Teoría de números algebraicos en PARI/GP

Parte II: ideales en el anillo de enteros

28/09/2020

¿Cómo especificar un ideal?

Ideales principales

 $\alpha \mathcal{O}_K$ se especifica por su generador:

- ▶ polinomio en x= α en la base $1, x, x^2, ..., x^{n-1}$ de $\mathbb{Q}[x]/(f)$
- ▶ vector $[a_1,...,a_n]^{\sim}$ = α en la \mathbb{Z} -base de \mathcal{O}_K calculada en K. zk

Ideales en general

- ▶ $I \subseteq \mathcal{O}_K$ \mathbb{Z} -submódulo libre.
- ▶ $I \longleftrightarrow$ matriz de una \mathbb{Z} -base de I en términos de la base de \mathcal{O}_K .
- ► Forma normal de Hermite (HNF). mathnf(M) en PARI/GP. ¡Canónica!

Forma normal de Hermite

- ▶ $H \in M_{n \times n}(\mathbb{Z})$ triangular superior con elementos ≥ 0 .
- Coeficiente mayor de la fila = primer coeficiente no nulo.
- ► Coeficiente mayor está a la derecha del coeficiente mayor de la fila anterior.
- ► Elementos arriba del coeficiente mayor son estrictamente menor.
- Elementos abajo del coeficiente mayor son nulos.

Para toda $A \in M_{n \times n}(\mathbb{Z})$ existe única $U \in GL_n(\mathbb{Z})$ tal que H = UA está en la HNF.

Se calcula mediante LLL (= Lenstra-Lenstra-Lovász).

Ejemplo

$$\underbrace{\begin{pmatrix} 0 & +1 & +1 \\ -1 & +1 & -1 \\ -1 & +1 & +2 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} +3 & -2 & 0 \\ +4 & +3 & -3 \\ 0 & -2 & +2 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \end{pmatrix}}_{H}$$

Pasando a la HNF

```
? K = nfinit (x^2-5);
? K.zk
% = [1, 1/2*x - 1/2]
? a = idealhnf(K, 4+x)
% =
[11 8]
[ 0 1]
```

Interpretación:

$$\begin{split} \mathcal{O}_K &= \alpha_1 \mathbb{Z} \oplus \alpha_2 \mathbb{Z}, \quad \alpha_1 = 1, \quad \alpha_2 = \frac{\sqrt{5} - 1}{2}, \\ &(4 + \sqrt{5})\mathcal{O}_K = 11\alpha_1 \mathbb{Z} \oplus (8\alpha_1 + \alpha_2)\mathbb{Z}. \end{split}$$

Ejemplo bien conocido

```
K = \mathbb{Q}(i),
\mathcal{O}_K = \mathbb{Z}[i] es un DIP.
```

```
? K = nfinit(x^2+1);
? K.zk
% = [1, x]
```

Ideales en $\mathbb{Z}[i]$ como \mathbb{Z} -módulos

```
(m+ni) = \{(c+di)(m+ni) \mid c,d \in \mathbb{Z}\}
= \{c \cdot (m+ni) + d \cdot (-n+mi) \mid c,d \in \mathbb{Z}\}
= (m+ni)\mathbb{Z} \oplus (-n+mi)\mathbb{Z}.
(m+ni) \longleftrightarrow \binom{m-n}{n-m} \quad \text{(ino es HNF!)}
```

```
? a = idealhnf(K, 2+3*x)
% =
[13 5]
[ 0 1]
? mathnf ([2, -3; 3, 2])
% =
[13 5]
[ 0 1]
```

Igualdad de ideales

```
\mathfrak{a} = \mathfrak{b} \iff \mathsf{idealhnf}(K, \mathfrak{a}) = \mathsf{idealhnf}(K, \mathfrak{b})
```

```
? a = idealhnf(K, 2+3*x)
% =
[13 5]
Γ 0 17
? b = idealhnf(K, -3+2*x)
% =
[13 5]
Г 0 17
? Mod ((2+3*x)/(-3+2*x), K.pol)
% = Mod(-x, x^2 + 1)
```

