UNIT 1 DIFFERENTIAL CALCULUS

Structure

1.0 Introduction

1.1 Objectives

1.2 Limits and Continuity

1.3 Derivative of a Function

1.4 The Chain Rule

1.5 Differentiation of Parametric Forms

1.6 Answers to Check Your Progress

1.7 Summary

1.0 INTRODUCTION

In this Unit, we shall define the concept of limit, continuity and differentiability.

1.1 OBJECTIVES

After studying this unit, you should be able to:

- define limit of a function;
- define continuity of a function; and
- define derivative of a function.

1.2 LIMITS AND CONTINUITY

We start by defining a function. Let A and B be two non empty sets. A function f from the set A to the set B is a rule that assigns to each element x of A a unique element y of B.

We call y the image of x under f and denote it by f(x). The domain of f is the set A, and the co-domain of f is the set B. The range of f consists of all images of elements in A. We shall only work with functions whose domains and co-domains are subsets of real numbers.

5

Given functions f and g, their sum f + g, difference f - g, product f. g and quotient f/g are defined by

$$(f + g)(x) = f(x) + g(x)$$

 $(f - g)(x) = f(x) - g(x)$

$$(f. g)(x) = f(x) g(x)$$

and
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}$$

For the functions f + g, f - g, f. g, the domain is defined to be intersections of the domains of f and g, and for f / g the domain is the intersection excluding the points where g(x) = 0.

The composition of the function f with function g, denoted by $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f.

Limit of a Function

We now discuss intuitively what we mean by the limit of a function. Suppose a function f is defined on an open interval (α, β) except possibly at the point $a \in (\alpha, \beta)$ we say that

$$f(x) \to L \text{ as } x \to a$$

(read f(x) approaches L as x approaches a), if f(x) takes values very, very close to L, as x takes values very, very close to a, and if the difference between f(x) and L can be made as small as we wish by taking x sufficiently close to but different from a.

As a mathematical short hand for $f(x) \rightarrow L$ as $x \rightarrow a$, we write

$$\lim_{x \to a} f(x) = L.$$

Example 1: Evaluate $\lim_{x\to 3} \frac{x^2-9}{x-3}$

Solution: Let $f(x) = \frac{x^2 - 9}{x - 3}$. This function is defined for each x except for x = 3. This function is defined for each x except for x = 3. Let us calculate the value of f at x = 3 + h, where $h \ne 0$. We have

$$f(3+h) = \frac{(3+h)^2 - 9}{3+h-3} = \frac{9+6h+h^2-9}{h} = \frac{h(6+h)}{h} = 6+h$$

We now note that as x takes values which are very close to 3, that is, h takes values very close to 0, f(3 + h) takes values which are very close to 6. Also, the difference between f(3 + h) and 6 (which is equal to h) can be made as small as we wish by taking h sufficiently close to zero.

Thus,

$$\lim_{x \to 3} f(x) = 6$$

Properties of Limits

We now state some properties of limit (without proof) and use them to evaluate limits.

Theorem 1 : Let a be a real number and let f(x) = g(x) for all $x \ne a$ in an open interval containing a. If the limit g(x) as $x \to a$ exists, then the limit of f(x) also exists, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

- **Theorem 2 :** If c and x are two real numbers and n is a positive integer, then the following properties are true :
 - $(1) \quad \lim_{x \to a} c = c$
 - $(2) \quad \lim_{x \to a} x = a$
 - $(3) \quad \lim_{x \to a} x^n = a^n$
- **Theorem 3:** Let c and a be two real numbers, n a positive integer, and let f and g be two functions whose limit exist as $x \to a$. Then the following results hold:
 - 1. $\lim_{x \to a} [c f(x)] = c \left[\lim_{x \to a} f(x) \right]$
 - $2 \quad \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
 - 3. $\lim_{x \to a} [f(x)g(x)] = [\lim_{x \to a} f(x)] [\lim_{x \to a} g(x)]$
 - 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \text{provided } \lim_{x \to a} g(x) \neq 0,$
 - 5. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$
 - 6. If $\lim_{x \to a} f(x) = f(a)$, then $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{f(a)}$

Example 2: Evaluate $\lim_{x\to 3} (4x^2 + 7)$

Solution:
$$\lim_{x \to 3} (4x^2 + 7) = \lim_{x \to 3} 4x^2 + \lim_{x \to 3} 7$$

= $4\lim_{x \to 3} x^2 + \lim_{x \to 2} 7$
= $4(3)^2 + 7 = 4 \times 9 + 7$
= 43

Note: If p(x) is a polynomial, then $\lim_{x \to a} p(x) = p(a)$. If q(x) is also a polynomial and $q(a) \neq 0$, then

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$$

(i)
$$\lim_{x \to 2} [(x-1)2 + 6]$$
 (ii) $\lim_{x \to 0} \frac{ax + b}{cx + d} (d \neq 0)$

(iii)
$$\lim_{x \to 2} \frac{x^2 + 5x + 7}{x^2 + 8}$$
 (iv) $\lim_{x \to -1} \sqrt{x + 17}$

Solution: (i)
$$\lim_{x \to 2} [(x-1)^2 + 6] = (2-1)^2 + 6 = 1 + 6 = 7$$

(ii) Since
$$\lim_{x\to 0} cx + d = d \neq 0$$
,

$$\lim_{x \to 0} \frac{ax + b}{cx + d} = \frac{a(0) + b}{c(0) + d} = \frac{b}{d}$$

(iii) Since
$$\lim_{x\to 3} (x^2 + 8) = 3^2 + 8 = 17 \neq 0$$
,

$$\therefore \lim_{x \to 3} \frac{x^2 + 5x + 7}{x^2 + 8} = \frac{3^2 + 5(3) + 7}{3^2 + 8} = \frac{31}{17}$$

(iv) Since
$$\lim_{x \to -1} x + 17 = -1 + 17 = 16$$
, we have $\lim_{x \to -1} \sqrt{x + 17} = \sqrt{16} = 4$

Example 4: Evaluate the following limits.

(i)
$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{x - 5}$$
 (ii) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$

(iii)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$
 (iv) $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$

Solution: (i) Here, $\lim_{x \to 5} (x - 5) = 0$. So direct substitution will not work.

We can proceed by cancelling the common factor (x - 5) in numerator and denominator and using theorem 1, as shown below:

$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{x - 5} = \lim_{x \to 5} \frac{(x - 2)(x - 5)}{(x - 5)}$$
$$= \lim_{x \to 5} (x - 2), \text{ for } x \neq 5$$
$$= 5 - 2 = 3$$

(ii) Since
$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1$$
 for $x \neq 1$,

therefore by theorem 1, we have

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2.$$

(iii) Once again we see that direct substitution fails because itsleads **Differential Calculus** to indeterminate form $\frac{0}{0}$. In this case, rationalising the numerator helps as follows. For $x \neq 0$,

$$\frac{\sqrt{x+2} - \sqrt{2}}{x} = \left(\frac{\sqrt{x+2} - \sqrt{2}}{x}\right) \left(\frac{\sqrt{x+2} + \sqrt{2}}{\sqrt{x+2} + \sqrt{2}}\right)$$
$$= \left(\frac{x+2-2}{\sqrt{x+2} + \sqrt{2}}\right) = \frac{x}{x(\sqrt{x+2} + \sqrt{2})}$$
$$= \frac{1}{\sqrt{x+2} + \sqrt{2}}$$

Therefore, by Theorem 1, we have

$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x+2} + \sqrt{2}} = \lim_{x \to 0} \frac{1}{\sqrt{0+2} + \sqrt{2}} = \frac{1}{\sqrt{2} + \sqrt{2}} = \frac{1}{2\sqrt{2}}$$

(iv) For $x \neq 0$, we have

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{x}\right) \left(\frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$$
$$= \frac{2x}{x\sqrt{1+x} - \sqrt{1-x}} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$

 \therefore by theorem 1, we have

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = \frac{2}{\sqrt{1+0} + \sqrt{1-0}} = \frac{2}{2} = 1$$

An important limit

Example 5: Prove that $\lim_{x\to 0} \frac{x^n - a^n}{x - a} = na^{n-1}$ where *n* is positive integer

Solution: We know that

$$x^{n} - a^{n} = (x-a) (x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + \dots xa^{n-2} + a^{n-1})$$

Therefore, for $x \neq a$, we get

$$\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} = x^{n-1} + x^{n-2}a + x^{n-\frac{3}{2}}a^{2} + \dots xa^{n-2} + a^{n-1}$$

Hence by Theorem 1, we get

$$\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} = \lim_{x \to a} (x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + \dots xa^{n-2} + a^{n-1})$$

$$= a^{n-1} + a^{n-2}a + a^{n-3}a^{2} + \dots aa^{n-2} + a^{n-1}$$

$$= n \ a^{n-1}$$

Note : The above limit is valid for negative integer n, and in general for any rational index n provided a > 0. The above formula can be directly used to evaluate limits.

