$12a_{0216} (K12a_{0216})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 3.31230 \times 10^{33}u^{63} - 9.21845 \times 10^{33}u^{62} + \dots + 2.52277 \times 10^{34}b - 5.95857 \times 10^{34},$$

$$1.05553 \times 10^{34}u^{63} - 2.85080 \times 10^{34}u^{62} + \dots + 2.52277 \times 10^{34}a - 9.65444 \times 10^{33}, \ u^{64} - 4u^{63} + \dots + 32u + I_2^u = \langle 2b + 2a - u + 2, \ 2a^2 - 2au + 2a - u + 3, \ u^2 - 2 \rangle$$

$$I_3^u = \langle a^4u - 2a^4 + 4a^3u - 8a^3 + 4a^2u - 8a^2 - 7au + 25b - 11a - 14u - 2,$$

$$a^5 + 2a^4u + 2a^4 + 3a^3u + 6a^3 + 8a^2u + 10a^2 + 7au + 13a - u - 1, \ u^2 + u - 1 \rangle$$

$$I_4^u = \langle au + b + 2a + u + 2, \ 2a^2 + au + 2a - u + 3, \ u^2 - 2 \rangle$$

$$I_1^v = \langle a, b - v - 1, v^2 + v + 1 \rangle$$

 $I_2^v = \langle a, b^2 - b + 1, v - 1 \rangle$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 86 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 3.31 \times 10^{33} u^{63} - 9.22 \times 10^{33} u^{62} + \cdots + 2.52 \times 10^{34} b - 5.96 \times 10^{34}, \ 1.06 \times 10^{34} u^{63} - \\ 2.85 \times 10^{34} u^{62} + \cdots + 2.52 \times 10^{34} a - 9.65 \times 10^{33}, \ u^{64} - 4u^{63} + \cdots + 32u + 16 \rangle \end{array}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.418403u^{63} + 1.13003u^{62} + \dots + 7.82001u + 0.382692 \\ -0.131296u^{63} + 0.365410u^{62} + \dots + 4.28462u + 2.36192 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.342599u^{63} + 0.737839u^{62} + \dots + 11.5782u + 4.46198 \\ -0.263432u^{63} + 0.630688u^{62} + \dots + 6.03905u + 1.99604 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.790350u^{63} - 2.05902u^{62} + \dots - 18.5463u - 5.88736 \\ 0.362768u^{63} - 0.965419u^{62} + \dots - 6.85471u - 2.61286 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.203141u^{63} - 0.562340u^{62} + \dots - 3.81650u - 1.43156 \\ 0.409877u^{63} - 1.08413u^{62} + \dots - 8.12806u - 2.97524 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.549700u^{63} + 1.49544u^{62} + \dots + 12.1046u + 2.74461 \\ -0.131296u^{63} + 0.365410u^{62} + \dots + 4.28462u + 2.36192 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.768798u^{63} - 1.82001u^{62} + \dots - 19.8193u - 8.43548 \\ 0.735613u^{63} - 1.86045u^{62} + \dots - 15.0301u - 5.18940 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2.52449u^{63} 5.73943u^{62} + \cdots 69.7334u 34.4634$

Crossings	u-Polynomials at each crossing
c_1	$u^{64} + 35u^{63} + \dots + 416u + 49$
c_{2}, c_{6}	$u^{64} - 3u^{63} + \dots - 16u + 7$
c_3	$u^{64} + 3u^{63} + \dots - 4558u + 763$
c_4, c_5, c_8 c_9	$u^{64} + 4u^{63} + \dots - 32u + 16$
c_7, c_{11}	$u^{64} + 3u^{63} + \dots - 6u + 7$
c_{10}, c_{12}	$u^{64} - 19u^{63} + \dots - 608u + 49$

