Systems Genetics 02 - Primer in statistical modeling - Exercises

Julien Gagneur

26 October 2021

Package

BiocStyle 2.20.2

Contents

1	Max	imum likelihood: Tossing coins	2
2	Gaussian linear systems		
	2.1	Marginalization	2
	2.2	Conditioning	2

1 Maximum likelihood: Tossing coins

Consider n independent random tosses of a coin. We denote $x_i \in \{0; 1\}$ the outcome of the i-th toss (1 for head and 0 for tail) and p the probability to get a head.

Question 1: What is the maximum likelihood estimate of p? Prove it.

The R snippet sample(c(0,1), size=n, prob=c(1-p,p), replace=TRUE) draws n realizations of single tosses with probability p to return 1.

Question 2: Building on the code snippet above, implement a simulator and a max-likelihood estimator in R. Using simulations with various sample sizes n and probabilities p, investigate empirically the bias (is it on average on target?) and robustness (how far is it from the true p) of the ML estimator.

2 Gaussian linear systems

2.1 Marginalization

Assume:

$$p(x) = \mathcal{N}(x|a, \sigma_1^2)$$

$$p(y|x) = \mathcal{N}(y|x+b, \sigma_2^2)$$

Question 3: In R, simulate 10^3 random draws of p(y) according to this model for various values $a,b,\sigma_1^2,\sigma_2^2$ of your choice. Check with normal quantile plots that p(y) is normal and that its mean and variance depend on $a,b,\sigma_1^2,\sigma_2^2$ as expected by the relevant result(s) from the course.

Hint: The function rnorm() performs random draws according to the normal distribution.
The calls qqnorm(y) and qqline(y) draw Q-Q plots against the normal distribution and the line of expected quantiles.

2.2 Conditioning

Assume x and y are 1-dimensional variables such that:

$$p(x) = \mathcal{N}(x|\mu_x, \sigma_x^2)$$

$$p(y|x) = \mathcal{N}(y|a x + b, \sigma_y^2)$$

 $\text{ for } a,b \in \mathbb{R}.$

Question 4: Show that $\mu_{x|y} := \mathrm{E}[x|y]$ is a convex combination of (y-b)/a and μ_x :

$$\mu_{x|y} = w \frac{y-b}{a} + (1-w) \,\mu_x$$

What values of the parameter a, σ_x^2 , and σ_y^2 can lead to the extreme cases $w\to 0$ and $w\to 1$? Interpret.