PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
(C07K 14/00

(A2 (11) International Publication Number: WO 99/58559

(A3) International Publication Date: 18 November 1999 (18.11.99)

(21) International Application Number: PCT/US99/10793

(22) International Filing Date: 14 May 1999 (14.05.99)

(30) Priority Data:

09/081.385

14 May 1998 (14.05.98)

US

(71) Applicant (for all designated States except US): THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GATANAGA, Tetsuya [JP/US]; 77 Wellesley, Irvine, CA 92612 (US). GRANGER, Gale, A. [US/US]; 31562 Santa Rosa, Laguna Beach, CA 92651 (US).
- (74) Agents: CAMPBELL, Cathryn et al.; Campbell and Flores, Suite 700, 4370 La Jolla Village Drive, San Diego, CA 92122 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR RELEASING ENZYME ACTIVITY

(57) Abstract

The biological effects of the cytokine TNF are mediated by binding to receptors on the surface of cells. This disclosure describes new proteins and polynucleotides that promote enzymatic cleavage and release of TNF receptors. Also provided are method for identifying additional compounds that influence TNF receptor shedding. As the active ingredient in a pharmaceutical composition, the products of this invention increase or decrease TNF signal transduction, thereby alleviating the pathology of disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Słovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal .
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi .	US	United States of America
CA.	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR ·	Republic of Korea	. PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US99/10793

FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR RELEASING ENZYME ACTIVITY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. application 09/081,385, filed May 14, 1998, pending. For purposes of prosecution in the U.S., the priority application is hereby incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

This invention relates generally to the field of signal transduction between cells, via cytokines and their receptors. More specifically, it relates to enzymatic activity that cleaves and releases the receptor for TNF found on the cell surface, and the consequent biological effects. Certain embodiments of this invention are compositions that affect such enzymatic activity, and may be included in medicaments for disease treatment.

15

20

25

10

5

BACKGROUND OF THE INVENTION

Cytokines play a central role in the communication between cells. Secretion of a cytokine from one cell in response to a stimulus can trigger an adjacent cell to undergo an appropriate biological response — such as stimulation, differentiation, or apoptosis. It is hypothesized that important biological events can be influenced not only by affecting cytokine release from the first cell, but also by binding to receptors on the second cell, which mediates the subsequent response. The invention described in this patent application provides new compounds for affecting signal transduction from tumor necrosis factor.

The cytokine known as tumor necrosis factor (TNF or TNF- α) is structurally related to lymphotoxin (LT or TNF- β). They have about 40 percent amino acid sequence homology (Old, *Nature* 330:602-603, 1987). These cytokines are released by macrophages, monocytes and natural killer cells and

play a role in inflammatory and immunological events. The two cytokines cause a broad spectrum of effects both in vitro and in vivo, including: (i) vascular thrombosis and tumor necrosis; (ii) inflammation; (iii) activation of macrophages and neutrophils; (iv) leukocytosis; (v) apoptosis; and (vi) shock. TNF has been associated with a variety of disease states including various forms of cancer, arthritis, psoriasis, endotoxic shock, sepsis, autoimmune diseases, infections, obesity, and cachexia. TNF appears to play a role in the three factors contributing to body weight control: intake, expenditure, and storage of energy (Rothwell, *Int. J. Obesity* 17:S98-S101, 1993). In septicemia, increased endotoxin concentrations appear to raise TNF levels (Beutler et al. *Science* 229:869-871, 1985).

5

10

15

20

25

30

Attempts have been made to alter the course of a disease by treating the patient with TNF inhibitors, with varying degrees of success. For example, the TNF inhibitor dexanabinol provided protection against TNF mediated effects following traumatic brain injury (Shohami et al. *J. Neuroimmun.* 72:169-77, 1997). Some improvement in Crohn's disease was afforded by treatment with anti-TNF antibodies (Neurath et al., *Eur. J. Immun.* 27:1743-50, 1997).

Human TNF and LT mediate their biological activities by binding specifically to two distinct glycoprotein plasma membrane receptors (55 kDa and 75 kDa in size, known as p55 and p75 TNF-R, respectively). The two receptors share 28 percent amino acid sequence homology in their extracellular domains, which are composed of four repeating cysteine-rich regions (Tartaglia and Goeddel, *Immunol. Today* 13:151-153, 1992). However, the receptors lack significant sequence homology in their intracellular domains, and mediate different intracellular responses to receptor activation. In accordance with the different activities of TNF and LT, most human cells express low levels of both TNF receptors: about 2,000 to 10,000 receptors per cell (Brockhaus et al., *Proc. Natl. Acad. Sci.* USA 87:3127-3131, 1990).

Expression of TNF receptors on both lymphoid and non-lymphoid cells can be influenced experimentally by many different agents, such as bacterial lipopolysaccharide (LPS), phorbol myristate acetate (PMA; a protein kinase C

activator), interleukin-1 (IL-1), interferon-gamma (IFN-γ) and IL-2 (Gatanaga et al. *Cell Immunol.* 138:1-10, 1991; Yui et al. *Placenta* 15:819-835, 1994). It has been shown that complexes of human TNF bound to its receptor are internalized from the cell membrane, and then the receptor is either degraded or recycled (Armitage, *Curr. Opin. Immunol.* 6:407-413, 1994). It has been proposed that TNF receptor activity can be modulated using peptides that bind intracellularly to the receptor, or which bind to the ligand binding site, or that affect receptor shedding. See for example patent publications WO 95/31544, WO 95/33051, WO 96/01642, and EP 568 925.

5

10

15

20

25

30

TNF binding proteins (TNF-BP) have been identified at elevated levels in the serum and urine of febrile patients, patients with renal failure, and cancer patients, and even certain healthy individuals. Human brain and ovarian tumors produced high serum levels of TNF-BP These molecules have been purified, characterized, and cloned (Gatanaga et al., *Lymphokine Res.* 9:225-229, 1990a; Gatanaga et al., *Proc. Natl. Acad. Sci USA* 87:8781-8784, 1990b). Human TNF-BP consists of 30 kDa and 40 kDa proteins which are identical to the N-terminal extracellular domains of p55 and p75 TNF receptors, respectively (US Patent No. 5,395,760; EP 418,014). Such proteins have been suggested for use in treating endotoxic shock. Mohler et al. *J. Immunol.* 151:1548–1561, 1993

There are several mechanisms possible for the production of secreted proteins resembling membrane bound receptors. One involves translation from alternatively spliced mRNAs lacking transmembrane and cytoplasmic regions. Another involves proteolytic cleavage of the intact membrane receptors, followed by shedding of the cleaved receptor from the cell. The soluble form of p55 and p75 TNF-R do not appear to be generated from mRNA splicing, since only full length receptor mRNA has been detected in human cells *in vitro* (Gatanaga et al., 1991). Carboxyl-terminal sequencing and mutation studies on human p55 TNF-R indicates that a cleavage site may exist between residues Asn 172 and Val 173 (Gullberg et al. *Eur. J. Cell. Biol.* 58:307-312, 1992).

There are reports that a specific metalloprotease inhibitor, TNF- α protease inhibitor (TAPI) blocks the shedding of soluble p75 and p55 TNF-R (Crowe et al.

5

10

15

20

25

30

J. Exp. Med. 181:1205-1210, 1995; Mullberg et al. J. Immunol. 155:5198-5205, 1995). The processing of pro-TNF on the cell membrane to release the TNF ligand appears to be dependent on a matrix metalloprotease like enzyme (Gearing et al. Nature 370:555-557, 1994). This is a family of structurally related matrix-degrading enzymes that play a major role in tissue remodeling and repair associated with development and inflammation (Birkedal-Hansen et al. Crit. Rev. Oral Biol. Med. 4:197–250, 1993). The enzymes have Zn²+ in their catalytic domains, and Ca²+ stabilizes their tertiary structure significantly.

In European patent application EP 657536A1, Wallach et al. suggest that it would be possible to obtain an enzyme that cleaves the 55,000 kDa TNF receptor by finding a mutated form of the receptor that is not cleaved by the enzyme, but still binds to it. The only proposed source for the enzyme is a detergent extract of membranes for cells that appear to have the protease activity. If it were possible to obtain an enzyme according to this scheme, then the enzyme would presumably comprise a membrane spanning region. The patent application does not describe any protease that was actually obtained.

In a previous patent application in the present series (International Patent Publication WO 9820140), methods are described for obtaining an isolated enzyme that cleaves both the p55 and p75 TNF-R from cell surfaces. A convenient source is the culture medium of cells that have been stimulated with phorbol myristate acetate (PMA). The enzyme activity was given the name TRRE (TNF receptor releasing enzyme). In other studies, TRRE was released immediately upon PMA stimulation, indicating that it is presynthesized in an inactive form to be rapidly converted to the active form upon stimulation. Evidence for direct cleavage of TNF-R is that the shedding begins very quickly (~5 min) with maximal shedding within 30 min. TRRE is specific for the TNF-R, and does not cleave IL-1 receptors, CD30, ICAM-1 or CD11b. TRRE activity is enhanced by adding Ca⁺⁺ or Zn⁺⁺, and inhibited by EDTA and phenantroline.

Given the involvement of TNF in a variety of pathological conditions, it is desirable to obtain a variety of factors that would allow receptor shedding to be

modulated, thereby controlling the signal transduction from TNF at a disease site.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

This disclosure provides new compounds that promote enzymatic cleavage and release of TNF receptors from the cell surface. Nine new DNA clones have been selected after repeat screening in an assay that tests the ability to enhance receptor release. The polynucleotide sequences of this invention and the proteins encoded by them have potential as diagnostic aids, and therapeutic compounds that can be used to adjust TNF signal transduction in a beneficial way.

One embodiment of the invention is an isolated polynucleotide comprising a nucleotide sequence with the following properties: a) the sequence is expressed at the mRNA level in Jurkat T cells; b) when COS-1 cells expressing TNF-receptor are genetically transformed to express the sequence, the cells have increased enzymatic activity for cleaving and releasing the receptor. If a polynucleotide sequence is expressed in Jurkat cells, then it can be found in the Jurkat cell expression library deposited with the ATCC (Accession No. TIB-152). It is recognized that the polynucleotide can be obtained from other cell lines, or produced by recombinant techniques.

Included are polynucleotides in which the nucleotide sequence is contained in any of SEQ. ID NOS:1-10. Also embodied are polynucleotides comprising at least 30 and preferably more consecutive nucleotides in said nucleotide sequence, or at least 50 consecutive nucleotides that are homologous to said sequence at a significant level, preferably at the 90% level or more. Also included antisense and ribozyme polynucleotides that inhibit the expression of a TRRE modulator.

Another embodiment of the invention is isolated polypeptides comprising an amino acid sequence encoded by a polynucleotide of this invention. Non-limiting examples are sequences shown in SEQ. ID NOS: 147-158. Fragments

and fusion proteins are included in this invention, and preferably comprise at least 10 consecutive residues encoded by a polynucleotide of this invention, or at least 15 consecutive amino acids that are homologous at a significant level, preferably at least 80%. Preferred polypeptides promote cleavage and release of TNF receptors from the cell surface, especially COS-1 cells genetically transformed to express TNF receptor. The polypeptides may or may not have a membrane spanning domain, and may optionally be produced by a process that involves secretion from a cell. Included are species homologs with the desired activity, and artificial mutants with additional beneficial properties.

Another embodiment of this invention is an antibody specific for a polypeptide of this invention. Preferred are antibodies that bind a TRRE modulator protein, but not other substances found in human tissue samples in comparable amounts.

10

15

20.

25

30

Another embodiment of the invention is an assay method of determining altered TRRE activity in a cell or tissue sample, using a polynucleotide or antibody of this invention to detect the presence or absence of the corresponding TRRE modulator. The assay method can optionally be used for the diagnosis or evaluation of a clinical condition relating to abnormal TNF levels or TNF signal transduction.

Another embodiment of the invention is a method for increasing or decreasing signal transduction from a cytokine into a cell (including but not limited to TNF), comprising contacting the cell with a polynucleotide, polypeptide, or antibody of this invention.

A further embodiment of the invention is a method for screening polynucleotides for an ability to modulate TRRE activity. The method involves providing cells that express both TRRE and the TNF-receptor; genetically altering the cells with the polynucleotides to be screened; cloning the cells; and identifying clones with the desired activity.

Yet another embodiment of the invention is a method for screening substances for an ability to affect TRRE activity. This typically involves incubating cells expressing TNF receptor with a TRRE modulator of this

invention in the presence or absence of the test substance; and measuring the effect on shedding of the TNF receptor.

The products of this invention can be used in the preparation of a medicament for treatment of the human or animal body. The medicament contains a clinically effective amount for treatment of a disease such as heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, sepsis, and cancer. These compositions can be used for administration to a subject suspected of having or being at risk for the disease, optionally in combination with other forms of treatment appropriate for their condition.

10

15

20

· 25

30

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of plasmid pCDTR2. This plasmid expresses p75 TNF-R, the ~75 kDa form of the TNF receptor. PCMV stands for cytomegalovirus; BGHpA stands for bovine growth hormone polyadenylation signal.

Figure 2 is a line depicting the levels of p75 TNF-R detected on COS-1 cells genetically altered to express the receptor. Results from the transformed cells, designated C75R (●, upward swooping line) is compared with that from the parental COS-1 cells (■, baseline). The receptor number was calculated by Scatchard analysis (inset).

Figure 3 is a survival graph, showing that TRRE decreases mortality in mice challenged with lipopolysaccharide (LPS) to induce septic peritonitis. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).

Figure 4 is a half-tone reproduction of a bar graph, showing the effect of 9 new clones on TRRE activity on C75R cells (COS-1 cells transfected to express the TNF-receptor. Each of the 9 clones increases TRRE activity by over 2-fold.

Figure 5 is a survival graph, showing the ability of 4 new expressed to save mice challenged with LPS. (\spadesuit) saline; (\blacksquare) BSA; (\triangle) Mey-3 (100 μ g); (X) Mey-3 (10 μ g); ($^{\bullet}$) Mey-8 (10 μ g).

DETAILED DESCRIPTION OF THE INVENTION

It has been discovered that certain cells involved in the TNF transduction pathway express enzymatic activity that causes TNF receptors to be shed from the cell surface. Enzymatic activity for cleaving and releasing TNF receptors has been given the designation TRRE. Phorbol myristate acetate induces release of TRRE from cells into the culture medium. An exemplary TRRE protein had been purified from the supernatant of TNF-1 cells (Example 2). The protease bears certain hallmarks of the metalloprotease family, and is released rapidly from the cell upon activation.

10

15

20

In order to elucidate the nature of this protein, functional cloning was performed. Jurkat cells were selected as being a good source of TRRE. The cDNA from a Jurkat library was expressed, and cell supernatant was tested for an ability to release TNF receptors from cell surfaces. Cloning and testing of the expression product was conducted through several cycles, and nine clones were obtained that more than doubled TRRE activity in the assay (Figure 4). At the DNA level, all 9 clones had different sequences.

Protein expression products from the clones have been tested in a lipopolysaccharide animal model for sepsis. Protein from three different clones successfully rescued animals from a lethal dose of LPS (Figure 5). This points to an important role for these molecules in the management of pathological conditions mediated by TNF.

The number of new TRRE promoting clones obtained from the expression library was surprising. The substrate specificity of the TRRE isolated in Example 2 distinguishes the 75 kDa and 55 kDa TNF receptors from other cytokine receptors and cell surface proteins. There was little reason beforehand to suspect that cells might have nine different proteases for the TNF receptor. It is possible that one of the clones encodes the TRRE isolated in Example 2, or a related protein. It is possible that some of the other clones have proteolytic activity to cleave TNF receptors at the same site, or at another site that causes release of the soluble form from the cell. It is a hypothesis of this disclosure that some of the clones may not have proteolytic activity themselves, but play a role in promoting TRRE activity in a secondary fashion.

5

10

15

20

25

30

This possibility is consistent with the observations made, because there is an endogenous level of TRRE activity in the cells used in the assay. The cleavage assay involves monitoring TNF receptor release from C75 cells, which are COS-1 cells genetically altered to express p75 TNF-R. The standard assay is conducted by contacting the transformed cells with a fluid believed to contain TRRE. The level of endogenous TRRE activity is evident from the rate of spontaneous release of the receptor even when no exogenous TRRE is added (about 200 units). Accordingly, accessory proteins that promote TRRE activity would increase the activity measured in the assay. Many mechanisms of promotion are possible, including proteins that activate a zymogen form of TRRE, proteins that free TRRE from other cell surface components, or proteins that stimulate secretion of TRRE from inside the cell. It is not necessary to understand the mechanism in order to use the products of this invention in most of the embodiments described.

It is anticipated that several of the clones will have activity not just for promoting TNF receptor cleavage, but also having an effect on other surface proteins. To the extent that cleavage sequences or accessory proteins are shared between different receptors, certain clones would promote phenotypic change (such as receptor release) for the family of related substrates.

This disclosure provides polypeptides that promote TRRE activity, polynucleotides that encode such polypeptides, and antibodies that bind such peptides. The binding of TNF to its receptor mediates a number of biological effects. Cleavage of the TNF-receptor by TRRE diminishes signal transduction by TRRE. Potentiators of TRRE activity have the same effect. Thus, the products of this invention can be used to modulate signal transduction by cytokines, which is of considerable importance in the management of disease conditions that are affected by cytokine action. The products of this invention can also be used in diagnostic methods, to determine when signal transduction is being inappropriately affected by abnormal TRRE activity. The assay systems described in this disclosure provide a method for screening additional compounds that can influence TRRE activity, and thus the signal transduction from TNF.

Based on the summary of the invention, and guided by the illustrations in the example section, one skilled in the art will readily know what techniques to employ in the practice of the invention. The following detailed description is provided for the additional convenience of the reader.

Definitions and basic techniques

15

20

25

30

As used in this disclosure, "TRRE activity" refers to the ability of a composition to cleave and release TNF receptors from the surface of cells expressing them. A preferred assay is cleavage from transfected COS-1 cells, as described in Example 1. However, TRRE activity can be measured on any cells that bear TNF receptors of the 55 kDa or 75 kDa size. Other features of the TRRE enzyme obtained from PMA induction of THP-1 cells (exemplified in Example 2) need not be a property of the TRRE activity measured in the assay.

Unit activity of TRRE is defined as 1 pg of soluble p75 TNF-R released from cell surface in a standard assay, after correction for spontaneous release. The measurement of TRRE activity is explained further in Example 1.

A "TRRE modulator" is a compound that has the property of either increasing or decreasing TRRE activity for processing TNF on the surface of

cells. Those that increase TRRE activity may be referred to as TRRE promoters, and those that decrease TRRE activity may be referred to as TRRE inhibitors. TRRE promoters include compounds that have proteolytic activity for TNF-R, and compounds that augment the activity of TNF-R proteases. The nine polynucleotide clones described in Example 5, and their protein products, are exemplary TRRE promoters. Inhibitors of TRRE activity can be obtained using the screening assays described below.

5

10

15

20

25

30

The term "polynucleotide" refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, (mRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The term polynucleotide refers interchangeably to double-and single-stranded molecules. Unless otherwise specified or required, any embodiment of the invention described herein that is a polynucleotide encompasses both the double-stranded form, and each of two complementary single-stranded forms known or predicted to make up the double-stranded form

"Hybridization" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. Hybridization reactions can be performed under conditions of different "stringency". Relevant conditions include temperature, ionic strength, and the presence of additional solutes in the reaction mixture such as formamide. Conditions of increasing stringency are 30°C. in 10X SSC (0.15M NaC1, 15 mM citrate buffer); 40°C. in 6X SSC; 50°C. in 6.X SSC 60°C. in 6X SSC, or at about 40°C. in 0.5X SSC, or at about 30°C. in 6.X. SSC containing 50% formamide. SDS and a source of fragmented DNA (such as salmon sperm) are typically also present during hybridization. Higher

stringency requires higher minimum complementarity between hybridizing elements for a stable hybridization complex to form. See "Molecular Cloning: A Laboratory Manual", Second Edition (Sambrook, Fritsch & Maniatis, 1989).

It is understood that purine and pyrimidine nitrogenous bases with similar structures can be functionally equivalent in terms of Watson-Crick base-pairing; and the inter-substitution of like nitrogenous bases, particularly uracil and thymine, or the modification of nitrogenous bases, such as by methylation, does not constitute a material substitution.

The percentage of sequence identity for polynucleotides or polypeptides is calculated by aligning the sequences being compared, and then counting the number of shared residues at each aligned position. No penalty is imposed for the presence of insertions or deletions, but are permitted only where required to accommodate an obviously increased number of amino acid residues in one of the sequences being aligned. When one of the sequences being compared is indicated as being "consecutive", then no gaps are permitted in that sequence during the comparison. The percentage identity is given in terms of residues in the test sequence that are identical to residues in the comparison or reference sequence.

10

15

20

25

30

As used herein, "expression" of a polynucleotide refers to the production of an RNA transcript. Subsequent translation into protein or other effector compounds may also occur, but is not required unless specified.

"Genetic alteration" refers to a process wherein a genetic element is introduced into a cell other than by mitosis or meiosis. The element may be heterologous to the cell, or it may be an additional copy or improved version of an element already present in the cell. Genetic alternation may be effected, for example, by transducing a cell with a recombinant plasmid or other polynucleotide through any process known in the art, such as electroporation, calcium phosphate precipitation, or contacting with a polynucleotide-liposome complex. Genetic alteration may also be effected, for example, by transduction or infection with a DNA or RNA virus or viral vector. It is preferable that the

genetic alteration is inheritable by progeny of the cell, but this is not generally required unless specified.

The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.

5

10

15

20

25

30

A "fusion polypeptide" is a polypeptide comprising regions in a different position in the sequence than occurs in nature. The regions can normally exist in separate proteins and are brought together in the fusion polypeptide; they can normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide; or they can be synthetically arranged. A "functionally equivalent fragment" of a polypeptide varies from the native sequence by addition, deletion, or substitution of amino acid residues, or any combination thereof, while preserving a functional property of the fragment relevant to the context in which it is being used. Fusion peptides and functionally equivalent fragments are included in the definition of polypeptides used in this disclosure.

It is understood that the folding and the biological function of proteins can accommodate insertions, deletions, and substitutions in the amino acid sequence. Some amino acid substitutions are more easily tolerated. For example, substitution of an amino acid with hydrophobic side chains, aromatic side chains, polar side chains, side chains with a positive or negative charge, or side chains comprising two or fewer carbon atoms, by another amino acid with a side chain of like properties can occur without disturbing the essential identity of the two sequences. Methods for determining homologous regions and scoring the degree of homology are described in Altschul et al. *Bull. Math. Bio.* 48:603-616, 1986; and Henikoff et al. *Proc. Natl. Acad. Sci. USA* 89:10915-10919, 1992. Substitutions that preserve the functionality of the polypeptide, or confer a new

and beneficial property (such as enhanced activity, stability, or decreased immunogenicity) are especially preferred.

An "antibody" (interchangeably used in plural form) is an immunoglobulin molecule capable of specific binding to a target, such as a polypeptide, through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact antibodies, but also antibody equivalents that include at least one antigen combining site of the desired specificity. These include but are not limited to enzymatic or recombinantly produced fragments antibody, fusion proteins, humanized antibodies, single chain variable regions, diabodies, and antibody chains that undergo antigen-induced assembly.

5

10

15

20

25

30

An "isolated" polynucleotide, polypeptide, protein, antibody, or other substance refers to a preparation of the substance devoid of at least some of the other components that may also be present where the substance or a similar substance naturally occurs or is initially obtained from. Thus, for example, an isolated substance may be prepared by using a purification technique to enrich it from a source mixture. Enrichment can be measured on an absolute basis, such as weight per volume of solution, or it can be measured in relation to a second, potentially interfering substance present in the source mixture. Increasing enrichments of the embodiments of this invention are increasingly more preferred. Thus, for example, a 2-fold enrichment is preferred, 10-fold enrichment is more preferred, 100-fold enrichment is more preferred, 1000-fold enrichment is even more preferred. A substance can also be provided in an isolated state by a process of artificial assembly, such as by chemical synthesis or recombinant expression.

A "host cell" is a cell which has been genetically altered, or is capable of being transformed, by administration of an exogenous polynucleotide.

The term "clinical sample" encompasses a variety of sample types obtained from a subject and useful in an in vitro procedure, such as a diagnostic test. The definition encompasses solid tissue samples obtained as a surgical removal, a pathology specimen, or a biopsy specimen, cells obtained from a

clinical subject or their progeny obtained from culture, liquid samples such as blood, serum, plasma, spinal fluid, and urine, and any fractions or extracts of such samples that contain a potential indication of the disease.

Unless otherwise indicated, the practice of the invention will employ conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, within the skill of the art. Such techniques are explained in the standard literature, such as: "Molecular Cloning: A Laboratory Manual", Second Edition (Sambrook, Fritsch & Maniatis, 1989), "Oligonucleotide Synthesis" (M. J. Gait, ed., 1984), "Animal Cell Culture" (R. I. Freshney, ed., 1987); the series "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology" (D. M. Weir & C. C. Blackwell, Eds.), "Gene Transfer Vectors for Mammalian Cells" (J. M. Miller & M. P. Calos, eds., 1987), "Current Protocols in Molecular Biology" (F. M. Ausubel et al., eds., 1987); and "Current Protocols in Immunology" (J. E. Coligan et al., eds., 1991). The reader may also choose to refer to a previous patent application relating to TRRE, International Patent Application WO 98020140.

For purposes of prosecution in the U.S., and in other jurisdictions where allowed, all patents, patent applications, articles and publications indicated anywhere in this disclosure are hereby incorporated herein by reference in their entirety.

Polynucleotides

5

10 -

15

20

25

30

Polynucleotides of this invention can be prepared by any suitable technique in the art. Using the data provided in this disclosure, sequences of less than ~50 base pairs are conveniently prepared by chemical synthesis, either through a commercial service or by a known synthetic method, such as the triester method or the phosphite method. A preferred method is solid phase synthesis using mononucleoside phosphoramidite coupling units (Hirose et al., *Tetra. Lett.* 19:2449-2452, 1978; U.S. Patent No. 4,415,732).

For use in antisense therapy, polynucleotides can be prepared by chemistry that produce more stable in pharmaceutical preparations. Non-limiting

examples include thiol-derivatized nucleosides (U.S. Patent 5,578,718), and oligonucleotides with modified backbones (U.S. Patent Nos. 5,541,307 and 5,378,825).

5

15

20

25

30

Polynucleotides of this invention can also be obtained by PCR amplification of a template with the desired sequence. Oligonucleotide primers spanning the desired sequence are annealed to the template, elongated by a DNA polymerase, and then melted at higher temperature so that the template and elongated oligonucleotides dissociate. The cycle is repeated until the desired amount of amplified polynucleotide is obtained (U.S. Patent Nos. 4,683,195 and 4,683,202). Suitable templates include the Jurkat T cell library and other human or animal expression libraries that contain TRRE modulator encoding sequences. The Jurkat T cell library is available from the American Type Culture Collection, 10801 University Blvd., Manassas VA 20110, U.S.A. (ATCC #TIB-152). Mutations and other adaptations can be performed during amplification by designing suitable primers, or can be incorporated afterwards by genetic splicing.

Production scale amounts of large polynucleotides are most conveniently obtained by inserting the desired sequence into a suitable cloning vector and reproducing the clone. Techniques for nucleotide cloning are given in Sambrook, Fritsch & Maniatis (supra) and in U.S. Patent No. 5,552,524. Exemplary cloning and expression methods are illustrated in Example 6.

Preferred polynucleotide sequences are 50%, 70%, 80%, 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order if increasing preference. The length of consecutive residues in the identical or homologous sequence compared with the exemplary sequence can be about 15, 30, 50, 75, 100, 200 or 500 residues in order of increasing preference, up to the length of the entire clone. Nucleotide changes that cause a conservative substitution or retain the function of the encoded polypeptide (in terms of hybridization properties or what is encoded) are especially preferred substitutions.

5

10

15

20

25

The polynucleotides of this can be used to measure altered TRRE activity in a cell or tissue sample. This involves contacting the sample with the polynucleotide under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample, and determining polynucleotide that has hybridized as a result of step a). Specificity of the test can be provided in one of several ways. One method involves the use of a specific probe — a polynucleotide of this invention with a sequence long enough and of sufficient identity to the sequence being detected, so that it binds the target and not other nucleic acid that might be present in the sample. The probe is typically labeled (either directly or through a secondary reagent) so that it can be subsequently detected. Suitable labels include ³²P and ³³P, chemiluminescent and fluorescent reagents. hybridization reaction, unreacted probe is washed away so that the amount of hybridized probe can be determined. Signal can be amplified using branched probes (U.S. Patent No. 5,124,246). In another method, the polynucleotide is a primer for a PCR reaction. Specificity is provided by the ability of the paired probes to amplify the sequence of interest. After a suitable number of PCR cycles, the amount of amplification product present correlates with the amount of target sequence originally present in the sample.

Such tests are useful both in research, and in the diagnosis or assessment of a disease condition. For example, TNF activity plays a role in eliminating tumor cells (Example 4), and a cancer may evade the elimination process by activating TRRE activity in the diseased tissue. Hence, under some conditions, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring therapy, such as when gene therapy is performed to increase TRRE activity.

Polynucleotides of this invention can also be used for production of polypeptides and the preparation of medicaments, as explained below.

Polypeptides

. 10

15

20

25

30

Short polypeptides of this invention can be prepared by solid-phase chemical synthesis. The principles of solid phase chemical synthesis can be found in Dugas & Penney, Bioorganic Chemistry, Springer-Verlag NY pp 54-92 (1981), and U.S. Patent No. 4,493,795. Automated solid-phase peptide synthesis can be performed using devices such as a PE-Applied Biosystems 430A peptide synthesizer (commercially available from Applied Biosystems, Foster City CA).

