4th Meet

□ 오늘 공부할 것은

	01. 정확도(Accuracy)	146
03	02. 오차 행렬	150
평가	03. 정밀도와 재현율	154
	정밀도/재현율 트레이드오프	157
	정밀도와 재현율의 맹점	165
	04. F1 스코어	166
	05. ROC 곡선과 AUC	167
	06. 피마 인디언 당뇨병 예측	172
	07. 정리	180

Now, It's your turn P.P.P.

40min ~ 50min

Chapter 03

剪汁

- [03-01] 정확도 (Accuracy)
- [03-02] 오차행렬 (Confusion Matrix)
- [03-03] 정밀도와 재현율 (Precision & Recall)
- [03-04] F1 스코어 (F1 Score)
- [03-05] ROC 곡선과 AUC
 - ROC Curve : Receiver Operation Characteristic Curve
 - AUC Score : Area Under Curve Score
- [03-06] 피마 인디언 당뇨병 예측
- [03-07] 정리

[03-01] 전화도 (Accuracy)

□ 정확도의 성능 왜곡

정확도 (Accuracy) =

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
def fillna(df):
   df['Age'].fillna(df['Age'].mean(), inplace=True)
   df['Cabin'].fillna('N', inplace=True)
   df['Embarked'].fillna('N', inplace=True)
   df['Fare'].fillna(0, inplace=True)
   return df
def drop features(df):
   df.drop(['PassengerId', 'Name', 'Ticket'], axis=1, inplace=True)
    return df
def format features(df):
   df['Cabin'] = df['Cabin'].str[:1]
   features = ['Cabin', 'Sex', 'Embarked']
   for feature in features:
        le = LabelEncoder()
        le = le.fit(df[feature])
        df[feature] = le.transform(df[feature])
   return df
def transform features(df):
   df = fillna(df)
   df = drop features(df)
   df = format features(df)
   return df
import pandas as pd
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
df = pd.read csv('./titanic train.csv')
y df = df['Survived']
X df = df.drop('Survived', axis=1)
X df = transform features(X df)
X train, X test, y train, y test = train test split(X df, y df, test size=0.2, random state=0)
```

= 예측 결과가 동일한 데이터 건수 전체 예측 데이터 건수

```
import numpy as np
from sklearn.base import BaseEstimator
class MyDummyClassifier(BaseEstimator):
    def fit(self, X , y=None):
        pass
    def predict(self, X):
        pred = np.zeros( ( X.shape[0], 1 ))
        for i in range (X.shape[0]) :
            if X['Sex'].iloc[i] == 1:
                pred[i] = 0
            else :
                pred[i] = 1
        return pred
myclf = MyDummyClassifier()
myclf.fit(X train , y train)
mypredictions = myclf.predict(X test)
accuracy score(y test , mypredictions)
0.7877094972067039
```

'여성'의 생존을 만으로 정확도 높이기

□ 불균형 레이블 (imbalanced label)

```
from sklearn.datasets import load digits
digits = load digits()
digits.data.shape, digits.target.shape
((1797, 64), (1797,))
digits.target
array([0, 1, 2, ..., 8, 9, 8])
y = (digits.target == 7).astype(int)
array([0, 0, 0, ..., 0, 0, 0])
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(digits.data, y, test size=0.2, random state=11)
y train.shape, y test.shape
((1437,), (360,))
import pandas as pd
pd.Series(y_test).value_counts()
     324
      36
Name: count, dtype: int64
```

0~9 중에서 7을 맞추기

→ 무조건 False라고 해도 90%

```
from sklearn.base import BaseEstimator
from sklearn.metrics import accuracy_score

class MyFakeClassifier(BaseEstimator):
    def fit(self,X,y):
        pass

    def predict(self,X):
        return np.zeros( (len(X), 1) , dtype=bool)

fake_clf = MyFakeClassifier()
fake_clf.fit(X_train , y_train)

fake_pred = fake_clf.predict(X_test)
accuracy_score(y_test , fake_pred)

