Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

# SSC 140 - SISTEMAS OPERACIONAIS I

# Aula 24 - Sistema Operacional Windows

Profa. Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano

# Roteiro

- História Família Windows;
- □ Estrutura do Windows 2000
  - Win32 API;
- □ Gerenciamento de Processos;
- □ Gerenciamento de Memória;
- □ Gerenciamento de E/S;

2

# História

- Sistemas Operacionais da Microsoft podem ser divididos em três famílias:
  - MS-DOS;
  - Consumer Windows (95/98/ME);
- Windows NT/2000/XP/Server 2003/Vista;

## MS-DOS:

- Lançado em 1981 (8KB);
- Monousuário;
- Linha de Comando;
- Baseado no CP/M (processador 8-bits Z80);
- MS-DOS 2.0 → usava 24 KB da RAM;
  - A partir do IBM PC/AT, surgiu o DOS 3.0 usando 36KB;

# História

### ■ MS-DOS:

- Todos os programas rodavam no mesmo espaço de endereçamento (um bug em qualquer um deles trava o sistema inteiro);
- Em todas as versões, a interface jamais foi mudada;
- Interface gráfica: Windows 1.0 (1985); Windows 2.0 (1987); Windows 3.0 (1990 para 386); Windows 3.1 e 3.11 (sucesso);
  - □ Inspirada no Apple Lisa (precursor Apple Macintosh);

4

# História

# □ Windows 95:

- Surgiu em 1995;
- Ainda tinha o MS-DOS, versão 7.0;
- Era um ambiente gráfico (shell)
- Possuia todas as características de um SO, como memória virtual, multiprogramação e gerenciamento de processos;
- Não era totalmente 32 bits, tendo parte do código escrito em linguagem de montagem de 16bits para compatibilidade com MS-DOS;
- Ainda usava o sistema de arquivos do MS-DOS, sendo a única diferença a possibilidade de ter nomes mais longos

# História

- Windows 98: mais funcionalidades migram do MS-DOS para a parte Windows;
  - Ainda com o MS-DOS, versão 7.1;
  - Interface mais próxima à Internet, o que gerou um processo judicial por monopólio ilegal;
  - É um sistema operacional por si só;
- □ Dois grandes problemas do Win98:
  - Embora definido como um sistema multiprogramado, o Kernel não era. Utiliza um semáforo mutex gigante (compartilhado pelos processos) para todo o sistema;
    - Um processo pode ter que esperar que um outro processo deixe o Kernel;

# História

## ■ Windows 98:

- 2. Cada processo possui um espaço de endereçamento virtual de 4GB;
  - 2Gb para os processos;
  - 1Gb para compartilhamento entre os processos;
  - 1Gb para compartilhamento entre os processos, inclusive o kernel, para acessar os vetores de interrupção do MS-DOS;
    - Essencial para rodar velhos programas MS-DOS sob o Win98:

7

# História.

- **Windows ME**: apenas uma revisão do 98 lançada em 2000;
  - Uma característica interessante era a possibilidade de restaurar o sistema depois de alguma configuração mal sucedida;
    - Mudar a configuração do vídeo de 640X480 para 1024X768;

8

# História

# □ Windows NT (New Technology):

- Projeto surgiu no final dos anos 80 com o intuito de criar um Windows inteiramente 32Bits;
- Lançamento em 1993 → Versão 3.1;
- Escrito em C com 3,1 milhões de linhas de código
  - Funções de baixo nível (tratamento de interrupções) em linguagem de máquina.

9

# História

## □ WinNT 4.0 (1996)

- Principal objetivo: desenvolver um SO multitarefa tanto para ambiente monousuário quanto multiusuário;
  - Portabilidade;
  - Segurança;
- Escrito em C, C++ (interface);
  - □ 16 milhões de linhas de código;
  - Funções de baixo nível (tratamento de interrupções) em linguagem de máquina.
- Foi influenciado pelo desenvolvimento do OS/2 da IBM;
- Versões para 80x86, Alpha, MIPS, PowerPC;
- Evolução da interface gráfica, semelhante ao Win98;

10

# História Windows 95/98 versus NT

| Característica                                | Windows 95/98 | Windows NT            |
|-----------------------------------------------|---------------|-----------------------|
| Puro 32-Bit                                   | Não           | Sim                   |
| Políticas de<br>segurança                     | Não           | Sim                   |
| Mapeamento de<br>Arquivos Protegidos          | Não           | Sim                   |
| End. Privado para<br>cada programa MS-<br>DOS | Não           | Sim                   |
| Unicode                                       | Não           | Sim                   |
| Versões                                       | 80x86         | 80x86, Alpha<br>MIPS, |
| Multiprocessador                              | Não           | Sim                   |
| Plug and Play                                 | Sim           | Não                   |

