

PERCEPCIÓN COMPUTACIONAL

Tema 4: PERCEPCIÓN VISUAL II

SUAVIZADO Y REALZADO

Gonzalo Pajares Martinsanz

Dpt. Ingeniería del Software e Inteligencia Artificial

Facultad de Informática.- Universidad Complutense de Madrid

Transformaciones radiométricas

- Suavizado
- Histograma: realzado
- Filtrado homomórfico
- Matching de histogramas
- Correcciones radiométricas

Suavizado: promediado del entorno de vecindad

$$h \equiv \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Filtrado

$$f(i,j) = \frac{1}{P} \sum_{(m,n)\in S} g(m,n)$$

Suavizado: ejemplo

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Suavizado: ejemplo

h = fspecial('average',size)

Suavizado: filtrado gaussiano

$$G(i,j) = e^{-(i^2+j^2)/2\sigma^2}$$

a

- (a)Gaussiana 1-D y muestras reales para una máscara discreta de 5x5;
- (b) Gráfica del correspondiente núcleo entero

Suavizado: filtrado gaussiano

h = fspecial('gauss',size, sigma)

imagen original

imagen ruidosa

imagen suavizada g = gaussiana

El histograma de la imagen

$$P(g) = \frac{N(g)}{M}$$

(a)

- (a) Imagen con 10 niveles de gris del 0 al 9
- (b) su histograma

El histograma de la imagen

Tema3I.m

Imagen Izda de un par stereo

Imagen Dcha de un par stereo

Histograma Izda de un par stereo

Histograma Dcha de un par stereo

Gonzalo Pajares

VISIÓN

El histograma de la imagen: algunas propiedades estadísticas

Media:
$$\overline{g} = \sum_{g=0}^{L-1} gP(g) = \sum_{i} \sum_{j} \frac{I(i,j)}{M}$$

Varianza:
$$\sigma^2 = \sum_{g=0}^{L-1} (g - \overline{g})^2 P(g)$$

Asimetría:
$$a = \sum_{g=0}^{L-1} (g - \overline{g})^3 P(g)$$

Entropía:
$$e = -\sum_{g=0}^{L-1} P(g) \log_2 [P(g)]$$

Operaciones en el histograma de la imagen: Ecualización

ejercicio_05_16.m

$$B = \begin{bmatrix} 0 & 0 & 1 & 2 & 6 \\ 1 & 3 & 3 & 1 & 3 \\ 2 & 2 & 4 & 3 & 3 \\ 2 & 4 & 5 & 4 & 3 \\ 1 & 5 & 5 & 4 & 4 \end{bmatrix}$$

g	0	1	2	3	4	5	6	7	8	9
N(g)	2	4	4	6	5	3	1	0	0	0

Histograma

Operaciones en el histograma de la imagen: Ecualización

ejercicio_05_16.m

Ecualización uniforme:

$$F(g) = 255 \sum_{g=0}^{g} p(g)$$

Pajares

VISIÓN

VISIÓN

Operaciones en el histograma de la imagen: Ecualización

ejercicio_05_16.m

$$B = \begin{bmatrix} 0 & 0 & 1 & 2 & 6 \\ 1 & 3 & 3 & 1 & 3 \\ 2 & 2 & 4 & 3 & 3 \\ 2 & 4 & 5 & 4 & 3 \\ 1 & 5 & 5 & 4 & 4 \end{bmatrix}$$

Ecualización uniforme:

$$B_{EqUn} = \begin{bmatrix} 0 & 0 & 2 & 3 & 9 \\ 2 & 5 & 5 & 2 & 5 \\ 3 & 3 & 7 & 5 & 5 \\ 3 & 7 & 8 & 7 & 5 \\ 2 & 8 & 8 & 7 & 7 \end{bmatrix}$$

Operaciones en el histograma de la imagen

Otras funciones de ecualización:

Distribuciones	Expresiones
Uniforme	$F(g) = g_{max} - g_{min} P_g(g) + g_{min}$
Exponencial	$F(g) = g_{min} - \frac{1}{\alpha} \ln \left[-P_g(g) \right]_{-}$
Rayleigh	$F(g) = g_{min} + \left[2\alpha^2 \ln \left\{ \frac{1}{1 - P_g(g)} \right\} \right]^{\frac{1}{2}}$
Hipercúbica	$F(g) = \left(\sqrt{g_{max}} - \sqrt[3]{g_{min}} - \frac{1}{2}P_g(g) + \sqrt[3]{g_{min}}\right)^3$
Logaritmo hiperbólica	$F(g) = g_{min} \left[\frac{g_{max}}{g_{min}} \right] P_g(g)$

