

(9) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 44 45 968 A 1

PATENTAMT

- (2) Aktenzeichen:
 P 44 45 968.8

 (2) Anmeldetag:
 22. 12. 94
 - Offenlegungstag: 27. 6.96

(51) Int. Cl.6:

C 07 D 239/42 C 07 D 239/46

C 07 D 403/12 C 07 D 409/12 C 07 D 403/12 C 07 D 409/14 A 61 K 31/505 C 12 N 9/10 // C07D 521/00 (C07D 403/12,239:24, 231:10,249:04,249:08, 215:02,207:30) (C07D 409/12,239:24, 333:04)

E 4445968 /

① Anmelder:

Bayer AG, 51373 Leverkusen, DE

72 Erfinder:

Straub, Alexander, Dr., 42113 Wuppertal, DE; Schmidt, Delf, Dr., 42113 Wuppertal, DE; Fest, Christa, Dr., 22085 Hamburg, DE; Kirsten, Rolf, Dr., 40789 Monheim, DE; Kluth, Joachim, Dr., 40764 Langenfeld, DE; Müller, Klaus-Helmut, Dr., 40593 Düsseldorf, DE; Riebel, Hans-Jochem, Dr., 42113 Wuppertal, DE; Gesing, Ernst-Rudolf, Dr., 40699 Erkrath, DE

- (54) Verwendung von Sulfonylguanazinen
- Sulfonylguanazine haben überraschenderweise eine glycogenphosphorylaseaktivierende Wirkung und können daher zur Behandlung von Stoffwechselerkrankungen sowie zur Modulation des Glukosespiegels verwendet werden.

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von Sulfonylguanazinen, neue Wirkstoffe, ein Verfahren zu ihrer Herstellung, insbesondere ihre Verwendung als Phosphorylase-Aktivatoren.

Aus den Publikationen EP 302 378 A2; EP 414 067 A2; EP 431 270; EP 121 082, EP 529 292 A2; EP 499 096; EP 507 172 und EP 530 616 A1 sind Sulfonylamino-substituierte Arylsulfonyl-amino- und Aralkylsulfonyl-amino-guanidinoazine und Pyrazolylsulfonylguanidinopyrimidine als Herbizide bekannt.

Als Glycogenphosphorylase-Aktivator sind bisher nur der natürliche allosterische Modulator Adenosinmonophosphat (AMP) [vgl. Science 1991, 254, 1367] und davon abgeleitete Nucleoside bekannt.

Es wurde nun gefunden, daß Sulfonylguanazine der allgemeinen Formel (I)

in welcher

10

15

A und D gleich oder verschieden sind und für Wasserstoff oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 15 Kohlenstoffatomen stehen oder für Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder für einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O stehen, an den gegebenenfalls ein Phenylring ankondensiert ist, und wobei alle Ringsysteme, im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Halogen, Trifluormethoxy, Trifluormethyl, Difluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 7 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls halogensubstituiertes Benzoyl oder durch eine Gruppe der Formel —CO—NR⁴R⁵, —NR⁶R⁷, —SO₂—R⁸ oder —SO₂—NR⁹R¹⁰ substituiert sind,

s worin

R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl oder Halogen substituiert sein kann,

R⁸ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Halogen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind.

⁹und R¹⁰ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder Phenyl bedeuten,

R³ für Wasserstoff oder für den Rest der Formel -SO₂-R¹¹ steht, worin

R¹¹ die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist, und deren Salze und Tautomere,

50 überraschenderweise eine neuartige glycogenphosphorylaseaktivierende Wirkung besitzen und somit geeignet sind zur Verwendung bei der Behandlung von Stoffwechselerkrankungen und als Modulatoren des Blutglucosespiegels

Bevorzugt aktivieren sie die Glycogenphosphorylase b (EC 2.4.1.1).

Die erfindungsgemaßen Verbindungen der allgemeinen Formel (I) können in verschiedenen tautomeren Formen existieren. Als bevorzugte tautomere Reste seien die Polyenden Strukturtypen der Formel (X), (Y) und (Z) genannt:

60

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z. B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

25

40

65

Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein, welche eine freie Carboxylgruppe besitzen. Besonders bevorzugt sind z. B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen wie beispielsweise Ethylamin, Di- bzw. Triethylamin, Di- bzw. Triethylamin, Dicyclohexylamin, 35 Dimethylaminoethanol, Arginin, Lysin oder Ethylendiamin.

Heterocyclus steht im allgemeinen für einen 5- bis 6-gliedrigen, substituierten oder unsubstituierten, aromatischen Ring mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O an den gegebenenfalls ein Phenylring ankondensiert sein kann. Bevorzugt sind 1,2,4-Triazolyl, 1,3,4-Thiadiazolyl, Benzimidazolyl, 2,1,3-Benzothiadiazolyl, Benzthiazolyl, Pyridimidyl, Chinolyl, Benzoxazolyl, Pyrazinyl, Pyrazolyl, Pyrryl, Thienyl oder Furyl.

Bevorzugt werden Verbindungen der allgemeinen Formel (I),

in welcher

A und D gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 14 Kohlenstoffatomen stehen oder für Phenyl, Naphthyl, Benzyl, Chinolyl, Thienyl, 1,2,4-Triazolyl, 1,2,3-Triazolyl, Pyrryl oder Pyrazolyl stehen, die im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Fluor, Chlor, Brom, Jod, Trifluormethoxy, Trifluormethyl, Difluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 4 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls halogensubstituiertes Benzoyl oder durch eine Gruppe der Formel $-CO-NR^4R^5$, $-NR^6R^7$, $-SO_2-R^8$ oder $-SO_2-NR^9R^{10}$ substituiert sind,

worin

R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Acyl mit bis zu 4 55 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl, Fluor, Chlor, Brom oder Jod substituiert sein kann,

R⁸ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Benzyl, Phenyl oder Naphthyl bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Fluor, Chlor, 60 Brom, Jod oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, R⁹und R¹⁰ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen oder Phenyl bedeuten,

R³ für Wasserstoff oder für den Rest der Formel -SO₂-R¹¹ steht,

worin R¹¹ die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist, und deren Salze und Tautomere,

bei der Behandlung von Stoffwechselerkrankungen und als Modulatoren des Blutglucosespiegels verwendet.

