# 并行与分布式计算

# Ying Liu, Prof., Ph.D

School of Computer Science and Technology
University of Chinese Academy of Sciences
Data Mining and High Performance Computing Lab

## Bio

#### Education

- 1999/07, Computer Science, BS., Peking University
- 2001/12, Computer Engineering, MS., Northwestern University, USA
- 2005/06, Computer Engineering, Ph.D., Northwestern University, USA

## Work Experience

- 2005/06 2005/11, Research Associate, Northwestern University, USA
- 2006/01 Present, Professor,
   University of Chinese Academy of Sciences

## Bio

- Research interests
  - Data mining
  - High performance computing
  - Business Intelligence
  - Big data
- Contact: yingliu@ucas.ac.cn

# **University CUDA Courses (2010)**

| 加州理工学院        | 美国伊利诺伊大学厄本那—香槟分校 | 斯图加特大学    |
|---------------|------------------|-----------|
| 斯坦福大学         | 美国北卡罗来纳州立大学      | 马里兰州大学    |
| 美国哈佛大学        | 美国东北大学           | 普渡大学      |
| 苏黎世理工学院       | 威斯康星大学           | 犹他大学      |
| 国佐治亚理工学院      | 美国俄勒冈州立大学        | 德国埃尔兰根大学  |
| 麻省理工学院        | 宾夕法尼亚大学          | 京都大学      |
| 印度国际信息技术学院    | 加拿大滑铁卢大学         | 瑞典兰德大学    |
| 印度理工学院(德里)    | 加拿大麦吉尔大学         | 东京大学      |
| 美国杜克大学        | 纽约州立大学           | 维也纳技术大学   |
| 法国国立信息与自动化研究院 | 华盛顿大学            | 威廉姆斯大学    |
| 澳大利亚西澳大学      | 弗吉尼亚大学           | 圣克拉拉大学    |
| 墨西哥蒙特雷理工大学    | 美国北卡罗来纳大学        | 美国格洛夫城市学院 |
| 约翰霍普金斯大学      | 美国南卡来罗纳大学        |           |
| 肯特州立大学        | 美国爱荷华大学          |           |

# **CUDA Teaching Center**

- ▶ 率先在国内大学中开设《基于GPU并行计算》课程,被全球最大图形处理器公司NVIDIA授予2009年全球教授合作奖
- > 2012年被授予全球CUDA教学中心称号





# **CUDA Teaching Center**



# **Objectives**

- Introduce a new emerging paradigm
- Introduce successful cases
- Provide students with knowledge and hands-on experience in developing multi-threaded code for GPUs using CUDA

## Syllabus (Tentative)

- Introduction of CUDA
- Parallel Computing
- CUDA Programming Model
- CUDA Memory
- CUDA Threads
- Case Study

#### References

#### Websites

http://www.nvidia.com/

#### Documentation

 NVIDIA CUDA Programming Guide, NVIDIA. (https://docs.nvidia.com/cuda/cuda-c-programming-guide/)

#### Reference books

- CUDA范例精解--通用GPU编程(英文影印版), Jason Sanders, Edward Kandrot,清华大学出版社, 2010
- GPU高性能运算之CUDA, 张舒, 褚艳利, 中国水利水 电出版社, 2009

## **Outline**

- GPU
- What is CUDA?
- Successful Cases
- Personal Supercomputer

## **TOP 10 Machines 11/2019**

| Rank | Name                 | Site                                              | System                                                  | #core      | R <sub>max</sub> TF/s | Arch.   | Country |
|------|----------------------|---------------------------------------------------|---------------------------------------------------------|------------|-----------------------|---------|---------|
| 1    | Summit               | DOE/SC/Oak Ridge<br>National Laboratory           | IBM Power<br>System AC922,<br>NVIDIA Volta<br>GV100     |            | 148,600.0             | cluster | USA     |
| 2    | Sierra               | DOE/NNSA/LLNL                                     | IBM Power<br>System<br>S922LC,<br>NVIDIA Volta<br>GV100 | 1,572,480  | 94,640.0              | cluster | USA     |
| 3    | Sunway<br>TaihuLight | National Supercomputing Center in Wuxi            | Sunway<br>SW26010 260C                                  | 10,649,600 | 93,014.6              | MPP     | China   |
| 4    | Tianhe-2A            | National Super<br>Computer Center in<br>Guangzhou | TH-IVB-FEP cluster, Matrix-2000                         | 4,981,760  | 61,444.5              | cluster | China   |
| 5    | Frontera             | Texas Advanced Computing Center/Univ. of Texas    |                                                         | 448,448    | 23,516.4              | cluster | USA     |

