DCC638 - Introdução à Lógica Computacional 2025.1

Demonstrações: Dedução Natural

Área de Teoria DCC/UFMG

Dedução Natural

- Anteriormente vimos como utilizar *regras de inferências* para *deduzir* novas fórmulas a partir de outras
- Demonstrações de uma conclusão a partir de premissas é feito com sucessivas deduções até que se deduza a conclusão esperada.
- Um conjunto de regras de inferência estabelece um sistema dedutivo
- Apresentaremos agora o sistema dedutivo de dedução natural
 - Introduzido nos anos 30 por S. Jáskowski e por G. Gentzen
 - Comumente se representa demonstrações como árvores de derivação
 - As folhas são as hipóteses e raiz a conclusão

$$\frac{(\psi_1)^1 \qquad (\psi_1 \to \psi_2)^2}{\psi_2} \to_E \qquad (\psi_2 \to (\psi_3 \land \psi_4))^3} \to_E \\
\frac{(\psi_3 \land \psi_4)^3}{\psi_3} \land_{E_d}$$

• Conclui-se a fórmula ψ_3 a partir das hipóteses 1, 2 e 3.

• Todas as hipóteses são etiquetadas (algumas regras usarão essas etiquetas).

Regras (do exemplo anterior)

• Regra \rightarrow_E (eliminação da implicação)

Permite concluir ψ a partir de derivações de φ e de $\varphi \to \psi$.

Note que esta regra corresponde ao raciocínio de modus ponens.

$$\begin{array}{ccc} \mathcal{D}_1 & \mathcal{D}_2 \\ \frac{\varphi & \varphi \to \psi}{\psi} \to_{\mathcal{E}} \end{array}$$

- \mathcal{D}_1 e \mathcal{D}_2 correspondem as derivações que concluem φ e $\varphi \to \psi$, respectivamente.
- Esta é uma regra binária, que toma duas premissas.
- Regra ∧_{Ed} (eliminação da conjunção à direita)

Permite concluir φ_1 a partir de uma derivação de $\varphi_1 \wedge \varphi_2$.

$$\frac{\mathcal{D}}{\frac{\varphi_1 \wedge \varphi_2}{\varphi_1}} \wedge_{\mathsf{E}_d}$$

• Esta é uma regra unária, que toma apenas uma premissa.

Demonstrações: Dedução Natural

Mais regras

• Regra \wedge_{E_e} (eliminação da conjunção à esquerda)

Permite concluir φ_2 a partir de uma derivação de $\varphi_1 \wedge \varphi_2$.

$$\frac{\mathcal{D}}{\frac{\varphi_1 \wedge \varphi_2}{\varphi_2}} \wedge_{E_e}$$

- Esta é uma derivação da fórmula $\varphi_1 \wedge \varphi_2 \rightarrow \varphi_1$ sem utilizar hipóteses.
- A regra $\rightarrow_{I,1}$ é uma regra que *introduz* uma hipótese (com a etiqueta 1) e depois a *fecha*.
- A intuição é que uma vez que a hipótese introduzida cumpre seu papel, ela é eliminada e não pode ser usada em outras partes da demonstração.

$$\frac{\frac{(\varphi_1 \wedge \varphi_2)^1}{\varphi_1}}{\varphi_1 \wedge \varphi_2 \to \varphi_1} \wedge_{E_d} \to_{I,1}$$

• Regra $\rightarrow_{I,n}$ (introdução da implicação)

Permite obter uma derivação para $\varphi_1 \to \varphi_2$ dada uma derivação de φ_2 a partir de um conjunto de hipóteses contendo, eventualmente, φ_1 .

$$\begin{array}{c} [\varphi_1]^n \\ \mathcal{D} \\ \frac{\varphi_2}{\varphi_1 \to \varphi_2} \to_{I,n} \end{array}$$

Demonstrações: Dedução Natural

$$\frac{(\psi_{1})^{1} \qquad (\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})^{2}}{\frac{\psi_{2} \wedge \psi_{3}}{\psi_{2}} \rightarrow_{I,1}} \rightarrow_{E} \frac{(\psi_{1})^{1} \qquad (\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})^{2}}{\frac{\psi_{2} \wedge \psi_{3}}{\psi_{1} \rightarrow \psi_{2}} \wedge_{I,1}} \rightarrow_{E} \frac{(\psi_{1})^{1} \qquad (\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})^{2}}{\frac{\psi_{2} \wedge \psi_{3}}{\psi_{1} \rightarrow \psi_{3}} \wedge_{I,1}} \rightarrow_{I,1} \frac{(\psi_{1} \rightarrow \psi_{2}) \wedge (\psi_{1} \rightarrow \psi_{3})}{(\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})) \rightarrow ((\psi_{1} \rightarrow \psi_{2}) \wedge (\psi_{1} \rightarrow \psi_{3}))} \rightarrow_{I,2}$$