Besonders bevorzugt werden Verbindungen der allgemeinen Formel (I), in welcher

A und D gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 13 Kohlenstoffatomen stehen oder für Phenyl, Benzyl, Naphthyl, Chinolyl, Thienyl, 1,2,4-Triazolyl, 1,2,3-Triazolyl, Pyrryl oder Pyrazolyl stehen, die im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Fluor, Chlor, Brom, Jod, Trifluormethoxy, Trifluormethyl, Difluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 3 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls chlorsubstituiertes Benzoyl oder durch eine Gruppe der Formel —CO—NR⁴R⁵, —NR⁶R⁷, —SO₂—R⁸ oder —SO₂—NR⁹R¹⁰ substituiert sind,

R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl, Fluor, Chlor, Brom oder Jod substituiert sein kann,

R⁸ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen, Benzyl, Phenyl oder Naphthyl bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Fluor, Chlor, Brom, Jod oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind,

R⁹und R¹⁰ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen oder Phenyl bedeuten,

 R^3 für Wasserstoff oder für den Rest der Formel $-SO_2-R^{11}$ steht, worin

R¹¹ die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist, und deren Salze und Tautomere,

bei der Behandlung von Stoffwechselerkrankungen und als Modulatoren des Blutglucosespiegels verwendet.

Die Verbindungen sind insbesondere geeignet zur Behandlung von Erkrankungen des Kohlenhydratstoffwechsels und von Glycogenspeicherkrankheiten, wie beispielsweise Erbdefekten, die die Phosphorylase oder eines ihrer regulierenden Enzyme ((Phosphatase/Kinase) betreffen und zur Beschleunigung des Glykogenabbaus. Außerdem sind sie Modulatoren des Blutglucosespiegels und somit geeignet zur Behandlung des hypoglykämischen Schocks und zur Leistungs- und Ausdauersteigerung.

Die Erfindung betrifft außerdem neue Stoffe der allgemeinen Formel (I)

in welcher

45

50

55

60

A/D	R ¹	R ²	R ³	
-CH ₃ , -CH ₃	N CH ₃	-CH ₂	Н	5
-CH ₃ , -CH ₃	CO ₂ CH ₃	OCF ₃	Н	10
-CH ₃ , -CH ₃	CO2CH3	Br	н	15
-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃	Н	20
-OCH ₃ , -OCH ₃	CO ₂ CH ₃	OCH3	Н	30
-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CI	Н	
				35

	A/D	R ¹	R ²	R ³
5	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	F	н
10	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	Br	Н
15	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CF ₃	н
20	-OCH ₃ , -OCH ₃	CO ₂ CH ₃		н
25	-СН ₃ , -СН ₃	CO ₂ CH ₃	SO ₂ -N(CH ₃) ₂	H
30	-СН ₃ , -СН ₃	CO ₂ CH ₃	OCF ₃	н
35		CO₂CH₃		н
40	-CH ₃ , -CH ₃			CH ₃
45	-CH ₃ , -CH ₃	F	CH ₂ CO ₂ H	H
50	-CH ₃ , -CH ₃	F		н
55			CO₂H	

A/D	R ¹	R ²	R ³	
-CH ₃ , -OCH ₃	H ₃ C-S	CI	H	5
-CH ₃ , -CH ₃	———so ₂ -NH-OCH ₃	— <u>(</u>)—сн ₃	H	10
-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CI	Н	15 20
-СН ₃ , -Н	CO ₂ CH ₃	CH ₃	H	25
-OCH ₃ , -OCH ₃	-CH ₂ —CO ₂ CH ₃	OCF ₃	H x SO ₂ -NH-OCH ₃	30
-OCH ₃ , -OCH ₃	-CH ₂	————ocf _s	H	35
-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCF ₃	H	40
-OCH ₃ , -OCH ₃		OCHF ₂	н	45 50
-OCH ₃ , -OCH ₃		OCHF ₂	, H	55

	A/D	R ¹	R ²	R ³
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	CO-NH C _g H ₄ -p.F	H
10	-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃ CO-NH-(CH ₂) ₂	Н
15	-CH ₃ , -CH ₃	SO ₂ -C ₆ H ₅		Н
20	-OCH ₃ , -OCH ₃	SO ₂ -C ₆ H ₅	CO2CH3	н
25 30	-CH ₃ , -CH ₃		CO ₂ CH ₃	Н
35	-CH ₃ , -CH ₃	CO ₂ CH ₃	_	H
40	-CH ₃ , -CH ₃	CO ₂ CH ₃	—————Br	-SO ₂ ——Br
45	-CH ₃ , -CH ₃	ĆO₂CH₃ ——		-so ₂ —
50		CO ₂ CH ₃	Br	Br
55	-CH ₃ , -CH ₃	CO ₂ CH ₃		-SO ₂

