

SIGNALE UND SYSTEME LTI-Systeme

Studien- und Versuchsaufgaben

Autoren: Richard Grünert Tim Corleis

12.12.2019

1 Vorbereitungsaufgaben

1.1

1.2

Aus der grafischen Betrachtung der Spektren von Ein- und Ausgangssignal und unter Berücksichtigung der Übergangsfunktion des Tiefpasses lässt sich erkennen, dass die Grenzfrequenz des Tiefpasses zwischen ω_0 und $2\omega_0$ liegen muss, um den Frequenzanteil bei ω_0 durchzulassen und bei $2\omega_0$ auszulöschen. Der Faktor K_1 ist durch die Skalierung der Amplitude beim Durchlauf des Tiefpasses gleich 1/2.

Der Parameter ϕ beschreibt die Phasenverschiebung vom Ausgangssignal zum Eingangssignal, welche sich beim idealen Tiefpass linear mit der Frequenz ändert. Im Zeitbereich erkennt man dadurch eine Zeitverschiebung t_0 , wodurch $\phi = \omega_0 \cdot t_0$.

1.3

Das System kann lineare Verzerrungen hervorrufen, da es Frequenzanteile unterdrücken oder durchlassen kann.

1.4

Zufällige Signale können durch ihre *Autokorrelation*, welche die Änhlichkeit eines Signals mit sich selbst ausdrückt, charakterisiert werden. Idealerweise ist diese Ähnlichkeit bei zufälligen Signalen bei jeder Verschiebung ungleich 0 nicht gegeben.

Ideales gaußverteiltes Rauschen besitzt zudem ein konstantes Leistungsdichtespektrum.

1.5

Idealerweise kann die Übertragungsfunktion eines Systems durch Anregung des Systems mit einem Dirac-Impuls im Zeitbereich bestimmt werden. Der Dirac-Impuls besitzt im Frequenzbereich eine konstante Amplitude (1) über alle Frequenzen. Die Auswertung im Frequenzbereich ergibt daher (mit $\Delta(j\omega) = \mathcal{F}(\delta(t))$):

$$U_2(j\omega) = G(j\omega) \cdot U_1(j\omega) = G(j\omega) \cdot \Delta(j\omega) = G(j\omega)$$

Der demnach ermittelte Betragsgang am Ausgang ist somit gleich der Übertragungsfunktion des Systems. Praktisch ist diese Methode jedoch kaum möglich, da es schwierig ist, einen zeitlich unendlich kurzen Impuls von unendlicher Amplitude (hohe Energie) zu erzeugen und gleichzeitig Nichtlinearitäten, Trägheit/Verzögerungen und Belastbarkeit des zu messenden Systems zu berücksichtigen.

Als praktischere Alternative zum Dirac-Impuls kann man einen *Sprung* der Höhe 1 auf das System geben und mit der *Sprungantwort* am Ausgang des Systems die Übertragungsfunktion feststellen.

Eine weitere Möglichkeit ist die diskrete Analyse des Systems bei bestimmten Frequenzen, z.B. durch Anregung mit einem Wobble-Sinus und die Aufnahme von Messpunkten in geeigneten Abständen. Nachteil ist hier die begrenzte Auflösung.

2 Versuchsaufgaben

2.1 Analyse von Filterschaltungen

In der ersten Versuchsaufgabe wurden die Spannungsamplituden U_2 der Ausgangssignale der in Box 3 enthaltenen 4 Filterschaltungen bei sinusförmigem Eingangssignal mit einer Amplitude von 1 V mit dem Oszilloskop gemessen. Das Amplitudenverhältnis U_2/U_1 wurde anschließend in dB ausgedrückt, um einfache Aussagen über die jeweilige Grenzfrequenz und Filterordnung treffen zu können.

2.1.1 Box3.1

f/Hz	U_2/mV	$U_2/U_1/\mathrm{dB}$
500	1084	0.70
2000	1061	0.51
4000	1000	0.00
8000	826	-1.66
10000	750	-2.50
11300	699	-3.11
12000	688	-3.25
14000	627	-4.05
20000	492	-6.16
60000	230	-12.77
80000	180	-14.89
100000	130	-17.72
200000	131	-17.65
300000	129	-17.79
400000	123	-18.20
1000000	97	-20.26

Tabelle 1: Messwerte des ersten Filters der Box 3

Abbildung 1: Bodediagramm Box3.1

Bei der Versuchsdurchführung wurden die Frequenzen der Messpunkte um die Grenzfrequenz herum gewählt, welche vorher für jedes Filter durch Messung einer Amplitude von etwa 707 mV, also $1/\sqrt{2}$ der Eingangsamplitude, gemessen wurde.

