Fat Soluble vs Water soluble Vitamins

Absorption	Fat Soluble Into lymphatic system (fat/bile)	Water Soluble Directly into blood stream
Storage	For future use	Note stored
Effect of Overdose	Toxic	Can be excreted
Stability	Less fragile	Easily destroyed on heating

Water Soluble Vitamins

Thiamine (B_1)

• Thiamine - a thiazole ring joined to a substituted pyrimidine by a methylene bridge

- **❖**TPP is the active form
- Easily destroyed by heat

THIAMINE PYROPHOSPHATE (TPP)

Thiamine pyrophosphate

TPP is the active form

Functions:

- Energy metabolism
 - required for the normal metabolism of -CHO.
 - \bullet catalyzes decarboxylations of α -keto acids e.g.
 - pyruvic acid → acetaldehyde in glycolysis
 - pyruvic acid → acetyl-CoA
 - \triangleright formation and cleavage of α -hydroxyketones
- Supports nervous system
- Daily requirements
 - men: 1.2 mg/day
 - women: 1.1 mg/day

Thiamine Sources

Occur in both plant
 & animal sources

Animal:

 Pork, milk Liver, eggs, rumen

Plants:

- Whole/enriched grains
 - Esp seed coats & embryos; eg.wheat germ
- fresh green forage
- yeast

Deficiency symptoms of Thiamine

1. Beriberi

- Anorexia: loss of appetite
- severe nervous disorders
- General & muscular weakness
- * tissue wasting & edema
- Dyspepsia (indigestion)
- ❖ Needle -like feeling under the skin

Three types of beriberi

- ❖Dry beriberi- adults
- ❖Wet beriberi youth
- Infantile beriberi- infants

Deficiency symptoms of Thiamine

- 2. Warnicke-Korsakoff Syndrome
- Korsakoff's psychosis
 - confused state- characterized by
 - *confabulation
 - memory loss of recent events / non-impairment of past events
- Wernicke encephalopathy-
 - ❖ Neurological charcterised by
 - Nystagmus (involuntary spasmodic movement of eye ball
 - Ocular palsy

Chronic peripheral neuritis

- Neurological problems eg. confusion and ataxia
- * Thiamine deficiency due to alcoholism
- * TPP is required to metabolize energy
- ❖ Alcohol contains calories which must be metabolized but no thiamine,
- Leads to neurological problems

Risky groups

- Chronic alcoholics
- Population dependent on polished rice
- People who consume raw sea fish
- Rice & sea raw fish contain active thiaminaseenzyme destroys the vitamin

Riboflavin

Also known as vitamin B_2

- Contain ribitol & isoalloxazine (flavin) ring
- Coenzyme (Active form)
 - Flavin mononucleotide (FMN)
 - Flavin adenine dinucleotide (FAD)
- ❖ FMN &FAD not true nucleotides
 - Names are traditional and they persist!

Riboflavin Sources

Widely present in plants & animal sources

Animals:

 Milk & dairy productsyogurt, cheese, liver, meat, kidney, eggs

Plants:

- Enriched /whole grainswheat bran
- Yeast
- Fresh vegetables
- Rumen synthesis

Functions of Riboflavin

Energy metabolism:

- part of FMN (Flavin Mononucleotide)
- FAD (Flavin Adenine Dinucleotide)
- Important coenzymes in energy metabolism
- catalyzes dehydrogenation rxns
- Important in the metabolism of a.a, fats & -CHO.

Promotes healthy skin & vision

Necessary for normal embryo development,

- Easily destroyed by ultraviolet light & irradiation
- Daily requirements
 - Men: 1.3 mg/day
 - ❖ Women: 1.1 mg/day

Riboflavin in redox reactions

During the TCA cycle, compounds release hydrogens, and the riboflavin coenzyme FAD picks up two of them. As it accepts two hydrogens, FAD becomes FADH₂.

FADH₂ carries the hydrogens to the electron transport chain. At the end of the electron transport chain, the hydrogens are accepted by oxygen, creating water, and FADH₂ becomes FAD again. For every FADH₂ that passes through the electron transport chain. 2 ATP are generated.

Vitamin B₂: Deficiency symptoms:

Riboflavinosis (never fatal) characterised by

- Cheilosis- swelling and fissuring of lips
- Angular stomatitis- lessions at the margin of the mouth
- Painful desquamation of the tongue
 - (dry and atrophic) magenta tongue
- Scaly dermatitis
- * Eye problems leading to
 - corneal vascularisation
 - inflammation with cloudiness of cornea
 - photophobia
 - ***** cataract
- Skin disorders

Niacin (B₃)

Other names

- Nicotinic acid
- Nicotinamide
- Niacinamide
- Precursor: dietary tryptophan

Dehydrogenases: NAD+ and NADP+

Niacin Sources

- Both plant & animal sources
- Animal:
 - protein foods
 - Milk
 - eggs
 - meat
 - fish, poultry
- Plants
 - legumes
 - Enriched/whole grains
 - Nuts
 - Yeast

