1. Let
$$V = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) \mid a, b \in \mathbb{R} \right\}$$
, and let $W = \mathbb{C}$ considered as vector spaces over \mathbb{R} . Prove that $V \cong W$. = Span($\{a^b\}_{i}^{b}\}_{i}^{b}$ ($\{a^b\}_{i}^{b}\}_{i}^{b}$) \(\frac{2}{3}\) times

"E" means "isomorphic". How do you prove "\sun"? Find an isomorphism T.

T: $V \to W$ sends (\alpha \beta) to atbi

(\beta) a) to atbi

(\beta) \text{Cab} = \alpha - \beta i

(\beta) \text{Times Algebra Export}

Interesting Fact: T is not only linear!

Theresting Fact: T is not only linear.

is invertible. Bonus challenge: find the inverse of I - A. I-A: invertible (=> ker(I-A) = ?09. (= Transphism (in trans.) (Nul (Z-A))

(I-A)(Z+A+A++ --- -- An-1)= I-A=I.

2. Let F be a field, and let A be a matrix such that $A^n = 0$ for some n > 0. Prove that I - A

= 307

=> (for the specific n) 0.V=V. You, a moder expert, CAN just come up with: $(1-X)(1+X+X^2+X^3+X^4(...+X^N))=(-X^N)^{-1}$

the inverse of I-A.

 $=A \cdot V = V.$ $\Delta'' V = V$. for any N.

 $= A \cdot v = v$.

let cursider A27)= A.A.U $A'v = A \cdot A^2 \cdot V$

ker(Z-A) = 1 UEIRM: (Z-A)·U=0 { = \ ve(R": Av = v]

(b) T F Let F be a field. Then $M_{n\times m}(F)$ and $M_{n'\times m'}(F)$ are isomorphic if and only if n = n' and m = m'.

 $(a)(\Leftarrow): Eosy(ex. T=?)$

(=>): Those exists an isom. T: Fn Fm. Look at a basis!

(a) T F Let F be a field. Then F^n is isomorphic to F^m if and only if n = m.

T (basis vectors) becomes basis vectors

then
$$UT = \mathrm{id}_{V}$$
.

(d) T F If $T, S \in \mathcal{L}(V, W)$ are isomorphisms, then $T + S$ is also an isomorphism.

(e) T F If $A, B \in M_{n \times n}(F)$ are invertible and $AB = BA$, then $A^{-1}B^{-1} = B^{-1}A^{-1}$.

(C) $J_{TW} V = J_{TW} W \Rightarrow J_{TW} E$.

(e) $J_{TW} E = J_{TW} E$

 $T = I_{2x2}$, $S = -I_{2x2}$.

(c) T F If $T: V \to W$ and $U: W \to V$ are linear transformations such that $TU = \mathrm{id}_W$,