Crossings	Riley Polynomials at each crossing
c_1	$y^{64} - 5y^{63} + \dots - 30760y + 2401$
c_2, c_6	$y^{64} + 35y^{63} + \dots + 416y + 49$
c_3	$y^{64} - 45y^{63} + \dots + 15204664y + 582169$
$c_4, c_5, c_8 \ c_9$	$y^{64} - 76y^{63} + \dots - 1024y + 256$
c_7, c_{11}	$y^{64} + 19y^{63} + \dots + 608y + 49$
c_{10}, c_{12}	$y^{64} + 59y^{63} + \dots + 133272y + 2401$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873442 + 0.450062I		
a = 0.316313 + 0.070275I	-4.38307 - 0.99571I	0
b = -0.799432 + 0.773699I		
u = 0.873442 - 0.450062I		
a = 0.316313 - 0.070275I	-4.38307 + 0.99571I	0
b = -0.799432 - 0.773699I		
u = -0.819111 + 0.526710I		
a = -1.11929 - 1.64147I	-3.78557 + 6.83757I	0
b = -0.751905 + 0.969822I		
u = -0.819111 - 0.526710I		
a = -1.11929 + 1.64147I	-3.78557 - 6.83757I	0
b = -0.751905 - 0.969822I		
u = 0.824871 + 0.622233I		
a = -0.92431 + 1.81972I	-6.66344 - 11.86030I	0
b = -0.773002 - 1.004690I		
u = 0.824871 - 0.622233I		
a = -0.92431 - 1.81972I	-6.66344 + 11.86030I	0
b = -0.773002 + 1.004690I		
u = -0.879555 + 0.575858I		
a = 0.533241 + 0.042734I	-7.43975 + 5.78092I	0
b = -0.858792 - 0.753406I		
u = -0.879555 - 0.575858I		
a = 0.533241 - 0.042734I	-7.43975 - 5.78092I	0
b = -0.858792 + 0.753406I		
u = 0.974065 + 0.497285I		
a = -0.83168 + 1.35722I	-8.15312 - 3.18144I	0
b = -0.798463 - 0.924252I		
u = 0.974065 - 0.497285I		
a = -0.83168 - 1.35722I	-8.15312 + 3.18144I	0
b = -0.798463 + 0.924252I		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a = -0.310940 - 0.261733I $-3.65580 - 3.51727I$ $-12.68996 + 5.01598$
b = 0.651190 + 0.065793I
u = -1.057340 + 0.437339I
a = 0.206911 + 0.270794I -8.36696 - 2.85624I
b = -0.815263 - 0.853921I
u = -1.057340 - 0.437339I
a = 0.206911 - 0.270794I - 8.36696 + 2.85624I
b = -0.815263 + 0.853921I
u = 0.142496 + 0.804798I
$a = -0.47916 + 1.62652I$ $\left -4.61047 + 7.11222I \right -7.85412 - 5.57393I$
b = 0.772417 - 0.938985I
u = 0.142496 - 0.804798I
$a = -0.47916 - 1.62652I$ $\begin{vmatrix} -4.61047 - 7.11222I \end{vmatrix} \begin{vmatrix} -7.85412 + 5.57393I \end{vmatrix}$
b = 0.772417 + 0.938985I
u = -0.060512 + 0.798911I
$a = -0.45707 + 1.46569I$ $\begin{vmatrix} -4.95457 - 1.19128I \end{vmatrix} \begin{vmatrix} -8.68532 + 0.53231I \end{vmatrix}$
b = 0.803492 - 0.827725I
u = -0.060512 - 0.798911I
$a = -0.45707 - 1.46569I$ $\begin{vmatrix} -4.95457 + 1.19128I \end{vmatrix} \begin{vmatrix} -8.68532 - 0.53231I \end{vmatrix}$
b = 0.803492 + 0.827725I
u = 0.679164 + 0.384679I
$a = 0.56201 - 2.37763I$ $\begin{vmatrix} -0.09688 - 6.48785I \end{vmatrix} -5.34636 + 9.1411236$
b = 0.240421 + 1.058780I
u = 0.679164 - 0.384679I
$a = 0.56201 + 2.37763I$ $\begin{vmatrix} -0.09688 + 6.48785I \end{vmatrix} -5.34636 - 9.1411236$
b = 0.240421 - 1.058780I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.063045 + 0.685748I		
a = -0.37731 - 1.58111I	-1.54119 - 2.76193I	-3.74007 + 2.60897I
b = 0.723329 + 0.880008I		
u = -0.063045 - 0.685748I		
a = -0.37731 + 1.58111I	-1.54119 + 2.76193I	-3.74007 - 2.60897I
b = 0.723329 - 0.880008I		
u = -0.639376 + 0.195260I		
a = -2.34545 - 0.43868I	-0.81009 + 5.04742I	-8.02999 - 8.42703I
b = -0.654214 + 0.889738I		
u = -0.639376 - 0.195260I		
a = -2.34545 + 0.43868I	-0.81009 - 5.04742I	-8.02999 + 8.42703I
b = -0.654214 - 0.889738I		
u = -0.535329 + 0.395031I		
a = 0.72597 + 2.21083I	1.96190 + 2.14353I	-0.48240 - 5.32337I
b = 0.176464 - 0.974491I		
u = -0.535329 - 0.395031I		
a = 0.72597 - 2.21083I	1.96190 - 2.14353I	-0.48240 + 5.32337I
b = 0.176464 + 0.974491I		
u = -1.378940 + 0.142145I		
a = -0.499258 - 0.680732I	-6.70970 + 3.00332I	0
b = -0.644422 + 0.661579I		
u = -1.378940 - 0.142145I		
a = -0.499258 + 0.680732I	-6.70970 - 3.00332I	0
b = -0.644422 - 0.661579I		
u = -0.363836 + 0.462721I		
a = 1.38698 + 2.18023I	2.47588 + 0.92435I	1.91401 - 4.19238I
b = -0.033354 - 0.884096I		
