75.12/95.04 ANÁLISIS NUMÉRICO I 95.10 MODELACIÓN NUMÉRICA 95.13 MÉTODOS MATEMÁTICOS Y NUMÉRICOS SISTEMAS DE ECUACIONES LINEALES – MÉTODOS ITERATIVOS

Ing. Rodolfo A. Schwarz

Año 2021

Índice

- 1 MÉTODOS ITERATIVOS
 - Métodos Iterativos Estacionarios
 - Método de Jacobi
 - Método de Gauss-Seidel
 - Método de las Sobrerrelajaciones Sucesivas
 - Convergencia
 - Métodos Iterativos No Estacionarios
 - Método de los Residuos Mínimos
 - Método del Descenso Más Rápido
 - Método de los Gradientes Conjugados
 - Resumen
- 2 BIBLIOGRAFÍA

Métodos Iterativos

- Los métodos vistos, denominados Métodos Directos, son generales.
- Sirven para cualquier sistema de ecuaciones lineales (*Eliminación de Gauss*, *Factorización LU*) o para todo tipo de sistema que tenga una matriz **A** simétrica definida positiva (*Método de Cholesky*).
- Una característica importante es que el número de operaciones es «finito».
- Son muy eficientes cuando las matrices de coeficientes están formadas con una mayoría de coeficientes no nulos. Por eso reciben el nombre de sistemas densos.
- Existen muchos otros sistemas de ecuaciones lineales con características diferentes:
 - 1 Sistemas con matrices diagonales (tridiagonal, por ejemplo),
 - 2 Sistemas con matrices «banda»,
 - 3 Sistemas con matrices cuyos coeficientes son mayormente nulos.
- Estos sistemas se suelen denominar Sistemas de Ecuaciones Lineales Ralos.

Métodos Iterativos

• Una vez más, veamos otro modelo estructural:

Métodos Iterativos

- El modelo también se resuelve mediante el Método de los Elementos Finitos.
- La cantidad de incógnitas es 19.358, como se indica en el archivo de salida: PROBLEM STATISTICS

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 3267/ 3826/ 1365

ORIGINAL/FINAL BAND-WIDTH= 2573/ 48/ 293 DOF

TOTAL PRIMARY LOAD CASES = 7,

TOTAL DEGREES OF FREEDOM = 19358

SIZE OF STIFFNESS MATRIX = 5672 DOUBLE KILO-WORDS

REQRD/AVAIL. DISK SPACE = 84.1/183907.7 MB

• Una cuestión adicional es que el *Sistema de Ecuaciones Lineales* que representa este tipo de modelos es *ralo*.

Métodos Iterativos

- La transformación de las matrices de los Sistemas de Ecuaciones Lineales Ralos por algún método numérico puede significar «cambiar» una componente nula por una nueva no nula, con el consiguiente error.
- Es por eso que se han desarrollado métodos que se utilizan casi con exclusividad para resolver este tipo de sistemas.
- Analicemos otra forma de obtener la solución de nuestro sistema. Podemos hacer lo siguiente:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{B} \quad \Rightarrow \quad \mathbf{B} - \mathbf{A} \cdot \mathbf{x} = 0. \tag{1}$$

• Si sumamos $M \cdot x$ en ambos miembros tenemos:

$$\mathbf{M} \cdot \mathbf{x} = \mathbf{M} \cdot \mathbf{x} + \mathbf{B} - \mathbf{A} \cdot \mathbf{x}. \tag{2}$$

Al operar algebraicamente, obtenemos:

$$\mathbf{x} = \mathbf{M}^{-1} \cdot \mathbf{M} \cdot \mathbf{x} + \mathbf{M}^{-1} \cdot \mathbf{B} - \mathbf{M}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} \implies$$

$$\mathbf{x} = (\mathbf{I} - \mathbf{M}^{-1} \cdot \mathbf{A}) \cdot \mathbf{x} + \mathbf{M}^{-1} \cdot \mathbf{B}.$$
(3)

Métodos Iterativos

 De esta forma tenemos un método con x en ambos lados. Lo convertimos en un método iterativo:

$$\mathbf{x}^{\langle i+1 \rangle} = (\mathbf{I} - \mathbf{M}^{-1} \cdot \mathbf{A}) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{M}^{-1} \cdot \mathbf{B}. \tag{4}$$

donde $\langle i \rangle$ indica la iteración.

• Una forma simplificada de escribir lo anterior es:

$$\mathbf{x}^{\langle i+1\rangle} = \mathbf{T} \cdot \mathbf{x}^{\langle i\rangle} + \mathbf{C},\tag{5}$$

con
$$T = I - M^{-1} \cdot A$$
 y $C = M^{-1} \cdot B$.

Tenemos que definir la matriz M y obtener T y C.

