# Stratégie de production

Optim

Paul Adenot, Etienne Brodu, Maxime Gaudin, Monica Golumbeanu, Nor El Malki, Martin Richard, Yoann Rodière

18 octobre 2010

# Table des matières

| Ι                                          | Etude monocritère                                                                                                                                   | 5                                |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1                                          | Données           1.1 Contraintes                                                                                                                   | 6<br>6<br>7                      |
| 2                                          | Stratégie du point de vue comptable           2.1 Modélisation            2.2 Stratégie adoptée            2.2.1 Interprétation                     | 8<br>8<br>8<br>9                 |
| 3                                          | Objectif : Responsable d'atelier           3.1 Modélisation                                                                                         | 10<br>10<br>10                   |
| 4                                          | Objectif: Responsable commercial         4.1 Modélisation          4.2 Décisions          4.3 Interprétation                                        | 11<br>11<br>11<br>11             |
| 5                                          | Objectif : Responsable des stocks           5.1 Modélisation            5.2 Décisions                                                               | 12<br>12<br>13                   |
| 6                                          | Représentation graphique                                                                                                                            | 13                               |
| II                                         | Dragrammation linéaire multipritàne                                                                                                                 | 1 -                              |
| 11                                         | Programmation linéaire multicritère                                                                                                                 | 15                               |
| 7                                          | Objectifs                                                                                                                                           | 16                               |
|                                            |                                                                                                                                                     |                                  |
| 7                                          | Objectifs                                                                                                                                           | 16                               |
| 7<br>8<br>9                                | Objectifs Recherche du point de départ                                                                                                              | 16<br>16                         |
| 7<br>8<br>9<br>10                          | Objectifs  Recherche du point de départ  Affinement de la solution                                                                                  | 16<br>16<br>16                   |
| 7<br>8<br>9<br>10                          | Objectifs Recherche du point de départ Affinement de la solution Métriques utilisées                                                                | 16<br>16<br>16                   |
| 7<br>8<br>9<br>10                          | Objectifs Recherche du point de départ Affinement de la solution Métriques utilisées Utilisation Optimisation 12.1 Méthodologie d'optimisation      | 16<br>16<br>16<br>17<br>18<br>18 |
| 7<br>8<br>9<br>10<br>11<br>12              | Objectifs Recherche du point de départ Affinement de la solution Métriques utilisées Utilisation Optimisation 12.1 Méthodologie d'optimisation      | 16 16 16 17 18 18 18             |
| 7<br>8<br>9<br>10<br>11<br>12              | Objectifs Recherche du point de départ  Affinement de la solution  Métriques utilisées  Utilisation  Optimisation  12.1 Méthodologie d'optimisation | 16 16 16 17 18 18 18             |
| 7<br>8<br>9<br>10<br>11<br>12<br>III<br>13 | Objectifs Recherche du point de départ Affinement de la solution Métriques utilisées Utilisation Optimisation 12.1 Méthodologie d'optimisation      | 16 16 16 17 18 18 18 19 20       |

| IV | Annexe                             | <b>2</b> 2 |
|----|------------------------------------|------------|
| 17 | Code source                        | 23         |
|    | 17.1 Mise en place des contraintes | 23         |
|    | 17.2. Stratégie comptable          | 24         |

#### Résumé

L'objet de ce rapport est de présenter une solution capable de trouver une stratégie de production, menant à un contentement optimal des différent acteurs :

- Le comptable
- Le responsable des ateliers
- Le responsable des stocks
- Le responsable commercial

La démarche sera quant à elle incrémenta le puisque nous fournirons dans un premier temps des optimum très locaux, respectant un nombre limités de contraintes et de critères, puis nous combinerons ces différents résultat afin de converger vers une solution prenant en compte l'intérêt de chacun. Première partie Etude monocritère Hexanome 4203 1 DONNÉES

### 1 Données

#### Soient:

- T la matrice des temps unitaires d'usinage d'un produit sur une machine (minutes) (C.f. Table 1).

- Q la matrice de quantité de matières premières par produit (C.f. Table 2).
- S la matrice des quantité maximum de matières premières (C.f. Table 3).
- V la matrice des prix de vente des produits finis (C.f. Table 4)
- A la matrice des prix d'achat des matières premières.
- C la matrice des coûts horaires des machines (C.f. Table 5).

