

Recommender Systems

Shantanu Jain

Recommender Systems

Reasoning about the Long Tail

The Long Tail

(from: https://www.wired.com/2004/10/tail/)

The Long Tail

(from: https://www.wired.com/2004/10/tail/)

The Long Tail

(from: https://www.wired.com/2004/10/tail/)

Applications of Recommender Systems

- Movie recommendation (Netflix)
- Related product recommendation (Amazon)
- Web page ranking (Google)
- Social recommendation (Facebook)
- Priority inbox & spam filtering (Google)
- Online dating (OK Cupid)
- Computational Advertising (Everyone)

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

• Task: Predict user preferences for unseen items

Content-based Filtering

Two Approaches:

- 1. Predict rating using *item* features on a *per-user* basis
- 2. Predict rating using *user* features on a *per-item* basis

Collaborative Filtering

Idea: Predict rating based on similarity to other users

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last Romance forever Cute puppies of love	5	?	?	0 0 ?
Nonstop car chases Swords vs. karate	0	0	5	?

- Task: Predict user preferences for unseen items
- Content-based filtering: Model user/item features
- Collaborative filtering: Implicit similarity of users or items

Running Yardstick: RMSE

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

rmse(S) =
$$\sqrt{|S|^{-1}} \sum_{(i,u)\in S} (\hat{r}_{ui} - r_{ui})^2$$

S contains user-item pairs for which ratings are observed

Recommender Systems

Shantanu Jain

Content-based Filtering

Feature-based recommendation

Item-based Features

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Item-based Features

	Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
	Love at last	5	5	0	0	0.9	0
Н	Romance forever	5	?	?	0	1.0	0.01
U	Cute puppies of love	?	4	0	?	0.99	0
	Nonstop car chases	0	0	5	4	0.1	1.0
	Swords vs. karate	0	0	5	?	0	0.9

Item-based Features

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Per-user Regression

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Learn a set of regression coefficients for each user

$$w_u = \underset{w}{\operatorname{argmin}} |r_u - Xw|^2$$
 $w_u = (X^T X)^{-1} X^T r_u$

Each row of X contains an encoding for an item.

	Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Ι.	Love at last	5	5	0	0	0.9	0
	Romance forever	5	?	?	0	1.0	0.01
	Cute puppies of love	?	4	0	?	0.99	0
	Nonstop car chases	0	0	5	4	0.1	1.0
	Swords vs. karate	0	0	5	?	0	0.9

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9
Moonrise Kingdom	4	5	4	4	0.3	0.2

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9
Moonrise Kingdom	4	5	4	4	0.3	0.2

Problem: Some movies are universally loved / hated

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	3	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	3	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9
Moonrise Kingdom	4	3	4	4	0.3	0.2

Problem: Some movies are universally loved / hated some users are more picky than others

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	3	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	3	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9
Moonrise Kingdom	4	3	4	4	0.3	0.2

Problem: Some movies are universally loved / hated some users are more picky than others

Solution: Introduce a per-movie and per-user bias

$$\hat{r}_{ui} = \mu + b_u + b_i + \boldsymbol{x}_i^{\top} \boldsymbol{w}_u$$

Collaborative Filtering

Connectivity-based recommendation

Neighborhood Based Methods

Users and items form a bipartite graph (edges are ratings)

Neighborhood Based Methods

(user, user) similarity

- predict rating based on average from k-nearest users
- good if item base changes rapidly

(item, item) similarity

- predict rating based on average from k-nearest items
- good if user base changes rapidly

Parzen-Window Style CF

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in e_k(i,u)} s_{ij} (r_{uj} - b_{uj})}{\sum_{j \in e_k(i,u)} |s_{ij}|}$$

$$b_{ui} = \mu + b_u + b_i$$

$$b_{ui} = \mu + b_u + b_i$$

- Define a similarity sij between items
- Find set $\varepsilon_k(i,u)$ of k-nearest neighbors to i that were rated by user u
- Predict rating using weighted average over set
- How should we define sii?

