One Variable Calculus-III

Lecture 3

11 October 2024

Index

1 The Graph of Functions

Theorem: First Derivative

Suppose that f is a C^1 at x_0 . Then,

- $lack {f 0}$ if f'(x)>0, there is an open interval containing x_0 on which f(x) is **increasing** function
- ② if f'(x) < 0, there is an open interval containing x_0 on which f(x) is **decreasing** function
- **3** if f'(x) = 0, f(x) is constant or isn't defined. **critical points**

Example 1: First Derivative

 $f(x) = x^3 - 3x$. Find the critical points and draw the graph.

- First derivative of f(x): $f'(x) = 3x^2 3$
- Factorizing: f'(x) = 3(x-1)(x+1)
- Critical points are found by setting f'(x) = 0: $3(x-1)(x+1) = 0 \Rightarrow x = 1$ or x = -1

Sign Chart:

Example 1: First Derivative (cont.)

• For x = -1:

$$f(-1) = (-1)^3 - 3(-1) = 2 \implies (-1, 2)$$

• For x = 1:

$$f(1) = (1)^3 - 3(1) = -2 \implies (1, -2)$$

Example 1: First Derivative

 $g(x) = x^2 - 4x + 3$. Find the critical points and draw the graph.

- First derivative of g(x): g'(x) = 2x 4
- Setting g'(x) = 0 gives: $2x 4 = 0 \implies x = 2$
- ullet Critical point: x=2

Sign Chart:

Example 1: First Derivative (cont.)

• For x = 2:

$$g(2) = (2)^2 - 4(2) + 3 = -1 \implies (2, -1)$$

$$g(x) = x^2 - 4x + 3$$

Theorem: Second Derivative and Convexity

- A differentiable function f for which $f''(x) \ge 0$ on an interval I (so that f' is increasing on I) is said to be **concave up** on I
 - A function f is called **concave up** or simply **convex** on an interval I if an only if

$$f((1-t)a+tb) \le (1-t)f(a) + tf(b)$$

- ② A differentiable function f for which $f''(x) \le 0$ on an *interval I* (so that f' is decreasing on I) is said to be **concave down** on I
 - ightharpoonup A function f is called **concave down** or simply **concave** on an interval I if an only if

$$f((1-t)a + tb) \ge (1-t)f(a) + tf(b)$$

Theorem: Second Derivative and Convexity

- For a function which is concave up (convex), the secant line always lies above the graph.
- For a function which is concave down (concave), the secant line always lies below the graph.

Theorem: Second Derivative and Convexity

- The test to see whether a function is convex or concave mimics the test used in determining whether a function is increasing or decreasing, but uses the second derivative instead of the first.
- These points are called the **second order critical points** of f, or if the second derivative actually changes sign there, **inflection points** of f.
- These points divide the domain of f into intervals on each of which f'' is always positive or negative.
- The characteristics of function changes in Inflection Point

Example 1: Second Derivative

Continuing from our analysis of $f(x) = x^3 - 3x$:

• Second derivative of f(x):

$$f''(x) = 6x$$

• Setting f''(x) = 0 to find inflection points:

$$6x = 0 \Rightarrow x = 0$$

- The sign of f''(x) determines concavity:
 - For x < 0: f''(x) < 0 (concave down)
 - For x > 0: f''(x) > 0 (concave up)

Sign Chart for the Second Derivative:

Example 1: Second Derivative (cont.)

- The function f(x) is:
 - Concave down on the interval $(-\infty, 0)$
 - Concave up on the interval $(0, \infty)$
- At x = 0, we have an inflection point.

Example 2: Second Derivative

Continuing from our analysis of $g(x) = x^2 - 4x + 3$:

• Second derivative of g(x):

$$g''(x) = 2$$

- Since g''(x) > 0 for all x, the function is **convex** everywhere.
- The positivity of the second derivative indicates that the slope of the tangent line is increasing.
- ullet Therefore, the graph of g(x) is concave up, confirming that x=2 a minimum.

Example 2: Second Derivative (cont.)

- Inflection point found at x = 2 where g(2) = -1 indicates a minimum.
- The function is convex for all x as confirmed by g''(x) > 0.

40 40 40 40 40 40 40 40 40 40

Maxima and Minima

- One of the major uses of calculus in mathematical models is to find and characterize maximum and minimum of functions.
- For instance, economists are interested in maximizing utility and profit and in minimizing cost.
- A maximum or minimum of a function can occur at an endpoint of the domain of f
 or at a point which is not an endpoint in the *interior* of the domain.

Examples: Interior Maximum and Minimum

- **Example 1:** This function has an interior maximum at x = -1.
- **Example 2:** This function has an interior minimum at x = 1.

