

Hamiltonian ABC

Edward Meeds and Robert Leenders and Max Welling

Introduction

- Scientists express hypotheses through complex and expensive simulators.
- Posterior distributions give insight into models for both understanding underlying phenomena and improving hypotheses.
- Approximate Bayesian Computation provides a Bayesian framework for posterior analysis, but is very inefficient.
- This work uses a surrogate of the simulator to speed-up ABC.
- Based on the Metropolis-Hastings Error, our algorithms determine when a simulation is necessary and provides the user with a "knob" ξ to control it.

Approximate Bayesian Computation

• ABC is a *likelihood-free* method because $\pi(\mathbf{y}|\boldsymbol{\theta})$ is either not computable or very expensive:

$$\pi_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta})}{\pi(\mathbf{y})} \int \pi_{\epsilon}(\mathbf{y}|\mathbf{x})\pi(\mathbf{x}|\boldsymbol{\theta})d\mathbf{x}$$

- Kernel functions $\pi_{\epsilon}(\mathbf{y}|\mathbf{x})$ are proxies for the likelihood, based on draws $\mathbf{x} \stackrel{\text{\tiny SIIII}}{\sim} \pi(\mathbf{x}|\boldsymbol{\theta})$ from simulator.
- ullet Rejection sampling with ϵ -tube kernel is very inefficient.
- We use ABC MCMC, which approximates the likelihood by Monte Carlo approximation:

$$\pi_{\epsilon}(\mathbf{y}|\boldsymbol{\theta}') \approx \frac{1}{S} \sum_{s=1}^{S} \pi_{\epsilon}(\mathbf{y}|\mathbf{x}^{(s)}, \boldsymbol{\theta}')$$

We accept the proposed param-

images/exponential_proble

$$\epsilon = 0.5$$
 $\epsilon = 0.01$

eter $oldsymbol{ heta}'$ with probability equal to $\alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}) =$

$$\min \left(1, \frac{\pi(\boldsymbol{\theta}') \sum_{s} \pi_{\epsilon}(\mathbf{y} | \mathbf{x}'^{(s)}, \boldsymbol{\theta}') q(\boldsymbol{\theta} | \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}) \sum_{s} \pi_{\epsilon}(\mathbf{y} | \mathbf{x}^{(s)}, \boldsymbol{\theta}) q(\boldsymbol{\theta}' | \boldsymbol{\theta})} \right)$$

The Synthetic Likelihood

• Introduced by Wood (2010), replace the Monte Carlo approximation with a Gaussian with estimators based on the pseudo-data $\{\mathbf{x}_1,..,\mathbf{x}_S\}$ simulated at $\boldsymbol{\theta}$:

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}} = \frac{1}{S} \sum_{s} \mathbf{x}^{(s)} \ \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}} = \frac{1}{S-1} \sum_{s} \left(\mathbf{x}^{(s)} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}} \right) \left(\mathbf{x}^{(s)} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}} \right)^{T}$$

With a Gaussian kernel:

$$\pi_{\epsilon}(\mathbf{y}|\mathbf{x}) = K_{\epsilon}(\mathbf{y}, \mathbf{x}) = \frac{1}{(2\pi\epsilon)^{J/2}} e^{-\frac{1}{2\epsilon^2}(\mathbf{x} - \mathbf{y})^T(\mathbf{x} - \mathbf{y})}$$

• The synthetic likelihood can then be computed analytically:

$$\pi(\mathbf{y}|\boldsymbol{\theta}) = \int K_{\epsilon}(\mathbf{y}, \mathbf{x}) \mathcal{N}\left(\hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}}\right) d\mathbf{x} = \mathcal{N}\left(\hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}} + \epsilon^2 \boldsymbol{I}\right)$$

MCMC with a Random **Acceptance Probability**

- ullet The randomness of $\hat{oldsymbol{\mu}}_{oldsymbol{ heta}}$ (by re-running Ssimulations), induces a distribution over the acceptance probabilities.
- ullet Approximate randomness in $\mu_{ heta}$ by drawing M times $m{\mu}_{m{ heta}}^{(m)} \sim \mathcal{N}\left(\hat{m{\mu}}_{m{ heta}}, \hat{m{\Sigma}}_{m{ heta}}/S
 ight)$
- ullet Estimate $p(\alpha)$ using Monte Carlo approximation based on these M samples:

 $p(\alpha)$ and $F(\alpha)$

$$\alpha^{(m)} = \min \left(1, \frac{\pi(\boldsymbol{\theta}') \mathcal{N}\left(\mathbf{y} | \boldsymbol{\mu}_{\boldsymbol{\theta}'}^{(m)}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}'} + \epsilon^2 \boldsymbol{I}\right) q(\boldsymbol{\theta} | \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}) \mathcal{N}\left(\mathbf{y} | \boldsymbol{\mu}_{\boldsymbol{\theta}}^{(m)}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}} + \epsilon^2 \boldsymbol{I}\right) q(\boldsymbol{\theta}' | \boldsymbol{\theta})} \right)$$

ullet Based on $p(\alpha)$, compute the probability of making a M-H Error. This is the area under the folded CDF and is minimized at the median of $p(\alpha)$, denoted τ .

