2010年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

— 、	单项选择题:	第 1~40 小题,	每小题2分,	共80分。	下列每题给出的四个选项中,
只有一个	个选项最符合证	 战 要求。			

	1. 石	儿糸	a, b,	c, c	a, e, i	似次进伐	,几户进伐	、退伐探	下父省进行	,但小儿月	"连续	二仍
进行	退栈搏	操作,	则不可	可能得	导到的出	栈序列是	o					
	Α.	d c	e b f a		В. с	b d a e f	C. 1	bcaefd	D.	a f e d c b		
2	2. 某	队列	允许在	其两	端进行	入队操作,	但仅允许在	生一端进行	出队操作。	若元素 a、	b, c	· d
e 依没	次入此	队列	后再进	扩出	队操作	,则不可能	能得到的出	队序列是_	o			

4. 在图 B-1 所示的平衡二叉树中, 插入关键字 48 后得到一棵新平衡 二叉树。在新平衡二叉树中,关键字37所在结点的左、右子结点中保存 的关键字分别是____。

5. 在一棵度为 4 的树 T 中, 若有 20 个度为 4 的结点, 10 个度为 3 的结点, 1 个度为 2 的结点, 10 个度为 1 的结点,则树 T 的叶结点个数

是____。

B. 82 C. 113 D. 122 6. 对 n (n≥2) 个权值均不相同的字符构造成哈夫曼树。下列关于该哈夫曼树的叙述中,错 误的是____。

A. 该树一定是一棵完全二叉树

	C.	树中两	i个权值最	是小的结 点	点一定是兄	弟结点					
	D.	树中任	- 非叶结	吉点的权值	直一定不小	于下一	层任一结点的	权值			
7	. 若无	三向图(G=(V, E)	中含有7	个顶点,要	更保证图	G 在任何情	况下都是	是连通的,	则需要的边	1
数最少	〉是	o									
	A.	6		B. 15		C.	16	D	. 21		
8	. 对图	B -2	进行拓	扑排序,	可以得到	不同的	拓扑序列的	个数	,	(e)	
是	o								a		(h
	A.	4								$\overline{}$)
	В.	3							(b)-	→ C	
	C.	2							[8]	₹ B-2	
	D.	1									
							建字有序排列	。若采戶	用折半查扎	は法査找一/	
L 中不	存在的	的元素,	,则关键		次数最多的						
		4					-		. 7		
1							长于递归次数	的叙述「	中,止确自	内是。	
					非列次序无		VI \				
		•			长的分区可	- /	_, , , . , , . , ,				
					豆的分区可						
					导到的分区			tw HL i 수 /	+ H 4u T		
1							非序,若前三	廻排 /55	古朱如下:		
					16, 5, 10,						
					5, 10, 16, 0, 12, 16,						
			尸细禾: 腓序方法□			00					
						C	归并排序	D	主.粉 担:1	⇒	
11					八元// L行时间的扩			D.	• 坐奴개/	1,	
1.							——。 比化数据通路	结构			
			序进行编			11. //		>H15			
		• •		– . –	I 和III	C.	仅II和III	D.	. I.II.	和III	
1							, r2=F2H, r				古
							, - 		1. 1011)	1110011	-
							r1×r4		. r2×r4		
1-							t 和 double (i		冯表示,fl	oat 和 doub	e
							知 i=785,f=				
					课为"真'						
	Ι.	. i==(i:	nt)(float)i			II. f	==(float)(int)f	•			
	III.	. f==(f	loat)(doul	ble)f		IV. (d	d+f)-d==f				
	A.	仅I和	1 II	B. 仅	I 和III	C.	仅II和III	D	. 仅Ⅲ和〕	IV	
1.	5. 假知	定用若	干个 2K>	×4 位的礼	芯片组成一	个 8K×	8 位的存储器	器,则地	址 0B1FE	I 所在芯片的	勺
最小地	地是_		0								

