Asymptotics for the Eigenvalues of the Harmonic Oscillator with a Quasi-Periodic Perturbation

Daniel M. Elton

February 1, 2008

Abstract

We consider operators of the form H+V where H is the one-dimensional harmonic oscillator and V is a zero-order pseudo-differential operator which is quasi-periodic in an appropriate sense (one can take V to be multiplication by a periodic function for example). It is shown that the eigenvalues of H+V have asymptotics of the form $\lambda_n(H+V)=\lambda_n(H)+W(\sqrt{n})n^{-1/4}+O(n^{-1/2}\ln(n))$ as $n\to +\infty$, where W is a quasi-periodic function which can be defined explicitly in terms of V.

1 Introduction

The one-dimensional harmonic oscillator is the operator

$$H = -\frac{d^2}{dx^2} + (\alpha x)^2,$$

where α is a positive parameter. We can consider H as an unbounded self-adjoint operator acting on $L^2(\mathbb{R})$. The determination of the spectrum of H is a classical problem — virtually any introductory book on quantum mechanics has a section devoted to this topic. In particular H has a compact resolvent and hence a discrete spectrum. Furthermore, the eigenvalues of H are simple and can be enumerated as

$$\lambda_n(H) = \alpha(2n+1), \qquad n \in \mathbb{N}_0.$$

A normalised eigenfunction corresponding to $\lambda_n(H)$ can be chosen as

$$\phi_n(x) = \frac{\alpha^{1/4}}{\sqrt{n! 2^n \sqrt{\pi}}} e^{-\alpha x^2/2} \mathcal{H}_n(\sqrt{\alpha}x), \tag{1}$$

where \mathcal{H}_n is the *n*-th Hermite polynomial.

The purpose of this paper is to study the large n asymptotics of the eigenvalues of the perturbed operator H+V when V is a self-adjoint quasi-periodic pseudo-differential operator of order 0. More precisely, we assume V can be written in the form

$$V = \sum_{\mathbf{a} \in \Lambda} V_{\mathbf{a}} U_{\mathbf{a}} \tag{2}$$

where $\Lambda \subset T^*\mathbb{R} \cong \mathbb{R}^2$ is a countable discrete index set and, for each $\mathbf{a} = (a_x, a_\xi) \in T^*\mathbb{R}$, we define $U_{\mathbf{a}}$ to be the unitary operator on $L^2(\mathbb{R})$ given by

$$U_{\mathbf{a}}\phi(x) = e^{ia_x a_{\xi}/2} e^{ia_x x} \phi(x + a_{\xi}). \tag{3}$$

The $V_{\mathbf{a}}$'s are just complex coefficients.

Since $U_{\mathbf{a}}^* = U_{-\mathbf{a}}$ for any $\mathbf{a} \in T^*\mathbb{R}$, the condition that V is self-adjoint can be rewritten as the requirement

$$\mathbf{a} \in \Lambda \implies -\mathbf{a} \in \Lambda \quad \text{and} \quad V_{-\mathbf{a}} = \overline{V_{\mathbf{a}}}, \quad \mathbf{a} \in \Lambda.$$

We will also assume the $V_{\mathbf{a}}$'s satisfy the following condition (essentially a regularity assumption);

$$\sum_{\mathbf{a}\in\Lambda} |\mathbf{a}|^3 |V_{\mathbf{a}}| < +\infty. \tag{4}$$

In particular, this condition ensures that the right hand side of (2) is absolutely convergent in operator norm, making V a well defined bounded operator. Since H has a compact resolvent the same must then be true for H+V; it follows that the spectrum of H+V also consists of discrete eigenvalues.

Remark. If we take $\Lambda = \{(\omega m, 0) \mid m \in \mathbb{Z}\}$ then V is the operator of multiplication by a function with period ω whose m-th Fourier coefficient is simply $\omega^{1/2}V_{(\omega m,0)}$. Condition (4) becomes a standard regularity requirement (that the function V should be a "bit more" than C^3).

In general we may consider V to be a zero-order pseudo-differential operator with Weyl-symbol $\sum_{\mathbf{a}\in\Lambda}V_{\mathbf{a}}e^{i(a_xx+a_\xi\xi)}$ (n.b., $U_{\mathbf{a}}$ is the operator with Weyl-symbol $e^{i(a_xx+a_\xi\xi)}$). If Λ is a rational periodic lattice then V will be a periodic operator (in the sense that it commutes with a specific translation operator). Taking Λ to be an irrational periodic lattice, or an irregular discrete set, leads to a generalisation of such periodic operators; when we apply "quasi-periodic" to V we mean this particular type of generalisation.

If $\mathbf{0} \in \Lambda$ then the corresponding term in V is $V_{\mathbf{0}}$ times the identity operator and will thus cause a simple shift in the spectrum of H by $V_{\mathbf{0}}$. This term is included in the statement of the main result (Theorem 1.1 below) but thereafter we shall assume $V_{\mathbf{0}} = 0$. We also set $\Lambda' = \Lambda \setminus \{\mathbf{0}\}$; since Λ is discrete, $T^*\mathbb{R} \setminus \Lambda'$ contains a neighbourhood of $\mathbf{0}$.

Define a metric $|\cdot|_{\alpha}$ on $T^*\mathbb{R}$ by $|\mathbf{a}|_{\alpha} = (\alpha^{-1}a_x^2 + \alpha a_{\xi}^2)^{1/2}$. This metric is equivalent to the usual metric $|\cdot|$ so condition (4) can be rewritten as

$$\sum_{\mathbf{a}\in\Lambda'} |\mathbf{a}|_{\alpha}^{p} |V_{\mathbf{a}}| < +\infty \quad \text{for all } p \le 3.$$
 (5)

The main result of the paper is the following.

Theorem 1.1. Suppose V given by (2) satisfies (4) (or equivalently (5)). Then the eigenvalues of the operator H + V satisfy

$$\lambda_n(H+V) = \alpha(2n+1) + V_0 + W(\sqrt{n})n^{-1/4} + O(n^{-1/2}\ln(n))$$

as $n \to \infty$, where $W : \mathbb{R} \to \mathbb{R}$ is the quasi-periodic function defined by

$$W(\lambda) = \frac{2^{1/4}}{\sqrt{\pi}} \sum_{\mathbf{a} \in \Lambda'} V_{\mathbf{a}} |\mathbf{a}|_{\alpha}^{-1/2} \cos\left(\sqrt{2} |\mathbf{a}|_{\alpha} \lambda - \frac{\pi}{4}\right). \tag{6}$$

The presence of the quasi-periodic function W means the first order asymptotics given by Theorem 1.1 contain considerably more information about the operator V than one might expect (c.f. the simple power type asymptotics for the case when V is given as multiplication by an element of C_0^{∞} ([PS]) or for the operator $-d^2/d\theta^2+V(\theta)$ on S^1 (see Theorem 4.2 in [MO])). In particular we note that if V is given as multiplication by a periodic function, knowledge of the first order asymptotics of $\lambda_n(H+V)$ allows the Fourier coefficients of V to be "half" determined (the values of $V_{(-m\omega,0)}+V_{(m\omega,0)}, m\in\mathbb{N}$, can be determined from W).

