Jacob Sayono

505368811 MAE C163B Project 4

Contents

- Equations of Motion Derivation
- Newton-Euler Formulation
- Design Trajectory
- Inertia Tensor

Equations of Motion -- Derivation

```
clear all; close all; clc

syms 11 12 t1 t2 t3 m1 m2 dt1 dt2 ddt1 ddt2 g f3x f3y n3z

L(1) = Link('revolute','d', 0, 'a', 0, 'alpha', 0 ,'modified');
L(2) = Link('revolute','d', 0, 'a', 11, 'alpha', 0 ,'modified');
L(3) = Link('revolute','d', 0, 'a', 12, 'alpha', 0 ,'modified');

RR = SerialLink(L, 'name', 'RR-Manipulator');
```

Newton-Euler Formulation

```
th = [t1 t2 0]
T_01 = RR.A([1], th);
T_12 = RR.A([2], th);
T_2T = RR.A([3], th);
T_0T = RR.A([1 2 3], th);
T_0T = simplify(T_0T)
[R_01, P_01] = tr2rt(T_01); R_10 = transpose(R_01);
[R_12, P_12] = tr2rt(T_12); R_21 = transpose(R_12);
[R_2T, P_2T] = tr2rt(T_2T); R_32 = transpose(R_2T);
[R_0T, P_0T] = tr2rt(T_0T);
R_0T = simplify(R_0T)
P_0T = simplify(P_0T)
PC1 = [11/2; 0; 0];
PC2 = [12/2; 0; 0];
IC1 = (1/12) * m1 * 11^2 * [0 0 0; 0 1 0; 0 0 1];
IC2 = (1/12) * m2 * 12^2 * [0 0 0; 0 1 0; 0 0 1];
f3 = [f3x; f3y; 0];
n3 = [0;0;n3z];
w0 = zeros(3,1);
wd0 = zeros(3,1);
v0 = zeros(3,1);
vd0 = [0; 0; -g];
% Inward Iteration
w1 = R_10 * w0 + dt1*R_01(1:3,3)
wd1 = R_10 * wd0 + R_10 * cross(w0, dt1*R_01(1:3,3)) + ddt1*R_01(1:3,3)
vd1 = R_10 * (cross(wd0, P_01) + cross(w0, cross(w0, P_01)) + vd0)
vcd1 = cross(wd1,PC1) + cross(w1,cross(w1,PC1)) + vd1
F1 = m1 * vcd1
N1 = IC1 * wd1 + cross(w1,IC1*w1)
w2 = R_21 * w1 + dt2*R_12(1:3,3)
wd2 = R_21 * wd1 + R_21 * cross(w1, dt2*R_12(1:3,3)) + ddt2*R_12(1:3,3)
vd2 = R_21 * (cross(wd1, P_12) + cross(w1, cross(w1, P_12)) + vd1)
vcd2 = cross(wd2,PC2) + cross(w2,cross(w2,PC2)) + vd2
F2 = m2 * vcd2
N2 = IC2 * wd2 + cross(w2,IC2*w2)
% Outward Iteration
% i = 2
f2 = R_2T * f3 + F2;
n2 = N2 + R_2T*n3 + cross(PC2, F2) + cross(P_2T, R_2T*f3);
```

```
f2 = simplify(f2)
n2 = simplify(n2)
f1 = R_12 * f2 + F1;
n1 = N1 + R_12*n2 + cross(PC1, F1) + cross(P_12, R_12*f2);
f1 = simplify(f1)
n1 = simplify(n1)
th =
[t1, t2, 0]
[\cos(t1 + t2), -\sin(t1 + t2), 0, 12*\cos(t1 + t2) + 11*\cos(t1)]
[\sin(t1 + t2), \cos(t1 + t2), 0, 12*\sin(t1 + t2) + 11*\sin(t1)]
                        0, 1,
          0,
                            0, 0,
                                                                1]
            0,
R_0T =
[\cos(t1 + t2), -\sin(t1 + t2), 0]
[\sin(t1 + t2), \cos(t1 + t2), 0]
          0,
                         0, 1]
P_0T =
l2*cos(t1 + t2) + l1*cos(t1)
l2*sin(t1 + t2) + l1*sin(t1)
w1 =
  0
dt1
wd1 =
   0
ddt1
vd1 =
 0
 0
vcd1 =
-(dt1^2*l1)/2
 (ddt1*l1)/2
          -g
F1 =
-(dt1^2*l1*m1)/2
 (ddt1*l1*m1)/2
           -g*m1
                 0
                 0
(ddt1*l1^2*m1)/12
w2 =
        0
        0
dt1 + dt2
```

