CAL POLY SLO HYPERLOOP PROPULSION CDR

KENT ROBERTS

PROPELLANT SELECTION

Gas	Molecular Weight	Specific Impulse (sec)	
Air	28.9	74	2138.6
Argon	39.9	57	2274.3
CO2	44	67	2948
Helium	4	179	716
Hydrogen	2	296	592
Nitrogen	28	80	2240
Methane	16	114	1824

[•] AIR IS WIDELY AVAILABLE FOR A TEST CAMPAIGN, PERFORMANCE RUNS WHERE T<0 $^\circ$ C, USE NITROGEN

ROCKET EQUATION

$$\Delta v = I_{sp}g_0 ln \frac{m_0}{m_f}$$

 $M_F = INERT POD MASS (NON-TANK POD MASS + TANK MASS + RESIDUAL PROPELLANT)$ $M_\Pi = WET POD MASS (M_F + PROPELLANT MASS)$

$$m_0 = m_f + \Delta m$$

$$\Delta m = V(\rho_1 - \rho_2)$$

ISENTROPIC PROCESSES AND TANK DISCHARGE LIMITATIONS

$$rac{T_2}{T_1} \hspace{0.5cm} = \hspace{0.5cm} \left(rac{P_2}{P_1}
ight)^{rac{\gamma-1}{\gamma}} \hspace{0.5cm} = \hspace{0.5cm} \left(rac{
ho_2}{
ho_1}
ight)^{(\gamma-1)}$$

$$\rho_2 = \rho_1 max \left[\left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}, \left(\frac{P_2}{P_1} \right)^{\frac{1}{\gamma}} \right]$$

 $T_2 = Lower$ Temperature Limit of the Tank & Valve hardware $P_2 = Lower \ Pressure \ Limit \ (function \ of \ P_{nozzle_Inlet} \ and \ Flow \ Coefficient \ of \ Hardware \ C_{_{V}})$

*Most systems with $T_2\sim$ -40F and $P_2\sim$ 500psi are Temperature limited

ROCKET EQ. & ISENTROPIC PROCESS

$$\Delta v = I_{sp}g_0 \ln \left(1 + \frac{V\rho_1 \left(1 - max \left[\left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}, \left(\frac{P_2}{P_1} \right)^{\frac{1}{\gamma}} \right] \right)}{m_f} \right)$$

USE THE IDEAL GAS LAW TO FIND ρ_1

$$\rho_1 = \frac{P_1(MM)}{RT_1}$$

$$\Delta v = I_{sp}g_0 \ln \left(1 + \frac{V \frac{P_1(MM)}{RT_1} \left(1 - max \left[\left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}, \left(\frac{P_2}{P_1} \right)^{\frac{1}{\gamma}} \right] \right)}{m_f} \right)$$

AV AS A FUNCTION OF POD INERT

$$m_f = m_{InertPod} + m_{Tank} + m_{ResidualProp}$$

$$m_{ResidualProp} = \rho_2 V$$

$$\Delta v = I_{sp}g_0 \ln \left(1 + \frac{V\frac{P_1(MM)}{RT_1} \left(1 - max\left[\left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma-1}}, \left(\frac{P_2}{P_1}\right)^{\frac{1}{\gamma}}\right]\right)}{m_{InertPod} + m_{Tank} + V\frac{P_1(MM)}{RT_1} max\left[\left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma-1}}, \left(\frac{P_2}{P_1}\right)^{\frac{1}{\gamma}}\right]\right)}\right)$$

$$\Delta v = I_{sp}g_0 \ln \left(1 + \frac{V(\rho_1 - \rho_2)}{m_{InertPod} + m_{Tank} + V\rho_2} \right)$$

$$m_{lnertPod} = V \frac{P_1(MM)}{RT_1} \left(1 - max \left[\left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}, \left(\frac{P_2}{P_1} \right)^{\frac{1}{\gamma}} \right] \right) \left(e^{\frac{\Delta v}{I_{sp}g_0}} - 1 \right)^{-1} - m_{tank} - V \frac{P_1(MM)}{RT_1} \left(max \left[\left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}, \left(\frac{P_2}{P_1} \right)^{\frac{1}{\gamma}} \right] \right) \left(e^{\frac{\Delta v}{I_{sp}g_0}} - 1 \right)^{-1} \right)$$

$$m_{\mathit{InertPod}} = \left(e^{\frac{\Delta v}{I_{\mathit{Sp}}g_0}} - 1\right)^{-1} V(\rho_1 - \rho_2) - m_{\mathit{tank}} - V\rho_2$$

POD INERT MASS V. TANK SYSTEM $\Delta V = 500$ km/hr

ΔV V. TANK SYSTEM $M_{INERTPOD} = 322[LB]$

TANK DIMENSIONS

- GENERALLY, TANK SYSTEMS WERE ONLY CONSIDERED IF THEY WERE WITHIN REASONABLE DIMENSIONS
- FOR A MORE DETAILED BREAKDOWN, REFERENCE THE GOOGLE SHEET DOCUMENT.
- AN INITIAL DESIGN IS FURTHER PRESENTED WITH THE 2X10070504-2 CONFIGURATION AND A 2 X SH 90 ALTERNATIVE (FORMER SOURCED FROM GENERAL DYNAMICS, LATER FROM STEELHEAD COMPOSITES)
 - 10070504-2 [15.2INØ X 42.3IN]
 - SH 90 [17.1INØ X 39IN]

