Presentation

"A nonparametric approach to calculating value-at-risk"

Oscar Johansson oscar.johansson@student.kuleuven.be

Heavy tail distributions

Figure 1: Gaussian kernel density of S&P500 daily logreturns compared to normal approximation.

Figure 2: Q-QPlot of daily lognormal returns of S&P500 compared to normal estimate(line)

Value at risk

$$VaR_{\alpha}(X) = inf\{x : F_X(x) \ge \alpha\} = F_X^{-1}(\alpha)$$

	Empirical S&P500	Normal
$\alpha = 0.1$	-0.96	-1.28
$\alpha = 0.05$	-1.35	-1.64
$\alpha = 0.01$	-2.54	-2.33
$\alpha = 0.001$	-5.99	-3.09

Problem premise

Accurate VaR Accurate cdf

Non-parametric solution?

Insurance: Mathematics and Economics

Volume 52, Issue 2, March 2013, Pages 255-262

A nonparametric approach to calculating value-atrisk

Ramon Alemany, Catalina Bolancé, Montserrat Guillén 🎗 🖾

Recall:

$$AMISE = \frac{1}{n} \int F_X(x)[1 - F_X] - \frac{1}{n} b(t)[1 - K(t)]dt + \frac{1}{4} b^4 \int [f'_X(x)]^2 dx \left(\int t^2 k(t) dt \right)^2$$

- Minimize with respect to *b*
- Minimize with respect to $[f'_X(x)]^2$

George R. Terrell showed in 1990 that the Beta(3,3) scaled to [-1,1] minimize the AMISE in the set of all densities with known variance^[1].

How do we get our data to be Beta(3,3) distributed?

$$m(x) = \frac{15}{16}(1 - x^2)^2$$

$$M(x) = \frac{1}{16}(15x - 5x^3 + x^5 + 11)$$

Champernowne distribution^[2]

$$T(x) = \frac{(x+c)^{\delta} - c^{\delta}}{(x+c)^{\delta} + (M+c)^{\delta} - 2c^{\delta}}.$$

$$Y = M(T^{-1}(X))$$

Algorithm 1 The DTKE algorithm

Require:
$$X, n = len(X), \alpha$$
 $Z \leftarrow T(X)$
 $Y \leftarrow M^{-1}(Z)$
 $x_{\alpha} \leftarrow M^{-1}(\alpha)$
 $b_{\alpha}^{Clas} \leftarrow (\frac{9}{35} \frac{m(x_{\alpha})}{\frac{1}{25}m'(x_{\alpha})})^{-\frac{1}{3}} n^{-\frac{1}{3}}$
 $\bar{F}_{Y}(x) = \frac{1}{n} \sum_{i=1}^{n} K(\frac{x-Y_{i}}{b_{\alpha}^{Clas}})$
 $\hat{F}_{x} = \bar{F}_{Y}(x) / \int_{0}^{1} \bar{F}_{Y}(x) dx, x \in [0, 1]$
 $q = \hat{F}_{X}^{-1}(\alpha)$
Return: $VaR_{\alpha} = T^{-1}(M(q))$

Bandwidth Selection

Using the Epanechnikov kernel we have different choices:

• Optimal AMISE bandwidth:

• Optimal AWISE bandwidth:

$$WISE\left\{\widehat{F}_{X}(x)\right\} = E\left\{\int \left[F_{X}(x) - \widehat{F}_{X}(x)\right]^{2} x^{2} dx\right\} \qquad \longrightarrow \qquad \hat{b}^{**} = \left(\frac{9}{7}\right)^{\frac{1}{3}} n^{-\frac{1}{3}}.$$

• Optimal bandwith around a:

$$\operatorname{MISE}\left\{\widehat{F}_{X}\left(x\right)\right\} = E\left\{\int\left[F_{X}\left(x\right) - \widehat{F}_{X}\left(x\right)\right]^{2}dx\right\} \qquad \qquad b_{y=0.78872}^{Clas} = 0.88321n^{-\frac{1}{3}}.$$

Results

W = 0.3LN(0, 0.5) + 0.7P(1, 1) LN is a lognormal distribution and P the pareto distribution.

n=5000, 100 runs, ± std

VaR_{α}	$\alpha = 0.99$	$\alpha = 0.999$
Analytical	139.0	699.0
CKE_w	159 ± 129	244 ± 205
CKE_x	162 ± 199	487 ± 244
$DTKE_w$	243 ± 100	359 ± 48.0
$DTKE_x$	200 ± 84	561 ± 49.1
TKE_w	195 ± 7.4	762 ± 159

Discussion

- Does not state assumption and restrictions.
- Unclear methodology.
- Over optimistic results.

Example:

- Car insurance data from Kaggle^[3].
- Heavy tailed distribution.

Question:

- Set new budget based on VaR.
- Cost worst case $\approx n_{claims} *VaR_a$.
- Let a = 0.99.

5 data splits, Mean ± std

Method	Esstimate
CKE_w	37129 ± 24399
CKE_x	47338 ± 11850
TKE	18147 ± 1407
$DTKE_w$	25280 ± 6673
$DTKE_x$	24748 ± 5237

Implications

5 data splits, ± std

Method	Esstimate
CKE_w	37129 ± 24399
CKE_x	47338 ± 11850
TKE	18147 ± 1407
$DTKE_w$	25280 ± 6673
$DTKE_x$	24748 ± 5237

Analysis:

- Varying results.
- CKE_x would imply double budget of DTKE.
- Transforms likely underestimate
- Under or over estimate?

Conclusion

- Varying implications.
- Accuracy not most important but margin.
- In real life other solution:
 - Claim limit.
 - VaR on claim sum instead.
 - Overestimate.

References

References:

- [1] George R Terrell. 1990. "The maximal smoothing principle in density estimation" Journal of the American statistical association, 85(410):470–477.
- [2] Tine Buch-Larsen, Jens Perch Nielsen, Montserrat Guillen, and Catalina Bolanc´e. 2005. Kernel density estimation for heavy-tailed distributions using the champernowne transformation. Statistics,39(6):503–516
- [3] Bunty Shah. 2017. Auto insurance claims data.https://www.kaggle.com/buntyshah/auto-insurance-claims-data.

Questions

Algorithm 1 The DTKE algorithm

Questions

VaR_{α}	$\alpha = 0.99$	$\alpha = 0.999$
Analytical	139.0	699.0
CKE_w	159 ± 129	244 ± 205
CKE_x	162 ± 199	487 ± 244
$DTKE_w$	243 ± 100	359 ± 48.0
$DTKE_x$	200 ± 84	561 ± 49.1
TKE_w	195 ± 7.4	762 ± 159

Questions

$$T(x) = \frac{(x+c)^{\delta} - c^{\delta}}{(x+c)^{\delta} + (M+c)^{\delta} - 2c^{\delta}}.$$

