

Sciences physiques

Classes: 4^{ème} Math

Résumé pH des solutions aqueuses

Nom du prof: Mr HADJ SALAH WAJIH

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

www.takiacademy.com

ACIDE-BASE pH DES SOLUTIONS AQUEUSES

FICHE DE REVISION

Ι

Cas d'un acide fort

Le taux d'avancement final d'un acide fort est τ_f = 1 or $\tau_f = \frac{10^{-pH}}{C}$ donc $C = 10^{-pH}$ d'où log $C = log(10^{-pH})$ or logx et 10^x sont réciproques logC = -pH, on obtient alors :

pH = -logC

pH d'une solution aqueuse d'acide fort de concentration molaire $C.(C>10^{-6} \text{ mol.L}^{-1})$

II

Cas d'un acide faible

On considère une solution aqueuse d'acide faible AH de concentration molaire C (avec C>10-8 mol.L-1), l'acide est considéré faiblement ionisé son taux d'avancement final $\tau_f < 0,05$.

Dans ce type de solution, deux équilibres chimiques peuvent s'établir :

Essayons d'établir l'expression de son pH :

Etat de la réaction	Avancement volumique	AH +	H₂O ⇔	□□□ A -	+ H₃O+
Etat initial (t=0)	y=0	С		0	10 ^{-pK} ₂
Etat final	Уf	C – y _f		Уf	10 ^{-pH}

On a vu que dans l'eau
$$[H_3O^+] = \sqrt{K_e} = (K_e)^{1/2} = (10^{-pK_e})^{1/2} = 10^{\frac{-pK_e}{2}}$$
.

 $[H_3O^+] = [H_3O^+]_1 + [H_3O^+]_2$ avec :

[H₃O+]₁ : concentration des ions H₃O+ provenant de la réaction 1 [H₃O+]₂ : concentration des ions H₃O+ provenant de la réaction 2

$$[H_3O^+]_1 = [OH^-]_1 = [OH^-]_1$$
 d'où $[H_3O^+]_2 = [OH^-]_1 + [H_3O^+]_2$

La solution est acide $[OH^*] \le [H_3O^*]$ d'où $[H_3O^*] = [H_3O^*]_2 = y_f$.

$$\begin{split} K_{a} &= \frac{\left[A^{-}\right]\!\!\left[H_{3}O^{+}\right]}{\left[AH\right]} \!\!=\! \frac{y_{f}.y_{f}}{C-y_{f}} \!\!=\! \frac{y_{f}^{2}}{C-y_{f}} \text{ avec } y_{f} \!\!=\! C.\tau_{f} \text{ d'où} \\ K_{a} &= \frac{\left(C.\tau_{f}\right)^{2}}{C-C.\tau_{f}} \!\!=\! \frac{C^{2}.\tau_{f}^{2}}{C(1-\tau_{f})} \!\!=\! \frac{C.\tau_{f}^{2}}{1-\tau_{f}} \end{split}$$

l'acide est faiblement ionisé τ_f << 1 d'où 1- τ_f ≈1

$$K_a = C.\tau_f^2$$
 (4)

Remarque importante :

Si on considère deux acides A_1H et A_2H ayant la même concentration C avec $\tau_{1f}(A_1H) > \tau_{2f}(A_2H)$, d'après(\clubsuit) on aura donc $K_{a1}(A_1H) > K_{a2}(A_2H)$ d'où A_1H est plus fort que A_2H on trouve le résultat énoncé précédemment : A même concentration, l'acide le plus fort est celui qui a le τ_f le plus grand.

Continuons notre démonstration : on a $\tau_f = \frac{10^{-pH}}{C} d'où K_a = C(\frac{10^{-pH}}{C})^2$

 $K_a = \frac{10^{-2pH}}{C}$ donc C. $K_a = 10^{-2pH}$ appliquons la fonction log à cette égalité

Log(C.K_a) = log(
$$10^{-2pH}$$
) ce qui donne : log C + logK_a = - 2pH
2pH = -logK_a - logC
2pH = pK_a - logC

Pour un acide faible, faiblement ionisé, de concentration molaire C ($C > 10^{-6}$ mol. L^{-1}):

$$pH = \frac{1}{2}(pK_a - logC)$$

III

Cas d'une base forte

Le taux d'avancement final d'une acide forte est τ_f = 1 or $\tau_f = \frac{K_e 10^{pH}}{C}$ donc C = Ke.10^{pH} d'où logC = log(Ke10^{pH}) logC = logKe + pH, on obtient alors : pH = logC - logKe

$$pH = logC + pK_e$$

pH d'une solution aqueuse de base forte de concentration molaire C.(C>10⁻⁶ mol.L⁻¹)

Ι

Cas d'un base faible

On considère une solution aqueuse de base faible B de concentration molaire C (avec C>10-8 mol.L-1), la base est considérée faiblement ionisée son taux d'avancement final \(\tau < 0.05\).

