TO FIND THE ELECTRONIC AND MAGNETIC PROPERTIES OF DOUBLE PEROVSKITE La₂MMnO₆ (M=Co,Ni)

Ву

Mausam Nembang Limbu

Roll No: 65

Central Department of Physics, Trivhuvan University, Kritipur.

Table of Contents

- Introduction/Motivation
- Literature Review
- Objectives
- Theoretical Background and Methodology
- Expected outcomes
- Time Schedule
- References
- Acknowledgments

Introduction/Motivation

Single & Double Perovskites

- Perovsike is calcium titanate (CaTiO₃) founded by Gustav Rose named given after Lev Von Perovski.
- Generally single perovskite is ABX_3 having 'A' as monovalent cation, 'B' as divalent metals cation and 'X' is a halide.
- After the complex replacement of lead in single perovskite a new structure is formed called Double Perovskites $A_2B'B''X_6$ where 'A' is a large cation and B',B" are either trivalent or monovalent cations and 'X' is either Oxygen or Halogens¹.

¹T. Tesfamichael, M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, and L. Wang, *Scientific Reports* **9**, 718 (2019).

fig1:Single & Double Perovskite²

²E. L. Meyer, D. Mutukwa, N. Zingwe, and R. Taziwa, *Metals* **8**, 667 (2018).

Introduction/Motivation

Applications of Perovskites

- Applications
 - Spintronics devices
 - Light emitting diodes
 - Multistate data storage
 - In photovoltic research
- So, due to all these applications and properties it encourage me to work in this field.

fig2:Application field of Perovskites.^a

^aX. Zhao et.al Joule 2, 1662 (2018).

Literature Review

- M.P Singh *et al.* (2009) studied La_2NiMnO_6 , found that ordered phase has monoclinic but the disordered phase has pseudocubic structure also both can show the transition form ferromagnetic to paramagnetic³.
- A.Kolchinskaya *et al.*(2012) studied $La_{2-x}Sr_xColrO_6$ and found it is antiferromagnetic also magnetic moment depends on the order of the heavy Ir ions⁴.

³M. Singh, K. Truong, S. Jandl, and P. Fournier, *Physical Review.* 79 (2009).

⁴A. Kolchinskaya, P. Komissinskiy, M. Baghaie Yazdi, M. Vafaee Khanjani and D. Mikhailova, *et al. Physical Review.* **B 85,** 22 (2012).

Literature Review

- Z.Y Wu *et al.*(2013) observed La_2NiMnO_6 for the adsorption of bovine serum albumin protein and found that it has highest adsorbtion capacity at $850^{\circ}C$ it adsorb 219.6 mg/g shows that it is very useful in the biomedical⁵.
- G.Kafle *et al.* (2015) studied Nd_2MgIrO_6 and found it is Antiferromagntic in ground state also it is Mott-Hubbard type insulator with space group of $P2_1/n$, Monoclinic distorted double perovskite result potential $V_{Nd}=$ 6ev , and $V_{Ir}=1.25$ ev Also Nd couples antiferromagnetic with Ir^6 .

⁵Z.-Y. Wu, C.B. Ma, X.G. Tang, R. Li and Q.X. Liu, et al. Nanoscale Research Letters. **8**, 207 (2013).

⁶M. Ghimire, G. Kaphle, and R. Thapa, *Journal of Nepal Physical Society* **3**, 50 (2016).

Literature Review

- P. Kumar et al. (2016) observed by doping La in $Sr_{(2-x)}La_xNiMoO_6$ and found that electric conductivity is high for concentration 0.04⁷.
- E. Meyer et~al.(2018) found the Goldschmith tolerance factor(t) of halide perovskite were $0.81 \le t \le 1.0$ which also gives the concept of lanthanide based halide double perovskite⁸.

⁷P. Kumar, N. K. Singh, G. Gupta, and P. Singh, *RSC Advanced*, **6** (2016).

⁸E. L. Meyer, D. Mutukwa, N. Zingwe, and R. Taziwa, *Metals* **8**, 667 (2018).

Objectives

General Objectives

- To identify the ground state electronic configurations of La₂MMnO₆ compound.
- To study the structural properties of La_2MMnO_6 compound.
- To compare the obtained result with the available experimental results.

Specific Objective

 Study of the electronic and magnetic properties of La₂MMnO₆compound.

Theoretical background and methodology

Many body Hamiltonian

$$\hat{H}\psi_i(\mathbf{R}_I,\mathbf{r}_i) = E_i\psi_i(\mathbf{R}_I,\mathbf{r}_i) \tag{1}$$

where the hamiltonian can be written as,

$$\hat{H} = \hat{T} + \hat{V} \tag{2}$$

$$\hat{H} = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{I} \frac{\mathbf{P}_{I}^{2}}{2M_{I}} - \sum_{I} \frac{Z_{I}e^{2}}{|\mathbf{r} - \mathbf{R}_{I}|} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}e^{2}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|}$$
(3)

- K. E. of electrons and K. E. of nuclei.
- P. E due to the attration between electron-nucleus.
- P. E due to repulsive between electron-electron .
- P. E due to repulsive between nucleus-nucleus.

Born-Oppenheimer Approximation

$$\hat{H} = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} - \sum_{I} \frac{Z_{I}e^{2}}{|\mathbf{r} - \mathbf{R}_{I}|} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
(4)

- K. E. of nuclei (neglected) because $M/m>>>10^3$ so V<<<v (molecular confirmation)
- Nucleus-nucleus replusive P. E (constant).

