তৃতীয় অধ্যায় পদার্থের গঠন (Structure of Matter)

হাইড্রোজেন পরমাণুর বিভিন্ন শক্তিস্তরে ইলেকট্রনের বিন্যাস।

কৌতুহলী মানুষের স্বাভাবিক চিন্তা হলো, আমাদের চারপাশের জিনিসপুলো কী দিয়ে তৈরি? আমাদের শরীরই বা কী দিয়ে তৈরি? হ্যাঁ, আমাদের মতো প্রাচীন দার্শনিকেরাও এ নিয়ে বহু চিন্তাভাবনা করেছেন। প্রাচীন গ্রিক দার্শনিকেরা ভাবতেন মাটি, পানি, বায়ু এবং আগুন ইত্যাদি মৌলিক পদার্থ আর অন্য সকল বস্তু এদের মিশ্রণে তৈরি।

গ্রিসের দার্শনিক ডেমোক্রিটাস প্রথম বলেছিলেন, প্রত্যেক পদার্থের একক আছে যা অতি ক্ষুদ্র আর অবিভাজা। তিনি এর নাম দেন এটম। কোনো বৈজ্ঞানিক পরীক্ষা দিয়ে এটি প্রমাণ করা সম্ভব হয়নি এবং সে সময়ের সবচেয়ে আরিস্টেটল বড বিজ্ঞানী এর বিরোধিতা করেছিলেন তাই এটি কোনো গ্রহণযোগ্যতা পায়নি। প্রায় 2500 বছর পর 1803 সালে ব্রিটিশ বিজ্ঞানী জন ডাল্টন বিভিন্ন পরীক্ষায় প্রাপত ফলাফলের উপর ভিত্তি করে ডেমোক্রিটাসের ধারণাপ্রসূত পরমাণু সম্পর্কে একটি মতবাদ দেন। এই মতবাদ অনুসারে প্রতিটি পদার্থ অজস্র ক্ষুদ্র এবং অবিভাজ্য কণার সমন্বয়ে গঠিত। তিনি ্বু দেন। এই মতবাদ অনুসারে আতাত বিধান সক্ষম কুলার নাম দেন Atom, যার অর্থ পরমাণু। পরে ঠু দার্শনিক ডেমোক্রিটাসের সম্মানে এ একক ক্ষুদ্র কণার নাম দেন Atom, যার অর্থ পরমাণু। পরে

প্রমাণিত হয় যে, পরমাণু অবিভাজ্য নয়। এদের ভাঙলে পরমাণুর চেয়েও ক্ষুদ্র কণিকা ইলেকট্রন, প্রোটন, নিউট্রন ইত্যাদি পাওয়া যায়। অর্থাৎ পরমাণু কতকগুলো ক্ষুদ্রতর কণার সমন্বয়ে গঠিত। পরমাণুর গঠন সম্পর্কিত বিভিন্ন মডেল, পরমাণুর সাংগঠনিক কণাসমূহ, পরমাণুর ইলেকট্রন বিন্যাস ইত্যাদি এ অধ্যায়ে আলোচনা করা হবে।

এ অধ্যায় পাঠ শেষে আমরা

- মৌলের ইংরেজি ও ল্যাটিন নাম থেকে তাদের প্রতীক লিখতে পারব।
- মৌলিক ও স্থায়ী কণিকাগুলোর বৈশিষ্ট্য বর্ণনা করতে পারব।
- পারমাণবিক সংখ্যা, ভর সংখ্যা, আপেক্ষিক পারমাণবিক ভর ব্যাখ্যা করতে পারব।
- আপেক্ষিক পারমাণবিক ভর থেকে আপেক্ষিক আণবিক ভর হিসাব করতে পারব।
- পরমাণুর ইলেকট্রন, প্রোটন ও নিউট্রন সংখ্যা হিসাব করতে পারব।
- আইসোটোপের ব্যবহার ব্যাখ্যা করতে পারব।
- পরমাণুর গঠন সম্পর্কে রাদারফোর্ড ও বোর পরমাণু মডেলের বর্ণনা করতে পারব।
- রাদারফোর্ড ও বোর প্রমাণু মডেলের মধ্যে কোনটি বেশি গ্রহণযোগ্য তা ব্যাখ্যা করতে পারব।
- পরমাণুর বিভিন্ন কক্ষপথে এবং কক্ষপথের বিভিন্ন উপস্তরে পরমাণুর ইলেকট্রনসমূহকে বিন্যাস করতে পারব।

3.1 মৌলিক ও যৌগিক পদার্থ (Elements and Compounds)

মৌলিক পদার্থ

সোনা, রুপা বা লোহা ইত্যাদি বিশুন্দ পদার্থকে তুমি যতই ভাঙ না কেন সেখানে তাদের কুদ্রতর কণা ছাড়া আর কিছু পাবে না। যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ বা মৌল বলে। এরকম আরও কিছু মৌলের উদাহরণ হলো নাইট্রোজেন, ফসফরাস, কার্বন, অক্সিজেন, হিলিয়াম, ক্যালসিয়াম, আর্গন, ম্যাগনেসিয়াম, সালফার ইত্যাদি। এ পর্যন্ত 118টি মৌল আবিষ্কৃত হয়েছে। এগুলোর মধ্যে 98টি মৌল প্রকৃতিতে পাওয়া যায়। বাকি মৌলগুলো গবেষণাগারে তৈরি করা হয়েছে। এগুলোকে কৃত্রিম মৌল বলে। তুমি কি জানো মানব শরীরে মোট 26 ধরনের ভিন্ন ভিন্ন মৌল আছে?

যৌগিক পদার্থ

ইতিমধ্যে তোমরা জেনেছ যে, মৌলিক পদার্থকে ভাঙলে শুধু ঐ পদার্থই পাওয়া যাবে। কিন্তু পানিকে যদি ভাঙা হয় (অর্থাৎ রাসায়নিকভাবে বিশ্লেষণ করা যায়) তবে কিন্তু দুটি ভিন্ন মৌল হাইড্রোজেন ও অক্সিজেন পাওয়া যাবে। আবার, লেখার চককে যদি ভাঙা যায় তাহলে সেখানে ক্যালসিয়াম, কার্বন ও অক্সিজেন এ তিনটি মৌল পাওয়া যাবে। যে সকল পদার্থকে ভাঙলে দুই বা দুইয়ের অধিক মৌল পাওয়া যায় তাদেরকে যৌগ বা যৌগিক পদার্থ বলে। যৌগের মধ্যে মৌলসমূহের সংখ্যার অনুপাত সব সময় একই থাকে। যেমন– যেখান থেকেই পানির নমুনা সংগ্রহ করা হোক না কেন রাসায়নিকভাবে বিশ্লেষণ করা হলে সব সময় দুই ভাগ হাইড্রোজেন এবং এক ভাগ অক্সিজেন পাওয়া যাবে অর্থাৎ পানিতে হাইড্রোজেন ও অক্সিজেনের পরমাণুর সংখ্যার অনুপাত 2 : 1। যৌগের ধর্ম কিন্তু মৌলসমূহের ধর্ম থেকে সম্পূর্ণ আলাদা। যেমন—সাধারণ তাপমাত্রায় হাইড্রোজেন ও অক্সিজেন গ্যাসীয় কিন্তু এদের থেকে উৎপন্ন যৌগ পানি সাধারণ তাপমাত্রায় তরল।

3.2 প্রমাণু ও অণু (Atoms and Molecules)

পরমাণু হলো মৌলিক পদার্থের কুদ্রতম কণা যার মধ্যে মৌলের গুণাগুণ বর্তমান থাকে। যেমন— নাইট্রোজেনের পরমাণুতে নাইট্রোজেনের ধর্ম বিদ্যমান আর অক্সিজেনের পরমাণুতে অক্সিজেনের ধর্ম বিদ্যমান থাকে।

দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধনের মাধ্যমে যুক্ত থাকলে তাকে অণু বলে। রাসায়নিক বন্ধন সম্পর্কে তোমরা পঞ্চম অধ্যায়ে বিস্তারিত জানবে। দুটি অক্সিজেন পরমাণু স্টুঁ (O) পরস্পরের সাথে যুক্ত হয়ে অক্সিজেন অণু (O_2) গঠিত হয়। আবার, একটি কার্বন পরমাণু (C) দুটি

ত৮ রসায়ন

অক্সিজেন পরমাণুর (O) সাথে যুক্ত হয়ে একটি কার্বন ডাই-অক্সাইড অণু (CO₂) গঠিত হয়।একই মৌলের একাধিক পরমাণু পরস্পরের সাথে যুক্ত হলে তাকে মৌলের অণু বলে।যেমন—O₂।ভিন্ন ভিন্ন মৌলের পরমাণু পরস্পর যুক্ত হলে তাকে যৌগের অণু বলে।যেমন—CO₂।

3.3 মৌলের প্রতীক (Symbols of Elements)

কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপত রূপকে প্রতীক বলে। প্রত্যেকটি মৌলকে সংক্ষেপে প্রকাশ করতে তাদের আলাদা আলাদা প্রতীক ব্যবহার করা হয়। মৌলের প্রতীক লিখতে কিছু নিয়ম অনুসরণ করতে হয়।

(a) প্রথমত মৌলের ইংরেজি নামের প্রথম অক্ষর দিয়ে

টেবিল 3.01: মৌলের নামকরণ।

মৌল	ইংরেজি নাম	প্রতীক
হাইড্রোজেন	Hydrogen	Н
অক্সিজেন	Oxygen	0
নাইট্রোজেন	Nitrogen	N

প্রতীক লেখা হয় এবং তা ইংরেজি বর্ণমালার বড় হাতের অক্ষর দিয়ে প্রকাশ করা হয়। যেমন- হাইড্রোজেন (Hydrogen) এর প্রতীক (H), কার্বন (Carbon) এর প্রতীক (C), অক্সিজেনের প্রতীক (O) ইত্যাদি।

(b) যদি দুই বা দুইয়ের অধিক মৌলের ইংরেজি নামের প্রথম অক্ষর একই হয় তবে একটি মৌলকে নামের প্রথম অক্ষর (ইংরেজি বর্ণমালার বড় হাতের) দিয়ে প্রকাশ করা হয়। অন্যগুলোর ক্ষেত্রে প্রতীকটি দুই অক্ষরে লেখা হয়। নামের প্রথম অক্ষরটি ইংরেজি বর্ণমালার বড় হাতের অক্ষর এবং নামের অন্য একটি অক্ষর ছোট হাতের অক্ষর দিয়ে লেখা হয়। য়েমন-

টেবিল 3.02: মৌলের নামকরণ (প্রথম অক্ষর এক)।

মৌল	ইংরেজি নাম	প্রতীক
কার্বন	Carbon	С
ক্রোরিন	Chlorine	c1
ক্যালসিয়াম	Calcium	Ca

মৌল	ইংরেজি নাম	প্রতীক
কোবাল্ট	Cobalt	Co
ক্যাডমিয়াম	Cadmium	Cd
ক্রোমিয়াম	Chromium	Cr

(c) কিছু মৌলের প্রতীক তাদের ল্যাটিন নাম থেকে নেওয়া হয়েছে। যেমন-

টেবিল 3.03: মৌলের নামকরণ (ল্যাটিন নাম)।

যৌল	ল্যাটিন নাম	প্রতীক
সোডিয়াম	Natrium	Na
কপার	Cuprum	Cu
পটাশিয়াম	Kalium	K
সিশভার	Argentum	Ag
টিন	Stannum	5n
এন্টিমনি	Stibium	Sb

মৌল	ল্যাটিন নাম	প্রতীক
পোল্ড	Aurum	Au
লেভ	Plumbum	Pb
টাংস্টেন	Wolfram	W
আয়ুরন	Ferrum	Fe
মারকারি	Hydrurgyrum	Hg

একক কাজ

কাজ: চতুর্থ অধ্যায়ের পর্যায় সারণি থেকে কিছু মৌলের নাম ও প্রতীক সংগ্রহ করে তোমার রসায়ন শিক্ষককে দেখাও।

3.4 সংকেত (Formula)

হাইড্রোজেনের একটি অণুকে প্রকাশ করতে H_2 ব্যবহার করা হয়। যার অর্থ হলো একটি
হাইড্রোজেনের অণুতে দুটি হাইড্রোজেনের
পরমাণু (H) আছে। আবার, পানির একটি
অণুকে প্রকাশ করতে H_2O ব্যবহার করা হয়।
এর অর্থ হচ্ছে পানির একটি অণুতে দুটি
হাইড্রোজেন (H) এবং একটি অক্সিজেন পরমাণু
(O) থাকে। পাশের তালিকায় সাধারণ কয়েকটি
অণুর সংকেত দেখানো হলো:

টেবিল 3.04: অণুর সংকেত।

অণুর নাম	সংকেত
নাইট্রোজেন	N ₂
অ্যামোনিয়া	NH ₃
ক্লোরিন	Cl ₂
সালফিউরিক এসিড	H ₂ SO ₄
হাইড্রোক্লোরিক এসিড	HCl

3.5 পরমাণুর সাংগঠনিক কণা (The fundamental particles of an atom)

একমাত্র হাইড্রোজেন ছাড়া সকল পদার্থের পরমাণু তিনটি কণা দিয়ে তৈরি। সেপুলো হচ্ছে ইলেকট্রন, প্রোটন এবং নিউট্রন। এই কণাপুলোকে পরমাণুর সাংগঠনিক (fundmental) বা মৌলিক কণা বলে। পরমাণুর কেন্দ্রে বা নিউক্লিয়াসে প্রোটন ও নিউট্রন থাকে এবং ইলেকট্রন নিউক্লিয়াসকে ঘিরে ঘুরতে থাকে।

ইলেকট্রন: ইলেকট্রন হলো পরমাণুর একটি মৌলিক কণিকা যার আধান বা চার্জ ঋণাত্মক (নেগেটিভ)। এ আধানের পরিমাণ -1.60×10^{-19} কুলম্ব। একে e প্রতীক দিয়ে প্রকাশ করা হয়। একটি ইলেকট্রনের ভর 9.11×10^{-28} g। ইলেকট্রনের আপেক্ষিক আধান -1 ধরা হয় এবং এর ভর প্রোটন ও নিউট্রনের ভরের তুলনায় 1840 গুণ কম। তাই এর আপেক্ষিক ভরকে শূন্য ধরা হয়।

প্রোটন: প্রোটন হলো পরমাণুর অপর একটি মৌলিক কণিকা যার চার্জ বা আধান ধনাত্মক (পজেটিভ)। এ আধানের পরিমাণ +1.60 × 10⁻¹⁹ কুলম্ব। একে p প্রতীক দিয়ে প্রকাশ করা হয়। একটি প্রোটনের ভর 1.67 × 10⁻²⁴ g। প্রোটনের আপেক্ষিক আধান +1 এবং আপেক্ষিক ভর 1 ধরা হয়।

নিউট্রন: নিউট্রন হলো পরমাণুর আরেকটি মৌলিক কণিকা যার কোনো আধান বা চার্জ নেই। হাইড্রোজেন ছাড়া সকল মৌলের পরমাণুতেই নিউট্রন রয়েছে। একে n প্রতীক দিয়ে প্রকাশ করা হয়। এর ভর প্রোটনের ভরের চেয়ে সামান্য বেশি। নিউট্রনের আপেক্ষিক আধান 0 আর আপেক্ষিক ভর 1 ধরা হয়।

পরমাণুর সাংগঠনিক বা মৌলিক কণাসমূহের বৈশিউমূলক ধর্মাবলি নিচের তালিকায় উপস্থাপন করা হলো।

মৌলিক কণিকার নাম	প্রতীক	প্রকৃত আধান বা চার্জ	প্রকৃত ভর	আপেক্ষিক আধান	আপেক্ষিক ভর
ইলেকট্রন	e	-1.60 × 10 ⁻¹⁹ কুলম্ব।	9.110 × 10 ⁻²⁸ g	-1	0
প্রোটন	р	+1.60 × 10 ^{−19} কুলম্ব।	1.673 × 10 ⁻²⁴ g	+1	1
নিউট্রন	n	0	1.675 × 10 ⁻²⁴ g	0	1

টেবিল 3.05: মৌলিক কণিকা।

3.5.1 পারমাণবিক সংখ্যা (Atomic Number)

কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলা হয়। যেমন— হিলিয়াম (He) এর একটি পরমাণুর নিউক্লিয়াসে দুটি প্রোটন থাকে। তাই হিলিয়ামের পারমাণবিক সংখ্যা হলো দুই। আবার, অক্সিজেন (O) পরমাণুর নিউক্লিয়াসে আটটি প্রোটন থাকে। তাই অক্সিজেনের পারমাণবিক সংখ্যা হলো আট। কোনো পরমাণুর পারমাণবিক সংখ্যা দ্বারা ঐ পরমাণুকে চেনা যায়। তাই পরমাণবিক সংখ্যাকে একটি মৌলের আইডি নাম্বারও বলা যায়। পারমাণবিক সংখ্যা 1 হলে ঐ পরমাণুটি হাইড্রোজেন, পারমাণবিক সংখ্যা 2 হলে ঐ পরমাণুটি হিলিয়াম। পারমাণবিক সংখ্যা 9 হলে ঐ পরমাণুটি ফ্লোরিন। অর্থাৎ পারমাণবিক সংখ্যাই কোনো পরমাণুর আসল পরিচয়। প্রোটন সংখ্যা বা পারমাণবিক সংখ্যাকে স্র দিয়ে প্রকাশ করা হয়। যেহেতু প্রত্যেকটা পরমাণুই চার্জ নিরপেক্ষ অর্থাৎ মোট চার্জ বা আধান শূন্য তাই পরমাণুর নিউক্লিয়াসে যতটি প্রোটন থাকে নিউক্লিয়াসের বাইরে ঠিক ততটি ইলেকট্রন থাকে।

3.5.2 ভরসংখ্যা (Mass Number)

কোনো পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে।
ভরসংখ্যাকে A দিয়ে প্রকাশ করা হয়। যেহেতু ভরসংখ্যা হলো প্রোটন সংখ্যা ও নিউট্রন সংখ্যার
যোগফল, কাজেই ভরসংখ্যা থেকে প্রোটন সংখ্যা বিয়োগ করলে নিউট্রন সংখ্যা পাওয়া যায়।
সোডিয়ামের (Na) ভরসংখ্যা হলো 23, এর প্রোটন সংখ্যা 11, ফলে এর নিউট্রন সংখ্যা হচ্ছে 23 –11
= 12

কোনো পরমাণুর পারমাণবিক সংখ্যা পরমাণুর প্রতীকের নিচে বাম পাশে লেখা হয়, পরমাণুর ভরসংখ্যা প্রতীকের বাম পাশে উপরের দিকে লেখা হয়। যেমন—সোডিয়াম পরমাণুর প্রতীক Na, এর পারমাণবিক সংখ্যা 11 এবং ভরসংখ্যা 23। এটাকে নিম্নান্তভাবে প্রকাশ করা যায়:

টেবিল 3.05: মৌলের সংক্ষিপত প্রকাশ।

মৌলের প্রতীক	পারমাণবিক সংখ্যা বা প্রোটন সংখ্যা Z	ভরসংখ্যা A	ইলেকট্রন সংখ্যা	নিউট্রন সংখ্যা A - Z	সংক্ষিপ্ত প্রকাশ
Н	1	1	1	0	1 _H
He	2	4	2	2	4 He

একক কাজ

শিক্ষার্থীর কাজ: ${}^{7}_{3}$ Li এবং ${}^{9}_{4}$ Be মৌলের ভর সংখ্যা, প্রোটন সংখ্যা এবং ইলেকট্রন সংখ্যা গণনা করো।

৪২

3.6 পরমাণুর মডেল (Atomic Model)

3.6.1 রাদারফোর্ডের পরমাণু মডেল

1911 খ্রিন্টাব্দে বিজ্ঞানী রাদারফোর্ড পরমাণুর গঠন সম্পর্কে একটি মডেল প্রদান করেন।এ মডেল অনুসারে-

- (a) প্রত্যেকটি পরমাণুর একটি কেন্দ্র আছে। এই কেন্দ্রের নাম নিউক্লিয়াস। নিউক্লিয়াসের ভেতরে প্রোটন ও নিউট্রন এবং নিউক্লিয়াসের বাইরে ইলেকট্রন অবস্থান করে। যেহেতু আপেক্ষিকভাবে ইলেকট্রনের ভর শূন্য ধরা হয় কাজেই নিউক্লিয়াসের ভেতরে অবস্থিত প্রোটন এবং নিউট্রনের ভরই পরমাণুর ভর হিসেবে বিবেচনা করা হয়।
- (b) নিউক্লিয়াস অত্যন্ত ক্ষুদ্র এবং নিউক্লিয়াসের বাইরে ও পরমাণুর ভেতরে বেশির ভাগ জায়গাই ফাঁকা।
- (c) সৌরজগতে সূর্যকে কেন্দ্র করে বিভিন্ন কক্ষপথে যেমন গ্রহগুলো ঘুরে তেমনি নিউক্লিয়াসকে কেন্দ্র করে বিভিন্ন কক্ষপথে ইলেকট্রনগুলো ঘুরছে। কোনো পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে নিউক্লিয়াসের বাইরে ঠিক সেই কয়টি ইলেকট্রন থাকে। যেহেতু প্রোটন এবং ইলেকট্রনের চার্জ একে অপরের সমান ও বিপরীত চিহ্নের, তাই পরমাণুর সামগ্রিকভাবে চার্জ শূন্য।
- (d) ধনাত্মক চার্জবাহী নিউক্লিয়াসের প্রতি ঋণাত্মক চার্জবাহী ইলেকট্রন এক ধরনের আকর্ষণ বল অনুভব করে। এই আকর্ষণ বল কেন্দ্রমুখী এবং এই কেন্দ্রমুখী বলের কারণে পৃথিবী যেরকম সূর্যের চারদিকে ঘুরে ইলেকট্রন সেরকম নিউক্লিয়াসের চারদিকে ঘুরে।

রাদারফোর্ডের পরমাণু মডেলকে সৌরজগতের সাথে তুলনা করা হয়েছে বলে এ মডেলটিকে সোলার সিস্টেম মডেল বা সৌর মডেল বলে। আবার, এ

চিত্র 3.01: রাদারফোর্ডের পরমাণু মডেল।

মডেলের মাধ্যমে বিজ্ঞানী রাদারফোর্ড সর্বপ্রথম নিউক্লিয়াস সম্পর্কে ধারণা দেন বলে এ মডেলটিকে নিউক্লিয়ার মডেলও বলা হয়।

রাদারফোর্ডের পরমাণু মডেলের সীমাবন্ধতা

রাদারফোর্ডই সর্বপ্রথম নিউক্লিয়াস এবং ইলেকট্রনের কক্ষপথ সম্বন্ধে ধারণা দেন। তিনিই সর্বপ্রথম একটি গ্রহণযোগ্য পরমাণু মডেল প্রদান করলেও তার পরমাণু মডেলের কিছু সীমাবন্ধতা ছিল। সেগুলো হলো:

(a) এই মডেল ইলেকট্রনের কক্ষপথের আকার (ব্যাসার্ধ) ও আকৃতি সম্বন্ধে কোনো ধারণা দিতে পারেনি।

- (b) সৌরজগতের সূর্য ও গ্রহগুলোর সামগ্রিকভাবে কোনো আধান বা চার্জ নেই কিন্তু পরমাণুতে ইলেকট্রন এবং নিউক্লিয়াসের আধান বা চার্জ আছে। কাজেই চার্জহীন সূর্য এবং গ্রহগুলোর সাথে চার্যযুক্ত নিউক্লিয়াস এবং ইলেকট্রনের তুলনা করা সঠিক নয়।
- (c) একের অধিক ইলেকট্রনবিশিক্ট পরমাণুতে ইলেকট্রনগুলো কীভাবে নিউক্লিয়াসের চারদিকে পরিভ্রমণ
 করে তার কোনো ধারণা এ মডেলে দেওয়া হয়নি।
- (d) ম্যাক্সওয়েলের তত্ত্বানুসারে ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘূর্ণনের সময় ক্রমাগত শব্ধি হারাতে থাকবে। ফলে ইলেকট্রনের ঘূর্ণন পথও ছোট হতে থাকবে এবং এক সময় ইলেকট্রনটি নিউক্লিয়াসে পতিত হবে। অর্থাৎ পরমাণুর অস্তিত্ব বিলুক্ত হবে। কিন্তু বাস্তবে সেটা ঘটে না অর্থাৎ ম্যাক্সওয়েলের তত্ত্বানুসারে রাদারফোর্ডের পরমাণু মডেল সঠিক নয়।

চিত্র 3.02: ইলেকট্রন শক্তি হারিয়ে নিউক্রিয়াসে পতিত হচ্ছে।

3.6.2 বোর পরমাণু মডেল

রাদারফোর্ডের পরমাণু মডেলের ত্রুটিগুলোকে সংশোধন করে 1913 খ্রিষ্টাব্দে বিজ্ঞানী নীলস্ বোর পরমাণুর একটি মডেল প্রদান করেন। এই মডেলকে বোরের পরমাণু মডেল বলা হয়। বোর পরমাণু মডেলের মতবাদগুলো এরকম—

- (a) পরমাণুতে যে সকল ইলেকট্রন থাকে সেগুলো নিউক্লিয়াসকে কেন্দ্র করে ইচ্ছামতো যেকোনো কক্ষপথে ঘুরতে পারে না। শুধু নির্দিষ্ট ব্যাসার্ধের কতগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘুরে। এই নির্দিষ্ট ব্যাসার্ধের অনুমোদিত বৃত্তাকার কক্ষপথগুলোকে প্রধান শক্তিস্তর বা শেল বা অরবিট বা স্থির কক্ষপথ বলে। স্থির কক্ষপথে ঘুরার সময় ইলেকট্রনগুলো কোনোরূগ শক্তি শোষণ বা বিকিরণ করে না। স্থির কক্ষপথকে n দ্বারা প্রকাশ করা হয়। $n=1,\,2,\,3,\,4$ ইত্যাদি। অন্যভাবে বলা যায়, n=1 হলে K প্রধান শক্তিস্তর, n=2 হলে L প্রধান শক্তিস্তর, n=3 হলে M প্রধান শক্তিস্তর, n=4 হলে M প্রধান শক্তিস্তর ইত্যাদি।
- (b) বোর মডেল অনুসারে কোনো শক্তিস্তরে ইলেকট্রনের কৌণিক ভরবেগ

৪৪

$$mvr = \frac{nh}{2\pi}$$

এখানে.

m হচ্ছে ইলেকট্রনের ভর (9.11 × 10⁻³¹ kg)

r হচ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিস্তরে ঘুরবে তার ব্যাসার্ধ

v ২চ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিস্তরে ঘুরবে সেই কক্ষপথে ইলেকট্রনের বেগ

h হচ্ছে প্লাংক ধ্বক (h = 6.626 × 10⁻³⁴ m² kg/s)

n হচ্ছে প্রধান শক্তিতর বা প্রধান কোয়ান্টাম সংখ্যা (n = 1, 2, 3 ইত্যাদি।)

এখানে যে শস্তিস্তরের n এর মান কম সেই শস্তিস্তর নিম্ন শস্তিস্তর এবং যে শস্তিস্তরের n এর মান বেশি সেই শস্তিস্তর উচ্চ শস্তিস্তর হিসেবে পরিচিত।

চিত্র 3.03: বোরের পরমাণু মডেল।

(c) কোনো প্রধান শক্তিত্তরে ঘূর্ণনের সময় ইলেকট্রন কোনো শক্তি শোষণ বা বিকিরণ করে না, তবে ইলেকট্রন যখন নিম্ন শক্তিত্বর থেকে উচ্চ শক্তিত্বর এ যায় তখন শক্তি শোষণ করে। আবার, ইলেকট্রন যখন উচ্চ শক্তিত্বর থেকে নিম্ন শক্তিত্বর এ যায় তখন শক্তি বিকিরণ হয়। এই শোষিত বা বিকিরিত শক্তির পরিমাণ

$$hv = \frac{hc}{\lambda}$$

এখানে, c হচ্ছে আলোর বেগ $(3 \times 10^8 \, \mathrm{ms}^{-1})$

v হচ্ছে শোষিত বা বিকিরিত শস্তির কম্পাঙ্ক (একক s⁻¹ বা Hz)

ম হচ্ছে শোষিত বা বিকিরিত শক্তির তরজা দৈর্ঘ্য (একক m)

ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে যাবার সময় যে আলো বিকিরণ করে তাকে প্রিজমের মধ্য দিয়ে Pass করালে পারমাণবিক বর্ণালির (atomic spectra) সৃষ্টি হয়।

বোরের পরমাণু মডেলের সাফল্য

(a) রাদারফোর্ডের পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র করে গ্রহ-উপগ্রহণুলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।

- (b) রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শব্তি শোষণ করলে ইলেকট্রন নিম্ন শব্তিস্তর থেকে উচ্চ শব্তিস্তরে ওঠে। আবার, পরমাণু শব্তি বিকিরণ করলে ইলেকট্রন উচ্চ শব্তিস্তর থেকে নিম্ন শব্তিস্তরে নেমে আসে।
- (c) রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রন বিশিষ্ট পরমাণু, হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

বোরের পরমাণু মডেলের সীমাবন্ধতা

বোর মডেলেরও কিছু সীমাবন্ধতা বা ত্রটি লক্ষ করা যায়। সেগুলো হচ্ছে:

- (a) বোর মডেলের সাহায্যে এক ইলেকট্রন বিশিন্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় সতি্য কিন্তু একাধিক ইলেকট্রন বিশিন্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না।
- (b) বোরের পারমাণবিক মডেল অনুসারে এক শক্তিস্তর থেকে ইলেকট্রন অন্য শক্তিস্তরে গমন করলে পারমাণবিক বর্ণালিতে একটিমাত্র রেখা পাবার কথা। কিন্তু শক্তিশালী যন্ত্র দিয়ে পরীক্ষা করলে দেখা যায় প্রতিটি রেখা অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি। প্রতিটি রেখা কেন অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি হয় বোর মতবাদ অনুসারে তার ব্যাখ্যা দেওয়া যায় না।
- (c) বোরের পরমাণুর মডেল অনুসারে পরমাণুতে শুধু বৃত্তাকার কক্ষপথ বিদ্যমান। কিন্তু পরে প্রমাণিত
 হয়েছে পরমাণুতে ইলেকট্রন শুধু বৃত্তাকার কক্ষপথেই নয় উপবৃত্তাকার কক্ষপথেও ঘুরে।

3.7 পরমাণুর শক্তিম্তরে ইলেকট্রন বিন্যাস (Orbital Electronic Configuration of Atoms)

বোরের মডেলে যে শক্তিস্তরের কথা বলা হয়েছে তাকে প্রধান শক্তিস্তর বলা হয়। প্রতিটি প্রধান শক্তিস্তরের সর্বোচ্চ ইলেকট্রন ধারণ ক্ষমতা $2n^2$ যেখানে $n=1,\,2,\,3,\,4$ ইত্যাদি। অতএব এ সূত্রানুসারে: ৪৬ বসায়ন

K শক্তিস্তারের জন্য n = 1 অতএব

K শস্তিস্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 1^2)$ টি = 2টি

L শক্তিস্তরের জন্য n = 2 অতএব

L শক্তিস্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 2^2)$ টি = 8টি

M শক্তিস্তরের জন্য n = 3 অতএব

M শক্তিস্তরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 3^2)$ টি = 18টি

N শস্তিস্তরের জন্য n = 4 অতএব

N শক্তিম্বরে সর্বোচ্চ ইলেকট্রন থাকতে পারে $2n^2 = (2 \times 4^2)$ টি = 32টি

টেবিল 3.06: মৌলের ইলেকট্রন বিন্যাস [H(1) থেকে Zn(30) পর্যন্ত]।

পারমাণবিক সংখ্যা	মৌল	K	L	М	N
1	Н	1			
2	Не	2			
3	Li	2	1		
4	Ве	2	2		
5	В	2	3		
6	С	2	4		
7	N	2	5		
8	0	2	6		
9	F	2	7		
10	No	2	8		
11	Na	2	8	1	
12	Mg	2	8	2	
13	Al	2	8	3	
14	Si	2	8	4	
15	P	2	8	5	

পারমাণবিক সংখ্যা	মৌল	K	L	M	N
16	S	2	8	6	
17	Cl	2	8	7	
18	Ar	2	8	8	
19	K	2	8	8	1
20	Ca	2	8	8	2
21	Sc	2	8	9	2
22	Ti	2	8	10	2
23	V	2	8	11	2
24	Cr	2	8	13	1
25	Mn	2	8	13	2
26	Fe	2	8	14	2
27	Co	2	8	15	2
28	Ni	2	8	16	2
29	Cu	2	8	18	1
30	Zn	2	8	18	2

হাইড্রোজেনের (H) পারমাণবিক সংখ্যা 1। ফলে এর ইলেকট্রন সংখ্যাও 1। তাই একটি ইলেকট্রন প্রথম শক্তিত্তর K-তে প্রবেশ করবে।

