Random numerical semigroups and sums of subsets of cyclic groups

Santiago Morales Duarte

Universidad de los Andes s.morales30@uniandes.edu.co

November 27, 2023

Overview

- The probabilistic method
 - Threshold functions
- Numerical semigroups
- Random numerical semigroups
- 4 Experiments
- Results
 - Lower bound
 - Upper bound

The probabilistic method

Erdös-Rényi model

Definition

The Erdös-Rényi model for random graphs G(n, p) is a probability space over the set of graphs on n labeled vertices determined by

$$\Pr[\{i,j\} \in G] = p$$

with these events mutually independent.

Threshold functions

Given a graph theoretic property A, there is a probability that G(n, p) satisfies A, which we write as $\Pr[G(n, p) \models A]$. As n grows, we let p be a function of n, p = p(n).

Definition

r(n) is a threshold function for a graph theoretic property A if

- When $p(n) \in o(r(n))$, $\lim_{n\to\infty} \Pr[G(n,p(n)) \models A] = 0$,
- ② When $r(n) \in o(p(n))$, $\lim_{n\to\infty} \Pr[G(n,p(n)) \models A] = 1$,

or vice versa.

Example

 $r(n) = \frac{\ln n}{n}$ is a threshold for having isolated vertices.

Second moment method

Theorem

$$\Pr[X=0] \le \frac{\operatorname{Var}[X]}{\operatorname{E}[X]^2}.$$

Proof. Apply Chebyschev's inequality with $\lambda = \frac{\mu}{\sigma}$:

$$\Pr[X=0] \le \Pr[|X-\mu| \ge \lambda \sigma] \le \frac{1}{\lambda^2} = \frac{\sigma^2}{\mu^2}.$$

Corollary

If $Var[X] \in o(E[X^2])$, X > 0 asymptotically almost always.

Numerical semigroups

Numerical semigroups

Definition

A *numerical semigroup* is a subset $S \subseteq \mathbb{N}$ for which

- **1** $0 \in S$,
- ② S is closed under addition, i.e. $a, b \in S$ implies $a + b \in S$, and
- \circ S has finite complement in \mathbb{N} .

Example

 \mathbb{N} and $\mathbb{N}\setminus\{1\}$. Subsets of \mathbb{N} which are not numerical semigroups include the set of even numbers, any finite set and $\mathbb{N}_0\setminus\{2\}$.

Example

The *McNugget Semigroup* is the set of all non-negative integers which can be expressed as a sum of non-negative multiples of 6, 9 and 20.

The McNugget semigroup

44	45	46	47	48	49
38	39	40	41	42	43
32	33	34	35	36	37
26	27	28	29	30	31
20	21	22	23	24	25
14	15	16	17	18	19
8	9	10	11	12	13
2	3	4	5	6	7
-4	-3	-2	-1	0	1

Figure: Visualization of the McNugget semigroup.

Generating sets

The McNugget semigroup is an example of a numerical semigroup which is *finitely generated*. This means that there exists a finite set $A = \{a_1, \ldots, a_n\}$ such that $S = \langle A \rangle$, where

$$\langle A \rangle = \{c_1 a_1 + \cdots + c_n a_n : c_1, \ldots, c_n \in \mathbb{N}\}.$$

Theorem

All numerical semigroups are finitely generated.

Theorem

Let $A \subseteq \mathbb{N}$ be a non-empty finite set. Then $\langle A \rangle$ is a numerical semigroup if and only if $\gcd(A)=1$.

Invariants

Definition

The *multiplicity* of S, denoted by m(S), is the smallest non-zero element of S.

Theorem

There exists a unique minimal generating set A with $S = \langle A \rangle$.

Definition

The *embedding dimension* of S, denoted by e(S), is the cardinality of the minimal generating set of S.

Numerical semigroup invariants

Note that

$$e(S) \leq m(S)$$
.

Definition

The Apéry set of n in S is defined as

$$\mathrm{Ap}(S,n)=\{s\in S:s-n\notin S\}.$$

Definition

The *Frobenius number* of *S*, denoted by F(S), is the largest element of $(\mathbb{N} \cup \{-1\}) \setminus S$.

Numerical semigroup invariants

Note that

$$F(S) = \max(\operatorname{Ap}(S, n)) - n,$$

for any $n \in S$. Finding the Frobenius number of a numerical semigroup is **NP-hard**.

Definition

The *genus* of S, denoted by g(S), is the cardinality of G(S).

Proposition

$$g(S) \leq F(S) \leq 2g(S)$$
.

