附录

[TOC]

A 时序同步

A.1 时序同步与时间矫正的意义

时序同步:

- 统一时钟源,并保证采用同一种计时标准。
- **保证各传感器成像的时间不一致**。这导致了成像结果之间无法有效对齐,无法进行有效的融合。

时间矫正:

• **消除时间延时误差**。传感器会输出一个时间戳 \$ts\$,但是由于时钟不同步的原因,传到本地系统时无法 匹配,因此会将 \$ts\$ 修正为系统接受时刻的时间戳 \$ts^{'}\$。这中间的差距就是相机的时间延迟误差, 通常在几ms到几十ms之间。高速情景下,存在1 ms延时时就能对系统造成明显的影响。

A.2 常见的时间标准及转换

- 1. 常见的时间标准及时间戳表示
 - GMT,即格林尼治标准时间,也就是世界时。GMT的正午是指当太阳横穿格林尼治子午线(本初子午线)时的时间。但由于地球自转不均匀不规则,导致GMT不精确,现在已经不再作为世界标准时间使用。
 - UTC,即协调世界时。UTC是以原子时秒长为基础,在时刻上尽量接近于GMT的一种时间计量系统。为确保UTC与GMT相差不会超过0.9秒,在有需要的情况下会在UTC内加上正或负闰秒(leap second)。UTC现在作为世界标准时间使用。
 - **TAI**,即**国际原子时钟**。1967年第13届国际度量衡会议上通过一项决议,定义 1s 为铯-133原子基态两个超精细能级间跃迁辐射9,192,631,770周所持续的时间,这是利用铯原子振荡周期极为规律的特性。
 - LT,即本地时间。东区是加相应的时区差,西区是减时区差。如北京是东八区,则北京时间 =UTC+8。
 - **Unix timestamp**: 计算机记录UTC时间以Unix timestamp形式存储。定义为从格林威治时间 1970年01月01日00时00分00秒起至现在的总秒数,**不考虑闰秒**。
 - **GPS timestamp**:即GPS原子时。它的时间基准是1980年1月6日0点与世界协调时刻相一致,以后按原子时秒长累积计时(**考虑闰秒**)。

2. GPS timestamp 与 Unix timestamp 的相互转换:

。 不考虑闰秒情况下,两者的时间差异为:

■ 以世界时间计算: \$315964800 = 315993600 - 28800\$

■ 以北京时间计算: \$315993600\$

。 闰秒插入时间表:

```
Current TAI - UTC = 37. (mean that: 2017 - 1970/01/01 = 37 seconds)
Current GPS - UNIX = 18. (mean that: 2017 - 1980/01/06 = 18 seconds)
| Year | Jun 30 | Dec 31 | Year | Jun 30 | Dec 31 |
+====++====++====++====++====++=====++
| 1980 | (already +19) | 1994 | +1 | 0 |
+----+
| 1981 | +1 | 0 | 1995 | 0 | +1 |
+----+
| 1982 | +1 | 0 | 1997 | +1 | 0 |
+----+
| 1983 | +1 | 0 | 1998 | 0 | +1 |
+----+
| 1985 | +1 | 0 | 2005 | 0 | +1 |
+----+
| 1987 | 0 | +1 | 2008 | 0 | +1 |
+----+
| 1989 | 0 | +1 | 2012 | +1 | 0 |
+----+
+----+
| 1992 | +1 | 0 | 2016 | 0 | +1 |
+----+
| 1993 | +1 | 0 | 2017 | 0 | 0
+----+
```

。 代码展示: 详见modules/drivers/gnss/util/time_conversion.h

A.3 各传感器输出信息时间戳

• lidar点云信息 (/apollo/sensor/lidar16/PointCloud2)

```
header:
    timestamp: 1645954490.276059151
    measurement_time: 1645925689.300303936
    point: [0]
    x: 5.998190
    y: -0.836586
    z: -1.611391
    intensity: 27
    timestamp: 1645925689201644032
```

