- 1. (1 Pkt) Was ist inverse Kinematik?
 - a.

 Reaktion läuft in die reverse Richtung ohne Energiezufuhr ab
 - b. □ das Target ist der leichtere Partner
 - c.

 Die Reaktion wird "post mortem" analysiert
 - d.

 Das Target ist der schwerere Partner
 - e.

 Das Projektil ist der schwerere Partner
 - f.

 Die Reaktion läuft reversibel ab
- **2.** (1 Pkt) Welche zusätzliche Größe berücksichtigt das Nilsson-Modell im Vergleich zum Schalenmodell? Wie wird diese Größe parametrisiert?
- 3. (1 Pkt) Ein Kernpotential ist selbstkonsistent, was bedeutet das?
- **4.** (2 Pkt) Auf welcher Zeitskala findet der Zerfall einer CN-Reaktion statt? Wie unterscheiden sich die Produkte von denen einer direkten Reaktion?
- **5.** (3 Pkte) Welche Wechselwirkungsarten von γ -Strahlung in Materie gibt es? In welchem Energiebereich sind sie relevant? Hängen sie vom Material ab?
- **6.** (1 Pkte) Warum müssen Neutronen zur effizienten Spaltung von U-235 abgebremst werden, beispielsweise in Kernreaktoren?
- **7.** (2 Pkte) Wie funktioniert Neutronen-Moderation? Welches Element eignet sich daher besonders? Welche Bedeutung hat die DeBroglie-Wellenlänge bei der Neutronenmoderation?
- **8.** (4 Pkte) Geben sie die Vier Faktoren Formel an. Geben sie die Bezeichnungen der vier Faktoren an. Was wird durch die Formel beschrieben? Was bedeuten Werte von k<1, k>1 und k=1? Wie lange dauert das Durchlaufen eines Zyklus (Neutronengeneration) Was hat das für Implikationen für einen Reaktor?
- 9. (9 Pkte) Berechnen Sie die freigesetzte Bindungsenergie bei der Spaltung eines Uran-235-Kerns in einen Barium-144-, einen Krypton-88-Kern und drei Neutronen. Vergleichen Sie mit einem Modell der Annäherung zweier geladener Kugeln mit Radius $R = r_0 \cdot A^{1/3}$ mit $r_0 = 1,3$ fm

Wie erklärt sich die Differenz zu den in der Vorlesung genannten ca 200 MeV pro Spaltung?

Konstanten: a_V = 15,56 MeV, a_s = 17,23 MeV, a_C = 0,7 MeV, a_a = 23,285 MeV, δ = 11 MeV, m_p = 938,27231 MeV/ $_{c^2}$, m_n = 939,56563 MeV/ $_{c^2}$, c = 299 792 458 $^{m}/_{s}$, 1J = 1 $^{kg \cdot m^2}/_{s^2}$ = 6,24·10 MeV, 1u = 1,6605402·10 $^{-27}$ kg