

PANORAMA BIGDATA, CONOCE EL PROBLEMA ANTES DE ELEGIR TU SOLUCIÓN

Javier Gómez Santos Specific Solution Knowledge Analyst

Panorama Big Data

Panorama Big Data

Hadoop, su historia

- 2002: Doug Cutting crea Nutch
- 2003: Google publica un White paper sobre su GFS
- 2004: nace NDFS, precursor del HDFS
- 2004: Google publica un White Paper con la metodología MapReduce
- 2005: se implementa MapReduce sobre NDFS
- 2008: Yahoo contrata a Doug Cutting para usar Hadoop a nivel web
- Hadoop era el nombre del peluche que tenía el hijo de Doug Cutting, un elefante amarillo

Hadoop, ¿Qué es?

- Hadoop es un Data Lake, un sistema que almacena datos tal y como son originados por una fuente.
- Estos datos, no son modificados, y serán explotados por distintos procesos para labores analíticas
- Los componentes principales de Hadoop son el HDFS y el YARN
- Está escrito en **Java**

Hadoop, HDFS

HDFS es un sistema de ficheros distribuido.

Almacena los ficheros partiéndolos en **bloques** de tamaño fijo, y distribuyéndolos a través de múltiples nodos.

Es muy fiable, ya que realiza múltiples copias de los datos (**réplicas**)

Tiene operaciones que se encargan de reparar los bloques defectuosos

Hadoop, HDFS

Self-healing, high bandwidth clustered storage.

HDFS, arquitectura

HDFS posee tres tipos de nodos:

- Namenode, un único nodo que conoce los ficheros y los bloques que lo forman
- **Datanode**, cada uno de los nodos susceptibles de recibir bloques
- Secondary Namenode, un único nodo que realiza labores de compactación para el Namenode

YARN gestiona los recursos de **procesador** y **memoria** de los nodos del clúster.

Cuando un **proceso** se planifica, se **distribuye** en varios nodos, en contendedores.

Cada **contenedor**, tiene una serie de recursos asignados.

Prioriza la cercanía, se mueve el proceso al dato y no al revés.

Hadoop, YARN

Distributed computing framework.

MapReduce

Es la metodología que se usa para explotar un clúster **Hadoop**. Permite distribuir la computación

Ecosistema Hadoop

Hadoop, ¿Cuándo?

Hadoop es de utilidad cuando:

- Tienes un conjunto de datos muy grande
- Datos muy diversos (desde ficheros de logs hasta xml...)
- Te ves obligado a deshacerte de información que podría ser útil
- Realizas labores analíticas sobre la información almacenada

Hadoop, ¿Cuándo no?

Hadoop NO debe usarse si:

- Buscas un sistema de consulta en tiempo real
- Vas a almacenar información sensible
- Vas a modificar la información almacenada
- Si tienes intención de sustituir un Warehouse (se complementan)
- Ojo con la gestión de la HA (aunque Hadoop 3 ya permite múltiples Namenode)

Mongo, su historia

- 2007: 10gen comienza a desarrollar MongoDB
- 2009: Cambia el modelo de negocio a Open Source, con soporte commercial
- 2013: 10gen cambia su nombre a MongoDB Inc.
- Mongo viene de la palabra humongous (gigantesco)

MongoDB, ¿qué es?

Los documentos se almacenan en colecciones, y no tienen por qué tener un patrón definido. Se define este patrón como **Esquema Dinámico**.

Permite modificar los datos insertados, crear índices y posee un framework de **agregación**

users

MongoDB, query language

```
Collection Query Criteria Modifier

db.users.find( { age: { $gt: 18 } } ).sort( {age: 1 } )
```


MongoDB, Arquitectura

MongoDB permite el escalado usando Shards, formados por Replica Set

MongoDB, Aggregation

MongoDB permite realizar labores analíticas, mediante su framework de **agregación**

MongoDB: Spark Connector

En **2016** sale la primera versión del conector de **MongoDB** para **Spark**

MongoDB, ¿Cuándo?

MongoDB es de utilidad cuando:

- Necesitamos realizar lecturas/escrituras en tiempo real.
- Vamos a modificar la información almacenada.
- Los requisitos nos obligan a tener un esquema altamente cambiante.
- Buscamos un sistema que escale con facilidad

MongoDB, ¿Cuándo no?

MongoDB NO debe usarse si:

- Los datos no son transformados desde la fuente, y necesitamos guardarlos tal como se generan
- Tenemos miedo de que los desarrolladores no sigan unas reglas (MongoDB no les fuerza)
- Si deseamos realizar labores analíticas pesadas (y no queremos instalar Spark)

Cassandra, su historia

- 2004: Comienza a desarrollarse BigTable
- 2007: Amazon presenta Dynamo
- 2008: Facebook libera Cassandra, como proyecto Open Source (basado en BigTable y Dynamo)
- 2011: Se presenta CQL, lenguaje de acceso a datos basado en SQL

Cassandra, ¿qué es?

Una base de datos **NoSQL** basada en **Column Families**.

Posee un **esquema definido**, pero flexible, que permite su alteración.

Usa un modelo **totalmente distribuido**, sin nodos maestros.

Cassandra, CQL

Un lenguaje de consultas similar a **SQL**

-- Inserts or updates
INSERT INTO Standard1 (KEY, col0, col1)
VALUES (key, value0, value1)

VS.

-- Inserts or updates
UPDATE Standard1
SET col0=value0, col1=value1 WHERE KEY=key

Cassandra, arquitectura

Cassandra, distribución

Cassandra, acceso Node 1 RF=3 Node 2 Node 4 CL=QUORUM Node 3 Client everis

an NTT DATA Company

Cassandra, analíticas

Cassandra no permite realizar operaciones analíticas directamente, pero es compatible con **Spark**, con lo que podemos delegar en él para dicha tarea

Cassandra, ¿cuándo?

Cassandra es de utilidad cuando:

- Necesitamos un acceso en tiempo real de escritura o lectura.
- Conocemos de antemano cómo vamos a atacar a nuestro modelo de datos
- Buscamos un modelo que ofrezca el mejor rendimiento, escalado y disponibilidad

Cassandra, ¿cuándo no?

Cassandra NO debe usarse cuando:

- Cuando queramos guardar los datos tal como se generan en el origen.
- No tengamos claro cómo vamos a realizar las consultas
- Necesitemos realizar analíticas y no podamos implantar Spark
- Nuestro modelo de datos cambia de manera drástica en poco tiempo

En definitiva:

	Hadoop	MongoDB	Cassandra
Analíticas	Si	Limitadas (pero puede usar Spark)	No, pero su integración con Spark es óptima
Acceso TR	No	Si	Si
Modificar	No	Si	Si
Modelo de datos	Puede con todo	Muy flexible	Flexible
Alta disponibilidad	Soluciones complejas	Caídas de hasta 10s	Si
Definir workflow previamente	No es necesario	No es necesario	Es obligatorio para modelar

MUCHAS GRACIAS

