1. 实验名称及目的

路径跟随控制器设计实验(实飞实验):

- (1) 基于第4章中实飞实验辨识出来的传递函数模型,使用设计实验中设计出的圆轨迹路径跟随控制器,查看仿真效果。
 - (2) 将(1) 中设计出的圆轨迹路径跟随控制器应用于真机,查看实验效果。

2. 实验原理

该问题可以描述为: 当前多旋翼位置为 $\mathbf{p} \in \mathbb{R}^2$,航路轨迹为圆,圆心为 $\mathbf{o} \in \mathbb{R}^2$,半 径为 R; 设计虚拟控制 $\mathbf{u} \in \mathbb{R}^2$ 使得多旋翼最终能够绕圆周进行逆时针飞行。前两个实验实现了直线的路径跟随,对于圆轨迹路径跟随,也可以采用相同的思路。如图 7.18 所示, $\mathbf{p}_{perp} \in \mathbb{R}^2$ 表示多旋翼与圆的最近距离点,可以表示为

$$\mathbf{p}_{\text{perp}} = \mathbf{o} + (\mathbf{p} - \mathbf{o}) \frac{R}{\|\mathbf{p} - \mathbf{o}\|}$$
(7.16)

那么

$$\mathbf{p} - \mathbf{p}_{\text{perp}} = \lambda \left(\mathbf{p} - \mathbf{o} \right) \tag{7.17}$$

其中

$$\lambda = 1 - \frac{R}{\|\mathbf{p} - \mathbf{o}\|} \tag{7.18}$$

令 \mathbf{p}_{perp} 能够产生吸引多旋翼的引力,这样多旋翼的飞行轨迹就会趋近圆。另外,我们希望多旋翼能够绕圆周进行逆时针飞行,这就需要设计多旋翼绕圆周进行逆时针切向方向的吸引力,同时切向方向引导点 \mathbf{p}_{tan} 到当前多旋翼的位置具有单位长度,可以得到

$$\mathbf{p}_{tan} - \mathbf{p} = \mathbf{R}_{\alpha = 90^{\circ}} \frac{\mathbf{p}_{perp} - \mathbf{o}}{\|\mathbf{p}_{perp} - \mathbf{o}\|}$$
(7.19)

这里, \mathbf{R}_{α} 表示旋转矩阵,定义为

$$\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \tag{7.20}$$

其意义为,一个向量与其相乘后,向量可以逆时针旋转 α 角度。综上所述,设计圆轨迹路径跟随控制器为

$$\mathbf{u} = -\frac{1}{k_2} \left(\mathbf{p} - \mathbf{p}_{\mathrm{d}} \right) - \frac{1}{k_2} \mathbf{v} \tag{7.21}$$

其中, $\mathbf{p}_{d} = \operatorname{sat}_{gd} \left(k_{0} \left(\mathbf{p}_{tan} - \mathbf{p} \right) + k_{1} \left(\mathbf{p}_{perp} - \mathbf{p} \right), a_{0} \right)$ 。参数 $k_{0}, k_{1} > 0$ 分别表示趋向 \mathbf{p}_{tan} 和 \mathbf{p}_{perp} 的增益大小,饱和的作用在于限制 \mathbf{p}_{d} 大小。

(1) 若多旋翼离圆很远,那么

$$\mathbf{p}_{d} \approx \operatorname{sat}_{\mathrm{gd}} \left(k_{1} \left(\mathbf{p}_{\mathrm{perp}} - \mathbf{p} \right), a_{0} \right)$$

(2) 若多旋翼已经在圆上,那么

$$\mathbf{p}_{d} = \operatorname{sat}_{gd} \left(k_0 \left(\mathbf{p}_{tan} - \mathbf{p} \right), a_0 \right)$$

此时多旋翼的绝大部分控制是绕圆飞行。为了更好地理解 \mathbf{p}_d 的物理意义,令 $k_0=k_1=1$,那么

$$\mathbf{p}_{d} = \operatorname{sat}_{gd} \left((\mathbf{p}_{tan} - \mathbf{p}) + (\mathbf{p}_{perp} - \mathbf{p}), a_{0} \right)$$
 (7.22)

