TFA per cambiamenti di coordinate

Filippo \mathcal{L} . Troncana

A.A. 2023/2024

1 Misura indotta e σ -algebra finale

Definizione 1.1: σ -algebra finale

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme e sia $f: X \to Y$ una funzione biettiva. La σ -algebra finale indotta da f rispetto a \mathcal{A} è la famiglia

$$f\mathcal{A} := \{ E \in 2^Y : f^{-1}(E) \in \mathcal{A} \}$$

Osservazione 1.1

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Σ tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile.

Dimostrazione

Sia $\Sigma \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Sigma)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Sigma$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Sigma \subset f\mathcal{A}$.

Definizione 1.2: Misura esterna indotta

Siano X e Y due insiemi, sia μ una misura esterna su X e sia $f: X \to Y$ una funzione biettiva. La *misura indotta* da f rispetto a μ è la funzione

$$f\mu: 2^Y \to [0, +\infty]$$
 con $f\mu(E) := \mu(f^{-1}(E))$

Proposizione 1.1

 $f\mu$ è una misura esterna su Y.

Dimostrazione

Dimostriamo i tre assiomi di misura esterna.

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f\mu(\varnothing) = 0$.
- 2. Siano $E \subset F \subset Y$, allora $f^{-1}(E) \subset f^{-1}(F)$, dunque la monotonia di $f\mu$ segue dalla monotonia di μ .
- 3. Siano $A,B\subset Y,$ allora $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$ e la "disuguaglianza triangolare" segue da quella di μ

Proposizione 1.2

Se $f\mu$ è la misura indotta da f rispetto a μ , allora $\mathcal{M}_{f\mu} = f\mathcal{M}_{\mu}$.

2 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

