Suites et séries de fonctions

Exercice 1. Étude de convergence

Soit $\alpha \in \mathbb{R}$ et $f_n(x) = n^{\alpha} x (1-x)^n$ pour $x \in [0,1]$.

- 1) Trouver la limite simple des fonctions f_n .
- 2) Y a-t-il convergence uniforme?

Exercice 2. Étude de convergence

On pose $f_n(x) = x^n(1-x)$ et $g_n(x) = x^n \sin(\pi x)$.

- 1) Montrer que la suite (f_n) converge uniformément vers la fonction nulle sur [0,1].
- 2) En déduire qu'il en est de même pour la suite (g_n) (on utilisera la concavité de sin sur $[0,\pi]$).

Exercice 3. Non interversion limite-intégrale

Soit $f_n(x) = n \cos^n x \sin x$.

- Chercher la limite simple, f, des fonctions f_n.
 Vérifier que ∫_{t=0}^{π/2} f(t) dt ≠ lim_{n→∞} ∫_{t=0}^{π/2} f_n(t) dt.

Exercice 4. Non interversion limite-intégrale

- 1) Déterminer la limite simple des fonctions $f_n: x \mapsto \frac{x^n e^{-x}}{n!}$ sur \mathbb{R}^+ et montrer qu'il y a convergence uniforme (on admettra la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$).
- 2) Calculer $\lim_{n\to\infty} \int_{t=0}^{+\infty} f_n(t) dt$.

Exercice 5. Étude de convergence

Soit
$$f_n: \begin{cases} [0,+\infty[\longrightarrow \mathbb{R} \\ x \leqslant n \longmapsto (1-x/n)^n \\ x > n \longmapsto 0. \end{cases}$$
1) Déterminer la limite simple, f , des fonctions f_n .

- **2)** Montrer que : $\forall x \in \mathbb{R}^+$, $0 \leqslant f_n(x) \leqslant f(x)$.
- 3) Montrer que (f_n) converge uniformément vers f sur tout segment [0,a].
- 4) Démontrer que la convergence est uniforme sur \mathbb{R}^+ .

Exercice 6. Étude de convergence

Étudier la convergence simple, uniforme, de la suite de fonctions : $f_n : x \mapsto (1 + x/n)^{-n}$.

Exercice 7. Étude de convergence Soit $f_n(x) = \frac{nx}{1 + n^2x^2}$. Étudier la convergence simple, puis uniforme des f_n sur \mathbb{R}^+ puis sur $[\alpha, +\infty[$, pour $\alpha > 0$.

Exercice 8. f(nx), f(x/n)

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue, non identiquement nulle, telle que f(0) = 0 et $f(x) \underset{x \to +\infty}{\longrightarrow} 0$.

On pose $f_n(x) = f(nx)$ et $g_n(x) = f(x/n)$.

- 1) Donner un exemple de fonction f.
- 2) Montrer que f_n et g_n convergent simplement vers la fonction nulle, et que la convergence n'est pas
- uniforme sur \mathbb{R}^+ . 3) Si $\int_{t=0}^{+\infty} f(t) dt$ converge, chercher $\lim_{n\to\infty} \int_{t=0}^{+\infty} f_n(t) dt$ et $\lim_{n\to\infty} \int_{t=0}^{+\infty} g_n(t) dt$.

Exercice 9. Équation différentielle dépendant d'un paramètre

Soit y_n la solution de l'équation : $(*_n) \iff (1+\frac{1}{n})y'' - (2+\frac{1}{n})y' + y = 0$ vérifiant les conditions initiales : y(0) = 0, y'(0) = 1.

- 1) Calculer explicitement y_n .
- 2) Déterminer la limite simple, y, des fonctions y_n .
- 3) Vérifier que y est solution de l'équation limite de $(*_n)$ avec les mêmes conditions initiales.

Exercice 10. $f \circ f \circ \ldots \circ f$

Soit $f: [-1,1] \to [-1,1]$ une fonction continue vérifiant : $\forall x \neq 0, |f(x)| < |x|$. On pose $f_0(x) = x$, puis $f_{n+1}(x) = f(f_n(x))$. Étudier la convergence simple des f_n .

Exercice 11. Étude de convergence

On pose $f_0(t) = 0$, $f_{n+1}(t) = \sqrt{t + f_n(t)}$, pour $t \ge 0$.

- 1) Déterminer la limite simple, ℓ , des fonctions f_n .
- 2) Y a-t-il convergence uniforme sur \mathbb{R}^+ ?
- 3) Démontrer que : $\forall t > 0$, $|f_{n+1}(t) \ell(t)| \leq \frac{|f_n(t) \ell(t)|}{2f_{n+1}(t)}$.
- 4) En déduire que la suite (f_n) converge uniformément sur tout intervalle $[a, +\infty[$, avec a > 0 (remarquer que $f_n \ell$ est bornée pour $n \ge 1$).

Exercice 12. Approximation de la racine carrée par la méthode de Newton

On définit une suite de fonctions $f_n: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ par : $f_{n+1}(x) = \frac{1}{2}(f_n(x) + x/f_n(x)), f_0(x) = x$. Étudier la convergence simple, puis uniforme des f_n . On pourra considérer $g_n(x) = \frac{f_n(x) - \sqrt{x}}{f_n(x) + \sqrt{x}}$.

Exercice 13. Approximation polynomiale de la racine carrée

On considère la suite (f_n) de fonctions sur [0,1] définie par les relations : $f_{n+1}(t) = f_n(t) + \frac{1}{2}(t - f_n^2(t))$, $f_0 = 0$. Étudier la convergence simple, uniforme, des fonctions f_n .

Exercice 14. Suite ayant deux limites

Trouver une suite de polynômes (P_n) convergeant simplement (resp. uniformément) vers la fonction nulle sur [0,1] et vers la fonction constante égale à 1 sur [2,3].

Remarque : une telle suite a donc des limites distinctes dans $\mathbb{R}[x]$ pour les normes de la convergence uniforme sur [0,1] et sur [2,3].

Exercice 15. Fonction orthogonale à $\mathbb{R}[X]$

Soit $f:[a,b]\to\mathbb{R}$ continue telle que pour tout entier k on a $\int_{t=a}^b f(t)t^k\,\mathrm{d}t=0$. Que peut-on dire de f?

Exercice 16. Approximation de f et f'

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 .

- 1) Montrer qu'il existe une suite de polynômes (P_n) telle que P_n converge uniformément vers f et P'_n converge uniformément vers f'.
- 2) Si f est \mathcal{C}^{∞} , peut-on trouver une suite de polynômes (P_n) telle que pour tout k la suite $(P_n^{(k)})$ converge uniformément vers $f^{(k)}$?

Exercice 17. Limite de $f_n(x_n)$

Soient $f_n: D \to \mathbb{R}$ des fonctions continues convergeant vers une fonction continue f et (x_n) une suite d'éléments de D convergeant vers $x \in D$.

- 1) Si les fonctions f_n convergent uniformément, montrer que $f_n(x_n) \underset{n \to \infty}{\longrightarrow} f(x)$.
- 2) Donner un contre-exemple lorsqu'il y a seulement convergence simple (avec quand même f_n et f continues).

Exercice 18. Compositon et convergence

Soit f_n convergeant uniformément vers f, et g une fonction uniformément continue. Démontrer que $g \circ f_n \to g \circ f$ uniformément.