其中, \mathbf{p}_d 的物理意义如图 7.18 所示。由图可见,无论多旋翼在给定的圆内还是圆外,都有趋向圆的趋势。

图 7.18 圆轨迹路径跟随过程中实时航路点的物理意义

3. 实验效果

在 Simulink 中实现在实飞过程中圆轨迹输出效果图。

4. 文件目录

文件夹/文件名称		说明	
Sim1.0	Plot_Compare_cercle.m	绘图文件	
	Compare_Cercle.m	保存数据文件	
	e4_4_trajectoire_following_2017b.slx	多旋翼路径跟随控制器仿真 1.0 文件	
	start.m	初始化参数文件	
sim2.0	e4_3_trajectoire_planning_2017b.slx	多旋翼路径跟随控制器实飞文件	
	start_tello.m	初始化参数文件	

5. 运行环境

序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台个人版	Pixhawk 6C [®]	1
3	MATLAB2017B 及以上	遥控器 [®]	1
		遥控器接收器	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com
- ②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com
- ③: 本实验演示所使用的遥控器为: 天地飞 ET10、配套接收器为: WFLY RF209S。遥控器相关配置见: ...\ell RC-Config\Readme.pdf

6. 仿真 1.0

运行"e4\e4.4\sim1.0\start.m","e4_4_trajectoire_following.slx"模型文件会自动打开。 其整体模块如图 7.27 所示,其中传递函数模型为第 4 章 4.5 节辨识出来的传递函数模型,如图 7.28 所示。以基础实验中相同的步骤调节 PID 控制器得到较好的控制效果。获得相应的圆轨迹如图 7.29 所示。

图 7.27 整体模型

图 7.28 传递函数模型

7. 实飞(Rfly)实验步骤

以 Tello 飞行器和 OptiTrack 室内定位系统为例,这里我们给出一个设计好的例子,见文件 "e4\e4.4\Rfly\e4_4_trajectory_planning.slx"。

Step 1:

在 MATLAB 中单击运行"start_tello.m"文件,进行初始化以及启动相应的 Simulink 程序"e4_4_trajectory_planning.slx"文件,模型如图 7.30 所示。控制模型由七部分组成,每个模块具体作用可参考第 2 章 2.3 节。

图 7.30 整体模块示意图

Step 2:

(1) 启动 OptiTrack

打开一个新终端,运行命令 "roslaunch mocap_optitrack multi_rigidbody8.launch"。(2)

(2) 启动 tello driver

打开一个新终端,运行命令 "roslaunch tello_driver tello_node.launch"。

(3) 起飞 Tello

打开一个新终端,运行命令 "rosrun tello Tello_takeoff_all",可以看到两架多旋翼起飞并保持悬停在正上方高度为 1m 位置。

(4) 运行 MATLAB 控制程序

运行"e4 4 trajectory planning.slx"文件。

(5) 降落 Tello

打开一个新终端,运行命令 "rosrun tello Tello_land_all",在多旋翼降落后,结束所有终端。

Step 3:

"e4_4_trajectory_planning.slx"文件中包含数据存储模块用于记录结果,见工作区变量。 "tello3_states"和"tello3_states_d"代表四旋翼飞行过程的期望指令和实际反馈结果。运行 "tello plot.m"模型文件,即可得到如图 7.31 所示的实飞结果。

图 7.31 实飞结果(影像进行了叠加)

(具体操作步骤可以观看每章相对应的 PPT, 其中由各个实验相对应的演示视频。)

8. 参考资料

- [1]. Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, 201
- [2]. 全权 杜光勋 赵峙尧 戴训华 任锦瑞 邓恒译 多旋翼飞行器设计与控制 M] 电子工业 出版社 2018.
- [3]. 全权 戴训华 王帅 多旋翼飞行器设计与控制 实践 M] 电子工业出版社 2020.
- [4]. 全权 等.多旋翼无人机远程控制实践[M].电子工业出版社,2022.

9. 常见问题

Q1: ****

A1: ****