A/D	R^1	R ²	R ³	
-CH ₃ , -CH ₃	CO ₂ CH ₃		-so ₂ —	5
-CH ₃ , -CH ₃	CO ₂ CH ₃		-O ₂ S	10
-CH ₃ , -CH ₃	CO ₂ CH ₃	FF	-SO ₂ ——F	15 20
-CH ₃ , -CH ₃	CO ₂ CH ₃	F F F	F F H	25
-CH ₃ , -CH ₃		-CI	Н	30
-CH ₃ , -CH ₃	co₂cH₃	-(CH ₂) ₂ -CH ₃	н	35
-CH ₃ , -CH ₃	CO CH	-(CH ₂) ₁₁ -CH ₃	н	45
-CH ₃ , -CH ₃	CO ₂ CH ₃	-	H	50
	CO ₂ CH ₃			55

	A/D	R ¹	R ²	R ³
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	H
15	-CH ₃ , -CH ₃		-CH ₂ —CI	H
20	-CH ₃ , -CH ₃	CO ₂ CH ₃		н
25	-CH ₃ , -CH ₃	CO ₂ CH ₃		н
30	-CH ₃ , -CH ₃		-(CH ₂) ₂ -CH ₃	-SO ₂ -(CH ₂) ₂ CH ₃
35 40	-CH ₃ , -CH ₃	CO ₂ CH ₃		-so ₂
45	-СН ₃ , -СН ₃	CO ₂ CH ₃	-CH ₂ ——C	-so ₂ -cH ₂
50	-CH ₃ , -CH ₃	CO ₂ CH ₃	I	-so ₂ ———I

A/D	\mathbb{R}^1	R ²	R ³	
-CH ₃ , -CH ₃	SO CH	——CI	-so ₂ ——CI	5
-CH ₃ , -CH ₃	CO ₂ CH ₃	~	-SO ₂	10
-CH ₃ , -CH ₃	ĆO₂CH₃ —	CH ³	H	15
	CO ₂ CH ₃			20
-CH ₃ , -CH ₃	CO ₂ CH ₃	-\sqrt{\sq}}}}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \sqrt{\sq}}}}}}}}}}}} \sqite\sqit}} \sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqite\sintititex{\sqrt{\sq}}}}}}}} \end{\sqite\sintinititin}}}}} \sqite\sin	H	25
-СН ₃ , -СН ₃	(T)	ĊH³	-\$O ₂	30
3 , 3	CO ₂ CH ₃		CH ₃	35
н, н			H	40
-CH ₃ , -CH ₃	CO ₂ CH ₃	Br	H	45
	CO ₂ CH ₃	CH ₃ CH ₃		50
-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃	H	55

	A/D	R ¹	R ²	R ³
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃	H
10	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃ CH ₃	-SO ₂ —CH ₃
15	-CH ₃ , -CH ₃	CO ₂ CH ₃		H
25	-CH ₃ , -CH ₃	CO ₂ CH ₃	$-$ CH $_3$	H
30	-CH ₃ , -CH ₃	CH ₃ -O ₂ C	-CH ₂ ————————————————————————————————————	H
35	-CH ₃ , -CH ₃	CH ₃ -O ₂ C	SO ₂ -N(CH ₃) ₂	H
40	-CH ₃ , -CH ₃	S CO ₂ CH ₂		H
45	-OCH ₃ , -CH ₃	CH ₃	—————сн	CH3
50		CO ₂ C ₂ H ₅		

A/D	R^1	R ²	R ³	
-CH ₃ , -CH ₃	CH ₃ N N CO ₂ C ₂ H ₅		H	5
-CH ₃ , -CH ₃	CH ₃ N N		H	10
-CH ₃ , -CH ₃	CÓ ₂ C ₂ H ₅ CH ₃ N N N N	<u> </u>	H	20
-OCH ₃ , -OCH ₃	CO ₂ C ₂ H ₅	ocH₃	H	25
-CH ₃ , -CH ₃	SO ₂ -NH-OCH ₃	cí	н	30 35
-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	н	40

Die Verbindungen der allgemeinen Formeln (I) und (Ia) und deren Tautomere können beispielsweise hergestellt werden, indem man [A] Verbindungen der allgemeinen Formel (II)

45

65

in welcher

E und L den oben angegebenen Bedeutungsumfang von A und D umfassen, R¹² und R¹³ den jeweiligen oben angegebenen Bedeutungsumfang von R¹ und R³ umfassen,

mit Verbindungen der allgemeinen Formel (III)

$$T-SO_2-R^{14}$$
 (III)

in welcher

R¹⁴ den oben angegebenen Bedeutungsumfang von R² umfaßt

und

T für Halogen, vorzugsweise für Chlor steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit eines Hilfsmittels umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

Als Lösemittel für das Verfahren eignen sich im allgemeinen Wasser und/oder Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Essigester, Triethylamin, Pyridin, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton oder Nitromethan. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Bevorzugt ist Dichlormethan.

Als Hilfsmittel eignen sich im allgemeinen anorganische oder organische Basen. Hierzu gehören vorzugsweise Alkalihydroxide wie zum Beispiel Natriumhydroxid oder Kaliumhydroxid, Erdalkalihydroxide wie zum Beispiel Bariumhydroxid, Alkalicarbonate wie Natriumcarbonat, Kaliumcarbonat oder Cäsiumcarbonat, Erdalkalicarbonate wie Calciumcarbonat, oder Alkali- oder Erdalkalialkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kaliumtert.butylat, oder organische Amine (Trialkyl(C₁—C₆)amine) wie Triethylamin, oder Heterocyclen wie 1,4-Diazabicyclo[2.2.2]octan (DABCO), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), Pyridin, Diaminopyridin, Methylpiperidin oder Morpholin. Es ist auch möglich, als Basen Alkalimetalle wie Natrium oder deren Hydride wie Natriumhydrid einzusetzen. Bevorzugt sind Natriumhydrid, Kaliumcarbonat, Triethylamin, Pyridin und Kalium-tert.butylat.

Das erfindungsgemäße Verfahren wird im allgemeinen in einem Temperaturbereich von -100° C bis $+100^{\circ}$ C, bevorzugt von -80° C bis $+50^{\circ}$ C, durchgeführt.

