5.5 线性方程组解集的结构

对于线性方程组

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{5.4}$$

我们将讨论解的存在性、解的唯一性,以及解的"形状".

线性方程组解的存在性和唯一性

定理 5.5.1. 设 $A \in F^{m \times n}$, 而 $x \in F^n$ 和 $b \in F^m$ 为列向量. 记 $\overline{A} = (A \ b)$ 为相应的增广矩阵. 则

- (1) 方程组 (5.4) 有解 $\Leftrightarrow \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\overline{\mathbf{A}});$
- (2) 方程组 (5.4) 有解且唯一 \Leftrightarrow rank(\mathbf{A}) = rank($\overline{\mathbf{A}}$) = n.

证明. 设 $a_1, \ldots, a_n \in F^m$ 为 A 的列向量.

(1) 我们有

方程组
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 有解 \Leftrightarrow 存在 $\mathbf{x} = (x_1, \dots, x_n)^\mathsf{T} \in F^n$ 使得 $x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n = \mathbf{b}$ \Leftrightarrow \mathbf{b} 可以由 $\mathbf{a}_1, \dots, \mathbf{a}_n$ 线性表示
$$\xrightarrow{\text{定理 5.3.22(5)}} \operatorname{rank}(\mathbf{a}_1, \dots, \mathbf{a}_n) = \operatorname{rank}(\mathbf{a}_1, \dots, \mathbf{a}_n, \mathbf{b})$$

$$\xrightarrow{\text{列秩等于秩}} \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\overline{\mathbf{A}}).$$

(2) 我们有

方程组
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 有唯一解 $\Leftrightarrow \mathbf{b}$ 可由 $\mathbf{a}_1, \dots, \mathbf{a}_n$ 线性表示且表示唯一
$$\stackrel{\text{引理 } 5.4.4}{\Longleftrightarrow} \mathbf{b} \in \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \text{ 且 } \mathbf{a}_1, \dots, \mathbf{a}_n \text{ 线性无关}$$
 $\Leftrightarrow \operatorname{rank}(\overline{\mathbf{A}}) = \operatorname{rank}(\mathbf{A}) \text{ 且矩阵 } \mathbf{A} \text{ 列满秩}$ $\Leftrightarrow \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\overline{\mathbf{A}}) = n.$

推论 5.5.2. 关于 n 个未知元的齐次线性方程组 Ax=0 总有零解. 它有非零解的充要 数材推论 5.5.1 条件是 $\mathrm{rank}(\boldsymbol{A}) < n$. 特别地, 若 \boldsymbol{A} 是 n 阶方阵, 则齐次线性方程组有非零解的充要条 件是 $\det(\boldsymbol{A}) = 0$.

齐次线性方程组解集的结构

定理 5.5.3. 关于 n 个未知元的齐次线性方程组 Ax = 0 的解的全体

$$V = \{ \boldsymbol{x} \in F^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0} \}$$

是 F^n 的子空间, 满足 $\dim(V) = n - \operatorname{rank}(\mathbf{A})$, 即

解集空间的自由度 = 全空间的维数 - 约束条件的维数.

证明. 我们已知 V 包含零向量, 从而非空. 若 $x, y \in V$, Ax = 0 = Ay. 此时, 对于任意 $\lambda \in F$, 有 A(x + y) = Ax + Ay = 0, 以及 $A(\lambda x) = \lambda Ax = \lambda 0 = 0$. 故 $V \notin F^n$ 的子空间.

设 $\operatorname{rank}(\boldsymbol{A}) = r$. 于是, 存在可逆矩阵 \boldsymbol{P} 和 \boldsymbol{Q} 使得 $\boldsymbol{A} = \boldsymbol{P} \begin{pmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} \boldsymbol{Q}$. 此时,

$$Ax = 0 \Leftrightarrow Pegin{pmatrix} I_r & O \ O & O \end{pmatrix}Qx = 0 \Leftrightarrow egin{pmatrix} I_r & O \ O & O \end{pmatrix}Qx = 0.$$