0.9
```

[03-02] 오차 행렬 (Confusion Matrix)

☐ Confusion Matrix

☐ Confusion Matrix

```
from sklearn.datasets import load digits
from sklearn.model selection import train test split
from sklearn.base import BaseEstimator
from sklearn.metrics import accuracy score
import numpy as np
digits = load digits()
y = (digits.target == 7).astype(int)
X train, X test, y train, y test = train test split(digits.data, y, test size=0.2, random state=11)
class MyFakeClassifier(BaseEstimator):
    def fit(self,X,y):
        pass
    def predict(self,X):
        return np.zeros( (len(X), 1) , dtype=bool)
fake clf = MyFakeClassifier()
fake clf.fit(X train , y train)
fake pred = fake clf.predict(X test)
accuracy score(y test , fake pred)
0.9
```

예측 클래스

(Predicted Class) Negative(0) Positive(1) Negative(0) TN FP (False Positive) 실제 클래스 (Actual Class) FN TP (True Positive)

7이 아니라고 예측했는데, 정말 아닌 경우 324건 7이 아니라고 예측했는데, 7인 경우 36건

☐ Confusion Matrix

예측 클래스 (Predicted Class)

	Negative(0)	Positive(1)
Negative(0)	TN (True Negative)	F P (False Positive)
실제 클래스 (Actual Class)	FN	TP
Positive(1)	(False Negative)	(True Positive)

정확도
$$(Accuracy) = \frac{$$
 예측 결과가 동일한 데이터 건수 $}{$ 전체 예측 데이터 건수 $} = \frac{TN + TP}{TN + FP + FN + TP}$

[03-03] 정밀도와 재현율 (Precision & Recall)

□ 정밀도와 재현율 (Precision & Recall)

Positive로 예측한 것 중에서

정말 Positive한 데이터 비율

정밀도 (
$$Precision$$
) = $\frac{TP}{FP + TP}$

재현율 (
$$Recall$$
) = $\frac{TP}{FN + TP}$

실제 Positive로 데이터 중에서

Positive로 예측한 비율 = 민감도(Sensitivity)

= TPR(True Positive Rate)

예측 클래스 (Predicted Class)

	Negative(0)	Positive(1)
Negative(0)	TN (True Negative)	F P (False Positive)
실제 클래스 (Actual Class) Positive(1)	FN (False Negative)	T P (True Positive)

□ 정밀도와 재현율 (Precision & Recall)

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
def fillna(df):
   df['Age'].fillna(df['Age'].mean(), inplace=True)
   df['Cabin'].fillna('N', inplace=True)
   df['Embarked'].fillna('N', inplace=True)
   df['Fare'].fillna(0, inplace=True)
    return df
def drop features(df):
    df.drop(['PassengerId', 'Name', 'Ticket'], axis=1, inplace=True)
    return df
def format features(df):
   df['Cabin'] = df['Cabin'].str[:1]
    features = ['Cabin', 'Sex', 'Embarked']
   for feature in features:
        le = LabelEncoder()
        le = le.fit(df[feature])
        df[feature] = le.transform(df[feature])
    return df
def transform features(df):
   df = fillna(df)
   df = drop features(df)
   df = format features(df)
    return df
df = pd.read csv('./titanic train.csv')
y df = df['Survived']
X df= df.drop('Survived', axis=1)
X df = transform features(X df)
X train, X test, y train, y test = train test split(X df, y df,
                                                    test size=0.20,
                                                    random state=11)
```

```
from sklearn.metrics import accuracy score, precision score, recall score, confusion matrix
def get clf eval(v test , pred):
    confusion = confusion matrix( y test, pred)
    accuracy = accuracy score(y test , pred)
    precision = precision score(y test , pred)
    recall = recall score(y test , pred)
    print('오차 행렬')
    print(confusion)
    print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현을: {2:.4f}'.format(accuracy , precision ,recall))
from sklearn.linear model import LogisticRegression
lr clf = LogisticRegression(max iter=200)
lr clf.fit(X train , y train)
pred = lr clf.predict(X test)
get clf eval(y test , pred)
오차 햇렬
[[104 14]
 [ 13 48]]
정확도: 0.8492, 정밀도: 0.7742, 재현율: 0.7869
```

