P3.5P: Pose Estimation With Unknown Focal Length

Changchang Wu Google Inc.

- The problem has 7 DoF (rotation, translation, focal length);
- Common approximation for pose estimation of uncalibrated camera;

world coordinate system

■ The input are 7 image coordinates (3.5 points) of 4 known 3D points.

☐ Related PnP Problems

camera coordinate system

Problem	Unknowns	DoF	Input	Minimal?
P3P	R, T	6	3	Y
P3.5P	f, R, T	7	3.5	Y
P4P	f, R, T	7	4	Ν
P5.5P	3x4 P	11	5.5	Υ
P6P	3x4 P	11	6	N

☐ Common Constraint and Parametrization

Constraints	Parametrization	Application
(x_i,y_i) : perspective projection	Linear combination	P5.5P / P6P
$P\Omega P^{\top} \sim \operatorname{diag}(f^2, f^2, 1)$: focal length	of null space	P4P [1]
$ X_i - X_j $: 3D Similarity between the camera and world coordinate systems	Point depth and its derivatives	P3P P4P [2, 3]

☐ A New Camera Parametrization

The naive parametrization leads to 2x solutions:

$$P = \begin{bmatrix} f & & \\ & f & \\ & & 1 \end{bmatrix} R \begin{bmatrix} I & -C \end{bmatrix} = \begin{bmatrix} -f & & \\ & -f & \\ & & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} -1 & & \\ & & -1 & \\ & & & 1 \end{bmatrix} R \begin{pmatrix} I & -C \end{bmatrix}.$$

- Also degenerate for planar points (not general).
- Decompose the camera rotation matrix:

$$R = R_{\theta} \ R_{\rho} = \underbrace{R(z, \theta)}_{\text{around } z \text{ around } \Phi \perp z} \underbrace{R(\Phi, \rho)}_{\text{around } \Delta z}$$

A compact parametrization for camera with unknown focal length:

$$P = \begin{bmatrix} K_{\theta} R_{\rho} & T \end{bmatrix} \longleftarrow K_{\theta} = \begin{bmatrix} f_{c} & -f_{s} \\ f_{s} & f_{c} \end{bmatrix} = \begin{bmatrix} f \cos \theta & -f \sin \theta \\ f \sin \theta & f \cos \theta \end{bmatrix}$$

- No redundancy; Works for planar points.

☐ Solving the P3.5P Problem

 $K_{\theta}(f_c, f_s), R_{\rho} \text{ as quaternion} = (1, q_x, q_y, 0)^{\top}, T = (t_x, t_y, t_z)^{\top}$

Determinant constraints

2 unknowns 4 equations Degree 6

Gröbner basis \leq 10 real solutions for q_x , q_y

SVD

Minimal number of solutions

Exact 7 image coordinates

- Lowest polynomial degrees
- Smallest elimination template

Solving for other unknowns Filtering by the 8th coordinate

☐ Experimental Results

Solver	Polynomial degree	Solving method	Speed
P3.5P	6	GB (20x30)	0.108ms
Zheng [3]	7	GB (36x53)	0.257ms
		Polyeig	1.648ms
		Characteristic Polynomial	0.067ms
Bujnak [2]	8	GB (53x63)	0.336ms
		GB (139x153)	3.320ms

Comparison of polynomial system and speed

Comparison of log of focal length errors for noise-free data

Comparison of % of focal length errors for varying noise levels

Reconstruction from real images (general and planar scene)

☐ References

- [1] B. Triggs. Camera pose and calibration from 4 or 5 known 3D points. In CVPR, 1999.
- [2] M. Bujnak, Z. Kukelova, and T. Pajdla. A general solution to the P4P problem for camera with unknown focal length. In CVPR, 2008
- [3] Y. Zheng, S. Sugimoto, I. Sato, and M. Okutomi. A general and simple method for camera pose and focal length determination. In CVPR, 2014