Probabilités et variables aléatoires

Université Hassiba Benbouali de Chlef

Références

► A. Monfort, Cours de statistique mathématique. Economica, 1997.

 G. Saporta, Probabilités, Analyse de Données et Statistique. Technip, 2006.

Rappels de probabilité

- Expérience aléatoire : expérience dont le résultat ne peut pas être prévu a priori
- **Espace fondamental** Ω : ensemble des résultats possibles
- \blacktriangleright Événement élémentaire ω : élément de l'espace fondamental
- Événement aléatoire (⊂ Ω) pouvant être VRAI ou FAUX suivant le résultat de l'expérience aléatoire

Liens entre ensembles et probabilités

ω	point de Ω	événement élémentaire
A	sous-ensemble de Ω	événement aléatoire
$\omega \in A$	ω appartient à A	ω réalise A
$A \subset B$	A est contenu dans B	A implique B
$A \cup B$	réunion de A et B	A ou B
$A \cap B$	intersection de A et B	A et B
$ar{A}$	complémentaire de A	contraire de A
Ø	ensemble vide	événement impossible
Ω	ensemble plein	événement certain
$A \cap B = \phi$	A et B disjoints	A et B incompatibles

Rappels de probabilité

- $ightharpoonup \mathcal{F}$ est une tribu sur Ω si c'est un ensemble de parties de Ω non-vide, stable par complémentaire et par union dénombrable
- (Ω, \mathcal{F}) est un espace probabilisable, avec \mathcal{F} est une tribu de parties de Ω

Définition 1.1

Une probabilité est une application $\mathbb{P} \;:\; \mathcal{F} \to [0,1]$ telle que

- $ightharpoonup \mathbb{P}(\Omega) = 1$
- ▶ pour tous A_1, \dots, A_n disjoints $(A_i \cap A_j = \emptyset)$, $\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}\left(A_i\right)$
- \blacktriangleright $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace probabilisé

Propriétés

- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $ightharpoonup \mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$
- $ightharpoonup \mathbb{P}(A) \leq \mathbb{P}(B) \text{ si } A \subset B$

- ▶ pour tout évènement A de Ω , $0 \leq \mathbb{P}(A) \leq 1$

Rappels de probabilité

Probabilité conditionnelle de l'événement A sachant B : $\mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$

▶ Indépendance de 2 événements A et B : $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ $\mathbb{P}(A|B) = \mathbb{P}(A)$

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

Indépendance mutuelle des événements :

$$\mathbb{P}\left(\bigcap_{i} A_{i}\right) = \prod_{i} \mathbb{P}\left(A_{i}\right)$$

Théorème de Bayes pour 2 événements A et B quelconques :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Système complet d'événements

Définition 1.2

Un système complet d'événements, est une partition de Ω en événements $\{A_1,\ldots,A_n\}$ de probabilités strictement positives, $\mathbb{P}\left(A_i\right)>0$ pour $1\leqslant i\leqslant n,$ et incompatibles deux à deux, i.e. avec $A_i\cap A_j=\emptyset$ pour $i\neq j$ et $\sum_{i=1}^n P\left(A_i\right)=1.$

Formule de la probabilité totale

On suppose que les probabilités des événements inclus dans chacun des A_i sont connues et on va donc décomposer un événement quelconque B sur ce système

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^{n} A_i\right) = \bigcup_{i=1}^{n} (A_i \cap B)$$

Formule de la probabilité totale (suite)

On aboutit ainsi à la formule de la probabilité totale :

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(A_i \cap B) = \sum_{i=1}^{n} \mathbb{P}(A_i) \mathbb{P}(B \mid A_i)$$

Variables aléatoires

Définition 2.1

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $(\mathcal{X}, \mathcal{A})$ un espace mesurable. On appelle variable aléatoire de Ω vers \mathcal{X} , toute fonction mesurable X de Ω vers \mathcal{X} .

Cette condition de mesurabilité de X assure que l'image réciproque par X de tout élément B de la tribu $\mathcal A$ possède une probabilité et permet ainsi de définir, sur $(\mathcal X,\mathcal A)$, une mesure de probabilité, notée $\mathbb P_X$, par

$$\mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right) = \mathbb{P}\left(X \in B\right).$$

La mesure \mathbb{P}_X est l'image, par l'application X, de la probabilité \mathbb{P} définie sur (Ω, \mathcal{F}) .

