

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

OBJECTIVO:

- Construção de códigos para controlo de erros
- Abordar as bases matemáticas que permitem construir códigos (codificação de canal) para controlar os erros de transmissão em sistemas de telecomunicações não fiáveis ou ruidosos

Considera-se somente o caso da **transmissão** digital binária

Técnicas utilizadas em várias tecnologias de comunicações ... (e não só...)

1

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

Dígitos/Bits estão corretos?

VII. CÓDIGOS PARA CONTROLO DE ERROS

Teoria da Informação

Dado um canal de comunicação e uma fonte cujo débito de informação não excede a capacidade do canal, existe um código tal que a informação pode ser transmitida através do canal com uma frequência de erros arbitrariamente pequena, apesar da presença de ruido.

3

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

TIPOS DE ERROS

- Dois tipos de ruído que afectam as comunicações digitais:
 - <u>ruído branco:</u> erros de transmissão causados por este ruído são tais que o erro num determinado dígito não afecta os dígitos subsequentes (ocorrências de erros estatisticamente independentes, ou seja erros aleatórios)
 - <u>ruído impulsivo:</u> a sua presença caracteriza-se por longo intervalos de tempo em que os dígitos não são corrompidos, intercalados por molhos (*burts*) de dígitos corrompidos (ou seja, erros não são estatisticamente independentes)

VII. CÓDIGOS PARA CONTROLO DE ERROS

TIPOS DE ERROS

- Neste capítulo serão abordadas as bases para a construção de códigos de correcção de erros aleatórios
- embora, em termos de fundamentos, a base matemática é semelhante à usada nos códigos de correcção de erros aos "molhos"

5

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

7 bits of data		parity bit	
	even	odd	Exemplo de esquemas bastante simples - e.g. bit paridade - muito simples mas
0000000	0 0000000	10000000	muito limitado
1010001	1 1010001	0 1010001	
1101001	0 1101001	1 1101001	
1111111	1 1111111	01111111	

TIPOS DE CÓDIGOS

- Existem diferentes tipos de códigos para controlo de erros, iremos abordar:
 - CÓDIGOS DE BLOCO: cada conjunto de k dígitos de informação é acompanhado de n-k dígitos redundantes (dígitos de verificação de paridade) calculados a partir dos dígitos de informação, formando assim um bloco de tamanho fixo, de n dígitos, designada por palavra de código

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO (os mais usuais....)

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

- Um bloco de dígitos de informação será um tuplo $D = (d_0 \ d_1 \ d_2 \ ... \ d_{k-1})$ com $d_j \in \{0,1\}$, existem 2^k blocos de dígitos de informação ...
- ... cada um deles transformado numa palavra de código representada pelo tuplo $C = (c_0 \ c_1 \ c_2 \ ... \ c_{n-1})$ com $c_i \in \{0,1\}$
- Haverá apenas 2^k palavras de código válidas distintas
- As restantes 2ⁿ -2^k palavras não fazem parte do dicionário do código; se forem recebidas é sinal da ocorrência de erro

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

Rendimento de um código:

$$\rho = \frac{k}{n}$$

Conceito Distância de Hamming

Definição 9.1 <u>Distância de Hamming</u> entre duas palavras de um código de bloco, $d(C_i, C_j)$, é o número de posições em que as duas palavras, C_i e C_j , diferem.

9

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

- Conceito Distância de Hamming
 - Duas palavras de código idênticas estarão à distância zero...
 - Duas palavras de código distintas estarão a uma distância igual ou superior a uma unidade
 - ... O conceito de distância de hamming é passível de uma interpretação geométrica semelhante à distância euclideana entre dois pontos

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

• ... interpretação geométrica do conceito de distância de *Hamming* ... (correspondência entre 2ⁿ palavras distintas de *n* dígitos vs 2ⁿ vértices de um hipercubo num espaço de *n* dimensões)

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

Conceito de distância mínima de um código

Definição 9.2 Distância mínima de um código de bloco, d_{min}, é a menor das distâncias de Hamming entre quaisquer duas palavras desse código.

- A distância mínima de um código condiciona a sua capacidade de control de erros (tanto de detecção como de correcção)
- Quantos erros poderão ser detectados/corrigidos por um código com uma determinada distância mínima?

11

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

- Exemplo: código com distância mínima 2?
 pode detectar-se um único erro ... mas não se pode corrigir o erro
- E para um Código com distância mínima igual a 3?

