

Statystyczna Analiza Danych SAD-2020-2021

Wykład 8

Estymacja punktowa

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu, którego parametr θ jest nieznany.

Definicja

Statystykę $h(X_1,X_2,...,X_n)$, której realizacje dla konkretnych próbek są "rozsądnymi" ocenami θ , nazywamy **estymatorem** parametru θ i oznaczamy

$$\left| \hat{\theta} = h(X_1, X_2, ..., X_n) \right|$$

Definicja

Estymator $\hat{\theta}$ parametru θ jest nieobciążony, jeśli

$$E(\hat{\theta}) = \theta$$

Estymacja punktowa

Przykłady

Średnia z prostej próby losowej jest nieobciążonym estymatorem wartości średniej μ :

$$E(\overline{X}) = \mu$$

Wariancja z prostej próby losowej jest nieobciążonym estymatorem wariancji rozkładu cechy populacji σ^2 :

$$E(S^2) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \bar{X})^2\right) = \sigma^2$$

$$g, h: (-\infty, \infty) \to (-\infty, \infty), g(\cdot) < h(\cdot)$$

 $\alpha \in (0,1)$ — mała liczba, np. $\alpha = 0,05, 0,01, 0,02, 0,1, \dots$ **Definicja**. Przedział losowy

$$[g(X_1, X_2, ..., X_n), h(X_1, X_2, ..., X_n)]$$

nazywamy przedziałem ufności dla parametru θ na poziomie ufności $1-\alpha$, jeśli

$$P(\theta \in [g(X_1, X_2, ..., X_n), h(X_1, X_2, ..., X_n)]) = 1 - \alpha$$

I. Przedziały ufności dla wartości średniej rozkładu normalnego.

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu normalnego $N(\mu, \sigma)$.

Model 1. (znane odchylenie standardowe populacji σ)

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$$

Niech $\alpha \in (0,1)$ - ustalona liczba.

$$P(z_{\alpha/2} \le Z \le z_{1-\alpha/2}) = 1-\alpha$$
, (1)

gdzie $z_{\alpha/2}$ = kwantyl rzędu $\alpha/2$ rozkładu N(0,1),

 $z_{1-\alpha/2}$ = kwantyl rzędu 1- $\alpha/2$ rozkładu N(0,1), tzn.

$$P(Z \le z_{\alpha/2}) = \frac{\alpha}{2}$$
 oraz $P(Z \le z_{1-\alpha/2}) = 1 - \frac{\alpha}{2}$.

Z symetrii standardowej gęstości normalnej

$$z_{\alpha/2} = -z_{1-\alpha/2}$$

Równanie (1) można zapisać jako

$$P(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1-\alpha$$

 $z_{rac{lpha}{2}}$ – kwantyl rzędu $rac{lpha}{2}$ rozkładu standardowego normalnego

Podstawiając dokładną postać Z mamy

$$P(-z_{1-\alpha/2} \le \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \le z_{1-\alpha/2}) =$$

$$P(-z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \overline{X} - \mu \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) =$$

$$P(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha.$$
 (2)

Definicja

Przedział losowy

$$\left[\left[\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right] \right]$$

zawierający z prawdopodobieństwem $1-\alpha$ nieznaną wartość średnią μ = przedział ufności dla μ na poziomie

ufności $1-\alpha$

Definicja

Przedział ufności dla wartości średniej populacji μ na poziomie ufności $1-\alpha$

$$\left[\left[\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right] \right]$$

(obliczony na podstawie konkretnej próbki).

Interpretacja częstościowa (sens praktyczny) przedziału ufności

Niech $\bar{x}_1, \bar{x}_2, ..., \bar{x}_N$ oznaczają średnie próbkowe obliczone dla N próbek: $(x_1^1, x_2^1, ...x_n^1)$, $(x_1^2, x_2^2, ...x_n^2)$, ..., $(x_1^N, x_2^N, ...x_n^N)$. Próbki są realizacjami niezależnych prostych prób losowych $(X_1^1, X_2^1, ..., X_n^1)$, $(X_1^2, X_2^2, ..., X_n^2)$,..., $(X_1^N, X_2^N, ..., X_n^N)$. Dokładniej: wykonujemy N jednakowych niezależnych doświadczeń. Każde k-te (k=1,2,...,N) doświadczenie polega na zaobserwowaniu realizacji k-tej prostej próby losowej $(X_1^k, X_2^k, ..., X_n^k)$, tzn. k-tej próbki: $(x_1^k, x_2^k, ..., x_n^k)$. Przedział ufności dla μ na poziomie ufności $1-\alpha$ obliczony dla k-tej próbki ma postać

$$[\bar{x}_k - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x}_k + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$
.

Nieznana nam średnia μ nie dla każdej próbki należy do wyznaczonego dla niej przedziału ufności. Ale, niech N_μ oznacza liczbę tych doświadczeń, dla których

$$\mu \in [\bar{x}_k - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x}_k + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Wówczas na mocy interpretacji częstościowej prawdopodobieństwa zdarzenia, dla $N \to \infty$,

$$\frac{N_{\mu}}{N} \rightarrow P(\mu \in [\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]) = 1 - \alpha$$

Zatem spośród wielu próbek w przybliżeniu $(1-\alpha)100\%$ jest takich, dla których wyznaczony przedział ufności zawiera nieznaną wartość średnią μ .

Jak duża powinna być liczność próbki n?

Długość przedziału ufności

$$[\bar{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}]$$

jest stała (nie zależy od próbki) równa

$$2z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}.$$

Im większe n, tym mniejsza długość przedziału ufności, tzn. tym lepsze (dokładniejsze) oszacowanie przedziałowe μ na danym poziomie ufności. Ze wzoru (2) mamy

$$P(|\overline{X} - \mu| \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha,$$

Niech d > 0 będzie takie że

$$z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le d$$
, równoważnie $n \ge \left(\frac{z_{1-\alpha/2}\sigma}{d}\right)^2$.

Wówczas (wykorzystując $P(A) \le P(B)$ dla $A \subset B$)

$$1-\alpha = P(\left|\overline{X} - \mu\right| \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) \le P(\left|\overline{X} - \mu\right| \le d)$$

$$P(\left|\overline{X} - \mu\right| \le d) \ge 1-\alpha$$

Stwierdzenie. Jeśli liczność prostej próby losowej z rozkładu normalnego o wartości średniej μ i standardowym odchyleniu σ spełnia warunek

$$n \ge \left(\frac{z_{1-\alpha/2}\sigma}{d}\right)^2$$
, to $P(\left|\overline{X} - \mu\right| \le d) \ge 1-\alpha$.

(Z prawdopodobieństwem co najmniej $1-\alpha$ błąd bezwzględny oszacowania nieznanej wartości średniej μ poprzez \overline{X} nie przekroczy d, tzn. wśród wielu próbek o liczności n częstość takich, dla których błąd bezwzględny średniej próbkowej nie przekroczy d, jest w przybliżeniu nie mniejsza niż $1-\alpha$.)

Zadanie

Producent chce ocenić średnią zawartość nikotyny w paczkach papierosów pewnego gatunku. Wiadomo, że standardowe odchylenie zawartości nikotyny w losowo wybranej paczce papierosów $\sigma=8$ (mg),

Wyznaczyć liczbę paczek papierosów, w których należy zbadać zawartość nikotyny, aby na poziomie ufności co najmniej 0,95 móc stwierdzić, że obliczona średnia z próbki \overline{x} nie będzie się różniła od prawdziwej średniej zawartości nikotyny μ o więcej niż 1,5 (mg).

Zakładając rozkład normalny zawartości nikotyny w paczce papierosów mamy:

$$P(|\overline{X} - \mu| \le d) \ge 0.95$$
, jeśli $n \ge \left(\frac{z_{1-\alpha/2}\sigma}{d}\right)^2$,

gdzie $\alpha = 0.05$, $\sigma = 8$, d = 1.5, $z_{1-\alpha/2} = z_{0.975} = 1.96$.

