群论笔记

Leoeon

2016.07.02

Contents

1	群		5
	1.1	定义	5
		1.1.1 群、等价、分拆	5
		1.1.2 阶、秩	6
	1.2	子群与共轭类	6
		1.2.1 子群	6
		1.2.2 共轭类	6
		1.2.3 不变子群	6
		1.2.3.1 不变子群	6
		1.2.3.2 商群	6
		1.2.4 中心	7
	1.3	同态与同构	7
		1.3.1 定义	7
		1.3.2 ker	7
	1.4	群代数	7
		1.4.1 群代数	7
		1.4.2 群函数	7
		1.4.2.1 群函数空间	7
		1.4.2.2 群函数内积	8
		1.4.2.3 不变积分	8
	1.5	群作用空间(表示空间)	8
		1.5.1 轨道	8
		1.5.2 不变子空间	8
		1.5.3 迷向子群	8
	1.6	群与置换群的对应关系	9
		1.6.1 重排定理	9

CONTENTS 3

		1.6.2	对应关系											
		1.0.2	1.6.2.1	、 正则表示 .										
			1.6.2.2	诱导表示 .										
			1.6.2.3	共轭表示 .										
			1.0.2.3	共祀农小 .	• •	 • •	 	• •	 	 	 	 	 	
2	群的	线性表:	示理论											1
	2.1	不等价	不可约酉	表示		 	 		 	 	 	 	 	1
		2.1.1	等价			 	 		 	 	 	 	 	1
		2.1.2	可约			 	 		 	 	 	 	 	1
	2.2	不等价	·不可约表	示的正交完备	\$性	 	 		 	 	 	 	 	1
		2.2.1	Schur引到	里		 	 		 	 	 	 	 	1
		2.2.2	正交定理	!		 	 		 	 	 	 	 	1
		2.2.3	完备定理	!		 	 		 	 	 	 	 	1
			2.2.3.1	Burnside定理	里.	 	 		 	 	 	 	 	1
	2.3					 	 		 	 	 	 	 	1
	2.4	投影算	符			 	 		 	 	 	 	 	1
3	例子													1
	3.1	置换群												
				共轭类										
	3.2													
		3.2.1	SO(3) .			 	 		 	 	 	 	 	1
			3.2.1.1	共轭		 	 		 	 	 	 	 	1
			3.2.1.2	本征态		 	 		 	 	 	 	 	1
			3.2.1.3	群表示		 	 		 	 	 	 	 	1
		3.2.2	SU(2) .			 	 		 	 	 	 	 	1
			3.2.2.1	共轭		 	 		 	 	 	 	 	1
			3.2.2.2	本征态		 	 		 	 	 	 	 	1
			3.2.2.3	群表示		 	 		 	 	 	 	 	1
	3.3	点群 .				 	 		 	 	 	 	 	1
		3.3.1	固有点群			 	 		 	 	 	 	 	1
		3.3.2	非固有点	群		 	 		 	 	 	 	 	1
		3.3.3	晶体点群			 	 		 	 	 	 	 	1
	3.4	矩阵群	·			 	 		 	 	 	 	 	1
			3.4.0.1	一般线性群		 	 		 	 	 	 	 	1
			3 4 0 2	特殊线性 群										1

4 CONTENTS

	3.4.0.3	酉群	 17
	3.4.0.4	特殊酉群	 18
	3.4.0.5	实正交群	 18
	3.4.0.6	特殊正交群	 18
3.5	其他		 18
	3.5.0.7	仿射群	 18
	3.5.0.8	循环群	 18
	3.5.0.9	4阶反演群(Klein群)	 18
	3.5.0.10	Lorentz群	 19
	3.5.0.11	辛群	 19
	3.5.0.12	庞加莱变换	 19
	3 5 0 13	薛定谔方程	19

Chapter 1

群

1.1 定义

1.1.1 群、等价、分拆

群(集合G,运算*) = def

- 封闭: $\forall g_1, g_2 \in G, g_1 * g_2 \in G$
- 结合律: $\forall g_1, g_2, g_3 \in G, (g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$
- 单位元: \exists 唯一 $\mathbb{I} \in G, \forall g \in G, \mathbb{I} * g = g * \mathbb{I} = G$
- 自反: $\forall a \in A, a \sim a$
- 对称: $a \sim b \Rightarrow b \sim a$
- 传递: $a \sim b, b \sim c \Rightarrow a \sim c$ 集合A的子集 $X_1,...,X_n$ 构成A的一个分拆 $\stackrel{def}{=}$
- $\bullet \bigcup_{i=1}^n X_i = A$
- $X_i \cap X_j = \emptyset, \forall i \neq j$