Exercice 19. $f_n \circ g_n$

Soit $f_n:[a,b]\to [c,d]$ et $g_n:[c,d]\to\mathbb{R}$ des fonctions continues convergeant uniformément vers les fonctions f et g. Montrer que $g_n\circ f_n$ converge uniformément vers $g\circ f$.

Exercice 20. Limite simple de polynômes de degrés bornés

Soit $p \in \mathbb{N}$ fixé et (P_n) une suite de fonctions polynomiales de degrés inférieurs ou égaux à p convergeant simplement vers f sur un intervalle [a, b].

- 1) Démontrer que f est polynomiale de degré inférieur ou égal à p, et que les coefficients des P_n convergent vers ceux de f.
- 2) Montrer que la convergence est uniforme.

Exercice 21. Polynômes à coefficients entiers, ENS Lyon MP* 2005

On considère $f: x \mapsto 2x(1-x)$ définie sur [0,1].

- 1) Étude de la suite de fonction g_n , avec $g_n = f^n = f \circ ... \circ f$.
- 2) Soit $[a,b] \subset [0,1[$ et h continue sur [a,b]. Montrer que h est limite uniforme sur [a,b] d'une suite de polynômes à coefficients entiers.

Exercice 22. Théorèmes de Dini

Soit (f_n) une suite de fonctions numériques continues sur [a,b], convergeant simplement vers une fonction continue f.

- 1) On suppose que chaque fonction f_n est croissante. Montrer qu'il y a convergence uniforme.
- 2) On suppose qu'à x fixé la suite $(f_n(x))$ est croissante. Montrer qu'il y a convergence uniforme.

Exercice 23. Théorème d'Ascoli

Soit (f_n) une suite de fonctions : $[a,b] \to \mathbb{R}$ convergeant simplement vers f. On suppose que toutes les fonctions f_n sont k-Lipchitizennes avec le même k.

- 1) Soit (a_0, a_1, \ldots, a_N) une subdivision régulière de [a, b]. On note $M_n = \max\{|f_n(a_i) - f(a_i)| \text{ tq } 0 \leq i \leq N\}$. Encadrer $||f_n - f||_{\infty}$ à l'aide de M_n .
- 2) Montrer que f_n converge uniformément vers f.

Exercice 24. Équicontinuité

Soit (f_n) une suite de fonctions continues sur $D \subset \mathbb{R}$ convergeant uniformément vers une fonction f. Montrer que les fonctions f_n sont équi-continues c'est à dire :

$$\forall x \in D, \ \forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tq} \ \forall n \in \mathbb{N}, \ \forall y \in]x - \delta, x + \delta[\cap D, \ |f_n(x) - f_n(y)| < \varepsilon.$$

Exercice 25. Limite simple de fonctions convexes

Soit $f_n:[a,b]\to\mathbb{R}$ des fonctions continues convexes convergeant simplement vers une fonction continue f. Montrer que la convergence est uniforme.

Exercice 26. Fonction définie par une série On pose
$$f(x) = \sum_{n=0}^{\infty} \frac{\arccos(\cos nx)}{n!}$$
.

- 1) Montrer que f est définie sur \mathbb{R} , continue, paire et 2π -périodique.
- 2) Calculer f(0), $f(\pi)$, $f(\frac{\pi}{2})$.

Exercice 27. Fonction définie par une série (Centrale MP 2003)

Soit $f(a) = \sum_{n=0}^{\infty} e^{-a^2 n^2}$ sous réserve de convergence $(a \in \mathbb{R})$.

- 1) Domaine de définition de f?
- **2)** Limite de f(a) quand $a \to +\infty$?
- 3) Limite de a f(a) quand $a \to 0$?

Exercise 28. Fonction
$$\zeta$$
 de Riemann Soit $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$.

- 1) Déterminer le domaine de définition de ζ . Montrer que ζ est de classe \mathcal{C}^{∞} sur ce domaine.
- 2) Prouver que $\zeta(x) \underset{x \to +\infty}{\longrightarrow} 1$ (majorer $\sum_{n=2}^{\infty} \frac{1}{n^x}$ par comparaison à une intégrale).
- 3) Prouver que $\zeta(x) \underset{x \to 1^+}{\longrightarrow} +\infty$.

Exercice 29. Fonction ζ de Riemann et constante d'Euler

Soit
$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$
 et $\gamma = \lim_{n \to \infty} \left(\frac{1}{1} + \ldots + \frac{1}{n} - \ln(n) \right)$.

Montrer que
$$\gamma = 1 + \sum_{n=2}^{\infty} \left(\frac{1}{n} + \ln \left(1 - \frac{1}{n} \right) \right)$$
 puis que $\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta(k) - 1}{k}$.

Exercice 30. Fonction définie par une série

- 1) Étudier la convergence simple, uniforme, de la série de fonctions : $f(x) = \sum_{n=0}^{\infty} ne^{-nx}$.
- 2) Calculer f(x) lorsque la série converge (intégrer terme à terme).

Exercice 31. Fonction définie par une série

- 1) Étudier la convergence de la série $f(x) = \sum_{n=0}^{\infty} \frac{1}{1+x^n}$.
- 2) Montrer que f est de classe \mathcal{C}^1 sur son domaine de définition.
- 3) Tracer la courbe représentative de f sur $]1, +\infty[$.

Exercice 32. Fonction définie par une série Soit
$$g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(x+n)}$$
.

- 1) Déterminer le domaine, D de définition de g et prouver que g est de classe \mathcal{C}^{∞} sur D.
- 2) Montrer que la quantité : xg(x) g(x+1) est constante sur D.
- 3) Tracer la courbe représentative de g sur $]0, +\infty[$.
- 4) Donner un équivalent de g(x) en $+\infty$ et en 0^+ .

Exercice 33. Fonction définie par une série

- 1) Établir la convergence simple sur \mathbb{R} de la série de fonctions : $f(x) = \sum_{n=0}^{\infty} \frac{(\sin x)^2}{\cosh nx}$.
- 2) Montrer que la convergence est uniforme sur toute partie de la forme $\mathbb{R}\setminus[-\alpha,\alpha]$, $\alpha>0$. Que pouvezvous en déduire pour f?

Exercice 34. Fonction définie par une série

Soit
$$u_n(x) = (-1)^n \ln\left(1 + \frac{x}{n(1+x)}\right)$$
 et $f(x) = \sum_{n=1}^{\infty} u_n(x)$.

- 1) Montrer que la série f(x) converge simplement sur \mathbb{R}^+ .
- 2) Majorer convenablement le reste de la série, et montrer qu'il y a convergence uniforme sur \mathbb{R}^+ .
- **3)** Y a-t-il convergence normale?

Exercice 35. Fonction définie par une série Soit
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{x(x+1)\dots(x+n)}$$
.

- 1) Établir l'existence et la continuité de f sur \mathbb{R}^{+*} .
- 2) Calculer f(x+1) en fonction de f(x).
- **3)** Tracer la courbe de f.

Exercice 36. Fonction définie par une série

- 1) Étudier la convergence simple, uniforme, de $f(x) = \sum_{n=0}^{\infty} (\arctan(x+n) \arctan(n))$.
- **2)** Montrer que f est de classe C^1 sur \mathbb{R} .
- 3) Chercher une relation simple entre f(x) et f(x+1).
- **4)** Trouver $\lim_{x\to+\infty} f(x)$.

