

Module - IV Down (F) (B) Dynamic protegrania Greedy method It is time varying In this method elecision it gives the information is taken best of about particular the inform time There is no special There set fagible set of feasible Solutions & picks Solutions. up the optimal Solutions. There is no garrenty It is garrented that OPA gives the optimal to get the optimal Solution. eg: - fractional knapSack eg: - Belman Flood, problem, minimum Spanning Floyd Warshall +x66 Algerithm, zerrol knapsack problem assembly Scheduling problem. & longest Common Subsquence


```
K=1
A' (1,1) = min (A°(1,1) a, A°(1,1)+A°(1,1))
         min (0 0,0+0)=0
A'(1,2) = min (A0 (1,2), A0 (1,1)+ A0 (1,2)
          min (4,0+4) = 4
A1(113)
          min (A° (1,3), A° (1,1) + A° (1,3)
          \min (11, 0+11) = 11
                2
A1 (211) = min ( A0 (211), A0 (2,1) + A0 (111))
        = min (6,6+0)=6
A1 (212) = 0
A1(2,3) = min (A0(2,3), A0(2,1)+ A0(1,3))
            min(2,6+11) = 2
A1(3,1) = min (A0(3,1), A0(3,1) + A0(1,1))
         = min(3,3+0)=3
A'(3,2) = min (A°(3,2), A°(3,1)+A°(12))
        = min (00, 3+4)=7
 A1 (313) = 0
           min (A1 (1,2), A1 (1,2)+A1 (2,2)
           min(4,4+0)=4
           min (A'
                       ), A' ( ) + A'(
          = min
```


$$A^{2}(2|3) = min(A^{1}(2|1), A^{1}(2|2) + A^{1}(2|1))$$

$$A^{2}(2|3) = 0$$

$$A^{2}(2|3) = 0$$

$$A^{2}(2|3) = \min_{A} (2|3) A^{1}(2|2) + A^{1}(2|3)$$

$$= \min_{A} (2|0+2) = 2$$

$$A^{2}(3,1) = \min(A^{1}(3,1), A^{1}(3,2) + A^{1}(2,1))$$

$$= \min(3, \frac{1}{14b}) = 3$$

$$A^{2}(3,3) = 0$$

$$= \min_{a \in A^{1}(3,2)} A^{1}(3,2) + A^{1}(2,1)$$

$$= \min_{a \in A^{1}(3,2)} A^{1}(3,2) + A^{1}(2,2)$$

$$= \min_{a \in A^{1}(3,2)} A^{1}(3,2) + A^{1}(2,2)$$

1	0, 4	67		-	
A22	6 0		11.3	0 4	1 6
3	2 1	-2	A ? =	5 0	2
	3 +	0	and the same of	3 =	0

$$A^3(1,1) = 0$$

 $A^3(1,2) = min(A^2(1,2), A^2(1,3) + A^2(3,2))$

$$A^3(2,1) = min(A^2(2,1),A^2(2,3) + A^2(3,1))$$

$$= \min(6,2+3)=5$$

$$A^3(2,3) = 2$$

3rd row remain Same.

*	Single Source Shortest path & Bellman ford Algorithm
	It is used to find shortest path from source
-	It is Slower than diskstra's Algorithm
	If the graph Contains negative weight then it is not possible to find shortest path.
-	In diskolar or
-	In diskstra Algorithm Vertex is processed that Vertex is not processed again & again. In Bellman Ford Algorithm wither Vertex is processed.
	is processed, that vertex is processed again & again Until obtained we get optimal Solution.
	Ol- III O
	Algorithm Bellman-ford
	Ilp: Weighted graph. W(u, V) = Weight of edge (u, V) Ip: Shortest distance of cash Vouley
0	IP: Showlock height of edge (u,v)
	from given gourse
	IIIIIIII 7 (141 (1) (1)
	for each VEV do d[V] = 00 it [V] = nil
	$\frac{d(V) = \infty}{d(V) = \infty}$
	900
	d[8] ←0; TT[8] ← nil

Val(5) = dist (2) + wt(2,5)

