CHAPTER 5 (Odd)

1. a.
$$R_T = 2 \Omega + 6 \Omega + 12 \Omega = 20 \Omega, I = \frac{E}{R_T} = \frac{60 \text{ V}}{20 \Omega} = 3 \text{ A}$$

b.
$$R_T = 0.2 \text{ M}\Omega + 1 \text{ M}\Omega + 0.33 \text{ M}\Omega + 0.1 \text{ M}\Omega = 1.63 \text{ M}\Omega$$

$$I = \frac{E}{R_T} = \frac{10 \text{ V}}{1.63 \text{ M}\Omega} = 6.135 \mu\text{A}$$

c.
$$R_T = 15 \Omega + 10 \Omega + 25 \Omega + 25 \Omega + 10 \Omega + 25 \Omega = 110 \Omega$$

 $I = \frac{E}{R_T} = \frac{35 \text{ V}}{110 \Omega} = 318.2 \text{ mA}$

d.
$$R_T = 1.2 \text{ k}\Omega + 4.5 \text{ k}\Omega + 1.3 \text{ k}\Omega + 3 \text{ k}\Omega = 10 \text{ k}\Omega$$

$$I = \frac{E}{R_T} = \frac{120 \text{ V}}{10 \text{ k}\Omega} = 12 \text{ mA}$$

3. a.
$$R_T = 60 \Omega + 1200 \Omega + 2740 \Omega = 4 k\Omega$$

 $E = IR_T = (4 \text{ mA})(4 \text{ k}\Omega) = 16 \text{ V}$

b.
$$R_T = 1.2 \Omega + 8.2 \Omega + 4.7 \Omega + 2.7 \Omega = 16.8 \Omega$$

 $E = IR_T = (250 \text{ mA})(16.8 \Omega) = 4.2 \text{ V}$

5. a.
$$R_T = 4.7 \Omega + 5.6 \Omega = 10.3 \Omega$$

$$I = \frac{16 \text{ V} - 8 \text{ V} - 4 \text{ V}}{10.3 \Omega} = \frac{4 \text{ V}}{10.3 \Omega} = 0.388 \text{ A (clockwise)}$$

b.
$$R_T = 4.7 \Omega + 1.2 \Omega + 5.6 \Omega = 11.5 \Omega$$

 $I = \frac{18 \text{ V} + 10 \text{ V} - 4 \text{ V}}{11.5 \Omega} = 2.087 \text{ A (counterclockwise)}$

7. a.
$$+10 \text{ V} - 2 \text{ V} - 3 \text{ V} - V_{ab} = 0$$
 b. $60 \text{ V} + 20 \text{ V} - V_{ab} - 10 \text{ V} = 0$
$$V_{ab} = 10 \text{ V} - 5 \text{ V} = 5 \text{ V}$$

$$V_{ab} = 80 \text{ V} - 10 \text{ V} = 70 \text{ V}$$

9.
$$I = \frac{27 \text{ V} - 9 \text{ V} - 5 \text{ V}}{2.2 \text{ k}\Omega + 1.2 \text{ k}\Omega + 0.56 \text{ k}\Omega} = \frac{13 \text{ V}}{3.96 \text{ k}\Omega} = 3.28 \text{ mA}$$

 $V_1 = IR = (3.28 \text{ mA})(2.2 \text{ k}\Omega) = 7.22 \text{ V}$

11. a.
$$R_T = 22 \Omega + 10 \Omega + 5.6 \Omega + 33 \Omega = 70.6 \Omega$$

$$I = \frac{E}{R_T} = \frac{6 \text{ V}}{70.6 \Omega} = 0.085 \text{ A} = 85 \text{ mA (CCW)}$$

$$V_1 = IR = (85 \text{ mA})(33 \Omega) = 2.805 \text{ V}$$

$$V_2 = IR = (85 \text{ mA})(5.6 \Omega) = 0.476 \text{ V}$$

$$V_3 = IR = (85 \text{ mA})(10 \Omega) = 0.850 \text{ V}$$

$$V_4 = IR = (85 \text{ mA})(22 \Omega) = 1.870 \text{ V}$$

b.
$$E = V_1 + V_2 + V_3 + V_4$$

 $6 V = 2.805 V + 0.476 V + 0.850 V + 1.870 V$
 $6 V \le 6 V$

c. 33
$$\Omega$$
: $P = I^2R = (85 \text{ mA})^2$ 33 $\Omega = 238.4 \text{ mW}$
5.6 Ω : $P = I^2R = (85 \text{ mA})^2$ 5.6 $\Omega = 40.5 \text{ mW}$
10 Ω : $P = I^2R = (85 \text{ mA})^2$ 10 $\Omega = 72.3 \text{ mW}$
22 Ω : $P = I^2R = (85 \text{ mA})^2$ 22 $\Omega = 159 \text{ mW}$