Exercice 37. Conversion série-intégrale

Montrer, pour
$$x > 0$$
: $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+x} = \int_{t=0}^{1} \frac{t^{x-1}}{t+1} dt$.

Exercise 38. Fonction
$$\Gamma$$

Soit $f_n(x) = \frac{n^x}{(1+x)(1+x/2)\dots(1+x/n)}$.

- 1) Étudier la convergence simple des fonctions f_n .
- 2) On note $f = \lim_{n \to \infty} f_n$. Calculer f(x) en fonction de f(x-1) lorsque ces deux quantités existent.
- 3) Montrer que f est de classe \mathcal{C}^1 sur son domaine de définition (on calculera $f'_n(x)/f_n(x)$).

Exercice 39. Ensi Chimie P' 93

Étudier la convergence de la suite de fonctions définies par : $f_n(x) = \frac{n(n+1)}{x^{n+1}} \int_0^x (x-t)^{n-1} \sin t \, dt$.

Exercice 40. Convergence de $f^{(n)}$

Soit $f \in \mathcal{C}^{\infty}(\mathbb{R})$. On définit la suite $(f_n)_{n \in \mathbb{N}^*}$ par $f_n = f^{(n)}$ (dérivée n-ème). On suppose que $(f_n)_{n \geqslant 1}$ converge uniformément vers φ . Que peut-on dire de φ ?

Exercice 41. Ensi PC 1999
Soit
$$f_n(x) = \frac{(-1)^n \cos^n x}{n+1}$$
.

- 1) Étudier la convergence de $f(x) = \sum_{n=0}^{\infty} f_n(x)$.
- 2) Montrer la convergence de la série de terme général $u_n = \int_{x=0}^{\pi/2} f_n(x) dx$.
- 3) En déduire $\sum_{n=0}^{\infty} u_n$ sous forme d'une intégrale.

Exercice 42. Développement de coth(x)

- 1) Décomposer en éléments simples sur \mathbb{C} la fractions rationnelle : $F_n(X) = \frac{1}{(1+X/n)^n 1}$.
- **2)** En déduire pour $x \in \mathbb{R}^*$: $\coth x = \frac{1}{e^{2x} 1} \frac{1}{e^{-2x} 1} = \frac{1}{x} + \sum_{k=1}^{\infty} \frac{2x}{x^2 + k^2 \pi^2}$.
- 3) En déduire la valeur de $\zeta(2)$

Exercice 43. $\sum \sin(n)/n$

Pour
$$n \in \mathbb{N}^*$$
 et $x \in [-1, 1]$ on pose $u_n(x) = \frac{x^n \sin(nx)}{n}$.

- 1) Montrer que la série $\sum_{n=1}^{\infty} u_n(x)$ converge uniformément sur [-1,1] vers une fonction continue, f.
- 2) Justifier la dérivabilité de f sur]-1,1[et calculer f'(x). En déduire f(x).
- 3) En déduire la valeur de $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.

Exercice 44. Fonctions ζ et η

Pour
$$x > 1$$
 on pose $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ et pour $x > 0$: $\eta(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^x}$.

- 1) Établir pour x > 1: $\eta(x) = (1 2^{1-x})\zeta(x)$. En déduire $\zeta(x) \sim \frac{1}{x-1}$ pour $x \to 1^+$.
- 2) Montrer que $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$. On remarquera que $\frac{1}{x-1} = \int_{t=1}^{+\infty} \frac{\mathrm{d}t}{t^x}$.
- 3) En déduire la valeur de $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$.

Exercice 45. Centrale MP 2000

Pour
$$y \in \mathbb{R}$$
 et $n \in \mathbb{N}^*$, on pose $a_n(y) = \frac{\cos(ny)}{\sqrt{n}}$.

- 1) Déterminer le rayon de convergence de la série entière $\sum a_n(y)x^n$. 2) Soit $D = \{(x,y) \in \mathbb{R}^2, |x| < 1\}$ et $F(x,y) = \sum_{n=1}^{+\infty} a_n(y)x^n$. Montrer que $F, \partial F/\partial x$ et $\partial F/\partial y$ existent en tout point de D.

Exercice 46. Série lacunaire

Soit (p_n) une suite d'entiers naturels, strictement croissante et telle que $p_n/n \underset{n \to \infty}{\longrightarrow} \infty$. On pose pour $x \in]-1,1[: f(x) = \sum_{n=0}^{\infty} x^{p_n}$. Montrer que $(1-x)f(x) \underset{x \to 1^-}{\longrightarrow} 0$.

Exercice 47. Fonctions réciproques (Pugin, MP*-2001)

Soit (f_n) une suite de fonctions $[a,b] \to [c,d]$ continues, bijectives, strictement croissantes, convergeant simplement vers une fonction $f:[a,b] \to [c,d]$ elle aussi continue, bijective strictement croissante.

- 1) Montrer qu'il y a convergence uniforme (2ème thm de Dini, considérer une subdivision de [a, b]).
- 2) Montrer que les fonctions réciproques f_n^{-1} convergent simplement vers une fonction g et que $g = f^{-1}$.
- 3) Montrer que (f_n^{-1}) converge uniformément vers f^{-1} .

Exercice 48. Mines MP 2001

Soit (f_n) une suite de fonctions continues sur le compact K, à valeurs réelles et convergent uniformément sur K vers la fonction f. A-t-on sup $f_n \longrightarrow \sup_{n \to \infty} \sup f$?

Exercice 49. $Mines\ MP\ 2001$

Pour $x \in \mathbb{R}^+$ et $n \in \mathbb{N}$, $n \geqslant 2$ on pose $f_n(x) = \frac{xe^{-nx}}{\ln n}$ et $S(x) = \sum_{n=2}^{\infty} f_n(x)$ sous réserve de convergence.

- 1) Étudier la convergence simple, normale, uniforme de la série $\sum f_n$ sur \mathbb{R}^+ .
- **2)** Montrer que S est de classe C^1 sur \mathbb{R}^{+*} .
- 3) Montrer que S n'est pas dérivable à droite en 0.
- 4) Montrer que $x^k S(x)$ tend vers 0 en $+\infty$ pour tout $k \in \mathbb{N}$.

Exercice 50. Centrale MP 2001

Convergence et limite en 1⁻ de $f(x) = \sum_{n=0}^{\infty} \frac{(1-x)x^n}{1+x^n}$.

Exercice 51. Centrale MP 2001
Soit
$$S(t) = \sum_{n=1}^{\infty} \frac{t^n}{1-t^n}$$
.

- 1) Pour quelles valeurs de t, S est-elle définie? Est-elle continue?
- 2) Montrer qu'au voisinage de 1^ on a $S(t)=-\frac{\ln(1-t)}{1-t}+O\Big(\frac{1}{1-t}\Big)$. On pourra développer $\ln(1-t)$ en série entière.

Exercice 52. Centrale MP 2002

- On pose $\varphi(x)=d(x,\mathbb{Z})=\inf\{|x-n|\ \mathrm{tq}\ n\in\mathbb{Z}\}.$ 1) Montrer que $f:\mathbb{R}\ni x\mapsto \sum_{n=0}^{+\infty}(\frac{3}{4})^n\varphi(4^nx)$ est définie et continue.
- 2) Montrer que φ est lipschitzienne. Que peut-on en déduire pour f?
- 3) Montrer que f n'est dérivable en aucun point.

