PAPER PRODUCT

Shailth Thadullah Name 1914-0259 Roll No BCS-4GI Section : Theory of Automata : 14-03-2021 Course Date Sunday Day ASSIGNMENT NO # 01 Question No: 01 (aa) (bb) + (aa) * a (bb) * b L1= (aaaa) (a) * (x+b+bb+bbb) L2= (1+ a+ aa+ aaa) (1+ b+ bb+ bbb+ bbbb) L3= (ab3 a+b*) + (a2 b2 a*b*) + (a3ba+b*) L4= abbb (b) (a+b) (a+b)* L5 = L6= aq (a+b) *aa + ab (a+b) *ab +ba (a+b) * ba+bb (a+b) *bb 1* (01)* 00 (10) * 1* b* a b* . L8= b* (a+1) b* (a+1) b* (a+1) b*

Lo = (a+b) a (a+b) b (a+b) 4 (a+b) b (a+b) a (a+b) + Liz = 1+0+1+ (0+1) (00+11+01) 1 + (1 01 0) 1 L=3 = Lin = (0+1) 00 (0+1) 00(0+1)* Lis = 0" 1" 00" 1" 0" Lis = [(a+b)(a+b)(a+b)] Granda (aga +b)* Line DUESTION No:-02 (a) b* ab* a b* (a+b) * a (a+b) * a (a+b) * (b) Carp Carp Coarp (c) h+ a+b + (a+b)* (a+ ba, bb) PAPER PRODUCT

1j) (a+b)* (aa)* (a+b)* (bb)* (a+b)*

(K) (a+b) abala+b) tab(a+b) + (a+b) + bab (a+b) aba (a+b) +

	Date:	
QUE	STION No :- 03	
(a) Language: The Regular Exp:	e language of all strings conte b as substring. (a+b)* ab (a+b)*	uning
16) Longuage: The	language of all strings contain	ning oven as
Regular Exp: [a	language of all strings contained were b's in it. Aa + bb + (aa + bb)* (ab + ba) (ab +	be)*g*
c) Language: The (ab) Regular Exp: (a-	language of all strings contaboabl as substring.	ining
(d) Language: No Reguar Exp: t	(aa) comes and ends with b.	
e) Language: The of	language containing even as an substring.	number
) Language: The if	language containing alwastarb with a then it must as well.	ysb, and l'ends with
		PAPER PRODUCT

Date:
(9) Language: language containing aaba on substring Regular Exp: (a+b)* aaba (a+b)*
(h) Language: Language that ends with aaba Regular Exp: (a+b)* aaba
1i) Language: It must start with aaba Regular Exp: aaba (a+b)*
(j) Language: Starts with (a) and ends with (b) Regular Exp: a (a+b)* b
1K) Language: The language that not contain 'aa" or "bb" at substring. Regular Exp: (a+b)* (b+a)*

Q3 (b)

i. Code:

#states

s0

s1

s2

#initial

s0

#accepting

s2

#alphabet

а

b

#transitions

s0:b>s0

s0:a>s1

s1:b>s2

s1:a>s0

s1:b>s1

s2:a,b>s2

Screenshot:

3 Transition graph

ii. Code:

#states

s0

s1

s2

s3

#initial

s0

#accepting

s0

#alphabet

a

b

#transitions

s0:a>s1

s1:a>s0

s1:b>s2

s2:b>s1

s2:a>s3

s3:a>s2

s3:b>s0

s0:b>s3

Screenshot:

③ Transition graph

iii. Code:

#states

s0

s1

s2

s3

#initial

s0

#accepting

s3

#alphabet

а

b

#transitions

s0:a>s1

s1:a>s2

s2:a,b>s2

s0:b>s3

s1:b>s3

s3:b>s3

s3:a>s1

Screenshot:

③ Transition graph

iv. Code:

#states

s0

s1

s2

s3

s4

#initial

s0

#accepting

s4

#alphabet

а

#transitions

s0:a>s1

s0:b>s0

s1:b>s0

s1:a>s2

s2:a>s2

s2:b>s3

s3:b>s0

s3:a>s4

s4:a,b>s4

Screenshot:

③ Transition graph

v. Code:

#states

s0

s1

s2

s3

#initial

s0

#accepting

s0

#alphabet

а

b

#transitions

s0:a>s1

s0:b>s2

s1:b>s0

s1:a>s3

s2:a>s0

s2:b>s3

s3:a,b>s3

Screenshot:

③ Transition graph

Q4 (b):

Ans: Here is the link of Q4, and all the 5 automatas are provided in this link, please find the attached link.

Link: https://colab.research.google.com/drive/1|LqgDRYLpuaOg8BZibzMT5B_YNdoNBXu?usp=sharing

Q5:

Ans: As far as my experience is concerned, to be honest, I was not hoping that I will do this question, but I understood the code and then got some errors as well, but I myself solved all those errors and completed the question. By solving this question, I realises that there is much more that we need to learn e.g: Python, syntanxes etc. In the end I personally learned something new and will try to implement it further as well.

Date:
QUESTION NO#06
=> Regular Expressions that should comply with the
variable dectaration in C Language.
Sol:
Rules:
i) Cannot Start with numbers.
ui) Cannot chart with (-) huphen
viii) Cannot Ctart with (-) dot (1) comment
(iv) Cannot contain (-) dot (-) comma, &. (-)
special characters
in can be started with capital A
and small English Alphabet
and small English Alphabeti eq: (a1b1c1z) or (A1B2C1
to Casulay Expressions
Regular Expressions + *
$[(Az)^* + (az)^* + (-)^*]^+ (09)^*$
L (A Z) T CC III
unders core
[(Az)*+(az)*+(-)*]
(A2) + (a2) + (-)]