SIEMENS

4N32/4N33 **PHOTODARLINGTON OPTOCOUPLER**

FEATURES

- Very High Current Transfer Ratio, 500% Min.
- High Isolation Resistance, $10^{11} \Omega$ Typical
- Standard Plastic DIP Package
- Underwriters Lab File #E52744
- **№ VDE Approvals #0884 (Available with** Option 1)

DESCRIPTION

The 4N32 and 4N33 are optically coupled isolators with a Gallium Arsenide infrared LED and a silicon photodarlington sensor. Switching can be achieved while maintaining a high degree of isolation between driving and load circuits. These optocouplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields.

Maximum Ratings

Emitter

Peak Reverse Voltage	3 V
Continuous Forward Current	60 mA
Power Dissipation at 25°C	100 mW
Derate Linearly from 55°C	

Derate Emeany nem de d
Detector
Collector-Emitter Breakdown Voltage,
BV _{CEO}
Emitter-Base Breakdown Voltage,
BV _{EBO} 8V
Collector-Base Breakdown Voltage,
BV _{CBO} 50 V
Emiter-Collector Breakdown Voltage,
BV _{ECO} 5 V
Collector (load) Current125 mA
Power Dissipation at 25°C Ambient150 mW
Derate Linearly from 25°C2.0 mW/°C
Package
Total Dissipation at 25°C Ambient250 mW
Derate Linearly from 25°C
Isolation Test Voltage5300 VAC _{RMS}

Between Emitter and Detector,
Standard Climate: 23°C/50%RH,

DIN 50014

Leakage Path	7 mm min.
Air Path	7 mm min.
Isolation Resitance	
V _{IO} =500 V/25°C	≥10 ¹² Ω
V _{IO} =500 V/100°C	≥10 ¹¹ Ω
Storage Temperature	-55°C to +150°C
Operating Temperature	-55°C to +100°C
Lead Soldering Time at 260°C	10 sec.

Electrical Characteristics (T_A=25°C)

Parameter	Min.	Тур.	Max.	Unit	Condition
Emitter	1		'		
Forward Voltage		1.25	1.5	V	I _F =50 mA
Reverse Current		0.1	100	μА	V _R =3.0 V
Capacitance		25		pF	V _R =0 V
Detector	•				
BV _{CEO} *	30			V	I _C =100 μA, I _F =0
BV _{CBO} *	50			V	$I_C = 100 \mu A, I_F = 0$
BV _{EBO} *	8			V	$I_C = 100 \mu A, I_F = 0$
BV _{ECO} *	5	10		V	I _E =100 μA, I _F =0
I _{CEO}		1.0	100	nA	V _{CE} =10 V, I _F =0
H _{FE}		13K			I _C =0.5 mA
Package	•				
Current Transfer Ratio	500			%	I _F =10 mA, V _{CE} =10 V
V _{CEsat}		1.0		V	I _C =2 mA, I _F =8 mA
Coupling Capacitance		1.5		pF	
Turn On Time			5	μS	V _{CC} =10 V, I _C =50 mA
Turn Off Time			100	μS	I_F =200mA, R_L =180 Ω

^{*}Indicates JEDEC registered values

Figure 1. Forward voltage versus forward current

Figure 2. Normalized non-saturated and saturated CTRce versus LED current

Figure 3. Normalized non-saturated and saturated collector-emitter current versus LED current

Figure 4. Normalized collector-base photocurrent versus LED current

Figure 5. Non-saturated and saturated HFE versus base current

Figure 6. Low to high propagation delay versus collector load resistance and LED current

Figure 7. High to low propagation delay versus collector load resistance and LED current

Figure 8. Switching waveform and switching schematic