হিলিয়ামের (He) পারমাণবিক সংখ্যা 2. অতএব এর ইলেকট্রন সংখ্যাও 2 এবং এই ইলেকট্রন দুটি প্রথম শক্তিস্তর K-তে প্রবেশ করবে। লিথিয়ামের (Li) পারমাণবিক সংখ্যা 3। অতএব এর ইলেকট্রন সংখ্যাও 3 এবং ইলেকট্রন তিনটির প্রথম 2টি শক্তিস্তর K-তে প্রবেশ করবে। যেহেতু K প্রধান শক্তিস্তরে দুটির বেশি ইলেকট্রন থাকতে পারে না তাই এর তৃতীয় ইলেকট্রনটি দ্বিতীয় শক্তিস্তর L এতে প্রবেশ করবে।

অনুরূপভাবে, সোডিয়ামের (Na) পারমাণবিক সংখ্যা 11। তাই এর ইলেকট্রন সংখ্যাও 11, এই ইলেকট্রনগুলো 2টি K শক্তিস্তরে, ৪টি L প্রধান শক্তিস্তরে এবং বাকি 1টি ইলেকট্রন M শক্তিস্তরে প্রবেশ করবে।

3.06 নং তালিকায় উপস্থাপিত ইলেকট্রন বিন্যাস ভালোভাবে খেয়াল করলে দেখতে পাবে হাইড্রোজেন (H) থেকে আর্গন (Ar) পর্যন্ত ইলেকট্রন বিন্যাস উপরে যে নিয়ম বর্ণনা করা হয়েছে সেই নিয়ম অনুসারে হয়েছে। কিন্তু নিয়মটির ব্যতিক্রম লক্ষ করা যায় পটাশিয়াম (K) থেকে পরবর্তী মৌলগুলোতে।

আমরা জানি তৃতীয় শক্তিস্তর (M) এর সর্বোচ্চ ইলেকট্রন ধারণ ক্ষমতা 18টি। কিন্তু পটাশিয়ামের 19তম ইলেকট্রন এবং ক্যালসিয়ামের (Ca) 19তম ও 20তম ইলেকট্রন তৃতীয় শক্তিস্তর (M) কে অপূর্ণ রেখে চতুর্থ (N) শক্তিস্তরে প্রবেশ করেছে।

স্ক্যানডিয়ামের (Sc) ক্ষেত্রে 19তম ও 20 তম ইলেকট্রন দুটি চতুর্থ শক্তিস্তরে যাবার পর 21 তম ইলেকট্রনটি আবার তৃতীয় শক্তিস্তরে প্রবেশ করেছে। পারমাণবিক সংখ্যা 19 থেকে পরবর্তী মৌলগুলোতে আগে চতুর্থ প্রধান শক্তিস্তর N এ দুটি ইলেকট্রন প্রবেশ করার পর ইলেকট্রন তৃতীয় প্রধান শক্তিস্তর M এ প্রবেশ করে।

এরপরও Cr এর ইলেকট্রন বিন্যাসে বিশেষ ব্যতিক্রম লক্ষ করা যাচছে। এই বিষয়টি বোঝার জন্য আমাদের উপশক্তিস্তরের ধারণা থাকতে হবে।

3.7.1 উপশক্তিস্তরের ধারণা

আমরা দেখেছি প্রতিটি প্রধান শক্তিশ্তরকে n দিয়ে চিহ্নিত করা হয়। এই শক্তিশ্তরগুলো আবার কতগুলো উপশক্তিশ্তরে বিভক্ত থাকে এবং এই উপশক্তিশ্তরকে l দ্বারা চিহ্নিত করা হয়। l এর মান হয় o থেকে n -1 পর্যন্ত হয়। উপশক্তিশ্তরগুলোকে অরবিটাল বলা হয়। এই উপশক্তিশ্তর বা অরবিটালগুলোকে s, p, d, f ইত্যাদি নামে আখ্যায়িত করা হয়। বিভিন্ন উপশক্তিশ্তরের জন্য সম্ভাব্য l এর মান নিচে দেখানো হলো?

- n = 1 হলে l = 0 এবং অরবিটালের সংখ্যা একটি: 1s
- n = 2 হলে l = 0, 1 এক্ষেত্রে অরবিটালের সংখ্যা দুটি: 2s, 2p
- n = 3 হলে l = 0, 1, 2 অতএব এক্ষেত্রে অরবিটালের সংখ্যা তিনটি: 3s, 3p, 3d
- n = 4 হলে l = 0, 1, 2, 3 অর্থাৎ এক্ষেত্রে অরবিটালের সংখ্যা চারটি: 4s, 4p, 4d, 4f
- n=5 হলে $l=0,\,1,\,2,\,3,\,4$ অর্থাৎ এখানে অরবিটাল থাকার কথা পাঁচটি কিন্দু $4s,\,4p,\,4d,\,4f$

৪৮

এই প্রথম চারটি অরবিটালেই সবগুলো ইলেকট্রনের বিন্যাস করা সম্ভব বলে পরবর্তী অরবিটালের আর প্রয়োজন হয় না। n = 6, 7 এবং ৪ এর ক্ষেত্রেও এ নিয়মে ইলেকট্রন বিন্যাস ঘটে।

প্রতিটি প্রধান শক্তিস্তরে বর্তমান উপশক্তি শক্তিস্তরের সংখ্যা হলো (2l+1)। আবার প্রতিটি উপশক্তিস্তরের ইলেকট্রন ধারণ ক্ষমতা ২টি। সূতরাং, প্রতিটি শক্তিস্তরে ইলেকট্রন সংখ্যা হচ্ছে: 2(2l+1), আমরা এর মাঝে জেনে গেছি প্রতিটি পূর্ণ শক্তিস্তরে ইলেকট্রনের সংখ্যা হচ্ছে $2n^2$ । এবার তোমরা দেখবে সবগুলো অরবিটালের ইলেকট্রনের সংখ্যা যোগ করে আমরা $2n^2$ সংখ্যক ইলেকট্রন পাই কি না নিচের তালিকায় সেটি দেখানো হলো:

শক্তিস্তর n	শক্তিস্তর অনুযায়ী উপশক্তিস্তর <i>l-এর</i> মান		অরনিটালের প্রতীক	অরবিটালে মোট ইলেকট্রন সংখ্যা 2(2 l+1)	শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 2n²
1	0	s	1s	2	2
	0	5	25	2	
2	1	p	2p	6	2 + 6 = 8
	0	5	35	2	2
3	1	P	3р	6	2 * 6 * 10
	2	d	3d	10	= 18
	0	S	4s	2	
4	1	р	4p	6	2 * 6 + 10 +
4	2	d	4d	10	14 = 32
	3	f	4f	14	

টেবিল 3.07: শব্জিস্তারে ইলেকট্রন বিন্যাস (n = 1 থেকে 4 পর্যন্ত)।

3.7.2 পরমাণুতে ইলেকট্রন বিন্যাসের নীতি

পরমাণুতে ইলেকট্রন বিন্যাসের তিনটি নীতি আছে। এগুলো হলো : ১) পাওলির বর্জন নীতি, ২) আউফ-বাউ নীতি এবং ৩) হুশুস এর সূত্র। এই নীতিগুলোর আলোচনা তোমরা উচ্চ মাধ্যমিক শ্রেণির রসায়ন বই এ পাবে। এখানে এই নীতিগুলোর মূল ধারণা নিয়ে পরমাণুর ইলেকট্রন বিন্যাস সংক্ষেপে আলোচনা করা হলো।

পরমাণুতে ইলেকট্রন প্রথমে সর্বনিম্ন শক্তির অরবিটালে প্রবেশ করে এবং পরে ক্রমান্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে এবং যে অরবিটালের শক্তি বেশি সেই অরবিটালে ইলেকট্রন পরে প্রবেশ করবে। অরবিটালের মধ্যে কোনোটির শক্তি কম আর কোনোটির শক্তি বেশি তা অরবিটাল দুটির প্রধান শক্তিতরের মান (n) এবং উপশক্তিতরের মান (l) এর যোগফলের উপর নির্ভর করে। যে অরবিটালের (n + l) এর মান কম সেই অরবিটালের শক্তি কম এবং সেই অরবিটালেই ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে (n + l) এর মান যে অরবিটালের বেশি তার শক্তিও বেশি এবং সেই অরবিটালেই ইলেকট্রন পরে প্রবেশ করবে।

3d অরবিটালের জন্য n=3 এবং l=2 অতএব n+l এর মান 3+2=5 আবার 4s অরবিটালের জন্য $n=4,\,l=0$ অতএব n+l এর মান 4+0=4

কাজেই 3d অরবিটালের চেয়ে 4s অরবিটাল কম শস্তিসম্পন্ন। তাই ইলেকট্রন প্রথমে 4s অরবিটালে এবং পরে 3d অরবিটালে প্রবেশ করবে। আবার, দুটি অরবিটালের (n+1) এর মান যদি সমান হয় তাহলে যে অরবিটালটিতে n এর মান কম সেই অরবিটালের শস্তি কম হবে এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে।

যেমন-3d ও 4p এর n+l এর মান যথাক্রমে 3+2=5 এবং 4+1=5 কিন্তু যেহেতু 3d অরবিটালে n এর মান কম, তাই এ অরবিটালের শব্ভি কম এবং এ অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে 4p অরবিটালে n এর মান বেশি হওয়ায় এর শব্ভি 3d এর চেয়ে বেশি। তাই এ অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।

এ হিসাব অনুযায়ী পরমাণুর অরবিটালের ক্রমবর্ধমান শক্তি হবে এরকম :

উপস্তরগুলোর শস্তির ক্রমগুলো মনে রাখার জন্য 3.04 নং চিত্রে উপ্থাপিত ছকটির সাহায্য নেওয়া যায়:

আমরা দেখেছি s উপশব্তিস্তরে সর্বোচ্চ 2টি ইলেকট্রন, p উপশব্তিস্তরে সর্বোচ্চ 6টি ইলেকট্রন, d উপশব্তিস্তরে সর্বোচ্চ 10টি ইলেকট্রন এবং f উপশব্তিস্তরে সর্বোচ্চ 14টি ইলেকট্রন থাকতে পারে।

এই নীতি অনুসারে আমরা নিম্নের মৌলগুলোর ইলেকট্রন বিন্যাস বিশ্লেষণ করতে পারব।

$$K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

$$Ca(20) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$Sc(21) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

$$Ti(22) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$$

চিত্র 3.04: অরবিটালের শক্তিক্রম।

যেহেতু 4s অরবিটালের শক্তি 3d অরবিটালের শক্তির চেয়ে কম, তাই পটাশিয়ামের সর্বশেষ 19তম ইলেকট্রনটি 3d অরবিটালে প্রবেশ না করে 4s অরবিটালে প্রবেশ করে। আবার, স্ক্যাভিয়ামের ক্ষেত্রে ফর্মা লং-৭, রসায়ন- ৯ম-১০ম শ্রেণি

19 ও 20তম ইলেকট্রন দুটি 4s অরবিটাল পূর্ণ করে 21তম ইলেকট্রনটি পরবর্তী উচ্চ শব্তি সম্পন্ন (3d) অরবিটালে প্রবেশ করে।

বিশেষ করে মনে রাখতে হবে যে যখন ইলেকট্রন বিন্যাস লিখবে তখন একই প্রধান শক্তিস্তরের সকল উপশক্তিস্তর পাশাপাশি লিখবে। তা না হলে ইলেকট্রনের বিন্যাস লেখার সময় ভুল হয়ে যেতে পারে। যেমন Fe(26) এর জন্য:

$$n = 1$$
 $n = 2$ $n = 3$ $n = 4$

$$Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$$

 $Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

যদিও এক্ষেত্রে 4s অরবিটালে ইলেকট্রন 3d অরবিটালের আগে প্রবেশ করে।

3.7.3 ইলেকট্রন বিন্যাসের সাধারণ নিয়মের কিছু ব্যতিক্রম

সাধারণভাবে দেখা যায় যে, একই উপশক্তিম্তর p ও d এর অরবিটালগুলো অর্ধেক পূর্ণ (p³, d⁵) বা সম্পূর্ণরূপে পূর্ণ (p⁶, d¹⁰) হলে সে ইলেকট্রন বিন্যাস সুস্থিত হয়। তাই Cr(24) এর ইলেকট্রন বিন্যাস ব্যাভাবিকভাবে হওয়ার কথা: Cr(24) → 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ 4s² কিন্তু 3d⁵ অরবিটাল সুস্থিত অর্ধপূর্ণ হওয়ার আকাজ্জায় 4s অরবিটাল হতে একটি ইলেকট্রন 3d অরবিটালে আসে। ফলে ক্রোমিয়ামের ইলেকট্রন বিন্যাস হয় এরকম: Cr(24) →1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹

নিজে করো: Cu(29) এর ইলেকট্রন বিন্যাস স্বাভাবিকভাবে হওয়ার কথা: $Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$ কিন্তু কপারের ইলেকট্রন বিন্যাস হয় এরকম: $Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$, কারণটি ব্যাখ্যা করো।

3.8 আইসোটাপ (Isotopes)

যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটোপ বলে। 3.04 নং টেবিলে দেখানো তিনটি H পরমাণুরই প্রোটন সংখ্যা সমান। কাজেই তারা একে অপরের আইসোটোপ। হাইড্রোজেনের সাতটি আইসোটোপ (¹H, ²H, ³H, ⁴H, ⁵H, ⁶H এবং ²H) আছে। এর মধ্যে শুধু তিনটি প্রকৃতিতে পাওয়া যায়, অন্যগুলাকে ল্যাবরেটরিতে প্রস্তুত করা হয়।

প্রতীক নাম প্রোটন সংখ্যা নিউট্রন সংখ্যা ভর সংখ্যা Z A - Z হাইড্রোজেন বা H 1 1 0 প্রোটিয়াম $^{2}_{1}D$ ডিউটেরিয়াম

1

1

2

3

1

টেবিল 3.08: হাইড্রোজেনের তিনটি প্রাকৃতিক আইসোটোপ।

এখানে ডিউটেরিয়াম ও ট্রিটিয়াম হাইড্রেজেন পরমাণুর আইসোটোপ।

3.9 পারমাণবিক ভর বা আপেক্ষিক পারমাণবিক ভর (Atomic Mass or Relative Atomic Mass)

 ^{3}T

টিট্রিয়াম

আমরা আগেই জেনেছি যে, কোনো মৌলের পরমাণুর ভরসংখ্যা হলো পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফল। তাহলে ভরসংখ্যা নিশ্চয়ই হবে একটি পূর্ণসংখ্যা। কিন্তু তুমি যদি কপারের পারমাণবিক ভর দেখো তাহলে দেখবে সেটি হচ্ছে 63.5 আর ক্লোরিনের পারমাণবিক ভর হলো 35.5। এটা কীভাবে সম্ভব? আসলে এটি হলো আপেক্ষিক পারমাণবিক ভর। সেটি কী বা তার দরকারই বা কী? নিচে এই প্রশ্নগুলোর উত্তর আলোচনা করা হলো।

ফ্রোরিনের একটি পরমাণুর ভর হলো 3.16 × 10-23 গ্রাম। অ্যালুমিনিয়ামের একটি পরমাণুর ভর 4.482×10^{-23} গ্রাম।

কার্যক্ষেত্রে এত কম ভর ব্যবহার করা অনেক সমস্যা। সেজন্য একটি কার্বন 12 আইসোটোপের ভরের

কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ হচ্ছে $1.66 imes 10^{-24}$ গ্রাম কাজেই কোনো মৌলের আপেক্ষিক পারমাণবিক ভর হচ্ছে:

> মৌলের একটি পরমাণুর ভর একটি কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ

কোনো মৌলের একটি পরমাণুর প্রকৃত ভর জানা থাকলে আমরা আপেক্ষিক পারমাণবিক ভর বের করতে পারব। এক্ষেত্রে ঐ মৌলের একটি পরমাণুর প্রকৃত ভরকে 1.66×10^{-24} গ্রাম দ্বারা ভাগ করে আপেক্ষিক পারমাণবিক ভর বের করা যায়।

একক কাজ:

নিজে করো: Al এর 1টি পরমাণুর ভর 4.482×10^{-23} গ্রাম। Al পরমাণুর আপেক্ষিক পারমাণবিক ভর গণনা করে দেখাও।

প্রশ্ন অনুসারে Al এর একটি পরমাণুর ভর = 4.482×10^{-23} গ্রাম। আমরা জানি, কার্বন-12 আইসোটোপে পারমাণবিক ভরের $\frac{1}{12}$ তাংশ হলো, $1.66 \times 10^{-24} \mathrm{g}$

কাজেই
$$\mathrm{Al}$$
 মৌলের আপেক্ষিক পারমাণবিক ভর = $\frac{4.482 \times 10^{-23}}{1.66 \times 10^{-24}}$ গ্রাম $= 27$

