NON-LINEAR REGRESSION

Eksponensial Tipe I

Exponential Model I

 The model is given as follows:

$$y = be^{ax}$$
 (1) where,

- y is denoted response
- x is denoted predictor
- a, b are coefficients need to be found.

Contoh

Diberikan 14 data berikut ini:

<u>i</u>	x_i	y_i	i	x_i	y_i
1	0	0.07	8	1	2.33
2	0.14	0.92	9	1.14	3.11
3	0.28	0.96	10	1.28	2.98
4	0.42	1.14	11	1.42	4.52
5	0.57	1.04	12	1.57	5.15
6	0.71	1.44	13	1.71	6.23
7	0.85	1.6	14	1.85	8.4

Tentukanlah model regresi tak linier eksponensial I

```
In [1]:
```

```
import numpy as np
x = np.array([0, 0.14, 0.28, 0.42, 0.57, 0.71, 0.85, 1, 1.14, 1.28, 1.42, 1.57, 1.71
y = np.array([0.07, 0.92, 0.96, 1.14, 1.04, 1.44, 1.6, 2.33, 3.11, 2.98, 4.52, 5.15,
```

Simple Idea

 Generally, to handle this problem we need to use logarithm such as

$$ln y = ln(be^{ax})$$

or can be written as

$$ln y = ln b + ax$$
(2)

Thus (2) can be solved as in simple linear regression to find coefficients ($\ln b$ and a).

Mengubah data tabel

```
In [2]:
    m = len(y)
    sum_x = np.sum(x)
    sum_x2 = np.sum(x**2)

    ln_y = np.log(y)
    sum_ln_y = np.sum(ln_y)
    sum_xln_y = np.sum(ln_y*x)
```

Menentukan Matriks A dan vektor y

```
In [4]:
    c = np.linalg.inv(A)@b
    print('Coefficients:')
    print(c)
```

Coefficients: [-1.04994646 1.78502423]

Definisikan fungsi hampiran

```
def Non_reg(a1,a0,x):
    return np.exp(a0)*np.exp(a1*x)
```

Plot data dan fungsi

```
import matplotlib.pyplot as plt #library untuk plot
xp = np.linspace(min(x), max(x), 100)
```

```
yp = Non_reg(c[1],c[0],xp)
plt.plot(xp,yp, color = 'red', linewidth=3)
plt.scatter(x,y, color='blue')
plt.xlabel("x")
plt.ylabel("y")
plt.legend(('$\hat{y}(x)=b e^{ax}$',), loc='center left')
plt.grid()
plt.show()
```


Eksponensial Tipe II

Exponential Model II

The model is given as follows:

$$y = bx^a \tag{3}$$

- where,
- y is denoted response
- x is denoted predictor
- a, b are coefficients need to be found.

Contoh

Diberikan 14 data berikut ini:

i	x_i	y_i	i	x_i	y_i
1	0.02	0.17	8	1.08	2.16
2	0.15	1.01	9	1.23	2.13
3	0.31	1.26	10	1.38	2.22
4	0.46	1.4	11	1.54	2.37
5	0.62	1.79	12	1.69	2.2
6	0.77	1.77	13	1.85	2.25
7	0.92	1.87	14	2	2.49

Tentukanlah model regresi tak linier eksponensial tipe II

menyiapkan data

```
import numpy as np
x = np.array([0.02, 0.15, 0.31, 0.46, 0.62, 0.77, 0.92, 1.08, 1.23, 1.38, 1.54, 1.69
y = np.array([0.17, 1.01, 1.26, 1.4, 1.79, 1.77, 1.87, 2.16, 2.13, 2.22, 2.37, 2.2,
```

Simple Idea

 Generally, to handle this problem we need to use logarithm such as

$$ln y = ln(bx^a)$$

or can be written as

$$ln y = ln b + a ln x \tag{4}$$

Thus (4) can be solved as in simple linear regression to find coefficients ($\ln b$ and a).