□ Trade-Off - predict_proba()

predīct_proba()의 화물을 이용해서
Precīsīon과 Recall 조정 가능 → 분류 결정 임계값 (threshold)

```
pred proba = lr clf.predict proba(X test)
pred proba[:3]
array([[0.4622624 , 0.5377376 ],
       [0.87876959, 0.12123041],
       [0.87722282, 0.12277718]])
pred.reshape(-1,1)[:3]
array([[1],
       [0],
       [0]])
import numpy as np
pred proba result = np.concatenate([pred proba , pred.reshape(-1,1)],axis=1)
pred proba result[:3]
array([[0.4622624 , 0.5377376 , 1.
                                          1,
                                         1,
       [0.87876959, 0.12123041, 0.
                                          11)
       [0.87722282, 0.12277718, 0.
```

☐ Trade-Off - Binarizer

임계 값을 기준으로 결과를 분류

여기에서는 predict_proba()의
positive 항목을 기준으로
부류하도록 구현

```
pred proba 1 = pred proba[:,1].reshape(-1,1)
pred proba 1[:3]
array([[0.5377376],
       [0.12123041].
       [0.12277718]])
custom threshold = 0.5
binarizer = Binarizer(threshold=custom threshold)
custom predict = binarizer.fit transform(pred proba 1)
custom predict[:3]
array([[1.],
       [0.].
      [0.1])
get clf eval(v test, custom predict)
오차 행렬
[104 14]
[ 13 48]]
정확도: 0.8492, 정밀도: 0.7742, 재현율: 0.7869
custom threshold = 0.4
binarizer = Binarizer(threshold=custom threshold)
custom predict = binarizer.fit transform(pred proba 1)
get clf eval(y test , custom predict)
오차 행렬
[[98 20]
[10 51]]
정확도: 0.8324, 정밀도: 0.7183, 재현율: 0.8361
```

Accuracy vs. Precision vs. Recall

```
thresholds = [0.4, 0.45, 0.50, 0.55, 0.60]
def get eval by threshold(y_test , pred_proba_c1, thresholds):
    for custom threshold in thresholds:
       binarizer = Binarizer(threshold=custom threshold)
       custom predict = binarizer.fit transform(pred proba cl)
       print('임곗값:',custom threshold)
       get clf eval(y test , custom predict)
       print()
get eval by threshold(y test ,pred proba[:,1].reshape(-1,1), thresholds )
임곗값: 0.4
오차 행렬
[[98 20]
 [10 51]]
정확도: 0.8324, 정밀도: 0.7183, 재현율: 0.8361
임곗값: 0.45
오차 행렬
[[103 15]
[ 12 49]]
정확도: 0.8492, 정밀도: 0.7656, 재현율: 0.8033
임곗값: 0.5
오차 행렬
[[104 14]
[ 13 48]]
정확도: 0.8492, 정밀도: 0.7742, 재현율: 0.7869
임곗값: 0.55
오차 행렬
[[109 9]
 [ 15 46]]
정확도: 0.8659, 정밀도: 0.8364, 재현율: 0.7541
임곗값: 0.6
오차 행렬
[[112 6]
[ 16 45]]
정확도: 0.8771, 정밀도: 0.8824, 재현율: 0.7377
```