কোনো মৌলের আপেক্ষিক পারমাণবিক ভর হলো দুটি ভরের অনুপাত, সেজন্য আপেক্ষিক পারমাণবিক ভরের কোনো একক থাকে না।

3.9.1 আইসোটোপের শতকরা হার থেকে মৌলের গড় আপেক্ষিক ভর নির্ণয়

প্রকৃতিতে বেশির ভাগ মৌলেরই একাধিক আইসোটোপ রয়েছে। তাই যে মৌলের একাধিক আইসোটোপ আছে সেই মৌলের সকল আইসোটোপের প্রকৃতিতে প্রাশ্ত শতকরা হার থেকে মৌলের গড় আপেক্ষিক ভর এর মান গণনা করতে নিচের ধাপগুলো অনুসরণ করা হয়।

ধাপ 1: প্রথমে কোনো মৌলের প্রত্যেকটি আইসোটোপের ভরসংখ্যা এবং প্রকৃতিতে প্রাপত ঐ আইসোটোপের শতকরা পরিমাণ গুণ দিতে হবে।

ধাপ 2: প্রাপ্ত গুণফলগুলোকে যোগ করতে হবে।

ধাপ 3: প্রাপ্ত যোগফলকে 100 দ্বারা ভাগ করলেই ঐ মৌলের গড় আপেক্ষিক ভর পাওয়া যাবে।

যেমন-ধরা যাক একটি মৌল A এর দুটি আইসোটোপ আছে। একটি আইসোটোপের ভরসংখ্যা p, প্রকৃতিতে প্রাপ্ত ঐ আইসোটোপের শতকরা পরিমাণ m, অপর আইসোটোপের ভরসংখ্যা q এবং প্রকৃতিতে প্রাপ্ত ঐ আইসোটোপের শতকরা পরিমাণ n তাহলে

মৌল
$$A$$
 এর গড় আপেক্ষিক পরমাণবিক ভর = $\frac{p \times m + q \times n}{100}$

উদাহরণ: প্রকৃতিতে ক্লোরিনের 2টি আইসোটোপ আছে ³⁵Cl এবং ³⁷Cl।

প্রকৃতিতে প্রাপ্ত ³⁵Cl এর শতকরা পরিমাণ 75% এবং প্রকৃতিতে প্রাপ্ত ³⁷Cl এর শতকরা পরিমাণ 25%

অতএব, ক্লোরিনের গড় আপেক্ষিক পারমাণবিক ভর =
$$\frac{35 \times 75 + 37 \times 25}{100}$$
 = 35.5

এখানে উল্লেখ্য, পর্যায় সারণিতেও ক্লোরিনের গড় আপেক্ষিক পারমাণবিক ভর 35.5 লেখা আছে। পর্যায় সারণিতে যে পারমাণবিক ভর লেখা আছে তা মূলত গড় আপেক্ষিক পারমাণবিক ভর।

মৌলের গড় আপেক্ষিক ভর নির্ণয়ের প্রয়োগ

মৌলের গড় আপেক্ষিক পরমাণু ভর থেকে আইসোটোপের শতকরা পরিমাণ নির্ণয়: প্রকৃতিতে যদি কোনো মৌলের দুটি আইসোটোপ থাকে তাহলে সেই মৌলের গড় আপেক্ষিক পারমাণবিক ভর থেকে ঐ মৌলের বিভিন্ন আইসোটোপের প্রকৃতিতে প্রাত্ত শতকরা পরিমাণ নির্ণয় করা যায়।

উদাহরণ:

প্রকৃতিতে কপারের দুটি আইসোটোপ আছে 63 Cu এবং 65 Cu। কপারের গড় পারমাণবিক আপেক্ষিক ভর 63.5।

ধরা যাক, প্রকৃতিতে প্রাপত 63 Cu এর শতকরা পরিমাণ x% এবং প্রকৃতিতে প্রাপত 65 Cu এর শতকরা পরিমাণ (100-x)%

এখানে, কপারের গড় আপেন্দিক পরমাণবিক ভর =
$$\frac{x \times 63 + (100 - x) \times 65}{100}$$
 = 63.5 বা. $x = 75\%$

প্রকৃতিতে প্রাপত ⁶³Cu এর শতকরা পরিমাণ = 75 % এবং প্রকৃতিতে প্রাপত ⁶⁵Cu এর শতকরা পরিমাণ (100-75)% = 25%

3.9.2 আপেক্ষিক পারমাণবিক ভর থেকে আপেক্ষিক আণবিক ভর নির্ণয়

কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভর নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাপ্ত যোগফলই হলো ঐ অণুর আপেক্ষিক আণবিক ভর। আপেক্ষিক পারমাণবিক ভরকে পারমাণবিক ভর এবং আপেক্ষিক আণবিক ভরকে সাধারণভাবে আণবিক ভর হিসেবে বিবেচনা করা হয়।

উদাহরণ - ১

 ${
m H_2}$ অণুতে হাইড্রোজেন (H) পরমাণুর আপেক্ষিক পারমাণবিক ভর হলো 1 এবং পরমাণুর সংখ্যা— 2 তাই ${
m H_2}$ অণুর আপেক্ষিক আণবিক ভর হবে: $1\times 2=2$

উদাহরণ - ২

 ${
m H_2SO_4}$ অণুতে উপপথিত হাইড্রোজেন $({
m H})$ এর আপেক্ষিক পারমাণবিক ভর 1 এবং পরমাণুসংখ্যা 2, সালফার $({
m S})$ পরমাণুর আপেক্ষিক পারমাণবিক ভর 32 এবং পরমাণুর সংখ্যা 1 এবং অক্সিজেন পরমাণুর আপেক্ষিক পারমাণবিক ভর 16 এবং পরমাণুর সংখ্যা 4। অতএব, ${
m H_2SO_4}$ এর ${
m M}$ আপেক্ষিক আণবিক ভর হবে $1\times 2+32\times 1+16\times 4=98$

त्रभाशन 68

3.10 তেজস্ক্রিয় আইসোটোপ ও তাদের ব্যবহার (Radioactive Isotopes and Their Uses)

এই অধ্যায়ে আমরা আইসোটোপ সম্পর্কে জেনেছি। কিছু কিছু আইসোটোপ আছে যাদের নিউক্লিয়াস স্বতঃস্ফুর্তভাবে (নিজে নিজেই) ভেঙে আলফা, বিটা, গামা ইত্যাদি তেজস্ক্রিয় রশ্মি নির্গত করে। একটি মৌলের যে সকল আইসোটোপ তেজক্ষিয় রশ্মি নিঃশরণ করে তাদেরকে তেজক্ষিয় আইসোটোপ বলে। এখন পর্যন্ত এ ধরনের আইসোটোপের সংখ্যা 3000 থেকে বেশি। এদের মধ্যে কিছু প্রকৃতিতে পাওয়া গেছে, অন্যগুলো গবেষণাগারে তৈরি করা হয়েছে। বিভিন্ন আইসোটোপ এবং তাদের তেজক্ষিয়তা নিয়ে তোমাদের পদার্থবিজ্ঞান বইয়ে বিশ্তারিত আলোচনা করা হয়েছে। তাই এখানে শুধু তাদের কিছু ব্যবহার নিয়ে আলোচনা করা হলো।

তেজন্ধিয় আইসোটোপ এর নিয়ন্ত্রিত ব্যবহার দিয়ে মানুষ অনেক কিছু করতে পারে যেটি অন্যভাবে করা দুঃসাধ্য ছিল। বর্তমানে তেজস্ক্রিয় আইসোটোপ চিকিৎসাক্ষেত্রে, কৃষিক্ষেত্রে, খাদ্য ও বীজ সংরক্ষণে, বিদ্যুৎ উৎপাদনে, কোনো কিছুর বয়স নির্ণয়সহ আরও অনেক ক্ষেত্রে ব্যবহার করা হয়।

3.10.1 চিকিৎসাক্ষেত্রে

চিকিৎসাক্ষেত্রে বর্তমানে বিভিন্ন প্রয়োজনে তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হচ্ছে। যেমন:

রোগ নির্ণয়ে

আইসোটোপ ব্যবহার করে একজন ব্লোগীর রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব।এ পদ্ধতিতে ইঞ্জেকশনের মাধ্যমে তেজব্ধিয় আইসোটোপ টেকনিশিয়াম-99 (⁹⁹Tc) কে শরীরের ভেতরে প্রবেশ করানো হয়। এই আইসোটোপ যখন শরীরের নির্দিষ্ট স্থানে জমা হয় তখন ঐ তেজস্ক্রিয় আইসোটোপ গামা রশ্মি বিকিরণ করে, তখন বাইরে থেকে গামা রশ্মি শনান্তকরণ ক্যামেরা দিয়ে সেই স্থানের ছবি তোলা সম্ভব। এই তেজব্রুয় আইসোটোপ টেকনিশিয়াম-99 এর লাইফটাইম 6 ঘণ্টা। তাই সামান্য সময়েই এর তেজক্ষিয়তা শেষ হয়ে যায় বলে এটি অনেক নিরাপদ।

রোগ নিরাময়ে

সর্বপ্রথম থাইরয়েড ক্যানসার নিরাময়ে তেজক্ষিয় আইসোটোপ ব্যবহার করা হয়। রোগীকে পরিমাণমতো তেজব্ধিয় আইসোটোপ ¹³¹। সমৃন্ধ দ্রবণ পান করানো হয়। এই আইসোটোপ থাইরয়েডে পৌঁছায়। এ আইসোটোপ থেকে বিটা রশ্মি নির্গত হয় এবং থাইরয়েডের ক্যানসার কোষকে ধ্বংস করে। এছাড়া ইরিডিয়াম আইসোটোপ ব্রেইন ক্যানসার নিরাময়ে ব্যবহার করা হয়। টিউমারের উপস্থিতি নির্ণয় ও নিরাময়ে তেজব্বিয় আইসোটোপ ⁶⁰Co ব্যবহার করা হয়। ⁶⁰Co থেকে নির্গত গামা রশ্মি ক্যানসারের 😓 কোষকলাকে ধ্বংস করে। রক্তের লিউকোমিয়া রোগের চিকিৎসায় ³²P এর ফসফেট ব্যবহার করা হয়। 🎗

3.10.2 কৃষিক্ষেত্রে

ফসলের পুষ্টিতে

ফসলের পুষ্টির জন্য জমিতে পরিমাণমতো সার ব্যবহার করতে হয়। সার মূল্যবান বস্তু। তাই অতিরিম্ভ ব্যবহার করা আর্থিক ক্ষতির কারণ। একদিকে প্রয়োজনের অতিরিক্ত সার ব্যবহার পরিবেশের ক্ষতির কারণ, অপরদিকে প্রয়োজনের চেয়ে কম পরিমাণ সার ব্যবহার করা হলে ফসলের উৎপাদন কম হয়। তেজক্ষিয় আইসোটোপ ব্যবহার করে জমিতে কী পরিমাণ নাইট্রোজেন ও ফসফরাস আছে তা জানা যায়। আর তা জেনে জমিতে আরও কী পরিমাণ নাইট্রোজেন ও ফসফরাস দিতে হবে তারও হিসাব করা যায়। উদ্ভিদ মূলের মাধ্যমে তেজস্ক্রিয় নাইট্রোজেন ও তেজস্ক্রিয় ফসফরাস গ্রহণ করে এবং তা উদ্ভিদের শরীরের বিভিন্ন অংশে শোষিত হয়। এসব তেজক্ষিয় আইসোটোপ থেকে তেজক্ষিয় রশ্মি নির্গত হয়। গাইগার মুলার কাউন্টার ব্যবহার করে এ তেজস্ক্রিয় রশ্মি শনাক্ত ও পরিমাপ করা হয়।

ক্ষতিকারক পোকামাকড় নিয়ন্ত্রণ করতে

ফসলের জন্য ক্ষতিকারক পোকামাকড় সব সময়ই মারাত্মক হুমকিস্বরূপ। এগুলো যেমন ফসলের উৎপাদন কমায় তেমনই এদের মাধ্যমে রোগজীবাণুও উদ্ভিদে প্রবেশ করে। এসব পোকামাকড় ধ্বংস করার জন্য ফসলে এবং জমিতে কীটনাশক দেওয়া হয়। এ কীটনাশক পরিবেশ ও আমাদের শরীরের জন্য ক্ষতিকর। শুধু তাই নয়, এ কীটনাশক ক্ষতিকারক পোকামাকড়ের সাথে সাথে অনেক উপকারী পোকামাকড়ও ধ্বংস করে। তেজস্ক্রিয় আইসোটোপসমুদ্ধ কীটনাশক ব্যবহারের মাধ্যমে জানা সম্ভব হয়েছে সর্বনিম্ন কতটুকু পরিমাণ কীটনাশক একটি ফসলের জন্য ব্যবহার করা যাবে।

ফসলের মানোন্নয়নে

বিভিন্ন ধরনের তেজস্ক্রিয় রশ্মির নিয়ন্ত্রিত বাবহারের মাধ্যমে উদ্ভিদ কোষের জিনগত পরিবর্তন ঘটিয়ে উন্নত মানের ফসল উৎপাদন করা হয়।

3.10.3 বিদ্যুৎ উৎপাদনে

কিছু কিছু পরমাণুকে ভেঙে ক্ষুদ্র ক্ষুদ্র পরমাণুতে পরিণত করলে অর্থাৎ ফিশান বিক্রিয়া ঘটালে প্রচুর পরিমাণে তাপশন্তি নির্গত হয়। এই তাপশন্তি ব্যবহার করে জেনারেটর দিয়ে বিদ্যুৎ উৎপন্ন করা হয়। আমরা সেটিকে নিউক্লিয়ার বিদ্যুৎকেন্দ্র বলি। তোমাদের পদার্থবিজ্ঞান বইয়ের চতুর্থ অধ্যায়ে এ সম্পর্কে বিস্তারিত আলোচনা করা হয়েছে।

বাংলাদেশে পাবনা জেলার রূপপুরে বাংলাদেশ সরকার পারমাণবিক বিদ্যুৎকেন্দ্র স্থাপন করতে যাচ্ছে। এ পারমাণবিক বিদ্যুৎকেন্দ্র স্থাপিত হলে দুই হাজার চারশ মেগাওয়াট বিদ্যুৎ উৎপাদন হবে বলে 💸 আশা করা হচ্ছে।

চিত্র 3.05: পাবনার বৃপপুর নিউক্লিয়ার বিদ্যুৎকেন্দ্র।

3.10.4 তেজস্ক্রিয় আইসোটোপের ক্ষতিকর প্রভাব

তেজন্তিয় আইসোটোপ আমাদের অনেক উপকারে আসে সে কথা সত্যি কিন্তু এটি আমাদের জন্য ক্ষতির কারণও হতে পারে। তেজন্তিয় আইসোটোপ থেকে যে আলফা, বেটা ও গামা রশ্মি নির্গত হয় তা কোষের জিনগত পরিবর্তন ঘটাতে পারে যার ফলাফল হিসেবে ক্যানসারের মতো রোগ হতে পারে। দ্বিতীয় বিশ্বযুদ্ধে জাপানের হিরোশিমা ও নাগাসাকিতে পারমাণবিক বোমার বিস্ফোরণ ঘটেছিল, তার জন্য কয়েক লক্ষ জীবন ধ্বংস হয়েছে। 1986 সালে রাশিয়ার চেরোনোবিলে পারমাণবিক বিদ্যুৎকেন্দ্রে যে দুর্ঘটনা ঘটেছিল তার ফলে অনেক প্রাণ হারিয়েছে এবং ঐ এলাকায় পরিবেশ দূষণ ঘটেছে।

বহুনির্বাচনি প্রশ্ন

- 1, Z একটি মৌল যার প্রোটন সংখ্যা 111 এবং ভরসংখ্যা 252। নিচের কোনটি দ্বারা প্রমাণুটিকে প্রকাশ করা যায়?
 - (本) 111Z
- (খ) 111 252 Z
- (51) 252Z
- (되) 252Z
- 2. 'X' মৌলটির আপেক্ষিক পারমাণবিক ভর কত? (এখানে X প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়)
 - (ক) 148
- (약) 150
- (গ) 152
- (ঘ) 153

154X 75

আইসোটোপ

146X

পর্যাপ্ততার শতকরা

25

পরিমাণ

- 3. একটি মৌলের একটি পরমাণুর প্রকৃত ভর যদি 4.482 × 10-23 গ্রাম হয়, তবে এর আপেক্ষিক পারমাণবিক ভর হবে-
 - (ক) 25
- (খ) 40
- (গ) 29 (ঘ) 27
- 27 13 13 13 13
 - (i) প্রোটন সংখ্যা 13
 - (ii) ভরসংখ্যা 27
 - (iii) ইলেকট্রন সংখ্যা 10

নিচের কোনটি সঠিক?

