CLAIMS

What is claimed is:

I	1.	A method for determining the spacing of objects, the method comprising the steps
2		of:
3		receiving data that defines a constraint;
4		receiving a set of spacing parameter values that indicate how to space objects
5		across said constraint; and
6		generating a set of points for spacing objects across said constraint based on a
7		bound of at least one dimension of said constraint and said set of spacing
8		parameter values.
1	2.	The method of Claim 1, wherein the step of generating a set of points for spacing
2		objects across said constraint further comprises the steps of:
3		selecting a grid type from a plurality of grid types, wherein the grid type is
4		associated with one or more grid attributes; and
5		mapping a grid of said selected grid type onto said constraint.
1	3.	The method of Claim 2, wherein the step of selecting a grid type includes the step
2		of selecting the grid type based on the set of received spacing parameter values.
1	4.	The method of Claim 2, wherein the step of selecting a grid type includes the step
2		of selecting the grid type based on the defined constraint.
1	5.	The method of Claim 2, wherein the step of selecting a grid type includes the step
2		of selecting the grid type based on user input that specifies a particular type of grid
3		that is to be used.
1	6.	The method of Claim 2, wherein the step of selecting a grid type includes the step
2		of selecting the grid type based on the set of spacing parameter values and the
3		defined constraint.

constraint includes the step of receiving data that defines a line segment constraint.

1 16. The method of Claim 2, wherein the step of selecting a grid type includes the step of selecting a two-dimensional grid type.

1 19. The method of Claim 2, wherein the step of selecting a grid type includes the step 2 of selecting a polar grid type.

of selecting a rectangular grid type.

- 1 20. The method of Claim 2, wherein the step of selecting a grid type includes the step 2 of selecting a hex grid type.
- 1 21. The method of Claim 2, wherein the step of selecting a grid type includes the step 2 of selecting a triangular mesh grid type.
- 22. The method of Claim 2, wherein the step of selecting a grid type includes the step 1 2 of selecting a spherical grid type.
- 1 23. The method of Claim 2, wherein the step of selecting a grid type includes the step 2 of selecting a random grid type.
- 1 24. The method of Claim 2, wherein the step of selecting a grid type includes the step 2 of selecting a scattered grid type.
- 1 25. The method of Claim 1, further comprising the step of receiving a set of object 2 information, wherein the set of object information identifies a particular object to 3 be placed on the constraint at locations based on said generated set of points.
- 26. The method of Claim 25, wherein the step of generating the set of grid points -1 2 includes the steps of generating the set of grid points based on the set of object 3 information.
- 1 27. The method of Claim 26, wherein:
- the set of object information identifies a bounding box that is associated with the 2 3 particular object; and

4		the step of generating the set of grid points based on the set of object information
5		comprises the step of generating the set of grid points based the bounding
6		box.
1	28.	The method of Claim 2, wherein the step of mapping a grid of said selected grid
2		type onto said constraint includes the step of determining one or more locations to
3		place objects on said constraint by identifying one or more areas of said grid that
4		intersect said constraint.
1	29.	The method of Claim 28, further comprising the step of:
2		receiving pivot point information, wherein the pivot point information specifies
3		pivot points for the placement of objects relative to the generated set of
4		points; and
5		placing objects on said constraint such that the pivot points of said objects
6		coincide with said one or more locations.
1	30.	The method of Claim 28, further comprises the steps of:
2		identifying a particular object;
3		generating a copy of said particular object; and
4		placing the copy of said particular object at one or more of said one or more
5		locations.
1	31.	The method of Claim 28, further comprises the steps of:
2		identifying a particular object;
3		generating an instance of said particular object; and
4		placing the instance of said particular object at one or more of said one or more
5		locations.
1	32.	A computer-readable medium carrying one or more sequences of instructions for
2		determining the spacing of objects, wherein execution of the one or more
3		sequences of instructions by one or more processors causes the one or more
4		processors to perform the steps of:

5		receiving data that defines a constraint;
6		receiving a set of spacing parameter values that indicate how to space objects
7		across said constraint; and
8		generating a set of points for spacing objects across said constraint based on a
9		bound of at least one dimension of said constraint and said set of spacing
10		parameter values.
1	33.	The computer-readable medium of Claim 32, wherein the step of generating a set
2		of points for spacing objects across said constraint further comprises the steps of:
3		selecting a grid type from a plurality of grid types, wherein the grid type is
4		associated with one or more grid attributes; and
5		mapping a grid of said selected grid type onto said constraint.
6		
1	34.	The computer-readable medium of Claim 33, wherein the step of selecting a grid
2		type includes the step of selecting the grid type based on the set of received
3		spacing parameter values.
1	35.	The computer-readable medium of Claim 33, wherein the step of selecting a grid
2		type includes the step of selecting the grid type based on the defined constraint.
1	36.	The computer-readable medium of Claim 33, wherein the step of selecting a grid
2		type includes the step of selecting the grid type based on user input that specifies a
3		particular type of grid that is to be used.
1	37.	The computer-readable medium of Claim 33, wherein the step of selecting a grid
2		type includes the step of selecting the grid type based on the set of spacing
3		parameter values and the defined constraint.
1	38.	The computer-readable medium of Claim 33, wherein the step of mapping a grid
2		of said selected grid type onto said constraint includes the steps of:
3		generating a set of grid points based on attributes of said selected grid type; and
4		translating said set of grid points onto said constraint.

