Equations

3D COM (Collatz Octave Model) Framework

Author Martin Doina

June 6-2025

Parameters with Full Precision

Parameter	Symbol	Value (High-Precision)
Collatz attractor	\$LZ\$	1.23498228
Fine-structure	\$α\$	0.0072973525643
Ricci threshold	\$HQS\$	0.235
Lyapunov inverse	\$x\$	16.450911914534554
Pi	π \$	3.141592653589793
Recursion number	\$n\$	(variable scaling value in 3D
COM)		
Quantum damping	\$QDF\$	0.809722173

Planetary spacing:

$$\mathbf{a}_n = a_0 \cdot \lambda^n \cdot (1 + \eta \cdot \sin(\theta_n))$$

Alpha fine structure:

 $\$ \alpha \approx HQS \cdot LZ\{x\\$\$

 $\alpha \approx HQS \cdot LZ^x$

The universal bridge formula for characteristic radius

Bridge Formula:

$$R_{\mathrm{atomic}} = a_0' \cdot (\mathrm{LZ})^{n/\pi} \cdot \left(\frac{\alpha}{\mathrm{HQS}}\right)^{1/x}$$

Where:

- R: predicted length

- a_0^\prime : Reference length (e.g., Planck length, Bohr radius, planetary radius)

- LZ: Collatz attractor constant (1.23498228)

- n Collatz octave (recursion number)

- π : Pi (3.141592653589793)

- α : Fine-structure constant (0.0072973525643)

- HQS: Ricci threshold (≈ 0.235)

- x: Lyapunov inverse (16.450911914534554)

- LZ: Loop Zero -updated (1.23498228)

QDF (quantum dumping factor):

$$\left(\frac{\alpha}{HQS}\right)^{1/x}$$

QDF = 0.809722173

Universal bridge short formula for lenght:

 $R_{\text{carch}} = a_0' \cdot (\text{LZ})^{n\pi} \cdot \text{CDF}$

$$R_{\text{search}} = a_0' \cdot (LZ)^{n/\pi} \cdot QDF$$

The universal bridge formula for characteristic mass

 $\mbox{$m = m_e \cdot (\frac{LZ}^{n\pi} \cdot \frac{LZ}^{n\pi} \cdot \frac{LZ}^{n\pi}$

$$m = m_e \cdot LZ^{n/\pi} \cdot \left(\frac{\alpha}{HQS}\right)^{1/x}$$

Where:

- m: predicted mass
- $m_e\colon$ Reference mass (e.g., Planck mass, atomic mass, planetary mass, particle mass)
- LZ: Collatz attractor constant (1.23498228)
- n Collatz octave (recursion number)
- π : Pi (3.141592653589793)
- α : Fine-structure constant (0.0072973525643)
- HQS: Ricci threshold (pprox 0.235)
- x: Lyapunov inverse (16.450911914534554)

Universal bridge short formula for mass

 $M_n = M_0 \cdot \{LZ}^{-n/pi} \cdot \{QDF\}$

$$M_n = M_0 \cdot LZ^{-n/\pi} \cdot QDF$$

Where:

 M_0 is the reference mass

$$QDF = \left(\frac{\alpha}{HQS}\right)^{1/x}$$

is the quantum dumping factor

Logarithmic Relationship Analysis

"n scales logarithmically with mass" means that if we plot n vs. log(mass), we should see a linear relationship.

From the formula:

 $m = m_e \cdot t_{LZ}^{n\pi} \cdot t_{QDF}$

$$m = m_e \cdot LZ^{n/\pi} \cdot QDF$$

Taking the logarithm of both sides:

 $\sl (m) = \log(m_e) + \frac{n}{\pi} \cdot \log(\text{LZ}) + \log(\text{LZ})$

$$\log(m) = \log(m_e) + \frac{n}{\pi} \cdot \log(LZ) + \log(QDF)$$

This can be rearranged to:

 $\ = \pi \cdot (m/m_e) - \log(\text{QDF}) {\log(\text{LZ})}$

$$n = \pi \cdot \frac{\log(m/m_e) - \log(\text{QDF})}{\log(\text{LZ})}$$

This confirms that n is indeed proportional to log(m), establishing a logarithmic relationship between n and mass.