Longer polypeptides are conveniently obtained by expression cloning. A polynucleotide encoding the desired polypeptide is operably linked to control elements for transcription and translation, and then transfected into a suitable host cell. Expression may be effected in procaryotes such as E. coli (ATCC Accession No. 31446 or 27325), eukaryotic microorganisms such as the yeast Saccharomyces cerevisiae, or higher eukaryotes, such as insect or mammalian cells. A number of expression systems are described in U.S. Patent No. 5,552,524. Expression cloning is available from such commercial services as Lark Technologies, Houston TX. The production of protein from 4 exemplary clones of this invention in insect cells is illustrated in Example 6. The protein is purified from the producing host cell by standard methods in protein chemistry, such as affinity chromatography and HPLC. Expression products are optionally produced with a sequence tag to facilitate affinity purification, which can subsequently be removed.

Preferred sequences are 40%, 60%, 80%, 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order if increasing preference. The length of the identical or homologous sequence compared with the native human polynucleotide can be about 7, 10, 15, 20, 30, 50 or 100 residues in order of increasing preference, up to the length of the entire encoding region.

Polypeptides can be tested for an ability to modulate TRRE in a TNF-R cleavage assay. The polypeptide is contacted with the receptor (preferably expressed on the surface of a cell, such as a C75 cell), and the ability of the polypeptide to increase or decrease receptor cleavage and release is

WO 99/58559

determined. Cleavage of TNF-R by exemplary polypeptides of this invention is illustrated in Example 7.

Polypeptides of this invention can be used as immunogens for raising antibody. Large proteins will raise a cocktail of antibodies, while short peptide fragments will raise antibodies against small region of the intact protein. Antibody clones can be mapped for protein binding site by producing short overlapping peptides of about 10 amino acids in length. Overlapping peptides can be prepared on a nylon membrane support by standard F-Moc chemistry, using a SPOTS™ kit from Genosys according to manufacturer's directions.

Polypeptides of this invention can also be used to affect TNF signal transduction, as explained below.

Antibodies

10

15

20.

25

30

Polyclonal antibodies can be prepared by injecting a vertebrate with a polypeptide of this invention in an immunogenic form. Immunogenicity of a polypeptide can be enhanced by linking to a carrier such as KLH, or combining with an adjuvant, such as Freund's adjuvant. Typically, a priming injection is followed by a booster injection is after about 4 weeks, and antiserum is harvested a week later. Unwanted activity cross-reacting with other antigens, if present, can be removed, for example, by running the preparation over adsorbants made of those antigens attached to a solid phase, and collecting the unbound fraction. If desired, the specific antibody activity can be further purified by a combination of techniques, which may include protein, A chromatography, ammonium sulfate precipitation, ion exchange chromatography, HPLC, and immunoaffinity chromatography using the immunizing polypeptide coupled to a solid support. Antibody fragments and other derivatives can be prepared by standard immunochemical methods, such as subjecting the antibody to cleavage with enzymes such as papain or pepsin.

Production of monoclonal antibodies is described in such standard references as Harrow & Lane (1988), U.S. Patent Nos. 4,491,632, 4,472,500 and 4,444,887, and *Methods in Enzymology* 73B:3 (1981). Briefly, a mammal is

immunized, and antibody-producing cells (usually splenocytes) are harvested. Cells are immortalized by fusion with a non-producing myeloma, transfecting with Epstein Barr Virus, or transforming with oncogenic DNA. The treated cells are cloned and cultured, and the clones are selected that produce antibody of the desired specificity.

5

10

15

20

25

30

Other methods of obtaining specific antibody molecules (optimally in the form of single-chain variable regions) involve contacting a library of immunocompetent cells or viral particles with the target antigen, and growing out positively selected clones. Immunocompetent phage can be constructed to express immunoglobulin variable region segments on their surface. See Marks et al., *New Eng. J. Med.* 335:730, 1996, International Patent Applications WO 9413804, WO 9201047, WO 90 02809, and McGuiness et al., *Nature Biotechnol.* 14:1449, 1996.

The antibodies of this invention are can be used in immunoassays for TRRE modulators. General techniques of immunoassay can be found in "The Immunoassay Handbook", Stockton Press NY, 1994; and "Methods of Immunological Analysis", Weinheim: VCH Verlags gesellschaft mbH, 1993). The antibody is combined with a test sample under conditions where the antibody will bind specifically to any modulator that might be present, but not any other proteins liable to be in the sample. The complex formed can be measured in situ (U.S. Patent Nos. 4,208,479 and 4,708,929), or by physically separating it from unreacted reagents (U.S. Patent No. 3,646,346). Separation assays typically involve labeled TRRE reagent (competition assay), or labeled antibody (sandwich assay) to facilitate detection and quantitation of the complex. Suitable labels are radioisotopes such as ¹²⁵I, enzymes such as β-galactosidase, and fluorescent labels such as fluorescein. Antibodies of this invention can also be used to detect TRRE modulators in fixed tissue sections by immunohistology. The antibody is contacted with the tissue, unreacted antibody is washed away, and then bound antibody is detected — typically using a labeled antiimmunoglobulin reagent. Immunohistology will show not only whether the modulator is present, but where it is located in the tissue.

Detection of TRRE modulators is of interest for research purposes, and for clinical use. As indicated earlier, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring TRRE modulators that are administered in the course of therapy.

Antibodies of this invention can also be used for preparation of medicaments. Antibodies with therapeutic potential include those that affect TRRE activity — either by promoting clearance of a TRRE modulator, or by blocking its physiological action. Antibodies can be screened for desirable activity according to assays described in the next section.

10

15

20

25

5

Screening assays

This invention provides a number of screening methods for selecting and developing products that modulate TRRE, and thus affect TNF signal transduction.

One screening method is for polynucleotides that have an ability to modulate TRRE activity. To do this screening, cells are obtained that express both TRRE and the TNF receptor. Suitable cell lines can be constructed from any cell that expresses a level of functional TRRE activity. These cells are identifiable by testing culture supernatant for an ability to release membrane-bound TNF-R. The level of TRRE expression should be moderate, so that an increase in activity can be detected. The cells can then be genetically altered to express either p55 or p75 TNF-R, illustrated in Example 1. Exemplary is the C75R line: COS-1 cells genetically altered to express the 75 kDa form of the TNF-R. Release of TNF-R from the cell can be measured either by testing residual binding of labeled TNF ligand to the cell, or by immunoassay of the

The screening assay is conducted by contacting the cells expressing TRRE and TNF-R with the polynucleotides to be screened. The effect of the polynucleotide on the enzymatic release of TNF-R from the cell is determined, and polynucleotides with desirable activity (either promoting or inhibiting TRRE activity) are selected. In a variation of this method, cells expressing TRRE

supernatant for released receptor (Example 1).

30

activity but not TNF-R (such as untransfected COS-1 cells) are contacted with the test polynucleotide. Then the culture medium is collected, and used to assay for TRRE activity using a second cell expressing TNF-R (such as C75 cells).

5

10

15

20

25

30

This type of screening assay is useful for the selection of polynucleotides from an expression library believed to contain encoding sequences for TRRE modulators. The Jurkat cell expression library (ATCC Accession No. TIB-152) is exemplary. Other cells from which suitable libraries can be constructed are those known to express high levels of TRRE, especially after PMA stimulation, such as THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562, and normal human monocytes. The screening involves expressing DNA from the library in the selected cell line being used for screening. Wells with the desired activity are selected, and the DNA is recovered, optionally after replication or cloning of the Repeat cycles of functional screening and selection can lead to cells. identification of new polynucleotide clones that promote or inhibit TRRE activity. This is illustrated below in Example 5. Further experiments can be performed on the selected polynucleotides to determine it modulates TRRE activity inside the cell, or through the action of a protein product. A long open reading frame suggests a role for a protein product, and examination of the amino acid sequence for a signal peptide and a membrane spanning region can help determine whether the protein is secreted from the cell or expressed in the surface membrane.

This type of screening is also useful for further development of the polynucleotides of this invention. For example, expression constructs can be developed that encode functional peptide fragments, fusion proteins, and other variants. The minimum size of polynucleotide sequence that still encodes TRRE modulation activity can be determined by removing part of the sequence and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

This type of screening assay is also useful for developing compounds that affect TRRE activity by interfering with mRNA that encode a TRRE modulator. Of particular interest are ribozymes and antisense oligonucleotides. Ribozymes

are endoribonucleases that catalyze cleavage of RNA at a specific site. They comprise a polynucleotide sequence that is complementary to the cleavage site on the target, and additional sequence that provide the tertiary structure to effect the cleavage. Construction of ribozymes is described in U.S. Patent Nos. 4,987,071 and 5,591,610. Antisense oligonucleotides that bind mRNA comprise a short sequence complementary to the mRNA (typically 8-25 bases in length). Preferred chemistry for constructing antisense oligonucleotides is outlined in an earlier section. Specificity is provided both by the complementary sequence, and by features of the chemical structure. Antisense molecules that inhibit expression of cell surface receptors are described in U.S. Patent Nos. 5,135,917 and 5,789,573. Screening involves contacting the cell expressing TRRE activity and TNF-R with the compound and determining the effect on receptor release. Ribozymes and antisense molecules effective in altering expression of a TRRE promoter would decrease TNF-R release. Ribozymes and antisense molecules effective in altering expression of a TRRE inhibitor would increase TNF-R release.

10

15

20

25

30

Another screening method described in this disclosure is for testing the ability of polypeptides to modulate TRRE activity (Example 7). Cells expressing both TNF-R and a moderate level of TRRE activity are contacted with the test polypeptides, and the rate of receptor release is compared with the rate of spontaneous release. An increased rate of release indicates that the polypeptide is a TRRE promoter, while a decreased rate indicates that the polypeptide is a TRRE inhibitor. This assay can be used to test the activity of new polypeptides, and develop variants of polypeptides already known to modulate TRRE. The minimum size of polypeptide sequence that still encodes TRRE modulation activity can be determined by making a smaller fragment of the polypeptide and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

Another screening method embodied in this invention is a method for screening substances that interfere with the action of a TRRE modulator at the protein level. The method involves incubating cells expressing TNF receptor

(such as C75R cells) with a polypeptide of this invention having TNF promoting activity. There are two options for supplying the TRRE modulator in this assay. In one option, the polypeptide is added to the medium of the cells as a reagent, along with the substance to be tested. In another option, the cells are genetically altered to express the TRRE modulator at a high level, and the assay requires only that the test substance be contacted with the cells. This option allows for high throughput screening of a number of test compounds.

Either way, the rate of receptor release is compared in the presence and absence of the test substance, to identify compounds that enhance or diminish TRRE activity. Parallel experiments should be conducted in which the activity of the substance on receptor shedding is tested in the absence of added polypeptide (using cells that don't express the polypeptide). This will determine whether the activity of the test substance occurs via an effect on the TRRE promoter being added, or through some other mechanism.

This type of screening assay is useful for identifying antibodies that affect the activity of a TRRE modulator. Antibodies are raised against a TRRE modulator as described in the previous section. If the antibody decreases TRRE activity in the screening assay, then it has therapeutic potential to lower TRRE activity in vivo. Screening of monoclonal antibodies using this assay can also help identify binding or catalytic sites in the polypeptide.

This type of screening assay is also useful for high throughput screening of small molecule compounds that have the ability to affect the level of TNF receptors on a cell, by way of its influence on a TRRE modulator. Small molecule compounds that have the desired activity are often preferred for pharmaceutical compositions, because they are often more stable and less expensive to produce.

Medicaments and their use

10

15

20

25

30

As described earlier, a utility of certain products embodied in this invention is to affect signal transduction from cytokines (particularly TNF). Products that promote TRRE activity have the effect of decreasing TNF receptors on the

surface of cells, which would decrease signal transduction from TNF. Conversely, products that inhibit TRRE activity prevent cleavage of TNF receptors, increasing signal transduction.

The ability to affect TNF signal transduction is of considerable interest in the management of clinical conditions in which TNF signaling contributes to the pathology of the condition. Such conditions include:

5

10

15

20

25

30

- Heart failure. IL-1ß and TNF are believed to be central mediators for perpetuating the inflammatory process, recruiting and activating inflammatory cells. The inflammation depress cardiac function in congestive heart failure, transplant rejection, myocarditis, sepsis, and burn shock.
- Cachexia. The general weight loss and wasting occurring in the course of chronic diseases, such as cancer. TNF is believed to affect appetite, energy expenditure, and metabolic rate.
- Crohn's disease. The inflammatory process mediated by TNF leads to thickening of the intestinal wall, ensuing from lymphedema and lymphocytic infiltration.
- Endotoxic shock. The shock induced by release of endotoxins from gram-negative bacteria, such as E. coli, involves TNF-mediated inflammation
- Arthritis. TNF promotes expression of nitric oxide synthetase, believed to be involved in disease pathogenesis.

Other conditions of interest are multiple sclerosis, sepsis, inflammation brought on by microbe infection, and diseases that have an autoimmune etiology, such as Type I Diabetes.

Polypeptides of this invention that promote TRRE activity can be administered with the objective of decreasing or normalizing TNF signal transduction. For example, in congestive heart failure or Crohn's disease, the polypeptide is given at regular intervals to lessen the inflammatory sequelae. The treatment is optionally in combination with other agents that affect TNF

signal transduction (such as antibodies to TNF or receptor antagonists) or that lessen the extent of inflammation in other ways.

Polynucleotides of this invention can also be used to promote TRRE activity by gene therapy. The encoding sequence is operably linked to control elements for transcription and translation in human cells. It is then provided in a form that will promote entry and expression of the encoding sequence in cells at the disease site. Forms suitable for local injection include naked DNA, polynucleotides packaged with cationic lipids, and polynucleotides in the form of viral vectors (such as adenovirus and AAV constructs). Methods of gene therapy known to the practitioner skilled in the art will include those outlined in U.S. Patent Nos. 5,399,346, 5,827,703, and 5,866,696.

10

15

20

25

30

The ability to affect TNF signal transduction is also of interest where TNF is thought to play a beneficial role in resolving the disease. In particular, TNF plays a beneficial role in the necrotizing of solid tumors. Accordingly, products of this invention can be administered to cancer patients to inhibit TRRE activity, thereby increasing TNF signal transduction and improve the beneficial effect.

Embodiments of the invention that inhibit TRRE activity include antisense polynucleotides. A method of conferring long-standing inhibitory activity is to administer antisense gene therapy. A genetic construct is designed that will express RNA inside the cell which in turn will decrease the transcription of the target gene (U.S. Patent No. 5,759,829). In humans, a more frequent form of antisense therapy is to administer the effector antisense molecule directly, in the form of a short stable polynucleotide fragment that is complementary to a segment of the target mRNA (U.S Patent Nos. 5,135,917 and 5,789,573) — in this case, the transcript that encodes the TRRE modulator. Another embodiment of the invention that inhibits TRRE are ribozymes, constructed as described in an earlier section. The function of ribozymes in inhibiting mRNA translation is described in U.S. Patent Nos. 4,987,071 and 5,591,610.

Once a product of this invention is found to have suitable TRRE modulation activity in the in vitro assays described in this disclosure, it is preferable to also test its effectiveness in an animal model of a TNF mediated

disease process. Example 3 describes an LPS model for sepsis that can be used to test promoters of TRRE activity. Example 4 describes a tumor necrosis model, in which TRRE inhibitors could be tested for an ability to enhance necrotizing activity. Those skilled in the art will know of other animal models suitable for testing effects on TNF signal transduction or inflammation. Other illustrations are the cardiac ischemia reperfusion models of Weyrich et al. (J. 91:2620, 1993) and Garcia-Criado et al. (J. Am. Coll. Surg. Clin. Invest. 181:327, 1995); the pulmonary ischemia reperfusion model of Steinberg et al. (J. Heart Lung Transplant. 13:306, 1994), the lung inflammation model of International Patent Application WO 9635418; the bacterial peritonitis model of Sharar et al. (J. Immunol. 151:4982, 1993), the colitis model of Meenan et al. (Scand. J. Gastroenterol. 31:786, 1996), and the diabetes model of von Herrath et al. (J. Clin. Invest. 98:1324, 1996). Models for septic shock are described in Mack et al. J. Surg. Res. 69:399, 1997; and Seljelid et al. Scand. J. Immunol. 45:683-7.

15

20 .

25

30

For use as an active ingredient in a pharmaceutical preparation, a polypeptide, polynucleotide, or antibody of this invention is generally purified away from other reactive or potentially immunogenic components present in the mixture in which they are prepared. Typically, each active ingredient is provided in at least about 90% homogeneity, and more preferably 95% or 99% homogeneity, as determined by functional assay, chromatography, or SDS polyacrylamide gel electrophoresis. The active ingredient is then compounded into a medicament in accordance with generally accepted procedures for the preparation of pharmaceutical preparations, such as described in *Remington's Pharmaceutical Sciences 18th Edition* (1990), E.W. Martin ed., Mack Publishing Co., PA. Steps in the compounding of the medicament depend in part on the intended use and mode of administration, and may include sterilizing, mixing with appropriate non-toxic and non-interfering excipients and carriers, dividing into dose units, and enclosing in a delivery device. The medicament will typically be packaged with information about its intended use.

Mode of administration will depend on the nature of the condition being treated. For conditions that are expected to require moderate dosing and that are at well perfused sites (such as cardiac failure), systemic administration is acceptable. For example, the medicament may be formulated for intravenous administration, intramuscular injection, or absorption sublingually or intranasally. Where it is possible to administer the active ingredient locally, this is usually preferred. Local administration will both enhance the concentration of the active ingredient at the disease site, and minimize effects on TNF receptors on other tissues not involved in the disease process. Conditions that lend themselves to administration directly at the disease site include cancer and rheumatoid arthritis. Solid tumors can be injected directly when close to the skin, or when they can be reached by an endoscopic procedure. Active ingredients can also be administered to a tumor site during surgical resection, being implanted in a gelatinous matrix or in a suitable membrane such as Gliadel® (Guilford Sciences). Where direct administration is not possible, the administration may be given through an arteriole leading to the disease site. Alternatively, the pharmaceutical composition may be formulated to enhance accumulation of the active ingredient at the disease site. For example, the active ingredient can be encapsulated in a liposome or other matrix structure that displays an antibody or ligand capable of binding a cell surface protein on the target cell. Suitable targeting agents include antibodies against cancer antigens, ligands for tissuespecific receptors (e.g., serotonin for pulmonary targeting). For compositions that decrease TNF signal transduction, an appropriate targeting molecule may be the TNF ligand, since the target tissue may likely display an unusually high density of the TNF receptor.

10

20

25

30

Effective amounts of the compositions of the present invention are those that alter TRRE activity by at least about 10%, typically by at least about 25%, more preferably by about 50% or 75%. Where near complete ablation of TRRE activity is desirable, preferred compositions decrease TRRE activity by at least 90%. Where increase of TRRE activity is desirable, preferred compositions increase TRRE activity by at least 2-fold. A minimum effective amount of the

active compound will depend on the disease being treated, which of the TRRE modulators is selected for use, and whether the administration will be systemic or local. For systemic administration, an effective amount of activity will generally be an amount of the TRRE modulator that can cause a change in the enzyme activity by 100 to 50,000 Units — typically about 10,000 Units. The mass amount of protein, nucleic acid, or antibody is chosen accordingly, based on the specific activity of the active compound in Units per gram.

The following examples provided as a further guide to the practitioner, and are not intended to limit the invention in any way.

10

EXAMPLES

Example 1: Assay system for TRRE activity.

This Example illustrates an assay system that measures TRRE activity on the human TNF-R in its native conformation in the cell surface membrane

15

Membrane-associated TNF-R was chosen as the substrate, as having microenvironment similar to that of the substrate for TRRE in vivo. Membrane-associated TNF-R also requires more specific activity, which would differentiate less-specific proteases. Cells expressing an elevated level of the p75 form of TNF-R were constructed by cDNA transfection into monkey COS-1 cells which express little TNF-R of either the 75 kDa or 55 kDa size.

20

25

The procedure for constructing these cells was as follows: cDNA of human p75 TNF-R was cloned from a λgt10 cDNA library derived from human monocytic U-937 cells (Clontech Laboratories, Palo Alto, CA). The first 300 bp on both 5' and 3' ends of the cloned fragment was sequenced and compared to the reported cDNA sequence of human p75 TNF-R. The cloned sequence was a 2.3 kb fragment covering positions 58-2380 of the reported p75 TNF-R sequence, which encompasses the full length of the p75 TNF-R-coding sequence from positions 90-1475. The 2.3 kb p75 TNF-R cDNA was then subcloned into the multiple cloning site of the pCDNA3 eukaryotic expression vector. The

orientation of the p75 TNF-R cDNA was verified by restriction endonuclease mapping.

Figure 1 illustrates the final 7.7 kb construct, pCDTR2. It carries the neomycin-resistance gene for the selection of transfected cells in G418, and the expression of the p75 TNF-R is driven by the cytomegalovirus promoter. The pCDTR2 was then transfected into monkey kidney COS-1 cells (ATCC CRL-1650) using the calcium phosphate-DNA precipitation method. The selected clone in G418 medium was identified and subcultured. This clone was given the designation C75R.

5

10

15

20

25

30

To determine the level of p75 TNF-R expression on C75R cells, 2 x 10⁵ cells/well were plated into a 24-well culture plate and incubated for 12 to 16 hours in 5% CO₂ at 37°C. They were then incubated with 2-30 ng ¹²⁵I human recombinant TNF (radiolabeled using the chloramine T method) in the presence or absence of 100-fold excess of unlabeled human TNF at 4°C for 2 h. After three washes with ice-cold PBS, cells were lysed with 0.1N NaOH and bound radioactivity was determined in a Pharmacia Clinigamma counter (Uppsala, Sweden).

Figure 2 shows the results obtained. C75R had a very high level of specific binding of radiolabeled ¹²⁵I-TNF, while parental COS-1 cells did not. The number of TNF-R expressed on C75R was determined to be 60,000-70,000 receptors per cell by Scatchard analysis (Figure 2, inset). The Kd value calculated was 5.6 x 10⁻¹⁰ M. This Kd value was in close agreement to the values previously reported for native p75 TNF-R.

TRRE was obtained by PHA stimulation of THP-1 cells (WO 9802140). THP-1 cells (ATCC 45503) growing in logarithmic phase were collected and resuspended to 1x10⁶ cells/ml of RPMI-1640 supplemented with 1% FCS and incubated with 10⁻⁶ M PMA for 30 min in 5% CO₂ at 37 °C. The cells were collected and washed once with serum-free medium to remove PMA and resuspended in the same volume of RPMI-1640 with 1% FCS. After 2 hours incubation in 5% CO₂ at 37°C, the cell suspension was collected, centrifuged, and the cell-free supernatant was collected as the source of TRRE.

In order to measure the effect of TRRE on membrane-bound TNF-R in the COS-1 cell constructs, the following experiment was performed. C75R cells were seeded at a density of 2 x 10⁵ cells/well in a 24-well cell culture plate and incubated for 12 to 16 hours at 37°C in 5% CO₂. The medium in the wells was aspirated, replaced with fresh medium alone or with TRRE medium, and incubated for 30 min at 37°C, The medium was then replaced with fresh medium containing 30 ng/ml ¹²⁵I-labeled TNF. After 2 hours at 4°C, the cells were lysed with 0.1 N NaOH and the level of bound radioactivity was measured. The level of specific binding of C75R by ¹²⁵I-TNF was significantly decreased after incubation with TRRE. The radioactive count was 1,393 cpm on the cells incubated with TRRE compared to 10,567 cpm on the cells not treated with TRRE, a loss of 87% of binding capacity.

10

15

20

25

30

In order to determine the size of the p75 TNF-R cleared from C75R by TRRE, the following experiment was performed. 15 x 10⁶ C75R cells were seeded in a 150 mm cell culture plate and incubated at 37°C in 5% CO₂ for 12 to 16 hours. TRRE medium was incubated with C75R cells in the 150 mm plate for 30 min and the resulting supernatant was collected and centrifuged. The concentrated sample was applied to 10% acrylamide SDS-PAGE and electrophoretically transferred to a polyvinylidene difluoride membrane (Immobilon). Immunostaining resulted in a single band of 40 kDa, similar to the size found in biological fluids. Thus, transfected COS-1 cells expressed high levels of human p75 TNF-R in a form similar to native TNF-R.

The following assay method was adopted for routine measurement of TRRE activity. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5×10^5 cells/ml/well and incubated overnight (for 12 to 16 hours) in 5% CO₂ at 37°C. After aspirating the medium in the well, 300 μ l of TRRE medium was incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO₂ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated with 300 μ l of fresh medium or buffer. The supernatants were collected,

5

10

15

20

25

30

centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA.

ELISA assay for released TNF-R (WO 9802140) was performed as Polyclonal antibodies to human p75 TNF-R were generated by immunization of New Zealand white female rabbits (Yamamoto et al. Cell. Immunol. 38:403-416, 1978). The IgG fraction of the immunized rabbit serum was purified using a protein G (Pharmacia Fine Chemicals, Uppsala, Sweden) affinity column (Ey et al. (1978) Immunochemistry 15:429-436, 1978). The IgG fraction was then labeled with horseradish peroxidase (Sigma Chemical Co., St. Louis, MO) (Tijssen and Kurstok, Anal. Biochem. 136:451-457, 1984). In the first step of the assay, 5 μg of unlabeled lgG in 100 μl of 0.05 M carbonate buffer (pH 9.6) was bound to a 96-well ELISA microplate (Corning, Corning, NY) by overnight incubation at 4°C. Individual wells were washed three times with 300 μl of 0.2% Tween-20 in phosphate buffered saline (PBS). The 100 μl of samples and recombinant receptor standards were added to each well and incubated at 37°C for 1 to 2 hours. The wells were then washed in the same manner, 100 μl of horseradish peroxidase-labeled IgG added and incubated for 1 hour at 37 °C. The wells were washed once more and the color was developed for 20 minutes (min) at room temperature with the substrates ABTS (Pierce, Rockford, IL) and 30% H₂O₂ (Fisher Scientific, Fair Lawn, NJ). Color development was measured at 405 nm.

When C75R cells were incubated with TRRE medium, soluble p75 TNF-R was released into the supernatant which was measurable by ELISA. The amount of receptors released corresponded to the amount of TRRE added There was also a level of spontaneous TNF-R release in C75R cells incubated with just medium alone. It is hypothesized that this is due to an endogenous source of proteolytic enzyme, a homolog of the human TRRE of monkey origin.

The following calculations were performed. A = (amount of soluble p75 TNF-R in a C75R plate treated with the TRRE containing sample); i.e. the total amount of sTNF-R in a C75R plate. B = (amount of soluble p75 TNF-R spontaneously released in a C75R plate treated with only medium or buffer

containing the same reagent as the corresponding samples but without exogenous TRRE); i.e. the spontaneous release of sTNF-R from C75R cells. C = (amount of soluble p75 TNF-R in a COS-1 plate treated with the TRRE sample or the background level of soluble p75 TNF-R released by THP-1.); i.e. the degraded value of transferred (pre-existing) sTNF-R in the TRRE sample during 30 min incubation in a COS-1 plate. This corresponds to the background level of sTNF-R degraded in a C75R plate. The net release of soluble p75 TNF-R produced only by TRRE activity existing in the initial sample is calculated as follows: (Net release of soluble p75 TNF-R only by TRRE) = A - B - C.

5

10

15

20

25

30

Unit activity of TRRE was defined as follows: 1 pg of soluble p75 TNF-R net release (A-B-C) in the course of the assay is one unit (U) of TRRE activity.

Using this assay, the time course of receptor shedding by TRRE was measured in the following experiment. TRRE-medium was incubated with C75R and COS-1 cells for varying lengths of time. The supernatants were then collected and assayed for the level of soluble p75 TNF-R by ELISA and the net TRRE activity was calculated. Detectable levels of soluble receptor were released by TRRE within 5 min and increased up to 30 min. Longer incubation times showed that the level of TRRE remained relatively constant after 30 min, presumably from the depletion of substrates. Therefore, 30 min was determined to be the optimal incubation time.

The induction patterns of TRRE and known MMPs by PMA stimulation are quite different. In order to induce MMPs, monocytic U-937 cells, fibrosarcoma HT-1080 cells, or peritoneal exudate macrophages (PEM) usually have to be stimulated for one to three days with LPS or PMA. On the other hand, as compared with this prolonged induction, TRRE is released very quickly in culture supernatant following 30 min of PMA-stimulation. The hypothesis that TRRE and sTNF-R form a complex *in vitro* was confirmed by the experiment that 25% TRRE activity was recovered from soluble p75 TNF-R affinity column. This means that free TRRE has the ability to bind to its catalytic product, sTNF-R. The remaining 75% which did not combine to the affinity column may already be

bound to sTNF-R or may not have enough affinity to bind to sTNF-R even though it is in a free form.

Example 2: Characterization of TRRE obtained from THP-1 cells .

5

.10

15

20

- 25

30

TRRE obtained by PHA stimulation of THP-1 cells was partially purified from the culture medium (WO 9802140). First, protein from the medium was concentrated by 100% saturated ammonium sulfate precipitation at 4°C. The precipitate was pelleted by centrifugation at 10,000 x g for 30 min and resuspended in PBS in approximately twice the volume of the pellet. This solution was then dialyzed at 4°C against 10 mM Tris-HCl, 60 mM NaCl, pH 7.0. This sample was loaded on an anion-exchange chromatography. Diethylaminoethyl (DEAE)-Sephadex A-25 column (Pharmacia Biotech) (2.5 x 10 cm) previously equilibrated with 50 mM Tris-HCl, 60 mM NaCl, pH 8.0. TRRE was then eluted with an ionic strength linear gradient of 60 to 250 mM NaCl, 50 mM Tris-HCl, pH 8.0. Each fraction was measured for absorbance at 280 nm and assayed for TRRE activity. The DEAE fraction with the highest specific activity (the highest value of TRRE units/A280) was pooled and used in the characterizations of TRRE described in this example.

