16.2 Elements of Greedy Algorithms

- greedy algorithm 만들기
- 1. 하나의 (greedy) 선택을 하면 나머지 부분도 하나의 subproblem 만 남도록 최적화 문제를 세워라.
- 2. Prove that there is always an optimal solution to the original problem that makes the greedy choice.
- 3. Demonstrate optimal substructure. (greedy choice 와 subproblem 의 optimal solution 을 결합하면 전체 문제의 optimal solution 을 얻는다는 것을 보임)

When can we use a greedy algorithm?

• greedy-choice property + optimal substructure

Greedy-choice property

"We can assemble a globally optimal solution by making locally optimal (=greedy) choices."

- = 어떤 선택을 할지 고려할 때 부분 문제들의 결과를 고려할 필요없이 현재 고려 중인 문제에서 최적인 문제를 선택해도 된다.
- difference between dynamic programming and greedy algorithm
 - dynamic programming : subproblem 들의 해를 먼저 구한다. (bottom-up)
 - greedy algorithm : choice 를 먼저 한 다음 나머지 subproblem 을 푼다. (top-down)

Greedy-choice property

"We can assemble a globally optimal solution by making locally optimal (=greedy) choices."

• 예를 들면 rod-cutting problem 은 greedy-choice property 를 가지지 않았으므로 dynamic programming 으로 풀어야한다.

length i	1	2	3	4	(5)	6	7	8	9	10
price p_i	1	(5)	(8)	9	10	17	17	20	24	30

Optimal Substructure

"An optimal solution to the problem contains optimal solutions to subproblems."

0-1 knapsack problem

- n items : w_i is a weight of i-th item, v_i is a value of i-th item
- W: knapsack capacity
- problem: choose a set of items maximizing total value, and not exceeding knapsack capacity

fractional knapsack problem

- n items : w_i is a weight of i-th item, v_i is a value of i-th item
- W: knapsack capacity
- problem: choose a set of fractional items maximizing total value, and not exceeding knapsack capacity

- 0-1 knapsack problem has optimal substructure, but not greedychoice property → dynamic programming
- fractional knapsack problem has optimal substructure, and greedychoice property \rightarrow greedy algorithm $O(n \lg n)$
 - 1. sort items in value/weight $(=v_i/w_i)$

```
2. FRACTIONAL-KNAPSACK (v, w, W)
load = 0
i = 1
while load < W \text{ and } i \leq n
if w_i \leq W - load
take all of item i
else take <math>(W - load)/w_i of item i add what was taken to load
i = i + 1
```

Greedy vs. dynamic programming

- greedy algorithm 으로 충분한데 dynamic programming 으로 풀려고 하거나 > i.e. fractional knapsack problem
- dynamic programming 으로 풀어야하는데 greedy algorithm 으로 풀려고 하거나 → i.e. 0-1 knapsack problem

16.3 Huffman codes (for data compression)

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- a~f 문자를 100,000 개 포함한 화일의 길이
 - fixed-length (3-bit) code 사용 : 3 x 100,000 = 300,000 bits
 - variable-length code 를 사용하여 화일 크기를 줄일 수 있다.
 1x45000 + 3x(13+12+16)x1000 + 4x(9+5)x1000 = 224,000 bits
- variable-length code 는 codeword 의 끝을 어떻게 알 수 있을까? 001011101 → aabe

Prefix code

	а	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	O	101	100	111	1101	1100
					1011	

• Prefix codes : 어느 codeword 도 다른 codeword 의 prefix 가 아닌 코드

(prefix-free codes). → guarantees unambiguity in decoding a variable-length code.

 $001011101 \rightarrow 001011101$

Problem : 주어진 문자 분포에 대해 B(T) 를 최소화하는 최적의 prefix code 를 만들어라.

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

C: 화일에 사용된 문자 집합

c.freq: 문자 c 가 화일에서 사용된 빈도 (사용된 횟수/전체문자개수)

 $d_T(c)$ = 만들어진 code tree 에서 문자 c 를 나타내는 노드의 depth (root 에서부터 edge 의 갯수)

Solution T

a:45

55

55

0

1

0

1

0

1

0

1

1

14

0:16

15:5

e:9

최적의 prefix code는 항상 full binary tree 로 표현된다. (exercise 16.3-2)

full binary tree : 모든 tree node 의 child 가 0개 아니면 2개인 binary tree (complete binary tree 와 다름)

types of binary tree

• full binary tree : 모든 노드가 0 혹은 2개의 child 를 가진 트리

• complete binary tree (완전 이진 트리) 가장 낮은 레벨을 제외하고 모든 레벨이 완전히 차 있고 가장 낮은 레벨은 왼쪽부터 차있는 트리

