Package 'darleq3'

February 28, 2018

Type Package
Title Diatom-based water quality indices
Version 0.8.2
Date 2017-10-16
Authors Steve Juggins, Martyn Kelly
Maintainer Steve Juggins <stephen.juggins@ncl.ac.uk></stephen.juggins@ncl.ac.uk>
Description Diatom-based water quality indices.
Imports readxl, openxlsx, shiny, shinyjs, shinydashboard, stringr, mgcv, knitr, rmarkdown, R.rsp
License GPL-2
Encoding UTF-8
LazyData true
BinaryFiles zip.exe
RoxygenNote 6.0.1
Roxygen list(markdown = TRUE)
VignetteBuilder knitr, R.rsp
R topics documented:
calc_EQR calc_Metric calc_Metric_EQR calc_SiteEQR calc_Uncertainty calc_WFDClass darleq darleq3

2 calc_EQR

	darleq3_data		 		. 9
	darleq3_taxa		 		9
	errMessage		 		. 10
	print.DARLEQ_DA	ГА	 		. 10
	read_DARLEQ .		 		. 11
	runDARLEQ		 		. 13
	save_DARLEQ .		 		. 15
Index					16
calc	_EQR	Calculate EQRs	atus classes from	diatom metric and sa	m-

Description

Calculate EQRs and WFD status classes from diatom metric and sample environmental data

Usage

```
calc_EQR(x, header, verbose = TRUE)
```

Arguments

x	an object of class <code>DIATOM_METRIC</code> , usually the output from function <code>calc_Metric</code> .
header	data frame containing sample and site environmental information for calculating the expected value of the metric.
verbose	logical to indicate should function stop immediately on error (TRUE) or return a simpleError (FALSE). Defaults to TRUE.

Value

A object of class DIATOM_EQR, a list with the following named elements:

EQR	data frame containing, for each sample, sample codes, water chemistry data and other columns from the header in original Excel file, metric and summary information from function calc_Metric, expected EQRs (eEQR), calculated EQRs, predicted WFD class, percentage diatoms in diagnostic ecological groups, and a flag to indicate missing or out of range environmental data.
Uncertainty	data frame containing, for each site, mean EQRS, predicted WFD class, and confidence of class (CoC) for each WFD class and HG/MPB boundary (CoC-CHG, COCMPB), and risk of misclassification for the predicted class (ROM) and for the G/M boundary (ROM_GM)

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

calc_Metric 3

References

Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst, and M. Yallop, Assessment of ecological status in UK rivers using diatoms. *Freshwater Biology*, 2008. 403-422.

Juggins, S., M. Kelly, T. Allott, M. Kelly-Quinn, and D. Monteith, A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. *Science of The Total Environment*, 2016. 671-678.

Bennion, H., M.G. Kelly, S. Juggins, M.L. Yallop, A. Burgess, J. Jamieson, and J. Krokowski, Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science*, 2014. 639-654.

Examples

```
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
d <- read_DARLEQ(fn, "Rivers TDI Test Data")
x <- calc_Metric(d$diatom_data, metric="TDI4")
eqr <- calc_EQR(x, d$header)
head(eqr$EQR)
head(eqr$Uncertainty)</pre>
```

calc_Metric

Calculate water quality metrics from diatom data

Description

Calculate water quality metrics from diatom data

Usage

```
calc_Metric(x, metric = "TDI5LM", dictionary = darleq3::darleq3_taxa,
  taxon_names = NULL, verbose = TRUE)
```

Arguments

x data frame of diatom counts or relative abundance data

metric diatom metric, one of "TDI3", "TDI4", "TDI5LM", "TDI5NGS", "LTDI1", "LTDI2",

or "DAM". Defaults to "TDI5LM".

dictionary diatom dictionary, a data frame with diatom taxon codes and indicator values for

different metrics. Defaults to the built-in DARLEQ3 dictionary.

taxon_names optional data frame containing taxon code in column 1 and taxon name in co-

lumn 2. Used only to supply names of missing taxa in the job summary.

verbose logical to indicate should function stop immediately on error (TRUE) or return

a simpleError (FALSE). Defaults to TRUE.

Details

calc_Metric takes as arguments a data frame of diatom counts or relative abundances, a metric code and a "dictionary" of diatom metric indicator values. The function will link the diatom taxon codes from the column names in the diatom data to those listed in the dictionary and calculate the relevant metric, along with some useful summary statistics. Diatom data should be coded with either NBS codes or 6-character DiatCode codes. See darleq3_taxa for the current DARLEQ3 dictionary.

