Complex Network-based Growth and Evolution Model for Internet of Things

Alunos: Gabriel Luciano Gomes Geovane Fonseca de Sousa Santos Luigi Domenico Cecchini Soares

A perspectiva de desenvolvimento da Internet das Coisas (IoT) está na:

- Integração dos espaços:
 - Físico
 - Informação
 - Social

Problema:

• implementar a integração de informação destes três espaços

Solução:

Construir o modelo de rede relacional dos objetos

Comparação com a rede tradicional regular, a rede complexa:

- Aleatoriedade
- Crescimento

Por causa dessas características:

 Redes Complexas são usadas para resolver problemas de modelagem IoT

Características de Dados de IoT:

- Correlação temporal
- Relevância de localização
- Multidimensionalidade
- Recurso limitado

Problema:

- Alguns modelos n\u00e3o enfatizam os atributos espec\u00edficos dos dados
- Alguns modelos consideram menos fatores que n\u00e3o s\u00e3o suficientemente abrangentes

De acordo com os problemas encontrados em outros modelos, foi proposto:

Modelo de Evolução do Crescimento (do inglês GEM)

Resolve:

- Como um novo nó se associa a uma rede existente de forma autônoma
- Como o relacionamento de dois nós evolui na rede
- Como a força das interações evolui entre dois nós

O processo de construção do modelo GEM

A construção do processo do modelo GEM é da seguinte forma:

- A. O modelo GEM baseado no crescimento
- B. O modelo GEM baseado na evolução
- C. O modelo GEM baseado nas forças das conexões

O modelo GEM baseado no crescimento

- Conceito:
 - Número de nós da rede aumenta com o tempo
- Mecanismo:
 - Conexão Preferencial
- Implementação:
 - Constrói o modelo básico com o mecanismo de prioridade de grau
 - Aprimora o mecanismo de conexão com os atributos exclusivos da IoT

O modelo GEM baseado na evolução

- Problema do Modelo anterior:
 - Nós que não têm interação dentro da rede nunca irão interagir
- Solução:
 - Usar o fechamento tríadico

Fig.3. Schematic diagram of triadic closure

O modelo GEM baseado nas forças das conexões

- Problema do Modelo anterior:
 - Não pode mostrar a força das conexões
- Motivo:
 - A força das conexões é importante para determinar qual é a melhor rota para passar ou coletar informações de um nó na rede
- Solução:
 - Adiciona a força das conexões como um novo passo do Modelo anterior

Análise de simulações e experiências

Objetivo:

- Verificar se o modelo tem distribuição de lei de potência e clustering
- Verificar se o modelo está de acordo com as características da IoT

Método:

- Rede começa com 3 nós interconectados
- Adiciona um nó em cada etapa que conecta a 3 nós existentes
- Até a rede ter 500 nós

Análise de simulações e experiências

Fig.5. Probability distribution P(K) of degree K of Model A (m₀=3,N=500)

Fig.6. Probability distribution P(K) of degree K of Model B (m₀=3,N=500, R is random)

Fig.7. Probability distribution P(K) of degree K of Model C (m_0 =3,N=500, R is random)

Análise de simulações e experiências

Pode-se analisar:

- A distribuição de graus P(k) desses modelos obedece a uma distribuição de lei de potência k^{-r} para uma grande faixa de k com o r=3
- Como cada comunidade tem seus próprios nós principais:
 - Há mais nós principais no Modelo C são do que no Modelo A
 - O grau dos nós principais do Modelo C são menores que no Modelo A

Conclusões

- Propõe um modelo GEM para IoT baseado nos estudos das teorias populares de IoT
- O modelo GEM é modificado e otimizado
 - Crescimento
 - Evolução
 - Fixação preferencial
 - Dificuldade de comunicação
 - Conexão ponderada

Conclusões

- O resultado mostra:
 - A rede baseada no GEM está em conformidade com a lei de desenvolvimento da IoT
- Dificuldade:
 - Dificuldade de comunicação simples
 - Grande impacto nos resultados
 - Diferenças da configuração de dificuldade de comunicação
- Estudo posterior:
 - Definir a dificuldade de comunicação