$$P_{\text{del}} = EI = (6 \text{ V})(85 \text{ mA}) = 510 \text{ mW}$$

 $P_{\text{del}} = 238.4 \text{ mW} + 40.5 \text{ mW} + 72.3 \text{ mW} + 159 \text{ mW}$
 $510 \text{ mW} \le 510 \text{ mW}$

d. All
$$\frac{1}{2}$$
 W.

13. a.
$$R_T = NR_1 = 8 \left[28 \frac{1}{8} \Omega \right] = 225 \Omega$$

$$I = \frac{E}{R_T} = \frac{120 \text{ V}}{225 \Omega} = 0.533 \text{ A} = \frac{8}{15} \text{ A}$$

b.
$$P = I^2 R = \left[\frac{8}{15} \text{ A}\right]^2 \left[28\frac{1}{8} \Omega\right] = \left[\frac{64}{225}\right] \left[\frac{225}{8}\right] = 8 \text{ W}$$

c.
$$V = IR = \left[\frac{8}{15} \text{ A}\right] \left[\frac{225}{8} \Omega\right] = 15 \text{ V}$$

d. All go out!

15. a.
$$V_{ab} = \frac{50 \Omega(100 \text{ V})}{50 \Omega + 25 \Omega} = 66.67 \text{ V}$$

b.
$$V_{ab} = \frac{-4 \Omega(80 \text{ V})}{4 \Omega + 6 \Omega + 10 \Omega + 20 \Omega} = \frac{-320 \text{ V}}{40} = -8 \text{ V}$$

c.
$$V_{ab} = \frac{(2 \text{ k}\Omega + 3 \text{ k}\Omega)(40 \text{ V})}{(4 \text{ k}\Omega + 1 \text{ k}\Omega + 2 \text{ k}\Omega + 3 \text{ k}\Omega)} = \frac{5(40 \text{ V})}{10} = 20 \text{ V}$$

d.
$$V_{ab} = \frac{(1.5 \Omega + 0.6 \Omega + 0.9 \Omega)(0.36 \text{ V})}{2.5 \Omega + 1.5 \Omega + 0.6 \Omega + 0.9 \Omega + 0.5 \Omega}$$
$$= \frac{(3 \Omega)(0.36 \text{ V})}{6 \Omega} = 0.18 \text{ V}$$

17. a. 12 V b.
$$V_3 = E - V_1 - V_2 = 40 \text{ V} - 4 \text{ V} - 12 \text{ V} = 24 \text{ V}$$

c.
$$\frac{V_3}{V_1} = \frac{R_3}{R_1}$$
 and $R_3 = \frac{V_3}{V_1} R_1 = \frac{24 \text{ V}}{4 \text{ V}} \cdot 10 \Omega = (6)(10 \Omega) = 60 \Omega$

d.
$$I = \frac{E}{R_T} = \frac{40 \text{ V}}{10 \Omega + 30 \Omega + 60 \Omega} = \frac{40 \text{ V}}{100 \Omega} = 0.4 \text{ A}$$

e.
$$R_3 = \frac{V_3}{I} = \frac{24 \text{ V}}{0.4 \text{ A}} = 60 \Omega \text{ (checks)}$$

19. a.
$$R_{\text{bulb}} = \frac{V}{I} = \frac{8 \text{ V}}{50 \text{ mA}} = 160 \Omega$$

$$V_{R_s} = 12 \text{ V} - 8 \text{ V} = 4 \text{ V} = \frac{R_s 12 \text{ V}}{R_s + 160 \Omega}$$

$$(R_s + 160 \Omega)4 \text{ V} = R_s 12 \text{ V}$$

$$4R_s + 640 \Omega = 12R_s$$

$$8R_s = 640 \Omega$$

$$R_s = \frac{640 \Omega}{8} = 80 \Omega$$

b.
$$P = I^2 R = (50 \text{ mA})^2 80 \Omega = 0.2 \text{ W} < \frac{1}{4} \text{ W}$$