Mengubah data tabel

```
In [8]:
    m = len(x)
    ln_x = np.log(x)
    sum_ln_x = np.sum(ln_x)
    sum_ln_x2 = np.sum(ln_x**2)

ln_y = np.log(y)
    sum_ln_y = np.sum(ln_y)
    sum_xln_y = np.sum(ln_y*ln_x)
```

Definisikan Matriks A dan vektor y

```
[6.28300868 8.29154466]
```

Hitung Koefisien

```
In [10]:
    c = np.linalg.inv(A)@b
    print('Coefficients:')
    print(c)

    Coefficients:
    [0.6665144   0.53395247]
    Definisikan fungsi hampiran
In [11]:

def New reg(al. a0. v):
```

```
In [11]:
    def Non_reg(a1,a0,x):
        return np.exp(a0)*x**a1
```

Plot data

```
import matplotlib.pyplot as plt #library untuk plot
xp = np.linspace(min(x), max(x), 100)
yp = Non_reg(c[1],c[0],xp)

plt.plot(xp,yp, color = 'red', linewidth=3)
plt.scatter(x,y, color='blue')
plt.xlabel("x")
plt.ylabel("y")
plt.legend(('$\hat{y}(x)=b x^a$',), loc='upper left')
plt.grid()
plt.show()
```


Machine Learning Approach

Langkah 1. Menyiapkan data

Pada langkah ini menyiapkan data advertising.

```
import pandas as pd

url = 'http://bit.ly/Test-PHN'
data = pd.read_csv(url, index_col=0)

data
```

\cap	4-	[12]	
U	uч	T >	۰

	TV	radio	newspaper	sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
•••				
196	38.2	3.7	13.8	7.6
197	94.2	4.9	8.1	9.7
198	177.0	9.3	6.4	12.8
199	283.6	42.0	66.2	25.5
200	232.1	8.6	8.7	13.4

200 rows × 4 columns

Langkah 2. Membagi data menjadi 80\% training dan 20\% testing

```
import numpy as np
msk = np.random.rand(len(data)) < 0.8
train = data[msk]
test = data[~msk]
test.head()</pre>
```

Out[14]:

	TV	radio	newspaper	sales
4	151.5	41.3	58.5	18.5
9	8.6	2.1	1.0	4.8
23	13.2	15.9	49.6	5.6
35	95.7	1.4	7.4	9.5
39	43.1	26.7	35.1	10.1

Langkah 3. Menyiapkan data x (TV) dan y(sales)

```
In [15]: m = len(train.TV) #number of rows data

x = np.asanyarray(train[['TV']])
y = np.asanyarray(train[['sales']])
```

plot sebaran data

```
import matplotlib.pyplot as plt #library untuk plot

plt.scatter(x,y, color='blue')
 plt.xlabel("x")
 plt.ylabel("y")
 plt.grid()
 plt.show()
```


Langkah 4. Menentukan model yang akan digunakan.

Dalam hal ini akan menggunakan model eksponensial II, selanjutnya mengubah data

```
In [17]:
    m = len(y)
    ln_x = np.log(x)
    sum_ln_x = np.sum(ln_x)
    sum_ln_x2 = np.sum(ln_x**2)

ln_y = np.log(y)
    sum_ln_y = np.sum(ln_y)
    sum_xln_y = np.sum(ln_y*ln_x)
```

Mendefinisikan matriks A dan vektor y

```
In [19]:
    c = np.linalg.inv(A)@b
    print(c)
```

[0.93879482 0.3495912]

mendefinisikan fungsi

```
In [20]:
    def Non_reg(a1,a0,x):
        return np.exp(a0)*x**a1
```

Langkah 5. Mengevaluasi model

Menentukan tabel baru yang berisi data latih/testing

```
In [21]:
    m = len(test.TV)
    x = np.asanyarray(test[['TV']])
```

```
y = np.asanyarray(test[['sales']])

ln_x = np.log(x)
ln_y = np.log(y)
```

selanjutnya tentukan $\hat{y} = be^{ax}$

```
In [22]: yhat = np.exp(c[0])*x**c[1]
```

Atau dalam $\ln \hat{y} = \ln b + a \ln x$

```
In [23]: ln_yhat = c[0]+c[1]*np.log(x)
```

Menentukan Tabel ANOVA

Dalam bentuk

```
ln y = ln b + a ln x
```

maka bentuk termasuk linier, sehingga dapat kita analisis kelinierannya dengan ANOVA yaitu