Stąd
$$n \ge \left(\frac{1,96 \times 8}{1,5}\right)^2$$
.

Zatem liczność próbki powinna być: $n \ge 109$.

Zadanie

Stacja paliw sprzedała 8019 litrów gazu w ciągu 9 losowo wybranych dni. Załóżmy, że dzienna ilość sprzedanego gazu ma rozkład normalny o standardowym odchyleniu $\sigma=90$ (litrów). Skonstruować przedziały ufności dla średniej dziennej sprzedaży gazu na poziomach ufności:

Mamy:
$$\sum_{i=1}^{9} x_i = 8019$$
, $n = 9$, $\sigma = 90$, skad $\bar{x} = \frac{8019}{9} = 891$.

(a)
$$\alpha = 0.02$$
, $1 - \alpha/2 = 0.99$, $z_{0.99} = 2.33$.

98% przedział ufności dla μ :

$$[891 - 2,33\frac{90}{\sqrt{9}}, 891 + 2,33\frac{90}{\sqrt{9}}] = [821,1 ; 960,9]$$

Model 2. (nieznane odchylenie standardowe σ)

W poprzednim modelu wykorzystano statystykę $Z = \frac{X - \mu}{\sigma / \sqrt{n}}$

Podstawiając zamiast σ jej estymator $S=\sqrt{S^2}$, gdzie

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
, otrzymujemy zmienną losową

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

T ma znany rozkład: **t-Studenta** z (n-1) stopniami swobody.

Niech Z_0, Z_1, \ldots, Z_k będą niezależnymi zmiennymi losowymi o rozkładach N(0,1).

Definicja (rozkład *t*-Studenta z *k* stopniami swobody) Rozkład prawdopodobieństwa zmiennej losowej

$$V = \frac{Z_0}{\sqrt{(Z_1^2 + ... + Z_k^2)/k}}$$

nazywamy rozkładem t Studenta z k stopniami swobody.

Notacja: $V \sim t_k$.

William Sealy Gosset "Student" 1876 - 1937

Rozkład t- Studenta

Gęstość symetryczna o podobnym kształcie jak gęstość normalna, E(V)=0, Dla $k\geq 30$ można przyjąć

$$V \sim t_k = N(0,1)$$

Gęstości rozkładu t - Studenta

ESTYMACJA PRZEDZIAŁOWA

Mając zmienną losową

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

budujemy przedział ufności dla μ analogicznie jak w modelu 1:

$$\left[\left[\overline{x}-t_{1-\alpha/2,n-1}\frac{s}{\sqrt{n}},\overline{x}+t_{1-\alpha/2,n-1}\frac{s}{\sqrt{n}}\right]\right],$$

gdzie

 $t_{1-\alpha/2,n-1}$ = kwantyl rzędu (1- $\alpha/2$) rozkładu t Studenta o

(n-1) stopniach swobody.

Zadanie. W ciągu pięciu losowo wybranych tygodni zaobserwowano w kato i zaobserwowano zaobserwowano

Obliczamy: \overline{x} = 4,6 oraz

$$\sum_{i=1}^{5} (x_i - \bar{x})^2 = (-0.8)^2 + (-0.1)^2 + (0.6)^2 + (-0.6)^2 + (0.9)^2 = 2.18$$

$$s^2 = \frac{2,18}{5-1} = 0,545$$
, $s = 0,738$, $\alpha = 0,1$, $1-\alpha/2 = 0,95$,

liczba stopni swobody: 5 - 1 = 4, $t_{0.95,4} = 2{,}132$.

Stąd 90% przedział ufności dla μ :

$$[\overline{x} - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}, \overline{x} + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}]$$

$$= [4, 6 - 2, 132 \frac{0,738}{\sqrt{5}}, 4, 6 + 2, 132 \frac{0,738}{\sqrt{5}}] = [3,896, 5,304].$$

Przedział ufności dla średniej

Zadanie. Zanotowano czasy obsługi przy okienku kasowym (w minutach) 64 losowo wybranych klientów pewnego banku. Obliczono: średnią z próbki $\bar{x} = 3.2$ (min.) oraz wariancję z próbki $s^2 = 1.44$ (min.²). Znaleźć 98% przedział ufności dla średniego czasu obsługi μ , jeśli można założyć, że czas obsługi klienta przy okienku kasowym ma rozkład normalny.