In the next experiment, the substrate specificity of the enzyme was elucidated using immunohistochemical techniques. Fluorescein isothiocyanate (FITC)-conjugated anti-CD54, FITC-conjugated goat anti-rabbit and mouse antibodies, mouse monoclonal anti-CD30, anti-CD11b and anti-IL-1R (Serotec, Washington D.C.) were used. Rabbit polyclonal anti-p55 and p75 TNF-R were obtained according to Yamamoto et al. (1978) *Cell Immunol.* 38:403–416. THP-1 cells were treated for 30 min with 1,000 and/or 5,000 U/ml of TRRE eluted from the DEAE-Sephadex column, and then transferred to 12 x 75 mm polystyrene tubes (Fischer Scientific, Pittsburgh, PA) at 1 x 10⁵ cells/100μl/tube. The cells were then pelleted by centrifugation at 350 x g for 5 min at 4°C and stained directly with 10μl FITC-conjugated anti-CD54 (diluted in cold PBS/0.5% sodium aside), indirectly with FITC-conjugated anti-mouse antibody after treatment of

mouse monoclonal anti-CD11b, IL-1R and CD30 and also indirectly with FITC-conjugated anti-rabbit antibody after treatment of rabbit polyclonal anti-p55 and p75 TNF-R.

5

10

15

20

25

THP-1 cells stained with each of the antibodies without treatment of TRRE were used as negative controls. The tubes were incubated for 45 min at 4°C, agitated every 15 min, washed twice with PBS/2% FCS, repelleted and then resuspended in 200µl of 1% paraformaldehyde. These labeled THP-1 cells were analyzed using a fluorescence activated cell sorter (FACS) (Becton-Dickinson, San Jose, CA) with a 15 mW argon laser with an excitation of 488 nm. Fluorescent signals were gated on the basis of forward and right angle light scattering to eliminate dead cells and aggregates from analysis. Gated signals (10⁴) were detected at 585 BP filter and analyzed using Lysis II software. Values were expressed as percentage of positive cells, which was calculated by dividing mean channel fluorescence intensity (MFI) of stained THP-1 cells treated with TRRE by the MFI of the cells without TRRE treatment (negative control cells).

To test the *in vitro* TNF cytolytic assay by TRRE treatment the L929 cytolytic assay was performed according to the method described by Gatanaga et al. (1990b). Briefly, L929 cells, an adherent murine fibroblast cell line, were plated (70,000 cells/0.1ml/well in a 96-well plate) overnight. Monolayered L929 cells were pretreated for 30 min with 100, 500 or 2,500 U/ml of partially-purified TRRE and then exposed to serial dilutions of recombinant human TNF for 1 hour. After washing the plate with RPMI-1640 with 10% FCS to remove the TRRE and TNF, the cells were incubated for 18 hours in RPMI-1640 with 10% FCS containing 1 μ g/ml actinomycin D at 37°C in 5% CO₂. Culture supernatants were then aspirated and 50 μ l of 1% crystal violet solution was added to each well. The plates were incubated for 15 min at room temperature. After the plates were washed with tap water and air-dried, the cells stained with crystal violet were lysed by 100 μ l per well of 100 mM HCl in methanol. The absorbance at

550 nm was measured using an EAR 400 AT plate reader (SLT-Labinstruments, Salzburg, Austria).

To investigate whether TRRE also truncates the ~55 kDa size of TNF-R, partially-purified TRRE was applied to THP-1 cells which express low levels of both p55 and p75 TNF-R (approximately 1,500 receptors/cell by Scatchard analysis). TRRE eluate from the DEAE-Sephadex column was added to THP-1 cells (5 x 10⁶ cells/ml) at a final TRRE concentration of 1,000 U/ml for 30 min. The concentration of soluble p55 and p75 TNF-R in that supernatant was measured by soluble p55 and p75 TNF-R ELISA. TRRE was found to truncate both human p55 and p75 TNF-R on THP-1 cells and released 2,382 and 1,662 pg/ml soluble p55 and p75 TNF-R, respectively.

10

15

20

25

30

Therefore,TRRE obtained by PHA stimulation of THP-1 cells is capable of enzymatically cleaving and releasing human p75 TNF-R on C75R cells, and both human p55 and p75 TNF-R on THP-1 cells.

Partial inhibition of TRRE activity was obtained by chelating agents such as 1,10-phenanthroline, EDTA and EGTA (% TRRE activity remaining were 41%, 67% and 73%, respectively, at 2 mM concentration). On the other hand, serine protease inhibitors such as PMSF, AEBSF and 3,4-DCI, and serine and cysteine protease inhibitors such as TLCK and TPCK had no effect on the inhibition of TRRE. TRRE was slightly activated in the presence of Mn²⁺, Ca²⁺, Mg²⁺, and Co²⁺ (% TRRE activities remaining were 157%, 151%, 127%, and 123%, respectively), whereas partial inhibition occurred in the presence of Zn²⁺ and Cu²⁺ (% TRRE activities remaining were 23% and 47%, respectively) (WO 9802140).

TRRE fractions from the most active DEAE fraction (60 mM to 250 mM NaCl) can be purified further. In one method (WO 9802140), the fractions were concentrated to $500~\mu L$ with a Centriprep-10 filter (10,000 MW cut-off membrane) (Amicon). This concentrated sample was applied to 6% PAGE under non-denaturing native conditions. The gel was sliced horizontally into 5 mm strips and each was eluted into 1 ml PBS. The eluates were then tested according to the assay (Example 1) for TRRE activity.

Example 3: TRRE activity alleviates septic shock

10

15

20

25

30

The following protocol was used to test the effects of TRRE in preventing mortality in a model for septic shock. Mice were injected with lethal or sublethal levels of LPS, and then with a control buffer or TRRE. Samples of peripheral blood were then collected at intervals to establish if TRRE blocked TNF-induced production of other cytokines in the bloodstream. Animals were assessed for the ability of TRRE to block the clinical effects of shock, and then euthanized and tissues examined by histopathological methods.

Details were as follows: adult Balb/c mice, were placed in a restraining device and injected intravenously via the tail vein with a 0.1 ml solution containing 10 ng to 10 mg of LPS in phosphate buffer saline (PBS). These levels of LPS induce mild to lethal levels of shock in this strain of mice. Shock results from changes in vascular permeability, fluid loss, and dehydration, and is often accompanied by symptoms including lethargy, a hunched, stationary position, rumpled fur, cessation of eating, cyanosis, and, in serious cases, death within 12 to 24 hours. Control mice received an injection of PBS. Different amounts (2,000 or 4,000 U) of purified human TRRE were injected IV in a 0.1 ml volume within an hour prior to or after LPS injection. Serum (0.1 ml) was collected with a 27 gauge needle and 1 ml syringe IV from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at -20°C. Samples from multiple experiments were tested by ELISA for the presence of sTNF-R. TNF, IL-8 and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized at periods from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E). Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 3 shows the results obtained. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).

Mice injected with LPS alone or LPS and a control buffer died shortly after injection. 50% of the test animals were dead after 8 hours (LPS) or 9 hours (LPS plus control buffer), and 100% of the animals were dead at 15 hours. In contrast, animals treated with TRRE obtained as described in Example 1 did much better. When injections of LPS were accompanied by injections of a 2,000 U of TRRE, death was delayed and death rates were lower. Only 40% of the animals were dead at 24 hours. When 4,000 U of TRRE was injected along with LPS, all of the animals had survived at 24 hours. Thus, TRRE is able to counteract the mortality induced by LPS in test animals.

10

Example 4: TRRE activity decreases tumor necrotizing activity

The following protocol was followed to test the effects of TRRE on tumor necrosis in test animals in which tumors were produced, and in which TNF was subsequently injected.

15

On Day 0, cutaneous Meth A tumors were produced on the abdominal wall of fifteen BALB/c mice by intradermal injection of 2×20^5 Meth A tumor cells. On Day 7, the mice were divided into three groups of five mice each and treated as follows:

20

- Group 1: Injected intravenously with TNF (1 μg/mouse).
- Group 2: Injected intravenously with TNF (1 µg/mouse) and injected intratumorally with TRRE obtained as in Example 1 (400 units/mouse, 6, 12 hours after TNF injection).
- Group 3: Injected intravenously with TNF (1 μg/mouse) and injected intratumorally with control medium (6, 12 hours after TNF injection).

25

On Day 8, tumor necrosis was measured with the following results: Group 1: 100% of necrosis (5/5); Group 2: 20% (1/5); Group 3: 80% (4/5). Injections of TRRE greatly reduced the ability of TNF to induce necrosis in Meth A tumors in BALB/c mice.

Since adding TRRE activity ablates the beneficial necrotizing activity of TNF, blocking endogenous TRRE activity would promote the beneficial effects of TNF.

5 Example 5: Nine new polynucleotide clones that affect TRRE activity

10

15

20

25

30

A number of cells have been found to express high levels of TRRE activity, especially after PMA stimulation. These include the cell lines designated THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562. Jurkat cells have a high TRRE activity (850 TRRE U/mL at 10⁻² PMA). In this experiment, the expression library of the Jurkat T cell (ATCC #TIB-152) was obtained and used to obtain 9 polynucleotide clones that augment TRRE activity.

Selection of expression sequences in the library was done by repeated cycles of transfection into COS-1 cells, followed by assaying of the supernatant as in Example 1 for the presence of activity cleaving and releasing the TNF receptor. Standard techniques were used in the genetic manipulation. Briefly, the DNA of 106 Jurkat cells was extracted using an InVitrogen plasmid extraction kit according to manufacturer's directions. cDNA was inserted in the ZAP Express™/EcoRI vector (cat. no. 938201, Stratagene, La Jolla CA. The library was divided into 48 groups of DNA and transformed into COS-1 cells using the CaCl transfection method. Once the cells were grown out, the TRRE assay was performed, and five positive groups were selected. DNA from each of these five groups was obtained, and transfected into E. coli, with 15 plates per group. DNA was prepared from these cells and then transfected into COS-1 cells once more. The cells were grown out, and TRRE activity was tested again. Two positive groups were selected and transfected into E. coli, yielding 98 colonies. DNA was prepared from 96 of these colonies and transfected into COS-1 cells. The TRRE activity was performed again, and nine clones were found to substantially increase TRRE activity in the assay. These clones were designated 2-8, 2-9, 2-14, 2-15, P2-2, P2-10, P2-13, P2-14, and P2-15.

Figure 4 is a bar graph showing the TRRE activity observed when the 9 clones were tested with C75 cells in the standard assay (Example 1).

5 .

10

15

These nine clones were then sequenced according to the following procedure:

- 1. Plasmid DNA was prepared using a modified alkaline lysis procedure.
- 2. DNA sequencing was performed using DyeDeoxy termination reactions (ABI). Base-specific fluorescent dyes were used as labels.
- 3. Sequencing reactions were analyzed on 5.75% Long Ranger™ gels by an ABI 373A-S or on 5.0% Long Ranger™ gels by an ABI 377 automated sequencer.
- 4. Subsequent data analysis was performed using Sequencher™ 3.0 software.

Standard primers T7X, T3X, -40, -48 Reverse, and BK Reverse (BKR) were used in sequencing reactions. For each clone, several additional internal sequencing primers (listed below) were synthesized.

NCBI BLAST (Basic Local Alignment Search Tool) sequence analysis (Altschul et al. (1990) *J. Mol. Biol.* 215:403-410) was performed to determine if other sequences were significantly similar to these sequences. Both the DNA sequences of the clones and the corresponding ORFs (if any) were compared to sequences available in databases.

The following clones were obtained and sequenced:

20

	TABLE 1: DNA sequences affecting TRRE activity						
Clone	Sequence Designation	SEQ ID NO:	Approx Length (bp)	Expressi on Designati on	Related sequences (potential homology)		
2-9	AIM2	1	4,047				
2-8	AIM3T3 (partial sequence)	2	739		M. musculus 45S pre-rRNA gene		
	AIM3T7 (partial sequence)	3	233				
2-14	AIM4	4	2,998	Mey3	human arfaptin 2 and others (see below)		
2-15	AIM5	5	4,152				
P2-2	AIM6	6	3,117	Mey5			
P2-10	· AIM7	7	3,306	Mey6	Human Insulin- like Growth factor II Receptor		
P1-13	AIM8	8	4,218				
P2-14	AIM9	9	1,187	Mey8			
P2-15	AIM10	10	3,306	·	E1b-55kDa- associated protein		

Clone 2-9 (AIM2): The internal primers used for sequencing are shown in SEQ. ID NOS:11-38. The sequence of AIM2 is presented in SEQ ID NO:1. The complementary strand of the AIM2 sequence is SEQ ID NO:147. The longest open reading frame (ORF) in the AIM2 sequence is 474 AA long and represented in SEQ ID NO:148.

Clone 2-8 (AIM3): Two partial sequences of length 739 and 233 were obtained and designated AIM3T3 and AIM3T7. The internal primers used for sequencing are shown in SEQ. ID NOS:39-46. The sequences of AIM3T3 and

AIM3T7 are presented in SEQ ID NOs:2 and 3, respectively. The BLAST search revealed that the AIM3T3 sequence may be homologous to the mouse (*M. musculus*) 28S ribosomal RNA (Hassouna et al. *Nucleic Acids Res.* 12:3563-3583, 1984) and the *M. musculus* 45S pre-rRNA genes (Accession No. X82564. The complementary sequence of the AIM3T3 sequence showed 99% similarity over 408 bp beginning with nt 221 of SEQ ID NO:2 to the former and 97% similarity over the same span to the latter.

Clone 2-14 (AIM4). The internal primers used for sequencing are shown in SEQ. ID NOS:14-65. The sequence of AIM4 is presented in SEQ ID NO:4. The complementary strand of the AIM4 sequence is SEQ ID NO:149. The longest ORF in the AIM4 sequence is 236 AA long and represented in SEQ ID NO:150. AIM4 has significant alignments to human sequences arfaptin 2, ADE2H1 mRNA showing homologies to SAICAR synthetase, polypyrimidine tract binding protein (heterogeneous nuclear ribonucleoprotein I) mRNA, several PTB genes for polypirimidine tract binding proteins, mRNA for por1 protein. Human arfaptin 2 is a putative target protein of ADP-ribosylation factor that interacts with RAC1 by binding directly to it. RAC1 is involved in membrane ruffling. Arfaptin 2 has possible transmembrane segments, potential CK2 phosphorylation sites, PKC phosphorylation site and RGD cell attachment sequence.

10

15

20

25

30

Clone 2-15 (AIM5): The internal primers used for sequencing are shown in SEQ. ID NOS:66-80. The sequence of AIM5 is presented in SEQ ID NO:5. The BLAST search revealed that the AIM5 sequence displays some similarity to Human Initiation Factor 5A (eIF-5A) Koettnitz et al. (1995) Gene 159:283-284, 1995 and Human Initiation Factor 4D (eIF 4D) Smit-McBride et al. (1989) J. Biol. Chem. 264:1578-1583, 1989.

Clone P2-2 (AIM6): The internal primers used for sequencing are shown in SEQ. ID NOS:81-93. The sequence of AIM6 is presented in SEQ ID NO:6. The longest ORF in the AIM6 sequence is 1038 AA long and represented in SEQ ID NO:151.

Clone P2-10 (AIM7): The internal primers used for sequencing are shown in SEQ. ID NOS:94-106. The sequence of AIM7 is presented as SEQ ID NO:7.

The longest ORF in the AIM7 sequence is 849 AA long and represented in SEQ ID NO:152. The BLAST search revealed that this clone may be related to the Human Insulin-like Growth Factor II Receptor (Morgan et al. *Nature* 329:301-307, 1987 or the Human Cation-Independent Mannose 6-Phosphate Receptor mRNA (Oshima et al. *J. Biol. Chem.* 263:2553-2562, 1988). The AIM7 sequence showed roughly 99% identity to both sequences over 2520 nucleotides beginning with nt 12 of SEQ ID NO:7 and 99% similarity to the latter over the same span.

5

10

15

20

25

30

Clone P2-13 (AIM8): The internal primers used for sequencing are shown in SEQ. ID NOS:107-118. The sequence of AIM8 is presented as SEQ ID NO:8. The longest ORF in the AIM8 sequence is 852 AA long and represented in SEQ ID NO:153.

Clone P2-14 (AIM9): The internal primers used for sequencing are shown in SEQ. ID NOS:119-124. The sequence of AIM9 is presented as SEQ ID NO:9. The longest ORF was about 149 amino acids in length.

Clone P2-15 (AIM10): The internal primers used for sequencing are shown in SEQ. ID NOS:125-146. The sequence of AIM10 is presented as SEQ ID NO:10. The longest ORF in the AIM10 sequence is 693 AA long and represented in SEQ ID NO:154. Sequence 10 on BLASTN search of non-redundant databases at NCBI aligns with Human mRNA for E1b-55kDa-associated protein, locus HSA7509 (Accession AJ007509, NID g3319955).

Clonal DNA may be directly injected into test animals in order to test the ability of these nucleic acids to induce TRRE activity, counteract septic shock and/or affect tumor necrosis, as is described in detail in Examples 3 and 4. Alternatively, proteins or RNA can be generated from the clonal DNA for similar testing.

Example 6: Expression of newly obtained clones

Example 5 describes 9 new clones which enhance TRRE activity in a cell surface assay system. The clones were obtained in the pBK-CMB Phagmid vector .

The following work was done on contract through the commercial laboratory Lark Technologies, Houston, TX. The clones were removed from shuttle vectors and inserted into expression vectors in the following manner. Recombinant plasmid (pBK-CMV containing insert) was digested with appropriate restriction enzyme(s) such as Spe I, Xba I, EcoR I or others, as appropriate. The Baculovirus Transfer Vector (pAcGHLT-A Baculovirus Transfer Vector, PharMingen, San Diego, CA, Cat. No. 21460P) was also cut with appropriate restriction enzyme(s) within or near the multiple cloning site to receive the insert removed from the shuttle vector.

The fragment of interest being sublconed was isolated from the digest using Low-Melting agarose electrophoresis and purified from the gel using a Qiaquick Gel Extraction Kit following Lark SOP MB 020602. If necessary, the receiving vector was treated with alkaline phosphatase according to Lark SOP MB 090201. The fragment was ligated into the chosen site of the vector pAcGHLT-A. The recombinant plasmid was transformed into *E. coli* XL1 Blue MRF' cells and the transformed bacterial cells were selected on LB agar plates containing ampicillin (100µg/ml). Ampicillin resistant colonies were picked and grown on LB broth containing ampicillin for plasmid preparation.

10

15

20

25

30

Plasmid DNA was prepared using Alkaline Minilysate Procedure (Lark SOP MB 010802 and digested with appropriate restriction enzyme(s). Selected subclones were confirmed to be of the correct size. Sublcones were digested with other appropriate restriction enzyme(s) to ascertain correct orientation of the insert by confirming presence of fragments of proper size(s). A subclone was grown in 100 ml of LB broth containing ampicillin (100µg/ml) and the plasmid DNA prepared using Qiagen Midi Plasmid Preparation Kit (Lark SOP MB 011001). The DNA concentration was determined by measuring the absorbance at 260 nm and the DNA sample was verified to be originated from correct subclone by restriction digestion.

Thus were produced the expression constructs for Mey3, Mey5, Mey6, Mey8 now with the coding sequence of interest fused to GST gene with polyhistitidine tag, protein kinase A site and thrombin cleavage site. The GST

gene and now the fusion protein are under the polyhedrin promotor. PharMingen (San Diego, CA) incorporated the vector with insert into functional baculovirus particles by co-inserting the transfer vector (pAcGHLT) into susceptible insect cell line S along with linearized virus DNA (PharMingen, San Diego, CA, BaculoGold viral DNA, Cat. No. 21100D). The functional virus particles were grown again on the insect cells to generate a high titer stock. Protein production was then done by infecting a large culture of cells in Tini cell. The cells were harvested when the protein yield reached a maximum and before the virus killed the cells. Fusion proteins were collected on a glutatione-agarose column, washed and released with glutathionine.

Proteins collected from the affinity column were quantified by measuring OD₂₈₀ and were assayed on gels using SDS-PAGE and Western blotting with labeled anti-GST (PharMingen, San Diego, CA, mAbGST Cat. No. 21441A) to confirm that all the bands present included the GST portion.

10

15

20

Four of the ten sequences have been cloned, expressed in bacculovirus infected insect cells, and then purified.

TABLE 2	TABLE 2: Expressed protein from Jurkat library clones					
Name	Sequence in insert	Amount of protein (mg/mL)				
Mey3	AIM4	4.7, 5.0				
Mey5	AIM6	1.36, 1.50				
Mey6	AIM7	. 0.33				
Mey8	AIM9	1.53				

Gels indicated the presence of the GST protein in addition to larger proteins that were also positive with the anti-GST antibody in Western analyses. Mey3 repeatedly exhibited the presence of proteins around 32kDa, 56kDa, bands around 60-70kDa and another larger than 70kDa. Mey5 consistently had proteins migrating as approximately 34kDa, 38kDa, 58kDa, around 60-70kDa, and others larger than 70kDa. Mey6 had protein bands around 34kDa, 56kDa,

58kDa, and bands around 60-70kDa. Mey8 had protein bands around 36kDa, 58kDa and bands around 60-70kDa. All of the indicated bands were positive for GST. The bands may represent the desired fusion protein or degradation/cleavage product generated during growth and purification.

5

10

15

Example 7: Assay of expression products for effect on TNF-R cleaving activity

The following method was used to measure TRRE activity of Mey 3, 5, 6 and 8. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5 x 10⁵ cells/ml/well and incubated overnight (for 12 to16 hours) in 5% CO₂ at 37°C. After aspirating the medium in the well, 300µl of 1 ug of Mey 3, 5 and 8 were incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO₂ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated with 300µl of fresh medium or buffer (corresponding to B mentioned below). The supernatants were collected, centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA as described in Example 1.

The following results were obtained:

TABLE 3: Enzymatic activity of expressed clones				
Clone No.	TNF-receptor releasing activity U/mg			
Mey-3	341			
Mey-5	671			
Mey-6	452			
Mey-8	191			

Example 8: Effectiveness of expression products in treating septic shock

5

10

15

20

25

The protocol outlined in Example 3 was used to test the effects of the expression products from the new clones in preventing mortality in the septic shock model.

Different amounts of recombinant Mey 3, 5, and 8 (10 – 100 ug/mouse) were injected i.v. in a 0.05 ml volume within an hour prior to or after injection of a lethal dose of LPS. Serum (0.1ml) was collected using a 27 gauge needle and 1 ml syringe from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at -20°C. Samples from multiple experiments were tested by ELISA for the presence of solubilized TNR-R, the TNR ligand, IL-8, and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E). Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 5 shows the results obtained. (♦) saline; (■) BSA; (△) Mey-3 (100 μg); (X) Mey-3 (10 μg); (*) Mey-5 (10 μg); (●) Mey-8 (10 μg).

Mice injected with LPS alone or LPS, a control buffer or control protein (BSA) died rapidly. All of the animals in this group were dead at 24 hours. In contrast, when injections of LPS were accompanied by injections of a 10 – 100 ug of Mey 3, 5 and 8, death was delayed and death rates were lower. None of the animal were dead at 24 hours that had been treated with Mey 3 and Mey 5. Only 66 % of the animals were dead at 24 hours that had been treated with Mey 8. Thus, Mey 3, 5 and 8 were able to counteract the mortality induced by LPS in test animals.

CLAIMS

What is claimed as the invention is:

- 1. An isolated polynucleotide comprising a nucleotide sequence with the following properties:
 - a) the sequence is expressed at the mRNA level in Jurkat T cells;
 - b) when COS-1 cells expressing TNF receptor are genetically altered to express the sequence, the cells have increased enzymatic activity for cleaving and releasing the receptor.
- 2. The polynucleotide of claim 1, wherein the nucleotide sequence is contained in a sequence selected from the group consisting of
 - a) SEQ. ID NO:1;
 - b) SEQ. ID NO:2 or SEQ. ID NO:3;
 - c) SEQ. ID NO:4;
 - d) SEQ. ID NO:5;
 - e) SEQ. ID NO:6;
 - f) SEQ. ID NO:7;
 - g) SEQ. ID NO:8;
 - h) SEQ. ID NO:9; and
 - i) SEQ. ID NO:10.
- An isolated polynucleotide comprising at least 30 consecutive nucleotides in said nucleotide sequence of a polynucleotide according to any of claims 1-3
- 4. An isolated polynucleotide comprising a linear sequence of at least 50 consecutive nucleotides at least 90% identical to a sequence contained in said nucleotide sequence of the polynucleotide of claim 1.

- 5. An isolated polynucleotide of at least 50 nucleotides capable of hybridizing specifically to said nucleotide sequence of a polynucleotide according to any of claims 1-3 at 68°C in 0.5 M phosphate buffer pH 7, 7% SDS, and 100 μg/mL salmon sperm DNA, followed by washing in a buffer containing 3X SSC.
- 6. An antisense polynucleotide or ribozyme comprising at least 10 consecutive nucleotides in said nucleotide sequence of a polynucleotide according to claim 1 or 2, which inhibits the expression of a TRRE modulator.
- 7. An isolated polypeptide comprising an amino acid sequence encoded by a polynucleotide according to any of claims 1-5.
- 8. The polypeptide of claim 7, selected from the group consisting of SEQ. ID NOS: 147-158.
- 9. An isolated polypeptide, comprising at least 10 consecutive residues in said amino acid sequence of a polypeptide according to claim 7 or 8.
- 10. An isolated polypeptide, comprising at least 15 consecutive amino acids which are at least 80% identical to a sequence contained in said amino acid sequence of the polypeptide according to claim 7 or 8.
- 11. The polypeptide of claim 7-11, which when incubated with COS-1 cells expressing TNF receptor, promotes enzymatic cleavage and release of the receptor.
- 12. The polypeptide of claims 7-11, which either:
 - a) lacks a membrane spanning sequence; or

- b) is produced by a process comprising recombinant expression in a host cell followed by purification of the polypeptide from medium in which the cell is cultured.
- 13. A method of producing the polypeptide according to any of claims 7 to 11, comprising the steps of:
 - a) culturing host cells genetically altered to express the polynucleotide according to claim 3; and subsequently
 - b) purifying the polypeptide from the cells.
- 14. The method according to claim 13, comprising harvesting culture medium following step a); and purifying the polypeptide from the culture medium by a process comprising affinity chromatography.
- 15. An isolated polynucleotide encoding the polypeptide of claim 8 or 9.
- 16. An isolated antibody specific for a polypeptide according any of claims 7-11.
- 17. A method for producing the antibody according to claim 16, comprising immunizing a mammal or contacting an immunocompetent cell or particle with a polypeptide according to claim 9 or 10.
- 18. An assay method of determining altered TRRE activity in a cell or tissue sample, comprising the steps of:
 - a) contacting the sample with the polynucleotide of claim 4 or 5 under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample; and
 - b) determining polynucleotide that has hybridized as a result of step a), as a measure of altered TRRE activity in the sample.

- 19. An assay method for determining altered expression of a modulator of TRRE activity in a cell or tissue sample, comprising the steps of:
 - a) contacting the sample with the antibody of claim 16 under conditions that permit the antibody to bind the modulator if present in the sample, thereby forming an antibody-antigen complex; and
 - b) determining complex formed in step a), as a measure of the modulator.
- 20. A method for assessing a disease condition associated with altered TRRE activity in a subject, comprising determining altered TRRE activity in the sample from the subject according to claim 18, or determining altered expression of a TRRE modulator according to claim 19, and then correlating the extent of alteration with the disease condition.
- 21. A method for decreasing signal transduction from a cytokine into a cell, comprising contacting the cell with a polypeptide according to any of claims 7-8 and 11-12, or with a polynucleotide according to any of claims 1-3 and 15.
- 22. A method for increasing signal transduction from a cytokine into a cell, comprising contacting the cell with a polynucleotide according to claim 6, or with an antibody according to claim 16.
- 23. The method according to claim 21 or claim 22, wherein the cytokine is TNF.
- 24. A method for screening polynucleotides for an ability to modulate TRRE activity, comprising the steps of:
 - a) providing cells that express both TRRE and the TNF-receptor;
 - b) genetically altering the cells with the polynucleotides to be screened;
 - c) cloning the cells genetically altered in step b); and

- d) identifying clones that enzymatically release the receptor at an altered rate.
- 25. A method for screening substances for an ability to affect TRRE activity, comprising the steps of:
 - a) incubating cells expressing TNF receptor with a polypeptide according to claim 9 in the presence of the substance;
 - b) incubating cells expressing TNF receptor with a polypeptide according to claim 9 in the absence of the substance;
 - c) measuring any TNF receptor released from the cells in steps a) and b); and
 - d) correlating an increase or decrease of the receptor released in step a) relative to that in step b) with an ability of the substance to enhance or diminish TRRE activity.
- 26. Use of a polypeptide according to any of claims 7-8 or 11-12, in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.
- 27. Use of a polynucleotide according to any of claims 1-3, 6, or 15 in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.
- 28. Use of an antibody according to claim 16, in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.
- 29. Use of a polypeptide according to any of claims 7-8 and 11-12, a polynucleotide according to any of claims 1-3 and 15 or an antibody according to claim 16, in the preparation of a medicament for treatment of a

disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis.

