

Assignatura	Codi	Data	Hora inici
Lògica	05.570	19/01/2011	15:30

□05.570ℜ19ℜ01ℜ11ℜΕΞφ∈ 05.570 19 01 11 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	19/01/2011	15:30

Problema 1

a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.

C: Comprar un cotxe

T: Usar transport públic

M: Comprar una moto

P: Usar petroli para desplaçar-se

A: Anar caminant a tot arreu

1) És necessari que no utilitzi el transport públic per a què em compri un cotxe o em compri una moto.

$$C \vee M \to \neg T$$

2) Només utilitzo petroli per desplaçar-me si em compro un cotxe, em compro una moto o utilitzo el transport públic.

$$P \rightarrow C \lor M \lor T$$

3) Si no utilitzo el transport públic, o em compro una moto o em compro un cotxe, però no les dues coses a la vegada.

$$\neg T \rightarrow (C \vee M) \wedge \neg (C \wedge M)$$

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Domini: un conjunt no buit

A(x): x és un principi actiu F(x): x és una farmacèutica

G(x): x és genèric P(x, y): x produeix y

1) Hi ha principis actius que són produïts per totes les farmacèutiques.

$$\exists x (A(x) \land \forall y (F(y) \rightarrow P(y,x))$$

2) No hi ha cap principi actiu que no sigui produït per cap farmacèutica.

$$\neg\exists x(\ A(x) \land \forall y(F(y) {\rightarrow} \neg P(y,x)\)$$

- 3) Hi ha farmacèutiques que produeixen tots els principis actius genèrics. $\exists x (F(x) \land \forall y (A(y) \land G(y) \rightarrow P(x,y))$
- 4) No hi ha cap farmacèutica que no produeixi cap principi actiu genèric.

$$\neg \exists x (F(x) \land \neg \exists y (A(y) \land G(y) \land P(x,y))) \text{ o també } \neg \exists x (F(x) \land \forall y (A(y) \land G(y) \rightarrow \neg P(x,y)))$$

5) No hi ha cap principi actiu genèric que sigui produït per totes les farmacèutiques.

$$\neg \exists x (A(x) \land G(x) \land \forall y (F(y) \rightarrow P(y,x)))$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	19/01/2011	15:30

Problema 2

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

$$\begin{split} P &\rightarrow F \wedge G \\ P \wedge G &\rightarrow R \\ (G &\rightarrow \neg R) \rightarrow (F \wedge P) \\ \therefore G \wedge R \end{split}$$

Solució:

$1 P \to F \wedge G$				P
$2 P \wedge G \rightarrow R$				P
$3 (G \rightarrow \neg R) \rightarrow (F \land P)$				P
4	$\neg (G \wedge R)$			Н
5		G		Н
6			R	Н
7			$G \wedge R \\$	I∧ 5,6
8			$\neg (G \wedge R)$	It 4
9		$\neg R$		I¬ 6,7,8
10	$G \rightarrow \neg R$			$I\rightarrow 6,9$
11	$F \wedge P$			$E\rightarrow 3,10$
12	P			E∧ 11
13	$F \wedge G$			$E\rightarrow 1,12$
14	G			E∧ 13
15	$P \wedge G$			I∧ 12,14
16	R			$E\rightarrow 2,15$
17	$\neg R$			$E\rightarrow 10,14$
$18 \neg \neg (G \land R)$				I¬ 4,16,17
19 G∧R				E¬ 18

Problema 3

Indiqueu aplicant resolució si el següent raonament és vàlid, indiqueu també si les premisses són consistents.

$$\neg P \lor Q \to \neg R$$

$$\neg (P \land \neg R) \to Q$$

$$\neg Q \lor (R \land S)$$

$$P \to Q$$

$$\therefore R \land S$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	19/01/2011	15:30

Solució:

Formes normals

Premissa 1: $\neg P \lor Q \rightarrow \neg R = (P \lor \neg R) \land (\neg Q \lor \neg R)$

Premissa 2: $\neg (P \land \neg R) \rightarrow Q = (P \lor Q) \land (\neg R \lor Q)$

Premissa 3: $\neg Q \lor (R \land S) = (\neg Q \lor R) \land (\neg Q \lor S)$

Premissa 4: $P \rightarrow Q = \neg P \lor Q$

Negació de la conclusió : $\neg(R \land S) = \neg R \lor \neg S$

El conjunt de clàusules és:

 $\{P \lor \neg R, \neg Q \lor \neg R, P \lor Q, \neg R \lor Q, \neg Q \lor R, \neg Q \lor S, \neg P \lor Q, \neg R \lor \neg S\}$

en negreta el conjunt de suport.