# História Windows 95/98 versus NT

| Característica                                              | Windows 95/98 | Windows NT |
|-------------------------------------------------------------|---------------|------------|
| Gerenciamento de<br>Energia                                 | Sim           | Não        |
| FAT-32                                                      | Sim           | Opcional   |
| NTFS                                                        | Não           | Sim        |
| Maior proteção no<br>Kernel (com<br>multiprogramação)       | Não           | Sim        |
| Win32 API                                                   | Sim           | Sim        |
| Executa todos os<br>antigos programas<br>MS-Dos             | Sim           | Não        |
| Algum dado crítico<br>pode ser sobrescrito<br>pelo usuário? | Sim           | Não        |

# História

### □ Windows 2000:

- Lançamento em 1999 (NT 5.0);
- Herdou toda estrutura do NT 4.0, melhorado com a interface ao usuário do Windows 98 (plug and play, barramentos USB, etc.);
- Melhora na internacionalização de idiomas;
- MS-DOS completamente excluído, assim como no NT;
   Interface de linha de comandos de 32 bits com algumas funcionalidades do MS-DOS;
- Serviços para ambientes distribuídos, com multiprocessadores e de rede:
- Menos portável que o NT;

13

# História

### □ Windows 2000:

- Ambiente multiprogramado com proteção aos processos;
- Cada processo possui um endereçamento virtual privado de 32 bits - 4Gb (paginação sob demanda);
- Suporta multithreading;
- Suporta até 32 CPUs (versão Datacenter Server);
- Possui mais de 29 milhões de linhas de código em C;
- Todo o sistema de janelas e GUI fazem parte do kernel;

14

# História

## □ Windows XP (Windows eXPerience):

- Tentativa de unir em um único produto o mercado coorporativo e o mercado de usuários domésticos;
- Conectividade à Internet → segurança;
- Mecanismos de proteção ao sistema de arquivos;
- Mecanismos de proteção contra pirataria: Windows Product Activation – WPA → criação de um código único para cada instalação (identificadores como número de série da BIOS, do HD, do endereço físico da placa de rede (endereço MAC - Media Access Control);

15

# História - Comparando tamanhos

| Year | AT8     | ŧΤ   | BSE      | )    | MINIX   | Li   | nux  | So  | laris | Win  | NT  |
|------|---------|------|----------|------|---------|------|------|-----|-------|------|-----|
| 1976 | V6      | 9K   |          |      |         |      |      |     |       |      |     |
| 1979 | V7      | 21K  |          |      |         |      |      |     |       |      |     |
| 1980 |         |      | 4.1      | 38K  |         |      |      |     |       |      |     |
| 1982 | Sys III | 58K  |          |      |         |      |      |     |       |      |     |
| 1984 |         |      | 4.2      | 98K  |         |      |      |     |       |      |     |
| 1986 |         |      | 4.3      | 179K |         |      |      |     |       |      |     |
| 1987 | SVR3    | 92K  |          |      | 1.0 13K |      |      |     |       |      |     |
| 1989 | SVR4    | 280K |          |      |         |      |      |     |       |      |     |
| 1991 |         |      |          |      |         | 0.01 | 10K  |     |       |      |     |
| 1993 |         |      | Free 1.0 | 235K |         |      |      | 5.3 | 850K  | 3.1  | 6M  |
| 1994 |         |      | 4.4 Lite | 743K |         | 1.0  | 165K |     |       | 3.5  | 10M |
| 1996 |         |      |          |      |         | 2.0  | 470K |     |       | 4.0  | 16M |
| 1997 |         |      |          |      | 2.0 62K |      |      | 5.6 | 1.4M  |      |     |
| 1999 |         |      |          |      |         | 2.2  | 1M   |     |       |      |     |
| 2000 |         |      | Free 4.0 | 1.4M |         |      |      | 5.8 | 2.0M  | 2000 | 29M |

Versão e Tamanho (linhas de código)

# Estrutura do Win2000

- □ Cada funcionalidade do sistema é oferecida e gerenciada por um único componente do SO → microkernel;
- Cada componente é acessado por meio de uma interface:
- □ Também é um sistema em camadas, no qual cada camada oferece serviço para a camada superior;
- Uso de orientação a objetos;

