Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Отчёт по практическому заданию №1 по дисциплине «Проектирование вычислительных систем»

Выполнил: Ларочкин Г.И

Группа: Р3400

Преподаватель: Пенской А.В.

Санкт-Петербург 2020 г.

♥ Zoom ×

Пользователи не имеют возможности обмениваться солюшенами. Это позволило бы сильно сократить время на прогон бенчмарка, если такие кейсы уже были проведены другими пользователями.

Пользователь не сможет получить солюшены, точно с теми кейсами, которые он задал. После процесса benchmark common parameters результат идёт в обязательном порядке в процесс fork parameters (процесс ищет возможные дополнительные оптимизации). Следует пользователю дать возможность запуск бенчмарка без дополнительных оптимизаций.

Вывол

В ходе данной лабораторной работы я приобрел навыки анализа вычислительных систем с архитектурной точки зрения, построил архитектурное описание проекта Tensile, ознакомился с инструментом документирования архитектуры Dataflow Diagram и произвёл анализ архитектурных проблем проекта.

- X4. Byxnobiennows ISO 1288

2) Bocopostojo mato go separanomo.

Цель

Приобрести навыки анализа вычислительных систем с архитектурной точки зрения, ознакомиться с инструментами документирования архитектуры.

Описание проекта

В данной работе описан проект Tensile компании AMD. Это инструмент для создания benchmark-driven backend библиотеки для GEMM подобных алгоритмов, которые применяют операцию *multiplication* для многомерных объектов на видеокартах AMD. Пользователь может собрать таргетированную backend библиотеку для машинного обучения, основанную на наборе необходимых ему операций, архитектуры GPU, на которой планируется запуск, а также на наборе задаваемых пользователем ограничений (больше загрузить память, не кэшировать данные и т. д.)

Жизненный цикл проекта

Zitishemizin giriti npoektu			
№	Этап	Роль для системы	Методы и средства
1	Задумка	Определение области применимости.	Анализ потребностей рынка.
		Определение потенциальных	
		пользователей.	
2	Анализ и	Постановка требований к системе.	Анализ потребностей внутренних
	постановка	Определение пользовательской базы.	проектов компании. Написание
	требований		технического задания.
3	Проектирование	Проектирование архитектуры Tensile	Описание архитектуры с помощью
	Tensile benchmark	benchmark. Решение алгоритма поиска	диаграмм. Описание алгоритма,
		наилучшего solution.	activity диаграммы.
4	Проектирование	Проектирование интерфейса между	Описание с помощью component &
	Tensile client	библиотекой и пользовательским	interface диаграммы.
		приложением.	
5	Реализация Tensile	Реализация двух компонент системы.	Написание кода, модульное
	client, Tensile	Модульное тестирование.	тестирование
	benchmark		
6	Интеграция client и	Реализация взаимодействия двух	Написание кода, интеграционное
	benchmark	компонент системы. Тестирование	тестирование
		работоспособности системы.	
7	Внедрение и	Интеграция системы в высокоуровневые	Совместная работа команд
	эксплуатация	библиотеки (rocBLAS, MIOpen).	нескольких проектов
8	Поддержка	Поиск и исправление дефектов.	Написание кода, тестирование
	системы	Поддержка новых видеокарт.	
9	Вывод из	Вывод из эксплуатации	Вывод из эксплуатации
	эксплуатации		

Анализ архитектурных проблем

1. Масштабируемость

Система должна адекватно работать вслед за выпуском и поддержкой новых архитектур и видеокарт.

2. Параметры оптимизации

Система должна оперировать лишь с параметрами, которые могут существенно влиять на качество исполнения операции. Должен быть баланс между количеством параметров и скоростью исполнения benchmark.

3. Надежность исполнения

Система должна работать с большим количеством параметров оптимизации, при этом результат операций должен быть воспроизводимым.

4. Надежность измерений

Система должна качественно производить измерения скорости исполнения операции и занимаемых ресурсов устройства, результат должен быть воспроизводим.

5. Простота использования

Система должна иметь простой и достаточный интерфейс для легкости внедрения библиотеки как во внутренние проекты компании, так и в пользовательские проекты.

Вывод

В ходе данной лабораторной работы я приобрел навыки проектирования вычислительных систем и поиска архитектурных проблем.