

# Índice general

| P            | Prólogo                                                |  |    |  |  |  |
|--------------|--------------------------------------------------------|--|----|--|--|--|
| 1            | Introducción al Aprendizaje Estadístico                |  | 7  |  |  |  |
|              | 1.1 Aprendizaje Estadístico vs. Aprendizaje Automático |  | 8  |  |  |  |
|              | 1.2 Métodos de Aprendizaje Estadístico                 |  | 10 |  |  |  |
|              | 1.3 Construcción y evaluación de los modelos           |  | 12 |  |  |  |
|              | 1.4 La maldición de la dimensionalidad                 |  | 30 |  |  |  |
|              | 1.5 Introducción al paquete caret                      |  | 30 |  |  |  |
| 2            | Árboles de decisión                                    |  | 31 |  |  |  |
|              | 2.1 Árboles de regresión CART                          |  | 33 |  |  |  |
|              | 2.2 Árboles de clasificación CART                      |  | 35 |  |  |  |
|              | 2.3 CART con el paquete rpart                          |  | 36 |  |  |  |
|              | 2.4 Alternativas a los árboles CART                    |  | 56 |  |  |  |
| $\mathbf{R}$ | eferencias                                             |  | 59 |  |  |  |
|              | Bibliografía básica                                    |  | 59 |  |  |  |
|              | Bibliografía complementaria                            |  |    |  |  |  |

ÍNDICE GENERAL

## Prólogo

Este libro contiene los apuntes de la asignatura de Aprendizaje Estadístico del Máster en Técnicas Estadísticas.

Este libro ha sido escrito en R-Markdown empleando el paquete bookdown y está disponible en el repositorio Github: rubenfcasal/aprendizaje\_estadistico. Se puede acceder a la versión en línea a través del siguiente enlace:

https://rubenfcasal.github.io/aprendizaje\_estadistico.

donde puede descargarse en formato pdf.

Para ejecutar los ejemplos mostrados en el libro sería necesario tener instalados los siguientes paquetes: caret, rattle, car, leaps, MASS, RcmdrMisc, lmtest, glmnet, mgcv, AppliedPredictiveModeling, ISLR. Por ejemplo mediante los siguientes comandos:

Para generar el libro (compilar) serán necesarios paquetes adicionales, para lo que se recomendaría consultar el libro de "Escritura de libros con bookdown" en castellano.



Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional (esperamos poder liberarlo bajo una licencia menos restrictiva más adelante...).

6 ÍNDICE GENERAL

## Capítulo 1

## Introducción al Aprendizaje Estadístico

La denominada Ciencia de Datos (Data Science; también denominada Science of Learning) se ha vuelto muy popular hoy en día. Se trata de un campo multidisciplicar, con importantes aportaciones estadísticas e informáticas, dentro del que se incluirían disciplinas como Minería de Datos (Data Mining), Aprendizaje Automático (Machine Learning), Aprendizaje Profundo (Deep Learning), Modelado Predictivo (Predictive Modeling), Extracción de Conocimiento (Knowlegde Discovery) y también el Aprendizaje Estadístico (Statistical Learning).

Podríamos definir la Ciencia de Datos como el conjunto de conocimientos y herramientas utilizados en las distintas etapas del análisis de datos (ver Figura 1.1). Otras definiciones podrían ser:

- El arte y la ciencia del análisis inteligente de los datos.
- El conjunto de herramientas para entender y modelizar conjuntos (complejos) de datos.
- El proceso de descubrir patrones y obtener conocimiento a partir de grandes conjuntos de datos (Big Data).

Aunque esta ciencia incluiría también la gestión (sin olvidarnos del proceso de obtención) y la manipulación de los datos.



Figura 1.1: Etapas del proceso

Una de estas etapas (que están interrelacionadas) es la construcción de modelos a partir de los datos para aprender y predecir. Podríamos decir que el Aprendizaje Estadístico (AE) se encarga de este problema desde el punto de vista estadístico.

En Estadística se consideran modelos estocásticos (con componente aleatoria), para tratar de tener en cuenta la incertidumbre debida a que no se disponga de toda la información (sobre las variables

que influyen en el fenómeno de interés).

- "Nothing in Nature is random... a thing appears random only through the incompleteness of our knowledge."
- Spinoza, Baruch (Ethics, 1677)
- "To my mind, although Spinoza lived and thought long before Darwin, Freud, Einstein, and the startling implications of quantum theory, he had a vision of truth beyond what is normally granted to human beings."
- Shirley, Samuel (Complete Works, 2002). Traductor de la obra completa de Spinoza al inglés.

La Inferencia Estadística proporciona herramientas para ajustar este tipo de modelos a los datos observados (seleccionar un modelo adecuado, estimar sus parámetros y contrastar su validez). Sin embargo, en la aproximación estadística clásica como primer objetivo se trata de explicar por completo lo que ocurre en la población y suponiendo que esto se puede hacer con modelos tratables analíticamente, emplear resultados teóricos (típicamente resultados asintóticos) para realizar inferencias (entre ellas la predicción). Los avances en computación han permitido el uso de modelos estadísticos más avanzados, principalmente métodos no paramétricos, muchos de los cuales no pueden ser tratados analíticamente (por lo menos no por completo o no inicialmente), este es el campo de la Estadística Computacional¹. Desde este punto de vista, el AE se enmarcaría dentro del campo de la Estadística Computacional.

Cuando pensamos en AE pensamos en:

- Flexibilidad (hay menos suposiciones sobre los datos).
- Procesamiento automático de datos.
- Big Data (en el sentido amplio, donde "big" puede hacer referencia a datos complejos).
- Predicción.

Por el contrario, muchos de los métodos del AE no se preocupan (o se preocupan poco) por:

- Reproducibilidad.
- Cuantificación de la incertidumbre (en términos de probabilidad).
- Inferencia.

La idea es "dejar hablar a los datos" y no "encorsetarlos" a priori, dándoles mayor peso que a los modelos. Sin embargo, esta aproximación puede presentar diversos inconvenientes:

- Algunos métodos son poco interpretables (se sacrifica la interpretabilidad por la precisión de las predicciones).
- Pueden aparecer problemas de sobreajuste (*overfitting*; en los métodos estadísticos clásicos es más habitual que aparezcan problemas de infraajuste, *underfitting*).
- Pueden presentar más problemas al extrapolar o interpolar (en comparación con los métodos clásicos).

## 1.1 Aprendizaje Estadístico vs. Aprendizaje Automático

El término Machine Learning (ML; Aprendizaje Automático) se utiliza en el campo de la Intelingencia Artificial desde 1959 para hacer referencia, fundamentalmente, a algoritmos de predicción (inicialmente para reconocimiento de patrones). Muchas de las herramientas que utilizan provienen del campo de la Estadística y, en cualquier caso, la Estadística (y por tanto las Matemáticas) es la base de todos estos enfoques para analizar datos (y no conviene perder la base formal). Por este motivo desde la

<sup>&</sup>lt;sup>1</sup>Lauro (1996) definió la Estadística Computacional como la disciplina que tiene como objetivo "diseñar algoritmos para implementar métodos estadísticos en computadoras, incluidos los impensables antes de la era de las computadoras (por ejemplo, bootstrap, simulación), así como hacer frente a problemas analíticamente intratables".

Estadística Computacional se introdujo el término *Statistical Learning* (Aprendizaje Estadístico) para hacer referencia a este tipo de herramientas, pero desde el punto de vista estadístico (teniendo en cuenta la incertidumbre debida a no disponer de toda la información).

Tradicionalmente ML no se preocupa del origen de los datos e incluso es habitual que se considere que un conjunto enorme de datos es equivalente a disponer de toda la información (i.e. a la población).

"The sheer volume of data would obviate the need of theory and even scientific method"

— Chris Anderson, físico y periodista, 2008

Por el contrario en el caso del AE se trata de comprender, si es posible, el proceso subyacente del que provienen los datos y si estos son representativos de la población de interés (i.e. si tienen algún tipo de sesgo). No obstante, en este libro se considerará en general ambos términos como sinónimos.

ML/AE hacen un importante uso de la programación matemática, ya que muchos de sus problemas se plantean en términos de la optimización de funciones bajo restricciones. Recíprocamente, en optimización también se utilizan algoritmos de ML/AE.

#### 1.1.1 Machine Learning vs. Data Mining

Mucha gente utiliza indistintamente los nombres ML y *Data Mining* (DM). Sin embargo, aunque tienen mucho solapamiento, lo cierto es que hacen referencia a conceptos ligeramente distintos.

ML es un conjunto de algoritmos principalmente dedicados a hacer predicciones y que son esencialmente automáticos minimizando la intervención humana.

DM intenta *entender* conjuntos de datos (en el sentido de encontrar sus patrones), requiere de una intervención humana activa (al igual que la Inferencia Estadística tradicional), pero utiliza entre otras las técnicas automáticas de ML. Por tanto podríamos pensar que es más parecido al AE.

#### 1.1.2 Las dos culturas (Breiman, 2001)

Breiman diferencia dos objetivos en el análisis de datos, que él llama información (en el sentido de inferencia) y predicción. Cada uno de estos objetivos da lugar a una cultura:

- *Modelización de datos*: desarrollo de modelos (estocásticos) que permitan ajustar los datos y hacer inferencia. Es el trabajo habitual de los estadísticos académicos.
- Modelización algorítmica (en el sentido de predictiva): esta cultura no está interesada en los mecanismos que generan los datos, sólo en los algoritmos de predicción. Es el trabajo habitual de muchos estadísticos industriales y de muchos ingenieros informáticos. El ML es el núcleo de esta cultura que pone todo el énfasis en la precisión predictiva (así, un importante elemento dinamizador son las competiciones entre algoritmos predictivos, al estilo del Netflix Challenge).

#### 1.1.3 Machine Learning vs. Estadística (Dunson, 2018)

- "Machine learning: The main publication outlets tend to be peer-reviewed conference proceedings and the style of research is very fast paced, trendy, and driven by performance metrics in prediction and related tasks".
- "Statistical community: The main publication outlets are peer-reviewed journals, most of which have a long drawn out review process, and the style of research tends to be careful, slower paced, intellectual as opposed to primarily performance driven, emphasizing theoretical support (e.g., through asymptotic properties), under-stated, and conservative".
- "Big data in ML typically means that the number of examples (i.e. sample size) is very large".

• "In statistics (...) it has become common to collect high dimensional, complex and intricately structured data. Often the dimensionality of the data vastly exceeds the available sample size, and the fundamental challenge of the statistical analysis is obtaining new insights from these huge data, while maintaining reproducibility/replicability and reliability of the results".

### 1.2 Métodos de Aprendizaje Estadístico

Dentro de los problemas que aborda el Aprendizaje Estadístico se suelen diferenciar dos grandes bloques: el aprendizaje no supervisado y el supervisado. El aprendizaje no supervisado comprende los métodos exploratorios, es decir, aquellos en los que no hay una variable respuesta (al menos no de forma explícita). El principal objetivo de estos métodos es entender las relaciones entre los datos y su estructura, y pueden clasificarse en las siguientes categorías:

- Análisis descriptivo.
- Métodos de reducción de la dimensión (análisis de componentes principales, análisis factorial...).
- Clúster.
- Detección de datos atípicos.

El aprendizaje supervisado engloba los métodos predictivos, en los que una de las variables está definida como variable respuesta. Su principal objetivo es la construcción de modelos que posteriormente se utilizarán, sobre todo, para hacer predicciones. Dependiendo del tipo de variable respuesta se diferencia entre:

- Clasificación: respuesta categórica (también se emplea la denominación de variable cualitativa, discreta o factor).
- Regresión: respuesta numérica (cuantitativa).

En este libro nos centraremos únicamente en el campo del aprendizaje supervisado y combinaremos la terminología propia de la Estadística con la empleada en AE (por ejemplo, en Estadística es habitual considerar un problema de clasificación como un caso particular de regresión).

#### 1.2.1 Notación y terminología

Denotaremos por  $\mathbf{X} = (X_1, X_2, \dots, X_p)$  al vector formado por las variables predictoras (variables explicativas o variables independientes; también *inputs* o *features* en la terminología de ML), cada una de las cuales podría ser tanto numérica como categórica<sup>2</sup>. En general (ver comentarios más adelante), emplearemos  $Y(\mathbf{X})$  para referirnos a la variable objetivo (variable respuesta o variable dependiente; también *output* en la terminología de ML), que como ya se comentó puede ser una variable numérica (regresión) o categórica (clasificación).

Supondremos que el objetivo principal es, a partir de una muestra:

$$\{(x_{1i},\ldots,x_{pi},y_i): i=1,\ldots,n\},\$$

obtener (futuras) predicciones  $\hat{Y}(\mathbf{x})$  de la respuesta para  $\mathbf{X} = \mathbf{x} = (x_1, \dots, x_p)$ .

En regresión consideraremos como base el siguiente modelo general (podría ser después de una transformación de la respuesta):

$$Y(\mathbf{X}) = m(\mathbf{X}) + \varepsilon, \tag{1.1}$$

donde  $m(\mathbf{x}) = E(Y|_{\mathbf{X}=\mathbf{x}})$  es la media condicional, denominada función de regresión (o tendencia), y  $\varepsilon$  es un error aleatorio de media cero y varianza  $\sigma^2$ , independiente de  $\mathbf{X}$ . Este modelo puede generalizarse

 $<sup>^2</sup>$ Aunque hay que tener en cuenta que algunos métodos están diseñados para predictores numéricos, otros para categóricos y algunos para ambos tipos.

de diversas formas, por ejemplo, asumiendo que la distribución del error depende de X (considerando  $\varepsilon(\mathbf{X})$  en lugar de  $\varepsilon$ ) podríamos incluir dependencia y heterocedasticidad. En estos casos normalmente se supone que lo hace únicamente a través de la varianza (error heterocedástico independiente), denotando por  $\sigma^2(\mathbf{x}) = Var\left(Y|_{\mathbf{X}=\mathbf{x}}\right)$  la varianza condicional<sup>3</sup>.

