| Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain |
|--------------|---------------------|---------------|------------|------|
| No           | No                  | No            | 10.0       | No   |
| Yes          | Yes                 | Yes           | 30.0       | Yes  |
| Yes          | Yes                 | No            | 20.0       | No   |
| Yes          | No                  | Yes           | 50.0       | No   |
| No           | No                  | Yes           | 70.0       | Yes  |

Assuming that we have the above data



Assuming that we have the above data

|   | Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain |
|---|--------------|---------------------|---------------|------------|------|
|   | Yes          | Yes                 | Yes           | 30.0       | Yes  |
| 7 | Yes          | No                  | Yes           | 50.0       | No   |
| - | No           | No                  | No            | 10.0       | No   |
|   | No           | No                  | No            | 10.0       | No   |

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3<sup>rd</sup> and last row are not selected at all



Assuming that we have the above data

| Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain |
|--------------|---------------------|---------------|------------|------|
| Yes          | Yes                 | Yes           | 30.0       | Yes  |
| Yes          | No                  | Yes           | 50.0       | No   |
| No           | No                  | No            | 10.0       | No   |
| No           | No                  | No            | 10.0       | No   |

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3<sup>rd</sup> and last row are not selected at all

| High<br>Tempera<br>ture | Wind<br>Speed | Rain |
|-------------------------|---------------|------|
| Yes                     | 30.0          | Yes  |
| No                      | 50.0          | No   |
| No                      | 10.0          | No   |
| No                      | 10.0          | No   |

of considering all four predictors, we only consider two here ~ "high temp" and "wind speed" (usually they are selected randomly)

| Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain           |
|--------------|---------------------|---------------|------------|----------------|
| No           | No                  | No            | 10.0       | No             |
| Yes          | Yes                 | Yes           | 30.0       | Yes            |
| Yes          | Yes                 | No            | 20.0       | Not selected   |
| Yes          | No                  | Yes           | 50.0       | No             |
| No           | No                  | Yes           | 70.0       | Y Not selected |

Assuming that we have the above data

|   | Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain |
|---|--------------|---------------------|---------------|------------|------|
| > | Yes          | Yes                 | Yes           | 30.0       | Yes  |
|   | Yes          | No                  | Yes           | 50.0       | No   |
|   | No           | No                  | No            | 10.0       | No   |
|   | No           | No                  | No            | 10.0       | No   |

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3<sup>rd</sup> and last row are not selected at all

| High<br>Tempera<br>ture | Wind<br>Speed | Rain |
|-------------------------|---------------|------|
| Yes                     | 30.0          | Yes  |
| No                      | 50.0          | No   |
| No                      | 10.0          | No   |
| No                      | 10.0          | No   |

Furthermore, instead of considering all four predictors, we only consider two here ~ "high temp" and "wind speed" (usually they are selected randomly)

By "randomly" repeat the above process, we can have many bootstrapped dataset

| Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain           |   |
|--------------|---------------------|---------------|------------|----------------|---|
| No           | No                  | No            | 10.0       | No             |   |
| Yes          | Yes                 | Yes           | 30.0       | Yes            |   |
| Yes          | Yes                 | No            | 20.0       | N Not selected |   |
| Yes          | No                  | Yes           | 50.0       | No             |   |
| No           | No                  | Yes           | 70.0       | Y Not selected | j |

Assuming that we have the above data

|   | Low pressure | High<br>Temperature | High humidity | Wind Speed | Rain |
|---|--------------|---------------------|---------------|------------|------|
| > | Yes          | Yes                 | Yes           | 30.0       | Yes  |
|   | Yes          | No                  | Yes           | 50.0       | No   |
|   | No           | No                  | No            | 10.0       | No   |
|   | No           | No                  | No            | 10.0       | No   |

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3<sup>rd</sup> and last row are not selected at all

| High<br>Tempera<br>ture | Wind<br>Speed | Rain |
|-------------------------|---------------|------|
| Yes                     | 30.0          | Yes  |
| No                      | 50.0          | No   |
| No                      | 10.0          | No   |
| No                      | 10.0          | No   |

Furthermore, instead of considering all four predictors, we only consider two here ~ "high temp" and "wind speed" (usually they are selected randomly)

By "randomly" repeat the above process, we can have many bootstrapped dataset

We can grow many trees out of these randomly bootstrapped dataset (e.g., random forest)



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |

- So we take the test data, run it through the first tree we made
- The first tree says "YES"
  (It will rain)



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |

- So we take the test data, run it through the first tree we made
- We take the test data, run it through the 2nd tree we made
- The first tree says "YES"
  (It will rain)
- The 2nd tree says "YES"
  (It will rain)



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |

- So we take the test data, run it through the first tree we made
- We take the test data, run it through the 2nd tree we made

.....

- The first tree says "YES" (It will rain)
- The 2nd tree says "YES"
  (It will rain)
- We take the test data, run it The nth tree says "NO" through the nth tree we made



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |

- So we take the test data, run it through the first tree we made
- We take the test data, run it through the 2nd tree we made
- The first tree says "YES"
  (It will rain)
- The 2nd tree says "YES" (It will rain)

•••••

 We take the test data, run it through the nth tree we made

(It won't rain)

After running the dataset through all the "random" trees, we see which option gets more votes, e.g.,

| Rain: YES | Rain: NO |  |
|-----------|----------|--|
| 15        | 3        |  |



**Bootstrapping** 

#### Then we have a testing data

| Low<br>pressure | High<br>Temperature | High<br>humidity | Wind Speed | Rain |
|-----------------|---------------------|------------------|------------|------|
| No              | Yes                 | No               | 40.0       | ?    |

- So we take the test data, run it through the first tree we made
- We take the test data, run it through the 2nd tree we made

.....

- The first tree says "YES" (It will rain)
- The 2nd tree says "YES"
  (It will rain)

 We take the test data, run it through the nth tree we made

The nth tree says "NO"
(It won't rain)

After running the dataset through all the "random" trees, we see which option gets more votes, e.g.,

Rain: YES Rain: NO

15 3 Final output: YES



Bootstrapping



Aggregation



40.0 So we take the test data, The first tree says "YES" run it through the first tree we made We take the test data, run it The 2nd tree says "YES" through the 2nd tree we made ..... We take the test data, run it \_\_\_\_ The nth tree says "NO" through the nth tree we made (It won't rain) After running the dataset through all the "random" trees, we see which option gets more votes, e.g., Final output: YES 15

Then we have a testing data

**Bootstrapping** 

Aggregation

Bootstrapping the data + Using AGG regation to get the decision = BAGGING