BRAIN – BIOMEDICAL RESEARCH AND INNOVATION

37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE Engineering in Medicine and Biology Society (EMBS)

SENSEmyHEART: A CLOUD SERVICE AND API FOR WEARABLE HEART MONITORS

Pedro M. Pinto Silva and João Paulo Silva Cunha (INESC-TEC & FEUP)

Motivation

Drawbacks of Physionet tools

PhysioNet provides the most reliable open-source software tools for ECG processing and analysis to date.

But it remains difficult to use in mobile settings and for Linux-unfamiliar users and researchers, such as clinicals and psychologists.

How to take advantage of these tools in wearable technology for cardiovascular monitoring?

Methodology

A Physionet-based pipeline

Purpose:

Integration of existing software-modules into a cohesive pipeline, including:

- Validated Qrs detectors
- Tested HRV computing function

Enhancements:

Peak Heart Rate

- New feature: cardiovascular intensity
- **Extended** the hrv function to obtain all sets of measures per analysis time window.
- Support for VitalJacket® ECG recordings.

BDD Converter BDD Converter Cardiovascular Intensity RR time series Power Spectral Density

Fig 2. Overview of I/O in SenseMyHeart's processing pipeline

Webserver and Application Programmatic Interface (API)

The **SenseMyHeart pipeline** is exposed to remote clients through a **webserver**, which provides an interface (API) over HTTP, using the Simple Object Access Protocol (SOAP).

Name: submitExam

Mandatory Inputs: Session-Token, ExamType,

ExamData

Outputs: Operation status

Name: getHrvSeries

Mandatory Inputs: Session-Token

Optional Inputs: Time Interval, Window Size, Window Overlap, Qrs Detector

window Overlap, Qrs Detector

Outputs: Hrv Measurements per Time Frame

Results

Real Use Cases

 $HR_{max} = 208 - 0.7 \times age$ $CI_i = \frac{(HR_i - HR_{rest})}{(HR_{max} - HR_{rest})} \times 100\%$

The **SCOPE** project investigates the psychophysiological impact of stress among police officers originating from on-duty tasks, such as patrolling and on-site interventions.

Policeman with wearable device and smartphone

system

Cardiovascular Intensity

Proof-of-concept client applications – available to serve a variety of research profiles

Data analysis returns measurements of HRV in time and frequency domains, computed over 5 minute time windows (customizable), which reflect activity of the Autonomic Nervous System (ANS).

Fig 3. Android application with bluetooth connectivity to a wearable device VitalJacket®, showing online analysis.

Fig 4. Desktop application for Windows users, depicting off-line analysis of ECG exams.

Although, this requires:

A **stable** network connection!

Discussion

We developed a novel **computing infrastructure** built on top of existing and recognized open-source software in ECG processing and HRV measurement. This has **enabled research projects to study cardiovascular stress** under very different work conditions, making use of wearable technology.

Pros:

- Well suited for mobile environments.
- Developers can build their applications seamlessly across platforms.
- Scalable to include other algorithms and relevant sensor data.

Acknowledgments