GROUPES

1 Compléments sur les groupes

Proposition 1.1 Intersection de sous-groupes

Soit $(H_i)_{i \in I}$ une famille de sous-groupes d'un groupe G. Alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

Définition 1.1 Sous-groupe engendré par une partie

Soit A une partie d'un groupe G. On appelle **sous-groupe engendré** par A l'intersection de tous les sous-groupes de G contenant A i.e. le plus petit sous-groupe de G contenant A. On note ce sous-groupe $\langle A \rangle$.

REMARQUE. Si le sous-groupe engendré par A est G, on dit également que A est un partie génératrice de G.

Proposition 1.2

Soit A une partie d'un groupe G. Alors

$$\begin{split} \langle \mathbf{A} \rangle &= \left\{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_p^{\varepsilon_p}, \ p \in \mathbb{N}, \ (a_1, \dots, a_p) \in \mathbf{A}^p, \ (\varepsilon_1, \dots, \varepsilon_p) \in \{-1, 1\}^p \right\} \\ &= \left\{ a_1^{n_1} a_2^{n_2} \dots a_p^{n_p}, \ p \in \mathbb{N}, \ (a_1, \dots, a_p) \in \mathbf{A}^p, \ (n_1, \dots, n_p) \in \mathbb{Z}^p \right\} \end{split}$$

Remarque. Dans le cas où p = 0, on retrouve l'élément neutre.

Exemple 1.1

- Le sous-groupe engendré par la partie vide est le sous-groupe trivial contenant le seul élément neutre.
- L'ensemble des transpositions de S_n engendrent S_n .

Exercice 1.1

Montrer que le groupe orthogonal O(E) d'un espace euclidien E est engendré par les réflexions.

Exercice 1.2

On note A_n l'ensemble des permutations de S_n de signature 1. Montrer que A_n est un sous-groupe de S_n engendré par les 3-cycles.

Proposition 1.3 Sous-groupe engendré par un élément

Soient G un groupe et $x \in G$. Le sous-groupe engendré par $\{x\}$ est appelé plus simplement sous-groupe engendré par x. On le note $\langle x \rangle$.

REMARQUE. Si le sous-groupe engendré par x est G, on dit également que x est un générateur de G.

Proposition 1.4

Soient G un groupe et $x \in G$. Alors $\langle x \rangle = \{x^k, k \in \mathbb{Z}\}$.

Exemple 1.2

- Les générateurs de $(\mathbb{Z}, +)$ sont ± 1 .
- Les générateurs de \mathbb{U}_n sont les $e^{\frac{2ik\pi}{n}}$ avec $k\wedge n=1$.

Exercice 1.3 Partie génératrice et morphisme

Soient f un morhisme d'un groupe G dans un groupe H et A une partie de G. Montrer que $\langle f(A) \rangle = f(\langle A \rangle)$.

Proposition 1.5 Sous-groupes de $(\mathbb{Z}, +)$

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $a\mathbb{Z}$ avec $a \in \mathbb{Z}$.

2 Le groupe $\mathbb{Z}/n\mathbb{Z}$

Proposition 2.1

Soit $n \in \mathbb{N}^*$. La relation de congruence modulo n définit une relation d'équivalence sur \mathbb{Z} .

Définition 2.1 $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. On appelle $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalences de la relation de congruence modulo n.

Notation 2.1

On notera \overline{k} la classe de congruence de k modulo n.

Remarque. Par conséquent, $\overline{k} = \{k + pn, p \in \mathbb{Z}\}.$

Exemple 2.1

Dans $\mathbb{Z}/5\mathbb{Z}$, $\overline{47} = \overline{2} = \overline{-8}$.

Remarque. De manière générale, $\overline{k} = \overline{m}$ dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \equiv m[n]$.

Exercice 2.1

Montrer que l'application $\left\{ \begin{array}{ccc} \llbracket 0, n-1 \rrbracket & \longrightarrow & \mathbb{Z}/n\mathbb{Z} \\ k & \longmapsto & \overline{k} \end{array} \right.$ est bijective.

Proposition 2.2

Soit $n \in \mathbb{N}^*$. Alors $\mathbb{Z}/n\mathbb{Z} = \{\overline{k}, \ k \in \llbracket 0, n-1 \rrbracket \}$. De plus, card $(\mathbb{Z}/n\mathbb{Z}) = n$.

Proposition 2.3 Addition sur $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. On définit une addition sur $\mathbb{Z}/n\mathbb{Z}$ en posant

$$\forall (k,l) \in \mathbb{Z}^2, \ \overline{k} + \overline{l} = \overline{k+l}$$

Remarque. Il faut vérifier que la classe de congruence de k+l modulo n ne dépend que des classes de congruence de k et l modulo n, et non des entiers k et l choisis.

Exemple 2.2

Dans $\mathbb{Z}/4\mathbb{Z}$, $\overline{7} + \overline{2} = \overline{9} = \overline{1}$.

Proposition 2.4 Structure de groupe de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. Alors $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif d'élément neutre $\overline{0}$.

Exercice 2.2

Soit $k \in \mathbb{Z}$. Montrer que l'application $\begin{cases} \mathbb{Z} & \longrightarrow & \mathbb{Z}/n\mathbb{Z} \\ m & \longmapsto & \overline{mk} \end{cases}$ est un morphisme de groupes additifs.

Proposition 2.5

Soit $(m, k, n) \in \mathbb{Z}^2 \times \mathbb{N}^*$. Alors $m\overline{k} = \overline{mk}$ dans $\mathbb{Z}/n\mathbb{Z}$.

Théorème 2.1 Générateurs de $\mathbb{Z}/n\mathbb{Z}$

Soit $(k,n) \in \mathbb{Z} \times \mathbb{N}^*$. Alors \overline{k} engendre le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ si et seulement si $k \wedge n = 1$.

3 Ordre d'un élément d'un groupe

Définition 3.1 Ordre d'un élément

Un élément x d'un groupe G d'élément neutre e est dit d'**ordre fini** s'il existe $n \in \mathbb{N}^*$ tel que $x^n = e$. Dans ce cas, on appelle **ordre** de x l'entier $\min\{n \in \mathbb{N}^*, x^n = e\}$.

Exemple 3.1

L'élément neutre d'un groupe est le seul élément d'ordre 1.

Exemple 3.2

L'ordre d'un cycle de longueur p est p.

Exercice 3.1

Déterminer l'ordre de la permutation $\sigma \in S_7$ telle que

$$\sigma(1) = 3$$

$$\sigma(2) = 6$$

$$\sigma(3) = 5$$

$$\sigma(4) = 7$$

$$\sigma(5) = 1$$

$$\sigma(6) = 2$$

$$\sigma(7) = 4$$

Exemple 3.3

Il est clair que l'ordre d'un élément est conservé par isomorphisme. On en déduit par exemple que $\mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$. Ces deux groupes sont commutatifs et de cardinal 4 mais le premier contient un élément d'ordre 4 tandis que le second ne possède que des éléments d'ordre 1 ou 2.

Définition 3.2 Ordre d'un groupe

Le cardinal d'un groupe est appelé l'**ordre** de ce groupe.

Exemple 3.4

 (S_n, \circ) est un groupe d'ordre n!.

Exercice 3.2

Soit x un élément d'ordre d d'un groupe G. Montrer que l'application $\begin{cases} [0, d-1] & \longrightarrow & \langle x \rangle \\ k & \longmapsto & x^k \end{cases}$ est bijective.

Proposition 3.1 Ordre et sous-groupe engendré par un élément

Soit x un élément d'un groupe G. Alors x est d'ordre fini si et seulement si $\langle x \rangle$ est d'ordre fini. Dans ce cas, les ordres de x et $\langle x \rangle$ sont égaux et $\langle x \rangle = \{x^k, k \in [0, d-1]\}$, où d désigne l'ordre de x.

REMARQUE. Tout élément d'un groupe fini est donc d'ordre fini.

Proposition 3.2

Soit x un élément d'ordre d d'un groupe G d'élément neutre e. Alors pour tout $n \in \mathbb{Z}$, $x^n = e \iff d \mid n$.

