

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14137625
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS EMMANUEL MORALES MENUIOLA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 4\,\Omega$, $Z_2 = \mathrm{j} 5\,\Omega$, $Z_3 = 2\,\Omega$, $Z_4 = 5\,\Omega$, $Z_5 = 9\,\Omega$, $Z_6 = (5+\mathrm{j} 7)\,\Omega$, $V_1 = 5\,\mathrm{V}$ and $V_2 = (7+\mathrm{j} 7)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (3 + j4) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14121732
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOEL GERARDO AGUERO LLANAS		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 5\,\Omega$, $Z_2 = \mathrm{j} 9\,\Omega$, $Z_3 = 6\,\Omega$, $Z_4 = 7\,\Omega$, $Z_5 = 2\,\Omega$, $Z_6 = (2+\mathrm{j} 9)\,\Omega$, $V_1 = 8\,\mathrm{V}$ and $V_2 = (2+\mathrm{j} 4)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (4 + j7) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14124427
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JERSON CHAVEZ ORTIZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}6\,\Omega$, $Z_2 = \mathrm{j}3\,\Omega$, $Z_3 = 9\,\Omega$, $Z_4 = 7\,\Omega$, $Z_5 = 3\,\Omega$, $Z_6 = (5+\mathrm{j}6)\,\Omega$, $V_1 = 4\,\mathrm{V}$ and $V_2 = (4+\mathrm{j}9)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (7 + j2) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14156040
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS ANTNONIO FERNENDEZ CARRASCO		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}8\,\Omega$, $Z_2 = \mathrm{j}5\,\Omega$, $Z_3 = 4\,\Omega$, $Z_4 = 6\,\Omega$, $Z_5 = 9\,\Omega$, $Z_6 = (7+\mathrm{j}3)\,\Omega$, $V_1 = 7\,\mathrm{V}$ and $V_2 = (8+\mathrm{j}5)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (8 + j6) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14156037
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	MICHAEL MURILLO MENDEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}9\,\Omega$, $Z_2 = \mathrm{j}6\,\Omega$, $Z_3 = 7\,\Omega$, $Z_4 = 2\,\Omega$, $Z_5 = 7\,\Omega$, $Z_6 = (6+\mathrm{j}8)\,\Omega$, $V_1 = 9\,\mathrm{V}$ and $V_2 = (3+\mathrm{j}2)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (3 + j9) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	11073892
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSUE AMADOR SIFUENTES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}9\,\Omega$, $Z_2 = \mathrm{j}6\,\Omega$, $Z_3 = 5\,\Omega$, $Z_4 = 4\,\Omega$, $Z_5 = 9\,\Omega$, $Z_6 = (2+\mathrm{j}5)\,\Omega$, $V_1 = 5\,\mathrm{V}$ and $V_2 = (7+\mathrm{j}9)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (6 + j3) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	11268436
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDUARDO ZALDIVAR MARTINEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}7\Omega$, $Z_2 = \mathrm{j}2\Omega$, $Z_3 = 5\Omega$, $Z_4 = 5\Omega$, $Z_5 = 4\Omega$, $Z_6 = (4+\mathrm{j}8)\Omega$, $V_1 = 8\mathrm{V}$ and $V_2 = (5+\mathrm{j}6)\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (4 + \mathrm{j}3)\,\Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14140390
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS DAVID MARENTES REYES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}8\,\Omega$, $Z_2 = \mathrm{j}7\,\Omega$, $Z_3 = 3\,\Omega$, $Z_4 = 7\,\Omega$, $Z_5 = 8\,\Omega$, $Z_6 = (3+\mathrm{j}3)\,\Omega$, $V_1 = 6\,\mathrm{V}$ and $V_2 = (9+\mathrm{j}3)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (3 + j8) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	12068799
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS ANTONIO ROBLESREYES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 5\,\Omega$, $Z_2 = \mathrm{j} 2\,\Omega$, $Z_3 = 3\,\Omega$, $Z_4 = 7\,\Omega$, $Z_5 = 4\,\Omega$, $Z_6 = (5+\mathrm{j} 6)\,\Omega$, $V_1 = 2\,\mathrm{V}$ and $V_2 = (9+\mathrm{j} 3)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (9 + j2) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14150725
