Отчет о выполнении лабораторной работы 5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

Выполнил: Голубович Тимур, группа Б01-110 01.11.2023

Цель работы

В данной работе предполагается изучить спектр гамма-излучений для образцов $^{22}\rm{Na},^{137}\rm{Cs},^{60}\rm{Co},^{241}\rm{Am}$ и $^{152}\rm{Eu},$ найти для них пики полного поглощения и обратного рассеяния.

Оборудование и приборы

Источник γ -квантов со свинцовым коллиматором; набор поглотителей из различных материалов; сцинтилляционный счётчик; пересчётный прибор.

Теоретическое введение

Основная задача спектрометрических измерений заключается в определении энергии, интенсивности дискретных гамма-линий от различных гамма-источников и их идентификации.

Основными процессами взаимодействия гамма-излучения с веществом являются фотоэффект, эффект Комптона и образование электрон-позитронных пар. Каждый из этих процессов вносит свой вклад в образование наблюдаемого спектра. Образующиеся при этих процессах электроны испытывают большое количество неупругих соударений с молекулами и атомами среды. Неупругие соударения могут сопровождаться как ионизацией, так и возбуждением молекул или атомов среды. В промежуточных же стадиях (при переходах возбужденных молекул или атомов в основное состояние, при рекомбинации электрических зарядов и т.п.) в веществе возникают кванты света различных длин волн, присущих данному веществу.

При фотоэффекте кинетическая энергия электрона $T_e = E_{\gamma} - I_i$, где I_i — энергия ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов. Наряду с фотоэффектом, при котором вся энергия гамма-кванта передается атомному электрону, взаимодействие гамма-излучения со средой может приводить к его рассеянию, т.е. отклонению от первоначального направления распространения на некоторый угол.

При **эффекте Компотна** происходит упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная

энергия образующихся комптоновских электронов соответствует рассеянию гаммаквантов на 2π и равна

$$E_{c_{max}} = \frac{\hbar\omega}{1 + \frac{m_e c^2}{2\hbar\omega}} \tag{1}$$

При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – **образование электрон-позитронных пар**. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта, необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 = 2m_ec^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон теряет свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- а) оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E = E_{\gamma}$;
- б) один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E0$, где $E_{0}=m_{e}c^{2}=511$ кэВ;
- в) оба родившихся гамма-кванта покидают детектор, и в спектре появля- ется пик, соответствующий энергии $E=E_{\gamma}-2E0$, где $2E_{0}=2m_{e}c^{2}=1022$ кэВ;

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом являются фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^22/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле (E — энергия фотопика):

$$E_{\text{ofp}} = \frac{E}{1 + \frac{2E}{mc^2}} \tag{2}$$

Экспериментальная установка

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i} \tag{3}$$

т.е. отношение ширины пика полного поглощения (измеренной на полувысоте) к регистрируемой энергии пика поглощения. Это значение $E_i \propto \overline{n_i}$ — числу частиц на выходе ФЭУ. При этом $\Delta E_i \propto \overline{\Delta n_i} = \sqrt{\overline{n_i}}$ — ширина пика пропорциональна среднеквадратичной флуктуации, которая равна корню из числа частиц. Таким образом, наша формула (3) примет вид

$$R_i = \frac{\text{const}}{\sqrt{E_i}} \tag{4}$$

Рис. 1: Экспериментальная установка

Ход работы

Проведем измерения гамма-спектров для 22 Na, 137 Cs, 60 Co, 241 Am и 152 Eu, а также измерение фона. Измерения для цезия повторим на соседней установке. Получаем зависимость счета на сцинтилляторе $N_{\rm q}'$ от номера канала N.

Найдем пики полного рассеяния для натрия ²²Na и цезия ¹³⁷Cs:

$$N_{Na_{-1}} = 597.5, \quad N_{Na_{-2}} = 1395.2, \quad N_{Cs} = 754.2$$
 (5)

Мы знаем, что этим пикам соответствуют табличные значения энергии 511, 1275 и 662 кэВ соответственно. Тогда проведем калибровку спектрометра, построив линейную зависимость энергии гамма-кванта от номера канала $E_j = f(N_j)$. Результат калибровки:

$$E_i = (-60.537 + 0.957N_i) \text{ кэВ} \tag{6}$$

С помощью полученной зависимости переведем все полученные значения каналов в энергии, а счет сцинтиллятора отнормируем по времени, получив число частиц за секунду $N_{\rm q}=\frac{N_{\rm q}'}{t}.$ Погрешность счета подсчитаем по формуле

$$\sigma_{N_{\mathbf{q}}} = N_{\mathbf{q}} \cdot \frac{\sqrt{N_{\mathbf{q}}'}}{N_{\mathbf{r}}'} = \frac{\sqrt{N_{\mathbf{q}}'}}{t} \tag{7}$$

Во всех измерениях t в диапазоне 600-700 секунд. Отложим по оси абсцисс энергию полученных экспериментальных точек, а по оси ординат — число частиц за секунду (рис. 1-6).

