编写一个用于测试直线拟合精确度和稳定性的函数,用一个直方图展示结果。

testLineFitting (r\_step, theta\_step, pnts\_dist, pnts\_num, outlier\_num, noise\_range, outlier\_noise\_range);

testLineFitting (1, 0.1, 20, 20, 4, 5, (20, 50));

1. 用参数  $(r, \theta)$  定义直线, r 的范围为  $0\sim10000$ ,  $\theta$ 的范围为  $0\sim360$ 。 $r_step$ , theta\_step 代表他们的取值步长,  $r_step=1$ , theta\_step=0.1 表示有 10000 个 r 和 3600 个θ,则总共用于测试的直线有  $10000\times3600$  条。



2. 对于每一条直线,以 r 和直线的交点为中心向两边采样,点的间距为 pnts\_dist, 点的数量为 pnts\_num, 给所有点加入随机噪声范围为±noise\_range, 随机离群点的数量为 outlier\_num, 离群点的噪声范围为±(outlier\_noise\_range [0]~ outlier\_noise\_range [1])。



3. 对于每一条直线和对应的拟合直线,求两个阴影三角形面积来计算误差(三角形的高可以自己定义)。



4. 统计所有样本的误差值,以直方图形式展现(如误差值在 0~5,5~10, ······范围内的 样本数量分别有几个)。