若记 $\mathbf{y} = \mathbf{Q}\mathbf{x} = (y_1, \dots, y_n)^\mathsf{T}$,则

$$\mathbf{0} = \begin{pmatrix} \mathbf{I}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q} \mathbf{x} = \begin{pmatrix} \mathbf{I}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{y} = (y_1, \dots, y_r, 0, \dots, 0)^\mathsf{T}$$

这说明 Ax = 0 等价于 $y_1 = \cdots = y_r = 0$. 换言之, $V = \{x \mid Qx \in \langle e_{r+1}, \dots, e_n \rangle\} = \langle Q^{-1}e_{r+1}, \dots, Q^{-1}e_n \rangle$. 另外, e_{r+1}, \dots, e_n 线性无关, 而 Q^{-1} 可逆, 故 $Q^{-1}e_{r+1}, \dots, Q^{-1}e_n$ 也线性无关. 从而, $Q^{-1}e_{r+1}, \dots, Q^{-1}e_n$ 是空间 V 的一组基. 特别地, $\dim(V) = n - r$.

定义 5.5.4. 上面的子空间 V 称为齐次线性方程组 Ax = 0 的解空间, 也被称为系数矩阵 A 的零空间 (并被记作 N(A) 或 Null(A)). V 的任意一组基称为该方程组的基础解系. 显然, 一般情形下, 基础解系并不唯一.

例 5.5.5. 求齐次线性方程组的通解:

$$\begin{cases} x_1 + 3x_2 - 5x_3 - x_4 + 2x_5 = 0 \\ 2x_1 + 6x_2 - 8x_3 + 5x_4 + 3x_5 = 0 \\ x_1 + 3x_2 - 3x_3 + 6x_4 + x_5 = 0 \end{cases}$$

证明. 作初等行变换, 我们有

系数矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -5 & -1 & 2 \\ 2 & 6 & -8 & 5 & 3 \\ 1 & 3 & -3 & 6 & 1 \end{pmatrix} \xrightarrow{\text{(计算留作热身题)}} \begin{pmatrix} 1 & 3 & 0 & 33/2 & -1/2 \\ 0 & 0 & 1 & 7/2 & -1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

故 $rank(\mathbf{A}) = 2$, 从而基础解系的长度为 5-2 = 3. x_1, x_3 是主元, 从而可以选取 x_2, x_4, x_5 为自由元. 此时, 方程组可等价地化为

$$\begin{cases} x_1 = -3x_2 - \frac{33}{2}x_4 + \frac{1}{2}x_5, \\ x_3 = -\frac{7}{2}x_4 + \frac{1}{2}x_5. \end{cases}$$

若分别令 $(x_2, x_4, x_5)^{\mathsf{T}}$ 为 $(1, 0, 0)^{\mathsf{T}}, (0, 1, 0)^{\mathsf{T}}, (0, 0, 1)^{\mathsf{T}}$, 我们可以相应得到 $(x_1, x_3)^{\mathsf{T}}$ 分别 为 $(-3, 0)^{\mathsf{T}}, (-33/2, -7/2)^{\mathsf{T}}, (1/2, 1/2)^{\mathsf{T}}$. 因此,一组基础解系为

$$\boldsymbol{\eta}_1 = (-3, 1, 0, 0, 0)^\mathsf{T}, \quad \boldsymbol{\eta}_2 = (-33/2, 0, -7/2, 1, 0)^\mathsf{T}, \quad \boldsymbol{\eta}_3 = (1/2, 0, 1/2, 0, 1)^\mathsf{T}.$$

而方程组的通解为 $x = c_1 \eta_1 + c_2 \eta_2 + c_3 \eta_3$, 其中 c_1, c_2, c_3 是任意常数.

例 5.5.6. 若矩阵 $A_{m \times n}$ 和 $B_{n \times s}$ 满足 AB = O, 则 $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.

