UE4 tools for open world games

Dmitriy Dyomin

Engine programmer at Epic Games

Overview

- Level streaming
- World composition
- World origin rebasing
- Hierarchical LOD
- Navigation mesh

- Each world has at least one level (Persistent Level)
- Designers can manually add sub-levels
- Each sub-level stored in a separate package
- Sub-level is just a group of actors
- All level streaming settings stored in the Persistent Level
- Becomes bottleneck for editing

- Editor loads all sub-levels, regardless of streaming settings
- Basically streaming works only during gameplay
- Levels browser allows basic operations
 - Hiding/showing sub-levels
 - Locking actors
 - Assigning streaming volumes
 - Applying transformation to sub-levels

- Two types of level streaming strategy
- "Always Loaded" type
 - Fully loaded before gameplay begins
 - Mostly used as tool for collaborative map editing
- "Blueprint" type
 - User controlled conditions for loading and unloading
 - Can be used with blueprint scripting or Level Streaming Volumes

Scripted level streaming

Scripted level streaming

- 'Get Streaming Level' blueprint node
- For more flexible control over level streaming

Level instancing

- Multiple copies of the sub-level loaded under different names
- Fortnite uses instancing to create procedural worlds

Level streaming has two main steps

- 1. Loading level package into memory
 - 1. Uses separate thread in latest UE4 versions (4.7, only in cooked build)
 - 2. Can do a blocking load on user request
 - 3. Supports cancelation
- 2. Registering objects in the game world
 - 1. Always happen in the game thread
 - 2. Work distributed over several frames

World composition

- Feature to simplify management of big worlds in UE4
- Auto-discovers all sub-levels in your work folder
- Does not stores any data in the persistent level
- Uses distance streaming by default
- Auto-calculates bounding box for each sub-level
- On demand loads sub-levels in the Editor

Distance based streaming

- Subdivide your world into tiles
- Streams in/out sub-levels based on distance from camera
- Each sub-level can have their own distance settings.
 - Controlled by "layers"
- Exceptions for specific sub-levels as non-distance streaming
 - Those sub-levels can be managed in blueprints

Distance based streaming

Tiled landscape import

- Allows to import huge landscapes into UE4
- Source data (heightmaps, weightmaps) should be subdivided into tiles
- World Machine has support for exporting data in tiled format

16 x 16 km, 1m resolution

Whole sub-level LOD

- World composition supports sub-level based LOD
- Basically based on distance to sub-level we replace it with another simplified version
- Each sub-level can have up to 4 simplified versions
- In most cases one is enough
- Switch between LOD sub-levels happens at single frame and is not noticeable in the distance
- Helps a lot with decreasing memory usage and improving perform ance, used in KiteDemo

Whole sub-level LOD

- World composition support auto-generation of sub-level LOD
- All landscape actors will be exported into static meshes.
 - Landscape material rendered into texture and used for exported static mesh
- All static meshes will be merged together into one mesh proxy
 - All materials will be flattened and merged together as well
 - Requires Simplygon
- In result: a new sub-level with 2 static meshes in it

Even bigger worlds

- What if we want really huge worlds, beyond UE4 limitations?
- UE4 stores object absolute location as float vector (FVector)
- Floating point number range is irregular and gaps (Ulps) between numbers increasing with distance from zero
- After about 17 million floating point has less precision than integer numbers
- Replacing it with doubles will require major changes into engine

Even bigger worlds

1	1 meter	1.19E-07	119 nanometers	virus
10	10 meters	9.54E-07	.954 micrometers	e. coli bacteria
100	100 meters	7.63E-06	7.63 micrometers	red blood cell
1,000	1 kilometer	6.10E-05	61.0 micrometers	human hair width
10,000	10 kilometers	0.000977	.976 millimeters	toenail thickness
100,000	100 kilometers	0.00781	7.81 millimeters	size of an ant

Even bigger worlds

Usually we calculate position of a moving object like:

NewPosition = CurrentPosition + Velocity*DeltaTime

Will not work with small velocity far from origin

World origin rebasing

- UE4 has a feature to rebase current world origin to a new location
- Subtract an offset from zero origin to camera from all actors in the world
- Player camera moves to zero origin
- Performance depends on number of objects in the world
- Shifting couple thousand objects takes few milliseconds
- PhysX SDK has support for it PxScene::shiftOrigin(const PxVec3& shift)
- When enabled, engine automatically rebase origin when player camera 2km far

World origin rebasing downsides

- Unreal dedicated server does not support it. You will need your own server solution to deal with it
- More objects you have in the world, slower it will be, so you might need some gamep lay effect to hide it, like short loading screen
- Materials that use object absolute position will not work correctly, as object absolute position will be changed on rebasing

World origin rebasing

- Still, it's a working feature
- Used in several space games
 - Eve: Valkyrie
 - Other unannounced titles

Level of details (LOD)

- Essential for open world games
- For static meshes replaces original mesh with simplified
- Usually switch happens depending on mesh size on the screen
- Landscape has automatic LOD
- Static meshes support up to 4 simplified versions
 - Requires Simplygon to generate them
 - Can use manually created meshes

Level of details (LOD)

- Does not reduces mesh count in the scene
- Mesh count has significant impact on performance
- Normally only reduces polygon count in the scene

Hierarchical LOD

- With 4.8 we will add new feature Hierarchical LOD
- Aimed at reducing object count in your scene
- Uses clustering algorithm to group objects
- Each group of object than merged into one object
- Done in hierarchical way, so that you can have multiple levels
- Different settings for each level

Navigation mesh

- Modified Recast library to generate navigation mesh from geometry
- Navigation mesh is a regular grid of mesh tiles
- Mesh tile size can be changed, by default 10x10 meters
- Each mesh tile is independent of each other and can be added or removed on the fly
- Each mesh tile is generated on the background thread

Dynamic navigation mesh

- Holds a copy of all navigable geometry
- Can update navigation mesh on the fly
- Not suitable for open worlds, up to gigabytes of required memory
- Used in Fortnite, to support procedural world

Static navigation mesh

- Generate navigation mesh in the Editor and serialize it
- Does not support modification at game runtime
- Lowest memory requirements
- Supports streaming

Semi-dynamic navigation mesh

- Coming in 4.8
- Almost the same as static navigation mesh
- Does not support updates from geometry
- Updates navigation using navigation modifiers
- Has little memory overhead over static navigation mesh
- Supports streaming
- Recommended for open world games

Lazy-dynamic navigation mesh

- Fully dynamic navigation mesh
- Generates mesh tiles only around navigation invokers
- Does not hold copy of all world geometry
- On demand exports world geometry, in background thread
- We used it in KiteDemo for deers

Questions?