Bachelor of Science (Honours) in Data Science and Artificial Intelligence

DA201: Relational Database Management Systems

Optional Note: Usage of this material for teaching and education is considered fair use. However, if that includes posting images to a website, or commercial usage that could be considered copyright infringement. In such case, you are required to reach out to the author(s) or the Institute for permission before the usage.

Relational Database Design - Normalization

Dr. Manas Khatua

Dept. of Computer Science and Engineering
Indian Institute of Technology Guwahati

Email: manaskhatua@iitg.ac.in

Learning Objectives

- 1) Normal Forms
- 2) Decomposition using Functional Dependencies
- 3) Decomposition Using Multivalued Dependencies

Lets have recap ...

- Relational Data Model: This conceptual model uses tables (or relations) to represent both data and the relationships among those data
- Data Redundancy: It is the repetition of same data in multiple places within a relation or database
- Functional Dependency: FD is a constraint between two sets of attributes from the database relation
- Closure of a Set of FDs: The set of all FDs logically implied by the given set
 of FDs F is the closure of F (denoted by F⁺)
- Closure of Attribute Sets: The closure of attribute set α under F (denoted by α +) is the set of attributes that are functionally determined by α under F
- Lossless Decomposition: A decomposition is lossless if there is no loss of information by replacing relation R with the two relation schemas R₁ and R₂
- Dependency Preserving: A decomposition that makes it computationally hard to enforce FDs is said to be NOT dependency preserving

Normalization Theory

- The method for designing good relational database is to use a process called Normalization.
- The purpose of Normalization:
 - Minimizing redundancy
 - Minimizing inconsistency
- The approach of Normalization:
 - Certify whether a particular relation R is in "good form"
 - There exist many "good forms" called normal forms (NF).
 - In the case that a relation R is not in "good form", decompose it into set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - Each relation is in "good form"
 - The decomposition is a lossless decomposition
 - Preferably, all the functional dependencies are preserved.

Normal Forms

- Different Normal Forms:
 - Based on FDs
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)
 - Boyce-Codd normal form (BCNF)
 - Based on Multivalued FDs
 - Fourth normal form (4NF)
 - Based on Join FDs
 - Fifth normal form (5NF)

Normal Forms

THE DESCRIPTION OF THE PROPERTY OF THE PROPERT

- Different Normal Forms:
 - Based on FDs
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)
 - Boyce-Codd normal form (BCNF)
 - Based on Multivalued FDs
 - Fourth normal form (4NF)
 - Based on Join FDs
 - Fifth normal form (5NF)

The normal form (NF) of a relation indicates the **highest degree** to which it has been normalized.

Note: Normal forms only do not guarantee a good database design. It only indicates the present status of the design.

Lossless Decomposition

We can use FDs to show when certain decomposition are lossless.

• For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

A decomposition of R into R_1 & R_2 is lossless if at least one of the following dependencies is in F^+ :

$$\circ R_1 \cap R_2 \to R_1$$

$$R_1 \cap R_2 \rightarrow R_2$$

Example:

$$R = (A, B, C)$$

$$F = \{A \rightarrow B, B \rightarrow C\}$$

Decomposition:

$$R_1 = (A, B), R_2 = (A, C)$$

It is lossless as,

$$R_1 \cap R_2 = \{A\} \text{ and } A \to AB$$

Decomposition:

$$R_1 = (A, C), R_2 = (B, C)$$

It is lossy as,

$$R_1 \cap R_2 = \{C\} \text{ and } C \rightarrow ??$$

Dependency Preservation

- Let F_i be the set of dependencies in F^+ that include only attributes in relation R_i .
 - A decomposition is dependency preserving, if and only if

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Example:

$$R = (A, B, C)$$

$$F = \{A \to B \\ B \to C\}$$

Candidate Key = $\{A\}$

Decomposition

$$R_1 = (A, B), R_2 = (B, C)$$

Corresponding FDs:

$$F_1 = \{A \rightarrow B\}, \quad F_2 = \{B \rightarrow C\}$$

So, FDs are preserved.

