Lista 6 - MAE0560

Guilherme N°USP: 8943160 e Leonardo N°USP: 9793436

Exercício 4

Obtenha as probabilidades $p_j(x)$, j = 1, 2, ..., r para os modelos:

(a) logitos de categoria de referência;

Resolução

Como $logito_j = \beta_{0j} + \beta_j^T X$ com j = 1, 2, ..., r - 1.

 \mathbf{E}

$$logito_{j} = ln\left(\frac{\mathbb{P}_{j}(x)}{\mathbb{P}_{r}(x)}\right) = \beta_{0j} + \beta_{j}^{T}X \Rightarrow \frac{\mathbb{P}_{j}(x)}{\mathbb{P}_{r}(x)} = exp\{\beta_{0j} + \beta_{j}^{T}X\}$$

$$\Rightarrow \frac{\mathbb{P}_{j}(x)}{1 - \sum_{j=1}^{r-1} \mathbb{P}_{j}(x)} = exp\{\beta_{0j} + \beta_{j}^{T}X\} \Rightarrow \mathbb{P}_{j}(x) = exp\{\beta_{0j} + \beta_{j}^{T}X\}(1 - \sum_{j=1}^{r-1} \mathbb{P}_{j}(x))$$

$$\Rightarrow \mathbb{P}_{j}(x) = exp\{\beta_{0j} + \beta_{j}^{T}X\} - \sum_{j=1}^{r-1} \mathbb{P}_{j}(x) * exp\{\beta_{0j} + \beta_{j}^{T}X\}$$

$$\Rightarrow \mathbb{P}_{j}(x) + \sum_{j=1}^{r-1} \mathbb{P}_{j}(x) * exp\{\beta_{0j} + \beta_{j}^{T}X\} = exp\{\beta_{0j} + \beta_{j}^{T}X\}$$

$$\Rightarrow \mathbb{P}_{j}(x)(1 + \sum_{j=1}^{r-1} exp\{\beta_{0j} + \beta_{j}^{T}X\}) = exp\{\beta_{0j} + \beta_{j}^{T}X\}$$

$$\Rightarrow \mathbb{P}_{j}(x) = \frac{exp\{\beta_{0j} + \beta_{j}^{T}X\}}{1 + \sum_{j=1}^{r-1} exp\{\beta_{0j} + \beta_{j}^{T}X\}}, \ j = 1, ..., r - 1$$

Para j = r, temos:

Como $logito_r = \beta_{0r} + \beta_r^T X = 0 \Rightarrow 1 = exp\{\beta_{0r} + \beta_r^T X\}$

Logo,

$$\mathbb{P}_r(x) = \frac{1}{1 + \sum_{j=1}^{r-1} exp\{\beta_{0j} + \beta_j^T X\}}$$

 $Com \sum_{j=1}^{r} p_j(x) = 1$

(b) logitos de razão contínua.

Resolução

Para os logitos de razão contínua, temos: $logito_j = -\beta_{0j} - \beta_j^T X$ com j=1,2,...r-1 e que $\sum_{j=1}^{r-1} \mathbb{P}(Y=j|x) = 1$.

$$logito_{j} = ln\left(\frac{\mathbb{P}(Y=j|x)}{\mathbb{P}(Y>j|x)}\right) = -\beta_{0j} - \beta_{j}^{T}X \Rightarrow \frac{\mathbb{P}(Y=j|x)}{\mathbb{P}(Y>j|x)} = exp\{-\beta_{0j} - \beta_{j}^{T}X\}$$

e utilizando $p_i(x) = \mathbb{P}(Y = j|x)$

Supomos r=2, logo:

$$logito_{1} = ln\left(\frac{\mathbb{P}(Y=1|x)}{\mathbb{P}(Y>1|x)}\right) = -\beta_{01} - \beta_{1}^{T}X \Rightarrow \frac{\mathbb{P}(Y=1|x)}{\mathbb{P}(Y>1|x)} = exp\{-\beta_{01} - \beta_{1}^{T}X\} \Rightarrow \frac{p_{1}(x)}{p_{2}(x)} = exp\{-\beta_{01} - \beta_{1}^{T}X\}$$

$$\Rightarrow \frac{p_{1}(x)}{1 - p_{1}(x)} = exp\{-\beta_{01} - \beta_{1}^{T}X\} \Rightarrow p_{1}(x) = \exp\{-\beta_{01} - \beta_{1}^{T}X\} - p_{1}(x)\exp\{-\beta_{01} - \beta_{1}^{T}X\}$$

$$\Rightarrow p_{1}(x) + p_{1}(x) \exp\{-\beta_{01} - \beta_{1}^{T}X\} = \exp\{-\beta_{01} - \beta_{1}^{T}X\} \Rightarrow p_{1}(x)(1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}) = \exp\{-\beta_{01} - \beta_{1}^{T}X\}$$

$$\Rightarrow p_{1}(x) = \frac{\exp\{-\beta_{01} - \beta_{1}^{T}X\}}{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}}$$

$$\Rightarrow p_{2}(x) = 1 - \frac{\exp\{-\beta_{01} - \beta_{1}^{T}X\}}{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}} \Rightarrow p_{2}(x) = \frac{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\} - \exp\{-\beta_{01} - \beta_{1}^{T}X\}}{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}}$$

$$p_{2}(x) = \frac{1}{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}}$$

Para r=3:

$$logito_{1} = ln\left(\frac{\mathbb{P}(Y=1|x)}{\mathbb{P}(Y>1|x)}\right) = -\beta_{01} - \beta_{1}^{T}X \Rightarrow \frac{\mathbb{P}(Y=1|x)}{\mathbb{P}(Y>1|x)} = exp\{-\beta_{01} - \beta_{1}^{T}X\}$$
$$\Rightarrow \frac{p_{1}(x)}{p_{2}(x) + p_{3}(x)} = exp\{-\beta_{01} - \beta_{1}^{T}X\}$$

$$\Rightarrow \frac{p_1(x)}{1 - p_1(x)} = exp\{-\beta_{01} - \beta_1^T X\} \Rightarrow \mathbb{P}(Y = 1|x) = \exp\{-\beta_{01} - \beta_1^T X\} - \{\mathbb{P}(Y = 1|x)\} \exp\{-\beta_{01} - \beta_1^T X\}$$

