

Optimal communication strategies in networked estimation

Marcos Vasconcelos and Urbashi Mitra

Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, USA

Networked multi-agent decision systems

Many applications

- 1. Networked control
- 2. Remote estimation
- 3. Sensor networks
- 4. Robotic networks

Many challenges

Communication is imperfect:

Delays, noise, quantization, congestion, packet drops, connectivity and interference

Basic framework

Team of sensors (Decision Makers)

Design jointly optimal communication and estimation strategies

Many open questions

1. What is the capacity of the collision channel?

The Collision MAC

Model of interference

- Widely used in wireless communications
- >1 transmission results in a collision
- Sensors decide whether to transmit or not

Input alphabet

$$\mathfrak{X}_i = \left\{ arnothing, x_i^1, x_i^2, \cdots, x_i^{\mathfrak{Q}_i}
ight\}, \;\; i \in \{1,2\}$$

Output alphabet

$$\mathcal{Y} = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \{\mathfrak{C}\}$$

Collision channel

Erasure

 $Y = \emptyset$

Collision Channel

 $X_2 = \emptyset$

Discrete Multiple Access Channel

 X_1 $P_{Y|X_1,X_2}$

 X_2

The capacity region of a DMAC is the convex-hull of (R_1, R_2) satisfying:

$$R_1 \le I(X_1; Y | X_2)$$

$$R_2 \le I(X_2; Y|X_1)$$

$$R_1 + R_2 \le I(X_1, X_2; Y)$$

Capacity of the Collision MAC

Theorem

The capacity region of the Collision MAC is the convex hull of (R_1, R_2) satisfying

$$R_1 \le h(\theta_1) + \log Q_1 \cdot (1 - \theta_1) \cdot \theta_2$$

$$R_2 \le h(\theta_2) + \log Q_2 \cdot (1 - \theta_2) \cdot \theta_1$$

 θ_i is the prob. of node *i* being in silence Q_i is the alphabet cardinality of node *i*

$$\theta_i = P_{X_i}(\varnothing)$$

New insights

For small alphabets, capacity achieving codes require non-trivial use of no-transmission symbol

For large alphabets, the channel behaves like a multiplier channel, i.e. TDMA approaches the capacity

Achieving capacity requires coordination

Lack of coordination leads to a non-cooperative game

Existence of a unique Nash-equilibrium

4. Vasconcelos & Mitra, "The collision multiple access channel without feedback," Allerton Conference 2017

How to avoid collisions?

Find **scheduling** and **estimation** policies that jointly minimize the following cost

$$egin{aligned} & & ext{minimize} \ & (\gamma, \eta) \in \Gamma imes H \end{aligned} \quad \mathcal{J}(\gamma, \eta) = \mathbf{E} \left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2
ight]$$

Team decision / problem

Observation-driven scheduling Jite

Open-loop scheduling: let the sensor with the largest variance transmit

Observation-driven scheduling⁵: let the sensor with the "largest measurement" transmit

Notions of optimality

Team-optimality

$$\mathcal{J}(\gamma^*, \eta^*) \le \mathcal{J}(\gamma, \eta), \quad (\gamma, \eta) \in \Gamma \times \mathbf{H}$$

Person-by-person optimality

$$\mathcal{J}(\gamma^*, \eta^*) \le \mathcal{J}(\gamma, \eta^*), \quad \gamma \in \Gamma$$

 $\mathcal{J}(\gamma^*, \eta^*) \le \mathcal{J}(\gamma^*, \eta), \quad \eta \in \mathcal{H}$

$$egin{aligned} & \min_{(\gamma,\eta)\in\Gamma imes\mathrm{H}} & \mathcal{J}(\gamma,\eta) = \mathbf{E}\left[(X_1-\hat{X}_1)^2 + (X_2-\hat{X}_2)^2
ight] \end{aligned}$$

Unfortunately, finding team-optimal solutions is very difficult^{6,7}

- Witsenhausen "A counterexample in optimal stochastic control" SIAM J. Control 1968
- Tsitsiklis & Athans "On the complexity of decentralized decision making and detection problems" IEEE TAC 1985

MAX scheduling

Theorem 1

$$\left[\begin{array}{c} X_1 \\ X_2 \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{cc} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{array}\right]\right) \implies \left(\gamma^{\max}, \eta_{\gamma^{\max}}^*\right) \text{ is person-by-person optimal}$$

