Data Structures

22. Shortest Path Trees

Shortest Path

- Given a weighted graph
 - Problem is to find the shortest path between two given vertices
- Length of a path in a weighted graph
 - Sum of the weights of each of the edges in that path
- Example: Shortest path from vertex 1 to vertex 13
 - Other paths exists but they are longer

Application – Circuit Design

 The time it takes for a change in input to affect an output depends on the shortest path

Application – Computer Networks

- The Internet is a collection of interconnected computer networks
 - Information is passed through packets
- Packets are passed from the source, through routers, to their destination
- Routers are connected to either:
 - Individual computers, or
 - Other routers
- These may be represented as graphs

Application – Computer Networks

 A visualization of the graph of the routers and their various connections through a portion of the Internet

Application – Computer Networks

- The path a packet takes depends on the IP address
- Metrics for measuring the shortest path may include
 - Low latency (minimize time)
 - Minimum hop count (all edges have weight 1)

Application – Traffic

- Find the shortest route between to points on a map
 - Shortest path, however, need not refer to distance...

Variants of Shortest Path

Given a graph G = (V, E)

- Single-source shortest paths
 - Find shortest path from a given source vertex s to each vertex $v \in V$
- Single-destination shortest paths
 - Find shortest path to a given destination vertex t from each vertex v
- Single-pair shortest path
 - Find shortest path from u to v for given vertices u and v
- All-pairs shortest-paths
 - Find shortest path from u to v for every pair of vertices u and v

Single Source Shortest Path

Dijkstra's Algorithm

 Problem: From a given source vertex s∈V, find the shortest-paths and their weights w(s,v) for all v∈V

Idea of the Algorithm

- Maintain a set S of vertices whose shortest-path distances from s are known
- At each step add to S the vertex $v \in V-S$ whose distance estimate from s is minimal
- Update the distance estimates of vertices adjacent to v

Dijkstra's Algorithm - Pseudocode

```
// distance to source vertex is zero
dist[s] = 0
p[s] = NULL
for all v \in V-\{s\}
   dist[v] = \infty
                                  // set all other distances to infinity
S = \emptyset
                                  //S, the set of visited vertices is initially empty
                                  //Q, the queue initially contains all vertices
O = V
while Q is not emppty //while the queue is not empty
   u = mindistance(Q)  //select the element of Q with the min distance
                                 // add u to list of visited vertices
   S = SU\{u\}
   for all v ∈ neighbors[u]
       if dist[v] > dist[u] + w(u,v) //if new shortest path found
          dist[v] = dist[u] + w(u,v) //set new value of shortest path
          p[v] = u
```

Dijkstra's Vs. Prim's Algorithm

```
Dijkstra's Algorithm
dist[s] = 0
p[s] = NULL
for all v \in V-\{s\}
   dist[v] = \infty
S = \emptyset
0 = V
while (Q not empty)
   u = mindistance(Q)
   S = SU\{u\}
   for all v ∈ neighbors[u] && v∈V-S
      if dist[u] + w(u, v) < dist[v]</pre>
          dist[v] = dist[u] + w(u, v)
          p[v] = u
```

```
Prim's Algorithm
Q = V[G];
for each u \in Q
   key[u] = \infty;
key[r] = 0;
p[r] = NULL;
while (Q not empty)
   u = ExtractMin(Q);
   for each v \in Adi[u]
       if (v \in Q \text{ and } w(u,v) < \text{key}[v])
          p[v] = u;
          kev[v] = w(u,v);
```

• Find the shortest path from K to every other vertex

We visit vertex K

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
I	F	œ	Ø
J	F	∞	Ø
K	T	0	Ø
L	F	∞	Ø 14

• Vertex K has four neighbors: H, I, J and L

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	00	Ø
I	F	00	Ø
J	F	00	Ø
K	Т	0	Ø
L	F	00	Ø

• We have now found at least one path to each of these vertices

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
H	F	8	K
I	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

- We're finished with vertex K
 - To which vertex are we now guaranteed we have the shortest path?mindistance(Q)

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	8	K
I	F	12	K
J	F	17	K
K	T	0	Ø
L	F	16	K

- We visit vertex H: the shortest path is (K, H) of length 8
 - Vertex H has four unvisited neighbors: E, G, I, L

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	T	8	K
I	F	12	K
J	F	17	K
K	T	0	Ø
L	F	16	K

- Consider these paths:
 - (K, H, E) of length 8 + 6 = 14
 - (K, H, I) of length 8 + 2 = 10
- Which of these are shorter than any known path?

