Hierarchical Clustering:

Nested Partitioning - partição aninhada

Divisive versus Agglomerative Algorithm

Definição : \mathcal{P} é uma K-partição de D se,

$$\mathcal{P} = \{ \textit{C}^1, \textit{C}^2, ..., \textit{C}^K \}$$
 onde,

- a) $C^K \subseteq D \text{ com } C^k \neq \emptyset$;
- b) $C^K \cap C^L = \emptyset$ para $K \neq L$;
- c) $\bigcup_{k=1}^{K} C^k = D$.

Uma partição de um conjunto D é uma família de conjuntos composta por subconjuntos não vazios de D, disjuntos 2 a 2 e cuja união é D.

Definição: partição aninhada (nested partition)

 $\mathcal P$ e $\mathcal P'$ são partições de D. $\mathcal P'$ diz-se **partição aninhada** de $\mathcal P$ se,

$$\forall_{C' \in \mathcal{P}'} \exists_{C \in \mathcal{P}} : C' \subseteq C$$

e escreve-se $\mathcal{P}' \sqsubseteq \mathcal{P}$.

Exemplo de nested partition (contexto HDA)

$$\begin{split} & \frac{\mathcal{P}(D)}{\mathcal{P}(1)} = \mathcal{P}(0) = \{\{1,2,3,4,5\}\} \text{ (muito grosseira)} \\ & \frac{\mathcal{P}(1)}{\mathcal{P}(1)} = \{\{1,2,3\},\{4,5\}\} \\ & \mathcal{P}(2) = \{\{1\},\{2,3\},\{4,5\}\} \\ & \mathcal{P}(3) = \{\{1\},\{2,3\},\{4\},\{5\}\} \\ & \overline{\mathcal{P}(D)} = \mathcal{P}(4) = \{\{1\},\{2\},\{3\},\{4\},\{5\}\} \text{ (muito fina)} \end{split}$$

Hierarchichal Divisive clustering (HDA):

$$\underline{\mathcal{P}(D)} = \mathcal{P}(0) \supseteq \mathcal{P}(1) \supseteq \mathcal{P}(2) \supseteq ... \supseteq \mathcal{P}(r) = \overline{\mathcal{P}(D)}$$

Nas nossas notas vamos descrever o procedimento do Hierarchical Agglomerative Algorithm.

Um algoritmo do tipo **Hierarchical clustering** consiste em encontrar uma Lista ordenada de nested partitions.

Hierarchichal Agglomerative clustering (HAC):

$$\overline{\mathcal{P}(D)} = \mathcal{P}(0) \sqsubseteq \mathcal{P}(1) \sqsubseteq \mathcal{P}(2) \sqsubseteq ... \sqsubseteq \mathcal{P}(r) = \underline{\mathcal{P}(D)}$$

onde $\overline{\mathcal{P}(D)}$ é muito fina e $\mathcal{P}(D)$ é muito grosseira.

Hierarchichal Agglomerative Clustering (o algoritmo):

Seja
$$D = \{x^1, x^2, ..., x^N\}$$

 $\mathcal{P}(0) = \{\{x^1\}, \{x^2\}, ..., \{x^N\}\}, i=0, Energia(0) = 0$
for $i=1$: N-1
 $N_{i-1} = |\mathcal{P}(i-1)|$
 $[k,p,LKG] =$ encontra par clusters com linkage minimo $(\mathcal{P}(i-1), N_{i-1})$
 $\mathcal{P}(i) =$ faz fusão de clusters $(k, p, \mathcal{P}(i-1))$.
Energia $(i) = LKG$ (linkage entre cluster k e cluster p)

end for

Nota: Se D tem N eventos, a partição inicial $\mathcal{P}(0)$ tem N subconconjuntos, e a partição N-1 tem apenas 1 suconjunto. Há N-1 passos de procura de linkage mínimo. Notar que em aulas anteriores, definimos vários linkages entre subconjuntos.

Exemplo: Seja $D = \{(0,0), (1/2,0), (2,1), (2,2.5), (0,3)\}$ uma base de dados com 5 eventos de \mathbb{R}^2 . Usando a métrica de Manhattan e Single Linkage, aplicar o algoritmo hierárquico aglomerativo (HAC).

Resolução:

Deve considerar $\mathcal{P}(0) = \{\{(0,0)\}, \{(0.5,0)\}, \{(2,1)\}, \{(2,2.5)\}, \{(0,3)\}\}$

 $\mathsf{T}=\mathsf{tabela}$ com valores de linkage entre cada para de subconjuntos de $\mathcal{P}(\mathsf{0})$

Encontrar entre que subconjuntos o linkage é mínimo - sejam k e p, com $k \neq p$.

 $\mathcal{P}(1)$ resulta de fundir suconjuntos k e p com energia de fusão $\mathsf{E}(1)$

repetir procedimento até ter \mathcal{P} ter apenas 1 subconjunto.

Tabela de Linkage

Nas linhas e nas colunas de \mathcal{T} temos os subconjuntos da partição que estamos a analisar.