= 3-1=2

	Date
	Vertex V
	dist(v)
	77 77 3 5 5 6 7
_	3 1 2 00 00
_	DV.
-	distance. adjacon
4	Val E) E = 7
-	Val (4) = digt (5) + wt (5,7)
	= 2+3
+	
	Verstex V 1 2 3 4 5 6 7
	015+101 0 3 5 5 6 7
1	11 [V] - nil 3 1 1 2 nil 5
1	
	Unprocessed Verstex having mainimum
1	0101011(4
	adjacent of 4 = 3,6 Val(3) = dist (4) + wt (4,3)
	= 5 - 2 = 3
	Val (6) = dist (4) + wt (4,6)
	= 5-1 = 4
	Vertex V 1 2 3 4 5 6 7
	dist[v] 0 3 3 5 2 4 5
	11/VJ nil 3 4 1 2 4 5
	3 > unprocessed Vertex having minimum
	1121.20

distance.

adviocent of 3 = 215 Val(2) = dist(3) + wt(312) = 3-2 = 1

	1 (3.5)							
	Val(5) = dist(3) + wt(3,5) = 3+1 = 4							
	Val(5) > dist(5)							
-	No change							
	Vertex V 1 2 3 4 5 6 7							
	distrul 0 101 3 5 2 4 5							
	TT[V] nil 3 4 1 2 4 5							
	2 - Unprocessed Vertex having							
	minimum distance							
	adjacent of 2 = 5							
	Val(5) = dist(2) + wt (215)							
C-S-1	= 1-10							
	TO -3 MARIA 6 4 14 12							
	Verstex V 1 2 3 4 5 6 7							
_	dis[V] 0 1 3 5 0 4 5							
-	TT [V] nil 3 4 1 2 4 5							
	5 < Unpracessed Vortex							
	adjacent of 5 = 7							
	Val (7) = dist (5) + wt (5,7)							
	= 0+3							
	= 3 8 1 1 1 1 1 1 1 1 1 1							
	Vertex V 1 2 3 4 5 6 7							
	dis[v] 0 1 3 5 0 4 3							

	Page
*	Oli knapsack problem:-
	Algorithm binary-knapsack 11 Ilp: - weight, profit, Capacity 11 Olp: - Array V which holds Solution of problems
	for i=0 to n do V[i, 0] < 0 end for i=0 to M do
	V[0,i]=0 end for $i=1$ to M do
	fox i=1 to n do if w[i] ≤ j V[i, i] = mox \{ V(i-1, i), Vi + (i-1, i-w[i])}
<i>a</i>	else $V[i,i] \leftarrow V[i-1,i] // i < w[i]$ end end
90J /	Apply Oli knapsack problem on the following
-	Pi = (10, 12, 15), weight (4, 6, 8), M = 4
P;	: Wi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	

			_		
			Page Page	-71	1
	Almanin	12	6-		/
_	Algorithm ICS(X, Y)			3 h-	
_	11 x is string of length n				
	11 y is string of length n for iso tom do				
	for ing of length in				
	for i=0 tom do				
_	01-0		2.7		_
_	FIIG				
	for i = 0 + 0 0 do				
	109 Fa :7 da	OL I			
	end (0.3)=0				
	6110				
-	fox i=1 tomdo				
	TOM J=1 to 0 d=				
	1 x:== 3; then				
	109 T: it so then				
	108 [i,i] = 108 [i-1,i-1]+1				
	(10)				
	if lcs [i, 1] ≥ lcs [i, 1 -	- 17 u			
	109 [1,1] = 109 [1,1]	THE	n		29
	e19 e		4.0		
	LCG[i, i] = LCG [i, i-i]				
	00-1				
	end				
	end				
	end	194			
01	Find Longest Common Subseque	nnco o	Ciba	C-11-	
2	Shine O	2116	T THE	+01100	uing
	Strings.				
	Strinty 1: a b c d	1 .	1		-
_	String 2: bd	b	C	d	
		2	3	4	
	Not match then take 0 5 mg &	0	0	0	
_ ;	match then consider b 1 00 0	K	-12		
	daigonal + that element d 2 0 0	1.	1	-2	
10000		2			
	Common = bd				


```
Page C
```

```
(ost ( I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I I ) = 0 (ost ( I I I ) =
```

