## EE 231A Information Theory Lecture 12:

## Gaussian Channel Results and Sufficient Statistics

- A. Binary Input Gaussian Channel
- B. Capacity of a Bandlimited Gaussian Channel
- C. Capacity of Parallel Gaussian Channels
- D. Sufficient Statistics

## Part 12 A: Binary Input Gaussian Channel

#### **Gaussian Channel**



- $Z \sim N(0, N)$
- Z independent of X
- Power constraint on X:  $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \le P$  or  $EX^2 \le P$
- In general, X is continuous.

#### **BSC from Gaussian Channel**

- Now suppose we construct a BSC from the Gaussian channel.
- $X = \pm \sqrt{P}$  which guarantees  $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \le P$ .

## Quantization

• Quantize the Gaussian channel so that



## Q-function



- Q-function
  - tail of a unit variance zero mean Gaussian.

$$- Q(t) = \int_{t}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^{2}/2} du$$

$$- \quad \varepsilon = Q(\sqrt{P/N})$$

### **Limitation of Binary Input**

• Recall capacity is 1- $H(\varepsilon)$  for BSC, so this use of the Gaussian channel will never support more than 1 bit per channel use.

# Part 12 B: Capacity of a Bandlimited Gaussian Channel

We have extended our discussion from discrete to continuous alphabet. Now we extend from discrete to continuous time.

## Continuous-Time Band-limited Gaussian Channel



## Redrawing the system...







#### Capacity of discrete time channel

- $\lim_{n\to\infty} \frac{1}{2n} I\left(\left(X(t)\Big|_{-nT}^{nT}\right), \left(Y(t)\Big|_{-nT}^{nT}\right)\right) = \lim_{n\to\infty} \frac{1}{2n} I\left(X^{2n}; Y^{2n}\right)$
- · Capacity of resulting discrete time channel is

- 
$$C = \frac{1}{2}\log(1 + SNR)$$
 per symbol  
or  
-  $C = 2W \cdot \frac{1}{2}\log(1 + SNR)$  bits per second

 $C = W \log(1 + SNR)$  bits per second What is SNR?

#### **Evaluating Noise Power**

• 
$$E\left[\tilde{Z}^{2}(t)\right] = R_{\tilde{z}}(0)$$
  

$$= \int_{-\infty}^{\infty} S_{\tilde{z}}(f) df$$
  

$$= \int_{-W}^{W} \frac{N_{0}}{2} df$$
  

$$= N_{0}W$$

• Let  $P = E[X_n^2]$ 

$$C = W \log \left( 1 + \frac{P}{N_0 W} \right)$$

#### Limit of infinite bandwidth

$$\ln(1+x) \approx x$$

$$(=x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots)$$

$$\begin{split} \lim_{W \to \infty} W \log \left( 1 + \frac{P}{N_0 W} \right) &= \lim_{W \to \infty} W \left( \log_2 e \right) \ln \left( 1 + \frac{P}{N_0 W} \right) \\ &= W \log_2 e \frac{P}{N_0 W} \\ &= \log_2 e \frac{P}{N_0} \end{split}$$

#### Infinite Bandwidth Conclusions

$$\lim_{W \to \infty} W \log \left( 1 + \frac{P}{N_0 W} \right) = \log_2 e \frac{P}{N_0}$$

- Capacity grows linearly with SNR for extremely large bandwidths.
- For fixed  $P/N_0$  capacity increases monotonically to the constant  $\log_2 e \frac{P}{N_0}$ .

# Part 12 C: Capacity of Parallel Gaussian Channels

## Parallel Gaussian Channels



## Capacity of parallel channels

$$C = \max_{f(x_1, x_2, ..., x_k), \sum EX_i^2 \le P} I(X_1, X_2, ..., X_k; Y_1, Y_2, ..., Y_k)$$

## Capacity of Parallel Gaussian Channels

$$I(X^{k}; Y^{k}) = h(Y^{k}) - h(Y^{k} | X^{k})$$

$$= h(Y^{k}) - h(Z^{k} | X^{k})$$

$$= h(Y^{k}) - h(Z^{k})$$

$$= h(Y^{k}) - \sum_{i} h(Z_{i})$$

$$\leq \sum_{i} \left(h(Y_{i}) - h(Z_{i})\right)$$

$$\leq \sum_{i} \frac{1}{2} \log(1 + \frac{P_{i}}{N_{i}})$$

#### Achievability

• Where  $P_i = EX_i^2$ ,  $\sum P_i = P$  and equality is achieved when

$$X^{k} \sim N$$
  $\left(0, \begin{bmatrix} P_{1} & 0 & \cdots & 0 \\ 0 & P_{2} & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & P_{k} \end{bmatrix}\right)$ 

• What are the optimal  $P_i$ 's?