<u>VISIÓN</u>

El histograma de la imagen: ecualización

Tema3l.m

VISIÓN

Operaciones en el histograma de la imagen: Expansión

Tema3m.m

$$g(i,j) = \left[\frac{f(i,j) - f(i,j)_{MIN}}{f(i,j)_{MAX} - f(i,j)_{MIN}}\right] MAX - MIN + MIN$$

- (a) Imagen original
- (b) su histograma

Imagen histograma expandido

- (a) Imagen con el histograma expandido
- (b) su histograma

Otras técnicas de realzado: combinación de técnicas

Filtrado homomórfico

$$f(x,y) = i(x,y)r(x,y) \begin{cases} i(x,y) : \text{iluminación (bajas frecuencias)} \\ r(x,y) : \text{reflectancia (altas frecuencias)} \end{cases}$$

Filtrado homomórfico

Tema3o.m

Supresión de la iluminación

Gonzalo Pajares

VISIÓN

Correspondencia de histogramas

Dadas dos imágenes A y B y considerando como referencia la primera, se trata de modificar la imagen B tomando como referencia la A.

Este proceso se lleva a cabo a partir de los histogramas h_A y h_B respectivamente a partir de los cuales se obtienen los valores de probabilidad acumulados para cada nivel de gris g_a y g_b en las respectivas imágenes A y B como sigue,

$$P(g_a) = \sum_{i=0}^{g_a} p \mathbf{q}_i$$

$$P(g_b) = \sum_{i=0}^{g_b} p \mathbf{q}_i$$

Pajares

COMPUTADOR

El procedimiento de correspondencia consiste en buscar para cada valor $P(g_b)$ asociado con el nivel de gris g_b cuál es el valor más próximo $P(g_a)$ a aquél de suerte que nos permita intercambiar el valor g_b por g_a en la imagen.

Tras este intercambio de niveles de intensidad se obtiene una nueva imagen B_t transformada

PUTADOR

VISIÓN

Correspondencia de histogramas

ejercicio_05_18.m

$$A = \begin{bmatrix} 2 & 2 & 2 & 3 & 5 \\ 2 & 2 & 3 & 2 & 5 \\ 4 & 4 & 1 & 2 & 5 \\ 3 & 4 & 1 & 2 & 7 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 3 & 2 & 5 & 7 \\ 7 & 8 & 4 & 4 & 7 \\ 6 & 5 & 4 & 9 & 3 \\ 9 & 6 & 5 & 2 & 8 \\ 8 & 8 & 7 & 7 & 6 \end{bmatrix}$$

Imagen A											
g	0	1	2	3	4	5	6	7	8	9	
N(g)	1	6	8	3	5	2	0	0	0	0	
P(g)	1/25	7/25	15/ 25	18/ 25	23/25	25/ ₂₅	25/25	25/ 25	25/25	25/ 25	

Imagen B											
g	0	1	2	3	4	5	6	7	8	9	
N(g)	0	0	2	2	4	3	3	5	4	2	
P(g)	0/25	0/25	² / ₂₅	4/25	8/ 25	11/25	14/25	19/25	23/25	25/ /25	

Correspondencia de histogramas

ejercicio_05_18.m

Ejemplo: $\frac{8}{25}$ de B $\frac{7}{25}$ de A

\boldsymbol{A}	0	1	2	3	4	5	6	7	8	9
В	0	0	0	1	1	2	2	3	4	5

$$B_{t} = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 3 & 4 & 1 & 1 & 3 \\ 2 & 2 & 1 & 5 & 1 \\ 5 & 2 & 2 & 0 & 4 \\ 4 & 4 & 3 & 3 & 2 \end{bmatrix}$$

Correspondencia de histogramas

ejercicio_05_18.m

Gonzalo Pajares

VISIÓN

Funciones radiométricas matemáticas

cuadrada: m = 2

cúbica: m = 3

raíz cuadrada: m = 1/2

raíz cúbica: m = 1/3

L :valor máximo de los niveles de intensidad (255)

$$q = L^{1-m} p^m$$

Funciones radiométricas matemáticas

Tema3p.m

remasp.m

imagen original

Synthetic Aperture Radar (SAR)

Ruido speckle

Filtros:

- Frost
- Oddy
- Kuan
- Lee
- Gamma