Shapes of graphs

October 31st, 2024

Here are some spooky key ideas from section 4.2.	
The Mean Value Theorem says that if f is some c between a and b such that	on the interval $[a, b]$, then there exists
f'(c) =	
On a given interval, we say f is $\left\{ \begin{array}{c} \\ \end{array} \right.$	
The $\mbox{\it first derivative test}$ is used to find extrema. Recall th	at c is a critical number if $f'(c)$ is 0 or undefined.
We say f has a $\left\{ \begin{array}{c} \\ \end{array} \right.$	at c if f' changes from positive to negative at c if f' changes from negative to positive at c .
But if f' does not change sign at c , then	<u>.</u>
We can also define concavity in terms of second derivative	ves.
On a given interval, we say f is $\left\{\begin{array}{c} & & & \\ & & & \end{array}\right\}$	if $f''(x) > 0 $ on that interval. $ if f''(x) < 0 $
The second-derivative analogue for critical points is $inflect$ if f is continuous at P and	tion points. A point P on a curve $f(x)$ is an inflection point $\underline{}$
Here is the second derivative test for a function f continuous	uous near c:
We say f has a $\left\{ \begin{array}{c} \\ \end{array} \right.$	at c if $f'(c) = 0$ and $f''(c) > 0$ at c if $f'(c) = 0$ and $f''(c) < 0$

Trig practice: Show that $(\sin^4 \theta - \cos^4 \theta + 1) \csc^2 \theta = 2$.

Problem 1: (Stewart 4.2) Suppose that the derivative of a function f is $f'(x) = (x+1)^2(x-3)^5(x-6)^4$. On what interval is f increasing?

My Attempt: | Solution:

Problem 2: (Stewart 4.2) Find the intervals of increase a $0 \le x \le 2\pi$.	and the intervals of decrease of $f(x) = \sin x + \cos x$, for
My Attempt:	Solution:
Problem 3: (Stewart 4.2) Find the intervals of concavity a	nd the inflection points of $f(x) = 4x^3 + 3x^2 - 6x + 1$.
My Attempt:	Solution:
Problem 4: (Stewart 4.2) Suppose that $3 \le f'(x) \le 5$ for a <i>Value Theorem!</i>	all x . Show that $18 \le f(8) - f(2) \le 30$. Hint: use the Mean
My Attempt:	Solution:

Problem 5: ((Stewart 4.2)	For what values	of a and b does	the function
1 lobiem 3. (Jiewait 4.4	TOI WHAT VAIUES	or a aria o aoes	ine runcin

$$f(x) = axe^{bx^2}$$

have the maximum value f(2) = 1?

My Attempt:

Solution:

Problem 6: (Stewart 4.2) Find the intervals of concavity and the inflection points of $f(x) = \frac{x^2}{x^2+3}$.

My Attempt:

Solution:

Challenge problem: (Stewart 4.2) Find the *x*-coordinate of the inflection point of a cubic function with real roots x_1 , x_2 , and x_3 .