0.1 H13 数学選択

 $\boxed{\mathbf{N}}$ $(1)t^4-zt^2+1=(t-x)(t+x)(t-\frac{1}{x})(t+\frac{1}{x})$ であるから K(x)/K(z) は正規拡大. $\mathrm{ch}K\neq 2$ より $x\neq \frac{1}{x}$ より t^4-zt^2+1 は分離多項式. よって x が K(z) 上分離的であるから K(z)/K(x) が Galois 拡大.

 $(2)t^2-ty+1$ は K(y) 上の x の最小多項式であり、根は $x,\frac{1}{x}$ である.よって K(y)/K(x) は Galois 拡大であるから $\operatorname{Aut}(K(y)/K(x))=\operatorname{Gal}(K(y)/K(x))$ である.よって位数は 2 である.

 $\operatorname{ch} K \neq 2$ なら K(x)/K(z) は Galois 拡大であった. K(y) が非自明な中間体となるから [K(x):K(z)]=4 である. よって $\operatorname{Aut}(K(x)/K(z))$ の位数は 4 である.

 $\mathrm{ch}K=2$ なら K(x)/K(z) は正規拡大であるが分離拡大でない. したがって $\sigma(x)=\frac{1}{x}$ と id の 2 個が $\mathrm{Aut}(K(x)/K(z))$ の元である. 位数は 2.

 $\boxed{ O}$ $(1)m_{(a,b)}\subsetneq J$ なるイデアル J が存在すると仮定する. $f(x,y)\in J\setminus m_{(a,b)}$ となる $f(x,y)\in \mathbb{C}[x,y]$ をとる. f(x,y)=g(x,y)(x-a)+h(y)(y-b)+r となる $g(x,y)\in \mathbb{C}[x,y], h(y)\in \mathbb{C}[y], r\in \mathbb{C}$ が存在する. このとき $r\in J$ より $J=\mathbb{C}[x,y]$ である. よって $m_{(a,b)}$ は極大イデアルである.

 $(2)\phi(x^3-y^2)=0$ より $\ker\phi\supset (x^3-y^2)$ である。 $f(x,y)\in \ker\psi$ に対して $f(x,y)=g(x,y)(x^3-y^2)+h_1(x)y+h_2(x)$ となる $g(x,y)\in\mathbb{C}[x,y],h_1(x),h_2(x)\in\mathbb{C}[x]$ が存在する。

 $0=f(t^3,t^2)=h_1(t^2)t^3+h_2(t^2)$ であるから $-h_1(t^2)t^3=h_2(t^2)$ である。右辺の t の次数は偶数であるから, $h_1=0$ である。よって $h_2=0$ より $f(x,y)\in (x^3-y^2)$ である。すなわち $\ker\psi=(x^3-y^2)$ である。

 $(3)\psi(m_{(a,b)}) = (t^3 - a, t^2 - b)$ である.

$$b=0$$
 のとき. $(t^3-a,t^2-b)=(t^3-a,t^2)=(a,t^2)=egin{cases} (t^2) & a=0 \ (1) & a\neq 0 \end{cases}$ である.

$$b \neq 0 \text{ のとき. } (t^3-a,t^2-b) = (-a-bt,t^2-b) = (\frac{a}{b}+t,t^2-b) = (\frac{a}{b}+t,\frac{a^2}{b^2}-b) = \begin{cases} (\frac{a}{b}+t) & a^2=b^3\\ (1) & a^2 \neq b^3 \end{cases}$$
 である.