

Chapitre 6 : Problèmes d'affectations

J.-F. Scheid

2011-2012

Plan du chapitre

- I. Affectation simple
 - Introduction
 - Modélisation par un PL en variables binaires.
 - Modélisation par flot maximal.
 - Résolution par l'algorithme de Ford-Fulkerson.
- II. Affectation multiple
 - Introduction
 - Modélisations et résolution (Ford-Fulkerson).

I. Affectation simple1) Introduction

Un exemple : 4 tâches (demandes) C_1, \dots, C_4 doivent être réalisées en disposant de 3 machines (offres) L_1, \dots, L_3 . Chaque machine ne peut effectuer que certaines tâches bien précises.

Les tâches permises et non-permises pour chaque machine, sont indiquées dans le tableau des cases admissibles :

	C_1	<i>C</i> ₂	<i>C</i> ₃	C ₄
L_1				
L_2				
L ₃				

Chaque tâche ne doit pas être effectuée par plus d'une machine et chaque machine ne peut pas effectuer plus d'une tâche.

Affectation simple :

- Chaque demande (tâche) ne peut pas être traitée par plus d'une offre (machine).
- Chaque offre (machine) ne peut pas traiter plus d'une demande (tâche).

Remarque. Une demande peut ne pas être traitée du tout et une offre peut n'être affectée à aucune demande.

Problème d'affectation

Trouver le maximum d'affectations possibles.

2) Modélisation par un PL en variables binaires

On introduit les variables t_{ij} qui indiquent si l'offre L_i est affectée à la demande C_i :

$$t_{ij} = \left\{ egin{array}{ll} 1 & ext{si } L_i ext{ est affect\'ee \`a } C_j \ 0 & ext{sinon} \end{array}
ight.$$

pour $(i,j) \in \mathcal{U}$ ensemble des indices **admissibles**

Exemple.

	C_1	C_2	<i>C</i> ₃	C ₄
L_1				
L ₂				
L ₃				

$$\mathcal{U} = \left\{ \begin{array}{l} (1,1), \\ (2,1), (2,2), (2,3), (2,4), \\ (3,1), (3,2) \end{array} \right\}$$

2) Modélisation par un PL en variables binaires

Problème de programmation linéaire (primal)

$$(P_1) \left\{ \begin{array}{ll} \max\limits_{t_{ij}} \left[F_1 = \sum\limits_{(i,j) \in \mathcal{U}} t_{ij} \right] & \leftarrow \quad \text{maximisation du} \\ \forall i, \; \sum\limits_{j} t_{ij} \leq 1 & \leftarrow \quad \text{offre L_i affectée à} \\ \forall j, \; \sum\limits_{i} t_{ij} \leq 1 & \leftarrow \quad \text{demande C_j affectée à} \\ \forall (i,j) \in \mathcal{U}, \; t_{ij} \geq 0 \end{array} \right.$$

Exemple.

	C_1	C_2	<i>C</i> ₃	C ₄
L_1				
L ₂				
L ₃				

$$\max_{\mathbf{t}} F(\mathbf{t}) = \mathbf{c}^{\top} \mathbf{t}$$

$$\begin{cases} A\mathbf{t} \leq \mathbf{b} \\ \mathbf{t} \geq 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}; \quad \mathbf{t} = \begin{pmatrix} t_{11} \\ t_{21} \\ t_{22} \\ t_{23} \\ t_{24} \\ t_{31} \\ t_{32} \end{pmatrix}; \quad \mathbf{b} = \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix};$$

Propriété

Toute solution de base optimale t_{ii}^* de (P_1) vérifie $t_{ii}^* \in \{0, 1\}$.

En effet,

- ullet on a $0 \leq t^*_{ii} \leq 1$
- on peut montrer que la solution de base optimale est entière (cf. chapitre 4, PL en variables entières)

Le problème primal (P_1) s'interprète de la façon suivante :

On veut trouver un maximum de cases admissibles 2 à 2 <u>indépendantes</u> c'est-à-dire ni sur la même ligne, ni sur la même colonne.

Par exemple,

	C_1	C_2	C_3	C_4
L_1	1			
L_2	0	1	0	0
L_3	0	0		

Le problème primal (P_1) admet le dual suivant.

Dual

$$(D_1) \left\{egin{array}{l} \min_{l_i,k_j} \left[G_1 = \sum_i l_i + \sum_j k_j
ight] \ orall (i,j) \in \mathcal{U}, \ l_i + k_j \geq 1 \ orall i, \ l_i \geq 0 \ orall j, \ k_j \geq 0 \end{array}
ight.$$

Remarque. On montre qu'à l'optimum, les variables duales sont entières et l_i , $k_j \in \{0, 1\}$.

