第14章 单位根与协整

14.1 非平稳序列

如时间序列不平稳,称为"非平稳序列"(non-stationary time series),包括以下三种情形。

(1) 确定性趋势(deterministic trend)。考虑以下模型:

$$y_t = \beta_0 + \beta_1 t + \varepsilon_t \tag{14.1}$$

其中,t为时间趋势(time trend), $\beta_1 t$ 为时间趋势项。

1

两边取期望:

$$E(y_t) = \beta_0 + \beta_1 t \tag{14.2}$$

 $E(y_t)$ 随时间而变,不是平稳序列。

对于这种非平稳序列,只要把时间趋势去掉,就变成平稳序列,称为"趋势平稳"(trend stationary)序列。

可直接将时间趋势(t)作为解释变量放入回归方程,然后照常使用大样本理论进行统计推断。

(2) 结构变动(structural break)

考虑如下模型:

$$y_{t} = \begin{cases} \alpha_{1} + \beta_{1}x_{t} + \varepsilon_{t}, & \stackrel{\text{def}}{=} t < \overline{t} \\ \alpha_{2} + \beta_{2}x_{t} + \varepsilon_{t}, & \stackrel{\text{def}}{=} t \ge \overline{t} \end{cases}$$
(14.3)

其中, \bar{t} 为给定时间(常数)。

如 $\alpha_1 \neq \alpha_2$ 或 $\beta_1 \neq \beta_2$,则存在结构变动。

 $E(y_t)$ 在 $t = \bar{t}$ 处存在跳跃,为非平稳序列。

对于结构变动,可进行邹检验(Chow test)。

如发现结构变动,可定义如下虚拟变量:

$$D_{t} = \begin{cases} 1, & \text{if } t \ge \overline{t} \\ 0, & \text{if } t \end{cases}$$
 (14.4)

将虚拟变量 D_t 引入回归方程:

$$y_{t} = \alpha_{1} + \beta_{1}x_{t} + \gamma D_{t} + \delta D_{t}x_{t} + \varepsilon_{t} \quad (14.5)$$

方程(14.5)与方程(14.3)等价: $\alpha_2 = \alpha_1 + \gamma$, $\beta_2 = \beta_1 + \delta$ 。

所有参数都不随时间而变(不再有结构变动),可照常进行回归。

(3) 随机趋势(stochastic trend)

考虑随机游走模型(random walk):

$$y_t = y_{t-1} + \varepsilon_t \tag{14.6}$$

其中, $\{\varepsilon_t\}$ 为白噪声。假设时间开始于t=0,则

$$y_{1} = y_{0} + \varepsilon_{1}$$

$$y_{2} = y_{1} + \varepsilon_{2} = y_{0} + \varepsilon_{1} + \varepsilon_{2}$$

$$y_{3} = y_{2} + \varepsilon_{3} = y_{0} + \varepsilon_{1} + \varepsilon_{2} + \varepsilon_{3}$$

$$\vdots$$

$$(14.7)$$

$$y_t = y_{t-1} + \varepsilon_t = y_0 + \varepsilon_1 + \dots + \varepsilon_t = y_0 + \sum_{s=1}^t \varepsilon_s$$

如果 ε_1 增加一单位,所有 $\{y_1, y_2, \dots, y_t, \dots\}$ 都将增加一个单位。

来自 $\{\varepsilon_t\}$ 的任何扰动对 $\{y_t\}$ 都有永久效应(permanent effect),影响力不随时间而衰减,称 $\{\varepsilon_t\}$ 为此模型的"随机趋势"。

在方程两边求方差:

$$\operatorname{Var}(y_t) = \operatorname{Var}\left(\sum_{s=1}^t \varepsilon_s\right) = \sum_{s=1}^t \operatorname{Var}(\varepsilon_s) = t\sigma_\varepsilon^2 \qquad (14.8)$$

其中, σ_{ε}^2 为扰动项 ε_s 的方差。

当 $t \to \infty$ 时, $Var(y_t) \to \infty$ (方差发散), 故 $\{y_t\}$ 非平稳。

如果包含常数项,则为"带漂移的随机游走"(random walk with drift):

$$y_t = \beta_0 + y_{t-1} + \varepsilon_t \tag{14.9}$$

其中, $\beta_0 \neq 0$ 为每时期的平均"漂移"(drift),因为 $E(y_t) = \beta_0 + y_{t-1}$ 。

随机游走是 AR(1)的特例。

对于 AR(1)模型, $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$,如果 $\beta_1 = 1$,则为随机游走。

在方程(14.9)中,移项可得

$$\Delta y_t = \beta_0 + \varepsilon_t \tag{14.10}$$

随机游走的差分为平稳序列,称为"差分平稳"(difference

stationary)序列。

定义 称平稳的时间序列为"零阶单整"(Integrated of order zero),记为I(0)。

如果时间序列的一阶差分为平稳过程,称为"一阶单整" (Integrated of order one),记为I(1),也称为"单位根过程"(unit root process)。

一般地,如果时间序列的 d 阶差分为平稳过程,称为"d 阶单整" (Integrated of order d),记为 I(d)。

对于 I(0)序列,由于它是平稳的,故长期而言有回到其期望值的趋势。这种性质称为"均值回复"(mean-reverting)。

非平稳的 I(1)序列会"到处乱跑"(wander widely),没有上述性质。比如,随机游走的方差越来越大,趋向无穷。

I(0)序列对过去行为只有有限记忆,即发生在过去的扰动项对未来的影响随时间而衰减。

I(1)序列则对过去行为有无限长的记忆,即任何过去的冲击都将永久地改变未来的整个序列。

例 如果 $\{GDP_t\}$ 为 I(1),则任何货币政策或财政政策的调整都将对未来 GDP 产生永久影响。

定义 如果时间序列 $\{y_t\}$ 的d阶差分为平稳的ARMA(p,q)过程,则称 $\{y_t\}$ 为ARIMA(p,d,q)过程。

最常见 ARIMA(p, 1, q), 经过一次差分得到平稳的 ARMA(p, q)。

14.2 ARMA 的平稳性

什么情况下,ARMA(p,q)才平稳?

