Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Marcin Mikuła

Zadanie 1

Dany jest układ równań liniowych Ax=b. Elementy macierzy A są zadane wzorem

b)
$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{1}{|i-j|+m} & dla \ i \neq j \end{cases}$$

Gdzie m = 4, k = 5

Przyjmij wektor x jako dowolną n-elementową permutację ze zbioru $\{1, -1\}$ i oblicz wektor \mathbf{b} .

Metodą Jacobiego rozwiąż układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$ (przyjmując jako niewiadomą wektor \mathbf{x}), przyjmując kolejno kryterium stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

$$2. \quad \left\| Ax^{(i)} - b \right\| < \rho$$

Obliczenia wykonaj dla różnych rozmiarów układu n, dla różnych wektorów początkowych, a także różnych wartości ρ w kryteriach stopu. (Podaj, jak liczono normę.) Wyznacz liczbę iteracji oraz sprawdź różnicę w czasie obliczeń dla obu kryteriów stopu. Sprawdź dokładność obliczeń.

Zakres n wynosi 3-100, przyjęty wektor x składa się naprzemiennie z 1 oraz -1, x = [1, -1, 1, -1, ...].

Błąd obliczeń w podpisach oznacza różnicę miedzy wynikiem oczekiwanym a uzyskanym.

n	Precyzja						
	1e-2	1e-4	1e-5	1e-6	1e-10		
3	2.6248e-04	1.3399e-06	1.0038e-07	7.5696e-09	4.3253e-11		
5	1.0362e-03	2.6423e-06	3.6267e-07	4.9779e-08	1.3133e-10		
7	4.1653e-04	1.4957e-05	5.3720e-07	1.0181e-07	7.3870e-11		
9	8.4510e-04	1.0971e-05	6.0600e-07	1.4243e-07	1.1405e-10		
11	1.4082e-03	8.1020e-06	6.1456e-07	1.6926e-07	1.4762e-10		
13	2.0843e-03	1.9690e-05	1.9137e-06	1.8601e-07	1.8492e-10		
15	9.8383e-04	1.3911e-05	1.6542e-06	1.9670e-07	2.3650e-10		
17	1.3870e-03	1.0313e-05	1.4517e-06	2.0436e-07	3.1559e-10		
19	1.8552e-03	1.9787e-05	1.2977e-06	2.1104e-07	2.5461e-10		
21	2.3837e-03	1.4941e-05	2.7548e-06	2.1810e-07	2.4242e-10		
23	2.9677e-03	2.5926e-05	2.4231e-06	2.2648e-07	2.6669e-10		
25	1.7176e-03	2.0172e-05	2.1861e-06	2.3691e-07	3.3338e-10		
27	2.1350e-03	3.2726e-05	2.0195e-06	2.5003e-07	3.2349e-10		
29	2.5979e-03	2.6309e-05	1.9072e-06	2.6645e-07	3.7316e-10		
31	3.1048e-03	2.1896e-05	3.4158e-06	2.8686e-07	3.7178e-10		
