COMP 20008 SEMESTER 2, 2018

Agglomerative Clustering Example

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix 1 2.7 3.3 4.6 6 7.5 9.1 10.8 12.6 16.5 1 0 Initially, how many 2.7 (1.7 0 clusters do we have? 3.3 0 0 4.6 0 0 7.5 0 0 9.1 0 0 10.8 0 0 112.6 0 0 Inter-point distance Matrix

Step1: Calculate Distances between every pair of observation: Euclidean Distance

Iteration # 1

X-axis → observations . Y-axis →

distances

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Step 2: Choose the most similar two observations to merge (i.e. Closest)

(i.e. pair with the minimum distance in Dissimilarity Matrix)

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria. Dissimilarity Matrix D(4 6 2 7) D(4.6,3.3) 0 1.7 0 0 1.7 4.6 2.3 0.6 0 0 3.6 0 1.5 10.8 6.5 4.8 4.2 2.9 1.5 8.1 5.8 4.5 11.6 6.6 n 9.8 8.1 6.2 4.8 10.5 11.6 9.9 9.3 8 6.6 Inter-point distance Matrix 15.5 13.8 13.2 11.9 10.5 Step 3: Update Dissimilarity Matrix: Calculate the distance between

Cluster12 and all other observations (calculate linkage using min)

Iteration # 1

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	2.7- 3.3	4.6	6	7.5	9.1	10.8	12.6	16.5						
1	0										1	2.7	3.3	4.6	6
2.7- 3.3	1.7	0								1	0				
4.6	3.6	1.3	0							2.7	1.7	0			
6	5	? -	1.4	0						3.3	2.3	0.6	0		
7.5	6.5	?	2.9	1.5	0					4.6	3.6	1.9	1.3	0	
9.1	8.1	?	4.5	3.1	1.6	0				6	5	3.3	2.7	1.4	0
10.8	9.8	?	6.2	4.8	3.3	1.7	0			7.5	6.5	4.8	4.2	2.9	1.5
12.6	11.6	?	8	6.6	5.1	3.5	1.8	0		9.1	8.1	6.4	5.8	4.5	3.1
16.5	15.5	?	11.9	10.5	9	7.4	5.7	3.9	0	10.8	9.8	8.1	7.5	6.2	4.8
				Inter-po	nint dist	ance N	Matrix			12.6	11.6	9.9	9.3	8	6.6
s	Step 3: I	Jpdate					te the dis	stance b	etween	16.5	15.5	13.8	13.2	11.9	10.5
C	Cluster1	2 and	all othe	robsen	vations	(calcul	ate linka	ge using	ı min)						

Iteration # 1

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	2.7- 3.3	4.6	6	7.5	9.1	10.8	12.6	16.5						
1	0										1	2.7	3.3	4.6	6
2.7- 3.3	1.7	0								1	0				
4.6	3.6	1.3	0							2.7	1.7	0			
6	5	2.7	1.4	0						3.3	2.3	0.6	0		
7.5	6.5	? _	2.9	1.5	0					4.6	3.6	1.9	1.3	0	
9.1	8.1	?	4.5	3.1	1.6	0				6	5	3.3	2.7	1.4	0
10.8	9.8	?	6.2	4.8	3.3	1.7	0			7.5	6.5	4.8	4.2	2.9	1.5
12.6	11.6	?	8	6.6	5.1	3.5	1.8	0		9.1	8.1	6.4	5.8	4.5	3.1
16.5	15.5	?	11.9	10.5	9	7.4	5.7	3.9	0	10.8	9.8	8.1	7.5	6.2	4.8
				Inter-p	oint dis	tance N	Matrix			12.6	11.6	9.9	9.3	8	6.6
			Dissim	ilarity N	//atrix: (Calcula	te the di			16.5	15.5	13.8	13.2	11.9	10.5

Cluster12 and all other observations (calculate linkage using min)

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

Cluster 12 and all other observations (calculate linkage using min)

	1	2.7- 3.3	4.6	6	7.5	9.1	10.8	12.6	16.5						
1	0										1	2.7	3.3	4.6	6
2.7- 3.3	1.7	0								1	0				
4.6	3.6	1.3	0							2.7	1.7	0			
6	5	2.7	1.4	0		Fill in	the ?			3.3	2.3	0.6	0		
7.5	6.5	4.2	2.9	1.5	0					4.6	3.6	1.9	1.3	0	
9.1	8.1	? _	4.5	3.1	1.6	0				6	5	3.3	2.7	1.4	0
10.8	9.8	?	6.2	4.8	3.3	1.7	0			7.5	6.5	4.8	4.2	2.9	1.5
12.6	11.6	?	8	6.6	5.1	3.5	1.8	0		9.1	8.1	6.4	5.8	4.5	3.1
16.5	15.5	?	11.9	10.5	9	7.4	5.7	3.9	0	10.8	9.8	8.1	7.5	6.2	4.8
				Inter-no	oint dis	tance N	Matrix			12.6	11.6	9.9	9.3	8	6.6
s	tep 3: l	Jpdate					te the dis	stance b	etween	16.5	15.5	13.8	13.2	11.9	10.5

Iteration # 1

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	2.7- 3.3	4.6	6	7.5	9.1	10.8	12.6	16.5
1	0								
2.7- 3.3	1.7	0							
4.6	3.6	1.3	0						
6	5	2.7	1.4	0					
7.5	6.5	4.2	2.9	1.5	0				
9.1	8.1	5.8	4.5	3.1	1.6	0			
10.8	9.8	7.5	6.2	4.8	3.3	1.7	0		
12.6	11.6	9.3	8	6.6	5.1	3.5	1.8	0	
16.5	15.5	13.2	11.9	10.5	9	7.4	5.7	3.9	0

