1. (8 points) The function f is defined by the graph below. The function g is defined by the formula

$$g(x) = 2 - x .$$

Find

- a) f(-1)
- b) $f^{-1}(-2)$
- c) $(f \circ g)(0)$ d) $\frac{f}{g}(1)$
- e) $(f^{-1} \circ g)(4)$ f) (f 2g)(0)
- g) the domain of f h) the range of f.
- 2. (2 points) Sketch the graph of the inverse function $y = f^{-1}(x)$ for the following graph of a function y = f(x).

3. (1 point) Find the inverse function of f(x) =3x + 2.

4. (4 points) Graph the piecewise defined function

$$f(x) = \begin{cases} (x+2)^2 & \text{if } x \le -2\\ -2x+3 & \text{if } -2 < x \le 4 \end{cases}$$

- 5. (8 points) Solve the following quadratic equations by the method stated.
 - a) Solve $6x^2 13x + 6 = 0$ by factoring.
 - b) Solve $4x^2 + 24x + 1 = 0$ by completing the square.
 - c) Solve $3x^2 5x = 2$ by using the quadratic
 - d) Solve $7x^2 + 2x 1 = x^2 + x + 1$ by the method of your choice.
- **6.** (3 points) Simplify so that each exponent is positive and each variable appears at most once.

$$\left(\left(\frac{3x^2y^{-3}}{x^3y^{-2}}\right)^2 \cdot \frac{xyz}{9}\right)^{-1}$$

7. (5 points) Given the quadratic function

$$f(x) = x^2 - 8x + 12$$

- a) find the coordinates of all intercepts;
- b) find the coordinates of the vertex;
- c) sketch a graph of the function using the information from the previous parts.
- 8. (3 points) Perform the following polynomial division. Write your final answer in the form $Q(x) + \frac{R(x)}{D(x)}$ where Q(x), R(x), and D(x) are polynomials.

$$\frac{4x^4 - 6x^2 + 5}{2x + 8}$$

9. (3 points) Solve the following inequality. State your answer in interval notation.

$$\frac{2x^3 + x^2}{(x+6)(x-5)} \ge 0$$

10. (4 points) Simplify the following expression:

$$\frac{\frac{x+1}{x-1} - \frac{x-1}{x+2}}{\frac{15x+3}{x^2-1}}$$

- **11.** (4 points) Given $f(x) = \frac{(x-3)(x+2)}{x+5}$ and $g(x) = \frac{(x+2)(x+6)}{x^2-25}$,
 - a) find the domain of the function $\left(\frac{f}{g}\right)(x)$;
 - b) simplify the quotient $\left(\frac{f}{g}\right)(x)$.
- **12.** (3 points) Simplify the following expression as much as possible.

$$\sqrt[3]{\frac{8x^{\frac{7}{2}}y^{10}}{27y\sqrt{x^{19}}}}$$

13. (3 points) Solve the following equation for x. Make sure to verify your answer.

$$\sqrt{7x+9} - \sqrt{3x+1} = 6$$

- **14.** (5 points) Given the function $f(x) = 1 \sqrt{x+4}$,
 - a) find the x- and y-intercepts;
 - b) sketch the graph;
 - c) state the domain of f;
 - d) state the range of f.
- **15.** (3 points) State the domain of the following function in interval notation.

$$f(x) = \frac{x+1}{x} + \frac{\sqrt{x+2}}{1-x}$$

- 16. (2 points) Frank places \$3000 in a tax-free savings account at an annual interest rate of 5% compounded semi-annually. Find the value of the investment after 12 years. Round your answer to the nearest cent.
- 17. (1 point) Use your calculator to evaluate $\log_7(50)$ accurate to three decimal places.
- **18.** (5 points) For the function $f(x) = 8 2^{x+1}$,

- a) find the x- and y-intercepts and one other point;
- b) find the equation of the asymptote;
- c) sketch the graph.
- 19. (2 points) Simplify the following expression:

$$e^{3\ln(x+1)-5\ln(x)}$$

20. (2 points) Evaluate the following expression:

$$\log_b\left(\frac{1}{\sqrt[7]{b^{12}}}\right)$$

21. (3 points) Express as a single logarithm and simplify:

$$\frac{7}{3}\ln(xyz^2) - \frac{1}{3}\ln(yz) - \frac{4}{3}\ln(xz)$$

22. (3 points) Solve the following equation for x:

$$\log_2(x-4) - \log_2(12) = 3 - \log_2(x+6)$$

23. (3 points) Solve the following equation for x. Express your answer in the form $x = \frac{\ln A}{\ln B}$.

$$5^{(2x+1)} = 3 \cdot 4^{(x-1)}$$

- **24.** (3 points) Find all angles θ in the interval $[0, 360^{\circ})$ such that $\cos \theta = \frac{2}{3}$. Give your answers accurate to two decimal places.
- **25.** (3 points) In the cartesian plane below, sketch the angle θ in standard position whose terminal side contains the point (-1, -2) and evaluate the following trigonometric ratios.

