School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet V: Finite Fields (Solutions)

- 1. (a) Find an irreducible polynomial of degree 3 over \mathbb{F}_2 and hence construct the addition and multiplication tables of the field \mathbb{F}_8 of order 8.
 - (b) Find an irreducible polynomial of degree 2 over \mathbb{F}_3 and hence construct the addition and multiplication tables of the field \mathbb{F}_9 of order 9.

Solution: (a) Let $f(X) = X^3 + X + 1$. Then

$$f(0) = 1$$
 and $f(1) = 1$,

so f(X) has no roots in \mathbb{F}_2 , hence no linear factors over \mathbb{F}_2 , and therefore f(X) is irreducible over \mathbb{F}_2 . Adjoin a root α to \mathbb{F}_2 to construct the field $\mathbb{F}_2(\alpha)$ with $|\mathbb{F}_2(\alpha):\mathbb{F}_2|=3$. Therefore $|\mathbb{F}_2(\alpha)|=8$ and so $\mathbb{F}_2(\alpha)\cong F_8$. Then $\{1,\alpha,\alpha^2\}$ is a basis for $\mathbb{F}_2(\alpha)$ over \mathbb{F}_2 and the eight elements are

$$0, 1, \alpha, \alpha + 1, \alpha^2, \alpha^2 + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1.$$

Then the addition table is constructed from the vector space structure of $\mathbb{F}_2(\alpha)$ and is:

+	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
0	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
1	1	0	$\alpha + 1$	α	$\alpha^2 + 1$	α^2	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$
α	α	$\alpha + 1$	0	1	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	α^2	$\alpha^2 + 1$
$\alpha + 1$	$\alpha + 1$	α	1	0	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	α^2
α^2	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	0	1	α	$\alpha + 1$
$\alpha^2 + 1$	$\alpha^2 + 1$	α^2	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	1	0	$\alpha + 1$	α
$\alpha^2 + \alpha$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	α^2	$\alpha^2 + 1$	α	$\alpha + 1$	0	1
$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	α^2	$\alpha + 1$	α	1	0

We calculate products by exploiting the fact that $f(\alpha) = 0$; that is,

$$\alpha^3 = -(\alpha + 1) = \alpha + 1.$$

Products involving 0, 1, α and $\alpha + 1$ are straightforward. The others are as follows:

$$\alpha \cdot \alpha^2 = \alpha^3 = \alpha + 1$$

$$\alpha(\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1$$

$$\alpha(\alpha^2 + \alpha) = \alpha^3 + \alpha^2 = (\alpha + 1) + \alpha^2 = \alpha^2 + \alpha + 1$$

$$\alpha(\alpha^2 + \alpha + 1) = \alpha^3 + \alpha^2 + \alpha = (\alpha + 1) + \alpha^2 + \alpha = \alpha^2 + 1$$

$$(\alpha + 1)\alpha^2 = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1$$

$$(\alpha + 1)(\alpha^2 + 1) = \alpha^3 + \alpha^2 + \alpha + 1 = \alpha^2$$

$$(\alpha + 1)(\alpha^2 + \alpha) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1$$

$$(\alpha + 1)(\alpha^{2} + \alpha + 1) = \alpha^{3} + 1 = (\alpha + 1) + 1 = \alpha$$

$$\alpha^{2} \cdot \alpha^{2} = \alpha^{4} = \alpha(\alpha + 1) = \alpha^{2} + \alpha$$

$$\alpha^{2}(\alpha^{2} + 1) = \alpha^{4} + \alpha^{2} = (\alpha^{2} + \alpha) + \alpha^{2} = \alpha$$

$$\alpha^{2}(\alpha^{2} + \alpha) = \alpha^{4} + \alpha^{3} = (\alpha^{2} + \alpha) + (\alpha + 1) = \alpha^{2} + 1$$

$$\alpha^{2}(\alpha^{2} + \alpha + 1) = \alpha^{4} + \alpha^{3} + \alpha^{2} = (\alpha^{2} + \alpha) + (\alpha + 1) + \alpha^{2} = 1$$

$$(\alpha^{2} + 1)^{2} = \alpha^{4} + 1 = \alpha^{2} + \alpha + 1$$

$$(\alpha^{2} + 1)(\alpha^{2} + \alpha) = \alpha^{4} + \alpha^{3} + \alpha^{2} + \alpha = (\alpha^{2} + \alpha) + (\alpha + 1) + \alpha^{2} + \alpha = \alpha + 1$$

$$(\alpha^{2} + 1)(\alpha^{2} + \alpha + 1) = \alpha^{4} + \alpha^{3} + \alpha + 1 = (\alpha^{2} + \alpha) + (\alpha + 1) + \alpha + 1 = \alpha^{2} + \alpha$$

$$(\alpha^{2} + \alpha)^{2} = \alpha^{4} + \alpha^{2} = (\alpha^{2} + \alpha) + \alpha^{2} = \alpha$$

$$(\alpha^{2} + \alpha)(\alpha^{2} + \alpha + 1) = \alpha^{4} + \alpha = (\alpha^{2} + \alpha) + \alpha = \alpha^{2}$$

and

$$(\alpha^2 + \alpha + 1)^2 = \alpha^4 + \alpha^2 + 1 = (\alpha^2 + \alpha) + \alpha^2 + 1 = \alpha + 1.$$

Hence the multiplication table of $\mathbb{F}_2(\alpha)$ is:

×	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
0	0	0	0	0	0	0	0	0
1	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
α	0	α	α^2	$\alpha^2 + \alpha$	$\alpha + 1$	1	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$
$\alpha + 1$	0	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	$\alpha^2 + \alpha + 1$	α^2	1	α
α^2	0	α^2	$\alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	α	$\alpha^2 + 1$	1
$\alpha^2 + 1$	0	$\alpha^2 + 1$	1	α^2	α	$\alpha^2 + \alpha + 1$	$\alpha + 1$	$\alpha^2 + \alpha$
$\alpha^2 + \alpha$	0	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	1	$\alpha^2 + 1$	$\alpha + 1$	α	α^2
$\alpha^2 + \alpha + 1$	0	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$	α	1	$\alpha^2 + \alpha$	α^2	$\alpha + 1$

(b) Let
$$f(X) = X^2 + 1$$
. Then

$$f(0) = 1,$$
 $f(1) = 2,$ $f(2) = 2,$

so f(X) has no roots in \mathbb{F}_3 , hence no linear factors over \mathbb{F}_3 and therefore f(X) is irreducible over \mathbb{F}_3 . Adjoin a root α to \mathbb{F}_3 to construct the field $\mathbb{F}_3(\alpha)$ with $|\mathbb{F}_3(\alpha):\mathbb{F}_3|=2$. Therefore $|\mathbb{F}_3(\alpha)|=9$ and so $\mathbb{F}_3(\alpha)\cong\mathbb{F}_9$. Then $\{1,\alpha\}$ is a basis for $\mathbb{F}_3(\alpha)$ over \mathbb{F}_3 and the addition table of $\mathbb{F}_3(\alpha)$ is determined by the vector space structure:

+	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
0	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
1	1	2	0	$\alpha + 1$	$\alpha + 2$	α	$2\alpha + 1$	$2\alpha + 2$	2α
2	2	0	1	$\alpha + 2$	α	$\alpha + 1$	$2\alpha + 2$	2α	$2\alpha + 1$
α	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$	0	1	2
$\alpha + 1$	$\alpha + 1$	$\alpha + 2$	α	$2\alpha + 1$	$2\alpha + 2$	2α	1	2	0
$\alpha + 2$	$\alpha + 2$	α	$\alpha + 1$	$2\alpha + 2$	2α	$2\alpha + 1$	2	0	1
2α	2α	$2\alpha + 1$	$2\alpha + 2$	0	1	2	α	$\alpha + 1$	$\alpha + 2$
$2\alpha + 1$	$2\alpha + 1$	$2\alpha + 2$	2α	1	2	0	$\alpha + 1$	$\alpha + 2$	α
$2\alpha + 2$	$2\alpha + 2$	2α	$2\alpha + 1$	2	0	1	$\alpha + 2$	α	$\alpha + 1$