It is likely that there exists a full asymptotic expansion for $\lambda_n(H+V)$, involving further terms with quasi-periodic functions multiplying increasingly negative powers of n. Judging by numerical evidence (for example with the potential $V(x) = \cos(x)$) the second term in the asymptotics is $O(n^{-3/4})$. This order (even as an improvement of the remainder estimate in Theorem 1.1) appears to involve reasonable subtle cancellation effects within the series giving the second term of the asymptotics; no attempt to deal with this analysis is made here.

Remark. With an obvious modification to the definition of W and a remainder estimate of $O(n^{-1/3}\ln(n))$, Theorem 1.1 also holds for operators V of the form

$$V = \int_{T^*\mathbb{R}} V_{\mathbf{a}} U_{\mathbf{a}} d^2 \mathbf{a} \quad \text{where } V_{\mathbf{a}} \text{ satisfies} \quad \int_{T^*\mathbb{R}} (|\mathbf{a}|_{\alpha}^{-3/2} + |\mathbf{a}|_{\alpha}^3) |V_{\mathbf{a}}| d^2 \mathbf{a} < +\infty.$$

In this case V is a pseudo-differential operator of order zero whose Weyl-symbol has Fourier transform $2\pi V_{\mathbf{a}}$. The $|\mathbf{a}|_{\alpha}^{3}$ term in the condition on $V_{\mathbf{a}}$ is then a regularity condition, while the $|\mathbf{a}|_{\alpha}^{-3/2}$ term is a generalisation of quasi-periodicity.

The proof of Theorem 1.1 is given in Section 4 using standard ideas to express the eigenvalues of H+V in terms of a series involving the resolvent of H and the operator V. The non-triviality of Theorem 1.1 is contained in technical results used to establish the convergence of these series. These results are obtained in Sections 2 and 3; estimates for the elements $\langle V\phi_k,\phi_{k'}\rangle$ of the matrix of V with respect to the eigenbasis $\{\phi_k \mid k \in \mathbb{N}_0\}$ are obtained in the former and are then combined to give resolvent estimates in the latter.

Notation. We use C to denote any positive real constant whose exact value is not important but which may depend only on the things it is allowed to in a given problem. Appropriate function type notation is used in places to make this clearer whilst subscripts are added if we need to keep track of the value of a particular constant (e.g. $C_1(V)$ etc.).

We use ||T||, $||T||_1$ and $||T||_2$ to denote the operator, trace class and Hilbert-Schmidt norms of the operator T respectively.

2 Estimates for Matrix Elements

The aim of this section is to obtain the necessary estimates for the matrix elements $\langle V\phi_k, \phi_{k'}\rangle$ for all $k, k' \in \mathbb{N}_0$. In turn these will be estimated via

$$U_{\mathbf{a}}^{k,k'} := \langle U_{\mathbf{a}}\phi_k, \phi_{k'} \rangle \tag{7}$$

defined for all $\mathbf{a} \in T^*\mathbb{R}$ and $k, k' \in \mathbb{N}_0$. Since the operator $U_{\mathbf{a}}$ is unitary we immediately get

$$|U_{\mathbf{a}}^{k,k'}| \le 1. \tag{8}$$

To obtain more precise estimates we can use the following special function identity (see 7.377 on page 844 of [GRJ]) to find an explicit formula for $U_{\mathbf{a}}^{k,k'}$; for any $0 \le k \le k'$ and $y, z \in \mathbb{C}$ we have

$$\int_{\mathbb{R}} e^{-x^2} \mathcal{H}_k(x+y) \mathcal{H}_{k'}(x+z) dx = 2^{k'} \sqrt{\pi} \, k! \, z^{k'-k} L_k^{(k'-k)}(-2yz), \tag{9}$$

where $L_k^{(k'-k)}$ is the generalised Laguerre polynomial.

Lemma 2.1. For any $0 \le k \le k'$ and $\mathbf{a} \in T^*\mathbb{R} \setminus \{\mathbf{0}\}$ we have

$$U_{\mathbf{a}}^{k,k'} = \sqrt{\frac{k!}{k'!}} (\sqrt{2}\rho e^{i\theta})^{k'-k} e^{-\rho^2} L_k^{(k'-k)} (2\rho^2)$$

for some $\theta \in \mathbb{R}$, where

$$\rho = \frac{1}{2} \left(\frac{a_x^2}{\alpha} + \alpha a_\xi^2 \right)^{1/2} = \frac{1}{2} |\mathbf{a}|_{\alpha}. \tag{10}$$

Proof. Introduce the complex number

$$\omega = \frac{\sqrt{\alpha} a_{\xi}}{2} - i \frac{a_x}{2\sqrt{\alpha}}.$$

From (7), (3) and (1) we get

$$U_{\mathbf{a}}^{k,k'} = \langle U_{\mathbf{a}}\phi_{k}, \phi_{k'} \rangle$$

$$= \frac{\sqrt{\alpha}2^{-(k+k')/2}}{\sqrt{k!k'!\pi}} e^{ia_{x}a_{\xi}/2} \int_{\mathbb{R}} e^{ia_{x}x} e^{-\alpha(x+a_{\xi})^{2}/2} e^{-\alpha x^{2}/2}$$

$$\mathcal{H}_{k}(\sqrt{\alpha}(x+a_{\xi})) \mathcal{H}_{k'}(\sqrt{\alpha}x) dx$$

$$= \frac{2^{-(k+k')/2}}{\sqrt{k!k'!\pi}} e^{\omega^{2}-\alpha a_{\xi}^{2}/2+ia_{x}a_{\xi}/2} \int_{\mathbb{R}} e^{-x^{2}} \mathcal{H}_{k}(x-\omega+\sqrt{\alpha}a_{\xi}) \mathcal{H}_{k'}(x-\omega) dx$$

$$= \sqrt{\frac{k!}{k'!}} 2^{(k'-k)/2} (-\omega)^{k'-k} e^{\omega^{2}-\alpha a_{\xi}^{2}/2+ia_{x}a_{\xi}/2} L_{k}^{(k'-k)} \left(-2\omega(\omega-\sqrt{\alpha}a_{\xi})\right)$$

where the last line follows from (9). Now $|\omega| = \rho$ while

$$\omega^2 - \frac{\alpha a_{\xi}^2}{2} + \frac{i a_x a_{\xi}}{2} = \frac{\alpha a_{\xi}^2}{4} - \frac{a_x^2}{4\alpha} - \frac{\alpha a_{\xi}^2}{2} - \frac{i a_x a_{\xi}}{2} + \frac{i a_x a_{\xi}}{2} = -|\omega|^2$$

and

$$-2\omega(\omega - \sqrt{\alpha} a_{\xi}) = -2\omega(-\overline{\omega}) = 2|\omega|^{2}.$$

The result follows.

Throughout the remainder of this section we will assume $\mathbf{a} \in T^*\mathbb{R} \setminus \{\mathbf{0}\}$ is fixed and $\rho > 0$ is given by (10).