21.
$$R_T = \frac{V}{I} = \frac{72 \text{ V}}{4 \text{ mA}} = 18 \text{ k}\Omega$$

$$V_{R_1} = 0.2V_{R_2}$$

$$IR_1 = 0.2IR_2$$
and $R_1 = 0.2R_2$
but $R_T = R_1 + R_2 = 18 \text{ k}\Omega$
and $0.2R_2 + R_2 = 18 \text{ k}\Omega$
or $R_2 = \frac{18 \text{ k}\Omega}{1.2} = 15 \text{ k}\Omega$
with $R_1 = 0.2R_2 = 0.2(15 \text{ k}\Omega) = 3 \text{ k}\Omega$

23. a.
$$E = V_{R_1} + V_{R_2} + V_{R_3}$$

 $= V_{R_1} + 3V_{R_1} + 4V_{R_2} = V_{R_1} + 3V_{R_1} + 4(3V_{R_1}) = V_{R_1} + 3V_{R_1} + 12V_{R_1}$
with $E = 16V_{R_1}$
and $V_{R_1} = \frac{E}{16} = \frac{64 \text{ V}}{16} = 4 \text{ V}$
 $V_{R_2} = 3V_{R_1} = 3(4 \text{ V}) = 12 \text{ V}$
 $V_{R_3} = 4V_{R_2} = 4(12 \text{ V}) = 48 \text{ V}$
 $R_1 = \frac{V_{R_1}}{I} = \frac{4 \text{ V}}{10 \text{ mA}} = 0.4 \text{ k}\Omega, R_2 = \frac{V_{R_2}}{I} = \frac{12 \text{ V}}{10 \text{ mA}} = 1.2 \text{ k}\Omega$
 $R_3 = \frac{V_{R_3}}{I} = \frac{48 \text{ V}}{10 \text{ mA}} = 4.8 \text{ k}\Omega$

b. Voltage levels remain the same
$$R_1 = 0.4 \text{ M}\Omega$$
, $R_2 = 1.2 \text{ M}\Omega$, $R_3 = 4.8 \text{ M}\Omega$

25. a.
$$I(CW) = \frac{120 \text{ V} - 60 \text{ V}}{6 \Omega + 3 \Omega} = \frac{60 \text{ V}}{9 \Omega} = 6.667 \text{ A}$$

 $V = IR = (6.667 \text{ A})(3 \Omega) = 20 \text{ V}$

b.
$$I(CW) = \frac{70 \text{ V} - 10 \text{ V}}{10 \Omega + 20 \Omega + 30 \Omega} = \frac{60 \text{ V}}{60 \Omega} = 1 \text{ A}$$

 $V = IR = (1 \text{ A})(10 \Omega) = 10 \text{ V}$

27.
$$I = \frac{47 \text{ V} - 20 \text{ V}}{2 \text{ k}\Omega + 3 \text{ k}\Omega + 4 \text{ k}\Omega} = \frac{27 \text{ V}}{9 \text{ k}\Omega} = 3 \text{ mA (CCW)}$$

 $V_{2k\Omega} = 6 \text{ V}, V_{3k\Omega} = 9 \text{ V}, V_{4k\Omega} = 12 \text{ V}$

a.
$$V_a = 20 \text{ V}, V_b = 20 \text{ V} + 6 \text{ V} = 26 \text{ V}, V_c = 20 \text{ V} + 6 \text{ V} + 9 \text{ V} = 35 \text{ V}$$

 $V_d = -12 \text{ V}, V_e = 0 \text{ V}$

b.
$$V_{ab} = -6 \text{ V}, V_{dc} = -47 \text{ V}, V_{cb} = 9 \text{ V}$$

c.
$$V_{ac} = -15 \text{ V}, V_{db} = -47 \text{ V} + 9 \text{ V} = -38 \text{ V}$$

