로봇공학 및 지능형 메커니즘 연구실 (지도교수: 정석환)

Robust Policy Design Using a Value Function-Based Disturbance Observer

Edgar Lee(PhD), Tae Min Kim(Undergraduate)

RL + Control Theory(Disturbance Observer)

Research on enhancing the robustness of reinforcement learning policies using Disturbance Observer, a method from control theory

Fig. 1 Comparison of conventional DOB and proposed value function based DOB

Fig. 2 Diagram of proposed value function-based DOB

Training IEN for Robust Policy

- λ -step before action $(a_{t-\lambda})$
- Rewards, observation, action history

Fig. 3 Diagram of training Inverse Environment Network(IEN)

- The proposed DOB is trained via a neural network
- The neural network uses a transformer decoder
- It takes in rewards, observations, and actions, and predict s nominal actions.

Simulation Test

YCB Object – Mustard Bottle

With DOB: success

Without DOB: fail

Other Shapes - Sphere

With DOB: success

Without DOB: fail

With DOB: success

Without DOB: fail

Conclusion

- By training on a single cuboid, a variety of objects were successfully grasped
- Although extreme disturbances (such as extremely large o n small sizes or very heavy masses) were not fully compe nsated, disturbances within a certain range were effective ly mitigated
- This approach is expected to be extended to a broader ra nge of tasks in the future

