Instruction

Type	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n := 0)$
Successor	S(n)	Add 1 to r_n . $(r_n + 1 \rightarrow R_n, \text{ or } r_n := r_n + 1)$
Transfer	T(m,n)	Copy r_m to R_n . $(r_m \to R_n, \text{ or } r_n := r_m)$
Jump	J(m,n,q)	If $r_m = r_n$, go to the <i>q</i> -th instruction;
		otherwise go to the next instruction.

Z(n), S(n), T(m,n) are arithmetic instructions.

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- Notations
 - Register Machine
 - Joining Programs Together

Configuration and Instructions

Example: The initial registers are:

R_1	R_2	R_3	R_4	R_5	R_6	R_7	• • •
9	7	0	0	0	0	0	

The program is:

 $I_1: J(1,2,6)$

 $I_2: S(2)$

 $I_3: S(3)$

 $I_4: J(1,2,6)$

 $I_5: J(1,1,2)$

 $I_6: T(3,1)$

Configuration and Computation

Configuration:

the contents of the registers + the current instruction number.

Initial configuration, computation, final configuration.

Operation of URM under a program P

- $P = \{I_1, I_2, \cdots, I_s\} \rightarrow URM$
- URM starts by obeying instruction I_1
- When URM finishes obeying I_k , it proceeds to the next instruction in the computation,
 - \triangleright if I_k is not a jump instruction, then the next instruction is I_{k+1} ;
 - b if $I_k = J(m, n, q)$ then next instruction is (1) I_q , if $r_m = r_n$; or (2) I_{k+1} , otherwise.
- Computation stops when the next instruction is I_v , where v > s.
 - \triangleright if k = s, and I_s is an arithmetic instruction;
 - ightharpoonup if $I_k = J(m, n, q)$, $r_m = r_n$ and q > s;
 - ightharpoonup if $I_k = J(m, n, q), r_m \neq r_n$ and k = s.

Flow Diagram

- J(m, m, q) is alertunconditional jump
- Computations that never stop

Some Notation

Suppose P is the program of a URM and a_1, a_2, a_3, \ldots are the numbers stored in the registers.

- $P(a_1, a_2, a_3, ...)$ is the initial configuration.
- $P(a_1, a_2, a_3, ...) \downarrow$ means that the computation converges.
- $P(a_1, a_2, a_3, ...) \uparrow$ means that the computation diverges.
- $P(a_1, a_2, \ldots, a_m)$ is $P(a_1, a_2, \ldots, a_m, 0, 0, \ldots)$.

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

URM-Computable Function

URM-Computable Function

What does it mean that a URM computes a (partial) n-ary function f?

URM-Computable Function

What does it mean that a URM computes a (partial) n-ary function f?

Let P be the program of a URM and $a_1, \ldots, a_n, b \in \mathbb{N}$. When computation $P(a_1, \ldots, a_n)$ converges to b if $P(a_1, \ldots, a_n) \downarrow$ and $r_1 = b$ in the final configuration. We write $P(a_1, \ldots, a_n) \downarrow b$.

• *P* URM-computes f if, for all $a_1, \ldots, a_n, b \in \mathbb{N}$,

$$P(a_1,\ldots,a_n)\downarrow b \text{ iff } f(a_1,\ldots,a_n)=b$$

- Function *f* is URM-computable if there is a program that URM-computes *f*.
- (We abbreviate "URM-computable" to "computable")

Computable Functions

Let

- % be the set of computable functions and
- \mathcal{C}_n be the set of *n*-ary computable functions.

Construct a URM that computes x + y.

Construct a URM that computes x + y.

 $I_1: J(3,2,5)$

 $I_2: S(1)$

 $I_3: S(3)$

 $I_4: J(1,1,1)$

Construct a URM that computes x + y.

 $I_1: J(3,2,5)$

 $I_2: S(1)$

 $I_3: S(3)$

 $I_4: J(1,1,1)$

Construct a URM that computes
$$x - 1 = \begin{cases} x - 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Construct a URM that computes
$$x - 1 = \begin{cases} x - 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

 $I_1: J(1,4,8)$

 $I_2: S(3)$

 $I_3: J(1,3,7)$

 $I_4: S(2)$

 $I_5: S(3)$

 $I_6: J(1,1,3)$

 $I_7: T(2,1)$

Construct a URM that computes
$$x - 1 = \begin{cases} x - 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

 $I_1: J(1,4,8)$

 $I_2: S(3)$

 $I_3: J(1,3,7)$

 $I_4: S(2)$

 $I_5: S(3)$

 $I_6: J(1,1,3)$

 $I_7: T(2,1)$

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

```
I_1: J(1,2,6)
I_2: S(3)
```

$$I_2 \cdot S(2)$$

$$I_3: S(2)$$

$$I_4: S(2)$$

$$I_5: J(1,1,1)$$

$$I_6: T(3,1)$$

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

 $I_1: J(1,2,6)$

 $I_2: S(3)$

 $I_3: S(2)$

 $I_4: S(2)$

 $I_5: J(1,1,1)$

 $I_6: T(3,1)$

Function Defined by Program

Given any program P and $n \ge 1$, by thinking of the effect of P on initial configurations of the form $a_1, \dots, a_n, 0, 0, \dots$, there is a unique n-ary function that P computes, denoted by $f_P^{(n)}$.

$$f_P^{(n)}(a_1,\ldots,a_n) = \begin{cases} b, & \text{if } P(a_1,\ldots,a_n) \downarrow b, \\ \text{undefined}, & \text{if } P(a_1,\ldots,a_n) \uparrow. \end{cases}$$

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Predicate and Decision Problem

The value of a predicate is either 'true' or 'false'.