Variables aléatoires

- ▶ Lorsque $(\mathcal{X}, \mathcal{A}) := (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on dit que X est une variable aléatoire réelle.
- ▶ Lorsque, pour un entier $d \ge 1$, $(\mathcal{X}, \mathcal{A}) := (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, on dit que X est un vecteur aléatoire.

Variable aléatoire discrète

- Loi d'une variable aléatoire discrète $X : \mathbb{P}(X = x)$ pour $x \in \mathcal{X}$
- Propriétés :
 - ▶ $0 \le \mathbb{P}(X = x) \le 1$ pour tout $x \in \mathcal{X}$
 - $\sum_{x \in \mathcal{X}} \mathbb{P}(X = x) = 1$
 - Valeur de la probabilité de toute partie de $\mathcal X$: $\mathbb P(X \in A) = \sum \mathbb P(X = x)$

Remarque

Ne pas confondre une variable aléatoire, notée X, avec la valeur prise par cette variable, notée x.

Variable aléatoire continue

- Densité de probabilité d'une variable aléatoire discrète X : $f_X(x)$
- Propriétés :
 - ▶ $f_X(x) \ge 0$ pour tout x

 - $\mathbb{P}(X \in I) = \int_I f_X(x) \, dx \text{ pour tout intervalle } I \text{ de } \mathbb{R}$

Variable aléatoire continue (suite)

Remarque

La description d'une loi continue diffère de celles des lois discrètes puisque pour une variable aléatoire continue X, la probabilité que X prenne une valeur bien précise x est nulle, $\mathbb{P}(X=x)=0$.

Fonction de répartition

ightharpoonup Fonction de répartition d'une variable aléatoire réelle X:

$$\mathbb{F}_X : \mathbb{R} \to [0,1]$$
 définie par $\forall x \in \mathbb{R}, \ \mathbb{F}_X(x) = \mathbb{P}(X \leq x)$

- Propriétés :
 - $ightharpoonup \mathbb{F}_X$ est une fonction croissante, continue à gauche
 - $\lim_{x \to -\infty} \mathbb{F}_X(x) = 0 \text{ et } \lim_{x \to +\infty} \mathbb{F}_X(x) = 1$
 - Pour tous $a, b \in \mathbb{R}$ et a < b, $\mathbb{P}(a < X \le b) = \mathbb{F}_X(b) \mathbb{F}_X(a)$
 - Si X est discrète $\mathbb{F}_X(x) = \sum_i \mathbb{P}(X = x_i)$
 - ▶ Si X est continue $\mathbb{F}_X(x) = \int_{-\infty}^x f_X(t) dt$

Moments des variables aléatoires

Espérance d'une variable aléatoire :

$$\mathbb{E}[X] = \begin{cases} \sum_{x \in \mathcal{X}} x \mathbb{P}(X = x) & \text{si } X \text{ est discrète} \\ \int_{\mathbb{R}} x f_X(x) \ \mathrm{d}x & \text{si } X \text{ est continue} \end{cases}$$

Espérance d'une fonction d'une variable aléatoire :
$$\mathbb{E}[\varphi(X)] = \begin{cases} \sum_{x \in \mathcal{X}} \varphi(x) \mathbb{P}(X = x) & \text{si } X \text{ est discrète} \\ \int_{\mathbb{R}} \varphi(x) f_X(x) \; \mathrm{d}x & \text{si } X \text{ est continue} \end{cases}$$
 Le moment non centré d'ordre $r \in \mathbb{N}^*$, est $m_r(X) = \mathbb{E}[X^r]$.

Remarque

L'espérance peut ne pas exister.

Propriétés

- $ightharpoonup \mathbb{E}[a] = a$
- $\triangleright \mathbb{E}[aX] = a\mathbb{E}[X]$
- $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- $lackbox{}{\mathbb{E}}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ si X et Y sont indépendantes

Variance d'une variable aléatoire

La variance mesure la déviation moyenne autour de la moyenne espérée $\mathbb{E}[X]$, et est définie par

$$\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$

▶ Pour mesurer la dispersion d'une variable aléatoire X, on considère souvent en statistiques l'écart-type, lié à la variance par :

$$\sigma_X = \sqrt{\operatorname{Var}[X]}$$

- Propriétés
 - ightharpoonup Var[X + a] = Var[X]

 - $ightharpoonup \operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$ si X et Y sont indépendantes