29.
$$V_0 = 0 \text{ V}$$

 $V_4 = -12 \text{ V} + 2 \text{ V} = 0, V_4 = +10 \text{ V}$
 $V_7 = 4 \text{ V}$
 $V_{10} = 20 \text{ V}$
 $V_{23} = +6 \text{ V}$
 $V_{30} = -8 \text{ V}$
 $V_{67} = 0 \text{ V}$
 $V_{56} = -6 \text{ V}$
 $I = \frac{V_4}{4 \Omega} = \frac{V_{23}}{4 \Omega} = \frac{6 \text{ V}}{4 \Omega} = 1.5 \text{ A}^{\dagger}$

31.
$$R_{\text{int}} = \frac{V_{NL}}{I} - R_L = \frac{60 \text{ V}}{2 \text{ A}} - 28 \Omega = 2 \Omega$$

33.
$$R_{\text{int}} = \frac{V_{NL}}{I} - R_L = \frac{6 \text{ V}}{10 \text{ mA}} - 500 \Omega = 100 \Omega$$

35.
$$VR\% = \frac{R_{\text{int}}}{R_L} \times 100\% = \frac{0.05 \Omega}{3.3 \Omega} \times 100\%$$

= 1.52%

CHAPTER 5 (Even)

2. a.
$$R_T = 30 \Omega = 10 \Omega + 12 \Omega + R$$

 $R = 8 \Omega$
 $I = \frac{E}{R_T} = \frac{30 \text{ V}}{30 \Omega} = 1 \text{ A}$

b.
$$R_T = 60 \text{ k}\Omega = 12.6 \text{ k}\Omega + R + 0.4 \text{ k}\Omega + 45 \text{ k}\Omega$$

 $R = 2 \text{ k}\Omega$

c.
$$R_T = 220 \Omega = 50 \Omega + R_1 + 60 \Omega + R_1 + 10 \Omega$$

 $220 \Omega = 120 \Omega + 2R_1$
 $R_1 = \mathbf{50} \Omega = R_2$
 $I = \frac{E}{R_T} = \frac{120 \text{ V}}{220 \Omega} = \mathbf{0.5455 A}$

d.
$$R_T = 1600 \text{ k}\Omega = 200 \text{ k}\Omega + 56 \text{ k}\Omega + 100 \text{ k}\Omega + R$$
 $R = 1,224 \text{ k}\Omega = 1.244 \text{ M}\Omega$

$$I = \frac{E}{R_T} = \frac{50 \text{ V}}{1.6 \text{ M}\Omega} = 31.25 \mu\text{A}$$

4. a.
$$I = \frac{12 \text{ V}}{2 \Omega} = 6 \text{ A}$$

$$R_T = 16 \Omega = 5 \Omega + 2 \Omega + R$$

$$R = 9 \Omega$$

$$V_{5\Omega} = (I)(5 \Omega) = (6 \text{ A})(5 \Omega) = 30 \text{ V}$$

$$V_{9\Omega} = (I)(9 \Omega) = (6 \text{ A})(9 \Omega) = 54 \text{ V}$$

$$E = 30 \text{ V} + 12 \text{ V} + 54 \text{ V} = 96 \text{ V}$$

b.
$$P = I^2 R \Rightarrow I = \sqrt{\frac{P}{R}} = \sqrt{\frac{79.2 \text{ mW}}{2.2 \text{ k}\Omega}} = \sqrt{36 \times 10^{-6}}$$

 $= 6 \times 10^{-3} \text{A} = 6 \text{ mA}$
 $R = \frac{V}{I} = \frac{9 \text{ V}}{6 \text{ mA}} = 1.5 \text{ k}\Omega$
 $V_{3.3\text{k}\Omega} = IR = (6 \text{ mA})(3.3 \text{ k}\Omega) = 19.8 \text{ V}$
 $V_{2.2\text{k}\Omega} = IR = (6 \text{ mA})(2.2 \text{ k}\Omega) = 1.32 \text{ V}$
 $E = 1.32 \text{ V} + 9 \text{ V} + 19.8 \text{ V} = 30.12 \text{ V}$

