

Chapter

ISO-OSI Reference Model and IEEE Standards

Chapter Objectives

- Discuss the most popular ISO-OSI 7layer communication reference model
- Explain the reference model and standards relevant to network communications
- Describe the different IEEE standards that apply to different types of networks

Module 1

An Overview of ISO and its 7-Layer OSI Model

Models and Standards in Communication

- Communication
 - Established standards
 - Standards are known as protocols
- Implementation
 - A framework is helpful in the design of hardware and software for communication
 - ISO-OSI Model serves this purpose
 - ISO-OSI supersedes the TCP/IP model

ISO and OSI Defined

- ISO
 - International Standards Organization
- OSI
 - Open Systems Interconnect

OSI Model Background

- Introduced in 1978 and revised in 1984
- Formulates the communication process into structured layers
- There are seven layers in the model, hence the name the 7-Layer model
- The model acts as a frame of reference in the design of communications and networking products

The Layered Approach to Communication

- 7. Application
- 6. Presentation
 - 5. Session
 - 4. Transport
 - 3. Network
 - 2. Data Link
 - 1. Physical

Division of Layers

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Upper Layers

Middle Layer

Lower Layers

The Function of a Layer

- Each layer deals with one aspect of networking
 - Layer 1 deals with the communication media
- Each layer communicates with the adjacent layers
 - In both directions
 - Ex: Network layer communicates with:
 - Transport layer
 - Data Link layer
- Each layer formats the data packet
 - Ex: Adds or deletes addresses

Role of Layers

Communication Between Layers

The Role of Layers in Point-topoint Communication

Virtual Communication Between Layers

End of Module 1

Module 2

The ISO Upper Layers

© N. Ganesan, Ph.D., All rights reserved.

Module Objectives

- Application Layer
- Presentation Layer
- Session Layer
- Transport Layer
- Network Layer

7. Application Layer

- Purpose
 - User application to network service interface
- Examples
 - File request from server
 - E-mail services
 - etc.

Application Layer Function

- General network access
- Flow control
- Error recovery

6. Presentation Layer

- Purpose
 - Formats data for exchange between points of communication
 - Ex: Between nodes in a network
- Example:
 - Redirector software
 - Formats for transmission to the server

Presentation Layer Function

- Protocol conversion
- Data translation
- Encryption
- Character set conversion
- Expansion of graphics command

Redirector Example

5. Session Layer

- Purpose
 - Oversee a communication session
 - Establish
 - Maintain
 - Terminate
- Example

Session Layer Function

- Performs name recognition and related security
- Synchronization between sender and receiver
- Assignment of time for transmission
 - Start time
 - End time etc.

4. Transport Layer

- Purpose
 - Repackage proper and efficient delivery of packages
 - Error free
 - In sequence
 - Without duplication
- Example

Transport Layer Function

- For sending data
 - Repackage the message to fit into packets
 - Split long messages
 - Assemble small messages
- On receiving data
 - Perform the reverse
 - Send an acknowledgment to the sender
- Solve packet problems
 - During transmission and reception

3. Network Layer

- Purpose
 - Addressing and routing the packets
- Example application at the router
 - If the packet size is large, splits into small packets

Network Layer Function

- Address messages
- Address translation from logical to physical
 - Ex: nganesa ----> 102.13.345.25
- Routing of data
 - Based on priority
 - Best path at the time of transmission
- Congestion control

End of Module 2

Module 3

The ISO Lower Layers

2. Data Link Layer

- Purpose
 - Manages the flow of data over the physical media
- Responsible for error-free transmission over the physical media
- Assures error-free data submission to the Network Layer

Data Link Layer Function

- Point of origin
 - Packages data for transmission over physical line
- Receiving end
 - Packages data for submission to the network layer
- Deals with network transmission protocols
 - IEEE 802. protocols

Data Link Layer Subdivision

- Improvement to ISO Model
- Logical Link Control (LLC) sub-layer
 - Manages service access points (logical link)
 - Error and flow control
- Media Access Control (MAC) sub-layer
 - Applies directly to network card communication
 - Access control

Logical Link Control

Media Access Control Application

Network Interface Card driver

1. Physical Layer

- Purpose
 - Deals with the transmission of 0s and 1s over the physical media
 - Translation of bits into signals
- Example
 - Pulse duration determination
 - Transmission synchronization
 - etc.

