Práctica 5

Práctica 5 - Ecuaciones en diferencias

Ejercicio 1. Resolver las siguientes ecuaciones en diferencias lineales de primer orden

(a) $\Delta y_t = 7$;

(c) $\Delta y_t = 2y_t - 9$.

(b) $\Delta y_t = 0.3y_t$;

Ejercicio 2. Resolver las siguientes ecuaciones en diferencias lineales de primer orden con condición inicial y_0 .

(a) $\begin{cases} y_t = y_{t-1} + 1, \\ y_0 = 10; \end{cases}$

(c) $\begin{cases} 2y_t - y_{t-1} = 6\\ y_0 = 7; \end{cases}$

(b) $\begin{cases} y_t + 3y_{t-1} = 4, \\ y_0 = 4; \end{cases}$

(d) $\begin{cases} y_t = 0.2y_{t-1} + 4, \\ y_0 = 4; \end{cases}$

Ejercicio 3. Encuentre las soluciones de las siguientes ecuaciones en diferencias y determine si las soluciones convergen o oscilan en $t = \infty$.

(a) $\begin{cases} y_t - \frac{1}{3}y_{t-1} = 6, \\ y_0 = 1; \end{cases}$

(c) $\begin{cases} 2y_t + \frac{1}{4}y_{t-1} = 5\\ y_0 = 2; \end{cases}$

(b) $\begin{cases} y_t + 2y_{t-1} = 9, \\ y_0 = 4; \end{cases}$

(d) $\begin{cases} y_t - y_{t-1} = 3, \\ y_0 = 5; \end{cases}$

Ejercicio 4. Encuentre todas las soluciones de las siguientes ecuaciones.

(a) $y_{t+2} - y_{t+1} + \frac{1}{2}y_t = 2;$

(c) $2y_{t+2} + y_{t+1} - y_t = 10;$

(b) $y_{t+2} - 4y_{t+1} + 4y_t = 7;$

(d) $y_{t+2} - 2y_{t+1} + 3y_t = 4$.

Ejercicio 5. Encuentre las soluciones de las siguientes ecuaciones en diferencias y determine si las soluciones convergen o oscilan en $t = \infty$.

(a)
$$\begin{cases} y_{t+2} + 3y_{t+1} - \frac{7}{4}y_t = 9, \\ y_0 = 6, \\ y_1 = 3; \end{cases}$$

(b)
$$\begin{cases} y_{t+2} - 2y_{t+1} + 2y_t = 1, \\ y_0 = 3, \\ y_1 = 4; \end{cases}$$

Práctica 5

(c)
$$\begin{cases} y_{t+2} - y_{t+1} + \frac{1}{4}y_t = 2 \\ y_0 = 4; \\ y_1 = 7; \end{cases}$$
 (d)
$$\begin{cases} 2y_{t+2} + 2y_{t+1} + y_t = 2^{-t} \\ y_0 = 0; \\ y_1 = 0; \end{cases}$$

Ejercicio 6. Encuentre todas las soluciones de las siguientes ecuaciones.

(a)
$$y_{t+2} + 2y_{t+1} + y_t = 3^t$$
; (e) $y_{t+2} - 2y_{t+1} + 5y_t = t$;

(b)
$$y_{t+2} - 5y_{t+1} - 6y_t = 2 \cdot 6^t$$
; (f) $y_{t+2} - 2y_{t+1} + 5y_t = 4 + 2t$;

(c)
$$3y_{t+2} + 9y_t = 3 \cdot 4^t$$
; (g) $y_{t+2} + 5y_{t+1} + 2y_t = 18 + 6t + 8t^2$;

(d)
$$y_{t+2} + 5y_{t+1} + 2y_t = e^t$$
; (h) $y_{t+2} + 5y_{t+1} + 2y_t = e^t + 18 + 6t + 8t^2$

Ejercicio 7. Resolver la siguientes ecuación en diferencia de orden 2

$$y_{t+2} - 3y_{t+1} - 4y_t = 2^t + t^3.$$