Part I

Abstract Algebra

Definition (Binary Operations)

- lack A binary operation on a set A is an everywhere defined function

Note: A binary operation must satisfy

- f assigns an element f(a,b) of A to each ordered pair (a,b) in $A\times A.$
 - Since a binary operation is a function, only one element of A is assigned to each ordered pair.

Definition (Binary Operations)

- lack A binary operation on a set A is an everywhere defined function

Note: A binary operation must satisfy

- ▶ f assigns an element f(a,b) of A to each ordered pair (a,b) in $A \times A$.
- Since a binary operation is a function, only one element of A is assigned to each ordered pair.

Notation

- It's customary to denote binary operations by a symbol such as
 - a * b, instead of *(a,b)
 - a * b, instead of *(a)
 - T a * b: the product of a and
 - ▶ A is closed under the operation *, if a and b are elements in A, $a*b \in A$.

Notation

- ♪ It's customary to denote binary operations by a symbol such as
 - * a*b, instead of *(a,b)
 - *: multiplication
 - \bullet a*b: the product of a and b
- ▶ A is closed under the operation *, if a and b are elements in A, $a*b \in A$.

Notation

- ♪ It's customary to denote binary operations by a symbol such as
 - *
 - a*b, instead of *(a,b)→ *: multiplication
 - $\bullet a * b$: the product of a and b
- ▶ A is closed under the operation *, if a and b are elements in A, $a*b \in A$.

Example

- ▶ Let $A = \mathbb{Z}$. Define a * b as a + b.
 - \bullet * is a binary operation on \mathbb{Z} .

Example

- ▶ Let $A = \mathbb{R}$. Define a * b as a/b.
 - \mathfrak{I} * is not a binary operation, since it is not defined for every ordered pair of elements of \mathbb{R} .
 - \blacksquare For example, 3*0 is not defined, since we can not divide by zero.

Example

- ♪ Let $A = \mathbb{Z}$. Define a * b as a + b.
 - \bullet * is a binary operation on \mathbb{Z} .

Example

- ▶ Let $A = \mathbb{R}$. Define a * b as a/b.
 - \mathfrak{I}_{*} is not a binary operation, since it is not defined for every ordered pair of elements of \mathbb{R} .

Definition

▶ If $A = \{a_1, a_2, ..., a_n\}$ is a finite set, a binary operation on A can be defined by means of a multiplication table.

*	$ a_1 $	a_2	 a_{j}	 a_n
a_1				
a_2				
:				
a_i			$a_i * a_j$	
:				
a_n				

Example (\vee and \wedge)

♪ Let

$$A = \{0, 1\}$$

$$\begin{array}{c|cccc} \lor & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

Example (How Many Operations Can Be Defined on A?)

- ♪ Let
 - $A = \{a, b\}$
- ightharpoonup How many binary operations can be defined on A.
 - \blacksquare Every binary operation * on A can be described by a table

♣ Then what?

Example (How Many Operations Can Be Defined on A?)

- ♪ Let
 - $A = \{a, b\}$
- ightharpoonup How many binary operations can be defined on A.
 - $lack {f P}$ Every binary operation * on A can be described by a table

$$\begin{array}{c|cccc} * & a & b \\ \hline a & & \\ b & & \end{array}$$

■ Then what?

Example (How Many Operations Can Be Defined on A?)

- ♪ Let
 - $A = \{a, b\}$
- ▶ How many binary operations can be defined on A.
 - $lack {f P}$ Every binary operation * on A can be described by a table

$$\begin{array}{c|cccc} * & a & b \\ \hline a & & \\ b & & \end{array}$$

♪ Then what?

Definition (Properties of Binary Operations)

- ightharpoonup For all elements a, b, and c in A
 - lacktriangle Commutative a*b=b*a
 - Associative a * (b * c) = (a * b) * c

Definition (Properties of Binary Operations)

- ightharpoonup For all elements a, b, and c in A
 - \bullet Commutative a*b=b*a
 - lacktriangle Associative a*(b*c)=(a*b)*c

Definition (Properties of Binary Operations)

- ightharpoonup For all elements a, b, and c in A
 - \bullet Commutative a * b = b * a
 - Associative a * (b * c) = (a * b) * c
 - Idempotent a * a = a

Definition (Identity)

- ▶ An element e in A is called an identity element if $\forall a \in A$
 - $\bullet * a = a * e = a$

Note:

♪ An identity element must be unique.

Definition (Inverse)

- ▶ An element $a' \in A$ is called an inverse of a and written as a^{-1} if
 - a * a' = a' * a = e, or
 - $a * a^{-1} = a^{-1} * a = e$

Definition (Identity)

- ▶ An element e in A is called an identity element if $\forall a \in A$
 - $\bullet * a = a * e = a$

Note:

An identity element must be unique.

Definition (Inverse)

- ▶ An element $a' \in A$ is called an inverse of a and written as a^{-1} if
 - a * a' = a' * a = e, or
 - $a * a^{-1} = a^{-1} * a = e$

Definition (Identity)

- ▶ An element e in A is called an identity element if $\forall a \in A$
 - $\bullet * a = a * e = a$

Note:

An identity element must be unique.

