(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-151373

(43)公開日 平成9年(1997)6月10日

(51) Int.CL.6		識別記号	庁内整理番号	ΡI				技術表示箇所
C09K	19/02		9279-4H	C09K	19/02			
	19/34		9279-4H		19/34			
	19/42		9279-4H		19/42			
	19/44		9279-4H		19/44			
	19/46		9279-4H		19/46			
			審査請求	未請求 請求	秋項の数 9	OL	(全 14 頁)	最終頁に続く

(21)出顧番号 特顧平7-310676

(22)出顧日 平成7年(1995)11月29日

(71)出顧人 000002886

大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58号

(72)発明者 竹内 清文

東京都板橋区高島平1-12-14-103

(72)発明者 高津 晴穣

東京都東大和市仲原3-6-27

(72)発明者 石田 徳恵

埼玉県上尾市上尾村1089

(74)代理人 弁理士 高橋 勝利

(54) 【発明の名称】 ネマチック被晶組成物及びこれを用いた被晶表示装置

(57)【要約】 (修正有)

【解決手段】 誘電率異方性-2~+2のトラン系化合物を5種以上含む液晶成分Aを40~80重量%、誘電率異方性+2以上の化合物を2種以上含む液晶成分Bを5~60重量%含有し、誘電率異方性が3以上、複屈折率が0.15以上、ネマチック相一等方性液体相転移温度が70℃以上、結晶相又はスメクチック相ーネマチック相転移温度が-10℃以下であるネマチック液晶組成物。成分Aの代表例としては

成分Bの代表例としては

が挙げられる。

【効果】 本液晶組成物は複屈折率△nが大きく、広い 温度範囲でネマチック相を示し、電圧保持率と化学的安 定性が高く、アクティブ・マトリクス形、ツイスティッ ド・ネマチック又はスーパー・ツイスティッド・ネマチ ック液晶表示装置に使用でき、液晶層と位相差板の複屈 折性でカラー表示し、特に大きな△nにより液晶層の厚 みdを低減し応答特性を改善し、大情報量の表示特性を 提供できる。

1-3

【特許請求の範囲】

【請求項1】 -2~+2の誘電率異方性のトラン系化 合物を少なくとも5種以上含む液晶成分Aを40~80 重量%の範囲で含有し、+2以上の誘電率異方性の化合 物を少なくとも2種以上含む液晶成分Bを5~60重量 %の範囲で含有してなる液晶組成物であって、且つ該組 成物の誘電率異方性 ($\Delta \varepsilon$) が3以上であり、複屈折率 (Δn) が0.15以上であり、ネマチック相-等方性 液体相転移温度(TN-I)が70℃以上であり、結晶相 又はスメクチック相ーネマチック相転移温度(T→n) が-10℃以下であることを特徴とするネマチック液晶 組成物。

【請求項2】 液晶成分Aとして、(1)一般式(I-1) \sim (I-3)

[
$$(L1)$$
]
 R^{11}
 $C \equiv C$
 R^{14}
 $(I-1)$
 R^{12}
 $C \equiv C$
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}

(式中、R11~R13はそれぞれ独立的に炭素原子数2~ 5の直鎖状アルキル基又はアルケニル基を表わし、R14 ~R16はそれぞれ独立的に炭素原子数1~5の直鎖状ア ルキル基、アルコキシ基、アルケニル基又はCgH2g+1-O-Cr H2rを表わし、g及びrはそれぞれ独立的に1~ 5の整数を表わし、Y11~Y13はそれぞれ独立的に水素 30 原子、フッ素原子又は-CH3を表わし、Y14~Y16はそ れぞれ独立的に水素原子又はフッ素原子を表わし、Z11 は-COO-、-C2H4-又は単結合を表わし、各化合物に おけるシクロヘキサン環の水素原子 (H) が重水素原子 (D) で置換されていても良い。) で表わされる化合物 からなる第1群から選ばれる化合物を含有することを特 徴とする請求項1記載のネマチック液晶組成物。

【請求項3】 液晶成分Bとして、(2)一般式(II-1) ~ (II-3)

【化2】

$$R^{21} \left(\left(-Z^{21} \right)_{k} \right) - Z^{22} - \left(-Z^{21} \right)_{22}$$

$$R^{22} \left(\left(-Z^{23} \right)_{l} \right) - \left(-Z^{23} \right)_{l} - \left(-Z^{23} \right)_{23}$$

$$R^{23} - \left(-Z^{23} \right)_{l} - \left(-Z^{23} \right)_{23}$$

$$R^{23} - \left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23}$$

$$\left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23}$$

$$\left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{23}$$

$$\left(-Z^{23} \right)_{23} - \left(-Z^{23} \right)_{$$

7の直鎖状アルキル基、アルケニル基又はCsH2s+1-O -CtH2tを表わし、s及びtはそれぞれ独立的に1~5 の整数を表わし、X²¹~X²³はそれぞれ独立的にフッ素 原子、塩素原子、-OCF3、-OCHF2、-CF3又は-CNを表わし、Y21~Y28はそれぞれ独立的にH又はF を表わし、Z²¹~Z²³はそれぞれ独立的に単結合、-C OO-、-C2H4-、-C≡C-又は-C4H8-を表わし、Z 24、Z25はそれぞれ独立的に単結合、-COO-又は-C ■C-を表わし、k及び1はそれぞれ独立的に0又は1 の整数を表わし、各化合物におけるシクロヘキサン環の 水素原子(H)は重水素原子(D)で置換されていても 良い。) で表わされる化合物からなる第2群から選ばれ る化合物を含有することを特徴とする請求項1又は2記

