

Universidad Nacional de Loja

UNL

FACULTAD: FACULTAD DE LA ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

CARRERA: CARRERA DE INGENIERÍA EN SISTEMAS

CICLO: QUINTO

PERÍODO ACADÉMICO: ABRIL — SEPTIEMBRE 2019

SÍLABO: Arquitectura de Computadores

Responsable: OSCAR MIGUEL CUMBICUS PINEDA

Correo electrónico: oscar.cumbicus@unl.edu.ec

Dependencia para tutoría: SALA DE PROFESORES BLOQUE 7.1 PISO 1

2019

-

¹ Formato de sílabo actualizado para incorporar los requerimientos del modelo genérico de evaluación del entorno de aprendizaje de carreras presenciales y semipresenciales de las Universidades y Escuelas Politécnicas del Ecuador, versión 2.0. Indicador B3.1 (Programa de las asignaturas). CEAACES, marzo, 2015.

1. DATOS GENERALES DE LA ASIGNATURA

1.1	DENOMINACIÓN DE LA ASIGNATURA: ARQUI	TECTURA DE COMPUTADORAS	(AC)						
1.2	CÓDIGO DE LA ASIGNATURA	1.2.1 INSTITUCIONAL:	E2 C5	5 A3		1.2.2 UNESCO: 33	0406		
1.3	Eje de formación	CIENCIAS DE FORMACIÓN	I PROFI	ESIONAL					
1.4	TIPO DE ASIGNATURA	1.4.1 OBLIGATORIA:	Х	1.4.2 0	COMPLEMENTARIA:	1.4.3 OPTATIVA:		1.4.4 OTRA	
1.5	Número de créditos	1.5.1 TOTAL:10			1.5.2 TEÓRICOS:6		1.5.3	. Prácticos:4	
1.6	Número de horas de la asignatura	1.6.1 SEMANALES:8				1.6.2 EN EL PERÍODO:	160		
1.7	Prerrequisitos		Cóı	DIGO			٨ς١	IGNATURA	
		Institucional			Unesco		ASI	IGNATORA	
		E2C3A1		2900	99	ELECTRÓNICA DIGI	TAL		
1.8	CORREQUISITOS:		Cóı	DIGO			٨с١	IGNATURA	
		Institucional		Unesc	0		ASI	IGNATORA	

2. DATOS ESPECÍFICOS DE LA ASIGNATURA

2.1. CONTRIBUCIÓN DE LA ASIGNATURA A LA FORMACIÓN PROFESIONAL (PERFIL DE EGRESO)

La Arquitectura de Computadoras es una asignatura importante que permite a los estudiantes identificar definir y analizar el conjunto de componentes computacionales características, funciones e interrelaciones. Lo que permite contribuir para la resolución de problemas tecnológicos de procesamiento de datos y prestaciones computacionales, generando soluciones eficientes computacionales.

2.2. OBJETIVOS DE LA ASIGNATURA

Adquirir una visión general de la arquitectura y organización de las computadoras.

Conocer las características e interacciones entre los principales componentes de las computadoras (Procesador, Memoria, Dispositivos E/S, Buses).

Comprender el diseño de los componentes principales de las computadoras.

Brindar soluciones eficientes computacionales utilizando hardware.

Utilizar un lenguaje de descripción de hardware.

2.3. RESULTADOS DE APRENDIZAJE (POR CADA UNIDAD)

- 1 Aplica habilidades de cálculo matemático, de matemáticas discretas para entender el funcionamiento y organización de los componentes principales del computador
- 2 Desarrolla la habilidad de razonamiento de conceptos arquitectónicos relacionados al análisis de sistemas
- 3 Distingue el hardware ideal que apoye al diseño de una solución de un problema de ingeniería.
- 4 Desarrolla la habilidad de aplicación de conceptos al planteamiento y desenvolvimiento utilizando la organización de computadores y gestión de componentes
- 5 Aplica alternativas de hardware computacional optimas que complementen la solución informática de ingeniería
- 6 Describe los componentes arquitectónicos y sus funciones para sugerir el hardware que ayudará a una eficaz solución del problema complementado las herramienta de software
- 7 Describe las técnicas, simuladores y herramientas relativos a los componentes como: Memoria, E/S, CPU, ALU. Métodos y herramientas de la ingeniería moderna necesarias para la práctica de la ingeniería informática

