2.1. Розробка інформаційних структур даних підсистем ГАД

Для розрахунку технологічного маршруту було визначено:

- номенклатуру деталей обробки;
- у якій послідовності і на якому устаткуванні деталі будуть оброблятись;
- кількість транспортних модулів;
- схему здійснення транспортування об'єктів виробництва.

На основі цієї інформації складемо технологічний маршрут для кожної деталі. Технологічний маршрут включає порядок проходження деталей через технологічне устаткування і час обробки деталі на одиниці технологічного устаткування. Порядок проходження деталей через технологічне устаткування був визначений згідно операціям, які необхідно провести з деталлю. Складемо необхідну матрицю маршрутів. Вона приведена в табл. 3.

Таблиця З

	Д1	Д2	ДЗ	Д4	Д5	Д6	Д7	Д8	Д9	Д10	Д11	Д12	Д13	Д14
етап	4 (T1)	4(T	4(T1)	3(T2)	1(T3)	3(T2,	4(T1	3(T2)	5(F2	5(F2,	4(T1)	4(T1)	4(T2)	5(T4)
1		1,C1				C3)))	T4)				
		,C2,												
		P2)												
етап	3(T2)	5(Ť	3(C3,	1(T3)	4(C1,	5(F1,	3(C3	1(T3)	2(F3	4(C1,	5(F1,	5(F1,	1(T3)	4(C1,
2		4)	T2)		C2,P	F2)))	C2,T	F2,T	T4)		C2)
					2)					1)	4)			
етап	1(T3)		1(T3)	4(C1,	5(F1,	4(C1,	1(T3	5(T4)	3(C3		4(C,	4(C1,	5(F1,	5(F1,
3				C2,P	T4)	C2,P)		,T2)		C2,T	C2)	F2,P	F2)
				2)		2)					2)		1,T4)	
етап	5(F1)		4(C1,	5(F1,		5(T4)	4(C1	4(C1,	1(T3		1(T3)		4(C1,	
4			C2,P	F2)			,C2,	C2))				C2)	
			2)				P2)							
етап	4(C1,						5(F1	5(P1,F	5(T4					
5	C2,P2						,F2)	1,F2))					
)													
етап									4(C1					
6									,C2)					

У табл. 4 представлені наступні ГВМ:

Таблиця 4

№ ГВМ	Операції
ГВМ 1	Т3
ГВМ 2	Ф3
ГВМ 3	T2 C3
ГВМ 4	C1 C2 T1 P2
ГВМ 5	Т4 Ф1 Ф2 Р1

Час виконання кожної операції залежить від її складності. Встановимо складність виконання операції відповідно до порядку виконання операції в матриці маршрутів.

У відповідності зі складністю обробки розраховується час кожної операції за формулою:

$$t_{i} = t_{cn} \cdot Kop_{i,j},$$

$$t_{cn} = \frac{n \cdot t_{o6}}{\sum Kcn_{j}},$$

$$Kcn_{j} = \sum Kop_{i}$$

де

n – загальна кількість деталеутановок

 t_{o6} – середній час обробки однієї деталеустановки

 $t_{\scriptscriptstyle C\!\scriptscriptstyle I\!\scriptscriptstyle I}$ – час обробки складної операції з $K\!op_i=1$

Ксл_j – коефіцієнт складності j-ої деталі, *Кор_i* –коефіцієнт складності i-ої операції, що входить в технологічний процес обробки j-ої деталі. Матриця порядку виконання операції представлена в табл. 5.

	Д1	Д2	Д3	Д4	Д5	Д6	Д7	Д8	Д9	Д10	Д11	Д12	Д13	Д14
T1	1	1	1				1			5	1	1		
T2	2		3	1		1		1	4		7		1	
T3	3		4	2	1		3	2	5		8			
T4		5			6	8		3	6	2	4	3	6	1
C1	5	2	5	3	2	5	4	4	7	3	5	4	7	2
C2	6	3	6	4	3	6	5	5	8	4	6	5	8	3
C3			2			2	2		3					
F1	4			6	5	3	7	7			2	2	3	4
F2				7		4	8	8	1	1	3		4	5
F3					~	`	~		2			~	~	
P1								6					5	
P2	7	4	7	5	4	7	6							

3 таблиці 5 зіставимо таблицю 6, в якій розраховано скільки разів на якій позиції зустрічається кожна з наданих операцій.

