Fermā Lielā teorēma polinomiem

Emīls Kalugins

2020. gada 15. februārī

Fermā Lielā teorēma

Neeksistē naturāli skaitļi a,b,c, kas apmierinātu vienādību

$$a^n + b^n = c^n,$$

ja n > 2 ir naturāls skaitlis.

Aritmētikas pamatteorēma

Katrs naturāls skaitlis n>1 ir viennozīmīgi izsakāms kā pirmskaitļu reizinājums formā

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m},$$

kur p_i ir pirmskaitļi un $\alpha_i \in \mathbb{N}$.

$$120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 2^3 \cdot 3^1 \cdot 5^1$$

Dalīšana ar atlikumu

Katram $a\in\mathbb{Z}$ un katram $b\in\mathbb{N}$ eksistē viens skaitļu pāris $q,r\in\mathbb{Z}$, lai

$$a = b \cdot q + r.$$

Turklāt $0 \le r < b$.

Piemērs

Dalot 33 ar 6, iegūstam

$$33 = 6 \cdot 5 + 3$$
.

levērojam, ka $0 \le 3 < 6$.

Lielākais kopīgais dalītājs

Divu veselu skaitļu a,b lielākais kopīgais dalītājs $\mathrm{LKD}\,(a,b)$ (vai īsāk — (a,b)) ir lielākais naturālais skaitlis, kas dala gan a, gan b.

$$LKD(54, 27) = (54, 27) = 6$$

Ko darīt, ja gribam atrast lielāko kopīgo dalītāju lieliem skaitļiem, piemēram, (1092,595)? Šādā situācijā var noderēt Eiklīda algoritms.

Eiklīda algoritms

Lai atrastu divu skaitļu $a \leq b$ lielāko kopīgo dalītāju, vispirms a izdala nepilni ar b un tad katrā nākamajā solī iepriekšējās darbības dalītāju nepilni dala ar iegūto atlikumu. Lielākais kopīgais dalītājs ir pēdējais iegūtais nenulles atlikums.

Piemērs

Atradīsim (1092, 595), izmantojot Eiklīda algoritmu.

$$1092 = 1 \cdot 595 + 497$$
$$595 = 1 \cdot 497 + 98$$
$$497 = 5 \cdot 98 + 7$$
$$98 = 14 \cdot 7 + 0$$

Tātad (1092, 595) = 7.

Uzdevums

Atrast (163231, 135749).

Polinoma izteiksmes jēdziens

Pieņemsim, ka \mathbb{K} ir skaitļu kopa (varam iztēloties, ka $\mathbb{K}=\mathbb{Z},\mathbb{Q},\mathbb{R},$ vai \mathbb{C}) un x ir patvaļīgs simbols. Katru izteiksmi formā

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

sauc par polinomu mainīgajā x ar koeficientiem no \mathbb{K} , ja $a_i \in \mathbb{K}, \ i \in \{1, 2, \dots, n\}.$

- $4x^3 + 13x 1$
- x
- 57

Polinoma pakāpe

Par polinoma $a(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ pakāpi sauc lielāko n, kam $a_n\neq 0$, un apzīmē to ar $\deg a(x)=n$ (no vārda degree).

- $4x^3 + 13x 1$
- x
- 57

Polinomiem ir līdzīgs jēdziens "pirmskaitļiem".

Nereducējami polinomi

Polinomu a(x) sauc par $nereduc\bar{e}jamu$, ja neeksistē tādi polinomi b(x) un c(x) ar pozitīvām pakāpēm $(\deg b(x)>0)$ un $\deg c(x)>0)$, lai

$$a(x) = b(x) \cdot c(x).$$

- Polinoms x-13 ir nereducējams;
- Polinoms 57 ir nereducējams;
- Polinoms $x^2 + 1$ ir nereducējams, ja skatāmies uz to kā uz reālu skaitļu polinomu, bet kompleksos skaitļos $x^2 + 1 = (x+i)(x-i)$.

Uzdevums

Sadalīt sekojošos polinomus pirmreizinātājos (nereducējamos polinomos) attiecībā pret \mathbb{Q}, \mathbb{R} un \mathbb{C} .

- $x^2 3x + 2$
- $x^2 + 4$
- $x^4 4$

Līdzīgi kā veseslus skaitļus arī polinomus var dalīt ar atlikumu.

Polinomu dalīšana

Ja a(x) un b(x) ir polinomi un turklāt $b(x) \neq 0$, tad eksistē polinomi q(x) un r(x), lai

$$a(x) = b(x)q(x) + r(x)$$

un

$$\deg r(x) < \deg b(x)$$
 vai $r(x) = 0$.

Piemērs

 $\mathsf{Ja}\ a(x) = x^2 \ \mathsf{un}\ b(x) = x-2, \ \mathsf{tad}$

$$\underbrace{x^2}_{a(x)} = \underbrace{(x-2)}_{b(x)} \underbrace{(x+2)}_{q(x)} + \underbrace{4}_{r(x)}.$$

Uzdevumi

- Izdalīt $x^2 + 2x 7$ ar x 2;
- Izdalīt $x^2 + 7x + 6$ ar $x^2 5x 6$:
- Izdalīt $x^3 + x^2 + x + 1$ ar $x^2 + 3x + 2$.