3. ESTRUCTURA DE LA ASIGNATURA

UNIDAD/TEMA	NRO. HORAS	CONTENIDOS TEÓRICOS (SUBTEMAS/CONTENIDOS)	NRO. HORAS	ACTIVIDADES PRÁCTICAS (HABILIDADES A DESARROLLAR EN LA ASIGNATURA)	NRO. HORAS	ACTIVIDADES DE APRENDIZAJE AUTÓNOMO	NRO. HORAS	ESTRATEGIAS DE EVALUACIÓN
Primera Parte: Visión General	64	- Introducción -Revisión de los circuitos lógicos combinados	20	Preguntas de repaso y problemas. Diseño de arquitectura	12	Lectura e investigación de los temas. Problemas Propuestos.	32	Lecciones Control de lectura de temas investigados.

TOTAL DE HORAS	320		96		64		160	
Quinta Parte: Procesamiento Paralelo	64	-Organización con varios procesadores -Multiprocesadores simétricos - Procesamiento multihebra	19	Configuración de un cluster de computadores Preguntas de repaso	13	Lectura e investigación de los temas. Problemas Propuestos.	32	Control de lectura de temas investigados. Ensayos de refuerzo sobre trabajos enviados. Exposiciones Evaluación escrita de la unidad
Cuarta Parte: La Unidad de Control	64	-Funcionamiento de la unidad de control - Control Micro programado	19	Configuración de un micro Preguntas de repaso y Problemas	13	Lectura e investigación de los temas. Problemas Propuestos.	32	Control de lectura de temas investigados. Ensayos de refuerzo sobre trabajos enviados. Evaluación escrita de la unidad Exposiciones
Tercera Parte: Unidad Central de Procesamiento	64	-Aritmética del computadorUnidad Aritmético Lógica -Repertorios de instrucciones: características y funcionesRepertorios de instrucciones: modos de direccionamiento y formatosEstructura y función de la CPU.	19	Diseño de una ALU Preguntas de repaso y Problemas	13	Lectura e investigación de los temas. Problemas Propuestos.	32	Control de lectura de temas investigados. Ensayos de refuerzo sobre trabajos enviados. Evaluación escrita de la unidad Exposiciones
Segunda Parte: El Computador	64	-Sistema de Interconexión o buses del Sistema. -Memoria Caché -Memoria interna. -Memoria externa. -Entrada/salida.	19	Diseño de arquitectura de buses, memorias en VHDL Preguntas de repaso y Problemas	13	Lectura e investigación de los temas. Problemas Propuestos.	32	Control de lectura de temas investigados. Ensayos de refuerzo sobre trabajos enviados. Evaluación escrita de la unidad Exposiciones
		-Revisión de los circuitos lógicos secuenciales Revisión de los circuitos lógicos asíncronos - Evolución y Prestaciones de los Computadores.		Ripple-Carry Adder, Carry- Look-Ahead Adder y Carry- Select Adder en VHDL				Mapas conceptuales. Evaluaciones. Lluvia de ideas. Ensayos de refuerzo sobre trabajos enviados. Exposiciones

TITUDES Y VALORES A DESARROLLAR EN LA ASIGNATURA

RESPETO, SOLIDARIDAD, HONESTIDAD, TRANSPARENCIA, CREATIVIDAD E INNOVACIÓN.

