# Stress Testing a Markowitz Portfolio

Al & Finance project

Fidanza Riccardo Loda Enrico Panariello Luca



### Data Collection and Preparation



### Dataset creation

Our model leverages 22 key features to make predictions:

- ullet Lagged Returns:  $[r_1^{t-1},\ldots,r_1^{t-10}],[r_2^{t-1},\ldots,r_2^{t-10}]$
- Recent Means:  $\mu_1, \mu_2$

The target features are the values of the covariance matrix between today's returns for both assets.

Training set: 2010/01/01 - 2023/12/31

Test set: 2024/01/01 - 2025/05/30

#### Model implementation



#### Construct the Minimum Variance Portfolio

The portfolio was constructed day by day, each time we:

- update the value of the portfolio,
- predict variances and covariance,
- create the daily mvp by implementing the following formula

$$w^* = rac{\sigma_2^2 - \sigma_1\sigma_2
ho}{\sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2
ho}$$



#### Capital of the portfolio over time



Weight of NVDA in the portfolio over time



# Stress Testing Framework Value at Risk - Expected Shortfall

These are the formulas implemented to calculate Value at Risk and Expected Shortfall ( $\alpha$ =95%) considering the returns:

$$VaR_{\alpha}(X) = \mu + (\sigma * \Phi^{-1}(1 - \alpha)) \qquad ES_{\alpha}(X) = \mathbb{E}[X|X \le VaR_{\alpha}(X)]$$

## Stress Testing Framework Standard Case

To obtain the variance of our portoflio we calculate

$$V_t = w_t^T \Sigma_t w_t$$



### Stress Testing Framework

#### **Dynamic Scenario Generation**

The models we used for simulating the portfolio returns are:

- ARMA Mean Estimator
  - Assuming zero mean return it is possible to exploit:

$$\mathbb{E}[Y_t^2] = \mathbb{E}[(Y_t - 0)^2] = \mathbb{E}[(Y_t - \mathbb{E}[Y_t])^2] = \text{Var}(Y_t) = \sigma_t^2$$

GARCH - Mean and Volatility Estimator

The best parameters for both models are found by checking the minimum BIC.

## Stress Testing Framework ARMA

$$Y_t = \mu + \sum_{i=1}^{p} \phi_i Y_{t-i} + \sum_{j=1}^{q} \theta_j \epsilon_{t-j} + \epsilon_t$$
$$\epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

The best parameters are p=3 and q=2

But high heteroskedasticity: 3.55

## Stress Testing Framework GARCH

$$Y_t = \mu + \sum_{i=1}^r \phi_i Y_{t-i} + \epsilon_t$$

$$\epsilon_t = \sigma_t^2 z \quad z \sim Dist$$

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$$

By fixing an AR(r) with r=3 as mean estimator, the best parameters are p=1, q=1 and Dist=SkewT

## Stress Testing Framework SkewT





# Model Evaluation and Backtesting Backtesting

|       | Stress Case<br>VaR Breach Rate | Stress Case - ARMA<br>VaR Breach Rate | Stress Case - GARCH<br>VaR Breach Rate |
|-------|--------------------------------|---------------------------------------|----------------------------------------|
| Train | 5.1837%                        | 6.4084%                               | 5.8958%                                |
| Test  | 3.1073%                        | 6.4972%                               | 5.3672%                                |
| 2024  | 2.3810%                        | 5.5556%                               | 4.7619%                                |
| 2025  | 4.9020%                        | 8.8235%                               | 6.8627%                                |

## Model Evaluation and Backtesting

#### **Asses Performance - Standard Case**



### Model Evaluation and Backtesting

#### **Asses Performance - ARMA**



## Model Evaluation and Backtesting Asses Performance - GARCH



## Thank you

