

Производная.

Формулы и правила вычисления производных

Определение. Производной функции f в точке x_0 называется

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \in \overline{\mathbb{R}}$$

и обозначается $f'(x_0)$.

Теорема 1. Если функции f и g дифференцируемы в точке x_0 , то

- 1. $(f+g)'(x_0) = f'(x_0) + g'(x_0);$
- 2. $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0)$.
- 3. Если дополнительно $g(x_0) \neq 0$, то

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Теорема 2. (Производная сложной функции). Если функция y = f(x) имеет производную в точке x_0 , а функция z = g(y) — в точке $y_0 = f(x_0)$, то сложная функция $z = \varphi(x) = g(f(x))$ также имеет производную в точке x_0 , причем

$$\varphi'(x_0) = g'(y_0)f'(x_0). \tag{1}$$

Опуская аргумент и используя другое обозначение для производных, формулу (1) можно переписать в виде

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}. (2)$$

Пример. Вычислить производную функции $z = \sqrt{1 + x^2}$.

 \blacktriangle Данная функция является композицией функций $y=1+x^2$ и $z=\sqrt{y},$ причем

$$\frac{dy}{dx} = 2x \quad \text{и} \quad \frac{dz}{dy} = \frac{1}{2\sqrt{y}}.$$

По формуле (2) получаем

$$\frac{dz}{dx} = \frac{1}{2\sqrt{y}}2x = \frac{x}{\sqrt{1+x^2}}. \blacktriangle$$

Теорема 3. (Производная обратной функции). Пусть $\exists y'(x_0) \in \mathbb{R}, \ y'(x_0) \neq 0$. Тогда обратная функция x(y) дифференцируема в точке $y_0 = u(x_0)$, причем

$$x'(y_0) = \frac{1}{y'(x_0)}. (3)$$

Пример. Найти производную функции $y = \arcsin x$.

▲ Пользуя формулой (3) и определением арксинуса получаем

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Теорема 4. (Производные элементарных функций).

1.
$$C' = 0$$
 $(C = const)$;

5.
$$(\sin x)' = \cos x$$
, $(\cos x)' = -\sin x$;

2.
$$(a^x)' = a^x \ln a, a > 0, x \in \mathbb{R};$$

6.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \quad (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x};$$

3.
$$(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \neq 1, \ x > 0;$$
 7. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \quad (\arccos x)' = \frac{1}{1-x^2};$

7.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
, $(\arccos x)' = \frac{1}{1-x^2}$

4.
$$(x^{\alpha})' = ax^{\alpha-1}, \ \alpha \in \mathbb{R}, \ x > 0;$$

8.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$
, $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

Задачи для работы в классе

Вычислить производную функции y = f(x). Указать область существования производной.

1.
$$y = ax^3 + bx^2 + cx + d$$
. 4. $y = (x+1) \operatorname{tg} x$.

4.
$$y = (x+1) \operatorname{tg} x$$
.

7.
$$y = (\sqrt{2})^x + (\sqrt{5})^{-x}$$
.

2.
$$y = \frac{\ln 3}{x} + e^2$$
.

$$5. \ y = \frac{ax+b}{cx+d}.$$

8.
$$y = (x^2 - 7x + 8)e^x$$
.

$$3. \ y = \frac{a}{x^2} + \frac{b}{x^3} + \frac{c}{x^4}.$$

6.
$$y = x \arcsin x$$

9.
$$y = \log_x 2^x$$

- 7. Снаряд вылетел с начальной скоростью v_0 под углом α к горизонту. В какой момент скорость изменения высоты снаряда равна нулю.
- 8. Количество электричества q (в кулонах), протекающее через поперечное сечение проводника, изменяется по закону $q = 3t^2 + 2t$. Найти силу тока в конце пятой секунды.
- 9. Колесо вращается так, что угол поворота пропорционален квадрату времени. Первый оборот бы сделан за 8 с. Найти угловую скорость через 64 с после начала движения.
- **10.** Масса m(t) радиоактивного вещества изменяется по закону $m=m_0 2^{(t_0-t)/T},$ где t-tвремя, m_0 — масса в момент времени t_0 , T — период полураспада. Доказать, что скорость распада радиоактивного вещества. Найти коэффициент пропорциональности.
- 11. Определить при каком соотношении сопротивлений, последовательно соединенных с источником питания, на них выделяется максимальная мощность.
- **12.** Свойства идеального газа описывается уравнением Менделеева-Клапейрона pV = νRT . Определить максимальную температуру в процессе $(V_0, 3p_0) \rightarrow (3V_0, p_0)$.