### Convert to convex optimization

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{i} \frac{1}{2} \log \left( 1 + \frac{P_{i}}{N_{i}} \right) & \text{(Concave function)} \\ \text{subject to} & \displaystyle \sum_{i} P_{i} \leq P & \text{(linear constraint)} \\ \end{array}$$

Convex optimization techniques may be applied.

## Lagrange multipliers (Duality)

$$J(P_1, ..., P_k) = \sum_{i} \frac{1}{2} \log \left( 1 + \frac{P_i}{N_i} \right) + \lambda \sum_{i} P_i$$

$$\frac{\partial J}{\partial P_i} = \frac{1}{2} \frac{\partial}{\partial P_i} \log_2 e \left[ \ln \left( \frac{1}{N_i} \right) + \ln(N_i + P_i) \right] + \lambda = \frac{\frac{1}{2} \log_2 e}{N_i + P_i} + \lambda$$

$$Set \quad \frac{\partial J}{\partial P_i} = 0$$

$$\frac{1}{2} \log_2 e}{N_i + P_i} + \lambda = 0 \implies \frac{1}{2} \log_2 e = -\lambda \left( N_i + P_i \right) \implies P_i = \frac{-1}{2\lambda} \log_2 e - N_i$$

## **Optimal** solution

- Setting  $\frac{\partial J}{\partial P_i} = 0$  is equivalent to setting  $P_i = v N_i$  for some constant v. (except where  $v N_i$  is negative.)
- Choose v to meet power constraint.

$$\sum (v - N_i)^+ = P$$
$$(x)^+ = \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$



Part 12 D: Sufficient Statistics

#### Section 2.10 "Sufficient Statistics"

- $\{P_{\theta}(x)\}\$  or  $\{f_{\theta}(x)\}\$  is a family of pmf's or pdf's on x indexed by  $\theta$ .
- $x^n$  is a random sampling of  $x_1,...,x_n$  from a distribution in the family.

#### **Statistics**

- Guessing or estimating  $\theta$  from observation of  $X^n$ .
- A "statistic"  $T(X^n)$  is a function of  $X^n$  that is used to prepare our estimate.

### Bernoulli Example

- $0 \le \theta \le 1$ , X is Bernoulli  $P_{\theta}(1) = \theta$   $P_{\theta}(0) = 1 \theta$
- $X^n$  is the result of n flips -11010...
- $T(X^n)$  might be  $K = \sum_{i=1}^n x_i$ - i.e. the number of heads.

#### **Sufficient Statistics**

- A <u>Sufficient Statistic</u> contains all the information in  $X^n$  about  $\theta$ .
- Formally,  $T(X^n)$  is a sufficient statistic of  $X^n$  for  $\theta$  if  $\theta \to T(X^n) \to X^n$  or equivalently if

$$I(\theta; X^n) = I(\theta; T(X^n))$$

### Sufficient Statistics (cont.)

- Check if  $T(X^n)$  is sufficient by checking if  $\theta \to T(X^n) \to X^n$ .
- i.e. Check if  $P(X^n | \theta, T(X^n)) = P(X^n | T(X^n))$ .

#### K is a Suff. Stat. in Bernoulli Example.

• Consider the Bernoulli example

$$P(X^{n} \mid \theta, k) = \frac{P(X^{n}, k \mid \theta)}{P(k \mid \theta)} = \frac{\theta^{k} (1 - \theta)^{n - k}}{\binom{n}{k} \theta^{k} (1 - \theta)^{n - k}} = \frac{1}{\binom{n}{k}}$$

$$P(X^n \mid k) = \frac{1}{\binom{n}{k}}$$

• Yes, k is a sufficient statistic of  $X^n$  for  $\theta$  .

