

AD-A100 646 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL—ETC F/6 9/2
AIRCREW INFLIGHT PHYSIOLOGICAL DATA ACQUISITION SYSTEM. (U)
JUN 80 K L MOORE

UNCLASSIFIED AFIT/GE/EE/80-6

ML

1 of 2
AD
A1000546

AFIT/GE/EE/80-6

AIRCREW INFLIGHT PHYSIOLOGICAL
DATA ACQUISITION SYSTEM

THESIS

AFIT/GE/EE/80-6 Kenneth L. Moore
 Capt USAF

Approved for public release; distribution unlimited

14

AFIT/GE/EE/80-6

AIRCREW INFLIGHT PHYSIOLOGICAL
DATA ACQUISITION SYSTEM

9) Master's
THESIS

10) T/1

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

10) by
Kenneth L. Moore
Capt USAF

Graduate Electrical Engineering

11 June 1980

Approved for public release; distribution unlimited

042225

Preface

This project describes the design and simulation of a totally solid-state, self-contained data acquisition system. The system is designed to collect and store physiological and environmental data of aircrew members performing actual missions. The Rockwell System-65 minicomputer, augmented with two megabits of magnetic bubble memory, was used for operational software development and system simulation.

Many thanks go to the School of Aerospace Medicine at Brooks AFB for their invaluable assistance in obtaining hardware and for sponsoring the project. My thanks also go to Mr. Bob Durham, Mr. Dan Zamba, and Mr. Orville Wright of AFIT for their aid with laboratory simulation. For the guidance and assistance from my advisors, Dr. Ross, Dr. Kabrisky, and Dr. Lamont, I am sincerely thankful. Finally, for hours of editing and typing, and for her constant encouragement and understanding, I am deeply grateful to my wife, Becky.

Kenneth L. Moore

Accession For	
A.S. GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unpublished <input type="checkbox"/>	
J. tification <input type="checkbox"/>	
P. <input type="checkbox"/>	
Distribution/ <input type="checkbox"/>	
Availability Cedes <input type="checkbox"/>	
Avail. & /or <input type="checkbox"/>	
Dist	Special
A	

Contents

	Page
Preface	ii
List of Figures	v
List of Tables	vi
List of Abbreviations	vii
Abstract	ix
I. Introduction	1
Background	2
System Requirements	2
Previous Work	3
Problem Statement	5
Scope and Assumptions	6
Approach	6
Sequence of Presentation	7
II. Hardware	9
Controller Hardware	9
Storage Hardware	19
RAM Buffer Sizing	20
Magnetic Bubble Memory	22
Simulation Hardware	25
Rockwell System-65	26
Data Acquisition Hardware Board	28
III. Software	30
Design Method	30
Software Design	32
Software Description	33
The Main Program	34
Basic System Clock Interrupt	34
Mission Run Clock Interrupt	35
A/D Conversion Complete Interrupt	35
Channel Service Request Interrupt	36

	Page
Charnel Sampling	37
Signal Reproduction	37
Description of Storage Methods	38
Continucous Storage Method	39
Delta Continuous Storage Method	40
Variable Change Storage Method	42
Modified Variable Change Storage Method	44
Storage Method Comparison	46
Sampling Delays	50
IV. Results and Recommendations	58
Bibliography	63
Appendix A: IFPDAS Program Listing	66
Appendix B: Data Acquisition Board Description	106
VITA	113

List of Figures

Figure	Page
1 IFPDAS Functional Block Diagram	11
2 Amplitude Uncertainty and Aperture Time . . .	16
3 IFPDAS Layout - One-Half Scale	24
4 Simulation Hardware Block Diagram	27
5 Structured Programming Constructs	31
6 Frequency Spectra Demonstrating the Shannon Sampling Theorem	38
7 Aliasing Caused by an Inadequate Sampling Rate	39
8 Delta Continuous Storage Method Format	41
9 Variable Change Storage Method Format	43
10 Modified Variable Change Storage Method Format	45
11 Normalized Storage Versus Storage Methods . .	47
12 Consistent Collisions Eliminate Jitter	53
13 Jitter Elimination by Sampling and Fastest Channels First	54
14 Integer Multiple Sampling Rates Eliminate Jitter	55
15 Jitter Caused by Inconsistent Collisions . . .	56
16 Storage Required Versus Mission Length	59
17 Data Acquisition Hardware Wiring Diagram	108

List of Tables

Table		Page
I	IFPDAS Hardware Power Requirements	12
II	Parameter Sampling Rate	15
III	Four-Hour Storage Required for Continuous Storage Method	40
IV	Relation Between Minimum Reportable Change and the Error Associated	42
V	Four-Hour Storage Requirements for Variable Change Storage Method	44
VI	Four-Hour Storage Requirements for Modified Variable Change Storage Method	45
VII	Data Reduction for Increased Minimum Reportable Change, C	51

List of Abbreviations

A/D	Analog-to-digital
BMC	Bubble Memory Controller
C	Minimum reportable amount of change
CMOS	Complementary metal oxide semiconductor
CPD	Coil Predriver
CPG	Current Pulse Generator
CSM	Continuous Storage Method
D	Calculated difference of $\frac{(\text{Last value saved}) - (\text{this value})}{C}$
DCSM	Delta Continuous Storage Method
DT	Drive Transistor for MBM Coil
EOC	End-of-conversion signal
EPROM	Erasable, programmable, read-only-memory
FSA	Formatter/Sense Amplifier
Gx	Acceleration in x direction
Gy	Acceleration in y direction
Gz	Acceleration in z direction
IFPDAS	Inflight Physiological Data Acquisition System
IRQ	Interrupt request
LSI	Large scale integration
MBM	Magnetic bubble memory
MVCSM	Modified Variable Change Storage Method
NMOS	N-channel metal oxide semiconductor
PIA	Peripheral Interface Adaptor

RAM	Random access memory
ROM	Read-only-memory
R/W	Read/write signal
SAH	Sample-and-hold
SAM	United States Air Force School of Aerospace Medicine, Brooks AFB, Texas
VCSTM	Variable Change Storage Method
VIA	Versatile Interface Adaptor
1K	Equivalent to 1024
Ø2	Phase 2 signal

Abstract

A design is presented for a self-contained, man-mounted data acquisition system to sample and store 12 environmental and physiological parameters. The design consists of one-megabyte of nonvolatile magnetic bubble memory storage, 16 analog input channels, and four digital input channels, and is controlled by a 6502 microcomputer. Operational software was designed and simulation conducted on a Rockwell System-65 minicomputer augmented with two-megabits of magnetic bubble memory. Two types of data storage methods are examined--continuous (or pulse code modulation), and three variations of delta pulse code modulation for reduction of data storage.

Nonuniform sampling rates (or sampling jitter) caused by simultaneous sampling requests were investigated, and ways to reduce or eliminate the occurrence of jitter are also presented.

AIRCREW INFLIGHT PHYSIOLOGICAL
DATA ACQUISITION SYSTEM

I Introduction

As aircraft capabilities increase, so do the physiological stresses placed on the crew. These stresses, such as low temperature, reduced oxygen and pressure, and artificial gravity, evoke certain unwanted, possibly hazardous, physiological responses. The United States Air Force School of Aerospace Medicine (SAM) has a program underway to collect and analyze data on these physiological responses during actual flight. The objectives of this program have been to evaluate the effectiveness of life support equipment and systems, determine the oxygen generation and storage requirements for various types of missions, accumulate a data base from which design criteria for new breathing systems and environmental control systems can be developed, and assess the physiological cost of flying operations (Ref 1).

As indicated by the title, this investigation addresses the data collection and storage portion of the physiological response analysis problem. The device which collects the data is called the Inflight Physiological Data Acquisition System, or IFPDAS. The current IFPDAS operated by SAM has undergone several improvements, but still uses

a cassette tape recorder as the mass storage device. As with all mechanical devices, its performance is degraded during high-G maneuvering. The existing system also requires that analog signals be converted several times before getting to the final digital state for analysis. The original analog signals are recorded on cassette tape in a pulse duration modulation format. It is changed back to analog when read from the cassette tape, and finally converted to an eight-bit digital representation. The current system is controlled by discrete logic, with each channel being sampled 32 times per second. There is no capability to change this basic sampling rate for slowly-varying signals. Faster sampling rates are obtained in increments of 32 by applying the input signal to multiple channels. Also, due to discrete logic control, the current IFPDAS has no capability for data reduction or preprocessing. Due to these inherent limitations in the existing system, there is keen interest in developing a highly flexible microprocessor-controlled IFPDAS utilizing no mechanical devices.

Background

System Requirements. SAM personnel identified several initial requirements. First, the following 12 parameters must be collected:

- a. triaxial acceleration (G_x, G_y, G_z)
- b. cabin pressure

- c. anti-G suit pressure
- d. mask pressure
- e. inspired flow rate
- f. inspired oxygen concentration
- g. expired flow rate
- h. expired oxygen concentration
- i. body temperature
- j. heart rate

Eleven of the above parameters are provided by sensors which generate analog signals in the range of zero to five volts. The remaining parameter, heart rate, is provided both as an analog signal and as an eight-bit digital word. The sensors used to monitor physiological parameters are noninvasive (not surgically implanted) and have an accuracy no better than 1% of full range. Therefore, 1% was set as a guideline for IFPDAS accuracy. It is further required that all parameters be time tagged so that a physiological response parameter, such as increased heart rate, can be correlated to an input parameter change, such as increased Gz acceleration.

The system must be self-contained and fit into a survival vest. These requirements imply that the system be battery powered and not larger than 2x5x9 inches. Lastly, the system must be capable of operating for at least four hours.

Previous Work. Two previous AFIT theses investigations in this area have been done. The first, by Jolda and

Wanzek (Ref 2), proposed a microprocessor-controlled system with a magnetic bubble memory (MBM) as the mass storage device. Several sensors were interfaced to an Intel 8080 microprocessor test system to demonstrate the feasibility of implementing a completely solid-state IFPDAS. The data storage algorithm used to reduce the amount of data stored averaged each signal over a 10-second period.

The second thesis investigation, by Hill (Ref 3), looked at the 12 input parameters. Their rates of change were examined and sampling rates necessary to accurately reproduce the parameters' signals were proposed. Several data storage formats were suggested and implemented on the Intel 8080 test system. To varying degrees, these storage formats traded parameter accuracy for reduced storage. A general design of the IFPDAS was proposed, and the power and space requirements for that system were specified. For the general design proposed, an implicit assumption was made that the list of 12 parameters was complete. The overall effect of this assumption was that the system was designed to the 12 parameters with no capability for expansion.

Discussions with SAM personnel indicate that, as the analysis continues, additional parameters will be identified. This fact is evident from discussions concerning their interest in various real-time preprocessing techniques of such signals as electrocardiograms. They also imply that some parameters currently recorded might be omitted in future tests, while other parameters, such as body

temperature, might be collected for several locations of interest. In short, SAM cannot, at this time, specify a complete list of parameters or the parameter mix that will be used. It is therefore impossible to design a digital IFPDAS to a set of input parameters whose number, type (analog or digital), and storage rate are not, as yet, known. Because of the limitation on space, the requirement for battery power, and the existing level of MBM technology, it is also not feasible to "over design" the system in anticipation of future needs!

Problem Statement

The purpose of this effort was to design and simulate a solid-state, self-contained, microprocessor-controlled IFPDAS. As MBM technology advances, the IFPDAS should be able to increase its capability with only minor hardware changes and little or no software changes. The objectives of the simulation were to demonstrate relationships between the parameter characteristics (number, type, and sampling rate) and each of the following:

- a. amount of hardware
- b. size of mass storage
- c. power
- d. package volume

For a given level of technology, these relationships allow the realistic determination of conditions under which a solid-state IFPDAS could function successfully.

Scope and Assumptions

Because of time constraints, this effort was limited to the collection and storage aspects for the problem of physiological response analysis. Within this guideline, the following assumptions were made to further define the scope of the investigation:

- a. sensor outputs correctly represent the quantities measured
- b. analog signals are in the range of zero to five volts
- c. digital parameter data are represented by an eight-bit byte

Approach

For analysis the system was divided into two parts, the controller hardware and the storage hardware. The controller hardware was defined as that hardware required to collect, manipulate, and store data at the correct sampling rates. The storage hardware was defined as that hardware used solely for mass storage or the control of mass storage. Note that by this definition the random access memory (RAM), used to buffer data to the MBM, was considered as part of the storage hardware.

The first step was to define a controller hardware configuration. The basic design constraints were to provide a path for the flow of data from the inputs to the storage device at a sufficient rate--a "sufficient rate"

being defined as that required to process and store at least the original 12 parameters. The next step was to simulate the IFPDAS controller software for the controller hardware structure. The Rockwell System-65 minicomputer was the host machine for this study. A survey of available MBM was made, and the interface structure of the most promising was added to the simulation program. The storage size of the MBM, as well as that of the RAM buffer, were provided as variable inputs to be set upon program initialization. Different data storage techniques which indicated a good potential for storage reduction were examined. These were also added to the simulation program. Finally, several simulations were conducted. In each simulation one of the following was varied:

- a. number of input parameters
- b. sampling rates
- c. data storage methods
- d. size of RAM buffer
- e. size of bubble storage

Sequence of Presentation

Chapter II is concerned with system hardware. First, the configuration for the controller hardware is examined. Next, the storage hardware is analyzed in light of what is currently available and what should be available in the near future. Lastly, the simulation hardware is examined and compared with the controller and storage hardware.

Chapter III deals with the simulation software and its operation. Storage methods to reduce the amount of data stored are discussed, along with accuracy and errors associated with each. This chapter also examines other nonhardware related issues. These include a discussion of sampling rates to insure signal reproducibility, methods of handling storage error, and the effect of sampling delays due to multiple simultaneous sampling requests.

Results and recommendations are presented in Chapter IV.

II Hardware

For discussion purposes, this chapter is divided into three parts: the controller hardware, the storage hardware, and the simulation hardware. The first section describes how and why the controller hardware structure was minimized. A prototype design is presented using current state-of-the-art devices. The subsequent section discusses the storage hardware, centering on the selection of an appropriate MBM. The simulation hardware is discussed in the final section.

Controller Hardware

The controller hardware was defined as that hardware required to collect, manipulate, and store the incoming data. One characteristic of the controller hardware was that the amount of hardware required was not a direct function of the number of input parameters and mission length, as was the case with the storage hardware, but was dependent on the functions that it performed. In keeping with the power and space limitations discussed earlier, a definition of a minimum controller hardware configuration was needed. Defining the minimum controller hardware had the added benefit of maximizing the physical space allotted for the MBM storage hardware. In order to minimize the controller hardware, the functions of the controller hardware were considered.

As shown in Figure 1, three functions associated with the controller hardware were identified. Interfacing the system to both analog and digital input signals was one function, labeled as the Channel Interface. Control of the interface hardware, manipulation of data for preprocessing or storage reduction, and control of data flow to mass storage were grouped as the second function, called System Control. The Mission Run Clock function was identified to provide a continuous time readout in relation to the start of the test to allow the incoming signals to be correlated in time. Having identified the functions performed by the control hardware, it was necessary to identify the hardware to perform those functions. Specific device recommendations, given in Table 1, were predicated on meeting the functional requirements of the minimum controller with currently available hardware at minimum power. Because of its extremely low power consumption and moderately fast operation, complementary metal oxide semiconductor (CMOS) devices were recommended when available.

The system requirements that came to bear on the selection of the Analog Channel Interface were to service at least the 12 original analog signals, remain near the 1% error guideline, and have low power consumption. The 16-channel ADC0817 analog data acquisition chip was selected for this function (Ref 4). The chip contains a 16-to-1 analog multiplexer, a successive approximation analog-to-digital (A/D) converter, and a tri-state output

Fig. 1. IFPDAS Functional Block Diagram

TABLE I
LFPAS HARDWARE POWER REQUIREMENTS

Device	Quantity	Part Number	Max Power (milliwatts) @ 5 volts	Max Power (watt-hour) @ 12 volts	Mission Power (watt-hour) @ 5 volts	Mission Power (watt-hour) @ 12 volts
Microcomputer	1	R6502	250	---	1	---
EPROM	1	TI2564	400	---	1.6	---
RAM	2	HM6116	400	---	1.6	---
DATA BUS DRIVERS	2	CDP1857	.0005	---	.002	---
ADDRESS BUS DRIVERS	2	CD4050	.0006	---	.0024	---
GATES	1	HC74C04	*	---	*	---
	1	HD54C10	*	---	*	---
ADDRESS DECODE	1	YM54C154	*	---	*	---
DIGITAL PORTS	2	CDP1851	15	---	.06	---
ANALOG PORTS	1	ADC0817	15	---	.06	---
TIMER	1	M6840	550	---	2.2	---

TABLE I-Continued

Device	Quantity	Part Number	Max Power (milliwatts) @ 5 volts	Max Power (milliwatts) @ 12 volts	Mission Power (watt-hour) @ 5 volts	Mission Power (watt-hour) @ 12 volts
**INTEL IC's						
-BMC	1	7220	*** 250	---	---	.02
-CPC	6	7230	1280	3840	.1024	.3072
-RSA	6	7242	4800	2880	.384	.2304
-CPD	8	7250	---	7200	---	.576
-DT	16	7254	---	28,000	---	2.24
-MBM	8	7110	---	10,400	---	.832
TOTALS	64		7960	51,720	.0308	4.1856

* - Less than 100 nanowatts

** - Duty Cycle

*** - Estimated

latch. Multiplexing the analog inputs to a single A/D converter, rather than requiring an A/D converter for each signal, reduces cost, power, and space. Under microcomputer control, the analog multiplexer can access any one of the 16 single-ended analog channels. The selected channel's signal is fed through the A/D converter to produce an eight-bit byte. The total conversion time (from start-conversion to end-of-conversion flags) is 100 microseconds, resulting in a maximum rate of 10,000 conversions per second. This is well beyond the 144 samples per second required by the currently identified parameters (see Table II).

The ADC0817 performs a linear, ratiometric conversion with a total error of less than $\pm\frac{1}{2}$ of the least significant bit. This translates into a maximum conversion error of less than 0.2% for an eight-bit byte, which compares quite favorably with the 1% error guideline. In line with the low power consumption requirement, the ADC0817 is a CMOS device and consumed 15 milliwatts of power from a single five volt supply.

The ADC0817 does not contain a sample-and-hold (SAH), but one can be added externally. In deciding whether or not to use a SAH, it was necessary to examine the sampling error without the SAH.

In Figure 2 the aperture time, t_a , refers to the time uncertainty (or time window) in making a measurement. If the signal being measured changes during that time, an amplitude uncertainty, or error, results. It should be

TABLE II
PARAMETER SAMPLING RATE

Parameter	Sampling Rate (samples per second)
Inspired Flow Rate	20
Expired Flow Rate	20
Inspired Oxygen Partial Pressure	20
Expired Oxygen Partial Pressure	20
Heart Rate	8
Body Pressure	2
Mask Pressure	20
Cabin Pressure	2
G-Suit Pressure	8
Vertical Acceleration	8
Lateral Acceleration	8
Longitudinal Acceleration	8
	144 Total

t_a = aperture time

ΔV = amplitude uncertainty

$$\Delta V = t_a \times \frac{dV(t)}{dt}$$

Fig. 2. Amplitude Uncertainty and Aperture Time

noted that at some point within the aperture time the signal amplitude corresponds exactly to the code word produced by the A/D converter. Therefore, the amplitude uncertainty, ΔV , represents the maximum error due to signal change. For the maximum rate of change identified in the current list of parameters (Ref 3:10), the maximum amplitude uncertainty corresponds to an error of less than 8% of the least significant bit. Therefore, the possible accuracy improvement is insignificant and the SAH is not required.

The Digital Channel Interface requires an eight-bit port for each digital input, capable of handshaking with

both the system controller and the data source. After each data collection mission, these ports could be programmed to dump the contents of MBM to a mass storage device such as digital tape, or, via a modem, transmit the data to the main computer for immediate analysis. Device selection was based mainly on power consumption. The CDP1851 contains two programmable digital ports, with handshaking control lines for each. The device requires a single five-volt supply and consumes approximately 7.5 milliwatts of power (Ref 5:97-111).

The System Control tasks were grouped for a microcomputer realization. The microcomputer selected was the Rockwell R6502. The selection was based upon four system development needs. The first was to have a microcomputer which was fast enough for current and near-term system realizations but could, with little or no design changes, meet future needs. Experimentally, the maximum sampling rate was 2380 samples per second for a single analog channel and 129 samples per second for each of 16 analog channels (total samples per second of 2064). The R6502 specified in Table I is a one-megahertz microcomputer capable of meeting foreseeable mission requirements. However, with little or no redesign, the two-megahertz version could be used to increase system response. Next, the microcomputer must have file-oriented instructions. While the R6502 microcomputer is not specifically file-oriented, it does have a straightforward instruction set with several

addressing modes, which make data file manipulations relatively easy. Most important, the R6502 has a microcomputer development system geared toward development of MBM systems. This development system (called the Rockwell System-65) was used for software simulation and is discussed later in this chapter. Although CMOS microcomputers such as the CPD1851 were available, none had the system development support hardware and software required for IFPDAS development. The R6502 consumes 250 milliwatts versus 7.5 milliwatts for the CPD1851.