Mamy:

Marry:
$$\bar{x} = 3.2$$
, $s = \sqrt{1.44} = 1.2$, $n = 64$, $\alpha = 0.02$, $t_{1-0.02/2.63} = t_{0.99,63} = z_{0.99} = 2.33$

duża próba (n > 30)

98% przedział ufności dla μ ma postać

$$\left[\overline{x} - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}} \right]; \quad \overline{x} + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}} \right]$$

$$\left[3, 2 - 2, 33 \frac{1, 2}{\sqrt{64}} \right]; \quad 3, 2 + 2, 33 \frac{1, 2}{\sqrt{64}} \right] = \left[2, 85; 3, 6 \right]$$

Przedział ufności dla wariancji

Model 3. Przedział ufności dla wariancji.

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu <u>normalnego</u> $N(\mu, \sigma)$.

Definicja

Niech $Z_1,Z_2,...,Z_n$ będą niezależnymi zmiennymi losowymi o rozkładach N(0,1). Wówczas zmienna losowa

$$\chi^2 = \sum_{i=1}^n Z_i^2$$

ma rozkład chi – kwadrat o n stopniach swobody, co zapisujemy:

$$\chi^2 \sim \chi_n^2$$

W modelu: $\frac{X_1 - \mu}{\sigma}, \frac{X_2 - \mu}{\sigma}, \dots, \frac{X_n - \mu}{\sigma}$ są niezależne i mają rozkłady N(0,1), zatem

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi_n^2$$

Rozkład chi – kwadrat

Funkcja gęstości prawdopodobieństwa rozkładu chi – kwadrat o różnej liczbie stopni swobody

Przedział ufności dla wariancji

Zastępując nieznaną wartość średnią μ przez średnią z próby losowej X otrzymamy zmienną losową:

$$\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Stąd

$$P\left(\chi_{\alpha/2,n-1}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{1-\alpha/2,n-1}^{2}\right) = 1 - \alpha, \quad (3)$$

gdzie $\chi^2_{\alpha/2,n-1}$, $\chi^2_{1-\alpha/2,n-1}$ są odpowiednio kwantylami rzędu $\alpha/2$, i $(1-\alpha/2)$, rozkładu χ^2_{n-1} .

Wzór (3) zapisujemy równoważnie:

$$P\left(\frac{(n-1)S^{2}}{\chi_{1-\alpha/2,n-1}^{2}} \le \sigma^{2} \le \frac{(n-1)S^{2}}{\chi_{\alpha/2,n-1}^{2}}\right) = 1 - \alpha.$$

Rozkład chi-kwadrat

Chi-square values such that area $\alpha/2$ is to the right and area $\alpha/2$ is to the left.

Przedział ufności dla wariancji

Stąd, przedziałami ufności na poziomie ufności $(1-\alpha)$ są:

dla wariancji σ^2 rozkładu normalnego

$$\left[\frac{(n-1)s^{2}}{\chi_{1-\alpha/2,n-1}^{2}},\frac{(n-1)s^{2}}{\chi_{\alpha/2,n-1}^{2}}\right]$$

dla standardowego odchylenia σ rozkładu normalnego

$$\left[\sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2}},\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2,n-1}^2}}\right]$$

Przedział ufności dla proporcji

III. Przedziały ufności dla proporcji

Model 4. Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu Bernoulli'ego o nieznanym parametrze p. Wówczas $\mu = E(X_i) = p$, $\sigma^2 = p(1-p)$.

Niech $\hat{p}=\overline{X}$. Z centralnego twierdzenia granicznego dla dostatecznie dużego n zmienna losowa $\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$ ma rozkład bliski

rozkładowi N(0,1). (musi zachodzić $np \ge 5, n(1-p) \ge 5$)

Podobnie $\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$ ma rozkład bliski N(0,1) o ile $n\hat{p} \geq 5, n(1-\hat{p}) \geq 5$.

