# Sample solutions

Stat 8051 Homework 2

## Problem 1: ALR Exercise 3.2



**3.2.1** There seem to be sizeable linear dependency among all pairs of variables.

## 3.2.2

```
> m1 = lm(fertility~logppgdp, data=data32)
> m2 = lm(fertility~pctUrban, data=data32)
> summary(m1)
```

## Call:

lm(formula = fertility ~ logppgdp, data = data32)

## Residuals:

Min 1Q Median 3Q Max -2.16313 -0.64507 -0.06586 0.62479 3.00517

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.00967 0.36529 21.93 <2e-16 \*\*\*
logppgdp -0.62009 0.04245 -14.61 <2e-16 \*\*\*

---

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.9305 on 197 degrees of freedom Multiple R-squared: 0.52, Adjusted R-squared: 0.5175 F-statistic: 213.4 on 1 and 197 DF, p-value: < 2.2e-16

## > summary(m2)

#### Call:

lm(formula = fertility ~ pctUrban, data = data32)

## Residuals:

Min 1Q Median 3Q Max -2.4932 -0.7795 -0.1475 0.6517 2.9029

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.559823 0.213681 21.339 <2e-16 \*\*\*
pctUrban -0.031045 0.003421 -9.076 <2e-16 \*\*\*
--Signif. codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1 1

Residual standard error: 1.128 on 197 degrees of freedom Multiple R-squared: 0.2948, Adjusted R-squared: 0.2913 F-statistic: 82.37 on 1 and 197 DF, p-value: < 2.2e-16

**3.2.3** logppgdp seems to be still useful after adjusting for pctUrban, but not the converse.



Figure 1: Added variable plots for fertility vs. (L) logppgdp and (R) pctUrban

A summary of the full model confirms this finding. The coefficient for logppgdp is significant, but not the one for pctUrban.

## Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) 7.9932699 0.3993367
                                  20.016
                                           <2e-16 ***
logppgdp
           -0.6151425
                       0.0641565 -9.588
                                           <2e-16 ***
pctUrban
           -0.0004393
                       0.0042656 -0.103
                                            0.918
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 0.9328 on 196 degrees of freedom
Multiple R-squared: 0.52, Adjusted R-squared: 0.5151
F-statistic: 106.2 on 2 and 196 DF, p-value: < 2.2e-16
3.2.4
> m.res2ba = lm(residuals(m2)~residuals(mab))
> m.res2ba$coef
   (Intercept) residuals(mab)
 -1.985664e-16 -6.151425e-01
```

The coefficient of slope term in the regression of appropriate residuals is same as that of logppgdp in the full model.

**3.2.5** We only check the first few elements of the two residuals. They are same (use View command to view all residuals).

#### 3.2.6

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.986e-16 6.596e-02 0.000 1
residuals(mab) -6.151e-01 6.399e-02 -9.613 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.9305 on 197 degrees of freedom Multiple R-squared: 0.3193, Adjusted R-squared: 0.3158 F-statistic: 92.4 on 1 and 197 DF, p-value: < 2.2e-16

In this regression with residuals, the t-statistic for the slope term is -9.613, while in the full model the coefficient for logppgdp had a t-statistic -9.613. This minor difference is because of slightly different degrees of freedom (n-2 and n-3, respectively).

## Problem 2: ALR Exercise 4.2

## 4.2.1

| > coef(M4)  |          |          |    |    |
|-------------|----------|----------|----|----|
| (Intercept) | t1       | t2       | a  | d  |
| 144.369443  | 5.462057 | 2.034549 | NA | NA |

This is because a and d are linearly dependent on the first two predictors.

## 4.2.2

| <pre>&gt; coef(M1)</pre> |          |          |    |    |
|--------------------------|----------|----------|----|----|
| (Intercept)              | t1       | t2       |    |    |
| 144.369443               | 5.462057 | 2.034549 |    |    |
| > coef(M2)               |          |          |    |    |
| (Intercept)              | a        | d        |    |    |
| 144.369443               | 7.496605 | 1.713754 |    |    |
| > coef(M3)               |          |          |    |    |
| (Intercept)              | t2       | d        |    |    |
| 144.369443               | 7.496605 | 5.462057 |    |    |
| > coef(M4)               |          |          |    |    |
| (Intercept)              | t1       | t2       | a  | d  |
| 144.369443               | 5.462057 | 2.034549 | NA | NA |

All intercept terms are same, but coefficient estimates are different.

**4.2.3** Because the other predictor variable is different.

## Problem 3: ALR Exercise 4.10

We now that for  $(X,Y) \sim \text{Bivariate normal } (\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho),$ 

$$Y|X = x \sim N\left(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2)\right)$$

Thus we get the following:

$$\beta_0 = \mu_y - \rho \mu_x \frac{\sigma_y}{\sigma_x}$$

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x}$$

$$\sigma^2 = \sigma_y^2 (1 - \rho^2)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x} \tag{2}$$

$$\sigma^2 = \sigma_y^2 (1 - \rho^2) \tag{3}$$

We are given that  $X \sim N(\mu_x, \sigma_x^2)$ . From 1 and 2 we have  $\mu_y = \beta_0 + \beta_1 \mu_x$ . Now squaring 2 and putting  $\sigma_y^2 = \sigma^2/(1-\rho^2)$  from 3 gives

$$\beta_1^2 = \frac{\rho^2}{1 - \rho^2} \cdot \frac{\sigma^2}{\sigma_x^2} \quad \Rightarrow \quad \rho = \sqrt{\frac{\sigma_x^2 \beta_1^2}{\sigma_x^2 \beta_1^2 + \sigma^2}}$$

Using this in 3 we get

$$\sigma_y^2 = \frac{\sigma^2}{1 - \rho^2} = \sigma^2 + \sigma_x^2 \beta_1^2$$

# Problem 4: ALR Exercise 4.12

**4.12.1** The OLS line and major axis are slightly different.



Figure 2: Scatterplot for  $\sigma = 1$ 

**4.12.2** The spread seems to be increasing with increasing  $\sigma$ .



Figure 3: Scatterplot for (L) $\sigma = 1$  and (R)  $\sigma = 6$ 

**4.12.3** There are always some points far away from the OLS line. This happens because the Cauchy distribution has heavy tails.



Figure 4: Scatterplot for  $(L)\sigma = 1$  and standard Cauchy errors

## Problem 5: ALR Exercise 5.8