33	2.0349e-03	3.3770e-05	3.2464e-06	3.1207e-07	3.4376e-10		
35	2.4386e-03	2.8925e-05	3.1502e-06	3.4309e-07	4.0033e-10		
37	2.8827e-03	2.5490e-05	3.1169e-06	2.2539e-07	3.6980e-10		
39	3.3671e-03	2.3057e-05	3.1407e-06	2.5989e-07	3.7173e-10		
41	2.4245e-03	3.4293e-05	3.2192e-06	3.0220e-07	4.2289e-10		
43	2.8423e-03	3.1735e-05	3.3534e-06	3.5434e-07	4.1330e-10		
45	3.2997e-03	3.0028e-05	3.5467e-06	2.7327e-07	4.5955e-10		
47	3.7972e-03	2.9007e-05	3.8058e-06	3.3263e-07	4.3940e-10		
49	2.9461e-03	2.8569e-05	2.8134e-06	2.7705e-07	4.4984e-10		
51	3.4030e-03	2.8654e-05	3.1596e-06	3.4841e-07	4.6470e-10		
53	3.9017e-03	2.9235e-05	3.5895e-06	3.1071e-07	4.3253e-11		
55	3.1862e-03	3.0312e-05	4.1229e-06	4.0214e-07	1.3133e-10		
57	3.6648e-03	3.1914e-05	3.4883e-06	3.8128e-07	7.3870e-11		
59	4.1882e-03	3.4089e-05	4.1544e-06	3.7480e-07	1.1405e-10		
61	3.5751e-03	3.6918e-05	3.7516e-06	3.8123e-07	1.4762e-10		
63	4.0971e-03	4.0508e-05	3.5165e-06	4.0051e-07	1.8492e-10		
65	3.6074e-03	3.4776e-05	3.4144e-06	4.3386e-07	2.3650e-10		
67	4.1432e-03	3.9618e-05	4.3784e-06	3.7883e-07	3.1559e-10		
69	3.7526e-03	3.6179e-05	3.5524e-06	4.3992e-07	2.5461e-10		
71	4.3174e-03	4.2624e-05	3.7941e-06	4.2080e-07	2.4242e-10		
73	4.0130e-03	4.1174e-05	4.1706e-06	4.2245e-07	2.6669e-10		
75	3.7973e-03	4.1064e-05	3.8701e-06	4.4408e-07	3.3338e-10		
77	4.4012e-03	4.2221e-05	3.7684e-06	4.0504e-07	3.2349e-10		
79	4.2597e-03	4.4692e-05	3.8418e-06	3.9351e-07	3.7316e-10		
81	4.1885e-03	4.1241e-05	4.0923e-06	4.0607e-07	3.7178e-10		
83	4.1812e-03	3.9867e-05	4.5460e-06	4.4391e-07	3.4376e-10		
85	4.2347e-03	4.0292e-05	4.5456e-06	4.4340e-07	4.0033e-10		
87	4.3488e-03	4.2493e-05	4.2005e-06	4.1522e-07	3.6980e-10		
89	4.5257e-03	4.6684e-05	4.1757e-06	4.2410e-07	3.7173e-10		
91	4.2383e-03	4.2105e-05	4.4523e-06	4.1828e-07	4.2289e-10		
93	4.5616e-03	4.5539e-05	4.5501e-06	4.5463e-07	4.1330e-10		
95	4.4880e-03	4.6903e-05	4.5580e-06	4.4293e-07	4.5955e-10		
97	4.5381e-03	4.7042e-05	4.5713e-06	4.4422e-07	4.3940e-10		
99	4.7113e-03	4.6928e-05	4.6836e-06	4.6745e-07	4.4984e-10		

Tabela 1. Błędy obliczeń dla 1 kryterium stopu.