## **TOP 10 Machines 11/2019**

| Rank | Name                                              | Site                                                                      | System                                              | #core   | R <sub>max</sub> TF/s | Arch.   | Country     |
|------|---------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|---------|-----------------------|---------|-------------|
| 6    | Piz Daint                                         | Swiss National Supercomputing Centre                                      | Cray XC50,<br>Nvidia Tesla P100                     | 387,872 | 21,230.0              | MPP     | Switzerland |
| 7    | Trinity                                           | DOE/NNSA/LANL/S<br>NL                                                     | Cray XC40, Intel Xeon Phi                           | 979,072 | 20,158.7              | MPP     | USA         |
| 8    | Al Bridging<br>Cloud<br>Infrastructur<br>e (ABCI) | National Institute of<br>Advanced<br>Industrial Science<br>and Technology | CX2570 M4,                                          | 391,680 | 19,880.0              | cluster | Japan       |
| 9    | SuperMUC-<br>NG                                   | Lenovo<br>Leibniz<br>Rechenzentrum                                        | ThinkSystem<br>SD650, Intel Xeon<br>Phi             | 305,856 | 19,476.6              | cluster | Germany     |
| 10   | Lassen                                            | DOE/NNSA/LLNL                                                             | IBM Power<br>System S922LC,<br>NVIDIA Tesla<br>V100 | 288,288 | 18,200.0              | cluster | USA         |

## **TOP 5 Machines in China 11/2019**

| Rank | Name                            | Site                                              | System                       | #core      | R <sub>max</sub><br>TF/s |
|------|---------------------------------|---------------------------------------------------|------------------------------|------------|--------------------------|
| 3    | Sunway<br>TaihuLight            | National Supercomputing Center in Wuxi            | Sunway SW26010<br>260C       | 10,649,600 | 93,014.6                 |
| 4    | Tianhe-2A                       | National Super<br>Computer Center in<br>Guangzhou | ·                            | 4,981,760  | 61,444.5                 |
| 43   | Advanced<br>Computing<br>System | Sugon                                             | Sugon                        | 163,840    | 4,325.0                  |
| 87   | Tianhe-1A                       | National Supercomputing Center in Tianjin         | NUDT cluster,<br>NVIDIA 2050 | 186,368    | 2,566.0                  |
| 88   | PAI-<br>BSystem                 | China<br>Meteorological<br>Administration         | Sugon,<br>NVIDIA Tesla P100  | 50,816     | 2,547.0                  |

@ Ying Liu

#### **Multi-Core**

- A multi-core processor combines two or more independent cores into a single package composed of a single integrated circuit (IC), called a die.
- Each individual core is a CPU



## **Multi-Core**

#### Pros

- Allow many users to connect to a site simultaneously and have independent threads
- Cores in a die share a single coherent cache
- Lower cost for higher performance
- Low power consumption

#### Cons

Design difficulty, 2-core => 4-core => 8 core

#### **Multi-Core**

#### Hardware

#### AMD

- Athlon 64, Athlon 64 FX and Athlon 64 X2 family, dual-core desktop processors.
- Opteron, dual- and quad-core server/workstation processors.
- Phenom, triple- and quad-core desktop processors.
- Turion 64 X2, dual-core laptop processors.

#### IBM

- POWER4, the world's first dual-core processor.
- POWER5, a dual-core processor.
- POWER6, a dual-core processor.
- PowerPC 970MP, a dual-core processor, in the Apple Power Mac G5.
- Sony/Toshiba/IBM Cell, 9 cores.

#### Intel

- Celeron Dual Core, the first dual-core processor for the budget/entry-level market.
- Core Duo, a dual-core processor.
- Itanium 2, a dual-core processor.
- Pentium D, a dual-core processor.
- Nehalem, a quad-core processor, a 6-core processor, a 8-core processor.

