One, two, and three fermions with one-body parity-violating 'spin-orbit' coupling

Thomas $Luu^{1,*}$

¹N Section, Lawrence Livermore National Laboratory, Livermore, CA 94551. (Dated: March 26, 2012)

Abstract

I present my notes on various fermionic systems undergoing some type of external parity-violating interaction in different dimensions.

^{*}tluu@llnl.gov

Contents

I. Problem Setup	3
II. $\vec{k}\cdot\vec{\sigma}$ in a 3-dimensional oscillator well	3
A. 1-particle spectrum	3
1. Basis states	4
2. Matrix elements of $\alpha \vec{q} \cdot \vec{\sigma}$	4
3. Spectrum	5
B. 2-particle spectrum without relative interaction	6
1. Basis states	7
2. Matrix Elements	8
C. 2-particle spectrum with relative interaction	11
D. 3-particle spectrum	15
References	15

PROBLEM SETUP

In these notes I consider particles undergoing a one-body, parity-violating interaction of the type

$$\alpha \vec{k} \cdot \vec{\sigma}$$
 (1)

$$\alpha_R \left(\sigma_x k_y - \sigma_y k_x \right)$$
 Rashba (2)

$$-\alpha_{D1} \left(\sigma_x k_x - \sigma_y k_y\right) \qquad \text{Dresselhaus (linear)} \tag{3}$$

$$\alpha_x \left(\sigma_x k_x k_x^2 - \sigma_y k_x^2 k_y\right) \qquad \text{Dresselhaus (cubic)}. \tag{4}$$

$$\alpha_{D3} \left(\sigma_x k_x k_y^2 - \sigma_y k_x^2 k_y \right)$$
 Dresselhaus (cubic). (4)

I consider the particles interacting in free space as well as within an oscillator well, both for 2D and 3D systems. I also consider the case where the particles interact via a short-ranged (contact), s-wave interaction,

$$\frac{4\pi a(\Lambda)}{m} \delta^R |\vec{k}_1; \vec{k}_2\rangle = \frac{4\pi a(\Lambda)}{m} f(|\vec{k}_1 - \vec{k}_2|/\Lambda) |\vec{k}_1; \vec{k}_2\rangle \tag{5}$$

where f(x) refers to some regulator and $a(\Lambda)$ is tuned to produce the s-wave scattering length and is dependent on the form of the regulator f(x).

$ec{k}\cdotec{\sigma}$ IN A 3-DIMENSIONAL OSCILLATOR WELL

1-particle spectrum

The one-body Hamiltonian is¹

$$H = \frac{\vec{k}^2}{2m} + \frac{1}{2}m\omega^2 r^2 + \alpha \vec{k} \cdot \vec{\sigma} \tag{6}$$

$$= H_0 + \alpha \vec{k} \cdot \vec{\sigma} . \tag{7}$$

Using the following definitions,

$$\vec{q} = b\vec{k} \tag{8}$$

$$\vec{x} = \vec{r}/b \tag{9}$$

$$b = \frac{1}{\sqrt{m\omega}} \,, \tag{10}$$

we can express eq. 6 as

$$H = \omega \left[\frac{\vec{q}^2}{2} + \frac{\vec{x}^2}{2} + \tilde{\alpha}\vec{q} \cdot \vec{\sigma} \right] \tag{11}$$

$$= \omega \left[h_0 + \tilde{\alpha} \vec{q} \cdot \vec{\sigma} \right] , \qquad (12)$$

and $\tilde{\alpha} = \alpha \sqrt{m/\omega}$ is dimensionless. In fact, the only dimensional term in the equation above is ω .

¹ I set $\hbar = c = 1$.

1. Basis states

We know the eigenvalues and eigenfunctions for h_0 —they correspond to the harmonic oscillator and are given by

$$h_0|n(ls)j|j\rangle = |n(ls)j|j_z\rangle (2n+l+3/2),$$
 (13)

where s is the spin of the particle and I have chosen to work in a basis where I couple orbital angular momentum l with spin s to make total angular momentum j, i.e.

$$|(ls)j \ j_z\rangle \equiv \sum_{l_z, s_z} \langle l, l_z \ ; s, s_z ||j \ j_z\rangle \ |l \ l_z\rangle \ |s \ s_z\rangle \ , \tag{14}$$

where the first term on the right-hand side is a Clebsch-Gordan coefficient.

