

讲者: 顾乃杰 教授、 黄章进 副教授

排队论

Chap. 13 Queueing Theory

13. 排队论

- 13.1 基本概念
- 13.2 到达间隔的分布和服务时间的分布
- 13.3 单服务台负指数分布排队系统的分析
- 13.4 多服务台负指数分布排队系统的分析
- · 13.5 一般服务时间 M/G/1 模型
- 13.6 经济分析—系统的最优化

下面讨论单服务台的排队系统,它的输人过程服从泊松分布过程,服务时间服从负指数分布。分三种情形讨论:

- 标准的M/M/1模型 (M/M/1/∞/∞/FCFS)
- · 系统的容量有限制的情形 (M/M/1/N/∞)
- 顾客源为有限的情形 (M/M/1/∞/m)

- 标准的M/M/1模型 (M/M/1/∞/∞/FCFS)
 - 标准的M/M/1模型是指适合下列条件的排队系统:
 - 1.输入过程——顾客源是无限的,顾客单个到来,相互独立,一定时间的到达数服从泊松分布,到达过程也是平稳的;
 - 2.排队规则——单队,且对队长没有限制,先到先服务;
 - 3.服务机构——单服务台,各顾客的服务时间是相互独立的,服从相同的负指数分步;
 - 4.假设到达间隔时间和服务时间是相互独立的。

- 分析M/M/1模型

- 首先要求出系统在任意时刻 t 的状态为 n (系统中有n个顾客) 的概率 P_n(t), 它决定了系统运行的特征。
- 已知到达规律服从参数为 λ 的泊松过程,服务时间服从参数为 μ 的负指数分步,所以在 $[t,t+\Delta t)$ 时间区间内分为以下几种:

(1)有1个顾客到达的概率为 $\lambda\Delta t + o(\Delta t)$;

没有顾客到达的概率就是 $1-\lambda \Delta t + o(\Delta t)$ 。

- (2)当有顾客在接受服务时,1个顾客被服务完了(离去)的概率是 $\mu\Delta t + o(\Delta t)$, 没有离去的概率就是 $1 \mu\Delta t + o(\Delta t)$ 。
- (3)多于一个顾客的到达或离去的概率是 $o(\Delta t)$,是可以忽略的。
- 在时刻t+Δt,系统中有n个顾客(n>0)存在下列四种情况(到达或离去是2个以 上的没有列入):

情况	在时刻t顾客数	在区间	(t,t+Δt)	在时刻 t+∆t 顾客数
		到达	离去	
(A)	n	×	×	n
(B)	n+1	×	0	n
(C)	n-1	0	×	n
(D)	n	0	0	n

〇表示发生(1个),×表示没有发生

四种情况的概率分别是: (略去o(Δt))

(A):
$$P_n(t)(1-\lambda\Delta t)(1-\mu\Delta t)$$

(B):
$$P_{n+1}(t)(1-\lambda\Delta t)\cdot\mu\Delta t$$

(C):
$$P_{n-1}(t) \cdot \lambda \Delta t (1 - \mu \Delta t)$$

(D):
$$P_n(t) \cdot \lambda \Delta t \cdot \mu \Delta t$$

• 由于这四种情况是互不相容的,所以:

$$\begin{split} P_{n}(t+\Delta t) &= P_{n}(t)(1-\lambda \Delta t - \mu \Delta t) + P_{n+1}(t)\mu \Delta t + P_{n-1}(t) \cdot \lambda \Delta t + o(\Delta t) \\ \Rightarrow \frac{P_{n}(t+\Delta t) - P_{n}(t)}{\Delta t} &= \lambda P_{n-1}(t) + \mu P_{n+1}(t) - (\lambda + \mu)P_{n}(t) + \frac{o(\Delta t)}{\Delta t} \end{split}$$

 $\phi \Delta t \rightarrow 0$, 得到关于 $P_n(t)$ 的微分差分方程:

$$\frac{dP_n(t)}{dt} = \lambda P_{n-1}(t) + \mu P_{n+1}(t) - (\lambda + \mu) P_n(t) \quad n = 1, 2, \cdots.$$
 (13.15)

当n=0时,表中只有(A)(B)两种情况,即: $P_0(t+\Delta t)=P_0(t)(1-\lambda \Delta t)+P_1(t)(1-\lambda \Delta t)\mu \Delta t$ 得到:

