Échantillonnage,

Quantification

Conversion Analogique

Numérique et

Numérique Analogique

Conversion Analogique Numérique

Pour les signaux, la conversion analogique numérique est la passage des signaux bornés à temps continu vers des signaux quantifiés à temps discret. Cette opération nécessite d'échantillonner, de quantifier et de coder le signal.

1. Objectif

L'objectif est de définir comment déterminer la fréquence d'échantillonnage, ie nombre d'échantillons par seconde à prélever sur un signal pour effectuer des traitements numériques

Fe=44100Hz ou ech/s

Enregistrement d'un son 'la' 440HZ

Fe ??

1. Objectif

1. Théorème fondamental

Le peigne de Dirac joue un rôle fondamental en théorie du

signal:
$$PE_D(t) = \sum_{-\infty}^{+\infty} \mathcal{S}(t-n) \implies \prod_{n-1}^{+\infty} \prod_{n=1}^{+\infty} t$$

La transformée de Fourier d'un peigne de Dirac est aussi une peigne de Dirac.

$$\mathcal{F}[PE_D(t)]=PE_D(f)$$

$$\sum_{n=-\infty}^{+\infty} \mathcal{S}(t-n) \xrightarrow{\mathcal{F}} \sum_{n=-\infty}^{+\infty} \mathcal{S}(f-n)$$

$$\frac{1}{T_e}PE_D\left(\frac{t}{T_e}\right) \stackrel{\mathscr{F}}{\to} PE_D\left(T_e f\right)$$

$$\left| \frac{1}{T_e} \sum_{n=-\infty}^{+\infty} \mathcal{S} \left(\frac{t}{T_e} - n \right) \right| = \sum_{n=-\infty}^{+\infty} \mathcal{S} \left(t - n T_e \right) \xrightarrow{\mathcal{F}} \sum_{n=-\infty}^{+\infty} \mathcal{S} \left(T_e f - n \right) = \frac{1}{T_e} \sum_{n=-\infty}^{+\infty} \mathcal{S} \left(f - \frac{n}{T_e} \right) \right|$$

Modélisation de l'échantillonnage :

Transformée de Fourier d'un signal échantillonné par un peigne de Dirac

Signal temporel:
$$PE_{D}\left(\frac{t}{T_{e}}\right).s(t)=T_{e}\sum_{n=-\infty}^{\infty}s(nT_{e})\delta(t-nT_{e})$$

Par transformation de Fourier, il vient :

$$PE_{D}\left(\frac{t}{T_{e}}\right)s(t) \xrightarrow{\mathcal{F}} \mathcal{F}\left[PE_{D}\left(\frac{t}{T_{e}}\right)\right] \otimes \mathcal{F}\left[s(t)\right]$$

$$PE_{D}\left(\frac{t}{T_{e}}\right)s(t) \xrightarrow{\mathcal{F}} T_{e}.PE_{D}\left(T_{e}.f\right) \otimes \hat{s}(f) = \left[\sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_{e}}\right)\right] \otimes \hat{s}(f)$$

$$PE_{D}\left(\frac{t}{T_{e}}\right) s(t) \xrightarrow{\mathcal{F}} \hat{s}_{e} = \left[\sum_{n=-\infty}^{\infty} \widehat{s}\left(f - \frac{n}{T_{e}}\right)\right]$$

C'est une distribution périodique de période 1/Te

- La transformée de Fourier d'une fonction réelle est symétrique par rapport à l'origine, si en plus elle est à support compact et que $-\mathbf{f}_0$ et \mathbf{f}_0 constituent le support alors la distribution ci-dessus est formée d'une somme de distributions identiques décalées de Fe=1/Te ayant leurs supports disjoints.

On peut donc reconstituer $\hat{s}(f)$ en multipliant la distribution ci-dessus par une fonction porte telle que :

$$\lambda(f) = \begin{cases} 1 \text{ pour } |f| \leq \frac{1}{T_e} - fo \\ 0 \text{ ailleurs} \end{cases}$$

Transformée de Fourier d'un signal échantillonné par un peigne de Dirac

On ne peut plus reconstituer $\widehat{f}(f)$!

