Fundaments of Machine learning for and with engineering applications

Reidar B. Bratvold, Enrico Riccardi¹

Department of Energy Resources, University of Stavanger (UiS). 1

Feb 26, 2024

© 2024, Reidar B. Bratvold, Enrico Riccardi. Released under CC Attribution 4.0 license

Model set-up

For a given x we do not know the true response q, only the measurementa y_i for experiment i.

We have that:

$$y_i = q_i + \epsilon_i$$

NOTE: do not proceed if you do not fully understand this equation.

which is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Discussion point

Does ϵ_i matter? And why so?

Linear model example

We would like to find the TRUTH (What it it?)

A linear model

Considering a univariate case, we have:

$$q = f(x)$$

which relates the independent variable x to the true dependent variable q.

Assuming a linear model

$$q = \beta_0 + \beta_1 x$$

where β_i are the arbitrary selected coefficients.

Estimated model paramters

The model parameters β_0 , β_1 are unknown, but they can be **estimated**. To distinguish estimates from true model parameters we call them b_0 , b_1 . These estimates are calculated such that the model

$$\hat{y} = b_0 + b_1 x$$

fits the n different experimental observations as well as possible.

Python Example

Linear model(s)

Does a linear model mean only straight lines (or hyperplanes in general)?

That answer to this is *no*. different. In general for a model f to be defined linear, it has to be linear with respect to the unknown parameters β_0, \dots, β_n . The general linear model is

$$q = \beta_0 + \beta_1 f_1(x_1) + \beta_2 f_2(x_2) + \cdots + \beta_n f_n(x_n)$$

where $f_i(x_i)$ may be non-linear functions. It is the **form** of the equation which makes it linear, i.e. that $f_i(x_i)$ does not depend on the parameters β_i .

Curvilinear models

A special class of linear models which we will investigate later are those which are expressed in terms of *polynomials* (here in only 1D):

$$q = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m = \sum_{i=0}^n \beta_i x^i$$

For n-D case there are a wide range of interaction terms and combinations, that can still be converted to standard linear form.

Such models are sometimes referred to as **curvilinear** instead of non-linear

Estimation of linear regression parameters

For the 1-dimensional problem, we have

$$\hat{y} = b_0 + b_1 x$$

where \hat{y} is the estimated y-value from the approximate model that has been generated from a set of measurements (x_i, y_i) . We aim to find the b_i parameters such that the regression line fits the observed data as well as possible.

This means we want to minimise the residuals

$$e_i = y_i - \hat{y}_i$$

Linear model(s)

Consider the following model example - is it linear?

$$q = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^{-1} + \beta_3 \log x_3$$

The answer is *yes* because by simple substitution it is possible to convert this formula into a linear form.

With $h_1 = x_1^2$, $h_2 = x_2^{-1}$ and $h_3 = \log x_3$, then we can formulate the new model:

$$q = \beta_0 + \beta_1 h_1 + \beta_2 h_2 + \beta_3 h_3$$

which is in the standard linear form.

Nonlinear models

But there are many other models that cannot be substituted to such a form. For instance:

$$q = \beta_0 + \log(x - \beta_1)$$

No substitution can transform this equation to the linear form.

That is the case for all the model that:

$$q \sim f(x, \beta)$$

Another example is:

$$f(x,\beta) = \frac{x\beta}{x+\beta}$$

Estimation of linear regression parameters

- Cannot sum e_i values since they might be positive and negative and thus cancel
- Could use e.g. $\sum_{i=1}^{n} |e_i|$, but is mathematically more difficult to handle
- Residual"smallness" measured by $\sum_{i=1}^{n} e_i^2$.

Thus, we find the linear regression coefficients by minimising

$$R = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

How?

Regression!

Let's recaps

Before to continue, let's make sure to have all the main elements clear:

- Splitting the data in dependent and independent variables
- Assumption of a linear model between them
- Recognise the difference between the truth and the estimation
- 4 Aiming to minimize the residuals

Discussion

What happen when the sun of residual is 0 ?

