ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

W praktyce należy znaleźć miejsce zerowe zadanej funkcji w przedziale [a, b] w przybliżeniu zgodnie z zadaną wartością błędu ε (wartość określająca dokładność działania metody, np. $\varepsilon=0.01$, oznacza dokładność do dwóch miejsc po przecinku). Należy zrealizować trzy metody przedstawione poniżej.

WARUNEK KONIECZNY:
$$f(a) \cdot f(b) < 0$$

WSKAZÓWKA: Warunek ten należy sprawdzić dla wszystkich metod. W przypadku, kiedy warunek jest spełniony wykonujemy metodę, w przeciwnym przypadku należy wypisać informację "warunek konieczny nie jest spełniony".

1. Metoda bisekcji (połowienia przedziałów)

Kolejne kroki metody:

1. Dzielimy aktualny przedział [a, b] na połowę

$$x_{\rm sr} = \frac{1}{2}(a+b)$$

- 2. Jeżeli $f(x_{\rm sr})=0$, to koniec działania metody i $x_{\rm sr}$ jest naszym rozwiązaniem, w przeciwnym przypadku: jeśli $f(x_{\rm sr})\cdot f(a)<0$ (czyli warunek konieczny jest spełniony pomiędzy a oraz $x_{\rm sr}$), wtedy wybieramy nowy przedział $[a,x_{\rm sr}]$, w przeciwnym przypadku $[x_{\rm sr},b]$.
- 3. Jeżeli $|f(x_{sr})| < \varepsilon$, to rozwiązaniem jest x_{sr} , w przeciwnym przypadku wracamy do punktu 1.

<u>Przykład</u>: Znaleźć z dokładnością do $\varepsilon = 0.05$ miejsce zerowe funkcji:

$$f(x) = x^2 + x - 5$$

w przedziale [1, 2].

Rozwiązanie:

$$a = 1;$$
 $b = 2$
 $f(1) = -3;$ $f(2) = 1$

Warunek konieczny spełniony:

$$f(a) \cdot f(b) = f(1) \cdot f(2) = (-3) \cdot 1 = -3 < 0$$

Iteracja 1:

$$x_{\rm sr} = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$$
 $f(x_{\rm sr}) = f(1.5) = -1.25$

W związku z tym, że znak funkcji zmienia się na przedziale od $x_{\rm sr}$ do b, dlatego nowym przedziałem będzie [1.5, 2].

Iteracja 2:

$$x_{\rm sr} = \frac{1.5 + 2}{2} = 1.75$$
 $f(1.75) = -0.1875$

Zmiana znaku na przedziale $x_{\rm sr}$ do b, więc [1.75, 2] Warunek stopu: $|f(x_{\rm sr})|<\varepsilon$ |-0.1875|>0.05 niespełniony

Iteracja 3:

$$x_{\rm sr} = \frac{1.75 + 2}{2} = 1.875$$
 $f(1.875) = 0.3906$

Zmiana znaku na przedziale a do $x_{\rm sr}$, więc [1.75, 1.875]

Warunek stopu: $|f(x_{\rm sr})| < \varepsilon \quad |0.3906| > 0.05$ niespełniony

Iteracja 4:

$$x_{\rm sr} = \frac{1.75 + 1.875}{2} = 1.8125$$
 $f(1.8125) = 0.0976$

Zmiana znaku na przedziale a do $x_{\rm sr}$, więc [1.75, 1.8125]

Warunek stopu: $|f(x_{\rm sr})| < \varepsilon \quad |0.0976| > 0.05$ niespełniony

Iteracja 5:

$$x_{\rm sr} = \frac{1.75 + 1.8125}{2} = 1.78125$$
 $f(x_{\rm sr}) = -0.0459$

Warunek stopu: $|f(x_{\rm sr})| < \varepsilon$ |-0.0459| < 0.05 spełniony

Rozwiązaniem dla arepsilon=0.05 jest $x_{
m sr}=1.78125$

2. Metoda stycznych (Newtona)

Warunki zbieżności (te same znaki pierwszej i drugiej pochodnej na przedziale [a, b]):

$$f'(a) \cdot f'(b) \ge 0$$
 $f''(a) \cdot f''(b) \ge 0$

WSKAZÓWKA: Warunki należy sprawdzić i jeśli nie są spełnione wypisać informację: "warunki zbieżności nie są spełnione". Nie uzależniać uruchomienia metody od powyższych warunków (metoda ma wykonywać obliczenia). Przypominamy również o warunku koniecznym z poprzedniej metody, który obowiązuje również tutaj.

Metoda stycznych określona jest następującym wzorem iteracyjnym:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

gdzie pierwszą wartość x_n wyznacza się następująco:

Jeśli f''(a) oraz f(a) mają te same znaki, to punkt startowy $x_0 = a$, w przeciwnym przypadku $x_0 = b$.

Wzór iteracyjny kontynuujemy do momentu spełnienia warunku stopu: $|f(x_{n+1})| < \varepsilon$ lub $|x_{n+1} - x_n| < \varepsilon$

Jeśli warunek stopu zostanie spełniony rozwiązaniem będzie x_{n+1} .