Como ya se comentó se podría considerar clasificación como un caso particular, por ejemplo definiendo  $Y(\mathbf{X})$  de forma que tome los valores  $1,2,\ldots,K$ , etiquetas que identifican las K posibles categorías (también se habla de modalidades, niveles, clases o grupos). Sin embargo, muchos métodos de clasificación emplean variables auxiliares (variables dummy), indicadoras de las distintas categorías, y emplearemos la notación anterior para referirnos a estas variables (también denominadas variables target). En cuyo caso, denotaremos por  $G(\mathbf{X})$  la respuesta categórica (la clase verdadera;  $g_i, i = 1, \ldots, n$ , serían los valores observados) y por  $\hat{G}(\mathbf{X})$  el predictor.

Por ejemplo, en el caso de dos categorías, se suele definir Y de forma que toma el valor 1 en la categoría de interés (también denominada éxito o resultado positivo) y 0 en caso contrario (fracaso o resultado negativo)<sup>4</sup>. Además, en este caso, los modelos típicamente devuelven estimaciones de la probabilidad de la clase de interés en lugar de predecir directamente la clase, por lo que se empleará  $\hat{p}$  en lugar de  $\hat{Y}$ . A partir de esa estimación se obtiene una predicción de la categoría. Normalmente se predice la clase más probable, i.e. "éxito" si  $\hat{p}(\mathbf{x}) > c = 0.5$  y "fracaso" en caso contrario (con probabilidad estimada  $1 - \hat{p}(\mathbf{x})$ ).

Resulta claro que el modelo base general (1.1) puede no ser adecuado para modelar variables indicadoras (o probabilidades). Muchos de los métodos de AE emplean (1.1) para una variable auxiliar numérica (denominada puntuación o score) que se transforma a escala de probabilidades mediante la función logística (denominada función sigmoidal, sigmoid function, en ML)<sup>5</sup>:

$$p(s) = \frac{1}{1 + e^{-s}},$$

cuya inversa es la función logit:

$$logit(p) = log\left(\frac{p}{1-p}\right).$$

Lo anterior se puede generalizar para el caso de múltiples categorías, considerando variables indicadoras de cada categoría  $Y_1, \ldots, Y_K$  (es lo que se conoce como la estrategia de "uno contra todos"). En este caso típicamente:

$$\hat{G}(\mathbf{x}) = \underset{k}{\operatorname{argmax}} \left\{ \hat{p}_k(\mathbf{x}) : k = 1, 2, \dots, K \right\}.$$

#### 1.2.2 Métodos (de aprendizaje supervisado) y paquetes de R

Hay una gran cantidad de métodos de aprendizaje supervisado implementados en centenares de paquetes de R (ver por ejemplo CRAN Task View: Machine Learning & Statistical Learning). A continuación se muestran los principales métodos y algunos de los paquetes de R que los implementan (muchos son válidos para regresión y clasificación, como por ejemplo los basados en árboles, aunque aquí aparecen en su aplicación habitual).

Métodos de Clasificación:

- Análisis discriminante (lineal, cuadrático), Regresión logística, multinomial...: stats, MASS...
- Árboles de decisión, bagging, random forest, boosting: rpart, party, C50, Cubist, randomForest, adabag, xgboost...
- Support vector machines (SVM): kernlab, e1071...

Métodos de regresión:

<sup>&</sup>lt;sup>3</sup>Por ejemplo considerando en el modelo base  $\sigma(\mathbf{X})\varepsilon$  como termino de error y suponiendo adicionalmente que  $\varepsilon$  tiene varianza uno.

<sup>&</sup>lt;sup>4</sup>Otra alternativa sería emplear 1 y -1, algo que simplifica las expresiones de algunos métodos.

<sup>&</sup>lt;sup>5</sup>De especial interés en regresión logística y en redes neuronales artificiales.

- Modelos lineales:
  - Regresión lineal: lm(), lme(), biglm...
  - Regresión lineal robusta: MASS::rlm()...
  - Métodos de regularización (Ridge regression, Lasso): glmnet, elasticnet...
- Modelos lineales generalizados: glm(), bigglm, ...
- Modelos paramétricos no lineales: nls(), nlme...
- Regresión local (vecinos más próximos y métodos de suavizado): kknn, loess(), KernSmooth, sm, np...
- Modelos aditivos generalizados (GAM): mgcv, gam...
- Redes neuronales: nnet...

También existen paquetes de R que permiten utilizar plataformas de ML externas, como por ejemplo h2o o RWeka.

Como todos estos paquetes emplean opciones, estructuras y convenciones sintácticas diferentes, se han desarrollado paquetes que proporcionan interfaces unificadas a muchas de estas implementaciones. Entre ellos podríamos citar caret,mlr3 y tidymodels. En la Sección 1.5 se incluye una breve introducción al paquete caret que será empleado en diversas ocasiones a lo largo del presente libro.

Adicionalmente hay paquetes de R que disponen de entornos gráficos que permiten emplear estos métodos evitando el uso de comandos. Entre ellos estarían R-Commander con el plugin FactoMineR (Rcmdr, RcmdrPlugin.FactoMineR) y rattle.

### 1.3 Construcción y evaluación de los modelos

En Inferencia Estadística clásica el procedimiento habitual es emplear toda la información disponible para construir un modelo válido (que refleje de la forma más fiel posible lo que ocurre en la población) y asumiendo que el modelo es el verdadero (lo que en general sería falso) utilizar métodos de inferencia para evaluar su precisión. Por ejemplo, en el caso de regresión lineal múltiple, el coeficiente de determinación ajustado sería una medida del la precisión del modelo para predecir nuevas observaciones (no se debería emplear el coeficiente de determinación sin ajustar; aunque, en cualquier caso, su validez dependería de la de las suposiciones estructurales del modelo).

Alternativamente, en Estadística Computacional es habitual emplear técnicas de remuestreo para evaluar la precisión (entrenando también el modelo con todos los datos disponibles), principalmente validación cruzada (leave-one-out, k-fold), jackniffe o bootstrap.

Por otra parte, como ya se comentó, algunos de los modelos empleados en AE son muy flexibles (están hiperparametrizados) y pueden aparecer problemas si se permite que se ajusten demasiado bien a las observaciones (podrían llegar a interpolar los datos). En estos casos habrá que controlar el procedimiento de aprendizaje, típicamente a traves de parámetros relacionados con la complejidad del modelo (ver sección siguiente).

En AE se distingue entre parámetros estructurales, los que van a ser estimados al ajustar el modelo a los datos (en el entrenamiento), e hiperparámetros (tuning parameters o parámetros de ajuste), que imponen restricciones al aprendizaje del modelo (por ejemplo determinando el número de parámetros estructurales). Si los hiperparámetros seleccionados producen un modelo demasiado complejo aparecerán problemas de sobreajuste (overfitting) y en caso contrario de infraajuste (undefitting).

Hay que tener en cuenta también que al aumentar la complejidad disminuye la interpretabilidad de los modelos. Se trataría entonces de conseguir buenas predicciones (habrá que evaluar la capacidad predictiva) con el modelo más sencillo posible.

#### 1.3.1 Equilibrio entre sesgo y varianza: infraajuste y sobreajuste

La idea es que queremos aprender más allá de los datos empleados en el entrenamiento (en Estadística diríamos que queremos hacer inferencia sobre nuevas observaciones). Como ya se comentó, en AE hay que tener especial cuidado con el sobreajuste. Este problema ocurre cuando el modelo se ajusta demasiado bien a los datos de entrenamiento pero falla cuando se utiliza en un nuevo conjunto de datos (nunca antes visto).

Como ejemplo ilustrativo emplearemos regresión polinómica, considerando el grado del polinomio como un hiperparámetro que determina la complejidad del modelo. En primer lugar simulamos una muestra y ajustamos modelos polinómicos con distintos grados de complejidad.

```
# Simulación datos
n <- 30
x \leftarrow seq(0, 1, length = n)
mu \leftarrow 2 + 4*(5*x - 1)*(4*x - 2)*(x - 0.8)^2 # grado 4
sd <- 0.5
set.seed(1)
y <- mu + rnorm(n, 0, sd)
plot(x, y)
lines(x, mu, lwd = 2)
# Ajuste de los modelos
fit1 \leftarrow lm(y \sim x)
lines(x, fitted(fit1))
fit2 \leftarrow lm(y \sim poly(x, 4))
lines(x, fitted(fit2), lty = 2)
fit3 <- lm(y - poly(x, 20))
# NOTA: poly(x, degree, raw = FALSE) tiene un problema de desbordamiento si degree > 25
lines(x, fitted(fit3), lty = 3)
legend("topright", legend = c("Verdadero", "Ajuste con grado 1",
                                "Ajuste con grado 4", "Ajuste con grado 20"),
       lty = c(1, 1, 2, 3), lwd = c(2, 1, 1, 1))
```

Como se observa en la Figura 1.2 al aumentar la complejidad del modelo se consigue un mejor ajuste a los datos observados (empleados en el entrenamiento), a costa de un incremento en la variabilidad de las predicciones, lo que puede producir un mal comportamiento del modelo a ser empleado en un conjunto de datos distinto del observado.

Si calculamos medidas de bondad de ajuste, como el error cuadrático medio (MSE) o el coeficiente de determinación, se obtienen mejores resultados al aumentar la complejidad. Como se trata de modelos lineales, podríamos obtener también el coeficiente de determinación ajustado, que sería preferible (en principio, ya que dependería de la validez de las hipótesis estructurales del modelo) para medir la precisión al emplear los modelos en un nuevo conjunto de datos.

|      | MSE  | R2   | R2adj |
|------|------|------|-------|
| fit1 | 1.22 | 0.20 | 0.17  |
| fit2 | 0.19 | 0.87 | 0.85  |
| fit3 | 0.07 | 0.95 | 0.84  |

Por ejemplo, si generamos nuevas respuestas de este proceso, la precisión del modelo más complejo empeorará considerablemente:

```
y.new <- mu + rnorm(n, 0, sd)
plot(x, y)
points(x, y.new, pch = 2)
lines(x, mu, lwd = 2)</pre>
```



Figura 1.2: Muestra (simulada) y ajustes polinómicos con distinta complejidad.

Como ejemplo adicional, para evitar el efecto de la aleatoriedad de la muestra, en el siguiente código se simulan 100 muestras del proceso anterior a las que se les ajustan modelos polinómicos variando el grado de 1 a 20. Posteriormente se evalua la precisión en la muestra empleada en el ajuste y en un nuevo conjunto de datos procedente de la misma población.

```
nsim <- 100
set.seed(1)
grado.max <- 20
grados <- seq_len(grado.max)
mse <- mse.new <- matrix(nrow = grado.max, ncol = nsim) # Error cuadrático medio
for(i in seq_len(nsim)) {
    y <- mu + rnorm(n, 0, sd)
    y.new <- mu + rnorm(n, 0, sd)
    for (grado in grados) { # grado <- 1
        fit <- lm(y ~ poly(x, grado))</pre>
```



Figura 1.3: Muestra con ajustes polinómicos con distinta complejidad y nuevas observaciones.

```
mse[grado, i] <- mean(residuals(fit)^2)</pre>
    mse.new[grado, i] <- mean((y.new - fitted(fit))^2)</pre>
  }
}
# Simulaciones
matplot(grados, mse, type = "1", col = "lightgray", lty = 1, ylim = c(0, 2),
        xlab = "Grado del polinomio (complejidad)",
        ylab = "Error cuadrático medio")
matlines(grados, mse.new, type = "1", lty = 2, col = "lightgray")
# Global
precision <- rowMeans(mse)</pre>
precision.new <- rowMeans(mse.new)</pre>
lines(grados, precision, lwd = 2)
lines(grados, precision.new, lty = 2, lwd = 2)
abline(h = sd^2, lty = 3)
abline(v = 4, lty = 3)
legend("topright", legend = c("Muestras", "Nuevas observaciones"), lty = c(1, 2))
```

Como se puede observar en la Figura 1.4 los errores de entrenamiento disminuyen a medida que aumenta la complejidad del modelo. Sin embargo los errores de predicción en nuevas observaciones primero disminuyen hasta alcanzar un mínimo, marcado por la línea de puntos vertical que se corresponde con el modelo de grado 4, y después aumentan (la línea de puntos horizontal es la varianza del proceso; el error cuadrático medio de predicción asintótico). La línea vertical representa el equilibrio entre el sesgo y la varianza. Considerando un valor de complejidad a la izquierda de esa línea tendríamos infraajuste (mayor sesgo y menor varianza) y a la derecha sobreajuste (menor sesgo y mayor varianza).

Desde un punto de vista más formal, considerando el modelo (1.1) y una función de pérdidas cuadrática,



Figura 1.4: Precisiones (errores cuadráticos medios) de ajustes polinómicos variando la complejidad, en las muestras empleadas en el ajuste y en nuevas observaciones (simulados).

el predictor óptimo (desconocido) sería la media condicional  $m(\mathbf{x}) = E(Y|_{\mathbf{X}=\mathbf{x}})^6$ . Por tanto los predictores serían realmente estimaciones de la función de regresión,  $\hat{Y}(\mathbf{x}) = \hat{m}(\mathbf{x})$  y podemos expresar la media del error cuadrático de predicción en términos del sesgo y la varianza:

$$E\left(Y(\mathbf{x}_0) - \hat{Y}(\mathbf{x}_0)\right)^2 = E\left(m(\mathbf{x}_0) + \varepsilon - \hat{m}(\mathbf{x}_0)\right)^2 = E\left(m(\mathbf{x}_0) - \hat{m}(\mathbf{x}_0)\right)^2 + \sigma^2$$

$$= E^2\left(m(\mathbf{x}_0) - \hat{m}(\mathbf{x}_0)\right) + Var\left(\hat{m}(\mathbf{x}_0)\right) + \sigma^2$$

$$= \operatorname{sesgo}^2 + \operatorname{varianza} + \operatorname{error irreducible}$$

donde  $\mathbf{x}_0$  hace referencia al vector de valores de las variables explicativas de una nueva observación (no empleada en la construcción del predictor).

