

# Credit Risk of Landing Club Loans

With Classification Model



#### Overview

- 1. About Company
- 2. Business Understanding
- 3. Objective
- 4. Data Source
- 5. Tools
- 6. Data Understanding
- 7. Statistical Summary
- 8. Exploratory Data Analysis





# About Company



#### **Company Profile**

LendingClub is a financial services company headquartered in San Francisco, California. It was the first peer-to-peer lender to register its offerings as securities with the Securities and Exchange Commission (SEC) and to offer loan trading on a secondary market. At its height, LendingClub was the world's largest peer-to-peer lending platform.

# Business Understanding



#### Step nº 01

the company receives a loan application, it has to make a decision for loan approval based on the applicant's profile



#### Step nº 02

The applicant is unlikely to repay the loan, is likely to default, then approving the loan may cause financial loss to the company



#### Step nº 03

The applicant is likely to repay the loan, then not approving the loan will result in the loss of the company's business.



#### **Business Objectives**

01

Understand business problems and seek insights from data provided by LandingClub

02

Develop a predictive model capable of predicting loan approval of applicants to minimize the risk of default.

03

Determine the important features that contribute to the approval of the applicant's loan.



#### **Data Source**

# Credit Risk of Landing Club Loans Dataset

Source: Rakamin







# Visual Studio Code

# Data Understanding

|                          | Unnamed:<br>0 | id      | member_id | loan_amnt | funded_amnt | funded_amnt_inv | term         | int_rate | installment | grade . | total_ba | al_il il_u | il open_rv_12m | open_rv_24m | max_bal_bc | all_util | total_rev_hi_lim |
|--------------------------|---------------|---------|-----------|-----------|-------------|-----------------|--------------|----------|-------------|---------|----------|------------|----------------|-------------|------------|----------|------------------|
| 0                        | 0             | 1077501 | 1296599   | 5000      | 5000        | 4975.0          | 36<br>months | 10.65    | 162.87      | В       | 1        | laN Na     | N NaN          | NaN         | NaN        | NaN      | NaN              |
| 1                        | 1             | 1077430 | 1314167   | 2500      | 2500        | 2500.0          | 60<br>months | 15.27    | 59.83       | С       | 1        | laN Na     | N NaN          | NaN         | NaN        | NaN      | NaN              |
| 2                        | 2             | 1077175 | 1313524   | 2400      | 2400        | 2400.0          | 36<br>months | 15.96    | 84.33       | С       |          | laN Na     | N NaN          | NaN         | NaN        | NaN      | NaN              |
| 3                        | 3             | 1076863 | 1277178   | 10000     | 10000       | 10000.0         | 36<br>months | 13.49    | 339.31      | С       |          | laN Na     | N NaN          | NaN         | NaN        | NaN      | NaN              |
| 4                        | 4             | 1075358 | 1311748   | 3000      | 3000        | 3000.0          | 60<br>months | 12.69    | 67.79       | В       |          | laN Na     | N NaN          | NaN         | NaN        | NaN      | NaN              |
|                          |               |         |           |           |             |                 |              |          |             |         |          |            |                |             |            |          |                  |
| 464965                   | 466280        | 8598660 | 1440975   | 18400     | 18400       | 18400.0         | 60<br>months | 14.47    | 432.64      | С       | 1        | laN Na     | N NaN          | NaN         | NaN        | NaN      | 29900.0          |
| 464966                   | 466281        | 9684700 | 11536848  | 22000     | 22000       | 22000.0         | 60<br>months | 19.97    | 582.50      | D       | 1        | laN Na     | N NaN          | NaN         | NaN        | NaN      | 39400.0          |
| 464967                   | 466282        | 9584776 | 11436914  | 20700     | 20700       | 20700.0         | 60<br>months | 16.99    | 514.34      | D       |          | laN Na     | N NaN          | NaN         | NaN        | NaN      | 13100.0          |
| 464968                   | 466283        | 9604874 | 11457002  | 2000      | 2000        | 2000.0          | 36<br>months | 7.90     | 62.59       | Α       | 1        | laN Na     | N NaN          | NaN         | NaN        | NaN      | 53100.0          |
| 464969                   | 466284        | 9199665 | 11061576  | 10000     | 10000       | 9975.0          | 36<br>months | 19.20    | 367.58      | D       |          | laN Na     | N NaN          | NaN         | NaN        | NaN      | 16000.0          |
| 464970 rows × 75 columns |               |         |           |           |             |                 |              |          |             |         |          |            |                |             |            |          |                  |