Seja d_{min} a distância mínima de um código,

Para detectar até e_d erros: $d_{min} = e_d + 1$ Para corrigir até e_c erros: $d_{min} = 2e_c + 1$

 ... um código que corrige e_c erros pode ser alternativamente usado como um código detector de e_d = 2 e_c erros

13

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

Algumas propriedades / teoremas associados a códigos lineares de blocos

Definição 9.3 Peso de uma palavra C_i de um código de bloco, $p(C_i)$, é o número de dígitos 1 que a palavra C_i contém.

Definição 9.4 Peso mínimo de um código de bloco, $[p(C_i)]_{\min}$ é o peso da palavra de menor peso desse código, exceptuando a palavra de peso zero.

Teorema 9.1 — Distância mínima

A distância mínima de um código de bloco é igual ao seu peso mínimo.

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS LINEARES DE BLOCO

Existem vários tipos de códigos.... exemplo:

Codigos de hamming

• C(n,k) - verificam a relação

$$n = 2^{n-k} - 1$$

• códigos correctores de erros simples / detectores de erros duplos

15

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS CÍCLICOS BINÁRIOS

- São uma sub-classe dos códigos lineares de bloco sendo fáceis de realizar (estrutura matemática simples)
- Nestes códigos utiliza-se uma representação polinomial
- operações são realizadas em aritmética módulo 2
- A partir de uma palavra de código é possível obter outras

Definição 9.5 Um <u>código</u> linear de bloco C(n,k) é <u>cíclico</u> se possuir a sequinte propriedade:

Se o tuplo $C = (c_0, c_1, c_2, \ldots, c_{n-1})$ fôr uma palavra de código então o tuplo $C^{(1)} = (c_{n-1}, c_0, c_1, \ldots, c_{n-2})$ obtido por deslocação cíclica direita de uma posição de C também é uma palavra de código.

16

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

GERAÇÃO DE CÓDIGOS CÍCLICOS C(n,k)

- Utilização de um polinómio gerador, g(x)
- g(x) é usado para gerar o código (n,k) (g(x) é de grau n-k e divide o polinomio $x^n + 1$)
- Códigos podem ser gerados de duas formas:
 - originando palavras de código em que os dígitos de informação e de verificação estão misturados (códigos criptográficos)
 - ou, de forma sistemática, em que os dígitos de verificação e de informação aparecem separados

Vamos analisar em detalhe os segundos - códigos cíclicos sistemáticos -

17

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k)

Vai-se adoptar as seguinte sintaxe para as palavras de código (ver sebenta):

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k)

r(x) é o resto da divisão de $x^{n-k}D(x)$ por g(x)

em aritmética módulo 2

19

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS CÍCLICOS SISTEMÁTICOS C(n,k) **Exemplo:**

Seja $g(x) = 1 + x + x^3$ o polinómio gerador de um cíclico

(7,4). Determinar a palavra de código (sistemática) correspondente

à mensagem (dados) D = (1110).

$$r(x)$$
 é o resto da divisão de $x^{n-k}D(x)$ por $g(x)$

$$> D(x) = 1 + x + x^2$$

>
$$D(x) = 1 + x + x^2$$

> $x^{n-k} D(x) = x^3 D(x) = x^3 + x^4 + x^5$

$$>$$
 calcular $r(x) = ?$

> Palavra de código?

$$C = (\underbrace{010}_{r(x)} \underbrace{1110}_{D(x)})$$

$$\begin{array}{c|cccc}
x^5 + x^4 + x^3 & & x^3 + x + 1 \\
x^5 + & x^3 + x^2 & & x^2 + x \\
\hline
0 + x^4 + & 0 + x^2 & & \\
 & x^4 + & x^2 + x & & \\
\hline
0 + & 0 + x & = r(x)
\end{array}$$

$$C = (r_0, r_1, r_2, \dots, r_{n-k-1}, d_0, d_1, d_2, \dots, d_{k-1})$$

?

Considere que $g(x) = 1+x+x^4$ é o polinómio gerador de um código ciclico sistemático (15,11) utilizado para comunicação num canal de transmissão.

A palavra de código correspondente aos dados D = (11101000000) é C = (001111101000000) ?

$$\boldsymbol{r}(\boldsymbol{x})$$
é o resto da divisão de $\boldsymbol{x}^{n-k}D(\boldsymbol{x})$ por $g(\boldsymbol{x})$

$$C = \underbrace{(r_0, r_1, r_2, \dots, r_{n-k-1})}_{n-k \text{ dígitos}}, \underbrace{d_0, d_1, d_2, \dots, d_{k-1})}_{k \text{ dígitos}}$$
 de verificação da mensagem de paridade

21

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

EXEMPLO ...

