ConfuseNN: Interpreting convolutional neural network inferences in population genomics with data shuffling

Linh Tran

Genetics Graduate Interdisciplinary Program University of Arizona

David Castellano

Ryan Gutenkunst

THE

GENETICAL THEORY OF NATURAL SELECTION

BX

R. A. FISHER, Sc. D., F.R.S.

OXFORD AT THE CLARENDON PRESS 1930

PROCEEDINGS

NATIONAL ACADEMY OF SCIENCES

Volume 24

July 15, 1938

Number 7

Copyright 1938 by The National Academy of Sciences

THE DISTRIBUTION OF GENE FREQUENCIES UNDER IRREVERSIBLE MUTATION

By SEWALL WRIGHT

DEPARTMENT OF ZOÖLOGY, THE UNIVERSITY OF CHICAGO

Communicated June 13, 1938

Theoretical and Applied Genetics 38, 226-231 (1968)

Linkage Disequilibrium in Finite Populations

W. G. HILL and ALAN ROBERTSON*

Institute of Animal Genetics, Edinburgh, 9.

THE

GENETICAL THEORY OF NATURAL SELECTION

BY

R. A. FISHER, Sc. D., F.R.S.

OXFORD AT THE CLARENDON PRESS 1930

PROCEEDINGS

NATIONAL ACADEMY OF SCIENCES

Volume 24

July 15, 1938

Number 7

Copyright 1938 by The National Academy of Sciences

THE DISTRIBUTION OF GENE FREQUENCIES UNDER IRREVERSIBLE MUTATION

By SEWALL WRIGHT

DEPARTMENT OF ZOÖLOGY, THE UNIVERSITY OF CHICAGO

Communicated June 13, 1938

Theoretical and Applied Genetics 38, 226-231 (1968)

Linkage Disequilibrium in Finite Populations

W. G. HILL and ALAN ROBERTSON*

Institute of Animal Genetics, Edinburgh, 9.

JOURNAL ARTICLE

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Lex Flagel, Yaniv Brandvain, Daniel R Schrider

(2019)

ImaGene: a convolutional neural to quantify natural selection from data

Luis Torada¹⁷, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*} (2019)

Automatic inference of demographic parameters using generative adversarial networks

Zhanpeng Wang, Jiaping Wang, Michael Kourakos, Nhung Hoang, Hyong Hark Lee, Iain Mathieson, Sara Mathieson (2021)

Interpreting generative adversarial networks to infer natural selection from genetic data

Rebecca Riley, ¹ Iain Mathieson (D, ² Sara Mathieson (D^{1,*}) (2024

THE

GENETICAL THEORY OF NATURAL SELECTION

BY

R. A. FISHER, Sc. D., F.R.S.

OXFORD AT THE CLARENDON PRESS 1930

PROCEEDINGS

NATIONAL ACADEMY OF SCI

Volume 24

July 15, 1938

Copyright 1938 by The National Academy of Sciences

THE DISTRIBUTION OF GENE FREQ POP Gen

By SEWALL WRIGHT

DEPARTMENT OF ZOÖLOGY, THE UNIVERSITY OF CHICAGO

Communicated June 13, 1938

Theoretical and Applied Genetics 38, 226-231 (1968)

Linkage Disequilibrium in Finite Populations

W. G. HILL and ALAN ROBERTSON*

Institute of Animal Genetics, Edinburgh, 9.

JOURNAL ARTICLE

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Lex Flagel, Yaniv Brandvain, Daniel R Schrider

(2019)

Automatic generative

CNN

f demographic parameters using networks

Zhanpeng Wang, Jiaping Wang, Michael Kourakos, Nhung Hoang, Hyong Hark Lee, Iain Mathieson, Sara Mathieson (2021)

Interpreting generative adversarial networks to infernatural selection from genetic data

Rebecca Riley, ¹ Iain Mathieson (b), ² Sara Mathieson (b) ^{1,*} (2024)

TGGTCACTCTTATCATTATGT
TGGTCACTCTTATCATTATGT

TGGTCACTCTTAACATTCTGT
TGCTCATTCTTATCATTATGT

TGCTCA<mark>T</mark>TCTTATCATTATGT
TGCTCACTCTTAACATTATGT

TGGTCACTCTTATCATTATGT
TGGTCACTCTTATCATTATGT

TGGTCACTCTTAACATTCTGT
TGCTCATTCTTATCATTATGT

TGCTCATTCTTATCATTATGT
TGCTCACTCTTAACATTATGT

Segregating sites

Segregating sites

Segregating sites

ConfuseNN

Segregating sites

Segregating sites

ConfuseNN

Segregating sites

Segregating sites

ConfuseNN

Segregating sites

Hablotypes Hablot

Segregating sites

ConfuseNN

Disrupt spatial pattern

Segregating sites

Disrupt linkage disequilibrium (LD)

Kawakami et al. (2014) Distance (kb) *Mol. Ecol. Resour.*

Segregating sites

ConfuseNN

Disrupt spatial pattern

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

1 2 3 4 5 6 7 8 A B A B B B

Haplotypes

Segregating sites

ConfuseNN

Disrupt spatial pattern

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

Haplotypes

Segregating sites

ConfuseNN

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

4 5 В A В В В

Haplotypes

Segregating sites

ConfuseNN

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

1 2 3 4 5 6 7 8 A B B A B B B B B

Haplotypes

Segregating sites

ConfuseNN

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

TGCTCACTCTTAACATTATGT

1 2 3 4 5 6 7 8 A B B B B B B B B

Haplotypes

Segregating sites

ConfuseNN

Disrupt spatial pattern

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

Segregating sites

Haplotypes

ConfuseNN

Disrupt spatial pattern

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

Haplotypes

Segregating sites

ConfuseNN

Segregating sites

Disrupt linkage disequilibrium (LD)

Segregating sites

Segregating sites

Segregating sites

Segregating sites

Rebecca Riley, ¹ Iain Mathieson (D), ² Sara Mathieson (D) ^{1,*}

Rebecca Riley, ¹ Iain Mathieson (D), ² Sara Mathieson (D) ^{1,*}

Rebecca Riley, ¹ Iain Mathieson (D), ² Sara Mathieson (D) ^{1,*}

Rebecca Riley, ¹ Iain Mathieson (D), ² Sara Mathieson (D) ^{1,*}

Rebecca Riley, ¹ Iain Mathieson (D), ² Sara Mathieson (D), ¹*

Binary Classification: Neutral vs positive selection

1.0

Luis Torada^{1†}, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*}

Luis Torada^{1†}, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*}

Luis Torada^{1†}, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*}

Luis Torada^{1†}, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*} •

Luis Torada^{1†}, Lucrezia Lorenzon^{1,2†}, Alice Beddis^{1†}, Ulas Isildak³, Linda Pattini², Sara Mathieson⁴ and Matteo Fumagalli^{1*} ©

JOURNAL ARTICLE

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Regression

JOURNAL ARTICLE

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Regression

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Regression

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Regression

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference 3

Regression

Summary

- ConfuseNN: interpreting CNN inferences by disrupting genomic data features based on population genetic summary statistics.
- For most CNNs, we found the known features that primarily drives inference.
- We can use domain knowledge to inform and evaluate the adoption of deep learning algorithms for domain-specific problems.

