Introducción a la Genómica UNAL nov 2017

Alejandro Caceres ISGlobal, Barcelona

October 13, 2017

Control de Calidad

Los datos de microarrays son sometidos un control de calidad

- SNPs: Calidad del genotipado o que biológimcamente no correspondan a lo esperado
- Sujetos: Sujetos que son "outliers de la muestra: ancestría o parentesco

Genotipado

En illumina los datos crudos son las intensidades de cada alelo

GenomeStudio

Es el software de Illumina para hacer el genotipado de los SNPs (clustering)

- el control de calidad en el genotipado está dado por el clustering
- reporta un calldate y un valor del numero de sujetos con genotipado aceptable por SNP
- genera los genotipos en formato PLINK

Control de Calidad por Sujetos

- que el sexo es el reportado o detección de aneploidas como XXY, XYY, etc
- cosanginidad mas alta de la esperado en el diseo del estudio

Identidad por descendencia

La consanginidad (identity by descent) se puede calcular en PLINK por medio de la opción –genome

```
acaceres@IMW00680:~$ plink --bfile [filename prefix] --generation
```

y produce un reporte en el fichero plink.genome

Control de calidad de SNPs

- ► Call-rate (dada por genomeStudio): > 80%
- ► Minor allele frequency (MAF): > 0.01 o > 0.05
- Hardy Weinberg Equillibrium: menos de 3 o 4 desviaciones standard
- Mendelian errors: si hay trios que no tengan errores de trasmisión

Equilibrio de Hardy Weinberg

En una población en donde no hay fuerzas que cambien la frecuencia alelica p (de un SNP) debemos encontar

- ▶ p² fracción de homicigotos
- ▶ 2 * p * (p 1) fracción de heretocigotos
- ▶ $(1-p)^2$ fracción de homocigotos variantes

que se deducen por la asociación aleatoria entre los cromosomas paternos y maternos

Equilibrio de Hardy Weinberg

SNPs que no están en WHE pueden presentar

- ▶ Problemas de genotipación. Por ejemplo una sonda defectuosa en la mitad de la poblacin (Alta disviación-Probable).
- Fuerzas evolutivas sobre el SNP (Baja disviación-Menons probable)).

Si la desviacin en biológica como en el segundo caso, SNPs vacinos que estan en LD también deben estar desviados.

Errores Mendelianos

Para un estudio con trios los SNPs de

- dos padres homocigotos para el mismo alelo no pueden tener un hijo que no sea homocigoto
- un padre homocigoto y una madre heterocigota no pueden tener un hijo que no sea homocigoto alternativo
- un padre homocigoto para un alelo y una madre homocigota para el otro alele no pueden tener un hijo homocigoto para ningún alelo

desviaciones en estas reglas son herrores de trasmisión mendelianos e indican error en genotipación

Software

- el control de calidad para MAF, HWE y call-rate se puede hacer con la mayoría de paquertes
- veamos como se have con SNPstats

En R cargemos la librería y los datos

```
library("snpStats")

## Loading required package: survival
## Loading required package: Matrix

load("datos/snpsSNPstats.RData")
snpsSNPstats

## A SnpMatrix with 2504 rows and 1863 columns
## Row names: HG00096 ... NA21144
## Col names: rs555347111 ... rs558158882
```

col.summary calcula call-rate, MAF, HWE para todos los SNPs en la base de datos

```
sum <- col.summary(snpsSNPstats)</pre>
dim(sum)
## [1] 1863
head(sum)
             Calls Call.rate Certain.calls
##
                                                R.A.F.
                                                           MAF
                                    1 0.073682109 0.073682109
## rs555347111 2504
## rs573543994 2504
                                       1 0.012180511 0.012180511
## rs542617372 2504
                                       1 0.076078275 0.076078275
## rs562398147 2504
                                       1 0.011781150 0.011781150
## rs576107214 2504
                                    1 0.021365815 0.021365815
## rs188856175 2504
                                       1 0.008785942 0.008785942
                  P.AA
                         P.AB P.BB
##
                                                 z.HWE
## rs555347111 0.8554313 0.141773163 0.002795527 1.930779
## rs573543994 0.9796326 0.016373802 0.003993610 -15.991828
## rs542617372 0.8582268 0.131389776 0.010383387 -3.271542
## rs562398147 0.9844249 0.007587859 0.007987220 -33.733301
```

obtengamos los SNPs con call-rate ¿0.8

```
Callrate <- sum$Call.rate
selectCallRate <- Callrate > 0.8
length(selectCallRate)

## [1] 1863
head(selectCallRate)

## [1] TRUE TRUE TRUE TRUE TRUE TRUE
```

obtengamos los SNPs con frequencia mayor a 0.01

```
MAF <- sum$MAF
selectMAF <- MAF > 0.01
length(selectMAF)

## [1] 1863
head(selectMAF)

## [1] TRUE TRUE TRUE TRUE FALSE
```

Cuales SNPs tienen MAF > 0.01 y CallRate > 0.80

```
selectMAFCAllrete <- selectMAF & selectCallRate
head(selectMAFCAllrete)
## [1] TRUE TRUE TRUE TRUE TRUE FALSE
table(selectMAFCAllrete)
## selectMAFCAllrete
## FALSE TRUE
## 420 1443
snpnames <- colnames(snpsSNPstats)</pre>
length(snpnames)
## [1] 1863
head(snpnames)
   [1] "rs555347111" "rs573543994" "rs542617372" "rs562398147" "rs57610
## [6] "rs188856175"
```

teniendo los SNPs se puede seleccionar una submatriz de los genotipos con sólo estos SNPs

```
NewsnpsSNPstats<-snpsSNPstats[,selsnpnames]
NewsnpsSNPstats

## A SnpMatrix with 2504 rows and 1443 columns
## Row names: HG00096 ... NA21144
## Col names: rs555347111 ... rs558158882
```

Ejercicio

- Seleccionar ahora los SNPs que tienen abs(sum\$z.HWE) < 6
- Crear una nueva matriz con los SNPs seleccionados.

desviaciones en estas reglas son herrores de trasmisión mendelianos e indican error en genotipación

ejercicio

```
selhw<-abs(sum$z.HWE) < 6
NewsnpsSNPstats<-snpsSNPstats[, selhw & selectMAF & selectCallRate]
save(NewsnpsSNPstats, file="NewsnpsSNPstats.RData")</pre>
```