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t) + \mu P_1(t)$$
 (13.16)

- ■这样系统状态(n)随时间变换的过程是称为生灭过程的一个特殊情况。
- 因前面假设只针对稳态情况求解, $P_n(t)$ 与t无关,可写成 P_n ,它的导数为0。由上面的两个方程(13.15)(13.16)可得:

$$\begin{cases} -\lambda P_0 + \mu P_1 = 0 & (13.17) \\ \lambda P_{n-1} + \mu P_{n+1} - (\lambda + \mu) P_n = 0 & n \ge 1 & (13.18) \end{cases}$$

• 这是关于Pn的差分方程,表明了各状态间的转移关系,用下图表示:

- 由上图可见,状态0转移到状态1的转移率为 λP_0 ,状态1转移到状态0的转移率为 μP_1 。对状态0必须满足以下平衡方程: $\lambda P_0 = \mu P_1$
- 同样,对于任何n≥1的状态,可得到(13.18)的平衡方程。求解(13.17)得:

$$P_1 = (\lambda / \mu) P_0$$

• 将上式代入(13.18),令n=1,则: $\mu P_2 = (\lambda + \mu)(\lambda/\mu)P_0 - \lambda P_0 \Rightarrow P_2 = (\lambda/\mu)^2 P_0$

■同理依次推得:

$$P_n = (\lambda / \mu)^n P_0$$

• 设 $\rho = \frac{\lambda}{\mu} < 1$ (否则队列将排至无限远),又由概率性质知 $\sum_{n=0}^{\infty} P_n = 1$,

将
$$P_n$$
的关系代入: $P_0 \sum_{n=0}^{\infty} \rho^n = P_0 \frac{1}{1-\rho} = 1$

• 得:

$$P_0 = 1 - \rho$$

 $P_n = (1 - \rho)\rho^n$, $n \ge 1$ $\rho < 1$ (13.19)

即为系统状态为n的概率。

- 上式中的ρ具有实际意义:
 - 1) 当ρ=λ/μ表达时,是平均到达率与平均服务率之比,即在相同时区内顾客到达的平均数与被服务的平均数之比;
 - 2) 当 ρ =(1/ μ)/(1/ λ)表达时,是为一个顾客的服务时间与到达间隔时间之比,称为服务强度(traffic intensity),或话务强度;
 - 3) ρ=1-P₀,刻划了服务机构的繁忙程度,又称服务机构的利用率。

- 以 (**13.19**) 为基础算出系统的运行指标:

(1) 在系统中的平均顾客数L_s(队长期望值):

$$L_s = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n (1-\rho) \rho^n = \rho + \rho^2 + \rho^3 + L = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu - \lambda}, \quad \sharp \Phi 0 < \rho < 1$$

(2) 在队列中等待的平均顾客数La(队列长期望值):

$$L_{q} = \sum_{n=1}^{\infty} (n-1)P_{n} = \sum_{n=1}^{\infty} nP_{n} - \sum_{n=1}^{\infty} P_{n} = L_{s} - \rho = \frac{\rho^{2}}{1 - \rho} = \frac{\rho\lambda}{\mu - \lambda}$$

(3) 在系统中顾客逗留时间 W_s 和等待时间的期望值 W_q 与 L_s 、 L_q 有以下关系:

$$L_s = \lambda_{eff} W_s, \qquad L_q = \lambda_{eff} W_q$$

其中 $\lambda_{\rm eff}$ 为有效到达率,在本模型中,因为系统容量无限,顾客源无限,因此所有到达顾客都能进入系统,即 $\lambda_{\rm eff}=\lambda$,因此有:

$$W_s = E(W) = \frac{1}{\mu - \lambda}$$
, $W_q = W_s - \frac{1}{\mu} = \frac{\rho}{\mu - \lambda}$

可见顾客在系统中逗留的时间(随机变量), 在M/M/1情形下, 服从参数为 $\mu-\lambda$ 的负指数分布,即:

分布函数: $F(w) = 1 - e^{-(\mu - \lambda)w}, w \ge 0$

概率密度: $f(w) = (\mu - \lambda)e^{-(\mu - \lambda)w}$

- 将指标归纳如下:

$$(1) \quad L_s = \frac{\lambda}{\mu - \lambda}$$

$$(2) L_q = \frac{\rho\lambda}{\mu - \lambda}$$

(13.21)