2. Matrix elements of $\alpha \vec{q} \cdot \vec{\sigma}$

To solve for the one-body spectrum of this Hamiltonian, I will simply do a brute force large matrix diagonalization to get at the eigenvalues. For this calculation I need to know the following matrix elements:

$$\langle n'(l's')j'j'_z|\tilde{\alpha}\vec{q}\cdot\vec{\sigma}|n(ls)jj_z\rangle. \tag{15}$$

There are many *classic* (i.e. old) textbooks on angular momentum that explain how to calculate matrix elements of this form. I use Edmonds [1], and in particular, chapter 7 of Edmonds. Equation 15 becomes

$$\langle n'(l's')j'j'_z|\tilde{\alpha}\vec{q}\cdot\vec{\sigma}|n(ls)jj_z\rangle = \alpha\delta_{j,j'}\delta_{j_z,j'_z}\delta_{s,s'}(-)^{l+s'+j} \begin{Bmatrix} j & s' & l' \\ 1 & l & s \end{Bmatrix} \langle n'l'||q||nl\rangle\langle s||\sigma||s\rangle , \quad (16)$$

where $\langle n'l'||q||nl\rangle$ and $\langle s||\sigma||s\rangle$ are reduced matrix elements. Equation 16 shows that this matrix element is diagonal in total angular momentum j (as it should be since $\vec{q} \cdot \vec{\sigma}$ is a rank 0 object) and is also diagonal in spin s of the particle. For the time being, I will set s = 1/2, and from Edmonds eq. 5.4.4, we have

$$\langle \frac{1}{2} ||\sigma|| \frac{1}{2} \rangle = 2\sqrt{\frac{3}{2}} \ . \tag{17}$$

Also note that eq. 16, in addition to being diagnal in j_z , is independent of j_z . This is also due to the fact that this matrix element is a rank 0 object. Furthermore, this implies that for a given j, the spectrum is 2j + 1 degenerate. Since the spectrum does not depend on j_z , I will omit this term within expressions from now on.

Taking the above points into account, eq. 16 becomes

$$\langle n' \left(l' \frac{1}{2} \right) j | \tilde{\alpha} \vec{q} \cdot \vec{\sigma} | n \left(l \frac{1}{2} \right) j \rangle = (-)^{l+1/2+j} \sqrt{6} \alpha \begin{Bmatrix} j & \frac{1}{2} & l' \\ 1 & l & \frac{1}{2} \end{Bmatrix} \langle n' l' | |q| | nl \rangle$$
 (18)

As I show in app. ??, the remaining reduced matrix element is

$$\langle n'l'||q||nl\rangle = \begin{cases} (-)^{l'}\sqrt{(2l'+1)(2l+1)} \begin{pmatrix} l' & 1 & l \\ 0 & 0 & 0 \end{pmatrix} \Gamma(n',l';n,l) & \text{if } |l'-l| = 1 \\ 0 & \text{otherwise} \end{cases}, \quad (19)$$

FIG. 1: (Color online) The one-body spectrum of spin-1/2 fermion in HO well with parity violating operator $\tilde{\alpha}\vec{q}\cdot\vec{\sigma}$. Here $\epsilon=E/\omega$. For each j, the spectrum is 2j+1 degenerate. Note that for $\tilde{\alpha}=0$, the HO spectrum (and its degeneracies) is recovered.

and $\Gamma(n', l'; n, l)$ is an expression (given in app. ??) that depends on an integral over the HO radial wavefunctions $R_{nl}(q)$ and $R_{n'l'}(q)$. Not surprisingly, eq. 19 shows that this matrix element couples angular momentum of different parities.

