R Cheat Sheet for CS4375

Getting Started

getwd()	returns working dir
setwd("dir")	set wd to dir
dir()	show files in current dir
ls()	list objects in workspace
rm("x")	remove x from workspace
?topic	get help on topic
?fun()	get help on function
library(x)	load package x
install.packages("x")	install package x

Load Data

data()	list R built-in data sets	
data(iris)	load built-in data set	
<pre>df <- read.table("x")</pre>	read text file	
<pre>df <- read.csv("x")</pre>	read csv file	
read.csv("x", header=TRUE)	file has header	
read.csv("x", na.strings="NA")	interpret NA	
Also: download.file("http://", destfile="x")		
Avoid column names with blank spaces.		

Common Data Structures

Data Frames

is.data.frame(iris)	returns t/f	
<pre>df <- as.data.frame(x)</pre>	convert to data frame	
<pre>df <- data.frame()</pre>	create a data frame	
Columns may be of different data types.		

Matrix

m <- matrix([1:10,nrow=2,ncol:	=5) create matrix
m <- is.matr	rix(x)	returns t/f
m <- as.matr	·ix(x)	convert to matrix
A 11 1	. 1 . 0 . 1	

All columns must be of same data type.

Vector

v	<-	1:10	${\it create \ vector}$
v	<-	seq(1,10)	using seq
v	<-	c("a","b","c")	combine
v	<-	rep(c(TRUE,FALSE),3)	repeat
All items must be of same data type.			

Common Data Types

is.numeric(x)	returns t/f
as.numeric(x)	converts
<pre>df\$gender <- factor(df\$gender)</pre>	make factor
is. and as. work for numeric, integer,	character, etc.
Numeric: integer or real	

Integer: integer only Logical: TRUE, FALSE Character: "1", "many" Factor: qualitative data

Indexing Data

Indexing Vectors

v[2]	2nd element of v	
v[-2]	all but 2nd element	
v[2:5]	elements 2-5	
v[c(1:3,5)]	elements $1,2,3,5$	
v[-c(1:3,5)]	all but el. $1,2,3,5$	
v[v> 3 & v<9]	elements in range	
v[v %in% c(2,4)]	elements in set	
Indexing starts with 1, not 0!		

Indexing Matrices

m[2,3]	el. at row 2, col 3
m[2,]	row 2
m[,2]	col 2
m[,c(1,5)]	cols 1, 5

Indexing Data Frames

df\$x	col "x"
df\$x[df\$x>5]	rows where $col x > 5$

Useful Data Functions

Vectors

attributes(v) attributes length(v) number of el
mode(v) returns type
min(v) minimum value
max(v) maximum value
range(v) min and max
mean(v) average
median(v) median
sum(v) sum

Data Frames

dim(df)	dimensions
nrow(df)	num rows
ncol(df)	num cols
names(df)	col names
<pre>summary(df)</pre>	summary of df
head(df)	1st 6 rows
tail(df, n=2)	last 2 rows
<pre>df <- na.omit(df)</pre>	omit rows with na

Selecting

$\mathtt{which.max}(\mathtt{v})$	index of max
which.min(v)	index of min
which(v==5)	indices where el is 5
rev(v)	reverse
sort(v)	sort
unique(v)	duplicates removed
<pre>subset(df, select=c(2,4))</pre>	subset cols 2,4
<pre>subset(df, select=-x)</pre>	subset all but x
<pre>subset(df. v==0. select=-x)</pre>	rows where v is 0

Data Wrangling

with(data, expr)	eval expr on data
<pre>by(data, indices, func)</pre>	eval by factor level
<pre>length(which(df\$x==1))</pre>	how many xs are 1
sapply(df, func)	apply func to cols of df
lapply(df, func)	apply func to cols of df
tapply(v1, v2, func)	apply func to v1, grouped by v2
Examples:	
tapply(iris\$Sepal.Length,	iris\$Species, mean)
length(which(iris\$Species	=="setosa"))
<pre>sapply(iris[,1:3], mean)</pre>	# returns vector
<pre>lapply(iris[,1:3], mean)</pre>	# returns list
~	

