Реккурентные нейронные сети

Мадуар Дарин

ниу вшэ

27 ноября, 2018

Сети прямого распространения

Реккурентная нейронная сеть (RNN)

Реккурентная нейронная сеть – вид нейронных сетей, где связи между элементами образуют направленную последовательность.

- ▶ RNN моделируютдинамическую систему
- все биологические сети рекуррентные
- используются для анализа временных рядов и последовательностей, в которых важен порядок

Универсальная теорема аппросимации

- MLP аппроксимирует любую функцию
- RNN аппроксимирует любую динамическую систему
- ▶ все машины Тьюринга могут быть смоделированы полносвязной RNN

То есть, если сеть прямого распространения аппроксимируют функции, то рекуррентные нейросети аппроксимируют программы

Нейросеть Хопфилда

Нейросеть Хопфилда

- ▶ впервые упомянута в 1974 году, окончательно оформилась в 1982 г.
- реализовала ячейку ассоциативной памяти
- пороговая функция активации
- работает с последовательностями фиксированного размера

Моделирование последовательностей

- преобразование последовательностей одной природы в последовательности другой природы
 - графемы в фонемы
 - картинки в предложения
- предсказание следующего члена последовательности
 - прогнозирование следующего пикселя
 - предсказание кадра видео на основе предыдущих
 - генерация следующего слова

Как решать?

- авторегрессионная модель
 - модель скользящего среднего
- моделирование временных рядов нереккурентными нейронными сетями
- скрытые модели Маркова
 - ▶ есть «видимые» и «скрытые» состояния
 - ▶ в 1986 г. Джеффри Хинтон назвал слои «скрытыми»

Последовательности

Развертка сети во времени

Обучение нейронных сетей

- backpropagation не работает для сетей с циклами
- существует модификация backpropagation throught time
- ▶ обновление градиента на каждом шаге одинаковое
- алгоритм легко модифицируется так, чтобы можно было наложить любые линейные ограничения на веса.
- ▶ например, чтобы $w_1 = w_2$:

$$\circ w_1 = w_2 \Rightarrow \Delta w_1 = \Delta w_2 \Rightarrow \frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial w_2}$$

$$\circ \Delta w_1^{new} = \Delta w_2^{new} = \frac{\partial E}{\partial w_1} + \frac{\partial E}{\partial w_2}$$

Память в RNN

- short-term memory: появляется в процессе прохождения сигнала по реккурентным слоям
- long-term memory: веса в процессе всего обучения меняются, кодируя таким образом «окружение»
- Долгая краткосрочная память (Long short-term memory; LSTM) – специальная архитектура рекуррентных нейронных сетей, предложенная в 1997 году.
- ▶ LSTM промежуточный способ памяти
- ► LSTM способ борьбы со взрывом и затуханием градиента

Важная составляющая LSTM – слой состояния сети C_t : сеть может как добавлять новую информацию, так и стирать старую

1. Forget gate layer f_t — слой, с помощью которого сигмоидальная функция смотрит на X_t и h_t и выдаёт для каждого числа в C_{t-1} число от 0 до 1 (вероятность забывания).

$$f_t = \sigma(W_f[h_t, x_t] + b_f)$$

2. Input gate layer i_t — входной слой, который решает какие веса обновлять.

$$i_t = \sigma(W_i[h_t, x_t] + b_i)$$

Далее с помощью tanh вычисляются значения-кандидаты новых состояний

$$ilde{\mathcal{C}}_t = tanh(W_{\mathcal{C}}[h_t,x_t] + b_{\mathcal{C}})$$

3. Затем вектор состояний обновляется

$$t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$$

И решаем, что выводить на данном шаге

$$o_t = sigma(W_o[h_t, x_t] + b_o)$$

 $h_t = o_t \cdot tanh(C_t)$

Заключение

Примеры применения RNN:

- Paul Graham generator
- Wikipedia
- Algebraic Geometry (Latex)
- Linux Source Code
- Generating Baby Names (Rudi Levette Berice Lussa Hany)

Заключение

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves ${\mathcal F}$ on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme which is eaul to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

is a limit. Then $\mathcal G$ is a finite type and assume S is a flat and $\mathcal F$ and $\mathcal G$ is a finite type f_* . This is of finite type diagrams, and

• the composition of $\mathcal G$ is a resultar sequence.

O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??. A reduced above we conclude that U is an open covering of C. The functor F is a "field

 $\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}}$ $-1(\mathcal{O}_{X_{\ell als}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\overline{v}})$ is an isomorphism of covering of $\mathcal{O}_{X_{\ell}}$. If \mathcal{F} is the unique element of \mathcal{F} such that Xis an isomorphism.

is an isomorphism. The property F is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with F are opens of finite type over S. If F is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

Заключение

Спасибо за внимание!

Ссылки

- [1]. http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- [2]. https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
- [3]. https://ru.wikipedia.org