

GIB: Gated Information Bottleneck for Generalization in Sequential Environments

Francesco Alesiani, Shujian Yu*, Xi Yu**

Machine Learning Group

Data Science and System Platform Division

NEC Laboratories Europe

*UiT - The Arctic University of Norway, *Xi'an Jiaotong University, **University of Florida

Poor Out of Distribution Generalization

- Deep neural networks also exploit spurious features (e.g. background color)
- Why?

Single Environment

- ◆ Independent and Identical distributed (i.i.d.) hypothesis
 - Empirical Risk Minimization (ERM)
- ◆ Fails with Out of Distribution generalization

NEC Laboratories Europe

Multi Environments

- Causal model hypothesis for Out-of-Distribution generalization
 - E.g. Invariant Risk Minimization (IRM) [Arjovsky et al. 2019]

MNIST digit example

◆ Stable feature: digit shape

NEC Laboratories Europe

◆ Spurious feature: digit color, depends on the digit value

Multi Environments

Information Bottleneck (IB)

$$X \to Z \to Y$$

$$L_{IB} = I(Y; Z) - \lambda I(X; Z)$$

- Information Theory
- Maximize the Mutual Information (MI) of the latent Z and the target variable Y
 - i.e. Z maximal informative
- Minimize Mutual Information between source X and latent Z
 - i.e. remove spurious features
- $\rightarrow \lambda$ hyper parameter

Principle

Only common features

$$\min_{\phi} \mathrm{KL}(p^{1}(z)||p^{2}(z))$$

Using sample distributions

$$\min_{\phi} \mathbb{E}_{x,x'} \operatorname{KL}(p^{1}(z|x)||p^{2}(z|x'))$$

Learn common or invariant features among environments

Gated Information Bottleneck

Parallel environments

$$\min_{\Phi, w} \sum_{e \in E} R^e(w \circ \Phi) + \lambda \sum_{e \in E} \sum_{e' \in E} \mathbb{E}_{x \sim p^e(x)} \mathbb{E}_{x' \sim p^{e'}(x)} \operatorname{KL}(p(z|x) || p(z|x'))$$

Lemma 2 (Cross-Domain Mutual Information Upper Bound).

$$I^{12}(X;Z) \leq \mathbb{E}_x \mathbb{E}_{x'} \operatorname{KL}(p^1(z|x)||p^2(z|x'))$$

$$\min_{\Phi,w} \sum_{e \in E} R^e(w \circ \Phi) + \lambda I^e(X; Z)$$

For deterministic encoder $X \rightarrow Z$

$$I(X;Z) = H(Z) - H(Z|X) = H(Z)$$

$$\min_{\Phi, w} \sum_{e \in E} R^e(w \circ \Phi) + \lambda H^e(Z)$$

Gated Information Bottleneck

sequential environments

$$\min_{\Phi,w} \sum_{e \in E} R^e(w \circ \Phi) + \lambda H^e(Z)$$

$$m' = m \odot \sigma(g)$$

$$\Phi' = m' \odot \Phi$$

$$z = \Phi'(x)$$

$$m' = m \odot \sigma(g)$$
 $\Phi' = m' \odot \Phi$ $z = \Phi'(x)$ $m = 1_{\{\sigma(g) \ge \tau\}}$ or $m = 1_{\{\sigma(g) \ge \tau \land m = 1\}}$

Experiments – Parallel Fnvironments

Robustness to adversarial attacks

Out-of-Distribution Detection (OoDD)

Methods	Standard	VIB	NIB	squared NIB	GIB
AUROC↑	90.2	90.6	91.6	92.1	93.0
AUPR In↑	93.3	92.1	93.1	93.1	94.5
AUPR Out↑	90.5	90.3	91.3	91.5	91.3
Detection Acc↑	83.2	83.2	84.1	84.1	86.9
FPR (95% TPR)↓	49.6	48.0	49.3	49.4	47.9