Exercice 53. ENS Lyon-Cachan MP 2002

Soin $(a_n)_{n\geqslant 1}$ une suite complexe telle que la série $\sum a_n$ converge. On pose : $f(h) = \sum_{n=1}^{\infty} a_n \frac{\sin^2(nh)}{(nh)^2}$ si $h \neq 0$ et $f(0) = \sum_{n=1}^{\infty} a_n$. Étudier le domaine de définition et la continuité de f.

Exercice 54. Centrale MP 2002

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et 2π -périodique. Pour $n \in \mathbb{N}^*$, on pose $F_n(x) = \frac{1}{n} \int_{t=0}^n f(x+t) f(t) dt$.

- 1) Montrer que la suite (F_n) converge vers une fonction F que l'on précisera.
- 2) Nature de la convergence ?
- 3) Prouver $||F||_{\infty} = |F(0)|$.

Exercice 55. Approximation par des fractions rationnelles

Soit $f: \mathbb{R} \to \mathbb{R}$ continue, ayant même limite finie ℓ en $\pm \infty$. Montrer que f est limite uniforme sur \mathbb{R} de fractions rationnelles.

Exercice 56. Fonction définie par une série

On pose pour
$$x \in \mathbb{R}$$
: $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n^2 + x^2}}$

- 1) Déterminer $\lim_{x\to\infty} f(x)$.
- 2) Chercher un équivalent de f(x) en $+\infty$.

Exercice 57. Recherche d'équivalents, Centrale MP 2006

Déterminer un équivalent au voisinage de 0 de $S_1(x) = \sum_{n=1}^{\infty} \frac{1}{\sinh{(nx)}}$ et $S_2(x) = \sum_{n=1}^{\infty} \frac{1}{\sinh^2{(nx)}}$.

- Exercice 58. Étude de $\sum t^{p-1}\sin(px)$ pour $x\in]0,\pi[$, TPE MP 2005 1) Calculer $S_n(t)=\sum_{p=1}^n t^{p-1}\sin(px)$ puis $S(t)=\lim_{n\to\infty}S_n(t)$. 2) Calculer $\int_{t=0}^1 S_n(t)\,\mathrm{d}t$ et $\int_{t=0}^1 S(t)\,\mathrm{d}t$. 3) En déduire que $\sum_{n=1}^\infty \frac{\sin nx}{n}$ converge et donner sa valeur.

Exercice 59. Fraction rationnelle de meilleure approximation (Ens Ulm-Lyon-Cachan MP* 2003)

On note R l'ensemble des fractions rationnelles continues sur [0,1] et pour $m,n\in\mathbb{N}$:

 $R_{m,n} = \{ f \in R \text{ tq } \exists P, Q \in \mathbb{R}[X] \text{ tq } \deg(P) \leqslant m, \deg(Q) \leqslant n \text{ et } f = P/Q \}.$

- 1) R est-il un ev? Si oui en trouver une base. Même question pour $R_{m,n}$.
- 2) Soient m, n fixés. On note $d = \inf\{\|g f\|, f \in R_{m,n}\}$ où g désigne une fonction continue de [0,1]dans \mathbb{R} et $||h|| = \sup\{|h(x)|, x \in [0,1]\}$. Montrer qu'il existe $r_0 \in R_{m,n}$ tel que $||g - r_0|| = d$.

Exercice 60. Dérivation multiple, ULM-Lyon-Cachan MP* 2005

- 1) Soit (f_n) une suite de fonctions de classe \mathcal{C}^1 sur [a,b] telle que (f'_n) converge uniformément vers g et il existe x_1 tel que $(f_n(x_1))$ converge. Montrer que (f_n) converge uniformément sur [a,b] vers f telle que f' = g.
- 2) Soit (f_n) une suite de fonctions de classe \mathcal{C}^p sur [a,b] telle que $(f_n^{(p)})$ converge uniformément vers get il existe x_1, \ldots, x_p distincts tels que $(f_n(x_i))$ converge. Montrer que (f_n) converge uniformément sur [a, b] vers f telle que $f^{(p)} = g$.

Exercice 61. Exponentielle, Polytechnique MP* 2006

Soient
$$A, B \in \mathcal{M}_n(\mathbb{R})$$
. Montrer que : $\exp(A) - \exp(B) = \int_{s=0}^1 \exp(sA)(A-B) \exp((1-s)B) ds$.

Exercice 62. Fonction définie par une série, CCP 2015
Soient
$$n \in \mathbb{N}^*$$
 et $x \in \mathbb{R}$. On pose $f_n(x) = \frac{1}{n^3} \ln(1 + n^2 x^2)$ et $S(x) = \sum_{n=1}^{\infty} f_n(x)$.

- 1) Montrer que S est définie sur \mathbb{R} .
- 2) Montrer que S est de classe C^1 sur \mathbb{R} .
- 3) Montrer que S est deux fois dérivable sur $]0, +\infty[$.

Exercice 63. $f(2x) = 2f(x) - 2f^2(x)$, Centrale 2014

On étudie l'équation fonctionnelle (E): $f(2x) = 2f(x) - 2f^2(x)$.

- 1) Quelles sont les solutions constantes sur \mathbb{R} ?
- **2)** Pour $h: \mathbb{R} \to \mathbb{R}$, on pose f(x) = xh(x). A quelle condition sur h, f est-elle solution de (E)?
- **3)** On definit les fonctions h_n par $h_0(x) = 1$ et $h_{n+1}(x) = h_n(x/2) (x/2)h_n^2(x/2)$. Pour $x, y \in [0, 1]$ on pose $T_x(y) = y - xy^2/2$.
 - a) Montrer que T_x est 1-lipschitzienne sur [0,1] et $T_x([0,1]) \subset [0,1]$.
 - **b)** Montrer que la suite (h_n) converge uniformément sur [0,1].
 - c) Montrer que (E) admet une solution continue non constante sur [0, 1].
 - d) Montrer que (E) admet une solution continue non constante sur \mathbb{R}^+ .

Exercice 64. Noyau de Dirichlet, X 2014

- 1) Calculer $D_n(x) = \sum_{k=1}^n \sin(kx)$ et $\tilde{D}_n(x) = D_n(x) \frac{1}{2}\sin(nx)$, puis montrer que $\tilde{D}_n(x) \ge 0$ pour $x \in [0, \pi].$
- 2) Montrer qu'il existe deux constantes c₁ et c₂ telles que ∀n ≥ 2, c₁ ln(n) ≤ ∫_{x=0}^π Ď_n(x) dx ≤ c₂ ln(n).
 3) Soit (b_n) une suite de réels positifs telle que ∑_{k=1}[∞] b_k converge. Montrer l'équivalence entre :
 (i) g(x) = ∑_{k=1}[∞] b_kD_k(x) est intégrable sur [0, π].
 (ii) ğ(x) = ∑_{k=1}[∞] b_kD̄_k(x) est intégrable sur [0, π].
 (iii) ∑_{k=1}[∞] b_k ln(k) converge.

Exercice 65. Développement en série de cotan, Centrale MP 2011

Soit
$$f: x \mapsto \lim_{n \to \infty} \left(\sum_{k=-n}^{n} \frac{1}{k+x} \right)$$
.

