

설명가능한 AI 기반 평생학습 참여촉진 프로그램 정책: 디지털 전환과 고령사회에서의 시사점

(Explainable AI-Driven Lifelong Learning Policies: Digital and Aging Society Perspectives)

CONTENTS

- I. 연구배경 및 목적
- II. 분석 대상 및 데이터처리
- Ⅲ. 인공지능 이해 및 예측 방법론
- Ⅳ. 성능검증 및 예측결과
- V. 결론 및 향후 방향

조은지¹, 이현서², 유효정², 김경원^{2*}

¹국립대학법인 인천대학교 경영대학 경영학부

² 국립대학법인 인천대학교 글로벌정경대학 무역학부 現 국립대학법인 인천대학교 글로벌정경대학 부교수 前 국립대학법인 인천대학교 글로벌정경대학 조교수 前 삼성전자 및 삼성리서치 글로벌 인공지능센터 데이터사이언티스트

前 대신증권, 한국인터넷진흥원, 금융감독원...

- <u>삼성전자, 솔브레인, 현대모비스, LG에너지솔루션, SKT, S-Oil,</u> <u>삼성화재, 삼성생명, 대우조선해양, 패스트캠퍼스, 한국문화정보원, 디메이트 등</u> 비즈니스 애널리틱스 및 인공지능 의사결정 자문/강의
- 2025 정책갈등의 상황별 대응전략을 위한 뉴스 미디어 AI 여론분석 <한국행정연구원>
- 2024 텍스트 마이닝 기반 아동실태조사 요약 및 대응 분석 <인천여성가족재단>
- 2024 시계열 딥러닝 활용 25년도 KTX 미래 수송수요 예측 <한국철도공사>
- 2024 설명가능한 AI 활용 실시간 개인 기부자 예측 모델 개발 <사랑의열매>
- 2023 AI 기반 갈등관리 빅데이터 구축 및 운영방안 연구 <한국행정연구원>
- 2023 Ageism 공감대 확산을 위한 뉴스 미디어 감성 트랜드 예측 <SK T&C 재단>
- 2022 용산공원의 사회적가치와 지역사회 인프라 연계효과 텍스트 분석 <서울특별시>
- 2020 실시간 광고효과 추론 및 광고 수요자 및 공급자 최적 가격 예측 <삼성리서치>
- 2019 디지털 마케팅 프로모션 효과 증대를 위한 개인화 광고 추천 <삼성리서치>
- 2018 마케팅 채널별 ROI 분석 및 최적 마케팅 투자 포트폴리오 추천 <삼성전자>
- 2017 고객 불만 사전대응 및 감소를 위한 VOC 경보시스템 구축 <삼성전자>
- 2016 개인화화 추천을 위한 빅데이터 기반 고객정보 추론과 사용성 분석 <삼성전자>

80 comShirit

Professor

BASA Lab @ INU

KIM, Kyungwon

Associate Professor

School of International Trade and Business,

College of Commerce and Public Affairs, Incheon National University

(국립대학법인 인천대학교)

Google Scholar

AROUTUS MEMBERS PUBLICATIONS PROJECTS TEACHING Q

RESEARCH INTEREST

[Target Markets]

- Financial & Real Assets: Stock, Futures, Treasury, Commodity, Real Estate, Energy
- Digital Assets: Digital Advertising & Marketing, Fintech, Knowledge
- Interdisciplinary Assets: Public Health, Social Service. Social Economy

[Data Science Applications]

- [Data Analytics for Business] Market Efficiency, Information Equilibrium, Statistical Inference, Decision Making
- [Machine/Deep Learning Applications] Time Series Segmentation, Investment Strategy, Explainable Forecasting

EMPLOYMENT

[2025.03 - Present] Associate Professor, School of International Trade and Business, Incheon National University Incheon, Korea

[2021.03 - 2025.02] Assistant Professor, School of International Trade and Business, Incheon National University, Incheon, Korea

