Complete Abstractions Everywhere

Francesco Ranzato

University of Padova, Italy

Claims

- Ubiquity of completeness properties of static analyses
- Completeness can be a beneficial tool for
 - designing new static analyses
 - understanding how existing static analyses work

Setting

- Static analyses are designed in abstract interpretation
 - Abstract domains
 - Abstract functions
- Static analyses must be sound
- Static analyses may be (covertly) complete

Approximation

- Static analysis \[P\]^\# must be a sound approximation of concrete semantics \[P\]
- Approximation by partial orders
 - $\llbracket P \rrbracket$ ranges in (D, \leq_D)
 - $[P]^{\sharp}$ ranges in some abstraction (A, \leq_A)
 - $x \le y$: y approximates x

Soundness

Soundness #1

$$[\![P]\!]\gamma(\mathsf{input}^{\sharp}) \leq_D \gamma([\![P]\!]^{\sharp}\mathsf{input}^{\sharp})$$

• Concretization $\gamma: A \rightarrow D$

Soundness #2

$$\alpha\big([\![P]\!] \mathit{input}) \leq_{\mathsf{A}} [\![P]\!]^{\sharp} \alpha(\mathit{input})$$

• Abstraction $\alpha : D \rightarrow A$

Completeness

- $-\|P\|_1^{\sharp}$ and $\|P\|_2^{\sharp}$ on a common abstraction A
- "more precise than": $[P]_1^{\sharp} input^{\sharp} \leq_A [P]_2^{\sharp} input^{\sharp}$

Completeness means "as precise as possible"

Completeness #1 ⇒ Exactness

$$[\![P]\!]\gamma(\mathit{input}^\sharp) = \gamma\big([\![P]\!]^\sharp\mathit{input}^\sharp\big)$$

Completeness #2 ⇒ Completeness

$$\alpha(\llbracket P \rrbracket input) = \llbracket P \rrbracket^{\sharp} \alpha(input)$$

Numerical Abstractions

Sign abstraction

Int interval abstraction

Oct octagon abstraction

Polyhedra abstraction

 $P \equiv if (*) \{x--; y++;\}$

Sign
$$\mathbb{Z}$$
 $\mathbb{Z}_{\geq 0}$ $\mathbb{Z}_{\geq 0}$ 0

$$P \equiv \mathbf{if} \ (*) \ \{x - -; \ y + +; \}$$
$$input \triangleq \{(x/1, y/3), (x/4, y/0)\}$$
$$input^{Sign} \triangleq \alpha_{Sign}(input) = (x/\mathbb{Z}_{\geq 0}, y/\mathbb{Z}_{\geq 0})$$

Sign is not exact

- $[P]input^{Sign} = (x/\mathbb{Z}_{\geq -1}, y/\mathbb{Z}_{\geq 0})$
- $\llbracket P \rrbracket^{\text{Sign}} input^{\text{Sign}} = (x/\mathbb{Z}, y/\mathbb{Z}_{\geq 0})$

$$P \equiv if (*) \{x--; y++;\}$$

Sign
$$\mathbb{Z} \qquad P \equiv \mathbf{if} \ (*) \ \{x \text{---}; \ y \text{+++}; \}$$

$$\text{input} \triangleq \{(x/1, y/3), (x/4, y/0)\}$$

$$\text{input}^{\text{Sign}} \triangleq \alpha_{\text{Sign}}(\text{input}) = (x/\mathbb{Z}_{\geq 0}, y/\mathbb{Z}_{\geq 0})$$

Sign is not exact

- $\llbracket P \rrbracket input^{\mathsf{Sign}} = (x/\mathbb{Z}_{\geq -1}, y/\mathbb{Z}_{\geq 0})$
- $\llbracket P \rrbracket^{\mathsf{Sign}} input^{\mathsf{Sign}} = (x/\mathbb{Z}, y/\mathbb{Z}_{\geq 0})$

Sign is not complete

- $\alpha_{\mathsf{Sign}}(\llbracket P \rrbracket \mathit{input}) = (x/\mathbb{Z}_{\geq 0}, y/\mathbb{Z}_{\geq 0})$
- $\llbracket P \rrbracket^{\mathsf{Sign}} \alpha_{\mathsf{Sign}}(\mathit{input}) = (x/\mathbb{Z}, y/\mathbb{Z}_{\geq 0})$