wd2 =

```
9
                                                                                  a
 ddt1 + ddt2
vd2 =
 - 11*cos(t2)*dt1^2 + ddt1*l1*sin(t2)
                l1*sin(t2)*dt1^2 + ddt1*l1*cos(t2)
vcd2 =
ddt1*11*sin(t2) - (12*(dt1 + dt2)^2)/2 - dt1^2*11*cos(t2)
11*sin(t2)*dt1^2 + (12*(ddt1 + ddt2))/2 + ddt1*11*cos(t2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          -g
F2 =
 -m2*((12*(dt1 + dt2)^2)/2 - ddt1*11*sin(t2) + dt1^2*11*cos(t2))
       m2*(l1*sin(t2)*dt1^2 + (l2*(ddt1 + ddt2))/2 + ddt1*l1*cos(t2))
N2 =
                                                                                                                                                                                                          0
 (12^2m2^*(ddt1 + ddt2))/12
f2 =
 f3x - m2*((12*(dt1 + dt2)^2)/2 - ddt1*11*sin(t2) + dt1^2*11*cos(t2))
f3y + m2*(l1*sin(t2)*dt1^2 + (l2*(ddt1 + ddt2))/2 + ddt1*l1*cos(t2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -g*m2
 n2 =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (g*12*m2)/2
n3z \ + \ f3y*12 \ + \ (ddt1*12^2*m2)/3 \ + \ (ddt2*12^2*m2)/3 \ + \ (dt1^2*11*12*m2*sin(t2))/2 \ + \ (ddt1*11*12*m2*cos(t2))/2 \ + \ (ddt1*11*12*m2*cos(t2)
f1 =
\cos(t2)^*(\text{f3x - m2*}((12^*(\text{dt1 + dt2})^2)/2 - \text{ddt1*}11^*\sin(t2) + \text{dt1}^2*11^*\cos(t2))) - \sin(t2)^*(\text{f3y + m2*}(11^*\sin(t2)^*\text{dt1}^2 + (12^*(\text{ddt1 + dd2}))/2 + \text{ddt1*}11^*\cos(t2)))) - (\text{ddt1}^2)^*(\text{f3y + m2*}(11^*\sin(t2)^*)/2 + (12^*(\text{ddt1 + dd2}))/2 + (12^*(\text{ddt1 + dd2}))/2 + (12^*(\text{dd1} + \text{dd2}))/2 + (
       \sin(t2)*(f3x - m2*((12*(dt1 + dt2)^2)/2 - ddt1*11*\sin(t2) + dt1^2*11*\cos(t2))) + \cos(t2)*(f3y + m2*(11*\sin(t2)*dt1^2 + (12*(ddt1 + ddt2))/2 + ddt1*11*\cos(t2))) + (12*(ddt1 + ddt2))/2 + (12*(ddt
n1 =
n3z + f3y*12 + f3y*11*cos(t2) + f3x*11*sin(t2) + (ddt1*11^2*m1)/3 + ddt1*11^2*m2 + (ddt1*12^2*m2)/3 + (ddt2*12^2*m2)/3 - (dt2^2*11*12*m2*sin(t2))/2 + ddt1*11*2*m2*sin(t2))/2 + ddt1*11*2*m2*sin(t2)/3 + (ddt1*11^2*m2)/3 +
```

