The dataset includes information on Nike shoes sold across a variety of platforms, including Nike's own website, Amazon, and other retailers. It contains data on the shoe model, colorway, size, price, and the number of reviews and ratings. Additionally, the dataset contains text data on customer reviews, allowing for a detailed analysis of consumer opinions and feedback.

By analyzing this dataset, researchers and analysts can gain insight into which Nike shoes are most popular among consumers, as well as the features and characteristics that customers value most in a shoe. This information could be used to inform future product design and marketing strategies for Nike and other shoe brands.

Furthermore, consumers and shoe enthusiasts can benefit from this dataset to make more informed decisions about purchasing Nike shoes based on the experiences of other customers. The dataset may also be used by retailers to optimize their inventory and marketing strategies based on popular models, sizes, and colorways. Overall, this dataset has the potential to provide valuable insights for both the industry and consumers, shedding light on the factors that contribute to the success of Nike's shoes.

In [114]: #SIMRAT KAUR ANAND

#Hierarchical Clustering

#Visualization: Dendrogram with Truncation

#Apply KMeans clustering

In [115]: import pandas as pd

import numpy as np

import seaborn as sns

from sklearn.preprocessing import StandardScaler, LabelEncoder

from sklearn.cluster import AgglomerativeClustering

from scipy.cluster.hierarchy import dendrogram, linkage

from sklearn.preprocessing import StandardScaler, LabelEncoder

import matplotlib.pyplot as plt

In [116]: | df = pd.read_csv('nike_shoes_sales.csv')

In [117]: df.head()

Out[117]:

	product_name	product_id	listing_price	sale_price	discount	brand	description	rating	review
0	Nike Air Force 1 '07 Essential	CJ1646- 600	0	7495	0	Nike	Let your shoe game shimmer in the Nike Air For	0.0	
1	Nike Air Force 1 '07	CT4328- 101	0	7495	0	Nike	The legend lives on in the Nike Air Force 1 '0	0.0	
2	Nike Air Force 1 Sage Low LX	Cl3482- 200	0	9995	0	Nike	Taking both height and craft to new levels, th	0.0	
3	Nike Air Max Dia SE	CD0479- 200	0	9995	0	Nike	Designed for a woman's foot, the Nike Air Max	0.0	
4	Nike Air Max Verona	CZ6156- 101	0	9995	0	Nike	Pass on the good vibes in the Nike Air Max Ver	0.0	

In [118]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 643 entries, 0 to 642 Data columns (total 10 columns):

memory usage: 50.4+ KB

#	Column	Non-Null Count	Dtype
0	product_name	643 non-null	object
1	product_id	643 non-null	object
2	listing_price	643 non-null	int64
3	sale_price	643 non-null	int64
4	discount	643 non-null	int64
5	brand	643 non-null	object
6	description	640 non-null	object
7	rating	643 non-null	float64
8	reviews	643 non-null	int64
9	images	572 non-null	object
dtype	es: float64(1),	int64(4), object	t(5)

```
In [119]: df.describe()
```

Out[119]:

	listing_price	sale_price	discount	rating	reviews
count	643.000000	643.000000	643.0	643.000000	643.000000
mean	3875.762053	10213.676516	0.0	2.734837	7.181960
std	5889.947172	4513.289512	0.0	2.137756	15.968315
min	0.000000	1595.000000	0.0	0.000000	0.000000
25%	0.000000	6995.000000	0.0	0.000000	0.000000
50%	0.000000	9597.000000	0.0	3.800000	1.000000
75%	8495.000000	12797.000000	0.0	4.600000	6.000000
max	19995.000000	36500.000000	0.0	5.000000	223.000000

```
In [120]: #Drop discount column as it is constant and all 0 and also images as we u
df.drop(['discount', 'images'], axis=1, inplace=True)
```

```
In [121]: df.isnull().sum()
```

dtype: int64

```
In [122]: # Handle missing values
df['description'].fillna('', inplace=True)
```

In [123]: sns.displot(data=df, x="listing_price", kde=True)

Out[123]: <seaborn.axisgrid.FacetGrid at 0x7fdc00617040>

In [124]: sns.displot(data=df, x="sale_price", kde=True)

Out[124]: <seaborn.axisgrid.FacetGrid at 0x7fdc51ca1700>

In [125]: #Convert to \$ as sales numbers are not reflecting the true values
 df['sale_price'] = df['sale_price'] / 100
 df['listing_price'] = df['listing_price'] / 100

```
In [126]: | sns.displot(data=df, x="sale_price", kde=True)
Out[126]: <seaborn.axisgrid.FacetGrid at 0x7fdc31e3a070>
In [127]: sns.displot(data=df, x="listing_price", kde=True)
Out[127]: <seaborn.axisgrid.FacetGrid at 0x7fdc31ea4e80>
In [128]: #For each product with a listing_price of zero, we'll find a similar product.
          #Then, we'll impute the listing price of our target product with the sale
          from sklearn.feature extraction.text import TfidfVectorizer
          from sklearn.metrics.pairwise import linear kernel
          # 1. Vectorize product names using TF-IDF
          tfidf = TfidfVectorizer(stop words='english')
          tfidf matrix = tfidf.fit transform(df['product name'])
          # Function to get the index of the most similar product
          def get_similar_product(idx):
              cosine_similarities = linear_kernel(tfidf_matrix[idx], tfidf_matrix)
              # We ignore the product itself by setting its similarity to -1
              cosine similarities[idx] = -1
              return cosine_similarities.argmax()
          # 2. For each product with a listing price of zero, find the most similal
          zero_price_indices = df[df['listing_price'] == 0].index
          for idx in zero price indices:
              similar_idx = get_similar_product(idx)
              # Impute with the sale price of the most similar product
              df.at[idx, 'listing price'] = df.at[similar idx, 'sale price']
```

