

Quad Picoampere Input Current Bipolar Op Amp

AD704

FEATURES

High DC Precision
75 μV Max Offset Voltage
1 μV/°C Max Offset Voltage Drift
150 pA Max Input Bias Current
0.2 pA/°C Typical I_B Drift
Low Noise

 $0.5~\mu V$ p-p Typical Noise, 0.1 Hz to 10 Hz Low Power

600 μA Max Supply Current per Amplifier MIL-STD-883B Processing Available Available in Tape and Reel in Accordance with EIA-481A Standard Dual Version: AD706

APPLICATIONS
Industrial/Process Controls
Weigh Scales
ECG/EKG Instrumentation
Low Frequency Active Filters

PRODUCT DESCRIPTION

The AD704 is a quad, low power bipolar op amp that has the low input bias current of a BiFET amplifier but which offers a significantly lower I_B drift over temperature. It utilizes super-beta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its I_B typically only increases by 5× at 125°C (unlike a BiFET amp, for which I_B doubles every 10°C resulting in a 1000× increase at 125°C). Furthermore, the AD704 achieves 75 μV offset voltage and low noise characteristics of a precision bipolar input op amp.

Since it has only 1/20 the input bias current of an AD OP07, the AD704 does not require the commonly used "balancing" resistor. Furthermore, the current noise is 1/5 that of the AD OP07 which makes the AD704 usable with much higher source impedances. At 1/6 the supply current (per amplifier) of the AD OP07, the AD704 is better suited for today's higher density circuit boards and battery-powered applications.

The AD704 is an excellent choice for use in low frequency active filters in 12- and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD704 is internally compensated for unity gain and is available in five performance grades. The AD704J and AD704K are rated over the commercial temperature range of 0°C to 70°C. The AD704A is rated over the industrial temperature of –40°C to +85°C. The AD704T is rated over the military temperature range of –55°C to +125°C and is available processed to MIL-STD-883B, Rev. C.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

CONNECTION DIAGRAMS

14-Lead Plastic DIP (N) 14-Lead CerDIP (Q) Packages 16-Lead SOIC (R) Package

Figure 1. Input Bias Current Over Temperature

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

AD704—SPECIFICATIONS (@ $T_A = 25^{\circ}C$, $V_{CM} = 0$ V, and ± 15 V dc, unless otherwise noted.)

