Chapter 17

Additional Aspects of Aqueous Equilibria

1. Which one of the following pairs cannot be mixed together to form a buffer solution?

- A) C_5H_5N , C_5H_5NHC1
- B) $HC_2H_3O_2$, NaOH $(C_2H_3O_2^- = acetate)$
- C) KOH, HI
- D) NH₂CH₃, HCl
- E) NaClO, HNO₃

2. The addition of sodium hydroxide and ______ to water produces a buffer solution.

- A) HCl
- B) NaC₂H₃O₂
- C) NaF
- D) NH₃
- E) none of the above

- 3. Of the following solutions, which has the greatest buffering capacity?
- A) 1.15 M HF and 0.624 M NaF
- B) 0.574 M HF and 0.312 M NaF
- C) 0.287 M HF and 0.156 M NaF
- D) 0.189 M HF and 0.103 M NaF
- E) They are all buffer solutions and would all have the same capacity.

- 4. Which of the following could be added to a solution of sodium acetate to produce a buffer?
- A) acetic acid only
- B) acetic acid or hydrochloric acid
- C) hydrochloric acid only
- D) potassium acetate only
- E) sodium chloride or potassium acetate

5. A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.

- A) a strong acid
- B) a strong base
- C) a weak acid
- D) a weak base
- E) neither an acid nor a base

6. The pH of a solution prepared by dissolving 0.350 mol of solid methylamine hydrochloride (CH₃NH₃Cl) in 1.00 L of 1.10 M methylamine (CH₃NH₂) is _____. The Kb for methylamine is 4.40×10^{-4} . (Assume the final volume is 1.00 L.)

- A) 1.66
- B) 2.86
- C) 10.28
- D) 11.14
- E) 10.61

7. The solubility of lead (II) chloride (PbCl₂) is 1.6×10^{-2} M. What is the Ksp of PbCl₂?

- A) 5.0×10^{-4}
- B) 4.1×10^{-6}
- C) 3.1×10^{-7}
- D) 1.6×10^{-5}
- E) 1.6×10^{-2}

8. What is the solubility (in M) of $PbCl_2$ in a 0.15 M solution of HCl? The Ksp of $PbCl_2$ is 1.6×10^{-5} .

- A) 2.0×10^{-3}
- B) 1.1×10^{-4}
- C) 1.8×10^{-4}
- D) 7.1×10^{-4}
- E) 1.6×10^{-5}

9. Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of hydrogen fluoride after addition of 9.00 mL of 0.0100 M HCl to 25.0 mL of this solution is M.

- A) 0.0953
- B) 0.0900
- C) 0.130
- D) 0.122
- E) 0.00976

10. The pH of a solution prepared by mixing 55.0 mL of 0.183 M KOH and 10.0 mL of 0.145 M HC₂H₃O₂ is _____.

- A) 9.97
- B) 7.74
- C) 0.878
- D) 13.122
- E) none of the above