In [129]: df

Out[129]:

	product_name	product_id	listing_price	sale_price	brand	description	rating	reviews
0	Nike Air Force 1 '07 Essential	CJ1646- 600	55.97	74.95	Nike	Let your shoe game shimmer in the Nike Air For	0.0	0
1	Nike Air Force 1 '07	CT4328- 101	74.95	74.95	Nike	The legend lives on in the Nike Air Force 1 '0	0.0	0
2	Nike Air Force 1 Sage Low LX	Cl3482- 200	89.95	99.95	Nike	Taking both height and craft to new levels, th	0.0	0
3	Nike Air Max Dia SE	CD0479- 200	59.97	99.95	Nike	Designed for a woman's foot, the Nike Air Max	0.0	0
4	Nike Air Max Verona	CZ6156- 101	99.95	99.95	Nike	Pass on the good vibes in the Nike Air Max Ver	0.0	0
	•••							
638	Air Jordan 8 Retro	CI1236- 100	159.95	127.97	Nike	The Air Jordan 8 Retro recaptures the memorabl	5.0	1
639	Nike Phantom Venom Club IC	AO0578- 717	49.95	34.97	Nike	The Nike Phantom Venom Club IC is engineered f	0.0	0
640	Nike Mercurial Superfly 7 Academy TF	AT7978- 414	84.95	59.47	Nike	The soft upper of the Nike Mercurial Superfly	5.0	1
641	Nike Air Max 98	AH6799- 300	169.95	169.95	Nike	The Nike Air Max 98 features the OG design lin	4.0	4
642	Nike P-6000 SE	CJ9585- 600	89.95	62.97	Nike	A mash-up of Pegasus' past, the Nike P- 6000 SE	0.0	0

643 rows × 8 columns

In [130]: sns.displot(data=df, x="listing_price", kde=True)

Out[130]: <seaborn.axisgrid.FacetGrid at 0x7fdc31eae070>

```
In [131]: #Exclude 0 ratings as it means there are no current ratings for that proc
sns.displot(data=df[df["rating"] != 0], x="rating", kde=True)

Out[131]: <seaborn.axisgrid.FacetGrid at 0x7fdc31e609a0>
```

```
In [132]: sns.pairplot(df)
```

Out[132]: <seaborn.axisgrid.PairGrid at 0x7fdc31cffa00>

```
In [133]: df['price_difference'] = df['listing_price'] - df['sale_price']
```

If we consider listing_price as the original or recommended retail price of the product and sale_price as the price at which it's actually being sold: then IF

Listing Price > Sale Price indicates product is being sold at a discount i.e. clear out old inventory, compute with other sellers

Listing Price < Sale Price indicates if demand is high, prices might surge above the original listing price. could be part of collector's item dynamic pricing

```
In [134]: sns.displot(data=df, x="price_difference", kde=True)
Out[134]: <seaborn.axisgrid.FacetGrid at 0x7fdc519aef70>
In [135]: df['price_ratio'] = df['sale_price'] / df['listing_price']
In [136]: sns.heatmap(df.corr(), vmin=-1, vmax=1, annot=True);
In [137]: # price ratio
```

Out [137]:

price_category	price_ratio	
low	1.339110	0
low	1.000000	1
medium	1.111173	2
medium	1.666667	3
medium	1.000000	4

In [138]: df.head(5)

Out[138]:

	product_name	product_id	listing_price	sale_price	brand	description	rating	reviews	price_d
0	Nike Air Force 1 '07 Essential	CJ1646- 600	55.97	74.95	Nike	Let your shoe game shimmer in the Nike Air For	0.0	0	
1	Nike Air Force 1 '07	CT4328- 101	74.95	74.95	Nike	The legend lives on in the Nike Air Force 1 '0	0.0	0	
2	Nike Air Force 1 Sage Low LX	Cl3482- 200	89.95	99.95	Nike	Taking both height and craft to new levels, th	0.0	0	
3	Nike Air Max Dia SE	CD0479- 200	59.97	99.95	Nike	Designed for a woman's foot, the Nike Air Max	0.0	0	
4	Nike Air Max Verona	CZ6156- 101	99.95	99.95	Nike	Pass on the good vibes in the Nike Air Max Ver	0.0	0	

In [139]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 643 entries, 0 to 642
Data columns (total 11 columns):

