Graphsearch

Note Title

Review:	Irrevocable	vs. Ten	rative Strat	ور افع
	Implicit vs.	Explicit Gr	-aphs	Weighted Graphs us
	Implicit vs.		•	Uniform Cost
	Irrevo cable	•	Tentative	
	Flail Blinkly		Backmack	
	Hill Climbing		Improvener	ts to Backtrack
	Simulated An		rule s	election
	Tabu Search		- symmetr)
	Genetic Algori	•		backward search
	Swarm Optim	lization	Graphsearc	

Graphsearch:

- Maintain all nodes generated, not just current path
- each node will have <u>one</u> parent as its predecessor

 (if nodes rewr w/different parents, choose <u>one</u> that provides

 best path from start to current node)

Jo result will be a "search tree" where each node has exactly one path back to the root

This is a subtree of the problem graph

- How to Lecide which node to examine next is the philosophy that provides different versions of graphsonrd algorithm: Breadth-First Search, Depth-First Search and Best-first Search

hert choose a node at level I and examine it

B has children ©, © F, ©
has been new

has been gunerated previously

Is (B) preferable as a parent to (C)'s current parent?

For Preadth-first search

with uniform cost

(i.e, all edges have source.

weight—we are only trying

to minimize total # of

moves) answer is No.

But, if edges have potentially

different weights, answer

Could be YES.

may need to reassign a "parent pointer" for any previously generated node

- Chas children 6 already seen and expanded no need to redirect
- H has no children
- 1 has 1 + 3

[previously seen - D is selected as []s new parent (shorter path)

Graph search will be a generalized algorithm that describes both

Breadth-first and Depth-First Search - the depth of each node is

an important appribate and will need to be recalculated after reassigning parent links

When generating a node's offspring ("expanding" the node): - some of the offspring may not have been seen before [automatically retained as offspring of this node] - some off spring may have been seen before, but not expanded like (in these examples choose to re-adjust who the parent of that node is, based on path cost from root to that node Flike (I) in third example -We find Sharter path to I The se cond time

- some offspring may have been seen before and were expanded

[like I in last example

