23

Mahalanobis Distance

马氏距离

一种和椭圆有关、考虑数据分布的距离度量

耐心,坚持!今天的苦,就是明天的甜。

Be patient and tough; someday this pain will be useful to you.

—— 奥维德 (Ovid) | 古罗马诗人 | 43 BC ~ 17/18 AD

- numpy.linalg.eig() 特征值分解
- ◀ scipy.stats.distributions.chi2.cdf() 卡方分布的 CDF
- ✓ scipy.stats.distributions.chi2.ppf() 卡方分布的百分点函数 PPF
- ✓ seaborn.pairplot() 成对散点图
- ✓ seaborn.scatterplot() 绘制散点图
- ◀ sklearn.covariance.EmpiricalCovariance() 估算协方差的对象,可以用来计算马氏距离

卡方分布

23.1 马氏距离: 考虑数据分布的距离度量

本书最后三章可谓"椭圆三部曲", 我们将介绍马氏距离、线性回归、主成分分析这三个和椭 圆直接有关的话题。

"鸢尾花书"的读者对马氏距离应该完全不陌生,本章将系统地讲解马氏距离及其应用。

定义

马氏距离 (Mahalanobis distance, Mahal distance),也称马哈距离,具体定义如下:

$$d = \sqrt{(x - \mu)^{\mathsf{T}} \, \Sigma^{-1} (x - \mu)} \tag{1}$$

其中, Σ 为样本数据X方差协方差矩阵, μ 为X的质心。注意,马氏距离的单位为标准差。

从几何来讲. d 为定值时. (1) 为质心位于 μ 的椭圆、椭球或超椭球。

平移 → 旋转 → 缩放

对 Σ 谱分解得到:

$$\Sigma = V \Lambda V^{\mathrm{T}} \tag{2}$$

利用 (2) 获得 Σ^{-1} 的特征值分解:

$$\Sigma^{-1} = V \Lambda^{-1} V^{\mathrm{T}} \tag{3}$$

将(3)代入(1)整理得到:

$$d = \left\| \mathbf{\Lambda}^{\frac{-1}{2}} \mathbf{V}^{\mathrm{T}} \begin{pmatrix} \mathbf{x} - \boldsymbol{\mu} \\ \text{Scale Rotate} \end{pmatrix} \right\|$$
(4)

其中, μ 完成**中心化** (centralize), V矩阵完成**旋转** (rotate), $\Lambda^{\frac{-1}{2}}$ 矩阵完成**缩放** (scale)。整个几 何变换过程如图1所示。观察上式,大家已经发现马氏距离本身也是个范数。

对这部分内容感到陌生的读者,请参考本书第 11 章。大家如果忘记特征值分解、谱分 解相关内容,请回顾《矩阵力量》第13、14章。

图 1. 几何变换: 平移 → 旋转 → 缩放

马氏距离将协方差矩阵 Σ 纳入距离度量计算。马氏距离相当于对欧氏距离的一种修正,马氏距离完成数据**正交化** (orthogonalization),解决特征之间相关性问题。同时,马氏距离内含**标准化** (standardization),解决了特征之间尺度和单位不一致问题。

单特征

特别地, 当特征数 D=1 时:

$$\mathbf{x} = [x], \quad \boldsymbol{\mu} = [\boldsymbol{\mu}], \quad \boldsymbol{\Sigma} = [\boldsymbol{\sigma}^2]$$
 (5)

代入(1)得到:

$$d = \sqrt{\left(x - \mu\right) \frac{1}{\sigma^2} \left(x - \mu\right)} = \left| \frac{x - \mu}{\sigma} \right| \tag{6}$$

大家是不是觉得眼前一亮,这正是 Z 分数的绝对值,d 的单位正是标准差。如图 2 (a) 所示,比如 d=3,意味着马氏距离为"3 个标准差"。

当特征数 D=2 时,如图 2 (b) 所示,马氏距离的几何形态是同心椭圆。当特征数 D=3 时,如图 2 (c) 所示,马氏距离的几何形态是同心椭球。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 2. 马氏距离的几何形态