|                             | count    | mean         | std          | min      | 25%        | 50%          | 75%          | max          |
|-----------------------------|----------|--------------|--------------|----------|------------|--------------|--------------|--------------|
| Unnamed: 0                  | 464970.0 | 2.336444e+05 | 1.344628e+05 | 0.00     | 117557.25  | 2.337995e+05 | 3.500418e+05 | 4.662840e+05 |
| id                          | 464970.0 | 1.309108e+07 | 1.090698e+07 | 54734.00 | 3636524.50 | 1.011694e+07 | 2.074230e+07 | 3.809811e+07 |
| member_id                   | 464970.0 | 1.460918e+07 | 1.169656e+07 | 70473.00 | 4371763.25 | 1.194994e+07 | 2.301219e+07 | 4.086083e+07 |
| loan_amnt                   | 464970.0 | 1.431553e+04 | 8.286103e+03 | 130.00   | 8000.00    | 1.200000e+04 | 2.000000e+04 | 3.500000e+04 |
| int_rate                    | 464969.0 | 1.382795e+01 | 4.356569e+00 | 5.42     | 10.99      | 1.366000e+01 | 1.649000e+01 | 2.606000e+01 |
| installment                 | 464970.0 | 4.319761e+02 | 2.434333e+02 | 1.00     | 256.64     | 3.798100e+02 | 5.664400e+02 | 1.409990e+03 |
| annual_inc                  | 464966.0 | 7.327214e+04 | 5.497333e+04 | 0.00     | 45000.00   | 6.300000e+04 | 8.890000e+04 | 7.500000e+06 |
| dti                         | 464969.0 | 1.721926e+01 | 7.851894e+00 | 0.00     | 11.36      | 1.687000e+01 | 2.278000e+01 | 3.999000e+01 |
| delinq_2yrs                 | 464940.0 | 2.847894e-01 | 7.977655e-01 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 2.900000e+01 |
| inq_last_6mths              | 464940.0 | 8.046608e-01 | 1.091690e+00 | 0.00     | 0.00       | 0.000000e+00 | 1.000000e+00 | 3.300000e+01 |
| mths_since_last_delinq      | 215360.0 | 3.410543e+01 | 2.178012e+01 | 0.00     | 16.00      | 3.100000e+01 | 4.900000e+01 | 1.880000e+02 |
| mths_since_last_record      | 62463.0  | 7.427871e+01 | 3.035736e+01 | 0.00     | 53.00      | 7.600000e+01 | 1.020000e+02 | 1.290000e+02 |
| open_acc                    | 464940.0 | 1.118646e+01 | 4.987993e+00 | 0.00     | 8.00       | 1.000000e+01 | 1.400000e+01 | 8.400000e+01 |
| pub_rec                     | 464940.0 | 1.605971e-01 | 5.111162e-01 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 6.300000e+01 |
| revol_bal                   | 464969.0 | 1.622941e+04 | 2.067144e+04 | 0.00     | 6411.00    | 1.176300e+04 | 2.033300e+04 | 2.568995e+06 |
| revol_util                  | 464629.0 | 5.617779e+01 | 2.373545e+01 | 0.00     | 39.20      | 5.760000e+01 | 7.470000e+01 | 8.923000e+02 |
| total_acc                   | 464940.0 | 2.506243e+01 | 1.160047e+01 | 1.00     | 17.00      | 2.300000e+01 | 3.200000e+01 | 1.560000e+02 |
| out_prncp                   | 464969.0 | 4.411796e+03 | 6.357597e+03 | 0.00     | 0.00       | 4.363700e+02 | 7.350920e+03 | 3.216038e+04 |
| out_prncp_inv               | 464969.0 | 4.410185e+03 | 6.355716e+03 | 0.00     | 0.00       | 4.359700e+02 | 7.344860e+03 | 3.216038e+04 |
| total_pymnt                 | 464969.0 | 1.153614e+04 | 8.264623e+03 | 0.00     | 5549.40    | 9.415078e+03 | 1.530012e+04 | 5.777758e+04 |
| total_pymnt_inv             | 464969.0 | 1.146515e+04 | 8.253087e+03 | 0.00     | 5497.46    | 9.349660e+03 | 1.522296e+04 | 5.777758e+04 |
| total_rec_prncp             | 464969.0 | 8.862224e+03 | 7.030526e+03 | 0.00     | 3705.63    | 6.814530e+03 | 1.200000e+04 | 3.500003e+04 |
| total_rec_int               | 464969.0 | 2.587889e+03 | 2.483440e+03 | 0.00     | 956.98     | 1.818090e+03 | 3.302840e+03 | 2.420562e+04 |
| total_rec_late_fee          | 464969.0 | 6.510358e-01 | 5.270141e+00 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 3.586800e+02 |
| recoveries                  | 464969.0 | 8.537071e+01 | 5.522434e+02 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 3.352027e+04 |
| collection_recovery_fee     | 464969.0 | 8.958576e+00 | 8.548359e+01 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 7.002190e+03 |
| last_pymnt_amnt             | 464969.0 | 3.121482e+03 | 5.552849e+03 | 0.00     | 312.58     | 5.459600e+02 | 3.180790e+03 | 3.623444e+04 |
| collections_12_mths_ex_med  | 464824.0 | 9.095916e-03 | 1.087132e-01 | 0.00     | 0.00       | 0.000000e+00 | 0.000000e+00 | 2.000000e+01 |
| mths_since_last_major_derog | 98700.0  | 4.285375e+01 | 2.166878e+01 | 0.00     | 26.00      | 4.200000e+01 | 5.900000e+01 | 1.880000e+02 |
| policy_code                 | 464969.0 | 1.000000e+00 | 0.000000e+00 | 1.00     | 1.00       | 1.000000e+00 | 1.000000e+00 | 1.000000e+00 |
| annual_inc_joint            | 0.0      | NaN          | NaN          | NaN      | NaN        | NaN          | NaN          | NaN          |

