Which Neural Net Architectures Give Rise to Exploding and Vanishing Gradients?

Boris Hanin

Texas A&M

Feb 6, 2018

- Fix $d \ge 1$ and $\mathbf{n} = (n_j)_{j=0}^d$.
- $\mathfrak{N}(d,\mathbf{n})$ depth d ReLU nets with hidden layer widths n_i .
- ullet $f_{\mathcal{N}}$ function computed by $\mathcal{N}\in\mathfrak{N}(d,\mathbf{n})$

- Fix $d \ge 1$ and $\mathbf{n} = (n_j)_{j=0}^d$.
- $\mathfrak{N}(d,\mathbf{n})$ depth d ReLU nets with hidden layer widths n_j .
- ullet $f_{\mathcal{N}}$ function computed by $\mathcal{N}\in\mathfrak{N}(d,\mathbf{n})$
- **Q.** How do d, **n** influence $Z = \|\nabla f_{\mathcal{N}}\|^2$ when weights and biases are random (i.e. at initialization)?

- Fix $d \ge 1$ and $\mathbf{n} = (n_j)_{j=0}^d$.
- $\mathfrak{N}(d,\mathbf{n})$ depth d ReLU nets with hidden layer widths n_j .
- ullet $f_{\mathcal{N}}$ function computed by $\mathcal{N}\in\mathfrak{N}(d,\mathbf{n})$
- **Q.** How do d, **n** influence $Z = \|\nabla f_{\mathcal{N}}\|^2$ when weights and biases are random (i.e. at initialization)?
- A. $\mathbb{E}\left[Z^K\right] = \exp\left(\Theta_K\left(\sum_j \frac{1}{n_j}\right)\right)$

• SGD fails if $f_{\mathcal{N}}$ has wild gradients: $\left|\partial f_{\mathcal{N}} \ / \partial w_{\alpha,\beta}^{(j)} \right| \in \{0,\infty\}$,

- SGD fails if $f_{\mathcal{N}}$ has wild gradients: $\left|\partial f_{\mathcal{N}} \ / \partial w_{\alpha,\beta}^{(j)} \right| \in \{0,\infty\}$,
- For neural nets,

$$\frac{\partial f_{\mathcal{N}}}{\partial w_{\alpha,\beta}^{(j)}} = \frac{\partial f_{\mathcal{N}}}{\partial \operatorname{Act}_{\beta}^{(j)}} \quad \frac{\partial \operatorname{Act}_{\beta}^{(j)}}{\partial w_{\alpha,\beta}^{(j)}}$$

- SGD fails if $f_{\mathcal{N}}$ has wild gradients: $\left|\partial f_{\mathcal{N}} \ / \partial w_{\alpha,\beta}^{(j)} \right| \in \{0,\infty\}$,
- For neural nets,

$$\frac{\partial f_{\mathcal{N}}}{\partial w_{\alpha,\beta}^{(j)}} = \frac{\partial f_{\mathcal{N}}}{\partial \operatorname{Act}_{\beta}^{(j)}} \quad \frac{\partial \operatorname{Act}_{\beta}^{(j)}}{\partial w_{\alpha,\beta}^{(j)}}$$

• $f_{\mathcal{N}}(\mathsf{Act}^{(j)}) = (f_d \circ \cdots \circ f_{j+1})(\mathsf{Act}^{(j)})$

- SGD fails if $f_{\mathcal{N}}$ has wild gradients: $\left|\partial f_{\mathcal{N}} \ / \partial w_{\alpha,\beta}^{(j)} \right| \in \{0,\infty\}$,
- For neural nets,

$$\frac{\partial f_{\mathcal{N}}}{\partial w_{\alpha,\beta}^{(j)}} = \frac{\partial f_{\mathcal{N}}}{\partial \operatorname{Act}_{\beta}^{(j)}} \quad \frac{\partial \operatorname{Act}_{\beta}^{(j)}}{\partial w_{\alpha,\beta}^{(j)}}$$

- $f_{\mathcal{N}}(\mathsf{Act}^{(j)}) = (f_d \circ \cdots \circ f_{j+1})(\mathsf{Act}^{(j)})$
- Exploding and Vanishing gradients problem comes down to

$$\left|\frac{\partial f_{\mathcal{N}}}{\partial \operatorname{\mathsf{Act}}_{\beta}^{(j)}}\right| \in \{0,\infty\}$$

