

Neural Network for Digit Classification

• Objective: To classify a handwritten digit in a given image.

Machine Learning technology: Neural Network

Dataset: MNIST dataset

Potential Areas of Use: Self Driving Cars, Robotics

0 1 2 3 4
5 6 7 8 9

Siva Kongara Shaishavkumar Jogani

Structure of Our Neural Network

- 784 (input) 256(H1) 256(H2) 10 (Output)
- Normalized input (Divided by 255)
- Sigmoid Activation at each hidden layer
- Softmax Activation at output layer
- Cross entropy loss
- Network Parameters
 - Weights: W1, W2, W3
 - Biases: B1, B2, B3
- Data size: Training 10k, Validation 5k, Test 5k

Results

Dropout Regularization to avoid Overfitting

(b) After applying dropout.

Dropout improved the accuracy in Testing

Confusion Matrix

Normalized Confusion Matrix

	0	1	2	3	4	5	6	7	8	9	
0	[521	2	1	0	0	0	2	0	1	0]	
1	[0	523	4	1	0	4	1	1	0	1]	
2	[27	5	411	6	8	0	17	7	13	2]	
3	[14	3	9	395	1	20	3	4	31	10]	
4	[2	0	0	0	439	0	6	2	1	16]	
5	[54	2	1	5	3	408	11	0	5	3]	
6	[15	3	0	0	2	3	484	0	4	0]	
7	[11	5	7	0	7	1	0	436	7	18]	
8	[40	2	8	7	2	5	13	2	408	4]	
9	[10	4	. 0	. 1	20	. 0	1	. 18	13	433]]	

0	1	2	3	4	5	6	7	8	9
[98.9	0.4	0.2	0.	0.	0.	0.4	0.	0.2	0.]
[0.	97.8	0.7	0.2	0.	0.7	0.2	0.2	0.	0.2]
[5.4	1.	82.9		1.6	0.	3.4	1.4	2.6	0.4]
[2.9	0.6	1.8	80.6	0.2	4.1	0.6	0.8	6.3	2.]
[0.4	0.	0.	0.	94.2	0.	1.3	0.4	0.2	3.4]
[11.		0.2		0.6	82.9	2.2	0.	1.	0.6]
[2.9	0.6	0.	0.	0.4	0.6	94.7			0.]
[2.2	1.		0.	1.4	0.2	0.	88.6	1.4	3.7]
[8.1	0.4	1.6	1.4	0.4	1.	2.6	0.4	83.1	0.8]
[2.	0.8	0.	0.2	4.	0.	0.2	3.6	2.6	86.6]]

As we can see from the confusion matrix

- 3 is confused with 8
- 5 is confused with 0
- 8 is confused with 0