Théorème de Shannon : Il faut échantillonner à une cadence au moins deux fois plus grande que la fréquence maximale contenue dans f(t).

$$\frac{1}{T_e}$$
>2.fo

Transformée de Fourier d'un signal échantillonné par un peigne de Dirac

Théorème de Shannon : un signal s'échantillonne à une fréquence au moins deux fois plus grande que la fréquence maximale contenue dans f(t).

En pratique, pour s'assurer de l'application du théorème de Shannon

Un filtre analogique passe bas [0,fo] est placé avant l'échantillonneur

→ c'est le filtre antirepliement

Conception de la chaine d'acquisition

L'échantillonnage

L'échantillonneur assure les fonctions suivantes :

- prélever à un instant connu un échantillon d'une tension variable appliquée à son entrée
- mémoriser la valeur de cet échantillon
- délivrer en sortie une tension égale à celle de l'échantillon mémorisé

Impulsion ≠ impulsion infiniment brève

En pratique l'échantillonneur prélève tous les kTe l'amplitude du signal e(t) pendant une durée 0≠0 pour la fournir au quantificateur pendant la durée de conversion.

Effet de l'échantillonneur sur le spectre du signal :

Nouveau modèle avec approximation : on prend la valeur moyenne du signal de e(t) pendant l'intervalle θ

Effet de l'échantillonneur bloqueur sur le signal :

Influence de la largeur d'impulsion sur un échantillon :

$$e_{m^*_{KTe}} = \frac{1}{\theta} \int_{-\infty}^{+kTe + \frac{\theta}{2}} e(t) dt$$

$$e_{m^*_{kTe}} = \frac{1}{\theta} \int_{-\infty}^{+\infty} \Pi_{\theta/2}(t - kT_e) e(t) dt = \frac{1}{\theta} \left[e(t) * \Pi_{\theta/2}(t) \Big|_{t=kTe} \right]$$

On peut écrire l'estimée globale du signal échantillonné:

$$\hat{e}_{m^*} (t) = \frac{1}{\theta} \left[e(t)^* \Pi_{\theta/2}(t) \right] \cdot \sum_{k=-\infty}^{k=+\infty} \delta(t - kTe)$$

Effet de l'échantillonneur sur le spectre du signal :

$$\hat{\mathbf{e}}_{m^*}(t) = \frac{1}{\theta} \left[\mathbf{e}(t) * \Pi_{\theta/2}(t) \right] \cdot \sum_{k=-\infty}^{k=+\infty} \delta(t - k T \mathbf{e})$$

d'où en prenant la transformée de Fourier des 2 membres:

$$\hat{E}_{m^*}(f) = \left[E(f) \cdot \frac{\sin \pi f \theta}{\pi f \theta} \cdot e^{-2\pi j f \frac{\theta}{2}} \right] * Fe \sum_{n=-\infty}^{n=+\infty} \delta(f - nFe)$$

Tout se passe comme si E(f) devenait $E_1(f)$ telle que:

$$\hat{E}_{1}(f) = E(f) \cdot \frac{\sin \pi f \theta}{\pi f \theta} \cdot e^{-2\pi j f \frac{\theta}{2}}$$
Module Phase

Tout se passe comme si E(f) devenait $E_1(f)$ telle que:

$$\hat{E}_{l}(f) = E(f) \cdot \frac{\sin \pi f \theta}{\pi f \theta} \cdot e^{-2\pi j f \frac{\theta}{2}}$$

Module

Phase

Posons:
$$\theta = \lambda Te$$
 avec $\lambda \leq 1$

$$\lambda \leq 1$$

$$Fe=2 \alpha f_{max} \text{ avec } \alpha \geq 1$$

Le module de $E_1(f)$ devient:

$$\frac{\sin \frac{\pi \lambda}{2\alpha} \cdot \frac{f}{f_{max}}}{\frac{\pi \lambda}{2\alpha} \cdot \frac{f}{f_{max}}} | E(f)$$