		AD704J/A		AD704K			AD704T				
Parameters	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
INPUT OFFSET VOLTAGE Initial Offset Offset vs. Temp, Average TC vs. Supply (PSRR) $T_{MIN}-T_{MAX}$ Long-Term Stability	$T_{MIN}-T_{MAX}$ $V_{S} = \pm 2 \text{ to } \pm 18 \text{ V}$ $V_{S} = \pm 2.5 \text{ to } \pm 18 \text{ V}$	100 100	50 100 0.2 132 126 0.3	150 250 1.5	112 108	30 50 0.2 132 126 0.3	75 150 1.0	112 108	30 80 132 126 0.3	100 150 1.0	μV μV μV/°C dB dB μV/month
INPUT BIAS CURRENT 1 vs. Temp, Average TC T_{MIN} - T_{MAX}	$V_{CM} = 0 V$ $V_{CM} = \pm 13.5 V$ $V_{CM} = 0 V$ $V_{CM} = \pm 13.5 V$		100	270 300 300 400		80 0.2	150 200 200 300		80	200 250 600 700	pA pA pA/°C pA pA
INPUT OFFSET CURRENT vs. Temp, Average TC T_{MIN} - T_{MAX}	$V_{CM} = 0 V$ $V_{CM} = \pm 13.5 V$ $V_{CM} = 0 V$ $V_{CM} = \pm 13.5 V$		80 0.6 100 100	250 300 300 400		30 0.4 80 80	100 150 200 300		50 0.4 80 100	150 200 400 500	pA pA pA/°C pA pA
MATCHING CHARACTERISTICS Offset Voltage Input Bias Current ² Common-Mode Rejection ³	T_{MIN} - T_{MAX} T_{MIN} - T_{MAX} T_{MIN} - T_{MAX}	94 94		250 400 500 600	110 104		130 200 300 400	104 104		150 250 400 600	μV μV pA pA dB
Power Supply Rejection ⁴ Crosstalk ⁵	$T_{\text{MIN}} - T_{\text{MAX}}$ $f = 10 \text{ Hz}$ $R_{\text{LOAD}} = 2 \text{ k}\Omega$	94 94	150		110 106	150		110 106	150		dB dB
FREQUENCY RESPONSE UNITY GAIN Crossover Frequency Slew Rate, Unity Gain Slew Rate	$G = -1$ $T_{MIN} - T_{MAX}$		0.8 0.15 0.1			0.8 0.15 0.1			0.8 0.15 0.1		MHz V/μs V/μs
INPUT IMPEDANCE Differential Common-Mode			40 2 300 2			40 2 300 2			40 2 300 2		$M\Omega \ pF$ $G\Omega \ pF$
INPUT VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection Ratio	$V_{CM} = \pm 13.5 \text{ V}$ $T_{MIN} - T_{MAX}$	±13.5 100 98	±14 132 128		±13.5 114 108	±14 132 128		±13.5 110 108	±14 132 128		V dB dB
INPUT CURRENT NOISE	0.1 to 10 Hz f = 10 Hz		3 50			3 50			3 50		$\begin{array}{c} pA \ p-p \\ fA/\sqrt{Hz} \end{array}$
INPUT VOLTAGE NOISE	0.1 to 10 Hz f = 10 Hz f = 1 kHz		0.5 17 15	22		0.5 17 15	2.0		0.5 17 15	2.0	$\begin{array}{c} \mu V \ p \text{-} p \\ n V / \sqrt{Hz} \\ n V / \sqrt{Hz} \end{array}$
OPEN-LOOP GAIN	$V_O = \pm 12 \text{ V}$ $R_{LOAD} = 10 \text{ k}\Omega$ $T_{MIN} - T_{MAX}$ $V_O = \pm 10 \text{ V}$	200 150	2000 1500		400 300	2000 1500		400 300	2000 1500		V/mV V/mV
	$R_{LOAD} = 2 k\Omega$ $T_{MIN} - T_{MAX}$	200 150	1000 1000		300 200	1000 1000		200 100	1000 1000		V/mV V/mV

-2- REV. C

		AD704J/A		AD704K		AD704T					
Parameters	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
OUTPUT CHARACTERISTICS Voltage Swing	$R_{LOAD} = 10 \text{ k}\Omega$										
	T_{MIN} - T_{MAX}	±13	±14		± 13	±14		±13	±14		V.
Current	Short Circuit		±15			±15			±15		mA
CAPACITIVE LOAD Drive Capability	Gain = 1		10,00	0		10,00	00		10,00	0	pF
POWER SUPPLY Rated Performance			±15			±15			±15		V
Operating Range		±2.0		±18	±2.0		±18	±2.0		±18	V
Quiescent Current	T_{MIN} - T_{MAX}		1.5 1.6	2.4 2.6		1.5 1.6	2.4 2.6		1.5 1.6	2.4 2.6	mA mA
TRANSISTOR COUNT	# of Transistors		180			180			180		

NOTES

Specifications subject to change without notice.

REV. C -3-

¹Bias current specifications are guaranteed maximum at either input.
²Input bias current match is the maximum difference between corresponding inputs of all four amplifiers.

 $^{^3}$ CMRR match is the difference of $\Delta V_{OS}/\Delta V_{CM}$ between any two amplifiers, expressed in dB. 4 PSRR match is the difference between $\Delta V_{OS}/\Delta V_{SUPPLY}$ for any two amplifiers, expressed in dB.

⁵See Figure 2a for test circuit.

All min and max specifications are guaranteed.