This is one iteration COMPLETED

Dendrogram Plot X-axis → observations , Y-axis → distances

Iteration # 2

Single Linkage – Hierarchical Clustering

distances

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Step 2: Choose the most similar two observations to merge (i.e. Closest) (i.e. pair with the minimum distance in Dissimilarity Matrix)

Iteration # 2

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

0 1.7 0 1.7 3.6 2.7-3.3-4..6 1.7 1.7 0 5 0 4.6 3.6 1.3 0 6.5 1.5 0 5 0 8.1 3.1 6.5 42 29 1.5 10.8 9.8 1.7 8.1 5.8 4.5 3.1 12.6 11.6 3.5 1.8 0 10.8 9.8 7.5 6.2 4.8 15.5 3.9 12.6 11.6 9.3 8 6.6 15.5 13.2 11.9 10.5 Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

Single Linkage – Hierarchical Clustering Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5),

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Iteration # 2

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

Single Linkage – Hierarchical Clustering

0 1.7 0

5 2.7 1.4 0

6.5 42 29 1.5

8.1 5.8 4.5 3.1

9.8 7.5 6.2 4.8

15.5 13.2 11.9 10.5

4.6 3.6 1.3 0

12.6 11.6 9.3 8 6.6

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	2.7- 3.3- 4.6	6	7.5	9.1	10.8	12.6	16.5
1	0							
2.7- 3.3- 46	1.7	0						
6	5	1.4	0					
7.5	6.5	2.9	1.5	0				
9.1	8.1	4.5	3.1	1.6	0			
10.8	9.8	6.2	4.8	3.3	1.7	0		
12.6	11.6	8	6.6	5.1	3.5	1.8	0	
16.5	15.5	11.9	10.5	9	7.4	5.7	3.9	0

Inter-point distance Matrix

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster12 and all other observations (calculate linkage using min)

Iteration # 2

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	2.7- 3.3- 4.6	6	7.5	9.1	10.8	12.6	16.5
1	0							
2.7- 3.3- 46	1.7	0						
6	5	1.4	0					
7.5	6.5	2.9	1.5	0				
9.1	8.1	4.5	3.1	1.6	0			
10.8	9.8	6.2	4.8	3.3	1.7	0		
12.6	11.6	8	6.6	5.1	3.5	1.8	0	
16.5	15.5	11.9	10.5	9	7.4	5.7	3.9	0

This is one more iteration COMPLETED

Inter-point distance Matrix

distances

Dendrogram Plot X-axis → observations , Y-axis →

2.7 3.3 4.6 6 7.5 9.1 10.8 12.6 16.5

Single Linkage – Hierarchical Clustering Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5),

agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Inter-point distance Matrix

This is one iteration COMPLETED Step 2: Choose the most similar two observations to merge (i.e. Closest) (i.e. pair with the minimum distance in Dissimilarity Matrix)

Dendrogram Plot X-axis → observations , Y-axis → distances

Iteration # 3

0 1.7

1.7

6.5

15.5

9.1

10.8 9.8

12.6 11.6

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix 0 1.6 0 Fill in the? 3.3 1.7 0 3.5 0

7.4 Inter-point distance Matrix

9

Step 3: Update Dissimilarity Matrix: Calculate the distance between Cluster 12 and all other observations (calculate linkage using min)

5.7

3.9

0

Iteration

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	A	7.5	9.1	10.8	12.6	16.5
1	0						
A	1.7	0					
7.5	6.5	1.5	0				
9.1	8.1	3.1	1.6	0			
10.8	9.8	4.8	3.3	1.7	0		
12.6	11.6	6.6	5.1	3.5	1.8	0	
16.5	15.5	10.5	9	7.4	5.7	3.9	0

Inter-point distance Matrix

Dendrogram Plot X-axis → observations , Y-axis → distances

This is another iteration COMPLETED

How many Iterations will be running the algorithm?

Single Linkage – Hierarchical Clustering

Using the 1-dimensional dataset (1,2.7,3.3,4.6,6.0,7.5,9.1,10.8,12.6,16.5), agglomerative hierarchical clustering and Euclidean distance, show the dendrogram for each of single linkage and complete linkage criteria.

Dissimilarity Matrix

	1	Α	7.5	9.1	10.8	12.6	16.5
1	0						
A	1.7	0					
7.5	6.5	1.5	0				
9.1	8.1	3.1	1.6	0			
10.8	9.8	4.8	3.3	1.7	0		
12.6	11.6	6.6	5.1	3.5	1.8	0	
16.5	15.5	10.5	9	7.4	5.7	3.9	0

Inter-point distance Matrix

How many Iterations will be running the algorithm?

Linkage Methods Other cluster merging methods: Dissimilarity Matrix 7.5 9.1 10.8 0 0 1.7 1.7 0 0 7.5 6.5 5 1.4 0 8.1 1.6 0 2.9 1.5 6.5 0 9.8 3.3 1.7 0 8.1 4.5 1.6 11.6 3.5 1.8 0 9.8 6.2 4.8 3.3 15.5 5.7 3.9 11.6 8 6.6 5.1 Inter-point distance Matrix 15.5 11.9 10.5 • <u>Single linkage</u>: D({2.7, 3.3, 4.6}, 6) = min {2.9,1.5} = 1.5 • Complete linkage: D({2.7, 3.3, 4.6}, 6) = max {2.9,1.5} = 2.9