6 CHAPTER 1. 群

1.1.2 阶、秩

群G的阶 $|G| \stackrel{def}{=}$ 群的元素数目元素g的阶 $\stackrel{def}{=}$ 满足 $g^k = \mathbb{I}$ 的最小自然数k。元素阶必为群阶因子。群的秩 $\operatorname{rank} \stackrel{def}{=}$ 群的最小生成元数目

1.2 子群与共轭类

1.2.1 子群

子群 $H \leq G \stackrel{def}{=} H$ 中所有元素 $h \in G$,(H,*)也是群 $l, r \in G$,左陪集IH,右陪集Hr。 各陪集IH均匀分拆群G。

(陪集数目[G:H],则|G| = [G:H]|H| (Lagruange定理))

子群H可为: ①循环群,则元素阶必为群阶因子。

固定左陪集代表元系 $L=\{l_1,...,l_{[G:H]}\}$,则对 $\forall g\in G,\exists$ 唯一 $l_g\in L,h_g\in H,$ 使得 $g=l_gh_g$

1.2.2 共轭类

两元素共轭 $\stackrel{def}{=} a, b \in G, \exists g \in G, a = gbg^{-1}$ 元素a的共轭类 $K_a \stackrel{def}{=} \{gag^{-1} | \forall g \in G\} \leq G$ $gK_ag^{-1} = K_a$ $|K_a| = [G:C_G(a)]$ 同一共轭类的元素阶皆相同。 任一大共轭类必为若干最小共轭类之并。 (大共轭类可为:①任意共轭类直积;②不变子群;···)

1.2.3 不变子群

1.2.3.1 不变子群

 $N \triangleleft G \stackrel{def}{=} N \leq G, \forall g \in G, gNg^{-1} = N$ N既是子群,又是共轭类。

1.2.3.2 商群

 $G/N \stackrel{def}{=}$ 每个陪集gN作为一个元素组成 |G/N| = [G:H] = |G|/|N| $G \neq G/H \otimes H$

1.3. 同态与同构 7

1.2.4 中心

元素a的中心化子 $C_G(a) \stackrel{def}{=} \{g|gag^{-1} = a, g \in G\} \leq G$ 子集M的正规化子 $N_G(M) \stackrel{def}{=} \{g|gMg^{-1} = M, g \in G\} \leq G$ 子集M的中心化子 $C_G(M) \stackrel{def}{=} \{g|\forall m \in M, gmg^{-1} = m, g \in G\} \leq G$ 群的中心 $C(G) \stackrel{def}{=} C_G(G) = \{g|\forall g' \in G, gg'g^{-1} = g', g \in G\} \leq G$

1.3 同态与同构

1.3.1 定义

1.3.2 ker

 $\ker[f] \stackrel{def}{=}$ 被映射为 $f(g_k f) = \mathbb{I}_H$ 的所有 $g_k f$ 集合 f(G) 是H 的子群 $\ker[f]$ 是G 的不变子群 $G/\ker[f]$ 同构于f(G),即 $g*\ker[f] \leftrightarrow f(g)$

1.4 群代数

1.4.1 群代数

对群G定义数乘和加法可得线性空间 $V_G=\{x|x=\sum_{i=1}^{|G|}x(g_i)g_i=\int_{g\in G}x(g)gdg, x(g_i)\in\mathbb{C}\}$ V_G 上定义内积 $\langle g_i|g_j\rangle\stackrel{def}{=}\delta_{i,j}$,可得内积空间。 V_G 上定义乘法可得结合代数 R_G (含幺环)。 $xy\stackrel{def}{=}\sum_{i,j=1}^{|G|}(x(g_i)y(g_j))(g_ig_j)$

1.4.2 群函数

群函数: $G \to \mathbb{C}$

1.4.2.1 群函数空间

群函数空间 $\stackrel{def}{=}$ 群函数上定义加法和数乘,张成线性空间 群函数空间自然基 $\varepsilon_h(g)=\left\{egin{array}{ccc} 1 & , & g=h \\ 0 & , & g \neq h \end{array}\right.$ 。正交,完备,不归一

8 CHAPTER 1. 群

 l^2 或 L^2 空间

1.4.2.2 群函数内积

离散:
$$(\xi|\eta) \stackrel{def}{=} \frac{\langle \sum_{g_i \in G} \xi(g_i)g_i | \sum_{g_j \in G} \eta(g_j)g_j \rangle}{\langle \sum_{g_i \in G} g_i | \sum_{g_j \in G} g_j \rangle} = \frac{1}{|G|} \sum_{g \in G} \xi^*(g)\eta(g)$$
 连续: $(\xi|\eta) \stackrel{def}{=} \frac{\langle \int_{g_i \in G} \xi(g_i)dg_i | \int_{g_j \in G} \eta(g_j)dg_j \rangle}{\langle \int_{g_i \in G} dg_i | \int_{g_j \in G} dg_j \rangle} = \int_g dg \xi^*(g)\eta(g)$

