Colle 6 - Antonin RUBIO

MPSI2 Année 2021-2022

9 novembre 2021

Question de cours . Que peut-on dire de l'intégrale d'une fonction périodique. Démontrer.

Exercice 1. Donner une primitive des fonctions suivantes :

$$f(x) = \frac{1}{2x - 3}$$
 ; $g(x) = \frac{x + 3}{\sqrt{x^2 + 6x}}$

$$h(x) = (e^x + 1)^3 e^x$$
 et $i(x) = \frac{1}{1 + e^x}$.

Exercice 2. Donner une primitive des fonctions suivantes :

$$f(x) = x^n \ln(x)$$
 ; $g(x) = x\sqrt{1+x}$ et $h(x) = \sin(\ln(x))$

Exercice 3. Calculer

$$\int_0^1 \frac{1}{x^2 + x + \frac{5}{4}} \, dx.$$

Exercice 4. Calculer

$$I = \int_{1}^{\frac{5}{2}} \sqrt{-x^2 + 2x + 8} \, dx.$$

Exercice 5. Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^1 (1 - t^2)^n \, dt.$$

- 1. Montrer que la suite (I_n) est strictement décroissante.
- 2. Montrer que, pour tout $u \in [0,1]$, on a $0 \le 1 u \le e^{-u}$.
- 3. En déduire une majoration de I_n à l'aide de $J_n = \int_0^{\sqrt{n}} e^{-x^2} dx$.
- 4. Montrer que la suite (J_n) est majorée. En déduire que la suite (I_n) converge vers une limite que l'on calculera.
- 5. Démontrer que, pour tout $n \ge 1$, $I_n = \frac{2n}{2n+1}I_{n-1}$.
- 6. En déduire, pour $n \ge 0$, une expression de I_n à l'aide de factorielles.
- 7. En déduire une expression de $\int_0^{\frac{\pi}{2}} \cos(\theta)^{2n+1} d\theta$ pour tout $n \in \mathbb{N}$.