## In the Claims:

## 1. (Currently Amended) A compound of the formula (I)

in which

A is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups; where not more than one of the heteroatoms is an oxygen or sulfur atom,

and A may be substituted by radicals R11, R12 and/or R13,

where

R<sup>11</sup>, R<sup>22</sup> and R<sup>13</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>4</sub>alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>4</sub>-alkyln-phenyl, phenyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>4</sub>-alkyl) and N(C<sub>1</sub>-C<sub>4</sub>-alkyl)<sub>2</sub>,

R<sup>3</sup> and R<sup>4</sup> are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>-alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, phenyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>1</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>, or

R3 and R4 are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

## R5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR54, NR54, C(1-C<sub>1</sub>-alkylen) and a bond, X is selected from the group consisting of CO, CO-O, SO<sub>2</sub>, NR54, NR54-CO, NR54-SO<sub>2</sub>, CO-NR59 and a bond.

Y is C<sub>1</sub>-C<sub>6</sub>-alkylen, C<sub>2</sub>-C<sub>6</sub>-alkyenylen, C<sub>2</sub>-C<sub>6</sub>-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R<sup>52</sup>, NR<sup>51</sup>R<sup>52</sup>, S-R<sup>52</sup>, where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R<sup>35</sup>, R<sup>46</sup>, R<sup>97</sup>, and/or up to three radicals R<sup>35</sup>,

R<sup>51</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>53</sup>,

 $R^{S2}$  at each occurrence is independently selected from the group consisting of hydrogen,  $C_1$ - $C_6$ -alkyl,  $C_2$ - $C_6$ -alkynyl, E and  $C_1$ - $C_1$ -alkylen-E,

R<sup>33</sup> at each occurrence is independently selected from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>,

R<sup>54</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>7</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>59</sup>,

R<sup>SS</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl, C<sub>1</sub>-C<sub>7</sub>-alkylen-phenyl, where the ring may be substituted by up to two radicals R<sup>os</sup>, and OH, O-C<sub>7</sub>-C<sub>7</sub>-alkyl, O-phenyl, O-C<sub>7</sub>-C<sub>7</sub>-alkylen-phenyl, NH<sub>2</sub>, NH(C<sub>7</sub>-C<sub>7</sub>-alkyl) and N(C<sub>1</sub>-C<sub>7</sub>-alkyl)<sub>8</sub>.

R56 is a group Q1-Q2-Q3, where

 $Q^1$  is selected from the group consisting of a bond,  $C_1$ - $C_1$ -alkylen,  $C_2$ - $C_4$ -alkynylen,  $C_2$ - $C_4$ -alkylen-N( $C_1$ - $C_4$ -alkyl), N( $C_1$ - $C_4$ -alkyl), N( $C_1$ - $C_1$ -alkyl), N( $C_1$ - $C_1$ -alkyl), N( $C_1$ - $C_1$ -alkyl)

Ci-Ci-alkylen, NH-Ci-Ci-alkylen, O, Ci-Ci-alkylen-O, O-Ci-Ci-alkylen, CO-NH, CO-N(Ci-Ci-alkyl), NH-CO, N(Ci-Ci-alkyl)-CO, CO, SO<sub>2</sub>, SO, S, O, SO<sub>2</sub>-NH, SO<sub>2</sub>-N(Ci-Ci-alkyl), NH-SO<sub>2</sub>, N(Ci-Ci-alkyl)-SO<sub>2</sub>, O-CO-NH, O-CO-N(Ci-Ci-alkyl), NH-CO-O, N(Ci-Ci-alkyl)-CO-O, N(Ci-Ci-alkyl)-CO-N(Ci-Ci-alkyl), NH-CO-N(Ci-Ci-alkyl)-CO-NH, and NH-CO-NH

- Q<sup>2</sup> is selected from the group consisting of C<sub>1</sub>-C<sub>4</sub>-alkylen, C<sub>2</sub>-C<sub>4</sub>-alkenylen, C<sub>2</sub>-C<sub>4</sub>-alkynylen, and a bond,
- $Q^3$  is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals  $R^{c_3}$ ,  $R^{c_4}$  and/or  $R^{c_5}$ ,
- R<sup>37</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl, C<sub>1</sub>-C<sub>4</sub>-alkylen-phenyl, COOH, CO-O-C<sub>1</sub>-C<sub>7</sub>-alkyl, CONH<sub>2</sub>, CO-NH-C<sub>7</sub>-C<sub>7</sub>-alkyl, CO-N(C<sub>1</sub>-C<sub>7</sub>-alkyl)<sub>2</sub>, CO-C<sub>1</sub>-C<sub>7</sub>-alkyl, CH<sub>2</sub>-NH<sub>2</sub>, CH<sub>2</sub>-NH-C<sub>1</sub>-C<sub>7</sub>-alkyl and CH<sub>2</sub>-N(C<sub>1</sub>-C<sub>7</sub>-alkyl)<sub>3</sub>.
- R<sup>SS</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>62</sup>.
- R<sup>50</sup>, R<sup>60</sup> and R<sup>62</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>3</sub>, OH, O-C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>4</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>,
- Re<sup>5</sup>, Re<sup>6</sup> and Re<sup>6</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>1</sub>-alkyln-phenyl, phenyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>1</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>,