3. Spectrum

Inserting eq. 19 into eq. 18, and using the explicit formulas for the 6j- and 3j-symbols (found for example, using Mathematica), eq. 18 undergoes a large amount of simplification:

$$\langle n' \left(l' \frac{1}{2} \right) j | \tilde{\alpha} \vec{q} \cdot \vec{\sigma} | n \left(l \frac{1}{2} \right) j \rangle = \begin{cases} -\tilde{\alpha} \Gamma(n', l'; n, l) & \text{if } |l' - l| = 1 \\ 0 & \text{otherwise} \end{cases}$$
 (20)

Therefore the matrix elements of the total Hamiltonian are

$$\langle n'\left(l'\frac{1}{2}\right)j|h_0 + \tilde{\alpha}\vec{q}\cdot\vec{\sigma}|n\left(l\frac{1}{2}\right)j\rangle = \begin{cases} 2n+l+3/2 & \text{if } n'=n \text{ and } l'=l\\ -\tilde{\alpha}\Gamma(n',l';n,l) & \text{if } |l'-l|=1\\ 0 & \text{otherwise} \end{cases}$$
 (21)

I have coded up eq. 21 and calculated the spectrum for different angular momenta j.

The results are shown in fig. 1. The calculation was done for a large N_{max} =50 cutoff², where I determined that the lowest eigenvalues (shown in fig. 1) had converged to the sixth significant digit (or higher).

I note that given the one-body spectrum in fig. 1, the spectrum of many non-interacting fermions can be deduced. In particular, for total angular momentum J=0 cases, one needs only fill in all degenerate states to make a closed shell, and the energy per particle is simply

$$\frac{E_{J=0}(\alpha)}{N} = \frac{\sum_{j_{\text{shell}}} g_j E(\alpha)_j}{\sum_{j_{\text{shell}}} g_j}$$
 (22)

where g_j is the degeneracy of the j^{th} shell and $N = \sum g_j$. Relevant for the next section is the ground state energy of two non-interacting spin-1/2 fermions, which is simply twice the lowest energy in fig. 1:

$$\frac{E_{J=0}(\alpha)}{\omega} = 2\epsilon_{j=1/2}(\alpha) . \tag{23}$$

B. 2-particle spectrum without relative interaction

As a check of eq. 23, I now solve explicitly the case of two equal mass m, non-interacting spin-1/2 fermions confined to a HO well with the $\alpha \vec{k} \cdot \vec{\sigma}$ external interaction. The Hamiltonian in this case is simply the sum of the one-body Hamiltonian for each particle,

$$H = \sum_{i=1}^{2} \left[\frac{\vec{k_i}^2}{2m} + \frac{1}{2} m \omega^2 r_i^2 + \alpha \vec{k_i} \cdot \vec{\sigma_i} \right]$$
 (24)

$$= \sum_{i=1}^{2} \left[H_{0,i} + \alpha \vec{k_i} \cdot \vec{\sigma_i} \right] . \tag{25}$$

I now employ the standard trick of recasting the single-particle basis into relative (Jacobi) and center-of-mass (CM) coordinates, using the following transformations:

$$\vec{K} = \frac{\vec{k}_1 + \vec{k}_2}{\sqrt{2}} \tag{26}$$

$$\vec{k} = \frac{\vec{k}_1 - \vec{k}_2}{\sqrt{2}} \,, \tag{27}$$

for the CM and relative momenta, and

$$\vec{R} = \frac{\vec{r}_1 + \vec{r}_2}{\sqrt{2}} \tag{28}$$

$$\vec{r} = \frac{\vec{r}_1 - \vec{r}_2}{\sqrt{2}} \,, \tag{29}$$

for the CM and relative positions. Equation 24 can be expressed in terms of these coordinates,

$$H = \frac{1}{2m} \left(\vec{k}^2 + \vec{K}^2 \right) + \frac{m\omega^2}{2} \left(\vec{r}^2 + \vec{R}^2 \right) + \frac{\alpha}{\sqrt{2}} \left(\vec{k} \cdot \vec{\sigma} + \vec{K} \cdot \vec{\Sigma} \right) , \qquad (30)$$

² For a given N_{max} cutoff, I only use HO states $|n(ls)j\rangle$ such that $2n+l\leq N_{max}$.

