SQUARE: A Benchmark for Research on Computing Crowd Consensus

Presentation by Srikanth Muralidharan

Case Study — Brexit

- Referendum to leave/stay
- 17.4 M wanted to leave
- 16.1 M wanted to stay back
- Result: By Majority vote, 'leave' by margin of 1.3 M

Source: Independent news article

Case Study — Brexit

News Voices Culture Lifestyle

Daily Edition

News > UK > UK Politics

Brexit research suggests 1.2 million Leave voters regret their choice in reversal that could change result

The research suggests that if a second referendum were held, the vote would be much closer

Lizzie Dearden | @lizziedearden | Friday 1 July 2016 | \$\sum 735\$ comments

Source: Independent news article

REMEMBER MARGIN WAS 1.3 M!

Case Study — Brexit

Source: Fortune

MAJORITY VOTE CONSENSUS DOESN'T SEEM OPTIMAL HERE!

Take Away's

Getting Accurate Data label is a challenging process

 Possible solution: Get labels from multiple workers for a given data, combine them

Take Away's

 MV might not be optimal method for combining.

 Better consensus methods might consider worker (voter) expertise / reliability and so on.

Problem

Multiple consensus methods exist in literature

 Compare and contrast between different consensus methods

Design rules about when to use a consensus method

Contributions

- SQUARE Benchmark
 - "(Statistical Quality Assurance Robustness Evaluation"
- Collection of diverse datasets, consensus methods

Simulation of varying noise, supervision

Heuristics for picking right consensus method given the scenario

Outline

Benchmark Datasets for comparisons

Consensus methods

Experiment Setup and Results

Concluding Remarks

Benchmark Datasets for comparisons

Consensus methods

Experiment Setup and Results

Concluding Remarks

Datasets

Dataset	Categories	Examples	Workers	Labels	MV Acc.
AC2	4	333	269	3317	88.1
BM	2	1000	83	5000	69.6
HC	3	3275	722	18479	64.9
HCB	2	3275	722	18479	64.8
RTE	2	800	164	8000	91.9
SpamCF	2	100	150	2297	66.0
TEMP	2	462	76	4620	93.9
WB	2	108	39	4212	75.9
WSD	3	177	34	1770	99.6
WVSCM	2	159	17	1221	72.3

Datasets

Dataset	Categories	Examples	Workers	Labels	MV Acc.
AC2	4	333	269	3317	88.1
BM	2	1000	83	5000	69.6
HC	3	3275	722	18479	64.9
HCB	2	3275	722	18479	64.8
RTE	2	800	164	8000	91.9
SpamCF	2	100	150	2297	66.0
TEMP	2	462	76	4620	93.9
WB	2	108	39	4212	75.9
WSD	3	177	34	1770	99.6
WVSCM	2	159	17	1221	72.3

Labels per worker count

Worker accuracy distribution

Benchmark Datasets for comparisons

Consensus methods

Experiment Setup and Results

Concluding Remarks

Consensus methods – An overview

Many methods exist for consensus

Vast variations present between each methods

Key sources of Diversity

Modelling of Worker Behaviour

Modelling of class label distribution

Consensus methods used in our experiments

- Majority voting (MV)
- ZenCrowd (ZC) [Demartini et al. 2012]
- David and Skene (DS) & Naïve Bayes (NB)
- GLAD [Whitehill et al. 2009]
- RY [Raykar et al. 2010]
- CUBAM [Welinder et al. 2010]

Majority voting

- Most widely used consensus method
- Assumes workers to be high quality and Independent, imply
 - 1. No modeling of worker behavior
 - 2. No modeling of annotation process
 - 3. Independent of task
- No estimations -> Fast label inferencing
- Applied under all supervision-classification modes

ZenCrowd

- Parameterizes worker reliability
 - ➤ Single Parameter per worker
 - Measure of worker expertise
 - Easily Generalizable to multi-class / Multi choice tasks
 - Easy mechanism to identify and handle Adversarial workers (bias)
- Other assumptions apply as in MV

More about ZenCrowd

- Unsupervised in original version
 - Use Expectation-Maximization (EM) to estimate worker reliability and labels
- Could be operated under other supervision modes
 - Lightly Supervised by only providing class priors
 - Semi Supervised by providing gold labels for a subset [Wang et al. 2011]
 - Fully Supervised using MLE [Snow et al. 2008]