Hypotheis Testing

```
\left\{egin{aligned} H_0: a=0\ H_1: a
eq 0 \end{aligned}
ight.
```

```
In [24]:
          import numpy as np
          import pandas as pd
          import scipy
          from scipy import stats
          def ANOVATAB(y,yhat,n,m):
            dfn = n
            dfd = m-n-1
            ybar = np.average(y)
            SSR = np.sum((yhat - ybar)**2)
            SSE = np.sum((y-yhat)**2)
            SST = np.sum((y-ybar)**2)
            MSR = SSR/dfn
            MSE = SSE/dfd
            Fs = MSR/MSE
            ks = 1-scipy.stats.f.cdf(Fs, dfn, dfd)
            data_table= {
              'SS': [SSR, SSE, SST],
              'df': [dfn, dfd,m-1],
              'MS': [MSR, MSE,'-'],
              'Fs': [Fs, '-','-'],
              'pval': [ks, '-','-']
            return pd.DataFrame(data_table)
```

```
In [25]:
    n= 1
    tabel = ANOVATAB(ln_y,ln_yhat,n,m)
    tabel
```

```
Out[25]: SS df MS Fs pval

0 3.432780 1 3.43278 73.359974 0.0

1 1.731364 37 0.046794 - -

2 5.835207 38 - -
```

Plot data testing dan fungsi hampiran

```
import matplotlib.pyplot as plt #library untuk plot
xp = np.linspace(min(x), max(x), 100)
yp = Non_reg(c[1],c[0],xp)

plt.plot(xp,yp, color = 'red', linewidth=3)
plt.scatter(x,y, color='blue')
plt.xlabel("x")
plt.ylabel("y")
#plt.legend(('$\hat{y}(x)=b x^a$',), loc='upper left')
plt.grid()
plt.show()
```


Homework

1. Given the following data:

i	i	1	2	3	4	5	6	7	8	9	10
2	X	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
,	y	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

Construct the least squares polynomial of degree 1, and compute the error.

- 1. Construct the least squares polynomial of degree 2, and compute the error.
- 2. Construct the least squares polynomial of degree 3, and compute the error.
- 3. Construct the least squares approximation of the form be^{ax} , and compute the error.
- 4. Construct the least squares approximation of the form bx^a , and compute the error.
- 1. Diberikan data seperti berikut ini

W	R	W	R	W	R	W	R	W	R
0.017	0.154	0.025	0.23	0.020	0.181	0.020	0.180	0.025	0.234
0.087	0.296	0.111	0.357	0.085	0.260	0.119	0.299	0.233	0.537
0.174	0.363	0.211	0.366	0.171	0.334	0.210	0.428	0.783	1.47
1.11	0.531	0.999	0.771	1.29	0.87	1.32	1.15	1.35	2.48
1.74	2.23	3.02	2.01	3.04	3.59	3.34	2.83	1.69	1.44
4.09	3.58	4.28	3.28	4.29	3.40	5.48	4.15	2.75	1.84
5.45	3.52	4.58	2.96	5.30	3.88			4.83	4.66
5.96	2.40	4.68	5.10					5.53	6.94

tentukanlah:

a.) Tentukanlah model regrsi linar dalam bentuk $R=bW^a$ menggunakan model hampiran logaritma

 $\ln R = \ln b + a \ln W$

- b) Tentukan tabel ANOVA untuk hampiran bentuk model logarithm.
- c). Bandingkan MSE dalam bentuk $R = b W^a$ dan $\ln R = \ln b + a \ln W$
- c) Jika ditambahkan suku $(\ln W)^2$ pada model hampiran logaritma soal a), maka tentukan bentuk model hampiran logaritma polinomial orde 2.
 - 1. Given the follwing data

http://bit.ly/Test-PHN3

Use Machine Learning algorithm to:

- A. Construct the least squares approximation of the form be^{ax} , and compute the error.
- B. Construct the least squares approximation of the form bx^a , and compute

Soal 1

1. Given the following data:

i	1	2	3	4	5	6	7	8	9	10
x	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
v	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

Construct the least squares polynomial of degree 1, and compute the error.