Laguerre polynomials can be expressed in terms of the confluent hypergeometric function; using 22.5.54 in [AS] we get

$$L_k^{(k'-k)}(2\rho^2) = {k' \choose k} M(-k, k'-k+1, 2\rho^2).$$

The confluent hypergeometric function can, in turn, be written as a pointwise absolutely convergent series of Bessel functions; from 13.3.7 in [AS] we get

$$M(-k, k' - k + 1, 2\rho^{2}) = (k' - k)! e^{\rho^{2}} (\rho^{2}(k' + k + 1))^{-(k' - k)/2}$$
$$\sum_{j=0}^{\infty} A_{j} \left(\frac{\rho}{(k' + k + 1)^{1/2}} \right)^{j} J_{k' - k + j} (2\rho \sqrt{k' + k + 1}),$$

where

$$A_0 = 1, \quad A_1 = 0, \quad A_2 = \frac{1}{2}(k' - k + 1)$$
 (11)

and, for $j \geq 2$,

$$(j+1)A_{j+1} = (j+k'-k)A_{j-1} - (k'+k+1)A_{j-2}.$$
 (12)

It follows from Lemma 2.1 that

$$U_{\mathbf{a}}^{k,k'} = e^{i(k'-k)\theta} \sqrt{F_{k',k}} \sum_{j=0}^{\infty} A_j \left(\frac{\rho}{(k'+k+1)^{1/2}} \right)^j J_{k'-k+j} \left(2\rho \sqrt{k'+k+1} \right), \quad (13)$$

where

$$F_{k',k} := \frac{k'!}{k!} \left(\frac{2}{k'+k+1}\right)^{k'-k}.$$

The next two results give estimates for the constants appearing in (13).

Lemma 2.2. Suppose $k' \ge 2$ and $0 \le k' - k \le k'^{2/3}$. Then

$$|A_i| \le (k' + k + 1)^{j/3}$$
.

Proof. Set m = k' - k and n = k' + k + 1 so

$$0 < m < k'^{2/3} < (k' + k + 1)^{2/3} = n^{2/3}$$

while $k' \geq 2$ and $k \geq 0$ so $n \geq 3$.

We have $A_0=1=n^0$, $A_1=0\leq n^{1/3}$ and $m,1\leq n^{2/3}$ so $A_2=\frac{1}{2}(m+1)\leq n^{2/3}$. Now let $J\geq 2$ and suppose the result hold for $j\leq J$. Since

$$A_{J+1} = \frac{J+m}{J+1}A_{J-1} - \frac{n}{J+1}A_{J-2}$$

we then get

$$|A_{J+1}| \le \frac{J+m}{J+1} n^{(J-1)/3} + \frac{n}{J+1} n^{(J-2)/3} = n^{(J+1)/3} \frac{(J+m)n^{-2/3}+1}{J+1}.$$

Now $mn^{-2/3} \le 1$ while

$$n \ge 3 \implies n^{-2/3} \le 3^{-2/3} \le \frac{1}{2}$$

 $\implies J(1 - n^{-2/3}) \ge 1 \quad \text{(as } J \ge 2\text{)}$
 $\implies 1 + J n^{-2/3} \le J.$

Thus $(J+m)n^{-2/3}+1 \le J+1$. Therefore $|A_{J+1}| \le n^{(J+1)/3}$ and the result follows by induction.

Lemma 2.3. If $0 \le k \le k'$ then $F_{k',k} \le 1$.

Proof. We have

$$F_{k',k} = \frac{k'(k'-1)\dots(k+1)}{\frac{1}{2}(k'+k+1)\dots\frac{1}{2}(k'+k+1)},$$

where the numerator and denominator both contain k'-k terms. Now set $m=\frac{1}{2}(k'-k-1)$ and $n=\frac{1}{2}(k'+k+1)$ so $m\leq n$ while

$$F_{k',k} = \frac{(n+m)}{n} \frac{(n+m-1)}{n} \dots \frac{(n-m-1)}{n} \frac{(n-m)}{n}.$$

If k' - k is odd this can be rearranged as

$$F_{k',k} = \frac{(n+m)(n-m)}{n^2} \frac{(n+m-1)(n-m-1)}{n^2} \dots \frac{n}{n},$$

while if k' - k is even we get

$$F_{k',k} = \frac{(n+m)(n-m)}{n^2} \frac{(n+m-1)(n-m-1)}{n^2} \dots \frac{(n+\frac{1}{2})(n-\frac{1}{2})}{n^2}.$$

The result now follows from the fact that

$$\frac{(n+m')(n-m')}{n^2} = \frac{n^2 - m'^2}{n^2} \le 1$$

for any $0 \le m' \le n$.

Next we obtain some estimates for the Bessel functions appearing in (13).

Lemma 2.4. For any $x, \varepsilon > 0$ and $n \in [0, x/2]$

$$\left|\left\{\theta \in [0,\pi] \mid |x\cos(\theta) - n| < \varepsilon\right\}\right| \le \frac{4\pi}{3} \frac{\varepsilon}{x}.$$

Proof. Set $\delta = \varepsilon/x$, y = n/x and $\Omega_{y,\delta} = \cos^{-1}([y - \delta, y + \delta])$; we need to show that $|\Omega_{y,\delta}| \leq 4\pi\delta/3$.

Now set $\theta_0 = \operatorname{Cos}^{-1}(y)$ and let $\ell(\theta)$ denote the affine function with $\ell(0) = 1$ and $\ell(\theta_0) = y$. It is easy to see that $|\cos(\theta) - y| \ge |\ell(\theta) - y|$ which implies $|\Omega_{y,\delta}| \le 2\delta/|L|$ where L is the gradient of $\ell(\theta)$. On the other hand, $y \in [0, \frac{1}{2}]$ so the minimum value for |L| occurs when y = 1/2; hence $1/|L| \le 2 \operatorname{Cos}^{-1}(1/2) = 2\pi/3$ and the result follows.

Lemma 2.5. For any $n \in \mathbb{N}_0$ and $x \ge 2n$ we have $|J_n(x)| \le 4x^{-1/2}$.

Surely this estimate (or an improvement) lies in a book somewhere!

Proof. Define a function by $f(\theta) = x \sin(\theta) - n\theta$ so we have the following integral representation for the Bessel function J_n (see 9.1.21 in [AS]);

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(f(\theta)) d\theta.$$
 (14)

Now set

$$\Omega_0 = \left\{ \theta \in [0, \pi] \mid |f'(\theta)| < x^{1/2} \right\} \quad \text{and} \quad \Omega_1 = [0, \pi] \setminus \Omega_0$$

so $J_n(x) = (I_0 + I_1)/\pi$ where $I_k = \int_{\Omega_k} \cos(f(\theta)) d\theta$ for k = 0, 1. Lemma 2.4 gives

$$|I_0| \le |\Omega_0| \le \frac{4\pi}{3} x^{-1/2}. \tag{15}$$

On the other hand

$$I_1 = \left[\frac{\sin(f(\theta))}{f'(\theta)} \right]_{\partial\Omega_1} + \int_{\Omega_1} \frac{f''(\theta)}{(f'(\theta))^2} \sin(f(\theta)) d\theta.$$

Now $f''(\theta) = -x \sin(\theta) \le 0$ on $[0, \pi]$ while $(f'(\theta))^2 > 0$ on Ω_1 . Thus

$$\left| \int_{\Omega_1} \frac{f''(\theta)}{(f'(\theta))^2} \sin(f(\theta)) d\theta \right| \leq - \int_{\Omega_1} \frac{f''(\theta)}{(f'(\theta))^2} d\theta = \left[\frac{1}{f'(\theta)} \right]_{\partial \Omega_1}.$$

