COMS 4771 Lecture 26

1. Lagrangian duality

Lagrangian duality

LAGRANGIAN DUALITY

Uses of Lagrangian duality:

- ▶ Analysis: get insight about convex optimization problems.
- ▶ Algorithms: simple algorithms for constrained convex optimization.

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$\label{eq:f0} \begin{aligned} \min_{{\boldsymbol x} \in \mathbb{R}^d} & & f_0({\boldsymbol x}) \\ \text{s.t.} & & f_i({\boldsymbol x}) \leq 0 \quad i=1,2,\dots,n. \end{aligned}$$

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{aligned} \min_{m{x} \in \mathbb{R}^d} & f_0(m{x}) \ & \text{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n. \end{aligned}$$

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{array}{ll} \min & f_0(m{x}) \\ extsf{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n. \end{array}$$

Always think of optimization as a game against an adversary who is trying to prevent you from solving the problem.

▶ You MUST find x satisfying $f_i(x) \le 0$ for each i = 1, 2, ..., n (i.e., a feasible x).

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{aligned} \min_{m{x} \in \mathbb{R}^d} & f_0(m{x}) \ & \text{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n. \end{aligned}$$

- ▶ You MUST find x satisfying $f_i(x) \le 0$ for each i = 1, 2, ..., n (i.e., a feasible x).
- ► Therefore, you are playing the following game:

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{array}{ll} \min & f_0(m{x}) \\ extsf{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n. \end{array}$$

- ▶ You MUST find x satisfying $f_i(x) \le 0$ for each i = 1, 2, ..., n (i.e., a feasible x).
- ► Therefore, you are playing the following game:
 - ▶ If you pick a feasible x, then you are charged $f_0(x)$.

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{aligned} \min_{m{x} \in \mathbb{R}^d} & f_0(m{x}) \ & \text{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n. \end{aligned}$$

- ▶ You MUST find x satisfying $f_i(x) \le 0$ for each i = 1, 2, ..., n (i.e., a feasible x).
- ► Therefore, you are playing the following game:
 - ▶ If you pick a feasible x, then you are charged $f_0(x)$.
 - ▶ If you pick an infeasible x, then you are charged $f_0(x)$, plus $\lambda_i \cdot f_i(x)$ for each constraint $i \in [n]$ that you violate.

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$:

$$egin{aligned} \min_{m{x} \in \mathbb{R}^d} & f_0(m{x}) \ & ext{s.t.} & f_i(m{x}) \leq 0 \quad i = 1, 2, \dots, n. \end{aligned}$$

- ▶ You MUST find x satisfying $f_i(x) \le 0$ for each i = 1, 2, ..., n (i.e., a feasible x).
- ► Therefore, you are playing the following game:
 - ▶ If you pick a feasible x, then you are charged $f_0(x)$.
 - If you pick an infeasible x, then you are charged $f_0(x)$, plus $\lambda_i \cdot f_i(x)$ for each constraint $i \in [n]$ that you violate.
 - ▶ The adversary gets to pick any non-negative $\lambda_i \ge 0$, and he gets to pick them after you pick your x!!!!!

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(x) + \sum_{i=1}^n \mathbb{1}\{f_i(x) > 0\} \cdot \lambda_i \cdot f_i(x).$$

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(x) + \sum_{i=1}^n \mathbb{1}\{f_i(x) > 0\} \cdot \lambda_i \cdot f_i(x).$$

▶ **Observation**: If $f_i(x) \le 0$, adversary might as well pick $\lambda_i = 0$.

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(\boldsymbol{x}) + \sum_{i=1}^n \mathbb{1}\{f_i(\boldsymbol{x}) > 0\} \cdot \lambda_i \cdot f_i(\boldsymbol{x}).$$

▶ **Observation**: If $f_i(x) \le 0$, adversary might as well pick $\lambda_i = 0$.

Equivalent game: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) := f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x}).$$

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(x) + \sum_{i=1}^n \mathbb{1}\{f_i(x) > 0\} \cdot \lambda_i \cdot f_i(x).$$

▶ **Observation**: If $f_i(x) \le 0$, adversary might as well pick $\lambda_i = 0$.

Equivalent game: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq \mathbf{0}$, then you incur cost

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) := f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x}).$$

If you manage to pick a feasible x, you incur cost $f_0(x)$. (Adversary would not want to set $\lambda_i > 0$ for any i in this case.)

