

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

Experiment and create the best regression model for predicting daily

Answer

TargetTotal.orders.		
0.301805864		
-0.481510166		
0.907253271		
0.624550912		
0.602445645		
0.892010948		
0.698149726		
-0.008783591		
0.079290905		
0.573524259		
0.734971135		
0.119061627		
1.000000000		

รูปที่ 1 Correlation ของข้อมูลที่สัมพันธ์กับ Target

เริ่มแรกทำการดู Correlation ของข้อมูล เพื่อดูว่ามีตัวแปรไหนบางที่สัมพันธ์กันในข้อมูล Target ของเรา เพื่อใช้สำหรับในการเลือก Feature สำหรับมาทำ Model จากรูปที่ 1

	<dbl></dbl>
Non.urgent.order	0.9345178
Urgent.order	0.7297847
Order.type.B	0.9006729
Order.type.C	0.8049838
Banking.orders1.	0.6303650
Banking.orders2.	0.7984470
TargetTotal.orders.	1.0000000

รูปที่ 2 Correlation ของข้อมูลที่สัมพันธ์กับ Target ที่ทำการเลือก

หลักจากนั้นทำการกรองเอาค่า Correlations ที่มากกว่า 0.6 และ น้อยกว่า -0.6 จะได้ดังรูปที่2 เพื่อใช้ เป็นตัวเลือกสำหรับในการสร้าง Model

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

รูปที่ 3 แสดง Scatter plot ของ Non-urgent-order กับ target (ซ้าย) , Urgent-order กับ target (ตรงกลาง) และ Order-type-A กับ target (ขวา)

รูปที่ 4 แสดง Scatter plot ของ Order-type-B กับ target (ซ้าย) , Order-type-C กับ target (ตรงกลาง) และ Banking-order-1 กับ target (ขวา)

โดยจากการทดลอง จะเห็นได้ว่าบางความสัมพันธ์จะมี Outlier อยู่มากเลยทำการ Outlier ออกด้วย IQR จากการทดลองได้ทำการเอา Outlier Urgent-order ออกอยู่ค่าเดียวเพราะส่งผลต่อ Correlations ในทางที่ดีขึ้น จากรูปที่ 3

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

	target
	<dbl></dbl>
Non.urgent.order	0.9072533
Urgent.order	0.6245509
Order.type.A	0.6024456
Order.type.B	0.8920109
Order.type.C	0.6981497
Banking.orders2.	0.7349711
TargetTotal.orders.	1.0000000

รูปที่ 5 Correlation ของข้อมูลที่สัมพันธ์กับ Target ที่ทำการเลือก หลังจากเอา Outlier ออก

โดยเมื่อนำค่า Outlier ออกทำให้ Correlation บางค่ามีค่าลดลงแต่ ค่าส่วนมากจะเพิ่มขึ้น ดังนั้นเลยได้ ใช้ข้อมูลนี้ต่อไปในการ Linear Regression model ต่อไป จากรูปที่ 5

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

รูปที่ 6 model ที่ 1

โดยสมการของ model ที่ 1 จากรูปที่ 6 จะได้เป็น target = 0.644nonUrgentOrder + 0.7313orderTypeB + 0.0001242bankingOrder2 + 0.9824 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 27711.84

รูปที่ 7 model ที่ 2

โดยสมการของ model ที่ 2 จากรูปที่ 7 จะได้เป็น target = 0.648725nonUrgentOrder + 0.75321orderTypeB + 98.18791 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 28217.819 จะสามารถ สังเกตุได้ว่า ค่า Adjusted R-squared ไม่ได้เพิ่มขึ้นและ S ก็เยอะมากขึ้นด้วย ซึ่งอาจจะหมายความว่า อาจจะไม่ ความจำเป็นที่ต้องบวกสมการ

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

รูปที่ 8 model ที่ 3

โดยสมการของ model ที่ 3 จากรูปที่ 8 จะได้เป็น target = 1.15474nonUrgentOrder + 100.15420 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 55157.594 โดยสามารถสังเกตได้ว่า 1 ตัวแปรไม่เพียงพอต่อการ สร้าง model ถึงแม้ ตัวแปรนี้จะสัมพันธ์กับ Target ของเรามากที่สุด