En general, al aumentar la complejidad disminuye el sesgo y aumenta la varianza (y viceversa). Esto es lo que se conoce como el dilema o compromiso entre el sesgo y la varianza (bias-variance tradeoff). La recomendación sería por tanto seleccionar los hiperparámetros (el modelo final) tratando de que haya un equilibrio entre el sesgo y la varianza.

#### 1.3.2 Datos de entrenamiento y datos de test

Como se mostró en la sección anterior hay que tener mucho cuidado si se pretende evaluar la precisión de las predicciones empleando la muestra de entrenamiento.

Si el número de observaciones no es muy grande, se puede entrenar el modelo con todos los datos y emplear técnicas de remuestreo para evaluar la precisión (típicamente validación cruzada o bootstrap).

 $<sup>^6</sup>$ Se podrían considerar otras funciones de pérdida, por ejemplo con la distancia  $L_1$  sería la mediana condicional, pero las consideraciones serían análogas.

Habría que asegurase de que el procedimiento de remuestreo empleado es adecuado (por ejemplo, la presencia de dependencia requeriría de métodos más sofisticados).

Sin embargo, si el número de obervaciones es grande, se suele emplear el procedimiento tradicional en ML, que consiste en particionar la base de datos en 2 (o incluso en 3) conjuntos (disjuntos):

- Conjunto de datos de entrenamiento (o aprendizaje) para construir los modelos.
- Conjunto de datos de test para evaluar el rendimiento de los modelos.

Los datos de test deberían utilizarse únicamente para evaluar los modelos finales, no se deberían emplear para seleccionar hiperparámetros. Para seleccionalos se podría volver a particionar los datos de entrenamiento, es decir, dividir la muestra en tres subconjuntos: datos de entrenamiento, de validación y de test (por ejemplo considerando un 70%, 15% y 15% de las observaciones, respectivamente). Para cada combinación de hiperparámetros se ajustaría el correspondiente modelo con los datos de entrenamiento, se emplearían los de validación para evaluarlos y posteriormente seleccionar los valores "óptimos". Por último, se emplean los datos de test para evaluar el rendimiento del modelo seleccionado. No obstante, lo más habitual es seleccionar los hiperparámetros empleando validación cruzada (o otro tipo de remuestreo) en la muestra de entrenamiento, en lugar de considerar una muestra adicional de validación. En la siguiente sección se describirá esta última aproximación.

En R se puede realizar el particionamiento de los datos empleando la función sample() del paquete base (otra alternativa sería emplear la función createDataPartition del paquete caret como se describe en la Sección 1.5). Típicamente se selecciona el 80% de los datos como muestra de entrenamiento y el 20% restante como muestra de test, aunque esto dependería del número de datos.

Como ejemplo consideraremos el conjunto de datos Boston del paquete MASS que contiene, entre otros datos, la valoración de las viviendas (medv, mediana de los valores de las viviendas ocupadas, en miles de dólares) y el porcentaje de población con "menor estatus" (1stat) en los suburbios de Boston. Podemos contruir las muestras de entrenamiento (80%) y de test (20%) con el siguiente código:

```
data(Boston, package = "MASS")
# ?Boston
set.seed(1)
nobs <- nrow(Boston)
itrain <- sample(nobs, 0.8 * nobs)
train <- Boston[itrain, ]
test <- Boston[-itrain, ]</pre>
```

#### 1.3.3 Validación cruzada

Como ya se comentó, una herramienta para evaluar la calidad predictiva de un modelo es la *validación* cruzada, que permite cuantificar el error de predicción utilizando una única muestra de datos.

En su versión más simple, validación cruzada dejando uno fuera (Leave-one-out cross-validation, LOOCV), para cada observación de la muestra se realiza un ajuste empleando el resto de observaciones, y se mide el error de predicción en esa observación (único dato no utilizado en el ajuste del modelo). Finalmente, combinando todos los errores individuales se puede obtener medidas globales del error de predicción (o aproximar características de su distribución).

El método de LOOCV requeriría, en principio (ver comentarios más adelante), el ajuste de un modelo para cada observación por lo que pueden aparecer problemas computacionales si el conjunto de datos es grande. En este caso se suele emplear grupos de observaciones en lugar de observaciones individuales. Si se particiona el conjunto de datos en k grupos, típicamente 10 o 5 grupos, se denomina k-fold cross-validation (LOOCV sería un caso particular considerando un número de grupos igual al número de observaciones). Hay muchas variaciones de este método, entre ellas particionar repetidamente de forma aleatoria los datos en un conjunto de entrenamiento y otro de validación (de esta forma algunas observaciones podrían aparecer repetidas veces y otras ninguna en las muestras de validación).

Continuando con el ejemplo anterior, supongamos que queremos emplear regresión polinómica para explicar la valoración de las viviendas (medv) a partir del "estatus" de los residentes (lstat). Al igual que se hizo en la Sección 1.3.1, consideraremos el grado del polinomio como un hiperparámetro.

```
plot(medv ~ lstat, data = train)
```



Podríamos emplear la siguiente función que devuelve para cada observación (fila) de una muestra de entrenamiento, el error de predicción en esa observación ajustando un modelo lineal con todas las demás observaciones:

```
cv.lm0 <- function(formula, datos) {
    n <- nrow(datos)
    cv.res <- numeric(n)
    for (i in 1:n) {
        modelo <- lm(formula, datos[-i, ])
        cv.pred <- predict(modelo, newdata = datos[i, ])
        cv.res[i] <- cv.pred - datos[i, ]
    }
    return(cv.res)
}</pre>
```

La función anterior no es muy eficiente, pero podría modificarse fácilmente para emplear otros métodos de regresión. En el caso de regresión lineal múltiple (y de otros modelos lineales), se pueden obtener fácilmente las predicciones eliminando una de las observaciones a partir del ajuste con todos los datos. Por ejemplo, en lugar de la anterior sería preferible emplear la siguiente función (ver ?rstandard):

```
cv.lm <- function(formula, datos) {
   modelo <- lm(formula, datos)
   return(rstandard(modelo, type = "predictive"))
}</pre>
```

Empleando esta función, podemos calcular una medida del error de predicción de validación cruzada (en este caso el error cuadrático medio) para cada valor del hiperparámetro (grado del ajuste

polinómico) y seleccionar el que lo minimiza.

```
grado.max <- 10
grados <- seq_len(grado.max)
cv.mse <- cv.mse.sd <- numeric(grado.max)
for(grado in grados){
    cv.res <- cv.lm(medv ~ poly(lstat, grado), train)
    se <- cv.res^2
    cv.mse[grado] <- mean(se)
    cv.mse.sd[grado] <- sd(se)/sqrt(length(se))
}
plot(grados, cv.mse, ylim = c(25, 45),
    xlab = "Grado del polinomio (complejidad)")
# Valor óptimo
imin.mse <- which.min(cv.mse)
grado.op <- grados[imin.mse]
points(grado.op, cv.mse[imin.mse], pch = 16)</pre>
```



#### grado.op

#### ## [1] 5

En lugar de emplear los valores óptimos de los hiperparámetros, Breiman et al. (1984) propusieron la regla de "un error estándar" para seleccionar la complejidad del modelo. La idea es que estamos trabajando con estimaciones de la precisión y pueden presentar variabilidad, por lo que la sugerencia es seleccionar el modelo más simple<sup>7</sup> dentro de un error estándar de la precisión del modelo correspondiente al valor óptimo (se consideraría que no hay diferencias significativas en la precisión; además, se mitigaría el efecto de la variabilidad debida a aleatoriedad/semilla).

```
plot(grados, cv.mse, ylim = c(25, 45))
segments(grados, cv.mse - cv.mse.sd, grados, cv.mse + cv.mse.sd)
```

 $<sup>^7\</sup>mathrm{Suponiendo}$  que los modelos se pueden ordenar del más simple al más complejo.

```
# Limite superior "oneSE rule" y complejidad minima por debajo de ese valor
upper.cv.mse <- cv.mse[imin.mse] + cv.mse.sd[imin.mse]
abline(h = upper.cv.mse, lty = 2)
imin.1se <- min(which(cv.mse <= upper.cv.mse))
grado.1se <- grados[imin.1se]
points(grado.1se, cv.mse[imin.1se], pch = 16)</pre>
```



grado.1se



#### 1.3.4 Evaluación de un método de regresión

Para estudiar la precisión de las predicciones de un método de regresión se evalúa el modelo en el conjunto de datos de test y se comparan las predicciones frente a los valores reales.

Si generamos un gráfico de dispersión de observaciones frente a predicciones, los puntos deberían estar en torno a la recta y=x (línea continua).





También es habitual calcular distintas medidas de error. Por ejemplo, podríamos emplear la función postResample() del paquete caret:

```
caret::postResample(pred, obs)
```

```
## RMSE Rsquared MAE
## 4.8526718 0.6259583 3.6671847
```

La función anterior, además de las medidas de error habituales (que dependen en su mayoría de la escala de la variable respuesta) calcula un pseudo R-cuadrado. En este paquete (también en rattle) se emplea uno de los más utilizados, el cuadrado del coeficiente de correlación entre las predicciones y los valores observados (que se corresponde con la línea discontinua en la figura anterior). Estos valores se interpretarían como el coeficiente de determinación en regresión lineal, debería ser próximo a 1. Hay otras alternativas (ver Kvålseth, 1985), pero la idea es que deberían medir la proporción de variabilidad de la respuesta explicada por el modelo, algo que en general no es cierto con el anterior<sup>8</sup>. La recomendación sería emplear:

$$\tilde{R}^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

implementado junto con otras medidas en la siguiente función:

<sup>&</sup>lt;sup>8</sup>Por ejemplo obtendríamos el mismo valor si desplazamos las predicciones sumando una constante (i.e. no tiene en cuenta el sesgo).

```
me = mean(err),
                              # Error medio
   rmse = sqrt(mean(err^2)), # Raiz del error cuadrático medio
   mae = mean(abs(err)),
                            # Error absoluto medio
   mpe = mean(perr),
                              # Error porcentual medio
   mape = mean(abs(perr)), # Error porcentual absoluto medio
    r.squared = 1 - sum(err^2)/sum((obs - mean(obs))^2) # Pseudo R-cuadrado
 ))
}
accuracy(pred, obs)
          me
                   rmse
                                           mpe
                                                     mape
                                                          r.squared
                                mae
## -0.6731294
              4.8526718 3.6671847 -8.2322506 19.7097373
                                                           0.6086704
accuracy(predict(fit.1se, newdata = test), obs)
##
                                                     mape r.squared
          me
                   rmse
                                mae
                                           mpe
## -0.9236280 5.2797360 4.1252053 -9.0029771 21.6512406 0.5367608
Ejercicio 1.1.
```

Considerando de nuevo el ejemplo anterior, particionar la muestra en datos de entrenamiento (70%), de validación (15%) y de test (15%), para entrenar los modelos polinómicos, seleccionar el grado óptimo (el hiperparámetro) y evaluar las predicciones del modelo final, respectivamente.

Podría ser de utilidad el siguiente código (basado en la aproximación de rattle), que particiona los datos suponiendo que están almacenados en el data.frame df:

```
df <- Boston
set.seed(1)
nobs <- nrow(df)
itrain <- sample(nobs, 0.7 * nobs)
inotrain <- setdiff(seq_len(nobs), itrain)
ivalidate <- sample(inotrain, 0.15 * nobs)
itest <- setdiff(inotrain, ivalidate)
train <- df[itrain, ]
validate <- df[ivalidate, ]
test <- df[itest, ]</pre>
```