2

【請求項4】 液晶成分A及び液晶成分Bの他に、加え ることのできる液晶成分Cとして、(3)一般式(III- $1) \sim (III-3)$

載のネマチック液晶組成物。

(式中、R31~R33はそれぞれ独立的に炭素原子数2~ 7の直鎖状アルキル基又はアルケニル基を表わし、R34 ~R36はそれぞれ独立的に炭素原子数1~7の直鎖状ア ルキル基、アルコキシ基、アルケニル基又はアルケニル オキシ基を表わし、Z31~Z34はそれぞれ独立的に単結 合、-COO-、-C2H4-又は-C4H8-を表わし、Z35は 単結合又は-COO-を表わし、環Aはシクロヘキサン環 又はシクロヘキセン環を表わし、m、n及びpはそれぞ れ独立的に0又は1の整数を表わす。)で表わされる化 合物からなる第3群から選ばれる化合物を含有すること を特徴とする請求項1、2又は3記載のネマチック液晶 組成物。

【請求項5】 請求項1、2、3又は4記載のネマチッ ク液晶組成物が、透明性電極層を有する少なくとも一方 40 が透明な2枚の基板間において、30°~360°の範 囲でねじれ配向を有することを特徴とする液晶表示装 置。

【請求項6】 請求項1、2、3又は4記載のネマチッ ク液晶組成物を用いたアクティブ・マトリクス形液晶表 示装置。

【請求項7】 請求項1、2、3又は4記載のネマチッ ク液晶組成物を用いたツイスティッド・ネマチック又は スーパー・ツイスティッド・ネマチック液晶表示装置。 【請求項8】 カラーフィルター層を有さないで、液晶 (式中、R²¹~R²³はそれぞれ独立的に炭素原子数2~ 50 層と位相差板の複屈折性でカラー表示をすることを特徴

とする請求項5、6又は7記載の液晶表示装置。 【請求項9】 液晶層の厚さが1~5μmであることを 特徴とする請求項5、6、7又は8記載の液晶表示装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気光学的表示材 料として有用なネマチック液晶組成物及びこれを用いた 液晶表示装置に関する。

[0002]

【従来の技術】液晶表示素子の代表的なものにTN-LCD (ツイスティッド・ネマチック液晶表示素子) があり、 時計、電卓、電子手帳、ポケットコンピュータ、ワード プロセッサ、パーソナルコンピュータなどに使用されて いる。一方、OA機器の処理情報の増加に伴い、一画面 に表示される情報量が増大しており、シェファー (Sche ffer) 等 [SID '85 Digest, 120頁(1985年)]、あるい は衣川等 [SID '86 Digest, 122頁(1986年)] によって、 STN (スーパー・ツイスティッド・ネマチック) -LODが 開発され、ワードプロセッサ、パーソナルコンピュータ 20 などの高情報処理用の表示に広く普及しはじめている。 【0003】最近、STN-LODでの応答特性を改善する目 的でアクティブアドレッシング駆動方式が提案されてい る。(Proc.12th International Display Research Con ference p.503 1992年) この様な液晶材料として、弾性 定数比K33/K11が1.5前後、誘電率異方性△ε や粘性が比較的小さいことと併せて、特に複屈折率△n が大きいものが要求されている。また、カラーフィルタ 一層を用いないでカラー表示ができる方法として、液晶 表示方式が提案されている。(テレビジョン学会技術報 告 vol.14 No10.p.51 1990年) この様な液晶材料とし て、光の波長の違いによってより大きな位相差が現れる ものがよいことから、特に複屈折率△nが大きいものが 要求されており、現在も新しい液晶化合物あるいは液晶 組成物の提案がなされている。

[0004]

【発明が解決しようとする課題】上述のようなSTN-LCD の電気光学特性を改善するには、複屈折率△nの大きい 液晶材料が必要である。また、電気光学特性がより改善40 され、液晶材料のより高い化学的安定性、液晶表示の高 速応答性及び駆動温度範囲のより広い特性についても必 要である。しかし、依然として問題が残されたままであ る。より具体的には、スメクチック相や結晶相が出現し やすい傾向を有するため、電気光学特性に優れ、且つ広 い温度範囲で駆動可能な液晶表示装置を作製することに 問題があり、暗い画質を補う目的で付加されたバックラ イト等に対する耐熱性等に優れることが必要とされてい る.

