





- 1. Mengapa statistics itu penting
- 2. Populasi, sample, parameter, statistics
- 3. Tipe data dalam Statistics
- 4. Frekuensi dan histogram
- 5. Descriptive dan Inferential Statistics
- 6. Komponen dalam Descriptive Statistics
- 7. Usecase dan Praktek







### Mengapa statistics ini penting?



- Data is everywhere
- Bagaimana cara kita menginterpretasi data dalam jumlah besar dan membuat summary informasi yang bermakna?
- Di era informasi, data dibutuhkan dalam decision making, dan decision making terjadi dalam frekuensi yang sangat cepat dalam dunia bisnis
- Pemahaman terhadap statistics membantu dalam menilai suatu informasi apakah benar, salah, make sense atau tidak





### Populasi, sample, parameter, statistics



- Studi dalam Statistics erat kaitannya dengan studi terhadap sejumlah sample dari populasi
- Sample adalah bagian dari populasi
- Populasi menggambarkan keseluruhan anggota elemen yang menjadi observasi kita
- Mengapa mempelajari sample?





### Populasi, sample, parameter, statistics



- Pada sample yang kita observasi, kita dapat mengukur property dari sample tersebut.
   Property ini disebut Statistics dari sample.
- Terkadang kita ingin mendapatkan statistics untuk keseluruhan Populasi. Hal ini disebut sebagai Parameter.
- Angka statistics digunakan sebagai estimate terhadap parameter, yang terkadang tidak diketahui nilainya



## Tipe data dalam Statistics







#### **Tipe data: Nominal dan Ordinal**

- Tipe data nominal adalah data yang direpresentasikan sebagai kumpulan event atau obyek dalam kategori yang bersifat diskrit.
- Contoh data nominal:
  - Nama TV show di sebuah channel televisi
  - Jenis makanan di sebuah restoran
  - Kumpulan nama bank di Indonesia

- Tipe data ordinal mirip dengan data nominal, namun perbedaannya adalah data tersebut dapat diurutkan
- Contoh data ordinal:
  - Tingkat kepuasan terhadap pelayanan : Bad, Fair, Good, Excellent
  - Tingkat Pendidikan : SD, SMP, SMA, Sarjana





- Tipe data interval adalah data numerik yang tidak memiliki nilai true zero, artinya nilai bisa mencapai di bawah zero (negative).
- Contoh data interval :
  - Temperature

- Tipe data ratio mirip dengan data interval, namun data ini memiliki angka true zero.
- Contoh data ratio :
  - Usia
  - Income dalam rupiah
  - Tinggi badan





| Nilai ujian | Jumlah siswa |
|-------------|--------------|
| 10          | 5            |
| 20          | 3            |
| 30          | 2            |
| 40          | 1            |
| 50          | 5            |
| 60          | 3            |
| 70          | 2            |



- Frekuensi dan histogram menggambarkan distribusi summary statistic yang melakukan grouping elemen dalam nilai yang sama
- Histogram membantu kita dalam melihat distribusi nilai secara summary dengan lebih mudah dibandingkan melihat dalam bentuk tabel





#### **Descriptive statistics**

 Merupakan sebuah metode untuk mendeskripsikan dan menampilkan data secara summary dalam bentuk visual

#### Inferential statistics

- Dalam study statistic, seringkali cukup sulit untuk menentukan parameter dari sebuah populasi
- Inferential statistics adalah study untuk melakukan generalisasi terhadap suatu sample yang mewakili sebuah populasi





#### Komponen utama dalam Descriptive Statistics

- Pengukuran terhadap tendency nilai tengah (Measures of Central Tendency)
- Pengukuran variabilitas dalam data (Measures of Spread)

#### **Measures of Central Tendency**

- Mean
- Mode
- Median

#### **Measures of Spread**

- Range
- Min-max
- Quartiles/percentiles
- Standard deviation/variance





#### Descriptive statistics: Mean

- Metric yang paling popular digunakan dalam descriptive statistics
- Namun juga perlu kehati-hatian dalam interpretasi nilainya
- Secara matematis:

$$\overline{x} = rac{x_1 + x_2 + \dots + x_n}{n}$$
  $\overline{x} = rac{\sum x}{n}$ 

Bagaimana Mean bisa memberikan informasi yang misleading?

#### Mean sensitive terhadap outlier

| Siswa | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|-------|----|----|----|----|----|----|----|----|----|
| Usia  | 15 | 18 | 16 | 14 | 15 | 12 | 17 | 60 | 70 |

Mean = 26.33 (reasonable kah?)





