Classication of data from the ATLAS experiment

Michael Janschek

HHU Düsseldorf

22. März 2016

Contents

- 1 Introduction
 - ATLAS
 - Data processing of ATLAS
- 2 The Task
 - The Higgs Boson Machine Learning Challenge
 - Approximate Median Significance
- 3 Methods of Classification
 - Logistic Regression
 - K Nearest Neighbor
 - XGBoost
- 4 Conclusion
 - Results

Introduction

LATLAS

Introduction

A Toroidal LHC ApparatuS (ATLAS)

- Registers ~40 million particle collisions (called events) per second.
- Aims to investigate four major topics in physics.
- Discovered the Higgs Boson in 2012.
- Tests predicted properties of the Higgs boson.

Figure: The ATLAS detector. [ATL16]

Data processing of ATLAS

- Three levels of filtering, reducing events from 40 million to 200 per second. (The *trigger*)
- Regions in feature space are picked for further analysis. They are called the *selection region*.
- Recorded and compressed events that are part of this region are reconstructed for the current task.

[ATL16]

└─The Task

The Task

The Higgs Boson Machine Learning Challenge

- Perform event selection on simulated data.
- Classify events correctly to maximize evaluation metric.
- Searched *signal events* are $H \to \tau \tau$ decay, *background events* originate from three other processes.

The data

Simulated data allows precise labeling and importance weighting of events.

250000 events for training, 550000 for testing.

- 1st feature is event ID
- 30 features with physics information
- 2 features with weighting and labeling (exclusive for training data)

Challenge data can be recreated from opendata.cern.ch

Approximate Median Significance

$$ext{AMS} = \sqrt{2\left(\left(s + b + b_{reg}
ight) \ln\left(1 + rac{s}{b + b_{reg}}
ight) - s
ight)} \quad ,$$

where

- s is the sum of weights of *true* signals
- b is the sum of weights of false signals
- lacksquare $b_{reg} = 10$ is an artificial shift to b

Related to statistical significance.

Used in particle physics to optimize the selection region.

Methods of Classification

Methods of Classification

Logistic Regression

- Builds score out of weighted features.
- Uses score in logistic function.
- Predicts the probability of test data being part of a class.

Figure: The standard logistic function [log]

Compare new data point directly to *nearest* training data points.

Figure: Initializing kNN

Figure: Prediction in kNN (1)

Figure: Prediction in kNN (2)

XGBoost

- Gradient Boosting classifier developed by Tianqi Chen.
- Shared early with other participants and grew popular.
- Was acknowledged with the HEP meets ML Award.
 - Prediction performance
 - Documentation
 - CPU and memory demands
 - simplicity/straightforwardness of approach

Boosting

$$f_1(x) = y - error$$

 $error = y - f_1(x)$

$$f_2(x) = y - f_1(x)$$

$$f_1(x) + f_2(x) = y - error_2$$

We combine an ensemble of weak learners $f_i(x)$ into one strong learner F(x).

. . .

Gradient Boosting

square loss:
$$I = \sum_{i}^{n} \frac{(f_{i}(x)-y)^{2}}{2}$$

$$\frac{\partial I}{\partial f_{1}(x)} = f_{1}(x) - y$$

$$-\frac{\partial I}{\partial f_{1}(x)} = y - f_{1}(x)$$

$$-\frac{\partial I}{\partial f_{1}(x)} = f_{2}(x)$$

Residuals can be interpreted as *negative gradients*.

If we fit weak learners to negative gradients, it allows to minimize the loss function using gradient descent.

One can show that a gradient boosting algorithm can be constructed for any loss function [Li].

XGBoost

Regularized objective function

$$L = \sum_{i} I(y_{i}, \hat{y}_{i}) + \sum_{k} \Omega(f_{k})$$

- I is any loss function.
- lacksquare $\Omega(f_k)$ measures complexity of classifier f_k .
- As L is minimized, so are I and Ω .

XGBoost

Figure: A decision tree generated by XGBoost.

Conclusion

Conclusion

Observations after the challenge:

- Linear models performed badly in the challenge.
- K Nearest Neighbors nearly beats most of the challenges benchmarks.
- Boosting methods and neural networks performed well.

Results

Classifier	AMS	rank
Logistic Regression	2.06934	1429
k Nearest Neighbor	3.18323	996
XGBoost	3.71268	65
XGBoost original	3.71885	45
Winning submission	3.80581	1

Table: Performances of used methods

1785 participating teams in total.

Results

Figure: AMS of all final submissions in the challenge. [Hig]

References I

```
[ATL16] Official homepage of atlas. URL http://www.atlas.ch, 2016. Accessed: 2016-02-15.
```

- [Hig] Higgs boson machine learning challenge. https://www.kaggle.com/c/higgs-boson. Accessed: 2016-01-03.
- [Li] Cheng Li.A gentle introduction to gradient boosting.
- [log] Wikipedia.
 URL https://de.wikipedia.org/wiki/
 Logistische_Regression.
 Accessed: 2016-03-20.