Définition

Un **support** est un ensemble de lignes et de colonnes qui couvrent toutes les cases admissibles du tableau.

	C_1	C_2	<i>C</i> ₃	C ₄
L_1				
L_2				
L_3				

Supports : $\{L_1, L_2, L_3\}$, $\{C_1, C_2, C_3, C_4\}$, $\{C_1, L_2, L_3\}$, ...

Remarque. Si $l_i = 1$ alors L_i est dans le support. De même si $k_j = 1$ alors C_j est dans le support.

 → Le problème dual correspond à la recherche d'un support minimal (i.e. support de cardinal minimal)

3) Modélisation par flot maximal

Au tableau des cases admissibles, on peut associer un diagramme sagital avec un graphe biparti.

Définition

Un graphe est dit **biparti** si l'ensemble de ses sommets peut être partitionné en 2 sous-ensembles X et Y tels que toute arête possède une extrémité dans X et l'autre dans Y.

	C_1	C_2	C_3	<i>C</i> ₄
L_1				
L ₂				
L ₃				

Remarque. Sur le graphe biparti associé au tableau des cases admissibles, le problème d'affectation modélisé par le problème primal (P_1) , correspond à rechercher le maximum d'arêtes 2 à 2 <u>non-adjacentes</u> c'est-à-dire qui n'ont <u>ni la même origine, ni le même sommet terminal</u>.

	C_1	C_2	<i>C</i> ₃	C ₄
L_1	1			
L ₂	0	1	0	0
L ₃	0	0		

Graphe biparti complété.

Soit G le graphe biparti associé au tableau des cases admissibles avec X et Y les deux sous-ensembles tels que toute arête a une extrémité dans X et l'autre dans Y.

- On ajoute une **source** $s \in X$ et des arêtes (s, i) de capacité c(s, i) = 1 pour tous les sommets i de X.
- On ajoute un **puits** $t \in Y$ et des arêtes (j, t) de capacité c(j, t) = 1 pour tous les sommets j de Y.
- A chaque arête (i, j) du graphe G initial, on associe une capacité infinie

On obtient ainsi un graphe biparti complété

Le problème d'affectation est un problème de flot maximal à travers le graphe biparti complété.

Flot maximal : problème primal (P_2)

$$\begin{aligned} \max \left[F_2 = v \right] \\ \left\{ \begin{array}{ll} (s) & -v + \sum_i f_{si} = 0 \\ \forall L_i, & -f_{si} + \sum_j f_{ij} = 0 \\ \forall C_j, & -\sum_i f_{ij} + f_{jt} = 0 \\ (t) & -\sum_j f_{jt} + v = 0 \\ \left\{ \begin{array}{ll} \forall L_i, & f_{si} \leq 1 \\ \forall C_j, & f_{jt} \leq 1 \\ \forall C_j, & f_{jt} \geq 0 \\ v \text{ de signe quelconque} \end{array} \right. \end{aligned}$$

Exemple.

$$\mathbf{f} = (f_{s1}, f_{s2}, f_{s3} | f_{11}, f_{21}, f_{22}, f_{23}, f_{24}, f_{31}, f_{32} | f_{1t}, f_{2t}, f_{3t}, f_{4t})^{\top} \in \mathbb{R}^{14}$$

$$\mathbf{v} = (-v, 0, 0, 0, 0, 0, 0, 0, 0, v)^{\top} \in \mathbb{R}^{9};$$

Matrice $A \in \mathcal{M}_{9 \times 14}$:

Propriétés

- Toute solution de base optimale f_{ij}^* de (P_2) vérifie $f_{ij}^* \in \{0, 1\}$: à l'optimum, les flots des arêtes valent 0 ou 1:
- 2 Les 2 problèmes primaux (P_1) et (P_2) sont équivalents.

Preuve:

- 1) toute solution de base optimale de (P_2) est **entière** (cf. Chapitre 4, PL en nb entiers).
- 2) prendre $t_{ij} = f_{ij}$ (exercice)

4) Résolution par Ford-Fulkerson

Algorithme de Ford-Fulkerson pour calculer le flot maximal à travers le graphe biparti complété.

• Initialisation du flot (coin nord-ouest).
On attribue les affectations en partant de la 1ère ligne et en allant de gauche à droite.