6. a.
$$P = I^2 R \Rightarrow R = \frac{P}{I^2} = \frac{100 \text{ mW}}{(5 \text{ mA})^2} = 4 \text{ k}\Omega$$

$$I(CW) = 5 \text{ mA} = \frac{E + 20 \text{ V}}{5 \text{ k}\Omega + 4 \text{ k}\Omega}$$

$$E + 20 \text{ V} = 5 \text{ mA}(9 \text{ k}\Omega) = 45 \text{ V}$$

$$E = 45 \text{ V} - 20 \text{ V} = 25 \text{ V}$$

b.
$$I = \frac{16 \text{ V}}{2 \text{ k}\Omega} = 8 \text{ mA}, R = \frac{12 \text{ V}}{I} = \frac{12 \text{ V}}{8 \text{ mA}} = 1.5 \text{ k}\Omega$$

$$I(CCW) = 8 \text{ mA} = \frac{E - 8 \text{ V} - 6 \text{ V}}{2 \text{ k}\Omega + 1.5 \text{ k}\Omega}$$

$$E - 14 \text{ V} = 8 \text{ mA}(3.5 \text{ k}\Omega) = 28 \text{ V}$$

$$E = 28 \text{ V} + 14 \text{ V} = 42 \text{ V}$$

8. a.
$$V_2 = +10 \text{ V}$$

KVL: $+10 \text{ V} - 6 \text{ V} - V_1 = 0$
 $V_1 = 4 \text{ V}$

b. KVL:
$$24 \text{ V} - 10 \text{ V} - V_1 = 0$$

 $V_1 = 14 \text{ V}$
 $10 \text{ V} - V_2 + 6 \text{ V} = 0$
 $V_2 = 10 \text{ V} + 6 \text{ V} = 16 \text{ V}$

10. a.
$$R_T = 3 \text{ k}\Omega + 1 \text{ k}\Omega + 2 \text{ k}\Omega = 6 \text{ k}\Omega$$
 b. $E = V_1 + V_2 + V_3$
 $I = \frac{E}{R_T} = \frac{120 \text{ V}}{6 \text{ k}\Omega} = 20 \text{ mA}$ 120 V $\stackrel{\checkmark}{=} 60 \text{ V} + 20 \text{ V} + 40 \text{ V} = 120 \text{ V}$
 $V_1 = IR_1 = (20 \text{ mA})(3 \text{ k}\Omega) = 60 \text{ V}$
 $V_2 = IR_2 = (20 \text{ mA})(1 \text{ k}\Omega) = 20 \text{ V}$
 $V_3 = IR_3 = (20 \text{ mA})(2 \text{ k}\Omega) = 40 \text{ V}$

c.
$$P_1 = V_1 I = (60 \text{ V})(20 \times 10^{-3} \text{ A}) = 1.2 \text{ W}$$

 $P_2 = V_2 I = (20 \text{ V})(20 \text{ mA}) = 0.4 \text{ W}$
 $P_3 = V_3 I = (40 \text{ V})(20 \text{ mA}) = 0.8 \text{ W}$
 $P_{\text{del}} = EI = (120 \text{ V})(20 \text{ mA}) = 2.4 \text{ W}$
 $P_{\text{del}} = P_1 + P_2 + P_3$
 $2.4 \text{ W} = 1.2 \text{ W} + 0.4 \text{ W} + 0.8 \text{ W} = 2.4 \text{ W}$

d.
$$R_1 \Rightarrow 2W, R_2 \Rightarrow \frac{1}{2} W, R_3 \Rightarrow 1 W$$

12. a.
$$V = 120 \text{ V} - 80 \text{ V} = 40 \text{ V}$$

 $I = \frac{40 \text{ V}}{20 \Omega} = 2\text{A}$
 $R = \frac{V}{I} = \frac{80 \text{ V}}{2 \text{ A}} = 40 \Omega$
b. $I = \frac{8 \text{ V}}{2.2 \Omega} = 3.636 \text{ A}$
 $V_1 = I(4.7 \Omega) = 17.09 \text{ V}$
 $V_2 = I(6.8 \Omega) = 24.73 \text{ V}$

c.
$$P = I^2R \Rightarrow R = P/I^2 = 21 \text{ W}/(1 \text{ A})^2 = 21 \Omega$$

 $V_1 = IR = (1 \text{ A})(2 \Omega) = 2 \text{ V}$
 $V_2 = IR = (1 \text{ A})(1 \Omega) = 1 \text{ V}$
 $V_3 = IR = (1 \text{ A})(21 \Omega) = 21 \text{ V}$
 $E = V_1 + V_2 + V_3 = 2 \text{ V} + 1 \text{ V} + 21 \text{ V} = 24 \text{ V}$