Dawid Skene & Naïve Bayes

Parameterizes worker bias w.r.t all classes

- Models Confusion Matrix for each worker and class prior
 - > Implies one parameter per class per worker
 - Easy detection of perfections/imperfections of each worker w.r.t a class
 - Sparsity could be problematic.
 - > Cannot be generalized to multiple choice Selection task
- Other assumptions apply as in MV

More about DS / NB

- Unsupervised in original version
 - > Use EM to estimate worker CM and class prior
- Could be operated under other supervision modes
 - Under Lightly Supervised and semi-supervised conditions
 - Variant Estimation technique to distinguish b/w noise and worker bias
 - Under Full supervision by MLE using Laplacian smoothing

GLAD

 Joint Parameterization of worker expertise and class label (though example difficulty modeling)

- Originally proposed as unsupervised problem
 - Addressed using EM with gradient ascent M step
 - > Extendable to Multi-class problems
 - Could be projected under other supervised settings (Fit labels in EM)

RY (Raykar)

- Joint parametrization of worker bias for each class
 - > Specificity and Sensitivity in binary case modeled using beta prior
 - Dirichlet prior in multi-class case
- Optional: Feature representation of example
 - Used to estimate labels if available, DS like mechanism otherwise
- Originally proposed as unsupervised problem
 - > EM to estimate worker bias parameters
 - > Extendable to Multi-class problems
 - Class (example) parameters => No multi-choice

CUBAM

- Incorporate all the three modalities
 - ➤ Normalized relevance weight to each worker
 - Worker labels could be determined, given input and worker specific parameters
 - Labels obtained by MAP estimation of worker specific parameters and input
 - Worker expertise/bias could be determined.
- Multi-class classification possible
- No direct supervision is apparent

Summary

	Unsup	Light sup.	Semi sup.	Full sup.	Multi- class	Mult- choice Q
MV		✓	✓	✓	V	✓
ZC	✓	/	~	✓	V	/
DS	~	V	~	/	V	×
NB	×	×	×	/	V	×
GLAD	~	V	/	/	V	/
RY	~	✓	✓	•	V	×
CUBAM	✓	×	×	×	V	×

Benchmark Datasets for comparisons

Consensus methods

Experiment Setup and Results

Concluding Remarks

Goal

- Project consensus under exhaustive set of settings
- Analyze importance of each assumption

 Analyze impact of different conditions on the performance (e.g. supervision)

Possible settings

Dataset

Degree of Supervision

Label Noise

Evaluation Metrics

Degree of Supervision

- Ranging from unsupervised to 90% supervised
- Cross-validation employed in each case, with varying folds
- Unsupervised No information about hyperparameters/priors
- Light supervision Data Prior distribution available
- Full Supervision Gold-labeled training examples available

Sampling visualization

Label Noise

- Noise added to worker label predictions
- Noise added under maximizing data realism
 - Preservation of worker accuracy distribution
 - Preservation of worker-example correspondences
- Worker accuracy parameterized by normal distribution

- Different proportions of noise added
 - For each worker, accuracy sampling is performed, new labels generated

Evaluation Metrics

• Ideal metric: Simplify understanding, easy adaption

F1 and accuracy metrics employed here

• Other alternatives possible – e.g. Significance testing [Smucker et al. 2007]

Details about consensus implementations - ZC

- Beta priors used for worker reliability
- Dirichlet priors used for class label distribution
- In unsupervised setting, uniform distribution was used for category distribution modeling
- Parameters computed using training data in supervised setting

Details about consensus implementations - RY

- Beta priors used for worker specificity sensitivity
- Only used for binary classification as in original paper [Rayker et al. 2010]
- In unsupervised setting, parameters were assumed as in ZC

· Parameters computed using training data in supervised setting

Details about consensus implementations – CUBAM, DS, GLAD

- CUBAM same prior assumptions as original implementation
- DS priors not assumed computed using training data when available
- GLAD uniform class distribution assumed computed using training data when available
- CUBAM / GLAD support only binary classes

Results on unmodified datasets — Unsupervised (vs MV)