Example:

$$R = (A, B, C)$$

 $F = \{AB \rightarrow C$
 $C \rightarrow B\}$
Candidate Keys = $\{AB\}$, $\{AC\}$

Decomposition

$$R_1 = (A, B), R_2 = (B, C)$$

Corresponding FDs:

$$F_1 = \{ \}, F_2 = \{C \rightarrow B\}$$

So, FDs are **NOT preserved**.

Manas Whatua
Manas Whatua

First Normal Form (1NF)

- A relational schema R is in 1NF
 - ✓ if the domains of all attributes of R are atomic.
- A domain is atomic
 - ✓ if its elements are considered to be indivisible units.
 - i.e., it disallow composite and multivalued attributes

First Normal Form (1NF)

- A relational schema R is in 1NF
 - ✓ if the domains of all attributes of R are atomic.
- A domain is atomic
 - if its elements are considered to be indivisible units.
 - i.e., it disallow composite and multivalued attributes

instructor (<u>ID</u>, name{ }, address{ }, {phone_number}, date_of_birth, age())

Few techniques for decomposing a relation into 1NF:

- 1) Remove the attribute that violates 1NF and place it in a separate relation
- 2) If the maximum number of values for an attribute is *k*, then replace the attribute by *k* atomic attributes
- Few more ...

Example of 1NF Decomposition

instructor (ID, name{ }, address{ }, {phone_number}, date_of_birth, age())

Example of 1NF Decomposition

Decomposed Relations

```
instructor (ID, first_name, middle_name, last_name, adrs_id, date_of_birth)
address (adrs_id, street, city, state, zip)
inst_phone (ID, phone_number)
```


Manas Whatua
Manas Whatua

Second Normal Form (2NF)

- A relation schema R is in 2NF, if
 - R is in 1NF, and
 - every nonprime attribute A in R is fully functionally dependent on the candidate key of R.

Example:

emp_proj (emp_id, proj_no, emp_name, salary, proj_name, building, hours)

FDs:

 $emp_id \rightarrow emp_name$, salary $proj_no \rightarrow proj_name$, building emp_id , $proj_no \rightarrow hours$

Partial functional dependency on candidate key

Full functional dependency on candidate key

So, the *emp_proj* relation is in 1NF but not in 2NF.

Example of 2NF Decomposition

Example:

```
emp_proj (emp_id, proj_no, emp_name, salary, proj_name, building, hours)

FDs:

emp_id \rightarrow emp_name, salary

proj_no \rightarrow proj_name, building

emp_id, proj_no \rightarrow hours
```

- Decomposition Rule:
 - Decomposed to the relations in which nonprime attributes are associated only
 with the part of the primary key on which they are fully functionally dependent

Example of 2NF Decomposition

Example:

```
emp_proj (emp_id, proj_no, emp_name, salary, proj_name, building, hours)

FDs:

emp_id \rightarrow emp_name, salary

proj_no \rightarrow proj_name, building

emp_id, proj_no \rightarrow hours
```

Decomposed Relations:

```
employee (emp_id, emp_name, salary) FDs: emp_id \rightarrow emp_name, salary project (proj_no, proj_name, building) FDs: proj_no \rightarrow proj_name, building emp_proj_hrs (emp_id, proj_no, hours) FDs: emp_id, proj_no \rightarrow hours
```

- Does it lossless decomposition? => YES
- Are the FDs preserved? => YES

Manas Whatua
Manas Whatua

A relation schema R is in 3NF, if

- R is in 2NF, and
- Any nonprime attribute of R is not transitively dependent on the candidate key of R.

OR

A relation schema R is in 3NF, if

for all $\alpha \to \beta$ in F^+ ,

at least one of the following holds:

- $\alpha \to \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for R
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R.

Example:

in_dept (ID, name, salary, dept_name, building, budget)

FDs:

ID → name, salary, dept_name dept_name → building, budget

Does this relation in 3NF?

	ID	name	salary	dept_name	building	budget
	22222	Einstein	95000	Physics	Watson	70000
	12121	Wu	90000	Finance	Painter	120000
ķ.	32343	El Said	60000	History	Painter	50000
	45565	Katz	75000	Comp. Sci.	Taylor	100000
	98345	Kim	80000	Elec. Eng.	Taylor	85000
ķ.	76766	Crick	72000	Biology	Watson	90000
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
7	58583	Califieri	62000	History	Painter	50000
	83821	Brandt	92000	Comp. Sci.	Taylor	100000
	15151	Mozart	40000	Music	Packard	80000
	33456	Gold	87000	Physics	Watson	70000
	76543	Singh	80000	Finance	Painter	120000

Example:

in_dept (ID, name, salary, dept_name, building, budget)

FDs:

ID → name, salary, dept_name dept_name → building, budget

Does this relation in 3NF?