Pearson Correlation Coefficient

$$s_{ij} = \frac{\text{cov}(r_{\cdot i}, r_{\cdot j})}{\text{std}(r_{\cdot i}) \times \text{std}(r_{\cdot j})}$$

(item, item) similarity

Empirical estimate of Pearson correlation coefficient

$$\hat{\rho}_{ij} = \frac{\sum_{u \in U(i,j)} (r_{ui} - b_{ui})(r_{uj} - b_{uj})}{\sqrt{\sum_{u \in U(i,j)} (r_{ui} - b_{ui})^2 \sum_{u \in U(i,j)} (r_{uj} - b_{uj})^2}}$$

U(i, j): set of users who have rated both i and j

Regularize towards 0 for small support

$$s_{ij} = \frac{|U(i,j)| - 1}{|U(i,j)| - 1 + \lambda} \hat{\rho}_{ij}$$

Regularize towards baseline for small neighborhood

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in e_k(i,u)} s_{ij} (r_{uj} - b_{uj})}{\lambda + \sum_{j \in e_k(i,u)} |s_{ij}|}$$

Similarity for binary labels

Pearson correlation not meaningful for binary labels (e.g. Views, Purchases, Clicks)

Jaccard similarity

$$s_{ij} = \frac{m_{ij}}{\alpha + m_i + m_j - m_{ij}}$$

Observed / Expected ratio

$$s_{ij} = \frac{m_{ij}}{\alpha + m_i + m_j - m_{ij}}$$
 $s_{ij} = \frac{\text{observed}}{\text{expected}} \approx \frac{m_{ij}}{\alpha + m_i m_j / m}$

 m_i users acting on i m_{ij} users acting on both i and jm total number of users

Recommender Systems

Shantanu Jain

Matrix Factorization Methods

Learning user and item features

Matrix Factorization

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
Moonrise Kingdom	4	5	4	4

$$\hat{r}_{ui} = x_i^T w_u$$

Idea: pose as matrix factorization problem

$$\hat{R} = XW^T$$

Matrix Factorization

Prediction

Prediction

SVD with missing values

١.	_											
	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
	2.1	4	.6	1.7	2.4	-1 .9	3	.4	.8	.7	6	.1

Pose as regression problem

$$\underset{X,W}{\operatorname{argmin}} \sum_{(u,i) \in S} (r_{ui} - \mathbf{w}_{u}^{\top} \mathbf{x}_{i})^{2} + \lambda \left(||\mathbf{X}||_{F}^{2} + ||\mathbf{W}||_{F}^{2} \right)$$

Regularize using Frobenius norm

$$||A||_{F}^{2} = \sum_{ij} |A_{ij}|^{2}$$

Alternating Least Squares

$$\boldsymbol{w}_{u} \leftarrow \left[\lambda \boldsymbol{I} + \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \right]^{-1} \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} r_{ui} \qquad \text{(regress } \boldsymbol{w}_{u} \text{ given } \boldsymbol{X}\text{)}$$

Alternating Least Squares

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	-1 .9	3	.4	.8	.7	6	.1

$$\boldsymbol{w}_{u} \leftarrow \begin{bmatrix} \lambda \boldsymbol{I} + \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \end{bmatrix}^{-1} \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} r_{ui} \qquad \text{(regress } \boldsymbol{w}_{u} \text{ given } \boldsymbol{X}\text{)}$$

L2: closed form solution

$$\mathbf{w} = (\mathbf{X}^\mathsf{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

(known as Ridge Regression)

Alternating Least Squares

$$\boldsymbol{w}_{u} \leftarrow \begin{bmatrix} \lambda \boldsymbol{I} + \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \end{bmatrix}^{-1} \sum_{i:(u,i) \in S} \boldsymbol{x}_{i} r_{ui} \qquad \text{(regress } \boldsymbol{w}_{u} \text{ given } \boldsymbol{X} \text{)}$$

$$\boldsymbol{x}_{i} \leftarrow \begin{bmatrix} \lambda \boldsymbol{I} + \sum_{u:(u,i) \in S} \boldsymbol{w}_{u} \boldsymbol{w}_{u}^{\top} \end{bmatrix}^{-1} \sum_{u:(u,i) \in S} \boldsymbol{w}_{u} r_{ui} \qquad \text{(regress } \boldsymbol{x}_{i} \text{ given } \boldsymbol{W} \text{)}$$

Matrix Factorization

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
Moonrise Kingdom	4	5	4	4

$$\hat{r}_{ui} = \mu + b_u + b_i + \boldsymbol{x}_i^{\top} \boldsymbol{w}_u$$

Idea: matrix factorization problem with bias terms

$$\hat{R} = B + XW^{\top}$$