证明. (思路一) 利用推论 4.5.17 中的不等式, 我们有

$$\operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B}) - n \le \operatorname{rank}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{rank}(\boldsymbol{O}) = 0.$$

(思路二) 对于矩阵 \boldsymbol{B} 按列分块 $\boldsymbol{B} = \begin{pmatrix} \boldsymbol{b}_1 & \cdots & \boldsymbol{b}_s \end{pmatrix}$. 则 $\boldsymbol{O} = \boldsymbol{A}\boldsymbol{B} = \boldsymbol{A} \begin{pmatrix} \boldsymbol{b}_1 & \cdots & \boldsymbol{b}_s \end{pmatrix} = \begin{pmatrix} \boldsymbol{A}\boldsymbol{b}_1 & \cdots & \boldsymbol{A}\boldsymbol{b}_s \end{pmatrix}$. 从而对于任意的 i, 有 $\boldsymbol{A}\boldsymbol{b}_i = \boldsymbol{0}$. 这说明列向量 $\boldsymbol{b}_1, \dots, \boldsymbol{b}_s$ 是齐次 线性方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的解. 从而 $\mathrm{rank}(\boldsymbol{b}_1, \dots, \boldsymbol{b}_s) \leq$ 解空间的维数, 即, $\mathrm{rank}(\boldsymbol{B}) \leq n - \mathrm{rank}(\boldsymbol{A})$.

例 5.5.7. 设 \boldsymbol{A} 是 $m \times n$ 的实矩阵. 证明: $\operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A})$.

证明. 在数域 $F=\mathbb{R}$ 上, 我们分别考虑齐次线性方程组 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 与 $\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x}=\mathbf{0}$. 我们证明它们的解空间相同:

- (1) 若 Ax = 0, 显然有 $A^{T}Ax = 0$;
- (2) 若 $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{0}$, 则 $\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{0}$. 而 $\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^{\mathsf{T}} (\mathbf{A} \mathbf{x}) = \|\mathbf{A} \mathbf{x}\|^2$, 是向量模长的平方.* 从而 $\|\mathbf{A} \mathbf{x}\| = 0$, 即 $\mathbf{A} \mathbf{x} = \mathbf{0}$.

^{*}对于 \mathbb{R}^n 中的向量 $\boldsymbol{x} = (x_1, \dots, x_n)^\mathsf{T}$,我们一般定义其向量模长为 $\|\boldsymbol{x}\| \coloneqq (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. 显然, $\boldsymbol{x} = \boldsymbol{0}$ 当且仅当 $\|\boldsymbol{x}\| = 0$.

此时,由于解空间相同,它们的空间维数相等,即 $n - \text{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) = n - \text{rank}(\boldsymbol{A})$,从而 $\text{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) = \text{rank}(\boldsymbol{A})$.

注 5.5.8. 在上面的例子中, 若 A 是 $m \times n$ 维复矩阵, 用类似地方法, 我们可以证明: $\operatorname{rank}(\overline{A}^{\mathsf{T}}A) = \operatorname{rank}(A)$. 其中用到了对矩阵取复共轭运算. 另一方面, 若 A 是 $m \times n$ 维复矩阵, 我们一般不再有 $\operatorname{rank}(A^{\mathsf{T}}A) = \operatorname{rank}(A)$. 比如, 我们可以取 $A = (1,i)^{\mathsf{T}}$.

例 5.5.9. 设 $A \neq m \times n$ 的实矩阵, $b \neq m$ 维实的列向量. 证明: 关于 x 的线性方程组 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ 必有解.

证明. 只需证明矩阵的秩 $rank(\mathbf{A}^{\mathsf{T}}\mathbf{A}, \mathbf{A}^{\mathsf{T}}\mathbf{b}) = rank(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. 为此, 我们只需注意到

$$\operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}, \boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}) \underbrace{\geq}_{\text{3-per}} \operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}),$$

以及

$$\operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A},\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}) = \operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}(\boldsymbol{A},\boldsymbol{b}))$$
 \leq $\operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}) = \operatorname{rank}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}).$

习题 5.5.10. 求解下列含参数 λ 的线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1\\ (\lambda^2 + 1)x_1 + 2\lambda x_2 + (\lambda + 1)x_3 = \lambda + 1\\ x_1 + x_2 + \lambda x_3 = 1\\ 2x_1 + (\lambda + 1)x_2 + (\lambda + 1)x_3 = 2 \end{cases}$$

习题 5.5.11. 设 $\mathbf{A} = (a_{ij})$ 为 n 阶实方阵, 其主对角线上元素为正数, 而其余元素全为 作业 负数, 并满足每行元素之和均为 0. 证明: $\mathrm{rank}(\mathbf{A}) = n - 1$.

