Lecture Notes for Comp 480 - Winter 2023

Arthur Ayestas Hilgert

January 2, 2023

Here are lecture summaries for the sections of Probability on Trees and Networks that I will present.

Contents

Course Introduction 1

Introduction to graphs... mainly notation 1

Branching Number 2

Electric Current 3

Random Walks 3

Percolation 3

Branching Processes

Course Introduction

If you lose my notes please consult my web page: http://arthurayestas.xyz/comp480.html

Introduction to graphs... mainly notation

Definition 1 (Graph). A **graph** G = (V, E) is an ordered pair containing a set of vertices V and a set of edges $E \subseteq V \times V$.

3

Remark 2. We may also write the vertex and edge set of G as V(G) and E(G) respectively.

Definition 3 (Edge). An **edge** is a member of *E*. We write such an edge as: $\langle x, y \rangle$ with $x, y \in V$.

Definition 4 (Oriented Edge). An **(oriented) edge** is an edge that is direction agnostic. We write such an edge as: [x, y].

Theorem 5.

$$[x,y] \iff \langle x,y \rangle \land \langle y,x \rangle \iff (x,y),(y,x) \in E$$

Remark 6. In these notes I will add the notation E_s to denote a symmetric edge set.

Definition 7 (Vertex Adjacency). Vertices x and y are adjacent if $(x,y) \in E \lor (y,x) \in E$. We write this as $x \sim y$. Vertex adjacency is symmetric.

Definition 8 (Edge Adjacency). Edges $e_1 = (x, y)$ and $e_2 = (w, z)$ are **adjacent** if y = z. We write this as $e_1 \sim e_2$. Edge adjacency is symmetric.

Definition 9 (Incident). Vertex x and edge e = (y, z) are incident if x = z.

Definition 10 (Degree). The **degree** of x is the number vertecies that are adjacent to x. We write this quantity as: deg(x).

Definition 11 (Locally Finite). The graph G = (V, E) is locally finite if $deg(x) < \infty$ for all $x \in V$.

Definition 12 (Regularity). The graph G = (V, E) is d-regular if deg(x) = d for all $x \in V$.

Definition 13 (Graph Product). The **Cartesian product** of graphs G_1 G_2 is written as: $G_1 \square G_2$, with the following vertex and edge sets:

$$V(G_1 \square G_2) := V(G_1) \times V(G_2)$$

$$E(G_1 \square G_2) := \{ ((x_1, x_2), (y_1, y_2)) : (x_1 = y_1 \land (x_2, y_2) \in E(G_2)) \lor (x_2 = y_2 \land (x_1, y_1) \in E(G_2)) \} \subseteq V(G_1 \square G_2)$$

Branching Number

Definition 14 (nth level). The **nth level** of tree *T* is the number of vertices of distance n from the root o of T. We write this quantity as: T_n .

Definition 15 (Lower Growth Rate). The **lower growth rate** of a locally finite infinite tree is defined as:

$$\underline{\operatorname{gr}} T := \underline{\lim}_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 16 (Upper Growth Rate). The upper growth rate of a locally finite infinite tree is defined as:

$$\overline{\operatorname{gr}} T := \overline{\lim}_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 17 (Growth Rate). The **growth rate** of a locally finite infinite tree, is defined as:

$$\operatorname{gr} T := \lim_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 18 (Flow). A flow function is a nonnegative function θ respecting the property that for all vertices x with parent z and children $y_1, ..., y_d, \theta((z, x)) = \sum_{i=1}^d \theta((x, y_i))$ holds.

Definition 19 (Branching Number). Let *T* be a locally finite infinite tree, and let θ be a flow function. We define the **branching number** as follows:

$$brT := \sup\{\lambda \ge 1 \in \mathbb{R} | \exists \theta \forall n \in \mathbb{N} \forall x \in T_n : \theta((x_{parent}, x)) \le \lambda^{-n}\}$$

Theorem 20. $brT \leq grT$

Electric Current

Definition 21 (Conductance). A conductance function is a function $c: E \to \mathbb{R}_0^+$. We call $c(e) \in c(E)$ conductances.

Definition 22 (Energy). The **energy** of flow θ , given conductances c(E) is defined as follows (I have added notation **E**):

$$\mathbf{E} := \sum_{e} \frac{\theta(e)^2}{c(e)}$$

Theorem 23. If $\lambda < brT$, then current flows. If $\lambda > brT$, then current does not flow.

Random Walks

Percolation

Branching Processes