

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Introduction

July 30, 2002

What is this book all about?

□ Introduction to digital integrated circuits.

CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.

□ What will you learn?

 Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Digital Integrated Circuits

- Introduction: Issues in digital design
- ☐ The CMOS inverter
- Combinational logic structures
- Sequential logic gates
- Design methodologies
- ☐ Interconnect: R, L and C
- Timing
- Arithmetic building blocks
- Memories and array structures

Introduction

- Why is designing digital ICs different today than it was before?
- ☐ Will it change in future?

The First Computer

The Babbage Difference Engine (1832)

25,000 parts

cost: £17,470

ENIAC - The first electronic computer (1946)

The Transistor Revolution

First transistor Bell Labs, 1948

The First Integrated Circuits

Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Intel 4004 Micro-Processor

19711000 transistors1 MHz operation

Intel Pentium (IV) microprocessor

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's Law

Electronics, April 19, 1965.

Evolution in Complexity

Transistor Counts

Moore's law in Microprocessors

Die Size Growth

Frequency

Lead Microprocessors frequency doubles every 2 years

Power Dissipation

Lead Microprocessors power continues to increase

Power will be a major problem

Power delivery and dissipation will be prohibitive

Power density

Power density too high to keep junctions at low temp

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

Challenges in Digital Design

∞ DSM

"Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

∞ 1/DSM

<u>"Macroscopic Issues"</u>

- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

Everything Looks a Little Different

...and There's a Lot of Them!

Productivity Trends

Complexity outpaces design productivity

Why Scaling?

- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- □ But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Abstraction Levels

Design Metrics

- □ How to evaluate performance of a digital circuit (gate, block, ...)?
 - Cost
 - Reliability
 - Scalability
 - Speed (delay, operating frequency)
 - Power dissipation
 - Energy to perform a function

Cost of Integrated Circuits

- □ NRE (non-recurrent engineering) costs
 - design time and effort, mask generation
 - one-time cost factor
- Recurrent costs
 - silicon processing, packaging, test
 - proportional to volume
 - proportional to chip area

NRE Cost is Increasing

Die Cost

Cost per Transistor

Yield

Defects

 α is approximately 3

Some Examples (1994)

Chip	Metal layers	Line width	Wafer cost	Def./	Area mm²	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Reliability— Noise in Digital Integrated Circuits

DC Operation

Voltage Transfer Characteristic

VOH = f(VOL) VOL = f(VOH)VM = f(VM)

Mapping between analog and digital signals

Definition of Noise Margins

Noise Budget

- Allocates gross noise margin to expected sources of noise
- Sources: supply noise, cross talk, interference, offset
- Differentiate between fixed and proportional noise sources

Key Reliability Properties

- Absolute noise margin values are deceptive
 - a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity is the more important metric the capability to suppress noise sources
- Key metrics: Noise transfer functions, Output impedance of the driver and input impedance of the receiver;

Regenerative Property

Regenerative Property

A chain of inverters

Fan-in and Fan-out

Fan-in M

The Ideal Gate

An Old-time Inverter

Delay Definitions

Ring Oscillator

$$T = 2 \times t_p \times N$$

A First-Order RC Network

$$v_{in} = V_{out}$$

$$v_{out}(t) = (1 - e^{-t/\tau}) V$$

$$t_p = \ln (2) \tau = 0.69 RC$$

Important model - matches delay of inverter

Power Dissipation

Instantaneous power:

$$p(t) = v(t)i(t) = V_{supply}i(t)$$

Peak power:

$$P_{peak} = V_{supply} i_{peak}$$

Average power:

Energy and Energy-Delay

Power-Delay Product (PDP) =

E = Energy per operation = $P_{av} \times t_p$

Energy-Delay Product (EDP) = quality metric of gate = $E \times t_p$

A First-Order RC Network

$$E_{0\rightarrow 1} = \int_{0}^{\mathbf{T}} \mathbf{P}^{(t)} dt = \mathbf{V}_{\mathbf{dd}} \int_{0}^{\mathbf{T}} \mathbf{supply}^{(t)} dt = \mathbf{V}_{\mathbf{dd}} \int_{0}^{\mathbf{T}} \mathbf{C}_{\mathbf{L}} d\mathbf{V}_{\mathbf{out}} = \mathbf{C}_{\mathbf{L}} \cdot \mathbf{V}_{\mathbf{dd}}^{2}$$

$$E_{\mathbf{cap}} = \int_{0}^{\mathbf{T}} \mathbf{P}_{\mathbf{cap}}^{(t)} dt = \int_{0}^{\mathbf{T}} \mathbf{V}_{\mathbf{out}^{1} \mathbf{cap}^{(t)}} dt = \int_{0}^{\mathbf{Vdd}} \mathbf{C}_{\mathbf{L}} \mathbf{V}_{\mathbf{out}} d\mathbf{V}_{\mathbf{out}} = \frac{1}{2} \mathbf{C}_{\mathbf{L}} \cdot \mathbf{V}_{\mathbf{dd}}^{2}$$

Summary

- Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
- Some interesting challenges ahead
 - Getting a clear perspective on the challenges and potential solutions is the purpose of this book
- Understanding the design metrics that govern digital design is crucial
 - Cost, reliability, speed, power and energy dissipation