Loi Uniforme discrète $\mathcal{U}(n)$

 \blacktriangleright Loi d'une v. a. X prenant les valeurs $1,2,\ldots,n$ avec la même probabilité

$$\mathbb{P}(X=x) = \frac{1}{n} \qquad \forall x \in \mathcal{X} = \{1, 2, \dots, n\}$$

► Moments :

$$\mathbb{E}[X] = \frac{n+1}{2}$$
 $Var[X] = \frac{n^2 - 1}{12}$

► Exemple : Réalisation d'un nombre (entre 1 et 6) après avoir jeté un dé

Loi de Bernoulli $\mathcal{B}(p)$

Loi d'une v. a. X ne pouvant prendre que 2 valeurs 1 et 0 avec les probabilités p et 1-p

$$\mathbb{P}(X=x) = p^x (1-p)^{1-x}$$

► Moments :

$$\mathbb{E}[X] = p$$
 $\operatorname{Var}[X] = p(1-p)$

Exemple : Réalisation de pile (ou face) après avoir jeté une pièce

Loi Binomiale $\mathcal{B}(n,p)$

ightharpoonup Répétition de l'expérience de Bernoulli n fois, X est la somme des résultats des expériences

$$\mathbb{P}(X=x) = C_n^x p^x (1-p)^{n-x} \qquad \forall x \in \mathcal{X} = \{0, 1, \dots, n\}$$

► Moments :

$$\mathbb{E}[X] = np$$
 $\operatorname{Var}[X] = np(1-p)$

ightharpoonup Exemple : Nombre de réalisations de pile après n essais

Loi de Poisson $\mathcal{P}(\lambda)$

$$\mathbb{P}(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \qquad \forall x \in \mathbb{N}$$

► Moments :

$$\mathbb{E}[X] = \lambda \qquad \operatorname{Var}[X] = \lambda$$

- Exemple:
 - Nombre de personnes à la queue du bus après un intervalle de temps
 - Nombre d'appels téléphoniques pendant un intervalle de temps

Loi Uniforme $\mathcal{U}[a,b]$

► Cette loi modélise un phénomène uniforme sur un intervalle donné. Sa densité est alors,

$$f_X(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$$

Fonction de répartition :

$$\mathbb{F}_X(x) = \frac{x-a}{b-a} \text{ pour } x \in [a,b]$$

Moments :

$$\mathbb{E}[X] = \frac{a+b}{2} \qquad \text{Var}[X] = \frac{(b-a)^2}{12}$$

Loi Exponentielle $\mathcal{E}(\lambda)$

Densité

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0,+\infty[}(x)$$

► Fonction de répartition :

$$\mathbb{F}_X(x) = 1 - e^{-\lambda x}$$

► Moments :

$$\mathbb{E}[X] = \frac{1}{\lambda}$$
 $\operatorname{Var}[X] = \frac{1}{\lambda^2}$

- Exemple:
 - ► Temps d'attente à la queue du bus
 - Durée de vie d'un composant électrique

Loi Normale $\mathcal{N}(m, \sigma^2)$

Densité

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-m)^2}$$

Moments:

$$\mathbb{E}[X] = m \quad \operatorname{Var}[X] = \sigma^2$$

- Exemple :
 - Répartition des erreurs de mesure autour de la "vraie valeur"
- Propriétés : Soit $X_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ et $X_2 \sim \mathcal{N}(m_2, \sigma_2^2)$ deux v.a. indépendantes, alors $X_1 + X_2 \sim \mathcal{N}\left(m_1 + m_2, \sigma_1^2 + \sigma_2^2\right)$.

Loi du Khi-deux $\chi^2_{(n)}$

▶ La loi du Khi-deux à n degrés de liberté, $\chi^2_{(n)}$ est la loi de la somme des carrés de n v. a. indépendantes de loi $\mathcal{N}(0,1)$.

$$f_Z(z) = \frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)} z^{\frac{k}{2} - 1} e^{-\frac{z}{2}} \mathbb{1}_{z \ge 0}$$

où $\Gamma(a)=\int_0^{+\infty}\mathrm{e}^{-x}x^{a-1}\;\mathrm{d}x$ est la "fonction gamma". Avec $\Gamma(z+1)=z\Gamma(z)$ et $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}.$

► Moments :

$$\mathbb{E}[Z] = n$$
 $\operatorname{Var}[Z] = 2n$

On l'utilise pour les variances empiriques d'échantillons gaussiens.

