R Code Reference

Win Khaing

```
if (!require("pacman")) install.packages("pacman")
  pacman::p_load(ggplot2, tidyr, dplyr, tidyverse, knitr, finalfit, here)
```

Contigency Table (2x2 Table)

```
library(tidyverse)
library(gtsummary)

data(CO2)
head(CO2)
```

```
Grouped Data: uptake ~ conc | Plant
Plant Type Treatment conc uptake
1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2
```

```
# basic summary table
CO2 %>% select(!c(Plant, conc)) %>% tbl_summary()
```

Characteristic	N = 84
Type	
Quebec	42 (50%)
Mississippi	42~(50%)
Treatment	

Characteristic	N = 84
nonchilled	42 (50%)
chilled	42~(50%)
uptake	28 (18, 37)

```
# summary split by a categorical variable
CO2 %>% select(!c(Plant, conc)) %>% tbl_summary(by = Type)
```

Characteristic	Quebec, $N = 42$	$\mathbf{Mississippi}, N = 42$	
Treatment			
nonchilled	21~(50%)	21~(50%)	
chilled	21~(50%)	21~(50%)	
uptake	37(30, 40)	19(14, 28)	

```
# summary split by a categorical variable with p-value
CO2 %>% select(!c(Plant, conc)) %>%
tbl_summary(by = Type) %>% add_p()
```

Characteristic	Quebec, $N = 42$	Mississippi, $N = 42$	p-value
Treatment			>0.9
nonchilled	21~(50%)	21~(50%)	
chilled	21~(50%)	21~(50%)	
uptake	37 (30, 40)	19 (14, 28)	< 0.001

```
# include overall, extra heading, custom stats
CO2 %>% select(!c(Plant, conc)) %>%
    tbl_summary(
    by = Type,
        statistic = list(
        all_continuous() ~ "{mean} ({sd})",
        all_categorical() ~ "{n} / {N} ({p}%)"
    ),
        digits = all_continuous() ~ 2
    ) %>%
    add_p() %>% add_overall() %>%
    modify_spanning_header(c("stat_1", "stat_2") ~ "**Location**") %>%
    bold_labels()
```

Characteristic	Overall, $N = 84$	Quebec, $N = 42$	Mississippi, $N = 42$	p-value
Treatment				>0.9
nonchilled	42 / 84 (50%)	21 / 42 (50%)	21 / 42 (50%)	
chilled	42 / 84 (50%)	21 / 42 (50%)	21 / 42 (50%)	
${f uptake}$	$27.21\ (10.81)$	$33.54 \ (9.67)$	$20.88 \ (7.82)$	< 0.001

```
# crosstabs
CO2 %>%

tbl_cross(
   row = Type,
   col = Treatment, percent = "cell"
) %>%
   add_p() %>%
   bold_labels()
```

	nonchilled	chilled	Total	p-value
Type				>0.9
Quebec	21~(25%)	21~(25%)	42~(50%)	
Mississippi	21~(25%)	21~(25%)	42~(50%)	
Total	42~(50%)	42 (50%)	84 (100%)	