Si fem resolució:

0 0
¬Q ∨S
P vQ
$\neg P \lor Q$
$\neg Q \lor \neg R$
$\neg Q \lor R$
P vQ
$\neg P \lor Q$
¬Q

Si provem si les premisses son inconsistents, tenim el conjunt de clàusules:

 $\{P \vee \neg R, \neg Q \vee \neg R, P \vee Q, \neg R \vee Q, \neg Q \vee R, \neg Q \vee S, \neg P \vee Q\}$

No hi cap S negada, per tant podem eliminar $\neg Q \lor S$ i queda el conjunt de clàusules:

 $\{P \lor \neg R, \neg Q \lor \neg R, P \lor Q, \neg R \lor Q, \neg Q \lor R, \neg P \lor Q\}$

Si intentem fer resolució:

$\neg P \lor Q$	$\neg Q \lor \neg R$
$\neg P \lor \neg R$	$\neg Q \lor R$
$\neg P \lor \neg Q$	$\neg P \lor Q$
¬P	P∨Q
Q	$\neg Q \lor \neg R$
¬R	$\neg Q \lor R$
¬Q	Q

Assignatura	Codi	Data	Hora inici
Lògica	05.570	19/01/2011	15:30

Per tant les premisses són inconsistents.

Problema 4

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Podeu utilitzar les regles bàsiques, les regles derivades i equivalents deductius.

```
\forall x[ P(x) \rightarrow \exists y(Q(y) \land R(x,y) ]
     \therefore \neg \exists z[Q(z)] \rightarrow \neg \exists u[P(u)]
1.
       \forall x [ P(x) \rightarrow \exists y (Q(y) \land R(x,y) ]
                                                                                                                                P
                                                                                                                                н
2.
                                                                \neg \exists z[Q(z)]
3.
                                                                                                                                Н
                                                                                   \exists u[P(u)]
4.
                                                                                   P(a)
                                                                                                                                E ∃ 3
5.
                                                                                   P(a) \rightarrow \exists y (Q(y) \land R(a,y))
                                                                                                                                E ∀ 1
6.
                                                                                   \exists y(Q(y) \land R(a,y)
                                                                                                                                E \rightarrow 4,5
7.
                                                                                   Q(b) \wedge R(a, b)
                                                                                                                                E ∃ 6
8.
                                                                                   Q(b)
                                                                                                                                E ∧ 7
9.
                                                                                                                                ED3
                                                                                   \forall z[\neg Q(z)]
10.
                                                                                                                                E ∀ 9
                                                                                   \neg Q(b)
11.
                                                                ¬∃u[P(u)]
                                                                                                                                I - 3, 8, 10
12. \neg \exists z[Q(z)] \rightarrow \neg \exists u[P(u)]
                                                                                                                                l \rightarrow 2, 11
```

Problema 5

Es vol dissenyar un circuit lògic usant únicament portes NOR per a l'expressió: A• (B + C)

a) Reescriu la fórmula usant únicament l'operador J.

$$A \cdot (B+C) = (A+A) \cdot (B+C) = \sim \sim ((A+A) \cdot (B+C)) = \sim (\sim (A+A) + \sim (B+C)) = (A \downarrow A) \downarrow (B \downarrow C)$$

b) Comprova l'equivalència de les dues fórmules construint la seva taula de veritat.

Α	В	C	(B+C	A·(B+C	(A↓A	(B↓C)	$(A \downarrow A) \downarrow (B \downarrow C)$
)))		
1	1	1	1	1	0	0	1
1	1	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	0	0	0	0	0	1	0
0	1	1	1	0	1	0	0
0	1	0	1	0	1	0	0
0	0	1	1	0	1	0	0
0	0	0	0	0	1	1	0