Example 6: Evaluate
$$\lim_{x\to 3} \frac{x^3 - 27}{x^2 - 9}$$

Solution:
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9} = \lim_{x \to 3} \frac{x^3 - 3^3}{x^2 - 3^2}$$

$$= \lim_{x \to 3} \frac{\frac{x^3 - 3^3}{x - 3}}{\frac{x^2 - 3^2}{x - 3}}$$

$$= \frac{3 \cdot 3^{3-1}}{2 \cdot 3^{2-1}} \quad (\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1})$$

$$= \frac{27}{6} = \frac{9}{2}$$

One-sided Limits

Definition: Let f be a function defiend on an open interval (a-h, a+h) (h>0). A number L is said to be the **Left Hand Limit** (**L.H.L.**) of f at a if f(x) takes values very close to L as x takes values very close to a on the left of a $(x \ne a)$. We then write

$$\lim_{x \to a} f(x) = L$$

We similarly define L to be the **Right Hand Limit** if f(x) takes values close to L as x takes values close to a on the right of a and write $\lim_{x \to a} f(x) = L$

Note that $\lim_{x\to a} f(x)$ exists and is equal to L if and only if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist and are equal to L.

$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x) = \lim_{x \to a} f(x)$$

Example 7: Show that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Solution: Let
$$f(x) = \frac{|x|}{x}$$
, $x \neq 0$.

Since
$$|x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$$

$$\therefore f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

So,
$$\lim_{x \to 0+} f(x) = \lim_{x \to 0} (1) = 1$$
 and

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (-1) = -1$$

Thus $\lim_{x\to 0} f(x)$ does not exist.

Definition: A function f is said to be **continuous** at x = a if the following three conditions are met:

- (1) f(a) is defined
- (2) $\lim_{x \to a} f(x)$ exists
- $(3) \lim_{x \to a} f(x) = f(a)$

Example 8: Show that f(x) = |x| is continuous at x = 0

Solution: Recall that

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

To show that f is continuous at x = 0, it is sufficient to show that

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} (x) = f(0) \text{ and}$$

We have

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0^{+}} f(0 - h) = \lim_{h \to 0^{+}} f(-h)$$

$$= \lim_{h \to 0^{+}} - (-h)$$

$$= \lim_{h \to 0^{+}} h = 0$$

and
$$\lim_{x \to 0+} f(x) = \lim_{h \to 0+} f(0+h) = \lim_{h \to 0+} f(h)$$

= $\lim_{h \to 0+} (h) = 0$.

Thus,
$$\lim_{h \to 0^-} f(x) = \lim_{h \to 0^+} f(x) = 0$$

Also,
$$f(0) = 0$$

Therefore,
$$\lim_{x\to 0+} f(x) = 0 = f(0)$$

Hence, f is continuous at x = 0.

Example 9: Check the continuity of f at the indicated point

(i)
$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 at $x = 0$

(ii)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
 at $x = 1$

Solution: (i) We have already seen in Example 7 that $\lim_{x \to 0} \frac{|x|}{x}$ does not exist. Hence, f is not continous at x = 0

(ii) Here,
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} (x + 1) \measuredangle$$

$$= 2$$
Also, $f(1) = 2$

$$\therefore \lim_{x \to 1} f(x) = f(1)$$

Hence, f is continuous at x = 1.

Definition: A function is said to be **continuous on an open interval** (a,b) if it is continuous at each point of the interval. A function which is continuous on the entire real line $(-\infty,\infty)$ is said to be **everywhere continuous.**

Algebra of Continuous Functions

Theorum : Let c be a real number and let f and g be continuous at x = a. Then the functions cf, f+g, f-g, fg are also continuous at x=a. The functions $\frac{1}{a}$ and $\frac{f}{a}$ are continuous provided $g(a) \neq 0$.

Remark: It must be noted that polynomial functions, rational functions, trigonometric functions, exponential and logarithmic function are continuous in their domains.

Example 10: Find the points of discontinuity of the following functions:

(i)
$$f(x) = \begin{cases} x^2 & \text{if } x > 0\\ x + 3 & x \le 0 \end{cases}$$
(ii)
$$f(x) = \begin{cases} x & \text{if } x \ne 0\\ 1 & x = 0 \end{cases}$$

(ii)
$$f(x) = \begin{cases} x & \text{if } x \neq 0 \\ 1 & x = 0 \end{cases}$$

Solution : (i) Since x^2 and x + 3 are polynomial functions, and polynomial functions are continuous at each point in R, f is continuous at each $x \in$ R except possibly at x = 0. For x = 0, we have

$$\lim_{x \to 0-} f(x) = \lim_{h \to 0+} f(0-h) = \lim_{h \to 0+} (-h+3) = 0+3=3$$
and
$$\lim_{x \to 0+} f(x) = \lim_{h \to 0+} f(0+h) = \lim_{h \to 0+} f(h) = \lim_{h \to 0+} h^2 = 0.$$

Therefore, since $\lim_{x\to 0-} f(x) f \lim_{x\to 0+} f(x)$, f is not continuous at x = 0

Since, polynomial functions are continuous at each point of Differential Calculus (ii) R, f is also continuous at each $x \in R$ except possibly at x = 0. At this point, we have

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0 \neq f(0).$$

Thus, f is not continuous at x = 0

Check Your Progress – 1

1. Evaluate the following limits:

(i)
$$\lim_{x \to 2} (3x^3 + 2x + 1)$$

(ii)
$$\lim_{x \to 2} \frac{x-2}{x+2}$$

(iii)
$$\lim_{x \to 2} \frac{x^2 - 5x + 2}{x - 1}$$

(iv)
$$\lim_{x \to 2} \sqrt[3]{3x^2 - 19}$$

2. Evaluate the following limits:

(i)
$$\lim_{x \to 2} \frac{x^2 - 4}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 - 4}{x + 2} \quad \text{(ii)} \qquad \lim_{x \to 5} \frac{\sqrt{x - 1} - 2}{x - 5}$$

3. Evaluate the following limits:

(i)
$$\lim_{x \to a} \frac{x^{7/6} - a^{7/6}}{x^{3/5} - a^{3/5}} \quad (a > 0)$$

(ii)
$$\lim_{x\to a} \frac{x^m - a^m}{x^n - a^n}$$
 (*m*, *n* are rational numbers, $a > 0$)

4. Check the continuity of f at the indicated point where

$$f(x) = \begin{cases} 2 - x & \text{if } x < 0 \\ x + x & \text{if } x \ge 0 \end{cases} \text{ at } x = 0$$

For what value of constant k the function f is continuous at x = 5? 5.

$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5} & \text{if } x \neq 5\\ k & \text{if } x = 5 \end{cases}$$

1.3 DERIVATIVE OF A FUNCTION

Definition: A function f is said to be **differentiable** at x if and only if

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

exists. If this limit exsits, it is called the derivative of f at x and is denoted by

$$f^{1}(x)$$
 or $\frac{dy}{dx}$.

i.e.,
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f^{1}(x)$$

A function is said to be **differentiable on an open interval I** if it is differentiable at each point of I.

Example 11: Differentiate $f(x) = x^2$ by using the definition.

Solution: We first find the difference quotient as follows:

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \frac{x^2 + 2x \Delta x + (\Delta x)^2 - x^2}{\Delta x}$$

$$= \frac{\Delta x (2x + \Delta x)}{\Delta x}$$

$$= 2x + \Delta x$$

It follows that

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

Remark: It can be easily proved that if f is differentiable at a point x, then f is continuous at x. Thus, if f is not continuous at x, then f is not differentiable at x.