NO.

- In *in_dept* relation, transitive dependency exist, but no partial dependency on primary key.
- So it is in 2NF, but not in 3NF.

Decomposition rule:

• Set up a relation including the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

	ID	name	salary	dept_name	building	budget
	22222	Einstein	95000	Physics	Watson	70000
	12121	Wu	90000	Finance	Painter	120000
ķ.	32343	El Said	60000	History	Painter	50000
	45565	Katz	75000	Comp. Sci.	Taylor	100000
	98345	Kim	80000	Elec. Eng.	Taylor	85000
ķ.	76766	Crick	72000	Biology	Watson	90000
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
7	58583	Califieri	62000	History	Painter	50000
	83821	Brandt	92000	Comp. Sci.	Taylor	100000
	15151	Mozart	40000	Music	Packard	80000
	33456	Gold	87000	Physics	Watson	70000
	76543	Singh	80000	Finance	Painter	120000

Example:

in_dept (ID, name, salary, dept_name, building, budget)

FDs:

ID → name, salary, dept_name dept_name → building, budget

Decomposition:

Example:

in_dept (ID, name, salary, dept_name, building, budget)
FDs:
ID → name, salary, dept_name
dept_name → building, budget

Decomposition:

- Relation 1: departmet (<u>dept_name</u>, building, budget)
- FDs: dept_name → building, budget
- Relation 2: instructor (<u>ID</u>, name, salary, dept_name)
- FDs: ID → name, salary, dept_name

Example 2:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Does this relation in 3NF?

Explanation:

- {s_ID, dept_name} is a superkey
- i_ID → dept_name and i_ID is NOT a superkey, but:
 { dept_name} {i_ID} = {dept_name} and
 dept_name is contained in a candidate key

Manas Whatua
Manas Whatua

- A relation schema R is in BCNF if
 - the relation R is in 3NF, and
 - whenever a nontrivial FD $\alpha \to \beta$ holds in R, then α is a superkey of R.

OR

• A relation schema R is in **BCNF** with respect to a set F of FDs if for all FDs in F⁺ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\circ \quad \alpha \to \beta \text{ is trivial (i.e., } \beta \subseteq \alpha)$
- \circ α is a superkey for R

Example:

dept_advisor(s_ID, i_ID, dept_name)

FDs:

i_ID \rightarrow dept_name s_ID, dept_name \rightarrow i_ID

Candidate keys = {s_ID, dept_name}, {s_ID, i_ID}

Does this relation in BCNF?

NO.

Explanation:

- {s_ID, dept_name} is a superkey
- But, only {i_ID} is NOT a superkey.

Assume:

- Instructor can be associated with only a single department.
- A student may have more than one advisor, but at most one corresponding to a given department.

Example:

dept_advisor(s_ID, i_ID, dept_name)

FDs:

 $i_ID \rightarrow dept_name$ s_ID , $dept_name \rightarrow i_ID$

Candidate keys = {s_ID, dept_name}, {s_ID, i_ID}

Decomposition:

Assume:

- Instructor can be associated with only a single department.
- A student may have more than one advisor, but at most one corresponding to a given department.

Example:

dept_advisor(s_ID, i_ID, dept_name)

FDs:

 $i_ID \rightarrow dept_name$ s_ID , $dept_name \rightarrow i_ID$

Candidate keys = {s_ID, dept_name}, {s_ID, i_ID}

Decomposition:

- Relation 1: stud_dept (s_ID, i_ID)
- FDs: x
- Relation 2: in_dept (i_ID, dept_name)
- FDs: i_ID → dept_name

Note: All FDs are not preserved!

Assume:

- Instructor can be associated with only a single department.
- A student may have more than one advisor, but at most one corresponding to a given department.