17

# Estrutura do Win2000 Win32 API

- Chamadas de Sistema no Windows não são públicas;
- Conjunto de chamadas → API Win32
  - Bibliotecas que fazem chamadas ao sistema;
- □ API Win32 diferente do UNIX
  - UNIX: é pública e a interface é mínima;
  - API Win32 : interface ampla, fácil de entender, mas com muitas funções realizando a mesma operação;

# Estrutura do Win2000 Win32 API Cria objetos no Kernel (arquivos, processos, threads...); Possui funções diversas para E/S, gerenciamento de processos e GUI; Compatível com a maioria das versões Windows, porém há pequenas diferenças: Segurança (9x); UNICODE (somente NT, 2000, XP, Vista); Coordenadas gráficas de 32/16 bits (Win98);



# Estrutura do Win2000 Registro

- Configurações:
  - Win 3.x → Arquivos .ini
  - A partir do Win95 →
    - Banco de dados central chamado registry;
       Coleção de diretórios e subdiretórios
    - APIs permitem manipulação do registro;
    - □ Árvore de chaves (key) e valores (values);

21

# Estrutura do Win2000

- Win2000 pode ser dividido em duas partes:
  - <u>Modo usuário</u>: subsistemas protegidos que se comunicam por troca de mensagens (*local* procedure call – LPC);
  - Modo <u>kernel</u> e <u>Executivo</u>: subsistemas que interagem diretamente com o hardware;





# Estrutura do Windows 2000

- □ Camada do Kernel:
  - Tem idéia de "micronúcleo", mas não é.. ❸
  - Parte do kernel e da HAL ficam residentes na memória (não há paginação);
  - Complementa a HAL no quesito portabilidade (independente do hardware);
  - Escrito em C e linguagem de montagem;
  - Códigos para gerenciamento: controle de threads, processos, interrupções, semáforos, escalonamento;
     "Objetos de controle" controlam o sistema;
- □ *Drivers*: escritos em C e C++:

25

# Estrutura do Windows 2000

- Executivo: implementa os serviços básicos do Win2000 (gerenciadores):
  - Gerenciador de Objetos: tipos de dados utilizados para representar os recursos do sistema, como: processos, threads, alocação de memória, etc.;
  - Gerenciador de E/S (onde estão os drivers);
  - Rede;
  - □ PnP;
  - Energia;
  - Configuração;
  - Caching;

26

# Estrutura do Windows 2000

# ■ Executivo:

- Gerenciador de Processos e *Threads*;
- Gerenciador de Memória Virtual;
- Gerenciador de Segurança;
- Gerenciador de Comunicação: LPC (Local Procedure Call)
- GDI (graphics device interface): trata gerenciamento de imagens enviadas para o monitor e impressora;

27

# Estrutura do Windows 2000

■ *Environment Subsystem* e **DLL** (*Dynamic Link Library*): servem ao modo usuário, provendo interface entre processos e chamadas do sistema;

 DLL´s evitam que programas criem cópias para si de uma mesma função, evitando consumo de memória;

28

# Estrutura do Windows 2000 Gdi32.dll User32.dll Vser32.dll Vserse (csrss.exe) Win32 SubSys Interface do Sistema (ntdll.dll) System Trap Sistema Operacional

### Estrutura do Windows 2000 Alguns arquivos chave do Windows 2000: hal.dll Gerenciamento de Hardware baixo-nível ntoskrnl.dll Windows 2000 (Kernel + Executivo) Várias chamadas do sistema win32k.sys Kernel ntdll.dll Usuário Realiza *Traps* Processo do subsistema de ambiente Win32 Usuário Maioria das chamadas de sistema (não-gráficas) Kernel32.dll Usuário Fontes, Textos, Cores, Bitmaps, pallete, etc... Gdi32.dll Usuário User32.dll Usuário janelas, ícones, cursores,

# Gerenciamento de Processos e *Threads*

- Objetos:
  - Objeto trabalho (job): coleção de processos que compartilham cotas e limites (nº de filhos);
  - Objeto processo: corresponde aos recursos do sistema, tais como: memória, arquivos;
  - Objeto thread: unidade de trabalho executada seqüencialmente;
- Cada objeto processo instanciado recebe um identificador pid;

31

# Gerenciamento de Processos e

- □ Um processo possui pelo menos uma *thread* 
  - Escalonador seleciona threads para serem executadas;
  - Toda thread tem um ID thread;
- Threads comuns → relacionadas aos processos;
- Threads daemons → executam no modo Kernel e não estão associadas aos processos de usuário;

