DISZKRÉT MATEMATIKA I.

9. előadás

Logika: Kijelentéslogika, Boole függvények

Kijelentések, logikai értékek

Alapfogalmak:

 kijelentés (állítás, ítélet): olyan mondat, amelyről egyértelműen eldönthető, hogy igaz vagy hamis.

• logikai értékek: igaz (i), hamis (h).

♣ PI.

A 17 prímszám: igaz

 A tompaszögű háromszög súlypontja a háromszög oldalára is eshet: hamis

Az El Clásico (vasárnap) jó meccs lesz: nem kijelentés

 Holnap vagy esni fog az eső Komáromban, vagy nem fog esni: igaz

Logikai műveletek

- tagadás (negáció)
- és (konjunkció)
- vagy (diszjunkció)
- ha ..., akkor ... (implikáció)
- ... akkor és csak akkor, ha ... (ekvivalencia)

NEGÁCIÓ (tagadás)

♣ Pl. A: 23 fő van a teremben.

 $\neg A$: Nem 23 fő van a teremben. (A teremben levő emberek száma nem 23.)

Műveleti táblázata:

$\mid A \mid$	$\neg A$
$\mid i \mid$	h
$\mid h \mid$	i

KONJUNKCIÓ (és)

 \clubsuit PI. A: 1024 osztható 2-vel. B: 1024 osztható 7-tel.

 $A \wedge B$: 1024 osztható 2-vel és 7-tel. (h)

Műveleti táblázata:

A	B	$A \wedge B$
$\mid i \mid$	$\mid i \mid$	i
$\mid i \mid$	$\mid h \mid$	h
$\mid h \mid$	$\mid i \mid$	h
$\mid h \mid$	$\mid h \mid$	h

DISZJUNKCIÓ (vagy)

 \clubsuit PI. A: 1024 osztható 2-vel. B: 1024 osztható 7-tel.

 $A \lor B$: 1024 osztható 2-vel vagy 7-tel. (i)

Műveleti táblázata:

A	B	$A \lor B$
i	$\mid i \mid$	i
$\mid i \mid$	$\mid h \mid$	i
h	$\mid i \mid$	i
h	$\mid h \mid$	h

IMPLIKÁCIÓ (ha ..., akkor ...)

PI. Ha holnap nyerek a lottón, akkor adok 100 Eurot.

A: holnap nyerek a lottón B: adok 100 Eurot.

 $A \longrightarrow B$: Ha holnap nyerek a lottón, akkor adok 100 Eurot.

Műveleti táblázata:

A	B	$A \longrightarrow B$
i	$\mid i \mid$	i
$\mid i \mid$	$\mid h \mid$	h
$\mid h \mid$	$\mid i \mid$	i
$\mid h \mid$	$\mid h \mid$	i

Megjegyzés: $A \longrightarrow B = (\neg A) \lor B$

EKVIVALENCIA (... akkor és csak akkor, ha ...)

PI. Akkor és csak akkor adok 100 Eurot, ha nyerek a lottón.

A: holnap nyerek a lottón B: adok 100 Eurot.

 $A \longleftrightarrow B$: Akkor és csak akkor adok 100 Eurot, ha nyerek a lottón.

Műveleti táblázata:

A	B	$A \longleftrightarrow B$
i	$\mid i \mid$	i
$\mid i \mid$	$\mid h \mid$	h
h	$\mid i \mid$	h
h	$\mid h \mid$	i

Megjegyzés: $A \longleftrightarrow B = (A \longrightarrow B) \land (B \longrightarrow A)$

n-változós Boole függvények

logikai változók: x_1, x_2, \cdots, x_n

$$f(x_1, x_2, \cdots, x_n)$$

Megjegyzés: n változó esetén 2^{2^n} függvény van (pl. n = 2-re $2^{2^2} = 2^4 = 16$, n = 3-re $2^{2^3} = 2^8 = 256$, n = 4-re $2^{2^4} = 2^{16} = 65536$).