Results on unmodified datasets – Absolute Numbers

Method	Metric	No Supervision	10%	Light 20%	Superv 50%	vision 80%	90%	10%	Full 20%	-Supevi 50%	sion 80%	90%	Count
\overline{MV}	$Acc F_1$	79.2 77.5	79.2 77.5	79.2 77.5	79.2 77.2	79.3 78.0	79.3 78.1	79.2 77.5	79.2 77.5	79.2 77.2	79.3 78.0	79.3 78.1	0 0
\overline{ZC}	$Acc F_1$	77.2 76.4	76.3 74.2	77.1 75.7	78.4 76.8	78.9 77.7	78.9 77.7	76.8 75.4	77.6 76.1	78.7 77.0	80.4 79.2	80.8 79.6	0 0
GLAD	Acc F_1	78.7 77.3	78.1 76.8	78.0 76.7	78.2 77.0	78.9 78.6	78.0 77.6	78.3 76.9	78.5 77.1	79.2 77.6	79.8 79.0	80.3 79.5	0 0
NB	Acc F_1	-		-	-	-	-	80.3 79.1	80.7 79.0	80.5 78.5	80.7 78.5	80.5 78.9	0 0
DS	Acc F_1	82.2 80.2	82.3 80.2	82.2 80.0	82.0 79.4	80.4 78.9	79.5 77.9	82.2 80.1	82.2 80.0	82.1 79.6	81.8 79.2	81.9 79.9	6 7
RY	Acc F_1	80.9 79.1	81.6 79.6	81.6 79.5	81.5 79.2	80.5 78.8	80.1 78.8	81.9 79.8	82.0 79.9	82.5 79.9	82.3 80.4	82.3 80.4	5 4
CUBAM	Acc F_1	81.5 79.8	-	-	-	-	-	-	-	-	-	-	0 0

General Trends – unmodified datasets

- DS top average performance under <50% supervision
- RY top average performance under > 70% supervision
- CUBAM performs well under noisy conditions of HCB
- MV comparable to others under noisy and scarce data

	3.6		100	_	-Superv		000	1.00	Full				
Method	Metric	No Supervision	10%	20%	50%	80%	90%	10%	20%	50%	80%	90%	Count
\overline{MV}	Acc	79.2	79.2	79.2	79.2	79.3	79.3	79.2	79.2	79.2	79.3	79.3	0
IVI V	F_1	77.5	77.5	77.5	77.2	78.0	78.1	77.5	77.5	77.2	78.0	78.1	0
\overline{ZC}	Acc	77.2	76.3	77.1	78.4	78.9	78.9	76.8	77.6	78.7	80.4	80.8	0
20	F_1	76.4	74.2	75.7	76.8	77.7	77.7	75.4	76.1	77.0	79.2	79.6	0
GLAD	Acc	78.7	78.1	78.0	78.2	78.9	78.0	78.3	78.5	79.2	79.8	80.3	0
GLAD	F_1	77.3	76.8	76.7	77.0	78.6	77.6	76.9	77.1	77.6	79.0	79.5	0
NB	Acc	-	-	-	-	-	-	80.3	80.7	80.5	80.7	80.5	0
ND	F_1	-	-	-	-	-	-	79.1	79.0	78.5	78.5	78.9	0
DS	Acc	82.2	82.3	82.2	82.0	80.4	79.5	82.2	82.2	82.1	81.8	81.9	6
DS	F_1	80.2	80.2	80.0	<u>79.4</u>	<u>78.9</u>	77.9	80.1	80.0	79.6	79.2	79.9	7
RY	Acc	80.9	81.6	81.6	81.5	80.5	80.1	81.9	82.0	82.5	82.3	82.3	5
ΠI	F_1	79.1	79.6	79.5	79.2	78.8	<u>78.8</u>	79.8	79.9	<u>79.9</u>	80.4	80.4	4
CUBAM	Acc	81.5	_	-	-	-	-	_	-	-	-	-	0
	F_1	79.8	-	-	-	-	-	-	-	-	-	-	0

General Trends – unmodified datasets

Performance limited by worker/class prior modeling

- Smart modelling of workers => Good performance
 - > Sufficiency in model complexity further gets aided by supervision

