SPECTROSCOPIA RADIAŢIILOR BETA

Scopul lucrării:

Determinarea energiei maxime a radiațiilor beta.

Principiul lucrării:

Radiațiile beta sunt fascicule de electroni (β) sau pozitroni (β) provenite din nucleele atomilor radioactivi în urma proceselor de dezintegrare (dezintegrare beta).

Radiația β^- apare în interiorul nucleului ca urmare a unui proces de dezintegrare din nucleu, în urma căruia rezultă un proton (p), un antineutrino (\overline{v}) și un electron (e^-) care este expulzat:

$$n \to p + \overline{v} + e^{-} \tag{1}$$

În mod similar, în urma dezintegrării β^+ , un proton se transformă într-un neutron, un neutrino și un pozitron care, deasemenea, este expulzat:

$$p \to n + v + e^+ \tag{2}$$

Spectrul energetic al radiațiilor beta este unul continuu, energia obținută în urma procesului de dezintegrare fiind împărțită între electron si antineutrino (sau pozitron și neutrino).

Energia maximă a radiației beta (E_{max}) este de trei ori mai mare decat energia cea mai probabilă (E_h) care se poate determina experimental din graficul N = f(E) (Fig. 1).

$$E_{\text{max}} = 3E_h \tag{3}$$

Fig. 1 Spectrul energetic al radiației beta

Deoarece, în cazul de față, particulele sunt deviate într-un câmp magnetic (de către forța Lorenz), o reprezentare corectă a dependenței N = f(E) necesită studiul influenței acestui câmp asupra energiei cinetice a particulei.

Atunci când pătrund într-un câmp magnetic uniform, particulele încărcate cu sarcină electrică sunt supuse acțiunii forței Lorenz (f_L).

$$\vec{f}_L = q\left(\vec{v} \times \vec{B}\right) \tag{3}$$

Unde $q = \pm 1, 6 \cdot 10^{-19} \, C$ este sarcina particulei iar B este inducția câmpului magnetic aplicat.

Fig.2: Acținea forței Lorentz asupra unei particule încărcate cu sarcină electrică

În cazul particular în care câmpul este perpendicular pe direcția de deplasare a particulei (fig. 2) modulul forței Lorentz este

$$f_L = q \cdot v \cdot B \tag{4}$$

Astfel, ea va imprima o acelerație normală $(a_{cp} = m \frac{v^2}{R})$ transformând traiectoria, initial rectilinie, a particulei într-una circulară. Aplicând principiul al doilea al mecanicii obținem:

$$f_L = m \frac{v^2}{R} \tag{5}$$

Unde m este masa particulei (electron sau pozitron) iar R este raza traiectoriei circulare. Din ecuațiile (4) și (5) putem calcula viteza particulei:

$$v = \frac{qRB}{m} \tag{6}$$

Particulele constituente ale radiației β au viteze apropiate de cea a luminii, deci sunt particule relativiste a căror energie totală este

$$E_t^2 = p^2 c^2 + m_0^2 c^4 (7)$$

Unde p = mv este impulsul lor iar c este viteza luminii Se obține astfel energia totală:

$$E_t = \sqrt{(qRBc)^2 + m_0^2 c^4}$$
 (8)

Iar energia cinetică

$$E = \sqrt{(qRBc)^2 + m_0^2 c^4} - m_0 c^2 \tag{9}$$

Adică

$$E(keV) = \sqrt{(RBc/1000)^2 + 511^2} - 511 \tag{9'}$$

Prin urmare, cunoscând valoarea câmpului magnetic aplicat, se poate calcula energia particulelor β și se poate trasa graficul N = f(E).

Dispozitivul experimental

Elementele componente ale instalației experimentale sunt:

Un electromagnet (EM) cu ecran gradat (E) alimentat de la o sursa de tensiune (SA), un multimetrul digital (M) pentru inregistrarea curentului prin spirele electromagnetului și un detector de radiații (D) cu numărător (N).

Fig. 3 Dispozitivul experimental

Electronii (sau pozitronii) proveniti de la sursa de radiații SR vor fi deviati de la direcția inițială de câmpul magnetic dintre polii electromagnetului (EM) urmând o traiectorie circulară de rază R. La ieșirea lor dintre polii electromagnetului, radiațiile beta sunt captate de detector (Fig.4).

Fig.5 Reprezentare schematică a traseului radiației beta între sursa (SR) și detector (D): a)pentru 90 Sr, b) pentru 22 Na.