Das erfindungsgemäße Verfahren wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, das Verfahren bei Überdruck oder bei Unterdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).

Im allgemeinen setzt man das Hilfsmittel in einer Menge von 0,05 mol bis 10 mol, bevorzugt von 1 mol bis 2 mol, bezogen auf 1 mol der Verbindung der Formel (II), ein.

Die Verbindungen der allgemeinen Formel (II) und (III) sind größtenteils bekannt oder nach üblichen Methoden herstellbar [vgl. EP 529 292 A2].

Phosphorylase Aktivierungstest

Substanzen:

60

EDTA und Rinderserumalbumin von Fa. Serva, Heidelberg, K₂HPO₄ und MgCl₂ von Fa. Merck, Darmstadt. Glykogen (aus Leber, AMP-frei), Phosphorylase b (aus Kaninchenmuskel), NADP-DiNatriumsalz, Glucose-1,6-Diphosphat, m Glucose-6-Phosphat Dehydrogenase sowie Phosphoglucomutase von Fa. Boehringer, Mannheim

Meßprinzipien:

Phophorylase b wird mit den erfindungsgemäßen Verbindungen vorinkubiert. Anschließend wird mit Glykogen

inkubiert. Das durch die aktivierte Phosphorylase b aus dem Glykogen freigesetzte Glucose 1 Phosphat wird in einer Folgereaktion über Glucose 6 Phosphat mit Glucose 6 Phosphat Dehydrogenase oxidiert und das dabei entstehende NADPH photometrisch erfaßt. Testdurchführung: 2 mg Phosphorylase b-Lyophilisat (12,5% Enzym-Protein, entsprechend 0,25 mg Phosphorylase b) werden in 5 0,05 M Tris-HCl pH 7 0,1 mM EGTA 1.0 mM DTT 10 0.1% Rinderserumalbumin gelöst. Das Glykogensubstrat enthält 15 0,05 M K-Phosphatpuffer pH 6,8 0,12 mM EDTA 2,5 mM MgCl₂ 0,7 mM NADP 5 μM Glucose-1,6-Diphosphat 20 0,35 U Glucose-6-Phosphat Dehydrogenase/ml 0,2 U Phosphoglucomutase/ml 1 mg Glykogen/ml Die zu testenden Substanzen wurden zu 1 mg/ml DMSO gelöst und in DMSO verdünnt. 25 40 μl Phosphorylase b wurden mit 35 μl Tris-HCl-Puffer pH 7,0 und 5 μl der zu testenden Probe 15' bei 37°C vorinkubiert. Anschließend wird zum Ansatz 190 ul des Glykogensubstrats zugesetzt und die Extinktionszunahme bei 340 nm (37°C) gemessen. Die Aktivierung mit 1 mM 5'-AMP im Testansatz wird als 100% Stimulation gesetzt. Als AC50 wird die Konzentration an Testsubstanz im Test bezeichnet, die 50% der mit 1 mM 5'-AMP erzielbaren Aktivierung erreicht. Die Tabelle A zeigt die zur Aktivierung von Phosphorylase b um 50% notwendigen Konzentrationen (EC50) der beispielhaften Verbindungen: 35 40 45 50 55 60

Tabelle A

5	Beispiel-Nr.	EC ₅₀
	1	3,0E-06
	4	5,0E-05
10	12	1,0E-05
	13	1,0E-05
15	14	1,0E-05
15	16	2,0E-05
·	20	4,0E-05
20	37	8,0E-05
:	39	8,0E-05
	45	5,0E-05
25	52	5,0E-05
	56	5,0E-05
30	57	5,0E-05
30	64	5,0E-05
	72	4,0E-05
35	Verbindung A* aus DE 41 29 317	1,0E-05
	Vergleich 5'-AMP	2,0E-05

* = Benzenesulfonic acid, 2-(difluormethoxy)-, [[[(4-bromo-1-methyl-1H-pyrazol-3-yl)sulfonyl]amino][(4,6-dimethyl-2-pyrimidyl)amino]methylene]-hydrazine

Zur vorliegenden Erfindung gehören auch pharmazeutische Zubereitungen, die neben inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfs- und Trägerstoffen eine oder mehrere Verbindungen der allgemeinen Formeln (I) und (Ia) enthalten, oder die aus einem oder mehreren Wirkstoffen der Formeln (I) und (Ia) bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen.

Die Wirkstoffe der Formeln (I) und (Ia) sollen in diesen Zubereitungen in einer Konzentration von 0,1 bis 99,5 Gew.-%, bevorzugt von 0,5 bis 95 Gew.-% der Gesamtmischung vorhanden sein.

Neben den Wirkstoffen der Formeln (I) und (Ia) können die pharmazeutischen Zubereitungen auch andere pharmazeutische Wirkstoffe enthalten.

Die oben aufgeführten pharmazeutischen Zubereitungen können in üblicher Weise nach bekannten Methoden hergestellt werden, beispielsweise mit dem oder den Hilfs- oder Trägerstoffen.

Im allgemeinen hat es sich als vorteilhaft erwiesen, den oder die Wirkstoffe der Formeln (I) und (Ia) in Gesamtmengen von etwa 0,1 µg/kg bis etwa 1 µg/kg, bevorzugt in Gesamtmengen von etwa 1 µg/kg bis 50 µg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung des gewünschten Ergebnisses zu verabreichen.

Es kann aber gegebenenfalls vorteilhaft sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von der Art und dem Körpergewicht des behandelten Objekts, vom individuellen Verhalten gegenüber dem Medikament, der Art und Schwere der Erkrankung, der Art der Zubereitung und Applikation, sowie dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt.