(1)
$$L_s = \frac{\lambda}{\mu - \lambda}$$

(3) $W_s = \frac{1}{\mu - \lambda}$

(2)
$$L_q = \frac{\rho \lambda}{\mu - \lambda}$$

(4) $W_q = \frac{\rho}{\mu - \lambda}$

- 它们之间的相互关系式(Little公式):

$$(1) \quad L_s = \lambda W_s$$

$$(2) \quad L_q = \lambda W_q$$

$$(3) \quad W_s = W_q + \frac{1}{\mu}$$

$$(4) \quad L_s = L_q + \frac{\lambda}{u}$$

(13.22)

• 例3: 某医院手术室根据病人来诊和完成手术时间的记录,任意抽取100个工作小时和100个完成手术的病历,每小时来就诊的病人数n的出现次数和手术时间v(小时)出现的次数如下表:

到达的病人数n	出现次数f _n
0	10
1	28
2	29
3	16
4	10
5	6
6以上	1
合计	100

为病人完成手术时间 v(小时)	出现次数f _v
0.0~0.2	38
0.2~0.4	25
0.4~0.6	17
0.6~0.8	9
0.8~1.0	6
1.0~1.2	5
1.2 以上	0
合计	100

• 分析:

1. 每小时病人平均到达率 = $\frac{\sum nf_n}{100}$ = 2.1 (人/小时)

每次手术平均时间 =
$$\frac{\sum v f_v}{100}$$
 = 0.4 (小时/人)

每小时完成手术人数 (平均服务率) = $\frac{1}{0.4}$ = 2.5 (人/小时)

- 2. 取 $\lambda = 2.1$, $\mu = 2.5$, 可以通过统计检验方法(如 χ^2 检验法),认为病人到达服从参数为 2.1的泊松分布,手术时间服从参数为 2.5的负指数分布。
- 3. $\rho = \frac{\lambda}{\mu} = \frac{2.1}{2.5} = 84\%$

表明手术室有84%的时间是繁忙的,有16%的时间是空闲的。

4. 依次代入(13.21)算出各指标:

在病房中病人数(期望值) $L_s = 5.25$ (人)

排队等待病人数(期望值) $L_q = 4.41$ (人)

病人在病房中逗留时间(期望值) $W_s = 2.5$ (小时)

病人排队等待时间(期望值) $W_q = 2.1$ (小时)

- 系统的容量有限制的情形 (M/M/1/N/∞)
 - 标准的M/M/1/N/∞模型指以下模型:
 - 如果系统的最大容量为N,对于单服务台的情形,排队等待的顾客最多为N-1, 在某一时刻顾客到达时,如系统中已有N个顾客,那么这个顾客被拒绝进入系统。

• 只考虑稳态情形,各状态间概率强度的转换关系见下图:

状态概率的稳态方程为:

$$\begin{cases} \mu P_1 = \lambda P_0 \\ \mu P_{n+1} + \lambda P_{n-1} = (\lambda + \mu) P_n, & n \le N - 1 \\ \mu P_N = \lambda P_{N-1} \end{cases}$$

$$P_0 + P_1 + \dots + P_N = 1$$

$$(13.23)$$

• φ ρ=λ/μ, 得:

$$\begin{cases} P_0 = \frac{1 - \rho}{1 - \rho^{N+1}} & \rho \neq 1 \\ P_n = \frac{1 - \rho}{1 - \rho^{N+1}} \rho^n & n \leq N \end{cases}$$
 (13.24)

- 对容量没有限制的情形,曾经设 ρ <1,这不仅是实际问题的需要,也是无穷级数收敛所必需的。
- 在容量为有限数 N 的情形下,这个条件就没有必要了。(为什么?) 不过当 $\rho > 1$ 时,表示损失率的 P_N (或表示被拒绝排队的顾客平均数 λP_N) 将是很大的。

导出系统的各项指标:

• 队长(期望值):
$$L_s = \sum_{n=0}^{N} n P_n = \frac{\rho}{1-\rho} - \frac{(N+1)\rho^{N+1}}{1-\rho^{N+1}}, \quad \rho \neq 1$$

