Applications du Théorème de Superposition de Kolmogorov à la compression d'images

Félix Piédallu

- 1. Introduction
- II. Le Théorème de superposition de Kolmogorov
- III. L'application à la compression d'images

En Physique :

Problème de Navier-Stokes

Dimension 2 : Résolu (Jean Leray, 1934)

Dimension 3 : 6eProblème du Millénaire

• Le problème à n corps

2 corps : Solutions énoncées Isaac Newton (1687)

3 corps : 1909 (Karl Sundman) : résultats, mais inutilisables.

→ Théorie du Chaos (incertitude)

En Mathématiques :

Solutions d'équations polynômiales

Degré inférieur à 4 : Formules exactes par radicaux

Degré supérieur : Pas de solutions analytiques (É. Galois, XVIIIe).

• Le Théorème de Fermat : $a^n + b^n = c^n$

Pour n=2 : Théorème de Pythagore (Antiquité)

Pour n>2 : Impossible d'après A.Wiles (1994)

→ Topologie algébrique

Le Théorème de Superposition de Kolmogorov

$$\forall n \in \mathbb{N}^*, \exists \left\{ \begin{array}{l} \lambda_1, \dots, \lambda_n \in \mathbb{R}^* \text{de somme 1} \\ \phi_1, \dots, \phi_{2n+1} \in \mathcal{C}^0([0,1]) \end{array} \right.$$

universels telles que

Pour $f \in \mathcal{C}^o([0,1]^n,\mathbb{R})$ quelconque,

 $\exists g_1,\ldots,g_{2n+1}\in\mathcal{C}^o(\mathbb{R},\mathbb{R})$, dépendantes de f, **telles que**

$$f(x_1,\ldots,x_n)=\sum_{q=1}^{2n+1}g_q\left(\sum_{p=1}^n\lambda_p\phi_q(x_p)\right)$$

Ceci représente toute fonction à n variables comme somme de composées de fonctions à une variable.

Par exemple, il existe $\left\{ \begin{array}{l} \lambda_a, \ldots, \lambda_c \\ \phi_1, \ldots, \phi_5 \end{array} \right.$, tels que :

- Pour tout $(x, y, z) \in [0, 1]^3$, $\sqrt{\cos^2(xy) + z} = \sum_{q=1}^7 g_q (\lambda_2 \phi_q(x) + \lambda_b \phi_q(y) + \lambda_c \phi_q(z))$
- Pour tout $(x,y,z) \in [0,1]^3$, $e^{x\sin(z-y)} = \sum_{q=1}^7 h_q \left(\lambda_a \phi_q(x) + \lambda_b \phi_q(y) + \lambda_c \phi_q(z)\right)$

Le Théorème de Baire

Soit E un espace vectoriel normé complet (Banach) et $(O_n)_n$ une suite d'ouverts denses de E.

Alors $\bigcap_{n\in\mathbb{N}} O_n$ est dense dans E.

Déf : P est vraie pour **quasi tout** $x \in E$, si P est vraie sur une intersection d'ouverts denses dans E (notée un G_{δ} -dense)

Déf : Φ est l'ensemble des fonctions φ strictement croissantes, continues sur I, telles que $\varphi(0)=0, \varphi(1)=1.$

Muni de $\|\|_{\infty}$, c'est un espace métrique complet

Preuve non-constructive du Théorème de Kolmogorov :

Soit $\rho \in \mathcal{C}^{o}([0,1]^{n},\mathbb{R})$, et $\lambda_{1},\ldots,\lambda_{n}$ strictement positifs de somme 1. Soit $\epsilon > 0$.

Définissons $\Omega(f)=\left\{(\varphi_1,\ldots,\varphi_{2n+1})\in\Phi^{2n+1} \text{ tel qu'il existe } h\in C(I^n)\right\}$ avec $\|h\|_\infty\leq \|f\|_\infty$ et

$$\left\| f(x_1,\ldots,x_n) - \sum_{q=1}^{2n+1} h\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right) \right\|_{\infty} < (1-\epsilon) \|f\|_{\infty}$$
 (1)

 $\Omega(f)$ est un ouvert de Φ^{2n+1} , admis dense.

