UNIVERSIDAD AUTÓNOMA "TOMAS FRÍAS" CARRERA DE INGENIERÍA DE SISTEMAS

Materia:	Arqu 522)	itectura d	TOTOSI BOUTE	
Docente:	Ing. Gustavo A. Puita Choque			N° Práctica
Auxiliar:	Univ. A			
Estudiante:	Univ. D	Dafne Ros	sario Tapia Parisaca	
20/11/2024	Fecha publicación			7
06/12/2024	Fecha de entrega			/
Grupo:	1	Sede	Potosí	•

Responda las siguientes preguntas de MANERA CONCISA

LAS RESPUESTAS DE MANERA DIGITAL en formato .pdf

1) ¿Qué es un UPS y en qué situaciones se utiliza?

Un UPS (Uninterruptible Power Supply) Es un dispositivo que proporciona energía eléctrica temporal a equipos conectados cuando ocurre una interrupción en el suministro eléctrico principal. Además, regula la calidad de la energía eléctrica, protegiendo los dispositivos contra picos de tensión, caídas de voltaje y otros problemas de energía.

Se utiliza principalmente en las siguientes situaciones:

Situaciones donde se utiliza un UPS:

- 1. Protección de equipos electrónicos sensibles:
- ♣ Servidores, computadoras, centros de datos.
- Equipos médicos críticos en hospitales.

- Sistemas de telecomunicaciones.
- 2. Evitar pérdida de datos:
- Durante apagones, permite guardar información y apagar los dispositivos de manera controlada.

- 3. Continuidad operativa:
- Mantiene en funcionamiento dispositivos esenciales (cámaras de seguridad, routers, etc.) durante interrupciones de corta duración.

- 4. Protección contra fluctuaciones eléctricas:
- Picos, caídas de tensión, o ruido eléctrico.

4

2) De las siguientes fuentes indique que tipo de modularidad tiene cada una de ellas.

- 1) Fuente Modular: Que todos los cables son desmontables (claramente visible).
- 2) Fuente No Modular: Que los cables están fijos y no se pueden quitar.
- 3) Fuente No Modular: Que los cables están fijos y no se pueden quitar.
- 4) Fuente Modular: Que todos los cables son desmontables (claramente visible).
- 3) Explique las etapas del proceso de transformación de la energía eléctrica que va desde energía alterna a continua, que son necesarios para poder alimentar los componentes de forma correcta de la PC. Transformacion

1. Recepción de CA: La fuente de poder (PSU) recibe corriente alterna (110/220 V) de la red eléctrica.

2. Filtrado y protección: Filtros EMI y circuitos de protección eliminan 🗙 ruidos y protegen contra sobretensiones. Filtrado X 3. Transformación: Un transformador reduce el voltaje de entrada a niveles manejables. Estabilizacion 4. Rectificación: Diodos convierten la corriente alterna (CA) en corriente continua pulsante (CC) 5. Filtrado: Condensadores suavizan las ondulaciones de la CC. 6. Regulación: Reguladores estabilizan los voltajes necesarios: 12 V, 5 V y 3.3 V. 7. Distribución: Los voltajes regulados se envían a los componentes (CPU, GPU, discos, etc.). 4) Con los siguientes datos: O Tipo de Placa Base: Para servidores > Procesadores: 2: AMD Ryzen 7 7700X 4.50 GHz ➤ Memorias RAM: 1: DDR4, Módulo DDR5 16 GB o 1: DDR4, Módulo DDR5 16 GB o 1: DDR4, Módulo DDR5 16 GB o 1: DDR4, Módulo DDR5 16 GB > Tarjetas Gráficas: 1: NVIDIA, Geforce RTX 4090 24Gb o 1: ADM Radeon, RX 7800 XT 16Gb > de estas ➤ Unidades Ópticas: o 1: Disquetera o 3: Lector CD-ROM ➤ Tarjetas PCI Express:

2: Tarjeta Ethernet

de 2 puertos ➤ Tarjetas PCI: o 1:

Tarjetas WI-FI ➤ Ratones: o 1:

Ratón Gaming cualquiera ➤

Teclados:

1: Teclado Gaming

cualquiera ➤ Kit de Refrigeración

Líquida: o 1: Kit de 250 mm con

iluminación RGB ➤ Bomba de

Refrigeración Líquida:

o 1: Bomba con

Depósito ➤ Ventiladores: o 4: 140

mm

Otros Dispositivos: o 2: Tira de 30 LEDs

Determinar cuánto consumiría una fuente de alimentación que tendría que suministrar anergia a todos estos componentes. Para esto puede usar calculadores de energía como:

- https://latam.msi.com/power-supply-calculator
- https://pc-builds.com/es/power-supply-calculator/
- https://www.geeknetic.es/calculadora-fuente-

<u>alimentacion/</u> Mostrar en capturas de pantalla cuantos watts le salió.

COMPONENTES A INCLUIR

- 1. Procesadores: 2x AMD Ryzen 7 7700X.
- 2. **RAM**: 4x 16GB DDR5.
- 3. **GPU**: NVIDIA GeForce RTX 4090 y AMD Radeon RX 7800 XT.
- 4. Almacenamiento: 4x SSD PCle 4.
- 5. **Unidades ópticas**: 1 disquetera, 3 lectores de CD-ROM.
- 6. **Refrigeración**: 1 kit de refrigeración líquida con RGB y bomba con depósito.
- 7. Ventiladores: 4x de 140 mm.
- 8. **PCI**: 2 tarjetas Ethernet (2 puertos cada una) y 1 tarjeta Wi-Fi.
- 9. Extras: 2 tiras LED de 30 LEDs cada una, ratón y teclado gaming.
 - ✓ Geeknetic: Estiman que necesitarías una fuente de alimentación de entre 1000W y 1200W

Pregunta invalida por no mostrar el resultado del calculo

5) Mencione 4 conectores que se usan de las fuentes de alimentación en la actualidad es decir en 2024 (NO MENCIONAR CONECTORES

OBSOLETOS)

En 2024, los conectores utilizados en fuentes de alimentación modernas incluven:

1. Conector ATX de 24 pines

Suministra energía al procesador (CPU).

Alimenta la placa base, siendo el principal conector para distribuir energía.

- 2. Conector EPS de 8 pines (o 4+4 pines)
- 3. Conector PCIe de 6+2 pines o 12VHPWR

Diseñado para tarjetas gráficas de alto rendimiento. El 12VHPWR (también conocido como conector de 12+4 pines o ATX 3.0) se usa para GPUs modernas.

4. Conectores SATA

Proporcionan energía a discos duros, SSDs y otros dispositivos periféricos como unidades ópticas.