Furthermore $f'(\theta)$ is decreasing on $[0, \pi]$ so Ω_0 consists of a single interval. Hence $\partial \Omega_1 \setminus \{0, \pi\}$ contains at most 2 points. Since f(0) = 0 and $f(\pi) = -n\pi$ we then get

$$|I_1| \leq \left| \left[\frac{\sin(f(\theta))}{f'(\theta)} \right]_{\partial \Omega_1} \right| + \left[\frac{1}{f'(\theta)} \right]_{\partial \Omega_1} \leq 6 \max_{\theta \in \Omega_1} \frac{1}{|f'(\theta)|} \leq 6x^{-1/2}.$$
 (16)

Combining (15), (16) we now get

$$|J_n(x)| \le \frac{1}{\pi} (|I_0| + |I_1|) \le \frac{1}{\pi} (\frac{4\pi}{3} + 6) x^{-1/2} \le 4x^{-1/2},$$

completing the result.

Lemma 2.6. Suppose $k' \ge 2$, $0 \le k' - k \le \rho(k' + k + 1)^{1/2}$ and $2\rho \le (k' + k + 1)^{1/6}$. Then

$$|U_{\mathbf{a}}^{k,k'}| \le (4(2\rho)^{-1/2} + \frac{1}{2}(2\rho)^2)(k'+k+1)^{-1/4}.$$

Before starting, note that as a clear consequence of (14) we have

$$|J_n(x)| \le 1. \tag{17}$$

Proof. Since $2, k \leq k'$

$$k' - k \le \frac{1}{2}(k' + k + 1)^{2/3} \le \frac{1}{2}(\frac{5}{2})^{2/3}k'^{2/3} \le k'^{2/3}.$$

Now combining (13) with (11), (17) and Lemmas 2.2 and 2.3 we get

$$|U_{\mathbf{a}}^{k,k'}| \leq \sqrt{F_{k',k}} \sum_{j=0}^{\infty} |A_j| \frac{\rho^j}{(k'+k+1)^{j/2}} |J_{k'-k+j}(2\rho\sqrt{k'+k+1})|$$

$$\leq |J_{k'-k}(2\rho\sqrt{k'+k+1})| + \sum_{j\geq 2}^{\infty} \rho^j (k'+k+1)^{-j/6}$$

$$\leq |J_{k'-k}(2\rho\sqrt{k'+k+1})| + \frac{1}{2}(2\rho)^2 (k'+k+1)^{-1/3},$$

where the last line follows from the hypothesis that $\rho(k'+k+1)^{-1/6} \leq 1/2$. Lemma 2.5 can now be used to estimate the remaining Bessel function term.

Main estimate

The next result is the main estimate we will need for the matrix elements $|\langle V\phi_k, \phi_{k'}\rangle|$. This estimate is valid in a parabolic region around the diagonal k=k'; the width of this region is governed by the quantity

$$\gamma := \min_{\mathbf{a} \in \Lambda'} |\mathbf{a}|_{\alpha},$$

which is positive since Λ' is discrete and doesn't contain **0**. Although not required in this paper, we remark that for a general parabolic region around the diagonal one is restricted to estimates of the form $|\langle V\phi_k, \phi_{k'}\rangle| \leq C(V)(k'+k+1)^{-1/6}$.

Proposition 2.7. Suppose V satisfies condition (5) and set

$$\kappa = \min\{1/3, \gamma/(2\sqrt{3})\}. \tag{18}$$

If $n \in \mathbb{N}$ and $k, k' \in \mathbb{N}_0$ satisfy $|k - n|, |k' - n| \le \kappa n^{1/2}$ then

$$|\langle V\phi_k, \phi_{k'}\rangle| \le C(V) n^{-1/4}. \tag{19}$$

Proof. We have $|\langle V\phi_k, \phi_{k'}\rangle| \leq ||V||$ for any $k, k' \in \mathbb{N}_0$ so we can increase C(V) if necessary to ensure that (19) is satisfied for n=1,2. Furthermore V is self-adjoint so $|\langle V\phi_{k'}, \phi_k \rangle| = |\langle V\phi_k, \phi_{k'} \rangle|$. It thus suffices to prove the result assuming $n \geq 3$ and $k', k \in \mathbb{N}_0$ satisfy $k' \geq k$ and $|k-n|, |k'-n| \leq \kappa n^{1/2}$. Then $k', k \geq n - \frac{1}{3}n^{1/2} \geq \frac{2}{3}n$ so $k' \geq 2$,

$$k' + k + 1 \ge \frac{4}{3}n\tag{20}$$

and

$$0 \le k' - k \le 2\kappa n^{1/2} \le \frac{\gamma}{2} (k' + k + 1)^{1/2}. \tag{21}$$

Now set $K = (k' + k + 1)^{1/6}$. Using (2), (7) and (8) we have

$$|\langle V\phi_k, \phi_{k'}\rangle| \leq \sum_{\mathbf{a} \in \Lambda'} |U_{\mathbf{a}}^{k,k'}| |V_{\mathbf{a}}| \leq \sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} \leq K}} |U_{\mathbf{a}}^{k,k'}| |V_{\mathbf{a}}| + \sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} > K}} |V_{\mathbf{a}}|. \tag{22}$$

Since $1 < K^{-3/2} |\mathbf{a}|_{\alpha}^{3/2}$ whenever $|\mathbf{a}|_{\alpha} > K$, (5) and (20) give us

$$\sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} > K}} |V_{\mathbf{a}}| \leq K^{-3/2} \sum_{\mathbf{a} \in \Lambda'} |\mathbf{a}|_{\alpha}^{3/2} |V_{\mathbf{a}}| \leq C(V) n^{-1/4}.$$

Now let $\mathbf{a} \in \Lambda'$. Since $|\mathbf{a}|_{\alpha} = 2\rho$ (see (10)) the definition of γ implies $\gamma/2 \leq \rho$ and thus $k' - k \leq \rho K^3$ by (21). Lemma 2.6, (5) and (20) then give

$$\sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} < K}} |U_{\mathbf{a}}^{k,k'}| \, |V_{\mathbf{a}}| \, \leq \, K^{-3/2} \sum_{\mathbf{a} \in \Lambda'} \left(4|\mathbf{a}|_{\alpha}^{-1/2} + \frac{1}{2}|\mathbf{a}|_{\alpha}^{2} \right) |V_{\mathbf{a}}| \, \leq \, C(V) \, n^{-1/4}.$$

The result follows.

First order term

The next result is used to obtain the explicit form for the first order correction term in the asymptotics for $\lambda_n(H+V)$.

Proposition 2.8. Suppose V satisfies condition (5). Then

$$\langle V\phi_n, \phi_n \rangle = W(\sqrt{n}) n^{-1/4} + O(n^{-1/2})$$

as $n \to +\infty$, where W is defined by (6).