26. (4 points) The Leaning Tower of Pisa in Italy is a famous historical landmark known for its distinctive tilt. As a surveyor tasked with measuring the tower's height, you drop a stone from the top and measure the distance from where the stone landed to the tower's base. The distance from the stone to the base of the tower is 4 metres, and we can measure the angle of inclination of the tower to be 4 degrees.

With this data, calculate the height of the tower to the nearest metre.

27. (4 points) Complete the table below following the example:

Deg	Rad	Sine	Cosine	Tangent
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
120°				
	$\frac{5\pi}{4}$			

28. (3 points) Consider the graph of a sinusoidal function below and answer the questions.

- a) What is the amplitude of the function?
- b) What is the period of the function?
- d) Which of these functions corresponds to the graph?

a)
$$y = -3\sin(\frac{1}{2}x)$$

b)
$$y = 3\sin(2x)$$

c)
$$y = 3\cos\left(\frac{1}{2}x\right)$$

$$d) y = -3\cos(2x)$$

29. (3 points) Solve the triangle below, i.e., determine the lengths of all sides and the measures of all angles.

Answers.

- 1.
- a) 3
- b) 0 c) 4

- d) 2 e) 0 f) -6
- g) $(-\infty, \infty)$ h) $[-2, \infty)$

2.

- 3. $f^{-1}(x) = \frac{x-2}{3}$
- 4.

- a) $x = \frac{2}{3}$, $x = \frac{3}{2}$ b) $x = \pm \frac{\sqrt{35}}{2} 3$
- c) x = 2, $x = -\frac{1}{3}$ d) $x = \frac{1}{2}$, $x = -\frac{2}{3}$
- 6. $\frac{xy}{z}$
- a) (0,12), (2,0), (6,0)
- b) (4, -4)

c)

- 8. $2x^3 8x^2 + 29x 116 + \frac{933}{2x + 8}$
- **9.** $\left(-6, -\frac{1}{2}\right] \cup \{0\} \cup (5, \infty)$
- 10. $\frac{x+1}{3(x+2)}$
- **11.** a) $D = \mathbb{R} \setminus \{-6, -5, -2, 5\}$ b) $\frac{(x-3)(x-5)}{x+6}$
- 12. $\frac{2y^3}{3x^2}$
- **13.** $x = 40 \ (x = 1 \text{ is not a solution})$
- a) (0,-1), (-3,0)14.
 - b)

c)
$$[-4,\infty)$$

d)
$$(-\infty, 1]$$

15.
$$[-2,0) \cup (0,1) \cup (1,\infty)$$

16. \$5426.18

17.
$$\log_7(50) = 2.010$$

18. a)
$$(0,6)$$
, $(2,0)$, $(1,4)$, $(-1,7)$, $(3,-8)$ b) $y=8$

19.
$$\frac{(x+1)^3}{x^5}$$

20.
$$-\frac{12}{7}$$

21.
$$\ln(xy^2z^3)$$

22.
$$x = 10 \ (x = -12 \text{ is not a solution})$$

23.
$$x = \frac{\ln\left(\frac{3}{20}\right)}{\ln\left(\frac{25}{4}\right)}$$

24.
$$\theta_1 = 48.19^{\circ}, \ \theta_2 = 311.81^{\circ}$$

25.

$$\sin \theta = -\frac{2\sqrt{5}}{5} \quad \sec \theta = -\frac{\sqrt{5}}{2}$$

$$\cos \theta = -\frac{\sqrt{5}}{5} \quad \csc \theta = -\sqrt{5}$$

$$\tan \theta = 2$$
 $\cot \theta = \frac{1}{2}$

26. 57m

27

•	Deg	Rad	Sine	Cosine	Tangent
	30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
	120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
	225°	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1

28. a) amplitude
$$= 3$$

b) period =
$$\pi$$

c)
$$y = -3\cos(2x)$$

29.
$$c = 2.66$$
, $B = 40.89^{\circ}$, $C = 79.11^{\circ}$