[2018.01 - 2021.02] Data Scientist, BigData Team, Global Al Center, Samsung Research, Seoul, Korea

Business Consulting and Evaluation for Advertising, Digital Marketing, Al Factory, and Demand Forecasting

017.09 - 2017.12] Data Scientist, Data Analytics Lab, Software Center, Samsung Electronics, Seoul, Korea

[2014.04 - 2017.08] Data Scientist (with Military Service), BigData Lab, Division of Visual Display, Samsung Electronics, Suwon, Korea

Data Analysis Design and Platform Operation for Service Optimization, Personal Recommendation, and Warning System

EDUCATION

[2010.09 - 2014.02] Ph.D. in Industrial Engineering, Seoul National University, Seoul, Korea

- Advisor: Woojin Chang (Financial Risk Engineering Lab.)
- Dissertation: An Empirical Study on the Unstable Period Detection in Financial Markets and the Global Transmission of Financial Crisi
- [2008.03 2010.02] M.S. in Computational Science and Technology, Seoul National University, Seoul, Korea
- Advisor: Yongdai Kim (Intelligent Data Analysis Lab., Department of Statistics)
- Dissertation: ANOVA Boosting for credit scoring

AWARDS & HONORS

- 한국데이터산업진흥원 (Korea Data Agency, K-data) | 데이터바우치 지원사업 평가위원 (2025.04)
- 수원문화재단 (Suwon Cultural Foundation) | 문화도시 조성사업 <홍보 및 마케팅> 평가위원 (2025.04)
- 인천대학교 (INU) | 학술연구 우수성 (Excellence, Academic Research Award) (2022)
- 인천대학교 (INU) | 대학원 가을학기 우수 강의 (Excellence, Fall Semester, Best Teaching Award at Graduate Schools) (2022)

MEMBERSHIP SERVICE

- 대한산업공학회 (Korean Institute of Industrial Engineers. KIIE)
- 정회원 (Membership): 2013.05 Present
- 한국대학생 산업공학 프로젝트 경진대회 심사위원 (Examiner): 2022:11.05
- 한국경영과학회 (Korean Operations Research and Management Science Society, KORMS)
- 총신회원 (Life Membership): 202111 Presen
- 한국산업경영시스템학회 (Korean Society of Industrial and Systems Engineering, KSIE)
- 종신회원 (Life Membership): 202212 Present
- 이사 (Board of Directors): 2023.01 Present
- 한국물류학회 (Korea Logistics Research Association, KLRA)
 사무차장 (General Director): 2022.01 2024.12
- 사무사상 (General Director): 2022.01 2024.12
 동계공동학술발표대회 및 물류정책포렌 토론자 (Debater): 2022.12.03
- 이사 (Board of Directors): 2025.01 Present
- 한국재무관리학회 (Korean Financial Management Association, KFMA
- 조신회원 (Life Membership): 2025.03 Present

CONTENTS

I. 연구배경 및 목적

- Ⅱ. 분석 대상 및 데이터처리
 - 분석대상(Target)
 - 데이터이해(Descriptive Statistics & Visualization)
 - 데이터처리(Data Preprocessing)

Ⅲ. 인공지능 이해 및 예측 방법론

- 모델링 진화와 작동방식의 이해
- 머신러닝 기반 알고리즘

IV. 성능검증 및 예측결과

- 비형식교육 참여여부 예측과정
- 비형식교육 참여여부 예측결과
- 비형식학습 참여여부 예측검증 요약

V. 토의 및 향후 방향

I. 연구배경 및 목적

▶ 배경

- 평생교육의 사회·국가적 역할과 중요성
- ① 고령화 사회에서 평생교육은 개인의 경제적 자립과 사회 참여를 지원하고, 삶의 질을 향상시키는 사회 안전망 기능을 수행
- ② 모든 연령과 계층에 교육 기회를 제공하는 것은 사회 통합과 국가의 지속가능한 발전을 위한 전략 과제
- ③ 평생교육은 디지털 리터러시 격차를 완화하고, 교육 형평성 확보와 사회적 포용성 실현에 기여