4 calc_Metric

Value

A object of class DIATOM_METRIC, a list with the following named elements:

Metric_Code metric code

CodingID taxon coding type - the column name containing taxon codes in the taxon dicti-

onary

Metric data frame with one column listing the value of the metric for each sample

Summary data frame summaring the input data with the following columns:

• Total_count: total diatom count for each sample

• Percent_in_Metric, percentage of count included in metric calculations

• N Metric, Number of taxa included in metric calculations

• N2_Metric, Hill's N2 effective number of taxa included in metric calculations

• Max_Metric, maximum abundance of any taxon included in metric calculations

EcolGroup data frame containing a list of the percentage of motile, organic tolerant, planktic

and saline tolerant taxa in each sample

Job_Summary list containing elements giving the total number of samples, number of samples

with data, total number of taxa, number of taxa with occurrences, diatom metric and list of taxa that do not have a metric indicator value in the taxon dictionary

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

References

Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst, and M. Yallop, Assessment of ecological status in UK rivers using diatoms. *Freshwater Biology*, 2008. 403-422.

Juggins, S., M. Kelly, T. Allott, M. Kelly-Quinn, and D. Monteith, A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. *Science of The Total Environment*, 2016. 671-678.

Bennion, H., M.G. Kelly, S. Juggins, M.L. Yallop, A. Burgess, J. Jamieson, and J. Krokowski, Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science*, 2014. 639-654.

Examples

```
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
d <- read_DARLEQ(fn, "Rivers TDI Test Data")
x <- calc_Metric(d$diatom_data, metric="TDI4")
head(x$Metric)</pre>
```

calc_Metric_EQR 5

calc_Metric_EQR	Calculate diatom water quality metrics, EQRs and WFD class for samples, and uncertainties of site classification

Description

Calculate diatom water quality metrics, EQRs and WFD class for samples, and uncertainties of site classification

Usage

```
calc_Metric_EQR(x, metrics = "TDI5LM", verbose = TRUE)
```

Arguments

X	list containing diatom and header (environmental) data. This will usually be the data structure imported by read_DARLEQ.
metrics	character vector of metric codes. Currently one or more of the following: "TDI3", "TDI4", "TDI5LM" (for river LM TDI calculations), "TDI5NGS" for river NGS metric, "LTDI1", "LTDI2" for lake LM TDI metric or "DAMLM" for river diatom acidification metric.
verbose	logical to indicate should function stop immediately on error (TRUE) or return a simpleError (FALSE). Defaults to TRUE.

Details

This is a wrapper function to calc_Metric and calc_EQR that calculates multiple metrics, EQRs and WFD classes. The output can be saved to an Excel file using function save_DARLEQ.

Value

A list with a named element for each metric calculated. Each element in the list is itself a list containing the output from calc_EQR (ie. the sample and site metrics, EQRs and WFD classes), and the job summary produced by calc_Metric.

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

References

Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst, and M. Yallop, Assessment of ecological status in UK rivers using diatoms. *Freshwater Biology*, 2008. 403-422.

Juggins, S., M. Kelly, T. Allott, M. Kelly-Quinn, and D. Monteith, A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. *Science of The Total Environment*, 2016. 671-678.

Bennion, H., M.G. Kelly, S. Juggins, M.L. Yallop, A. Burgess, J. Jamieson, and J. Krokowski, Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science*, 2014. 639-654.

6 calc_Uncertainty

Examples

```
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
d <- read_DARLEQ(fn, "Rivers TDI Test Data")
x <- calc_Metric_EQR(d)
save_DARLEQ(x, outFile="results.xlsx")</pre>
```

calc_SiteEQR

Calculate site EQRs

Description

Calculate site EQRs

Usage

```
calc_SiteEQR(EQR, SiteID, lake_Type = NULL)
```

Arguments

EQR sample EQR SiteID site ID

lake_Type lake type following GB lake typology

Details

This is an internal function and is not meant to be called directly.

calc_Uncertainty

Calculate classification uncertainties

Description

Calculate classification uncertainties

Usage

```
calc_Uncertainty(x, metric, lake_Type = NULL)
```

Arguments

x data frame outfdrom from function calc_SiteEQR

metric diatom metric

lake_Type lake type following GB lake typology

Details

This is an internal function and is not meant to be called directly.