#### 1.1 Contraintes

#### Considérons:

- 6 produits identifiés chacun par une lettre  $i \in A, B, C, D, E, F$
- -3 matières premières identifiée chacune par un nombre  $k \in 1, 2, 3$
- n, vecteur colonne du nombre d'unités fabriquées pour chaque produit

L'ensemble de la chaine de production est régie par les contraintes suivantes :

- Le nombre de produits usinés de type i : Il doit être non nul

$$n_i \ge 0, \forall i \in A, B, C, D, E, F \tag{1}$$

- Le temps d'occupation de chaque machine i: Il doit être inférieur au temps de travail

$$\sum_{j=A}^{F} T_{j,i} \times n_j \le 2 \times 8 \times 60 \times 5 = 4800, \forall i \in \{1, 2, 3, 4, 5, 6, 7\}$$
 (2)

soit un temps de travail en deux huit, 5 jours par semaine.

- L'utilisation de chaque matière première i: Elle doit être inférieure au stock

$$\sum_{i=A}^{F} Q_{i,j} \times n_j \le S_i, \forall i \in 1, 2, 3$$

$$\tag{3}$$

Hexanome 4203 1 DONNÉES

#### 1.1.1 Modélisation sous forme matricielle

Pour donner au problème une forme standard, nous allons le modéliser par des inéquations et des produits matriciels. Les contraintes C0, C1 et C2 se traduisent trivialement de la manière suivante :

 $A.n \le b \tag{4}$ 

Avec:

Ce qui nous donne plus concrètement les matrices suivantes :

$$A = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 2 & 15 & 7 & 12 \\ 8 & 1 & 11 & 0 & 10 & 25 \\ 2 & 10 & 5 & 4 & 13 & 7 \\ 5 & 0 & 0 & 0 & 10 & 25 \\ 5 & 5 & 3 & 12 & 8 & 0 \\ 5 & 3 & 5 & 8 & 0 & 0 \\ 1 & 2 & 1 & 5 & 0 & 2 \\ 2 & 2 & 1 & 0 & 2 & 1 \\ 1 & 0 & 3 & 2 & 2 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 4800 \\ 4800 \\ 4800 \\ 4800 \\ 4800 \\ 350 \\ 620 \\ 485 \end{pmatrix}$$

# 2 Stratégie du point de vue comptable

En tenant compte des coût de fonctionnement des machines, du coût d'achat des matilères premières, du prix de vente des produits finis, et du temps d'usinage, le comptable de l'entreprise **Optim** cherche à maximiser les bénefices. Nous ne prendrons pas en compte la « popularité » du produit ou encore la répartition des unités produites les unes par rapport aux autres.

#### 2.1 Modélisation

Soit  $n_i$  le nombre de produit i fabriqué.

Le coup fixe de production n'influant pas sur notre décision, nous considérerons uniquement le coût variable de production.

Il est défini par la formule suivante :

$$CV(i) = n_i \times \left(\sum_{j=1}^{7} T_{i,j} \times \frac{C_{i,j}}{60} + \sum_{k=1}^{3} A_k \times Q_{k,i}\right)$$

Le chiffre d'affaire par produit est :

$$CA(i) = n_i \times V_i$$

Par conséquent le bénefice par produit se calcule de la manière suivante :

$$B(i) = CA(i) - CV(i)$$

$$= n_i \times \left( V_i - \sum_{j=1}^7 T_{i,j} \times \frac{C_{i,j}}{60} + \sum_{k=1}^3 A_k \times Q_{k,i} \right)$$

La matrice permettant de calculer, à partir du vecteur colonne n du nombre de produits sortis de l'usine, le bénéfice d'Optim est donc la suivante :

$$M_B = \left(V - \left(\left(T \times C^t \times \frac{1}{60}\right)^t + (A \times Q)\right)\right)$$
  
 $\simeq \left(6.0667 \quad 11.9833 \quad 12.4333 \quad 9.5333 \quad 31.6500 \quad 27.9000\right)$ 

Remarquons qu'elle donne explicitement le bénéfice unitaire pour chaque produit. instincitvement, le produit E est le plus intéressant.

