Feature-Feature Matching For Object Retrieval in Point Clouds

Michal Staniaszek Supervisor: John Folkesson

Royal Institute of Technology

June 11, 2015

Michal Staniaszek Object Retrieval June 11, 2015 1/49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 2 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 3 / 49

What is object retrieval?

Finding object locations in point clouds

Can use knowledge about objects to

- Determine the type of room one is in
- Find object in order to perform a task with it
- Predict or track object position over time

Many of these useful in household/office applications

Two main approaches

- Feature matching: match low level representations of objects
- Model matching: match entire object or high level representation

Michal Staniaszek Object Retrieval June 11, 2015 4 / 49

This Project

Focus on feature matching, implement system for object retrieval. Working with 3D dataset.

Questions that the project aims to investigate:

- Can naive representations be effective?
- Which representations are best?

Michal Staniaszek Object Retrieval June 11, 2015 5 / 49

System Structure

Michal Staniaszek Object Retrieval June 11, 2015 6 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 7 / 49

Data

Data set consists of:

- Full scans of a room over 1 month
- Scans constructed from intermediate frames
- Labels for some persistent objects in the rooms

Can exploit the fact that dataset has known structure, but also want to generalise.

Michal Staniaszek Object Retrieval June 11, 2015 8 / 4

Downsampling, transformation and trimming

Clouds have approx. 4mil points.

- Need to reduce this for more efficient processing
- Can help reduce noise and slicing effects

Michal Staniaszek Object Retrieval June 11, 2015 9 / 49

Plane Extraction

Apply RANSAC to trimmed clouds multiple times

- Remove walls, desks and other flat surfaces
- These are not likely to be part of objects

Different plane models; with or without normals

 With normals is better, but requires adjustment of the normal radius

Michal Staniaszek Object Retrieval June 11, 2015 11 / 49

Michal Staniaszek Object Retrieval June 11, 2015 12 / 49

Michal Staniaszek Object Retrieval June 11, 2015 13 / 49

Michal Staniaszek Object Retrieval June 11, 2015 14 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 15 / 49

Q: Where does one compute features? **A:** "Interesting" points Interesting points usually defined by:

- Minima/maxima of certain properties
- e.g. curvature, intensity, point covariances

Increasing complexity:

Uniform: Voxel grid

ISS: Scatter matrix

SUSAN: Size of similar regions

SIFT: Difference of Gaussians over scales

Michal Staniaszek Object Retrieval June 11, 2015 16 / 49

Michal Staniaszek Object Retrieval June 11, 2015 17 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 18 / 49

What is a descriptor?

Used to represent regions in image or point cloud

- Compresses information about the region
- Simplifies comparison between regions

Desirable qualities:

- Similar regions produce similar descriptors
- Noise tolerance
- Unique reference frame (scale/rotation invariance in 2D)

Create compact representations of query and target clouds and compare them.

Michal Staniaszek Object Retrieval June 11, 2015 19 / 49

SHOT descriptors

Computation:

- Select central point p
- Find cosine of angle between normal p and neighbours within radius R
- Add to local histogram bins
- Combine local histograms

SHOTCOLOR extends the above by adding the L_1 norm of the colour values to the shape description histogram

Michal Staniaszek Object Retrieval June 11, 2015 20 / 49

PFH descriptors

Computation:

- Look at all pairs of points in radius R
- Define coordinate frame using normal
- Compute 4 features based on angles and distances between the two points
- Increment histogram based on index from feature combination

PFH extensions

FPFH:

- Look at point pairs within radius of each point instead of all pairs
- Concatenate separate feature histograms instead of indexing (reduce redundancy)

PFHRGB:

 Adds 3 features for ratio of colour values between points

Michal Staniaszek Object Retrieval June 11, 2015 22 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 23 / 49

Object Query

Query objects

Query objects are:

- Instances of objects taken from annotation clouds
- Assumed to contain only points on the object

Could use individual frames for input, but

- Would require segmentation to extract object
- Would likely be less accurate, since frame can contain multiple objects and also non-objects

Object Retrieval June 11, 2015 24 / 49

Matching

Find closest K descriptors to each point in the query cloud.

