Curvas de Bezier

Funciones Polinomiales

Lineal:
$$f(t) = at + b$$

Cuadrática:
$$f(t) = at^2 + bt + c$$

Cúbica:
$$f(t) = at^3 + bt^2 + ct + d$$

Interpolación lineal

$$Lerp(t, \mathbf{a}, \mathbf{b}) = (1-t)\mathbf{a} + t\mathbf{b}$$

Interpolaciones de mayor orden

Curva Bezier cúbica

Curvas de Bezier cúbicas

Formulaciones:

1. Algoritmo "de Castlejau" - interpolación lineal recursiva

2. Bases de Bernstein

3. Ecuaciones Cúbicas

Interpolación lineal recursiva

$$\mathbf{x} = Lerp(t, \mathbf{r}_0, \mathbf{r}_1) \mathbf{r}_0 = Lerp(t, \mathbf{q}_0, \mathbf{q}_1) \mathbf{q}_0 = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) \mathbf{p}_0$$

$$\mathbf{q}_1 = Lerp(t, \mathbf{p}_1, \mathbf{p}_2) \mathbf{q}_1 = Lerp(t, \mathbf{p}_1, \mathbf{p}_2) \mathbf{p}_1$$

$$\mathbf{q}_2 = Lerp(t, \mathbf{p}_2, \mathbf{p}_3) \mathbf{p}_2$$

$$\mathbf{p}_3$$

http://aescripts.com/decasteljau-bezier-curve/

http://aescripts.com/decasteljau-bezier-curve/

Expresión recursiva

$$B_i^n(t) = \binom{n}{i} (1-t)^{n-i} (t)^i$$
 Bases de Berstein

$$\mathbf{x}(t) = \sum_{i}^{n} B_{i}^{n}(t) \mathbf{p}_{i}$$
 curva

N= grado de los polinomios

$$X(t)=B0*P0 +B1*P1+B2*P2+B3*P3$$

$$\mathbf{x} = (1-t)^{3} \mathbf{p}_{0} + 3(1-t)^{2} t \mathbf{p}_{1} + 3(1-t)t^{2} \mathbf{p}_{2} + t^{3} \mathbf{p}_{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
B0
B1
B2
B3

$$\mathbf{x} = (1-t)((1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2))$$
$$+ t((1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3))$$

Base1

-Base2

Base3

$$B0=(1-u)^3$$

$$B1=(1-u)^2*u$$

$$B2=(1-u) * u^2$$

$$B3 = u^3$$

$$B_0^3(u) = -u^3 + 3u^2 - 3u + 1$$

$$B_1^3(u) = 3u^3 - 6u^2 + 3u$$

$$B_2^3(u) = -3u^3 + 3u^2$$

$$B_3^3(u) = u^3$$

$$\mathbf{x} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t^3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t^2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

$$\mathbf{a} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)$$

$$\mathbf{b} = (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)$$

$$\mathbf{c} = (-3\mathbf{p}_0 + 3\mathbf{p}_1)$$

$$\mathbf{d} = (\mathbf{p}_0)$$

Bases de Berstein cuadráticas y lineales

$$B_0^2(u) = u^2 - 2u + 1$$

$$B_1^2(u) = -2u^2 + 2u$$

$$B_2^2(u) = u^2$$

$$B_1^1(u) = u$$

$$B_1^1(u) = u$$

Tangentes y derivadas

Envolvente convexa

Propiedades

- Continuidad C⁰: una curva Bezier cúbica definida entre t=0 y t=1 será una curva geométricamente continua
- Continuidad C^{1:} Primera derivada: función cuadrática continua
- Continuidad C²: Segunda derivada: funcion lineal continua

Continuidad de varios tramos:

Si $\mathbf{p}_3 = \mathbf{v}_0$ tendrá continuidad \mathbf{C}^0

Si $(\mathbf{p}_3 - \mathbf{p}_2) = (\mathbf{v}_1 - \mathbf{v}_0)$ tendrá continuidad C^1

Continuidad C⁰ SI Continuidad C¹ NO

Continuidad C⁰ SI Continuidad C¹ SI