Algoritmi konstrukcije sufiksnog niza

Lazar Vasović, 2006/2021 prof. dr Miodrag Živković Algoritmi teksta – napredni koncepti Seminar Katedre, 15. septembar 2022.

Pretraživanje niske

AABAACAADAABAABA Text:

Pattern found at index 0, 9, 12

 Traženje jedne niske (šablona) u drugoj (bazi) – osnovni problem koji rešavaju algoritmi teksta

Priprema jednog šablona

 Tradicionalni pristup pripremi jednog šablona – Knut-Moris-Prat i odgovarajući konačni automat

Priprema više šablona

 Tradicionalni pristup pripremi više šablona – Ejho-Korasik i odgovarajuće prefiksno stablo

Priprema baze

- Šabloni su promenljivi uglavnom je isplativija predobrada baze
- Priprema bazne niske sufiksno stablo (prefiksno stablo sufiksa)

Sufiksno stablo

- Sufiksno stablo dobro opisuje internu strukturu niske
- Predobrada baze efikasno rešavanje mnogih zadataka

Sufiksni niz

Idx Suffixes	SA-Idx	ldx	Sorted Suffix								
O BANANA	0	5	Α								
1 ANANA	1	3	ANA								
2 NANA	 2	1	ANANA								
3 ANA	[¬] / 3	0	BANANA								
4 NA	4	4	NA								
5 A	5	2	NANA								
Suffix Array [5, 3, 1, 0, 4, 2]											

- Sufiksno stablo korisno, ali prostorno zahtevno i složeno
- Sufiksni niz leksikografski sortirani niz indeksa sufiksa

Najduži zajednički prefiksi

Suffix	Index	LCP
A	5	0
ANA	3	1
ANANA	1	3
BANANA	0	0
NA	4	0
NANA	2	2

- Najduži zajednički prefiksi pomoćni niz
- Svi problemi efikasna linearna rešenja

Niz iz stabla

- Prost obilazak stabla u dubinu leksikografskim poretkom
- Vremenski efikasno, ali suštinski ne popravlja prostor

Naivni algoritam

Prosto sortiranje indeksa prema sufiksima

Str	m	i	S	S	i	S	S	i	р	р	i
Idx	0	1	2	3	4	5	6	7	8	9	10
Niz	10	7	4	1	0	9	8	6	3	5	2
Rang	5	4	11	9	3	10	8	2	7	6	1

- Efikasno sortiranje O(nlogn) poređenja
- Poređenje sufiksa -O(n) zbog više karaktera
- Sveukupna vremenska složenost $O(n^2 \log n)$
- Prostorna složenost u mestu (jedini)

Dupliranje prefiksa

- Sufiksi nisu nezavisni potiču iz iste niske
- Mogu se iterativno sortirati, prema prefiksima
- Zapravo se rangiraju $R_{2k}[i] = rang(R_k[i], R_k[i+k])$
- U j-toj iteraciji poredak prema 2^j karaktera

S ₁	m	i	S	S	i	S	S	i	р	р	i
S ₂	m-i	i-s	S-S	s-i	i-s	S-S	s-i	i-p	р-р	p-i	i
S ₄	mi-ss	is-si	ss-is	si-ss	is-si	ss-ip	si-pp	ip-pi	pp-i	pi	i
S ₈	miss- issi	issi- ssip	ssis- sipp	siss- ippi	issi- ppi	ssip- pi	sipp-i	ippi	ppi	pi	i
S ₁₆	missis si-ppi	ississ ip-pi	ssissi pp-i	sissippi	issippi	ssippi	sippi	ippi	ppi	pi	i