u = -0.363836 - 0.462721I		
a = 1.38698 - 2.18023I	2.47588 - 0.92435I	1.91401 + 4.19238I
b = -0.033354 + 0.884096I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.42295 + 0.10139I		
a = -0.310419 - 0.898915I	-5.75578 + 1.76368I	0
b = -0.574977 + 0.965428I		
u = 1.42295 - 0.10139I		
a = -0.310419 + 0.898915I	-5.75578 - 1.76368I	0
b = -0.574977 - 0.965428I		
u = -1.43142 + 0.07936I		
a = -1.220480 - 0.666038I	-4.32668 - 1.79922I	0
b = -0.061312 + 0.624389I		
u = -1.43142 - 0.07936I		
a = -1.220480 + 0.666038I	-4.32668 + 1.79922I	0
b = -0.061312 - 0.624389I		
u = 0.378088 + 0.391436I		
a = 0.149787 - 1.097520I	-1.13035 - 0.98038I	-9.44439 + 5.04601I
b = 0.493469 + 0.542722I		
u = 0.378088 - 0.391436I		
a = 0.149787 + 1.097520I	-1.13035 + 0.98038I	-9.44439 - 5.04601I
b = 0.493469 - 0.542722I		
u = 1.45615 + 0.08976I		
a = -1.01574 + 1.04774I	-3.41948 - 2.73930I	0
b = -0.145990 - 0.826005I		
u = 1.45615 - 0.08976I		
a = -1.01574 - 1.04774I	-3.41948 + 2.73930I	0
b = -0.145990 + 0.826005I		
u = 0.269672 + 0.456052I		
a = 2.17570 - 2.31816I	1.13367 + 3.50081I	-0.27253 - 1.56313I
b = -0.187057 + 0.849183I		
u = 0.269672 - 0.456052I		
a = 2.17570 + 2.31816I	1.13367 - 3.50081I	-0.27253 + 1.56313I
b = -0.187057 - 0.849183I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.345458 + 0.308634I		
a = -0.16531 - 1.86311I	-0.00299 - 3.22788I	-5.50185 - 1.31175I
b = 0.537021 + 0.956459I		
u = -0.345458 - 0.308634I		
a = -0.16531 + 1.86311I	-0.00299 + 3.22788I	-5.50185 + 1.31175I
b = 0.537021 - 0.956459I		
u = 0.162481 + 0.408835I		
a = 1.44324 - 0.12966I	-0.51706 - 1.49158I	-5.11534 + 4.83543I
b = -0.318816 + 0.244523I		
u = 0.162481 - 0.408835I		
a = 1.44324 + 0.12966I	-0.51706 + 1.49158I	-5.11534 - 4.83543I
b = -0.318816 - 0.244523I		
u = 1.57045 + 0.06947I		
a = -0.56984 + 1.35554I	-5.18358 - 3.62251I	0
b = -0.279628 - 1.103440I		
u = 1.57045 - 0.06947I		
a = -0.56984 - 1.35554I	-5.18358 + 3.62251I	0
b = -0.279628 + 1.103440I		
u = 1.61840 + 0.04481I		
a = 1.367660 - 0.140722I	-8.72706 - 5.87646I	0
b = 0.774064 + 0.910389I		
u = 1.61840 - 0.04481I		
a = 1.367660 + 0.140722I	-8.72706 + 5.87646I	0
b = 0.774064 - 0.910389I		
u = -1.61803 + 0.10068I		
a = -0.52547 - 1.48304I	-8.02622 + 8.25020I	0
b = -0.253191 + 1.186100I		
u = -1.61803 - 0.10068I		
a = -0.52547 + 1.48304I	-8.02622 - 8.25020I	0
b = -0.253191 - 1.186100I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.65295 + 0.15535I		
a = 1.21356 - 0.98307I	-12.2488 - 9.4695I	0
b = 0.785284 + 1.028100I		
u = 1.65295 - 0.15535I		
a = 1.21356 + 0.98307I	-12.2488 + 9.4695I	0
b = 0.785284 - 1.028100I		
u = 1.65992 + 0.04982I		
a = -0.142293 + 0.110211I	-12.43950 - 4.45006I	0
b = -0.885583 - 0.091250I		
u = 1.65992 - 0.04982I		
a = -0.142293 - 0.110211I	-12.43950 + 4.45006I	0
b = -0.885583 + 0.091250I		
u = -1.65878 + 0.18881I		
a = 1.14079 + 1.15178I	-15.1084 + 14.9979I	0
b = 0.784282 - 1.059400I		
u = -1.65878 - 0.18881I		
a = 1.14079 - 1.15178I	-15.1084 - 14.9979I	0
b = 0.784282 + 1.059400I		
u = -1.66569 + 0.12660I		
a = 0.219521 + 0.247710I	-13.14280 + 3.23432I	0
b = 0.899613 + 0.742060I		
u = -1.66569 - 0.12660I		
a = 0.219521 - 0.247710I	-13.14280 - 3.23432I	0
b = 0.899613 - 0.742060I		
u = 1.67592 + 0.16565I		
a = 0.056375 - 0.215125I	-16.2081 - 8.6708I	0
b = 0.934162 - 0.708886I		
u = 1.67592 - 0.16565I		
a = 0.056375 + 0.215125I	-16.2081 + 8.6708I	0
b = 0.934162 + 0.708886I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.69835 + 0.12447I		
a = 0.974819 + 0.805892I	-17.4538 + 5.5952I	0
b = 0.834072 - 1.009660I		
u = -1.69835 - 0.12447I		
a = 0.974819 - 0.805892I	-17.4538 - 5.5952I	0
b = 0.834072 + 1.009660I		
u = 1.71155 + 0.09018I		
a = 0.321141 - 0.008755I	-18.1024 + 0.8823I	0
b = 0.926120 - 0.804268I		
u = 1.71155 - 0.09018I		
a = 0.321141 + 0.008755I	-18.1024 - 0.8823I	0
b = 0.926120 + 0.804268I		