【0005】本発明が解決しようとする課題は、上記の 50 を必要とし、0.18~0.28の範囲が特に好まし

問題を解決あるいはより改善することにあり、複屈折率 △nが大きく、駆動可能な温度範囲が広く、応答性に優 れたネマチック液晶組成物を提供することにあり、この 液晶組成物を構成材料として用いた、電気光学特性の改

善された液晶表示装置を提供することにある。

[0006]

【課題を解決するための手段】本発明は上記課題を解決 するために、-2~+2の誘電率異方性のトラン系化合 物を少なくとも5種以上含む液晶成分Aを40~80重 10 量%の範囲で含有し、+2以上の誘電率異方性の化合物 を少なくとも2種以上含む液晶成分Bを5~60重量% の範囲で含有してなる液晶組成物であって、且つ該組成 物の誘電率異方性 ($\Delta \varepsilon$) が3以上であり、複屈折率 (Δn) が0.15以上であり、ネマチック相一等方性 液体相転移温度(Tr-I)が70℃以上であり、結晶相 又はスメクチック相ーネマチック相転移温度(T→n) が-10℃以下であることを特徴とするネマチック液晶 組成物を提供する。

【0007】本発明の液晶組成物は、誘電率異方性が一 2~+2の範囲にあるトラン系化合物を少なくとも5種 以上の液晶成分Aと、誘電率異方性が+2以上の化合物 を少なくとも2種以上の液晶成分Bを含有するものであ り、これによって、液晶層の光学異方性を高め、所定の カラー表示を得ることができ、駆動可能な温度範囲特に 低温側で広くさせることができる。トラン系化合物は、 少なくとも5種以上を必要とし、6~20種の範囲が好 ましく、6~13種の範囲が特に好ましい。誘電率異方 性が+2以上の化合物は、少なくとも2種以上を必要と し、3~15種の範囲が好ましい。また、誘電率異方性 と位相差板の複屈折性を利用した新規反射型カラー液晶 30 が+8~+13の化合物、+14~+18の化合物、+ 18以上の化合物から適時選んで含有させることが好ま しく、所定の駆動電圧や応答特性を得ることができる。 この場合、+8~+13の誘電率異方性の化合物は1~ 10種の範囲で混合することが好ましく、+14~+1 8の化合物は1~8種の範囲で混合することが好まし く、+18以上の化合物は1~10種の範囲で混合する ことが好ましい。この効果は、液晶成分Aを40~80 重量%の範囲で、好ましくは40~70重量%の範囲 で、液晶成分Bを5~60重量%の範囲で、好ましくは 20~60重量%の範囲で含有させることによって、更 に特段のものとなる。

> 【0008】結晶相又はスメクチック相ーネマチック相 転移温度T→nは、−10℃以下、好ましくは−20℃ 以下、更に好ましくは-30℃以下である。ネマチック 相-等方性液体相転移温度Tn-1は、70℃以上、好ま しくは80℃以上、更に好ましくは90℃以上である。 本発明の液晶組成物は、誘電率異方性が3以上を必要と し、5以上が好ましく、6~16あるいは17~28の 範囲が好ましい。また、複屈折率△nは、0.15以上

W

【0009】本発明のネマチック液晶組成物は、アクテ ィブ・マトリクス形、ツイスティッド・ネマチックある いはスーパー・ツイスティッド・ネマチック液晶表示装 置に用いることができ、本発明はこのような液晶表示装 置をも提供するものである。

【0010】また、透明性電極層を有する少なくとも一 方が透明な2枚の基板間において、本発明の液晶組成物 の分子が30°~360°の範囲でねじれ配向を有する ことを特徴とする液晶表示装置をも提供する。ねじれ配 10 向は目的に応じて30°~360°の範囲で選択するこ とができ、90°~270°の範囲で選択することが好 ましく、45°~135°の範囲又は180°~260 * の範囲で選択することが特に好ましい。この場合、透 明性電極基板に設けられる配向膜によって得られるプレ チルト角は、1°~20°の範囲で選択することが好ま しく、ねじれ角が30°~100°では1°~4°のプ レチルト角が好ましく、100°~180°では2°~ 6° のプレチルト角が好ましく、180°~260°で は3°~12°のプレチルト角が好ましく、260°~ 20 360°では6°~20°のプレチルト角が好ましい。 【0011】また、本発明のネマチック液晶組成物は、 高速応答性のTN-LCDやSTN-LCDに有用であり、カラーフ ィルター層を用いなくても、液晶層と位相差板の複屈折 性でカラー表示をすることができる液晶表示素子に有用 なものであり、透過型あるいは反射型の液晶表示素子に 用いることができる。本発明はこのような液晶表示装置 をも提供するものである。

【0012】更に、上記した液晶表示装置において、高 速応答性、低い駆動電圧の特性を得る場合には、本発明 30 の液晶組成物の液晶層の厚さを1~5μmにして用いる ことができ、本発明はこのような液晶表示装置をも提供 するものである。

【0013】尚、本発明で述べる2より大きい誘電異方 性を有する液晶化合物の好ましいものとしては、以下に 示すものである。即ち、液晶化合物の化学構造は棒状で あり、中央部分が1個から4個の六員環を有したコア構 造を有し、中央部分長軸方向の両端に位置する六員環 が、液晶分子長軸方向に相当する位置で置換された末端 基を有し、両端に存在する末端基の少なくとも一方が極 40 -CF3又は-CNを表わし、Y21~Y28はそれぞれ独立 性基であること、即ち例えば-CN、-OCN、-NC S, -F, -C1, $-NO_2$, $-CF_3$, $-OCF_3$, -OCHF2である化合物である。