ESTRATEGIAS METODOLÓGICAS

EXPOSICIONES, TRABAJOS EN GRUPO, ESTUDIO DE CASOS, MESAS REDONDAS, LLUVIA DE IDEAS, MAPAS CONCEPTUALES

RECURSOS/MATERIALES DIDÁCTICOS

PIZARRÓN

MARCADORES

PROYECTOR

COMPUTADOR

HARDWARE (PIEZAS Y PARTES)

		TIPO DE APRENDIZAJE			
COLABORATIVO	X	PRÁCTICO DE APLICACIÓN Y EXPERIMENTACIÓN	X	Аито́помо	Х

4. HORARIO DE CLASE

Día	Lunes	Martes	Miércoles	JUEVES	Viernes
7H30-8H30			ARQUITECTURA PARALELO B	ARQUITECTURA PARALELO A	
8H30-9H30			ARQUITECTURA PARALELO B	ARQUITECTURA PARALELO A	
9H30-10H30	ARQUITECTURA PARALELO A	ARQUITECTURA PARALELO B	ARQUITECTURA PARALELO B	ARQUITECTURA PARALELO A	
10H30 - 11H30	ARQUITECTURA PARALELO A	ARQUITECTURA PARALELO B		ARQUITECTURA PARALELO A	
11H30 - 12H30	ARQUITECTURA PARALELO A				ARQUITECTURA PARALELO B
12H30 - 13H30	ARQUITECTURA PARALELO A			Arquitectura paralelo B	Arquitectura paralelo B

5. DESARROLLO DE LA ASIGNATURA

SEMANA 1: DEL 15 AL 19 DE ABRIL 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4h	Encuadre de la asignatura. Diagnóstico inicial. Presentación del Sílabo Explicación de unidades			AULA
4h	Primera Parte: Introducción Revisión de los circuitos lógicos combinados		Lectura e investigación de los temas. Problemas Propuestos.	AULA

SEMANA 2: DEL 22 DE ABRIL AL 26 DE ABRIL 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4h	Revisión de Compuertas Lógicas Revisión de algebra booleana	Ejercicios con compuertas lógicas Ejercicios de minimización con algebra booleana	Lectura e investigación de los temas. Problemas Propuestos.	AULA
4h	Revisión de diseño de circuitos de lógica combinatoria utilizando tablas de verdad Revisión de minimización de con mapas de Karnaugh	Ejercicios de diseño de circuitos partiendo de las tablas de verdad. Minimización de circuitos	Consultar Multiplexores 2:1 y multiplexor 4:1	AULA

SEMANA 3: DEL 29 DE ABRIL DE 2019 AL 03 DE MAYO 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8h	Revisión de Bloques Lógicos Básicos Revisión de combinación en mega celdas	Exposición grupal de los temas Ripple-Carry Adder, Carry-Look-Ahead Adder y Carry-Select Adder	Lectura e investigación de los temas.	AULA

SEMANA 4: DEL 6 AL 10 DE MAYO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4h	Estructura de un computador y funcionalidad. Evolución y Prestaciones de los computadores	Diseño de arquitectura Ripple-Carry Adder, Carry- Look-Ahead Adder y Carry-Select Adder en VHDL	Completar el diseño de arquitectura Ripple-Carry Adder, Carry-Look-Ahead Adder y Carry-Select Adder en VHDL	AULA
4h	Segunda Parte: Sistemas de Interconexión o buses de sistema. -Tipos de buses -Buses maestros y buses esclavos		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 5: DEL 13 AL 17 DE MAYO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4 h	-Arquitectura de buses paralelo -Transferencia de escritura básica	Diseño de arquitectura de buses paralelo en VHDL	Completar el diseño de buses en paralelo	AULA
4h	-Transferencia de lectura básica -Arquitectura de buses seriales	Diseño de arquitectura de buses seriales en VHDL	Completar el diseño de buses en seriales	AULA

SEMANA 6: DEL 20 AL 24 DE MAYO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4 h	- Memoria Caché	Diseño de una memoria caché en VHDL	Consultar arquitectura de memoria interna	AULA
4h	-Memoria interna.	Diseño de una memoria RAM en VHDL	Continuar con el diseño de la memoria RAM	AULA

