Fourier Analysis from the context of the course MTH 496: Capstone in Fourier Analysis

Kaedon Cleland-Host

January 12, 2023

Contents

Chapter 1

Introduction

1.1 Complex Numbers

Definition 1.1.1. The set of **complex numbers** \mathbb{C} is defined where $i^2 = -1$ by

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Definition 1.1.2. The **complex conjugate** of a complex number $a + bi = z \in \mathbb{C}$ denoted \overline{z} is defined as $\overline{z} = a - bi$.

Definition 1.1.3. The **norm** of a complex number $z \in \mathbb{C}$ denoted |z| is defined as $|z| = \sqrt{z\overline{z}}$.

Theorem 1.1.1. Taylor's Theorem states that any C^{∞} continuous function $f: \mathbb{C} \to \mathbb{C}$ can be represented as a Taylor series centered at any point $a \in \mathbb{C}$.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

Theorem 1.1.2. Euler's Formula states that for any real number $\varphi \in \mathbb{R}$,

$$e^{i\phi} = \cos\phi + i\sin\phi$$

Proposition 1.1.1. Any complex number $z \in \mathbb{C}$ can be represented in the form $z = re^{i\phi}$.

Definition 1.1.4. A field R is a set with two laws of composition denoted + and \times that satisfy the following axioms:

- **Identity** \exists elements denoted $0, 1 \in R$ such that $1 \times a = a$ and $0 + a = a, \forall a \in R$.
- Additive Inverse For all $a \in R$, there exists an element $-a \in R$ such that -a + a = 0.
- Multiplicative Inverse For all nonzero $a \in F$, there exists an element $a^{-1} \in R$ such that $a \times a^{-1} = 1$.
- Associativity For all $a, b, c \in R$, $a \times (b \times c) = (a \times b) \times c$ and a + (b + c) = (a + b) + c.
- Commutativity For all $a, b \in R$, $a \times b = b \times a$ and a + b = b + a.
- **Distributivity** For all $a, b, c \in R$, $a \times (b + c) = (a \times b) + (a \times c)$.

Proposition 1.1.2. The complex numbers \mathbb{C} is a field with multiplicative inverses $z^{-1} = \frac{\overline{z}}{|z|^2}$ for any $z \in \mathbb{C}$.

Proposition 1.1.3. \mathbb{R} is a subfield of \mathbb{C} .

1.2 Complex Vectors

Definition 1.2.1. The index set of size $N \in \mathbb{N}$ denoted [N] is the set $[N] = \{0, \dots, N-1\}$.

Definition 1.2.2. the Nth complex vector space is the set \mathbb{C}^N of vectors $\mathbf{v} \in \mathbb{C}^N$ with N complex components $v_i \in \mathbb{C}$.

Definition 1.2.3. The **dot product** or **Hadamard product** of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ denoted $\mathbf{u} \cdot \mathbf{v}$ is defined by

$$(\mathbf{u} \cdot \mathbf{v})_i = u_i \cdot v_i$$

1.3 Discrete Fourier Transform

Definition 1.3.1. The **discrete Fourier transform (DFT)** is a linear transformation $F : \mathbb{C}^n \to \mathbb{C}^n$ defined with the $n \times n$ matrix

$$F_{\omega,j} = \frac{1}{\sqrt{n}} e^{-2\pi i \omega j/n}$$

The DFT of a vector $\mathbf{v} \in \mathbb{C}^n$ is $\hat{\mathbf{v}} = F\mathbf{v} \in \mathbb{C}^n$.

Definition 1.3.2. A linear transformation is unity iff $U^{\dagger}U = I$.

Proposition 1.3.1. The DFT matrix F is unitary.

Definition 1.3.3. The inverse discrete Fourier transform (IDFT) is the inverse $F^{-1} = F^{\dagger}$.

1.4 Convolutions

Definition 1.4.1. The circular convolution of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ denoted $\mathbf{u} * \mathbf{v}$ is defined as

$$(\mathbf{u} * \mathbf{v})_j = \sum_{j=0}^{N-1} u_j v_{(k-j) \mod N}$$

Corollary 1.4.0.1. The circular convolution is commutative.

Definition 1.4.2. A matrix is **circulant** iff all row vectors are composed of the same elements and each row vector is rotated one element to the right relative to the preceding row vector.

Proposition 1.4.1. The circular convolution by a vector $\mathbf{v} \in \mathbb{C}^N$ can be represented as a circulant matrix $\operatorname{circ}(\mathbf{v})_{kj} = v_{(j-k) \mod N}$.

Theorem 1.4.1. Let $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ then $(\widehat{\mathbf{u} * \mathbf{v}})_{\omega} = (F(\mathbf{u} * \mathbf{v}))_{\omega} = \sqrt{N} \widehat{u}_{\omega} \cdot \widehat{v}_{\omega}, \forall \omega \in [N].$

Corollary 1.4.1.1. For any $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$, $\mathbf{u} * \mathbf{v} = \sqrt{N} F^{\dagger}(F \mathbf{u} \cdot F \mathbf{v})$.

Theorem 1.4.2. The eigenvectors of $circ(\mathbf{v})$ for any $\mathbf{v} \in \mathbb{C}^N$ are the columns of F^{\dagger} .

You're apparently majoring in mathematical	atics, and this is the mo	est important topic in mat	thematics, so I win!"