Integer maps

Integer maps are binary relations between integer

set.

The first set in the relation is called domain. The second set is the range or the output.

Figure 3: A two-dimensional integer map

Figure 3 illustrates the integer map $M = \{(i,j) \to (i-2,j-3)\}$ with the input values restricted to the elements contained in the blue rectangular of Figure 1. Each black arrow represents a relation between one input tuple and one output tuple. The input values (blue squares) shown are the very same values as illustrated in Figure 1. The output values (red circles) are the same values, but translated according to M.

The general form of an integer map is. $M = Si \rightarrow 0 \in 2^d \times 2^d \times \{(i, 0, p)\}$ reput tuples output tuples Presburger formula

M for given parameters \vec{p} . Integer maps can represent arbitrary relations and can, contrary to what the use of the " \rightarrow " notation suggests, relate multiple output values to a single input value. The Presburger formulas that describe integer maps follow the rules presented for

Named unions sets/named union maps
named integer sets are integer sets containing named tuples.

eg {s(i,j)} an integer set with the name "S".

Named integer maps. Integer maps between two named spaces.

named union set, an integer set contains tuples from different spaces. eg {S, (i,j); Sz(i)}

named union maps: binary relations between integer sets.

2.2 MODEL AND TRANSFORM IMPERATIVE PROGRAMS

Polyhedra or, in our case, integer sets and maps can be used to model "sufficiently regular" compute programs with the goal to reason about and precisely control higher-level properties without distraction from imperative or lower-level constructs. To do so the individual statement instances in a program (i.e., each dynamic execution of a statement inside a loop nest), their execution order as well as the individual array elements accessed are modeled, analyzed and transformed, whereas control flow constructs, loop induction variables, loop bounds or array subscripts are hidden and only regenerated when converting a transformed loop nest back to imperative constructs.

sident: A set can be approximated by computing various hulls (convex, affine, simple, polyhedral.)

Polyhedral representation what kind of higher level property?
(God; reason about and precisely control higher-level
(. Good: reason about and precisely control higher-level property without distraction from imperative
or low-level construct.
2. What is modeled?
O individual statement instances
(1) Their execution order
3) Individual array element accessed
3. What is hidden?
O control-flow construct
(2) loop induction variables
3 [orp bounds
@ array subscripts
Let's see the illustrative example
for (i = 1; i <= n; i+=1) → ì - (∞)
for $(j = 1; j <= i; j+=1) \longrightarrow (-\infty)$
S: $A[i][j] = A[i-1][j] + A[i][j-1];$
compute statement
To model this computation, 4 data structures are
constructed integer set describes the set of statement a statement a assigns to each statement a
statement of statement of
Ceración de torre mad assibly multi-dimensional time
2 schedule (5) integer map, possibly multi-dimensional time. 3 a relation of read-accesses Aread defines
manon
a relation of must-write-access A write ocations
defines execution order

with a single dot. The arrows between such statement instances illustrate data flow dependences modeled by an integer map $D = \{S(i,j) \to S(i,j+1); S(i,j) \to S(i+1,j)\}$. Those dependences relate statement instances with the statement instances they depend on. Computing precise data-flow dependences [54, 104, 92] is one analysis that is significantly facilitated by the use of an integer set based representation.

commite precise data flow dependences is one analysis that is significantly facilitated by the use of an integer set based representation. improve data-locality based on polyhedral representation. ensure that statement instances that operate on the same data elements are executed In dose time proximity. 2 each statement instance is always may pred to a paint in time That is later than the execution time of all statement instances it depends on. within these constraints we are free to modify the schedule.

tiling is in this case both legal and effective. To implement loop tiling we define a new schedule

$$S' = \{S(i)(j) \to (\lfloor i/3 \rfloor)(\lfloor j/3 \rfloor)(i)(j)\}$$

which defines an execution order where the statement instances are always executed in blocks of size 3×3 . The new execution order is illustrated in Figure 5 and is shown in two levels. At the higher level, the blue blocks are executed in lexicographic order. At the lower level, within the individual blue blocks, the statement instances are again executed in lexicographic order. As statement instances that are close by are placed in the same block, they are also executed close by in time.

one advantage of integer set representation compute precise dependencies. imperative program

representation

static control port program that can be A SCoP is a program (region) that consists of a set of statements translated into possibly enclosed by (not necessarily perfectly) nested loops and conditional branches. Within this region read-only scalar values are called phyhedral parameters. The statements in the SCoP are side effect free, besides explicit reads and writes to multi-dimensional arrays or scalar values. Loops are regular loop bounds with a single lower and a single upper bound and increments by fixed, positive integers (i+=10). Both loop bounds and array accesses are (piecewise-quasi) affine expressions in terms of parameters and induction variables of outer loops.

Time

perfectly fit into RNN]: iteration space is an integer set S. schedule -> assign each statements a multi-dimensional

How to understand locality? > statement instances operating on the same data elements are executed in close time proximity.