- Distances found using simplified L₂ norm
- Comparing query to target means all query points have a nearest neighbour in target.
- No point finding neighbours for each target point for most target points, point in query likely to be far away

Output of this step is a list of nearest neighbours for each point

Michal Staniaszek Object Retrieval June 11, 2015 25 / 49

Voting

Construct 3D grid and populate cells with values

- Each descriptor has an associated point in 3D space
- Increment cell containing point for each descriptor in nearest neighbour list
- Each cell represented by its centre point

Michal Staniaszek Object Retrieval June 11, 2015 26 / 49

Michal Staniaszek Object Retrieval June 11, 2015 27 / 49

Michal Staniaszek Object Retrieval June 11, 2015 28 / 49

Object Query

Clustering

Use cells with top N number of votes to cluster

- Assume that the top votes are likely to be on matching objects
- Regions with many points in the top votes are likely to be on the object
- Use Euclidean clustering on the top points
- Clusters sorted based on summed score of points they contain
- Centroid of cluster used to extract region from target cloud

Object Retrieval June 11, 2015 29 / 49

Michal Staniaszek Object Retrieval June 11, 2015 30 / 49

Michal Staniaszek Object Retrieval June 11, 2015 31 / 49

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 32 / 49

Experimental Results

Experimental Setup

- Run preprocessing on all clouds using several settings
- Compute descriptor and interest point combinations on these settings
- Run guery on 7 objects using settings of the above, and vary query parameter settings

Object Retrieval 33 / 49 June 11, 2015

Cloud size reduction from preprocessing

S	etting	Downsample	Trim	Trim Orig	Plane	Plane Orig
		0.23±0.01				
	DS15	0.11 ± 0.00	0.76 ± 0.02	0.08 ± 0.00	0.67 ± 0.12	0.06 ± 0.01
	DS2	0.06 ± 0.00	0.74 ± 0.02	0.05 ± 0.00	0.89 ± 0.07	0.04 ± 0.00

Michal Staniaszek Object Retrieval June 11, 2015 34 / 49

Time taken for preprocessing

Setting	Normals	Planes	PerPlane	Total
DEF	16.33±1.11	116.12±13.63	15.10±1.43	133.32±14.13
DT	12.29±1.30	114.30 ± 18.81	13.69 ± 1.65	127.35 ± 19.44
RI500	13.20±1.23	262.81±60.10	34.19 ± 9.00	278.90 ± 60.37

Michal Staniaszek Object Retrieval June 11, 2015 35 / 49

Experimental Results

Interest points extracted vs. method

Michal Staniaszek Object Retrieval June 11, 2015 36 / 49

Interest points computation time vs. method

Michal Staniaszek Object Retrieval June 11, 2015 37 / 49

Descriptors computation time (SHOT)

Object Retrieval June 11, 2015 38 / 49 Preprocessing Interest Points Descriptors Object Query Experimental Results Conclusion

Descriptors computation time (PFH)

Michal Staniaszek Object Retrieval June 11, 2015 39 / 49

Query Objects

Object Retrieval June 11, 2015 40 / 49 Preprocessing Interest Points Descriptors Object Query Experimental Results Conclusion

Object Query retrieval rates

		All		SHOTC,PFHRGB,Uniform,ISS	
Query	Setting	Backpack	Chair	Backpack	Chair
DEF	DEF	14.2±22.7	29.2±24.4	31.1±28.6	39.9±31.2
	DT	18.0±25.6	33.0 ± 24.4	40.5±28.3	50.8 ± 29.2
K10R2	DEF	18.1±22.2	40.4±33.1	30.5±28.0	43.4±34.8
	DT	21.7 ±24.6	49.9 ± 29.1	39.7 ±28.5	56.3 ± 31.5
K10R25	DEF	12.2±16.6	40.2±33.4	20.6±22.1	44.5±34.9
	DT	19.3±22.3	53.3 ±30.1	35.8±26.1	57.2 ±31.4
Actual counts		79	85	79	85

Michal Staniaszek Object Retrieval June 11, 2015 41 / 49

Object query retrieval rates (DT/DEF), descriptor

Object	Descriptor	Тор	Total	Unique	Actual
Backpack	FPFH	2.7±1.5	3.3±2.5	3.3±2.5	80
	PFH	1.0±1.0	2.3 ± 3.2	2.3 ± 3.2	— II —
	PFHRGB	49.3 ±7.2	56.0 ±13.2	56.0 ± 13.2	— II —
	SHOT	2.7±3.8	3.3 ± 4.9	3.3 ± 4.9	— II —
	SHOTCOLOR	9.3±8.6	25.0 ± 33.3	25.0 ± 33.3	— II —
Chair	FPFH	15.0±6.2	21.7±10.1	21.7±10.1	85
	PFH	10.0±9.3	17.8 ± 12.3	17.2 ± 11.6	— II —
	PFHRGB	36.7 ±18.9	60.7 ±39.6	54.0 ±33.8	— II —
	SHOT	8.3±9.1	29.7 ± 19.7	29.7 ± 19.7	— II —
	SHOTCOLOR	25.7±21.1	55.0 ± 37.3	47.7±30.9	— II —

