Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = \log_2 \frac{24}{12} + 3 = \log_2 2 + 3 =$	3p
	$=1+3=4=2^2$	2p
2.	$f(a) = a^2 \Leftrightarrow a^2 - 2a + 1 = 0$	3 p
	a=1	2p
3.	$x^{2}-2x-2=(x-2)^{2} \Rightarrow x^{2}-2x-2=x^{2}-4x+4$	3 p
	x = 3, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele divizibile cu 9 din mulțimea A sunt 6!, 7!, 8!, 9! și 10!, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{2}$	1p
5.	$\overrightarrow{EB} + \overrightarrow{FC} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{FD} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{DC}$	2p
	$2(\overrightarrow{EB} + \overrightarrow{FC}) = 2\overrightarrow{AB} + 2\overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AC}$	3 p
6.	$(\sin x + \cos x)^2 - (\sin x - \cos x)^2 = 4\sin x \cos x =$	2p
	$= 2\sin 2x = 2\cos\left(\frac{\pi}{2} - 2x\right), \text{ pentru orice număr real } x$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(-1) = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \Rightarrow \det(A(-1)) = \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-1\cdot \left(-2\right)=3$	3 p
b)	$\det(A(x)) = \begin{vmatrix} x^2 & 1 \\ x - 1 & 1 \end{vmatrix} = x^2 - x + 1, \text{ pentru orice număr real } x$	3 p
	Cum $\det(A(x)) \neq 0$ pentru orice număr real x , obținem că matricea $A(x)$ este inversabilă	2p
	pentru orice număr real x	-P
c)	$A(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Rightarrow (A(1))^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	2p
	Cum $A(2) = \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}$ și $X = (A(1))^{-1} \cdot A(2) \cdot (A(1))^{-1}$, obținem $X = \begin{pmatrix} 3 & -3 \\ 1 & 0 \end{pmatrix}$	3p
2.a)	$\sqrt{2} \circ 0 = \sqrt{2} \cdot 0 - \sqrt{2} \left(\sqrt{2} + 0 - 1 \right) + 2 =$	3p
	$=-2+\sqrt{2}+2=\sqrt{2}$	2p

b)	$x^{2} - 2 - \sqrt{2}(x - \sqrt{2} + x + \sqrt{2} - 1) + 2 = x \Leftrightarrow x^{2} - (2\sqrt{2} + 1)x + \sqrt{2} = 0$	3p
	$x = \sqrt{2} - 1$ sau $x = \sqrt{2} + 2$	2p
c)	$e = \sqrt{2} + 1$ este elementul neutru al legii de compoziție "°", deci a este simetrizabil în	2p
	raport cu " \circ " dacă și numai dacă există a , astfel încât $a \circ a' = a' \circ a = \sqrt{2} + 1$	2p
	$aa'-\sqrt{2}(a+a'-1)+2=\sqrt{2}+1 \Leftrightarrow aa'+1-\sqrt{2}(a+a')=0$ deci, dacă a și a' sunt numere	3p
	raționale, obținem $a + a' = 0$ și $aa' = -1$, deci $a = -1$ sau $a = 1$, care convin	ъp

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = (x - \ln(x^2 + 1))' = 1 - \frac{1}{x^2 + 1} \cdot 2x =$	3p
	$=\frac{x^2-2x+1}{x^2+1} = \frac{(x-1)^2}{x^2+1}, \ x \in (0,+\infty)$	2p
b)	Tangenta la graficul funcției f în punctul A este paralelă cu dreapta de ecuație $y = \frac{1}{5}x + 1$, deci $f'(n) = \frac{1}{5}$	3р
	$5(n-1)^2 = n^2 + 1 \Leftrightarrow 2n^2 - 5n + 2 = 0$ şi, cum n este număr natural nenul, obținem $n = 2$	2p
c)	$f'(x) > 0$, pentru orice $x \in (0,1) \Rightarrow f$ strict crescătoare pe $(0,1)$, $f'(x) > 0$, pentru orice $x \in (1,+\infty) \Rightarrow f$ strict crescătoare pe $(1,+\infty)$ și, cum f este continuă în $x = 1$, obținem că f este strict crescătoare pe $(0,+\infty)$, deci injectivă	2p
	Cum $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to +\infty} f(x) = +\infty$ și f este continuă și strict crescătoare pe $(0,+\infty)$, obținem că f este surjectivă, deci bijectivă	3 p
2.a)	$\int_{1}^{e} x^{2} \left(f(x) + \frac{2 \ln x}{x^{3}} \right) dx = \int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3 p
	$= \ln e - \ln 1 = 1$	2p
b)	$\int_{1}^{\sqrt{5}} x \cdot f(x^2 + 3) dx = \frac{1}{2} \int_{1}^{\sqrt{5}} (x^2 + 3)' \cdot f(x^2 + 3) dx = \frac{1}{2} F(x^2 + 3) \Big _{1}^{\sqrt{5}} =$	3p
	$=\frac{1}{2}\left(\frac{\ln 8}{64} - \frac{\ln 4}{16}\right) = -\frac{5\ln 2}{128}$	2p
c)	$\int_{e}^{e^{2}} x F(x) dx = \int_{e}^{e^{2}} \frac{\ln x}{x} dx = \frac{\ln^{2} x}{2} \Big _{e}^{e^{2}} = \frac{\ln^{2} (e^{2}) - \ln^{2} e}{2} = \frac{3}{2}$	3 p
	$\frac{a^2-1}{2} = \frac{3}{2}$, de unde obținem $a = -2$ sau $a = 2$	2p