$$(b) | (x,y) = (x+y) | (x+y) | \frac{p_{\xi} = \{(x,y) \in \mathbb{R}^2 \mid x+y > 0\}}{(x,y) = \frac{1}{x^2 - y^2} = \frac{1}{(x+y)(x-y)}}$$

$$\frac{D_{\xi} = \{(x,y) \in \mathbb{R}^2 \mid x \neq \pm y\}}{(x,y) \in \mathbb{R}^2 \mid x \neq \pm y\}}$$

2) La F, G: ACR" -> R" vare lant. i acA. Skal vise at

F. G ex kont i A.

Har at
$$F(x) = (F_1(x), F_2(x), ..., F_m(x))$$
 $G(x) = (G_1(x), G_2(x), ..., G_m(x))$

Da ex

 $(F \cdot G|(x) = (F_1(x)G_1(x), F_2(x)G_2(x), ..., F_m(x)G_m(x))$

Har fra prop. 2.2.4 at Filx) og $G_1(x)$ ex kont. i a.

Da ex $F_1(x)G_1(x)$ kont. i a.

3) Vis at $fi(x_1, x_2, ..., x_n) = Xi$ ex kont. med $\xi - \delta$.

Def: $\forall \xi > 0 = \delta > 0 = \delta$.

If $i(x_0, x_2, ..., x_n) = -f(x_1, x_2, ..., x_n)|| \leq \xi = his$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2, ..., x_n) - (x_1, x_2, ..., x_n)|| \leq \delta$ $||fi(x_0, x_2,$

Sex at $\delta > \| X_{0i} - x_{i} \| < \xi$. La $\delta < \xi$, sa fai in at $\forall \xi > 0$ $\exists \delta > 0$ s.a. (*), sa $f_{i}(x_{i}, y_{2}, ..., x_{n})$ er landinverlige

4)a) Vis at $f(\vec{x}) = ||\vec{x} - a||$ or land, $o \in \mathbb{R}^n$ $\forall \xi > 0 = ||\vec{x} - a||$ or land, $o \in \mathbb{R}^n$ $||\vec{x}_0 - \vec{x}|| < \xi$ $||\vec{x}_0 - \vec{x}|| < \xi$ $||\vec{x}_0 - \vec{x}|| < \xi$ $||\vec{x}_0 - \vec{x}|| < ||\vec{x}_0 - a|| - ||\vec{x} - a||$ $||\vec{x}_0 - \vec{x}|| < ||\vec{x}_0 - a|| - ||\vec{x} - a||$ $||\vec{x}_0 - \vec{x}|| < ||\vec{x}_0 - a||$ $||\vec{x}_0 - \vec{x}|| < ||\vec{x}_0 - a||$ $||\vec{x}_0 - \vec{x}|| < ||\vec{x}_0 - ||\vec{x}||$ Har at $||\vec{x}_0|| - ||\vec{x}|| < ||\vec{x}_0||$ Har at $||\vec{x}_0|| - ||\vec{x}|| < ||\vec{x}_0||$ So is at $||\vec{x}_0|| - ||\vec{x}|| < ||\vec{x}_0||$

b) Vis at $g(\vec{x}) = |\vec{x}-\vec{a}||$ es kont. Vet fra (a) at $f(\vec{x}) = |\vec{x}-\vec{a}||$ es kont. Siden $g(\vec{x}) = f(\vec{x})$ og f es kontinuelig, må g vere kontinuelig, når $f(x) \neq 0$.

Vis at $F(x,y,z) = (x^2z + y, x^2\sin(xyz), x^3)$ or kont. Vet at f(x,y,z) = x, f(x,y,z) = y og f(xy,z) = zer kontinuerlige. Da vet i fra prop 2.2.2 at $F_1 = x^2z + y$ og $F_3 = x^3$ er kont. i R^3 Ved. prop 2.2.3 og 2.7.2 sæ i at $F_2 = x^2\sin(xyz)$ er kont. i R^3 .

Dermed gir prop. 2.2.4 oss at Fi, Fz, Fz lant

=) F(x, y, z) lantingerlig i 1123

7)
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

a) $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

b) $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,y) \neq (0,y) \neq (0,y) \end{cases}$

c) Siden $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,y) \neq (0,y) \neq (0,y) \end{cases}$

c) Siden $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,y) \neq (0,y) \neq (0,y) \end{cases}$

c) Siden $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq (0,y) \neq (0,y) \neq (0,y) \end{cases}$

8) Lo
$$f(x,y,z) = x^2+y^2+z^2-1$$

filke kontinuerlig der fikke & definert, dus. när
 $x^2+y^2+z^2-1=0$
færikke kont. i planet gitt ved $x^2+y^2+z^2-1=0$