Data	Cotamins (total II	CO Culli13 / I					
#	Column	Non-Null Count	Dtype				
0	product_name	643 non-null	object				
1	product_id	643 non-null	object				
2	listing_price	643 non-null	float64				
3	sale_price	643 non-null	float64				
4	brand	643 non-null	object				
5	description	643 non-null	object				
6	rating	643 non-null	float64				
7	reviews	643 non-null	int64				
8	<pre>price_difference</pre>	643 non-null	float64				
9	price_ratio	643 non-null	float64				
10	price_category	643 non-null	category				
dtype	<pre>dtypes: category(1), float64(5), int64(1), object(4)</pre>						
memoi	ry usage: 51.1+ KB						

```
In [140]: label_encoder = LabelEncoder()
# Convert 'price_category' to numeric using label encoding
df['price_category_encoded'] = label_encoder.fit_transform(df['price_cate
# Standardizing the data
features = ['listing_price', 'sale_price', 'rating', 'reviews', 'price_d.
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df[features])
# Hierarchical Clustering
linked = linkage(scaled_data, 'ward')
```



```
In [142]: scaled_df = pd.DataFrame(scaled_data, columns=features)
for col in df.columns:
    if col not in features:
        scaled_df[col] = df[col]
```

In [143]: scaled_df

Out[143]:

	listing_price	sale_price	rating	reviews	price_difference	price_ratio	price_category_enc
0	-1.250013	-0.602840	-1.280299	-0.450113	-1.037481	1.567450	-0.02
1	-0.816728	-0.602840	-1.280299	-0.450113	-0.323246	0.235658	-0.02
2	-0.474300	-0.048489	-1.280299	-0.450113	-0.699555	0.672268	1.19
3	-1.158699	-0.048489	-1.280299	-0.450113	-1.827730	2.853867	1.19
4	-0.246015	-0.048489	-1.280299	-0.450113	-0.323246	0.235658	1.19
638	1.123695	0.572827	1.060424	-0.387441	0.880191	-0.549560	-1.2!
639	-1.387441	-1.489358	-1.280299	-0.450113	0.240465	-0.942143	-0.02
640	-0.588443	-0.946094	1.060424	-0.387441	0.635590	-0.942305	-0.02
641	1.351980	1.503693	0.592279	-0.199422	-0.323246	0.235658	-1.2!
642	-0.474300	-0.868485	-1.280299	-0.450113	0.692036	-0.942318	-0.02

643 rows × 12 columns

```
In [144]: # 6 clusters at Ward's distance 20
cluster = AgglomerativeClustering(n_clusters=6, affinity='euclidean', lid
df['cluster_labels'] = cluster.fit_predict(scaled_df[features])
```

In [145]: df[df["cluster_labels"] == 1]

Out[145]:

	product_name	product_id	listing_price	sale_price	brand	description	rating	reviews	price
8	Nike Zoom Pegasus Turbo 2	AT8242- 009	159.95	159.95	Nike	The Nike Zoom Pegasus Turbo 2 is updated with	2.7	14	
9	Nike Air Max 270 React ENG	CK2595- 500	149.95	149.95	Nike	The Nike Air Max 270 React ENG combines a full	5.0	2	
16	Nike Air Max 270 React ENG	CK2608- 100	149.95	149.95	Nike	Refresh your step in the Nike Air Max 270 Reac	0.0	0	
17	Nike Air Max 97	921733- 104	159.95	169.95	Nike	The Nike Air Max 97 keeps a sneaker icon going	4.3	16	
20	Nike Air Max 97	CT4525- 001	169.95	159.95	Nike	Remastered from the OG that shook up the runni	0.0	0	
						•••			
631	Nike Metcon 5 AMP	CN5455- 160	119.95	119.95	Nike	The Nike Metcon 5 AMP arms you with stability	4.5	2	
632	Air Jordan 5 Retro	CD2722- 001	189.95	159.95	Nike	The Air Jordan 5 Retro for women gives a colou	3.3	3	
637	Nike React Metcon AMP	CT9155- 063	139.95	139.95	Nike	The Nike React Metcon AMP takes the stability 	3.0	1	
638	Air Jordan 8 Retro	CI1236- 100	159.95	127.97	Nike	The Air Jordan 8 Retro recaptures the memorabl	5.0	1	
641	Nike Air Max 98	AH6799- 300	169.95	169.95	Nike	The Nike Air Max 98 features the OG design lin	4.0	4	

169 rows × 13 columns

```
In [146]: from sklearn.cluster import KMeans

# Using the Elbow method to find the optimal number of clusters
wcss = []
for i in range(1, 16):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init:
    kmeans.fit(scaled_data)
    wcss.append(kmeans.inertia_)

# Plot the Elbow method
plt.plot(range(1, 16), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
In [147]: # Apply KMeans clustering
    optimal_clusters = 10
    kmeans = KMeans(n_clusters=optimal_clusters, init='k-means++', max_iter=:
    df['kmeans_cluster_labels'] = kmeans.fit_predict(scaled_data)
```



```
In []:

In []:

In []:
```

In	[1:	
In	[1:	
In	[1:	
In	[]:	
In	[1:	