非齐次线性方程组解集的结构 我们有如下的事实: 若 γ_1, γ_2 是非齐次的线性方程组 Ax = b 的任意两个解, 而 γ_0 是对应的齐次方程组 Ax = 0 的解, 则

- (1) $\gamma_1 \gamma_2$ 是齐次方程组 Ax = 0 的解,
- (2) $\gamma_1 + \gamma_0$ 是方程组 Ax = b 的解.

其验证很简单:

$$egin{aligned} oldsymbol{A}(oldsymbol{\gamma}_1-oldsymbol{\gamma}_2) &= oldsymbol{A}oldsymbol{\gamma}_1-oldsymbol{A}oldsymbol{\gamma}_2 &= oldsymbol{b}-oldsymbol{b} &= oldsymbol{0}, \ oldsymbol{A}(oldsymbol{\gamma}_1+oldsymbol{\gamma}_0) &= oldsymbol{A}oldsymbol{\gamma}_1+oldsymbol{A}oldsymbol{\gamma}_0 &= oldsymbol{b}+oldsymbol{0} &= oldsymbol{b}, \end{aligned}$$

定理 5.5.12. 若非齐次线性方程组 Ax=b 的解集为 W, γ 是方程组 Ax=b 的一个 $\frac{8}{5.5.3}$ 特解, 而对应的齐次线性方程组 Ax=0 的解空间为 V, 则

$$W = \gamma + V := \{ \gamma + \alpha \mid \alpha \in V \}.$$

- 注 5.5.13. (1) 在几何上来看, W 是一个线性空间的过点 γ 的平移, 这被称为一个仿射空间. 一般而言, 我们不会将其简称为一个空间.
 - (2) 若 $\alpha_1, \ldots, \alpha_{n-r}$ 是 V 的一组基 (即齐次线性方程组的一组基础解系), 则

$$W = \left\{ \left. \gamma + \sum_{i=1}^{n-r} t_i \alpha_i \, \right| \, t_i \in F \, \right\}.$$

(3) 齐次方程组 Ax = 0 有时也被称为线性方程组 Ax = b 的导出组.

例 5.5.14. 已知 $\alpha_1 = (0,1,0)^{\mathsf{T}}$ 和 $\alpha_2 = (-3,2,2)^{\mathsf{T}}$ 是线性方程组

$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ 3x_1 + x_2 + 4x_3 = 1 \\ ax_1 + bx_2 + cx_3 = d \end{cases}$$

的两个解, 求该方程组的通解.

解. 该线性方程组的系数矩阵为

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ a & b & c \end{pmatrix}.$$

由于该方程组至少有两个不同的解, 其对应的线性方程组有非零解, 从而 $\operatorname{rank}(\boldsymbol{A}) < 3$. 另一方面, \boldsymbol{A} 有非零的 2 阶子式 $|\frac{1}{3} \frac{-1}{1}| = 4 \neq 0$, $\operatorname{rank}(\boldsymbol{A}) \geq 2$. 这说明 $\operatorname{rank}(\boldsymbol{A}) = 2$, 从而方程组所对应的齐次方程组的解空间为 3-2=1 维的. 不难看出 $\boldsymbol{\alpha}_3 \coloneqq \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_1 = (-3,1,2)^\mathsf{T}$ 是该解空间的一个基础解系. 此时可知, 原线性方程组有通解

$$x = \alpha_1 + k\alpha_3 = (0, 1, 0)^{\mathsf{T}} + k(-3, 1, 2)^{\mathsf{T}},$$

其中 k 是任意常数.

例 5.5.15. 已知有 3 维列向量组 $\alpha_1 = (1,2,-1)^\mathsf{T}$, $\alpha_2 = (-1,-1,2)^\mathsf{T}$, $\alpha_3 = (2,a,1)^\mathsf{T}$ 和 $\boldsymbol{\beta} = (1,2,b)^\mathsf{T}$.

- (1) a, b 为何值时, β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示?
- (2) a, b 为何值时, β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示?
- (3) a, b 为何值时, β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但是表示并不唯一?

