IV- Propriétés physiques des éléments

V- Caractéristiques atomiques et périodicité

Energie d'ionisation Ei

Rayon atomique Ra

Electronégativité En

1- Variation de l'énergie d'ionisation (Ei)

Définition: L'énergie de première ionisation est l'énergie nécessaire pour arracher un e à un atome dans son état fondamental et à l'état gazeux.

a- dans une colonne, lorsque Z augmente:

La force d'attraction (Fa) noyau-électron périphérique l'e est de plus en plus libre

L'énergie d'ionisation diminue

Exemple:
$$_{3}\text{Li:} \ 1\text{s}^{2} \ / \ 2\text{s}^{1} \ _{37}\text{Rb:} \ [_{36}\text{Kr}]5\text{s}^{1}$$

$$\text{Ei(Li)= 520} \qquad \text{Ei(Rb)= 402}$$

$$\text{KJ.mol}^{-1} \qquad \text{KJ.mol}^{-1}$$

b- dans une période, lorsque Z augmente, Fa

L'énergie d'ionisation

Exemple: $_{3}\text{Li: }2\text{s}^{1}$ $_{9}\text{F: }2\text{s}^{2}\ 2\text{p}^{5}$

 $Ei(Li) = 520 \text{ KJ.mol}^{-1} \quad Ei(F) = 1681 \text{ KJ.mol}^{-1}$

2- Variation du rayon atomique

Définition: Le rayon atomique d'un atome est égal à la moitié de la distance qui sépare 2 noyaux d'une molécule diatomique homonucléaire liés par une liaison de covalence simple

a- dans une colonne, lorsque Z augmente

Le nombre de couche

U

Ile volume de l'atome

Exemple:

X	Li		Rb
Ra (Å)	1.23		2.16

Le rayon atomique **†**

b- dans une période, lorsque Z augmente Fa (noyau-e⁻)↑

Effet de charge

Le rayon atomique

Exp:

X	Na	Al	P	Cl
Ra (Å)	1.54	1.18	1.06	0.99

3- Variation de l'électronégativité (En)

Définition: L'électronégativité est l'aptitude d'un élément à attirer vers lui les e- au sein d'une liaison de covalence

a- dans une colonne, lorsque Z augmente

Le volume de l'atome↑

Exp:

X	F	Cl	Br	I
En	4.0	3.1	2.9	2.6

b- dans une période, lorsque Z augmente

Exemple:

X	Li	В		O	F
En	1.0	2.0		3.5	4.0

éspèces ionisées: avoir la configuration d'un gaz rare

Les alcalins: [gaz rare] ns¹

$$X \longrightarrow X^{+1} + 1e^{-}$$

Les alcalino-terreux:[gaz rare] ns²

$$X \longrightarrow X^{+2} + 2e^{-}$$

Les chalcogènes: [gaz rare] ns² np⁴

$$X + 2e^{-} \longrightarrow X^{-2}$$

Les halogènes: [gaz rare] ns² np⁵

$$X + 1e^{-} \longrightarrow X^{-1}$$

Les ions obtenus ont tous la configuration électronique d'un gaz rare

À retenir; à part les éléments des groupes V_A , VI_A et VII_A qui auront tendance à gagner des e^{-} , tous les autres atomes cèderont facilement des e^{-} et seront électropositifs.

- Les éléments du bloc d (métaux de transition) donneront toujours des cations à valences multiples en perdant les é- de la sous couche s en premier puis favoriseront les configurations d⁵ et d¹⁰ : Zn²⁺ , Cu⁺, Fe²⁺, Fe³⁺

Evaluation

- 1- Les éléments du tableau périodique sont classés par:
- a- Z croissant b- A croissant
- c- Z décroissant d- A décroissant
- 2- Les éléments d'une même colonne ont:
- **a** le même Z **b** la même période
- c- un nombre d'é de valence identique
- d- la même valeur de l'électronégativité
- **3** Le Béryllium ₅Be est un:
- **a** alcalin **b** élément de transition
- 4- Le chrome ₂₄Cr est un:
- **a** alcalin **b** lanthanide
- c- élément de transition d- halogène

Evaluation

5- Le numéro atomique du 3^{ème} élément du bloc d est:

$$a- Z=17$$
 $b- Z=10$ $c- Z=20$ $d- Z=23$

$$b - Z = 10$$

$$c- Z=20$$

$$d-Z=23$$

6- Le numéro atomique du 2^{ème} alcalino-terreux :

$$a-Z=4$$

a-
$$Z=4$$
 b- $Z=12$ **c**- $Z=11$ **d**- $Z=18$

$$c- Z=11$$

$$d - Z = 18$$

7- Le Germanium ₃₂Ge appartient à :

a-3^{ème} période groupe IV_A b-3^{ème} période groupe

c-^Adème période groupe IV_B d- dème période groupe

8- Un élément de la 3^{ème} colonne du bloc p possède:

a-3 é- de valence

b-5 é- de valence

c-6 é- de valence

d- 7 é- de valence

Evaluation

- 9- Le calcium ₂₀Ca est plus électronégatif que :
- $a {}_{11}Na$ $b {}_{12}Mg$ $c {}_{19}K$

 $d-_{37}Rb$

- 10- L'énergie d'ionisation varie selon l'ordre croissant:
- **a** Ei (₅₂Te) < Ei (₃₄Se) < Ei (₁₆S) < Ei (₈O)
- b- Ei ($_{8}$ O)> Ei ($_{16}$ S)> Ei ($_{34}$ Se)> Ei ($_{52}$ Te)
- **c** Ei (₅₂Te)> Ei (₃₄Se)>Ei (₁₆S)>Ei (₈O)
- **d** Ei (₈O)< Ei (₁₆S)< Ei (₃₄Se)< Ei (₅₂Te)

Le Tableau Périodique des Éléments, en Images