HUFFMAN(C) 1 n = |C|2 Q = C3 for i = 1 to n - 14 allocate a new node z5 z.teft = x = EXTRACT-MIN(Q) greedy choice 6 z.right = y = EXTRACT-MIN(Q)7 z.freq = x.freq + y.freq8 INSERT(Q, z) 9 return EXTRACT-MIN(Q) // return the root of the tree

d:16

d:16

a:45

a:45

HUFFMAN(C)c:12 b:13 d:16 a:45 (a) $1 \quad n = |C|$ Q = Cd:16 a:45 (b) **for** i = 1 **to** n - 1allocate a new node z z.teft = x = EXTRACT-MIN(Q) greedy choice z.right = y = EXTRACT-MIN(Q)d:16 (c) a:45 z.freq = x.freq + y.freqINSERT(Q, z)

return EXTRACT-MIN(Q) // return the root of the

```
HUFFMAN(C)
                                                                            b:13
                                                                                        a:45
                                                                 e:9
                                                                      c:12
                                                                                  d:16
                                                      (a)
   n = |C|
Q = C
                                                                                        a:45
                                                                 b:13
                                                                                   d:16
                                                       (b)
   for i = 1 to n - 1
       allocate a new node z
       z.teft = x = \text{EXTRACT-MIN}(Q) greedy choice
        z.right = y = EXTRACT-MIN(Q)
                                                                       d:16
                                                      (c)
                                                                                        a:45
       z.freq = x.freq + y.freq
       INSERT(Q, z)
   return EXTRACT-MIN(Q) // return the root of the
                                                           f:5
                                                      (d)
                                                                                        a:45
                                                                                d:16
                                                                 b:13
```

e:9

Huffman(C)a:45 e:9 c:12 b:13 d:16 (a) n = |C|Q = Cb:13 d:16 a:45 (b) **for** i = 1 **to** n - 1allocate a new node z z.teft = x = EXTRACT-MIN(Q) greedy choice z.right = y = EXTRACT-MIN(Q)d:16 z.freq = x.freq + y.freq(c) a:45 INSERT(Q, z)**return** EXTRACT-MIN(Q) // return the root of the f:5 b:13 e:9 a:45 (e) (d) a:45 d:16 b:13 b:13 d:16 f:5 e:9

Huffman(C)a:45 e:9 c:12 b:13 d:16 (a) n = |C|Q = Cb:13 d:16 a:45 (b) **for** i = 1 **to** n - 1allocate a new node z z.teft = x = EXTRACT-MIN(Q) greedy choice z.right = y = EXTRACT-MIN(Q)d:16 z.freq = x.freq + y.freq(c) a:45 INSERT(Q, z)**return** EXTRACT-MIN(Q) // return the root of the f:5 b:13 X a:45 (e) (d) a:45 d:16 b:13 b:13 d:16 e:9

Huffman code

HUFFMAN(C)n = |C| $Q = C \longleftarrow O(n)$ BUILD_MIN_HEAP **for** i = 1 **to** n - 1allocate a new node z $O(\lg n)$ z.left = x = EXTRACT-MIN(Q)z.right = y = EXTRACT-MIN(Q)z.freq = x.freq + y.freqINSERT(Q,z)**return** EXTRACT-MIN(Q)**//** return the root of the tree

$$\rightarrow O(n \lg n)$$

Optimizing prefix code with respect to B(T)

Tree representation of code

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

C: 화일에 사용된 문자 집합 = {a,b,c,d,e,f} in the example c.freq: 문자 c 가 화일에서 사용된 빈도 (사용된 횟수/전체문자개수) $d_T(c)$ = 만들어진 code tree 에서 문자 c 를 나타내는 노드의 depth = root 에서부터 edge 의 갯수 = codeword 의 길이

$$a$$
 b c d e f $c.freq$ 0.45 0.13 0.12 0.16 0.09 0.05 $d_T(c)$ 1 3 3 3 4 4

Greedy Choice Property of Optimal Prefix Code Problem

Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies.

Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Proof of Lemma 16.2

• 주어진 문제에 대한 임의의 optimal prefix code 를 나타내는 tree T를 변형하여 x와 y가 최대 깊이를 갖는 sibling leaf node 가 되는 T"을 만들면 T"도 optimal prefix code 를 나타냄을 보인다.

