A Book of Abstract Algebra (2nd Edition)

	Chapter 32, Problem 4EI	Bookmark	Show all steps: ON
--	-------------------------	----------	--------------------

Problem

Throughout this set of questions, let K be a root field over F, let G = Gal(K : F), and let I be any intermediate field. Prove the following:

Let I be a normal extension of F (that is, a root field of some polynomial over F). If **G** is abelian, then Gal(K:I) and Gal(I:F) are abelian. (HINT: Use Theorem 4.)

Step-by-step solution

Step 1 of 2

Consider a root field K over F, let G = Gal(K:F), and let I be any intermediate field which is a normal extension of F. The objective is to prove that if G is abelian, then Gal(K:I) and Gal(I:F) are abelian.

Comment

Step 2 of 2

Since G(K:I) is a normal subgroup of G(K:F) and G(K:F) is abelian, G(K:I) is abelian as a subgroup of an abelian group is abelian.

Also $G(I:F) = \frac{G(K:F)}{G(K:I)}$ and G(K:F) is abelian G(K:I) is abelian as a factor group of an abelian group G(K:I) where multiplication is done by choosing representative G(K:I) and G(K:I) are abelian. This proves that if G(K:I) is abelian G(K:I) and G(K:I) are abelian.

Comment