Aus Abbildung 1 lässt sich erkennen, dass es sich bei der ersten Schaltung um ein Tiefpassfilter handelt. Die Grenzfrequenz des Filters wurde nachträglich mittels Regression (Modellgleichung der Form $u(f) = a + b/\sqrt{1 + (k \cdot f)^2}$) bei einer Dämpfung der Amplitude von 3 dB bestimmt.

$$f_{g_{3,1}} = 11837 \text{ Hz}$$

Handschriftlich wurde dann durch Linearisierung des Filterverlaufs die Filterordnung über die Geradensteigung bestimmt (Bei TP n-ter Ordnung circa $-n\cdot 20\,\mathrm{dB/Dekade}$ nach der Grenzfrequenz). Die roten Punkte kennzeichnen jeweils den Filterwert von $-3\,\mathrm{dB}$ bei der Grenzfrequenz.

2.1.2 Box3.2

f/Hz	U_2/mV	$U_2/U_1/\mathrm{dB}$
100	69	-23.22
200	123	-18.20
300	168	-15.49
600	290	-10.75
1000	433	-7.27
1500	579	-4.75
2000	687	-3.26
2300	727	-2.77
5000	912	-0.80
10000	951	-0.44
15000	978	-0.19

Tabelle 2: Messwerte des zweiten Filters der Box 3

Abbildung 2: Bodediagramm Box3.2

 ${\tt Box 3.2}$ ist, wie in Abbildung 2 zu erkennen, ein Hochpassfilter. Die Grenzfrequenz ist

$$f_{\rm g_{3.2}} = 2430~{\rm Hz}$$

$2.1.3 \quad \mathrm{Box} 3.3$

f/Hz	U_2/mV	$U_2/U_1/\mathrm{dB}$
1	988	-0.10
500	936	-0.57
700	882	-1.09
1000	815	-1.78
1200	777	-2.19
1500	705	-3.04
2000	600	-4.44
3000	456	-6.82
6000	257	-11.80
10000	169	-15.44
20000	102	-19.83
30000	69	-23.22

Tabelle 3: Messwerte des dritten Filters der Box 3

Abbildung 3: Bodediagramm Box3.3

 ${\rm Box} 3.3$ ist, wie in Abbildung 3 zu erkennen, ein Tiefpassfilter. Die Grenzfrequenz ist

$$f_{\rm g_{3.3}} = 1700~{\rm Hz}$$

2.1.4 Box3.4

f/Hz	U_2/mV	$U_2/U_1/\mathrm{dB}$
100	997	-0.04
1000	984	-0.14
3000	865	-1.26
5000	750	-2.50
5500	717	-2.89
6000	682	-3.32
7000	630	-4.01
8500	555	-5.11
10000	496	-6.09
15000	363	-8.80
20000	285	-10.90
40000	163	-15.76
70000	109	-19.25
90000	91	-20.82

Tabelle 4: Messwerte des vierten Filters der Box 3

Abbildung 4: Bodediagramm Box3.4

 ${\rm Box} 3.4$ ist, wie in Abbildung 4 zu erkennen, ein Tiefpassfilter. Die Grenzfrequenz ist

$$f_{\rm g_{3.4}} = 6070~{\rm Hz}$$

2.2 Rauschsignal an den Filtereingängen

Abbildung 5: Screenshot des verwendeten Rauschsignals

Das Rauschsignal wurde mithilfe eines MATLAB-Scripts erzeugt und an die Eingänge der Tiefpassfilterschaltungen von Box 3 gelegt. Mit dem Oszilloskop wurde der Effektivspannungswert der Ausgangssignale gemessen. Durch Quadrieren dieser Werte konnte dann ein Maß für die Rauschleistung geschaffen werden, welche dann über die jeweiligen Grenzfrequenzen der Filterschaltungen aufgetragen wurde.

Abbildung 6: Screenshot des Ausgangssignals von Box3.1

Abbildung 7: Screenshot des Ausgangssignals von Box3.3

Abbildung 8: Screenshot des Ausgangssignals von Box3.4

Aus Abbildung 9 kann mithilfe einer Regressionsgeraden ein linearer Zusammenhang zwischen Rauschleistung und Grenzfrequenz festgestellt werden. Die Rauschleistung wurde jeweils auf die Leistung des Eingangssignals (siehe Abbildung 5) normiert.

Abbildung 9: Zusammenhang von Rauschleistung und Grenzfrequenz des Tiefpassfilters

Das Ergebnis ist sinnvoll, denn wenn man davon ausgeht, dass weißes Rauschen ein konstantes Leistungsdichtespektrum, also gleiche Energie bei jeder Frequenz, aufweist, und man mit Erhöhung der Grenzfrequenz mehr Frequenzanteile im Signal zulässt, dann wird auch die Energie des Rauschens pro Zeiteinheit, also dessen Leistung, mit der Grenzfrequenz steigen.