$$(0St(\Xi_{1})) = \min((0St(\Xi_{1})) + (0St(2)),$$

$$(0St(\Xi_{1})) + (0St(3)),$$

$$(0St(\Xi_{1})) + (0St(4))$$

$$(0St(\Xi_{1})) + (0St(5))$$

$$= \min((9+2), 7+7, 3+\infty, 2+11)$$

$$= 11(2-7)$$

$$(05(II,8) = min(06t(II,2) + (05t(2,8)) + (05t(3,8)) + (05t(1,4) + (05t(4,8)) + (05t(1,4)) + (05t(1,8)) + (0$$

```
(05t (W, 9) = min ((05t (III,6) + (08t (6,4)
                     (OSt (III,7)+ (OSt (7,9)
                      Cost (II,8)+ (ost (8,9)
             = min
                     9+6,11+4,10+0)
               = 15 (6-q, 70-q)
 (OSt (IV, 10) = min (cost (II,6) + cost (6,10),
               (ost (II) + (ost (7,10)
                  (Ost (W, 8) + (Ost (8,10)
              = \min(9+5, 11+3, 10+5)
               = 14 (06-10,7-10)
(ast (IV, 11) = min (cost (IN. 6) + cost (6,11),
                (ost (II, 7) + cost (7,11).
               (0st(III,8)+(ost(8,11)
             = min (9+00,11+00,10+6)
               = 16 (8-11).
(OSt (▼112) = min ((OSt (▼19)+(OSt (9112)),
                  Cost (x110) + 10st (10112)
                    (ost (W111) + (ost (11,12),)
            = min ( 15+4, 14+2, 16+5)
             = 16 (10-12)
      12-10-6-3-1 ((2+5+2+7)=16))
       12-10-12-1 ((2+3+2+9)=16)
```


* Assembly line Scheduling:-Tt is the manufacturing of problem. Manufacturing of large Hema like car and truck undergoes through multiple station. eg: - Manufactuaing of Cax may be done in Several Glages like engineflying, Colouring, light filling and so an It load at Station I ar assembly line one yeary high then components one transperant to Station I on assembly line two. Algorithm Assembly line Scheduling (negatix) f, [1] = e1 + d11 f2[1] = e2+021 for j=2 to n do

if fi [j-1] + aii ≤ f2 [j-1] + t2, j-1 +021 thon 0190 fi [j] = f2 [j-i] + t2 ij-1 + 01i end $if f_2[j-i] + a_2, j \in f_1[j-i] + t_1, j-1 + a_2 i$ then $f_2[j] = f_2[j-i] + a_2 i$ else f2 [i] = f1 [i-1] + t1, i-1 + 02i ond if fi(n) + x1 & f2(n) + x2 then $t_* = t'(v) + x'$ $f * = f_2(n) + \chi_2$ and

end

*	N Que
	M greens broplems:
1	TITO.
1	
1	
1	
1	
+	2 Queen
+	2 gueens problem:
+	2 gueens problem is not solvable
+	0 10
+	9 9 9
-	
1	4 Queens problem is soluable
	Pagotetti 18 Soluable
	雪 9.
	9 92
	93
	94
	Place gion (1,1) - Sucressful
1	place @2 on (211) - fail
	Place 92 00 (211) = +011
	0 - (0 0) - (0:1)
	Place 92 on (212) - fail place 92 on (213) - Successful

Place 93 on (312) - fail place 93 on (3,3) - fail Place 93 on (3,4) - fail Algorithm backtracks and Places Q2 on (214) So place 93 on (3,2)

Lune	13.		
- uni	HOU	place	(kii)
2			TVII)

This function checks two queens can be placed on Same Column or Same diagonal.

else False

return true

· Complexity:-

N-1 choices to Select first queen
N-1 choices to Select second queen
N-2 choices to Select third queen

$$= 0 (N * (N-1) * (N-2) ---- 1)$$

$$= 0 (N!)$$

Best Case

o (1) -> Solution is obtained immediately.