• Escribamos A de la siguiente forma:

$$\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U} \tag{6}$$

donde:

- **D**: matriz diagonal, con $d_{ii} = a_{ii}$;
- L: matriz estrictamente triangular inferior, que cumple con

$$l_{i\,j} = \begin{cases} a_{i\,j} & \text{cuando } i > j, \\ 0 & \text{cuando } i \leq j. \end{cases}$$

• U: matriz estrictamente triangular superior, que cumple con

$$u_{i\,j} = \begin{cases} 0 & \text{cuando } i \ge j, \\ a_{i\,j} & \text{cuando } i < j. \end{cases}$$

• En todos los casos, $i \in (1, n)$ y $j \in (1, n)$.

Métodos Iterativos Estacionarios

Método de Jacobi

- El primer método surge de proponer que M = D, denominado *Método de Jacobi*.
- ullet Si operamos en la matriz ${f T}$ nos queda:

$$\mathbf{T} = \mathbf{I} - \mathbf{M}^{-1} \cdot \mathbf{A} = \mathbf{I} - \mathbf{D}^{-1} \cdot (\mathbf{L} + \mathbf{D} + \mathbf{U})$$

$$= \mathbf{I} - \mathbf{D}^{-1} \cdot \mathbf{L} - \underbrace{\mathbf{D}^{-1} \cdot \mathbf{D}}_{\mathbf{I}} - \mathbf{D}^{-1} \cdot \mathbf{U} \implies (7)$$

 $\mathbf{T} = -\mathbf{D}^{-1} \cdot (\mathbf{L} + \mathbf{U}).$

 \bullet Y si operamos en el vector ${\bf C}$ nos queda:

$$\mathbf{C} = \mathbf{M}^{-1} \cdot \mathbf{B} = \mathbf{D}^{-1} \cdot \mathbf{B}. \tag{8}$$

• El Método de Jacobi lo podemos expresar así:

$$\mathbf{x}^{\langle i+1 \rangle} = \mathbf{D}^{-1} \cdot [\mathbf{B} - (\mathbf{L} + \mathbf{U}) \cdot \mathbf{x}^{\langle i \rangle}]. \tag{9}$$

Método de Jacobi

La formulación no matricial es:

$$x_j^{\langle i+1\rangle} = \frac{1}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} \cdot x_k^{\langle i\rangle} - \sum_{k=j+1}^n a_{jk} \cdot x_k^{\langle i\rangle} \right) \tag{10}$$

- Para poder aplicar el método debemos definir un $\mathbf{x}^{(0)}$.
- Suele usarse $\mathbf{x}^{(0)} = \mathbf{0}$.
- Este método es de convergencia lenta y requiere que la matriz A sea estrictamente diagonal dominante, es decir que:

$$|a_{i\,i}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{i\,j}|.$$
 (11)

Método de Gauss-Seidel

- El segundo método surge de proponer que M = D + L, denominado *Método de Gauss-Seidel*.
- En este caso partimos de $\mathbf{M} \cdot \mathbf{x}^{\langle i+1 \rangle} = \mathbf{M} \cdot \mathbf{x}^{\langle i \rangle} \mathbf{A} \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B}$:

$$(\mathbf{D} + \mathbf{L}) \cdot \mathbf{x}^{\langle i+1 \rangle} = (\mathbf{D} + \mathbf{L}) \cdot \mathbf{x}^{\langle i \rangle} - (\mathbf{L} + \mathbf{D} + \mathbf{U}) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B},$$

$$\mathbf{D} \cdot \mathbf{x}^{\langle i+1 \rangle} + \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} = (\mathbf{D} - \mathbf{D} + \mathbf{L} - \mathbf{L} - \mathbf{U}) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B},$$

$$\mathbf{D} \cdot \mathbf{x}^{\langle i+1 \rangle} = \mathbf{B} - \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} - \mathbf{U} \cdot \mathbf{x}^{\langle i \rangle} \Rightarrow$$

$$\mathbf{x}^{\langle i+1 \rangle} = \mathbf{D}^{-1} \cdot (\mathbf{B} - \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} - \mathbf{U} \cdot \mathbf{x}^{\langle i \rangle}).$$
(12)

ullet El método utiliza parte del nuevo vector ${f x}^{(i+1)}$ para calcular este vector en forma completa.

Método de Gauss-Seidel

La formulación no matricial es:

$$x_j^{\langle i+1\rangle} = \frac{1}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} \cdot x_k^{\langle i+1\rangle} - \sum_{k=j+1}^n a_{jk} \cdot x_k^{\langle i\rangle} \right)$$
 (13)

- Para poder aplicar el método debemos definir un $\mathbf{x}^{(0)}$.
- También suele usarse $\mathbf{x}^{(0)} = \mathbf{0}$.
- Converge más rápido que el Método de Jacobi, y también requiere que la matriz A sea estrictamente diagonal dominante, aunque también converge si la matriz es definida positiva.