Hartree-Fock Approximation:

System of N electrons, the antisymmetrized wave function is given by the following slater determinant.

$$\psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{1}(\mathbf{r}_{1}, \mathbf{s}_{1}) & \phi_{1}(\mathbf{r}_{2}, \mathbf{s}_{2}) & \dots & \phi_{1}(\mathbf{r}_{N}, \mathbf{s}_{N}) \\ \phi_{2}(\mathbf{r}_{1}\mathbf{s}_{1}) & \phi_{2}(\mathbf{r}_{2}, \mathbf{s}_{2}) & \dots & \dots & \phi_{2}(\mathbf{r}_{N}, \mathbf{s}_{N}) \\ \dots & \dots & \dots & \dots & \dots \\ \phi_{N}(\mathbf{r}_{1}, \mathbf{s}_{1}) & \phi_{N}(\mathbf{r}_{2}, \mathbf{s}_{2}) & \dots & \dots & \phi_{N}(\mathbf{r}_{N}, \mathbf{s}_{N}) \end{vmatrix}$$
(5)

Hartree-Fock equations is given as follows:

$$\left[\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} - \sum_{i=1}^{N} \sum_{I=1}^{M} \frac{Z_{I}e^{2}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} + \sum_{j \neq i} \int d\mathbf{r}' \phi_{j}^{*}(\mathbf{r}') \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \phi_{j}(\mathbf{r}')\right] \phi_{i}(\mathbf{r})$$

$$- \sum_{j \neq i} \left[\int d\mathbf{r}' \phi_{j}^{*}(\mathbf{r}') \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \phi_{i}(\mathbf{r}') \delta_{\sigma_{i}\sigma_{j}}\right] \phi_{j}(\mathbf{r}) = \varepsilon_{i} \phi_{i}(\mathbf{r}) \tag{6}$$

Density Functional Theory DFT

- The HF approximation mostly used in pre DFT era was based on Slater determinant form of single electron wave function was lengthy process and problematic too.
- The basic approach of DFT is to develop exchange and correlation energy in terms of electron density

$$n(\mathbf{r}) = N \int \int ... \int \psi(\mathbf{r}_1, \mathbf{r}_2,, \mathbf{r}_N)^* \psi(\mathbf{r}_1, \mathbf{r}_2,, \mathbf{r}_N) d^3 r_1 d^3 r_2 ... d^3 r_N$$
(7)

Kohn-Sham equation

Kohn-Sham equation can be written as,

$$\left[-\frac{1}{2} \nabla_i^2 + V_{\text{eff}}(\mathbf{r}_i) \right] \psi_i = \epsilon_i \psi_i \tag{8}$$

Where V_{eff} is Effective Kohn-Sham potential

Local Density Approximation (LDA)

$$E_{xc}^{LDA}[n] = \int n(\mathbf{r}) \epsilon_{xc}[n(\mathbf{r})] d\mathbf{r}.$$
 (9)

where $\epsilon_{xc}[n(\mathbf{r})]$ is a exchange- correlation energy per particle of a uniform gas of interacting electrons of density n(r).

Comptational Approach

- The mode of study will be computational which will be conducted using WEIN2K package. The WEIN2K package is a computer program which performs quantam mechanical calculations on periodic solids and it is written in Fortan.
- For some cases we will use Quantum Espresso(QE) whenever it required.

Expected Outcomes

We expect to find out the band structure of La_2MMnO_6 (M=Co,Ni) compound and some of the structural, electronic and magnetic properties of $La_2MMnO_6(M=Co,Ni)$ compound.

Time schedule

Work	Time Duration (in Months)					
	1-2	3-4	5-6	7-8	9-10	11-12
Literature						
Review						
Software						
Familiarization						
Data Enumeration &						
Calculation						
Data Analysis &						
Paper Publishing						
Thesis Writing &						
Documentation						

References

- T. Tesfamichael, M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, and L. Wang, *Scientific Reports* **9**, 718 (2019).
- 2 E. L. Meyer, D. Mutukwa, N. Zingwe, and R. Taziwa, *Metals* 8, 667 (2018).
- M. Singh, K. Truong, S. Jandl, and P. Fournier, *Physical Review.***79** (2009).
- A. Kolchinskaya, P. Komissinskiy, M. Baghaie Yazdi, M. Vafaee Khanjani and D. Mikhailova, et al. Physical Review. B 85, 22 (2012).
- Z.-Y. Wu, C.B. Ma, X.G. Tang, R. Li and Q.X. Liu, et al. Nanoscale Research Letters. 8, 207 (2013).
- M. Ghimire, G. Kaphle, and R. Thapa, Journal of Nepal Physical Society 3, 50 (2016).
- P. Kumar, N. K. Singh, G. Gupta, and P. Singh, RSC Advanced, 6 (2016).
- E. L. Meyer, D. Mutukwa, N. Zingwe, and R. Taziwa, Metals 8, 667 (2018).

Acknowledgments

- Supervisor Dr. Gopi Chandra Kaphle
 (Associate prof. Central Department Of Physics, Kritipur, Nepal.)
- Prof. Dr. Binil Aryal (Head of Department Of Physics, Kritipur)
- Assoc. Prof.Dr Madhay Prasad Ghimire
- Teaching and Non-teaching member.
- My family, Friend and Colleague

Thank you very much !!!