- 。 该点云信息在与gnss时钟同步后,Apollo驱动中开启了使用激光时钟选项。可以看出 measurement_time与header.timestamp相差了至少8小时,即28800。这是由于后者采用了北京时间而前者采用了UTC标准时间。
- 。 其中,header.timestamp表示系统到达的时间,代码为cyber::Time().Now().ToSecond()

measurement_time 表示点云的测量时间,取点云序列中最后一个点的时间戳(严格来说是点云最后一个点的测量时间除以1e9)作为整体的测量时间。

o 由于激光为慢速测量设备,因此需要记录**每个点的时间戳**,便于后续的运动畸变矫正。

相机信息:

header:

timestamp: 1644554764.430842638

measurement time: 1644554764.399139166

相机情况需要分类讨论:对于卷帘门相机而言,实际曝光是一行一行进行的,每一行CMOS曝光后将信息传给行寄存器,再由行寄存器进行输出。最终时间戳会确定在图像中间进行曝光时;而对于全局相机而言,每个CMOS都有一个对应的寄存器,因此可以同时进行曝光,时间戳位于同时曝光时。但是全局相机价格高昂,同时工艺复杂,由于寄存器位置的限制,也很难做出大底的相机,因此卷帘门相机更加实用。

非定制相机模组不支持时钟同步,定制相机可选择支持。以卷帘门相机为例,需要和厂家进行沟通,在输出相机图像时把每一行的时间戳也发送出来,根据相应的算法进行补偿处理。

A.4 时间同步方法

1. Apollo内部时间同步机制:

。 系统同步:

采用**NTP网络同步**。以1s为周期,根据时钟偏差调整client时钟,可将时钟误差稳定控制在微秒级别。

■ 执行命令:

bash docker/scripts/dev_into.sh sudo apt-get -y update && sudo apt-get -y install ntpdate bash scripts/time_sync.sh cn

。 LiDAR设备同步:

- LiDAR设备**支持两种时钟同步**方式:
 - IEEE 1588-2008(PTPv2): 以太网接口同步;
 - **PPS脉冲信号+NMEA消息**(GPS),由于设备原因,采用第二种方式进行时钟同步;
- PPS脉冲信号+NMEA消息(GPS)配置演示
 - **GPS配置**。打开CGI-410 配置界面(网页输入: 192.168.200.1,账号: admin,密码: password)在 io 设置内的串口A配置中设置波特率为9600 bps,输出协议为GPRMC,输出频率为1 Hz(最大)。

■ **同步模式**:速腾16线雷达支持3种PPS同步模式,本车采用Mode 2:取最后一个GPRMC,Lidar端PPS下降沿触发同步,对应PPS上升沿。注意:如果采用Mode 0,则可能会出现1秒左右的延迟,此时需要下载上位机软件,**更改同步模式后刷新固件**。

■ **物理连接**。RS-LiDAR-16 电源盒上面的 GPS_REC 接口规格为SH1.0-6P母座, 引脚定义如图所示:

Pin No.	V4.0 and later versions	Other versions
1	GPS PULSE	GPS REC
2	+5V	GPS PULSE
3	GND	GND
4	GPS REC	NC
5	GND	NC
6	NC	+5V

该接口支持采用RS232协议进行通讯与GPS端相连接。由于没有固定连接线,因此需要手动制作。其中:GND和TXD由CGI-410中的A_RS232口提供(详见DB9口定义),分别对应激光的GND和GPS REC,CGI-410中的PPS授时线连接激光的GPSPULSE接口,其余部分悬空即可。

同步线的制作详见附录C。

Pin□	CGI-410端	Lidar端	
1	PPS授时端口	GPS PULSE	
2	悬空	悬空	
3	A_RS232中的GND	GND	
4	A_RS232中的TXD	GPS REC	
5	5 悬空 悬		
6	悬空	悬空	

■ 同步模式选择:

由于速腾激光雷达默认同步模式无法与华测惯导配合,因此需要对激光雷达的固件进行刷写。(该部分实际操作详见附录C)

速腾Lidar的时钟同步具有三种授时模式:这里我们将采用Mode2的方式进行同步。

【 Mode 0】:取 PPS 脉冲前一个 GPRMC,LiDAR 端 PPS 上升沿触发同步(对应源 PPS 下降沿),需要保证源 PPS 下降沿的稳定性——周期波动满足 $1s\pm100$ us。最终同步后的时间满足: RS + 1s + PPS 脉宽 = V (新固件之前的时间同 步机制)

【 Mode 1】: 取 PPS 脉冲前一个 GPRMC,LiDAR 端 PPS 下降沿触发同步(对应源 PPS 上升沿), 需要保证源 PPS 上升沿稳定性——周期波动满足 $1s\pm100us$ 。 最终同步后的时间满足: RS + 1s = V。同时此模式下 V4.0 以上 16 线/V2.0以上 32 线表现的同步效果和 V3.3 以下 16 线/V1.7 以下 32 线保持一致。