Proof. Let $\mathbf{a} \in T^*\mathbb{R} \setminus \{\mathbf{0}\}$ and set $\rho = |\mathbf{a}|_{\alpha}/2$. Using (13) and the fact that $F_{n,n} = 1$ we get

$$U_{\mathbf{a}}^{n,n} = \sum_{j=0}^{\infty} A_j \frac{\rho^j}{(2n+1)^{j/2}} J_j (2\rho\sqrt{2n+1}).$$

Now suppose $2\rho \leq N$ where $N := (2n+1)^{1/6}$. Using (11), (17) and Lemma 2.2 we have

$$\left| U_{\mathbf{a}}^{n,n} - J_0(2\rho\sqrt{2n+1}) \right| \leq \frac{1}{2}\rho^2(2n+1)^{-1} + \sum_{j\geq 3}^{\infty} \rho^j(2n+1)^{-j/6}
\leq \frac{1}{8}|\mathbf{a}|_{\alpha}^2(2n+1)^{-1} + \frac{1}{4}|\mathbf{a}|_{\alpha}^3(2n+1)^{-1/2}.$$

Standard asymptotic forms for Bessel functions (see 9.2.1 in [AS]) give us

$$J_0(z) = \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{4}\right) + O(z^{-3/2})$$

while

$$\left| \frac{d}{dz} \left(\frac{1}{\sqrt{z}} \cos \left(z - \frac{\pi}{4} \right) \right) \right| \le z^{-1/2} + \frac{1}{2} z^{-3/2}$$

and $2\rho\sqrt{2n+1} - 2\rho\sqrt{2n} \le 2^{-1/2}\rho n^{-1/2}$. It follows that

$$\left| J_0(2\rho\sqrt{2n+1}) - \sqrt{\frac{2}{\pi}}(2\rho)^{-1/2}(2n)^{-1/4}\cos\left(2\rho\sqrt{2n} - \frac{\pi}{4}\right) \right| \\
\leq C(2\rho)^{-3/2}(2n+1)^{-3/4} \\
+ \sqrt{\frac{2}{\pi}}\left((2\rho)^{-1/2}(2n)^{-1/4} + \frac{1}{2}(2\rho)^{-3/2}(2n)^{-3/4}\right) 2^{-1/2}\rho n^{-1/2} \\
\leq C((2\rho)^{-3/2} + (2\rho)^{1/2})n^{-3/4}.$$

Combining the above estimates we thus obtain

$$\left| U_{\mathbf{a}}^{n,n} - \frac{2^{1/4}}{\sqrt{\pi}} |\mathbf{a}|_{\alpha}^{-1/2} n^{-1/4} \cos\left(|\mathbf{a}|_{\alpha} \sqrt{2n} - \frac{\pi}{4}\right) \right| \leq C(|\mathbf{a}|_{\alpha}^{-3/2} + |\mathbf{a}|_{\alpha}^{3}) n^{-1/2}$$

whenever $|\mathbf{a}|_{\alpha} \leq N$. Using (2), (6), (7) and (8) we thus have

$$\left| \langle V\phi_n, \phi_n \rangle - W(\sqrt{n}) n^{-1/4} \right| \leq C n^{-1/2} \sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} \leq N}} (|\mathbf{a}|_{\alpha}^{-3/2} + |\mathbf{a}|_{\alpha}^{3}) |V_{\mathbf{a}}| + \sum_{\substack{\mathbf{a} \in \Lambda' \\ |\mathbf{a}|_{\alpha} > N}} (1 + |\mathbf{a}|_{\alpha}^{-1/2}) |V_{\mathbf{a}}|.$$

Since $1 < N^{-3} |\mathbf{a}|_{\alpha}^3 < n^{-1/2} |\mathbf{a}|_{\alpha}^3$ whenever $|\mathbf{a}|_{\alpha} > N$ the term inside the last sum can be replaced with $n^{-1/2} (|\mathbf{a}|_{\alpha}^3 + |\mathbf{a}|_{\alpha}^{5/2}) |V_{\mathbf{a}}|$. Using (5) we then get

$$\left| \langle V \phi_n, \phi_n \rangle - W(\sqrt{n}) n^{-1/4} \right| \leq C n^{-1/2} \sum_{\mathbf{a} \in \Lambda'} (|\mathbf{a}|_{\alpha}^{-3/2} + |\mathbf{a}|_{\alpha}^{3}) |V_{\mathbf{a}}| \leq C(V) n^{-1/2},$$

completing the result.

3 Resolvent Estimates

For any $\lambda \in \mathbb{C} \setminus \sigma(H)$ let $R(\lambda) = (H - \lambda)^{-1}$ denote the resolvent of the operator H; we will also write R for $R(\lambda)$ where this should not cause confusion.

Let κ denote the constant defined in (18). For a given $n \in \mathbb{N}$ we will make repeated use of the partition of \mathbb{N}_0 defined by

$$I = \left\{ k \in \mathbb{N}_0 \,\middle|\, |k - n| \le \kappa n^{1/2} \right\} \quad \text{and} \quad J = \mathbb{N}_0 \backslash I. \tag{23}$$

For any $\varepsilon \in (0, \alpha)$ and $n \in \mathbb{N}_0$, let $\Gamma_{\varepsilon,n}$ be the anti-clockwise circular contour in \mathbb{C} centred at $\lambda_n = \lambda_n(H) = \alpha(2n+1)$. If $\lambda \in \Gamma_{\varepsilon,n}$ then $\lambda = \alpha(2n+1) + \varepsilon e^{i\theta}$ for some $\theta \in [0, 2\pi)$. It follows that $|\lambda - \lambda_k| = |2\alpha(n-k) + \varepsilon e^{i\theta}|$ for any $k \in \mathbb{N}_0$. Straightforward arguments then lead to the following estimates;

$$\sum_{k \in I} |\lambda - \lambda_k|^{-1} \le C(\varepsilon) \ln(n), \tag{24}$$

$$\sum_{k \in \mathbb{N}_0} |\lambda - \lambda_k|^{-2} \le C(\varepsilon), \tag{25}$$

$$\sum_{k \in J} |\lambda - \lambda_k|^{-2} \le C n^{-1/2} \tag{26}$$

and

$$|\lambda - \lambda_k| \ge C n^{1/2}$$
 for any $k \in J$. (27)

The first two results in this section relate to the operator $R(\lambda)VR(\lambda)$, which is clearly bounded whenever λ is in the resolvent set of H. We show that it is in fact trace class while its operator norm decreases as $n^{-1/4}$ for $\lambda \in \Gamma_{\varepsilon,n}$.