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(x) + \sum_{i=1}^n \mathbb{1}\{f_i(x) > 0\} \cdot \lambda_i \cdot f_i(x).$$

▶ **Observation**: If $f_i(x) \le 0$, adversary might as well pick $\lambda_i = 0$.

Equivalent game: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) := f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x}).$$

- If you manage to pick a feasible x, you incur cost $f_0(x)$. (Adversary would not want to set $\lambda_i > 0$ for any i in this case.)
- ▶ If you pick an infeasible x, adversary punishes you by sending $\lambda_i \to +\infty$ for the constraint $i \in [n]$ you violate.

The game you are playing: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq 0$, then you incur cost

$$f_0(x) + \sum_{i=1}^n \mathbb{1}\{f_i(x) > 0\} \cdot \lambda_i \cdot f_i(x).$$

▶ **Observation**: If $f_i(x) \le 0$, adversary might as well pick $\lambda_i = 0$.

Equivalent game: you pick $x \in \mathbb{R}^d$, then adversary picks $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \geq \mathbf{0}$, then you incur cost

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) := f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x}).$$

- If you manage to pick a feasible x, you incur cost $f_0(x)$. (Adversary would not want to set $\lambda_i > 0$ for any i in this case.)
- ▶ If you pick an infeasible x, adversary punishes you by sending $\lambda_i \to +\infty$ for the constraint $i \in [n]$ you violate.

In this case, you incur $+\infty$ cost.

THE BEST YOU CAN DO AGAINST THE ADVERSARY

Best cost for you:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\lambda_1, \lambda_2, \dots, \lambda_n \ge 0} \underbrace{f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x})}_{\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})}.$$

The best you can do against the adversary

Best cost for you:

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{\lambda_1, \lambda_2, \dots, \lambda_n \geq 0} \underbrace{f_0(oldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(oldsymbol{x})}_{\mathcal{L}(oldsymbol{x}, oldsymbol{\lambda})}.$$

 $\mathcal{L}(x, \lambda)$ is called the Lagrangian function.

The best you can do against the adversary

Best cost for you:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\lambda_1, \lambda_2, \dots, \lambda_n \geq 0} \underbrace{f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x})}_{\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})}.$$

 $\mathcal{L}(x, \lambda)$ is called the Lagrangian function.

Summary of game:

- ▶ You pick $x \in \mathbb{R}^d$.
- ▶ Adversary picks $\lambda \ge 0$.
- ▶ You incur cost $\mathcal{L}(x, \lambda)$.

The best you can do against the adversary

Best cost for you:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\lambda_1, \lambda_2, \dots, \lambda_n \geq 0} \underbrace{f_0(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i \cdot f_i(\boldsymbol{x})}_{\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})}.$$

 $\mathcal{L}(x, \lambda)$ is called the Lagrangian function.

Summary of game:

- ▶ You pick $x \in \mathbb{R}^d$.
- ▶ Adversary picks $\lambda \ge 0$.
- ▶ You incur cost $\mathcal{L}(x, \lambda)$.

Only way for you not to incur $+\infty$ cost is to pick a feasible $x \in \mathbb{R}^d$.

WEAK DUALITY

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \; \geq \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \min_{oldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

WEAK DUALITY

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \; \max_{oldsymbol{\lambda} \geq 0} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \; \geq \; \max_{oldsymbol{\lambda} \geq 0} \; \min_{oldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

▶ LHS: best you can do in game where you must pick x first, and then adversary gets to pick λ after seeing what you picked.

Weak duality

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \; \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} \; \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \; \geq \; \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} \; \min_{\boldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}).$$

- ▶ LHS: best you can do in game where you must pick x first, and then adversary gets to pick λ after seeing what you picked.
- **PHS:** worst you can do in game where adversary must pick λ first, and then you get to pick x after seeing what adversary picked.

Weak duality

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ \geq \ \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

- ▶ LHS: best you can do in game where you must pick x first, and then adversary gets to pick λ after seeing what you picked.
- ▶ RHS: worst you can do in game where adversary must pick λ first, and then you get to pick x after seeing what adversary picked.
- ▶ RHS is better for you in terms of guaranteeing smaller cost.

Weak duality

lower bound, the right part always convex, have solution as the lower bound for the original problem

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \; \geq \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \min_{oldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

- ▶ **LHS**: best you can do in game where you must pick x first, and then adversary gets to pick λ after seeing what you picked.
- ▶ RHS: worst you can do in game where adversary must pick λ first, and then you get to pick x after seeing what adversary picked.
- ▶ RHS is better for you in terms of guaranteeing smaller cost.