# Statictical Summary

| dti_joint                 | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
|---------------------------|----------|--------------|--------------|------|----------|--------------|--------------|--------------|
| verification_status_joint | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| acc_now_delinq            | 464940.0 | 4.011270e-03 | 6.871802e-02 | 0.00 | 0.00     | 0.000000e+00 | 0.000000e+00 | 5.000000e+00 |
| tot_coll_amt              | 394693.0 | 1.922999e+02 | 1.465453e+04 | 0.00 | 0.00     | 0.000000e+00 | 0.000000e+00 | 9.152545e+06 |
| tot_cur_bal               | 394693.0 | 1.387972e+05 | 1.521027e+05 | 0.00 | 28614.00 | 8.150900e+04 | 2.089410e+05 | 8.000078e+06 |
| open_acc_6m               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| open_il_6m                | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| open_il_12m               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| open_il_24m               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| mths_since_rcnt_il        | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| total_bal_il              | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| il_util                   | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| open_rv_12m               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| open_rv_24m               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| max_bal_bc                | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| all_util                  | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| total_rev_hi_lim          | 394693.0 | 3.037628e+04 | 3.726540e+04 | 0.00 | 13500.00 | 2.280000e+04 | 3.790000e+04 | 9.999999e+06 |
| inq_fi                    | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| total_cu_tl               | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |
| inq_last_12m              | 0.0      | NaN          | NaN          | NaN  | NaN      | NaN          | NaN          | NaN          |

#### **Univariate Analysis: Numerical Features**

Contoh numerical distribution, dimana seitap data skewness



Univariate Analysis: Categorical Dates Features





#### Univariate Analysis: Categorical Features



#### **Bivariate Categorical Analysis**



#### **Bivariate Numerical Analysis**



#### **Correlation Matrix Heatmap**

Correlation Matrix Heatmap menunjukan korelasi antara fitur atau fitur dengan target. semakin terang warnanya maka semakin dekat hubungannya

Dengan Correlation Matrix Heatmap mempermudah menganalisa fitur yang saling berhubungan dan saling mempengaruhi satu dengan yang lainnya.



