实验 1: 设备的使用

A. 目标:

- 1. 熟悉基本设备及元件、电源、万用表、晶体管。
- 2. 了解 IC 的功率限制。
- 3. 了解晶体管作为电子开关的用途
- 4. 将您从以前的课程中学到的知识与现实世界环境相关联。

B. 实验前作业:

- 1. 研究电源 IPS-3303 信息 (可从课程网页获取)。
- 2. 研究 74LS04 数据表 (可从课程网页获取)。
- 3. 研究PN2222数据表;注意基极、发射极和集电极的方向。
- 4. 研究LABI相关的教程信息。
- 5. 完成活动表的实验前部分。

C. 简介:

在本实验室中,您需要熟悉电子学的基本工具。 🛭 电源——电源是给你的电路提供电源的,你需要能够了解电源的工作模式。它与电压和电流有何关系。

- □ 万用表 用于测量电路电压和电流的仪表。
- □ 晶体管--通常用于放大数字逻辑系统电流的设备。

D. 电源信息:

以下是实验室实际使用的电源型号IPS-3303的照片。

有关电源的更多信息,请参阅画布

电3300

实验 1: 设备的使用

活动表

姓名:	 学号:	实验室会议:

预实验

考虑下面的电路,它由 $lk\Omega$ 电阻器、电源、电流表和电压表组成。如果你想测量电阻两端的电压和电流。电流表和电压表如何连接?警告**如果连接错误,您将损坏设备,因此,如果您不确定,请询问您最好的朋友 Google!

在开始实验的每个部分之前, 请检查以下组件

	检查注	青单		
	组件/设备		課 ——	
- A部分 十	 电源	□ 好的 ——	──□ 不好	
	100Ω电阻	□ 好的 ——	──□ 不好	
	10Ω电阻	□ 好的 ——	┼──□ 不好	
	470Ω电阻	□ 好的	──□ 不好	
 B部分 T				
DEPO	10Ω电阻	□ 好的	│	—
	74LS04集成电路	□ 好的	┼──□ 不好	
	数字万用表	□ 好的	□不好	
 C部分 T		好的		
- HE/J	74LS04集成电路	□ 好的 ——	□ 不好	
	 NPN晶体管	□ 好的	┼──□ 不好	

A、电源:

警告 ** A 部分要求您根据您的学生 ID 设置电压和电流。在连接电阻器之前请仔细检查您的电压和电流,然后再进行操作测量。

假设您	的	学	生	证	是
-----	---	---	---	---	---

2	0 _	1	_2 _	3	$\overline{}4$	5	6
		с —	d	和	f_	克	小时

这

请将最大电压设置为 Y 伏, 其中 Y = $(g \times 10 + h)$ mod 5 + 4 请将最大电流设置为 0.2A, 其中 Z = $(e \times 10 + f)$ mod 2 + 2

示例: 对于上述学生证,最大电压将为 = $(5 \times 10 + 6) \mod 5 + 4 = 5V$ 对于上述学生证,最大电流将为 = $(3 \times 10 + 4) \mod 2 + 2 = 2 = 0.2A$

根据您的学生ID设置,电源提供的最大电压、电流和功率是多少?显示你的计算结果。

电压: _		
当前的:		
力量: _		
现在,		
打开电源	使能输出	GROOF!

仅考虑独立模式和主电源。为了设置电源的最大功率,您需要分别执行以下两个步骤。

- 我。 在开路情况下,通过电压旋钮将最大电压设置为 Y Volt。
- 二. 短路输出并通过电流旋钮将最大电流设置为 0.ZA。

请按照上述步骤设置最大电压和电流。当输出被禁用时,不要只是简单地读取值。

1. 从包装盒中取出100Ω,用万用表测量实际电阻。

1	Ξ.	
J	.	

在电源的+ve和-ve端连接 $100\,\Omega$ 电阻,从电源显示屏上读取电源的电压和电流,从而计算出电源提供的功率。

年: ______

电源工作在哪种模式(CC 或 CV)?				
年:				
现在,参考 PRE-LAB, 使用 DMM 测量 100 Ω 电阻两端的电压耗。	、电流,	从而计算	100 Ω	电阻的功
年:				
电源提供的功率是否等于电阻器消耗的功率?能量守恒定律成立	三吗?			
年:				
使用 10 Ω 电阻重复前面的步骤。				
从包装盒中取出10Ω电阻,用万用表测量实际电阻。				
年:				
在电源的+ve和-ve端子之间连接10Ω电阻,电源工作在哪种模式	CC或(CV) ?		
年:				
从显示屏上读取电源的电压和电流。				
年:				
为什么显示的电压值与您之前设置的值(即Y Volt)不同?				
年:				
计算 10 Ω 电阻器消耗的功率。				
年:				
保持相同的设置,但将 10 Ω 电阻更改为连接 2 个输出端子的导线	0			
电源工作在哪种模式 (CC 或 CV)?				
年:				
从显示屏上读取电源的电压和电流。				
年:				
为什么显示的电压值与您之前设置的值(即Y Volt)不同?				
<i>h</i> -				

