FCEFyN - UNC - ELECTRÓNICA INDUSTRIAL

DOCENTE: Prof. Esp. Ing. Adrián Claudio Agüero

ALUMNO: Ferraris Domingo Jesus

Trabajo practico teorico 2:

Diodos de potencia.

1. Diodo elegido.

Se eligio para el analisis el diodo rectificador de potencia 46DN06B02.

- Fabricante: Infineon Technologies Bipolar.
- Aplicaciones: Soldaduras, rectificacion para circuitos galvanicos, rectificacion de alta corriente.

Caracteristicas electricas.

Que tiene las siguientes caracteristicas importantes:

Periodische Spitzensperrspannung	$T_{vj} = -40^{\circ}C T_{vj \text{ max}}$	V _{RRM}	600	V
repetitive peak reverse voltages				
Durchlaßstrom-Grenzeffektivwert	t _p ≥ 5ms	I _{FRMSM}	12000	Α
maximum RMS on-state current	,			
Dauergrenzstrom average on-state current	$T_C = 100^{\circ}C, \theta = 180^{\circ}sin, t_P = 10ms$	I _{FAVM}	7740	Α
Durchlaßstrom-Effektivwert RMS on-state current	7	I _{FRMS}	12200	А
Dauergrenzstrom average on-state current	$T_C = 55^{\circ}C$, $\theta = 180^{\circ}sin$, $t_P = 10ms$	I _{FAVM}	10450	А
Durchlaßstrom-Effektivwert RMS on-state current		I _{FRMS}	16400	Α
Stoßstrom-Grenzwert	T _{vj} = 25 °C, t _P = 10ms	I _{FSM}	55000	Α
surge current	$T_{vj} = T_{vj max} \ t_P = 10 ms$	<u> </u>	48000	Α
Grenzlastintegral	T _{vi} = 25 °C, t _P = 10ms	I²t	15125	103A2s
I²t-value	$T_{vi} = T_{vi \text{ max}}, t_P = 10 \text{ms}$		11520	103A2s

• IF(av)M: 10.45KA a una temperatura de operacion de 55°C decayendo a 7.74KA operando a 100°C.

- IFRMS: 16.4KA a una temperatura de operacion de 55°C decayendo a 12.2KA operando a 100°C.
- IFSM: 55KA a una temperatura de juntura de 25°C decayendo a 48KA con temperatura de juntura maxima (180°C).
- Todas las corrientes probadas durante un tiempo de 10ms.
- VRRM = VRRW: 600V para temperatura de juntura de -40 a 180°C.
- Energia I2T: 15.125K(A^2)s a una temperatura de juntura de 25°C decayendo a 11.52K(A^2)s a temperatura de juntura maxima.
- *Tension de umbral 0.7 a 0.78V* y caida de tension maxima: 0.98V, con temperatura de juntura maxima y corriente de prueba de 6KA.

Potencia disipada vs IF(av)

En esta grafica vemos la *potencia media maxima admisible segun la corriente media directa de trabajo*, colocando disipadores a ambos lados del diodo.

Las parametricas corresponden a corriente continua, semiciclo senoidal, y rectificando con angulos de conduccion de 30°, 60°, 90°, 120° y 180°.

Durchlassverlustleistung / On-state power loss PFAV = f(IFAV)

Beidseitige Kühlung / Two-sided cooling

En cada punto tenemos la *potencia maxima disipada para cada valor de corriente media directa*. Los extremos de las curvas corresponden a la maxima potencia admisible para la maxima corriente media ensayada.

Encapsulado e instalacion

Tiene un *encapsulado de tipo disco E35*, que se coloca con 2 disipadores formando un "sandwich".

Para un *rectificador trifasico de onda completa con carga resistiva* el esquema puede ser el siguiente:

Este tipo de diodos tiene el catodo y el anodo en cada una de sus caras planas, por lo tanto *lleva disipador de ambos lados.* Para su montaje se deben tener los disipadores del tamaño adecuado con una de sus caras plana y limpia, el diodo se coloca en el medio de ambos disipadores (tipo sandwich) usando grasa siliconada para mejorar la conduccion térmica.

Cada disipador pasa a ser un polo del diodo, por lo que es vital que esten *completamente aislados entre ellos.*

El conjunto se presiona entre si con tornillos aislados y cuidando de **no superar el torque maximo** dado por el fabricante.

2. Simulaciones/comparaciones

Se compararon los *diodos MR850 y 1N4148* en transitorios de corriente y tension para conduccion/corte. Ademas se compararon los *tiempos de recuperacion maximos* de cada uno.

Tipos de diodos

En los datasheets vemos que el MR850 es un *diodo rectificador de alta corriente y rapida recuperacion* (Fast).

MR850 - MR858

PRV : 50 - 600 Volts lo : 3.0 Amperes

FEATURES:

High current capability

* High surge current capability

- * High reliability
- * Low reverse current
- * Low forward voltage drop
- * Fast switching for high efficiency

MECHANICAL DATA:

* Case : DO-201AD Molded plastic* Epoxy : UL94V-O rate flame retardant

* Lead : Axial lead solderable per MIL-STD-202,

Method 208 guaranteed

* Polarity : Color band denotes cathode end

Mounting position : AnyWeight : 1.16 grams

Con un Trr de 150ns, para las condiciones de prueba definidas:

- Estar conduciendo una corriente de 0.5A.
- Pasar al corte con un pico de corriente inversa de 1A.
- Esperar hasta que la corriente inversa alcance los 0.25A.