	C_1	C_2	C_3	C_4
L_1	1			
L_2	0	1	0	0
L ₃	0	0		

Amélioration du flot par l'algorithme de Ford-Fulkerson

- * marquage pile largeur (par ex.) : à partir du haut de la pile, on marque et on empile tous les sommets successeurs non encore marqués.
- \star inutile d'indiquer le tableau des améliorations ε : on a toujours $\varepsilon=1$

\mathbb{E}	s	L ₃	C_1, C_2	L ₂	C ₃ , C ₄	t
orig	_	S	L ₃	$-C_2$	L ₂	C_4

Tableau correspondant

	C_1	C_2	C_3	C_4
L_1	1			
L_2	0	0	0	1
L ₃	0	1		

- Sur le graphe : (X, \overline{X}) coupe minimale \Rightarrow flot maximal max v = 3.
- Dans le tableau : nombre d'affectations = min(nb de ligne, nb de colonne) = 3 ⇒ nombre maximal d'affectation=3

II. Affectation multiple1) Introduction

On reprend l'exemple précédent (affectation simple) mais cette fois chaque machine (offre) peut réaliser plusieurs tâches (demande) :

• la machine L_i peut être utilisée au plus a_i fois $(a_i \in \mathbb{N}^*)$.

On suppose aussi que chaque tâche peut utiliser un certain nombre de fois les différentes machines :

• la tâche C_j peut être réalisée en utilisant au plus b_j machines $(b_j \in \mathbb{N}^*)$.

Les offres et demandes sont indiquées dans le tableau des cases admissibles :

	C_1	C_2	C_3	C ₄	ai
L_1					6
L ₂					7
L ₃					3
b_j	10	3	4	6	

Dans l'exemple ci-dessus, la machine L_1 peut être utilisée au plus 6 fois. La tâche C_1 peut être effectuée par au plus 10 machines...

→ Trouver le maximum d'affectation possible

2) Modélisations

a) Programmation linéaire

Variable t_{ij} = nombre de fois que l'offre L_i est utilisée par la demande C_j = nombre d'affectations de l'offre L_i à la demande C_j

$$\begin{cases} \max_{t_{ij}} \left[F = \sum_{(i,j) \in \mathcal{U}} t_{ij} \right] \\ \forall i, \sum_{j} t_{ij} \leq a_i \quad \text{(offre)} \end{cases} \\ \forall j, \sum_{i} t_{ij} \leq b_j \quad \text{(demande)} \\ \forall (i,j) \in \mathcal{U}, \ t_{ij} \geq 0 \end{cases}$$

Remarque. Si les a_i et b_j sont entiers alors à l'optimum les t_{ij} sont entiers.

b) Modélisation par flot maximal

Le problème de l'affectation multiple peut se modéliser par la recherche d'un flot maximal à travers un graphe **biparti complété** :

- On ajoute une **source** s et des arêtes (s, i) reliant s aux offres L_i avec des capacités $c(s, i) = a_i$.
- On ajoute un **puits** t et des arêtes (j, t) reliant les demandes C_j à t avec des capacités $c(j, t) = b_i$.
- Pour chaque arête (i,j) entre L_i et C_j , on considère une capacité **infinie**.

Exemple

	C_1	C_2	<i>C</i> ₃	C ₄	ai
L_1					6
L_2					7
L ₃					3
bj	10	3	4	6	

3) Résolution par Ford-Fulkerson

Algorithme de Ford-Fulkerson pour calculer le flot maximal à travers le graphe biparti complété.

Initialisation du flot (coin nord-ouest).

	C_1	C_2	C_3	C_4	ai
L_1	6				6
L_2	4	3	0	0	7
L ₃	0	0			3
b_j	10	3	4	6	

Amélioration du flot par Ford-Fulkerson Marquage pile largeur (par ex.)

\mathbb{E}	S	L ₃	$C_1, \mathbf{C_2}$	L ₂	C ₃ , C ₄	t
orig	-	S	L ₃	$-C_2$	L ₂	C ₄
ε	∞	3	3	3	3	$\varepsilon = 3$

Tableau correspondant

	C_1	C_2	C_3	C_4	ai
L_1	6				6
L_2	4	0	0	3	7
L_3	0	3			3
b_j	10	3	4	6	

- Sur le graphe : (X, \overline{X}) coupe minimale \Rightarrow flot maximal max v = 16.
- Dans le tableau : il n'y a plus d'affectation possible selon les lignes
 ⇒ nombre maximal d'affectation=16