【0014】本発明は、上記の液晶組成物を得るのに適 した化合物として、液晶成分Aとして、(1)一般式 $(I-1) \sim (I-3)$

[0015]

【化4】

$$R^{11} - C = C - R^{14} - (I-1)$$

$$R^{12} - C = C - R^{15} - (I-2)$$

$$R^{13} - C = C - R^{16} - (I-3)$$

【0016】(式中、R¹¹~R¹³はそれぞれ独立的に炭 素原子数2~5の直鎖状アルキル基又はアルケニル基を 表わし、R14~R16はそれぞれ独立的に炭素原子数1~ 5の直鎖状アルキル基、アルコキシ基、アルケニル基又 はCgH2g+1-O-CrH2rを表わし、g及びrはそれぞれ 独立的に1~5の整数を表わし、Y11~Y13はそれぞれ 独立的に水素原子、フッ素原子又は-CH3を表わし、Y 14~Y16はそれぞれ独立的に水素原子又はフッ素原子を 表わし、Z¹¹は-COO-、-C₂H₄-又は単結合を表わ し、各化合物におけるシクロヘキサン環の水素原子 (H)が重水素原子(D)で置換されていても良い。) で表わされる化合物からなる第1群から選ばれる化合物 を含有することが好ましく、液晶成分Bとして、(2) 一般式 (II-1) ~ (II-3)

[0017]

【化5】

$$R^{21} \left(\bigcirc Z^{21} \right) - Z^{22} - \bigcap_{\chi_{22}}^{\chi_{21}} Z^{21} - (II-1)$$

$$R^{22} \left(\bigcirc Z^{23} \right) - \bigcap_{\chi_{23}}^{\chi_{23}} Z^{24} - \bigcap_{\chi_{24}}^{\chi_{27}} Z^{23} - (II-2)$$

$$R^{23} - \bigcap_{\chi_{23}}^{\xi} - Z^{25} - \bigcap_{\chi_{23}}^{\chi_{27}} Z^{23} - (II-3)$$

【0018】(式中、R21~R23はそれぞれ独立的に炭 素原子数2~7の直鎖状アルキル基、アルケニル基又は CsH2s+1-O-CtH2tを表わし、s及びtはそれぞれ独 立的に1~5の整数を表わし、X²¹~X²³はそれぞれ独 立的にフッ素原子、塩素原子、-OCF3、-OCHF2、 的にH又はFを表わし、Z21~Z23はそれぞれ独立的に 単結合、-COO-、-C2H4-、-C≡C-又は-C4H8-を 表わし、Z²⁴、Z²⁵はそれぞれ独立的に単結合、-CO O-又は-C≡C-を表わし、k及び1はそれぞれ独立的 に0又は1の整数を表わし、各化合物におけるシクロへ キサン環の水素原子 (H) は重水素原子 (D) で置換さ れていても良い。) で表わされる化合物からなる第2群 から選ばれる化合物を含有することが好ましい。

【0019】本発明に係わる一般式 (I-1) ~ (I-3) で 50 表わされる化合物は、より具体的には一般式 (I-4)~

(I-11)[0020] 【化6】

20

	•		
No.	構造式	m.p.	с.р.
1-1	C₃H₁- √ C≣C-√-CH₃	61.4	-
1-2	C₃H₁- (_) -C≡C- (_) -OC₂H₅	99	89
1-3	C ₃ H ₇ {}-{}-{}-C≡C-{}-C₄H ₈	87	201
1-4	C₄H ₉ - C≡C- CH ₃	65	163
1-5	C ₃ H ₇ -{\FC≘C-{_}}-CH ₃	103	198
1-6	C ₃ H ₇ - ()-C≡C-()-CH ₃	135	185

【0024】本発明の液晶組成物は、液晶成分Aとし て、(1)一般式 (I-1)~(I-3)で表わされる化合物 からなる第1群から選ばれる化合物を含有することで、 複屈折率Δnが大きく、粘度が小さく、比抵抗や電圧保 持率が高いという特徴を有する。特に、一般式 (I-4) ~ (I-8) の化合物はこの効果に優れている。 具体的に は、R11がアルキル基でR14が炭素原子数1~5のアル キル基又はアルコキシ基の化合物が好ましい。また、R※50 【0025】また、一般式 (I-4) ~ (I-8) で表わされ

※12がアルキル基又はアルケニル基でR15が炭素原子数1 ~5のアルキル基又はアルコキシ基の化合物が好まし い。複屈折率Δ nが大きく、粘度が小さい化合物は、ア ルケニル基がCH2=CH2-(CH2)u (u=0、2)の化 合物、連結基Z11が単結合である化合物であり、これら は特に好ましい。このことは、液晶成分B、Cについて も同様である。

8 *【0021】(式中、R11~R16は前記におけると同じ 意味を表わす。)で表わされる化合物群であり、これら から選ばれる化合物を用いることがより好ましい。これ らの化合物の誘電率異方性は-2~+2の範囲である。 下記第1表では、その代表的な化合物例(No.1-1~1 -6) の相転移温度を示す。

