Numerical Analysis & Scientific Computing II

Module 2 Initial Value Problems

- 2.4 Implicit method
- 2.5 Stiffness
- 2.6 Linear Multistep Methods
 - Consistency and Order

Consistency and Order

For the linear multistep method

$$\sum_{j=-1}^{k} a_j y_{n-j} = h \sum_{j=-1}^{k} b_j f(t_{n-j}, y_{n-j})$$

define the local error as

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh)$$

for any $y \in C^1$, and h > 0.

Consistency and Order

For the linear multistep method

$$\sum_{j=-1}^{k} a_j y_{n-j} = h \sum_{j=-1}^{k} b_j f(t_{n-j}, y_{n-j})$$

define the local error as

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh)$$

for any $y \in C^1$, and h > 0.

The linear multistep method is consistent if

$$\lim_{h \to 0} \max_{k \le n < N} \left| \frac{\ell_{n+1}(y, h)}{h} \right| = 0$$

for all $y \in C^1$.

Consistency and Order

For the linear multistep method

$$\sum_{j=-1}^{k} a_j y_{n-j} = h \sum_{j=-1}^{k} b_j f(t_{n-j}, y_{n-j})$$

define the local error as

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh)$$

for any $y \in C^1$, and h > 0.

The linear multistep method is consistent if

$$\lim_{h \to 0} \max_{k \le n < N} \left| \frac{\ell_{n+1}(y, h)}{h} \right| = 0$$

for all $y \in C^1$.

The method has order p is for all $y \in C^{p+1}$ there exists constants C, $h_0 > 0$ such that

$$\max_{k \le n < N} \left| \frac{\ell_{n+1}(y, h)}{h} \right| \le Ch^p$$

whenever $h < h_0$.

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} j a_j + \sum_{j=-1}^{k} b_j = 0.$$

The method is of order
$$p$$
 if and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 \,, \qquad m=0,1,\dots,p.$$

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order
$$p$$
 if and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 , \qquad m = 0,1,\dots,p.$$
 Order conditions

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order
$$p$$
 if and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 \,, \qquad m = 0,1,\dots,p.$$
 Order conditions

Proof.

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order
$$p$$
 if and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 , \qquad m = 0,1,...,p.$$
 Order conditions

Proof.

Using Taylor's theorem, we have $y(t_n - jh) = y(t_n) - jhy'(\xi_j)$ for some $\xi_j \in (t_n - kh, t_n + h), j = -1, ..., k$.

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order
$$p$$
 if and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 \,, \qquad m = 0, 1, \dots, p.$$

Proof.

Using Taylor's theorem, we have $y(t_n - jh) = y(t_n) - jhy'(\xi_j)$ for some $\xi_j \in (t_n - kh, t_n + h), j = -1, ..., k$. *Note that* $\xi_i \to t_n$ *as* $h \to 0$.

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order p if and only if

Of f and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0 , \qquad m=0,1,\dots,p.$$
 Order conditions

Proof.

Using Taylor's theorem, we have $y(t_n - jh) = y(t_n) - jhy'(\xi_j)$ for some $\xi_j \in (t_n - kh, t_n + h), j = -1, ..., k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh)$$

Note

It is not true that every method of order p converges with order p. It may not even converge at all!

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k} a_j = 0, \qquad \sum_{j=-1}^{k} ja_j + \sum_{j=-1}^{k} b_j = 0.$$
 Consistency conditions

The method is of order p if and only if

Of f and only if
$$\sum_{j=-1}^k (-j)^m a_j - m \sum_{j=-1}^k (-j)^{m-1} b_j = 0, \qquad m = 0,1,\dots,p.$$

Proof.

Using Taylor's theorem, we have $y(t_n - jh) = y(t_n) - jhy'(\xi_j)$ for some $\xi_j \in (t_n - kh, t_n + h), j = -1, ..., k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j [y(t_n) - jhy'(\xi_j)]$$

Proof.