Nous chercherons à maximiser la fonction linéaire correspondant à cette matrice, donc (pour prendre une forme plus standard) à minimiser son opposé.

### 2.2 Stratégie adoptée

En utilisant les outils Matlab, nous obtenons le résulat suivant :

$$n_{optimal} = \begin{pmatrix} 0.0000 \\ 20.4082 \\ 0.0000 \\ 0.0000 \\ 242.5000 \\ 94.1837 \end{pmatrix}$$

Du point de vue strictement comptable, le bénefice réalisable est 357.0919 X.

#### 2.2.1 Interprétation

- Les produits (A), (C), (D) doivent être abandonnés.
- Le produit (E) doit être « surproduit » (en 242,5 exemplaires), tout comme le produit (F), mais dans une moindre mesure.

Ce résultat était (en partie) prévisible à partir de la matrice  $M_B$ , puisque le produit E est le plus rentable. Il faudra donc que l'entreprise **Optim**, pour optimiser le bénéfice, en produise le plus possible tout en utilisant intelligemment les matières premières et ressources humaines restantes.

# 3 Objectif: Responsable d'atelier

Le responsable d'atelier cherche à maximiser le nombre d'unités (toutes catégories confondues) produites sous les contraintes définies précedemment.

Autrement dit, seul la quantité de matières premières disponible et le temps maximum de travail limitera la production. Il n'intervient donc pour le moment aucune notion de bénéfice.

#### 3.1 Modélisation

Soit N le nombre de produits fabriqués.

$$N = \sum_{i=A}^{F} n_i \tag{5}$$

Par concéquent, nous obtenons la matrice suivante, qui représente la somme des différents produits :

$$M = (1 \ 1 \ 1 \ 1 \ 1 \ 1)$$

La matrice des contraintes quant à elle, n'est pas modifiée.

#### 3.2 Décisions

Instinctivement, on sait qu'il faudra fabriquer l'unité consommant le moins de « temps machine » et le moins de matières premières. On peux donc penser que E et F seront les produits les plus fabriqués.

En pratique, on obtient les résultats suivants :

$$M = \begin{pmatrix} 0\\ 56.732\\ 38.6928\\ 0\\ 182.4608\\ 98.9216 \end{pmatrix}$$

On peut donc, au maximum, fabriquer 376.8072 unités, tous produits confondus.

Ceci confirme bien les résultats attendus, c'est à dire qu'il faut donner la priorité aux produits consommant le moins de ressources.

On remarque cependant qu'il est préférable d'abandonner A et C au profit d'autres.

# 4 Objectif: Responsable commercial

Le responsable commercial cherche à équilibrer le nombre d'unités de A, B, C (famille 1) et D, E, F (famille 2) afin que ces deux familles contiennent le même nombre d'unités ( à  $\epsilon$  unité(s) près).

Autrement dit, l'écart entre le nombre d'unités produite pour la famille A et la famille B doit être inférieur à un seuil  $\epsilon$ .

#### 4.1 Modélisation

Soient:

- $-N_1$  le nombre de produits de la famille 1 fabriqués.
- $-N_2$  le nombre de produits de la famille 2 fabriqués.

$$\begin{split} |N_1 - N_2| & \leq & \epsilon \\ \Leftrightarrow -\epsilon \leq N_1 - N_2 & \leq & \epsilon \\ \Leftrightarrow -\epsilon \leq \sum_{i=A}^C n_i - \sum_{j=D}^F n_j & \leq & \epsilon \end{split}$$

Par concéquent, c'est cette nouvelle contrainte qui, venant s'ajouter aux contraintes précédentes, va permettre de calculer le nombre d'unités A, B, C, D, E, et F à fabriquer afin d'équilibrer les deux familles.

Nous obtenons la matrice suivante :

$$M = (1 \ 1 \ 1 \ 1 \ 1 \ 1)$$

La matrice, très simple, représente la somme des différents produits. La matrice des contraintes devient quant à elle : INSÉRER MATRICE A MODIFIEE

#### 4.2 Décisions

#### 4.3 Interprétation

Evidemment, toutes les solutions triviales du type :

$$M_p = \left(\begin{array}{ccc} N \pm \epsilon & N \pm \epsilon & N \pm \epsilon & N & N & N \end{array}\right)$$

ou encore

$$M_p = \left(\begin{array}{cccc} N & N & N & N \pm \epsilon & N \pm \epsilon & N \pm \epsilon \end{array}\right)$$

Où  $M_p$  est la matrice du nombre de produit, et  $N \in \mathbb{N}$ 

sont des solutions valables.