1.4.2.3 不变积分

$$\frac{1}{|G|} \sum_{g \in G} \to \int_{g \in G} dg(\alpha) = \int_{g \in G} \rho(\alpha) d\alpha$$
要求: $dg = d(h^{-1}g)$ 。
紧致群性质:

- $dg = d(hg) = d(gh) = dg^{-1}$
- $\int_{g \in G} dg = \int \rho(\alpha) d\alpha = 1$
- ρ(α)单值、恒正、不为0、不发散
- 积分运算满足线性性质

若右不变测度
$$dg = dgh$$
,则 $\rho(\beta) = \frac{1}{\left|\frac{\partial \gamma(\alpha,\beta)}{\partial \alpha}\right|} \Big|_{\alpha=0}$ (未归一)若左不变测度 $dg = dhg$,则 $\rho(\alpha) = \frac{1}{\left|\frac{\partial \gamma(\alpha,\beta)}{\partial \beta}\right|} \Big|_{\beta=0}$ (未归一)

1.5 群作用空间(表示空间)

1.5.1 轨道

群G作用空间为X,其中一点 $x \in X$ 的轨道 $\stackrel{def}{=}[x] \stackrel{def}{=} Gx$

1.5.2 不变子空间

群的不变子空间W $\stackrel{def}{=} \forall g \in G, gW \subseteq W$?不变子空间必为轨道之并。 ?对有限群, $T(G)W \subseteq W \iff T(G)W = W$ 不变子空间W的补空间W'满足GW' = W'

1.5.3 迷向子群

保持点x不动的元素构成x的迷向子群: $G_x \stackrel{def}{=} \{g|gx=x,g\in G\}$ G被子群 G_x 分拆为各个陪集 g_iG_x ,则 $g_iG_xx=g_ix$,即 $[x]=[G:G_x]$,即 $[G]=[G_x||[x]]$

1.6 群与置换群的对应关系

1.6.1 重排定理

$$\forall g \in G, gG = G, Gg = G$$

1.6.2 对应关系

群代数 R_G 作为群作用空间。

1.6.2.1 正则表示

任何一个群G都同构于G的置换群S(G)的一个子群。 左正则表示 $\stackrel{def}{=}L:G\to S(G),L(h)\stackrel{def}{=}\binom{g}{hg}$ 。 即对 $\forall g\in G,L(h)g=hg$ 。 即对 $\forall x,L(h)x=\sum_{i=1}^{|G|}x(g_i)hg_i=\sum_{j=1}^{|G|}x(h^{-1}g_j)g_j$ 。 (矩阵元 $L(h)_{i,j}=\delta_{i,hj}$) 右正则表示 $\stackrel{def}{=}R:G\to S(G),R(h)\stackrel{def}{=}\binom{g}{gh^{-1}}$ 。 即对 $\forall g\in G,R(h)g=gh^{-1}$ 。 即对 $\forall x,R(h)x=\sum_{i=1}^{|G|}x(g_i)g_ih^{-1}=\sum_{j=1}^{|G|}x(g_jh)g_j$ 。 (矩阵元 $R(h)_{i,j}=\delta_{i,jh^{-1}}$) 正则表示是酉表示: 对 $\forall h\in G,\ \forall \xi,\eta\in\mathcal{F}[G],\ \langle L(h)\xi|L(h)\eta\rangle=\langle \xi|\eta\rangle$

1.6.2.2 诱导表示

取子群 $H \leq G$,左陪集 $\Sigma = \{aH|a \in G\}$,右陪集 $\Upsilon = \{Ha|a \in G\}$ 任何一个有限群G都同态于置换群 $S(\Sigma)$ 或 $S(\Upsilon)$ 的一个子群 左诱导表示 $\stackrel{def}{=} L_H: G \to S(\Sigma), L_H(g) \stackrel{def}{=} \binom{aH}{gaH}$ $\ker[L_H] = \bigcap_{a \in G} aHa^{-1}$ 右诱导表示 $\stackrel{def}{=} R_H: G \to S(\Upsilon), R_H(g) \stackrel{def}{=} \binom{aH}{Hag^{-1}}$ $\ker[R_H] = \bigcap_{a \in G} aHa^{-1}$

1.6.2.3 共轭表示

取子集 $B \subseteq G$, $\Omega = \{aBa^{-1}|a \in G\}$ 任何一个有限群G都同态于置换群 $S(\Omega)$ 的一个子群共轭表示 $^{def}_{=\pi_B}: G \to S(\Omega), \pi_B(g) \stackrel{def}{=} \binom{aBa^{-1}}{(ga)B(ga)^{-1}}$ $ker[\pi_B] = \bigcup_{a \in G} aN_G(a)a^{-1}$