I. 연구배경 및 목적

▶ 배경

- 평생교육의 사회·국가적 역할과 중요성
- 평생교육 수요의 양적·질적 변화
- ① 한국 성인의 평생학습 참여 수준은 OECD 평균의 절반에 불과하여 국제적으로 취약
- ② COVID-19 팬데믹을 거치며 전체 참여율은 40% 수준에서 2022년 28.5%까지 급감하는 등 외부 충격에 따른 큰 변동성을 보임
- ③ 참여율이 특히 낮은 집단은 50대 이상 고령층, 저학력층, 저소득층으로 나타남
- ④ 팬데믹 이후 전체 참여율이 회복세를 보이더라도 취약계층에서의 참여 격차는 오히려 확대되는 "매튜효과"가 관찰

ı. 연구배경 및 목적

▶ 배경

- 평생교육의 사회·국가적 역할과 중요성
- 평생교육 수요의 양적·질적 변화
- 평생학습 참여 예측 및 설명의 필요성
- ① 복합적이고 동태적인 학습 수요 변화에도 불구하고, 기존 연구는 단순 통계 기법에 의존하여 요인 간 상호작용이나 시계열적 변화를 정밀하게 분석하는 데 한계적
- ② 머신러닝 모델은 예측 정확도가 높지만, 의사결정 과정이 불투명한 '블랙박스' 문제가 존재. 정책 현장에서의 신뢰성과 활용성을 저해하므로, 예측의 근거를 투명하게 제시하는 설명가능 AI(XAI) 기술의 도입이 필수적

I. 연구배경 및 목적

▶ 목적

목적	방향	목표
기초 레퍼런스	성인학습자의 평생학습 참여여부 예측	맞춤형 평생학습 프로그램 수립
전략수립	고성능 예측과 해석을 통합한 방법론 제시	실질적이고 실행가능한 참여 유도
지속가능성	맞춤형 참여요인 예측	프로그램 운용 전략 최적화
신뢰성	시나리오별, 연령대별 상호작용 반영	실효성 높은 참여결정 요인분석
시사점	취약계층의 참여 격차 분석	포용적 교육정책 수립 방향 제시

▶ 연구의 범위

- 2018년부터 2022년까지의 「평생학습 개인실태조사」 최근 5개년 국가 조사 데이터 학습 및 예측
- 대한민국의 만 25세 이상 79세 이하 성인학습자의 '비형식교육 참여 여부'를 주요 종속변수로 설정
- <u>학습 접근성, 직장 규모, 사회경제적 취약성, 디지털 기기 활용 선호, 생활만족도 등</u> 85개의 독립변수와 파생 변수를 활용하여 분석을 수행
- 기존 전통적 통계 방법론의 한계 극복과 블랙박스 문제 해결 위해 <u>머신러닝과 설명 가능한 인공지능(XAI)</u> <u>기법 SHAP를 수행</u>하고, <u>결과 해석의 투명성·신뢰성을 강화하여 평생학습 프로그램 기획</u>의 타당성을 검증

CONTENTS

- 1. 연구배경 및 목적
- II. 분석 대상 및 데이터처리
 - 분석대상(Target)
 - 데이터이해(Descriptive Statistics & Visualization)
 - 데이터처리(Data Preprocessing)
- Ⅲ. 인공지능 이해 및 예측 방법론
 - 모델링 진화와 작동방식의 이해
 - 머신러닝 기반 알고리즘
- IV. 성능검증 및 예측결과
 - 비형식교육 참여여부 예측과정
 - 비형식교육 참여여부 예측결과
 - 비형식학습 참여여부 예측검증 요약
- V. 토의 및 향후 방향

