- and Flat Packages, and Plastic and Ceramic Outline" Packages, Ceramic Chip Carriers Package Options Include Plastic "Small DIPs
- Dependable Texas Instruments Quality and Reliability

description

Following the hold time interval, data at the D input may positive-edge-triggered flip-flops. A low level at the regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. outputs on the positive-going edge of the clock pulse. be changed without affecting the levels at the outputs. the independent resets or clear inputs sets or \$ \$ contain devices preset These

The SN54' family is characterized for operation over the full military temperature range of $-55\,^{\circ}\mathrm{C}$ to $125\,^{\circ}\mathrm{C}$. The SN74' family is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

UTS	10	ب	I	Ī		I	ပြ
OUTPUTS	۵	I	ً	Ţ	I	ب	8
	Q	×	×	×	I	ب	×
S	CLK	×	×	×	-	-	Ļ
INPUTS	CLR	Ι	١	_	I	I	I
	PRE	٦	I	٦	I	I	I

The output levels in this configuration are not guaranteed to meet the minimum levels in V_{OH} if the lows at preset and clear are near V_{1L} maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

logic symbol[‡]

(5)	(6) 10	(9) 20	(8) 20
S	10 a		
3 5	주 의 를 의 의 등 의 의 등	130	20 (13) 20 (13) 20 (13)

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 N, and W packages. J, Pin numbers shown are for D, and IEC Publication 617-12.

J PACKAGE IJ OR W PACKAGE N PACKAGE ID OR N PACKAGE VIEW)	0142 VCC 1202 D 1202 D 102 PRE 8 D 2 D	. W PACKAGE	0401PRE 12010 12010 10020 9020 802PRE
SN54LS74A, SN54S74 SN7474 SN74LS74A, SN74S74	10LR C1 10 C2 10LK C3 10 C5 10 C5 6ND C7	SN5474	10LK 01 10LR 03 10LR 03 20LR 04 20LK 07

SN54LS74A, SN54S74 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1988, Texas Instruments Incorporated

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

schematics of inputs and outputs

74

'S74

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

schematic

'LS74A

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage: '74, 'S74		5.5 V
'LS74A		7 V
Operating free-air temperature range:	SN54'	-55°C to 125°C
	SN74'	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

				SN547	4		SN7474		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	٧
ЮН	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				16			16	mΑ
		CLK high	30			30			
tw	Pulse duration	CLK low	37			37			ns
**		PRE or CLR low	30			30			
t _{su}	Input setup time before CLK†		20			20			ns
th	Input hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				t		SN5474			SN7474		UNIT
PA	RAMETER	1	EST CONDITIO	NS	MIN	TYP\$	MAX	MIN	TYP#	MAX	UNIT
VIK		VCC = MIN,	I ₁ = - 12 mA				- 1.5			1.5	٧
VOH		V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		٧
VOL		V _{CC} = MIN, I _{OL} = 16 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,		0.2	0.4		0.2	0.4	V
11		VCC = MAX,	V ₁ = 5.5 V				1			1	mA
	D						40			40	į
чн	ČLR	1					120			120	μΑ
***	All Other	V _{CC} = MAX,	V ₁ = 2.4 V				80			80	l
	D		- Annual Control of the Control of t				- 1.6			- 1.6	
	PRE §						- 1.6			- 1.6	mA
IIL.	CLR §	VCC = MAX,	$V_1 = 0.4 \text{ V}$				- 3.2			- 3.2	1 ""^
	CLK	1				*	- 3.2			- 3.2	
los1		V _{CC} = MAX			- 20		– 57	- 18		- 57	mA
ICC#		V _{CC} = MAX,	See Note 2			8.5	15		8.5	15	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, ICC is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

switching charateristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				15	25		MHz
^t PLH	PRE or CLR	Q or $\overline{\overline{Q}}$				25	ns
tPHL	PRE or CLH	u or u	$R_L = 400 \Omega$, $C_L = 15 pF$			40	ns
tPLH .			1		14	25	ns
tPHL	CLK	Q or Q			20	40	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 \,^{\circ}\text{C}$.

[§]Clear is tested with preset high and preset is tested with clear high.

Not more than one output should be shown at a time.

[#]Average per flip-flop.

DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			St	V54LS7	4A		SN74LS	74A	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.7			8.0	٧
ЮН	High-level output current				- 0.4			- 0.4	mA
loL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		25	MHz
		CLK high	25			25			ns
t _w	Pulse duration	PRE or CLR low	25			25			113
		High-level data	20			20			ns
t _{su}	Setup time-before CLK†	Low-level data	20			20			113
th	Hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS7	4A	SI	N74LS7	4A	UNIT
PA	RAMETER	TES	T CONDITIONS [†]		MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	ONT
VIK		V _{CC} = MIN,	I _I = 18 mA				1.5			– 1.5	V
V _{OH}		V _{CC} = MIN, I _{OH} = 0.4 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.5	3.4		2.7	3.4		>
		V _{CC} = MIN, I _{OL} = 4 mA	VIL = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	V
VOL		V _{CC} = MIN, I _{OL} = 8 mA	V _{IL} = MAX,	V _{IH} = 2 V,					0.35	0.5	
	D or CLK	.,	V - 7 V				0.1			0.1	mA
ų	CLR or PRE	V _{CC} = MAX,	V ₁ = 7 V				0.2			0.2	110
	D or CLK						20			20	μΑ
ЧН	CLR or PRE	V _{CC} = MAX,	V ₁ = 2.7 V				40			40	4 /\
	D or CLK						- 0.4			- 0.4	mA
IIL	CLR or PRE	V _{CC} = MAX,	V _I = 0.4 V				- 0.8			- 0.8	
los§		V _{CC} = MAX,	See Note 4		- 20		100	- 20		- 100	mA
ICC (To	tal)	V _{CC} = MAX,	See Note 2		1	4	8		4	8	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_O = 2.25 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CC	ONDITIONS	MIN	TYP	MAX	UNIT
f _{max}					25	33		MHz
^t PLH		Q or Q	$R_L = 2 k\Omega$,	C _L = 15 pF		13	25	ns
^t PHL	CLR, PRE or CLK	Q or Q				25	40	ns

Note 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

				SN54S7	14	1:	SN74S7	4	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.8			8.0	٧
ЮН	High-level output current				-1			- 1	mA
IOL	Low-level output current				20			20	mA
		CLK high	6			6			
tw	Pulse duration	CLK low	7.3			7.3			ns
••		CLR or PRE low	7			7			<u> </u>
		High-level data	3			3			ns
t _{su}	Setup time, before CLK 1	Low-level data	3			3			112
th	Input hold time - data after CLK †		2			2			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

*******						SN54S7	4		SN74S7	4	UNIT
PAF	RAMETER		TEST CONDITION	ONS	MIN	TYP [‡]	MAX	MIN	TYP#	MAX	UNIT
VIK		V _{CC} = MIN,	I _I = - 18 mA,				- 1.2			- 1.2	V
VOH		V _{CC} = MIN, I _{OH} = - 1 mA	V _{IH} = 2 V,	V _{1L} = 0.8 V,	2.5	3.4		2.7	3.4		٧
VOL	·	V _{CC} = MIN, I _{OL} = 20 mA	V _{1H} = 2 V,	V _{IL} = 0.8 V,			0.5			0.5	٧
1 ₁		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
	D						50			50]
Ιн	CLR	V _{CC} = MAX,	V ₁ = 2.7 V				150			150	μΑ
•••	PRE or CLK						100			100	
	D						– 2			- 2	
	CLR¶						- 6			- 6	
IL	PRE¶	V _{CC} = MAX,	$V_1 = 0.5 V$				4			-4	mA
	CLK						- 4			-4	
loss		V _{CC} = MAX			- 40		- 100	- 40		- 100	mA
Icc#		V _{CC} = MAX,	See Note 2			15	25		15	25	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				75	110		MHz
tPLH	PRÉ or CLR	Qorā			4	6	ns
	PRE or CLR (CLK high)	a or a	$R_1 = 280 \Omega$, $C_1 = 15 pF$		9	13.5	ns
^t PHL	PRE or CLR (CLK low)	u or u	$R_L = 280 \Omega$, $C_L = 15 pF$		5	8	
t _{PLH}		_			6	9	ns
tPHL t	CLK	Q or Q			6	9	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$.

Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

¹Clear is tested with preset high and preset is tested with clear high.

[#]Average per flip-flop.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
JM38510/00205BCA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN7474N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7474N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7474N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN7474N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

om 17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³
						no Sb/Br)		
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS74AN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74AN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74AN3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS74AN3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS74ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74S74N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI

tom 17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp
SN74S74N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74S74NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is

PACKAGE OPTION ADDENDUM

17-Oct-2005

provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated