Deep Reinforcement Learning with Double Q-learning

Double DQN

Q-learning

$$Q-value$$
: 상태 $(\mathbf{s_t})$ 에서 행동 $(\mathbf{a_t})$ 을 했을 때의 평균 $Return\ G_t = R_{t+1} + \gamma R_{t+2} + \cdots + R_{t+\infty}$

각각의 Q - value 를 최대화하는 방향으로 학습하여 최종적인 optimal Q를 학습

Q-learning □ update

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(R_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}))$$

Q-learning

Example)

단점 : n(s) 또는 n(a)가 많아질수록 많은 양의 공간을 필요로 한다.

DQN

상태 (s_t) 에서의 모든 행동 (a_t) 에 대한 Q 값을 예측

output Example) a_1 a_1 a_2 a_3 a_4 a_5 W input a_2 0.15 0.32 0.24 0.15 0.65 s_1 input s_t 0.47 0.88 0.73 3.35 1.46 s_2 Q value a_3 0.96 3.95 0.18 3.76 3.64 s_3 a_t 0.35 1.66 0.16 0.46 0.74 S_4 a_4 0.42 2.14 0.16 0.44 0.49 s_5 W a_5

DQN

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(R_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}))$$

Fixed Q_{target}

$$Q(s_t, a_t; w_{main}) \leftarrow (1 - \alpha)Q(s_t, a_t; w_{main}) + \alpha(R_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; w_{target}))$$

main

target

DQN

$$Q(s_t, a_t; w_{main}) \leftarrow (1 - \alpha)Q(s_t, a_t; w_{main}) + \alpha(R_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; w_{target}))$$

단점: Q-learning의 overestimate action values

$$Max\ Q - Optimal\ Q \ge \sqrt{\frac{C}{m-1}}$$
 $(C > 0, m: action의 총 개수)$

Let
$$\varepsilon_a = Q(s_t, a_t) - Q^*(s_t, a_t)$$

Goal

$$Max\ Q - Optimal\ Q \ge \sqrt{\frac{C}{m-1}}$$
 $(C > 0, m: n(action))$

Condition

- 1. s_t 가 주어졌을 때 모든 action에 대해 $Q^*(s_t, a_t)$ 의 값이 같다.
- 2. $\sum_{a} \varepsilon_{a} = 0$
- 3. $\frac{1}{m}\sum_{a} \varepsilon_{a}^{2} = C$ (C > 0, m: action의 총 개수)

Condition

2.
$$\sum_{a} \varepsilon_{a} = 0$$

3.
$$\frac{1}{m}\sum_{a} \varepsilon_a^2 = C$$
 ($C > 0, m$: action의 총 개수)

Let $n: \varepsilon_a^+(\varepsilon_a > 0)$ 의 action의 개수, $m-n: \varepsilon_a^-(\varepsilon_a \le 0)$ 의 action의 개수

Case 1) 모든 $\varepsilon_a = 0$ 이면 Condition 2는 성립하지만 Condition 3 불만족이라 성립이 되지 않는다.

Case 2) $m - n \ge 1$, $n \ge 1$ 이면 Condition 2가 성립하며 Condition 3가 성립할 수 있다.

Case 2) $m - n \ge 1$, $n \ge 1$

$$\therefore \sum_{a} \varepsilon_a^+ \le n \times \max \varepsilon_a^+$$

Assume:
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$

논리적 오류를 통한 증명

Assume:
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$

Assume :
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$
 이 모순임을 보여, $\Pr{oof} : \max \varepsilon_a \ge \sqrt{\frac{c}{m-1}}$ 을 증명

Case 2) $m - n \ge 1$, $n \ge 1$

$$\therefore \sum_{a} \varepsilon_a^+ \le n \times \max \varepsilon_a^+$$

Assume:
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$

1.
$$\sum_{a} |\varepsilon_{a}^{-}| \le n \times \max |\varepsilon_{a}^{-}| < n \times \sqrt{\frac{c}{m-1}}$$

2.
$$\sum_{a} \varepsilon_{a}^{+} \le n \times \max \varepsilon_{a}^{+} < n \times \sqrt{\frac{c}{m-1}}$$