The answer of a decision problem is either 'yes' or 'no'.

Example: Given two numbers x, y, check whether x is a multiple of y.

Input: x, y;

Output: 'Yes' or 'No'.

The operation amounts to calculation of the function

$$f(x,y) = \begin{cases} 1, & \text{if } x \text{ is a multiple of } y, \\ 0, & \text{if otherwise.} \end{cases}$$

Thus the property or predicate 'x is a multiple of y' is algorithmically or effectively decidable, or just decidable if function f is computable.

Decidable Predicate and Decidable Problem

Suppose that $M(x_1, ..., x_n)$ is an *n*-ary predicate of natural numbers. The characteristic function $c_M(\mathbf{x})$, where $\mathbf{x} = x_1, ..., x_n$, is given by

$$f_P^{(n)}(a_1,\ldots,a_n) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if otherwise.} \end{cases}$$

The predicate $M(\mathbf{x})$ is decidable if c_M is computable; it is undecidable otherwise.

Computability on other Domains

Suppose D is an object domain. A coding of D is an explicit and effective injection $\alpha: D \to \mathbb{N}$. We say that an object $d \in D$ is coded by the natural number $\alpha(d)$.

A function $f: D \to D$ extends to a numeric function $f^*: \mathbb{N} \to \mathbb{N}$. We say that f is computable if f^* is computable.

$$f^* = \alpha \circ f \circ \alpha^{-1}$$

Consider the domain \mathbb{Z} . An explicit coding is given by the function α where

$$\alpha(n) = \begin{cases} 2n, & \text{if } n \ge 0, \\ -2n - 1, & \text{if } n < 0. \end{cases}$$

Then α^{-1} is given by

$$\alpha^{-1}(m) = \begin{cases} \frac{1}{2}m, & \text{if } m \text{ is even,} \\ -\frac{1}{2}(m+1), & \text{if } m \text{ is odd.} \end{cases}$$

Example (Continued)

Consider the function f(x) = x - 1 on \mathbb{Z} , then $f^* : \mathbb{N} \to \mathbb{N}$ is given by

$$f^*(x) = \begin{cases} 1 & \text{if } x = 0 \text{ (i.e. } x = \alpha(0)), \\ x - 2 & \text{if } x > 0 \text{ and } x \text{ is even (i.e. } x = \alpha(n), n > 0), \\ x + 2 & \text{if } x \text{ is odd (i.e. } x = \alpha(n), n < 0). \end{cases}$$

It is a routine exercise to write a program that computes f^* , hence x-1 is a computable function on \mathbb{Z} .

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Remark

Register Machines are more advanced than Turing Machines.

Remark

Register Machines are more advanced than Turing Machines.

Register Machine Models can be classified into three groups:

- CM (Counter Machine Model).
- RAM (Random Access Machine Model).
- RASP (Random Access Stored Program Machine Model).

Remark

Register Machines are more advanced than Turing Machines.

Register Machine Models can be classified into three groups:

- CM (Counter Machine Model).
- RAM (Random Access Machine Model).
- RASP (Random Access Stored Program Machine Model).

The Unlimited Register Machine Model belongs to the CM class.

Finiteness

Every URM uses only a fixed finite number of registers, no matter how large an input number is.

Finiteness

Every URM uses only a fixed finite number of registers, no matter how large an input number is.

This is a fine property of Counter Machine Model.

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Sequential Composition

Given Programs P and Q, how do we construct the sequential composition P; Q?

The jump instructions of P and Q must be modified.

Sequential Composition

Given Programs P and Q, how do we construct the sequential composition P; Q?

The jump instructions of P and Q must be modified.

Standard Form: A program $P = I_1, \dots, I_s$ is in *standard form* if, for every jump instruction J(m, n, q) we have $q \le s + 1$.

Lemma

For any program P there is a program P^* in standard form such that any computation under P^* is identical to the corresponding computation under P. In particular, for any a_1, \dots, a_n, b ,

$$P(a_1, \dots, a_n) \downarrow b$$
 if and only if $P^*(a_1, \dots, a_n) \downarrow b$,

and hence $f_P^{(n)} = f_{P^*}^{(n)}$ for every n > 0.

Proof

Suppose that
$$P=I_1,I_2,\cdots,I_s$$
. Put $P^*=I_1^*,I_2^*,\cdots,I_s^*$ where

if I_k is not a jump instruction, then $I_k^* = I_k$;

if
$$I_k$$
 is not a jump instruction, then $I_k^* = \left\{ \begin{array}{ll} I_k & \text{if } q \leq s+1, \\ J(m,n,s+1) & \text{if } q > s+1. \end{array} \right.$

Join/Concatenation

Let P and Q be programs of lengths s, t respectively, in standard form. The *join* or *concatenation* of P and Q, written PQ or $\frac{P}{Q}$, is a program $I_1, I_2, \dots, I_s, I_{s+1}, \dots, I_{s+t}$ where $P = I_1, \dots, I_s$ and the instructions I_{s+1}, \dots, I_{s+t} are the instructions of Q with each jump J(m, n, q) replaced by J(m, n, s + q).

Program as Subroutine

Suppose the program P computes f.

Let $\rho(P)$ be the least number i such that the register R_i is not used by the program P.

The notation $P[l_1, \dots, l_n \to l]$ stands for the following program:

