PROJET SI Software Frugality in an Accelerating World

AXEL BERNARD Paul-David KONAN Moussa BERTHE (Ulysse-Néo LARTIGAUD)

Organisation de l'équipe

Contexte du Projet

SOMMAIRE

- Analyse et Conception du Projet
- Organisation du Processus de Développement
- Rétrospective du Projet
- Démonstration
- Conclusion

Analyse et Conception du projet

Analyse du Projet

Objectifs

Surveillance de l'utilisation énergétique d'énergie pendant les builds Jenkins à travers un plugin Jenkins

Rapport détaillé de la consommation d'énergie par build et par étape sous la forme de graphiques

Choix

Récupérer les données en énergie (joules) et en puissance (watts)

Conception du Projet

Acquisition des Données

- Fichier RAPL
- Lecture du fichier en direct

- Mesure des données en utilisant l'Outil PowerAPI
- Récupération des données depuis la Base de Données InfluxDB

Conception du Projet

Plugin Jenkins:

- Listeners : Run, Execution & Stages
- Actions : Consumption, PreviousConsumptions, Execution & Stages
- DisplayChart (RunAction2)
- Index.jelly

- CompletionLatch
- ScriptGetEnergeticValues
- ProcessInfluxDBData

Architecture globale du système

- Le plugin Jenkins est téléchargé par l'utilisateur
 Lors de l'exécution d'un build, il déploie les conteneurs de Power API et les lance
- PowerApi collecte les données de consommation du build
- Les données de consommation traduites en Watts sont stockées dans une base de donnée InfluxDB

Les données sont visualisées sous formes de graphes sur la page du Build Jenkins

Organisation du Processus de Développement

Outils Utilisés

Jenkins:

- Outil d'Intégration Continue

Github:

- Outil de Versionning

PowerAPI:

Outil permettant la mesure de la consommation énergétique de la machine

GoogleDrive:

 Outil permettant de travailler sur la documentation en collaboration

Méthode Agile

Définition des sprints:

 Durée des sprints définis en fonctions des séances et des tâches restantes

Réunions de planification:

- Planification des tâches pour chaque sprint dans le Backlog

Rétrospectives des sprints:

- Discussion sur ce qui a bien fonctionné et ce qui doit être amélioré.
- Rapport journalier / Complétion du Backlog (Introspection)

Contenu des sprints

sprint 0:

 Prendre connaissance des différents outils requis durant le projet et la configuration de l'environnement de travail;

sprint 1:

 Acquérir les données de mesures énergétiques depuis Jenkins

sprint 2:

- Avoir accès à la fonctionnalité précédente via un plugin Jenkins pour l'ajouter facilement à mes projets;
- Afficher la consommation sous forme de graphes;

sprint 3:

- Sauvegarder les données de consommation pour voir leur évolution;
- Afficher la consommation de chaque stage d'une pipeline;

Problèmes rencontrés

- Problème pour identifier le pid de Jenkins
- La surveillance doit être lancée avant même le début du build

Solutions choisies

- Changement du backlog pour commencer à développer Jenkins avec la méthode trouver au sprint 1 bien que moins précise
- Séparation en 2 pôles :
 - Essais PowerAPI
 - Développement Jenkins

Backlog

	As a developer I want to know the total energy consumption of a specific build (written in the console).	Establish a mechanism to initiate consumption measurement with each Jenkins build. (Bash script)	4h30	Done	*)	Done *	Moussa Axel		Mouss Axel	a	14h	Des difficultés ont été éprouvées demandant de faire de plus amples recherches. Plusieurs pistes ont don explorées avant d'en arriver à la solution choisie.
1		Know how to collect informations about a build during running	4h	Done	•	Done -	David	•	Davi	d 🕶	5h	us longue que prévue due à un manque d'information sur le sujet. Nous avons sous-estimé le temps nécess
		Develop a way to run the bash script with a jenkins plugin	1h	Done		Done *	Axel	٠	Axel	•	2h30	Estimation dépassée du fait d'une mauvaise estimation au départ.
		Develop a way to format energy consumption data in watts before storing it.	2h	Done	•	Done -	Axel	•	Axel	•	1h	Il ne s'agissait que d'une formule de physique qui transforme l'énergie (joule) en puissance (watt)
		Show total energy consumption in the Jenkins build output console.	4h	Done	٠	Done •	David Axel		David Axel		10h	Nous avons sous-estimé le temps pour l'implémentation.
	As a developer I want to have acces to the previous feature through a Jenkins Plugin to easily add it to my projects	Create a blank plugin and set up the environment	1h30	Done	*	Done *	Axel	٠	Axel	*	2h (S1)	Conforme à ce qui était prévu dans les choses à réaliser
2		Integrate the feature that gives the consumption into this plugin	1h	Done	*	Done -	Moussa Axel		Mouss Axel	a	2h (S1) 7h00 (S2)	ions que nous pourrions rapidement adapter ce qui avait été réalisé au sprint précédent hors il nous a fallu h
		Create a process to give access to this plugin in any project	6h	Done		Done •	David	•	Axel		2h30 (S1) 1h (S2)	Plus facile que prévu (notamment dû à ce qui a été mis en place précédemment). Le plugin peut désormais s'exporter facilement afin d'être utilisé sur un projet extérieur.
2	As a developer I want to have access to this total consumption displayed in a dedicated Jenkins tab presented as a chart.	Develop UI components for energy graphs	4h	Done	*	Done "	Axel	•	Mouss	a	3h (S2)	Utilisation d'une librairie que nous ne connaissions pas, mais pas non plus très difficile à appréhender. (Ch.
2		Manage the integration of consumption data	3h	Done	¥	Done *	Mous	sa 🕶	Axel	*	3h (S3)	Conforme à ce annoncé.
2		Get the builds energy consumption and Identifying the consumption for each build through Grafana	5h	Done	¥	Done *	David	٠	Davi	d ▼	5h(S1)	projet dans Grafana mais lors de l'identification de de l'énergie pour chaque build, j'ai rencontré un problème

