Ch 5.1.1-2: Leave One Out Cross-validation Lecture 12 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 2, 2023

Announcements

Last time:

Exam

Announcements:

- Fourth homework due next monday
- Office hours
- Drops

Covered in this lecture

- LOO CV
- Outliers
- Leverage statistic

Dr. Munch (MSU-CMSE)

Section 1

Validation set

What's the problem?

- How well is my ML method doing? Model Assessment
- Which method is best for our data?
- How many features should I use? Which ones? Model selection
- What is the uncertainty in the learned parameters?

Or. Munch (MSU-CMSE) Mon, Oct 2, 2023

Training Error vs Testing Error

Training Error

Testing Error

Throw-back Monday

Or. Munch (MSU-CMSE)

Mon, Oct 2, 2023

Model tradeoffs

Munch (MSU-CMSE) Mon, Oct 2, 2023

Validation set approach

- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Dr. Munch (MSU-CMSE)

Mon, Oct 2, 2023

Coding example in jupyter notebook

Or. Munch (MSU-CMSE) Mon, Oct 2, 2023

Example with the auto data

Predicting mpg using horsepower:

$$mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \dots + \beta_p hp^p$$

11 / 28

r. Munch (MSU-CMSE) Mon, Oct 2, 2023

Rinse and repeat

Again example with auto data

Section 2

Leave-One-Out Cross-Validation (LOOCV)

r. Munch (MSU-CMSE) Mon, Oct 2, 2023

The idea

r. Munch (MSU-CMSE) Mon, Oct 2, 2023

The idea in mathy words

- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: $\{(x_2, y_2), \dots, (x_n, y_n)\}$
- Calculate $MSE_1 = (y_1 \hat{y}_1^2)$
- Remove (x_2, y_2) for testing.
- Train the model on n-1 points: $\{(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)\}$
- Calculate $MSE_2 = (y_2 \hat{y}_2^2)$
- Rinse and repeat

Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathrm{MSE}_{i}$$

Do the LOOCV coding section

Dr. Munch (MSU-CMSE) Mon, Oct 2, 2023

LOOCV Pros and Cons

Advantages:

Disadvantages:

Again example with auto data

Section 3

The one time you can cheat (by not computing every model fit)

r. Munch (MSU-CMSE) Mon, Oct 2, 2023

Outliers

An *outlier* is a point for which y_i is far from the value predicted by the model.

Munch (MSU-CMSE) Mon, Oct 2, 2023

Residuals

High Leverage

Observations with *high leverage* have an unusual value for x_i .

23 / 28

Munch (MSU-CMSE) Mon, Oct 2, 2023

Leverage statistic

Version for
$$p = 1$$

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^{n} (x_j - \overline{x})^2}$$

Leverage statistic properties

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^{n} (x_j - \overline{x})^2}$$

Speeding up LOOCV

Warning: This only works for least squares linear or polynomial regression.

$$\frac{1}{n} \sum_{i=1}^{n} MSE_{i} = CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{i} - \hat{y}_{i}}{1 - h_{i}} \right)^{2}$$

TL;DR

LOO-CV Score

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \text{MSE}_i$$

Cheap trick for regression

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

Next time

Lec#	Date			Reading	Homeworks
12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Dr. Munch (MSU-CMSE) Mon, Oct 2, 2023