Results

Blind Object Recognition with Soft Grippers

Irene Testa

Robotics Course, University of Pisa A.Y. 2024/25

Motivation

- ► Goal: Enable robots to recognize objects through physical interaction.
- ► Challenge: Vision can be unreliable in cases of occlusion, clutter, or poor lighting.
- ▶ Alternative: Tactile sensing enables blind object recognition.
- ► Advantage of Soft Grippers: Their compliance generates rich contact signals during interaction

Related Work (Donato et al. [1])

- ▶ Two-Stage LSTM Architecture: 1) Predict coarse object properties (e.g., shape, size) from tactile time-series; 2) Use it as a prior to improve object classification.
- Classical Models on Raw Signals: Evaluated several standard classifiers (e.g., KNN, SVM, DT, RF, GB) directly on raw temporal data.
- ▶ Multi-modal Fusion: Combining proprioceptive and exteroceptive signals improves recognition over single-modality inputs.

My approach

- ➤ Single-Stage Temporal Models: The approach focuses on single-stage pipelines, extending the evaluation by employing models explicitly designed for temporal data, as well as traditional classifiers applied to extracted hand-crafted features.
- ► Few-Shot Learning: *Metric learning* techniques are explored to enable generalization to previously unseen objects using limited new data.

Problem Setup

Task

Multiclass object classification using *tactile* and *proprioceptive* time-series data from a real-world soft robotic gripper.

Data Overview

- Multivariate time series
- ▶ 768 samples total
- ► 150 timesteps per sample (sampling interval: 0.05 s)
- ▶ 4 features per timestep:
 - Left and right force sensing resistors (exteroceptive)
 - Left and right curvature sensors (proprioceptive)
- 17 object classes; generally balanced except the underrepresented empty class

Figure 1: Class distribution.

Table 1: Sensor Data Statistics.

ı	Sensor	Mean	Std Dev	Min	Max
ı	Force left	4738	9630	3.18	24465.15
ı	Force right	5569.7	10233.5	3.18	24465.15
ı	Curvature left	17.91	12.13	-2.63	47.09
ı	Curvature right	13.19	9.20	-3.71	32.50

Data Cleaning and Balancing ▶ Removed 17 samples due to *non-monotonic time values*, indicating

- possible data collection errors.

 ▶ Applied random oversampling of the empty class to match the median
- Applied random oversampling of the empty class to match the median number of samples per class.

Data Splitting and Scaling

- ▶ Two experimental scenarios considered:
 - Closed set: all 17 classes used during training.
 - Few-shot: 5 novel classes held out from training.
- ▶ For both scenarios, the data was split into training, validation, and test sets (80/10/10%) with balanced class distributions.
- ► Features scaled to the range [0,1] after flattening the time dimension; scaling parameters computed solely on the respective training sets to prevent data leakage.

- ▶ Base dataset: Dataset containing classes seen during training.
- ▶ Novel classes: Classes not used during base training, appearing only in few-shot evaluation
- ▶ Support set: Small labeled subset of novel class samples used for adaptation.
- ▶ Query set: Remaining samples of novel classes used for evaluation.

Few-Shot Data Partitioning

- ► Five novel classes held out: parallelepiped, smallbutton, smallcube, syringe, tomato.
- ▶ Base dataset comprises the remaining 12 classes.
- For each novel class:
 - Created 5-shot and 10-shot support sets.
 - Query set contains all other samples from those classes.

Classifier Overview

Traditional Models (Closed Set)

- ► Gradient Boosting (GB) trained on:
 - Statistical features extracted from time series
 - Shapelet-based features
- ► K-Nearest Neighbors (KNN) with Dynamic Time Warping (DTW) distance

Neural Classifiers (Closed Set)

- Convolutional Neural Network (CNN)
- ▶ Long Short-Term Memory Network (LSTM)
- ► Transformer-based model

Neural Metric Learning Models (Closed Set and Few-Shot)

- ► Siamese Network (SN)
- ▶ Deep Attentive Time Warping (DATW)

Gradient Boosting Classifier

Feature Engineering

Statistical Features (50 total):

- ► Time domain: mean, std, median, percentiles (10, 25, 50, 75, 90), covariance, skewness, kurtosis.
- Frequency domain: spectral energy and spectral entropy (computed via Discrete Fourier Transform).
- ▶ Features with zero standard deviation were removed.