Herstellungsbeispiele

Beispiel 1

2-[[[(4,6-Dimethyl-2-pyrimidinyl)amino]-2,4,5-trichlorphenylsulfonyl-hydrazino-methylen]amino]sulfonyl]ben-zoesäuremethylester

35

40

45

50

55

65

16,2 g (42,8 mmol) 2-[[[](4,6-Dimethyl-2-pyrimidyl)amino]hydrazinomethylen]amino]sulfonyl]benzoesäuremethylester [vgl. Ger. Offen. DE 38 18 040 A1] werden in 400 ml CH₂Cl₂ bei -70° C vorgelegt. Über zwei Tropftrichter gibt man innerhalb 1 h gleiche 5,34 g (47,5 mmol) DABCO in 80 ml Methylenchlorid und 12,0 g (42,8 mmol) 2,4,5-Trichlorbenzolsulfonsäurechlorid in 150 ml Methylenchlorid gelöst hinzu. Dann läßt man auf Raumtemperatur erwärmen, gibt 200 ml Wasser hinzu, trennt die organische Phase ab und trocknet sie mit MgSO₄. Nach Verdampfen des Lösemittels im vacuo wird der Rückstand auf Kieselgel (Mobile Phase Toluol/Toluol-Essigester (4:1)-Gradient) chromatographiert. Nach dem Vorlauf mit der disubstituierten Verbindung erhält man 5,3 g (20% d. Th.) der Titelverbindung.

MS (FAB): 625 (38%), 623 (100%); 621 (90%), 199 (40%), 154 (77%), 149 (62%.), 136 (63%). In Analogie zur Vorschrift des Beispiels 1 werden die in der Tabelle 1 aufgeführten Verbindungen hergestellt:

Tabelle 1

 $\begin{array}{c}
A \\
NH-NHR^3-SO_2-R^2 \\
N-SO_2-R^1
\end{array}$

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
2	-CH₃, -CH₃	N N CH ₃ CO ₂ C ₂ H ₅	-CH ₂ ————————————————————————————————————	Н	136 (Zers.)
3	-CH₃, -CH₃	CO ₂ CH ₃	OCF ₃	н	195 (Zers.)
4	-CH₃, -CH₃	CO ₂ CH ₃	Br	Н	200 (Zers.)
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃	н	212 (Zers.)

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)	_
6	-OCH₃, -OCH₃	CO ₂ CH ₃	OCF ₃	H	162- 164	10
7	-OCH₃, -OCH₃	CO ₂ CH ₃	CI	Н	203- 204	15 20
8	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	F	Н	191- 192	25
9	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	Br	Н	200	30 35
10	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CF ₃	H	210- 212	40 . 45
11	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	SO ₂ -N(CH ₃) ₂	н	192- 194	50

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
5	12	-CH ₃ , -CH ₃	CO ₂ CH ₃	Br	Н	152
15	13	-CH₃, -CH₃	CO ₂ CH ₃	OCF ₃	Н	148
25	14	-CH ₃ , -CH ₃	CO ₂ CH ₃	—————————————————————————————————————	н	
30 35	15	-CH ₃ , -CH ₃	F	CH ₂ CO ₂ H	Н	129- 130
4 0 4 5	16	-CH ₃ , -CH ₃	F	CO ₂ H	Н	140 (Zers.)
50	17	-CH ₃ , -OCH ₃	H ₃ C-S N N CH ₃	CI	H	194
55			İ			

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp.	
18	-CH₃, -CH₃	————so,-NH-OCH,	——————————————————————————————————————	Н	218	5 10
19	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CI	H	195	15
20	-СН ₃ , Н	CO ₂ CH ₃	——————————————————————————————————————	Н		25
21	-OCH ₃ , -OCH ₃	-CH2—CO2CH3	OCF ₃	H x SO ₂ -NH-OCH ₃		30 35
22	-OCH ₃ , -OCH ₃	-CH ₂ CO ₂ CH ₃		Н	160	40 45
23	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCF ₃	Н	180	50 55

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
5	24	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCHF ₂	Н	205
15 .	25	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCHF ₂	Н	208
25	26	-CH ₃ , -CH ₃	CO ₂ CH ₃	CO-NH C ₈ H ₅ PF	Н	100
30 35	27	-CH ₃ , -CH ₃	CO ₂ CH ₃	CO-NIH-(CH ₃) ₂ —CF ₃	н	85 .
40 45	28	-CH ₃ , -CH ₃	SO ₂ -C ₆ H ₅	CO ₂ CH ₃	н	
50	29	-OCH ₃ , -OCH ₃	SO ₂ -C ₆ H ₅	CO ₂ CH ₃	н	214
55						

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)	
30	-CH ₃ , -CH ₃	CO ₂ CH ₃	Br	н	190 (Zers.)	5 10
31	-CH ₃ , -CH ₃	CO ₂ CH ₃		н	210	15
32	-СН ₃ ,	/	/=\	~ /=\ s.	183	20
	-СН₃	CO ₂ CH ₃	Вг	-SO ₂ ——Br	(Zers.)	25 30
33	-CH₃, -CH₃	-√ CO₂CH₃	Br	-so ₂ ————————————————————————————————————	173 (Zers.)	35 40
34	-CH₃, -CH₃	CO ₂ CH ₃		SO ₂	195	4 5
						50

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
10	35	-CH₃, -CH₃	CO ₂ CH ₃	→	-so ₂	165 (Zers.)
15	36	-CH ₃ , -CH ₃	CO ₂ CH ₃		-o _z s	180 (Zers.)
25	37	-СН ₃ , -СН ₃	CO ₂ CH ₃	F F F	-SO ₂ F F	175 (Zers.)
35	38	-CH ₃ , -CH ₃	CO ₂ CH ₃	F F	Н	
45 50	39	-CH ₃ , -CH ₃	CO ₂ CH ₃	-CI	H	

