MATH 701 Final Exam

Problem 1 Let M = (2, x) be the ideal in $\mathbb{Z}[x]$ generated by 2 and x. Prove that M cannot be generated by a single element.

Suppose (toward contradiction) that M = (a(x)) for some $a(x) \in \mathbb{Z}[x]$. Since we have $2 \in M$, there exists some $p(x) \in \mathbb{Z}[x]$ such that 2 = p(x)a(x). Since the degree of p(x)a(x) is the degree of p(x) plus the degree of a(x), and 2 has degree 0, p(x) and a(x) also have degree 0 and thus we have that p(x) and a(x) are constant. Since 2 is prime, we have $a(x) \in \{1, -1, 2, -2\}$.

Case 1: $a(x) \in \{1, -1\}$. Then $a(x) \in M$, so by definition of M we have a(x) = 2p(x) + xq(x) for some $p(x), q(x) \in \mathbb{Z}[x]$. But xq(x) has degree 1 for any choice of q(x) other than q(x) = 0, so we must have a(x) = 2p(x) as a(x) has degree 0. So $p(x) \in \{-\frac{1}{2}, \frac{1}{2}\}$, a contradiction.

Case 2: $a(x) \in \{2, -2\}$. We have $x \in M = (a(x))$, and thus x = a(x)q(x) for some $q(x) \in \mathbb{Z}[x]$. But then $2 \mid x$, a contradiction.

Problem 2 Let R be a commutative ring. Recall that the radical of an ideal I is the set

$$\sqrt{I} := \{ a \in R : a^n \in I \text{ for some } n \in \mathbb{Z}_{\geq 1} \}.$$

- (i) Prove that \sqrt{I} is an ideal.
- (ii) Prove, for two ideals I and J, that $\sqrt{I} + \sqrt{J} \subseteq \sqrt{I+J}$.
- (iii) Do we always have $\sqrt{I} + \sqrt{J} = \sqrt{I+J}$? Prove or find a counterexample.
- (i) First, we note that $I \subseteq \sqrt{I}$ since for all $a \in I$ we have $a^1 \in I$. So \sqrt{I} is non-empty.

Now, let $a, b \in \sqrt{I}$. We will show that $a - b \in \sqrt{I}$. Let $m, n \in \mathbb{Z}_{\geq 1}$ such that $a^m \in I$ and $b^n \in I$. Since $(-b)(-b) = b^2$ is true for all rings, we have $(-b)^n \in \{b^n, -b^n\} \subseteq I$. From the binomial theorem, we have that

$$(a-b)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} a^k (-b)^{m+n-k}.$$

For each k, we either have $k \ge m$ or $m+n-k \ge n$, so either a^k or $(-b)^{m+n-k}$ are in I by closure of multiplication. Thus, each term of the sum is in I by closure of multiplication, so the sum is in I by closure of addition. Thus, $(a-b)^{m+n} \in I$ and so $a-b \in \sqrt{I}$.

Finally, let $a \in \sqrt{I}$ and $r \in R$. We will show that $ra \in \sqrt{I}$. Let $n \in \mathbb{Z}_{\geq 1}$ such that $a^n \in I$. Since R is commutative, we have $(ra)^n = r^n a^n$, so $(ra)^n \in I$ since I is an ideal. Thus, $ra \in \sqrt{I}$.

Therefore,
$$\sqrt{I}$$
 is an ideal.

Nathan Bickel

(ii) Let $x \in \sqrt{I} + \sqrt{J}$. Then x = a + b for some $a \in \sqrt{I}$, $b \in \sqrt{J}$. Let $m, n \in \mathbb{Z}_{\geq 1}$ such that $a^m \in I$ and $b^n \in J$. Then, we can use the binomial theorem to write

$$x^{m+n} = (a+b)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} a^k b^{m+n-k}.$$

Let

$$\alpha := \sum_{k=m}^{m+n} \binom{m+n}{k} a^k b^{m+n-k}, \ \beta := \sum_{k=0}^{m-1} \binom{m+n}{k} a^k b^{m+n-k}.$$

Clearly, $x^{m+n} = \alpha + \beta$. Each term in α has $k \ge m$, so $a^k \in I$ and thus each term is in I by closure of multiplication. By closure of addition, $\alpha \in I$. By the same reasoning, $\beta \in J$. So $x^{m+n} = \alpha + \beta \in I + J$, and therefore $x \in \sqrt{I+J}$.