Interval domain Int

$$\begin{split} P &\equiv \text{if } (*) \ \{x\text{---}; \ y\text{+++-}; \} \\ input &\triangleq \{(x/1, y/3), (x/4, y/0)\} \\ input^{\text{Int}} &\triangleq \alpha_{\text{Int}}(input) = (x/[1, 4], y/[0, 3]) \end{split}$$

$$P \equiv if (*) \{x--; y++;\}$$

Interval domain Int

$$P \equiv if (*) \{x--; y++;\}$$

 $input \triangleq \{(x/1, y/3), (x/4, y/0)\}$
 $input^{lnt} \triangleq \alpha_{lnt}(input) = (x/[1, 4], y/[0, 3])$

Int is not exact

- $[P]input^{Int} = (x/[0,4], y/[0,4]) \setminus \{(x/0, y/0), (x/4, y/4)\}$
- $[P]^{\text{Int}} input^{\text{Int}} = (x/[0,4], y/[0,4])$

$$P \equiv if (*) \{x--; y++;\}$$

Interval domain Int

$$P \equiv if (*) \{x--; y++;\}$$

 $input \triangleq \{(x/1, y/3), (x/4, y/0)\}$
 $input^{int} \triangleq \alpha_{int}(input) = (x/[1, 4], y/[0, 3])$

Int is not exact

- $[P]input^{lnt} = (x/[0,4], y/[0,4]) \setminus \{(x/0, y/0), (x/4, y/4)\}$
- $[P]^{\text{Int}} input^{\text{Int}} = (x/[0,4], y/[0,4])$

Int is complete

- $\alpha_{\text{Int}}([\![P]\!]input) = (x/[0,4],y/[0,4])$
- $[P]^{\text{Int}} \alpha_{\text{Int}}(input) = (x/[0,4], y/[0,4])$

Octagon domain Oct

$$\begin{split} P &\equiv \text{if } (*) \ \{x\text{---}; \ y\text{+++}; \} \\ &input \triangleq \{(x/1, y/3), (x/4, y/0)\} \\ &input^{\text{Oct}} \triangleq \alpha_{\text{Oct}}(input) = \{x + y = 4, x \in [1, 4], y \in [0, 3]\} \end{split}$$

$$P \equiv if (*) \{x--; y++;\}$$

Octagon domain Oct

$$P \equiv if (*) \{x--; y++;\}$$

 $input \triangleq \{(x/1, y/3), (x/4, y/0)\}$
 $input^{Oct} \triangleq \alpha_{Oct}(input) = \{x + y = 4, x \in [1, 4], y \in [0, 3]\}$

Oct is exact

- $[P]input^{Oct} = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$
- $[P]^{\text{Oct}} input^{\text{Oct}} = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$

$$P \equiv if (*) \{x--; y++;\}$$

Octagon domain Oct

$$\begin{split} P &\equiv \text{if } (*) \ \{x\text{--}; \ y\text{++};\} \\ input &\triangleq \{(x/1, y/3), (x/4, y/0)\} \\ input^{\text{Oct}} &\triangleq \alpha_{\text{Oct}}(input) = \{x+y=4, x \in [1, 4], y \in [0, 3]\} \end{split}$$

Oct is exact

- $[P]input^{Oct} = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$
- $[P]^{Oct}input^{Oct} = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$

Oct is complete

- $\alpha_{\text{Oct}}([\![P]\!]input) = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$
- $[P]^{\text{Oct}}\alpha_{\text{Oct}}(input) = \{x + y = 4, x \in [0, 4], y \in [0, 4]\}$

Questions and Claims

- Why to care about completeness/exactness?
 - ⇒ Completeness allow to understand abstractions in depth
- Is completeness/exactness a kind of incidental feature?
 - ⇒ Complete abstractions are everywhere ⊕
- Why completeness/exactness shoud be a useful tool?
 - ⇒ Completeness-driven design of abstractions

Definitions

Definition

Exactness: Sem $\circ \gamma = \gamma \circ$ Analysis

Definition

Completeness: $\alpha \circ \mathsf{Sem} = \mathsf{Analysis} \circ \alpha$

Assumption

Abstractions have both α and γ , i.e. are Galois connections

Completeness is a Property of Abstractions

Complete/exact abstractions are necessarily best correct approximations

Fact

Analysis is exact on $A \Leftrightarrow$

- $2 Sem \circ \gamma = \gamma \circ \alpha Sem \circ \gamma$

Fact

Analysis is complete on $A \Leftrightarrow$

Completeness is a Property of Abstractions

Definition

Abstraction *A* is exact for Sem \Leftrightarrow Sem $\circ \gamma = \gamma \circ \alpha$ Sem $\circ \gamma$

