Departamento de Matemáticas 1º Bachillerato CCSS

Examen de números reales

Nombre:	Fecha:
Tiempo: 80 minutos	Tipo: A

Esta prueba tiene 9 ejercicios. La puntuación máxima es de 19. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	Total
Puntos:	2	2	2	2	3	2	4	1	1	19

1. Indica a cuáles de los conjuntos \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} pertenecen cada uno de los (2 puntos) siguientes números:

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
5				
-7				
0,23				
$\sqrt{\frac{18}{2}}$				
$-\sqrt{3}$				
$\sqrt[3]{-5}$				
$4, \widehat{7}$				
$\frac{-\pi}{2}$				
$-\sqrt{25}$				
$\sqrt{-4}$				

		N	\mathbb{Z}	Q	\mathbb{R}
	5	X	X	X	X
	-7		X	X	X
	0,23			Χ	X
	$\sqrt{\frac{18}{2}}$	X	X	X	X
Solución:	$-\sqrt{3}$				X
	$\sqrt[3]{-5}$				X
	$4, \hat{7}$			X	X
	$\frac{-\pi}{2}$				X
	$-\sqrt{25}$		X	X	X
	$\sqrt{-4}$				
	,				

2. Calcula un número que restado con el doble de su raíz cuadrada nos de $(2 \ puntos)$ 15.

Solución: $-2\sqrt{x} + x - 15 = 0 \rightarrow \{25\}$

3. Efectúa la siguiente operación, dando el resultado en notación científica y con la mantisa redondeada a las centésimas. Da, en notación científica también, una cota del error absoluto producido en el redondeo.

$$\frac{5,12\cdot 10^3\cdot 4,2\cdot 10^7}{1.8\cdot 10^{15}}$$

Solución: $\approx 0,000119466666666667 \approx 1,19 \cdot 10^{-4} < 0,5 \cdot 0,01 \cdot 10^{-4} = 5 \cdot 10^{-7}$

- 4. Expresa en forma de intervalo:
 - (a) |x-4| < 5 (1 punto)

Solución: (-1,9)

(b) $|x+3| \geqslant 2$ (1 punto)

Solución: $(-\infty, -5] \cup [1, \infty)$

5. Opera y simplifica:

(a)
$$4\sqrt{20} - 3\sqrt{45} + 11\sqrt{125} - 20\sqrt{5}$$

Solución: $= 4 \cdot 2\sqrt{5} - 3 \cdot 3\sqrt{5} + 11 \cdot 5\sqrt{5} - 20\sqrt{5} = (8 - 9 + 55 - 20)\sqrt{5} = 34\sqrt{5}$

(b)
$$\left(\sqrt[4]{a^3} \frac{1}{a}\right) : \left(a\sqrt{a}\right)$$

Solución: $a^{-\frac{7}{4}}$

(c)
$$\sqrt{8ab} \cdot \sqrt[3]{a^2b}$$
 (1 punto)

Solución: = $\sqrt[6]{2^9 a^3 b^3 \cdot a^4 b^2} = 2a \sqrt[6]{2^3 a b^5}$

6. Racionaliza y simplifica:

(a)
$$\frac{10}{2\sqrt{3} - \sqrt{2}}$$

Solución:
$$=\frac{10 \cdot \left(2\sqrt{3} + \sqrt{2}\right)}{\left(2\sqrt{3} - \sqrt{2}\right) \cdot \left(2\sqrt{3} + \sqrt{2}\right)} = \frac{10 \cdot \left(2\sqrt{3} + \sqrt{2}\right)}{4 \cdot 3 - 2} = 2\sqrt{3} + \sqrt{2}$$

(b)
$$\frac{4+\sqrt{6}}{2\sqrt{3}}$$

Solución:
$$=\frac{4\sqrt{3}+\sqrt{6}\cdot\sqrt{3}}{2\sqrt{3}\sqrt{3}}=\frac{4\sqrt{3}+3\sqrt{2}}{6}$$

7. Calcula x, aplicando la definición de logaritmo:

(a)
$$\log_2 0.5 = x$$
 (1 punto)

Solución: $2^x = 2^{-1} \to x = -1$

(b)
$$\log_4 x = -\frac{1}{2}$$
 (1 punto)

Solución: $4^{-\frac{1}{2}} = x \to x = \frac{1}{\sqrt{4}} \to x = \frac{1}{2}$

(c)
$$\log_5 \sqrt{125} = x$$
 (1 punto)

Solución: $5^x = 5^{\frac{3}{2}} \to x = \frac{3}{2}$

$$(d) \log_x 36 = 4 (1 punto)$$

Solución: $x^4 = 36 \to x = \sqrt[4]{6^2} \to x = \sqrt{6}$

8. Calcula:

(a)
$$\log_3 \frac{1}{9} - \log_5 0, 2 + \log_6 \frac{1}{36} - \log_2 0, 5$$

Solución:
$$= -2 - (-1) + (-2) - (-1) = -2$$

9. Calcula sabiendo que $\log a = 2.5$ y $\log b = -1.2$:

(a)
$$\log \frac{\sqrt[5]{a^2b^4}}{\sqrt[3]{a^5b}}$$

Solución:
$$=\frac{1}{5}\log a^2b^4 - \frac{1}{3}\log a^5b = \frac{1}{5}\left[2\log a + 4\log b\right] - \frac{1}{3}\left[5\log a\right] + \log b \approx -3,726666666666667$$