The multiplication table is determined by $f(\alpha) = 0$; that is, $\alpha^2 = -1 = 2$. Hence we obtain:

×	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
	l .	0							
1	0	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
2	0	2	1	2α	$2\alpha + 2$	$2\alpha + 1$	α	$\alpha + 2$	$\alpha + 1$
α	0	α	2α	2	$\alpha + 2$	$2\alpha + 2$	1	$\alpha + 1$	$2\alpha + 1$
$\alpha + 1$	0	$\alpha + 1$	$2\alpha + 2$	$\alpha + 2$	2α	1	$2\alpha + 1$	2	α
$\alpha + 2$	0	$\alpha + 2$	$2\alpha + 1$	$2\alpha + 2$	1	α	$\alpha + 1$	2α	2
		2α							
$2\alpha + 1$	0	$2\alpha + 1$	$\alpha + 2$	$\alpha + 1$	2	2α	$2\alpha + 2$	α	1
$2\alpha + 2$	0	$2\alpha + 2$	$\alpha + 1$	$2\alpha + 1$	α	2	$\alpha + 2$	1	2α

- 2. Let $F \subseteq K$ be an extension of finite fields.
 - (a) Show that K is a normal extension of F.
 - (b) Show that K is a separable extension of F.

Solution: Throughout assume that F and K have characteristic p, with prime subfield \mathbb{F}_p satisfying

$$\mathbb{F}_p \subseteq F \subseteq K$$
.

Let $K \cong \mathbb{F}_{p^n}$ for some positive integer n.

- (a) By our construction, K is the splitting field for $X^{p^n} X$ over \mathbb{F}_p ; it is therefore also the splitting field for $X^{p^n} X$ over F. Hence K is a normal extension of F.
- (b) Let $\alpha \in K$ and let f(X) be the minimum polynomial of α over F. Now $\alpha^{p^n} \alpha = 0$, so f(X) divides $X^{p^n} X$. The latter has distinct roots in K (in which it splits), namely the p^n elements of K. Thus f(X) also has distinct roots in K (in which f(X) splits). We conclude f(X) is separable and hence K is a separable extension of F.
- 3. Consider the Galois field \mathbb{F}_{p^n} for order p^n where p is a prime number and n is a positive integer.
 - (a) If F is a subfield of \mathbb{F}_{p^n} , show that $F\cong \mathbb{F}_{p^d}$ for some divisor d of n. [Hint: Recall $|\mathbb{F}_{p^n}:\mathbb{F}_p|=n$.]
 - (b) Suppose that d is a divisor of n.
 - (i) Set k = n/d, $r = \sum_{i=0}^{k-1} p^{id} = (p^n 1)/(p^d 1)$ and

$$g(X) = \sum_{i=1}^{r} X^{p^n - i(p^d - 1) - 1}.$$

Show that

$$g(X)\left(X^{p^d}-X\right)=X^{p^n}-X.$$

- (ii) Show that \mathbb{F}_{p^n} contains precisely p^d roots of $X^{p^d} X$.
- (iii) Show that $L = \{ a \in \mathbb{F}_{p^n} \mid a^{p^d} = a \}$ is a subfield of \mathbb{F}_{p^n} of order p^d .
- (c) Conclude that \mathbb{F}_{p^n} has a unique subfield of order p^d for each divisor d of n.

Solution: (a) Let F be a subfield of \mathbb{F}_{p^n} . Then $\mathbb{F}_p \subseteq F \subseteq \mathbb{F}_{p^n}$, so F is a finite field of characteristic p, so $F \cong \mathbb{F}_{p^d}$ for some positive integer d. The Tower Law tells us $|F: \mathbb{F}_p| = d$ divides $|\mathbb{F}_{p^n}: \mathbb{F}_p| = n$. Hence $F \cong \mathbb{F}_{p^d}$ for some divisor d of n.

