Target Business Analysis

I. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

A. Data type of all columns in the "customers" table.

Query:

SELECT column_name, data_type FROM `scaler-dsml-rc.Scaler_SQL_Project`.INFORMATION_SCHEMA.COLUMNS WHERE table_name = 'customers'

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

B. Get the time range between which the orders were placed.

Query:

select min(order_purchase_timestamp) as First_Order,max(order_purchase_timestamp) as Last_order from `scaler-dsml-rc.Scaler_SQL_Project.orders`

Row	First_Order ▼	Last_order ▼	10
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	

C. Count the number of Cities and States in our dataset.

Query:

select Count(distinct customer_city) as Num_Of_Cities,Count(distinct customer_state) as Num_of_States from `scaler-dsml-rc.Scaler_SQL_Project.customers`

From the Part 1 analysis,

- 1. We can see that Customers table has 5 columns in which 4 columns are string type and 1 int.
- 2. Orders from this dataset were placed between Sep 2016 to Oct 2018.
- 3. Total count of City is 4119 and no of states are 27.

II. In-depth Exploration:

A. Is there a growing trend in the no. of orders placed over the past years?

Query:

select Extract(year from order_purchase_timestamp) as Year,count(order_id) as Num_of_order from `scaler-dsml-rc.Scaler_SQL_Project.orders`
GROUP BY Year
order by Year

Row	Year ▼	11	Num_of_order ▼ //
1		2016	329
2		2017	45101
3		2018	54011

B. Can we see some kind of monthly seasonality in terms of the no. of orders being

placed?

Query:

select extract(year from order_purchase_timestamp) as Year,extract(Month from order_purchase_timestamp) as Month,count(order_id) as num_of_orders from `scaler-dsml-rc.Scaler_SQL_Project.orders` group by Year,Month order by num of orders desc

Row	Year ▼	Month ▼	num_of_orders ▼
1	2017	11	7544
2	2018	1	7269
3	2018	3	7211
4	2018	4	6939
5	2018	5	6873
6	2018	2	6728
7	2018	8	6512
8	2018	7	6292
9	2018	6	6167
10	2017	12	5673

C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

Query:

select case when Extract(hour from order_purchase_timestamp) between 0 and 6 then "Dawn" when Extract(hour from order_purchase_timestamp) between 7 and 12 then "Mornings" when Extract(hour from order_purchase_timestamp) between 13 and 18 then "Afternoon" when Extract(hour from order_purchase_timestamp) between 19 and 23 then "Night" End as Time,Count(order_id) as Num_of_Orders
FROM `scaler-dsml-rc.Scaler_SQL_Project.orders` group by Time

order by Num_of_Orders desc

Output:

Row	Time ▼	Num_of_Orders ▼
1	Afternoon	38135
2	Night	28331
3	Mornings	27733
4	Dawn	5242

Part II Analysis,

- 1. From the above analysis, we can see the growing trend in the number of orders over the given years.
- 2. We can see that no of orders have increased from Nov 2017 to Mid of 2018.
- 3. From the above analysis, we can see that highest orders were placed during Afternoon time.

III. Evolution of E-commerce orders in the Brazil region:

A. Get the month on month no. of orders placed in each state.

Query:

```
select c.customer_state as State,Extract(month from o.order_purchase_timestamp) as Month, count(o.order_id) as Month_onMonth_OrderCount from `scaler-dsml-rc.Scaler_SQL_Project.orders` o left join `scaler-dsml-rc.Scaler_SQL_Project.customers` c on o.customer_id = c.customer_id = c.customer_id group by State,Month order by State,Month
```

Row	State ▼	Month ▼	Month_onMonth_OrderCount ▼
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9
8	AC	8	7
9	AC	9	5
10	AC	10	6

B. How are the customers distributed across all the states?

Query:

select customer_state,count(distinct customer_id) as Count_of_customer FROM `scaler-dsml-rc.Scaler_SQL_Project.customers` group by customer_state order by customer_state

Row	customer_state ▼	Count_of_customer_
1	AC	81
2	AL	413
3	AM	148
4	AP	68
5	BA	3380
6	CE	1336
7	DF	2140
8	ES	2033
9	GO	2020
10	MA	747

Part III Analysis,

- 1. Around 10 states have less than or equal to 500 orders cumulatively on monthly basis and around 17 states have more than 500 orders cumulatively on monthly basis.
- 2. Customer are distributed across 27 states in which 3 state MG, RJ and SP have more than 10000 count and PR and RS has count more than 5000.

Totally 7 states have less than 5000 customers distributed in each of them but greater than 1000 and 15 States that have count less than 1000.

