Support Vector Machines

測驗,5個問題

1 point

1 •

Suppose you have trained an SVM classifier with a Gaussian kernel, and it learned the following decision boundary on the training set:

When you measure the SVM's performance on a cross validation set, it does poorly. Should you try increasing or decreasing C? Increasing or decreasing σ^2 ?

- O It would be reasonable to try **decreasing** C. It would also be reasonable to try **increasing** σ^2 .
- It would be reasonable to try **decreasing** C. It would also be reasonable to try **decreasing** σ^2 .
- O It would be reasonable to try **increasing** C. It would also be reasonable to try **increasing** σ^2 .
- O It would be reasonable to try **increasing** C. It would also be reasonable to try **decreasing** σ^2 .

Support Vector Machines

<u>- -</u> 測驗, 5 個問題

2 °

The formula for the Gaussian kernel is given by
$$\mathrm{similarity}(x,l^{(1)}) = \exp{(-\frac{||x-l^{(1)}||^2}{2\sigma^2})}$$
 .

The figure below shows a plot of $f_1 = \mathrm{similarity}(x, l^{(1)})$ when $\sigma^2 = 1$.

Which of the following is a plot of f_1 when $\sigma^2=0.25$?

Figure 3.

Figure 2.

O

測驗,5個問題

Figure 4.

point

The SVM solves

$$\min_{ heta} \ C \sum_{i=1}^m y^{(i)} \mathrm{cost}_1(heta^T x^{(i)}) + (1-y^{(i)}) \mathrm{cost}_0(heta^T x^{(i)}) + \sum_{j=1}^n heta_j^2$$

where the functions $\cot_0(z)$ and $\cot_1(z)$ look like this:

The first term in the objective is:

$$C\sum_{i=1}^{m} y^{(i)} ext{cost}_1(heta^T x^{(i)}) + (1-y^{(i)}) ext{cost}_0(heta^T x^{(i)}).$$

This first term will be zero if two of the following four conditions hold true. Which are the two conditions that would guarantee that this term equals zero?

- For every example with $y^{(i)}=1$, we have that $heta^T x^{(i)} \geq 1$.
- For every example with $y^{(i)}=1$, we have that $heta^T x^{(i)} \geq 0$.

pport Ve ct ^{5 個問題}	or Machines in the $y^{(i)}=0$, we have that $ heta^T x^{(i)} \leq -1$.
	For every example with $y^{(i)}=0$, we have that $ heta^T x^{(i)} \leq 0$.
po	1 int
4。 Supp	ose you have a dataset with n = 10 features and m = 5000 examples.
that i	training your logistic regression classifier with gradient descent, you find it has underfit the training set and does not achieve the desired ormance on the training or cross validation sets.
Whic	h of the following might be promising steps to take? Check all that apply.
	Use an SVM with a linear kernel, without introducing new features.
	Use an SVM with a Gaussian Kernel.
	Increase the regularization parameter λ .
	Create / add new polynomial features.
po	1 int
5。 Whic	h of the following statements are true? Check all that apply.
	It is important to perform feature normalization before using the Gaussian kernel.
	If the data are linearly separable, an SVM using a linear kernel will
	return the same parameters $ heta$ regardless of the chosen value of
	C (i.e., the resulting value of $ heta$ does not depend on C).
	The maximum value of the Gaussian kernel (i.e., $sim(x,l^{(1)})$) is 1.
	Suppose you are using SVMs to do multi-class classification and
_	would like to use the one-vs-all approach. If you have K different