TYPE NUMBER	MR850	MR851	MR852	MR854	MR856	UNITS
Maximum Recurrent Peak Reverse Voltage	50	100	200	400	600	V
Maximum RMS Voltage	35	70	140	280	480	V
Maximum DC Blocking Voltage	50	100	200	400	600	V
Maximum Average Forward Rectified Current			•			
.375"(9.5mm) Lead Length at Ta=75°C	3.0					Α
Peak Forward Surge Current, 8.3 ms single half sine-wave						
superimposed on rated load (JEDEC method)	200					Α
Maximum Instantaneous Forward Voltage at 3.0A	1.25					V
Maximum DC Reverse Current Ta=25°C	5.0				μΑ	
at Rated DC Blocking Voltage Ta=100°C	150			μА		
Maximum Reverse Recovery Time (Note 1)			150			nS
Typical Junction Capacitance (Note 2)		60				pF
Operating and Storage Temperature Range T _J , Ts _{TG}		-65—+150				°C

NOTES

1. Reverse Recovery Time test condition: IF=0.5A, IR=1.0A, IRR=0.25A

Por otro lado, el 1N4148 es un diodo de baja corriente y conmutacion de alta velocidad (Ultra Fast).

1N4148

PRV : 100 Volts lo : 150 mA

FEATURES:

- * Silicon Epitaxial Planar Diode
- * High reliability
- * Low reverse current
- * Low forward voltage drop
- * High speed switching
- * Pb / RoHS Free

MECHANICAL DATA:

* Case: DO-35 Glass Case

 Lead : Axial lead solderable per MIL-STD-202, Method 208 guaranteed

* Polarity: Color band denotes cathode end

* Mounting position : Any

* Weight: 0.13 gram (approximately)

Este tiene un Trr de 8ns como maximo, para las siguientes condiciones de prueba:

- Conducir una corriente de 10mA.
- Pasar al corte con un pico de corriente inversa de 10mA.
- Esperar hasta que la corriente inversa alcance 1mA.

Electrical Characteristics

Type Number	Symbol	Min	Max	Units
Forward Voltage @ IF=10mA	V_{F}	-	1.0	V
Peak Reverse Current VR=75V VR=20V, TJ=150 °C VR=20V	IR	ı	5 50 25	uA uA nA
Breakdown Voltage IR=100uA, tp/T=0.01, tp=0.3ms	$V_{(BR)}$	100	-	V
Capacitance VR=0, f=1.0MHz, V _{HF} =50mV	Cj	ı	4.0	рF
Rectification Efficiency VHF=2V, f=100MHz	Tlr	45	_	%
Reverse Recovery Time IF=IR=10mA. IR=1mA	trr	ı	8.0	_ nS
IF=10mA, $\overline{VR}=\overline{6V}$, IR=0.1x I _R , R _L =100 Ω	trr	-	4.0	nS

Circuito de test

Los fabricantes prueban el tiempo de recuperacion inversa con un circuito similar al siguiente:

RECOVERY TIME CHARACTERISTICS

NOTES: 1. Rise Time= 7ns max., Input Impedance= 1 megohm.22pF.

2. Rise Time= 10ns max., Source Impedance= 50 ohms.

Que se armo en LTSpice colocando tensiones y resistencias de tal forma que se respeten las condiciones de prueba para cada diodo.

En todos se le *aplico un pulso a los 100ns*, para cambiar el estado de conduccion de los diodos.

Analisis MR850:

Forzando la conduccion al aplicar el pulso de prueba celeste, se nota un importante *pico de corriente*, en verde, mayor al triple de la corriente de operacion, por lo que hay una *importante disipacion de energia* en este caso cercana a los 9W como se ve en la grafica roja:

Forzando el corte vemos el tiempo que tarda el diodo en establecer su caida de tension en azul, cuando el pulso de prueba celeste se aplica, *el diodo demora en hacer caer toda la tension inversa aplicada*, lo cual genera el pico de corriente inversa de 1A:

Luego al reaccionar el diodo estabilizando su caida de tension y **bloqueando bruscamente la corriente** se produce otro pico de energia disipada de casi 2W.

Analisis 1N4148:

Forzando la conduccion al aplicar el pulso de prueba celeste, se nota un *importante pico de corriente* mayor al triple de la corriente de operacion, por lo que tambien hay un pico de disipacion de energia como se ve en la grafica roja:

En este caso forzando el corte cuando el pulso de prueba celeste se aplica, vemos que el diodo *establece gradualmente su caida de tension en azul*. Durante esta demora se genera el pico de corriente inversa, pero en este caso se recupera mucho mas rapido pero *gradualmente* lo que amortigua el pico de energia disipada que se veia en el MR850:

Comparacion del tiempo de recuperacion maximo

Tambien se simularon los tiempos de recuperacion respetando las condiciones de prueba para ambos diodos, y *cortando la conduccion a los 100ns:*

Que nos deja un Trr = 150ns para el MR850, acorde al maximo dado por el fabricante.

Y para el 1N4148 un Trr = 16ns el cual el doble de los 8ns que nos da el fabricante. *Esto se debe alparametro tt = 20ns del modelo generico usado:*

En efecto bajando este parametro a 10ns se obtiene un Trr acorde al dado por el fabricante del 1N4148:

Pero esto es cambiar el modelo Spice del diodo, por lo que, segun de que fabricante se trate la simulacion puede o no reproducir una situacion real.