Lemma 3.1. For any $n \in \mathbb{N}$ and $\lambda \in \Gamma_{\varepsilon,n}$ we have

$$||R(\lambda)VR(\lambda)|| \le ||R(\lambda)VR(\lambda)||_2 \le C(V,\varepsilon)n^{-1/4}.$$

We remark that since $\{\phi_k \mid k \in \mathbb{N}_0\}$ is an orthonormal basis of $L^2(\mathbb{R})$

$$\sum_{k' \in \mathbb{N}_0} |\langle V \phi_k, \phi_{k'} \rangle|^2 = ||V \phi_k||^2 \le ||V||^2.$$
 (28)

Proof. Using the orthonormal basis $\{\phi_k | k \in \mathbb{N}_0\}$ we have

$$||RVR||_2^2 = \sum_{k,k'\in\mathbb{N}_0} |\langle RVR\phi_k, \phi_{k'}\rangle|^2 = \sum_{k,k'\in\mathbb{N}_0} \frac{|\langle V\phi_k, \phi_{k'}\rangle|^2}{|\lambda_k - \lambda|^2 |\lambda_{k'} - \lambda|^2}.$$
 (29)

We will split this sum using the partition (23). Firstly Proposition 2.7 and (25) imply

$$\sum_{k,k'\in I} \frac{|\langle V\phi_k,\phi_{k'}\rangle|^2}{|\lambda_k-\lambda|^2|\lambda_{k'}-\lambda|^2} \leq C(V)n^{-1/2} \left(\sum_{k\in I} \frac{1}{|\lambda_k-\lambda|^2}\right)^2 \leq C(V,\varepsilon)n^{-1/2}.$$

Now using (27), (28) and (25) we get

$$\sum_{\substack{k \in \mathbb{N}_0 \\ k' \in J}} \frac{|\langle V\phi_k, \phi_{k'} \rangle|^2}{|\lambda_k - \lambda|^2 |\lambda_{k'} - \lambda|^2} \leq C n^{-1} \sum_{k \in \mathbb{N}_0} \frac{1}{|\lambda_k - \lambda|^2} \sum_{k' \in J} |\langle V\phi_k, \phi_{k'} \rangle|^2$$

$$< C(V, \varepsilon) n^{-1}.$$

The remaining part of the sum on the right hand side of (29) involves $k \in J$ and $k' \in I \subset \mathbb{N}_0$; thus we can estimate this part using an argument similar to the last one with k and k' swapped.

Lemma 3.2. For any $n \in \mathbb{N}_0$ and $\lambda \in \Gamma_{\varepsilon,n}$ the operator $R(\lambda)VR(\lambda)$ is trace class. Furthermore $||R(\lambda)VR(\lambda)||_1$ is uniformly bounded (in n and $\lambda \in \Gamma_{\varepsilon,n}$).

Proof. The set $\{\phi_k \mid k \in \mathbb{N}_0\}$ is an orthonormal eigenbasis for R with corresponding eigenvalues $(\lambda_k - \lambda)^{-1}$, $k \in \mathbb{N}_0$ so (25) implies

$$||R||_2^2 = \sum_{k \in \mathbb{N}_0} |\lambda_k - \lambda|^{-2} \le C(\varepsilon).$$

Thus $||RVR||_1 = ||VR^2||_1 \le ||V|| ||R^2||_1 \le ||V|| ||R||_2^2 \le C(\varepsilon) ||V||$.

Suppose $n \in \mathbb{N}_0$ and $j \in \mathbb{N}$. From the previous result we know that $R(\lambda)VR(\lambda)$ is trace class for any $\lambda \in \Gamma_{\varepsilon,n}$. On the other hand $R(\lambda)V$ is bounded (in fact $||R(\lambda)V|| \leq \varepsilon^{-1}||V||$). It follows that

$$(R(\lambda)V)^{j}R(\lambda) = (R(\lambda)V)^{j-1}R(\lambda)VR(\lambda)$$

is also trace class with trace norm uniformly bounded for $\lambda \in \Gamma_{\varepsilon,n}$. The work in the remainder of this section leads to Proposition 3.5 where we obtain an estimate for the trace of an integral of such operators.

Lemma 3.3. Let $n \geq 2$, $\lambda \in \Gamma_{\varepsilon,n}$ and suppose $f : \mathbb{N}_0 \to \mathbb{C}$ satisfies

$$\sum_{k \in \mathbb{N}_0} |f(k)|^2 \le C_1^2 \quad and \quad |f(k)| \le C_1 n^{-1/4} \text{ when } k \in I$$
 (30)

for some constant C_1 . For each $k \in \mathbb{N}_0$ set

$$g(k) = \sum_{k' \in \mathbb{N}_0} \frac{f(k') \langle V \phi_{k'}, \phi_k \rangle}{\lambda - \lambda_{k'}}.$$

Then there exists a constant $K = K(V, \varepsilon)$ such that

$$\sum_{k \in \mathbb{N}_0} |g(k)|^2 \le C_1^2 K^2 n^{-1/2} \ln^2(n) \quad and \quad |g(k)| \le C_1 K n^{-1/2} \ln(n) \text{ when } k \in I.$$

Proof. Since

$$\sum_{k \in \mathbb{N}_0} |g(k)|^2 = \sum_{k,k',k'' \in \mathbb{N}_0} \frac{f(k')\overline{f(k'')} \langle V\phi_{k'}, \phi_k \rangle \langle \phi_k, V\phi_{k''} \rangle}{(\lambda - \lambda_{k'})\overline{(\lambda - \lambda_{k''})}}$$

and

$$\left| \sum_{k \in \mathbb{N}_0} \langle V \phi_{k'}, \phi_k \rangle \langle \phi_k, V \phi_{k''} \rangle \right| = \left| \langle V \phi_{k'}, V \phi_{k''} \rangle \right| \leq \|V\|^2$$

it follows that

$$\sum_{k \in \mathbb{N}_0} |g(k)|^2 \le ||V||^2 \left(\sum_{k \in I} \frac{|f(k)|}{|\lambda - \lambda_k|} + \sum_{k \in J} \frac{|f(k)|}{|\lambda - \lambda_k|} \right)^2.$$

Using the second part of (30) and (24) we get

$$\sum_{k \in I} \frac{|f(k)|}{|\lambda - \lambda_k|} \le C_1 n^{-1/4} \sum_{k \in I} |\lambda - \lambda_k|^{-1} \le C_1 C_2(\varepsilon) n^{-1/4} \ln(n).$$

On the other hand the first part of (30) and (26) give

$$\sum_{k \in J} \frac{|f(k)|}{|\lambda - \lambda_k|} \le \left(\sum_{k \in J} |f(k)|^2\right)^{1/2} \left(\sum_{k \in J} |\lambda - \lambda_k|^{-2}\right)^{1/2}$$

$$\le C_1 C_3 n^{-1/4} \le 2C_1 C_3 n^{-1/4} \ln(n).$$

Putting these estimates together now leads to

$$\sum_{k \in \mathbb{N}_0} |g(k)|^2 \le C_1^2 K_1^2 n^{-1/2} \ln^2(n),$$

with $K_1 = ||V||(C_2(\varepsilon) + 2C_3)$. Now suppose $k \in I$ and write $g(k) = g_I(k) + g_J(k)$ where

$$g_I(k) = \sum_{k' \in I} \frac{f(k') \langle V \phi_{k'}, \phi_k \rangle}{\lambda - \lambda_{k'}}$$
 and $g_J(k) = \sum_{k' \in I} \frac{f(k') \langle V \phi_{k'}, \phi_k \rangle}{\lambda - \lambda_{k'}}$.

