estion 1	$\ldots \ldots \left(oldsymbol{\Sigma} = oldsymbol{13} ight)$
(a) What is thresholding?	(2 pt
(b) Name two use-cases of thresholding.	(2 pt
(c) Describe Otsu's thresholding algorithm.	(4 pt

 $\overline{\text{CV WS 2015/2016}}$ Page 1 of 10

(d) You have used a thresholding algorithm and obtained the following image:

i. We want to clean up the image using morphological operators. Explain how the (3 pts) morphological operators work.

ii. Which morphological operator(s) would you use on this image and why? Remember: Foreground are the black cells.

CV WS 2015/2016 Page 2 of 10

(a) List the steps of the k-Means algorithm.

(4 pts)

(b) Properties of k-Means (3 pts)

its objective function?

Is the problem of finding the optimal solution NP-complete? \bigcirc Yes \bigcirc No

(c) Sketch the (approximate) cluster boundaries and their means k-Means would give for (4 pts) the following dataset for k=2 (left) and k=3 (right). The circled points are the initial means.

Please use the following graphs if you want to correct yourself.

CV WS 2015/2016 Page 3 of 10

Name: Matr.-No.:

(d) List one advantage and two disadvantages of k-Means.

(3 pts)

(e) Describe in detail how k-Means can be used for image segmentation.

(2 pts)

CV WS 2015/2016 Page 4 of 10

Question $3 \ldots (\Sigma = 12)$

(a) Please fill in the following Matlab code fragment to complete the Hessian detector. (4 pts) (Pseudo-code is sufficient, as long it is unambiguously clear what is meant.)

```
1 function [px, py] = computeHessian(filename, sigma, thresh)
2
     % Preprocessing
    Ι
                       = loadImage(filename);
5
                       = gaussianfilter(I, sigma); % Gaussian filter
6
    [Ix, Iy] = gaussderiv(I, sigma); % first derivatives
[Ixx, Ixy, Iyy] = gaussderiv2(I, sigma); % second derivatives
10
     % Compute Hessian score for each pixel
11
12
     [height, width] = size(I);
13
    score = zeros(height, width);
14
    for y = 1:height
15
      for x = 1:width
16
         % Compute Hessian score for pixel I(y, x) and store it in score(y,
17
```

(b) The above code is still not fully correct. There are 2 steps missing. Please point them (2 pts) out (A verbal explanation is sufficient).

CV WS 2015/2016 Page 5 of 10

(c)

erties of Hessian keypoints	
) No
he Hessian detector translation-invariant? Yes) No
can Harris be extended to detect key points with arbitrary scale autor	_

 $\overline{ ext{CV WS } 2015/2016}$ Page 6 of 10

1. \	What is the input and what is the output of this algorithm?	(2
ii. I	Briefly explain the steps of the Adaboost $training$ algorithm (no formulas required).	(3
b) Whic	ch property has to be fulfilled by the weak classifiers?	(1
(c) How	is a test point classified? Give the equation.	(2
(C) 110W	is a vest point classified. Give the equation.	(4

 $\overline{ ext{CV WS } 2015/2016}$ Page 7 of 10

(d) What are the weak classifiers that are used for Viola-Jones face detection? (You masketch to support your answer.)	y (2 pts)
(e) Integral Images	
i. What is an integral image?	(1 pt)
ii. Why and how are integral images used for Viola-Jones face detection? (You masketch to support your answer.)	y (2 pts)
(f) Briefly explain how cascading classifiers for detection works.	$oxed{egin{array}{c} (2 ext{ pts}) \end{array}}$

CV WS 2015/2016 Page 8 of 10

(a) Briefly explain the following concepts i. Fundamental Matrix	(1 pt
ii. Epipolar plane	(1 pt
(b) Eight-point algorithm	$(4 ext{ pts})$
i. Fill in the first row of the following matrix in order to complete the Ei point algorithm. Assume that the point correspondence is called (\mathbf{x}, \mathbf{y}) where $\mathbf{x} = (x_1, x_2, 1)$ is located in the left image and $\mathbf{y} = (y_1, y_2, 1)$ in the right image (Hint : Use the derivation of the algorithm).	here
$egin{bmatrix} F_{11} \ F_{12} \end{bmatrix}$	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	= 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ii. How do we solve this equation? What exactly is the solution?	(1 pt

 $\overline{\text{CV WS 2015/2016}}$ Page 9 of 10

about this issue in order to get more accurate results, and	(1 p
Fundamental Matrix. the Fundamental matrix? Why?	(2 pts
if F had full rank?	(1 p
he rank constraint when estimation F ?	(1 p
h	the rank constraint when estimation F ?

CV WS 2015/2016 Page 10 of 10