12

Experiments – Sequential Environments

Synthetic dataset

Method	Causal Error	Non Causal Error
SEM (ground true)	0.00 ± 0.00	0.00 ± 0.00
SERM	92.0 ± 1.9 66.2 ± 1.6	92.9 ± 1.6
SIRM	66.2 ± 1.6	65.5 ± 1.0
GIB	13.7 ± 0.4	42.5 ± 0.7

Colored MNIST, Fashion-MNIST, KMNIST, EMNIST

Multiple environments

Dataset	FaMNIST		KMN	NIST	EMNIST	
Method	train acc	test acc	train acc	test acc	train acc	test acc
EWC GEM MER ERM IRM IRMG GIB	82.7% (0.5%) 82.4% (0.3%) 78.7% (0.4%) 82.7% (0.5%) 82.7% (0.5%) 84.0% (0.8%) 79.9% (5.1%)	24.4% (1.1%) 24.5% (1.6%) 19.6% (2.1%) 24.4% (1.2%) 24.1% (1.0%) 26.4% (1.4%) 55.1% (3.8%)	82.7% (0.4%) 83.1% (0.4%) 80.9% (0.5%) 82.7% (0.4%) 82.7% (0.4%) 84.3% (0.1%) 65.3% (12.4%)	21.1% (1.3%) 20.8% (1.5%) 20.1% (1.7%) 21.1% (1.3%) 21.1% (1.3%) 23.9% (1.2%) 47.5% (3.7%)	82.7% (0.2%) 82.9% (0.6%) 78.8% (1.0%) 82.7% (0.2%) 82.7% (0.2%) 83.8% (0.8%) 66.2% (1.4%)	21.1% (0.6%) 21.3% (0.6%) 19.3% (1.9%) 21.1% (0.6%) 21.1% (0.6%) 23.9% (0.6%) 49.3% (2.4%)

Number Env. 2		4		6		
Method	train acc	test acc	train acc	test acc	train acc	test acc
EWC GEM MER ERM IRM IRMG GIB	83.0% (0.6%) 83.0% (0.4%) 78.0% (1.0%) 83.0% (0.6%) 83.1% (0.6%) 83.8% (0.6%) 75.7% (2.6%)	24.4% (1.3%) 24.9% (1.2%) 24.4% (3.0%) 24.4% (1.3%) 24.8% (1.3%) 26.7% (0.6%) 55.1% (2.1%)	80.0% (0.4%) 80.2% (0.5%) 77.2% (0.6%) 80.1% (0.4%) 74.8% (0.6%) 79.4% (0.2%) 66.1% (11.3%)	24.7% (0.9%) 24.6% (1.3%) 22.8% (2.4%) 24.7% (0.8%) 16.5% (4.3%) 28.1% (0.9%) 52.9% (2.9%)	78.9% (0.6%) 79.1% (0.6%) 76.5% (0.6%) 78.9% (0.6%) 74.7% (0.7%) 77.2% (0.4%) 69.0% (1.8%)	22.9% (0.3%) 23.8% (0.5%) 24.5% (3.4%) 22.9% (0.3%) 13.9% (4.6%) 27.9% (0.5%) 53.3% (1.8%)

Feature analysis

◆ How many features are relevant?

14

Related works

- Continual Invariant Risk Minimization [Alesiani et al. 2020, ICLR Workshop]
 - Motivation of the current work
- Drop-Bottleneck [Kim et al. 2021, ICLR]
 - Probabilistic feature selection
- Representation learning via invariant causal mechanism [Mitrovic et al. 2020, ICLR]
 - Image representation learning using augmentation and invariant learning
- IRM, IRMG, ...

15

Conclusions

- We propose the use of gated features to learn invariant feature extraction
- Gate is deterministic
- Improves both robustness against adversarial attacks and out of distribution detection
- Shows favorable performance in sequential environments
- Connection between Information Bottleneck and Invariant Risk minimization

NEC Laboratories Europe