Theorem 2

$$\left[\begin{array}{c} X_1 \\ X_2 \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right) \Longrightarrow \left(\gamma^{\max}, \eta^*_{\gamma^{\max}}\right) \text{ is person-by-person optimal}$$

MAX scheduling policy

$$\gamma^{\max}(x_1, x_2) = egin{cases} 1, & ext{if} & |x_1| \geq |x_2| \ 2, & ext{otherwise} \end{cases}$$

MMSE estimator

$$\eta_{\gamma}^{*}(y) = \mathbf{E}ig[oldsymbol{W} \mid Y = yig]$$

Performance of MAX

scheduling

14

Independent Gaussian Sources

Observation-driven sensor scheduling

$$ar{\mathcal{J}}(\sigma_1^2,\sigma_2^2)=\min\{\sigma_1^2,\sigma_2^2\}$$
 "Open-loop" sensor scheduling

Symmetrically Correlated Gaussian Sources

MMSE estimator

$$\eta_{\gamma_{ ext{max}},i}^*(x) = rac{\int_{-|x|}^{|x|} au f_{X_i|X_j=x}(au) d au}{\int_{-|x|}^{|x|} f_{X_i|X_j=x}(au) d au}$$

LMMSE estimator

$$\eta_i(x) = \rho \cdot x$$

New insights

- 1. Introduced a new approach to sensor scheduling
- 2. Person-by-person optimality of MAX scheduling
- 3. A nontrivial lower bound to estimation over the collision channel
- 1. Extend these results to the **general multivariate Gaussian** case
- 2. Establish a connection with compressive sensing and matrix completion

Scheduling of sources with arbitrary distributions

16

Arbitrary!

Infinite dimensional optimization

$$\mathcal{J}(\gamma_{\eta}^*,\eta) = \mathbf{E}igg[\min\Big\{ig(X_1 - \eta_1(X_2)ig)^2,ig(X_2 - \eta_2(X_1)ig)^2\Big\}igg]$$

Constrain to affine estimators

$$\mathcal{J}(a,b,c,d) = \mathbf{E}igg[\min\Big\{ig(X_1-aX_2-big)^2,ig(X_2-cX_1-dig)^2\Big\}igg]$$

- Nonconvex
- Difference-of-convex
- Convex-concave procedure
- Approximate subgradient
- Vasconcelos & Mitra "On the joint design of schedulers for correlated random variables and their affine estimators," to be submitted to ACC 2018

Multiple sources & multiple receivers

Unicast network

A single link is active at a time

$$Y_i = \begin{cases} (U, X_U), & \text{if } U = i \\ \emptyset, & \text{otherwise} \end{cases}$$

Theorem

Unimodal densities

MAX scheduling is globally optimal!

What are the limits of communication over the collision channel?

- Explicitly computed the capacity region
- How to operate at maximal communication rates

New opportunities

- Other collision channel models: feedback, $\mathfrak{C}=\varnothing$, ...
- Find lower bounds on estimation performance

How to avoid collisions?

- Discovered the MAX scheduling strategies
- Proved its optimality in a number of scenarios

New opportunities

- Relationship with compressed sensing
- Apply these results on real data

Publications

Conference

- 1. "On the joint design of schedulers for correlated random variables and their affine estimators", M. M. Vasconcelos and U. Mitra, *To be submitted* American Control Conference, July 2018.
- 2. "The multiple-access collision channel without feedback: capacity region and a mutual information game", M. M. Vasconcelos and U. Mitra, *Allerton Conference on Communication, Control, and Computing*, October 2017 (*accepted*).
- 3. "Optimal sensor scheduling strategies in networked estimation", M. M. Vasconcelos, A. Nayyar and U. Mitra, *IEEE 56th IEEE Conference on Decision and Control*, December 2017 (*accepted*).
- 4. "Observation-driven sensor scheduling", M. M. Vasconcelos and U. Mitra, *IEEE International Conference on Communications*, May 2017.

Journal

- 1. "Observation-driven sensor scheduling and remote estimation of bivariate continuous sources, M. M. Vasconcelos and U. Mitra, *In preparation*.
- 2. "Optimal sensor scheduling policies for sequential networked estimation", M. M. Vasconcelos, M. Gragani, A. Nayyar and U. Mitra, *In preparation*.
- 3. "Fundamental limits of implicit communication over multiple access collision channels", M. M. Vasconcelos and U. Mitra, *In preparation*.