Una funcion $f: I \subset R$ se dice diferenciable en un punto interior $x_0 \in I$, si el limite del cociente diferencial

$$f'(x_0) = \lim_{x \to x_0 x \in I - \{x_0\}} \frac{f(x) - f(x_0)}{x - x_0}$$

existe. El limite es denotado por

$$f'(x_0), \qquad \frac{df}{dx}(x_0), \qquad Df(x_0)$$

Es tambien llamada la derivada de la funcion f en el punto interior $x_0 \in I$. La derivada $f'(x_0)$ de la funcion f en el punto x_0 es interpretado como la pendiente de la tangente de la curva y = f(x) en el punto $(x_0, f(x_0))$. De aqui la ecuacion de la tangente es

$$y = f(x_0) + f'(x_0) \cdot (x - x_0)$$

Supongamos que $f:T\to R$ es diferenciable en cada punto de un subconjunto no vacio $I_0\subset I$, Entonces la derivada puede ser considerada como una funcion

$$f_0'; I_0 \to R$$

Si la derivada $f': I_0 \to R$ es continua, decimos que f es continuamente diferenciable en I_0 , y escribimos $f \in C'(I_0)$.

Diferenciación de una función implícita dada.

Sea $\Omega \subset R^2$ un conjunto abierto no vacio, y sea $F: \Omega \to R$ es una funcion continua. Asumamos que $F(\cdot,y)$ es de clase C^1 en x para cada y fijo para el cual $(x,y) \in \Omega$, y que $F(x,\cdot)$ es de clase C^1 en y para cada x fijo para el cual $(x,y) \in \Omega$.

Decimos que $F \in C^1(\Omega)$, y la derivada de $F(\cdot, y)$ con respecto a x para cualquier y fijo es denotado por

$$\frac{\partial F}{\partial x}$$
, $\frac{\partial F}{\partial x}(x,y)$, or $F'_x(x,y)$

Similarmente introducimos

$$\frac{\partial F}{\partial y}, \qquad , \frac{\partial F}{\partial y}(x,y), \qquad or \qquad F'_y(x,y)$$

y $F_x'(x,y)$ y $F_y'(x,y)$ son llamadas las derivadas parciales de $\mathbf{F}(\mathbf{x},\!\mathbf{y})$ con respecto a x y y.