The definite <u>integral</u> squiggle!

November 14th, 2024

Here are some key ideas from section 5.2.

	use n rectangles, each	h with width	<u>:</u>		
Moreover, suppose we use			to represent the <i>sample points</i> (for example,		
•	right endpoints, or m	-			
 Then the exact 	area under the curve	is			
• If the limit exists, w	• If the limit exists, we say the function is		and the definite integral is		
,	_				
0	·	can we find the area ur	•		
。 A		function is alw	s always integrable.		
o A function with			jump discontinuities is always integrable		
Lin this worksheet would	will need these summ	ation lawe to colve nrob			
•		-			
•		-	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$		
$\sum_{i=1}^{n} i = \frac{n}{2}$	$\frac{v(n+1)}{2} \qquad \qquad \sum_{i=1}^{n} i$	$e^2 = \frac{n(n+1)(2n+1)}{6}$	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$		
$\sum_{i=1}^{n} i = \frac{m}{2}$ Trig practice: Sketch the Problem 1: (Stewart 5.2)	$\frac{\nu(n+1)}{2}$ $\sum_{i=1}^{n} i^{i}$ graphs of $\tan x$ and a Evaluate the left Rie	$e^2 = \frac{n(n+1)(2n+1)}{6}$ rectan x . On what intervenann sum for $f(x) = \frac{1}{2}$	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$		
$\sum_{i=1}^{n} i = \frac{m}{2}$ Trig practice: Sketch the Problem 1: (Stewart 5.2)	$\frac{\nu(n+1)}{2}$ $\sum_{i=1}^{n} i^{i}$ graphs of $\tan x$ and a Evaluate the left Rie	$e^2 = \frac{n(n+1)(2n+1)}{6}$ rectan x . On what intervenann sum for $f(x) = \frac{1}{2}$	$\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$ ral is $\arctan x$ a function?		
Trig practice: Sketch the	$\frac{\nu(n+1)}{2}$ $\sum_{i=1}^{n} i^{i}$ graphs of $\tan x$ and a Evaluate the left Rie	$e^2 = \frac{n(n+1)(2n+1)}{6}$ $e^2 = \frac{n(n+1)(2n+1)}{6}$ erctan x . On what intervenann sum for $f(x) = 1$ ints.	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$ ral is $\arctan x$ a function?		
$\sum_{i=1}^{n} i = \frac{n}{2}$ Trig practice: Sketch the problem 1: (Stewart 5.2) subintervals. Use left end	$\frac{\nu(n+1)}{2}$ $\sum_{i=1}^{n} i^{i}$ graphs of $\tan x$ and a Evaluate the left Rie	$e^2 = \frac{n(n+1)(2n+1)}{6}$ $e^2 = \frac{n(n+1)(2n+1)}{6}$ erctan x . On what intervenann sum for $f(x) = 1$ ints.	$\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$ ral is $\arctan x$ a function?		
$\sum_{i=1}^{n} i = \frac{n}{2}$ Trig practice: Sketch the problem 1: (Stewart 5.2) subintervals. Use left end	$\frac{\nu(n+1)}{2}$ $\sum_{i=1}^{n} i^{i}$ graphs of $\tan x$ and a Evaluate the left Rie	$e^2 = \frac{n(n+1)(2n+1)}{6}$ $e^2 = \frac{n(n+1)(2n+1)}{6}$ erctan x . On what intervenann sum for $f(x) = 1$ ints.	$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$ ral is $\arctan x$ a function?		

Problem 2: (Stewart 5.2) Express the following limits as definite integrals.

- a) $\lim_{n\to\infty}\sum_{i=1}^n x_i \ln(1+x_i^2) \Delta x$, on the interval [2, 6];
- b) $\lim_{n\to\infty} \sum_{i=1}^n \frac{\cos x_i}{x_i} \Delta x$, on the interval $[\pi, 2\pi]$;
- c) $\lim_{n\to\infty}\sum_{i=1}^n\sqrt{2x_i^*(x_i^*)^2}~\Delta x$, on the interval $[\pi,2\pi]$.

My Attempt:

Solution:

Problem 3: (Stewart 5.2) Geometrically find $\int_{-1}^{5} (1+3x) dx$ by sketching a graph of the function and dividing the area into known and friendly shapes.

My Attempt:

Solution:

Problem 4: (Stewart 5.2) Evaluate $\int_{-3}^{0} \left(1 + \sqrt{9 - x^2}\right) dx$ by interpreting in terms of areas.

My Attempt:

Solution:

		f^5	0	
Problem 5:	(Stewart 5.2) Use the limit definition to evaluate	(1	$(x^3)^{-1}$	dx
		J٥		

My Attempt:

Solution:

Problem 6: (Stewart 5.2) Using lower and upper bounds for $\int_0^2 \frac{1}{1+x^2} dx$, estimate the value of the integral.

My Attempt:

Solution:

Problem 7: (Stewart 5.2) Evaluate $\int_{-2}^{2} \sin(x)x^3 dx$.

My Attempt:

Solution:

Challenge problem: (Stewart 5.2) If

$$\int_0^4 e^{(x-2)^4} \, dx = k,$$

find the value of

$$\int_{0}^{4} x e^{(x-2)^4} dx.$$