Associated dimension and Fractal Geometry - Part 2

I terated function system (IFS) $\{S_i\}_{i \in \mathcal{X}}$ $S_i: [0,1]^d \rightarrow [0,1]^d$ $S_{i}(x) - S_{i}(y) | \leq C_{i} | x - y |$ for some cie(o,1), Yx, y ∈ [o,1]d. 121 < 00. (see Mauldin-Urbanski PLMS 1996 for infinite IFS) and Banaji-Fraser arxiv: 2207.11611 Hutchinson: there exists a unique non-empty
Compact $F \subseteq [0,1]^d$ such that

 $F = \bigcup_{i \in \mathcal{I}} S_i(F).$ Fosten "fractal"

e.g.	$ f S_{i}(x) - S_{i}(y) = c_{i} x - y $		
	then S: is a similarity.		
	If all S; are similarities, the		
	F is self-similar set.	^	
For	example: middle 3rd Contor set is attractor of 1FS	0	
	is attractor of IFS		
	$\{x\mapsto x_3, x\mapsto x_3+x_3\}$	merch to the	
	Scerpinski triangle		
	sierpiński carpet/sponge.		

what are the dimensions of F? Question: Suppose for $i \neq j \in \mathcal{I}$ $S_i((0,1)^d) \cap S_i((0,1)^d)$ = \emptyset . Theorem: open set condition condition then dim F = dim F = dim F = S where I C: = 1. (Hutchinson-Moran ieI Formula) Big question: When does s not give the dimension?

dearly s does not give dimension when there are exact overlaps (e.g. {x +> 1/3, x +> 1/3 + 1/3})

Conjecture: If there are no exact overlaps (that is, Semi(S: iEI) is free) then dim F = min { S, d}. (open).	
exact overlaps at level I exact overlaps at level O i k level Many recent breakthroughs: Hochman (2014 Annals) Rapapont (2012 Ann ENS.) is not free.	1 人2

Theorem (Falconer): dim F = dim B F for all self-simlar sets F. Question (Olsen 2011): Is it true that dim F = dim H F for all self-similar sets? Answer: No. (Fraser TAMS 2014). Connider IFS: $\{x \mapsto x \times , x \mapsto \beta \times (x \mapsto x \times + (1-x))\}$ where $\alpha, \beta, \delta \in (0,1)$ are very small: $\alpha + \beta + \delta < 1$. \Rightarrow s<1. and $\frac{\log x}{\log \beta} \notin \mathbb{Q}$.

, dim HF & s < 1. claim: dim F = 1 I will prove that [0,1]

| X | A weak tangent to F. I will prove that [0,1] is Consider $T_k: \mathbb{R} \to \mathbb{R}$, $T_k(x) = \beta^{-k} \times$ e.g. $T_{R}([0,\beta^{k}]) = [0,1]$ Want: $T_{R}(F) \cap [0,1] \longrightarrow_{d_{R}} [0,1]$. $T_{R}(F) \cap [0,1] \ge \{ x^{m} B^{n} : m > 0, n > -k \} \cap [0,1]$ Any limit of TR(F) N[O,1) contains {\alpha^mB^n: m70, n \in \alpha} \lambda \text{To[0,1]} It remains to show that {xm3": MEN, nEZ} n [0,1] in fact [0,1]. log(xmBn) = mlogx + nlogB $= n \log x \left(\frac{m}{n} + \frac{\log \beta}{\log x} \right)$ I can makethis small!

Dirichlet's theorem: For all $n \notin \mathbb{R}$ there exist infinitely many $m \in \mathbb{N}$, $n \in \mathbb{Z}$ such that $\gcd(m,n)=1$. and $|n-\frac{m}{n}| \leq \frac{1}{n^2}$

therefore $\log(x^m\beta^n)$ can be made arbitrarily small and this shows $\{\log(x^m\beta^n): m\in \mathbb{N}, n\in \mathbb{R}\}$ is dense in $(-\infty, 0)$. This completes the proof, and we have Éhon ding F = 1. Theorem (Fraser, Henderson, Obson, Robinson Adv. 2015) Either O dim HF = dim AF (weak separation condition) 2 din_A F = 1 (failure of WSC). for self-similar F = IR. (see Garcia Adv. 2020) for IRd case

consider IFS in $[0,1]^2$ built by "lifting" the previous IFS. Application: Prosection To onto First co-ordinate 2DIFS satisfies 1 B 1 OSC, and therefore dum_A E = s,< 1. surs is Lipschitz JDIFS fails WSC 8 dim_A F = 1 1= dim F = dim TE > dim E = S.