รูปที่ 9 model ที่ 4

โดยสมการของ model ที่ 4 จากรูปที่ 9 จะได้เป็น target = 8.972e-07nonUrgentOrder + 1.393e-04bankingOrder2 + 8.972e-07bankingOrder2*nonUrgentOrder + 1.134e+02 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 51745.832

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

รูปที่ 10 model ที่ 5

โดยสมการของ model ที่ 5 จากรูปที่ 10 จะได้เป็น target = 0.83156nonUrgentOrder + 0.9105554orderTypeB - 0.0009499nonUrgentOrder*orderTypeB + 76.2444057 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 27262.60 ซึ่งจะสามารถสังเกตุเทียบจาก model ที่ 4 ได้ เมื่อทำ การเปลี่ยนตัวแปรที่มี ค่า Correlations สูงขึ้นแล้วนำมา Interaction กัน เราจะได้ ค่า Adjusted R-squared ที่ สูงกว่าด้วย ดีกว่าการเอาไป additional กัน

รูปที่11 model ที่ 6

โดยสมการของ model ที่ 6 จากรูปที่ 11 จะได้เป็น target = 0.7836656
nonUrgentOrder + 0.8789629orderTypeB + 0.0001012bankingOrder2 0.0008668nonUrgentOrder*orderTypeB + 78.2054969 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ
26933.91 ซึ่งเมื่อทดลองนำ ค่าที่ Correlation สูง ๆ มาบวกเพิ่ม ก็ไม่ได้ให้ผลที่ต่างกันมากจากเดิม เมื่อเทียบกับ
model ที่ 5

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

ฐปที่ 10 model ที่ 7

โดยสมการของ model ที่ 7 จากรูปที่ 10 จะได้เป็น target = 0.7519976 nonUrgentOrder + 0.9657336orderTypeB + 0.5080484orderTypeA - 0.0011624orderTypeB*nonUrgentOrder + 61.490982 ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 23923.05 ซึ่งจะสามารถสังเกตุเทียบจาก model ที่ 6 ได้ เมื่อทำการเปลี่ยนตัวแปรที่มี ค่า Correlations ต่ำกว่า แต่ว่ากลับจะได้ S ที่มากขึ้น นั้นแปลว่าตัวแปรนี้อาจ เป็นตัวแปรที่มีความสำคัญแต่ไม่สามารถแสดงในรูปของความสัมพันธ์ได้ ถ้านำมา interaction อาจจะให้ผลที่ดีขึ้น

King Mongkut's University of Technology Thonburi

Faculty of Engineering, Department of Computer Engineering

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

```
model <- lm(target ~ nonUrgentOrder*orderTypeB + orderTypeA*orderTypeC, df)</pre>
    summary(model)
→ Warning message in summary.lm(model):
    "essentially perfect fit: summary may be unreliable"
    lm(formula = target ~ nonUrgentOrder * orderTypeB + orderTypeA *
        orderTypeC, data = df)
    Residuals:
                 10
                           Median
                                                      Max
          Min
    -4.363e-14 -1.458e-14 -3.309e-15 7.638e-15 1.391e-13
    Coefficients:
                              Estimate Std. Error
                                                     t value Pr(>|t|)
                            -1.129e-13 5.249e-14 -2.151e+00 0.0362 *
    (Intercept)
    nonUrgentOrder
                           -1.296e-16 2.292e-16 -5.650e-01 0.5743
                             1.000e+00 2.053e-16 4.870e+15 <2e-16 ***
1.000e+00 1.026e-15 9.751e+14 <2e-16 ***
    orderTypeB
    orderTypeA
    orderTypeC
                              1.000e+00 4.390e-16 2.278e+15
                                                               <2e-16 ***
    nonUrgentOrder:orderTypeB -1.326e-18 9.823e-19 -1.350e+00
                            2.125e-19 7.360e-18 2.900e-02 0.9771
    orderTypeA:orderTypeC
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Residual standard error: 2.857e-14 on 51 degrees of freedom
    Multiple R-squared: 1, Adjusted R-squared:
    F-statistic: 6.369e+31 on 6 and 51 DF, p-value: < 2.2e-16
[36] target_pred = predict(model,df)
    sum((target_pred - df$target)^2)
```