Arī polinomiem mēs varam meklēt lielāko kopīgo dalītāju, izmantojot Eiklīda algoritmu.

Piemērs

Ja
$$a(x)=x^2+7x+6$$
 un $b(x)=x^2-5x-6$, at rast (a,b) .
$$x^2+7x+6=(x^2-5x-6)+12(x+1)$$

$$x^2-5x-6=(x+1)(x-6)+0$$

 $\mbox{T\bar{a}}$ kā x+1 ir pēdējais nenulles atlikums, tad (a,b)=x+1. Tik tiešām

$$x^{2} + 7x + 6 = (x+1)(x+6)$$

 $x^{2} - 5x - 6 = (x+1)(x-6)$

Uzdevums

Atrast (a,b), ja

•
$$a(x) = x^3 - 5x^2 + 7x - 3$$
 un $b(x) = 3x^2 - 10x + 7$;

•
$$a(x) = x^6 - 16$$
 un $b(x) = x^4 - 2x^3 + 4x - 8$.

Sakņu skaits

Ja a(x) ir nenulles polinoms, tad ar $s_0(a)$ apzīmēsim dažādo sakņu skaitu polinomam a.

Ja
$$a(x) = (x-1)^2(x+2)^4(x-1)$$
, tad $s_0(a) = 3$. Ja $a(x) = (x-1)^{2020}$, tad $s_0(a) = 1$.

Apgalvojums

Ja a(x) ir nenulles polinoms ar kompleksiem koeficientiem, tad ir spēkā vienādība

$$\deg a = \deg(a, a') + s_0(a).$$

Turpmāk visi apskatāmie polinomi būs ņemti ar kompleksiem koeficientiem.

Meisona teorēma

Ja a,b un c ir savstarpēji pirmskaitļi polinomu nozīmē ar pozitīvu pakāpi. Pie tam a+b=c, tad

$$\deg a, \deg b, \deg c \le s_0(abc) - 1.$$

Pierādījums.

Tā kā a+b=c, tad a'+b'=c'. Pareizinot pirmo vienādojumu ar a' un otro ar a, un atņemot vienu no otra, iegūstam, ka a'b-ab'=a'c-ac'. Ievērojam, ka (a,a'), (b,b'), (c,c') dala a'b-ab'. Tā kā tie ir savstarpēji pirmskaitļi polinomu nozīmē, secinām, ka

$$(a, a')(b, b')(c, c')|(a'b - ab').$$

Pierādījums (turp.)

 $a'b-ab'\neq 0$, jo pretējā gadījumā a'=b'=c'=0, pretrunā ar to, ka a,b,c ir ar pozitīvu pakāpi. Tātad ir spēkā nevienādība

$$\deg(a, a') + \deg(b, b') + \deg(c, c') \le \deg a + \deg b - 1.$$

Pārnesot visu uz labo pusi un abām pusēm pieskaitot $\deg c$, iegūstam

$$\deg c \leq \deg a - \deg\left(a, a'\right) + \deg b - \deg\left(b, b'\right) + \deg c - \deg\left(c, c'\right) - 1.$$

Pierādījums (turp.)

Pielietojot nevienienādībai apgalvojumu, iegūstam

$$\deg c \le s_0(a) + s_0(b) + s_0(c) - 1.$$

 $\mathsf{T}\bar{\mathsf{a}}\ \mathsf{k}\bar{\mathsf{a}}\ a,b,c$ ir savstarpēji pirmskaitļi polinomu nozīmē, tad

$$\deg c \le s_0(abc) - 1,$$

Līdzīgi pierāda pārējos gadījumus.

Fermā Lielā teorēma polinomiem

Lai $n \geq 3$ būtu naturāls skaitlis. Neeksistē atrisinājums vienādojumam

$$a^n + b^n = c^n,$$

ja a,b,c ir savstarpēji pirmskaitļi polinomu nozīmē ar pozitīvu pakāpi.

Pierādījums.

No Meisona teorēmas izriet, ka

$$\deg a^n \le s_0(a^n b^n c^n) - 1.$$

Tā kā $\deg a^n = n \cdot \deg a$ un $s_0(a^n) = s_0(a) \leq \deg a$, varam secināt, ka

$$n \cdot \deg a \le \deg a + \deg b + \deg c - 1.$$

Tādiem pašiem spriedumiem varam iegūt līdzīgas nevienādības polinomiem b un c.

Pierādījums (turp.)

Saskaitot nevienādības

$$n \cdot \deg a \le \deg a + \deg b + \deg c - 1$$
$$n \cdot \deg b \le \deg a + \deg b + \deg c - 1$$
$$n \cdot \deg c \le \deg a + \deg b + \deg c - 1,$$

iegūstam

$$n \cdot \deg abc \le 3 \deg abc - 3 < \deg abc.$$

Izslēdzot $\deg abc$, iegūstam, ka n<3. Tā kā n ir naturāls skaitlis, tad $n\leq 2$, pierādot teorēmu.