- 30. A method of treating cancer in a subject, comprising increasing signal transduction from TNF into cells at the site of the cancer in the subject according to claim 22 or 23.
- 31. A method of treating a disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis, comprising decreasing signal transduction from TNF into cells at the site of the disease in the subject according to claim 21 or 23.
- 32. The method of claim 31, comprising administering to the subject an effective amount of the polypeptide of any of claims 7-8 or 11-12.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

4/5

Fig.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: Gatanaga, T. Granger, G.A.
- (ii) TITLE OF INVENTION: Factors Altering Tumor Necrosis Factor Receptor Releasing Enzyme Activity
- (iii) NUMBER OF SEQUENCES: 154
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: MORRISON & FOERSTER
 - (B) STREET: 755 PAGE MILL ROAD
 - (C) CITY: Palo Alto.
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94304-1018
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: Windows
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0b
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: USSN 09/081,385
 - (B) FILING DATE: 014-NOV-1998
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME:
 - (B) REGISTRATION NUMBER:
 - (C) REFERENCE/DOCKET NUMBER: 22000-20577.21
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 650-813-5600
 - (B) TELEFAX: 650-494-0792
 - (C) TELEX: 706141
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4047 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAGCTTTTTG CTTTCCTTCC	CCGGGAAAGG	CCGGGGCCAG	AGACCCGCAC	TCGGACCAGG	60
CGGGGGCTGC GGGGCCAGAG	TGGGCTGGGG	AGGGCTGGGA	GGGCGTCTGG	GGCCGGCTCC	120
TCCAGGCTGG GGGCCGCCAG	CTCCGGGAAG	GCAGTCCTGG	CCTGCGGATG	GGGCCGCGCG	180
TGGGGCCCGG CGGGGCGGCC	TCGGGAGGCG	TCCAGGCTGC	GGGAGCGGGA	GGAGCGGCCG	240
TGCGGGCGCC AGCGCCGTGG					300
TGGGACCCGG GAGCAGAGCC	CGCGCCTCCC	CAGCGGCCTC	CCCGGGGGTC	TCACCGGGTC	360
ACCCGAGAGC GGAGGCCCCG					420
CTCAGGCGTC GGAGGAGCCC	CCAGAAGGAC	CTCGCGCCTT	CCCGCCGGGC	TCCGACCGCC	480
TGGGTTCGGT GCGGGACGGC					540
GCACGACCCA GAGGCCAGCA					600
GCTCCTGGGA GGTCAAGGCC					660
CAGGGAGGTG AGGGGGCTCT	GTGAGCAGAG	GGGGCCCCGG	TGGAGAAGGC	GCTGCTAGCC	720

AGGGGCGGGG CAGGAGCCCA GGTGGGGACT TAAGGGTGGC TGAAGGGACC CTCAGGCTGC AGGGATAGGG AGGGAAGCTA GGGGTGTGGC TTGGGGAGGT GCTGGGGGAC CGCGGGCGCC CTITATICTG AAGCCGAATG TGCTGCCGGA GTCCCCAGTG ACCTAGAAAT CCATTTCAAG 900 ATTTTCAGGA GTTTCAGGTG GAGACAAAGG CCAGGCCCAG GTGAAAATGT GGCAGTGACA GAGTATGGGG TGAGAACCAC GGAGAGAGGA AGTCCCCGAG GCGGATGATG GGACAGAGAG 1020 CGGGGACCAG AATTTTTAA AACGCATCTG AGATGCGTTT GGCAGACTCA TAGTTGTTTT 1080 CCTTTCACGG AGAAAGTGTG GGCAGAAGCC AGCTCTAAAG CCCAGGCTGC CCAGCCTGCA 1140 CTGGCAGAGC TGACGGAAGG CCAGGGCAGA GCCTTCCCTC CCTGTCACAG ACATGAGCCC TGGAGATCTG GAATGAGGCA GATGTGCCCA GGGAAAGCTG ATCCGCCCCG ACCCAGGGCC 1260 CCCCGGGTGC CCCTTTGAGC GTGGAATCGT TGCCAGGTCA TGGCTCCCTG CTATCGAACA 1320 CCGGACACGG GTCGTGTGCT GCACCTGGCA GTTGCAGGAC CGACACCCAC AATGCCTTAA GAGGTGATGA CTGCCTTCCA GGGGCCTGGC TGGCTGACAC TTTGCATGGC TCCTGGAGAA 1440 GAGGGATTGA GTGGAGTCCA CGGGTCATGG CCACGTCCTG GGTGCTGCCT CTGAGGCAGG 1500 GCCCGGCTGG GGTGAGAAGG GGCTGGAGAC AGGTTCCTGC CAGTTCAGCC TCTAACCGGT GGTCTTCATG CCTAGGAACC CACTGGGGGC TTATGAAACT GCAGGTGGCT GAGTCCTTGC 1560 CATGGGGTCT CTCCTTCAGG AGGTCTGGGT GGGGCCGGAG ACTGTACCCC ACAAAGGGTC 1680 CCAGGTGAGG CGGATGTGGC CTGGCGCTGT GTGGCTCTGG ACCTAGTCCT TGGGCTTGGG 1740 CTGGCGCCCA GGGCCTGGGC TTGAGACAGC TGTGACGCAG GCAAGCCATT TACCCCGTTT GTGGGGACAT TACATCTTCC TAGCTTGGAA CACACAGGCA GCCAGGGTTG TTATCCACAT 1860 TCCTCCTCCA TGTTCTTCTC TTGAGAACTT TTACCAGGTA TGTCAGGAGC TGGGCTCCAC 1920 CAGGGAGACT CAAGTGGAAA GCCCTCATCC TTGTCCTCCA GGAGACAGGA AAACCTATGG TTACAATTCC AGGGACAAGA GCGATGCATG TGAGGTGTGG CAAATCTCAC TGTTCAACTG 1980 GAGAAATCAG AGACAGCTTC CTGGAGGCAG TGACACCTGG ACAGGCTTCT CCACAGGAGG 2100 AAGCGAGTGA GAGAAGCCAA CTGGGATGGA CCCATCATGT AGGGGGAACA GTGCGCGCAG 2160 AACCAACAAC CACCCCCACC CTAGGCCCAG AGCTCACGGA GAGAGCTGGG CCTCTCGGGG 2220 2280 TGACTACATA GTTCCCTGCT GGATCTTAGG TCTTGTCCTT GGGCAGCTCT GCTGAGACCT CTATGCCTGT TCCAGGCTGC ACCAAGGTTT TGTGACTATT GGTCTGGGGT TGTTTTGCAG 2340 CAACTGAAGT GTTCTGTTGT AAAACAGGCA CTTGATTTGC TGGAAGGAAT GCTGTTTGTT 2400 CTTGCTGCGA CAAACATTGA GCAGCATTTA GTGGGCGGTT TATATCTTGT GGAGTAATGG 2460 GTGTTTTTGA AGTCTGTCCT GGGTACTGCA CATTAAAAGG AATATCATTT TCTGAAACAT 2520 TGCTATTTTC CACACCAGAA ATCATATCCT CTTGCTGGTC CATGTCTGAA GACCTTACAC 2580 GAGAAAGTCT TAATGTAAGT TTAGTAGAGT CCTTGGATGG AGAACTAATT ATATCATACA
TTGCCGCTTT CTCACTCTGC TCTTTTTCAT CCTTGCCTAA TTTCATTTTC TTCTGCTTCT 2700 TTTGTTTTCT TTCTGGAGAA TCTAGCAAGA TATCTGGTGG AACATCTCGA GGTGATGAAC 2760 AAGGTAGAGA CTGAGATTGT AGGATTAAAG GTGGTCTTGA GCCTTTAGGA GTTCCTTCAC 2820 TICCAGCAGG GGAGCATACT GGCTGTGGAG ATCTCAAGGG AAAAGATGCA GCATTCCTCA 2880 TIGITGAAGA ATCTCCATCG TCACTACTTA GCCTGTGCAC CATGTGTAGG TAGTCCTCAC TTGAACCATG TCTAGGATTA TCAGCATGAT GATTAGCTGA ATTGCCAGAC AACGGACCAG 3000 AAACTITATT ATCATGTATG TITCTCAAAC CACCTGCAAC AATGGGACTT GATACCGATG 3120 CTTGTTGCAT CTGTGGATGT GTTGTGTAAC TTGAAGGATG GGAATATGGC ATGTATCCTG CAGGGCTTTG TGGGGCGTAT GGACTAGGCA CTGGGCTATT TTGCTGTGGC ATAAATCTGT 3180 TCCCAGAGCT TGTCTGTGGT GGCACAAACC GGCTGGAGGG GCTATGTGAG ATAGTGGTTT 3240 GTTGATAATT GGAAGATGCA GGACTACTGT GCATGGAATT CTGAGAAAGT TTATACTGAG 3300 ACATCATCAT TCCACTTTGT ACATATCTGT TCTGCATGCT TTTCTCCCTG AAAACATTAG 3360 GACTCCTTGC CAGGACGGCC TGCAACAAGA CTGGTATGTC ACCTTCTGGG TCATCACTGC 3420 CAAGGTTATC TITCAACTCT ATGTGATCTG TIGATACCTG GTTGAGGCTA TGGACAAGCT 3540 GTGAAACCAA ATTGTCATCC CTACAAGCCA AAAGGCAGTT CACCTCTTCT GCTATTCGTG CATTAAAGAG AAGGCTCTTT GTAGTTGTAG CAGGTAAAGG AGATGGAAGA GGCAGCTGGT 3600 TCAGGAGGTC TGTGAGACTA GCAATCCCCG CAAGAGTAGT AATGGGGACA TGGGGCATAT 3660 CCCCATTCAT CCTGAATTTC TGGAATGGTG TTGCCTATAA AAGTACTTAG TTCAGGTGCC 3720 AGCTGTCATT ACTTCCCATT TCCCAAACAC TGGGCGAATC GGCGTCTGAA TCCAAGGGGA 3780 GGCCGAGGCC GCTGTGGCGA GAGACTATAA TCCGGGCCGG GAGGGGGGGC GGCTACGGCT 3840 CCTCTTCCGT CTCCTCAGTG CGGGGAACAT GTAGAGCCGG GGGGAGACCA GCCGAGAAGA 3900 3960 CAAATCGTTG CTTCTTCTTC CTCCTCCTCC TCCTTCTCCC ACATAGAAAC ACTCACAAAC ACCCGACCAC GGGCCCGAGC TACCGGGGGG GCATCGCCGC GGGCCCGGGA ACCAATTCTC 4020 4047 CTGTCGGCGG GGGCGTCCTT TGGATCC

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 739 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CCATCCAAAG	GTCAAACTCC	CCACCTGGCA	CTGTCCCCGG	AGCGGGTCGC	GCCCGGCCGG	60
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCGCTTGGC	GCCAGAAGCG	AGAGCCCCTC	GGGGCTCGCC	CCCCGCCTC	120
ACCEGETCAG	TGAAAAAACG	ATCAGAGTAG	TGGTATTTCA	CCGGCGGCCC	GCAGGGCCGG	180
CGGACCCCGC	CCCGGGCCCC	TCGCGGGGAC	ACCGGGGGGG	CGCCGGGGGC	CTCCCACTTA	240

WO 99/58559

TTCTACACCT	CTCATGTCTC	TTCACCGTGC	CAGACTAGAG	TCAAGCTCAA	CAGGGTCTTC	300
TTTCCCCCCT	CATTCCCCCA	AGCCCGTTCC	CTTGGCTGTG	GTTTCGCTGG	ATAGTAGGTA	360
CCCACACTCC	CAATCTCGTT	CATCCATTCA	TGCGCGTCAC	TAATTAGATG	ACGAGGCATI	420
TOCCTACCTT	AACAGAGTCA	TAGTTACTCC	CGCCGTTTAC	CCGCGCTTCA	IIGAATIICI	480
TCACTTTCAC	ATTCAGAGCA	CTGGGCAGAA	ATCACATCGC	GTCAACACCC		540
TTCCCCATCC	TTTCTTTTAA	TTAAACAGTC	GGATTCCCCT	GGTCCGCACC	AGTICIAAGI	600
CCCCTCCTAG	BOORDORN TO	AAGCGAGGCG	CCGCGCGGAA	CCGCGGCCCC	CGGGGGGGGAC	660
CCCCCCCCCCC	GACCGGGCCG	CGGCCCCTCC	GCCGCCTGCC	GCCGCCGCCG	CCGCCGCGCG	720
CCGAAGAAGA			•			739

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 233 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CAACACTCCC	CCCCCCAGCA	GGCCCCCGG	GTGCCCGGGC	CCCCCTCGAG	GGGGACAGTG	60
CAMUMUTUUC	GGCCGCAGGA	GGGGGGGGGG	CCCCCCCCCC	CTECCECCCC	GACCCTTCTC	120
CCCCCGCCGC	GGGGGCCCCCG	LUGLUGULLU	CCGCCGGCCC	010000000	222222222	180
CCCCCGCCGC	CGCCCCCACG	CGGCGCTCCC	CCGGGGAGGG	GGGAGGACGG	GGAGCGGGGG	. 100
ACACAGAGAG	ACACACAGGG	CGCGGGGTGG	CTCGTGCCGA	ATTCAAAAAG	CTT	233

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2998 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

-						
GGATCCAAAG	AATTCGGCAC	GAGGTAGTCA	CGGCTCTTGT	CATTGTTGTA	CTTGACGTTG	60
AGGCTGGTGA	GCTTGGAAAA	GTCGATGCGC	AGCGTGCAGC	AGGCGTTGTA	GATGTTCTGC	120
CCGTCCAGCG	ACAGCTTGGC	GTGCTGGGCG	CTCACGGGGT	CCGCATACTG	CAGCAGGGCC	180
TCCAACTCCT	TGTTCTTGGT	GAAGGTGATG	ATCTTCAACA	CTGTGCCGAA	CTTGGAGAAA	240
ATCTGGTGCA	GCACATCCAG	GGTCACAGGG	TAGAAGAGGT	TCTCCACGAT	GATCCTGAGC	300
ACCCCCCTCT	GCCCGGCCAT	CGCCATCCCT	GCATCCACGG	CCGCCGCCGA	GGCAGCCAAG	360
CCCACCTTCC	CCGACTGGAC	CGAGTTCACC	GCCTGCAGGG	CCGCCTGGGC	CCGCGCCTGG	420
TTGGGAGAGC	TGTCGGTCTT	CAGCTCCTTG	TGGTTGGAGA	ACTGGATGTA	GATGGGCTGG	480
CCCCCCAGCA	CAGGGGTCAC	CGAGGTGTAG	TAGTTCACCA	TGGTATTGGC	AGCCTCCTCC	540
CTCTTCATCT	CGATGAAGGC	CTGGTTTTTC	CCCTTCAGCA	TCAGGAGGTT	GGTGACCTTC	600
CCAAAGGGCA	GCCCCAGGGA	GATGACTTCC	CCCTCCGTGA	CGTCGATGGG	GAGUTTUCGG	660
ATGTGGATCA	CTCTAGAGGG	GACGCCTGCA	CTTCGGCTGT	CACCTTTGAA	CTTCTTGCTG	720
TCATTTCCGT	TTGCTGCAGA	AGCCGAGTTG	CTGCTCATGA	TAAACGGTCC	GTTAGTGACA	780
CAACTAGAGA	AAAGCTCGTC	AGATCCCCGC	TTTGTACCAA	CGGCTATATC	TGGGACAATG	840
CCGTCCATGG	CACACAGAGC	AGACCCGCGG	GGGACGGAGT	GGAGGCGCCG	GAATCCTGGA	900
CCTAGAGCTG	CAGATTGAGT	TGCTGCGTGA	GACGAAGCGC	AAGTATGAGA	GIGICCIGCA	960
CCTCCCCCCC	GCACTGACAG	CCCACCTCTA	CAGCCTGCTG	CAGACCCAGC	ATGCACTGGG	1020
TGATGCCTTT	GCTGACCTCA	GCCAGAAGTC	CCCAGAGCTT	CAGGAGGAAT	TTGGCTACAA	1080
TGCAGAGACA	CAGAAACTAC	TATGCAAGAA	TGGGGAAACG	CTGCTAGGAG	CCGTGAACTI	1140
CTTTGTCTCT	AGCATCAACA	CATTGGTCAC	CAAGACCATG	GAAGACACGC	TCATGACTGT	1200
GAAACAGTAT	GAGGCTGCCA	GGCTGGAATA	TGATGCCTAC	CGAACAGACT	TAGAGGAGCT	1260 1320
GAGTCTAGGC	CCCCGGGATG	CAGGGACACG	TGGTCGACTT	GAGAGTGCCC	AGGCCACTIT	
CCAGGCCCAT	CGGGACAAGT	ATGAGAAGCT	GCGGGGAGAT	GTGGCCATCA	AGCICAAGII	1380 1440
CCTGGAAGAA	AACAAGATCA	AGGTGATGCA	CAAGCAGCTG	CTGCTCTTCC	ACAATGCTGT	1500
GTCCGCCTAC	TTTGCTGGGA	ACCAGAAACA	GCTGGAGCAG	ACCCTGCAGC	AGTICAACAT	
CAAGCTGCGG	CCTCCAGGAG	CTGAGAAACC	CTCCTGGCTA	GAGGAGCAGT	GAGCTGCTCC	1560 1620
CAGCCCAACT	TGGCTATCAA	GAAAGACATI	GGGAAGGGCA	GCCCCAGGGT	GTGGGAGATT	1680
GGACATGGTA	CATCCTTTGT	CACTTGCCCT	CTGGCTTGGC	CTCCTTTTTC	TGGCTGGGGC	1740
CTGACACCAC	TTTTGCCCAC	ATTGCTATG	TGGGAAGAG	GCCTGGAGGC	CCAGAAGTTG	1800
CTGCCCTGT	CONTRACTOR	GCCACAGGG	TTCATTCCC/	GATCITIC	TTCCACTTCA	1860
CAGCCAACG	CTATGACAA	ACCACTCCC	GGCCAATGG	ATCACICITO	AGGCTGGGGT	1920
GTGCTCCCT	ACCAATGAC	GAGCCTGAA	A ATGCCCTGT	AGCCAATGG	AGCTCTTCTC	1920
GGACTCCCC'	r gggccaatg/	TGTTGCGTC	TAATACCCTT	GICTCICCIC	TATGCGTGCC	2040
CATTGCAGA	AAGGGGACT	GGACCAAAG	G GGTGGGGAT	A ATGGGGAGC	CCATTGCTGG	2040

CCTTGCATCT GAATAGGCCT ACCCTCACCA TITATTCACT AATACATTIT ATTTGTGTTC 2160 TCTAATTTAA AATTACCTTT TCATCTTGCT TGATTTTCCT TCAGCTAAAT TAGAAATTTG TAGTTTTTCC CCTAAAAAAT TCAATGGCAT TCTTTCTTAT AAATTACATT CTCTGATTTT 2220 CTTGTCAGCC TGCTTCAAGG AAATCCATGT GTTCAAAATG CTTGCTCGCA GTTTGCTCCA 2280 TACCAAATGG TTGCTTAACC CAAATATCTG AGCAGCAAAT TGAGCTGATC CTTCTGGAGA 2340 AAGTACGGTT GAACAGCCAA GACCACTGGG TAGTCGAAGA GAAGACCACA CATCCTGAAC 2400 2460 TCCCCAGTCT GGTGTGAGGG GAGGACAGCT GATAACTGGA TATGCAGTGT TCCCAGACAT CACTGGTCCC AAACCATTAC TTCTGCCTGC CACTGCCACA AATACAGTAG GAATGCCATC 2520 CCCTTCATAC TCAGCTTTAA TCCTCAGAGT TTCATCTGGT CCTTTATGCG CAGATGTTAC 2580 TCGAAGTTCA CATGGAATGC CAAAATTTCC ACAGGCCTTC TTGATTTTTT CACAGTGACC 2640 AAGATCAGAA GTAGAGCCCA TCAACACTAC AACCCTGCAC TGACTTTCTG ATTTCAAAAG 2700 CAACTCTACT CTCTCTGCAA CCCACTCAAA GTTTTTCTTT ACCATTTGGA GCCCTTCAGG 2760 AGTTACTTCT TTGAGGTCCC GATAAGACTG TTTGTCTTTC TGTTGGCTTC GATCTCCTGA 2820 TGGCCAGAGT CTCCAGGAAT CATTGTCAAT AACATCAGCA AGAACAATTT CTTTGGTGGT 2880 TACATCAACA CCAAATTCAA TCTTCATATC AACCAGTGTA CAATTCTGGG GCAACCAGGA TITCTCCAGT ATTTCAAATA TAGCCTGTGT AGCATCTCGT GCCGAATTCA AAAAGCTT 2998

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4152 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCTTTTTG TGAAAACCCT AGGATATGTC CCCTCCCTCA CCACACCCAA CCCCCCGCCC CTGCCCCAGG ACATGACGAT GCCTCACACA CACACACACA CACACATACA CACAAGGCCG TGAGCTGCAC GCAGGAACAT GGGCTGCACT CACGACAACA TTGAAAAAAT ATACATTATA 180 TATGTACACC CGGGGCCCCC ACGTCCCCTC CCGTCCCCGC AGCCTGGCCA CACCAGGTCA 240 CGGAGGAGGG GCCGGGGCTG CAGGACCTCA GGACTGCAAG GGCAGGAAGG GAAACAGGAC 300 360 AAGAAAGGAA GGAAGTTGGA AAGGAGGGAG AAATGGGGTC CCCAGACTGA AATGGAAATG AGGTGGGGCG ATCATAAGAG AAGCAGGGAC GATGGTCCAG CTGAGGGAGC CCTGCAGAGG 420 480 ATCCCACCCC CAGCCCCAGC CCCAGCCCCA GCCATTGCAA TCGTCACCCT CTCCCCAACA 540 CAGTGAGTGC TAAGGGGGCA GCTGCCATTG GGGGTAGAAA GGCAGCTGAA GTCCAGCCCA 600 660 CTTTCCAACC CAGCCAGCCC CAGTGCAAGG GGCACACCAG GAGCATGACA GCCCAGAAGT GAGGGATGGG GGGCCGGGGG AGGGGCAGGG CGGACTCCAG AGGGCCCGCT GGGGTTTTGA 720 AATGAAAGGA GGACTGGTTC TGAAGCCTCT CTCCCTCTTG GTCTCTGTGT TCCCAGAAAG 780 TCCTTCTCCC ATGTCTGGAG TGTCTGTTTC ACCAGGGCAG AATTCCCCCT CTGCGTGGGG 840 900 AGAGGTGTAG GCCTTAGTAG CGGTGTGGGG GGGTCTCGAT GATGCGTCTC TCGTCGCTGC TGGGGGAATC GGCCACCTCC GAGTCACTGC TGTCCTCATC CTCCTGCTGG CCCCCAACAG 960 CCCCCGTCAC ACAGGACTGC CGATTCTGGT AGGACTCCAT GGGGTTCACA ATGATGGTGA 1020 1080 GAGCTGAGTC ATCCCAGAAG AGGTCTGGGT CCTTGGGGTC ACTGGAGGCC CCTGGAGGCC 1140 CGCCGGCCC TGAGACGCG CGGTGAAGGG AATGGATGCG CACCAGGCCC AGGACGACCA 1200 TGAGCACCAG GAAGCCCACG CACACCACAA TGATGAGGGT TGCGGCGCTG GGTATCATGG AGTITCIGIG GGAGCIGGCI AGGCIGIGIC CAGCCATCIC AGGCGGGGC IGGIGACCAC 1260 GGTGCAGGAA CTGCTGGGAG CTGAGCACGT GGCTGGGGTG GGCAACCCGG TTCATGCTGT 1320 GCAGGACATT GACCTCCACG ATGAATTCAT TGCTGGAGTA ACGGCCATTC ATTTCCGAGC 1380 AGGAAAGCCG GAACTTCCTG GTGTAGAGGG CAGCTCCGTG TCGCAGCCGA TAACGAGCCT 1500 GCCTCAGGAT CTCTTCATAC ACAGTGATGC TCTCCACCCC AGCAATAGTG AGGTAGGCAG ATGTGTTGGT GAGCTCCAGC CCCCGCTGCT GCAGAGAGGT TGTGTCCAGG AGCAGGCTTT 1560 CCCGCTCGGG ATCCAGGTCA TCCCCCACCA GAGAAATTTC ACAGCCATCC AGGTTGTGCA 1620 CAATCTCATC CGACATGCGT GTGTCTGTCA CTGTGCCCTG CCAACTCTCA TCCTTTTTGG 1680 CCTCCACCTG GTGAGAAATG GAGCAGGTGA TTTGAAGATC AGGGAACAAA GGGACGCCGT 1740 1800 TGGTTCCCTC AAAGTCCACA GCTGGGCGGG CAAAATGAGC AGTGCCACTC AGCAGGATCT GGGGGGCGTC AGGCTGAAGG ACGACCACGT AGCCCTCCAC TTCAGGGATG GAGACGCAGG ACTITICGLY GAAGCACTIG ACAGCAGTGG TGAGGCGCAG GGGCCTGACG CCGGGCGTGG 1920 CAAAGCGCAG AGTGTTCATG TAAGCCACAT GCTGCAGGGC ATGGTTGAAG GTCTCCACAT 1980 CATCCCCTC CAGGGTGAGC AGGGACTGTG AGGGGTTCAC GTGGACCTTC ATGCCTTTGC 2100 CCAGGCTCTC GAAATCCCTA TAGTCCAGCC CCTCCCGACA TGCATAGAGG CACTCGATGA CCTCGCGGCT CTCCAGGCGA CCTGAGCGCA CGCTGAAACC AGCCAGGTAG CCATGGAAGT 2160 AGTGGTGGAT CGACAAAGGG TCTCCTTGGG TGGTGTCTGT ACTGTTGTCT CCCTTTTCCT 2220 TCTCTTTGTT CTTCTCCTCA GTCCAGCAGG CCCCAATCAT GAGAGCAGGC TCCCTTCGGG 2280 GTGGGTGGAT GAGGCCATTG TCATGGATGA GGGCAGGGTC GAAGGAGATG CCGTCGGTAT 2340 AGAGTGTGAC TGTGGGGAAC TCGAGGTTCA GAGCGTAGTG GTGCCACTCA TCATCACAGA 2400 CCTGCTCCAG CTTCCAGAGG AACTTGACTG GGCGGGCACT CTCAAGCAGG GGCCAGTAGA 2460 GGAAGGCAAT CCTACAGCCG TGGACAGTCA GCGAGTAGTG AGAGAAGCCG TCCTCATTCT 2520 GGACAGTGTT ACATACGATG GTTTCCTCTT CCTTCTTGCC CTTGTTGGGA GTTACGCCAT 2580 GCTTCATCCA GAAGGACAGG GTGAAGTGGT CACTGAGGCT GTCCTGGGGC CCAGAGCCCA

GCCCACTGGG GCCACCCAGG GGCACCTGCA CAGCCTGGGT GCCATTGAAC CAGTAGATCA 2700 GGCTGCTGTC CTGGCTGTAG TGCACCGAGA GTCCTGCTGT CCAGTTGGCA TTGGGGCCAG 2760 GCATGGGCAA CAGATCCACT TCCCCAGTGG CAGCACCACA GAGTTTCCGC AGCGCCCGCT 2820 CTGAGTAGTT GTCACGGTCA CAGCCCTTGG CCACATGGCT GGTCTGCAGC TCTATGGTGG CCTGAATGTT CCAGAGTGGT TCATCACAGG TCTCCAGGCG GATACCAGGG AACAAAGCCA 2940 AGCTCCCAGC ACCTGGTGCA TATTCGATCC TTTTGTTCCA GCCTTGCCAG CTGGGTTTAC 3000 AGGTGGGCTT CACCTGAATC TCCACCTCAG CATCATCTGC TGCCCGCTTC TTCCCACAGT 3060 CATAAGCTGT CACTGTAAAC TTATAGAGCC TCTCACCACT GTACTGCAGC TTCTCTGTGT 3120 TCTCAATGTT CCCGTCATTG TCAATGAGGA AAGGGGTGTT GGGTGTGAGA ATCTCATAGT 3180 AGCAGATCTG GCTGTACTGG GGGGAGCAGT CACCGTCAAT GGCTTCCACC CGCAGGATGC 3240 GATCGTACAG CTTCCCCTCT GTCACAGCCG CACGATACAG CCGTTCCACA AACACTGGGG CAAACTCGTT CACATCGTTG ACCCGCACAT GCACAGTGGC CTTGTGGGAC TTCTTGGTGT 3360 TGGCCCCGTC GGGGCCCTCG CCACAGTCAT AGGCCTGGAT GGTGAAGGTG TGTTCCTTCT 3420 GGGCCTCGCA GTCCACAGGC TCCTTGGCCC GGATCAGCCC CTCTCCTGTC GCCTTGTCAA 3480 GGATCACAGC CTCAAAGGGC ACCCCAGACC CATGGAGCCG GAAGCCGCAG ATCTCACCTG 3540 CATAGCGCAG CGGGGCATCC TIGTCCAAGG CAAAGAGTGG TGGATTCAGT AGGACCGTGT 3600 TGTCATTCTC CATGACGATG CCCTGGTACT CTGCCTCAAT CCATGGCTTG TGCTTGTTGG 3660 CTTTGTTACA GGAGCAGGAC GCGAGCAGAG AGGCCAGCAG AAGGGGCAGC AGCAGGAGGG 3720 TCATGGTGCG GCGTGGGGCA GGGCAGGGCC AGGCGTTTGC CTCCCCTGGG AGCCTCCAGC 3780 CTGCGGATTC CACCTTGCGG GAGGGATACA GGGGGGGGAAA ACCAAAATAA AACGTCAAAT 3840 3900 GGGCCTCTGC AGGTTCAGAG GATCACTGCT GCCACCACCG CCACCCTGGG AGCCAGTTAT TTTGCCATGG CCTTGATTGC AACAGCTGCC TCCTCTGTCA TGGCAGACAG CACCGTGATC 4020 AGGATETETT CTCCACAGTE GTACTTETGE TEAATETECT TGCCAAGGTE TCCCTCAGGG 4080 AGACGAAGGT CCTCTCGTAC CTCCCCGCTG TCCTGGAGCA GTGATAGGTA CCCATCCTGG 4140 4152