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)	
40	-CH ₃ , -CH ₃	CO ₂ CH ₃	-(CH ₂) ₂ -CH ₃	н	155	10
41	-CH₃, -CH₃	CO ₂ CH ₃	-(CH ₂) ₁₁ -CH ₃	Н	90	15
42	-CH ₃ , -CH ₃	CO ₂ CH ₃	-	н	125	25
43	-CH ₃ , -CH ₃	CO ₂ CH ₃	-CH ₂ —CI	Н	130 (Zers.)	35 40
44	-CH₃, -CH₃	CO ₂ CH ₃	<u></u>	Н	193 (Zers.)	45
45 	-CH ₃ , -CH ₃	CO ₂ CH ₃		Н	213	50

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
5 10	46	-CH₃, -CH₃	CO ₂ CH ₃	-(CH ₂) ₂ -CH ₃	-SO ₂ -(CH ₂) ₂ CH ₃	147
15	47	-CH₃, -CH₃	CO ₂ CH ₃	→	-so ₂ —	178
25 30	48	-CH ₃ , -CH ₃	CO ₂ CH ₃	-CH ₂ —CI	-so ₂ ·cH ₂ —CI	177 (Zers.)
35	49	-CH ₃ , -CH ₃	CO ₂ CH ₃		-so ₂ ——_i	183 (Zers.)
45	50	-CH ₃ , -CH ₃	-√ CO₂CH₃	—————cı	-SO ₂ —CI	190 (Zers.)
50	51	-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	-SO ₂ ——CI	215 (Zers.)

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp.	
52	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃	Н		10
53	-CH ₃ ,		,cı	н	96	15
	-CH₃	CO ₂ CH ₃	-CI			20
						25
54	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH3	SO ₂	164 (Zers.)	30
		30251 13		CH ₃		35
						40
55	н, н	CO ₂ CH ₃	Br	Н		45
-						50

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
5	56	-CH ₃ , -CH ₃	—	—	Н	155
10			ĆO₂CH₃	ĆH₃ ĊH₃		
15	57	-CH₃, -CH₃		-Ci	Н	165
20			CO ₂ CH ₃	CF ₃		
25	58	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃	Н	185
30						
35	59	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃ CH ₃	-SO ₂ ————————————————————————————————————	183
40	60	-CH ₃ , -CH ₃			Н	
45			CO ₂ CH ₃	F		
50	61	-CH ₃ , -CH ₃	CO2CH3	— С Н ₃	н	
55						

DE 44 45 968 A1

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)	
62	-CH₃, -CH₃	H ₃ CO ₂ C S	-CH ₂ ————————————————————————————————————	Н		10
63	-CH₃, -CH₃	H ₃ CO ₂ C S	SO ₂ -N(CH ₃) ₂	н		15 20
64	-CH₃, -CH₃	S CO ₂ CH ₃	-\sqrt{1}	Н		25 30
65	-OCH ₃ , -CH ₃	CH ₃ N N CO ₂ C ₂ H ₅	—CH ₃	-so ₂ ————————————————————————————————————		35 40
66	-СН ₃ , -СН ₃	CH ₃ N N CO ₂ C ₂ H ₅	OCHF ₂	H	135	. 4 5
			:			

DE 44 45 968 A1

	Bsp Nr.	A/D	R ¹	R ²	R ³	Fp.
5	67	-CH ₃ , -CH ₃	CH ₃		н	168
10		;	CO ₂ C ₂ H ₅	CF₃		
15	68	CU	CH		Н	166
20	08	-CH ₃ , -CH ₃	CH ₃		н	166
			CO ₂ C ₂ H ₅	ÓCH₃		
25						
30	69	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	CI	Н	198
35						
40	70	-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	H	178 (Zers.)
45						
50	71	-CH ₃ , -CH ₃	CO ₂ CH ₃		Н	
	. ".					

Bsp Nr.	A/D	R ¹	R ²	R ³	Fp. (°C)
72	-CH₃, -CH₃	CO ₂ CH ₃		Н	176

10

15

20

55

60

Patentansprüche

1. Verwendung von Sulfonylguanazinen der allgemeinen Formel (I)

in welcher

A und D gleich oder verschieden sind und für Wasserstoff oder geradkettiges oder verzweigtes Alkyl oder

A und D gleich oder verschieden sind und für Wasserstoff oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 15 Kohlenstoffatomen stehen oder für Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder für einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O stehen, an den gegebenenfalls ein Phenylring ankondensiert ist, und wobei alle Ringsysteme, im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Halogen, Trifluormethoxy, Trifluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 7 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 8 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls halogensubstituiertes Benzoyl oder durch eine Gruppe der Formel —CO—NR⁴R⁵, —NR⁶R⁷, —SO₂—R⁸ oder —SO₂—NR⁹R¹⁰ substituiert sind,

R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl oder Halogen substituiert sein kann,

R⁸ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Halogen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind,

R⁹und R¹⁰ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder Phenyl bedeuten,

R³ für Wasserstoff oder für den Rest der Formel —SO₂—R¹¹ steht, worin

R¹¹ die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist, und deren Salze und Tautomere, zur Herstellung von Arzneimitteln zur Behandlung von Stoffwechseler-krankungen.