II.
$$I_2^u = \langle 2b + 2a - u + 2, \ 2a^2 - 2au + 2a - u + 3, \ u^2 - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -a + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}au + \frac{1}{2}u - \frac{1}{2} \\ -a + \frac{1}{2}u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}au - \frac{1}{2} \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}au - \frac{1}{2} \\ au + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}au + \frac{1}{2}u - 1 \\ -a + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}au + \frac{1}{2}u - \frac{1}{2} \\ -a + \frac{1}{2}u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8a 4u 4

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{11} \\ c_{12}$	$(u^2 - u + 1)^2$
c_3, c_6, c_7 c_{10}	$(u^2 + u + 1)^2$
c_4, c_5, c_8 c_9	$(u^2-2)^2$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2+y+1)^2$		
c_4, c_5, c_8 c_9	$(y-2)^4$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = 0.207107 + 0.866025I	-4.93480 - 4.05977I	-8.00000 + 6.92820I
b = -0.500000 - 0.866025I		
u = 1.41421		
a = 0.207107 - 0.866025I	-4.93480 + 4.05977I	-8.00000 - 6.92820I
b = -0.500000 + 0.866025I		
u = -1.41421		
a = -1.20711 + 0.86603I	-4.93480 - 4.05977I	-8.00000 + 6.92820I
b = -0.500000 - 0.866025I		
u = -1.41421		
a = -1.20711 - 0.86603I	-4.93480 + 4.05977I	-8.00000 - 6.92820I
b = -0.500000 + 0.866025I		