Vérification et Validation

Tests Unitaires:

- Tests unitaires avec JUnit sur nos classes principales

Tests Jenkins:

- Test des fonctionnalités propres à Jenkins sur des simulations de projets :
 - Freestyle
 - Pipeline

Déploiement

Environnement de développement :

Outils et technologies utilisés :

- Maven, JUnit
- Jenkins
- Docker

Processus de déploiement :

Étapes pour déployer le plugin dans un environnement Jenkins :

- mvn package
- Manage Jenkins -> Plugins > Advanced Settings
- Déposer le fichier .hpi du plugin ou
- Utiliser l'URL https://settled-leopard-flowing.ngrok-free.app/energy_checker.hpi

Rétrospective du projet

Rétrospectives

Réussites:

- Récupération des Informations Energétiques pour la pipeline entière
- Intégration de PowerAPI au plugin

Défis:

- Bugs
- Génération de la Machine
- Installation de PowerAPI

Améliorations:

- Linter VSCode
- Onglet Récapitulatif
- Prédiction de la consommation

Démonstration

Conclusion

Base de l'architecture : PowerAPI - Configurator


```
end of lectureConsommation()
startTime = 1.716674302877E12
startConsumption = 22756.119539
endTime = 1.716674342679F12
endConsumption = 23049.245498
Consommation d'énergie pendant le build : 293.1259590000009 Joules
Puissance mobilisé lors du build : 7.36460376362999 Watts
previousBuildConsumption = 0.0
previousBuildProvision = 0.0
History of Energy Consumptions Updated: [293.1259590000009]
History of Power Usages Updated: [7.36460376362999]
Launching chart
Running 0,101 seconds, provided 5.716138613862175 watts and consumed 0.5773300000000745 joules
```

lauching lectureConsommation()

Part started at: 39,098 seconds

Finished: SUCCESS

Organisation de l'équipe Axel Ariane **Ulysse-Néo** Recherches sur les plugins Design de l'architecture Scrum Master Premier Plugin Jenkins Premier Linter VSCode Test de PowerAPI **Equipe Projet Paul-David** Moussa Test de PowerAPI Test de PowerAPI Diagrammes de séquence Diagrammes de séquence

Conclusion

USER STORIES

Connaître la consommation énergétique totale de l'exécution d'un build

Afficher cette consommation dans un onglet dédié de Jenkins sous forme de graphe

Connaître la consommation d'un processus en particulier du build

Visualiser l'évolution de la consommation énergétique au fil des builds

Prédire la consommation énergétique d'un projet Obtenir des conseils et des bonnes pratiques

Plugin Jenkins

- Création d'un plugin
 Jenkins qui mesure la
 consommation
 énergétique d'un build.
- Mise en place d'un outil externe pour visualiser l' évolution de cette consommation dans le temps.

