Задача 10

Дайте определения бесконечно малой и бесконечно большой последовательностей и сформулируйте их свойства. Сформулируйте арифметические свойства пределов и докажите их (одно на выбор экзаменатора).

Найдите
$$\lim_{n\to\infty} \frac{\sqrt[5]{2n^4+3}\cdot\sqrt[7]{3n^3-1}}{\sqrt[15]{7n^{18}+3}+\sqrt[3]{4n^4+1}}.$$

Решение

Определение. Последовательность $\{x_n\}$ называется бесконечно малой, если $\lim_{n\to\infty} x_n = 0$, т.е. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |x_n| < \varepsilon \ \forall n > N(\varepsilon)$.

Свойства б.м. последовательностей:

- 1. $\exists \lim y_n = a \Leftrightarrow \{x_n = y_n a\}$ бесконечно малая.
- 2. Сумма конечного числа бесконечно малых посл-ей есть бесконечно малая посл-ть.
- 3. Сумма бесконечно малой и ограниченной последовательности бесконечно малая последовательность.

Определение. Последовательность $\{x_n\}$ называется бесконечно большой, если $\lim_{n\to\infty} x_n = \infty$, т.е. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |x_n| > \varepsilon \ \forall n > N(\varepsilon)$.

Свойства б.б. последовательностей.

- 1. Сумма бесконечно больших последовательностей одного знака есть бесконечно большая последовательность того же знака.
- 2. Сумма бесконечно большой и ограниченной последовательностей есть бесконечно большая последовательность.
- 3. Произведение бесконечно больших последовательностей есть бесконечно большая последовательность. Произведение бесконечно большой последовательности на константу есть бесконечно большая последовательность.

Арифметические свойства пределов.

Если существует $\lim x_n = a$ и $\lim y_n = b$, то

1.
$$\lim(x_n \pm y_n) = \lim(x_n) \pm \lim(y_n)a \pm b$$
.

Доказательство. $\exists \alpha_n = x_n - a - 6$. м. и $\exists \beta_n = y_n - b - 6$. м.

Тогда внимательно посмотрим на $z_n = x_n + y_n$. Осознаем, что $\{z_n - a - b\}$ – бесконечно малая последовательность $(z_n - a - b = \alpha_n + \beta_n$ – конечная сумма б.м. $|z_n - a - b| \le |x_n - a| + |y_n - b| = |\alpha_n| + |\beta_n|$). По свойству (1) б.м.: $\{z_n - a - b\}$ - беск. малая $\Leftrightarrow \lim z_n = a + b$. \square

2. $\lim(x_n y_n) = \lim(x_n) \lim(y_n) = a \cdot b$.

Доказательство 2. $x_n = \alpha_n + a$ и $y_n = \beta_n + b$, где α , β - беск. малые. Тогда $\lim x_n y_n = \lim (\alpha_n + a)(\beta_n + b) = \lim (\alpha_n \beta_n + a\beta + b\alpha + ab) = 0 + 0 + ab = ab$.

3. $\exists \lim (\frac{x_n}{y_n}) = \frac{\lim(x_n)}{\lim(y_n)} = \frac{a}{b}$, если $\forall n: y_n \neq 0, b \neq 0$.

 \mathcal{A} оказательство 3. $x_n=\alpha_n+a$ и $y_n=\beta_n+b$, где $\alpha,\ \beta$ - беск. малые.

Тогда $\lim(\frac{x_n}{y_n})=\lim(\frac{\alpha_n+a}{\beta_n+b})=\lim(\frac{a}{\beta_n+b}+\alpha\frac{1}{\beta_n+b})=\lim(\frac{a}{\beta_n+b}),$ но так как $\lim(\frac{a}{\beta_n+b}-\frac{a}{b})=0,$ то $\lim\frac{a}{\beta_n+b}=\frac{a}{b}.$