【0022】尚、下記表中、m.p.は結晶相から液晶相 又は等方性液体相に相転移する温度を、c.p.は液晶相 から等方性液体相に相転移する温度をそれぞれ表わし、

10 いずれも「℃」を表わす。また、各化合物は、蒸留、カ ラム精製、再結晶等の方法を用いて不純物を除去し、充 分精製したものを使用した。

[0023]

【表1】

る化合物のR14及びR15がアルコキシアルキル基を有し ている化合物を含有することによって、より大きなプレ チルト角を形成できる液晶表示素子を提供することがで きる。このようなプレチルト角を改善した本発明のネマ チック液晶組成物は、バックライトの放熱によるリバー スチルトの発生、あるいはSTN-LCDにおけるストライプ ・ドメインの発生を顕著に抑えることができ、表示品位 や作製歩留まりを向上させることができる。

【0026】本発明の液晶組成物は、液晶成分Aとして トラン系の化合物を5種以上含有させることを特徴とし 10 【0028】 ている。これは、トラン系の化合物を4種以下にする *

*と、相溶性に問題を生じるからである。例えば、結晶相 又はスメクチック相ーネマチック相転移温度T→Nがー 25℃以下と低くても、-25℃での低温保存で析出を 生じ易く、安定したネマチック相を形成することを困難 にしている。本発明はこの様な問題に特に有用である。 【0027】本発明に係わる(2)一般式(II-1)~ (II-3) で表わされる化合物からなる第2群から選ばれ る化合物としては、より具体的には一般式 (II-4)~ (II-21)

化合物を 4種以下にする * 【化7】
$$R^{21}$$
 — (II-4)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-5)
$$R^{21}$$
 — C_4H_8 — X^{21} — (II-7)
$$R^{21}$$
 — C_4H_8 — X^{21} — (II-8)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-9)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-9)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-10)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-10)
$$R^{21}$$
 — C_2H_4 — X^{21} — (II-11)
$$R^{21}$$
 — X^{21} — (II-11)
$$R^{21}$$
 — X^{21} — (II-11)
$$R^{21}$$
 — X^{21} — (II-11)

[0029]

【0030】(式中、 $R^{21} \sim R^{23}$ 、 $Y^{21} \sim Y^{28}$ 、 $X^{21} \sim X^{23}$ は前記におけると同じ意味を表わす。)で表わされる化合物であり、これらの誘電率異方性は+2以上である。第2表は、その代表的な化合物例($No.2-1\sim2-1$ 6)であり、その相転移温度を示す。

【0031】尚、下記表中、m.p.は結晶相から液晶相 又は等方性液体相に相転移する温度を、c.p.は液晶相* *から等方性液体相に相転移する温度をそれぞれ表わし、 いずれも「℃」を表わす。また、各化合物は、蒸留、カ ラム精製、再結晶等の方法を用いて不純物を除去し、充 分精製したものを使用した。

[0032]

【表2】

第2表

No.	構造式	m.p.	c.p.
2-1	r-(C)-(C)-CN	49	ł
2-2	C₃H₁ (-C₄H ₈ (-F F	19	-
2-3	CH3OC3H6	34	237
2-4	ℯ ᢕ᠊ᢕᢏᠮᢆᢩᠮ	60	70
2-5	C_3H_7 $ C_4H_8$ $ F$	23	89
2-6	C ₃ H ₇	44	83
2-7	С ₇ H ₁₅ O -{_} СN	41	29
2-8	C₃H ₇ -{}-COO-{}-CN	70	18
2 -9	C ₅ H ₁₁ -{}-C≡C-{}-F	4	-
2-10	C ₃ H ₇	41	35

[0033]

* *【表3】 ^(続) 第2表

No.	構造式	m.p.	c.p.
2-11	C ₅ H ₁₁ - C ₂ H ₄ - F	63.7	89.3
2-12	C₃H₁(-)-COO(-)(-)(-)CN	101	203
2-13	C ₃ H ₇ -	73	124-
2-14	C₃H₁-⟨F F	96	146
2-15	С₃H ₇ - { }- { }- { CN	102	159
2-16	C ₃ H ₇ -{}-{}-{}-C≡C-{}-{}-F	49	119

【0034】本発明の液晶組成物は、(2)一般式 (II※50※-1)~(II-3) の化合物からなる第2群から選ばれる化

合物を含有することで、駆動電圧を低減させることができ、粘度が比較的小さく、比抵抗や電圧保持率が比較的高いという特徴を有する。特に、一般式 (II-4) ~ (II-10)、一般式 (II-12) ~ (II-16) の化合物はこの効果に優れている。また、一般式 (II-13)、 (II-15)、 (II-17) ~ (II-21) の化合物は、0.5~30%と少量の添加によってこの効果を得ることができ、優れている。

【0035】より具体的には、R²¹は炭素原子数が2~5のアルキル基又はアルケニル基が好ましく、特にアル 10ケニル基を有する化合物を少なくとも1種以上含有させることが好ましい。R²²は炭素原子数2~5のアルキル基、アルケニル基又はアルコキシ基の化合物が好ましい。

【0036】本発明は更に上記ネマチック液晶組成物において、液晶成分A及び液晶成分Bの他に加えることができる液晶成分Cとして、(3)一般式(III-1)~(III-3)

