Few-shot Adversarial Learning of Realistic Neural Talking Head Models

Основная задача: по нескольким кадрам видео или набору фото этого человека, сгенерировать его изображение с заданным положением головы и выражением лица (в дальшейшем разметка).

Результат синтеза изображения головы зависят от разметки, взятого из таргет-кадра (не входит в тренировочный набор), а кадр-источник взят из тренировочного набора.

Слева: используя разметку, полученную из разных видео того же человека

Обучено восьмикадровым способом

Справа: используя разметку из видео другого человека

Обучено однокадровым способом

Пути решения:

1. Деформация изображения (Warping method)

Минусы:

- Количество движений и повороты головы без видимых неполадок ограничены
- 2.Прямой синтез кадров (Direct (warping-free) method) использует сверточные сети.

Минусы:

- Слишком большая сеть (десятки миллионов параметров в генераторе и дискриминаторе)
- Для хорошего результата требует продолжительное видео (несколько минут) или большое количество фотографий

Few-shot learning

- Может сгенерировать нужное изображение по одному кадру или малому количеству
- Добавление кадров улучшает качество персонализации
- Работает за приемлемое время
- Поддерживает большое количество положений головы
- Работает в два этапа:
- 1. Meta-learning: предобучение на большом количестве видео с разными людьми с разной внешностью (учим систему превращать landmark в приемлемое фотореалистичное изображение человека, на котором обучаемся)
- 2. Fine-tuning stage: обучение на нескольких или одном кадре человека, фото которого мы должны сгенерировать, для лучшей персонализации картинки (иначе лицо будет не очень узнаваемым)

Meta-learning stage

Embedder $E(x_i(s), y_i(s); \phi) \rightarrow \hat{e}_i(s)$

- $x_i(s)$ кадр s из i-того видео
- $y_i(s)$ соответствующая разметка
- ϕ обучаемые на стадии meta-learning параметры нейорсети
- $\hat{e}_i(s)$ вектор размерности N, содержащий информацию о позе и мимике человека в кадре

Generator $G(y_i(t), \hat{e}_i; \psi, P) \rightarrow \hat{x}_i(t)$

 $y_i(t)$ – разметка изображения, которая не проходила через embedder

 \hat{e}_i – предсказанная embedder'ом сжатая информация (среднее $\hat{e}_i(s)$ по s)

 ψ – параметры, отвечающие за общие качества человека

 $\hat{\psi}_i$ – параметры, отвечающие за личные качества человека

 $\mathsf{P}:\hat{\psi}_i=\mathsf{P}\hat{e}_i$

 $\hat{x}_i(t)$ – сгенерированный видеокадр

Discriminator $D(\mathbf{x}_i(t), \mathbf{y}_i(t), i; \theta, \mathbf{W}, \mathbf{w}_0, b) = r = V(\hat{\mathbf{x}}_i(t), \mathbf{y}_i(t); \theta)^T (\mathbf{W}_i + \mathbf{w}_0) + b$

 $V\left(\hat{\mathbf{x}}_i(t),\mathbf{y}_i(t);\, \theta\right)$ - ConvNet, которая превращает входные данные в вектор размерности N

r - realism score предсказывает, является ли $\mathbf{x}_i(t)$ реальным кадром и соответствует ли он разметке из входных данных

Процесс обучения

perceptual similarity measure between ground truth and reconstruction

L1-diff between weights of VGG-19 and VGGFace Trained for classification and ace recognition

$$\mathcal{L}(\phi, \psi, P, \theta, W, w_0, b) = \mathcal{L}_{CNT}(\phi, \psi, P) +$$

$$\mathcal{L}_{ADV}(\phi, \psi, P, \theta, W, w_0, b) + \mathcal{L}_{MCH}(\phi, W)$$

the similarity of the two types of embeddings by penalizing the L_1 -difference between $E\left(\mathbf{x}_i(s_k), \mathbf{y}_i(s_k); \phi\right)$ and \mathbf{W}_i .

$$\mathcal{L}_{ ext{ADV}}(\phi, \psi, \mathsf{P}, \theta, \mathsf{W}, \mathsf{w}_0, b) = -r + \mathcal{L}_{ ext{FM}} = \\ -D(\hat{x}_i(t), y_i(t), i; \theta, \mathsf{W}, \mathsf{w}_0, b) + \mathcal{L}_{ ext{FM}}$$

a feature matching term , which essentially is a perceptual similarity measure, computed using discriminator (it helps with the stability of the training):

$$egin{aligned} \mathcal{L}_{ ext{DSC}}(\phi,\psi,\mathsf{P}, heta,\mathsf{W},\mathsf{w}_0,b) &= \ &+ \max(0,1+D(\hat{x}_i(t),y_i(t),i;\phi,\psi, heta,\mathsf{W},\mathsf{w}_0,b)) \ &+ \max(0,1-D(x_i(t),y_i(t),i; heta,\mathsf{W},\mathsf{w}_0,b)) \end{aligned}$$

Зачем нужна стадия fine-tuning?

$$\hat{\mathbf{e}}_{\text{NEW}} = \frac{1}{T} \sum_{t=1}^{T} E(\mathbf{x}(t), \mathbf{y}(t); \phi)$$

Таким образом, чтобы получить лицо нужного нам человека с нужным выражением лица мы можем взять видео с ним и его разметку, прогнать через обученный на стадии meta-learning эмбеддер и вставить его в так же обученный генератор. Картинка получается качественной и реалистичной, НО в таком случае возникает проблема.

