Readme

Juvenile model ("Small" networks: 1000 excitatory neurons, 250 inhibitory neurons)

OB

6 odors, 4 trials. 3 first odors correspond to "amino-acids", 3 last to "bile acids".

Odors are presented for **2 seconds** and separated by 1 second of baseline activity (1 sec of baseline activity at the beginning). **Structure: odor1 trial1 odor2 trial1 ... odor1 trial2 odor 2 trial2 ... odor1 trial4 odor2 trial4.** Total of 72 seconds (simulation with 0.1 ms timestep). The **odorseq_bo_poisson.mat** file contains the OB input:

- r_olfbs is a matrix time x number of olfactory bulb neurons. 1 symbolizes a spike.
- -OBinp(x, 1:150,1): gives the identity of the 150 activated Mitral cells during presentation of odor x ($1 \le x \le 6$).
- -OBinp(x, 251:300,1): gives the identity of the 50 inhibited Mitral cells during presentation of odor x ($1 \le x \le 6$).

Dp

2 categories of networks (**n=8** per category: 2 A, 2 B, 2 C, 2 D; for parameters value see Table 2 in the Methods section of the paper Meissner-Bernard et al., 2025, eLife)

- 1) Random network (extension "_small")
- 2) Network which has "learned" odor 1 & 2 (*E-I assemblies*, extension "tboth") *Hypothesis: E-I assembly forms for both CS+ and CS-*.

Connectivity matrices are located in the **connec_matrices** folder. *Variables of each .mat file:*

 w_{XY} : Binary matrix, where 1 symbolizes a connection between 2 neurons. X are the presynaptic neurons, Y the postsynaptic ones.

Ee: Matrix number of E assemblies x number of assembly neurons

li: number of I assemblies x number of assembly neurons

Dpsmall_rand and Dpsmall_tboth corresponds to the simulated Dp activity in response to the OB input previously described:

_rand corresponds to the random networks and _tboth to the networks with E-I assemblies. Variables of each .mat file:

The spiking of E neurons is in the cell array ACT, spiking of I neurons in the cell array ACT_I. Each cell corresponds to one network (see above, n=8 per category). To store the **sparse matrix** corresponding to network 1 in a new array, just type nameofvariable=ACT{1}. You will get a matrix in which the first column corresponds to **when** a spike occurs, and the second column indicates **which neuron spiked**. The time is 0.1ms (e.g. 1000=100 ms). The following line of code would for example average the number of spikes within time bins of 200 ms for each neuron, resulting in a time*neurons matrix.

		nt (see eLife 2) Juctance durir		•			
-			•	ory input to tl	ne total excita	tory input in	E neurons
gsyn = total s	synaptic cond	luctance char	ge due to od	or stimulatior	1		
	mfr sponta	mfr E	mfr I	СС	goe	rec	gsyn
rand_small	0.011689	0.833819	1.640556	0.054102	0.137028	45.1244	0.3434
tboth_small	0.012022	1.009431	2.242389	0.059591	0.137062	52.25458	0.42105