Таблиця 6

Позиція	T1	T2	Т3	T4	C1	C2	C3	F1	F2	F3	P1	P2
1	6	4	1	1					2			
2		1	2	1	3		3	2		1		
3		1	2	2	2	3	1	2	1			
4		1	1	1	3	2		2	2			2
5	1		1	1	4	3		1	1		1	1
6				3		4		1			1	1
7		1			2			2	1			3
8			1	1		2			2			
Всього	7	8	8	10	14	14	4	10	9	1	2	7

Час виконання кожної операції залежить від її складності. Встановимо складність виконання кожної операції. Операції Т1 найчастіше зустрічаються на першій позиції (6 разів), отже складність її виконання — 1. Операція Т2 також часто зустрічається на першій позиції (4 рази), тому складність виконання — 0.9. Операції С1,С2 застосовуються з однаковою частотою (14 разів), та вони виконуются частіше за операції, Т1 Т2 на тих самих позиціях тому їх складність відповідно — 0.8 та 0.7, а опера Т3 Т4 — 0.6 та 0.5.

Операції Φ 1, Φ 2 виконуються приблизно з однаковою частотою на аналогічних позиціях, отже їхня складність — 0.4. Присвоїмо операції СЗ складність 0.3 оскільки вона частіше зустрічається на 2-гій позиції, операції P2 P1 — 0.2 та 0.1 відповідно, так як операція P2 частіше виконується

Таблиця 7

Операція	Тип	Складність
T1	Токарська	1
T2	Токарська	0.9
C1	Свердлильна	0.8
C2	Свердлильна	0.7
T3	Токарська	0.6
T4	Токарська	0.5
Ф1,Ф2	фрезерна	0.4
C3	Свердлильна	0.3
P2	різьблення	0.2
Р1,Ф3	різьблення	0.1

Для розрахунку часу на виконання операцій складемо таблицю коефіцієнтів складності операцій для кожної деталі у наступному вигляді (табл.8).

Таблиця 8

	Д1	Д2	ДЗ	Д4	Д5	Д6	Д7	Д8	Д9	Д1	Д1	Д12	Д13	Д14
										0	1			
T1	1	1	1				1			1	1	1		
T2	0.9		0.9	0.9		0.9		0.9	0.9		0.9		0.9	
T3	0.6		0.6	0.6	0.6		0.6	0.6	0.6		0.6			
T4		0.5			0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5
C1	0.8	8.0	8.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
C2	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
C3			0.3			0.3	0.3		0.3					
F1	0.4			0.4	0.4	0.4	0.4	0.4			0.4	0.4	0.4	0.4
F2				0.4		0.4	0.4	0.4	0.4	0.4	0.4		0.4	0.4
F3									0.1					
P1								0.1					0.1	
P2	0.2	0.2	0.2	0.2	0.2	0.2	0.2							

$$\sum K_{CЛ_j} = 33.5$$
 $t_{o6} = 0.2 (\text{год}) = 0.2*60 = 12 \text{ (xB)}$
 $n = 86$
 $t_{cn} = n* t_{o6} / \sum K_{CЛ_j} = \frac{86 \cdot 12}{33.5} = 30.8 \text{ (xB)}$

Результати обчислень знаходяться в табл. 9.

Таблиця 9

Операція	Час
T1	30.8
T2	27.7
C1	24.56
C2	21.56
T3	18.48
T4	15.4
Ф1,Ф2	12.32
C3	9.24
P2	6.16
Р1,Ф3	3.08

На підставі отриманих значень складемо матрицю тривалості обробки деталей на ГВМ, що на табл. 10:

Таблиця 10

	Д1	Д2	Д3	Д4	Д5	Д6	Д7	Д8	Д9	Д10	Д11	Д12	Д13	Д14
етап 1	30.8	82.12	30.8	27.7	18.48	37.1	30.8	27.7	12.3	27.7	30.8	30.8	27.7	15.4
етап 2	27.7	15.4	37.1	18.4	52.1	24.6	9.24	18.48	3.08	76.8	40.1	27.72	18.4	46
етап 3	18.48		18.4	52.1	27.7	52.16	18.4	15.4	37.1		76.8	46	43.2	24.64
етап 4	12.32		52.1	24.6		15.4	52.1	46	18.4		18.48		46	
етап 5	52.16						24.6	27.72	15.4					
етап 6									46					

Для складання розкладу транспортного обслуговування ГВМ необхідно знати час транспортування між ГВМ та між АС та ГВМ. Це розраховується з урахуванням того, що ГВМ знаходяться на однаковій відстані один від одного, та від АС, та з урахування структурно-компонувальної схеми ГВС. Час транспортування розраховується тільки для маршрутів наведених у структурно-технологічній схемі.

