Training Examples for EnjoySport

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	\mathbf{Same}	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	${\rm Strong}$	Cool	Change	Yes

What is the general concept?

Prototypical Concept Learning Task

• Given:

- Instances X: Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind, Water, Forecast
- Target function c: $EnjoySport: X \rightarrow \{0, 1\}$
- Hypotheses H: Conjunctions of literals. E.g. $\langle ?, Cold, High, ?, ?, ? \rangle$.
- Training examples D: Positive and negative examples of the target function

$$\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$$

• **Determine:** A hypothesis h in H such that h(x) = c(x) for all x in D.

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Representing Hypotheses

Many possible representations

Here, h is conjunction of constraints on attributes

Each constraint can be

- a specific value (e.g., Water = Warm)
- don't care (e.g., "Water =?")
- no value allowed (e.g., "Water=0")

For example,

Sky AirTemp Humid Wind Water Forecst $\langle Sunny$? ? Strong ? $Same \rangle$

The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Instance, Hypotheses, and More-General-Than

Hypothesis Space Search by Find-S

 $h_0 = \langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$

h₁ = <Sunny Warm Normal Strong Warm Sam $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_3^- = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$

 $h_4^{} = < Sunny \; Warm \; ? \; Strong \; ? \; ? >$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in hIf the constraint a_i in h is satisfied by xThen do nothing Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

Complaints about Find-S

x₁ = <Sunny Warm Normal Strong Warm Same>, +

 $x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle, +$

 $x_3 = \langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle,$ -

 $x_4 = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle, \ +$

- Can't tell whether it has learned concept
- Can't tell when training data inconsistent
- Picks a maximally specific h (why?)
- \bullet Depending on H, there might be several!

Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

Example Version Space

1

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

The List-Then-Eliminate Algorithm:

- 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$ remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in VersionSpace

Representing Version Spaces

The **General boundary**, G, of version space $VS_{H,D}$ is the set of its maximally general members

The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \ge h \ge s) \}$$

where $x \ge y$ means x is more general or equal to

Candidate Elimination Algorithm

 $G \leftarrow$ maximally general hypotheses in H $S \leftarrow$ maximally specific hypotheses in HFor each training example d, do

- ullet If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of G is more general than h
 - * Remove from S any hypothesis that is more general than another hypothesis in S
- \bullet If d is a negative example

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Example Trace

S_n:

 $\{<\!\varnothing,\,\varnothing,\,\varnothing,\,\varnothing,\,\varnothing,\,\varnothing>\}$

 G_0 :

{<?, ?, ?, ?, ?, ?>}

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

- Remove from S any hypothesis inconsistent with d
- For each hypothesis g in G that is not consistent with d
 - * Remove g from G
 - * Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of S is more specific than h
 - * Remove from G any hypothesis that is less general than another hypothesis in G

What Next Training Example?

How Should These Be Classified?

 $\langle Sunny\ Warm\ Normal\ Strong\ Cool\ Change \rangle$

⟨Rainy Cool Normal Light Warm Same⟩

 $\langle Sunny\ Warm\ Normal\ Light\ Warm\ Same \rangle$

lecture slides for textbook $Machine\ Learning,\ T.\ Mitchell,\ McGraw\ Hill,\ 1997$

An UNBiased Learner

Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)

Consider H' = disjunctions, conjunctions, negations over previous H. E.g.,

 $\langle Sunny Warm Normal???? \rangle \vee \neg \langle ??????Change \rangle$

What are S, G in this case?

 $S \leftarrow$

 $G \leftarrow$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

What Justifies this Inductive Leap?

- + \(\langle Sunny Warm Normal Strong Cool Change \rangle \)
- + \(\langle Sunny Warm Normal Light Warm Same \rangle \)

 $S: \langle Sunny \ Warm \ Normal \ ? \ ? \rangle$

Why believe we can classify the unseen $\langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle$

Inductive Bias

Consider

- \bullet concept learning algorithm L
- instances X, target concept c
- training examples $D_c = \{\langle x, c(x) \rangle\}$
- let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on data D_c .

Definition:

The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

where $A \vdash B$ means A logically entails B

Inductive Systems and Equivalent Deductive Systems

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Summary Points

- 1. Concept learning as search through H
- 2. General-to-specific ordering over H
- 3. Version space candidate elimination algorithm
- 4. S and G boundaries characterize learner's uncertainty
- 5. Learner can generate useful queries
- 6. Inductive leaps possible only if learner is biased
- 7. Inductive learners can be modelled by equivalent deductive systems

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Three Learners with Different Biases

- 1. Rote learner: Store examples, Classify x iff it matches previously observed example.
- 2. Version space candidate elimination algorithm
- $3. \ Find-S$