本章后文先比较三种常见距离: 1) 欧氏距离; 2) 标准化欧氏距离; 3) 欧氏距离。

23.2 欧氏距离: 最基本的距离

欧几里得距离 (Euclidean distance),也称欧氏距离,是最"自然"的距离,是多维空间中两个点 之间的绝对距离度量。

欧氏距离

x 和质心 μ 的欧氏距离定义为:

$$d = \sqrt{\left(x - \mu\right)^{\mathsf{T}} \left(x - \mu\right)} = \|x - \mu\| \tag{7}$$

欧氏距离本质上是 L^2 范数。

以鸢尾花花萼长度和花瓣长度两个特征数据为例,数据质心所在位置为:

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} 5.843 \\ 3.758 \end{bmatrix} \tag{8}$$

注意,上式的两个特征单位为厘米。

如图 3 所示,平面上任意一点 x 到质心 μ 的欧氏距离的解析式为:

$$d = \sqrt{(x - \mu)^{\mathrm{T}}(x - \mu)} = \sqrt{\left[\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} - \begin{bmatrix} 5.843 \\ 3.758 \end{bmatrix}\right]^{\mathrm{T}} \left(\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} - \begin{bmatrix} 5.843 \\ 3.758 \end{bmatrix}\right)}$$

$$= \sqrt{(x_1 - 5.843)^2 + (x_3 - 3.758)^2}$$
(9)

图 3 所示的三个同心圆距离质心 μ 距离为 1 cm、2 cm、3 cm。此外,请大家注意图 4 中的网 格,这个网格每个格子"方方正正",边长都是1cm。

图 3. 花萼长度、花瓣长度平面上的欧氏距离等高线和网格

23.3 标准化欧氏距离:两个视角

第一视角:正椭圆

标准化欧氏距离 (standardized Euclidean distance) 定义如下:

$$d = \sqrt{\left(x - \boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{D}^{-1} \boldsymbol{D}^{-1} \left(x - \boldsymbol{\mu}\right)}$$
 (10)

其中, **D** 为对角方阵, 对角线元素为标准差, 运算如下:

$$\boldsymbol{D} = \operatorname{diag}(\operatorname{diag}(\boldsymbol{\Sigma}))^{\frac{1}{2}} = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_D \end{bmatrix}$$
(11)

特别地, 当 D = 2 时, 标准化欧氏距离为:

$$d = \sqrt{\frac{\left(x_1 - \mu_1\right)^2}{\sigma_1^2} + \frac{\left(x_2 - \mu_2\right)^2}{\sigma_2^2}} = \sqrt{z_1^2 + z_2^2}$$
 (12)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

其中, z_1 和 z_2 是两个特征的 Z分数。可以说, z_1 的单位是 σ_1 , z_2 的单位是 σ_2 。

如图 3 所示, x_1x_3 平面上任意一点 x 到质心 μ 的标准化欧氏距离为:

$$d = \sqrt{\frac{\left(x_1 - 5.843\right)^2}{0.685} + \frac{\left(x_3 - 3.758\right)^2}{3.116}}$$
 (13)

上式中,鸢尾花花萼长度数据的方差为 $0.685~{\rm cm}^2$,标准差 σ_1 为 $0.827~{\rm cm}$ 。花瓣长度数据的方差为 $3.116~{\rm cm}^2$,标准差 σ_3 为 $1.765~{\rm cm}$ 。

图 4 所示为在花萼长度、花瓣长度平面上标准化欧氏距离为 1、2、3 的三个正椭圆。1、2、3 的单位可以理解为标准差。

大家注意图 4 中网格,网格的格子为矩形。矩形的宽度为 $\sigma_1 = 0.827$ cm,矩形的长度为 $\sigma_3 = 1.765$ cm。

图 4. 花萼长度、花瓣长度平面上的标准化欧氏距离和网格

第二视角:正圆

先计算花萼长度、花瓣长度的Z分数 z_1 、 z_3 :

$$z_1 = \frac{x_1 - 5.843}{0.827}, \quad z_3 = \frac{x_3 - 3.758}{1.765}$$
 (14)