Enumeración de ideales

```
ideallist(K, N) = ideales I \subseteq \mathcal{O}_K tales que N_{K/\mathbb{Q}}(I) \le N Salida: vector
```

```
[ideales de norma 0, ideales de norma 1,
```

. . .,

ideales de norma N]

Ejemplo

```
? K = nfinit(x^2+1);
? L = ideallist(K, 10)
\% = [[1, 0; 0, 1]], /* norma 1: I=0 K */
     \Gamma\Gamma^{2}, 1; 0, 177,
     ΓΊ,
                       /* no hay de norma 3 */
     [[2, 0; 0, 2]],
     [[5, 3; 0, 1], [5, 2; 0, 1]],
                     /* no hay de norma 6 */
     ГΊ,
                       /* no hav de norma 7 */
     [[4, 2; 0, 2]],
     [73, 0; 0, 3]
     [[10, 3; 0, 1], [10, 7; 0, 1]]
? vector (#L,i,#L[i])
\% = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
? vecsum (%)
% = 9
```

Problema de la tarea

¿Cuántos ideales de norma \leq 10 hay en \mathcal{O}_K para $K = \mathbb{Q}(\sqrt[3]{17})$?

```
? K = nfinit(x^3 - 17);
? L = ideallist (K,10);
? vector (#L,i,#L[i])
% = [1, 1, 2, 2, 1, 2, 0, 2, 3, 1]
? vecsum(%)
% = 15
```

Ejemplo: no hay ideales de norma 7: $\mathfrak{p}=7\mathcal{O}_{\mathcal{K}}$ es primo (= 7 es inerte). $17\equiv 3$ (7); los cubos mód 7 son 1 y $6\equiv (-1)^3$.

Operaciones con ideales

Operaciones aritméticas

- ▶ idealadd($K, \mathfrak{a}, \mathfrak{b}$) = $\mathfrak{a} + \mathfrak{b}$
- ▶ idealmul(K, α , b) = αb
- ▶ idealpow(K, \mathfrak{a} , n) = \mathfrak{a}^n
- ▶ idealinv(K, \mathfrak{a}) = \mathfrak{a}^{-1}
- ▶ idealintersect(K, \mathfrak{a} , \mathfrak{b}) = $\mathfrak{a} \cap \mathfrak{b}$

Ideal «abajo»

```
? K = nfinit(x^2+1);
? idealdown(K,1+x)
% = 2
? idealdown(K,3+3*x)
% = 6
```

Norma

```
idealnorm(K, \mathfrak{a}) = N_{K/\mathbb{Q}}(\mathfrak{a})
```

```
? K = nfinit(x^2+1);
? idealnorm(K,1+x)
% = 2
? idealnorm(K,3)
% = 9
? idealnorm(K,3+3*x)
% = 18
```

Maximalidad

```
? K = nfinit(x^2+1);
? idealismaximal(K,1+x)
% = [2, [1, 1]~, 2, 1, [1, -1; 1, 1]]
? idealismaximal(K,3+3*x)
% = 0
? L = nfinit(x^3-17);
? idealismaximal(L,7)
% = [7, [7, 0, 0]~, 1, 3, 1]
```

Generación por dos elementos

Recordatorio: todo ideal en $\mathcal{O}_{\mathcal{K}}$ tiene forma (α, β)

```
? K = nfinit(x^3 - 2);
? a = [3,1,2; 0,1,0; 0,0,1]
% =
Γ3 1 2 7
[0 1 0]
[0 0 1]
? idealtwoelt(K,a)
% = [3, [1, 1, 0]^{-1}]
? nfbasistoalq(K,%[2])
% = Mod(x + 1, x^3 - 2)
```

Significado: $\mathfrak{a} = (3, 1 + \sqrt[3]{2})$.

¿Ideales principales?

- ▶ \mathfrak{a} principal \iff $[\mathfrak{a}] = [\mathcal{O}_K] = 0$ en Cl(K).
- ▶ \mathcal{O}_K es un DFU \iff CI(K) = 0.
- ► Veremos después...

