1

4.

CLAIMS

What is claimed is:

1	1.	A method comprising:
2		providing a first wafer having a stack structure of a first base substrate, a
3	layer of relax	ed film, and a first layer of strained film,
4		depositing a layer of oxide onto the layer of strained film to provide an
5	adhesion surf	ace to the first wafer;
6	,	providing a second wafer, the second wafer being a silicon on insulation
7	(SOI) wafer h	naving a stack structure of a second base substrate and a layer of oxidized
8	film;	
9		attaching the first and second wafers; and
10		heating the first and second wafers at a first temperature to cause a
11	silicon dioxid	le (SiO ₂) adhesion of the first substrate to the second substrate.
1	2.	The method of claim 1 further comprising:
2		implanting hydrogen onto the first wafer before depositing the layer of
3	oxide onto the	e second layer of strained film to create an embrittled region in the layer
4	of relaxed filr	n.
1	3.	The method of claim 2 further comprising:
2		heating the first and second wafers at a second temperature to
3	delaminate th	e two wafers along the embrittled region to form the second wafer having
4	the layer of re	laxed film.

The method of claim 3 further comprising:

2	strained film.	etching the relaxed film on the surface of the second wafer to expose the	
3	stramed IIIII.		
1	. 5.	The method of claim 1 wherein the first and second base substrates are	
2	made of silico	on material.	
1	6.	The method of claim 1 wherein the layer of relaxed film is a relaxed	
2	Silicon Germa	anium (SiGe) layer having a thickness in a range of approximately 0.1 to	
3	3.0um.		
4	7.	The method of claim 1 wherein the layer of oxide is deposited at a	
5	thickness rang	ge of approximately 50 to 3000A.	
1	8.	The method of claim 2 wherein the hydrogen is implanted at an energy	
2	range of approximately 1 to 20keV.		
i	9.	The method of claim 3 wherein the second temperature is higher than	
2	the first temperature.		
1	10.	The method of claim 3 wherein the first temperature is in a range of	
2	approximately 100 °C to 300 °C.		
1	11.	The method of claim 3 wherein the second temperature is in a range of	
2	400 °C to 600		
1	12.	The method of claim 1 further comprising:	
2	•	etching the first base substrate, and the layer of relaxed film to result in	
3	the strain of film on the surface of the SOI wafer.		
1	13.	The method of claim 12 wherein the etching of the first layer of strained	
2	film comprises wet etching the layer of relaxed film.		
1	14.	A wafer comprising:	
2	a silic	on layer;	

3	a relaxed SiGe layer; and		
4	a strained silicon layer in contact with the relaxed SiGe layer, the strained		
5	silicon layer being transferred to the top of the relaxed SiGe layer by a heat treatment.		
1	15. The wafer of claim 14 wherein the relaxed SiGe layer contains an		
2	embrittled region.		
1	16. The wafer of claim 15 wherein the embrittled report is created by		
2	implanting hydrogen ions.		
1	17. A wafer comprising:		
2	a silicon layer;		
3	a SiO ₂ layer in contact with the silicon layer; and		
4	a strained silicon layer on top of the SiO ₂ layer, the strained silicon layer being		
5	transferred to an oxidized wafer by a heat treatment.		
1	18. The wafer of claim 17 wherein the oxidized wafer contains a relaxed	d	
2	SiGe layer.		
1	19. The wafer of claim 18 wherein the relaxed SiGe layer contains an		
2	embrittled region.		