MA(q)是平稳的,因为它是有限个白噪声的线性组合。

ARMA(p,q)的平稳性仅取决于 AR(p)的部分。

首先,考虑 AR(1)模型:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t \tag{14.11}$$

如 $|\beta_1|$ <1,则 $\{y_t\}$ 平稳。

上式是一阶随机差分方程, 其稳定性与确定性差分方程一样:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} \tag{14.12}$$

只要考虑一阶差分方程(14.12)是否有稳定解即可。

方程(14.12)的解又取决于相应的齐次差分方程(不含常数项):

$$y_{t} = \beta_{1} y_{t-1} \tag{14.13}$$

齐次差分方程的通解为

$$y_t = y_0 \beta_1^t (14.14)$$

通解形式为指数函数,故 AR(1)的稳定性条件为 $|\beta_1|<1$ 。

一般地,考虑 AR(p)模型:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + \varepsilon_t$$
 (14.15)

其稳定性取决于确定性齐次差分方程:

$$y_t = \beta_1 y_{t-1} + \dots + \beta_p y_{t-p}$$
 (14.16)

仍假设方程(14.16)的解形式为指数函数,即

$$y_t = z^{-t} = (1/z)^t$$
 (14.17)

其中, z的取值待定。

将表达式(14.17)代入差分方程(14.16):

$$z^{-t} - \beta_1 z^{-(t-1)} - \dots - \beta_p z^{-(t-p)} = 0 \qquad (14.18)$$

两边同乘 z^t ,可得 AR(p)的特征方程(characteristic equation):

$$\phi(z) \equiv 1 - \beta_1 z - \dots - \beta_p z^p = 0$$
 (14.19)

此方程在复数域一定有P个根(含重根),比如 (z_1, z_2, \dots, z_p) 。

齐次差分方程(14.16)有P个形如(1/z)^t的解,通解则是这P个解的 线性组合:

$$y_t = k_0 + k_1 (1/z_1)^t + k_2 (1/z_2)^t + \dots + k_p (1/z_p)^t$$
 (14.20)

其中, (k_0, k_1, \dots, k_p) 为待定常数,取决于初始条件 $\{y_0, y_1, \dots, y_{p-1}\}$ 。

如要求 $\{y_t\}$ 收敛于稳定值,所有 $\left(1/z_j\right)^t$ $(j=1,\cdots,p)$ 均应收敛到 0。

由于 z_i 为复数,这要求特征方程所有解的范数 $\|z_i\|$ (在复平面上 z_i 离原点的距离)都必须大于 1。

图 14.1 复平面上的单位圆

稳定解:特征方程的所有解须落在复平面上的单位圆之外。

如果特征方程的某个根落在单位圆之内,则为爆炸式增长的非平稳过程。

如果某个根正好落在单位圆之上,则称为"单位根"(unit root), 比如随机游走的情形。

例 对于 AR(1),其特征方程为 $1-\beta_1 z = 0$,故 $z = 1/\beta_1$ 。因此, $||z|| = |z| > 1 \Leftrightarrow |\beta_1| < 1$ 。

有关 AR(p) 平稳性的结论是对 AR(1) 情形的推广。

14.3 VAR 的平稳性

AR(p)的平稳性条件可推广到多维 VAR(p)的情形。

考虑 VAR(p)模型:

$$\mathbf{y}_{t} = \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{1} \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t} \quad (14.21)$$

其中, ε ,为向量白噪声过程。如果特征方程

$$\left| \boldsymbol{I}_{n} - \boldsymbol{\Gamma}_{1} z - \dots - \boldsymbol{\Gamma}_{p} z^{p} \right| = 0 \qquad (14.22)$$

的所有根都落在复平面的单位圆之外(即||z|| > 1),则 VAR(p)为平稳过程,其中 $|\cdot|$ 表示行列式。

此平稳性的等价条件为伴随矩阵(companion matrix)

$$\tilde{\boldsymbol{\Gamma}} = \begin{pmatrix} \boldsymbol{\Gamma}_1 & \boldsymbol{\Gamma}_2 & \cdots & \boldsymbol{\Gamma}_p \\ \boldsymbol{I}_n & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{I}_n & \boldsymbol{0} \end{pmatrix}_{np \times np}$$
(14.23)

的所有特征值都落在单位圆之内。

14.4 单位根所带来的问题

对于 AR(1)模型,一般认为不可能出现自回归系数 $|\beta_1| > 1$ 的情形;否则任何对经济的扰动都将被无限放大。

通常只担心单位根的情形, 即 $\beta_1 = 1$ 。

如果时间序列存在单位根,为非平稳序列,可能带来以下问题。

(1) 自回归系数的估计量不服从渐近正态分布,t检验失效

考虑 AR(1)模型:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t \qquad (14.24)$$

假设真实值 $\beta_1 = 1$,为单位根过程。

进行 OLS 回归,可得 β_1 的 OLS 估计量 $\hat{\beta}_1$ 。

由于存在单位根(β)的真实值为 1), $\hat{\beta}$,不服从渐近正态分布,甚至不是对称分布(即使在大样本中),而向左偏向于 0(分布左边有很长的尾巴)。

由于{y_t}不是平稳序列,故中心极限定理不再适用。

虽然 $\underset{n\to\infty}{\text{plim}}\hat{\beta}_1 = \beta_1$ (仍为一致估计),在有限样本下可能存在偏差。

由于 $\hat{\beta}_i$ 不是渐近正态分布,故t统计量不服从渐近正态,无法进行传统的区间估计与假设检验。

建立于平稳性假设之上的大样本理论不再适用。

通过蒙特卡罗法考察Â的大样本分布。

考虑不带漂移项的随机游走:

$$y_t = y_{t-1} + \varepsilon_t \tag{14.25}$$

其中, 扰动项 ε_t 为 iid, 且服从标准正态。

假设
$$y_0 = 0$$
,则 $y_1 = \varepsilon_1$, $y_2 = \varepsilon_1 + \varepsilon_2$,……, $y_t = \varepsilon_1 + \dots + \varepsilon_t = \sum_{s=1}^t \varepsilon_s$ 。

假设样本容量为 1000, 首先从标准正态分布随机抽取 1000 个扰动项的观测值 $\{\varepsilon_1, \dots, \varepsilon_{1000}\}$;

由此生成 y_t 的 1000 个观测值 $\{y_1, \dots, y_{1000}\}$,根据方程(14.24)进行 OLS 回归,得到自回归系数估计值 $\hat{\beta}_1$ 。