- 1) Quel est le domaine de définition de f?
- **2)** Montrer que, pour tout $x \in \mathbb{R} \setminus \mathbb{Z} \dots$

 - **a)** f(-x) = -f(x). **b)** f(x+1) = f(x).
- c) $f(2x) = \frac{1}{2}(f(x+\frac{1}{2})+f(x)).$ 3) Montrer que $x \mapsto f(x) \pi \cot(\pi x)$ admet un prolongement par continuité à \mathbb{R} entier.
- **4)** Montrer que pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, $f(x) = \pi \cot(\pi x)$.

Exercice 1.

2)
$$||f_n||_{\infty} = f_n(\frac{1}{n+1}) \sim en^{\alpha-1}$$
.

Exercice 4.

2) Intégrale constante = 1.

Exercice 5.

1) e^{-x} .

Exercice 6.

CVU sur tout compact par encadrement du logarithme.

Exercice 9.

- 1) $y_n = (n+1)(e^x e^{nx/(n+1)}).$
- **2)** $y = xe^x$.

Exercice 10.

 $(|f_n(x)|)$ décroît donc tend vers L. On extrait une sous suite $(f_{\varphi(n)})$ convergeant vers $\ell \Rightarrow |\ell| = L$. La sous suite $(f_{\varphi(n)+1})$ converge vers $f(\ell) \Rightarrow |f(\ell)| = L \Rightarrow L = 0$.

Exercice 11.
1)
$$\ell(t) = \frac{1 + \sqrt{1 + 4t}}{2}$$
 et $\ell(0) = 0$.

3) Accroissements finis.

Exercice 13.

 $f_n(t) \to \sqrt{t}$ par valeurs croisantes, il y a convergence uniforme.

Prolonger en une fonction continue sur [0,3] et utiliser Stone-Weierstrass.

Exercice 19.

$$|g_n(f_n(x)) - g(f(x))| \le |g_n(f_n(x)) - g(f_n(x))| + |g(f_n(x)) - g(f(x))|$$
 et g est uniformément continue.

Exercice 20.

1) Polynôme de Lagrange.

Exercice 21.

- 1) Il y a convergence simple vers la fonction nulle en 0 et 1 et égale à 1/2 ailleurs. La convergence est uniforme sur tout $[a, b] \subset]0, 1[$.
- 2) La question précédente donne le résultat pour 1/2, il suffit alors d'utiliser le théorème de Weierstrass et les nombres dyadiques.

Exercice 25.

Prendre une subdivision régulière de [a,b] et encadrer f_n par les cordes associées.

2)
$$f(0) = 0$$
, $f(\pi) = \pi \sinh 1$, $f(\frac{\pi}{2}) = \frac{\pi}{2}(e - \cos 1)$.

Exercice 27.

- **1**) ℝ*.
- $\mathbf{2'}$ TCM : $f(a) \underset{a \to +\infty}{\longrightarrow} 1$.

3) CSI:
$$\frac{\sqrt{\pi}}{2a} = \int_{x=0}^{\infty} e^{-a^2 x^2} dx \le f(a) \le \int_{x=0}^{\infty} e^{-a^2 x^2} dx + 1 = \frac{\sqrt{\pi}}{2a} + 1$$
. Donc $af(a) \underset{a \to 0^+}{\longrightarrow} \frac{\sqrt{\pi}}{2}$.

Exercice 30.

2)
$$f(x) = \frac{e^x}{(e^x - 1)^2}$$
.

Exercice 32.

$$\begin{array}{l} \textbf{2)} \ \ xg(x) - g(x+1) = \frac{1}{e}. \\ \textbf{3)} \ \ \mathrm{CSA} \Rightarrow g' < 0. \ \ g(x) \underset{x \rightarrow 0^+}{\longrightarrow} +\infty, \ g(x) \underset{x \rightarrow +\infty}{\longrightarrow} 0. \\ \textbf{4)} \ \ g(x) \sim 1/x \ \mathrm{en} \ 0^+ \ \mathrm{et} \ \ g(x) \sim 1/(ex) \ \mathrm{en} \ +\infty. \end{array}$$

4)
$$g(x) \sim 1/x$$
 en 0^+ et $g(x) \sim 1/(ex)$ en $+\infty$.

Exercice 34.

2) CSA
$$\Rightarrow |R_n(x)| \le |u_{n+1}(x)| \le \ln\left(1 + \frac{1}{n+1}\right)$$
.

3) Non,
$$||u_n||_{\infty} = \ln\left(1 + \frac{1}{n}\right)$$
.

Exercice 35.

2)
$$f(x+1) = xf(x) - 1$$
.

Exercice 36.

1) CVU sur tout [a, b].

3)
$$f(x+1) = f(x) + \frac{\pi}{2} - \arctan x$$
.

4) $f(x+1) - f(x) \sim 1/x$ donc la suite (f(n)) diverge et f est croissante $\Rightarrow \lim f(x) = +\infty$.

Exercise 37.
$$\frac{1}{t+1} = \sum_{n=0}^{\infty} (-1)^n t^n$$
.

1)
$$\frac{f_n(x)}{f_{n+1}(x)} = 1 - \frac{x(x+1)}{2n^2} + o\left(\frac{1}{n^2}\right)$$
 donc la série $\sum \ln f_n(x)$ est convergente pour tout $x \notin -\mathbb{N}^*$.

3)
$$\frac{f'_n(x)}{f_n(x)} \xrightarrow[n \to \infty]{} -\gamma + \sum_{k=1}^{\infty} \frac{x}{k(k+x)}$$
.

Exercice 39.

Poser t=xu puis intégrer deux fois par parties : $f_n(x)=1-\int_{u=0}^1(1-u)^{n+1}x\sin(xu)\,\mathrm{d}u\,\mathrm{donc}\,(f_n)$ converge simplement vers la fonction constante 1, et la convergence est uniforme sur tout intervalle borné.

Exercice 41.

- 1) cva si $|\cos x| < 1$, scv si $\cos x = 1$, dv si $\cos x = -1$.
- 2) TCM en regroupant les termes deux par deux.
- 3) $\int_{x=0}^{\pi/2} \frac{\ln(1+\cos x)}{\cos x} dx$.

Exercice 42.

1)
$$F_n(X) = \sum_{k=0}^{n-1} \frac{e^{2ik\pi/n}}{X + n(1 - e^{2ik\pi/n})}$$
.

2)
$$F_n(2x) - F_n(-2x) = \sum_{k=0}^{n-1} \frac{4xe^{2ik\pi/n}}{4x^2 - n^2(1 - e^{2ik\pi/n})^2} = \sum_{k=0}^{n-1} \frac{x}{x^2e^{-2ik\pi/n} + n^2\sin(k\pi/n)^2}$$

1)
$$F_n(X) = \sum_{k=0} \frac{1}{X + n(1 - e^{2ik\pi/n})}$$
.
2) $F_n(2x) - F_n(-2x) = \sum_{k=0}^{n-1} \frac{4xe^{2ik\pi/n}}{4x^2 - n^2(1 - e^{2ik\pi/n})^2} = \sum_{k=0}^{n-1} \frac{x}{x^2e^{-2ik\pi/n} + n^2\sin(k\pi/n)^2}$.
Supposons n impair, et regroupons les termes conjugués obtenus pour k et $n - k$:
$$F_n(2x) - F_n(-2x) = \frac{1}{x} + \sum_{k=1}^{(n-1)/2} \left(\underbrace{\frac{x}{x^2e^{-2ik\pi/n} + n^2\sin(k\pi/n)^2} + \frac{x}{x^2e^{2ik\pi/n} + n^2\sin(k\pi/n)^2}}_{=n(k,n,x)} \right).$$

On transforme la somme en série de k=1 à $k=\infty$ en posant u(k,n,x)=0 si k>(n-1)/2, puis on passe à la limite, sous réserve de justification, dans cette série pour $n \to \infty$, ce qui donne la formule demandée.