From Proposition 2.7, the second part of (30) and (24) we get

$$|g_I(k)| \le C_1 C(V) n^{-1/2} \sum_{k' \in I} |\lambda - \lambda_{k'}|^{-1} \le C_1 C_4(V, \varepsilon) n^{-1/2} \ln(n).$$

On the other hand (27), the first part of (30) and (28) give us

$$|g_{J}(k)| \leq C(\varepsilon)n^{-1/2} \left(\sum_{k' \in J} |f(k')|^{2} \right)^{1/2} \left(\sum_{k' \in J} |\langle V \phi_{k'}, \phi_{k} \rangle|^{2} \right)^{1/2}$$

$$\leq C_{1} C_{5}(\varepsilon) ||V|| n^{-1/2} \leq 2C_{1} C_{5}(\varepsilon) ||V|| n^{-1/2} \ln(n).$$

Putting these estimates together now leads to $|g(k)| \le C_1 K_2 n^{-1/2} \ln(n)$ with $K_2 = C_4(V, \varepsilon) + 2C_5(\varepsilon) ||V||$. Taking $K = \max\{K_1, K_2\}$, completes the result.

Taking $f(k) = \langle V\phi_n, \phi_k \rangle$ we can use (28) and Proposition 2.7 to check that (30) is satisfied. The next result then follows from Lemma 3.3 by use of induction; we can take $K = \max\{\|V\|, C(V), K'\}$ where C(V) and K' are the constants coming from Proposition 2.7 and Lemma 3.3 respectively.

Lemma 3.4. Suppose $n \geq 2$ and $j \in \mathbb{N}_0$. Then there exists a constant $K = K(V, \varepsilon)$ such that for all $\lambda \in \Gamma_{\varepsilon,n}$ we have

$$\left| \sum_{k_1,\dots,k_j \in \mathbb{N}_0} \frac{\langle V\phi_n,\phi_{k_1}\rangle\langle V\phi_{k_1},\phi_{k_2}\rangle\dots\langle V\phi_{k_j},\phi_n\rangle}{(\lambda-\lambda_{k_1})\dots(\lambda-\lambda_{k_j})} \right| \leq K^{j+1} n^{-(j+1)/4} \ln^j(n).$$

Proposition 3.5. Suppose $n \geq 2$ and $j \in \mathbb{N}$. Then

$$\left| \operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda \, R(\lambda) (VR(\lambda))^j \, d\lambda \right| \leq K^j n^{-j/4} \ln^{j-1}(n),$$

where K is the constant from Lemma 3.4.

Proof. Since $\{\phi_{k'} | k' \in \mathbb{N}_0\}$ is an orthonormal basis of $L^2(\mathbb{R})$ we have

$$(VR)\phi_k = \sum_{k' \in \mathbb{N}_0} \langle VR\phi_k, \phi_{k'} \rangle \phi_{k'} = \sum_{k' \in \mathbb{N}_0} \frac{\langle V\phi_k, \phi_{k'} \rangle}{\lambda_k - \lambda} \phi_{k'}.$$

Continuing by induction we get

$$(VR)^{j}\phi_{k} = \sum_{k_{1},\dots,k_{j}\in\mathbb{N}_{0}} \frac{\langle V\phi_{k},\phi_{k_{1}}\rangle\langle V\phi_{k_{1}},\phi_{k_{2}}\rangle\dots\langle V\phi_{k_{j-1}},\phi_{k_{j}}\rangle}{(\lambda_{k}-\lambda)(\lambda_{k_{1}}-\lambda)\dots(\lambda_{k_{j-1}}-\lambda)}\phi_{k_{j}}.$$

Together with the fact that $\langle R\phi_{k_j}, \phi_{k_0} \rangle = \delta_{k_j,k_0} (\lambda_{k_0} - \lambda)^{-1}$ we now get

$$\operatorname{Tr}(R(VR)^{j}) = \sum_{k_{0} \in \mathbb{N}_{0}} \left\langle R(VR)^{j} \phi_{k_{0}}, \phi_{k_{0}} \right\rangle$$

$$= \sum_{k_{0}, \dots, k_{j} \in \mathbb{N}_{0}} \frac{\left\langle V\phi_{k_{0}}, \phi_{k_{1}} \right\rangle \left\langle V\phi_{k_{1}}, \phi_{k_{2}} \right\rangle \dots \left\langle V\phi_{k_{j-1}}, \phi_{k_{j}} \right\rangle}{(\lambda_{k_{0}} - \lambda)(\lambda_{k_{1}} - \lambda) \dots (\lambda_{k_{j-1}} - \lambda)} \left\langle R\phi_{k_{j}}, \phi_{k_{0}} \right\rangle$$

$$= \sum_{k_{0}, \dots, k_{j-1} \in \mathbb{N}_{0}} \frac{\left\langle V\phi_{k_{0}}, \phi_{k_{1}} \right\rangle \left\langle V\phi_{k_{1}}, \phi_{k_{2}} \right\rangle \dots \left\langle V\phi_{k_{j-1}}, \phi_{k_{0}} \right\rangle}{(\lambda_{k_{0}} - \lambda)^{2}(\lambda_{k_{1}} - \lambda) \dots (\lambda_{k_{j-1}} - \lambda)} = \sum_{l=0}^{j-1} \frac{1}{\lambda_{k_{l}} - \lambda} A(\lambda),$$

where $A(\lambda)$ is the meromorphic function

$$A(\lambda) = \frac{1}{j} \sum_{k_0, \dots, k_{j-1} \in \mathbb{N}_0} \frac{\langle V \phi_{k_0}, \phi_{k_1} \rangle \langle V \phi_{k_1}, \phi_{k_2} \rangle \dots \langle V \phi_{k_{j-1}}, \phi_{k_0} \rangle}{(\lambda_{k_0} - \lambda)(\lambda_{k_1} - \lambda) \dots (\lambda_{k_{j-1}} - \lambda)}.$$
 (31)

Since

$$\frac{d}{d\lambda} \lambda \left(\prod_{i=0}^{j-1} \frac{1}{\lambda_{k_i} - \lambda} \right) = \prod_{i=0}^{j-1} \frac{1}{\lambda_{k_i} - \lambda} + \lambda \sum_{l=0}^{j-1} \frac{1}{\lambda_{k_l} - \lambda} \left(\prod_{i=0}^{j-1} \frac{1}{\lambda_{k_i} - \lambda} \right)$$

for any $k_0, \ldots, k_{j-1} \in \mathbb{N}_0$, we can rewrite the above equation as

Tr
$$\lambda R(VR)^j = \frac{d}{d\lambda} (\lambda A(\lambda)) - A(\lambda).$$

Integrating around the contour $\Gamma_{\varepsilon,n}$ it follows that

$$\operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(VR)^j d\lambda = -\frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} A(\lambda) d\lambda. \tag{32}$$

The poles of the meromorphic function $A(\lambda)$ occur at the points $\lambda = \lambda_k$ for $k \in \mathbb{N}_0$. Since the only such point enclosed by the contour $\Gamma_{\varepsilon,n}$ is $\lambda = \lambda_n$, it follows that the only terms in the series (31) which contribute to the right hand side of (32) are those with at least one of k_0, \ldots, k_{j-1} equal to n. With the help of symmetry we then obtain the identity

$$\operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(VR)^{j} d\lambda$$

$$= -\frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \frac{1}{\lambda_{n} - \lambda} \sum_{k_{1},\dots,k_{s-1} \in \mathbb{N}_{0}} \frac{\langle V\phi_{n}, \phi_{k_{1}} \rangle \langle V\phi_{k_{1}}, \phi_{k_{2}} \rangle \dots \langle V\phi_{k_{j-1}}, \phi_{n} \rangle}{(\lambda_{k_{1}} - \lambda) \dots (\lambda_{k_{j-1}} - \lambda)} d\lambda. \quad (33)$$