## **Programming on Multi-Core**

- Multithreading
  - Parallel execution
  - Common data
    - Lock and barrier guarantees synchronization and data consistence



# **Programming on Multi-Core**

#### Problem

- Heavy weight thread, 1000 cycles, launching, communication, synchronization, etc.
- Poor scalability on 8+ cores

#### Good at

- Coarse grain
- Less communication
- Task parallelism

# Parallel Computing with FPGA

- FPGA Vendors
  - Altera
  - Xilinx
- Embedded Reconfigurable System
  - Multi-channel data/signal processing in parallel
  - Standard/user defined interfaces with external system
  - Hard to co-program with HOST/CPU
  - Multi-blocks and multi-chips in parallel
  - Difficult to develop and debug

# **GPU (Graphic Processing Unit)**





## **GPU**



- Architecture difference between GPU and CPU
  - More transistors for data processing
  - Many-core (hundreds of cores)

## **Historic GPGPU Movement**

- General Purpose computation using GPU in applications other than 3D graphics
  - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
  - Large data arrays, streaming throughput
  - Fine-grain SIMD parallelism
  - Low-latency floating point (FP) computation



- Applications see http://GPGPU.org
  - Game effects (FX) physics, image processing
  - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

## What is GPU Good at?

- Advantages of GPU
  - Low cost (hundreds of US dollars)
  - Many threads (hundreds or thousands of threads)
- Good at data-parallel processing
  - The same computation executed on many data elements in parallel – low control flow overhead with high SP floating point arithmetic intensity
  - Many calculations per memory access

## **Historic GPGPU Constraints**

- Dealing with graphicsAPI
  - Working with the corner cases of the graphics API
- Addressing modes
  - Limited texture size/dimension
- Communication limited
  - No interaction between pixels



## **Outline**

- GPU
- What is CUDA?
- Successful Cases
- Personal Supercomputer

## **CUDA** (Compute Unified Device Architecture)

- Write programs for GPU on C language with minimum extensions
- Ease of programming
- Single Program Multiple Data (SPMD)
- No need of graphics APIs



Software Stack

26

## **CUDA API Highlights: Easy and Lightweight**

- The API is an extension to the ANSI C programming language
  - Low learning curve
- The hardware is designed to enable lightweight runtime and driver
  - High performance

## **TOP 500 Machines 11/2016**

#### Global

- 60/500 Nvidia CUDA GPUs as co-processors
- 21/500 Intel Xeon Phi as co-processors
- 3/500 Nvidia CUDA GPUs & Intel Xeon Phi as coprocessors

#### China

28/168 Nvidia CUDA GPUs as co-processors

# **G80 – Graphics Mode**



Block Diagram of the GeForce 8800

## **G80 CUDA Mode**



# **Streaming Multiprocessor (SM)**

- An array of SPs
  - 8 streaming processors
  - 2 Special Function Units (SFU)
    - Transcendental operations (e.g. sin, cos) and interpolation
  - A 16KB read/write shared memory
    - Not a cache, but a softwaremanaged data store
  - Multithreading issuing unit
    - Dispatch instructions
  - Instruction cache
  - Constant cache



# Fermi Streaming Multiprocessor (SM)

**Dispatch Port** 

Operand Collector

Result Queue

**FP Unit** 



## **CUDA Device**

- A compute device
  - Is a coprocessor to the CPU or host
  - Has its own DRAM (device memory)
  - Runs many threads in parallel
  - Is typically a GPU but can also be another type of parallel processing device
- Kernel Data-parallel portions of an application which run on many threads

#### GPU+CUDA

- CUDA integrated CPU+GPU application C program
  - Serial or modestly parallel C code executes on CPU
  - Highly parallel SPMD kernel C code executes on GPU

CPU Serial Code Grid 0 GPU Parallel Kernel KernelA<<< nBlk, nTid >>>(args); **CPU Serial Code** Grid 1 GPU Parallel Kernel KernelB<<< nBlk, nTid >>>(args); 2019/12/4 @ Ying Liu

## **Block IDs and Thread IDs**

Each thread uses IDs to decide what data to work on

Block ID: 1D or 2D

Thread ID: 1D, 2D, or 3D

 Simplify memory addressing when processing multidimensional data

- Image processing
- Solving PDEs on volumes

• ...



