Chapter 5 Project: Apply Nelder-Mead to the Rheology Problem

Matthew Saurette, Tyler Weames, and Sarah Wyse

Math 462 University of British Columbia - Okanagan

December 2020

Nelder-Mead Algorithm

Given $f: \mathbb{R}^n \to \mathbb{R}$ and the vertices of an initial simplex $Y^0 = \{y^0, y^1, \dots, y^n\}$

- Initialize:
 - $\begin{array}{ll} \delta^e, \delta^{oc}, \delta^{ic}, \gamma & \quad \text{parameters} \\ k \leftarrow 0 & \quad \text{iteration counter} \end{array}$

1. Order and create centroid:

reorder
$$Y^k$$
 so $f(y^0) \le f(y^1) \le \ldots \le f(y^n)$

set $x^c = \frac{1}{n} \sum_{i=0}^{n-1} y^i$, the centroid of all except the worst point

2. Reflect:

test reflection point
$$x^r = x^c + (x^c - y^n)$$

if $f(y^0) \le f(x^r) \le f(y^{n-1})$, then accept x^r and goto 1

3. Expand:

| if
$$f(x^r) < f(y^0)$$
, then test expansion point $x^e = x^c + \delta^e(x^c - y^n)$

4a). Outside Contraction:

if
$$f(y^{n-1}) \le f(x^r) < f(y^n)$$
, then test outside contraction $x^{oc} = x^c + \delta^{oc}(x^c - y^n)$

4b). Inside Contraction:

if
$$f(x^r) \ge f(y^n)$$
, then test inside contraction point $x^{ic} = x^c + \delta^{ic}(x^c - y^n)$

5. Shrink:

if all tests fail, then shrink
$$\mathbf{Y}^{\mathtt{k+1}} = \{\mathbf{y}^\mathtt{o}, \mathbf{y}^\mathtt{o} + \gamma(\mathbf{y}^\mathtt{1} - \mathbf{y}^\mathtt{o}), \mathbf{y}^\mathtt{o} + \gamma(\mathbf{y}^\mathtt{2} - \mathbf{y}^\mathtt{o}), \ldots, \mathbf{y}^\mathtt{o} + \gamma(\underline{\mathbf{y}}^\mathtt{n} - \underline{\mathbf{y}}^\mathtt{o})\}$$

Algorithm from lecture slides

0. Initialize

1. Order, create centroid, and compute x^r

2. Reflect

3. Expand

4.a) Outside Contraction

4.b) Inside Contraction

5. Shrink