

CHAPTER 1- INTRODUCTION OF ELECTRONIC DEVICES

-MRS RASIKA B. NAIK

POINTS TO BE COVERED IN TODAYS CLASS

- DC Load Line analysis
- Common Base Configuration
- Input Output Characteristics of CB configuration
- Common Collector Configuration
- Input Output Characteristics of CC configuration
- Comparison of CE, CB and CC

COMMON BASE CONFIGURATION

INPUT OUTPUT CHARACTERISTICS OF CB AMPLIFIER

CIRCUIT ARRANGEMENT TO FIND INPUT AND OUTPUT CHARACTERISTICS

COMMON EMITTER CONFIGURATION

INPUT OUTPUT CHARACTERISTICS OF CE AMPLIFIER

COMMON COLLECTOR CONFIGURATION

INPUT OUTPUT CHARACTERISTICS OF CC AMPLIFIER

CURRENT AMPLIFICATION FACTOR

In CC- Current Amplification Factor (γ_{dc})

$$\gamma = \frac{\Delta I_E}{\Delta I_B}$$

$$I_E = I_C + I_B$$

$$\Delta I_E = \Delta I_C + \Delta I_B$$

$$\Delta I_B = \Delta I_E - \Delta I_C$$

$$\gamma = \frac{\Delta I_E}{\Delta I_E - \Delta I_C}$$

$$\gamma = \frac{\Delta I_E/\Delta I_E}{\Delta I_E/\Delta I_E}$$

$$\gamma = \frac{1}{1 - \Delta I_C/\Delta I_E}$$

$$\gamma = \frac{1}{1 - \alpha}$$

CURRENT AMPLIFICATION FACTOR

In CB- Current Amplification Factor (α_{dc}):

For a transistor with common base configuration it is defined as the ratio of static (d.c.) collector current l_C to the static emitter current I_E at a constant collector voltage with respect to base.

$$\alpha_{dc} = \left(\frac{I_C}{I_E}\right)_{[V_{CB} = \text{constant}]}$$
 $\beta_{dc} = \left(\frac{I_C}{I_E}\right)_{[V_{CE} = \text{constant}]}$

In CE- For a transistor with common emitter configuration it is defined as the ratio of static collector current I_C to the static base current I_B at a constant collector voltage with respect to emitter.

RELATION BETWEEN α_{DC} AND β_{DC} :

We know that

$$I_E = I_B + I_C$$

Dividing both sides by I_C , we get

$$\frac{I_E}{I_C} = \frac{I_R}{I_C} + 1$$

or,
$$\frac{1}{\alpha_{dc}} = \frac{1}{\beta_{dc}} + 1$$

$$\alpha_{dc} = \frac{\beta_{dc}}{1 + \beta_{dc}}$$

or,
$$\beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}}$$

COLLECTOR CURRENT IN TERMS OF LEAKAGE CURRENT

$$I_C = \alpha I_{\beta} + I_{CBO}$$

$$I_E = I_C + I_B = (\alpha I_{\beta} + I_{CBO}) + I_B$$

$$I_E (1 - \alpha) = I_{\beta} + I_{CBO}$$

$$I_E = I_B \left(\frac{1}{1 - \alpha}\right) + I_{CBO} \left(\frac{1}{1 - \alpha}\right)$$

$$= (\beta + 1)I_B + (\beta + 1)I_{CBO}$$

Comparison of configurations

Sr. No.	Parameter	СВ	CE	сс
1.	Common terminal between input and output	Base	Emitter	Collector
2.	Input current	I _E	I _B	I _B
3.	Output current	I _c	I _c	I _E
4.	Current gain	$\alpha_{dc} = I_C / I_E$	$\beta_{dc} = I_C / I_B$	$\gamma_{dc} = I_E / I_B$
5.	Input voltage	V _{EB}	V _{BE}	V _{BC}
6.	Output voltage	V _{CB}	V _{CE}	V _{BC}
7.	Voltage gain	Medium	Medium	Less than 1
8.	Input resistance	Very low (20 Ω)	Low (1kΩ)	High (500 kΩ)
9.	Output resistance	Very high (1M Ω)	High (40 KΩ)	Low (50 Ω)
10.	Applications	As preamplifier	Audio amplifier	For impedance matching

DC LOAD LINE

Transistor Testing

Using DMM: some DMM's will measure β_{DC} or hfe.

REFLECTION SPOT

testmoz.com/4766730

https://www.youtube.com/watch?v=7ukDKVHnac4

SUMMARY

- DC Load Line analysis
- Common Base Configuration
- Input Output Characteristics of CB configuration
- Common Collector Configuration
- Input Output Characteristics of CC configuration
- Comparison of CE, CB and CC