证明. 考虑关于 x_1, x_2, x_3 的非齐次线性方程组

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + x_3\boldsymbol{\alpha}_3 = \boldsymbol{\beta}.$$

该方程组的增广矩阵

$$\overline{\mathbf{A}} = (\mathbf{A}, \boldsymbol{\beta}) = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}) = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 2 & -1 & a & 2 \\ -1 & 2 & 1 & b \end{pmatrix}$$

$$\xrightarrow{-2r_{1} \to r_{2}}{r_{1} \to r_{3}}} \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & a - 4 & 0 \\ 0 & 1 & 3 & b + 1 \end{pmatrix} \xrightarrow{-r_{2} \to r_{3}} \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & a - 4 & 0 \\ 0 & 0 & 7 - a & b + 1 \end{pmatrix}$$

由此看出, $\operatorname{rank}(\overline{\boldsymbol{A}}) \geq \operatorname{rank}(\boldsymbol{A}) \geq 2$, 且 $\operatorname{rank}(\boldsymbol{A}) = 2$ 的充要条件为 a = 7, 而 $\operatorname{rank}(\overline{\boldsymbol{A}}) = 2$ 的充要条件是 a = 7 且 b = -1.

- (1) 显然, $\boldsymbol{\beta}$ 不能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示, 当且仅当方程组无解, 当且仅当 $\mathrm{rank}(\boldsymbol{A}) = 2 < \mathrm{rank}(\overline{\boldsymbol{A}}) = 3$, 即 a = 7 且 $b \neq -1$.
- (2) $\boldsymbol{\beta}$ 可以由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 唯一地线性表示, 当且仅当方程组有唯一解, 当且仅当 $\mathrm{rank}(\boldsymbol{A}) = \mathrm{rank}(\boldsymbol{\overline{A}}) = 3$, 即 $a \neq 7$.
- (3) $\boldsymbol{\beta}$ 可以由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,但是表示方式并不唯一,该情况出现的充要条件是方程组有解但不唯一,而这当且仅当 $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\overline{\boldsymbol{A}}) = 2$,即 a = 7 且 b = -1.

例 5.5.16. 讨论 a,b 取何值时方程组无解? 何时方程组有解? 在有解时, 求其通解.

$$\begin{cases} x_1 + ax_2 + x_3 = 2 \\ x_1 + x_2 + 2x_3 = 3 \\ x_1 + x_2 + bx_3 = 4 \end{cases}$$

解. 对该线性方程组的增广矩阵作初等行变换, 我们得到

$$\overline{A} = (A, b) = \begin{pmatrix} 1 & a & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & b & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & a & 1 & 2 \\ 1 - a & 1 & 1 \\ b - 2 & 1 \end{pmatrix}.$$

由此可以看出, $\operatorname{rank}(\overline{\boldsymbol{A}}) \geq \operatorname{rank}(\boldsymbol{A}) \geq 2$, 并且 $\operatorname{rank}(\overline{\boldsymbol{A}}) = 2$ 的充要条件是 a = 1 且 b = 3, 而 $\operatorname{rank}(\boldsymbol{A}) = 2$ 的充要条件是 a = 1 或 b = 2.

- (1) 当 b=2 或者 a=1 且 $b\neq 3$ 时, $\operatorname{rank}(\overline{\boldsymbol{A}})=3>\operatorname{rank}(\boldsymbol{A})=2$, 从而方程组无解.
- (2) 当 a=1 且 b=3 时, $rank(\overline{A})=rank(A)=2<3$, 故方程组有无穷组解. 此时, 方程组可以等价地化为

$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ x_3 = 1 \end{cases}$$

于是方程组的通解为

$$x_1 = 1 - t$$
, $x_2 = t$, $x_3 = 1$ $(t \in \mathbb{R})$.

