LEC18 DP4

Recall

SRTBOT paradigm for recursive alg. design & with memoization DP algorithm desion.

- -Subproblem definition
 - for sequence S try prefixes S[:i], suffixes S[i:] Substring S[i:j]
 - for nonnegative integer K, try integers in [0,k]
 - add Subproblems & constraints to "remember state"
 - -Relate subproblem solutions recursively
 - identify guestion about subproblem solution that if you knew answer, reduces to "smaller" subproblems
 - locally brute-force all answers to question
 - · can think of correctly guessing answer, then loop
 - -Topological order on subprobs => DAG
 - -Base case of relation
 - -original problem
 - -Time analysis

$$\sum_{x \in X} \operatorname{work}(x), \text{ or if } \operatorname{work}(x) = O(W) \text{ for all } x \in X, \text{ then } |X| \cdot O(W)$$

work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

Rod cutting:

```
given rod of lenght L & value V(I) of rod of length I for all l \in \{1,2,\dots L\} what's max-value partition of length-I rod? -example: L=7, I: 1 2 3 4 5 6 7 v(I): 1 10 13 18 20 31 32 -> 6+1 -> 31+1=32 or 3+2+2=13+10+10=33 the best
```

- SRTBOT
 - -Subproblems:
 - x(I) = max value partition of length I for I = 0,1,...,L
 - -Relate:

```
 X(I) = \max \left\{ v(p) + X(I-p) \mid \text{for p in 1} <= p <= I \right\}  -Topo. order: increasing I, for I = 0, 1, ...., L  -\text{Base case: } x(0) = 0  -Original: x(L) -Time: \theta(L) subprobs.*O(L)time = O(L^2)time  Is \theta(L^2) polynomial time? Yes  (\text{Strongly}) \text{ polynomial time = polynomial in input size (measured in words)}
```

Subset Sum

given multiset A= $\{a_0, a_1, a_2, \dots, a_{\{}n-1\}\}$ of n integers & target sum T, does any subset S <= A sum to T?

-example: $A = \{2, 5, 7, 8, 9\} T = 21, 25$

for 21 => YES, S={5,7,8}

for 25 => NO

-decision problem: YES/NO answer

• SRTBOT for (SS)

-Subproblems:

X(i, t) = does any subset S in A[i:] sum to t, for i = 0,1,...,n, t = 0,1,...,T

-Relate

 $X(i, t) = OR(any) \{x(i+1, t), <- a_i \text{ not in } S,$

 $x(i+1, t-a_i) \text{ if } a_i \le t$

-Topological order: decreasing i

-Base case: x(n,t) = { if t=0, yes; otherwise no.}

-Original problem: X(0,T)

-Time: theta(nT)

Is $\theta(nT)$ is polynomial time? NO: not polynomial input size of n+1

- ->Beacuse input is size n+1
- -know T <= 2^w , w >= Ign, but w could be >> Ign, e.g. w=n, T<= 2^n means nT could be exponential in n+1
- ->this is a pseudo-polynomial

Pseudopolynomial

polynomial input size & input integers (T)

- =>polynomial if input intergers <= polynomial input size others
- -counting sort, DAA, Fibonacci, Rdix sort pseudopoly

🌞 以 Subset Sum 为例:

Original Problem:

给定一个数组 A[0..n-1], 是否存在某个子集 S, 使得它的和是 T?

我们用 x(0, T) 表示这个问题:

用 A[0:] 是否能组成 T?

☑ 接下来,用逆向归纳思考:

- 想组成 T , 有两个选择:
 - 1. 不用 A[0], 变成: x(1, T)
 - 2. 用 A[0], 变成: x(1, T A[0])

也就是说:

$$\boldsymbol{x}(0,T) = \boldsymbol{x}(1,T) \text{ or } \boldsymbol{x}(1,T-A[0])$$

这时候你就会发现:

! 我们不是只关心 x(i, T) , 我们会访问到所有 x(i, t) , 只要 0 <= t <= T

Main features of DP

Subpreoblems

-prefixes/suffixes: Bowling game, LCS, LIS, Floyd-warshall, subset sum

-substrings: ACG, Paren -multiple sequences: LCS

-integers: Rod Cutting, Subset sum, Fibonacci

-pseudopolynomial

-vertices

Subproblem constraints / expansion

-nonexpansive constraint: LIS

-2x: ACG, P - $\theta(1)x$: Piano

- $\theta(n)x: Bellman - Ford$

Supplement

Subproblem Expension

在动态规划的子问题中,在尝试解决一个特定的子问题时,我们发现为了得到最优解,需要 更多的信息或者状态,这通常意味着子问题需要进一步的进行分解,或者考虑额外的约束条 件。

Introduce these missing information or constraint.!

Guess and Brute Force
 In subproblem, we Brute Force All possiable situation.

🧠 常见动态规划问题:子问题定义套路表

问题类型	原问题描述	子问题定义	状态 参数	状态转移思路	常见思考角 度
Fibonacci	F(n) = F(n- 1)+F(n-2)	F(i): 前 i 项 的结果	i	F(i) = F(i-1) + F(i-2)	顺推 or 递归
▲ 0/1 背包	选若干物 品,总重不 超过 W, 最大价值	dp(i, w): 前 i 件物品, 总重 w 时最 大值	i, w	dp(i, w) = max(不选, 选)	原问题角度推状态转移
Subset Sum	A 中是否存 在子集和为 T?	x(i, t): A[i:] 是否能组成 t	i, t	x(i, t) = x(i+1, t) or x(i+1, t) t-A[i])	从原问题反推,目标是 t
■ LCS (最长公 共子序列)	找两个串的 最长公共子 序列	dp(i, j): A[0:i], B[0:j] 的LCS长度	i, j	若匹配则 +1, 否则 max(左, 上)	子问题必须 保留两个索 引信息
♥ Edit Distance	从 A 转换 到 B 的最 小操作数	dp(i, j): A[0:i], B[0:j] 的编辑距离	i, j	插入、删除、替换三种操作	从尾部逐步 考虑操作
∠ LIS (最长上 升子序列)	找 A 的最 长上升子序 列	dp(i): 以 A[i] 结尾的 LIS 长度	i	dp(i) = max(dp(j)+1), j <i 且 A[j]<a[i]< td=""><td>从结尾"反 推"最优子 结构</td></a[i]<></i 	从结尾"反 推"最优子 结构
Floyd-Warshall	所有点对最 短路径	d(u,v,k): 只 允许中间节 点 ≤k 的最 短路	u,v,k	d(u,v,k)=min(d(u,v,k-1), d(u,k,k-1)+d(k,v,k-1))	增量构建可 用点集合
§§ Matrix Chain Multiplication	最优矩阵相乘顺序	dp(i,j): A[i]~A[j] 的 最小乘法次 数	i, j	枚举中间断点 k	子结构包含 子区间
Climbing Stairs	每次上 1 或 2 级, 多少种走 法?	dp(i): 走到 i 有几种方式	i	dp(i) = dp(i-1) + dp(i-2)	跟 Fibonacci 类似
Change	用最少的硬 币组成金额	dp(i): 组成 金额 i 所需	i	dp(i) = min(dp(i - coin) + 1)	从目标金额 i 出发