Lecture 05: Linear Algebra Introduction to Machine Learning

Sajjad Amini

Department of Electrical Engineering Sharif University of Technology

Sajjad Amini IML-L05 1 / 43

Contents

- Basic Definitions
- 2 Vector Space
- Products
- 4 Norms
- **6** Matrix Operators
- 6 Special Matrices
- Inverse Matrix
- 8 Eigenvalue Decomposition
- Matrix Calculus

Sajjad Amini IML-L05 2 / 43

References

Except explicitly cited, the reference for the material in slides is:

• Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Sajjad Amini IML-L05 3 / 43

Basic Definitions

Basic Definitions

Vectors

In this course we assume column vectors represented by:

$$m{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = (x_1, x_2, \dots, x_n)$$

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Basic Definitions

Matrix Rows

$$m{A} = egin{bmatrix} -m{A}_{1,:}^T - \ -m{A}_{2,:}^T - \ dots \ -m{A}_{m,:}^T - \end{bmatrix} = egin{bmatrix} m{A}_{1,:}^T & ; & m{A}_{2,:}^T & ; & \dots & ; & m{A}_{m,:}^T \end{bmatrix}$$

Matrix Columns

$$oldsymbol{A} = egin{bmatrix} ert & ert & ert \ oldsymbol{A}_{:,1} & oldsymbol{A}_{:,2} & \dots & oldsymbol{A}_{:,n} \ ert & ert & ert \end{bmatrix} = egin{bmatrix} oldsymbol{A}_{:,1} & , & oldsymbol{A}_{:,2} & , & \dots & , & oldsymbol{A}_{:,n} \end{bmatrix}$$

Sajjad Amini IML-L05 Basic Definitions 6 / 43

Vectorizing

Vectorizing Operator

$$vec(\mathbf{A}) = [\mathbf{A}_{:,1}; \dots; \mathbf{A}_{:,n}] \in \mathbb{R}^{mn \times 1}$$

I-vectorizing Operator

$$\boldsymbol{A} = ivec(vec(\boldsymbol{A}), \mathcal{O})$$

Sajjad Amini IML-L05 Basic Definitions 7 / 43

Vector Space

Vector Space

Vector Space

A vector space is a set of vectors $\boldsymbol{x} \in \mathbb{R}^n$, denoted \mathcal{V} , such that:

- It is closed under vector addition: if $x, y \in \mathcal{V} \Rightarrow x + y \in \mathcal{V}$
- It is closed under multiplication by a real scalar $c \in \mathbb{R}$: if $\mathbf{x} \in \mathcal{V} \Rightarrow c\mathbf{x} \in \mathbb{R}$

Linear Independence

A set of vectors $\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n\}$ is said to be (linearly) dependent if:

$$\exists j: \ \boldsymbol{x}_j = \sum_{i,i \neq j} \boldsymbol{x}_i$$

Otherwise the set is said to be (linearly) independent.

Span

The span of a set of vectors $\{x_1, x_2, \dots, x_n\}$ is defined as:

$$span(\{\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_n\})\triangleq\left\{\boldsymbol{v}:\boldsymbol{v}=\sum_{i=1}^n\alpha_i\boldsymbol{x}_i,\alpha_i\in\mathbb{R}\right\}$$

Sajjad Amini IML-L05 Vector Space 9/43

Products

Matrix-Vector Product

Matrix-Vector Product

Assume $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Then the product vector $y = Ax \in \mathbb{R}^m$ can be viewed as follows:

View 1

$$egin{aligned} oldsymbol{y} = oldsymbol{A}oldsymbol{x} = egin{bmatrix} - & \widehat{oldsymbol{a}}_1^T & - \ - & \widehat{oldsymbol{a}}_2^T & - \ dots & dots \ - & \widehat{oldsymbol{a}}_m^T & - \end{bmatrix} oldsymbol{x} = egin{bmatrix} \widehat{oldsymbol{a}}_1^T oldsymbol{x} \ \widehat{oldsymbol{a}}_2^T oldsymbol{x} \ \vdots \ \widehat{oldsymbol{a}}_m^T oldsymbol{x} \end{bmatrix} \end{aligned}$$

View 2

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} | \\ \mathbf{a}_1 \\ | \end{bmatrix} x_1 + \begin{bmatrix} | \\ \mathbf{a}_2 \\ | \end{bmatrix} x_2 + \dots + \begin{bmatrix} | \\ \mathbf{a}_n \\ | \end{bmatrix} x_n$$