Factorización de ideales

Factorización

- ▶ idealfactor(K, \mathfrak{a}): factorizar $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_s^{e_s}$
- ▶ idealprimedec(K,p): factorizar $\mathfrak{a} = p\mathcal{O}_K$

Factorización de primos racionales

$$\begin{split} \mathcal{PO}_{\mathcal{K}} &= \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_S^{e_S}, \\ &\text{idealprimedec}(\mathcal{K}, \mathcal{P}) = [P_1, ..., P_S], \end{split}$$

- $ightharpoonup P_i.e =$ indice de ramificación
- $ightharpoonup P_i$.f = grado del campo residual
- ▶ P_i .gen = $[p, \alpha]$, donde $\mathfrak{p}_i = (p, \alpha)$

Ejemplo: $K = \mathbb{Q}(\sqrt{5})$

```
? K = nfinit(x^2 - 5);
? decK = idealprimedec(K,11)
\% = \lceil \lceil 11, \lceil -3, 2 \rceil \rceil \rceil, 1, \lceil 5, 2; 2, 3 \rceil \rceil,
       \lceil 11, \lceil 5, 2 \rceil^{-}, 1, 1, \lceil -3, 2; 2, -5 \rceil \rceil \rceil
? #decK
% 2
                           /* dos factores */
? [decK[1].e, decK[1].f]
% = \Gamma 1, 17
? decK[1].gen
\% = \lceil 11, \lceil -3, 2 \rceil \sim \rceil
? nfbasistoalg (K,%[2])
% = Mod(x - 4, x^2 - 5)
```

$$11\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2, \quad \mathfrak{p}_1 = (11, \sqrt{5} - 4), \ \mathfrak{p}_2 = (11, \sqrt{5} + 4), \ f_1 = f_2 = 1$$

Ejemplo: $L = \mathbb{Q}(\zeta_5) \supset \mathbb{Q}(\sqrt{5})$

$$11\mathcal{O}_L = \mathfrak{p}_1 \, \mathfrak{p}_2 \, \mathfrak{p}_3 \, \mathfrak{p}_4$$

Ramificación

```
? idealprimedec(K,5)
% = [[5, [1, 2]~, 2, 1, [1, 2; 2, -1]]]
? %[1].e
% = 2
? idealprimedec(L,5)
% = [[5, [-1, 1, 0, 0]~, 4, 1, [.....]]]
? %[1].e
% = 4
```

Significado:
$$5\mathcal{O}_K = \mathfrak{p}^2$$
, $5\mathcal{O}_L = \mathfrak{q}^4$

Ejemplo de Kummer

```
? K = nfinit(polcyclo(23));
? dec = idealprimedec(K,47);
? #dec
% = 22
```

$$47\mathbb{Z}[\zeta_{23}]=\mathfrak{p}_1\cdots\mathfrak{p}_{22}$$

Pausa para el café

Experimento:

Ideales de norma ≤ N

Pregunta

Cómo se comporta la función

$$N \mapsto \#\{I \subseteq \mathcal{O}_K \mid N_{K/\mathbb{Q}}(I) \leq N\}$$

Ejemplo: $K = \mathbb{Q}(i)$

Explicación

$$N_{K/\mathbb{Q}}(\alpha \mathbb{Z}[i]) = N_{K/\mathbb{Q}}((\alpha + bi)\mathbb{Z}[i]) = \alpha^2 + b^2$$
$$(\alpha) = (-\alpha) = (i\alpha) = (-i\alpha)$$

$$\#\{I \subseteq \mathbb{Z}[I] \mid N(I) \le N\} = \frac{1}{4} \cdot \#\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 \le N\}$$

Explicación

Algunos cálculos

```
? K = nfinit(x^2+1);
? L = ideallist(K,20);

? vector (#L,s, sum(i=1,s,#L[i]))
% = [1,2,2,3,5,5,5,6,7,9,9, 9,11,11,11,12,14...]
? vector (20,i, ceil(Pi/4*i))
% = [1,2,3,4,4,5,6,7,8,8,9,10,11,11,12,13,14...]
```