- 1. Construct the least squares polynomial of degree 2, and compute the error.
- 2. Construct the least squares polynomial of degree 3, and compute the error.
- 3. Construct the least squares approximation of the form be^{ax} , and compute the error.
- 4. Construct the least squares approximation of the form bx^a , and compute the error.

```
In [28]:
x = np.array([4, 4.2, 4.5, 4.7, 5.1, 5.5, 5.9, 6.3, 6.8, 7.1])
y= np.array([102.56, 113.18, 130.11, 142.05, 167.53, 195.14, 224.87, 256.73, 299.50,
```

Least square polynomial 1 degree

[1958.39 11366.843]

Nilai coefficient: [-194.13824073 72.0845177]

```
In [29]:
          a11 = len(x)
          a12 = sum(x)
          a21 = sum(x)
          a22 = sum(x**2)
          b1 = sum(y)
          b2 = sum(y*x)
          A = np.array([[a11, a12], [a21, a22]])
          print('Matrix A:')
          print(A)
          b = np.array([ b1, b2])
          print('Vector b')
          print(b)
          \# c = inv(A) b
          c = np.linalg.inv(A)@b
          print('Nilai coefficient:', c)
          #Plot fungsi hampiran
          xp = np.linspace(min(x), max(x), 100)
          yp = c[1]*xp + c[0]
          plt.plot(xp,yp, color = 'red', linewidth=4)
          plt.scatter(x,y, color='green')
          plt.xlabel("Cost in TV")
          plt.ylabel("Sales")
          plt.grid()
          plt.show()
          #Mencari nilai error
          yhat = c[1]*x + c[0]
          MSE = sum(y-yhat)**2/(len(x)-1-1)
          print('MSE :', MSE)
         Matrix A:
         [[ 10.
                   54.1 ]
          [ 54.1 303.39]]
         Vector b
```


MSE: 3.4558418535922085e-24

Least square polynomial 2 degree

```
In [30]:
          #Model regresi polinomial
          a11 = len(x)
          a12 = sum(x)
          a13 = sum(x**2)
          a21 = sum(x)
          a22 = sum(x**2)
          a23 = sum(x**3)
          a31 = sum(x**2)
          a32 = sum(x**3)
          a33 = sum(x**4)
          b1 = sum(y)
          b2 = sum(y*x)
          b3 = sum(y*x**2)
          A = np.array([[a11, a12, a13], [a21, a22, a23], [a31, a32, a33]])
          b = np.array([b1, b2, b3])
          c = np.linalg.inv(A)@b
          print('Koefisien model:', c)
          #Plot fungsi hampiran
          plt.scatter(x, y, color='green')
          plt.plot(xp, yp, color = 'red', linewidth=4)
          plt.xlabel("x")
          plt.ylabel("y")
          plt.title("Plot Fungsi Hampiran")
          plt.grid()
          plt.show()
          #Evaluasi model
          yhat =c[2]*x**2 + c[1]*x + c[0]
          MSE = sum(y-yhat)**2/(len(x)-1-1)
          print("MSE = ", MSE)
```

Koefisien model: [1.23556037 -1.14352337 6.61821092]

MSE = 1.5078679548890366e-19

Least square polynomial 3 degree

```
In [31]:
          #Membangun model regresi polinom derajat 3
          a11 = len(x)
          a12 = sum(x)
          a13 = sum(x**2)
          a14 = sum(x**3)
          a21 = sum(x)
          a22 = sum(x**2)
          a23 = sum(x**3)
          a24 = sum(x**4)
          a31 = sum(x**2)
          a32 = sum(x**3)
          a33 = sum(x**4)
          a34 = sum(x**5)
          a41 = sum(x**3)
          a42 = sum(x**4)
          a43 = sum(x**5)
          a44 = sum(x**6)
          b1 = sum(y)
          b2 = sum(y*x)
          b3 = sum(y*x*x)
          b4 = sum(y*x*x*x)
          A = np.array([[a11, a12, a13, a14], [a21, a22, a23, a24], [a31, a32, a33, a34],
                        [a41, a42, a43, a44]])
          b = np.array([b1, b2, b3, b4])
          c = np.linalg.inv(A)@b
          print('Coefficient:')
          print(c)
          xp = np.linspace(min(x), max(x), 100)
          yp = c[3]*xp**3 + c[2]*xp**2 + c[1]*xp + c[0]
          #Plot fungsi hampiran
          import matplotlib.pyplot as plt
          plt.scatter(x, y, color='green')
          plt.plot(xp, yp, color = 'red', linewidth=4)
          plt.xlabel("x")
          plt.ylabel("y")
```

```
plt.title("Plot Fungsi Hampiran")
plt.grid()
plt.show()

#Evaluasi model
n = 3
m = len(x)

yhat = c[3]*(x**3) + c[2]*(x**2) + c[1]*x +c[0]
ybar = np.average(y)
MSE = sum((y-yhat)**2)/(m-n-1)
print('MSE = ', MSE)
```

