Отчет по лабораторной работе $N_{\overline{2}}7$

Эффективность рекламы

Сорокин Андрей Константинович

Содержание

Цель работы	4													
Задание	5													
Теоретическая справка														
Выполнение лабораторной работы	8													
Подключаю необходимые библиотеки	8													
Случай №1	8													
Ввожу значения для первого случая:	8													
Задаю функцию f:	8													
Вывод графика:	8													
Случай №2	9													
Ввожу значений из своего варианта для второго случая:	9													
Задаю функцию f и вывожу момент времени:	9													
Вывод графика:	10													
Случай №3	10													
Ввожу значений из своего варианта для третьего случая:	10													
Задаю функцию f для третьего случая:	11													
Вывод графика:	11													
Выволы	12													

Список иллюстраций

0.1	Вывод графика №1																9
	Вывод графика №2																
0.3	Вывол графика №3									_	_						11

Цель работы

Рассмотреть модель "Эффективность рекламы" и построить графики по этой модели.

Задание

Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.

$$\frac{dn}{dt} = (0.21 + 0.00008n(t))(N - n(t))$$

2.

$$\frac{dn}{dt} = (0.000012 + 0.8n(t))(N - n(t))$$

3.

$$\frac{dn}{dt} = (0.1\sin(t) + 0.1\cos(10t)n(t))(N - n(t))$$

При следующих начальных условиях: N=800, n(t)=11.

Теоретическая справка

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих Модель рекламной кампании описывается следующими величинами. Считаем, что

$$\frac{dn}{dt}$$

- скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы

описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

Выполнение лабораторной работы

Подключаю необходимые библиотеки

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
```

Случай №1

Ввожу значения для первого случая:

```
a_1 = 0.21

a_2 = 0.00008

t = np.arange(0,5,0.1)
```

Задаю функцию f:

```
\begin{split} \operatorname{def} f(n, t) \colon \\ & dn = (a\_1 + a\_2*n)*(N-n) \\ & \operatorname{return} \, dn \\ \\ \operatorname{res} & = \operatorname{odeint}(f, n, t) \end{split}
```

Вывод графика:

Вывод графика распространения рекламы(рис. @fig:001).

Рис. 0.1: Вывод графика №1

Случай №2

Ввожу значений из своего варианта для второго случая:

```
\begin{aligned} &a\_1 = 0.000012 \\ &a\_2 = 0.8 \\ &t = np.arange(0,0.02,0.00001) \end{aligned}
```

Задаю функцию f и вывожу момент времени:

```
\begin{split} \operatorname{def} f(n,t) \colon \\ & \operatorname{dn} = (a\_1 + a\_2*n)*(N-n) \\ & \operatorname{global} \operatorname{dn} \_\operatorname{max} \\ & \operatorname{if} \operatorname{dn} > \operatorname{dn} \_\operatorname{max}[0] \colon \\ & \operatorname{dn} \_\operatorname{max} = [\operatorname{dn},t] \\ & \operatorname{return} \operatorname{dn} \end{split}
```

$$res = odeint(f,n,t)$$

$$print(dn_max[1])$$

Вывод графика:

Вывод графика распространения рекламы(рис. @fig:002).

Рис. 0.2: Вывод графика №2

Момент времени с максимальной скоростью распространения рекламы: 0.006781294076748116

Случай №3

Ввожу значений из своего варианта для третьего случая:

$$a_1 = 0.1$$

$$a_2 = 0.1$$

t = np.arange(0,0.5,0.01)

Задаю функцию f для третьего случая:

def f2(n,t):
$$dn = (a_1*np.sin(t) + a_2*np.cos(10*t)*n)*(N-n)$$
 return dn

Вывод графика:

Вывод графика распространения рекламы(рис. @fig:003).

Рис. 0.3: Вывод графика №3

Выводы

В результате проделаной работы мы рассмотрели модель эффективности рекламной компании и построили графики для трёх случаев.