EPL202: MinorII: IIT DELHI

Max marks 20 Time 1 hrs.

March 24, 2014

- the ground state wave function. Calculate the average position of the particle in the ground state and show how it depends on E. 6 and \hat{x} is the unit vector along x-axis. Find out the energy spectrum and motion in one dimension along the x-axis with frequency ω . You can take q>0. An electric field $E=E\hat{x}$ is applied on this particle, where E>0Consider a particle of mass m and charge q executing simple harmonic
- 2. n is an unit vector in the z-x plane which makes an angle $\frac{\pi}{3}$ with the positive z-axis. Find out the probability of of obtaining spin eigenvalue Consider an electron in the eigenstate of the \hat{S}_z operator with eigenvalue $\frac{1}{2}\hbar$. One makes a measurement of the Spin operator $\hat{S}_n = S \cdot n$, where $-\frac{h}{2}$. Explain the outcome.
- We know, spherical harmonics $(Y_{l,m}(\theta,\phi))$ or $|l,m\rangle$ are simultaneous eigenfunction of the operator L^2 and L_z , and, $L^2Y_{l,m}=l(l+1)\hbar^2Y_{l,m}$ and and $Y_{1,-1}$. Show that the simultaneous eigenfunctions of L^2 and L_x are $L_zY_{l,m}=m\hbar Y_{l,m}$ Now consider three such functions, namely, $Y_{1,1},Y_{1,0}$

$$\psi_{1} = \frac{1}{2}(Y_{1,1} + Y_{1,-1} + \sqrt{2}Y_{1,0})$$

$$\psi_{2} = \frac{1}{\sqrt{2}}(Y_{1,1} - Y_{1,-1})$$

$$\psi_{3} = \frac{1}{2}(Y_{1,1} + Y_{1,-1} - \sqrt{2}Y_{1,0})$$

like atom is A hydrogen like atom has one electron in the outer shell and and has a ues) are similar to hydrogen atom. A wave function for such a hydrogen nucleus of positive charge Ze and properties (eigenfunctions and eigenval-

$$\psi(r,\theta,\phi) = \frac{1}{81} \sqrt{\frac{2}{\pi}} Z^{3/2} (6 - Z\frac{r}{a_0}) Z\frac{r}{a_0} \exp(-Z\frac{r}{3a_0}) \cos \theta$$

(a) Find out the corresponding values of the quantum number n, l, m. (b) Construct from the above $\psi(r, \theta, \phi)$ another wave function with same

 $exp(-\frac{r}{na_0}).$ You may like to use $L_x + iL_y = \exp(-\phi)\frac{\partial}{\partial \theta} + i\exp(i\phi)\cot\theta\frac{\partial}{\partial \phi}$. And the hydrogen atom with principal quantum number n decays at large r as corresponding to ψ given in the question. value of n, l, but with a different magnetic quantum number m + 1. (c) Calculate the most probabble value of r for an electron in the state 2 + 1 + 2