Coefficient:

```
[ 3.4290944 -2.37922111 6.84557777 -0.01367456]
```


MSE = 8.789020050961804e-05

Aproksimasi least square dalam bentuk be^{ax}

```
In [32]:
          m = len(y)
          sum_x = np.sum(x)
          sum_x2 = np.sum(x**2)
          ln y = np.log(y)
          sum_ln_y = np.sum(ln_y)
          sum_xln_y = np.sum(x*ln_y)
          #Menentukan matriks A dan vektor y
          A = np.array([[m, sum_x],[sum_x, sum_x2]])
          print(A)
          b = np.array([sum_ln_y, sum_xln_y])
          print(b)
          #Mencari nilai c
          c = np.linalg.inv(A)@b
          print('Coefficients:', c)
          def Non_reg(a1,a0,x):
            return np.exp(a0)*np.exp(a1*x)
          #Membuat plot
          import matplotlib.pyplot as plt
          xp = np.linspace(min(x), max(x), 100)
          yp = Non_reg(c[1],c[0],xp)
          plt.plot(xp,yp, color = 'red', linewidth=3)
```

```
plt.scatter(x,y, color='blue')
plt.xlabel("x")
plt.ylabel("y")
plt.legend(('$\hat{y}(x)=b e^{ax}$',), loc='upper left')
plt.grid()
plt.show()
```

```
[[ 10. 54.1 ]
  [ 54.1 303.39]]
  [ 52.03363187 285.4897848 ]
  Coefficients: [3.1887778 0.37238177]
```


Aproksimasi least square dalam bentuk bx^a

```
In [33]:
          m = len(x)
          ln_x = np.log(x)
          sum_ln_x = np.sum(ln_x)
          sum_ln_x2 = np.sum(ln_x**2)
          ln_y = np.log(y)
          sum_ln_y = np.sum(ln_y)
          sum_xln_y = np.sum(ln_x*ln_y)
          #Menentukan matriks A dan vektor y
          A = np.array([[m,sum_ln_x],[sum_ln_x,sum_ln_x2]])
          print('A')
          print(A)
          b = np.array([sum_ln_y,sum_xln_y])
          print('y')
          print(b)
          #Mencari nilai koefisien
          c = np.linalg.inv(A)@b
          print('Coefficients:', c)
          def Non_reg(a1,a0,x):
            return np.exp(a0)*x**a1
          #Membuat plot
          import matplotlib.pyplot as plt
          xp = np.linspace(min(x), max(x), 100)
          yp = Non_reg(c[1],c[0],xp)
          plt.plot(xp,yp, color = 'red', linewidth=3)
          plt.scatter(x,y, color='green')
          plt.xlabel("x")
```

```
plt.ylabel("y")
plt.legend(('$\hat{y}(x)=b x^a$',), loc='upper left')
plt.grid()
plt.show()
```

```
A

[[10. 16.6995268]

[16.6995268 28.25371164]]

y

[52.03363187 87.63344505]

Coefficients: [1.83082464 2.01954138]
```


