

Computing the Intersection of a Line and a Cone

Ching-Kuang Shene

Northern Michigan University shene@nmu.edu

♦ Introduction ♦

Computing the intersection of a line and an object is a common operation in computer graphics, for example, when ray tracing. Computation of the intersection of a line and a cylinder has been treated in previous gems (Cychosz and Waggenspack 1994, Shene 1994). This gem extends the latter work by computing the intersection of a line and a cone through geometric means.

♦ Definitions ♦

The notation and defining formulas are presented for three geometric objects:

- $\ell(\mathbf{B}, \mathbf{d})$: the line defined by base point **B** and direction vector¹ **d**.
- $\mathcal{P}(\mathbf{B}, \mathbf{n})$: the plane defined by base point **B** and normal vector **n**.
- $C(\mathbf{V}, \mathbf{v}, \alpha)$: the cone defined by vertex \mathbf{V} , axis direction \mathbf{v} , and cone angle α .

In these definitions, bold-face roman type indicates a vector quantity. Moreover, upper (lower)-case vectors are position (direction) vectors. Position vectors are sometimes referred to as points. Therefore, \mathbf{P} and P are equivalent. The normalized cross product $\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \times \mathbf{v}/||\mathbf{u} \times \mathbf{v}||$ is also employed.

♦ Problem Statement ♦

Given a test line $\ell(\mathbf{D}, \mathbf{d})$ and cone $\mathcal{C}(\mathbf{V}, \mathbf{v}, \alpha)$, determine the point of intersection by computing a t such that point $\mathbf{D} + t\mathbf{d}$ lies on $\mathcal{C}(\mathbf{V}, \mathbf{v}, \alpha)$ or show that no intersection exists.

¹In this exposition, $||\mathbf{d}|| = 1$ holds for any direction vector \mathbf{d} .

Figure 1. The normal vector \mathbf{n} of plane \mathcal{P} .

♦ The Algorithm ♦

If $V \in \ell$, the intersection point is V. Therefore, in what follows, $V \notin \ell$ holds.

Consider the plane \mathcal{P} determined by \mathbf{V} and ℓ . Its normal vector is $\mathbf{n} = \mathbf{d} \otimes \overrightarrow{DV}$. However, if $\mathbf{v} \cdot \mathbf{n} > 0$, \mathbf{n} is reversed. This ensures that \mathcal{P} lies "between" \mathbf{n} and \mathbf{v} (Figure 1). Therefore, the desired plane is $\mathcal{P}(\mathbf{V}, \mathbf{n})$. Since \mathcal{P} contains $\mathbf{V}, \mathcal{P} \cap \mathcal{C}$ is either a point (i.e., \mathbf{V}), or consists of one or two lines. In the following, the computation of $\ell \cap \mathcal{C}$ will be reduced to the computation of $\ell \cap (\mathcal{P} \cap \mathcal{C})$. In other words, the intersection lines of $\mathcal{P} \cap \mathcal{C}$ will be computed and intersected with ℓ . However, prior to the intersection computation, a disjoint test is needed.

Checking for Intersection

Let θ be the angle between \mathbf{v} and \mathcal{P} [Figure 1(a)]. By trichotomy exactly one of the following conditions is true:

- $\theta > \alpha$: $\mathcal{P} \cap \mathcal{C}$ is **V**, and $\ell \cap \mathcal{C}$ is empty.
- $\theta = \alpha$: $\mathcal{P} \cap \mathcal{C}$ is the tangent line of \mathcal{P} and \mathcal{C} , and $\ell \cap \mathcal{C}$ consists of at most one point.
- $\theta < \alpha$: $\mathcal{P} \cap \mathcal{C}$ consists of two lines, and $\ell \cap \mathcal{C}$ consists of at most two points.

However, using θ directly is not as efficient as using $\cos \theta$, since the latter can be obtained easily as follows. Let $\phi = \theta + 90^{\circ}$ be the angle between **n** and **v** [Figure 1(b)]. Therefore, $\cos \phi = \mathbf{n} \cdot \mathbf{v}$ and

$$\cos \theta = \cos(\phi - 90^{\circ}) = \sin \phi = (1 - \cos^2 \phi)^{1/2} = (1 - (\mathbf{n} \cdot \mathbf{v})^2)^{1/2}.$$

Since the cosine function is monotonically decreasing between 0° and 90° , $\cos(x) > \cos(y)$ if and only if x < y for $0^{\circ} \le x, y \le 90^{\circ}$. Therefore, with $\cos \alpha$ and $\cos \theta$, tests $\theta > \alpha$, $\theta = \alpha$, and $\theta < \alpha$ can be replaced by $\cos \theta < \cos \alpha$, $\cos \theta = \cos \alpha$, and $\cos \theta > \cos \alpha$, respectively.

Figure 2. The *u-v-w* coordinate system and related information.