$$\Rightarrow p_{1}(x) + p_{1}(x) \exp\{-\beta_{01} - \beta_{1}^{T}X\} = \exp\{-\beta_{01} - \beta_{1}^{T}X\} \Rightarrow \mathbb{P}(Y = 1|x)(1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}) = \exp\{-\beta_{01} - \beta_{1}^{T}X\}$$

$$\Rightarrow p_{1}(x) = \frac{\exp\{-\beta_{01} - \beta_{1}^{T}X\}}{1 + \exp\{-\beta_{01} - \beta_{1}^{T}X\}}$$

$$logito_{2} = ln\left(\frac{\mathbb{P}(Y = 2|x)}{\mathbb{P}(Y > 2|x)}\right) = -\beta_{02} - \beta_{2}^{T}X \Rightarrow \frac{\mathbb{P}(Y = 2|x)}{\mathbb{P}(Y > 2|x)} = exp\{-\beta_{02} - \beta_{2}^{T}X\}$$

$$\Rightarrow \frac{p_{2}(x)}{p_{2}(x)} = exp\{-\beta_{02} - \beta_{2}^{T}X\}$$

$$\Rightarrow \frac{p_2(x)}{1 - p_1(x) - p_2(x)} = \exp\{-\beta_{02} - \beta_2^T X\}$$

$$\Rightarrow \iota_2(x) = \exp\{-\beta_{02} - \beta_2^T X\} - p_1(x) \exp\{-\beta_{02} - \beta_2^T X\} - p_2(x) \exp\{-\beta_{02} - \beta_2^T X\}$$

$$\Rightarrow p_2(x) + p_2(x) \exp\{-\beta_{02} - \beta_2^T X\} = \exp\{-\beta_{02} - \beta_2^T X\} - p_1(x) \exp\{-\beta_{02} - \beta_2^T X\}$$

$$\Rightarrow p_2(x)(1 + \exp\{-\beta_{02} - \beta_2^T X\}) = \exp\{-\beta_{02} - \beta_2^T X\} - p_1(x) \exp\{-\beta_{02} - \beta_2^T X\}$$
Substituindo $\iota_1(x) = \frac{\exp\{-\beta_{01} - \beta_1^T X\}}{1 + \exp\{-\beta_{01} - \beta_1^T X\}}$:
$$\Rightarrow p_2(x) = \frac{\exp\{-\beta_{02} - \beta_2^T X\}}{1 + \exp\{-\beta_{02} - \beta_2^T X\}} - \frac{\exp\{-\beta_{01} - \beta_1^T X\} \exp\{-\beta_{02} - \beta_2^T X\}}{(1 + \exp\{-\beta_{01} - \beta_1^T X\})((1 + \exp\{-\beta_{02} - \beta_2^T X\}))}$$

$$\Rightarrow p_2(x) = \frac{(\exp\{-\beta_{02} - \beta_2^T X\})(1 + \exp\{-\beta_{01} - \beta_1^T X\})}{(1 + \exp\{-\beta_{01} - \beta_1^T X\})} - \frac{\exp\{-\beta_{01} - \beta_1^T X\} \exp\{-\beta_{02} - \beta_2^T X\}}{(1 + \exp\{-\beta_{01} - \beta_1^T X\})((1 + \exp\{-\beta_{02} - \beta_2^T X\}))}$$

$$\Rightarrow p_2(x) = \frac{\exp\{-\beta_{02} - \beta_2^T X\})(1 + \exp\{-\beta_{01} - \beta_1^T X\})}{(1 + \exp\{-\beta_{02} - \beta_2^T X\})(1 + \exp\{-\beta_{01} - \beta_1^T X\})}$$

$$\Rightarrow p_2(x) = \frac{\exp\{-\beta_{02} - \beta_2^T X\} + \exp\{-\beta_{02} - \beta_2^T X\} \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{01} - \beta_1^T X\} \exp\{-\beta_{02} - \beta_2^T X\}}}{(1 + \exp\{-\beta_{02} - \beta_2^T X\})(1 + \exp\{-\beta_{01} - \beta_1^T X\})}$$

$$\Rightarrow p_2(x) = \frac{\exp\{-\beta_{02} - \beta_2^T X\} + \exp\{-\beta_{02} - \beta_2^T X\} \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{01} - \beta_1^T X\} \exp\{-\beta_{02} - \beta_2^T X\}}}{(1 + \exp\{-\beta_{02} - \beta_2^T X\})(1 + \exp\{-\beta_{01} - \beta_1^T X\})}$$

$$\Rightarrow p_2(x) = \frac{\exp\{-\beta_{02} - \beta_2^T X\} + \exp\{-\beta_{02} - \beta_2^T X\} \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{01} - \beta_1^T X\} \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{02} - \beta_2^T X\} \exp\{-\beta_{02} - \beta_2^T X\} + \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{01} - \beta_1^T X\} - \exp\{-\beta_{02} - \beta_2^T X\} + \exp\{-\beta_{01} - \beta_1^T X\} + \exp\{-\beta$$

Logo, no caso geral, temos:

$$p_{j}(x) = \frac{exp(\beta_{0j} + \beta_{j}^{T}X)}{\prod_{j=1}^{r-1} [1 + exp(\beta_{0j} + \beta_{j}^{T}X)]}, j = 1, ..., r - 1$$

$$p_{r}(x) = \frac{1}{\prod_{i=1}^{r-1} [1 + exp(\beta_{0i} + \beta_{i}^{T}X)]}, com \sum_{i=1}^{r} p_{j}(x) = 1$$

Exercício 6 (1 cap. 8)

Os dados mostrados na Tabela 1 são de um estudo sobre demência realizado com indivíduos de 65 anos ou mais de idade. O objetivo do estudo foi investigar a associação entre as variáveis X_1 (uso de tabaco) e X_2 (problema cardíaco) com o estado geral de saúde dos indivíduos (variável resposta).

Tabela 1: Estudo sobre demência

Uso de	Problema	Est	Estado geral de saúde			
Tabaco	Cardíaco	Excelente	Bom	Moderado	Ruim	Totais
Sim	Sim	27	76	101	39	243
Sim	Não	402	1050	522	145	2119
Não	Sim	83	406	442	114	1045
Não	Não	1959	4521	2243	405	9128

(a) Represente graficamente os dados do estudo.