Results on datasets — Different Noise injections

			No Avg. W	Supervi orker A					Superv Orker A	vision ecuracy	,						
Method	Fold Size	55%	65%	75%	85%	95%	55%	65%	75%	85%	95%	55%	Avg. W 65%	75%	85%	95%	Count
MV	20% 80%	45.1	67.2	82.4	93.6	97.8 -	45.1 45.1	67.2 67.2	82.4 82.4	93.6 93.6	97.8 97.8	45.1 45.1	67.2 67.2	82.4 82.4	93.6 93.6	97.8 97.8	0
ZC	20% 80%	56.6	77.8 -	85.2	99.2	99.8	55.9 57.8	70.9 67.7	85.1 86.6	99.1 98.3	99.8 99.6	66.2 85.9	85.9 90.0	95.9 95.4	99.1 99.0	99.7 99.9	5 5
GLAD	20% 80%	52.6	70.3	84.8	98.4	98.6	53.7 47.1	70.8 69.3	85.0 85.9	98.4 97.8	98.7 98.9	63.8 69.6	71.0 81.1	87.3 95.7	98.6 98.4	99.7 99.7	0
NB	20% 80%		-	-	-	-	- -	- -	-	-	-	82.2 84.0	86.1 88.0	93.8 95.0	97.2 98.6	98.8 99.6	0
DS	20% 80%	45.0	85.3	91.2	99.1	99.9 -	48.3 47.1	85.2 82.0	91.3 92.1	99.0 98.0	99.7 99.4	75.3 86.2	89.8 90.7	95.6 96.0	99.1 99.0	99.9 99.8	5 7
RY	20% 80%	56.9	86.1	95.3 -	99.1	99.7 -	59.1 71.0	69.9 78.9	86.9 89.1	98.9 98.1	99.8 99.4	83.1 85.7	90.0 90.3	95.8 95.3	98.9 98.9	99.8 99.7	7 4
CUBAM	20% 80%	52.4	67.6 -	83.2	97.7 -	97.9 -	-	-	-	-	-	-	-	-	-	- -	0

General Trends – Noisy datasets

- MV Outperformed at modest noise levels (50%)
- DS top average performance under low noise
- CUBAM doesn't perform better than others
- RY performs well with supervisions – highlights significance of priors

			No Avg. W	Supervi orker A				Light Avg. W	t-Superv orker A		ı	Full-Supervision Avg. Worker Accuracy						
Method	Fold Size	55%	65%	75%	85%	95%	55%	65%	75%	85%	95%	55%	65%	75%	85%	95%	Count	
MV	20% 80%	45.1	67.2	82.4	93.6	97.8 -	45.1 45.1	67.2 67.2	82.4 82.4	93.6 93.6	97.8 97.8	45.1 45.1	67.2 67.2	82.4 82.4	93.6 93.6	97.8 97.8	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	
ZC	20% 80%	56.6	77.8	85.2	99.2	99.8	55.9 57.8	70.9 67.7	85.1 86.6	99.1 98.3	99.8 99.6	66.2 85.9	85.9 90.0	95.9 95.4	99.1 99.0	99.7 99.9	5 5	
GLAD	20% 80%	52.6	70.3	84.8	98.4	98.6	53.7 47.1	70.8 69.3	85.0 85.9	98.4 97.8	98.7 98.9	63.8 69.6	71.0 81.1	87.3 95.7	98.6 98.4	99.7 99.7	0 0	
NB	20% 80%	-	-	-	-	-	-	-	-	-	-	82.2 84.0	86.1 88.0	93.8 95.0	97.2 98.6	98.8 99.6	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	
DS	20% 80%	45.0	85.3	91.2	99.1	99 . 9 -	48.3 47.1	85.2 82.0	91.3 92.1	99.0 98.0	99.7 99.4	75.3 86.2	89.8 90.7	95.6 96.0	99.1 99.0	99.9 99.8	5 7	
RY	20% 80%	56.9	86.1	95.3 -	99.1 -	99.7 -	59.1 71.0	69.9 78.9	86.9 89.1	98.9 98.1	99.8 99.4	83.1 85.7	90.0 90.3	95.8 95.3	98.9 98.9	99.8 99.7	7 4	
CUBAM	20% 80%	52.4	67.6 -	83.2	97.7 -	97.9 -	-	-	-	-	-	-	-	-	-	-	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	

General Trends – Overall

- MV Outperformed when noise levels are high
- DS top average performance under low noise
- RY top average performance under high supervision highlights significance of domain knowledge
- CUBAM doesn't perform better than others –shows performance sensitivity to datasets
- ZC and GLAD perform similarly

Benchmark Datasets for comparisons

Consensus methods

Experiment Setup and Results

Concluding Remarks

Conclusion

Design of a comprehensive benchmark for evaluating consensus methods

Diverse dataset – consensus methods to rely on

Diverse experiments to compare and contrast different consensus methods

Future work

Improved Benchmark tests for better analysis

Tuning of current methods for fair comparisons

Analysis under sampling from worker emperical distribution rather than normal distribution

SQUARE API on web

as Note that its act assesses to have the survey dTo the tot file 0. Demanding an orbital according to the

Thank you