重复此过程 1,000 次,得到 1,000 个 $\hat{\beta}_1$,获得 $\hat{\beta}_1$ 的大样本分布。

在 Stata 中定义一个叫"randwalk"的程序来产生随机游走,进行一阶自回归,并得到自回归系数 $\hat{\beta}_1$:

```
.program randwalk,rclass (定义程序 "randwalk",并以r()形式储存结果) drop _all (删去内存中已有数据) set obs 1000 (确定样本容量为 1000) gen eps=rnormal() (产生服从标准正态分布的扰动项\varepsilon_t) gen y=sum(eps) (假设y_0=0,定义随机游走y_t=\sum_{s=1}^t \varepsilon_s) gen t=_n (定义时间变量,第t期即第i个观测值) tsset t (将数据设为时间序列,以便使用滞后算子) reg y L.y (回归y_t=\beta_0+\beta_1y_{t-1}+error)
```

return scalar b1=_b[L.y] (记 OLS 系数 $\hat{\beta}_l$ 为 b1) end (程序结束)

使用命令 "simulate" 来执行 "randwalk" 程序 1,000 遍,得到 $\hat{\beta}$ 的大样本分布,并画其经验的概率密度图(参见图 14.2)。

.simulate beta=r(b1),seed(10101) reps(1000):
randwalk

.kdensity beta

图 14.2 在单位根情况下 $\hat{\beta}_1$ 的大样本分布

即使样本容量为 1000,OLS 估计量 $\hat{\beta}_1$ 的分布也不对称,向左偏向于 0,无法使用渐近正态进行统计推断。

(2) 两个相互独立的单位根变量可能出现伪相关或伪回归

单位根的另一严重后果是,即使两个单位根变量相互独立,进行相关分析或回归分析,却可能发现二者有显著关系,称为"伪相关"(spurious correlation)或"伪回归"(spurious regression)。

考虑两个单位根过程:

$$y_t = y_{t-1} + u_t; \quad x_t = x_{t-1} + v_t$$
 (14.26)

其中, u_t , v_t 均为 iid 且相互独立。故 y_t 与 x_t 也相互独立。

考虑 OLS 回归:

$$y_t = \alpha + \beta x_t + \varepsilon_t \tag{14.27}$$

由于 y_t 与 x_t 相互独立,故真实参数 $\beta = 0$ 。

如果样本容量足够大,期待 OLS 估计值 $\hat{\beta} \approx 0$, $R^2 \approx 0$ 。

但实际结果并非如此,因为扰动项 $\varepsilon_t = y_t - \alpha - \beta x_t$ 非平稳。

最初由 Granger and Newbold (1974)通过蒙特卡罗模拟发现。

下面在 Stata 中模拟此过程。

假设
$$y_0 = 0$$
, $x_0 = 0$, 则 $y_t = \sum_{s=1}^t u_s$, $x_t = \sum_{s=1}^t v_s$ 。

假设样本容量为 10,000,首先在 Stata 中生成相互独立的单位根变量 y_t 与 x_t ,然后进行 OLS 回归。

. drop _all

(删去内存中已有数据)

. set obs 10000

(确定样本容量为 10,000)

. set seed 1234

(确定随机数的种子为 1234)

. gen u=rnormal()

(产生服从标准正态分布的扰动项u,)

. gen y=sum(u)

(定义随机游走 $y_t = \sum_{s=1}^t u_s$)

. set seed 12345

(确定随机数的种子为 12345)

. gen v=rnormal()

(产生服从标准正态分布的扰动项水)

. gen x=sum(v)

(定义随机游走 $x_t = \sum_{s=1}^t v_s$)

. reg y x

Source	SS	df	MS		Number of obs F(1, 9998)	= 10000 $=$ 8835.74
Model Residual	3877265.25 4387283.57	1 9998	3877265.25 438.81612		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4691
Total	8264548.82	9999	826.537536		Root MSE	= 20.948
У	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
x _cons	.5621503 -8.53695	.00598		0.000	.5504275 -9.031695	.5738731 -8.042205

尽管 y_t 与 x_t 相互独立,但 y_t 对 x_t 的回归系数却在 1%水平上显著, R^2 高达 0.47,存在"伪回归"。

进一步,把 u_t 与 v_t 回归。

. reg u v

	Number of obs F(1, 9998)		MS		df	SS	Source
= 0.8157 = 0.0000	Prob > F R-squared Adj R-squared		0535855 6756016		1 9998	.0535855 9865.58665	Model Residual
= .99336	Root MSE		3666269	.98	9999	9865.64024	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.	Coef.	u

 u_t 对 v_t 的回归系数高度不显著;但由 u_t 与 v_t 所产生的随机游走过程 y_t 与 x_t 却显著相关。

看 y_t 与 x_t 的时间趋势图,参见图 14.3。

- . gen $t=_n$ (定义时间变量t)
- . line $y \times t$, lpattern(dash)

图 14.3 伪相关示意图

尽管 y_t 与 x_t 相互独立,但二者都是单位根过程,存在相似的时间趋势而出现伪相关与伪回归,从而误导统计推断。

如何避免伪相关或伪回归?

方法之一, 先对 I(1)变量作差分, 得到平稳 I(0)序列, 再作回归。 方法之二为"协整"(cointegration)。须先检验是否存在单位根。

14.5 单位根检验

1. Dickey-Fuller 单位根检验(Dickey and Fuller,1979)

考虑 AR(1)模型:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \gamma t + \varepsilon_t \qquad (14.28)$$

其中, ε_t 为白噪声, γt 为时间趋势(如不含时间趋势, $\Diamond \gamma = 0$)。

考虑单边检验:

$$H_0: \beta_1 = 1$$
 vs $H_1: \beta_1 < 1$ (14.29)

替代假设为" H_1 : β_1 < 1",因为理论上认为不可能出现 β_1 > 1的情形。

如果 H_0 成立,则 y_t 为带漂移项 β_0 的随机游走;如果不带漂移项,可令 $\beta_0 = 0$ 。

通常希望检验参数是否等于0。

在方程两边同减火;:

$$\Delta y_t = \beta_0 + \delta y_{t-1} + \gamma t + \varepsilon_t \qquad (14.30)$$

其中, $\delta \equiv \beta_1 - 1$ 。

原假设与替代假设变为

$$H_0: \delta = 0 \quad vs \quad H_1: \delta < 0 \quad (14.31)$$

对方程(14.30)作 OLS 回归,可得估计量 $\hat{\delta}$ 及相应t统计量(使用普通标准误)。

此t统计量称为 "Dickey-Fuller 统计量" (简记 DF),在 Stata 中记为Z(t)。

- Z(t)不服从渐近正态,其临界值须通过蒙特卡罗模拟获得。
- Z(t)越小(绝对值很大的负数),则越倾向于拒绝原假设。

故 DF 检验是左边单侧检验,拒绝域只在分布的最左边。

2. Augmented Dickey-Fuller 单位根检验(Dickey and Fuller,1981)

DF 检验使用一阶自回归来检验单位根,要求扰动项 $\{\varepsilon_t\}$ 为白噪声,故扰动项无自相关。

如果 $\{\varepsilon_t\}$ 存在自相关,可在方程(14.30)中引入 Δy_t 的高阶滞后项(即滞后差分项),以保证 $\{\varepsilon_t\}$ 为白噪声:

$$\Delta y_{t} = \beta_{0} + \delta y_{t-1} + \gamma_{1} \Delta y_{t-1} + \gamma_{2} \Delta y_{t-2} + \dots + \gamma_{p-1} \Delta y_{t-p+1} + \gamma t + \varepsilon_{t}$$
 (14.32)

