Multiple Linear Regression

Linear Regression is an **Example of a Linear Model**

Input instance – feature vector: $\mathbf{x} = (x_0, x_1, ..., x_n)$

Predicted output:

$$\hat{y} = \widehat{w_0} x_0 + \widehat{w_1} x_1 + \cdots + \widehat{w_n} x_n + \hat{b}$$

Parameters to estimate:
$$\widehat{\boldsymbol{w}} = (\widehat{w_0}, \dots, \widehat{w_n})$$
: feature weights/model coefficients $\widehat{\boldsymbol{b}}$: constant bias term/intercept

Linear Models

- A linear model is a <u>sum of weighted variables</u> that predicts a target output value given an input data instance. <u>Example</u>: <u>predicting housing prices</u>
 - House features: taxes per year (X_{TAX}) , age in years (X_{AGE})

$$\widehat{Y_{PRICE}} = 212000 + 109 X_{TAX} - 2000 X_{AGE}$$

- A house with feature values (X_{TAX}, X_{AGE}) of (10000, 75) would have a predicted selling price of:

$$\widehat{Y_{PRICE}} = 212000 + 109 \cdot 10000 - 2000 \cdot 75 = 1,152,000$$

Least-Squares Linear Regression ("Ordinary least-squares")

- Finds w and b that minimizes the <u>sum of</u> <u>squared differences</u> (RSS) over the training data between predicted target and actual target values.
- a.k.a. mean squared error of the linear model
- No parameters to control model complexity.

Least-Squares Linear Regression ("Ordinary Least-Squares")

- Finds w and b that minimizes the <u>sum of</u> <u>squared differences</u> (RSS) over the training data between predicted target and actual target values.
- a.k.a. mean squared error of the linear model
- No parameters to control model complexity.

Building A Model

Building A Model

P-Value

H₀: This is a fair coin H₁: This is not a fair coin

H₀: This is a fair coin H₁: This is not a fair coin

0.5

P-Value

0.25

0.12

0.06

0.03

0.01

H₀: This is a fair coin H₁: This is not a fair coin

0.03

0.01

 $\alpha = 0.05$

Ridge Regression

 Ridge regression learns w, b using the same least-squares criterion but adds a penalty for large variations in w parameters

$$RSS_{RIDGE}(\mathbf{w}, b) = \sum_{\{i=1\}}^{N} (\mathbf{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2 + \alpha \sum_{\{j=1\}}^{p} w_j^2$$

- Once the parameters are learned, the ridge regression <u>prediction</u> formula is the <u>same</u> as ordinary least-squares.
- The addition of a parameter penalty is called <u>regularization</u>. Regularization prevents overfitting by restricting the model, typically to reduce its complexity.
- Ridge regression uses <u>L2 regularization</u>: minimize sum of squares of w entries
- The influence of the regularization term is controlled by the α parameter.
- Higher alpha means more regularization and simpler models.

Feature Normalization with MinMaxScaler

Unnormalized data points

Normalized with MinMaxScaler te Windo

Lasso regression is another form of regularized linear regression that uses an <u>L1 regularization</u> penalty for training (instead of ridge's L2 penalty)

L1 penalty: Minimize the sum of the <u>absolute values</u> of the coefficients

$$RSS_{LASSO}(\mathbf{w}, b) = \sum_{\{i=1\}}^{N} (\mathbf{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2 + \alpha \sum_{\{j=1\}}^{p} |w_j|$$

- This has the effect of setting parameter weights in w to zero for the least influential variables. This is called a sparse solution: a kind of feature selection
- The parameter α controls amount of L1 regularization (default = 1.0).
- The prediction formula is the same as ordinary least-squares.
- When to use ridge vs lasso regression:
 - Many small/medium sized effects: use ridge.
 - Only a few variables with medium/large effect: use lasso.