Justification de l'interversion limite-série :

en utilisant $\sin(t) \geqslant \frac{2t}{\pi}$ pour $0 \leqslant t \leqslant \frac{\pi}{2}$ on a $|u(k,n,x)| \leqslant \frac{2|x|}{4k^2 - x^2}$ pour tout $k \geqslant |x/2|$, donc il y a convergence normale par rapport à n, à x fixé.

3) $\sum_{k=1}^{\infty} \frac{2}{x^2 + k^2 \pi^2} = \frac{\coth(x)}{x} - \frac{1}{x^2}$ est normalement convergente sur \mathbb{R} , on peut passer à la limite pour

Exercice 43.

1) Transformation d'Abel.

2)
$$f(x) = \arctan\left(\frac{x\sin x}{1 - x\cos x}\right)$$
.

3)
$$\frac{\pi - 1}{2}$$
.

Exercice 44.

2)
$$\zeta(x) - \frac{1}{x-1} = \sum_{n=1}^{\infty} \left(\frac{1}{n^x} - \int_{t=n}^{n+1} \frac{dt}{t^x} \right)$$
.

A n fixé, $\frac{1}{n^x} - \int_{t=n}^{n+1} \frac{dt}{t^x} \xrightarrow[x \to 1^+]{} \frac{1}{n} - \int_{t=n}^{n+1} \frac{dt}{t}$ et la convergence est monotone donc

$$\zeta(x) - \frac{1}{x-1} \underset{x \to 1^+}{\longrightarrow} \sum_{n=1}^{\infty} \left(\frac{1}{n} - \int_{t=n}^{n+1} \frac{dt}{t} \right) = \gamma.$$

3)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n} = \eta'(1) = \gamma \ln 2 - \frac{1}{2} \ln(2)^2$$
.

Exercice 46.

Pour k fixé et $x \in [0,1[$ on a $0 \le f(x) \le \text{polynôme}(x) + \sum_{n=0}^{\infty} x^{kn} = \text{polynôme}(x) + \frac{1}{1-x^k}$ et $\frac{1}{1-x^k} \sim \frac{1}{k(1-x)}$ au voisinage de 1 donc $0 \le f(x) \le \frac{2}{k(1-x)}$ pour x suffisament proche de 1.

Exercice 47.

2) soit $y \in [c, d]$ et $x_n = f_n^{-1}(y)$. La suite (x_n) admet au plus une valeur d'adhérence, $x = f^{-1}(y)$.

Exercice 48.

Oui:
$$|\sup f_n - \sup f| \leq ||f_n - f||_{\infty}$$
.

Exercice 49.

1) Il y a convergence normale sur tout intervalle $[a, +\infty[$ avec a > 0. Il n'y a pas convergence normale au voisinage de 0 car $\sup\{\frac{xe^{-nx}}{\ln n}, \ x \geqslant 0\} = \frac{1}{en\ln n}$ atteint pour $x = \frac{1}{n}$ et $\sum \frac{1}{n\ln n}$ diverge (série de Bertrand). Par contre il y a convergence uniforme sur $[0, +\infty[$ car

$$0 \leqslant \sum_{k=1}^{\infty} f_k(x) \leqslant \frac{1}{\ln n} \sum_{k=1}^{\infty} x e^{-kx} = \frac{x e^{-nx}}{\ln n (1 - e^{-x})} \leqslant \frac{\sup\{t/(1 - e^{-t}), \ t \geqslant 0\}}{\ln n}.$$

3)
$$\frac{S(x) - S(0)}{x} = \sum_{n=2}^{\infty} \frac{e^{-nx}}{\ln n} \xrightarrow[x \to 0^+]{} \sum_{n=2}^{\infty} \frac{1}{\ln n} = +\infty$$
 par convergence monotone.

Exercice 50.

Comparaison série-intégrale, $f(x) \underset{x\to 1^-}{\longrightarrow} \ln(2)$.

Exercice 51.

- 1) -1 < t < 1.
- 2) Pour $0 \le t < 1$ et $n \ge 2$ on a :

$$(1-t)\frac{t^n}{1-t^n} = \frac{t^n}{1+t+\ldots+t^{n-1}}$$

$$= \frac{t^n}{n} + \frac{t^n((1-t)+(1-t^2)+\ldots+(1-t^{n-1}))}{n(1+t+\ldots+t^{n-1})}$$

$$= \frac{t^n}{n} + \frac{(t^n-t^{n+1})((n-1)+(n-2)t+\ldots+t^{n-2})}{n(1+t+\ldots+t^{n-1})}$$

d'où $0 \leqslant (1-t)\frac{t^n}{1-t^n} - \frac{t^n}{n} \leqslant \frac{n-1}{n}(t^n-t^{n+1}) \leqslant t^n-t^{n+1}$ (vrai aussi si n=1) et en sommant :

$$0 \le (1-t)S(t) + \ln(1-t) \le 1.$$

Exercice 52.

- 1) La série converge normalement et φ est continue.
- 2) φ est 1-lipschitzienne, mais on ne peut rien en déduire pour f : pour N fixé et $0 < h \le \frac{1}{2.4^n}$, on a $|f(h) - f(0)| = f(h) \ge \sum_{n=1}^n 3^n h = \frac{3^{N+1} - 3}{2} h$ donc f n'est pas lipschitzienne au voisinage de 0.
- 3) D'après ce qui précède, le taux d'accroissement de f en 0 est arbitrairement grand, donc f n'est pas dérivable en 0. On montre de même que f n'est pas dérivable en $x \in \mathbb{R}$.

Exercice 53.

On suppose h réel. La série converge localement normalement sur \mathbb{R}^* donc f est définie sur \mathbb{R} et continue sur \mathbb{R}^* . Continuité en 0: on pose $A_n = \sum_{k=n}^{\infty} a_k$ et $\varphi(t) = \frac{\sin^2(t)}{t^2}$ si $t \neq 0$, $\varphi(0) = 1$ (φ est \mathcal{C}^{∞} sur \mathbb{R} comme somme d'une série entière de rayon infini). Pour $h \neq 0$ on a :

$$f(h) = \sum_{n=1}^{\infty} (A_n - A_{n+1})\varphi(nh) = A_1\varphi(h) + \sum_{n=2}^{\infty} A_n(\varphi(nh) - \varphi((n-1)h)) = A_1\varphi(h) + \sum_{n=2}^{\infty} A_n \int_{t=(n-1)h}^{nh} \varphi'(t) dt.$$

Cette dernière série est uniformément convergente sur \mathbb{R} car $A_n \xrightarrow[n \to \infty]{} 0$ et $\int_{t=0}^{+\infty} |\varphi'(t)| dt$ est convergente.

Exercice 54.

- 1) Soit $k = \lfloor n/2\pi \rfloor$. On a $F_n(x) = \frac{2k\pi}{n} \int_{t=0}^{2\pi} f(x+t)f(t) dt + \frac{1}{n} \int_{t=2k\pi}^{n} f(x+t)f(t) dt \xrightarrow[n \to \infty]{} \int_{t=0}^{2\pi} f(x+t)f(t) dt$.
- 3) Cauchy-Schwarz.

Exercice 55.

 $q = x \mapsto f(\tan(x/2))$ est limite uniforme de polynômes trigonométriques.

Exercice 56.

1) CSA:
$$0 \le f(x) \le \frac{1}{\sqrt{1+x^2}}$$
 donc $f(x) \underset{x \to +\infty}{\longrightarrow} 0$.

$$xf(x) = \sum_{p=0}^{\infty} \frac{x}{\sqrt{(2p+1)^2 + x^2}} - \frac{x}{\sqrt{(2p+2)^2 + x^2}}$$
$$= \sum_{p=0}^{\infty} \int_{t=2p+1}^{2p+2} \frac{xt}{(t^2 + x^2)^{3/2}} dt$$
$$= \sum_{p=0}^{\infty} \int_{u=(2p+1)/x}^{(2p+2)/x} \frac{u}{(u^2 + 1)^{3/2}} du.$$

On a $\int_{u=0}^{\infty} \frac{u}{(u^2+1)^{3/2}} du = 1 = a+b$ avec :

$$a = \sum_{p=0}^{\infty} \int_{u=(2p)/x}^{(2p+1)/x} \frac{u}{(u^2+1)^{3/2}} du \text{ et } b = \sum_{p=0}^{\infty} \int_{u=(2p+1)/x}^{(2p+2)/x} \frac{u}{(u^2+1)^{3/2}} du = xf(x).$$

 $h: u \mapsto \frac{u}{(u^2+1)^{3/2}}$ est croissante sur $\left[0, \sqrt{\frac{1}{2}}\right]$ et décroissante sur $\left[\sqrt{\frac{1}{2}}, +\infty\right[$ donc $|a-b| \leqslant \frac{3\|h\|_{\infty}}{x}$, et $xf(x) \xrightarrow[x \to +\infty]{1}{2}$.

Exercice 57. On a
$$\int_{t=x}^{+\infty} \frac{\mathrm{d}t}{\sinh t} \leqslant xS_1(x) \leqslant \frac{x}{\sinh x} + \int_{t=x}^{+\infty} \frac{\mathrm{d}t}{\sinh t}$$
 et $\frac{1}{\sinh t} = \frac{1}{t} + O(t)$ donc $\int_{t=x}^{+\infty} \frac{\mathrm{d}t}{\sinh t} = -\ln(x) + O(1)$. On en déduit $S_1(x) \sim -\frac{\ln x}{x}$.

La même méthode ne marche pas pour S_2 car le terme résiduel, $\frac{x}{\sinh^2(x)}$ n'est pas négligeable devant $\int_{t=x}^{+\infty} \frac{\mathrm{d}t}{\sinh^2(t)}$. Par contre, on peut remarquer que la série $\sum_{n=1}^{\infty} \frac{x^2}{\sinh^2(nx)}$ est normalement convergente sur \mathbb{R} , d'où $S_2(x) \sim \frac{\zeta(2)}{r^2}$.

Exercice 58.
1)
$$S_n(t) = \Im\left(\frac{e^{ix} - t^n e^{i(n+1)x}}{1 - t e^{ix}}\right) \xrightarrow[n \to \infty]{} \Im\left(\frac{e^{ix}}{1 - t e^{ix}}\right) = \frac{\sin x}{1 - 2t\cos x + t^2} \text{ pour } -1 < t < 1.$$

2)
$$\int_{t=0}^{1} S_n(t) dt = \sum_{p=1}^{n} \frac{\sin(px)}{p}$$
.
 $\int_{t=0}^{1} S(t) dt = (t - \cos x = u \sin x) = \int_{u=-\cot x}^{\tan x/2} \frac{du}{1+u^2} = \frac{\pi - x}{2}$.

3) TCD:
$$|S_n(t)| \leqslant \frac{2}{\sin x}$$
 intégrable par rapport à t sur $[0,1]$. On en déduit $\sum_{p=1}^{\infty} \frac{\sin(px)}{p} = \frac{\pi - x}{2}$.

Exercice 59.

- 1) R est trivialement un \mathbb{R} -ev. Le théorème de décomposition en éléments simples donne une base de Ren se limitant aux éléments simples n'ayant pas de pôle dans [0,1].
- en se finitant aux elements simples il ayant pas de pole dans [0,1]. $R_{m,n}$ n'est pas un ev. Par exemple $\frac{1}{X+1}$ et $\frac{1}{X+2}$ appartiennent à $R_{0,1}$ mais pas leur somme. 2) Soit (f_k) une suite d'éléments de $R_{m,n}$ telle que $||g-f_k|| \underset{k\to\infty}{\longrightarrow} d$. On note $f_k = P_k/Q_k$ avec $P_k \in \mathbb{R}_m[X]$, $Q_k \in \mathbb{R}_n[X]$ et $||Q_k|| = 1$. On a $||P_k|| \le ||g-f_k|| + ||g||$ donc les suites (P_k) et (Q_k) sont bornées dans $\mathbb{R}_m[X]$ et $\mathbb{R}_n[X]$. Quitte à prendre une sous-suite, on se ramène au cas $P_k \underset{k\to\infty}{\longrightarrow} P \in \mathbb{R}_m[X]$ et $Q_k \underset{k \to \infty}{\longrightarrow} Q \in \mathbb{R}_n[X]$ avec de plus ||Q|| = 1.
 - Si Q n'a pas de racine dans [0,1], il existe $\alpha>0$ tel que $|Q(x)|\geqslant \alpha$ pour tout $x\in[0,1]$, donc $|Q_k(x)| \ge \frac{1}{2}\alpha$ pour tout $x \in [0,1]$ et tout k assez grand. On en déduit que la suite (P_k/Q_k) converge uniformément vers P/Q sur [0,1] et que $r_0 = P/Q$ convient.
 - Si Q admet dans [0,1] des racines a_1,\ldots,a_p de multiplicités α_1,\ldots,α_p , on note $Q^0=\prod_i(X-i)$ $a_i)^{\alpha_i}$ et $Q^1=Q/Q^0$. Soit $M=\max\{\|g-f_k\|,\ k\in\mathbb{N}\}$. Pour tous $x\in[0,1]$ et $k\in\mathbb{N}$ on a $|g(x)Q_k(x) - P_k(x)| \le M|Q_k(x)|$ donc à la limite, $|g(x)Q(x) - P(x)| \le M|Q(x)|$ pour tout $x \in [0,1]$. Ceci implique que Q^0 divise P, on note $P^1 = P/Q^0$. Alors pour tout $x \in [0,1]$ et $k \in \mathbb{N}$ on a $|g(x)Q^0(x) - P_k(x)Q^0(x)/Q_k(x)| \leq ||g - f_k|| |Q^0(x)|, \text{ d'où } |g(x)Q^0(x) - P^1(x)Q^0(x)/Q^1(x)| \leq d|Q^0(x)|$ et finalement $r_0 = P^1/Q^1$ convient.

Exercice 60.

