Linear Systems, Bisection Method

Numerical Analysis 23: Please hand in questions 1, 2, and 3 by 11am on Thursday 14 February.

1. Find an LU decomposition for the matrix

$$A = \left[\begin{array}{rrr} -1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

By using your LU decomposition find the inverse of the matrix A. (Solve $A\mathbf{v}_j = \mathbf{e}_j$, $j \in \{1, 2, 3\}$, where \mathbf{v}_j is the j-th column of A^{-1} and \mathbf{e}_j is the j-th column of the identity matrix I).

2. Find a decomposition of the form

$$PA = LU$$

for the matrix

$$A = \left[\begin{array}{ccc} 0 & 1 & 2 \\ 4 & 2 & 3 \\ 2 & -1 & 4 \end{array} \right] .$$

Here P is a permutation matrix, L is lower triangular and U is upper triangular.

- 3. (a) Show that the function $f(x) = x^3 x 1/4$ has 3 roots, exactly one of which lies in the interval [1, 2]. (Hint: start by searching for maxima and minima of the function.)
 - (b) Determine the number of interations of the Bisection method which would assure of finding this root to an accuracy of 10^{-4} .
 - (c) Give 2 intervals [a, b] which contain exactly one of the other 2 roots.
- 4. Consider $f(x) = x^2 2$ and perform five iterations of the Bisection method to find an approximation for $\sqrt{2}$. How many digits of your final approximation are guaranteed to be correct?