Ceci met en évidence qu'avec les critères définis plus haut, il n'y a pas de solution plus « valable » qu'une autre. Par concéquent nous pouvons :

- Choisir une solution au hasard
- Augmenter le nombre de critère et notamment ceux en rapport avec les stocks disponibles,
   le prix des matières premières, ou encore le temps d'usinage nécessaire.

# 5 Objectif: Responsable des stocks

Le responsable des stocks cherche à minimiser le nombre de de produits dans son stock sous les contraintes définies précedemment.

#### 5.1 Modélisation

Soit  $Stock(n_i)$  le nombre d'unités de stock nécessaires pour stocker les produits fabriqués et la matière première nécessaire. Cette fonction est la somme des produits fabriqués à laquelle on ajoute la quantité de matières premières nécessaire à la fabrication.

On suppose qu'un produit frabriqué correspond à une unité de stock.

On a ainsi la formule suivante, où  $n_i$  est la quantité de produit usiné (pour chaque produit i), et  $Q_{j,i}$  est la quantité de matière première par produit pour chaque produit i et chaque matière première j.

$$Stock(n) = \sum_{i} (n_i + n_i \times \sum_{j} Q_{j,i})$$
 (6)

La représentation matricielle de cette fonction sera alors :

$$M_S = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \times Q \end{pmatrix}$$
 (7)

Le résultat trivial est :

$$\begin{pmatrix} 0\\0\\0\\0\\0\\0 \end{pmatrix} \tag{8}$$

En effet, en l'absence de production, aucun stock n'est nécessaire. Ce résultat n'est pas satisfaisant. Nous allons donc nous intéresser à un second critère : les bénéfices de l'entreprise. Pour ce faire, nous allons nous intéresser aux valeurs obtenues en imposant un minimum de bénéfices. En réalisant les calculs sur plusieurs échelons, on obtient un résultat linéaire par morceaux. Le raisonement adopté est similaire à celui développé dans la section ??.



Fig. 1 – Graphe de l'évolution des stocks en fonction du bénéfice

#### 5.2 Décisions

De nombreuses valeurs sont équivalentes et ne peuvent être départagées selon des critères mathématiques. Les choix possibles se situent dans le deuxième morceau de courbe : en dessous, les bénéfices sont trop bas, au dessus, les besoins de stockage augmentent beaucoup plus que les bénéfices.

On a donc une valeur comprise entre 50% et 98% de bénéfices. Pour 75% du bénéfice maximum, on obtient le nombre de produits suivants :

$$\begin{pmatrix}
1,91903382074088 \times 10^{-10} \\
2,63753463514149 \times 10^{-10} \\
1,89174897968769 \times 10^{-10} \\
1,23691279441118 \times 10^{-10} \\
124,634235411818 \\
142,146305832495
\end{pmatrix} (9)$$

pour une quantité d'unités en stock de 1191,75640039347.

# 6 Représentation graphique

Les graphiques ci-dessous représentent les résultats obtenus dans cette partie.



Fig. 2 – Graphe radar représentant la quantité à produire par produit et par critère



 ${\rm Fig.~3-Diagramme}$ représentant la quantité à produire par produit et par critère

Deuxième partie

Programmation linéaire multicritère

# 7 Objectifs

L'objectif est de trouver une solution de compromis entre les différents responsables. Pour trouver une telle solution nous serons amenés à utiliser la programmation multicritère (PLM). Auparavant, dans la partie 1, nous avons trouvé un optimum pour chaque responsable indépendamment, ce qui nous conduit à un point de mire. Dans un monde parfait, ce point de mire respecterait les contraintes de chaque responsable. Nous devons donc voir si tel est le cas.

# 8 Recherche du point de départ

Si le point de mire est assez proche de l'ensemble des solutions acceptables, nous choisirons une solution proche de celle d'un responsable.