(b) Let d be a divisor of n.

(i) Put k = n/d,

$$r = \sum_{i=0}^{k-1} p^{id} = \frac{(p^d)^k - 1}{p^d - 1} = \frac{p^n - 1}{p^d - 1},$$

by the formula for a geometric progression, and

$$g(X) = \sum_{i=1}^{r} X^{p^n - i(p^d - 1) - 1}.$$

Observe

$$\begin{split} X^{p^n-i(p^d-1)-1}\left(X^{p^d}-X\right) &= X^{p^n-i(p^d-1)-1+p^d} - X^{p^n-i(p^d-1)} \\ &= X^{p^n-(i-1)(p^d-1)} - X^{p^n-i(p^d-1)}. \end{split}$$

Hence

$$\begin{split} g(X)\left(X^{p^d} - X\right) &= \sum_{i=1}^r X^{p^n - i(p^d - 1) - 1} \left(X^{p^d} - X\right) \\ &= \sum_{i=1}^r \left(X^{p^n - (i-1)(p^d - 1)} - X^{p^n - i(p^d - 1)}\right) \\ &= X^{p^n} - X^{p^n - r(p^d - 1)}. \end{split}$$

since the first term of the *i*th summand cancels with the second term of the (i-1)th summand. As $r(p^d-1) = p^n - 1$, we conclude

$$g(X)(X^{p^d} - X) = X^{p^n} - X^{p^n - (p^n - 1)} = X^{p^n} - X,$$

as claimed.

(ii) By construction, \mathbb{F}_{p^n} is the splitting field of $X^{p^n} - X$ over \mathbb{F}_p and this polynomial has distinct roots in \mathbb{F}_{p^n} . By part (i), $X^{p^d} - X$ divides $X^{p^n} - X$, hence this too splits in \mathbb{F}_{p^n} and has distinct roots.

Thus $X^{p^d} - X$ has precisely p^d roots in \mathbb{F}_{p^n} .

(iii) Let $L = \{ a \in \mathbb{F}_{p^n} \mid a^{p^d} = a \}$; that is, L is the set of roots of $X^{p^d} - X$ in \mathbb{F}_{p^n} . By (ii), $|L| = p^d$.

Note that 0 and 1 both satisfy $a^{p^d}=a$, so L is non-empty and contains non-zero elements. Let $a,b\in L$. Then

$$(a+b)^{p^d} = a^{p^d} + b^{p^d} = a+b$$
$$(ab)^{p^d} = a^{p^d} b^{p^d} = ab$$
$$(-a)^{p^d} = (-1)^{p^d} a^{p^d} = -a^{p^d} = -a$$

and, if $a \neq 0$,

$$(1/a)^{p^d} = 1/a^{p^d} = 1/a.$$

Here we use Freshman's Exponentiation in the first calculation and the fact that $(-1)^{p^d} = -1$ if p is odd and $(-1)^{p^d} = 1 = -1$ if p = 2 in the third. We conclude that L is a subfield of \mathbb{F}_{p^n} . This completes (iii).

(c) By (a), any subfield of \mathbb{F}_{p^n} is isomorphic to \mathbb{F}_{p^d} for some divisor d of n. Conversely, if d divides n, then by (b),

$$L = \{ a \in \mathbb{F}_{p^n} \mid a^{p^d} = a \}$$

is a subfield of \mathbb{F}_{p^n} of order p^d (hence isomorphic to \mathbb{F}_{p^d}). It remains to show that L is the unique subfield of \mathbb{F}_{p^n} of order p^d .

However, if F is a subfield of \mathbb{F}_{p^n} of order p^d , then $|F^*| = p^d - 1$, so

$$a^{p^d-1} = 1$$
 for all $a \in F^*$.

Therefore

$$a^{p^d} = a$$
 for all $a \in F$

and we observe $F \subseteq L$. As $|F| = |L| = p^d$, we conclude F = L, as required.

- 4. (a) Using information about the Galois field \mathbb{F}_{16} of order 16, or otherwise, factorize $X^{15}-1$ into a product of polynomials irreducible over \mathbb{F}_2 .