(K, H,	G) of length $8 + 11 = 19$
(K, H,	L) of length $8 + 9 = 17$

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	Т	8	K
I	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

SPT

19

We already have a shorter path (K, L), but we update the others

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	T	8	K
I	F	10	H
J	F	17	K
K	T	0	Ø
L	F	16	K

- We are finished with vertex H
 - Which vertex do we visit next?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
I	F	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

- The path (K, H, I) is the shortest path from K to I of length 10
 - Vertex I has two unvisited neighbors: G and J

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
I	T	10	Н
J	F	17	K
K	T	0	Ø
L	F	16	K

- Consider these paths:
 - (K, H, I, G) of length 10 + 3 = 13
 - (K, H, I, J) of length 10 + 18 = 28

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
I	T	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

 We have discovered a shorter path to vertex G, but (K, J) is still the shortest known path to vertex J

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Which vertex can we visit next?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	∞	Ø
G	F	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	T	0	Ø
L	F	16	K

- The path (K, H, I, G) is the shortest path from K to G of length 13
 - Vertex G has three unvisited neighbors: E, F and J

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	∞	Ø
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	T	0	Ø
L	F	16	K

Consider these paths:

- (K, H, I, G, E) of length 13 + 15 = 28
- (K, H, I, G, F) of length 13 + 4 = 17
- (K, H, I, G, J) of length 13 + 19 = 32

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	T	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We have now found a path to vertex F

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	17	G
G	T	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

• Where do we visit next?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

SPT 2º

- The path (K, H, E) is the shortest path from K to E of length 14
 - Vertex G has four unvisited neighbors: B, C, D and F

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

- The path (K, H, E) is the shortest path from K to E of length 14
 - Vertex G has four unvisited neighbors: B, C, D and F

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
C	F	∞	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Consider these paths:

- (K, H, E, B) of length 14 + 5 = 19
- (K, H, E, C) of length 14 + 1 = 15
- (K, H, E, D) of length 14 + 10 = 24
- (K, H, E, F) of length 14 + 22 = 36

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	∞	Ø
C	F	∞	Ø
D	F	∞	Ø
E	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

• We've discovered paths to vertices B, C, D

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	E
C	F	15	E
D	F	24	E
E	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

• Which vertex is next?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	E
С	F	15	E
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

- We've found that the path (K, H, E, C) of length 15 is the shortest path from K to C
 - Vertex C has one unvisited neighbor, B

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
C	Т	15	E
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

- The path (K, H, E, C, B) is of length 15 + 7 = 22
 - We have already discovered a shorter path through vertex E

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	E
C	T	15	E
D	F	24	Е
Е	T	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Where to next?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

- We now know that (K, L) is the shortest path between these two points
 - Vertex L has no unvisited neighbors

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	F	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	Т	16	K

- Where to next?
 - Does it matter if we visit vertex F first or vertex J first?

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	E
Е	T	14	Н
F	F	17	G
G	Т	13	I
Н	T	8	K
I	Т	10	Н
J	F	17	K
K	T	0	Ø
L	T	16	K

- Let's visit vertex F first
 - It has one unvisited neighbor, vertex D

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	T	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	Т	16	K

- The path (K, H, I, G, F, D) is of length 17 + 14 = 31
 - This is longer than the path we've already discovered

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	T	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	T	16	K

- Now we visit vertex J
 - It has no unvisited neighbors

Vertex	S	Distance	Parent
Α	F	∞	Ø
В	F	19	Е
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	T	17	K
K	Т	0	Ø
L	T	16	K

- Next we visit vertex B, which has two unvisited neighbors:
 - (K, H, E, B, A) of length 19 + 20 = 39
 - (K, H, E, B, D) of length 19 + 13 = 32
- We update the path length to A

Vertex	S	Distance	Parent
A	F	39	В
В	T	19	E
С	Т	15	Е
D	F	24	E
E	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	T	16	K

- Next we visit vertex D
 - The path (K, H, E, D, A) is of length 24 + 21 = 45
 - We don't update A

