End-to-End Open Source IoT with RIOT

www.riot-os.org
Emmanuel Baccelli (*<u>Cédric Adjih</u>) *Énria*on behalf of the RIOT Community

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

Many Expected IoT Applications

Wearable technology

Connected Vehicles

loT = Future Internet's extremity

Benefits: extremely big business...

But also costs: extreme challenges w.r.t.

- Interoperability
- Performance w. constrained hardware
- Trust, privacy & network security

Definition of IoT?

 IoT ≈ internetworking of physical objects—devices, vehicles, buildings and other items embedded with electronics—which enables such objects to collect & exchange data.

IoT is also known as:

- M2M (Machine to Machine)
- Physical Web (Google)
- Physical Computing (Massimo Banzi, Arduino)
- Internet of Everything (Cisco)
- World Size Web (Bruce Schneier)

• ...

Zoom: IoT Hardware

Zoom: IoT Hardware

High-end IoT Hardware

- single-board computers such as
 - ✓ RasberryPi, connected cars, smartphones...
- hardware resources similar to average Internet devices
 - ✓ memory, computation power, network throughput...
- → Can run usual TCP/IP protocols
- → Can run usual OS such as Linux

Low-end IoT Hardware

- Smaller & cheaper smart objects
- Low-power microcontrollers & radios

ENERGY

Milliwatt instead of Watt

CPU

Megahertz instead of Gigahertz

Memory

Kilobytes instead of Gigabytes

→ KEY CHALLENGE for communication protocols for software platforms

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

Why a software platform for Low-end IoT devices?

Linux, Android... bare-metal?

- But as IoT software evolves...
 - more complex pieces, e.g. an IP network stack
 - evolution of application logic
- mon-portable IoT software slows innovation
 - 90% of IoT soft. should be hardware-independent
 - → this is achievable with a good software platform (but not if you develop bare-metal)

How to achieve a good software platform?

- Experience (e.g. with Linux) points towards:
 - open source
 - free core

Indirect business models

driven by a grassroots community

Geopolitical neutrality

But technically, departure from Linux is needed

Software platform on low-end IoT devices?

- The good news:
 - no need for advanced GUI (simple shell is enough!)
 - no need for high throughput performance (kbit/s)
 - no need to support dozens of concurrent applications
- The bad news:
 - kBytes of memory!
 - typically no MMU!
 - extreme energy efficiency must be built-in!

Software Platforms for Low-End IoT Devices

- Contiki
- RIOT
- TinyOS
- mbedOS (ARM)

- Zephyr (Intel)
- LiteOS (Huawei)
- ... and closed-source alternatives

Reference:

O. Hahm et al. "Operating Systems for Low-End Devices in the Internet of Things: A survey," IEEE Internet of Things Journal, 2016.

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

RIOT: an OS that fits IoT devices

RIOT: an OS that fits IoT devices

RIOT is the combination of:

- ☐ needed memory & energy efficiency to fit IoT devices
- ☐ functionalities of a full-fledged operating system
 - Advanced, consistent APIs across 32-bit, 16-bit, 8-bit hardware
 - Full-featured, extensible network stacks

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

IoT Challenge 1: Constrained Devices

ENERGY

Milliwatt instead of Watt

CPU

Megahertz instead of Gigahertz

Memory

Kilobytes instead of Gigabytes

- Micro-kernel architecture (contrary to Linux)
 - → minimal requirements around 1kB RAM

Tickless scheduler -> energy efficiency

Deterministic O(1) scheduler → real-time

Low latency interrupt handler -> reactivity

- Consistent, powerful API on 8-bit, 16-bit, 32-bit
 - → preemptive multithreading, IPC...

- Modular structure, adaptive to diverse hardware
 - → support for 50+ different IoT boards/devices and counting

Efficient HAL: minimized hardware-dependent code

Red: must have

Green: must have but shared by all ports with same architecture

Grey: optional for initial porting

Task Switching, Stack Handling, Interrupt Handling: done for ARM Cortex M3, M4 and M0 is on the way

(GPIO, UART, SPI, Timers: done for STM, Atmel, NXP...)

RAM/ROM usage on a Cortex-M loT device

	Hardware Specific				
Configuration	Platform	Drivers	Kernel	Net	Σ
ROM					
minimal	1,754	0	854	0	2,816
WSN default	4,684	6,183	2,233	4,105	37,002
gnrc_minimal	2,732	4106	2,140	12,298	27.524
gnrc	(3,675)	4138	2,700	30,985	74,752
RAM					
minimal	656	0	2,022	0	2,880
WSN default	681	0	2,022	2,066	6,344
gnrc_minimal	676	0	2,022	2,990	7,016
gnrc	676	0	2,022	15,815	20,828

With a simple application over a IPv6/6LoWPAN stack in RIOT, 95% of the code is hardware-independent and/or reusable.

Well-known tools are usable!

- Compliance with common system standards
 - ✓ POSIX sockets, pthreads
 - ✓ standard C, C++ application coding
- → Much shorter development life-cycles
 - ✓ Run & debug as native process in Linux
 - ✓ Use of well known debug tools enabled

Third-party code is usable!