In fact, for all $ilde{oldsymbol{x}} \in \mathbb{R}^d$ and all $ilde{oldsymbol{\lambda}} \geq \mathbf{0}$,

$$\max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \mathcal{L}(ilde{oldsymbol{x}}, oldsymbol{\lambda}) \ \geq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ \geq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ \geq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda})$$

Under some conditions (e.g., some $oldsymbol{x} \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \; = \; \max_{oldsymbol{\lambda} \geq \mathbf{0}} \; \min_{oldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Under some conditions (e.g., some $x \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ = \ \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Doesn't matter if you go first or if adversary goes first.

Under some conditions (e.g., some $x \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \; \max_{oldsymbol{\lambda} \geq oldsymbol{0}} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \; = \; \max_{oldsymbol{\lambda} \geq oldsymbol{0}} \; \min_{oldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Doesn't matter if you go first or if adversary goes first.

► LHS: the primal (i.e., original) problem.

Under some conditions (e.g., some $oldsymbol{x} \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ = \ \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Doesn't matter if you go first or if adversary goes first.

- ▶ LHS: the primal (i.e., original) problem.
- ► RHS:

$$\max_{\boldsymbol{\lambda} \geq \mathbf{0}} g(\boldsymbol{\lambda})$$

where

$$g(\lambda) := \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \lambda).$$

This maximization problem is called the Lagrange dual problem.

Under some conditions (e.g., some $oldsymbol{x} \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ = \ \max_{oldsymbol{\lambda} \geq \mathbf{0}} \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Doesn't matter if you go first or if adversary goes first.

- ▶ LHS: the primal (i.e., original) problem.
- ► RHS:

$$\max_{\boldsymbol{\lambda} \geq \mathbf{0}} g(\boldsymbol{\lambda})$$

where

$$g(\lambda) := \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \lambda).$$

This maximization problem is called the Lagrange dual problem.

• $\lambda \ge 0$: Lagrange multipliers (dual variables).

Under some conditions (e.g., some $x \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq oldsymbol{0}} \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}) \ = \ \max_{oldsymbol{\lambda} \geq oldsymbol{0}} \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}).$$

Doesn't matter if you go first or if adversary goes first.

► LHS: the primal (i.e., original) problem.

L(x, \lambda) is convave

► RHS:

min {concave functions} is also a concave function

$$\max_{\lambda > 0} g(\lambda)$$

where

$$g(\lambda) := \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \lambda).$$

This maximization problem is called the Lagrange dual problem.

- ▶ $\lambda \ge 0$: Lagrange multipliers (dual variables).
- $g: \mathbb{R}^n \to \mathbb{R}$: Lagrange dual function, which is always concave.

EQUALITY CONSTRAINTS: SHORTCUT

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{k \times d}$, and $\mathbf{b} \in \mathbb{R}^k$:

$$egin{aligned} \min_{m{x} \in \mathbb{R}^d} & f_0(m{x}) \\ ext{s.t.} & f_i(m{x}) \leq 0 \quad i=1,2,\ldots,n; \\ & m{A}m{x} - m{b} = m{0}. \end{aligned}$$

EQUALITY CONSTRAINTS: SHORTCUT

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{k \times d}$, and $\mathbf{b} \in \mathbb{R}^k$:

$$\label{eq:f0} \begin{split} \min_{\boldsymbol{x} \in \mathbb{R}^d} & f_0(\boldsymbol{x}) \\ \text{s.t.} & f_i(\boldsymbol{x}) \leq 0 \quad i = 1, 2, \dots, n; \\ & \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} = \boldsymbol{0}. \end{split}$$

Equality constraint Ax-b=0 is same as conjunction of two inequality constraints:

$$Ax - b \le 0$$
 and $b - Ax \le 0$.

EQUALITY CONSTRAINTS: SHORTCUT

For convex functions $f_0, f_1, f_2, \dots, f_n \colon \mathbb{R}^d \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{k \times d}$, and $\mathbf{b} \in \mathbb{R}^k$:

$$\label{eq:f0} \begin{split} \min_{\boldsymbol{x} \in \mathbb{R}^d} & f_0(\boldsymbol{x}) \\ \text{s.t.} & f_i(\boldsymbol{x}) \leq 0 \quad i = 1, 2, \dots, n; \\ & \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} = \boldsymbol{0}. \end{split}$$

Equality constraint Ax-b=0 is same as conjunction of two inequality constraints:

$$Ax - b \le 0$$
 and $b - Ax \le 0$.

