

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER II EXAMINATIONS - 2010/2011

School of Electrical, Electronic and Mechanical Engineering

EEEN10010 Electronic & Electrical Engineering I

Professor McLaughlin

Professor Fitzpatrick

Professor Brazil

Ms. Duignan*

Time Allowed: 2 hours

Instructions for Candidates

Attempt all 15 questions in Section A and 3 out of 4 questions in Section B. Each question in Section A is worth 4 marks. Each question in Section B is worth 20 marks. The exam is worth a total of 120 marks.

Please complete Section A on a Multiple Choice Answer Sheet using a HB pencil.

Instructions for Invigilators

Please supply one Answer Book and one Multiple Choice Answer Sheet to each candidate

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates.

Section A

Answer all of the following multiple-choice questions. Each question is worth 4 marks.

- 1. Electrons pass through a wire cross-section at a rate of 20×10^{12} electrons every 2 seconds. What is the current flowing in the wire?
 - (A) $-0.16 \mu A$
 - (B) $-1.6 \mu A$
 - (C) -32 µA
 - (D) $-160 \mu A$
 - (E) -320 mA
- 2. A cylindrical conductor has a cross sectional area of 8mm^2 and is 800m long. The resistance measured between the ends of the conductor is $1.6~\Omega$. Using the table of resistivities, Table 1, what is the metal most

likely to be?

- (A) Silver
- (B) Copper
- (C) Gold
- (D) Tungsten

Material at 20°C	Resistivity (Ωm)
Silver	1.6×10 ⁻⁸
Copper	1.72×10 ⁻⁸
Gold	3.14×10 ⁻⁸
Tungsten	6.28×10 ⁻⁸

Table 1

3. Which V-I characteristic in Figure 1 below describes the behaviour of an ideal voltage source?

- 4. Find the average power input to a device that consumes 7200 J in 10 minutes.
 - (A) 200 W
 - (B) 20 W
 - (C) 120 W
 - (D) 1.2 W
 - (E) 12 W

- 5. What is the voltage V in the circuit shown in Figure 2?
 - (A) 1.5 V
 - (B) 2 V
 - (C) 2.5 V
 - (D) 3 V
 - (E) 4.5 V

Figure 2

- 6. What is the current flowing in the 2.5 k Ω resistor in the circuit shown in Figure 3?
 - (A) $12 \mu A$
 - (B) 16 μA
 - (C) 12 mA
 - (D) 16 mA
 - (E) 20 mA

Figure 3

- 7. In the circuit in Figure 4 what is the power dissipated in the $20k\Omega$ resistor?
 - (A) 0.6 W
 - (B) 6 W
 - (C) 18 W
 - (D) 1.8 W
 - (E) 0.18 W

- Figure 4
- 8. What is decimal number 110 in binary format?
 - (A) 1110101
 - (B) 1010111
 - (C) 1011101
 - (D) 1100101
 - (E) 1101110

- 9. What is the sum of binary numbers 100100 and 110101?
 - (A) 1110110
 - (B) 1010101
 - (C) 1011001
 - (D) 1000101
 - (E) 1101010
 - 10. Which of the logic circuits shown in Figure 5 can be used to implement the exclusive-OR (XOR) operation?

Figure 5

- 11. An electron is moving to the right between the poles of a magnet, as shown in Figure 6. In which direction will the electron be deflected by the magnetic field?
 - (A) Into the page
 - (B) Out of the page
 - (C) To the left
 - (D) Upwards
 - (E) Downwards

Figure 6

- 12. Which signal best describes the frequency spectrum shown in Figure 7?
 - (A) $v(t) = 2\sin(200\pi t) + 3\sin(400\pi t) + 5\sin(100\pi t)$
 - (B) $v(t) = 5\sin(200\pi t) + 3\sin(400\pi t) + 5\sin(800\pi t)$
 - (C) $v(t) = 5\sin(100\pi t) + 3\sin(200\pi t) + 2\sin(400\pi t)$
 - (D) $v(t) = 3\sin(200\pi t) + 5\sin(400\pi t) + 2\sin(1000\pi t)$
 - (E) $v(t) = 5\sin(200\pi t) + 3\sin(400\pi t) + 2\sin(800\pi t)$

13. In order to select the component with the largest amplitude and eliminate the other components, the signal in Figure 7 should be passes through which of the following?

