

Pitch Guidance Optimization for the Orion Ascent Abort Flight Tests

Ryan Stillwater
NASA Dryden Flight Research Center

2010 AIAA Atmospheric Flight Mechanics Conference
2-5 August 2010
Toronto, Ontario, Canada

Introduction

- Orion vehicle overview
- Orion abort flight tests overview
- What is being optimized
- Method used for optimization
- Results from the optimization

Constellation Overview

- Constellation program was initiated to create the next manned space vehicle
- Ares I launch vehicle
 - Launches Orion crew vehicle into orbit
- Orion crew vehicle
 - Carries astronauts to ISS or Moon

Orion Vehicle Overview

- Launch Abort System (LAS)
 - Will remove the CM from the Ares I in the event of a launch failure
- Crew Module (CM)
 - Carries 6 crew to the ISS or 4 crew to the Moon
 - 5 meter diameter (Apollo was 3.9 meter)
- Launch Abort Vehicle (LAV)
 - Combined CM and LAS

LAS Overview

- The Launch Abort System (LAS) will rescue the crew in the event of a launch vehicle failure
- Consists of three solid rocket motors
- Abort Motor (AM)
 - Ignites on abort
 - Provides thrust to separate the Launch Abort Vehicle and the Ares I
- Attitude Control Motor (ACM)
 - Ignites on abort
 - Directs the attitude of the LAV during the abort
- Jettison motor
 - Ignites after AM and ACM burnout
 - Separates the LAS from the CM

LAS Controller

- PID controller with channels for the pitch and yaw axes
- Uses time-based gain schedules
- Pitch channel
 - Uses angle of attack (α) , integral α , pitch angle (θ) , pitch rate (q), and flight path angle (γ)
 - Used for optimization
- Yaw channel
 - Uses sideslip angle (β), integral β, yaw angle (ψ), yaw rate (r), roll angle (φ), roll rate (p), and heading
 - Also commands β to damp out initial roll rate using an aerodynamic roll moment
 - Not used for optimization

Orion Abort Flight Tests

- Six flight tests were originally scheduled to verify the functionality of the LAS
- Two aborts from the launch pad
- Four aborts along the ascending trajectory
 - Uses an Abort Test Booster (ATB) to reach test condition
 - Minimum separation force
 - Transonic region
 - Nominal maximum dynamic pressure
 - Maximum dynamic pressure region
 - Failure scenario: Ares I nozzle actuators stick hard-over
 - High dynamic pressure region
 - High altitude
 - Stage 1 burnout/Stage 2 ignition point

Test Regions

- Three ascent abort test regions used for optimization
 - Transonic
 - Maximum dynamic pressure
 - Ares I nozzle failure at high dynamic pressure
- Stage 1/Stage 2 separation was not included

Ascent Abort ConOps

Event	Event
1	ATB Liftoff
2	LAV Separation
3	Begin Reorientation
4	End Reorientation
5	Jettison Tower
6	Deploy Drogues
7	Deploy Mains
8	CM Touchdown

Simulation Overview

ATB/LAV Simulation

- Created by Orbital Sciences Corporation (Chandler, AZ)
- Simulations developed for the three test regions used
- Simulates ATB/LAV vehicle dynamics up thru ATB/LAV separation
- Provides initial conditions for LAV simulation

LAV Simulation

- Created by NASA
- Initialized at ATB/LAV separation point
- Generates the state data used in optimization program
- Used to simulate vehicle dynamics until LAS/CM separation

Problem Statement

- Problem Statement
 - Tune the Orion pitch gains schedule to reduce the error between the simulated α and the desired α
- Cost Function
 - Running the LAV simulation with a different gains schedule results in different α errors (α_e)

$$\alpha_e = f(K_\alpha, K_{integral \alpha}, K_\theta, K_q, K_\gamma)$$

– The optimization program seeks where the gradient of α_e is zero (minima)

