CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 8

COUNTING ONTO MAPPINGS

- How many onto mappings exist from finite set A to finite set B?
 - If |B| > |A| then no onto mapping exists.
 - ▶ Let $|B| = m \le n = |A|$.
 - ▶ Total number of mappings from A to B are m^n , but not all are onto.
 - ▶ A mapping that is not onto maps A within a subset of size m-1 of B.
 - ▶ There are $\binom{m}{m-1}$ ways of selecting a subset of size m-1 of B.
 - Number of mappings to such a subset of B from A are $(m-1)^n$.
 - ► Are number of onto mappings $m^n {m \choose m-1}(m-1)^n$?
 - ▶ No! Because a mapping can belong to more than one such collection.

- Given 15 Red, 20 Blue, and 12 Green balls, how many sets can be formed by picking 3 Red, 10 Blue, and 5 Green balls?
 - When balls of a color are identical then there is only one way of forming the set.
 - Mhen balls of a color are all distinct, then Red balls can be chosen in $\binom{15}{3}$ ways, Blue balls can be chosen in $\binom{20}{10}$ ways, and Green balls can be chosen in $\binom{12}{5}$ ways.
 - ► Thus the total number of sets is

$$\binom{15}{3} \cdot \binom{20}{10} \cdot \binom{12}{5}.$$

4/8

- How many sets can be formed containing n balls from an unlimited number of identical Red, Blue, and Green balls?
 - Represent any choice by lining up Red balls, followed by Blue and then Green balls.
 - Put two markers, one between Red and Blue balls, and other between Blue and Green balls.
 - ▶ View the sequence as n + 2 slots occupied by two markers and Red balls before first marker, Blue balls between two markers, and Green balls after second marker.
 - Once the location of two markers are fixed, there is only one way to fill up remaining slots.
 - ▶ Hence, the total number of such sequences is exactly $\binom{n+2}{2}$.

- Given an $m \times n$ grid, how many paths are there from bottom-left to top-right when one can move either right or up?
 - ▶ Represent a path by a sequence of right and up moves.
 - ▶ There will be exactly n right and m up moves, so n + m moves overall.
 - ▶ Once location of right moves is fixed, remaining locations will have up moves.
 - ► Each sequence is a valid path and every valid path corresponds to such a sequence.
 - ▶ Hence, total number of paths is exactly $\binom{n+m}{n}$.

- Given 20 Red and 20 Blue beads, how many distinct necklaces can be made from them?
 - ▶ View the necklace as a sequence with 40 slots, twenty of which have Blue beads and remaining Red beads.
 - Once the location of Blue beads is fixed, there is only one way to fill the remaining slots.
 - ► There are exactly $\binom{40}{20}$ ways of picking slots for Blue beads.
 - However, it does not give the number of necklaces due to rotational symmetries.
 - Even dividing the number by 40 does not count properly.

- In how many ways positive integer n can partitioned as a sum of smaller numbers?
 - ▶ A partition can have different number of numbers.
 - ► We can allow 0 and fix the number of numbers in the partition to be exactly *n*.
 - Also, by ordering the numbers in the partition, we can view it as a sequence with 2n-1 slots containing n-1 markers denoting transition, slots before first marker containing 0, slots between marker no i and i+1 containing number i, and slots after marker no n-1 containing number n-1.

8/8

- ▶ Number of such sequences is $\binom{2n-1}{n-1}$.
- ► However, not all of them add up to *n*.