Soit F un ensemble dénombrable dense dans $C(I^n)\setminus\{0\}$.

 $\bigcap_{f\in F}\Omega(f)$ est dense dans Φ^{2n+1} : c'est une intersection dénombrable d'ouverts denses dans E. On y prend $(\varphi_1,\ldots,\varphi_{2n+1})$.

Quelques prérequis mathématiques La Preuve non-constructive du Théorème.

Il existe $f_0 \in F$, telle que $\begin{cases} \|f_0\|_{\infty} & \leqslant \|\rho\|_{\infty} \\ \|\rho - f_0\|_{\infty} & < \frac{\epsilon}{2}\|\rho\|_{\infty} \end{cases} \text{ et h_0 v\'erifiant (1) pour f_0.}$

Notons $h_0 = \gamma(f_0)$, et $\gamma(0) = 0$.

Par récurrence, nous définissons $h_j = \gamma(f_j)$, et

$$f_{j+1}(x_1,\ldots,x_n) = f_j(x_1,\ldots,x_n) - \sum_{q=1}^{2n+1} h_j \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)$$
 (2)

Or $\lim_{j \to +\infty} \|f_j\|_{\infty} = 0$. On peut sommer par télescopage.

La série $\sum_{j=0}^{\infty} h_j$ converge dans C(I) vers g qui vérifie alors, comme (1) a lieu, le théorème pour f_0 .

Application aux images :

n pixels (128)

Image originale Fonction discrète n^2 points à enregistrer

Interpolation linéaire

Fonction f continue sur $[0,1]^2$ Fonction superposable par le théorème de Kolmogorov.

Un pixel repéré par (x, y) est associé au point $(\frac{x}{n}, \frac{y}{n}) \in [0, 1]^2$.

Le théorème dans le cas des images :

Image Originale

Première couche $(g_0(\xi))$

 $(g_4(\xi))$

Reconstitution après une itération

L'algorithme de Sprecher :

 ψ et ξ pour l'algorithme de Sprecher :

$$f(x,y) = \lim_{r \to \infty} \sum_{n=0}^{4} \underbrace{\sum_{j=1}^{r} g_{n,j} \circ \xi(x + nb, y + nb)}_{g_{\mathbf{n}}(\xi(x+nb, y+nb))}$$

Le stockage des fonctions :

Les λ_i et ϕ sont indépendantes de l'image.

On ne stocke que les $(g_i)_{i \in \{0,\dots,2d\}}$ $\xrightarrow{\text{Discrétisation}} n*(2 \times d+1)$ points à enregistrer.

	Image originale		Algorithme de Sprecher
Quantité de données :	n^2 points	$\xrightarrow{Kolmogorov}$	$5 \times n$ valeurs
Complexité :	$O(n^2)$	$\xrightarrow{Kolmogorov}$	<i>O</i> (<i>n</i>)

Comparaison des différents formats

40 × 40	128 imes 128	500 × 500
BMP: 1.56Ko (1600 octets)	BMP : 16.0Ko (16384 octets)	BMP : 244.14Ko (250000 octets)
TSK : 1.93Ko (2000 octets)	TSK : 6.25Ko (6400 octets)	TSK : 24.14Ko (25000 octets)
JPG : 11.8Ko (12158 octets)	JPG: 4.38Ko (4491 octets)	JPG: 49.2Ko (50396 octets)

Conclusion

- Un puissant outil d'analyse et de traitement du signal
- Une démonstration non-constructive simple
- Peu de mises en application à ce jour...
- Permet un taux de compression très élevé pour de grands échantillons de données
- A un avenir prometteur (Vidéo,...)