

Institutt for matematiske fag

skal ha flervalgskjema

Eksamensoppgave i TMA412	5 Matemat	tikk 4N	
Faglig kontakt under eksamen: Morten A Tlf: 90849783	ndreas Nome		
Eksamensdato: 6. juni 2019			
Eksamenstid (fra-til): 09:00 - 13:00			
Hjelpemiddelkode/Tillatte hjelpemidler: formelark.	Kode C: Beste	emt, enkel k	alkulator, og vedlagte
Annen informasjon: Denne eksamenen består av 10 delpunkt som alle teller like mye. Alle svar skal begrunnes. Valgfritt programmeringsspråk i programmeringsoppgaver. Lykke til.			
Målform/språk: bokmål			
Antall sider: 2			
Antall sider vedlegg: 2			
Allian Sider Vedlegg. 2			
Informasjon om trykking av eksamensoppgave Originalen er:			Kontrollert av:
1-sidig □ 2-sidig ⊠	-	Data	0'
sort/hvit ⊠ farger □		Dato	Sign

Oppgave 1 La δ være Diracs deltafunksjon. Løs initialverdiproblemet

$$y''(t) + y(t) = \delta(t - \pi) + \delta(t - 2\pi) \qquad y(0) = y'(0) = 0$$

og skisser løsningen.

Oppgave 2 La f være en funksjon, og anta at det er mulig å skrive

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

på intervallet $[-\pi, \pi]$.

a) Vis at

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

b) La $f(x) = e^{-|x|}$. Finn fourierrekken til f på $[-\pi, \pi]$, og skisser denne på intervallet $[-3\pi, 3\pi]$.

Oppgave 3 La u være heavisidefunksjonen

$$u(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$$

Skisser funksjonen -u(x+1) + 2u(x) - u(x-1), og finn dennes fouriertransform.

Oppgave 4 Finn løsningen til varmelikningen

$$u_t = u_{xx},$$

for $0 \le x \le \pi$ og $t \ge 0$ med randkrav

$$u_r(0,t) = u_r(\pi,t) = 0$$

og initialkrav

$$u(x,0) = e^{-x}.$$

Oppgave 5 Anta at du har en tabell med n+1 forskjellige punkter på x-aksen, og tilhørende funksjonsverdier. Vis at det finnes et entydig polynom av maksimal grad n som interpolerer tabellen.

Side 2 av 2

Oppgave 6 La

$$f(x) = \cos x$$
.

Bruk en endelig differanseformel til å tilnærme $f'(1) \approx -0.841470984807897$ med en feil på mindre enn 10^{-9} .

Oppgave 7 Finn en tilnærming til integralet

$$\int_{-1}^{1} x^8 + x^6 \, dx = \frac{32}{63}$$

ved hjelp av fempunkts Gauss-Legendre-kvadratur.

Oppgave 8 Skriv et script som finner en tilnærming til y(2), der

$$y' = -3y \quad y(0) = 1,$$

ved Eulers eksplisitte metode, med fritt valgt steglengde h. For hvilke valg av h er metoden stabil?

Oppgave 9 Vi skal løse varmelikningen

$$u_t = u_{xx},$$

for $0 \le x \le 1$ og $t \ge 0$ med randkrav

$$u(0,t) = u(1,t) = 0$$

og initialkrav

$$u(x,0) = 1.$$

Skriv et script som løser problemet numerisk med Crank-Nicolsons skjema for $t \in [0,1].$

LAPLACETRANSFORM

$$\mathcal{L}(f) = \int_0^\infty f(t)e^{-st} dt = F(s)$$

$$f(t) \qquad F(s)$$

$$\delta(t-a) \qquad e^{-as}$$

$$u(t-a) \qquad \frac{e^{-as}}{s}$$

$$e^{at} \qquad \frac{1}{s-a}$$

$$t^n \qquad \frac{n!}{s^{n+1}}$$

$$\cos at \qquad \frac{s}{s^2+a^2}$$

$$\sin at \qquad \frac{a}{s^2+a^2}$$

$$\cosh at \qquad \frac{s}{s^2-a^2}$$

$$\sinh at \qquad \frac{a}{s^2-a^2}$$

$$e^{at}\cos t \qquad \frac{s-a}{(s-a)^2+1}$$

$$e^{at}\sin t \qquad \frac{1}{(s-a)^2+1}$$

FOURIERTRANSFORM

$$\mathcal{F}(f) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx = \hat{f}(w),$$

$$f(x) \qquad \hat{f}(w)$$

$$e^{-ax^2} \qquad \frac{1}{\sqrt{2a}}e^{-\frac{w^2}{4a}}$$

$$e^{-a|x|} \qquad \frac{1}{\sqrt{2\pi}}\frac{1}{a+w^2}$$

$$\frac{1}{x^2+a^2} \qquad \frac{1}{\sqrt{2\pi}}\frac{e^{-a|w|}}{a}$$

GAUSSKVADRATUR

Gauss-Legendre

\overline{n}	x_i	A_i
2	$\pm\sqrt{\frac{1}{3}}$	1
3	0	$\frac{8}{9}$
	$\pm\sqrt{\frac{3}{5}}$	$\frac{8}{9}$ $\frac{5}{9}$
4	$\pm\sqrt{\tfrac{3}{7}-\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18+\sqrt{30}}{36}$
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	$\frac{18 - \sqrt{30}}{36}$
5	0	$\frac{128}{225}$
5	$\pm \frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	$\frac{322+13\sqrt{70}}{900}$
5	$\pm \frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	$\frac{322 - 13\sqrt{70}}{900}$

Gauss-Lobatto

\overline{n}	x_i	A_i
3	0	$\frac{4}{3}$
	±1	$\frac{\frac{4}{3}}{\frac{1}{3}}$
4	$\pm\sqrt{\frac{1}{5}}$	$\frac{5}{6}$
	±1	$\frac{1}{6}$
5	0	$\frac{32}{45}$
	$\pm\sqrt{\frac{3}{7}}$	$\frac{49}{90}$
	±1	$\frac{1}{10}$
6	$\pm\sqrt{\frac{1}{3}-\sqrt{\frac{2}{3\sqrt{7}}}}$	$\frac{14+\sqrt{7}}{30}$
	$\pm\sqrt{\frac{1}{3}} - \sqrt{\frac{2}{3\sqrt{7}}}$ $\pm\sqrt{\frac{1}{3}} + \sqrt{\frac{2}{3\sqrt{7}}}$	$\frac{14-\sqrt{7}}{30}$
	±1	$\frac{1}{15}$
	0	256
7	0	$\frac{256}{525}$
	$\pm\sqrt{\frac{5}{11} - \frac{2}{11}\sqrt{\frac{5}{3}}} \\ \pm\sqrt{\frac{5}{11} + \frac{2}{11}\sqrt{\frac{5}{3}}}$	$\frac{124 + 7\sqrt{15}}{350}$
	$\pm\sqrt{\frac{5}{11}+\frac{2}{11}\sqrt{\frac{5}{3}}}$	$\frac{124 - 7\sqrt{15}}{350}$
	±1	$\frac{1}{21}$