Alternativamente podríamos emplear la función split() creando un factor que divida aleatoriamente los datos en tres grupos (versión "simplificada" de una propuesta en este post):

```
set.seed(1)
p \leftarrow c(train = 0.7, validate = 0.15, test = 0.15)
f <- sample( rep(factor(seq_along(p), labels = names(p)),
                 times = nrow(df)*p/sum(p)))
samples <- suppressWarnings(split(df, f))</pre>
str(samples)
## List of 3
   $ train
              :'data.frame':
                                356 obs. of 14 variables:
     ..$ crim : num [1:356] 0.00632 0.02731 0.02729 0.02985 0.08829 ...
##
                : num [1:356] 18 0 0 0 12.5 12.5 12.5 12.5 12.5 0 ...
##
     ..$ zn
     ..$ indus : num [1:356] 2.31 7.07 7.07 2.18 7.87 7.87 7.87 7.87 8.14 ...
##
##
     ..$ chas : int [1:356] 0 0 0 0 0 0 0 0 0 ...
##
     ..$ nox : num [1:356] 0.538 0.469 0.469 0.458 0.524 0.524 0.524 0.524 0.524 0.538 ...
               : num [1:356] 6.58 6.42 7.18 6.43 6.01 ...
##
     ..$ rm
               : num [1:356] 65.2 78.9 61.1 58.7 66.6 100 85.9 82.9 39 56.5 ...
##
     ..$ age
##
     ..$ dis
               : num [1:356] 4.09 4.97 4.97 6.06 5.56 ...
               : int [1:356] 1 2 2 3 5 5 5 5 5 4 ...
##
     ..$ rad
                : num [1:356] 296 242 242 222 311 311 311 311 311 307 ...
##
     ..$ tax
```

```
##
     ..$ ptratio: num [1:356] 15.3 17.8 17.8 18.7 15.2 15.2 15.2 15.2 15.2 21 ...
               : num [1:356] 397 397 393 394 396 ...
##
     ..$ black
##
     ..$ lstat
                : num [1:356] 4.98 9.14 4.03 5.21 12.43
##
     ..$ medv
                : num [1:356] 24 21.6 34.7 28.7 22.9 16.5 18.9 18.9 21.7 19.9 ...
##
    $ validate:'data.frame':
                                75 obs. of 14 variables:
     ..$ crim
                : num [1:75] 0.0324 0.6298 0.9884 0.9558 1.0025 ...
##
                : num [1:75] 0 0 0 0 0 0 0 75 75 0 ...
##
     ..$ indus : num [1:75] 2.18 8.14 8.14 8.14 8.14 5.96 2.95 2.95 6.91 ...
##
                : int [1:75] 0 0 0 0 0 0 0 0 0 0 ...
##
     ..$ chas
                      [1:75] 0.458 0.538 0.538 0.538 0.538 0.538 0.499 0.428 0.428 0.448 ...
##
     ..$ nox
                : num
                      [1:75] 7 5.95 5.81 6.05 6.67 ...
##
     ..$ rm
                : num
     ..$ age
                : num [1:75] 45.8 61.8 100 88.8 87.3 95 41.5 21.8 15.8 6.5 ...
##
                : num [1:75] 6.06 4.71 4.1 4.45 4.24 ...
##
     ..$ dis
##
     ..$ rad
                : int [1:75] 3 4 4 4 4 4 5 3 3 3 ...
##
     ..$ tax
                : num [1:75] 222 307 307 307 307 307 279 252 252 233 ...
##
                            18.7 21 21 21 21 19.2 18.3 18.3 17.9 ...
     ..$ ptratio: num [1:75]
##
     ..$ black : num [1:75] 395 397 395 306 380 ...
##
               : num [1:75] 2.94 8.26 19.88 17.28 11.98
##
     ..$ medv
                : num [1:75] 33.4 20.4 14.5 14.8 21 13.1 21 30.8 34.9 24.7 ...
##
   $ test
              :'data.frame':
                                75 obs. of 14 variables:
     ..$ crim
                : num [1:75] 0.069 0.1446 0.2249 0.638 0.6719 ...
##
##
     ..$ zn
                : num [1:75] 0 12.5 12.5 0 0 0 0 90 0 0 ...
     ..$ indus : num [1:75] 2.18 7.87 7.87 8.14 8.14 ...
##
                : int [1:75] 0 0 0 0 0 0 0 0 0 0 ...
##
     ..$ chas
##
     ..$ nox
                : num [1:75] 0.458 0.524 0.524 0.538 0.538 0.538 0.499 0.403 0.413 0.413 ...
##
                : num [1:75] 7.15 6.17 6.38 6.1 5.81 ...
     ..$ rm
                : num [1:75] 54.2 96.1 94.3 84.5 90.3 94.1 68.2 21.9 6.6 7.8 ...
##
     ..$ age
##
                : num [1:75] 6.06 5.95 6.35 4.46 4.68 ...
     ..$ dis
##
     ..$ rad
                : int [1:75] 3 5 5 4 4 4 5 5 4 4 ...
##
                : num [1:75] 222 311 311 307 307 307 279 226 305 305 ...
                            18.7 15.2 15.2 21 21 21 19.2 17.9 19.2 19.2 ...
##
     ..$ ptratio: num [1:75]
     ..$ black : num [1:75] 397 397 393 380 377 ...
##
                : num [1:75] 5.33 19.15 20.45 10.26 14.81 ...
##
     ..$ lstat
                : num [1:75] 36.2 27.1 15 18.2 16.6 12.7 18.9 35.4 24.2 22.8 ...
```

#### 1.3.5 Evaluación de un método de clasificación

Para estudiar la eficiencia de un método de clasificación supervisada típicamente se obtienen las predicciones para el conjunto de datos de test y se genera una tabla de contingencia, denominada matriz de confusión, con las predicciones frente a los valores reales.

En primer lugar consideraremos el caso de dos categorías. La matriz de confusión será de la forma:

| Observado\Predicción | Positivo                  | Negativo                  |
|----------------------|---------------------------|---------------------------|
| Verdadero            | Verdaderos positivos (TP) | Falsos negativos (FN)     |
| Falso                | Falsos positivos (FP)     | Verdaderos negativos (TN) |

A partir de esta tabla se pueden obtener distintas medidas de la precisión de las predicciones. Por ejemplo, dos de las más utilizadas son la tasa de verdaderos positivos y la de verdaderos negativos (tasas de acierto en positivos y negativos), también denominadas sensibilidad y especificidad:

• Sensibilidad (sensitivity, recall, hit rate, true positive rate; TPR):

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

• Especificidad (specificity, true negative rate; TNR):

$$TNR = \frac{TN}{TN + FP}$$

La precisión global o tasa de aciertos (accuracy; ACC) sería:

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Sin embargo hay que tener cuidado con esta medida cuando las clases no están balanceadas<sup>9</sup>. Otras medidas de la precisión global que tratan de evitar este problema son la *precisión balanceada* (balanceada accuracy, BA):

$$BA = \frac{TPR + TNR}{2}$$

(media aritmética de TPR y TNR) o la puntuación F1 (F1 score; media armónica de TPR y TNR):

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Otra medida global es el coeficiente kappa de Cohen, que compara la tasa de aciertos con la obtenida en una clasificación al azar (un valor de 1 indicaría máxima precisión y 0 que la precisión es igual a la que obtendríamos clasificando al azar; empleando la tasa de positivos, denominada *prevalencia*, para predecir positivo).

NOTA: La precisión global (ACC) no debe ser confundida con el índice predictivo positivo (precision, positive predictive value; PPV): PPV = TP/(TP + FP).

Como ejemplo emplearemos los datos anteriores de valoraciones de viviendas y estatus de la población, considerando como respuesta una nueva variable fmedv que clasifica las valoraciones en "Bajo" o "Alto" dependiendo de si medv > 25.

<sup>&</sup>lt;sup>9</sup>También hay que tener cuidado las medidas que utilizan la prevalencia estimada a partir de la muestra de test, como el índice predictivo positivo y negativo, si la muestra de test no refleja lo que ocurre en la población (por ejemplo si la clase de interés está sobrerrepresentada en la muestra).



El siguiente código realiza la partición de los datos y posteriormente ajusta un modelo de regresión logística en la muestra de entrenamiento considerando 1stat como única variable explicativa (en el Capítulo 5 se darán más detalles sobre este tipo de modelos):

```
# Particionado de los datos
set.seed(1)
nobs <- nrow(datos)</pre>
itrain <- sample(nobs, 0.8 * nobs)</pre>
train <- datos[itrain, ]</pre>
test <- datos[-itrain, ]</pre>
# Ajuste modelo
modelo <- glm(fmedv ~ lstat, family = binomial, data = train)</pre>
summary(modelo)
##
## Call:
## glm(formula = fmedv ~ lstat, family = binomial, data = train)
##
## Deviance Residuals:
##
       Min
                  1Q
                       Median
                                     3Q
                                              Max
   -1.9749
           -0.4161
                     -0.0890
                                 0.3785
                                           3.6450
##
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.74366
                             0.47901
                                       7.815 5.48e-15 ***
## lstat
                -0.54231
                             0.06134
                                     -8.842
                                             < 2e-16 ***
## --
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 460.84 on 403 degrees of freedom
## Residual deviance: 243.34 on 402 degrees of freedom
## AIC: 247.34
##
## Number of Fisher Scoring iterations: 7
```

En este caso podemos obtener las estimaciones de la probabilidad de la segunda categoría empleando predict() con type = "response", a partir de las cuales podemos establecer las predicciones como la categoría más probable:

```
obs <- test$fmedv
p.est <- predict(modelo, type = "response", newdata = test)
pred <- factor(p.est > 0.5, labels = c("Bajo", "Alto")) # levels = c('FALSE', 'TRUE')
```

```
Finalmente podemos obtener la matriz de confusión con el siguiente código:
tabla <- table(obs, pred)</pre>
# addmargins(tabla, FUN = list(Total = sum))
tabla
##
         pred
## obs
          Bajo Alto
##
            71
     Bajo
                  11
##
     Alto
             8
                  12
# Porcentajes respecto al total
print(100*prop.table(tabla), digits = 2)
##
         pred
## obs
          Bajo Alto
     Bajo 69.6 10.8
##
     Alto 7.8 11.8
# Porcentajes (de aciertos y fallos) por categorías
print(100*prop.table(tabla, 1), digits = 3)
##
         pred
##
   obs
          Bajo Alto
##
     Bajo 86.6 13.4
```

Alternativamente se podría emplear la función confusionMatrix() del paquete caret que permite obtener distintas medidas de la precisión:

```
caret::confusionMatrix(pred, obs, positive = "Alto", mode = "everything")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Bajo Alto
##
         Bajo
                71
         Alto
##
                11
                      12
##
##
                  Accuracy: 0.8137
##
                    95% CI: (0.7245, 0.884)
##
       No Information Rate: 0.8039
       P-Value [Acc > NIR] : 0.4604
##
##
##
                      Kappa: 0.4409
##
##
   Mcnemar's Test P-Value: 0.6464
```

##

Alto 40.0 60.0

```
##
##
               Sensitivity: 0.6000
##
               Specificity: 0.8659
            Pos Pred Value: 0.5217
##
            Neg Pred Value: 0.8987
##
##
                 Precision: 0.5217
##
                    Recall : 0.6000
##
                        F1: 0.5581
##
                Prevalence: 0.1961
            Detection Rate: 0.1176
##
##
      Detection Prevalence: 0.2255
##
         Balanced Accuracy: 0.7329
##
##
          'Positive' Class : Alto
##
```

Si el método de clasificación proporciona estimaciones de las probabilidades de las categorías, disponemos de más información en la clasificación que también podemos emplear en la evaluación del rendimiento. Por ejemplo, se puede realizar un analisis descriptivo de las probabilidades estimadas y las categorías observadas en la muestra de test:

```
# Imitamos la función caret::plotClassProbs()
library(lattice)
histogram(~ p.est | obs, xlab = "Probabilidad estimada de 'Alto'")
```



Para evaluar las estimaciones de las probabilidades se suele emplear la curva ROC (receiver operating characteristics, característica operativa del receptor; diseñada inicialmente en el campo de la detección de señales). Como ya se comentó, normalmente se emplea c=0.5 como punto de corte para clasificar en la categoría de interés, aunque se podrían considerar otros valores (por ejemplo para mejorar la clasificación en una de las categorías, a costa de empeorar la precisión global). En la curva ROC se representa la sensibilidad (TPR) frente a la tasa de falsos negativos (FNR = 1 - TNR = 1 - especificidad) para distintos valores de corte. Para ello se puede emplear el paquete pROC:

```
library(pROC)
roc_glm <- roc(response = obs, predictor = p.est)
# View((as.data.frame(roc_glm[2:4])))
plot(roc_glm)</pre>
```



Figura 1.5: Curva ROC correspondiente al modelo de regresión logística.

Lo ideal sería que la curva se aproximase a la esquina superior izquierda (máxima sensibilidad y especificidad). La recta diagonal se correspondería con un clasificador aleatorio. Una medida global del rendimiento del clasificador es el área bajo la curva ROC (AUC; equivalente al estadístico U de Mann-Whitney o al índice de Gini). Un clasificador perfecto tendría un valor de 1 y 0.5 uno aleatorio.

```
# roc_glm$

roc_glm

##

## Call:
## roc.default(response = obs, predictor = p.est)
##

## Data: p.est in 82 controls (obs Bajo) < 20 cases (obs Alto).
## Area under the curve: 0.8427</pre>
```

Como comentario adicional, aunque se puede modificar el punto de corte para mejorar la clasificación en la categoría de interés (de hecho, algunas herramientas como h2o lo modifican por defecto; en este caso concreto para maximizar  $F_1$  en la muestra de entrenamiento), muchos métodos de clasificación (como los basados en árboles descritos en el Capítulo 2) admiten como opción una matriz de pérdidas que se tendrá en cuenta para medir la eficiencia durante el aprendizaje y normalmente esta sería la aproximación recomendada.

En el caso de más de dos categorías podríamos generar una matriz de confusión de forma análoga, aunque en este caso en principio solo podríamos calcular medidas globales de la precisión como la tasa

de aciertos o el coeficiente kappa de Cohen. Podríamos obtener también medidas por clase, como la sensibilidad y la especificidad, siguiendo la estrategia "uno contra todos" descrita en la Sección 1.2.1. Esta aproximación es la que sigue la función confusionMatrix() del paquete caret (devuelve las medidas comparando cada categoría con las restantes en el componente \$byClass).

### 1.4 La maldición de la dimensionalidad

En preparación...

## 1.5 Introducción al paquete caret

En preparación...

## Capítulo 2

## Árboles de decisión

Los árboles de decisión son uno de los métodos más simples y fáciles de interpretar para realizar predicciones en problemas de clasificación y de regresión. Se desarrollan a partir de los años 70 del siglo pasado como una alternativa versátil a los métodos clásicos de la estadística, fuertemente basados en las hipótesis de linealidad y de normalidad, y enseguida se convierten en una técnica básica del aprendizaje automático. Aunque su calidad predictiva es mediocre (especialmente en el caso de regresión), constituyen la base de otros métodos altamente competitivos (bagging, bosques aleatorios, boosting) en los que se combinan múltiples árboles para mejorar la predicción, pagando el precio, eso sí, de hacer más difícil la interpretación del modelo resultante.