Métodos Iterativos Estacionarios

Método de las Sobrerrelajaciones Sucesivas

- Un tercer método surge de proponer que $\mathbf{M} = \frac{1}{\omega}\mathbf{D} + \mathbf{L}$, denominado *Método de las Sobrerrelajaciones Sucesivas* (SOR).
- También partimos de $\mathbf{M} \cdot \mathbf{x}^{(i+1)} = \mathbf{M} \cdot \mathbf{x}^{(i)} \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{B}$:

$$\left(\frac{1}{\omega}\mathbf{D} + \mathbf{L}\right) \cdot \mathbf{x}^{\langle i+1 \rangle} = \left(\frac{1}{\omega}\mathbf{D} + \mathbf{L}\right) \cdot \mathbf{x}^{\langle i \rangle} - (\mathbf{L} + \mathbf{D} + \mathbf{U}) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B},
\frac{1}{\omega}\mathbf{D} \cdot \mathbf{x}^{\langle i+1 \rangle} + \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} = \left(\frac{1}{\omega}\mathbf{D} - \mathbf{D} + \mathbf{L} - \mathbf{L} - \mathbf{U}\right) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B},
\frac{1}{\omega}\mathbf{D} \cdot \mathbf{x}^{\langle i+1 \rangle} = \left(\frac{1}{\omega} - 1\right) \cdot \mathbf{D} \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{B} - \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} - \mathbf{U} \cdot \mathbf{x}^{\langle i \rangle} \Rightarrow
\mathbf{x}^{\langle i+1 \rangle} = (1 - \omega) \cdot \mathbf{x}^{\langle i \rangle} + \omega \cdot \mathbf{D}^{-1} \cdot (\mathbf{B} - \mathbf{L} \cdot \mathbf{x}^{\langle i+1 \rangle} - \mathbf{U} \cdot \mathbf{x}^{\langle i \rangle}).$$
(14)

• Este método también utiliza parte del nuevo vector $\mathbf{x}^{(i+1)}$ más un coeficiente ω para calcular este vector en forma completa.

Métodos Iterativos Estacionarios

Método de las Sobrerrelajaciones Sucesivas

La formulación no matricial es:

$$x_{j}^{\langle i+1\rangle} = (1-\omega) \cdot x_{j}^{\langle i\rangle} + \frac{\omega}{a_{jj}} \left(b_{j} - \sum_{k=1}^{j-1} a_{jk} \cdot x_{k}^{\langle i+1\rangle} - \sum_{k=j+1}^{n} a_{jk} \cdot x_{k}^{\langle i\rangle} \right)$$
(15)

- El valor de ω debe estar entre 0 y 2, es decir, $0 < \omega < 2$.
- En rigor, $1 < \omega < 2$. Cuando $0 < \omega < 1$, suele denominarse *Método de Jacobi Modificado*.
- El coeficiente ω logra que converja más rápido que los dos métodos vistos. Si la matriz es definida positiva también converge. Generalmente se toma $\omega = 1,25$.
- Si $\omega = 1$, se transforma en el *Método de Gauss-Seidel*.
- Puede extenderse la convergencia al caso de matrices **A** simétricas definidas positivas.

Convergencia

- Para determinar la convergencia de los métodos estacionarios, analicemos la matriz
 T.
- ullet Supongamos que conocemos la solución «exacta» ${f x}$. Entonces tenemos que:

$$\mathbf{x} = \mathbf{x}^{\langle i+1 \rangle} + \mathbf{e}^{\langle i+1 \rangle} = \mathbf{T} \cdot (\mathbf{x}^{\langle i \rangle} + \mathbf{e}^{\langle i \rangle}) + \mathbf{C},$$

$$\mathbf{x}^{\langle i+1 \rangle} + \mathbf{e}^{\langle i+1 \rangle} = \mathbf{T} \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{C} + \mathbf{T} \cdot \mathbf{e}^{\langle i \rangle},$$

$$\mathbf{e}^{\langle i+1 \rangle} = \mathbf{T} \cdot \mathbf{e}^{\langle i \rangle} = \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{e}^{\langle i-1 \rangle} = \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{e}^{\langle i-2 \rangle} = \dots = \mathbf{T}^{i+1} \cdot \mathbf{e}^{\langle 0 \rangle}.$$
(16)

• Si queremos que el error $e^{\langle i+1\rangle}$ sea menor que el error $e^{\langle 0\rangle}$, entonces se debe cumplir que:

$$\|\mathbf{T}\|_{\infty} < 1. \tag{17}$$

Métodos Iterativos Estacionarios

Convergencia

• Para el Método de Jacobi se debe cumplir que:

$$\left\|\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\right\|_{\infty} < 1. \tag{18}$$

• Eso significa que:

$$\sum_{\substack{j=1\\j\neq i}}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1 \quad \text{para } i \in (1, n), \tag{19}$$

es decir,

$$|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$$
 para $i \in (1, n),$ (11)

expresión que define a una matriz estrictamente diagonal dominante.