Manas Whatua
Manas Whatua

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_no, capacity, {day, time})

FD1: course_id, sec_id, semester, year → building, room_no, day, time

FD2: course_id → title, dept_name, credits

FD3: building, room_no \rightarrow capacity Candidate Key = {course_id, sec_id, semester, year}

FD4: capacity → building

Decompose to 1NF:

class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_no, capacity, {day, time})

FD1: course_id, sec_id, semester, year → building, room_no, day, time

FD2: course_id → title, dept_name, credits

FD3: building, room_no \rightarrow capacity Candidate Key = {course_id, sec_id, semester, year}

FD4: capacity → building

Decompose to 1NF:

class_1 (<u>course_id</u>, title, dept_name, credits, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_no, capacity, <u>slot_id</u>)

class_slot (slot_id, day, time)

FD1 to FD4: holds in relation class 1

class_1 (course_id, title, dept_name, credits, sec_id, semester, year, building, room_no, capacity, slot_id)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

FD2: course_id → title, dept_name, credits

FD3: building, room_no → capacity

FD4: capacity → building

class_slot (slot_id, day, time)

Decompose to 2NF:

class_1 (course_id, title, dept_name, credits, sec_id, semester, year, building, room_no, capacity, slot_id)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

FD2: course_id → title, dept_name, credits

FD3: building, room_no → capacity

FD4: capacity → building

class_slot (slot_id, day, time)

Decompose to 2NF:

class_1A (<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_no, capacity, slot_id); holds FD1, FD3, FD4

course (course_id, title, dept_name, credits); holds FD2

class_slot (slot_id, day, time);

class_1A (course_id, sec_id, semester, year, building, room_no, capacity, slot_id)

class_slot (slot_id, day, time)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

FD3: building, room_no → capacity

course (course_id, title, dept_name, credits)

FD4: capacity → building

FD2: course_id → title, dept_name, credits

Decompose to 3NF:

Decomposition Example: 1NF – BCNF

class_1A (course_id, sec_id, semester, year, building, room_no, capacity, slot_id)

class_slot (slot_id, day, time)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

FD3: building, room_no → capacity

course (course_id, title, dept_name, credits)

FD4: capacity → building

FD2: course_id → title, dept_name, credits

Decompose to 3NF:

class_1A2 (course_id, sec_id, semester, year, building, room_no, slot_id); holds FD1

room_capacity (<u>building</u>, <u>room_no</u>, capacity); holds FD3, FD4

course (course_id, title, dept_name, credits); holds FD2

class_slot (slot_id, day, time)

Decomposition Example: 1NF – BCNF

class_1A2 (course_id, sec_id, semester, year, building, room_no, slot_id)

class_slot (slot_id, day, time)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

room_capacity (building, room_no, capacity)

FD3: building, room_no → capacity

FD4: capacity → building

Decompose to BCNF:

course (course_id, title, dept_name, credits)

FD2: course_id → title, dept_name, credits

Decomposition Example: 1NF – BCNF

class_1A2 (<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_no, slot_id)

class_slot (slot_id, day, time)

FD1: course_id, sec_id, semester, year → building, room_no, slot_id

room_capacity (building, room_no, capacity)

course (course_id, title, dept_name, credits)

FD3: building, room_no → capacity

FD2: course_id → title, dept_name, credits

FD4: capacity → building

Decompose to BCNF:

```
class_1A2 (<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, <u>building</u>, <u>room_no</u>, <u>slot_id</u>); holds FD1 course (<u>course_id</u>, title, dept_name, credits); holds FD2 class_slot (<u>slot_id</u>, <u>day</u>, <u>time</u>);
```

cap_building (capacity, building); holds FD4

room_capacity (room_no, capacity); [FD3 is not preserved.]

Manas Whatua
Manas Whatua

Multivalued Dependencies Definition

- Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$.
- The multivalued dependency

$$\alpha \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$

$$t_3[\beta] = t_1[\beta]$$

 $t_3[R - \alpha - \beta] = t_2[R - \alpha - \beta]$

$$t_4[\beta] = t_2[\beta]$$

 $t_4[R - \alpha - \beta] = t_1[R - \alpha - \beta]$

Tabular representation

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

Theory of Multivalued Dependency

From the definition of multivalued dependency, we can derive the following rule:

```
\circ \quad \text{If } \alpha \to \beta \text{, then } \alpha \to \beta
```

That is, every FD is also a multivalued dependency, but the viceversa is not true always.