calc_WFDClass 7

S

Description

Calculate WFD quality class

Usage

```
calc_WFDClass(EQR, metric, lake_Type = NA)
```

Arguments

 $\begin{array}{ll} \mbox{EQR} & \mbox{sample EQR} \\ \mbox{metric} & \mbox{metric to calculate} \end{array}$

lake_Type lake type following GB lake typology

Details

This is an internal function and is not meant to be called directly.

darleq	Calculate diatom water quality metrics, EQRs and WFD class for
	samples, and uncertainties of site classification

Description

Calculate diatom water quality metrics, EQRs and WFD class for samples, and uncertainties of site classification

Usage

```
darleq(inFile, sheet = NULL, metrics = c("TDI3", "TDI4", "TDI5LM"),
  outFile = NULL, verbose = TRUE)
```

Arguments

inFile	Excel file name containing diatom and sample environmental data. See read_DARLEQ for acceptible formats for these data.
sheet	name of the worksheet in the Excel file to import.
metrics	character vector of metric codes. Currently one or more of the following: "TDI3", "TDI4", "TDI5LM" (for river LM TDI calculations), "TDI5NGS" for river NGS metric, "LTDI1", "LTDI2" for lake LM TDI metrics or "DAMLM" for river diatom acidification metric.
outFile	name of Excel file to save results. If not given the function will generate a name by concatenating "DARLEQ3_Results_" with the original filename, the sheet name and the current date.
verbose	logical to indicate should function stop immediately on error (TRUE) or return a simpleError (FALSE). Defaults to TRUE.

8 darleq3

Details

This is a wrapper function to read_DARLEQ calc_Metric_EQR and save_DARLEQ that imports data form an Excel file, calculates multiple metrics, EQRs and WFD classes and saves the results to another Excel file in one step.

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

References

Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst, and M. Yallop, Assessment of ecological status in UK rivers using diatoms. *Freshwater Biology*, 2008. 403-422.

Juggins, S., M. Kelly, T. Allott, M. Kelly-Quinn, and D. Monteith, A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. *Science of The Total Environment*, 2016. 671-678.

Bennion, H., M.G. Kelly, S. Juggins, M.L. Yallop, A. Burgess, J. Jamieson, and J. Krokowski, Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science*, 2014. 639-654.

Examples

```
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
darleq(fn, outFile="Results.xlsx")</pre>
```

darleq3

darleq3: Diatom Assessment of River and Lake Ecological Quality

Description

darleq3 is an R package for the assessment of river and lake ecological status using diatom data obtained by light microscopy (LM) or Next Generation Sequencing (NGS). The package contains functions for importing data from Excel worksheets, calculating various water quality metrics, EQRs and Water Framework Directive quality classes.

Additional help on using the package and interpreting the results can be found in the following vignettes:

darleq3 User Guide (html version)
darleq3 User Guide (pdf version)
darleq3 Manual (pdf version)

Guide to interpreting TDI5 NGS data (pdf version)

darleq3 functions

- darleq import diatom data from an Excel file, calculate matrics, EQRs and WFD quality classes, and save results in Excel format
- read_DARLEQ import diatom data from an Excel file
- save_DARLEQ save metric and EQR results in an Excel file

darleq3_data 9

- calc_Metric calculate various diatom water quality metrics
- calc_EQR calculate sample and site EQRs and WFD quality classes
- calc_Metric_EQR calculate EQRS, WFD quality classes and summary diagnostic measures for multiple metrics
- runDARLEQ run DARLEQ3 as an interactive shiny app in a web browser

Acknowledgements

DARLEQ was developed and funded as part of the following projects:

- Diatoms as Monitors of Ecological Status of Rivers (Diatom Assessment of River Ecological Status DARES) Project No: EMC/WP04/078 Funded by the Environment Agency and SNIFFER (The Scotland and Northern Ireland Forum for Environmental Research).
- Development of a phytobenthos classification tool for lakes and lochs of UK (DALES Diatom assessment of lake and loch ecological status) Project Code: EMC/WP09/079. Funded by The Environment Agency Science Programme.
- Development of the Diatom classification tool (DARLEQ) for lakes and rivers. Funded by The Environment Agency Science Programme.

References

Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst, and M. Yallop, Assessment of ecological status in UK rivers using diatoms. *Freshwater Biology*, 2008. 403-422.