Matrix-Matrix Product

Matrix-Matrix Product

Assume $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product vector $C = AB \in \mathbb{R}^{m \times p}$ can be viewed as follows:

View 1

$$\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B} = \begin{bmatrix} - & \widehat{\boldsymbol{a}}_1^T & - \\ - & \widehat{\boldsymbol{a}}_2^T & - \\ & \vdots \\ - & \widehat{\boldsymbol{a}}_m^T & - \end{bmatrix} \begin{bmatrix} | & | & & | \\ \boldsymbol{b}_1 & \boldsymbol{b}_2 & \dots & \boldsymbol{b}_p \\ | & | & & | \end{bmatrix} = \begin{bmatrix} \widehat{\boldsymbol{a}}_1^T \boldsymbol{b}_1 & \widehat{\boldsymbol{a}}_1^T \boldsymbol{b}_2 & \dots & \widehat{\boldsymbol{a}}_1^T \boldsymbol{b}_p \\ \widehat{\boldsymbol{a}}_2^T \boldsymbol{b}_1 & \widehat{\boldsymbol{a}}_2^T \boldsymbol{b}_2 & \dots & \widehat{\boldsymbol{a}}_2^T \boldsymbol{b}_p \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\boldsymbol{a}}_m^T \boldsymbol{b}_1 & \widehat{\boldsymbol{a}}_m^T \boldsymbol{b}_2 & \dots & \widehat{\boldsymbol{a}}_m^T \boldsymbol{b}_p \end{bmatrix}$$

View 2

$$C=AB=egin{bmatrix} ert & ert & ert & ert \ a_1 & a_2 & \dots & a_n \ ert & ert & ert & ert \end{bmatrix} egin{bmatrix} -&\widehat{oldsymbol{b}}_1^T & -\ -&\widehat{oldsymbol{b}}_2^T & -\ drt & artimes \ -&\widehat{oldsymbol{b}}_n^T & - \end{bmatrix} = \sum_{i=1}^n a_i \widehat{oldsymbol{b}}_i^T \ \end{array}$$

Sajjad Amini IML-L05 Products 12 / 43

Matrix-Matrix Product

Matrix-Matrix Product

Assume $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product vector $C = AB \in \mathbb{R}^{m \times p}$ can be viewed as follows:

View 3

$$egin{aligned} oldsymbol{C} &= oldsymbol{A} oldsymbol{B} &= oldsymbol{A} egin{bmatrix} ert & ert &$$

View 4

IML-L05 Products

Range and Null Spaces

Range of a Matrix

Assume $A \in \mathbb{R}^{m \times n}$. The range or columns space of A is the span of the columns of A as:

$$range(\mathbf{A}) \triangleq \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$$

Null Space of a Matrix

Assume $A \in \mathbb{R}^{m \times n}$. The null space of A is the set of all vectors x that get mapped to the null vector when multiplied by A as:

$$\mathrm{nullspace}(\boldsymbol{A}) \triangleq \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}\}$$

Norms

Vector Norms

Definition

Norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies the following properties:

- ② $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$ (definiteness)

Examples of Vector Norm

• p-norm
$$(\ell_p)$$
: $\|\boldsymbol{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}, p \ge 1 \Rightarrow \begin{cases} \ell_1 : \|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i| \\ \ell_2 : \|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} \\ \ell_\infty : \|\boldsymbol{x}\|_\infty = \max_i |x_i| \end{cases}$

• 0-norm (ℓ_0) : $|x||_0 = \sum_{i=1}^n \mathbb{I}(|x_i| > 0)$ (Pseudo norm due to inhomogeneity)

Sajjad Amini IML-L05 Norms 16 /

Matrix Norms

Examples of Matrix Norm

Assume matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, then:

- p-norm (ℓ_p) : $\|A\|_p = \max_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p} = \max_{\|x\|=1} \|Ax\|_p$
- Frobenius norm (ℓ_F) : $\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \|\operatorname{vec}(A)\|_2$

Sajjad Amini IML-L05 Norms

Matrix Operators

18 / 43

Trace of a Square Matrix

Definition

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(\mathbf{A})$, is the sum of diagonal elements in the matrix as:

$$\operatorname{tr}(\boldsymbol{A}) \triangleq \sum_{i=1}^{n} A_{ii}$$

Properties

Assume matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and scalar $c \in \mathbb{R}$.