The 8Kx8 erasable, programmable, read-only-memory (EPROM) (Ref 6) specified in Table I allows for the existing simulation program (approximately 4.5K), plus room for future preprocessing subroutines, without need for redesign. Because it is erasable and field programmable, initial development costs, as well as future software modification costs, will be minimized.

The Mission Run Clock function requires a programmable 16-bit counter to divide the one-megahertz system clock down to the basic sampling interval rate. The Mission Run Clock then counts the number of basic sampling intervals during the four-hour mission. Twenty-four bits are required for a one-millisecond sampling interval. The Mission Run Clock can be realized in software or (if available) in hardware. Low power consumption was the primary selection criterion for the programmable counters. However, at the time of this writing, no appropriate CMOS devices are

available. The M6840 NMOS device with three programmable counters was selected (Ref 7).

Storage Hardware

The actual size of bubble storage required depended on several variables:

- a. number of input parameters
- b. sampling rates
- c. storage reduction methods used
- d. amount of storage overhead required
- e. mission length

As discussed in Chapter I, the number, rate, and type of input parameters have not been determined. Therefore, one simulation objective was to realistically determine the amount of hardware required for a given set of the above variables. The first step toward simulating the storage hardware was to determine its structure by examining the functions it performed.

The storage hardware realized three functions (see Figure 1); the RAM buffer memory, the bubble controller, and the MBM with its associated drive circuitry. The RAM buffer memory was required for two reasons. It allowed data from a particular channel (analog or digital) to be grouped in a predefined block size. Each block was then labeled with, among other information, the channel number. This reduced the amount of MBM storage overhead by eliminating the need to channel tag each piece of data. The RAM

buffer memory also allowed the bubble memory to be completely powered down when not used, thereby reducing the total power required by the storage hardware.

RAM Buffer Sizing. In selecting the RAM buffer required, several conflicting criteria were considered:

- a. minimization of total power for RAM buffer and MBM
- b. IFPDAS software data structure requirements
- c. reduction of percentage of block header overhead
- d. reduction of block manipulations due to sampling errors
- e. packaging requirements

To address the first criterion, a test was conducted which simulated the effect of powering the MBM down when not in use. The objective was to determine the relationship between the amount of RAM buffer and the total power required by the storage hardware (RAM buffer and MBM). A single channel was sampled at 156 samples per second, which was slightly above the total rate specified for the original 12 parameters. The program halted after a pre-defined number of channel blocks were written to the Rockwell MBM. The percent of time the MBM was powered up was recorded for RAM buffer sizes from 1K to 5K in increments of 1K. A variation of the test was also run to determine the effect of sampling multiple channels. For this test, 12 channels were sampled, but the total sampling rate for the channels was kept at 156 samples per second. In all

cases, the percent of time the MBM was on was constant at approximately 1.7%. Consequently, at slow sampling rates typical for the IFPDAS, the percent of MBM "on" time was independent of the amount of RAM buffer memory. Therefore, to minimize the total storage hardware power required that only the RAM buffer power be minimized.

At program initialization each active channel was allocated a block of RAM buffer, where each block was of equal size. When a particular channel's block was full, a new block of RAM buffer was allocated and the full block was so flagged. This sequence required that the RAM buffer contain at least one more block of data than active channels. Since all channels may be active, the RAM buffer must have at least 21 blocks of data; 16 analog channels, four digital channels, and one extra. If the RAM only contained one more block than the number of active channels, the MBM was required to be on continuously.

The overhead associated with each block of data consisted of the block header. The header was made up of the channel identification (1 byte), the block start time (2 bytes), and the first value (1 byte), making the block header four bytes long. To keep the MBM overhead to 5% or less, the blocks must be at least 82 bytes long, requiring the 21 block RAM buffer to be at least 1722 bytes long.

The term "range error," sometimes referred to as "slope overload," describes the inability to represent difference values by a specified (reduced) number of bits.

(The reasons for saving difference values instead of the values themselves are discussed in Chapter III.) When a range error occurs, the remaining data in the block in which the range error occurred will be incorrect and must be corrected in some manner. Obviously, the smaller the block size, the less correction, on the average, must be done to correct for the range error occurrence. (Methods of handling range errors are also discussed in Chapter III.)

The most important criterion for RAM buffer size selection was the IFPDAS packaging requirement, which dictates high density, low power devices. The amount of RAM necessary for at least 21 blocks of buffer, plus that required for IFPDAS software, was slightly over 2K of RAM. Table I specifies two HM6116 static CMOS RAM chips. These 2Kx8 chips have the highest density at the lowest power currently available. The extra memory will allow for future preprocessing capabilities, as well as allowing the block size to be adjusted according to mission needs.

Magnetic Bubble Memory. There were three MBM devices available to choose from for a near-term IFPDAS realization. The Texas Instruments 96-kilobit MBM was eliminated because of its low package density and lack of support hardware. The Rockwell 256-kilobit MBM (used in the simulation hardware) was also eliminated. Its relatively low package density, as well as lack of special-purpose LSI control chips, precluded meeting the power and volume requirements (Refs 8 and 9). The Intel Magnetics one-megabit MBM and

its support electronics was chosen as the most promising for a near-term IFPDAS realization (Ref 10). The most appealing aspects of the Intel bubble were its relatively high package density and special-purpose support electronics, both of which greatly reduced the physical space and power required by the storage hardware. The support electronics consisted of a bubble memory controller chip capable of controlling eight bubble memory devices, and five other chips which supply the drive and timing signals to the bubble device. To provide the capability to test higher density devices, while keeping the results tied to a currently available device, only the structure of the Intel bubble was simulated. The amount of bubble memory, as well as RAM buffer memory, were varied in the simulation from run-to-run.

Using the sampling rates shown in Table II, the amount of MBM required was 2,073,600 eight-bit bytes for a four-hour mission. The Delta Continuous Storage Method (discussed in Chapter III) reduced by half the amount of storage required. (The other techniques discussed in Chapter III had greater potential for data reduction, but only this storage technique guaranteed a reduction by half.) This implied that at least 1,036,800 eight-bit bytes were required to insure sufficient storage for a four-hour mission.

For a near-term realization, eight Intel MBM devices, providing 1,048,576 eight-bit bytes, are required. Figure 3

Fig. 3. IFPDAS Layout--One-half Scale

is a one-half scale drawing of the proposed IFPDAS layout. Because of the obvious crowded conditions, the IFPDAS power would be supplied by another module. The crowded conditions make routing of the address, data, and control busses difficult, necessitating the use of multilayered printed-circuit boards. Also, the existing Intel printed-circuit board is too large and requires a redesign.

It is evident from the above discussion that the capability of the IFPDAS is limited by the density of the MBM currently obtainable. Recent experimental and theoretical results by Bell Labs (Ref 11) promise a quadrupling of the storage density at a bit rate per device of one million bits per second or greater, as compared to the 50-100 thousand bits per second of existing devices. Bubble movement was derived from patterned conducting sheets instead of orthogonal field coils. This had the added benefits of reducing the power required by the MBM device, simplifying the control circuitry, and further reducing the physical space required. Also, the device required a single five-volt source rather than the five- and twelve-volt sources currently required. This would eliminate the need for multiple power sources in the IFPDAS.

Simulation Hardware

The objective of the simulation hardware was to duplicate both the control hardware and the storage hardware structures as closely as possible to simulate IFPDAS

operations. The simulation hardware was chosen to meet structural and functional requirements and to be readily available. The remainder of this section discusses the specific hardware used for the simulation. The interconnections of the simulation hardware are shown via the block diagram in Figure 4.

Rockwell System-65. The heart of the simulation hardware was the Rockwell System-65 minicomputer (Ref 12). It performed the System Control function of the controller hardware. The System-65's MBM subsystem (Ref 13) also enabled it to perform all functions associated with the storage hardware. The MBM subsystem consists of a MBM controller board and up to 16 MBM boards (two MBM boards were used in the simulation). Each MBM board has four 256-kilobit devices along with drive circuitry. The structure of the System-65 matched the structure chosen for the minimum configuration LFPDAS.

The System-65 was specifically designed to aid in the development of microcomputer software systems. Its development support includes:

- a. a ROM resident interactive system monitor
- b. a ROM resident assembly language compiler
- c. a ROM resident debut routine
- d. a higher order language compiler (PL-65)
- e. two mini-floppy disks and support software
- f. hardware in-circuit emulator

Fig. 4. Simulation Hardware Block Diagram

- g. an EPROM programmer
- h. parallel and serial terminal support from 110 to 9600 baud

The simulation software developed on the System-65 could be easily transitioned to a R6502 microcomputer-based IFPDAS prototype. This, along with its existing MBM capability, made the System-65 ideally suited as the simulation host machine.

Data Acquisition Hardware Board. The remaining functions, analog and digital channel interface and the Mission Run Clock, were simulated on a data acquisition hardware board. While the board was functionally equivalent to that specified for the minimum configuration IFPDAS hardware, it contained some nonessential hardware. See Appendix B for details of the Data Acquisition Hardware board.

The analog channel interface function was performed by two 40-pin chips; the ADC0817 data acquisition chip described earlier for the IFPDAS prototype, and the R6522 Versatile Interface Adaptor (VIA) (Ref 14: Sec 6). The R6522 VIA has two peripheral ports, each with two control lines, which provided an interface between the System-65 and the ADC0817 data acquisition chip.

The R6522 VIA also has two independent 16-bit interval timers which were used to provide a programmable Mission Run Clock. The first timer was programmed to provide a pulse at the basic sampling interval, while the second timer counted the number of pulses to provide 16 bits of

the 24 bits required for the Mission Run Clock. The remaining eight bits were realized by incrementing a memory location whenever the Mission Run Clock counter overflowed.

The R6522 VIA also contains a serial input/output eight-bit shift register which might be useful during IFPDAS prototyping.

Two digital channels were provided by the MC6820 Peripheral Interface Adaptor (PIA). Both of the PIA's parallel ports have programmable control lines for handshaking with the external device as well as an interrupt signal to the microcomputer. The System-65 has two additional digital ports which could be used for simulation--the serial port to which the system terminal is attached, and the parallel printer port (Ref 12); however, neither was used.

The data acquisition hardware board also has a M6840. The M6840 contains three independent 16-bit, programmable interval timers. This chip was added as a tool for simulation.

III Software

This chapter deals with the IFPDAS controller simulation software. First, the simulation software design is discussed and a detailed description given. Next, an analysis of the sampling rate to insure signal reproducibility, followed by a discussion of the data reduction storage methods used, is given. Lastly, the analog sampling delays due to simultaneous request and the possible sampling jitter they cause are considered. The worst-case jitter is closely examined and a method to reduce the occurrence of jitter is presented.

Design Method

The simulation software was designed in a top-down (sometimes called structured programming) manner. Myers defined structured programming as "the attitude of writing code with the intent of communicating with people instead of machines" (Ref 15:130). While he did not give a more precise definition, he did define five "acceptable" programming constructs which produce readable code. These five constructs, shown in Figure 5, were used extensively in the software design. Other structured programming "do's" and "don'ts" that were used as design guidelines are as follows:

Sequence

If-Then-Else

Do While

Do Until

Case

Fig. 5. Structured Programming Constructs

- a. software modules performed a single function
- b. module independence was maximized
- c. module coupling was minimized
- d. module size was small
- e. modules were predictable (had no memory of previous calls that modified the execution)

Certain guidelines of "pure" structured programming were, however, violated. Specifically, because of the real-time aspects of manipulating certain array variables, the use of global array variables was necessary for those cases.

The use of global variables resulted in some data handling subroutines being, to a large degree, dependent on the data structure chosen, another violation of "pure" structured programming practices. In both cases, the degree of program complexity and obscurity was significantly reduced, and it was determined that this departure from the structured programming approach was warranted.

Software Design

The software was designed in two parts: the preflight and postflight software, and the real-time mission run software. The preflight software allowed the operator to initialize the particular mission scenario for:

- a. signal parameter characteristics
- b. basic sampling interval
- c. RAM buffer size

- d. MBM size
- e. mission end time

The postflight software allowed the contents of the MBM to be dumped in a graphic format to a specified device/port. For both preflight and postflight software, existing System-65 input/output routines were used as required. This allowed more attention to be focused on the mission run software.

The mission run software duplicated, as closely as possible, the real-time operation of the minimum configuration IFPDAS. Exact duplication was not possible due to simulation overhead calculations such as the amount of time the bubble was powered up/down. The simulation overhead was kept to a minimum and did not appreciably affect system performance. The program listing is given in Appendix A.

Software Description

The mission run software was designed using the interrupt capability of the R6502 microcomputer. When an interrupt request (IRQ) signal was detected by the microcomputer, the Main program was halted and the interrupt handler polled the possible requesting devices in the order given:

- a. Mission Run Clock overflow
- b. Basic System Clock timeout
- c. A/D conversion complete

The order in which the requesting devices were polled dictated the relative priority of each device. This interrupt polling method was chosen over a hardware-vectored interrupt method to keep the control hardware minimized. With the relatively slow sampling rates of the original 12 parameters, the interrupt polling method proved more than adequate.

The Main Program. The Main program continually monitored the status of the RAM and MBM. When it was determined that the available RAM buffer memory was at or below a pre-defined level (usually 20%), the Main program powered up the MBM and evoked a subroutine to flush the data from RAM buffer to the MBM. All full blocks associated with the fastest channel were flushed and the pointers were updated before the next-fastest channel was considered. When a particular block of RAM buffer was flushed, it was returned to a stack of available memory for subsequent use. When all active channels had been flushed to the MBM, the Main program again checked the amount of available RAM buffer memory before powering down the MBM and starting the sequence again. Powering up and down of the MBM was simulated because that feature was not available on the System-65.

Basic System Clock Interrupt. The Basic System Clock was a 16-bit programmable timer which provided the basic, elemental time increments. Each channel's sampling interval could then be programmed as an integer multiple (1-255)

of this basic time increment. The input to the Basic System Clock was the one-megahertz microcomputer clock.

An interrupt occurred each time the Basic System Clock counted the predefined number of one-megahertz pulses. The interrupt handler then checked each channel (fastest channels first) to see which should be sampled. When it was determined that a channel should be sampled, the A/D conversion was initiated, and the mission run time for that sample was saved. If the A/D converter was busy, a flag was set to indicate the channel needed to be sampled. When all channels were checked, program control was returned to the Main program.

Mission Run Clock Interrupt. The purpose of the Mission Run Clock was to provide a count of the number of elemental time increments throughout the entire mission. For this simulation, the Mission Run Clock was realized as a 16-bit hardware counter and a memory location to store the number of clock overflows. This resulted in a 24-bit Mission Run Clock.

An interrupt was generated when the 16-bit hardware counter overflowed. The Mission Run Clock handler then incremented the overflow memory location and checked to see if the allowed simulation time had elapsed. If the allowed simulation time had elapsed, the simulation was halted; otherwise program control was returned to the Main program.

A/D Conversion Complete Interrupt. An interrupt was generated by the A/D converter upon conversion completion.

The End-of-Conversion handler first saved the value just converted and then checked to see if any other channels (starting with the fastest) were flagged as needing to be sampled. If a channel was so flagged, conversion for that channel was initiated and its flag cleared. The handler then determined, according to the particular storage method, if the converted value just saved should be kept. If the data was to be kept, it was formatted as dictated by the storage method for that channel, and placed in a block of RAM buffer designated for that channel. If the placement of the data filled the block, then another block was allocated from the list of available RAM buffer memory, and channel header information written on the block. Control was then returned to the Main program.

Channel Service Request Interrupt. The channel service request provided an alternate means for sampling data. Instead of sampling the data at predefined intervals, the channel was only sampled upon request. This method was used exclusively for the digital channels during the simulation, but could be used for analog channels. Likewise, the digital channels could be automatically sampled at predefined intervals, as was done with the analog channels.

The storage method used for a channel service request was the continuous method; however, variations of any of the storage methods discussed later in this chapter could be used under appropriate conditions.

Channel Sampling

This section deals with several aspects of channel sampling. First, the sampling rate to insure signal reproduction is discussed. The storage methods used in the simulation are then described. Lastly, the three storage reduction methods are compared to the Continuous Storage Method, and the benefits and drawbacks of each are examined.

Signal Reproduction. The Shannon Sampling Theorem defines the sampling rate that assures the complete recovery of a band-limited signal (after appropriate filtering). This theorem can be stated as follows:

If a continuous, band-limited signal contains no frequency components higher than f_c , then the original signal can be recovered without distortion if it is sampled at a rate of at least $2f_c$ samples per second. (Ref 16)

This concept is illustrated in Figure 6. The frequency spectrum of the signal being sampled is repeated at the sampling frequency.

If the sampling frequency, f_s , is at least twice the signal's cutoff frequency, no "frequency folding" occurs. In reproducing the original signal, frequency folding causes distortion. The effect of an inadequate sampling rate produces a phenomena called aliasing, in which the signal appears to vary at a much slower frequency (called the alias frequency). This effect is shown in Figure 7 for a sinusoidal input.

As indicated in Figure 6, recreation of the original signal required an ideal low-pass filter, a mathematical

Fig. 6. Frequency Spectra Demonstrating the Shannon Sampling Theorem

fiction. However, the error from a realizable low-pass filter can be made arbitrarily small by increasing the order of the filter. In practice, however, aliasing is reduced by increasing the sampling frequency, f_s . A rule of thumb is to sample six to eight times the signal's highest frequency component.

Description of Storage Methods. Each storage method presented in this section had its own strong and weak points. Each parameter input should be examined and matched to the appropriate storage method according to the guidelines presented.

Fig. 7. Aliasing Caused by an Inadequate Sampling Rate

Five storage methods were suggested by Hill to reduce the storage required (Ref 3:15-20,51-60). Of those, the continuous and variable change methods were judged both feasible and within the 1% error guideline. A variation of each method, Delta Continuous and Modified Variable Change, is also presented in the following discussion.

Continuous Storage Method. The Continuous Storage Method (CSM) saved the data value for each sample taken. Because each sample was stored, and the time between samples was known, there was no need to time tag the individual samples. This method added no additional error above that of the A/D converter alone (less than 0.2%) and had the

smallest overall error of the methods examined. Although this method had the highest accuracy of the methods examined, it also lacked potential for storage reduction. Table III shows the storage required for a four-hour mission. The CSM should be used for signals which require maximum accuracy.

TABLE III
FOUR-HOUR STORAGE REQUIRED FOR CONTINUOUS
STORAGE METHOD

Samples per Second	Storage Required (eight-bit bytes)
20	288,000
8	115,200
4	57,600
2	28,800

Delta Continuous Storage Method. The Delta Continuous Storage Method (DCSM) differed from the CSM in that the sign plus two's complement difference between the current value and the previously stored value, rather than the current value itself, was stored. The difference was represented in a four-bit, sign plus two's complement format, as shown in Figure 8. This method reduced the storage to half that required by the continuous method. This storage reduction was not without cost. Storing the difference, rather than the value, required the difference be in the range of possible four-bit, sign plus two's complement

SIGN PLUS TWO'S COMPLEMENT
DIFFERENCE FOR DATA n

SIGN PLUS TWO'S COMPLEMENT
DIFFERENCE FOR DATA $(n+1)$

Fig. 8. Delta Continuous Storage Method Format

numbers (-8 to +7). A difference value larger than this resulted in a range error and caused the subsequent data within a block of data to be incorrect. (By storing the first value in the block header, the rippling effect was limited to a single block and did not carry over to the next block.) The accuracy associated with this method depended on the value chosen as the minimum reportable amount of change, C . The current difference value, D_n , was calculated to the nearest whole number as

$$D_n = \frac{(\text{last value saved}) - (\text{this value})}{C}$$

where

(this value) = value just obtained from A/D conversion

$(\text{last value saved}) = C \times D_{n-1}$

At a given sampling rate, a larger C value reduced the amount of storage required and reduced the probability of having a range error, but did so at the expense of accuracy. Table IV shows the relationship between a given C value and the maximum error possible due to A/D conversion and storage for this and the remaining methods used.

