Announcements

- TA's Office Hours now
 - Monday, 2:00pm 2:30pm
 - Wednesday, 2:00pm 3:30pm
- Reading Assignments:Chapter 4 & 5 (Textbook: CLRS)
- Reminder: Homework #1 is due today
- Homework #2 is due on Sept 20, 2005

Iteration Method

- Expand (iterate) the recurrence and express it as a summation of terms dependent only on n and the initial conditions
- The key is to focus on 2 parameters
 - the number of times the recurrence needs to be iterated to reach the boundary condition
 - the sum of terms arising from each level of the iteration process
- Techniques for evaluating summations can then be used to provide bounds on solution.

An Example

• Solve:
$$T(n) = 3T(n/4) + n$$

 $T(n) = n + 3T(n/4)$
 $= n + 3[n/4 + 3T(n/16)]$
 $= n + 3[n/4] + 9T(n/16)$
 $= n + 3[n/4] + 9[n/16] + 27T(n/64)$

$$T(n) \le n + 3n/4 + 9n/16 + 27n/64 + \dots + 3^{\log_4 n}\Theta(1)$$

$$\le n \sum (3/4)^i + \Theta(n^{\log_4 3})$$

$$= 4n + o(n)$$

$$= O(n)$$

Recursion Trees

- Keep track of the time spent on the subproblems of a divide and conquer algorithm
- A convenient way to visualize what happens when a recursion is iterated
- Help organize the algebraic bookkeeping necessary to solve the recurrence

Merge Sort

Running time to sort the left sublist

Running Time

Total: $n \lg n$

Recursion Trees and Recurrences

- Useful even when a specific algorithm is not specified
 - For $T(n) = 2T(n/2) + n^2$, we have

Recursion Trees

$$T(n) = \Theta(n^2)$$

Recursion Trees

• For T(n) = T(n/3) + T(2n/3) + n

$$T(n) = O(n \lg n)$$

Master Method

 Provides a "cookbook" method for solving recurrences of the form

$$T(n) = a T(n/b) + f(n)$$

- Assumptions:
 - $-a \ge 1$ and $b \ge 1$ are constants
 - -f(n) is an asymptotically positive function
 - -T(n) is defined for nonnegative integers
 - We interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$

The Master Theorem

- With the recurrence T(n) = a T(n/b) + f(n) as in the previous slide, T(n) can be bounded asymptotically as follows:
- 1. If $f(n)=O(n^{\log_b a-\varepsilon})$ for some constant $\varepsilon>0$, then $T(n)=\Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Simplified Master Theorem

Let $a \ge 1$ and b > 1 be constants and let T(n) be the recurrence

$$T(n) = a T(n/b) + c n^k$$

defined for $n \geq 0$.

- 1. If $a > b^k$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $a = b^k$, then $T(n) = \Theta(n^k \lg n)$.
- 3. If $a < b^k$, then $T(n) = \Theta(n^k)$.

Examples

- T(n) = 16T(n/4) + n
 - -a = 16, b = 4, thus $n^{\log_b a} = n^{\log_4 16} = \Theta(n^2)$
 - $-f(n) = n = O(n^{\log_4 16 \varepsilon})$ where $\varepsilon = 1 \Rightarrow$ case 1.
 - Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$
- T(n) = T(3n/7) + 1
 - -a = 1, b = 7/3, and $n^{\log_b a} = n^{\log_{7/3} 1} = n^0 = 1$
 - $-f(n)=1=\Theta(n^{\log_b a})\Longrightarrow$ case 2.
 - Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$

Examples (Cont.)

- $T(n) = 3T(n/4) + n \lg n$
 - -a = 3, b = 4, thus $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$
 - $-f(n) = n \lg n = \Omega(n^{\log_4 3 + \varepsilon})$ where $\varepsilon \approx 0.2 \Rightarrow$ case 3.
 - Therefore, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$
- $T(n) = 2T(n/2) + n \lg n$
 - $-a = 2, b=2, f(n) = n \lg n, \text{ and } n^{\log_b a} = n^{\log_2 2} = n$
 - f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger. The ratio $\lg n$ is asymptotically less than n^{ε} for any positive ε . Thus, the Master Theorem doesn't apply here.

Exercises

Use the Master Method to solve the following:

$$1 T(n) = 4T(n/2) + n$$

$$2 T(n) = 4T(n/2) + n^2$$

$$3 T(n) = 4T(n/2) + n^3$$