Sinon, nous allons calculer la satisfaction de chaque objectif, sachant qu'une solution a été retenue. Nous devrons alors définir des métriques, correspondant à cette satisfaction. Par exemple, pour le comptable, cette satisfaction sera exprimée par le ratio du bénéfice obtenue dans un solution par rapport au bénéfice maximal. Ensuite, nous choisirons comme point de départ la solution qui offre le plus de satisfaction à tout le monde, par exemple en utilisant une moyenne pondérée, dont la pondération sera basée sur *l'importance* de chaque critère.

### 9 Affinement de la solution

La solution trouvée précédemment peut sûrement être optimisée. Il peut être intéressant de perdre dans un critère, si cela nous fait gagner beaucoup dans un autre critère, d'autant plus si ce second critère est jugé plus *intéressant* que le premier.

# 10 Métriques utilisées

Cette section décrit les métriques utilisées pour caractériser une solution, du point de vue d'un cadre de l'entreprise. Les solutions pourront ainsi être comparées entre elles.

Comptable : La métrique utilisée sera le pourcentage du bénéfice par rapport au bénéfice maximum :

$$M_{Comptable} = \frac{B_S}{B_{max}} \times 100$$

Responsable d'atelier La métrique utilisée sera le pourcentage du nombre de produits fabriqués par rapport au nombre maximum :

$$M_{Atelier} = \frac{N_S}{N_{max}} \times 100$$

Responsable des stocks Pour élaborer la métrique de satisfaction pour le responsable des stocks nous opterons pour la fonction suivante, qui correspond à ce qui était précédemment annoncé dans la partie 1 (page 12).

Cette fonction est décrite par l'expression suivante :

$$M_{Stocks} = \begin{cases} \frac{x}{1192} & \text{si } x \in [0; 1192] \\ x = 1 & \text{si } x \in [1192; 1559] \\ \frac{-x}{1192} + 1 + \frac{1559}{1192} & \text{si } x \in [1559; 1691] \end{cases}$$

Cette fonction pourrait être justifiée par le fait que plus on s'éloigne des valeurs admises moins le responsable des stocks est satisfait.

Hexanome 4203 11 UTILISATION



Fig. 4 – Représentation graphique de la métrique pour le responsable des stocks.

Responsable commercial La métrique utilisée sera l'écart par rapport à un équilibre parfait. Si autant de produit de la famille de produit 1 (comprenant les produits A, B et C) que de la famille 2 (comprenant les produits D, E et F), la métrique sera à 100%. Si une seule famille de produit est fabriquée, la métrique devra valoir zéro.

Si  $F_1$  (respectivement  $F_2$  est le nombre de produit de la famille 1 (respectivement famille 2), la métrique sera :

 $M_{Commercial} = \left(1 - \frac{|F_1 - F_2|}{F_1 + F_2}\right) \times 100$ 

### 11 Utilisation

Les résultats seront placés dans un tableau de ce type, qui qui permettra d'un seul coup d'œil de voir la meilleur des solutions. La colonne en rouge se lira par exemple :

« En suivant la volonté du responsable d'atelier, le comptable aura une satisfaction de 96.5498% »

|            | Comptable | Atelier  | Stock    | Commercial |
|------------|-----------|----------|----------|------------|
| Comptable  | 100%      | 94.7678% | 40.0930% | 11.4302%   |
| Atelier    | 96.5498%  | 100%     | 32.2825% | 47.9244%   |
| Stock      | 74.1546%  | 70.8003% | 100%     | 25.2908%   |
| Commercial | 81.8654%  | 93.4330% | 30.6085% | 100%       |

TAB. 1 – Tableau de satisfaction des différents cadres de l'entreprise en fonction de la solution retenue.

On voit bien que le point de mire est éloigné de l'ensemble des solutions acceptables : aucune solution ne semble satisfaire tous les responsables.

Hexanome 4203 12 OPTIMISATION

# 12 Optimisation

Nous allons dans cette partie essayer de modifier les solutions précédentes pour trouver une solution qui tente de maximiser la satisfaction des différents responsables.