Ⅱ. 분석 대상 및 데이터 처리

▶ 분석대상

- 종속 변수(y): 비형식교육 참여 여부 (0=미참여, 1=참여)
- 설정 이유: 형식교육보다 유연하고 다양한 참여 형태를 포함

취약계층을 포함한 **맞춤형 정책 설계의 타깃 변수**로 적합

> 데이터 이해

- 출처: 한국교육개발원(KEDI) 「평생학습 개인실태조사」(2018~2022)
- 표본: 전국 만 25~79세 성인, 총 **51,369명** 응답
- **활용 변수**: 438개 원자료 중 전처리 후 **85개 변수**
- 조사 범위: 형식·비형식·무형식 학습 전반,

개인 배경(학력·직업·소득), 학습 태도(동기·지향성),

프로그램 선호(문해·직업능력·문화예술 등), 사회적 요인(참여 경험·디지털 활용)

II. 분석 대상 및 데이터 처리

▶ 데이터 전처리

① 데이터 통합 및 변수 표준화

- 5개년 데이터의 변수를 확인하고, 가장 최근 연도(2022년) 기준으로 변수명을 통일함
- 5개 연도 중 3개 이상에 공통으로 존재하는 변수만 선별하여 통합 데이터 구성

② 결측치 처리

- 전체 데이터의 50% 이상이 결측인 경우, 해당 변수 제거함
- 나머지 샘플에 대하여 결측치의 값을 0으로 치환함

③ 파생변수 생성

- 직업 관련 목표지향성: 3개 문항 평균
- 학습 지향성: 4개 문항 평균
- 희망 프로그램: 30개 항목 → 6개 범주(문해, 직업능력, 인문교양, 문화예술, 스포츠, 시민참여)
- 학력·직업·소득 등은 더미 변수화

Ⅱ. 분석 대상 및 데이터 처리

▶ 데이터 처리

④ 데이터 분할

- 훈련용 데이터와 테스트용 데이터를 8:2비율로 무작위 분리
- 훈련용 데이터 41,095개, 테스트용 데이터 10,274개의 샘플을 가짐

⑤ 불균형 데이터 보정

- 훈련용 데이터 중 종속변수 클래스 분포는 26,601(Class 0): 14,494(Class 1) 비율로 불균형한 상태
- 불균형을 해소하기 위해 RandomUnderSampler 기법을 사용하여 다수 클래스(Class 0)의 데이터를 소수 클래스(Class 1)의 개수에 맞춰 무작위로 삭제
- 최종 훈련용 데이터는 Class 0: 14,494개, Class 1: 14,494개로 두 클래스의 비율이 1:1로 균형

⑥ 데이터 정규화

- MinMaxScaler를 사용해, 훈련용 데이터 기준으로 각 변수에 대해 0~1 사이의 최솟값/최댓값을 학습
- 이 기준을 훈련 데이터와 테스트 데이터 모두에 동일하게 적용함
- 응답값 크기를 표준화하여 알고리즘 학습 안정성 확보

CONTENTS

- 1. 연구배경 및 목적
- II. 분석 대상 및 데이터처리
 - 분석대상(Target)
 - 데이터이해(Descriptive Statistics & Visualization)
 - 데이터처리(Data Preprocessing)

