Oblig 2c - Anvendelse av sannsynlighetsfordelinger gjennom prosesser

Levering: 1 PDF, i rett mappe på Canvas. Lever eventuell R/MatLab/Wolfram-kode som kildefil i tillegg.

Førstefrist: 22. oktober, 18:00 Sistefrist: 29. oktober, 18:00

Fristene er absolutte. Grupper på 3 eller færre må ha godkjent 60%.

Grupper med 4 deltagere må ha godkjent 75%.

Grupper med 5 deltagere må ha godkjent 85%.

Større grupper: Kontakt faglærer for å få tildelt tilleggsoppgaver. / Se Canvas.

Samarbeidende grupper vil bli regnet som én gruppe.

1. **Prosesser** (42%)

- (a) Bernoulli-prosess: MA-223 Eksamen 2020.12: 1-a
- (b) Poisson-prosess: MA-223 Eksamen 2020.12: 1-b
- (c) Gaussisk prosess: MA-171 Eksamen 2020.09: 1-c

2. Simularinger (30%)

- (a) Poisson:
 - i. Simulér 1 ventetid med rateparameter $\lambda = 3$ stk/min. Du skal oppgi kommandoen du brukte i **R**, **MatLab**, **Wolfram** eller **Excel**, og også resultatet.
 - ii. Simulér 10 ventetider $t_1, \ldots, t_{10} \mod \lambda = 3$. La $T_{+k} = \sum_{j=1}^k t_j$. Oppgi resultat-sekvensen T_{+k}
 - iii. Simulér som over, men stopp når $T_{+k} > 40$. Oppgi T_{+k} -ene opp til 40, og hvor mange de er. Kall dette tallet K_{+40}
 - iv. Simulér 10 ventetider og regn ut T_{+10} ... gjør dette 1000 ganger, og tegn histogram over T_{+10} -verdiene. Kan du simulere T_{+10} på en raskere måte enn å legge sammen 10 ventetider, så gjør dette.
 - v. Simulér K_{+40} ... 1000 ganger, og tegn histogram over verdiene. Kan du simulere K_{+40} på en raskere måte enn over, så gjør dette.
 - vi. Plott grafen til $\gamma_{(10,3)}$ og sammenlign med histogrammet over T_{+10} -verdiene. Hva ser du?
 - vii. Plott grafen til pois_{3·40} og sammenlign med histogrammet over K_{+40} verdiene. Hva ser du?

(b) Gaussisk:

- i. Simulér 1 trekk fra en normalfordeling med parametere $\mu=17$ og $\sigma=2.4$. Du skal oppgi kommandoen du brukte i R, MatLab, Wolfram eller Excel, og også resultatet.
- ii. Simulér 20 trekk fra en normalfordeling med parametere $\mu = 0$ og $\sigma = 1$, og kall resultatene x_1, \ldots, x_{20} . La $z_k = \sum_{j=1}^k x_k$, og lag et linjeplott med k-verdiene langs horisontal akse og z-verdiene langs vertikal akse.

- iii. For n = 3, 10, 100, 1000, simulér $n \cdot 20$ trekk fra en normalfordeling med parametere $\mu = 0$ og $\sigma = 1/\sqrt{n}$, og kall resultatene $x_1, \ldots, x_{n \cdot 20}$. La $z_k = \sum_{j=1}^k x_k$, og lag et linjeplott der horisontal akse har verdiene $\frac{k}{n}$, og vertikal akse har z-verdiene.
- iv. Gjør oppgaven over for n = 100, men plott 1000 simuleringer i samme plott. Hvordan synes du dette ser ut?
- v. Ta sluttverdien fra 10000 simuleringer, og lag et histogram over disse (i **R**, bruk hist med probability=TRUE). Sammenlign med $\phi_{(0,\sqrt{20})}(x)$.

3. Ekstra sannsynlighetsfordelinger (20%)

- (a) Beta-binomisk fordeling. Tegn grafen til (pdf) $\beta b_{(8,3,8)}(x)$ fra 0 til 8, og regn ut (CDF) BB_(8,3,8)(5).
- (b) Beta negativ-binomisk fordeling. Tegn grafen til (pdf) $\beta nb_{(5,4,4)}(x)$ fra 0 til 8 og regn ut (CDF) BNB_(5,4,4)(7).
- (c) Gamma-gamma-fordeling. Tegn grafen til (pdf) $g\gamma_{3,8,4}(x)$ fra 0 til 5 og regn ut (CDF) $G\Gamma_{3,8,4}(3)$.
- (d) Fischer-Snedecor-fordeling ("F"-fordeling). Tegn grafen til (pdf) $f_{(7,3)}()$ fra 0 til 5, og regn ut (CDF) $F_{(7,3)}(2)$.

4. **Diverse:** (8%)

- (a) Normaltilnærming:
 - i. Finn normaltilnærmingen til $bin_{(12,0.6)}(x)$. Tegn normaltilnærmingen sammen med $bin_{(12,0.6)}(x)$ selv. Regn ut $P(X \leq 7)$ både ved direkte regning på $bin_{(12,0.6)}(x)$ og ved å regne med normaltilnærmingen.
 - ii. Finn normaltilnærmingen til $\beta_{(14,19)}(x)$. Tegn normaltilnærmingen sammen med $\beta_{(14,19)}(x)$. Regn ut $P(X \leq 0.4)$ både ved direkte regning på $\beta_{(14,19)}(x)$ og ved å regne med normaltilnærmingen.

Disse oppgavene inneholder kun 1 beregning av hvert slag fra de mest aktuelle anvendelsene, prosessene og sannsynlighetsfordelingene. For mengdetrening, se ukesoppgavene / bokoppgavene til de aktuelle kapitlene. Mengdetrening er sterkt anbefalt, selv om det da ikke er obligatorisk.