EXERCISES

- 1. Let the sequence a_0, a_1, a_2, \ldots be given by $a_0 = 0$, $a_1 = 1$, and $a_k = (a_{k-1} + a_{k-2})/2$ for
- Let the sequence a₀, a₁, a₂, ... be given by a₀ = 0, a₁ = 1, and a_k = (a_{k-1} + a_{k-2})/2 fo k ≥ 2.
 a. Find the matrix A that can be used to generate this sequence as we used a matrix to generate the Fibonacci sequence in Section 5.1.
 b. Classify this generation process as stable, neutrally stable, or unstable.
 c. Compute expression (1) for x = [a₁ a₀] for this process. Check computations with the first few terms of the sequence.
 d. Use the answer to part (c) to estimate a_k for large k.
 2. Repeat Exercise 1 if a_k = a_{k-1} (3/16)a_{k-2} for k ≥ 2.
 3. Repeat Exercise 1, but change the initial data to a₀ = 1, a₁ = 0.
 4. Repeat Exercise 1 if a_k = (1/2)a_{k-1} + (3/16)a_{k-2} for k ≥ 2.

 - 4. Repeat Exercise 1 if $a_k = \left(\frac{1}{2}\right)a_{k-1} + \left(\frac{3}{16}\right)a_{k-2}$ for $k \ge 2$.
 - 5. Repeat Exercise 1 if $a_k = a_{k-1} + \left(\frac{3}{4}\right) a_{k-2}$ for

In Exercises 6-13, solve the given system of linear differential equations as outlined in the summary.

6.
$$x_1' = 3x_1 - 5x_2$$

 $x_2' = 2x_2$

7.
$$x_1' = x_1 + 4x_2$$

 $x_2' = 3x_1$

8.
$$x_1' = x_1 + 2x_2$$

 $x_2' = 2x_1 + x_2$

9.
$$x'_1 = 2x_1 + 2x_2$$

 $x'_2 = x_1 + 3x_2$

10.
$$x'_1 = 6x_1 + 3x_2 - 3x_3$$

 $x'_2 = -2x_1 - x_2 + 2x_3$
 $x'_3 = 16x_1 + 8x_2 - 7x_3$

11.
$$x'_1 = -3x_1 + 10x_2 - 6x_3$$

 $x'_2 = 7x_2 - 6x_3$
 $x'_3 = x_3$

12.
$$x'_1 = -3x_1 + 5x_2 - 20x_3$$

 $x'_2 = 2x_1 + 8x_3$
 $x'_3 = 2x_1 + x_2 + 7x_3$

13.
$$x'_1 = -2x_1$$
 - x_3
 $x'_2 =$ 2 x_2
 $x'_3 =$ 3 x_1 + 2 x_3