Dans ce type de solution, deux équilibres chimiques peuvent s'établir :

Essayons d'établir l'expression de son pH :

Etat de la réaction	Avancement volumique	B +	- H₂O	⇔ BH⁺ ·	+ OH ⁻
Etat initial (t=0)	y=0	С		0	10 ^{-pK} ₂
Etat final	Уf	C – y _f		Уf	Ke10 ^{pH}

On a vu que dans l'eau
$$[OH^-] = \sqrt{K_e} = (K_e)^{1/2} = (10^{-pK_e})^{1/2} = 10^{\frac{-pK_e}{2}}$$
.

$$[OH^{-}] = [OH^{-}]_{1} + [OH^{-}]_{2}$$
 avec :

[OH⁻]₁: concentration des ions OH⁻ provenant de la réaction 1 [OH⁻]₂: concentration des ions OH⁻ provenant de la réaction 2

$$[OH^{-}]_{1} = [H_{3}O^{+}]_{1} = [H_{3}O^{+}]_{2}$$
 d'où $[OH^{-}]_{2} = [H_{3}O^{+}]_{1} + [OH^{-}]_{2}$

La solution est acide $[H_3O^+] \ll [OH^-]$ d'où $[OH^-] = [OH^-]_2 = y_f$.

$$\begin{split} K_{a} = & \frac{\left[B\right] \left[H_{3}O^{+}\right]}{\left[BH^{+}\right]} = \frac{(C - y_{f}).\frac{K_{e}}{yf}}{yf} = \frac{(C - y_{f}).K_{e}}{y_{f}^{2}} \text{ avec } y_{f} = C.\tau_{f} \text{ d'où} \\ K_{a} = & \frac{(C - C.\tau_{f}).K_{e}}{(C.\tau_{f})^{2}} = \frac{C(1 - .\tau_{f}).K_{e}}{C^{2}.\tau_{f}^{2}} = \frac{(1 - .\tau_{f}).K_{e}}{C.\tau_{f}^{2}} \end{split}$$

l'acide est faiblement ionisé τf << 1 d'où 1- τf ≈1

$$K_{a} = \frac{K_{e}}{C.\tau_{f}^{2}} \qquad \text{ou} \quad \tau_{f}^{2} = \frac{K_{e}}{C.K_{a}} = \frac{K_{b}}{C} \text{ d'où } K_{b} = C.\tau_{f}^{2} \text{ (\clubsuit)}$$

Remarque importante:

Si on considère deux bases B_1 et B_2 ayant la même concentration C avec $\tau_{1f}(B_1) > \tau_{2f}(B_2)$, d'après(\clubsuit) on aura donc $K_{b1}(B_1) > K_{b2}(B_2)$ d'où B_1 est plus forte que B_2 on trouve le résultat énoncé précédemment : A même concentration, la base la plus forte est celle qui a le τ_f le plus grand.

Continuons notre démonstration : on a

$$\tau_f = \frac{K_e.10^{pH}}{C} d \, 'o\dot{u} \, \, K_a = \frac{K_e}{C.(\frac{K_e.10^{pH}}{C})^2} = \frac{K_e}{C.\frac{K_e^2.10^{2pH}}{C^2}} = \frac{1}{\frac{K_e.10^{2pH}}{C}}$$

 $K_a = \frac{C.10^{-2pH}}{Ke}$ donc $K_e.K_a = C.10^{-2pH}$ appliquons la fonction log à cette égalité

 $Log(K_e.K_a) = log(C.10^{-2pH})$ ce qui donne : $log K_e + log K_a = log C - 2pH$ $2pH = log C - log K_a - log K_e$ $2pH = log C + pK_a + pK_e$

Pour une base faible, faiblement ionisée, :

$$pH = \frac{1}{2}(pK_a + pK_e + logC)$$

- Effet de la diution sur le pH d'une solution
- 1 La dilution

1 ^{ère} étape	2 ^{ème} étape	3 ^{ème} étape
A l'aide d'une pipette On	On la verse	On ajoute l'eau distllée
prélève un volume V _p =10	dans une	jusqu'au trait de jauge on
mL d'une solution S de	fiole jaugée	obtient ainsi une solution S'
concentration C.	de V=100 mL	de concentration C' = C/10

Au cours d'une dilution, la quantité de matière de la substance dissoute ne varie pas :

 $n_{\text{avant dilution}} = n_{\text{après dilution}} \text{ donc } CV_p = C'V \text{ avec } V = V_p + V_{\text{eau}}$

Remarque : le volume de la fiole est égale au volume de la solution à préparer.

2 Effet de la diution sur le pH d'une solution

On va traiter un exemple : on va déterminer l'expression de la variation de pH au cours d'une dilution N fois (C'=C/N) d'un acide faible :

$$pH' = \frac{1}{2}(pK_a - logC') = \frac{1}{2}(pK_a - log\frac{C}{N}) = \frac{1}{2}(pK_a - logC + logN)$$

$$pH' = \underbrace{\frac{1}{2}(pK_a - logC)}_{pH} + \underbrace{\frac{1}{2}logN}_{pH}$$

$$D'où \left| pH' = pH + \underbrace{\frac{1}{2}logN}_{pH} \right|$$

