Motion Field and Optical Flow

Shree K. Nayar Columbia University

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Image velocity of a point that is moving in the scene

Shree K. Nayar [Horn 1981]

Image velocity of a point that is moving in the scene

[Horn 1981]

© 2020 Shree K. Nayar [Horn 1981]

Image velocity of a point that is moving in the scene

© 2020 Shree K. Nayar [Horn 1981]

Image velocity of a point that is moving in the scene

Scene Point Velocity: $v_o = \frac{d\mathbf{r}_o}{dt}$

[Horn 1981]

Image velocity of a point that is moving in the scene

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$$
 (Motion Field)

Scene Point Velocity: $\mathbf{v}_o = \frac{a}{a}$

 $d\mathbf{r}_{o}$ $d\mathbf{r}_{o}$

[Horn 1981]

Image velocity of a point that is moving in the scene

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{\partial t}$$
(Motion Field)

Scene Point Velocity: $\mathbf{v}_o = \frac{a\mathbf{r}}{d}$

 $=\frac{d\mathbf{r}_{o}}{dt}$

Image velocity of a point that is moving in the scene

 $\mathbf{v}_i \cdot \delta t$ $\mathbf{r}_i + \delta \mathbf{r}_i$

Perspective projection:

 $\frac{\mathbf{r}_{\dot{b}}}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$

Image Point Velocity: $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$ (Motion Field)

[Horn 1981]

Image velocity of a point that is moving in the scene

 $\mathbf{v}_i \cdot \delta t$ $\mathbf{r}_i + \delta \mathbf{r}_i$

Perspective projection:

$$\frac{\mathbf{r}_i}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$$

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$$
 (Motion Field)

Z

[Horn 1981]

Image velocity of a point that is moving in the scene

Perspective projection:

Image Point Velocity: $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt_i}$ (Motion Field)

 $\mathbf{r}_i + \delta \mathbf{r}_i$

 $r_o \cdot z$

[Horn 1981]

 $\mathbf{v}_i \cdot \delta t$

Image velocity of a point that is moving in the scene

 $\mathbf{r}_i + \delta \mathbf{r}_i$

Perspective projection: $\frac{\mathbf{r}_i}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$

$$\frac{\mathbf{r}_i}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$$

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_o \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$
(Motion Field)

[Horn 1981]

Image velocity of a point that is moving in the scene

 $\mathbf{r}_i + \delta \mathbf{r}_i$

Perspective projection: $\frac{\mathbf{r}_i}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$

$$\frac{\mathbf{r}_i}{f} = \frac{\mathbf{r}_o}{\mathbf{r}_o \cdot \mathbf{z}}$$

Image Point Velocity:
$$\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_Q \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$
(Motion Field)

[Horn 1981]

Image velocity of a point that is moving in the scene

Image Point Velocity: $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_o \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$ (Motion Field)

 $\mathbf{r}_i + \delta \mathbf{r}_i$

$$\mathbf{v}_i = f \frac{(\mathbf{r}_o \times \mathbf{v}_0) \times \mathbf{z}}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$

Image velocity of a point that is moving in the scene

Image Point Velocity: $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_o \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$ (Motion Field)

 $\mathbf{r}_i + \delta \mathbf{r}_i$

$$\mathbf{v}_{i} = f \frac{(\mathbf{r}_{o} \times \mathbf{v}_{0}) \times \mathbf{z}}{(\mathbf{r}_{o} \cdot \mathbf{z})^{2}}$$

Image velocity of a point that is moving in the scene

Image Point Velocity: $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt} = f \frac{(\mathbf{r}_o \cdot \mathbf{z})\mathbf{v}_0 - (\mathbf{v}_o \cdot \mathbf{z})\mathbf{r}_0}{(\mathbf{r}_o \cdot \mathbf{z})^2}$ (Motion Field)

 $\mathbf{r}_i + \delta \mathbf{r}_i$

$$\mathbf{v}_i = f \frac{(\mathbf{r}_o \times \mathbf{v}_0) \times \mathbf{z}}{(\mathbf{r}_o \cdot \mathbf{z})^2}$$

Image Sequence (2 frames)

Image Sequence (2 frames)

Image Sequence (2 frames)

Image Sequence (2 frames)

Optical Flow

Image Sequence (2 frames)

Motion of brightness patterns in the image

Image Sequence (2 frames)

Velocity of brightness patt

Ideally, Optical Flow = Motion Field

Motion Field exists But no Optical Flow

Motion Field exists But no Optical Flow

Motion Field exists But no Optical Flow

Motion Field exists
But no Optical Flow

Stationary Sphere Moving Light Source

No Motion Field exists But there is Optical Flow

Motion Field exists
But no Optical Flow

Stationary Sphere Moving Light Source

No Motion Field exists But there is Optical Flow

Barber Pole Illusion

Barber Pole Illusion

Motion Field

Barber Pole Illusion

Motion Field

Barber Pole Illusion

Motion Field

Barber Pole Illusion

Motion Field

Optical Flow

Barber Pole Illusion

Motion Field

Optical Flow

Donguri Wave Illusion

Donguri Wave Illusion

Ouchi Pattern

Ouchi Pattern