Ⅲ. 인공지능 이해 및 예측 방법론

- 모델링 진화와 작동방식의 이해
- 머신러닝 기반 알고리즘

IV. 성능검증 및 예측결과

- 비형식교육 참여여부 예측과정
- 비형식교육 참여여부 예측결과
- 비형식학습 참여여부 예측검증 요약
- V. 토의 및 향후 방향

Ⅲ. 인공지능 이해 및 예측 방법론

▶ 모델링의 진화와 작동방식의 이해

구분	주요 특징	한계 및 문제점	대응 및 발전 방향	
전통적 통계 기법	- 개별 변수 중심 분석	복합 요인 및 상호작용	→ 다차원적 관계 분석을	
	- 단순 상관관계 파악	반영 어려움 시계열 변화 반영 한계	위한 AI 기법 도입 필요	
머신러닝 / 딥러닝 기법	비선형 관계 및 고차원	알고리즘 내부 구조	→ 설명가능한	
	변수 학습 가능 예측 정확도 향상	불투명 결과 해석 어려움	인공지능(XAI) 필요	
설명가능한 인공지능(XAI)	 모델의 의사결정 근거를 시각적· 정량적으로 제시 정책 적용의 신뢰성 강화 	- 기법별 해석 차이 존재	→ SHAP, LIME, Counterfactual 등 활용 특히 SHAP은 변수의 기여도와 방향성을 정량·시각적으로 표현	

Ⅲ. 인공지능 이해 및 예측 방법론

▶ 머신러닝 기반 알고리즘

- 활용 알고리즘 (총 4종)
- ① Logistic Regression 해석 용이, 비교 기준 모델
- ② Random Forest Bagging 기반, 안정적이지만 과적합 위험
- ③ XGBoost / LightGBM Boosting 기반, 빠르고 강력한 예측 성능
- ④ CatBoost 범주형 변수 처리 최적화, 최종적으로 가장 우수 성능 확보
- ⑤ MLP, CNN 등 딥러닝 기법 머신러닝 모델 대비 예측 성능과 효과성이 높지 않아 제외
- 성능 평가 지표: Accuracy, Precision, Recall, Specificity, F1-score, AUC의 6개 검증지표
- ▶ 알고리즘 적용의 의의
 - 본 연구는 단순한 정확도 경쟁이 아니라, 참여 여부에 영향을 주는 요인을 규명하는 데 중점을 두었음
 - 머신러닝 알고리즘은 복잡한 변수 간 관계를 반영해 **예측 성능**을 높이는 동시에, 설명가능한 인공지능(XAI, SHAP)과 결합하여 변수별 영향력을 해석하는데 용이함
 - 특히 CatBoost와 같은 앙상블 기반 모델은 범주형 데이터에 강점을 지니며, SHAP 분석을 통해 정책 타깃팅과 개입 전략 수립에 기여 가능

CONTENTS

- 1. 연구배경 및 목적
- II. 분석 대상 및 데이터처리
 - 분석대상(Target)
 - 데이터이해(Descriptive Statistics & Visualization)
 - 데이터처리(Data Preprocessing)
- Ⅲ. 인공지능 이해 및 예측 방법론
 - 모델링 진화와 작동방식의 이해
 - 머신러닝 기반 알고리즘
- Ⅳ. 예측결과 및 성능검증
 - 비형식교육 참여여부 예측과정
 - 비형식교육 참여여부 예측결과
 - 비형식학습 참여여부 예측검증 요약
- V. 토의 및 향후 방향

▶ 비형식교육 참여여부 예측과정

- (1) 4종의 AI 알고리즘으로 학습데이터 예측 후 검증 지표 6종으로 성능 평가 후
- (2) 가장 성능이 높은 알고리즘으로 테스트데이터의 참여여부 예측

변수 설정 및 처리				
종속변수	비형식 교육 참여자(참여 여부)			
독립변수	문F1 5~8 평균값: '학습지향 평균' 파생변수 처리			
	문F1 1~3 평균값: '직업관련 목표지향 평균' 파생변수 처리			
	해석이 어려운 범주형 변수(학력, 소득원천, 직업 등) : 더미변수 처리			
전처리	결측치 50% 이상 컬럼 삭제			
	전체 데이터 훈련/검증 세트 8:2 무작위 분할			
	Min-Max 정규화			
	클래스 불균형 완화			
	0 클래스 다수 → Random UnderSampler			

▶ 비형식교육 참여여부 예측과정

- (1) 4종의 AI 알고리즘으로 학습데이터 예측 후 검증 지표 6종으로 성능 평가 후
- (2) 가장 성능이 높은 알고리즘으로 테스트데이터의 참여여부 예측
- (3) SHAP 알고리즘을 사용하여 변수 기여방향 확인

