Practical Methodology

Lecture slides for Chapter 11 of *Deep Learning*www.deeplearningbook.org
Ian Goodfellow
2016-09-26

What drives success in ML?

Arcane knowledge
of dozens of
obscure algorithms?

Mountains of data?

Knowing how
to apply 3-4
standard techniques?

Example: Street View Address Number Transcription

Three Step Process

- Use needs to define metric-based goals
- Build an end-to-end system
- Data-driven refinement

Identify Needs

- High accuracy or low accuracy?
- Surgery robot: high accuracy
- Celebrity look-a-like app: low accuracy

Choose Metrics

• Accuracy? (% of examples correct)

• Coverage? (% of examples processed)

• Precision? (% of detections that are right)

• Recall? (% of objects detected)

• Amount of error? (For regression problems)

End-to-end System

- Get up and running ASAP
- Build the simplest viable system first
- What baseline to start with though?
 - Copy state-of-the-art from related publication

Deep or Not?

- Lots of noise, little structure -> not deep
- Little noise, complex structure -> deep
- Good shallow baseline:
 - Use what you know
 - Logistic regression, SVM, boosted tree are all good

Choosing Architecture Family

• No structure -> fully connected

• Spatial structure -> convolutional

• Sequential structure -> recurrent

Fully Connected Baseline

- 2-3 hidden layer feed-forward neural network
 - AKA "multilayer perceptron"
- Rectified linear units
- Batch normalization
- Adam
- Maybe dropout

Convolutional Network Baseline

- Download a pretrained network
- Or copy-paste an architecture from a related task
 - Or:
 - Deep residual network
 - Batch normalization
 - Adam

Recurrent Network Baseline

- LSTM
- SGD
- Gradient clipping
- High forget gate bias

Data-driven Adaptation

- Choose what to do based on data
- Don't believe hype
- Measure train and test error
 - "Overfitting" versus "underfitting"

High Train Error

- Inspect data for defects
- Inspect software for bugs
 - Don't roll your own unless you know what you're doing
- Tune learning rate (and other optimization settings)
- Make model bigger

Checking Data for Defects

• Can a human process it?

Increasing Depth

High Test Error

- Add dataset augmentation
- Add dropout
- Collect more data

Increasing Training Set Size

Tuning the Learning Rate

Figure 11.1

Reasoning about Hyperparameters

Hyperparameter	Increases	Reason	Caveats
	capacity		
	when		
Number of hid-	increased	Increasing the number of	Increasing the number
den units		hidden units increases the	of hidden units increases
		representational capacity	both the time and memory
		of the model.	cost of essentially every op-
			eration on the model.

Hyperparameter Search