B. 树中一定没有度为1的结点

А. 0000Н В. 0600Н	С. 0700Н D. 0800Н
16. 下列有关 RAM 和 ROM 的叙述中,正确	的是。
I. RAM 是易失性存储器, ROM 是非。	易失性存储器
II. RAM 和 ROM 都采用随机存取方式	进行信息访问
III. RAM 和 ROM 都可用作 Cache	
IV. RAM 和 ROM 都需要进行刷新	
A. 仅I和II	B. 仅II和III
C. 仅 I 、II 和IV	D. 仅II、III和IV
17. 下列命中组合情况中,一次访存过程中	不可能发生的是。
A. TLB 未命中,Cache 未命中,Page 未	命中
B. TLB 未命中,Cache 命中,Page 命中	
C. TLB 命中,Cache 未命中,Page 命中	
D. TLB 命中,Cache 命中,Page 未命中	
18. 下列寄存器中,汇编语言程序员可见的	是。
A. 存储器地址寄存器(MAR)	B. 程序计数器 (PC)
C. 存储器数据寄存器(MDR)	D. 指令寄存器 (IR)
19. 下列选项中,不会引起指令流水线阻塞的	的是。
A. 数据旁路(转发)	B. 数据相关
C. 条件转移	D. 资源冲突
20. 下列选项中的英文缩写均为总线标准的	
A. PCI、CRT、USB、EISA	
C. ISA、SCSI、RAM、MIPS	
21. 单级中断系统中,中断服务程序内的执行	
Ⅰ. 保护现场 Ⅱ. 开中断 Ⅰ	
V. 中断事件处理 VI. 恢复现场 V	
A. $I \rightarrow V \rightarrow VI \rightarrow II \rightarrow VII$	B. $III \rightarrow I \rightarrow V \rightarrow VII$
C. $III \rightarrow IV \rightarrow V \rightarrow VI \rightarrow VII$	
22. 假定一台计算机的显示存储器用 DRAM	芯片实现, 若要求显示分辨率为 1600×1200,
颜色深度为24位,帧频为85Hz,显存总带宽的:	50%用来刷新屏幕,则需要的显存总带宽至少约
为。	
A. 245Mbit/s	B. 979Mbit/s
C. 1 958Mbit/s	D. 7 834Mbit/s
23. 下列选项中,操作系统提供给应用程序的	的接口是。
A. 系统调用 B. 中断	C. 库函数 D. 原语
24. 下列选项中,导致创建新进程的操作是_	
Ⅰ. 用户登录成功 Ⅱ. 设备分配	Ⅲ. 启动程序执行
A. 仅 I 和 II B. 仅 II 和 III	
	价值为 1。若 M 表示该资源的可用个数,N 表示
等待该资源的进程数,则 M、N 分别是。	
A. 0, 1 B. 1, 0	C. 1, 2 D. 2, 0
26. 下列选项中,降低进程优先级的合理时机	机是。

A. 进程的时间片用完

- B. 进程刚完成 I/O, 进入就绪列队
- C. 进程长期处于就绪列队中
- D. 进程从就绪状态转为运行状态
- 27. 进程 P0 和 P1 的共享变量定义及其初值为:

boolean flag[2];

int turn=0;

flag[0]=FALSE; flag[1]=FALSE;

若进程 P0 和 P1 访问临界资源的类 C 伪代码实现如下:

```
void P0() //进程 P0
while (TRUE)
      flag[0]=TRUE; turn=1;
      while(flag[1]&&(turn==1));
      临界区;
      flag[0]=FALSE;
}
```

```
void P1() //进程 P1
while (TRUE)
      flag[1]=TRUE; turn=0;
      while (flag[0] && (turn==0));
      临界区;
      flag[1]=FALSE;
}
```

则并发执行进程 P0 和 P1 时产生的情形是

- A. 不能保证进程互斥进入临界区, 会出现"饥饿"现象
- B. 不能保证进程互斥进入临界区,不会出现"饥饿"现象
- C. 能保证进程互斥进入临界区,会出现"饥饿"现象
- D. 能保证进程互斥进入临界区,不会出现"饥饿"现象
- 28. 某基于动态分区存储管理的计算机,其主存容量为 55MB(初始为空闲),采用最佳适配 (Best Fit) 算法,分配和释放的顺序为: 分配 15MB,分配 30MB,释放 15MB,分配 8MB,分配 6MB,此时主存中最大空闲分区的大小是
- B. 9MB
- C. 10MB

29. 某计算机采用二级页表的分页存储管理方式,按字节编址,页大小为 2^{10} B,页表项大小 为 2B, 逻辑地址结构为:

人口水

逻辑地址空间大小为216页,则表示整个逻辑地址空间的页目录表中包含表项的个数至少 是。

A. 64

B. 128

C. 256

D. 512

30. 设文件索引结点中有 7 个地址项, 其中 4 个地址项是直接地址索引, 2 个地址项是一级 间接地址索引,1个地址项是二级间接地址索引,每个地址项大小为4B。若磁盘索引块和磁盘数 据块大小均为 256B,则可表示的单个文件最大长度是。

- A. 33KB
- B. 519KB
- C. 1 057KB D. 16 513KB
- 31. 设置当前工作目录的主要目的是。
 - A. 节省外存空间

- B. 节省内存空间
- C. 加快文件的检索速度
- D. 加快文件的读/写速度
- 32. 本地用户通过键盘登录系统时,首先获得键盘输入信息的程序是。
 - A. 命令解释程序

B. 中断处理程序

C. 系统调用服务程序	D. 用户登录程序
33. 下列选项中,不属于网络体系结构所描述	的内容是。
A. 网络的层次	B. 每层使用的协议
C. 协议的内部实现细节	D. 每层必须完成的功能
34. 在图 B-3 所示的采用"存储一转发"方:	式的分组交
换网络中,所有链路的数据传输速率为 100Mbit/s,	分组大小 📅 💙 🗡 🛱
为 1000B, 其中分组头大小为 20B。若主机 H1 向	
送一个大小为 980 000B 的文件,则在不考虑分组持	
传播延迟的情况下,从 H1 发送开始到 H2 接收完	为止,需要 图 B -3
的时间至少是。	
A. 80ms B. 80.08ms	C. 80.16ms D. 80.24ms
35. 某自治系统内采用 RIP 协议, 若该自治系:	统内的路由器 R1 收到其邻居路由器 R2 的距离
矢量,距离矢量中包含信息 <net1,16>,则能得出的</net1,16>	勺结论是。
A. R2 可以经过 R1 到达 net1, 跳数为 17	
B. R2 可以到达 net1, 跳数为 16	
C. R1 可以经过 R2 到达 net1, 跳数为 17	
D. R1 不能经过 R2 到达 net1	
	时 R 可向发出该 IP 分组的源主机发送的 ICMP
报文类型是。	
A. 路由重定向 B. 目的不可达	
	用定长子网划分,子网掩码为 255.255.258,
则该网络中的最大子网个数、每个子网内的最大可	· · · · · · · · · · · · · · · · · · ·
	C. 8, 32 D. 8, 30
38. 下列网络设备中, 能够抑制广播风暴的是	
I . 中继器 II . 集线器 A . 仅 I 和 II B . 仅III	
	连接, TCP 最大段长度为 1 000B。若主机甲的
当前拥塞窗口为 4 000B, 在主机甲向主机乙连续发	
个段的确认段,确认段中通告的接收窗口大小为2	
最大字节数是。	
A. 1 000 B. 2 000	C. 3 000 D. 4 000
40. 如果本地域名服务器无缓存,当采用递归	
本地域名服务器发送的域名请求消息数分别为	
A. 一条、一条 B. 一条、多条	
二、综合应用题: 第 41~47 题, 共 70 分。	
·	
	18、9、14)散列存储到散列表中。散列表的存
储空间是一个下标从0开始的一维数组,散列函数	万 H(key)=(key×3) mod 7,处埋冲突米用线性
探测再散列法,要求装填(载)因子为 0.7。	

2) 分别计算等概率情况下查找成功和查找不成功的平均查找长度。

42. (13 分) 设将 n (n>1) 个整数存放到一维数组 R 中。试设计一个在时间和空间两方面都

尽可能高效的算法。将 R 中保存的序列循环左移 $p(0 个位置,即将 R 中的数据由<math>(X_0, X_1, ..., X_{n-1})$ 变换为 $(X_n, X_{n+1}, ..., X_{n-1}, X_0, X_1, ..., X_{n-1})$ 。要求:

- 1)给出算法的基本设计思想。
- 2) 根据设计思想,采用 C、C++或 Java 语言描述算法,关键之处给出注释。
- 3) 说明你所设计算法的时间复杂度和空间复杂度。
- 43. (11 分) 某计算机字长为 16 位,主存地址空间大小为 128KB,按字编址。采用单字长指令格式,指令各字段定义如图 B-4 所示。

15	12	11	6	0	
OP		Ms	Rs	Md	Rd
		源操作数		目的操作数	_

图 B-4

转移指令采用相对寻址方式,相对偏移量用补码表示,寻址方式定义见表 B-1。

		7,22	
Ms/Md	寻址方式	助记符	含义
000B	寄存器直接	Rn	操作数=(Rn)
001B	寄存器间接	(Rn)	操作数=((Rn))
010B	寄存器间接、自增	(Rn)+	操作数=((Rn)),(Rn)+1→Rn
011B	相对	D(Rn)	转移目标地址=(PC)+(Rn)

表 B-1

注: (X)表示存储器地址 X 或寄存器 X 的内容。

请回答下列问题:

- 1)该指令系统最多可有多少条指令?该计算机最多有多少个通用寄存器?存储器地址寄存器(MAR)和存储器数据寄存器(MDR)至少各需要多少位?
 - 2) 转移指令的目标地址范围是多少?
- 3) 若操作码 0010B 表示加法操作(助记符为 add),寄存器 R4 和 R5 的编号分别为 100B 和 101B,R4 的内容为 1234H,R5 的内容为 5678H,地址 1234H 中的内容为 5678H,地址 5678H 中的内容为 1234H,则汇编语言为"add(R4),(R5)+"(逗号前为源操作数,逗号后为目的操作数)对应的机器码是什么(用十六进制表示)?该指令执行后,哪些寄存器和存储单元中的内容会改变?改变后的内容是什么?
- 44. (12 分) 某计算机的主存地址空间大小为 256MB, 按字节编址。指令 Cache 和数据 Cache 分离, 均有 8 个 Cache 行, 每个 Cache 行大小为 64B, 数据 Cache 采用直接映射方式。现有两个功能相同的程序 A 和 B, 其伪代码如下:

```
程序 A:
int a[256][256]
.....
int sum_array1()
{
int i,j,sum=0;
for(i=0;i<256;i++)
for(j=0;j<256;j++)
sum+=a[i][j];
return sum;
}
```

假定 int 类型数据用 32 位补码表示,程序编译时 i、j、sum 均分配在寄存器中,数组 a 按行优先方式存放,其首地址为 320 (十进制数)。请回答下列问题,要求说明理由或给出计算过程。

- 1) 若不考虑用于 Cache 一致性维护和替换算法的控制位,则数据 Cache 的总容量为多少?
- 2) 数组元素 a[0][31]和 a[1][1]各自所在的主存块对应的 Cache 行号分别是多少(Cache 行号 从 0 开始)?
 - 3) 程序 A 和 B 的数据访问命中率各是多少? 哪个程序的执行时间更短?
- 45. (7分)假设计算机系统采用 CSCAN (循环扫描)磁盘调度策略,使用 2KB 的内存空间记录 16 384 个磁盘块的空闲状态。
 - 1)请说明在上述条件下如何进行磁盘块空闲状态的管理。
- 2)设某单面磁盘旋转速度为6000r/min,每个磁道有100个扇区,相邻磁道间的平均移动时间为1ms。若在某时刻,磁头位于100号磁道处,并沿着磁道号增大的方向移动(如图 B-5 所示),磁道号请求队列为50,90,30,120,对请求队列中的每个磁道需读取1个随机分布的扇区,则读完这4个扇区点共需要多少时间?要求给出计算过程。
- 3)如果将磁盘替换为随机访问的 Flash 半导体存储器(如 U 盘、SSD等),是否有比 CSCAN 更高效的磁盘调度策略?若有,给出磁盘调度策略的名称并说明理由:若无,说明理由。

46. (8分)设某计算机的逻辑地址空间和物理地址空间均为64KB,按字节编址。若某进程最多需要6页(Page)数据存储空间,页的大小为1KB,操作系统采用固定分配局部置换策略为此进程分配4个页框(Page Frame)。在时刻260前的该进程访问情况见表B-2(访问位即使用位)。

页号 页框号 装入时刻 访问位 0 7 130 1 1 4 230 1 200 2 1 260

表 B-2

当该进程执行到时刻 260 时,要访问逻辑地址为 17CAH 的数据。请回答下列问题:

- 1) 该逻辑地址对应的页号是多少?
- 2) 若采用先进先出(FIFO)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。
- 3) 若采用时钟(CLOCK)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框,示意图如图B-6所示)。