n	Precyzja					
	1e-2	1e-4	1e-5	1e-6	1e-10	
3	2.6248e-04	1.8247e-05	1.3399e-06	1.0038e-07	4.3253e-11	
5	1.0362e-03	2.6423e-06	3.6267e-07	4.9779e-08	1.3133e-10	
7	4.1653e-04	1.4957e-05	5.3720e-07	1.0181e-07	7.3870e-11	
9	8.4510e-04	1.0971e-05	6.0600e-07	1.4243e-07	1.1405e-10	
11	1.4082e-03	8.1020e-06	6.1456e-07	4.6616e-08	5.9532e-11	
13	6.4979e-04	6.1385e-06	5.9663e-07	5.7990e-08	8.3920e-11	
15	9.8383e-04	1.3911e-05	5.7042e-07	6.7829e-08	1.1787e-10	
17	1.3870e-03	1.0313e-05	1.4517e-06	7.6676e-08	9.1454e-11	
19	7.4814e-04	7.9795e-06	1.2977e-06	8.5107e-08	8.4024e-11	
21	1.0235e-03	6.4155e-06	1.1829e-06	9.3649e-08	8.9469e-11	
23	1.3468e-03	1.1766e-05	1.0997e-06	1.0278e-07	1.0854e-10	
25	8.1888e-04	9.6174e-06	1.0423e-06	1.1295e-07	9.8560e-11	
27	1.0641e-03	8.1296e-06	1.0065e-06	1.2462e-07	1.0742e-10	
29	6.9945e-04	7.0836e-06	9.8962e-07	7.1738e-08	9.8691e-11	
31	8.9975e-04	1.1787e-05	9.8988e-07	8.3128e-08	1.1167e-10	
33	1.1330e-03	1.0470e-05	1.0065e-06	9.6758e-08	8.8423e-11	
35	8.0478e-04	9.5457e-06	1.0396e-06	1.1322e-07	9.2193e-11	
37	1.0081e-03	8.9134e-06	1.0900e-06	7.8815e-08	9.8843e-11	
39	1.2427e-03	8.5097e-06	1.1591e-06	9.5919e-08	9.3731e-11	
41	9.4110e-04	8.2934e-06	7.7853e-07	1.1730e-07	1.0405e-10	
43	1.1568e-03	8.2396e-06	8.7065e-07	9.1998e-08	1.0234e-10	
45	9.1591e-04	8.3351e-06	9.8448e-07	1.1628e-07	1.0281e-10	
47	1.1226e-03	8.5757e-06	1.1251e-06	9.8339e-08	9.4457e-11	
49	9.2450e-04	8.9653e-06	8.8286e-07	8.6940e-08	9.8351e-11	
51	1.1300e-03	9.5150e-06	1.0492e-06	1.1570e-07	9.9987e-11	
53	9.6385e-04	1.0244e-05	8.8672e-07	1.0887e-07	4.3253e-11	
55	8.4267e-04	1.1179e-05	1.0904e-06	1.0635e-07	1.3133e-10	
57	1.0344e-03	9.0079e-06	9.8459e-07	1.0762e-07	7.3870e-11	
59	9.3129e-04	1.0239e-05	9.2377e-07	1.1258e-07	1.1405e-10	
61	1.1397e-03	8.8430e-06	8.9862e-07	9.1317e-08	5.9532e-11	
63	1.0539e-03	1.0420e-05	9.0453e-07	1.0302e-07	8.3920e-11	
65	9.9362e-04	9.5785e-06	9.4045e-07	9.2336e-08	1.1787e-10	
67	9.5416e-04	9.1237e-06	1.0083e-06	1.1143e-07	9.1454e-11	
69	9.3234e-04	8.9886e-06	1.1131e-06	1.0930e-07	8.4024e-11	
71	9.2619e-04	9.1438e-06	1.0141e-06	9.0272e-08	8.9469e-11	
73	9.3467e-04	9.5898e-06	9.7137e-07	9.8392e-08	1.0854e-10	
75	9.5746e-04	1.0354e-05	9.7583e-07	9.1967e-08	9.8560e-11	
77	9.9494e-04	9.5447e-06	1.0259e-06	9.1564e-08	1.0742e-10	
79	1.0481e-03	9.2286e-06	9.4528e-07	9.6824e-08	9.8691e-11	
81	9.4850e-04	9.3392e-06	9.2671e-07	9.1956e-08	1.1167e-10	
83	1.0354e-03	9.8722e-06	9.6399e-07	9.4130e-08	8.8423e-11	
85	9.8872e-04	9.4074e-06	1.0613e-06	1.0352e-07	9.2193e-11	
87	9.7288e-04	9.5063e-06	9.3970e-07	1.0644e-07	9.8843e-11	
89	9.8517e-04	1.0162e-05	1.0321e-06	1.0483e-07	9.3731e-11	
91	1.0255e-03	1.0188e-05	9.5711e-07	1.0121e-07	1.0405e-10	
93	9.8221e-04	9.8057e-06	9.7974e-07	9.7892e-08	1.0234e-10	
95	9.8122e-04	1.0255e-05	9.9653e-07	9.6841e-08	1.0281e-10	
97	1.0207e-03	9.6389e-06	1.0282e-06	9.9917e-08	9.4457e-11	
99	1.0137e-03	1.0097e-05	1.0077e-06	1.0058e-07	9.8351e-11	