La idea de este método consiste en la segmentación (partición) del espacio predictor (es decir, del conjunto de posibles valores de las variables predictoras) en regiones tan simples que el proceso se pueda representar mediante un árbol binario. Se parte de un nodo inicial que representa a toda la muestra (se utiliza la muestra de entrenamiento), del que salen dos ramas que dividen la muestra en dos subconjuntos, cada uno representado por un nuevo nodo. Este proceso se repite un número finito de veces hasta obtener las hojas del árbol, es decir, los nodos terminales, que son los que se utilizan para realizar la predicción. Una vez construido el árbol, la predicción se realizará en cada nodo terminal utilizando, típicamente, la media en un problema de regresión y la moda en un problema de clasificación.



Al final de este proceso iterativo el espacio predictor se ha particionado en regiones de forma rectangular en la que la predicción de la respuesta es constante. Si la relación entre las variables predictoras y la variable respuesta no se puede describir adecuadamente mediante rectángulos, la calidad predictiva del árbol será limitada. Como vemos, la simplicidad del modelo es su principal argumento, pero también su talón de Aquiles.



Como se ha dicho antes, cada nodo padre se divide, a través de dos ramas, en dos nodos hijos. Esto se hace seleccionando una variable predictora y dando respuesta a una pregunta dicotómica sobre ella. Por ejemplo, ¿es el sueldo anual menor que 30000 euros?, o ¿es el género igual a mujer? Lo que se persigue con esta partición recursiva es que los nodos terminales sean homogéneos respecto a la variable respuesta Y.

Por ejemplo, en un problema de clasificación, la homogeneidad de los nodos terminales significaría que en cada uno de ellos sólo hay elementos de una clase (categoría), y diríamos que los nodos son *puros*. En la práctica, esto siempre se puede conseguir construyendo árboles suficientemente profundos, con muchas hojas. Pero esta solución no es interesante, ya que va a dar lugar a un modelo excesivamente complejo y por tanto sobreajustado y de difícil interpretación. Será necesario encontrar un equilibrio entre la complejidad del árbol y la pureza de los nodos terminales.

#### En resumen:

- Métodos simples y fácilmente interpretables.
- Se representan mediante árboles binarios.
- Técnica clásica de apendizaje automático (computación).
- Válidos para regresión y para clasificación.
- Válidos para predictores numéricos y categóricos.

La metodología CART (Classification and Regresion Trees, Breiman et al., 1984) es la más popular para la construcción de árboles de decisión y es la que se va a explicar con algo de detalle en las siguientes secciones.

En primer lugar se tratarán los árboles de regresión (árboles de decisión en un problema de regresión, en el que la variable respuesta Y es numérica) y después veremos los arboles de clasificación (respuesta categórica) que son los más utilizados en la práctica (los primeros se suelen emplear únicamente como métodos descriptivos o como base de métodos más complejos). Las variables predictoras  $\mathbf{X} = (X_1, X_2, \dots, X_p)$  pueden ser tanto numéricas como categóricas. Además, con la metodología CART, las variables explicativas podrían contener datos faltantes. Se pueden establecer "particiones sustitutas" (surrogate splits), de forma que cuando falta un valor en una variable que determina una división, se usa una variable alternativa que produce una partición similar.

## 2.1 Árboles de regresión CART

Como ya se comentó, la construcción del modelo se hace a partir de la muestra de entrenamiento, y consiste en la partición del espacio predictor en J regiones  $R_1, R_2, \ldots, R_J$ , para cada una de las cuales se va a calcular una constante: la media de la variable respuesta Y para las observaciones de entranamiento que caen en la región. Estas constantes son las que se van a utilizar para la predicción de nuevas observaciones; para ello solo hay que comprobar cuál es la región que le corresponde.

La cuestión clave es cómo se elige la partición del espacio predictor, para lo que vamos a utilizar como criterio de error el RSS (suma de los residuos al cuadrado). Como hemos dicho, vamos a modelizar la respuesta en cada región como una constante, por tanto en la región  $R_j$  nos interesa el  $min_{c_j} \sum_{i \in R_j} (y_i - c_j)^2$ , que se alcanza en la media de las respuestas  $y_i$  (de la muestra de entrenamiento) en la región  $R_j$ , a la que llamaremos  $\hat{y}_{R_j}$ . Por tanto, se deben seleccionar las regiones  $R_1, R_2, \ldots, R_J$  que minimicen

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \widehat{y}_{R_j})^2$$

(Obsérvese el abuso de notación  $i \in R_i$ , que significa las observaciones  $i \in N$  que verifican  $x_i \in R_i$ ).

Pero este problema es, en la práctica, intratable y vamos a tener que simplificarlo. El método CART busca un compromiso entre rendimiento, por una parte, y sencillez e interpretabilidad, por otra, y

por ello en lugar de hacer una búsqueda por todas las particiones posibles sigue un proceso iterativo (recursivo) en el que va realizando cortes binarios. En la primera iteración se trabaja con todos los datos:

- Una variable explicativa  $X_j$  y un punto de corte s definen dos hiperplanos  $R_1 = \{X \mid X_j \leq s\}$  y  $R_2 = \{X \mid X_j > s\}$ .
- Se seleccionan los valores de j y s que minimizen

$$\sum_{i \in R_1} (y_i - \hat{y}_{R_1})^2 + \sum_{i \in R_2} (y_i - \hat{y}_{R_2})^2$$

A diferencia del problema original, este se soluciona de forma muy rápida. A continuación se repite el proceso en cada una de las dos regiones  $R_1$  y  $R_2$ , y así sucesivamente hasta alcanzar un criterio de parada.

Fijémonos en que este método hace dos concesiones importantes: no solo restringe la forma que pueden adoptar las particiones, sino que además sigue un criterio de error *greedy*: en cada iteración busca minimizar el RSS de las dos regiones resultantes, sin preocuparse del error que se va a cometer en iteraciones sucesivas. Y fijémonos también en que este proceso se puede representar en forma de árbol binario (en el sentido de que de cada nodo salen dos ramas, o ninguna cuando se llega al final), de ahí la terminología de *hacer crecer* el árbol.

¿Y cuándo paramos? Se puede parar cuando se alcance una profundidad máxima, aunque lo más habitual es, para dividir un nodo (es decir, una región), exigirle un número mínimo de observaciones.

- Si el árbol resultante es demasiado grande, va a ser un modelo demasiado complejo, por tanto va a ser difícil de interpretar y, sobre todo, va a provocar un sobreajuste de los datos. Cuando se evalúe el rendimiento utilizando la muestra de validación, los resultados van a ser malos. Dicho de otra manera, tendremos un modelo con poco sesgo pero con mucha varianza y en consecuencia inestable (pequeños cambios en los datos darán lugar a modelos muy distintos). Más adelante veremos que esto justifica la utilización del bagging como técnica para reducir la varianza.
- Si el árbol es demasiado pequeño, va a tener menos varianza (menos inestable) a costa de más sesgo. Más adelante veremos que esto justifica la utilización del *boosting*. Los árboles pequeños son más fáciles de interpretar ya que permiten identificar las variables explicativas que más influyen en la predicción.

Sin entrar por ahora en métodos combinados (métodos ensemble, tipo bagging o boosting), vamos a explicar cómo encontrar un equilibrio entre sesgo y varianza. Lo que se hace es construir un árbol grande para a continuación empezar a podarlo. Podar un árbol significa colapsar cualquier cantidad de sus nodos internos (no terminales), dando lugar a otro árbol más pequeño al que llamaremos subárbol del árbol original. Sabemos que el árbol completo es el que va a tener menor error si utilizamos la muestra de entrenamiento, pero lo que realmente nos interesa es encontrar el subárbol con un menor error al utilizar la muestra de validación. Lamentablemente, no es una buena estrategia el evaluar todos los subárboles: simplemente, hay demasiados. Lo que se hace es, mediante un hiperparámetro (tuning parameter o parámetro de ajuste) controlar el tamaño del árbol, es decir, la complejidad del modelo, seleccionando el subárbol optimo (para los datos de los que disponemos, claro). Veamos la idea.

Dado un subárbol T con  $R_1, R_2, \ldots, R_t$  nodos terminales, consideramos como medida del error el RSS más una penalización que depende de un hiperparámetro no negativo  $\alpha \geq 0$ 

$$\sum_{j=1}^{t} \sum_{i \in R_j} (y_i - \widehat{y}_{R_j})^2 + \alpha t$$

Para cada valor del parámetro  $\alpha$  existe un único subárbol  $m\'{as}$  pequeño que minimiza este error (obsérvese que aunque hay un continuo de valores distinos de  $\alpha$ , sólo hay una cantidad finita de subárboles). Evidentemente, cuando  $\alpha=0$ , ese subárbol será el árbol completo, algo que no nos

interesa. Pero a medida que se incrementa  $\alpha$  se penalizan los subárboles con muchos nodos terminales, dando lugar a una solución más pequeña. Encontrarla puede parecer muy costoso computacionalmente, pero lo cierto es que no lo es. El algoritmo consistente en ir colapsando nodos de forma sucesiva, de cada vez el nodo que produzca el menor incremento en el RSS (corregido por un factor que depende del tamaño), da lugar a una sucesión finita de subárboles que contiene, para todo  $\alpha$ , la solución.

Para finalizar, sólo resta seleccionar un valor de  $\alpha$ . Para ello, como se comentó en la Sección 1.3.2, se podría dividir la muestra en tres subconjuntos: datos de entrenamiento, de validación y de test. Para cada valor del parámetro de complejidad  $\alpha$  hemos utilizado la muestra de entrenamiento para obtener un árbol (en la jerga, para cada valor del hiperparámetro  $\alpha$  se entrena un modelo). Se emplea la muestra independiente de validación para seleccionar el valor de  $\alpha$  (y por tanto el árbol) con el que nos quedamos. Y por último emplearemos la muestra de test (independiente de las otras dos) para evaluar el rendimiento del árbol seleccionado. No obstante, lo más habitual para seleccionar el valor del hiperparámetro  $\alpha$  es emplear validación cruzada (o otro tipo de remuestreo) en la muestra de entrenamiento en lugar de considerar una muestra adicional de validación.

Hay dos opciones muy utilizadas en la práctica para seleccionar el valor de  $\alpha$ : se puede utilizar directamente el valor que minimice el error; o se puede forzar que el modelo sea un poco más sencillo con la regla *one-standard-error*, que selecciona el árbol más pequeño que esté a una distancia de un error estándar del árbol obtenido mediante la opción anterior.

### 2.2 Árboles de clasificación CART

En un problema de clasificación la variable respuesta puede tomar los valores 1, 2, ..., K, etiquetas que identifican las K categorías del problema. Una vez construido el árbol, se comprueba cuál es la categoría modal de cada región: considerando la muestra de entrenamiento, la categoría más frecuente. Dada una observación, se predice que pertenece a la categoría modal de la región a la que pertenece.

El resto del proceso es idéntico al de los árboles de regresión ya explicado, con una única salvedad: no podemos utilizar RSS como medida del error. Es necesario buscar una medida del error adaptada a este contexto. Fijada una región, vamos a denotar por  $\hat{p}_k$ , con  $k=1,2,\ldots,K$ , a la proporción de observaciones (de la muestra de entrenamiento) en la región que pertenecen a la categoría k. Se utilizan tres medidas distintas del error en la región:

• Proporción de errores de clasificación:

$$1 - max_k(\widehat{p}_k)$$

• Índice de Gini:

$$\sum_{k=1}^{K} \widehat{p}_k (1 - \widehat{p}_k)$$

• Entropía (cross-entropy):

$$-\sum_{k=1}^{K} \widehat{p}_k \log(\widehat{p}_k)$$

Aunque la proporción de errores de clasificación es la medida del error más intuitiva, en la práctica sólo se utiliza para la fase de poda. Para la fase de crecimiento se utilizan indistintamente el índice de Gini o la entropía. Cuando nos interesa el error no en una única región sino en varias (al romper un nodo en dos, o al considerar todos los nodos terminales), se suman los errores de cada región previa ponderación por el número de observaciones que hay en cada una de ellas.

### 2.3 CART con el paquete rpart

La metodología CART está implementada en el paquete rpart (Recursive PARTitioning)<sup>1</sup>. La función principal es rpart() y habitualmente se emplea de la forma:

```
rpart(formula, data, method, parms, control, ...)
```

- formula: permite especificar la respuesta y las variables predictoras de la forma habitual, se suele establecer de la forma respuesta ~ . para incluir todas las posibles variables explicativas.
- data: data.frame (opcional; donde se evaluará la fórmula) con la muestra de entrenamiento.
- method: método empleado para realizar las particiones, puede ser "anova" (regresión), "class" (clasificación), "poisson" (regresión de Poisson) o "exp" (supervivencia), o alternativamente una lista de funciones (con componentes init, split, eval; ver la vignette *User Written Split Functions*). Por defecto se selecciona a partir de la variable respuesta en formula, por ejemplo si es un factor (lo recomendado en clasificación) emplea method = "class".
- parms: lista de parámetros opcionales para la partición en el caso de clasificación (o regresión de Poisson). Puede contener los componentes prior (vector de probabilidades previas; por defecto las frecuencias observadas), loss (matriz de pérdidas; con ceros en la diagonal y por defecto 1 en el resto) y split (criterio de error; por defecto "gini" o alternativamente "information").
- control: lista de opciones que controlan el algoritmo de partición, por defecto se seleccionan mediante la función rpart.control, aunque también se pueden establecer en la llamada a la función principal, y los principales parámetros son:

```
rpart.control(minsplit = 20, minbucket = round(minsplit/3), cp = 0.01, xval =
10, maxdepth = 30, ...)
```

- cp es el parámetro de complejidad para la poda del árbol. Es la proporción mínima de reducción del error que debe producir una nueva partición para que se incorpore al modelo (valores más grandes simplifican el modelo y reducen el tiempo de computación; estableciéndolo a 0 se obtiene un árbol de profundidad máxima)
- maxdepth es la profundidad máxima del árbol (la profundidad de la raíz sería 0).
- minsplit y minbucket son, respectivamente, los números mínimos de observaciones en un nodo intermedio para particionarlo y en un nodo terminal.
- xval es el número de grupos (folds) para validación cruzada.