Definition

Abstraction *A* is complete for Sem $\Leftrightarrow \alpha \circ \text{Sem} = \alpha \circ \text{Sem} \circ \gamma \circ \alpha$

Scenario

- Programs with n integer variables (n = 1, 2 in examples)
- Program states in \mathbb{Z}^n
- Program properties in $\langle \wp(\mathbb{Z}^n), \subseteq \rangle$
- P_1 is approximated by P_2 : $P_1 \subseteq P_2$ (i.e., $P_1 \Rightarrow P_2$)
- Standard transfer functions and collecting semantics

Scenario

- Abstractions as Galois connections
- Abstractions of program states in Abs(℘(ℤⁿ))
- A_1 refines A_2 : $A_1 \leq A_2 \Leftrightarrow \forall S.\gamma_1(\alpha_1(S)) \subseteq \gamma_2(\alpha_2(S))$
- $\langle \mathsf{Abs}(\wp(\mathbb{Z}^n)), \preceq \rangle$ the lattice of abstractions

Trivial Abstraction

- Abstracts each set in $\wp(\mathbb{Z})$ to a unique abstract value
- $A^{\top} = \{ \mathbb{Z} \}$
- A[⊤] is always trivially exact and complete

Two-point Abstraction

- $\{\mathbb{Z}, K\}$ for some $K \in \wp(\mathbb{Z})$
- Consider $A^0 \triangleq \{\mathbb{Z}, \{0\}\}$
- Consider the test (|x>0?|)

Ao is not complete

- **2** $(x > 0?)^{A_0}A_0(\{-1\}) = \mathbb{Z}$

Two-point Abstraction

Ao is not complete

$$A^{0}((x > 0?)\{-1\}) = A^{0}(\varnothing) = \{0\}$$

 $(x > 0?)^{A^{0}}A^{0}(\{-1\}) = \mathbb{Z}$

Where is the problem?

- **1** $S = \{-1\}$ does not satisfy the test: $(x > 0?)S = \emptyset$
- **2** $A^0(\emptyset) = \{0\}$
- **3** $A^{0}(S) = \mathbb{Z}$
- \Rightarrow The abstract function on A° can only tell: $\mathbb{Z} \mapsto \mathbb{Z}$

- Sign = $\{\mathbb{Z}, \mathbb{Z}_{\leq 0}, \mathbb{Z}_{\geq 0}, 0\}$ refines A^0
- The previous problem does not happen with Sign
- Sign is complete for the test

...Sign is too refined...

...for the specific goal of being complete for (|x > 0?|)

Shells

What we really need is a minimal refinement of A^0 which is complete for (|x| > 0?)

These are called complete shell refinements

Complete Shells

- Minimal refinement of A which is complete for f
- $\mathsf{CShell}_f(A) \triangleq \sqcup \{A' \in \mathsf{Abs}(D) \mid A' \unlhd A, A' \text{ is complete for } f\}$

Well Definedness

 $CShell_f(A)$ is complete for f

Constructive Characterization

- $P_f^{\omega}(A) = \cup_{i \in \mathbb{N}} R_f^i(A)$
- \Rightarrow CShell_f(A) = Glb-Closure of $R_f^{\omega}(A)$

Exact Shells

- Minimal refinement of A which is exact for f
- $\mathsf{EShell}_f(A) \triangleq \sqcup \{A' \in \mathsf{Abs}(D) \mid A' \leq A, A' \text{ is exact for } f\}$

Well Definedness

 $\mathsf{EShell}_f(A)$ is exact for f

Constructive Characterization

- \Rightarrow EShell_f(A) = Glb-Closure of $S_f^{\omega}(A)$

Example

- \Rightarrow Complete shell: $\{\mathbb{Z}, \mathbb{Z}_{\leq 0}, \{0\}\}$

Example

Sign is the complete shell of A^0 for (x > 0?) and (x < 0?)

- Obvious? 😑
- Interesting?
- \Rightarrow Let's go on...