• 队列长(期望值):
$$L_q = \sum_{n=0}^{N} (n-1)P_n = L_s - (1-P_0)$$

平均到达率 λ 是系统中有空时的平均 到达率,系统已满 (n=N) 时,到达率为 0。因此有效到达率 $\lambda_{eff}=\lambda(1-P_N)$,可以验证 $1-P_0=\lambda_{eff}/\mu$ 。

• 顾客逗留时间(期望值):
$$W_s = \frac{L_s}{\mu(1-P_0)} = \frac{L_q}{\lambda(1-P_N)} + \frac{1}{\mu}$$

• 顾客等待时间(期望值):
$$W_q = W_s - \frac{1}{\mu}$$

- 将指标归纳如下(ρ≠1):

$$\begin{cases} L_{s} = \frac{\rho}{1 - \rho} - \frac{(N+1)\rho^{N+1}}{1 - \rho^{N+1}} & (1) \\ L_{q} = L_{s} - (1 - P_{0}) & (2) \\ W_{s} = \frac{L_{s}}{\mu(1 - P_{0})} & (3) \\ W_{q} = W_{s} - 1/\mu & (4) \end{cases}$$

- 例4:单人理发馆有六个椅子接待人们排队等待。顾客平均到达率为 3人/小时,理发需时平均15分钟。
- 分析:
 - 1. N=7为系统中顾客最大数, λ =3人/小时, μ =4人/小时。
 - 2. 某顾客一到达就能理发的概率,即理发馆内没有顾客: P_0 =0.2778。

$$P_0 = \frac{1 - 3/4}{1 - (3/4)^8} = 0.2778$$

3.需要等待的顾客数的期望值:
$$L_s = \frac{3/4}{1-3/4} - \frac{8(3/4)^8}{1-(3/4)^8} = 2.11$$
 $L_q = L_s - (1-P_0) = 2.11 - (1-0.2778) = 1.39$

- 4.有效到达率: $\lambda_{e} = \mu(1-P_{0}) = 4(1-0.2778) = 2.89$ 人/小时
- 5.求一顾客在理发馆内逗留的期望时间:

$$W_s = L_s / \lambda_e = 2.11 / 2.89 = 0.73$$
小时 = 43.8分钟

• 6.在可能到来的顾客中有百分之几不等待就离开,即系统中有7个顾客的概率

$$P_7 = \left(\frac{\lambda}{\mu}\right)^7 \left(\frac{1 - \lambda/\mu}{1 - (\lambda/\mu)^8}\right) \approx 3.7\%$$

比较理发馆队长为无限和有限的两种结果:

λ=3人/小时 μ=4人/小时	L _s	Lq	W _s	W _q	P ₀	可能到来的顾客中 有百分之几离开
有限队长N=7	2.11	1.39	0.73	0.48	0.278	3.7%
无限队长	3	2.25	1.0	0.75	0.25	0

- · 顾客源为有限的情形 (M/M/1/∞/m)
 - 以最常见的机器因故障停机待修的问题来说明。 设共有 m 台机器(顾客总体),机器因故障停机表示"到达",待修的机器形成队列,修理工人是服务员,只讨论单服务员的情形。类似的例子还有 m 个打字员共用一台打字机, m个会计分析员同用一个计算机终端等等。
 - 顾客总体虽然只有m个,但每个顾客到来并经过服务后仍回到原来总体,所以仍然可以到来。虽然该模型中对系统容量没有限制,但实际上它永远不会超过m,所以和写成(M/M/1/m/m)的意义相同。

平均到达率

在无限源的情形按全体顾客来考虑,在有限源的情形下必须按每个顾客来考虑。
 设单个顾客的到达率都是相同的λ,系统的有效到达率为:

$$\lambda_{eff} = \lambda(m - L_s)$$

• 模型的状态转移关系:

• 各状态间的转移差分方程:

$$\begin{cases} \mu P_1 = m \lambda P_0 \\ \mu P_{n+1} + (m-n+1)\lambda P_{n-1} = [(m-n)\lambda + \mu]P_n, 1 \le n \le m-1 \\ \mu P_m = \lambda P_{m-1} \end{cases}$$

$$\sum_{i=0}^{m} P_i = 1$$

解上述方程得:

$$P_{0} = \frac{1}{\sum_{i=0}^{m} \frac{m!}{(m-i)!} (\frac{\lambda}{\mu})^{i}}$$

$$P_{n} = \frac{m!}{(m-n)!} (\frac{\lambda}{\mu})^{n} P_{0} \quad (1 \le n \le m)$$
(13.27)

