Probabilistyczne Uczenie Maszynowe Projekt 1

Jakub Dziwiński, Katarzyna Jabłońska, Dominika Kunc

Cel projektu

Celem projektu było dokonanie klasyfikacji stosowania danych używek przez osoby na podstawie cech demograficznych, osobowości oraz stosowania innych substancji.

Wybór docelowej używki użytej do klasyfikacji został dokonany po eksploracyjnej analizie danych.

Elementy projektu:

- Eksploracyjna analiza danych
- Modele mikstur rozkładów normalnych
- Naiwny Bayes

Zbiór danych

Zbiór danych rozważany w tym projekcie to zbiór **Drug consumption** dostępny na <u>UCI Machine</u> <u>Learning Repository</u>.

- 1885 rekordów
- 30 danych o użytkownikach:
 - dane demograficzne (wiek, płeć, poziom edukacji, kraj zamieszkania, pochodzenie etniczne)
 - o dane o osobowości (neurotyzm, ekstrawersja, otwartość na doświadczenia, ugodowość, sumienność, impulsywność, poszukiwanie nowych doznań
 - o dane dotyczące stosowania używek 19 substancji (m.in. alkohol, kofeina, czekolada, marihuana, nikotyna, amfetamina, LSD, kokaina i inne).

Stosowanie używek można było określić za pomocą 6 klas:

- CL0 Nigdy nieużywane,
- CL1 Używane ponad dekadę temu,
- CL2 Używane w ciągu ostatniej dekady,
- CL3 Używane w ciągu ostatniego roku,
- CL4 Używane w ciągu ostatniego miesiąca,
- CL5 Używane w ciągu ostatniego tygodnia,
- CL6 Używane w ciągu ostatniego dnia.

Dane demograficzne

Dane dotyczące osobowości

Zmniejszenie liczby klas dla stosowania używek:

- CL0 Nigdy nie używano połączone CL0 (nigdy nie używano) oraz CL1 (używano ponad dekadę temu),
- CL3 Używane w ostatniej dekadzie połączone CL2 (używane w ostatniej dekadzie) i CL3 (używane w ciągu ostatniego roku),
- CL6 używane w ostatnim miesiącu połączone CL4 (używane w ostatnim miesiącu), CL5 (używane w ostatnim tygodniu) i CL6 (używane w ostatnim dniu).

Dane dotyczące stosowania używek - zmniejszenie liczby klas

Korelacja Spearmana pomiędzy parami zmiennych

Zależności pomiędzy parami zmiennych - cechy demograficzne a stosowanie marihuany

Zależności pomiędzy parami zmiennych - cechy osobowości a stosowanie marihuany

Zależności pomiędzy parami zmiennych - stosowanie używek a stosowanie marihuany

Przetwarzanie danych

- Zredukowanie liczby klas z 7 do 3
- Stratyfikowany podział zbioru na treningowy (70%) i testowy (30%)
- Usunięcie innych dotyczących używki "Semeron" ze względu na wyjątkowo silne niezbalansowanie
- Standaryzacja zbiorów (StandardScaler z biblioteki sci-kit learn)

Naiwny Bayes

Badane modele:

- 1. z biblioteki Sklearn:
 - a. GaussianNB
 - b. BernoulliNB
 - c. MultinomialNB
 - d. ComplementNB
 - e. CategoricalNB
- 2. implementacja z wykorzystaniem biblioteki **pyro**
- 3. implementacja z wykorzystaniem biblioteki pgmpy

Zakres badań

- 1. Przyjmowane dane (wszystkie cechy lub tylko te związane z człowiekiem)
- 2. Parametr K dla dyskretyzatora KBins w przypadku klasyfikatorów potrzebujących dyskretnych danych
- 3. Liczba epok w przypadku klasyfikatora z biblioteki **pyro**

Zbiór opisujący spożycie marihuany - KBins

Cechy związane z człowiekiem

Wszystkie cechy

Zbiór opisujący spożycie marihuany - loss

Zbiór opisujący spożycie marihuany - metryki

Wszystkie cechy

Zbiór opisujący spożycie marihuany - najlepsze wyniki

	precision	recall	f1-score	support
0	0.64	0.74	0.69	186
1	0.37	0.31	0.34	143
2	0.76	0.75	0.76	237
accuracy			0.64	566
macro avg	0.59	0.60	0.59	566
weighted avg	0.63	0.64	0.63	566

