Getting Started on JupyterHub GPUs

Esteban León

November 9, 2020

- 1. Request NERSC access to a GPU node on JupyterHub:
 - Link to JupyterHub: https://jupyter.nersc.gov/
 - Under the NERSC Help Portal, go to 'Service Catalog \rightarrow Request Forms \rightarrow GPU node access' and fill out the form to get GPU access
- 2. Create a custom Conda environment and kernel (on Cori terminal/command line):
 - \$ module load pytorch/v1.5.0-gpu
 - \$ conda create -n pytorch_gpu_env python=3.7 ipykernel numpy scipy
 - \$ source activate pytorch_gpu_env
 - \$ python -m ipykernel install --user --name pytorch_gpu_env --display-name pytorch_gpu_kernel
 - More information here about creating custom Conda environments and kernels here: https://www.nersc.gov/assets/Uploads/13-Using-Jupyter-20200616.pdf
- 3. Install necessary packages to run the MNIST and waveform convolutional autoencoder Jupyter notebooks:
 - \$ pip install torch pytorch_model_summary gzip-reader pickle5 pathlib requests matplotlib tsnecuda
 - Can also install pygama inside this Conda environment with:
 - \$ git clone https://github.com/legend-exp/pygama.git
 \$ pip install -e <path_to_local_pygama_directory>
- 4. Once you have access to a GPU node, log into JupyterHub and start a "Shared GPU Node." Make sure the Jupyter notebooks are in some directory within Cori and open them. Switch the kernel (on the upper right section of the screen) to "pytorch_gpu_kernel" and run the notebook cells.