Probability and Paradoxes in Baseball

Scott Powers

The Birthday Problem (von Mises, 1939)

• In a group of *n* people, what is the probability that at least two will share a birthday?

Q: How big does n need to be for the probability to exceed 50%?

A: $n \ge 23$

Simpson's Paradox (Simpson, 1951)

• Justice had the higher batting average in 1995 and 1996, but Jeter had the higher combined batting average

	1995	1996	Combined
Derek Jeter	.250	.314	.310
David Justice	.253	.321	.270

Q: How is this possible?

A:

	1995	1996	Combined
Derek Jeter	12/48	183/582	195/630
David Justice	104/411	45/140	149/551

The Monty Hall Problem (Selman, 1975)

- On a game show, you are given the choice of three doors
 - One door hides a car, and two doors hide a goat
- After you choose door #1, the host opens door #3, revealing a goat (the host alway reveals a goat behind a different door)

Q: Do you want to switch your choice to door #2? **A:** Yes! (door #1 = 33% car, door #2 = 67% car)

Stein's Paradox (Efron and Morris, 1977)

As framed by Brown (2008):

Two methods for predicting second-half batting average:

- 1. Use each player's first-half batting average
- 2. Ignore the data and predict league average (.250) for everyone

Q: Which method is more accurate?

A: Method #2

Thinking, Fast and Slow (Kahneman, 2011)

The New York Times

- System 1 is fast, intuitive, emotional. System 2 is slower, more deliberative, more logical.
- Statistical thinking is hard because of System 1 heuristics and biases
- Relevant examples:
 - Availability heuristic
 - Confirmation bias
 - Framing effect

The Hot Hand Fallacy (Gilovich et al., 1985)

- 1980-81 Philadelphia 76ers field goal data
 - Shooting percentage following a make: 51%
 - Shooting percentage following a miss: 54%
- 1980-82 Boston Celtics free throw data
 - No correlation between making 1st FT and making 2nd FT
- Controlled experiment with college players (from Cornell) yielded no evidence of streaky shooting

"Who is this guy? So he makes a study. I couldn't care less."

— Red Auerbach

"The hot hand is a massive and widespread cognitive illusion."

— Daniel Kahneman

Takeaways (2017)

- 1. Paradoxes show us that human intuition can be incorrect
- 2. Human judgment can be impaired by heuristics and biases
- 3. Mathematical modeling is a superior way to make decisions

The Streak of Heads Paradox (Miller and Sanjurjo, 2018)

Flip a coin 100 times. Whenever you flip heads, write down the *next* outcome on a scrap of paper.

Q: What is the expected proportion of heads on the paper?

A: 49.5%

- This paradox is related to the Monty Hall problem through the "principle of restricted choice"
- After adjusting Gilovich *et al.* (1985) for this bias, evidence supports the existence of the hot hand

Replication Crisis (2010s, ongoing)

Essay

Why Most Published Research Findings Are False

John P. A. Joannidis

- Because of selection bias in scientific publications, many research findings fail to be replicated
- Shimmack (2020) estimated that only half of the results cited in *Thinking*, Fast and Slow would be replicated

"Readers of *Thinking, Fast and Slow* should read the book as a subjective account by an eminent psychologists, rather than an objective summary of scientific evidence."

Ulrich Schimmack

Escape from Model Land (Thompson, 2022)

- All models make assumptions that are not literally true in real life
- Escaping from Model Land means validating adequacy-for-purpose
- Functionality as a tool to aid thinking can be more important than predictive accuracy

Takeaways (2024)

- 1. Paradoxes show us that human intuition can be incorrect
- 2. Human judgment is impaired by heuristics and biases
- 3. Mathematical modeling is a superior way to make decisions
- 1. We can make mistakes when applying math, too
- 2. Be careful spending too much time and energy in Model Land
- 3. Validation is king

References

von Mises R (1939) "Über aufteilungs- und besetzungswahrscheinlichkeiten"

Simpson EH (1951) "The interpretation of interaction in contingency tables" *Journal of the Royal Statistical Society: Series B* 13(2), 238-241.

Stein C (1956) "Inadmissibility of the usual estimator for the mean of a multivariate normal distribution" *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability* 3, 197-207.

Selvin S (1975) "A problem in probability" The American Statistician 29(1).

Efron B and Morris C (1977) "Stein's paradox in statistics" Scientific American 236(5), 119-127.

Gilovich T, Vallone R and Tversky A (1985) "The hot hand in basketball: On the misperception of random sequences" Cognitive Psychology 17(3), 295-314.

Ioannidis JP (2005) "Why most published research findings are false" PLoS medicine 2(8), e124.

Brown LD (2008) "In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies" *The Annals of Applied Statistics*, 113-152.

Kahneman D (2011) Thinking, Fast and Slow

Miller JB and Sanjurjo A (2018) "Surprised by the hot hand fallacy? A truth in the law of small numbers" Econometrica 86(6), 2019-2047.

Schimmack U (2020) "A meta-scientific perspective on Thinking: Fast and Slow" https://replicationindex.com/2020/12/30/a-meta-scientific-perspective-on-thinking-fast-and-slow/

Lemire J (2021) "This book is not about baseball. But baseball teams swear by it." https://www.nytimes.com/2021/02/24/sports/baseball/thinking-fast-and-slow-book.html

Thompson E (2022) Escape from Model Land