Chapter 2

群的线性表示理论

线性表示 $T^{(p)}(g) \stackrel{def}{=}$ 群G到 $GL(n,\mathbb{C})$ 的同态 (忠实表示 $\stackrel{def}{=}$ 群表示和原群同构) 线性表示 $T^{(p)}(\sum_a x_a g_a) \stackrel{def}{=} \sum_a x_a T^{(p)}(g_a)$,群空间 V_G 到 $GL(n,\mathbb{C})$ 的同态 特征标 $\chi^{(p)}(K_g) \stackrel{def}{=} tr(T^{(p)}(g))$

2.1 不等价不可约酉表示

2.1.1 等价

$$T(G)$$
与 $T'(G)$ 等价 $=$ 存在一矩阵S,对 $\forall g \in G, ST(g)S^{-1} = T'(g)$ 对 $T(G)$,取 $S = (\sum_{g \in G} T^+(g)T(g))^{\frac{1}{2}}$,则 $ST(G)S^{-1}$ 为酉表示。

2.1.2 可约

完全可约表示 $\stackrel{def}{=}$ 群作用空间中存在群的非平庸不变子空间W(m维),且其正交补空间 W^{\perp} 也是不变子空间。

$$\exists S, \forall g \in G, ST(g)S^{-1} = \begin{bmatrix} *_{\{m*m\}} & 0 \\ 0 & * \end{bmatrix}; \ \forall w \in W, w = \begin{pmatrix} *_{\{m\}} \\ 0 \end{pmatrix}; \ \forall z \perp W, z = \begin{pmatrix} 0_{\{m\}} \\ * \end{pmatrix})$$
 酉变换可约 ⇔ 完全可约。(特殊地,有限群可约 ⇔ 完全可约)
$$\forall T(g) = \begin{bmatrix} T_1(g) & D(g) \\ 0 & T_2(g) \end{bmatrix}, \ \mathbb{R}S = \begin{bmatrix} 1 & -\frac{1}{|G|} \sum_{h \in G} D(h)T_2(h^{-1}) \\ 0 & 1 \end{bmatrix}, \ \mathbb{R}ST(g)S^{-1} = \begin{bmatrix} T_1(g) & 0 \\ 0 & T_2(g) \end{bmatrix}$$

有限维表示可等价于不可约表示直和 $T(g) \sim \oplus_{p=1}^q m_p T^{(p)}(g)$

2.2 不等价不可约表示的正交完备性

记 $\{T^{(p)}(G)|p=1,\cdots,q\}$ 是群G的所有不等价不可约酉表示,第p个表示维数为 s_p

2.2.1 Schur引理

对不等价不可约表示 $R^{(p)}(G)$ 、 $R^{(p')}(G)$,若对 $\forall g \in G, R^{(p)}(g)Q = QR^{(p')}(g)$,则 $Q = \delta_{p,p'}\lambda\mathbb{I}(\lambda \in \mathbb{C})$

2.2.2 正交定理

$$(T_{\mu\nu}^{(p)}|T_{\mu'\nu'}^{(p')}) = \frac{1}{s_p} \delta_{p,p'} \delta_{\mu,\mu'} \delta_{\nu,\nu'}$$

$$\frac{1}{|G|} \sum_a |K_a| \chi^{(p)*}(K_a) \chi^{(p')}(K_a) = \delta_{pp'}$$

$$\frac{|K_a|}{|G|} \sum_p \chi^{(p)*}(K_a) \chi^{(p)}(K_{a'}) = \delta_{aa'}$$

2.2.3 完备定理

 $\frac{1}{\sqrt{s_p}}T_{\mu\nu}^{(p)}$ 组成了群函数空间 $\mathcal{F}[G]$ 的一组正交归一完备基($\forall \phi(g_a) = \sum_{p\mu\nu} c_{\mu\nu}^{(p)}T_{\mu\nu}^{(p)}(g_a)$) $v_{\mu\nu}^{(p)} = \sum_{g \in G} T_{\mu\nu}^{(p)}(g)g$ 组成了群空间 V_G 的一组完备基。 $\chi_{\mu\nu}^{(p)}$ 组成了类函数空间的一组完备基($\forall \phi(K_a) = \sum_p d^{(p)}\chi^{(p)}(K_a) = \sum_p (\sum_u c_{\mu\mu}^{(p)})\chi^{(p)}(K_a)$)

2.2.3.1 Burnside定理

2.3

找所有群表示可转化为找所有不等价不可约酉表示。

任意表示 $T(g) \sim \bigoplus_{p=1}^q m_p T^{(p)}(g)$ ($L(g) \sim R(g) \sim \bigoplus_{p=1}^q s_p T^{(p)}(g)$) 任意表示 $\chi(K_g) = \sum_{p=1}^q m_p \chi^{(p)}(K_g)$, 重复度 $m_p = (\chi|\chi^{(p)})$