2) Soit P_n le polynôme de Lagrange défini par $P_n(x_i) = f_n(x_i)$ et $\deg P_n < p$. Les coordonnées de P_n dans la base de Lagrange forment des suites convergentes donc la suite (P_n) est uniformément convergente sur [a, b]. Quant à la suite $(P_n^{(p)})$, c'est la suite nulle. Donc on peut remplacer f_n par $f_n - P_n$ dans l'énoncé, ce qui revient à supposer que $f_n(x_i) = 0$ pour tous n et i. Soit f la fonction définie par $f(x_i) = 0$ et $f^{(p)} = g$: f existe (prendre une primitive p-ème arbitraire de g et lui soustraire un polynôme de Lagrange approprié) et est unique (la différence entre deux solutions est polynomiale de degré < p et s'annule en p points distincts). On remplace maintenant f_n par $f_n - f$, et on est rammené à montrer que : si $f_n(x_i) = 0$ pour tous n et i et si $(f_n^{(p)})$ converge uniformément vers la fonction nulle, alors (f_n) converge uniformément vers la fonction nulle. Ceci résulte du lemme suivant:

Il existe une fonction φ_p bornée sur $[a,b]^2$, indépendante de n, telle que $f_n(x) = \int_{t=a}^b \varphi_p(x,t) f_n^{(p)}(t) dt$. Démonstration. On écrit la formule de Taylor-intégrale pour f_n entre x et y:

$$f_n(y) = f_n(x) + (y - x)f'_n(x) + \ldots + \frac{(y - x)^{p-1}}{(p-1)!}f_n^{(p-1)}(x) + \int_{t=x}^y \frac{(y - t)^{p-1}}{(p-1)!}f_n^{(p)}(t) dt.$$

L'intégrale peut être étendue à l'intervalle [a,b] sous la forme $\int_{t=a}^b u_p(x,y,t) f_n^{(p)}(t) dt$ en posant

$$u_p(x, y, t) = \begin{cases} (y - t)^{p-1} / (p - 1)! & \text{si } x < t < y ; \\ -(y - t)^{p-1} / (p - 1)! & \text{si } y < t < x ; \\ 0 & \text{sinon.} \end{cases}$$

En prenant successivement $y=x_1,\ldots,y=x_n$, on obtient un système linéaire en $f_n(x),\ldots,f_n^{(p-1)}(x)$ de la forme :

$$\begin{cases} f_n(x) + (x_1 - x)f'_n(x) + \dots + \frac{(x_1 - x)^{p-1}}{(p-1)!} f_n^{(p-1)}(x) &= -\int_{t=a}^b u_p(x, x_1, t) f_n^{(p)}(t) dt \\ \vdots \\ f_n(x) + (x_p - x)f'_n(x) + \dots + \frac{(x_p - x)^{p-1}}{(p-1)!} f_n^{(p-1)}(x) &= -\int_{t=a}^b u_p(x, x_p, t) f_n^{(p)}(t) dt \end{cases}$$

La matrice M de ce système est la matrice de Vandermonde de $x_1 - x, \dots, x_p - x$, inversible. On en déduit, avec les formules de Cramer, une expression de $f_n(x)$ à l'aide des intégrales du second membre, de la forme voulue. Le facteur φ_p est borné car le dénominateur est $\det(M) = \prod_{i < j} (x_j - x_i)$, indépendant de x.

Exercice 61.

Développer en séries sous l'intégrale, multiplier, permuter avec l'intégrale puis simplifier.

Exercice 62.

- 1) A x fixé, $f_n(x) = o(1/n^{2,5})$. 2) $|f'_n(x)| = \frac{2|x|}{n(1+n^2x^2)} \leqslant \frac{1}{n^2}$. Il y a convergence normale de $\sum f'_n$ donc on peut dériver terme à terme. 3) $f'_n(x) = \frac{1}{n^2}g(nx)$ avec $g(t) = \frac{2t}{1+t^2}$ donc $f''_n(x) = \frac{1}{n}g'(nx)$. Par étude de fonction, g' est croissante sur $[\sqrt{3}, +\infty[$ de limite nulle en $+\infty$ d'où $|f_n''(x)| \leq \frac{1}{n}|g'(na)| = O(1/n^3)$ pour $x \geq a > 0$.

Exercice 63.

- 1) La fonction nulle.
- 2) $h(2x) = h(x) xh^2(x)$ pour $x \neq 0$.
- 3) a) $0 \le T'_x(y) = 1 xy \le 1$.
 - b) $|h_{n+1}(x) h_n(x)| = |T_x(h_n(x/2)) T_x(h_{n-1}(x/2))| \le |h_n(x/2) h_{n-1}(x/2)|$ et par récurrence $|h_{n+1}(x)-h_n(x)|\leqslant |h_1(x/2^n)-h_0(x/2^n)|\leqslant 1/2^{n+1}$: la série télescopique est normalement
 - c) Soit $h = \lim(h_n)$. C'est une fonction continue non nulle car h(0) = 1, et qui vérifie 2). La fonction $f = x \mapsto xh(x)$ est solution de (E) sur [0,1], continue non identiquement nulle et donc non constante.
 - d) On note f_0 la fonction précédente et on pose pour $x \in [0,1]$: $f_1(2x) = 2f_0(x) 2f_0^2(x)$, ce qui définit f_1 sur [0,2], continue, coïncidant avec f_0 sur [0,1] et solution de (E) sur [0,2]. On définit de même f_2 sur [0,4] à partir de f_1 , etc et on pose enfin pour $x \ge 0$ $f(x) = f_n(x)$ où n est choisi tel que $x \leq 2^n$. Le résultat ne dépend pas de n et f convient. On peut encore prolonger f à $\mathbb R$ par parité pour obtenir une solution sur \mathbb{R} continue et non constante.

Exercice 64.

- 1) $D_n(x) = \frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$, $\tilde{D}_n(x) = \frac{\cos(x/2)(1-\cos(nx))}{2\sin(x/2)}$.
- 2) $\int_{x=0}^{\pi} \tilde{D}_n(x) dx = 2 \sum_{2k+1 < n} 1/k + (0 \text{ ou } 1)/n$ et on compare la série à $\int dt/t$. 3) (i) \Leftrightarrow (ii) par convergence normale de $\sum b_k \sin(kx)$.
- (ii)⇔(iii) par intégration terme à terme, cas réel positif.

Exercice 65.

- 1) $D_f = \mathbb{R} \setminus \mathbb{Z} \text{ et } f(x) = \frac{1}{x} + \sum_{k=1}^{\infty} \frac{2x}{x^2 k^2}.$
- 2) c) La formule ne marche que si 2x n'est pas entier.
- 3) f(x) 1/x et $\pi \cot(\pi x) 1/x$ se prolongent par continuité en 0 (avec des limites nulles), donc la différence aussi. Par 1-périodicité, cette différence se prolonge par continuité à $\mathbb R$ entier.
- 4) Soit $g(x) = f(x) \pi \cot(\pi x)$ pour $x \in \mathbb{R} \setminus \mathbb{Z}$ et g(x) = 0 pour $x \in \mathbb{Z}$: g est continue, vérifie la relation fonctionnelle $g(2x) = \frac{1}{2}(g(x+\frac{1}{2})+g(x))$ pour $x \in \mathbb{R} \setminus \frac{1}{2}\mathbb{Z}$, et donc aussi pour tout $x \in \mathbb{R}$ par continuité. On en déduit g(x) = 0 pour $x \in \frac{1}{2}\mathbb{Z}$, puis pour tout $x \in \mathbb{Z}[\frac{1}{2}]$ et enfin pour tout $x \in \mathbb{R}$ par densité.