

IIC2223 – Teoría de autómatas y lenguajes formales – 2' 2024

IIC2224 – Autómatas y Compiladores

TAREA 6

Publicación: Viernes 22 de noviembre.

Entrega: Jueves 28 de noviembre hasta las 23:59 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si está en blanco).

• Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.

• Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.

• Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.

• Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.

• La tarea es individual.

Pregunta 1

Sea $\mathcal{D} = (Q, \Sigma, \Delta, q_0, F)$ un PDA alternativo. Recuerde que $\vdash_{\mathcal{D}}^*$ es la relación entre configuraciones tal que, para todo $\gamma_1, \gamma_2 \in Q^+$ y $w_1, w_2 \in \Sigma^*$, se tiene que $(\gamma_1, w_1) \vdash_{\mathcal{D}}^* (\gamma_2, w_2)$ si, y solo si, desde la configuración (γ_1, w_1) se puede llegar a la configuración (γ_2, w_2) en 0 o más pasos de \mathcal{D} .

1. Demuestre que para todo PDA alternativo \mathcal{D} , el siguiente lenguaje es libre de contexto:

$$\mathcal{L}_1(\mathcal{D}) = \{ w \in \Sigma^* \mid \exists q \in F. \, \exists \gamma \in Q^*. \, (q_0, w) \vdash_{\mathcal{D}}^* (q\gamma, \epsilon) \}$$

2. Demuestre que para todo PDA alternativo \mathcal{D} , el siguiente lenguaje es libre de contexto:

$$\mathcal{L}_{2}(\mathcal{D}) = \{ w \in \Sigma^{*} \mid \exists q \in F. \exists v \in \Sigma^{*}. (q_{0}, wv) \vdash_{\mathcal{D}}^{*} (q, \epsilon) \}$$

Pregunta 2

Una gramática libre de contexto $\mathcal{G} = (V, \Sigma, P, S)$ se dice lineal si todas sus producciones son de la forma:

$$X \to aY$$
, $X \to Ya$ o $X \to a$

con $X, Y \in V$ y $a \in \Sigma$.

1. Demuestre un algoritmo que dado una gramática $\mathcal{G} = (V, \Sigma, P, S)$ y una variable $X \in P$, calcule el conjunto first₁(X) en tiempo O(|V| + |P|).

2. Demuestre un algoritmo que dado una gramática $\mathcal{G} = (V, \Sigma, P, S)$ y una variable $X \in P$, compute el conjunto $follow_1(X)$ en tiempo O(|V| + |P|).

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.