Resolução

Fazendo os gráficos de barras, temos:

Em que podemos notar que para os fumantes, a maioria das pessoas que possuem problema cardíaco tem um estado geral de saúde moderado, enquanto os que não possuem problema cardíaco tem um estado geral de saúde bom. O mesmo acontece para os não fumantes, entretanto a proporção de pessoas com problema cardíaco e estado geral de saúde bom se aproxima da proporção de pessoas com problema cardíaco e estado geral de saúde moderado.

(b) Análise os dados fazendo uso do modelo logitos cumulativos.

Resolução

Para a análise foram consideradas as seguintes covariáveis

$$X_1 = \left\{ \begin{array}{l} 1, \ se \ usa \ tabaco \\ 0, \ c.c. \end{array} \right. X_2 = \left\{ \begin{array}{l} 1, \ se \ tem \ problema \ cardiaco \\ 0, \ c.c. \end{array} \right.$$

Primeiro iremos realizar o teste de hipótese:

$$\begin{cases} H_0: \beta_j = \beta \\ H_1: \beta_j \neq \beta \end{cases}$$

Em que a estatística do teste é: $TRV = -2ln\left(\frac{L_{H_0}}{L_{H_1}}\right) \sim \chi_m^2$ em que m é o grau de liberdade e pode ser calculado pela diferença do número de parâmetros entre os modelos sob H_0 e H_1 . Segue abaixo a tabela com a estatística de teste, os graus de liberdade e o p-value respesctivamente, para o modelo com os parâmetros X_1 e X_2 .

Tabela 2: Teste de suposição de chances proporcionais

TRV	gl	p.value
15.114	4	0.004

E podemos notar na tabela 2 que fixando um nível de significância de 5%, nós rejeitamos a hipótese nula. Considerando os modelos somente com X_1 obteve-se:

Tabela 3: Teste de suposição de chances proporcionais

TRV1	gl1	p.value
14.888	2	0.001

E somente com X_2 :

Tabela 4: Teste de suposição de chances proporcionais:

TRV2	gl2	p.value
0.588	2	0.745

Logo temos evidências a favor da suposição de chances proporcionais apenas para X_2 , com isso iremos avaliar o modelo logito comulativo com chances proporcionais parciais.

Tabela 5: Modelos ajustados e diferença de deviances entre eles

Modelos	g.l.	Deviances	TRV	\neq g.l.	p-value	AIC
Nulo	12-3=9	379.63				469.54
X_1	12 - 6 = 6	353.12	26.51	3	< 0.0001	449.03
$X_2 X_1$	12 - 7 = 5	6.528	346.592	1	< 0.0001	104.44
$X_1 * X_2 \mid X_1$	12-8=4	6.43	0.01	1	0.755	106.34

Em que podemos notar que o com um nível de significância de 5%, o efeito de interação não é significante, tendo em vista isso ajustamos os modelos:

```
##
## Call:
## vglm(formula = cbind(exc, bom, mod, ruim) ~ factor(tabaco) +
       factor(pcard), family = cumulative(parallel = F ~ factor(tabaco),
##
       reverse = F), data = dados)
##
## Pearson residuals:
     logitlink(P[Y<=1]) logitlink(P[Y<=2]) logitlink(P[Y<=3])</pre>
## 1
                1.9602
                                 -0.92788
                                                       0.3505
## 2
               -0.4356
                                  0.34585
                                                      -0.1873
## 3
               -1.1140
                                  0.14750
                                                      0.4733
## 4
                0.2541
                                  -0.06809
                                                      -0.2548
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept):1
                    -1.30303
                                0.02512 -51.882 < 2e-16 ***
                     0.89677
                                0.02261 39.667 < 2e-16 ***
## (Intercept):2
## (Intercept):3
                     3.08265
                                0.04640 66.437 < 2e-16 ***
## factor(tabaco)S:1 -0.12719
                                0.05904 -2.154 0.03122 *
## factor(tabaco)S:2 -0.12838
                                0.04885 -2.628 0.00858 **
## factor(tabaco)S:3 -0.45813
                                0.08944 -5.122 3.02e-07 ***
## factor(pcard)S
                   -1.02534
                                0.05528 -18.549 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]),</pre>
## logitlink(P[Y<=3])</pre>
## Residual deviance: 6.5286 on 5 degrees of freedom
## Log-likelihood: -45.2211 on 5 degrees of freedom
##
## Number of Fisher scoring iterations: 3
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):3'
##
##
## Exponentiated coefficients:
## factor(tabaco)S:1 factor(tabaco)S:2 factor(tabaco)S:3
                                                            factor(pcard)S
##
          0.8805653
                             0.8795150
                                        0.6324643
                                                                 0.3586749
```

Fazendo a análise de resíduos (Pearson):

Em que podemos notar que os todos os resíduos estão contidos no intervalo -2,2, o que nos da um bom ajuste.

Realizando os testes de qualidade de ajuste, em que as hipóteses são definidas:

$$\left\{ \begin{array}{l} H_0: modelo \ ajustado \ e \ satisfatorio \\ H_1: modelo \ ajustado \ nao \ e \ satisfatorio \end{array} \right.$$

Em que as estatísticas de teste são:

$$Q_p = \sum_{i,j} \frac{(n_{ij} - e_{ij})^2}{e_{ij}} \sim \chi_m^2$$

e

$$Q_L = 2\sum_{i,j} n_{ij} ln\left(\frac{n_{ij}}{e_{ij}}\right) \sim \chi_m^2$$

com n_{ij} as observação com i=1,...se j=1,..,r,

 e_{ij} as frequências esperadas sob o modelo ajustado e

 $m = n^{\circ}$ de subpopulações - n° de parâmetros do modelo ajustado (graus de liberdade)

E obtemos a seguinte tabela:

Tabela 6: Teste de qualidade de ajuste

Qp	p.value
6.792	0.237

Fixando um nível de significância de 5%, não rejeitamos a hipótese nula de que o modelo é adequado.

Tabela 7: Teste de qualidade de ajuste

QL	p.value
6.529	0.258

Fixando um nível de significância de 5%, não rejeitamos a hipótese nula de que o modelo é adequado. Concluindo que temos um modelo com um ajuste satisfatório.