@ Ying Liu 2019/12/4 35

# 支持CUDA的NVIDIA硬件

GeForce<sup>®</sup> 娱乐

Quadro® 设计和创作

Tesla™ 高性能计算

Tegra 嵌入式系统









GPU

@ Ying Liu 2019/12/4 36

# Configuration

|                         | GeForce 8800 GTX       | Tesla C1060 (GTX280) |
|-------------------------|------------------------|----------------------|
| # stream processor      | 128                    | 240                  |
| # stream multiprocessor | 16                     | 30                   |
| # registers per SM      | 8192 (32KB)            | 16384(64KB)          |
| # threads per block     | Up to 512              | Up to 512            |
| # threads per SM        | Up to 768              | Up to 768            |
| # blocks per SM         | Up to 8                | Up to 8              |
| # blocks per grid       | Up to 65535 each dim   | Up to 65535 each dim |
| global memory           | 768MB, 1.8GHz, 384-bit | 4GB, 1.6GHz, 512-bit |
| constant memory         | 64KB                   | 64KB                 |
| shared memory per SM    | 16KB                   | 32KB                 |
| clock                   | 1.35GHz                | 1.296GHz             |
| peak                    | 346.5 GFlops/s         | 936 GFlops/s         |
| memory bandwidth        | 86.4 GB/s              | 102 GB/s             |

@ Ying Liu 2019/12/4 37

#### **New Features in Fermi**

- 512 SPs in total
- 32 SPs per SM, 4x over GT200
- 4 SFUs per SM
- 64 KB on-chip memory per SM
  - Can be configured as 48 KB of Shared memory with 16 KB of L1 cache or as 16 KB of Shared memory with 48 KB of L1 cache
- Dual Warp Scheduler simultaneously schedules and dispatches instructions from two independent warps

#### Fermi Dual Warp Scheduler



@ Ying Liu

2019/12/4

#### **New Features in Fermi**

- Support full C++
- Up to 20x faster atomic memory operations
- Concurrent kernel execution
  - Different kernels of the same application context can execute on the GPU at the same time





Serial Kernel Execution

Concurrent Kernel Execution

# Configuration

| GPU                       | G80         | GT200              | Fermi                 |
|---------------------------|-------------|--------------------|-----------------------|
| Transistors               | 681 million | 1.4 billion        | 3.0 billion           |
| CUDA Cores                | 128         | 240                | 512                   |
| Double Precision Floating | None        | 30 FMA ops / clock | 256 FMA ops /clock    |
| Point Capability          |             |                    |                       |
| Single Precision Floating | 128 MAD     | 240 MAD ops /      | 512 FMA ops /clock    |
| Point Capability          | ops/clock   | clock              |                       |
| Special Function Units    | 2           | 2                  | 4                     |
| (SFUs) / SM               |             |                    |                       |
| Warp schedulers (per SM)  | 1           | 1                  | 2                     |
| Shared Memory (per SM)    | 16 KB       | 16 KB              | Configurable 48 KB or |
|                           |             |                    | 16 KB                 |
| L1 Cache (per SM)         | None        | None               | Configurable 16 KB or |
|                           |             |                    | 48 KB                 |
| L2 Cache                  | None        | None               | 768 KB                |
| ECC Memory Support        | No          | No                 | Yes                   |
| Concurrent Kernels        | No          | No                 | Up to 16              |
| Load/Store Address Width  | 32-bit      | 32-bit             | 64-bit                |

#### Free Downloadable CUDA Software

- https://developer.nvidia.com/
  - CUDA driver
  - CUDA toolkit
  - CUDA SDK
  - CUDA Visual Profiler

#### **Outline**

- GPU
- What is CUDA?
- Successful Cases
- Personal Supercomputer

#### **Successful Applications**



#### **VMD**

| Calculation / Algorithm                             | Algorithm class                  | Speedup vs. Intel<br>QX6700 CPU core |
|-----------------------------------------------------|----------------------------------|--------------------------------------|
| Fluorescence microphotolysis                        | Iterative matrix / stencil       | 12x                                  |
| Pairlist calculation                                | Particle pair distance test      | 10-11x                               |
| Pairlist update                                     | Particle pair distance test      | 5-15x                                |
| Molecular dynamics non-<br>bonded force calculation | N-body cutoff force calculations | 10x<br>20x (w/ pairlist)             |
| Cutoff electron density sum                         | Particle-grid w/ cutoff          | 15-23x                               |
| Cutoff potential summation                          | Particle-grid w/ cutoff          | 12-21x                               |
| Direct Coulomb summation                            | Particle-grid                    | 44x                                  |