(此处有特解 $\gamma_0 = (1,0,1)^\mathsf{T}$, 而相应的齐次方程组的基础解系为 $\alpha = (1,-1,0)^\mathsf{T}$. 从而, 通解可以表示成 $x = \gamma_0 + t\alpha$, 其中 t 为任意实数)

(3) 当 $a \neq 1$ 且 $b \neq 2$ 时, rank(\overline{A}) = rank(A) = 3, 从而方程组有唯一解. 可以解出,

$$x_1 = \frac{3ab - 2b - 8a + 5}{(a - 1)(b - 2)}, \quad x_2 = -\frac{b - 3}{(a - 1)(b - 2)}, \quad x_3 = \frac{1}{b - 2}.$$

5.6 一般线性空间

在这一节, F 仍然是数域. 我们将 F 上的 n 维数组空间 F^n 推广, 考虑定义了加法和数乘的非空集合.

一般线性空间的定义

例 5.6.1. $F^{m \times n}$ 是数域 F 上所有的 $m \times n$ 矩阵构成的集合, 有自然的加法和数乘运算, 即矩阵的加法与数乘.

例 5.6.2. 给定非负整数 n 和数域 F, 考虑集合

$$F_n[x] := \{ a_0 + a_1 x + \dots + a_n x^n \mid a_0, a_1, \dots, a_n \in F \}.$$

这是 F 上次数不超过 n 的以 F 为系数的多项式的全体. 这个非空集合上定义了**多项式的加法**:

$$\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i.$$
 (系数的加法)

也定义了多项式的数乘:

$$\lambda \sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} (\lambda a_i) x^i. \qquad (系数的乘法)$$

该集合 (相对于加法的) 的零元:

$$0 = \sum_{i=0}^{n} a_i x^i \Leftrightarrow a_0 = a_1 = \dots = a_n = 0. \qquad (零多项式)$$

 $F_n[x]$ 对 "加法" 和 "数乘" 都**运算封闭**,即对任意的 $f,g \in F_n[x]$ 和任意的 $\lambda \in F$ 总有 $f+g, \lambda f \in F_n[x]$.

定义 5.6.3. 什么叫作域 F 上的线性空间或者向量空间? 学生自学定义. 要求结合刚才 数f 5.6.1 的例子和之前的 f 维数组空间 f f 体会这些运算规律.

学生自学线性空间的基本性质. 教材 P143.

- **例 5.6.4** (线性空间的例子). (1) 数组空间 F^n 任意的线性子空间依照数组的加法与乘法构成 (依上面抽象定义的) 一个线性空间.
 - (2) 例 5.6.1 中数域 F 上所有的 $m \times n$ 矩阵构成的集合 $F^{m \times n}$ 依照矩阵的加法和数乘构成一个线性空间.
 - (3) 例 5.6.2 中的数域 F 上次数不超过 n 的以 F 为系数的多项式的全体 $F_n[x]$ 依照 多项式的加法与数乘构成一个线性空间. 更一般地, 以 F 为系数的多项式的全体 $F[x] = \bigcup_{n \geq 0} F_n[x]$ 依照多项式的加法与数乘构成一个线性空间,并且我们有如下的包含关系:

$$F = F_0[x] \subsetneq F_1[x] \subsetneq F_2[x] \subsetneq \cdots \subsetneq F[x]. \tag{5.5}$$

(4) 闭区间 [a,b] 上 n 阶连续可导函数 (n 阶导数是连续函数) 的全体 $C^n[a,b]$, 对于函数的加法及数与函数的乘法. 构成实数域 \mathbb{R} 上的线性空间. 并有如下包含关系:

$$C[a,b] = C^{0}[a,b] \supseteq C^{1}[a,b] \supseteq C^{2}[a,b] \supseteq \cdots \supseteq C^{n}[a,b] \supseteq \cdots \supseteq C^{\infty}[a,b], \quad (5.6)$$

其中 $C^{\infty}[a,b] := \bigcap_{n>0} C^n[a,b]$ 是 [a,b] 上无穷阶可导函数的全体.