TABLE IV
RELATION BETWEEN MINIMUM REPORTABLE CHANGE
AND THE ERROR ASSOCIATED

Minimum Reportable Change, C	Maximum Error Due to A/D Conversion and Storage
1	0.7%
2	1.17%
3	1.56%
4	1.95%
5	2.34%

Variable Change Storage Method. The Variable Change Storage Method (VCSM), like the DCSM, stored the difference between the current value and the previously stored value, rather than the value itself. The accuracy associated with the VCSM also depended on the C value selected, and is shown in Table IV. The VCSM stored data only when the current value differed from the previously stored value by at least C. This required each difference value to be time tagged with the number of elapsed sampling intervals since the previously stored sample. Figure 9 shows the format

Fig. 9. Variable Change Storage Method Format

used for the VCSM. If the input signal did not change by at least C before the time tag overflowed (128 sampling intervals), a "no change" value was saved. Therefore, the time correlation from sample to sample was maintained. Table V represents the storage required for different sampling rates in terms of the maximum and minimum number of eight-bit bytes required. The numbers represent the data generated by one input signal during a four-hour mission. The maximum storage was required when every sample taken

TABLE V
FOUR-HOUR STORAGE REQUIREMENTS FOR
VARIABLE CHANGE STORAGE METHOD

Rate (Samples per Second)	Storage (eight-bit bytes)	Minimum	Maximum
20	3375	432,000	
8	1350	172,800	
4	675	86,400	
2	337.5	43,200	

differed from the previous by at least C. The minimum storage was required when the input signal was stored only as the time tag overflowed. The minimum values indicated the VCSM's potential for storage reduction. The maximum values indicated the storage penalty possible. Like the DCSM, this method required the difference value to be within the allowable range (-15 to +15).

Modified Variable Change Storage Method. The Modified Variable Change Storage Method (MVCSM) used the basic data structure of the VCSM. As seen in Figure 10, the MVCSM saved one data entry (time tag and difference value) in a single eight-bit byte. As shown in Table VI, this method had a potential for storage reduction, although less than that of the VCSM. However, for the worst-case condition where every sample taken was stored, the storage penalty was no worse than that of the CSM.

Fig. 10. Modified Variable Change Storage Method Format

TABLE VI
FOUR-HOUR STORAGE REQUIREMENTS FOR
MODIFIED VARIABLE CHANGE STORAGE METHOD

Rate (Samples per Second)	Storage (eight-bit bytes)	
	Minimum	Maximum
20	18,000	288,000
8	7,200	115,200
4	3,600	57,600
2	1,800	28,800

As with the previous method that stored differences, this method required the difference to be in the allowable range (-8 to +7 in this case). The time tag overflowed and a "no change" entry was saved after 16 sampling periods had elapsed. Also, like the previous difference methods, the error was dependent on the value of C chosen.

Storage Method Comparison. A graphical representation of the amount of storage required by each method is shown in Figure 11. To account for various sampling rates or mission lengths, the data is normalized to the Continuous Storage Method. For input signals which change by a small amount, the Continuous Storage Method requires the full eight bits to convey as little as one bit of additional information. For storage-bound applications such as this, alternative storage methods were needed for these types of signals.

The last three storage methods discussed above were variations of what the literature called delta pulse code modulation (Ref 17:218). The appeal of these storage types was that, by storing the difference instead of the signal itself, fewer bits could be used to convey essentially the same information.

The drawback to these methods was that, as soon as the number of bits was defined, an allowable range of variation from one sample to the next was also defined. These methods should be used only for signals which usually do not vary by more than the method's allowable range. As long as the

Fig. 11. Normalized Storage Versus Storage Required

signal variations from sample to sample were less than or equal to the allowable range, these methods worked admirably. However, when a difference storage method was used for input signals, which consistently varied by more than the allowable range, one of two courses had to be taken: either the sampling rate was increased, thereby requiring more storage memory, or the minimum reportable change, C , was increased.

Increasing the sampling rate to eliminate range errors
~~can cause the resulting storage to be more than that required~~

by the Continuous Storage Method. In a test case, in which a zero to five-volt sinusoidal test signal was sampled, all difference storage methods required significantly more storage than the Continuous Storage Method because the sampling rate was increased to eliminate range errors.

In many cases the occurrence of a small percentage of range errors might be acceptable, when compared to the sampling rate required to insure that no range errors occur. Whether a small percentage of range errors is knowingly allowed or not, the software should recognize and handle range errors to prevent erroneous data from being stored.

In the simulation conducted, the occurrence of a range error caused the software to stop the simulation with a "range error" message. The following paragraphs discuss possible methods of handling range errors.

One way to handle range errors would be to discard the entire block of data containing the error. The smaller the block, there will be less data lost. This approach would be justified if the amount of storage memory were marginal, the probability of a range error were small, and the occurrence of small gaps in the data would not invalidate the entire test.

If preservation of all data were necessary, then the program could zero-fill the remaining portion of the block and start a new block. Again, the smaller the block, the less zero-filled MBM storage there will be. This approach

should be used only when the probability for range error is small, to prevent excessive zero-filled storage.

Another approach would be to store the maximum difference possible until the signal could again be correctly represented. This approach produces a "signal tracking error" whenever range errors occur. If the signal tracking error were acceptable, this method would be desirable from a storage point of view.

Lastly, the sampling of a particular channel could be adaptively adjusted throughout the mission. For instance, a predefined number of range errors would cause the minimum reportable change or the sampling rate to be increased. Similarly, repeated storage of "no change" would cause the sampling rate or the minimum reportable change to be decreased. If required, the sampling method could also be adaptively changed to match signal to storage method. While this approach is beneficial in many respects, it would require added storage overhead (block header information) to indicate sampling rate, minimum reportable change, and storage method.

The second course to prevent range errors, increasing the minimum reportable change, C, can reduce the amount of storage required, but does so at the expense of sampling accuracy (see Table IV). For the DCSM, increasing C allowed the sampling rate to be reduced, thereby decreasing the amount of data stored. For both the VCSM and MVCMS,

increasing C also resulted in more "no changes" between samples, further reducing the amount of storage required.

A qualitative test was conducted to determine the tradeoffs between sampling accuracy and storage requirement. A zero to five volt sinusoidal test signal was sampled using the three difference methods discussed. The test was repeated at several signal frequencies. Although a signal of this type should be, in reality, sampled continuously to achieve minimum storage, the test did provide an indication of the tradeoff between accuracy and storage.

Sampling accuracy was varied by varying the minimum reportable change, C. The sampling rates were set at the minimum rate possible that produced no range errors. Therefore, every sample taken was stored and the sampling rate equaled the storage rate. The storage reduction percentage proved to be virtually independent of the signal frequency. Table VII shows the storage percentage reduction for the difference methods tested.

Sampling Delays

To insure reducibility it is important to correlate the samples from a given channel with time. For ease of programming, as well as analysis, the time between samples should be equal. When sampling multiple channels, each with a different sampling rate, it is difficult to maintain equal time between all samples for all channels.

TABLE VII
DATA REDUCTION FOR INCREASED MINIMUM
REPORTABLE CHANGE, C

Method	<u>Minimum Reportable Change, C</u>			
	2	3	4	5
Delta Change Storage Method	63%	75%	83%	86%
Variable Change Storage Method	57%	69%	77%	82%
Modified Variable Change Storage Method	63%	75%	83%	86%

A collision was defined as the occurrence of multiple channel sampling requests. For analog channels the collisions caused the nth channel's samples to be delayed in time by the amount $(n-1)(T_c + T_s)$, where T_s was the time to determine the next channel and start its conversion, and T_c was the A/D conversion time. For digital channels the delay was $(d-1)(T_d)$, where d was the number of digital channels and T_d the time to determine the next channel and read its value.

Sampling "jitter" was defined as a fluctuation in the sampling interval. Two sources of jitter were observed. The first was a one to five microsecond jitter due to the random nature of interrupt request. This amount of jitter was insignificant when compared to the slow varying signals being sampled. The second source of jitter was the

inconsistent occurrence of collisions. For this case, the jitter was equal to the delay due to the collision.

As shown in Figure 12, no sampling jitter was observed when collisions occurred consistently at each sample interval. In Figure 13, the jitter for this case was eliminated by sampling the faster channels first. Figure 14 shows that no jitter occurs for the case where successive channel sampling intervals were integer multiples of their predecessors. Figure 15 shows that jitter occurred, however, when all channel intervals were not integer multiples of each other.

For the two-channel case, the repetition interval for channels with sampling intervals n_1T and n_2T was $(n_1n_2)T$, where T was the basic system time interval, $n_1 < n_2$, and n_2 was not an integer multiple of n_1 . A theoretical worst-case jitter of approximately $19(T_s + T_c)$ would occur if all 20 channels (analog and digital) had sampling intervals that were not integer multiples of each other. For an observed $(T_s + T_c)$ of approximately 300 microseconds, the theoretical worst-case delay is approximately 5.7 milliseconds. Sampling intervals which are not multiples of each other imply that they be prime numbers (say P_0 through P_{19}) times the basic sampling interval, T . The repetition interval for such a jitter would be $(P_1 \cdot P_2 \cdot P_3 \cdots P_{19})T$.

This theoretical worst-case jitter delay is presented here to show that even the worst-case jitter possible is only approximately 11% of a 50 millisecond system sampling

Fig. 12. Consistent Collisions Eliminate Jitter

CHANNEL 1 SAMPLED EACH INTERVAL
CHANNEL 2 SAMPLED EVERY OTHER INTERVAL

Fig. 13. Jitter Elimination by Sampling the Fastest Channels First

CHANNEL 1 SAMPLED EACH INTERVAL
 CHANNEL 2 SAMPLED EVERY THIRD INTERVAL
 CHANNEL 3 SAMPLED EVERY SIXTH INTERVAL

Fig. 14. Integer Multiple Sampling Rates Eliminate Jitter

CHANNEL 1 SAMPLED EVERY SECOND INTERVAL

CHANNEL 2 SAMPLED EVERY THIRD INTERVAL

Fig. 15. Jitter Caused by Inconsistent Collisions

interval. With the frequency of the worst-case jitter being $(P_1 \cdot P_2 \cdot P_3 \dots P_{19} T)$, the mission would run at least $(7.8 \times 10^{24})T$ for the worst-case jitter to occur. For $T=50$ milliseconds, a worst-case jitter would occur approximately every 1.24×10^{16} years! Therefore, it is very unlikely that the worst-case jitter would ever occur.

For the sampling rates suggested in Table I, assuming fastest channels are sampled first, the worst-case jitter would be ± 1.5 milliseconds for the parameters sampled at eight samples per second. This is 1.2% of the .125 second interval, and occurs at every sample.

If the sampling rate were just twice the frequency of the highest signal component, this timing jitter would produce a maximum possible error of 3.7%. The sampling frequency is higher than twice the highest signal; therefore, the error produced from the jitter is less than the 3.7% maximum. If this error were determined to be unacceptable, the sampling rate of the appropriate parameters could be increased from eight samples per second to ten samples per second. The sampling intervals would then be integer multiples of each other and, as previously shown, no jitter would occur.

IV Results and Recommendations

The proposed IFPDAS was designed using current state-of-the-art devices. The design consisted of an eight-bit microcomputer which controlled the flow of data from one of 16 analog or four digital channels to MBM storage. Although the controller design was simplistic, its capability was significantly beyond that required by the IFPDAS. This should allow this basic controller design to be used with future MBM devices at much higher sampling rates.

Operational software was designed and the system simulated on a Rockwell System-65 minicomputer augmented with two-megabits of MBM. This software could be easily transferred to a R6502-based IFPDAS prototype.

It was evident from the start that any design using existing MBM devices would be storage-limited. The controller portion of the IFPDAS was designed with the minimum amount of hardware possible. This, with judicious device selection, insured the minimum amount of power and physical space for the controller hardware and the maximum remaining power and space for MBM storage. Even so, the IFPDAS design using eight, one-megabit Intel MBMs could only support the storage rate of the 12 original parameters. Greater storage rates were possible, but only at the expense of mission duration. This is shown graphically in Figure 16. The

Fig. 16. Mission Length Versus Storage Required

eight-megabit line represents the maximum amount of MBM that will fit into a 2x5x9 inch IPFDAS using existing state-of-the-art devices. As the sample rate (and, therefore, the storage rate) increases, the eight-megabit line is crossed at shorter mission lengths.

Although the device chosen to convert analog signals did not have an internal sample-and-hold, one could be added if required. Because of the slow-varying signals and the relatively fast A/D conversion time, the possible error due to the signal changing while being converted was insignificant when compared to probe accuracy. If signals of

higher frequency should be sampled in the future, the decision to omit the SAH should be reconsidered.

The RAM buffer memory allowed the MBM to be powered down when not in use. At the slow IFPDAS sampling rates, the percent of MBM "on" time was independent of the amount of RAM buffer available. Size selection for RAM (system and buffer) was, therefore, based mainly on power and space requirements.

The four data storage methods used were:

- a. Continuous Storage Method
- b. Delta Continuous Storage Method
- c. Variable Change Storage Method
- d. Modified Variable Change Storage Method

The last three reduced the amount of storage by saving the difference between values rather than the values themselves, since the difference could be stored in fewer bits. Also, the last two methods stored differences only if they were larger than a predetermined value.

If the difference was larger than the bits could represent, a range error occurred and the current data, plus all subsequent data in the block, were incorrect. Two ways to prevent range errors were to increase the sampling rate or to increase the minimum reportable change (or minimum difference value). For signals which had wide variations from sample to sample, increasing the sampling rate required, in some cases, more memory storage than the Continuous Storage Method would have required. For this

reason, parameters should be matched to storage methods. Increasing the minimum reportable change significantly reduced the amount of storage memory required, but did so at the expense of data accuracy. Choosing the largest value for the minimum reportable change that can possibly be tolerated is the easiest, most straightforward way to reduce storage.

Several methods are suggested to handle range errors when they occur. If memory storage is at a premium, the block containing the range error can be discarded. If accurate, continuous samples are important, the remaining block can be zero-filled and a new block started. If some error can be tolerated, the maximum difference can be stored until the difference saved again correctly represents the true value. Lastly, sampling can be adaptively adjusted throughout the mission, increasing or decreasing sampling rates or minimum reportable change and changing the storage method used.

Consistent sampling intervals are important for reproducibility, as well as signal analysis. Inconsistent sampling intervals or "jitter" are caused by inconsistent, simultaneous sampling requests. For the worst case possible, the jitter was approximately 11% of the sampling interval. The jitter which can be expected during normal sampling would be less and is not considered significant. However, jitter can be totally eliminated by sampling faster channels first and making each channel's sampling

rate an integer multiple of the previous channel's sampling rate.

It is evident that this basic, simplistic design is very versatile and could be used for other related types of applications. One in particular is the collection of parachute drop data (Ref 18).

It is recommended that an IFPDAS prototype be built using the components specified in Chapter II or their functional equivalents. This construction would identify the layout and interface problems of packaging MBM alluded to by MBM manufacturers (Ref 10:49). Also, since it is reasonable to expect that the next generation MBMs will be bus compatible with existing MBMs, an IFPDAS with increased speed and storage capabilities will be more easily realized.

Bibliography

1. Merrifield, John T., et al. An Inflight Physiological Data Acquisition and Analysis System. Crew Technology Division, USAF School of Aerospace Medicine (USAFSAM), Brooks AFB, Texas.
2. Jolda, Joseph G. and Stephen J. Wanzek. Aircrew Inflight Physiological Data Acquisition System II. MS Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology, December 1977. (AD A055638)
3. Hill, Robert E. Aircrew Modularized Inflight Data Acquisition System. MS Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology, December 1978. (AFIT/GE/EE/78-28)
4. ADC0817. National Semiconductor Data Handbook, 1977.
5. RCA COS/MOS Memories, Microprocessors, and Support Systems. Summerville, NJ, 1979.
6. The MOS Memory Data Book. Houston: Texas Instruments, Inc., 1980.
7. The Complete Motorola Microcomputer Data Library. Chap. 1, 197. Phoenix: Motorola Semiconductor Products, Inc., 1978.
8. Rockwell Control Module (RCM650) System 65 Bubble Memory System. Product description. Anaheim: Rockwell International Corp., March 29, 1979.
9. Rockwell Linear Module - RLM6580 - 256Kx4 Bubble Memory Storage. Product specification. Anaheim: Rockwell International Corp., February 8, 1979.
10. Intel Magnetics Bubble Memory Design Handbook. Santa Clara: Intel Magnetics, Inc., 1979.
11. Bobeck, A. H., et al. "Current-Access Magnetic Bubble Circuits." The Bell System Technical Journal. American Telephone and Telegraph Company: 1453-1541 (July-August 1979).
12. Rockwell R6500 Microcomputer System-65 User's Manual. Document No. 29650N35. Anaheim: Rockwell International Corp., Rev. 2, January 1978.

13. Logic Diagram of the RCM650. Bubble memory application note #2, Rev. A. Anaheim: Rockwell International Corp., November 1, 1978.
14. R6500 Microcomputer System Hardware Manual. Rockwell International Corp. USA, revised August 1978.
15. Meyers, Glenford J. Software Reliability Principles and Practices. New York: John Wiley and Sons, Inc., 1976.
16. Simpson, Richard S. and Ronald C. Houts. Fundamentals of Analog and Digital Communications Systems. Boston: Allyn and Bacon, Inc., 1971.
17. Taub, Herbert and Donald L. Schilling. Principles of Communication Systems. New York: McGraw-Hill Book Company, 1971.
18. Richardson, Gary A. Evaluation of an Improved Parachute Test Data Acquisition System. MS Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology, December 1979. (AFIT/GCS/79-13)
19. Intersil Data Acquisition Handbook. Cupertino, California: Intersil, Inc., 1980.
20. Garnett, Patrick H. Analog Systems for Microprocessors and Minicomputers. Reston, Virginia: Reston Publishing Company, Inc., 1978.
21. Tocci, Ronald J. and Lester P. Laskowski. Microprocessors and Microcomputers Hardware and Software. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1979.
22. Wollensen, Donald L. "CMOS LSI - The Computer Component Process of the 80's." Computer: 59-67 (February 1980).
23. Capece, Raymond P. "Bubble Offerings Start to Balloon." Electronics: 41-42 (March 13, 1980).
24. Chang, Hsu. "Major Activity in Magnetic Bubble Technology." Computer Design: 117-125 (November 1979).
25. Chang, Hsu. Magnetic Bubble Memory Technology. New York: Marcel Dekker, Inc., 1978.
26. Rabiner, L. R. and R. W. Schafer. Digital Processing of Speech Signals. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

27. Spieger, Phil. "Getting Started in Bubble Memories."
Digital Design: 46-50 (November 1979).

Appendix A
IFPDAS PROGRAM LISTING

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0001

LINE #	LOC	CODE	LINE
0002	0000		;***** PAGE ZERO VARIABLES ***** **=\$0006
0003	0000		
0005	0006	FF	NCHNL\$.BYT \$FF ;NUMBER OF ACTIVE CHANNELS - 1
0006	0007	FF	NPORTS .BYT \$FF ;NUMBER OF ACTIVE PORTS - 1
0008	0008	00	ADBUSY .BYT \$0 ;A/D BQSY FLAG, 0-3 = INDEX, 7 = BUSY
0009	0009		BUBNDX *==+1 ;CURRENT BUFFER TO BUBBLE INDEX POINTER
0010	000A		CURBFA *==+2 ;CURRENT BUFFER ADDRESS
0011	000C	00	BBUSY .BYT \$0 ;BUBBLE BUSY FLAG, 0-3 = INDEX, 4 = CHAN/PORT ; 6 = BUBBLE POWERED FLAG, 7 = BUBBLE BUSY
0012	000D		NLINK *==+1 ;NUMBER OF BLOCKS IN LINK
0013	000D		TLINK *==+2 ;TOP OF LINK' POINTER
0014	000E		NEWBLK *==+2 ;ADDRESS OF BLOCK JUST DE-LINKED
0015	0010		OLDRLK *==+2 ;ADDRESS OF BLOCK TO BE LINKED
0016	0012		
0018	0014		CHANL\$ *==+16 ;LIST ACTIVE CHAN, 0-3 = CHAN, 4-5 = METHOD, ; 6 = BUBBLE REQUEST, 7 = A/D REQUEST
0019	0024		COUNTV *==+16 ;VARIABLE TIMER COUNTER
0020	0024		POINTR *==+2 ;USED IN 'SAVE' FOR INDIRECT ADD.
0021	0034		CBKPTR *==+16 ;CHANNEL BLOCK POINTER
0022	0036		KEPNIX *==+1 ;SAVE INDEX VALUE
0023	0046		VDLIFT *==+1 ;A/D - THIS VALUE/LAST VALUE DIFFERENCE
0024	0047		SDLIFT *==+1
0025	0048		MDLIFT *==+1
0026	0049		COUNTI *==+16 ; # TIME INTERVALS SINCE VALUE SAVED
0027	004A		CBFADD *==+32 ;CHANNEL BUFSAR ADDRESS
0028	005A		CCBIRX *==+32 ;CHANNEL BUFFER INPUT POINTERS
0029	007A		LSTVAL *==+16 ;LAST A/D VALUE
0030	009A		LSTTIM *==+32 ;LAST A/D TIME
0031	00AA		THISVAL *==+16 ;THIS VALUE OF A/D CONVERSION
0032	00CA		THSTTIM *==+32 ;TIME OF THIS A/D CONVERSION
0033	00DA		PORTS *==+4 ;LIST OF ACTIVE PORTS - BIT 7 = NEED BUBBLE SERV
0034	00FA		
0036	00FE		ACURCY *==+1
0038	00FF		;***** INTERVAL TIMER ADDRESS DEFINITIONS *****
0040	00FF		TCT1.2 = \$AFE9 ;WRITE CONTROL REG2
0041	00FF		;READ STATUS REG
0042	00FF		TCT1.3 = \$AFEB ;CTL2 BIT → WRITE CTL3
0043	00FF		;
0044	00FF		;
0045	00FF		T1CNIR = \$AFEA ;READ TIMER 1 COUNTER
0046	00FF		WRITE MSB BUFFER REG
0047	00FF		T1LCIW = \$AFEB ;WRITE TIMER 1 LATCH
0048	00FF		;
0049	00FF		T2CNIR = \$AFEC ;READ TIMER 2 COUNTER
0050	00FF		WRITE MSB BUFFER REG
0051	00FF		T2LCIW = \$AFAD ;WRITE TIMER 2 LATCH
0052	00FF		;
0053	00FF		T3CNIR = \$AFEE ;READ TIMER 3 COUNTER
0054	00FF		WRITE MSB BUFFER REG
0055	00FF		T3LCIW = \$AFEF ;WRITE TIMER 3 LATCH