- ii & i (季)
 - (খ) ii ও iii
- (গ) i ও iii
- (ঘ) i, ii ও iii

- পটাশিয়ামের পারমাণবিক সংখ্যা কত?
 - (季) 15
- (학) 17
- (গ) 19
- (되) 21
- N শেলে কয়টি উপশক্তিস্তর থাকে?
 - (季) 1
- (킥) 2
- (গ) 3
- (智) 4
- 7. Sc এর পারমাণবিক সংখ্যা 21। Sc এর সঠিক ইলেকট্রন বিন্যাস কোনটি?

 - (작) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ (약) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
 - (গ) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹ 4s² (및) 1s² 2s² 2p⁶ 3s² 3p⁶

সূজনশীল প্রশ্ন

- 1. একটি মৌলের পরমাণুর মডেল আঁকার জন্য বলা হলে নবম শ্রেণির ছাত্র ফরিদ নিচের চিত্রটি অঞ্চন করণ।
 - (ক) পারমাণবিক সংখ্যা কাকে বলে?
 - (খ) $^{64}_{29}$ X এবং $^{64}_{30}$ Y পরমাণু দুটির নিউক্লিয়ন সংখ্যা সমান কিন্তু নিউট্রন সংখ্যা ভিন্ন–ব্যাখ্যা করো।
 - (গ) ফরিদের আঁকা চিত্রটি যে পরমাণু মডেলের সীমাবন্ধতা নির্দেশ করে সেই পরমাণু মডেলটি বর্ণনা করো।
 - (ঘ) অঞ্চিত চিত্র অনুসারে পরমাণু কেন স্থায়ী হবে না
 — তা আলোচনা করো।

- 2. A মৌল = ⁶⁰Co, B মৌল = ³²P, C যৌগ = H₂SO₄
 - (ক) প্রতীক কাকে বলে?
 - (খ) পরমাণুতে কখন বর্ণালির সৃষ্টি হয়? ব্যাখ্যা করো।
 - (গ) C যৌগের আপেক্ষিক আণবিক ভর বের করো।
 - (घ) A এবং B এর আইসোটোপগুলো আমাদের জীবনে গুরুত্বপূর্ণ ভূমিকা রাখে

 –ব্যাখ্যা করো।

চতুর্থ অধ্যায় পর্যায় সারণি

(Periodic Table)

একটি ভিন্ন ধরনের পর্যায় সারণি।

2016 সাল পর্যন্ত পৃথিবীতে মোট 118টি মৌলিক পদার্থ আবিষ্কৃত হয়েছে। রসায়ন অধ্যয়ন ও গবেষণার জন্য সব কয়টি মৌলের ভৌত ও রাসায়নিক ধর্ম সম্পর্কে ধারণা থাকা প্রয়োজন। মৌলিক পদার্থগুলোর মধ্যে কিছু মৌলিক পদার্থ একই রকম ধর্ম প্রদর্শন করে। যে সকল মৌলিক পদার্থ একই রকম ধর্ম প্রদর্শন করে আদেরকে একই গ্রুপে রেখে সমগ্র মৌলিক পদার্থের জন্য একটি ছক তৈরি করার চেন্টা দীর্ঘদিন থেকেই চলছিল। কয়েক শ বছর ধরে বিভিন্ন বিজ্ঞানীর প্রচেন্টা, অনেক পরিবর্তন, পরিবর্ধনের ফলে আমরা মৌলগুলো সাজানোর এই ছকটি পেয়েছি, যেটা পর্যায় সারণি বা Periodic table নামে পরিচিত। এ পর্যায় সারণি রসায়নের জগতে বিজ্ঞানীদের এক অসামান্য অবদান। এ পর্যায় সারণি এবং তার বৈশিষ্ট্য সম্পর্কে কারও ভালো ধারণা থাকলে শুধু এই 118টি মৌলের বিভিন্ন ধর্ম নয় বরং এ সকল মৌল দ্বারা গঠিত অসংখ্য যৌগের ধর্মাবলি সম্পর্কে সাধারণ ধারণা জন্মে। এই অধ্যায়ে পর্যায়

সারণি এবং পর্যায় সারণিতে অবস্থিত মৌলসমূহের বিভিন্ন ধর্ম ও বৈশিষ্ট্য সম্পর্কে একটি সাধারণ ধারণা দেওয়ার চেষ্টা করা হয়েছে।

এ অধ্যায় পাঠ শেষে আমরা

- পর্যায় সারণি বিকাশের পউভূমি বর্ণনা করতে পারব।
- মৌলের সর্ববহিঃস্তর শক্তিস্তরের ইলেকট্রন বিন্যাসের সাথে পর্যায় সারণির প্রধান গ্রুপগুলোর সম্পর্ক নির্ণয় করতে পারব (প্রথম 30টি মৌল)।
- একটি মৌলের পর্যায় শনান্ত করতে পারব।
- পর্যায় সারণিতে কোনো মৌলের অবস্থান জেনে এর ভৌত ও রাসায়নিক ধর্ম সম্পর্কে ধারণা করতে পারব।
- মৌলসমূহের বিশেষ নামকরণের কারণ বলতে পারব।
- পর্যায় সারণির পুরুত্ব ব্যাখ্যা করতে পারব।
- পর্যায় সারণির একই গ্রুপের মৌল দ্বারা গঠিত য়ৌগের একই ধরনের ধর্ম প্রদর্শন করতে পারব।
- পরীক্ষণের সময় কাচের য়য়পাতির সঠিক ব্যবহার করতে পারব।
- পরীক্ষণ কাজে সতর্কতা অবলম্বন করতে পারব।
- পর্যায় সারণি অনুসরণ করে মৌলসমূহের ধর্ম অনুমানে আগ্রহ প্রদর্শন করতে পারব।

4.1 পর্যায় সারণির পটভূমি (Background of Periodic Table)

মানুষ প্রাচীনকাল থেকে বিক্ষিপতভাবে পদার্থ এবং তাদের ধর্ম সম্পর্কে যে সকল ধারণা অর্জন করেছিল পর্যায় সারণি হচ্ছে তার একটি সন্মিলিত রূপ। পর্যায় সারণি একজন বিজ্ঞানীর একদিনের পরিশ্রমের ফলে তৈরি হয়নি। অনেক বিজ্ঞানীর অনেক দিনের অক্লান্ত পরিশ্রমের ফলে আজকের এই আধুনিক পর্যায় সারণি তৈরি হয়েছে।

1789 সালে ল্যাভয়সিয়ে অক্সিজেন, নাইট্রোজেন, হাইড্রোজেন, ফসফরাস, মার্কারি, জিংক এবং সালফার ইত্যাদি মৌলিক পদার্থসমূহকে ধাতু ও অধাতু এই দুই ভাগে ভাগ করেন। ল্যাভয়সিয়ের সময় থেকেই মৌলগুলোকে বিভিন্ন ভাগে ভাগ করার চিন্তাভাবনা শুরু হয় যেন একই ধরনের মৌলিক পদার্থগুলো একটি নির্দিউ ভাগে থাকে।

1829 সালে বিজ্ঞানী ডোবেরাইনার লক্ষ করেন তিনটি করে মৌলিক পদার্থ একই রকমের ধর্ম প্রদর্শন করে। তিনি প্রথমে পারমাণবিক ভর অনুসারে তিনটি করে মৌল সাজান। এরপর তিনি লক্ষ করেন দ্বিতীয় মৌলের পারমাণবিক ভর প্রথম ও তৃতীয় মৌলের পারমাণবিক ভরের যোগফলের অর্ধেক বা তার কাছাকাছি, একে ডোবেরাইনারের ত্রশ্বীসূত্র বলে। বিজ্ঞানী ডোবেরাইনার ক্লোরিন, ব্রোমিন ও আয়োজিনকে প্রথম ত্রশ্বী মৌল হিসেবে চিহ্নিত করেন।

1864 সাল পর্যন্ত আবিষ্কৃত মৌলসমূহের জন্য নিউল্যান্ড অন্টক সূত্র নামে একটি সূত্র প্রদান করেন। এই সূত্র অনুযায়ী মৌলসমূহকে যদি পারমাণবিক ভরের ছোট থেকে বড় অনুযায়ী সাজানো যায় তবে যেকোনো একটি মৌলের ধর্ম তার অন্টম মৌলের ধর্মের সাথে মিলে যায়।

1869 সালে রাশিয়ান বিজ্ঞানী মেডেলিফ সকল মৌলের ধর্ম পর্যালোচনা করে একটি পর্যায় সূত্র প্রদান করেন। সূত্রটি হলো: "মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি তাদের পারমাণবিক ভর বৃশ্বির সাথে পর্যায়ক্রমে আবর্তিত হয়।"

এ সূত্র অনুসারে তিনি তখন পর্যন্ত আবিষ্কৃত 63টি মৌলকে 12টি আনুভূমিক সারি আর ৪টি খাড়া কলামের একটি ছকে পারমাণবিক ভর বৃদ্ধি অনুসারে সাজিয়ে দেখান যে, একই কলাম বরাবর সকল মৌলের ধর্ম একই রকমের এবং একটি সারির প্রথম মৌল থেকে শেষ মৌল পর্যন্ত মৌলগুলোর ধর্মের ক্রমান্বয়ে পরিবর্তন ঘটে। এই ছকের নাম দেওয়া হয় পর্যায় সারণি (Periodic Table)।

মেন্ডেলিফের পর্যায় সারণির আরেকটি সাফল্য হচ্ছে কিছু মৌলিক পদার্থের অগ্তিত্ব সম্পর্কে সঠিক ভবিষ্যদ্বাণী। সে সময় মাত্র 63টি মৌল আবিক্ষৃত হওয়ার কারণে পর্যায় সারণির কিছু ঘর ফাঁকা থেকে যায়। মেন্ডেলিফ এই ফাঁকা ঘরগুলোর জন্য যে মৌলের ভবিষ্যদ্বাণী করেছিলেন পরবর্তীকালে সেগুলো সত্য প্রমাণিত হয়।

	1									
1	1 1 H Hydrogen হাইড্রোকেন	2		পা	গ্রুপ সং রমাণবিক সং	_	24		রমাণবিক ভ	গর
2	3 7 Li Lithium ভিথিয়াম	Be Beryllium calafeiru		প্য	র্গায় সংখ্যা	4	Cr Chron ক্রামিং	nium	ঠীক বৈলের নাম	
3	Na Sodium সোভিয়াম	Mg Magnesium भागरनशिक्षात्र	3	4	5	(5	7	8	9
4	19 39	20 40	21 45	22 48	23 51	24	52	25 55	26 56	27 58
	K Potassium পটাশিয়াম	Ca Calcium कालम्साम	Sc Scandium स्थानडिसाम	Ti Titanium हाइडानिसाम	V Vanadium ভানাভিয়াম	Cr Chron		Mn Manganese भाजानिक	Fe Iron धारतम	Co Cobalt বোবাণ্ট
5	37 85.5 Rb	Sr Strontium	Y Yttrium	40 91 Zr Zirconium	Nb Niobium	Mo Molybd		TC Technetium	Ru Ruthenium	Rh Rhodium
	<i>বু</i> বিভিয়াম	স্টোনসিয়াম	ইট্রিয়াম	किंद्रदक निसाम	নিওবিয়াম	মলিবতে		টেকদেসিয়াম	बुदर्शनिशाम	রোভিয়াম
6	55 133 Cs	56 137 Ba	পারমাণবিক সংখ্যা 57 থেকে	72 178.5 Hf	73 181 Ta	74 W	184	75 186 Re	76 190 Os	77 192 Ir
	Caesium সিজিয়াম	Barium द्वतिसाम	71	Hafnium शक्तिसम	Tantalum উत्तर्कान्त्रम	Tungs Gircob		Rhenium दानिशम	Osmium व्यमिसाम	Iridium ইরিভিয়াম
7	87 223 Fr	88 226 Ra	পারমাণবিক সংখ্যা	104 261 Rf	105 262 Db	106 Sg	263	107 262 Bh	108 265 Hs	109 266 Mt
	Francium ফ্রানসিয়াম	Radium রেডিয়াম	89 থোকে 103	Kutherfordium রাজারফোডিয়াম		Seabo	rgium গুৱাম	Bohrium বোরিয়াম	Hassium হালিয়াম	Metrenium মিটরেনিয়াম
			57 139	58 140	59 141	60 1	44	61 145	62 150	63 152
	स्मानशाना	हैं प्रजातित	La	Ce	Pr	Nd		Pm	Sm	Eu
	ল্যানথানাইড সারির মৌল		Lanthanum जान्यनाम	Cerium সিরিয়াম	Praseodymium প্রাদিগুড়িমিয়াম	Neodyn নিওডি	nium মন্ত্রাম	Promethiun প্রোমেধিয়াম	ı Samarium সামারিয়াম	Europium ইউরোপিয়াম
	नाराळकिया	ইড সারির	89 227 Ac	90 232 Th	91 231 Pa	92 U	238	93 237 Np	94 244 Pu	95 243 Am
	মৌল মৌল	< 9 711NN	Actinium व्याकिनियाम	Thorium থোরিয়াখ	Protactinium द्याद्धेकिपिनियान	Urani TStaf	2000	Neptunium নেপচুনিয়ায	Plutonium श्रुखीनिवाय	Americium व्यद्मदिनिसाम

							18
আধুনিক পর্যায়	সারণি	13	14	15	16	17	2 4 He Helium डिनिशाप
		5 11	6 12	7 14	8 16	9 19	10 20
		В	С	N	0	F	Ne
		Boron বোরন	Carbon कार्यन	Nitrogen नाहे द्विद्धान	Oxygen व्यक्तिदक्षन	Fluorine द्यादिन	Neon निग्रन
		13 27	14 28	15 31	16 32	17	18 40
		Al	Si	P	S	35.5 Cl	Ar
10 11	12	Aluminium আপুমিনিয়াম	Silicon সিলিকন	Phosphorus কদক্ষরদে	Sulfur मानकाद	Cholorine ক্লোরিন	Argon আর্থন
28 59 29 63.5	30 65	31 70	32 73	33 75	34 79	35 80	36 84
Ni Cu	Zn	Ga	Ge	As	Se	Br	Kr
Nickel Copper	Zinc	Gallium	Germenium	Arsenic	Selenium	Bromine	Krypton
নিকেল কপার	क्रिश्क	शालिसाम	ज्यादर्गनियाम	আর্সেনিক	সেলেনিয়াম	রোমিন	ক্রিপটন
46 106 47 108	48 112	49 115	50 119	51 122	52 128	53 127	54 131
Pd Ag	Cd	In	Sn	Sb	Те	I	Xe
Palladium Silver পালভিয়াম সিলভাব	Cadmium ক্যাডমিয়াম	Indium ইডিয়াম	Tin চিন	Antimony এন্টিমনি	Tellurium টেপুরিয়াম	lodine আয়োভিন	Xenon জেনন
78 195 79 197	80 201	81 204	82 207	83 209	84 209	85 210	86 222
Pt Au	Hg	Tl	Pb	Bi	Po	At	Rn
Platinum Gold প্লাটভাম গোল্ড	Mercury মাৰ্কাবি	Thallium খ্যালিয়াম	Lead লেভ	Bismuth বিসমাধ	Polonium পোলোনিয়াম	Astatine আপ্টাটাইন	Radon दास्म
110 269 111 272	112 285	113 284	114 285	115 288	116 293	117 294	118 294
Ds Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
Darmstadtium Roentgenium ভার্মতেউভসিয়াম রন্টজেনিয়াম	Copernicium কোপারনেসিয়াম	Nihonium নিহোনিয়াম	Flerovium ফ্লেনেভিয়াম		Exercise Control Control State Control Control	Tennessine টেনেসাইন	Oganesson ওগানেসন
64 157 65 159	66 163	67 165	68 167	69	70 173	71 175	
Gd Tb	Dy	Но	Er	169 Tm	Yb	Lu	
Gadolinium Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
গ্যাভোগিনিয়াম টার্বিয়াম 96 247 97 247	ভিসপ্রোসিয়াম 98 251	হলমিয়াম 99 252	আর্বিয়াম 100 257	थूलियाम 101 258	ইটারবিয়াম 102 259	्यूटिनियाभ 103 262	
Cm Bk	Cf	Es	Fm	Md	No	Lr	
Curium Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	
কুরিয়াম বাকেপিয়াম	ক্যালিফোর্নিয়াম	আইনস্টেনিয়াম	ফার্মিয়াম	মেডেগেভিয়াম	নোবেলিয়াম	লরেনসিয়াম	

