1 Curry-Howard Correspondence

1.1 Introduction

Definition 1.1. Let x_1, x_2, \ldots be some variables. We say that any variable x_i is a λ -term. Moreover, if M and N are λ -terms, then an application (MN) is also a λ -term. If P is a λ -term and x is a variable, then an abstraction $(\lambda x.P)$ is also a λ -term.

Note. $(\lambda x.x)$ can be interpreted as an identity function, while $(\lambda x.y)$ – as a constant function.

Note. We assume left-associativity of application, and right-associativity of abstraction. Thus, $(\lambda x.(\lambda y.(xy)))z$ can be rewritten as $(\lambda x.\lambda y.xy)z$.

We are going to differentiate between the use of variables in abstractions and applications. In a sense, abstractions *bind* variables, while variables in applications are *free*. Nevertheless, abstractions may contain free variables.

Furthermore, we can talk about equivalence of λ -terms. For example, $(\lambda x.x)$ and $(\lambda t.t)$ both represent the identity function. In this case, we denote the equivalence as $(\lambda x.x) \equiv (\lambda t.t)$.

It is worthwhile to denote the set of free variables of λ -term M as FV(M).

We denote a substitution as [N/x]P, where P is a λ -term.

$$[N/x]x = (N) \tag{1}$$

$$[N/x]y = y \tag{2}$$

$$[N/x](MP) = ([N/x]M)([N/x]P)$$
(3)

$$[N/x](\lambda x.P) = (\lambda x.P) \tag{4}$$

$$[N/x](\lambda y.P) = \lambda y.[N/x]P, \text{ if } y \notin FV(N)$$
(5)

$$[N/x](\lambda y.P) = \lambda z.[N/x][z/y]P, \text{ if } y \in FV(N), z \notin FV(NP)$$
(6)

Let the application in the form $(\lambda x.M)N$ be called a *redex*. We define a computation, intuitively understood as $(\lambda x.x)t \underset{\beta}{\to} t$, as $(\lambda x.M)N \underset{\beta}{\to} [N/x]M$.

Example 1.2

$$(\lambda x.x(xy))N \underset{\beta}{\rightarrow} [N/x](x(xy)) = (N)$$

We define a λ -term as N, if $FV(N) = \emptyset$.

If we substitute an abstraction, λ 's are omitted.

Theorem 1.3 (Church-Rosser)

If in the process of reduction we have chosen different order of reducing terms, there exists a unique λ -term which can be obtained as a final result of all the reductions.

Let true denote $\lambda x.\lambda y.x$, and let false denote $\lambda x.\lambda y.y$. We also introduce an operator if C then E_1 else $E_2 = CE_1E_2$. Thus, for example,

$$trueE_1E_2 = (\lambda x.\lambda y.x) \tag{7}$$

$$= [E_1/x](\lambda y.x)E_2 \tag{8}$$

$$= (\lambda y. E_1) E_2 \tag{9}$$

$$E_1. (10)$$

Now, let $notC = if\ C\ then\ false\ else\ true = C\ false\ true$, and let introduce one of the simplest data structures, a pair:

$$(E_1, E_2) = \lambda z. z E_1 E_2.$$

Now, it is worthwhile to note the concept of the Church numerals:

$$\overline{0} = \lambda x. \lambda y. y \tag{11}$$

$$\overline{1} = \lambda x. \lambda y. xy \tag{12}$$

$$\overline{2} = \lambda x. \lambda y. x(xy) \tag{13}$$