Theorem: First Order Condition

- If x_0 is an interior maximum or minimum of f, then x_0 is a critical point of f. It is necessary condition but insufficient.
- **Proof**: A function is neither increasing nor decreasing on an interval about an interior maximum or minimum. The first derivative of this function cannot be positive or negative there; that is, $f'(x_0)$ must be zero or undefined x_0 is a critical point of f
- If the graph of f has a tangent line at a maximum or minimum, that tangent line must be horizontal since the graph of f turns around there. In other words, $f'(x_0)$ must be zero.
- Note: Identify Critical Point (We may have a solution)

Example :The graph of f at max x_0

ECON 205

Theorem: Second Order Condition

- If x_0 is a critical point of a function f, we can use second derivative to decide whether critical point x_0 is a maximum, minimum, or neither.
- If $f'(x_0) = 0$ and $f''(x_0) < 0$, then x_0 is maximum of f;
- If $f'(x_0) = 0$ and $f''(x_0) > 0$, then x_0 is minimum of f;
- If $f'(x_0) = 0$ and $f''(x_0) = 0$, then x_0 can be a maximum, minimum, or neither
- . Note: Identify Inflection Point is maximum, minimum, or neither

Theorem: Second Order Condition

Proof

- $f'(x_0) = 0$ means that the tangent line to the graph of f is horizontal at x_0 , and $f''(x_0) < 0$ means that the graph curves downward.
- These two conditions together imply that f has a local maximum at x_0 .
- $f''(x_0) < 0$ means that the first derivative of f' of f is a decreasing function in an interval about x_0 .
- The facts that f' is decreasing and that $f'(x_0) = 0$ mean that f' is positive to the left of x_0 and negative to the right of x_0 .
- These two derivative conditions imply that f is increasing to the left of x_0 and decreasing to the right of x_0 . In other words, f has a local maximum at x_0 .

First Order Condition

- Consider $f(x) = x^3$.
- Calculate the first derivative:

$$f'(x) = \frac{d}{dx}(x^3) = 3x^2$$

Set the first derivative to zero to find critical points:

$$3x^2 = 0 \implies x = 0$$
 (Critical Point)

Sign Chart:

Increasing

Increasing

Second Order Condition

Calculate the second derivative:

$$f''(x) = \frac{d}{dx}(3x^2) = 6x$$

Evaluate at the critical point and identify the inflection point:

$$f''(0) = 6(0) = 0$$
 (inconclusive, inflection point at $x = 0$)

Sign Chart:

Concave Down

Concave Up

ECON 205

Graph of f(x)

Graphs of
$$f(x) = x^3$$
, $f'(x) = 3x^2$, and $f''(x) = 6x$

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

$$f''(x) = 6x$$

23/33

ECON 205 One Variable Calculus-III 11 October 2024

First Order Condition

- Consider $f(x) = x^4$.
- Calculate the first derivative:

$$f'(x) = \frac{d}{dx}(x^4) = 4x^3$$

Set the first derivative to zero to find critical points:

$$4x^3 = 0 \implies x = 0$$
 (Critical Point)

Sign Chart:

Decreasing

Increasing

Second Order Condition

Calculate the second derivative:

$$f''(x) = \frac{d}{dx}(4x^3) = 12x^2$$

Evaluate at the critical point and identify the inflection point:

$$f''(0) = 12(0)^2 = 0$$
 (inconclusive, inflection point at $x = 0$)

Sign Chart:

Concave Up

Concave Up

Graph of f(x)

Graphs of
$$f(x) = x^4$$
, $f'(x) = 4x^3$, and $f''(x) = 12x^2$

$$f(x) = x^4$$

$$f'(x) = 4x^3$$

$$f''(x) = 12x^2$$

26/33

Global Maxima or Minima

In general, it is difficult to find a global maximum of a function or even to prove that a given local maximum is a global maximum. There are, however, three situations in which this problem is somewhat easier:

- ② when f'' > 0 or f'' < 0 throughout the domain of f, and
- when the domain of f is a closed finite interval.

Theorem: Global Maxima

Suppose that

- the domain of f is an interval I (finite or infinite) in \mathbb{R}^1 ,
- 2 x_0 is a local maximum of f, and
- \bullet x_0 is the only critical point of f on I.

Then, x_0 is the global maximum of f on I.

Theorem: Global Maxima or Minima

- If c^2 functions whose domain is an interval I and if f'' is never zero on I, then
- f has at most one critical point in I
- This critical point is a global minimum if f'' > 0 and a global maximum if f'' < 0

Example 1

$$f(x) = x^4 - 4x^3 + 4x^2 - 10$$

First derivative:

$$f'(x) = 4x^3 - 12x^2 + 8x$$

Set the first derivative to zero:

$$4x^3 - 12x^2 + 8x = 0$$

Factoring:

$$4x(x^2-3x+2)=0 \implies x=0, x=1, x=2$$
 (Critical Points)

Sign Chart:

Example 1 (cont.)

Calculate the second derivative:

$$f''(x) = \frac{d}{dx}(4x^3 - 12x^2 + 8x) = 12x^2 - 24x + 8$$

Evaluate the second derivative at the critical points:

$$f''(0) = 8$$
 (Local Minimum)

$$f''(1) = -4$$
 (Local Maximum)

$$f''(2) = 8$$
 (Local Minimum)

Example 1 (cont.)

Set the second derivative to zero:

$$12x^2 - 24x + 8 = 0$$

Solving gives inflection points:

$$x \approx 0.458, \quad x \approx 1.541$$

Sign Chart

Example 1 (cont.)