Para más detalles consultar la documentación de esta función o la vignette Introduction to Rpart.

#### 2.3.1 Ejemplo: regresión

Emplearemos el conjunto de datos winequality.RData (ver Cortez et al., 2009), que contiene información fisico-química (fixed.acidity, volatile.acidity, citric.acid, residual.sugar, chlorides, free.sulfur.dioxide, total.sulfur.dioxide, density, pH, sulphates y alcohol) y sensorial (quality) de una muestra de 1250 vinos portugueses de la variedad Vinho Verde. Como respuesta consideraremos la variable quality, mediana de al menos 3 evaluaciones de la calidad del vino realizadas por expertos, que los evaluaron entre 0 (muy malo) y 10 (muy excelente).

```
load("data/winequality.RData")
str(winequality)
```

```
## 'data.frame': 1250 obs. of 12 variables:
## $ fixed.acidity : num 6.8 7.1 6.9 7.5 8.6 7.7 5.4 6.8 6.1 5.5 ...
## $ volatile.acidity : num 0.37 0.24 0.32 0.23 0.36 0.28 0.59 0.16 0.28 0.28 ...
## $ citric.acid : num 0.47 0.34 0.13 0.49 0.26 0.63 0.07 0.36 0.27 0.21 ...
```

<sup>&</sup>lt;sup>1</sup>El paquete **tree** es una traducción del original en S.

```
##
    $ residual.sugar
                                 11.2 1.2 7.8 7.7 11.1 11.1 7 1.3 4.7 1.6 ...
                          : num
                                 0.071 0.045 0.042 0.049 0.03 0.039 0.045 0.034 0.03 0.032 ...
##
    $ chlorides
                          : num
##
    $ free.sulfur.dioxide : num
                                 44 6 11 61 43.5 58 36 32 56 23 ...
                                 136 132 117 209 171 179 147 98 140 85 ...
##
   $ total.sulfur.dioxide: num
                                 0.997 0.991 0.996 0.994 0.995 ...
##
   $ density
                          : num
                                 2.98 3.16 3.23 3.14 3.03 3.08 3.34 3.02 3.16 3.42 ...
##
   $ pH
                          : num
##
   $ sulphates
                                 0.88 0.46 0.37 0.3 0.49 0.44 0.57 0.58 0.42 0.42 ...
                          : num
   $ alcohol
                                 9.2 11.2 9.2 11.1 12 8.8 9.7 11.3 12.5 12.5 ...
##
                          : num
##
   $ quality
                                 5 4 5 7 5 4 6 6 8 5 ...
                          : int
barplot(table(winequality$quality))
```



En primer lugar se selecciona el 80% de los datos como muestra de entrenamiento y el 20% restante como muestra de test:

```
set.seed(1)
nobs <- nrow(winequality)
itrain <- sample(nobs, 0.8 * nobs)
train <- winequality[itrain, ]
test <- winequality[-itrain, ]</pre>
```

Podemos obtener el arbol con las opciones por defecto con el comando:

```
tree <- rpart(quality ~ ., data = train)</pre>
```

Al imprimirlo se muestra el número de observaciones e información sobre los distintos nodos (número de nodo, condición que define la partición, número de observaciones en el nodo, función de pérdida y predicción), marcando con un \* los nodos terminales.

```
tree
```

```
## n= 1000
##
## node), split, n, deviance, yval
```

```
##
         * denotes terminal node
##
##
    1) root 1000 768.95600 5.862000
      2) alcohol< 10.75 622 340.81190 5.586817
##
        4) volatile.acidity>=0.2575 329 154.75990 5.370821
##
##
          8) total.sulfur.dioxide< 98.5 24 12.50000 4.750000 *
##
          9) total.sulfur.dioxide>=98.5 305 132.28200 5.419672
##
           18) pH< 3.315 269 101.44980 5.353160 *
           19) pH>=3.315 36 20.75000 5.916667 *
##
        5) volatile.acidity< 0.2575 293 153.46760 5.829352
##
##
         10) sulphates< 0.475 144 80.32639 5.659722 *
##
         11) sulphates>=0.475 149 64.99329 5.993289 *
##
      3) alcohol>=10.75 378 303.53700 6.314815
##
        6) alcohol< 11.775 200 173.87500 6.075000
##
         12) free.sulfur.dioxide< 11.5 15 10.93333 4.933333 *
##
         13) free.sulfur.dioxide>=11.5 185 141.80540 6.167568
           26) volatile.acidity>=0.395 7 12.85714 5.142857 *
##
##
           27) volatile.acidity< 0.395 178 121.30900 6.207865
##
             54) citric.acid>=0.385 31 21.93548 5.741935 *
##
             55) citric.acid< 0.385 147 91.22449 6.306122 *
##
        7) alcohol>=11.775 178 105.23600 6.584270 *
```

Para representarlo se puede emplear las herramientas del paquete rpart:

```
plot(tree)
text(tree)
```



Pero puede ser preferible emplear el paquete rpart.plot

```
library(rpart.plot)
rpart.plot(tree, main="Regresion tree winequality")
```

## Regresion tree winequality



Nos interesa como se clasificaría a una nueva observación en los nodos terminales (en los nodos intermedios solo nos interesarían las condiciones, y el orden de las variables consideradas, hasta llegar a las hojas) y las correspondientes predicciones (la media de la respuesta en el correspondiente nodo terminal). Para ello, puede ser de utilidad imprimir las reglas:

```
rpart.rules(tree, style = "tall")
```

```
quality is 4.8 when
##
##
       alcohol < 11
##
       volatile.acidity >= 0.26
##
       total.sulfur.dioxide < 99
##
   quality is 4.9 when
##
##
       alcohol is 11 to 12
##
       free.sulfur.dioxide < 12</pre>
##
   quality is 5.1 when
##
##
       alcohol is 11 to 12
       volatile.acidity >= 0.40
##
##
       free.sulfur.dioxide >= 12
##
##
   quality is 5.4 when
       alcohol < 11
##
##
       volatile.acidity >= 0.26
       total.sulfur.dioxide >= 99
##
##
       pH < 3.3
##
##
   quality is 5.7 when
##
       alcohol < 11
       volatile.acidity < 0.26
##
       sulphates < 0.48
##
```

```
##
## quality is 5.7 when
##
       alcohol is 11 to 12
       volatile.acidity < 0.40
##
##
       free.sulfur.dioxide >= 12
##
       citric.acid >= 0.39
##
## quality is 5.9 when
##
       alcohol < 11
##
       volatile.acidity >= 0.26
##
       total.sulfur.dioxide >= 99
##
       pH >= 3.3
##
##
  quality is 6.0 when
##
       alcohol < 11
##
       volatile.acidity < 0.26
##
       sulphates >= 0.48
##
## quality is 6.3 when
##
       alcohol is 11 to 12
##
       volatile.acidity < 0.40
##
       free.sulfur.dioxide >= 12
       citric.acid < 0.39
##
##
## quality is 6.6 when
##
       alcohol >= 12
```

Por defecto se poda el arbol considerando cp = 0.01, que puede ser adecuado en muchos casos. Sin embargo, para seleccionar el valor óptimo de este (hiper)parámetro se puede emplear validación cruzada. En primer lugar habría que establecer cp = 0 para construir el árbol completo, a la profundidad máxima (determinada por los valores de minsplit y minbucket, que se podrían seleccionar "a mano" dependiendo del número de observaciones o también considerándolos como hiperparámetos; esto último no está implementado en rpart, ni en principio en caret)<sup>2</sup>.

```
tree <- rpart(quality ~ ., data = train, cp = 0)</pre>
```

Posteriormente podemos emplear las funciones printcp() (o plotcp()) para obtener (representar) los valores de CP para los árboles (óptimos) de menor tamaño junto con su error de validación cruzada xerror (reescalado de forma que el máximo es 1):

## printcp(tree)

```
##
## Regression tree:
## rpart(formula = quality ~ ., data = train, cp = 0)
## Variables actually used in tree construction:
##
   [1] alcohol
                             chlorides
                                                   citric.acid
##
   [4] density
                             fixed.acidity
                                                   free.sulfur.dioxide
                                                   sulphates
##
  [7] pH
                             residual.sugar
## [10] total.sulfur.dioxide volatile.acidity
##
## Root node error: 768.96/1000 = 0.76896
##
## n= 1000
##
##
              CP nsplit rel error xerror
                                               xstd
```

 $<sup>^2</sup>$ Los parámetros maxsurrogate, usesurrogate y surrogate<br/>style serían de utilidad si hay datos faltantes.

```
## 1 0.16204707
                          1.00000 1.00203 0.048591
## 2 0.04237491
                          0.83795 0.85779 0.043646
                      1
## 3 0.03176525
                      2
                          0.79558 0.82810 0.043486
     0.02748696
                      3
                          0.76381 0.81350 0.042814
## 5 0.01304370
                          0.73633 0.77038 0.039654
                      4
## 6 0.01059605
                      6
                          0.71024 0.78168 0.039353
## 7 0.01026605
                      7
                          0.69964 0.78177 0.039141
## 8 0.00840800
                    9
                          0.67911 0.78172 0.039123
## 9 0.00813924
                          0.67070 0.80117 0.039915
                     10
## 10 0.00780567
                          0.66256 0.80020 0.040481
                     11
## 11 0.00684175
                     13
                          0.64695 0.79767 0.040219
## 12 0.00673843
                     15
                          0.63327 0.81381 0.040851
## 13 0.00643577
                     18
                          0.61305 0.82059 0.041240
                     19
## 14 0.00641137
                          0.60662 0.82323 0.041271
## 15 0.00549694
                          0.59379 0.84187 0.042714
## 16 0.00489406
                     23
                          0.58280 0.84748 0.042744
                     24
## 17 0.00483045
                          0.57791 0.85910 0.043897
## 18 0.00473741
                     25
                          0.57308 0.86553 0.045463
## 19 0.00468372
                     26
                          0.56834 0.86455 0.045413
## 20 0.00450496
                     28
                          0.55897 0.87049 0.045777
## 21 0.00448365
                     32
                          0.54095 0.87263 0.045824
                     33
## 22 0.00437484
                          0.53647 0.87260 0.045846
                     35
                          0.52772 0.87772 0.046022
## 23 0.00435280
## 24 0.00428623
                     36
                          0.52337 0.87999 0.046124
## 25 0.00412515
                     37
                          0.51908 0.88151 0.046505
## 26 0.00390866
                     39
                          0.51083 0.89242 0.047068
                    42
                          0.49910 0.90128 0.047319
## 27 0.00375301
## 28 0.00370055
                     43
                          0.49535 0.90965 0.047991
## 29 0.00351987
                     45
                          0.48795 0.91404 0.048079
## 30 0.00308860
                     47
                          0.48091 0.92132 0.048336
## 31 0.00305781
                          0.47473 0.93168 0.049699
                          0.46862 0.93258 0.049701
## 32 0.00299018
                     51
                     52
                          0.46563 0.93062 0.049644
## 33 0.00295148
## 34 0.00286138
                     54
                          0.45972 0.93786 0.050366
## 35 0.00283972
                     55
                          0.45686 0.93474 0.050404
## 36 0.00274809
                     56
                          0.45402 0.93307 0.050390
                     58
## 37 0.00273457
                          0.44853 0.93642 0.050406
## 38 0.00260607
                     59
                          0.44579 0.93726 0.050543
## 39 0.00252978
                    60
                          0.44318 0.93692 0.050323
## 40 0.00252428
                    62
                          0.43813 0.93778 0.050381
                          0.43308 0.93778 0.050381
## 41 0.00250804
                    64
## 42 0.00232226
                     65
                          0.43057 0.93642 0.050081
## 43 0.00227625
                     66
                          0.42825 0.93915 0.050166
                     67
                          0.42597 0.94101 0.050195
## 44 0.00225146
## 45 0.00224774
                     68
                          0.42372 0.94101 0.050195
                          0.42147 0.94067 0.050124
## 46 0.00216406
## 47 0.00204851
                     70
                          0.41931 0.94263 0.050366
                     72
## 48 0.00194517
                          0.41521 0.94203 0.050360
## 49 0.00188139
                     73
                          0.41326 0.93521 0.050349
                     75
                          0.40950 0.93500 0.050277
## 50 0.00154129
## 51 0.00143642
                     76
                          0.40796 0.93396 0.050329
                     77
## 52 0.00118294
                          0.40652 0.93289 0.050325
                     78
## 53 0.00117607
                          0.40534 0.93738 0.050406
                     79
## 54 0.00108561
                          0.40417 0.93738 0.050406
## 55 0.00097821
                    80
                          0.40308 0.93670 0.050406
                    81
                          0.40210 0.93752 0.050589
## 56 0.00093107
```

```
## 57 0.00090075 82 0.40117 0.93752 0.050589

## 58 0.00082968 83 0.40027 0.93634 0.050561

## 59 0.00048303 85 0.39861 0.93670 0.050557

## 60 0.00000000 86 0.39813 0.93745 0.050558

plotcp(tree)
```