几何视角,上式经过了中心化、缩放两步。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

然后再计算标准化欧氏距离:

$$d = \sqrt{z_1^2 + z_3^2} \tag{15}$$

图 5 所示花萼长度 z 分数、花瓣长度 z 分数平面上的标准化欧氏距离等高线。不难发现,在这个平面上,等高线为正圆,圆心位于原点。

图 5 中网格为正方形,这是因为数据已经标准化。

图 5. 花萼长度 z 分数、花瓣长度 z 分数平面上的标准化欧氏距离

23.4 马氏距离: 两个视角

旋转椭圆

鸢尾花花萼长度、花瓣长度协方差矩阵 Σ 为:

$$\Sigma = \begin{bmatrix} 0.685 & 1.274 \\ 1.274 & 3.116 \end{bmatrix} \tag{16}$$

协方差 Σ 的逆为:

$$\Sigma^{-1} = \begin{bmatrix} 6.075 & -2.484 \\ -2.484 & 1.336 \end{bmatrix}$$
 (17)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

代入(1), 得到马氏距离的解析式:

$$d = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \begin{bmatrix} 6.075 & -2.484 \\ -2.484 & 1.336 \end{bmatrix} (\mathbf{x} - \boldsymbol{\mu})}$$

$$= \sqrt{(\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} - \begin{bmatrix} 5.843 \\ 3.758 \end{bmatrix})^{\mathrm{T}} \begin{bmatrix} 6.075 & -2.484 \\ -2.484 & 1.336 \end{bmatrix} (\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} - \begin{bmatrix} 5.843 \\ 3.758 \end{bmatrix})}$$

$$= \sqrt{6.08x_1^2 - 4.97x_1x_3 + 1.34x_3^2 - 52.32x_1 + 18.99x_3 + 117.21}$$
(18)

图 6 中三个椭圆分别代表马氏距离为 1、2、3。这个旋转椭圆的长轴就是第 25 章要介绍的第一主成分 (first principal component) 方向,而旋转椭圆的短轴就是第二主成分 (second principal component) 方向。

图 6. 花萼长度、花瓣长度平面上的马氏距离等高线和网格

对协方差矩阵特征值分解得到的特征值方阵为:

$$\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 3.661 \\ 0.140 \end{bmatrix}$$
(19)

两个特征值实际上就是数据投影在第一、第二主成分方向上的结果的方差,也叫主成分方差。上式的单位也都是平方厘米 cm²。

而这两个特征值的平方根就是主成分标准差:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\sqrt{\lambda_1} = 1.913 \text{ cm}, \quad \sqrt{\lambda_2} = 0.374 \text{ cm}$$
 (20)

它俩分别是旋转椭圆的半长轴、半短轴长度。

如图 6 所示,图中的网格就是度量马氏距离的坐标系。网格矩形倾斜角度和主成分方向相同。矩形的长度为 $\sqrt{\lambda_1}$,宽度为 $\sqrt{\lambda_2}$ 。

第二视角:正圆

令:

$$z = \Lambda^{\frac{-1}{2}} V^{\mathrm{T}} \begin{pmatrix} x - \mu \\ \text{Centralize} \end{pmatrix}$$
 (21)