Constant Propagation

CP is a refinement of A⁰

Question

Is CP a complete shell of Ao?

Constant Propagation

Observations

- **1** A^0 is not complete for $(x := x \pm 1)$
- 2 CP is complete for any $(x := x \pm k)$
- **3** Compositions of $(x := x \pm 1)$ provide $(x := x \pm k)$

Let us compute the complete shell of A^0 for $(x := x \pm 1)$

Constant Propagation

- **1** max $\{S \in \wp(\mathbb{Z}) \mid (x := x + 1) \mid S \subseteq \{0\}\} = \{-1\}$

Fact

CP is the complete shell of Ao for additions

Uhm...

- Obvious?
 - Maybe not at first sight!
- Interesting?
 - Show me more! $\stackrel{\cdot \cdot}{=}$

Incompleteness of Sign

Sign is not complete for additions

- **1** Sign($(x := x + 1) \{-1\}$) = Sign($\{0\}$) = $\{0\}$ **2** $(x := x + 1)^{\text{Sign}} \text{Sign}(\{-1\}) = (x := x + 1)^{\text{Sign}} (\mathbb{Z}_{<0}) = \mathbb{Z}$

Incompleteness of Sign

Question

What is the complete shell of Sign for additions?

Uhm...

- **1** I should stretch/restrict $\mathbb{Z}_{>0}$ on the left/right
- 2 I should restrict/stretch $\mathbb{Z}_{\leq 0}$ on the left/right
- **3** If I have $\mathbb{Z}_{\geq m}$ and $\mathbb{Z}_{\leq n}$ then I also have [m, n]

Answer

Intervals!

Intervals

Let us compute the complete shell of Sign for $(|x := x \pm 1|)$

- **4** Glb-closure of $\{\mathbb{Z}_{\geq n}, \mathbb{Z}_{\leq m} \mid n, m \in \mathbb{Z}\}$

Fact

Int is the complete shell of Sign for additions

- Obvious?
 - Probably not! 😉
- Interesting?
 - Not bad! ©
- That's the whole story? $\stackrel{..}{\Box}$

- Completeness is not monotone for abstraction refinements
 - A_1 complete, $A_2 \le A_1 \Rightarrow A_2$ complete
- ⇒ Completeness can be lost through shell refinements

Fact

- Sign was designed as complete shell for (| x > 0? |) and (| x < 0? |)
- 2 Int was designed as complete shell of Sign for additions
- \Rightarrow Int lost completeness for (x > 0?) and (x < 0?)

Fact

Complete shell of Int for all (|x>k?|) leads to the concrete domain

Fact

Complete shell of Int for (|x>0?|) and (|x<0?|) is

 $\operatorname{Int}^{\neq \pm 1} \triangleq \operatorname{Int} \cup \{I \setminus \{+1\} \mid I \in \operatorname{Int}\} \cup \{I \setminus \{-1\} \mid I \in \operatorname{Int}\}$

- Intervals are not "relational"
- Need for relational abstractions
- Fully relational ⇒ Polyhedra
 - Precise but expensive
- Weakly relational ⇒ Octagons and the like
 - Tractable and still practically precise

Standard Example

$$\{x = 4, y = 0\}$$
 while $x \neq 0$ do $\{x - -; y + +\}$ $\{x = 0, y = 4\}$

Int is not enough for deriving that y = 4 at the exit of P i.e. Int is not complete

Standard Example

$$\{x = 4, y = 0\}$$
 while $x \neq 0$ do $\{x - -; y + +\}$ $\{x = 0, y = 4\}$

Standard Example

$$\{x = 4, y = 0\}$$
 while $x \neq 0$ do $\{x - -; y + +\}$ $\{x = 0, y = 4\}$

- **1** Int($[P]\langle x/\{4\}, y/\{0\}\rangle) = \langle x/[0,0], y/[4,4]\rangle$

Problem

Int is not able to represent the loop invariant x + y = 4

(Logical) Solution

Oct represents sets $\{\langle x, y \rangle \in \mathbb{Z}^2 \mid x \pm y = k\}$

Question

Int is already complete for (|x--|) and (|y++|).

⇒ Why this is not enough?