- 一个群的不等价不可约表示的数目等于群的共轭类的数目。
- 一个群的不可约表示的维数必是群阶因子。

 $(\chi|\chi) = \sum_p m_p^2 \geq 1$ 且为整数(当 χ 是不可约表示时取等号)

$$\diamondsuit \bar{K}_j = \sum_{g \in K_j} g \Rightarrow \left\{ \begin{array}{c} T^{(p)}(\bar{K}_j) = \frac{|K_j|}{s_p} \chi^{(p)}(K_j) \mathbb{I} \\ \bar{K}_j \bar{K}_k = \sum_l f_{jkl} \bar{K}_l \end{array} \right\} \Rightarrow \frac{1}{s_p} |K_j| \chi^{(p)}(K_j) |K_k| \chi^{(p)}(K_k) = \sum_l f_{jkl} |K_l| \chi^{(p)}(K_l)$$

2.4 投影算符

$$P_i^2 = P_i$$

 $V = \bigoplus_i W_i$ (线性空间直和) \leftrightarrows 线性空间V上存在投影算符 P_i 满足如下性质:

- $P_i^2 = P_i$
- $P_i P_j = 0 (i \neq j)$
- $\sum_{i} P_i = \mathbb{I}$
- $R_{P_i} = P_i V = W_i$ (P的值域 $R_P = PV = \{z \in V | z = Px, x \in V\}$)
- $(N_{P_i} = \sum_{k \neq i} W_k \quad (P的核N_P = \{x \in V | Px = \vec{0}\}))$

Chapter 3

例子

3.1 置换群

置换s将|物体 $a_1,...$,物体 a_n 〉置换为|物体 $b_1,...$,物体 b_n 〉,则记为 $s=\begin{pmatrix}a_1&...&a_n\\b_1&...&b_n\end{pmatrix}$

n元置换群 $|S_n| = n!$

$$s^{-1} = \begin{pmatrix} b_1 & \dots & b_n \\ a_1 & \dots & a_n \end{pmatrix}$$

$$rst = \begin{pmatrix} t^{-1}a_1 & \dots & t^{-1}a_n \\ rb_1 & \dots & rb_n \end{pmatrix}$$
轮换 $(a_1, a_2, \dots, a_n) \stackrel{def}{=} \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_2 & a_3 & \dots & a_1 \end{pmatrix}$

(两数字轮换称为对换)

任意置换可写为轮换乘积,可写为对换乘积,可写为相邻数字对换乘积

3.1.0.2 共轭类

共轭类具有相同的轮换结构。 $g(a_1,...,a_{na})(b_1,...,b_{nb})...g^{-1}=(ga_1,...,ga_{na})(gb_1,...,gb_{nb})...$ 轮换结构 $(\nu)=(\cdots i^{\nu_i}\cdots)$,共轭类中有 ν_i 个i阶轮换。 分割描述 $[\lambda]=[\cdots \lambda_i\cdots]$, $\lambda_i=\sum_{j=i}^n\nu_j$ 元素数目为 $\frac{n!}{\nu_1!...\nu_n!}\frac{1}{1^{\nu_1}...n^{\nu_n}}$ $n=\sum_i i\nu_i=\sum_i \lambda_i$ 14 CHAPTER 3. 例子

3.2 转动群

$$SU(2)/\{1,-1\} \cong SO(3)$$

$3.2.1 \quad SO(3)$

三维实正交群 $O(3) = \{R|RR^T = 1, R \in M_{\{3*3\}}(\mathbb{R})\}$ 。 可推出 $det(R) = \pm 1$ 三维特殊实正交群 $SO(3) = \{R|RR^T = 1, R \in M_{\{3*3\}}(\mathbb{R}), det(R) = 1\}$

$$R(\vec{\Psi}) = R_{\vec{n}}(\Psi) = exp(\vec{X} \cdot \vec{\Psi}) = exp(X_n \Psi)$$

$$([X_j]_{kl} = -\varepsilon_{jkl})(X_n = \vec{X} \cdot \vec{n} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix})$$

$$= exp(-i\vec{J} \cdot \vec{\Psi}) = exp(-iJ_n \Psi)$$

$$(\vec{J} = i\vec{X}(\mathbb{E} + \mathbb{K}))$$

$$(\vec{\Psi} + \mathbb{E} + \mathbb{E}$$

不变积分

$$\begin{array}{rcl} du & = & \frac{1}{8\pi^2} \sin\beta d\alpha d\beta d\gamma \\ & = & \frac{1}{2\pi^2} \frac{\sin^2 \frac{\psi}{2}}{\psi^2} d\psi_1 d\psi_2 d\psi_3 \end{array}$$