(iii) Consider $R = \mathbb{Z}[x]$ and the ideals $I = (x^2 + 2)$ and J = (2x - 1) of R. Then,

$$(x+1)^2 = x^2 + 2x + 1 = (x^2 + 2) + (2x - 1) \in I + J,$$

so $x+1 \in \sqrt{I+J}$. However, because x^2+2 and 2x-1 are irreducible polynomials, we have that $\sqrt{I}=I$ and $\sqrt{J}=J$. It can then be shown that $x+1 \notin I+J=\sqrt{I}+\sqrt{J}$. Therefore, $\sqrt{I+J} \neq \sqrt{I}+\sqrt{J}$. \square

Problem 3 Suppose p and p+2 are primes. Classify groups of order p^3+2p^2 up to isomorphism.

We claim the two groups of order $p^3 + 2p^2$ up to isomorphism are $Z_{p^3+2p^2}$ and $Z_p \times Z_{p^2+2p}$. In particular, we claim that if G is an order $p^3 + 2p^2$ group and has an element of order $p^3 + 2p^2$, then $G \cong Z_{p^3+2p^2}$, and otherwise $G \cong Z_p \times Z_{p^2+2p}$.

Proof. Let G be a group with $|G| = p^3 + 2p^2 = p^2(p+2)$. By Sylow's theorem, we have $n_p \equiv 1 \pmod{p}$, and since $n_p \mid p+2$ we clearly have $n_p = 1$. We also have $n_{p+2} \equiv 1 \pmod{p+2}$ and $n_{p+2} \mid p^2$. So $n_{p+2} \in \{1, p, p^2\}$.

Case 1: $n_{p+2} = p$. Then $p \equiv 1 \pmod{p+2}$, so p = 1 + k(p+2) for some $k \in \mathbb{N}$. This implies p - pk = 1 + 2k, so $p = \frac{1+2k}{1-k}$. Thus we must have k = 0, so p = 1, contradicting the primality of p.

Case 2: $n_{p+2} = p^2$. Then $p^2 \equiv 1 \pmod{p_2}$, so $p^2 = 1 + k(p+2)$ for some $k \in \mathbb{N}$. Then we have

$$p^{2} - 4 = k(p+2) - 3$$

$$\implies (p+2)(p-2) = k(p+2) - 3$$

$$\implies p - 2 = \frac{k(p+2) - 3}{p+2}$$

$$\implies p - 2 = k - \frac{3}{p+2}$$

$$\implies p + 2 = 3$$

$$\implies p + 2 = 3$$

$$\implies p = 1,$$

$$(\frac{3}{p+2} \in \mathbb{Z} \text{ so } (p+2) \mid 3)$$

contradicting the primality of p.

Therefore, $n_{p+2} = 1$. So G has one subgroup P of order p^2 and one subgroup Q of order p+2. Also, we have $G \cong PQ$ since $|G| = |P| \cdot |Q|$. By Lagrange, every element in P will have order 1, p, or p^2 , and every element in Q will have order 1 or p+2. So the subgroups are disjoint except for e and we have $P \cap Q = \{1\}$. Thus, we have $G \cong PQ \cong P \times Q$.

Nathan Bickel

We proved in class that the only groups of order p^2 up to isomorphism are $Z_p \times Z_p$ and Z_{p^2} . The only group of order p+2 is Z_{p+2} since p+2 is prime. Thus, the two possibilities for G are $(Z_p \times Z_p) \times Z_{p+2}$ and $Z_{p^2} \times Z_{p+2}$, which are isomorphic to $Z_{p(p+2)} = Z_{p^2+2p}$ and $Z_{p^2(p+2)} = Z_{p^3+2p^2}$ respectively by the Chinese Remainder Theorem.

Problem 4

- (i) Is the following statement true or false? "If H and K are normal subgroups of a finite group G, with $H \cong K$, then $G/H \cong G/K$."
- (ii) Let G be a group of order p^n for some p and let H be a normal subgroup of G, with $H \neq \{1\}$. Prove that $Z(G) \cap H \neq \{1\}$, where Z(G) is the center of G.
- (i) The statement is false. For example, consider $G := \mathbb{Z}_4 \times \mathbb{Z}_2$, and the subgroups $H := \langle (2,0) \rangle$ and $K := \langle (0,1) \rangle$. The subgroups are normal since G is abelian, and they are isomorphic since they are both cyclic with order 2. We have

$$G/H := \{H, (1,0) + H, (0,1) + H, (1,1) + H\}, \ G/K := \{K, (1,0) + K, (2,0) + K, (3,0) + K\}.$$

It is evident that $G/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and $G/K \cong \mathbb{Z}_4$, so $G/H \not\cong G/K$ (the latter is cyclic but the former is not).

