AFIC901N 136-174 MHz REFERENCE CIRCUIT OVERVIEW

ORDERABLE PART NUMBER: AFIC901N-135MHZ

License

 Open and read the License.pdf included in the same zip file as the document you are currently reading. By using the documentation materials included in this zip file, you indicate that you accept the terms of the agreement.

Introduction

- The NXP AFIC901N is a 1.8-1000 MHz, 1 W CW RF power LDMOS transistor housed in a QFN package.
 It has no input, no output and no inter-stage matching, allowing off-chip matching for flexible use across frequencies.
 - Further details about the device, including its data sheet, are available here.
- The following pages describe the 136-174 MHz reference circuit (evaluation board).
 Its typical applications are VHF land mobile radio and use as a generic driver.
- The reference circuit can be ordered through NXP's distribution partners and etailers using part number AFIC901N-135MHZ.

Circuit Overview – 2.11 cm × 4.72 cm (0.83" × 1.86")

Typical CW Performance

Typical Performance: $V_{DD1} = V_{DD2} = 7.5 \text{ Vdc}$, $I_{DQ1} = 10 \text{ mA}$, $I_{DQ2} = 30 \text{ mA}$, $P_{out} = 1 \text{ W}$ (30 dBm), CW

Frequency (MHz)	P _{in} (dBm)	G _{ps} (dB)	η _D (%)	P _{out} (dBm)
135	-0.8	30.8	65.9	30.0
155	-1.3	31.3	59.6	30.0
175	-1.1	31.1	61.4	30.0

Quick Start

- Connect the ground.
- 2. Terminate the RF output with a 50 ohm load capable of handling more than 1 W power.
- Connect the RF input to a 50 ohm source with the RF off.
- 4. Connect the first stage drain voltage (V_{DD1}) and raise it slowly to 7.5 V while ensuring that the drain current remains below or equal to the typical drain quiescent current of $I_{DO1} = 10$ mA.
- 5. If needed, adjust the P1 potentiometer to modify the first stage gate voltage to control the first stage drain quiescent current I_{DO1}.
- 6. Disconnect the first stage drain voltage V_{DD1} . Connect the second stage drain voltage (V_{DD2}) and raise it slowly to 7.5 V while ensuring that the drain current remains below or equal to the typical quiescent current of $I_{DQ2} = 30$ mA.
- 7. If needed, adjust the P2 potentiometer to modify the second stage gate voltage to control the second stage drain current I_{DQ2}.
- 8. Keep V_{DD2} connected to 7.5 V and connect again first stage V_{DD1} to 7.5 V. The total drain current should typically be 40 mA.
- 9. Raise the RF input slowly to 0 dBm (1 mW).
- 10. Check the RF output power (typically 1 W), the drain current (around 0.3 A for this power level) and the temperature of the board. Ensure the baseplate is not overheating.

Component Placement Reference

Note: PCBs may have either NXP or Freescale markings. Existing Freescale boards will not migrate to NXP markings unless a board is revised.

Bill of Materials

Part	Description	Part Number	Manufacturer
B1	RF Bead	2508051107Y0	Fair-Rite
C1, C5, C9, C12, C14, C17	1000 pF Chip Capacitors	C2012X7R2E102M085AA	TDK
C2, C16	15 pF Chip Capacitors	GQM2195C2E150FB12D	Murata
С3	1 μF Chip Capacitor	GRM21BR71H105KA12L	Murata
C4, C6, C7, C8, C11, C13	100 pF Chip Capacitors	GQM2195C2E101GB12D	Murata
C10	6.2 pF Chip Capacitor	GQM2195C2E6R2BB12D	Murata
C15	10 μF Chip Capacitor	GRM31CR61H106KA12L	Murata
J1	Right-Angle Breakaway Headers (3 Pins)	22-28-8360	Molex
L1, L4	56 nH Inductors	LL1608-FSL56NJ	токо
L2	180 nH Inductor	LL1608-FSLR18J	токо
L3	120 nH Inductor	LL1608-FSLR12J	токо
L5	180 nH Inductor	1008CS-181XJLB	Coilcraft
L6	15.7 nH Inductor	0806SQ15N	Coilcraft
P1, P2	5.0 kΩ Multi-turn Cermet Trimmer Potentiometer	3224W-1-502E	Bourns
Q1	RF Power LDMOS Amplifier	AFIC901NT1	Freescale
R1, R7	15 kΩ, 1/10 W Chip Resistors	RR1220P-153-B-T5	Susumu
R2, R8	10 kΩ, 1/8 W Chip Resistors	CRCW080510K0FKEA	Vishay
R3	200 Ω, 1/8 W Chip Resistor	CRCW0805200RJNEA	Vishay
R4, R6	1.2 kΩ, 1/8 W Chip Resistors	CRCW08051K20FKEA	Vishay
R5	510 Ω, 1/10 W Chip Resistor	RR1220P-511-B-T5	Susumu
R9, R10	0 Ω, 2.5 A Chip Resistors	CWCR08050000Z0EA	Vishay
PCB	FR4 (S-1000), 0.020", ε _f = 4.8	D75372	MTL

Tuning Tips

Change C10 to a larger value to increase gain and efficiency at 136 MHz

Change C16 to a smaller value to increase power and efficiency at 174 MHz

Impedances

f MHz	Z _{source1} Ω	Z _{load1} Ω	Z _{source2} Ω	Z _{load2} Ω
135	129.8 + j62.2	93.0 + j49.5	27.8 + j35.9	34.3 + j2.85
140	123.1 + j54.4	92.5 + j42.5	29.4 + j35.1	33.4 + j1.92
145	117.3 + j49.7	91.6 + j37.2	30.7 + j34.1	32.5 + j1.00
150	112.5 + j47.8	91.0 + j33.3	31.8 + j33.1	31.7 + j0.08
155	109.1 + j47.7	90.9 + j30.7	32.7 + j32.2	30.9 – j0.83
160	107.1 + j49.6	91.9 + j29.2	33.2 + j31.4	30.0 – j1.66
165	106.3 + j53.5	93.9 + j28.6	33.6 + j31.0	29.1 – j2.41
170	106.8 + j59.2	97.4 + j28.7	33.9 + j30.9	28.2 - j3.03
175	108.3 + j67.5	102.6 + j29.4	34.1 + j31.1	27.4 – j3.49

 Z_{source} = Test circuit impedance as measured from gate to gate.

Z_{load} = Test circuit impedance as measured from drain to drain.

Revision History

• The following table summarizes revisions to the content of the AFIC901N 136-174 MHz Reference Circuit zip file.

Revision	Date	Description
0	September 2019	Initial Release

SECURE CONNECTIONS FOR A SMARTER WORLD