На сгенерированной картинке утеряна персонализация человека (иными словами видны черты другого человека, а не таргета)

Few-shot fine-tuning

Few-shot fine-tuning

На этом этапе берем ту же сеть, что и на прошлом, исключаем из обучения эмбеддер, меняем генератор, дискриминатор и лосс-функции

Generator:
$$G'(y(t); \phi, \psi')$$
, где $\psi' = P\hat{e}_{\text{NEW}}$ \Longrightarrow уже предобучен Discriminator: $D'(x(t), y(t); \theta, \mathbf{w}', b)$, где $\mathbf{w}' = \mathbf{w}_0 + \hat{e}_{\text{NEW}}$ \Longrightarrow из-за $\mathcal{L}_{\text{МСН на прошлом этапе}}$ $D'(\hat{x}(t), y(t); \theta, \mathbf{w}', b) = V(\hat{x}(t), y(t), \theta)^T \mathbf{w}' + b$ $\mathcal{L}'(\psi, \psi', \theta, \mathbf{w}', b) = \mathcal{L}'_{\text{CNT}}(\psi, \psi') + \mathcal{L}'_{\text{ADV}}(\psi, \psi', \theta, \mathbf{w}', b)$

$$\mathcal{L}'_{DSC}(\psi, \psi', \theta, \mathbf{w}', b) = \max(0, 1 + D(\hat{\mathbf{x}}(t), \mathbf{y}(t); \psi, \psi', \theta, \mathbf{w}', b)) + \max(0, 1 - D(\mathbf{x}(t), \mathbf{y}(t); \theta, \mathbf{w}', b))$$

Method (T)	FID↓	SSIM↑	CSIM [↑]	USER↓
VoxCeleb1				
X2Face (1)	45.8	0.68	0.16	0.82
Pix2pixHD (1)	42.7	0.56	0.09	0.82
Ours (1)	43.0	0.67	0.15	0.62
X2Face (8)	51.5	0.73	0.17	0.83
Pix2pixHD (8)	35.1	0.64	0.12	0.79
Ours (8)	38.0	0.71	0.17	0.62
X2Face (32)	56.5	0.75	0.18	0.85
Pix2pixHD (32)	24.0	0.70	0.16	0.71
Ours (32)	29.5	0.74	0.19	0.61
VoxCeleb2				
Ours-FF (1)	46.1	0.61	0.42	0.43
Ours-FT (1)	48.5	0.64	0.35	0.46
Ours-FF (8)	42.2	0.64	0.47	0.40
Ours-FT (8)	42.2	0.68	0.42	0.39
Ours-FF (32)	40.4	0.65	0.48	0.38
Ours-FT (32)	30.6	0.72	0.45	0.33
Method (T)				Time, s
	Few-sh	ot learnin	g	
X2Face (1)	Few-sh	ot learnin	g	Time, s
X2Face (1) Pix2pixHD (1)	Few-sh	ot learnin	g	
X2Face (1) Pix2pixHD (1) Ours (1)	Few-sh	ot learnin	g	0.236
X2Face (1) Pix2pixHD (1)	Few-sh	ot learnin	g	0.236 33.92
X2Face (1) Pix2pixHD (1) Ours (1)	Few-sh	ot learnin	g	0.236 33.92 43.84
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40 85.48
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours (8)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours-FF (8) X2Face (32)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138 7.542
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours-FF (8) X2Face (32) Pix2pixHD (32)	Few-sh	ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138 7.542 122.6
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours-FF (8) X2Face (32) Pix2pixHD (32) Ours (32)		ot learnin	g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138 7.542 122.6 258.0
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours-FF (8) X2Face (32) Pix2pixHD (32) Ours (32)			g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138 7.542 122.6 258.0
X2Face (1) Pix2pixHD (1) Ours (1) Ours-FF (1) X2Face (8) Pix2pixHD (8) Ours (8) Ours-FF (8) X2Face (32) Pix2pixHD (32) Ours (32) Ours-FF (32)			g	0.236 33.92 43.84 0.061 1.176 52.40 85.48 0.138 7.542 122.6 258.0 0.221

Frechet-inception distance (FID), mostly measuring perceptual realism

Structured similarity (SSIM), measuring low-level similarity to the ground truth images

cosine similarity (CSIM) between embedding vectors of the state-ofthe-art face recognition network for measuring identity mismatch

Сравнение

- The FT variant is trained for half as much (75 epochs) but with L_MCH, which allows fine-tuning
- FF (feed-forward) variant is trained for 150 epochs without the embedding matching loss L_MCH and, therefore, we only use it without fine-tuning (by simply predicting adaptive parameters ψ 0 via the projection of the embedding e^NEW).

VoxCeleb2 dataset training.

Ours-FF

T

Source

Ground truth

Увеличенный размер картинок. Сравнение между собой. Puppeteering. 1

Ours-FT

after fine-tuning

Ours-FT

before fine-tuning

Source

One-shot models.

Generated images