2. Verwendung von Sulfonylguanazinen der Formel nach Anspruch 1, in welcher

A und D gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 14 Kohlenstoffatomen stehen oder für Phenyl, Naphthyl, Benzyl, Chinolyl, Thienyl, 1,2,4-Triazolyl, 1,2,3-Triazolyl, Pyrryl oder Pyrazolyl stehen, die im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Fluor, Chlor, Brom, Iod, Trifluormethoxy, Trifluormethyl, Difluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkyl

mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 4 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls halogensubstituiertes Benzoyl oder durch eine Gruppe der Formel —CO-NR⁴R⁵, —NR⁶R⁷, —SO₂—R⁸ oder —SO₂—NR⁹R¹⁰ substituiert sind,

worin

5

15

20

R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl, Fluor, Chlor, Brom oder Jod substituiert sein kann,

10 R8 geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Benzyl, Phenyl oder Naphthyl bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Fluor, Chlor, Brom, Jod oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind.

R⁹und R¹⁰ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen oder Phenyl bedeuten,

R³ für Wasserstoff oder für den Rest der Formel -SO₂-R¹¹ steht,

worin

R11 die oben angegebene Bedeutung von R8 hat und mit dieser gleich oder verschieden ist,

und deren Salze und Tautomere, zur Herstellung von Arzneimitteln zur Behandlung von Stoffwechselerkrankungen.

3. Verwendung von Sulfonylguanazinen der Formel nach Anspruch 1, in welcher

A und D gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen,

R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 13 Kohlenstoffatomen stehen oder für Phenyl, Benzyl, Naphthyl, Chinolyl, Thienyl, 1,2,4-Triazolyl, 1,2,3-Triazolyl, Pyrryl oder Pyrazolyl stehen, die im Fall der Heterocyclen auch über die Stickstoffunktion, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Fluor, Chlor, Brom, Jod, Trifluormethoxy, Trifluormethyl, Difluormethoxy, Phenyl, durch geradkettiges oder verzweigtes Alkoxy, Alkylthio oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy, Carboxy, oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits durch Carboxy oder durch geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 3 Kohlenstoffatomen substituiert sein kann, oder durch gegebenenfalls chlorsubstituiertes Benzoyl oder durch eine Gruppe der Formel —CO—NR⁴R⁵, —NR⁶R⁷, —SO₂—R⁸ oder —SO₂—NR⁹R¹⁰ substituiert sind,

worin

- R⁴, R⁵, R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Trifluormethyl, Fluor, Chlor, Brom oder Jod substituiert sein kann,
- R⁸ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen, Benzyl, Phenyl oder Naphthyl bedeutet, die gegebenenfalls ihrerseits bis zu 5-fach gleich oder verschieden durch Hydroxy, Phenyl, Fluor, Chlor, Brom, Jod oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind.

 R^9 und R^{10} gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen oder Phenyl bedeuten,

R³ für Wasserstoff oder für den Rest der Formel – SO₂ – R¹¹ steht,

R¹¹ die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist, und deren Salze und Tautomere, zur Herstellung von Arzneimitteln zur Behandlung von Stoffwechseler-krankungen.

4. Verwendung nach Anspruch 1 bis 3 zur Herstellung von Arzneimitteln zur Modulation des Blutglucosespiegels.

5. Sulfonylguanazine der allgemeinen Formel (I)

in welcher

65

60

50

A/D	R ¹	R ²	R ³	
-CH ₃ , -CH ₃	N_CH ₃	-CH ₂	H	5
-CH ₃ , -CH ₃	CO ₂ CH ₃	OCF ₃	H	10
-СН ₃ , -СН ₃	CO ₂ CH ₃	Br	Н	15
-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃	Н	20

	A/D	R ¹	R ²	R ³
5	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	OCH3	н
10	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CI CI	Н
15	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	F	H .
20	-OCH ₃ , -OCH ₃	CO ₂ CH ₃	Br	Н
25	-OCH ₃ , -OCH ₃	CO₂CH₃ S	CF ₃	H
30	-OCH₃, -OCH₃	CO ₂ CH ₃		н
35	-CH ₃ , -CH ₃	CO ₂ CH ₃	SO ₂ -N(CH ₃) ₂ Br	H
40	-CH ₃ , -CH ₃	CO2CH3	OCF ₃	Н
45	-CH ₃ , -CH ₃	CO ₂ CH ₃	—(н
50			. • \=/ • •	

A/D	R ¹	R ²	R ³	
-CH ₃ , -CH ₃	F	CH ₂ CO ₂ H	Н	5
-CH ₃ , -CH ₃	F	CO ₂ H	Н	10
-CH ₃ , -OCH ₃	H ₃ C-S	-	H	15
-CH ₃ , -CH ₃	ĊН ₃ ————so _z -nh-осн _s	——СH ₃	н	20
-OCH ₃ , -OCH ₃	CO ₂ CH ₃	CI	H	25 30
-СН ₃ , -Н	CO ₂ CH ₃	——СH ₃	н	35
-OCH ₃ , -OCH ₃	-CH ₂ -CO ₂ CH ₃	OCF3	H x SO ₂ -NH-OCH ₃	40
-OCH ₃ , -OCH ₃	-CH ₂	—CD—ocf ₃	H	4 5
-OCH ₃ , -OCH ₃	<u> </u>	OCF ₃	H	50
	SO ₂ -NH-OCH ₃	\ <u> </u>		55

	A/D	R ¹	R ²	R ³
5	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCHF ₂	Н
10	-OCH ₃ , -OCH ₃	SO ₂ -NH-OCH ₃	OCHF ₂	Н
15	-CH ₃ , -CH ₃	CO ₂ CH ₃	CO-NH C _k H ₄ -p-F	H .
20	-CH ₃ , -CH ₃	CO ₂ CH ₃	CF ₃	Н
30	-CH ₃ , -CH ₃	SO ₂ -C ₆ H ₅	CO ₂ CH ₃	н .
35	-OCH ₃ , -OCH ₃	SO ₂ -C ₆ H ₅		Н
40	-CH ₃ , -CH ₃	CO ₂ CH ₃	CO ₂ CH ₃	H
45	-CH ₃ , -CH ₃			Н
50	-CH ₃ , -CH ₃	CO ₂ CH ₃	Br ·	-SO ₂ —Br