- (A) A Low Pass Filter(D) A High Pass Filter
- (B) A Band Pass Filter(E) An Amplifier
- (C) A Band Stop Filter
- 14. Figure 8 illustrates the Right Hand Grip Rule, where the right hand is gripped around a conductor as shown. Which of the following statements is true?
 - (A) The thumb points in the direction the current and the fingers show the direction of the magnetic field.
 - (B) The thumb shows the direction the magnetic field and the fingers point in the direction of the current.
 - (C) Both the thumb and the fingers show the direction of the magnetic field.

- 15. What is Boolean Algebra?
 - (A) The force experienced by a charge in a magnetic field.
 - (B) How any logic function can be implemented using only OR and NOT gates, or AND and NOT gates.
 - (C) The observation that the density of transistors on integrated circuits doubles every two years.
 - (D) The mathematics associated with the binary number system and the general field of logic.
 - (E) The relationship between current and voltage for an ideal resistor.

Section B

Answer three of the following four questions. Each question is worth 20 marks.

- 16. (a) Find the Thévenin equivalent resistance of the circuit shown in Figure 9.
 - (b) Find the Thévenin equivalent voltage of the circuit shown in Figure 9.
 - (c) Draw the Thévenin equivalent circuit of the circuit shown in Figure 9.
 - (c) An unknown load R is connected between terminals A and B in Figure 9. Calculate the value of this load R given that the load draws 0.5mA of current.

- 17. (a) Draw the Karnaugh Map for the logic function X defined in Table 2.
 - (b) Find the minimum expression for the logic function X.
 - (c) Draw a logic circuit to realise this function using AND, OR and NOT gates.
 - (d) Using De Morgan's Laws, show how this function could also be implemented using just NOT and NAND gates. Draw a diagram of your circuit.

_A	В	C	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Table 2

18. (a) A wire of length ℓ carrying current I sits in a uniform magnetic field with magnetic flux density B, as shown in Figure 10. Using Lorenz's force law, $F = QuB\sin(\theta)$, show that the force felt by the wire is $F = I\ell B$.

Figure 10

- (b) Figure 11(a) shows a rectangular coil, which consists of 5 turns. The coil is placed in a region of uniform magnetic flux density, B, perpendicular to the plane of the coil as shown. The flux density changes as a function of time according to Figure 11(b).
 - i. Draw a graph of the total flux, $\phi(t)$, through the coil as a function of time from 0 ms to 6 ms.
 - ii. Draw a graph of the voltage, v(t), between the ends of the coil over the same time interval.

Figure 11(a)

Figure 11(b)

19. (a) The inputs and outputs of a Half Adder are shown in Figure 12. Write Boolean expressions for S and C in terms of A and B that describe the Half Adder.

Figure 12

- (b) A signal is described by $v(t) = 5 + 3 \sin(50\pi t)$
 - i. If v(t) is sampled every 4 ms starting at t=0, what are the first 4 sample values?
 - ii. If v(t) is sampled every 20 ms starting at t=0, what are the first 4 sample values? Comment on your answer.

FormulaeThe symbols below have their usual meanings.

$\vec{F} = Q\vec{E}$	$R = \frac{L}{\sigma A}$	$\overline{\overline{A}} = A$	A+B=B+A	$A + A \cdot B = A$
W = QV	V = RI	$A \cdot A = A$	$A \cdot B = B \cdot A$	$A \cdot (A+B) = A$
$I = \frac{dq}{dt}$	$\frac{V_2}{V_1} = \frac{N_2}{N_1}$	$A \cdot \overline{A} = 0$	A + (B+C) = (A+B)+C	$A + \overline{A} \cdot B = A + B$
P = VI	$\vec{F} = Q(\vec{u} \times \vec{B})$	$A \cdot 0 = 0$	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	$A \cdot \left(\overline{A} + B\right) = A \cdot B$
$\vec{J} = \vec{\sigma E}$	F = BlI	$A \cdot 1 = A$	$A \cdot (B+C) = A \cdot B + A \cdot C$	$\overline{A \cdot B} = \overline{A} + \overline{B}$
$\left \overrightarrow{E} \right = \frac{V}{L}$	$v = N \frac{d\phi}{dt}$	A + A = A	$A + (B \cdot C) = (A + B) \cdot (A + C)$	$\overline{A+B} = \overline{A} \cdot \overline{B}$
$\left \overrightarrow{J} \right = \frac{I}{A}$	$\left \overrightarrow{B} \right = \frac{\Phi}{A}$	$A + \overline{A} = 1$	A+0=A	A+1=1
$G = \frac{\sigma A}{L}$	$\left \overrightarrow{B} \right = \frac{\mu I}{2\pi d}$	I = GV	$\left \overrightarrow{B} \right = \frac{\mu N I}{I}$	Charge on electron= -1.6×10 ⁻¹⁹ C

"oOo"