COMSM1201 : Data Structures & Algorithms

Dr. Neill Campbell Neill.Campbell@bristol.ac.uk

University of Bristol

October 20, 2021

Table of Contents

N : Recursion

N : Recursion 2 / 10

Simple Recursion

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.
- Let's look at some toy examples to begin with.

```
#include <stdio.h>
     #include <string.h>
     #define SWAP(A,B) {char temp; temp=A;A=B;B=temp;}
     void strrev(char *s, int n);
     int main (void)
        char str[] = "Hello World!":
        strrev(str. strlen(str)):
        printf("%s\n", str);
        return 0:
14
15
     /* Iterative Inplace String Reverse */
17
     void strrev(char *s. int n)
18
19
        for(int i=0, j=n-1; i<j; i++, j--){
            SWAP(s[i], s[j]);
21
22
```

Execution:

!dlroW olleH

N : Recursion 3 / 10

Recursion for *strrev()*

```
#include <stdio.h>
    #include <string.h>
    #define SWAP(A.B) {char temp: temp=A:A=B:B=temp:}
    void strrev(char *s, int start, int end);
    int main(void)
       char str[] = "Hello World!";
       strrev(str. 0. strlen(str)-1):
       printf("%s\n", str);
13
14
       return 0:
15
    /* Recursive : Inplace String Reverse */
    void strrev(char *s, int start, int end)
19
       if(start >= end){
20
           return:
       SWAP(s[start], s[end]);
23
24
       strrev(s. start+1, end-1):
```

- We need to change the function prototype.
- This allows us to track both the start and the end of the string.

Execution:

IdlroW olleH

N : Recursion 4 / 10

The Fibonacci Sequence

A well known example of a recursive function is the Fibonacci sequence. The first term is 1, the second term is 1 and each successive term is defined to be the sum of the two previous terms, i.e. :

```
fib(1) is 1
fib(2) is 1
fib(n) is fib(n-1)+fib(n-2)
```

1,1,2,3,5,8,13,21, ...

N : Recursion 5 / 10

Iterative & Recursive Fibonacci

```
#include <stdio.h>
    #define MAXFIB 25
    int fibonacci(int n):
     int main(void)
        for (int i=1: i < MAXFIB: i++){
           printf("%d = %d\n", i, fibonacci(i)):
13
14
15
        return 0;
16
17
     int fibonacci(int n)
19
20
        if(n \le 2)
           return 1;
        int b = 1:
        int next:
        for (int i=3; i \le n; i++){
           next = a + b:
           a = b:
29
           b = next:
30
31
        return b:
32
```

Execution:

```
1 = 1
 = 13
 = 21
9 = 34
10 = 55
11 = 89
12 = 144
13 = 233
14 = 377
15 = 610
16 = 987
17 = 1597
18 = 2584
19 = 4181
20 = 6765
21 = 10946
22 = 17711
23 = 28657
24 = 46368
```

Iterative & Recursive Fibonacci

```
#include <stdio.h>
    #define MAXFIB 25
     int fibonacci(int n);
     int main (void)
        for(int i=1; i < MAXFIB; i++){</pre>
           printf("%d = %d\n", i, fibonacci(i));
        return 0:
     int fibonacci(int n)
18
19
20
        if (n == 1) return 1:
        if (n == 2) return 1:
        return ( fibonacci (n-1) + fibonacci (n-2));
```

It's interesting to see how run-time increases as the length of the sequence is raised.

N : Recursion 7 / 10

Maze Escape

The correct route through a maze can be obtained via recursive, rather than iterative, methods.


```
bool explore(int x, int y, char mz[YS][XS])
  if mz[y][x] is exit return true;
  Mark mz[y][x] so we don't return here
  if we can go up:
    if(explore(x, y+1, mz)) return true
  if we can go right:
    if(explore(x+1, v, mz)) return true
  Do left & down in a similar manner
  return false: // Failed to find route
```

N : Recursion 8 / 10

Permuting

- Here we consider the ways to permute a string (or more generally an array)
- Permutations are all possible ways of rearranging the positions of the characters. Execution:

ABC ACB BAC BCA CBA CAB

```
// From e.g. http://www.geeksforgeeks.org
    #include <stdio.h>
    #include <string.h>
    #define SWAP(A,B) {char temp = *A; *A = *B; *B = temp;}
     void permute(char *a, int s, int e);
     int main()
         char str[] = "ABC";
         int n = strlen(str);
         permute(str. 0, n-1);
         return 0:
15
16
     void permute(char *a, int s, int e)
18
        if (s == e){
          printf("%s\n", a);
          return:
        for (int i = s: i \le e: i++)
24
           SWAP((a+s), (a+i)); // Bring one char to the front
25
           permute(a, s+1, e);
26
           SWAP((a+s), (a+i)); // Backtrack
27
28
```

N: Recursion 9 / 10

Self-test: Power

- Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.
- Or, thinking recursively, $n = 2 * (2^4)$.

```
/* Try to write power(a.b) to computer a^b
        without using any maths functions other than
        multiplication :
        Try (1) iterative then (2) recursive
        (3) Trick that for n\%2==0, x^n = x^(n/2)*x^(n/2)
    #include <stdio.h>
10
11
     int power(unsigned int a, unsigned int b);
12
     int main(void)
16
        int x = 2:
        int v = 16:
19
        printf("%d^%d = %d\n", x, y, power(x,y));
20
21
     int power(unsigned int a, unsigned int b)
```

N : Recursion 10 / 10