ABSOLUTE MAXIMUM RATINGS1

Supply Voltage
Internal Power Dissipation (25°C) See Note 2
Input Voltage
Differential Input Voltage ³ ±0.7 V
Output Short-Circuit Duration (Single Input) Indefinite
Storage Temperature Range
Q65°C to +150°C
N, R65°C to +125°C
Operating Temperature Range
AD704J/K 0°C to 70°C
AD704A
AD704T –55°C to +125°C
Lead Temperature Range (Soldering 10 seconds) 300°C

NOTES

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Specification is for device in free air: 14-Lead Plastic Package: $\theta_{JA} = 150^{\circ}$ C/W 14-Lead Cerdip Package: $\theta_{JA} = 110^{\circ}$ C/W 16-Lead SOIC Package: $\theta_{JA} = 100^{\circ}$ C/W 20-Terminal LCC Package: $\theta_{JA} = 150^{\circ}$ C/W

 3 The input pins of this amplifier are protected by back-to-back diodes. If the differential voltage exceeds ± 0.7 volts, external series protection resistors should be added to limit the input current to less than 25 mA.

ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN

*THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER'S OUTPUT IS AT MAX AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK.

Figure 2a. Crosstalk Test Circuit

Figure 2b. Crosstalk vs. Frequency

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD704JN	0°C to 70°C	Plastic	N-14
AD704JR	0°C to 70°C	Small Outline (SOIC)	R-16
AD704JR-/REEL	0°C to 70°C		Tape and Reel
AD704KN*	0°C to 70°C	Plastic	N-14
AD704AN*	−40°C to +85°C	Plastic	N-14
AD704AR	−40°C to +85°C	Small Outline (SOIC)	R-16
AD704AR-REEL	−40°C to +85°C		Tape and Reel
AD704SE/883B	−55°C to +125°C	Leadless Ceramic Chip Carrier	E-20A
AD704TQ/883B*	−55°C to +125°C	Cerdip	Q-14

Chips are also available.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD704 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

^{*}Not for new designs; obsolete April 2002.

Typical Performance Characteristics-AD704

(@ 25°C, $V_S = \pm 15 \text{ V}$ dc, unless otherwise noted.)

TPC 1. Typical Distribution of Input Offset Voltage

TPC 2. Typical Distribution of Input Bias Current

TPC 3. Typical Distribution of Input Offset Current

TPC 4. Input Common-Mode Voltage Range vs. Supply Voltage

TPC 5. Large Signal Frequency Response

TPC 6. Offset Voltage Drift vs. Source Resistance

TPC 7. Typical Distribution of Offset Voltage Drift

TPC 8. Change in Input Offset Voltage vs. Warm-Up Time

TPC 9. Input Bias Current vs. Common-Mode Voltage

REV. C -5-

TPC 10. Input Noise Voltage Spectral Density

TPC 11. Input Noise Current Spectral Density

TPC 12. 0.1 Hz to 10 Hz Noise Voltage

TPC 13. Quiescent Supply Current vs. Supply Voltage (per Amplifier)

TPC 14. Common-Mode Rejection vs. Frequency

TPC 15. Power Supply Rejection vs. Frequency

TPC 16. Open-Loop Gain vs. Load Resistance Over Temperature

TPC 17. Open-Loop Gain and Phase vs. Frequency

TPC 18. Output Voltage Swing vs. Supply Voltage

-6- REV. C

TPC 19. Closed-Loop Output Impedance vs. Frequency

TPC 20a. Unity Gain Follower (For Large Signal Applications, Resistor R_F Limits the Current through the Input Protection Diodes)

TPC 20b. Unity Gain Follower Large Signal Pulse Response $R_F = 10 \text{ k}\Omega$, $C_L = 1,000 \text{ pF}$

TPC 20c. Unity Gain Follower Small Signal Pulse Response $R_F = 0 \Omega$, $C_L = 100 \ pF$

TPC 20d. Unity Gain Follower Small Signal Pulse Response $R_F = 0 \Omega$, $C_L = 1,000 \ pF$

TPC 21a. Unity Gain Inverter Connection

TPC 21b. Unity Gain Inverter Large Signal Pulse Response, $C_L = 1,000 \text{ pF}$

TPC 21c. Unity Gain Inverter Small Signal Pulse Response, $C_L = 100 \text{ pF}$

TPC 21d. Unity Gain Inverter Small Signal Pulse Response, $C_L = 1,000 \text{ pF}$

REV. C -7-

Figure 3. Gain of 10 Instrumentation Amplifier with Post Filtering

The instrumentation amplifier with post filtering (Figure 3) combines two applications which benefit greatly from the AD704. This circuit achieves low power and dc precision over temperature with a minimum of components.

