Московский физико-технический институт

Лабораторная работа 4.3.1

Диффракция.

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы:** Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

Оборудование:

- оптическая скамья
- ртутная лампа
- монохроматор
- щели с регулируемой шириной
- рамка с вертикальной нитью
- двойная щель
- микроскоп на поперечных салазках с микрометрическим винтом
- зрительная труба

Дифракция Френеля на щели

1. Соберем установку для наблюдения дифракции Френеля на щели, представленную на рис.1. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некую плоскость наблюдения П.

Рис. 1: Схема лабораторной установки для наблюдения дифракции Френеля

2. Измерим ширину b щели S_2 с помощью микрометрического винта и поперечных салазок микроскопа и

$$b_{micro} = (2,740 \pm 0,005) \cdot 10^{-4} \text{M}$$

 $b_{shel} = (3,00 \pm 0,05) \cdot 10^{-4} \text{M}$

В данных, написанных выше, берем погрешность, равную половине цены деления шкалы, то есть в случае микрометрического винта: 0,001/2, а в случае салазок микроскопа: 0,01/2.

3. Снимем зависимость координаты микроскопа от числа наблюдаемых полос, результаты занесём в таблицу 1.

Таблица 1: Количество минимумов в зависимости от расстояния до плоскости наблюдения

n тёмных полос	0	1	2	3	4	5
z, MM	481	475	467	462	460	459
a, MM	28	22	14	9	7	6
ξ , MKM	-	110	124	121	124	128

4. Сравним размер зон Френеля с измеренной шириной b=300 мкм щели S_2 . Для этого рассчитаем величину $\xi_n=\sqrt{an\lambda}~(\lambda=546.1~{\rm hm})$ и построим график зависимости $\xi(n)$ и нанесем на него прямую y=b/2

Видим, что ширина френелевских зон - величина порядка толщины щели.

5. Пронаблюдаем за дифракцией Френеля на проволоке. При удалении микроскопа от нити на её фоне всегда наблюдается чётное число тёмных дифракционных полос (светлый центр).

Дифракция Фраунгофера на щели

На значительном удалении от щели, когда ширина щели становится значительно меньше ширины первой зоны Френеля, изображение щели размывается и возникает дифракционная картина, называемая дифракцией Фраунгофера.

1. Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (поставив дополнительную линзу между щелью и плоскостью наблюдения). Дифракционная картина наблюдается в фокальной плоскости объектива O_2 (фокусное расстояние линзы $f_2=12.8$ см). Схема установки для наблюдения дифракции Фраунгофера на щели представлена на рис. 6. Фотография дифракционной картинцы представлена на рис. 8.

Рис. 2: Схема лабораторной установки для наблюдения дифракции Фраунгофера на щели

- 2. Настроим установку, с помощью винта поперечного перемещения микроскопа измерим координаты X_m нескольких дифракционных минимумов от -m до m. Занесём результаты в таблицу 2 (цена деления шкалы 0.02 мм).
- 3. Построим график зависимости x(m). По угловому коэффициенту $k=(0.289\pm0.005)$ мм прямой определим среднее расстояние между соседними минимумами, рассчитаем ширину щели по формуле $b=\frac{\lambda f_2}{k}=242$ мкм. Это значение практически совпадает с измеренным по микрометрическому винту $(b_0=223~{\rm mkm})$

Таблица 2: Координаты минимумов дифракционной картины

m		-3							
Дел.									
x, MM	-1.16	-0.86	-0.58	-0.30	0	0.30	0.58	0.86	1.16

Дифракция Фраунгофера на двух щелях

1. В установке для дифракции Фраунгофера для одной щели заменяем щель S_2 экраном Э с двумя щелями (Рис. 3). В итоге получаем характерное распределение максимумов и минимумов (рис. 4 - дифракционная картина Фраунгофера на двух щелях)

Рис. 4: Дифракционная картина на двух щелях

- 2. Определим расстояние между темными полосками внутри центрального максимума. Посчитаем число светлых промежутков между ними. Измерим ширину центрального максимума. $X=(0,44\pm0,01)$ мм, между ними $n=6\pm1$ светлых промежутков.
 - Погрешность для X взялась из половины цены деления, а для n она появилась в связи с тем, что картина полос размыта в области низкой видности. Далее определим расстояние δx между минимумами по формуле $\delta x = \frac{X}{n} = (73 \pm 10)$ мкм. Далее мы можем получить расстояние между

Влияние дифракции на разрешающую способность оптического инструмента

Рис. 5: Схема установки для пункта 4.

Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое между объектами (источниками).

$$\varphi = \frac{d}{f_1}$$

Из геометрии l между объектами равно

$$l = \phi \cdot d_2$$

$$\frac{\lambda}{b_0} = \frac{l}{f_2} = \frac{d}{f_1}$$

- 1. Собрать схему, изменив в схеме из предыдущего пункта только S.
- 2. Поставить между линзами щель S_2 и уменьшая ее ширину наблюдать ухудшение изображения. Подобрать ширину S_2 так, чтобы изображения почти сливались.

$$b_0 = (0,093 \pm 0,005)_{\mathrm{MM}}$$

Погрешность берем как половину цены деления. В итоге получаем, что выполнено соотношение $\frac{\lambda}{b_0}=5.87\cdot 10^{-3}\approx \frac{d}{f_1}=8.7\cdot 10^{-3}.$

3. Поставить двойную щель и измерить расстояние между щелями и толщину самих щелей.

$$d_0 = (0, 93 \pm 0, 05) \mathrm{mm}$$
 $D1 = (0, 18 \pm 0, 01) \mathrm{mm}$ $D2 = (0, 36 \pm 0, 01) \mathrm{mm}$

Вывод

В ходе работы было изучено явление дифракции света - дифракция Френеля на щели и на препятствии, дифракция Фраунгофера на одной и двух щелях.

- При исследовании явления дифракции Френеля на щели убедились, что ширина зон Френеля примерно равна ширине щели
- При исследовании явления дифракции Фраунгофера на щели получили значение ширины щели, примерно равно измеренному непосредственно с помощью регулятора ширины щели:

$$b_0 = 223 \text{MKM}$$
 $b_f = 242 \text{ MKM}$

•	При исследовании	явления	дифракции	Фраунгофера	на дву	их щелях	было	получено	значение	pac-
	стояния между ще.	лями, прі	имерно равн	ое измеренном	у с пог	мощью м	икроси	копа:		