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3117 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGATCCAAAG ATTCGGCACG AGTGGCCACA TCATGAACCT CCAGGCCCAG CCCAAGGCTC 60 AGAACAAGCG GAAGCGTTGC CTCTTTGGGG GCCAGGAACC AGCTCCCAAG GAGCAGCCCC 120 CTCCCCTGCA GCCCCCCAG CAGTCCATCA GAGTGAAGGA GGAGCAGTAC CTCGGGCACG 180 AGGGTCCAGG AGGGGCAGTC TCCACCTCTC AGCCTGTGGA ACTGCCCCCT CCTAGCAGCC 240 TGGCCCTGCT GAACTCTGTG GTGTATGGGC CTGAGCGGAC CTCAGCAGCC ATGCTGTCCC AGCAGGTGGC CTCAGTAAAG TGGCCCAACT CTGTGATGGC TCCAGGGCGG GGCCCGGAGC 360 GTGGAGGAGG TGGGGGTGTC AGTGACAGCA GCTGGCAGCA GCAGCCAGGC CAGCCTCCAC CCCATTCAAC ATGGAACTGC CACAGTCTGT CCCTCTACAG TGCAACCAAG GGGAGCCCGC 480 ATCCTGGAGT GGGAGTCCCG ACTTACTATA ACCACCCTGA GGCACTGAAG CGGGAGAAAG 540 CGGGGGGCCC ACAGCTGGAC CGCTATGTGC GACCAATGAT GCCACAGAAG GTGCAGCTGG AGGTAGGGCG GCCCCAGGCA CCCCTGAATT CTTTCCACGC AGCCAAGAAA CCCCCAAACC 660 AGTCACTGCC CCTGCAACCC TTCCAGCTGG CATTCGGCCA CCAGGTGAAC CGGCAGGTCT 720 TCCGGCAGGG CCCACCGCCC CCAAACCCGG TGGCTGCCTT CCCTCCACAG AAGCAGCAGC AGCAGCAGCA ACCACAGCAG CAGCAGCAGC AGCAGCAGGC AGCCCTACCC CAGATGCCGC 840 TCTTTGAGAA CTTCTATTCC ATGCCACAGC AACCCTCGCA GCAACCCCAG GACTTTGGCC TGCAGCCAGC TGGGCCACTG GGACAGTCCC ACCTGGCTCA CCACAGCATG GCACCCTACC 960 CCTTCCCCCC CAACCCAGAT ATGAACCCAG AACTGCGCAA GGCCCTTCTG CAGGACTCAG 1020 CCCCGCAGCC AGCGCTACCT CAGGTCCAGA TCCCCTTCCC CCGCCGCTCC CGCCGCCTCT 1080 CTAAGGAGGG TATCCTGCCT CCCAGCGCCC TGGATGGGGC TGGCACCCAG CCTGGGCAGG 1140 AGGCCACTGG CAACCTGTTC CTACATCACT GGCCCCTGCA GCAGCCGCCA CCTGGCTCCC 1200 TGGGGCAGCC CCATCCTGAA GCTCTGGGAT TCCCGCTGGA GCTGAGGGAG TCGCAGCTAC 1260 TGCCTGATGG GGAGAGACTA GCACCCAATG GCCGGGAGCG AGAGGCTCCT GCCATGGGCA 1320 GCGAGGAGGG CATGAGGGCA GTGAGCACAG GGGACTGTGG GCAGGTGCTA CGGGGCGGAG 1380 TGATCCAGAG CACGCGACGG AGGCGCCGGG CATCCCAGGA GGCCAATTTG CTGACCCTGG 1440 CCCAGAAGGC TGTGGAGCTG GCCTCACTGC AGAATGCAAA GGATGGCAGT GGTTCTGAAG 1500 AGAAGCGGAA AAGTGTATTG GCCTCAACTA CCAAGTGTGG GGTGGAGTTT TCTGAGCCTT 1560 CCTTAGCCAC CAAGCGAGCA CGAGAAGACA GTGGGATGGT ACCCCTCATC ATCCCAGTGT 1620 CTGTGCCTGT GCGAACTGTG GACCCAACTG AGGCAGCCCA GGCTGGAGGT CTTGATGAGG 1680 ACGGGAAGGG TCTTGAACAG AACCCTGCTG AGCACAAGCC ATCAGTCATC GTCACCCGCA 1740 GGCGGTCCAC CCGAATCCCC GGGACAGATG CTCAAGCTCA GGCGGAGGAC ATGAATGTCA AGTTGGAGGG GGAGCCTTCC GTGCGGAAAC CAAAGCAGCG GCCCAGGCCC GAGCCCCTCA 1860 TCATCCCCAC CAAGGCGGGC ACTITCATCG CCCCTCCCGT CTACTCCAAC ATCACCCCAT 1920 ACCAGAGCCA CCTGCGCTCT CCCGTGCGCC TAGCTGACCA CCCCTCTGAG CGGAGCTTTG 1980 AGCTACCTCC CTACACGCCG CCCCCCATCC TCAGCCCTGT GCGGGAAGGC TCTGGCCTCT 2040

ACTTCAATGC	CATCATATCA	ACCAGCACCA	TCCCTGCCCC	TCCTCCCATC	ACGCCTAAGA	2100
GTGCCCATCG	CACGCTGCTC	CGGACTAACA	GTGCTGAAGT	AACCCCGCCT	GTCCTCTCTG	2160
TGATGGGGGA	GGCCACCCCA	GTGAGCATCG	AGCCACGGAT	CAACGTGGGC	TCCCGGTTCC	2220
AGGCAGAAAT	CCCCTTGATG	AGGGACCGTG	CCCTGGCAGC	TGCAGATCCC	CACAAGGCTG	2280
ACTTGGTGTG	GCAGCCATGG	GAGGACCTAG	AGAGCAGCCG	GGAGAAGCAG	AGGCAAGTGG	2340
AAGACCTGCT	GACAGCCGCC	TGCTCCAGCA	TTTTCCCTGG	TGCTGGCACC	AACCAGGAGC	2400
TGGCCCTGCA	CTGTCTGCAC	GAATCCAGAG	GAGACATCCT	GGAAACGCTG	AATAAGCTGC	2460
TGCTGAAGAA	GCCCCTGCGG	CCCCACAACC	ATCCGCTGGC	AACTTATCAC	TACACAGGCT	2520
CTGACCAGTG	GAAGATGGCC	GAGAGGAAGC	TGTTCAACAA	AGGCATTGCC	ATCTACAAGA	2580
AGGATTTCTT	CCTGGTGCAG	AAGCTGATCC	AGACCAAGAC	CGTGGCCCAG	TGCGTGGAGT	2640
TCTACTACAC	CTACAAGAAG	CAGGTGAAAA	TCGGCCGCAA	TGGGACTCTA	ACCTTTGGGG	2700 -
ATGTGGATAC	GAGCGATGAG	AAGTCGGCCC	AGGAAGAGGT	TGAAGTGGAT	ATTAAGACTT	2760
CCCAAAAGTT	CCCAAGGGTG	CCTCTTCCCA	GAAGAGAGTC	CCCAAGTGAA	GAGAGGCTGG	2820
AGCCCAAGAG	GGAGGTGAAG	GAGCCCAGGA	AGGAGGGGA	GGAGGAGGTG	CCAGAGATCC	2880
AAGAGAAGGA	GGAGCAGGAA	GAGGGGCGAG	AGCGCAGCAG	GCGGGCAGCG	GCAGTCAAAG	2940
CCACGCAGAC	ACTACAGGCC	AATGAGTCGG	CCAGTGACAT	CCTCATCCTC	CGGAGCCACG	3000
AGTCCAACGC	CCCTGGGTCT	GCCGGTGGCC	AGGCCTCGGA	GAAGCCAAGG	GAAGGGACAG	3060
GGAAGTCACG	AAGGGCACTA	CCTTTTTCAG	AAAAAAAA	AAAAAAACAA	AAAGCTT	3117

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3306 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGGCA	CGAGGTCAGT	TTCCTGTGGA	ACACAGAGGC	TGCCTGTCCC	ATTCAGACAA	60
CGACGGATAC	AGACCAGGCT	TGCTCTATAA	GGGATCCCAA	CAGTGGATTT	GTGTTTAATC	120
TTAATCCGCT	AAACAGTTCG	CAAGGATATA	ACGTCTCTGG	CATTGGGAAG	ATTTTTATGT	180
TTAATGTCTG	CGGCACAATG	CCTGTCTGTG	GGACCATCCT	GGGAAAACCT	GCTTCTGGCT	240
GTGAGGCAGA	AACCCAAACT	GAAGAGCTCA	AGAATTGGAA	GCCAGCAAGG	CCAGTCGGAA	300
			GCTTCATCAC			360
TCTCTGCCAA	AGGTACCGCT	GATGCTTTTA	TCGTCCGCTT	TGTTTGCAAT	GATGATGTTT	420
ACTCAGGGCC	CCTCAAATTC	CTGCATCAAG	ATATCGACTC	TGGGCAAGGG	ATCCGAAACA	480
CTTACTTTGA	GTTTGAAACC	GCGTTGGCCT	GTGTTCCTTC	TCCAGTGGAC	TGCCAAGTCA	540
CCGACCTGGC	TGGAAATGAG	TACGACCTGA	CTGGCCTAAG	CACAGTCAGG	AAACCTTGGA	600
CGGCTGTTGA	CACCTCTGTC	GATGGGAGAA	AGAGGACTTT	CTATTTGAGC	GTTTGCAATC	660
			GCGCAGTGGG			720
GCAATAGCTG	GAATCTGGGT	GTGGTGCAGA	TGAGTCCCCA	AGCCGCGGCG	AATGGATCTT	780
TGAGCATCAT	GTATGTCAAC	GGTGACAAGT	GTGGGAACCA	GCGCTTCTCC	ACCAGGATCA	840
CGTTTGAGTG	TGCTCAGATA	TCGGGCTCAC	CAGCATTTCA	GCTTCAGGAT	GGTTGTGAGT	900
ACGTGTTTAT	CTGGAGAACT	GTGGAAGCCT	GTCCCGTTGT	CAGAGTGGAA	GGGGACAACT	960
GTGAGGTGAA	AGACCCAAGG	CATGGCAACT	TGTATGACCT	GAAGCCCCTG	GGCCTCAACG	1020
ACACCATCGT	GAGCGCTGGC	GAATACACTT	ATTACTTCCG	GGTCTGTGGG	AAGCTTTCCT	1080
CAGACGTCTG	CCCCACAAGT	GACAAGTCCA	AGGTGGTCTC	CTCATGTCAG	GAAAAGCGGG	1140
AACCGCAGGG	ATTTCACAAA	GTGGCAGGTC	TCCTGACTCA	GAAGCTAACT	TATGAAAATG	1200
GCTTGTTAAA	AATGAACTTC	ACGGGGGGG	ACACTTGCCA	TAAGGTTTAT	CAGCGCTCCA	1260
CAGCCATCTT	CTTCTACTGT	GACCGCGGCA	CCCAGCGGCC	AGTATTTCTA	AAGGAGACTT	1320
CAGATTGTTC	CTACTIGTTI	GAGTGGCGAA	CGCAGTATGC	CTGCCCACCT	TTCGATCTGA	1380
CTGAATGTTC	ATTCAAAGAT	GGGGCTGGCA	ACTCCTTCGA	CCTCTCGTCC	CTGTCAAGGT	1440
ACAGTGACAA	CTGGGAAGCC	ATCACTGGGA	CGGGGGACCC	GGAGCACTAC	CTCATCAATG	1500
TCTGCAAGTC	TCTGGCCCCG	CAGGCTGGCA	CTGAGCCGTG	CCCTCCAGAA	GCAGCCGCGT	1560
GTCTGCTGGG	TGGCTCCAAG	CCCGTGAACC	TCGGCAGGGT	AAGGGACGGA	CCTCAGTGGA	1620
GAGATGGCAT	AATTGTCCTG	AAATACGTTG	ATGGCGACTT	ATGTCCAGAT	GGGATTCGGA	1680
AAAAGTCAAC	CACCATCCGA	TTCACCTGCA	GCGAGAGCCA	AGTGAACTCC	AGGCCCATGT	1740
TCATCAGCGC	CGTGGAGGAC	TGTGAGTACA	CCTTTGCCTG	GCCCACAGCC	ACAGCCTGTC	1800
			AGGTCACCAA			1860
TTGATCTGAG	CTCCTTAAGT	GGCAGGGCGG	GATTCACAGC	TGCTTACAGC	GAGAAGGGGT	1920
TGGTTTACAT	GAGCATCTGT	GGGGAGAATG	AAAACTGCCC	TCCTGGCGTG	GGGGCCTGCT	1980
			CCAACAAGAG			2040
TCCTGCAGCT	GGTGTACAAG	GATGGGTCCC	CTTGTCCCTC	CAAATCCGGC	CTGAGCTATA	2100
			AGGCCGGGCC			2160
			TCTTCTCCTG			2220
			GAAGCTCTAT			2280
TTCATCGCAC	TGGTGGTTAT	GAGGCTTATG	ATGAGAGTGA	GGATGATGCC	TCCGATACCA	2340
			CACTAAATCC			2400
			TTGATGGTCC			2460
TAGCAGGACC	ACCAATACTC	AATCCAATAG	CAAATGAGAT	TTACTTGAAT	TTTGAAAGCA	2520

GTACTCCTTG CCAGGAATTC AGTTGTAAAT AAAATTGAAC CTGCTCAACA GCTGAGGGAG 2580 ACTAGAAATG ATGGGTCCAT ATCCTGGTGC ATTGTCATAC AATTCAAACA ATGGTGCAGC 2640 TACCAGCTIG TAATTITTAG GGACTGCAAA CAAGGCTTTT TCTTGAAGCT GAACCAGAAA CAACTICITA TGTTCCTTAG GCTTTGTAAT ATGTGCAGGA ATATATGGAT ACTGAGGAGG 2760 TTCAAAATTT GGTCTCCACC AGTTACCAAT GCAATCGTCA ATGACCCAGT CTTGCAAAAC 2820 TCCATCCTGA CGACCCAGTA TCTCTGTCAT TAAGCGTTTT AGTCCTTCAA CTTCATCTTC 2880 TCCTGGGTTA AGTTCACCAC CAGGTAGTTT GAAGAAAGTT GTTCCCAGCT GCAGCAGTAA CACATGGGGT AGCCGGTGCT CATGTACAAT CAGAACCCCT TCTACAGTCC TCCTCATTCC 3000 AATTTTATCA AATTCTTCCC TCATGCGCTG AAATCTGGCT GCAACAGAGC TGTCCTTCTC 3060 GTAGAGGGGC TCTTTTGTAC CAAAAGTATA ATTGGTAAGA GGGTACAGGT TGATGGTGCG 3120 CTCCAGGGTG AGGGGCTTCG TCTGCTGGAT GTACTTGTTG CCGAACTGAG TGACCCCCCG 3180 GGGCCAGCCG GTCTGCGAGC GATTGGGCGG TACCACAGAC ATGCTGGCGA GCTCCGGCGC 3240 TGACGGCGAG CAGAAAGTGG CAGGCAGGGT AGACTITCCC CGTGCGGGAA GCCTCGTGCC 3300 GAATTC 3306

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4218 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO:8:

GAATTCGGCA CGAGAATGGA TCAACCTCAA CAACACGTTA AAGCTAGACG AAAGAAGTAA TÁCACAGTGT ATGAGTCTCA CATGAAATAC CCGGATGTAA ATCCAAAGAA ACAGGAAGCA 120 GATTGGTGGT TGCCAGGGAC AAGGGCGGTG GGAGGAGAAA ATGGAGAGTA ACGGGACTTT ACTITIGGAG TGATGAGAAT GTITIGGAGC TAGATAGAAG TGGTGGTTGT ACACCATIGT 240 GGATGTACTA CCACTTAATT GTTCACTTAA AAAGTTAATT TATGTGAATT GCATCTTAAT 300 TAAAAACAAG GATAACATTC CAACTCCTGG ACATTATCCT TCCTTTCCAT TTGATGTCAG 360 GCCCGTGTTA GAATTCTCAT CCGGTTTGGT CACTGCACTT AAGATGTGGA GAAATTAGGA 420 CGCACAGTTA AGAGGAAGGA TAACACTGAT TAAGGTAGTG CITTTCTAGG TITCCCCTAA 480 ACAATTTAAC AGATGGATAG TGGCACCACT TACGAGATGG AAAAACCAGC GGAAGGAAGA 540 TITGGGGGAG AAGTTAAGTT TGTCTTGGGC CTGTGTTTTG CAACCTGAGT GTAAAAGACA 600 TATGTTAAGT CTTCAGTGGC GAAACACTAA AACTAGAAAT GGATCAGAAT TTTATCTTTG 660 GATGTGACTT CTCAAGGATG GTCTTGTCAC TTCAGTGCCT GGTCAAATGA CAAGATGGGC 720 AATCTTTTCC TGAAGGTCCA AGCACCTGAA CGTGGCAGGG TGACCCGATT CCGATTTGCT 780 TAGAACAATC CTAGTTCATG CCTATTGTCC CTCATGTAAT TAATATCACT CTCAAAATGT 840 CTCATTITGT GCAATAAATT CTGCAACGTG ATGGCGCGAC TCTCGCGGCC CGAGCGGCCG GACCTTGTCT TCGAGGAAGA GGACCTCCCC TATGAGGAGG AAATCATGCG GAACCAATTC 960 TCTGTCAAAT GCTGGCTTCA CTACATCGAG TTCAAACAGG GCGCCCCGAA GCCCAGGCTC 1020 AATCAGCTAT ACGAGCGGGC ACTCAAGCTG CTGCCCTGCA GCTACAAACT CTGGTACCGA 1080 TACCTGAAGG CGCGTCGGGC ACAGGTGAAG CATCGCTGTG TGACCGACCC TGCCTATGAA 1140 GATGTCAACA ACTGTCATGA GAGGGCCTTT GTGTTCATGC ACAAGATGCC TCGTCTGTGG 1200 CTAGATTACT GCCAGTTCCT CATGGACCAG GGGGGGGGTCA CACACACCG CCGCACCTTC 1260 GACCGTGCCC TCCGGGCACT GCCCATCACG CAGCACTCTC GAATTTGGCC CCTGTATCTG 1320 CGCTTCCTGC GCTCACACCC ACTGCCTGAG ACAGCTGTGC GAGGCTATCG GCGCTTCCTC 1380 1440 GATGAGGCCG CCCAGCGCCT GGCCACCGTG GTGAACGACG AGCGTTTCGT GTCTAAGGCC GGCAAGTCCA ACTACCAGCT GTGGCACGAG CTGTGCGACC TCATCTCCCA GAATCCGGAC 1560 AAGGTACAGT CCCTCAATGT GGACGCCATC ATCCGCGGGG GCCTCACCCG CTTCACCGAC 1620 CAGCTGGGCA AGCTCTGGTG TTCTCTCGCC GACTACTACA TCCGCAGCGG CCATTTCGAG 1680 AAGGCTCGGG ACGTGTACGA GGAGGCCATC CGGACAGTGA TGACCGTGCG GGACTTCACA 1740 CAGGTGTTTG ACAGCTACGC CCAGTTCGAG GAGAGCATGA TCGCTGCAAA GATGGAGACC GCCTCGGAGC TGGGGCGCGA GGAGGAGGAT GATGTGGACC TGGAGCTGCG CCTGGCCCGC 1860 TTCGAGCAGC TCATCAGCCG GCGGCCCCTG CTCCTCAACA GCGTCTTGCT GCGCCAAAAC 1920 CCACACCACG TGCACGAGTG GCACAAGCGT GTCGCCCTGC ACCAGGGCCG CCCCGGGAG 1980 ATCATCAACA CCTACACAGA GGCTGTGCAG ACGGTGGACC CCTTCAAGGC CACAGGCAAG 2040 CCCCACACTC TGTGGGTGGC GTTTGCCAAG TTTTATGAGG ACAACGGACA GCTGGACGAT 2100 GCCCGTGTCA TCCTGGAGAA GGCCACCAAG GTGAACTTCA AGCAGGTGGA TGACCTGGCA 2160 AGCGTGTGGT GTCAGTGCGG AGAGCTGGAG CTCCGACACG AGAACTACGA TGAGGCCTTG 2220 CGGCTGCTGC GAAAGGCCAC GGCGCTGCCT GCCCGCCGGG CCGAGTACTT TGATGGTTCA 2280 GAGCCCGTGC AGAACCGCGT GTACAAGTCA CTGAAGGTCT GGTCCATGCT CGCCGACCTG 2340 GAGGAGAGCC TCGGCACCTT CCAGTCCACC AAGGCCGTGT ACGACCGCAT CCTGGACCTG 2400 CGTATCGCAA CACCCCAGAT CGTCATCAAC TATGCCATGT TCCTGGAGGA GCACAAGTAC 2460 TTCGAGGAGA GCTTCAAGGC GTACGAGCGC GGCATCTCGC TGTTCAAGTG GCCCAACGTG 2520 TCCGACATCT GGAGCACCTA CCTGACCAAA TTCATTGCCC GCTATGGGGG CCGCAAGCTG 2580 GAGCGGGCAC GGGACCTGTT TGAACAGGCT CTGGACGGCT GCCCCCCAAA ATATGCCAAG 2640 ACCTTGTACC TGCTGTACGC ACAGCTGGAG GAGGAGTGGG GCCTGGCCCG GCATGCCATG 2700 GCCGTGTACG AGCGTGCCAC CAGGGCCGTG GAGCCCGCCC AGCAGTATGA CATGTTCAAC 2760

```
ATCTACATCA AGCGGGCGGC CGAGATCTAT GGGGTCACCC ACACCCGCGG CATCTACCAG
                                                                     2820
AAGGCCATTG AGGTGCTGTC GGACGAGCAC GCGCGTGAGA TGTGCCTGCG GTTTGCAGAC
                                                                     2880
ATGGAGTGCA AGCTCGGGGA GATTGACCGC GCCCGGGCCA TCTACAGCTT CTGCTCCCAG
                                                                     2940
-ATCTGTGACC CCCGGACGAC CGGCGCGTTC TGGCAGACGT GGAAGGACTT TGAGGTCCGG
                                                                     3000
CATGGCAATG AGGACACCAT CAAGGAAATG CTGCGTATCC GGCGCAGCGT GCAGGCCACG
                                                                     3060
TACAACACGC AGGTCAACTT CATGGCCTCG CAGATGCTCA AGGTCTCGGG CAGTGCCACG
                                                                     3120
GGCACCGTGT CTGACCTGGC CCCTGGGCAG AGTGGCATGG ACGACATGAA GCTGCTGGAA
                                                                     3180
CAGCGGGCAG AGCAGCTGGC GGCTGAGGCG GAGCGTGACC AGCCCTTGCG CGCCCAGAGC
                                                                     3240
AAGATCCTGT TCGTGAGGAG TGACGCCTCC CGGGAGGAGC TGGCAGAGCT GGCACAGCAG
                                                                     3300
GTCAACCCCG AGGAGATCCA GCTGGGCGAG GACGAGGACG AGGACGAGAT GGACCTGGAG
                                                                     3360
CCCAACGAGG.TTCGGCTGGA GCAGCAGAGC GTGCCAGCCG CAGTGTTTGG GAGCCTGAAG
                                                                     3420
GAAGACTGAC CCGTCCCCTC GTGCCGAATT CGGCACGAGC AAGACCAGCC CCCAGATCAT
                                                                     3480
TTGCCTCAAA GGTTTTCCCT CGAAGTCACA AATGTTTCAA GGAATCTCAA ATTTTACAAA
                                                                     3540
GTTTGAAGTG TGGGCATTGG TGGCCTGTGG CTGTGTCCTC TCTCTGTAGC TGTTTTCTCC
                                                                     3600
CTACATCCCT GAAAGGAAGT TGAGCCTGCT CCTCCATCCG CAGACCTCCC TTTCCAGCGC
                                                                     3660
CCAGGGCATG GGGTGCTGTG AGGGCAGCAT GCTAGGTGTG ACCGTGCTCC TGGCCTCCAG
                                                                     3720
GCCCGTGTCC CTCTGTCCTC TAGCCCACTA AGGCCCTGGC CCATTTGTGC TAAACAGGCA
                                                                     3780
GTCGGACCTA GAAAGAGCAG ACAATCTCTC TGGGTCACCA GTCTGGCTAG GAGCTGGTCT
                                                                     3840
CCTGACTGGG ATCCAGGCCT TCTCCCCTGC CCATGTGAAT TCCCAGGGGC AGAGCCTGAA
                                                                     3900
ATGTTGAACA CAGCACTGGC CAAAGAGATG TCACCGTGGG AACCGAGGCT CTCTTCTCCT
                                                                     3960
CCTGCCTGCT TTCGTGGGTT CAGAGTAGCT GAGGCTTGTC TGAGAGGAGT TGGAGTGCTG
                                                                     4020
GTTTTCACCC TGGTTGGTGT GCTTTGCTTT GAGGGCACTT AGAAAGCCCA GCCCAGCCCT
                                                                     4080
TGCTCCTGCC CTGCACACAG CGGAGCGACT TTTCTAGGTA TGCTCTTGAT TTCTGCAGAA
                                                                     4140
GCAGCAGGTG GCATGGAGCC AAGAGGAAGT GTGACTGAAA CTGTCCACTC ATAGCCCGGC
                                                                     4200
TGCCGTATTG AGAGGGCT
                                                                     4218
```

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1187 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

```
GAGCTCGCGC GCCTGCAGGT CGACACTAGT GGATCCAAAG AATTCGGCAC GAGGGAAACT
CAACGGTGTA CGAGTGGAGG ACAGGGACAG AGCCCTCTGT GGTGGAACGA CCCCACCTCG
                                                                      120
AGGAGCTICC TGAGCAGGTG GCAGAAGATG CGATTGACTG GGGCGACTTT GGGGTAGAGG
                                                                     180
CAGTGTCTGA GGGGACTGAC TCTGGCATCT CTGCCGAGGC TGCTGGAATC GACTGGGGCA
                                                                      246
TCTTCCCGGA ATCAGATTCA AAGGATCCTG GAGGTGATGG GATAGACTGG GGAGACGATG
CTGTTGCTTT GCAGATCACA GTGCTGGAAG CAGGAACCCA GGCTCCAGAA GGTGTTGCCA
                                                                     360
GGGGCCCAGA TGCCCTGACA CTGCTTGAAT ACACTGAGAC CCGGAATCAG TTCCTTGATG
AGCTCATGGA GCTTGAGATC TTCTTAGCCC AGAGAGCAGT GGAGTTGAGT GAGGAGGCAG
                                                                     480
ATGTCCTGTC TGTGAGCCAG TTCCAGCTGG CTCCAGCCAT CCTGCAGGGC CAGACCAAAG
                                                                     540
AGAAGATGGT TACCATGGTG TCAGTGCTGG AGGATCTGAT TGGCAAGCTT ACCAGTCTTC
AGCTGCAACA CCTGTTTATG ATCCTGGCCT CACCAAGGTA TGTGGACCGA GTGACTGAAT
                                                                     660
TCCTCCAGCA AAAGCTGAAG CAGTCCCAGC TGCTGGCTTT GAAGAAAGAG CTGATGGTGC
                                                                     720
AGAAGCAGCA GGAGGCACTT GAGGAGCAGG CGGCTCTGGA GCCTAAGCTG GACCTGCTAC
TGGAGAAGAC CAAGGAGCTG CAGAAGCTGA TTGAAGCTGA CATCTCCAAG AGGTACAGCG
                                                                     840
GGCGCCCTGT GAACCTGATG GGAACCTCTC TGTGACACCC TCCGTGTTCT TGCCTGCCCA
                                                                     900
TCTTCTCCGC TTTTGGGATG AAGATGATAG CCAGGGCTGT TGTTTTGGGG CCCTTCAAGG
                                                                     960
CAAAAGACCA GGCTGACTGG AAGATGGAAA GCCACAGGAA GGAAGCGGCA CCTGATGGTG
                                                                    1020
ATCTTGGCAC TCTCCATGTT CTCTACAAGA AGCTGTGGTG ATTGGCCCTG TGGTCTATCA
                                                                    1080
GGCGAAAACC ACAGATTCTC CTTCTAGTTA GTATAGCGCA AAAAGCTTCT CGAGAGTACT
                                                                    1140
TCTAGAGCGG CCGCGGGCCC ATCGATTTTC CACCCGGGTG GGGTACC
                                                                    1187
```

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3306 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCTCACTAA AGGGAACAAA AGCTGGAGCT CGCGCCCTG CAGGTCGACA CTAGTGGATC GAAAGTTCGT TACGCCAAGC TCGAAATTAA CTCTGGGCTG ACCCATAAAC ATTTGTCTGA