Physical Layer Function

- Encode bits into signals
 - Carry data from the h higher layers
- Define the interface to the card
 - Electrical
 - Mechanical
 - Functional
 - Example: Pin count on the connector

Lower Layers Application Areas

- Special significance to network card design
- Applies to general LAN hardware design
 - Exceptions
 - Routers etc.
- 802. standards
 - Centered around the lower layers
 - Applies to networks

End of Module 3

Module 4

Summary of ISO-OSI Functional Layers

Layer Operations

- At each layer, additional information is added to the data packet
- An example would be information related to the IP protocol that is added at Layer 3

Packet: General Format

Header Trailer

Data

A general concept of packets serves as a prerequisite to the understanding of the ISO-OSI model.

Some Header Information Added at Various Layers

- Packet arrival information
- Receiver's address
- Sender's address
- Synchronization character

Data

- Actual data
- May contain error correction code
 - Performed on individual characters of the data
 - Example: Parity
- Size may vary
 - Depending on the protocol
 - Example
 - 802.3 specifies range of data packet length

Some Trailer Information Added at Various Layers

- Error correction code
 - Character oriented
 - VRC (Parity Checking)
- Packet oriented error correction codes
 - LRC
 - CRC

A Note on CRC

- Used widely
- Sophisticated
 - Polynomial of deferent degrees are used for error correction
 - Example: Degrees 16, 32 etc.
- CRC-32 is a more stringent error checking procedure than CRC-16

Some of the Major Components of the Data Packet

Standardizing Packet Formatting

- Packets must conform to a standard in order for the nodes in a network to be able to communicate with one another
- The International Standards Organization (ISO) has provided a reference model
- Standards are established for operations at each layer of the ISO/OSI model in the form of protocols

End of Module 4

Module 5

The IEEE 802 Group and the Standards

IEEE Background

- Institution of Electrical and Electronic Engineers (IEEE)
 - A professional non-profit organization
- Project group 802
 - Responsible for setting standards relating to the physical link of the network

IEEE 802 Focus

- OSI Reference
 - Data Link layer
 - Physical layer
- Areas
 - Network cards and cables
 - Network electronic/optical/ wireless communication standard as they apply to the lower two layers mentioned above
 - WAN connectivity

Upper Layer Focus

- IETF
- W3C
- ISO/IEC
- The above agencies focus on setting standards on higher level protocol
 - TCP, IP etc.

IEEE 802 Committees And Responsibilities

- 802.1
 - Internetworking
- 802.2
 - Logical Link Control (LLC)
- 802.3
 - CSMA/CD
- 802.4
 - Token Bus LAN

IEEE 802 Committees and Responsibilities (Cont.)

- 802.5
 - Token Ring LAN
- 802.6
 - Metropolitan Area Network
- 802.7
 - Broadband Technical Advisory Group
- 802.8
 - Fiber-Optic Technical Advisory Group

IEEE 802 (Cont.)

- 802.9
 - Integrated Voice/Data Networks
- 802.10
 - Network Security
- 802.11
 - Wireless Networks
- 802.12
 - Demand Priority Access LANs
 - Ex: 100BaseVG-AnyLAN

OSI Sub-Layer Reference to IEEE 802 Standards

Logical
Link
Control
(LLC)

802.2

Media Access Control (MAC) 802.3 802.4 802.5 802.12 802.1 for both.

End of Module 5

END OF MODULE

END OF CHAPTER