0000

মেভেলিফের পর্যায় সারণির কিছু অুটি পরিলক্ষিত হয়। মেভেলিফ তার পর্যায় সারণিতে যে নিয়মানুযায়ী মৌলগুলো বসিয়েছিলেন সেই নিয়মানুযায়ী যে পরমাণুর পারমাণবিক ভর কম থাকবে সেই পরমাণু পর্যায় সারণিতে আগে বসবে এবং যে পরমাণুর পারমাণবিক ভর বেশি থাকবে সেই পরমাণু পর্যায় সারণিতে পরে বসবে। কিন্তু দেখা যায় মেভেলিফের পর্যায় সারণিতে আর্গনের পারমাণবিক ভর 40 এবং পটাশিয়াম এর পারমাণবিক ভর 39 হওয়া সত্ত্বেও একই গ্রুপের মৌলসমূহের ধর্মের মিল করানোর জন্য আর্গনকে পটাশিয়ামের আগে বসানো হয়েছিল। এরকম আরও অনেক মৌলের ক্ষেত্রে দেখা যায় পারমাণবিক ভর বেশি হওয়া সত্ত্বেও তাদেরকে কোনো কোনো মৌলের আগে পর্যায় সারণিতে বসানো হয়েছিল। এটি ছিল পর্যায় সারণির অুটি। এরকম আরও অনেক ত্রুটি মেভেলিফের পর্যায় সারণিতে লক্ষ করা যায়।

1913 সালে মোসলে পারমাণবিক ভরের পরিবর্তে **পারমাণবিক সংখ্যা** অনুযায়ী মৌলগুলোকে পর্যায় সারণিতে সাজানোর প্রস্তাব দেন।

পারমাণবিক সংখ্যা অনুসারে পর্যায় সারণিতে মৌলের স্থান দেওয়া হলে মেন্ডেলিফের পর্যায় সারণিতে আর্গনের পারমাণবিক সংখ্যা 18 এবং পটাশিয়াম এরপারমাণবিক সংখ্যা 19। কাজেই আর্গন পটাশিয়ামের আগে বসবে। কাজেই পারমাণবিক সংখ্যা অনুসারে পর্যায় সারণিতে মৌলের স্থান দেওয়া হলে এ রকম ত্তুটিগুলো সংশোধিত হয়।

আন্তর্জাতিক রসায়ন ও ফলিত রসায়ন সংস্থা (International Union of Pure and Applied Chemistry বা সংক্ষেপে IUPAC) এখন পর্যন্ত 118টি মৌলিক পদার্থকৈ শনান্ত করেছে। IUPAC সংস্থাটি আন্তর্জাতিকভাবে রসায়ন ও ফলিত রসায়নের বিভিন্ন নিয়মকানুন, ক্রমবর্ধমান পরিবর্তনের কোনটি গ্রহণ করা যায় এবং কোনটি বর্জন করা উচিত এই বিষয়পুলো দেখাশোনা এবং নিয়ন্ত্রণ করে। 118টি মৌলের মধ্যে বেশির ভাগ মৌলই প্রকৃতিতে পাওয়া যায় এবং বাকি কিছু মৌল ল্যাবরেটরিতে তৈরি করা হয়েছে।

ল্যাভয়সিয়ে মাত্র 33টি মৌল নিয়ে ছক তৈরির কাজ শুরু করেছিলেন। মেন্ডেলিফ 63টি আবিক্ষৃত মৌল এবং 4টি অনাবিক্ষৃত মৌল নিয়ে পর্যায় সারণি নামে যে ছকটি তৈরি করেছিলেন, বর্তমানে সেটি 118টি মৌলের আধুনিক পর্যায় সারণি হিসেবে প্রতিষ্ঠিত হয়েছে।

4.2 পর্যায় সারণির বৈশিষ্ট্য (Characteristics of the Periodic Table)

পর্যায় সারণি মূলত একটি ছক বা টেবিল। টেবিলে যেমন সারি (Row) এবং কলাম (Column) থাকে পর্যায় সারণিতেও তেমনি সারি ও কলাম আছে। পর্যায় সারণির বাম থেকে ডান পর্যন্ত বিস্তৃত

সারিগুলোকে পর্যায় এবং খাড়া কলামগুলোকে গ্রুপ বা শ্রেণি বলে। আধুনিক পর্যায় সারণির বর্গাকার ঘরগুলোতে মোট 118টি মৌল আছে। পর্যায় সারণিটি এই অধ্যায়ের শুরুতে দেখানো হয়েছে।

আধুনিক পর্যায় সারণির অনেক বৈশিষ্ট্য রয়েছে। পর্যায় সারণির দিকে লক্ষ রাখলে এই বৈশিষ্ট্যগুলো খুঁজে পাওয়া যাবে।

- (a) পর্যায় সারণিতে 7টি পর্যায় (Period) বা অনুভূমিক সারি এবং 18টি গ্রুপ বা খাড়া স্তম্ভ রয়েছে।
- (b) প্রতিটি পর্যায় বামদিকে গ্রুপ 1 থেকে শুরু করে ডানদিকে গ্রুপ 18 পর্যন্ত বিস্তৃত।
- (c) মূল পর্যায় সারণির নিচে আলাদাভাবে ল্যান্থানাইড ও অ্যাকটিনাইড সারির মৌল হিসেবে দেখানো হলেও এগুলো যথাক্রমে 6 এবং 7 পর্যায়ের অংশ।
- (d) (i) পর্যায় 1 এ শুধু 2টি মৌল রয়েছে।
 - (ii) পর্যায় 2 এবং পর্যায় 3 এ ৪টি করে মৌল রয়েছে।
 - (iii) পর্যায় 4 এবং পর্যায় 5 এ 18টি করে মৌল রয়েছে।
 - (iv) পর্যায় 6 এবং পর্যায় 7 এ 32টি করে মৌল রয়েছে।
- (e) (i) গ্রপ 1 এ 7টি মৌল রয়েছে।
 - (ii) গ্রুপ 2 এ 6টি মৌল রয়েছে।
 - (iii) গ্রপ 3 এ 32টি মৌল রয়েছে।
 - (iv) গ্রপ 4 থেকে গ্রপ 12 পর্যন্ত প্রত্যেকটি গ্রুপে 4টি করে মৌল রয়েছে।
 - (v) গ্রুপ 13 থেকে গ্রুপ 17 পর্যন্ত প্রত্যেকটিতে 6টি করে মৌল রয়েছে।
 - (vi) গ্রুপ 18 এ 7টি মৌল রয়েছে।

যে সকল মৌলের পারমাণবিক সংখ্যা 57 থেকে 71 পর্যন্ত এরকম 15টি মৌলকে ল্যান্থানাইড সারির মৌল বলা হয়। যে সকল মৌলের পারমাণবিক সংখ্যা 89 থেকে 103 পর্যন্ত এরকম 15টি মৌলকে অ্যাকটিনাইড সারির মৌল বলা হয়। ল্যান্থানাইড সারির মৌলগুলোর ধর্ম এত কাছাকাছি এবং অ্যাকটিনাইড সারির মৌলসমূহের ধর্ম এত কাছাকাছি যে তাদেরকে পর্যায় সারণির নিচে ল্যান্থানাইড সারির মৌল এবং অ্যাকটিনাইড সারির মৌল এবং আ্যাকটিনাইড সারির মৌল হিসেবে আলাদাভাবে রাখা হয়েছে।

যদি মৌলগুলোর ধর্মের ভিত্তিতে বিবেচনা করা হয় তাহলে নিচের বৈশিন্ট্যগুলো লক্ষ করা যায়:

- 1. একই পর্যায়ের বাম থেকে ডানের দিকে গেলে মৌলসমূহের ধর্ম ক্রমান্বয়ে পরিবর্তিত হয়।
- একই প্রপের মৌলগুলোর ভৌত এবং রাসায়নিক ধর্ম প্রায় একই রকমের হয়।

4.3 ইলেকট্রন বিন্যাস থেকে পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় (Determination of the Position of Elements in the Periodic Table from Their Electronic Configuration)

আমরা কোনো একটি মৌলের ইলেকট্রন বিন্যাস থেকে সহজেই মৌলটি কোন গ্রুপ এবং কোন পর্যায়ে রয়েছে সেটি বের করতে পারি। নিচে পর্যায় সারণিতে কোনো মৌলের অবস্থান নির্ণয়ের পন্ধতি বর্ণনা করা হলো।

পর্যায় নম্বর বের করার নিয়ম

কোনো মৌলের ইলেকট্রন বিন্যাসের সবচেয়ে বাইরের প্রধান শক্তিস্তরের নম্বরই ঐ মৌলের পর্যায় নম্বর। যেমন- Li এর ইলেকট্রন বিন্যাস হলো: Li(3) ightarrow $1 ext{s}^2 2 ext{s}^1$ । যেহেতু লিথিয়ামের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের শক্তিস্তর 2, তাই লিথিয়াম 2 নম্বর পর্যায়ের মৌল।

K এর ইলেকট্রন বিন্যাস হলো: $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ । যেহেতু পটাশিয়ামের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের শক্তিস্তর 4, তাই পটাশিয়াম 4 নম্বর পর্যায়ের মৌল।

গ্রুপ নম্বর বের করার নিয়ম

কোনো মৌলের গ্রুপ নম্বর বের করার কয়েকটি নিয়ম আছে।

নিয়ম 1: কোনো মৌলের ইলেকট্রন বিন্যাসের বাইরের প্রধান শক্তিস্তরে যদি শুধু s অরবিটাল থাকে তবে ঐ s অরবিটালের মোট ইলেকট্রন সংখ্যাই ঐ মৌলের গ্রপ নম্বর। যেমন- হাইড্রোজেন, H(1) মৌলের ইলেকট্রন বিন্যাস 1s1 । এখানে s অরবিটালে 1টি ইলেকট্রন আছে । কাজেই হাইডোজেন এর গ্রপ বা শ্রেণি নম্বর 1।

নিয়ম 2: কোনো মৌলের ইলেকট্রন বিন্যাসের বাইরের প্রধান শক্তিস্তর যদি শুধু s ও p অরবিটাল থাকে তবে ঐ s ও p অরবিটালের মোট ইলেকট্রন সংখ্যার সাথে 10 যোগ করলে যে সংখ্যা পাওয়া যায় সেই সংখ্যাই ঐ মৌলের গ্রপ নম্বর। যেমন: বোরন B(5) মৌলের ইলেকট্রন বিন্যাস 1s2 2s2 2p1। এখানে বোরনের বাইরের শেলে s অরবিটালে 2টি ইলেকট্রন ও p অরবিটালে 1টি ইলেকট্রন আছে। কাজেই বোরনের গ্রপ নম্বর 2 + 1 + 10 = 13

নিয়ম 3: কোনো মৌলের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের প্রধান শক্তিস্তরে যদি s অরবিটাল থাকে এবং আগের প্রধান শক্তিস্তরে যদি d অরবিটাল থাকে তবে s অরবিটাল ও d অরবিটালের ইলেকট্রন সংখ্যা যোগ করলেই গ্রুপ নম্বর পাওয়া যায়। যেমন: Fe(26) মৌলের ইলেকট্রন বিন্যাস 1s2 2s2 2p6 সংখ্যা যোগ করণেহ খুশ শ্বন সাত্যা সাম কর্মান্ত করিছে বিষয় আছে এবং তার আগের শক্তিকরে ৬ জুজির বিটাল আছে এবং তার আগের শক্তিকরে ৬ জুজির বিটাল আছে এবং তার আগের শক্তিকরে ৬ জুজির বিটাল আছে এবং তার আগের শক্তিকরে ১ জুজির বিটাল আগের প্রথমিকর বিটাল আগের প্রথমিকর বিটাল আগের প্রথমিকর বিটাল বিটাল

d অরবিটাল আছে। এখানে d অরবিটালে 6টি এবং s অরবিটালে 2টি ইলেকট্রন আছে। কাজেই আয়রনের গ্রুপ নম্বর 6 + 2 = 8।

তোমাদের বোঝার সুবিধার জন্য মৌলের সবচেয়ে বাইরের স্তরের ইলেকট্রন বিন্যাসকে লাল রং দিয়ে দেখানো হয়েছে।

টেবিল 4.01: মৌলের ইলেকট্রন বিন্যাস ও গ্রুপ নম্বর।

মৌল	মৌলের ইলেকট্রন বিন্যাস	পর্যায় নম্বর	গ্রুপ বা শ্রেণি নম্বর
H(1)	1s1	1	1 (নিয়ম 1)
He(2)	15 ²	1	18 (ব্যতিক্রম)
Li(3)			
Be(4)			
B(5)	1s ² 2s ² 2p ¹	2	2 + 1 + 10 = 13 (নিয়ম 2)
C(6)			
N (7)	1s ² 2s ² 2p ³	2	2 + 3 + 10 = 15 (নিয়ম 2)
0(8)	1s ² 2s ² 2p ⁴	2	2 + 4 + 10 = 16 (নিয়ম 2)
F(9)	1s ² 2s ² 2p ⁵	2	2 + 5 + 10 = 17 (নিয়ম 2)
Ne(10)	1s ² 2s ² 2p ⁶	2	2 + 6 + 10 = 18 (নিয়ম 2)
Na(11)			
Mg(12)	1s ² 2s ² 2p ⁶ 3s ²	3	2 (নিয়ম 1)
Al(13)			
Si(14)	1s ² 2s ² 2p ⁶ 3s ² 3p ²	3	2 + 2 + 10 = 14 (নিয়ম 2)
P (15)	1s ² 2s ² 2p ⁶ 3s ² 3p ³	3	2 + 3 + 10 = 15 (নিয়ম 2)
S (16)			
Cl(17)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	3	2 + 5 + 10 = 17 (নিয়ম 2)
Ar(18)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	3	2 + 6 + 10 = 18 (নিয়ম 2)
K(19)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	4	1 (নিয়ম 1)
Ca(20)	1s² 2s² 2p6 3s² 3p64s²	4	2 (নিয়ম 1)
Sc(21)			
Ti(22)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	4	2 + 2 = 4 (নিয়ম 3)
V(23)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²	4	2 + 3 = 5 (নিয়ম 3)

Cr(24)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹	4	1 + 5 = 6 (নিয়ম 3)
Mn(25)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	4	2 + 5 = 7 (নিয়ম 3)
Fe(26)			
Co(27)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	4	2 + 7 = 9 (নিয়ম 3)
Ni(28)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	4	2 + 8 = 10 (নিয়ম 3)
Cu(29)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	4	1 + 10 = 11 (নিয়ম 3)
Zn (30)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4	2 + 10 = 12 (নিয়ম 3)

শিক্ষার্থীর কাজ: উপরের ছকে পারমাণবিক সংখ্যা 3, 4, 6, 11, 13, 16, 21, 26 বিশিষ্ট মৌলের ইলেকট্রন বিন্যাস লেখো এবং ইলেকট্রন বিন্যাস থেকে পর্যায় সারণিতে সেগুলোর অবস্থান নির্ণয় করো।

4.4 ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিত্তি

(Electronic Configurations of Elements are the Main Basis of the Periodic Table)

ইলেকিট্রন বিন্যাসের মাধ্যমে কোনো মৌল কত নম্বর পর্যায় এবং কত নম্বর গ্রুপে অবস্থান করে তা বের করা যায়। আবার, যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকিট্রন বিন্যাস একই রকম সে সকল মৌল একই গ্রুপে অবস্থান করে। অপর্রদিকে যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকেট্রন বিন্যাস ভিন্ন রকম সে সকল মৌল ভিন্ন গ্রুপে অবস্থান করে।

টেবিল 4.02: মৌল ও ইলেকট্রন বিন্যাস।

গ্রুপ-1		
মৌল	ইলেকট্রন বিন্যাস	
H(1)	1s ¹	
Li(3)	1s ² 2s ¹	
Na(11)	1s ² 2s ² 2p ⁶ 3s ¹	
K(19)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	

গ্রুপ-2	
মৌল	ইলেকট্রন বিন্যাস
He(2)	1s ²
Be(4)	1s ² 2s ²
Mg(12)	1s ² 2s ² 2p ⁶ 3s ²
Ca(20)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²

যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 1টি সে সকল মৌল সাধারণত ইলেকট্রন দান করে ধনাত্মক আয়নে পরিণত হওয়ার প্রবণতা দেখায়। যেমন-সোডিয়ামের বাইরের শক্তিস্তরে 1টি ইলেকট্রন আছে। তাই সোডিয়াম ঐ 1টি ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়।

আবার যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 7টি সে সকল মৌল সাধারণত 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হবার প্রবণতা দেখায়। যেমন–ক্রোরিনের বাইরের শক্তিস্তরে 7টি ইলেকট্রন আছে। তাই ক্লোরিন 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়।

Cl
$$(1s^22s^22p^63s^23p^5) + e^- \longrightarrow Cl^-(1s^22s^22p^63s^23p^6)$$

অতএব ইলেকট্রন বিন্যাসের মাধ্যমে পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় ও মৌলসমূহের অনেক ধর্ম ব্যাখ্যা করা যায়। এজন্য ইলেকট্রন বিন্যাসকেই পর্যায় সারণির মূল ভিত্তি হিসেবে বিবেচনা করা হয়।