## **Gaussian Example**

• Now consider



$$Y_1 = X + Z_1, \quad Y_2 = X + Z_2$$



$$Z_i \sim N(0, \sigma^2)$$

$$T(Y_1, Y_2) = Y_1 + Y_2$$

#### Showing Sum is a Suff. Stat. for Gauss.

• Show that  $T(Y_1, Y_2) = Y_1 + Y_2$  is a sufficient statistic of  $(Y_1, Y_2)$  for X.

$$X \to T = \sum_{i=1}^{2} Y_i \to Y_1, Y_2$$

$$Y_1 \sim N(X, \sigma^2)$$

$$Y_2 \sim N(X, \sigma^2)$$

$$T = Y_1 + Y_2$$

$$f(y_1, y_2 | t, x) = f(y_1, y_2 | t)$$

$$T \sim I_1 + I_2$$
$$T \sim N(2X, 2\sigma^2)$$

• X is a random variable.

#### The relevant conditional distributions

Given X, we have the following conditional distributions

$$f(y_1, y_2 \mid x) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{(y_1 - x)^2 + (y_2 - x)^2}{2\sigma^2}\right]$$

$$f(t \mid x) = \frac{1}{\sqrt{4\pi\sigma^2}} \exp\left[-\frac{(t-2x)^2}{4\sigma^2}\right]$$

$$f(y_1, y_2, t \mid x) = f(y_1, y_2 \mid x) \delta(y_1 + y_2 - t)$$
Dirac delta function

$$f(y_1, y_2 | t, x) = \frac{f(y_1, y_2, t | x)}{f(t | x)}$$

$$= \frac{f(y_1, y_2 | x)\delta(y_1 + y_2 - t)}{f(t | x)}$$

$$= \frac{\frac{1}{2\pi\sigma^2} \exp\left[-\frac{(y_1 - x)^2 + (y_2 - x)^2}{2\sigma^2}\right] \delta(y_1 + y_2 - t)}{\frac{1}{\sqrt{4\pi\sigma^2}} \exp\left[-\frac{(t - 2x)^2}{4\sigma^2}\right]}$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{2(y_1 - x)^2 + 2(y_2 - x)^2 - (t - 2x)^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{2(y_1 - x)^2 + 2(y_2 - x)^2 - ((y_1 - x) + (y_2 - x))^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{2(y_1 - x)^2 + 2(y_2 - x)^2 - ((y_1 - x) + (y_2 - x))^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{(y_1 - x)^2 + (y_2 - x)^2 - 2(y_1 - x)(y_2 - x)}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{((y_1 - x) - (y_2 - x))^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

$$= \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{(y_1 - y_2)^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t)$$

#### Strangeness

- Our expression looks strange because the variances in the coefficient and exponent don't seem to match.
- Let's see if it integrates to 1.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi \sigma^2}} \exp\left[-\frac{(y_1 - y_2)^2}{4\sigma^2}\right] \delta(y_1 + y_2 - t) dy_1 dy_2$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi \sigma^2}} \exp\left[-\frac{(t - 2y_2)^2}{4\sigma^2}\right] dy_2$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi \sigma^2}} \exp\left[-\frac{(y_2 - t/2)^2}{\sigma^2}\right] dy_2$$

-Since we are integrating a Gaussian.

What we know about Y's given T

• Given T = t,  $Y_2 \sim N(\frac{t}{2}, \frac{\sigma^2}{2})$ , by symmetry  $Y_1 \sim N(\frac{t}{2}, \frac{\sigma^2}{2})$  as well and  $Y_1 = T - Y_2$ .

#### Conclusion

We need to show that

$$f(y_1, y_2 | t, x) = f(y_1, y_2 | t)$$

• This turns out to be easy since  $f(y_1, y_2 | t, x)$  does not depend on x.

$$f(y_1, y_2 | t, x) = \frac{1}{\sqrt{\pi \sigma^2}} \exp \left[ -\frac{(y_1 - y_2)^2}{4\sigma^2} \right] \delta(y_1 + y_2 - t)$$

$$f(y_1, y_2 | t) = \int_x f(y_1, y_2, x | t) dx$$
$$= \int_x f(y_1, y_2 | t, x) f(x) dx$$
$$= f(y_1, y_2 | t, x)$$