• 系统的各项指标为:

(1)
$$L_{s} = m - \frac{\mu}{\lambda} (1 - P_{0})$$

(2) $L_{q} = m - \frac{(\lambda + \mu)(1 - P_{0})}{\lambda} = L_{s} - (1 - P_{0})$
(3) $W_{s} = \frac{m}{\mu(1 - P_{0})} - \frac{1}{\lambda}$
(4) $W_{q} = W_{s} - 1/\mu$

- 该模型的物理含义:

• 该模型可以用于表示m台机器中因故障而停机等待维修的问题,也可以用于表示m个打字员使用1台打印机等待打印服务的问题。在机器故障问题中 L_s 就是平均故障台数, $m-L_s=(\lambda/\mu)(1-P_0)$ 表示正常运转的台数。

例5: 车间有5台机器,每台机器的连续运转时间服从负指数分布,平均连续运转时间 15分钟,有一个修理工,每次修理时间服从负指数分布,平均每次12分钟。

- 分析: m = 5, $\lambda = 1/15$, $\mu = 1/12$, $\lambda/\mu = 0.8$ (1)修理工空闲概率:

$$P_0 = \left[\frac{5!}{5!} (0.8)^0 + \frac{5!}{4!} (0.8)^1 + \frac{5!}{3!} (0.8)^2 + \frac{5!}{2!} (0.8)^3 + \frac{5!}{1!} (0.8)^4 + \frac{5!}{0!} (0.8)^5 \right]^{-1} = 0.0073$$

(2)五台机器都出故障的概率: $P_5 = \frac{5!}{0!} (0.8)^5 P_0 = 0.287$

(3)出故障的平均台数: $L_s = 5 - \frac{1}{0.8}(1 - 0.0073) = 3.76$ (台)

(4)等待修理的平均台数: $L_q = 3.76 - 0.993 = 2.77$ (台)

(5)平均停工时间: $W_s = \frac{5}{\frac{1}{12}(1-0.0073)} -15 = 46 \, (分钟)$

(6)平均等待修理时间: $W_q = 46 - 12 = 34$ (分钟)

• 机器平均停工时间为46分钟,过长,修理工几乎没有空闲时间,应当提高服务率减少修理时间或增加修理工人。

Computer Science and Technology

考虑单队、并列多服务台的情形, 分三种情况讨论:

- (1) 标准的M/M/c模型 (M/M/c/∞/∞)
- (2) 系统的容量有限制的情形 (M/M/c/N/∞)
- (3) 顾客源为有限的情形 $(M/M/c/\infty/m)$

- 标准的M/M/c模型 (M/M/c/∞/∞)
 - 标准的M/M/c模型各种特征的规定与标准的M/M/1模型相同。另外规定各服务台是相互独立(不搞协作)且平均服务率相同,即:

$$\mu_1 = \mu_2 = \dots = \mu_c = \mu$$

当n < c时: $n\mu$

• $\phi \rho = \lambda/(c\mu)$,只有 $\rho < 1$ 时才不会形成无限的队列,称之为这个系统的服务强度或称服务机构的平均利用率。

- 状态间的转移关系为:

- 状态转移方程为:

$$\begin{cases} \mu P_{1} = \lambda P_{0} \\ (n+1)\mu P_{n+1} + \lambda P_{n-1} = (\lambda + n\mu)P_{n}, 1 \le n < c \\ c\mu P_{n+1} + \lambda P_{n-1} = (\lambda + c\mu)P_{n}, \quad n \ge c \end{cases}$$

$$\sum_{i=0}^{\infty} P_i = 1, \quad \mathbb{H} \rho \leq 1$$

- 解方程得:

$$P_{0} = \left[\sum_{k=0}^{c-1} \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k} + \frac{1}{c!} \cdot \frac{1}{1-\rho} \cdot \left(\frac{\lambda}{\mu}\right)^{c}\right]^{-1}$$

$$P_{n} = \left\{\frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} \quad (n \le c)$$

$$\frac{1}{c! c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} \quad (n > c)$$

$$(13.29)$$

- 系统的各项运行指标为:

• 平均队长:

$$\begin{cases} L_{s} = L_{q} + \frac{\lambda}{\mu} \\ L_{q} = \sum_{n=c+1}^{\infty} (n-c)P_{n} = \frac{(c\rho)^{c} \rho}{c!(1-\rho)^{2}} P_{0} \end{cases}$$
 (13.30)

这是因为:

$$\sum_{n=c+1}^{\infty} (n-c)P_n = \sum_{n'}^{\infty} n' P_{n'+c} = \sum_{n'}^{\infty} \frac{n'}{c! c^{n'}} (c\rho)^{n'+c} P_0 = \frac{(c\rho)^c \rho}{c! (1-\rho)^2} P_0$$

平均等待和逗留时间:

$$W_q = \frac{L_q}{\lambda}, \qquad W_s = \frac{L_s}{\lambda}$$

- 例6: 某售票所有三个窗口,顾客的到达服从普阿松分布,平均到达率每分钟 λ=0.9(人),服务(售票)时间服从负指数分布,平均服务率每分钟 μ=0.4(人)。现设顾客到达后排成一队,依次向空闲窗口购票(如图)。

- 分析:

$$c = 3$$
, $\frac{\lambda}{\mu} = 2.25$, $\rho = \frac{\lambda}{c\mu} = \frac{2.25}{3} < 1$

符合M/M/c模型要求的条件。

整个售票处空闲概率:

$$P_0 = \left[\frac{(2.25)^0}{0!} + \frac{(2.25)^1}{1!} + \frac{(2.25)^2}{2!} + \frac{(2.25)^3}{3!} \cdot \frac{1}{1 - 2.25/3} \right]^{-1} = 0.0748$$

• 平均队长:

$$L_q = \frac{(2.25)^3 \cdot 3/4}{3!(1/4)^2} \times 0.0748 = 1.70,$$
 $L_s = L_q + \frac{\lambda}{\mu} = 3.95$

• 平均等待和逗留时间:

$$W_q = 1.70/0.9 = 1.89$$
分钟, $W_s = 1.89 + 1/0.4 = 4.39$ 分钟

• 顾客到这后必须等待的概率(即: 顾客已有三人,服务台无空闲):

$$P(n \ge 3) = \frac{(2.25)^3}{3!(1/4)} \times 0.0748 = 0.57$$

M/M/c型系统和c个M/M/1型系统的比较

- 还以上例为例,上例可转化为右图形式:
 - 除排队方式外其它条件不变;
 - 顾客到达后在每个窗口前各排一队,共3队;
 - 顾客排队过程中不可改换队伍;

- 按3个M/M/1型系统计算,并与上例结果对比:

指标模型	M/M/3	M/M/1
服务台空闲的概率P ₀	0.0748	0.25 (每个子系统)
顾客必须等待的概率	P(n≥3)=0.57	0.75
平均队列长L _q	1.70	2.25 (每个子系统)
平均队长Ls	3.95	9.00 (整个系统)
平均逗留时间 W_q	4.39	10
平均等待时间W _s	1.89	7.5

- 从表中各指标的对比可以看出单队比三队有明显的优越性。

一由于计算 P_0 和各项指标的公式 (13-29)、(13-30)比较复杂,因此设计了专门的数值表供查找使用。在各式中 P_0 和 L_0 都是由 c 和 ρ 完全确定的,于是 $W_q \cdot \mu$ 也由 c 和 ρ 完全确定。表13-13给出了多服务台 $W_q \cdot \mu$ 的数值表。

) /ou	服务台数						
λ/сμ	c=1	c=2	c=3	c=4	c=5		
0.1	0.1111	0.0101	0.0014	0.0002	小于0.00005		
0.2	0.2500	0.0417	0.0103	0.0030	0.0010		
0.3	0.4286	0.0989	0.0333	0.0132	0.0058		
0.4	0.6667	0.1905	0.0784	0.0378	0.0199		
0.5	1.0000	0.3333	0.1579	0.0870	0.0521		
0.6	1.5000	0.5625	0.2956	0.1794	0.1181		
0.7	2.3333	0.9608	0.5470	0.3572	0.2519		
8.0	4.0000	1.7778	1.0787	0.7455	0.5541		
0.9	9.0000	4.2632	2.7235	1.9694	1.5250		
0.95	19.0000	9.2564	6.0467	4.4571	3.5112		