(c) Apresente conclusões sobre a associação de interese.

Resolução

Podemos notar que os fatores são significantes para o modelo. Os logitos podem ser escritos por:

$$logito_1 = -1.303 - 0.127X_1 - 1.02X_2$$
$$logito_2 = 0.897 - 0.128X_1 - 1.02X_2$$
$$logito_3 = 3.08 - 0.458X_1 - 1.025X_2$$

Tabela 8: Chances associadas ao modelo ajustado

Uso de	Problema	$\mathbb{P}(Y=1 x)$	Estim.	$\mathbb{P}(Y \leq 2 x)$	Estim.	$\mathbb{P}(Y \leq 3 x)$	Estim.
Tabaco	Cardíaco	$\overline{\mathbb{P}(Y{>}1 x)}$	Listiiii.	$\overline{\mathbb{P}(Y{>}2 x)}$	Listiiii.	$\overline{\mathbb{P}(Y=4 x)}$	Listiiii.
Sim	Sim	$exp\{\beta_{01} + \beta_{11} + \beta_2\}$	0.086	$exp\{\beta_{02} + \beta_{12} + \beta_2\}$	0.773	$exp\{\beta_{03} + \beta_{13} + \beta_2\}$	4.949
Sim	Não	$exp\{\beta_{01} + \beta_{11}\}$	0.239	$exp\{\beta_{02}+\beta_{12}\}$	2.156	$exp\{\beta_{03}+\beta_{13}\}$	13.798
Não	Sim	$exp\{\beta_{01}+\beta_2\}$	0.097	$exp\{\beta_{02}+\beta_2\}$	0.879	$exp\{\beta_{03}+\beta_2\}$	7.825
Não	Não	$exp\{\beta_{01}\}$	0.271	$exp\{\beta_{02}\}$	2.452	$exp\{\beta_{03}\}$	21.816

Logo, a chance de possuir um estado geral de saúde excelente, em relação aos outros estados de saúde, é maior para os não fumantes que não possuem problemas cardíacos, em seguida, os fumantes sem problemas cardíacos e por fim os não fumantes com problemas cardíacos e os fumantes com problemas cardíacos, respectivamente.

Esta mesma sequência de populações acontece para a chance de o estado geral de saúde ser excelente ou bom em relação com ser moderado ou ruim e a chance de o estado geral de saúde ser excelente, bom ou moderado em relação com ser ruim.

Pode-se dizer também que a maior diferença entre as populações é dos fumantes sem problemas cardíacos e dos não fumantes com problemas cardíacos.

Exercício 6 (2 cap. 8)

Analise os dados do estudo sobre demência dispostos na Tabela anterior:

(a) Por meio do modelo logitos categorias adjacentes

Resolução

Considerando as mesmas covariáveis do exercício anterior, realizaremos o teste:

$$\begin{cases}
H_0: \beta_j = \beta \\
H_1: \beta_j \neq \beta
\end{cases}$$

Em que para as duas covariáveis obtemos:

Tabela 9: Teste de suposição de chances proporcionais

TRV	gl	p.value
22.585	4	0

E podemos notar que fixando um nível de significância de 5%, rejeitamos a hipótese nula.

Considerando os modelos somente com X_1 obteve-se:

Tabela 10: Teste de suposição de chances proporcionais

TRV1	gl1	p.value
11.086	2	0.004

E podemos notar que fixando um nível de significância de 5%, rejeitamos a hipótese nula.

E somente com X_2 :

Tabela 10: Teste de suposição de chances proporcionais

TRV2	gl2	p.value
11.531	2	0.003

Logo, com um nível de significância fixado de 5%, temos evidências a favor da suposição de chances não proporcionais para todas as covariáveis.

Tabela 11: Modelos ajustados e diferença de deviances entre eles

Modelos	g.l.	Deviances	TRV	\neq g.l.	p-value	AIC
Nulo	12 - 3 = 9	379.63				469.54
X_1	12 - 6 = 6	353.12	26.51	3	< 0.0001	449.03
$X_2 X_1$	12 - 9 = 3	6.37	346.75	3	< 0.0001	108.28
$X_1 * X_2 \mid X_1$	12 - 12 = 0	0	6.37	3	0.095	107.91

Em que podemos notar que o com um nível de significância de 5%, o efeito de interação não é significante, tendo em vista isso ajustamos os modelos:

```
##
## Call:
## vglm(formula = cbind(exc, bom, mod, ruim) ~ factor(tabaco) +
##
       factor(pcard), family = acat(reverse = T, parallel = F),
##
       data = dados)
##
## Pearson residuals:
##
    loglink(P[Y=1]/P[Y=2]) loglink(P[Y=2]/P[Y=3]) loglink(P[Y=3]/P[Y=4])
## 1
                    2.2500
                                          -0.52881
                                                                 0.038311
## 2
                   -0.5127
                                          0.17726
                                                                -0.016877
## 3
                   -1.0171
                                          0.25075
                                                                -0.016033
                    0.2383
                                          -0.08582
## 4
                                                                 0.007138
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept):1
                    -0.84303
                                0.02696 -31.274 < 2e-16 ***
## (Intercept):2
                     0.70412
                                0.02553 27.583 < 2e-16 ***
                                0.05260 32.527 < 2e-16 ***
## (Intercept):3
                     1.71088
                                0.06260 -1.370 0.170552
## factor(tabaco)S:1 -0.08579
```

```
## factor(tabaco)S:2 -0.01907
                                 0.05576
                                          -0.342 0.732314
## factor(tabaco)S:3 -0.42642
                                           -4.408 1.04e-05 ***
                                 0.09673
## factor(pcard)S:1
                     -0.61956
                                 0.10849
                                           -5.711 1.12e-08 ***
## factor(pcard)S:2
                     -0.81983
                                  0.06677 -12.279
                                                   < 2e-16 ***
##
  factor(pcard)S:3
                     -0.35163
                                  0.10290
                                           -3.417 0.000633 ***
##
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: loglink(P[Y=1]/P[Y=2]),
  loglink(P[Y=2]/P[Y=3]), loglink(P[Y=3]/P[Y=4])
##
  Residual deviance: 6.3701 on 3 degrees of freedom
##
##
  Log-likelihood: -45.1418 on 3 degrees of freedom
##
##
## Number of Fisher scoring iterations: 4
##
## No Hauck-Donner effect found in any of the estimates
```