Using Taylor's theorem, we have $y(t_n-jh)=y(t_n)-jhy'(\xi_j)$ for some $\xi_j\in (t_n-kh,t_n+h), j=-1,\ldots,k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j [y(t_n) - jhy'(\xi_j)]$$

$$= -y(t_n)C_0 + hy'(t_n)C_1 + R,$$

where

$$C_0 = \sum_{j=-1}^k a_j, C_1 = \sum_{j=-1}^k j a_j + \sum_{j=-1}^k b_j,$$

$$R = h \sum_{j=-1}^k b_j [y'(t_n - jh) - y'(t_n)] + h \sum_{j=-1}^k j a_j [y'(\xi_j) - y'(t_n)]$$

Proof.

Using Taylor's theorem, we have $y(t_n-jh)=y(t_n)-jhy'(\xi_j)$ for some $\xi_j\in (t_n-kh,t_n+h), j=-1,\ldots,k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j [y(t_n) - jhy'(\xi_j)]$$

$$= -y(t_n)C_0 + hy'(t_n)C_1 + R,$$

where

$$C_0 = \sum_{j=-1}^k a_j, C_1 = \sum_{j=-1}^k j a_j + \sum_{j=-1}^k b_j,$$

$$R = h \sum_{j=-1}^k b_j [y'(t_n - jh) - y'(t_n)] + h \sum_{j=-1}^k j a_j [y'(\xi_j) - y'(t_n)]$$

By uniform continuity of y', we see that $R/h \to 0$ as $h \to 0$.

Proof.

Using Taylor's theorem, we have $y(t_n-jh)=y(t_n)-jhy'(\xi_j)$ for some $\xi_j\in (t_n-kh,t_n+h), j=-1,\ldots,k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j [y(t_n) - jhy'(\xi_j)]$$

$$= -y(t_n)C_0 + hy'(t_n)C_1 + R,$$

where

$$C_0 = \sum_{j=-1}^k a_j, C_1 = \sum_{j=-1}^k j a_j + \sum_{j=-1}^k b_j,$$

$$R = h \sum_{j=-1}^k b_j [y'(t_n - jh) - y'(t_n)] + h \sum_{j=-1}^k j a_j [y'(\xi_j) - y'(t_n)]$$

By uniform continuity of y', we see that $R/h \to 0$ as $h \to 0$. Therefore, $\ell_{n+1}(y,h)/h \to 0$ if and only if ...

Proof.

Using Taylor's theorem, we have $y(t_n-jh)=y(t_n)-jhy'(\xi_j)$ for some $\xi_j\in (t_n-kh,t_n+h), j=-1,\ldots,k$.

Note that $\xi_j \to t_n$ as $h \to 0$. Now,

$$\ell_{n+1}(y,h) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j y(t_n - jh) = h \sum_{j=-1}^{k} b_j y'(t_n - jh) - \sum_{j=-1}^{k} a_j [y(t_n) - jhy'(\xi_j)]$$

$$= -y(t_n)C_0 + hy'(t_n)C_1 + R,$$

where

$$C_0 = \sum_{j=-1}^k a_j, C_1 = \sum_{j=-1}^k j a_j + \sum_{j=-1}^k b_j,$$

$$R = h \sum_{j=-1}^k b_j [y'(t_n - jh) - y'(t_n)] + h \sum_{j=-1}^k j a_j [y'(\xi_j) - y'(t_n)]$$

By uniform continuity of y', we see that $R/h \to 0$ as $h \to 0$. Therefore, $\ell_{n+1}(y,h)/h \to 0$ if and only if $C_0 = 0$ and $C_1 = 0$, that is consistency conditions are satisfied.

Akash Anand MATH, IIT KANPUR

Initial Value Problems: Linear Multistep Methods

Proof. ...

Similarly, if $y \in C^{p+1}$ we have

$$y(t_n - jh) = \sum_{m=0}^{p} \frac{(-j)^m}{m!} h^m y^{(m)}(t_n) + \frac{(-j)^{p+1}}{(p+1)!} h^{p+1} y^{(p+1)}(\xi_j)$$

$$y'(t_n - jh) = \sum_{m=1}^{p} \frac{(-j)^{m-1}}{(m-1)!} h^{m-1} y^{(m)}(t_n) + \frac{(-j)^p}{p!} h^p y^{(p+1)}(\zeta_j)$$

for some $\xi_i, \zeta_i \in (t_n - kh, t_n + h), j = -1, ..., k$.

Proof. ...