Métodos Iterativos Estacionarios

Convergencia

- Hay varios teoremas que aseguran las condiciones de convergencia.
- Uno asegura la convergencia del *Método de las Sobrerrelajaciones Sucesivas* cuando **A** es *definida positiva*.
- Otros aseguran la convergencia para tipos especiales de matrices.
- Como todo método iterativo, requieren criterios de corte.
- Se usan dos:
 - 1 El error absoluto:

$$\|\mathbf{x}^{\langle n \rangle} - \mathbf{x}^{\langle n-1 \rangle}\|_{\infty} \le \text{Tol.}$$

2 El error relativo:

$$\frac{\|\mathbf{x}^{\langle n \rangle} - \mathbf{x}^{\langle n-1 \rangle}\|_{\infty}}{\|\mathbf{x}^{\langle n \rangle}\|_{\infty}} \leq \text{Tol}.$$

- Existe otro tipo de métodos iterativos.
- Son los Métodos Iterativos No Estacionarios.
- Los obtenemos con la ecuación ya vista:

$$\mathbf{x}^{\langle i+1 \rangle} = (\mathbf{I} - \mathbf{M}^{-1} \cdot \mathbf{A}) \cdot \mathbf{x}^{\langle i \rangle} + \mathbf{M}^{-1} \cdot \mathbf{B}. \tag{4}$$

al proponer la siguiente matriz:

$$\mathbf{M} = \frac{1}{2} \cdot \mathbf{I}.$$

Al reemplazarla en (4), tenemos:

$$\mathbf{x}^{(i+1)} = (\mathbf{I} - \alpha \cdot \mathbf{I} \cdot \mathbf{A}) \cdot \mathbf{x}^{(i)} + \alpha \cdot \mathbf{I} \cdot \mathbf{B},$$

$$= \mathbf{x}^{(i)} + \alpha \cdot (\underbrace{\mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{(i)}}_{\mathbf{R}^{(i)}}) \Rightarrow \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \alpha \cdot \mathbf{R}^{(i)}.$$
(20)

• El modelo depende de α .

Método de los Residuos Mínimos

- El primer método a partir de esta matriz M se denomina *Método de los Residuos Mínimos* o *Método del Mínimo Residuo*.
- Para hallar este nuevo procedimiento, vamos a analizar el residuo en la iteración (i+1):

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle i+1 \rangle} = \mathbf{B} - \mathbf{A} \cdot (\mathbf{x}^{\langle i \rangle} + \alpha \cdot \mathbf{R}^{\langle i \rangle}),$$

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle},$$

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}.$$
(21)

- Hemos obtenido una relación entre dos residuos: $\mathbf{R}^{(i+1)}$ y $\mathbf{R}^{(i)}$.
- Para lograr que $\mathbf{R}^{\langle i+1 \rangle}$ sea menor a $\mathbf{R}^{\langle i \rangle}$, vamos a analizar las normas euclídeas de ambos, de forma que

$$\left\| \mathbf{R}^{\langle i+1 \rangle} \right\|_{2} < \left\| \mathbf{R}^{\langle i \rangle} \right\|_{2}. \tag{22}$$

Método de los Residuos Mínimos

Para ello vamos a buscar que:

$$\left\| \mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle} \right\|_{2} < \left\| \mathbf{R}^{\langle i \rangle} \right\|_{2}. \tag{23}$$

- Existen muchas posibilidad para que se cumpla la expresión (23). Buscaremos aquella que haga que $\mathbf{R}^{(i+1)}$ sea mínima.
- Para ello vamos a proponer lo siguiente:

$$\frac{\mathrm{d} \left\| \mathbf{R}^{(i+1)} \right\|_{2}}{\mathrm{d}\alpha} = \frac{\mathrm{d} \left\| \mathbf{R}^{(i)} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{(i)} \right\|_{2}}{\mathrm{d}\alpha} = 0$$
 (24)

• En rigor, resolveremos:

$$\frac{\mathrm{d} \left\| \mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle} \right\|_{2}^{2}}{\mathrm{d}\alpha} = 0$$
 (25)

Método Iterativos No Estacionarios

Método de los Residuos Mínimos

Si derivamos vectorialmente, obtenemos:

$$2 \cdot [\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}]^{T} \cdot [\mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}] = 0,$$

$$[\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}]^{T} \cdot \mathbf{R}^{\langle i \rangle} = \alpha \cdot [\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}]^{T} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle},$$

$$\alpha_{i} = \frac{[\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}]^{T} \cdot \mathbf{R}^{\langle i \rangle}}{[\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}]^{T} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}}.$$
(26)

- El coeficiente α se modifica en cada iteración $\langle i \rangle$, es decir, tenemos un α_i para cada iteración.
- Para que el Método de los Residuos Mínimos converja, la matriz A debe ser definida positiva.
- Esto asegura obtener un mínimo.