<u>Przykład</u>: Znaleźć z dokładnością do $\varepsilon = 0.01$ miejsce zerowe funkcji:

$$f(x) = x^2 + x - 5$$

w przedziale [1, 2].

Rozwiązanie:

$$f(x) = x^2 + x - 5$$
 $f'(x) = 2x + 1$ $f''(x) = 2$
 $a = 1$; $f(1) = -3$; $f'(1) = 3$
 $b = 2$; $f(2) = 1$; $f'(2) = 5$

Warunek konieczny spełniony:

$$f(a) \cdot f(b) = f(1) \cdot f(2) = (-3) \cdot 1 = -3 < 0$$

Warunki zbieżności spełnione:

$$f'(1) \cdot f'(2) \ge 0$$
 $f''(1) \cdot f''(2) \ge 0$

Punktem startowym będzie $x_0 = b = 2$, gdyż f''(2) oraz f(2) mają ten sam znak.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{f(2)}{f'(2)} = 2 - \frac{1}{5} = 1.8$$

$$f(x_1) = f(1.8) = 0.04 \qquad f'(x_1) = f'(1.8) = 4.6$$

Warunek stopu nie jest spełniony:

$$|0.04| > 0.01$$
 oraz $|1.8 - 2| > 0.01$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.8 - \frac{0.04}{4.6} = 1.7913$$

 $f(x_2) = f(1.7913) = 0.00007$

Warunek stopu spełniony:

$$|0.00007| < 0.01$$
 oraz $|1.7913 - 1.8| < 0.01$

Rozwiązaniem dla $\varepsilon=0.01$ jest $x_2=1.7913$

3. Metoda siecznych

Punkt nieruchomy, to punkt w którym funkcja i druga pochodna mają te same znaki. Odpowiednio w zależności od tego czy nieruchome jest *a* czy *b* rozróżniamy dwa przypadki wzoru iteracyjnego metody:

a) Jeśli nieruchome jest a, wtedy jako punkt startowy przyjmujemy $x_0=b$ oraz stosujemy następujący wzór iteracyjny:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(a)}(x_n - a)$$

b) Jeśli nieruchome jest b, wtedy jako punkt startowy przyjmujemy $x_0=a$ oraz stosujemy następujący wzór iteracyjny:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)}(b - x_n)$$

Wzór iteracyjny kontynuujemy do momentu spełnienia warunku stopu: $|f(x_{n+1})| < \varepsilon$ lub $|x_{n+1} - x_n| < \varepsilon$ Jeśli warunek stopu zostanie spełniony rozwiązaniem będzie x_{n+1} .

<u>**Przykład**</u>: Znaleźć z dokładnością do $\varepsilon = 0.01$ miejsce zerowe funkcji:

$$f(x) = x^2 + x - 5$$

w przedziale [1, 2].

Rozwiązanie:

$$f(x) = x^2 + x - 5$$
 $f'(x) = 2x + 1$ $f''(x) = 2$
 $a = 1$; $f(1) = -3$; $f'(1) = 3$
 $b = 2$; $f(2) = 1$; $f'(2) = 5$

Warunek konieczny spełniony:

$$f(a) \cdot f(b) = f(1) \cdot f(2) = (-3) \cdot 1 = -3 < 0$$

Nieruchomym punktem w tym przypadku jest b, ponieważ funkcja oraz druga pochodna w tym punkcie mają ten sam znak. W związku z tym punktem startowym będzie $x_0=a=1$ i stosujemy wzór:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)}(b - x_n)$$

Iteracja 1:

$$x_1 = x_0 - \frac{f(x_0)}{f(b) - f(x_0)} (b - x_0) =$$

$$= 1 - \frac{-3}{1 - (-3)} (2 - 1) = 1 + \frac{3}{4} = 1.75$$

$$f(x_1) = f(1.75) = -0.1875$$

Kryterium stopu nie spełnione:

$$|-0.1875| > 0.01$$
 oraz $|1.75 - 1| > 0.01$

Iteracja 2:

$$x_2 = x_1 - \frac{f(x_1)}{f(b) - f(x_1)} (b - x_1) =$$

$$= 1.75 - \frac{-0.1875}{1.75 - (-0.1875)} (2 - 1.75) = 1.7895$$

$$f(x_2) = f(1.7895) = -0.00819$$

Kryterium stopu spełnione: |-0.00818975| < 0.01

Rozwiązaniem dla $\varepsilon=0.01$ jest $x_2=1.7895$

Założenia do programu:

- realizuje trzy metody: bisekcji, stycznych, siecznych
- ma działać dla dowolnej funkcji, przedziału i dokładności ε (wpływ wartości epsilon na wynik będzie podlegał analizie w sprawozdaniu)

- dane wejściowe to funkcja, przedział [a, b] oraz dokładność ε. Funkcję oraz jej wyznaczone przez Was pochodne należy zdefiniować w postaci oddzielnych metod.
- program zwraca pierwiastek x, wartość funkcji wejściowej dla znalezionego x oraz ilość iteracji niezbędnych do jego uzyskania.