where I have made the following definitions:

$$\vec{\sigma} = \vec{\sigma}_1 - \vec{\sigma}_2 \tag{31}$$

$$\vec{\Sigma} = \vec{\sigma}_1 + \vec{\sigma}_2 . \tag{32}$$

I now move to dimensionless variables,

$$\vec{q} = b\vec{k} \tag{33}$$

$$\vec{Q} = b\vec{K} \tag{34}$$

$$\vec{x} = \vec{r}/b \tag{35}$$

$$\vec{X} = \vec{R}/b \tag{36}$$

$$\tilde{\alpha} = \alpha \sqrt{\frac{m}{\omega}} \tag{37}$$

$$b = \frac{1}{\sqrt{m\omega}} \,. \tag{38}$$

The Hamiltonian now becomes

$$H = \omega \left(h_{0,\text{rel}} + \frac{\tilde{\alpha}}{\sqrt{2}} \vec{q} \cdot \vec{\sigma} \right) + \omega \left(h_{0,\text{CM}} + \frac{\tilde{\alpha}}{\sqrt{2}} \vec{Q} \cdot \vec{\Sigma} \right) , \qquad (39)$$

where

$$h_{0,\text{rel}} = \frac{1}{2} \left(\vec{q}^2 + \vec{x}^2 \right) \tag{40}$$

$$h_{0,\text{CM}} = \frac{1}{2} \left(\vec{Q}^2 + \vec{X}^2 \right) .$$
 (41)

1. Basis states

There are many possible combinations of complete basis states to choose from. I use

$$|n(ls)j; NL; (jL)J\rangle$$
,

where $\{nl\}$ correspond to the relative HO quantum numbers, and $\{NL\}$ the CM HO quantum numbers. The total spin of the two fermions is denoted by $s (= s_1 + s_2)$. For two spin-1/2 particles, s can be either 0 or 1. The spin s is coupled with l to make angular momentum j. Angular momentum j and the CM angular momentum L are then coupled to make a state of total angular momentum J. For the same reasons as stated in the previous section, the interaction is independent of J_z , and so I omit this quantum number. There is another restriction due to Pauli exclusion, which states that l + s must be even to enforce antisymmetry under exchange of particle 1 and 2.

As in the previous section, I do a simple brute force diagonalization to arrive at the two-body spectrum. Since all terms in the Hamiltonian are rank 0 tensors, the total angular momentum J is conserved. For a particular J, I enumerate all basis states up to N_{max} such that $2n+l+2N+L \leq N_{max}$, under the proviso that l+s is even and the angular momentum couplings are realizable. As an example, I give all basis states for a (very small) $N_{max} = 3$ calculation for the J = 0 case in tab. I. Note that I include states of both parities, as I

TABLE I: Enumeration of two-body basis states $|i\rangle$ with total angular momentum J=0 up to $N_{shell}=3$, where $N_{shell}=2n+l+2N+L$. The parity of the state is given by $(-1)^{l+L}$.

$ i\rangle$	$ n(ls)j;NL;(jL)J\rangle$	N_{shell}	Parity
$ 1\rangle$	$ 0(00)0;00;(00)0\rangle$	0	+
$ 2\rangle$	$ 0(11)0;00;(00)0\rangle$	1	_
$ 3\rangle$	$ 0(11)1;01;(11)0\rangle$	2	+
$ 4\rangle$	$ 0(00)0;10;(00)0\rangle$	2	+
$ 5\rangle$	$ 1(00)0;00;(00)0\rangle$	2	+
$ 6\rangle$	$ 0(11)2;02;(22)0\rangle$	3	-
$ 17\rangle$	$ 0(11)0;10;(00)0\rangle$	3	_
$ 8\rangle$	$ 1(11)0;00;(00)0\rangle$	3	_

expect the matrix elements (derived below) to couple states of different parities. It is simple to devise an algorithm that will enumerate all basis states up to some N_{max} for a given J (I did it in Mathematica). I note that the dimensionality of the problem grows very fast with increasing N_{max} .

2. Matrix Elements

The matrix element of the oscillator part of the Hamiltonian is trivial,

$$\langle n'(l's')j'; N'L'; (j'L')J|h_{0,\text{rel}} + h_{0,\text{CM}}|n(ls)j; NL; (jL)J\rangle =$$

$$\delta_{i,i'}\delta_{n,n'}\delta_{l,l'}\delta_{N,N'}\delta_{l,l'}\delta_{S,S'}(2n+l+3/2+2N+L+3/2) . \quad (42)$$

Let me now consider the matrix element

$$\langle n'(l's')j'; N'L'; (j'L')J| \frac{\tilde{\alpha}}{\sqrt{2}} \vec{q} \cdot \vec{\sigma} | n(ls)j; NL; (jL)J \rangle$$
.

