

Departamento de Matemáticas 4º Académicas

Examen de final de trimestre

Nombre:	Fecha:			
Tiempo: 50 minutos	Tipo: D			

Esta prueba tiene 5 ejercicios. La puntuación máxima es de 10. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	Total
Puntos:	3	1	3	1	2	10

1. Resuelve las siguientes inecuaciones de manera justificada:

(seno, coseno y tangente) del ángulo $\left(\frac{\pi}{2} + \alpha\right)$

(a)
$$x^3 + x < 2x^2$$
 (1 punto)

(b)
$$\frac{x-1}{x^2+x} \geqslant 0$$
 (2 puntos)

- 2. Comprueba, usando el teorema de Pitágoras, que el triángulo de lados 6 cm, 8 cm y 10 cm es rectángulo y calcula las razones trigonométricas de sus dos ángulos agudos.
- 3. Si $\cos \alpha = \frac{5}{13}$:
 - (a) Calcula el resto de las razones trigonométricas (seno y tangente) usando las relaciones trigonométricas fundamenteles y sabiendo que $\alpha \in I$ (primer cuadrante)
 - (b) Utilizando el apartado anterior calcula las razones trigonométricas (1 punto)

(1 punto)

(2 puntos)

- 4. Calcula la altura de una torre sabiendo que su sombra mide 13 m cuando (1 punto) los rayos del sol forman un ángulo de 50° con el suelo.
- 5. Una antena de radio está sujeta al suelo con dos cables, que forman con la antena ángulos de 30° y 45°. Los puntos de sujeción de los cables están alineados con el pie de la antena y distan entre sí 98 m. Calcula la altura de la antena y la longitud de los cables.