## Data Pre-Processing



### Data Splitting

Data splitting dilakukan sebelum melakukan data cleaning, agar tidak menyebabkan data leakage saat proses feature engineering berlangsung

## Data Cleaning

Proses data cleaning dibagi menjadi dua, yaitu categorical dan numerical data. metode ini mempermudah proses cleaning dengan jumlah rows yang banyak

# Feature Engineering

Proses ini menyeleksi, mengisi, mengubah data dan menghapus data yang tidak diperlukan. langkahnya feature selection, handling missing value dan membagi proses menjadi kategorical dan numerical

#### Label Encoding

Pada tahap ini, melakukan labeling ulang pada data categorical, seperti gender, grade, dll

# One Hot Encodeing

One Hot Encoding dilakukan karena ada beberapa data categorical yang dapat dipisahkan menjadi fitur baru



# Handling Imbalance Dataset

```
y_train.value_counts(normalize=True) * 100

✓ 0.0s

0 88.803041
1 11.196959
Name: target, dtype: float64
```

X\_train: (371975, 57) X\_test: (92994, 57)

y\_train memiliki masalah ketidakseimbangan data, di mana nilai 1 adalah minoritas dan nilai 0 adalah mayoritas. Efek ketidakseimbangan ini dapat menyebabkan nilai f1 menurun sehingga harus dilakukan balancing data.

# SMOTE Oversampling Methode

```
from imblearn.combine import SMOTETomek
        # Implementing Oversampling for Handling Imbalanced
        smk = SMOTETomek(random_state=42)
        X_res, y_res = smk.fit_resample(X_train, y_train)
[138] 		 8m 50.7s
        print("X_resampled.shape:", X_res.shape)
        print("y_resampled.shape:", y_res.shape)
[139] \( \square\) 0.0s
   X_resampled.shape: (654802, 61)
     y_resampled.shape: (654802,)
```

Metode yang dipilih adalah SMOTE karena lebih efektif menurut beberapa penelitian. perhatikan tipe data saat melakukan SMOTE.

#### Default Parameter 80:20 balance dataset

#### **Decision Tree**

```
from sklearn.tree import DecisionTreeClassifier
  dt = DecisionTreeClassifier(random_state=42)
  dt.fit(X_res,y_res)

  y_train_pred_dt = dt.predict(X_res)
  y_pred_dt = dt.predict(X_test)

/ 49.0s
```

Accuracy: 0.956653117405424

AUC Score: 0.914825847016881

f1 Score: 0.8164306207022177

Precission Score: 0.7763055339049104

Recall Score: 0.8609296965040338

#### **Random Forest**

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state=42)
    rf.fit(X_res, y_res)

y_train_pred_rf = rf.predict(X_res)
    y_pred_rf = rf.predict(X_test)
```

Accuracy: 0.9931500957050993
AUC Score: 0.9703335681728903
f1 Score: 0.9685136671444812
Precission Score: 0.9977594459720949
Recall Score: 0.9409335382251248

# Hyperparameter 80:20 balance dataset Random Forest

Random Forest dengan hyperparameter menurunkan beberapa hasil penting, lebih baik default model karena target nya f1 score Hyperparameter Evaluation Random Forest

Accuracy: 0.99236509882358 AUC Score: 0.96653422919901 f1 Score: 0.9647537728355837

Precission Score: 0.9984586929716399 Recall Score: 0.9332500960430272

-----

Default Evaluation Random Forest Accuracy: 0.9931500957050993 AUC Score: 0.9703335681728903 f1 Score: 0.9685136671444812

Precission Score: 0.9977594459720949 Recall Score: 0.9409335382251248

\_\_\_\_\_

#### Hyperparameter 80:20 imbalance dataset Random Forest

Hyperparameter Evaluation Random Forest Accuracy: 0.9923328386777641

AUC Score: 0.9658026277014988 f1 Score: 0.9645502908566599

Precission Score: 0.9998969178435213 Recall Score: 0.9316173645793315

-----

Default Evaluation Random Forest Accuracy: 0.9931500957050993 AUC Score: 0.9703335681728903 f1 Score: 0.9685136671444812

Precission Score: 0.9977594459720949 Recall Score: 0.9409335382251248

-----

# Hyperparameter 80:20 balance dataset Decision Tree

# Hyperparameter 80:20 imbalance dataset Decision Tree



## Feature Importance Based on Best Model





# GOT QUESTIONS?

Reach out.



https://www.linkedin.com/in/muhammad-hudzaifah-nasrullah-709033205/



ujai757@gmail.com