(a) Cechy związane z człowiekiem - model pyro

		precision	recall	f1-score	support
	0	0.71	0.91	0.80	186
	1	0.50	0.41	0.45	143
	2	0.81	0.71	0.76	237
accur	acy			0.70	566
macro	avg	0.67	0.68	0.67	566
veighted	avg	0.70	0.70	0.69	566

(b) Wszystkie cechy - model pgmpy

Zbiór opisujący spożycie nikotyny - KBins

Cechy zwiazane z człowiekiem

Wszystkie cechy

Zbiór opisujący spożycie marihuany - loss

Zbiór opisujący spożycie marihuany - metryki

Zbiór opisujący spożycie nikotyny- najlepsze wyniki

	precision	recall	f1-score	support
0	0.58	0.66	0.61	186
1	0.28	0.23	0.25	117
2	0.63	0.62	0.62	263
accuracy			0.55	566
macro avg	0.50	0.50	0.50	566
weighted avg	0.54	0.55	0.54	566

(a) Cechy związane z człowiekiem - model Gaussian NB

		precision	recall	f1-score	support
	0	0.62	0.73	0.67	186
	1	0.28	0.19	0.22	117
	2	0.68	0.69	0.68	263
accura	су			0.60	566
macro a	vg	0.52	0.54	0.53	566
weighted a	vg	0.58	0.60	0.58	566

(b) Wszystkie cechy - model pyro

Modele mikstur rozkładów normalnych

Badane modele:

- 1. z biblioteki Sklearn,
- 2. implementacja własna

Plan badań

- 1. Wybór najlepszych hiperparametrów przy użyciu miar AIC oraz BIC
- 2. Wizualizacja najlepszych wyników wnioski z klasyfikacji
- 3. Stworzenie metryk klasyfikacji na podstawie wizualizacji porównanie wyników

Testowane hiperparametry:

- 1. liczba komponentów [2, 3, 4, 5, 6, 7, 8, 9, 10]
- 2. liczba maksymalnych iteracji [10, 30, 50, 100]

Zbiór opisujący spożycie marihuany

Sklearn

Implementacja własna

Prawdziwy rozkład klastrów dla zbioru treningowego oraz testowego

Sklearn Implementacja własna

		precision	recall	fl-score	support
	Θ	0.48	0.78	0.60	186
	1	0.20	0.06	0.09	143
	2	0.66	0.62	0.64	237
accui	racy			0.53	566
macro	avg	0.45	0.49	0.44	566
weighted	avg	0.48	0.53	0.49	566

	precision	recall	fl-score	support
Θ	0.34	0.89	0.50	186
1	0.31	0.06	0.09	143
2	0.54	0.13	0.21	237
accuracy			0.36	566
macro avg	0.40	0.36	0.27	566
weighted avg	0.42	0.36	0.28	566

Sklearn

Implementacja własna

Zbiór opisujący spożycie nikotyny

Sklearn

Implementacja własna

Sklearn

Implementacja własna

	precision	recall	fl-score	support
θ	0.21	0.08	0.11	117
1	0.43	0.69	0.53	186
2	0.55	0.47	0.51	263
accuracy			0.46	566
macro avg	0.40	0.41	0.38	566
weighted avg	0.44	0.46	0.43	566

	precision	recall	fl-score	support
Θ	0.35	0.39	0.37	186
1	0.45	0.47	0.46	263
2	0.11	0.09	0.10	117
accuracy			0.36	566
macro avg	0.31	0.31	0.31	566
weighted avg	0.35	0.36	0.36	566

Sklearn

Implementacja własna

Wnioski

- Analiza eksploracyjna potwierdziła pierwotne hipotezy o stosowaniu różnych używek
- Stosowanie pewnych używek może mieć wpływ na stosowanie innych (macierz korelacji)
- Lepsze rezultaty w klasyfikacji uzyskał Naiwny Bayes
- Model mikstur rozkładów normalnych nie zadziałały dla tego zadania, jednak mimo wszystko dość dobrze odwzorowywały poszczególne zależności

Dziękujemy za uwagę!