For any $\lambda \in \Gamma_{\varepsilon,n}$ we have $|\lambda_n - \lambda| = \varepsilon$ while

$$\left| \sum_{k_1,\dots,k_{j-1} \in \mathbb{N}_0} \frac{\langle V\phi_n,\phi_{k_1}\rangle\langle V\phi_{k_1},\phi_{k_2}\rangle\dots\langle V\phi_{k_{j-1}},\phi_n\rangle}{(\lambda_{k_1}-\lambda)\dots(\lambda_{k_{j-1}}-\lambda)} \right| \leq K^j n^{-j/4} \ln^{j-1}(n)$$

by Lemma 3.4. Since the length of $\Gamma_{\varepsilon,n}$ is $2\pi\varepsilon$ we finally get

$$\left| \operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(VR)^j d\lambda \right| \leq \frac{1}{2\pi} \oint_{\Gamma_{\varepsilon,n}} \frac{1}{\varepsilon} K^j n^{-j/4} \ln^{j-1}(n) d\lambda = K^j n^{-j/4} \ln^{j-1}(n),$$

completing the result.

Taking j = 1 in (33) leads to the formula

$$\operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(\lambda) V R(\lambda) d\lambda$$

$$= -\frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \frac{1}{\lambda_n - \lambda} \langle V \phi_n, \phi_n \rangle d\lambda = \langle V \phi_n, \phi_n \rangle. \tag{34}$$

This is needed to obtain the first order correction term in Theorem 1.1.

4 Proof of Theorem 1.1

Lemmas 3.1 and 3.2 give us $||R(\lambda)VR(\lambda)|| \le C_1 n^{-1/4}$ and $||R(\lambda)VR(\lambda)||_1 \le C_2$ for all $n \in \mathbb{N}$ and $\lambda \in \Gamma_{\varepsilon,n}$. In particular $||(VR(\lambda))^2|| \le ||V||C_1 n^{-1/4}$. We also note that $||R(\lambda)|| = \varepsilon^{-1}$. It follows that for any $j \in \mathbb{N}_0$ we get

$$\|(VR(\lambda))^{2j}\| \le \|(VR(\lambda))^2\|^j \le (\|V\|C_1n^{-1/4})^j$$

and

$$\|(VR(\lambda))^{2j+1}\| \le \|V\| \|R(\lambda)\| \|(VR(\lambda))^{2j}\| \le \|V\| \varepsilon^{-1} (\|V\| C_1 n^{-1/4})^j.$$

Choose $N' \in \mathbb{N}$ so that $||V|| C_1 N'^{-1/4} \leq 1/2$. It follows that for any $n \geq N'$ and $\lambda \in \Gamma_{\varepsilon,n}$ the series

$$(I + VR(\lambda))^{-1} = \sum_{j=0}^{\infty} (-VR(\lambda))^j$$
 (35)

is absolutely convergent and has norm bounded by $2(1 + ||V||\varepsilon^{-1})$. In particular, $I + VR(\lambda)$ is invertible with a uniformly bounded inverse for all $n \geq N'$ and $\lambda \in \Gamma_{\varepsilon,n}$. On the other hand, the series

$$T(\lambda) := \sum_{j=1}^{\infty} R(\lambda)(-VR(\lambda))^{j} = -R(\lambda)VR(\lambda)\sum_{j=0}^{\infty} (-VR(\lambda))^{j}$$

is convergent in trace class with

$$||T(\lambda)||_1 \le ||R(\lambda)VR(\lambda)||_1 ||(I+VR(\lambda))^{-1}|| \le 2C_2(1+||V||\varepsilon^{-1})$$

for $n \geq N'$ and $\lambda \in \Gamma_{\varepsilon,n}$. Setting

$$T_n = -\frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda T(\lambda) \, d\lambda$$

it follows that we have an absolutely convergent expansion

$$\operatorname{Tr} T_n = -\sum_{j=1}^{\infty} \operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(\lambda) (-VR(\lambda))^j d\lambda$$

whenever $n \geq N'$.

Now choose $N \ge N'$ so that $KN^{-1/4} \ln(N) \le 1/2$ where K is the constant given by Proposition 3.5. Using this Proposition and the above results it follows that

$$\left| \sum_{j=2}^{\infty} \operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(\lambda) (-VR(\lambda))^{j} d\lambda \right| \leq 2K^{2} n^{-1/2} \ln(n)$$

for all $n \geq N$. Therefore

$$\operatorname{Tr} T_n = \operatorname{Tr} \frac{1}{2\pi i} \oint_{\Gamma_{\varepsilon,n}} \lambda R(\lambda) V R(\lambda) d\lambda + O(n^{-1/2} \ln(n))$$
$$= \langle V \phi_n, \phi_n \rangle + O(n^{-1/2} \ln(n))$$

for all $n \geq N$, where we have used (34).

The argument can be tied together using a standard resolvent expansion. Set $R_V(\lambda) = (H + V - \lambda)^{-1}$ and let $n \ge N$. Then

$$R_V(\lambda) = R(\lambda)(1 + VR(\lambda))^{-1} = R(\lambda)\sum_{i=0}^{\infty} (-VR(\lambda))^{i}.$$

The right hand side of (35) will still converge if V is replaced with gV for some $g \in [0,1]$. Hence $\sigma(H+gV) \cap \Gamma_{\varepsilon,n} = \emptyset$. Since the eigenvalues of H+gV depend continuously on g, it follows that $\Gamma_{\varepsilon,n}$ must enclose $\lambda_n(H+V)$ but no other points of $\sigma(H+V)$. Thus we can write

$$\lambda_n(H+V) - \lambda_n(H) = -\frac{1}{2\pi i} \operatorname{Tr} \oint_{\Gamma_{\varepsilon,n}} \lambda(R_V(\lambda) - R(\lambda)) d\lambda$$
$$= -\frac{1}{2\pi i} \operatorname{Tr} \oint_{\Gamma_{\varepsilon,n}} \lambda \sum_{j=1}^{\infty} R(\lambda) (-VR(\lambda))^j d\lambda$$
$$= \operatorname{Tr} T_n = \langle V\phi_n, \phi_n \rangle + O(n^{-1/2} \ln(n)).$$

Theorem 1.1 now follows from Proposition 2.8.

Acknowledgements

The author wishes to thank A. B. Pushnitski for several useful discussions, especially regarding some of the special function results used in Section 2.

References

- [AS] M. Abramowitz and I. A. Stegun (eds.), *Handbook of Mathematical Physics*, Dover Publications, New York, 1972.
- [GRJ] I. S. Gradshteyn and I. M. Ryzhik, A. Jeffrey (ed.), Tables of Integrals, Series and Products, 5th ed., Academic Press, London, 1994.
- [MO] V. A. Marčenko and I. V. Ostrovs'kii, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540–606, 633–634; English transl., Math. USSR-Sb. 26 (1975), no. 4, 493–554 (1977).
- [PS] A. Pushnitski and I. Sorrell, paper in preparation.