Definition (Inverse)

- ▶ An element $a' \in A$ is called an inverse of a and written as a^{-1} if
 - a * a' = a' * a = e, or
 - $a * a^{-1} = a^{-1} * a = e$

Theorem

- Let * be a binary operation on a set A, and suppose that * satisfies the following properties for any a, b, and c in A:
 - a*a=a
 - a*b=b*a
 - a*(b*c) = (a*b)*c
- ▶ Define a relation \leq on A by
 - $a \leq b$ if and only if a = a * b
- ▶ Then (A, \leq) is a poset, and $\forall a, b \in A$, GLB(a, b) = a * b.

Proof.

- We must show that
 - ightharpoonup $lap{1}{4}$ $lap{1}{4}$ is reflexive, antisymmetric and transitive.
 - \bullet $a*b=a \wedge b$ for all a and b in A.

- ightharpoonup Since a = a * a
 - \bullet $a \leqslant a$ for all a in A
 - \bullet \triangleleft \triangleleft is reflexive.

Proof: ≤ is reflexive

- ightharpoonup Since a = a * a
 - $a \leq a$ for all a in A
 - is reflexive.

- Proof. Def $a \leqslant b$ if and only if a = a * b.
 - Now suppose that
 - $a \leqslant b$ and $b \leqslant a$
 - a = a * b = b * a = b, by definition and property 2
 - a = b
 - **↑** Thus \leq is antisymmetric.

- Proof. Def $a \leqslant b$ if and only if a = a * b.
 - Now suppose that
 - $a \leqslant b \text{ and } b \leqslant a$
 - a = a * b = b * a = b, by definition and property 2
 - \bullet so a=b
 - **.** Thus ≤ is antisymmetric.

- Proof. Def $a \leqslant b$ if and only if a = a * b.
 - Now suppose that
 - $a \leqslant b \text{ and } b \leqslant a$
 - a = a * b = b * a = b, by definition and property 2
 - so a=b
 - **.** Thus ≤ is antisymmetric.

- ♪ Now suppose that
 - $a \leqslant b \text{ and } b \leqslant a$
 - a = a * b = b * a = b, by definition and property 2
 - \bullet so a=b
 - Thus \leq is antisymmetric.

Proof:

≪ is transitive

- ♪ If $a \leqslant b$ and $b \leqslant c$
 - then a = a * b = a * (b * c) = (a * b) * c = a * c,
 - \bullet so $a \leqslant c$
 - √ ≤ is transitive.

Proof: ≤ is transitive

- ♪ If $a \leqslant b$ and $b \leqslant c$
 - 1 then a = a * b = a * (b * c) = (a * b) * c = a * c,
 - ightharpoonup so $a\leqslant c$

Proof: ≤ is transitive

- ♪ If $a \leqslant b$ and $b \leqslant c$
 - 1 then a = a * b = a * (b * c) = (a * b) * c = a * c,
 - \bullet so $a \leqslant c$

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - $a * b \leq b$
 - **♪** similarly, a * b ≤ a
 - a*b is a lower bound for a and b
- - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - \bullet So, $c \leqslant a * b$
 - ↑ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - so $a*b \leqslant b$
 - **♪** similarly, a * b ≤ a
 - a * b is a lower bound for a and b
- - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - \bullet So, $c \leqslant a * b$
 - ▶ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b

 - ightharpoonup similarly, $a*b \leqslant a$
 - a*b is a lower bound for a and b
- 2 If $c \leqslant a$ and $c \leqslant b$, then $c \leqslant a * b$
 - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - \bullet So, $c \leqslant a * b$
 - ▶ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - \bullet so $a*b \leqslant b$
 - \bullet similarly, $a * b \leq a$
 - \bullet a*b is a lower bound for a and b
- 2 If $c \leqslant a$ and $c \leqslant b$, then $c \leqslant a * b$
 - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - \bullet So, $c \leqslant a * b$
 - ↑ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - \bullet so $a*b \leqslant b$
 - \bullet similarly, $a*b \leqslant a$
 - \bullet a*b is a lower bound for a and b
- 2 If $c \leqslant a$ and $c \leqslant b$, then $c \leqslant a * b$
 - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - \bullet So, $c \leqslant a * b$
- ↑ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - \bullet so $a*b \leqslant b$
 - **♪** similarly, a * b ≤ a
 - \bullet a*b is a lower bound for a and b
- 2 If $c \leqslant a$ and $c \leqslant b$, then $c \leqslant a * b$
 - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)

 - ↑ Therefore, a * b is the greatest lower bound of a and b.

- \bullet a*b is a lower bound for a and b
 - a * b = a * (b * b) = (a * b) * b
 - \bullet so $a*b \leq b$
 - \bullet similarly, $a*b \leqslant a$
 - \bullet a*b is a lower bound for a and b
- 2 If $c \leqslant a$ and $c \leqslant b$, then $c \leqslant a * b$
 - c = c * a and c = c * b by definition
 - c = (c * a) * b = c * (a * b)
 - ightharpoonup So, $c \leqslant a * b$
 - ▶ Therefore, a * b is the greatest lower bound of a and b.