provided that if W is a bond, then X is NR<sup>at</sup>, NR<sup>at</sup>-CO or NR<sup>at</sup>-SO<sub>2</sub>, or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub>, provided that if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub>, or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub>, or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub>, or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X and Y are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X are a bond and Z is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-SO<sub>2</sub> or if W is a bond, then X is NR<sup>at</sup>-S

to two oxo groups and may be substituted by radicals R<sup>55</sup>, R<sup>56</sup>, R<sup>57</sup> and/or up to three radicals R<sup>53</sup>, and which ring is bound via a nitrogen ring atom to the remainder of the molecule,

R<sup>6</sup> and R<sup>7</sup> are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>-alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, phenyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>1</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>,

and their tautomeric forms, enantiomeric and diastercomeric forms, and prodrugs thereof.

- (Previously Presented) The compound of claim 1, wherein A is an aromatic heteromonocyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- (Previously Presented) The compound of claim 1, wherein A is selected from the group consisting of pyrimidine, pyridine, pyridazine, pyrazine, thiazole, imidazole, thiophene-and furan.
- 4. (Cancelled).
- (Cancelled).
- 6. (Currently Amended) A compound of the formula (III),



in which

D is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of  $N_s$  O and  $S_s$  and up to 2 oxo groups;

and D may be substituted by radicals R21, R22 and/or R23,

G is an aromatic heteromonocyclic, aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups and

G may be substituted by radicals R71, R72 and/or R73.

R<sup>21</sup>, R<sup>22</sup>, R<sup>23</sup>, R<sup>21</sup>, R<sup>22</sup> and R<sup>23</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>-alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>2</sub>-alkyl-phenyl, phenyl, C<sub>1</sub>-C<sub>2</sub>-alkyl, C<sub>2</sub>-C<sub>2</sub>-alkenyl, C<sub>2</sub>-C<sub>3</sub>-alkynyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>3</sub>-alkyl) and N(C<sub>1</sub>-C<sub>4</sub>-alkyl)<sub>2</sub>, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, +piperazin-1-yl, +(C<sub>1</sub>-C<sub>3</sub>-alkyl)-piperazin-1-yl,

R³ and R³ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>r</sub>-alkyl, O-phenyl, O-C<sub>1</sub>-C<sub>r</sub>-alkylen-phenyl, phenyl, C<sub>1</sub>-C<sub>r</sub>-alkyl, C<sub>2</sub>-C<sub>r</sub>-alkyl, C<sub>2</sub>-C<sub>r</sub>-alkylyl, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>r</sub>-alkyl) and N(C<sub>1</sub>-C<sub>r</sub>-alkyl)<sub>2</sub> or

R3 and R4 are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

R5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR54, NR54-(C<sub>1</sub>-C<sub>1</sub>-alkylen) and a bond, X is selected from the group consisting of CO, CO-O, SO<sub>2</sub>, NR54, NR54-CO, NR54-SO<sub>2</sub>, CO-NR58 and a bond.

Y is C<sub>1</sub>-C<sub>6</sub>-alkylen, C<sub>2</sub>-C<sub>6</sub>-alkenylen, C<sub>2</sub>-C<sub>6</sub>-alkynylen, or a bond,
Z is selected from the group consisting of hydrogen, E, O-R<sup>52</sup>, NR<sup>51</sup>R<sup>52</sup>, S-R<sup>52</sup>, where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups, and E may be substituted by radicals R<sup>N</sup>, R<sup>N</sup>, R<sup>N</sup> and/or up to three radicals R<sup>N</sup>.

R<sup>31</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>53</sup>,

R<sup>32</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, E and C<sub>1</sub>-C<sub>6</sub>-alkylen-E,

R<sup>SS</sup> at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>5</sub>, OCF<sub>5</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH<sub>1</sub>(C<sub>1</sub>-C<sub>1</sub>-alkyl) and N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>,

R<sup>St</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>6</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>SO</sup>.

R<sup>SS</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkeynyl, C<sub>2</sub>-C<sub>6</sub>-alkyynyl, phenyl, C<sub>1</sub>-C<sub>7</sub>-alkylen-phenyl, where the ring may be substituted by up to two radicals R<sup>®</sup>0, and OH, O-C<sub>1</sub>-C<sub>6</sub>-alkyly, O-phenyl, O-C<sub>1</sub>-C<sub>7</sub>-alkylen-phenyl, NH<sub>S</sub>, NH(C<sub>7</sub>-C<sub>7</sub>-alkyl) and N(C<sub>1</sub>-C<sub>7</sub>-alkyly).