3.2.1.1 共轭

共轭 \iff 有相同转动角 Ψ 的所有方向 \vec{n} 。 $QR_{\vec{n}}(\Psi)Q^{-1}=R_{Q\vec{n}}(\Psi)$ 类函数不变积分

$$\frac{1}{\pi}(1-\cos\psi)d\psi$$

3.2.1.2 本征态

完备算符组{
$$\vec{J}^2$$
, J_z }
$$\begin{cases} \vec{J}^2 \psi_{m_1 m_2}^j = \psi_{m_1 m_2}^j \vec{J}^2 = j(j+1) \psi_{m_1 m_2}^j \\ J_z \psi_{m_1 m_2}^j = m_1 \psi_{m_1 m_2}^j \\ \psi_{m_1 m_2}^j J_z = m_2 \psi_{m_1 m_2}^j \end{cases}$$
 本征态 $|j, m_1\rangle = \psi_{m_1 m_2}^j = \int D_{m_1 m_2}^j (\alpha, \beta, \gamma) e^{-iJ_z \alpha} e^{-iJ_y \beta} e^{-iJ_z \gamma} \frac{\sin \beta}{8\pi^2} d\alpha d\beta d\gamma$

3.2. 转动群 15

3.2.1.3 群表示

转动群;维不可约表示的矩阵元为Euler对称陀螺的波函数

$$D_{m_1m_2}^j(u) = \sum_{k \in \mathcal{Z}} \frac{(-1)^k \sqrt{(j+m_1)!(j-m_1)!(j+m_2)!(j-m_2)!}}{(j+m_1-k)!(j-m_2-k)!k!(k-m_1+m_2)!} a^{j+m_1-k} a^{*j-m_2-k} b^k b^{*k-m_1+m_2}$$

$$(j=0,1,\cdots)(-j \leq m_1 \leq j)(-j \leq m_2 \leq j)(k \geq 0, k \geq m_1-m_2, k \leq j-m_2, k \leq j+m_1)$$

矩阵特征值

$$e^{im\psi}(m=-j,-j+1,\cdots,j-1,j)$$

特征标

$$\sum_{m=-j}^{j} e^{im\psi}$$

$3.2.2 \quad SU(2)$

二维特殊复正交群 $SU(2) = \{u|uu^+ = 1, u \in M_{\{2*2\}}(\mathbb{C}), det(u) = 1\}$

$$u = \begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}$$

$$(aa^* + bb^* = 1 \quad a, b \in \mathbb{C})$$

$$= \alpha_0 \mathbb{I} - i\vec{\sigma} \cdot \vec{\alpha}$$

$$(\alpha_0^2 + \vec{\alpha}^2 = 1)$$

$$= u(\vec{\Psi}) = exp(-\frac{i}{2}\vec{\sigma} \cdot \vec{\Psi})$$

$$(\vec{\Psi}$$
 为半径为2 π 的球体,且球表面所有点等价)
$$= u(\alpha, \beta, \gamma) = \begin{bmatrix} cos\frac{\beta}{2}e^{-\frac{i}{2}(\alpha + \gamma)} & -sin\frac{\beta}{2}e^{-\frac{i}{2}(\alpha - \gamma)} \\ sin\frac{\beta}{2}e^{\frac{i}{2}(\alpha - \gamma)} & cos\frac{\beta}{2}e^{\frac{i}{2}(\alpha + \gamma)} \end{bmatrix}$$

$$(\alpha \in [0, 2\pi), \beta \in [0, \pi], \gamma \in [0, 4\pi))$$

不变积分

$$du = \frac{1}{2\pi^2} \frac{1}{|\alpha_0|} d\alpha_1 d\alpha_2 d\alpha_3$$
$$= \frac{1}{16\pi^2} \sin \beta d\alpha d\beta d\gamma$$
$$= \frac{1}{4\pi^2} \frac{\sin^2 \frac{\psi}{2}}{\psi^2} d\psi_1 d\psi_2 d\psi_3$$

3.2.2.1 共轭

共轭
$$\iff$$
 有相同转动角 Ψ 。 $u \sim \begin{bmatrix} e^{-\frac{i}{2}\Psi} & 0 \\ 0 & e^{\frac{i}{2}\Psi} \end{bmatrix}$ 类函数不变积分
$$\frac{1}{2\pi}(1-\cos\psi)d\psi$$

16 CHAPTER 3. 例子

3.2.2.2 本征态

完备算符组{
$$\vec{J}^2, J_z$$
}
$$\begin{cases}
\vec{J}^2 \psi^j_{m_1 m_2} = \psi^j_{m_1 m_2} \vec{J}^2 = j(j+1) \psi^j_{m_1 m_2} \\
J_z \psi^j_{m_1 m_2} = m_1 \psi^j_{m_1 m_2} \\
\psi^j_{m_1 m_2} J_z = m_2 \psi^j_{m_1 m_2}
\end{cases}$$
本征态 $|j, m_1\rangle = \psi^j_{m_1 m_2} = \int D^j_{m_1 m_2}(\alpha, \beta, \gamma) e^{-iJ_z \alpha} e^{-iJ_z \gamma} \frac{\sin \beta}{16\pi^2} d\alpha d\beta d\gamma$

