MA 204 Numerical Methods

Dr. Debopriya Mukherjee Lecture-1

January 9, 2024

Contents

 Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence, solution of a system of nonlinear equations.

Contents

- Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence, solution of a system of nonlinear equations.
- Interpolation by polynomials, divided differences, error of the interpolating polynomial, piecewise linear and cubic spline interpolation.

Motivation

Nonlinearity

One of the most frequent problem in engineering and science is to find the $\mathsf{root}(\mathsf{s})$ of a non-linear equation

$$f(x) = 0. (1)$$

Here,

- $f:[a,b] \to \mathbb{R}$ is a nonlinear function in x;
- $f \in C^1[a, b]$;
- Roots are isolated.

Root of the equation

Definition 1

Given a nonlinear function $f:[a,b]\to\mathbb{R}$, find a value of r for which f(r)=0. Such a solution value for r is called a **root** of the equation

$$f(x)=0,$$

or **zero** of the function f.

Root of the equation

Definition 1

Given a nonlinear function $f:[a,b]\to\mathbb{R}$, find a value of r for which f(r)=0. Such a solution value for r is called a **root** of the equation

$$f(x)=0,$$

or **zero** of the function f.

Problem

Given $f:[a,b]\to\mathbb{R}$ continuous. Find $r\in\mathbb{R}$ such that f(r)=0.

Root of the equation

Definition 1

Given a nonlinear function $f:[a,b]\to\mathbb{R}$, find a value of r for which f(r)=0. Such a solution value for r is called a **root** of the equation

$$f(x)=0,$$

or **zero** of the function f.

Problem

Given $f:[a,b]\to\mathbb{R}$ continuous. Find $r\in\mathbb{R}$ such that f(r)=0.

Approximation to a root

A point $x^* \in \mathbb{R}$ such that

- $|r-x^*|$ is **very small**, and
- $f(x^*)$ is **very close** to 0.

Example 2

$$f(x) = x^2 + 5x + 6$$

Example 2

$$f(x) = x^2 + 5x + 6$$

 $f(x) = 0 \implies x^2 + 5x + 6 = 0 \implies (x+2)(x+3) = 0$
 $\implies r_1 = -2, r_1 = -3.$

Roots are not unique.

Example 2

$$f(x) = x^2 + 5x + 6$$

 $f(x) = 0 \implies x^2 + 5x + 6 = 0 \implies (x+2)(x+3) = 0$
 $\implies r_1 = -2, r_1 = -3.$

Roots are not unique.

Example 3

$$f(x) = x^2 + 4x + 10$$

Example 2

$$f(x) = x^2 + 5x + 6$$

 $f(x) = 0 \implies x^2 + 5x + 6 = 0 \implies (x+2)(x+3) = 0$
 $\implies r_1 = -2, r_1 = -3.$

Roots are not unique.

Example 3

$$f(x) = x^2 + 4x + 10$$

 $f(x) = 0 \implies x^2 + 4x + 10 = 0 \implies (x+2)^2 + 6 = 0.$

As $(x+2)^2+6\geq 6 \ \forall \ x\in \mathbb{R}$. So, f(x)=0 has no real roots.

Overview of Chapter

Example 4

$$f(x) = x^2 + \cos(x) + e^x + \sqrt{x+1}$$

The equation f(x) = 0 might have real root/roots but the point is that it is very difficult to find the analytic expression of x.

In this course, we find the root/root(s) upto some precission.

Closed Domain Methods (Bracketing Methods)

In this course, we find the root/root(s) upto some precission.

- Closed Domain Methods (Bracketing Methods)
 - Bisection method
 - Regular Falsi method (Method of False position)

In this course, we find the root/root(s) upto some precission.

- Closed Domain Methods (Bracketing Methods)
 - Bisection method
 - Regular Falsi method (Method of False position)

Advantages: Always converges

Disadvantages: Locating the root initially

Closed Domain Methods (Bracketing Methods)

In this course, we find the root/root(s) upto some precission.

- 1 Closed Domain Methods (Bracketing Methods)
 - Bisection method
 - Regular Falsi method (Method of False position)

Advantages: Always converges

Disadvantages: Locating the root initially

- 2 Closed Domain Methods (Bracketing Methods)
 - Secant method
 - Fixed point theorem
 - Newton's method (Newton Raphson method)

In this course, we find the root/root(s) upto some precission.

- Closed Domain Methods (Bracketing Methods)
 - Bisection method
 - Regular Falsi method (Method of False position)

Advantages: Always converges

Disadvantages: Locating the root initially

- 2 Closed Domain Methods (Bracketing Methods)
 - Secant method
 - Fixed point theorem
 - Newton's method (Newton Raphson method)

Advantages: No need to locate the root initially

Disadvantages: May not converge

■ Description of the method/ Basic idea

- Description of the method/ Basic idea
- Error analysis of the iteration and convergence

- Description of the method/ Basic idea
- Error analysis of the iteration and convergence
- Rate/Order of convergence

- Description of the method/ Basic idea
- Error analysis of the iteration and convergence
- Rate/Order of convergence
- Geometry of the method (iteration) process

- Description of the method/ Basic idea
- Error analysis of the iteration and convergence
- Rate/Order of convergence
- Geometry of the method (iteration) process
- Computational Scheme

- Description of the method/ Basic idea
- Error analysis of the iteration and convergence
- Rate/Order of convergence
- Geometry of the method (iteration) process
- Computational Scheme
- Application and example

Bisection Method: Basic idea

This method is based on Intermediate Value Theorem.