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0002

LINE #	LOC	CODE	LINE
0056	00FF		; READ LSB BUFFER REG
0058	00FF		;***** VIA ADDRESS DEFINITIONS *****
0060	00FF	PORTA = \$AFF1	;DEFINE A/D DATA ADDRESS
0061	00FF	DDRA = \$AFF3	;PORT A DATA DIRECTION REGISTER
0062	00FF	AUXCTL = \$AFFB	;AUXILIARY CONTROL REGISTER
0064	00FF	PORTB = \$AFFF	;ADDRESS OF CHANNEL SELECT (0-F)
0065	00FF	DDRB = \$AFFF	;PORT B DATA DIRECTION REGISTER
0067	00FF	T1LL = \$AFF6	; R/W TIMER 1 LOW-LATCH
0068	00FF	T1HL = \$AFF7	; R-TIMER 1 HIGH LATCH
0069	00FF	;W-TIMER 1 HIGH LATCH	- RESET IRQ FLAG
0070	00FF	T1LC = \$AFF4	; R-TIMER 1 LOW COUNTER - RESET IRQ FLAG
0071	00FF	; W-TIMER 1 LOW LATCH	
0072	00FF	T1HC = \$AFF5	; R-TIMER 1 HIGH COUNTER
0073	00FF	; W-TIMER 1 HIGH COUNTER	
0074	00FF	; T1HL	
0075	00FF	; T1LC	
0076	00FF	; T1HC	
0078	00FF	T2LL = \$AFF8	; R-TIMER 2 LOW COUNTER - RESET IRQ FLAG
0079	00FF	; W-TIMER 2 LOW LATCH	
0080	00FF	T2HC = \$AFF9	; R-TIMER 2 HIGH COUNTER
0081	00FF	; W-TIMER 2 HIGH COUNTER	
0082	00FF	; T2HL	
0083	00FF	; T2LC	
0085	00FF	SHTRC = \$AFFA	;SHIFT REGISTER ADDRESS
0086	00FF	PCR = \$AFFC	;PERIPHERAL CONTROL REGISTER
0087	00FF	IFR = \$AFFD	;INTERRUPT FLAG REGISTER
0088	00FF	IER = \$AFFE	;INTERRUPT ENABLE REGISTER
0090	00FF	;***** MONITOR LINKS *****	
0092	00FF	ACIA = \$C000	
0093	00FF	MSGADR = \$C606	
0094	00FF	MONPTR = \$C9E0	
0095	00FF	BLANK = \$D0AF	
0096	00FF	CRUN = \$D0F1	
0097	00FF	RKEP = \$D149	
0098	00FF	OUTPUT = \$D2C1	
0099	00FF	REINPT = \$D2B0	
0100	00FF	HEX = \$D306	
0101	00FF	NINA = \$D2CE	
0102	00FF	READ = \$D1DC	
0103	00FF	LEFT = \$D350	
0104	00FF	RCHK = \$D1BC	;READ & SEE IF KEYBOARD HIT
0107	00FF	PAIN = \$B7AF	;SET UP PA BUBBLE PORT AS INPUTS
0108	00FF	PAOUT = \$B7AB	;SET PA BUBBLE PORT AS OUTPUTS

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0003

LINE #	LOC	CODE	LINE
0109	00FF	PBIN	= \$B7C6 ;SET PB BUBBLE PORT AS INPUTS
0110	00FF	PBOUT	= \$B7C2 ;SET PB BUBBLE PORT AS OUTPUTS
0111	00FF	WAITB	= \$B73D ;WAIT FOR SYSTEM BUBBLE NOT BUSY
0112	00FF	SEND	= \$B7DC ;SEND A COMMAND TO SYSTEM BUBBLE AND WAIT FOR A
0113	00FF	PB10	= \$B7C8 ;B PORT INPUT OR OUTPUT ACCORDING TO 'X'
0114	00FF	CRA	= \$B801 ;SYSTEM BUBBLE CONTROL REGISTER A
0115	00FF	PA	= \$B800 ;BUBBLE PORT A
0116	00FF	PB	= \$B802 ;BUBBLE PORT B
		BUFI	= \$BC00 ;INPUT BUFSIZE OF 256 LOCATIONS
		BUFO	= \$BC00 ;OUTPUT BUFSIZE OF 256 LOCATIONS

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0004

LINE #	LOC	CODE	LINE	
0121	00FF		;***** THIS IS THE START OF THE PROGRAM *****	
0122	00FF		;***** PROGRAM STARTS WITH KEY6 *****	
0124	00FF		*\$C411	
0125	C411	4C 00 02	JMP RESET ;SET KEY6 TO START PROGRAM	
0127	C414		*\$200	
0128	0200	78	RESET SEI ;INITIALIZE SYSTEM AFTER RESET	
0129	0201	D8	CUD	
0130	0202	A2 FF	LDA #FFF	
0131	0204	9A	TAX	
0132	0205	20 D0 05	JSR INIT ;DO SYSTEM INITIALIZATION	
0133	0208	20 EC 05	JSR SLJST ;DO SYSTEM SELFTEST	
0135	020B	A9 00	SETUP LDA #<MSG1	; INITIALIZES RUN PARAMETERS OR DUMPS BUBBL
0136	020D	20 ED 05	JSR MSGOUT	;OUTPUT MSG1 TO CRT
0137	0210	20 FC 05	JSR GETVAL	;GET A CHARACTER FROM THE CRT
0138	0213	C9 44	CMP #'D	
0139	0215	00 03	BNE SET12	
0140	0217	4C CD 05	JMP DUMP	
0141	021A	C9 49	SET2 CMP #'1	
0142	021C	00 4D	BNE SETUP	;IF NOT 'D' OR '1' THEN ASK AGAIN
0143	021E	20 43 06	JSR BUBBLE0	;ZERO BUFFER INDEX
0144	0221	20 03 06	SET3 JSR CRLF	;OUTPUT A CARRAGE/RETURN TO CRT
0146	0224	A9 1C	CHNPRM LDA #<MSG3	; 'ENTER'
0147	0226	20 ED 05	JSR MSGOUT	; 'CHAN RATE METHOD'
0148	0229	A9 22	LDA #<MSG3A	
0149	022B	20 ED 05	JSR MSGOUT	
0150	022E	20 03 06	JSR CRLF	
0151	0231	20 FC 05	CHN1 JSR GETVAL	;GET ACTIVE CHANNEL VALUE
0152	0234	C9 00	CMP #\$00	;TEST FOR CR
0153	0236	ED 24	BEQ CHNPRM	;BRANCH TO GET PORT PARAMETER
0154	0238	20 00 06	JSR TOHEX	;CHANGE 'A' TO A HEX VALUE
0155	023B	29 0F	AND #\$0F	
0156	023D	AA	TAX	;SET UP INDEX 'X'
0157	023E	A9 09	LDA #9	
0158	0240	20 11 06	JSR SPACES	;OUTPUT 'A' SPACES TO CRT
0159	0243	20 1F 06	JSR CHEX2	;READ IN FROM CRT TWO CHARACTERS --> HEX IN 'A'
0160	0246	9D 9D 11	STA CRATE,X	;SAVE THIS RATE VALUE
0161	0249	A9 0A	LDA #10	
0162	024B	20 11 06	JSR SPACES	
0163	024E	20 FC 05	JSR GETVAL	
0164	0251	29 07	AND #7	;FORCE METHOD INTO RANGE
0165	0253	9D 7D 11	STA SPORGE,X	;GET AND SAVE CHANNEL SAMPLING METHOD
0166	0256	20 03 06	JSR CRLF	
0167	0259	4C 31 02	JMP CHN1	;GET ANOTHER CHANNEL PARAMETER SET
0169	025C	A9 1C	PRTPRM LDA #<MSG3	
0170	025E	20 ED 05	JSR MSGOUT	; 'ENTER'
0171	0261	A9 3C	LDA #<MSG4	
0172	0263	20 ED 05	JSR MSGOUT	; 'ACTIVE PORT RATE'

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0005

LINE #	LOC	CODE	LINE
0173	0266	20 03 06	
0174	0269	20 FC 05	PRT1 JSR CRLF JSR GETVAL
0175	026C	C9 0D	CMP #\$0D
0176	026E	F0 14	BHQ MOK1
0177	0270	29 03	AND #\$3
0178	0272	AA	TAX
0179	0273	A9 0A	LDA #10
0180	0275	20 11 06	JSR SPACES
0181	0278	20 1F 06	JSR GMEX2
0182	027B	9D 59 11	STA PORTBF,X
0183	027L	20 03 06	JSR CRLF
0184	0281	4C 69 02	JMP PRT1
			;SCALE PORT INDEX VALUE
0186	0284	20 03 06	MOK1 JSR CRLF
0187	0287	20 00 05	JSR ACTIV
0188	028A	A9 99	LDA #<MSG8
0189	028C	20 ED 05	JSR MSGOUT
0190	028F	A9 22	LDA #<MSG3A
0191	0291	20 ED 05	JSR MSGOUT
0192	0294	A6 06	LDX NCHNLS
0193	0296	30 23	BPL MOK6
0194	0298	20 03 06	MOK2 JSR CRLF
0195	029B	B5 14	LDA CHANLS,X
0196	029D	29 0F	AND #\$0F
0197	029F	20 3F 06	JSR OUTHEX
0198	02A2	A9 08	LDA #8
0199	02A4	20 11 06	JSR SPACES
0200	02A7	B0 EC 10	LDA COUNTP,X
0201	02AA	20 3F 06	JSR OUTHEX
0202	02AD	A9 08	LDA #8
0203	02AF	20 11 06	JSR SPACES
0204	02B2	B0 6D 11	LDX METHOD,X
0205	02B5	20 3F 06	JSR OUTHEX
0206	02B8	CA	DEX
0207	02B9	10 BD	BPL MOK2
0209	02BB	20 03 06	MOK6 JSR CRLF
0210	02BE	A9 99	LDA #<MSG8
0211	02C0	20 ED 05	JSR MSGOUT
0212	02C3	A9 3C	LDA #<MSG4
0213	02C5	20 ED 05	JSR MSGOUT
0214	02C8	A6 07	LDX NPORTS
0215	02CB	30 18	BPL MOK6
0216	02D2	20 03 06	MOK3 JSR CRLF
0217	02D5	B5 FA	LDA PORTS,X
0218	02D8	29 04	AND #4
0219	02D9	20 3F 06	JSR OUTHEX
0220	02E0	A9 08	LDA #8
0221	02E3	20 11 06	JSR SPACES
0222	02E6	B0 55 11	LDA DRATE,X
0223	02E8	20 3F 06	JSR OUTHEX
0224	02EB	CA	DEX
0225	02EC	10 E8	BPL MOK3
			;LIST ACTIVE CHAN'S
			;LIST ACTIVE PORTS
			;FORCE IMMO RANGE

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0006

LINE #	LOC	CODE	LINE
0227	02E4	A9 4B	MOK5 LDA #<MSG5
0228	02F6	20 03 06	JSR CRLF
0229	02F9	20 ED 05	JSR MSGOUT ;'VERIFY-V CHANGE-C OK-K'
0230	02FC	20 FC 05	JSR GETVAL
0231	02FF	C9 56	CMP #'V
0232	02F1	F0 91	BEQ MOK1
0233	02F3	C9 43	CMP #'C
0234	02F5	B0 03	BNE MOK4
0235	02F7	4C 21 02	JMP SET3
0236	02FA	C9 4B	CMP #'K
0237	02FC	B0 F6	BNE MOK5
0239	02FE	A9 6F	LDA #<MSG6
0240	0300	20 ED 05	JSR MSGOUT
0241	0303	20 70 06	JSR WRBPDR ;'WAIT - BUBBLE INITIALIZATION'
0242	0306	A9 82	LDA #<MSG7
0243	0308	20 ED 05	JSR MSGOUT ;'WRITE HEADER INFORMATION TO BUBBLE'
0244	030B	20 DC D1	MOK7 JSR READ ;'INITIALZATION COMPLETE - POWER DOWN SYSTEM'
0245	030E	C9 20	CMP #\\$20 ;'WAIT FOR 'SPACE' BEFORE MISSION
0246	0310	B0 F3	BNE MOK7
0247	0312	4C 15 03	JMP MISSN

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0007

LINE #	LOC	CODE	LINE
0250	0315	20 71 06	MISSN JSR RDBHDR
0251	0318	20 80 06	JSR RUNIT
0252	0318	A6 06	LDX NCHNLS
0253	031D	30 4B	MISSN1 BMI MISSN2
0254	031F	8E 34 11	STX SAVEX
0255	0322	A9 00	LDA #0
0256	0324	95 36	STA CRKPTR,X
0257	0326	95 4A	STA COUNTT,X
0259	0328	20 72 06	JSR TIMERS
0260	032B	B5 14	LDA CHANLS,X
0261	032D	49 FF	MOR #\$FF
0262	032E	BD F0 AF	STA PORTB
0263	0332	A9 02	MISSN5 LDA #2
0264	0334	2C F9 AF	BIT FR
0265	0337	D0 89	BNE MISSN5
0266	0339	AD F1 AF	LDA PORTA
0267	033C	49 FF	MOR #\$FF
0268	033E	95 CA	STA TUSVAL,X
0269	0340	95 9A	STA LSVAL,X
0271	0342	BD F0 10	LDA COUNTP,X
0272	0345	95 24	STA COUNTV,X
0273	0347	20 A4 0A	JSR BLKAIC
0274	034A	8A	TXA
0275	034B	0A	ASL A
0276	034C	AA	TAX
0277	034D	A5 10	LDA NEWBLK
0278	034E	95 5A	STA CPBADD,X
0279	034F	95 7A	STA CCBLK,X
0280	0353	A5 11	LDA NEWBLK+1
0281	0355	95 9B	STA CPREADY+1,X
0282	0357	95 7B	STA CCBLK+1,X
0283	0359	A9 00	LDA #0
0284	035B	95 1A	STA TUSTIM,X
0285	035D	95 93	STA TUSTIM+1,X
0286	035F	EE 33 11	LDI SAVIA
0287	0360	20 63 0A	JSR WADP
0288	0365	94 36	STY CRKPTR,X
0289	0366	0A	DEY
0290	0368	10 B3	RPL MISSN1
0292	036A	A6 07	MISSN2 LDX NPRTS
0293	036C	30 2B	MISSN3 BMI MISSN4
0294	036E	A9 00	LDA #0
0295	0370	9B 51 11	STA PBKPTR,X
0296	0373	20 A4 0A	JSR BLKAIC
0297	0376	8A	TXA
0298	0377	0A	ASL A
0299	0378	A8	TAX
0300	0379	A5 10	LDA NEWBLK
0301	037B	99 49 11	STA CPBLK,Y
0302	037C	99 41 11	STA PBADD,Y
0303	0381	A5 11	LDA NEWBLK+1

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0008

LINE #	LOC	CODE	LINE
0304	0383	99 4A 11	STA CPBLK+1,Y
0305	0386	99 42 11	STA PBFADD+1,Y
0306	0389	8A	TXA
0307	038A	09 10	ORA #\$10
0308	038C	8D 34 11	STA SAVEX
0309	038F	20 63 0A	JSR WRHDR ;WRITE PORT HEADER TO RAM BUFFER AREA "X"
0310	0392	98	TYA
0311	0393	9D 51 11	STA PBKPTR,X
0312	0396	CA	DEX
0313	0397	10 D3	BPL MISSN3
0315	0399	A9 00	MISSN4 LDA #0
0316	039B	85 0C	STA BUSY
0317	039D	20 72 06	JSR TIMERS ;START TIMER FOR MISSION RUN
0318	03A0	58	CL1

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0009

LINE #	LOC	CODE	LINE
0320	03A1		;***** MAIN LOOP OF PROGRAM *****
0322	03A1	A9 20	MAIN LDA #%00100000 ;CHECK FOR BUFFER 80% FULL
0323	03A3	24 0C	BIT BBUSY
0324	03A5	D0 0A	BNE MAIN6
0325	03A7	30 F8	BMI MAIN ;BUSY?
0326	03A9	50 F6	BVC MAIN ;POWERED?
0327	03AB	20 51 07	JSR BIARDN ;YES
0328	03AE	4C A1 03	JMP MAIN ;NO
0330	03B1	50 04	MAIN6 BVC MAIN1 ;BRANCH BUBBLE\$NOT POWERED
0331	03B3	30 EC	BMI MAIN ;BRANCH BUBBLE BUSY
0332	03B5	10 03	BPL MAIN2 ;ALWAYS SKIP NEXT INSTRUCTION
0333	03B7	20 9D 07	JSR BUPUP ;GO POWER UP THE BUBBLE
0335	03BA	A9 E0	MAIN2 LDA #%11100000 ;SET POWERED, BUSY, & 80%
0336	03BC	85 0C	STA BBUSY
0337	03BD	A6 06	LDX NORMIS ;POINTERS TO TOP OF THIS LINKED LIST
0338	03C0	A5 0C	LDA BBUSY ;UPDATE BBUSY FLAG
0339	03C2	29 E0	AND #\$E0
0340	03C4	85 0C	STA BBUSY
0341	03C6	8A	TXA
0342	03C7	30 17	BMI MAIN4
0343	03C9	05 0C	ORA BBUSY
0344	03CB	85 0C	STA BBUSY
0345	03CD	8A	TXA
0346	03CE	0A	ASL A
0347	03CF	A8	TAY
0348	03D0	39 5A 00	LDA PBFAADD,Y
0349	03D3	85 0A	STA CURBEA
0350	03D5	39 5B 00	LDA PBFAADD+1,Y
0351	03D8	85 0B	STA CURBEA+1
0353	03DA	20 F0 0A	JSR BBUBBL ;PUT ANALOG CHAN LINKED LIST IN BUBBLE
0355	03DD	C2	DEX
0356	03DE	10 E0	BPL MAIN3
0358	03E0	A6 07	MAIN4 LDX NPORTS ;PUT PORT LINKED LIST IN BUBBLE
0359	03E2	A5 0C	MAIN5 LDA BBUSY
0360	03E4	29 E0	AND #\$F0
0361	03E6	85 0C	STA BBUSY
0362	03E8	8A	TXA
0363	03E9	30 19	BMI MAIN7
0364	03EB	09 10	ORA #\$10
0365	03ED	05 0C	ORA BBUSY
0366	03EF	85 0C	STA BBUSY
0367	03F1	8A	TXA
0368	03F2	0A	ASL A
0369	03F3	A8	TAY
0370	03F4	39 41 11	LDA PBFAADD,Y
0371	03F7	85 0A	STA CURBEA
0372	03F9	39 42 11	LDA PBFAADD+1,Y
0373	03FC	85 0B	STA CURBEA+1

PHYSIOLOGICAL DATA ACQISIT.....PAGE 0010

LINE #	LOC	CODE	LINE
0375	03FE	20 F0 0A	JSR BUBBLE ;PUT PORT LINKED LIST IN BUBBLE
0377	0401	CA	DEX
0378	0402	10 DE	BPL MAIN5
0380	0404	A5 0C	MAIN7 LDA BBUSY ;RESET BUBBLE BUSY FLAG
0381	0406	29 60	AND #201100000
0382	0408	85 0C	STA BBUSY
0384	040A	AD 00 00	LDA ACIA
0385	040D	29 01	AND #1
0386	040F	F0 90	BREQ MAIN
0387	0411	78	SEI
0388	0412	AD 01 00	LDA ACIA+1
0389	0415	C9 1B	CMP #\$1B
0390	0417	D0 03	BNE MAIN8
0391	0419	4C F0 C9	JMP MONTR
0392	041C		MAIN8 ;INHIBIT INTERRUPTS
0393	041C	A9 1C	LDA #<MSG3
0394	041E	20 ED 05	JSR MSGOUT
0395	0421	AD 00 00	MAIN9 LDA ACIA
0396	0424	29 01	AND #1
0397	0426	F0 F9	BREQ MAIN9
0398	0428	20 03 06	JSR CRLF
0399	042B	58	CLI ;ENABLE INTERRUPTS
0400	042C	4C A1 03	JMP MAIN
0401	042F		; ESCAPE --> GO TO MONITOR
0402	042F		; SPACE --> STOP/START MISSION