III. $I_3^u = \langle a^4u + 4a^3u + \dots - 11a - 2, 2a^4u + 3a^3u + \dots + 13a - 1, u^2 + u - 1 \rangle$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.320000a^{4}u + 0.280000a^{3}u + \dots + 0.680000a + 0.960000 \\ 0.640000a^{4}u - 0.440000a^{3}u + \dots + 0.360000a - 0.0800000 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 1.44000a + 0.0800000 \\ -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \\ -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 1.44000a + 0.0800000 \\ -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.44000a + 0.0800000 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \\ -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \\ -0.0400000a^{4}u - 0.160000a^{3}u + \dots + 0.440000a + 0.0800000 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -10

Crossings	u-Polynomials at each crossing		
c_1	$u^{10} + 4u^9 + 10u^8 + 16u^7 + 19u^6 + 13u^5 + 4u^4 - 5u^3 - 5u^2 - 3u + 1$		
c_2, c_6, c_7 c_{11}	$u^{10} + 2u^8 + 3u^6 - u^5 + 2u^4 - u^3 + u^2 - u - 1$		
c_3	$u^{10} + 2u^8 + 2u^7 - 3u^6 - 3u^5 - 8u^4 + u^3 + 9u^2 - 5u - 5$		
c_4, c_5, c_8 c_9	$(u^2 - u - 1)^5$		
c_{10}, c_{12}	$u^{10} - 4u^9 + 10u^8 - 16u^7 + 19u^6 - 13u^5 + 4u^4 + 5u^3 - 5u^2 + 3u + 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_{10}, c_{12}	$y^{10} + 4y^9 + \dots - 19y + 1$		
c_2, c_6, c_7 c_{11}	$y^{10} + 4y^9 + 10y^8 + 16y^7 + 19y^6 + 13y^5 + 4y^4 - 5y^3 - 5y^2 - 3y + 1$		
<i>c</i> ₃	$y^{10} + 4y^9 + \dots - 115y + 25$		
c_4, c_5, c_8 c_9	$(y^2 - 3y + 1)^5$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.0866109	-0.986960	-10.0000
b = 0.481001		
u = 0.618034		
a = -1.73755 + 0.98693I	-0.986960	-10.0000
b = -0.643219 + 0.835211I		
u = 0.618034		
a = -1.73755 - 0.98693I	-0.986960	-10.0000
b = -0.643219 - 0.835211I		
u = 0.618034		
a = 0.07621 + 2.16163I	-0.986960	-10.0000
b = 0.402718 - 0.997003I		
u = 0.618034		
a = 0.07621 - 2.16163I	-0.986960	-10.0000
b = 0.402718 + 0.997003I		
u = -1.61803		
a = 1.122050 + 0.202875I	-8.88264	-10.0000
b = 0.786437 + 0.860119I		
u = -1.61803		
a = 1.122050 - 0.202875I	-8.88264	-10.0000
b = 0.786437 - 0.860119I		
u = -1.61803		
a = -0.380191 + 1.332290I	-8.88264	-10.0000
b = -0.388630 - 1.160270I		
u = -1.61803		
a = -0.380191 - 1.332290I	-8.88264	-10.0000
b = -0.388630 + 1.160270I		
u = -1.61803		
a = -0.247641	-8.88264	-10.0000
b = -0.795614		