Soal 2

1. Diberikan data seperti berikut ini

\overline{W}	R	W	R	W	R	W	R	W	R
0.017	0.154	0.025	0.23	0.020	0.181	0.020	0.180	0.025	0.234
0.087	0.296	0.111	0.357	0.085	0.260	0.119	0.299	0.233	0.537
0.174	0.363	0.211	0.366	0.171	0.334	0.210	0.428	0.783	1.47
1.11	0.531	0.999	0.771	1.29	0.87	1.32	1.15	1.35	2.48
1.74	2.23	3.02	2.01	3.04	3.59	3.34	2.83	1.69	1.44
4.09	3.58	4.28	3.28	4.29	3.40	5.48	4.15	2.75	1.84
5.45	3.52	4.58	2.96	5.30	3.88			4.83	4.66
5.96	2.40	4.68	5.10					5.53	6.94

tentukanlah:

a.) Tentukanlah model regrsi linar dalam bentuk $R=bW^a$ menggunakan model hampiran logaritma

 $\ln R = \ln b + a \ln W$

- b) Tentukan tabel ANOVA untuk hampiran bentuk model logarithm.
- c). Bandingkan MSE dalam bentuk $R = b W^a$ dan $\ln R = \ln b + a \ln W$
- d) Jika ditambahkan suku $(\ln W)^2$ pada model hampiran logaritma soal a), maka tentukan bentuk model hampiran logaritma polinomial orde 2.

```
In [34]: import scipy
          from scipy import stats
          def ANOVATAB(y,yhat,n,m):
               dfn = n
               dfd = m-n-1
               ybar = np.average(y)
               SSR = np.sum((yhat - ybar)**2)
               SSE = np.sum((y-yhat)**2)
               SST = np.sum((y-ybar)**2)
              MSR = SSR/dfn
              MSE = SSE/dfd
               Fs = MSR/MSE
              ks = 1-scipy.stats.f.cdf(Fs, dfn, dfd)
               data_table= {
                'SS': [SSR, SSE, SST],
                'df': [dfn, dfd,m-1],
                'MS': [MSR, MSE,'-'],
                'Fs': [Fs, '-','-'],
                'pval': [ks, '-','-']
               }
               return pd.DataFrame(data_table)
          W=np.array([0.017,0.087,0.174,1.11,1.74,4.09,5.45,5.96,
           0.025, 0.111, 0.211, 0.999, 3.02, 4.28, 4.58, 4.68,
           0.02,0.085,0.171,1.29,3.04,4.29,5.3,
           0.02,0.119,0.21,1.32,3.34,5.48,
           0.025,0.233,0.783,1.35,1.69,2.75,4.83,5.53])
           R=np.array([0.154,0.296,0.363,0.531,2.23,3.58,3.52,2.4,
           0.23, 0.357, 0.366, 0.771, 2.01, 3.28, 2.96, 5.1,
           0.181,0.26,0.334,0.87,3.59,3.4,3.88,
           0.18, 0.299, 0.428, 1.15, 2.83, 4.15,
           0.234, 0.537, 1.47, 2.48, 1.44, 1.84, 4.66, 6.94
```

Model regresi linar dalam bentuk $R=bW^a$ menggunakan model hampiran logaritma $\ln R=\ln b+a\ln W$

```
In [35]: ln_W=np.log(W)
    a11 = len(W)
    a12 = np.sum(ln_W)
    a21 = a12
    a22 = np.sum(ln_W**2)

ln_R = np.log(R)

b1 = np.sum(ln_R)
    b2 = np.sum(ln_R*ln_W)

X=np.array([[a11,a12],[a21,a22]])
b=np.array([b1,b2])
c=np.linalg.inv(X)@b

print("Persamaan: R={} W={}".format(np.exp(c[0]),c[1]))
```

Persamaan: R=1.3029717779462264 W=0.5756426027724945

Tabel ANOVA untuk hampiran bentuk model logarithm

```
#R dengan R hat
tabel2=ANOVATAB(R,Rhat,1,a11)
print(tabel1)
print(tabel2)
```

```
SS df MS Fs pval
0 45.854526 1 45.854526 371.508737 0.0
1 4.319975 35 0.123428 - -
2 50.174501 36 - - -
    SS df MS Fs pval
0 58.410294 1 58.410294 80.798873 0.0
1 25.301842 35 0.72291 - -
2 108.465862 36 - -
```

