Multiple logistic regression

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Bank churn dataset

has_churned	time_since_first_purchase	time_since_last_purchase
0	0.3993247	-0.5158691
1	-0.4297957	0.6780654
0	3.7383122	0.4082544
0	0.6032289	-0.6990435
•••	•••	•••
response	length of relationship	recency of activity

¹ https://www.rdocumentation.org/packages/bayesQR/topics/Churn

logit()

```
from statsmodels.formula.api import logit

logit("response ~ explanatory", data=dataset).fit()

logit("response ~ explanatory1 + explanatory2", data=dataset).fit()

logit("response ~ explanatory1 * explanatory2", data=dataset).fit()
```

The four outcomes

	predicted false	predicted true
actual false	correct	false positive
actual true	false negative	correct

```
conf_matrix = mdl_logit.pred_table()
```

```
print(conf_matrix)
```

```
[[102. 98.]
[ 53. 147.]]
```

Prediction flow

```
from itertools import product
explanatory1 = some_values
explanatory2 = some_values
p = product(explanatory1, explanatory2)
explanatory_data = pd.DataFrame(p,
                                columns=["explanatory1",
                                         "explanatory2"])
prediction_data = explanatory_data.assign(
  mass_g = mdl_logit.predict(explanatory_data))
```

Visualization

```
prediction_data["most_likely_outcome"] = np.round(prediction_data["has_churned"])
sns.scatterplot(...
                data=churn,
                hue="has_churned",
                ...)
sns.scatterplot(...
                data=prediction_data,
                hue="most_likely_outcome",
                ...)
```

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

The logistic distribution

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Gaussian probability density function (PDF)

```
from scipy.stats import norm

x = np.arange(-4, 4.05, 0.05)

gauss_dist = pd.DataFrame({
    "x": x,
    "gauss_pdf": norm.pdf(x)}
)
```


Gaussian cumulative distribution function (CDF)

```
x = np.arange(-4, 4.05, 0.05)

gauss_dist = pd.DataFrame({
    "x": x,
    "gauss_pdf": norm.pdf(x),
    "gauss_cdf": norm.cdf(x)}
)
```


Gaussian cumulative distribution function (CDF)

```
x = np.arange(-4, 4.05, 0.05)

gauss_dist = pd.DataFrame({
    "x": x,
    "gauss_pdf": norm.pdf(x),
    "gauss_cdf": norm.cdf(x)}
)
```


Gaussian inverse CDF

```
p = np.arange(0.001, 1, 0.001)

gauss_dist_inv = pd.DataFrame({
    "p": p,
    "gauss_inv_cdf": norm.ppf(p)}
)
```


Logistic PDF

```
from scipy.stats import logistic

x = np.arange(-4, 4.05, 0.05)

logistic_dist = pd.DataFrame({
    "x": x,
    "log_pdf": logistic.pdf(x)}
)
```


Logistic distribution

- Logistic distribution CDF is also called the logistic function.
- $\operatorname{cdf}(x) = \frac{1}{(1 + exp(-x))}$
- Logistic distribution inverse CDF is also called the *logit function*.
- inverse_cdf(p) = $log(\frac{p}{(1-p)})$

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

How logistic regression works

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Sum of squares doesn't work

```
np.sum((y_pred - y_actual) ** 2)

y_actual is always 0 or 1.

y_pred is between 0 and 1.
```

There is a better metric than sum of squares.

Likelihood

y_pred * y_actual

Likelihood

```
y_pred * y_actual + (1 - y_pred) * (1 - y_actual)
```


Likelihood

```
np.sum(y_pred * y_actual + (1 - y_pred) * (1 - y_actual))
```

When $y_actual = 1$

$$y_{pred} * 1 + (1 - y_{pred}) * (1 - 1) = y_{pred}$$

When $y_actual = 0$

Log-likelihood

- Computing likelihood involves adding many very small numbers, leading to numerical error.
- Log-likelihood is easier to compute.

```
log_likelihood = np.log(y_pred) * y_actual + np.log(1 - y_pred) * (1 - y_actual)
```

Both equations give the same answer.

Negative log-likelihood

Maximizing log-likelihood is the same as minimizing negative log-likelihood.

-np.sum(log_likelihoods)

Logistic regression algorithm

```
def calc_neg_log_likelihood(coeffs)
  intercept, slope = coeffs
  # More calculation!
from scipy.optimize import minimize
minimize(
  fun=calc_neg_log_likelihood,
  x0=[0, 0]
```

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Congratulations!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

You learned things

Chapter 1

Fit/visualize/predict/assess parallel slopes

Chapter 2

- Interactions between explanatory variables
- Simpson's Paradox

Chapter 3

- Extend to many explanatory variables
- Implement linear regression algorithm

Chapter 4

- Logistic regression with multiple explanatory variables
- Logistic distribution
- Implement logistic regression algorithm

There is more to learn

- Training and testing sets
- Cross validation
- P-values and significance

Advanced regression

- Generalized Linear Models in Python
- Introduction to Predictive Analytics in Python
- Linear Classifiers in Python
- Machine Learning with Tree-Based Models in Python

Have fun regressing!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