Échantillonneur/ bloqueur: exemple

E(f)

Exemple sur une TF de type fenêtre

fmax=800Hz

Fe=6401Hz

$$\lambda$$
=1 (blocage complet θ = Te) et α =1 +ε (Fe = $2fmax$ + I)

 λ =0.25 (blocage entre 2 échantillons θ =0,25Te) et α =0.25 (Fe=8 fmax)

Échantillonneur/ bloqueur: exemple

Effet de l'échantillonneur-bloqueur sur le spectre du signal :

Exemple:

•Si l'on veut que l'effet d'échantillonnage soit < à 1%.E(fmax) jusqu'à Fe

$$\frac{\sin\left(\frac{\pi\lambda}{2\alpha}\right)}{\frac{\pi\lambda}{2\alpha}} \ge 0.99 \quad \text{soit} \quad \frac{\lambda}{2\alpha} < 0.08 \quad \text{ou} \quad \frac{\lambda}{\alpha} < 0.16$$

-si
$$\alpha$$
 = 1(Fe=2fmax) alors λ =0,16

→ la largeur d'impulsion = 16%.de la période d'échantillonnage

- si
$$\alpha = 5$$
 soit Fe = 10 fmax alors $\lambda = 0.8$

→ la largeur d'impulsion = 80%. de la période d'échantillonnage

•si l'on veut que l'effet d'échantillonnage soit < à 0,1% E(fmax)jusqu'à Fc

- pour
$$\alpha = 1$$
 (échantillonnage de Shannon) alors $\lambda = 4\%$ Te

- pour
$$\alpha = 5$$
 alors $\lambda = 20\%$ Te

Quantification

Quantification

Quantification et technologie

→ Le quantificateur

Le quantificateur convertit la valeur de e(t) en une donnée binaire eq_i sur n bits de quantification

Quantification et codage

Si le convertisseur est de n bits, le signal e(t) compris entre e_{min} et e_{max} est quantifié en 2^n valeurs \rightarrow eq_i

Vpe= $(e_{max}-e_{min}) \rightarrow$ est appelée plage de conversion ou tension pleine échelle du convertisseur

Si la quantification est linéaire, le quantum (pas de conversion) a pour expression : $Vpe_{\underline{}} = e_{max} - e_{min}$

Quantification et codage : caractéristiques générales

→A la réception il y a ambiguïté, comment attribuer une plage à une valeur numérique discrète. On minimise l'erreur en attribuant à la plage $[V_i, V_{i+1}] \rightarrow V_i + q/2$

Quantification et codage

Si
$$e(KTe) \in \left[i - \frac{1}{2}\right] q, \left[i + \frac{1}{2}\right] q \left[alors eq(KTe) = i.q\right]$$

Avec *i* entier tel que $i \in [0, 2^n - 1]$

Ou pour rester bipolaire:

$$i \in [-2^{n-l}+1,2^{n-l}]$$

Quantification et codage Bruit de quantification

En sortie d'une chaîne CAN-CNA la différence entre le signal d'entrée e(t) et le signal restitué eq(t) est appelé bruit de quantification

Quantification et codage

Bruit de quantification et choix du nombre de bits

Rapport signal sur bruit de quantification :

$$\left(\frac{S}{B}\right)_{dB} = 10\log_{10}\left(\frac{\text{Variance du Signal}}{\text{Variance du Bruit}}\right)$$

$$\begin{pmatrix}
i + \frac{1}{2} \\
q \\
e(KTe)
\end{pmatrix}$$

$$\begin{pmatrix}
i - \frac{1}{2} \\
q \\
-
\end{pmatrix}$$

Pour toute valeur de l'intervalle 1 code binaire unique

→ une valeur décimale

$$eq(KTe)=i.q$$

Le bruit de quantification est représenté par

$$b_q = e - eq$$

Quantification et codageBruit de quantification

Si l'erreur de conversion est uniformément répartie sur l'intervalle, cette erreur est représentée par un signal b caractérisé par sa loi de probabilité uniforme avec sa densité de probabilité p(b)=po sur l'intervalle (i-(1/2))q, (i+(1/2))q