原假设与替代假设依然为

$$H_0: \delta = 0 \quad vs \quad H_1: \delta < 0 \quad (14.33)$$

使用 OLS 可得估计量 $\hat{\delta}$ 及相应的t统计量(使用普通标准误)。

此t统计量称为 "Augmented Dickey-Fuller 统计量" (简记 ADF), Stata 仍记其为Z(t)。

ADF 检验也是左边单侧检验,其拒绝域只在分布的最左边。

ADF 统计量的临界值也要通过蒙特卡罗模拟得到。

ADF 统计量的临界值取决于真实模型(H_0)是否带漂移项,以及用于检验的回归方程(14.32)是否含常数项或时间趋势。

Stata 手册(Stata Manual)总结了以下四种情形,参见表 14.1。

表 14.1 ADF 检验的四种情形

情	真实模型 (H_0)	对回归方程(14.32)	Stata 选择项
形		的约束	
1	不带漂移项	$\beta_0 = 0, \gamma = 0$	noconstant
2	不带漂移项	$\gamma = 0$	默认值
3	带漂移项	$\gamma = 0$	drift
4	不带或带漂移项	无约束	trend

情形 2, 虽然真实模型不含漂移项(无常数项), 但在 ADF 检验的回归方程中依然包括了常数项。

情形 2 与情形 3 对回归方程的约束相同,故检验统计量也相同,但临界值不同(因为真实模型不同)。

ADF 检验的 Stata 命令为

dfuller y, lags(p) regress noconstant drift trend

其中,选择项"lags(p)"表示包含p阶滞后差分项,默认为"lags(0)",对应于 DF 检验。

选择项"regress"表示显示回归结果。

选择项 "<u>nocon</u>stant drift <u>tr</u>end" (三者最多选一项,不能并用)的含义参见表 14.1。

关于常数项与时间趋势项

ADF 检验是否应带常数项或时间趋势项,首先应从理论上考虑。

比如,考察 GDP 对数是否有单位根,一般应包含时间趋势项; 而利率、汇率等不应有时间趋势项。

也可通过画时间序列图大致判断有无长期趋势。

在作 ADF 检验时,使用选择项"<u>reg</u>ress",可看到常数项或时间趋势项是否显著。

如无从判断,为稳健起见,可把各种情况都进行检验;并将结果以(c,t,p)格式列表:"c=1"带常数项,"c=0"不带常数项;"t=1"带趋势项,"t=0"不带趋势项;p表示滞后阶数。

关于滞后阶数 p 的确定

ADF 检验的结果常对滞后阶数P很敏感。

如果P太小,扰动项 $\{\varepsilon_t\}$ 可能存在自相关,使得检验出现偏差。

如果P太大,会降低检验的功效(power)。

Schwert (1989)建议最大滞后阶数为

$$p_{\text{max}} = [12 \cdot (T/100)^{1/4}] \qquad (14.34)$$

其中,T为样本容量,[·]表示取整数部分;然后使用序贯t规则,看 ADF 检验中最后一阶回归系数是否显著。也可使用信息准则,比如 AIC 或 BIC。

3. 单整阶数(order of integration)的确定

对 $\{y_t\}$ 进行单位根检验后,如认为 $\{y_t\}$ 非平稳,要进一步判断其为 I(1)或 I(2)。

可对一阶差分 $\{\Delta y_t\}$ 进行单位根检验,如 $\{\Delta y_t\}$ 平稳,则 $\{y_t\}$ 是 I(1)。

否则,继续对二阶差分 $\left\{\Delta^2 y_t \equiv \Delta y_t - \Delta y_{t-1}\right\}$ 进行单位根检验。

如果 $\{\Delta^2 y_t\}$ 为平稳,则 $\{y_t\}$ 为 I(2),以此类推。

在经济变量中, I(0)与 I(1)最常见, I(2)很少见。

14.6 单位根检验的 Stata 实例

例 Nelson and Plosser (1982)使用 ADF 检验考察 1860-1970 年, 美国 14 个年度宏观时间序列,发现只有一个变量可拒绝单位根的 原假设,其余 13 个变量均可视为单位根。

以数据集 nelson_plosser.dta 为例,包括美国的年度宏观经济变量,取自 Nelson and Plosser (1982)。

检验其中的两个变量,即 lrgnp (实际 GNP 对数)与 lun (失业率 对数),是否含有单位根。

首先,看这两个变量的时间趋势图:

- . use nelson_plosser.dta,clear
- . tsline lrgnp lun if year>=1890,lp(dash)
 xlabel(1890(10)1970)

变量 lrgnp 的取值始于 1890 年,变量 lun 的取值始于 1909 年,故使用条件语句"if year>=1890"来限制画图的范围(使之更加美观)。

选择项 "xlabel(1890(10)1970)" 表示,在横轴从 1890年至 1970年,每 10 年做个标注(label)。

图 14.4 实际 GNP 对数与失业率对数的时间趋势

实际 GNP 对数(虚线)有明显的上升趋势;且较为光滑,当期值强烈依赖于上期值,自回归系数接近于1,可能为单位根过程。

失业率对数看不出有什么趋势,较不光滑,自回归系数明显小于1,不太可能为单位根过程。

对于实际 GNP 对数,首先考虑带常数项与时间趋势项的 DF 检验:

. dfuller lrgnp, trend

Dickey-Fulle	r test for unit	root	Number of ob	s =	61			
		Inte	Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10%	Critical			
	Statistic	Value	Value		Value			
Z(t)	-2.026	-4.126	-3.489		-3.173			

DF 检验的 5%临界值为-3.489。

由于 DF 统计量 Z(t)为-2.026 > -3.489(左边单侧检验),故可在 5%的水平上接受"存在单位根"的原假设。

由于扰动项可能存在自相关,考虑更高阶的 ADF 检验。

首先,计算 Schwert (1989) 建议的最大滞后阶数 $p_{\text{max}} = [12 \cdot (T/100)^{1/4}]$:

. di 12*(62/100)^(1/4) 10.648273

其中,样本容量为 62。这表明, $p_{\text{max}} = 10$ 。

令 $\hat{p}=10$, 进行ADF检验:

. dfuller lrgnp, lags(9) trend reg

Augmented Dic	key-Fuller tes	st for unit	root	Numb	er of obs =	52
			Inte	rpolated	Dickey-Fuller	
	Test	1% Critical		5% Cri	% Critical	
	Statistic	Statistic Value		Va	Value	
Z(t)	-2.308	-4.146			3.498	-3.179
MacKinnon app	roximate p-val	lue for Z(t)	= 0.429	6		
	T					
D.lrgnp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lrgnp						
L1.	2431874	.1053744	-2.31	0.026	456157	0302179
LD.	.4268154	.1533028	2.78	0.008	.1169789	.736652
L2D.	.1299825	.1591474	0.82	0.419	1916663	.4516314
L3D.	.0148792	.1601745	0.09	0.926	3088455	.3386039
L4D.	.0074853	.1591925	0.05	0.963	3142547	.3292252
L5D.	0628515	.1517327	-0.41	0.681	3695147	.2438117
L6D.	.1135881	.1488912	0.76	0.450	1873321	.4145084
L7D.	.1157849	.1470971	0.79	0.436	1815095	.4130792
L8D.	0360994	.1474121	-0.24	0.808	3340302	.2618315
L9D.	1339387	.1441335	-0.93	0.358	4252433	.157366
_trend	.0083664	.003355	2.49	0.017	.0015856	.0151471
_cons	1.091761	.4663261	2.34	0.024	.1492807	2.034241
	1					

时间趋势项(_trend)很显著(P值为 0.017),但最后一阶滞后项 (L9D.)在 5%的水平上并不显著。

依次令 $\hat{p}=9,\dots,3$, 进行 ADF 检验, 最后一阶滞后项仍不显著。

令 $\hat{p}=2$, 再进行 ADF 检验。

. dfuller lrgnp, lags(1) trend reg

Augmenced Dic	key-Fuller te	st for unit	root	Numb	er of obs =	: 60			
			Interpolated Dickey-Fuller						
	Test		1% Critical		5% Critical 10				
	Statistic	Valı	ıe	Va	lue	Value			
Z(t)	-2.994	-4	-4.128		-3.490				
MacKinnon app	proximate p-val	lue for Z(t)	= 0.1338	8					
	croximate p-val	lue for Z(t) Std. Err.	= 0.1338	P> t	[95% Conf.	Interval]			
	-				[95% Conf.	Interval]			
D.lrgnp	-				[95% Conf.	Interval] 0580195			
D.lrgnp lrgnp	Coef.	Std. Err.	t	P> t		0580195			
D.lrgnp lrgnp	Coef.	Std. Err.	t -2.99	P> t 0.004	2926651 .1766048	0580195 .6611681			

最后一阶滞后项(LD.)在1%的水平上显著地不等于0。

ADF 统计量 Z(t) 为-2.994 > -3.490,无法在 5% 的水平上拒绝单位根的原假设。

可认为实际 GNP 对数 lrgnp 含有单位根。

"麦金农的近似*P*值"(MacKinnon approximate p-value) 为 0.1338,与此结论一致。

进一步检验 lrgnp 的一阶差分是否为平稳过程。

根据序贯t规则,选择 $\hat{p}=1$,进行DF检验。

由于Δlrgnp已不存在时间趋势,检验时不带时间趋势项。

. dfuller d.lrgnp

Dickey-Fulle	er test for unit	root	Number of ob	s =	60		
		Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10%	Critical		
	Statistic	Value	Value		Value		
Z(t)	-5.322	-3.566	-2.922		-2.596		

ADF 统计量 Z(t) 为-5.322 < -3.566,可在 1%的水平上拒绝单位根的原假设,认为 Δ lrgnp 为平稳过程。

由此可知, lrgnp为I(1)过程。

考察失业率对数 lun 是否含有单位根。

根据序贯t规则,选择 $\hat{p}=4$,进行不带时间趋势的 ADF 检验: . dfuller lun,lags(3) reg

Augmented Dick	key-Fuller tes	st for unit :	root	Numb	er of obs	= 77		
		Interpolated Dickey-Fuller						
	Test	1% Crit	ical	5% Cri	0% Critical			
	Statistic	Val	ue	Va	lue	Value		
Z(t)	-3.588	-3	.542	_	2.908	-2.589		
MacKinnon app	roximate p-val	lue for Z(t)	= 0.0060)				
	_							
D.lun	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]		
lun								
L1.	2908167	.0810476	-3.59	0.001	4523821	1292513		
LD.	.3824999	.1099181	3.48	0.001	.1633822	.6016177		
L2D.	2030521	.1033701	-1.96	0.053	4091166	.0030123		
L3D.	.2431095	.1041622	2.33	0.022	.0354659	.4507531		
_cons	.4898167	.1476383	3.32	0.001	.1955051	.7841283		
	L							

ADF 统计量 Z(t) 为-3.588 < -3.542,可在 1% 的水平上拒绝单位根的原假设,认为失业率对数 lun 为平稳过程。

14.7 协整的思想与初步检验

对于单位根变量,传统的处理方法是先差分,然后对平稳序列 建模。

但差分后变量的经济含义与原序列并不相同,而有时仍希望用原序列进行回归。

如果多个单位根变量之间由于某种经济力量而存在"长期均衡关系"(long-run equilibrium),则可能进行这种回归。

基本思想:如果多个单位根序列拥有"共同的随机趋势"(common stochastic trend),则可对这些变量作适当的线性组合而消去此随机趋势,从而得到平稳序列。

例 短期利率与长期利率可能都是单位根过程,且二者的走势 很相似。

理论上,长期利率是预期短期利率的平均值与"风险溢价"(risk premium)之和(持有长期资产面临更大风险),存在长期均衡关系。

以数据集 macro_3e.dta 为例,该数据集包含美国 1957q1-2005q1 的季度宏观变量,时间变量为 time。

打开数据集,考察 fygm3 (3 个月国库券利率)与 fygt1 (1 年期国库券利率)的时间趋势,参见图 14.5。

- . use macro_3e.dta,clear
- . tsset time
- . tsline fygm3 fygt1, lpattern(dash)