#### size of tree



La tabla con los valores de las podas (óptimas, dependiendo del parámetro de complejidad) está almacenada en la componente \$cptable:

```
head(tree$cptable, 10)
```

```
##
               CP nsplit rel error
                                                    xstd
                                      xerror
## 1
                       0 1.0000000 1.0020304 0.04859127
     0.162047069
## 2
    0.042374911
                       1 0.8379529 0.8577876 0.04364585
     0.031765253
                       2 0.7955780 0.8281010 0.04348571
     0.027486958
                       3 0.7638128 0.8134957 0.04281430
##
##
  5
     0.013043701
                       4 0.7363258 0.7703804 0.03965433
##
  6
     0.010596054
                       6 0.7102384 0.7816774 0.03935308
      0.010266055
                       7 0.6996424 0.7817716 0.03914071
##
  7
## 8
     0.008408003
                       9 0.6791102 0.7817177 0.03912344
                      10 0.6707022 0.8011719 0.03991498
## 9
     0.008139238
## 10 0.007805674
                      11 0.6625630 0.8001996 0.04048088
```

A partir de la que podríamos seleccionar el valor óptimo de forma automática, siguiendo el criterio de un error estándar de Breiman et al. (1984):

```
xerror <- tree$cptable[,"xerror"]
imin.xerror <- which.min(xerror)
# Valor óptimo
tree$cptable[imin.xerror, ]</pre>
```

## CP nsplit rel error xerror xstd

## 0.01304370 4.00000000 0.73632581 0.77038039 0.03965433

```
# Limite superior "oneSE rule" y complejidad minima por debajo de ese valor
upper.xerror <- xerror[imin.xerror] + tree$cptable[imin.xerror, "xstd"]
icp <- min(which(xerror <= upper.xerror))
cp <- tree$cptable[icp, "CP"]</pre>
```

Para obtener el modelo final podamos el arbol con el valor de complejidad obtenido 0.0130437 (que en este caso coincide con el valor óptimo):

```
tree <- prune(tree, cp = cp)
rpart.plot(tree, main="Regresion tree winequality")</pre>
```

## Regresion tree winequality



Podríamos estudiar el modelo final, por ejemplo mediante el método summary(), que entre otras cosas muestra una medida (en porcentaje) de la importancia de las variables explicativas para la predicción de la respuesta (teniendo en cuenta todas las particiones, principales y secundarias, en las que se emplea cada variable explicativa). Alternativamente podríamos emplear el siguiente código:

```
# summary(tree)
importance <- tree$variable.importance # Equivalente a caret::varImp(tree)</pre>
importance <- round(100*importance/sum(importance), 1)</pre>
importance[importance >= 1]
##
                 alcohol
                                        density
                                                            chlorides
##
                    36.1
                                           21.7
                                                                  11.3
##
       volatile.acidity total.sulfur.dioxide free.sulfur.dioxide
##
                     8.7
                                            8.5
##
         residual.sugar
                                     sulphates
                                                          citric.acid
                                            1.9
                                                                   1.1
##
                     4.0
##
                      pН
##
                     1.1
```

El último paso sería evaluarlo en la muestra de test siguiendo los pasos descritos en la Sección 1.3.4:

## Observado frente a predicciones (quality)



```
# Empleando el paquete caret
caret::postResample(pred, obs)
```

RMSE Rsquared

))

```
## 0.8145614 0.1969485 0.6574264
# Con la función accuracy()
accuracy <- function(pred, obs, na.rm = FALSE,</pre>
                     tol = sqrt(.Machine$double.eps)) {
  err <- obs - pred
                        # Errores
  if(na.rm) {
    is.a <- !is.na(err)
    err <- err[is.a]
    obs <- obs[is.a]
 perr <- 100*err/pmax(obs, tol) # Errores porcentuales</pre>
 return(c(
   me = mean(err),
                               # Error medio
    rmse = sqrt(mean(err^2)), # Raiz del error cuadrático medio
   mae = mean(abs(err)),
                              # Error absoluto medio
    mpe = mean(perr),
                              # Error porcentual medio
    mape = mean(abs(perr)),
                              # Error porcentual absoluto medio
```

r.squared = 1 - sum(err^2)/sum((obs - mean(obs))^2)

```
}
accuracy(pred, test$quality)

## me rmse mae mpe mape r.squared
## -0.001269398 0.814561435 0.657426365 -1.952342173 11.576716037 0.192007721
```

## 2.3.2 Ejemplo: modelo de clasificación

Para ilustrar los árboles de clasificación CART, podemos emplear los datos anteriores de calidad de vino, considerando como respuesta una nueva variable taste que clasifica los vinos en "good" o "bad" dependiendo de si winequality\$quality >= 5 (este conjunto de datos está almacenado en el archivo winetaste.RData).

```
# load("data/winetaste.RData")
winetaste <- winequality[, colnames(winequality)!="quality"]</pre>
winetaste$taste <- factor(winequality$quality < 6, labels = c('good', 'bad')) # levels = c('FALSE
str(winetaste)
## 'data.frame':
                    1250 obs. of 12 variables:
                          : num 6.8 7.1 6.9 7.5 8.6 7.7 5.4 6.8 6.1 5.5 ...
   $ fixed.acidity
##
   $ volatile.acidity
                          : num 0.37 0.24 0.32 0.23 0.36 0.28 0.59 0.16 0.28 0.28 ...
                          : num 0.47 0.34 0.13 0.49 0.26 0.63 0.07 0.36 0.27 0.21 ...
##
   $ citric.acid
                          : num 11.2 1.2 7.8 7.7 11.1 11.1 7 1.3 4.7 1.6 ...
##
   $ residual.sugar
##
   $ chlorides
                          : num 0.071 0.045 0.042 0.049 0.03 0.039 0.045 0.034 0.03 0.032 ...
   $ free.sulfur.dioxide : num 44 6 11 61 43.5 58 36 32 56 23 ...
##
##
  $ total.sulfur.dioxide: num 136 132 117 209 171 179 147 98 140 85 ...
  $ density
                          : num 0.997 0.991 0.996 0.994 0.995 ...
                          : num 2.98 3.16 3.23 3.14 3.03 3.08 3.34 3.02 3.16 3.42 ...
##
   $ pH
   $ sulphates
##
                          : num 0.88 0.46 0.37 0.3 0.49 0.44 0.57 0.58 0.42 0.42 ...
##
   $ alcohol
                          : num 9.2 11.2 9.2 11.1 12 8.8 9.7 11.3 12.5 12.5 ...
                           : Factor w/ 2 levels "good", "bad": 2 2 2 1 2 2 1 1 1 2 ...
##
   $ taste
table(winetaste$taste)
##
## good
        bad
   828
Como en el caso anterior, se contruyen las muestras de entrenamiento (80%) y de test (20%):
# set.seed(1)
# nobs <- nrow(winetaste)</pre>
\# itrain \leftarrow sample(nobs, 0.8 * nobs)
train <- winetaste[itrain, ]</pre>
test <- winetaste[-itrain, ]</pre>
```

Al igual que en el caso anterior podemos obtener el árbol de clasificación con las opciones por defecto (cp = 0.01 y split = "gini") con el comando:

```
tree <- rpart(taste ~ ., data = train)</pre>
```

En este caso al imprimirlo como información de los nodos se muestra (además del número de nodo, la condición de la partición y el número de observaciones en el nodo) el número de observaciones mal clasificadas, la predicción y las proporciones estimadas (frecuencias relativas en la muestra de entrenamiento) de las clases:

```
## n= 1000
```

##

```
## node), split, n, loss, yval, (yprob)
##
        * denotes terminal node
##
   1) root 1000 338 good (0.6620000 0.3380000)
##
     2) alcohol>=10.11667 541 100 good (0.8151571 0.1848429)
##
##
       4) free.sulfur.dioxide>=8.5 522 87 good (0.8333333 0.1666667)
##
         8) fixed.acidity< 8.55 500 73 good (0.8540000 0.1460000) *
##
         9) fixed.acidity>=8.55 22
                                    8 bad (0.3636364 0.6363636) *
##
       5) free.sulfur.dioxide< 8.5 19
                                       6 bad (0.3157895 0.6842105) *
     3) alcohol< 10.11667 459 221 bad (0.4814815 0.5185185)
##
##
        6) volatile.acidity< 0.2875 264 102 good (0.6136364 0.3863636)
##
        12) fixed.acidity< 7.45 213 71 good (0.6666667 0.3333333)
##
          24) citric.acid>=0.265 160 42 good (0.7375000 0.2625000) *
##
          25) citric.acid< 0.265 53 24 bad (0.4528302 0.5471698)
##
            50) free.sulfur.dioxide< 42.5 33 13 good (0.6060606 0.3939394) *
##
            51) free.sulfur.dioxide>=42.5 20
                                              4 bad (0.2000000 0.8000000) *
        13) fixed.acidity>=7.45 51 20 bad (0.3921569 0.6078431)
##
##
          ##
          27) total.sulfur.dioxide< 150 25
                                           4 bad (0.1600000 0.8400000) *
##
       7) volatile.acidity>=0.2875 195 59 bad (0.3025641 0.6974359)
##
        14) pH>=3.235 49 24 bad (0.4897959 0.5102041)
##
          28) chlorides< 0.0465 18
                                    4 good (0.7777778 0.2222222) *
          29) chlorides>=0.0465 31 10 bad (0.3225806 0.6774194) *
##
##
        15) pH< 3.235 146 35 bad (0.2397260 0.7602740) *
```

También puede ser preferible emplear el paquete rpart.plot para representarlo:

```
library(rpart.plot)
rpart.plot(tree, main="Classification tree winetaste") # Alternativa: rattle::fancyRpartPlot
```

#### Classification tree winetaste



```
box.palette = "GnBu", # color scheme
branch.lty = 3, # dotted branch lines
shadow.col = "gray", # shadows under the node boxes
nn = TRUE) # display the node numbers
```



Nos interesa como se clasificaría a una nueva observación (como se llega a los nodos terminales) y su probabilidad estimada (la frecuencia relativa de la clase más frecuente en el correspondiente nodo terminal). Al igual que en el caso de regresión, puede ser de utilidad imprimir las reglas:

```
rpart.rules(tree, style = "tall")
```

```
## taste is 0.15 when
##
       alcohol >= 10
##
       fixed.acidity < 8.6
##
       free.sulfur.dioxide >= 8.5
##
##
   taste is 0.22 when
##
       alcohol < 10
       volatile.acidity >= 0.29
##
##
       pH >= 3.2
##
       chlorides < 0.047
##
  taste is 0.26 when
##
##
       alcohol < 10
       volatile.acidity < 0.29
##
##
       fixed.acidity < 7.5
       citric.acid >= 0.27
##
##
## taste is 0.38 when
       alcohol < 10
##
##
       volatile.acidity < 0.29
```

```
##
       fixed.acidity >= 7.5
##
       total.sulfur.dioxide >= 150
##
## taste is 0.39 when
##
       alcohol < 10
##
       volatile.acidity < 0.29
##
       fixed.acidity < 7.5
       free.sulfur.dioxide < 42.5
##
##
       citric.acid < 0.27
##
## taste is 0.64 when
       alcohol >= 10
##
       fixed.acidity >= 8.6
##
       free.sulfur.dioxide >= 8.5
##
##
## taste is 0.68 when
##
       alcohol < 10
##
       volatile.acidity >= 0.29
##
       pH >= 3.2
##
       chlorides >= 0.047
##
## taste is 0.68 when
       alcohol >= 10
##
##
       free.sulfur.dioxide < 8.5
##
## taste is 0.76 when
       alcohol < 10
##
##
       volatile.acidity >= 0.29
##
       pH < 3.2
##
## taste is 0.80 when
       alcohol < 10
##
       volatile.acidity < 0.29
##
##
       fixed.acidity < 7.5
##
       free.sulfur.dioxide >= 42.5
##
       citric.acid < 0.27
##
## taste is 0.84 when
##
       alcohol < 10
##
       volatile.acidity < 0.29
       fixed.acidity >= 7.5
##
##
       total.sulfur.dioxide < 150
```

Al igual que en el caso anterior, para seleccionar un valor óptimo del (hiper)parámetro de complejidad, se puede construir un árbol de decisión completo y emplear validación cruzada para podarlo. Además, si el número de observaciones es grande y las clases están más o menos balanceadas, se podría aumentar los valores mínimos de observaciones en los nodos intermedios y terminales<sup>3</sup>, por ejemplo:

```
tree <- rpart(taste ~ ., data = train, cp = 0, minsplit = 30, minbucket = 10)</pre>
```

En este caso mantenemos el resto de valores por defecto:

```
tree <- rpart(taste ~ ., data = train, cp = 0)</pre>
```

Representamos los errores (reescalados) de validación cruzada:

 $<sup>^3</sup>$ Otra opción, más interesante para regresión, sería considerar estos valores como hiperparámetros.

```
# printcp(tree)
plotcp(tree)
```



Para obtener el modelo final, seleccionamos el valor óptimo de complejidad siguiendo el criterio de un error estándar de Breiman et al. (1984) y podamos el arbol:

```
xerror <- tree$cptable[,"xerror"]
imin.xerror <- which.min(xerror)
upper.xerror <- xerror[imin.xerror] + tree$cptable[imin.xerror, "xstd"]
icp <- min(which(xerror <= upper.xerror))
cp <- tree$cptable[icp, "CP"]
tree <- prune(tree, cp = cp)
# tree
# summary(tree)
# caret::varImp(tree)
# importance <- tree$variable.importance
# importance <- round(100*importance/sum(importance), 1)
# importance[importance >= 1]
rpart.plot(tree, main="Classification tree winetaste")
```