Probability of acceptance error Probability of rejection error $P(\alpha < u) = \frac{1}{M} \sum_{m} \left[\alpha^{(m)} < u \right] \qquad P(\alpha > u) = \frac{1}{M} \sum_{m} \left[\alpha^{(m)} \not \supseteq u \right] \bullet \text{ Adult blowfly populations ex-}$

- Total conditional error: $\mathcal{E}_u(\alpha) = [u \leq \tau] P(\alpha < u) +$ $[u > \tau] P(\alpha \ge u)$
- MHE: $\mathcal{E}(\alpha) = \int \mathcal{E}_u(\alpha) \mathcal{U}(0,1) du$
- The crux of the MH step is to run simulations while $\mathcal{E}(\alpha) > \xi$.

Gaussian Process Surrogate ABC

- Adaptive SL is wasteful for expensive simulations: all results are discarded.
- ϵ trades-off precision and mixing GPS-ABC follow directly from synthetic likelihood ABC with randomized acceptance.
- Gaussian processes provides uncertainty estimates of the marginal likelihood informing us of the need to conduct additional experiimages/abc_mcimmageps/alp5_mpcmgc_eps_0p01 tpmgake confident accept/reject decisions.
 - \bullet For each statistic j, the surrogate provides the following conditional predictive distribution of the expected value of statistic jbased on N training points $\mu_{\boldsymbol{\theta}j} \sim \mathcal{N}\left(\bar{\mu}_{\boldsymbol{\theta}j}, \sigma_{\boldsymbol{\theta}j}^2\right)$

$$\bar{\mu}_{\theta j} = \mathbf{k}_{\theta \Theta j} \left[\mathbf{K}_{\Theta \Theta j} + \sigma_{j}^{2} \mathbf{I} \right]^{-1} \mathbf{X}[:, j]$$

$$\sigma_{\theta j}^{2} = k_{\theta \theta j} - \mathbf{k}_{\theta \Theta j} \left[\mathbf{K}_{\Theta \Theta j} + \sigma_{j}^{2} \mathbf{I} \right]^{-1} \mathbf{k}_{\theta \Theta j}$$

 \bullet Adjusting ξ affects precision and computation:

$$\xi=0.4,\ N=9$$

$$\xi=0.2,\ N=184$$

$$\xi=0.05,$$

$$N=1297$$

$$\xi=0.05,$$

$$N=1297$$
 high model uncertainty.
$$\xi=0.05,$$

$$N=1297$$
 high precision, many with ξ

• The key advantage of the subject of the subject of the first of the least of the ing a MH step because the GP surrogate is sufficiently confident about the statistics' surface in that region of parameter space.

simulations

Toy problem: Inferring parameters of an exponential distribution

 GPS-ABC learns the surface, eventually eliminating any new ulations:

images/acceptance_distribution_with_fold.png

images/exp_paper**ibages/**expspmpeesbpnfor_v_bot

Error per sample Error per simulation

Chaotic Ecological Systems

hibit dynamic, sometimes chaotic, behavior for which several competing population models exist.

images/blowfly_probl

Simulations per

sample

- We use observational data and a simulation model from Wood (2010).
- Population dynamics are modeled using (discretized) differential equations that can produce chaotic behavior for some parameter settings.
- population The dyequation namics gen- N_1,\ldots,N_T : erates $N_{t+1} = P N_{t- au} \exp(-N_{t- au}/N_0)$ mages/blowfly_theta

 $+N_t \exp(-\delta \epsilon_t)$ Injected noise:

 $\mathcal{G}(1/\sigma_p^2,1/\sigma_p^2)$, ϵ_t $\mathcal{G}(1/\sigma_d^2, 1/\sigma_d^2)$

 $\bullet \theta$:

 $\{\log P, \log \delta, \log N_0, \log \sigma_d, \log \sigma_p, \tau\}$

• Statistics y (J = 10): the log of the mean of all 25%quantiles of N/1000, the mean of the 25% quantiles of the first-order differences of N/1000, and the maximal peaks of smoothed N, with 2

- Models: rejection sampling | images/blowfly_conv_ $(\epsilon = 0.5)$, SL (S = 10), GPS-ABC ($\xi = 0.3$)
- Results: generated observations (top), posterior samples θ (middle), convergence to \mathbf{y}^{\star} using posterior predictive $p(\mathbf{y}|\mathbf{y}^{\star})$ (bottom).

Conclusions

- Adaptive ABC algorithms using Metropolis-Hastings Erro trols the computational complexity of the inference
- GP surrogate models incorporate both model and pseud uncertainty into MCMC
- Improvements: Hamiltonian dynamics on the GP surface dependent samples; covariance on the outputs; alternative gate models; acquisition functions.