

Machine Learning

Logistic Regression

Classification

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0, 1\}$ 0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

1.逻辑回归是监督学习算法吗?

A. 是 B.不是

2. 逻辑回归主要用来做回归吗?

A. 是 B.不是

Machine Learning

Logistic Regression

Hypothesis Representation

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^T x)$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by
$$\theta$$
"
$$P(y=0|x;\theta)+P(y=1|x;\theta)=1$$

$$P(y=0|x;\theta)=1-P(y=1|x;\theta)$$

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

$$z \ge 0$$
, $g(z) \ge 0.5$

$$h_{\theta}(x) = g(\theta^{T}x) \ge 0.5$$
 $\theta^{T}x \ge 0$ predict " $y = 0$ " if $h_{\theta}(x) < 0.5$ $z < 0$, $g(z) < 0.5$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}}x) < 0.5 \qquad \theta^{\mathrm{T}}x < 0$$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = -6$, $\theta_1 = 1$, $\theta_2 = 0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

Machine Learning

Logistic Regression

Cost function

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Consider minimizing a cost function $J(\theta)$, Which one of these functions is convex?

В

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$Cost(h_{\theta}(x), y) = -y \times log(h_{\theta}(x)) - (1 - y) \times log(1 - h_{\theta}(x))$$

$$If y = 1: Cost(h_{\theta}(x), y) = -log(h_{\theta}(x))$$

$$If y = 0: Cost(h_{\theta}(x), y) = -log(1 - h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 $P(y = 1 | x; \theta)$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

 $\{ \}$ (simultaneously update all $heta_j$)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

```
Repeat \{ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \{ (simultaneously update all \theta_j)
```

Algorithm looks identical to linear regression!

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

- A. Our estimate for $P(y=1|x;\theta)$ is 0.8.
- B. Our estimate for $P(y=0|x;\theta)$ is 0.2.
- C. Our estimate for $P(y=0|x;\theta)$ is 0.8.
- **D.** Our estimate for $P(y=1|x;\theta)$ is 0.2.

Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$