 [Hint: What are the subfields of \mathbb{F}_{16} ? If an element lies in a particular subfield, what is the
 - (b) Using information about the Galois field \mathbb{F}_{27} of order 27, or otherwise, find the degrees of the irreducible factors of $X^{26} 1$ over \mathbb{F}_3 . Find the number of irreducible factors of each degree.

Solution: (a) By Question 3, $\mathbb{F}_{16} = \mathbb{F}_{2^4}$ has a unique subfield of order p^d for each divisor d of 4; that is, the subfields of \mathbb{F}_{16} are \mathbb{F}_2 , \mathbb{F}_4 and \mathbb{F}_{16} itself.

If $\alpha \in \mathbb{F}_{16}$ and $\alpha \neq 0$, then $\alpha^{15} = 1$ (as $|\mathbb{F}_{16}^*| = 15$), so the minimum polynomial of α over \mathbb{F}_2 divides $X^{15} - 1$. Now if $\alpha \in \mathbb{F}_2$, then $\alpha = 1$ and X - 1 is the minimum polynomial of α over \mathbb{F}_2 .

If $\alpha \in \mathbb{F}_4 \setminus \mathbb{F}_2$, then $\mathbb{F}_2(\alpha)$, the smallest subfield of \mathbb{F}_{16} containing α , must be \mathbb{F}_4 . Hence $|\mathbb{F}_2(\alpha):\mathbb{F}_2|=|\mathbb{F}_4:\mathbb{F}_2|=2$ and the minimum polynomial of α over \mathbb{F}_2 must be of degree 2.

If $\alpha \in \mathbb{F}_{16} \setminus \mathbb{F}_4$, then $\mathbb{F}_2(\alpha) = \mathbb{F}_{16}$ (since α does not belong to the other alternative subfields \mathbb{F}_2 and \mathbb{F}_4) and the degree of the minimum polynomial of α over \mathbb{F}_2 is 4.

In Question 9 on Problem Sheet I we found the irreducible polynomials of degree at most 4 over \mathbb{F}_2 . There is one irreducible polynomial of degree 2, namely

$$X^2 + X + 1$$
,

and three irreducible polynomials of degree 4, namely

degree of its minimum polynomial?]

$$X^4 + X + 1$$
, $X^4 + X^3 + 1$ and $X^4 + X^3 + X^2 + X + 1$.

The two elements in $\mathbb{F}_4 \setminus \mathbb{F}_2$ must have minimum polynomial $X^2 + X + 1$ and be the roots of this polynomial in \mathbb{F}_{16} . The twelve elements in $\mathbb{F}_{16} \setminus \mathbb{F}_4$ must be roots of the above three polynomials of degree 4. Each of these polynomials has precisely four roots in \mathbb{F}_{16} since once they have one root, they then divide $X^{15} - 1$ and hence have distinct roots in \mathbb{F}_{16} . We conclude that the factorization of $X^{15} - 1$ over \mathbb{F}_2 is

$$X^{15} - 1 = (X - 1)(X^2 + X + 1)(X^4 + X + 1)(X^4 + X^3 + 1)(X^4 + X^3 + X^2 + X + 1).$$

(b) Since the multiplicative group \mathbb{F}_{27}^* has order 26, every non-zero element of \mathbb{F}_{27} is a root of $X^{26}-1$. Now if $\alpha \in \mathbb{F}_{27}$, with $\alpha \neq 0$, then $\mathbb{F}_3(\alpha)$ is one of the subfields of \mathbb{F}_{27} . As $|\mathbb{F}_{27}:\mathbb{F}_3|=3$, there are (by Question 3) precisely two subfields namely \mathbb{F}_3 and \mathbb{F}_{27} itself. If $\alpha \in \mathbb{F}_3$ (that is, $\alpha=1$ or 2), then $\mathbb{F}_3(\alpha)=\mathbb{F}_3$ and the minimum polynomial of α over \mathbb{F}_3 is $X-\alpha$ and this is a factor of $X^{26}-1$ (as the minimum polynomial of α divides any polynomial over \mathbb{F}_3 having α as a root).