Answer

What we really need is an abstraction that represents precisely the loop invariant x + y = 4

 \Rightarrow We need exactness for $\lambda S.S \cup (|x--; y++|)S$

Int is complete for $\lambda S.S \cup (x--; y++)S$

Int is not exact for $\lambda S.S \cup (|x--; y++|)S$

2 Int
$$(\{\langle x/4, y/0 \rangle\} \cup (|x--; y++|)\{\langle x/4, y/0 \rangle\}) \ni \langle x/4, y/1 \rangle$$

Let us compute the exact shell of Int for

$$\lambda S.S \cup (|x--; y++|)S$$

 $\lambda S.S \cup (|x--; y--|)S$
 $\lambda S.S \cup (|x++; y++|)S$
 $\lambda S.S \cup (|x++; y--|)S$

Let us compute the exact shell of Int for

$$F \triangleq \lambda S.S \cup (x--; y++)S$$

Consider a generic point $\langle a, b \rangle$:

- $F^{1}(\{\langle a,b\rangle\}) = \{\langle a,b\rangle, \langle a-1,b+1\rangle\}$
- $F^2(\{\langle a,b\rangle\}) = \{\langle a,b\rangle, \langle a-1,b+1\rangle, \langle a-2,b+2\rangle\}$...
- $\Rightarrow F^{\omega}(\{\langle a,b\rangle\}) = \{\langle x,y\rangle \mid x+y=a+b, x\leq a, y\geq b\}$

Let us compute the exact shell of Int for

$$G \stackrel{\cdot}{=} \lambda S.S \cup (x++; y++)S$$

Consider a generic point $\langle a, b \rangle$:

- $G^2(\{\langle a,b\rangle\}) = \{\langle a,b\rangle, \langle a+1,b+1\rangle, \langle a+2,b+2\rangle\}$...
- $\Rightarrow G^{\omega}(\{\langle a,b\rangle\}) = \{\langle x,y\rangle \mid x-y=a+b, x\geq a, y\geq b\}$

Closure under intersections of...

- Intervals

...generates all the octagons!

Uhm...

- Obvious?
 - Nice observation! 🙂
- Interesting?
 - Nice story! 🙂

And Polyhedra?

Example Program

$$x := x_0; y := y_0; \text{ while } (*) \text{ do } \{x := x + k_x; y := y + k_y\}$$

Loop invariant: $k_x y - k_y x = k_x y_0 - k_y x_0$

And Polyhedra?

Example Program

$$x := x_0; y := y_0; \text{ while } (*) \text{ do } \{x := x + k_x; y := y + k_y\}$$

Loop invariant: $k_x y - k_y x = k_x y_0 - k_y x_0$

Fact

Polyhedra are the exact shell of Octagons for the functions in

$$F = \{\lambda \, S.S \cup (x := x + k_x; \ y := y + k_y) \, S\}_{(k_x, k_y) \in \mathbb{Z}^2}$$

Lessons

- Lack of precision in analyzing P on A means lack of completeness of A for some functions of P
- Abstractions are designed to remedy to some (hidden) lack of completeness of a simpler abstraction
- 3 Complete shells as a systematic tool for driving the design of abstractions

Model Checking

Let's change static analysis paradigm...

Abstract Transition Systems

Concrete Model K

2 4 7

Abstract Model \mathcal{A}

Preservation

Some temporal specification language $\mathfrak L$ e.g., CTL, ACTL, μ -calculus

$\mathcal A$ preserves $\mathfrak L$

$$\forall \varphi \in \mathfrak{L}, \forall s \in \mathsf{State}, P(s) \models^{\mathcal{A}} \varphi \Rightarrow s \models^{\mathcal{K}} \varphi$$

$\mathcal A$ strongly preserves $\mathfrak L$

$$\forall \varphi \in \mathfrak{L}, \forall s \in \mathsf{State}, P(s) \models^{\mathcal{A}} \varphi \iff s \models^{\mathcal{K}} \varphi$$

State Space Reduction

Problem

Compute the smallest abstract space $\mathsf{State}^\sharp_{\mathfrak{L}}$ where to define an abstract model $\mathcal{A}_{\mathfrak{L}} = (\mathsf{State}^\sharp_{\mathfrak{L}}, \to^\sharp)$ that strongly preserves \mathfrak{L}

Reduction Algorithms

- OTL ⇒ bisimulation algorithms
- 2 ACTL ⇒ simulation algorithms
- **③** CTL-X ⇒ stuttering bisimulation algorithms
- ACTL-X ⇒ stuttering simulation algorithms

. . .