$$\frac{(\psi_{1})^{1} \qquad (\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})^{2}}{\frac{\psi_{2} \wedge \psi_{3}}{\psi_{2}} \wedge E_{d}} \rightarrow_{E} \qquad \frac{(\psi_{1})^{1} \qquad (\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})^{2}}{\frac{\psi_{2} \wedge \psi_{3}}{\psi_{1} \rightarrow \psi_{3}} \wedge E_{e}} \rightarrow_{I,1}
\frac{\psi_{2} \wedge \psi_{3}}{\frac{\psi_{1} \rightarrow \psi_{2}}{\psi_{1} \rightarrow \psi_{2}} \wedge (\psi_{1} \rightarrow \psi_{3})} \rightarrow_{I,1}
\frac{(\psi_{1} \rightarrow \psi_{2}) \wedge (\psi_{1} \rightarrow \psi_{3})}{(\psi_{1} \rightarrow (\psi_{2} \wedge \psi_{3})) \rightarrow ((\psi_{1} \rightarrow \psi_{2}) \wedge (\psi_{1} \rightarrow \psi_{3}))} \rightarrow_{I,2}$$

Regra ∧_I (introdução da conjunção)

Dadas derivações para φ_1 e φ_2 , podemos concluir $\varphi_1 \wedge \varphi_2$.

$$\begin{array}{cc} \mathcal{D}_1 & \mathcal{D}_2 \\ \frac{\varphi_1}{\varphi_1} & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 & \wedge_I \end{array}$$

$$\frac{\frac{(\varphi)^{1} \qquad (\varphi \to \psi_{1})^{2}}{\frac{\psi_{1}}{\psi_{1} \vee \psi_{2}} \vee_{I_{d}}} \to_{E}}{\frac{\varphi \to (\psi_{1} \vee \psi_{2})}{\varphi \to (\psi_{1} \vee \psi_{2})}} \to_{I,1}}{(\varphi \to \psi_{1}) \to (\varphi \to (\psi_{1} \vee \psi_{2}))} \to_{I,2}$$

$$\frac{\frac{(\varphi)^{1} \qquad (\varphi \to \psi_{1})^{2}}{\frac{\psi_{1}}{\psi_{1} \vee \psi_{2}} \vee_{I_{d}}} \to_{E}}{\frac{\varphi}{\varphi \to (\psi_{1} \vee \psi_{2})} \to_{I,1}} \to_{I,2}$$
$$\frac{(\varphi \to \psi_{1}) \to (\varphi \to (\psi_{1} \vee \psi_{2}))}{(\varphi \to \psi_{1}) \to (\varphi \to (\psi_{1} \vee \psi_{2}))}$$

• Regras \vee_{I_d} e \vee_{I_e} (introdução da disjunção à direita/esquerda)

Dada a derivação de uma fórmula φ , podemos concluir $\varphi \lor \psi$, para qualquer ψ . Analogamente, podemos concluir $\psi \lor \varphi$

$$\frac{\mathcal{D}}{\varphi \vee \psi} \vee_{I_d}$$

$$\frac{\mathcal{D}}{\varphi}$$

$$\frac{\varphi}{\psi \vee \varphi} \vee_{I_e}$$

$$\frac{((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3))^1 \qquad \frac{(\psi_1 \wedge \psi_2)^2}{\psi_1} \wedge_{E_d} \qquad \frac{(\psi_1 \wedge \psi_3)^3}{\psi_1} \wedge_{E_d}}{\frac{\psi_1}{((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3)) \rightarrow \psi_1} \rightarrow_{I,1}} \vee_{E,2,3}$$

$$\frac{((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3))^1 \qquad \frac{(\psi_1 \wedge \psi_2)^2}{\psi_1} \wedge_{\mathcal{E}_d} \qquad \frac{(\psi_1 \wedge \psi_3)^3}{\psi_1} \wedge_{\mathcal{E}_d}}{\frac{\psi_1}{((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3)) \to \psi_1} \to_{I,1}}$$

• Regra \vee_{E,n_1,n_2} (eliminação da disjunção)

Esta regra apresenta um raciocínio por casos. Para uma disjunção $\varphi_1 \vee \varphi_2$ ser verdadeira, um dos dois entre φ_1, φ_2 deve ser verdadeiro.

Se tanto quanto φ_1 é verdadeiro como quando φ_2 é verdadeiro conseguimos derivar o mesmo ψ , então ψ é derivável de $\varphi_1 \vee \varphi_2$.

$$\begin{array}{cccc}
 & & [\varphi_1]^{n_1} & & [\varphi_2]^{n_2} \\
\mathcal{D}_1 & & \mathcal{D}_2 & & \mathcal{D}_3 \\
 & & \psi & & \psi \\
\hline
 & & \psi & & \psi_{E,n_1,n_2}
\end{array}$$

Outras regras

Regra ¬_E (eliminação da negação)

$$\frac{\varphi \qquad \neg \varphi}{\perp} \neg_{\mathsf{E}}$$

• Regra $\neg_{I,n}$ (introdução da negação)

$$\begin{array}{c} [\varphi]^n \\ \mathcal{D} \\ \underline{\perp} \neg \varphi & \neg_{I,n} \end{array}$$

• Regra \perp_n (demonstração por redução ao absurdo)

$$\begin{array}{c} [\neg \varphi]^n \\ \mathcal{D} \\ \frac{\bot}{\varphi} \bot
\end{array}$$