Again using Edmonds, I find that

$$\langle n'(l's')j'; N'L'; (j'L')J| \frac{\tilde{\alpha}}{\sqrt{2}} \vec{q} \cdot \vec{\sigma} | n(ls)j; NL; (jL)J \rangle = \delta_{N,N'} \delta_{L,L'} \delta_{j,j'} \frac{\tilde{\alpha}}{\sqrt{2}} (-1)^{l+s'+j} \begin{Bmatrix} j & s' & l' \\ 1 & l & s \end{Bmatrix} \langle n'l' ||q||nl \rangle \langle s'||\sigma||s \rangle . \quad (43)$$

We already know the form of $\langle n'l'||q||nl\rangle$ which is given in eq. 19. Recall that this operator mixes states of different parity, essentially changing the angular momentum l to $l \pm 1$. For

 $\langle s'||\sigma||s\rangle$, standard 'Racah' algebra gives

$$\langle s'||\sigma||s\rangle = \langle \left(\frac{1}{2}\frac{1}{2}\right)s'||\sigma_1 - \sigma_2||\left(\frac{1}{2}\frac{1}{2}\right)s\rangle$$

$$= \left[(-1)^s - (-1)^{s'}\right]\sqrt{6(2s+1)(2s'+1)} \begin{cases} \frac{1}{2} & s' & \frac{1}{2} \\ s & \frac{1}{2} & 1 \end{cases}$$
(44)

$$= \begin{cases} 2\sqrt{3} & \text{for } s' = 1, \ s = 0 \\ -2\sqrt{3} & \text{for } s' = 0, \ s = 1 \\ 0 & \text{otherwise} \end{cases}$$
 (45)

The equation above shows that this interaction flips the total spin of the two particles. This is a reassuring result for the following reason: our interaction respects the underlying symmetry of the two particles, i.e. two-particle wavefunctions that are antisymmetric remain antisymmetric (the same is true for symmetric wavefunctions). As mentioned earlier, antisymmetric wavefunctions must satisfy the condition that l+s is even. Since this interaction changes parity of the system by making $l \to l \pm 1$, then to maintain the antisymmetric condition, the spin s must flip, which is evident in eq. 45.

Combining eqs. 19, 44, and 43, I have for the full matrix element of $\tilde{\alpha}\vec{q}\cdot\vec{\sigma}/\sqrt{2}$ to be

$$\langle n'(l's')j; NL; (jL)J | \frac{\tilde{\alpha}}{\sqrt{2}} \vec{q} \cdot \vec{\sigma} | n(ls)j; NL; (jL)J \rangle = (-1)^{l+l'+s'+j} \times$$

$$3\tilde{\alpha} \begin{cases} j & s' & l' \\ 1 & l & s \end{cases} \begin{pmatrix} l' & 1 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} \frac{1}{2} & s' & \frac{1}{2} \\ s & \frac{1}{2} & 1 \end{cases} \sqrt{(2l'+1)(2l+1)} \left[(-1)^s - (-1)^{s'} \right] \Gamma(n', l'; n, l) , \quad (46)$$

and I have used the fact that |s-s'|=1 for the matrix element to be non-vanishing. As an example, eq. 46 shows that the non-vanishing matrix elements using the basis states given in tab. I to be $\langle 1|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|2\rangle$, $\langle 1|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|8\rangle$, $\langle 2|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|5\rangle$, $\langle 4|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|7\rangle$, and $\langle 5|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|8\rangle$ (as well has their hermitian conjugates)³.

Next I will consider the matrix element

$$\langle n'(l's')j'; N'L'; (j'L')J| \frac{\tilde{\alpha}}{\sqrt{2}} \vec{Q} \cdot \vec{\Sigma} | n(ls)j; NL; (jL)J \rangle$$
.