【 Mode 2】: 取后一个 GPRMC, LiDAR 端 PPS 下降沿触发同步(对应源 PPS 上升沿), 需要保证源 PPS 上升沿稳定性——周期波动满足 $1s\pm100us$ 。 最终同步后的时间满足: RS = V。

2. 工业级别的同步方式: 硬件同步

自动驾驶系统中,几乎每个测量设备都有一个自己的时钟源,因此必须统一时钟源,以保证各个设备的时间戳是对齐的。考虑到原子钟的精确性,系统一般选择GNSS作为主时钟源,并对其他设备进行时间同步。注意,这里的时间同步并不是说仅仅同步一次就好,因为钟漂的存在,时间戳必须不断进行矫正。

考虑到在部分信号不好的地段,如隧道等场景下,GNSS信号会丢失进而无法矫正时间,自动驾驶系统会指定一个晶振频率最高的设备(一般是专门的设备,如果imu或者lidar晶振很高也可能被选择)作为主时钟源,然后根据主时钟进行推断。

利用硬件同步方案,可以构造一个**触发装置**,在指定的时刻,发送触发信号,让所有的传感器触发成像,减少成像时刻误差。

- 连接GPS信号和NTP server,确保时钟实现微秒级同步;
- 。 设置触发逻辑(如LiDAR正前方的成像相位),同时触发LiDAR和Camera成像;
- 。 支持多LiDAR和多Camera,暂不支持Radar和超声波雷达
- 系统精度更高,可将系统同步精度控制在5 ms以内;缺点是丢失一些系统的灵活度和高频数据, camera成像频率原本可以更高的。

3. Camera设备的同步:

- 。 与IMU的同步,常见于VIO系统中:
 - imu、相机使用同一个时钟晶振:这样做的好处是不用考虑太多额外的因素,但是要求IMU 和相机距离足够接近(这在自动驾驶场景下是不现实的),没有其他干扰,也不需要其他设备进行同步。
 - 常见的硬件同步解决方案:以IMU时钟触发Camera曝光
 - 软同步方法:具体内容详见VIO的第八讲

。 与点云进行同步:

- 常见的硬件同步解决方案: 触发装置同时触发成像和曝光。
- 常见的软件同步解决方案:由于lidar有成熟的硬件同步机制,可以将lidar与系统进行硬件同步,并将lidar点云逐步投影到相机中来,当某一帧能够对齐时候完成补偿。之后,分别在驱动中减去时间戳补偿,可以将这种时间误差补偿到10 ms以下。(详见多传感器融合感知第一章节)

B Apollo中的各个坐标系

在惯性导航中,一般将坐标系分为两类**:惯性坐标系、非惯性坐标系**。惯性坐标系包括:日心惯性系、地心惯性系。非惯性坐标系包括:地球坐标系、地理坐标系等。

B.1 地心惯性坐标系(i 系, ECI)

惯性坐标系是指坐标轴指向保持不变的坐标系,例如地心惯性坐标系。它具有以下特征:

- 常用\$o_ix_iy_iz_i\$表示,原点为地球中心。\$o_ix_i\$和\$o_iy_i\$在地球赤道平面内,其中前者指向春分点。\$o_iz_i\$轴为地球自转轴,指向北极,\$o_iy_i\$轴沿右手规则确定。(x,y 轴指向两颗恒星)
- IMU测量得到的加速度,角速度都是相对于这个坐标系的。

B.2 地球坐标系(e系,地心地固坐标系,ECEF)

• 表示形式为: \$o_ex_ey_ez_e\$,角标常用*e(earth)*表示。

• 地球中心为坐标原点*o*,*oz*轴沿地球自转轴方向,*ox*轴是赤道平面和本初子午面的交线(注意本初子午面只有一个),*oy*轴沿右手规则确定。

• 地球坐标系是和地球固连的,它与地球一起相对惯性坐标系以地球的自转角速度进行转动。

B.3 全球地理坐标系统(g系,大地坐标系)

