

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES **2020**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques 1	D	Durée de l'épreuve :	125min (105+20)
		Date de l'épreuve :	21/09/2020

Numéro du candidat :	

Instructions

- L'élève répond à toutes les questions de la partie obligatoire.
- L'élève répond à exactement 2 questions de la partie au choix.

Il / elle indique obligatoirement ses choix en marquant d'une croix les cases appropriées ci-dessous.

Seules les réponses correspondant aux questions choisies par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde, la partie au choix est cotée à 0 point.

Partie obligatoire Exercice 1: Equations dans \mathbb{C} 20 Points Exercice 2: Calculs dans \mathbb{C} 20 Points Exercice 3: Calculs dans \mathbb{C} 20 Points Exercice 4: Systèmes linéaires 20 Points Exercice 5: Géométrie analytique de l'espace 20 Points

Partie obligatoire

Exercice 1 14 + 6 = 20 Points

a) Résolvez dans $\mathbb C$ l'équation suivante après avoir vérifié qu'elle admet une solution imaginaire pure.

$$z^3 + (-4-7i) \cdot z^2 + (1+18i) \cdot z - 10 - 55i = 0$$

b) Résolvez dans $\mathbb C$ l'équation suivante en donnant l'ensemble des solutions.

$$(3+2i)\cdot z = -8+9i+5i\cdot \overline{z}$$

Partie au choix

Exercice 2 4+6+10=20 Points

a) Soit le nombre complexe $z_1 = \frac{12 - 11i}{10i} + \frac{7 - 5i}{3 - i}$.

Calculez et écrivez $(z_1)^2$ sous forme algébrique.

- b) Calculez $z_2 = \frac{\left(\frac{i}{2}\right)^3 \cdot \left[2 \cdot cis\left(\frac{-13\pi}{30}\right)\right]^5}{\left(\sqrt{2} \sqrt{2} \cdot i\right)^4}$ et écrivez le résultat sous forme trigonométrique et algébrique.
- c) Soit le nombre complexe $z_3 = -18 18\sqrt{3} \cdot i$.
 - ullet Calculez les racines quatrièmes complexes de z_3 . Donnez également ces racines sous forme algébrique.
 - Représentez dans le plan de Gauss les points dont les affixes sont ces racines.
 - Comparez ensuite le produit de ces racines avec z_3 .

<u>Exercice 3</u> 2 + 2 + 11 + 5 = 20 Points

Soient les nombres complexes
$$z_1 = \frac{-1+i}{i}$$
, $z_2 = \frac{-3}{4} - \frac{3\sqrt{3}}{4} \cdot i$ et $z_3 = -1-i$

- a) Ecrivez z_1 sous forme algébrique et trigonométrique.
- b) Ecrivez z_2 et z_3 sous forme trigonométrique.
- c) Calculez et écrivez $Z = \frac{z_1}{(z_2)^2 \cdot (z_3)^4}$ sous forme algébrique et trigonométrique.
- d) Déduisez-en les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$, $\sin\left(\frac{7\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$.

Exercice 4 20 Points

Résolvez, discutez et interprétez géométriquement le système suivant pour lequel m est un paramètre réel.

$$\begin{cases} 3x + y + 2z = 5\\ (m+1) \cdot x + 2y - z = 7\\ 3x + (m-4) \cdot y + 7z = m+3 \end{cases}$$

Exercice 5

Dans l'espace muni d'un repère orthonormé on donne les points A(1;2;0), B(2;0;-8) et C(-1;1;1).

- a) Vérifiez que A, B et C ne sont pas alignés et établissez une équation cartésienne du plan π_1 passant par les trois points.
- b) Montrez que la droite d_1 définie par $d_1 \equiv \begin{cases} x = -4 + 2\alpha \\ y = -5 + 3\alpha \end{cases}$ où $\alpha \in \mathbb{R}$, n'est pas parallèle au plan π_1 . $z = 1 \alpha$
- c) Déterminez les coordonnées du point d'intersection E de π_1 et d_1 .
- d) Déterminez les coordonnées du point F de d_1 dont la cote vaut 3.
- e) Etablissez un système d'équations cartésiennes de d_1 .
- f) Déterminez un système d'équations paramétriques de la droite d_2 qui passe par le point G(2;2;2) et qui est perpendiculaire à π_1 .
- g) Montrez que les droites d_1 et d_2 n'ont pas de point d'intersection.
- h) Déterminez une équation cartésienne et un système d'équations paramétriques du plan π_2 passant par G(2;2;2) et parallèle à π_1 .