Theorem

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = K.

Bisection Method: Basic idea

This method is based on Intermediate Value Theorem.

Theorem

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = K.

Bisection Method

- Suppose that f(x) is continuous on given interval [a, b].
- The function f satisfies the property f(a)f(b) < 0 with $f(a) \neq 0$ and $f(b) \neq 0$.
- By Intermediate Value Theorem, there exists a number c such that f(c) = 0.

Bisection Method: Description of the method

The Bisection method consists of the following steps:

- **Step 1:** Given an initial interval $[a_0, b_0]$, set n = 0.
- **Step 2:** Define $c_n = \frac{(a_n + b_n)}{2}$, the mid-point of interval $[a_n, b_n]$.
- **Step 3:** If $f(c_n) = 0$, then $x^* = c_n$ is the root.
 - If $f(c_n) \neq 0$, then either

$$f(a_n)f(c_n) < 0$$
 or $f(a_n)f(c_n) > 0$.

- If $f(a_n)f(c_n) < 0$, then $a_{n+1} = a_n$, $b_{n+1} = c_n$ and the root $x^* \in [a_{n+1}, b_{n+1}]$.
- If $f(a_n)f(c_n) > 0$, then $f(b_n)f(c_n) < 0$, this implies $a_{n+1} = c_n$, $b_{n+1} = b_n$ and the root $x^* \in [a_{n+1}, b_{n+1}]$.

Bisection Method

Step 4: Repeat

Step 5: If the root is not achieved in **Step 3**, then, find the length of new reduced interval $[a_{n+1}, b_{n+1}]$. If the length of the interval $b_{n+1} - a_{n+1}$ is less than a recommended positive number ε , then take the mid-point of this interval $(x^* = (b_{n+1} - a_{n+1})/2)$ as the approximate root of the equation f(x) = 0, otherwise go to Step 2.

Convergence and error in Bisection Method

Let $[a_0, b_0] = [a, b]$ be the initial interval with f(a)f(b) < 0. Define the approximate root as $c_n = (a_n + b_n)/2$. Then, there exists a root $x^* \in [a, b]$ such that

$$|c_n - x^*| \le (\frac{1}{2})^n (b - a).$$
 (2)

Moreover, to achieve the accuracy of $|c_n - x^*| \le \varepsilon$, it is sufficient to take

$$\frac{|b-a|}{2^n} \le \varepsilon$$
 i.e. $n \ge \frac{\log(|b-a|) - \log(\varepsilon)}{\log 2}$. (3)

Error analysis in Bisection Method

$$b_{n+1}-a_{n+1}=\frac{1}{2}(b_n-a_n), \quad n\geq 1.$$
 (4)

$$b_{n} - a_{n} = \frac{1}{2}(b_{n-1} - a_{n-1})$$

$$= \frac{1}{2^{2}}(b_{n-2} - a_{n-2}) = \frac{1}{2^{n-1}}(b_{1} - a_{1}).$$
 (5)

$$|c_n - x^*| \le c_n - a_n = b_n - c_n = \frac{1}{2}(b_n - a_n)$$

= $(\frac{1}{2})^n(b_1 - a_1) = (\frac{1}{2})^n(b - a).$ (6)

Therefore, $|c_n - x^*| \le (\frac{1}{2})^n (b - a)$. This implies that the iterates c_n converge to x^* as $n \to \infty$.

How many iterations?

Our goal is to have $|c_n - x^*| \le \varepsilon$. This will be satisfied if

$$(\frac{1}{2})^{n}(b-a) \leq \varepsilon \implies 2^{n} \geq \frac{b-a}{\varepsilon}$$

$$\implies n\log_{10}2 \geq \log_{10}(\frac{b-a}{\varepsilon})$$

$$\log(|b-a|) - \log(\varepsilon)$$

$$\implies n \geq \frac{log(|b-a|) - log(\varepsilon)}{log 2}.$$

Stop criteria

First select some tolerance $\varepsilon > 0$.

- **1** Small enough interval i.e., $b_n a_n \le \varepsilon$;
- 2 Small enough difference of consecutive approximations i.e.,

$$|c_{n+1}-c_n|\leq \varepsilon$$
 or $\frac{|c_{n+1}-c_n|}{|c_n|}\leq \varepsilon$;

- **3** Small enough functional value $|f(c_n)| \leq \varepsilon$;
- 4 Maximum number of iterations;
- 5 Any combination of the above.

Pros and Cons

Pros

- 1 This method is very easy to understand.
- 2 The sequence forms a cauchy sequence, and always converge to a solution.
- 3 It is often used as a starter for the more efficient methods.

Cons

- 1 This method is relatively slow to converge.
- 2 Choosing a guess close to the root may result in requiring many iterations to converge.