CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 2 MARZO 2023

α		•			•
TTTO	COTO	-	commonts	OCOPOIG	
. 7 (/ ()	19616		Sevilenii	esercia.	
\sim \sim 0		_	seguenti	COCI CIZ.	.,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Si consideri l'operazione definita in \mathbb{Z}_{16} definita da: per ogni $a, b \in \mathbb{Z}_{16}$, $a*b = a+b+\bar{3}ab$.

- (i) Verificare che $(\mathbb{Z}_{16}, *)$ è un monoide e determinarne l'elemento neutro.
- (ii) Determinare $U = \mathcal{U}(\mathbb{Z}_{16}, *)$.
- (iii) Che tipo di struttura è (U, *)?
- (iv) Determinare chi tra $\bar{2}$ e $\bar{3}$ è simmetrizzabile in ($\mathbb{Z}_{16}, *$) e determinarne il simmetrico.

Esercizio 2. Sia g = (v, l) un grafo (semplice) finito connesso senza circuiti. È possibile determinare la somma dei gradi di tutti i vertici, sapendo che |v| = 8? Se sì, determinarla.

Esercizio 3. Sia a un insieme tale che |a| = 7 e sia $P = \mathcal{P}_4(a)$ l'insieme delle sue parti costituite da (esattamente) quattro elementi.

- (i) Quanti elementi ha P? Quante sono le applicazioni da a a P? (Rispondere senza eseguire i calcoli).
- (ii) Quante sono le partizioni F di a tali che $F \cap P \neq \emptyset$?
- (iii) Fissato un elemento c di a, quanti sono gli elementi di P a cui c non appartiene?

Esercizio 4. Di ciascuna delle seguenti relazioni binarie dire se è o non è d'ordine e, nel caso lo sia, determinare gli eventuali minimo, massimo, elementi minimali ed elementi massimali nell'insieme ordinato da essa definito.

- (i) α definita su \mathbb{Z} da: $\forall a, b \in \mathbb{Z}(a \ \alpha \ b \iff (a \leq b \land a \equiv_3 b));$
- (ii) β definita su \mathbb{N} da: $\forall a, b \in \mathbb{N}(a \ \beta \ b \iff (a \leq b \land a \equiv_3 b))$;
- (iii) γ definita su \mathbb{Z} da: $\forall a, b \in \mathbb{Z}(a \ \gamma \ b \iff (a \leq b \lor a \equiv_3 b))$.

Esercizio 5. Si consideri l'applicazione $f:(a,b)\in\mathbb{Z}_7\times\mathbb{Z}_7\mapsto\max(a\smallsetminus\mathbb{N}^*)+\min(b\cap\mathbb{N}^*)\in\mathbb{Z}$.

- (i) Determinare $\vec{f}(\mathbb{Z}_7 \times \mathbb{Z}_7)$.
- (ii) f è iniettiva? È suriettiva?
- (iii) Detto \mathcal{R}_f il nucleo di equivalenza di f, determinare $|(\mathbb{Z}_7 \times \mathbb{Z}_7)/\mathcal{R}_f|$.
- (iv) Determinare la classe di equivalenza di $[([1]_7,[6]_7)]_{\mathcal{R}_f}.$

Esercizio 6. Dando per noto che nell'anello $\mathbb{Z}_7[x]$ il polinomio $p = x^4 + \bar{3}x^2 - \bar{2}$ è irriducibile,

- (i) scrivere $p^{100}(p-\bar{2})$ come prodotto di polinomi monici irriducibili in $\mathbb{Z}_7[x]$.
- (ii) Quanti e quali sono i divisori monici di p^{100} in $\mathbb{Z}_7[x]$?
- (iii) Quanti e quali sono i divisori, monici o non monici, di p^{100} in $\mathbb{Z}_7[x]$ che abbiano grado 57?

ES 1

Va, b & Z16 (a * 6 = a + 6 + 3 ab)

Monorpe: SI

CONSULTATIVA: SI +, · son comutation

Trovata reachi hace l'te colcol association à mentro

ASSOCIATIVA : SI (axb) *c = a*(b*c)

(a+b+3ab)+c+3(ac+bc+3abc)

a +6+300 +0+30c+30c+30bc 306c+306+30c+36c+a+6+c

(6 tc) ta

(b+c+3bc)+a+3(ab+ac+3abc)

3abc + 3ab + 3ac + 3bc + a+b+c

NEUTRO: SI:0 a + m = a

ugusti [0]16

a+m+Ban=a

3 a n = a - a => 3 a n = 0 => n = 0

(i) U= U(Z, *) = {0,2,4,8,10,12,14}

poichi 3 non diviole 16, non existono oltor m che moltiplicati per 3 sons

0=0 i=0

a + i = 0 => a+ i+ 30i = 0 => i+30i = -a

a=4
i+3:=15
4:=15
HeD(4,16)=4
$$T(A|15)$$
 no obvious

a=2
i+3:2i=1h
 $2i=1h$
 $Acb(7,16)=1$
, is inset be l

a=3
i+3:3i=13
10:=13
 $Aci=12$
 $Aci=13$
 $Aci=13$
 $Aci=12$
 $Aci=13$
 $Aci=12$
 $Aci=13$
 $Aci=12$
 $Aci=13$
 $Aci=12$
 $Aci=13$
 $Aci=12$
 $Aci=13$
 $Aci=14$
 $Aci=13$
 A

a = (v, l) allers | v | = 8 La serre de gradi di tutti : certici (a) è 2. [l], e poiche g e' un albero, [l] = [V-1].

le = |v - 1 = 7 a = 2.7 = 14

Es 3 |a|=7 P=P(a)

[P]

Antismetria come i)

Trous-Tiu-to cone i)
Mosimal = 0 max Z

M. s. nol. = 90, 1, 28 min Z

holso: le
$$y < -5$$
 $\wedge y > 7$ non son imagine ob new un (a,b)

iii) $\left(\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \right) / \mathbb{R}_{\Gamma} \right) = \left(\overline{\mathbb{R}} \left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \right) \right) = (3)$

iv) $\left(\overline{\mathbb{A}}, \overline{\mathbb{A}} \right) = 6$

$$(5)=6$$

$$(5)=6$$

$$(5)=6$$

$$(5,5),(5,5),(5,5),(5,5),(5,5),(6,5)$$

$$[(\overline{1},\overline{6})]_{e_{1}} = \{(\overline{1},\overline{6}),(\overline{2},\overline{5}),(\overline{3},\overline{4}),(\overline{4},\overline{3}),(\overline{5},\overline{2}),(\overline{6},\overline{1})\}$$