Juggins, S., M. Kelly, T. Allott, M. Kelly-Quinn, and D. Monteith, A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. *Science of The Total Environment*, 2016. 671-678.

Bennion, H., M.G. Kelly, S. Juggins, M.L. Yallop, A. Burgess, J. Jamieson, and J. Krokowski, Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science*, 2014. 639-654.

darleq3_data	darleq3_data internal variables used in metric, EQR and WFD quality
	class calculations

Description

darleq3_data internal variables used in metric, EQR and WFD quality class calculations

darleq3_taxa	darleq3_taxa DARLEQ3 diatom dictionary

Description

A dataframe containing diatom codes, names and indicator values for different water quality metrics

errMessage

error message handler

Description

error message handler

Usage

```
errMessage(txt, verbose)
```

Arguments

txt error message

verbose logical to indicate should function stop immediately on error (TRUE) or return

a simpleError (FALSE). Defaults to TRUE.

Details

This is an internal function and is not meant to be called directly.

print.DARLEQ_DATA

Print an object of class DARLEQ_Data

Description

Print an object of class DARLEQ_Data

Usage

```
## S3 method for class 'DARLEQ_DATA'
print(x, ...)
```

Arguments

x object of class DARLEQ_DATA

... additional arguments to print

read_DARLEQ 11

read_DAKLEQ didiom data from an Excer file	read_DARLEQ	Read DARLEQ diatom data from an Excel file	
--	-------------	--	--

Description

read_DARLEQ imports DARLEQ-formatted diatom data from an Excel file.

Usage

```
read_DARLEQ(file, sheet = NULL, verbose = TRUE)
```

Arguments

file	Name of Excel file. See Details below for guidelines on formatting the diatom data.
sheet	Name of sheet within Excel file. If blank the function will import the first sheet in the Excel file.
verbose	logical to indicate should function stop immediately on error (TRUE) or return a simpleError (FALSE). Defaults to TRUE.

Details

read_DARLEQ imports diatom data from an Excel file in either .xls or .xlsx format. An example Excel file is included in this package. See examples below to view it. The required data and layout are slightly different for river and lake samples. Figure 1 below shows the required format for performing TDI calculations for river samples.

The first four header rows are mandatory and must contain the following information:

- Row 1: Sample identifier a short numerical or alphanumeric code to uniquely identify the sample. This field cannot be empty (an empty cell indicates the end of data).
- Row 2: Site identifier a short numerical or alphanumeric code to uniquely identify the site.
 This code will be used to aggregate multiple samples when calculating confidence of class for a site.
- Row 3: Sample Date in Day/Month/Year format. Missing dates are set to "Spring" for the purposes of classification using TDI3 and samples flagged with a warning.
- Row 4: Mean annual alkalinity (or best available estimate) in mg l-1 (CaCO3). Missing values are set to 100 mg l-1 for the purposes of classification and samples flagged with a warning. Alkalinity values outside the range of the site prediction algorithm are set to the appropriate limit (6 or 150 mg l-1 for TDI3 and 5 or 250 mg l-1 for TDI4 and TDI5LM / TDI5NGS).
- Rows 5+: Further option sample descriptors such as river name, reach name etc. These data are not used by the program but will be reproduced in the output. Note that the second column of the header information must be left blank.

12 read_DARLEQ

4	Α	В	С	D	E	F	G
1	SampleID		SPR001	AUT001	SPR002	AUT002	SPR003
2	SiteID		36082	36082	34649	34649	36073
3	SampleDate		14/04/2010	21/09/2004	02/04/2004	21/09/2004	02/04/2004
4	Alkalinity		242	242	408	408	213
5	Stream		KENNET	KENNET	LAMBOURN	LAMBOURN	LAMBOURN
6	Reach		Hambridge Rd	Hambridge Rd	A4 Newbury	A4 Newbury	At Gauging St
7	AC023A	Achnanthes conspicua var. conspicua	0	0	0.332226	0	0
8	AC083A	Achnanthes laevis	0	0	0	0	0
9	AC143A	Achnanthes oblongella	0	0	0	0	C
10	AC9999	Achnanthes sp.	0	0	0	0	(
11	AC161A	Achnanthes ventralis	0	0	0	0	0
12	ZZZ912	Achnanthidium biasolettiana	0	0	0	0	2.14724
13	AD009A	Achnanthidium microcephalum	0.31348	0	0	0	(
14	ZZZ835	Achnanthidium minutissimum type	16.9279	1.25786	7.30897	2.11082	27.3006
15	ZZZ911	Achnanthidium subatomus	0	0	0	0	(
16	AP001A	Amphipleura pellucida	0	0	0	0	0.306748
17	AM013A	Amphora inariensis	1.25392	0	1.3289	0	C
18	AM011A	Amphora libyca	1.5674	0	0.664452	0	(
19	AM084A	Amphora montana	0	0	0	0	(
20	AM001A	Amphora ovalis var. ovalis	0	0	0.332226	0	C
21	AM012A	Amphora pediculus	3.76176	0	5.31561	3.16623	3.37423
22	AM9999	Amphora sp.	0	0	0	0.263852	C
22	A \$400.4 A	Amphora vanata var vanata	0	0	0	0	n