Tabela 9.1: Código cíclico (7,4) gerado por $g(x) = 1 + x + x^3$

Iı	ıforı	naçâ	ão		Código criptográfico						Código sistemático							Peso
	D	(x)			C(x) =	D(x)	$(c) \cdot g$	(x)		C	(x):	= r(r) +	x^{n-}	$^kD(:$	r)	$p(C_i)$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	1	1	0	1	0	0	0	1	3
0	0	1	0	0	0	1	1	0	1	0	1	1	1	0	0	1	0	4
0	0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	1	1	3
0	1	0	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	3
0	1	0	1	0	1	1	1	0	0	1	1	1	0	0	1	0	1	4
0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	1	1	0	3
0	1	1	1	0	1	0	0	0	1	1	0	0	1	0	1	1	1	4
1	0	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	0	3
1	0	0	1	1	1	0	0	1	0	1	0	1	1	1	0	0	1	4
1	0	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1	0	3
1	0	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	4
1	1	0	0	1	0	1	1	1	0	0	1	0	1	1	1	0	0	4
1	1	0	1	1	0	1	0	0	0	1	0	0	0	1	1	0	1	3
1	1	1	0	1	0	0	0	1	1	0	0	1	0	1	1	1	0	4
1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	1	1	1	7

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

CÓDIGOS CÍCLICOS C(n.k)

Tabela 9.1: Código cíclico (7,4) gerado por $g(x) = 1 + x + x^3$

Ir	ıforı	naçâ	ão	Código criptográfico						Código sistemático							Peso	
	D((x)			C(x) =	D(x)	$(c) \cdot g$	(x)		$C(x) = r(x) + x^{n-k}D(x)$							$p(C_i)$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	1	1	0	1	0	0	0	1	3
0	0	1	0	0	0	1	1	0	1	0	1	1	1	0	0	1	0	4
0	0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	1	1	3
0	1	0	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	3
0	1	0	1	0	1	1	1	0	0	1	1	1	0	0	1	0	1	4
0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	1	1	0	3
0	1	1	1	0	1	0	0	0	1	1	0	0	1	0	1	1	1	4
1	0	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	0	3
1	0	0	1	1	1	0	0	1	0	1	0	1	1	1	0	0	1	4
1	0	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1	0	3
1	0	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	4
1	1	0	0	1	0	1	1	1	0	0	1	0	1	1	1	0	0	4
1	1	0	1	1	0	1	0	0	0	1	0	0	0	1	1	0	1	3
1	1	1	0	1	0	0	0	1	1	0	0	1	0	1	1	1	0	4
1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	1	1	1	7

Seja d_{\min} a distância mínima de um código,

 $\begin{array}{ll} \text{Para detectar at\'e } e_d \text{ erros:} & d_{\min} = e_d + 1 \\ \text{Para corrigir at\'e } e_c \text{ erros:} & d_{\min} = 2e_c + 1 \\ \end{array}$

- mesmo conjunto de palavras em ambas as codificações
- possível obter palavras de código por deslocação cíclica
- nos códigos <u>sistemáticos</u> há uma separação visível entre os dígitos de informação e verificação

distância mínima? capacidade de correcção / detecção?

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

GERAÇÃO DE CÓDIGOS CÍCLICOS SISTEMÁTICOS

O circuito contém:

- registos para n-k bits (dígitos de verificação)
- conjunto de ou-exclusivos
- conjunto de ligações abertas ou fechadas conforme os coeficientes do polinómio g(x)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

EXEMPLO

Esquematize um circuito codificador para um código sistemático (7,4) com $q(x) = 1 + x + x^3$

25

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

EXEMPLO

Verificar a operação do circuito utilizando a palavra de dados

D = (0101)

bit de	enti	rada	nos		saída dos				
entrada	re	egisto	os		$\operatorname{registos}$				
D(x)	r_0^e	r_1^e	r_2^e		r_0^s	r_1^s	r_2^s		
	0	0	0		0	0	0		
1	1	1	0	\rightarrow	1	1	0		
0	0	1	1	\rightarrow	0	1	1		
1	0	0	1	\rightarrow	0	0	1		
0	1	1	0	\rightarrow	1	1	0		

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

VII. CÓDIGOS PARA CONTROLO DE ERROS

SÍNDROMA

- As palavras de código, C(x), são transmitidas através do canal
- No caso de ocorrência de erro(s) a palavra que chega ao descodificador, R(x), poderá permitir saber qual a palavra transmitida

- O descodificador divide R(x) por g(x) obtendo um resto S(x) (designado por síndroma de R(x))
- Se S(x)=0 o receptor toma a palavra como válida Se $S(x) \neq 0$ o receptor assume então que houve erro e pode (ou não, se for só detector) tentar corrigir a palavra recorrendo a circuitos específicos e à informação presente em S(x)

27

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

Exemplo de Circuitos para Detecção / Correcção (breve referência)

Figura 9.6: Divisão de R(x) por g(x) no descodificador

Figura 9.7: Circuito corrector de erros simples

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

EXEMPLOS DE ALGUNS CÓDIGOS

- Nem todos os polinómios geradores são capazes de gerar um bom código
- Procura de códigos "bons" para um dado valor de *n* e rendimento *k/n* encontrar aqueles códigos que possuem maior distância mínima, ou seja códigos com maior capacidade de detecção / correcção de erros
- Exemplos de alguns códigos conhecidos.... Diferenças?