Método de los Residuos Mínimos

El método completo es el siguiente:

$$\mathbf{R}^{(0)} = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{(0)},$$

$$\alpha_{i} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{A}^{T} \cdot \mathbf{R}^{\langle i \rangle}}{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{A}^{T} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}},$$

$$\mathbf{x}^{\langle i+1 \rangle} = \mathbf{x}^{\langle i \rangle} + \alpha_{i} \cdot \mathbf{R}^{\langle i \rangle},$$

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{R}^{\langle i \rangle} - \alpha_{i} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}$$
(27)

- La convergencia, aún cuando la matriz sea s.d.p., es lenta.
- Analicemos un nuevo método.

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

- Un método más eficiente es el conocido como Método del Descenso Más Rápido o del Descenso Más Empinado.
- Para obtenerlo, tomemos la siguiente función:

$$F(\mathbf{x}) = \frac{1}{2} \cdot \mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{x} - \mathbf{x}^T \cdot \mathbf{B} + C.$$
 (28)

- Esta función de conoce como *forma cuadrática*, equivalente a un función cuadrática en una dimensión.
- Podemos calcular su mínimo si hacemos:

$$\frac{\mathrm{d} F(\mathbf{x})}{\mathrm{d} \mathbf{x}} = \frac{1}{2} \cdot \mathbf{A}^T \cdot \mathbf{x} + \frac{1}{2} \cdot \mathbf{A} \cdot \mathbf{x} - \mathbf{B} = 0$$
 (29)

 Para este método es necesario que la matriz A sea simétrica, además de definida positiva.

Método del Descenso Más Rápido

Con esta condición nos queda:

$$\frac{\mathrm{d}F(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} - \mathbf{B} = 0, \tag{30}$$

que resulta ser nuestro Sistema de Ecuaciones Lineales escrito de otra forma.

Pero la ecuación (30) también representa otra cosa:

$$\frac{\mathrm{d}F(\mathbf{x})}{\mathrm{d}\mathbf{x}} = F'(\mathbf{x}) = \operatorname{grad}F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial F(\mathbf{x})}{\partial x_n} \end{bmatrix}.$$
 (31)

Podemos escribir lo siguiente:

$$-F'(\mathbf{x}) = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}. \tag{32}$$

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

Finalmente, también tenemos que:

$$-F'(\mathbf{x}^{\langle i \rangle}) = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle i \rangle} = \mathbf{R}^{\langle i \rangle}. \tag{33}$$

• Este nuevo método también parte de:

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \alpha \cdot \mathbf{R}^{(i)}. \tag{20}$$

- Nuevamente, buscaremos que $\mathbf{R}^{(\mathbf{i}+\mathbf{1})}$ sea el menor posible, el mínimo.
- Entonces:

$$\frac{\mathrm{d}F(\mathbf{x}^{\langle i+1\rangle})}{\mathrm{d}\alpha} = F'(\mathbf{x}^{\langle i+1\rangle})^T \frac{\mathrm{d}\mathbf{x}^{\langle i+1\rangle}}{\mathrm{d}\alpha} = F'(\mathbf{x}^{\langle i+1\rangle})^T \cdot \mathbf{R}^{\langle i\rangle} = -\mathbf{R}^{\langle i+1\rangle} \cdot \mathbf{R}^{\langle i\rangle} = 0.$$
(34)

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

• Si reemplazamos $\mathbf{R}^{\langle i+1 \rangle}$ por $\mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle i+1 \rangle}$ en (34),nos queda:

$$\left[\mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{(i+1)}\right]^T \cdot \mathbf{R}^{(i)} = 0. \tag{35}$$

Pero por (20) tenemos:

$$\left[\mathbf{B} - \mathbf{A} \cdot (\mathbf{x}^{(i)} + \alpha \cdot \mathbf{R}^{(i)})\right]^T \cdot \mathbf{R}^{(i)} = 0.$$
(36)

que podemos escribir así:

$$(\mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle})^T \cdot \mathbf{R}^{\langle i \rangle} = \mathbf{R}^{\langle i \rangle} \cdot \mathbf{R}^{\langle i \rangle} - \alpha \cdot (\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle})^T \cdot \mathbf{R}^{\langle i \rangle} = 0.$$
 (37)

• Si despejamos α , nos queda:

$$\alpha_{i} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle i \rangle}}{(\mathbf{A} \cdot \mathbf{R}^{\langle i \rangle})^{T} \cdot \mathbf{R}^{\langle i \rangle}} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle i \rangle}}{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}}.$$
 (38)

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

• El nuevo método completo es:

$$\mathbf{R}^{\langle 0 \rangle} = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle 0 \rangle},$$

$$\alpha_{i} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle i \rangle}}{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}},$$

$$\mathbf{x}^{\langle i+1 \rangle} = \mathbf{x}^{\langle i \rangle} + \alpha_{i} \cdot \mathbf{R}^{\langle i \rangle},$$

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{R}^{\langle i \rangle} - \alpha_{i} \cdot \mathbf{A} \cdot \mathbf{R}^{\langle i \rangle}$$
(39)

• Este método converge algo más rápido que el *Método de los Residuos Mínimos* pero sigue siendo relativamente lento.

