Exercice 1: (5 pts)

E.S.I.

Soit m un nombre réel et soit l'application définie par :

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], \quad f(a+bX+cX^2) = ma-b+(a+c)X+(b+c)X^2$$

Corrigé de l'interrogation 1

1- Déterminer $M_B(f) = A$, où B est la base canonique de $\mathbb{R}_2[X]$.

Solution: Les colonnes de A sont les coordonnées de f(1), f(X) et $f(X^2)$ dans la base canonique $B = (1, X, X^2)$ de $\mathbb{R}_2[X]$, ainsi :

$$A = \begin{pmatrix} m & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 (0,5 pt)

2- Soit B' une base de $\mathbb{R}_2[X]$ définie par : $B' = (P_1 = 1 + X + X^2, P_2 = X - X^2, P_3 = X - X^2, P_4 = X - X^2, P_5 = X - X^2, P_6 = X - X^2, P_7 = X - X^2, P_8 = X - X^2, P$ $P_3 = -X^2$). Trouver la matrice de passage P de B vers B' et la matrice de passage Q de B'vers B.

Solution: Les colonnes de P sont les coordonnées des vecteurs de B' dans la base B, et les colonnes de Q sont les coordonnées des vecteurs de B dans la base B', ainsi :

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & -1 \end{pmatrix}, Q = P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -1 & -1 \end{pmatrix}$$
 (1pt + 2 pts)

3-Donner l'expression de la matrice $A^{'}=M_{B^{'}}\left(f\right)$ en fonction de P,Q et A puis calculer

Solution:
$$A' = Q.A.P = \begin{pmatrix} m-1 & -1 & 0 \\ 3-m & 0 & -1 \\ 2m-6 & -1 & 2 \end{pmatrix}$$
 (0,5pt + 1pt)

Exercice 2: (5 pts)

1/ Soit E le s.e.v. de $M_2(\mathbb{R})$ constitué des matrices $M_{\alpha,\beta} = \begin{pmatrix} \frac{\alpha+\beta}{2} & \frac{\alpha-\beta}{2} \\ \frac{\alpha-\beta}{2} & \frac{\alpha+\beta}{2} \end{pmatrix}$ où α,β sont

réels. Montrer que les matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ forment une base de E.

Solution:

On commence par vérifier que les matrices A et B appartiennent à E, en effet : $A = M_{2,0}$ et $B = M_{0.2}$, puis on vérifie que A et B sont linéairement indépendiants, et enfin on montre que toute matrice $M_{\alpha,\beta}$ de E s'écrit comme combinaison linéaire de A et B, ce qui est le cas puisque toute matrice $M_{\alpha,\beta} = \frac{\alpha}{2}A + \frac{\beta}{2}B$. (1,5pts)

2/ Calculer $A^2, B^2, A.B$ et B.A. Solution: $A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A, B^2 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = 2B, A.B = 0$ et B.A = 0. (0,25pt *4)

3/ En déduire que E est un sous-anneau commutatif unitaire de $M_2(\mathbb{R})$. Est-il intègre? Solution : E est un sous-anneau commutatif unitaire de $M_2(\mathbb{R})$ ssi les conditions cidessous sont vérifiées :

 $\mathbf{i}/(E,+)$ est un sous-groupe de $(M_2(\mathbb{R},+))$, cette condition est vérifiée puisque E est un espace vectoriel. (0,5 pt)

ii/ Le produit des matrices est une loi de composition interne dans E, en effet soient M_1 et M_2 deux matrices de E, donc : $M_1 = \alpha A + \beta B$ et $M_2 = aA + bB$, $\alpha, \beta, a, b \in \mathbb{R}$

On a, d'après la question précédente : $M_1.M_2 = (\alpha A + \beta B)(aA + bB) = 2\alpha aA + 2\beta bB \in E$, donc E est un anneau. (0,5 pt)

iii/
$$I_2 = \frac{1}{2}A + \frac{1}{2}B \in E$$
, i.e. E est unitaire (0,5 pt)

iv/ De plus, pour toutes matrices M_1 et M_2 de E, on a $M_1.M_2 = 2\alpha aA + 2\beta bB$ et $M_2.M_1 = 2\alpha aA + 2\beta bB$, donc E est commutatif (0,5 pt)

En fin E n'est pas intègre puisque il existe deux matrices A et B de E telles que A.B=0 alors que $A \neq 0$ et $B \neq 0.(\mathbf{0.5} \ \mathbf{pt})$