

3A & 3B Mathematics

 $20 \, \mathrm{marks}$ Test 1 2009

50 minutes + 2 minutes reading

SNOTTWOS

(c)

1. [2, 1, 2, 2 marks]

A winery produces a fine liquer which is predicted to increase in value by 4.8% p.a.

How much will a bottle of liquer be worth in 2 years time, if it presently sells for \$45? $\frac{1}{16} = \frac{1}{16} \left(\frac{1}{16} + \frac{1}{16} \right)^2 = \frac{1}{16} \frac{1}{16} \cdot \frac{1}{16} \cdot \frac{1}{16} = \frac{$

How much will a bottle of liquer be worth in n years time, if it presently sells for \$45? $\beta = \mu \lesssim (1.0 \mu)$ (q)

The winemaker plans to release the liquer when it reaches a value of \$100. How long will they have to wait for this to be the case?

/ LI=V

more expensive than the flagon? large flagon presently sells for \$74, how long will it be before the Liquer becomes Another red wine produced by the winery is increasing in value at 2.3% p.a. If a

more expensive than the flagon?

Let (1.048) $\Rightarrow 744(1.083)$ $\Rightarrow 1.048 \times 1.04$

(p) b(4) = 53

 $b(d(-1)) = \xi + (\xi) \xi = (\xi) d$ $\xi = (1-) \xi = (1-) \xi$ $((1-)) = \xi + (\xi) \xi = (1-) \xi$

5- : 49 the value of k for which p(k) = -2. 5 + 3 = -2

3. [1, 1, 3 marks]

A function has a defining rule $y = 2x^2$

Determine the defining rule for the new function if the graph of this function is

$$y = 2(x+4)^2$$

reflected in the x-axis, then moved 3 units right and then 1 unit up.

$$y = -2(x-3)^2 + 1$$

[4 marks]

A cubic polynomial intersects the x-axis at x = -2, 3, 5.

Given that the graph goes through the point (4, 2) find the equation for the polynomial in the form, $y = ax^3 + bx^2 + cx + d$.

$$y = -\frac{1}{3}x^3 + 2x^2 + \frac{1}{3}x - 10$$
 = States

$$y = -\frac{1}{3}x^{3} + 2x^{2} + \frac{1}{3}x - 10$$

$$y = -\frac{1}{3}x^{3} + 2x^{2} + \frac{1}{3}x - 10$$

$$y = -\frac{1}{3}(x^{2} + 2)(x^{2} - 3)(x^{2} - 3)(x^{$$

With the sid of a graphic calculator produce a sketch of

$$y = x^3 - 3x^2 + 4$$

Indicate any furning points , intercepts with the axes and points of inflection. If any rounding is necessary give answers correct to $\hat{\Sigma}$ decimal places.

c

[2, 2, 2, 2, 2 marks]

Match each of the graphs below with its corresponding function. Choose from the functions listed below, where a, b, c, d and e are positive integers:

(1)
$$y = ax - b$$
 (2) $y = d^{x} + 1$ (3. $y = -ax^{3} + x^{2} + dx$

(3.)
$$y = -ax^3 + x^2 + dx$$

4.
$$y = x^3$$
 ax - b 5. $y = c^{x-1}$ 6. $y = \frac{1}{x+c}$

6.
$$y = \frac{1}{x + c}$$

$$y = x^2 + x - e$$
 (8) $y = x^2 - x - d$ (9) $y = \frac{1}{x - b} + a$

$$y = x^2 + x - e$$
 (8.) $y = x^2 - x - d$ (9.) $y = \frac{1}{x - b} + a$

10.
$$y + ax = b$$
 11. $y = \frac{1}{x-a}$ 12. $y = x + c$

$$y = (x+1)(x-2)$$
.
= x^2-x-2

7. [2, 3, 3 marks]

State the domain and range for the following functions:

5

(b)
$$y=x^2+4x+3$$
 $x \in \mathbb{R}$
 $\frac{1}{2}x-\frac{1}{2}x-3$ $y \geq -1$
 $y=\frac{1}{2x-3}+1$ $x \in \mathbb{R}$ $x \neq \frac{3}{2}$
 $y \in \mathbb{R}$, $y \neq +1$

[3 marks]

Given the graphs for $f(x) = ax^3 + bx^2 + cx + d$ and $g(x) = ex^2 + fx + g$, for real constants a, b, ...,g, solve to 1 decimal place, the equation f(x) = g(x).