### Descriptive statistics: Mean

- Mean juga sensitive ketika data yang diberikan skewed, atau cenderung tidak memiliki distribusi normal
- Semakin skewed, mean bisa jadi kehilangan kemampuan untuk memberikan gambaran nilai tengah dari suatu data







#### Descriptive statistics: Median

- Median dapat membantu menyelesaikan isu representasi data nilai tengah dengan Mean ketika terdapat outlier
- Median diukur dengan cara :
  - Urutkan elemen numeric dari urutan terkecil s/d terbesar
  - Tentukan banyaknya elemen dalam data tersebut, misal ukuran datanya sebesar n
  - Apabila N ganjil, maka median adalah :

Median = 
$$\left(\frac{n+1}{2}\right)^{th}$$
 observation

Apabila N genap, maka median adalah :

Median=
$$\frac{n^{th}}{2}$$
obs.  $+\left(\frac{n}{2}+1\right)^{th}$ obs.





### Descriptive statistics: Median

Ilustrasi untuk N = ganjil

| 32      | 35 | 40 | 42 | 50 | 58 | 60 |
|---------|----|----|----|----|----|----|
| 1 /2 /2 |    |    |    |    |    |    |

- Median = elemen ke (7+1)/2 = 4. Elemen ke-empat adalah **42**
- Ilustrasi untuk N = genap

| 32  | 35 | 40   | 42 | 50   | 58   |
|-----|----|------|----|------|------|
| - 6 |    | - 11 |    | - 15 | 0.10 |

Median = elemen ke (6)/2 dan ke (6)/2+1 dijumlah, dan dibagi 2.
 (40+42)/2 = 41





#### Descriptive statistics: Median

- Median dapat membantu menyelesaikan isu representasi data nilai tengah dengan Mean ketika terdapat outlier
- Median diukur dengan cara :
  - Urutkan elemen numeric dari urutan terkecil s/d terbesar
  - Tentukan banyaknya elemen dalam data tersebut, misal ukuran datanya sebesar n
  - Apabila N ganjil, maka median adalah :

Median = 
$$\left(\frac{n+1}{2}\right)^{th}$$
 observation

Apabila N genap, maka median adalah :

Median=
$$\frac{n^{th}}{2}$$
obs.  $+\left(\frac{n}{2}+1\right)^{th}$ obs.





### Descriptive statistics: Mode

- Mode adalah elemen yang memiliki frequency terbanyak dalam suatu data numerik
- Apabila mean dan median tidak bisa digunakan dalam data yang berbentuk categorical,
  Mode bisa digunakan untuk data categorical

| Jenis mobil   | Jumlal | h pemilik |
|---------------|--------|-----------|
| BMW           | 20     |           |
| Mercedes Benz | 10     |           |
| Honda         | 40     | mode      |
| Toyota        | 5      |           |







#### Descriptive statistics: Quartiles, Percentiles, Deciles

- Mean dan median memberikan nilai tengah, atau nilai paling banyak dalam sebuah data.
- Seringkali, kita membutuhkan informasi yang lebih banyak, seperti, nilai 10% tertinggi dari data, nilai 70% tertinggi dari data, dsb
- Untuk pertanyaan-pertanyaan tersebut, kita bisa jawab dengan: quartiles, percentiles, atau deciles.





#### Descriptive statistics: Interquartile Range



- Interquartile range memberikan gambaran mengenai kumpulan nilai tengah (middle fifty) dari sebuah data.
- Penggunaan range Min-Max terkadang bisa terpengaruh oleh outlier
- IQR cenderung lebih tidak sensitive terhadap outlier dibandingkan metric Range lain seperti Min-Max





### Descriptive statistics: Standard deviation

- Mean, median, modes, memberikan informasi tentang nilai tengah dari suatu data
- Bagaimana apabila kita ingin mengetahui sebaran dari data?
- Kita bisa menggunakan variance / standard deviation
- Secara matematis:

variance = 
$$\sigma^2 = \frac{\sum (x_r - \mu)^2}{n}$$

standard deviation 
$$\sigma = \sqrt{\frac{\sum (x_r - \mu)^2}{n}}$$

#### Contoh ilustrasi

| Nilai | (x-mean) | (x-mean)^2  |
|-------|----------|-------------|
| 10    | -17.8    | 316.84      |
| 15    | -12.8    | 163.84      |
| 30    | 2.2      | 4.84        |
| 43    | 15.2     | 231.04      |
| 32    | 4.2      | 17.64       |
| 10    | -17.8    | 316.84      |
| 14    | -13.8    | 190.44      |
| 24    | -3.8     | 14.44       |
| 56    | 28.2     | 795.24      |
| 44    | 16.2     | 262.44      |
|       | Jumlah   | 2313.6      |
|       | N        | 10          |
|       | Variance | 231.36      |
|       | Stdev    | 15.21052267 |

Standard Deviation 15.21052267 Mean 27.8











# Thank YOU