Design Trajectory

```
clear all; close all; clc

11 = 0.5;
12 = 0.5;

L(1) = Link('revolute','d', 0, 'a', 0, 'alpha', 0, 'modified');
L(2) = Link('revolute','d', 0, 'a', 11, 'alpha', 0, 'modified');
L(3) = Link('revolute','d', 0, 'a', 12, 'alpha', 0, 'modified');

RR = SerialLink(L, 'name', 'RR-Manipulator');

g = 0
    rho = 1000;
    r_outer = 0.1;
    r_inner = 0.005;
    m1 = rho*11*pi*(r_outer^2 - r_inner^2);
    m2 = rho*12*pi*(r_outer^2 - r_inner^2);
PC1 = [11/2; 0; 0];
PC2 = [12/2; 0; 0];

IX = 0.5*m1*(r_outer^2 + r_inner^2);
Iy = Ix/2 + (1/12)*m1*11^2; Iz = Ix/2 + + (1/12)*m2*12^2;
```

```
IC1 = [Ix 0 0; 0 Iy 0; 0 0 Iz]
IC2 = [Ix 0 0; 0 Iy 0; 0 0 Iz]
f3 = [-10;0;0];
n3 = [0;0;10];
w0 = zeros(3,1);
wd0 = zeros(3,1);
vd0 = [0; 0; 0];
t1_initial = -acos(0.45/0.5)
t2_{initial} = 2*acos(0.45/0.5)
t1_final = -acos(0.05/0.5)
t2_final = 2*acos(0.05/0.5)
N = 100;
t1 = linspace(t1_initial, t1_final, N+2)
t2 = linspace(t2_initial, t2_final, N+2)
totalTime = 4;
dt = 4/N;
dt1 = (diff(t1))/dt
dt2 = (diff(t2))/dt
ddt1 = (diff(t1,2))/dt^2
ddt2 = (diff(t2,2))/dt^2
for j=1:N
    th = [t1(j) t2(j) 0];
    T_01 = RR.A([1], th);
    T_12 = RR.A([2], th);
    T_2T = RR.A([3], th);
    T_0T = RR.A([1 2 3], th);
    [R_01, P_01] = tr2rt(T_01); R_10 = transpose(R_01);
    [R_12, P_12] = tr2rt(T_12); R_21 = transpose(R_12);
    [R_2T, P_2T] = tr2rt(T_2T); R_32 = transpose(R_2T);
    [R_0T, P_0T] = tr2rt(T_0T);
    x(j) = P_0T(1); y(j) = P_0T(2);
    % i = 0
    w1 = R_10 * w0 + dt1(j)*R_01(1:3,3);
    wd1 = R_10 * wd0 + R_10 * cross(w0, dt1(j)*R_01(1:3,3)) + ddt1(j)*R_01(1:3,3);
    vd1 = R_10 * (cross(wd0, P_01) + cross(w0, cross(w0, P_01)) + vd0);
    vcd1 = cross(wd1,PC1) + cross(w1,cross(w1,PC1)) + vd1;
    F1 = m1 * vcd1;
    N1 = IC1 * wd1 + cross(w1,IC1*w1);
    % i = 1
    w2 = R_21 * w1 + dt2(j)*R_12(1:3,3);
    wd2 = R_21 * wd1 + R_21 * cross(w1, dt2(j)*R_12(1:3,3)) + ddt2(j)*R_12(1:3,3);
    vd2 = R_21 * (cross(wd1, P_12) + cross(w1, cross(w1, P_12)) + vd1);
   vcd2 = cross(wd2,PC2) + cross(w2,cross(w2,PC2)) + vd2;
    F2 = m2 * vcd2;
    N2 = IC2 * wd2 + cross(w2,IC2*w2);
    \% i = 2
    f2 = R_2T * f3 + F2;
    n2(:,j) = N2 + R_2T*n3 + cross(PC2, F2) + cross(P_2T, R_2T*f3);
    f1 = R 12 * f2 + F1;
    n1(:,j) = N1 + R_12*n2(:,j) + cross(PC1, F1) + cross(P_12, R_12*f2);
time = linspace(0, totalTime, N);
% Plot Trajectory
figure(1)
title('Trajectory Animation')
xlabel('X-Direction (m)')
ylabel('Y-Direction (m)')
h = animatedline;
axis([0 1 -0.5 0.5])
for j=1:N
    addpoints(h,x(j),y(j));
    pause(0.05)
end
```

```
title('EE Position vs. Time')
ylabel('X and Y Plane (m)')
xlabel('Time (s)')
hold on
plot(time, y);
hold off
% Joint Torque
figure(3)
plot(time, n1);
title('Joint Torque vs. Time')
ylabel('Joint Torque (Nm)')
xlabel('Time (s)')
hold on
plot(time, n2);
legend('Joint 1','Joint 2')
g =
    0
IC1 =
    0.0785
                  0
                            0
             0.3657
                            0
        0
         0
                      0.3657
IC2 =
    0.0785
                  0
                            0
        0
             0.3657
                            0
                       0.3657
t1_initial =
   -0.4510
t2_initial =
    0.9021
t1_final =
   -1.4706
t2_final =
    2.9413
  Columns 1 through 7
   -0.4510 -0.4611 -0.4712 -0.4813 -0.4914 -0.5015 -0.5116
  Columns 8 through 14
   -0.5217 -0.5318 -0.5419 -0.5520 -0.5621 -0.5722 -0.5823
  Columns 15 through 21
   -0.5924 -0.6025 -0.6125 -0.6226 -0.6327 -0.6428 -0.6529
  Columns 22 through 28
   -0.6630 -0.6731 -0.6832 -0.6933 -0.7034 -0.7135 -0.7236
  Columns 29 through 35
   -0.7337 \quad -0.7438 \quad -0.7539 \quad -0.7640 \quad -0.7741 \quad -0.7842 \quad -0.7943
  Columns 36 through 42
   -0.8044 -0.8144 -0.8245 -0.8346 -0.8447 -0.8548 -0.8649
```

