K-Nearest neighbors (kNN)

Sepal Length

Ejemplo 1: Hay los siguientes datos de flores del género Iris, donde cada flor está caracterizada por dos variables: <u>Sepal Length</u> y <u>Sepal Width</u>. Además, se conoce la especie de cada flor: **Setosa, Versicicolor** y **Virginica**.

El objetivo es predecir la especie de una nueva flor desconocida basándose en la similitud con las flores existentes en el conjunto de datos usando el algoritmo de *K-Nearest Neighbors* (*kNN*) para predecir la especie de la nueva flor.

Specie

k=1

k=3

Sepal Width

Nueva flor	5.9	2	2.8			Virginica	Vei	rsicicolor
Sepal Length	Sepal Wid	dth	Species		Distancia euclidiana $d(A,B) = \sqrt{(X_B - X_A)^2}$			Ranking
5.3	3.7		Setosa			$-5.3)^2 + (2.8 - 3.7)^2 = 1.0$		10
5.1	3.8		Setosa		1.2806			12
7.2	3.0		Virginica		1.3152			13
5.4	3.4		Setosa		0.7810			7
5.1	3.3		Setosa		0.9433			9
5.4	3.9		Setosa		1.2083			11
7.4	2.8		Virginica		1.5			15
6.1	2.8		Versicicolor		0.2			3
7.3	2.9		Virginica		1.4035			14
6.0	2.7		Versicicolor		0.1414			2
5.8	2.8		Virginica		0.1			1
6.3	2.3		Versio	cicolor		0.6403		6
5.1	2.5		Versicicolor		0.8544			8
6.3	2.5	2.5		Versicicolor		0.5		4
5.5	2.4		Versicicolor			0.5656		5

- a) Realiza el gráfico de dispersión de los datos obtenidos.
- b) Calcula la distancia euclidiana entre la nueva flor y cada flor del conjunto de datos y clasifícalas de menor a mayor distancia.
- c) ¿Cuál sería la especie de la nueva flor si k=1 o k=3? Razona la respuesta.

Cuando k=1, el algoritmo kNN asigna la especie de la flor más cercana a la nueva flor. En este caso, la distancia más corta corresponde a Virginica. Sin embargo, si k=3, el algoritmo considera los 3 vecinos más cercanos y se asigna la especie mayoritaria, en este caso, Versicicolor.