Shortcut: Lagrange multipliers associated with equality constraints do not have to be non-negative. (Easy to derive by reasoning about "game against adversary".)

Under some conditions (e.g., some $oldsymbol{x} \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \geq \mathbf{0}, oldsymbol{
u} \in \mathbb{R}^k} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}) \ = \ \max_{oldsymbol{\lambda} \geq \mathbf{0}, oldsymbol{
u} \in \mathbb{R}^d} \ \min_{oldsymbol{x} \in \mathbb{R}^d} \ \mathcal{L}(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}).$$

Under some conditions (e.g., some $oldsymbol{x} \in \mathbb{R}^d$ strictly satisfies all constraints),

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \; \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}, \boldsymbol{\nu} \in \mathbb{R}^k} \; \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \; = \; \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}, \boldsymbol{\nu} \in \mathbb{R}^k} \; \min_{\boldsymbol{x} \in \mathbb{R}^d} \; \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}).$$

- ▶ LHS: the primal (i.e., original) problem.
- ► RHS:

$$\max_{\boldsymbol{\lambda} \geq \mathbf{0}, \boldsymbol{\nu} \in \mathbb{R}^k} \ g(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

where

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) := \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}).$$

Maximum entropy

The maximum entropy optimization problem (over domain [d]):

$$\begin{aligned} & \min_{\boldsymbol{w} \in \mathbb{R}^d} & & \sum_{i=1}^d w_i \ln \frac{w_i}{\pi_i} \\ & \text{s.t.} & & \mu_j - \sum_{i=1}^d t_{i,j} w_i = 0 \quad j = 1, 2, \dots, k; \\ & & & 1 - \sum_{i=1}^d w_i = 0. \end{aligned}$$

(We drop the constraint $w \geq 0$, since it'll be satisfied w/o explicitly imposing it.)

The maximum entropy optimization problem (over domain [d]):

$$\begin{aligned} & \min_{\boldsymbol{w} \in \mathbb{R}^d} & & \sum_{i=1}^d w_i \ln \frac{w_i}{\pi_i} \\ & \text{s.t.} & & \mu_j - \sum_{i=1}^d t_{i,j} w_i = 0 \quad j = 1, 2, \dots, k; \\ & & & 1 - \sum_{i=1}^d w_i = 0. \end{aligned}$$

(We drop the constraint $w\geq 0$, since it'll be satisfied w/o explicitly imposing it.) Lagrange multipliers: $\eta\in\mathbb{R}^k$, $\nu\in\mathbb{R}$.

The maximum entropy optimization problem (over domain [d]):

$$\begin{aligned} & \min_{\boldsymbol{w} \in \mathbb{R}^d} & & \sum_{i=1}^d w_i \ln \frac{w_i}{\pi_i} \\ & \text{s.t.} & & \mu_j - \sum_{i=1}^d t_{i,j} w_i = 0 \quad j = 1, 2, \dots, k; \\ & & & 1 - \sum_{i=1}^d w_i = 0. \end{aligned}$$

(We drop the constraint $w \geq 0$, since it'll be satisfied w/o explicitly imposing it.)

Lagrange multipliers: $\eta \in \mathbb{R}^k$, $\nu \in \mathbb{R}$.

Lagrangian:

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{\eta}, \nu) = \sum_{i=1}^{d} w_i \ln \frac{w_i}{\pi_i} + \sum_{j=1}^{k} \eta_j \left(\mu_j - \sum_{i=1}^{d} t_{i,j} w_i \right) + \nu \left(1 - \sum_{i=1}^{d} w_i \right).$$

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{\eta}, \nu) = \sum_{i=1}^{d} w_i \ln \frac{w_i}{\pi_i} + \sum_{j=1}^{k} \eta_j \left(\mu_j - \sum_{i=1}^{d} t_{i,j} w_i \right) + \nu \left(1 - \sum_{i=1}^{d} w_i \right).$$

We want to minimize this w.r.t. w.

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{\eta}, \nu) = \sum_{i=1}^{d} w_i \ln \frac{w_i}{\pi_i} + \sum_{j=1}^{k} \eta_j \left(\mu_j - \sum_{i=1}^{d} t_{i,j} w_i \right) + \nu \left(1 - \sum_{i=1}^{d} w_i \right).$$

We want to minimize this w.r.t. w.

