overline{E} \rangle$ 为G的补图.

设 $G = \langle V, E \rangle$ 为 n 阶无向简单图, 以 所有能使 G 成为完全图 K_n 的添加边组成的集合为边集的图, 为 G 相对于 K_n 的补图, 简称为 G 的补图.

注: K_n 的补图为? n 阶零图

同构

定义6.12 设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个无向图(有向图),若存在双射函数 $f \colon V_1 \to V_2$,使得对于任意的 v_i , $v_j \in V_1$, $(v_i, v_j) \in E_1 (\langle v_i, v_j \rangle \in E_1)$ 当且仅当 $(f(v_i), f(v_j)) \in E_2 \quad (\langle f(v_i), f(v_j) \rangle \in E_2)$ 并且 $(v_i, v_j) (\langle v_i, v_j \rangle)$ 与 $(f(v_i), f(v_j)) (\langle f(v_i), f(v_j) \rangle)$ 的重数相同,则称 G_1 与 G_2 是同构的,记作 $G_1 \cong G_2$.

例:

例: 画出 4 阶 3 条边的所有非同构的无向简单图.

解: 由已知条件得到 4 个条件:

总度数为 6, 分配给 4 个顶点, 最大度为 3, 且奇度顶点数为偶数:

1) 0 个奇度顶点, 4 个偶度顶点: 0, 2, 2, 2;

2) 2 个奇度顶点, 2 个偶度顶点: 1, 1, 2, 2、1, 1, 4, 0、1, 3, 2, 0、3, 3, 0, 0

3) 4 个奇度顶点, 0 个偶度顶点: 1, 1, 1, 3

画图:

例: 画出 3 个以 1, 1, 1, 2, 2, 3 为度数列的非同构的无向简单图.

研讨题

1)证明:在任何一个有6人的组里,存在3个人相互认识或者存在3个人相互不认识。

2) 证明: 无向简单图 G 有 n 个顶点,如果顶点数大于等于 2,则至少有 2 个顶点的度数相同。

3) 画出一个 5 阶简单图 G 与它的补图 G' 同构。