=> lipschitz maps can increase Associad dimension!

Mandelbrot percolation $P \in (0,1)$ Start with [0,1]d, m = 2, independently with prob. p beep m=3 $M_0=C_0,17d$ Mk = U kept cubes at level k. mxm grid $M_0 = M_1 = M_2 = --- M_R$ M's a random fractal. If plage evough, P(M+0)>0 and we can ask about almost sure dimensions of M conditioned on M \$ 0.

Theorem

Theorem Fraser-Mino-Troscheit (ETDS 2018)

& Berlinkov-Järvenpää (2019 STP)

dim M = d

Note: formula does not depend on m or P. choosing $P > m^d$ but $P < m^d + E$ we can ensure dim M almost surely < 0.0001, but $\dim_A M = d$.

Corollary

Almost surely M cannot be bi-lipschitz embedded into $1R^{d-1}$.

proof: dim M = d and dim A is bi-Lipichitz invariant.

Notes: Associad dimension has many rice applications in embedding theory.

· This gives a set with dim M < 0.0001 and M = 1R'00, such that M cannot be reasonably described in 1R'99.

"Proof": dim HF is big when F is "globally big".

dim AF is big when F is big "somewhere." Q kept at level k. "In experiment"

in more levels

cubes at level k+n. p = P(all level k+n cubes in Q are kept) > 0
and go on to intersect M · depends on n and p, but not on Q or k.

| Q k,-level } n experiments
| Q k_2-level } n experiment P(succes) = P(succes, of ore of experiments) a kn-level. In experiment $= |-(1-p)^{(n)}$ for l(n) large enough.

For each nEN, run U(n) n-experiments. Probability of success for each n is > 1/2. Borel-Contelli (emma => infinitely many n are successful almost surely => dimAM=sd.

Bedford, McMullen 1984 Theorem Mackay 2011 N = total number of rectangles rander! M = total number of non-empty columns Ni = number of rectangles in m columns column i Nmax = max N; $dim_A F = \frac{\log M}{\log m} + \frac{\log N_{max}}{\log n}$ $dim_B F = \frac{\log M}{\log m} + \frac{\log NM}{\log m}, dim_H F = \frac{\log \sum_{i=1}^{M} N_i \log n}{\log m}$

Note: dim F < dim B F < dim A F provided N:= Nmar for all i. (non-uniform fibres case). froof For Associad dimension, suffices to counder "approximate squares". R } approximate
square of size R Need to cover by Squares of size r.

Define integers a, A, b, B > 1, by $\begin{pmatrix} b & B & A \end{pmatrix}$ $m^{-\alpha} \approx R$ $m^{-A} \approx r$ n-b ≈ R n-B ≈ r Cose 11 b < B < a < A $N_r(Q) \ll \approx \left(\frac{B}{h}N_i\right)M^{A-\alpha}$ $\approx \left(\frac{R}{r}\right) \frac{\log M}{\log m} + \frac{\log N m \alpha}{\log n}$

Mis proves upper bound, and lower bound now easy, (check case I and consider only place where not optimal estimate used) Associated dimension & Fractal Geom. Exercises (part 2)

- (4) Prove directly from the definition that dim $_AF = S$ for all self-similar sets satisfying OSC (or SSC) where S is similarity dimension ($\Sigma_i C_i^s = 1$).
- (5) Prove directly that if
 an IFS/contains two similarities (
 with a common fixed point
 and contraction ratios ×, B
 with logx & Q, then
 togs
 dim AF=1 (where Fis attractor)
- (16) Construct a self-similar set with distinct Housdorff and Associated dimensions, but using only one contraction

- (7) Contract an infinitely generated self-similar set (121=0) which satisfies the SSC (or OSC) but has distinct Hausdorff and Assouad dimensions.
- (18) Cornider a more general percolation model where m and p are allowed to change at each level. What can you say obout Associal dimension?
- (9) Construct a self-similar set F in \mathbb{R}^2 which satisfies: $\dim_{H} F < \dim_{A} F < 2$.
- 20 Find out what an Ahlfors regular set is and show that for such sets F, dim F = dim F.