Some differentiation Rules

We now develop several "rules" that allow us to calculate derivatives without the direct use of limit definition.

Theorem 1 (Constant Rule). The derivative of a constant is zero. That is,

$$\frac{d}{dx}[c] = 0$$

where c is a real number.

Proof: Let f(x) = c then

$$\frac{d}{dx}[c] = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0$$

Theorem 2 : (Scalar Multiple Rule). If f is differentiable function and c is a real number, then

$$\frac{d}{dx}[cf(x)] = cf'(x)$$
Proof: By definiton

$$\frac{d}{dx}[cf(x)] = \lim_{\Delta x \to 0} \frac{cf(x + \Delta x) - cf(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right] = cf'(x)$$

Theorem 3 : (Sum and Difference Rule). If f and g are two differentiable **Differential Calculus** functions, then

Sum Rule
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

Difference Rule
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

Proof: We have

$$\frac{d}{dx}[f(x) + g(x)] = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) + g(x + \Delta x) - [f(x) + g(x)]}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$= f'(x) + g'(x)$$

We can similarly prove the difference rule.

Theorum 4: (**Product Rule**). If f and g are two differentiable functions, then

$$\frac{d}{dx}[f(x) g(x)] = f(x) + g'(x) + f'(x) + g(x)$$

Proof: We have
$$\frac{d}{dx}[f(x) g(x)] = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) g(x + \Delta x) - f(x) g(x)}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) (g(x + \Delta x) - f(x + \Delta x) g(x) + f(x + \Delta x) g(x) - f(x) g(x)}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) \left(g(x + \Delta x) - g(x) \right)}{\Delta x} + g(x) \frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$= \left[\lim_{\Delta x \to 0} \frac{f(x + \Delta x)}{\Delta x}\right] \left[\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}\right] + g(x) \left[\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}\right]$$

(using the product and scalar multiple rules of limits). Now, since f is differentiable at x, it is also continuous at x.

$$\lim_{\Delta x \to 0} f(x + \Delta x) = f(x)$$

Thus
$$\frac{d}{dx}[f(x) g(x)] = f(x)g'(x) + g(x)f'(x)$$

Theorem 5 : (Power Rule) If n is a positive integer, then

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

For n = 1, we have

$$\frac{d}{dx}(x^n) = \frac{d}{dx}(x) = \lim_{\Delta x \to 0} f(x) \frac{x + \Delta x - x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$
$$= 1 = 1x^0 = nx^{n-1}.$$

If n > 1, then the binomial expansion produces

$$\frac{d}{dx}(x^{n}) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{C_{0 x^{n} +} C_{1 x^{n-1} +} C_{2 x^{n-2} (\Delta x)^{2} + \dots } C_{n (\Delta x)^{n} - x^{n}}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} [nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}\Delta x + \dots + (\Delta x)^{n-1}]$$

$$= nx^{n-1}.$$

Theorem 6: (Reciprocal Rule). If f is differentiable function such that $f(x) \neq 0$, then

$$\frac{d}{dx} \left[\frac{1}{f(x)} \right] = \frac{-f'(x)}{[f(x)]^2}$$

$$\mathbf{Proof} \quad \frac{d}{dx} \left[\frac{1}{f(x)} \right] = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{1}{f(x + \Delta x)} - \frac{1}{f(x)} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(x) - f(x + \Delta x)}{f(x + \Delta x)f(x)} \right]$$

$$= \lim_{\Delta x \to 0} \left[-\left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right) \right] \left[\left(\frac{1}{f(x + \Delta x)f(x)} \right) \right]$$

$$= -f'(x) \cdot \frac{1}{f(x)f(x)} \quad (\because \lim_{\Delta x \to 0} (f(x + \Delta x) = f(x))$$
as f being diff. at x is continuous at x)
$$= \frac{-f'(x)}{[f(x)]^2}$$

Theorem 7 : (Quotient Rule) : If f and g are two differentiable function such that $g(x) \neq 0$, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

Proof:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{d}{dx} \left[f(x) \frac{1}{g(x)} \right]$$

$$= \frac{1}{g(x)} \frac{d}{dx} [f(x)] + f(x) \frac{d}{dx} \left[\frac{1}{g(x)} \right] \text{ [Product Rule]}$$

$$= \frac{1}{g(x)} + f'(x) + f(x) \left[\frac{-g'(x)}{[g(x)]^2} \right]$$

$$= \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

Remark: The power rule can be extended for any integer. Indeed, if n = 0,

$$\frac{d}{dx} (x^{n)=} \frac{d}{dx} (1) = 0 = 0x^{-1} \qquad x \neq 0,$$

and if n is a negative integer, then by using reciprocal rule we can prove

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

Thus we have

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
, for any integer n .

Example 2: Find the derivatives of the following function.

(i)
$$y = 2x^5 - 3x$$
 (ii) $y = \frac{1}{x^2 + 3}$

(ii)
$$y = \frac{1}{x^2 + 3}$$

(iii)
$$y = \frac{x}{x+2}$$
 (iv) $y = \frac{x^2}{x^2-5}$

(iv)
$$y = \frac{x^2}{x^2 - 5}$$

Solution: (i)
$$\frac{dy}{dx} = \frac{d}{dx} (2x^5 - 3x)$$

= $2\frac{d}{dx} (x^5) - 3\frac{d}{dx} (x)$
= $2. (5x^4) - 3.1$
= $10x^4 - 3$

(ii)
$$\frac{dy}{dx} = \frac{-\frac{d}{dx}[x^2 + 3]}{[x^2 + 3]^2}$$
 [using reciprocal rule]
$$= \frac{-2x}{(x^2 + 3)^2}$$

(iii)
$$\frac{dy}{dx} = \frac{(x+2)\frac{d}{dx}(x) - x\frac{d}{dx}(x+2)}{(x+2)^2}$$
 (Quotient Rule)
$$= \frac{(x+2) \cdot 1 - x \cdot 1}{(x+2)^2}$$

$$= \frac{2}{(x+2)^2}$$
(iv)
$$\frac{dy}{dx} = \frac{(x^2 - 5)\frac{d}{dx}(x^2) - x^2\frac{d}{dx}(x^2 - 5)}{(x^2 - 5)^2}$$
 (Quotient Rule)
$$= \frac{(x^2 - 5)(2x) - x^2(2x)}{(x^2 - 5)^2}$$

$$= \frac{2x^3 - 10x - 2x^3}{(x^2 - 5)^2} = \frac{-10x}{(x^2 - 5)^2}$$

Derivative of Exponential and Logarithmic Functions

To find the derivatives of the natural exponential function e^x and the natural logarithmic function lnx, we need the following limits.

$$\lim_{\Delta x \to 0} \frac{e^x - 1}{x} = 1$$

(2)
$$\lim_{\Delta x \to 0} \frac{\ln(1+x)}{x} = 1$$

Theorem 8: The derivative of the natural exponential function is given by

$$\frac{d}{dx}(e^x) = e^x \qquad (x \in \mathbb{R})$$

Proof: By definition

$$\frac{d}{dx}(e^{x}) = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{e^{x}(e^{\Delta x} - 1)}{\Delta x}$$

$$= e^{x} \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

$$= e^{x}(1)$$

$$= e^{x}$$

$$\frac{d}{dx}(lnx) = \frac{1}{x} \ (x > 0)$$

Proof: By definition

$$\frac{d}{dx}(\ln x) = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln \frac{(x + \Delta x)}{x} \quad (\because \ln a - \ln b) = \ln \frac{a}{b})$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln \left(1 + \frac{\Delta x}{x}\right)$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \frac{\ln \left(1 + \frac{\Delta x}{x}\right)}{\Delta x/x}$$

$$= \frac{1}{x} \lim_{\Delta x \to 0} \frac{\ln \left(1 + \frac{\Delta x}{x}\right)}{\Delta x/x} = \frac{1}{x} (1) = \frac{1}{x}$$

Corollary: If a > 0 and $a \ne 1$, then the derivative of the general logarithemic function is

$$\frac{d}{dx}(\log_a x) = \frac{1}{x}\log_a e$$

Proof: We know that

$$\log_a x = (\ln x)(\log_a e)$$

$$\Rightarrow \frac{d}{dx}(\log_a x) = \frac{d}{dx}[(\log x)(\log_a e)]$$

$$= \log_a e \frac{d}{dx}(\log x)$$

$$= \frac{1}{r}(\log_a e)$$

Remark : Similar to the proof of theorem, we can prove that if a > 0, and $a \ne 1$, then the derivative of the general exponential function is

$$\frac{d}{dx}\left(a^{x}\right) = a^{x}lna \quad (x \in R)$$

Example 13: Find the derivative of the following functions.

