$\mathbf{P}_{\mathbf{L}}$: $\forall x \in \mathbb{R}$ $\alpha^2 > 0$ falso puch $\exists x=0 \in \mathbb{R}$ tale che $(x^2 > 0)$ Come si traduce $(x^2 > 0)$ si traduce in $x^2 \le 0$ $\exists x=0 \in \mathbb{R}$ tale che $x^2 \le 0$ (in falt: (infetti 02 = 0). Scrivne le négeriane - D negetime di PL. 7P1: ∃x ∈ R tale ch x² ≤ 0 Ainsieme, B, C soffoinsiemé di A. $f_A(BUC) = f_A(B) \cap f_A(C)$ fa(Bnc) = fa(B) U fa(c)

(B) C) = (B) U (A (C) $x \in \mathcal{C}_A(B \cap C) = x \in \mathcal{C}_A(B) \cup \mathcal{C}_A(C)$ vioi $\mathcal{C}_A(B \cap C) = \mathcal{C}_A(B) \cup \mathcal{C}_A(C)$ $\chi \in \mathcal{C}_{A}(B) \cup \mathcal{C}_{A}(C) \Rightarrow \chi \in \mathcal{C}_{A}(B \cap C)$ where $\mathcal{C}_{A}(B) \cup \mathcal{C}_{A}(C) \in \mathcal{C}_{A}(B \cap C)$. $\chi \in f_A(B \cap C) < \Longrightarrow \chi \in f_A(B) \cup f_A(c)$ x = 6 (BnC) (=> (x = A) 1 (x & Bnc) <=> (x = A) 1 (x & Bnc) <=> $(=) (x \in A) \wedge^7 (x \in B) \wedge x \in C) (=) (x \in A) \wedge (^7 (x \in B) \vee^7 (x \in C))$ <=> (x < A) ~ ((x & B) v (x & C)) (=> <=> (x ∈ A x x ¢ B) v (x ∈ A x x ¢ C) <=> $(=) \quad \alpha \in \mathcal{C}_{A}(\mathcal{B}) \quad \forall \quad \alpha \in \mathcal{C}_{A}(\mathcal{C}) <=> \quad \alpha \in \mathcal{C}_{A}(\mathcal{B}) \cup \mathcal{C}_{A}(\mathcal{C}).$

 $XvY=\{x : x \in X \mid x \in Y\}$ pu def.

Def. A inhume, $B \subset A$ $\beta_A(B) = \{x \in A : x \notin B\}$ $\times \in \beta_A(B) <=> x \in A \land x \notin B$

67 (M) à l'imima du munimi interi negativi (OEN => O & G7 (M)) A,B imminui

A × B i l'insieme di tutte le possibili coppée ordinate le cui prime coordinate è un elemento di A, le cui seconde coordinate i un elemento di B

AXB=q(a,b): a EA 1 b e B3.