Example 6 Let z_1 and z_2 be two complex numbers such that $\overline{z_1} + i \overline{z_2} = 0$ and $arg(z_1, z_2) = \pi$. Then find $arg(z_1)$.

Example 11 Find the value of $2x^4 + 5x^3 + 7x^2 - x + 41$, when $x = -2 - \sqrt{3}i$

Example 24 What is the principal value of amplitude of 1 - i?

Example 25 What is the polar form of the complex number $(i^{25})^3$?

- 6. If $a = \cos \theta + i \sin \theta$, find the value of $\frac{1+a}{1-a}$.
- 7. If $(1+i) z = (1-i) \overline{z}$, then show that $z = -i \overline{z}$.
- 8. If z = x + iy, then show that $z\overline{z} + 2(z + \overline{z}) + b = 0$, where $b \in \mathbb{R}$, represents a circle.
- 9. If the real part of $\frac{\overline{z}+2}{\overline{z}-1}$ is 4, then show that the locus of the point representing z in the complex plane is a circle.
- 10. Show that the complex number z, satisfying the condition $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ lies on a circle.
- 11. Solve the equation |z| = z + 1 + 2i.