- 上例中,已知 c=3, $\rho=0.75$,查表无此数,用线性插值法得:

$$W_q \cdot \mu = \frac{(1.0787 + 0.5470)}{2} = 0.8129$$

- 因
$$\mu$$
=0.4, 所以: $W_q = 0.8129 / \mu = 2.03$ $W_s = W_q + 1 / \mu = 2.03 + 1 / 0.4 = 4.53$

$$L_q = W_q \cdot \lambda = 2.03 \cdot 0.9 = 1.827$$

$$L_s = L_q + \lambda / \mu == 1.827 + 2.25 = 4.077$$

- 结果与前面的计算略有差异,是由于使用线性插值法引起的。书上有关 L_q , L_s 的计算有误。

系统的容量有限制的情形 (M/M/c/N/∞)

- 当系统中顾客数n已达到N时,再来的顾客被拒绝,其他条件与标准的M/M/c型相同。
 - 系统的状态概率和运行指标,其中 $\rho=\lambda/(c\mu)$, 但不对 ρ 加以限制:

$$P_{0} = \frac{1}{\sum_{k=0}^{c} \frac{(c\rho)^{k}}{k!} + \frac{c^{c}}{c!} \cdot \frac{\rho(\rho^{c} - \rho^{N})}{1 - \rho}} \qquad \rho \neq 1$$

$$P_{n} = \left\{ \frac{(c\rho)^{n}}{n!} P_{0} \quad (0 \leq n \leq c) \right\} \qquad (13.31)$$

$$\frac{c^{c}}{c!} \rho^{n} P_{0} \quad (c \leq n \leq N)$$

$$L_{q} = \frac{P_{0}\rho(c\rho)^{c}}{c!(1-\rho)^{2}} [1-\rho^{N-c}-(N-c)\rho^{N-c}(1-\rho)]$$

$$L_{s} = L_{q} + c\rho(1-P_{N})$$

$$W_{q} = \frac{L_{q}}{\lambda(1-P_{N})}$$

$$W_{s} = W_{q} + \frac{1}{\mu}$$
(13.32)

当C=N (即时制)的情形 (例如街头的停车场不允许排队等待空位):

$$P_{0} = \frac{1}{\sum_{k=0}^{c} \frac{(c\rho)^{k}}{k!}}$$

$$P_{n} = \frac{(c\rho)^{n}}{n!} P_{0}, \quad 0 \le n \le c$$
(13.33)

- 当n=c时即关于Pc的公式,被称为爱尔朗呼唤公式,是A.K.Erlang在1917年发现的,广泛应用于电话系统的设计中。
- 此时运行指标如下:

$$L_{q} = 0, \quad W_{q} = 0, \quad W_{s} = \frac{1}{\mu}$$

$$L_{s} = \sum_{n=1}^{c} n P_{n} = \frac{c \rho \sum_{n=0}^{c-1} \frac{(c \rho)^{n-1}}{n!}}{\sum_{n=0}^{c} \frac{(c \rho)^{n}}{n!}} = c \rho (1 - P_{c})$$
(13.34)

例7: 某旅馆顾客到达数为泊松流,每天平均到 $\Lambda=6$ 人,顾客平均逗留时间 $1/\mu=2$ 天,试就该旅馆在具有 c=1、2、3、……、8个房间的前提下分别计算每天客房平均占用数 L_s 及满员概率 P_c 。

- 分析: 在客房满员条件下, 旅客不能排队等待。

$$\lambda = 6$$
, $1/\mu = 2$, $c\rho = \lambda/\mu = 12$

- 计算步骤如下:

(1) <i>n</i>	$(2)(c\rho)^n=12^n$	(3)n!	$(4)(c\rho)^n/n!$	$(5)\sum_{n=0}^{c}\frac{(c\rho)^n}{n!}$	(6) P _c	$(7)\sum_{n=0}^{c-1} \left/ \sum_{n=0}^{c} \right.$	(8) L_s
0	1	1	1	1	1	-	-
1	1.2×10	1	12	13	0.92	0.08	0.92
2	1.44×10 ²	2	72	85	0.85	0.15	1.83
3	1.73×10 ³	6	288	373	0.77	0.23	2.74
4	2.07×10 ⁴	24	864	1.24×10³	0.70	0.30	3.62
5	2.49×10⁵	120	2.07×10 ³	3.31×10³	0.63	0.37	4.48
6	2.99×10 ⁶	720	4.15×10 ³	7.46×10 ³	0.56	0.44	5.33
7	3.58×10 ⁷	5.04×10 ³	7.11×10 ³	1.45×10 ⁴	0.49	0.51	6.14
8	4.30×10 ⁸	4.03×10 ⁴	1.07×10 ⁴	2.52×10⁵	0.42	0.58	6.93