Shapelet Features (150 total):

- ▶ Shapelets: subsequences that are highly representative of a specific class.
- ▶ Each sample is mapped to a vector of distances to discovered shapelets.
- ▶ Extracted using sktime's ShapeletTransformClassifier.

Classification

- Gradient Boosting: sequential tree ensemble correcting prior errors; effective for tabular, high-dimensional data.
- ► Used the *optimized and scalable* implementation from xgboost library.
- ► Hyperparameters tuned via *grid search* (selected by validation accuracy).

Table 2: GB Hyperparameters. Blue: best for statistical; Magenta: best for shapelets; Bold: shared.

Parameter	Values
n_estimators	100, 200
max_depth	${\bf 3}, 5$
learning_rate	0.05, 0.1
subsample	0.8, 1.0

Conclusion

K-Nearest Neighbors with Dynamic Time Warping

Distance computation

- ► Dynamic Time Warping measures similarity between time series that may differ in speed, timing, or length.
- Minimizes alignment cost by warping the time axis using dynamic programming.
- ► Time complexity: $\mathcal{O}(n^2)$ (vs. $\mathcal{O}(n)$ for Euclidean distance).

Classification

- ▶ Used tslearn library.
- ► *Grid search* over hyparameters; best configuration selected by validation accuracy.

Figure 2: Example of time series alignment via DTW.

Table 3: KNN Hyperparameters. Best values in **bold**.

Parameter	Values
k	1 , 3, 5, 9, 15
weights	uniform, distance

Neural Classifiers Overview

Evaluated three neural architectures, each designed to capture distinct data characteristics.

- ▶ CNN: *local pattern extraction*, baseline for time series.
- ▶ LSTM: temporal memory, captures sequential dependencies.
- ► Transformer: self-attention, models global context.

Training Setup

- ▶ Implemented in Keras.
- ▶ Used *categorical cross-entropy* as loss function.
- ➤ Trained for 500 epochs, batch size 16; *early stopping* on validation loss (patience=20, restore best weights).
- ▶ Learning rate *reduced* on plateau (patience=10).
- ▶ Hyperparameters tuned via *grid search*; best configuration selected by validation accuracy.

Overview

- ➤ Convolutional Neural Network: a deep learning model that applies shared learnable filters to extract *local patterns* in temporal data.
- ► Convolutional filters: detect *short-term temporal dependencies* by sliding over input sequences.

Architecture

- ▶ Based on [2], a baseline for time series classification with deep neural networks
- ► Stack of convolutional blocks:
 - Conv1D (kernel size 3)
 - Batch normalization
 - ReLU activation
 - Dropout (optional)
- ► Global average pooling
- ▶ Dense layer with softmax activation

Figure 3: CNN training and validation loss over epochs.

Table 4: CNN Hyperparameters. Best values in **bold**.

Parameter	Values
num_filters	32 , 64
num_conv_layers	2, 3, 4
dropout_rate	0.0 , 0.3
learning_rate	1e-4 , 1e-3

Long Short-Term Memory Network

Overview

- ▶ Long Short-Term Memory: are a type of *Recurrent Neural Network* designed to learn from sequences by capturing both short- and long-term dependencies through *gated memory cells*.
- ► Gated memory cells: control what information is stored, forgotten, or passed on.

Architecture

- ▶ Stack of LSTM layers
- ► Optional dropout applied on inputs and recurrent connections
- ► Final dense layer with softmax activation for classification

Figure 4: LSTM training and validation loss over epochs.