Exercice 3.3

Soient x un élément d'un groupe G et $k \in \mathbb{Z}$. On suppose que x est d'ordre $n \in \mathbb{N}^*$. On note d l'ordre de x^k .

- 1. Montrer que *n* divise *kd*.
- 2. Montrer que *d* divise $\frac{n}{n \wedge k}$.
- 3. En déduire que $d = \frac{n}{n \wedge k}$.

Exercice 3.4

Soit $(k, n) \in \mathbb{Z} \times \mathbb{N}^*$. On note d l'ordre de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$.

- 1. Montrer que *n* divise *kd*.
- 2. Montrer que d divise $\frac{n}{n \wedge k}$.
- 3. En déduire que $d = \frac{n}{n \wedge k}$

Proposition 3.3

Soit *x* un élément d'un groupe fini G. Alors *x* est d'ordre fini et l'ordre de *x* divise l'ordre de G.

Remarque. Notamment, si x est un élément d'un groupe d'ordre n et d'élément neutre e, alors $x^n = e$.

Théorème 3.1 Lagrange (hors-programme)

Soit H un sous-groupe d'un groupe fini G. Alors l'ordre de H divise l'ordre de G.

4 Groupes monogènes

Définition 4.1 Groupe monogène

On dit qu'un groupe est monogène s'il est engendré par un de ses éléments.

REMARQUE. Un groupe monogène est fini ou dénombrable.

Exemple 4.1

Le groupe $(\mathbb{Z}, +)$ est monogène puisqu'il est engendré par 1.

Proposition 4.1

Tout groupe monogène est commutatif.

Théorème 4.1

Un groupe est infini monogène si et seulement si il est isomorphe à $(\mathbb{Z}, +)$.

Définition 4.2 Groupe cyclique

On dit qu'un groupe est cyclique s'il est monogène et fini.

Remarque. Si G est un groupe cyclique d'ordre n, alors pour tout générateur x de G, G = $\{x^k, k \in [0, p-1]\}$.

Remarque. Un groupe d'ordre n est cyclique si et seulement si il possède un élément d'ordre n.

Exemple 4.2

- Soit $n \in \mathbb{N}^*$. Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique puisqu'il est fini et engendré par $\overline{1}$.
- Soit $n \in \mathbb{N}^*$. Le groupe (\mathbb{U}_n, \times) est cyclique puisqu'il est fini et engendré par $e^{\frac{2i\pi}{n}}$.
- Pour tout entier $n \ge 3$, S_n n'est pas cyclique puisqu'il n'est même pas commutatif.
- Pour tout entier $n \ge 2$, $(\mathbb{Z}/n\mathbb{Z})^2$ n'est pas cyclique : il est d'ordre n^2 mais les ordres de ses éléments sont des diviseurs de n.

Exercice 4.1

Montrer que tout groupe d'ordre premier est cyclique.

Théorème 4.2

Soit $n \in \mathbb{N}^*$. Un groupe est cyclique d'ordre n si et seulement si il est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Exemple 4.3

A nouveau, (\mathbb{U}_n, \times) est cyclique puisque l'application $\begin{cases} \mathbb{Z}/n\mathbb{Z} & \longrightarrow & \mathbb{U}_n \\ \overline{k} & \longmapsto & e^{\frac{2ik\pi}{n}} \end{cases}$ est bien définie et est un isomorphisme.

Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ –

On peut prouver que les sous-groupes de $(\mathbb{Z}/n\mathbb{Z}, +)$ sont cycliques. En effet, si H est un sous-goupe non nul de $\mathbb{Z}/n\mathbb{Z}$, on peut montrer que $H = \langle \overline{m} \rangle$ où $m = \min\{k \in [1, n-1], \overline{k} \in H\}$.

Comme tout groupe cyclique d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$, on en déduit que les sous-groupes d'un groupe cyclique sont cycliques.

Exercice 4.2

Montrer que si G est un groupe cyclique d'ordre n, alors pour tout diviseur d de n, il existe un unique sous-groupe de G d'ordre d.