Задача

Рассмотрим таблицу G размером n на m такую, что G(i,j) = HOД(i,j) для всех $1 \le i \le n$ и $1 \le j \le m$.

Вам дана последовательность натуральных чисел $\overline{A} = \{a_1, a_2, ..., a_k\}$.

Будем говорить, что она встречается в G, если она совпадает с подряд идущими элементами в некоторой строке начиная с некоторой позиции. Более формально, должны существовать такие числа $1 \le i \le n$ и $1 \le j \le m - k + 1$, что $G(i,j+t-1) = a_t$ для всех $1 \le t \le k$.

Определите, встречается ли последовательность A в таблице G.

Дополнительные условия

Входные данные

Три целых n, m и k ($1 \le n, m \le 10^{12}; 1 \le k \le 10^3$), записанные через пробел, в первой строке. Во второй строке через пробел записаны k целых $a_1, a_2, ..., a_k$ ($1 \le a_i \le 10^{12}$).

Выходные данные

Выведите единственное **YES**, если данная последовательность встречается в G, и **NO** в противном случае.

Ограничения: 1 секунда, 256 мегабайт.

Так выглядит таблица 7 на 10

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2	1	2	1	2	1	2	1	2	1	2
3	1	1	3	1	1	3	1	1	3	1
4	1	2	1	4	1	2	1	4	1	2
5	1	1	1	1	5	1	1	1	1	5
6	1	2	3	2	1	6	1	2	3	2
7	1	1	1	1	1	1	7	1	1	1

Разбор

Если A встречается в G, то она должна встречаться в строке i = LCM(A[1], ..., A[k]). Понятно, что теоретически она может встречаться только в строках, номера которых кратны i, так как номер строки должен делиться на каждое число из A.

Рассмотрим некоторую строку с номером t = i * x (x > 1). Строки i и t отличаются только в таких элементах j, что t и j делятся на некоторое простое число p^q , на которое не делится i (соответственно G(t,j) делится на p^q). Но ни одно число из A на такое p^q делиться не может, потому что тогда бы и i делилось на p^q .

Соответственно, если A находится в строке t, то она не может содержать индекса j. Раз она может содержать только те индексы, где элементы в строках i и t совпадают, достаточно проверять лишь i -ую строку. Отсюда ясно, что если i > n, то ответ задачи NO.

Теперь про позицию в строке

Искомый правый **ј** индекс должен удовлетворять систему линейных уравнений:

$$j = 0 \mod A[1]$$
 $j + 1 = 0 \mod A[2]$
...
 $j + h - 1 = 0 \mod A[h + 1]$
...
 $j + k - 1 = 0 \mod A[k]$

Иными словами, j + h должно делиться на A[h + 1] для каждого $h = \{1, ..., k\}$, потому что правый индекс каждого числа из A должен делиться на само это число.

Понятно, что если j + k > m, то ответом будет **NO**.

Алгоритм

Рассмотрим как можно найти решение системы и проверить её решаемость, используя Китайскую теорему об остатках.

Для этого можно использовать метод, который для данных пар R_1 , M_1 и R_2 , M_2 находит минимальное число U такое, что $U = R_1 \mod M_1$ и $U = R_2 \mod M_2$, или определяет что его не существует. Пусть $U = R_1 + M_1 * x$, тогда мы имеем $R_1 + M_1 * x = R_2 \mod M_2$.

Это можно представить в виде Диофантового уравнения $M_1 * x + M_2 * y = R_2 - R_1$, решение которого происходит с помощью расширенного алгоритма Евклида. Наименьший неотрицательный x, если таковой существует, даёт нам искомое $U = R_1 + M_1 * x$. Теперь этот метод можно использовать, чтобы найти минимальное решение U_0 , удовлетворяющее первые два уравнения.

Теперь можно считать, что у нас новая система из k - 1 уравнений, которая отличается от прошлой тем, что у нее вместо двух первых уравнений новое $j = U_0 \mod \operatorname{LCM}(A[1], A[2])$, и повторить эту же процедуру снова. Используя этот метод k - 1 раз, мы получим итоговое решение для всей системы.

КТО и необходимое условие

Частное решение для всей системы уравнений $X_u = X_{1u} + ... + X_{ku}$. (в нашем случае это U_0) Решение однородной системы $X_o = \text{HOK}(A[1], ..., A[k])$.

 $X = X_u + X_o$. Решение существует только тогда, когда все модули попарно взаимно просты.

Необходимое условие для решение Диофантового уравнения $M_1 * x + M_2 * y = R_2 - R_1$:

 R_2 - R_1 = 0 mod HOД(M_1, M_2). Это очевидно, ведь:

[НОД(M_1, M_2) = d], тогда (M_1/d) * $x + (M_2/d)$ * $y = (R_2 - R_1) / d$. Правая часть должна быть целой. Если это условие не выполняется, то ответ NO.

Разбор

Требуется использовать цикл.

Представим, что первое уравнение из системы это $j = U_0 \mod LCM(A[1])$, тогда понятно, что $X_0 = LCM(A[1]) = A[1]$ и $U_0 = 0$.

Тогда, если взять любое уравнение из системы, из них получится Диофантово уравнение: $X_o * x + A[h] * y = 1 - h - U_0$.

Новое частное решение, подходящее для взятых нами двух уравнений, получится из выражения:

$$U_0 = U_0 + \{ [x * (1 - h - U_0) / HOД(X_o, A[h])] % [A[h] / HOД(X_o, A[h])] \} * X_o.$$

Новое однородное решение будет получаться из выражения

$$X_o = X_o / \text{HOД}(X_o, A[h]) * A[h]$$
, так как HOД(V, L) * HOK(V, L) = V * L.

Omeem

В конце мы получим два числа X_o и U_o , которые являются i и j индексами первого элемента в A. Но U_o потенциально может быть равным 0, потому что остаток от деления может быть нулевым, а индексация в таблице начинается с 1. В таком случае к U_o нужно прибавить X_o .

Осталось проверить совпадает ли A с той последовательностью в таблице. Если не совпадает, то ответ **NO**, иначе **YES**.