Object Retrieval June 11, 2015 42 / 49

Object query retrieval rates (DT/K10R2), descriptor

Object	Descriptor	Тор	Total	Unique	Actual
Backpack	FPFH	2.7±1.5	13.0±14.8	13.0±14.8	80
	PFH	2.0±2.6	12.3 ± 16.4	12.3 ± 16.4	— II —
	PFHRGB	42.3 ±11.0	53.3 ±19.7	53.3 ±19.7	— II —
	SHOT	1.0±1.7	4.0 ± 6.9	4.0 ± 6.9	— II —
	SHOTCOLOR	6.7±5.5	26.0 ± 32.9	26.0 ± 32.9	— II —
Chair	FPFH	16.0±7.8	43.7±28.4	42.0±27.1	85
	PFH	10.7±10.0	45.0 ± 30.3	43.0 ± 28.6	— II —
	PFHRGB	38.0 ±15.7	70.0 ±41.6	59.0 ±32.0	— II —
	SHOT	6.3±6.5	55.7±43.7	51.7 ± 39.8	— II —
	SHOTCOLOR	25.3±21.7	62.3±45.5	53.7±37.9	- II -

Object Retrieval June 11, 2015 43 / 49

Object query retrieval rates (DT/DEF), interest

Object	Interest	Тор	Total	Unique	Actual
Backpack	ISS	16.8 ±21.6	30.0 ±31.5	30.0 ±31.5	80
	SIFT	1	1	1	— II —
	SUSAN	10.8±17.5	10.8 ± 17.5	10.8 ± 17.5	— II —
	UNIFORM	14.0±26.0	16.2 ± 29.9	16.2 ± 29.9	— II —
Chair	ISS	15.0±18.0	50.0±27.6	46.2±22.6	85
	SIFT	5	5	5	— II —
	SUSAN	10.8±2.9	10.8 ± 2.9	10.8 ± 2.9	— II —
	UNIFORM	32.6 ±16.0	52.6 ±26.1	47.6 ±20.6	— II —

Object Retrieval June 11, 2015 44 / 49 n Preprocessing Interest Points Descriptors Object Query **Experimental Results** Conclusion

Object query retrieval rates (DT/K10R2), interest

Object	Interest	Тор	Total	Unique	Actual
	ISS	15.4 ±21.3	41.0 ±24.1	41.0 ±24.1	80
Backpack	SUSAN	8.2±13.1	8.2 ± 13.1	8.2 ± 13.1	— II —
	UNIFORM	9.2±18.9	16.0 ± 25.3	16.0 ± 25.3	— II —
Chair	ISS	14.2±16.6	77.2±15.5	69.4±8.3	85
	SUSAN	11.4±5.7	11.8 ± 6.0	11.8 ± 6.0	— II —
	UNIFORM	32.2 ±17.7	77.0 ±16.3	68.4 ±11.6	— II —

Michal Staniaszek Object Retrieval June 11, 2015 45 / 49

Preprocessing Interest Points Descriptors Object Query Experimental Results **Conclusion**

Outline

- 1 Introduction
- 2 Preprocessing
- 3 Interest Points
- 4 Descriptors
- **5** Object Query
- 6 Experimental Results
- 7 Conclusion

Michal Staniaszek Object Retrieval June 11, 2015 47 / 49

Conclusion

Conclusion

Successfully implemented a system for object retrieval

- Best results (50% retrieved objects) were with uniform interest point selection and PFHRGB descriptor.
- Some of the objects were not retrievable or had very low retrieval rates (10%). Perhaps due to size, shape or preprocessing issues?
- Might be possible to perform better with tweaks, but wouldn't work as a standalone system

Object Retrieval Michal Staniaszek June 11, 2015 48 / 49 Questions?

Michal Staniaszek Object Retrieval June 11, 2015 49 / 49