Tabela 2. Błędy obliczeń dla 2 kryterium stopu.

Z przedstawionych tabelek 1 i 2 wynika, że błąd rozwiązania maleje wraz z malejącą wartością ho niezależnie od rozmiaru macierzy. Rozmiar macierzy wydaję się nie mieć dużego znaczenia dla obliczanego rozwiązania. Wyniki dla kryterium 2 są nieco bardziej dokładne niż dla kryterium 1.

n	Precyzja						
	1e-2	1e-4	1e-5	1e-6	1e-10		
3	3	5	6	7	9		
7	4	6	8	9	13		
11	4	8	10	11	17		
15	5	9	11	13	20		
19	5	10	13	15	23		
23	5	11	14	17	26		
27	6	12	16	19	29		
31	6	14	17	21	32		
35	7	15	19	23	36		
39	7	17	21	26	40		
43	8	18	23	28	44		
47	8	20	25	31	48		
51	9	22	28	34	53		
55	10	24	30	37	58		
59	10	26	33	41	64		
63	11	28	37	45	71		
67	12	31	40	50	78		
71	13	34	45	55	87		
75	15	38	50	61	97		
79	16	42	56	69	108		
83	18	48	62	77	122		
87	20	54	71	88	138		
91	23	62	81	101	159		
95	26	71	94	117	185		
99	30	84	111	138	219		

Tabela 3. Liczba iteracji dla 1 kryterium stopu.

n	Precyzja						
	1e-2	1e-4	1e-5	1e-6	1e-10		
3	3	4	5	6	9		
7	4	6	8	9	13		
11	4	8	10	12	17		
15	5	9	12	14	20		
19	6	11	13	16	24		
23	6	12	15	18	27		
27	7	14	17	20	30		
31	8	15	19	23	34		
35	9	17	21	25	38		
39	9	19	23	28	42		
43	10	21	26	31	46		
47	11	23	28	34	51		
51	12	25	31	37	56		
55	14	27	34	41	62		
59	15	30	38	45	68		
63	16	33	42	50	76		
67	18	37	46	55	84		
71	20	41	51	62	93		
75	22	45	57	69	104		
79	24	51	64	77	116		
83	27	57	72	87	131		
87	31	65	82	98	149		
91	35	74	94	113	172		
95	41	86	109	132	200		
99	48	102	129	156	237		

Tabela 4. Liczba iteracji dla 2 kryterium stopu.

Z tabelek 3 i 4 wywnioskować można, że kryterium 2 jest bardziej rygorystyczne i zwraca dokładniejsze wyniki, co ma przełożenie na większą liczbę iteracji. Można również zauważyć, że wraz z dokładnością wzrasta liczba iteracji.