Podemos escrever os logitos com os parâmentros significativos:

$$logito_1 = -0.843 - 0.619X_2$$
$$logito_2 = 0.704 - 0.820X_2$$
$$logito_3 = 1.711 - 0.426X_1 - 0.352X_2$$

Fazendo a análise de resíduos (Pearson):

Realizando os testes de qualidade de ajuste, em que as hipóteses são definidas:

$$\left\{ \begin{array}{l} H_0: modelo \ ajustado \ e \ satisfatorio \\ H_1: modelo \ ajustado \ nao \ e \ satisfatorio \end{array} \right.$$

E obtemos a seguinte tabela:

Tabela 12: Teste de qualidade de ajuste

Qp	p.value
6.8	0.236

Fixando um nível de significância de 5%, não rejeita-se a hipótese nula.

Tabela 13: Teste de qualidade de ajuste

QL	p.value
6.37	0.272

Fixando um nível de significância de 5%, não rejeita-se a hipótese nula.

Concluindo que temos um modelo com um ajuste satisfatório, porém o modelo de logitos comulativos está melhor ajustado.

Tabela 14: Chances associadas ao modelo ajustado

Uso de Tabaco	Problema Cardíaco	$\frac{\mathbb{P}(Y=1 x)}{\mathbb{P}(Y=2 x)}$	Estim.	$\frac{\mathbb{P}(Y=2 x)}{\mathbb{P}(Y=3 x)}$	Estim.	$\frac{\mathbb{P}(Y=3 x)}{\mathbb{P}(Y=4 x)}$	Estim.
Sim	Sim	$exp\{\beta_{01} + \beta_{11} + \beta_{21}\}$	0.212	$exp\{\beta_{02} + \beta_{12} + \beta_{22}\}$	0.874	$exp\{\beta_{03} + \beta_{13} + \beta_{23}\}$	2.54
Sim	Não	$exp\{\beta_{01}+\beta_{11}\}$	0.395	$exp\{\beta_{02}+\beta_{12}\}$	1.984	$exp\{\beta_{03}+\beta_{13}\}$	3.613
Não	Sim	$exp\{\beta_{01}+\beta_{21}\}$	0.232	$exp\{\beta_{02}+\beta_{22}\}$	0.890	$exp\{\beta_{03}+\beta_{23}\}$	3.893
Não	Não	$exp\{\beta_{01}\}$	0.430	$exp\{\beta_{02}\}$	2.02	$exp\{\beta_{03}\}$	5.34

Logo para todas as populações a chance de o estado de saúde ser excelente em relação ao estado de saúde ser bom é menor que 1, logo a probabilidade do estado de saúde ser excelente é menor que a de ser bom.

Quando é comparado o estado de saúde bom em relação ao moderado, as pessoas que não tem problemas cardíacos possuem uma chance maior que 1, enquanto as que possuem problemas cardíacos, as chances são menores que 1, o que significa que a probabilidade do estado de saúde de pessoas que não possuem problemas ser bom é maior que ser moderado, o contrário ocorre para pessoas com problemas cardíacos.

Por fim, todas as chances do estado de saúde ser moderado em relação a ser ruim são maiores que 1, logo a probabilidade ser possuir uma saúde moderada é maior do que ela ser ruim.

(b) Por meio do modelo logitos razão contínua

Resolução

Considerando as mesmas covariáveis do exercício anterior, realizaremos o teste:

$$\begin{cases} H_0: \beta_j = \beta \\ H_1: \beta_j \neq \beta \end{cases}$$

Em que para as duas covariáveis obtemos:

Tabela 15: Teste de suposição de chances proporcionais

TRV	gl	p.value
23.732	4	C

E podemos notar que fixando um nível de signíficância de 5%, rejeitamos a hipótese nula.

Considerando os modelos somente com X_1 obteve-se:

Tabela 16: Teste de suposição de chances proporcionais

TRV1	gl1	p.value
15.974	2	0

E podemos notar que fixando um nível de signíficância de 5%, rejeitamos a hipótese nula.

E somente com X_2 :

Tabela 17: Teste de suposição de chances proporcionais

TRV2	gl2	p.value
7.917	2	0.019

Logo, com um nível de significância fixado de 5%, temos evidências a favor da suposição de chances não proporcionais para todas as covariáveis.

Tabela 18: Modelos ajustados e diferença de deviances entre eles

Modelos	g.l.	Deviances	TRV	\neq g.l.	p-value	AIC
Nulo	12-3=9	379.63				469.54
X_1	12 - 6 = 6	353.12	26.51	3	< 0.0001	449.03
$X_2 X_1$	12 - 9 = 3	6.34	346.78	3	< 0.0001	108.25
$X_1^*X_2 \mid X_1$	12-12=0	0	6.34	3	0.096	107.91

Em que podemos notar que o com um nível de significância de 5%, o efeito de interação não é significante, tendo em vista isso ajustamos os modelos:

```
##
## vglm(formula = cbind(exc, bom, mod, ruim) ~ factor(tabaco) +
       factor(pcard), family = cratio(reverse = T, parallel = F),
       data = dados)
##
##
## Pearson residuals:
     logitlink(P[Y<2|Y<=2]) logitlink(P[Y<3|Y<=3]) logitlink(P[Y<4|Y<=4])
## 1
                    2.3053
                                         -0.22514
                                                                  0.04589
                   -0.5220
                                          0.08189
                                                                 -0.02267
## 2
## 3
                   -1.0381
                                                                 -0.02615
                                          0.10539
## 4
                    0.2426
                                          -0.03936
                                                                 0.01338
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept):1
                    -0.84286
                                0.02696 -31.260 < 2e-16 ***
## (Intercept):2
                     1.06187
                                0.02423
                                        43.822 < 2e-16 ***
## (Intercept):3
                     3.06915
                                0.04949 62.013 < 2e-16 ***
## factor(tabaco)S:1 -0.08663
                                0.06267 - 1.382
                                                   0.167
## factor(tabaco)S:2 -0.04302
                                0.05313 -0.810
                                                   0.418
## factor(tabaco)S:3 -0.45612
                                0.08949
                                         -5.097 3.45e-07 ***
## factor(pcard)S:1 -0.61987
                                0.10850 -5.713 1.11e-08 ***
## factor(pcard)S:2 -0.96774
                                0.06340 -15.265 < 2e-16 ***
```

```
## factor(pcard)S:3 -0.96650
                                 0.09677 -9.988 < 2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
##
  Names of linear predictors: logitlink(P[Y<2|Y<=2]),
  logitlink(P[Y<3|Y<=3]), logitlink(P[Y<4|Y<=4])
##
##
## Residual deviance: 6.3396 on 3 degrees of freedom
##
  Log-likelihood: -45.1266 on 3 degrees of freedom
##
##
##
  Number of Fisher scoring iterations: 4
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
  '(Intercept):3'
```