Figure 5: Iteration Space - Tiled

tiling is in this case both legal and effective. To implement loop tiling we define a new schedule

$$S' = \{S(i)(j) \to (\lfloor i/3 \rfloor)(\lfloor j/3 \rfloor)(i)(j)\}$$

materialize the transformations back to imperative cooles
polyhedral AST generator

The polyhedral representation The representation we use to model SCoPs consists of the following components: /, ITERATION SPACE/DOMAIN The set of statements instances that are part of a SCoP. It is modeled as a named union set, where each named component of the union set describes a statement, with individual instances of a statement being described by the elements contained in the corresponding named set. ACCESS RELATIONS A set of read, write and may-write access relations relate statement instances to the data-locations they access. These access relations are modeled as named union maps. . DEPENDENCES A relation between statement instances that defines restrictions on the execution order, due to producer-consumer relationships or the shared usage of certain data locations. Data dependences are modeled as named union maps. SCHEDULE An execution order which assigns each statement instance a multi-dimensional execution time. One statement instance is executed before another statement instance, if its execution time is lexicographically smaller. It is important to note that there is a strong separation between the statement instances themselves and the order in which they are executed. Program optimizations that do not change the set of statements that are executed, but only change the order they are executed in, consequently only affect the schedule. Note for schedule: 1. program optimizations only change the order that statements 2. a schedule is only valid if it is of a form such that all data-dependences go forward in time.

The time at the source of the dependence must be texico-graphically strictly smaller Than the time at the target. 3. 1. given a set of dependence, we can compute a schodule. a given an iteration space @ access relations, 3 a schedule, the corresponding data dependences can be compute.

Tran	rsfor	mati	en;	\$											
	We	e can g	roup	loop	transfo	rmati	ons a	accor	ding	to	wha	at p	rogra	am	
La die fact		erties a	_	_					0			1	0		
regularly	٠.	The or	rder i	n whic	h comp	outati	ons a	re pe	rfor	med					
modeled	• The loop structure but not the order of computation														
withinteg	• The data layout and the data locations accessed														
• The data layout and the data locations accessed • The computation (algorithmic changes)															
	•	The co	ompu	tation	(algorit	thmic	chan	ges)							
		e first tl							_						
	_	er sets, ossible			_	-			-						
		r progr			- •	_	_								
	mostl	y a cor	nbina	tion of	execut	tion r	eorde	ring	and	data	a lay	out	tran	S-	
formations supplemented with the generation of specialized target instructions or library calls. We will use such GPU code generation															
	instru	ictions	or III	orary c	alis. vv	e wii	use	sucn	GPU	· co	ae g	gene:	ratio	n	
Classi	cal t	ranst	STM	tion	> That	1 re	orde		نسمرا	puto	at i	อนร	ar	-e	
1. +	Pusi or		\)						(,				
- L	issor														
3.1	evers	al				Car		104 - 0	1-10		h~	er.		.10	
4.0	nterch	large			>	Car	, DE	MOC	مدرد			30	-acc		
\$.5	trip-	miner	Ng		-	rans	Me		VI V >						
6.	skew	mine	7		camb	s. at	no.	/ - /	CIA	ch/	لع	en	ent	car>	/
		7		,	Calvei	7	F >=0		301	-4	٠١٠	. 0	4-0	/	را م
				7	enster	ma	(1 9 N	> y	ભા	ı e	лС	7	יוס	W	ii aak
				an	d ja	M.									

1. Fasion // Original loops iteration space(named for (i=1; i<n; i+=1) S1(i); Fusion with set) $J = \{S1(i) : 1 \le i < n;$ for (i=1; i<m; i+=1)</pre> original $S2(i): 1 \leq i < m$ S2(i); schedule={S1(i) \rightarrow (0,i) = named union map // Fused loops $S2(i) \rightarrow (1,i)$ for (i=1; i < min(n,m); i+=1) {</pre> $\mathcal{T} = \{(0,i) \rightarrow (i,0), \quad \begin{array}{c} \text{for (i=1)} \\ \text{S1(i);} \\ \text{S1(i)} \\ \text{S2(i);} \\ \text{ST} = \{S1(i) \rightarrow (i,0); \quad \text{with} \\ \text{S2(i);} \\ \text{S3(i)} \\ \text{S3(i)} \\ \text{S4(i)} \\ \text{S5(i)} \\ \text{S5(i)} \\ \text{S6(i)} \\ \text{S7(i)} \\ \text{S7(i)} \\ \text{S8(i)} \\ \text{S9(i)} \\ \text{$ $S2(i) \rightarrow (i,1)\}$ for (i=max(1,m); i<n; i+=1)</pre> S1(i); transformed schedule for (i=max(1,n); i<m; i+=1)</pre> S2(i); Notes for the above example. I. There are two spaces. 2. schedule assigns each statement instance a multi-dimensional execution time, here 2-d is used. iteration space - transformed schedule