1	Fin	d al	1 00	saib	le S	Hulg	ns,	to8,	8 91	reens problem
		cg								
				9			-			1 10
1						Cg				4
İ								Ø		
H		1	10	1						e i
1		1	12	1	0					Y =
1		+		+	13		Q			
+		-	+-	-	1		1		Q	

Tnitial Sum Remark Subset 5					Page
- Start with an empty State. - Add to the Subset next element from the list. - Add to the Subset is having same D then stop. - The Subset is having same D then stop. - The Subset is not visible or if we have. - The Subset is not visible or if we have. - The Subset Until we find most suitable. - The Subset Until we find most suitable. - The Subset is visible than repeat step. - The Subset is visible t					
- Start with an empty State. - Add to the Subset next element from the list. - Add to the Subset is having same D then stap. - The Subset is having same D then stap. - With a Subset is not visible or if we have. - The Subset is not visible or if we have. - The Subset Until we find most suitable. - Value. - The Subset is visible then repeat step. - The Subset is visible then repeat step. - The Subset is visible then repeat step. - The Subset is visible then solution. - The Subset is visible then repeat step. - The Subset is visible then repeat					The same of the sa
- Start with an empty State. - Add to the Subset next element from the list. - Add to the Subset is having same D then stap. - The Subset is having same D then stap. - With a Subset is not visible or if we have. - The Subset is not visible or if we have. - The Subset Until we find most suitable. - Value. - The Subset is visible then repeat step. - The Subset is visible then repeat step. - The Subset is visible then repeat step. - The Subset is visible then solution. - The Subset is visible then repeat step. - The Subset is visible then repeat	*	Sum of S	Subset:-		(0-10-5)
- Add to the Subset is having Same D then Stop To the Subset as a Salution. With a Subset as a Salution. With a Subset is not visible ax if we have To the Subset is not visible ax if we have to the Subset Until we find most Suitable Value. To the Subset is visible then repeat steps To we have visited all the elements without finding a Suitable Subset and if no back to is passible then Stop without Solution. Consider a Set S = 5.10.12.13.15.18 and d=3 Solve it abtaining Some of Subset. Thild Sum Remark Subset 5 10 12 2 # Sum < 30, add next element 5.10.12 2 # Sum < 30, add next element 5.10.12 15 Sum exceeds d=30 algo by 5.10.12,15 42 11 5.10.13 28 Sum < 30. add next element 5.10.13 28 Sum < 30. add next element 5.10.13.15 43 Sum exceeds d=30 algo by				Glate:	
- Flact to the Subset is having Same D then Stop To the Subset as a Salution. With a Subset is not visible ax if we have To the Subset is not visible ax if we have to the Subset Until we find most Suitable Value. To the Subset is Visible then repeat steps To the Subset is Visible then repeat steps To the Subset is Visible all the elements without finding a Suitable Subset and if no back to is possible then Stop without Solution. Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it abtaining Some of Subset. Thild Sum Remark Subset 5 DAD 15 Sum < 30, add next element 5,10,12 2		Start wi	th an empty	ext element	from the lies
with a Subset is not visible ax if we have To the Subset is not visible ax if we have reach the end of the Subset then back track to the Subset Until we find most Suitable Value: To the Subset is visible then repeat Steps To we have visited all the elements without finding a Suitable Subset and if no back track is possible then Stop without Solution. Solve it abtaining Some of Subset. Thitial Sum Remark Subset 5 Add next element Subset 5 Sum < 30, add next element 5,10,12 2+ Sum < 30, add next element 5,10,12 2+ Sum < 30, add next element 5,10,12,15 42 — 11 5,10,13,15 43 Sum exceeds d=30 algo be		Add to th	& Subset II	na Same D	then Stop