Método del Descenso Más Rápido

- Veamos una muestra mediante representaciones gráficas.
- Primero representemos una forma cuadrática para un $\mathbf{x} = (x_1, x_2)$.

Figura: Forma cuadrática.

Método del Descenso Más Rápido

• En un punto determinado, podemos obtener el gradiente y su plano tangente.

Figura: Forma cuadrática y plano tangente en un punto.

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

• Para acercarnos al mínimo de F(x), podemos elegir cualquier dirección contenida en el plano tangente.

Figura: Forma cuadrática y plano tangente en un punto (2).

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

• Con varias iteraciones, obtenemos lo siguiente:

Figura: Método del DescensoMás Rápido.

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

• En el punto mínimo el plano tangente debe ser horizontal:

Figura: Método del Descenso Más Rápido. Mínimo y plano tangente.

Método del Descenso Más Rápido

- El método solamente determina las direcciones de aproximación considerando que estén contenidas en los planos tangentes (gradientes).
- Tengamos en cuenta que $\mathbf{x}^{\langle i \rangle}$ y $\mathbf{R}^{\langle i \rangle}$ son vectores.
- Al hacer

$$\mathbf{x}^{\langle i+1\rangle} = \mathbf{x}^{\langle i\rangle} + \alpha_i \cdot \mathbf{R}^{\langle i\rangle},$$

estamos sumando vectores.

- La lentitud se debe a que el método repite las direcciones en el proceso iterativo, es decir, usa varias veces algunas direcciones de aproximación.
- Debemos buscar una forma de no repetir direcciones.

Método Iterativos No Estacionarios

Método del Descenso Más Rápido

- Primera idea: optimizar los gradientes obtenidos en las sucesivas aproximaciones y no repetir direcciones.
- Segunda idea: buscar direcciones ortogonales y evitar repeticiones.
- Problema: buscar direcciones ortogonales limitaría la aplicación de dicho método.

Figura: Direcciones ortogonales.

Método de los Gradientes Conjugados

- Pronodremos un nuevo método denominado Método de los Gradiente Conjugados.
- Vamos a definir una nueva aproximación:

$$\mathbf{x}^{\langle i+1\rangle} = \mathbf{x}^{\langle i\rangle} + \alpha_i \cdot \mathbf{d}^{\langle i\rangle} \tag{40}$$

ullet En vez de que los vectores $\mathbf{d}^{\langle i
angle}$ sean ortogonales, es decir, que

$$\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle} = 0, \tag{41}$$

propondremos lo siguiente:

$$\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle} = 0, \tag{42}$$

• Esta condición se denomina direcciones conjugadas.

Método de los Gradientes Conjugados

• Con la misma expresión usada para el *Método del Descenso Más Rápido* pero con la dirección $\mathbf{d}^{(i)}$, tenemos:

$$F'(\mathbf{x}^{\langle i+1 \rangle})^T \cdot \mathbf{d}^{\langle i \rangle} = -\mathbf{R}^{\langle i+1 \rangle} \cdot \mathbf{d}^{\langle i \rangle} = [\mathbf{B} - \mathbf{A} \cdot (\mathbf{x}^{\langle i \rangle} + \alpha \cdot \mathbf{d}^{\langle i \rangle})]^T \cdot \mathbf{d}^{\langle i \rangle} = 0$$
(43)

Al desarrollar nos queda:

$$(\mathbf{R}^{\langle i \rangle} - \alpha \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle})^T \cdot \mathbf{d}^{\langle i \rangle} = \mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle} - \alpha \cdot (\mathbf{A} \cdot \mathbf{d}^{\langle i \rangle})^T \cdot \mathbf{d}^{\langle i \rangle} = 0$$
(44)

• Al despejar α obtenemos:

$$\alpha_{i} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{d}^{\langle i \rangle}}{(\mathbf{A} \cdot \mathbf{d}^{\langle i \rangle})^{T} \cdot \mathbf{d}^{\langle i \rangle}} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{d}^{\langle i \rangle}}{\mathbf{d}^{\langle i \rangle^{T}} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}.$$
 (45)

Método de los Gradientes Conjugados

- Todavía nos falta encontrar las direcciones $\mathbf{d}^{\langle i \rangle}$.
- Debemos obtener un conjunto de direcciones $\mathbf{d}^{\langle 0 \rangle}$, $\mathbf{d}^{\langle 1 \rangle}$, ..., $\mathbf{d}^{\langle n \rangle}$, que sean conjugadas y obtenidas a partir de los $\mathbf{R}^{\langle i \rangle}$.
- A tener en cuenta: proceso de *Gram-Schmidt* para obtener una base ortogonal con los vectores $\mathbf{d}^{\langle i \rangle}$:

$$\mathbf{d}^{\langle i \rangle} = \mathbf{u}^{\langle i \rangle} + \sum_{j=0}^{i-1} \beta_{ij} \cdot \mathbf{d}^{\langle j \rangle}.$$

