E=U+ Ex +EP R=8.3145J/(mol-K) 摩陀体常数

	/m2/WV	河海大学	机电工程学	空院 <u>06/07</u>	_字牛弗 _	子别		
	热能	与动力工程专	lk <u>041311.</u>	2、3 班工	程热力学	课程考卷	(A) 得分:	
Cp	- W= Kg			姓名		学是		
Cert	,= [_ ,	选择题(共 20 分	. 每题 2 分)	(在最正确的	答案上打"	√")	2 Jak 201	特制生
:. Cn =	于門热	力发动机采用气体	本为工质的原因	因,主要是 ^怎	(体具有		1400	
Gu=	$\frac{1}{2}$ p_q (a)	粘性 (b)可)	玉缩与膨胀特位	生 (c) 流云	力性 (d)	可加热性	P1=191	43 KA.
C= m = C	M J w m=R ² p.党	力发动机采用气体 粘性 (b) 可 用的状态方程 pv 高压气体 (b)实际 体比热容可以表) 低压气体 (b)	$=R_gT$ 的适用条	件为 沙	71217	23/1/2/	A DINA	, / 5
J.1"	(a)	高压气体 (b)实际	气体 (c) 粘性	t气体(d)	理想气体			
rolu=	(VP) 3. 气	体比热容可以表	达为 Cp=f(t) 耳		即只是温度	的函数)的	条件是	
1 de	CpdT (a	.) 低压气体 (b):	实际气体(9)	理想气体	(d) 水蒸气	١١	1.10 .	MA
1 00.	1 🗂	7百分のスパンパステンタール	かいロメックト				V Walter U	
	(a)	定熵过程 (b) 诺循环热效率的	定温过程 (c)	定压过程	(d) 定容过程 Wind	呈)		Y KIN
	5. 	诺循环热效率的	表达式为		$\frac{T_2}{T_1} = \frac{q_1}{q_1}$	- E	11.	
	(a)	$\eta_{C}=1-W_{net}/q_{1}$ (1	o) $\eta_{c}=1-T_{1}/T_{2}$	(c) $\eta_{c}=1-q_{2}$	$/q_1$ (d) $\eta_c = 1$	W _{net} /Q ₂	N. SEEM	多级压缩.
		操工户相回 至	田两奶气体压:	缩比一级压缩	后省切的但多	2余行还	1	
	\ a	增压比相同,米 中间冷却 (b)只	P间加热 (c)绉	色热压缩 ((d)多变 <u>压组</u>	Whit it	(海动)分	71 11
								1-12
台灣方	引烟的歌	知 <u>气体</u> 动力循环 别为W´和W,	则内部可逆循	地的效率	DIA X	\' It -	ρ,	-
走线生	(a`) W 1/O1 \ (b) W	$/Q_1$ (c) $\langle Q \rangle$	$1 - Q_2 / / Q_2$	加克			
75		综合考虑循环热效						
	(a	蒸汽初压 pı(b)	/ 蒸汽初温 t ₁	(c) 汽轮机	月压 P2 (學)	· 产了光明 (" > P1"	It' XzV
	9. 敖	力系经过某个不	可逆热力过程	后,熵的变	化一定及生物	n e	7 P2V-	Dth XzU
	s)) 熵不变 (b) /	商流为正 (c))· 煩流为负	d 月%厂	计社交协定		
	10.	(7)	力循环 <u>高低温</u> 力	<u>热源温差较为</u>	7,	五(4) 赔信	· : 安劲却循环	
	(2	指出下列哪件初入 三)燃气轮机循环	(b)蒸汽动力循	环、(c) 燃气	/蒸汽联台循	环 (0) 堧	以及分別的同時	
	完成作功量 .	. И •			W	/ 		
何差	安水市村堂 市市7年中央号 安水市出作市場	(1370) - n.	(A	4-1) N=	Whet =	W		
两差	776 77At	沙龙			W ₁	01		

Win 有用功 Wr排床大艺术

二、分析与简答题(共 50 分,其中第 1~2 题各 5 分,第 3~7 题各 8 分)

116 2 10 Partie 1 1362 1 1. 请列出你所知道的热力学状态参数,并指出哪些状态参数可以用仪表

直接测量。

故,好状态参数: 压力,温度T、体积V 热力学能以、焙片、 煸 S

直接用仪表测量: 压力户, 温度丁, 体积V

2. 简述什么是第一类永动机和第二类永动机?它们分别由哪个定律所否定?

第-类末动机: 不消耗能量的床动机

热品学 第一定律

Ja-美永沙机: 以单一热源吸取热量转变为功的热机

热好第二发律

单数原文作物的 的物

RE H M. DESTRIN

不该能从何能量为隐偏不断为外放的的机器

第一末: 水滴就有空星加利加州。 三一大多种说,似果然是有

三人每一般隐心性。使之完全在化为有到功力不停生具它影响加热和

 $q = \Delta h + w_t$

(a) 试说明两式分别适用的热力系:

(b) 若过程可逆,给出过程功w和技术功w,的表达式,并在p-v图上用阴影面 积表达。

(a) (1)并显用于闭口系统

(2) 寸超用于粮보流动过程(开口条) (7 = AUT 11 P)

(b) W= 57 Pdv $Wt = -\int_{1}^{2} v dp$ 9= 1/4 1/14

$$v = \int_{0}^{2} P \cdot c dv$$

SQ=△H+Wt 程度原动作量研试

SS1-2 = Cyln Ti - 12y /n Pip, SS1-2 = Cyln Ti, + Rg /n vi SS1-2 = Cyln Pip, + Cp/n viv