The instrumentation amplifier circuit offers many performance benefits including BiFET level input bias currents, low input offset voltage drift and only 1.2 mA quiescent current. It will operate for gains $G \ge 2$, and at lower gains it will benefit from the fact that there is no output amplifier offset and noise contribution as encountered in a 3 op amp design. Good low frequency CMRR is achieved even without the optional ac CMRR trim (Figure 4). Table I provides resistance values for 3 common circuit gains. For other gains, use the following equations:

$$R2 = R4 + R5 = 49.9 \ k\Omega$$

$$R1 = R3 = \frac{49.9 \, k\Omega}{0.9 \, G - 1}$$

Max Value of
$$R_G = \frac{99.8 \ k\Omega}{0.06 \ G}$$

$$C_t \approx \frac{1}{2\pi (R3) 5 \times 10^5}$$

Table I. Resistance Values for Various Gains

Circuit Gain (G)	R1 and R3	R _G (Max Value of Trim Potentiometer)	Bandwidth (-3 dB), Hz
10	6.34 kΩ	166 kΩ	50k
100	526 Ω	16.6 kΩ	5k
1,000	56.2 Ω	1.66 kΩ	0.5k

Figure 4. Common-Mode Rejection vs. Frequency with and without Capacitor \mathcal{C}_t

-8- REV. C

The 1 Hz, 4-pole active filter offers dc precision with a minimum of components and cost. The low current noise, I_{OS} , and I_B allow the use of 1 $M\Omega$ resistors without sacrificing the 1 $\mu V/^{\circ}C$ drift of the AD704. This means lower capacitor values may be used, reducing cost and space. Furthermore, since the AD704's I_B is as low as its I_{OS} , over most of the MIL temperature range, most applications do not require the use of the normal balancing resistor (with its stability capacitor). Adding the optional balancing resistor enhances performance at high temperatures, as shown in Figure 5. Table II gives capacitor values for several common low pass responses.

Figure 5. V_{OS} vs. Temperature Performance of the 1 Hz Filter Circuit

Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values

Desired Low Pass Response	Section 1 Frequency (Hz)	Q	Section 2 Frequency (Hz)	Q	C1 (µF)	C2 (µF)	C3 (µF)	C4 (μF)
Bessel	1.43	0.522	1.60	0.806	0.116	0.107	0.160	0.0616
Butterworth	1.00	0.541	1.00	1.31	0.172	0.147	0.416	0.0609
0.1 dB Chebychev	0.648	0.619	0.948	2.18	0.304	0.198	0.733	0.0385
0.2 dB Chebychev	0.603	0.646	0.941	2.44	0.341	0.204	0.823	0.0347
0.5 dB Chebychev	0.540	0.705	0.932	2.94	0.416	0.209	1.00	0.0290
1.0 dB Chebychev	0.492	0.785	0.925	3.56	0.508	0.206	1.23	0.0242

Specified values are for a -3 dB point of 1.0 Hz. For other frequencies, simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 μ F, C2 = 0.0357 μ F, C3 = 0.0533 μ F, C4 = 0.0205 μ F.

REV. C –9–

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Plastic SO (R) Package

Revision History

Location	Page
11/01 Data Sheet changed from REV. B to REV. C.	
Edits to FEATURES	1
Edits to PRODUCT DESCRIPTION	1
Edits to ABSOLUTE MAXIMUM RATINGS	3
Deleted METALIZATION PHOTOGRAPH	3
Edits to ORDERING GUIDE	4

-10- REV. C