Theoretical and Computational Biophysics Group, UIUC http://www.ks.uiuc.edu/Research/gpu/



#### **EDA**

- Graph theory algorithms (20-50X)
  - breadth first traversal
  - single source shortest path
  - all pair shortest path
  - maximum flow, Push re-label



#### **Numerical Weather Prediction (NWP)**

- Weather Research and Forecast Model (WRF)
- WRF Single Moment 5-tracer (WSM5)
  - 0.4% of the WRF code but consumes 25% total run time

# **CUDA** Implementation

- Geographical region partitioned in a 2D grid parallel to the ground
- Multiple levels along vertical height in the atmosphere for each grid
- 2400 floating point multiply-equivalent operation per cell per invocation
- Use -use\_fast\_math option to nvcc compiler
  - Square root, log, exponent to be computed by SFUs on the GPU
- Eliminate temporary arrays that store results between successive loops over k, the vertical dimension of WRF domain

#### **Evaluation**



# GPU 加速MATLAB — Jacket 插件

- MATLAB被广泛地应用于科学计算、控制系统、信息处理、医疗成像仿真等领域的分析、仿真和设计工作
- Jacket是由AccelerEyes公司 开发的一个强大的基于 CUDA的MATLAB 插件
- 性能提高 40 倍以上
- 支持 Win 32/64, Linux 32/64, Mac 32

http://www.accelereyes.com

#### Graphics Toolbox Example in MATLAB



FPS is the number of frames per second processed by the computation and visualization pipelines, not the video frame rate.

(Last Updated: 07 September 2008)

# GPU 加速矢量信号图像处理库 VSIPL 20 至 350 倍

- GPU VSIPL 实现了 VISPL Core Lite Profile
- 用CUDA 2.3 和 Visual Studio 2005 实现
- 在 GeForce 8800GTX 上 20 至350 倍的加速
- 支持 Windows XP/Vista, Linux



Figure 1: Time-domain FIR filtering runtime.

http://gpu-vsipl.gtri.gatech.edu/

#### GPU 加速数学库 — Tech-X 的 GPULib

- GPULib 提供了基于GPU的 数学库
- 不需要GPU编程的知识
- 30 倍的加速



http://www.txcorp.com/products/GPULib/

#### GPU 加速 GIS 应用 — Manifold 8

- Manifold 8 是第一个支持 GPU的地理信息系统
- 利用GPU,GIS任务和分析比以前快几百倍



http://www.manifold.net/index.shtml

# GPU加速分子建模应用软件 — OpenMM

- OpenMM 在 GPU 上加速 GROMACS
- 高达 10 至 1000 的加速
- 支持 MacOS, Windows, Linux

| Molecule       | # atoms | ns/day | speedup* | GFLOPS<br>(GPU) | GFLOPS<br>(x86) |
|----------------|---------|--------|----------|-----------------|-----------------|
| fip35          | 544     | 576    | 128      | 311             | 657             |
| villin         | 582     | 529    | 136      | 328             | 692             |
| lambda         | 1254    | 202    | 255      | 547             | 1153            |
| a-<br>spectrin | 5078    | 17     | 735      | 805             | 1702            |
|                |         |        |          |                 |                 |

(\*comparing a GTX280 to a single core of a 3GHz core 2 duo using the AMBER code)

https://simtk.org/project/xml/downloads.xml?group\_id=161

#### GPU加速分子建模应用软件 – 100x 伊利诺依大学NAMD / VMD

- 117 billions evals/sec
- 863 GFLOPS
- 131 倍的加速 (相对于 CPU核)