Vertex	S	Distance	Parent
A	F	39	В
В	Т	19	Е
С	Т	15	Е
D	T	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

- Finally, we visit vertex A
 - It has no unvisited neighbors and there are no unvisited vertices left
 - We are done

Vertex	S	Distance	Parent
A	T	39	В
В	Т	19	Е
С	Т	15	E
D	Т	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

 Thus, we have found the shortest path from vertex K to each of the other vertices

Vertex	S	Distance	Parent
Α	Т	39	В
В	Т	19	Е
С	Т	15	Е
D	Т	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	I
Н	Т	8	K
I	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	T	16	K

• Using the previous pointers, we can reconstruct the paths

Vertex	S	Distance	Parent
Α	Τ	39	В
В	Τ	19	Е
С	Т	15	Е
D	Τ	24	Е
Е	Τ	14	Н
F	Τ	17	G
G	Τ	13	I
Н	Т	8	K
I	Τ	10	Н
J	Τ	17	K
K	Т	0	Ø
L	Т	16	K

- The table defines a rooted parental tree
 - The source vertex K is at the root
 - The previous pointer is the parent of the vertex in the tree

Vertex	Previous
Α	В
В	Е
С	Е
D	Е
Е	Н
F	G
G	I
Н	K
I	Н
J	K
K	Ø
L	K

Comments on Dijkstra's Algorithm

- If at some point, all unvisited vertices have a distance ∞?
 - This means that the graph is unconnected
 - We have found the shortest paths to all vertices in the connected subgraph containing the source vertex
- To find the shortest path between vertices v_i and v_k?
 - Apply the same algorithm, but stop when visiting vertex v_k
- Does the algorithm change if graph is directed?
 - No

Q: A B C D E $0 \quad \infty \quad \infty \quad \infty$

Initialization

S: {}

Vertex	Distance	Parent
Α	0	Ø
В	∞	Ø
С	∞	Ø
D	∞	Ø
E	∞	Ø

Q: A B C D E $0 \infty \infty \infty \infty$

$$A \leftarrow Extract-Min(Q)$$

S: {A}

Vertex	Distance	Parent
Α	0	Ø
В	∞	Ø
С	∞	Ø
D	∞	Ø
Е	∞	Ø

Update all neighbors of A

S: {A}

Vertex	Distance	Parent
Α	0	Ø
В	10	Α
С	3	Α
D	∞	Ø
Е	∞	Ø

26-SPT 52

Q:	Α	В	C	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞

C ← Extract-Min((Q)
------------------	-----

Vertex	Distance	Parent
Α	0	Ø
В	10	Α
С	3	Α
D	∞	Ø
E	∞	Ø

Q:	Α	В	C	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞
		7		11	5

Update all neighbors of C

S: {A, C}

Vertex	Distance	Parent
Α	0	Ø
В	7	С
С	3	Α
D	11	С
Е	5	С

Q:	Α	В	C	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞
		7		11	5

E ←	Extract-Min(Q)
------------	----------------

Vertex	Distance	Parent
Α	0	Ø
В	7	С
С	3	Α
D	11	С
E	5	С

Q:	A	В	C	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞
		7		11	5
		7		11	

Update all neighbors of E

S: {A, C, E}

Vertex	Distance	Parent
Α	0	Ø
В	7	С
С	3	Α
D	11	C
Е	5	С

$$B \leftarrow Extract-Min(Q)$$

S: {A, C, E, B}

Q:	Α	В	С	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞
		7		11	5
		7		11	

Vertex	Distance	Parent
Α	0	Ø
В	7	C
С	3	Α
D	11	С
Е	5	С

Update all neighbors of B

S: {A, C, E, B}

Vertex	Distance	Parent
Α	0	Ø
В	7	C
С	3	Α
D	9	В
Е	5	С

$$D \leftarrow Extract-Min(Q)$$

S: {A, C, E, B, D}

Q:	Α	В	С	D	E
	0	∞	∞	∞	∞
		10	3	∞	∞
		7		11	5
		7		11	
				9	

Vertex	Distance	Parent
Α	0	Ø
В	7	С
С	3	Α
D	9	В
E	5	С

Negative Edges

- Dijkstra's algorithm is based on the greedy method
 - It adds vertices by increasing distance

Any Question So Far?