즉 B(T) = B(T) 임을 보임

T에서 maximum depth 갖는 두 글자 중 frequency 가 더 작은 글자

T에서 maximum depth 갖는 두 글자 중 frequency 가 더 작은 글자

$$B(T) - B(T')$$

$$= \sum_{c \in C} c \cdot freq \cdot d_T(c) - \sum_{c \in C} c \cdot freq \cdot d_{T'}(c)$$

$$= x \cdot freq \cdot d_T(x) + a \cdot freq \cdot d_T(a) - x \cdot freq \cdot d_{T'}(x) - a \cdot freq \cdot d_{T'}(a)$$

$$= x \cdot freq \cdot d_T(x) + a \cdot freq \cdot d_T(a) - x \cdot freq \cdot d_T(a) - a \cdot freq \cdot d_T(x)$$

$$= (a \cdot freq - x \cdot freq)(d_T(a) - d_T(x))$$

$$\geq 0,$$

T는 optimal prefix code 를 표현하므로 B(T) = B(T')

C 에서 2nd minimum frequency 갖는 글자

T 에서 maximum depth 갖는 두 글자 중 frequency 가 더 큰 글자 마찬가지로 B(T')=B(T'')

따라서
$$B(T) = B(T'')$$

Optimal Substructure of Optimal Prefix Code Problem

Lemma 16.3

Let C be an alphabet in which each character $c \in C$ has frequency c.freq.

Let x and y be two characters in C having the lowest frequencies.

Let
$$C' = C - \{x, y\} \cup \{z\}$$
. In C'

z.freq = x.freq + y.freq and c.freq are same as in C for all other characters.

Let T be any tree representing an optimal prefix code for C. Huffman code algorithm

Then the tree T, obtained from T by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.

Optimal Substructure of Optimal Prefix Code Problem

Lemma 16.3

$$C' = \{.....,z\}$$

 $C = \{.....,x,y\}$

T': optimal prefix code for C'

→ T is an optimal prefix code for C

In C' z.freq = x.freq + y.freq and c.freq are same as in C for all other characters.

Optimal Substructure of Optimal Prefix Code Problem

Lemma 16.3

For each character
$$c \in C - \{x, y\}$$
, we have that $d_T(c) = d_{T'}(c) \rightarrow c.freq \cdot d_T(c) = c.freq \cdot d_{T'}(c)$

$$d_T(x) = d_T(y) = d_{T'}(z) + 1 \longrightarrow x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = (x.freq + y.freq)(d_{T'}(z) + 1)$$

$$= z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$$

$$B(T) = B(T') + x.freq + y.freq$$

Proof of Lemma 16.3 by contradiction

- T 가 C의 optimal prefix code 를 나타내지 않는다고 가정
- \rightarrow C의 optimal prefix code 를 나타내는 T" s.t. B(T)" < B(T) 가 있음
- \rightarrow T''은 x와 y가 sibling leaf node 임 by lemma 16.2
- \rightarrow T"을 변형하여 x와 y의 공통 부모 노드를 z 로 바꾼 트리 T"'을 만들면 C'의 prefix code

T, *T*" for *C*

T', T''' for C'

 \rightarrow T' 은 C' 의 optimal prefix code 가 아님 (모순)

Proof of Lemma 16.3 by contradiction

- T 가 C의 optimal prefix code 를 나타내지 않는다고 가정
- \rightarrow C의 optimal prefix code 를 나타내는 T" s.t. B(T)" < B(T) 가 있음

T, T" for C T', T" 'for C'

- \rightarrow T"은 x와 y가 sibling leaf node 임 by lemma 16.2
- \rightarrow T"을 변형하여 x와 y의 공통 부모 노드를 z 로 바꾼 트리 T"'을 만들면 C'의 prefix code
- \rightarrow B(T''') < B(T') 라서 T'은 C'의 optimal prefix code 가 아님 (모순)

For each character $c \in C - \{x, y\}$, we have that $d_{T''}(c) = d_{T'''}(c) \rightarrow c. freq d_{T''}(c) = c. freq d_{T''}(c)$ $d_{T''}(x) = d_{T''}(y) = d_{T''}(z) + 1 \rightarrow x. freq d_{T''}(x) + y. freq d_{T''}(y) = (x. freq + y. freq)(d_{T''}(z) + 1)$

$$x. freq \ d_{T''}(x) + y. freq \ d_{T''}(y) = (x. freq + y. freq)(d_{T'''}(z) + 1)$$

= $z. freq \ d_{T'''}(z) + x. freq + y. freq$

$$B(T'') = B(T''') + x. freq + y. freq$$

$$B(T''') = B(T'') - x. freq - y. freq$$

$$< B(T) - x. freq - y. freq$$

$$= B(T'),$$

Huffman code algorithm 은 optimal prefix code 를 만든다.

• from Lemma 16.2 and 16.3

Lemma 16.3

Let C be an alphabet in which each character $c \in C$ has frequency c.freq.

Let x and y be two characters in C having the lowest frequencies.

Let
$$C' = C - \{x, y\} \cup \{z\}$$
. In C'

z.freq = x.freq + y.freq and c.freq are same as in C for all other characters.

Let T be any tree representing an optimal prefix code for C.

Then the tree T, obtained from T by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.