Atlanta, GA
March 16-20

Free-Shape Optimization of VHF Air-Core Inductors using a Constraint-Aware Genetic Algorithm

Thomas Guillod and Charles R. Sullivan

Dartmouth College, NH, USA

Optimization of Magnetics

- Magnetics are often a bottleneck
- Optimizing the materials?
 - Copper, silver, aluminum, gold, etc.
 - Magnetic material improvements are slow
- Optimizing the geometry?
- Optimal air-core inductor geometries?
 - Spiral, solenoid, staple
 - o Toroid, cylinder

Free-Shape Optimization

Topological optimization

- Definition of constraints
- Definition of an objective
- Automated shape optimization

Common for structural mechanics

Applicability to magnetics

- Large computational cost
- Complex topologies and constraints
- Discrete variables (e.g. layers)
- Non-differentiable / discontinuous objective

Optimization Workflow

Air-Core Inductor Optimization Workflow

Geometry and Constraints

Considered geometries

- Multilayer planar process
- Variable trace width
- Variable via size

Design rules

- Clearance, width, footprint, angle, curvature, etc.
- Complex computational geometry
- Optimal designs are often located at the limit
- Optimizers are very good at finding loopholes

Invalid Geometries

Soft Constraints

- How "close" is a design to become valid/invalid?
- Helpful for the optimizer (as constraints and/or penalty)

3D PEEC Solver

- PEEC (Partial Element Equivalent Circuit) method [1970s]
 - o Integral equations method using large equivalent circuit
 - Fast for air-core structures (only the conductors are meshed)
- Generates large dense matrices

3D PEEC Solver

- FFT acceleration [2018, 2022]
 - Using voxels to represent the geometries
 - Embedding the matrices in circulant tensors
- Advantages
 - Memory storage: from O(n²) to O(n)
 - Matrix multiplication: from O(n²) to O(n In(n))
- **PyPEEC** (custom implementation)
 - 3D magnetic solver (DC and AC)
 - Can handle arbitrary geometries
- Can solve 6.5 designs per seconds

Voxel Structure

PyPEEC Inductor

Global Optimization

- Gradient-free algorithms: differential evolution, particle swarm,
 Parzen estimator, CMA-ES, NglohTuned, and genetic algorithm
- The design rules are extremely restrictive
- Constraint-aware genetic algorithm
- Enforce the design rules during the optimization

Design Rule Awareness

- Generation of random designs for the initial population
 - o Probability to obtain a valid design: below one in a billion
 - Fully random generation is not feasible
- A recursive tree algorithm has been developed

Optimization Results

Problem Specifications

- Inductor of a DC-DC Buck IVR
 - 3.3 V to 0.8 V at 1.6 W
 - 40.68 MHz operating frequency
 - o 180 nm SOI switches
- Design rules
 - Limited footprint: 1 mm²
 - Two-layer planar inductor
- Minimize converter losses

Optimizer Convergence

Design Space Diversity

- Classical design
 - Spiral with 1.5 turns
 - o **Solenoid** with 4 turns
- Free-shape design
 - Solenoid with 3 turns
 - Only 0.3% more efficient
- Is shape opt. useless?
 - Design space diversity
 - Additional constraints

Additional Constraints

Shape	Solenoid shaped		Solenoid shaped		Loop shaped
Total Efficiency	80.8%	- 1.8%	79.0%	- 1.2%	77.8%
Inductor Efficiency	93.3%		90.8%		89.7%

- Shape optimization can handle complex constraints
- Terminals have a non-negligible impact

Extension of the Design Space

Shape	Solenoid shaped		Loop shaped		Loop shaped
Total Efficiency	79 . 0 %	+ 1.0%	80.0%	+ 3.8%	83.8%
Resistance Value	16.9 mΩ		21.8 mΩ		11.1 mΩ
Inductance Value	2.17 nH		3.42 nH		1.31 nH

Different boundary conditions lead to different shapes

Near-Field Optimization

Shape	Solenoid shaped		Non-conventional shape			
Total Efficiency	79.0%	- 0.9%	78 . 1 %			
DC Mag. Near Field	771 A/m	. 2 Ev	288 A/m			
AC Mag. Near Field	616 A/m	÷ 2.5x	249 A/m			

- Magnetic near-field: eddy-current losses and/or EMI issues
- Massive field reduction with marginal impact on the efficiency

Conclusion

Conclusion and Outlooks

Free-shape optimization

- Strict design rule enforcement
- Fast 3D FFT-accelerated PEEC
- Constraint-aware genetic algorithm

Air-core inductors for IVRs

- Classical shapes good for standard problems
- Shape optimization can handle complex constraints

Outlooks

- Scaling to more complex problems
- Gradient-based methods (e.g., auto-diff)
- Neural networks (e.g., surrogate)

- 3D FFT-accelerated PEEC solver
- DC and AC magnetic problems
- Fully open source Python code

pypeec.otvam.ch

Shape Opt. Source Code

github.com/otvam/pyfreecoil

zenodo.org/records/14247697

Thank you! Questions?

Supported by the Power Management Integration Center (NSF IUCRC)