Coarsest Partition Refinement

These are coarsest partition refinement algorithms

Bisimulation

A state partition *P* is a bisimulation

 \Leftrightarrow

the abstract model $\langle P, \rightarrow^{\exists} \rangle$ strongly preserves CTL

$$B_1 \rightarrow^{\exists} B_2$$
 iff $\exists s_i \in B_i$ s.t. $s_1 \rightarrow s_2$

Partition Abstractions

State partitions can be viewed as abstractions of $\wp(\text{State})$ that are exact for the complementation $\text{State} \setminus S$

Bisimulation

- **①** A state partition P is a bisimulation \Leftrightarrow the abstract model $\langle P, \rightarrow^{\exists} \rangle$ strongly preserves CTL
- ② State partitions are abstractions of ℘(State)
- **3** Predecessor pre : $\wp(\text{State}) \rightarrow \wp(\text{State})$ is defined as pre(T) $\triangleq \{s \in \text{State} \mid s \rightarrow t, t \in T\}$

P is a bisimulation $\Leftrightarrow P$ is exact for pre

P is exact for pre: for any block B, pre(B) is a union of blocks of P

P is a bisimulation $\Leftrightarrow P$ as abstraction is exact for pre

P is not exact for pre: $pre([5,7]) = \{2,3,4,5,7\}$ is not a union of blocks of P

Fact

Bisimulation algorithms are exact shells of abstractions for:

- complementation ⇒ ensures that abstractions are partitions
- ② predecessor ⇒ ensures that partitions are bisimulations

 $P \Rightarrow \text{Glb-Closure of } P \cup \{\text{pre}([6])\}$

 $P \Rightarrow \text{Glb-Closure of } P \cup \{\text{pre}([3,4])\}$

- Obvious?
 - Nice observation! ©
- Interesting?
 - Nice story! 🙂
- Tell me more! 😑

More...

The whole story shifts from bisimulation to

- simulation
- 2 stuttering bisimulation/simulation
- generic temporal languages
- bisimulation/simulation in probabilistic automata

Simulation

A state preorder *R* is a simulation

 $\forall s \in \text{State}, \operatorname{pre}(R(s)) \text{ is a union of some } R(t)$

$$R(1) = \{1,2\}$$

 $R(2) = \{1,2\}$
 $R(3) = \{3,4\}$
 $R(4) = \{3,4\}$
 $R(5) = \{1,2,3,4,5,7\}$
 $R(6) = \{6\}$
 $R(7) = \{1,2,3,4,5,7\}$

$$\begin{array}{l} \operatorname{pre}(R(1)) = \operatorname{pre}(R(2)) = \varnothing \\ \operatorname{pre}(R(3)) = \operatorname{pre}(R(4)) = \{1,2\} \\ \operatorname{pre}(R(5)) = \operatorname{pre}(R(7)) = \{1,2,3,4,5,7\} \\ \operatorname{pre}(R(6)) = \{3,4\} \end{array}$$

Preorder Abstractions

State preorders can be viewed as abstractions of $\wp(\text{State})$ that are exact for the union, i.e., closed under unions

R is a simulation $\Leftrightarrow R$ as abstraction is exact for pre

R is exact for pre: for any R(s), $\operatorname{pre}(R(s))$ is a union of some R(t)

R is a simulation $\Leftrightarrow R$ as abstraction is exact for pre

R is not exact for pre: pre($\{3,4\}$) = $\{1,2\}$ is not a union of R(t)

Fact

Simulation algorithms are exact shells of abstractions for:

- union ⇒ ensures that abstractions are preorders
- ② predecessor ⇒ ensures that preorders are simulations

 $R \Rightarrow \text{Glb-Closure of } R \cup \{\text{pre}(\{6\})\}\$

Conclusions

Initial claims:

- Ubiquity of completeness properties of static analyses
 - Numerical abstractions
 - Abstract model checking
 - Probabilistic systems
 - ...interpolation, non-interference, obfuscation,...
 - Just ask and you get it!
- Completeness as a tool for designing new static analyses
 - When designing an abstraction, think a priori about its completeness properties
- 3 Completeness as a tool for understanding how existing static analyses work
 - Otherwise, completeness can explain a posteriori the genesis of your abstraction (2)