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0011

LINE #	LOC	CODE	LINE	
0404	042F		ITIRQ	
0405	042F	AD E9 AF	LDA TCIL2	;6840 INTERVAL TIMER IRQ HANDLER
0406	0432	49 FF	EOR #\$FF	;READ STATUS
0407	0434	10 04	BPL ITIRQ1	;NO IRQ HERE
0408	0436	6A	ROR A	
0409	0437	6A	ROR A	;CHECK TIMER 2
0410	0438	B0 02	BCS ITIMR2	
0412	043A	68	ITIRQ1 PLA	;RESTORE 'A'
0413	043B	40	RTI	
0415	043C	A9 01	ITIMR2 LDA #1	;40 WORD TIMER IRQ
0416	043E	8D 3A 11	STA C40FLG	
0417	0441	49 FF	EOR #\$FF	
0418	0443	8D F8 AF	STA TCIL13	
0419	0446	68	PLA	
0420	0447	40	RTI	
0422	0448		DIGIRQ	;THE DIGITAL IRQ HANDLER GOES HERE.
0423	0448			;IT WILL CHECK WHICH DIGITAL CHANNEL
0424	0448			;CAUSED THE IRQ, READ, AND SAVE THE DATA
0426	0448	4C 2F 04	JMP ITIRQ	;SEE IF INTERVAL TIMER IRQ

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0012

LINE #	LOC	CODE	LINE	
0428	044B		; ^{***} REFERENCES MUST CONSIDER THAT DATA BUS IS INVERTED *	
0430	044B	48	VIAIRQ	PLA ;INTERRUPT FROM THE VERSATILE INTERFACE ADAPTOR (
0431	044C	A9 20		LDA #%00100000 ;SAVE 'A' THEN CHECK WHICH CAUSED INTERRUPT
0432	044E	2C FD AF		BIT LFR
0433	0451	D0 21		BNE VIAJ ; BRANCH IF NOT TIMER 1
0434	0453	49 FF		BOR #\$FF
0435	0455	8D FD AF		STA LFR
0436	0458	A9 FF		LDA #\$FF
0437	045A	49 FF		BOR #\$FF
0438	045C	8D F9 AF		STA TIMEC
0439	045F	EE FB 10		INC CLOCK
0440	0462	AD FB 10		LDA CLOCK
0441	0465	C0 FA 10		CMP STOPIM
0442	0468	90 08		BCC VIA4
0443	046A	A9 CD		LDA #%MSG14 ;'STOP-TIME'
0444	046C	8D F9 10		STA ERPRTR
0445	046F	4C 83 09		JMP ERMSG
0447	0472	68	VIA4	PLA
0448	0473	40		RTI
0450	0474	50 0A	VIA1	BVC TIME1 ; BRANCH IF TIMER1
0451	0476	A9 02	VIA2	LDA #%00000010
0452	0478	2C FD AF		BIT LFR
0453	047B	F0 45		BNE EOCIRQ ;BRANCH IF END OF CONVERSION IRQ
0454	047D	4C 48 04	VIA3	JMP DIGIRQ ;SEE IF DIGITAL IRQ
0456	0480	A9 40	TIME1	LDA #%01000000
0457	0482	49 FF		BOR #\$FF
0458	0484	8D FD AF		STA LFR
0459	0487	98		TYA ;CLEAR TIMER1 IRQ FLAG
0460	0488	48		PLA ;SAVE 'Y' & 'X'
0461	0489	3A		TXA
0462	048A	48		PLA
0464	048B	A6 06		LDX NOINIS ;SET UP INDEX 'X'
0465	048D	30 07		BMI TCNTS
0466	048F	D6 24	TCNT	DEC COUNTV,X
0467	0491	F0 09		BPL TCNT2
0468	0493	CA	TCNT1	DEX
0469	0494	10 F9		BPL TCNT
0470	0496	68	TCNTS	PLA ;RESTORE 'X', 'Y', & 'A'
0471	0497	AA		TAX
0472	0498	68		PLA
0473	0499	A8		TAY
0474	049A	63		PLA
0475	049B	40		RTI
0477	049C	24 08	TCNT2	BIT ADBUSY
0478	049E	10 0D		BPL TCNT3 ;GO START A/D CONVERSION
0479	04A0	A9 80		LDA #%10000000

PYSIOLOGICAL DATA ACQUISIT.....PAGE 0013

LINE #	LOC	CODE	LINE	
0480	04A2	15 14		ORA CHANLS,X
0481	04A4	95 14		STA CHANLS,X
0482	04A6	BD FC 10	TCNT4	LDA COUNTP,X
0483	04A9	95 24		STA COUNTV,X
0484	04AB	D0 E6		BNE TCNT1 ;RESET TIMER COUNTER THMS CHANNEL
0486	04AD	8A	TCNT3	TXA
0487	04AE	09 80		ORA #%10000000
0488	04B0	85 08		STA ADBUSY
0489	04B2	B5 14		LDA CHANLS,X ;SET BUSY FLAG
0490	04B4	49 FF		BOR #\$FF ;START A/D THIS CHANNEL
0491	04B6	8D F0 AF		STA PORTB
0492	04B9	20 EB 07		JSR RDFTIME ;START A/D CONVERSION
0493	04BC	20 06 08		JSR RDFTIMI ;SAVE THE TIME OF CONVERSION FOR THIS CHANNEL
0494	04BF	4C A6 04		JMP TUMT4

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0014

LINE #	LOC	CODE	LINE
0496	04C2		;***** END OF A/D CONVERSION INTERRUPT *****
0498	04C2	98	EOCIRQ TYA ;SAVE 'Y' AND 'X'
0499	04C3	48	PHA
0500	04C4	8A	TXA
0501	04C5	48	PHA
0502	04C6	A5 08	LDA ADBUSY
0503	04C8	85 46	STA KEPNDX ;SAVE FOR LATER USE
0504	04CA	29 0F	AND #\$0F
0505	04CB	AA	TAX ;GET A/D CONVERSION INDEX 'X'
0506	04CD	AD F1 AF	LDA PORTA ;GET A/D VALUE
0507	04D0	49 FF	IOR #\$FF
0508	04D2	95 CA	STA THSVAL,X
0509	04D4	A6 06	LDA NCNLS
0510	04D6	85 14	E0C1 LDA CHANLS,X ;SEE IF ANY CHANNELS NEED A/D SERVICE
0511	04D8	30 09	RTI E0C2 ;GO START A/D CONVERSION
0512	04EA	CA	DEX
0513	04EB	10 F9	BPL E0C1
0515	04D0	A9 00	LDA #0
0516	04E8	85 08	STA ADBUSY ;CLEAR A/D BUSY
0517	04E9	F0 14	BPL E0C3 ;ALWAYS - GO SERVICE DATA
0519	04E3	29 7F	E0C2 AND #\$7F ;CLEAR A/D REQUEST FLAG
0520	04E5	95 14	STA CHANLS,X
0521	04E7	49 FF	IOR #\$FF
0522	04E9	8D F0 AF	STA PORTB ;START A/D CONVERSION
0523	04E0	20 EB 07	JSR RDTIME ;SAVE THIS CONVERSION'S SAMPLE TIME
0524	04E8	20 06 08	JSR RDTIME
0526	04E2	8A	TXA ;SET UP ADBUSY FLAG
0527	04E3	09 80	ORA #10000000
0528	04E5	85 08	STA ADBUSY
0529	04E7	20 18 08	E0C3 JSR KEEP ;DETERMINE IF TO KEEP THIS DATA - USES 'KEPNDX'
0530	04E8	68	PLA
0531	04E9	7A	TAX ;RESTORE 'X', 'Y', AND 'A'
0532	04E0	68	PLA
0533	04E8	A5	TAY
0534	04E9	68	PLA
0535	04E0	30	RFI

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0015

LINE #	LOC	CODE	LINE	
0537	0500		;***** SUBROUTINES *****	
0539	0500		ACTIV ;SORT ACTIVE ANALOG & DIGITAL CHANS	
0541	0500	A0 00	LDY #0 ;MAKE LIST OF ACTIVE CHANNELS	
0542	0502	A2 0F	LDX #15	
0543	0504	BD 5D 11	ACTIV4 LDA CRATE,X	
0544	0507	F0 0E	BEQ ACTIV5	
0545	0509	99 FC 10	STA COUNTP,Y	
0546	050C	BD 7D 11	LIA STORAGE,X	
0547	050F	99 6D 11	STA METHOD,Y	
0548	0512	8A	TXA	
0549	0513	99 14 00	STA CHANNELS,Y	
0550	0516	C8	INY	
0551	0517	CA	ACTIV5 DEX	
0552	0518	10 EA	BPL ACTIV4	;BRANCH IF NOT DONE
0553	051A	88	DEY	
0554	051B	84 06	STY NCHNL\$;SAVE NUMBER OF ACTIVE CHANNELS
0556	051D	A2 03	LDX #3	
0557	051F	A0 00	LDY #0	;MAKE A LIST OF ACTIVE PORTS
0558	0521	BD 59 11	ACTIV6 LIA PORTBF,X	
0559	0524	F0 0E	BEQ ACTIV7	
0560	0526	99 55 11	STA PRATE,Y	
0561	0529	8A	TXA	
0562	052A	99 FA 00	STA PORTS,Y	
0563	052B	C8	INY	;SAVE PORT INDEX
0564	052C	CA	ACTIV7 DEX	
0565	052E	10 FD	BPL ACTIV6	;BRANCH IF NOT DONE
0566	0531	88	DEY	
0567	0532	84 07	STY NPORTS	;SAVE NUMBER OF ACTIVE PORTS
0569	0534	A9 00	ACTIV1 LIA #0	
0570	0536	8D E7 10	STA ATTEMP	
0571	0539	A6 06	LDX NCHNL\$	
0572	053B	A4 06	LDY NCHNL\$	
0573	053D	88	DEY	
0574	053E	30 49	BPL ACTIV9	
0575	0540	BD FC 10	ACTIV2 LIA COUNTP,X	;ARRANGE ACTIVE CHANNELS BY RATE
0576	0543	99 FC 10	CMP COUNTP,Y	
0577	0546	90 38	BCC ACTIV3	
0578	0548	F0 36	BEQ ACTIV3	;BRANCH IF LESS THAN OR EQUAL TO
0580	054A	8D E7 10	STA ATTEMP	
0581	054D	B9 FC 10	LIA COUNTP,Y	
0582	0550	9D FC 10	STA COUNTP,X	
0583	0553	AD E7 10	LIA ATTEMP	
0584	0556	99 FC 10	STA COUNTP,Y	
0586	0559	BD 6D 11	LIA METHOD,X	
0587	055C	8D E7 10	STA ATTEMP	
0588	055F	B9 6D 11	LIA METHOD,Y	
0589	0562	9D 6D 11	STA METHOD,X	
0590	0565	AD E7 10	LIA ATTEMP	
0591	0568	99 6D 11	STA METHOD,Y	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0016

LINE #	LOC	CODE	LINE	
0593	056B	B5 14	LIA CHANLS,X	
0594	056D	8D E7 10	STA ATEMP	
0595	0570	B9 14 00	LIA CHANLS,Y	
0596	0573	95 14	STA CHANLS,X	
0597	0575	AD E7 10	LIA ATTEMP	
0598	0578	99 14 00	STA CHANLS,Y	
0599	057B	A9 FF	LIA #\$FF	
0600	057D	8D E7 10	STA ATTEMP	
0601	0580	CA	ACTIV3 DEX	
0602	0581	88	DEY	
0603	0582	10 BC	BPL ACTIV2	;BRANCH IF NOT DONE THIS TIME
0604	0584	AD E7 10	LIA ATTEMP	
0605	0587	DO AB	BNE ACTIV1	;BRANCH IF EXCHANGE FLAG SET
0607	0589		; ***** SORT DIGITAL CHANNELS *****	
0608	0589	A9 00	ACTIV9 LIA #0	
0609	058B	8D E7 10	STA ATTEMP	
0610	058C	A6 07	LIA NPORIS	
0611	0590	A4 07	LIA NPORIS	
0612	0592	88	DEY	
0613	0593	30 37	RMI ACTIV8	
0615	0595	BD 55 11	ACTIVA LIA PRATE,X	
0616	0598	D9 55 11	CMP PRATE,Y	
0617	0598	90 26	BCC ACTIVB	
0618	059D	40 24	BHQ ACTIVB	
0619	059E	8D E7 10	STA ATTEMP	
0620	05A2	B9 55 11	LIA PRATE,Y	
0621	05A5	9D 55 11	STA PRATE,X	
0622	05A8	AD E7 10	LIA ATTEMP	
0623	05AB	99 55 11	STA PRATE,Y	
0624	05AC	B5 FA	LIA PORTS,X	
0625	05B0	8D E7 10	STA ATTEMP	
0626	05B4	B9 FA 00	LIA PORTS,Y	
0627	05B6	95 FA	STA PORTS,X	
0628	05B8	AD E7 10	LIA ATTEMP	
0629	05B9	99 FA 00	STA PORTS,Y	
0630	05B9	A9 FF	LIA #\$FF	
0631	05C0	8D E7 10	STA ATTEMP	
0632	05C3	CA	ACTIVB DEX	
0633	05C4	83	DEY	
0634	05C5	10 CE	BPL ACTIVA	
0635	05C7	AD E7 10	LIA ATTEMP	
0636	05CA	DO BD	BNE ACTIV9	
0637	05CC	60	ACTIV8 RIN	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0017

LINE #	LOC	CODE	LINE	
0639	05CD	4C F0 C9	DUMP	JMP MONTR ;DUMP BUBBLE
0641	05D0		INIT	LDA #\$VIAIRQ ;INITIALIZE THE SYSTEM AFTER RESET
0642	05D0	A9 4B		STA \$C4LD ;SET UP IRQ SYSTEM-65 VECTOR
0643	05D2	8D 1D C4		LDA #\$VIAIRQ
0644	05D5	A9 04		STA \$C4LE
0645	05D7	8D 1E C4		
0647	05DA	A9 00		LDA #0 ;STOP ALL TIMER IRQ'S
0648	05DC	49 FF		EOR #\$FFF
0649	05DE	8D FE AF		STA TMR ;DISABLE VIA IRQ
0650	05E1	A9 01		LDA #1
0651	05E3	49 FF		EOR #\$FFF
0652	05E5	8D E9 AF		STA TCTL2 ;DISABLE INTERVAL TIMER IRQ
0653	05E8	8D E8 AF		STA TCTL13
0655	05EB	60		RTS
0657	05EC	60	SLFTST RTS	;DO SYSTEM SELFTEST
0659	05ED	20 03 06	MSGOUT	JSR CRLF ;OUTPUT A MESSAGE - ZERO PAGE ADDRESS IS IN
0660	05F0	8D 06 C6	MSGOT1	STA \$C606
0661	05F3	A9 10		LDA #>MSG1
0662	05F5	8D 07 C6		STA \$C607
0663	05F8	20 39 D4		JSR RKEP ;MONITOR RKEP SUBROUTINE
0664	05FB	60		RTS
0666	05FC		GETVAL.	
0667	05FC	20 DC D1		JSR READ ;GETS A VALUE FROM CRT PUTS IN 'A'
0668	05FF	20 C1 D2		JSR OUTPUT ;MONITOR READ SUBROUTINE
0669	0602	60		RTS
0671	0603		CRLF	
0672	0603	48		PHA ;OUTPUTS A CARRIAGE RETURN & LINE FEED TO CRT
0673	0604	8A		TXA
0674	0605	48		PLA
0675	0606	20 F1 D0		JSR CRLOW ;MONITOR CRLOW SUBROUTINE
0676	0609	68		PLA
0677	060A	AA		TAX
0678	060B	68		PLA
0679	060C	60		RTS
0681	060D		TOHEX	
0682	060D	20 06 D3		JSR HEX ;CHANGES 'A' IN ASCII TO A HEX VALUE IN 'A'
0683	0610	60		RTS ;MONITOR SUBROUTINE

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0018

LINE #	LOC	CODE	LINE	
0685	0611		SPACES	;OUTPUTS 'A' SPACES TO CRT
0686	0611	8D 37 11	STA SCNT	
0687	0614	A9 20	LDA #\$20	
0688	0616	20 C1 D2	JSR OUTPUT	;MONITOR SUBROUTINE
0689	0619	CE 37 11	DEC SCNT	
0690	061C	D0 F6	BNE SP1	
0691	061E	60	RTS	
0693	061F		GHEX2	;READS TWO CHARACTERS FROM CRT --> HEX IN' 'A'
0694	061F	20 DC D1	JSR READ	;MONITOR READ SUBROUTINE
0695	0622	20 C1 D2	JSR OUTPUT	
0696	0625	20 06 D3	JSR HEX	;MONITOR HEX SUBROUTINE
0697	0628	20 50 D3	JSR LEFT	;MONITOR LEFT SUBROUTINE
0698	062B	29 F0	AND #\$FO	
0699	062D	8D 37 11	STA SCNT	
0700	0630	20 DC D1	JSR READ	;MONITOR READ SUBROUTINE
0701	0633	20 C1 D2	JSR OUTPUT	
0702	0636	20 06 D3	JSR HEX	;MONITOR HEX SUBROUTINE
0703	0639	29 0F	AND #\$OF	
0704	063B	0D 37 11	ORA SCNT	
0705	063E	60	RTS	
0707	063F		OUTHEX	;OUTPUTS TO CRT THE HEX VALUE OF THE 'A'
0708	063F	20 CE D2	JSR NUMA	;MONITOR SUBROUTINE
0709	0642	60	RTS	
0711	0643		BUBLEO	;INITIALIZES BUBBLE & RAM BUFFER
0712	0643			;SIMPLE ROUTINE TO ZERO BUFFER
0714	0643		LOC = \$6	
0715	0643	AD 1F 11	LDA BUFFER	
0716	0646	85 06	STA LOC	
0717	0648	AD 20 11	LDA BUFFER+1	
0718	064B	85 07	STA LOC+1	
0719	064D	A2 00	LDX #0	
0721	064F		LOOP	;ZERO CONSECUTIVE MEMORY LOCATIONS
0722	064F	A9 00	LDA #\$0	
0723	0651	81 06	STA (LOC,X)	
0725	0653			;INCREMENT POINTER "LOC"
0726	0653	A5 06	LDA LOC	
0727	0655	18	CLC	
0728	0656	69 01	ADC #1	
0729	0658	85 06	STA LOC	
0730	065A	A5 07	LDA LOC+1	
0731	065C	69 00	ADC #0	
0732	065E	85 07	STA LOC+1	
0734	0660	A5 06	LDA LOC	
0735	0662	C9 00	CMP #0	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0019

LINE #	LOC	CODE	LINE	
0736	0664	D0 E9	BNE LOOP	
0737	0666	A5 07	LDA LOC+1	
0738	0668	CD 1E 11	CMP LSTBLK+1	
0739	066B	90 E2	BCC LOOP	
0740	066D	F0 E0	BEQ LOOP	
0741	066F	60	RTS	
0743	0670	60	WRBHDR RTS	
0744	0671	60	RDBHDR RTS	
			;WRITES BUBBLE HEADER INFO - PARAMETERS ETC.	
			;READS BUBBLE HEADER INFO & PARAMETERS	
0746	0672		TIMERS	
0747	0672		;INITIALIZE FOR A/D AND START TIMERS ;VIA PORT B INPUT -- PORT A OUTPUT	
0749	0672	78	SEI	;DISABLE INTERRUPTS
0750	0673	A9 8F	LDA #%10001111	;LAST 4 BITS ARE A/D CHAN SELECT
0751	0675	49 FF	IOR #\$FF	;INVERT FOR DATA BUS
0752	0677	80 F2 AF	STA DDRB	
0753	067A	A9 00	LDA #0	
0754	067C	49 FF	IOR #\$FF	
0755	067E	80 F3 AF	STA DORA	;MAKE PORTA INPUT
0757	0681	A9 BD	LDA #%?0111101	
0758	0683	49 FF	IOR #\$FF	;INVERT FOR DATA BUS
0759	0685	80 FC AF	STA PCR	
0761	0688		; AUXILIARY CONTROL REG INITIALIZE	
0762	0688	A9 E3	LDA #%11100011	
0763	068A	49 FF	IOR #\$FF	;INVERT FOR DATA BUS
0764	068C	80 FB AF	STA A8CTL	;T1 OUT ON PB7, T1=CONTINUOUS
0765	068E		; T2 CLOCKED BY PB6, DISABLE SHIFT REG.	
0767	068F		;INTERRUPT ENABLE AND FLAG REGISTER	
0768	068F		; BIT 0 = CA2 BIT 4 = SHIFT REG	
0769	068F		; 1 = CA1 5 = T2 TIMEOUT	
0770	068F		; 2 = CB2 6 = T1 TIMEOUT	
0771	068F		; 3 = CB1 7 = ANY IRQ	
0773	068F	A9 E2	LDA #%11100010	
0774	0691	49 FF	IOR #\$FF	;INVERT FOR DATA BUS
0775	0693	80 FD AF	STA IFR	;CLEAR IRQ FLAGS
0776	0696	80 FE AF	STA IER	
0777	0699	A9 FF	LDA #\$FF	
0778	069B	49 FF	IOR #\$FF	
0779	069D	80 FB AF	STA T2FL	
0780	06A0	80 F9 AF	STA T2FC	
0781	06A3	AD 3F 11	LDA DECTIM	;GET SYSTEM DELTA TIME
0782	06A6	80 F6 AF	STA T1FL	
0783	06A9	AD 40 11	LDA DECTIM+1	
0784	06AC	80 F5 AF	STA T1FC	
0785	06AF	60	RTS	