Check Correlation

cor(x,y)	correlation
pairs(df)	correlation matrix

Basic Graphs

hist(v) histogram plot(x,y) plot , xlab="x label" optional , ylab="y label" optional , main="heading" optional , pch=19 point symbol , cex=1.5 point size , color="red" point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21,				
, xlab="x label" optional , ylab="y label" optional , main="heading" optional , pch=19 point symbol , cex=1.5 point size , color="red" point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21,	hist(v)	histogram		
, ylab="y label" optional , main="heading" optional , pch=19 point symbol , cex=1.5 point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	plot(x,y)	plot		
, main="heading" optional , pch=19 point symbol , cex=1.5 point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	, xlab="x label"	optional		
, pch=19 point symbol , cex=1.5 point size , color="red" point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	, ylab="y label"	optional		
, cex=1.5 point size , color="red" point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	, main="heading"	optional		
, color="red" point color par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	, pch=19	point symbol		
par(mfrow=c(1,2)) 1x2 layout cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")	, cex=1.5	point size		
<pre>cdplot(y~x) cond. density Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red", "green3", "blue")</pre>	, color="red"	point color		
Plot creates scatterplots for numeric data and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red","green3","blue")	<pre>par(mfrow=c(1,2))</pre>	1x2 layout		
<pre>and box plots for qualitative data Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red","green3","blue")</pre>	cdplot(y~x)	cond. density		
Example: plot(Petal.Length, Petal.Width, pch=21, bg=c("red","green3","blue")	Plot creates scatterplots for numeric data			
<pre>plot(Petal.Length, Petal.Width, pch=21,</pre>	and box plots for qualitative data			
bg=c("red","green3","blue")	Example:			
	plot(Petal.Length, Petal.Width, pch=21,			
<pre>[unclass(Species)], main="Iris Data")</pre>	bg=c("red","green3","blue")			

Basic Coding

if(cond) expr	if			
if(cond) expr1 else expr2	if else			
ifelse(test, yes, no)	if-else			
for(var in seq) expr	for			
while(cond) expr	while			
function (args) expr	function			
# comments				
Loops are often avoided by vector operations.				
Example: $5 * v \# multiply each el by 5$				

Operand Surprises

```
<- assignment
& vector and
| vector or
& logical and
|| logical or</pre>
```

Split Train and Test

by row number
train <- df[1:500]
test <- df[501:700]
 randomly
set.seed(1234)
i <- sample(nrow(df), floor(nrow(df)*0.8), replace=F)
train <- df[i,]
test <- df[-i,]</pre>

Logistic Regression

glm1 <- glm(y~x, family=binomial)
probs <- predict(glm1, newdata=test, type='response')
pred <- ifelse(probs>0.5,1,0)
table(pred=pred, actual=df\$response)
mean(pred==df\$response)

Clustering: Hierarchical

d <- dist(x.scaled)
fit <- hclust(d, method="average")
plot(fit, han=-1, cex=.8)</pre>

Across Algorithms

Naive Bayes

library(e1071)
nb1 <- naiveBayes(df[,-1], df[,1], data=train)
pred <- predict(nb1, newdata=test[,-1], type="class")
pred <- predict(nb1, newdata=test[,-1], type="raw")</pre>

SVM

Common Metrics

accuracy mean(pred==test\$target)
mse mean(residuals2)

Clustering: kNN

knn regression
library(caret)
fit <- knnreg(df[,-1], df[,1], k=3)
pred <- predict(fit, test[,-1])
cor(pred, test[,1]
 knn classify
library(class)
pred <- knn(train=x, test=y, cl=x\$Labels, k=3)
mean(pred==x\$Labels)</pre>

Decision Tree

Linear Regression

lm1 <- lm(y~x, data=mydata)</pre> returns model lm1 <- lm(v~., data=mydata)</pre> all predictors predictors x and z lm1 <- lm(y~x+z, data=mydata)</pre> lm1 <- lm(y~.-x, data=mydata)</pre> all but x lm1 <- lm(y~.x*z, data=mydata)</pre> interaction lm1 <- lm(log(y)~.x+z, data=mydata)</pre> transformation coef(lm1) coefficients confint(lm1) confidence intervals summary(lm1) model summary predict(lm1, newdata) predict on new data plot(lm1) residual plots

Clustering: k-Means

km.out <- kmeans(data, centers=5, nstart=25)
fit\$centers</pre>

Copyright © 2017 Karen Mazidi http://www.karenmazidi.com/