60

20

```
TCTAGGATAT AGTTGCGTTT CTTGCGGGCA GCAATCTGGA TGAGGCGGTT GAGGCACTGG
GTGGCCTGCT GGATCAGGAC ATCCCAGCGG CCAGCATAGT TCCGCTGCCG GCGTAGGCCC
                                                                      240
ATCACCCGCA TCTTATCCAT GATGGCATTG GTACCCAGGA TGTTGTACTT CTTGGAAGGG
TTGGAGGCTG CATGTTTGAT GGCCCATGTG GTCTTGCCAG CAGCAGGCAG GCCCACCATC
                                                                      360
ATCAGAATCT CACATTCTGC CTTGCTCTTT GGTCCAACGG TGCCCCGGAT ACGCTCACTA
                                                                      420
AGGGGAAGGT GCTGGATGAA GGTAAACCCC GGGAGGACAG AACAGTAGGG CTCTGCTCTC.
                                                                      480
TGTCCGAAGT TGAACTCCAC TGCGCAATTC TTCACCAGGA CATGAGGATA GAGGGCCTGA
                                                                      540
CCCCCCAAGG CTTCCTTCTG GATTCGGAAA GCAATGCCCA TCCACTTTCC ATTCTTGGTA
                                                                      600
AAAGACAGTT CCACGTCATT TCCACATTCA AAATCCGCAA AGCAGCCAAT CACCGGAGAG
                                                                      660
CTCTGCGGTG CTAGGAGAGC GGCTGGGCCC GCAGACTGGG GGGAAAGCTC CGCAGCCGCA
                                                                      720
GTGGGCCCCA GGATCAGGCC CCGCGTGGCC TGGAGAAGCC CAGTCTGGGC TGGAGCGGGA
                                                                      780
GCTGGACAGT GTGGCCTTGC GTTCGCCCCC GGGAGCGCTG CGAGTGTCGC GGCCTCGGGT
GGATTTGCTG AGCACCAATA CCTCACGGTT GCCAACCTGG GGTTTTAGCT CCCTTGGTTT
                                                                      900
TAATCCCCTA GGGGCGGGTG GGGGCACGGG AGGAAGGATG GGCCAGCTGG GTGCAATCCT
                                                                     960
GCTGTAAGCC AGCCATTCCT TGATTTCTTA GAATTAACTA AACGGTCGCG CCGGAGGCCG
                                                                     1020
CGGGGGCCGG AGCGGAGCAG CCGCGGCTGA GGTTCCCGAG TCGGCCGCTC GGGGCTGCGC
                                                                    1080
TCCGCCGCCG GGACCCCGGC CTCTGGCCGC GCCGGCTCCG GCCTCCGGGG GGGCCGGGGC
                                                                     1140
CGCCGGGACA TGGTGCCAGT CGCACCCCTT CCCCGCCGCC GCTGAGCTCG CCGGCCGCGC
                                                                    1200
CCGGGCTGGG ACGTCCGAGC GGGAAGATGT TTTCCGCCCT GAAGAAGCTG GTGGGGTCGG
                                                                     1260
ACCAGGCCCC GGGCCGGGAC AAGAACATCC CCGCCGGGCT GCAGTCCATG AACCAGGCGT
                                                                    1320
TGCAGAGGCG CTTCGCCAAG GGGGTGCAGT ACAACATGAA GATAGTGATC CGGGGAGACA
                                                                     1380
GGAACACGGG-CAAGACAGCG CTGTGGCACC GCCTGCAGGG CCGGCCGTTC GTGGAGGAGT
                                                                     1440
ACATCCCCAC ACAGGAGATC CAGGTCACCA GCATCCACTG GAGCTACAAG ACCACGGATG
                                                                     1500
ACATCGTGAA GGTTGAAGTC TGGGATGTAG TAGACAAAGG AAAATGCAAA AAGCGAGGCG
                                                                     1560
ACGGCTTAAA GATGGAGAAC GACCCCCAGG AGNCGGAGTC TGAAATGGCC CTGGATGCTG
                                                                     1620
AGTTCCTGGA CGTGTACAAG AACTGCAACG GGGTGGTCAT GATGTTCGAC ATTACCAAGC
                                                                     1680
AGTGGACCTT CAATTACATT CTCCGGGAGC TTCCAAAAGT GCCCACCCAC GTGCCAGTGT
                                                                    1740
GCGTGCTGGG GAACTACCGG GACATGGGCG AGCACCGAGT CATCCTGCCG GACGACGTGC
                                                                     1800
GTGACTTCAT CGACAACCTG GACAGACCTC CAGGTTCCTC CTACTTCCGC TATGCTGAGT
                                                                    1860
CTTCCATGAA GAACAGCTTC GGCCTAAAGT ACCTTCATAA GTTCTTCAAT ATCCCATTTT
                                                                    1920
TGCAGCTTCA GAGGGAGACG CTGTTGCGGC AGCTGGAGAC GAACCAGCTG GACATGGACG
                                                                     1980
CCACGCTGGA GGAGCTGTCG GTGCAGCAGG AGACGGAGGA CCAGAACTAC GGCATCTTCC
                                                                    2040
TGGAGATGAT GGAGGCTCGC AGCCGTGGCC ATGCGTCCCC ACTGGCGGCC AACGGGCAGA
GCCCATCCCC GGGCTCCCAG TCACCAGTCC TGCCTGCACC CGCTGTGTCC ACGGGGAGCT
                                                                    2160
CCAGCCCGG CACACCCCAG CCCGCCCCAC AGCTGCCCCT CAATGCTGCC CCACCATCCT
                                                                    2220
CTGTGCCCCC TGTACCACCC TCAGAGGCCC TGCCCCCACC TGCGTGCCCC TCAGCCCCCG
                                                                    2280
CCCCACGGCG CAGCATCATC TCTAGGCTGT TTGGGACGTC ACCTGCCACC GAGGCAGCCC
                                                                    2340
CTCCACCTCC AGAGCCAGTC CCGGCCGCAC AGGGCCCAGC AACGGTCCAG AGTGTGGAGG
                                                                    2400
ACTITETICC TEACEACCEC CIEGACCECA GCTICCIEGA AGACACACC CCCECCAGEG
                                                                    2460
ACGAGAAGAA GGTGGGGGCC AAGGCTGCCC AGCAGGACAG TGACAGTGAT GGGGAGGCCC
                                                                    2520
TGGGCGGCAA CCCGATGGTG GCAGGGTTCC AGGACGATGT GGACCTCGAA GACCAGCCAC
                                                                    2580
GTGGGAGTCC CCCGCTGCCT GCAGGCCCCG TCCCCAGTCA AGACATCACT CTTTCGAGTG
                                                                    2640
AGGAGGAAGC AGAAGTGGCA GCTCCCACAA AAGGCCCTGC CCCAGCTCCC CAGCAGTGCT
CAGAGCCAGA GACCAAGTGG TCCTCCATAC CAGCTTCGAA GCCACGGAGG GGGACAGCTC
                                                                    2760
CCACGAGGAC CGCAGCACCC CCCTGGCCAG GCGGTGTCTC TGTTCGCACA GGTCCGGAGA
                                                                    2820
AGCGCAGCAG CACCAGGCCC CCTGCTGAGA TGGAGCCGGG GAAGGGTGAG CAGGCCTCCT
CGTCGGAGAG TGACCCCGAG GGACCCATTG CTGCACAAAT GCTGTCCTTC GTCATGGATG
                                                                    2940
ACCCCGACTT TGAGAGCGAG GGATCAGACA CACAGCGCAG GGCGGATGAC TTTCCCGTGC
                                                                    3000
GAGATGACCC CTCCGATGTG ACTGACGAGG ATGAGGGCCC TGCCGAGCCG CCCCCACCCC
                                                                    3060
CCAAGCTCCC TCTCCCCGCC TTCAGACTGA AGAATGACTC GGACCTCTTC GGGCTGGGGC
                                                                    3120
TGGAGGAGGC CGGACCCAAG GAGAGCAGTG AGGAAGGTAA GGAGGGCAAA ACCCCCTCTA
                                                                    3180
AGGAGAAGAA AAAAAAAAA AAAAGCTTCT CGAGAGTACT TCTAGAGCGG CCGCGGGCCC
                                                                    3240
ATCGATTITC CACCCGGGTG GGGTACCAGG TAAGTGTACC CAATTCGCCC TATAGTGAGT
                                                                    3300
CGTATT
                                                                    3306
```

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGCGGGGCCA GAGTGGGCTG

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

20

(C) STRANDEDNESS: single

GGATTGCTAG TCTCACAGAC

(b) Topologi: Timear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:			
GCAGTCCTGG CCTGCGGATG	•	• .	20
(2) INFORMATION FOR SEQ ID NO:13:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		÷ •	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:			
GTCGACAGGA GAATTGGTTC			20
(2) INFORMATION FOR SEQ ID NO:14:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		٠	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:			
GCCTGGGTTC GGTGCGGGAC			20
(2) INFORMATION FOR SEQ ID NO:15:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:			
TGGTCGGGTG TTTGTGAGTG			20
(2) INFORMATION FOR SEQ ID NO:16:	•	•	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:			
CCTCTTCCGT CTCCTCAGTG			20
(2) INFORMATION FOR SEQ ID NO:17:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:			

(2) INFORMATION FOR SEQ ID NOTIO:	•
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 20 base pairs	•
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	•
(XI) SEMBERGE DESCRIPTION. SEW ID NO. 18:	
TTAAGGGTGG CTGAAGGGAC	20
	•
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	·
• • • • • • • • • • • • • • • • • • • •	
	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
ACCTTCCCTC CCTGTCACAG	20
ACCITECTE CETETCACAG	20
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	· •
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	•
TGGTCGGGTG TTTGTGAGTG	20
(2). INCORNATION FOR CEO. 10 NO. 21	
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	•
(vi) CENTENCE RECORDED TON . OF A NO. 24	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
ACACCATTCC AGAAATTCAG	20
(2) INFORMATION FOR SEQ ID NO:22:	
	·
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Torocourt timear	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22	•
AAAGTOGAGG YOOGYGGGG	
AAACTGCAGG TGGCTGAGTC	20
(2) INFORMATION FOR SEQ ID NO:23:	
(E) THEOREMITON FOR SEN ID NO:23:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTCCTAATGT TTTCAGGGAG	20
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID No:24:	
AÁAACCTATG GTTACAATTC	20
(2) INFORMATION FOR SEQ ID NO:25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
TCCTAGACAT GGTTCAAGTG	20
(2) INFORMATION FOR SEQ ID NO:26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
GATATAATTA GITCTCCATC	20
(2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
ATGCCTGTTC CAGGCTGCAC	20
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠.
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GGACGGCGAC CTCCACCCAC	20
(2) INFORMATION FOR SEQ ID NO:29:	

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GGGCTCCTCC GACGCCTGAG	20
	(2) INFORMATION FOR SEQ ID NO:30:	
-	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	AGTCTAGCCC TGGCCTTGAC	20
	(2) INFORMATION FOR SEQ ID NO:31:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	GTCACTGGGG ACTCCGGCAG	20
	(2) INFORMATION FOR SEQ ID NO:32:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	CAGCTITCCC IGGGCACATG	20
	(2) INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	CACAGCTGTC TCAAGCCCAG	20
	(2) INFORMATION FOR SEQ 1D NO:34:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	•	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

ACTGTTCCCC CTACATGATG		20
(2) INFORMATION FOR SEQ ID NO:35:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid		
(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:		
ATCATATCCT CTTGCTGGTC		20
(2) INFORMATION FOR SEQ ID NO:36:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:		
GTTCCCAGAG CTTGTCTGTG	•	20
(2) INFORMATION FOR SEQ ID NO:37:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:		
GTTTGGCAGA CTCATAGTTG	·	20
(2) INFORMATION FOR SEQ ID NO:38:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:		
TAGCAGGGAG CCATGACCTG	;	20
(2) INFORMATION FOR SEQ ID NO:39:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:		
CTTGGCGCCA GAAGCGAGAG	;	20
(2) INFORMATION FOR SEQ ID NO:40:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single		

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
сстстстст тететете	20
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	í
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
TCCCCGCTGA TTCCGCCAAG	. 20
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
CTTTTTGAAT TCGGCACGAG	. 20
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CCCCTGGTCC GCACCAGTTC	20
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
GAGAAGGGTC GGGGCGGCAG	20
(2) INFORMATION FOR SEQ ID NO:45:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
AAATCACATC GCGTCAACAC	20

(2) INFORMATION FOR SEQ ID NO:46:

(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:		
TAAGAGAGTC ATAGTTACTC		20
(2) INFORMATION FOR SEQ ID NO:47:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:		·
GCTCTAGAAG TACTCTCGAG		20
(2) INFORMATION FOR SEQ ID NO:48:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:		
ACTCTGGCCA TCAGGAGATC		20
(2) INFORMATION FOR SEQ ID NO:49:		~
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:		
CAGGCGTTGT AGATGTTCTG		. 20
(2) INFORMATION FOR SEQ ID NO:50:	•	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	•	
AGTGGCAGGC AGAAGTAATG		20
(2) INFORMATION FOR SEQ ID NO:51:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		

(XI) SEGRENCE DESCRIPTION: SEG ID NO:ST:	•
GGTTGGAGAA CTGGATGTAG	20
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
CTATTCAGAT GCAACGCCAG	20
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
CCATGGCACA CAGAGCAGAC	20
(2) INFORMATION FOR SEQ ID NO:54:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
GCTACCATGC AGAGACACAG	20
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
CAGGCTGACA AGAAAATCAG	20
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	· ·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GGCACGCATA GAGGAGAGAC	. 20
(2) INFORMATION FOR SEQ ID NO:57:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(S)		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:		
TGGGTGATGC CTTTGCTGAC		20
(2) INFORMATION FOR SEQ ID NO:58:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	•	
AAAACAAGAT CAAGGTGATG		20
(2) INFORMATION FOR SEQ ID NO:59:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	•	
TTGCCCACAT TGCTATGGTG		20
(2) INFORMATION FOR SEQ ID NO:60:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:		
GACCAAGATC AGAAGTAGAG		20
(2) INFORMATION FOR SEQ ID NO:61:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	•	•
CCCCTGGGCC AATGATGTTG		20
(2) INFORMATION FOR SEQ ID NO:62:	-	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

(E) INFORMATION FOR SENT ID NO. CO.	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
TGGTCTTGGT GACCAATGTG	20
(2) INFORMATION FOR SEQ ID NO:64:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
ACACCTCGGT GACCCCTGTG	20
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
TCTCCAAGTT CGGCACAGTG	20
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	· · · .
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
ACATGGGCTG CACTCACGAC	20
(2) INFORMATION FOR SEQ ID NO:67:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
GATCCTCTGA ACCTGCAGAG	20
(2) INFORMATION FOR SEQ ID NO:68:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	,

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GGAAATGAGG TGGGGCGATC	20
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
CTTTGCCTTG GACAAGGATG	20
(2) INFORMATION FOR SEQ ID NO:70:	-'
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:70:	
GCACCTGCCA TTGGGGGTAG	20
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
GGTGGAAGCC ATTGACGGTG	20
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
TGCGTCTCTC GTCGCTGCTG	20,
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
GCGGAAACTC TGTGGTGCTG	20
(2) INFORMATION FOR SEQ ID NO:74:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid (C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	•	
(b) Torology: (Thear	·	
	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:		
(71) 55551101 5550111 11011 555 15 11011 1101		
AGGATTGCCT TCCTCTACTG	20	
(2) INFORMATION FOR SEQ ID NO:75:	·	
	•	
(i) SEQUENCE CHARACTERISTICS:	•	
(A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single	•	
(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:		
(XI) SEGUENCE DESCRIPTION: SEG ID NO:75:		
TGTCTGTTTC ACCAGGGCAG	20	
Tailla Til Accadedad	20	
(2) INFORMATION FOR SEQ ID NO:76:	•	
, , , , , , , , , , , , , , , , , , ,		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid	•	
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
	•	
4.44		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:		
CCAGTGCCTC TATGCATGTC	20	
CCAGIGCCIC TATGCATGIC	20	
(2) INFORMATION FOR SEQ ID NO:77:		
(E) INIONIMITOR TOR SEW ID ROTTE.		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
	•	
	• .	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:		
AGGAAGCCCA CGCACACGAC	20	
(2) INFORMATION FOR CEO 10 NO70-		
(2) INFORMATION FOR SEQ ID NO:78:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear	•	
•	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:		
CCCTTTGTTC CCTGATCTTC	20	
(3) INFORMATION TOD OCC. 10 110 TO		
(2) INFORMATION FOR SEQ 1D NO:79:		
(i) SECUENCE CHADACTERISTICS.		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TODOLOGY, Linear	-	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

CGCTCGGGAT CCAGGTCATC	20
(2) INFORMATION FOR SEQ ID NO:80:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
TCGAGGTTCA GAGCGTAGTG	20
(2) INFORMATION FOR SEQ ID NO:81:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
TCTTGGATCT CTGGCACCTC	20
(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
CCATCAGAGT GAAGGAGGAG	20
(2) INFORMATION FOR SEQ ID NO:83:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
CCATCTTCCA CTGGTCAGAG	20
(2) INFORMATION FOR SEQ ID NO:84:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
CTCCTTCTCT TGGATCTCTG	20
(2) INFORMATION FOR SEQ ID NO:85:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
TTACTTCAGC ACTGTTAGTC	20
(2) INFORMATION FOR SEQ ID NO:86:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
AGGGAGGTAG CTCAAAGCTC	20
(2) INFORMATION FOR SEQ ID NO:87:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
TGGGTCCACA GTTCGCACAG	20
(2) INFORMATION FOR SEQ ID NO:88:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
CAACTCTGTG ATGGCTCCAG	20
(2) INFORMATION FOR SEQ ID NO:89:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
AGCAGGGTTC TGTTCAAGAC	20
(2) INFORMATION FOR SEQ ID NO:90:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
CCATTGGGTG CTAGTCTCTC	20

(2) INFORMATION FOR SEQ ID NO:91:		•	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single			
(D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:		•	
CAGCCATGCT GTCCCAGCAG			20
(2) INFORMATION FOR SEQ 1D NO:92:			
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:			
CTGGACCTGA GGTAGCGCTG		•	20
(2) INFORMATION FOR SEQ ID NO:93:	-		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		·	
(xi) SEQUENCE DESCRIPTION: SEQ ID. NO:93:			
ATAACCACCC TGAGGCACTG			20
(2) INFORMATION FOR SEQ ID NO:94:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:			
CCTGCAGGTC GACACTAGTG			20.
(2) INFORMATION FOR SEQ ID NO:95:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:			
AATTGGAATG AGGAGGACTG			20
(2) INFORMATION FOR SEQ ID NO:96:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:	
GCTCTAGAAG TACTCTCGAG	20
(2) INFORMATION FOR SEQ ID NO:97:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:	
ATTGTATGAC AATGCACCAG	20
(2) INFORMATION FOR SEQ ID NO:98:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠.
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
TCCACAGAGG GCTTCATCAC	20
(2) INFORMATION FOR SEQ ID NO:99:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:99:	
CCTGACTGGC CTAAGCACAG	20
(2) INFORMATION FOR SEQ ID NO:100:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
AAGCCTCATA ACCACCAGTG	20
(2) INFORMATION FOR SEQ ID NO:101:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
TGTCAACGGT GACAAGTGTG	20
(2) INFORMATION FOR SEQ ID NO:102:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	•	
TTGTACACCA GCTGCAGGTC		20
(2) INFORMATION FOR SEQ ID NO:103:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:		
GGGTGTGGTG CAGATGAGTC		20
(2) INFORMATION FOR SEQ ID NO:104:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:		
ATCACACTCT TATAGCTCAG		20
(2) INFORMATION FOR SEQ ID NO:105:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:		
GTGGGAAGCT TTCCTCAGAC	•	20
(2) INFORMATION FOR SEQ ID NO:106:	•	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:		
TGATGAACAT GGGCCTGGAG		20
(2) INFORMATION FOR SEQ ID NO:107:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nuclei acid (C) STRANDEDNESS: single		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	CATTGTGGAT GTACTACCAC	20
	(2) INFORMATION FOR SEQ ID NO:108:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	•
	TGTGTTTTGC AACCTGAGTG	20
	(2) INFORMATION FOR SEQ ID NO:109:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
	ATAGTGGCAC CACTTACGAG	20
٠	(2) INFORMATION FOR SEQ ID NO:110:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	٠.
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
	AATTCTGCAA CGTGATGGCG	20
	(2) INFORMATION FOR SEQ ID NO:111:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	CACAAGATGC CTCGTCTGTG	.20
	(2) INFORMATION FOR SEQ ID NO:112:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
	AATCCGGACA AGGTACAGTC	20
	(2) INFORMATION FOR SEQ ID NO:113:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

28

20

	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
	CACGAGTGG CACAAGCGTG	20
	(2) INFORMATION FOR SEQ ID NO:114:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
G	CAAGCGTGT GGTGTCAGTG	20
	(2) INFORMATION FOR SEQ ID NO:115:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	· ·
T	GTTTGAACA GGCTCTGGAC	20
	(2) INFORMATION FOR SEQ ID NO:116:	•
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	•
С	GGCATGGCA ATGAGGACAC	20
	(2) INFORMATION FOR SEQ ID NO:117:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
A	GGACGAGAT GGACCTCCAG	20
	(2) INFORMATION FOR SEQ ID NO:118:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	·
C	CCTCTGTCC TCTAGCCCAC	20

(2) INFORMATION FOR SEQ ID NO:119:

	(1) SEWDENCE CHARACTERISTICS:		
	(A) LENGTH: 20 base pairs	•	
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	,		
	4		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	•	
	707704000 40704070		
	TCTTGAGGGG ACTGACTCTG		20
	(2) INFORMATION FOR SEQ ID NO:120:		
	473 0701/01/07 01/15/07/07/07/07/07		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 20 base pairs		
	(B) TYPE: nucleic acid	•	
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	And Application and an area of the second		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:		
	7010701001 0001017070		
	TGAGTGAGGA GGCAGATGTC		20
	10. 111-1111		
	(2) INFORMATION FOR SEQ ID NO:121:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 20 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	1		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:		
	TGGCTTTGAA GAAAGAGCTG	•	20
	(2) INFORMATION FOR SEQ ID NO:122:		
	/:\ 050U5U55 0U4D4077D407400	•	
	(i) SEQUENCE CHARACTERISTICS:		•
	(A) LENGTH: 20 base pairs		
	(B) TYPE: nucleic acid	•	
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	•		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:		
	CC44440400 4000T040T0		
	GCAAAAGACC AGGCTGACTG		20
	/3\ !\ FARMATION COR DEG 10 10 40T	•	
	(2) INFORMATION FOR SEQ ID NO:123:		
	/ - CEOUTHOE CHARACTERIOTICS		
•	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 20 base pairs		
	(B) TYPE: nucleic acid	•	
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear	•	
	(wi) CEOUPHOE DECORIDATION, CO. ID NO. 427		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:		
	TGCAGCTCCT TGGTCTTCTC		
	I GCAGCICCI I IGGICIICIC		20
	(2) INFORMATION FOR SEQ ID NO:124:		
	(2) INFORMATION FOR SEW ID NOT124:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 20 base pairs	•	
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	1-,		

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO:124:		
	GATTCACAGT CCCAAGGCTC		20
	(2) INFORMATION FOR SEQ ID NO:125:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:		
	ATCTGGATGA GGCGGTTGAG		20
	(2) INFORMATION FOR SEG ID NO:126:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:		
	GGTCACTCTC CGACGAGGAG		20
	(2) INFORMATION FOR SEQ ID NO:127:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	•	
	GGATCCAAAG TTCGTCTCTG	:	20
•	(2) INFORMATION FOR SEQ ID NO:128:	·	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:		
	CGCTGTGTGT CTGATCCCTC		20
	(2) INFORMATION FOR SEQ ID NO:129:		•
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:		
	ATGAAGGTAA ACCCCGGGAG	•	20
	(2) INFORMATION FOR SEQ ID NO:130:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs		

20 .

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	. •
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
TGGTCTCTGG CTCTGAGCAC	20
(2) INFORMATION FOR SEQ ID NO:131:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:	
GCCTGGAGAA GCCCAGTCTG	20
(2) INFORMATION FOR SEQ ID NO:132:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
CACACTCTGG ACCGTTGCTG	20
(2) INFORMATION FOR SEQ ID NO:133:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
AAAGCTCCGC AGCCGCAGTG	20
(2) INFORMATION FOR SEQ ID NO:134:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	·
TCTTCCAGGA AGCTGCGGTC	20
(2) INFORMATION FOR SEQ ID NO:135:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

GATGGTGGGG CAGCATTGAG

(2) INFORMATION FOR SEQ ID NO:136:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
GTCACCAGTG GTGCCTGCAG	20
(2) INFORMATION FOR SEQ ID NO:137:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
ACCTCACGGT TGCCAACCTG	20
(2) INFORMATION FOR SEQ ID NO:138:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	
CGCAACAGCG TCTCCCTCTG	20
(2) INFORMATION FOR SEQ ID NO:139:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	•
AGTACCTTCA TAAGTTCTTC	20
(2) INFORMATION FOR SEQ ID NO:140:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
TCCCAGACTT CAACCTTCAC	20
(2) INFORMATION FOR SEQ ID NO:141:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
AAACATCTTC CCGGTCGGAC	20
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
GCTGAGCACC TTTACCTCAC	20
(2) INFORMATION FOR SEQ ID NO:143:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
GACGTCCGTC CGGGAAGATG	20
(2) INFORMATION FOR SEQ ID NO:144:	'
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
ACACAGGAGA TGCAGGTCAC	20
(2) INFORMATION FOR SEQ ID NO:145:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
GAGTCTTCCA TGAAGAACAG	20
(2) INFORMATION FOR SEQ ID NO:146:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
GCAGTGAGGA AGGTAAGGAG	20

(2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4047 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 (B) LOCATION: 378...1799

 - (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

GGATCCAAAG GACGCCCCCG CCGACAGGAG AATTGGTTCC CGGGCCCGCG GCGATGCCCC CCCGGTAGCT CGGGCCCGTG GTCGGGTGTT TGTGAGTGTT TCTATGTGGG AGAAGGAGGA GGAGGAGAA GAAGAAGCAA CGATTTGTCT TCTCGGCTGG TCTCCCCCCG GCTCTACATG TTCCCCGCAC TGAGGAGACG GAAGAGGAGC CGTAGCCGCC CCCCCTCCCG GCCCGGATTA TAGTCTCTCG CCACAGCGGC CTCGGCCTCC CCTTGGATTC AGACGCCGAT TCGCCCAGTG TTTGGGAAAT GGGAAGTAAT GACAGCTGGC ACCTGAACTA AGTACTTTTA TAGGCAACAC CATTCCAGAA ATTCAGG ATG AAT GGG GAT ATG CCC CAT GTC CCC ATT ACT Met Asn Gly Asp Met Pro His Val Pro Ile Thr 1 5 10												
ACT CTT GCG GGG A Thr Leu Ala Gly 1 15	ATT GCT AGT Ile Ala Ser	CTC ACA GAC Leu Thr Asp 20	Leu Leu Asn G	AG CTG CCT In Leu Pro	458							
CTT CCA TCT CCT I Leu Pro Ser Pro I 30	Leu Pro Ala				506							
GCA CGA ATA GCA (Ala Arg Ile Ala (45					554							
AAT TYG GTT TCA (Asn Leú Val Ser (60					602							
CAC ATA GAG TTG A					650							
ATA CCA GTC TTG			Arg Ser Pro A		698							
AGG GAG AAA AGC Arg Glu Lys Ser					746							
TCT CAG TAT AAA Ser Gln Tyr Lys 125					794							
TCC AAT TAT CAA Ser Asn Tyr Gln 140	CAA ACC ACT Gln Thr Thr 145	ATC TCA CAT Ile Ser His	AGC CCC TCC A Ser Pro Ser 9 150	AGC CGG TTT Ser Arg Phe 155	842							
GTG CCA CCA CAG Val Pro Pro Gln			Phe Met Pro		890							
AGC CCA GTG CCT Ser Pro Val Pro 175			Ser Pro Ala		938							
CCA TAT TCC CAT Pro Tyr Ser His 190					986							

GCA Ala	TCG Ser 205	GTA Val	TCA Ser	AGT Ser	Pro	ATT Ile 210	GTT Val	GCA Ala	GGT Gly	GGT Gly	TTG Leu 215	Arg	AAC Asn	ATA Ile	CA' Hi	•	034
GAT Asp 220	AAT Asn	AAA Lys	GTT Val	TCT Ser	GGT Gly 225	CCG Pro	TTG Leu	TCT Ser	GGC	AAT Asn 230	Ser	GCT	AAT Asn	CAT	CA Hi 23	S	1082
GCT Ala	GAT Asp	AAT Asn	ĊCT Pro	AGA Arg 240	CAT His	GGT Gly	TCA Ser	AGT Ser	GAG Glu 245	GAC	TAC Tyr	CTA	CAC His	ATG Met 250		_	1130
CAC His	AGG Arg	CTA Leu	AGT Ser 255	AGT Ser	GAC Asp	GAT Asp	GGA Gly	GAT Asp 260	Ser	TCA Ser	AC/	A ATO	AGG Arg 265	I W21	GC n Al		1178
GCA Ala	TCT Ser	TTT Phe 270	Pro	TTG Leu	AGA Arg	TCT Ser	CCA Pro 275	Glr	CCA Pro	GT/ Val	TGI Cy:	C TCC s Sec 280	C CC1 r Pro O	GCT Ala	r G(1226
AGT Ser	GAA Glu 285	ı Gly	ACT Thr	CCT Pro	AAA Lys	GGC Gly 290	Ser	AGA Arg	CC#	CCT Pro	T TT. o Le 29	u II	C CT/ e Lei	A CA	A TI	CT er	1274
CAC Glr 300	ı Şer	CT#	CCT Pro	TG1 Cys	TCA Ser 305	Ser	CCT	CG/	GA'	r GT Va 31	ו פר	o Pr	A GA o As	T AT P Il	e L	TG eu 15	1322
CT/ Let	A GAT	T TC	r CC/	4 GA/ 5 Gl: 32	u Arg	AA/	CA/	A AA	G AA s Ly 32	s Gl	G AA	G AA 's Ly	A AT 's Me	G AA t Ly 33	SL	TA .eu	1370
GG!	C AA y Ly	G GA s As	T GA P Gl 33	u Ly	A GAO	G CAI	S AG	T GA r Gl 34	u Ly	A GC s Al	G GC a A	CA A1 la Me	G TA et Ty 34	T AS	AT A	ATA Ile	1418
AT 11	T AG e Se	† τα r Se 35	r Pr	A TC o Se	C AA	G GA s As	С ТС р Se 35	r Th	T AA	A C1	T A	nr L	TA AC eu Ar 60	A CI	rt 1 eu S	ICT Ser	1466
CG	T GT g Va 36	ıl Ar	iG TC ig Se	T TC	A GA er As	C AT p Me 37	t As	C CA	ig C#	A G/ n G	lu A	AT A sp M 75	TG A	IT TO	CT (GGT Gly	1514
GT Va 38	ıl Gi	AA AA .u As	AT AC	C AA	T GT sn Va 38	l Se	A GA	A A/ .u As	AT G/ sn A:	sp I	TT C le P 90	CT T	TT A	AT G sn V	at	CAG Gln 395	1562
T/ Ty	AC CO	CA GO ro, G	SA CA	in Ti	CT TC nr Se 00	A AA	A AC	CA CO	ro I	TT A le T 05	CT C hr P	CA C	AA G iln A	sp i	TA le 10	AAC Asn	1610
C A	GC C	CA C	eu A	AT G sn A 15	CT GO	CT C	AA TI	ys L	TG T eu S 20	CG C	AG (CAA C	AA C Glu G 4	AA A iln 1 25	CA hr	GCA Ala	1658
T P	TC C he L	eu P	CA G ro A 30	CA A la A	AT C	AA G ln V	al P	CT G ro V 35	TT T	TA (AA (iln (Gln /	AAC A Asn 1 440	CT 1	CA Ser	GTT Val	1706
G A	la A	CA A	.AA C	AA C	CC C	ln T	CC A hr A 50	AT A	GT C Ser H	AC /	_ys	ACC Thr 455	TTG (Leu \	STG (/al (CAG Gln	CCT Pro	1754
G	iga A ily 1 60	CA C	GC A	TA C	ilu V	TC T al S 65	CA G	iCA (GAG (Glu I	.eu	CCC Pro 470	AAG Lys	GAC A	AAG Lys	ACC Thr	TAAGA	1804
1	AGG	TGGC TGGC	GG G'	CTC/	CTCC CATTI	GTI GTI	CTGC	CGCG CCTG CTGA	TGG:	TGTT AGAA GTGA	GCC GAT	TGTC	CATG CAGG CACA	AT G TG T CC T	CAC	TGGGCC CCATCC TGCCTC ATGCA GATGA	1984 T 2044