AD-A100 646 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHO0--ETC F/G 9/2
AIRCREW INFILIGHT PHYSIOLOGICAL DATA ACQUISITION SYSTEM. (U)
JUN 80 K L MOORE

UNCLASSIFIED AFIT/GE/EE/80-6

NL

2x2
AD
0100646

END
DATE FILMED
7-81
DTIC

PHYSIOLOGICAL DATA ACQISIT.....PAGE 0020

LINE #	LOC	CODE	LINE	
0788	06B0		RUNIT	; INIT. POINTERS, COUNTERS, TABLES, ETC
0789	06B0			;***** WRITE SYSTEM BUBBLE REGISTERS *****
0790	06B0	20 AF B7	JSR PAIN	
0791	06B3	AD 00 B8	LDA PA	
0792	06B6	F0 03	BRQ RUNIT1	
0793	06B8	4C 68 B0	JMP \$B068	;SYSTEM ERROR ROUTINE
0794	06B8	A9 D4	RUNIT1 LDA #\$D4	;LOAD CANCEL COMMAND
0795	06BD	20 DC B7	JSR SEND	
0797	06C0	A9 BF	LDA #\$BF	;LOAD RCM REGISTERS COMMAND
0798	06C2	20 DC B7	JSR SEND	
0799	06C5	A0 00	LDY #0	
0800	06C7	B9 13 11	RUNIT2 LDA REGSTR,Y	
0801	06CA	20 DC B7	JSR SEND	
0802	06CD	C8	INY	
0803	06CE	C0 09	CPY #9	
0804	06D0	90 F5	BCC RUNIT2	
0806	06D2	20 AB B7	JSR PAOUT	;SET UP FOV WRITE TO BUBBLE
0807	06D5	AD 01 B8	LDA CRA	
0808	06D8	09 10	ORA #\$10	
0809	06DA	8D 01 B8	STA CRA	;CLEAR BUSY DETECTOR
0811	06DD	20 C9 0B	JSR LNKALL	;LINK ALL OF BUFFER AREA
0813	06E0	A9 00	LDA #0	;RESET COUNTERS
0814	06E2	8D 0D 11	STA TOTAL	
0815	06E5	8D 0E 11	STA TOTAL+1	
0816	06E8	8D 0F 11	STA TOTAL+2	
0818	06EB	8D 3D 11	STA C40	
0819	06EE	8D FB 10	STA CLOCK	
0820	06F1	8D 36 11	STA SAVEY	
0821	06F4	8D 33 11	STA SAVEA	
0822	06F7	8D 3E 11	STA B256NX	
0823	06FA	85 0C	STA BNUSY	
0824	06FC	85 08	STA ADNBUSY	
0825	06FE	8D 1C 11	STA IMAPLG	
0826	0701	8D 2B 11	STA NWRDIN	
0827	0704	8D 2C 11	STA NWRDIN+1	
0828	0707	8D 2D 11	STA NWRDUP	
0829	070A	8D 2E 11	STA NWRDUP+1	
0830	070D	8D 2F 11	STA TPDTIM	
0831	0710	8D 28 11	STA TPDTIM+1	
0832	0713	8D 29 11	STA TPDTIM	
0833	0716	8D 2A 11	STA TPDTIM+1	
0834	0719	8D 23 11	STA PTTIM	
0835	071C	8D 24 11	STA PTTIM+1	
0836	071F	8D 21 11	STA PTTIM	
0837	0722	8D 22 11	STA PTTIM+1	
0839	0725	A9 00	LDA #0	
0840	0727	85 34	STA PTRNTR	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0021

LINE #	LOC	CODE	LINE
0841	0729	A9 BC	LDA #>BUFO
0842	072B	85 35	STA POINTR+1
0844	072D	A9 FF	LDA #\$FF
0845	072F	8D 3A 11	STA C40FLG
0847	0732	AD 3C 11	LDA CNT40+1
0848	0735	49 FF	EOR #\$FF
0849	0737	8D EC AF	STA T2CNTR
0850	073A	AD 3B 11	LDA CNT40
0851	073D	49 FF	EOR #\$FF
0852	073F	8D AD AF	STA T2LCHW
0853	0742	A9 E3	LDA #%11100011
0854	0744	49 FF	EOR #\$FF
0855	0746	8D E9 AF	STA TCTL2
0856	0749	A9 01	LDA #1
0857	074B	49 FF	EOR #\$FF
0858	074D	8D E8 AF	STA TCTL13
0859	0750	60	RTS
			;SET UP INTERVAL TIMER - T2 FOR 40 WORD COUNT
			;WRITE MSB
			;WRITE TIMER 2 LATCH
			;CONTROL REG2 - ADDRESS CNTL REG 1, CLOCK T2
			;T2 = 16 BITS, T2 = 1-SHOT, T2 OUTPUT ENABLED
			;DISABLE ALL INTERVAL TIMER IRQ'S
0861	0751		BPWRDN
0862	0751		;
0863	0751	48	PHA
0864	0752	A9 00	LDA #0
0865	0754	85 0C	STA BEUSY
0866	0756	78	SEI
0867	0757	20 EB 07	JSR RDTIME
0868	075A	AD 32 11	LDA SAVAA+1
0869	075D	8D 22 11	STA PDTIM+1
0870	0760	AD 31 11	LDA SAVAA
0871	0763	8D 21 11	STA PDTIM
0872	0766	58	CLC
0873	0767	38	SEC
0874	0768	ED 23 11	SBC PUTIM
0875	076B	8D 25 11	STA TIMDIF
0876	076E	AD 22 11	LDA PDTIM+1
0877	0771	ED 24 11	SBC PUTIM+1
0878	0774	8D 26 11	STA TIMDIF+1
0879	0777	18	CLC
0880	0778	AD 25 11	LDA TIMDIF
0881	077B	6D 27 11	ADC TPUTIM
0882	077E	8D 27 11	STA TPUTIM
0883	0781	AD 26 11	LDA TIMDIF+1
0884	0784	6D 28 11	ADC TPUTIM+1
0885	0787	8D 28 11	STA TPUTIM+1
0886	078A	18	CLC
0887	078B	A9 01	LDA #1
0888	078D	6D 2B 11	ADC NPWRDN
0889	0790	8D 2B 11	STA NPWRDN
0890	0793	A9 00	LDA #0
0891	0795	6D 2C 11	ADC NPWRDN+1
0892	0798	8D 2C 11	STA NPWRDN+1
0893	079B	68	PLA
0894	079C	60	RTS
			;POWER DOWN THE BUBBLE TO SAVE ENERGY
			AND CALCULATE TIME BUBBLE UP

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0022

LINE #	LOC	CODE	LINE
0896	079D		BPWRUP
0897	079D		;POWER UP THE BUBBLE AND CALCULATE TIME DOWN
0898	079D	48	PHA
0899	079E	A9 00	LDA #Z11000000 ;SET POWER & BUSY FLAG
0900	07A0	05 0C	ORA BHUSY
0901	07A2	85 0C	STA BHUSY
0902	07A4	78	SEI
0903	07A5	20 EB 07	JSR RDTIME
0904	07A8	AD 32 11	LJA SAVAA+1
0905	07AB	8D 24 11	STA PUTIM+1
0906	07AE	AD 31 11	LJA SAVAA
0907	07B1	8D 23 11	STA PUTIM
0908	07B4	58	CLC
0909	07B5	38	SEC
0910	07B6	ED 21 11	SBC PUTIM
0911	07B9	8D 25 11	STA TIMDIF
0912	07BC	AD 24 11	LJA PUTIM+1
0913	07BF	ED 22 11	SBC PUTIM+1
0914	07C2	8D 26 11	STA TIMDIF+1
0915	07C5	18	CLC
0916	07C6	AD 25 11	LDA TIMDIF
0917	07C9	6D 29 11	ADC TPDTIM
0918	07CC	8D 29 11	STA TPDTIM
0919	07CF	AD 2A 11	LJA TPDTIM+1
0920	07D2	6D 26 11	ADC TIMDIF+1
0921	07D5	8D 2A 11	STA TPDTIM+1
0922	07D8	18	CLC
0923	07D9	A9 01	LDA #1
0924	07DB	6D 2D 11	ADC NPWRUP
0925	07DE	8D 2D 11	STA NPWRUP
0926	07E1	A9 00	LDA #0
0927	07E3	6D 2E 11	ADC NEWRUP+1
0928	07E6	8D 2E 11	STA NEWRUP+1
0929	07E9	68	PLA
0930	07EA	60	RTS
0932	07EB		RDTIME
0933	07EB	AD F8 AF	LDA T2LL
0934	07EE	AC F9 AF	LDY T2HC
0935	07F1	49 FF	EOR #\$FF
0936	07F3	49 FF	EOR #\$FF
0937	07F5	18	CLC
0938	07F6	69 01	ADC #1
0939	07F8	8D 31 11	STA SAVAA
0940	07FB	98	TYA
0941	07FC	49 FF	EOR #\$FF
0942	07FE	49 FF	EOR #\$FF
0943	0800	69 00	ADC #0
0944	0802	8D 32 11	STA SAVAA+1
0945	0805	60	RTS
0947	0806	8A	RDTIM1 TXA
0948	0807	0A	ASL A

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0023

LINE #	LOC	CODE	LINE
0949	0808	A8	TAY
0950	0809	AD 31 11	LDA SAVAA
0951	080C	99 DA 00	STA THSTIM,Y
0952	080F	AD 32 11	LDA SAVAA+1
0953	0812	99 DB 00	STA THSTIM+1,Y
0954	0815	F6 4A	INC COUNTT,X ;INCREMENT DELTA TIME COUNTER
0955	0817	60	RTS

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0024

LINE #	LOC	CODE	LINE		
0957	0818		KEEP	;DETERMINES IF VALUE SAVED OR THROWN AWAY	
0958	0818	A5 46	LDA KEPNDX	;CHECK METHOD OF STORAGE	
0960	081A		;BITS 2 1 0	STORAGE METHOD	
0962	081A		;	0 0 0 MODIFIED VAR. CHANGE—1 LSB	
0963	081A		;	0 0 1 MODIFIED VAR. CHANGE—2 LSB	
0964	081A		;	0 1 0 DELTA CONTINUOUS—1 LSB	
0965	081A		;	0 1 1 DELTA CONTINUOUS—2 LSB	
0966	081A		;	1 0 0 VAR. CHANGE—1 LSB	
0967	081A		;	1 0 1 VAR. CHANGE—2 LSB	
0968	081A		;	1 1 0 DO NOT SAVE THIS CHANNEL	
0969	081A		;	1 1 1 CONTINUOUS	
0971	081A	29 0F		AND #\$0F	
0972	081C	AA		TAX	
0973	081D	BD 6D 11		LDA METHOD,X	
0974	0820	29 07		AND #Z00000111	
0975	0822	F0 22		BEQ MVC1	
0976	0824	C9 01		CMP #1	
0977	0826	F0 22		BHQ MVC2	
0978	0828	C9 02		CMP #2	
0979	082A	F0 6A		BHQ DCM1	
0980	082C	C9 03		CMP #3	
0981	082E	F0 6A		BHQ DCM2	
0982	0830	C9 07		CMP #7	
0983	0832	D0 03		BNE *+5	
0984	0834	4C 7E 09		JMP CNTNUS	
0985	0837	C9 04		CMP #4	
0986	0839	D0 03		BNE *+5	
0987	083B	4C F0 08		JMP VCM1	
0988	083E	C9 05		CMP #5	
0989	0840	D0 03		BNE *+5	
0990	0842	4C F4 08		JMP VCM2	
0991	0845	60		RTS	
0993	0846	A9 01	MVC1	LDA #1	;MODIFIED VARIABLE CHANGE STORAGE METHOD
0994	0848	D0 02		BNE MVC	
0995	084A	A9 02	MVC2	LDA #2	
0996	084C	85 FF	MVC	STA ACRUCY	
0998	084E	20 9E 09		JSR DIFF	;CALCULATE DIFFERENCE AND MAGNITUDE
1000	0851	A5 49		LDA MDIFF	
1001	0853	F0 3A		BHQ KEEP7	;SEE IF TIMER OVERFLOWED
1003	0855	C9 08		CMP #8	
1004	0857	90 0E		BCC MVC3	;CHECK MAGNITUDE OUT OF RANGE
1005	0859	C9 09		CMP #9	
1006	085B	90 03		BCC *+5	
1007	085D	4C 76 09		JMP KELP9	
1008	0860	A5 47		LDA VDIFF	
1009	0862	30 03		RMI *+5	
1010	0864	4C 76 09		JMP KELP9	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0025

LINE #	LOC	CODE	LINE	
1012	0867	B5 4A	MVC3	LDA COUNTT,X ;CALCULATE AND OUTPUT VALUE
1013	0869	0A		ASL A
1014	086A	0A		ASL A
1015	086B	0A		ASL A
1016	086C	0A		ASL A
1017	086D	95 4A		STA COUNTT,X
1018	086F	A5 47		LDA VDIFF
1019	0871	29 0F		AND #\$0F
1020	0873	15 4A		ORA COUNTT,X
1022	0875	20 06 09	KEEP6	JSR SAVE ;GO SAVE 'A' INTO BUFFER 'X'
1023	0878	8A		TXA ;UPDATE LSTVAL \$ LSTTIM
1024	0879	0A		ASL A
1025	087A	A8		TAY
1026	087B	B9 DA 00		LDA THSTIM,Y
1027	087E	99 AA 00		STA LSTTIM,Y
1028	0881	B9 DB 00		LDA THSTIM+1,Y
1029	0884	99 AB 00		STA LSTTIM+1,Y
1030	0887	B5 9A		LDA LSTVAL,X
1031	0889	18		CLC
1032	088A	65 48		ADC SDIFF
1033	088C	95 9A		STA LSTVAL,X
1034	088E	60		RTS
1036	088F	B5 4A	KEEP7	LDA COUNTT,X ;CHECK TIME OVERFLOW
1037	0891	29 0F		AND #\$0F
1038	0893	F0 F0		BQQ KEEP6
1039	0895	60		RTS
1041	0896	A9 01	DCM1	LDA #1 ;DELTA CONTINUOUS STORAGE METHOD
1042	0898	D0 02		BNE DCM
1043	089A	A9 02	DCM2	LDA #2
1044	089C	85 FF	DCM	STA ACURCY
1045	089E	20 9E 09		JSR DLFF ;GET DIFFERENCE AND MAGNITUDE
1047	08A1	A5 49		LDA MDIFF ;CHECK FOR OUT OF RANGE ERROR
1048	08A3	C9 08		CMP #8
1049	08A5	90 0E		BCC DCM3
1050	08A7	C9 09		CMP #9
1051	08A9	90 03		BCC *+5
1052	08AB	4C 76 09		JMP KEEP9
1053	08AE	A5 47		LDA VDIFF
1054	08B0	30 03		RMI *+5
1055	08B2	4C 76 09		JMP KEEP9
1057	08B5	B5 14	DCM3	LDA CHANLS,X ;CALCULATE AND OUTPUT VALUES
1058	08B7	29 40		AND #%01000000
1059	08B9	10 17		BNE DCM4 ;BRANCH IF WORD FULL
1060	08BB	B5 14		LDA CHANLS,X
1061	08BD	09 40		ORA #%01000000 ;RESET FLAG
1062	08BF	95 14		STA CHANLS,X

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0026

LINE #	LOC	CODE	LINE		
1064	08C1	A5 47	LDA VDIFF		
1065	08C3	29 0F	AND #\$0F		
1066	08C5	0A	ASL A		
1067	08C6	0A	ASL A		
1068	08C7	0A	ASL A		
1069	08C8	0A	ASL A		
1070	08C9	1D 6D 11	ORA METHOD,X		
1071	08C0	9D 6D 11	STA METHOD,X		
1072	08CF	4C 78 08	JMP KEEP6+3		
1074	08D2	55 14	DCM4	BOR CHANLS,X	
1075	08D4	95 14		STA CHANLS,X	
1076	08D6	BD 6D 11		LDA METHOD,X	
1077	08D9	29 F0		AND #\$FO	
1078	08DB	8D E8 10		STA TEMP	
1079	08DE	BD 6D 11		LDA METHOD,X	
1080	08E1	29 0F		AND #\$0F	
1081	08E3	9D 6D 11		STA METHOD,X	
1082	08E6	A5 47		LDA VDIFF	
1083	08E8	29 0F		AND #\$0F	
1084	08EA	0D E8 10		ORA TEMP	
1085	08ED	4C 75 08		JMP KEEP6	
1087	08F0	A9 01	VCM1	LDA #1	;VARIABLE CHANGE STORAGE METHOD
1088	08F2	D0 02		BNE VCM	
1089	08F4	A9 02	VCM2	LDA #2	
1090	08F6	85 FE	VCM	STA ACURCY	
1091	08F8	20 9E 09		JSR DIFP	;CALCULATE DIFFERENCE & ADJUST & MAGNITUDE
1093	08FB	A5 49		LDA MDIFF	
1094	08FD	F0 07		BEQ VCM5	
1096	08FF	C9 10		CMP #16	
1097	0901	90 0A		BCS VCM3	
1098	0903	4C 76 09		JMP KEEP9	;CHECK DIFFERENCE OUT OF RANGE
1100	0906	B5 4A	VCM5	LDA COUNT1,X	
1101	0908	29 7F		AND #\$7F	
1102	090A	F0 01		BEQ VCM3	
1103	090C	60		RTS	
1105	090D	B5 14	VCM3	LDA CHANLS,X	
1106	090F	29 40		AND #%01000000	
1107	0911	D0 27		BNE VCM4	
1108	0913	B5 14		LDA CHANLS,X	
1109	0915	09 40		ORA #%01000000	
1110	0917	95 14		STA CHANLS,X	
1111	0919	B5 4A		LDA COUNT1,X	
1112	091B	9D E9 10		STA COUNT1,X	
1113	091E	A5 47		LDA VDIFF	
1114	0920	10 04		BPL VCM8	
1115	0922	A9 10		LDA #\$10	
1116	0924	D0 02		BNE *+4	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0027

LINE #	LOC	CODE	LINE	
1117	0926	A9 00	VCM8	LDA #0
1118	0928	05 49		ORA MDIFF
1119	092A	0A		ASL A
1120	092B	0A		ASL A
1121	092C	0A		ASL A
1122	092D	1D 6D 11		ORA METHOD,X
1123	0930	9D 6D 11		STA METHOD,X
1124	0933	A9 00		LJA #0
1125	0935	95 4A		STA COUNTT,X
1126	0937	4C 78 08		JMP KREP6+3
1128	093A	55 14	VCM4	EOR CHANLS,X
1129	093C	95 14		STA CHANLS,X
1130	093E	BD 6D 11		LJA METHOD,X
1131	0941	29 F8		AND #\$F8
1132	0943	0A		ASL A
1133	0944	8D E8 10		STA TEMP
1134	0947	BD E9 10		LJA COUNTT,X
1135	094A	90 02		BCL VCM6
1136	094C	09 80		ORA #\\$80
1137	094E	20 C6 09	VCM6	JSR SAVE
1138	0951	A5 49		LJA MDIFF
1139	0953	0D E8 10		ORA TEMP
1140	0956	20 C6 09		JSR SAVE
1141	0959	85 4A		LJA COUNTT,X
1142	095B	24 47		BTF VOLFF
1143	095D	10 02		BPL VCM7
1144	095F	09 80		ORA #\\$80
1145	0961	20 C6 09	VCM7	JSR SAVE
1146	0964	A9 00		LJA #0
1147	0966	9D 59 10		STA COUNTT,X
1148	0969	95 4A		STA COUNTT,X
1150	096B	BD 6D 11		LJA METHOD,X ;RESET SAVED VALUE
1151	096E	29 07		AND #\$F7
1152	0970	9D 6D 11		STA METHOD,X
1154	0973	4C 78 08		JMP KREP6+3
1156	0976	A9 A1	KEEP9	LJA #SMS9 ;DATA RANGE ERROR
1157	0978	8D F9 10		STA ERRCNT
1158	097B	4C 83 09		JMP ERRCNT
1160	097E	B5 CA	CNTINUS	LJA THSWAL,X ;SUBROUTINE TO HANDLE CONTINUOUS STORAGE
1161	0980	4C C6 09		JMP SAVE
1163	0983	78	ERRMSG	SET ;ERROR MESSAGE - UPDATE TIMERS & HALT PROGRAM
1164	0984	A5 0C		LJA BHUSY
1165	0986	29 40		AND #\\$40
1166	0988	F0 07		BPL ERRCNT
1167	098A	20 51 07		JSR REWRDN ;UPDATE POWERED UP TIMES
1168	098D	78		SET