图 B-6 页框示意图

- 47. (9分) 某局域网采用 CSMA/CD 协议实现介质访问控制,数据传输速率为10Mbit/s,主机甲和主机乙之间的距离为 2km,信号传播速度为 200 000km/s。请回答下列问题,要求说明理由或写出计算过程。
- 1)若主机甲和主机乙发送数据时发生冲突,则从开始发送数据时刻起,到两台主机均检测 到冲突时刻止,最短需经过多长时间?最长需经过多长时间(假设主机甲和主机乙发送数据过程中,其他主机不发送数据)?
- 2) 若网络不存在任何冲突与差错,主机甲总是以标准的最长以太网数据帧(1518B)向主机 乙发送数据,主机乙每成功收到一个数据帧后立即向主机甲发送一个 64B 的确认帧,主机甲收到 确认帧后方可发送下一个数据帧。此时主机甲的有效数据传输速率是多少(不考虑以太网的前导码)?

2010 年计算机学科专业基础综合试题参考答案

一、单项选择题

1		D	2.	C	3.	D	4.	C	5.	В	6.	A	7.	C	8.	В
9		В	10.	D	11.	A	12.	D	13.	В	14.	В	15.	D	16.	A
1	7.	D	18.	В	19.	A	20.	D	21.	A	22.	D	23.	A	24.	C
2	5.	В	26.	A	27.	D	28.	В	29.	В	30.	C	31.	C	32.	В
3	3.	C	34.	C	35.	D	36.	C	37.	В	38.	D	39.	A	40.	Α

二、综合应用题

41. 解答:

1) 由装载因子为 0.7,数据总数为 7,得一维数组大小为 7/0.7=10,数组下标为 $0\sim9$ 。所构造的散列函数值见表 B-3。

表 B-3

key	7	8	30	11	18	9	14
H(key)	0	3	6	5	5	6	0

采用线性探测再散列法处理冲突, 所构造的散列表见表 B-4。

表 B-4

地址	0	1	2	3	4	5	6	7	8	9
关键字	7	14		8		11	30	18	9	

2) 查找成功时,是根据每个元素查找次数来计算平均长度的,在等概率的情况下,各关键字的查找次数见表 B-5。

表 B-5

key	7	8	30	11	18	9	14
次数	1	1	1	1	3	3	2

故 ASL 成功=查找次数/元素个数=(1+2+1+1+1+3+3)/7=12/7。

这里要特别防止惯性思维。查找失败时,是根据查找失败位置计算平均次数,根据散列函数 mod 7,初始只可能在 $0\sim6$ 的位置。等概率情况下,查找 $0\sim6$ 位置查找失败的查找次数见表 B-6。

表 B-6

H(key)	0	1	2	3	4	5	6
次数	3	2	1	2	1	5	4

故 ASL 不成功= 查找次数/散列后的地址个数=(3+2+1+2+1+5+4)/7=18/7。

42. 解答:

1) 算法的基本设计思想:

可以将这个问题看作是把数组 ab 转换成数组 ba(a 代表数组的前 p 个元素,b 代表数组中余下的 n-p 个元素),先将 a 逆置得到 $a^{-1}b$,再将 b 逆置得到 $a^{-1}b^{-1}$,最后将整个 $a^{-1}b^{-1}$ 逆置得到($a^{-1}b^{-1}$) a^{-1} = ba。设 Reverse 函数执行将数组元素逆置的操作,对 abcdefgh 向左循环移动 3(p=3)个位置的过程如下:

```
Reverse(0,p-1)得到 cbadefgh;
Reverse(p,n-1)得到 cbahgfed;
Reverse(0,n-1)得到 defghabc。
```

- 注: Reverse 中,两个参数分别表示数组中待转换元素的始末位置。
- 2) 使用 C 语言描述算法如下:

```
void Reverse(int R[],int from,int to) {
   int i,temp;
   for(i=0;i<(to-from+1)/2;i++)
      { temp=R[from+i];R[from+i]=R[to-i];R[to-i]=temp;}
}//Reverse
void Converse(int R[],int n,int p) {
   Reverse(R,0,p-1);
   Reverse(R,p,n-1);
   Reverse(R,0,n-1);
}</pre>
```