Functions of Niacin

- Energy metabolism:
 - Part of coenzymes NAD & NADP
 - catalyzes redox rxns of alcohols/carbonyl groups
 - Degradation of l-Trp → niacin
- General metabolism,
 - healthy skin,
 - nervous & digestive system

Niacin Deficiency

Pellagra characterized by 3Ds

- *diarrhea
- *dermatitis
- * dementia
- oral lesions

Toxicity symptoms

- Painful flush,
- *hives
- * rash ("niacin flush")
- **Excessive** sweating
- **♦** Blurred vision
- Liver damage, impaired glucose tolerance

RDA

Men: 16 mg NE/day

Women: 14 mg NE/day

Upper level for adults: 35 mg/day

Pantothenic acid

- ❖Also known as vitamin B₅
- ❖Part of Coenzyme A

Functions of Pantothenic Acid

- Part of coenzyme A,
 - used in energy metabolism
- Easily destroyed by food processing

- 1998 adequate intake (AI)
 - Adults: 5 mg/day

Sources of Pantothenic Acid

 Widespread in foodsplants & animals

• Plants

- Broccoli
- Whole grains
- Mushrooms
- Avacado

Animals

- Organ meats
- yeast
- liver

Functions of Pantothenic acid

- Synthesis of fatty acids (acetate pathway),
- Synthesis of some peptides, isoprenoids phenylpropanoids
- Metabolism of fat, carbs and protein
- \clubsuit Vitamins B_3 , B_5 , B_6 and biotin are thought to promote healthy hair and prevent hair loss
- Deficiency is rare

Vitamin B₆

- Other names
 - Pyridoxine
 - Pyridoxal
 - Pyridoxamine
- Coenzyme PLP, PNP or PMP
- Adults (19-50 years): 1.3 mg/day
- Upper level for adults: 100 mg/day

$$PO$$
 OH
 CH_3

pyridoxamine P

Function of vitamin B6

Amination reactions: Gain of N by a molecule Reductive amination: N comes from ammonia Transamination: NH₂ group is transferred from an a.a

$$\begin{matrix} R & CO_2H \\ H & NH_2 \end{matrix}$$

aldimine

Loss of N:

Deamination of an amino acid by Vitamin B₆ involves imine formation and hydrolysis

formation of imine from aldehyde and amino acid

hydrolysis of imine to keto acid and amine

CO₂H

ketimine

Sources of vitamin B₆

- Animal:
 - Meat,
 - Fish eg salmon,
 - Poultry,
 - Liver
- Plants:
 - nuts, cereals
 - bananas, Potatoes,
 - legumes
 - Non-citrus fruits
 - Fortified cereal
 - Soy products

Chief functions of Vit B₆ in the body

- Energy metabolism:
 - Amino acid and fatty acid metabolism:
 - Part of coenzymes pyridoxal phosphate
 - Catalyzes transaminations & decarboxylations of amino acids
 - PLP is important in f.a and aa metabolism
- Convert tryptophan to niacin and to serotonin
- Helps to make red blood cells
- In plants, used in biosynthesis of phenylpropanoids from amino acids

Deficiency symptoms of Vitamin B₆

- Scaly dermatitis
- Anemia (small-cell type)
- Depression, confusion, abnormal brain wave pattern, convulsions
- Nervous disorders, skin rash, muscle weakness,

• Vit B₆ can be lost through cooking, deficiency usually caused by poor absorption

Biotin (B₇)

Biotin (Vitamin H): functions as a carboxyl group carrier Ex: transforms acetyl-CoA to malonyl-CoA (acetate pathway) Deficiency is rare, but could lead to dermatitis and hair loss 😊

 1998 adequate intake (AI)
 Adults: 30 μg/day

Biotin Sources

- Animal sources
 - Organ meats, fish
 - Egg yolks, liver, kidney, milk
- Plant sources-Soybeans, Whole grains, yeast, cereals
- Also produced by intestinal microflora
- Chief functions in the body part of a coenzyme used in energy metabolism, fat synthesis, amino acid metabolism, and glycogen synthesis

Biotin "chemistry on a tether"

- Mobile carboxyl group carrier
- Bound covalently to a lysine
- The biotin-lysine conjugate is called biocytin
- The biotin ring system is thus tethered to the protein by a long, flexible chain

- Whenever you see a carboxylation that requires ATP and CO2 or HCO3-, think biotin!
- Activation by ATP involves formation of carbonyl phosphate (aka carboxyl phosphate)
- Carboxyl group is transferred to biotin to form N-carboxy-biotin
- The "tether" allows the carboxyl group to be shuttled from the carboxylase subunit to the transcarboxylase subunit of ACC-carboxylase