☐ Trade-Off - precision_recall_curve()

```
from sklearn.metrics import precision_recall_curve

lr_clf = LogisticRegression(max_iter=200)
lr_clf.fit(X_train , y_train)

pred_proba_class1 = lr_clf.predict_proba(X_test)[:, 1]
pred_proba_class1[:5]

array([0.5377376 , 0.12123041, 0.12277718, 0.11755966, 0.14473053])
```

```
precisions, recalls, thresholds = precision recall curve(y test, pred proba class1)
print('반환된 분류 결정 임곗값 배열의 Shape:', thresholds.shape)
print('반환된 precisions 배열의 Shape:', precisions.shape)
print('반환된 recalls 배열의 Shape:', recalls.shape)
print()
print("thresholds 5 sample:", thresholds[:5])
print("precisions 5 sample:", precisions[:5])
print("recalls 5 sample:", recalls[:5])
print()
thr index = np.arange(0, thresholds.shape[0], 15)
print('샘플 추출을 위한 임계값 배열의 index 11개:', thr index)
print('샘플용 11개의 임곗값: ', np.round(thresholds[thr index], 2))
print('샘플 임계값별 정밀도: ', np.round(precisions[thr index], 3))
print('샘플 임계값별 재현율: ', np.round(recalls[thr index], 3))
반환된 분류 결정 임곗값 배열의 Shape: (165,)
반환된 precisions 배열의 Shape: (166,)
반환된 recalls 배열의 Shape: (166,)
thresholds 5 sample: [0.01157964 0.05285578 0.06228381 0.06364646 0.06863153]
precisions 5 sample: [0.34078212 0.34269663 0.34463277 0.34659091 0.34857143]
recalls 5 sample: [1. 1. 1. 1. 1.]
샘플 추출을 위한 임계값 배열의 index 11개: [ 0 15 30 45 60 75 90 105 120 135 150]
샘플용 11개의 임곗값: [0.01 0.09 0.11 0.13 0.15 0.23 0.35 0.5 0.63 0.75 0.89]
샘플 임계값별 정밀도: [0.341 0.372 0.415 0.448 0.505 0.585 0.688 0.774 0.913 0.935 0.938]
샘플 임계값벌 재현율: [1. 1. 0.967 0.918 0.902 0.902 0.869 0.787 0.689 0.475 0.246]
```

```
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
%matplotlib inline
def precision recall curve plot(y test , pred proba cl):
    precisions, recalls, thresholds = precision recall curve( y test, pred proba c1)
    plt.figure(figsize=(6,4))
    threshold boundary = thresholds.shape[0]
    plt.plot(thresholds, precisions[0:threshold boundary], linestyle='--', label='precision')
    plt.plot(thresholds, recalls[0:threshold boundary], label='recall')
    start, end = plt.xlim()
    plt.xticks(np.round(np.arange(start, end, 0.1),2))
    plt.xlabel('Threshold value'); plt.ylabel('Precision and Recall value')
    plt.legend(); plt.grid()
    plt.show()
precision recall curve plot( y test, lr clf.predict proba(X test)[:, 1] )
  1.0
Precision and Recall value
         --- precision
          - recall
    -0.04 0.06 0.16 0.26 0.36 0.46 0.56 0.66 0.76 0.86 0.96
                              Threshold value
```

[03-04] FI 스코어 (FI Score) ☐ F1 Score

$$71 = \frac{2}{\frac{1}{recall} + \frac{1}{precision}} = 2 \times \frac{precision \times recall}{precision + recall}$$

