Podstawy sztucznej inteligencji

Kinga Synowiec, Inżynieria obliczeniowa, grupa 2 Sprawozdanie nr 5

Temat ćwiczenia:

Budowa i działanie sieci Kohonena dla WTA.

Cel ćwiczenia:

Poznanie budowy i działania sieci Kohonena przy wykorzystaniu reguły WTA do odwzorowywania istotnych cech kwiatów.

Wstęp teoretyczny:

- WTA (Winner Takes All) jedna z konkurencyjnych metod uczenia sieci, w której tylko jeden element wyjściowy może znajdować się w stanie aktywnym. Nazywany jest on zwycięzcą. Każda komórka w takiej warstwie jest połączona ze wszystkimi elementami wzorca wejściowego za pomocą połączeń wagowych. Komórka zwycięska to neuron otrzymujący najsilniejszy sygnał pobudzenia.
- Sieć Kohonena sieć neuronowa uczona w trybie bez nauczyciela w celu wytworzenia niskowymiarowej (przeważnie dwuwymiarowej) zdyskretyzowanej reprezentacji przestrzeni wejściowej. Sieć Kohonena wyróżnia się tym od innych sieci, że zachowuje odwzorowanie sąsiedztwa przestrzeni wejściowej. Wynikiem działania sieci jest klasyfikacja przestrzeni w sposób grupujący zarówno przypadki ze zbioru uczącego, jak i wszystkie inne wprowadzenia po procesie uczenia.

//źródło: https://pl.wikipedia.org/wiki/Sie%C4%87 Kohonena

Zrzuty ekranu przedstawiające rezultaty po uruchomieniu programu przy ustawionych parametrach: liczba kroków szkoleniowych = 100, początkowy rozmiar sąsiedztwa = 0, maksymalna liczba epok = 700:

Opis przedstawionych wykresów:

- SOM Topology sześciokąty to reprezentacje neuronów. W każdym wektorze wejściowym znajdują się cztery elementy, dlatego cała przestrzeń jest czterowymiarowa.
- SOM Neighbor Connections mapa przedstawiająca powiązania sąsiedzkie.
- SOM Neighbor Distance neurony oznaczone niebieskimi sześciokątami, sąsiednie neurony połączone są czerwonymi liniami. Kolory opisują odległości pomiędzy nimi ciemniejsze to odległości większe, a jaśniejsze mniejsze.
- SOM Sample Hits mapa przedstawiająca, ile razy dany neuron zwyciężył podczas rywalizacji.
- SOM Input Planes płaszczyzna ciężkości dla każdego elementu wektora wejściowego. Mapa przedstawia wizualizację wag, które łączą każde wejście z każdym z neuronów. Im ciemniejszy kolor, tym większa waga.

• Przebieg działania programu:

- Wygenerowanie losowo znormalizowanych wektorów wag.
- Wylosowanie wektora X oraz dla wszystkich neuronów obliczenie dla niego aktywacji Y.
- Szukanie neuronu zwycięzcy.
- Zmodyfikowanie wektora wag neuronu zwycięzcy i jego normalizacja poprzez sprawdzenie warunków WTA.

Wnioski:

- Dzięki analizie rozkładu barw na wykresie można określić wygląd irysa według szkolonej sieci neuronowej. Należy skoncentrować się na kolorach ciemniejszych, gdyż to one najlepiej oddają cechy irysa.
- Na podstawie wykresu przedstawiającego rozkład sił neuronów można stwierdzić, że sieć korzystała z mechanizmu WTA, ponieważ gdyby nie ten fakt, prawdopodobnie najmocniejsze neurony za każdym razem by zwyciężały, nie dopuszczając innych neuronów do udziału.
- Analizując wykresy kolorów można zauważyć, że sieć zdefiniowała jako irysy te punkty, których parametry były bliskie lub równe wartościom średnim. Wartości te określone były jako typowe dla irysów.
- Porównując do siebie wykresy można stwierdzić, że występują pomiędzy nimi powiązania. Rozkład ciemnych barw na wykresie Neighbor Weight Distances pokrywa się z miejscami, gdzie na wykresie Hits występują neurony zwycięskie.
- Podczas tworzenia sieci ważne było dobranie odpowiedniej liczby neuronów tak, aby nie była za mała, gdyż wtedy rośnie ryzyko błędów, ani za duża, co wydłużyłoby czas uczenia.

Listing całego kodu programu wykonanego w MATLABie wraz z opisem użytych funkcji:

```
close all; clear all; clc;
WEJSCIE = iris dataset; %dane uczące, sa to wartości implementowane przez
oprogramowanie
size(WEJSCIE); %okreslenie rozmiaru tablicy przez przypisanie danych
weisciowych
plot(WEJSCIE(1, :), WEJSCIE(2, :), 'b.', WEJSCIE(3, :), WEJSCIE(4, :),
'q.');
hold on; grid on; %do wyświetlenia (trzymanie wykresu i siatka)
% PARAMETRY SIECI KOHONENA
dimensions = [10 10]; %wektor rzedow wymiarow
coverSteps = 100; %liczba kroków szkoleniowych dla początkowego pokrycia
przestrzeni wejściowej
initNeighbor = 0; %początkowy rozmiar sąsiedztwa
topologyFcn = 'hextop'; %funkcja topologii warstw, hextop - funkcja
topologii szesciokatnej
distanceFcn = 'dist'; %funkcja odległości neuronowej, dist - funkcja wagi
odleglosci euklidesowej
% TWORZENIE SIECI KOHONENA
net = selforgmap(dimensions, coverSteps, initNeighbor,topologyFcn,
distanceFcn); %zmienna, do ktorejj przypisywana jest nowo tworzona siec
neuronowa za pomocą algorytmu Kohonena z wykorzystaniem wymienionych
net.trainParam.epochs = 1000;% ustalenie maksymalnej liczby epok
treningowych utworzonej sieci
```

```
% TRENING SIECI
[net, tr] = train(net, WEJSCIE);
y = net(WEJSCIE);
grid on
```