```
5.8.1
```

```
> m1 = lm(Y ~ X1+X2+I(X1^2)+I(X2^2)+X1:X2, data=cakes)
> summary(m1)
```

#### Call:

```
lm(formula = Y ~ (X1 + X2)^2 + I(X1^2) + I(X2^2), data = cakes)
```

## Residuals:

```
Min 1Q Median 3Q Max -0.4912 -0.3080 0.0200 0.2658 0.5454
```

#### Coefficients:

Signif. codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1

Residual standard error: 0.4288 on 8 degrees of freedom Multiple R-squared: 0.9487, Adjusted R-squared: 0.9167 F-statistic: 29.6 on 5 and 8 DF, p-value: 5.864e-05

#### 5.8.2

```
> m2 = update(m1, ~.+block+X1*block+X2*block)
> summary(m2)
```

```
Call:
```

```
lm(formula = Y ~ X1 + X2 + I(X1^2) + I(X2^2) + block + X1:X2 + X1:block + X2:block, data = cakes)
```

#### Residuals:

```
1 2 3 4 5 6 7
-0.01786 -0.01786 -0.01786 -0.01786 0.34714 -0.38286 0.10714
8 9 10 11 12 13 14
0.01786 0.01786 0.01786 0.01786 -0.31714 0.31286 -0.06714
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.202e+03 1.754e+02 -12.555 5.69e-05 ***
            2.575e+01 3.381e+00 7.616 0.000620 ***
            9.927e+00 8.466e-01 11.725 7.93e-05 ***
Х2
I(X1^2)
           -1.569e-01 2.863e-02 -5.480 0.002758 **
           -1.195e-02 1.145e-03 -10.437 0.000139 ***
I(X2^2)
block1
           -5.677e+00 8.611e+00 -0.659 0.538883
X1:X2
           -4.163e-02 7.779e-03 -5.351 0.003062 **
           3.326e-01 1.100e-01 3.024 0.029298 *
X1:block1
X2:block1 -1.672e-02 2.200e-02 -0.760 0.481689
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
```

Residual standard error: 0.3112 on 5 degrees of freedom Multiple R-squared: 0.9831, Adjusted R-squared: 0.9561 F-statistic: 36.4 on 8 and 5 DF, p-value: 0.0005155

Block effect is not significant itself, but has a significant interaction with the predictor X1.

## Problem 6: ALR Exercise 5.12

## 5.12.1

The two clusters appear to be somewhat different.

## 5.12.2

```
> m.add = lm(HT18 ~ HT9+Sex, BGSall)
> coefs = coef(m.add)
```



Figure 5: Scatterplot of heights at age 9 vs. age 18, for males and females

```
> abline(coefs[1],coefs[2], lty=2, lwd=2)
> abline(coefs[1]+coefs[3],coefs[2], lwd=2)
```

Calculating the additive model, and putting OLS lines for the two groups makes the distinction clearer.

A test for interaction can be formulated by obtaining the interactive model and comparing it to the additive one:

We fail to reject the null hypothesis of no interaction at 95% level. But the p-value is borderline so we cannot do that with too much emphasis. More so because there is evidence of the effect of sex in the scatterplot.

5.12.3 A 95% confidence interval of difference of intercepts in the additive model is simply that of the coefficient of sex in that model.