U.S. Patent Application Serial No. 10/038,875 Response dated May 19, 2004 Reply to OA of February 20, 2004

IN THE SPECIFICATION:

Replace the table 1 beginning at page 69, line 1 as shown on the following page:

. U.S. Patent Application Serial No. 10/038,875 Response dated May 19, 2004 Reply to OA of February 20, 2004

	T					_							_	$\overline{}$	_					~···
Renarks					Impurities remaining in the starting material,	High in softness			1JoS			Aged at 140°C	Initial aging effected at	Tungstophosphoric acid supported by silica	Recoated, and cured twice	Tending to decrease at high temperature	Membrane not formed	Fragile, and easily broken	Soft	
Evaluation (3) Resistance to heat at 140°C (s/ca)	o	٥	۰	٥	o	o	v	۰	o	٥	o	۰	o	o	۰	o	Х	×	٥	я
Evaluation (2), Conductivity at 140°C (s/cm)	1.5 x 10°	1.2 x 10 ⁻²	8.0 × 10°	2.0 × 10.3	7.8 x 10-3	Not messured	Not measured	Not measured	Not measured	Not neasured	1.8 × 10-2	8.8 × 10-3	1.3 x 10-3	1.8 x 10-2	2.1 x 10-2	l. 5 x 10°	Could not be	Could not be measured	Not measured	,0I)
Evaluation (2) Conductivity at 60°C (s/ca)	3.4 x 10 ⁻²	2.2 x 10 ⁻²	1.0 × 10 ⁻²	2.5 x 10°	9.7 x 10 ⁻⁵	8.8 x 10 ⁻³	3.0 x 10 ⁻²	5.0 x 10 ⁻³	1.8 x 10°	3.0 x 10°	2.8 x 10°	8.7 x 10°	2.3 x 10 ⁻³	3.8 x 10°	3.7 x 10°2	L.1 x 10"	Could not be	1.01>	<10.4	1. 2 x 10 ⁻¹
Evaluation result (1) Bending test	o	0	o	o	o	o	o	o	o	٠	°		0	0	۰	٥	-	н	o	٥
Other additives									Octyltriethoxy silane	Tetraethoxy silane				Fine silica particles						
Quantity of water (E)	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only water of crystellization	Only water of crystallization	Only water of crystallization	Only water of crystallization	0. inl incorporated	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only water of crystallization	Only ester of crystallization	Only water of	Fater of crystallization and hydrochloric	Only water of crystellization	
Inorganic eciá (c)	Tungstophosphoric acid	Tungstophosphoric ecid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Malybdophasphoric acid	Tungstosilicic acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric acid	Tungstophosphoric	Hydrochloric acid	Tungstophosphoric acid	Sulfonic acid
(ôd' + ôn') "' of the skeleton section	o	0	0	Approximately 6	Approximately 6	Approximately 0	0	o	0	0 \	0	0	0	0	0	۲۷	Not applicable	0	0	
Skeleton section of the carbon-containing compound (B)	Octans	Hexane	Tetradecane	Diethylbenzene	Diethylbiphenyl	Dinethylsiloxane	Octane	Octane	Octane	Octane	Octane	Octane	Octane	Octane	Octane	Polytetramethylene Terramethylene glycol	Not included	Octane	Octane	
Starting material for the carbon-containing compound (0)	Bis(triethoxysilyl) octane	Bis(triethoxysily]) hexane	Bis(triethoxysilyl) tetradecane	Bis(triethoxysi)ylethyl) benzene	Bis(triethoxysilylethyl) biphenyl	Bis(triethoxysilylethyl) dimethylsiloxane	Bis(triethoxysilyl) octane	Bis(triethoxysily]) octane	Bis(triethoxysilyl) octane	Bis(triethoxysilyl) octane	Bis(triethoxysily]) octane	Bis(triethoxysily]) octane	Bis(triethoxysilyl) octane	Bis(triethoxysily]) octane	Bis(triethoxysilyl) octane	Bis(triethoxysilyi) tetramethylene glycol	(Tetraethoxysilane)	Bis (triethorysilyl) octane	Octyltriethoxysilane	Nafion117
	EXMPLE 1	2	E TIMNX3				EXMPLE 7	_							$\overline{}$				-	COMPARATIVE N

U.S. Patent Application Serial No. 10/038,875 Response dated May 19, 2004 Reply to OA of February 20, 2004

Replace the paragraph beginning at page 31, line 6 with the following rewritten paragraph:

Solubility of the carbon-containing compound (B) and inorganic acid (C) in each other is decreased, when the former has a low δp and δh value, forming the phase-separated structure shown in Figures 1 and 2. It is observed, when the $(\delta p^2 + \delta h^2)^{1/2}$ value is found for the joint between the compound (B) and three-dimensionally crosslinked structure (A) after it is substituted by hydrogen (i.e., for the skeleton section of the compound (B)) to be correlated with the phase-separated structure, that dissolution starts when $(\delta p^2 + \delta h^2)^{1/2}$ [[\leq]] $\geq 7(MPa)^{1/2}$, making it difficult to form the phase-separated structure, whereas the phase-separated structure is formed when $(\delta p^2 + \delta h^2)^{1/2} \leq 7(MPa)^{1/2}$, particularly notably when $(\delta p^2 + \delta h^2)^{1/2} \leq 5(MPa)^{1/2}$, to form the continuous structure of the inorganic acid (C), thus improving conductivity.