32

# Gerenciamento de Processos e Threads Address Process User Stack Process Handle P TT Access token Relação Trabalhos, Processos e Threads

# Gerenciamento de Processos e *Threads*

- Estados de uma *Thread*:
  - Apta (ready);
  - Ativa (standby);
  - Em execução (running);
  - Espera (waiting);
  - Transição (transition);
  - Término (terminated);

34

# Gerenciamento de Processos e Threads Escalonamento ativa Chaveamento de Contexto Preempção execução Desbloquear (recurso disponível) Bloquear (recurso não disponível) Estados de Threads no Win2000

# Gerenciamento de Processos e *Threads*

- O escalonador é preemptivo com prioridades;
  - Filas de prioridades utilizam *Round-Robin*;
- □ Prioridades são organizadas em duas classes, cada qual com 16 níveis;
  - Tempo real (sistema):
    - Prioridade fixa;
    - Maior prioridade;

□ 16-31;

# Gerenciamento de Processos e Threads ■ Variável (usuário): □ Prioridade dinâmica; □ Menor prioridade; □ Dois parâmetros: um relacionado à thread e outro ao processo ao qual a thread pertence; □ Prioridades → 0-15; □ Prioridade base; □ Tempo do processador determina mudança de prioridade;



# Gerenciamento de Memória

- Espaço de endereçamento de memória virtual de 32bits → 4Gb;
  - Dividido em duas parte de 2Gb
  - Processos do usuários;
    - Processos do SO;
- Win2000 prevê uma extensão VLM (Very Large Memory) destinada a arquiteturas de 64bits;
- Feito em função dos processos e não das threads;

39



# Gerenciamento de Memória

- □ Paginação:
  - Páginas podem estar:
    - Livres;
    - □ Reservadas;
    - Dedicadas (ou comprometidas): apenas essas ocupam espaço efetivo;
  - Win2000 permite que um processo bloqueie páginas na memória, impedindo uma troca de páginas;

41

# Gerenciamento de Memória

- Dois processos podem compartilhar um mesmo espaço de endereçamento, referenciando um objeto memória;
- Paginação
  - Tamanho das Páginas depende do processador;

# Gerenciamento de Memória

- Troca de páginas:
  - Demanda com clustering (grupo): quando ocorre uma falta de página, o gerenciador de memória carrega a página que faltava e mais um pequeno número de páginas ao redor → Minimizar acesso a disco;
  - Algoritmo de troca de página depende da arquitetura:
     Família Intel Multiprocessadores e família Alpha: FIFO, considerando apenas as páginas do processo em questão;
    - Família Intel Monoprocessadores: LRU com o algoritmo do relónio:
  - Uso do conjunto de trabalho (Working Set) → Limite mínimo e máximo de páginas;

43

# Gerenciamento de Memória Componentes

- O gerenciador de memória faz parte do executivo do Windows 2000;
- □ Está localizado no arquivo NTOSKRNL.EXE ;
- Não existem partes do gerenciador de memória na camada de acesso de hardware (HAL);
- Sobre o gerenciador de memória está o gerenciador de heap, no qual um conjunto de funções aloca/desaloca memória;
  - As funções do gerenciador de heap existem em dois lugares: NTDLL.DLL e NTOSKRNL.EXE;

44

# Gerenciamento de E/S

- O sistema de E/S do Windows 2000 aceita solicitações de E/S dos processos do modo usuário e do modo *Kernel* e as transmite de uma forma diferente aos dispositivos de E/S;
- □ Permite ao processo solicitar uma operação de E/S e depois executar outro trabalho enquanto o dispositivo conclui a transferência dos dados → E/S assíncrona;
- Cada solicitação de E/S é representada por um pacote de solicitação de E/S;

45

# Gerenciamento de E/S

- O gerenciador de E/S define uma estrutura ordenada dentro da qual as solicitações de E/S são transmitidas ao sistema de arquivos e aos drivers de dispositivos;
  - IRP (I/O Request Packet pacote de requisição de E/S);
  - IRP é direcionado ao driver de dispositivo responsável pela operação solicitada;
  - Após operação finalizada, driver avisa o gerenciador de E/S:

46

# Gerenciamento de E/S

- ACPI (Advanced Configuration and Power Interface):
  - SO gerencia PnP e energia;
- O Windows 2000 oferece o recurso da "inicialização rápida", que permite recuperar as operações de E/S que estavam em andamento quando ocorre uma falha por fornecimento de energia elétrica, por exemplo;
- Suporta RAID;