室内温度计

须知

在学习室内温度计实验之前,首先了解wifiduino的硬件资料和wifiduino的基本使用方法. https://openjumper.cn/wifiduino/

要给 wifiduino 下载程序,有两种方式,一种是使用 arduino IDE,一种是使用图形化编程软件 mixly,用户可根据自己喜好进行选择对应的编程环境,在准备好编程环境后才可对 wifiduino 进行编程。

详细参考如下链接:

ArduinoIDE 运行 wifiduino 示例程序:

https://openjumper.cn/kit04001/

mixly 图形化编程运行 wifiduino 示例程序:

https://openjumper.cn/mixly-wifiduino/

PS: 小白用户先参考以上教程安装编程环境和测试示例程序,后再学习下列项目以避免操作失误。

室内温湿度计

本实验是实现实时的可远程监测环境温湿度的案例项目。通过使用 wifiduino 在室内搭建温湿度检测,可将检测到的温湿度数据实时反馈到手机的 blinker 软件中,以实现对室内环境温湿度的实时检测。

硬件准备

wifiduino 主控板*1 张 microUSB 线*1 条 DHT11 模块*1 张 公对母杜邦线*3 条

软件准备

手机下载 blinker APP,根据不同系统的手机安装不同版本的 APP。如果你的手机是安卓系统,那么软件下载地址为:

https://github.com/blinker-iot/app-release

如果是苹果手机 IOS 系统,直接可在 APP Store 中搜索 blinker 并下载安装。下载完成后注册一个账号。

操作步骤

步骤一:在 blinker 软件中添加设备

- 1. 确保开发板连接的网络能连接外网
- 2. 在 blinker 中,点击右上角的"+"进入添加设备页面
- 3. 点击 "选择"—— "Arduino"—— "wifi 接入"—— "阿里云"

4. 获取 SecretKey, 记住这串数字,并将其填入到程序中

步骤二:给 wifiduino 上传程序

(示例中使用 arduinoIDE 作为编程软件,如果要使用 mixly 图形化编程,直接下载对应例程)

1. 安装库文件

本程序使用到 DHT11 温湿度传感器,在 IDE 中没有该传感器的库文件,所以首先下载库文件 DHT-sensor-library.zip ,将其解压后放在 arduino 的程序安装目录下的 libraries 里,如图:

2. 修改程序并上传

打开例程 environment.ino 修改程序中的 auth[]值(步骤一中获取的

SecretKey) 和要连接的 wifi 的 ssid 及密码

```
char auth[] = "d8bdba0f8xxx";
char ssid[] = "mostfun";
char pswd[] = "1803808xxxx";
```

注意程序中的传感器连接的引脚为 D8

#define DHTPIN D8

程序中设定湿度的键名为 humi , 温度的键名为 temp (这将与 blinker 中对应的键名匹配)

```
BlinkerNumber HUMI( "humi");
BlinkerNumber TEMP( "temp");
```

将程序上传到 wifiduino 板中。下载结束后,IDE 提示栏中显示"上传成功"

mixly 编程

mixly 软件下载安装方法: https://open.jumper.cn/mixly-o.j/ 再编程之前需要提前安装 esp8266 扩展库文件,下载最新版本的库文件,

图 8266_package_2.6.3 , 双击即可自动安装。如果有安装别的 8266 库, 需要删除原来的库后再进行安装。

mixly 使用云端导入 blinker 库,然后拖动程序模块进行编程,选择对应的板卡wifiduino 和串口号,点击"上传",即可将程序上传至主板。

库名称	版本号	描述
ruilong	1.0.6	睿龙创客工场
MuVisionSensor	1.2.1	小Mu视觉
dfrobot	1.0.0	DFRobot
YFRobot	2.2.2	YFRobot
ArduBits	3.234	ArduBits
QDProbot UNO	1.2	齐护机器人UNO套件
QDProbot ESP	1.2	齐护机器人ESP32套件
MAX7219 lattice	1.0	MAX7219点阵屏扩展库
Maker_Arduino	1.0	Arduino扩展库
TFT	1.0	TFT彩色屏幕扩展库
blinker	1.1beta	Blinker占灯物联
Labplus	1.2	Labplus扩展库
16_PWM_Servo	1.0	16路PWM舵机控制板扩展库
MQTT	1.0	MQTT物联网开发库,支持onenet
mixly库开发工具	1.0	可以开发mixly库的库
	3	云端导入

那么 mixly 示例程序为:

```
模块
                代码
                                                                Copyright © :
₩ 输入/输出
空 控制
& 数学
🌠 逻辑
Т 文本
                                  初始化连接方式(WiFi接入)
                                  设备密钥 (auth) # (9f3******9c)
₩ 数组
                                             " (m*****n) "
                                  WIFI名称 ssid
                                            " C******1
量变品
                                 WIFI密码 pswd |
fx 函数
                                 🎒 创建打印 数值 🔻 对象: [Number1] 键名: [temp]
98 串口
                                 <u></u> 创建打印 (数值 ▼ 对象: (Number2) 键名: (humi)

☐ 开始连接 auth ssid pswd

[]) 传感器
                                 ◎ Numberl 打印 DHT11▼管脚# D8▼ 获取温度▼
▶ 执行器
▶ 显示器
                                 ▶ 通信
                                 延时 1000 毫秒
▶ 存储
▶ 网络
/ 自定义模块
% 工具
▶ blinker点灯
```

步骤三: blinker 制定软件界面

点击右上方解锁按键, 进入编辑模式

添加一个为数据组件,将其作为温度数据显示接口,点击该数据组件,编辑数据的信息

将键名修改为程序里定义的"temp"(这里的 temp 和程序中的名称相对应),文本显示"温度",数据单位为" \mathbb{C} ",最大值"100"

点击下"修改图标",将图标修改为自己喜欢的图标。完成编辑,点击右上角的 勾号。

再添加一个为数据组件,将其作为湿度数据显示接口,点击该数据组件,编辑数据的信息。

将键名修改为程序里定义的"humi"(这里的 humi 和程序中的名称相对应), 文本显示"湿度",数据单位为"%",最大值"100"

点击下"修改图标",将图标修改为自己喜欢的图标。完成编辑,点击右上角的勾号。

步骤四: 硬件连接

DHT11 温湿度传感器通过杜邦线连接在 wifiduino 上,分别对应是 S 对应 D8、+对应 VCC、 -对应 GND。

连接完成后,插上 microusb 数据线,将主板供电,使 wifiduino 能够连接上网。 手机 app 观察传感器实时检测到的温度和湿度数据。

