ClassWork 7:

1.
$$T(n) = 8 * T(n / 2) + n$$

$$log_2(8) = 3 \& d = 1$$
 , decomposition dominant $\implies \Theta(n^3)$

2.
$$T(n) = 6 * T(n / 3) + n^2$$

$$log_3(6) < 2 \& d = 2$$
 recombination dominant $\implies \Theta(n^2)$

3.
$$T(n) = 3 * T(n / 4) + n^3$$

$$log_4(3) < 2 \& d = 3$$
 recombination dominant $\implies \Theta(n^3)$

4.
$$T(n) = 0.5 * T(n / 2) + n$$

a < 1 we cannot apply master theorem

5.
$$T(n) = 4 * T(n / 4) + \sqrt{n}$$

$$log_4(4) = 1 \& d = 1/2$$
 decomposition dominant $\implies \Theta(n)$

6.
$$T(n) = T(n) + n/2$$

b = 1 we cannot apply master theorem

7.
$$T(n) = 5 * T(n / 5) + n/5$$

$$log_5(5) = 1 \& d = 1$$
 neutral $\implies \Theta(n \log n)$

8.
$$T(n) = 3 * T(n / 4) + n^0.9$$

$$log_4(3) < 0.9 \,\&\, d = 0.9$$
 recombination dominant $\implies \Theta(n^{0.9})$

9.
$$T(n) = 64 * T(n / 4) + n^3$$

$$log_4(64) = 3 \& d = 3 \implies \Theta(n^3 \log n)$$

10.
$$T(n) = 64 * T(n / 8) + n^n$$

d=n asymptotically will always be larger (recomposition) $\implies O(n^n)$