Assignment 13 Problem Three

Michael Cai

May 1, 2016

3. Find the area enclosed by the y-axis and the curve: $x = t - t^2$, $y = 1 + e^{-t}$

$$\begin{split} y &= 1 + e^{-t} \\ y - 1 &= e^{-t} \\ ln(y - 1) &= -t \\ t &= -ln(y - 1) \\ x &= -ln(y - 1) - (-ln(y - 1))^2 \end{split}$$
 To find the area enclosed by the

To find the area enclosed by the y-axis and the curve, I set x=0 to find the intersections with the y-axis.

$$0 = -ln(y-1) - (-ln(y-1))^{2}$$

$$0 = ln(y-1) + ln(y-1)^{2}$$

$$0 = ln(y-1)(1 + ln(y-1))$$

In this factored form, each factor is an intersection point with the y-axis.

In this factored form, each factor is an intersection point with
$$ln(y-1)=0$$
 $y-1=e^0$ $y=2$ $1+ln(y-1)=0$ $ln(y-1)=-1$ $y-1=e^{-1}$ $y=\frac{1}{e}+1$ Recall: $t=-ln(y-1)$ $t=-ln(2-1)=-ln(1)=0$ Thus $\alpha=0$ $t=-ln(\frac{1}{e}+1-1)=-ln(\frac{1}{e})=-ln(1)-(-ln(e))=ln(e)=1$

Now finally to set up our equation to find the area enclosed in the curve we use the formula:

$$\int_{\alpha}^{\beta} g(t)f'(t)dt, \text{ where } g(t) = 1 + e^{-t} \text{ and } f'(t) = 1 - 2t$$

$$= \int_{0}^{1} (1 + e^{-t})(1 - 2t)dt$$

$$= \int_{0}^{1} 1 - 2t + e^{-t} - 2te^{-t}dt$$

$$= \int_{0}^{1} 1 dt - 2 \int_{0}^{1} t dt + \int_{0}^{1} e^{-t} - 2 \int_{0}^{1} t e^{-t} dt$$
For the integral on the end we must use IBP:

$$= \int_0^1 1 dt - 2 \int_0^1 t dt + \int_0^1 e^{-t} - 2 \int_0^1 t e^{-t} dt$$

Let u = t, du = dt, $dv = e^{-t}dt$, $v = -e^{-t}$

And we get for the total equation:

$$= \int_0^1 1 dt - 2 \int_0^1 t dt + \int_0^1 e^{-t} - 2(-te^{-t} + \int_0^1 e^{-t} dt)$$

$$= [t]_0^1 - 2[\frac{1}{2}t^2]_0^1 + [-e^{-t}]_0^1 + 2te^{-t} \Big|_0^1 - 2[-e^{-t}]_0^1$$

$$=\frac{3}{e}-1$$