3.2.2.3 群表示

转动群2j+1维不可约表示的矩阵元为Euler对称陀螺的波函数

$$D^{j}_{m_{1}m_{2}}(u) = \sum_{k \in \mathcal{Z}} \frac{(-1)^{k} \sqrt{(j+m_{1})!(j-m_{1})!(j+m_{2})!(j-m_{2})!}}{(j+m_{1}-k)!(j-m_{2}-k)!k!(k-m_{1}+m_{2})!} a^{j+m_{1}-k} a^{*j-m_{2}-k} b^{k} b^{*k-m_{1}+m_{2}}$$

$$(j=0,\frac{1}{2},1,\cdots)(-j \leq m_{1} \leq j)(-j \leq m_{2} \leq j)(k \geq 0, k \geq m_{1}-m_{2}, k \leq j-m_{2}, k \leq j+m_{1})$$

矩阵特征值

$$e^{im\psi}(m = -j, -j + 1, \cdots, j - 1, j)$$

特征标

$$\sum_{m=-j}^{j} e^{im\psi}$$

3.3 点群

点群: O(3)的有限子群 对称操作:

- 转动 $C_n = R_{\vec{k}}(\frac{2\pi}{n})$
- 空间反射I = diag(-1, -1, -1)
- 转动反射 IC_n

3.3.1 固有点群

只含转动操作

基本方程:

$$\frac{1}{2} \sum_{a=1}^{l} \frac{|G|}{|G_a|} (|G_a| - 1) = |G| - 1 \quad \mathbb{R} \quad \sum_{a=1}^{l} (1 - \frac{1}{|G_a|}) = 2 - \frac{2}{|G_a|} \quad (2 \le |G_a| \le |G|)$$

3.4. 矩阵群 17

解为:

$$\begin{array}{lllll} l=2 & |G_1|=|G_2|=|G| & |G|=2,3,4,\cdots & C_n \\ l=3 & |G_1|=2,|G_2|=2,|G_3|=\frac{|G|}{2} & |G|=2,4,6,\cdots & D_n \\ l=3 & |G_1|=2,|G_2|=3,|G_3|=3 & |G|=12 & \text{E四面体} \\ l=3 & |G_1|=2,|G_2|=3,|G_3|=4 & |G|=24 & \text{E八面体} \\ l=3 & |G_1|=2,|G_2|=3,|G_3|=5 & |G|=60 & \text{E二十面体} \\ \end{array}$$

3.3.2 非固有点群

含转动反射操作

3.3.3 晶体点群

晶格
$$Lattice = \{ \vec{r} = \vec{r_0} + \sum_{i=1}^3 n_i \vec{a}_i | n_i \in \mathcal{Z} \}$$
要求

$$g\vec{a}_i \in Lattice \quad \Rightarrow \quad g\vec{a}_i = \sum_{j=1}^3 C_{ij}\vec{a}_j(C_{ij} \in \mathcal{Z})$$

$$G \subseteq O(3) \quad \Rightarrow \quad Tr(C_{ij}) = \pm (1 + 2\cos\psi)$$

$$\Rightarrow |1 + 2\cos\psi| \le 3 \Rightarrow \psi = \frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}, 0, \pi$$

则晶体中转动元素仅有 E, C_2, C_3, C_4, C_6 ,转动反演元素仅有 $I, IC_2, IC_3, IC_4, IC_6$

3.4 矩阵群

3.4.0.1 一般线性群

$$GL(n,\mathbb{C})\stackrel{def}{=}\{A|det(A)\neq 0, A\in M_{\{n*n\}}(\mathbb{C})\}$$
 维数 $2n^2$,非紧致,连通,连通度为 ∞ (从 \mathcal{R}^{2n^2} 挖去一个 $2n^2-2$ 维子空间 $\{A|det(A)=0\}$) $GL(n,\mathbb{R})\stackrel{def}{=}\{A|det(A)\neq 0, A\in M_{\{n*n\}}(\mathbb{R})\}$ 维数 n^2

3.4.0.2 特殊线性群

$$SL(n,\mathbb{C})\stackrel{def}{=} \{A|det(A)=1, A\in M_{\{n*n\}}(\mathbb{C})\}$$
维数 $2n^2-2$,非紧致,连通,连通度为1

3.4.0.3 酉群

$$U(n)\stackrel{def}{=}\{A|A^+A=\mathbb{I},A\in M_{\{n*n\}}(\mathbb{C})\}$$
维数 $2n^2-n^2=n^2$,紧致,连通,连通度为 ∞

18 CHAPTER 3. 例子

3.4.0.4 特殊酉群

$$SU(n)\stackrel{def}{=}\{A|A^+A=\mathbb{I}, det(A)=1, A\in M_{\{n*n\}}(\mathbb{C})\}$$
维数 n^2-1 ,紧致,连通,连通度为1