Figure 1: Example format for river diatom samples

Identifiers for each row of the sample header information should be listed in column 1. Diatom data then follow the header information and may be in count or percentage format. The first column must contain the taxon code in either NBS or DiatCode (http://www.ecrc.ucl.ac.uk/?q=databases/diatcode) format. The codes in this column are used to link the data to the DARLEQ3 taxon list and ecological information and cannot be empty (an empty cell indicates the end of the data). The second column must include either the taxon name or code (ie. a repeat of column 1). Empty (blank) cells in the count or percentage data matrix will be read as zero. Character data in the diatom matrix will generate an error. A full list of diatom codes (either NBS or DiatCodes) are available in the dataframe darleq3_taxa.

If the Diatom Acidification Metric (DAM) is to be calculated, rows 5 and 6 must contain estimates of mean annual Calcium and DOC concentrations, in ueq l-1 and mg l-1 respectively. Figure 2 shows an example formatted for calculation of TDI and DAM. Note that if only DAM scores are required the Alkalinity field may be left blank. Sample Date is not used for calculating DAM and may be left blank.

- 4	Α	В	С	D	Е	F	G
1	SampleId	-				UK003_90	UK003_91
2	Site		UK002	UK002	UK002	UK003	UK003
3	Date		1990	1991	1992	1990	1991
4	Alkalinity						
5	Calcium		43.66	40.67	44.06	55.89	58.38
6	DOC		2.75	1.66	2.4	3.4	3.6
7	AC083A	Achnanthes laevis	0.0	0.0	0.6	0.0	1.3
8	AC143A	Achnanthes oblongella	0.6			49.5	
9	AC148A	Achnanthes modestiformis	0.0	1.0	1.2	0.0	0.0
10	AC9999	Achnanthes sp.	0.0	0.3	0.0	0.3	0.0
11	BR001A	Brachysira vitrea	0.0	0.0	0.0	3.7	0.0
12	BR006A	Brachysira brebissonii fo. brebissonii	0.0	0.0	0.0	0.0	0.0
13	CM004A	Cymbella microcephala fo. microcephala	0.0	0.0	0.0	0.0	0.0
14	CM009A	Cymbella naviculiformis	0.0	0.0	0.0	0.0	0.0
15	CM014A	Cymbella aequalis	0.0	0.0	0.0	0.0	0.0
16	CM9999	Cymbella sp.	0.0	0.0	0.0	0.0	0.0

Figure 2: Example format for river diatom TDI and DAM samples

The required format for lake samples is shown in Figure 3. This is exactly the same as for river data except that the fourth row must contain a code indicating lake type according to the GB lake typology alkalinity classes. Marl lakes are included in the high alkalinity (HA) group. Peat and brackish lakes are not covered by the tool. Sample date for lake samples is not used in the class calculations and can contain missing values.

	Α	В	С	D	E	F	
1	SampleId		ACHNAU4R	ACHNSP4P	ACHNSP4R	ACHNSU4R	AILS
2	SiteId		14403	14403	14403	14403	
3	SampleDa	te	08/11/2004	15/04/2004	15/04/2004	07/09/2004	04/1
4	Туре		MA	MA	MA	MA	MA
5	AC001A	Achnanthes lanceolata	0.26178	0	0.455063	0	
6	AC006A	Achnanthes clevei	0.26178	0.552486	0	0	
7	AC007A	Achnanthes oestrupii	0.52356	0	0	0	
8	AC013A	Achnanthes minutissima	42.1466	26.2431	45.2787	56.0606	1
9	AC016A	Achnanthes delicatula	0	0	0	0	
10	AC022A	Achnanthes marginulata	0	0	0	0	0.
11	AC023A	Achnanthes conspicua	0	0	0	0	
12	AC025A	Achnanthes flexella	0	0	0	0	0.
13	AC034A	Achnanthes suchlandtii	0	0	0	0	
14	AC035A	Achnanthes pusilla	0	0.828729	0.227531	0	