- SGD fails if $f_{\mathcal{N}}$ has wild gradients: $\left|\partial f_{\mathcal{N}} \ / \partial w_{\alpha,\beta}^{(j)} \right| \in \{0,\infty\}$,
- For neural nets,

$$\frac{\partial f_{\mathcal{N}}}{\partial w_{\alpha,\beta}^{(j)}} = \frac{\partial f_{\mathcal{N}}}{\partial \operatorname{Act}_{\beta}^{(j)}} \quad \frac{\partial \operatorname{Act}_{\beta}^{(j)}}{\partial w_{\alpha,\beta}^{(j)}}$$

- $f_{\mathcal{N}}(\mathsf{Act}^{(j)}) = (f_d \circ \cdots \circ f_{j+1})(\mathsf{Act}^{(j)})$
- Exploding and Vanishing gradients problem comes down to

$$\left|\frac{\partial f_{\mathcal{N}}}{\partial \operatorname{\mathsf{Act}}_{\beta}^{(j)}}\right| \in \{0,\infty\} \quad \Longleftrightarrow \quad \operatorname{\mathsf{Var}}[Z] = \operatorname{\mathsf{Var}}[\|\nabla f_{\mathcal{N}}\|^2] \gg 1.$$

The Init

The Init

• Weight and biases for neurons at layer $j=1,\ldots,d$ are drawn i.i.d. from measures $\mu^{(j)},\nu^{(j)}$

The Init

• Weight and biases for neurons at layer $j=1,\dots,d$ are drawn i.i.d. from measures $\mu^{(j)},\nu^{(j)}$ satisfying

- $\ \, \mathbf{1} \ \, \boldsymbol{\mu^{(j)}}, \boldsymbol{\nu^{(j)}} \ \, \text{are symmetric around 0}$
- ② $Var[\mu^{(j)}] = 2/n_{j-1}$

Theorem (H)

Let
$$\mathcal{N}\in\mathfrak{N}_{\mu,
u}\left(extbf{d},\mathbf{n}
ight)$$
 .

Theorem (H)

Let
$$\mathcal{N} \in \mathfrak{N}_{\mu,\nu}\left(d,\mathbf{n}\right)$$
. Then, with $Z = \|\nabla f_{\mathcal{N}}\|^2$,

• For every d, n

$$\mathbb{E}\left[Z\right]=1.$$

Theorem (H)

Let $\mathcal{N} \in \mathfrak{N}_{\mu,\nu}\left(d,\mathbf{n}\right)$. Then, with $Z = \|\nabla f_{\mathcal{N}}\|^2$,

• For every d, n

$$\mathbb{E}\left[Z\right]=1.$$

2 There exists C > 0

$$2\exp\left(\frac{1}{2}\sum_{j=1}^{d-1}\frac{1}{n_j}\right) \leq \mathbb{E}\left[Z^2\right] \leq \exp\left(C\sum_{j=1}^{d-1}\frac{1}{n_j}\right).$$

Theorem (H)

Let $\mathcal{N} \in \mathfrak{N}_{\mu,\nu}\left(d,\mathbf{n}\right)$. Then, with $Z = \|\nabla f_{\mathcal{N}}\|^2$,

• For every d, n

$$\mathbb{E}\left[Z\right]=1.$$

2 There exists C > 0

$$2\exp\left(\frac{1}{2}\sum_{j=1}^{d-1}\frac{1}{n_j}\right) \leq \mathbb{E}\left[Z^2\right] \leq \exp\left(C\sum_{j=1}^{d-1}\frac{1}{n_j}\right).$$

3 For $K < \min\{n_j\}$, there exists c_K , $C_K > 0$ so that

$$\exp\left(c_K\sum_{j=1}^{d-1}\frac{1}{n_j}\right)\leq \mathbb{E}\left[Z^K\right]\leq \exp\left(C_K\sum_{j=1}^{d-1}\frac{1}{n_j}\right).$$

• If $\sum_{j \leq d} \frac{1}{n_j}$ large, then will have exploding and vanishing gradient at initialization.

- If $\sum_{j \leq d} \frac{1}{n_j}$ large, then will have exploding and vanishing gradient at initialization.
- Power-mean inequality:

$$\left(\frac{1}{d}\sum_{j=1}^{d-1}\frac{1}{n_j}\right)^{-1} \leq \frac{1}{d}\sum_{j=1}^{d-1}n_j \leq \left(\frac{1}{d}\sum_{j=1}^{d-1}n_j^2\right)^{1/2},$$

with equality iff n_j are all equal.