MASS FLOW RATE

ASSUME A CONSTANT FLOW RATE

$$\dot{m} = \frac{\Delta m}{t_{MECO}}$$

$$m(t) = m_0 - \dot{m}t$$

$$a(t) = \frac{F}{m(t)} = \frac{I_{sp}g_0\Delta m}{t_{MECO}m(t)}$$

$$v(t) = -I_{sp}g_0 \ln \left[m(t)\right] + I_{sp}g_0 \ln (m_0)$$

$$x(t) = I_{sp}g_0 \frac{t_{MECO}}{\Delta m} [m(t) \ln[m(t)] - m(t)] + I_{sp}g_0 \ln(m_0)t - \frac{I_{sp}g_0 t_{MECO}}{\Delta m} [m_0 \ln(m_0) - m_0]$$

$$t_{MECO} = x_{ThrustLen} \left[I_{sp} g_0 \left(\frac{1}{\Delta m} \left(m_f \ln(m_f) - \left(m_f - \Delta m \right) \ln(m_f - \Delta m) - \Delta m \right) + \ln(m_f - \Delta m) \right) \right]^{-1}$$

3 X10070504-2 + 1 X 220074

PERFORMANCE

322 LB INERT POD MASS, 600M THRUSTING LENGTH, 493 KM/HR MAX V

$$V_{\text{max}} = 493 \text{ km/hr}$$

$$L_{thrust} = 600 m$$

$$m_{inert} = 322 lb$$

$$t_{MECO} = 9.03 sec$$

$$\dot{m} = 6.59 \text{ kg/sec}$$

$$m_{0_loaded_pod} = 751 lb$$

Velocity v. X, 3 X 10070504-2 + 1 X 220074 tank system, 322lb inert mass

COAST/BRAKING =>

 $F_{thrust} = 4721 \text{ N}$ $a_{\text{max}} = 1.7g$ $m_{0_loaded_tanks} = 430 \text{ lb}$

THE INERT MASS (EVERYTHING EXCEPT FOR THE TANKS AND PROPELLENT) IS PROBABLY SIGNIFICANTLY MORE THAN THE 322LB ASSUMPTION, GIVE A 430LB LOADED TANK SYSTEM...

3 X10070504-2 + 1 X 220074 PERFORMANCE

2 X10070504-2 PERFORMANCE

322 LB INERT POD MASS, 500M THRUSTING LENGTH, 377 KM/HR MAX V

$$V_{max} = 377 \text{ km/hr}$$

$$L_{thrust} = 500 m$$

$$m_{inert} = 322 lb$$

$$t_{MECO} = 9.7 sec$$

$$\dot{m} = 3.56 \text{ kg/sec}$$

$$F_{thrust} = 2550 \text{ N}$$

$$a_{\text{max}} = 1.18g$$

$$m_{0_loaded_tanks} = 241 \ lb$$

$$m_{0_loaded_pod} = 563 lb$$

COAST/BRAKING =>

$$p_{Nozzle_inlet} = 466psi$$

THE INERT MASS (EVERYTHING EXCEPT FOR THE TANKS AND PROPELLENT) IS PROBABLY SIGNIFICANTLY MORE THAN THE 322LB ASSUMPTION GIVE A 430LB LOADED TANK SYSTEM...

2 X10070504-2 PERFORMANCE

Nozzle Design

CONFIGURATION OPTIONS:

STRAIGHT DUMP

- PHASE THROUGH
 UNDER/OVER
 EXPANDED
- No pressure regulation
- DYNAMICS?

<u>AEROSPIKE</u>

- VARIABLE EXPANSION
- No pressure
 regulator
- THERMAL
- MANUFACTURING
- COOL FACTOR

REGULATED

- OPTIMAL EXPANSION
- REQUIRES
 PRESSURE
 REGULATION
- ADDITIONAL SET
 OF NOZZLES FOR
 TESTING

DUAL-BELL

- ONE NOZZLE
 WITH OPTIMAL
 EXPANSION FOR
 THE TUBE &
 1 ATM TESTING
- REQUIRES
 PRESSURE
 REGULATION

Nozzle Design

$$\dot{m}_{FlowCoefficient} > \dot{m}_{Nozzle} > \dot{m}_{Physics}$$

THE NOZZLE MASS FLOW RATE MUST BE ABOVE THE PHYSICS REQUIREMENT (TO ACCELERATE WITHIN THE THRUST LENGTH) AND WITHIN THE LIMITS OF THE FLOW HARDWARE

AVOID THE POSSIBILITY OF SUPERSONIC FLOW IN THE HARDWARE

$$\dot{m}_{FlowCoefficient} = C_v \sqrt{\rho \rho_{water} \Delta p}$$

$$\dot{m}_{Nozzle} = A_t p_1 k \frac{\sqrt{\left[\frac{2}{k+1}\right]^{(k+1)/(k-1)}}}{\sqrt{kRT_1}}$$

Nozzle Design

MINIMUM ORIFICE

$$d_{O-min} = 2 \left(\frac{1}{\pi} \frac{\dot{m}}{p_1 k} \frac{\sqrt{kRT_1}}{\sqrt{\left[\frac{2}{k+1}\right]^{(k+1)/(k-1)}}} \right)^{\frac{1}{2}}$$

2 X 10070504-2 SYSTEM (322LB):

$$d_{O-min} = 0.304[in]$$

This is for a combination of extrema of P_1 and T_1 , a condition which is not predicted. (A more refined approach will be implemented later)