n Precyzja					
	1e-2	1e-4	1e-5	1e-6	1e-10
3	0.0000469	0.0000313	0.0000313	0.0000312	0.0001270
7	0.0000288	0.0000384	0.0000303	0.0000323	0.0000729
11	0.0000202	0.0000303	0.0000304	0.0000303	0.0000671
15	0.0000223	0.0000323	0.0000304	0.0000303	0.0000723
19	0.0000283	0.0000325	0.0000304	0.0000384	0.0000816
23	0.0000222	0.0000404	0.0000303	0.0000303	0.0000864
27	0.0000303	0.0000304	0.0000384	0.0000324	0.0000937
31	0.0000282	0.0000303	0.0000304	0.0000405	0.0000857
35	0.0000203	0.0000303	0.0000304	0.0000405	0.0000804
39	0.0000304	0.0000303	0.0000384	0.0000406	0.0000768
43	0.0000224	0.0000303	0.0000384	0.0000405	0.0000789
47	0.0000203	0.0000407	0.0000304	0.0000404	0.0000744
51	0.0000222	0.0000384	0.0000324	0.0000505	0.0000838
55	0.0000302	0.0000404	0.0000405	0.0000505	0.0001248
59	0.0000304	0.0000469	0.0000312	0.0000534	0.0001069
63	0.0000312	0.0000405	0.0000405	0.0000505	0.0000894
67	0.0000303	0.0000425	0.0000483	0.0000505	0.0000766
71	0.0000323	0.0000486	0.0000404	0.0000505	0.0000915
75	0.0000324	0.0000404	0.0000404	0.0000505	0.0000950
79	0.0000303	0.0000425	0.0000405	0.0000506	0.0000854
83	0.0000404	0.0000405	0.0000425	0.0000505	0.0001332
87	0.0000407	0.0000506	0.0000405	0.0000586	0.0000998
91	0.0000426	0.0000485	0.0000405	0.0000608	0.0001006
95	0.0000404	0.0000485	0.0000425	0.0000606	0.0000992
99	0.0002811	0.0004011	0.0004011	0.0005170	0.0011147

Tabela 5. Pomiary czasów dla1 kryterium stopu.

n		Precyzja						
	1e-2	1e-4	1e-5	1e-6	1e-10			
3	0.0000378	0.0000313	0.0000424	0.0000324	0.0001680			
7	0.0000303	0.0000431	0.0000364	0.0000324	0.0000742			
11	0.0000304	0.0000405	0.0000403	0.0000404	0.0000659			
15	0.0000304	0.0000405	0.0000404	0.0000478	0.0000668			
19	0.0000313	0.0000403	0.0000323	0.0000503	0.0000925			
23	0.0000302	0.0000404	0.0000405	0.0000486	0.0001347			
27	0.0000303	0.0000424	0.0000402	0.0000484	0.0000891			
31	0.0000322	0.0000405	0.0000385	0.0000404	0.0000923			
35	0.0000303	0.0000404	0.0000405	0.0000405	0.0000741			
39	0.0000383	0.0000323	0.0000324	0.0000506	0.0001006			
43	0.0000305	0.0000404	0.0000384	0.0000525	0.0000835			
47	0.0000303	0.0000403	0.0000403	0.0000536	0.0000908			
51	0.0000264	0.0000405	0.0000405	0.0000505	0.0000841			
55	0.0000405	0.0000406	0.0000404	0.0000505	0.0001004			
59	0.0000324	0.0000486	0.0000406	0.0000506	0.0000988			
63	0.0000324	0.0000506	0.0000405	0.0000607	0.0001258			
67	0.0000304	0.0000404	0.0000425	0.0000506	0.0001083			
71	0.0000324	0.0000405	0.0000506	0.0000587	0.0001114			
75	0.0000324	0.0000485	0.0000405	0.0000652	0.0001045			
79	0.0000359	0.0000506	0.0000485	0.0000625	0.0001090			
83	0.0000403	0.0000506	0.0000584	0.0000625	0.0000980			
87	0.0000484	0.0000603	0.0000584	0.0000626	0.0001260			
91	0.0000404	0.0000526	0.0000505	0.0000627	0.0001305			
95	0.0000405	0.0000505	0.0000505	0.0000708	0.0001576			
99	0.0004970	0.0007090	0.0007160	0.0009492	0.0020947			

Tabela 6. Pomiary czasów dla 2 kryterium stopu.