▶ 비형식교육 참여여부 예측결과

- 평생학습 참여의 핵심 결정 요인
- (1) 참여 촉진 요인 (Positive Contribution)

<u>'평생학습 접근성'</u>: 관련 교육 정보를 접하기 용이할수록 <u>'직장의 규모'</u>: 규모가 큰 사업장에 종사할수록 <u>'생활 만족도'</u>: 개인의 전반적인 삶의 만족도가 높을수록 '무형식 신체활동': 신체활동 경험이 비형식 교육 참여로 이어짐

(2) 참여 저해 요인 (Negative Contribution)

<u>'연도 구분'</u>: 최근일수록(2022년) 참여율이 낮아지는 경향 <u>'취약계층'</u>: 저소득, 저학력 등 취약계층일수록 <u>'방송 매체 및 유튜브 활용'</u>: 일방적/수동적 미디어 소비를 할수록 <u>'지역사회단체 참여'</u>: 자원봉사와 달리, 학습 동기를 유발하지 못함

최종학력 중퇴(r=-0.17)

취업구분(r=-0.41)

학교급_중학교(r=-0.15)

학교급_대학원(박사)(r=-0.01)

근무기간_년(r=0.5)

학습패턴_디지털기기 활용 선호(r=0.27)

직업_사무종사자(r=0.69)

학습참여동기_학교교육으로 기술습득못함(r=0.57)

동거가족 수(r=0.21)

▶ 비형식교육 참여여부 예측결과

- 평생학습 참여의 핵심 결정 요인
- 평생학습 결정요인 시계열 변화: 팬데믹 이후의 학습 환경 재편
- (1) '디지털 기기를 활용한 학습 방식 선호'는 코로나19 이후인 2021년, 2022년에 강한 긍정적 영향력
- (2) 기부·후원과 같은 '사회참여 경험'은 2020년 이후 양의 상관성으로 반전되어 긍정적 영향
- (3) 2020년 이후 '평생학습의 건강 효과', '평생학습의 사회참여 만족도'의 순위가 상승. 즉, 학습을 통한 개인의 신체적·사회적 웰빙 증진에 대한 수요가 커짐

IV. 예측결과 및 성능검증

▶ 비형식교육 참여여부 예측결과

- 평생학습 참여의 핵심 결정 요인
- 평생학습 결정요인 시계열 변화: 팬데믹 이후의 학습 환경 재편
- 연령대별 평생학습 결정요인 : 고령층의 학습동기 전환
- (1) 젊은 연령층은 학습 동기가 '직업 관련 목표지향' 및 '경제적 안정 효과' 등 경제적 요인에 집중
- (2) 중·고령층은 경제적 요인 대신 '육체적 건강'이 핵심 요인으로 나타나, 단순 직업 교육을 넘어 건강 증진 및 문화적 삶의 질 향상을 중심으로 해야함
- (3) 고령층에서 '취약계층' 변수는 기여도가 더욱 높아졌으며 강한 음의 상관성 보임

	1연령대	2연령대	3연령대	4연령대	5연령대
	(25-34세)	(35-44세)	(45-54세)	(55-64세)	(65-79세)
직업관련 목표지향 평균	No.10	No.7	No.16	No.15	No.12
	(r=0.70)	(r=0.89)	(r=0.76)	(r=0.26)	(r=0.82)
평생학습효과성_경제적안정감	No.14	No.10	No.17	No.16	No.14
	(r=0.86)	(r=0.69)	(r=0.34)	(r=-0.63)	(r=-0.83)
평생학습효과성_육체적건강	No.17	No.30	No.20	No.23	No.16
	(r=-0.45)	(r=-0.32)	(r=-0.64)	(r=-0.51)	(r=-0.76)
취약계층	No.33	No.50	No.30	No.28	No.26
	(r=-0.66)	(r=-0.71)	(r=0.26)	(r=-0.51)	(r=-0.15)