Bandingkan MSE dalam bentuk $R = b W^a$ dan $\ln R = \ln b + a \ln W$

MSE R: 0.7229097610083884

Jadi berdasarkan data tersebut, dapat kita simpulkan bahwa MSE R > MSE In_R

Bentuk model hampiran logaritma polinomial orde 2 jika ditambahkan suku $(\ln W)^2$ pada model hampiran logaritma soal a

```
In [38]:
          a11 = len(W)
          a12 = np.sum(ln_W)
          a13 = np.sum(ln_W**2)
          a21 = a12
          a22 = a13
          a23 = np.sum(ln_W**3)
          a31 = a13
          a32 = a23
          a33 = np.sum(1n W**4)
          ln_R = np.log(R)
          b1 = np.sum(ln_R)
          b2 = np.sum(ln_R*ln_W)
          b3 = np.sum(ln R*ln W**2)
          X=np.array([[a11,a12,a13],[a21,a22,a23],[a31,a32,a33]])
          b=np.array([b1,b2,b3])
          c=np.linalg.inv(X)@b
          print("persamaanya: lnR={}+{}lnW+{}(lnW)^2".format(c[0],c[1],c[2]))
```

persamaanya: lnR=0.049620213532374446+0.7006291876067215lnW+0.06695491979365836(lnW) ^2

Soal 3

1. Given the follwing data

http://bit.ly/Test-PHN3

Use Machine Learning algorithm to:

- (a). Construct the least squares approximation of the form be^{ax} , and compute the error.
- (b). Construct the least squares approximation of the form bx^a , and compute

```
In [39]:
          url = 'http://bit.ly/Test-PHN3'
          data = pd.read csv(url, index col=0)
          data["ydata"]=abs(data["ydata"])
          msk = np.random.rand(len(data)) < 0.8</pre>
          train = data[msk]
          test = data[~msk]
          m = len(train.x) #number of rows data
          x = np.asanyarray(train[['x']])
          y = np.asanyarray(train[['ydata']])
          a11 = len(x)
          a12 = np.sum(x)
          a21 = a12
          a22 = np.sum(x**2)
          ln_y = np.log(y)
          b1 = np.sum(ln y)
          b2 = np.sum(ln_y*x)
          X=np.array([[a11,a12],[a21,a22]])
          b=np.array([b1,b2])
          c=np.linalg.inv(X)@b
          print("persamaanya: lny={}+{}x".format(c[0],c[1]))
          m = len(test.x)
          x = np.asanyarray(test[['x']])
          y = np.asanyarray(test[['ydata']])
          ln y = np.log(y)
          ln_yhat = c[0]+c[1]*x
          tabel = ANOVATAB(ln_y,ln_yhat,n,m)
          print(tabel)
         persamaanya: lny=6.640667402785553+0.17259129809203522x
                 SS df MS Fs pval
         0 3.876814 1 3.876814 6.202985 0.022176
         1 11.874842 19 0.624992 -
         2 14.021076 20
In [40]:
          url = 'http://bit.ly/Test-PHN3'
          data = pd.read_csv(url, index_col=0)
          data["ydata"]=abs(data["ydata"])
          data["x"]=data["x"]+0.1
          msk = np.random.rand(len(data)) < 0.8</pre>
          train = data[msk]
          test = data[~msk]
          m = len(train.x) #number of rows data
```

```
x = np.asanyarray(train[['x']])
y = np.asanyarray(train[['ydata']])
ln_x = np.log(x)
a11 = len(x)
a12 = np.sum(ln_x)
a21 = a12
a22 = np.sum(1n_x**2)
ln_y = np.log(y)
b1 = np.sum(ln_y)
b2 = np.sum(ln_y*ln_x)
X=np.array([[a11,a12],[a21,a22]])
b=np.array([b1,b2])
c=np.linalg.inv(X)@b
print("persamaanya: lny={}+{}lnx".format(c[0],c[1]))
m = len(test.x)
x = np.asanyarray(test[['x']])
y = np.asanyarray(test[['ydata']])
ln_x=np.log(x)
ln_y = np.log(y)
ln_yhat = c[0]+c[1]*ln_x
n= 1
tabel = ANOVATAB(ln_y,ln_yhat,n,m)
print(tabel)
```