- $\bullet \ \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}^T)$
- $\bullet \ \operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$
- $\operatorname{tr}(c\mathbf{A}) = c \operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$

Trace of a Square Matrix

Cyclic Permutation Property

For real matrices A, B and C where ABC is square, then we have:

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{C}\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{C}\boldsymbol{A})$$

Determinant of a Square Matrix

Minor

Assume $A \in \mathbb{R}^{n \times n}$. The (i, j) minor, denoted A_{ij} is the matrix obtained from A by deleting the i-th row and the j-th column.

Cofactor

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$. The (i, j) cofactor, denoted C_{ij} is: $C_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$, where $\det(\mathbf{A}_{ij})$ is the determinant of (i, j) minor.

Determinant

The determinant of a square matrix, denoted $\det(\mathbf{A})$ or $|\mathbf{A}|$, is a measure of how much it changes a unit volume when viewed as a linear transformation and is defined as:

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{i1} C_{i1}$$

Condition Number of a Square Matrix

Condition Number

The condition number of a square matrix \boldsymbol{A} is a measure for the stability of linear equation set $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ and is defined as follows: $\kappa(\boldsymbol{A}) \triangleq \|\boldsymbol{A}\| \times \|\boldsymbol{A}^{-1}\|$. A suitable option for the matrix norm is ℓ_2 norm which result in $\kappa(\boldsymbol{A}) \geq 1$.

Matrix Conditioning

Assume square matrix A. Based on the condition number, this matrix can be divided into two categories:

- \boldsymbol{A} is ill-conditioned if $\kappa(\boldsymbol{A})$ is large.
- A is well-conditioned if $\kappa(A)$ is small (close to 1).

Condition Number of a Square Matrix

Frame Title

In a linear system of equations Ax = b, assume we change b to $b + \Delta b$. Compute the change in x vector (Δx) for the following two matrices:

•
$$\mathbf{A} = 0.1 \mathbf{I}_{100 \times 100} \ (\kappa(\mathbf{A}) = 1, \det(\mathbf{A}) = 10^{-100})$$
:

$$\Delta x = A^{-1} \Delta b = 10 I \Delta b = 10 \Delta b$$

•
$$\mathbf{A} = 0.5 \begin{bmatrix} 1 & 1 \\ 1 + 10^{-10} & 1 - 10^{-10} \end{bmatrix} (\kappa(\mathbf{A}) = 2 \times 10^{10}, \det(\mathbf{A}) = -2 \times 10^{-10})$$
:

$$\Delta \mathbf{x} = \mathbf{A}^{-1} \Delta \mathbf{b} = 1 \begin{bmatrix} \Delta b_1 - 10^{10} (\Delta b_1 - \Delta b_2) \\ \Delta b_2 + 10^{10} (\Delta b_1 - \Delta b_2) \end{bmatrix}$$

Special Matrices

Special Matrices

Diagonal Matrix

• Diagonal matrix:

$$oldsymbol{D} = egin{bmatrix} d_1 & & & & & & \\ & d_2 & & & & & \\ & & & \ddots & & \\ & & & & d_n \end{bmatrix} = \operatorname{diag}(d_1, d_2, \dots, d_n)$$

• Block diagonal Matrix: A square matrix with square matrices in the main diagonal blocks and zero matrices in all off-diagonal blocks as:

$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_1 & & & & & \ & oldsymbol{A}_2 & & & \ & & \ddots & & \ & & & oldsymbol{A}_n \end{bmatrix} = ext{diag}(oldsymbol{A}_1, oldsymbol{A}_2, \dots, oldsymbol{A}_n)$$

Sajjad Amini IML-L05 Special Matrices 25 /

Special Matrices

Band-diagonal Matrix

A band-diagonal matrix only has non-zero entries along the diagonal, and on k sides of the diagonal (k is known as bandwidth).

Tridiagonal Matrix

Tridiagonal matrix is a band-diagonal matrix with k=1. A sample 6×6 tridiagonal matrix is:

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & a_{65} & a_{66} \end{bmatrix}$$

26 / 43

Triangular Matrix

Lower Triangular Matrix

$$\boldsymbol{L} = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & & \\ l_{31} & l_{32} & l_{33} & & \\ \vdots & \vdots & \ddots & \ddots & \\ l_{n1} & l_{n2} & \dots & l_{n(n-1)} & l_{nn} \end{bmatrix}$$

Upper Triangular Matrix

$$\boldsymbol{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ & u_{22} & u_{23} & \dots & u_{2n} \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & u_{(n-1)n} \\ & & & & u_{nn} \end{bmatrix}$$

27 / 43

Definite and Indefinite Matrices

Symmetric Matrix

Matrix $A \in \mathbb{R}^{n \times n}$ is symmetric iff $A = A^T$ (We usually show this by $A \in \mathbb{S}^n$)

