O Anel de Grothendieck de Categorias Finitas

Andrey Modtkoski Friedlaender Licenciatura em Matemática - UFPR

andreymod@gmail.com

Prof. Dr. Eduardo Outeiral Correa Hoefel (Orientador) Departamento de Matemática - UFPR

hoefel@ufpr.br

Palavras-chave: categorias, *R*-álgebras, anéis de Grothendieck.

Resumo:

Dados um anel comutativo R e uma categoria $\mathcal C$ podemos construir um R-módulo livre $R\langle\mathcal C\rangle$ sobre $\mathcal C$, considerando seus elementos como morfismos de $\mathcal C$ em R, isto é, $R\langle\mathcal C\rangle=\{f\mid f:\mathcal C\to R\}$. Neste R-módulo podemos definir uma multiplicação (que garantirá uma estrutura de R-álgebra a $R\langle\mathcal C\rangle$) através de convoluções. Se f e g são dois morfismos em $R\langle\mathcal C\rangle$, definimos a convolução f*g da seguinte maneira:

$$(f*g)(h) := \sum_{i \circ j = h} f(i)g(j)$$

onde h é uma flecha em \mathcal{C} . A R-álgebra $R\langle \mathcal{C} \rangle$ recebe o nome de anel de Grothendieck sobre a categoria \mathcal{C} .

Veremos que esta construção apresenta propriedades interessantes, dentre as quais destacaremos:

- $R\langle \mathcal{C}_1 \rangle \oplus R\langle \mathcal{C}_2 \rangle \cong R\langle \mathcal{C}_1 \sqcup \mathcal{C}_2 \rangle$, isto é, a soma direta da R-álgebra sobre a categoria \mathcal{C}_1 e a R-álgebra sobre \mathcal{C}_2 será isomorfa à R-álgebra sobre o coproduto $\mathcal{C}_1 \sqcup \mathcal{C}_2$;
- $R\langle \mathcal{C}_1 \rangle \otimes R\langle \mathcal{C}_2 \rangle \cong R\langle \mathcal{C}_1 \times \mathcal{C}_2 \rangle$, isto é, o produto tensorial da R-álgebra sobre \mathcal{C}_1 com a R-álgebra sobre \mathcal{C}_2 será isomorfo à R-algebra sobre o produto $\mathcal{C}_1 \times \mathcal{C}_2$.

A partir da definição dada, podemos tentar "classificar" os diferentes casos de anéis de Grothendieck que podem ser obtidos a partir de categorias finitas. Ou seja, dada uma categoria finita específica, buscaremos saber quais serão as características de seu anel de Grothendieck resultante. Com a coleta dessas informações, esperamos poder gerar mais exemplos de anéis de Grothendieck, a fim de responder à seguinte questão: dada uma R-álgebra A, é possivel dizer que existe uma categoria finita $\mathcal C$ tal que A seja o anel de Grothendieck de $\mathcal C$?

Como exemplos serão vistos os anéis de Grothendieck para os casos de categorias finitas triviais, posets finitos, posets lineares finitos, árvores finitas e grupoides finitos, dentre outros.

Referências:

ROTMAN, J. J. **Advanced modern algebra**. 2 ed. Providence, Rhode Island: American Mathematical Society, 2010.

ROTMAN, J. J. An introduction to homological algebra. 2 ed. New York: Springer, 2008.