An Integral Transform Laplace Transform of A Derivative Properties of an Integral Table of Transform Pairs

Lecture Module - The Laplace Transform

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 1 - Definition of the Laplace Transform

An Integral Transform Laplace Transform of A Derivative Properties of an Integral Table of Transform Pairs

Topic 1 - Definition of the Laplace Transform

- An Integral Transform
- Laplace Transform of A Derivative
- Properties of an Integral
- Table of Transform Pairs

An Integral Transform

The Laplace Transform is an Integral Transform Given a function x(t) in the time domain where $t \ge 0$, the Laplace Transform is defined as follows:

$$X(s) = \mathcal{L}\{x(t)\} = \int_0^\infty x(t)e^{-st}dt$$

And its inverse is similarly defined as:

$$\mathcal{L}^{-1}\{X(s)\}=x(t)$$

The Laplace Domain variable s is a complex number:

$$s = \sigma + i\omega$$

Laplace Transform of A Derivative

It is useful to find the laplace transform of the derivative of a function:

$$\mathcal{L}\{\frac{d}{dt}(x(t))\} = \mathcal{L}\{\dot{x}(t)\} = s\mathcal{L}\{x(t)\} - x(t=0)$$

$$= sX(s) - x(t=0)$$

$$\mathcal{L}\{\dot{x}(t)\} = sX(s) - x_0$$

$$\mathcal{L}\{\frac{d^2}{dt^2}(x(t))\} = \mathcal{L}\{\ddot{x}(t)\} = s^2\mathcal{L}\{x(t)\} - sx(t=0) - \dot{x}(t=0)$$

$$= s^2X(s) - sx(t=0) - \dot{x}(t=0)$$

$$\mathcal{L}\{\ddot{x}(t)\} = s^2X(s) - sx_0 - \dot{x}_0$$

Properties of an Integral

Also, remember that the transform inherits the properties of an integral.

$$\int [x(t) + y(t)] dt = \int x(t) dt + \int y(t) dt$$
$$\int Kx(t) dt = K \int x(t) dt \quad (K \text{ is constant})$$

Therefore these properties can be used with the Laplace transform.

Table of Transform Pairs

Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	e^{at}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p \ge -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$

Table of Transform Pairs

17.
$$\sinh(at)$$
 $\frac{a}{s^2-a^2}$ | 18. $\cosh(at)$ $\frac{s}{s^2-a^2}$ | 19. $e^{st}\sin(bt)$ $\frac{b}{(s-a)^2+b^2}$ | 20. $e^{st}\cos(bt)$ $\frac{s-a}{(s-a)^2+b^2}$ | 21. $e^{st}\sinh(bt)$ $\frac{b}{(s-a)^2-b^2}$ | 22. $e^{st}\cosh(bt)$ $\frac{s-a}{(s-a)^2-b^2}$ | 22. $e^{st}\cosh(bt)$ $\frac{s-a}{(s-a)^2-b^2}$ | 23. t^ne^{st} , $n=1,2,3,...$ $\frac{n!}{(s-a)^{n+1}}$ | 24. $f(ct)$ $\frac{1}{c}F\left(\frac{s}{c}\right)$ | 25. $u_c(t)=u(t-c)$ e^{-cs} $u_c(t)f(t-c)$ $e^{-cs}f(s)$ | 28. $u_c(t)g(t)$ $e^{-cs}2\{g(t+c)\}$ | 29. $e^{ct}f(t)$ $f(s-c)$ | 30. $t^nf(t)$, $n=1,2,3,...$ $f(s)$ $f(s)$ | 31. $\frac{1}{t}f(t)$ $f(s)$ $f(s)$ | 32. $\int_0^t f(s) dt$ $f(s)$ | 34. $f(t+T)=f(t)$ $f(s)$ $f(s)$ | 35. $f'(t)$ $f(s)$ $f'(t)$ $f(s)$ $f'(t)$ $f(s)$ $f'(t)$ $f(s)$ $f''(t)$ $f(s)$ $f''(t)$ $f(s)$ $f''(t)$ $f(s)$ $f''(t)$ $f(s)$ $f(t)$ $f(s)$ $f(t)$ $f(t$

An Integral Transform Laplace Transform of A Derivative Properties of an Integral Table of Transform Pairs

Why use or learn this method?