SEMANA 7: DEL 27 AL 31 DE MAYO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	-Memoria externa. -Dispositivos de Entrada/salida.	Simulador de ensamblaje	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 8: DEL 3 AL 7 DE JUNIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4h	-Configuración de discos RAID 0, 1, 3, 5	Configuración con disco sata	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA
4h	Tercera Parte: -Aritmética del computador.	Ejercicios con suma de binarios	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 9: DEL 10 AL 14 DE JUNIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	Unidad Aritmético Lógica	Diseño de arquitectura de una ALU	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 10: DEL 17 AL 21 DE JUNIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	Unidad Aritmético Lógica	Preguntas de repaso y Problemas	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 11: DEL 24 AL 28 DE JUNIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4h	-Repertorios de instrucciones: características y funciones.	Preguntas de repaso y Problemas	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA
4h	-Repertorios de instrucciones: modos de direccionamiento y formatos.		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 12: DEL 1 AL 5 DE JULIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8h	-Estructura y función de la CPU. Cuarta Parte:		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA
	-Funcionamiento de la unidad de control			

SEMANA 13: DEL 8 AL 12 DE JULIO DE 2019

DURACIÓN DE	CONTENIDOS Y ACTIVIDADES DE	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
CADA SESIÓN	ESTUDIO TEÓRICO	ACTIVIDADES FRACTICAS	ACTIVIDADES DE TRABAJO ACTONOMO	ESCENARIO DE AFRENDIZAJE
8h	Funcionamiento de la unidad de control		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 14: DEL 15 AL 19 DE JULIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	Escenario de aprendizaje
8h	- Control Micro programado		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 15: DEL 22 AL 26 DE JULIO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
4 h	- Control Micro programado	Preguntas de repaso y Problemas	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA
4 h	Quinta Parte: -Organización con varios procesadores	Revisar cómo se realiza un cluster de computadoras	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 16: DEL 29 DE JULIO AL 2 DE AGOSTO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	-Multiprocesadores simétricos		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 17: DEL 5 AL 9 DE AGOSTO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	- Procesamiento multihebra		Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 18: DEL 12 AL 16 DE AGOSTO DE 2019

D URACIÓN DE	CONTENIDOS Y ACTIVIDADES DE	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
CADA SESIÓN	ESTUDIO TEÓRICO	ACTIVIDADESTRACTICAS	ACTIVIDADES DE TINADASO ACTONOMO	ESCENANIO DE AI NENDIZAJE
8 h	Exposición de trabajos sobre arquitectura de computadores	Exposición	Lectura e investigación de los temas. Problemas Propuestos. Mapas Mentales	AULA

SEMANA 19: DEL 19 AL 23 DE AGOSTO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	Preguntas de repaso			AULA

SEMANA 20: DEL 26 AL 30 DE AGOSTO DE 2019

DURACIÓN DE CADA SESIÓN	CONTENIDOS Y ACTIVIDADES DE ESTUDIO TEÓRICO	ACTIVIDADES PRÁCTICAS	ACTIVIDADES DE TRABAJO AUTÓNOMO	ESCENARIO DE APRENDIZAJE
8 h	Evaluación Final			AULA

6. CRITERIOS DE EVALUACIÓN DE LA ASIGNATURA

Parámetros (instrumentos) de evaluación	PRIMERA EVALUACIÓN	SEGUNDA EVALUACIÓN	TERCERA EVALUACIÓN	CUARTA EVALUACIÓN
PARAMETROS (INSTRUMENTOS) DE EVALUACION	% (PUNTOS)	% (puntos)	% (PUNTOS)	% (puntos)
Exámenes	70	70	70	70
LECCIONES (Orales/escritas; teóricas/prácticas) PARTICIPACIÓN	10	10	10	10
(Pertinente y fundamentada)				
ACTIVIDADES PRÁCTICAS EN AULA (Individual y/o grupal)	10	10	10	10
Trabajos autónomos (Individual y/o grupal)	10	10	10	10
TOTAL	100	100	100	100

7. BIBLIOGRAFÍA

7.1. BÁSICA

7.1.1. *Física:* (BIBLIOTECA DE LA FACULTA DE ENERGÍA LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES)

Autor	Título del libro	CIUDAD, PAÍS DE PUBLICACIÓN	EDICIÓN	AÑO DE PUBLICACIÓN	EDITORIAL	ISBN
QUIROGA, PATRICIA.	ARQUITECTURA DE COMPUTADORAS	Buenos Aires.	1RA. ED.	2010	ALFAOMEGA.	978-987-1609-06-02

