МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

Вариант – улучшенный метод Эйлера

Выполнил: Студент группы Р3232 Чмурова Мария Владиславовна

Оглавление

Задание	
Описание метода	4
Блок схема	5
Код численного метода	6
Примеры работы программы	7
Вывод	

Задание

Реализуйте улучшенный метод Эйлера для решения обыкновенных дифференциальных уравнений по начальному значению (задача Коши) в интервале от а до b [a,b].

f

epsilon

a

y(a)

b

f - номер уравнения, где уравнение в виде y'=f(x,y). Вы должны получить функцию по номеру из входных данных в методе get_function.

Вы должны определить и пересчитать шаг h самостоятельно.

Вы должны вычислить и вернуть y(b) с разницей, не превышающей epsilon.

Описание метода

Необходимо найти значение, используя улучшенный метод Эйлера. Обычный метод Эйлера состоит в следующем:

От начальной точки (x_0, y_0) проводится касательная к графику до пересечения с линией $x = x_1$ $(x_{i+1} = x_i + h)$ и получаем новую точку (x_1, y_1) . Эти действия продолжаются пока не будет достигнута точка $x_i = b$

В случае модифицированного метода Эйлера необходимо использовать отрезки не на левых краях: а посередине интервалов разбиения. Точка касательной высчитывается по следующем формуле:

$$x_{i+\frac{1}{2}} = x_i + h;$$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} \cdot f_i$$

Тогда новое значение функции в точке:

$$y_{i+1} = y_i + h \cdot f(x_{i+\frac{1}{2}}; y_{i+\frac{1}{2}})$$

Блок схема

Код численного метода

```
# Complete the 'solveByEulerImproved' function below.
# The function is expected to return a DOUBLE.
# The function accepts following parameters:
  1. INTEGER f
  2. DOUBLE epsilon
  3. DOUBLE a
  4. DOUBLE y a
  5. DOUBLE b
def solveByEulerImproved(f, epsilon, a, y a, b):
   func = Result.get function(f)
   h = (b - a) / (1 / epsilon)
    x i = a
   y_i = y_a
   while (x i < b):
        delta y = h * func(x i + h / 2, y i + (h / 2) *
func(x i, y i))
        y_new = y_i + delta_y
        x i = x i + h
        y_i = y_new
    return y_i
```

Примеры работы программы

№ Теста	Входные данные	Выходные данные
1	1	1.4596977132859348
	0.001	
	0	
	1	
	1	
2	2	18.975470472264693
	0.0001	
	0	
	2	
	3	
3	3	70.50071879638192
	0.1	
	3	
	10	
	5	
4	4	-2437.0584979098926
	0.001	
	-5	
	-2	
	1	
5	10	3.0
	0.01	
	0	
	3	
	1	

Вывод

В ходе данной лабораторной работы была написана программа, позволяющая найти приближенное значение диференциального уравнения при использовании улучшенного метода Эйлера.

Он показывает результаты на различных типах функции и эффективно аппроксимирует численное решение с высокой точностью. Данный метод применяется для решения обыкновенных ДУ на отрезке [a, b].

По сравнению со стандартным методом Эйлера, улучшенный метод показывает более высокую точность, однако при сравнении с другими методами, например методом Рунге-Кутты, он может иметь меньшую точность, однако требует меньшей вычислительной мощности.

Сложность программы данного метода можно оценить как O(n), где n- количество отрезков разбиения.

Ошибка данного метода может варьироваться при различных выборах параметра epsilon. Чем больше будет epsilon, тем более большое значение ошибки может получиться.