 $\backslash 6$ 在同一p- ν 图和 T-s 图上表示四个典型热力过程,并标明它们的名称。

7. 左侧图示为蒸汽再热循环的 Tis 图,试在右侧 bis 图上相应画出该循环。并标识循环的各个状态点。

PI=10MPa PI=6MPa PI=5MPa TI=Tz=27+273=300k

) Printing 7.) Printing 7. 姓名

Rg=260J/(kg-K_)

, 、计算题(共 30 分,第 1 题 10 分,<u>第 2、3 题选做一题</u>,计 20 分)

求 am

1. (必做题)体积为 0.3m^3 的钢瓶内装有高压氧气,压力为 10 MPa,温度为 $27 \text{ \mathbb{C}}$,使用后压力降低至 6 MPa,温度不变。试求用掉多少千克氧气?设瓶内氧气为理想气体, $Rg = 260 \text{J}/(\text{kg} \cdot \text{K})$ 。

解:
$$\int P_1 V_1 = M_1 R_9 T_1$$

 $\int P_2 V_2 = M_2 R_9 T_2$
 $T_1 = T_2$
 $M_1 - M_2 = \frac{P_1 V_1 - P_2 V_2}{R_9 T} = \frac{(10 - 6) \times 10^6 \times 0.3}{260 \times (27 + 273.15)}$
 $= 15.38 kg$

2. (选做题)欲将初压为 0.1 MPa,温度为 $15 \, ^{\circ} \text{C}$,质量流量 q_m 为 0.2 kg/s 的空气压缩至压力为 0.8 MPa,设计分析时,若分别采用定温、定熵和多变三种压缩过程,试计算比较压气机压缩功率 Pc 的大小,并用 p-v 图加以说明。设空气为理想气体,压缩过程可变, $Rg=287 \text{J/(kg} \cdot \text{K)}$, k=1.4,n=1.3。

(提示: 定温过程 $w_i = -R_g T_1 \ln \frac{P_2}{p_1}$; 定熵过程 $w_i = c_p (T_1 - T_2)$, $\frac{T_2}{T_1} = (\frac{P_2}{k})^{\frac{k-1}{k}}$, $c_p = \frac{kR_g}{k-1}$; $Pc = q_m w_c$, w_c 为压气机的作功大小, $w_c = -w_i$; n-1 $(-\frac{p_i}{p_i})^{\frac{n-1}{k}}$

 $8^{0.286} = 1.813$, $8^{0.231} = 1.617$) 解: 定温: $Wt = -RgT_1/n = -28/J/(内(ド) \times (15+27)\cdot15)/n = -17/967\cdot84J/内$ $Pc = 9mWc = -9mWt = -0.219/S \times (-17/967\cdot84J/内) = 34393·37 W$

度熵: $\frac{T_2}{T_1} = \frac{P_2}{(P_1)}$ $T_2 = \frac{0.8}{0.7}$ $\frac{0.4}{1.4} \times (15+2)3.15 = 521.969 k$ $W_{t_1} = Cp(T_1 - T_2) = \frac{kR_9}{k-1} (T_1 - T_2) = \frac{114}{0.4} \times 87 \times (288.15 - 521.969) = -23.487/11$

i. Pac Pas < Par

希は程的試与P朝国成的面积例がWi的大い 自国省 Wt, < Wt, < Wt, (A-5) · アロイアロイアロイアロイ

3. (选做题)某简单蒸汽动力循环(朗肯循环)的初参数为 15MPa/540℃,背压为 6kPa, 有关状态参数见附表,设循环可逆。试求(1)汽轮机出口状态2的x2和 h_2 : (2) 汽轮机输出功 w_T 和水泵功 w_p ; (3) 循环热效率 Π_1 和理论耗汽率 d_0 .

附表:				·	Ţ·
р	Ts	h'	h"	s'	s"
(MPa)	(K)	(kJ/kg)	(kJ/kg)	(kJ/(kg•K))	(kJ/(kg•K))
0.006	309.3	151.5	2566.5	0.5208	8.3283
15	615.3	1612.2	2611.6	3.6877	5.3122

又: 当 p=15MPa, s=0.5208kJ/(kg·K)时,未饱和水的 h=166.75kJ/kg.. 当 p=15MPa, t=540℃时(过热蒸汽), h=3421 kJ/kg, s=6.4881 kJ/(kg•K).

提示: $s_2 = s_{2'} + x_2(s_2, -s_{2'})$, $h_2 = h_{2'} + x_2(h_2, -h_{2'})$, $s_1 = s_2$, $s_3 = s_4$ 解明已知 Pi=15MPa时 h=3421月/19 Si= 6.4881月/(149.1K)

3 (2')

112- h3 = 82

 $h_2 = h_2' + \chi_2 (h_2'' - h_2')$

二月3月3十七大张23日5一日月3二月9日前月月

(3)
$$\eta_{+} = \frac{1}{21} + \frac{1}{25} + \frac{1}{25}$$

$$= \frac{1424.49 - 15.25}{3421 - 166.75} \times 100\%$$

$$= \frac{43.30\%}{h_1 - h_2} = \frac{1}{(3421 - 1876.050) \times 10^3 \text{ J/kg}}$$

$$= 7.02 \times 10^7 \text{ kg/J}$$

(A-6)

注:适用教材沈维道等《工程热力学》(第三版)高数出版社 2001.6.