

Introduction to Machine Learning in Python

G. Parkes, S. Senior, T. Rampat

Overview

- 1. An introduction to Machine Learning
- 2. Ski-kit Learn
- 3. Practical 1 Decision Trees/K-Means
- 4. More Theory
- 5. Practical 2 TBD

Assumptions

- Solid understanding of Python.
- No/Little understanding of Machine Learning.
- Exposure to Pandas and NumPy beneficial.
- Knowledge of a Python IDE like spyder will be beneficial.

Machine Learning – What is it?

- A subset of Computer Science and derived from Artificial Intelligence (AI)
- At it's heart a probability generator, with strong ties to statistics/mathematical optimisation.
- Improving the probability score taken as 'learning'. Uses this learnt data to 'predict' on new data.
- Examples of use: Spam Filtering, Character Recognition, Computer Vision, Search Engines, Social Media

Machine Learning – What is it?

$$f(X) = y$$

where X is a **matrix** of input, independent variables, and y is a **vector** of output, dependent variables that classify X.

Sepal Length	Sepal Width	Petal Length	Petal Width	Species
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
7.0	3.2	4.7	1.4	I. versicolor
6.4	3.2	4.5	1.5	I. versicolor
6.3	3.3	6.0	2.5	I. virginica

Iris Dataset

- Each species is shaded in different colour
- Clear distinct pattern emerges
- ML trained to learn these patterns
- Applies it to new information when available

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46257808

Machine Learning – Going slightly deeper

Three broad categories:

- **1. Supervised Learning** Presented with example inputs and corresponding outputs, given by a 'teacher'.
- 2. Unsupervised Learning/Data Mining No labels given to inputs, computer infers features.
- 3. Reinforcement Learning Interacts with a dynamic environment where it must perform a certain goal, feedback via rewards/punishments.

Understandability of Machine Learning

Ski-kit Learn

- A package in Python programming language. Part of the Anaconda Distribution.
- Built on NumPy, SciPy and MatPlotLib libraries.
- Open source, commercially usable.
- Simple to set up for most applications, very powerful functionality.
- Highly accessible.

Ski-kit Learn

Name of Method	Example use	Algorithm	
Classification	Spam Detection, Image Recognition	SVM, random forest, nearest neighbours	
Regression	Drug response, stock prices	SVR, Ridge regression, LASSO	
Clustering	Customer segmentation, grouping experiment outcomes	K-Means, Spectral Clustering, mean-shift	
Dimensionality Reduction	Visualization, increased efficiency	PCA, Feature Selection, non- negative matrix factorisation	
Model Selection	Improved accuracy via parameter tuning	Grid search, cross validation, metrics	
Preprocessing	Transforming data (i.e text) for use in ML algorithms	Feature Extraction	

Practical 1.1 – Decision Trees

- 1. Enter the folder 'Practical-1-1-DT'
- 2. Open 'apples.py', run the example, and make changes to the features, labels, and trying your own pieces of fruit. Try and understand what is happening.
- 3. A 'tree.dot' file will be created from running 'apples.py'. Use \$ bash apples.sh \$ to create a .png to visualise the decision tree.

Practical 1.2 – Classification & Iris Dataset

- 1. Enter the folder 'Practical-1-1-DT'
- 2. Open 'iris.py', run the example, and make changes to the code, such as features, labels etc.
- 3. Complete Tasks 1 and 2 by implementing iris_dataset_2 and 3.
- 4. For a challenge, complete Task 3 by using another dataset.

Attempt all of the tasks before looking at the solutions-iris.py file.

Summary