precision과 recall의 조화평균

```
from sklearn.metrics import accuracy score, precision score, recall score, confusion matrix, f1 score
def get clf eval(y test , pred):
   confusion = confusion matrix( y test, pred)
   accuracy = accuracy score(y test , pred)
   precision = precision score(y test , pred)
   recall = recall score(y test , pred)
   f1 = f1 score(y test,pred)
   print('오차 행렬')
   print(confusion)
   print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현을: {2:.4f}, F1:{3:.4f}'.format(accuracy, precision, recall, f1))
from sklearn.preprocessing import Binarizer
def get eval by threshold(y test , pred proba c1, thresholds):
   for custom threshold in thresholds:
       binarizer = Binarizer(threshold=custom threshold)
       custom predict = binarizer.fit transform(pred proba cl)
       print('임곗값:',custom threshold)
       get clf eval(y test , custom predict)
       print()
```

```
pred proba = lr clf.predict proba(X test)
thresholds = [0.4, 0.45, 0.50, 0.55, 0.60]
get eval by threshold(y test, pred proba[:,1].reshape(-1,1), thresholds)
입계값: 0.4
오차 햇렬
[[98 20]
[10 51]]
정확도: 0.8324, 정밀도: 0.7183, 재현율: 0.8361, F1:0.7727
임곗값: 0.45
오차 햇렬
[[103 15]
[ 12 49]]
정확도: 0.8492, 정밀도: 0.7656, 재현율: 0.8033, F1:0.7840
임곗값: 0.5
오차 행렬
[[104 14]
[ 13 48]]
정확도: 0.8492, 정밀도: 0.7742, 재현율: 0.7869, F1:0.7805
임곗값: 0.55
오차 행렬
[[109 9]
[ 15 46]]
정확도: 0.8659, 정밀도: 0.8364, 재현율: 0.7541, F1:0.7931
임곗값: 0.6
오차 햇렬
[[112 6]
[ 16 45]]
정확도: 0.8771, 정밀도: 0.8824, 재현율: 0.7377, F1:0.8036
```

[03-05]
ROC 子ゼュト AUC
(ROC Curve and AUC Score)

□ ROC 곡선 (Receiver Operation Characteristic Curve, 수신자 판단 곡선)

- FPR(False Positive Rate)이 변할 때 TPR(True Positive Rate)이 어떻게 변하는지를 표현

재현율
$$(Recall) = TPR(민감도, 양성률) = \frac{TT}{FN + TR}$$

True Positive Ratio (Sensitivity) TN

$$TNR(특이도) = \frac{TN}{FP + TN}$$
True Negative Ratio (Specificity)

$$FPR$$
(위양성률) = $\frac{FP}{FP + TN}$
False Positive Ratio = $1 - TNR$

□ ROC 곡선 (Receiver Operation Characteristic Curve, 수신자 판단 곡선)

〈ROC 곡선 예시〉

False Positive rate (100-Specificity)

임계값=1

분류 결정 임계값(threshold) 변경을 통해 FPR 변경

□ ROC 곡선 - roc_curve

```
import numpy as np
from sklearn.metrics import roc curve
pred proba class1 = lr clf.predict proba(X test)[:, 1]
print('max predict proba:', np.max(pred proba class1))
fprs , tprs , thresholds = roc curve(y test, pred proba class1)
print('thresholds[0]:', thresholds[0])
thr index = np.arange(1, thresholds.shape[0], 5)
print()
print('샘플 추출을 위한 임곗값 배열의 index:', thr index)
print('샘플 index로 추출한 임곗값: ', np.round(thresholds[thr index], 2))
print()
print('샘플 임곗값벌 FPR: ', np.round(fprs[thr index], 3))
print('샘플 임곗값별 TPR: ', np.round(tprs[thr index], 3))
max predict proba: 0.9650575313348472
thresholds[0]: inf
샘플 추출을 위한 임곗값 배열의 index: [ 1 6 11 16 21 26 31 36 41 46 51]
샘플 index로 추출한 임곗값: [0.97 0.65 0.63 0.56 0.45 0.4 0.35 0.15 0.13 0.11 0.11]
                       0.017 0.034 0.076 0.127 0.169 0.203 0.466 0.585 0.686 0.797]
샘플 임곗값벌 TPR: [0.033 0.639 0.721 0.754 0.803 0.836 0.885 0.902 0.934 0.967 0.984]
```

```
pred proba class1 = lr clf.predict proba(X test)[:, 1]
print('max predict proba:', np.max(pred proba class1))
fprs , tprs , thresholds = roc curve(v test, pred proba class1)
print('thresholds[0]:', thresholds[0])
thr index = np.arange(0, thresholds.shape[0], 5)
print()
print('샘플 추출을 위한 임곗값 배열의 index 10개:', thr index)
print('샘플용 10개의 임곗값: ', np.round(thresholds[thr index], 2))
print('샘플 임곗값별 FPR: ', np.round(fprs[thr index], 3))
print('샘플 임곗값별 TPR: ', np.round(tprs[thr index], 3))
max predict proba: 0.9650575313348472
thresholds[0]: inf
샘플 추출을 위한 임곗값 배열의 index 10개: [ 0 5 10 15 20 25 30 35 40 45 50]
샘플용 10개의 임곗값: [ inf 0.75 0.63 0.59 0.49 0.4 0.35 0.23 0.13 0.12 0.11]
샘플 임곗값벌 FPR: [0,
                       0.017 0.034 0.051 0.127 0.161 0.203 0.331 0.585 0.636 0.797]
샘플 임곗값벌 TPR: [0.
                       0.475 0.689 0.754 0.787 0.836 0.869 0.902 0.918 0.967 0.967]
```

