

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Objective: Implement the **Selection sort** algorithm to sort the given list of N numbers and plot graph.

Scheduled Date:	Compiled Date:	Submitted Date:
10-9-2020	10-9-2020	17-9-2020

Algorithm:

```
void selection_sort(int numbers[], int n)
{
    int pass,j,temp,min,count;
    for(pass=1; pass<=n-1; pass++)
    {
        min= pass-1;
        for (j=pass; j<array_size;j++)
        {
            if(number[j])<numbers[min])
            min=j;
        }
        temp= numbers[min];
        numbers[min]= numbers[i];
        numbers[pass-1]= temp;
    }
}</pre>
```

Program:

```
#include<stdio.h>
#include<conio.h>
int count=0;
void main(){
void input(int[],int);
void print(int[],int);
void swap(int*,int*);
void selection(int[],int);
int arr[100],n;
printf("\n Enter thye size of Array");
scanf("%d",&n);
count++;
input(arr,n);
selection(arr,n);
print(arr,n);
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21

DAA Lab

```
}
void input(int arr[],int n){
                                                 //Taking Input
     printf("\n Enter Element In Array");
     count++;
     for(i=0;i<n;i++){
     count++;
     scanf("%d",&arr[i]);
     count++;
     }
}
//Swapping Value
void swap(int *element1, int *element2) {
count++;
     int temp=*element1;
     *element1=*element2;
     *element2=temp;
     count++;
count++;
     int i,j,t,min,count;
     for(i=0;i<n;i++){
     count++;
          min=i;
          for (j=i+1; j < n; j++) {
          count++;
               if(arr[j] < arr[min]) {</pre>
              min=j;
               }
               count++;
          }
          count++;
          swap(&arr[min], &arr[i]);
     }
void print(int arr[], int n) {
int i;
     printf("Selection Sort");
     for(i=0;i<n;i++){
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21

DAA Lab

```
printf("->%d->",arr[i]);
}
printf(" Count %d->",count);
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21

DAA Lab

Output:

Inputs	Best Case	Average Case	Worst Case
5	23	23	23
10	43	43	43
15	63	63	63
20	83	83	83
25	103	103	103

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Graph:

Conclusion:

Case	Running Time :	Running Time :	
	Growth of Function	Growth of	
	mathematically	Function after	
		observing	
		graph	
Best Case	O(n^2)	O(n^2)	
Average Case	O(n^2)	O(n^2)	
Worst Case	O(n^2)	O(n^2)	