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LILIANA VERA GLZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}3\,\Omega$, $Z_2 = \mathrm{j}4\,\Omega$, $Z_3 = 6\,\Omega$, $Z_4 = 9\,\Omega$, $Z_5 = 4\,\Omega$, $Z_6 = (5+\mathrm{j}5)\,\Omega$, $V_1 = 3\,\mathrm{V}$ and $V_2 = (4+\mathrm{j}9)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (4 + j6) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14125016
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	DAVID OTHONIEL SALDIVAR PEREZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}3\,\Omega$, $Z_2 = \mathrm{j}6\,\Omega$, $Z_3 = 9\,\Omega$, $Z_4 = 5\,\Omega$, $Z_5 = 4\,\Omega$, $Z_6 = (2+\mathrm{j}5)\,\Omega$, $V_1 = 6\,\mathrm{V}$ and $V_2 = (3+\mathrm{j}4)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (2 + j7) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	1205596
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ALBERTO VAZQUEZ MEDINA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 5\,\Omega$, $Z_2 = \mathrm{j} 7\,\Omega$, $Z_3 = 7\,\Omega$, $Z_4 = 8\,\Omega$, $Z_5 = 6\,\Omega$, $Z_6 = (8+\mathrm{j} 8)\,\Omega$, $V_1 = 8\,\mathrm{V}$ and $V_2 = (4+\mathrm{j} 7)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (6 + j7) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	12666518
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	SAMUEL ROSAS GONZALEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 5\,\Omega$, $Z_2 = \mathrm{j} 7\,\Omega$, $Z_3 = 9\,\Omega$, $Z_4 = 5\,\Omega$, $Z_5 = 7\,\Omega$, $Z_6 = (3+\mathrm{j} 4)\,\Omega$, $V_1 = 2\,\mathrm{V}$ and $V_2 = (2+\mathrm{j} 6)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (9 + j7) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	12064655
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDSON ORLANDONAVARRO RAMIREZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -j7\Omega$, $Z_2 = j9\Omega$, $Z_3 = 6\Omega$, $Z_4 = 9\Omega$, $Z_5 = 4\Omega$, $Z_6 = (7 + j4)\Omega$, $V_1 = 8V$ and $V_2 = (5 + j4)V$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (5 + j4) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	11126870
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JUAN GAEL GONZALEZ RODRIGUEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}6\,\Omega$, $Z_2 = \mathrm{j}8\,\Omega$, $Z_3 = 8\,\Omega$, $Z_4 = 9\,\Omega$, $Z_5 = 9\,\Omega$, $Z_6 = (6+\mathrm{j}5)\,\Omega$, $V_1 = 2\,\mathrm{V}$ and $V_2 = (9+\mathrm{j}9)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (4 + j2) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14155580
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS ALEJANDRO URBINA GONZALEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j}6\,\Omega$, $Z_2 = \mathrm{j}2\,\Omega$, $Z_3 = 4\,\Omega$, $Z_4 = 4\,\Omega$, $Z_5 = 7\,\Omega$, $Z_6 = (7+\mathrm{j}4)\,\Omega$, $V_1 = 6\,\mathrm{V}$ and $V_2 = (9+\mathrm{j}6)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (5 + j5) \Omega$. (5 points)

Figure 3

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	7/10/2016
Exam / Homework	Exam 1 (Max time: One and half hours)	Registration #	14629184
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSE WALDO QUINTANA ARANDA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

- 1. Let $Z_1 = -\mathrm{j} 5\,\Omega$, $Z_2 = \mathrm{j} 3\,\Omega$, $Z_3 = 5\,\Omega$, $Z_4 = 4\,\Omega$, $Z_5 = 9\,\Omega$, $Z_6 = (5+\mathrm{j} 7)\,\Omega$, $V_1 = 2\,\mathrm{V}$ and $V_2 = (8+\mathrm{j} 4)\,\mathrm{V}$. Find the current and votage across each element in the circuit shown in Figure 1. (5 points)
- 2. Calculate root mean square and average rectified value for the output voltage shown in Figure 2. (5 points)

Figure 1

Figure 2

3. Calculate the impedance between the terminals shown in Figure 3. The impedance of individual element shown in the circuit is $Z = (2 + j9) \Omega$. (5 points)

Figure 3