What happens where the data is heavily correlated?

Regression

Skipping the math (but you are more than welcome to try), here are the results:

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Straightforward derivation becomes very cumbersome for multiple variables. Thus, a different approach must be used. Yet, it is important to understand that there is an analytical solution (even if not all the time).

Regression via Matrix operation

Remember that

$$R = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

then we can define the vector e:

$$e = y - \hat{y}$$

thus

$$e^{T} = [(y_1 - \hat{y}_1) (y_2 - \hat{y}_2) \cdots (y_N - \hat{y}_N)]$$

and can then write

$$R = e^T e$$

Regression

To minimize the sum of the square residuals, we can try to solve the following equations:

$$\frac{\partial R}{\partial b_0} = 0$$

$$\frac{\partial R}{\partial b_0} = 0$$

where:

$$R = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 =$$

$$\sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 = \sum_{i=1}^{n} u_i^2$$

Many variable equation

The general equation would look like:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n = \sum_{i=0}^m x_{ij} b_j$$

where we will have to solve all the n+1 equations (called the normal equations) of the form:

$$\frac{\partial R}{\partial b_i} = 0 \quad \forall j \in [0, n]$$

Is there a way for us to simplify this?

We can use vector and matrix algebra.

Regression via Matrix operation

Remember that

$$R = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

then we can define the vector \mathbf{e} :

$$e = v - \hat{v}$$

thus

$$\boldsymbol{e}^T = [(y_1 - \hat{y}_1) (y_2 - \hat{y}_2) \\ \cdots (y_N - \hat{y}_N)]$$

and can then write

$$R = e^T e$$

From the following equation:

$$\hat{y}_i = b_0 + \sum_{j=1}^m x_{ij} b_j = \sum_{j=0}^m x_{ij} b_j$$

where $x_{i0} = 1$

we make the matrix equation:

$$\hat{\pmb{y}} = \pmb{X} \pmb{b}$$

where the first column in **X** consists of ones only.

Residual

$$R = e^{T}e$$

$$= (y - \hat{y})^{T}(y - \hat{y})$$

$$= (y - Xb)^{T}(y - Xb)$$

$$= (y^{T} - b^{T}X^{T})(y - Xb)$$

$$= y^{T}y - y^{T}Xb - b^{T}X^{T}y$$

$$+ b^{T}X^{T}Xb$$

All the parts of this equation are scalar values. This means e.g. that

$$\mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{b} = \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

This gives

$$R = \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X} \mathbf{b} + \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{b}$$

Residual

But how can we now compute $\frac{\partial R}{\partial b_i}$ more efficiently in matrix form?

Vector differentiation! Let

$$y = \mathbf{a}^T \mathbf{x} = a_1 x_1 + \cdots + a_n x_n$$

lf

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \mathbf{a}$$

and $y = \mathbf{x}^T \mathbf{a}$, then:

$$\frac{\partial y}{\partial x} = a$$

General solution

In general, when $y = \mathbf{x}^T \mathbf{A} \mathbf{x}$, then

$$\frac{\partial y}{\partial x} = 2Ax$$

if ${\bf A}$ is symmetric

(check Matrix calculus for more properties)

We can use this to compute

$$\frac{\partial R}{\partial \boldsymbol{b}}$$

General solution

We have from above:

$$R = \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X} \mathbf{b} + \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{b}$$

Vector differentiation gives

$$\frac{\partial R}{\partial \boldsymbol{b}} = 0 - 2\boldsymbol{X}^T \boldsymbol{y} + 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{b} = 0$$

Solving this for **b** we get:

Multiple linear regression

Previous equation make the solution of MLR rather obvious!

When we have a matrix of y-variables \mathbf{Y} :

$$\boldsymbol{B} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

in the equation:

$$Y = XB$$
.

These equations give us the $\operatorname{multiple}$ linear regression (MLR) solution.