

Ayudantía 10 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

2 de junio de 2022

Problema 1. Considere la aplicación lineal $f: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}), p \mapsto xp$ definida en los espacios de polinomios reales. Considere las bases siguientes bases de los espacios anteriores

$$\mathcal{A} = \{1, x, x^2\}, \mathcal{B} = \{1, x - 1, (x - 1)^2\}, \qquad \mathcal{C} = \{1, x, x^2, x^3\}, \mathcal{D} = \{1, -x, x^2, x^2 - x^3\}$$

Con respecto a las bases anteriores

- 1. Encuentre la matriz de f con respecto a las bases \mathcal{A} y \mathcal{C} .
- 2. Encuentre la matriz de f con respecto a las bases \mathcal{B} y \mathcal{D} .

Problema 2. Sea V espacio vectorial de dimensión finita $\dim(V) = n$ sobre un cuerpo K. En la ayudantía 8 se estudiaron polinomios de aplicaciones lineales, definiendo para $T: \mathbf{V} \to \mathbf{V}$ aplicación lineal y para cada $P \in K[X]$ una aplicación lineal P(T).

1. Demuestre que para todo $T: \mathbf{V} \to \mathbf{V}$ existe un polinomio $P \in K[X] \setminus \{0\}$ tal que P(T) = 0.

Así como podemos componer polinomios con aplicaciones lineales, podemos también hacerlo con matrices. Para $P \in K[X], A \in K^{n \times n}$ definimos

$$P(A) := a_0 I_n + a_1 A + a_2 A^2 + \ldots + a_n A^n$$

- 2. Encuentre $P \in \mathbb{R}[X]$ no nulo tal que P(A) = 0 donde $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$
- 3. Demuestre que si $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es base de \mathbf{V} y $P \in K[X]$, entonces

$$A_{\mathcal{B},\mathcal{B}}^{P(T)} = P(A_{\mathcal{B},\mathcal{B}}^T)$$

Problema 3. Sea $f: \mathbf{V} \to \mathbf{V}$ aplicación lineal y $\mathcal{B} = \{e_1, \dots, e_n\}$ base de \mathbf{V} . Demuestre que la matriz de la aplicación $A^f_{\mathcal{B},\mathcal{B}}$ es triangular superior si y solo si $A^f_{\mathcal{C},\mathcal{C}}$ es triangular inferior donde $\mathcal{C} = \{e_n, \dots, e_1\}$.

Problema 4. Sea V espacio vrctorial de dimensión $\dim(V) = n \text{ y } f: V \to V$ lineal. Sea $W \subseteq V$ subespacio de dimensión $\dim(\mathbf{W}) = m$ y supongamos que \mathbf{W} es invariante bajo f, es decir, $f(\mathbf{W}) \subseteq \mathbf{W}$. Demuestre que existe una base \mathcal{B} de V tal que la matriz $A_{\mathcal{B},\mathcal{B}}^f$ de la aplicación es triangular superior por bloques

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

donde $A \in K^{m \times m}$. Generalice la idea anterior para probar que si $\mathbf{V} = \bigoplus_{k=1}^p \mathbf{V}_k$ y además $f(\mathbf{V}_k) \subseteq \mathbf{V}_k$ para todo $k = 1, \ldots, p$ entonces para \mathcal{B}_j base respectiva de \mathbf{V}_j se tiene que

$$A_{\mathcal{B},\mathcal{B}}^{f} = \begin{pmatrix} A_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{p} & 0 \\ 0 & 0 & A_{p} & A_{p} \end{pmatrix}$$

donde $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ es la base obtenida como la unión de bases de $\mathcal{B}_1, \dots, \mathcal{B}_n$ donde $A_j \in K^{n_j \times n_j}$ con $n_j = 0$ $\dim(\mathbf{V}_i)$.