In this case it is convenient to expand the basis states in the following manner:

$$|n(ls)j; NL; (jL)J\rangle = (-1)^{l+J} \sqrt{2j+1} \sum_{\mathcal{J}} (-1)^{\mathcal{J}} \sqrt{2\mathcal{J}+1} \begin{Bmatrix} l & s & j \\ L & J & \mathcal{J} \end{Bmatrix} |nl; N(Ls)\mathcal{J}; (l\mathcal{J})J\rangle . \quad (47)$$

As the interaction only acts on the CM coordinates and total spin s, it is diagonal in the relative quantum numbers $\{n,l\}$. And since it is a rank 0 tensor, it is also diagonal in \mathcal{J}

³ Turns out that $\langle 1|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{q}\cdot\vec{\sigma}|8\rangle=0$ since $\Gamma(1,1;0,0)=0$.

and J. With these constraints, the matrix element is therefore

$$\langle n(ls')j'; N'L'; (j'L')J|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{Q} \cdot \vec{\Sigma}|n(ls)j; NL; (jL)J\rangle = \frac{\tilde{\alpha}}{\sqrt{2}}\sqrt{(2j'+1)(2j+1)} \times$$

$$\sum_{\mathcal{J}} (2\mathcal{J}+1) \begin{Bmatrix} l & s' & j' \\ L & J & \mathcal{J} \end{Bmatrix} \begin{Bmatrix} l & s & j \\ L & J & \mathcal{J} \end{Bmatrix} \langle nl; N'(L's')\mathcal{J}; (l\mathcal{J})J|\vec{Q} \cdot \vec{\Sigma}|nl; N(Ls)\mathcal{J}; (l\mathcal{J})J\rangle =$$

$$\frac{\tilde{\alpha}}{\sqrt{2}}\sqrt{(2j'+1)(2j+1)}(-1)^{L+s}\langle N'L'||Q||NL\rangle\langle s'||\Sigma||s\rangle \times$$

$$\left[\sum_{\mathcal{J}} (-1)^{\mathcal{J}} (2\mathcal{J}+1) \begin{Bmatrix} l & s' & j' \\ L' & J & \mathcal{J} \end{Bmatrix} \begin{Bmatrix} l & s & j \\ L & J & \mathcal{J} \end{Bmatrix} \begin{Bmatrix} \mathcal{J} & s' & L' \\ 1 & L & s \end{Bmatrix} \right]. \quad (48)$$

Now we know the form of the reduced matrix element $\langle N'L'||Q||NL\rangle$ already. The reduced matrix element $\langle s'||\Sigma||s\rangle$ is slightly different from the previous section,

$$\langle s'||\Sigma||s\rangle = \langle \left(\frac{1}{2}\frac{1}{2}\right)s'||\sigma_{1} + \sigma_{2}||\left(\frac{1}{2}\frac{1}{2}\right)s\rangle$$

$$= \left[(-1)^{s} + (-1)^{s'}\right]\sqrt{6(2s+1)(2s'+1)} \begin{cases} \frac{1}{2} & s' & \frac{1}{2} \\ s & \frac{1}{2} & 1 \end{cases}$$

$$= \begin{cases} 2\sqrt{6} & \text{for } s' = s = 1 \\ 0 & \text{otherwise} \end{cases}$$
(50)

In this case, the interaction is non-trivial for only the case when s'=s=1. In other words, the interaction only occurs with maximal spin s=1. The fact that the spin does not flip is a consequence of this interaction not changing l, but rather only $L \to L \pm 1$. The antisymmetric condition on the relative wavefunction is therefore respected. Only the parity of the CM angular momentum L is changed, which has no conditions placed on it.

Assuming s' = s = 1, the matrix element can be reduced further to

$$\langle n(ls)j'; N'L'; (j'L')J| \frac{\tilde{\alpha}}{\sqrt{2}} \vec{Q} \cdot \vec{\Sigma} | n(ls)j; NL; (jL)J\rangle = (-1)^{L+L'+1} \sqrt{3} \ \tilde{\alpha} \times$$

$$\sqrt{(2j'+1)(2j+1)(2L'+1)(2L+1)} \begin{pmatrix} L' & 1 & L \\ 0 & 0 & 0 \end{pmatrix} \Gamma(N', L'; N, L) \times$$

$$\left[\sum_{\mathcal{J}} (-1)^{\mathcal{J}} (2\mathcal{J}+1) \begin{Bmatrix} l & s & j' \\ L' & J & \mathcal{J} \end{Bmatrix} \begin{Bmatrix} l & s & j \\ L & J & \mathcal{J} \end{Bmatrix} \begin{Bmatrix} \mathcal{J} & s & L' \\ 1 & L & s \end{Bmatrix} \right] . (51)$$

Again using the basis states of tab. I as an example, the non-vanishing matrix elements in this case are $\langle 2|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{Q}\cdot\vec{\Sigma}|3\rangle,\,\langle 3|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{Q}\cdot\vec{\Sigma}|6\rangle,\,$ and $\langle 3|\frac{\tilde{\alpha}}{\sqrt{2}}\vec{Q}\cdot\vec{\Sigma}|7\rangle$ (and their hermitian conjugates).