7.1.2. Virtual:

Autor	Título del libro	DIRECCIÓN ELECTRÓNICA	AÑO DE PUBLICACIÓN	EDITORIAL	ISBN
AHMET BINDAL	FUNDAMENTALS OF COMPUTER ARCHITECTURE AND DESIGN	HTTPS://DOI.ORG/10.1007/978-3- 030-00223-7	2019	SPRINGER	978-3-030-00223-7

7.2. COMPLEMENTARIA

7.2.1. Física:

Autor	Título del libro	CIUDAD, PAÍS DE PUBLICACIÓN	Edición	AÑO DE PUBLICACIÓN	EDITORIAL	ISBN
Miquel Albert Orenga Gerard Enrique Manonellas	ESTRUCTURA DE COMPUTADORES	Barcelona	1RA. ED.	2011	Eureca Media, SL	B-23.646-2011
STALLINGS WILLIAM	ORGANIZACIÓN Y ARQUITECTURA DE COMPUTADORES	Madrid	7MA. ED.	2006	PEARSON EDUCACIÓN	10: 84-8966-082-4

7.2.2. Virtual:

Autor	Título del libro	DIRECCIÓN ELECTRÓNICA	AÑO DE PUBLICACIÓN	EDITORIAL	ISBN

7.2.3. Recursos en internet:

Autor	Τίτυιο	CIUDAD, PAÍS DE PUBLICACIÓN	FECHA DE PUBLICACIÓN	Dirección Electrónica	ISBN/ISSN

8. PERFIL DE (LA) PROFESOR (A) DE LA ASIGNATURA

8.1. TÍTULO (S) DE TERCER NIVEL

Ingeniero en Sistemas

8.2. TÍTULO (S) DE CUARTO NIVEL

Master en Ingeniería Computacional y Sistemas Inteligentes

8.3. HABILIDADES QUE POSEE

Saber escuchar, estímulo hacia los alumnos, comunicación, humor, generosidad, determinación y responsabilidad

8.4. ACTITUDES

Actualización, positiva, equilibrado.

9. RELACIÓN DE LOS CONTENIDOS DE LA ASIGNATURA CON LOS RESULTADOS DE APRENDIZAJE

CONTENIDOS DE LA ASIGNATURA	CONTRIBUCIÓN	RESULTADOS DE APRENDIZAJE
Visión General de Arquitectura de Computadoras	MEDIA	Aplica habilidades de cálculo matemático, de matemáticas discretas para entender
		el funcionamiento y organización de los componentes principales del computador
		Desarrolla la habilidad de aplicación de conceptos al planteamiento y
		desenvolvimiento utilizando la organización de computadores y gestión de
		componentes
El Computador	ALTA	Desarrolla la habilidad de razonamiento de conceptos arquitectónicos relacionados
		al análisis de sistemas
		Describe los componentes arquitectónicos y sus funciones para sugerir el hardware

		que ayudará a una eficaz solución del problema complementado las herramienta de software
Unidad Central de Procesamiento	MEDIA	Distingue el hardware ideal que apoye al diseño de una solución de un problema de ingeniería.
La Unidad de Control	MEDIA	Describe las técnicas, simuladores y herramientas relativos a los componentes como: Memoria, E/S, CPU, ALU. Métodos y herramientas de la ingeniería moderna necesarias para la práctica de la ingeniería informática
Procesamiento Paralelo	MEDIA	Aplica alternativas de hardware computacional optimas que complementen la solución informática de ingeniería