Table 5: LSTM Hyperparameters. Best values in **bold**

Parameter	Values
units	32, 64
num_layers	1, 2
dropout_rate	0.0 , 0.3
learning_rate	1e-4 , 1e-3

Transformer Network

Overview

- ➤ Transformer: a deep learning model that uses *self-attention* to capture both local and global dependencies in sequences.
- Self-attention mechanism: each time step's feature vector is updated by a learned weighted average of all time steps' vectors.

Architecture

- ▶ A Transformer encoder block, including:
 - Multi-head self-attention with residual connection, dropout, and layer normalization
 - Feedforward network: two Conv1D layers (kernel size 1) with ReLU and dropout + residual connection and layer normalization
- ► Global average pooling, followed by a dense MLP and softmax output.

Figure 5: Transformer training and validation loss over epochs.

Table 6: Transformer Hyperparameters. Best values in **bold**.

Parameter	Values
head_size	64
num_heads	2
num_filters	64
mlp_units	64
dropout_rate	0.0 , 0.3
learning_rate	1e-4, 1e-3

Metric Learning Approaches

Overview

- ► Metric learning: trains a model to map samples into an embedding space where distance reflects similarity.
- ▶ Pairwise contrastive learning: learns embeddings by processing pairs of samples, minimizing the distance between embeddings if they share the same label, and maximizing it otherwise.
- ▶ Contrastive loss with margin τ (minimum distance between negative pairs).
- ► Classification via KNN on learned embeddings.
- ► For few-shot learning, compute embeddings for new samples without updating model weights, then apply KNN to classify them.

Implementation Notes

- ▶ Implemented in PyTorch.
- ► Grid search was not performed due to the large pairwise dataset and model size required for contrastive learning.
- ► Best model weights (based on validation accuracy via KNN) were restored after training.

Table 7: Contrastive learning parameters.

Parameter	Values
learning_rate	1e-4
batch_size	64
num_epochs	20
iterations_per_epoch	500
positive_ratio	1/3
tau	1
k	3

Siamese Network

Overview

 Siamese network: twin networks sharing weights, designed to learn embeddings for pairs of inputs.

Figure 6: Illustration of a Siamese Network.

Architecture and Training Details

- ► Architecture:
 - Two convolutional blocks, each with two Conv1D layers (kernel size 3), batch normalization, ReLU, and dropout
 - Max pooling (stride 2) after the first block; final global average pooling
 - Fully connected layer projecting to a 128-dimensional embedding
- ► Embeddings are ℓ₂-normalized before computing the contrastive loss to prevent trivial minimization via unbounded growth of embedding norms.

Deep Attentive Time Warping

Overview

- ▶ Learns an adaptive, differentiable alignment between time series A and B.
- ▶ Inputs are reshaped and combined via outer concatenation.
- ➤ A U-Net outputs a real-valued matrix P, followed by row-wise softmax to produce a soft alignment.
- ➤ This process parallels an attention mechanism, where P acts as an attention weight matrix.
- Warped series are obtained by applying P and compared to compute distance.
- ► Trained end-to-end with contrastive loss
- ► U-Net weights **initialized** by mimicking DTW.

Figure 7: Illustration of the DATW method.

Implementation details

- ► U-Net: encoder-decoder CNN with skip connections (10 Conv2D + BatchNorm, ReLU, max pooling).
- ▶ Pre-training: 10 epochs, 100 iterations each.
- ▶ Ran on **GPU** due to computational cost.

Closed-Set Classification Results

Classification Performance Overview

- ► Tab. 8 shows accuracy and macro F1, which averages performance equally across classes to mitigate imbalance; their similarity indicates balanced class performance.
- DATW achieves the best results, followed closely by DTW.
- stats+GB outperforms several more complex models.
- ► CNNs and transformers perform worse, likely due to data limitations.

Table 8: Closed-set classification scores.