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0028

LINE #	LOC	CODE	LINE		
1169	098E	4C 95 09		JMP ER2	
1170	0991	20 9D 07	ER1	JSR BPWRUP	;UPDATE POWERED DOWN TIMES
1171	0994	78		SEI	
1173	0995	AD F9 10	ER2	LDA ERRPIR	
1174	0998	20 ED 05		JSR MSGOUT	
1175	0998	4C F0 C9		JMP MONTR	
1177	099E	38	DIFF	SEC	;CALCULATE DIFFERENCE AND MAGNITUDE VALUES
1178	099F	B5 CA		LDA THSVAL,X	
1179	09A1	F5 9A		SBC LSTVAL,X	
1180	09A3	85 48		STA SDIFF	
1181	09A5	85 47		STA VDIF1	
1182	09A7	10 05		RPL DIFF1	
1183	09A9	18		CLC	
1184	09AA	49 FF		EOR #\$FF	
1185	09AC	69 01		ADC #1	
1187	09AE	85 49	DIFF1	STA MDIFF	;SAVE MAGNITUDE OF DIFFERENCE
1189	09B0	A5 FE		LDA ACURCY	
1190	09B2	C9 02		CMP #2	
1191	09B4	90 0F		BCC ADIFF1	
1192	09B6	24 47		BIT VDIF1	
1193	09B8	30 01		BMI *+3	
1194	09BA	18		CLC	
1195	09BB	66 47		ROR VDIF1	
1196	09BD	46 49		LSR MDIFF	
1197	09BF	A5 48		LDA SDIFF	
1198	09C1	29 FE		AND #\$FE	
1199	09C3	85 48		STA SDIFF	
1200	09C5	60	ADIFF1	RTS	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0029

LINE #	LOC	CODE	LINE	
1202	09C6		SAVE	;SUBROUTINE TO SAVE 'A' IN BUFFER BLOCK X ;SAVE REGISTERS
1203	09C6	8E 34 11		STX SAVEX
1204	09C9	8C 36 11		STY SAVETY
1205	09CC	8D 33 11		STA SAVEA
1206	09CF	A9 10		LDA #\$10
1207	09D1	2C 34 11		BIT SAVEX
1208	09D4	BD 3D		BNE SAVE4
1210	09D6	8A	SAVE3	TXA ;GET INDIRECT ANALOG POINTER
1211	09D7	0A		ASL A
1212	09D8	AA		TAX
1213	09D9	B4 7A		LDY CCHBLK,X
1214	09DB	84 34		STY POINTR
1215	09DD	B4 7B		LDY CCHBLK+1,X
1216	09DE	84 35		STY POINTR+1
1217	09E1	AE 34 11		LDX SAVEX
1218	09E4	B4 36		LDY CRKPTR,X ;GET OFFSET
1219	09E6	AD 33 11		LDA SAVEA
1220	09E9	91 34		STA (POINTR),Y ;SAVE DATA
1222	09EB	C8		INY ;CHECK THIS BLOCK OVERFLOWED
1223	09EC	CC 2F 11		CPY UBKSZ1 ;COMPARE TO UNIT BLOCK SIZE
1224	09EF	80 06		BCS SAVE2 ;BRANCH IF BLOCK OVERFLOW
1226	09F1	94 36	SAVE1	STY CRKPTR,X ;UPDATE OFFSET POINTER
1228	09F3	AC 36 11		LDY SAVEX ;RESTORE REGISTERS AND RETURN
1229	09F6	60		RTS
1231	09F7	20 A4 0A	SAVE2	JSR BLKALC ;GET ANOTHER BLOCK ALLOCATED
1232	09FA	8A		TXA
1233	09FB	0A		ASL A
1234	09FC	AA		TAX
1235	09FD	A5 10		LDA NEWBLK
1236	09FF	AC 2F 11		LDY UBKSZ1
1237	0A02	91 34		STA (POINTR),Y ;LINK BLOCKS
1238	0A04	95 7A		STA CCHBLK,X ;UPDATE CURRENT BLOCK POINTER
1239	0A06	C8		INY
1240	0A07	A5 11		LDA NEWBLK+1
1241	0A09	91 34		STA (POINTR),Y
1242	0A0B	95 7B		STA CCHBLK+1,X
1243	0A0D	20 63 0A		JSR WRHTR ;WRITE BLOCK HEADER
1244	0A10	4C F1 09		JMP SAVE1
1246	0A13	8A	SAVE4	TXA ;THIS IS A DIGITAL CHANNEL
1247	0A14	29 03		AND #\$03
1248	0A16	8D 35 11		STA SAVX
1249	0A19	0A		ASL A
1250	0A1A	AA		TAX
1251	0A1B	BD 49 11		LDA CPBLK,X
1252	0A1E	85 34		STA POINTR
1253	0A20	BD 4A 11		LDA CPBLK+1,X
1254	0A23	85 35		STA POINTR+1
1255	0A25	AE 35 11		LDX SAVX
1256	0A28	BD 51 11		LDA PRKPTR,X

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0030

LINE #	LOC	CODE	LINE		
1257	0A2B	A8		TAY	
1258	0A2C	AD 33 11		LDA SAVEA	
1259	0A2F	91 34		STA (POINTR),Y ;SAVE DIGITAL CHANNEL DATA	
1260	0A31	C8		INY	
1261	0A32	OC 2F 11		CPY UBKSZ1 ;CHECK BLOCK OVERFLOW	
1262	0A35	B0 0E		BCS SAVE6	
1264	0A37	98	SAVE5	TYA	
1265	0A38	9D 51 11		STA PBKPTR,X	
1266	0A3B	AC 36 11		LDY SAVFY	
1267	0A3E	AD 33 11		LDA SAVEA	
1268	0A41	AE 34 11		LDX SAVEX	
1269	0A44	60		RTS	
1271	0A45	20 A4 0A	SAVE6	JSR BLKALC	
1272	0A48	8A		TXA	
1273	0A49	0A		ASL A	
1274	0A4A	AA		TAX	
1275	0A4B	A5 10		LDA NEWBLK	
1276	0A4D	AC 2F 11		LDY UBKSZ1	
1277	0A50	91 34		STA (POINTR),Y	
1278	0A52	9D 49 11		STA CPBLK,X	
1279	0A55	C8		INY	
1280	0A56	A5 11		LDA NEWBLK+1	
1281	0A58	91 34		STA (POINTR),Y	
1282	0A5A	9D 4A 11		STA CPBLK+1,X	
1283	0A5D	20 63 0A		JSR WRHDR	
1284	0A60	4C 37 0A		JMP SAVES	
1286	0A63	A0 00	WRHDR	LDY #0	;WRITE BLOCK HEADER DATA
1287	0A65	AD 34 11		LDA SAVEX	;CHECK ANALOG OR DIGITAL
1288	0A68	29 10		AND #\$10	
1289	0A6A	F0 11		BHQ WRHDR1	
1291	0A6C	AE 35 11		LDX SAVX	;DIGITAL CHANNEL
1292	0A6F	B5 FA		LDA PORTS,X	
1293	0A71	29 03		AND #\$3	
1294	0A73	09 10		ORA #\$10	
1295	0A75	91 10		STA (NPWBLK),Y	
1296	0A77	09 80		ORA #\$80	
1297	0A79	91 34		STA (POINTR),Y ;FLAG LAST BLOCK FULL	
1298	0A7B	C8		INY	
1299	0A/C	60		RTS	
1301	0A7D	AE 34 11	WRHDR1	LDX SAVEX	;ANALOG CHANNEL
1302	0A80	B5 14		LDA CHANLS,X	
1303	0A82	29 0F		AND #\$0F	
1304	0A84	91 10		STA (NPWBLK),Y	
1305	0A86	09 80		ORA #\$80	
1306	0A88	91 34		STA (POINTR),Y ;FLAG LAST BLOCK FULL	
1307	0A8A	C8		INY	
1308	0A8B	8A		TXA	
1309	0A8C	0A		ASL A	

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0031

LINE #	LOC	CODE	LINE	
1310	0A8D	AA	TAX	
1311	0A8E	B5 DA	LDA THSTIM,X	
1312	0A90	91 10	STA (NEWBLK),Y	
1313	0A92	B5 DB	LDA 'THSTIM+1,X	
1314	0A94	C8	INY	
1315	0A95	91 10	STA (NEWBLK),Y	
1316	0A97	A8 34 11	LDX SAVEX	
1317	0A9A	B5 CA	LDA THSVAL,X	
1318	0A9C	C8	INY	
1319	0A9D	91 10	STA (NEWBLK),Y	
1320	0A9F	AD 33 11	LDA SAVFA	
1321	0AA2	C8	INY	
1322	0AA3	69	RTS	
1324	0AA4		BLKALC	;BLOCK ALLOCATE
1325	0AA4			;DELINK A BLOCK, IF 80% BUFFER FULL SET FLAG
1327	0AA4	06 0D	DEC NLINK	;CHECK LINK EMPTY
1328	0AA6	30 28	BMI BLKAL1	
1330	0AA8	A5 0E	LDA TT LINK	;ASSIGN A NEW BLOCK
1331	0AAA	85 10	LDA (NEWBLK)	
1332	0AAC	A5 0F	LDA 'TT LINK+1	
1333	0AAE	85 11	LDA '(NEWBLK)+1	
1335	0AB0	A0 00	LDY #0	;DELINK BLOCK
1336	0AB2	B1 10	LDA (NEWBLK),Y	
1337	0AB4	85 0E	STA TLINK	
1338	0AB6	C8	LDY	
1339	0AB7	91 10	LDA (NEWBLK),Y	
1340	0AB9	85 0F	STA TLINK+1	
1342	0ABB	A4 0D	BLKAL3 LDY NLINK	;CHECK 80% BUFFER FULL
1343	0ABD	0C 0C 11	CPY N80	
1344	0AC0	B0 07	BCS BLKAL2	;BRANCH IF NOT FULL
1346	0AC2	A5 0C	B80 LDA BBUSY	;SET BUFFER 80% FULL FLAG
1347	0AC4	09 20	ORA #%00100000	
1348	0AC6	85 0C	STA BBUSY	
1349	0AC8	60	RTS	
1350	0AC9	A5 0C	BLKAL2 LDA BBUSY	;CLEAR 80% FLAG
1351	0ACB	29 DF	AND #%11011111	
1352	0ACD	85 0C	STA BBUSY	
1353	0ACE	60	RTS	
1355	0ADD	A9 AF	BLKAL1 LDA #MSG11	;RAM DEPLETED
1356	0ADD	8D F9 10	STA ERPRTR	
1357	0AD9	4C 83 09	JMP ERMSG	
1359	0AD8		LINK	;ADD A BLOCK TO THE LINK - INCREMENT THE LINK COUNT
1361	0AD8	A0 00	LDY #0	
1362	0ADA	A5 0E	LDA TLINK	

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0032

LINE #	LOC	CODE	LINE
1363	QA0C	91 12	STA (OLDBLK),Y
1364	QA0E	C8	INY
1365	QA0F	A5 0F	LDA TLINK+1
1366	QA0I	91 12	STA (OLDBLK),Y
1367	QA03	A5 12	LDA OLDBLK
1368	QA05	85 0E	STA TLINK
1369	QA07	A5 13	LDA OLDBLK+1
1370	QA09	85 0F	STA TLINK+1
1372	QAEB	E6 0D	INC NLINK ;CHECK 80% BUFFER FULL
1373	QAED	D0 0C	BNE BIKA13
1375	QA0F	60	RTS

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0033

LINE #	LOC	CODE	LINE	
1377	0AFO		BUBBLE	
1378	0AFO	8E 39 11	STX BSAVX	;PUT LINKED LIST, ADDRESSED BY (CURBFA) INTO BUBBLE
1380	0AF3	A0 00	BUBLE1 LDY #0	
1381	0AF5	84 09	STY BUBNDX	;ZERO BUBBLE INDEX
1382	0AF7	B1 0A	LDA (CURBFA),Y	;CHECK BLOCK FULL
1383	0AF9	30 28	BMI BUBLE2	;BRANCH IF BLOCK FULL
1384	0AFB	A9 10	LDA #\$10	;CHECK FOR DIGITAL CHANNEL
1385	0AFD	24 0C	BTF BRUSY	
1386	0AFF	F0 11	BHQ BUBLE7	;BRANCH IF ANALOG CHANNEL
1388	0B01	AD 39 11	LDA BSAVX	
1389	0B04	AA	TAX	;UPDATE DIGITAL CHAN POINTERS & RETURN
1390	0B05	0A	ASL A	
1391	0B06	A8	TAY	
1392	0B07	A5 0A	LDA CURBFA	
1393	0B09	99 41 11	STA PBFEADD,Y	
1394	0B0C	A5 0B	LDA CURBFA+1	
1395	0B0E	99 42 11	STA PBFEADD+1,Y	
1396	0B11	60	RTS	
1398	0B12		;UPDATE ANALOG CHAN POINTERS & RETURN	
1399	0B12	AD 39 11	BUBLE7 LDA BSAVX	;NOT FULL - DON'T DUMP
1400	0B15	AA	TAX	;RESTORE X
1401	0B16	0A	ASL A	;UPDATE POINTERS AND RETURN
1402	0B17	A8	TAY	
1403	0B18	A5 0A	LDA CURBFA	
1404	0B1A	99 5A 00	STA CBFEADD,Y	
1405	0B1D	A5 0B	LDA CURBFA+1	
1406	0B1F	99 5B 00	STA CBFEADD+1,Y	
1407	0B22	60	RTS	
1409	0B23	2C 1C 11	BUBLE2 BIT DMAFLG	
1410	0B26	10 09	BPL BUBLE6	
1411	0B28	AD 00 B8	LDA PA	
1412	0B2B	20 3D B7	JSR WAITB	
1413	0B2E	8D 1C 11	STA DMAFLG	
1414	0B31	A4 09	BUBLE6 LDY BUBNDX	
1415	0B33	A8 3E 11	LDX B256NX	
1417	0B36	B1 0A	BUBLE3 LDA (CURBFA),Y	
1418	0B38	9D 00 BC	STA BUBYO,X	;SAVE WORD IN BUBBLE OUTPUT BUFFER
1419	0B3B	E8 3E 11	INC B256NX	
1420	0B3E	D0 18	BNE BUBLE4	
1422	0B40		;START SYSTEM-65 DMA	
1423	0B40	20 AB B7	JSR PACIT	
1424	0B43	A9 48	LDA #\$48	;SEND WRITE COMMAND
1425	0B45	20 DC B7	JSR SEND	
1426	0B48	A9 FF	LDA #\$FF	
1427	0B4A	8D 1C 11	STA DMAFLG	
1428	0B4D	20 DC B7	JSR SEND	;SEND EXECUTE COMMAND
1430	0B50	AD 01 B8	LDA GRA	
1431	0B53	09 10	ORA #\$10	

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0034

LINE #	LOC	CODE	LINE	
1432	OB55	8D 01 B8	STA CRA	;CLEAR BUSY DETECTOR
1434	OB58	EE 3D 11	BUBLE4 INC C40	
1435	OB5B	AD 3D 11	LDA C40	
1436	OB5E	C9 28	CMP #40	
1437	OB60	90 3F	BCC BUBLES	;BRANCH ON LESS THAN
1439	OB62	A9 00	LDA #0	
1440	OB64	8D 3D 11	STA C40	;RESET COUNTER
1441	OB67	18	CLC	
1442	OB68	AD 0D 11	LDA TOTAL	;CHECK FOR BUBLE FULL
1443	OB6B	69 28	ADC #40	
1444	OB6D	8D 0D 11	STA TOTAL	
1445	OB70	A9 00	LDA #0	
1446	OB72	6D 0E 11	ADC TOTAL+1	
1447	OB75	8D 0E 11	STA TOTAL+1	
1448	OB78	A9 00	LDA #0	
1449	OB7A	6D 0F 11	ADC TOTAL+2	
1450	OB7D	8D 0F 11	STA TOTAL+2	
1452	OB80	CD 12 11	CMP FTOTAL+2	
1453	OB83	90 1C	BCC BUBLES5	
1454	OB85	D0 12	BNE IMSG	
1455	OB87	AD 0E 11	LDA TOTAL+1	
1456	OB8A	CD 11 11	CMP FTOTAL+1	
1457	OB8D	90 12	BCC BUBLES5	
1458	OB8F	D0 08	BNE IMSG	
1459	OB91	AD 0D 11	LDA TOTAL	
1460	OB94	CD 10 11	CMP FTOTAL	
1461	OB97	90 08	BCC BUBLES5	
1463	OB99	A9 BC	IMSG LDA #<IMSG12	;STOP-BUBLE FULL
1464	OB9B	8D F9 10	STA ERRPTR	
1465	OB9E	4C 83 09	JMP ERRMSG	
1467	OBAA	C8	BUBLE5 INY	;CHECK END OF BUFFER BLOCK X
1468	OBAB	84 09	STY BURNDX	
1469	OBAC	0C 2F 11	CPY UBKS21	
1470	OBAD	80 03	BCS BUBLE5	
1471	OBAA	4C 23 0B	JMP BUBLE2	;JUMP ON 'LESS THAN'
1473	OBAC	A5 0A	BUBLE8 LDA CURBFA	;RETURN BLOCK TO STACK
1474	OBAE	85 12	STA OLDBLK	
1475	OBBD	A5 0B	LDA CURBFA+1	
1476	OBBC	85 13	STA OLDBLK+1	
1478	OBBD	B1 0A	LDA (CURBFA),Y	;MODIFY BLOCK POINTERS
1479	OBBD	8D 38 11	STA TEMPA	
1480	OBBD	C8	INY	
1481	OBBD	B1 0A	LDA (CURBFA),Y	
1482	OBBD	85 0B	STA CURBFA+1	
1483	OBBD	AD 38 11	LDA TEMPA	

PHYSIOLOGICAL DATA ACQUSIT.....PAGE 0035

LINE #	LOC	CODE	LINE
1484	0BC1	85 0A	STA CURBFA
1486	0BC3	20 D8 0A	JSR LINK ;LINK THIS BLOCK INTO STACK
1488	0BC6	4C F3 0A	JMP BUBLE1
1490	0BC9		LNKALL
1491	0BC9		; ;LINKS TOGETHER ALL BLOCKS OF UNIT BLOCK SIZE UBKSIZ; STARTING WITH 'BUFFER => 'LSTBLK'
1492	0BC9	A9 01	LDA #1 ;LINK FIRST BLOCK
1493	0BCB	85 0D	STA NLINK ;SET UP BLOCK COUNT
1494	0BCD	AD 1D 11	LDA LSTBLK
1495	0BD0	85 0E	STA TLINK
1496	0BD2	85 12	STA OLDBLK
1497	0BD4	AD 1E 11	LDA LSTBLK+1
1498	0BD7	85 0F	STA TLINK+1
1499	0BD9	85 13	STA OLDBLK+1
1501	0BDB	A0 01	LDY #1 ;SET NULL POINTER
1502	0BD9	A9 00	LDA #0
1503	0BDF	91 12	STA (OLDBLK),Y
1505	0BE1	18	LNKAL1 CLC ;MODIFY POINTERS
1506	0BE2	A5 12	LDA OLDBLK
1507	0BE4	ED 30 11	SBC UBKSIZ
1508	0BE7	85 12	STA OLDBLK
1509	0BE9	A5 13	LDA OLDBLK+1
1510	0BEB	E9 00	SBC #0
1511	0BED	85 13	STA OLDBLK+1
1512	0BFF	20 D8 0A	JSR LINK ;LINK NEXT BLOCK
1513	0BF2	A5 13	LDA OLDBLK+1 ;CHECK IF LAST BLOCK
1514	0BF4	CD 20 11	CMP BUFFER+1
1515	0BF7	E0 02	BNE LNKAL2 ;BRANCH > OR =
1516	0BF9	B0 06	BCS LNKAL1
1517	0BFB	A5 12	LNKAL2 LDA OLDBLK
1518	0BFD	CD 1F 11	CMP BUFFER
1519	0000	E0 02	BNE LNKAL3 ;BRANCH > OR =
1520	0002	B0 DD	BCS LNKAL1
1521	0004	60	LNKAL3 RTS