- The **closure** *D*⁺ of *D* is the set of all functional and multivalued dependencies logically implied by *D*.
 - We can compute D+ from D, using the formal definitions of functional dependencies and multivalued dependencies.

 A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies,

if for all multivalued dependencies in D^+ of the form $\alpha \to \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:

- \circ $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
- \circ α is a superkey for schema R

If a relation is in 4NF, then it is in BCNF

Example:

$$R = (\underline{A}, B, \underline{C}, \underline{G}, H, I)$$

$$F = \{ A \rightarrow \rightarrow B \\ B \rightarrow \rightarrow HI \\ CG \rightarrow \rightarrow H \}$$

Does this relation in 4NF?

Explanation:

• since $A \rightarrow \rightarrow B$, but A is not a superkey for R

Example:

$$\begin{array}{ll}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \longrightarrow B ; B \longrightarrow HI ; CG \longrightarrow H \}
\end{array}$$

Example:

$$\begin{array}{ll}
 & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \longrightarrow B ; B \longrightarrow HI ; CG \longrightarrow H \}
\end{array}$$

Decompose to 4NF:

- Since $A \rightarrow \rightarrow B$, but A is not a superkey for R
- So, relation *R* is decomposed to,

$$R1 = (\underline{A}, B)$$

$$F = \{A \rightarrow \rightarrow B\}$$

R2 =
$$(\underline{A}, \underline{C}, \underline{G}, H, I)$$

 $F = \{CG \rightarrow \rightarrow H; A \rightarrow \rightarrow B; B \rightarrow \rightarrow HI\}$

It is not in 4NF as $CG \rightarrow \rightarrow H$ but CG is not a superkey of R2

47

Example:

$$\begin{array}{ccc}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \rightarrow \to B ; B \rightarrow \to HI ; CG \rightarrow \to H \}
\end{array}$$

$$F = \{A \rightarrow \rightarrow B\}$$

$$F = \{CG \rightarrow \rightarrow H; A \rightarrow \rightarrow B; B \rightarrow \rightarrow HI\}$$

Example:

$$\begin{array}{ccc}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \rightarrow \to B ; B \rightarrow \to H ; CG \rightarrow \to H \} \\
\end{array}$$

Decompose to 4NF:

 $B \rightarrow \rightarrow H$ is not preserved.

Example:

$$\begin{array}{ccc}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \rightarrow \to B ; B \rightarrow \to HI ; CG \rightarrow \to H \}
\end{array}$$

$$R1 = (\underline{A}, B)$$

$$F = \{A \rightarrow \rightarrow B\}$$

R21 =
$$(C, G, H)$$

$$F = \{CG \rightarrow \rightarrow H\}$$

$$F = \{A \longrightarrow B : B \longrightarrow I\}$$

Example:

$$\begin{array}{ccc}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \rightarrow \to B : B \rightarrow \to HI : CG \rightarrow \to H \}
\end{array}$$

Example:

$$\begin{array}{ccc}
\circ & R = (\underline{A}, B, \underline{C}, \underline{G}, H, I) \\
F = \{ A \rightarrow \to B : B \rightarrow \to H : CG \rightarrow \to H \} \\
\end{array}$$

$$R1 = (\underline{A}, B)$$

$$F = \{A \rightarrow \rightarrow B \mid A \rightarrow$$

R21 =
$$(\underline{C}, \underline{G}, H)$$

 $F = \{CG \rightarrow \rightarrow H\}$

Summary of Learning

- 1) Normal Forms
 - 1NF
 - 2NF
 - 3NF
 - BCNF
 - 4NF
- 2) Decomposition Using Functional Dependencies
 - 1NF, 2NF, 3NF, BCNF
- 4) Decomposition Using Multivalued Dependency
 - 4 NF

Thank You

Acknowledgement: Almost all the tables and diagrams are taken from the book: A. Silberschatz, H. F. Korth, S. Sudarshan. Database System Concepts. 7th Ed, McGraw-Hill, 2019

Note: Usage of this material for teaching and education is considered fair use. However, if that includes posting images to a website, or commercial usage that could be considered copyright infringement. In such case, you are required to reach out to the author(s) or the Institute for permission before the usage.