Otherwise, if $\alpha \in \mathbb{F}_{27} \setminus \mathbb{F}_3$, then α is one of 24 elements satisfying $\mathbb{F}_3(\alpha) = \mathbb{F}_{27}$. The minimum polynomial of α over \mathbb{F}_3 then has degree 3 and this is a factor of $X^{26} - 1$. There product of all such degree 3 minimum polynomials will then account for all roots α of $X^{26} - 1$ with $\alpha \notin \mathbb{F}_3$, so we conclude that there are eight degree 3 irreducible factors (covering between them three roots each to a total of 24 roots).

Hence $X^{26} - 1$ is a product of two irreducible factors of degree 1 and eight irreducible factors of degree 3 over \mathbb{F}_3 .

5. A primitive nth root of unity in a finite field F is an element x of order n in the multiplicative group F^* . [The terminology indicates that x satisfies $x^n = 1$ and that its powers $1, x, x^2, \ldots, x^{n-1}$ are the n distinct roots of $X^n - 1$ in F.]

Let q be a power of a prime.

- (a) Show that the Galois field \mathbb{F}_q of order q contains a primitive nth root of unity if and only if $q \equiv 1 \pmod{n}$.
- (b) Suppose that n and q are coprime. Show that the splitting field of X^n-1 over \mathbb{F}_q is \mathbb{F}_{q^m} where m is minimal subject to $q^m \equiv 1 \pmod p$.
- (c) For each value of n in the range $1 \le n \le 12$, determine the degree of the splitting field of $X^n 1$ over \mathbb{F}_5 .
- (d) Determine for which n in the range $1 \le n \le 12$ does the Galois field \mathbb{F}_{536} of order 5^{36} contain a primitive nth root of unity?

Solution: (a) Note that an element x of \mathbb{F}_q^* is a primitive nth root of unity if and only if the cyclic subgroup $\langle x \rangle$ of \mathbb{F}_q^* is of order n. Since \mathbb{F}_q^* is cyclic of order q-1, it has a (unique) subgroup of order n if and only if n divides q-1; that is, \mathbb{F}_q contains a primitive nth root of unity if and only if $q \equiv 1 \pmod{n}$.

(b) Consider a field extension L of \mathbb{F}_q of degree m. Since $|L:\mathbb{F}_q|=m$, the order of L equals q^m , so $L\cong \mathbb{F}_{q^m}$. By part (a), L^* contains a primitive nth root of unity if and only if $q^m\equiv 1\pmod{n}$. Now if L^* contains a primitive nth root of unity, then the powers of this root are n distinct roots of X^n-1 and hence X^n-1 splits in L.

Conversely, if $X^n - 1$ splits in L, then consider the set Z of roots of $X^n - 1$ in L. Since $D(X^n - 1) = nX^{n-1} \neq 0$ (as n is coprime to q and hence to the characteristic of L) and X does not divide $X^n - 1$, we observe $X^n - 1$ and its formal derivative are coprime. Thus the roots of $X^n - 1$ are distinct, so |Z| = n. If $\alpha, \beta \in Z$, then

$$(\alpha\beta)^n = \alpha^n \, \beta^n = 1,$$

and we conclude that Z is a multiplicative subgroup of L^* . Therefore Z is cyclic (as a subgroup of a cyclic group), so $Z = \langle x \rangle$ for some x of order n. This x is a primitive nth root of unity in L^* and so, by part (a), $q^m \equiv 1 \pmod{n}$.

In conclusion, $L = \mathbb{F}_{q^m}$ is a field over which $X^n - 1$ splits if and only if $q^m \equiv 1 \pmod{n}$. The splitting field of $X^n - 1$ is the smallest field over which $X^n - 1$ spits and hence is \mathbb{F}_{q^m} where m is smallest such that $q^m \equiv 1 \pmod{n}$.