GGCTTTCCAC TTGAGTCTCC CTGGTGGAGC CCAGCTCCTG ACATACCTGG TAAAAGTTCT CAAGAGAAGA ACATGGAGGA GGAATGTGGA TAACAACCCT GGCTGCCTGT GTGTTCCAAG 2224 CTAGGAAGAT GTAATGTCCC CACAAACGGG GTAAATGGCT TGCCTGCGTC ACAGCTGTCT 2284 CAAGCCCAGG CCCTGGGCGC CAGCCCAAGC CCAAGGACTA GGTCCAGAGC CACACAGCGC 2344 CAGGCCACAT CCGCCTCACC TGGGACCCTT TGTGGGGTAC AGTCTCCGGC CCCACCCAGA 2404 CCTCCTGAAG GAGAGACCCC ATGGCAAGGA CTCAGCCACC TGCAGTTTCA TAAGCCCCCA 2464 GTGGGTTCCT AGGCATGAAG ACCACCGGTT AGAGGCTGAA CTGGCAGGAA CCTGTCTCCA 2524 GCCCCTTCTC ACCCCAGCCG GGCCCTGCCT CAGAGGCAGC ACCCAGGACG TGGCCATGAC 2584 CCGTGGACTC CACTCAATCC CTCTTCTCCA GGAGCCATGC AAAGTGTCAG CCAGCCAGGC 2644 CCCTGGAAGG CAGTCATCAC CTCTTAAGGC ATTGTGGGTG TCGGTCCTGC AACTGCCAGG 2704 TGCAGCACAC GACCCGTGTC CGGTGTTCGA TAGCAGGGAG CCATGACCTG GCAACGATTC 2764 CACGCTCAAA GGGGCACCCG GGGGGCCCTG GGTCGGGGCG GATCAGCTTT CCCTGGGCAC 2824 ATCTGCCTCA TTCCAGATCT CCAGGGCTCA TGTCTGTGAC AGGGAGGGAA GGCTCTGCCC TGGCCTTCCG TCAGCTCTGC CAGTGCAGGC TGGGCAGCCT GGGCTTTAGA GCTGGCTTCT 2944 GCCCACACTT TCTCCGTGAA AGGAAAACAA CTATGAGTCT GCCAAACGCA TCTCAGATGC 3004 GTTTTAAAAA ATTCTGGTCC CCGCTCTCTG TCCCATCATC CGCCTCGGGG ACTTCCTCTC 3064 TCCGTGGTTC TCACCCCATA CTCTGTCACT GCCACATTTT CACCTGGGCC TGGCCTTTGT 3124 CTCCACCTGA AACTCCTGAA AATCTTGAAA TGGATTTCTA GGTCACTGGG GACTCCGGCA 3184 GCACATTCGG CTTCAGAATA AAGGGCGCCC GCGGTCCCCC AGCACCTCCC CAAGCCACAC 3244 CCCTAGCTIC CCTCCCTATC CCTGCAGCCT GAGGGTCCCT TCAGCCACCC TTAAGTCCCC ACCTGGGCTC CTGCCCCGCC CCTGGCTAGC AGCGCCTTCT CCACCGGGGC CCCCTCTGCT 3364 3424 CACAGAGECE CETEACETEE CTGGGGATGA GGGGCCAGGE CATGACECTG AAAGTETAGE CCTGGCCTTG ACCTCCCAGG AGCGCCCTCC CCGCCCTCTC CCGGCCCCGG CCCCGTCCTC 3484 TGCTGCTGGC CTCTGGGTCG TGCCCCGCAG ACTGAGCTGC GCTTGGGGGT CCTGGCGGCC 3544 3604 TGGGCCGTCC CGCACCGAAC CCAGGCGGTC GGAGCCCGGC GGGAAGGCGC GAGGTCCTTC TGGGGGCTCC TCCGACGCCT GAGGGCGCTG CTTCCCCGCG GCCGCCCCGG GTTTCTGCGG 3664 AGCCGGGGCC TCCGCTCTCG GGTGACCCGG TGAGACCCCC GGGGAGGCCG CTGGGGAGGC 3724 GCGGGCTCTG CTCCCGGGTC CCAAACGCAC TGGCTGCCCC TCAGGAGGGA CGGCGACCTC 3784 CACCCACGGC GCTGGCGCCC GCACGGCCGC TCCTCCCGCT CCCGCAGCCT GGACGCCTCC 3844 CGAGGCCGCC CCGCCGGGCC CCACGCGCGG CCCCATCCGC AGGCCAGGAC TGCCTTCCCG 3904 GAGCTGGCGG CCCCCAGCCT GGAGGAGCCG GCCCCAGACG CCCTCCCAGC CCTCCCCAGC 3964 CCACTCTGGC CCCGCAGCCC CCGCCTGGTC CGAGTGCGGG TCTCTGGCCC CGGCCTTTCC 4024 4047 CGGGGAAGGA AAGCAAAAAG CTT.

(2) INFORMATION FOR SEQ ID NO:148:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 474 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Met Asn Gly Asp Met Pro His Val Pro Ile Thr Thr Leu Ala Gly Ile 10 Ala Ser Leu Thr Asp Leu Leu Asn Gln Leu Pro Leu Pro Ser Pro Leu 20 25 30 Pro Ala Thr Thr Lys Ser Leu Leu Phe Asn Ala Arg Ile Ala Glu 35 40 45 Glu Val Asn Cys Leu Leu Ala Cys Arg Asp Asp Asn Leu Val Ser Gln 55 60 Leu Val His Ser Leu Asn Gln Val Ser Thr Asp His Ile Glu Leu Lys . 70 Asp Asn Leu Gly Ser Asp Asp Pro Glu Gly Asp Ile Pro Val Leu Leu 85 90 95 Gln Ala Val Leu Ala Arg Ser Pro Asn Val Phe Arg Glu Lys Ser Met 100 105 110 Gln Asn Arg Tyr Val Gln Ser Gly Met Met Met Ser Gln Tyr Lys Leu 115 120 125 Ser Gln Asn Ser Met His Ser Ser Pro Ala Ser Ser Asn Tyr Gln Gln 130 135 140 Thr Thr Ile Ser His Ser Pro Ser Ser Arg Phe Val Pro Pro Gln Thr 145 150 155 160 Ser Ser Gly Asn Arg Phe Met Pro Gln Gln Asn Ser Pro Val Pro Ser 165 170 175 Pro Tyr Ala Pro Gln Ser Pro Ala Gly Tyr Met Pro Tyr Ser His Pro
180 185 190 Ser Ser Tyr Thr Thr His Pro Gln Met Gln Gln Ala Ser Val Ser Ser 200 205 195

Pro Ile Vai Ala Gly Gly Leu Arg Asn Ile His Asp Asn Lys Val Ser 220 210 215 Gly Pro Leu Ser Gly Asn Ser Ala Asn His His Ala Asp Asn Pro Arg 235 230 His Gly Ser Ser Glu Asp Tyr Leu His Met Val His Arg Leu Ser Ser 250 245 Asp Asp Gly Asp Ser Ser Thr Met Arg Asn Ala Ala Ser Phe Pro Leu 270 265 260 Arg Ser Pro Gln Pro Val Cys Ser Pro Ala Gly Ser Glu Gly Thr Pro 280 285 275 Lys Gly Ser Arg Pro Pro Leu Ile Leu Gln Ser Gln Ser Leu Pro Cys 300 290 295 Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu Leu Asp Ser Pro Glu 310 315 320 Arg Lys Gln Lys Lys Gln Lys Lys Met Lys Leu Gly Lys Asp Glu Lys 335 325 330 Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp Ile Ile Ser Ser Pro Ser 350 345 340 Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser Arg Val Arg Ser Ser 360 365 355 Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly Val Glu Asn Ser Asn 370 375 380 Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln Tyr Pro Gly Gln Thr 395 390 Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn Arg Pro Leu Asn Ala 405 410 Ala Gln Cys Leu Ser Gln Gln Glu Gln Thr Ala Phe Leu Pro Ala Asn 420 425 430 Gln Val Pro Val Leu Gln Gln Asn Thr Ser Val Ala Ala Lys Gln Pro 445 435 440 Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro Gly Thr Gly Ile Glu 455 460 450 Val Ser Ala Glu Leu Pro Lys Asp Lys Thr 470 465

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2998 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 26...799
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

AAGC	:TTT	TG A	ATTO	GGCA	C GA	GAT		ACA Thr								52
	AAA Lys															100
	TTT Phe															148
	GAC Asp															196
	AAA Lys														GAA Glu	244
GGG	CTC	CAA	ATG	GTA	AAG	AAA	AAC	TTT	GAG	TGG	GTT	GCA	GAG	AGA	GTA	292

Gly	Leu 7 5	Gln	Met	Val	Lys	Lys 80	Asn	Phe	Glu	Тгр	Val 85	Ala	Glu	Arg	Val	
			TTG Leu													340
GGC Gly	TCT Ser	ACT Thr	TCT Ser	GAT Asp 110	CTT Leu	GGT Gly	CAC His	TGT Cys	GAA Glu 115	AAA Lys	ATC Ile	AAG Lys	AAG Lys -	GCC Ala 120	TGT Cys	388
GGA Gly	AAT Asn	TTT Phe	GGC Gly 125	ATT Ile	CCA Pro	TGT Cys	GAA Glu	CTT Leu 130	CGA Arg	GTA Val	ACA Thr	TCT Ser	GCG Ala 135	CAT	AAA Lys	436
			GAA Glu													484
ATT Ile	CCT Pro 155	ACT Thr	GTA Val	TTT Phe	GTG Val	GCA Ala 160	GTG Val	GČA Ala	GGC Gly	AGA Arg	AGT Ser 165	AAT Asn	GGT Gly	TTG Leu	GGA Gly	532
CCA Pro 170	GTG Val	ATG Met	TCT Ser	GGG Gly	AAC Asn 175	ACT Thr	GCA Ala	TAT Tyr	CCA Pro	GTT Val 180	ATC Ile	AGC Ser	TGT Cys	CCT Pro	CCC Pro 185	580
CTC Leu	ACA Thr	CCA Pro	GAC Asp	TGG Trp 190	GGA Gly	GTT Val	CAG Gln	GAT Asp	GTG Val 195	TGG Trp	TCT Ser	TCT Ser	CTT Leu	CGA Arg 200	CTA Leu	628
CCC P.ro	AGT Ser	GGT Gly	CTT Leu 205	GGC Gly	TGT Cys	TCA Ser	ACC Thr	GTA Val 210	CTT Leu	TCT Ser	CCA Pro	GAA Glu	GGA Gly 215	TCA Ser	GCT Ala	676
CAA Gln	TTT Phe	GCT Ala 220	GCT Ala	CAG Gln	ATA Ile	TTT Phe	GGG Gly 225	TTA Leu	AGC Ser	AAC Asn	CAT His	TTG Leu 230	GTA Val	TGG Trp	AGC Ser	724
AAA Lys	CTG Leu 235	CGA Arg	GCA Ala	AGC Ser	ATT Ile	TTG Leu 240	AAC Asn	ACA Thr	TGG Trp	ATT	TCC Ser 245	TTG Leu	AAG Lys	CAG Gln	GCT Ala	772
			ATC Ile						TAAC	GAAAC	GAA 1	rgcc <i>i</i>	ATTG/	AA TI	ITTTTA	826
GGGG	AAA	AC 1	ACA/	ATT1	C TA	ATTI	AGCI	GA/	\GGA/	AAT	CAAC	CAAC	AT (AAA/	AGGTAA	886
															CCTAT STCCCC	946
TTCI	CTGC	CAA 1	rggg	CACGO	CA TA	GAGO	AGA	AC/	AAG	GTA	TTAC	ACG	AA (CATCA	ATTGGC	1066
GTCA	1666/ 1666/	IGT (IGC A	CGAC	GAAGA	NG CT	GCCA	ATTGO	CTC	CCAT	GGC	CCAC	TCAC	GC 1	CTGI	CATTG	1126 1186
AGC	GTTC	iGC 1	rgtg/	AAGTO	G A	GGA	VAAG	A TCI	GGG/	ATG	AAGO	CCTC	STG (CCAC	GAAGA	1246
TAGA	CAGO	GC /	AGCA/	CTT	CT GO	GCCI	CCA	GCC	CTCI	CCC	CACO	CATAC	CA /	ATGTO	GGCAA NAAGGA	1306
TGTA	CCAT	GT (CAAT	CTC	C AC	ACCO	CTĠGC	GCT	GCCC	CTTC	CCA	ATGTO	TT:	CTT	SATAGE	1366 1426
CAAC	TTGC	GC 1	rggg/	AGCAC	C TO	ACTO	CTC	101	AGC	CAGG	AGG	TTT	TC /	AGCT	CTGGA CCAGCA	1486
AAGI	AGG	GG /	CACA	AGCAT	T GI	GGA/	IGAGO	AGO	CAGCI	CCA	TGT	CATO	AC (STIC	CAGCA ATCTTG	1546 1606
TTT	CTTC	CA (GAAC	CTTGA	NG CT	TGAT	rggcd	: AC	ATCTO	CCC	GCA	CTT	TC /	ATACI	TGTCC	1666
GGG	CTAC	SAC 1	ICAGI	CTCC1	IC TA	VAGTO	CTGT	CGC	NAGT(STAG(GAC	CATA	iTGT(\TTC(CC 1	IGCAT CCTG0	CCCGG	1726 1786
TCAT	ACTO	itt 1	CAC/	\GTC/	AT G/	(GCG1	rgtc1	r TC	CATGO	STCT	TGGT	GAC	AA 1	rgtg1	TGATG	1846
TGT	AGA(AA A	AGAAC CATTC	STAGO	AC GC	ICTC(VATTO	CCTCC	AGC TG4	JGTT1 VAGC1	000 010	CAT1	CTTO	CA 1	AGT/	AGTTTC AGGTCA	1906 1966
GCA/	AGGC	CAT	CACCO	CAGTO	C A	GCT	GGT	TGO	CAGCA	AGGC	TGTA	AGAGO	ITG (GCTC	STCAGT	2026
TGC	.GGC(\GCT(CA (ictg(Geter	CAGG/	AC AC	CGGG	ATA(CCC)	: TT(CGCT	DOT	TOTO	CACGO	AG (CAACI	CAATC	2086 2146
TGC	CATGO	AC (GCAT	TTGTO	CC C/	\GAT/	ATAGO	CG	TGG	TACA	AAG	CGGGG	AT (CTGAC	GAGCT	2206
AAA	CCT/	ACT 1	TGTGT	CAC1	TA AC	GGAC	CGT	TAT	CATO	AGC	AGC	ACTO	GG (CTTCI	TGCAGC CTCTAG	2266 2326
AGT	ATC	CAC	ATCC	GGAA	C TO	CCC	ATCG/	CG	CAC	GAG	GGGG	SAAGI	CA 1	CTC	CTGGG	2386

GCTGCCCTTT GG	GAAGGTCA C	CAACCTCCT	GATGCTGAAG	GGGAAAAACC	AGGCCTTCAT	2446
CGAGATGAAC AC	GGAGGAGG C	TGCCAATAC	CATGGTGAAC	TACTACACCT	CGGTGACCCC	2506
TGTGCTGCGC GG						2566
CAGCTCTCCC AA						2626
GGGGAACCTG GC						2686
GCAGAGCCCC GT						2746
GCTGCACCAG AT						2806
CAACCAGTTC CA						2866
GTCGCTGGAC GG						2926
GCTCACCAGC CT	CAACGTCA A	GTACAACAA	TGACAAGAGC	CGTGACTACC	TCGTGCCGAA	2986
TTCTTTGGAT CC						2998

(2) INFORMATION FOR SEQ ID NO:150:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Ala Thr Gln Ala Ile Phe Glu Ile Leu Glu Lys Ser Trp Leu Pro Gln 10 Asn Cys Thr Leu Val Asp Met Lys Ile Glu Phe Gly Val Asp Val Thr 20 25 30 Thr Lys Glu Ile Val Leu Ala Asp Val Ile Asp Asn Asp Ser Trp Arg 35 40 45 Leu Trp Pro Ser Gly Asp Arg Ser Gln Gln Lys Asp Lys Gln Ser Tyr 50 55 Arg Asp Leu Lys Glu Val Thr Pro Glu Gly Leu Gln Met Val Lys Lys 70 Asn Phe Glu Trp Val Ala Glu Arg Val Glu Leu Leu Leu Lys Ser Glu 85 90 . Ser Gln Cys Arg Val Val Leu Met Gly Ser Thr Ser Asp Leu Gly . 100 105 110 His Cys Glu Lys Ile Lys Lys Ala Cys Gly Asn Phe Gly Ile Pro Cys 115 120 125 Glu Leu Arg Val Thr Ser Ala His Lys Gly Pro Asp Glu Thr Leu Arg 130 135 140 Ile Lys Ala Glu Tyr Glu Gly Asp Gly Ile Pro Thr Val Phe Val Ala 145 150 155 Val Ala Gly Arg Ser Asn Gly Leu Gly Pro Val Met Ser Gly Asn Thr 165 170 175 Ala Tyr Pro Val Ile Ser Cys Pro Pro Leu Thr Pro Asp Trp Gly Val 180 185 190 Gln Asp Val Trp Ser Ser Leu Arg Leu Pro Ser Gly Leu Gly Cys Ser 195 200 205 Thr Val Leu Ser Pro Glu Gly Ser Ala Gln Phe Ala Ala Gln Ile Phe 210 215 220 Gly Leu Ser Asn His Leu Val Trp Ser Lys Leu Arg Ala Ser Ile Leu 230 235 Asn Thr Trp Ile Ser Leu Lys Gln Ala Asp Lys Lys Ile Arg Glu Cys 245 250 Asn Leu

(2) INFORMATION FOR SEQ ID NO:151:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1038 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

Ile Gln Arg Phe Gly Thr Ser Gly His Ile Met Asn Leu Gln Ala Gln 1 5 10 15 Pro Lys Ala Gln Asn Lys Arg Lys Arg Cys Leu Phe Gly Gln Glu 20 25 30 Pro Ala Pro Lys Glu Gln Pro Pro Pro Leu Gln Pro Pro Gln Gln Ser 35 40 45 Ile Arg Val Lys Glu Glu Gln Tyr Leu Gly His Glu Gly Pro Gly Gly 50 55 60 Ala Val Ser Thr Ser Gln Pro Val Glu Leu Pro Pro Pro Ser Ser Leu 65 70 75 80 Ala Leu Leu Asn Ser Val Val Tyr Gly Pro Glu Arg Thr Ser Ala Ala 85 90 95 Met Leu Ser Gln Gln Val Ala Ser Val Lys Trp Pro Asn Ser Val Met 100 105 110 Ala Pro Gly Arg Gly Pro Glu Arg Gly Gly Gly Gly Val Ser Asp 115 120 125 Ser Ser Trp Gln Gln Pro Gly Gln Pro Pro Pro His Ser Thr Trp 130 135 140 Asn Cys His Ser Leu Ser Leu Tyr Ser Ala Thr Lys Gly Ser Pro His 145 150 155 160 Pro Gly Val Gly Val Pro Thr Tyr Tyr Asn His Pro Glu Ala Leu Lys 165 170 175 Arg Glu Lys Ala Gly Gly Pro Gln Leu Asp Arg Tyr Val Arg Pro Met 180 185 190 Met Pro Gln Lys Val Gln Leu Glu Val Gly Arg Pro Gln Ala Pro Leu 195 200 205 Asn Ser Phe His Ala Ala Lys Lys Pro Pro Asn Gln Ser Leu Pro Leu 210 215 220 Gln Pro Phe Gln Leu Ala Phe Gly His Gln Val Asn Arg Gln Val Phe 225 230 235 240 Arg Gln Gly Pro Pro Pro Pro Asn Pro Val Ala Ala Phe Pro Pro Gln 245 250 255 Lys Gln Gln Gln Gln Gln Pro Gln Gln Gln Gln Gln Gln Gln 265 270 260 Ala Ala Leu Pro Gln Met Pro Leu Phe Glu Asn Phe Tyr Ser Met Pro 275 280 285 Gln Gln Pro Ser Gln Gln Pro Gln Asp Phe Gly Leu Gln Pro Ala Gly 290 295 300 Pro Leu Gly Gln Ser His Leu Ala His His Ser Met Ala Pro Tyr Pro 305 310 315 320 Phe Pro Pro Asn Pro Asp Met Asn Pro Glu Leu Arg Lys Ala Leu Leu 325 330 335 Gln Asp Ser Ala Pro Gln Pro Ala Leu Pro Gln Val Gln Ile Pro Phe 340 345 350 Pro Arg Arg Ser Arg Arg Leu Ser Lys Glu Gly Ile Leu Pro Pro Ser 355 360 365 Ala Leu Asp Gly Ala Gly Thr Gln Pro Gly Gln Glu Ala Thr Gly Asn 370 380 380 Leu Phe Leu His His Trp Pro Leu Gln Gln Pro Pro Pro Gly Ser Leu 385 390 395 400 Gly Gin Pro His Pro Glu Ala Leu Gly Phe Pro Leu Glu Leu Arg Glu 405 410 Ser Gln Leu Leu Pro Asp Gly Glu Arg Leu Ala Pro Asn Gly Arg Glu 420 425 430 Arg Glu Ala Pro Ala Met Gly Ser Glu Glu Gly Met Arg Ala Val Ser 435 440 445 Thr Gly Asp Cys Gly Gln Val Leu Arg Gly Gly Val Ile Gln Ser Thr 450 455 460 Arg Arg Arg Arg Arg Ala Ser Gln Glu Ala Asn Leu Leu Thr Leu Ala 465 470 475 480 Gln Lys Ala Val Glu Leu Ala Ser Leu Gln Asn Ala Lys Asp Gly Ser 485 490 Gly Ser Glu Glu Lys Arg Lys Ser Val Leu Ala Ser Thr Thr Lys Cys 500 505 510 Gly Val Glu Phe Ser Glu Pro Ser Leu Ala Thr Lys Arg Ala Arg Glu 515 520 525 Asp Ser Gly Met Val Pro Leu Ile Ile Pro Val Ser Val Pro Val Arg 530 535 540 Thr Val Asp Pro Thr Glu Ala Ala Gln Ala Gly Gly Leu Asp Glu Asp 545 550 560 Gly Lys Gly Leu Glu Gln Asn Pro Ala Glu His Lys Pro Ser Val Ile 565 570 575 Val Thr Arg Arg Arg Ser Thr Arg Ile Pro Gly Thr Asp Ala Gln Ala 580 585 590 Gin Ala Glu Asp Met Asn Val Lys Leu Glu Gly Glu Pro Ser Val Arg

605 595 600 Lys Pro Lys Gin Arg Pro Arg Pro Glu Pro Leu Ile Ile Pro Thr Lys 615 620 Ala Gly Thr Phe Ile Ala Pro Pro Val Tyr Ser Asn Ile Thr Pro Tyr 630 635 Gln Ser His Leu Arg Ser Pro Val Arg Leu Ala Asp His Pro Ser Glu 645 650 655 · 645 650 Arg Ser Phe Glu Leu Pro Pro Tyr Thr Pro Pro Pro Ile Leu Ser Pro 660 665 670 Val Arg Glu Gly Ser Gly Leu Tyr Phe Asn Ala Ile Ile Ser Thr Ser 675 680 685 675 680 685 Thr Ile Pro Ala Pro Pro Pro Ile Thr Pro Lys Ser Ala His Arg Thr 700 690 695 Leu Leu Arg Thr Asn Ser Ala Glu Val Thr Pro Pro Val Leu Ser Val 705 710 715 720 Met Gly Glu Ala Thr Pro Val Ser Ile Glu Pro Arg Ile Asn Val Gly 725 730 Ser Arg Phe Gln Ala Glu Ile Pro Leu Met Arg Asp Arg Ala Leu Ala 740 745 Ala Ala Asp Pro His Lys Ala Asp Leu Val Trp Gln Pro Trp Glu Asp 755 760 765 Leu Glu Ser Ser Arg Glu Lys Gln Arg Gln Val Glu Asp Leu Leu Thr 770 775 780 Ala Ala Cys Ser Ser Ile Phe Pro Gly Ala Gly Thr Asn Gln Glu Leu 785 790 795 800 Ala Leu His Cys Leu His Glu Ser Arg Gly Asp Ile Leu Glu Thr Leu 805 810 815 Asn Lys Leu Leu Lys Lys Pro Leu Arg Pro His Asn His Pro Leu 820 825 830 Ala Thr Tyr His Tyr Thr Gly Ser Asp Gln Trp Lys Met Ala Glu Arg 845 835 840 Lys Leu Phe Asn Lys Gly Ile Ala Ile Tyr Lys Lys Asp Phe Phe Leu 855 860 Val Gln Lys Leu Ile Gln Thr Lys Thr Val Ala Gln Cys Val Glu Phe 870 875 Tyr Tyr Thr Tyr Lys Lys Gln Val Lys Ile Gly Arg Asn Gly Thr Leu 885 890 895 Thr Phe Gly Asp Val Asp Thr Ser Asp Glu Lys Ser Ala Gln Glu Glu 905 900 910 Val Glu Val Asp Ile Lys Thr Ser Gln Lys Phe Pro Arg Val Pro Leu 915 920 925 Pro Arg Arg Glu Ser Pro Ser Glu Glu Arg Leu Glu Pro Lys Arg Glu 930 935 940 Val Lys Glu Pro Arg Lys Glu Gly Glu Glu Glu Val Pro Glu Ile Gln 945 950 955 960 Glu Lys Glu Glu Glu Glu Glu Gly Arg Glu Arg Ser Arg Arg Ala Ala 965 970 975 965 Ala Val Lys Ala Thr Gln Thr Leu Gln Ala Asn Glu Ser Ala Ser Asp 990 980 985 Ile Leu Ile Leu Arg Ser His Glu Ser Asn Ala Pro Gly Ser Ala Gly 995 1005 1000 Gly Gln Ala Ser Glu Lys Pro Arg Glu Gly Thr Gly Lys Ser Arg Arg 1015 1020 Ala Leu Pro Phe Ser Glu Lys Lys Lys Lys Gln Lys Ala 1030 1025

(2) INFORMATION FOR SEQ ID NO:152:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