d.
$$P = I^2 R \Rightarrow I = \sqrt{\frac{P}{R}} = \sqrt{\frac{4 W}{1 \Omega}} = 2 A$$

$$R_1 = \frac{P}{I^2} = \frac{8 W}{(2 A)^2} = \frac{8}{4} = 2 \Omega$$

$$R_T = 16 \Omega = R_1 + R_2 + 1 \Omega$$

$$= 2 \Omega + R_2 + 1 \Omega$$

$$R_2 = 13 \Omega$$

$$E = IR_T = (2 A)(16 \Omega) = 32 V$$

14.
$$R_{1} + R_{2} = 6 \Omega, P_{del} = P_{1} + P_{2}$$

$$24 \text{ V} \cdot I = I^{2} \cdot 6 \Omega + 24 \text{ W}$$

$$I^{2} - 4I + 4 = 0$$

$$I = \frac{-(-4) \pm \sqrt{16 - 4(1)(4)}}{2(1)} = 2 \text{ A}$$
and
$$R = \frac{P}{I^{2}} = \frac{24 \text{ W}}{(2 \text{ A})^{2}} = \frac{24 \text{ W}}{4 \text{ A}^{2}} = 6 \Omega$$

16. a.
$$V_R = 4 \text{ V} = \frac{R(20 \text{ V})}{R + 2 \text{ k}\Omega + 6 \text{ k}\Omega}$$
 b. $V = 140 \text{ V} = \frac{(R + 6 \Omega)(200 \text{ V})}{(R + 6 \Omega) + 3 \Omega}$

$$4R + 32 \text{ k}\Omega = 20 \text{ R}$$

$$R = 2 \text{ k}\Omega$$

$$R = 1 \Omega$$

18.
$$I_{R_2} = \frac{8 \text{ V}}{8 \Omega} = 1 \text{ A}, R_1 = \frac{V_{R_1}}{I} = \frac{8 \text{ V}}{1 \text{ A}} = 8 \Omega, R_3 = \frac{V_{R_3}}{I} = \frac{4 \text{ V}}{1 \text{ A}} = 4 \Omega$$

20.
$$V_{R_2} = 48 \text{ V} - 12 \text{ V} = 36 \text{ V}$$

$$R_2 = \frac{V_{R_2}}{I} = \frac{36 \text{ V}}{16 \text{ mA}} = 2.25 \text{ k}\Omega$$

$$V_{R_3} = 12 \text{ V} - 0 \text{ V} = 12 \text{ V}$$

$$R_3 = \frac{V_{R_3}}{I} = \frac{12 \text{ V}}{16 \text{ mA}} = 0.75 \text{ k}\Omega$$

$$V_{R_4} = 20 \text{ V}$$

$$R_4 = \frac{V_{R_4}}{I} = \frac{20 \text{ V}}{16 \text{ mA}} = 1.25 \text{ k}\Omega$$

$$V_{R_1} = E - V_{R_2} - V_{R_3} - V_{R_4}$$

$$= 100 \text{ V} - 36 \text{ V} - 12 \text{ V} - 20 \text{ V} = 32 \text{ V}$$

$$R_1 = \frac{V_{R_1}}{I} = \frac{32 \text{ V}}{16 \text{ mA}} = 2 \text{ k}\Omega$$

22.
$$V_{R_3} = \frac{R_3(60 \text{ V})}{R_3 + 2R_3 + 7R_3} = \frac{R_3(60 \text{ V})}{10R_3} = 6 \text{ V}$$

$$V_{R_2} = 7V_{R_3} = 7(6 \text{ V}) = 42 \text{ V}$$

$$V_{R_1} = 2V_{R_3} = 2(6 \text{ V}) = 12 \text{ V}$$

24. a.
$$V_a = +12 \text{ V} - 8 \text{ V} = 4 \text{ V}$$
 b. $V_a = 20 \text{ V} - 6 \text{ V} = 14 \text{ V}$ $V_b = -8 \text{ V}$ $V_{ab} = V_a - V_b = 4 \text{ V} - (-8 \text{ V}) = 12 \text{ V}$ $V_{ab} = V_a - V_b = 14 \text{ V} - 4 \text{ V} = 10 \text{ V}$

c.
$$V_a = +10 \text{ V} + 3 \text{ V} = 13 \text{ V}$$

 $V_b = -8 \text{ V}$
 $V_{ab} = 21 \text{ V}$

26. a.
$$I = \frac{16 \text{ V} - 8 \text{ V}}{10 \Omega + 20 \Omega} = \frac{8 \text{ V}}{30 \Omega} = 0.267 \text{ A (CW)}$$