IV.
$$I_4^u = \langle au + b + 2a + u + 2, \ 2a^2 + au + 2a - u + 3, \ u^2 - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -au - 2a - u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au - a - \frac{1}{2}u - 1 \\ -au - 2a - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -au - a - u - 1 \\ -au - 2a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -au - a - u - 1 \\ -3au - 4a - 2u - 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -au - a - u - 2 \\ -au - 2a - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -au - a - u - 2 \\ -au - 2a - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -au - a - \frac{1}{2}u - 1 \\ -au - 2a - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing	
$c_1, c_2, c_{11} \\ c_{12}$	$(u^2 - u + 1)^2$	
c_3, c_6, c_7 c_{10}	$(u^2 + u + 1)^2$	
$c_4, c_5, c_8 \ c_9$	$(u^2-2)^2$	

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2+y+1)^2$		
c_4, c_5, c_8 c_9	$(y-2)^4$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.853553 + 0.253653I	-4.93480	-8.00000
b = -0.500000 - 0.866025I		
u = 1.41421		
a = -0.853553 - 0.253653I	-4.93480	-8.00000
b = -0.500000 + 0.866025I		
u = -1.41421		
a = -0.14645 + 1.47840I	-4.93480	-8.00000
b = -0.500000 - 0.866025I		
u = -1.41421		
a = -0.14645 - 1.47840I	-4.93480	-8.00000
b = -0.500000 + 0.866025I		

V.
$$I_1^v = \langle a, \ b-v-1, \ v^2+v+1 \rangle$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ v+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -v \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -v - 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v+1 \\ v+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8v 2

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_6 c_7, c_{12}	$u^2 - u + 1$		
c_2, c_{10}, c_{11}	$u^2 + u + 1$		
$c_4, c_5, c_8 \ c_9$	u^2		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 + y + 1$		
c_4, c_5, c_8 c_9	y^2		

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 0	-4.05977I	-6.00000 + 6.92820I
b = 0.500000 + 0.866025I $v = -0.500000 - 0.866025I$		
a = 0	4.05977I	-6.00000 - 6.92820I
b = 0.500000 - 0.866025I		

VI.
$$I_2^v = \langle a, b^2 - b + 1, v - 1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -b+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ b-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
$c_1, c_3, c_6 \\ c_7, c_{12}$	$u^2 - u + 1$	
c_2, c_{10}, c_{11}	$u^2 + u + 1$	
c_4, c_5, c_8 c_9	u^2	

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 + y + 1$		
c_4, c_5, c_8 c_9	y^2		

	Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	1.00000		
a =	0	0	0
b =	0.500000 + 0.866025I		
v =	1.00000		
a =	0	0	0
b =	0.500000 - 0.866025I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{6}$ $\cdot (u^{10} + 4u^{9} + 10u^{8} + 16u^{7} + 19u^{6} + 13u^{5} + 4u^{4} - 5u^{3} - 5u^{2} - 3u + 1)$ $\cdot (u^{64} + 35u^{63} + \dots + 416u + 49)$
c_2	$((u^{2} - u + 1)^{4})(u^{2} + u + 1)^{2}(u^{10} + 2u^{8} + \dots - u - 1)$ $\cdot (u^{64} - 3u^{63} + \dots - 16u + 7)$
c_3	$(u^{2} - u + 1)^{2}(u^{2} + u + 1)^{4}$ $\cdot (u^{10} + 2u^{8} + 2u^{7} - 3u^{6} - 3u^{5} - 8u^{4} + u^{3} + 9u^{2} - 5u - 5)$ $\cdot (u^{64} + 3u^{63} + \dots - 4558u + 763)$
c_4, c_5, c_8 c_9	$u^{4}(u^{2}-2)^{4}(u^{2}-u-1)^{5}(u^{64}+4u^{63}+\cdots-32u+16)$
c_6	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)^{4}(u^{10} + 2u^{8} + \dots - u - 1)$ $\cdot (u^{64} - 3u^{63} + \dots - 16u + 7)$
<i>c</i> ₇	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)^{4}(u^{10} + 2u^{8} + \dots - u - 1)$ $\cdot (u^{64} + 3u^{63} + \dots - 6u + 7)$
c_{10}	$(u^{2} + u + 1)^{6}$ $\cdot (u^{10} - 4u^{9} + 10u^{8} - 16u^{7} + 19u^{6} - 13u^{5} + 4u^{4} + 5u^{3} - 5u^{2} + 3u + 1)$ $\cdot (u^{64} - 19u^{63} + \dots - 608u + 49)$
c_{11}	$((u^{2} - u + 1)^{4})(u^{2} + u + 1)^{2}(u^{10} + 2u^{8} + \dots - u - 1)$ $\cdot (u^{64} + 3u^{63} + \dots - 6u + 7)$
c_{12}	$ (u^{2} - u + 1)^{6} $ $ \cdot (u^{10} - 4u^{9} + 10u^{8} - 16u^{7} + 19u^{6} - 13u^{5} + 4u^{4} + 5u^{3} - 5u^{2} + 3u + 1) $ $ \cdot (u^{64} - 19u^{63} + \dots - 608u + 49) $

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^6)(y^{10} + 4y^9 + \dots - 19y + 1)$ $\cdot (y^{64} - 5y^{63} + \dots - 30760y + 2401)$
c_2, c_6	$(y^{2} + y + 1)^{6}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 16y^{7} + 19y^{6} + 13y^{5} + 4y^{4} - 5y^{3} - 5y^{2} - 3y + 1)$ $\cdot (y^{64} + 35y^{63} + \dots + 416y + 49)$
c_3	$((y^2 + y + 1)^6)(y^{10} + 4y^9 + \dots - 115y + 25)$ $\cdot (y^{64} - 45y^{63} + \dots + 15204664y + 582169)$
c_4, c_5, c_8 c_9	$y^4(y-2)^8(y^2-3y+1)^5(y^{64}-76y^{63}+\cdots-1024y+256)$
c_7, c_{11}	$(y^{2} + y + 1)^{6}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 16y^{7} + 19y^{6} + 13y^{5} + 4y^{4} - 5y^{3} - 5y^{2} - 3y + 1)$ $\cdot (y^{64} + 19y^{63} + \dots + 608y + 49)$
c_{10}, c_{12}	$((y^{2} + y + 1)^{6})(y^{10} + 4y^{9} + \dots - 19y + 1)$ $\cdot (y^{64} + 59y^{63} + \dots + 133272y + 2401)$