Experiment - II

Devansh Shukla I18PH021

1 Aim:

Write a program using 8085 & verify for:

- Subtraction of two 8-bit numbers (with borrow)
- Subtraction of two 16-bit numbers (with borrow)

2 Theory:

The 8085 is an 8-bit microprocessor produced by Intel.

It has the following configuration –

- 8-bit data bus
- 16-bit address bus, which can address upto 64KB
- A 16-bit program counter
- A 16-bit stack pointer
- Six 8-bit registers arranged in pairs: BC, DE, HL
- Requires +5V supply to operate at 3.2 MHZ single phase clock

Figure 1: 8085 Architecture

2.1 Some instructions

1. **ORG** addr

Directive reserves the starting address for program code or data in specified memory array,

2. **LXI** H

(Load register pair immediately) loads 16 bit data in register pair designated by operand.

3. **LHLD** addr

(Load HL pair direct) loads 16 bit data from specified address to designate in register pair.

4. **MOV** A

M copies the data byte into accumulator from the memory specified by the address in H-L pair.

1

5. **MVI**

(Move immediate data) moves immediate value to specified register.

6. **SBB** instruction

subtracts specified register content and carry flag to accumulator and store results into accumulator.

7. JNC addr

Instruction jump the execution to the specified address if carry flag is reset.

8. INR. instruction

increment the specified register content by 1.

9. **INX** H

(Increment register pair) increments the contents of the register pair by one.

10. **SUB** M

(Subtraction) subtracts the contents of register to accumulator.

11. STA addr

(Store accumulator direct) copies the contents of the accumulator to the memory location specified in the instruction

12. SHLD addr

(Store HL direct) instruction store HL pair content to specified address.

13. **RST** 1

(Restart) finishes the execution of the current instruction and stops any further execution.

2.2 Flowchart

3 Code

3.1 A) Subtraction of two 8-bit numbers

```
# ORG 7000H
LXI H, 7501H
                    // Get address of ist no. in HL pair
MOV A, M
                    // Move no. into accumulator
INX H
                    // HL points 7502 H.
SBB M
                       Substract 2nd no. from Ist no.
INX H
                    // HL points 7503 H.
MOV M, A
                    // Move contents of acc. to memory
RST 1
                    // Terminate
# ORG 7501H
                    // Store no. at address
# DB 20, 10
                    // Get the two 8\ \mathrm{bit}\ \mathrm{no}. at successive location
```

3.2 B) Subtraction of two 16-bit numbers

```
# ORG 7000H
LHLD 7501H
                        // Get 1st 16 bit no. in HL pair
XCHG
                        // Exchange HL pair with DE.
                        // Get 2nd 16 bit no. in HL pair
LHLD 7503H
MOV A, E
                        // Get lower byte of ist no.
SUB L
                        // Subtract lower byte of 2nd no.
MOV L, A
                        // Store the result in reg. L
MOV A, D
                        // Get higher byte of Ist no.
SBB H
                        // Subtract higher byte of 2nd no. with borrow
MOV H, A
                        // Move from acc. To H
                        // Store 16 bit result at 7505 H &7506 H
SHLD 7505H
                        // Terminate
RST 1
# ORG 7501H
                        // Store inputs at the address
# DB 30, 40, 10, 20
                        // Get two 16 bit no. from successive locations
```

4 Observations:

4.1 A) Subtraction of two 8-bit numbers

Figure 2: (a) 8-bit subtraction

Figure 3: (b) 8-bit subtraction

4.2 B) Subtraction of two 16-bit numbers

Figure 4: (a) 16-bit subtraction

Figure 5: (b) 16-bit subtraction

5 Conclusion:

```
(A)
Input: 7501 - 20H, 7502 - 10H
Output: 7503 - 10H
(B)
Input: 7501 - 30H, 7502 - 40H, 7503 - 10H, 7504 - 20H
Output: 7505 - 20H, 7506 - 20H
```

Hence the programs for subtraction of two 8-bit and two 16-bit numbers given in section 3 works as expected for 8085 microprocessor.