Practical Machine Learning Predictions Project

Arturk Mammadli

1/26/2021

Introduction

The goal of this project is to predict the manner in which the exercise presented in the first paragraph was done. It is presented a report describing a proposed model, using cross validation, also is proposed a expected out of sample error. Also the prediction model is used to predict 20 different test cases.

Subjects were asked to perform barbell lifts correctly and incorrectly in 5 different ways:

- Exactly according to the specification (Class A)
- Throwing the elbows to the front (Class B) mistake
- Lifting the dumbbell only halfway (Class C) mistake
- Lowering the dumbbell only halfway (Class D) mistake
- $\bullet\,$ Throwing the hips to the front (Class E) mistake

Setup

Due to size of the training sample (19622 observations and up to 60 variables), parallel processing was selected for model development

```
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

## ## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':

## ## margin
```

```
library(e1071)
set.seed(1603)
```

Create a model to predict the manner in which the subjects did the exercise using the accelerometer data as predictors. The outcome to be predicted is the "classe" variable.

```
trainingFilename <- 'pml-training.csv'
quizFilename <- 'pml-testing.csv'</pre>
```

Data Cleansing

On inspection in Excel, found NA,#DIV/0! and blank values in the data. These are not valid observed values, so remove with na.strings parameter.

Features

Reduce the number of variables

Remove the non-predictors from the training set. This includes the index, subject name, time and window variables.

```
Training.df <-training.df[,-c(1:7)]
Quiz.df <-quiz.df[,-c(1:7)]
dim(Training.df)</pre>
```

```
## [1] 19622 53
```

Check for near zero values in training data

```
Training.nzv<-nzv(Training.df[,-ncol(Training.df)],saveMetrics=TRUE)
rownames(Training.nzv)</pre>
```

```
[1] "roll_belt"
                                "pitch_belt"
                                                        "yaw_belt"
    [4] "total_accel_belt"
                                "gyros_belt_x"
                                                        "gyros_belt_y"
##
##
  [7] "gyros_belt_z"
                                "accel_belt_x"
                                                        "accel_belt_y"
## [10] "accel belt z"
                                "magnet_belt_x"
                                                        "magnet belt y"
## [13] "magnet_belt_z"
                                "roll arm"
                                                        "pitch arm"
```

```
## [16] "yaw_arm"
                                "total_accel_arm"
                                                        "gyros_arm_x"
## [19] "gyros_arm_y"
                                "gyros_arm_z"
                                                        "accel_arm_x"
                                                        "magnet_arm_x"
## [22] "accel arm y"
                                "accel_arm_z"
## [25] "magnet_arm_y"
                                "magnet_arm_z"
                                                        "roll_dumbbell"
## [28] "pitch_dumbbell"
                                "yaw_dumbbell"
                                                        "total_accel_dumbbell"
## [31] "gyros_dumbbell_x"
                                "gyros dumbbell y"
                                                        "gyros dumbbell z"
## [34] "accel_dumbbell_x"
                                                        "accel_dumbbell_z"
                                "accel_dumbbell_y"
## [37] "magnet_dumbbell_x"
                                                        "magnet_dumbbell_z"
                                "magnet_dumbbell_y"
## [40] "roll_forearm"
                                "pitch_forearm"
                                                        "yaw_forearm"
                                "gyros_forearm_x"
## [43] "total_accel_forearm"
                                                        "gyros_forearm_y"
## [46] "gyros_forearm_z"
                                "accel_forearm_x"
                                                        "accel_forearm_y"
## [49] "accel_forearm_z"
                                "magnet_forearm_x"
                                                        "magnet_forearm_y"
## [52] "magnet_forearm_z"
dim(Training.nzv)[1]
```

[1] 52

Algorithm

Partition the training data into a training set and a testing/validation set

```
inTrain     <- createDataPartition(Training.df$classe, p = 0.6, list = FALSE)
inTraining     <- Training.df[inTrain,]
inTest           <- Training.df[-inTrain,]
dim(inTraining);dim(inTest)</pre>
```

```
## [1] 11776 53
## [1] 7846 53
```

Construct the model using cross validation or reload using the cached model

Cross Validation achieved with trainControl method set to "cv"

```
p = 0.60
                                         , allowParallel = TRUE
                                          seeds=NA
                                         )
                )
    save(myModel, file = "myModel.RData")
    stopCluster(ncores)
} else {
    load(file = myModelFilename, verbose = TRUE)
}
## Loading objects:
     myModel
print(myModel, digits=4)
## Random Forest
##
## 11776 samples
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## Pre-processing: centered (52), scaled (52)
## Resampling: Cross-Validated (4 fold)
## Summary of sample sizes: 8831, 8831, 8834, 8832
## Resampling results across tuning parameters:
##
##
     mtry Accuracy Kappa
##
     2
           0.9872
                     0.9838
##
     27
           0.9882
                     0.9851
##
     52
           0.9817
                     0.9768
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
```

Predict

Predicting the activity performed using the training file derived test subset

```
predTest <- predict(myModel, newdata=inTest)</pre>
```

Evaluation

Test

Check the accuracy of the model by comparing the predictions to the actual results

```
## Confusion Matrix and Statistics
##
##
             Reference
                            C
                                 D
                                       Ε
## Prediction
                 Α
                       R
            A 2229
                       7
                                       0
##
                                 1
##
            В
                 2 1509
                            6
                                       0
                                 1
            С
                       2 1359
                                       5
##
                  0
                                 8
            D
                 0
                       0
                                       6
##
                            3 1276
            Ε
                       0
                            0
##
                                 0 1431
##
## Overall Statistics
##
##
                  Accuracy: 0.9946
##
                     95% CI: (0.9928, 0.9961)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9932
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
                                              0.9934
                                                        0.9922
                                                                 0.9924
## Sensitivity
                           0.9987
                                    0.9941
## Specificity
                           0.9986
                                    0.9986
                                              0.9977
                                                        0.9986
                                                                 0.9998
## Pos Pred Value
                           0.9964
                                    0.9941
                                              0.9891
                                                        0.9930
                                                                 0.9993
## Neg Pred Value
                           0.9995
                                    0.9986
                                              0.9986
                                                        0.9985
                                                                 0.9983
## Prevalence
                           0.2845
                                    0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Detection Rate
                           0.2841
                                    0.1923
                                              0.1732
                                                        0.1626
                                                                 0.1824
## Detection Prevalence
                           0.2851
                                    0.1935
                                              0.1751
                                                        0.1638
                                                                 0.1825
## Balanced Accuracy
                           0.9986
                                    0.9963
                                              0.9956
                                                        0.9954
                                                                 0.9961
```

Out of Sample Error

The out-of-sample error of 0.0019 or 0.19%.

Accuracy is very high, at 0.9981, and this figure lies within the 95% confidence interval. Final Model data and important predictors in the model

myModel\$finalModel

```
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 27
##
## OOB estimate of error rate: 0.86%
```

```
## Confusion matrix:
                              E class.error
##
        Α
             В
                   C
                        D
## A 3344
             2
                   1
                              1 0.001194743
       20 2251
                        2
                              0 0.012286090
## B
                   6
## C
        0
             14 2031
                        9
                              0 0.011197663
## D
        0
             1
                  29 1897
                              3 0.017098446
## E
        0
             2
                         7 2152 0.006004619
```

varImp(myModel)

Levels: A B C D E

```
## rf variable importance
##
     only 20 most important variables shown (out of 52)
##
##
                         Overall
##
## roll_belt
                         100.000
## pitch_forearm
                         61.314
## yaw belt
                         54.425
## pitch_belt
                         44.937
## magnet_dumbbell_z
                         42.705
## magnet_dumbbell_y
                         42.677
## roll_forearm
                         40.036
## accel dumbbell y
                         23.081
## magnet_dumbbell_x
                         18.778
## roll_dumbbell
                         18.585
## accel_forearm_x
                         16.913
## magnet_belt_z
                          16.052
## accel_dumbbell_z
                         14.119
## magnet_forearm_z
                         13.891
## magnet_belt_y
                         13.496
## total_accel_dumbbell
                         12.884
## accel_belt_z
                          12.413
## gyros_belt_z
                          11.382
## yaw_arm
                          10.311
## magnet_belt_x
                          9.237
```

27 variables were tried at each split and the reported OOB Estimated Error is a low 0.83%.

Overall we have sufficient confidence in the prediction model to predict classe for the 20 quiz/test cases. Validation/Quiz

The accuracy of the model by predicting with the Validation/Quiz set supplied in the test file.

```
print(predict(myModel, newdata=Quiz.df))
## [1] B A B A A E D B A A B C B A E E A B B B
```