[化9]
$$R^{31}$$
 ([III-1)

$$R^{32}$$
 A Z^{33} $+$ A $-$ (III-2)

$$R^{33}$$
 (Z^{34}) Z^{35} Z^{35} R^{38} (III-3)

【0038】(式中、R³¹~R³³はそれぞれ独立的に炭素原子数2~7の直鎖状アルキル基又はアルケニル基を表わし、R³⁴~R³6はそれぞれ独立的に炭素原子数1~307の直鎖状アルキル基、アルコキシ基、アルケニル基又はアルケニルオキシ基を表わし、Z³¹~Z³⁴はそれぞれ独立的に単結合、-COO-、-C²H₄-又は-C₄Hፄ-を表わし、Z³⁵は単結合又は-COO-を表わし、環Aはシクロヘキサン環又はシクロヘキセン環を表わし、m、n及びpはそれぞれ独立的に0又は1の整数を表わす。)で表わされる化合物からなる第3群から選ばれる化合物を含有することができる。

【0039】本発明の液晶組成物は、液晶成分Cとして、(3)一般式(III-1)~(III-3)の化合物からな 40 る第3群から選ばれる化合物を含有することで、粘度を低減させることができ、比抵抗や電圧保持率が比較的高いという特徴を有する。特に、下記一般式(III-4)~(III-15)

[0040]

【化10】

【0041】(式中、R³¹~R³⁶は前記におけると同じ意味を表わす。)で表わされる化合物が好ましく、R³¹~R³³がアルケニル基である化合物を少なくとも1種以上含有させることにより好ましい効果が得られる。一般式(III-4)~(III-11)及び一般式(III-13)の化合物は、3~30%と少量の添加によってこの効果を得ることができる。

【0042】本発明の液晶組成物は、上記一般式 (I-1) ~ (III-3) で表わされる化合物以外にも、液晶組成物の特性を改善するために、液晶化合物として認識される通常のネマチック液晶、スメクチック液晶、コレステリック液晶などを含有していてもよい。しかしながら、これらの化合物を多量に用いることはネマチック液晶組成物の特性が低減することになるので、添加量は得られるネマチック液晶組成物の要求特性に応じて制限されるものである。

[0043]

【実施例】以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例の組成物における「%」は「重量%」を意味する。

【0044】組成物の化学的安定性は、液晶組成物2gをアンプル管に入れ、真空脱気後窒素置換の処理をして 封入し、150℃、1時間の加熱促進テストを行い、こ 50 の液晶組成物の電圧保持率を測定した。実施例中、測定

した特性は以下の通りである。

[0045]

Tn-I: ネマチック相-等方性液体相転移温度(℃)

T→n: 固体相又はスメクチック相ーネマチック相転

移温度(℃)

Vth : セル厚6μmのTN-LCDを構成した時のしきい

値電圧(V)

ネマチック液晶組成物 No.3-1

18

* ? : 飽和電圧(Vsat)とVthの比

 $\Delta \varepsilon$: 誘電異方性

△n : 複屈折率

n: 20℃での粘度(c.p.)

【0046】(実施例1)

[0047]

【化11】

C_3H_7 $C \equiv C$ OC_2H_5	7.0重量%	
C_4H_9 $C \equiv C$ C_2H_5	9.0重量%	
C ₅ H ₁₁ - ()-C≡C-()-OCH ₃	14.0重量%	
C_5H_{11} $C \equiv C$ OC_2H_5	9.0重量%	
C_3H_7 $C \equiv C$ C_7H_{15}	7.0重量%	
C_3H_7 $C \equiv C - C_2H_5$	8.0重量%	
C_3H_7 — $C=C$ — C_3H_7	8.0重量%	
₽	5.0重量%	
C ₃ H ₇ -	5.0重量%	
C⁴H³ -{\rightarrow}-{\rightarrow}-C≡C-{\rightarrow}-CH3	3.0重量%	
CN	12.0重量%	
L()- ()-cn	13.0重量%	

1を調製し、この組成物の諸特性を測定した。結果は以 下の通りであった。

°C - T_{N-1} : 92.0 $T\rightarrow_N$: -40. \mathcal{L} V_{th} 2. 28 V 1.12 γ

6.0 $\Delta \epsilon$ 0.220 Δn

17.8 с. р.

【0049】このネマチック液晶組成物は、しきい値電 圧が低く、急峻性も文献『高速液晶技術』(63頁、 (株)シーエムシー社出版) 中に示された液晶表示の光学 的急峻性の限界値である1.12と同じ値を示してい ※50

【0048】からなるネマチック液晶組成物No.3- ※る。従って、このNo.3-1の液晶組成物は高時分割 駆動に有用であることが理解できる。

> 【0050】更にまた、セル厚dが2.3 µ mのTN-LCD 40 を構成してその表示特性を測定したところ、しきい値電 圧が1.89V、応答速度が0.8msecを示す液晶 表示装置が得られた。

【0051】(実施例2)

[0052]