□ ROC 곡선 - roc_curve

```
import matplotlib.pyplot as plt
%matplotlib inline
def roc_curve_plot(y_test , pred_proba_c1):
   fprs , tprs , thresholds = roc_curve(y_test ,pred_proba_c1)
    plt.figure(figsize=(5,3))
   plt.plot(fprs , tprs, label='ROC')
    plt.plot([0, 1], [0, 1], 'k--', label='Random')
   start, end = plt.xlim()
   plt.xticks(np.round(np.arange(start, end, 0.1),2))
   plt.xlim(0,1); plt.ylim(0,1)
   plt.xlabel('FPR( 1 - Sensitivity )'); plt.ylabel('TPR( Recall )')
   plt.legend()
   plt.show()
roc curve_plot(y_test, lr_clf.predict_proba(X_test)[:, 1] )
   1.0
   0.8
TPR( Recall )
9.0
9.0
   0.2
                                                 ROC
                                             -- Random
       0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
                       FPR(1 - Sensitivity)
```

[03-06] 피마 인디언 당뇨병 예측 (Pīma Indīans Dīabetes)

□ Dataset

미국 아리조나주 피마 인디언과 멕시코 피마 인디언은 유전자가 같은 형제 부족이다. 멕시코 피마 인디언은 여전히 '몸짱'을 자랑하다며 날렸하고 건강한 모습으로 생활하고 있지만 예전에 강인한 체력을 자랑했던 아리조나 주 피마 인디언은 부족의 70%가 당도를 잃고 있는 세계 최악의 '당도병 부족'이라는 오명을 안고 살아가고 있다. 그들이 특별히 당도에 취약한 유전자를 물려받은 건 아닐까? 그렇다면 멕시코 피마 인디언은 왜 당도, 암, 심장병이 없이 건강히 살아가고 있는 걸까?

https://www.britannica.com/topic/Pima-people

http://www.historyadventuring.com/2015/06/the-pima-indians-living-in-desert-for.html

※ 출처: https://www.jejusori.net/news/articleView.html?idxno=106341

□ Dataset

북아메리카 피아 지역 원주민의 당뇨병 결과 데이터

Pregnancies	임신 횟수
Glucose	포도당 부하 검사 수치
BloodPressure	혈압 (mm Hg)
SkinThickness	팔 삼두근 뒤쪽 피하지방 (mm)
Insulin	혈청 인슐린 (mu U/ml)
ВМІ	체질량 지수
DiabetesPedigreeFunction	당뇨 내력 가중치 값
Age	나이
Outcome	클래스 결정 값 (0 또는 1)

※ 출처: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

□ 데이터 불러오기 및 살펴보기

	gnancies Glu	cose Bloodi	Pressure SkinTh	nickness Insulin	BMI Diat	oetes Pedigree	Function	Age	Outcome		
0	6	148	72	35 (33.6		0.627	50	1		
1	1	85	66	29 (26.6		0.351	31	0		
2	8	183	64	0 0	23.3		0.672	32	1		
df.de	scribe() Pregnancies	Clurose	BloodPressure	SkinThickness	Insulin	NOIEH는 7		25 /28	O(TF →	이크디 -	를 필요 Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000		Diabete	sredig		768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578			0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160			0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000			0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000			0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000			0.372500	29.000000	0.000000
3076	6.000000	140.250000	80,000000	32.000000	127.250000	36.600000			0.626250	41.000000	1.000000
75%	0.000000								2,420000	81.000000	

