

Série C - session 2014 : exercice partie B - corrigé

Arithmétique

1 - Montrons que (x + 6 y)² - x^2 est divisible par 12. On a (x + 6 y)² - x^2 = 12 (xy + 3 y³), donc c'est divisible par 12.

Montrons que $(x + 6y)^4 - x^4$ est divisible par 24. $(x + 6y)^4 - x^4 = [(x + 6y)^2 - x^2][(x + 6y)^2 + x^2]$ $= [12(xy + 3y^3)][2(x^2 + 6xy + 18y^2]$ $= 24(xy + 3y^3)(x^2 + 6xy + 18y^2)$

Donc c'est divisible par 24

2 - Résolution dans Z de $3x \equiv 2 \pmod{7}$

On a $Z / 7Z = \{\overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6}\}$

×	ō	<u>-</u>	2	3	4	5	6
3 x	0	3	6	2	5	$\overline{1}$	4

D'où $x \in \overline{3}$, et la solution est x = 7k + 3 ($k \in \mathbb{Z}$).

3 - détermination de b

$$(\overline{12})_{b} \times (\overline{22})_{b} = (\overline{314})_{b}$$

Le symbole 4 figure dans l'équation, donc b > 4

On a
$$(\overline{12})_b = 1.b + 2$$

$$(\overline{22})_b = 2.b + 2$$

$$(\overline{314})_b = 3.b^2 + 1.b + 4$$

Alors $(\overline{12})_b \times (\overline{22})_b = (\overline{314})_b$ équivaut à (b+2)(2b+2) = (3b²+b+4)

$$2b^2 + 6b + 4 = 3b^2 + b + 4$$

$$b^2 - 5b = 0$$
 implique $b = 0$ ou $b = 5$

donc b = 5