Stabilirea unghiului de înclinare pentru suportul detectorului depinde de sursa de radiații utilizată. Dacă folosim sursa 90 Sr cu emisie β (a se vedea schemele de dezintegrare din Fig. 5), trebuie să fixăm acul indicator al suportului pe cadranul din dreapta al ecranului (Fig. 4a). Dacă se utilizează sursa 22 Na cu emisie β +, se schimbă semnul forței Lorentz ceea ce duce la o curbare a traiectoriei pozitronului departe de

fereastra detectorului. Schimbând orientarea detectorului, prin fixarea acului indicator pe cadranul din stânga al ecranului vom putea inregistra radiația β +orientată în sens opus (Fig. 4b)

Fig. 5 Schemele de dezintegrare pentru materialele radioactive folosite in experiment $\binom{90}{5}$ r și 22 Na)

Modul de lucru

- 1. Calibrarea energetică a spectrometrului magnetic. Utilizând ecuația (9') se calculeaza energia particulelor beta pentru fiecare dintre valorile câmpului magnetic din Tabelul 1. Pentru o distantă sursă-detector d = 5 cm și un unghi de deviație $\alpha = 20^{\circ}$, raza de curbura este R = 14 cm.
- 2. Inregistrarea fondului de radiații.
 - Se montează detectorul în suportul special, se setează numărătorul in modul infinit (∞) și se inregistrează numărul de impulsuri (**F**) pentru radiatia de fond **timp de 10 minute** ($t_f = 10 \text{ min} = 600 \text{ s}$).
 - Se calculează viteza de numărare a fondului:

$$f = \frac{F}{t_f} [imp/s]$$

- 3. Înregistrarea spectrului de radiații pentru ⁹⁰Sr
 - Se montează sursa de radiații (⁹⁰Sr) în suportul special (NUMAI IN PREZENTA CADRULUI DIDACTIC!!!!).

Observație: Pentru obținerea unor rezultate bune, se recomandă utilizarea colimatorului.

• Se fixează acul indicator al suportului detectorului de radiații în dreptul valorii de 20° din cadranul din dreapta al ecranului (Fig.5a)

- Se modifică tensiunea de alimentare a electromagnetului pentru a obține, rand pe rand, valorile curentului electric prin bobină indicate în Tabelul 1. (Aceste valori se citesc pe multimetrul M)
- Se seteaza timerul numărătorului la t = 60s și se inregistrează numărul de impulsuri (N)
- Se repetă măsurătorile pentru toate valorile câmpului magnetic din Tabelul1
- Se reprezintă grafic $n_{Sr} = f(E)$
- Se determină din grafic energia cea mai probabilă E_h
- Se calculează energia maximă a electronilor cu ajutorul formulei (3)

4. Înregistrarea spectrului de radiații pentru ²²Na

- Se schimbă sursa de radiații cu cea de sodiu (²²Na)
- Se înclină suportul detectorului până în dreptul valorii de 20° din cadranul din stânga al ecranului (Fig.5b)
- Se repetă procedurile de la punctul 3, se notează datele în Tabelul 2 și se calculează energia maximă a pozitronilor

Tabelul 1: Sursa radioactivă ²²Na

Nr.	I(A)	B(mT)	E(keV)	N(imp)	$n' = \frac{N}{n}$	n = n' - f	σ_n
crt.					$n' = \frac{-}{t}$	n-n-j	
1	0	2.1	1.40				
2	0,1	4.6	19.58				
3	0,2	6.9	53.30				
4	0,3	9.3	102.89				
5	0,4	12.5	186.39				
6	0,5	14.5	246.07				
7	0,6	16.8	319.91				
8	0,7	19.6	415.47				
9	0,8	22.3	511.97				
10	0,9	24.8	604.17				
11	1,0	28.2	732.82				
12	1,1	31	840.89				
13	1,2	32.7	907.26				
14	1,3	36.1	1041.32				
15	1,4	38.2	1124.86				
16	1,5	41.1	1240.98				
17	1,6	44.1	1361.86				
18	1,7	46.7	1467.14				

Tabelul 2: Sursa radioactivă ²²Na

Nr.	I(A)	B(mT)	E(keV)	N(imp)	$n' = \frac{N}{4}$	n = n' - f	σ_n
crt.					$n' = \frac{1}{t}$	n-n-j	
1	0	2.1	1.40				
2	0,1	4.6	19.58				
3	0,2	6.9	53.30				
4	0,3	9.3	102.89				
5	0,4	12.5	186.39				
6	0,5	14.5	246.07				
7	0,6	16.8	319.91				
8	0,7	19.6	415.47				
9	0,8	22.3	511.97				
10	0,9	24.8	604.17				
11	1,0	28.2	732.82				
12	1,1	31	840.89				
13	1,2	32.7	907.26				
14	1,3	36.1	1041.32				
15	1,4	38.2	1124.86				
16	1,5	41.1	1240.98				
17	1,6	44.1	1361.86				
18	1,7	46.7	1467.14				

Dispersia σ_n se calculeaza cu ajutorul formulei $\sigma_n = \sqrt{\frac{n}{t} + \frac{f}{t_f}}$ unde t este timpul necesar unei măsurători cu sursa de radiații (t = 60 s) iar t_f este timpul de măsurare pentru fondul de radiații ($t_f = 600$ s)

Exemplu rezultate experimentale:

 $E_{max1} = 2100 \text{ keV}$

 $E_{max2} = 1050 \text{ keV}$