□ Baseline 확인

0.42 정도면 precision과 recall 균형적일 듯 하지만, 0.7이 안되는 수치 → 데이터 정비 필요

□ 결측치 / 0 값 처리

```
df.isnull().sum()
Pregnancies
Glucose
                                 결측되는 없는데,
BloodPressure
SkinThickness
Insulin
BMI
DiabetesPedigreeFunction
Outcome
                                            0의 값이 너무 많음 → 삭제하기에는 데이터가 부족
dtype: int64
total count = df['Glucose'].count()
zero features = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
for feature in zero features:
   zero count = df[df[feature] == 0][feature].count()
   print('{0:>13} 0 건수는 {1:>3}, 퍼센트는 {2:5.2f} %'.format(feature, zero count, 100*zero count/total count))
     Glucose 0 건수는 5, 퍼센트는 0.65%
BloodPressure 0 건수는 35, 퍼센트는 4.56%
SkinThickness 0 건수는 227, 퍼센트는 29.56 %
     Insulin 0 건수는 374, 퍼센트는 48.70 %
                                                     लिस्ट्रेस पात्रा
         BMI 0 건수는 11, 퍼센트는 1.43 %
df[zero features] = df[zero features].replace(0, df[zero features].mean())
for feature in zero features:
   zero count = df[df[feature] == 0][feature].count()
   print('{0:>13} 0 건수는 {1:>3}, 퍼센트는 {2:5.2f} %'.format(feature, zero count, 100*zero count/total count))
     Glucose 0 건수는 0, 퍼센트는 0.00 %
BloodPressure 0 건수는 0, 퍼센트는 0.00%
SkinThickness 0 건수는 0, 퍼센트는 0.00%
     Insulin 0 건수는 0, 퍼센트는 0.00%
         BMI 0 건수는 0, 퍼센트는 0.00%
```

☐ Standardization

```
from sklearn.preprocessing import StandardScaler
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
                                      Standardization 적용
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
X train, X test, y train, y test = train test split(X scaled, y, test size = 0.2, random state = 156, stratify=y)
X train.shape, X test.shape
((614, 8), (154, 8))
lr_clf = LogisticRegression(max_iter=200)
lr clf.fit(X train , y train)
pred = lr clf.predict(X test)
pred proba class1 = lr clf.predict proba(X test)[:, 1]
get clf eval(y test , pred, pred proba class1)
                                                      살짝 개선
오차 행렬
[[90 10]
 [21 33]]
정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC:0.8433
```

☐ Threshold Set

```
from sklearn.preprocessing import Binarizer
def get eval by threshold(y test, pred proba cl, thresholds):
   for custom threshold in thresholds:
       binarizer = Binarizer(threshold=custom threshold)
       custom predict = binarizer.fit transform(pred proba cl.reshape(-1,1))
       print('엄곗값:', custom threshold)
       get clf eval(y test, custom predict, pred proba cl)
       print()
pred proba class1 = lr clf.predict proba(X test)[:,1]
thresholds = [0.3, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.50]
get eval by threshold(v test, pred proba class1, thresholds)
임계값: 0.3
오차 행렬
[[67 33]
[11 43]]
정확도: 0.7143, 정밀도: 0.5658, 재현율: 0.7963, F1: 0.6615, AUC:0.8433
임곗값: 0.33
오차 행렬
[[72 28]
[12 42]]
정확도: 0.7403, 정밀도: 0.6000, 재현율: 0.7778, F1: 0.6774, AUC:0.8433
임곗값: 0.36
오차 햇렬
[[76 24]
[15 39]]
정확도: 0.7468, 정밀도: 0.6190, 재현율: 0.7222, F1: 0.6667, AUC:0.8433
```

```
임곗값: 0.39
오차 행렬
[[78 22]
[16 38]]
정확도: 0.7532, 정밀도: 0.6333, 재현율: 0.7037, F1: 0.6667, AUC:0.8433
임곗값: 0.42
오차 행렬
[[84 16]
[18 36]]
정확도: 0.7792, 정밀도: 0.6923, 재현율: 0.6667, F1: 0.6792, AUC:0.8433
임곗값: 0.45
오차 행렬
[[85 15]
[18 36]]
정확도: 0.7857, 정밀도: 0.7059, 재현율: 0.6667, F1: 0.6857, AUC:0.8433
임곗값: 0.48
오차 행렬
[[88 12]
 [19 35]]
정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481, F1: 0.6931, AUC:0.8433
임곗값: 0.5
오차 행렬
[[90 10]
[21 33]]
정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC:0.8433
binarizer = Binarizer(threshold=0.48)
pred th 048 = binarizer.fit transform(pred proba class1.reshape(-1,1))
get clf eval(y test , pred th 048, pred proba class1)
오차 행렬
[[88 12]
[19 35]]
정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481, F1: 0.6931, AUC:0.8433
```