3.4.0.5 实正交群

$$O(n)\stackrel{def}{=}\{A|A^TA=\mathbb{I},A\in M_{\{n*n\}}(\mathbb{R})\}$$
维数 $n^2-\frac{n(n+1)}{2}=\frac{1}{2}n(n-1)$,紧致,不连通,有两个连通分支,对应 $det(A)=\pm 1$,每个连通度为1

3.4.0.6 特殊正交群

$$SO(n)\stackrel{def}{=}\{A|A^TA=\mathbb{I}, det(A)=1, A\in M_{\{n*n\}}(\mathbb{R})\}$$
维数 $\frac{n(n-1)}{2}$,紧致,连通,连通度为2

3.5 其他

3.5.0.7 仿射群

一维仿射群:

$$\{g(\alpha, \beta) | \alpha, \beta \in \mathbb{R}, \alpha \neq 0\}$$
$$g(\alpha, \beta)x \stackrel{def}{=} \alpha x + \beta$$

非Abel群,维数2,非紧致,不连通,有2个连通分支,各个分支连通度为1

二维Euclid群:

$$\begin{split} SE(2) &= \{g(\theta, a, b) | \theta \in [0, 2\pi), ab \in \mathbb{R} \} \\ g(\theta, a, b) \begin{pmatrix} x \\ y \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} \end{split}$$

3.5.0.8 循环群

n阶循环群:

$$C_n = {\mathbb{I}, g, g^2, ..., g^{n-1}}$$

3.5.0.9 4阶反演群(Klein群)

 $V_4 = \{I, 空间反演P, 时间反演T, PT\}$

3.5. 其他 19

3.5.0.10 Lorentz群

$$L = \{ \Lambda | \Lambda^T \begin{bmatrix} 1 & & & 0 \\ & -1 & & \\ & & -1 & \\ 0 & & & -1 \end{bmatrix} \Lambda = \begin{bmatrix} 1 & & & 0 \\ & -1 & & \\ & & -1 & \\ 0 & & & -1 \end{bmatrix}, \Lambda^* = \Lambda \}$$

维数6,非紧致,不连通,按 $\det(\Lambda) = \pm 1$ 、 $\Lambda^0_{~0} \ge 1$ 和 ≤ -1 分为四个连通分支,每个连通度为2对Lorentz变换 $x \to x'^{\mu'} = \sum_{\mu} \Lambda^{\mu'}_{~\mu} x^{\mu}$,保持 $s^2 = \sum_{\mu'} x'^{\mu'} x'_{\mu'} = \sum_{\mu} x^{\mu} x_{\mu}$

3.5.0.11 辛群

实辛群
$$Sp(2l,\mathcal{R})\stackrel{def}{=} \{A|A\begin{bmatrix}0_{\{l*l\}}&1_{\{l*l\}}\\-1_{\{l*l\}}&0_{\{l*l\}}\end{bmatrix}A^T=\begin{bmatrix}0_{\{l*l\}}&1_{\{l*l\}}\\-1_{\{l*l\}}&0_{\{l*l\}}\end{bmatrix},A\in M_{\{2l*2l\}}(\mathcal{R})\}$$
 维数 $(2l)^2-\frac{2l(2l-1)}{2}=2l^2+l$,非紧致,连通,连通度为 ∞ 复辛群 $Sp(2l,\mathcal{C})\stackrel{def}{=} \{A|A\begin{bmatrix}0_{\{l*l\}}&1_{\{l*l\}}\\-1_{\{l*l\}}&0_{\{l*l\}}\end{bmatrix}A^T=\begin{bmatrix}0_{\{l*l\}}&1_{\{l*l\}}\\-1_{\{l*l\}}&0_{\{l*l\}}\end{bmatrix},A\in M_{\{2l*2l\}}(\mathcal{C})\}$ 维数 $2*(2l)^2-2*\frac{2l(2l-1)}{2}=4l^2+2l$,非紧致,连通,连通度为1。
$$\forall Q=\begin{bmatrix}q_{\{l\}}\\p_{\{l\}}\end{bmatrix},\text{ 正则变换}Q\to Q'\text{ 若满足}A_{kj}=\frac{\partial Q_k'}{\partial Q_j}\text{ 为辛群元素,则正则方程}\begin{cases}\dot{q}=\frac{\partial H}{\partial p}\\\dot{p}=-\frac{\partial H}{\partial q}\end{bmatrix}$$
 形式不变 $\{\dot{q}'=\frac{\partial H'}{\partial p'}\\\dot{p}'=-\frac{\partial H'}{\partial q'}\}$

3.5.0.12 庞加莱变换

P、T、C:正/反粒子→反/正粒子、规范变换

3.5.0.13 薛定谔方程

 $SO(3) \otimes S_N$