Package 'pros'

December 16, 2018

Description

The cv. pros function is used for K-fold cross-validation.

Usage

```
cv.pros(X, y, K_fold = 10, alpha = c(1, 0, 0, 0, 0, 0),
  lambdas = c(), step_size, algorithm = "proximal_gradient_cd",
  max_iter = 10000, tolerance = 10^(-8), random_seed = 0)
```

2 predict.cv_pros

Arguments

X is an $n \times m$ -dimensional matrix of the data. y is an $n \times m$ -dimensional matrix of the data. K_fold is the number of folds in cross-validation.

alpha is a 6-dimensional vector of the convex combination corresponding to the pe-

nalization:

α₁ is the l¹ penalty.
α₂ is the l² penalty.
α₃ is the l⁴ penalty.
α₄ is the l⁶ penalty.

• α_5 is the l^8 penalty.

• α_6 is the l^10 penalty.

lambdas is a vector of dual penalization values to be evaluated.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion. random_seed is the random seed used in the algorithms.

Value

A class cv_pros

Description

The prediction function for cv.pros.

Usage

```
## S3 method for class 'cv_pros'
predict(object, X_new, ...)
```

Arguments

object an object of class cv_pros

X_new is an $n \times m$ -dimensional matrix of the data. ... Other parameters (this is required by R)

Value

A vector of prediction values.

predict.pros 3

predict.pros

Pros Prediction

Description

The prediction function for pros.

Usage

```
## S3 method for class 'pros'
predict(object, X, ...)
```

Arguments

object an object of class pros

X is an $n \times m$ -dimensional matrix of the data. ... Other parameters (this is required by R)

Value

A vector of prediction values.

pros

Pros

Description

The pros function is used to fit a single regression model with a specified penalization.

Usage

```
pros(X, y, alpha = c(1, 0, 0, 0, 0, 0), lambda, step_size,
    algorithm = "proximal_gradient_cd", max_iter = 10000,
    tolerance = 10^(-8), random_seed = 0)
```

Arguments

X is an $n \times m$ -dimensional matrix of the data.

y is an $n \times m$ -dimensional matrix of the data.

alpha is a 6-dimensional vector of the convex combination corresponding to the penalization:

- α_1 is the l^1 penalty.
- α_2 is the l^2 penalty.
- α_3 is the l^4 penalty.
- α_4 is the l^6 penalty.
- α_5 is the l^8 penalty.
- α_6 is the l^10 penalty.

4 pros

lambda is the Lagrangian dual penalization parameter.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion. random_seed is the random seed used in the algorithms.

Value

A class pros

Index

```
cv.pros, 1
predict.cv_pros, 2
predict.pros, 3
pros, 3
```