IV. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

Query:

```
select *,round(((Total_sales-previous)/previous)*100,2) as Percent_increase from (select extract(year from o.order_purchase_timestamp) as Year, round(sum(p.payment_value),2) as Total_sales,round(lag(sum(p.payment_value)) over(order by sum(p.payment_value)),2) as previous from `scaler-dsml-rc.Scaler_SQL_Project.orders` o join `scaler-dsml-rc.Scaler_SQL_Project.payments` p on o.order_id=p.order_id where (extract(year from o.order_purchase_timestamp) = 2017 or extract(year from o.order_purchase_timestamp) = 2018) and extract(month from o.order_purchase_timestamp) between 1 and 8 group by Year) t1
```

R	Row /	Year ▼	Total_sal	es ▼	previous ▼	Percent_increase
	1	201	17 36	69022.12	null	null
	2	201	18 86	94733.84	3669022.12	136.98

B. Calculate the Total & Average value of order price for each state.

Query:

```
select C.customer_state,round(sum(OI.price),2) as TotalPrice,round(Avg(OI.price),2) as AvgPrice FROM `scaler-dsml-rc.Scaler_SQL_Project.customers` C join `scaler-dsml-rc.Scaler_SQL_Project.orders` O on C.customer_id = O.customer_id join `scaler-dsml-rc.Scaler_SQL_Project.order_items` OI on O.order_id=OI.order_id group by C.customer_state order by C.customer_state
```

Row	customer_state ▼	TotalPrice ▼	AvgPrice ▼
1	AC	15982.95	173.73
2	AL	80314.81	180.89
3	AM	22356.84	135.5
4	AP	13474.3	164.32
5	BA	511349.99	134.6
6	CE	227254.71	153.76
7	DF	302603.94	125.77
8	ES	275037.31	121.91
9	GO	294591.95	126.27
10	MA	119648.22	145.2

C. Calculate the Total & Average value of order freight for each state.

Query:

```
select C.customer_state,round(sum(OI.freight_value),2) as TotalFreightVal,round(Avg(OI.freight_value),2) as AvgPrice FROM `scaler-dsml-rc.Scaler_SQL_Project.customers` C join `scaler-dsml-rc.Scaler_SQL_Project.orders` O on C.customer_id = O.customer_id join `scaler-dsml-rc.Scaler_SQL_Project.order_items` OI on O.order_id=OI.order_id group by C.customer_state order by TotalFreightVal,AvgPrice
```

Row	customer_state ▼	TotalPrice ▼	AvgPrice ▼
1	RR	2235.19	42.98
2	AP	2788.5	34.01
3	AC	3686.75	40.07
4	AM	5478.89	33.21
5	RO	11417.38	41.07
6	TO	11732.68	37.25
7	SE	14111.47	36.65
8	AL	15914.59	35.84
9	RN	18860.1	35.65
10	MS	19144.03	23.37

Part IV Analysis,

- 1. In the year 2018 increase % of cost is 136.98 whereas 2017 don't have any data since the previous year data unavailable.
- 2. In Total, 17 states have Total price greater than 100000.
- 3. Similarly, 6 states have freight value greater than 100000.

- V. Analysis based on sales, freight and delivery time.
- A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Query:

select order_id,date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as Time_To_Deliver,date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery FROM `scaler-dsml-rc.Scaler_SQL_Project.orders`

Row	order_id ▼	Time_To_Deliver ▼	diff_estimated_delive
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
6	68f47f50f04c4cb6774570cfde	29	1
7	276e9ec344d3bf029ff83a161c	43	-4
8	54e1a3c2b97fb0809da548a59	40	-4
9	fd04fa4105ee8045f6a0139ca5	37	-1
10	302bb8109d097a9fc6e9cefc5	33	-5

B. Find out the top 5 states with the highest & lowest average freight value.

Query:

with avgfreight as (select c.customer_state,round(avg(oi.freight_value),2) as Highest_freightvalue, Row_number() over(order by round(avg(oi.freight_value),2)) as lowest,Row_number() over(order by round(avg(oi.freight_value),2) desc) as highest FROM `scaler-dsml-rc.Scaler_SQL_Project.customers` c left join `scaler-dsml-rc.Scaler_SQL_Project.orders` o on c.customer_id = o.customer_id join `scaler-dsml-rc.Scaler_SQL_Project.order_items` oi on o.order_id= oi.order_id group by c.customer_state