Loi de Student $\mathcal{T}(n)$

La loi de Student à n degrés de liberté, $\mathcal{T}(n)$ est la loi du rapport $\frac{X}{\sqrt{Y/n}}$, où les variables aléatoires X et Y sont indépendantes , X de loi $\mathcal{N}(0,1)$, Y de loi $\chi^2_{(n)}$. Elle a pour densité :

$$f_T(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

On l'utilise pour étudier la moyenne empirique d'un échantillon gaussien.

Loi Gamma $\Gamma(a,\lambda)$

La loi gamma de paramètres a>0 et $\lambda>0$, notée $\Gamma(a,\lambda)$ a pour densité :

$$f_X(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} \mathbb{1}_{[0,+\infty[}(x)$$

Moments :

$$\mathbb{E}[X] = \frac{a}{\lambda}$$
 $\operatorname{Var}[X] = \frac{a}{\lambda^2}$

- ▶ Propriétés : Soit $X_1 \sim \Gamma(a,\lambda)$ et $X_2 \sim \Gamma(b,\lambda)$ deux v.a. indépendantes, alors $X_1 + X_2 \sim \Gamma(a+b,\lambda)$.
- Pour a=1, la loi $\Gamma(1,\lambda)$ est la loi exponentielle $\mathcal{E}(1)$.
- Pour n entier, $a=\frac{n}{2}$ et $\lambda=\frac{1}{2}$, la loi $\Gamma\left(\frac{n}{2},\frac{1}{2}\right)$ est loi de Khi-deux à n degrés de liberté.

Loi Béta $\mathcal{B}(a,b)$

▶ La loi béta de paramètres a>0 et b>0, notée $\mathcal{B}(a,b)$ a pour densité :

$$f_X(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \mathbb{1}_{[0,1]}(x)$$

Moments :

$$\mathbb{E}[X] = \frac{a}{a+b} \qquad \text{Var}[X] = \frac{ab}{(a+b)^2(a+b+1)}$$

Indicateurs de forme

 \blacktriangleright On appelle moment centré d'ordre $r\in\mathbb{N}^*$ la quantité, lorsqu'elle existe :

$$\mu_r(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^r \right]$$

- lacktriangle Coefficient d'asymétrie de Fisher (skewness) $\gamma_1=rac{\mu_3}{\sigma^3}$
 - ightharpoonup si $\gamma_1 = 0$, il y a symétrie;
 - ightharpoonup si $\gamma_1 > 0$, il y a étalement à droite;
 - ightharpoonup si $\gamma_1 < 0$, il y a étalement à gauche.
- ► Coefficient d'aplatissement de Fisher (kurtosis) $\gamma_2 = \frac{\mu_4}{\sigma^4} 3$
 - ightharpoonup si $\gamma_2=0$, la distribution est comparable à celle de la loi normale. On dit qu'elle est *mésokurtique*.

Indicateurs de forme (suite)

- ightharpoonup si $\gamma_2 > 0$, la distribution est plus pointue que celle de la loi normale. On dit qu'elle est *leptokurtique*;
- ightharpoonup si $\gamma_2 < 0$, la distribution est plus aplatie que celle de la loinormale. On dit qu'elle est platykurtique.

Changement de variable

Soit X une v.a de densité $f_X>0$ sur $\mathbb R$ et φ une fonction continue et bijective. On cherche à déterminer la loi de probabilité de la v.a. $Y=\varphi(X)$:

$$\mathbb{G}_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(\varphi(X) \le y)$$

La densité de Y peut s'écrire sous la forme :

$$f_Y(y) = \frac{f_X(\varphi^{-1}(y))}{|\varphi'(\varphi^{-1}(y))|}$$

Loi du couple

▶ Si X et Y sont deux v.a. réelles continues, la loi de probabilité du couple (X,Y) est déterminée par sa fonction de répartition $\mathbb{F}_{X,Y}$, définie sur \mathbb{R}^2 par :

$$\mathbb{F}_{X,Y}(x,y) = \mathbb{P}\left(X \le x, Y \le y\right)$$

ightharpoonup Si $\mathbb{F}_{X,Y}$ est deux fois dérivable par rapport aux deux variables, alors la loi de (X,Y) est dite absolument continue, de densité $f_{X,Y}$ définie par :

$$f_{X,Y}(x,y) = \frac{\partial^2 \mathbb{F}_{X,Y}(x,y)}{\partial x \partial y}$$

Loi du couple (suite)

La fonction de répartition se calcule alors par intégration :

$$\mathbb{F}_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, du dv$$

Les fonctions de répartition marginales de X et Y sont définies à partir de la f.d.r. du couple en faisant tendre x, respectivement y, vers plus l'infini :

$$\mathbb{F}_X(x) = \lim_{y \longrightarrow +\infty} \mathbb{F}_{X,Y}(x,y) \text{ et } \mathbb{F}_Y(y) = \lim_{x \longrightarrow +\infty} \mathbb{F}_{X,Y}(x,y)$$

Les densités marginales sont obtenues par :

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$
 et $f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dx$

Loi du couple (suite)

Les lois conditionnelles sont définies par les densités conditionnelles :

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$
 et $f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$

ightharpoonup L'indépendance des v. a. X et Y se définit alors par :

$$f_{X,Y}(x,y) = f_X(x) \times f_Y(y) \quad \forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}$$

On a bien entendu dans ce cas :

$$f_{X|Y=y}(x) = f_X(x)$$
 et $f_{Y|X=x}(y) = f_Y(y)$ $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}$

Moments associés à un couple

▶ Si $\varphi: \mathbb{R}^2 \to \mathbb{R}$ est une application continue, l'espérance de $\varphi(X,Y)$ se calcule pour une loi de densité $f_{X,Y}$ par l'intégrale :

$$\mathbb{E}\left[\varphi(X,Y)\right] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(x,y) f_{X,Y}(x,y) \, dx dy$$

La covariance

On définit la covariance par :

$$Cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X]) \left(Y - \mathbb{E}[Y] \right) \right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- On a les propriétés suivantes :
 - $\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}(X,Y)$
 - $ightharpoonup \operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$
 - $ightharpoonup \operatorname{Cov}(aX + b, cY + d) = ac\operatorname{Cov}(X, Y)$
 - $ightharpoonup \operatorname{Cov}(aX + bY, Z) = a\operatorname{Cov}(X, Z) + b\operatorname{Cov}(Y, Z)$
- On peut définir également le coefficient de corrélation linéaire par :

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Remarque

ightharpoonup Dans le cas particulier où les v.a. X et Y sont indépendantes :

$$\begin{split} \mathbb{E}[XY] &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_X(x) f_Y(y) \, \mathrm{d}x \mathrm{d}y \\ &= \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x \int_{-\infty}^{+\infty} y f_Y(y) \, \mathrm{d}y = \mathbb{E}[X] \mathbb{E}[Y] \end{split}$$

et par conséquent : Cov(X, Y) = 0.

▶ Il faut faire attention à la réciproque, généralement fausse, c'est-à-dire que si deux v.a. ont une covariance nulle elles ne sont pas forcément indépendantes, sauf dans le cas particulier où (X,Y) est un couple gaussien.

Changements de variables

Le couple $(U,V)=\varphi(X,Y)$ admet la densité de probabilité :

$$f_{U,V}(u,v) = f_{X,Y}\left(\varphi^{-1}(u,v)\right) \left| \mathbf{J}_{\varphi^{-1}} \right|$$

On rappelle que $J_{\varphi^{-1}}$ est le jacobien de φ^{-1} , c'est-à-dire le déterminant de la matrice jacobienne. Si $\varphi^{-1}(u,v)=(\psi_1(u,v),\psi_2(u,v))$, alors :

$$\mathbf{J}_{\varphi^{-1}} = \det \left(\begin{array}{cc} \frac{\partial \psi_1(u,v)}{\partial u} & \frac{\partial \psi_1(u,v)}{\partial v} \\ \frac{\partial \psi_2(u,v)}{\partial u} & \frac{\partial \psi_2(u,v)}{\partial v} \end{array} \right)$$

Exemple

Supposons que X et Y suivent la même loi normale $\mathcal{N}(0,1)$ et que X et Y soient indépendantes.

 \blacktriangleright Déterminer la densité du couple (R,Θ) obtenu par le passage en coordonnées polaires.

Loi d'une somme

La loi de la v.a. Z=X+Y avec X et Y indépendantes est donnée par :

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) \, dx = \int_{-\infty}^{+\infty} f_X(z - y) f_Y(y) \, dy$$

et $f_Z(z)$ s'appelle alors le produit de convolution de f_X et f_Y .

Vecteurs aléatoires

Soit
$$X = \left(\begin{array}{c} X_1 \\ \vdots \\ X_d \end{array} \right) \in \mathbb{R}^d$$
 un vecteur aléatoire dont les

composantes sont de carré intégrable.

- Le vecteur moyenne de X est défini par : $\mathbb{E}[X] = \begin{pmatrix} \vdots \\ \vdots \\ \mathbb{E}[X] \end{pmatrix}$
- et sa matrice de covariance par :

$$\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top} \right]$$

$$= \begin{pmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}[X_2] & \cdots & \operatorname{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_d, X_2) & \cdots & \operatorname{Var}[X_d] \end{pmatrix}$$

$$\overset{\text{44/50}}{\longrightarrow}$$

Remarque

Remarque

Pour tout $1 \le i, j \le d$, la covariance entre X_i et X_j est donnée par

$$Cov(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$$
$$= \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

- ▶ Il est facile de voir que l'on a $Cov(X_i, X_i) = Var[X_i]$.
- ▶ De plus, si les variables X_i et X_j sont indépendantes on a $Cov(X_i, X_j) = 0$.
- ► En général, la réciproque est fausse, sauf pour des vecteurs gaussiens.

Théorème 5.1

Si X est un vecteur (colonne) aléatoire de \mathbb{R}^d de vecteur moyenne m et de matrice de covariance Σ Alors si A est une matrice réelle $k \times d$, le vecteur aléatoire AX de \mathbb{R}^k a pour vecteur moyenne Am et pour matrice de covariance $A\Sigma A^{\top}$.

Preuve

C'est une simple conséquence de la linéarité de l'espérance. Pour la moyenne on a :

$$\mathbb{E}[AX] = A\mathbb{E}[X] = A\boldsymbol{m}$$

et pour la matrice de covariance

$$Var[AX] = \mathbb{E}\left[(AX - \mathbb{E}[AX])(AX - \mathbb{E}[AX])^{\top} \right]$$
$$= \mathbb{E}\left[A(X - \mathbb{E}[X]) (A(X - \mathbb{E}[X]))^{\top} \right]$$
$$= A\mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top} \right] A^{\top} = A\mathbf{\Sigma}A^{\top}$$

Densité gaussienne en dimension d

Définition 5.2

Un vecteur aléatoire de \mathbb{R}^d est un vecteur aléatoire gaussien si et seulement si toute combinaison linéaire de ses composantes est une variable aléatoire réelle gaussienne, i.e. :

$$\forall a \in \mathbb{R}^d \qquad a^\top X \sim \mathcal{N}(m, \sigma^2).$$

Soit $X \sim \mathcal{N}_d\left(\boldsymbol{m}, \boldsymbol{\Sigma}\right)$ un vecteur gaussien en dimension d. Si $\boldsymbol{\Sigma}$ est inversible, la densité de X est donc donnée par

$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{m})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{m})\right),$$

Pour tout vecteur gaussien X de \mathbb{R}^d , les trois propriétés suivantes sont équivalentes :

- Les composantes X_1, \ldots, X_d sont mutuellement indépendantes.
- **2** Les composantes X_1, \ldots, X_d sont deux à deux indépendantes.
- **3** La matrice de covariance Σ de X est diagonale.

Fonctions associées aux lois

► Soit *X* une variable aléatoire entière et positive, la fonction génératrice de *X* est la série entière

$$G_X(s) = \mathbb{E}[s^X] = \sum_{k=0}^{\infty} \mathbb{P}(X=k)s^k$$

On a

$$\mathbb{E}[X] = G_X'(1) \text{ et } Var[X] = G_X''(1) + G_X'(1) - G_X'(1)^2.$$

La fonction génératrice des moments d'une variable aléatoire X est la fonction M_X définie par $M_X(t)=\mathbb{E}\left[\mathrm{e}^{tX}\right]$. On a

$$\mathbb{E}\left[X^r\right] = M_X^{(r)}(0) = \left. \frac{\mathrm{d}^r M_X(t)}{\mathrm{d}t^r} \right|_{t=0}.$$

Fonctions associées aux lois (suite)

La fonction caractéristique d'une variable aléatoire X est la fonction ϕ_X définie par $\phi_X(t)=\mathbb{E}\left[\mathrm{e}^{\mathrm{i}tX}\right]$. On a

$$\phi_X^{(r)}(0) = i^r m_k(X).$$