• El planteo es mediante direcciones conjugadas:

$$\mathbf{d}^{\langle i+1\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle} = \mathbf{u}^{\langle i+1\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle} + \sum_{i=0}^{i} \beta_{i+1,j} \cdot \mathbf{d}^{\langle i\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle} = 0$$
 (46)

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

• Para obtener el coeficiente $\beta_{i+1,j}$ planteamos:

$$\mathbf{d}^{(i+1)^T} \cdot \mathbf{A} \cdot \mathbf{d}^{(i)} = \mathbf{u}^{(i+1)^T} \cdot \mathbf{A} \cdot \mathbf{d}^{(i)} + \sum_{j=0}^{i} \beta_{i+1,j} \cdot \mathbf{d}^{(i)^T} \cdot \mathbf{A} \cdot \mathbf{d}^{(j)} = 0$$
 (47)

de la que obtenemos:

$$\mathbf{u}^{\langle i+1\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle} + \beta_{i+1} \cdot \mathbf{d}^{\langle i\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle} = 0.$$
 (48)

• Si despejamos β_{i+1} :

$$\beta_{i+1\,i} = -\frac{\mathbf{u}^{\langle i+1\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle}}{\mathbf{d}^{\langle i\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle}} = -\frac{\mathbf{R}^{\langle i+1\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle}}{\mathbf{d}^{\langle i\rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i\rangle}}.$$
 (49)

Método de los Gradientes Conjugados

Vimos previamente que

$$\mathbf{R}^{\langle i+1\rangle^T} \cdot \mathbf{d}^{\langle i\rangle} = 0,$$

que podemos escribir en forma genérica como

$$\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} = 0,$$

Entonces podemos proponer los siguiente:

$$\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} = \mathbf{u}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} + \sum_{k=0}^{i} \beta_{ik} \cdot \mathbf{d}^{\langle k \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} = 0.$$
 (50)

• Como $\mathbf{d}^{\langle k \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} = 0$, nos queda:

$$\mathbf{u}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle j \rangle} = 0 \quad \text{para todo } i < j \tag{51}$$

Método de los Gradientes Conjugados

• En función de lo anterior, se cumple:

$$\mathbf{d}^{(i)}^{T} \cdot \mathbf{R}^{(i)} = \mathbf{u}^{(i)}^{T} \cdot \mathbf{R}^{(i)}. \tag{52}$$

- Podemos tomar $\mathbf{u}^{\langle j \rangle} = \mathbf{R}^{\langle j \rangle}$.
- Con esto, para un $\mathbf{R}^{\langle j+1 \rangle}$ tenemos:

$$\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j+1 \rangle} = \mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j \rangle} - \alpha_{j} \cdot \mathbf{R}^{\langle i \rangle^{T}} \cdot A \cdot \mathbf{d}^{\langle j \rangle},$$

$$\alpha_{j} \cdot \mathbf{R}^{\langle i \rangle^{T}} \cdot A \cdot \mathbf{d}^{\langle j \rangle} = \mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j \rangle} - \mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j+1 \rangle},$$

$$\mathbf{R}^{\langle i \rangle^{T}} \cdot A \cdot \mathbf{d}^{\langle j \rangle} = \frac{1}{\alpha_{i}} \cdot (\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j \rangle} - \mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle j+1 \rangle}).$$
(53)

Método de los Gradientes Conjugados

De la expresión anterior podemos establecer que:

$$\mathbf{R}^{\langle i \rangle^{T}} \cdot A \cdot \mathbf{d}^{\langle j \rangle} = \begin{cases} \frac{1}{\alpha_{j}} \cdot \mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle i \rangle} & \text{para } i = j \\ -\frac{1}{\alpha_{j}} \cdot \mathbf{R}^{\langle j+1 \rangle^{T}} \cdot \mathbf{R}^{\langle j+1 \rangle} & \text{para } i = j+1 \ (\leftarrow) \\ 0 & \text{para el resto de los casos.} \end{cases}$$
(54)

• Si el caso $\langle j+1 \rangle$ lo convertimos en $\langle i+1 \rangle$, nos queda:

$$\mathbf{R}^{(i+1)^{T}} \cdot A \cdot \mathbf{d}^{(i)} = -\frac{1}{\alpha_{i}} \cdot \mathbf{R}^{(i+1)^{T}} \cdot \mathbf{R}^{(i+1)}$$
(55)

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

• De lo desarrollado anteriormente, tenemos:

$$\alpha_i = \frac{\mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle}}{\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}.$$
 (45)

$$\beta_{i+1 i} = -\frac{\mathbf{R}^{\langle i+1 \rangle}^T \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}{\mathbf{d}^{\langle i \rangle}^T \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}.$$
 (49)