Le but premier d'une entreprise étant de faire du profit, et la meilleur manière de faire du profit étant souvent maximiser le bénéfice, nous allons donc favoriser ce critère, en lui appliquant un léger coefficient.

Nous allons par la même regarder l'évolution des autres critères lorsque ce coefficient évolue, c'est à dire recalculer les différentes métriques.

Il apparaît plausible qu'avoir un *stock non optimal* peut être acceptable si c'est pour avoir un bénéfice plus important, dans une certaine mesure. Une dégradation de la satisfaction du responsable des stock sera donc moins pénalisant, en terme de qualité de solution, qu'une baisse dans la satisfaction du commercial (produire sans vendre ne sert pas à grand chose, en terme de rentabilité).

De la même manière, produire un nombre de produit optimal peut être intéressant, mais cela ne doit pas aller à l'encontre du profit et de la mauvaise répartition de la production.

Nous pouvons donc donner des coefficients aux critères :

| Responsable | Comptable | Atelier | Commercial | Stocks |
|-------------|-----------|---------|------------|--------|
| Coefficient | 1.2       | 0.8     | 1.2        | 0.8    |

Tab. 2 – Coefficient associés aux critères des différents responsables

#### 12.1 Méthodologie d'optimisation

Le procédé sera itératif, et tentera de contenter au mieux le comptable et le commercial (comme expliqué ci-dessus). Il s'agira donc de partir de la solution du comptable (celle qui maximise le bénéfice), en essayant d'améliorer la métrique du commercial, tout en restant dans le domaines des solutions possibles au vu des contraintes. Il faudra toutefois tâcher de ne pas trop dégrader les autres critères.

#### 12.2 Résultats

Présenter un tableau.

Troisième partie Analyse multicritère Des deux parties précédentes, émergent 8 propositions de gestion de l'atelier. Le but de cette partie sera de sélectionner la meilleure solution en fonction des 4 critères préselectionnées.

Ces 4 critères sont : g1 : bénéfice g2 : équilibre commercial g3 : production g4 : gestion du stock

### 13 Méthode choisie

La méthode de résolution choisie sera Électre iiicar elle englobe les 2 précédentes. On pourras ainsi fournir au client la méthode sélectionné comme la plus optimale ainsi qu'une ou plusieurs méthodes alternatives.

Pour réduire au maximum l'échéance, nous avons parallélisé au maximum les flux de travail. Nous avons donc dès le début du projet commencé à coder sous Matlab un algorithme de résolution de Électre iiiindépendamment des résultats des 2 premières parties.

# 14 Algorithme de la méthode

TODO

#### 15 Mise en œuvre de la méthode

L'algorithme suivant implémente la méthode Électre iii. À partir de la matrice des jugements, il remet à l'échelle les notes des critères en fonction des poids.

```
1 for i = 1:n

2 J(:,i) = ((J(:,i) - (e/2)) * (w(i)/max(w))) + (e/2);

3 end;
```

Puis il calcule les matrices de concordance et de discordance.

Pour finir, il établit la matrice des surclassement en fonction de ces deux dernières matrices.

```
1 S = ((C > s).*(D <= v));
```

Un graphe est ensuite généré à partir de cette matrice, pour faciliter la lecture. La meilleur solution apparait alors clairement en tête du graphe, et grâce à la méthode du classement et du classement inverse, on peut obtenir l'ordre des solutions.

# 16 Solution proposée

Dans un premier temps, sans pondérer les critères, on trie les solutions pour en tirer la plus avantageuse. Après quelques tâtonnement, on utilise les seuils de concordance 0,7 et 0,9, et le seuil de discordance 0,4 pour générer un graphe de surclassement le plus clair possible, sans liens superflus.

Sur le graphe généré, on voit clairement que la la meilleur solution serait la solution A car c'est la seule qui n'est dominé par aucune autre. On voit également que certaines solutions sont



Fig. 5 – Graphe des surclassement sans prise en compte des poids de chaque critère

équivalentes puisqu'elles se dominent entres elles. Les couples de solutions  $\{D, H\}$ ,  $\{E, G\}$  et  $\{C, F\}$  sont des couples de solutions équivalentes.. Les solutions F, C et B sont dominés, elles sont donc les moins intéressantes.