Tipo	n	k	ρ	d_{\min}	g(x)
códigos de	7	4	0.57	3	$x^3 + x + 1$
Hamming	15	11	0.73	3	$x^4 + x + 1$
	31	26	0.84	3	$x^5 + x^2 + 1$
códigos	15	7	0.46	5	$x^8 + x^7 + x^6 + x^4 + 1$
BCH	31	21	0.68	5	$x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$
	63	45	0.71	7	$x^{18} + x^{17} + x^{16} + x^{15} + x^9 + x^7 +$
					$+x^6 + x^3 + x^2 + x + 1$
código	23	12	0.52	7	$x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$
Golay					

29

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

EXEMPLOS DE ALGUNS CÓDIGOS

Curiosidade:

NASA - Voyager 1 e 2 1979/1980 Na transmissão de imagens a cores de Jupiter, Saturno foi usado um código *"parecido"* com este

Tipo	n	k	ρ	d_{\min}	g(x)
códigos de	7	4	0.57	3	$x^3 + x + 1$
Hamming	15	11	0.73	3	$x^4 + x + 1$
	31	26	0.84	3	$x^5 + x^2 + 1$
códigos	15	7	0.46	5	$x^8 + x^7 + x^6 + x^4 + 1$
BCH	31	21	0.68	5	$x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$
	63	45	0.71	7	$x^{18} + x^{17} + x^{16} + x^{15} + x^9 + x^7 +$
					$+x^6 + x^3 + x^2 + x + 1$
código	23	12	0.52	7	$x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$
Golay					

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VII. CÓDIGOS PARA CONTROLO DE ERROS

TÉCNICAS DE CORRECÇÃO DE ERROS Forward Error Correction (FEC)

- Correção de erros progressiva, quando os códigos para controlo de erros são utilizados como correctores
 - pouco usadas em sistemas de transmissão de dados.... a não ser em condições especiais
- Usado em <u>canais simplex</u> onde não é possível a retransmissão (ou é impraticável)
- Cenários em que o tempo de propagação é muito elevado (e.g. comunicação com sondas espaciais, ...)
- Técnicas também usadas em gravações digitais (CD, DVD, ...), memórias flash, hard drives

VII. CÓDIGOS PARA CONTROLO DE ERROS

TÉCNICAS DE CORRECÇÃO DE ERROS

- Automatic Repeat Request (ARQ)
 - Código usado só como detector
 - Correcção processa-se por repetição (<u>pedido de</u> <u>retransmissão</u> das palavras)
 - Necessário um canal de comunicação duplex
 - Técnicas utilizadas nos sistemas/tecnologias de transmissões de dados mais comuns
 - Técnicas ARQ Tópico expandido e coberto em detalhe noutra UC (*Redes de Computadores*)

Gralha - pág. 241

$$= (1+x) \cdot (1+x+x^{-}) = 1+x+x^{-}+x^{-}+x^{-}+x$$
$$= 1+x+x^{2}+x^{5}$$

dado que $x^3+x^3=(1+1)\cdot x^3=0\cdot x^3=0$. Portanto a palavra de código é $C=(1\,1\,1\,0\,0\,1\,0)$. Podem obter-se outras palavras do código por deslocação cíclica desta. A segunda coluna da tabela 9.1 lista o código completo assim calculado.

b) Na forma sistemática os três primeiros dígitos são os de verificação e os últimos quatro são os da mensagem. Os dígitos de verificação são os coeficientes do polinómio r(x) que é o resto da divisão de $x^{n-k}D(x)$ por g(x), isto é,

$$\frac{x^{n-k}D(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$$

Considere-se uma sequência qualquer de mensagem, por exêmplo $D=(1\,1\,1\,0)$, a que corresponde $D(x)=1+x^2+x^3$. Como n-k=7-4=3, tem-se $x^3D(x)=x^3+x^4+x^5$ e executants a divisão polinomial:

deve ler-se $D(x) = 1 + x + x^2$

33