Neptune

Neptune is the farthest planet from the Sun. It's really cold there

Mercury

Mercury is the closest planet to the Sun and the smallest one

Earth

Earth is the third planet from the Sun and where we all live

Neptune is the farthest planet from the Sun

Venus

It's terribly hot, even hotter than Mercury

Mercury

Mercury is the closest planet to the Sun

The Sun

It's the star at the center of the Solar System

It's the biggest planet in the Solar System

Saturn

Saturn is the ringed planet and a gas giant

Mars

Despite being red, Mars is a cold place

The Moon

The Moon is Earth's only natural satellite

Jupiter

Jupiter is a gas giant and the biggest planet in the Solar System

Saturn

Saturn is a gas giant with rings. It's composed of hydrogen and helium

Neptune

Neptune is the farthest planet from the Sun. It's really cold there

Mercury

Mercury is the closest planet to the Sun and the smallest one

01

Jupiter

Jupiter is a gas giant and the biggest planet in the Solar System

02

Mars

Despite being red, Mars is actually a very cold place

03

Saturn

Saturn has several rings. It's composed of hydrogen and helium

04

Venus

Venus has a beautiful name and is the second planet from the Sun

35%

Neptune

Neptune is the farthest planet from the Sun. It's really cold there

23%

Jupiter

Jupiter is a gas giant and the biggest planet in the entire Solar System 30%

Saturn

Saturn is the ringed planet. It's a gas giant, composed of hydrogen and helium

12%

Venus

Venus has a beautiful name and is the second planet from the Sun

Neptune

Neptune is the farthest planet from the Sun

Jupiter

It's the biggest planet in the Solar System

Venus

It's terribly hot, even hotter than Mercury

Saturn

Saturn is a gas giant with several rings

Mercury

Mercury is the closest planet to the Sun

Mars

Despite being red, Mars is a cold place

Venus

Venus has a beautiful name and is the second planet from the Sun

Jupiter

Jupiter is a gas giant and the biggest planet in the Solar System

Mercury

Mercury is the closest planet to the Sun and the smallest one

additional system

Ceres is located in the main asteroid belt

centralized base

Despite being red, Mars is a cold place

Storage capacity expansion

Mercury is the closest planet to the Sun

Legacy system modernization

Venus is the second planet from the Sun

Historical data

Jupiter is the biggest planet of them all

Moving data to the cloud

Neptune is the farthest planet from the Sun

Mergers and acquisitions

Saturn is the ringed planet and a gas giant

Data	From	То	Data volume
Mars	Admin system 1	Cloud service 1	1.8 GB
Mercury	Admin system 2	Cloud service 2	25.4 GB
Jupiter	Admin system 3	Cloud service 3	12.8 GB
Saturn	Admin system 4	Cloud service 4	59,.1 GB
Venus	Admin system 5	Cloud service 5	2.9 GB

Jupiter is a gas giant and the biggest planet in the Solar System

Saturn

Saturn is a gas giant with ring. It's composed of hydrogen and helium

Neptune is the farthest planet from the Sun. It's really cold there

Mercury

Mercury is the closest planet to the Sun and the smallest one

Process	Description	Risk
Phase 1	Despite being red, Mars is a cold place	
Phase 2	Mercury is the closest planet to the Sun	
Phase 3	Neptune is the farthest planet from the Sun	
Phase 4	Saturn is the ringed planet and a gas giant	
Phase 5	Venus is terribly hot, even hotter than Mercury	

Instructions for use

In order to use this template, you must credit <u>Slidesgo</u> in your final presentation.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

Instructions for use (premium users)

As a Premium user, you can use this template without attributing Slidesgo or keeping the "Thanks" slide.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial purposes.
- Hide or delete the "Thanks" slide and the mention to Slidesgo in the credits.
- Share this template in an editable format with people who are not part of your team.

You are not allowed to:

- Sublicense, sell or rent this Slidesgo Template (or a modified version of this Slidesgo Template).
- Distribute this Slidesgo Template (or a modified version of this Slidesgo Template) or include it in a database or in any other product or service that offers downloadable images, icons or presentations that may be subject to distribution or resale.
- Use any of the elements that are part of this Slidesgo Template in an isolated and separated way from this Template.
- Register any of the elements that are part of this template as a trademark or logo, or register it as a work in an
 intellectual property registry or similar.

For more information about editing slides, please read our FAQs or visit Slidesgo School: https://slidesgo.com/faqs and https://slidesgo.com/slidesgo-school

Infographics

You can add and edit some infographics to your presentation to present your data in a visual way

- Choose your favourite infographic and insert it in your presentation using Ctrl C
 + Ctrl V or Cmd C + Cmd V in Mac.
- Select one of the parts and ungroup it by right-clicking and choosing "Ungroup".
- Change the color by clicking on the paint bucket.
- Then resize the element by clicking and dragging one of the square-shaped points of its bounding box (the cursor should look like a double-headed arrow).
 Remember to hold Shift while dragging to keep the proportions.
- Group the elements again by selecting them, right-clicking and choosing "Group".
- Repeat the steps above with the other parts and when you're done editing, copy the end result and paste it into your presentation.
- Remember to choose the "Keep source formatting" option so that it keeps the design. For more info, please visit Slidesgo School.

