

MIPT Speech Technology 2022

Lecture #6 Keyword Spotting. Part 2

Plan

- Keyword Spotting
 - Transfer Learning
 - Multitask Learning
 - Model Compression
 - Cascade Systems
 - Streaming KWS

Keyword Verification

ASR Server

NLU

Keyword Spotting for Google Assistant Using Contextual Speech Recognition

Google, 2017

A Cascade Architecture for Keyword Spotting on Mobile Devices

• Google, 2017

Hey Siri: An On-device DNN-powered Voice Trigger for Apple's Personal Assistant

• Apple, 2017

Streaming Detection

Streaming keyword spotting on mobile devices

- Google, 2020
- https://cms.tinyml.org/wp-content/uploads/talks2022/Oleg-Rybakov.pdf

Streaming Keyword Spotting: Norm / Unnorm Gain

Streaming Keyword Spotting: Norm / Unnorm Gain

Streaming Keyword Spotting: Norm / Unnorm Gain

Nearest Neighbours

Transfer Learning: Learned Features

Transfer Learning: Learned Features

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).

https://dl.acm.org/doi/10.1145/1553374.1553453

SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS

• Google (2014). Cited by 532

SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS

- Google (2014). Cited by 532
- **Transfer Learning**: Here, we use a deep neural network for speech recognition with suitable topology to initialize the hidden layers of the network. All layers are updated in training.

TOWARDS DATA-EFFICIENT MODELING FOR WAKE WORD SPOTTING

- Amazon Alexa, 2020
- The models are trained using transfer-learning paradigm where the weights of the DNN are initialized by an ASR acoustic model of the same architecture and size trained with ASR senone targets

Few-Shot Keyword Spotting in Any Language

Google, 2021

Language	# words	# train	# val	val acc
English	265	518760	57640	78.95
German	152	287100	31900	79.90
French	105	205920	22880	79.16
Kinyarwanda	68	134640	14960	73.64
Catalan	80	132660	14740	87.63
Persian	35	69300	7700	85.70
Spanish	31	61380	6820	79.65
Italian	17	31680	3520	81.16
Dutch	7	13860	1540	72.60
Model	760	1455300	161700	79.81

Transfer Learning: may be useful in homework

 https://huggingface.co/SberDevices/quartznetrussian

 QUARTZNET: DEEP AUTOMATIC SPEECH
 RECOGNITION WITH 1D TIME-CHANNEL
 SEPARABLE CONVOLUTIONS (Nvidia, 2019)

Fig. 1. QuartzNet BxR architecture

Transfer Learning: may be useful in homework

• XLS-R: SELF-SUPERVISED CROSS-LINGUAL SPEECH REPRESENTATION LEARNING AT SCALE (FAIR, 2021)

Transfer Learning: may be useful in homework

```
import transformers
w2v_backbone = transformers.Wav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-300m")
for param in w2v_backbone.parameters():
    param.requires_grad = False
clf_head = torch.nn.Sequential(
    torch.nn.AdaptiveAvgPool1d(output_size=1),
    torch.nn.Flatten(),
    torch.nn.Linear(1024, 256),
    torch.nn.ReLU(),
    torch.nn.Linear(256, 5)
out = w2v_backbone(wav)['last_hidden_state']
out = out.transpose(1, 2)
logits = clf_head(out)
# tensor([[ 0.0204, 0.0275, 0.0601, -0.0196, 0.0896]], grad_fn=<AddmmBackward0>)
```

Model Compression

Distilling the Knowledge in a Neural Network

- Hinton, 2015, cited by ~ 11k
- https://intellabs.github.io/distiller/knowledge_distillation.html

wandb tutorial:

Model compression applied to small-footprint keyword spotting

Amazon, 2016

$$\lambda \sum_{i} \log(p_i) t_i + \frac{1-\lambda}{T^2} \sum_{i} \log(p_i(T)) q_i(T)$$
 $p_i(T) = \frac{p_i^{1/T}}{\sum_{j} p_j^{1/T}}, q_i(T) = \frac{q_i^{1/T}}{\sum_{j} q_j^{1/T}},$

Noisy student-teacher training for robust keyword spotting

• Google, 2021

Homework

Keyword Spotting

- Kaggle In-Class Competition
- 100k train, 2k test
- model: <= 1e4 params, <= 1e6 MACs
- report + model-checkpoint + leaderboard submits
- deadline: 2022-10-18 17:59

Thank you for your attention!