KÉTVÁLTOZÓS BOOLE FÜGGVÉNYEK (16 DB)

A	$\mid B \mid$	\mathcal{I}	>			\rightarrow		\leftrightarrow	\land		W						\mathcal{H}
i	$\mid i \mid$	i	i	i	i	i	i	i	$\mid i \mid$	h	h	h	h	h	h	h	h
											i						
$\mid h \mid$	$\mid i \mid$	$\mid i \mid$	i	h	h	$\mid i \mid$	$\mid i \mid$	h	$\mid h \mid$	$\mid i \mid$	i	h	h	$\mid i \mid$	$\mid i \mid$	h	$\mid h \mid$
											h						$\mid h \mid$

W: kizáró vagy; \mathcal{I} : azonosan igaz; \mathcal{H} : azonosan hamis

LOGIKAI FORMULÁK KIÉRTÉKELÉSE (BEHELYET-TESÍTÉS)

Legyen A hamis, B igaz, C hamis. Ekkor mit mondhatunk az alábbi formuláról?

$$((\neg A) \lor (\neg B)) \longrightarrow ((A) \longleftrightarrow C) \land B)$$

Megoldás:

$$\underbrace{\underbrace{((\neg A) \lor (\neg B)}_{i}) \longrightarrow \underbrace{((A \longleftrightarrow C) \land B)}_{i}}_{i}$$

AZONOSSÁGOK (LOGIKAI EKVIVALENCIA) IGAZOLÁSA MŰVELETI TÁBLÁVAL

De Morgan azonosságok

$$\neg(A \land B) = (\neg A) \lor (\neg B) \qquad , \qquad \neg(A \lor B) = (\neg A) \land (\neg B)$$

A	B	$A \wedge B$	$\neg(A \land B)$	$\neg A$	$\neg B$	$(\neg A) \lor (\neg B)$
i	i	i	h	h	h	h
$\mid i \mid$	h	h	i	h	i	i
$\mid h \mid$	$\mid i \mid$	h	i	$\mid i \mid$	h	i
$\mid h \mid$	$\mid h \mid$	h	i	$\mid i \mid$	$\mid i \mid$	i

 $A \mapsto B = (\neg A) \lor B; A \longleftrightarrow B = (A \longrightarrow B) \lor (B \longrightarrow A)$

AZONOSSÁGOK (LOGIKAI EKVIVALENCIA) IGAZOLÁSA KIÉRTÉKELÉSSEL

De Morgan azonosságok

$$\neg(A \land B) = (\neg A) \lor (\neg B) \qquad , \qquad \neg(A \lor B) = (\neg A) \land (\neg B)$$

 $\neg(A \lor B)$ igaz akkor és csak akkor, ha $A \lor B$ hamis, azaz akkor és csak akkor, ha A hamis és B hamis.

 $(\neg A) \land (\neg B)$ igaz akkor és csak akkor, ha $(\neg A)$ igaz és $(\neg B)$ igaz, azaz akkor és csak akkor, ha A hamis és B hamis.

Pl. Az udvarban tyúk és birka van. Tagadása: Nem igaz, hogy az udvarban tyúk és birka van, azaz az udvarban nincs tyúk vagy nincs birka.

TOVÁBBI ÉSZREVÉTELEK (AZONOSSÁGOK)

Kettős tagadás elve

$$\neg(\neg A) = A$$

A Harmadik kizárásának elve

$$\neg A \lor A = i$$

Ellentmondásmentesség elve

$$\neg A \land A = h$$

Kontrapozíció

$$A \longrightarrow B = (\neg B) \longrightarrow (\neg A)$$

A	B	$A \longrightarrow B$	$\neg B$	$\neg A$	$(\neg B) \longrightarrow (\neg A)$
i	$\mid i \mid$	i	h	h	i
$\mid i \mid$	$\mid h \mid$	h	i	h	h
$\mid h \mid$	$\mid i \mid$	i - i	h	i	i
$\mid h \mid$	$\mid h \mid$	i	$\mid i \mid$	i	i

Pl. Ha x élőlény madár, akkor x állat.

Ha x élőlény nem állat, akkor x nem madár.

VERSENY!!!

Milyen logikai értéke van A-nak illetve B-nek, ha

$$A \longrightarrow (B \longrightarrow A)$$

hamis?