Homework 4

Math 607 (Section 0101), Spring 2022 Due Wednesday, March 9

You are encouraged to think about problems marked with a (*), but they are not to be handed in.

- 1. The point of this problem is to explain how Weil divisors D whose multiples mD become Cartier for $m \in \mathbb{Z}_{>1}$ appear in the study of quotient singularities by giving a specific example. Assume char $k \neq 2$.
 - (a) Show that the scheme $X = \operatorname{Spec} k[x, y, x]/(xy z^2)$ is normal but not regular.
 - (b) Consider the following automorphism $g: k[u,v] \to k[u,v]$ given by $f(u,v) \mapsto f(-u,-v)$ for a polynomial $f(u,v) \in k[u,v]$. Let $k[u,v]^g$ be the g-invariant part of k[u,v]. Find the subring $k[u,v]^g \subset k[u,v]$.
 - (c) The ring automorphism $g: k[u,v] \to k[u,v]$ induces an isomorphism ϕ of $\mathbb{A}^2 = \operatorname{Spec} k[u,v]$. Let $<\phi>$ be the cyclic group of order 2 generated by ϕ . For points x,y in \mathbb{A}^2 one can define an equivalence relation between x and y by either x=y or $y=\phi(x)$. Let $\mathbb{A}^2/<\phi> be the quotient space induced by this relation. The scheme structure is <math>\mathbb{A}^2/<\phi> = \operatorname{Spec}(k[u,v]^g)$. Prove that $\mathbb{A}^2/<\phi> is isomorphic to <math>X$.
- **2.** Tautological line bundle on \mathbb{P}^n_k . We describe \mathbb{A}^{n+1}_k with coordinates $w=(w_0,\ldots,w_n)$ and \mathbb{P}^n_k with coordinates $z=[z_0:\ldots:z_n]$. We consider the variety $X\subset\mathbb{A}^{n+1}\times\mathbb{P}^n$ defined by equations $w_iz_j-w_jz_i=0$ for all $0\leq i,j\leq n$. Note that this is the blow up of \mathbb{A}^{n+1}_k at the origin. Using the projection $\pi:X\to\mathbb{P}^n$ given by $(w,z)\in X\mapsto z\in\mathbb{P}^n$, X gets the structure of a line bundle as in topology.
 - (a) Explain why set theoretically X can be described as the set of couples $[l] \times v \in \mathbb{A}^{n+1} \times \mathbb{P}^n$ where the points $[l] \in \mathbb{P}^n$ are identified with the lines l in \mathbb{A}^{n+1} and the point $v \in \mathbb{A}^{n+1}$ lies on the line l. (This means that X is an example of the incidence correspondence.)
 - (b) Over the standard sets $U_i = D_+(w_i) \subset \mathbb{P}^n$ we have the trivialization isomorphisms $\phi_i : \pi^{-1}(U_i) \to \mathbb{A}^1 \times U_i$ given by $(w, z) \mapsto (w_i, z)$. Describe the transitions functions $\phi_i \circ \phi_j^{-1}$ on the coordinates.
 - (c) Using the transition functions $\phi_i \circ \phi_j^{-1}$, find the corresponding invertible sheaf on \mathbb{P}^n with the "same" transition functions.
- **3.** The point of this problem is to study the relationship between Cartier divisors, Weil divisors, and invertible sheaves on \mathbb{P}^n .
 - (a) Describe each invertible sheaf $\mathcal{O}_{\mathbb{P}^n}(m)$ as a Cartier divisor.
 - (b) Using the Cartier divisor description of $\mathcal{O}_{\mathbb{P}^n}(m)$, calculate the corresponding Weil divisor.
 - (c) Which of the invertible sheaves $\mathcal{O}_{\mathbb{P}^n}(m)$ correspond to effective Cartier divisors and why?
 - (d) What are all sections and all rational sections of $\mathcal{O}_{\mathbb{P}^n}(m)$?
 - (e) Describe the Weil divisors corresponding to the rational sections of $\mathcal{O}_{\mathbb{P}^n}(m)$.

