

# ARJUNA NEET BATCH



#### **UNITS AND MEASUREMENTS**

**LECTURE - 02** 

## SYMBOL FOR DIMENSIONS OF FUNDAMENTAL QUANTITIES

 $(P_{W})$ 

Length

Mass

Time

**Temperature** 

Current

**Luminous Intensity** 

Amount of substance

Rira

: L

M

: Т

: Korθ

I or A1

: I or A

: Cd (2)

: mol

Angle

+ have unit but

os solid.

does not have dim



Dimension: It is the power of fundamental unit or power of symbol of fundamental P.Q.

#### **DIMENSIONAL FORMULA**



Dimensional formula of a physical quantity(P) is

ensional formula of a physical quantity(P) is
$$P = [M \times L \times T^{2}]$$

$$Velocity = M^{6} L^{2} T^{-1}$$

$$Velocity = M^{6} L^{2} T^{-1}$$

Where x, y and z are dimensions of fundamental quantities M,L and T respectively.



#### PHYSICAL QUANTITIES HAVING SAME DIMENSIONAL FORMULA



- Distance, displacement, radius, light year, wavelength, radius of gyration, focal length, parsec, astronomical unit [L]
- Speed, velocity, velocity of light, velocity of sound ,terminal velocity , avg. velocity, orbital velocity [LT-1]
- Acceleration, avg acceleration, acceleration due to gravity, intensity of gravitational field, centripetal acceleration [LT-2] > Impluse = OP-Change in moment
- Impulse, change in momentum [MLT-1]

Force, weight, tension, thrust, gravitational force, spring force, electrostatic force. Magnetic force, normal reaction friction [MLT-2]

Ex. \*Determine the dimension of temperature gradient\*



#### Step-1

ARJUNA

temp. gradient = 
$$\frac{\text{Temperature}}{\text{distance}}$$

temp. gradient = 
$$\frac{K^{1}}{U} = K^{1} = \frac{1}{L}$$

Dith respect to distance



#### **PRESSURE**







□ Surface tension: force Per Unit length

Sion: 
$$+0000$$
 =  $\frac{m_L T^2}{L} = mT^2$ 

$$=\frac{MLT}{L^2}$$

Energy density = Energy Valume

ARJUNA

energy density = ml<sup>3</sup>

Same dimn

#### **GRAVITATIONAL CONSTANT**



ARJUNA

$$\frac{Gm - 1^{3} - 2}{4 - 1 - 1}$$

Same as Surface

#### PLANK'S CONSTANT

rension.

Spring Constant: Force Constant

$$F(spring froce) = KX$$

$$spring (st) = F = InT$$

$$froce const.$$

Angula Momentum



Energy Of Phit

Gas constant 
$$PV = MRT$$

$$R = [PV] = [ml^2]^2$$

$$R^1$$

Boltzman constant

$$E = \begin{bmatrix} 3 \\ 2 \end{bmatrix} K_{13} T \qquad E = energy$$

$$K_{B} = \underbrace{E}_{Tomp} = m_{1}^{2} - 2 - 1 \qquad K_{B} = Boltzmul const$$

electric field

$$F = 2E$$

electrostudic force

 $E = \frac{mLT}{2}$ 
 $E = \frac{mLT}{2}$ 

Amp

 $E = mL = 3A$ 

ray refic field

$$|ML^2T^2=A^2RT$$

$$E = \frac{0^2}{200}$$

$$R = m L^2 T^3 A^2$$

Permitivity (AT) Permiability Ho I= (urrel.

C = 1 Mo 80

Speed of light C= 1 Mo 80

Permiddy

Permiddy

#### **DIMENSION LESS PHYSICAL QUANTITY**



$$M = \frac{C}{V} = dimensionles$$

Poisson's ratio, refractive index  $(\mathcal{P})$ 

Trigonometry formula/ exponential functions, relative permittivity, = \(\frac{\varepsilon}{\varepsilon}\) efficiency, ratio, pure no. specific gravity, relative Permiability efficiency

Ratio of Wavelength = dimensilent  $\sin \theta = \frac{P}{H} = Dim^n lent$  Pure no is dim'ters Sino/coso/tano/ Jim las [m°l°T] Jim as rel

Pressure/ Energy density/ Bulk modulus/ Shear modulus/ Stress dimensions all have same



Young modulu.

Stress - force Area

Athis is given Pressure = MITT Pressure = Stream = W strain

> Vong modulis clasitisit)

## Moment of Inextia = Moment of Mas = Md2.



- Angular momentum and Plank's constant have same dimensional formula

  [ML<sup>2</sup>T<sup>-1</sup>] AIEEE AIPMT / IIT | MEET / AIIM 5.
- Electric field and potential gradient have same dimensional formula  $E = \frac{V}{V} = \frac{\text{Potential}}{\text{Length}}$
- Surface tension, surface energy, force gradient and spring constant have same dimensional formula [ML<sup>0</sup> T<sup>-2</sup>]
- Acceleration and gravitational field intensity have same dimensional formula MoLT-2



### Torque = forcex lengt!

- PW
- Work, energy, moment of force or torque, moment of couple, kinetic energy, potential energy, heat energy, mechanical energy [ML<sup>2</sup>T<sup>-2</sup>]
- Force constant, surface tension, spring constant, energy per unit area [MT-2]
- ➤ Angular momentum, angular impulse, Planck's constant [ML<sup>-2</sup> T<sup>-1</sup>]
- Angular velocity, frequency, velocity gradient, decay constant, rate of disintegration [T<sup>-1</sup>]
- ➤ Stress, pressure, modulus of elasticity, [ML<sup>-1</sup> T<sup>-2</sup>]







## thanks for watching