On a alors:
$$I = \int_{-\infty}^{+\infty} p(b)db = po \int_{(i-\frac{1}{2})q}^{(i+\frac{1}{2})q} db = po.q$$

D'ou:
$$po = \frac{1}{q}$$

La variance du signal d'erreur (du bruit) b devient :

$$\sigma_b^2 = \int_{(i-\frac{1}{2})q}^{(i+\frac{1}{2})q} p(b).b^2 db = \frac{1}{q} \int_{(i-\frac{1}{2})q}^{(i+\frac{1}{2})q} b^2 db = \frac{q^2}{12}$$

Quantification et codage

Bruit de quantification et choix du nombre de bits

Exemple: e(t) est un signal sinusoïdal d'amplitude maximum Vpe/2 valeur limite de conversion $e(t) = \frac{Vpe}{2}.sin(\omega t)$

Sa valeur efficace est :
$$e_{eff} = \frac{Vpe/\overline{2}}{\sqrt{2}} = \frac{2^nq}{2\sqrt{2}}$$

Rapport signal sur bruit de quantification :

$$SNR_{dB} = 10log \left(\frac{e_{eff}^2}{\sigma_b^2}\right)_{dB} = 20log_{10} \left(\frac{e_{eff}}{\sigma_b}\right)$$

$$SNR_{dB} = 10log_{10} \left(\frac{(2^n q/2\sqrt{2})^2}{q^2/12} \right) = 20log_{10} \left(\frac{2^n \sqrt{3}}{\sqrt{2}} \right)$$

$$SNR_{dB} = 6,02n+1,76$$

Quantification et codageExemple: Bruit de quantification

Quantification et codage

Bruit de quantification, bruit du signal et choix du nombre de bits

Pour améliorer le rapport signal sur bruit $SNR_{dB}=6,02n+1,76$ \rightarrow Augmenter n est une solution!

Cependant si le signal e(t) à convertir contient également du bruit tel que : $e(t)=e_u(t)+n(t)$

On choisit de prendre la variance du bruit de quantification égale à la variance du bruit n(t) du signal

$$\sigma_b^2 = \sigma_n^2 o u \sigma_b = \sigma_n$$

$$\sigma_b = \frac{q}{\sqrt{12}} = \frac{Vpe}{2^n 2\sqrt{3}} = \sigma_n$$

Vpe Tension pleine échelle

$$n=1,79+3,32.log\left(\frac{Vpe}{\sigma_n}\right)$$

Quantification et codage : applications - exemples

Téléphonie	dans la bande [300-3400] Hz			
Echantillonnage	fe=8KHz sur 8 bits			
Rapport S/B	Fixé après test à 35dB pour le niveau max Jusqu'à 45 dB pour les niveaux inférieurs			
CD Audio	dans la bande [100-18000] Hz			
Échantillonnage	fe=44.1KHz sur 16 bits			
Rapport S/B	Variable			
Télévision	dans la bande [0-5] MHz			
Échantillonnage	fe=13.3MHz sur 8 bits			
Rapport S/B	Variable			

Technologie des CAN et CNA

Les CAN: Convertisseur Flash

C'est un réseau de comparateurs en parallèle. Une conversion sur n bits nécessite 2ⁿ-1 comparateurs et 2ⁿ résistances

La conversion est faite en un coup d'horloge, c'est un système qui est très rapide (>300Mhz) mais très cher.

Les résistances sont ajustées au Laser. Utilisé en vidéo (30Mhz), il est limité à 12 bits (coût et fabrication de l'encodeur).

→ Pour limiter le coût on utilise parfois des convertisseurs semi-flash qui traitent la moitié des bits (les poids forts) puis le reste (les poids faibles)

Les CAN : Approximations successives (Successive approximation register SAR)

- → Principe : méthode dichotomique, Recherche du bit de poids fort (MSB) en divisant la pleine échelle puis recherche du bit suivant, etc.
- → Avantage = précis, le temps de conversion dépend du nombre de bits

 \rightarrow Exemple: AD 670 - 8 bits – 10 µs

Temps de conversion = $n \cdot T_{horloge}$

Les CAN: Convertisseur double rampe

- → Principe : Charge et décharge de condensateur à courant constant et comptage d'impulsions
- → Avantage: Très précis et bien adapté à la haute résolution (nombre de bits)
- → Attention réjection de fréquences multiples de la période de la

Convertisseur double rampe

T1,Th, Vref, R et C sont fixés par le constructeur

A t=0 tout est à vide, S1 se ferme,S2 est ouvert, C se charge à courant constant pendant un temps T1 fixe

A t=T1, S1 s'ouvre et S2 se ferme (Eref<0) donc C se décharge jusqu'à Vc=0→ T2 Le compteur est enclenché entre T1 et T2

$$O = -\frac{e(KTe)T_{l}}{RC} - \frac{E_{ref}}{RC}T_{2}$$

$$-e(KTe)T_{l} = E_{ref}T_{2}$$

$$N = \frac{T_{2}}{T_{h}} = -\frac{e(KTe)}{E_{ref}}\frac{T_{l}}{T_{h}}$$

$$V_{o}(T_{l}) = -\frac{'e(KTe)T_{l}}{RC}$$

$$V_{o}(T_{l}) = -\frac{'e(KTe)T_{l}}{RC}$$

$$V_{o}(T_{l}) = -\frac{'e(KTe)T_{l}}{RC}$$

$$T_{1} = 2^{n} \cdot T_{h}$$

$$T_{2} = N \cdot T_{h}$$

$$T_{1} \text{ fixe}$$

Conclusion sur les CAN

	Durée Cycles	Fréquence	Nbre de bits	Coût
Double rampe	2 ⁿ	<200 KHz	>16 Bits	\$
Approximation	n	500KHz	16 Bits	\$\$
Flash	1	>10MHz	10-12 Bits	\$\$\$

Conversion Numérique Analogique

La sortie est très souvent en courant I; I doit obéir à l'équation :

$$I = I_0 \left[a_{N-1} 2^{N-1} + a_{N-2} 2^{N-2} + a_{N-3} 2^{N-2} + \dots + a_0 2^0 \right]$$

Ou encore

$$I = I_0 2^{N-1} \left[a_{N-1} 2^0 + a_{N-2} 2^{-1} + a_{N-3} 2^{-3} + \dots + a_0 2^{-N+1} \right]$$

Io courant de référence

Pour générer ces N générateurs de courant variant dans un rapport 2 N-1, il existe 2 types de CNA:

- convertisseur à poids
- convertisseur à réseau R 2R

Les CNA: convertisseur à poids

→ Avantage Io = Uref/R = cst indépendant des niveaux logiques donc temps de réponse faible

→Inconvénients:

réalisation de N résistances de valeurs différentes et de plus les résistances des interrupteurs doivent négligeables devant les résistances 2R,....16R

Les CNA: convertisseur R-2R

- → Avantage : I₁=cst indépendant des niveaux logiques donc temps de réponse faible + 2 valeurs de résistances R-2R
- →Inconvénients : Résistances des interrupteurs devant 2R. L'erreur est fixe
- → Exemple AD 568 12 bits 35ns

Conclusion sur les CNA

Les convertisseur R-2R sont plus précis que les convertisseurs à poids car les résistances d'interrupteurs (transistors) sont comparées à 2R quel que soit le rang de commutation des ai.

→ Ils sont généralement 2 fois plus chers

Nombre binaire:

Commande d'interrupteur