R56 is a group Q1-Q2-Q3, where

 $Q^i \text{ is selected from the group consisting of a bond, } C_1\text{-}C_1\text{-}alkylen, } C_2\text{-}C_1\text{-}alkenylen, } C_2\text{-}C_2\text{-}alkynylen, } C_1\text{-}C_2\text{-}alkynylen, } C_1\text{-}C_2\text{-}alkynylen, } C_1\text{-}C_2\text{-}alkylen, } C_1\text{-}C_2\text{-}alkylen, } C_2\text{-}C_2\text{-}alkylen, } C_2\text{-}C_2\text{-}C_2\text{-}Alkylen, } C_2\text{-}C_2\text{-}C_2\text{-}Alkylen, } C_2\text{-}C_2\text{-}C_2\text{-}C_2\text{-}C_2\text{-}Alkylen, } C_2\text{-}C_2\text{-}C_2\text$ 

 $Q^2$  is selected from the group consisting of  $C_1$ - $C_4$ -alkylen,  $C_2$ - $C_4$ -alkenylen,  $C_2$ - $C_4$ -alkynylen, and a bond,

 $Q^{\lambda}$  is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals  $R^{\Delta}$ ,  $R^{\Delta}$  and/or  $R^{\Delta}$ .

R<sup>ST</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl, C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, COOH, CO-O-C<sub>1</sub>-C<sub>6</sub>-alkyl, CONH<sub>2</sub>, CO-NH-C<sub>1</sub>-C<sub>1</sub>-alkyl, CO-N(C<sub>1</sub>-C<sub>1</sub>-alkyl)<sub>2</sub>, CO-C<sub>1</sub>-C<sub>6</sub>-alkyl, CH<sub>2</sub>-NH<sub>2</sub>, CH<sub>2</sub>-NH-C<sub>1</sub>-C<sub>1</sub>-alkyl and CH<sub>2</sub>- N(C<sub>1</sub>-C<sub>4</sub>-alkyl)<sub>2</sub>,

R<sup>58</sup> at each occurrence is independently selected from the group consisting of hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl and C<sub>1</sub>-C<sub>1</sub>-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R<sup>62</sup>.

R<sup>50</sup>, R<sup>60</sup> and R<sup>62</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>3</sub>, OCF<sub>3</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>1</sub>alkyl, C₁-C<sub>6</sub>-alkyl, C₂-C<sub>6</sub>-alkynyl, C₂-C<sub>6</sub>-alkynyl, NH<sub>2</sub>, NH(C₁-C<sub>1</sub>-alkyl) and N(C₁-C₁-alkyl)<sub>2</sub>.

Re<sup>6</sup>, R<sup>6</sup> and R<sup>6</sup> at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF<sub>5</sub>, OCF<sub>5</sub>, NO<sub>2</sub>, OH, O-C<sub>1</sub>-C<sub>4</sub>-alky<sub>1</sub>, O-C<sub>1</sub>-C<sub>4</sub>-alky<sub>1</sub>, O-C<sub>1</sub>-C<sub>4</sub>-alky<sub>1</sub>, O-C<sub>7</sub>-alky<sub>1</sub>, NH<sub>2</sub>, NH(C<sub>1</sub>-C<sub>4</sub>-alky<sub>1</sub>) and N(C<sub>1</sub>-C<sub>4</sub>-alky<sub>1</sub>)<sub>2</sub>,

provided that if W is a bond, then X is NR<sup>14</sup>, NR<sup>14</sup>, CO or NR<sup>14</sup>, SO<sub>20</sub>, or if W is a bond, then X is NR<sup>14</sup>, NR<sup>15</sup>, CO or NR<sup>15</sup>, SO, or if W is a bond, then X and Y are a bond and Z is NR<sup>18</sup>, SO, or if W is a bond, then X and Y are a bond and Z is NR<sup>18</sup>, SO, or if W is a bond, then X and Y are a bond and Z is NR<sup>18</sup>, SO, or if W is a bond, then X and Y are a bond and Z is NR<sup>18</sup>, SO, or if W is a bond, then X and Y are a bond and Z is NR<sup>18</sup>, SO, or if W is a unsaturated mono, bi- or tricyclic ring having a maximum of 14 carbon atoms and 1 to 5 nitrogen atoms, and 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which ring may comprise up to two oxo groups and may be substituted by radicals R<sup>28</sup>, R<sup>20</sup>, R<sup>20</sup> and/or up to three radicals R<sup>23</sup>, and which ring is bound via a nitrogen ring atom to the remainder of the molecule,

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 7. (Previously Presented) The compound of claim 6, wherein D is an aromatic heteromonocyclic system comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- (Previously Presented) The compound of claim 6, wherein D is selected from the group consisting of pyrimidine, pyridine, pyridazine, pyrazine, thiazole, imidazole, thiophene and furan.
- (Previously Presented) The compound of claim 6 wherein G is selected from the group
  consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline,
  tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, thiazole, imidazothiazole,
  benzooxazine and quinoxaline.
- (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutically acceptable carrier.

| 11. | (Cancelled) |
|-----|-------------|
| 12. | (Cancelled) |
| 13. | (Cancelled) |

- 14. (Cancelled)
- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Cancelled)
- (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 6 and a pharmaceutically acceptable carrier.
- 19.-31 (Cancelled).