(i)
$$x^2 e^x$$
 (ii) $\frac{lnx}{x}$ (iii) $\frac{e^x}{x^2 + 3}$ (iv) $5^x lnx$

Solution: (i) Using the product rule

$$\frac{d}{dx}\left(x^2e^x\right) = \frac{d}{dx}\left(x^2\right)e^x + x^2\frac{d}{dx}\left(e^x\right)$$

$$= 2x e^x + x^2 e^x = (2x + x^2) e^x$$

(i) Using the quotient rule, we have

$$\frac{d}{dx}\frac{\ln x}{x} = \frac{x\frac{d}{dx}(\ln x) - \ln x\frac{d}{dx}(x)}{x^2}$$
$$= \frac{x \cdot \frac{1}{x} - (\ln x)(1)}{x^2}$$
$$= \frac{1 - \ln x}{x^2}$$

(ii) Using the quotient rule, we have

$$\frac{d}{dx}\left(\frac{e^x}{x^2+3}\right) = \frac{(x^2+3)\frac{d}{dx}(e^x) - e^x\frac{d}{dx}(x^2+3)}{(x^2+3)^2}$$

$$=\frac{(x^2+3)(e^x)-e^x(2x)}{(x^2+3)^2}$$

$$=\frac{(x^2-2x+3)e^x}{(x^2+3)^2}$$

(iii) Using the product rule, we have

$$\frac{d}{dx}(5^x lnx) = \frac{d}{dx}(5^x)lnx + 5^x \frac{d}{dx}(lnx)$$
$$= (5^x lnx5) + 5^x \left(\frac{1}{x}\right)$$
$$= 5^x (ln5)lnx + \left(\frac{5^x}{x}\right).$$

Check Your Progress – 2

1. Find the derivative of each of the following functions.

(i)
$$y = x^5 - 3x^4 + 2x - 1$$
 (ii) $y = \frac{2x - 1}{\pi^2}$

(iii)
$$\frac{3x+5}{2x+7}$$
 (iv) $y = \frac{x^3-4}{x^3}$

2. Find the derivative of each of the following functions.

(i)
$$e^x \ln x$$

(ii)
$$\frac{\epsilon}{2}$$

(iii)
$$\frac{\ln x}{x^2}$$

(iv)
$$2^x + x^2 + 2^2$$

$$(v) \qquad \frac{e^x}{x^2 + 7}$$

(vi)
$$5^x e^x$$

3. Using the limit $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$, prove that $\frac{d}{dx}(a^x) = a^x \ln a$, where a > 0 and $a \ne 1$.

1.4 THE CHAIN RULE

We now discuss one of the most powerful rules in differential calculus, the chain rule, which deals with composite of functions.

Theorem 10: If y = f(u) is differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is differentiable function of x and

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

or, equivalently, $\frac{d}{dx}[f(gx)] = f'(g(x))g'(x)$.

Proof: Let (F(x) = f(g(x))). We have to show that for x = c,

$$F'(c) = f'(g(c))g'(c).$$

An important consideration in this proof is the behaviour of g as x approaches c. A problem occurs if there are values of x other than c such that g(x) = g(c). However, in this proof we shall assume that $g(x) \neq g(c)$ for values of x other than c. Thus, we can multiply and divide by the same (non– zero) quantity g(x) - g(c). Note that as g is differentiable, it is continuous and it follows that $g(x) \rightarrow g(c)$ as $x \rightarrow c$.

$$F'(c) = \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c}$$

$$= \lim_{x \to c} \left[\frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \frac{g(x) - g(c)}{x - c} \right] \quad [\because g(x) \neq g(c)]$$

$$= \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \lim_{x \to c} \frac{g(x) - g(c)}{x \to c}$$

$$= f'(g(c)g'(c)$$

Remark : We can extend the chain rule for more than two functions. For example, if F(x) = f[g(h(x))], then

$$F'(c) = f'[g(h(c))]g'(h(c))h'(c).$$

In other words

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dv} \frac{dv}{dx}$$

Example 14: Find the derivatives of the following functions.

(i)
$$y = (x^2 + 1)^3$$
 (ii) $y = e^{x^2}$

(ii)
$$y = e^{x^2}$$

(iii)
$$y = ln (2x^2 + e^x)$$
 (iv) $y = (x + lnx)^2$

(iv)
$$y = (x + lnx)^2$$

Solution : (i) Put $x^2 + 1 = u$

Then
$$y = u^3$$
 where $u = x^2 + 1$

$$\therefore \quad \frac{dy}{du} = 3u^2 \qquad \frac{du}{dx} = 2x$$

Then by the chain rule

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (3u^2)(2x)$$

$$=6x(x^2+1)^2$$

In this case we take $x^2 = u$, so that $y = e^{u}$ (ii)

Then by the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (e^u)(2x) = 2xe^{x^2}.$$

Take $u = 2x^2 + e^x$, so that y = lnu. (iii)

Then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$= \frac{1}{u} (4x + e^x)$$

$$= \frac{4x + e^x}{2x^2 + e^x}$$

Take $u = x + \ln x$, so that $y = u^2$ (iv)

Then
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (2u)\left(1 + \frac{1}{x}\right)$$

$$= 2(x + \ln x)\left(1 + \frac{1}{x}\right)$$

We will now extend the power rule

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

to real exponents. We will do this in two stages – first to rational exponents and then to real exponents. We shall use the chain rule.

Theorem 11: For rational values of n

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Proof: Let $n = \frac{p}{q}$, where p, q are integers and q > 0. Then nq = p is an integer. Let $u = x^n$ and consider the equation.

$$(x^n)^q = x^{nq} = x^p \text{ or } u^q = x^p \dots (1)$$

Now differentiate (1) using the chain rule on the left and the power rule (for integers) on the right to obtain

$$qu^{q-1} \frac{du}{dx} = p x^{p-1}$$

$$\Rightarrow \frac{d}{dx}(x^n) = \frac{px^{p-1}}{qu^{q-1}}$$

But
$$u^{q-1} = u^q/u = x^p/x^n$$
, because $u = x^n$. Thus

$$\frac{d}{dx}(x^n) = \frac{px^{p-1}}{q^{x^p}/_{x^n}} = nx^{p-1+n-p} = nx^{n-1}$$

Theorem 12: For a real number n

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Proof: Recall that if *n* is real, then by definition

$$x^n = e^{nlnx}$$

Now put u = nlnx, so that $x^n = e^u$. Then by the chain rule

$$\frac{d}{dx}(x^n) = \frac{d}{du}(e^u)\frac{du}{dx} = (e^u)\frac{d}{dx}(nlnx) = (e^{nlnx})\left(\frac{n}{x}\right)$$
$$= \frac{nx^n}{x} = nx^{n-1}$$

Example 15: Find the derivative of each of the following functions:

(i)
$$y = (x^2 + 2)^{2/3}$$

(ii)
$$y = e^{\sqrt{x}}$$

(iii)
$$y = \ln(1 + \sqrt{1 + x^2})$$
 (iv) $y = x^2 e^{x^2}$

(iv)
$$y = x^2 e^{x^2}$$

Solution : (i) Putting $u = x^2 + 2$, we have

$$\frac{dy}{dx} = \frac{2}{3}(x^2 + 2)^{\frac{2}{3}-1} \frac{d}{dx}(x^2 + 2)$$
$$= \frac{2}{3}(x^2 + 2)^{-1/3}(2x)$$
$$= \frac{4x}{3(x^2 + 1)^{1/3}}$$