Podemos escrever os logitos com os parâmetros significativos:

$$logito_1 = -0.843 - 0.619X_2$$

$$logito_2 = 1.062 - 0.967X_2$$

$$logito_3 = 3.069 - 0.456X_1 - 0.966X_2$$

Fazendo a análise de resíduos (Pearson):

Realizando os testes de qualidade de ajuste, em que as hipóteses são definidas:

$$\left\{ \begin{array}{l} H_0: modelo \ ajustado \ e \ satisfatorio \\ H_1: modelo \ ajustado \ nao \ e \ satisfatorio \end{array} \right.$$

E obtemos a seguinte tabela:

Tabela 19: Teste de qualidade de ajuste

Qp	p.value
6.797	0.236

Fixando um nível de significância de 5%, não rejeita-se a hipótese nula.

Tabela 20: Teste de qualidade de ajuste

QL	p.value
6.34	0.275

Fixando um nível de significância de 5%, não rejeita-se a hipótese nula.

Concluindo que temos um modelo com um ajuste satisfatório, porém o modelo de logitos comulativos continua sendo o modelo melhor ajustado.

Tabela 21: Chances associadas ao modelo ajustado

Uso de	Problema	$\mathbb{P}(Y=1 x)$	Estim.	$\mathbb{P}(Y=2 x)$	Estim.	$\mathbb{P}(Y=3 x)$	Estim.
Tabaco	Cardíaco	$\mathbb{P}(Y{>}1 x)$	Дэши.	$\overline{\mathbb{P}(Y{>}2 x)}$	Lightin.	$\mathbb{P}(Y=4 x)$	L 501111.
Sim	Sim	$exp\{\beta_{01} + \beta_{11} + \beta_{21}\}$	0.081	$exp\{\beta_{02} + \beta_{12} + \beta_{22}\}$	0.622	$exp\{\beta_{03} + \beta_{13} + \beta_{23}\}$	2.528
Sim	Não	$exp\{\beta_{01} + \beta_{11}\}$	0.24	$exp\{\beta_{02} + \beta_{12}\}$	1.55	$exp\{\beta_{03}+\beta_{13}\}$	3.62
Não	Sim	$exp\{\beta_{01} + \beta_{21}\}$	0.096	$exp\{\beta_{02} + \beta_{22}\}$	0.71	$exp\{\beta_{03} + \beta_{23}\}$	3.90
Não	Não	$exp\{\beta_{01}\}$	0.271	$exp\{\beta_{02}\}$	1.711	$exp\{\beta_{03}\}$	5.53

Logo, a chance de uma pessoa ter a saúde excelente em relação aos demais estados de saúde é menor que 1 para fumantes e não fumante com ou sem problemas cardíacos, logo a probabilidade de não possuir uma saúde excelente é maior do que a de ter uma saúde excelente.

As pessoas que não possuem problemas cardíacos possuem maior probabilidade de ter uma saúde boa do que ter uma saúde moderada ou ruim, já as pessoas que possuem problemas cardíacos ocorre o contrário.

Por fim, para todos a probabilidade de a saúde ser moderada é maior que a probabilidade de ser ruim.