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0036

LINE #	LOC	CODE	LINE	
1523	0005		;***** VARIABLES *****	
1524	0005		*=\$1000	
1526	1000	49 4E	MSG1 .BYT 'INITIALIZE - I'	
1527	100E	20 20	.BYT ' DUMP - D ;'	
1528	101C	45 4E	MSG3 .BYT 'ENTER;'	
1529	1022	43 48	MSC3A .BYT 'CHAN PERIODS'	
1530	1030	20 20	.BYT ' METHOD;'	
1531	103C	50 4F	MSG4 .BYT 'PORT PERIODS;'	
1532	104B	56 45	MSG5 .BYT 'VERIFY - V CHA'	
1533	105C	4E 47	.BYT 'NCE - C OK - K ;'	
1534	106F	57 41	MSG6 .BYT 'WAIT - BUBBLE INIT;'	
1535	1082	43 4F	MSG7 .BYT 'COMPLETED'	
1536	108C	2D 20	.BYT ' POWER DOWN;'	
1537	1099	41 43	MSG8 .BYT 'ACTIVES;'	
1538	10A1	41 2F	MSG9 .BYT 'A/D RANGE ERR;'	
1539	10A9	52 41	MSG11 .BYT 'RAM DEPLETED;'	
1540	10B0	53 54	MSG12 .BYT 'STOP-BUBBLE FULL;'	
1541	10C0	53 54	MSG14 .BYT 'STOP-TIME;'	
1542	10D7	43 48	MSG15 .BYT 'CHAN METHOD;'	
1544	10E7		ATEMP ***+1	
1545	10F8		TEMP ***+1	
1547	10F9		KOUNT ***+16	
1548	10F9		ERRPTR ***+1	
1550	10FA	01	STOPTM .BYT 1	;STOP SIMULATION WHEN CLOCK = STOPTM
1551	10FB	00	CLOCK .BYT 0	;MASTER CLOCK OVERFLOW
1553	10FC		COUNTP ***+16	;PERMANENT TIMER COUNTERS
1554	110C	03	N80 .BYT 3	;WHEN # BLOCKS <= N80, START BUBBLE
1555	110D		TOTAL ***+3	;RUNNING BUBBLE SUM
1556	1110	00	FIVITAL .BYT \$00,\$25,\$00	;MAX BUBBLE COUNT - 40
1556	1111	25		
1556	1112	00		
1557	1113		REGSTR	;SYSTEM BUBBLE REGISTERS
1558	1113	00 02	BRADD2 .WOR \$0200	;BLOCK ADDRESS - 1 BLOCK=256 8-BIT WORDS
1559	1115	00 BC	BFADD2 .WOR BUFO	
1560	1117	00	NBKGS .BYT \$00	;NUMBER BLOCKS TRANSFERED - 1
1561	1118	00 02	BRADD .WOR \$0200	;SEE ROCKWELL BUBBLE USER MANUAL FOR INFO
1562	111A	00 BC	BFADD .WOR BUFO	
1564	111C		DMAFLG ***+1	;DMA STARTED FLAG
1565	111D	00 3F	LSTBLK .WOR \$3FC0	;LAST BLOCK IN BUFFER
1566	111F	00 37	BUFFER .WOR \$3700	;BEGINNING OF BUFFER
1568	1121		;THESE USED TO CALCULATE BUBBLE ON/OFF TIMES	
1569	1121		PDTIM ***+2	;CURRENT POWER DOWN TIME
1570	1123		PUTIM ***+2	;CURRENT POWER UP TIME
1571	1125		TIMDF ***+2	;TIME DIFFERENCE
1572	1127		TPUTIM ***+2	;TOTAL POWER UP TIME
1573	1129		TPDTIM ***+2	;TOTAL POWER DOWN TIME
1574	112B		NPWON ***+2	;NUMBER TIMES THRU POWER DOWN LOOP

PHYSIOLOGICAL DATA ACQUISIT.....PAGE 0037

LINE #	LOC	CODE	LINE
1575	112D		NPWRUP *++2 ;NUMBER TIMES THRU POWER UP LOOP
1577	112F	3E	UBKSZ1 .BYT 62 ;UNIT BLOCK SIZE - 2
1578	1130	3F	UBKSIZ .BYT 63 ;UNIT BLOCK SIZE - 1
1579	1131		SAVAA *++2
1580	1133		SAVEA *++1
1581	1134		SAVIX *++1
1582	1135		SAVX *++1
1583	1136		SAVEY *++1
1585	1137		SCNT *++1
1586	1138		TEMPA *++1
1587	1139		BSAVX *++1
1588	113A		C40FLG *++1 ;40 WORD COUNTER FLAG
1589	113B	20 03	CN140 .WOR 800
1590	113D		C40 *++1 ;40 WORD COUNTER
1591	113E		B256NX *++1 ;256 WORD COUNTER
1593	113F	6C FC	DELTIM .WOR \$FC6C ;DELTA TIME = -4000 (MICRO SEC.)
1594	1141		PBFAND *++8 ;PORT BLOCK POINTERS
1595	1149		CPBK *++8 ;CURRENT PORT BLOCK
1596	1151		PBKUPR *++4 ;PORT BLOCK POINTERS
1598	1155	00	PRATE .BYT 0,0,0,0 ;DIGITAL EXPECTED RATE
1598	1156	00	
1598	1157	00	
1598	1158	00	
1599	1159	00	PORTBF .BYT 0,0,0,0 ;PORT BUFFER FILE
1599	115A	00	
1599	115B	00	
1599	115C	00	
1600	115D	00 00	CRATE .DBY 0,0,0,0,0,0,0,0 ;CHANNEL RATES ON INITIALIZATION
1600	115F	00 00	
1600	1161	00 00	
1600	1163	00 00	
1600	1165	00 00	
1600	1167	00 00	
1600	1169	00 00	
1600	116B	00 00	
1601	116D	00 00	METHOD .DBY 0,0,0,0,0,0,0,0 ;CHAN SAMPLING METHOD
1601	116F	00 00	
1601	1171	00 00	
1601	1173	00 00	
1601	1175	00 00	
1601	1177	00 00	
1601	1179	00 00	
1601	117B	00 00	
1602	117D		STURGE *++16
1603	118D		.END

ERRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL	VALUE							
ACIA	C000	ACTIV	0500	ACTIV1	0534	ACTIV2	0540	
ACTIV3	0580	ACTIV4	0504	ACTIV5	0517	ACTIV6	0521	
ACTIV7	052E	ACTIV8	05CC	ACTIV9	0589	ACTIVA	0595	
ACTIVB	05C3	ACURCY	00FE	ADBUSY	0008	ADIFF1	09C5	
ATEMP	10E7	AUXCTL	AFFB	B256NX	113E	B80	0AC2	
BBUSY	000C	BFADD	111A	BFADD2	1115	BKADD	1118	
BKADD2	1113	BLANK	00AF	BLKAL1	0A90	BLKAL2	0AC9	
BLKAL3	0ABB	BLKALC	0AA4	BPWRDN	0751	BPWRUP	079D	
BSAVX	1139	BUBBLE	0AFO	BUBBLE0	0643	BUBBLE1	0A3	
BUBLE2	0B23	BUBLE3	0B36	BUBLE4	0B58	BUBLE5	0BA1	
BUBLE6	0B31	BUBLE7	0B12	BUBLE8	0BAC	BUBNDX	0009	
BUFFER	111F	BUFI	BC00	BUFO	BC00	C40	113D	
C40FLG	113A	CBFADD	005A	CBKPTR	0036	CCUBLK	007A	
CHANLS	0014	CHN1	0231	CHNPRM	0224	CLOCK	10FB	
CNT40	113B	CNTINUS	097E	COUNTP	10FC	COUNTT	004A	
COUNTV	0024	CPBLK	1149	CRA	B801	CRATE	115D	
CRLF	0603	CRLOW	D0F1	CURBFA	000A	DCM	089C	
DCM1	0896	DCM2	089A	DCM3	0885	DCM4	08D2	
DDRA	AFF3	DDR2	AFF2	DELTLM	113F	DIFF	099E	
DIFF1	09AE	DIGIRQ	0448	DMAFLG	111C	DUMP	05CD	
EOC1	04D6	EOC2	04E3	EOC3	04F7	EOCIRQ	04C2	
ER1	0991	ER2	0995	ERRMSG	0983	ERRPTR	10F9	
FTOTAL	1110	GETVAL	05FC	GHEX2	061F	HEX	D306	
FR	AFFE	FR	AFFD	IMSG	0899	INIT	0500	
ITIMR2	043C	ITIRQ	042F	ITIRQ1	043A	KEEP	0818	
KEEP6	0875	KEEP7	088F	KEEP9	0976	KEPNDX	0046	
KOUNTT	10E9	LENT	D350	LINK	0A98	LNKAL1	0BE1	
LNKAL2	0BFB	LNKAL3	0C04	LNKALL	0B89	LOC	0006	
LOOP	064F	LSTBLK	111D	LSTT1M	00AA	LSTVAL	009A	
MAIN	03A1	MAIN1	03B7	MAIN2	03BA	MAIN3	03C0	
MAIN4	03E0	MAIN5	03E2	MAIN6	03B1	MAIN7	0404	
MAIN8	041C	MAIN9	0421	M0EFF	0049	METHOD	116D	
MISSN	0315	MISSN1	031D	MISSN2	036A	MISSN3	036C	
MISSN4	0399	MISSN5	0332	MOK1	0284	MOK2	0298	
MOK3	070C	MOK4	02FA	MOK5	02E4	MOK6	02BB	
MOK7	030B	MONITR	C9F0	MSG1	1000	MSG11	10AF	
MSG12	108C	MSG14	10CD	MSG15	10D7	MSG3	101C	
MSG3A	1022	MSG24	103C	MSG5	1048	MSG6	106F	
MSG7	1082	MSG38	1099	MSG9	10A1	MSGADR	0606	
MSGOUT1	05E0	MSGOUT	05ED	MVC	084C	MVC1	0846	
MVC2	084A	MVC3	0867	N80	110C	NBLKS	1117	
NCHNLS	0006	NEWBLK	0010	NLINK	000D	NPORTS	0007	
NPWRDN	112B	NPWRUP	1129	NUMA	D2CE	OLDBLK	0012	
OUTEX	063F	OUTPUT	D2C1	PA	B800	PAIN	B7AF	
PAOFF	B7AB	PB	B802	PBFADD	1141	PBIN	B7C6	
PB10	B7C8	PBKPTR	1151	PBOUT	B7C2	PCR	AFFC	
PRTTM	1121	POINTR	0034	PORTA	AFF1	PORTB	AFF0	
PORTBF	1159	PORTS	00FA	PRATE	1155	PRTJ	0269	
PRTPRM	025C	PUTIM	1123	RCHER	D18C	RDBHDR	0671	
RDTIME	0806	ROTIME	07EB	READ	D1DC	REDOUT	D2B0	
REGSTR	1113	RESET	0200	RKEP	D139	RUNJT	0680	
RUNIT1	06B8	RUNIT2	06C7	SAVAA	1131	SAVE	09C6	
SAVE1	09F1	SAVE2	09F7	SAVE3	09D6	SAVE4	0A13	
SAVE5	0A37	SAVE6	0A45	SAVEA	1133	SAVEX	1134	
SAVEY	1136	SAVX	1135	SCNT	1137	SDIFF	0048	
SEND	B/DC	SET2	021A	SET3	0221	SETUP	020B	

SYMBOL TABLE

SYMBOL VALUE

SHFTRG	AFFA	SLFTST	05EC	SP1	0614	SPACES	0611
STOPTM	10FA	STORGE	117D	T1CNTR	AFFA	T1HC	AFF5
T1HL	AFF7	T1LC	AFF4	T1LCHW	AFEB	T1LL	AFF6
T2CNTR	AFEC	T2HC	AFF9	T2LCHW	AFAD	T2LL	AFF8
T3CNTR	AFEE	T3LCHW	AEFF	TCNT	048F	TCNT1	0493
TCNT2	049C	TCNT3	04AD	TCNT4	04A6	TCNT5	0496
TCTL13	AEF8	TCTL2	AEF9	TEMP	10E8	TEMPA	1138
THSTIM	00DA	THSVAL	00CA	T1MD1F	1125	TIME1	0480
TIMERS	0672	TLINK	000E	TOHEX	060D	TOTAL	110D
TPDTIM	1129	TPUTIM	1127	UBKSIZ	1130	UBKSZ1	112F
VCM	08F6	VCM1	08F0	VCM2	08F4	VCM3	090D
VCM4	093A	VCM5	0906	VCM6	094E	VCM7	0961
VCM8	0926	VDIFF	0047	VIA1	0474	VIA2	0476
VIA3	047D	VIA4	0472	VIALRQ	044B	WAITB	B73D
WRBHDR	0670	WRHDR	0A63	WRHDR1	0A7D		

END OF ASSEMBLY

Appendix B

DATA ACQUISITION BOARD DESCRIPTION

The objective of this appendix is to describe the Data Acquisition Hardware Board and its interface to the Rockwell System-65 minicomputer. The five functional areas, in the order discussed, are:

- a. Signal/Buffering
- b. Address Decode Circuitry
- c. Analog-to-Digital Data Acquisition
- d. Interval Timer
- e. Digital Data Acquisition

Refer to the wiring diagram (Figure 15) for the following discussions.

Signal/Buffering

Signals from the System-65 are brought on the board via the 86-pin edge connector, labeled as P1 in Figure 17 (Ref 12: Chap 4, 4). Address lines A0 through A15, in addition to read/write (R/W) and Phase 2 (ϕ_2), are buffered through three 8T97 noninverting, single-direction, hex bus drivers (K1, K2 and K3 in Figure 17). The eight bi-directional data lines, D0 through D7, are buffered through two 8226 bi-directional, quad, inverting (for System-65 compatibility), tri-state bus drivers (K4 and K5 in Figure 17). The tri-state control for the data buffers is taken directly from the buffered R/W line, while chip-select comes from the address decoder.

Fig. 17. Data Acquisition Hardware Wiring Diagram

Other signals available from the P1 edge connector are shown in Figure 17. However, only interrupt request (IRQ) and Reset are used at this time. Both IRQ and Reset are active low, nonbuffered, open-collector signals. All IRQ signals on the board are "or" wired, while all Reset signals on the board are "and" wired.

Address Decode Circuitry

The eight most significant bits (A8 through A15) of the buffered address lines, through appropriate inverters, are logically NANDED (7430 eight-input "NAND" gate) together to produce the AFXX signal (see socket J1 in Figure 17). This signal enables the 3-to-8 line decoder (74138) of socket H1. Address line A7 (used as chip enable for H1) and address lines A4 through A6 (used as data inputs to H1), define the outputs of H1 to be AF8X through AFFX. Individual devices use these signals, in addition to the remaining buffered address lines (A0 through A3), to define their unique addresses. The addresses are as follows:

AFF0 through AFFF	VIA
AFE8 through AFEF	INTERVAL TIMER
AFDC through AFDF	PIA

Analog-to-Digital Data Acquisition

This function is obviously the heart of the Data Acquisition Hardware Board. The two LSI, 40-pin chips chosen to implement this function are the ADC0817 analog data acquisition chip and the R6522 Versatile Interface Adaptor (VIA) chip.

The ADC0817 consists of a channel select latch that, through an analog multiplexer, selects one of 16 single-ended analog signals. The selected signal is then passed through a successive approximation analog-to-digital (A/D) converter whose eight-bit output represents a ratio of the full-scale voltage. The chip provides the capability to do signal processing between the multiplexer and the A/D converter input. This allows the addition of a sample-and-hold circuit if necessary.

The R6522 VIA, using peripheral ports A and B, provides the interface between the System-65 and the ADC0817. Each port has two peripheral control lines (CA1, CA2 and CB1, CB2) to do the required handshaking with the ADC0817. The lower four bits of port B are connected to the ADC0817 channel select latch. Port B's lower four bits are programmed as outputs. Control line CB2 is programmed to output a negative-going pulse when port B is written. The pulse on CB2 causes two actions: first, the negative-going edge causes the data on the lower four bits of port B to be latched into the channel select latch and second, the positive-going edge signals the A/D converter to begin conversion of the selected channel.

Port A's data lines are programmed as inputs and are tied directly to the A/D converter outputs. The end-of-conversion (EOC) signal from the A/D converter is wired to port A's control line CA1. EOC causes the data supplied by

the A/D converter to be latched into part A and, if enabled, an IRQ signal to be sent back to the System-65.

The two independent 16-bit timers on the R6522 VIA are wired such that the output of timer 1 is the input to timer 2. This allowed a hardware realization of the Mission Run Clock.

Interval Timer

The M6840 interval timer was used as a simulation tool for timing certain events. It contains three independent 16-bit counters, each capable of being programmed in one of four modes: continuous, single shot, pulse width compare, and frequency compare. Each timer can select as an input either the system ϕ_2 clock or an externally supplied clock/gate combination. Each timer has an individual output which can act as a programmable pulse timer signal or an individual IRQ signal. The chip also has a combined IRQ signal.

Digital Data Acquisition

Digital Data Acquisition is performed by the MC6820 Peripheral Interface Adaptor (PIA). The PIA is capable of interfacing to two peripherals through two eight-bit parallel ports, each with two control lines for handshaking. The PIA interfaces to the System-65 through the eight-bit data bus, three chip-select lines, two register select lines, two IRQ lines, the R/W line, the enable line, and the reset line. The data bus is tri-stated until the chip-select lines are enabled; the direction of data flow is determined

by R/W. The chip-select lines are enabled by the AFDX signal of the address decode and the buffered A3 and A2 lines. This places the VIA address between AFDC and AFDF.

Buffered address lines A0 and A1 are wired to register selects zero and one, respectively, to determine what internal register is to be addressed. The enable line is wired to the buffered $\emptyset 2$ line and is used to clock data into and out of the PIA. The reset line is "and" wired to the System-65. It is used as a power-on reset and as a master reset during system operation.

Each port can be programmed to act as an input or output. This will allow the ports to interface to digital input parameters during a mission run and interface to a magnetic tape or other mass-storage device to dump the collected data after a mission run.

VITA

Kenneth Lee Moore was born on 5 January 1950, in Yale, Oklahoma. He graduated from high school in Choctaw, Oklahoma in 1968. He attended Oklahoma State University, Stillwater, Oklahoma, and received a Bachelor of Science degree in Electrical Engineering. In May 1973, he entered the Air Force and served as Project Engineer, Electronic Warfare Division, Avionics Laboratory, Wright-Patterson AFB, OH, until 1977, when he became Chief, Hardware Evaluation Branch; 485L, TACC AUTO, Electronic Systems Division, Bergstrom AFB, TX. In July 1979, he entered the School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH. He is a member of Eta Kappa Nu.

Permanent address: Rt. 2, Box 31
Choctaw, Oklahoma
73020

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1 REPORT NUMBER	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER	
AFIT/GE/EE/80-6	AD-A100 646		4 TYPE OF REPORT & PERIOD COVERED
AIRCREW INFILIGHT PHYSIOLOGICAL DATA ACQUISITION SYSTEM		MS Thesis	
5 AUTHORITY		6 PERFORMING ORG REPORT NUMBER	
Kenneth L. Moore Capt USAF		7 CONTRACT OR GRANT NUMBER(S)	
8 REFERENCE & IDENTIFICATION NAME AND ADDRESS		9 PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS	
Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433		10 REPORT DATE	
11 CONTROLLING OFFICE NAME AND ADDRESS		12 NUMBER OF PAGES	
School of Aerospace Medicine Brooks AFB, Texas		13 JUNE 1980	
14 MONITORING AGENT NAME & ADDRESS if different from Controlling Office		15 SECURITY CLASS OF THIS REPORT	
		16 Unclassified	
		15a DECLASSIFICATION/DOWNGRADING SCHEDULE	
16 DISTRIBUTION STATEMENT of this Report		17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	
Approved for public release; distribution unlimited.			
18 SUPPLEMENTARY NOTES		19 KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Approved for public release; IAW AFR 190-17 <i>Fredric C. Lynch</i> FREDRIC C. LYNCH, Major, USAF Director of Public Affairs		16 JUN 1981	
Aircr Physiology Monitor Digital Recording Systems Magnetic Bubble Memory Microprocessor Data Acquisition			
20 ANNOTATION (continue on reverse side if necessary and identify by block number)		A design is presented for a self-contained, man-mounted data acquisition system to sample and store 12 environmental and physiological parameters. The design consists of one-megabyte of nonvolatile magnetic bubble memory storage, 16 analog input channels, and four digital input channels, and is controlled by a 6502 microcomputer. Operational software was designed and simulation conducted on a Rockwell System-65 minicomputer augmented with two-megabits of magnetic bubble memory. Two types of data storage methods are	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 - Cont'd

examined - continuous (or pulse code modulation), and three variations of delta pulse code modulation for reduction of data storage.

Nonuniform sampling rates (or sampling jitter) caused by simultaneous sampling requests were investigated, and ways to reduce or eliminate the occurrence of jitter are also presented.