Folate (B₉)

- Other names
 - Folic acid
 - Folacin
 - Pteroylglutamic acid(PGA)
- 1998 RDA
 - Adults: 400 μg/day
- Upper level for adults: 1000 µg/day

Folate Sources

- Plant sources
 - Whole & Fortified grains
 - Leafy green vegetables
 - Legumes
 - Seeds
 - Yeast
 - some fruits
- Animal sources
 - Liver,

Folic Acid

- Folates are donors of 1-C units for all oxidation levels of carbon except that of CO₂
- Active form is tetrahydrofolate (THF)
- THF is formed by two successive reductions of folate by dihydrofolate reductase

Folate

In foods, folate naturally occurs as polyglutamate. (Folate occurs as monoglutamate in fortified foods and supplements.)

In the intestine, digestion breaks glutamates off . . . and adds a methyl group. Folate is absorbed and delivered to cells.

Spinach

Folate

In the cells, folate is trapped in its inactive form.

Cell

To activate folate, vitamin B₁₂ removes and keeps the methyl group, which activates vitamin B₁₂.

Both the folate coenzyme and the vitamin B₁₂ coenzyme are now active and available for DNA synthesis.

Folate

- Chief functions in the body
- Part of coenzymes
 - Tetrahydrofolate (THF)
 - Dihydrofolate (DHF)
 - used in DNA synthesis
 - DNA important in new cell formation
- THF important in one-C metabolism
 - Acts as a carrier of methyl, methylene or formyl groups
- Involved in amino acid & nucleotide metabolism,
- Involved in red blood cell formation

Folacin Deficiency

- Anemia,
- Neural tube defects in a fetus,
- Cardiovascular problems in adults
- Neural Tube Defects
 - Malformation of the central nervous system that forms very early in the pregnancy (often even before woman realizes she is pregnant
- Spina bifida- spine develops outside of the body
- Anencephaly- entire brain and skull above the ears is missing
- Folate intake linked to reduced CVD, colon cancer in women and depression in men

Vitamin B₁₂

R groups vary: CN, OH, H_2O , NO_2 , Me

Other names: cobalamin (and related forms)

- Contains Co(III) coordinated to a corrin ring
- (R = CN is cyanocobalamin, most common form)

1998 RDA Adults: 2.4 μg/day

Vitamin B₁₂ Sources

- Animal products
 - Meat, poultry fish, shellfish, Eggs
 - Milk, cheese,
 - dairy products
- Fortified cereals
- Microbial in origin; intestinal flora contribute towards human dietary needs.
- Stored in the liver

Chief functions of B₁₂ in the body

- ❖New cell synthesis:
 - Part of coenzymes for new cell synthesis
 - *methylcobalamin
 - deoxyadenosylcobalamin
- Methylations reactions
 - one-C metabolism (methylations) reactions
 - Conversion of of homocysteine to methionine
- Biosynthesis of DNA, amino acids, fatty acids,
 - Needed to maintain RBC, genes
 - Helps to maintain nerve cells
 - Reforms folate coenzyme
 - Helps to break down some f.a & amino acids
- Activates Folate

Vitamin B₁₂

- Absorption of Vitamin B₁₂ requires
 - HCl
 - Pepsin
 - Intrinsic factor
- Poor absorption is thought to be a complication of aging
- Easily destroyed by microwave cooking

Vitamin B₁₂Deficiency

- Pernicious Anemia
 - Common in strict vegetarians obtained only from animal sources
- "Intrinsic factor" needed for B₁₂ absorption
- secreted by the parietal cells in lining of gastric mucosa
- Toxicity: none reported

Ascorbic Acid

Vitamin C

- A vitamin in some animals
 - Most plants and animals make ascorbic acid - for them it is not a vitamin
 - Only a few vertebrates man, primates, guinea pigs, fruit-eating bats and some fish (rainbow trout, carp and Coho salmon) cannot make it!
- Vitamin C is a reasonably strong reducing agent
- It functions as an electron carrier (describe how)

Vitamin C (Ascorbic acid)

- Hydroxylations of proline and lysine (collagen)
- Metabolism of Tyr in brain
- Fe mobilization from spleen
- May prevent the toxic effects of some metals
- Ameliorates allergic responses
- Can stimulate the immune system

Vitamin C (Ascorbic acid)

- Antioxidant, strong reducing agent
- Collagen synthesis, tissue repair, bones & teeth, immune system, iron absorption
- Cannot be made by human body though animals can biosynthesize from glucose
- Found in citrus fruits, cruciferous veggies, tomatoes, dark green leafy, berries, mangos, melons
- Degraded by cooking
- Deficiency causes
 - scurvy,
 - anemia,
 - depression,
 - infection,
 - tooth/gum problems,
 - muscle deterioration,
 - fragile bones,
 - poor wound healing

L-dehydroascorbic acid