• npn Ratioed CM:

- $\triangleright Q_1$ - Q_2 matched pair
- $ightharpoonup Neglecting all I_B$, $I_{E1} = I_{C1}$ = I_{REF} , and $I_{E2} = I_{C2} = I_0$
- $I_{REF} = (V_{CC} 2V_{BE})/(R + R_1)$
- \succ KVL around Q_1 - Q_2 BE loop:

$$V_{BE1} + I_{REF}R_1 = V_{BE2} + I_0R_2$$

$$\Rightarrow I_0 = (I_{REF}R_1 + \Delta V_{BE})/R_2$$

$$\Delta V_{BE} = V_{BE1} - V_{BE2}$$

$$= V_T ln(I_{REF}/I_0)$$

> Note the ln dependence:

- For $I_{REF}/I_0 = 2$, $\Delta V_{BE} = 18 \text{ mV}$
- $For I_{REF}/I_0 = 10, \Delta V_{RE} = 60 \text{ mV}$
- $\Rightarrow \Delta V_{BE}$ can be neglected if $I_{REF}R_1 > 10\Delta V_{BE}$
- $\Rightarrow I_0 = (R_1/R_2)I_{REF}$ (Ratioed Mirror)
- Thus, by tinkering R_1 and R_2 , any ratio between I_0 and I_{REF} can be obtained
 - Tremendous advantage
 - * Widely used
- **By inspection:**

$$V_{0,min} = V_{CE2}(SS) + I_0R_2 = 0.2 + I_0R_2$$

\succ Calculation of R_0 :

- Golden Rule can't be used since emitter of Q_2 is not grounded (R_2 present there)
- Needs analysis
 - ⇒ Leads to a module that is frequently encountered
- Base of Q_1 - Q_2 at a fixed DC potential \Rightarrow ac ground

$$\begin{split} i_t &= g_{m2} v_2 + (v_t + v_2) / r_{02} \\ &= v_t / r_{02} + (g_{m2} + 1 / r_{02}) v_2 \simeq v_t / r_{02} + g_{m2} v_2 \\ v_2 &= -i_t R_{eff} \\ \Rightarrow i_t &= v_t / r_{02} - g_{m2} R_{eff} i_t \\ \Rightarrow R_0 &= v_t / i_t = r_{02} (1 + g_{m2} R_{eff}) \end{split}$$

- This is a *Golden Equation*, which would be used frequently
 - Carefully note the topology that produces this result
- \succ Exercise: Reverse v_2 and show that the expression for R_0 remains invariant