1.
$$\sum_{a} |\varepsilon_{a}^{-}| \le n \times \max |\varepsilon_{a}^{-}| < n \times \sqrt{\frac{c}{m-1}}$$

$$\sum_{a} |\varepsilon_{a}^{-}| \times |\varepsilon_{a}^{-}| \leq \sum_{a} |\varepsilon_{a}^{-}| \times \max |\varepsilon_{a}^{-}| \qquad \qquad \left(n \times \max |\varepsilon_{a}^{-}|\right)^{2} \qquad < \left(n \times \sqrt{\frac{C}{m-1}}\right)^{2}$$

$$\sum_{a} |\varepsilon_a^-|^2 \leq \sum_{a} |\varepsilon_a^-| \times \max |\varepsilon_a^-| < \frac{n^2 \times C}{m-1}$$

$$m-n \ge 1 \rightarrow m-1 \ge n$$

2.
$$\sum_{a} \varepsilon_{a}^{+} \le n \times \max \varepsilon_{a}^{+} < n \times \sqrt{\frac{c}{m-1}}$$

$$\sum_{a} \varepsilon_{a}^{+} \times \varepsilon_{a}^{+} \leq \sum_{a} \varepsilon_{a}^{+} \times \max \varepsilon_{a}^{+} \qquad \qquad \qquad \qquad \qquad \qquad n \times \left(\max \varepsilon_{a}^{+} \right)^{2} \qquad < \qquad n \times \left(\sqrt{\frac{C}{m-1}} \right)^{2}$$

$$\sum_{a} (\varepsilon_a^+)^2 \leq n \times \frac{C}{m-1}$$

$$1. \sum_{a} |\varepsilon_{a}^{-}|^{2} \leq \sum_{a} |\varepsilon_{a}^{-}| \times \max |\varepsilon_{a}^{-}| < \frac{n^{2} \times C}{m-1} < (m-1) \times C$$

2.
$$\sum_{a} (\varepsilon_a^+)^2 \leq n \times \frac{c}{m-1}$$

$$\sum_{a} |\varepsilon_a^-|^2 + \sum_{a} (\varepsilon_a^+)^2 \leq \sum_{a} |\varepsilon_a^-| \times \max |\varepsilon_a^-| + \sum_{a} (\varepsilon_a^+)^2 \leq \frac{n^2 \times C}{m-1} + \frac{n \times C}{m-1}$$

$$\sum_{a} (\varepsilon_a)^2 < m \times C$$

Assume:
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$

최종 식 :
$$\sum_a (\varepsilon_a)^2 < m \times C$$

(Condition 3.
$$\frac{1}{m}\sum_{a} \varepsilon_{a}^{2} = C$$
 에 모순)

Conclusion

Assume :
$$\max \varepsilon_a < \sqrt{\frac{c}{m-1}}$$
 의 역인

Proof:
$$\max \varepsilon_a \ge \sqrt{\frac{c}{m-1}}$$

가 참이다.

$$Q(s_{t}, a_{t}; w_{main}) \leftarrow (1 - \alpha)Q(s_{t}, a_{t}; w_{main}) + \alpha(R_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}; w_{target}))$$

$$Q(s_t, a_t; w_{main}) \leftarrow (1 - \alpha)Q(s_t, a_t; w_{main}) + \alpha(R_{t+1} + \gamma Q(s_{t+1}, a_{t+1}; w_{main}); w_{target}))$$

number of actions

$$\frac{1}{T} \sum_{t=1}^{T} \max_{a} Q(s_{t,a}; w) , \qquad T = 125,000$$

Training step마다 $\max_{a} Q(s_{t,a}; w)$ 의 평균 값 비교

	DQN	Double DQN
Median	93.5%	114.7%
Mean	241.1%	330.3%

5분 학습 후 DQN(2015)와 성능 비교

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

30분 학습 후 Human과 성능 비교

Five contributions

- 1. Q-learning의 내재인 추정 오류 때문에 overestimate가 될 수 있다는 것
- 2. Atari 2600 분석을 통해 overestimate가 실제로 더 흔하고 심각하다는 것
- 3. DQN에서 추가적인 네트워크나 매개 변수 없이 Double Q-learning을 적용
- 4. Double Q-learning을 적용함으로써 더 안정적인 학습이 가능하다는 것
- 5. Double DQN이 더 좋은 policy를 찾으며, Atari 2600에서 State-Of-The-Art를 보여주었다는 것

Thank you

Double DQN