Solving for Intersection

Assuming $\cos \theta \geq \cos \alpha$, two steps are required to compute $\ell \cap \mathcal{C}$: (1) computing $\mathcal{P} \cap \mathcal{C}$, and (2) computing $\ell \cap (\mathcal{P} \cap \mathcal{C})$. For the first step, a well-chosen coordinate system is vital. Since **n** and **v** are not parallel, $\mathbf{v} \times \mathbf{n}$ is well defined. Let vectors **u** and **w** be defined as follows:

$$\mathbf{u} = \mathbf{v} \otimes \mathbf{n},$$

 $\mathbf{w} = \mathbf{u} \otimes \mathbf{v} = (\mathbf{v} \otimes \mathbf{n}) \otimes \mathbf{v}.$

Then \mathbf{u} , \mathbf{v} , and \mathbf{w} are perpendicular to each other and form a right-handed u-v-wcoordinate system with origin at V [Figure 2(a)]. Since $\mathbf{n} \perp \mathbf{u}$ and $\mathbf{V} \in \mathcal{P}$, \mathcal{P} contains the u-axis and is perpendicular to the vw-plane.

Using this coordinate system, the direction vectors of $\mathcal{P} \cap \mathcal{C}$ are computed as follows. Consider a plane \mathcal{H} with v=1 in the u-v-w coordinate system. $\mathcal{H} \cap \mathcal{C}$ is a circle C, while $\mathcal{H} \cap \mathcal{P}$ is a line p. Let p and C intersect at A and B. Then the intersection of \mathcal{P} and C consists of two lines, VA and VB. Thus, if their direction vectors, $\delta_1 = \overrightarrow{VA}$ and $\delta_2 = VB$, can be found, $\mathcal{P} \cap \mathcal{C}$ will be determined.

To compute A and B, first note that their w-coordinates are both equal to $\tan \theta$, and that $\frac{1}{2}\overline{AB} = (\tan^2 \alpha - \tan^2 \theta)^{1/2}$, where $\tan \alpha$ is the radius of circle C [Figure 2(b) and (c)]. Since \overrightarrow{AB} is parallel to the *u*-axis, direction vectors $\delta_1 = \overrightarrow{VA}$ and $\delta_2 = \overrightarrow{VB}$ can be computed as follows:

$$\delta_1 = \mathbf{v} + (\tan \theta) \mathbf{w} + (\tan^2 \alpha - \tan^2 \theta)^{1/2} \mathbf{u},$$

$$\delta_2 = \mathbf{v} + (\tan \theta) \mathbf{w} - (\tan^2 \alpha - \tan^2 \theta)^{1/2} \mathbf{u}.$$

 \Diamond

Therefore, the intersection lines of \mathcal{P} and \mathcal{C} are simply $\ell_1(\mathbf{V}, \delta_1)$ and $\ell_2(\mathbf{V}, \delta_2)$. Without loss of generality, assume $||\delta_1|| = ||\delta_2|| = 1$. Note that if \mathcal{P} is tangent to \mathcal{C} , $\alpha = \theta$, and $\ell_1 = \ell_2$.

Finally, computing $\ell_1 \cap \ell$ and $\ell_2 \cap \ell$ yields the desired result. Determining the intersection point of two coplanar lines is not difficult. If δ_1 and \mathbf{d} have the same or opposite direction (i.e., $\mathbf{d} \times \delta_1 = \mathbf{0}$, or equivalently $||\mathbf{d} \cdot \delta_1|| = 1$), ℓ_1 and ℓ are parallel to each other and there is no intersection point. Otherwise, there exist r and s such that $\mathbf{D} + r\mathbf{d} = \mathbf{V} + s\delta_1$. Since $\mathbf{g} \times \mathbf{g} = \mathbf{0}$ holds for any nonzero vector \mathbf{g} , computing the cross product with δ_1 , the preceding formula gives

$$r\mathbf{d} \times \delta_1 = (\mathbf{V} - \mathbf{D}) \times \delta_1.$$

Computing the inner product with $\mathbf{d} \times \delta_1$ yields

$$r = \frac{[(\mathbf{V} - \mathbf{D}) \times \delta_1] \cdot (\mathbf{d} \times \delta_1)}{||\mathbf{d} \times \delta_1||^2}.$$

Thus, $\ell_1 \cap \ell$ is computed. Replacing δ_1 with δ_2 yields $\ell_2 \cap \ell$.

In practice, the computation for r could be simpler. Let $\pi_i(\mathbf{x})$ be the *i*th component of vector \mathbf{x} . Then

$$r = \frac{\pi_i((\mathbf{V} - \mathbf{D}) \times \delta_1)}{\pi_i(\mathbf{d} \times \delta_1)},$$

where $\pi_i(\mathbf{d} \times \delta_1)$ is a nonzero component of vector $\mathbf{d} \times \delta_1$.

Remark. Since a cylinder is a cone with its vertex at infinity, the algorithm presented here provides another way of computing the intersection of a line and a cylinder. In this case, \mathcal{P} is the plane that is parallel to the cylinder axis and contains the given line, and $\mathcal{P} \cap \mathcal{C}$ degenerates to a pair of parallel lines. Consequently, the computation is reduced to computing the intersection points of this pair of lines with the given one.

♦ Acknowledgment ♦

This work was supported in part by a faculty research grant of Northern Michigan University.

♦ Bibliography ♦

(Cychosz and Waggenspack 1994) J. M. Cychosz and W. N. Waggenspack, Jr. Intersecting a ray with a cylinder. In Paul Heckbert, editor, *Graphics Gems IV*, pages 356–365. AP Professional, Boston, 1994.

V.1 Computing the Intersection of a Line and a Cone

(Shene 1994) Ching-Kuang Shene. Computing the intersection of a line and a cylinder. In Paul Heckbert, editor, Graphics Gems IV, pages 353-355. AP Professional, Boston, 1994.