• Si reemplazamos (55) en (49) nos queda:

$$\beta_{i+1\,i} = \frac{1}{\alpha_i} \frac{\mathbf{R}^{(i+1)^T} \cdot \mathbf{R}^{(i+1)}}{\mathbf{d}^{(i)}^T \cdot \mathbf{A} \cdot \mathbf{d}^{(i)}}.$$
 (56)

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

• Y si reemplazamos (45) en (56) queda:

$$\beta_{i+1\,i} = \frac{\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}{\mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle}} \frac{\mathbf{R}^{\langle i+1 \rangle^T} \cdot \mathbf{R}^{\langle i+1 \rangle}}{\mathbf{d}^{\langle i \rangle^T} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}}.$$
 (57)

• Al simplificar considerar que en realidad solo necesitamos el caso β_{i+1} , nos queda:

$$\beta_{i+1} = \frac{\mathbf{R}^{\langle i+1 \rangle^T} \cdot \mathbf{R}^{\langle i+1 \rangle}}{\mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle}} = \frac{\mathbf{R}^{\langle i+1 \rangle^T} \cdot \mathbf{R}^{\langle i+1 \rangle}}{\mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle i \rangle}}$$
(58)

pues

$$\mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{d}^{\langle i \rangle} = \mathbf{R}^{\langle i \rangle^T} \cdot \mathbf{R}^{\langle i \rangle}.$$

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

El Método de los Gradientes Conjugados queda así:

$$\mathbf{d}^{\langle 0 \rangle} = \mathbf{R}^{\langle 0 \rangle} = \mathbf{B} - \mathbf{A} \cdot \mathbf{x}^{\langle 0 \rangle},$$

$$\alpha_{i} = \frac{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{d}^{\langle i \rangle}}{\mathbf{d}^{\langle i \rangle^{T}} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle}},$$

$$\mathbf{x}^{\langle i+1 \rangle} = \mathbf{x}^{\langle i \rangle} + \alpha_{i} \cdot \mathbf{d}^{\langle i \rangle},$$

$$\mathbf{R}^{\langle i+1 \rangle} = \mathbf{R}^{\langle i \rangle} - \alpha_{i} \cdot \mathbf{A} \cdot \mathbf{d}^{\langle i \rangle},$$

$$\beta_{i+1} = \frac{\mathbf{R}^{\langle i+1 \rangle^{T}} \cdot \mathbf{R}^{\langle i+1 \rangle}}{\mathbf{R}^{\langle i \rangle^{T}} \cdot \mathbf{R}^{\langle i \rangle}},$$

$$\mathbf{d}^{\langle i+1 \rangle} = \mathbf{R}^{\langle i+1 \rangle} + \beta_{i+1} \cdot \mathbf{d}^{\langle i \rangle}.$$
(59)

• Es un poderoso método para resolver sistemas de ecuaciones lineales con matrices ralas simétricas definidas positivas.

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

 Si partimos del mismo punto que usamos con el Método del Descenso Más Rápido, obtenemos nuestro resultados en dos iteraciones:

Figura: Método de los Gradientes Conjugados.

Método Iterativos No Estacionarios

Método de los Gradientes Conjugados

- Vemos que la convergencia fue casi «instantánea».
- Se demuestra que si no hubieran errores de redondeo, la convergencia se da en «n» iteraciones, siendo «n» el rango de la matriz.
- Más aún, la velocidad de convergencia depende casi exclusivamente de la cantidad de autovalores distintos que tenga la matriz A.
- Si la matriz tiene, por ejemplo, «k» autovalores repetidos, entonces la convergencia será en «n-k» iteraciones.
- En las últimas décadas, se han desarrollado numerosos métodos a partir del Método de los Gradientes Conjugados para resolver Sistemas de Ecuaciones Lineales Ralos de cualquier tipo.

Resumen

- Método de Jacobi: converge cuando la matriz es estrictamente diagonal dominante.
- **Método de Gauss-Seidel**: similar al *Método de Jacobi*. Además converge cuando la matriz **A** es simétrica definida positiva (SPD).
- Método de las Sobrerrelajaciones Sucesivas: converge cuando la matriz $\bf A$ es SPD pero no es fácil obtener el ω que optimiza la convergencia.
- Método de los Residuos Mínimos: converge cuando la matriz A es definida positiva. Rapidez similar a Jacobi.
- Método del Descenso Más Rápido: sólo para sistemas s.p.d. Suele ser equivalente en rapidez a Gauss-Seidel.
- Método de los Gradientes Conjugados: solo para sistemas s.d.p.; gran rapidez de convergencia; si la matriz ${\bf A}$ tiene «k» autovalores repetidos, converge en «n-k» iteraciones. Muy usado para resolver grandes sistemas de ecuaciones lineales.

Bibliografía

Burden, R. L., Faires, J. D. & Burden, A. M. Análisis Numérico.
Décima Edición. CENGAGE Learning, 2016.

Samarski, A. A.
Introducción a los métodos numéricos.
Editorial Mir. 1986.

Saad, Y.

Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics. Second Edition, 2003.

Schwarz, R.

Resumen de clases.