RSA Encryption

Johnny Lindbergh May 2018

1 Prime Generation

Algorithm 1 Rabin-Miller

Large prime numbers are generated using the Rabin-Miller primallity test:

```
 \begin{aligned} & \textbf{for } i \leftarrow 1, n \textbf{ do} \\ & \textbf{choose random } a \in \{1, 2, 3, ..., p-2\} \\ & z \equiv a^r \bmod p \\ & \textbf{if } z \not\equiv 1 \bmod z \not\equiv p-1 \textbf{ then} \\ & \textbf{for } j \leftarrow 1, u-1 \textbf{ do} \\ & z \equiv z^2 \bmod p \\ & \textbf{ if } z = 1 \textbf{ then} \\ & \textbf{ Return False} \end{aligned}
```

if $z \neq p-1$ then

Return False

Return True

2 Key Generation

Let n = pq where $p, q \in \mathbb{P}$,

compute $\phi(n)$, where ϕ is Euler's totient function.

Choose $e \in \mathbb{Z}$ such that, $1 < e < \phi(n)$, $gcd(\phi(n), e) = 1$ e and $\phi(n)$ are coprime

Find $d = e^{-1} (\operatorname{mod} \phi(n))$

The public key exponent is e and the private key exponent is d