- If $\sum_{j \leq d} \frac{1}{n_j}$ large, then will have exploding and vanishing gradient at initialization.
- Power-mean inequality:

$$\left(\frac{1}{d}\sum_{j=1}^{d-1}\frac{1}{n_j}\right)^{-1} \leq \frac{1}{d}\sum_{j=1}^{d-1}n_j \leq \left(\frac{1}{d}\sum_{j=1}^{d-1}n_j^2\right)^{1/2},$$

with equality iff n_j are all equal.

ullet $\sum_j n_j$ — total number of neurons

- If $\sum_{j \leq d} \frac{1}{n_j}$ large, then will have exploding and vanishing gradient at initialization.
- Power-mean inequality:

$$\left(\frac{1}{d}\sum_{j=1}^{d-1}\frac{1}{n_j}\right)^{-1} \leq \frac{1}{d}\sum_{j=1}^{d-1}n_j \leq \left(\frac{1}{d}\sum_{j=1}^{d-1}n_j^2\right)^{1/2},$$

with equality iff n_j are all equal.

- $\sum_{i} n_{j}$ total number of neurons
- $\sum_{j} n_{j}^{2}$ total number of parameters

ullet We have $Z_q = \sum_{p=1}^{n_0} Z_{p,q}^2$ with

$$Z_{p,q} = \frac{\partial (f_{\mathcal{N}})_q}{\partial x_p}$$

ullet We have $Z_q = \sum_{p=1}^{n_0} Z_{p,q}^2$ with

$$Z_{p,q} = \frac{\partial \left(f_{\mathcal{N}}\right)_q}{\partial x_p} = \sum_{\gamma: p \to q} \prod_{j=1}^d w_{\gamma}^{(j)} \ \mathbf{1}_{\left\{\mathsf{act}_{\gamma(j)}^{(j)} > 0\right\}}$$

• We have $Z_q = \sum_{p=1}^{n_0} Z_{p,q}^2$ with

$$Z_{p,q} = \frac{\partial (f_{\mathcal{N}})_q}{\partial x_p} = \sum_{\gamma: p \to q} \prod_{j=1}^d w_{\gamma}^{(j)} \mathbf{1}_{\left\{ \mathsf{act}_{\gamma(j)}^{(j)} > 0 \right\}}$$

• $\Gamma = (\gamma_{\square}, \gamma_{\Delta}, \gamma_{O})$ has $\Gamma(2) = \{2, 3\}$ and $|\Gamma_{3,q}(5)| = 2$.

Sum Over Paths Formula for Moments of $Z_{p,q}$

Sum Over Paths Formula for Moments of $Z_{p,q}$

Theorem (H)

Let $\mathcal{N}\in\mathfrak{N}_{\mu,\nu}\left(d,\mathbf{n}\right)$. Write $Z_{p,q}=\partial\left(f_{\mathcal{N}}\right)_{q}/\partial x_{p}.$ For every $K\geq0,$

$$\mathbb{E}\left[Z_{p,q}^{2K}\right] = \sum_{\substack{\Gamma = (\gamma_k)_{k=1}^{2K} \\ \gamma_k: p \to q}} \prod_{j=1}^d \left(\frac{1}{2}\right)^{|\Gamma(j)|} \prod_{\substack{\alpha \in \Gamma(j-1) \\ \beta \in \Gamma(j)}} \mu_{\left|\Gamma_{\alpha,\beta}(j)\right|}^{(j)},$$

where

$$\mu_r^{(j)} = \int x^r d\mu^{(j)}(x).$$

Sum Over Paths Formula for Moments of $Z_{p,q}$

Theorem (H)

Let $\mathcal{N}\in\mathfrak{N}_{\mu,\nu}\left(d,\mathbf{n}\right)$. Write $Z_{p,q}=\partial\left(f_{\mathcal{N}}\right)_{q}/\partial x_{p}$. For every $K\geq0$,

$$\mathbb{E}\left[Z_{p,q}^{2K}\right] = \sum_{\substack{\Gamma = (\gamma_k)_{k=1}^{2K} \\ \gamma_k: p \to q}} \prod_{j=1}^d \left(\frac{1}{2}\right)^{|\Gamma(j)|} \prod_{\substack{\alpha \in \Gamma(j-1) \\ \beta \in \Gamma(j)}} \mu_{\left|\Gamma_{\alpha,\beta}(j)\right|}^{(j)},$$

where

$$\mu_r^{(j)} = \int x^r d\mu^{(j)}(x).$$

Remark

The expression above is true for arbitrary connectivity and for convnets (when input is randomized).