Quad-core Intel QX6700 3 块 NVIDIA GeForce 8800GTX

### 人类大脑模拟软件 — RF-LISSOM

■参见:

http://homepages.inf.ed.ac.uk/jbednar/rflissom\_small.html

■ GT200 加速 5x 以上



### GPU 加速CT机的成像 — AxRecon

强大的性能,不再需要计 算集群

节省电力

■ 无损图像质量



@ Ying Liu

# GPU 加速CT机的成像 — SnapCT

■ 性能提高 20~50 倍



@ Ying Liu 2019/12/4 58

# GPU加速 RTM 和 KTM

- 基尔霍夫叠前时间偏移( KTM)和反向时间偏移( RTM )是石油天然气行业常 用的数据处理手段
- Acceleware的GPU 方案节省 70%的电力
- 性能提高 20倍以上
- 参见:
  http://www.acceleware.com/d
  efault/index.cfm/solutions/sei
  smic-solutions/



#### GPU加速叠前深度偏移的3D 地震成像

- SeismicCity 现在在利用 NVIDIA Tesla S1070 进行叠 前深度偏移的成像处理
- 性能提高 60倍以上
- 参见:
  http://www.seismiccity.com/in
  dex.html



# GPU加速频谱分析和反演

- OpenGeoSolutions公司专门使用一项叫做"光谱分析"的技术来提供地质信息,这些信息超越了传统的地震资料分辨率以及检测方式,在处理巨大的地区数据集时提高了数据质量。更重要的是,这种技术在逆向转换数据时还能够将其转换为真实的地质构造。
- OpenGeoSolutions利用NVIDIA Tesla C1060 进行光谱分析和反演,性能提高了数十倍。
- http://www.opengeosolutions.com/

# GPU加速地震属性的计算

- ffA是英国一家专门从事 3D地震成像处理技术的 公司。
- SEA 3D & SVI Pro 是 ffA 公司3D地震成像分 析和可视化的软件。
- 利用NVIDIA GPU性能 提高了10~100 倍。
- 参见:

http://www.ffa.co.uk/index.html







# GPU加速定价模型

■ SciFinance 是专门从事建 造衍生定价和风险模型的 公司

■ 利用CUDA技术, Monte Carlo定价模型性能提高 30~100 倍

| Serial | OpenMP (quad-core PC) | Single<br>GPU | Dual<br>GPU |
|--------|-----------------------|---------------|-------------|
| 43.3   | 11.0 sec              | 1.27          | 0.77        |
| sec    | 11.0 Sec              | sec           | sec         |
|        | (x 3.94)              | (x 34)        | (x 56)      |



@ Ying Liu

2019/12/4

# GPU加速期权定价

- VOLERA、实时期权隐含波动引擎
- 单精度的准确结果
- 在不到1秒钟的时间内,评估所有美国上市的股票期权
- 参见: <u>www.hanweckassoc.com</u>



# GPU加速风险分析

- Exegy 是专门为实时数据 处理提供硬件加速的公司
- 利用 Nvidia GPU, 性能提 高 180 倍
- 参见:
  http://www.exegy.com/PD
  Fs/WHT-0001-A\_final.pdf



# GPU加速市场数据三维可视化

- AQUMIN 是一家金融工具提供商
- Aqumin 的 AlphaVision 把 金融数字转换为三维模式, 以更加直观的方式显示
- 参见:
  https://www.aqumin.com/H
  ome/tabid/36/Default.aspx



# 人工智能

Images

image search

**Audio** 



speech recognition

**Text** 



Web search

2019/12/4

#### **Deep Neural Network**

Convolutional Neural Network (CNN) comprising

visual feature

automatically

extracted

- Convolutional layer(s) -> local feature extraction
- Pooling layer(s) -> dimensionality reduction
- Fully-connected layer(s) -> classification/regression



#### Image Classification by Baidu

- Trained on millions+ images, up to 1.2 billions parameters
- Real-time prediction/classification is required

#### Infrastructure

Heterogeneous computing (CPU + GPU) by Baidu







Data center containers

- Faster deployment

Self-design switches

Much lower cost





#### Results by Baidu

- Datasets
  - Image recognition: 100 millions
  - Speech: 10 billions
  - Projected training data to grow 10x each year
- Training time: weeks to months
- Big improvement on speech & image recognition
  - Speech: error rate reduced by 25%
  - Face: LFW benchmark, 94% correct