Definite and Indefinite Matrices

Suppose $A \in \mathbb{S}^n$ and arbitrary nonzero vector $v \in \mathbb{R}^n \setminus \{0\}$ then:

- A is positive definite (PD), denoted A > 0, iff: $\mathbf{v}^T A \mathbf{v} > 0$
- A is positive semidefinite (PSD), denoted $A \succ 0$, iff: $v^T A v > 0$
- A is negative definite (ND), denoted A < 0, iff: $v^T A v < 0$
- A is negative semidefinite (NSD), denoted $A \leq 0$, iff: $v^T A v \leq 0$
- A is indefinite iff it is none of the above.

Orthogonal Square Matrices

Orthogonal Square Matrices

$$m{A} = egin{bmatrix} | & | & | & | \ m{a}_1 & m{a}_2 & \dots & m{a}_n \ | & | & | \end{bmatrix}$$
 is orthogonal iff:

$$\boldsymbol{a}_i^T \boldsymbol{a}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Inverse Matrix

Inverse Matrix

Inverse Matrix

The inverse of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted \mathbf{A}^{-1} , is the unique matrix such that:

$$\boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^{-1} = \boldsymbol{I}$$

Singular Matrix

 \mathbf{A}^{-1} exists iff $\det(\mathbf{A}) \neq 0$. If $\det(\mathbf{A}) = 0$, \mathbf{A} is called a singular matrix.

Sajjad Amini IML-L05 Inverse Matrix

Eigenvalue Decomposition

Eigenvalue and Eigenvector

Assume a square matrix $A \in \mathbb{R}^{2\times 2}$, we say that $\lambda \in \mathbb{R}$ is an eigenvalue of A and $u \in \mathbb{R}^n$ is the corresponding eigenvector if:

$$Au = \lambda u, u \neq 0$$

"The" Eigenvector

For any eigenvector $\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}$ and scalar $c \in \mathbb{R} \setminus \{0\}$, $c\boldsymbol{u}$ is also an eigenvector. "The" eigenvector is normalized to have unit length.

Characteristic Equation

 $(\lambda, \boldsymbol{u})$ is (eigenvalue, eigenvector) pair if:

$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{u} = \mathbf{0}, \ \mathbf{u} \neq \mathbf{0}$$

Thus:

- \boldsymbol{u} is in the nullspace of $\lambda \boldsymbol{I} \boldsymbol{A}$.
- $\bullet \det(\boldsymbol{A}) = 0$

Equation $det(\mathbf{A}) = 0$ is called characteristic equation.

Characteristic Equation

- The order of characteristic equation is n.
- Characteristic equation has n roots, denoted $\lambda_1, \ldots, \lambda_n$, possibly complex.
- u_i corresponding to λ_i can be easily found by finding the nullspace of $\lambda_i I A$ matrix.

Eigenvalue and Eigenvector

Find the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$. Solution:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\left(\begin{bmatrix} 0.8 - \lambda & 0.3 \\ 0.2 & 0.7 - \lambda \end{bmatrix}\right) = (\lambda - 1)(\lambda - 0.5) = 0$$

$$\Rightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 0.5 \end{cases}$$

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{u}_1 = \mathbf{0} \Rightarrow \begin{bmatrix} -0.2 & 0.3 \\ 0.2 & -0.3 \end{bmatrix} \mathbf{u}_1 = \mathbf{0} \Rightarrow \mathbf{u}_1 = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix}$$

$$(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{u}_2 = \mathbf{0} \Rightarrow \begin{bmatrix} 0.3 & 0.3 \\ 0.2 & 0.2 \end{bmatrix} \mathbf{u}_2 = \mathbf{0} \Rightarrow \mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Rank

The rank of matrix A is equal to the number of non-zero eigenvalues of A.

Connection to Trace and Determinant

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_1, \dots, \lambda_n$. Then:

- The rank of A equals to the number of non-zero eigenvalues of A.
- A^{-1} shares the eigenvector with A while its eigenvalues are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$
- Symmetric matrix **A** is PD iff $\lambda_i > 0, i = 1, \ldots, n$.
- Symmetric matrix **A** is PSD iff $\lambda_i \geq 0, i = 1, \ldots, n$.
- $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_i$
- $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$

Diagonalizable

Diagonalizable

As we see: $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, i = 1, \dots, n$

We can write the above equalities as:

$$AU = U\Lambda$$

where:

$$ullet oldsymbol{U} \in \mathbb{R}^{n imes n} = egin{bmatrix} | & | & | \ oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_n \ | & | & | \end{bmatrix}$$

•
$$\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

Now assume that matrix U is invertible. Then:

$$A = U\Lambda U^{-1}$$

A matrix that can be written in this form is called diagonalizable.