Основні параметри ділянки ГВС представлені в табл. 2, що наведена у розділі 1.1.

Переміщення між АС та ГВМ, ГВМ та ГВМ наведені в табл. 11.

Таблиця 11

	AC	ГВМ1	ГВМ2	ГВМ3	ГВМ4	ГВМ5
AC	-	5	4	3	2	1
ГВМ1	1	-	5	4	3	
ГВМ2	2		-			3
ГВМ3	3		1	_	5	
ГВМ4	4	3			-	5
ГВМ5	5	4		2	1	-

Послідовність дій (час у хв.):

AC=>
$$\Gamma$$
BM1 = t_{e3} + t_{nocm} + 1* t_{cp} + t_{3} =8.7

AC=>
$$\Gamma$$
BM2 = t_{e3} + t_{nocm} + 2* t_{cp} + t_{3} = 9.7

AC=>
$$\Gamma$$
BM3 = t_{e3} + t_{nocm} + 3* t_{cp} + t_{3} = 10.7

AC=>
$$\Gamma$$
BM4 = t_{e3} + t_{nocm} + 4* t_{cp} + t_{3} =11.7

AC=>
$$\Gamma$$
BM5 = t_{63} + t_{nocm} + 5* t_{cp} + t_{3} = 12.7

$$\Gamma BM1 => AC = t_{63} + t_{nocm} + 5 * t_{cp} + t_p = 11.7$$

$$\Gamma BM2 => AC = t_{e3} + t_{nocm} + 4 * t_{cp} + t_p = 10.7$$

$$\Gamma BM3 => AC = t_{e3} + t_{nocm} + 3 * t_{cp} + t_p = 9.7$$

$$\Gamma BM4 => AC = t_{e3} + t_{nocm} + 2 * t_{cp} + t_{p} = 8.7$$

$$\Gamma BM5 => AC = t_{63} + t_{nocm} + 1*t_{cp} + t_p = 7.7$$

$$\Gamma BM1 = \Gamma BM4 = t_{e3} + 3 * t_{cp} + t_{nocm} + t_p + t_3 = 14.7$$

$$\Gamma BM1 = \Gamma BM5 = t_{e3} + 4*t_{cp} + t_{nocm} + t_p + t_3 = 15.7$$

ΓΒM2=>ΓΒM1 =
$$t_{63}$$
 +5* t_{cp} + t_{nocm} + t_p + t_3 = 16.7
ΓΒM2=>ΓΒM3 = t_{63} +1* t_{cp} + t_{nocm} + t_p + t_3 = 12.7

ΓΒM3=>ΓΒM1 =
$$t_{63}$$
 +4* t_{cp} + t_{nocm} + t_p + t_3 = 15.7
ΓΒM3=>ΓΒM5 = t_{63} +2* t_{cp} + t_{nocm} + t_p + t_3 = 13.7

ΓΒΜ4=>ΓΒΜ1 =
$$t_{e3}$$
 +3* t_{cp} + t_{nocm} + t_p + t_3 =15.7
ΓΒΜ4=>ΓΒΜ3 = t_{e3} +5* t_{cp} + t_{nocm} + t_p + t_3 = 16.7
ΓΒΜ4=>ΓΒΜ5 = t_{e3} +1* t_{cp} + t_{nocm} + t_p + t_3 =12.7

$$\Gamma$$
BM5=> Γ BM2 = t_{e_3} +2* t_{cp} + t_{nocm} + t_p + t_3 = 13.7
 Γ BM5=> Γ BM4 = t_{e_3} +1* t_{cp} + t_{nocm} + t_p + t_3 = 12.7 оскільки вони з'єднані.

Підраховані дані представлені у табл. 13.

Таблиця 13

	AC	ГВМ1	ГВМ2	ГВМ3	ГВМ4	ГВМ5
AC	-	8.7	9.7	10.7	11.7	12.7
ГВМ1	7.7	-				
ГВМ2	8.7	16.7	_	12.7		
ГВМ3	9.7	15.7		-		13.7
ГВМ4	10.7	15.7		16.7	-	12.7
ГВМ5	11.7		13.7		12.7	-