Data Processing Applications in the LHCb Online

- Numerics
- Overview over current situation
 - Basic building block
 - Configurations
- Possible other configurations

Markus Frank PH/LBC

Data Processing Apps > 80.000 Instances

LHCb Online Upgrade Workshop 18th-20th June 2018 / CERN Markus Frank CERN/PH-LBC

Software Architecture Based on Reuse

- Few basic building blocks
- Consequently combine them to functional units
 - Define node configurations
- Standard dataflow framework
 - Processes are specialized by combining components at run-time
 - FSM handling based on DIM
- Gaudi has its own special envelope
 - With time overheads and complications became too large
 - Regained flexibility and performance

Synchronization: FSM States of All DAQ Tasks

June 18th 2018

LHCb Online Upgrade Workshop 18th-20th June 2018 / CERN Markus Frank CERN/PH-LBC

Data Processing Block

- Producers deposit events in buffer manager
 - Partition ID
 - Event type
 - Trigger mask
- Consumers receive events by
 - Partition ID
 - Event type
 - Trigger mask (OR accepted) and VETO mask
 - May queue different requests simultaneously
- 3 Consumer classes
 - BM_ALL: Request to receive all events according to request definition.
 - BM_ONE: Out of a group of consumers with identical request definition one event is received by exactly one consumer.
 - BM_NOTALL: Request to receive some of the events according to request definition and buffer occupancy.

Data Transfer Block

- Reversed data processing block
- Sender tasks accesses events from buffer manager on the source node
 - Consumer process
 - Send data to target process
 - Example: Data Sender on HLT farm node
- Receiver task reads data sent and declares data to buffer manager on the target node
 - Producer process
 - Example: Receiving process on the Storage System

See poster presentation No. 138: "Data Stream handling in the LHCb experiment"

HLT Worker Node Architecture

The Process Architecture: Storage

The Process Architecture: Monitoring and Reconstruction

- Storage
 - Fork stream to relay
- Relay box
 - Distribute stream to workers

Event Buffer

Event Buffer

Storage

System

Relay box

Synchronization: Current Implementation

- Currently an "envelope implementation" is used
 - All Gaudi calls are intrusively wrapped in a FSM driven object

Future

- Multi-threaded Gaudi: One instance per physical slot
- Envelope won't be. Replacement not (yet) defined
 Some thoughts were going on
- Future of forking is also not very clear
 - Offliners do not like it
 - All depends on process startup time

Gaudi Architecture: Object Diagram

Gaudi Architecture: Object Diagram

Possible alternative configurations

- In-process vs. out-of-process
- Buffer manager is abstract: buffer + input + output

Possible alternative configurations

- Shared memory MBM vs. Unix sockets vs Fifos...
- But: Should modify Moore the least possible
 - Avoid interference

Conclusions

- Need to define "working points"
 - Process architecture
 - I/O mechanism with Moore(s)
 - Data exchange format=> Direct influence on number of memcpy
 - Special cases: TAE (?), ...

Discussion