* Relacionado: problema del círculo de Gauss

Ejemplo: $K = \mathbb{Q}(\zeta_5)$, Cl(K) = 0, $|\mathcal{O}_K^{\times}| = \infty$

$$K=\mathbb{Q}(\sqrt{10})$$
, $\operatorname{Cl}(K)
eq 0$, $|\mathcal{O}_K^{ imes}|=\infty$

$$K=\mathbb{Q}(\sqrt[3]{19})$$
, $CI(K)
eq 0$, $|\mathcal{O}_K^{ imes}|=\infty$

Explicación breve: función zeta de Dedekind

▶ Función meromorfa

$$\zeta_{K}(s) = \sum_{\substack{I \subseteq \mathcal{O}_{K} \\ I \neq 0}} \frac{1}{N_{K/\mathbb{Q}}(I)^{s}}$$

responsable por contar los ideales.

- ightharpoonup C = residuo en el polo s=1
- C trae información aritmética (fórmula del número de clase)

estadística sobre

Experimento:

descomposiciones

Pregunta

▶ Si p no se ramifica en K/\mathbb{Q} :

$$p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_s$$
.

- ▶ Número finito de ramificaciones ($p \mid \Delta_K$).
- $\blacktriangleright f_i = [\mathcal{O}_K/\mathfrak{p}_i : \mathbb{F}_p],$

$$f_1 + \cdots + f_s = [K : \mathbb{Q}].$$

ightharpoonup ¿Con qué frecuencia surgen diferentes particiones de $[K:\mathbb{Q}]$?

Ejemplo: $K = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$

- ▶ p = 2,3 se ramifican (ya se ramifican en $\mathbb{Q}(\sqrt[3]{2})$ y $\mathbb{Q}(\zeta_3)$)
- ► Algunos ejemplos

_						
	p	partición	p	partición	p	partición
	5	2+2+2	41	2+2+2	83	2+2+2
	7	3+3	43	$1+\cdots+1$	89	2 + 2 + 2
	11	2 + 2 + 2	47	2 + 2 + 2	97	3 + 3
	13	3+3	53	2 + 2 + 2	101	2 + 2 + 2
	17	2 + 2 + 2	59	2 + 2 + 2	103	3+3
	19	3+3	61	3+3	107	2 + 2 + 2
	23	2 + 2 + 2	67	3+3	109	$1+\cdots+1$
	29	2 + 2 + 2	71	2 + 2 + 2	113	2 + 2 + 2
	31	$1+\cdots+1$	73	3+3	127	$1+\cdots+1$
	37	3+3	79	3+3	131	2 + 2 + 2

Ejemplo: $K = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$

- ► Surge solo $1 + \cdots + 1$, 2 + 2 + 2, 3 + 3.
- ► ¿Estadística para los primeros N primos?

Ν	1+…+1	2+2+2	3+3
10	0.1000	0.5000	0.4000
100	0.1500	0.5200	0.3300
1000	0.1570	0.5080	0.3350
10000	0.1635	0.5011	0.3354
100000	0.1659	0.5004	0.3337

► Converge a $\frac{1}{6}$, $\frac{1}{2}$, $\frac{1}{3}$.

Ejemplo que podemos entender: caso ciclotómico

- ▶ Consideremos $K = \mathbb{Q}(\zeta_7)$
- ► Factorización depende solo de *p* (mod 7):

p (7)	factorización	partición
1	$\mathfrak{p}_1\cdots\mathfrak{p}_6$	1+···+1
6	p ₁ p ₂ p ₃	2 + 2 + 2
2,4	$\mathfrak{p}_1\mathfrak{p}_2$	3 + 3
3,5	p	6

▶ Dirichlet: $\frac{1}{6}$ primos cumplen $p \equiv a \pmod{7}$ para a = 1, 2, 3, 4, 5, 6 fijo.

Estadística

N	1+···+1	2+2+2	3 + 3	6
10	0.2000	0.1000	0.3000	0.4000
100	0.1700	0.1600	0.3200	0.3500
1000	0.1660	0.1660	0.3300	0.3380
10000	0.1662	0.1663	0.3324	0.3351
100000	0.1668	0.1669	0.3328	0.3336

Converge a $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$.

Explicación muy breve

«Teorema de densidad de Chebotarëv»

cadadr.org/cimat-tna/chebotarev.html

Videos:

¡Gracias por su atención!