【化12】

	19	
ネマチ・	ック液晶組成物	No.3-2

イマアック/X自MLIX代初 NU.3-2			るよう
C_3H_7 $ C \equiv C$ $ C_2H_5$	9.0重量%		[0
C ₄ H ₉	9.0重量%		【化 *
C ₅ H ₁₁ -{-}-C≡C-{-}-OCH ₃	9.0重量%		C₃H C₃H
C ₅ H ₁₁ - C ≡C- C -OC ₂ H ₅	9.0重量%	10	C₃H
C ₅ H ₁₁ - C≡C - C ₂ H ₅	8.0重量%		C ₅ F
	12.0重量%		C ₃ H
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.0重量%		C ₅ H
	10.0重量%		<i>5</i>
- <b>√</b> -( <b>)</b> -( <b>)</b> -( <b>c</b> )	12.0重量%	20	C₃H
C₂H₅ -{\rightarrow}-{\rightarrow}-\coo-{\rightarrow}-coo	6.0重量%		СзН
C₃H₁	6.0重量%		<i>F</i>
【0053】からなるネマチック液晶組成	-		C₃H

【0053】からなるネマチック液晶組成物No.3-2を調製し、この組成物の諸特性を測定した。結果は以下の通りであった。

【0054】また、セル厚dが $2.5\mu$ mのTN-LCDを構成してその表示特性を測定したところ、しきい値電圧が1.10V、応答速度が0.6msecを示す液晶表示装置が得られた。

【0055】このネマチック液晶組成物にカイラル物質「S-811」(メルク社製)を添加して混合液晶を調 40製した。一方、対向する平面透明電極上に「サンエバー610」(日産化学社製)の有機膜をラビングして配向膜を形成し、ツイスト角220度のSTN-LCD表示用セルを作製した。上記の混合液晶をこのセルに注入して液晶表示装置を構成し、表示特性を測定した。その結果、しきい値電圧が低く、高時分割特性に優れ、速応答性が改善されたSTN-LCD表示特性を示す液晶表示装置が得られた。

【0056】なお、カイラル物質はカイラル物質の添加が理解できる。またこの組成物を構成材料とするアクテによる混合液晶の固有らせんピッチPと表示用セルのセイブ・マトリクス液晶表示装置を作製したところ、漏れル厚dが、 $\Delta n \cdot d = 0$ . 85、d/P = 0. 53とな 50 電流が小さくフリッカの発生しない優れたものであるこ

るように添加した。	
【0057】(実施例3)	
[0058]	
【化13】 ネマチック液晶組成物 No.3-3	
C ₃ H ₇ - C≡C - CH ₃	5.0窟量%
$C_3H_7 - C = C - C_2H_5$	5.0重量%
$C_3H_7$ $C \equiv C$ $C_4H_9$	5.0重量%
$C_5H_{11}$ $C\equiv C$ $C_2H_5$	5.0重量%
$C_3H_7$ $C=C$ $OC_2H_5$	10.0重量%
C ₅ H ₁₁ - C≡C- F	10.0重量%
F	10.0重量%
C₃H₁- <b>(</b>	10.0重量%
C ₃ H ₇ - C≡C - CH ₃	5.0重量%
C≡C-C→CH ₃	5.0重量%
C₃H₁ - C=C- CH₃	5.0重量%
C₃H₁-()-(	5.0重量%
€OCF3	10.0重量%

【0059】からなるネマチック液晶組成物No.3-3を調製し、この組成物の諸特性を測定した。結果は以下の通りであった。

10.0重量%

 $T_{N-I}$  : 88.0 °C  $T_{N-I}$  : −50. °C  $V_{th}$  : 2.27 V  $\Delta \varepsilon$  : 5.0  $\Delta n$  : 0.200  $\eta$  : 16.5 c.p.

テスト前の電圧保持率 : 99.5% 加熱促進テスト後電圧保持率 : 98.0% 【0060】このネマチック液晶組成物は加熱促進テスト後の電圧保持率が高いことから、熱に安定であることが理解できる。またこの組成物を構成材料とするアクティブ・マトリクス液晶表示装置を作製したところ、漏れ