(ii) Putting $u = \sqrt{x}$, we have

$$\frac{dy}{dx} = e^{\sqrt{x}} \frac{d}{dx} (\sqrt{x}) = e^{\sqrt{x}} \frac{1}{\sqrt[2]{x}} = \frac{e^{\sqrt{x}}}{\sqrt[2]{x}}$$

(iii)
$$\frac{dy}{dx} = \frac{1}{1 + \sqrt{1 + x^2}} \frac{d}{dx} \left(1 + \sqrt{1 + x^2} \right)$$

$$= \frac{1}{1 + \sqrt{1 + x^2}} \frac{1}{2\sqrt{1 + x^2}} \frac{d}{dx} (1 + x^2)$$

$$= \left(\frac{1}{1 + \sqrt{1 + x^2}} \right) \left(\frac{1}{2\sqrt{1 + x^2}} \right) (2x)$$

$$= \left(\frac{x}{(1 + \sqrt{1 + x^2})\sqrt{1 + x^2}} \right)$$
(iv)
$$\frac{dy}{dx} = \frac{d}{dx} (x^2) e^{x^2} + x^2 \frac{d}{dx} (e^{x^2})$$

(iv)
$$\frac{dy}{dx} = \frac{d}{dx} (x^2) e^{x^2} + x^2 \frac{d}{dx} (e^{x^2})$$
$$= 2x e^{x^2} + x^2 e^{x^2} \frac{d}{dx} (x^2)$$
$$= 2x e^{x^2} + x^2 e^{x^2} (2x)$$
$$= 2x e^{x^2} (1 + x^2)$$

Example 16: Find the derivatives of following functions:

(i)
$$y = \ln\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$$
 (ii) $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ (iii) $y = \sqrt[3]{x(x+1)(x+2)}$

Solution: (i) Rewriting the argument of the log, we have

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}}$$

$$= \frac{(\sqrt{1+x} - \sqrt{1-x})^2}{(1+x) - (1-x)}$$

$$= \frac{(1+x) + (1-x) - \sqrt[2]{1+x} \sqrt{1-x}}{2x}$$

$$= \frac{2 - \sqrt[2]{1-x^2}}{2x} = \frac{1 - \sqrt{1-x^2}}{x}$$

Therefore,
$$y = ln \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$$

$$= \ln\left(\frac{1 - \sqrt{1 - x^2}}{x}\right)$$
$$= \ln\left(1 - \sqrt{1 - x^2}\right) - \ln x$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{1 - \sqrt{1 - x^2}} \frac{d}{dx} \left(1 - (1 - x^2)^{-1/2} \right) - \frac{1}{x}$$

$$= \left[\frac{1}{1 - \sqrt{1 - x^2}} \left\{ \frac{d}{dx} 0 - \frac{1}{2} (1 - x^2)^{-1/2} (-2x) \right\} - \frac{1}{x} \right]$$

$$= \frac{1}{1 - \sqrt{1 - x^2}} \frac{x}{\sqrt{1 - x^2}} - \frac{1}{x}$$

$$=\frac{x^2-[\sqrt{1-x^2}(1-\sqrt{1-x^2})]}{x\sqrt{1-x^2}(1-\sqrt{1-x^2})}$$

$$=\frac{x^2-\sqrt{1-x^2}+(1-x^2)}{x\sqrt{1-x^2}(1-\sqrt{1-x^2})}$$

$$=\frac{1-\sqrt{1-x^2}}{x\sqrt{1-x^2}(1-\sqrt{1-x^2})}=\frac{1}{x\sqrt{1-x^2}}$$

One can apply the quotient rule in this case. However, we will avoid (i) it by rewriting the given expression.

$$Y = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = \frac{e^{x} + \frac{1}{e^{x}}}{e^{x} - \frac{1}{e^{x}}} = \frac{e^{2x} + 1}{e^{2x} - 1} = \frac{e^{2x} - 1 + 2}{e^{2x} - 1}$$

$$=1+\frac{2}{e^{2x}-1}=1+2(e^{2x}-1)^{-1}$$

$$\Rightarrow \frac{dy}{dx} = 0 + 2(-1)(e^{2x} - 1)^{-2} \frac{d}{dx}(e^{2x} - 1)$$

$$= \frac{-2}{(e^{2x} - 1)^2} (2e^{2x}) = \frac{-4e^{2x}}{(e^{2x} - 1)^2}$$

We have $y = [x(x+1)(x+2)]^{1/3}$ (ii)

So,
$$\frac{dy}{dx} = \frac{1}{3} [x(x+1)(x+2)]^{\frac{1}{3}-1} \frac{d}{dx} [x(x+1)(x+2)]$$
 (chain Rule)

$$= \frac{1}{3} [x(x+1)(x+2)]^{-\frac{2}{3}} \frac{d}{dx} [x(x+1)(x+2)]$$
 (product rule)

$$= \frac{1}{3}[x(x+1)(x+2)]^{-\frac{2}{3}}\frac{d}{dx}[(x+1)(x+2) + x(x+2) + x(x+1)]$$

$$= \frac{1}{3} [x(x+1)(x+2)]^{-\frac{2}{3}} x(x+1)(x+2) \left[\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} \right]$$
$$= \frac{1}{3} [x(x+1)(x+2)]^{1/3} \left[\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} \right]$$

Check Your Progress 3

1. Find the derivatives of each of the following functions:

(i)
$$y = (x^3 + x)^{3/2}$$
 (ii) $y = ln(\frac{x^2}{2})$
(iii) $y = e^{(x^2 + 2x)}$ (iv) $y = ln(x + \sqrt{x})$

2. Find
$$\frac{dy}{dx}$$
 where

(i) $y = \frac{1 - e^x}{e^{2x}}$ (ii) $y = \frac{x}{\sqrt{x^2 - 1}}$ (iii) $y = 2^{x/\ln x}$

3. Differentiate each of the following functions:

(i)
$$y = ln \left[e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right]$$
 (ii) $y = \sqrt{\frac{1-x}{1+x}}$

(iii)
$$y = \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1 - \sqrt{x^2 - 1}}}$$

1.5 DIFFERENTIATION OF PARAMETRIC FORMS

Suppose x and y are given as functions of another variable t. We call t, the variable in which x and y are expressed as parameter. In this case, we find $\frac{dy}{dx}$ as follows:

Let x = f(t) and y = g(t), where f and g are differentiable functions of t and $f'(t) \neq 0 \,\forall t$. Let Δx and Δy be the increments and x and y respectively, corresponding to the increment Δt in t. That is $\Delta x = f(t + \Delta t) - f(t)$ and $\Delta y = g(t + \Delta t) - g(t)$

Since
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

and $\Delta x \rightarrow 0$ as $\Delta t \rightarrow 0$, we can write

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{g(t + \Delta t) - g(t)}{f(t + \Delta t) - f(t)}$$

Dividing both the numerator and denominator by Δt , we can use the differentiability of f and g to conclude that

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\left[\frac{g(t + \Delta t) - g(t)}{\Delta t}\right]}{\left[\frac{f(t + \Delta t) - f(t)}{\Delta t}\right]}$$
$$= \frac{g'(t)}{f'(t)} = \frac{dy/dt}{dx/dt}$$

Example 17: Find $\frac{dy}{dx}$ when

(a)
$$x = at^2$$
, $y = 2at$

(b) =
$$ct$$
, y = $\frac{c}{t}$

(c)
$$x = lnt, y = \frac{1}{t}$$

(a)
$$x = at^2$$
, $y = 2at$
(b) $= ct$, $y = \frac{c}{t}$
(c) $x = lnt$, $y = \frac{1}{t}$
(d) $y = \frac{3at}{1 + t^2}$

Solution: (a) We have

$$\frac{dy}{dx} = \frac{d}{dt}[at^2] = 2at$$

and
$$\frac{dy}{dt} = \frac{d}{dt} [2at] = 2a$$

$$so, \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$$

$$\frac{dy}{dx} = \frac{d}{dt}[ct] = c, and \frac{dy}{dx} = \frac{d}{dt} \left[\frac{c}{t} \right] = \frac{d}{dt} [ct^{-1}]$$
$$= [c(-1)t^{-2}] = \frac{c}{t^2}$$

since,
$$\frac{dy}{dx} = \frac{dy}{dx/dt}$$
, we get

$$\frac{dy}{dx} = \frac{-c/t^2}{c} = -\frac{1}{t^2}$$

(c) We have
$$\frac{dx}{dt} = \frac{1}{t}$$
 and $\frac{dy}{dt} = -\frac{1}{t^2}$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = (-1) \frac{1/t}{1/t^2} = -\frac{1}{t}$$