Package	Overall Diff Size	Relative Diff Size	
libcoap	639 lines	6.3 %	
libfixmath	34 lines	0.2 %	
lwip	767 lines	1.3 %	
micro-ecc	14 lines	0.8 %	
relic	24 lines	<0.1 %	

Packages (similar to BSD ports) for third-party open source code

- ✓ Small porting effort needed (negligible % LoC)
- ✓ Use code not initially developed for RIOT
- ✓ Use code not even initially developed for IoT!

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

IoT Challenge 2: Interoperability

- System-level interoperability
 - Hardware-independent IoT software
 - Usability of third-party, well-known tools

- Network level interoperability
 - End-to-end connectivity per default
 - Device-to-device connectivity

IoT Interoperability Challenge: The IoT today looks mostly like this

IoT Interoperability Challenge: The IoT we want looks more like that

The IoT we want is... the Internet!

Standard IoT protocols? On the way! Work in progress at IETF, IEEE, W3C, OMA...

New specs for link layer technologies

- Low-power radios, PLC, BACnet
- IEEE 802.15.4, Z-Wave, BLE, LoRa (and IEEE 802.11)
- More to come...

New specs for network layer protocols

- Fitting IoT requirements and interoperable with IP
- 6TiSCH, 6LoWPAN, RPL, OLSRv2, AODVv2
- More to come...

New specs for application layer protocols

- Fitting IoT requirements and interoperable with web
- CoAP, LwM2M, CBOR
- More to come...

New network paradigms

- Content-centric networking for IoT
- More to come...

> Network stack ultra-flexibility and modularity

Traditional stack

GNRC stack

- ✓ 6LoWPAN stack, supporting IoT wireless tech.
- ✓ Standard IPv6 stack
- ✓ Packages for third-party modules/stacks:
 - OpenWSN, CCN-lite, Emb6, lwIP, tinyDTLS...

Agenda

- Which IoT are we talking about?
- Why an OS for Low-End IoT devices?
- How?
- What is RIOT?
 - Solving IoT technical challenge 1: constrained devices
 - Solving IoT technical challenge 2: interoperability
 - Solving IoT technical challenge 3: trust

Some level of trust with IoT?

Combining RIOT & Linux, IoT is possible with

- ✓ End-to-end open source
- ✓ End-to-end secure & open communication standards
- ✓ From anywhere in the Internet all to the way to (low-end) IoT devices

RIOT in a nutshell

Free, open-source plaftorm for portable IoT software

RIOT offers a platform functionally equivalent to Linux, based on:

open-source,

open-access protocol specs,

community-driven dev.

Closing words

- IoT software platforms: a very active field
 - Current situation comparable to mobile phones transition before/after Android & iOS
- Big progress in IoT connectivity & interoperability
- The toughest challenges remain
 - Security (avoid IoT botnets armageddon?)
 - Privacy (reconciled with IoT and big data?)

Hands-on with RIOT

✓ Setup: get RIOT code

git clone https://github.com/RIOT-OS/RIOT.git

Caveat: You may have to install git and toolchain (things like gcc ...)

See https://github.com/RIOT-OS/RIOT/wiki/Introduction

RIOT in Action

- http://riot-demo.inria.fr/
- RIOT
- Diverse hardware
- Web Server
- COAP/IPv66LoWPAN

RIOT at IETF

RIOT Summit

http://summit.riot-os.org/

- Ralph Droms (Cisco)
 - RIOTICN
- Carsten Borman (TZI)
 - IETF Protocols for IoT
- Alexander Pelov (ackl.io)
 - LPWAN
- Nordic / Samsung
- Zolertia/Phytec/ImgTec/...
- [...]

http://tinyurl.com/riot-summit-photo

http://tinyurl.com/riot-summit-photo

http://summit.riot-os.org/

RIOT on FIT IoT-LAB https://www.iot-lab.info/

Thanks for your interest!

News: https://twitter.com/RIOT_OS

For cooperation questions: riot@riot-os.org

For developer questions: devel@riot-os.org

Support & discussions on IRC: irc.freenode.org #riot-os

RIOT Roots & Evolution

- 2008 2012
 Ancestors of RIOT kernel developed in research projects (FireKernel, uKleos).
- 2013 2016
 Branding of RIOT started, source code moved to Github, major development of the network stack & the OS as such.
- Speed-evolution
 of the code-base.
 110+ contributors
 worldwide (makers, academic industrial)

Some supporters/users

... and dozens of independent developers around the world!

Hands-on with RIOT

✓ Setup: get RIOT code

git clone https://github.com/RIOT-OS/RIOT.git
Caveat: You may have to install git and toolchain (things like gcc ...)
See https://github.com/RIOT-OS/RIOT/wiki/Introduction

✓ Hands-on: compile, flash, run RIOT

Demo: RIOT shell on SAMR21 board (32bit ARM M0)

✓ Hands-on: communication with RIOT (IPv6, 6LoWPAN)

Demo: PING with 2 Atmel SAMR21 boards