A/D	\mathbb{R}^1	R ²	R ³		
-CH ₃ , -CH ₃	CO ₂ CH ₃	Br	-so ₂		5
-CH ₃ , -CH ₃	CO ₂ CH ₃		-SO ₂		10
-CH₃, -CH₃	CO ₂ CH ₃	$\overline{}$	-so ₂		15 20
-CH ₃ , -CH ₃	CO ₂ CH ₃		-0 ₂ s		25
-CH ₃ , -CH ₃	CO ₂ CH ₃	FFF	-SO ₂	F F	30
-CH ₃ , -CH ₃	CO ₂ CH ₃	F F	н	•	35 40
-CH ₃ , -CH ₃	CO ₂ CH ₃	F F	н		45
-CH ₃ , -CH ₃	CO ₂ CH ₃	-(CH ₂) ₂ -CH ₃	H		50

	A/D	R ¹	R ²	R ³
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	-(CH ₂) ₁₁ -CH ₃	н
10	-CH ₃ , -CH ₃	CO ₂ CH ₃		H
15	-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	H
20	-CH ₃ , -CH ₃	—	-CH ₂	н
30	-СН ₃ , -СН ₃	CO2CH3	1	H
35	-CH ₃ , -CH ₃	cóo ₂ cH ₃		н
40	-СН ₃ , -СН ₃	cco²cн²	-(CH ₂) ₂ -CH ₃	-SO ₂ -(CH ₂) ₂ CH ₃
45	-CH ₃ , -CH ₃	ĆO₂CH₃		-so ₂ —
50	•	CO ₂ CH ₃	,	• •

A/D	\mathbb{R}^1	.R ²	R ³	
-CH₃, -CH₃	CO ₂ CH ₃	-CH ₂	-SO ₂ -CH ₂ —CI	5
-CH ₃ , -CH ₃	CO ₂ CH ₃	l	-SO ₂ ——I	10
-CH ₃ , -CH ₃		cı	-so ₂ ——CI	15
-CH ₃ , -CH ₃	ĆO₂CH₃		-so ₂ —	20 25
-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃	CI H	30
-CH ₃ , -CH ₃	CO ₂ CH ₃	Cal	H	35
-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃	SO ₂	40 45
н, н			CH ₃	50
	CO₂CH₃	Br		55

	A/D	R ¹	R ²	R ³
5	-CH ₃ , -CH ₃	CO ₂ CH ₃	CH ₃ CH ₃	Н
10	-CH ₃ , -CH ₃		ci	H
15	-CH ₃ , -CH ₃	ĆO₂CH₃	CF₃ ————————————————————————————————————	Н
20	-CH ₃ , -CH ₃	ĆO₂CH₃ ——	CH ₃ CH ₃	-SO ₂ —CH ₃ CH ₃
25	-СН ₃ , -СН ₃	CO ₂ CH ₃	<u> </u>	н/
30	-CH ₃ , -CH ₃	S CO2CH3	FCH ₃	н
35	-СН ₃ , -СН ₃	CH ₃ -O ₂ C S	-CH ₂	н
40	-СН ₃ , -СН ₃	CH ₃ -O ₂ C \$	CO ₂ CH ₃	н
45	-CH ₃ , -CH ₃		SO ₂ -N(CH ₃) ₂	. н
50 .) OO20N3	CI	•

A/D	R ¹	R ²	R ³	
-OCH ₃ , -CH ₃	CH3	——————————————————————————————————————	-SO ₂ —CH ₃	5
-СН ₃ , -СН ₃	CO ₂ C ₂ H ₅ CH ₃ N		Н	10
CH -CH	CO ₂ C ₂ H ₅ CH ₃	OCHF₂	н	15
-CH ₃ , -CH ₃	N N			20
-CH ₃ , -CH ₃	CO ₂ C ₂ H ₅ CH ₃ N N		H	25
-OCH ₃ , -OCH ₃	CO ₂ C ₂ H ₅	óCH₃	Н	30
	SO ₂ -NH-OCH ₃	CI		35
-CH ₃ , -CH ₃	CO ₂ CH ₃	CI	H 	40
-CH ₃ , -CH ₃			H	45
	CO ₂ CH ₃			

6. Sulfonylguanazine nach Anspruch 5 zur therapeutischen Anwendung.7. Verfahren zur Herstellung von Guanazinen nach Anspruch 5, dadurch gekennzeichnet, daß man

[A] Verbindungen der allgemeinen Formel (II)

60 65

50

55

in welcher

44 45 968 A₁ DE

E und L den oben angegebenen Bedeutungsumfang von A und D umfassen, R¹² und R¹³ den jeweiligen oben angegebenen Bedeutungsumfang von R¹ und R³ umfassen, mit Verbindungen der allgemeinen Formel (III)

T-SO2-R14 5 (III)

in welcher

R¹⁴ den oben angegebenen Bedeutungsumfang von R² umfaßt

T für Halogen, vorzugsweise für Chlor steht, 10

in inerten Lösemitteln, gegebenenfalls in Anwesenheit eines Hilfsmittels umsetzt.

8. Arzneimittel enthaltend Sulfonylguanazine nach Anspruch 5.

9. Verfahren zur Herstellung von Arzneimitteln nach Anspruch 8, dadurch gekennzeichnet, daß man die Sulfonylguanazine gegebenenfalls mit geeigneten Hilfs- und Trägerstoffen in eine geeignete Applikationsform überführt.

15

20

25

30

35

40

45

50

55

60

65

10. Verwendung von Sulfonylguanazinen nach Anspruch 5 zur Herstellung von Arzneimitteln.