

SEM - 2-2 (RC 07-08)

F.E. (Semester – II) (Revised in 2007-08) Examination, May/June 2016 APPLIED SCIENCE – II (PHYSICS AND CHEMISTRY)

Duration: 3 Hours Total Marks: 100 Instructions: 1) Answer one question from each Module. 2) Answer the two Sections in separate answer books. 3) Draw diagrams wherever required. 4) Assume additional data if required. Physical Constants: Planck's constant = 6.626×10^{-34} J-s Boltzmann's constant = 1.38×10^{-23} J/K. Electron charge = 1.6×10^{-19} C Rydberg constant = 1.097×10^7 /m. Electron mass = 9.1×10^{-31} Kg Velocity of light = 3×10^8 m/s. SECTION - I (Physics) MODULE-I Answer one question from each Module. 1. a) What are step-index and graded index optical fibres? Draw their R.I. profile. 5 b) Discuss Einstein's theory of stimulated emission. 5 c) Find the relative population of two energy states in a laser that produces a light beam of wavelength 6943 A at 400 K. 5 d) Describe construction and working of a solid state laser. Draw the necessary diagrams. In what way it differs from He-Ne laser. (give any two differences). 10 a) Discuss various properties of laser. 5 b) Give the advantages and disadvantages of fibre optics communication over ordinary cable communication. c) An optical fibre has core R.I 1.52 and Δ = 0.007. Find i) Cladding R.I. ii) Critical angle iii) Acceptance angle iv) Numerical aperture.

	d)	Explain the following terms:	
		i) Acceptance angle	
		ii) Numerical aperture	
		iii) Stimulated emission	
		iv) Population inversion	
		v) Pumping:	10
		MODULE – II	
3.	a)	Distinguish between Type-I and Type-II superconductor.	5
	b)	Distinguish between X-rays and γ-rays.	5
	c)	While comparing the wavelength of two monochromatic X-rays lines, it is found that line A gives first order Bragg's reflection maximum at a glancing angle of 20° to the smooth surface of a crystal. Line B of known wavelength	
		1 Å gives a third order reflection maximum at a glancing angle of 50° with the same face of the same crystal. Find the wavelength of the line A.	5
	d)	Describe the production of X-rays by Coolidge tube. How intensity and quality of X-rays are controlled?	10
4.	a)	State and explain Mosley's law. Mention its significance.	5
	b)	Discuss in brief the BCS theory of super conductivity.	5
	c)	Critical temperature of superconductor when no magnetic field is present is 10 K. Find the temperature at which the critical field becomes half of its value at 0 K.	5
	d)	Derive an expression for wavelength associated with electron moving under a potential of V volts. Describe an experiment to show the wave-like character of a beam of electrons.	10
		SECTION - II (Chemistry)	
Α	nsv	ver one question from each Module. MODULE – III	
5	a	Explain the term Cracking of Hydrocarbon (HC) and describe any one process for cracking of HC.	6
T	b	 State the various ingredients involved in compounding of polymers to yield a plastic material, also state their role and give one example each. 	5

	c)	Explain the process of Fractional distillation with the help of a neat labelled diagram.	5
	d)	Define the term 'Elastomer'. Outline the synthesis, properties and application of any one elastomer.	5
	e)	Define the following terms: i) Fuel ii) Calorific value iii) Glass Transition Temperature iv) Polymer.	4
6.	a)	Define the terms G.C.V and N.C.V and describe briefly the method for determining the same.	6
	b)	Explain the Bulk and Solution method of polymerization.	5
	c)	Explain the different stages involved in the refining of crude oil with relevant diagrams.	5
	d)	Define the term 'Adhesive'. Outline the synthesis and applications of any one adhesive.	5
	e)	Outline the production of metallurgical and solar grade silicon.	4
		MODULE – IV	
7.	a)	A water sample was analyzed for	
	4	i) DO	
		ii) Hardness	
		The test analysis as per standard protocols gave the following data: i) 100 ml of the water sample upon titration with 0.01 M Na ₂ S ₂ O ₃ required 2.0 ml of the titrant.	
		ii) The sample showed the presence of CaCO ₃ (100 ppm) and MgCl ₂ (200 ppm). Find the DO (in ppm) and Hardness (in ppm CaCO ₃ eq.) (data given At. Wt. of Ca = 40; C = 12; O = 16; Mg = 24; Cl = 35.5)	6
	b)	Explain the process of Flash Evaporation for treating saline water with relevant	5

	c)	With the help of neat diagram, illustrate the transition of a material from solid to smectic, nematic and liquid phases in the order of their energy levels.	5
	d)	Discuss the structural features of amphiphile in a Lyotropic LC phase. Draw any two Lyotropic LC phases.	5
	e)	Briefly explain the working of potentiometer.	4
8.	a)	Discuss the experimental methods for determination of Hardness, Alkalinity and dissolved oxygen content in water.	6
	b)	With the help of neat diagram, explain the behavior of Cholesteric Liquid Crystal with respect to change in temperature and state one application associated with this phenomenon.	5
	c)	Explain the process of chlorination with respect to break point chlorination with relevant diagram in the disinfection of water.	5
	d)	Discuss the Liquid Crystalline properties associated with PAA homologous series.	5
	e)	Briefly explain the principle and working of Colorimeter.	4

The test analysis as per standard protocols gave the following data: