

Integrating Wireless Sensor Networks and the Grid through POP-C++

Augusto B. de Oliveira, Lucas F. Wanner, Antônio Augusto Fröhlich

http://www.lisha.ufsc.br/

IESS 2007

June 2007

Outline

- WSN and the GRID
- Current integration efforts
 - DB query interfaces
- Our proposal
 - POP C++ and EPOS
- Evaluation
- Final considerations

Wireless Sensor Networks

- Environment data acquisition
- Large scale
 - Low cost (low everything)
- Wireless
 - Low energy

The GRID

- Resource sharing
 - Data, programs, processing power, etc
- Highly distributed
 - Remote, mutually untrusted organizations
- Scalable architecture

WSNs are data sources for the GRID!

We just have to integrate them!

Current Integration Efforts

- Database-inspired
 - WSN is seen as a DB
 - Implements a query interface
- TinyDB
- Hourglass

TinyDB

- TinyDB (Berkeley)
 - Query interface (SQL-like)
 - Query pre-processing
 - Focus: Power awareness

```
■ Ex:
SELECT accel, mag
        FROM sensors
        WHERE accel > c1
        AND mag > c2
         SAMPLE INTERVAL 1s
```

Hourglass

- Hourglass (Harvard)
 - Application (AEP) and Sensor (SEP) Entry Points
 - Data Collection Network (DCN)
 - Focus: Web-based integration

Query Interfaces

- Heterogeneous programming models
- Frontier between Grid and WSNs remains clear
 - WSN access limited to DB interface
 - Harder to explore WSN's hardware capabilities

Proposal

- Programing-inspired
 - WSN nodes are seen as grid nodes
 - Parallel, communicating objects
- POP-C++ and EPOS

POP-C++

- Grid programming environment
 - Distributed, parallel objects
 - Shared objects
 - Transparent allocation and distribution
 - Based on resource requirements
- Developed by GridGroup at EIA Fribourg

EPOS

- Embedded Systems Tool-kit
 - Embedded system framework
 - Software and hardware components
 - Streamlining system generation
 - Available for WSN
- Developed at LISHA/UFSC

Extending POP-C++ to WSNs

- Goals
 - No visible frontiers
 - Concurrent use of WSNs by multiple applications
 - OOP in both Grid and WSNs
 - Accessible WSN node hardware

POP-C++: Syntax

- 'parclass' keyword
- Resource Requirements
- Method Semantics

```
parclass Sensor {
   public:
        Sensor(string machine) @{od.url(machine);};
        seq async void set(unsigned char val);
        conc sync unsigned char get();
   private:
        unsigned char data;
};
```


POP-C++: Code Generation

- Based on the parclass
 - Interface
 - Broker
 - Object

POP-C++ on WSN

- WSN -> WSN method calls
 - Focus: generated code compatibility
 - Re-implementation of the POP-C++ runtime support system on EPOS
 - Severe memory and processing restrictions

- Grid -> WSN method calls
 - Focus: transparency
 - Adapted addressing
 - Call translation logic

Sensor * s = new Sensor("contact", A);

Evaluation: Proof of Concept

- Application
 - 8-bit value get() and set()
- Tests conducted on
 - 2 x IA32 + Linux nodes
 - Interface
 - Proxy Broker
 - 1 x Mica2 + EPOS node
 - Broker, Object
- 3.804 calls p/ second

Evaluation: Performance

- Same application, 2 implementations
 - POP-C++ (6.875cps)
 - EPOS (7.046cps)
 - Tests conducted on 2 Mica2 nodes
 - Interface
 - Broker, Object

Final Comments

- POP-C++ on WSNs allows
 - Transparent communication
 - Concurrent use
 - Hardware access
 - Use of a single programming model
- Alpine3D
 - Snow surface processes simulator
 - POP-C++
 - Sensor data from off-line readings
 - POP-C++ on WSN allows periodic input