(d) We have

$$\frac{dx}{dt} = \frac{d}{dt} \left[\frac{3at}{1+t^2} \right]$$

$$= 3a \frac{(1+t^2)\frac{dx}{dt} - t\frac{d}{dt}(1+t^2)}{(1+t^2)^2}$$

$$= 3a \frac{(1+t^2)(1) - t(2t)}{(1+t^2)^2}$$

$$= 3a \frac{(1-t^2)}{(1+t^2)^2}$$

$$= \frac{d}{dt} \left[\frac{3at^2}{(1+t^2)} \right] \text{ and }$$

$$= 3a \frac{(1+t^2)\frac{d}{dt}(t^2) - (t^2)\frac{d}{dt}(1+t^2)}{(1+t^2)^2}$$

$$= 3a \frac{(1+t^2)(2t) - (t^2)(2t)}{(1+t^2)^2}$$

$$= \frac{6at}{(1+t^2)^2}$$
Since,
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
we get
$$\frac{dy}{dx} = \frac{\frac{6at}{(1+t^2)^2}}{\frac{3a(1-t^2)}{(1+t^2)^2}}$$

$$= \frac{2t}{1-t^2}$$

Second Order Derivatives

Let y = f(x) be a function. If f is a differentiable function, then its derivative is a function. If the derivative is itself differentiable we can differentiate it and get another function called the second derivative. The second derivative is denoted

by y or
$$f(x)$$
 or $\frac{d^2y}{dx^2}$

Thus
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

Example 18: If
$$y = \frac{lnx}{x}$$
, show that $\frac{d^2y}{dx^2} = \frac{2lnx - 3}{x^3}$

Solution: we have

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{lnx}{x} \right] = \frac{d}{dx} [x^{-1} lnx]$$

$$= \frac{d}{dx}(x^{-1})lnx + x^{-1}\frac{d}{dx}(lnx)$$
 (product rule)
= $(-1)x^{-2}lnx + x^{-1}\frac{1}{x}$
= $x^{-2}[1-lnx]$

Differentiating both sides with respect to x, we get

$$\frac{d^2y}{dx^2} = \frac{d}{dx} [x^{-2}][1 - \ln x] + x^{-2} \frac{d}{dx} [1 - \ln x]$$

$$= (-2) x^{-3} (1 - \ln x) + x^{-2} \left(0 - \frac{1}{x}\right)$$

$$= -2x^{-3} (1 - \ln x) + x^{-3}$$

$$= -x^{-3} (2 - 2\ln x + 1)$$

$$= \frac{2\ln x - 3}{x^3}$$

Example 19 : If $y = ae^{mx} + be^{-mx}$, show that $\frac{d^2y}{dx^2} = m^2y$

Solution : We have $y = ae^{mx} + be^{-mx}$

Differentiating both sides with respect to x, we get $\frac{dy}{dx} = \frac{d}{dx} (ae^{mx} + be^{-mx})$ = $ame^{mx} - bme^{-mx}$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(ame^{mx} - bme^{-mx})$$

$$= am^2e^{mx} - bm(-m)e^{-mx}$$

$$= am^2e^{mx} + bm^2e^{-mx}$$

$$= m^2(ae^{mx} + be^{-mx})$$

$$= m^2y$$

Example 20 : If $y = ln (x + \sqrt{x^2 + 1})$, prove that

$$(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$$

Solution : We have $y = ln (x + \sqrt{x^2 + 1})$

Differentiating both sides, we get

$$\frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + 1}} \frac{d}{dx} \left[x + (x^2 + 1)^{\frac{1}{2}} \right]$$
 (chain rule)

$$= \frac{1}{x + \sqrt{x^2 + 1}} \left[1 + \frac{1}{2} (x^2 + 1)^{-\frac{1}{2}} (2x) \right]$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \left[1 + \frac{x}{\sqrt{x^2 + 1}} \right]$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \left[\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right]$$

$$= \frac{1}{\sqrt{x^2 + 1}} = (x^2 + 1)^{-\frac{1}{2}}$$

$$\frac{d^2 y}{dx^2} = \left(-\frac{1}{2} \right) (x^2 + 1)^{-\frac{3}{2}} \frac{d}{dx} [(x^2 + 1)]$$

Now,
$$(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$$

$$= (x^{2} + 1) \left[\frac{-x}{(x^{2} + 1)^{\frac{3}{2}}} \right] + x \frac{1}{\sqrt{x^{2} + 1}}$$

$$= -\frac{x}{\sqrt{x^2 + 1}} + \frac{x}{\sqrt{x^2 + 1}} = 0$$

Thus,
$$(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$$

Check Your Progress – 4

- 1. Find $\frac{dy}{dx}$ when
- 1. Find $\frac{dy}{dx}$ when

(a)
$$x = \frac{1}{2}(e^{\theta} - e^{-\theta})$$
 and $y = \frac{1}{2}(e^{\theta} - e^{-\theta})$

(b)
$$x = a \left(t - \frac{1}{t} \right)$$
 and $y = a \left(t + \frac{1}{t} \right)$

(c)
$$x = \frac{a(1-t^2)}{(1+t^2)}$$
 and $y = \frac{2bt}{1+t^2}$

2. If
$$y = \sqrt{1 + x^2}$$
, find $\frac{d^2y}{dx^2}$

3. If
$$y = \ln(\sqrt{x-1} + \sqrt{x+1})$$
, prove that
$$(x^2 - 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$$

4. If
$$y = ax + \frac{b}{x}$$
, show that $\frac{xd^2y}{dx^2} + \frac{xdy}{dx} - y = 0$

1.6 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress – 1

1. (i)
$$\lim_{x \to 3} (3x^3 + 2x + 1) = 3.(2)^3 + 2(2) + 1 = 29$$

(ii)
$$\lim_{x \to 2} \frac{x-2}{x+2} = \frac{2-2}{2+2} = \frac{0}{4} = 0$$

(iii)
$$\lim_{x \to 2} \frac{x^2 - 5x + 2}{x - 1} = \frac{2^2 - 5(2) + 2}{2 - 1} = -2$$

(iv)
$$\lim_{x \to 3} \sqrt[3]{3x^2 - 19} = \sqrt[3]{3(3)^2 - 19} = \sqrt[3]{27 - 19} = \sqrt[3]{8} = 2$$

2. (i)
$$\lim_{x \to 2} \frac{x^2 - 4}{x + 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x + 2} = \lim_{x \to -2} (x - 2) = -2 - 2 = -4$$

(ii)
$$\lim_{x \to 5} \frac{\sqrt{x-1} - 2}{x-5} = \lim_{x \to 5} \left[\left(\frac{\sqrt{x-1} - 2}{x-5} \right) \left(\frac{\sqrt{x-1} + 2}{\sqrt{x-1} + 2} \right) \right]$$
$$= \lim_{x \to 5} \frac{(x-1) - 4}{(x-5)(\sqrt{x-1} + 2)}$$
$$= \lim_{x \to 5} \frac{(x-5)}{(x-5)(\sqrt{x-1} + 2)}$$
$$= \lim_{x \to 5} \frac{1}{(\sqrt{x-1} + 2)} = \lim_{x \to 5} \frac{1}{(\sqrt{5-1} + 2)} = \frac{1}{4}$$

3. (i)
$$\lim_{x \to a} \frac{x^{7/6} - a^{7/6}}{x^{3/5} - a^{3/5}} = \lim_{x \to a} \frac{\frac{x^{7/6} - a^{7/6}}{x - a}}{\frac{x^{3/5} - a^{3/5}}{x - a}}$$

$$= \lim_{\substack{x \to a \\ x \to a}} \frac{x^{7/6} - a^{7/6}}{\frac{x - a}{x - a}} = \frac{(7/6)}{(3/5)} \frac{a^{7/6 - 1}}{a^{3/5 - 1}} \left(\because \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n - 1} \right)$$

$$= \frac{35}{18} \ \frac{a^{1/6}}{a^{-2/5}} = \frac{35}{18} \ a^{\frac{17}{30}}$$

(ii)
$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to a} \frac{(x^m - a^m)/(x - a)}{(x^n - a^n)/(x - a)}$$

$$= \frac{\lim_{x \to a} \frac{x^m - a^m}{x - a}}{\lim_{x \to a} \frac{x^n - a^n}{x - a}}$$

$$=\frac{ma^{m-1}}{na^{n-1}}=\frac{m}{n}\ a^{m-n}$$

4. We have

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0^{+}} f(0 - h) = \lim_{h \to 0^{+}} f(-h)$$

$$= \lim_{h \to 0^{+}} [2 - (-h)] = \lim_{h \to 0^{+}} (2 + h) = 2$$
and
$$\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0^{+}} f(0 + h) = \lim_{h \to 0^{+}} (f(h)) = \lim_{h \to 0^{+}} (2 + h) = 2$$
Thus,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 2 \implies \lim_{x \to 0^{+}} f(x) = 2$$
Also,
$$f(0) = 2 + 0 = 2$$

Hence, f is continuous at x = 0.