El último paso sería evaluarlo en la muestra de test siguiendo los pasos descritos en la Sección 1.3.5. El método predict() por defecto (type = "prob") devuelve una matriz con las probabilidades de cada clase, habrá que establecer type = "class" (para más detalles consultar la ayuda de predic.rpart()).

```
obs <- test$taste
head(predict(tree, newdata = test))
##
                      bad
           good
## 1 0.3025641 0.6974359
## 4 0.8151571 0.1848429
## 9 0.8151571 0.1848429
## 10 0.8151571 0.1848429
## 12 0.8151571 0.1848429
## 16 0.8151571 0.1848429
pred <- predict(tree, newdata = test, type = "class")</pre>
table(obs, pred)
##
         pred
## obs
          good bad
##
     good 153
                13
     bad
            54
                30
caret::confusionMatrix(obs, pred)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction good bad
##
         good 153 13
##
         bad
                54 30
##
```

```
##
                  Accuracy: 0.732
                    95% CI: (0.6725, 0.7859)
##
##
       No Information Rate: 0.828
       P-Value [Acc > NIR] : 0.9999
##
##
                     Kappa: 0.3171
##
##
   Mcnemar's Test P-Value: 1.025e-06
##
##
               Sensitivity: 0.7391
##
##
               Specificity: 0.6977
##
            Pos Pred Value: 0.9217
##
            Neg Pred Value: 0.3571
##
                Prevalence: 0.8280
##
            Detection Rate: 0.6120
##
     Detection Prevalence: 0.6640
         Balanced Accuracy: 0.7184
##
##
##
          'Positive' Class : good
##
```

0.011990034 0.7410655 0.3878517

##

## 2.3.3 Interfaz de caret

En caret podemos ajustar un árbol CART seleccionando method = "rpart". Por defecto emplea bootstrap de las observaciones para seleccionar el valor óptimo del hiperparámetro cp (considerando únicamente tres posibles valores). Si queremos emplear validación cruzada como en el caso anterior podemos emplear la función auxiliar trainControl() y para considerar un mayor rango de posibles valores, el argumento tuneLength.

```
library(caret)
# names(qetModelInfo()) # Listado de todos los métodos disponibles
# modelLookup("rpart") # Información sobre hiperparámetros
set.seed(1)
# itrain <- <- createDataPartition(winetaste$taste, p = 0.8, list = FALSE)
# train <- winetaste[itrain, ]</pre>
# test <- winetaste[-itrain, ]</pre>
caret.rpart <- train(taste ~ ., method = "rpart", data = train,</pre>
                     tuneLength = 20,
                      trControl = trainControl(method = "cv", number = 10))
caret.rpart
## CART
##
## 1000 samples
##
     11 predictor
##
      2 classes: 'good', 'bad'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 901, 900, 900, 900, 900, 900, ...
## Resampling results across tuning parameters:
##
##
                  Accuracy
                              Kappa
     0.00000000 0.7018843 0.3487338
##
##
     0.005995017 0.7330356 0.3870552
```

```
##
    0.017985051 0.7230748 0.3374518
    0.023980069 0.7360748 0.3698691
##
    0.029975086 0.7340748 0.3506377
##
##
    0.035970103 0.7320748 0.3418235
##
    0.041965120 0.7350849 0.3422651
##
    0.047960137 0.7350849 0.3422651
##
    0.053955154 0.7350849 0.3422651
    0.059950171 0.7350849 0.3422651
##
##
    0.065945188 0.7350849 0.3422651
    0.071940206 0.7350849 0.3422651
##
    0.077935223 0.7350849 0.3422651
##
##
    0.083930240 0.7350849 0.3422651
##
    0.089925257 0.7350849 0.3422651
##
    0.095920274 0.7350849 0.3422651
##
    0.101915291 0.7350849 0.3422651
##
    0.107910308 0.7229637 0.2943312
##
    ##
```

## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was cp = 0.01199003.

## ggplot(caret.rpart)



## caret.rpart\$finalModel

```
## n= 1000
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1000 338 good (0.6620000 0.3380000)
## 2) alcohol>=10.11667 541 100 good (0.8151571 0.1848429)
```

```
##
        4) free.sulfur.dioxide>=8.5 522 87 good (0.8333333 0.1666667)
          8) fixed.acidity< 8.55 500 73 good (0.8540000 0.1460000) *
##
##
          9) fixed.acidity>=8.55 22
                                      8 bad (0.3636364 0.6363636) *
##
        5) free.sulfur.dioxide< 8.5 19
                                         6 bad (0.3157895 0.6842105) *
      3) alcohol< 10.11667 459 221 bad (0.4814815 0.5185185)
##
        6) volatile.acidity< 0.2875 264 102 good (0.6136364 0.3863636)
##
##
         12) fixed.acidity< 7.45 213 71 good (0.6666667 0.3333333)
##
           24) citric.acid>=0.265 160 42 good (0.7375000 0.2625000) *
           25) citric.acid< 0.265 53 24 bad (0.4528302 0.5471698)
##
             50) free.sulfur.dioxide< 42.5 33 13 good (0.6060606 0.3939394) *
##
##
             51) free.sulfur.dioxide>=42.5 20
                                               4 bad (0.2000000 0.8000000) *
##
         13) fixed.acidity>=7.45 51 20 bad (0.3921569 0.6078431)
##
           26) total.sulfur.dioxide>=150 26
                                            10 good (0.6153846 0.3846154) *
##
           27) total.sulfur.dioxide< 150 25
                                              4 bad (0.1600000 0.8400000) *
##
        7) volatile.acidity>=0.2875 195 59 bad (0.3025641 0.6974359)
##
         14) pH>=3.235 49 24 bad (0.4897959 0.5102041)
                                     4 good (0.7777778 0.2222222) *
##
           28) chlorides< 0.0465 18
           29) chlorides>=0.0465 31 10 bad (0.3225806 0.6774194) *
##
         15) pH< 3.235 146 35 bad (0.2397260 0.7602740) *
rpart.plot(caret.rpart$finalModel, main="Classification tree winetaste")
```



Para utilizar la regla de "un error estándar" se puede añadir selectionFunction = "oneSE"

set.seed(1)

caret.rpart <- train(taste ~ ., method = "rpart", data = train,

tuneLength = 20,

trControl = trainControl(method = "cv", number = 10,

selectionFunction = "oneSE"))

caret.rpart

## CART

```
##
## 1000 samples
   11 predictor
     2 classes: 'good', 'bad'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 901, 900, 900, 900, 900, 900, ...
## Resampling results across tuning parameters:
##
##
                Accuracy
                           Kappa
    ср
    0.00000000 0.7018843 0.3487338
##
##
    0.005995017 0.7330356 0.3870552
##
    0.011990034 0.7410655 0.3878517
##
    0.017985051 0.7230748 0.3374518
##
    0.023980069 0.7360748 0.3698691
    0.029975086 0.7340748 0.3506377
##
    0.035970103 0.7320748 0.3418235
##
    0.041965120 0.7350849 0.3422651
##
##
    0.047960137 0.7350849 0.3422651
##
    0.053955154 0.7350849 0.3422651
##
    0.059950171 0.7350849 0.3422651
    0.065945188 0.7350849 0.3422651
##
    0.071940206 0.7350849 0.3422651
##
    0.077935223 0.7350849 0.3422651
##
    0.083930240 0.7350849 0.3422651
##
    0.089925257 0.7350849 0.3422651
##
##
    0.095920274 0.7350849 0.3422651
##
    0.101915291 0.7350849 0.3422651
##
    ##
##
## Accuracy was used to select the optimal model using the one SE rule.
## The final value used for the model was cp = 0.1019153.
# qqplot(caret.rpart)
caret.rpart$finalModel
```

```
## n= 1000
##
## node), split, n, loss, yval, (yprob)
##    * denotes terminal node
##
## 1) root 1000 338 good (0.6620000 0.3380000)
## 2) alcohol>=10.11667 541 100 good (0.8151571 0.1848429) *
## 3) alcohol< 10.11667 459 221 bad (0.4814815 0.5185185)
## 6) volatile.acidity< 0.2875 264 102 good (0.6136364 0.3863636) *
## 7) volatile.acidity>=0.2875 195 59 bad (0.3025641 0.6974359) *
rpart.plot(caret.rpart$finalModel, main = "Classification tree winetaste")
```



```
var.imp <- varImp(caret.rpart)
plot(var.imp)</pre>
```



En principio también se podría utilizar la regla de "un error estándar" seleccionando method = "rpart1SE" (pero implementa internamente este método y en ocasiones no se obtienen los resultados

esperados).

```
set.seed(1)
caret.rpart <- train(taste ~ ., method = "rpart1SE", data = train)
caret.rpart
printcp(caret.rpart$finalModel)
caret.rpart$finalModel
rpart.plot(caret.rpart$finalModel, main = "Classification tree winetaste")
varImp(caret.rpart)</pre>
```

## 2.4 Alternativas a los árboles CART

Una de las alternativas más populares es la metodología C4.5 (Quinlan, 1993), evolución de ID3 (1986), que en estos momentos se encuentra en la versión C5.0 (y es ya muy similar a CART). C5.0 se utiliza sólo para clasificación e incorpora boosting (que veremos en el tema siguiente). Esta metodología está implementada en el paquete C50.

Ross Quinlan desarrolló también la metodologia M5 (Quinlan, 1992) para regresión. Su principal característica es que los nodos terminales, en lugar de contener un número, contienen un modelo (de regresión) lineal. El paquete Cubist es una evolución de M5 que incorpora un método ensemble similar a boosting.

La motivación detrás de M5 es que, si la predicción que aporta un nodo terminal se limita a un único número (como hace la metodología CART), entonces el modelo va a predecir muy mal los valores que *realmente* son muy extremos, ya que el número de posibles valores predichos está limitado por el número de nodos terminales, y en cada uno de ellos se utiliza una media. Por ello M5 le asocia a cada nodo un modelo de regresión lineal, para cuyo ajuste se utilizan los datos del nodo y todas las variables que están en la ruta del nodo. Para evaluar los posibles cortes que conducen al siguiente nodo, se utilizan los propios modelos lineales para calcular la medida del error.

Una vez se ha construido todo el árbol, para realizar la predicción se puede utilizar el modelo lineal que está en el nodo terminal correspondiente, pero funciona mejor si se utiliza una combinación lineal del modelo del nodo terminal y de todos sus nodos ascendientes (es decir, los que están en su camino).

Otra opción es CHAID (CHi-squared Automated Interaction Detection, Kass, 1980), que se basa en una idea diferente. Es un método de construcción de árboles de clasificación que se utiliza cuando las variables predictoras son cualitativas o discretas; en caso contrario deben ser categorizadas previamente. Y se basa en el contraste chi-cuadrado de independencia para tablas de contingencia.

Para cada par  $(X_i, Y)$ , se considera su tabla de contingencia y se calcula el p-valor del contraste chi-cuadrado, seleccionándose la variable predictora que tenga un p-valor más pequeño, ya que se asume que las variables predictoreas más relacionadas con la respuesta Y son las que van a tener p-valores más pequeños y darán lugar a mejores predicciones. Se divide el nodo de acuerdo con los distintos valores de la variable predictora seleccionada, y se repite el proceso mientras haya variables significativas. Como el método exige que el p-valor sea menor que 0.05 (o el nivel de significación que se elija), y hay que hacer muchas comparaciones es necesario aplicar una corrección para comparaciones múltiples, por ejemplo la de Bonferroni.

Lo que acabamos de explicar daría lugar a árboles no necesariamente binarios. Como se desea trabajar con árboles binarios (si se admite que de un nodo salga cualquier número de ramas, con muy pocos niveles de profundidad del árbol ya nos quedaríamos sin datos), es necesario hacer algo más: forzar a que las variables predictoras tengan sólo dos categorías mediante un proceso de fusión. Se van haciendo pruebas chi-cuadrado entre pares de categorías y la variable respuesta, y se fusiona el par con el p-valor más alto, ya que se trata de fusionar las categorías que sean más similares.

Para árboles de regresión hay metodologías que, al igual que CHAID, se basan en el cálculo de p-valores, en este caso de contrastes de igualdes de medias. Una de las más utilizadas son los *conditional* 

inference trees (Hothorn et al., 2006)<sup>4</sup>, implementada en la función ctree() del paquete party.

Un problema conocido de los árboles CART es que sufren un sesgo de selección de variables: los predictores con más valores distintos son favorecidos. Esta es una de las motivaciones de utilizar estos métodos basados en contrastes de hipótesis. Por otra parte hay que ser conscientes de que los contrastes de hipótesis y la calidad predictiva son cosas distintas.

## 2.4.1 Ejemplo

```
library(party)
tree2 <- ctree(taste ~ ., data = train)
plot(tree2)</pre>
```



<sup>&</sup>lt;sup>4</sup>Otra alternativa es GUIDE (Generalized, Unbiased, Interaction Detection and Estimation; Loh, 2002).

# Referencias

# Bibliografía básica

James, G., Witten, D., Hastie, T. y Tibshirani, R. (2017). An Introduction to Statistical Learning: with Applications in R. Springer.

Kuhn, M. y Johnson, K. (2013). Applied predictive modeling. Springer.

Williams, G. (2011). Data Mining with Rattle and R. Springer.

# Bibliografía complementaria

## Libros

Burger, S.V. (2018). Introduction to machine learning with R: Rigorous mathematical analysis. O'Reilly.

Efron, B. y Hastie, T. (2016). Computer age statistical inference. Cambridge University Press.

Hastie, T., Tibshirani, R. y Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Hastie, T., Tibshirani, R. y Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. CRC press.

Torgo, L. (2011). Data Mining with R: Learning with Case Studies. Chapman & Hall/CRC Press.

## Artículos

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123-140.

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16, 199-231.

Dunson D.B. (2018). Statistics in the big data era: Failures of the machine. Statistics and Probability Letters, 136, 4-9.

Kuhn, M. (2008). Building predictive models in R using the caret package. *Journal of Statistical Software*, 28 (5), 1-26.

Lauro, C. (1996). Computational statistics or statistical computing, is that the question?, Computational Statistics & Data Analysis, 23 (1), 191-193.

Loh, W.Y. (2002). Regression tress with unbiased variable selection and interaction detection. *Statistica Sinica*, 361-386.