Linguagens regulares são aquelas que podem ser representadas por DFAs, NFAs, $\epsilon\textsc{-NFAs}$ ou REs.

Pumping Lemma:

- Dada uma linguagem regular infinita L, existe pelo menos um n (pumping length), para cada string $w \in L$ com comprimento $|w| \geq n$, podemos escrever w = xyz com $|xy| \leq n$ e $|y| \geq 1 (y \neq \epsilon)$, tal que: $xy^kz \in L, k = 0, 1, 2, ...$
- Ou seja, podemos encontrar uma string y, que pode ser repetida ou removida, produzindo strings que pertencem à linguagem.
- Linguagens finitas são linguagens regulares.
- O Pumping Lemma pode ser usado para mostrar que uma linguagem infinita não é regular. Mas não pode ser usado para mostrar que a linguagem é regular.
- O Pumping Lemma é uma condição necessária, mas não suficiente para mostrar que uma linguagem é regular.

Como provar que uma linguagem A é não regular?

- Por contradição:
 - Assume-se que A é regular.
 - Como A é regular, tem um pumping length (p).
 - Todas as strings maiores que p podem ser bombeadas.
 - Encontra-se uma string s de A tal que $|s| \ge p$.
 - Divide-se s em xyz.
 - Mostra-se que $xy^iz \in A$ para algum i.
 - Depois, consideram-se todas as formas de s ser dividida em xyz.
 - Prova-se que nenhuma das divisões satisfaz as três condições da bombagem ao mesmo tempo.
 - Logo, s n\(\tilde{a}\)o pode ser bombeada: Contradiç\(\tilde{a}\)o.
- Condições da Bombagem:
 - -1: $xy^iz \in A$, para todo o $i \ge 0$
 - -2: |y| > 0
 - $-3: |xy| \le p \text{ (pumping length)}$

Operações com Linguagens Regulares:

- União, Interseção, Complemento, Diferença.
- Reverso (L^R) .
- Closure (*) e Concatenação.

Equivalência de estados e minimização (exemplo):

• D não pode ser equivalente a outro estado não final.