- **4.** Calculate the Weil class group of $X = \operatorname{Spec} k[x, y, z, w]/(xy zw)$ using the following steps.
 - (a) Let Z be prime divisor associated to the ideal p = (y, z). Using the exact sequence for the class groups of Z, X, X Z, prove that Cl(X) is a cyclic \mathbb{Z} -module.
 - (b) Now we need to show that this module is not torsion. Denote A = k[x, y, z, w]/(xy zw) and S = k[x, y, z, w]. Explain why it is sufficient to show that n-th symbolic power $p^{(n)} = p^n A_p \cap A$ of p is not principal for all $n \ge 1$.
 - (c) We will prove the goal of (b) by contradiction. Assume that the image of $f \in S$ in A generates $p^{(n)}$. Then using $(y^n, z^n) \subset (f, xy zw) \subset (f, x, w)$ and Krull's height theorem, reach a contradiction.
- **5.** Derivations. Suppose A is a B-algebra for rings A, B. For any A-module M, a B-derivation of A into M is defined as a B-linear map $d: A \to M$ such that
 - (i) (additivity) d(a + a') = da + da'
 - (ii) (Leibniz rule) d(aa') = ada' + a'da
 - (iii) (triviality) db = 0 for every $b \in \phi(B) \subseteq A$ for the structure homomorphism $\phi: B \to A$.

The module of Kahler differentials of A over B is an A-module $\Omega_{A/B}$ together with a B-derivation $d:A\to\Omega_{A/B}$. This module is the "representing object" of the function of B-derivations $M\mapsto Der_B(A,M)$. We can construct the module $\Omega_{A/B}$ as the free module generated by the symbols $\{da|a\in A\}$ and take the quotient by the submodule generated by the equivalence relations in (i-iii) i.e. $d(a+a')-da-da',\ d(aa')-ada'-a'da,\ db$. Then the map $d:A\to\Omega_{A/B}$ which sends a to da is a B-derivations. The pair $(\Omega_{A/B},d)$ is unique up to unique isomorphism. Prove the following isomorphisms:

- (a) Let A = B/I, then prove that $\Omega_{A/B} = 0$.
- (b) Let $A = B[x_1, ..., x_n]$. Then prove that $\Omega_{A/B} = Adx_1 \oplus Adx_2 \oplus ... \oplus Adx_n$ is a free A module of rank n.
- (c) Let B=k is a field of characteristic $\neq 2$ and let $A=k[x,y]/(y^2-x^3+x)$. Then prove that the module $\Omega_{A/B}$ is generated by dx and dy subject to the relation $2ydy=(3x^2-1)dx$. Prove additionally that the sheaf $\widetilde{\Omega_{A/B}}$ is an invertible sheaf on Spec A.
- (d) Let B = k is a field of characteristic $\neq 2$ and let $A = k[x,y]/(y^2 x^3)$. Then prove that the module $\Omega_{A/B} \cong (Adx \oplus Ady)/(2ydy 3x^2dx)$. Prove additionally that the sheaf $\Omega_{A/B}$ is not a locally free sheaf on Spec A.
- 6. Cotangent sheaf $\Omega_{X/k}$. If X is a scheme of finite type over algebraically closed field k, then we can cover X by open affine sets $U = \operatorname{Spec} A$ where A is a finitely generated k-algebra and thus we have the finitely generated A-module $\Omega_{A/k}$ described in the previous problem. We can glue the sheaves $\Omega_{A/k}$ to a coherent sheaf $\Omega_{X/k}$, using the gluing of the affine sets. In general the cotangent sheaf $\Omega_{X/k}$ is not an invertible sheaf, it is a locally free sheaf of rank $\Omega_{X/k}$ for smooth X and its top wedge power called the canonical sheaf $\Omega_{X/k}$ is an invertible sheaf.
 - (a) Assuming that the cotangent sheaf $\Omega_{\mathbb{P}^1/k}$ is an invertible sheaf, calculate the degree of the divisor of a nonzero rational section. Use that to calculate the sheaf $\Omega_{\mathbb{P}^1/k}$.
 - (b) Let C be a smooth plane curve i.e. a smooth curve given by f(x,y) = 0 in \mathbb{A}^2_k . Prove that the cotangent sheaf $\Omega_{C/k}$ is invertible.