Dans un second temps, en prenant en compte les poids apporté par l'étude des 2 première parties.

Quatrième partie  $\mathbf{Annexe}$ 

Hexanome 4203 17 CODE SOURCE

# 17 Code source

### 17.1 Mise en place des contraintes

```
2
    % RAW DATA
 3
 4
   % Indices - product mapping
 5
   a = 1;
    b = 2;
 7
   c = 3:
 8
   d = 4;
 9
10 e = 5;
11 f = 6;
13 Products = [a, b, c, d, e, f];
14
15 % Manufacturing time per machine, for each product. (Table 1)
16 % Usage : T(a,2), T(d,7), ...
17 T = [
           8, 0, 8, 2, 5, 5, 5;
18
19
           15, 1, 1, 10, 0, 5, 3;
20
           0, 2, 11, 5, 0, 3, 5;
           5, 15, 0, 4, 0, 12, 8;
21
22
           0, 7, 10, 13, 10, 8, 0;
23
           10, 12, 25, 7, 25, 0, 0
       ];
24
25
26
    % Quantity of raw material needed for each product
    % Usage : Q(1,a), Q(3,f), ...
27
           1, 2, 1, 5, 0, 2;
2, 2, 1, 0, 2, 1;
29
30
           1, 0, 3, 2, 2, 0
31
       ];
32
33
34 % Maximum stock of raw material
35 % Usage : S(1), S(2), ...
36
    S = [
           350, 620, 485
37
       ];
38
39
40 % Sale price of each product
41 % Usage : V(a), V(f), ...
42
    V = [
           20, 27, 26, 30, 45, 40
43
45
46 % Cost of each raw material
47 % Usage : A(1), A(2), ...
48 A = [
^{49}
           3, 4, 2
50
51
52 % TODO
53 % Usage : C(1), C(4), ...
54 C = [
55
          2, 2, 1, 1, 2, 3, 1
56
57
    % TODO
58
59 % Usage : J(a,2)
           6, 5, 5, 5;
61
           5, 2, 6, 7;
62
63
           3, 4, 7, 3;
           3, 7, 5, 4;
64
           5, 4, 3, 9;
65
           2, 5, 7, 3;
66
           5, 4, 2, 9;
3, 5, 7, 4
67
68
69
70
71 % Weight of each factor.
```

Hexanome 4203 17 CODE SOURCE

```
% Usage : P(1), P(2), ...
72
73 P = [
           1, 1, 1, 1
        ];
75
76
77
    % BASE CONSTRAINTS
78
79
80
81 InfEqConstraints = zeros(16,6);
82
    InfEqValues = zeros(16,1);
83 OffSet = 0;
84
85
    % Quantity of products must be >= 0
86 for i = Products,
      InfEqConstraints(i+OffSet,i) = -1;
87
       InfEqValues(i+OffSet) = 0;
88
89 end
90 OffSet = OffSet + 6;
91
92 % Work time is limited
   for i = 1:7,
     for j = Products,
94
95
          InfEqConstraints(i+OffSet,j) = T(j,i);
96
      InfEqValues(i+OffSet) = 2*8*60*5;
97
98 end
99 OffSet = OffSet + 7;
100
    % We have limited stocks of raw material
101
102 for i = 1:3,
103
     for j = Products,
104
          InfEqConstraints(i+OffSet,j) = Q(i,j);
105
106
      InfEqValues(i+OffSet) = S(i);
107
    end
    OffSet = OffSet + 3;
108
```

### 17.2 Stratégie comptable

```
function [ OptProduction, MaxEarnings ] = Comptable( )
    \mbox{\ensuremath{\mbox{\tiny COMPTABLE}}} Summary of this function goes here
3 % Detailed explanation goes here
4
    FetchData;
5
    % This is the matrix corresponding to the earnings function Earnings = (V - ( (T * C' ./ 60)' + (A * Q) ))
10 % We'll try to maximize the function, so we minimize the opposite 11 Earnings = -Earnings;
13 % Optimisation
14
    OptProduction = zeros(size(Earnings,2),1)
0ptProduction = linprog(Earnings, InfEqConstraints, InfEqValues);
16
17
    % Effective earnings
18 MaxEarnings = -Earnings * OptProduction;
```