If φ is bilinear, it is shown in E. Artin [6] (and in Jacobson [98]) that orthogonality is symmetric iff either φ is symmetric or φ is alternating ($\varphi(u, u) = 0$ for all $u \in E$).

If φ is sesquilinear, the answer is more complicated. In addition to the previous two cases, there is a third possibility:

$$\varphi(u,v) = \epsilon \overline{\varphi(v,u)}$$
 for all $u,v \in E$,

where ϵ is some nonzero element in K. We say that φ is ϵ -Hermitian. Observe that

$$\varphi(u, u) = \epsilon \overline{\epsilon} \varphi(u, u),$$

so if φ is not alternating, then $\varphi(u,u) \neq 0$ for some u, and we must have $\epsilon \bar{\epsilon} = 1$. The most common cases are

- 1. $\epsilon = 1$, in which case φ is Hermitian, and
- 2. $\epsilon = -1$, in which case φ is skew-Hermitian.

If φ is alternating and K is not of characteristic 2, then equation (*) from Section 29.2 implies that the automorphism $\lambda \mapsto \overline{\lambda}$ must be the identity if φ is nonzero. If so, φ is skew-symmetric, so $\epsilon = -1$.

In summary, if φ is either symmetric, alternating, or ϵ -Hermitian, then orthogonality is symmetric, and it makes sense to talk about the orthogonal subspace U^{\perp} of U.

Observe that if φ is ϵ -Hermitian, then

$$r_{\varphi} = \epsilon l_{\varphi}.$$

This is because

$$l_{\varphi}(u)(y) = \overline{\varphi(u, y)}$$

$$r_{\varphi}(u)(y) = \varphi(y, u)$$

$$= \epsilon \overline{\varphi(u, y)},$$

so $r_{\varphi} = \epsilon l_{\varphi}$.

If E and F are finite-dimensional with bases (e_1, \ldots, e_m) and (f_1, \ldots, f_n) , and if φ is represented by the $n \times m$ matrix M, then φ is ϵ -Hermitian iff

$$M = \epsilon M^*$$

where $M^* = (\overline{M})^{\top}$ (as usual). This captures the following kinds of familiar matrices:

- 1. Symmetric matrices ($\epsilon = 1$)
- 2. Skew-symmetric matrices ($\epsilon = -1$)