#### **Outline**

- GPU
- What is CUDA?
- Successful Cases
- Personal Supercomputer

# Tesla S1070 1U系统集群解决方案



| Processors          | 4xTesla T10                |
|---------------------|----------------------------|
| Number of cores     | 960                        |
| Core Clock          | 1.296GHz                   |
| Performance         | 4 Teraflops                |
| Total system memory | 16.0 GB (4.0GB per<br>T10) |
| Memory              | 408 GB/sec peak            |
| bandwidth           | (102 GB/sec per T10)       |
| Memory I/O          | 2048-bit, 1.6GHz<br>GDDR3  |
|                     | (512-bit per T10)          |
| Form factor         | 1U (EIA 19" rack)          |
| System I/O          | 2 PCle x16 Gen2            |
| Typical power       | 700W                       |

# Tesla S1070 1U系统架构



# Tesla S1070 与服务器节点的连接



S1070



PCI-E Gen2 Cable(0.5m length)



PCI-E
Gen2 Host
Interface
Card in
Host

75

# Tesla S1070 与节点服务器的连接



#### **UIUC Accelerator Cluster**

- Combining GPU and FPGA
- 32 compute nodes:
  - 2 dual-core 2.4 GHz AMD Opterons
  - 8 GB host memory
  - 1 NVIDIA Tesla S1070 containing 4 GT200 GPUs, each with 4 GB memory
  - PCI-E GEN 2 cable
  - Nallatech H101-PCIX FPGA accelerator, 16 MB SRAM, 512
     MB SDRAM
- 2GB/sec InfiniBand connection
- Red Hat Enterprise Linux 5
- GNU C/Fortran and Intel C/Fortran compilers
- CUDA 2.0

http://www.ncsa.uiuc.edu/Projects/GPUcluster

#### **UIUC Accelerator Cluster**



# 多GPU集群的网络连接

- 服务器节点之间的连接:InfiniBand
  - 目前全球带宽最高的高速网络互联技术
  - 专门针对服务器端的连接而设计
  - 高扩展性: 在每个子网内支持上万个节点
  - 高吞吐量: 2008年已达到40Gb/sec
  - 低延迟: 1 微秒,以太网的1/10
- 集群子系统之间的连接: 千兆以太网

@ Ying Liu

#### NVIDIA 打造性能强大的个人超级计算机



AMAX(美国)、Armari(英国) 、华硕(全球)、Azken Muga(西班 牙)、Boxx(美国)、CAD2(英国 )、CADnetwork(德国)、Carri( 法国)、Colfax(美国)、 Comptronic(德国)、Concordia(意 大利)、Connoisseur(印度)、戴尔 (全球)、Dospara (日本)、E-Quattro(意大利)、Founder(中国 ),Inspur (中国),JRTI(美国)、 联想(全球)、Littlebit(瑞士)、 Meijin (俄罗斯)、Microway (美国 )、Sprinx(捷克)、Sysgen(德国 )、Transtec(德国)、Tycrid (美 国)、Unitcom(日本)、Ustar(乌 克兰)、Viglen(英国)、Western Scientific (美国)

#### "Democratization" of Power

| Name                     | Year | # Processors        | Tflops/\$1 million |
|--------------------------|------|---------------------|--------------------|
| ILLIAC IV                | 1976 | 64                  | 0.0000048          |
| CRAY Y-MP                | 1988 | 8 vector processors | 0.000115           |
| ASCI RED                 | 1997 | 4510                | 0.01818182         |
| EARTH SIMULATOR          | 2002 | 5120                | 0.0175             |
| BLUE GENE/L              | 2004 | 65536               | 2.8                |
| PLAYSTATION 3<br>CLUSTER | 2007 | 8 PlayStation 3s    | 375                |
| ROADRUNNER               | 2008 | 19440               | 8.3                |
| NVIDIA TESLA             | 2008 | 960 cores           | 439.1              |

#### Personal Supercomputer!

@ Ying Liu 2019/12/4 81

#### 搭建一个100 TF的数据中心



### A Great Opportunity for Many

- GPU parallel computing allows
  - Drastic reduction in "time to discovery"
  - 1<sup>st</sup> principle-based simulation at meaningful scale
  - New, 3<sup>rd</sup> paradigm for research: computational experimentation
- The "democratization" of power to discover
  - \$2000/Teraflops in personal computers today
  - Cost will no longer be the main barrier for big science