% End Effector Position

figure(2)
plot(time, x);

Columns 43	through	49				
-0.8750	-0.8851	-0.8952	-0.9053	-0.9154	-0.9255	-0.9356
Columns 50	through	56				
-0.9457	-0.9558	-0.9659	-0.9760	-0.9861	-0.9962	-1.0063
Columns 57	through	63				
-1.0164	-1.0264	-1.0365	-1.0466	-1.0567	-1.0668	-1.0769
Columns 64	through	70				
-1.0870	-1.0971	-1.1072	-1.1173	-1.1274	-1.1375	-1.1476
Columns 71	through	77				
-1.1577	-1.1678	-1.1779	-1.1880	-1.1981	-1.2082	-1.2183
Columns 78	through	84				
-1.2283	-1.2384	-1.2485	-1.2586	-1.2687	-1.2788	-1.2889
Columns 85	through	91				
-1.2990	-1.3091	-1.3192	-1.3293	-1.3394	-1.3495	-1.3596
Columns 92	through	98				
-1.3697	-1.3798	-1.3899	-1.4000	-1.4101	-1.4202	-1.4302
Columns 99	through	102				
-1.4403	-1.4504	-1.4605	-1.4706			
t2 =						
Columns 1	through :	7				
0.9021	0.9222	0.9424	0.9626	0.9828	1.0030	1.0232
Columns 8	through :	14				
1.0434	1.0636	1.0838	1.1040	1.1241	1.1443	1.1645
Columns 15	through	21				
1.1847	1.2049	1.2251	1.2453	1.2655	1.2857	1.3059
Columns 22	through	28				
1.3260	1.3462	1.3664	1.3866	1.4068	1.4270	1.4472
Columns 29	through	35				
1.4674	1.4876	1.5078	1.5279	1.5481	1.5683	1.5885
Columns 36	through	42				
1.6087	1.6289	1.6491	1.6693	1.6895	1.7097	1.7298
Columns 43	through	49				
1.7500	1.7702	1.7904	1.8106	1.8308	1.8510	1.8712
Columns 50	through	56				
1.8914	1.9116	1.9318	1.9519	1.9721	1.9923	2.0125
Columns 57	through	63				
2.0327	2.0529	2.0731	2.0933	2.1135	2.1337	2.1538
Columns 64	through	70				
2.1740	2.1942	2.2144	2.2346	2.2548	2.2750	2.2952
Columns 71	through	77				
2.3154	2.3356	2.3557	2.3759	2.3961	2.4163	2.4365
Columns 78	through	84				
2.4567	2.4769	2.4971	2.5173	2.5375	2.5576	2.5778

2.5980	2.6182	2.6384	2.6586	2.6788	2.6990	2.7192		
Columns 92	through	98						
2.7394	2.7595	2.7797	2.7999	2.8201	2.8403	2.8605		
Columns 99	through	102						
2.8807	2.9009	2.9211	2.9413					
dt1 =								
Columns 1	through 7	7						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 8 through 14								
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 15	through	21						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 22	through	28						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 29	through	35						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 36	through	42						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 43	through	49						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 50	through	56						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 57	through	63						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 64	through	70						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 71	through	77						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 78	through	84						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 85	through	91						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 92	through	98						
-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524	-0.2524		
Columns 99	through	101						
-0.2524	-0.2524	-0.2524						
dt2 =								
Columns 1 through 7								
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048		
Columns 8	through 1	14						
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048		
Columns 15	through	21						

Columns 85 through 91

0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 22	through 2	28				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 29	through 3	5				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 36	through 4	12				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 43	through 4	19				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 50	through 5	66				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 57	through 6	53				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 64	through 7	70				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 71	through 7	77				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 78	through 8	34				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 85	through 9	91				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 92	through 9	8				
0.5048	0.5048	0.5048	0.5048	0.5048	0.5048	0.5048
Columns 99	through 1	.01				
0.5048	0.5048	0.5048				
ddt1 =						
1.0e-12 *						
Columns 1	through 7					
0	0	0	0	0	0	0
Columns 8	through 14					
0	0	0	0	0	0	0
Columns 15	through 2	11				
0	0	0	0	0	0	0
Columns 22	through 2	28				
0	0	0	0	0	0	0.0694
Columns 29	through 3	35				
-0.1388	0.1388	-0.1388	0.1388	-0.1388	0.1388	-0.1388
Columns 36	through 4	12				
0.0694	0	0.0694	-0.1388	0.1388	-0.1388	0.1388
Columns 43						
			0.1388	-0.1388	0.1388	-0.1388
Columns 50	through 5	66				
			0.0694	0.0694	-0.1388	0.1388