 $V_a = 16 \text{ V} - I(10 \Omega) = 16 \text{ V} - (0.267 \text{ A})(10 \Omega) = 16 \text{ V} - 2.67 \text{ V} = 13.33 \text{ V}$
 $V_1 = IR = (0.267 \text{ A})(20 \Omega) = 5.34 \text{ V}$

b.
$$I = \frac{12 \text{ V} + 10 \text{ V} + 8 \text{ V}}{2.2 \text{ k}\Omega + 3.3 \text{ k}\Omega} = \frac{30 \text{ V}}{5.5 \text{ k}\Omega} = 5.455 \text{ mA}$$

$$V_a = 12 \text{ V} - I(2.2 \text{ k}\Omega) + 10 \text{ V}$$

$$= 12 \text{ V} - (5.455 \text{ mA})(2.2 \text{ k}\Omega) + 10 \text{ V}$$

$$= 12 \text{ V} - 12 \text{ V} + 10 \text{ V} = 10 \text{ V}$$

$$V_1 = I(2.2 \text{ k}\Omega) = (5.455 \text{ mA})(2.2 \text{ k}\Omega) = 12 \text{ V}$$

28.
$$I = \frac{44 \text{ V} - 20 \text{ V}}{2 \text{ k}\Omega + 4 \text{ k}\Omega + 6 \text{ k}\Omega} = \frac{24 \text{ V}}{12 \text{ k}\Omega} = 2 \text{ mA (CW)}$$

$$V_{2k\Omega} = IR = (2 \text{ mA})(2 \text{ k}\Omega) = 4 \text{ V}$$

$$V_{4k\Omega} = IR = (2 \text{ mA})(4 \text{ k}\Omega) = 8 \text{ V}$$

$$V_{6k\Omega} = IR = (2 \text{ mA})(6 \text{ k}\Omega) = 12 \text{ V}$$

a.
$$V_a = 44 \text{ V}, V_b = 44 \text{ V} - 4 \text{ V} = 40 \text{ V}, V_c = 44 \text{ V} - 4 \text{ V} - 8 \text{ V} = 32 \text{ V}$$

 $V_d = 20 \text{ V}$

b.
$$V_{ab} = V_{2k\Omega} = 4 \text{ V}, V_{cb} = -V_{4k\Omega} = -8 \text{ V}$$

 $V_{cd} = V_{6k\Omega} = 12 \text{ V}$

c.
$$V_{ad} = V_a - V_d = 44 \text{ V} - 20 \text{ V} = 24 \text{ V}$$

 $V_{ca} = V_c - V_a = 32 \text{ V} - 44 \text{ V} = -12 \text{ V}$

30.
$$V_0 = 0 \text{ V}, V_{03} = 0 \text{ V}, V_2 = (2 \text{ mA})(3 \text{ k}\Omega + 1 \text{ k}\Omega) = (2 \text{ mA})(4 \text{ k}\Omega) = 8 \text{ V}$$

 $V_{23} = 8 \text{ V}, V_{12} = 20 \text{ V} - 8 \text{ V} = 12 \text{ V}, \sum I_i = \sum I_o \Rightarrow I_i = 2 \text{ mA} + 5 \text{ mA} + 10 \text{ mA} = 17 \text{ mA}$

32.
$$V_L = \frac{3.3 \ \Omega(12 \ V)}{3.3 \ \Omega + 0.05 \ \Omega} = 11.82 \ V$$

$$I = \frac{12 \ V}{3.35 \ \Omega} = 3.58 \ A$$

$$P = I^2 R = (3.58 \ A)^2 \ 0.05 \ \Omega = 0.64 \ W$$

34.
$$VR\% = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%$$

 $V_{FL} = IR = (2 \text{ A})(28 \Omega) = 56 \text{ V}$
 $VR\% = \frac{60 \text{ V} - 56 \text{ V}}{56 \text{ V}} \times 100\% = 7.14\%$