С помощью ПО компьютера экспериментальной установки получим значения пиков полного поглощения и их ширины. По формуле (3) подсчитаем для них разрешающую способность спектрометра. Результаты сведем в таблицу.

Рис. 2: Измерение фона

Рис. 3: Измерение спектра источника натрия $^{22}{
m Na}$

Рис. 4: Измерение спектра источника кобальта $^{60}\mathrm{Co}$

Рис. 5: Измерение спектра источника цезия $^{137}\mathrm{Cs}$

Рис. 6: Измерение на второй установке спектра источника цезия $^{137}\mathrm{Cs}$

Рис. 7: Измерение спектра источника америция ²⁴¹Am

Рис. 8: Измерение спектра источника европия $^{152}{\rm Eu}$

Образец	N_i	ΔN_i	E_i , кэВ	$\Delta E,_i$ кэ ${ m B}$	R_i
Натрий ²² Na	597.48	42	511.4	40.2	0.079
Натрий ²² Na	1395.23	76.6	1275.1	73.4	0.058
Цезий ¹³⁷ Сs	754.22	47.4	661.5	45.3	0.069
Кобальт ⁶⁰ Со	1286.1	65.1	1170.6	62.3	0.053
Кобальт ⁶⁰ Со	1450.59	73.3	1328.1	70.2	0.053
Америций ²⁴¹ Ат	135.57	9.5	69.2	9	0.131
Европий ¹⁵² Eu	199.01	12.3	130	11.7	0.09
Европий ¹⁵² Eu	320.8	23.1	246.6	22.1	0.089
Европий ¹⁵² Eu	421.7	30.4	343.2	29.1	0.085

Таблица 1: Пики прямого поглощения

Экспериментально оценим пики комптоновского рассеяния и сравним с теоретическим расчетом. Результаты сведем в таблицу. Построим график зависимости теоретического расчета от экспериментального.

Рис. 9: Зависимости теоретического расчета края комптоновского спектра от экспериментального

Найдем параметры фита:

Образец	E_i , кэ ${ m B}$	$E_{c \text{ экс}}, \text{ кэB}$	$E_{c \text{ Teop}}$, кэ ${ m B}$
Натрий ²² Na	511.4	320.5	341.
Цезий ¹³⁷ Сs	661.5	482.2	477.2
Кобальт 60Со	1270.6	973.3	960.9
Натрий ²² Na	1275.1	1075	1062.3

Таблица 2: Комптновские спектры

	Estimate	Standard Error
b	23.43	12.36
a	0.96	0.02

Таблица 3: Фит рис. 8 функцией y = ax + b

Видим, что коэф. при $x\simeq 1$, т.е. результат согласуется с теорией. Для проверки соотношения (4) построим график зависимости $R_i^2=f(\frac{1}{E_i})$ для величин из таблицы 1.

Рис. 10: Проверка формулы $R = \frac{\mathrm{const}}{\sqrt{E}}$

Результаты фита сведем в таблицу:

	Estimate	Standard Error
b	2.74367	0.40169
a	0.097081	0.00673854

Таблица 4: Фит рис. 9 функцией y = ax + b

Видно, что точки вполне хорошо описывают прямую. Теперь найдем пики обратного рассеяния.

Образец	E_i , кэ ${ m B}$	$E_{\text{обр}}$, кэ ${ m B}$
Натрий ²² Na	511.4	190
Цезий ¹³⁷ Сs	661.5	205
Кобальт ⁶⁰ Со	1328.1	230
Европий ¹⁵² Eu	129.973	95

Таблица 5: Пики обратного рассеяния

Построим график зависимости $E_{\mathrm{oбp}}=f(E)$ согласно (2) и нанесем экспериментальные точки:

Рис. 11: Пики обратного рассеяния

Заметим, что на наших графиках (для натрия, цезия, кобальта и европия) в левой части спектра присутствует узкий (небольшой и широкий для европия) пик, соответствующий энергии порядка $E_x \simeq 80$ кэВ. Это соответствует характеристическому излучению из свинца, служащего защитой спектрометра от внешнего излучения.

Пронаблюдав на осциллографе изображение импульсов с ФЭУ, оценим величины $au_0 \simeq 0,6\,$ мкс — характерное время высвечивания для ФЭУ, и постоянную времени $RC \simeq 35\,$ мкс. Это было оценено по передним и задним фронтам импульсов соответственно.

Вывод

В ходе работы после калибровки прибора были сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu, а также исследован спектр неизвестного образца и определен его состав (137 Cs). В спектрах были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом:

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- обратное рассеяние (пики обратного рассеяния)
- аннигиляция позитронов (пик 511 keV в спектре натрия, по которому проводилась калибровка)

Все значения энергии, опеределённые по спектрам, практически совпадали с табличными и расчётными.

Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.

Список литературы

[1] Лабораторный практикум по общей физике. В 3 томах. Том 3. Квантовая физика: учебное пособие под ред. Ю. М. Ципенюка