	Accuracy	Macro F1
DATW	0.814815	0.813844
DTW	0.802469	0.801356
stats+GB	0.790123	0.793791
SN	0.753086	0.748969
LSTM	0.753086	0.746446
CNN	0.679012	0.680768
shapelet+GB	0.679012	0.669873
transformer	0.641975	0.611932

Confusion Matrix Highlights (e.g. Fig. 8)

- Some classes (empty, metalbrick, box) are perfectly classified by all models.
- Others (e.g.,ball, cylinder, lemon) show consistently high misclassification, indicating inherent difficulty.
- A few instances are misclassified 100%, suggesting ambiguous samples (not obvious from visual inspection).
- Most samples are classified reliably, indicating consistent data quality.

Figure 8: DATW confusion matrix.

Few-Shot Learning Results

Performance summary (Tab. 9)

- ▶ Both models learn a discriminative metric, successfully classifying novel classes ("New Ref") but sometimes confusing them with seen classes.
- ► DATW consistently outperforms SN across all few-shot settings.
- ▶ Using a subset of training data + support ("Sub Ref") as KNN reference outperforms using all training data + support ("Full Ref"), likely reducing bias to seen classes.
- Performance improves from 5-shot to 10-shot learning.

Embedding Analysis (Fig. 9)

- t-SNE visualization of Siamese Network embeddings shows that novel classes form elongated clusters.
- ► Some clusters partially **overlap** with seen classes.

Table 9: Few-shot learning classification results.

	Accuracy	F1 Macro
DATIM IO L. N. D. C.	0.001001	0.004006
DATW 10-shot New Ref	0.881081	0.884006
DATW 5-shot New Ref	0.861905	0.863981
SN 10-shot New Ref	0.837838	0.836266
SN 5-shot New Ref	0.790476	0.791284
DATW 10-shot Sub Ref	0.664865	0.299011
DATW 5-shot Sub Ref	0.552381	0.221240
SN 10-shot Sub Ref	0.481081	0.207921
SN 10-shot Full Ref	0.427027	0.190487
DATW 10-shot Full Ref	0.464865	0.189817
SN 5-shot Sub Ref	0.366667	0.155858
SN 5-shot Full Ref	0.290476	0.126410
DATW 5-shot Full Ref	0.261905	0.115253

Figure 9: Siamese Network embeddings.

Conclusion and Future Work

Conclusion

- ► Challenges: Limited data for training and testing; *regularization* (e.g., dropout) used to reduce overfitting.
- Key Findings: DATW achieved the best results, slightly outperforming DTW.
- ▶ Limitations: DATW has *high computational cost* due to outer concatenation and use of U-Net, plus slow test-time inference requiring a forward pass through the entire reference set for each query—*limiting real-time suitability*.

Future Work

- ▶ Apply data augmentation to expand the training set.
- ► For metric learning approaches:
 - Fine-tune the metric model on new class pairs with few steps and low learning rate.
 - Select an optimal reference subset for KNN or use class prototypes instead.
 - Improve training with triplet loss and hard mining.

GitHub repository:

https://github.com/iretes/blind-object-recognition-soft-grippers

References

- [1] E. Donato, D. Pelliccia, M. Hosseinzadeh, M. Amiri, and E. Falotico, "Tactile object recognition with recurrent neural networks through a perceptive soft gripper," *IEEE Robotics and Automation Letters*, 2025.
- [2] Z. Wang, W. Yan, and T. Oates, "Time series classification from scratch with deep neural networks: A strong baseline," in 2017 International joint conference on neural networks (IJCNN), IEEE, 2017, pp. 1578–1585.
- [3] S. Matsuo *et al.*, "Attention to warp: Deep metric learning for multivariate time series," in *Document Analysis and Recognition–ICDAR 2021: 16th International Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part III 16*, Springer, 2021, pp. 350–365.
- [4] M. Kaya and H. Ş. Bilge, "Deep metric learning: A survey," *Symmetry*, vol. 11, no. 9, p. 1066, 2019.

Thank you!