图 14.5 美国 3 月与 1 年期国库券利率的时间趋势

例(非正式) 当你遛狗时,假设你与狗的每一步位置为随机游走(带漂移项),均为单位根过程。

由于你与狗之间有一根皮带相连("长期均衡关系"),故你与狗的位置不会相离太远(尽管二者都是单位根过程)。

假设两个 I(1)过程 $\{y_t\},\{x_t\}$ 可分别写为

$$\begin{cases} y_t = \alpha + \beta w_t + \varepsilon_t \\ x_t = \gamma + \delta w_t + u_t \end{cases}$$
 (14.35)

其中, w_t 为随机游走, $w_t = w_{t-1} + v_t$; ε_t, u_t, v_t 均为白噪声。

由于 $\{y_t\}$ 与 $\{x_t\}$ 拥有共同的随机趋势 w_t ,故二者的如下线性组合为平稳过程:

$$\delta y_t - \beta x_t = (\alpha \delta - \beta \gamma) + (\delta \varepsilon_t - \beta u_t) \quad (14.36)$$

其中, $(\alpha\delta - \beta\gamma)$ 为常数, $(\delta\varepsilon_t - \beta u_t)$ 为白噪声的线性组合。

称 $\{y_t\}$ 与 $\{x_t\}$ 是"协整的"(cointegrated)。

称向量(δ , $-\beta$)为"协整向量"(cointegrating vector)或"协整系数"。

可把协整向量 $(\delta, -\beta)$ 标准化为 $(1, -\beta/\delta)$ 。

对于两个 I(1)变量,只可能存在一个协整关系。

对于n个 I(1)变量,最多可能存在(n-1)个协整关系。

一组 I(1)变量之间协整关系的个数称为"协整秩"(cointegration rank),即线性无关的协整向量的个数。

如何判断一组 I(1)变量间是否存在协整关系?

首先,这些变量须在理论上可能存在长期均衡关系;否则,协整分析没有意义。

其次,如果只有两个变量,可直接画图,看二者的时间趋势。 但此法不严格,也不适用于两个以上的变量。

Engle and Granger (1987)提出如下"EG-ADF 检验"。

不失一般性,考虑两个单位根变量 $\{y_t, x_t\}$ (此检验也适用于多个单位根变量)。

原假设为 $\{y_t, x_t\}$ 存在协整关系,且协整系数为 $\{1, -\theta\}$ 。

如果原假设成立,则 $\{z_t \equiv y_t - \theta x_t\}$ 为平稳过程。

如果 θ 已知,可用 ADF 检验确定 $\{z_t\}$ 是否平稳。

如果接受" $\{z_t\}$ 为平稳",则认为 $\{y_t, x_t\}$ 存在协整关系。

但通常不知道 θ ,故 EG-ADF 检验分两步进行。

第一步 用 OLS 估计协整系数 θ ,即

$$y_t = \phi + \theta x_t + z_t \tag{14.37}$$

在 " $\{y_t, x_t\}$ 存在协整关系"的原假设下,虽然 $\{y_t, x_t\}$ 非平稳,但 $\{z_t\}$ 为平稳过程,故 OLS 的估计量 $\hat{\phi}$ 与 $\hat{\theta}$ 是一致估计量。

第二步 对残差序列 $\{\hat{z}_t \equiv y_t - \hat{\phi} - \hat{\theta}x_t\}$ 进行 ADF 检验,确定其是 否平稳。

如果检验结果确认 $\{\hat{z}_t\}$ 为平稳,则接受" $\{y_t, x_t\}$ 存在协整关系"的原假设。

协整关系 " $y_t = \hat{\phi} + \hat{\theta}x_t$ " 即为 $\{y_t, x_t\}$ 之间的长期均衡关系。

如果检验结果认为{ĉ_t}不平稳,则拒绝原假设,认为不存在协整 关系。 由于协整系数 $\hat{\theta}$ 是估计出来的,不是真实的协整系数,故EG-ADF 统计量的临界值与普通的 ADF 检验不同,参见表 14.2。

表 14.2 EG-ADF 检验的临界值

方程(14.37)中 解释变量 <i>x_t</i> 的个数	10%	5%	1%
1	-3.12	-3.41	-3.96
2	-3.52	-3.80	-4.36
3	-3.84	-4.16	-4.73
4	-4.20	-4.49	-5.07

资料来源: Stock and Watson (2012, p. 696)。

无论是否有漂移项(常数项),上表的临界值都适用。

EG-ADF 法的缺点是,不能处理存在多个协整关系的情形。

由于 EG-ADF 法分两步进行,第一步估计的误差被带到第二步中,故不是最有效率的方法。

比 EG-ADF 法更有效率的方法是 MLE,同时估计所有参数。

14.8 协整的最大似然估计

假设 $\{y_{1t}, \dots, y_{nt}\}$ 都是单位根变量,其中变量个数 $n \ge 2$ 。

记随机向量 $\mathbf{y}_t = (y_{1t} \cdots y_{nt})'$,则 \mathbf{y}_t 的每个分量都为单位根过程。

考虑 y_t 的向量自回归模型:

$$\mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Phi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\Phi}_{2} \mathbf{y}_{t-2} + \dots + \boldsymbol{\Phi}_{p} \mathbf{y}_{t-p} + \boldsymbol{\varepsilon}_{t}$$
 (14.38)

根据与 ADF 检验类似的推导,可得 VAR 模型对应的向量误差 修正模型(Vector Error Correction Model, VECM):

$$\Delta \mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_{0} \mathbf{y}_{t-1} + \boldsymbol{\Gamma}_{1} \Delta \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p-1} \Delta \mathbf{y}_{t-p+1} + \boldsymbol{\varepsilon}_{t} (14.39)$$

其中, $\Gamma_0 y_{t-1}$ 为误差修正项。

当 y_{t-1} 偏离长期均衡关系时, $\Gamma_0 y_{t-1}$ 为 Δy_t 将要作出的调整(即误差修正)。

矩阵 Γ_0 的秩即为协整秩。如果 $rank(\Gamma_0)=0$,则不存在协整关系;

如果 $rank(\Gamma_0)=1$,则存在一个协整关系;以此类推。

假设协整秩为h,且扰动项服从n维正态分布。

Johansen(1988)使用 MLE 估计此 VECM 模型。

在满足 "rank(Γ_0) = h"的条件下,最大化样本数据 $\{y_1, \dots, y_T\}$ 的对数似然函数。

为此,须先确定协整秩h。首先进行以下检验:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = 0 \quad vs \quad H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) > 0 \quad (14.40)$$