You've really worked hard today

Next Week ~?

風料		
	0.0120	400
	04, F1 스코어	186
	05. ROC 곡선과 AUC	167
	06. 피마 인디언 당뇨병 예측	172
	07. 정리	180
	01. 분류(Classification)의 개요	181
04	02. 결정 트리	183
是異	결정 트리 모델의 특징	185
在行	결정 트리 파라미터	186
	결정 트리 모델의 시각화	187
	결정 트리 과적함(Overlitting)	198
	결정 트리 싫습 - 사용자 행동 인식 데이터 세트	200
	03. 앙상불 학습	210
	당상불 학습 개요	210
	보팅 유형 - 하드 보팅(Hard Voting)과 소프트 보팅(Soft Voting)	212
	보팅 분류기(Voting Classifier)	213
	04. 랜덤 포레스트	216
	랜댐 포레스트의 개요 및 실습	216
	랜덤 포레스트 하이퍼 파라미터 및 튜닝	218
	GBM의 개요 및 싶습	221
	05. GBM(Gradient Boosting Machine)	221
	GBM 하이퍼 파라미터 소개	224
	XGBoost 76Ω	225

		목차 XI
	06. XGBoost(eXtra Gradient Boost)	225
	XGBoost 설치하기	227
	파이썬 래퍼 XGBoost 하이퍼 파라미터	228
l	파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측	232
	사이킷런 래퍼 XGBoost의 개요 및 적용	240
	07.LightGBM	244
	LightGBM 설치	246
	LightGBM 하이퍼 파라미터	247
	하이퍼 파라미터 튜닝 방안	248
	파이썬 래퍼 LightGBM과 사이킷런 래퍼 XGBoost,	
	LightGBM 하이퍼 파라미터 비교	249
	LightGBM 적용 - 위스콘신 유방암 예측	250
	08. 베이지안 최적화 기반의 HyperOpt를 이용한	
	하이퍼 파라미터 튜닝	253
	베이지안 최적화 개요	254
	HyperOpt 사용하기	256
	HyperOpt를 이용한 XGBoost 하이퍼 파라미터 최적화	262
	09. 분류 실습 - 캐글 산탄데르 고객 만족 예측	267
	데이터 전처리	268
	XGBoost 모델 학습과 하이퍼 파라미터 튜닝	271
	LightGBM 모델 학습과 하이퍼 파라미터 튜닝	276
	10. 분류 실습 - 캐글 신용카드 사기 검출	279
	언더 생플링과 오버 생플링의 이해	279
	데이터 일차 가공 및 모델 학습/예측/평가	281
	데이터 분포도 변환 후 모델 학습/예측/평가	285
	이상치 데이터 제거 후 모델 학습/예측/평가	288
	SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가	292
	OHO! L 보이 마음이 가이 구 보는 기반/세국/ 6/1	202

Who ~?

See you Next Weekend ~?