3)上述算法中 3 个 Reverse 函数的时间复杂度分别为 O(p/2)、O((n-p)/2)和 O(n/2),故所设计的算法的时间复杂度为 O(n),空间复杂度为 O(1)。

另解,借助辅助数组来实现。

算法思想: 创建大小为p 的辅助数组S,将R中前p个整数依次暂存在S中,同时将R中后n-p个整数左移,然后将S中暂存的p个数依次放回到R中的后续单元。

时间复杂度为 O(n), 空间复杂度为 O(p)。

43. 解答:

- 1)操作码占 4 位,则该指令系统最多可有 2^4 =16 条指令。操作数占 6 位,其中寻址方式占 3 位、寄存器编号占 3 位,因此该机最多有 2^3 =8 个通用寄存器。主存地址空间大小为 128KB,按字编址,字长为 16 位,共有 128KB/2B= 2^{16} 个存储单元,因此 MAR 至少为 16 位,因为字长为 16 位,故 MDR 至少为 16 位。
- 2)寄存器字长为 16 位,PC 和 Rn 可表示的地址范围均为 $0\sim2^{16}$ –1,而主存地址空间为 2^{16} ,故转移指令的目标地址范围为 $0000H\sim$ FFFFH($0\sim2^{16}$ –1)。
 - 3) 汇编语句 "add (R4), (R5)+", 对应的机器码为

字段	OP	Ms	Rs	Md	Rd
内容	0010	001	100	010	101
说明	add	寄存器间接	R4	寄存器间接、自增	R5

将对应的机器码写成十六进制形式为 0010 0011 0001 0101B=2315H。

该指令的功能是将 R4 的内容所指存储单元的数据与 R5 的内容所指存储单元的数据相加,并将结果送入 R5 的内容所指存储单元中。(R4)=1234H,(1234H)=5678H;(R5)=5678H,(5678H)=1234H;执行加法操作 5678H+1234H=68ACH,之后 R5 自增。

该指令执行后, R5 和存储单元 5678H 的内容会改变, R5 的内容从 5678H 变为 5679H, 存储单元 5678H 中的内容变为该指令的计算结果 68ACH。

【注意】第3问中两操作数的存储地址和数值有晕头的作用,请读者务必保持清醒。 44. 解答:

1)每个 Cache 行对应一个标记项,如下图所示。

有效位	脏位	替换控制位	标记位

不考虑用于 Cache 一致性维护和替换算法的控制位。地址总长度为 28 位(2^{28} =256M),块内地址 6 位(2^{6} =64),Cache 块号 3 位(2^{3} =8),故 Tag 的位数为 28-6-3=19 位,还需使用一个有效位,故题中数据 Cache 行的结构如下图所示。

数据 Cache 共有 8 行, 因此数据 Cache 的总容量为 8×(64+20/8)B=532B。

2) 数组 a 在主存的存放位置及其与 Cache 之间的映射关系如下图所示。

数组按行优先方式存放,首地址为 320,数组元素占 4 个字节。a[0][31]所在的主存块对应的 Cache 行号为(320+31×4)/64=6;a[1][1]所在的主存块对应的 Cache 行号为(320+256×4 +1×4)/64% 8=5。

【另解】由1)可知主存和 Cache 的地址格式如下图所示。

数组按行优先方式存放,首地址 320,数组元素占 4 个字节。a[0][31]的地址为 320+31×4=1 1011 1100B,故其对应的 Cache 行号为 110B=6; a[1][1]的地址为 320+256×4+1×4=1348=101 0100 0100B,故其对应的 Cache 行号为 101B=5。

3)数组 a 的大小为 $256\times256\times4B=2^{18}B$,占用 $2^{18}/64=2^{12}$ 个主存块,按行优先存放,程序 A 逐行访问数组 a,共需访问的次数为 2^{16} 次,未命中次数为 2^{12} 次(即每个字块的第一个数未命中),因此程序 A 的命中率为($2^{16}-2^{12}$)/ $2^{16}\times100\%=93.75\%$ 。

【另解】数组 a 按行存放,程序 A 按行存取。每个字块中存放 16 个 int 型数据,除访问的第一个不命中,随后的 15 个全都命中,访问全部字块都符合这一规律,且数组大小为字块大小的整数倍,故程序 A 的命中率为 15/16=93.75%。

