Finance Quantitative

TP: Modèle de Black-Derman-Toy

Patrick Hénaff

Version: 06 mars 2023

1 Le modèle de Black-Derman-Toy

On considère le modèle de Black, Derman et Toy décrit dans la note de cours.

Figure 1: Black-Derman-Toy short rate tree

On doit calibrer le modèle à une courbe zero-coupon et une courbe de volatilité du taux zero-coupon.

Maturity	z(t)	$\beta(t)$
1	10.0	
2	11.0	19
3	12.0	18
4	12.5	17
5	13.0	16

1.1 Construction d'un arbre BDT

```
z <- data.bdt\$z/100
beta <- data.bdt\$b/100
```

Fonctions d'interpolation pour la courbe zero-coupon et la courbe de volatilité. On ajoute un taux court à la courbe zero-coupon pour permettre une interpolation robuste.

```
zc.curve <- splinefun(seq(0,5), c(.09, z))
beta[1] <- .2
vol.curve <- splinefun(seq(0,5), c(.21, beta))

df <- function(r) {
    1/(1+r)
}</pre>
```


2 Questions

- 1. Calibrage de l'arbre: généraliser la méthode de calibration vue en cours pour pouvoir construire un arbre de n pas, et d'incrément Δt .
- 2. A partir de l'article de Boyle (2000), utiliser les prix d'Arrow-Debreu pour optimiser les calculs.
- $3.\,$ Construire un arbre de maturité 5 ans, par pas de temps de 1 mois.
- 4. Utiliser cet arbre pour valoriser un call de strike 79, de maturité 1 an, sur une obligation de maturité 5 ans et de coupon 5%.