

IN THE CLAIMS

What is claimed is:

1 1. A semiconductor device, comprising:
2 a semiconductor substrate;
3 an isolation film buried in the substrate;
4 a gate insulating film formed between the isolation film and having
5 end portions adjacent to the isolation film that are thicker than a central
6 portion.
6
2. The semiconductor device according to claim 1, further including:
3 a trench in the semiconductor substrate between adjacent gate
4 insulating films and having a width essentially the same as the distance
5 between the adjacent insulating films; and
6 the isolation film is buried in the trench.
1 3. The semiconductor device according to claim 1, further including:
2 a first electrode formed on the gate insulating film;
3 a capacitance insulating film formed on the first electrode; and
4 a second electrode formed on the capacitance insulating film.
1 4. The semiconductor device according to claim 1, wherein:

2 an upper surface of the isolation film is at substantially the same height
3 as an upper surface of the end portion of the gate insulating film.

1 5. The semiconductor device according to claim 1, wherein:

2 an upper surface of the isolation film is higher than an upper surface of
3 the end portion of the gate insulating film.

1 6. The semiconductor device according to claim 1, further including:

2 a first electrode formed on the gate insulating film and having a
3 recessed portion at a central first electrode portion between the isolation film.

1 7. The semiconductor device according to claim 1, wherein:

2 the semiconductor device is a flash memory.

1 8. A manufacturing method of a semiconductor device, comprising the steps of:

2 forming a first oxide film on a surface of a semiconductor substrate;

3 depositing a stacked film including a first conductive layer in contact
4 with the first oxide film;

5 etching the stacked film and the first oxide film to form a plurality of
6 stacked film patterns arranged on the semiconductor substrate;

7 oxidizing the semiconductor substrate to form a second oxide film on a
8 surface of the semiconductor substrate sandwiched between adjacent stacked
9 film patterns and a surface of the semiconductor substrate below end portions

of the stacked film patterns wherein the second oxide film has a film thickness thicker than the first oxide film:

forming a side wall mask film on a side of the stacked film patterns to form mask patterns including the stacked film patterns;

removing the portion of the second oxide film sandwiched between the mask patterns and a portion of the underlying semiconductor substrate using the mask patterns as a mask to form a trench in the semiconductor substrate; and

filling the trench with an insulating film.

9. The manufacturing method of a semiconductor device according to claim 8, wherein:

the step of filling the trench with an insulating film includes forming the insulating film to have a top surface having a height that essentially matches with a height of the second oxide film.

10. The manufacturing method of a semiconductor device according to claim 8, further including the steps of:

forming a capacitance insulating film on the surface including the first conductive layer after the step of filling the trench with an insulating film; and forming an electrode on the capacitance insulating film.

1 11. The manufacturing method of a semiconductor device according to claim 8, wherein:
2 the side wall mask film includes a nitride film.

1 12. The manufacturing method of a semiconductor device according to claim 8, wherein:
2 the second oxide film is approximately 20 to 50 nm thicker than the first oxide
3 film.

1 13. The manufacturing method of a semiconductor device according to claim 8, wherein:
2 the stacked film includes a stopper film that provides a stopper for a
3 chemical mechanical polishing step.

1 14. A manufacturing method of a semiconductor device, comprising the steps of:
2 forming a first oxide film on a surface of a semiconductor substrate;
3 depositing a stacked film including a first stopper layer on the first
4 oxide film;
5 etching the stacked film and the first oxide film to form a plurality of
6 stacked film patterns arranged on the semiconductor substrate;
7 oxidizing the semiconductor substrate to form a second oxide film on a
8 surface of the semiconductor substrate sandwiched between adjacent stacked
9 film patterns and a surface of the semiconductor substrate below end portions
10 of the stacked film patterns wherein the second oxide film has a film thickness
11 thicker than the first oxide film;
12 removing the portion of the second oxide film sandwiched between the
13 mask patterns and a portion of the underlying semiconductor substrate using
14 the stacked film patterns as a mask to form a trench in the semiconductor

15 substrate; and
16 filling the trench with an insulating film.

1 15. The manufacturing method of a semiconductor device according to claim 14,
2 wherein:

3 the step of filling the trench with an insulating film includes forming
4 the insulating film to have a top surface having a height that essentially
5 matches with a height of the first stopper layer.

1 16. The manufacturing method of a semiconductor device according to claim 14, further
2 including the steps of:

3 removing the stacked film patterns so that at least the second oxide
4 film below the stacked film patterns remain;
5 forming a gate oxide film in a region between the second oxide film;
6 forming a first electrode over the gate oxide film and at least a portion
7 of the second oxide film.

1 17. The manufacturing method of a semiconductor device according to claim 16,
2 wherein:

3 the first electrode includes end portions next to the insulating film that
4 are higher than a central portion of the first electrode.

1 18. The manufacturing method of a semiconductor device according to claim 16,

2 wherein:

3 the insulating film has a top surface that substantially matches with a
4 top surface of the first electrode.

1 19. The manufacturing method of a semiconductor device according to claim 16, further
2 including the steps of:

3 forming a capacitance insulating film on the first electrode; and
4 forming a second electrode on the capacitance insulating film.

1 20. The manufacturing method of a semiconductor device according to claim 16,
2 wherein:

3 the first electrode includes polysilicon.

10032764.102204