) select a.customer_state as StateWithHighestFreightVal,a.Highest_freightvalue as Avghighestfreight,b.customer_state as StateWithLowestFreightVal,b.Highest_freightvalue as Avglowestfreight from avgfreight a inner join avgfreight b on a.highest =b.lowest limit 5

Row	StateWithHighestFreightVal ▼	Avghighestfreight /	StateWithLowestFreightVal ▼	Avglowestfreight 💌
1	RR	42.98	SP	15.15
2	PB	42.72	PR	20.53
3	RO	41.07	MG	20.63
4	AC	40.07	RJ	20.96
5	PI	39.15	DF	21.04

C. Find out the top 5 states with the highest & lowest average delivery time.

Query:

select * from

(select c.customer_state,round(avg(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp,day)),2) as avg_delivery_highest, row_number() over(order by avg(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp,day))desc) rownum_highest from `scaler-dsml-rc.Scaler SQL Project.customers` c

```
join `scaler-dsml-rc.Scaler_SQL_Project.orders` o on c.customer_id=o.customer_id
group by c.customer_state
order by avg_delivery_highest desc ) t1
join(select c.customer_state,round(avg(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp,day)),2) as
avg_delivery_lowest,row_number() over(order by avg(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp,day))asc)
rownum_lowest
from `scaler-dsml-rc.Scaler_SQL_Project.customers` c
join `scaler-dsml-rc.Scaler_SQL_Project.orders` o on c.customer_id=o.customer_id
group by c.customer_state
order by avg_delivery_lowest desc) t2 on t1.rownum_highest=t2.rownum_lowest
limit 5
```

Row	customer_state ▼	avg_delivery_highest	rownum_highest 🔻	customer_state_1 ▼	avg_delivery_lowest	rownum_lowest ▼
1	RR	28.98	1	SP	8.3	1
2	AP	26.73	2	PR	11.53	2
3	AM	25.99	3	MG	11.54	3
4	AL	24.04	4	DF	12.51	4
5	PA	23.32	5	SC	14.48	5

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Query:

select c.customer_state,round(avg(Date_Diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as Diff_order_estimated_act_delivery

```
FROM `scaler-dsml-rc.Scaler_SQL_Project.customers` c
left join `scaler-dsml-rc.Scaler_SQL_Project.orders` o on c.customer_id=o.customer_id
where o.order_status='delivered'
group by c.customer_state
order by Diff order estimated act delivery desc
```

Row	customer_state ▼	Diff_order_estimated
1	AC	19.76
2	RO	19.13
3	AP	18.73
4	AM	18.61
5	RR	16.41

Part V Analysis,

- 1. From the above analysis, we can understand that some of the deliveries were delayed.
- 2. Top 5 states with highest Avg freight values are RR, PB, RO, AC and PI and the states with the lowest freight values are SP, PR, MG, RJ and DF.
- 3. States with highest delivery time are RR, AP, AM, AL and PA and the states with lowest delivery time are SP, PR, MG, DF and SC.
- 4. 5 states that have fastest delivery compared to estimated delivery are AC, RO, AP, AM and RR.

VI. Analysis based on the payments:

A. Find the month-on-month no. of orders placed using different payment types.

Query:

```
select P.payment_type,Extract(month from o.order_purchase_timestamp) as Month,count(o.order_id) as Month_on_month_Orders FROM `scaler-dsml-rc.Scaler_SQL_Project.payments` P join `scaler-dsml-rc.Scaler_SQL_Project.orders` o on P.order_id=o.order_id group by P.payment_type,Month order by Month
```

Row	payment_type ▼	Month ▼	Month_on_month_Or
1	voucher	1	477
2	credit_card	1	6103
3	debit_card	1	118
4	UPI	1	1715
5	credit_card	2	6609
6	voucher	2	424
7	UPI	2	1723
8	debit_card	2	82
9	voucher	3	591
10	credit_card	3	7707

B. Find the no. of orders placed on the basis of the payment instalments that have been paid.

Query:

select payment_installments,count(order_id) as Num_of_orders FROM `scaler-dsml-rc.Scaler_SQL_Project.payments` group by payment_installments
order by payment_installments desc

Row	payment_installment	Num_of_orders ▼
1	24	18
2	23	1
3	22	1
4	21	3
5	20	17
6	18	27
7	17	8
8	16	5
9	15	74
10	14	15
11	13	16
12	12	133
13	11	23
14	10	5328
15	9	644

Part VI Analysis,

- 1. Payments done during March, May, July and August have more than 10000 orders and rest of the months have less than 10000.
- 2. Orders have been received for all the payment instalments except for 19.

Submitted On: 23-06-2023

RAMA CHITRA M