To the Subset 15 not subset then back track to the Subset Until we find most Suitable Value. To the Subset is visible than repeat steps The Subset all the elements without finding a Suitable Subset and if no back trac is possible then Stop without Solution. Golf Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it obtaining Some of Subset. Thitial Sum Remark Subset 5 Add next element 5,10,12 2+ Sum < 30, add next element 5,10,12 2+ Sum < 30, add next element 5,10,12,15 42 11 5,10,12,18 45 — 11 5,10,13,18 45 — 11 5,10,13,19 43 Sum exceeds d=30 algo but 5,10,13,15 43 Sum exceeds d=30 algo but	_	of the Su	beet 15 nov	Solution.	10 1
This Is and Remark Subset This Is Sum Remark Subset Subset This Subset Sum So, add next element Subset Sum exceeds d=30 algo bit Subsite 18 Sum exceeds d=30 algo bit Sum ex	2				if we have
to the Subset Until we find most outrable Value. To the Subset is visible then repeat steps The have visited all the elements without finding a Suitable Subset and if no back the is possible then Stop without Solution. Go I Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it abtaining Some of Subset. Thitial Sum Remark Subset 5 Add next element 5,10 12 2+ Sum<30, add next element 5,10,12 2+ Sum<30, add next element 5,10,12,15 42 1/ 5,10,12,18 45 11 5,10,13,15 43 Sum<30, add next element 5,10,13,15 43 Sum<40, add next element	-	6 64	- 1 1 100	(3) 1 (1) (3) (4)	The state of the s
Value. To the Subset is visible then repeat steps The have visited all the elements without finding a Suitable Subset and if no back tre is possible then Stop without Solution. Go J Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it obtaining Some of Subset. Third Sum Remark Subset 5 Sum < 30, add next element 5,10,12 2+ Sum < 30, add next element 5,10,12,15 42 1/ 5,10,13,18 45 11 5,10,13,15 43 Sum < 30, add next element 5,10,13,18 Sum < 30, add next element		reach the	Liter Day	ue find mos	+ Suitable
To the Subset is visible then repeat steps The have visited all the elements without finding a Suitable Subset and if no back tro is possible then Stop without Solution. Go J Consider a Set S = 5:10:12:13, 15:18 and d=3 Solve it obtaining Some of Subset. Third Sum Remark Subset 5 Add next element Sum < 30: add next element 5:10:12:13 40 Sum exceeds d=30 algo but 5:10:12:18 42 11 5:10:12:18 45 -11 5:10:13:15 43 Sum < 30: add next element			DOET VITTI	1	10 10
Finding a Suitable Subset and if no back tree is possible then Stop without Solution. Go J Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it obtaining Some of Subset. Thitial Sum Remark Subset 5 5 Add next element Subset 5 5 Sum < 30, add next element 5,10,12 2 Sum < 30, add next element 5,10,12 2 Sum < 30, add next element 5,10,12,15 42 11 5,10,13,18 45 11 5,10,13,19 45 Sum < 30, add next element 5,10,13,15 43 Sum < 30, add next element 5,10,13,15 45 11 Sum < 30, add next element 5,10,13,15 45 11 Sum < 30, add next element 5,10,13,15 45 Sum < 30, add next element		TO THO G	whant is Vi	sible then a	repeat Stopm.
# Finding a Suitable Subset and it no back the is possible then Stop without Solution. Go J Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it abtaining Some of Subset. Thitial Sum Remark Subset 5	-	Tr 1110 h	we vigited	all the elemen	15 without
15 Possible then Stop without Solution 30 Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it abtaining Some of Subset Taitial Sum Remark Subset 5 5 Add next element 5,10,12 2+ Sum < 30, add next element 5,10,12,15 42 1/ 5,10,13,15 45 1/ 5,10,13,15 43 Sum < 30, add next element 5,10,13,15 45 1/ 5,10,13,15 45 50 1/ 5,10,13,15 43 Sum exceeds d=30 algabines 5,10,13,15 43 Sum exceeds		finding a	Suitable Su	baet and if	no back truck