- (5) 复数的全体 \mathbb{C} 上有自然定义的加法. 另外, 对于复数 $z=a+bi\in\mathbb{C}$, 其中 $a,b\in\mathbb{R}$, 我们熟知 $\lambda z=\lambda a+\lambda bi\in\mathbb{C}$, 其中 $\lambda\in\mathbb{R}$. 不难看出, \mathbb{C} 在这些运算下构成实数域 \mathbb{R} 上的线性空间.
- **例** 5.6.5 (不是线性空间的例子). (1) \mathbb{R}^+ 对于通常实数的加法和乘法, 不构成 \mathbb{R} 上的线性空间. 它对于数乘不封闭: 可以考虑乘以 -1.
 - (2) 设 $V \not\in F^n$ 中的与某个非零向量不平行的所有向量的全体, 在向量的通常加法和数乘下, 不构成 F 上的线性空间. 例如选取 $F = \mathbb{R}$, $V \not\in \mathbb{R}^2$ 中不与向量 (1,0) 平行的所有向量的全体. 则 (1,1) 与 (0,-1) 都是 V 中的向量, 可是它们的向量和为 (1,0), 不在 V 中.
 - (3) 次数恰好等于 n 的全体实系数多项式,在多项式的加法与数乘多项式的运算下一般不是线性空间.它对于加法不封闭,例如 $n \ge 2$ 时, $f(x) = x^n + x$, $g(x) = 1 x^n$, 则 f(x) + g(x) = x + 1 的次数不再恰好是 n 了.
 - (4) 数域 F 上的全体二阶可逆矩阵的集合, 对于矩阵的加法和数乘矩阵运算不构成线性空间. 它对于数乘不封闭, 任何矩阵乘以 0 后得到零矩阵, 而零矩阵不是可逆矩阵. 另外, 它对矩阵的加法也不是封闭的, 例如可以考虑矩阵 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 的矩阵加法.

学生自学教材 P144 的定义 5.6.2.

- 例 5.6.6. (1) 在等式 (5.5) 中, 对于每个严格包含关系, 前者都是后者的线性子空间.
 - (2) 在等式 (5.6) 中, 对于每个严格包含关系, 后者都是前者的线性子空间.
 - (3) n 阶对称方阵 (symmetric matrix) 的全体

$$\mathrm{SM}_n(F) \coloneqq \left\{ \left. \boldsymbol{A} \in F^{n \times n} \mid \boldsymbol{A}^\mathsf{T} = \boldsymbol{A} \right. \right\}$$

和 n 阶反对称方阵 (anti-symmetric matrix) 的全体

$$\mathrm{AM}_n(F) \coloneqq \left\{ \left. \boldsymbol{A} \in F^{n \times n} \mid \boldsymbol{A}^\mathsf{T} = -\boldsymbol{A} \right. \right\}$$

都是 $F^{n \times n}$ 的子空间.

(4) 设 $V \neq F$ 上的线性空间, $\mathbf{a}_1, \dots, \mathbf{a}_m \in V$, 而 $\lambda_1, \dots, \lambda_n \in F$, 则 $\sum_{i=1}^n \lambda_i \mathbf{a}_i \in V$ 称为 $\mathbf{a}_1, \dots, \mathbf{a}_n$ 的一个线性组合或线性表示. $\mathbf{a}_1, \dots, \mathbf{a}_m$ 生成的子空间

$$\langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_m \rangle \coloneqq \{ \lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2 + \dots + \lambda_m \boldsymbol{a}_m \mid \lambda_i \in F \}$$

是 V 的子空间, 它是由 a_1, \ldots, a_n 的线性组合的全体所构成的.

一般线性空间的理论

定义 5.6.7. 设 V 是数域 F 上的线性空间.

- (a) 给定 $x_1, \ldots, x_n \in V$,若存在不全为零的系数 $\lambda_i \in F$,使得线性组合 $\sum_{i=1}^n \lambda_i x_i = \mathbf{0} \in V$,则称向量组 x_1, \ldots, x_n 线性相关; 否则,则称该向量组线性无关.
- (b) 设 $S \subseteq V$ 为一组非空向量集合, 其中 S 的元素个数可以为无穷多个.
 - (i) 对于给定的向量 $\alpha \in V$, 若存在有限多个向量 $x_1, \ldots, x_n \in S$, 使得 α 可以由 x_1, \ldots, x_n 线性表示, 则称 α 可以由 S 线性表示.
 - (ii) 若 S 的任意非空有限子集都是线性无关的, 则称 S 是线性无关的.

当 S 是一个有限集合时, 上面的定义与前面的有限向量组时的定义一致.

学生自学教材 P144 的定义 5.6.3, 需要注意集合 S 可以为无穷集合.