Figure 3: Example format for lake diatom LTDI samples

runDARLEQ 13

Value

A list with the following named elements:

header data frame containing the rows of environmental data from the top of the Excel

file (ie. site, sample, water chemistry and data information)

diatom_data data frame containing the diatom data

taxon_names data frame containing taxon codes and names

file name of the Excel file

filepath full path to the Excel file

sheet name of the Excel worksheet

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

Examples

```
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
d <- read_DARLEQ(fn, "Rivers TDI Test Data")
head(d$diatom_data)
head(d$header)
## Not run:
# view the example dataset in Excel
# note running the following lines will open the file in Excel (if installed)
fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3")
shell.exec(fn)
## End(Not run)</pre>
```

runDARLEQ

Run DARLEQ3 as an interactive shiny app

Description

Run DARLEQ3 as an interactive shiny app

Usage

```
runDARLEQ(browser = TRUE)
```

Arguments

browser

Logical to indicate if the app should open in an external browser (the default) or in R/RStudio's default shiny app window.

14 runDARLEQ

Details

runDARLEQ runs darleq3 as an interactive shiny app. When running the function will open a web browser displaying the shiny app:

To use the app follow these simple steps:

- 1: Click the Browse... button to select and upload a DARLEQ diatom file (see function read_DARLEQ for guidelines on how to format this file).
- 2: Once uploaded, select a sheet and click import. A summary (number of samples & taxa) will be displayed in the Data summary box when upload is complete.
- 3: Select the metric type. "TDI3 & 4 for LM" will calculate TDI3 and TDI4 for river samples according to the DARLEQ 2 taxon list, TDI5LM will calculate TDI5 for river LM diatom data, TDI for NGS will calculate TDI5NGS for river NGS diatom data, "LTDI for LM" will calculate LTDI1 and LTDI2 for lake LM data, and "DAM for LM" will calculate the diatom acidification metric for river LM data. A summary of results will appear in the Results summary box when the calculations are complete.
- 4: Click Download Results to save the results in an Excel file. The default name for this file will be the "DARLEQ3_Results_" concatenated with the original data filename, worksheet name, and date.

To quit the app simple close the browser and or hit Escape in the RStudio Console window.

Examples

```
## Not run:
library(darleq3)
runDARLEQ()
## End(Not run)
```

save_DARLEQ 15

save_DARLEQ	Saves results of diatom EQR and class claculation to an Excel file

Description

Saves results of diatom EQR and class claculation to an Excel file

Usage

```
save_DARLEQ(d, outFile = NULL, fn = "", sheet = "", verbose = TRUE)
```

Arguments

d	list of sample and site EQR WFD class results, usually the output from calc_Metric_EQR
outFile	name of Excel file to save results.
fn	name of in the input file for inclusion in the job summary page of output.
sheet	name of the input worksheet for inclusion in the job summary page of output.
verbose	logical to indicate if function should stop immediately on error (TRUE) or return a simpleError (FALSE). Defaults to TRUE.

Author(s)

Steve Juggins <Stephen.Juggins@ncl.ac.uk>

Examples

```
\label{lem:continuous} $fn <- system.file("extdata/DARLEQ2TestData.xlsx", package="darleq3") $$d <- read_DARLEQ(fn, "Rivers TDI Test Data") $$$x <- calc_Metric_EQR(d) $$$save_DARLEQ(x, outFile="results.xlsx") $$
```

Index

```
calc\_EQR, 2, 5, 9
calc\_Metric, 2, 3, 5, 9
calc_Metric_EQR, 5, 8, 9, 15
calc_SiteEQR, 6, 6
{\tt calc\_Uncertainty}, {\color{red} 6}
{\tt calc\_WFDClass}, \textcolor{red}{7}
darleq, 7, 8
darleq3, 8
darleq3-package (darleq3), 8
darleq3_data, 9
darleq3\_taxa, 3, 9
errMessage, 10
print.DARLEQ_DATA, 10
read_DARLEQ, 5, 7, 8, 11, 11, 14
runDARLEQ, 9, 13
save_DARLEQ, 5, 8, 15
```