The spectrum of the J=0 system calculated using the matrix elements derived above is shown in fig. 2 by (blue) dots. The (red) lines in fig. 2 come from using two j=1/2 single-particle spectra in fig. 1 to determine the J=0 spectrum. Dots that do not have overlapping lines correspond to two fermion states with other j quantum numbers (e.g. two j=7/2 single-particles, etc. . .). See caption that accompanies fig. 2 for more description.

FIG. 2: (Color online) The J=0 spectrum for two spin-1/2 fermions in an HO well with external parity violating interaction $\alpha \vec{k} \cdot \vec{\sigma}$. The (blue) dots correspond to numerical calculations described in sect. II B. The (red) lines are determined using the j=1/2 single particle energies shown in fig. 1. The (green) dashed line corresponds to two j=3/2 single particles, taken from fig. 1. The (purple) dot-dashed line corresponds to two j=5/2 single particles.

C. 2-particle spectrum with relative interaction

The Hamiltonian in consideration in this case is

$$H = \omega \left(h_{0,\text{rel}} + \frac{\tilde{\alpha}}{\sqrt{2}} \vec{q} \cdot \vec{\sigma} + \frac{2\sqrt{2}}{\pi} \tilde{a} \delta^{\Lambda}(\vec{x}) \right) + \omega \left(h_{0,\text{CM}} + \frac{\tilde{\alpha}}{\sqrt{2}} \vec{Q} \cdot \vec{\Sigma} \right) , \qquad (52)$$

where $\tilde{a} = a/b$ and a is some constant with dimensions of length⁴. The superscript Λ in the delta function indicates that some form of regulator is to be applied to this interaction. Lastly, this interaction only acts in the relative coordinates.

The strategy I employ in solving this system utilizes the fact that the solution for this system without the external parity-violating interaction (i.e. $\tilde{\alpha} = 0$) has been determined

⁴ In free space this variable is the scattering length.

FIG. 3: (Color online) Same as in fig. 2, but with J=1.

exactly by Busch et al. [2]. The eigenvalue equation I want to solve is

$$\frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}} - \frac{2\sqrt{2}}{\pi} \tilde{a} \delta^{\Lambda}(\vec{x})} \frac{\tilde{\alpha}}{\sqrt{2}} \left(\vec{q} \cdot \vec{\sigma} + \vec{Q} \cdot \vec{\Sigma} \right) |\Psi\rangle = \lambda |\Psi\rangle . \tag{53}$$

Given input values for \tilde{a} and $\tilde{\alpha}$, one finds the value(s) of ϵ such that $\lambda = 1^5$. It can be shown that the values of $\{\epsilon, \tilde{a}, \tilde{\alpha}\}$ that satisfy this condition will also satisfy the eigenvalue equation using the Hamiltonian in eq. 52. The benefit of this method comes from the fact that matrix elements

$$\langle n'(l's')j'; N'L'; (j'L')J' | \frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}} - \frac{2\sqrt{2}}{\pi}\tilde{a}\delta^{\Lambda}(\vec{x})} | n(ls)j; NL; (jL)J \rangle$$

are known analytically for any Λ , and in particular $\Lambda = \infty$, due to Busch et al. [2]. This

⁵ Actually, it is much easier to determine $\tilde{\alpha}$ given input values for ϵ and \tilde{a} .

