Number Sense Exam 101, 1/21/2021

- (1) 301 + 412 + 413 =
- (2) $16\frac{2}{3}\% =$ ______ (fraction)
- (3) 7002 2007 =
- $(4) \ \ 2001 + 523 67 = \underline{\hspace{1cm}}$
- (5) 2.007 + 20.07 = (decimal)
- $(7) \ 345 612 = \underline{\hspace{1cm}}$
- (8) $2468 \div 9$ has a remainder of _____
- (9) 88% = _____ (fraction)
- *(10) 6002 + 602 + 206 2006 =
- (11) $24 \times 17 19 \times 17 =$
- (12) $\frac{7}{40} =$ % (decimal)
- (13) The GCD of 36 and 48 is ______
- $(14) \ \ 2006 2006 \times 6 = \underline{\hspace{1cm}}$
- (15) $33\frac{1}{3}\%$ of a yard = _____ (inches)
- (16) 2020 has how many positive integral divisors? ____
- $(17) 14 \times 18 + 14 \times 32 = \underline{\hspace{1cm}}$
- $(18) \ 44 \times 55 =$
- (19) Which is smaller, $\frac{2}{7}$ or .27? = ______
- $*(20) 143 \times 69 =$
- (21) How many positive integers less than or equal to 20 are relatively prime to 20?
- $(22) |2-3-|5-7|+11| = \underline{\hspace{1cm}}$
- $(23) \ \ 27^2 + 9^2 = \underline{\hspace{1cm}}$

- (24) $(21 + 34 \times 7) \div 11$ has a remainder of ______
- (25) $\sqrt{27 \times 48} =$
- $(26) |1-2| |3-4| + |5-6| = \underline{\hspace{1cm}}$
- (27) 1.25 gallons = _____ ounces
- $(28) \ 52 \times 53 =$
- (29) 12.8 is what percent of 20? _______ %
- *(30) $\sqrt{6} \times 597 =$ _____
 - (31) The area of a rectangle with a length of 1.25 ft. and a width of 3.2 ft. is ______ sq. ft.
- (32) 39% of ______ is 12% of 52.
- (33) The largest value of x such that $|3x + 2| \le 11$ is _____
- (34) The sum of the roots of $6x^2 + x + 3 = 0$ is _____
- (35) $(5! 3!) \div 4! = \underline{\hspace{1cm}}$ (mixed number)
- (36) $(1000 + 1001) \div 9$ has a remainder of _____
- (37) The 4-digit number 215k is divisible by 8. k =
- $(38) 97 \times 89 =$
- (39) The sum of the positive integral divisors of 40 is _____
- *(40) 224488 \div 111 = _____
- (41) If 13 < b < 85 are the integral sides of a right triangle then the are of the triangle is _____
- (42) Find the area of a triangle with side lengths of 11 cm, 60 cm, and 61 cm. cm²
- (43) $15^{\circ}C =$ ______^{\circ}F
- $(44) 63 \div 1.75 = \underline{\hspace{1cm}}$

- (45) $3 \text{ gallons} = \underline{\hspace{1cm}}$ cu. inches.
- (46) $104 \times 103 =$
- (47) For hat value of k does $x^2 3x + k = 0$ have equal roots?
- $(48) \ 15 \times 4! 5! = \underline{\hspace{1cm}}$
- (49) The sum of the measures of the interior angles of a regular heptagon is ______ °
- *(50) $8\frac{2}{3} \times 314 \div 13 =$ _____
- (51) 0.2434343... = (proper fraction)
- (52) How many ways can 5 people be seated 4 at a time in 4 chairs in a row?
- (53) Given: $2, 5, 10, 17, 26, 37, k, 65, \dots, k =$
- (54) (3-5i)(3-5i) = a+bi. Find a+b.
- $(55) \sin\left(-\frac{\pi}{3}\right) \times \sin\left(\frac{\pi}{3}\right) = \underline{\hspace{1cm}}$
- (56) Y varies indirectly with X and Y = 10 when X = 2. Find Y when X = 6.
- (57) If $3\log_4 x = 6$, then x =_____
- (58) 12% of $433\frac{1}{3} =$ _____
- (59) $300_6 \div 4_6 = \underline{\hspace{2cm}}_6$
- *(60) 142857 × 55 = _____
- (61) The slope of the line containing the points (-4,3) and (3,-2) is_____
- (62) The simplified coefficient of the x^2y^3 term in the expansion of $(2x + y)^5$ is _____

- (63) The volume of a rectangular pyramid with a base width of 2.4 in., a base length of 2.5 in., and a height 7 in. is _____ cu in.
- (64) If $\log_8(3x-7) = \frac{2}{3}$, then x =
- (65) If $(\sqrt[3]{x^5})(\sqrt{x^3}) = (\sqrt[n]{x^k})$, where n and k are relatively prime, then $k = \underline{\hspace{1cm}}$
- $(66) \ 22_6 + 33_6 + 44_6 = \underline{\hspace{1cm}}_6$
- (67) Change 0.2111... base-5 to a base-10 fraction. $_$
- (68) How many committees of 4 people can be formed using 7 people?
- (69) The smaller root of $12x^2 11x 15 = 0$
- *(70) The volume of a sphere with a diameter of 12 cam
 is _____ cu. cm
- (71) If $f(x) = \frac{5x-2}{4x+3}$, then f'(-1) =
- (72) If $f(x) = \frac{8}{3+x}$, then $f^{-1}(2) = \underline{\hspace{1cm}}$
- (73) Find the number of positive proper fractions in lowest terms with a denominator of 13.
- (74) If $122_b = 50$ then $221_b =$
- (75) Change 0.123 base-4 to a base-10 fraction.
- (76) $f(x) = x + \frac{1}{x}$ has _____ asymptotes
- (77) If $33_b = 24$ then $42_b =$
- (78) $\int_0^5 (x-2) \, dx = \underline{\hspace{1cm}}$
- (79) $\lim_{\substack{x \to \frac{1}{3}}} \left(\frac{9x 3}{9x^2 1} \right) = \underline{\hspace{1cm}}$
- *(80) 1250 \div 1666 \times 4444 = ______