Przedział ufności dla proporcji

Stąd

$$P\left(-z_{1-\alpha/2} \le \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \le z_{1-\alpha/2}\right) \approx 1 - \alpha$$

Równoważnie

$$P\!\!\left(\hat{p} - z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) = \approx 1 - \alpha$$

Przedział ufności dla proporcji p na poziomie ufności $(1-\alpha)$ jest postaci:

$$\left[\hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

Przedział ufności dla proporcji

Przykład. W badaniach opinii publicznej otrzymano wynik: 70% spośród 1000 ankietowanych Polaków uważa, że wejście Polski do Unii Europejskiej jest dla nas korzystne, a pozostałych 30% osób sądzi, że nie bądź nie ma zdania. Skonstruować 95% przedział ufności dla proporcji *p* Polaków, którzy uważają, że obecność Polski w UE jest korzystna.

Mamy:
$$\hat{p} = 0.7$$
, $1 - \alpha = 0.95$, $\alpha = 0.05$, $1 - \alpha/2 = 1 - 0.025 = 0.975$.

Z tablicy dystrybuanty rozkładu normalnego: $z_{0,975} = 1,96$,

$$n\hat{p} = 1000 \times 0.7 \ge 5$$
 $n(1-\hat{p}) = 1000 \times 0.3 \ge 5$.

Zatem można wykorzystać przybliżony przedział ufności:

$$\left[\hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] =$$

$$\left| 0,7-1,96\sqrt{\frac{0,7\times0,3}{1000}} ; 0,7+1,96\sqrt{\frac{0,7\times0,3}{1000}} \right| = [0,68 ; 0,73].$$

Zatem mamy "95% pewności (ufności)", że proporcja Polaków uważających za korzystne wejście Polski do UE jest liczbą z przedziału [0,68; 0,73].

ESTYMACJA PRZEDZIAŁOWA

Zadanie. Spośród 400 dorosłych przypadkowo wybranych osób zapytanych o regularne uprawianie sportu rekreacyjnego 160 osób odpowiedziało twierdząco. Skonstruować 98% przedział ufności dla proporcji osób uprawiających sport rekreacyjny w danej populacji (*p*).

Mamy:

$$\hat{p} = \frac{160}{400} = 0.4$$
, $n = 400$, $\alpha = 0.02$, $1 - \alpha/2 = 0.99$, $z_{0.99} = 2.33$.

$$n\hat{p} = 160 \ge 5$$
, $n(1 - \hat{p}) = 240 \ge 5$.

98% przedział ufności dla proporcji p.

$$\left[0.4 - 2.33 \sqrt{\frac{0.4 \times 0.6}{400}} \right] : 0.4 + 2.33 \sqrt{\frac{0.4 \times 0.6}{400}} \right] = [0.343; 0.457]$$

Zadanie. Producent twierdzi, że niezawodność elementów jego produkcji wynosi 0,9 (np. prawdopodobieństwo poprawnej pracy w okresie gwarancji, prawdopodobieństwo wylosowania elementu nie spełniającego norm z bieżącej produkcji ..., ogólnie proporcja elementów niezawodnych). Wśród 100 wybranych losowo elementów 15 okazało się zawodnych. Czy jesteśmy skłonni ufać twierdzeniu producenta?

Przedział ufności dla proporcji p na poziomie ufności 0,95:

$$[0,85-1,96\times\sqrt{\frac{0,85\times0,15}{100}},0.85+1,96\times\sqrt{\frac{0,85\times0,15}{100}}]$$

= [0,780,0,920] = 95% przedział ufności dla proporcji elementów niezawodnych.

Zasady etyczne podawania analiz statystycznych

- Przedział ufności należy wyznaczyć oprócz estymatora punktowego
- Poziom ufności musi być podany
- Liczność próby musi być podana
- Interpretacja przedziału ufności koniecznie podana