(ii) Since $H \subseteq G$, H is equal to the union of some set $U := \{\mathcal{K}_1, \mathcal{K}_2, \dots, \mathcal{K}_m\}$ of conjugacy classes of G. For each $h \in H$, the conjugacy class of h has cardinality $|G: C_G(h)|$. Since $C_G(h) \leq G$, by Lagrange we have $|C_G(h)| = p^i$ for some $i \in \mathbb{N}$ and thus the size of the conjugacy class of h is $|G: C_G(h)| = p^{n-i}$. Since $H \neq \{1\}$, by Lagrange we have $|H| = p^k$ for some $k \geq 1$. Thus, we have

$$p^k = |H| = |\mathcal{K}_1| + |\mathcal{K}_2| + \dots + |\mathcal{K}_m| = p^{i_1} + p^{i_2} + \dots + p^{i_m}$$

for some $i_1, i_2, \ldots, i_m \in \mathbb{N}$. The \mathcal{K}_t that contains 1 will have $|\mathcal{K}_t| = 1$, so we have $i_i < k$ for all $j \in [m]$. Thus, by prime number properties, there must be another conjugacy class in U with size 1. The element in this conjugacy class is necessarily in Z(G), and therefore we have $Z(G) \cap H \neq \{1\}$. \square

Problem 5 Let $M_2(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries. Let R be the set of matrices in $M_2(\mathbb{Q})$ that commute with $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- (i) Prove that R is a subring of $M_2(\mathbb{Q})$.
- (ii) Prove that R is isomorphic to the ring $\mathbb{Q}[x]/(x^2)$.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix that commutes with $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then we have

$$\begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}.$$

From a = a + c, we have c = 0, and from a + b = b + d we have a = d. It is easy to check that all matrices of this form do commute with the matrix, so

$$R = \left\{ \left. \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right| a, b \in \mathbb{Q} \right\}.$$

Nathan Bickel

(i) Clearly $I_2 \in R$, so $R \neq \emptyset$. Now let $X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, Y = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \in R$. It is clear that $X - Y = \begin{pmatrix} a - c & b - d \\ 0 & a - c \end{pmatrix} \in R$

based on our characterization, as well as

$$XY = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} ac & ad + bc \\ 0 & ac \end{pmatrix} \in R.$$

So R is a subring.

(ii) Let $\varphi: R \to \mathbb{Q}[x]/(x^2)$ be defined by, for all $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in R$,

$$\varphi \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \overline{a + bx}.$$

Now let $X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, Y = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \in R$. We have

$$\varphi(X+Y) = \varphi\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + \begin{pmatrix} c & d \\ 0 & c \end{pmatrix}\right)$$

$$= \varphi\left(\begin{pmatrix} a+c & b+d \\ 0 & a+c \end{pmatrix}\right)$$

$$= \overline{(a+c)+(b+d)x}$$

$$= \overline{a+bx} + \overline{c+dx}$$

$$= \varphi\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + \varphi\left(\begin{pmatrix} c & d \\ 0 & c \end{pmatrix}\right)$$

$$= \varphi(X) + \varphi(Y).$$

and

$$\varphi(XY) = \varphi\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\begin{pmatrix} c & d \\ 0 & c \end{pmatrix}\right)$$

$$= \varphi\left(\begin{pmatrix} ac & ad + bc \\ 0 & ac \end{pmatrix}\right)$$

$$= \overline{ac + (ad + bc)x}$$

$$= \overline{ac + adx + bcx + bdx^2}$$

$$= \overline{(a + bx)(c + dx)}$$

$$= \left(\overline{a + bx}\right)\left(\overline{c + dx}\right)$$

$$= \varphi\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\right)\varphi\left(\begin{pmatrix} c & d \\ 0 & c \end{pmatrix}\right)$$

$$= \varphi(X)\varphi(Y).$$
("unquotienting" by (x^2))
$$= \varphi(X)\varphi(Y).$$

So φ is a homomorphism.

For any $p(x) \in \mathbb{Q}[x]/(x^2)$, any terms of degree 2 or higher can be written as a multiple of x^2 , so we can write p(x) in the form a + bx. Thus, $\varphi(R) = \mathbb{Q}[x]/(x^2)$. Clearly, we have

$$\ker \varphi = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} = \{0_R\}.$$

So using the First Isomorphism Theorem for Rings, we can write

$$R \cong R/\{0_R\} \cong \varphi(R) = \mathbb{Q}[x]/(x^2).$$