

Módulo VI - Aprendizaje NO supervisado. Clase 19:

Tipos de aprendizaje NO supervisado

¿Ponemos a grabar el taller?

FUNDACIÓN YPF

OBJETIVOS de hoy

- Aprendizaje No Supervisado
- Tipo de algoritmos en Aprendizaje
 No Supervisado
 - Clustering
 - Reducción de la Dimensionalidad

REPASEMOS

Machine Learning

El objetivo del aprendizaje automático o machine learning es crear un modelo que permita resolver una tarea dada.

Machine Learning

Este modelo se entrena usando datos.

Mediante este proceso, aprende a
encontrar características escondidas
en los datos que le permiten hacer
predicciones.

Eligiendo algoritmo

Tarea

Definir de forma clara el objetivo

Información

Con qué datos se cuenta para lograr el objetivo

2

APRENDIZAJE **SUPERVISADO**

APRENDIZAJE
NO
SUPERVISADO

Aprendizaje NO supervisado

Aprendizaje No Supervisado

Se llama **Aprendizaje No Supervisado** a la colección de métodos o técnicas que trabaja con datos que no tienen asociados una etiqueta (una clase o un valor), o sea, que **NO** están **etiquetados**.

Aprendizaje No Supervisado

A diferencia del Aprendizaje Supervisado, el objetivo ya no es predecir una etiqueta, sino **encontrar patrones** en el conjunto de datos.

Aprendizaje No Supervisado

Clustering

 Reducción de la Dimensionalidad

Clustering

o agrupamiento es encontrar grupos (clusters) en los cuales las instancias pertenecientes sean parecidas.

Clustering

El objetivo del clustering o agrupamiento es encontrar grupos (clusters) en los cuales las instancias pertenecientes sean parecidas.

Aplicaciones

- Investigación de mercado
- Sistemas de recomendación
- Medicina y Biología

Algoritmos

- K-means
- DBSCAN
- Hierarchical Clustering
- Fuzzy C-Means
- Gaussian Mixture Models

Reducción de la dimensionalidad

Consiste en reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Reducción de la dimensionalidad

Consiste en reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Aplicaciones

- Reducir la complejidad del input en un modelo de regresión o clasificación
- Visualización
- Detectar features relevantes en datasets

Algoritmos

- Principal Component Analysis
- Multidimensional Scaling
- t-SNE: t-distributed Stochastic
 Neighbor Embedding
- LDA: Linear Discriminant Analysis

Descanso

Nos vemos en 10 minutos

KMEANS

K-Means

K-Means tiene como objetivo separar los datos en un número k dado de clusters, ubicando a las instancias que estén dentro de una región cercana dentro de un mismo cluster.

K-Means

Encuentra un número k de centroides, uno por cada cluster, tal que la distancia entre los centroides y los datos más cercanos sea la mínima posible.

A continuación, cada instancia se identifica en el grupo del centroide más cercano

K-Means

Se utiliza un algoritmo **iterativo** hasta llegar al resultado.

- A Se inicializan los k Centroides (de manera aleatoria o siguiendo algún criterio)
- B Se encuentra el centroide más cercano de cada instancia
- C Se Actualizan los centroides (Nuevo centroide: Promedio de las posiciones de las instancias en un mismo cluster)
- Se repiten los pasos 2 y 3 hasta que la posición del centroide ya no varíe.

Repasamos en Kahoot

Tercera pre-entrega

Hoy se realiza la tercera pre-entrega. La misma incluirá los desafíos vistos:

- Trabajar sobre el modelo de clasificación: desde el análisis exploratorio hasta la evaluación y selección
- Para ello, les pediremos ajustar cualquier modelo supervisado, teniendo en cuenta lo visto en las clases:
 - ajustar los modelos de regresión y clasificación vistos
 - evaluar los modelos y evitar el overfitting optimizando los hiperparametros

Presentarán lo trabajado entregando el link a su Github en el foro del aula virtual

¿DUDAS?

FUNDACIÓN Y PF

¡Muchas gracias!