Columns 57	through	63				
0	-0.1388	0	0.1388	0	-0.1388	0
Columns 64	through	70				
0.1388	0	-0.1388	0	0.1388	0	-0.2776
Columns 71	through	77				
0.2776	0	-0.1388	0.1388	-0.1388	0.1388	0
Columns 78	through	84				
-0.1388	0	0.1388	0	-0.1388	0	0.1388
Columns 85	through	91				
0	-0.1388	0	0.1388	0	-0.1388	0
Columns 92	through	98				
0.1388	0	-0.1388	0	0.1388	0	-0.1388
Columns 99	through	100				
0	0.1388					
ddt2 =						
1.0e-12 *						
Columns 1	through :	7				
0	0	0	0	0	0	0
Columns 8	through :	14				
0	0	0	0	0	0	0
Columns 15	through	21				
0	0	0	0	0	0	0
Columns 22	through	28				
0	0	0	0	0	0	-0.1388
Columns 29	through	35				
0.2776	-0.2776	0.2776	-0.2776	0.2776	-0.2776	0.2776
Columns 36	through	42				
-0.1388	0	-0.1388	0.2776	-0.2776	0.2776	-0.2776
Columns 43	through	49				
0.2776	-0.2776	0.2776	-0.2776	0.2776	-0.2776	0.2776
Columns 50	through	56				
-0.1388	-0.1388	0.2776	-0.1388	-0.1388	0.2776	-0.2776
Columns 57	through	63				
0	0.2776	0	-0.2776	0	0.2776	0
Columns 64	through	70				
-0.2776	0	0.2776	0	-0.2776	0	0.5551
Columns 71	through	77				
-0.5551	0	0.2776	-0.2776	0.2776	-0.2776	0
Columns 78	through	84				
0.2776	0	-0.2776	0	0.2776	0	-0.2776
Columns 85	through	91				
0	0.2776	0	-0.2776	0	0.2776	0
Columns 92	through	98				

-0.2776 0 0.2776 0 -0.2776 0 0.2776

Columns 99 through 100

0 -0.2776

Inertia Tensor

```
clear all; close all; clc;
h = 0.1; l = 0.1; w = 0.1; r = 0.1; d=0.4;
I_cube = [h^2+1^2 0 0; 0 w^2+h^2 0; 0 0 1^2+h^2];
I_{cyl} = [(1/12)*(3*r^2+h^2) 0 0; 0 (1/12)*(3*r^2+h^2) 0; 0 0 0.5^r^2];
I_Acm = I_cube - I_cyl;
I_A = I_Acm + ([-d \ 0 \ 0]^*[-d; \ 0; \ 0]^*eye(3) - [d^2 \ 0 \ 0; \ 0 \ 0 \ 0])
% Body B
rB = 0.05; lB = 0.8;
I\_B = [0.5*rB^2 \ 0 \ 0; \ 0 \ (1/12)*(3*rB^2+1B^2) \ 0; \ 0 \ 0 \ (1/12)*(3*rB^2+1B^2)]
% Body C
I_Ccm = I_Acm;
I_C1 = I_Ccm + ([d 0 0]*[d; 0; 0]*eye(3) - [d^2 0 0; 0 0 0; 0 0 0])
Rotx = [1 \ 0 \ 0; \ 0 \ 1/2^0.5; \ 0 \ -1/2^0.5; \ 0 \ -1/2^0.5];
I_C = Rotx*I_C1*Rotx
% Total Inertia
syms mA mB mC
I = mA*I_A + mB*I_B + mC*I_C;
I = vpa(I, 4)
```

```
I_A =
   0.0167
                  0
                           0
        0
             0.1767
                           0
                 0
                     -0.6906
I_B =
   0.0013
             0.0540
                           0
        0
        0
                  0
                      0.0540
I_C1 =
   0.0167
                 0
                           0
             0.1767
        0
                           0
        0
                  0
                     -0.6906
I_C =
   0.0167
                 0
                           0
           -0.2569 -0.4336
            -0.4336 -0.2569
I =
[0.01667*mA + 0.00125*mB + 0.01667*mC,
                                 0, 0.1767*mA + 0.05396*mB - 0.2569*mC,
                                                                                             -0.4336*mC]
```

0,

Published with MATLAB® R2022b

[