Quick recap: Game Theory

- · Analytical approach for predicting reasonable outcome
- · Building blocks: players, strategies, utilities
- · Difference between action and strategy
- · Key assumptions: nationality and intelligence

Example to illustrate: Game of Chess (von Neumann and Mongenstern, 1944)

Formal description

- · Two player game: White and Black 16 pieces each.
- · Every piece has some legal moves ACTIONS
- · Starts with W, players take turns
 - O Ends: W win, if W captures B king B win, if B captures W king

Draw, if nobody has legal moves but kings are not in check, both players agree to a draw, board position is such that nobody can win, many more ...

Natural questions from a theorist's perspective

- Does Where a winning strategy, i.e., a plan of moves s.t. it vino IRRESPECTIVE of the moves of B?
- · Does Bhave a vinning strategy?
- · On at least guarantee à draw?
- · Neither may be possible not synonymous with end of game.

What is a streategy?

In the context of chess,

board position if different from Game Situation

more than one sequence of moves can bring to the same board position.

denote a board position by xk

Game Situation is a finite sequence $(x_0, x_1, x_2, ..., x_K)$ of board positions s.t.

- 20 is the opening board position
 - $x_k \rightarrow x_{k+1}$, k even created by a single action of W k odd created by a single action of B

A strategy for W is a function S_W that associates every game situation $(x_0, x_1, \dots, x_K) \in H$ (set of all game situations), K even, with a board position x_{K+1} such that T_K move $x_K \to x_{K+1}$ is a single valid move of W.

Similar définition of 1B for B.

Note: o strategy pair (Sw, SB) determines an outcome also called one play of the game. - a path through the game tree

Questions (1) this is a finite game - where does it end?

(2) can a player guarantee au out come?

The game ends: (a) W wins or (b) B wins or (c) Draw.

A winning strategy for W is a strategy S_W^* s.t. for every S_B (S_W^*, S_B) ends in a win for W.

A strategy guaranteeing at least a draw for W is S_W' s.t. for every S_B , (S_W', S_B) either ends in a draw on win for W.

analogous definitions of 18 and 18

Not obvious if such strategies exist

An early result of Game Theory (Von Neumann, 1928)

In chess, one and only one of The following statements is true

- (1) W has a winning strategy
- 2 B has a winning strategy
- 3 Each player has a strategy guaranteeing a draw

Ches would have been a boring game if any of These answers were known.

⁻ there were other possibilities, e.g., nothing can be guaranteed

⁻ it does not say what is that strategy actually it is not known: which one is true and what is that strategy