IV. 예측결과 및 성능검증

▶ 비형식교육 참여여부 예측결과

- 상호작용 기반의 다차원적 분석
- (1) 구조적 요인: 접근성 뿐만 아니라 경제활동 상태 및 근무기간과 같은 구조적 배경 고려
- (2) <u>행태적 요인</u>: 디지털 기기 활용과 '혼자 공부 선호' 높은 상관관계, 학습자 주도성 강화 프로그램 필요
- (3) 사회적 요인: 형식/수동 참여가 학습으로 이어지지 않음. 목표 지향적 커뮤니티 기반 학습 모델 구축
- (4) <u>심리적 요인</u>: 생활만족도는 경제적 안정감 및 사회참여 만족도와 유의미한 관계, 학습 성과를 웰빙과 연결하는 통합적 접근이 학습 지속성을 확보에 중요

▶ 비형식학습 참여여부 예측검증 요약

■ <u>최고 예측 성능의 알고리즘은 Catboost 알고리즘(F-1score 72.83%)</u>

Dataset	Algorithm	F1-score	Accuracy	AUC	
	Logistic Regression	69.32%	69.46%	76.20%	
	Random Forest	100.00%	100.00%	100.00%	
Train	XGBoost	94.77%	94.80%	98.86%	
	LightGBM	86.94%	87.01%	94.38%	
	CatBoost	85.81%	85.80%	93.44%	
Test	Logistic Regression	68.83%	68.92%	75.77%	
	Random Forest	72.13%	71.83%	79.31%	
	XGBoost	72.42%	72.37%	79.58%	
	LightGBM	71.74%	71.87%	79.60%	
	CatBoost	72.83%	72.72%	80.25%	

- Random Forest는 학습 데이터에서 완벽한 성능을, 검증데이터에서 성능이 급격히 하락하여 과적합(Overfitting)의 문제를 보임
- CatBoost는 학습 단계에서는 상대적으로 낮은 성능, 검증데이터에서 안정적 일반화 능력을 입증
- 6개 검증 지표 모두 설명된 요인이 정책 현장에서 일관성있게 작동할 수 있음을 보여줌
- 앞선 요인 해석에서 도출된 변수들의 설명력이 실제 예측 가능성과 연결되어 있음을 입증하는 근거

CONTENTS

- 1. 연구배경 및 목적
- II. 분석 대상 및 데이터처리
 - 분석대상(Target)
 - 데이터이해(Descriptive Statistics & Visualization)
 - 데이터처리(Data Preprocessing)
- III. 인공지능 이해 및 예측 방법론
 - 모델링 진화와 작동방식의 이해
 - 머신러닝 기반 알고리즘
- IV. 성능검증 및 예측결과
 - 비형식교육 참여여부 예측과정
 - 비형식교육 참여여부 예측결과
 - 비형식학습 참여여부 예측검증 요약
- V. 토의 및 향후 방향

V. 토의 및 향후 방향

▶ 토의

- 연구 결과에 따라 디지털 전환/고령화의 사회적 맥락에서 평생학습 참여 확대 전략을 재정립할 필요성
- 이를 통해 사회적 포용성과 지속가능성을 촉진하는 국가전 전략으로서 평생학습 정책 실현 가능

전략

- (1) 평생학습 참여에 구조적 제약 요인이 여전히 강력하게 작동하며, 소외 계층에 대한 지원이 필요함
- (2) 디지털 환경의 이중적 영향을 고려한 "학습자 주도성" 강화 프로그램이 핵심
- (3) '목적 지향적' 사회참여 경험은 촉진, '단순 친목'은 저해
- (4) '생활만족도'와 '웰빙' 중심의 학습 동기 전환
- (5) 4가지 차원을 통합한 학습자 중심 프레임워크 제안