Na podstawie tabel 5 i 6 łatwo zauważyć i wywnioskować, że czas pomiarów dla 2 kryterium stopu jest większy niż dla kryterium 1 co ma oczywisty związek z liczbą iteracji.

X_start = np.array([random.randint(-10e10, 10e10) for _ in range(n)])

n	Precyzja						
	1e-2	1e-4	1e-5	1e-6	1e-10		
3	12	14	15	15	19		
7	19	21	22	25	29		
11	25	28	26	32	38		
15	28	32	36	39	43		
19	35	40	42	45	53		
23	41	46	49	52	59		
27	45	49	55	60	68		
31	50	58	63	68	76		
35	57	63	70	71	82		
39	64	71	77	82	92		
43	72	78	85	91	103		
47	79	90	96	94	114		
51	87	99	103	108	125		
55	96	103	114	122	139		
59	106	117	123	137	151		
63	116	131	142	154	156		
67	133	143	145	171	185		
71	139	168	165	171	207		
75	156	182	195	209	227		
79	177	179	219	234	261		
83	201	234	248	266	294		
87	227	270	282	299	340		
91	270	295	316	349	392		
95	309	358	381	408	442		
99	381	411	444	466	543		

Tabela 7. Liczba iteracji dla 1 kryterium dla losowego wektora początkowego.

Z przeprowadzonych testów oraz analizy tabelki 7 i 3 wynika, że liczba iteracji zwiększa się wraz z rozszerzaniem przedziału z którego losowane są wartości wektora początkowego.

Zadanie 2

Dowolną metodą znajdź promień spektralny **macierzy iteracji** (dla różnych rozmiarów układu – takich, dla których znajdowane były rozwiązania układu). Sprawdź, czy spełnione są założenia o zbieżności metody dla zadanego układu.

Opisz metodę znajdowania promienia spektralnego.

Promień spektralny to wartość maksymalna spośród wartości bezwzględnych wartości własnych macierzy:

$$\rho(A) = \max\{|\lambda_1, ..., \lambda_n|\}$$

Wartościami własnymi macierzy są pierwiastki wielomianu charakterystycznego tej macierzy:

$$W_A(\lambda) = \det A - \lambda I$$

Gdzie I jest macierzą jednostkową. Do policzenia wartości własnych wielomianu użyto funkcji numpy.linalg.eigvals.

Niech $u=x^{(t)}-x$ gdzie x jest wektorem rzeczywistych rozwiązań układu równań. Wówczas macierz M taką, że:

$$u^{(t)} = M^t \cdot u^{(0)}$$

nazywa się macierzą iteracji. Macierz iteracji dla metody Jakobiego ma postać:

$$M = D^{-1}(L+U)$$

Gdzie (niech A będzie macierzą układu równań)

$$A = D + L + U$$

D jest macierzą diagonalną, z diagonalnych elementów macierzy A, L – poddiagonalną,

U – naddiagonalną. Mając te informacje, można obliczyć promienie spektralne dla macierzy iteracji.

n	promień
3	0.07564
7	0.18952
11	0.27541
15	0.34483
19	0.40327
23	0.45382
27	0.49841
31	0.53832
35	0.57447
39	0.60751
43	0.63795
47	0.66617
51	0.69248
55	0.71713
59	0.74031
63	0.76219
67	0.78291
71	0.80260
75	0.82134
79	0.83923
83	0.85634
87	0.87273
91	0.88847
95	0.90361
99	0.91819
103	0.93225
107	0.94582
111	0.95894
115	0.97165
119	0.98395
123	0.99589
127	1.00747

Tabela 8. Promienie spektralne.

Warunkiem zbieżności metody iteracyjnej jest:

$$\rho(M) < 1$$

Dla wszystkich wcześniej badanych wartości n promień spektralny macierzy iteracji jest mniejszy od jedynki, dla nich metoda jest zbieżna. Wartość promienia przekracza 1 dopiero przy n = 127, dla takiego n nie przeprowadzono badań układu.