将上式代入(1), 得到马氏距离为z的 L^2 范数:

$$d = \sqrt{z^{\mathsf{T}} z} = \|z\| \tag{22}$$

如图7所示,在第一、第二主成分平面上,马氏距离为正圆。

图 7. 第一、第二主成分平面上马氏距离等高线和网格

Bk5_Ch23_01.py 绘制图 3、图 4、图 6。

成对特征图

马氏距离椭圆也可以画在成对特征图上。图8和图9分别展示考虑不考虑标签和考虑标签的马 氏距离椭圆。这些图像可以帮助我们分析理解数据,比如解读相关性、发现离群值等。

《数据有道》一册将专门讲解如何发现离群值。

图 8. 成对特征图上绘制马氏距离等高线,不考虑标签

图 9. 成对特征图上绘制马氏距离等高线, 考虑标签

Bk5_Ch23_02.py 绘制图 8 和图 9。

23.5 马氏距离和卡方分布

本书第 9 章介绍过一元高斯分布的"68-95-99.7 法则"。这个法则具体是指,如果数据近似服从一元高斯分布 $N(\mu,\sigma)$,则约 68.3%、95.4%和 99.7%的数据分布在距均值 (μ) 1 个 $(\mu \pm \sigma)$ 、2 个 $(\mu \pm 2\sigma)$ 和 3 个 $(\mu \pm 3\sigma)$ 正负标准差范围之内。

而 68.3%、95.4%和 99.7%这三个数实际上卡方分布直接相关。当 D=1 时, X_1 服从正态分布 $N(\mu_1, \sigma_1)$,经过标准化得到的随机变量 Z_1 则服从标准正态分布:

$$Z_{1} = \frac{X_{1} - \mu_{1}}{\sigma_{1}} \sim N(0,1) \tag{23}$$

也就是说, Z_1 的平方服从自由度为 1 的卡方分布:

$$Z_1^2 \sim \chi_{(df=1)}^2 \tag{24}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

lack 注意. 实际上 Z_1 的平方再开方,即 Z_1 的绝对值,就是马氏距离。

D=2 时,马氏距离平方 d^2 服从 df=2 的卡方分布:

$$d^2 \sim \chi^2_{(df=2)} \tag{25}$$

D维马氏距离的平方则服从自由度为 D的卡方分布:

$$d^{2} = (\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \sim \chi_{(\mathrm{df} = D)}^{2}$$
(26)

也就是说,距离为 d 的马氏距离超椭圆围成的几何图形内部的概率 α 可以用卡方分布 CDF 查表获得。

比如, SciPy 中卡方分布的对象为 scipy.stats.distributions.chi2, 计算 D=2, 马氏距离 d=3 条件下, 马氏距离椭圆围成的图形的概率 α 为 scipy.stats.distributions.chi2.cdf($d^2=9$, df = 2)。

这实际上也回答了本书第10章的问题,具体如图10所示。请大家查表回答这个问题。

图 10. 求阴影区域对应的概率,来自本书第 10 章

相反,如果给定概率值 α 和自由度,可以用卡方分布的百分点函数 PPF,即 CDF 的逆函数 (inverse CDF),反求马氏距离的平方 d^2 。这个值开方就是马氏距离 d。

比如,给定概率值 0.9,自由度为 2,利用 scipy.stats.distributions.chi2.ppf(0.9, df=2) 可以求得马氏距离的平方值 d^2 ,开方就是马氏距离 d。

如图 11 (a) 所示,自由度为 2,给定一系列概率值 ($0.90 \sim 0.99$),利用卡方分布的百分点函数 PPF,我们便获得一系列马氏距离椭圆。图 11 (b) 对照马氏距离取值为 $1 \sim 5$ 。

这些椭圆中,马氏距离 3 几乎对应 99%这个概率值。也就是说,如果二元随机数近似服从二元高斯分布,约有 99%的随机数落在马氏距离为 3 的椭圆内。

用卡方分布将马氏距离转换为概率时,有些文献错误地将自由度给定为 D-1,即特征数 D 减 1。下面这篇文章详尽地解释如何正确设定自由度,建议大家参考。

https://peerj.com/articles/6678/

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 11 特征数 D=2 时,概率值 α 和马氏距离椭圆位置