程序 B 逐列访问数组 a, Cache 总容量为 64B×8=512B, 数组 a 一行的大小为 1KB, 正好是 Cache 容量的 2 倍,可知不同行的同一列数组元素使用的是同一个 Cache 单元,故逐列访问每个数据时,都会将之前的字块置换出,也即每次访问都不会命中,命中率为 0。

由于从 Cache 读数据比从主存读数据快很多, 所以程序 A 的执行比程序 B 快得多。

注意: 本题考查 Cache 容量计算,直接映射方式的地址计算,以及命中率计算(注意:行优先遍历与列优先遍历命中率差别很大)。

45. 解答:

- 1) 用位图表示磁盘的空闲状态。每位表示一个磁盘块的空闲状态,共需要 16 384/32=512 个字= 512×4 个字节=2KB,正好可放在系统提供的内存中。
- 2) 采用 CSCAN 调度算法,访问磁道的顺序和移动的磁道数见表 B-7。

表 B-7

被访问的下一个磁道号	移动距离(磁道数)
120	20
30	90
50	20
90	40

移动的磁道数为 20+90+20+40=170, 故总的移动磁道时间为 170ms。

由于转速为 6000r/min,则平均旋转延迟为 5ms,总的旋转延迟时间=20ms。

由于转速为 6000r/min,则读取一个磁道上一个扇区的平均读取时间为 0.1ms,总的读取扇区的时间为 0.4ms。

综上,读取上述磁道上所有扇区所花的总时间为 190.4ms。

3)采用 FCFS(先来先服务)调度策略更高效。因为 Flash 半导体存储器的物理结构不需要 考虑寻道时间和旋转延迟,可直接按 I/O 请求的先后顺序服务。

46. 解答:

1)由于该计算机的逻辑地址空间和物理地址空间均为 $64KB=2^{16}B$,按字节编址,且页的大小为 $1KB=2^{10}B$,故逻辑地址和物理地址的地址格式均为:

页号/页框号(6位)	页内偏移量(10位)
), 0,), in a	>114114D T (114 PT)

17CAH=0001 0111 1100 1010B,可知该逻辑地址的页号为 000101B=5。

- 2)根据 FIFO 算法,需要替换装入时间最早的页,故需要置换装入时间最早的 0 号页,即将5 号页装入7号页框中,所以物理地址为0001 1111 1100 1010B=1FCAH。
- 3) 根据 CLOCK 算法,如果当前指针所指页框的使用位为 0,则替换该页;否则将使用位清零,并将指针指向下一个页框,继续查找。根据题设和示意图,将从 2号页框开始,前 4 次查找页框号的顺序为 2→4→7→9,并将对应页框的使用位清零。在第 5 次查找中,指针指向 2号页框,因 2号页框的使用位为 0,故淘汰 2号页框对应的 2号页,把 5号页装入 2号页框中,并将对应使用位设置为 1,所以对应的物理地址为 0000 1011 1100 1010B=0BCAH。

47. 解答:

1)显然当甲和乙同时向对方发送数据时,信号在信道中发生冲突后,冲突信号继续向两个方向传播。这种情况下两台主机均检测到冲突需要经过的时间最短:

T_(a) =1km/200 000km/s×2=0.01ms=单程传播时延 t₀

设甲先发送数据,当数据即将到达乙时,乙也开始发送数据,此时乙将立刻检测到冲突,而 甲要检测到冲突还需等待冲突信号从乙传播到甲。两台主机均检测到冲突的时间最长:

T_(b) =2km/200 000km/s×2=0.02ms=双程传播时延 2t₀

2)甲发送一个数据帧的时间,即发送时延 t_1 =1518×8bit/(10Mb/s)=1.2144ms;乙每成功收到一个数据帧后,向甲发送一个确认帧,确认帧的发送时延 t_2 =64×8bit/10Mb/s=0.0512ms;主机甲收到确认帧后,即发送下一数据帧,故主机甲的发送周期 T=数据帧发送时延 t_1 +确认帧发送时延 t_2 +双程传播时延= t_1 + t_2 +2 t_0 =1.2856ms;于是主机甲的有效数据传输率为 t_0 =12000bit/1.2856ms≈9.33Mb/s(以太网帧的数据部分为 t_0 =1500B)。