	세부 전략
구조적 제약 해소	맞춤형 바우처, 찾아가는 컨설팅, 선취업-후학습 제도화로 격차 해소
'학습자 주도성' 강화	전 세대 대상 미디어 리터러시 교육, 수동적 미디어 소비 탈피 유도
목적지향적 참여	리빙랩, 생활밀착형 교육 결합 등 '목적지향적 공동체 학습 모델' 구축
'웰빙' 동기 전환	건강, 인문학, 예술, 심리 상담 등을 결합한 '웰빙 통합형' 프로그램 설계
통합 프레임워크	데이터 기반 진단, 커뮤니티 거점, 모듈형 교육, 협력 거버넌스 구축

V. 토의 및 향후 방향

▶ 분석 결론

- (1) 평생학습 참여는 시계열 및 인구통계학적 관점을 통합한 복합적 분석 체계가 필수적임
- (2) CatBoost 모델이 가장 안정적 예측 성능을 확보하여 분석 결과의 정책적 신뢰성을 입증함
- (3) 평생학습 참여는 구조적, 행태적, 사회적, 심리적 요인이 상호작용하는 복합적 현상으로 확인됨
- (4) 연령대별 학습 동기의 차이가 뚜렷하여 맞춤형 프로그램 설계가 시급함(?)

> 기대효과

- (1) OR 관점에서 <u>"효율성-형평성" 최적화</u> 사례 연구 + XAI 정책결정의 연결과 확장
- (2) 분포이동이나 고령화 시나리오에 대한 불확실성 해소를 위한 레퍼런스 연구로써의 가치 존재
- (3) <u>데이터사이언스 + 정책 + 경영학 + 사회복지 간 협업 프로젝트</u>를 OR 모델로써 통합하는 교육 대응 모듈로써의 가치
- (4) 지자체나 대학의 <u>평생교육 운영 Decision Support System</u>으로 작용
- (5) 타겟팅 정책의 성능 예상으로 <u>정책의 책임성 향상</u> + 사후 대응을 넘어 <u>사전 최적화 대응전략 마련</u>

▶ 향후 필요한 분석 연구

- (1) 사회·경제적 충격에 따른 평생학습 참여 요인의 변동성 분석
- (2) 연령·세대별 차이를 넘어 생애주기 전반의 참여 동학 분석
- (3) 변수 간 다층적 상호작용을 반영한 정교한 정책 시뮬레이션 모델 개발

Thank You

	2018	2019	2020	2021	2022
사회참여경험_기부 및 후원	No.12	No.9	No.10	No.7	No.10
	(r=-0.59)	(r=-0.49)	(r=0.52)	(r=0.84)	(r=0.34)
사회참여경험_자원봉사 및 재능기부	No.16	No.14	No. 18	No.17	No.29
	(r=-0.52)	(r=-0.61)	(r=0.60)	(r=0.43)	(r=038)
학습패턴_디지털기기 활용 선호	No.20	No.28	No.36	No.35	No.34
	(r=0.11)	(r=0.02)	(r=0.65)	(r=0.57)	(r=0.50)
	1연령대	2연령대	3연령대	4연령대	5연령대
	(25-34세)	(35-44세)	(45-54세)	(55-64세)	(65-79세)
직업관련 목표지향 평균	No.10	No.7	No.16	No.15	No.12
	(r=0.70)	(r=0.89)	(r=0.76)	(r=0.26)	(r=0.82)
평생학습 효과성_경제적 안정감	No.14	No.10	No.17	No.16	No.14
	(r=0.86)	(r=0.69)	(r=0.34)	(r=-0.63)	(r=-0.83)
평생학습 효과성_육체적 건강	No.17	No.30	No.20	No.23	No.16
	(r=-0.45)	(r=-0.32)	(r=-0.64)	(r=-0.51)	(r=-0.76)
취약계층	No.33	No.50	No.30	No.28	No.26
	(r=-0.66)	(r=-0.71)	(r=0.26)	(r=-0.51)	(r=-0.15)