Bk5_Ch23_03.py 绘制图 11。

图 12 所示为马氏距离 d、自由度 df、概率值 α 三者关系曲线。

图 12 马氏距离 d、自由度 df、概率值 α 三者关系

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

为了方便查表,大家可以参考图 13 和图 14。图 13 中,给定马氏距离 d、自由度 df,查表得到 α 。这张表中,我们可以看到一元高斯分布的 68-95-99.7 法则。

而自由度 df = 2 时,这个法则变为马氏距离为 1、2、3 的椭圆对应 39%、86%、98.9%,我们也可以管它叫 39-86-98.9 法则。

图 14 中	给定概率值 α	白由度df	查表得到马氏距离 d。
S 17 T.		□ □ /▽ u1.	

		Mahal distance, d												
-		1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Degree of freedom, df	1	0.6827	0.7887	0.8664	0.9199	0.9545	0.9756	0.9876	0.9940	0.9973	0.9988	0.9995	0.9998	0.9999
	2	0.3935	0.5422	0.6753	0.7837	0.8647	0.9204	0.9561	0.9772	0.9889	0.9949	0.9978	0.9991	0.9997
	3	0.1987	0.3321	0.4778	0.6179	0.7385	0.8327	0.8999	0.9440	0.9707	0.9857	0.9934	0.9972	0.9989
	4	0.0902	0.1845	0.3101	0.4526	0.5940	0.7191	0.8188	0.8910	0.9389	0.9681	0.9844	0.9929	0.9970
	5	0.0374	0.0943	0.1864	0.3096	0.4506	0.5917	0.7174	0.8179	0.8909	0.9392	0.9685	0.9848	0.9932
	6	0.0144	0.0448	0.1047	0.1990	0.3233	0.4642	0.6042	0.7281	0.8264	0.8971	0.9434	0.9711	0.9862

图 13. 给定马氏距离 d、自由度 df,查表得到概率值 α

		Probability α that the random value will fall inside the ellipsoid												
		0.9	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	0.993	0.996	0.999
Degree of freedom, df	1	1.6449	1.6954	1.7507	1.8119	1.8808	1.9600	2.0537	2.1701	2.3263	2.5758	2.6968	2.8782	3.2905
	2	2.1460	2.1945	2.2475	2.3062	2.3721	2.4477	2.5373	2.6482	2.7971	3.0349	3.1502	3.3231	3.7169
	3	2.5003	2.5478	2.5997	2.6571	2.7216	2.7955	2.8829	2.9912	3.1365	3.3682	3.4806	3.6492	4.0331
	4	2.7892	2.8361	2.8873	2.9439	3.0074	3.0802	3.1663	3.2729	3.4158	3.6437	3.7542	3.9199	4.2973
	5	3.0391	3.0856	3.1363	3.1923	3.2552	3.3272	3.4124	3.5178	3.6590	3.8841	3.9932	4.1568	4.5293
	6	3.2626	3.3088	3.3591	3.4147	3.4770	3.5485	3.6329	3.7373	3.8773	4.1002	4.2083	4.3702	4.7390

图 14. 给定概率值 α 、自由度 df ,查表得到马氏距离 d

Bk5_Ch23_04.py 绘制图 12。

马氏距离是一种基于统计学的距离度量方法,用于衡量两个样本之间的相似度或距离。马氏 距离考虑了各个特征之间的相关性,相比于欧式距离或曼哈顿距离等传统距离度量方法,更适合 用于高维数据集合。马氏距离被广泛应用于分类、聚类、异常检测等领域,特别是在高维数据集合的分析和处理中。由于它考虑了各个特征之间的相关性,因此在某些情况下比传统距离度量方 法更为有效和准确。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

《统计至简》一册中椭圆无处不在,希望大家日后看到椭圆,就能想到协方差矩阵、多元高斯分布、相关性、旋转、缩放、特征值分解、置信区间、离群值、马氏距离、线性回归、主成分分析等等内容。

更能"看到"日月所属、天体运转、星辰大海。