Useful Stuff

Completing the square

$$ax^{2} + bx + c = 0$$

$$a(x+d)^{2} + e = 0$$

$$d = \frac{b}{2a}$$

$$e = c - \frac{b^{2}}{4a}$$

Trig Functions

$$\begin{split} \sin^2(x) &= \frac{1-\cos(2x)}{2} \\ \cos^2(x) &= \frac{1+\cos(2x)}{2} \\ \frac{d}{d} tan(x) &= \sec^2(x) \\ \frac{d}{dx} sec(x) &= \sec(x)tan(x) \\ \frac{d}{dx} tan^{-1}(x) &= \frac{1}{1+x^2} \\ \int \sec(x) &= \ln|\sec(x) + tan(x)| \end{split}$$

Area & Volume

 $\label{eq:Volume_by_slicing} \ \ A(x) = {\rm area\ of\ cross} \\ {\rm section\ at\ } x,$

$$V(S) = \int_{a}^{b} A(x)dx$$

Volume by disk If f(x) rotated around x-axis,

$$V(S) = \int_a^b \pi[f(x)]^2 dx$$

Volume by cylindrical shells f(x) rotated around y-axis,

$$V(S) = \int_{a}^{b} (2\pi x f(x)) dx$$

Applications

Arc Length $\int_a^b \sqrt{1 + [f'(x)]^2} dx$ Note use of derivative!

Surface Area of Revolution

Revolve f(x) around x axis,

$$SA(x) = \int_{a}^{b} (2\pi f(x)\sqrt{1 + [f'(x)]^2})dx$$

 $\label{eq:mass-density} \begin{tabular}{ll} \textbf{Mass-density for 1-d object} & \mbox{If } p(x) \\ \mbox{linear density for given } x, \end{tabular}$

$$m = \int_a^b p(x)dx$$

Mass-density for circular object If p(x) radial density for given x, and radius = r, $m = \int_0^r 2\pi x p(x) dx$

Work done If F(X) =force at point x, $W = \int_{-\pi}^{b} F(x) dx$

*Recall constant force yields F * d

Hyperbolic Functions

f(x)	$\frac{d}{dx}f(x)$
sinh(x)	cosh(x)
cosh(x)	sinh(x)
tanh(x)	$sec^2(x)$
coth(x)	$-csch^2(x)$
sech(x)	-sech(x)tanh(x)
csch(x)	-csch(x)coth(x)

Integration Techniques

Int by parts $\int u dv = uv - \int v du$ Pick u using LIATE (log, inv trig, alg, trig, exp)

$$\int cos^{j}(x)sin^{k}(x)dx$$

If k odd keep $1 \sin(x)$, convert rest using $\sin^2 x = 1 - \cos^2 x$. u-sub with $u = \cos(x)$.

If j odd keep 1 cos(x), convert rest using $cos^2x = 1 - sin^2x$. u-sub with u = sin(x).

If both even use $sin^2x = \frac{1-cos(2x)}{2}$.

$$\int tan^k(x)sec^j(x)dx$$

If j even and ≥ 2 keep $sec^2(x)$, convert rest using $sec^2x = tan^2x + 1$. u-sub with u = tanx.

If k odd, $j \ge 1$ keep sec(x)tan(x), convert rest using $tan^2x = sec^2x$. u-sub with u = secx.

If k odd, $k \ge 3$ and j = 0 turn one tan^2x into $sec^2x - 1$. Repeat process. If k even, j odd, use $tan^2x = sec^2x - 1$ to turn tan^kx to secx.

Reductions

$$\int sec^n x dx = \frac{1}{n-1} sec^{n-2}x tanx + \frac{n-2}{n-1} \int sec^{n-2}x dx$$

$$\int tan^n x dx = \frac{1}{n-1} tan^{n-1} x - \int tan^{n-2} x dx$$

Trig subs Don't forget to change dx to $d\theta$

$$a^2 - x^2$$
 Use $x = asin\theta$
 $a^2 + x^2$ Use $x = atan\theta$
 $x^2 - a^2$ Use $x = asec\theta$

Arclength
$$ax^2$$
 $\frac{x\sqrt{1+4a^2x^2}}{2} + \frac{\ln(|\sqrt{1+4a^2x^2}+2ax|)}{4a}$

Note: if evaluating over interval [a,b], if a=0, just plug in b

Reduction
$$\int \frac{1}{(ax^2+b)^n} \frac{2n-3}{2b(n-1)} \int \frac{1}{(ax^2+b)^{n-1}} dx + \frac{x}{2b(n-1)(ax^2+b)^{n-1}}$$

Trapezoid rule
$$\frac{1}{2}\Delta x(f(x_0) + 2f(x_1) + 2f(x_2) + \ell + 2f(x_{n-1}) + f(x_n))$$

Simpson's rule

$$\int_{b}^{a} f(x) = \frac{b-a}{3n} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)]$$

Simpson's error bound Let $M = \max$ value of $|f^4(x)|$ over [a,b]. Error is: $E \leq \frac{M(b-a)^5}{180n^4}$

Sequences/Series

Geometric Convergence For $\sum_{n=1}^{\infty} ar^{n-1}$, if |r| < 1, it converges to $\frac{a}{1-r}$

Divergence Test For $\sum_{n=1}^{\infty} a_n$ to converge, nth term a_n must satisfy $a_n \to 0$ as $n \to \infty$. Converse is not true (if limit = 0, does not mean it converges)

Integral test For $\sum_{n=1}^{\infty} a_n$, if a_n is all positive terms, and there exists a function f such that:

- f is continuous
- f is decreasing
- $f(n) = a_n$ for all integers $n \ge N$

Then $\sum_{n=1}^{\infty} a_n$ and $\int_{N}^{\infty} f(x)dx$ both converge the sum converges absolutely. If p > 1 or or both diverge.

the sum converges absolutely. If p > 1 or $p = \infty$, it diverges. If p = 1, test provides

P-Series For $\sum_{n=1}^{\infty} \frac{1}{n^p}$, converges if p > 1, diverges if $p \le 1$

Remainder estimate Same rules as integral test for f(n). $\int_{N+1}^{\infty} f(x)dx < R_N < \int_{N}^{\infty} f(x)dx$

Comparison test If you have sum of a_n , find a similar sum of b_n (only works if a_n and $b_n \geq 0$). If $a_n \leq b_n$ and b_n 's sum converges, a_n 's sum converges. If $a_n \geq b_n$ and b_n 's sum diverges, a_n 's sum diverges.

Root test For $\sum_{n=1}^{\infty} a_n$ such that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = p$ for some p. If $0 \le p < 1$, $p=\infty$, it diverges. If p=1, test provides no information.

Ratio Test For $\sum_{n=1}^{\infty} a_n$ with positive terms, and $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$, if L < 1, sum converges. If L > 1, sum diverges

Parametric/Polar

Derivative of parametric

 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)}$

2nd Derivative of parametric

 $\frac{d^2y}{dx^2} = \frac{(d/dt)(dy/dx)}{dx/dt}$

Area under parametric

 $A = \int_{a}^{b} y(t)x'(t)dt$

Arc length of parametric

 $s = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$

Polar conversions $r^2 = x^2 + y^2$

 $tan(\theta) = \frac{y}{x}$

 $x = r * cos(\theta)$

 $y = r * sin(\theta)$

Polar symmetry About polar axis:

 $(r,\theta) = (r,-\theta)$

About pole: $(r, \theta) = (r, \pi + \theta)$

About vertical line: $(\frac{\pi}{2})$: $(r, \theta) = (r, \pi - \theta)$