$\boldsymbol{\gamma}$	2

 とが確認できた。 【0061】(実施例4)			【0063】からなるネマチック液晶組成物No.3- 4を調製し、この組成物の諸特性を測定した。結果は以
[0062]			下の通りであった。
【化14】			T _N -1 : 98.1 ℃
ネマチック液晶組成物 No.3-4			T→N : -35. ℃
C ₃ H ₇ - <b>√</b> -C≡C- <b>√</b> -CH ₃	0.005.00		Vth : 1.99 V
C3H7 - C=C- FCH3	8.0重量%		r : 1.12
C₃H₁-⟨¯҇}-C≡C-⟨¯҇⟩-C₂H₅	7.0篇量%		$\Delta \varepsilon$ : 7.9
	7.0重压76		$\Delta n$ : 0.230
C ₃ H ₇ -{}-C≣C-{}-CH ₃	10.0重量%	10	η : 23.0 c.p.
CH₃	•		テスト前の電圧保持率 : 99.4%
C ₃ H ₇ -{\}-{\}-\@\}-C≡C-{\}\\$CH ₃	3.0重量%		加熱促進テスト後電圧保持率 : 98.1%
F			【0064】このネマチック液晶組成物は加熱促進テス
C₃H₁-(-)-(	6.0重量%		ト後の電圧保持率が高いことから、熱に安定であること
F	0.032270		が理解できる。またこの組成物を構成材料とするアクテ
			ィブ・マトリクス液晶表示装置を作製したところ、漏れ
C₄H₃ -{_}-{_}-C⊞C-{}-CH₃	6.0重量%		電流が小さくフリッカの発生しない優れたものであるこ
F F			とが確認できた。
C₃H₁ – <b>( )</b> – <b>( )</b> -C≡C– <b>( )</b> -F	7.0重量%		【0065】このネマチック液晶組成物は、しきい値電
F		.20	圧が低く、急峻性も文献『高速液晶技術』(63頁、
			(株)シーエムシー社出版)中に示された液晶表示の光学
C₄H₃ -{}-{}-C≣C-{}-F	7.0重量%		的急峻性の限界値である1.12と同じ値を示してい る。従って、高時分割駆動に有用であることが理解でき
F F	-		
C₃H₁−⟨¯⟩−⟨¯⟩−С⊞С−⟨¯⟩−F	9.0重量%		る。 【0066】 (実施例5)
F			[0067]
			【化15】
C ₃ H ₇ <del>-</del> (_) <del>-</del> (_) <del>-</del> C≣C <del>- (_)-</del> F	3.0重量%		rici >1
F F			
C ₄ H, -{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac{1}{2}}-{\$\frac}-{\frac{1}{2}}-{\$\frac{1}{2}}-{\frac{1}{2}}-{\frac}-{\frac{1}{2}	9.0重量%	30	
C3F7	9.0里玉乃		
ου Α΄ Α ο-ο Α΄ ε	9.0重量%		
C3H7 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	9.0鼠風光		
	4 6学星0/		
	4.0董量%		
	, ast = 0.		
$C_3H_7$ - $C_3$ - $F$	4.0重量%		
0.0			
€C³H²	8.0重量%		

C ₃ H ₇ -√C≡C-√}OC ₂ H ₅	11.0重量%
$C_4H_9$ $C \equiv C$ $OC_2H_5$	11.0重量%
C ₅ H ₁₁ - C≡C - C→OCH ₃	11.0重量%
$C_5H_{11}$ $-C \equiv C - C_2H_5$	11.0重量%
$C_3H_7$ $C \equiv C$ $C_2H_5$	6.0重量%
$C_3H_7$ $C \equiv C$ $C_3H_7$	5.0重量%
€	5.0重量%
$C_3H_7 - C_2H_4 - C_2H_5$	5.0重量%
<b>√</b> -CH ₃	4.0重量%
$C_3H_7 - C_2H_4 - C_2H_5$	4.0重量%
C ₃ H ₇ - C ₅ H ₁₁	2.0重量%
С ₃ н ₇ -О-С	10.0重量%
С _Б Н ₁₁ - С	10.0重量%
C ₃ H ₇ -{\F C≡C-{\F F }	5.0重量%

【0068】からなるネマチック液晶組成物No.3-5を調製し、この組成物の諸特性を測定した。結果は以下の通りであった。

 $T_{N-I}$  : 90.3 °C  $T→_N$  : -40. °C  $V_{th}$  : 2.40 V Δε : 3.9 Δn : 0.222

 $\eta$  : 14.9 c.p.

テスト前の電圧保持率 : 99.6%

加熱促進テスト後電圧保持率 : 98.4% 【0069】このネマチック液晶組成物は加熱促進テスト後の電圧保持率が高いことから、熱に安定であることが理解できる。またこの組成物を構成材料とするアクティブ・マトリクス液晶表示装置を作製したところ、漏れ電流が小さくフリッカの発生しない優れたものであることが確認できた。

【0070】また、セル厚dが $2.2\mu$ mのTN-LCDを構 ク液晶表示装置に用いることができる。また、液晶層と成してその表示特性を測定したところ、しきい値電圧が*50 位相差板の複屈折性でカラー表示をする液晶表示素子を

*2.01V、応答速度が0.5msecを示す液晶表示 装置が得られた。

【0071】(実施例6) No. 3-1~3-5のネマチック液晶組成物の複屈折率の波長分散を測定したところ、光の波長650nmに対する400nmでの比が1.15以上であった。この液晶材料は、光の波長の違いによってより大きな位相差が現れていることから、カラーフィルター層を用いないでカラー表示を行う、液晶40と位相差板の複屈折性を利用した新規反射型カラー液晶表示方式に有用なものである。

#### [0072]

【発明の効果】本発明のネマチック液晶組成物は、複屈 折率Δ nが大きく、広い温度範囲でネマチック相を示 し、また、電圧保持率が高く、化学的安定性が高いこと が明らかである。従って、本発明のネマチック液晶組成 物は、アクティブ・マトリクス形、ツイスティッド・ネ マチックあるいはスーパー・ツイスティッド・ネマチック液晶表示装置に用いることができる。また、液晶層と 位相差板の複屈折性でカラー表示をする液晶表示素子を (14)

特開平9-151373

技術表示箇所

25

26

提供することができる。特に、大きな複屈折率により液 晶層の厚みdを低減でき応答特性を改善でき、特に情報 量の多い表示特性を提供できる。

フロントページの続き

G02F 1/13

(51) Int. Cl.⁶

識別記号

500

庁内整理番号

FΙ

G02F 1/13

500