Random numerical semigroups

ER-type random numerical semigroups

Definition

For $p \in (0,1]$ and $M \in \mathbb{N}$, an ER-type random numerical semigroup S(M,p) is obtained by using the following procedure:

- 1 Initialize an empty set A.
- ② As i goes from 1 to M, add i to \mathcal{A} with probability p, independently of the other steps.
- **3** Return the semigroup $S = \langle A \rangle$.

Note that this definition does not require a numerical semigroup ${\mathcal S}$ to be co-finite.

A theorem of De Loera, O'Neill and Wilburne

The main result of [1] is the following theorem.

Theorem

Let $S \sim S(M, p)$, where p = p(M) is a monotone decreasing function of M. Then,

- 1 If $p(M) \in o(\frac{1}{M})$, then $S = \{0\}$ almost always.
- 2 If $\frac{1}{M} \in o(p(M))$ and $\lim_{M \to \infty} p(M) = 0$, then S is co-finite almost always and

$$\lim_{M\to\infty} \mathrm{E}[e(\mathcal{S})] = \lim_{M\to\infty} \mathrm{E}[g(\mathcal{S})] = \lim_{M\to\infty} \mathrm{E}[F(\mathcal{S})] = \infty.$$

3 If $\lim_{M\to\infty} p(M) > 0$, then

$$\lim_{M\to\infty} \mathrm{E}[e(\mathcal{S})] < \infty, \quad \lim_{M\to\infty} \mathrm{E}[g(\mathcal{S})] < \infty \quad \text{and} \quad \lim_{M\to\infty} \mathrm{E}[F(\mathcal{S})] < \infty,$$

and each limit is bounded by explicit rational functions in p.

Upper bounds

They also provide explicit upper bounds when p is constant.

Theorem

Let $S \sim S(M, p)$, where p is a constant. Then,

$$\begin{split} \frac{6-8p+3p^2}{2-2p^2+p^3} & \leq \lim_{M \to \infty} \mathrm{E}[\textit{e}(\mathcal{S})] \leq \frac{2-p^2}{p}, \\ \frac{6-14p+11p^2-3p^3}{2p-2p^3+p^4} & \leq \lim_{M \to \infty} \mathrm{E}[\textit{g}(\mathcal{S})] \leq \frac{(1-p)(2-p^2)}{p^2}, \text{ and } \\ \frac{6-14p+11p^2-3p^3}{2p-2p^3+p^4} & \leq \lim_{M \to \infty} \mathrm{E}[\textit{f}(\mathcal{S})] \leq \frac{2(1-p)(2-p^2)}{p^2}. \end{split}$$

Experiments

Average embedding dimension

1/p	Lower Bound	$\overline{e(S)}$	Upper bound
4.00	2.21	2.79	7.75
75.14	2.95	9.05	150.27
146.29	2.97	10.67	292.56
217.43	2.98	12.28	434.85
288.57	2.99	12.94	577.14
359.71	2.99	13.65	719.43
430.86	2.99	14.14	861.71
502.00	2.99	14.73	1,004.00
573.14	2.99	15.29	1,146.28
644.29	2.99	16.17	1,288.57
715.43	2.99	16.07	1,430.86
786.57	2.99	16.34	1.573.14
857.71	3.00	16.61	1,715.43
928.86	3.00	17.39	1,857.71
1,000.00	3.00	17.22	2,000.00

Table: Average embedding dimension of random numerical semigroups generated using the ER-type model (15 samples of 1000 random numerical semigroups).

Average embedding dimension plot

Figure: Average embedding dimension of random numerical semigroups generated using the ER-type model.

Average Frobenius number

1/p	Lower Bound	$\overline{F(S)}$	Upper bound
4.00	7.26	13.96	46.50
75.14	218.56	1,088.82	22,283.25
146.29	431.93	2,483.26	85,010.91
217.43	645.33	4,174.94	188,229.03
288.57	858.75	5,859.29	331,937.60
359.71	1,072.17	7,794.18	516,136.62
430.86	1,285.59	9,594.56	740,826.09
502.00	1,499.02	11,533.38	1,006,006.00
573.14	1,712.45	13,765.73	1,311,676.37
644.29	1,925.87	16,239.19	1,657,837.19
715.43	2,139.30	17,769.34	2,044,488.45
786.57	2,352.73	19,806.19	2,471,630.17
857.71	2,566.15	22,157.78	2,939,262.33
928.86	2,779.58	25,079.10	3,447,384.94
1,000.00	2,993.01	26,637.46	3,995,998.00

Table: Average Frobenius number of random numerical semigroups generated using the ER-type model (15 samples of 1000 random numerical semigroups).