WGS84坐标系

Apollo采用的是WGS84(World Geodetic System 1984)作为标准坐标系来表示物体的纬度,经度和高度(LLT)。

- 表示形式:通过使用该标准坐标系统,我们可以使用2个数字: x坐标和y坐标来唯一的确定地球表面上除 北极点之外的所有点,**其中x坐标表示经度(longitude),y坐标表示纬度(latitude)**。
- WGS84坐标系的坐标原点位于地球的质心,Z轴指向BIHl984.0定义的协议地球极方向[指向格林威治子午线(本初子午线)],X轴指向BIHl984.0的起始子午面和赤道的交点,在**地球赤道平面内**相互垂直。
- 经度0.00001度(十万分之一度,0°0'0.036'),在赤道上对应的地球表面距离约为1米稍多,但在南北极极点上,则是0米.纬度0.00001度在地球表面任意地方对应的地球表面距离都是大约1米稍多。**WGS84椭球体**也经常在转换中被使用。

UTM坐标系

- 将**球面经纬度坐标经过投影算法转换成的平面坐标**,即通常所说的XY坐标,单位为**米制**。UTM相当于是把世界分成了若干个ENU坐标系,每个zone对应一个ENU。
- 表示形式: 坐标\$(x,y)\$加上投影带号就能表示地球上的一点。例如,11U 358657mE 5885532mN:
 - 。 11U 表示位于经度11区,位于纬度U区
 - 。 358657mE 表示东向位置为358657 m
 - 。 5885532mN 表示北向位置为5885532 m
- UTM投影坐标使用"等角横轴切割圆柱"模型划分,基于网格的方法进行表示:

- 。 经度分区:编号1-60,其中58个区的东西跨度为6°
- 。 纬度分区:编号C-X (不含I,O,共20个区),每个区的南北跨度为8°
- A, B, Y, Z覆盖南极和北极区
- N为第一个北纬带,N之后的字母均为北纬带,N之前的字母均为南纬带
- 坐标系方向: UTM坐标系原点跟id有关。一个id对应一个原点。以正东方向为x轴正方向(UTM Easting),正北方向为y轴正方向(UTM Northing)。
- "WGS84"坐标系的墨卡托投影分度带(UTM ZONE)选择方法:
 - UTM是由美国制定,因此起始分带并不在本初子午线,而是在180度,因而所有美国本土都处于0 -30带内。北京地区位于50带内;
 - 。 北半球地区,选择最后字母为"N"的带;
 - o 可根据公式计算,带数=(经度整数位/6)的整数部分+31 如:江西省南昌新建县某调查单元经度范围115°35′20″—115°36′00″,带数为115/6+31=50,选50N,即WGS84 UTM ZONE 50N。

B.4 局部地理坐标系统(导航坐标系统,N系)

局部地理坐标系通常使用的有 "东北天"坐标系和"北东地"坐标系。在Apollo系统中,局部坐标系的定义为:东北天坐标系(East-North-Up,ENU)。在惯导和组合导航中,导航坐标系通常选用地理坐标系,两者保持一致。

1. **"东北天"坐标系**: z轴 - 指向上方(和重力线成一条直线);y轴 - 指向北面;x轴 - 指向东面。在该坐标系下,标准重力表示为:\$[0,0,-9.81]\$,静止的物体表示为\$[0,0,9.81]\$。ENU一般采用三维直角坐标系来描述地球表面,实际应用较为困难,因此一般使用**简化后的二维投影坐标系来描述**(即UTM坐标系)。

2. 使用Proj.4库完成坐标转换:

- Proj.4库介绍: Proj.4 是开源 GIS 最著名的地图投影库,功能主要有经纬度坐标与地理坐标的转换,坐标系的转换,包括基准变换等。百度Apollo系统中采用了该库作为转换工具。
- o Proj.4库常用的几种参数:

```
+proj 投影名
+zone UTM区域
+ellps 椭球体名
+towgs84 3或7参数基准面转换
+units m(米), us-ft (美国测量英尺)
+no_defs 不要使用/usr/share/proj/proj_def.dat缺省文件

+datum 基准面名
+lat_0 维度起点
+lon_0 中央经线
+k_0 比例因子
+south 表示南半球UTM区域
```

。 常用proj-strings:

```
const char *UTM_TEXT =
   "+proj=utm +zone=50 +ellps=WGS84 +towgs84=0,0,0,0,0,0 +units=m +no_defs";
const char *WGS84_TEXT = "+proj=latlong +ellps=WGS84";
```