4.5 পর্যায় সারণির কিছু ব্যতিক্রম (Some Exceptions in the Periodic Table)

- (a) হাইড্রোজেনের অবস্থান: হাইড্রোজেন একটি অধাতু। কিন্তু পর্যায় সারণিতে হাইড্রোজেনকে তীব্র তিঙ্ৎ ধনাত্মক ক্ষার ধাতু Na, K, Rb, Cs, Fr এর সাথে গ্রুপ-1 এ স্থান দেওয়া হয়েছে। এর কারণ ক্ষার ধাতুর মতো H এর বাইরের প্রধান শক্তিতেরে একটিমাত্র ইলেকট্রন রয়েছে। আবার, হাইড্রোজেনের অনেক ধর্ম ক্ষার ধাতুপুলোর ধর্মের সাথে মিলে যায়। অন্যদিকে, হ্যালোজেন মৌল (F, Cl, Br, I) এর একটি পরমাণু যেমন একটি ইলেকট্রন গ্রহণ করতে পারে, হাইড্রোজেনও তেমনি একটি ইলেকট্রন গ্রহণ করতে পারে অর্থাৎ H এর অনেক ধর্ম হ্যালোজেন মৌলের ধর্মের সাথেও মিলে যায়। তবে হাইড্রোজেনের বেশির ভাগ ধর্ম ক্ষার ধাতুসমূহের ধর্মের সাথে মিলে যাওয়ায় একে ক্ষার ধাতুর সাথে গ্রুপ 1 এ স্থান দেওয়া হয়েছে।
- (b) **হিলিয়ামের অবস্থান:** হিলিয়ামের ইলেকট্রন বিন্যাস He(2)→ 1s²। হিলিয়ামের ইলেকট্রন বিন্যাস অনুসারে একে গ্রুপ-2 এ স্থান দেওয়া উচিত ছিল। কিন্তু গ্রুপ-2 এর মৌলসমূহ তীব্র তড়িৎ ধনাত্মক। এদের মৃৎক্ষার ধাতু বলে। অপরদিকে He একটি নিষ্কিয় গ্যাস। এর ধর্ম অন্যান্য নিষ্কিয় গ্যাস নিয়ন,

আর্গন, ক্রিপ্টন, জেনন, রেডন ইত্যাদির সাথে মিলে যায়। He এর ধর্ম কখনই তীব্র তড়িৎ ধনাত্মক মৃৎক্ষার ধাতুর মতো হয় না। তাই হিলিয়ামকে নিষ্ক্রিয় গ্যাসসমূহের সাথে গ্রুপ-18 তে স্থান দেওয়া হয়েছে।

(c) ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোর অবস্থান: পর্যায় সারণিতে ল্যান্থানাইড সারির মৌলগুলো 6 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত এবং অ্যাকটিনাইড সারির মৌলগুলো 7 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত। এই অবস্থানগুলোতে ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে বসালে পর্যায় সারণির সৌন্দর্য নন্ট হয়। কাজেই পর্যায় সারণিকে সুন্দরভাবে দেখানোর জন্য ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে পর্যায় সারণির নিচে আলাদাভাবে রাখা হয়েছে।

4.6 মৌলের পর্যায়বৃত্ত ধর্ম (Periodic Properties of Elements)

পর্যায় সারণিতে অবস্থিত মৌলগুলোর কিছু ধর্ম আছে, যেমন-ধাতব ধর্ম, অধাতব ধর্ম, পরমাণুর আকার, আয়নিকরণ শস্তু, তড়িৎ ঋণাত্মকতা ইলেকেট্রন আসন্তু ইত্যাদি। এসব ধর্মকৈ পর্যায়বৃত্ত ধর্ম বলে।

(a) ধাতব ধর্ম (Metallic Properties): যে সকল মৌল চকচকে, আঘাত করলে ধাতব শব্দ করে এবং তাপ ও বিদ্যুৎ পরিবাহী তাদেরকে আমরা ধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল এক বা একাধিক ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয় তাদেরকে ধাতু বলে। ধাতুর ইলেকট্রন ত্যাগের এই ধর্মকে ধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন ত্যাগ করতে পারবে সেই মৌলের ধাতব ধর্ম তত বেশি।

যেমন— লিথিয়াম (Li) একটি ধাতু কারণ Li একটি ইলেকট্রন ত্যাগ করে Li* এ পরিণত হয়।

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে ধাতব ধর্ম হ্রাস পায়।

(b) অধাতৰ ধৰ্ম (Non-metallic Properties): যে সকল মৌল চকচকে নয়, আঘাত করলে ধাতব শব্দ করে না এবং তাপ ও বিদ্যুৎ পরিবাহী নয় তাদেরকে আমরা অধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল এক বা একাধিক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয় তাদেরকে অধাতু বলে। অধাতুর ইলেকট্রন গ্রহণের এই ধর্মকে অধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন গ্রহণ করতে পারবে সেই মৌলের অধাতব ধর্ম তত বেশি।

যেমন- ক্লোরিন (Cl) একটি অধাতু কারণ Cl একটি ইলেকট্রন গ্রহণ করে Cl এ পরিণত হয়।

 $Cl + e^- \rightarrow Cl^-$

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে অধাতব ধর্ম বৃদ্ধি পায়।

যে সকল মৌল কোনো কোনো সময় ধাতুর মতো আচরণ করে এবং কোনো কোনো সময় অধাতুর মতো আচরণ করে তাদেরকে অর্ধধাতু বা অপধাতু বলা হয়। আবার আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল কোনো কোনো সময় ইলেকট্রন ত্যাগ করে এবং কোনো কোনো সময় ইলেকট্রন গ্রহণ করে তাদেরকে অপধাতু বলে। যেমন- সিলিকন (Si) একটি অপধাতু।

পর্যায় সারণির যেকোনো একটি পর্যায়ের দিকে লক্ষ করলে দেখা যাবে যে, বামদিকের মৌলগুলো সাধারণত ধাতু, মাঝের মৌলগুলো সাধারণত অর্ধধাতু বা অপধাতু এবং ডানদিকের মৌলগুলো সাধারণত অধাতু।

(c) পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ (Size of Atom/Atomic Radius): পরমাণুর আকার তথা পারমাণবিক ব্যাসার্ধ একটি পর্যায়বৃত্ত ধর্ম। যেকোনো একটি পর্যায়ের যতই বামদিক থেকে ডান দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ তত কমতে থাকে এবং যেকোনো একটি গ্রুপের যতই উপর দিক থেকে নিচের দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ তত বাড়তে থাকে।

একই পর্যায়ের বাম দিক থেকে যত ডান দিকে যাওয়া যায় পারমাণবিক সংখ্যা তত বাড়তে থাকে কিছু প্রধান শক্তিতেরের সংখ্যা বাড়ে না। পারমাণবিক সংখ্যা বাড়লে নিউক্লিয়াসে প্রোটন সংখ্যা বৃদ্ধি পায় এবং ইলেকট্রন সংখ্যাও বৃদ্ধি পায়। নিউক্লিয়াসের অধিক প্রোটন সংখ্যা এবং নিউক্লিয়াসের বাইরের অধিক ইলেকট্রন সংখ্যার মধ্যে আকর্ষণ বেশি হয় ফলে ইলেকট্রনগুলোর শক্তিতের নিউক্লিয়াসের কাছে চলে আসে, ফলে পরমাণুর আকার ছোট হয়ে যায়।

আবার, একই গ্রুপে যতই উপর থেকে নিচের দিকে যাওয়া যায় ততই বাইরের দিকে একটি করে নতুন শক্তিম্তর যুক্ত হয়। একটি করে নতুন শক্তিম্তর যুক্ত হলে পরমাণুর আকার বৃদ্ধি পায়।

একই গ্রুপের উপর থেকে নিচের দিকে গেলে
নিউক্লিয়াসের প্রোটন সংখ্যা এবং বাইরের
কক্ষপথের ইলেকট্রন সংখ্যা বৃদ্ধির জন্য আকর্ষণ
বৃদ্ধি হয়ে পরমাণুর আকার যতটুকু হ্রাস পায়,
নতুন একটি শক্তিম্তর যোগ হওয়ার কারণে

চিত্র 4.01: পরমাণুর আকারের পর্যায়বৃত্ত ধর্ম।

পরমাণুর আকার তার চেয়ে বেশি বৃদ্ধি পায়। যে কারণে উপরের মৌলের চেয়ে নিচের মৌলের আকার বড় হয়।

(d) আয়নিকরণ শক্তি (Ionization Energy): গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণু থেকে এক মোল ইলেকট্রন অপসারণ করে এক মোল ধনাত্মক আয়নে পরিণত করতে য়ে শক্তির প্রয়োজন হয়, তাকে ঐ মৌলের আয়নিকরণ শক্তি বলে। আয়নিকরণ শক্তি একটি পর্যায়নৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি

চিত্র 4.02: মৌলের আয়নিকরণ।

এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে আয়নিকরণ শন্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে আয়নিকরণ শন্তির মান কমে।

উদাহরণ

Na, Mg, Al, Si এর মধ্যে Si এর আয়নিকরণ শক্তির মান বেশি। কারণ এই মৌলগুলোর মধ্যে Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম। পক্ষান্তরে, এই মৌলগুলোর মধ্যে Na এর পারমাণবিক ব্যাসার্ধের মান বেশি বলে এদের মধ্যে সোডিয়ামের আয়নিকরণ শক্তির মান কম।

গ্রুপ-1 এর Li, Na, K, Rb, Cs, Fr ক্ষার ধাতুগুলোর মধ্যে Li এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম এজন্য এদের মধ্যে Li এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

আবার, গ্রুপ-17 এর F, Cl, Br, I এবং At মৌলগুলোর মধ্যে F এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, কাজেই এই মৌলগুলোর মধ্যে F এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

(e) ইলেকট্রন আসন্তি (Electron Affinities): গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণুতে এক মোল ইলেকট্রন প্রবেশ করিয়ে এক মোল ঋণাত্মক আয়নে পরিণত করতে যে শন্তি নির্গত হয়, তাকে ঐ মৌলের ইলেকট্রন আসন্তি বলে।

ইলেকট্রন আসন্তি একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে ইলেকট্রন আসন্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে ইলেকট্রন আসন্তির মান কমে।

একক কাজ

সমস্যা: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলোর মধ্যে কোনোটির ইলেকট্রন আসন্তি বেশি এবং কোনোটির ইলেকট্রন আসন্তি কম।

সমাধান: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলো পর্যায় সারণির 2 নং গ্রুপ-এর মৌল। এই মৌলগুলোর মধ্যে Be এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, এর জন্য Be এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি। আবার Ra এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি, এর জন্য Ra ইলেকট্রন আসন্তি সবচেয়ে কম।

সমস্যা: Na, Mg, Al, Si এর মধ্যে কার ইলেকট্রন আসন্তি বেশি বা কার ইলেকট্রন আসন্তির মান কম?

সমাধান: Na, Mg, Al, Si এর মৌলগুলো পর্যায় সারণির 3 নং পর্যায়ের মৌল। এই মৌলগুলোর মধ্যে Na-এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি এজন্য সোডিয়াম এর ইলেকট্রন আসন্তির মান সবচেয়ে কম। আবার, Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম সেজন্য এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি।

(f) তড়িৎ ঋণাত্মকতা (Electronegativity): দুটি পরমাণু যখন সমযোজী বন্ধনে আবন্ধ হয়ে অণুতে পরিণত হয় তখন অণুর পরমাণুগুলো বন্ধনের ইলেকট্রন দুটিকে নিজের দিকে আকর্ষণ করে। এই আকর্ষণকে তড়িৎ ঋণাত্মকতা বলা হয়। তড়িৎ ঋণাত্মকতা একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে তড়িৎ ঋণাত্মকতার মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে তড়িৎ ঋণাত্মকতার মান কমে।

যেমন- 3 পর্যায়ে মৌলগুলোর মাঝে Na পরমাণুর তড়িৎ ঋণাত্মকতার মান সবচেয়ে কম এবং Cl এর তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি। সাধারণত কোনো মৌলের পরমাণুর আকার ছোট হলে তড়িৎ ঋণাত্মকতার মান বেশি হয় এবং কোনো মৌলের পরমাণুর আকার বড় হলে তড়িৎ ঋণাত্মকতার মান কম হয়।

4.7 বিভিন্ন গ্রুপে উপস্থিত মৌলগুলোর বিশেষ নাম (The Special Names of Elements Present in Various Groups)

মৌলসমূহের ভৌত ও রাসায়নিক ধর্মের উপর ভিত্তি করে বিভিন্ন সময়ে তাদের বিশেষ নাম দেওয়া হয়েছিল। আমরা ইতোমধ্যে ধাতু, অধাতু, অর্ধধাতু বা অপধাতুর কথা আলোচনা করেছি। এছাড়া রয়েছে:

কর্মা নং-১০, রসায়ন- ৯ম-১০ম প্রেপি

ক্ষার ধাতু: পর্যায় সারণির 1 নং গ্রুপে 7টি মৌল আছে। এদের মধ্যে হাইড্রোজেন ছাড়া বাকি 6টি মৌলকে (লিথিয়াম, সোডিয়াম, পটাশিয়াম, রুবিডিয়াম, সিজিয়াম এবং ফ্রানসিয়াম) ক্ষারধাতু বলে। এই ছয়টি মৌলের প্রত্যেকটি পানিতে দ্রবীভূত হয়ে হাইড্রোজেন গ্যাস এবং ক্ষার তৈরি করে বলে এদেরকে ক্ষারধাতু (Alkali Metals) বলা হয়।

মৃৎক্ষার ধাতু: পর্যায় সারণির 2 নং গ্রুপে বেরিলিয়াম, ম্যাগনেসিয়াম, ক্যালসিয়াম, স্ট্রনসিয়াম, বেরিয়াম এবং রেডিয়াম এই 6টি মৌল আছে। এই মৌলগুলোকে মৃৎক্ষার ধাতু বলে। এই ধাতুগুলোকে মাটিতে বিভিন্ন যৌগ হিসেবে পাওয়া যায়। আবার, এরা ক্ষার তৈরি করে। এজন্য সামগ্রিকভাবে এদের মৃৎক্ষার ধাতু (Alkaline Earth Metals) বলা হয়।

মুদ্রা ধাতু: গ্রুপ-11 এর 4টি মৌল হচ্ছে কপার, সিলভার, গোল্ড এবং রন্টজেনিয়াম। এই চারটি মৌলের মধ্যে প্রথম 3টি মৌলকে মুদ্রা ধাতু (Coin Metals) বলা হয়, কারণ এই গ্রুপের সবচেয়ে নিচের মৌল রন্টজেনিয়াম (Rg) ছাড়া অন্য যে 3টি মৌল আছে তা দিয়ে প্রাচীনকালে মুদ্রা তৈরি হতো এবং ব্যবসাবাণিজ্য ও বিনিময়ের মাধ্যম হিসেবে ব্যবহার করা হতো।

হ্যালোজেন গ্রুপ: গ্রুপ-17 এর 6টি মৌলকে হ্যালোজেন (Halogen) বলা হয়। এই হ্যালোজেন গ্রুপের 6টি মৌল হচ্ছে: ফ্লোরিন (F), ক্লোরিন (Cl), ব্রোমিন (Br), আয়োডিন (I), অ্যাস্টাটিন (As) এবং টেনেসিন (Ts)। এসব হ্যালোজেন মৌলকে X দ্বারা প্রকাশ করা হয়। হ্যালোজেন মানে লবণ উৎপাদনকারী এবং এর মূল উৎস সামুদ্রিক লবণ। হ্যালোজেন মৌলগুলোর সাথে ধাতু ফুব্তু হয়ে লবণ গঠিত হয়। যেমন— F এর সাথে Na ফুব্তু হয়ে সোডিয়াম ফ্লোরাইড লবণ কিংবা Cl এর সাথে Na ফুব্তু হয়ে সোডিয়াম ফ্লোরাইড (NaCl) বা খাদ্যলবণ গঠিত হয়। এরা নিজেরাই নিজেদের মধ্যে ইলেকট্রন ভাগাভাগি করে দ্বিমৌল অণু তৈরি করে, যেমন— Cl₂, I₂ ইত্যাদি।

নিষ্ক্রিয় গ্যাস: পর্যায় সারণির 18 নং গ্রুপের মৌলসমূহকে নিষ্ক্রিয় গ্যাস (Inert Gases) বলা হয়। মৌলগুলো হলো: হিলিয়াম (He), নিয়ন (Ne), আর্গন (Ar), ক্রিপ্টন (Kr), জেনন (Xe), রেডন (Rn) এবং ওগানেসন (Og)। এই মৌলগুলোর সবচেয়ে বাইরের শক্তিশ্তরে প্রয়োজনীয় ইলেকট্রন দিয়ে পূর্ণ থাকে বলে এরা ইলেকট্রন বিনিময় বা ভাগাভাগি করে কোনো যৌগ গঠন করতে চায় না। রাসায়নিক বন্ধন গঠন বা রাসায়নিক বিক্রিয়ায় এরা নিষ্ক্রিয় থাকে বলে এদেরকে নিষ্ক্রিয় মৌল বা নিষ্ক্রিয় গ্যাস বলে। নিষ্ক্রিয় গ্যাসগুলো সাধারণ তাপমাত্রায় গ্যাস হিসেবে থাকে।

অবস্থাতর মৌল: পর্যায় সারণির 3 নং গ্রুপ থেকে 12 নং গ্রুপের মৌলগুলোকে অবস্থাতর মৌল বলে।

অবস্থাতর মৌলগুলো যে সকল যৌগ গঠন করে সে সকল যৌগ রঙিন হয়। অবস্থাতর মৌল বিভিন্ন

বিক্রিয়ার প্রভাবক হিসেবে কাজ করে। যেমন- 10 নং গ্রুপের মৌল নিকেল একটি অবস্থাতর মৌল।

নিকেল বিভিন্ন জৈব বিক্রিয়ার প্রভাবক হিসেবে কাজ করে।

সমস্যা: Ca কে মৃৎক্ষার ধাতু বলা হয় কেন?