	+ve 端子到 - ve 端子之间有电流流动吗?如果有,价值是多少,如果没有,为什么?	
	年:	
	+ve 端子与 - ve 端子之间有电压差吗?如果有,价值是多少,如果没有,为什么?	
	年:	
	欧姆定律在这种情况下有效吗?简单解释一下。	
	年:	
3.	身电源配置为串联模式并输出 -Y 伏至 +Y 伏,在输出端子上连接 470Ω 电阻,设置适当的电 充,使电源工作在 CV 模式。测量 470 Ω 电阻器两端的电压、电流,从而计算输送到 470 Ω 且器的功率。	电
	年:	
	检查点 1, 完成 A 部分时 TA 签名:	

- B、数字电路:
- 1. 仅考虑独立模式和主电源。通过开路将电压设置为 5V,通过短路输出将电流设置为 0.3A。
- 2. 在面包板上构建以下电路。

根据您在其他课程中的知识,假设 LED 是一个理想二极管,正向偏置电压为 0.7V,那么流过 $330\,\Omega$ 电阻的电流应该是多少?

年: _____

现在,使用台式万用表测量通过 330Ω 电阻的准确电流,读数是多少?

年: _____

根据您从其他课程中学到的知识,请评论上述两个测量值是否有效。

年:

现在,考虑 74LS04(十六进制非门) IC。

3. 将引脚 1 连接到 GND,测量引脚 2 的电压。引脚 2 的电压是多少?

年:

4. 将引脚 1 连接到 5V,测量引脚 2 的电压。引脚 2 的电压是多少?

年:

5. 现在,进行以下连接:

为了点亮LED,引脚1和A点应该连接到什么?

Ans: 引脚1连接到 (5V / GND), A点连接到 (5V / GND)

在这个例子中,点亮LED的电流从哪里流向哪里?

答: 电流来自_____

现在,使用万用表测量电流。请注意万用表的+ve 和-ve 端子。

万用表上显示的电流是多少?电流是从引脚2流出还是流入引脚2?

答:万用表上显示的电流:_____。方向:(从/进入)针脚 2

现在,尝试将万用表的2脚直接连接到A点,再次测量电流。电流是从引脚2流出还是流入引脚2?

答: 万用表上显示的电流: _____。方向: (从/进入) 针脚 2

通过上面的方法就可以知道IC所能提供的最大电流。根据 B3 部分的答案,推断出您可以从引脚 2 获得的最大功率。

Ans: 引脚 2 的最大功率: ______

6. 现在,尝试做一些小改变:

为了点亮 LED, 引脚 1 和点 B 应该连接到什么?

Ans: 引脚1连接到 (5V / GND), 点B连接到 (5V / GND)

在这个例子中,点亮LED的电流从哪里流向哪里?

Ans: 电流来自

现在,使用万用表测量电流。请注意万用表的+ve 和-ve 端子。

万用表上显示的电流是多少?电流是从引脚2流出还是流入引脚2?

答: 万用表上显示的电流: _____。方向: (从/进入)针脚 2

现在,尝试将万用表的2脚直接连接到B点,再次测量电流。电流是从引脚2流出还是流入引脚2?

答:万用表上显示的电流:_____。方向:(从/进入)针脚 2

通过上述方法,您可以了解 IC 的最大吸收电流。请参阅 B 部分的开头,电源的最大电流设置为 0.3A。引脚 2 是否允许所有 0.3A 电流吸收?请评论。

年: ______

检查点 2, 完成 B 部分时 TA 签名: ______

	检查	查清单	
	— 组件/设备	测试结	果
A部分	电源	口好的	□ 不好
	100Ω电阻	口 好的	□ 不好
	10Ω电阻	□ 好的	□ 不好
	470Ω电阻	□ 好的	□不好
B部分	引领	□ 好的	──□ 不好
	10Ω电阻	口 好的	□ 不好
	74LS04集成电路	□ 好的	□ 不好
	数字万用表	口好的	□ 不好
		□ 好	□ 不好
CHHO		────	──□ 不好 ──
	NPN晶体管	一	□ 不好
		州	

- C. 晶体管作为放大器或开关
- 1. 仅考虑独立模式和主电源。通过开路将电压设置为 5V,通过短路输出将电流设置为 0.35A。
- 2. 测量电机的电阻

答: 电机的电阻 ______

3. 将电机的 2 根电线直接连接到电源。读取电源的电压和电流读数。

4. 使用您从 B 部分构建的电路,进行以下连接:

将 1 脚接地时,电机会转动吗?请用 B 部分最后一项任务的答案进行解释。 5. 请勿用手旋转电机

年:	 	 	

5. 现在,对您的电路进行一些更改:

将 1 脚连接到 5V 时电机会转动吗?请用 B 部分最后一个任务的答案进行解释 6.请勿用手旋转电机

年:			

6. 现在,修改并添加一个 NPN 晶体管到您的电路中,如下所示:

将 1 脚连接到 5V 时电机会转动吗?请用晶体管的特性来解释。

年:	

将 1 脚接地时, 电机会转动吗? 请用晶体管的特性来解释。

年:	 	 	

当由机开启时,	壶 取由源由流,	与 C 3	部分中的答案进行比较。	

年:	_
在这个例子中,使电机转动的动力来自哪里?	
答: 力量来自:	
本例中 74LS04 的引脚 1 的作用是什么?	
年:	_,
检查点 3, 完成 C 部分时 TA 签名:	