 $\therefore \lim_{x \to 0} f(x) = f(0)$

5. For f to be continuous at x = 5, we must have

$$f(5) = \lim_{x \to 5} f(x)$$

$$\Rightarrow k = \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 5)}{x - 5}$$
So, $k = \lim_{x \to 5} (x + 5) = 5 + 5 = 10$

Check Your Progress 2

Thus, k = 10

1. (i)
$$\frac{dy}{dx} = \frac{d}{dx} (x^5 - 3x^4 + 2x - 1) = 5x^4 - 12x^3 + 2$$

(ii) $\frac{dy}{dx} = \frac{d}{dx} \frac{2x - 1}{\pi^2} = \frac{1}{\pi^2} \frac{d}{dx} (2x - 1) = \frac{2}{\pi^2}$

(iii)
$$\frac{dy}{dx} = \frac{(2x+7)\frac{d}{dx}(3x+5) - (3x+5)\frac{d}{dx}(2x+7)}{(2x+7)^2}$$
 (Quotient Rule)

$$= \frac{(2x+7) \cdot 3 - (3x+5) \cdot 2}{(2x+7)^2}$$
$$= \frac{11}{(2x+7)^2}$$

(iv)
$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x^3 - 4}{x^3} \right) = \frac{(x^3) \frac{d}{dx} (x^3 - 4) - (x^3 - 4) \frac{d}{dx} (x^3)}{(x^3)^2}$$

$$= \frac{x^3 (3x^2) - (x^3 - 4)(3x^2)}{x^6}$$

$$= \frac{4x^2}{x^6} = \frac{4}{x^4}$$

2. (i)
$$\frac{d}{dx}(e^x \ln x) = \frac{d}{dx}(e^x) \ln x + e^x \frac{d}{dx} \ln x$$
$$= (e^x \ln x) + \frac{e^x}{x} = e^x (\ln x + \frac{1}{x})$$

(ii)
$$\frac{d}{dx} \left(\frac{e^x}{x^2} \right) = \frac{x^2 \frac{d}{dx} (e^x) - (e^x) \frac{d}{dx} (x^2)}{x^4} = \frac{e^x (x-2)}{x^3}$$

(iii)
$$\frac{d}{dx} \left(\frac{\ln x}{x^3} \right) = \frac{x^3 \frac{d}{dx} (\ln x) - (\ln x) \frac{d}{dx} (x^3)}{(x^3)^2}$$
$$= \frac{x^3 \frac{1}{x} - (\ln x) \frac{d}{dx} (3x^2)}{x^6}$$
$$= \frac{x^2 (1 - 3\ln x)}{x^6} = \frac{1 - 3\ln x}{x^4}$$

(iv)
$$\frac{d}{dx} (2^x + x^2 + 2^2) = \frac{d}{dx} (2^x) + \frac{d}{dx} (x^2) + \frac{d}{dx} (2^2)$$

= $2^x \ln 2 + 2x + 0$
= $2^x \ln 2 + 2x$

$$(v) \frac{d}{dx} \left(\frac{e^x}{x^2 + 7} \right) = \frac{(x^2 + 7) \frac{d}{dx} (e^x) - (e^x) \frac{d}{dx} (x^2 + 7)}{(x^2 + 7)^2}$$

$$= \frac{(x^2 + 7)e^x - e^x (2x)}{(x^2 + 7)^2}$$

$$= \frac{e^x [x^2 - 2x + 7]}{(x^2 + 7)^2}$$

(vi)
$$\frac{d}{dx} (5^x e^x) = \frac{d}{dx} (5^x) e^x + 5^x \frac{d}{dx} (e^x)$$

= $5^x \ln 5 e^x + 5^x e^x$
= $5^x e^x (\ln 5 + 1)$

3.
$$\frac{d}{dx} (a^{x}) = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{a^{x} (a^{\Delta x} - 1)}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x}$$

$$= a^{x} \ln a \qquad \text{(using the given limit)}$$

Check Your Progress – 3

1. (i)
$$\frac{dy}{dx} = \frac{3}{2}(x^3 + x)^{\frac{3}{2} - 1} \frac{d}{dx}(x^3 + x)$$

$$= \frac{3}{2}(x^3 + x)^{1/2}(3x^2 + 1)$$
(ii)
$$\frac{dy}{dx} = \frac{1}{(x^2/2)} \frac{d}{dx} \left(\frac{x^2}{2}\right) = \frac{2}{x^2} \left(\frac{2x}{2}\right) = \frac{2}{x}$$
(iii)
$$\frac{dy}{dx} = e^{(x^2 + 2x)} \frac{d}{dx}(x^2 + 2x) = e^{(x^2 + 2x)}(2x + 2)$$

$$= 2(x + 1)e^{(x^2 + 2x)}$$

(iv)
$$\frac{dy}{dx} = \frac{1}{x + \sqrt{x}} \frac{d}{dx} (x + \sqrt{x}) = \frac{1}{x + \sqrt{x}} \left(1 + \frac{1}{\sqrt[2]{x}} \right) = \frac{\sqrt[2]{x} + 1}{\sqrt[2]{x} (x + \sqrt{x})}$$

2. (i)
$$\frac{dy}{dx} = \frac{\frac{d}{dx}(1 - e^x)e^{2x} - (1 - e^x)\frac{d}{dx}(e^{2x})}{(e^{2x})^2}$$
$$= \frac{e^{2x}(-e^x) - (1 - e^x)(2e^{2x})}{e^{4x}} = \frac{e^x - 2}{e^{2x}}$$

(ii)
$$\frac{dy}{dx} = \frac{\sqrt{(x^2 - 1)} \frac{d}{dx}(x) - x \frac{d}{dx} \sqrt{(x^2 - 1)}}{(\sqrt{(x^2 - 1)})^2}$$
$$= \frac{\sqrt{(x^2 - 1)} - x \left(\frac{1}{\sqrt[2]{(x^2 - 1)}}\right) 2x}{x^2 - 1}$$
$$= \frac{(x^2 - 1) - x^2}{(x^2 - 1)\sqrt{x^2 - 1}} = \frac{-1}{(x^2 - 1)^{3/2}}$$

(iii)
$$\frac{dy}{dx} = 2x^{x/\ln 2} \ln 2 \frac{d}{dx} \left(\frac{x}{\ln x}\right)$$
$$= 2x^{x/\ln x} \left[\frac{1 \cdot \ln x - x \cdot \frac{1}{x}}{(\ln x)^2}\right]$$
$$= \frac{2x^{x/\ln x} \ln 2(\ln x - 1)}{(\ln x)^2}$$

3. (i) Rewriting the given expression, we have

$$y = \ln \left[e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right]$$

$$= \ln e^x + \ln \left(\frac{x-2}{x+2} \right)^{\frac{3}{4}} \qquad [\ln(ab) = \ln a + \ln b]$$

$$= x \ln e^{\frac{3}{4}} + \ln \left(\frac{x-2}{x+2} \right) \qquad [\ln a^x = x \ln a]$$

$$= x + \frac{3}{4} [\ln(x-2) - \ln(x+2)] \qquad [\ln(e) = 1 \text{ and } \ln(a/b) = \ln a - \ln b]$$

$$\Rightarrow \frac{dy}{dx} = 1' + \frac{3}{4} \left[\frac{1}{x - 2} - \frac{1}{x + 2} \right]$$

$$= 1 + \frac{3}{4} \left[\frac{(x + 2) - (x - 2)}{(x - 2)(x + 2)} \right]$$

$$= 1 + \frac{3}{4} \left[\frac{x + 2 - x + 2}{x^2 - 4} \right]$$

$$= 1 + \frac{3}{x^2 - 4}$$

$$= \frac{x^2 - 4 + 3}{x^2 - 4} = \frac{x^2 - 1}{x^2 - 4}$$

(ii)
$$y = \left(\frac{1-x}{1+x}\right)^{1/2}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{1-x}{1+x} \right)^{\frac{1}{2}-1} \frac{d}{dx} \left(\frac{1-x}{1+x} \right) \quad \text{(Chain Rule)}$$

$$= \frac{1}{2} \left(\frac{1-x}{1+x} \right)^{-1/2} \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} \quad \text{(Quotient Rule)}$$

$$= \frac{1}{2} \sqrt{\frac{1+x}{1-x}} \frac{-2}{(1+x)^2}$$

$$= \frac{-1}{(1+x)^2} \sqrt{\frac{1+x}{1-x}}$$

(iii) Rewriting the given expression, we have

$$y = \frac{\sqrt{(x^2 + 1)}}{\sqrt{(x^2 + 1)}} + \sqrt{(x^2 - 1)} = \frac{\sqrt{(x^2 + 1)}}{\sqrt{(x^2 + 1)}} + \sqrt{(x^2 - 1)} = \frac{\sqrt{(x^2 + 1)}}{\sqrt{(x^2 + 1)}} + \sqrt{(x^2 - 1)} = \frac{\sqrt{(x^2 + 1)}}{\sqrt{(x^2 + 1)}} + \sqrt{(x^2 - 1)} = \frac{(x^2 + 1) + (x^2 - 1) + \sqrt[2]{(x^2 + 1)}(x^2 - 1)}{2}$$

$$= \frac{(\sqrt{(x^2 + 1)} + \sqrt{(x^2 - 1)})^2}{(x^2 + 1) - (x^2 - 1)} = \frac{(x^2 + 1) + (x^2 - 1) + \sqrt[2]{(x^2 + 1)(x^2 - 1)}}{2}$$

$$= \frac{2x^2 + \sqrt[2]{x^4 - 1}}{2} = x^2 + (x^4 - 1)^{1/2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} (x^2) + \frac{d}{dx} [((x^4 - 1)^{\frac{1}{2}}]$$

$$= 2x + \frac{1}{2} (x^4 - 1)^{-\frac{1}{2}} \frac{d}{dx} (x^4 - 1)$$

$$= 2x + \frac{1}{\sqrt[2]{(x^4 - 1)}} (4x^3)$$

$$= 2x + \frac{2x^3}{\sqrt{(x^4 - 1)}}$$

Check Your Progress 4

1. (a)
$$\frac{dx}{d\theta} = (e^{\theta} + e^{-\theta})/2$$
$$\frac{dx}{d\theta} = (e^{\theta} - e^{-\theta})/2$$

$$\therefore \frac{dx}{dy} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{1}{2}(e^{\theta} - e^{-\theta})}{\frac{1}{2}(e^{\theta} + e^{-\theta})} = \frac{x}{y}$$

(b)
$$\frac{dx}{dt} = a\left(1 + \frac{1}{t^2}\right), \quad \frac{dy}{dt} = b\left(1 - \frac{1}{t^2}\right)$$

$$\frac{dy}{dt} = b\left(1 - \frac{1}{t^2}\right)$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b(1 - \frac{1}{t^2})}{a(1 + \frac{1}{t^2})} = \frac{b(t^2 - 1)}{a(t^2 + 1)}$$

(c)
$$\frac{dx}{dt} = \frac{a(1+t^2)(-2t) - a(1-t^2)(2t)}{(1+t^2)^2}$$
 (Quotient Rule)
$$= \frac{a[-2t - 2t^3 - 2t + 2t^3]}{(1+t^2)^2}$$

$$=\frac{-4at}{(1+t^2)^2}$$

$$\frac{dy}{dt} = 2b \frac{(1-t^2)(1) - t(2t)}{(1+t^2)^2}$$
$$= \frac{2b(1-t^2)}{4at}$$

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2b(1-t^2)}{-4at} = \frac{-b(t^2-1)}{(1+t^2)^2}$$

2.
$$\frac{dy}{dx} = \frac{d}{dx} [(1+x^2)] = \frac{1}{2} (1+x^2)^{\frac{1}{2}-1} \frac{d}{dx} (1+x^2)$$
$$= \frac{1}{2} (1+x^2)^{\frac{1}{2}-1} (2x)$$
$$= x(1+x^2)^{-1/2}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[x(1+x^2)^{-\frac{1}{2}} \right] = \frac{d}{dx} (x)(1+x^2)^{-\frac{1}{2}} + x \frac{d}{dx} (1+x^2)^{-\frac{1}{2}}$$

$$= 1. (1+x^2)^{-\frac{1}{2}} + x \left[-\frac{1}{2} (1+x^2)^{-\frac{1}{2}-1} (2x) \right]$$

$$= (1+x^2)^{-\frac{1}{2}} - x^2 (1+x^2)^{-3/2}$$

$$= (1+x^2)^{-\frac{1}{2}} \left[1 - \frac{x^2}{1+x^2} \right] = \frac{(1+x^2)^{-\frac{1}{2}}}{1+x^2} = \frac{1}{(1+x^2)^{3/2}}$$

3. We have $y = \ln (\sqrt{x-1} + \sqrt{x+1})$

$$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{x-1} + \sqrt{x+1}} \frac{d}{dx} (\sqrt{x-1} + \sqrt{x+1}) \quad \text{(Chain Rule)}$$

$$= \frac{1}{\sqrt{x-1} + \sqrt{x+1}} \left(\frac{1}{\sqrt[2]{x-1}} + \frac{1}{\sqrt[2]{x-1}} \right)$$

$$= \frac{(\sqrt{x-1} + \sqrt{x+1})}{2(\sqrt{x-1} + \sqrt{x+1})\sqrt{x-1}\sqrt{x+1}}$$

$$= \frac{1}{\sqrt[2]{x^2-1}} = \frac{1}{2} (x^2 - 1)^{-1/2}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{1}{2} \frac{d}{dx} \left[(x^2 - 1)^{-\frac{1}{2}} \right]$$

$$= -\frac{1}{4} \left[(x^2 - 1)^{-\frac{1}{2} - 1} (2x) \right] \text{ (Chain Rule)}$$

$$= -\frac{1}{2} x (x^2 - 1)^{-3/2}$$

4. When have $y = ax + \frac{b}{x}$

$$\therefore \frac{dy}{dx} = a - \frac{b}{x^2} \text{ and } \frac{d^2y}{dx^2} = \frac{d}{dx}(a - bx^{-2}) = 2bx^{-3} = \frac{2b}{x^3}$$

$$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 \left(\frac{2b}{x^3}\right) + x \left(a - \frac{b}{x^2}\right) - \left(ax + \frac{b}{x}\right)$$
$$= \frac{2b}{x} + ax - \frac{b}{x} - ax - \frac{b}{x}$$

1.7 SUMMARY

In **section 1.2** of the unit, to begin with, the concept of limit of a function is defined. Then, some properties of limits are stated. Next, the concept of one-sided limit is defined. Then, the concept of continuity of a function is defined. Each of these concepts is illustrated with a number of examples.

In **section 1.3**, the concepts of differentiability of a function at a point and in an open interval are defined. Then, a number of rules for finding derivatives of simple functions are derived. In **section 1.4**, chain rule of differentiation is derived and is explained with a number of examples. In **section 1.5**, the concept of differentiation of parametric forms is defined followed by the definition of the concept of second order derivative. Each of these concepts is explained with a number of suitable examples.

Answers/Solutions to questions/problems/exercises given in various sections of the unit are available in **section 1.6**.