Consider a cube of constant charge density centered at the origin.

True or False: I can use Gauss' Law to find the electric directly above the center of the cube.

- A. True and I can argue how we'd do it.
- B. True. I'm sure we can, but I don't see how to just yet.
- C. False. I'm pretty sure we can't, but I can't say exactly why.
- D. False and I can argue why we can't do it.

ANNOUNCEMENTS

- First week for clickers is this week
 - I will drop the 3 lowest clicker grades
- Homework 2 (due Wed.)
 - No need to do Problem 5 (will be problem 1 on HW 4)
 - BTW, I will drop your lowest homework grade

What is the value of:

$$\int_{-\infty}^{\infty} x^2 \delta(x-2) dx$$

A. 0

B. 2

C. 4

D. ∞

E. Something else

Activity: Compute the following integrals. Note anything special you had to do.

• Row 1-2:
$$\int_{-\infty}^{\infty} x e^x \delta(x-1) dx$$

• Row 3-4:
$$\int_{-\infty}^{-\infty} \log(x) \delta(x-2) dx$$

• Row 5-6: $\int_{-\infty}^{0} x e^{x} \delta(x-1) dx$

• Row 5-6:
$$\int_{-\infty}^{0} x e^{x} \delta(x-1) dx$$

• Row 6+:
$$\int_{-\infty}^{\infty} (x+1)^2 \delta(4x) dx$$

Compute:

$$\int_{-\infty}^{\infty} x^2 \delta(3x+5) dx$$

A. 25/3

B. -5/3

c. 25/27

D. 25/9

E. Something else

A point charge (q) is located at position \mathbf{R} , as shown. What is $\rho(\mathbf{r})$, the charge density in all space?

$$A. \rho(\mathbf{r}) = q\delta^3(\mathbf{R})$$

B.
$$\rho(\mathbf{r}) = q\delta^3(\mathbf{r})$$

$$C. \rho(\mathbf{r}) = q\delta^3(\mathbf{R} - \mathbf{r})$$

$$D. \rho(\mathbf{r}) = q\delta^3(\mathbf{r} - \mathbf{R})$$

E. Something else??

What are the units of $\delta(x)$ if x is measured in meters?

- A. $\delta(x)$ is dimension less ('no units')
- B. [m]: Unit of length
- C. [m²]: Unit of length squared
- D. $[m^{-1}]$: 1 / (unit of length)
- E. $[m^{-2}]$: 1 / (unit of length squared)

What are the units of $\delta^3(\mathbf{r})$ if the components of \mathbf{r} are measured in meters?

- A. [m]: Unit of length
- B. [m²]: Unit of length squared
- C. $[m^{-1}]$: 1 / (unit of length)
- D. $[m^{-2}]$: 1 / (unit of length squared)
- E. None of these.

What is the divergence in the boxed region?

A. Zero

B. Not zero

C. ???

A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. There are more charges outside. What can we say about total electric flux through this surface $\oint_S \mathbf{E} \cdot d\mathbf{A}$?

A. It is q/ε_0 .

- B. We know what it is, but it is NOT q/ε_0 .
- C. Need more info/details to figure it out.

An electric dipole (+q and -q, small distance d apart) sits centered in a Gaussian sphere.

What can you say about the flux of ${f E}$ through the sphere, and $|{f E}|$ on the sphere?

- A. Flux = 0, E = 0 everywhere on sphere surface
- B. Flux = 0, E need not be zero everywhere on sphere
- C. Flux is not zero, E = 0 everywhere on sphere
- D. Flux is not zero, E need not be zero...

Tutorial follow-up:

Does the charge σ on the beam line affect the particles being accelerated inside it?

A. Yes

B. No

C. ???

Think: Why? Or why not?

Tutorial follow-up:

Could the charge σ affect the electronic equipment outside the tunnel?

A. Yes

B. No

C. ???

Think: Why? Or why not?