Go J Consider a Set S = 5,10,12,13,15,18 and d=3 Solve it obtaining Some of Subset. Third Sum Remark Subset 5 Add next element 5,10 12 27 Sum < 30, add next element 5,10,12,15 42 11 5,10,12,18 45 -11 5,10,13,15 43 Sum < 30, add next element		is Dosaih	le then Stop	without So	lution.
Tritial Sum Remark Subset 5 FAdd next element 510 15 Sum < 30, add next element 510, 12 27 Sum < 30, add next element 5, 10, 12, 13 40 Sum exceeds d=30 dlgo ber 5, 10, 12, 15 42 11 5, 10, 13, 18 45 - 11 5, 10, 13, 15 43 Sum exceeds d=30 dlgo ber 5, 10, 13, 15 43 Sum exceeds d=30 dlgo ber 5, 10, 13, 19 46 Sum exceeds d=30 dlgo ber 5, 10, 13, 19 46 Sum exceeds d=30 dlgo ber		10 10000	E I IE IE		1 5 4 5
Tritial Sum Remark Subset 5 FAdd next element 510 15 Sum < 30, add next element 510, 12 27 Sum < 30, add next element 5, 10, 12, 13 40 Sum exceeds d=30 dlgo ber 5, 10, 12, 15 42 11 5, 10, 13, 18 45 - 11 5, 10, 13, 15 43 Sum exceeds d=30 dlgo ber 5, 10, 13, 15 43 Sum exceeds d=30 dlgo ber 5, 10, 13, 19 46 Sum exceeds d=30 dlgo ber 5, 10, 13, 19 46 Sum exceeds d=30 dlgo ber	100	Consider a	Set S = 5	10, 12, 13, 15	18 and d= 30
Tnitial Sum Remark Subset 5	W. S.	Solve it of	staining S	om of Subs	30t.
Subset 5	1			(1.4)	
Subset 5		Initial	Sum	Remark	(
5 Add next element 5110 15 Sum < 30, add next element 5110, 12 27 Sum < 30, add next elem 510, 12, 13 40 Sum exceeds d=30 algo but 510, 12, 15 42 — 11 510, 13, 18 45 — 11 510, 13, 18 43 Sum exceeds d=30 algo but 510, 13, 18 43 Sum exceeds d=30 algo but 510, 13, 18 43 Sum exceeds d=30 algo but 510, 13, 18 43 Sum exceeds d=30 algo but				motoronatel A	+ 33 1
510 15 Sum < 30, add next element 510, 12 27 Sum < 30, add next element 5, 10, 12, 13 40 Sum exceeds d=30 algo but 5, 10, 12, 15 42 — 11 5, 10, 13, 18 45 — 11 5, 10, 13, 15 43 Sum exceeds d=30 algo but 5, 10, 13, 18 46 Sum exceeds d=30 algo but 5, 10, 13, 18 46 Sum exceeds d=30 algo but 5, 10, 13, 18 46 Sum exceeds d=30 algo but		11.11		5. 8.261.3	17-19-14
5,10,12 27 Sum < 30, add next elem 5,10,12,13 40 Sum exceeds d=30 algo but 5,10,12,15 42 — 1/ — 1/ — 5,10,13,15 43 Sum < 30, add next elem 5,10,13,15 43 Sum < 30, add next elem 5,10,13,15 43 Sum exceeds d=30 algo but 5,10,13,19 //c		5	5	Add ne	x+ element
5,10,12 27 Sum < 30, add next elem 5,10,12,13 40 Sum exceeds d=30 algo but 5,10,12,15 42 — 11 5,10,13,15 43 Sum < 30, add next elem 5,10,13,15 43 Sum exceeds d=30 algobit 5,10,13,19 46	A COLUMN TO THE REAL PROPERTY.	5110	15		
5,10,12,15 40 Sum exceeds d=30 algo bar 5,10,12,15 45	75	10,12	27		
5,10,12,15 42 — 11 — 5,10,12,18 45 — 11 — 11 — 5,10,13,15 43 Sum < 30, add next elem 5,10,13,15 43 Sum exceeds d=30 algobia	5	10,12,13	40		
5, 10, 13, 15 28 Sum < 30, add next elem 5, 10, 13, 15 43 Sum exceeds d=30 algob	5	10112,15	42	- 1/ -	5 0- 80 Olga Osic
5, 10, 13 28 Sum < 30, add next elem 5, 10, 13, 15 43 Sum exceeds d=30 algobi	51	10,12,18	45		
5.10.13.19 43 Sum exceeds d=30 algob	Ē	10,13	28		and novi clemen
5.10.13.19 /1C	5,	10,13,15		S S	and next exist
	<u>,</u> ट	10,13,18	46		5 0 = 30 algabe
3/10/13/13				11 -	R. sortis

Text: raman likes margo Dattern: Malch is found Algorithm Naive (T(1...n), P(1-..m)) for (s=0 to n-m) do if p(1-..m) = 7 (S+1...S+m) then Brint ("Match found") Complexity: -Worst Case: - O(mn)
Best case: - (o(n)) * Rabin Korp Algorithm: Text: 3141592653589793 pattern: 26 Modulo 2 = 11 26 mod 11 = 4 (Remainder) 4 | 5 9 2 6 5 3 5 8 9 7 9 3 grander the company Spurious match.

Algorithm Robin knap: - $P = P(i) \mod 9$ $\frac{1}{3}$ f (P(1...m) = T(S+1---S+m) then

write ("pattern found") Complexity: -Worst Cose :- O(mn)
Best Cose:- O(m+n) * knuth morris pratt algorithm: -The basic idea behind this algorithm is to build prefix array. This array is also called as Using prefix and Suffix information of pattern. Suretfix is word part added to the end of word prefix is word part added to the beginning of a word.