Optimization Algorithm

- Uses the method of steepest descent
- Outer loop
 - Approximate Jacobian

$$\bar{J}(\overline{K_{n,1}}) = \begin{bmatrix} \frac{\delta f}{\delta K_{\alpha_{n,1}}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \end{bmatrix} \qquad \overline{K_{n,1}} + \Delta K_{\alpha} = \begin{bmatrix} K_{\alpha_{n,1}} \\ K_{\alpha_{n,1}} \\ K_{\alpha_{n,1}} \\ K_{\gamma_{n,1}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \end{bmatrix} \qquad \overline{K_{n,1}} + \Delta K_{\alpha} = \begin{bmatrix} K_{\alpha_{n,1}} \\ K_{\alpha_{n,1}} \\ K_{\alpha_{n,1}} \\ K_{\gamma_{n,1}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \\ \frac{\delta f}{\delta K_{\alpha_{n,1}}} \approx \frac{f(\overline{K_{n,1}} + \Delta K_{\alpha}) - f(\overline{K_{n,1}} - \Delta K_{\alpha})}{2\Delta K_{\alpha}}$$

Optimization Algorithm

- Inner loop
 - Each time point in gains schedule

Step 1:
$$c_0 = 0$$
 $\alpha_{e_0} = f(\overline{K_{n,j}})$ $g_0 = \sum_{m=1}^{m-3} [\alpha_{e_0}]^2$

Step 2:
$$\nabla g_0 = 2 * \overline{J}(\overline{K_{n,1}}) * \alpha_{e_0}$$
 $\overline{z} = \frac{\nabla g_0}{\|\nabla g_0\|}$

Step 3:
$$c_2 = 1$$
 $\alpha_{e_2} = f(\overline{K_{n,j}} - c_2 * \overline{z})$ $g_2 = \sum_{m=1}^{\infty} [\alpha_{e_2}]^2$

Step 4: if g2 > g0, then rerun Step 3 with $c_2 = c_2/2$ until g2 < g0

Optimization Algorithm

Step 5:
$$c_1 = c_2/2$$
 $\alpha_{e_1} = f(\overline{K_{n,j}} - c_1 * \overline{z})$ $g_1 = \sum_{m=1}^{\infty} [\alpha_{e_1}]^2$

Step 6:
$$h_0 = \frac{g_1 - g_0}{c_1 - c_0}$$
 $h_1 = \frac{g_2 - g_1}{c_2 - c_1}$ $h_2 = \frac{h_1 - h_0}{c_2 - c_0}$

Step 7:
$$P(c_3) = g_0 + h_0 * c_3 + h_2 * c_3 * (c_3 - c_1)$$
$$P'(c_3) = h_0 + 2 * h_2 * c_3 - c_1 * h_2$$

Step 8:
$$c_3 = \frac{c_1 * h_2 - h_0}{2 * h_2}$$
 $\overline{K_{n,j+1}} = \overline{K_{n,j}} - c_3 * \overline{z}$

Next inner loop iteration (next gains schedule point) Convergence check

Next outer loop iteration

- Desired α profile for all scenarios was zero α from LAV separation until reorientation
- Assessing the improvement (if any) was performed by:
 - Creating a mean and mean+3σ profiles
 - Gaussian mean and σ are calculated at each discrete point
 - Differencing the optimized and baseline profiles
 - Summing the α_{e} along the profiles for overall change

- Transonic scenario
 - Reduced tumbling cases by 24%
 - Reduced nominal profile α_e by 49%
 - Reduced mean profile α_e by 5%
 - Reduced mean+3 σ profile α_e by 45%

- Maximum dynamic pressure scenario
 - Reduced tumbling cases by 3%
 - Reduced nominal profile α_e by 57%
 - Reduced mean profile α_e by 28%
 - Reduced mean+3 σ profile α_e by 61%

- Ares I nozzle failure scenario
 - Reduced tumbling cases by 47%
 - Reduced nominal profile α_e by 35%
 - Reduced mean profile α_e by 37%
 - Reduced mean+3 σ profile α_e by 60%

Summary

- All three scenarios showed overall reduction in the α errors
- The method of steepest descent is effective in tuning the gains schedule
- All Orion ascent abort flight tests should benefit from tuning the gains schedule

Questions?

Backup

- Transonic scenario
 - Nominal profile improved from 0-12 sec
 - Mean profile improved mainly from 5-8 sec
 - Mean+3σ profile improved throughout

- Maximum dynamic pressure scenario
 - Nominal profile improved from 0-13 sec
 - Mean profile improved from 0-2 sec and 5-15 sec
 - Mean+3σ profile improved from 1.5-15 sec

- Ares I nozzle failure scenario
 - Nominal profile improved from 0-11 sec
 - Mean profile improved from 1-15 sec
 - Mean+3σ profile improved from 1-15 sec

