7.14 1) (a) Le professeur doit crypter le message m=4 avec la clé publique du secrétariat, c'est-à-dire calculer $4^7 \mod 77$:

	x	reste r	n	$4^{2^n} \mod 77$	contribution (si $r = 1$)
	7	1	0	4	4
•	3	1	1	$4^2 \equiv 16$	16
	1	1	2	$16^2 \equiv 25$	25

$$4^7 \equiv 4 \cdot 16 \cdot 25 \equiv 60 \mod 77$$

Le professeur transmet au secrétariat le message codé 60.

(b) Pour déterminer la signature envoyée par le professeur, il faut connaître sa clé privée.

$$n_{\rm P} = 15 = 3 \cdot 5$$
 $\varphi(n_{\rm P}) = (3-1)(5-1) = 8$

La clé privée d_P du professeur satisfait la congruence $3 d_P \equiv 1 \mod 8$. Comme $3 \cdot 3 \equiv 1 \mod 8$, on trouve immédiatement $d_P = 3$.

La signature du message du professeur vaut $s \equiv 4^3 \equiv 4 \mod 15$.

Le professeur doit encore crypter la signature pour la transmettre au secrétariat, donc calculer $4^7 \mod 77$. Ce calcul est le même que celui qui lui a permis de coder le message. Le professeur envoie donc au secrétariat la signature codée 60.

2) Pour décrypter le message reçu par le secrétariat, on a besoin de sa clé privée.

$$n_{\rm S} = 77 = 7 \cdot 11$$
 $\varphi(n_{\rm S}) = (7 - 1)(11 - 1) = 60$

La clé privée d_S du secrétariat vérifie la congruence $7 d_S \equiv 1 \mod 60$.

Afin d'obtenir d_S , résolvons l'équation diophantienne 7x + 60y = 1:

$$60 = 7 \cdot 8 + 4 \qquad \Longrightarrow \qquad 4 = 60 - 7 \cdot 8$$

$$7 = 4 \cdot 1 + 3 \qquad \Longrightarrow \qquad 3 = 7 - 4 \cdot 1$$

$$3 = 1 \cdot 3$$

$$1 = 4 - 3 \cdot 1$$

= $4 - (7 - 4 \cdot 1) \cdot 1 = 7 \cdot (-1) + 4 \cdot 2$
= $7 \cdot (-1) + (60 - 7 \cdot 8) \cdot 2 = 60 \cdot 2 + 7 \cdot (-17)$

À partir de la solution particulière $x_0 = -17$ et $y_0 = 2$, on déduit la solution générale :

$$\begin{cases} x = -17 + \frac{60}{1}k = -17 + 60k \\ y = 2 - \frac{7}{1}k = 2 - 7k \end{cases}$$
 où $k \in \mathbb{Z}$

La condition $1 < x < \varphi(n) = 60$ implique k = 1.

On conclut que $d_S = -17 + 60 = 43$.

(a) Pour décrypter le message et la signature, il faut calculer $41^{43} \mod 77$:

x	reste r	n	$41^{2^n} \mod 77$	contribution (si $r = 1$)
43	1	0	41	-36
21	1	1	$(-36)^2 \equiv -13$	-13
10	0	2	$(-13)^2 \equiv 15$	
5	1	3	$15^2 \equiv -6$	-6
2	0	4	$(-6)^2 \equiv 36$	
1	1	5	$36^2 \equiv -13$	-13

$$41^{43} \equiv (-36) \cdot (-13) \cdot (-6) \cdot (-13) \equiv 6 \mod 77$$

Le secrétariat obtient pour message m = 6 et pour signature s = 6.

(b) Pour vérifier que le message a bien été envoyé par le professeur, le secrétariat doit s'assurer que $6^3 \equiv 6 \mod 15$.

Puisque cette congruence est bien vérifiée, le message a bel et bien été envoyé par le professeur.

3) Pour décrypter le message, le secrétariat calcule $12^{43} \mod 77$:

а	c	reste r	n	$12^{2^n} \mod 77$	contribution (si $r = 1$)
4	3	1	0	12	12
2	1	1	1	$12^2 \equiv -10$	-10
1	0	0	2	$(-10)^2 \equiv 23$	
Ę	5	1	3	$23^2 \equiv -10$	-10
2	2	0	4	$(-10)^2 \equiv 23$	
	L	1	5	$23^2 \equiv -10$	-10

$$12^{43} \equiv 12 \cdot (-10) \cdot (-10) \cdot (-10) \equiv 12 \mod 77$$

Le message obtenu par le secrétariat est donc m = 12.

Pour décrypter la signature, le secrétariat calcule $27^{43} \mod 77$:

x	reste r	n	$27^{2^n} \mod 77$	contribution (si $r = 1$)
43	1	0	27	27
21	1	1	$27^2 \equiv 36$	36
10	0	2	$36^2 \equiv -13$	
5	1	3	$(-13)^2 \equiv 15$	15
2	0	4	$15^2 \equiv -6$	
1	1	5	$(-6)^2 \equiv 36$	36

Le secrétariat obtient par conséquent la signature s=48.

Pour s'assurer de l'authenticité du message, le secrétariat doit encore calculer $48^3 \mod 15$. Comme $48^3 \equiv 12 = m \mod 15$, le secrétariat conclut que le message a bien été envoyé par le professeur.