T(0)	C1={x1}	C2={x2}	C3={x3}	C4={x4}	C5={x5}
C1={x1}	*	0.5	3	4.5	3
C2={x2}	*	*	2.5	4	3.5
C3={x3}	*	*	*	1.5	4
C4={x4}	*	*	*	*	2.5
C5={x5}	*	*	*	*	*

Calcula-se single linkage(dd) entre todos os pares de conjuntos na tabela.

$$dd(C^1, C^2) = |x_1^1 - x_1^2| + |x_2^1 - x_2^2| = |0 - 1/2| + |0 - 0| = 1/2$$

$$dd(C^1, C^3) = |x_1^1 - x_1^3| + |x_2^1 - x_2^3| = |0 - 2| + |0 - 1| = 3$$

$$dd(C^{1}, C^{4}) = |x_{1}^{1} - x_{1}^{4}| + |x_{2}^{1} - x_{2}^{4}| = |0 - 2| + |0 - 2.5| = 4.5$$

$$dd(C^{1}, C^{5}) = |x_{1}^{1} - x_{1}^{5}| + |x_{2}^{1} - x_{2}^{5}| = |0 - 0| + |0 - 3| = 3$$

$$dd(C^{2}, C^{3}) = |x_{1}^{2} - x_{1}^{3}| + |x_{2}^{2} - x_{2}^{3}| = |0.5 - 2| + |0 - 1| = 2.5$$

$$dd(C^{2}, C^{4}) = |x_{1}^{2} - x_{1}^{4}| + |x_{2}^{2} - x_{2}^{4}| = |0.5 - 2| + |0 - 2.5| = 4$$

$$dd(C^{2}, C^{5}) = |x_{1}^{2} - x_{1}^{5}| + |x_{2}^{2} - x_{2}^{5}| = |0.5 - 0| + |0 - 3| = 3.5$$

$$dd(C^{3}, C^{5}) = |x_{1}^{3} - x_{1}^{4}| + |x_{2}^{3} - x_{2}^{4}| = |2 - 2| + |1 - 2.5| = 1.5$$

$$dd(C^{3}, C^{5}) = |x_{1}^{3} - x_{1}^{5}| + |x_{2}^{3} - x_{2}^{5}| = |2 - 0| + |1 - 3| = 4$$

$$dd(C^{4}, C^{5}) = |x_{1}^{4} - x_{1}^{5}| + |x_{2}^{4} - x_{2}^{5}| = |2 - 0| + |2.5 - 3| = 2.5$$

O valor mínimo dos linkage é 0.5. Logo fazemos a **fusão** entre C^1 e C^2 .

A partição obtida é : $\mathcal{P}(1) = \{\{x^1, x^2\}, \{x^3\}, \{x^4\}, \{x^5\}\}.$

A energia de fusão é e(1) = 0.5.

Construimos nova tabela de linkage.

T(1)	C1={x1,x2}	C2={x3}	C3={x4}	C4={x5}
C1={x1,x2	*	2.5	4	3
C2={x3}	*	*	1.5	4
C3={x4}	*	*	*	2.5
C4={x5}	*	*	*	*

Notar que agora o primeiro subconjunto tem 2 elementos, pelo que o linkage já não é apenas a distância ponto a ponto.

$$dd(C^1, C^2) = min(d(x^1, x^3), d(x^2, x^3)) = min(3, 2.5) = 2.5.$$

$$d(x^1, x^3) = |x_1^1 - x_1^3| + |x_2^1 - x_2^3| = |0 - 2| + |0 - 1| = 3$$

$$d(x^2, x^3) = |x_1^2 - x_1^3| + |x_2^2 - x_2^3| = |0.5 - 2| + |0 - 1| = 2.5$$

$$dd(C^1, C^3) = min(d(x^1, x^4), d(x^2, x^4)) = min(4.5, 4) = 4.$$

$$d(x^1, x^4) = |0 - 2| + |0 - 2.5| = 4.5$$

$$d(x^2, x^4) = |0.5 - 2| + |0 - 2.5| = 4$$

$$dd(C^1, C^4) = min(d(x^1, x^5), d(x^2, x^5)) = min(3, 3.5) = 3.$$

$$d(x^1, x^5) = |0 - 0| + |0 - 3| = 3$$

$$d(x^2, x^5) = |0.5 - 0| + |0 - 3| = 3.5$$

Continuando, vem,

$$dd(C^2, C^3) = d(x^3, x^4) = 1.5$$

$$dd(C^2, C^4) = d(x^3, x^5) = 4$$

$$dd(C^3, C^4) = d(x^4, x^5) = 2.5$$

O valor menor é 1.5. Ocorre para $dd(C^2, C^3)$, logo faz-se a fusão entre C^2 e C^3 .

A partição obtida é : $\mathcal{P}(2) = \{\{x^1, x^2\}, \{x^3, x^4\}, \{x^5\}\}$. A energia de fusão é e(2) = 1.5.

O procedimento continua até que numa partição só haja um conjunto. Tal acontece para $\mathcal{P}(4)=\{\{x^1,x^2,x^3,x^4,x^5\}\}.$

Para analisar as partições obtidas é comum usar um **dendrograma**. Um dendrograma representa o historial em termos de energia de fusão desde a partição inicial até à final.

O objectivo não é ter a partição final. Há que arranjar um critério para obter a partição ideal.

Como decidir qual a partição a considerar?

- Poderá passar por considerar um número de subconjuntos.
- Ter subconjuntos com um determinado número mínimo ou máximo de elementos.
- A energia n\u00e3o ser maior que determinado valor (clusters que n\u00e3o devem ser fundidos).
- Outros critérios ou métricas poderiam ser usados. Devemos ter em conta os dados e o objectivo a atingir.