Códigos

```
# lista de categorizados - MAE0560
library(VGAM)
library(tidyr)
library(ggplot2)
library(gridExtra)
dados <- read.table("idosos.txt",header = T)</pre>
# item a
par(mfrow=c(1,2))
data <- cbind(S = as.numeric(dados[1,c(3,4,5,6)]/sum(dados[1,c(3,4,5,6)])),
              N = as.numeric(dados[2,c(3,4,5,6)]/sum(dados[2,c(3,4,5,6)])))
bp<- barplot(height = data, beside = TRUE,</pre>
             col = c("black", "darkgray", "lightgray", "white"), ylim=range(c(0,1)),
             names.arg = c("Sim", "Não"),
             xlab="Uso de tabaco: Sim", ylab="Proporções amostrais",
             legend.text = c("Excelente", "Bom", "Moderado", "Ruim"),
             args.legend = list(x = "topleft", bty="n", cex=1.4))
abline(h=0)
text(bp, c(0.11,0.313,0.415,0.16,0.19,0.496,0.246,0.068), round(data,2), cex=1.4, pos=3)
```

```
data < cbind(S = as.numeric(dados[3,c(3,4,5,6)]/sum(dados[3,c(3,4,5,6)])),
             N = as.numeric(dados[4,c(3,4,5,6)]/sum(dados[4,c(3,4,5,6)])))
bp<- barplot(height = data, beside = TRUE,</pre>
              col = c("black", "darkgray", "lightgray", "white"), ylim=range(c(0,1)),
              names.arg = c("Sim", "Não"),
              xlab="Uso de tabaco: Não", ylab="Proporções amostrais",
              legend.text = c("Excelente", "Bom", "Moderado", "Ruim"),
              args.legend = list(x = "topleft", bty="n", cex=1.4))
abline(h=0)
text(bp, c(0.079,0.388,0.423,0.109,0.215,0.495,0.246,0.044),
     round(data,2), cex=1.4, pos=3)
# item b
# para todas as variáveis
mcp <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard),</pre>
             cumulative(parallel=T, reverse=F),data=dados)
mlc <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard),</pre>
             cumulative(parallel=F, reverse=F),data=dados)
TRV <- 2*(logLik(mlc)-logLik(mcp))</pre>
gl <- length(coef(mlc))-length(coef(mcp))</pre>
p <- 1-pchisq(TRV,gl)</pre>
cbind(TRV, gl, p)
# para variável X1
mcp1 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco),</pre>
              cumulative(parallel=T, reverse=F),data=dados)
mlc1 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco),</pre>
              cumulative(parallel=F, reverse=F),data=dados)
TRV1 <- 2*(logLik(mlc1)-logLik(mcp1))</pre>
gl1 <- length(coef(mlc1))-length(coef(mcp1))</pre>
p1 <- 1-pchisq(TRV1,gl1)</pre>
cbind(TRV1, gl1, p1)
# para variável X2
mcp2 <- vglm(cbind(exc,bom,mod,ruim)~factor(pcard),</pre>
              cumulative(parallel=T, reverse=F),data=dados)
mlc2 <- vglm(cbind(exc,bom,mod,ruim)~factor(pcard),</pre>
              cumulative(parallel=F, reverse=F),data=dados)
TRV2 <- 2*(logLik(mlc2)-logLik(mcp2))</pre>
gl2 <- length(coef(mlc2))-length(coef(mcp2))</pre>
p2 <- 1-pchisq(TRV2,g12)</pre>
cbind(TRV2, gl2, p2)
# tabela deviances
```

```
mlcr0<-vglm(cbind(exc,bom,mod,ruim)~1,cumulative(parallel=F~factor(tabaco), reverse=F), dados)
mlcr0
mlcr1<-vglm(cbind(exc,bom,mod,ruim)~factor(tabaco),</pre>
             cumulative(parallel=F~factor(tabaco), reverse=F), dados)
mlcr1
mlcr2<-vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard),</pre>
             cumulative(parallel=F~factor(tabaco), reverse=F), dados)
mlcr3<-vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard)+
               factor(tabaco)*factor(pcard),
             cumulative(parallel=F~factor(tabaco), reverse=F), dados)
mlcr3
# graus de liberdade
gl1 <- df.residual(mlcr0)-df.residual(mlcr1)</pre>
gl2 <- df.residual(mlcr1)-df.residual(mlcr2)</pre>
gl3 <- df.residual(mlcr2)-df.residual(mlcr3)</pre>
# dif deviances
dev1 <- deviance(mlcr0)-deviance(mlcr1)</pre>
dev2 <- deviance(mlcr1)-deviance(mlcr2)</pre>
dev3 <- deviance(mlcr2)-deviance(mlcr3)</pre>
# p-values
p1 <- 1-pchisq(dev1,gl1)
p2 <- 1-pchisq(dev2,g12)</pre>
p3 <- 1-pchisq(dev3,gl3)
# AIC dos modelos
AIC(mlcr0)
AIC(mlcr1)
AIC(mlcr2)
AIC(mlcr3)
# análise resíduos
rp <- resid(mlcr2, type = "pearson")</pre>
d1 \leftarrow data.frame(x=1:4,y=rp[,1])
d2 <- data.frame(x=1:4,y=rp[,2])</pre>
d3 <- data.frame(x=1:4,y=rp[,3])</pre>
plot1 <- d1 %>% ggplot(aes(y=rp[,1],x=1:4)) +
  geom point() +
  scale_y_continuous(limits = c(-2,2)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 1: Logito 1")
plot2 <- d2 %>% ggplot(aes(y=rp[,2],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2,2)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
```

```
y="Resíduos de Pearson",
       title="Gráfico 2: Logito 2")
plot3 <- d3 %>% ggplot(aes(y=rp[,3],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2,2)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
 labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 3: Logito 3")
grid.arrange(plot1, plot2,plot3, ncol=3)
# teste de qualida de ajuste
Qp \leftarrow sum(rp[,1]^2) + sum(rp[,2]^2) + sum(rp[,3]^2)
p.value <- 1-pchisq(Qp,5)</pre>
cbind(Qp,p.value)
QL <- deviance(mlcr2)
p.value <- 1-pchisq(QL,5)</pre>
cbind(QL,p.value)
# item c
# coeficientes e probabilidades preditas
coef(mlcr2,matrix = TRUE)
fitted(mlcr2)
# Exercício 6
# item a
# para todas as variáveis
mca1 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco)+factor(pcard),</pre>
           family=acat(reverse=T,parallel=T),dados)
mca2 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco)+factor(pcard),</pre>
             family=acat(reverse=T,parallel=F),dados)
TRV<- deviance(mca1)-deviance(mca2)
gl <- df.residual(mca1)-df.residual(mca2)</pre>
p.value <- 1-pchisq(TRV,gl)</pre>
cbind(TRV, gl, p.value)
# para variável X1
mca11 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco),</pre>
              family=acat(reverse=T,parallel=T),dados)
mca21 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco),</pre>
               family=acat(reverse=T,parallel=F),dados)
TRV1<- deviance(mca11)-deviance(mca21)
gl1 <- df.residual(mca11)-df.residual(mca21)</pre>
