Exercise 5 Clock Gating

電子所 311510061 陳柏翰

1. Draw the architectures of 3x3 convolution kernels

			IFM													
*******			*****				1							OFM		
I_1	I_2	$\cdot I_3$	I_4	I_5		I ₇		ı	v _{eight}			0_1	O_2	O_3	O_4	O_5
I_8	I_9	I_{10}	I_{11}	I_{12}	I_{13}	I_{14} .			(treevi)		*********	1	- 2	3	4	
I ₁₅	I ₁₆	I ₁₇	I ₁₈	I ₁₉	I ₂₀	I ₂₁		W_1	W_2	W_3		06	O_7	O_8	09	O_{10}
I_{22}	I ₂₃ .	.I ₂₄		I ₂₆			*	W_4	W_5	W_6	=,	011	012	013	014	015
I ₂₉	I ₃₀	I ₃₁	I ₃₂	I_{33}	I ₃₄			·W ₂	W_8	W_9		016	017	018	019	020
I ₃₆	I ₃₇	I_{38}	I ₃₉	I_{40}	I ₄₁	I_{42}					a*	021	022	023	024	025
I_{43}	I_{44}	I_{45}	I_{46}	I_{47}	I_{48}	I_{49}										

2. Analysis and discuss the power consumption & critical path RTL pass:

SYN:

Critical point 曲 weight_valid 到 Weight_3_reg[7]。

```
Operating Conditions: PVT_OP7V_25C Library: asap7sc7p5t_INVBUF_RVT_TT_08302018
Wire Load Model Mode: top
   Startpoint: weight_valid
   (input port clocked by clk)
Endpoint: Weight_3_reg[7]
                    (rising edge-triggered flip-flop clocked by clk)
   Path Group: cik
Path Type: max
    Point
                                                                                                            Incr
                                                                                                                                Path
   clock clk (rise edge)
clock network delay (ideal)
                                                                                                            0.00
                                                                                                                                0.00
                                                                                                            0.00
                                                                                                                                0.00
   clock network delay (ideal)
input external delay
weight_valid (in)
U648/Y (INVxp33_ASAP7_75t_R)
U660/Y (INVx1_ASAP7_75t_R)
U1162/Y (OR2x2_ASAP7_75t_R)
U658/Y (NAND2xp33_ASAP7_75t_R)
Weight_3_reg[7]/D (ASYNC_DFFHx1_ASAP7_75t_R)
data arrival time
                                                                                                                           1000.00 r
1000.00 r
1034.71 f
1158.44 r
                                                                                                       1000.00
                                                                                                        0.00
34.71
123.73
50.85
                                                                                                                           1209.29
                                                                                                                           1220.65
1220.65
1220.65
1220.65
                                                                                                          11.36
                                                                                                           0.00
   clock clk (rise edge)
clock network delay (ideal)
Weight_3_reg[7]/CLK (ASYNC_DFFHx1_ASAP7_75t_R)
library setup time
data required time
                                                                                                      2000.00
                                                                                                                           2000.00
                                                                                                                           2000.00
2000.00 r
                                                                                                          0.00
                                                                                                           0.00
                                                                                                                           1983.86
1983.86
                                                                                                         -16.14
                                                                                                                           1983.86
    data required time
    data arrival time
                                                                                                                          -1220.65
                                                                                                                             763.21
    slack (MET)
```

Gate simulation pass:

```
Congratulations!
You have passed all patterns!
Simulation complete via $finish(1) at time 6146 NS + 0
./PATTERN.v:417 $finish;
ncsim> exit
linux04 [3x3_Convolution_kernel/03_GATE_SIM]% ■
```

Power Prime wave view:

(1) w/o using clock gating

可以發現在 sparse < 9 時,下圖中的波行圖中數值都為 0,因此我有嘗試將 sparse < 5 來改編 pattern 產生 0 機率,並得到不同的波行圖和 power report,下圖為 sparse < 5 的波形圖。

Power anylysis:

(1) sparse < 9:

```
Internal
                                                             Switching
                                                                                 Leakage
                                                                                                     Total
                                                              Power
                                                                                 Power
                                                                                                     Power
Power Group
                                           Power
                                           0.0000 0.0000 0.0000 0.0000 (0.00%)
1.091e-04 2.092e-06 5.025e-08 1.112e-04 (77.53%)
7.380e-06 2.468e-05 1.707e-07 3.223e-05 (22.47%)
clock_network
register
combinational sequential
                                                                                                      0.0000 ( 0.00%)
0.0000 ( 0.00%)
0.0000 ( 0.00%)
0.0000 ( 0.00%)
                                                0.0000
0.0000
                                                                   0.0000
0.0000
                                                                                    0.0000
                                                                                     0.0000
memory
                                                                   0.0000
0.0000
io_pad
black_box
                                                 0.0000
                                                                                     0.0000
                                                 0.0000
                                                                                     0.0000
  Net Switching Power = 2.678e–05
Cell Internal Power = 1.165e–04
Cell Leakage Power = 2.210e–07
Intrinsic Leakage = 2.210e–07
                                                                   (18.67%)
(81.18%)
( 0.15%)
                                         = 0.0000
       Gate Leakage
                                         = 1.435e-04
Total Power
                                                                (100.00\%)
X Transition Power
Glitching Power
                                          = 8.906e-09
                                                  0.0000
                                         = 6.213e-04
= 2337
Peak Power
Peak Time
```

(2) sparse < 5:

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)	Attrs
clock_network register combinational sequentral memory io_pad	0.0000 1.163e-04 2.403e-05 0.0000 0.0000 0.0000	6.090e-06 7.369e-05 0.0000 0.0000	5.049e-08 1.718e-07 0.0000 0.0000	1.224e-04 9.789e-05 0.0000 0.0000	(44.43%) (0.00%) (0.00%) (0.00%)	i
black_box Net Switching Power Cell Internal Power	0.0000 = 7.978e-09 = 1.403e-04	5 (36.21%		0.0000		
Cell Leakage Power Intrinsic Leakage Gate Leakage	= 2.223e-0	7 (0.10% 7				
Total Power	= 2.203e-04	- 4 (100.00%)			
X Transition Power Glitching Power	= 9.076e-09 = 0.0000					
Peak Power Peak Time	= 6.304e-04 = 3983					

由上方兩張圖可以看出當數值不全為 0 時,消耗的總功率因為值的 改變而變大,net switching power 也跟著大了將近 2 倍,唯一改變較 小的是 cell leakage power。

(2) w/ using clock gating

Power anylysis:

(1) sparse < 9:

```
Internal
                                                    Switching
                                                                     Leakage
                                                                                       Total
                                                    Power
                                                                      Power
Power Group
                                     Power
                                                                                       Power
                                                                                                             %) Attrs
                                     1.557e-06 2.055e-06 3.484e-09 3.615e-06 ( 5.49%) 2.979e-05 1.485e-06 5.196e-08 3.133e-05 (47.55%) 7.023e-06 2.373e-05 1.966e-07 3.095e-05 (46.97%)
clock_network
register
combinational
                                         0.0000
                                                         0.0000
sequential
                                                                         0.0000
                                                                                        0.0000 ( 0.00%)
                                                                                        0.0000 ( 0.00%)
0.0000 ( 0.00%)
0.0000 ( 0.00%)
                                          0.0000
                                                         0.0000
                                                                         0.0000
memory
                                                                         0.0000
                                          0.0000
                                                         0.0000
io_pad
                                          0.0000
                                                                         0.0000
black box
                                                         0.0000
  Net Switching Power = 2.727e-05
Cell Internal Power = 3.837e-05
Cell Leakage Power = 2.521e-07
Intrinsic Leakage = 2.521e-07
                                                         (41.39%)
(58.23%)
(0.38%)
    Gate Leakage
Total Power
                                    = 6.590e-05 (100.00%)
X Transition Power
                                   = -1.374e-09
Glitching Power
                                           0.0000
Peak Power
Peak Time
                                   = 4.926e-04
                                              5545
```

(2) sparse < 5:

結論:

- (1) w/ clock gating 會比 w/o clock gating 多一個 clock_network 的 power。
- (2) w/ clock gating 會比 w/o clock gating 來的節省 power。

- (3) net switching power 會隨著波形圖中不為 0 的值越多而越大。
- (4) w/ clock gating 會比 w/o clock gating 來的更多 intrinsic leakage 。
- (5) Register power 會比 combinational power 來的大。
- (6) 都具有 Cell Internal Power > Net Switching Power >> Cell
 Leakage Power 的關聯性。

從以上改變 sparse 條件對 pattern 生成 0 的機率不同的比較和 w/gate、w/o gate 的比較中可以得知 pattern 產生的 0 越多可以減少 switching power ,雖然會增加 register 的 Power,卻能減少 total Power;當使用 gate clock 時會多出 clock network power 以及有較大的 Intrinsic Leakage,但是相比 w/o gate ,w/gate 的電路會有較小的 register power 和 total Power ,總整理如下方圖表。

Clock_network Intrinsic Switching Total power Register leakage power power Sparse<9 較少 少 較少 Sparse<5 較多 多 較多 少 多 w/o gate 有 大 多 w/ gate 沒有 少 小