Lecture 26

Greedy Algorithms: Disjoint Subsets & Union-Find Algorithms.

Disjoint Sets

- Disjoint Sets and Operations
- Detecting a cycle
- Graphical Representation
- Union-Find Algorithm
- Array Implementation & Collapsing

(1) Disjoint Set Operation

- Disjoint sets are similar to sets in Mathematics but not exactly.
- Disjoint sets a little bit changed for making them useful in algorithms
- A well-known algorithm for disjoint sets is Kruskal'a algorithm that detect a cycle in a graph
- > Let's see the difference of disjoint sets from Mathematics

(1) Disjoint Set Operation

- > Find & Union
- $> S_1 = \{1, 2, 3, 4\}, S_2 = \{5, 6, 7, 8\}$
- $\rightarrow S_1 \cap S_2 = \varphi$
- > Set membership operation is
 - $1\varepsilon S_1$, $6\varepsilon S_2$, $8\varepsilon S_2$ etc.

- > Union Operation by connecting (4, 8) and (1,5) if each vertex is belonging to different set.
 - Let's Say $S_1US_2=S_3=\{1,2,3,4,5,6,7,8\}$, thus S_1 and S_2 are deleted.
 - If both vertex belong to the same set, then there is a cycle.
 - Similarly, for (1,5).
- This is the way to find out cycle in a graph

(2) Detecting Cycles

- Our target is to detect cycle in a graph
 - $U=\{1, 2, 3, 4, 5, 6, 7, 8\}$
 - How to take help of disjoint sets, to find cycles?
 - Consider 8 vertices with U
 - Each element is considered as a set

(2) Detecting Cycles

DR. KHALID IQBAL

Consider (2,5), 2 is in

S5 and 5 is in S3,

perform union

S6={1,2,3,4,5,6}

(2) Detecting Cycles

U={1,2,3,4,5,6,7,8}

S1={1,2}, S2={3,4}, S3={5,6}, S4={7,8}

\$5={1,2,3,4}

S6={1,2,3,4,5,6}

1 & 3 belongs to S6 (same set), it means there is a cycle. So, do not consider or include it.

Consider (6, 8) 6 is in S6 and 8 is in S4, So perform union S7={1,2,3,4,5,6,7,8}

Consider (5,7) 5 & 7 are in same set S7, so there is a cycle.

DR. KHALID IQBAL

DR. KHALID IQBAL

DR. KHALID IQBAL

U	1	2	3	4	5	6	7	8
Parent	-1	-1	-1	-1	-1	-1	-1	-1
Vertex	1	2	3	4	5	6	7	8

Parents itself for each element

							5	
U	1	2	3	4	5	6	7	8
Parent	-1	-1	-1	-1	-1	-1	-1	-1
Vertex	\mathcal{U}_1	辽 2	3	4	5	6	7	8

Parent of 1 and 2 can be found in a constant time due to -1 (shows 1 & 2 are Parents of itself.

Parents itself for each element

							(F)	
U	1	2	3	4	5	6	7	8
Parent	-2	1	-1	-1	-1	-1	-1	-1
Vertex	٠ (٢٠٠٢)	辽 2	3	4	5	6	7	8

Parents itself for each element

Update Parent of 2 to 1 after performing Union Operation.

-2 represents that there are two nodes and 1 is parent of itself.

								F
U	1	2	3	4	5	6	7	8
Parent	-2	1	-2	3	-1	-1	-1	-1
Vertex	1	2	1 3	4	5	6	7	8

Parents itself for each element

Update Parent of 4 to 3 after performing Union Operation. -2 represents that there are two nodes and 3 is parent of itself.