p.value <- 1-pchisq(TRV1,gl1)</pre>
```

```
cbind(TRV1, gl1, p.value)
# para variável X2
mca12 <- vglm(cbind(exc,bom,mod,ruim)~ factor(pcard),</pre>
               family=acat(reverse=T,parallel=T),dados)
mca22 <- vglm(cbind(exc,bom,mod,ruim)~ factor(pcard),</pre>
               family=acat(reverse=T,parallel=F),dados)
TRV2<- deviance(mca12)-deviance(mca22)
gl2 <- df.residual(mca12)-df.residual(mca22)</pre>
p.value <- 1-pchisq(TRV2,gl2)</pre>
cbind(TRV2, gl2, p.value)
# tabela deviances
mca0 <- vglm(cbind(exc,bom,mod,ruim)~1, acat(reverse=T,parallel=F), dados)</pre>
mca0
mca1 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco), acat(reverse=T,parallel=F), dados)</pre>
mca1
mca2 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard),</pre>
              acat(reverse=T,parallel=F), dados)
mca2
mca3 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard)+</pre>
                factor(tabaco)*factor(pcard),
              acat(reverse=T,parallel=F), dados)
mca3
# graus de liberdade
gl1 <- df.residual(mca0)-df.residual(mca1)</pre>
gl2 <- df.residual(mca1)-df.residual(mca2)</pre>
gl3 <- df.residual(mca2)-df.residual(mca3)</pre>
# dif deviances
dev1 <- deviance(mca0)-deviance(mca1)</pre>
dev2 <- deviance(mca1)-deviance(mca2)</pre>
dev3 <- deviance(mca2)-deviance(mca3)</pre>
# p-values
p1 <- 1-pchisq(dev1,gl1)
p2 <- 1-pchisq(dev2,g12)
p3 <- 1-pchisq(dev3,gl3)
# AIC dos modelos
AIC(mca0)
AIC(mca1)
AIC(mca2)
AIC(mca3)
# análise resíduos
rp <- resid(mca2, type = "pearson")</pre>
d1 <- data.frame(x=1:4,y=rp[,1])</pre>
d2 <- data.frame(x=1:4,y=rp[,2])</pre>
```

```
d3 <- data.frame(x=1:4,y=rp[,3])</pre>
plot1 <- d1 %>% ggplot(aes(y=rp[,1],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
 labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 6: Logito 1")
plot2 <- d2 %>% ggplot(aes(y=rp[,2],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
 labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 7: Logito 2")
plot3 <- d3 %>% ggplot(aes(y=rp[,3],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 8: Logito 3")
grid.arrange(plot1, plot2,plot3, ncol=3)
# teste de qualida de ajuste
Qp \leftarrow sum(rp[,1]^2) + sum(rp[,2]^2) + sum(rp[,3]^2)
p.value <- 1-pchisq(Qp,5)</pre>
cbind(Qp,p.value)
QL <- deviance(mca2)
p.value <- 1-pchisq(QL,5)</pre>
cbind(QL,p.value)
# coeficientes e probabilidades preditas
coef(mca2,matrix = TRUE)
fitted(mca2)
# item b
# para todas as variáveis
mlrc1 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco)+factor(pcard),</pre>
              family=cratio(reverse=T,parallel=T),dados)
mlrc2 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco)+factor(pcard),</pre>
              family=cratio(reverse=T,parallel=F),dados)
TRV<- deviance(mlrc1)-deviance(mlrc2)
gl <- df.residual(mlrc1)-df.residual(mlrc2)</pre>
p.value <- 1-pchisq(TRV,gl)</pre>
cbind(TRV, gl, p.value)
```

```
# para variável X1
mlrc11 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco),</pre>
               family=cratio(reverse=T,parallel=T),dados)
mlrc21 <- vglm(cbind(exc,bom,mod,ruim)~ factor(tabaco),</pre>
               family=cratio(reverse=T,parallel=F),dados)
TRV1 <- deviance(mlrc11)-deviance(mlrc21)
gl1 <- df.residual(mlrc11)-df.residual(mlrc21)</pre>
p.value <- 1-pchisq(TRV1,gl1)</pre>
cbind(TRV1, gl1, p.value)
# para variável X2
mlrc12 <- vglm(cbind(exc,bom,mod,ruim)~ factor(pcard),</pre>
                family=cratio(reverse=T,parallel=T),dados)
mlca22 <- vglm(cbind(exc,bom,mod,ruim)~ factor(pcard),</pre>
                family=cratio(reverse=T,parallel=F),dados)
TRV2<- deviance(mlrc12)-deviance(mlca22)</pre>
gl2 <- df.residual(mlrc12)-df.residual(mlca22)</pre>
p.value <- 1-pchisq(TRV2,gl2)</pre>
cbind(TRV2, gl2, p.value)
# tabela deviances
mrc0 <- vglm(cbind(exc,bom,mod,ruim)~1, family=cratio(reverse=T,parallel=F), dados)</pre>
mrc1 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco),</pre>
              family=cratio(reverse=T,parallel=F), dados)
mrc1
mrc2 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard),</pre>
              family=cratio(reverse=T,parallel=F), dados)
mrc2
mrc3 <- vglm(cbind(exc,bom,mod,ruim)~factor(tabaco)+factor(pcard)+</pre>
                factor(tabaco)*factor(pcard),
              family=cratio(reverse=T,parallel=F), dados)
mrc3
# graus de liberdade
gl1 <- df.residual(mrc0)-df.residual(mrc1)</pre>
gl2 <- df.residual(mrc1)-df.residual(mrc2)</pre>
gl3 <- df.residual(mrc2)-df.residual(mrc3)</pre>
# dif deviances
dev1 <- deviance(mrc0)-deviance(mrc1)</pre>
dev2 <- deviance(mrc1)-deviance(mrc2)</pre>
dev3 <- deviance(mrc2)-deviance(mrc3)</pre>
# p-values
p1 <- 1-pchisq(dev1,gl1)
p2 <- 1-pchisq(dev2,g12)
p3 <- 1-pchisq(dev3,gl3)
```

```
# AIC dos modelos
AIC(mrc0)
AIC(mrc1)
AIC(mrc2)
AIC(mrc3)
# análise resíduos
rp <- resid(mrc2, type = "pearson")</pre>
d1 \leftarrow data.frame(x=1:4,y=rp[,1])
d2 <- data.frame(x=1:4,y=rp[,2])</pre>
d3 <- data.frame(x=1:4,y=rp[,3])</pre>
plot1 <- d1 %>% ggplot(aes(y=rp[,1],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 9: Logito 1")
plot2 <- d2 %>% ggplot(aes(y=rp[,2],x=1:4)) +
  geom_point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 10: Logito 2")
plot3 <- d3 %>% ggplot(aes(y=rp[,3],x=1:4)) +
  geom point() +
  scale_y_continuous(limits = c(-2.5, 2.5)) +
  geom_hline(yintercept = 0,linetype = "dashed") +
  labs(x="Índices",
       y="Resíduos de Pearson",
       title="Gráfico 11: Logito 3")
grid.arrange(plot1, plot2,plot3, ncol=3)
# teste de qualida de ajuste
Qp \leftarrow sum(rp[,1]^2) + sum(rp[,2]^2) + sum(rp[,3]^2)
p.value <- 1-pchisq(Qp,5)</pre>
cbind(Qp,p.value)
QL <- deviance(mrc2)
p.value <- 1-pchisq(QL,5)
cbind(QL,p.value)
# coeficientes e probabilidades preditas
coef(mrc2,matrix = TRUE)
fitted(mrc2)
```