Average Frobenius number plot

Figure: Average Frobenius number of random numerical semigroups generated using the ER-type model vs $4(1/p)\log(1/p)$

Numerical semigroup visualization

Figure: ER-type random numerical semigroup, 1/p = 10.

Numerical semigroup visualization

Figure: ER-type random numerical semigroup, 1/p = 100.

Results

Main result

Theorem

Let $S \sim S(M, p)$, where p = p(M) is a monotone decreasing function of M and $\frac{1}{M} \in o(p(M))$. Then,

1 If $\lim_{M\to\infty} p(M) = 0$, then for every $K \in \mathbb{N}$,

$$\lim_{M\to\infty}\Pr[e(\mathcal{S})>K]=\lim_{M\to\infty}\Pr[g(\mathcal{S})>K]=\lim_{M\to\infty}\Pr[F(\mathcal{S})>K]=1.$$

② If $\lim_{M\to\infty} p(M) > 0$, then e(S), g(S) and F(S) are bounded in probability, i.e., for every $\varepsilon > 0$, there exists K_{ε} such that

$$\Pr[\textbf{e}(\mathcal{S}) < \textit{K}_{\varepsilon}] > 1 - \varepsilon, \quad \Pr[\textbf{g}(\mathcal{S}) < \textit{K}_{\varepsilon}] > 1 - \varepsilon \quad \textit{and} \quad \Pr[\textbf{F}(\mathcal{S}) < \textit{K}_{\varepsilon}] > 1 - \varepsilon.$$

Furthermore, for every φ, ψ such that $(\log x)^2 \in o(\varphi(x))$, $x(\log x)^2 \in o(\psi(x))$,

$$\lim_{\rho \to 0} \Pr \left[\mathsf{e}(\mathcal{S}) < \varphi \left(\frac{1}{\rho} \right) \right] = \lim_{\rho \to 0} \Pr \left[\mathsf{g}(\mathcal{S}) < \psi \left(\frac{1}{\rho} \right) \right] = \lim_{\rho \to 0} \Pr \left[\mathsf{F}(\mathcal{S}) < \psi \left(\frac{1}{\rho} \right) \right] = 1.$$

Lower bound

Theorem

Let $S \sim S(M, p)$, where p = p(M) is a monotone decreasing function of M and $\frac{1}{M} \in o(p(M))$. If $\lim_{M \to \infty} p(M) = 0$, then for every $K \in \mathbb{N}$,

$$\lim_{M\to\infty}\Pr[\textbf{e}(\mathcal{S})>K]=\lim_{M\to\infty}\Pr[\textbf{g}(\mathcal{S})>K]=\lim_{M\to\infty}\Pr[\textbf{F}(\mathcal{S})>K]=1.$$

To prove this theorem, we show that, for each fixed number of generators a, there is a high probability that at least a minimal generators are chosen as $p \to 0$.

Sums of random subsets of cyclic groups

Before proving the upper bound, we use the second moment method to prove a lemma that shows that a cyclic group of prime order is covered by the sums of a random subset of logarithmic size almost always.

Lemma

Let q be a prime number and $\mathcal A$ be a random subset of $\mathbb Z_q$ of size $4\lfloor 3\log_2 q\rfloor$. As q tends to infinity, $2\lfloor 3\log_2 q\rfloor \mathcal A$ covers $\mathbb Z_q$ almost always.

Upper bound

Lemma

Let $\psi(x)$ be a function for which $x(\log x)^2 \in o(\psi(x))$.Then

$$\lim_{\rho \to 0} \Pr \left[F(\mathcal{S}) \le \psi \left(\frac{1}{\rho} \right) \right] = 1.$$

This result implies the bound for the other invariants.

Upper bound proof strategy

The proof of this lemma consists of several parts. The strategy is to prove that the Ápery set of a subsemigroup of S is completed before step $\psi\left(\frac{1}{p}\right)$ with high probability, since F(S) is less than the maximum element of this Ápery set. The proof has the following structure:

- First, using the prime number theorem, we find a step for which a prime q is chosen with high probability (E_1) .
- ② Then, in the spirit of cyclic group lemma we find a step such that a set \mathcal{A} of s elements which are different modulo q are chosen with high probability (E_2) .
- **③** Finally, we apply the cyclic group lemma to $\operatorname{Ap}(\langle \mathcal{A} \cup \{q\} \rangle, q)$.

Selected References

- [1] J. De Loera, C. O'Neill, and D. Wilburne, "Random numerical semigroups and a simplicial complex of irreducible semigroups," The Electronic Journal of Combinatorics, P4–37, 2018
- [2] N. Alon and J. H. Spencer, The Probabilistic Method. John Wiley & Sons, 2016