รูปที่11 model ที่ 8

1.56711951987585e-25

โดยสมการของ model ที่ 8 จากรูปที่ 11 จะได้เป็น target = - 1.296e-16
nonUrgentOrder + orderTypeB + orderTypeA + orderTypeC - 1.326e-18
nonUrgentOrder*orderTypeB + nonUrgentOrder*orderTypeC ซึ่งจะได้ค่า S หรือ Sum error square เท่ากับ 1.57e-25 โดยเมื่อลองนำ ตัวแปลที่ Correlation ไม่สูงมากมา Interaction กัน เราจะได้ model ที่มีค่า Adjusted R-squared เท่ากับ 1 ซึ่งเป็น model ที่ fit กับข้อมูลมาก ๆ จน Overfit โดยสามารถสังเกตุได้อีกย่าง คือ ตัว Feature orderTypeB orderTypeA orderTypeC มีค่าความชั้นเป็น 1 ซึ่งมันอาจหมายความว่าตัวแปร เหล่านี้เป็นตัวแปรที่กำหนดสมการหลัก ในแปรผันตาม Target ของเรา

CPE 213 Data Model, 2/2020

LAB Lecture 9: Linear Regression

Assign Date: 12 April 2021 Due Date: 22 April 2021

```
## 75% of the sample size
smp_size <- floor(0.75 * nrow(df))</pre>
## set the seed to make your partition reproducible
train_ind <- sample(seq_len(nrow(df)), size = smp_size)</pre>
train <- df[train ind, ]
test <- df[-train ind, ]
model <- lm(target ~ nonUrgentOrder*orderTypeB + orderTypeA*orderTypeC, train)</pre>
summary(model)
Warning message in summary.lm(model):
"essentially perfect fit: summary may be unreliable"
lm(formula = target ~ nonUrgentOrder * orderTypeB + orderTypeA *
     orderTypeC, data = train)
Residuals:
Min 1Q Median 3Q Max -1.748e-13 -9.339e-15 6.000e-15 1.116e-14 5.829e-14
Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
-1.734e-14 7.737e-14 -2.240e-01 0.824
0.000e+00 3.581e-16 0.000e+00 1.000
1.000e+00 2.799e-16 3.573e+15 <2e-16
1.000e+00 1.766e-15 5.663e+14 <2e-16
1.000e+00 7.465e-16 1.340e+15 <2e-16
(Intercept)
nonUrgentOrder
orderTypeB
orderTypeA
                                                                              <2e-16 **
                                                                              <2e-16 ***
orderTypeC
nonUrgentOrder:orderTypeB -1.882e-19 1.545e-18 -1.220e-01 orderTypeA:orderTypeC 8.072e-18 1.407e-17 5.740e-01
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.498e-14 on 36 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 3.328e+31 on 6 and 36 DF, p-value: < 2.2e-16
target_pred = predict(model,test)
sum((target pred - test$target)^2)
```

รูปที่12 ทำ Train test split เพื่อทดสอบ model ที่ 8

โดยเมื่อลองทำ Train test split ก็ได้ผลลัพธ์ที่ดีมาก จากการทดลอง รูปที่12 ซึ่งจากการทดลองนี้ข้อมูล อาจจะน้อยเกินไป จนอาจจะไม่ reflect ถึง data ที่แท้จริงได้ ทำให้ model มีค่าที่ Fit ขนาดนี้

Why is sometime adding predictors do not help prediction?

Answer จากาการทดลองเราจะเห็นได้ว่า บางครั้งการที่เราเพิ่มตัวแปรที่มี Correlations สูงก็อาจจะไม่ได้ทำให้ model มีประสิทธิภาพสูงเสมอไป แต่เราต้องหาตัวแปรที่เป็น insight ของข้อมูลของเรา จะช่วยเพิ่มประสิทธิภาพ ของ model ได้ดีมากกว่า ที่จะช่วยในการ predict จริง ๆ