							(F)	5
U	1	2	3	4	5	6	7	8
Parent	-2	1	-2	3	-2	5	-2	7
Vertex	1	2	3	4	15	T6 \	7	8

Parents itself for each element

Similar process for (5,6) and (7,8)

U	1	2	3	4	5	6	7	8
Parent	-2	1	-2	3	-2	5	-2	7
Vertex	1	2	3	4	5	6	47	(18)

Similar process for (5,6) and (7,8)

Parents itself for each element

U	1	2	3	4	5	6	7	8
Parent	-4	1	1	3	-2	5	-2	7
Vertex	1	\mathcal{L}_2	3	4	5	6	7	8

Parents itself for each element

Consider (2,4) – Parent of 2 is 1 and 1 is parent of itself. Also, parent of 4 is 3 and 3 is parent of itself. Different Parents then perform Union – Select 1 as a parent.

								5
U	1	2	3	4	5	6	7	8
Parent	-6	1	1	3	1	5	-2	7
Vertex	1	\mathcal{L}_2	3	4	15 \	6	7	8

Parents itself for each element

Consider (2,5) – Parent of 2 is 1 and 1 is parent of itself. Also, 5 itself is a parent. Different Parents then perform Union – Select 1 as a parent due to its high rank or weight.

U	1	2	3	4	5	6	7	8
Parent	-6	1	1	3	1	5	-2	7
Vertex	\mathcal{U}_1	2	L 3	4	5	6	7	8

each element

Parents itself for

Consider (1,3) – 1 is parent of itself. Parent of 3 is also 1. SAME PARENT. It means that it's a CYCLE. Do not include it.

U	1	2	3	4	5	6	7	8
Parent	-8	1	1	3	1	5	1	7
Vertex	1	2	3	4	5	16	7	18

Parents itself for each element

Consider (6,8) – 6 parent is 1. Parent of 8 is also 7. Different PARENT. Perform UNION

Operation.

U	1	2	3	4	5	6	7 -	8
Parent	-8	1	1	3	1	5	1	7
Vertex	1	2	3	4	5	七6	辽7	8

Consider (5,7) – 5 parent is 1. Parent of 7 is also 1. SAME PARENT. It's a CYCLE.

Parents itself for each element

U	1	2	3	4	5	6	7	8
Parent	-8	1	1	1	1	1	1	1
Vertex	1	2	3	4	5	46	辽 7	8

Consider (5,7) – 5 parent is 1. Parent of 7 is also 1. SAME PARENT. It's a CYCLE.

Collapsing in the tree: If we came to know the parent is the root

Parents itself for each element


```
function MakeSet(x)
                                                   MAKE-SET(x)
                                                   1 \quad x.p = x
     x.parent = x
                                                   2 \quad x.rank = 0
     x.rank = 0
                                                   UNION(x, y)
                                                   1 LINK(FIND-SET(x), FIND-SET(y))
                                                   Link(x, y)
function Union(x, y)
                                                   1 if x.rank > y.rank
                                                        y.p = x
     xRoot = Find(x)
                                                   3 else x.p = y
                                                        if x.rank == y.rank
     yRoot = Find(y)
                                                           y.rank = y.rank + 1
     if xRoot == yRoot
                                                   FIND-SET(x)
                                                   1 if x \neq x.p
          return
                                                        x.p = \text{FIND-SET}(x.p)
                                                   3 return x.p
     // x and y are not already in the same set. Merge them.
```

if xRoot.rank < yRoot.rank
 xRoot.parent = yRoot
else if xRoot.rank > yRoot.rank
 yRoot.parent = xRoot
else
 yRoot.parent = xRoot
 xRoot.rank = xRoot.rank + 1

It is possible to create a tree of depth n - 1 (Skew Trees). The worst-case running time of a FIND is O(n) and m consecutive FIND operations take O(mn) time in the worst case.

worst-case input

 p q
 ① ① ② ③ ④ ⑤ ⑥ ⑦

 0 1
 ② ② ③ ④ ⑤ ⑥ ⑦

 ① ② ③ ④ ⑤ ⑥ ⑦

0 2 0 4 6 7

4 6

0 4

Thank You!!!

Have a good day