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors of Symmetric Matrices

Based on *Spectral Theorem*, for symmetric matrices we have:

- All eigenvalues are real
- Eigenvectors are orthonormal (U is orthogonal thus $U^{-1} = U^T$)

Then we have:

$$egin{aligned} oldsymbol{A} = oldsymbol{U}oldsymbol{\Lambda} oldsymbol{U}^T = egin{bmatrix} ert & ert & ert & ert \ oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_n \ ert & ert & ert \end{matrix} egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & \ & & \ddots & \ & & \ddots & \ & & & \lambda_n \end{bmatrix} egin{bmatrix} - & oldsymbol{u}_1^T & - \ - & oldsymbol{u}_2^T & - \ & arphi \ - & oldsymbol{u}_m^T & - \end{bmatrix} \ & = \sum_{i=1}^n \lambda_i oldsymbol{u}_i oldsymbol{u}_i oldsymbol{u}_i^T \end{aligned}$$

Data Whitening Using Eigenvectors

Data Whitening Using Eigenvectors

Suppose we have a dataset $X \in \mathbb{R}^{N \times D}$ where the empirical mean vector is zero and empirical covariance matrix is $\Sigma = \frac{1}{N} X^T X$. Find matrix $W \in \mathbb{R}^{D \times D}$ such that empirical covariance matrix for transformed vector $\mathbf{y} = \mathbf{W} \mathbf{x}$ is \mathbf{I} . Solution: Matrix Σ is symmetric, thus $\Sigma = \mathbf{U} \mathbf{D} \mathbf{U}^T$. Assume $\mathbf{W} = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T$, then the covariance matrix for \mathbf{y} is:

$$\operatorname{Cov}[\boldsymbol{y}] = \frac{1}{N} \boldsymbol{Y}^T \boldsymbol{Y} = \frac{1}{N} (\boldsymbol{X} \boldsymbol{W}^T)^T (\boldsymbol{X} \boldsymbol{W}^T) = \boldsymbol{W} \boldsymbol{\Sigma} \boldsymbol{W}^T$$
$$= \boldsymbol{D}^{-\frac{1}{2}} \underbrace{\boldsymbol{U}^T \boldsymbol{U}}_{\boldsymbol{I}} \boldsymbol{D} \underbrace{\boldsymbol{U}^T \boldsymbol{U}}_{\boldsymbol{I}} \boldsymbol{D}^{-\frac{1}{2}} = \boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{D} \boldsymbol{D}^{-\frac{1}{2}} = \boldsymbol{I}$$

Matrix Calculus

Gradient

Gradient

Assume function $f: \mathbb{R}^n \to \mathbb{R}$. The gradient vector of this function at a point \boldsymbol{x} is the vector of partial derivatives as:

$$oldsymbol{g} = rac{\partial f}{\partial oldsymbol{x}} =
abla f = egin{bmatrix} rac{\partial f}{\partial x_1} \\ rac{\partial f}{\partial x_2} \\ dots \\ rac{\partial f}{\partial x_n} \end{bmatrix}$$

To emphasize the gradient evaluation point we write:

$$oldsymbol{g}(oldsymbol{x}^{\star}) riangleq rac{\partial f}{\partial oldsymbol{x}}\Big|_{oldsymbol{x}=oldsymbol{x}^{\star}}$$

Sajjad Amini IML-L05 Matrix Calculus

Hessian

Hessian

Assume function $f: \mathbb{R}^n \to \mathbb{R}$. The Hessian matrix of this function is the matrix of second partial derivatives as:

$$\boldsymbol{H}_{f} = \frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}} = \nabla^{2} f = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Sajjad Amini IML-L05 Matrix Calculus 42 /

Jacobian

Jacobian

Assume function $f: \mathbb{R}^n \to \mathbb{R}^m$. The Jacobian matrix of this function is an $m \times n$ matrix of partial derivatives as:

$$m{J_f}(m{x}) = rac{\partial m{f}}{\partial m{x}^T} riangleq egin{bmatrix} rac{\partial f_1}{\partial x_1} & \dots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \dots & rac{\partial f_m}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla f_1(m{x})^T \ dots \
abla f_m(m{x})^T \end{bmatrix}$$

Sajjad Amini IML-L05 Matrix Calculus 43 / 43