Programming Refresher Workshop

Session 5 Exercises

Learning objective:

Recursion

Exercise 13 (ex13): North-East Paths

In a special town where pedestrians are only allowed to move northwards or eastwards, each of the following examples shows the total number of unique NE-paths, $\mathbf{ne}(\mathbf{x}, \mathbf{y})$, to get from point A to point B, where B is \mathbf{x} rows north and \mathbf{y} columns east of A. Assume that \mathbf{x} and \mathbf{y} are non-negative integers. By convention, $\mathbf{ne}(0, 0) = 1$.

ne(1, 3) = 4

ne(3, 2) = 10

Write a recursive function ne(x, y) that returns the number of NE-paths.

Sample run #1:

Enter rows and columns apart: 0 2 Rows and columns apart: 0 2 Number of NE-paths = 1

Sample run #2:

Enter rows and columns apart: 1 3
Rows and columns apart: 1 3
Number of NE-paths = 4

Sample run #3:

Enter rows and columns apart: 3 2 Rows and columns apart: 3 2 Number of NE-paths = 10