Primer dupliranja i analiza

S ₁	m	i	S	S	i	S	S	i	р	р	i
R_1	2	1	4	4	1	4	4	1	3	3	1
S ₂	(2, 1)	(1, 4)	(4, 4)	(4, 1)	(1, 4)	(4, 4)	(4, 1)	(1, 3)	(3, 3)	(3, 1)	(1, 0)
R ₂	4	3	8	7	3	8	7	2	6	5	1
S ₄	(4, 8)	(3, 7)	(8, 3)	(7, 8)	(3, 7)	(8, 2)	(7, 6)	(2, 5)	(6, 1)	(5, 0)	(1, 0)
R ₄	4	3	10	8	3	9	7	2	6	5	1
S ₈	(4, 3)	(3, 9)	(a, 7)	(8, 2)	(3, 6)	(9, 5)	(7, 1)	(2, 0)	(6, 0)	(5, 0)	(1, 0)
R ₈	5	4	11	9	3	10	8	2	7	6	1
Niz	10	7	4	1	0	9	8	6	3	5	2

- Broj sortiranja O(logn), zbog dupliranja
- Efikasno sortiranje O(nlogn) poređenja
- Sveukupna vremenska složenost $O(n\log^2 n)$

Sortiranje razvrstavanjem

- Torke fiksnog opsega sortiranje bez poređenja
- Razvrstavanje O(kn) tj. O(n) jer je fiksno k=2
- Sveukupna vremenska složenost $O(n\log n)$

Algoritam *DC3*

Analiza algoritma *DC3*

- Razvrstavanje, rangiranje, spajanje O(n)
- Rekurzivni poziv rangovi dve trećine veličine
- Sveukupno $T(n) = T(\frac{2}{3}n) + O(n)$, T(n) = O(n)
- Jedan od prvih algoritama linearne vremenske složenosti – uveden 2003, dopunjen 2006.
- Autori Kerkejnen (Kärkkäinen) i Sanders
- Naziv pokrivač/nje razlike po modulu 3 (difference cover modulo 3), zbog podele

Implementacije algoritama

- Korišćeno programski jezik C++, grafikon vremena rada Qt, histogrami matplotlib
- Optimizacije npr. LS niz je bitovski (unsigned char dužine n / 8 + 1 umesto char dužine n)

Grafikon vremena rada

Tabela vremena rada

n	Naivno		Dupliranje		DC3 /	skew	SA-IS		
n	mean	std	mean	std	mean	std	mean	std	
10	17,50	0,06	15,77	0,15	15,52	0,12	15,08	0,09	
11	19,88	0,15	16,86	0,10	16,50	0,12	16,07	0,07	
12	21,42	0,11	17,96	0,06	17,57	0,40	17,07	0,09	
13	23,35	0,15	19,90	1,76	18,53	0,06	18,07	0,04	
14	25,39	0,28	21,10	0,63	19,53	0,06	19,22	0,66	
15	27,40	0,05	21,40	0,48	20,56	0,10	20,07	0,04	
16	29,58	0,04	23,21	0,15	21,89	0,11	21,08	0,10	
17	31,69	0,05	25,00	0,28	23,00	0,05	22,08	0,02	

- Svugde logaritam npr. log₂n umesto n
- Svaki eksperiment ponovljen sto puta

Histogram najvećeg ulaza

Korektnost algoritama 🤔

Algoritmi su efikasni, ali da li stvarno rade

- Sami algoritmi autori su pokazali ispravnost
- Implementacije napisana svita testova
- Poznata rešenja banana, mississippi
- Specijalno prazna niska, niska dužine jedan
- Slučajne niske poređenje sa naivnim
- Svi testovi prolaze visoka sigurnost

Zaključak

- Urađeno opisana, realizovana i upoređena četiri algoritma konstrukcije sufiksnog niza
- Rezultati očekivano ponašanje implementacija na osnovu teorijske analize, najbolji SA–IS

HVALA NA PAŽNJI!

Literatura

- Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch. Replacing suffix trees with enhanced suffix arrays. *Journal of Discrete Algorithms*. 2(1):53–86, 2004.
- Juha Kärkkäinen, Peter Sanders, Stefan Burkhardt. Linear work suffix array construction. *Journal of the ACM*. 53(6):918–936, 2006.
- Ge Nong, Sen Zhang, Wai Hong Chan. Two Efficient Algorithms for Linear Time Suffix Array Construction. *IEEE Transactions on Computers*. 60(10):1471–1484, 2011.