10. RELACIÓN DE LA ASIGNATURA CON LOS RESULTADOS DE APRENDIZAJE DEL PERFIL DE EGRESO DE LA CARRERA

RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA	CONTRIBUCIÓN	PERFIL DE EGRESO DE LA CARRERA
Aplica habilidades de cálculo matemático, de matemáticas discretas para entender el	MEDIA	Desenvolverse con solvencia técnica y actitudes suficientes para planificar,
funcionamiento y organización de los componentes principales del computador		organizar, ejecutar, controlar y evaluar las actividades inherentes al campo de la
		Informática y la Computación, con una clara visión de la realidad, vinculando la
		teoría con la práctica y con interés permanente por la innovación y la investigación
		en los diversos campos de su profesión
Desarrolla la habilidad de razonamiento de conceptos arquitectónicos relacionados al	ALTA	Capacidad para identificar, definir y analizar problemas de procesamiento de datos
análisis de sistemas		y generación de sistemas de información así como para interactuar
		interdisciplinariamente en la implementación de soluciones técnicas y
		económicamente ventajosas para resolver problemas relacionados a su campo
		profesional
Identifica el hardware ideal que apoye al diseño de una solución de un problema de	MEDIA	Trabajar y asesorar en el uso de herramientas y técnicas en el análisis, diseño,
ingeniería.		gestión y evaluación de Soluciones Informáticas incluyendo el hardware, software,
		redes y telecomunicaciones que sirvan de manera eficaz y eficiente para resolver las necesidades operacionales y de gestión de la organización

Desarrolla la habilidad de aplicación de conceptos al planteamiento y desenvolvimiento utilizando la organización de computadores y gestión de componentes	ALTA	Capacidad para identificar, definir y analizar problemas de procesamiento de datos y generación de sistemas de información así como para interactuar interdisciplinariamente en la implementación de soluciones técnicas y económicamente ventajosas para resolver problemas relacionados a su campo profesional
Brinda alternativas de hardware computacional optimas que complementen la solución informática	MEDIA	Capacidad para identificar, definir y analizar problemas de procesamiento de datos y generación de sistemas de información así como para interactuar interdisciplinariamente en la implementación de soluciones técnicas y económicamente ventajosas para resolver problemas relacionados a su campo profesional
Describe las técnicas, simuladores y herramientas relativos a los componentes como: Memoria, E/S, CPU, ALU. Métodos y herramientas de la ingeniería moderna necesarias para la práctica de la ingeniería informática	MEDIA	Capacidad para identificar, definir y analizar problemas de procesamiento de datos y generación de sistemas de información así como para interactuar interdisciplinariamente en la implementación de soluciones técnicas y económicamente ventajosas para resolver problemas relacionados a su campo profesional
Describe los componentes arquitectónicos y sus funciones para sugerir el hardware que ayudará a una eficaz solución del problema complementado las herramienta de software	MEDIA	Capacidad para identificar, definir y analizar problemas de procesamiento de datos y generación de sistemas de información así como para interactuar interdisciplinariamente en la implementación de soluciones técnicas y económicamente ventajosas para resolver problemas relacionados a su campo profesional

11. ELABORACIÓN Y APROBACIÓN

11.1 DOCENTE (S) RESPONSABLE (S) DE LA ELABORACIÓN DEL SÍLABO:	ING. OSCAR MIGUEL CUMBICUS PINEDA	
--	-----------------------------------	--

11.2 FECHA DE ELABORACIÓN: 01/03/2014		Versión: 2.1	DOCENTE RESPONSABLE: ING. FREDDY PATRICIO AJILA ZAQUINAULA M.SC
11.3 FECHA DE ACTUALIZACIÓN:	01/03/2015	VERSIÓN: 2.2	DOCENTE RESPONSABLE: ING. FRANCO HERNÁN SALCEDO LÓPEZ
11.4 FECHA DE ACTUALIZACIÓN:	27/04/2016	Versión: 2.3	DOCENTE RESPONSABLE: ING. MARIO PALMA; ING. MARIO CUEVA

11.5	FECHA DE ACTUALIZACIÓN:	14/05/2018	Versión: 2.4	DOCENTE RESPONSABLE: ING. OSCAR MIGUEL CUMBICUS PINEDA	
11.5	FECHA DE ACTUALIZACIÓN:	15/04/2019	Versión: 2.5	DOCENTE RESPONSABLE: ING. OSCAR MIGUEL CUMBICUS PINEDA	
			·		
11.6	FECHA DE APROBACIÓN DEL SÍL	ABO POR EL CONSEJO CONSUL	TIVO DE LA CARRERA:		
Ing. Henan Leonardo Torres Carrión Msc.				f)	
			SC.	Ing. Oscar Miguel Cumbicus Pineda Msc.	
GESTOR DE LA CARRERA				DOCENTE RESPONSABLE	