- 1 40. The computer-readable medium of Claim 32, wherein the step of receiving data 2 that defines a constraint includes the step of receiving data that defines a one-3 dimensional constraint.
- 1 41. The computer-readable medium of Claim 32, wherein the step of receiving data 2 that defines a constraint includes the step of receiving data that defines a multi-3 dimensional constraint.
- 1 42. The computer-readable medium of Claim 33, wherein the step of selecting a grid 2 type includes the step of selecting a two-dimensional grid type.
- 1 43. The computer-readable medium of Claim 33, wherein the step of selecting a grid
 2 type includes the step of selecting a three-dimensional grid type.
- 1 44. The computer-readable medium of Claim 33, wherein the step of selecting a grid type includes the step of selecting a rectangular grid type.
- 1 45. The computer-readable medium of Claim 33, wherein the step of selecting a grid type includes the step of selecting a polar grid type.
- 1 46. The computer-readable medium of Claim 33, wherein the step of selecting a grid type includes the step of selecting a triangular mesh grid type.
- 1 47. The computer-readable medium of Claim 33, wherein the step of selecting a grid 2 type includes the step of selecting a spherical grid type.
- The computer-readable medium of Claim 32, further comprising instructions for performing the step of receiving a set of object information, wherein the set of object information identifies a particular object to be placed on the constraint at locations based on said generated set of points.

1	49.	The computer-readable medium of Claim 48, wherein the step of generating the
2		set of grid points includes the steps of generating the set of grid points based on
3		the set of object information.
1	50.	The computer-readable medium of Claim 49, wherein:
2		the set of object information identifies a bounding box that is associated with the
3		particular object; and
4		the step of generating the set of grid points based on the set of object information
5		comprises the step of generating the set of grid points based the bounding
6		box.
1	51.	The computer-readable medium of Claim 33, wherein the step of mapping a grid
2		of said selected grid type onto said constraint includes the step of determining one
3		or more locations to place objects on said constraint by identifying one or more
4		areas of said grid that intersect said constraint.
1	52.	The computer-readable medium of Claim 51, further comprising instructions for
2		performing the step of:
3		receiving pivot point information, wherein the pivot point information specifies
4		pivot points for the placement of objects relative to the generated set of
5		points; and
6		placing objects on said constraint such that the pivot points of said objects
7		coincide with said one or more locations.
1	53.	The computer-readable medium of Claim 51, further comprising instructions for
2		performing the steps of:
3		identifying a particular object;
4		generating a copy of said particular object; and
5		placing the copy of said particular object at one or more of said one or more
6		locations.

1	54.	The computer-readable medium of Claim 51, further comprising instructions for
2		performing the steps of:
3		identifying a particular object;
4		generating an instance of said particular object; and
5		placing the instance of said particular object at one or more of said one or more
6		locations.
1	55.	A computer system for determining the spacing of objects, the system comprising
2		a memory;
3		one or more processors coupled to the memory; and
4		a set of computer instructions contained in the memory, the set of computer
5		instruction including computer instructions which when executed by the
6		one or more processors, cause the one or more processors to perform the
7		steps of:
8		receiving data that defines a constraint;
9		receiving a set of spacing parameter values that indicate how to space
10		objects across said constraint; and
l 1		generating a set of points for spacing objects across said constraint based
ĺ2		on a bound of at least one dimension of said constraint and said set
13		of spacing parameter values.
1	56.	The computer system of Claim 55, wherein the step of generating a set of points
2		for spacing objects across said constraint further comprising instructions for
3		performing the steps of:
4		selecting a grid type from a plurality of grid types, wherein the grid type is
5		associated with one or more grid attributes; and
6		mapping a grid of said selected grid type onto said constraint.
7		
1	57.	A computer system for determining the spacing of objects, the system comprising

2		means for receiving data that defines a constraint;
3		means for receiving a set of spacing parameter values that indicate how to space
4		objects across said constraint; and
5		means for generating a set of points for spacing objects across said constraint
6		based on a bound of at least one dimension of said constraint and said set
7		of spacing parameter values.
1	58.	The computer system of Claim 57, wherein the step of generating a set of points
2		for spacing objects across said constraint further comprising:
3		means for selecting a grid type from a plurality of grid types, wherein the grid type
4		is associated with one or more grid attributes; and
5		means for mapping a grid of said selected grid type onto said constraint.