Similarly, if $y \in C^{p+1}$ we have

$$y(t_n - jh) = \sum_{m=0}^{p} \frac{(-j)^m}{m!} h^m y^{(m)}(t_n) + \frac{(-j)^{p+1}}{(p+1)!} h^{p+1} y^{(p+1)}(\xi_j)$$

$$y'(t_n - jh) = \sum_{m=1}^{p} \frac{(-j)^{m-1}}{(m-1)!} h^{m-1} y^{(m)}(t_n) + \frac{(-j)^p}{p!} h^p y^{(p+1)}(\zeta_j)$$

for some $\xi_j, \zeta_j \in (t_n - kh, t_n + h), j = -1, ..., k$. This yields

$$\ell_{n+1}(y,h) = \sum_{m=0}^{p} h^m y^{(m)}(t_n) C_m + R$$

where

$$C_m = \frac{1}{m!} \left[m \sum_{j=-1}^k (-j)^{m-1} b_j - \sum_{j=-1}^k (-j)^m a_j \right], \qquad R = h^{p+1} \sum_{j=-1}^k \left[b_j \frac{(-j)^p}{p!} y^{(p+1)} (\zeta_j) - a_j \frac{(-j)^{p+1}}{(p+1)!} y^{(p+1)} (\xi_j) \right].$$

Proof. ...

Similarly, if $y \in C^{p+1}$ we have

$$y(t_n - jh) = \sum_{m=0}^{p} \frac{(-j)^m}{m!} h^m y^{(m)}(t_n) + \frac{(-j)^{p+1}}{(p+1)!} h^{p+1} y^{(p+1)}(\xi_j)$$

$$y'(t_n - jh) = \sum_{m=1}^{p} \frac{(-j)^{m-1}}{(m-1)!} h^{m-1} y^{(m)}(t_n) + \frac{(-j)^p}{p!} h^p y^{(p+1)}(\zeta_j)$$

for some $\xi_i, \zeta_i \in (t_n - kh, t_n + h), j = -1, ..., k$. This yields

$$\ell_{n+1}(y,h) = \sum_{m=0}^{p} h^m y^{(m)}(t_n) C_m + R$$

where

$$C_m = \frac{1}{m!} \left[m \sum_{j=-1}^k (-j)^{m-1} b_j - \sum_{j=-1}^k (-j)^m a_j \right], \qquad R = h^{p+1} \sum_{j=-1}^k \left[b_j \frac{(-j)^p}{p!} y^{(p+1)} (\zeta_j) - a_j \frac{(-j)^{p+1}}{(p+1)!} y^{(p+1)} (\xi_j) \right].$$

Since $R = O(h^{p+1})$, $\ell_{n+1}(y,h)/h = O(h^p)$ if and only if all the C_m vanish.

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k'} a_j = 0, \qquad \sum_{j=-1}^{k} j a_j + \sum_{j=-1}^{k} b_j = 0.$$

The method is of order p if and only if

$$\sum_{j=-1}^{k} (-j)^m a_j - m \sum_{j=-1}^{k} (-j)^{m-1} b_j = 0, \qquad m = 0, 1, \dots, p.$$

Remarks

1. This theorem is an example of how a complicated analytic condition may sometimes reduce to a simple algebraic criterion.

Theorem

A linear multistep is consistent if and only if

$$\sum_{j=-1}^{k'} a_j = 0, \qquad \sum_{j=-1}^{k} j a_j + \sum_{j=-1}^{k} b_j = 0.$$

The method is of order p if and only if

$$\sum_{j=-1}^{k} (-j)^m a_j - m \sum_{j=-1}^{k} (-j)^{m-1} b_j = 0, \qquad m = 0, 1, \dots, p.$$

Remarks

- 1. This theorem is an example of how a complicated analytic condition may sometimes reduce to a simple algebraic criterion.
- 2. Such algebraic criteria for multistep methods can be expressed in terms of characteristic polynomials of the method:

$$\rho(z) = \sum_{j=-1}^{k} a_j z^{k-j}, \qquad \sigma(z) = \sum_{j=-1}^{k} b_j z^{k-j}.$$

For example, the consistency conditions are $\rho(1) = 0$ and $\rho'(1) = \sigma(1)$.