(c) By part (b), the spitting field of $X^n - 1$ over \mathbb{F}_5 is \mathbb{F}_{5^m} where m is smallest such that $q^m \equiv 1 \pmod{n}$ provided n is coprime to 5. Thus we can, for $n \neq 5$, 10, determine the value m by calculating powers of 5 mod n. Indeed we seek the smallest value of m such that n divides $5^m - 1$ and we calculate this for each $n = 1, 2, \ldots, 12$ except n = 5 or 10.

The values of m are as follows:

	i
n	m
1	1
2	1
3	2
4	1
6	2
7	6
8	2
9	6
11	5
12	2

Hence the splitting field of $X^n - 1$ over \mathbb{F}_5 has degree 1 for n = 1, 2 and 4; has degree 2 for n = 3, 6, 8 and 12; has degree 5 for n = 11; and has degree 6 for n = 7 and 9.

It remains to consider n=5 and n=10. Since 5 is also the characteristic of our field,

$$X^5 - 1 = (X - 1)^5$$

and

$$X^{10} - 1 = (X^{2})^{5} - 1$$
$$= (X^{2} - 1)^{5}$$
$$= (X - 1)^{5} (X + 1)^{5}.$$

Thus both $X^5 - 1$ and $X^{10} - 1$ split over \mathbb{F}_5 , so the degree of the splitting field of $X^n - 1$ over \mathbb{F}_5 is 1 for n = 5 and 10.

(d) As observed in part (b), the field $\mathbb{F}_{5^{36}}$ has a primitive nth root of unity, for n coprime to 5, when it contains the splitting field of $X^n - 1$ over \mathbb{F}_5 . In part (c), we determined this splitting field as \mathbb{F}_{5^m} for specific m. Thus, using Question 3, this splitting field is contained in $\mathbb{F}_{5^{36}}$ precisely when this degree m divides 36. Consequently, we know $\mathbb{F}_{5^{36}}$ contains a primitive nth root of unity for n = 1, 2, 3, 4, 6, 7, 8, 9 and 12, but not for n = 11.

The cases n=5 and n=10 must be handled separately, but are straightforward. The multiplicative group \mathbb{F}^*_{536} has order $5^{36}-1$ and this is not divisible by 5 or 10 (it is coprime to 5), so \mathbb{F}^*_{536} has no element of order 5 or 10.

In conclusion, $\mathbb{F}_{5^{36}}$ contains a primitive *n*th root of unity for n=1, 2, 3, 4, 6, 7, 8, 9 and 12 but not for n=5, 10 or 11.

6. Let F be a finite field with q elements where q is odd. Prove that the splitting field of $X^4 + 1$ over F has degree one or two and that $X^4 + 1$ factorizes in F[X] either as a product of four distinct linear polynomials when 8 divides q - 1 or as a product of two distinct quadratic irreducible polynomials when 8 does not divide q - 1.

[Hint: Consider the elements $-\alpha$, $1/\alpha$ and $-1/\alpha$ where α is a root of $X^4 + 1$ in some extension of F.]

Solution: Let α be a root of $X^4 + 1$ in an extension of F (for example, in a splitting field). Note

$$(-\alpha)^4 = \alpha^4 = -1,$$

 $(1/\alpha)^4 = 1/\alpha^4 = 1/(-1) = -1,$

and

$$(-1/\alpha)^4 = 1/\alpha^4 = 1/(-1) = -1,$$

so $-\alpha$, $1/\alpha$ and $-1/\alpha$ are roots of X^4+1 in $F(\alpha)$. Moreover, the formal derivative $D(X^4+1)=4X^3\neq 0$ is coprime to X^4+1 , so these four roots are distinct. Thus $F(\alpha)$ is the splitting field of X^4+1 over F.

Suppose 8 divides q-1. Then F^* is cyclic of order q-1, so contains some element α of order 8. Note that F^* has a unique element of order 2, namely -1, since 1 and -1 are the only roots of X^2-1 . Hence $\alpha^4=-1$ and thus the element α of order 8 in F^* is a root of X^4+1 . The previous paragraph now shows that X^4+1 splits as a product of linear factors in F[X].

