Prediction vs. inference dilemma

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, AWS

Inference vs. prediction dilemma

Inference or causal models:

- The goal is to understand the drivers of a business outcome
- Inference focused models are interpretable
- Less accurate than prediction models

Prediction:

- The prediction itself is the main goal
- Are not easily interpretable i.e. work like "black-boxes"
- Much more accurate than inference models

Start with the business question

- "What are the main drivers of fraud?"
 - Inference
- "How much conditions X impact heart attack risk?"
 - Inference
- "Which transactions are likely fraudulent?"
 - Prediction
- "Is the patient **at risk** of having a heart attack?"
 - Prediction

Modeling data structure

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Т	ransaction data A	Transaction data B	Transaction data C	Transaction data D

Fraud probability

Target variable

_			- 1		
Tra	n.	sa	cti	ion.	1

Transaction 2

Transaction 3

Transaction ...

Transaction N

Transaction data A	Transaction data B	Transaction data C	Transaction data D

Target variable

Fraud probability

Input features

Data about transactions that the business collected (input features)

_	-			_			-
ı	ra	n.	sa	ct	IO.	n.	1

Transaction 2

Transaction 3

Transaction ...

Transaction N

Transaction data A	Transaction data B	Transaction data C	Transaction data D

Target variable

Fraud probability		

Using input features

Use these data points

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Transaction data A	Transaction data B	Transaction data C	Transaction data D

Fraud probability

Predicting target variable

To predict this Use these data points Transaction Transaction Transaction Transaction Fraud probability data A data B data C data D

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Inference model focus

Which of these affect the fraud probability the most?

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Transaction data A	Transaction data B	Transaction data C	Transaction data D

Fraud probability		

Prediction model focus

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Transaction N

Transaction data A	Transaction data B	Transaction data C	Transaction data D

Get the most accurate probability this is fraud

Fraud
probability

Let's practice!

MACHINE LEARNING FOR BUSINESS

Inference (causal) models

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

What is causality?

- Identify causal relationship of how much certain actions affect an outcome of interest
- Answers the "why?" questions
- Optimizes for model interpretability vs. performance
- Models try to detect patterns in observed data (observational) and draw causal conclusions

Experiments vs. observations

- Experiments are designed and causal conclusions are guaranteed e.g. in A/B tests
- When experiments are impossible (unethical, too expensive, both) the models are used (also called observational studies) to calculate effect of certain inputs on desired outcomes
- Experiments are always preferred over observational studies whenever possible

Best practices

- 1. Do experiments wherever you can
- 2. If running experiments all the time is too expensive, run them periodically (quarterly, annually) and use it as benchmark
- 3. If there are no way to run any experiments, build a causal model. This will require an advanced methodology

Inference model example

Customer 1

Customer 2

Customer 3

Customer ...

Last month spend	Recency in days	Average cart value	Store visits per year
845 USD	20	340 USD	32
205 USD	1	100 USD	25
0 USD	55	70 USD	14
43	114.5	134	61.2

Next month spend	
585 USD	
150 USD	
20 USD	
•••	
69 USD	

Inference - training

Use these data points

Customer 1

Customer 2

Customer 3

Customer ...

Last month spend	Recency in days	Average cart value	Store visits per year
845 USD	20	340 USD	32
205 USD	1	100 USD	25
0 USD	55	70 USD	14
43	114.5	134	61.2

Next month spend	
585 USD	
150 USD	
20 USD	
69 USD	

Inference - learning

Use these data points

61.2

Last month
spendRecency in
daysAverage cart
valueStore visits
per year845 USD20340 USD32205 USD1100 USD25

 Customer 2
 205 USD
 1
 100 USD

Customer 3 0 USD 55 70 USD 14

Customer

Customer N 43 114.5 134

Learn rules to predict this Next month spend 585 USD 150 USD **20 USD** 69 USD

Customer 1

Inference - regression coefficients

	Coeff	icients	
Last month spend	Recency in days	Average cart value	Store visits per year
0.58	-0.03	0.28	0.18

Inference - interpretation

	Coeff	ficients	
Last month spend	Recency in days	Average cart value	Store visits per year
0.58	-0.03	0.28	0.18
↑			

How much 1 incremental USD spent in the last month results in predicted next month spend. Here, the customers who on average spent 1 USD **more** in the last month, will spend 0.58 USD more in the next month compared to customers with 1 USD **less** last month.

Let's practice!

MACHINE LEARNING FOR BUSINESS

Prediction models (supervised learning)

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

Supervised vs. Unsupervised

Supervised models

Predicting **class/type** of an outcome (e.g. subscription cancellation, fraud, purchase) - **CLASSIFICATION**

Predicting quantity of an outcome (e.g. dollars spent, hours played) - REGRESSION

Unsupervised models

Clustering - grouping observations into similar groups or clusters (e.g. customer or market segmentation)

Supervised learning types

Classification - Target variable is categorical (discrete) (class of outcome) (classification)

- Will the customer cancel a service subscription?
- Is this transaction fraudulent?
- What is the profession of this user?