• Decompose $Z = \sum_{p=1}^{n_0} Z_{p,q}^2$

- Decompose $Z = \sum_{p=1}^{n_0} Z_{p,q}^2$
- Compute

$$\mathbb{E}\left[Z_{p,q}^{2}\right] = \sum_{\substack{\Gamma = (\gamma_{1}, \gamma_{2}) \\ \gamma_{k}: p \to q}} \prod_{j=1}^{d} \left(\frac{1}{2}\right)^{|\Gamma(j)|} \mu_{\left|\Gamma_{\alpha,\beta}(j)\right|}^{(j)}$$

- Decompose $Z = \sum_{p=1}^{n_0} Z_{p,q}^2$
- Compute

$$\mathbb{E}\left[Z_{p,q}^{2}\right] = \sum_{\substack{\Gamma = (\gamma_{1}, \gamma_{2}) \\ \gamma_{k}: p \to q}} \prod_{j=1}^{d} \left(\frac{1}{2}\right)^{|\Gamma(j)|} \mu_{\left|\Gamma_{\alpha,\beta}(j)\right|}^{(j)}$$

ullet $\mu_1=0$ so only $\gamma_1=\gamma_2$ survives

- Decompose $Z = \sum_{p=1}^{n_0} Z_{p,q}^2$
- Compute

$$\mathbb{E}\left[Z_{p,q}^{2}\right] = \sum_{\substack{\Gamma = (\gamma_{1}, \gamma_{2}) \\ \gamma_{k}: p \to q}} \prod_{j=1}^{d} \left(\frac{1}{2}\right)^{|\Gamma(j)|} \mu_{\left|\Gamma_{\alpha,\beta}(j)\right|}^{(j)}$$

• $\mu_1=0$ so only $\gamma_1=\gamma_2$ survives:

$$\mathbb{E}\left[Z_{p,q}^2\right] = \sum_{\gamma: p \to q} \prod_{j=1}^d \frac{1}{2} \cdot \frac{2}{n_{j-1}} = \prod_{j=1}^{d-1} n_j \cdot \prod_{j=1}^d \frac{1}{n_{j-1}} = \frac{1}{n_0}.$$

Recall

$$Z_{p,q}^{2K} = \sum_{\gamma_k: p \to q} \prod_{k=1}^{2K} \prod_{j=1}^{q} w_{\gamma_k}^{(j)} \mathbf{1}_{\left\{ \mathsf{act}_{\gamma_k(j)}^{(j)} > 0 \right\}}$$

Recall

$$Z_{p,q}^{2K} = \sum_{\gamma_k: p \to q} \prod_{k=1}^{2K} \prod_{j=1}^{q} w_{\gamma_k}^{(j)} \mathbf{1}_{\left\{ \text{act}_{\gamma_k(j)}^{(j)} > 0 \right\}}$$

• Use that f_N is a Markov Chain:

$$\mathbb{E}\left[Z_{p,q}^{2K}\right] = \sum_{\gamma_k: p \to q} \mathbb{E}\left[\prod_{k=1}^{2K} \prod_{j=1}^{d} w_{\gamma_k}^{(j)} \mathbf{1}_{\left\{\operatorname{act}_{\gamma_k(j)}^{(j)} > 0\right\}}\right]$$

$$\mathbb{E}\left[\prod_{k=1}^{2K} w_{\gamma_k}^{(d)} \mathbf{1}_{\left\{\operatorname{act}_{\gamma_k(d)}^{(d)} > 0\right\}} \mid \operatorname{Act}^{(d-1)}\right]\right]$$

Recall

$$Z_{p,q}^{2K} = \sum_{\gamma_k: p \to q} \prod_{k=1}^{2K} \prod_{j=1}^{q} w_{\gamma_k}^{(j)} \mathbf{1}_{\left\{ \mathsf{act}_{\gamma_k(j)}^{(j)} > 0 \right\}}$$

• Use that f_N is a Markov Chain:

$$\mathbb{E}\left[Z_{p,q}^{2K}\right] = \sum_{\gamma_k: p \to q} \mathbb{E}\left[\prod_{k=1}^{2K} \prod_{j=1}^{d} w_{\gamma_k}^{(j)} \mathbf{1}_{\left\{\operatorname{act}_{\gamma_k(j)}^{(j)} > 0\right\}}\right]$$

$$\mathbb{E}\left[\prod_{k=1}^{2K} w_{\gamma_k}^{(d)} \mathbf{1}_{\left\{\operatorname{act}_{\gamma_k(d)}^{(d)} > 0\right\}} \mid \operatorname{Act}^{(d-1)}\right]\right]$$

• Use independence of neurons and symmetrize:

$$\mathbb{E}\left[\prod_{k=1}^{2K} w_{\gamma_k}^{(d)} \ \mathbf{1}_{\left\{\operatorname{act}_{\gamma_k(d)}^{(d)} > 0\right\}} \ \big| \ \operatorname{Act}^{(d-1)}\right] = \prod_{\beta \in \Gamma(d)} \frac{1}{2} \mathbb{E}\left[\prod_{k=1}^{2K} w_{\gamma_k}^{(d)}\right].$$