МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.7.2

Эффект Поккельса

Выполнили: Гисич Арсений Айрапетян Микаел Б03-102

1 Аннотация

В данной работе по измерениям радиусов интерференционных колец была определена разность показателей преломления $n_o - n_e$; путём подачи на кристалл постоянного напряжения был получен свет, поляризованный по кругу; было определено полуволновое напряжение по фигурам Лиссажу на экране осциллографа.

2 Теоретические сведения

Эффект Поккельса — изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с центрально-осевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.$$

Рис. 1: Схема для наблюдения интерференционной картины

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерференции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{1}$$

где L — расстояние от центра кристалла до экрана, l — длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего

горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{\tiny Bbix}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U=E_{\text{эл}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

Рис. 2: Схема установки.

На Рис. 2 представлена схема всей установки (оптическая часть изображена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двояко-преломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

3 Используемое оборудование

- 1. гелий-неоновый лазер;
- 2. поляризатор;
- 3. кристалл ниобата лития;
- 4. матовая пластина;
- 5. экран;
- 6. источник высоковольтного переменного и постоянного напряжения;
- 7. фотодиод;
- 8. осциллограф;
- 9. линейка.

4 Результаты измерений и обработка данных

Параметры установки:

$$n_o = 2,29$$

l=26 мм

 $\lambda = 0.63 \text{ мкм}$

$$L = 75 \pm 0, 5 \, c$$
м

Результаты измерений радиуса тёмных колец r(m) представлены в таб. 1. График зависимости $r^2 = f(m)$ представлен на рис. 3.

m	r(m), cм	$\delta_{r(m)}, c_{\mathcal{M}}$
1	2,7	0,1
2	4,0	0,1
3	4,7	0,1
4	5,5	0,1
5	6,2	0,1
6	6,7	0,1

Таблица 1: Зависимость радиуса тёмных колец от номера кольца

Угол наклона графика $k=7,562\pm0,063~c$ м². Из формулы (1) определяем двулуче-преломление ниобата лития $(n_o-n_e)=\frac{\lambda}{l}\frac{(n_oL)^2}{k}=(94,5\pm1,5)~\cdot~10^{-3}$.

Рис. 3: График функции зависимости квадрата радиуса кольца от его номера $r^2 = f(m)$

При постоянном напряжении на кристалле определяется полуволновое напряжение. Полученное значение при скрещенной поляризации: $U_{\lambda/2}=0,42\pm0,01~\kappa B$, а при параллельной: $U_{\lambda/2}=0,39\pm0,01~\kappa B$.

Заменим в схеме, изображенной на рисунке 2, экран фотодиодом, подключим его к Y-входу осциллографа. На X-вход подадим переменное напряжение с блока питания. В режиме DUAL на экране осциллографа получаются фигуры Лиссажу, отвечающие зависимости I(U). Для скрещенных поляризаций имеет вид синусоиды, взятой на симметричном отрезке, а для параллельных поляризаций представляет собой косинусоиду. Таким образом, фигуры Лиссажу для разных поляризаций при одинаковом значении амплитуды напряжения U отличаются по фазе на $\pi/2$.

Определим полуволновое напряжение, измерив разность показаний между последовательными фигурами Лиссажу на экране, соответствующие экстремумам сигнала:

$$U_{\lambda/2} \approx 30$$
 дел = 450 В

Фотографии наблюдаемых фигур Лиссажу для напряжений, кратным полуволновому, при разных поляризациях представлены на рисунке 5.

Рис. 4: Фигуры Лиссажу для скрещенных поляризаций при различных амплитудах напряжения U: (a) $U=U_{\lambda/2}$, (b) $U=U_{\lambda}$, (c) $U=U_{3\lambda/2}$

Рис. 5: Фигуры Лиссажу для параллельных поляризаций при различных амплитудах напряжения U: (a) $U=U_{\lambda/2}$, (b) $U=U_{\lambda}$, (c) $U=U_{3\lambda/2}$

5 Обсуждение результатов и выводы

В данной работе было определено двулучепреломление ниобата лития, полученное значение:

$$n_o - n_e = (94, 5 \pm 1, 5) \cdot 10^{-3}$$

Полученное значение согласуется с табличным $(n_o - n_e = 0,089)$ в пределах 3δ . Основной вклад в погрешность вносит ошибка определения радиуса колец на экране.

Также двумя способами было определено полуволновое напряжение кристалла ниобата лития: по изменению яркости пятен на экране при вращении анализатора (при постоянном напряжении на кристалле) и по фигурам Лиссажу на экране осциллографа при переменном напряжении на кристалле. Полученное вторым способом значение:

$$U_{\lambda/2} \approx 450 \ B$$

согласуется со значениями, полученными первым способом.