CS 370 Winter 2013: Assignment 3

Instructor: Yuying Li Office: DC3623 e-mail: yuying@uwaterloo.ca

Lec 001: MWF 8:30-9:20 MC2054 OH (Li):Tues 2-3pm

TAs:

Nian Keknian@uwaterloo.caDC3594Mark Prosserrmprosse@uwaterloo.caDC2302BHaofan Zhangh267zhan@uwaterloo.caDC3594

Web Site: www.student.cs.uwaterloo.ca/~cs370/

Due Mar 15, 2013, 5:00 PM, in the Assignment Boxes, 3rd Floor MC. Please attach a cover page, which you can download at the course website, to your submitted assignment.

1. (10 marks) Consider a second order Runge-Kutta method given by

$$y_{n+1} = y_n + \frac{h}{3} \left(f(t_n, y_n) + 2f(t_n + \frac{3}{4}h, y_n + \frac{3}{4}hf(t_n, y_n)) \right)$$

Carry out a stability analysis of this method using the test equation

$$y'(t) = -\lambda y(t), \quad \lambda > 0$$

and determine a condition for stability.

- 2. (10 marks)
 - (a) Compute by hand the DFT of

$$\begin{bmatrix} -1/4\\1/4\\3/4\\1/4 \end{bmatrix}$$

(b) Compute by hand the FFT of

$$\left[\begin{array}{c} -1/2 \\ 0 \\ 1 \\ 0 \\ -1/2 \\ 0 \\ 1 \\ 0 \end{array}\right]$$

using the butterfly diagram.

Show your work.

3. (5 marks) Suppose the vector $\{f_n\}_{n=0..N-1}$ has DFT given by $\{F_k\}_{k=0..N-1}$. Consider the array of 2N numbers

$$\tilde{f} = [f_0, f_1, \dots, f_{N-1}, f_0, f_1, \dots, f_{N-1}].$$

Give the DFT of the sequence $\{\tilde{f}_n\}_{n=0,\dots,2N-1}$ in terms of $\{F_k\}_{k=0\dots N-1}$ using the Fast Fourier algorithm.

4. (10 marks) Let f_n , $n = 0, 1, \dots, N-1$, be real periodic input data with an even N and $f_{N+n} = f_n$. Let F_k , $k = 0, 1, \dots, N-1$, be the DFT of $\{f_n\}$. Show that if $\{f_n\}$ values satisfy the symmetry $f_n = f_{N-n}$ then the Fourier coefficients $\{F_k\}$ are all real numbers.

1

5. (Image Compression, 15 marks) In this problem, we study the compression of gray-scale images. In Appendix F: Image Processing in Matlab of the course notes, you have the information needed to convert such images into a two dimensional array. Compression is obtained by dropping (relatively) small Fourier coefficients on 8×8 pixel subblocks. By this we mean that if $\{f_{i,j}\}$ are the original pixel values in a given subblock and $\{F_{k,\ell}\}$ are the corresponding DFT, then we drop any $F_{k,\ell}$ such that

$$|F_{k,\ell}| \leq F_{max} \cdot tol.$$

Here F_{max} is the maximum of $\{|F_{k,\ell}|\}$ in each block and tol is our drop tolerance.

The file dogBW.jpg on the course web page contains an image which we will use in this compression question.

a) Compression

Create a MATLAB function, Compress.m, that has the following prototype:

It takes as inputs the original image, X, and the drop tolerance parameter, tol, and outputs a compressed image Y. It also returns the drop ratio, drop, which is defined to be:

$$\label{eq:drop} \text{drop ratio} = \frac{\text{Total number of nonzero Fourier coefficients dropped}}{\text{Number of nonzeros in original Fourier Coefficients}}.$$

If drop ratio = 0, then no Fourier coefficient is dropped; if drop ratio = 1, then all Fourier coefficients are dropped. In general, it should be between 0 and 1.

Specifically your MATLAB function should:

- compute the 2D Fourier coefficients (fft2) for every 8 × 8 subblock.
- for each subblock, set those Fourier coefficients having modulus less than F_{max} to 1 to 0.
- record the number of coefficients dropped
- reconstruct the compressed 8×8 image array by using the inverse 2D Fourier transform (ifft2). **Note**: the reconstructed image array must be set to the real part of the inverse transform.
- after all the 8 × 8 subblocks for all the components have been processed, return the entire compressed image as Y and the drop ratio as drop.

b) Compression Levels

Determine (by trial and error on different tol, not by writing any code) four values of tol resulting in drop ratios of 0, 0.4, 0.5 and 0.7. Write a MATLAB script to do the following:

- \bullet Execute Compress.m with these set of tol values.
- Display the four compressed images using subplot for each compressed image Y. Each plot should have a title, the tol value used, and the resulting drop ratio.
- Plot the normalized mean square error between the original image and the compressed image vs the drop ratio for the compressed image (refer to Appendix F in the course notes for normalized mean square error).

What to hand in: Please submit

- (a) A listing of Compress.m.
- (b) A listing of the MATLAB script.
- (c) A figure with 4 plots of the DFT compressed images.
- (d) The error plot for the DFT compressed images.
- (e) A brief commentary on the compressed images.