সমাধান: Ca ধাতুর বিভিন্ন যৌগ মাটিতে পাওয়া যায়। আবার Ca ধাতুর হাইড্রোক্সাইড যৌগ Ca(OH)2 একটি ক্ষার। অতএব Ca একটি স্ৎক্ষারধাতু।

সমস্যা: He কেন নিষ্ক্রিয় গ্যাস? ব্যাখ্যা করো।

সমাধান: He নিজেদের সাথে যুক্ত হয় না আবার অন্য মৌলের সাথেও যুক্ত হয় না। এজন্য হিলিয়াম নিষ্ক্রিয় মৌল। আবার হিলিয়াম মৌল গ্যাস হিসেবে অবস্থান করে। এজন্যই সামগ্রিকভাবে He কে নিষ্ক্রিয় গ্যাস বলা হয়।

4.8 পর্যায় সারণির সুবিধা (Advantages of the Periodic Table)

পর্যায় সারণি বিভিন্ন রসায়নবিদের নিরলস প্রচেষ্টায় গড়া রসায়নের জগতে এক অসামান্য অবদান। রসায়ন অধ্যয়ন, নতুন মৌল সম্পর্কে ভবিষ্যদ্বাণী, গবেষণা ইত্যাদিতে পর্যায় সারণি বিরাট ভূমিকা পালন করে। নিচে তার করেকটি উদাহরণ ভূলে ধরা হলো:

- (a) রসায়ন পাঠ সহজীকরণ: 2016 সাল পর্যন্ত পৃথিবীতে 118টি মৌল আবিক্ষার করা হয়েছে। আমরা যদি শুধু 4টি ভৌত ধর্ম, যেমন—গলনাজ্ঞক, ক্ষুটনাজ্ঞক, ঘনত্ব ও কঠিন/তরল/গ্যাসীয় অবস্থা এবং 4টি রাসায়নিক ধর্ম, যেমন— অক্সিজেন, পানি, এসিড ও ক্ষারের সাথে বিক্রিয়া বিবেচনা করি তাহলে 118টি মৌলের মোট 118 × (4 + 4) = 944টি ধর্ম বা বৈশিন্ট্য লক্ষ করা যায়। এতপুলো ধর্ম মনে রাখা অসম্ভব ব্যাপার। কিন্তু পর্যায় সারণি সে কাজটিকে অনেক সহজ করে দিয়েছে। এ পর্যায় সারণিতে রয়েছে আঠারোটি গ্রুপ আর সাতটি পর্যায়। প্রতিটি গ্রুপের সাধারণ ধর্ম জানলে 118টি মৌলের ভৌত ও রাসায়নিক ধর্ম সম্বন্ধে একটি মোটামুটি ধারণা লাভ করা যায়। শুধু তাই নয়, পর্যায় সারণি সম্পর্কে ভালোভাবে ধারণা থাকলে বিভিন্ন মৌল দ্বারা গঠিত তাদের যৌগের ধর্ম সম্পর্কেও ধারণা লাভ করা যেতে পারে।
- (b) নতুন মৌলের আবিক্ষার: কিছু দিন আগেও সাতটি পর্যায় আর আঠারোটি গ্রুপ নিয়ে গঠিত পর্যায় সারণিতে বেশ কিছু ফাঁকা ঘর ছিল। এই মৌলগুলো আবিক্ষার হবার আগেই ঐ ফাঁকা ঘরে যে মৌলগুলো বসবে বা তাদের ধর্ম কেমন হবে তা পর্যায় সারণি থেকে ধারণা পাওয়া গিয়েছিল। তোমরা ইতোমধ্যে

জেনে গেছ যে বিজ্ঞানী মেন্ডেলিফ তাঁর সময়ে আবিক্ষৃত 63টি মৌলকে তার আবিক্ষৃত পর্যায় সারণিতে স্থান দিতে গিয়ে যে মৌলগুলো সম্পর্কে ভবিষ্যদ্বাণী করেছিলেন সেগুলো পরে আবিক্ষৃত হয়েছিল।

(c) গবেষণা ক্ষেত্রে: গবেষণার ক্ষেত্রেও পর্যায় সারণির অসামান্য অবদান রয়েছে। মনে করো, কোনো একজন বিজ্ঞানী কোনো একটি বিশেষ প্রয়োজনের জন্য নতুন একটি পদার্থ আবিক্ষার করতে চাইছেন। তাহলে আগেই তাঁকে ধারণা করতে হবে যে, নতুন পদার্থটির ধর্ম কেমন হবে এবং সেই সকল ধর্মবিশিন্ট পদার্থ তৈরি করতে কী ধরনের মৌল প্রয়োজন হবে। তার এ ধারণা পর্যায় সারণি থেকেই পাওয়া যাবে। এছাডা পর্যায় সারণির আরও অনেক ধরনের ব্যবহার আছে যা তোমরা ধীরে ধীরে জানতে পারবে।

4.9 পর্যায় সারণির একই গ্রুপের মৌলগুলো একই রকম রাসায়নিক ধর্ম প্রদর্শন করে (Elements in the Same Group in the Periodic Table Show similar Chemical Properties)

পর্যায় সারণির একই গ্রুপের মৌলগুলো যে একই রকম ধর্ম প্রদর্শন করে তা একটি পরীক্ষার মাধ্যমে তোমরা বুঝতে পারবে।

যেমন- 17 নং গ্রুপের মৌল F_2 , Cl_2 , Br_2 , I_2 ইত্যাদি গ্যাস হাইড্রোজেনের সাথে বিক্রিয়া করে যথাক্রমে HF(g), HCl(g), HBr(g), HI(g) ইত্যাদি গ্যাস উৎপন্ন করে।

$$H_2(g) + F_2(g)$$
 \longrightarrow 2HF (g)
 $H_2(g) + Cl_2(g)$ \longrightarrow 2HCl (g)
 $H_2(g) + Br_2(g)$ \longrightarrow 2HBr (g)
 $H_2(g) + I_2(g)$ \longrightarrow 2HI (g)

আবার, এই উৎপন্ন গ্যাসগুলোকে যদি পানিতে দ্রবীভূত করা হয় তাহলে হাইড্রোহ্যালাইড এসিড যথা হাইড্রোফ্রোরিক এসিড [HF(aq)], হাইড্রোক্লোরিক এসিড [HCl(aq)], হাইড্রোব্রোমিক এসিড [HBr(aq)], হাইড্রোআয়োডিক এসিডে [HI(aq)] পরিণত হয়।

$$HF(g) + H_2O(l) \longrightarrow HF(aq)$$
 $HCl(g) + H_2O(l) \longrightarrow HCl(aq)$
 $HBr(g) + H_2O(l) \longrightarrow HBr(aq)$
 $HI(g) + H_2O(l) \longrightarrow HI(aq)$

এই হাইড্রোহ্যালাইড এসিডসমূহ যেকোনো কার্বনেট লবণের সাথে বিক্রিয়া করে কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন করে। যেমন— ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোফ্রোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন হয়।

$$CaCO_3 + 2HF(aq)$$
 \longrightarrow $CaF_2 + H_2O + CO_2$

আবার, ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোক্লোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস তৈরি হয়।

উপরের বিক্রিয়াগুলো থেকে বোঝা যায় যে, 17 নং গ্রুপের মৌল, F_2 , Cl_2 , Br_2 , I_2 একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

আবার, 2 নং গ্রুপের মৌল Mg এবং Ca একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

ম্যাগনেসিয়াম কার্বনেট (MgCO₃) যেমন- লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ম্যাগনেসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন করে তেমনি ক্যালসিয়াম কার্বনেট লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে।

$$MgCO_3 + 2HCl \longrightarrow MgCl_2 + H_2O + CO_2$$

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$

পরীক্ষণের নাম: ক্যালসিয়াম কার্বনেটের সাথে লঘু হাইড্রোক্লোরিক এসিডের বিক্রিয়ায় উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস শনান্তকরণ।

মূলনীতি: ক্যালসিয়াম কার্বনেট লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে।

প্রয়োজনীয় উপকরণ

যবাপতি: 1. একটি গোলতলী ফ্লাম্ক 2. একটি থিসল ফানেল 3. দুইবার সমকোণে বাঁকানো একটি কাচের নির্গম নল 4. কয়েকটি গ্যাসজার 5. ছিদ্রযুক্ত ছিপি।

রাসায়নিক দ্রব্যাদি: 1. ক্যালসিয়াম কার্বনেট 2. লঘু হাইড্রোক্লোরিক এসিড 3. পানি।

কার্যপদ্ধতি:

1. একটি গোলতলী ফ্লাম্কে ক্যালসিয়াম কার্বনেটের কিছু ছোট টুকরো নেওয়া হলো।

 ছিপির সাহায্যে ফ্লাক্কের এক মুখ দিয়ে একটি থিসল ফানেল এবং অপর মুখ দিয়ে দুইবার সমকোণে বাঁকানো নির্গম নলের এক প্রান্ত প্রবেশ করানো হলো।

চিত্র 4.05: কার্বন ডাই-অক্সাইড প্রস্তুতকরণ।

- থিসল ফানেলের মধ্য দিয়ে কিছু পরিমাণ পানি গোলতলী ফ্লাম্কে নেওয়া হলো যেন ক্যালসিয়াম কার্বনেট এবং থিসল ফানেলের নিম্নপ্রান্ত পানিতে ভূবে থাকে।
- নির্গম নলের অন্য প্রান্ত একটি গ্যাসজারে প্রবেশ করানো হলো।
- 5. এরপর থিসল ফানেলের ভিতর দিয়ে ধীরে ধীরে হাইড্রোক্রোরিক এসিড যোগ করা হলো। দেখা গেল ক্যালসিয়াম কার্বনেট এবং হাইড্রোক্রোরিক এসিড বিক্রিয়া করে যে কার্বন ডাই-অক্সাইড গ্যাস তৈরি করছে তা বুদ্বুদ্ আকারে নির্গম নল দিয়ে বের হয়ে আসছে।

6. নির্গম নল দিয়ে বের হয়ে আসা গ্যাসকে গ্যাসজারে সংরক্ষণ করা হলো। য়েহেতু কার্বন ডাই-অক্সাইড বাতাসের অন্যান্য গ্যাস অপেক্ষা তুলনামূলক তারী, সেহেতু কার্বন ডাইঅক্সাইড সিলিভারের নিচের দিকে জমা হবে।

কার্বন ডাই-অক্সাইড গ্যাসের ধর্ম পরীক্ষা: 1. উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাসের বর্ণ লক্ষ করা হলো। কার্বন ডাই-অক্সাইডের কোনো বর্ণ দেখা গেল না।

- গ্যাসজারের মুখে একটি জ্বলন্ত কাঠি ধরা হলো। কাঠিটির আগুন নিভে গেল। সিন্ধান্ত নেওয়া হলো কার্বন ডাই-অক্সাইড গ্যাস আগুন নিভাতে সাহায়্য করে।
- 3. একটি টেস্টটিউব বা পরীক্ষানলে চুনের পানি বা ক্যালসিয়াম হাইড্রোক্সাইড নিয়ে তার মধ্যে উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস প্রবেশ করানো হলো। প্রথমে সামান্য গ্যাস প্রবেশ করে ক্যালসিয়াম হাইড্রোক্সাইডের সাথে বিক্রিয়া করে ক্যালসিয়াম কার্বনেটের সাদা বর্ণের অধঃক্ষেপ তৈরি হলো। ফলে চুনের পানি ঘোলা হলো। এরপর আরও অধিক গ্যাস এই ঘোলা পানির মধ্যে প্রবেশ করানো হলো ফলে ক্যালসিয়াম কার্বনেট, পানি এবং কার্বন ডাই-অক্সাইড বিক্রিয়া করে ক্যালসিয়াম বাইকার্বনেট তৈরি করল। এতে চুনের ঘোলা পানি আবার পরিক্ষার হয়ে গেল।

সতর্কতা: 1. থিসল ফানেলের শেষ প্রান্ত পানির নিচে যাতে সব সময় ডুবে থাকে সেই ব্যবস্থা নেওয়া হয়েছিল।

গোলতলী ফ্লাম্ককে একটি স্ট্যান্ডের সাথে আটকিয়ে রাখা হয়েছিল।

এই পরীক্ষণের জন্য ক্যালসিয়াম কার্বনেটের পরিবর্তে শামুক, ঝিনুক, ডিমের খোসা এবং হাইড্রোক্রোরিক এসিডের পরিবর্তে ভিনেগার ব্যবহার করা যায়।

বহুনির্বাচনি প্রশ্ন

- 1. আধুনিক পর্যায় সারণির মূল ভিত্তি কী?
 - (ক) পারমাণবিক সংখ্যা
- (খ) পারমাণবিক ভর
- (গ) আপেক্ষিক পারমাণবিক ভর
- (ঘ) ইলেকট্রন বিন্যাস
- 2. A → $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$ মৌলটি পর্যায় সারণির কোন গ্রুপে অবস্থিত?
 - (季) Group-2
- (약) Group-5
- (গ) Group-11
- (덕) Group-13

নিচের সারণি থেকে 3 ও 4 নং প্রশ্নের উত্তর দাও;

পর্যায় সারণির কোনো একটি গ্রুপের খণ্ডিত অংশ। (এখানে X, Y প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়)

> ₁₉K ₃₇X ₅₅Y

- 'X' মৌলটি পর্যায় সারণির কোন পর্যায়ের?
 - (ক) ৩য়
- (খ) ৪র্থ
- (গ) ৫ম
- (ঘ) ৬ষ্ঠ
- 4. উল্লিখিত মৌলগুলোর-
 - (i) সর্বশেষ স্তরে 1টি ইলেকট্রন আছে
 - (ii) পারমাণবিক আকার উপর থেকে নিচে ক্রমান্বয়ে হ্রাস পায়
 - (iii) Y মৌলটি X মৌল অপেক্ষা বেশি সক্রিয়

নিচের কোনটি সঠিক?

- (季) i 医 ii
- (খ) ii ଓ iii
- (গ) i ও iii
- (되) i, ii ও iii

সূজনশীল প্রশ্ন

1.

		F
Na	Mg	Cl
	.l	Br

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ।

- (ক) ত্রয়ী সূত্রটি লেখ।
- (খ) বেরিয়ামকে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের কোন মৌলটির আকার সবচেয়ে বড়? ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের পর্যায়ের বাম থেকে ডানে গেলে ইলেকট্রন আসম্ভির মানের পরিবর্তন বিশ্লেষণ করো।

2.

	গ্রুপ 1	গ্রুপ 2	গ্রুপ 3
পর্যায় 2			
পর্যায় 3			
পর্যায় 4	A	В	С

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ।

- (ক) আধুনিক পর্যায় সূত্রটি লেখো।
- (খ) B কে মৃৎক্ষার ধাতু বলা হয় কেন?
- (গ) A থেকে B এর দিকে যেতে পারমাণবিক আকারের পরিবর্তন ব্যাখ্যা করো।
- (ঘ) A থেকে C এর দিকে যেতে আয়নিকরণ শক্তির মানের পরিবর্তন বিশ্লেষণ করো।