原假设为协整秩为 0, 不存在协整关系; 替代假设为协整秩大于 0, 存在协整关系。

当协整秩为h时,系数矩阵 Γ_0 有h个自由(线性无关)的行向量。

协整秩h越大,对矩阵 Γ_0 的约束越少,对应的似然函数最大值应该越大。

据此进行似然比检验,由于检验统计量涉及矩阵的迹(主对角线元素之和),故称为"迹统计量"(trace statistics),记为 λ_{trace} 。

"迹检验"(trace test)是似然比检验,为单边右侧检验,即 λ_{trace} 越大,则越倾向于拒绝原假设。

如果接受" H_0 : rank(Γ_0) = 0",则认为不存在协整关系。

反之,继续检验是否存在多个协整关系:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = 1$$
 vs $H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) > 1$ (14.41)

依此顺序不断进行检验,直到接受 H_0 ,确认协整秩h为止。

Johansen 还考虑另一类检验:

$$H_0: \operatorname{rank}(\boldsymbol{\Gamma}_0) = h$$
 vs $H_1: \operatorname{rank}(\boldsymbol{\Gamma}_0) = h + 1$ (14.42)

原假设为协整秩为h,存在h个协整关系;替代假设为协整秩等于(h+1),存在(h+1)个协整关系。

此检验的统计量为"最大特征值统计量"(maximum eigenvalue statistics),记为 λ_{\max} ,称为"最大特征值检验"(maximum eigenvalue test)。

迹检验的效果比特征值检验更好,前者为 Stata 的默认方法。

确认协整秩h后,可在给定"rank(Γ_0) = h"条件下,使用 MLE 估计 VECM 模型。

如存在时间趋势与季节效应(为季度数据或月度数据),则 VECM 模型变为:

$$\Delta \mathbf{y}_{t} = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_{0} \mathbf{y}_{t-1} + \boldsymbol{\Gamma}_{1} \Delta \mathbf{y}_{t-1} + \dots + \boldsymbol{\Gamma}_{p-1} \Delta \mathbf{y}_{t-p+1} + \boldsymbol{\delta}t + \boldsymbol{w}_{1} s_{1} + \dots + \boldsymbol{w}_{m} s_{m} + \boldsymbol{\varepsilon}_{t}$$
(14.43)

 δt 为时间趋势项, $\{s_1, \dots, s_m\}$ 为季节虚拟变量;仍可进行条件 MLE 估计。

注: 并非所有季度或月度数据都存在季节效应。

14.9 协整分析的 Stata 实例

协整分析的起点是单位根检验。如确定所有变量都为单位根过程,可进一步检验这些 I(1)变量是否存在协整关系。

(1) 检验协整秩

检验协整秩的 Stata 命令为 (假设变量为x, y, z)

vecrank x y z,lags(#) max trend(none)
trend(trend)

选择项"lags(#)"表示对应的 VAR 模型(14.38)中滞后的阶数, 默认为"lags(2)"。 选择项"max"表示也进行最大特征值检验,默认仅进行迹检验。

选择项"trend(none)"表示不包括常数项或时间趋势;

选择项"trend(trend)"表示包括常数项与时间趋势;默认包括常数项,但不包括时间趋势。

命令 vecrank 的输出结果将列出" $h=0, 1, \dots, n-1$ "的一系列检验,并以星号(*)标出所接受h值,即协整秩。

(2) 估计协整关系

在作完协整秩检验后,如果确定h=0,则不存在协整关系。

如果确定 $h \ge 1$,对 VECM 模型进行最大似然估计。

也可使用 Engle-Granger 两步法,但效率较低,且在 $h \ge 2$ 的情况下无法使用。

使用 MLE 估计 VECM 模型的 Stata 命令为

vec x y z,lags(#) rank(#) trend(none)
trend(trend) sindicators(varlist)

选择项"lags(#)"表示对应的 VAR 模型(14.38)中滞后的阶数, 默认为"lags(2)"。

选择项 "rank(#)" 表示协整秩的阶数,默认为 "rank(1)"。

选择项 "trend(none)"表示不包括常数项或时间趋势;选择项 "trend(trend)"表示包括常数项与时间趋势;默认包括常

数项,但不包括时间趋势。

选择项"sindicators(varlist)"表示加入季节虚拟变量。

(3) 诊断性检验

估计 VECM 模型后,应对模型的假设进行诊断性检验(diagnostic checking),包括残差有无自相关,及模型的平稳性。

veclmar

对残差是否存在自相关进行LM 检验。

vecstable, graph

检验 VECM 系统是否为平稳过程。如所有特征值都在单位圆内,则为平稳过程。选择项"graph"表示画出特征值的几何分布图。

(4) 脉冲响应函数与预测

估计 VECM 模型后,可计算脉冲响应函数或进行预测,命令与 VAR 模型相同(参见第 13 章)。

一般主要关注长期均衡关系(协整关系),不太关心短期调整过程。

以数据集 mpyr.dta 为例,对美国的货币需求函数进行协整分析。

该数据集包含了美国 1900-1989 年的以下年度宏观变量: logp(价格水平的对数), logy(名义净国民生产总值的对数), logm1(M₁的对数), logmr(实际货币的对数,即 <math>logm1-logp),以及 r(名义利率)。

从理论出发,将货币需求函数写为

$$logmr_{t} = \beta_{0} + \beta_{1}logy_{t} + \beta_{2}r_{t} + \varepsilon_{t} \qquad (14.44)$$

假定以上变量均为单整 I(1)过程(参见习题), 故应进行协整分析。

首先,从图形上大致考察(logmr, logy, r)是否存在协整关系:

- . use mpyr.dta,clear
- . tsline logmr logy r, lpattern(solid dash shortdash) xlabel(1900(10)1990)

选择项"<u>lp</u>attern(solid dash shortdash)"表示分别用实线、虚线与短虚线来画图。"label(1900(10)1990)"表示,在横轴从1900-1990年,每隔10年做个标注(label)。

图 14.6 实际货币与收入的时间趋势

实际货币对数与收入对数的时间走势较接近,名义利率似乎与实际货币对数反向变动。(logmr, logy, r)可能存在长期均衡关系。

三个变量似乎都存在时间趋势。

首先,确定协整秩,即有多少个线性无关的协整关系。

使用命令 vecrank 检验协整秩时,需指定相应 VAR 模型的滞后阶数。

故先检验该系统所对应的 VAR 模型的滞后阶数:

. varsoc logmr logy r

ag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-251.056				.073876	5.90827	5.94272	5.99388
1	132.578	767.27	9	0.000	.000012	-2.80415	-2.66632	-2.46168*
2	148.293	31.429	9	0.000	.00001*	-2.96029*	-2.7191*	-2.36098
3	151.979	7.3723	9	0.598	.000012	-2.83672	-2.49215	-1.98055
4	162.506	21.054*	9	0.012	.000011	-2.87222	-2.42429	-1.75921

打星号者为根据不同准则所选的滞后阶数。

AIC 准则选择滞后二阶, BIC 准则选择滞后一阶。

为了保守起见,选择滞后二阶。

进行协整秩检验:

. vecrank logmr logy r, lags(2) trend(trend) max

选择项"lags(2)"表示对应的 VAR 模型滞后二阶(也是默认值);

选择项"trend(trend)"表示既包括常数项,也包括时间趋势项;

选择项"max"表示显示最大特征值统计量。

Johansen tests for cointegration										
Trend: trend Number of obs = 88										
Sample:	1902 - 1	989				Lags =	2			
					5%					
maximum				trace	critical					
rank	parms	$_{ m LL}$	eigenvalue	statistic	value					
0	15	138.03791		46.3731	34.55					
1	20	153.13651	0.29047	16.1759 <u>*</u>	18.17					
2	23	160.58579	0.15575	1.2773	3.74					
3	24	161.22445	0.01441							
1 2 1 2 2 3					5%					
maximum				max	critical					
rank	parms	$_{ m LL}$	eigenvalue	statistic	value					
0	15	138.03791		30.1972	23.78					
1	20	153.13651	0.29047	14.8985	16.87					
2	23	160.58579	0.15575	1.2773	3.74					
3	24	161.22445	0.01441							

迹检验表明(打星号者),只有一个线性无关的协整向量。

最大特征值检验也表明,可在5%的水平上拒绝"协整秩为0"的原假设,但无法拒绝"协整秩为1"的原假设(14.8985 < 16.87)。

使用 Johansen 的 MLE 方法估计向量误差修正模型(VECM):

.vec logmr logy r,lags(2) rank(1)

选择项"lags(2)"表示对应的 VAR 模型滞后二阶(也是默认值);

选择项"rank(1)"表示协整秩为1(也是默认值)。

Vector error-	correction mod	el				
Sample: 1902	- 1989			No. o	of obs :	= 88
				AIC		= -3.037506
Log likelihoo	d = 150.6503			HQIC		-2.8447
Det(Sigma_ml)	= 6.54e-06			SBIC	=	-2.55893
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
D_logmr	5	.050841	0.2758	31.61646	0.0000	
D_logy	5	.056773	0.3483	44.35204	0.0000	
D_r	5	1.1287	0.2133	22.50845	0.0004	
					·····	
	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
D_logmr						
_ce1						
L1.	0533601	.0410678	-1.30	0.194	1338515	.0271314
logmr						
LD.	.2079032	.1107256	1.88	0.060	0091149	.4249214
logy						
LD.	.0086587	.101984	0.08	0.932	1912263	.2085438
r						
LD.	0063968	.0052854	-1.21	0.226	0167559	.0039624
_cons	.0186333	.0064766	2.88	0.004	.0059393	.0313273
D_logy						
_ce1						
L1.	.0298268	.0458591	0.65	0.515	0600554	.119709
logmr						
LD.	.2666361	.1236437	2.16	0.031	.0242989	.5089733
1						
logy LD.	.2330244	.1138823	2.05	0.041	.0098191	.4562296
ши.	.2330244	.1130023	2.05	0.041	.0096191	.4502290
r						
LD.	0145323	.005902	-2.46	0.014	0261001	0029646
. u.	.0115525	.000002	2.10	0.011	.0201001	.0020010
_cons	.0157173	.0072323	2.17	0.030	.0015424	.0298923
D_r						

Cointegrating	equations					
Equation	Parms	chi2	P>chi2			
cel	2	794.1155	0.000			
Identification	n: beta is e	exactly iden	tified			
	Johansen	normalizati	on restri	ction imp	osed	
beta	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_ce1						
logmr	1					•
logy	9754246	.0346169	-28.18	0.000	-1.043273	9075767
r	.1124051	.0097191	11.57	0.000	.093356	.1314542
_cons	.7299535					
	<u> </u>					

此表上部为误差修正模型。下部为协整方程,以"_ce1"表示。

主要对货币需求函数感兴趣,即协整方程所代表的长期均衡关系。

根据此协整方程, 协整向量为(1,-0.98,0.11)。

logmr 的系数被标准化为 1, 故标准误缺失;

其他两个变量(logy与r)的协整系数均在1%水平上显著。

将协整向量移项,将估计的货币需求函数写为

$$\widehat{logmr_t} = -0.73 + 0.98 \, logy_t - 0.11 \, r_t \quad (14.45)$$

货币需求的收入弹性为 0.98, 货币需求的利率半弹性为-0.11, 符合经济理论的预期。

检验 VECM 模型的残差是否存在自相关。如存在自相关,需增加滞后阶数。

. veclmar

lag	chi2	df	Prob > chi2
1	6.6260	9	0.67599
2	12.5541	9	0.18384

可接受"无自相关"的原假设。

检验 VECM 系统是否稳定,如图 14.7:

. vecstable, graph

Eigenvalue	Modulus		
1	1		
1	1		
.4092107 + .4061819 <i>i</i>	.576574		
.40921074061819 <i>i</i>	.576574		
.2217304 + .07266624i	.233334		
.221730407266624i	.233334		

图 14.7 VECM 系统稳定性的判别图

除了 VECM 模型本身所假设的单位根之外,伴随矩阵的所有特征值均落在单位圆之内,故是稳定系统。

作为对比,直接用 OLS 估计长期均衡关系(EG-ADF 两步法):

. reg logmr logy r

Source	SS	df	MS		Number of obs	
					F(2, 87)	= 1169.93
Model	41.216226	2	20.608113		Prob > F	= 0.0000
Residual	1.53248421	87	.017614761		R-squared	= 0.9642
			· · · · · · · · · · · · · · · · · · ·		Adj R-squared	= 0.9633
Total	42.7487102	89	.480322587		Root MSE	= .13272
·						
logmr	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
logy	.9418376	.01961	78 48.01	0.000	.9028451	.9808302
r	0832229	.00538	29 -15.46	0.000	0939219	0725239
	7737089	.04268	86 -18.12	0.000	8585572	6888606

OLS 估计值与 MLE 估计结果较接近。

理论上, MLE 估计更有效率。