FIG. 4: (Color online) The J=0 spectrum for two spin-1/2 fermions in an HO well with external parity violating interaction $\alpha \vec{k} \cdot \vec{\sigma}$ and contact interaction $2\sqrt{2}\tilde{a}/\pi\delta(x)$. The (black) lines correspond to numerical calculations with $\tilde{a}=0$. The (red) lines are calculations with $\tilde{a}=1$.

can be seen by rearranging this operator in the following way:

$$\frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}} - \frac{2\sqrt{2}}{\pi} \tilde{a} \delta^{\Lambda}(\vec{x})} = \frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}}} + \frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}}} T_{\delta}(\epsilon) \frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}}} = G_{0}(\epsilon) + G_{0}(\epsilon) T_{\delta}(\epsilon) G_{0}(\epsilon) , \quad (54)$$

where

$$G_0(\epsilon) = \frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}}} \tag{55}$$

and

$$T_{\delta}(\epsilon) = \frac{2\sqrt{2}}{\pi} \tilde{a} \delta^{\Lambda}(\vec{x}) + G_0(\epsilon) \frac{2\sqrt{2}}{\pi} \tilde{a} \delta^{\Lambda}(\vec{x}) G_0(\epsilon) + \dots$$
 (56)

is an infinite sum. Note that $G_0(\epsilon)$ is diagonal in all quantum numbers, and its matrix elements are trivial. Furthermore, since δ only acts on relative coordinates, it is diagonal in the CM quantum numbers $\{N, L\}$. Because of this, T_{δ} is also diagonal in the CM quantum numbers. Further, δ , and by extension T_{δ} , only acts on s-wave, and therefore l and s must be 0.

The separability of the δ interaction allows T_{δ} to be summed geometrically. As outlined

FIG. 5: (Color online) The J=0 spectrum for two spin-1/2 fermions in an HO well with external parity violating interaction $\alpha \vec{k} \cdot \vec{\sigma}$ and contact interaction $2\sqrt{2}\tilde{a}/\pi\delta(x)$. The (black) lines correspond to numerical calculations with $\tilde{a}=0$. The (red) lines are calculations with $\tilde{a}=-1$.

(someday) in the appendix, the matrix elements of $T_{\delta}(\epsilon)$ are analytically known

$$\langle n'(l's')j'; N'L'; (j'L')J'|T_{\delta}(\epsilon)|n(ls)j; NL; (jL)J\rangle = \delta_{N',N}\delta_{L',L}\delta_{s',s}\delta_{s,0}\delta_{l',l}\delta_{l,0}\delta_{j',j}\delta_{J',J} \frac{\frac{2\sqrt{2}}{\pi}\sqrt{\frac{\Gamma(n'+\frac{3}{2})\Gamma(n+\frac{3}{2})}{\Gamma(n'+1)\Gamma(n+1)}}}{\frac{1}{\tilde{a}} - \sqrt{2}\frac{\Gamma(\frac{3}{4} - \frac{\epsilon - 2N - L - 3/2}{2})}{\Gamma(\frac{1}{4} - \frac{\epsilon - 2N - L - 3/2}{2})}}$$
(57)

Busch et al.'s [2] solution should be apparent in the equation above.

These results, and the derivations from earlier sections, allow me to determine the matrix elements of

$$\left[\frac{1}{\epsilon - h_{0,\text{rel}} - h_{0,\text{CM}} - \frac{2\sqrt{2}}{\pi}\tilde{a}\delta^{\Lambda}(\vec{x})}\right]$$

and

$$\left[\frac{\tilde{\alpha}}{\sqrt{2}} \left(\vec{q} \cdot \vec{\sigma} + \vec{Q} \cdot \vec{\Sigma} \right) \right] ,$$

which in turn allow me to determine the spectrum of two fermions under the influence of an external parity violating interaction with relative contact interaction. In figs. 4-6 I show my results, as a function of $\tilde{\alpha}$, for the cases of $\tilde{a}=+1,-1$, and ∞ , respectively (as red points). In all figures I compare to the case when $\tilde{a}=0$, given by the (black) lines.

FIG. 6: (Color online) The J=0 spectrum for two spin-1/2 fermions in an HO well with external parity violating interaction $\alpha \vec{k} \cdot \vec{\sigma}$ and contact interaction $2\sqrt{2}\tilde{a}/\pi\delta(x)$. The (black) lines correspond to numerical calculations with $\tilde{a}=0$. The (red) lines are calculations with $\tilde{a}=\infty$.

D. 3-particle spectrum

- [1] A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1957).
- [2] T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, Foundations of Physics 28, 549 (1998).