Regression - Target variable is continuous (amount of outcome) (regression)

- Number of product purchases next month
- Number of gaming hours next year
- Dollars spent on insurance

Data collection

Machine learning teams should collect all available data to predict desired outcome with the highest degree of accuracy e.g. in case of purchase predictions:

- Customer information
- Purchase history, cancellations, order amount
- Browsing history, logs, errors
- Device details and location
- Product/service usage frequency
- And others...

Classification example

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Past fraud count	Time of transaction	Declined in T-30 days	Amount
20	3 am	Yes	5.25 USD
1	9 pm	Yes	19.5 USD
0	9.30 am	No	500 USD

Fraud	
Yes	
Yes	
No	

Classification - training

Use these data points

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Past fraud count	Time of transaction	Declined in T-30 days	Amount
20	3 am	Yes	5.25 USD
1	9 pm	Yes	19.5 USD
0	9.30 am	No	500 USD

Fraud	
Yes	
Yes	
No	

Classification - learning

Use these data points Learn rules to predict this on unseen data Past fraud Time of Declined in Amount Fraud transaction T-30 days count 20 Yes 5.25 USD 3 am Yes 1 Yes 19.5 USD Yes 9 pm 0 9.30 am No 500 USD No

Transaction 1

Transaction 2

Transaction 3

Transaction ...

Classification - unseen data

New unseen data

Transaction 1

Transaction 2

Past fraud count	Time of transaction	Declined in T-30 days	Amount
0	12.30 am	Yes	200 USD
3	1 am	Yes	19.52 USD
0	10 am	No	500 USD

Fraud probability

Classification - prediction

New unseen data **Predict fraud** probability Past fraud Declined in Time of Fraud Amount probability T-30 days transaction count 12.30 am Yes 200 USD 23 % 0 3 85 % 1 am Yes 19.52 USD 0 10 am No 500 USD 0 %

Transaction 1

Transaction 2

Regression example

Customer 1

Customer 2

Customer 3

Customer ...

Last month spend	Recency in days	Average cart value	Store visits per year
845 USD	20	340 USD	32
205 USD	1	100 USD	25
0 USD	55	70 USD	14
43	114.5	134	61.2

Next month spend		
585 USD		
150 USD		
20 USD		
69 USD		

Regression - training

Use these data points

Customer 1

Customer 2

Customer 3

Customer ...

Last month spend	Recency in days	Average cart value	Store visits per year
845 USD	20	340 USD	32
205 USD	1	100 USD	25
0 USD	55	70 USD	14
43	114.5	134	61.2

Next month spend		
585 USD		
150 USD		
20 USD		
69 USD		

Regression - learning

Customer 2

Customer 1

Customer 3

Customer ...

Regression - unseen data

New unseen data

Customer 1

Customer 2

Customer 3

Last month spend	Recency in days	Average cart value	Store visits per year
400 USD	10	200	12
5000 USD	60	1000	6
10 USD	25	200	12

Next month spend	

Regression - prediction

Customer 1

Customer 2

Customer 3

Regression - actual prediction

Predict next month New unseen data spend Last month Recency in Store visits Next month Average cart days spend value per year spend 400 USD 10 200 12 287 USD 1000 5000 USD 60 6 3152 USD 25 12 **10 USD** 200 62 USD

Customer 1

Customer 2

Customer 3

These are **real** predictions based from a linear regression model!

Let's practice!

MACHINE LEARNING FOR BUSINESS

Prediction models (unsupervised learning)

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

What is unsupervised machine learning?

Unsupervised models

Clustering - grouping observations into similar groups or clusters (e.g. customer or market segmentation)

Anomaly detection - detecting which observations fall out of the discovered "regular pattern" and use it as an input in supervised learning or a business input

Recommender engines - e.g. recommending products or services to customers based on their similarity to other customers e.g. Netflix movie recommendations

Clustering example - segmentation

Customer 1

Customer 2

Customer 3

Customer ...

Annual spend	Recency in days	Store visits per year
8450 USD	20	32
2050 USD	1	25
450 USD	55	14
628 USD	114.5	61.2

Segmentation - data

Customer 1

Customer 2

Customer 3

Customer ...

Monetary value	Recency	Frequency
8450 USD	20	32
2050 USD	1	25
450 USD	55	14
628 USD	114.5	61.2

Segmentation - training

Use these data points

Customer 1

Customer 2

Customer 3

Customer ...

Monetary value	Recency	Frequency
8450 USD	20	32
2050 USD	1	25
450 USD	55	14
628 USD	114.5	61.2

Segmentation - discover

Use these data points

. . .

Customer 1

Customer 2

Customer 3

Customer ...

Customer N

Monetary value	Recency	Frequency
8450 USD	20	32
2050 USD	1	25
450 USD	55	14
628 USD	114.5	61.2

To identify similar segments of customers

Segmentation - analyze

Customer 1

Customer 2

Customer 3

Customer ...

Customer N

To identify similar segments of customers

	Monetary value	Recency	Frequency
)	4788	76	74
)	8872	21	34
)	1312	29	21

Let's practice!

MACHINE LEARNING FOR BUSINESS