Ile Arg His Glu Val Ser Phe Leu Trp Asn Thr Glu Ala Ala Cys Pro
1 5 10 15

Ile Gln Thr Thr Asp Thr Asp Gln Ala Cys Ser Ile Arg Asp Pro
20 25 30

Asn Ser Gly Phe Val Phe Asn Leu Asn Pro Leu Asn Ser Ser Gln Gly
35 40 45

Tyr Asn Val Ser Gly Ile Gly Lys Ile Phe Met Phe Asn Val Cys Gly 55 Thr Met Pro Val Cys Gly Thr Ile Leu Gly Lys Pro Ala Ser Gly Cys 65 70 75 80 Glu Ala Glu Thr Gln Thr Glu Glu Leu Lys Asn Trp Lys Pro Ala Arg 85 90 95 Pro Val Gly Ile Glu Lys Ser Leu Gln Leu Ser Thr Glu Gly Phe Ile 100 105 110 100 105 Thr Leu Thr Tyr Lys Gly Pro Leu Ser Ala Lys Gly Thr Ala Asp Ala 115 120 125 Phe Ile Val Arg Phe Val Cys Asn Asp Asp Val Tyr Ser Gly Pro Leu 130 135 140 Lys Phe Leu His Gln Asp Ile Asp Ser Gly Gln Gly Ile Arg Asn Thr 145 150 155 160 Tyr Phe Glu Phe Glu Thr Ala Leu Ala Cys Val Pro Ser Pro Val Asp 165 170 175 Cys Gln Val Thr Asp Leu Ala Gly Asn Glu Tyr Asp Leu Thr Gly Leu 180 185 - 190 Ser Thr Val Arg Lys Pro Trp Thr Ala Val Asp Thr Ser Val Asp Gly
195 200 205 Arg Lys Arg Thr Phe Tyr Leu Ser Val Cys Asn Pro Leu Pro Tyr Ile 210 215 220 Pro Gly Cys Gln Gly Ser Ala Val Gly Ser Cys Leu Val Ser Glu Gly 225 230 235 240 Asn Ser Trp Asn Leu Gly Val Val Gln Met Ser Pro Gln Ala Ala Ala 245 250 255 250 Asn Gly Ser Leu Ser Ile Met Tyr Val Asn Gly Asp Lys Cys Gly Asn 260 270 Gln Arg Phe Ser Thr Arg 1le Thr Phe Glu Cys Ala Gln 1le Ser Gly 275 280 285 Ser Pro Ala Phe Gln Leu Gln Asp Gly Cys Glu Tyr Val Phe Ile Trp 290 295 300 Arg Thr Val Glu Ala Cys Pro Val Val Arg Val Glu Gly Asp Asn Cys 305 310 315 320 Glu Val Lys Asp Pro Arg His Gly Asn Leu Tyr Asp Leu Lys Pro Leu 325 330 335 Gly Leu Asn Asp Thr Ile Val Ser Ala Gly Glu Tyr Thr Tyr Tyr Phe 340 345 350 Arg Val Cys Gly Lys Leu Ser Ser Asp Val Cys Pro Thr Ser Asp Lys 355 360 365 Ser Lys Val Val Ser Ser Cys Gln Glu Lys Arg Glu Pro Gln Gly Phe 370 380 His Lys Val Ala Gly Leu Leu Thr Gln Lys Leu Thr Tyr Glu Asn Gly 385 390 395 400 Leu Leu Lys Met Asn Phe Thr Gly Gly Asp Thr Cys His Lys Val Tyr 405 410 415 Gln Arg Ser Thr Ala Ile Phe Phe Tyr Cys Asp Arg Gly Thr Gln Arg 420 425 430 Pro Val Phe Leu Lys Glu Thr Ser Asp Cys Ser Tyr Leu Phe Glu Trp 435 440 445 Arg Thr Gln Tyr Ala Cys Pro Pro Phe Asp Leu Thr Glu Cys Ser Phe 450 455 460 Lys Asp Gly Ala Gly Asn Ser Phe Asp Leu Ser Ser Leu Ser Arg Tyr 465 470 475 480 Ser Asp Asn Trp Glu Ala Ile Thr Gly Thr Gly Asp Pro Glu His Tyr 485 490 495 Leu Ile Asn Val Cys Lys Ser Leu Ala Pro Gln Ala Gly Thr Glu Pro 500 505 510 Cys Pro Pro Glu Ala Ala Ala Cys Leu Leu Gly Gly Ser Lys Pro Val 515 520 525 Asn Leu Gly Arg Val Arg Asp Gly Pro Gln Trp Arg Asp Gly Ite Ile 530 535 540 Val Leu Lys Tyr Val Asp Gly Asp Leu Cys Pro Asp Gly Ile Arg Lys 545 550 550 560 Lys Ser Thr Thr Ile Arg Phe Thr Cys Ser Glu Ser Gln Val Asn Ser 565 570 575 Arg Pro Met Phe Ile Ser Ala Val Glu Asp Cys Glu Tyr Thr Phe Ala 580 585 Trp Pro Thr Ala Thr Ala Cys Pro Met Lys Ser Asn Glu His Asp Asp 595 600 605 Cys Gln Val Thr Asn Pro Ser Thr Gly His Leu Phe Asp Leu Ser Ser 610 615 620 Leu Ser Gly Arg Ala Gly Phe Thr Ala Ala Tyr Ser Glu Lys Gly Leu

625 630 Val Tyr Met Ser Ile Cys Gly Glu Asn Glu Asn Cys Pro Pro Gly Val 645 650 655 Gly Ala Cys Phe Gly Gln Thr Arg Ile Ser Val Gly Lys Ala Asn Lys 660 665 670 Arg Leu Arg Tyr Val Asp Gln Val Leu Gln Leu Val Tyr Lys Asp Gly
675 680 685 Ser Pro Cys Pro Ser Lys Ser Gly Leu Ser Tyr Lys Ser Val Ile Ser 690 695 700 Phe Val Cys Arg Pro Glu Ala Gly Pro Thr Asn Arg Pro Met Leu Ile 710 715 Ser Leu Asp Lys Gln Thr Cys Thr Leu Phe Phe Ser Trp His Thr Pro
725 730 735 730 Leu Ala Cys Glu Gln Ala Thr Glu Cys Ser Val Arg Asn Gly Ser Ser 740 745 Ile Val Asp Leu Ser Pro Leu Ile His Arg Thr Gly Gly Tyr Glu Ala 755 760 765 Tyr Asp Glu Ser Glu Asp Asp Ala Ser Asp Thr Asn Pro Asp Phe Tyr 770 775 780 Ile Asn Ile Cys Gln Pro Leu Asn Pro Met His Gly Val Pro Cys Pro 785 790 795 800 Ala Gly Ala Ala Val Cys Lys Val Pro Ile Asp Gly Pro Pro Ile Asp 805 810 815 Ile Gly Arg Val Ala Gly Pro Pro Ile Leu Asn Pro Ile Ala Asn Glu 820 825 830 Ile Tyr Leu Asn Phe Glu Ser Ser Thr Pro Cys Gln Glu Phe Ser Cys 835 840

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Met Ala Arg Leu Ser Arg Pro Glu Arg Pro Asp Leu Val Phe Glu Glu 10 Glu Asp Leu Pro Tyr Glu Glu Glu Ile Met Arg Asn Gln Phe Ser Val 20 25 30 Lys Cys Trp Leu His Tyr Ile Glu Phe Lys Gln Gly Ala Pro Lys Pro 35 40 45 Arg Leu Asn Gln Leu Tyr Glu Arg Ala Leu Lys Leu Leu Pro Cys Ser 50 55 60 Tyr Lys Leu Trp Tyr Arg Tyr Leu Lys Ala Arg Arg Ala Gln Val Lys 65 70 75 80 His Arg Cys Val Thr Asp Pro Ala Tyr Glu Asp Val Asn Asn Cys His 85 90 95 Glu Arg Ala Phe Val Phe Met His Lys Met Pro Arg Leu Trp Leu Asp 100 105 110 Tyr Cys Gln Phe Leu Met Asp Gln Gly Arg Val Thr His Thr Arg Arg 115 120 125 Thr Phe Asp Arg Ala Leu Arg Ala Leu Pro Ile Thr Gln His Ser Arg 130 135 140 Ile Trp Pro Leu Tyr Leu Arg Phe Leu Arg Ser His Pro Leu Pro Glu 145 150 155 160 Thr Ala Val Arg Gly Tyr Arg Arg Phe Leu Lys Leu Ser Pro Glu Ser 165 170 175 Ala Glu Glu Tyr Ile Glu Tyr Leu Lys Ser Ser Asp Arg Leu Asp Glu 180 185 190 Ala Ala Gln Arg Leu Ala Thr Val Val Asn Asp Glu Arg Phe Val Ser 195 200 205 Lys Ala Gly Lys Ser Asn Tyr Gln Leu Trp His Glu Leu Cys Asp Leu 210 215 220 Ile Ser Gln Asn Pro Asp Lys Val Gln Ser Leu Asn Val Asp Ala Ile225230235240 Ile Arg Gly Gly Leu:Thr Arg Phe Thr Asp Gln Leu Gly Lys Leu Trp 250

Cys Ser Leu Ala Asp Tyr Tyr Ile Arg Ser Gly His Phe Glu Lys Ala 260 265 270 Arg Asp Val Tyr Glu Glu Ala Ile Arg Thr Val Met Thr Val Arg Asp 280 275 285 Phe Thr Gln Val Phe Asp Ser Tyr Ala Gln Phe Glu Glu Ser Met Ile 290 295 300 Ala Ala Lys Met Glu Thr Ala Ser Glu Leu Gly Arg Glu Glu Glu Asp 305 310 315 320 Asp Val Asp Leu Glu Leu Arg Leu Ala Arg Phe Glu Gln Leu Ile Ser 325 330 335 Arg Arg Pro Leu Leu Asn Ser Val Leu Leu Arg Gln Asn Pro His 340 345 350 350 His Val His Glu Trp His Lys Arg Val Ala Leu His Gln Gly Arg Pro 355 360 365 Arg Glu Ile Ile Asn Thr Tyr Thr Glu Ala Val Gln Thr Val Asp Pro 370 375 380 Phe Lys Ala Thr Gly Lys Pro His Thr Leu Trp Val Ala Phe Ala Lys 385 390 395 400 Phe Tyr Glu Asp Asn Gly Gln Leu Asp Asp Ala Arg Val Ile Leu Glu
405 410 415 Lys Ala Thr Lys Val Asn Phe Lys Gln Val Asp Asp Leu Ala Ser Val 420 425 430 Trp Cys Gln Cys Gly Glu Leu Glu Leu Arg His Glu Asn Tyr Asp Glu
435 440 445 Ala Leu Arg Leu Leu Arg Lys Ala Thr Ala Leu Pro Ala Arg Arg Ala 450 455 460 Glu Tyr Phe Asp Gly Ser Glu Pro Val Gln Asn Arg Val Tyr Lys Ser 465 470 475 480 Leu Lys Val Trp Ser Met Leu Ala Asp Leu Glu Glu Ser Leu Gly Thr 485 490 495 Phe Gln Ser Thr Lys Ala Val Tyr Asp Arg Ile Leu Asp Leu Arg Ile 500 510 Ala Thr Pro Gln Ile Val Ile Asn Tyr Ala Met Phe Leu Glu Glu His 515 520 525 Lys Tyr Phe Glu Glu Ser Phe Lys Ala Tyr Glu Arg Gly Ile Ser Leu 530 540 Phe Lys Trp Pro Asn Val Ser Asp Ile Trp Ser Thr Tyr Leu Thr Lys 545 550 555 560 Phe Ile Ala Arg Tyr Gly Gly Arg Lys Leu Glu Arg Ala Arg Asp Leu 565 570 575 Phe Glu Gln Ala Leu Asp Gly Cys Pro Pro Lys Tyr Ala Lys Thr Leu 580 585 590 Tyr Leu Leu Tyr Ala Gln Leu Glu Glu Glu Trp Gly Leu Ala Arg His 595 600 605 605 Ala Met Ala Val Tyr Glu Arg Ala Thr Arg Ala Val Glu Pro Ala Gln 610 615 620 Gln Tyr Asp Met Phe Asn Ile Tyr Ile Lys Arg Ala Ala Glu Ile Tyr 625 630 635 640 635 Gly Val Thr His Thr Arg Gly 1le Tyr Gln Lys Ala Ile Glu Val Leu 645 650 655 Ser Asp Glu His Ala Arg Glu Met Cys Leu Arg Phe Ala Asp Met Glu 660 665 670 Cys Lys Leu Gly Glu Ile Asp Arg Ala Arg Ala Ile Tyr Ser Phe Cys 675 680 685 Ser Gln Ile Cys Asp Pro Arg Thr Thr Gly Ala Phe Trp Gln Thr Trp
690 695 700 Lys Asp Phe Glu Val Arg His Gly Asn Glu Asp Thr Ile Lys Glu Met 705 710 715 720 Leu Arg Ile Arg Arg Ser Val Gln Ala Thr Tyr Asn Thr Gln Val Asn 725 730 735 Phe Met Ala Ser Gln Met Leu Lys Val Ser Gly Ser Ala Thr Gly Thr 740 755 750 Val Ser Asp Leu Ala Pro Gly Gln Ser Gly Met Asp Asp Met Lys Leu 755 760 765 Leu Glu Gln Arg Ala Glu Gln Leu Ala Ala Glu Ala Glu Arg Asp Gln 770 775 780 Pro Leu Arg Ala Gin Ser Lys Ile Leu Phe Val Arg Ser Asp Ala Ser 785 795 800 Arg Glu Glu Leu Ala Glu Leu Ala Gln Gln Val Asn Pro Glu Glu Ile 805 810 815 Gln Leu Gly Glu Asp Glu Asp Glu Met Asp Leu Glu Pro Asn 820 825 830 Glu Val Arg Leu Glu Gln Gln Ser Val Pro Ala Ala Val Phe Gly Ser

840

835 Leu Lys Glu Asp 850 845

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 693 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

Met Phe Ser Ala Leu Lys Lys Leu Val Gly Ser Asp Gln Ala Pro Gly 10 Arg Asp Lys Asn Ile Pro Ala Gly Leu Gln Ser Met Asn Gln Ala Leu 20 25 Gln Arg Arg Phe Ala Lys Gly Val Gln Tyr Asn Met Lys Ile Val Ile 35 40 45 Arg Gly Asp Arg Asn Thr Gly Lys Thr Ala Leu Trp His Arg Leu Gln 50 60 Gly Arg Pro Phe Val Glu Glu Tyr Ile Pro Thr Gln Glu Ile Gln Val 65 70 75 80 75 Thr Ser Ile His Trp Ser Tyr Lys Thr Thr Asp Asp Ile Val Lys Val 85 90 95 Glu Val Trp Asp Val Val Asp Lys Gly Lys Cys Lys Lys Arg Gly Asp 100 105 110 Gly Leu Lys Met Glu Asn Asp Pro Gln Glu Xaa Glu Ser Glu Met Ala 115 120 125 . 125 Leu Asp Ala Glu Phe Leu Asp Val Tyr Lys Asn Cys Asn Gly Val Val 130 135 140 Met Met Phe Asp Ile Thr Lys Gln Trp Thr Phe Asn Tyr Ile Leu Arg 155 150 Glu Leu Pro Lys Val Pro Thr His Val Pro Val Cys Val Leu Gly Asn 165 170 175 Tyr Arg Asp Met Gly Glu His Arg Val Ile Leu Pro Asp Asp Val Arg 180 185 190 Asp Phe Ile Asp Asn Leu Asp Arg Pro Pro Gly Ser Ser Tyr Phe Arg 195 200 205 Tyr Ala Glu Ser Ser Met Lys Asn Ser Phe Gly Leu Lys Tyr Leu His 210 215 220 215 210 **220**. Lys Phe Phe Asn Ile Pro Phe Leu Gln Leu Gln Arg Glu Thr Leu Leu 230 235 Arg Gin Leu Giu Thr Asn Gin Leu Asp Met Asp Ala Thr Leu Giu Giu 245 250 255 Leu Ser Val Gin Gin Giu Thr Giu Asp Gin Asn Tyr Giy Ile Phe Leu 240 265 270 260 265 Glu Met Met Glu Ala Arg Ser Arg Gly His Ala Ser Pro Leu Ala Ala 275 280 285 275 280 Asn Gly Gln Ser Pro Ser Pro Gly Ser Gln Ser Pro Val Leu Pro Ala 290 295 300 300 Pro Ala Val Ser Thr Gly Ser Ser Ser Pro Gly Thr Pro Gln Pro Ala 305 310 315 320 Pro Gin Leu Pro Leu Asn Ala Ala Pro Pro Ser Ser Val Pro Pro Val 325 330 335 Pro Pro Ser Glu Ala Leu Pro Pro Pro Ala Cys Pro Ser Ala Pro Ala 340 345 350 Pro Arg Arg Ser Ile Ile Ser Arg Leu Phe Gly Thr Ser Pro Ala Thr 355 360 365 Glu Ala Ala Pro Pro Pro Pro Glu Pro Val Pro Ala Ala Gln Gly Pro 370 375 380 375 380 Ala Thr Val Gln Ser Val Glu Asp Phe Val Pro Asp Asp Arg Leu Asp 385 390 395 400 Arg Ser Phe Leu Glu Asp Thr Thr Pro Ala Arg Asp Glu Lys Lys Val 405 410 415 Gly Ala Lys Ala Ala Gln Gln Asp Ser Asp Ser Asp Gly Glu Ala Leu 420 425 Gly Gly Asn Pro Met Val Ala Gly Phe Gln Asp Asp Val Asp Leu Glu 435 440 445 Asp Gln Pro Arg Gly Ser Pro Pro Leu Pro Ala Gly Pro Val Pro Ser 455 460

Gln Asp Ile Thr Leu Ser Ser Glu Glu Glu Ala Glu Val Ala Ala Pro 470 475 Thr Lys Gly Pro Ala Pro Ala Pro Gln Gln Cys Ser Glu Pro Glu Thr 485 490 495 Lys Trp Ser Ser Ile Pro Ala Ser Lys Pro Arg Arg Gly Thr Ala Pro 500 505 510 Thr Arg Thr Ala Ala Pro Pro Trp Pro Gly Gly Val Ser Val Arg Thr 515 520 525 Gly Pro Glu Lys Arg Ser Ser Thr Arg Pro Pro Ala Glu Met Glu Pro 530 535 540 Gly Lys Gly Glu Gln Ala Ser Ser Glu Ser Asp Pro Glu Gly Pro 545 550 555 560 Ile Ala Ala Gln Met Leu Ser Phe Val Met Asp Asp Pro Asp Phe Glu
565 570 575 Ser Glu Gly Ser Asp Thr Gln Arg Arg Ala Asp Asp Phe Pro Val Arg 580 590 Asp Asp Pro Ser Asp Val Thr Asp Glu Asp Glu Gly Pro Ala Glu Pro 595 600 605 Pro Pro Pro Lys Leu Pro Leu Pro Ala Phe Arg Leu Lys Asn Asp 610 620 620 Ser Asp Leu Phe Gly Leu Gly Leu Glu Glu Ala Gly Pro Lys Glu Ser 625 630 635 640 Ser Glu Glu Gly Lys Glu Gly Lys Thr Pro Ser Lys Glu Lys Lys Lys 645 650 655 Lys Thr Lys Ser Phe Ser Arg Val Leu Leu Glu Arg Pro Arg Ala His 660 665 670 Arg Phe Ser Thr Arg Val Gly Tyr Gln Val Ser Val Pro Asn Ser Pro 675 680 Tyr Ser Glu Ser Tyr 690

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/57, 15/12, C07K 14/47, (Continued on the following page)

(11) International Publication Number: **A3**

WO 99/58559

(43) International Publication Date: 18 November 1999 (18.11.99)

(21) International Application Number:

PCT/US99/10793

(22) International Filing Date:

14 May 1999 (14.05.99)

(30) Priority Data:

09/081,385

14 May 1998 (14.05.98)

US

(71) Applicant (for all designated States except US): REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GATANAGA, Tetsuya [JP/US]; 77 Wellesley, Irvine, CA 92612 (US). GRANGER, Gale, A. [US/US]; 31562 Santa Rosa, Laguna Beach, CA 92651 (US).
- (74) Agents: CAMPBELL, Cathryn et al.; Campbell and Flores, Suite 700, 4370 La Jolla Village Drive, San Diego, CA 92122 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP. KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES. FI. FR. GB. GR. IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

20 January 2000 (20.01.00)

(54) Title: FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR RELEASING ENZYME ACTIVITY

(57) Abstract

The biological effects of the cytokine TNF are mediated by binding to receptors on the surface of cells. This disclosure describes new proteins and polynucleotides that promote enzymatic cleavage and release of TNF receptors. Also provided are method for identifying additional compounds that influence TNF receptor shedding. As the active ingredient in a pharmaceutical composition, the products of this invention increase or decrease TNF signal transduction, thereby alleviating the pathology of disease.

C12N 9/64, 15/11, C07K 16/18, 16/40, C12Q 1/68, G01N 33/68, 33/573, C12Q 1/37, A61K 38/17, 38/48, 48/00, 39/395

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	'FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK.	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin -	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ÍL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi .	us	United States of America
CA	Canada	IT	Italy	MX	Mexico '	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

Int. .tional Application No PCT/US 99/10793

		<u> </u>		PCT	/US 99/10793	
,	FICATION OF SUBJECT N C12N15/57 C07K16/18 C1201/37	C07K16/40 A61K38/17	C12Q1/68 A61K38/48	G01N33/68 A61K48/00	C12N15/11 G01N33/573 A61K39/395	
	o International Patent Classi	fication (IPC) or to bot	n national classification a	nd IPC		• .
	SEARCHED ocumentation searched (clar	ssification austern folio	wed by classification am	nhole)		
IPC 6	C12N C07K		·	200,		
	•					
Documenta	tion searched other than mir	mum documentation	to the extent that such de	curnents are included in	the fields searched	
Electronic d	ata base consulted during th	e International search	(name of data base and	, where practical, search	terms used)	-
	•					
			•			
			·			
	ENTS CONSIDERED TO BE					
Category °	Citation of document, with	indication, where app	ropitate, of the relevant	98888 998	Relevant to claim N	lo.
Х		uence refer	Accession no ence HSJ00335	5	3-5	
	13 October 1 SZULZEWSKY I transcript m	ET AL: "An	integrated whole human			
	chromosome 2 XP002121991	21"				
	the whole do	cument		. *		
X	6 February 1 HILLIER L ET project"	uence refere 998	Accession no ence AA779203 NCI human EST		3–5	
,	XP002122454 the whole do	oumont.		•		
	the whole do	Cullent			·	
			/			
				•		
					,	
χ Furth	er documents are listed in th	ne continuation of box	с. 🗓	Patent family member	s are listed in annex.	
' Special cat	regories of cited documents:					<u> </u>
•	nt defining the general state		. 0	r priority date and not in c	ter the international filing date. conflict with the application but	
conside	ered to be of particular releva ocument but published on o	ance	, ř	vention	nciple or theory underlying the	
filing da	ate		^ W	annot be considered nove	ance; the claimed invention	
which is	nt which may throw doubte o s cited to establish the public or other special reason (as	cation date of another	"Y" do	cument of particular relev	then the document is taken alone rance; the claimed invention	
	nt referring to an oral disclos	•	r di	ocument is combined with	volve an inventive step when the none or more other such docu-	
P" documer	nt published prior to the inter	mational filing date bu	t in	the art.	eing obvious to a person skilled	
	an the priority date claimed	- Manual		curnent member of the sa		
	ctual completion of the inten 3 November 1999		D	ate of mailing of the interi $03/12/1999$	nazional search report	
		·		03/ 12/ 1999		
lame and m	alling address of the ISA European Patent Office,	P.B. 5818 Patentiaen		thortzed officer	-	
·	NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040 Fax: (+31-70) 340-3016	Tx. 31 651 epont,		Van der Scha	nal, C	

Int. Gonal Application No PCT/US 99/10793

Sequence reference HS5252210 26 April 1996 KANOH H AND EXTON J: "Human afarpatin 2, a putative target protein of ADP-ribosilation" XP002122455 the whole document MINET M AND LACROUTE F: "Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae" CURRENT GENETICS, vol. 18, 1990, pages 287-291, XP002122452	1,7,9-17
X EMBL/GENBANK DATABASES Accession no U52222 Sequence reference HS5252210 26 April 1996 KANOH H AND EXTON J: "Human afarpatin 2, a putative target protein of ADP-ribosilation" XP002122455 the whole document X MINET M AND LACROUTE F: "Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae" CURRENT GENETICS, vol. 18, 1990, pages 287-291, XP002122452	1,7,9-17
Sequence reference HS5252210 26 April 1996 KANOH H AND EXTON J: "Human afarpatin 2, a putative target protein of ADP-ribosilation" XP002122455 the whole document X MINET M AND LACROUTE F: "Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae" CURRENT GENETICS, vol. 18, 1990, pages 287-291, XP002122452	
sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complememntation of the ade2-101 mutant in Saccharomyces cerevisiae" CURRENT GENETICS, vol. 18, 1990, pages 287-291, XP002122452	1,7,9-17
figure 3	·
GONZALEZ I ET AL: "Variation among human 28S ribosomal genes" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 82, November 1985 (1985-11), pages 7666-7670, XP002122453 WASHINGTON US figure 3	1
EMBL/GENBANK DATABASES Accession no T33896 Sequence reference HS89620 14 January 1995 ADAMS M ET AL: "Initial assessment of human gene diversity and expression patters based upon 52" XP002122456 the whole document	3–5
EMBL/GENBANK DATABASES Accession no AI002979 Sequence reference AI002979 11 June 1998 HILLIER L ET AL: "WashU-NCI human EST project" XP002122457 figure W	3-5
EMBL/GENBANK DATABASES Accession no AA806165 Sequence reference AA806165 16 February 1998 "National Cancer Insitiute, Cancer Genome Anatomy Project" XP002122458 the whole document	3-5

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	•	
acycry	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	OSHIMA A ET AL: "The human cation-independent mannose 6-phosphate receptor"		1,7,9-17
	JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 263, no. 5,		
	15 February 1988 (1988-02-15), pages 2553-2562, XP002121990 MD US		
	see figure 2 amino acids 912-1750		
(EMBL/GENBANK DATABASES Accession no C06247 Sequence reference HSC2476 25 August 1996	,	3–5
	TAKEDA J: "EST" XP002122459 the whole document	•	
(EMBL/GENBANK DATABASES Accession no AA707194 Sequence reference AA707194		3–5
,	5 January 1998 HILLIER L ET AL:"WashU-NCI human EST Project"		
	XP002122460 the whole document		
•	EMBL/GENBANK DATABASES Accession no AA599596 Sequence reference AA599596		3–5
	29 September 1997 HILLIER L ET AL: "WashU-NCI human ESR project"		·
:	XP002122461 the whole document		·
(KATSURA K ET AL: "IDENTIFICATION OF THE PROTEOLYTIC ENZYME WHICH CLEAVES HUMAN P75		25
	TNF RECEPTOR IN VITRO" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS,		
,	vol. 222, no. 738, 15 May 1996 (1996–05–15), pages 298–302, XP002058218		
	ISSN: 0006-291X page 299, paragraphs 2,3		
	EP 0 657 536 A (YEDA RES & DEV) 14 June 1995 (1995-06-14)		
	cited in the application		

Int. Jional Application No PCT/US 99/10793

C (Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 99/10793
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A .	PORTEU F ET AL: "HUMAN NEUTROPHIL ELASTASE RELEASES A LIGAND-BINDING FRAGMENT FROM THE 75-KDA TUMOR NECROSIS FACTOR (TNF) RECEPTOR" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 266, no. 28, 5 October 1991 (1991-10-05), pages 18846-18853, XP000229747 ISSN: 0021-9258	
Ρ,Χ	WO 98 20140 A (GRANGER GALE A ;UNIV CALIFORNIA (US); GATANAGA TETSUYA (US)) 14 May 1998 (1998-05-14) cited in the application the whole document	1,7, 9-17, 19-23, 25-32
		. ,

nuemational application No.

PCT/US 99/10793

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Int	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 21-23 and 30-32 are (partially) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2 🗌	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
a. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This into	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
a 🗌	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4 🗍	No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Romark	on Protest The additional search fees were accompanied by the applicant's protest.
,	No protest accompanied the payment of additional search fees.

Information on patent family members

PCT/US 99/10793

Patent document cited in search repor	t	Publication date	Patent family member(s)		Publication date
EP 0657536	A	14-06-1995	AU	679559 B	03-07-1997
			AU	7574294 A	04-05-1995
•			CA	2133872 A	13-04-1995
			JP	7194376 A	01-08-1995
			US	5665859 A	09-09-1997
			US	5766917 A	16-06-1998
			ZA	9407962 A	21-11-1995
WO 9820140	Α	14-05-1998	AU	5162198 A	29-05-1998
		•	EP	0938548 A	01-09-1999
			NO	992187 A	01-07-1999

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/57, 15/12, C07K 14/47, (Continued on the following page)

A3

(11) International Publication Number:

WO 99/58559

(43) International Publication Date:

18 November 1999 (18.11.99)

(21) International Application Number:

PCT/US99/10793

(22) International Filing Date:

14 May 1999 (14.05.99)

(30) Priority Data:

09/081,385

14 May 1998 (14.05.98)

US

(71) Applicant (for all designated States except US): REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GATANAGA, Tetsuya [JP/US]: 77 Wellesley, Irvine, CA 92612 (US). GRANGER, Gale, A. [US/US]; 31562 Santa Rosa, Laguna Beach, CA 92651 (US).
- (74) Agents: CAMPBELL, Cathryn et al.; Campbell and Flores, Suite 700, 4370 La Jolla Village Drive, San Diego, CA 92122 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(88) Date of publication of the international search report:

20 January 2000 (20.01.00)

Date of publication of the amended claims:

16 March 2000 (16.03.00)

(54) Title: FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR RELEASING ENZYME ACTIVITY

(57) Abstract

The biological effects of the cytokine TNF are mediated by binding to receptors on the surface of cells. This disclosure describes new proteins and polynucleotides that promote enzymatic cleavage and release of TNF receptors. Also provided are method for identifying additional compounds that influence TNF receptor shedding. As the active ingredient in a pharmaceutical composition, the products of this invention increase or decrease TNF signal transduction, thereby alleviating the pathology of disease.

C12N 9/64, 15/11, C07K 16/18, 16/40, C12Q 1/68, G01N 33/68, 33/573, C12Q 1/37, A61K 38/17, 38/48, 48/00, 39/395

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia ·	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TŤ	Trinidad and Tobago
BJ	Benin	IE	Ireland ·	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF.	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/58559 PCT/US99/10793

AMENDED CLAIMS

[received by the International Bureau on 2 February 2000 (02.02.00); original claims 33-35 added; remaining claims unchanged (1 page)]

disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis.

- 30. A method of treating cancer in a subject, comprising increasing signal transduction from TNF into cells at the site of the cancer in the subject according to claim 22 or 23.
- 31. A method of treating a disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis, comprising decreasing signal transduction from TNF into cells at the site of the disease in the subject according to claim 21 or 23.
- 32. The method of claim 31, comprising administering to the subject an effective amount of the polypeptide of any of claims 7-8 or 11-12.
- 33. The polynucleotide according to any of claims 1-5, wherein said nucleotide sequence is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.
- 34. The polypeptide according to any of claims 7-10, the sequence of which is not completely encoded by a polynucleotide sequence contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.
- 35. The polynucleotide according to claim 15, the sequence of which is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.