课程编号: MTH17037

北京理工大学 2016-2017 学年第一学期

2015 级概率与数理统计试题(A卷)

班级	学号	姓名				
(本试卷共8页,	八个大题,	满分 100 分;	最后一页空白纸为草稿纸)			

题号	 11	11]	四	五	六	七	八	总分
得分								

附表:

$$F_{0.1}(1,2) = 8.53$$
, $F_{0.9}(1,2) = 0.0202$, $F_{0.9}(2,1) = 0.1173$, $F_{0.1}(2,1) = 49.5$,

$$\sqrt{1.2275} = 1.1079$$
, $\sqrt{75.8} = 8.7063$, $\sqrt{168.6725} = 12.8974$, $\Phi(0.1723) = 0.5684$,

$$\Phi(0.1155) = 0.5460$$
, $t_{0.05}(24) = 1.7109$, $t_{0.10}(24) = 1.3178$, $t_{0.05}(25) = 1.7081$,

$$t_{0.10}(25) = 1.3163$$
, $\chi_{0.1}^2(24) = 33.196$, $\chi_{0.05}^2(24) = 36.415$, $\chi_{0.9}^2(24) = 15.659$,

$$\chi^2_{0.95}(24) = 13.848$$
, $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(1.35) = 0.9115$,

 $\Phi(1.45) = 0.9265$.

一、(12分)

有三个口袋,在甲袋中装有6只白球和4只红球;乙袋中装有12只白球和8只红球;丙袋中装有6只白球和14只红球.随机地选取一个口袋并从中随机地取出一只球.

- (1) 求取出的球是白球的概率;
- (2) 若已知取出的球是白球,求它是来自甲袋的概率.

二、(12分)

1.设离散型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 2 \\ \frac{3}{10}, & 2 \le x < 3 \\ \frac{7}{10}, & 3 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

写出 X 的分布律.

2.设随机变量 $X \sim U(0,1)$. (1) 写出 X 的概率密度函数; (2) 求 $Y = \ln(X^{-2})$ 的概

三、(16分)

设二维连续型随机变量 (X, Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} 3e^{-(x+3y)}, & x > 0, y > 0 \\ 0, &$$
其他

- (1) 求边缘概率密度函数 $f_X(x)$, $f_Y(y)$, 并判断 X 和 Y 是否相互独立(说明理由);
- (2) 求 Z = X + Y的概率密度函数 $f_2(z)$;
- (3) 引入随机变量 $U = \begin{cases} 1, & X \leq Y \\ 0, & X > Y \end{cases}$,求 U 的分布律.

四、(16分)

- 1.设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi(\frac{x-1}{2}), x \in R$, 其中Φ(x)为 标准正态分布函数,求 E(X).
- 2. 已知随机变量 X和 Y都服从 $N(\mu,\sigma^2)$,且其相关系数为 ρ_{XY} $(0<\rho<1)$,令 Z=aX+bY, W=a X-bY, a>0,b>0 为常数。(1)求随机变量 Z 和 W 的相关系数 ρ_{ZW} ;(2) 当 a,b 取何值时,Z和 W不相关?

五、(8分)

射手打靶得 10 分的概率为 0.5, 得 9 分的概率为 0.3, 得 8 分, 7 分和 6 分的概率 分别为 0.1, 0.05 和 0.05, 若此射手进行 100 次独立射击, 至少可以得 930 分的概 率是多少?

六、(8分)

设 $X_1, X_2, ..., X_9$ 为独立同分布的随机变量,均服从 $N(0, \sigma^2)$.

(1) 求
$$\frac{2(X_1+X_2-X_3)^2}{(X_4-X_5+X_6)^2+(X_7+X_8+X_9)^2}$$
的分布.

(2) 求常数
$$c$$
 的值,使得 $P\left(\frac{(X_1 + X_2 - X_3)^2}{(X_4 - X_5 + X_6)^2 + (X_7 + X_8 + X_9)^2} < c\right) = 0.9$.

七、(12分)

设总体 X 的概率密度函数为

$$f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x > 0, \\ 0, & 其他 \end{cases}$$

其中 θ 为未知参数且大于零, $X_1,X_2,...,X_n$ 为来自总体X 的简单随机样本.

- (1) 求参数 θ 的矩估计量,并判断该估计量是否是 θ 的无偏估计;
- (2) 求参数 θ 的最大似然估计量.

八、(16分)

- 1. 设总体 X 服从正态分布 $N(\mu,\sigma^2)$,其中 $\mu \in R,\sigma^2 > 0$ 均未知. 现作独立观察 25 次,经计算得样本均值 \overline{X} 和样本标准差 S 的观测值为 $\overline{x} = 950, s = 100$.
- (1) 在显著性水平 $\alpha = 0.1$ 下,检验 $H_0: \mu = 1000; H_1: \mu \neq 1000$
- (2) 在显著性水平 $\alpha = 0.1$ 下,检验 $H_0: \sigma^2 \le 96^2$; $H_1: \sigma^2 > 96^2$.
- 2. 设总体 X 服从正态分布 $N(\mu,1)$,其中 $\mu \in R$ 未知. X_1, X_2, \cdots, X_9 为来自总体 X 的样本, \bar{X} 为样本均值.考虑假设检验问题 $H_0: \mu = 0$; $H_1: \mu \neq 0$,拒绝域为 $W = \{3\bar{X} \geq 1.96\}$,求检验犯第一类错误的概率和第二类错误的概率(如果得不到具体数值,可用标准正态分布的分布函数 $\Phi(\cdot)$ 表示).