- +proj=latlong:表示在WGS84坐标系下
- +proj=utm:表示在utm坐标系下
- +ellps=WGS84: 地球模型采用WGS84椭球体
- +towgs84=0,0,0,0,0,0,0,0: 基准面变换可以使用3参数空间变换(地心空间直角坐标系),或7 参数变换(平移+旋转+缩放)。WGS84与UTM基准一致,无需没有额外变换。
- +no_defs: 基准网格转换文件/usr/local/share/proj/ntv1_can.dat不会被加载
- 。 完成从WGS84到UTM坐标系的转换

```
#define ACCEPT_USE_OF_DEPRECATED_PROJ_API_H
#include <proj_api.h>
constexpr double DEG_TO_RAD_LOCAL = M_PI / 180.0;

projPJ wgs84pj_source_ = pj_init_plus(WGS84_TEXT);
projPJ utm_target_ = pj_init_plus(UTM_TEXT);
double x = ins->position().lon();
double y = ins->position().lat();
x *= DEG_TO_RAD_LOCAL;
y *= DEG_TO_RAD_LOCAL;
pj_transform(wgs84pj_source_, utm_target_, 1, 1, &x, &y, NULL);
pj_free(wgs84pj_source_);
pj_free(utm_target_);
```

B.5 载体坐标系统

1. **车辆坐标系(B系):右-前-上**(Right-Forward-Up **RFU**)。车辆坐标系的原点在车辆**后轮轴的中心**。z 轴 – 通过车顶垂直于地面指向上方;y轴 – 在行驶的方向上指向车辆前方;x轴 – 面向前方时,指向车辆右侧。

2. **IMU坐标系**: Apollo中,imu坐标系和载体坐标系一致。和载体固定连在一起,和n系有一个旋转关系。 IMU坐标系也是各个传感器的父坐标系。

3. **激光坐标系**: Apollo中采用**前-左-上**坐标系(**FLU**)

Velodyne16

B.6 内外参文件的解析

以lidar16_novatel_extrinsics.yaml为例:

```
header:
 stamp:
 secs: 1570694831
 nsecs: 0
 seq: 0
 frame_id: novatel
child_frame_id: lidar16
transform:
 rotation:
 x: 0.0
 y: 0.0
 z: 0.7071
 w: 0.7071
 translation:
 x: 0.0
 y: 0.414
 z: 0.897
```

这里的header.frame_id类似于ROS系统中的parent frame ,child_frame_id中类似于ROS系统中child frame,他们的关系如下:

- 从坐标系变换的角度: parent是原坐标系, child是变换后的坐标系, 因此存在一个变换矩阵 \$T^{\text{parent}}_{\text{child}}\$。
- 从坐标系的角度:可以看做child坐标系在parent坐标系下的描述。

C同步线制作与固件刷机

1. 时钟同步方法:

组合惯导通过串口A RS232发布GPRMC数据为Lidar传输GPS时间,串口波特率对应为9600.

2. PPS脉冲信号+NMEA消息:

PPS信号以1hz的频率向Lidar发送整秒触发信号,一旦接收到GPS发来的PPS信号,则会对Lidar的时间整秒以下的时间进行清零,整秒及以上则是通过串口A发来的包含时间的GPRMC数据进行幅值来完成对Lidar的授时操作。

3. 制作材料准备:

PPS信号线×1,DB9单公头串口线×1,SH1.0-6P接线端子,电烙铁,热缩管,剥线钳,绝缘胶带

4. 接线端口定义:

名 称	作 用
DCD (Data Carrier Detect)	数据载波检测
RxD (Received Data)	串口数据输入
TxD (Transmitted Data)	串口数据输出
DTR (Data Terminal Ready)	数据终端就绪
GND (Signal Ground)	地线
DSR (Data Send Ready)	数据发送就绪
RTS (Request to Send)	发送数据请求
CTS (Clear to Send)	清除发送

Pin No.	V4.0 and later versions
1	GPS PULSE
2	+5V
3	GND
4	GPS REC
5	GND
6	NC

Lidar端

5. 接线操作:

lidar gnss PPS — pin1 黑色 GPS PULSE pin5 GND 黄 — — pin3 白色 GND pin2 TXD 棕 ——— pin4 黄色 REC

1

6. Lidar固件刷机

通过固件信息配置的方法,对Lidar的同步模式进行设定,根据速腾雷达的说明手册**时间同步模式说 明**,需要将Lidar的同步模式设定为模式2,具体操作参考传感器说明书**手册_速腾16线 附录C**进行对同 步模式进行配置。