Computer Science and Technology

- · 顾客源为有限的情形 (M/M/c/∞/m)
 - 顾客总体为有限数 m, 且 m>c, 和单服务台情形一样,顾客到达率 λ 是按每个顾客来考虑的。
 - 在机器管理问题中,就是共有 m 台机器, c 个修理工人,每个顾客的到达率 λ 是指每台机器每单位运转时间出故障的期望次数。
 - 系统中顾客数 n 就是出故障的机器台数,当 n≤c 时,所有的故障机器都在修理,有 c-n 个修理工人在空闲;当 c<n≤m时,有 n-c 台机器在停机等待修理,修理工人都处在繁忙状态。
 - 假定这 C 个工人修理技术相同,服务时间都服从参数为 µ 的负指数分布。

$$P_{0} = \frac{1}{m!} \cdot \frac{1}{\sum_{k=0}^{c} \frac{1}{k!(m-k)!} \left(\frac{c\rho}{m}\right)^{k} + \frac{c^{c}}{c!} \sum_{k=c+1}^{m} \frac{1}{(m-k)!} \left(\frac{\rho}{m}\right)^{k}}$$

$$P_{n} = \begin{cases} \frac{m!}{(m-n)!n!} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} & (0 \le n \le c) \\ \frac{m!}{(m-n)!c!c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} & (c+1 \le n \le m) \end{cases}$$

$$\sharp \, \dot{\uparrow}, \quad \rho = \frac{m\lambda}{c\mu}$$

平均顾客数 (即平均故障台数)

$$L_s = \sum_{n=1}^m nP_n$$
, $L_q = \sum_{n=c+1}^m (n-c)P_n$

有效的到达率 Λ_e 等于每个顾客的到达率 Λ 乘以在系统外(即正常生产的)机器的期望数:

$$\lambda_{eff} = \lambda (m - L_s)$$

在机器故障问题中,它是每单位时间m台机器平均出现故障的次数。

- 各项指标之间的关系:

$$L_{s} = L_{q} + \frac{\lambda_{e}}{\mu} = L_{q} + \frac{\lambda}{\mu} (m - L_{s})$$

$$W_{s} = L_{s} / \lambda_{e}$$

$$W_{q} = L_{q} / \lambda_{e}$$

$$(13.36)$$

- 例8:设有两个修理工人,负责5台机器的正常运行,每台机器平均损坏率 为每运转1小时1次,两工人能以相同的平均修复率4(次/小时)修好机器。

$$m=5$$
, $\lambda=1$ (次/小时), $\mu=4$ (台/小时), $c=2$, $c\rho/m=\lambda/\mu=1/4$

$$P_0 = \frac{1}{5!} \left[\frac{1}{5!} \left(\frac{1}{4} \right)^0 + \frac{1}{4!} \left(\frac{1}{4} \right)^1 + \frac{1}{2!3!} \left(\frac{1}{4} \right)^2 + \frac{2^2}{2!} \frac{1}{2!} \left(\frac{1}{8} \right)^3 + \left(\frac{1}{8} \right)^4 + \left(\frac{1}{8} \right)^5 \right]^{-1} = 0.3149$$

$$P_1 = 0.394$$
, $P_2 = 0.197$, $P_3 = 0.074$, $P_4 = 0.018$, $P_5 = 0.002$

- 等待修理的机器平均数:
$$L_q = P_3 + 2P_4 + 3P_5 = 0.118$$

- 需要修理的机器平均数:
$$L_s = \sum_{n=1}^m nP_n = L_q + c - 2P_0 - P_1 = 1.094$$

- 有效损坏率:
$$\lambda_{eff} = 1 \times (5 - 1.094) = 3.906$$

- 等待修理时间:
$$W_a = 0.118 / 3.906 = 0.03$$
 小时

- **停工时间:**
$$W_s = 1.094 / 3.906 = 0.28$$
 小时