Partial derivative w.r.t. w_i is

$$1 + \ln(w_i) - \ln(\pi_i) - \sum_{j=1}^k \eta_j t_{i,j} - \nu,$$

which is zero when

$$w_i = \pi_i \exp\left(\sum_{j=1}^k \eta_j t_{i,j} - (1 - \nu)\right).$$

(This is always non-negative!)

Plugging-in the choice of w_i for each $i=1,2,\ldots,n$ that minimizes $\mathcal{L}(w,\eta,\nu)$ yields the dual problem

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k, \nu \in \mathbb{R}} \qquad g(\boldsymbol{\eta}, \nu),$$

where

$$g(\boldsymbol{\eta}, \nu) = -\sum_{i=1}^{d} \pi_i \exp\left(\sum_{j=1}^{k} \eta_j t_{i,j} - (1-\nu)\right) + \sum_{j=1}^{k} \eta_j \mu_j + \nu.$$

Maximum entropy dual optimization problem:

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k, \nu \in \mathbb{R}} \qquad -\sum_{i=1}^d \pi_i \exp \left(\sum_{j=1}^k \eta_j t_{i,j} - (1-\nu) \right) + \sum_{j=1}^k \eta_j \mu_j + \nu.$$

Maximum entropy dual optimization problem:

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k, \nu \in \mathbb{R}} \qquad -\sum_{i=1}^d \pi_i \exp\left(\sum_{j=1}^k \eta_j t_{i,j} - (1-\nu)\right) + \sum_{j=1}^k \eta_j \mu_j + \nu.$$

This is concave in η and ν .

Maximum entropy dual optimization problem:

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k, \nu \in \mathbb{R}} \qquad -\sum_{i=1}^d \pi_i \exp \left(\sum_{j=1}^k \eta_j t_{i,j} - (1-\nu) \right) + \sum_{j=1}^k \eta_j \mu_j + \nu.$$

This is concave in η and ν .

Derivative w.r.t. ν is

$$-\sum_{i=1}^{d} \pi_i \exp\left(\sum_{j=1}^{k} \eta_j t_{i,j} - (1-\nu)\right) + 1,$$

which is zero when

$$1 - \nu = \ln \left\{ \sum_{i=1}^{d} \pi_i \exp \left(\sum_{j=1}^{k} \eta_j t_{i,j} \right) \right\}.$$

Plugging-in maximizing choice of $\boldsymbol{\nu}$ leaves us with

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k} - \ln \left\{ \sum_{i=1}^d \pi_i \exp \left(\sum_{j=1}^k \eta_j t_{i,j} \right) \right\} + \sum_{j=1}^k \eta_j \mu_j.$$

Plugging-in maximizing choice of ν leaves us with

$$\max_{\boldsymbol{\eta} \in \mathbb{R}^k} \qquad -\ln \left\{ \sum_{i=1}^d \pi_i \exp \left(\sum_{j=1}^k \eta_j t_{i,j} \right) \right\} + \sum_{j=1}^k \eta_j \mu_j.$$

Derivative w.r.t. η_j is

$$-\frac{\sum_{i=1}^{d} \pi_{i} \exp\left(\sum_{j'=1}^{k} \eta_{j'} t_{i,j'}\right) t_{i,j}}{\sum_{i=1}^{d} \pi_{i} \exp\left(\sum_{j'=1}^{k} \eta_{j'} t_{i,j'}\right)} + \mu_{j},$$

which is zero when

$$\sum_{i=1}^d \hat{w}_i t_{i,j} = \mu_j$$

where

$$\hat{w}_i = \frac{\pi_i \exp\left(\sum_{j'=1}^k \eta_{j'} t_{i,j'}\right)}{\sum_{i=1}^d \pi_i \exp\left(\sum_{j'=1}^k \eta_{j'} t_{i,j'}\right)} \quad i = 1, 2, \dots, n.$$

Te

LAGRANGIAN RELAXATION

METHOD

LAGRANGIAN RELAXATION METHOD

Equality constrained convex optimization problem for $A \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$:

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \qquad f_0(oldsymbol{x})$$

s.t.
$$Ax - b = 0$$
.

