Group Policy: You may collaborate with classmates on this assignment and turn in as a team or solo. For a team, each person should be working out the problems, then discuss to decide what to put on the single turn-in to represent the entire team.

Turn-In: Turn in <u>one copy</u> of this exercise per team.

Team Members:

Goals:

- 1. Be able to find compositions of functions.
- 2. Be able to find a function from another function and the compositions
- 3. Use arrow diagrams to diagram two functions and their composition.

Section 1: Composition of Functions

If $f:A \rightarrow B$ and $g:B \rightarrow C$, then we can build a new function called $(g \circ f)$ that has domain A and codomain C, and that follows the rule $(g \circ f)(x) = g(f(x))$. We call $(g \circ f)$, read "g of f", the composition of g with f.

Example: f(x)=2x+1 and $g(x)=x^2-1$. What is $(f \circ g)(x)$?

- 1. Plug f(x) into g(y): $g \circ f = f(g(x)) = 2(x^2 1) + 1$
- 2. Simplify: $=2x^2-2+1$ = $2x^2-1$

We may also need to find the function g(x) based on f(x) and $(f \circ g)(x)$:

Example: f(x)=2x+1 and $(f\circ g)(x)=2x^2-1$. What is g(x)?

- 1. Let's use the alias "a" to symbolize g(x). f(g(x)) therefore will be f(a): $2a+1=2x^2-1$ Now we can find the value of g(y) by solving for a.
- 2. $2a=2x^2-1-1 \Rightarrow 2a=2x^2-2 \Rightarrow a=x^2-1$
- **3.** Therefore, $g(x) = x^2 1$

And finding f(x) from g(x) and $(f \circ g)(x)$:

Example: $g(x)=x^2-1$ and $(f\circ g)(x)=2x^2-1$. What is f(x) ?

Method 1:

- 1. Start with f(g(x)). Let's say that the alias "a" will symbolize g(x). So $a=x^2-1$.
- 2. Solve the alias function for the other variable: $x^2 = a + 1$... $x = \sqrt{a + 1}$.
- 3. Then, for f(g(x)), we use f(x): $f(g(x))=2x^2-1$
- **4.** Plug in our found value for x: $2(\sqrt{a+1})^2-1$
- 5. Simplify: 2(a+1)-1 ... =2a+2-1 ... =2a+1
- **6. So** f(x)=2x+1

1. Find the value of $(f \circ g)(x)$ for the following f(x) and g(x) functions:

a.
$$f(x)=2x-1$$
 and $g(x)=3x$, what is $(f \circ g)(x)$?

b.
$$f(x)=2x-1$$
 and $g(x)=3x$, what is $(g \circ f)(x)$? (___/1)

c.
$$f(x)=x^2$$
 and $g(x)=x+1$, what is $(f \circ g)(x)$? (___/1)

d.
$$f(x)=x^2$$
 and $g(x)=x+1$, what is $(g \circ f)(x)$? (___/1)

2. Find the value of g(x) from the following f(x) and $(f \circ g)(x)$ given:

a.
$$f(x)=2x-1$$
 and $(f \circ g)(x)=6x-1$. What is $g(x)$?

b.
$$f(x)=x^2$$
 and $(f \circ g)(x)=x^2+2x+1$. What is $g(x)$?

c.
$$f(x)=3x-2$$
 and $(f \circ g)(y)=12y+7$. What is $g(x)$?

3. Find the value of f(x) from the following g(x) and $(f \circ g)(x)$ given:

a.
$$g(x)=3x$$
 and $(f \circ g)(x)=6x-1$. What is $f(x)$?

b.
$$g(x)=x+1$$
 and $(f \circ g)(x)=x^2+2x+1$. What is $f(x)$?

c.
$$g(x)=2x-1$$
 and $(f \circ g)(x)=6x-1$. What is $f(x)$?

Section 2: More arrow diagrams

We can also use arrow diagrams to represent compositions of relational functions.

Example:

f(x): Domain A = {1, 2}, Codomain B = {2, 3}, Rule: L = { (1, 2), (1, 3), (2, 3) }.

f(g): Domain: C = {a, b}, Codomain D = {f, g}, Rule: M = { (a, f), (b, g) }

So in order to draw the diagram of $(g \circ f)(x)$, we take the <u>domain</u> of f and the <u>codomain</u> of g. In this example, in f, 2 goes to 3. In g, 3 goes to g, so in $g \circ f$, 2 goes to g.

4. Complete the arrow diagrams

f

a. (___/2) $g \circ f$

a • • 2 b • • 3 C • χ• • 5 у • Z •-

1 • • α 2 • **7**• β 3 • · • γ 4 • • δ 5 • **ع** •

g

• α a • • β b • • γ C • • δ **X** • **•** ε y • ٠ ζ z •

b. (___/2)

٠ ζ

f $g \circ f$ g

6 •

1 • 2 • **3** • 4 • 5 • 6 •