Conversely suppose 8 does not divide q-1. Let L be an extension of F of degree 2; that is, L is a field of order q^2 . Now

$$q^2 - 1 = (q - 1)(q + 1)$$

is a product of two consecutive even integers, so one is divisible by 4. Hence $q^2 - 1$ is divisible by 8, so by the previous paragraph applied to L, $X^4 + 1$ splits over L. Let α be a root of $X^4 + 1$ in L. Then $F(\alpha)$ is the splitting field of $X^4 + 1$ over F and is some subfield of L. As |L:F| = 2, we conclude $F(\alpha) = F$ or L.

Note that $\alpha^4 = -1$, so $\alpha^8 = 1$. Thus α is an element of order 8 in L^* (since also $\alpha^4 = -1 \neq 1$). Since $8 \nmid (q-1)$, we conclude $\alpha \notin F$, so $L = F(\alpha)$ and the degree of the minimum polynomial over α is 2. This minimum polynomial divides $X^4 + 1$ and the same argument applies to all roots of $X^4 + 1$. We conclude that when $8 \nmid (q-1)$, the polynomial $X^4 + 1$ factorizes as a product of two distinct irreducible quadratic factors. (The factors are distinct as $X^4 + 1$ has four distinct roots in $F(\alpha)$.)

7. Let G be a finite abelian group.

- (a) If x_1 and x_2 are elements of G with coprime orders, show that x_1x_2 has order given by $o(x_1x_2) = o(x_1) o(x_2)$.
- (b) Suppose p_1, p_2, \ldots, p_k are distinct prime numbers and that $x_1, x_2, \ldots, x_k \in G$ with $o(x_i) = p_i^{\alpha_i}$. Show that $o(x_1x_2 \ldots x_k) = o(x_1) \ o(x_2) \ldots o(x_k) = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}.$

Solution: (a) Let $n = o(x_1) o(x_2)$. Since G is abelian,

$$(x_1x_2)^n = x_1^n x_2^n = 1$$

as $o(x_1)$ and $o(x_2)$ both divide n. Thus the order of x_1x_2 divides n.

Conversely, suppose $(x_1x_2)^k = 1$. Then

$$x_1^k = x_2^{-k},$$

so

$$x_1^{k \cdot o(x_2)} = (x_2^{o(x_2)})^{-k} = 1.$$

Hence $o(x_1)$ divides $k \cdot o(x_2)$. However, as $o(x_1)$ and $o(x_2)$ are coprime, we then conclude $o(x_1)$ divides k. By the same argument, we deduce $o(x_2)$ divides k. Thus, again using the fact that $o(x_1)$ and $o(x_2)$ are coprime, we establish that $o(x_1)$ of $o(x_2)$ divides k.

In conclusion, the smallest positive integer k such that $x^k = 1$ is $k = o(x_1) o(x_2)$; that is,

$$o(x_1x_2) = o(x_1) o(x_2).$$

(b) We proceed by induction on k, with the case k = 1 being trivial. Suppose the result holds for k - 1; that is,

$$o(x_1x_2...x_{k-1}) = o(x_1) o(x_2)...o(x_{k-1}) = p_1^{\alpha_1} p_2^{\alpha_2}...p_{k-1}^{\alpha_{k-1}}.$$

Thus $o(x_k) = p_k^{\alpha_k}$ and $o(x_1 x_2 \dots x_{k-1})$ are coprime, so by (a),

$$o(x_1 x_2 \dots x_k) = o(x_1 x_2 \dots x_{k-1}) o(x_k)$$

= $o(x_1) o(x_2) \dots o(x_{k-1}) \cdot o(x_k)$
= $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$.

This establishes the induction.

8. Give an example of a finite group (necessarily non-abelian) which has no element of order equal to its exponent.

Solution: Take $G = S_3$, the symmetric group of degree 3. Then G contains the identity (of order 1), transpositions (of order 2) and 3-cycles (of order 3). Hence the exponent of G is 6, but there are no elements of order 6 in $G = S_3$.