LAGRANGIAN RELAXATION METHOD

Equality constrained convex optimization problem for $m{A} \in \mathbb{R}^{k imes d}$ and $m{b} \in \mathbb{R}^k$:

$$egin{array}{ll} \min & f_0(oldsymbol{x}) \ ext{s.t.} & oldsymbol{A} oldsymbol{x} - oldsymbol{b} = oldsymbol{0}. \end{array}$$

Lagrangian: $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f_0(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} \rangle$.

Lagrangian relaxation method

Equality constrained convex optimization problem for $A \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$:

$$egin{array}{ll} \min & f_0(oldsymbol{x}) \ ext{s.t.} & oldsymbol{A}oldsymbol{x} - oldsymbol{b} = oldsymbol{0}. \end{array}$$

Lagrangian: $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f_0(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} \rangle$.

Lagrangian relaxation algorithm

Initialize $\boldsymbol{\lambda}^{(1)} \in \mathbb{R}^k$.

For t = 1, 2, ...:

- lackbox Let $m{x}^{(t)}$ be minimizer of $\mathcal{L}(m{x}, m{\lambda}^{(t)})$ w.r.t. $m{x}$ (e.g., via gradient descent).
- ▶ If $Ax^{(t)} = b$, then done; return current $x^{(t)}$.
- ▶ If $Ax^{(t)} \neq b$, then update $\lambda^{(t)}$ (via gradient ascent step of size $\eta_t > 0$):

$$oldsymbol{\lambda}^{(t+1)} \; := \; oldsymbol{\lambda}^{(t)} + \eta_t \Big(oldsymbol{A} oldsymbol{x}^{(t)} - oldsymbol{b} \Big).$$
graident of Vambada

LAGRANGIAN RELAXATION METHOD

Since $x^{(t)}$ is the minimizer of $\mathcal{L}(x, \lambda^{(t)})$,

$$\mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{\lambda}^{(t)}) \ = \ \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^{(t)}) \ \leq \ \max_{\boldsymbol{\lambda} \in \mathbb{R}^k} \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \ \leq \ \min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{\lambda} \in \mathbb{R}^k} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$

where last step uses weak duality.

LAGRANGIAN RELAXATION METHOD

Since $oldsymbol{x}^{(t)}$ is the minimizer of $\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)})$,

$$\mathcal{L}(oldsymbol{x}^{(t)},oldsymbol{\lambda}^{(t)}) \ = \ \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)}) \ \leq \ \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) \ \leq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda})$$

where last step uses weak duality.

 $lackbox{} \mathcal{L}(oldsymbol{x}^{(t)},oldsymbol{\lambda}^{(t)})$ is always a lower-bound on optimal value.

Lagrangian relaxation method

Since $oldsymbol{x}^{(t)}$ is the minimizer of $\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)})$,

$$\mathcal{L}(oldsymbol{x}^{(t)},oldsymbol{\lambda}^{(t)}) \ = \ \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)}) \ \leq \ \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) \ \leq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda})$$

where last step uses weak duality.

- $ightharpoonup \mathcal{L}(m{x}^{(t)},m{\lambda}^{(t)})$ is always a lower-bound on optimal value.
- ▶ If $Ax^{(t)} = b$, then $x^{(t)}$ achieves optimal value.

Lagrangian relaxation method

Since $oldsymbol{x}^{(t)}$ is the minimizer of $\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)})$,

$$\mathcal{L}(oldsymbol{x}^{(t)},oldsymbol{\lambda}^{(t)}) \ = \ \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}^{(t)}) \ \leq \ \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \min_{oldsymbol{x} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) \ \leq \ \min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{\lambda} \in \mathbb{R}^d} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda})$$

where last step uses weak duality.

- $lackbox{} \mathcal{L}(oldsymbol{x}^{(t)},oldsymbol{\lambda}^{(t)})$ is always a lower-bound on optimal value.
- ▶ If $Ax^{(t)} = b$, then $x^{(t)}$ achieves optimal value.

Can also apply to inequality constrained problems via slack variables.

RECAP

- Lagrangian duality: every convex optimization problem has an associated dual problem.
- Lagrange dual problem: maximization of concave objective function subject to convex constraints.
 - Actually, we can apply this approach to **non-convex** optimization problems: the dual problem **always** has a concave objective function and convex constraints!
- ▶ In MaxEnt, dual problem reveals form of solution.
- Lagrangian relaxation method: exploit Lagrangian duality to get a simple algorithm for constrained optimization.