Topic 2 Basic Logic Gates

Electronic Switch – Transistors

• Transistors are the basis of binary digital circuits

Transistors operate at 2 values

Voltage: High / Low

Status: On / Off

Binary signal: 1 / 0

Evolution of electronic switches

- 1930s: Relays

- 1940s: Vacuum tubes

- 1950s: Discrete transistor

- 1960s: Integrated circuits (ICs)

Initially just a few transistors on IC

• Then tens, thousands, millions, tens of billions ...

Moore's Law

- IC capacity doubling about every 18 months for several decades
 - Known as "Moore's Law" named after Gordon Moore, co-founder of Intel
 - Predicted in 1965 predicted that components per IC would double roughly every 18 months or so
 - For a particular number of transistors, the IC shrinks by half every 18 months
 - Enables incredibly powerful computation in incredibly tiny devices
 - Today's ICs hold billions of transistors
 - The first Pentium processor (early 1990s) had only 3 million

An Intel Pentium processor IC having millions of transistors

CMOS Transistor

- CMOS Complementary Metal-Oxide-Semiconductor
- Transistors with CMOS technology

AND Logic

X	Y	Z = XY
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

Definition of AND operation

 $Z = X \cdot Y$ means Z = 1 if and only if both X = 1 and Y = 1; **AND** operator Variable

2-input AND gate

Truth Table

- Truth table creates the relationship between the inputs and outputs
 - Must include all the inputs to the device in the left columns
 - Must include all the outputs of the device in the right columns
 - The behavior of the circuit is implied by the table

Inputs $\begin{cases} I \\ I \end{cases}$	$ \begin{array}{cccc} 1 & \longrightarrow \\ 2 & \longrightarrow \\ 3 & \longrightarrow \end{array} $	Digital Circuit	→O1 ×	Outputs
---	---	--------------------	-------	---------

Number of combinations is 2^N; N is the number of the inputs

OI.	e	nputs		Outputs		
	Ĭ1	I2	I3	O1	O_2	
· (0	0	0	?	?	
	0	0	1	?	?	
	0	1	0	?	?	
	0	1	1	?	?	
	1	0	0	?	?	
	1	0	1	?	?	
-	1	1	0	?	?	
	1	1	1	?	?	

Example of Truth Table

а	b	F			
0	0				
0	1				
1	0				
1	1				
(a)					

а	b	С	F			
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				
(b)						

(a)

а	b	С	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
		(c))	

(C)

OR Logic

• Definition of OR operation

Z = X + Y means Z = 1 if either X = 1 or Y = 1, or both; X = X + YOR operator X = X + Y

2-input OR gate

NOT Logic

Definition of NOT operation

Z = X or $Z = \overline{X}$ means Z = 0 if X = 1; Z = 1 if X = 0; Z is the complement of X

NOT operator

NOT gate/Inverter

Logic Gates

• "Logic gates" are better digital circuit building blocks than switches (transistors)

Logics in Human Language

Motion-in-dark example

- a: signal from motion sensor, b: signal from light sensor
- Human language: Turn on lamp (F=1) if motion sensed (a) and no light (not b)
- Logic Equation: F = a AND NOT(b) = ab'
- Logic circuit: implementation of equation using logic gates

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
 - s: seat belt fastened
 - k: key inserted
 - p: person in seat
- Function description
 - Light on if person in seat,
 and seat belt not fastened,
 and key inserted
- Logic equationw = p AND NOT(s) AND k

Example: Implement Logic Equation with Logic Gates

Q: Implement the following equation with logic gates:
 F = a AND NOT(b OR NOT(c))

Precedence of Logic Operations

From Logic Equation to Logic Circuit

• There exists a correspondence between a Logic Equation and its logic circuit.

Logic Circuit:

A net of logic gates.

Logic Equation and Logic Circuit

• $F = x OR (NOT y AND Z) = x + y' \cdot z = x + y'z$

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 0 + 0 \cdot \bullet 0$
$= 0 + 1 \cdot 0$
= 0 + 0
=0

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	?	?	?
0	1	0	?	?	?
0	1	1	?	?	?
1	0	0	?	?	?
1	0	1	?	?	?
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 0 + 0' \bullet 1$
$=0+1 \bullet 1$
= 0 + 1
= 1

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	?	?	?
0	1	1	?	?	?
1	0	0	?	?	?
1	0	1	?	?	?
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 0 + 1' \cdot 0$
$= 0 + 0 \bullet 0$
= 0 + 0
= 0

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	?	?	?
1	0	0	?	?	?
1	0	1	?	?	?
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

F = 0 + 1 • 1
$= 0 + 0 \cdot 1$
= 0 + 0
=0

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	?	?	?
1	0	1	?	?	?
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 1 + 0 \cdot \bullet 0$
$=1+1 \bullet 0$
= 1 + 0
= 1

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	?	?	?
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

F = 1 + 0'• 1
$= 1 + 1 \cdot 1$
= 1 + 1
= 1

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	?	?	?
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 1 + 1' \bullet 0$
$=1+0 \bullet 0$
= 1 + 0
= 1

X	y	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	?	?	?

• $\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$

$F = 1 + 1' \cdot 1$
$= 1 + 0 \cdot 1$
= 1 + 0
= 1

X	у	Z	y'	y'z	F
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Build A Truth Table: Another Approach

 Q: Use truth table to define function F(a,b,c) that is 1 only when abc is 5 or greater in binary

а	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Representations of I/O Relationship: Equation, Truth Table, & Circuit

• Another example: G = x'y'z + x'yz + xy'

Timing Diagram: Another Representations of I/O Relationship

• Timing diagram of one signal shows the response to changes on a signal in voltage levels with time

Timing Diagrams for Gates

хy	F				 	 	
0 0	0	X	0	1	1	0	0
0 1	0	X		-			
1 0	0				 	 	
1 1	1	Υ .	0	0	1	1	0
x+y	F						
0 0	0	X•Y	0	0	1	0	0
0 1	1				 		
1 0	1	V.V	0	1	1	1	0
1 1	1	X+Y	U	1	1	<u> </u> 	
X	F				 		
0	1	X'	1	0	0	1	1
_1	0				 	 	

More Gates

- NAND: Opposite of AND ("NOT AND")
- NOR: Opposite of OR ("NOT OR")
- XOR (⊕): outputs 1 when inputs have odd number of 1's
- XNOR: Opposite of XOR ("NOT XOR")

- AND in CMOS: NAND with NOT
- OR in CMOS: NOR with NOT
- So NAND/NOR more common

Recall Overflow Detection Method 2

Simpler method: Detect difference between carry-in to sign bit and carryout from sign bit

(c)

(a)

Gates with Multiple Inputs

- AND and OR gates may have more than two inputs
- Three-input AND gate responds with logic 1 output if and only if all three inputs are logic 1 (may be generalized)
- Four-input OR gate responds with logic 1 if any input is logic 1; its output becomes 0 if and only if all inputs are logic 0 (may be generalized)

Some Circuit Drawing Conventions

Integrated Circuit

- Integrated Circuit (IC) chip
 - Contains logic components and/or devices for constructing digital circuits
- Integration Levels
 - Small-Scale Integration (SSI)
 - Fewer than 10 gates
 - Medium-Scale Integration (MSI)
 - 10 to 1000 gates
 - Large-Scale Integration (LSI)
 - Thousands of gates
 - Very Large-Scale Integration (VLSI)
 - Millions of gates
 - Ultra Large-Scale Integration (ULSI)
 - Billions of gates

— ...