APMA 2110: Homework 7

Milan Capoor

4 Nov 2024

1. Let $f \geq 0$ be a measurable function and define its distribution function for $\lambda \geq 0$,

$$d_f(\lambda) = \mu\{x : |f(x)| > \lambda\}$$

Show

$$\int |f| \ d\mu = \int_0^\infty d_f(\lambda) \ d\lambda$$

First, $f \ge 0$ so |f| = f.

Since f is measurable, we can take a sequence of simple functions $\phi_n \to f$ such that $0 \le |\phi_n| \le |\phi_{n+1}| \le |f|$ for $n \ge 1$.

By the Monotone Convergence Theorem,

$$\int f \ d\mu = \int \lim phi_n \ d\mu = \lim \int \phi_n \ d\mu$$

Each ϕ_n is a simple function, i.e. $\phi_n = \sum_{i=1}^{m_n} a_i^{(n)} \mathbb{1}_{A_i^{(n)}}(x)$, so

$$\int \phi_n \ d\mu = \sum_{i=1}^{m_n} a_i^{(n)} \mu(A_i^{(n)})$$
$$= \sum_{i=1}^{m_n} (a_i^{(n)} - a_{i-1}^{(n)}) \ \mu(x : \phi_n(x) > a_{i-1}^{(n)})$$

By definition,

$$\int f d\mu = \sup_{\phi \le f} \int \phi d\mu$$

$$= \lim_{n \to \infty} \int \phi_n d\mu \qquad (\text{monotonicity of } \phi_n)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{m_n} (a_i^{(n)} - a_{i-1}^{(n)}) \mu(x : \phi_n(x) > a_{i-1}^{(n)})$$

But since $\phi_n \to f$, $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N, |f - \phi_n| < \varepsilon$. WLOG, consider

$$\phi := \phi_N = \sum_{i=1}^m a_i \mathbb{1}_{A_i}$$

SO

$$\int \phi \ d\mu = \sum_{i=1}^{\infty} (a_i - a_{i-1}) \mu\{x : \phi(x) > a_{i-1}\}$$

$$= \sum_{i=1}^{\infty} (a_i - a_{i-1}) \left[\mu\{x : f(x) > a_{i-1}\} - \mu\{a_{i-1} : a_{i-1} < |f - \phi|\} \right]$$

$$= \sum_{i=1}^{\infty} (a_i - a_{i-1}) \left[\mu\{x : f(x) > a_{i-1}\} - \mu\{a_{i-1} : a_{i-1} < \varepsilon\} \right]$$

$$= \sum_{i=1}^{\infty} (a_i - a_{i-1}) \mu\{x : f(x) > a_{i-1}\}$$

$$= \int_0^{\infty} \mu\{x : f(x) > \lambda\} \ d\lambda \quad \blacksquare$$

2. Let $1 < a \in \mathbb{R}$. Determine the limit of the following Lebesgue integral:

$$\lim_{n\to\infty}\int_0^\infty (1+\frac{t}{n})^n e^{at} dt$$

Let $f_n(t) = (1 + \frac{t}{n})^n e^{-at}$. Notice that $f_{n+1}(t) \ge f_n(t)$ for all $t \ge 0$

Proof: It suffices to show that

$$(1+\frac{t}{n})^n \le (1+\frac{t}{n+1})^{n+1}$$

Consider

$$(1 + \frac{t}{n+1})^{n+1} - (1 + \frac{t}{n})^n = (1 + \frac{t}{n+1})(1 + \frac{t}{n+1})^n - (1 + \frac{t}{n})^n$$

$$\geq (1 + \frac{t}{n+1})(1 + \frac{t}{n+1})^n - (1 + \frac{t}{n+1})^n$$

$$= (1 + \frac{t}{n+1})^n [(1 + \frac{t}{n+1}) - 1]$$

$$= (1 + \frac{t}{n+1})^n [\frac{t}{n+1}]$$

$$\geq 1 \cdot 0 = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

So, by the Monotone Convergence Theorem,

$$\lim_{n \to \infty} \int_0^\infty (1 + \frac{t}{n})^n e^{-at} dt = \int_0^\infty \lim_{n \to \infty} (1 + \frac{t}{n})^n e^{-at} dt$$

$$= \int_0^\infty e^t e^{-at} dt \qquad \text{(by definition of exp)}$$

$$= \int_0^\infty e^{-(a-1)t} dt$$

$$= \left[\frac{e^{-(a-1)t}}{1-a} \right]_0^\infty$$

$$= \frac{0}{1-a} - \frac{1}{1-a} = \boxed{\frac{1}{a-1}}$$

3.

(a) Let $\{r_n\}_1^{\infty}$ be an enumeration of $\mathbb{Q} \cap [0,1]$. Let $0 < a_n < \infty$ with $\sum_{n=1}^{\infty} a_n < \infty$.

Prove that the series

$$h(t) = \sum_{n=1}^{\infty} \frac{a_n}{\sqrt{|t - r_n|}}$$

converges a.e. (WRT the Lebesgue measure) for $t \in [0, 1]$

We want to show that $\mu\{t: h(t) = \infty\} = 0$.

CASE 1. $t \in \mathbb{Q} \cap [0, 1]$. Then, $\exists r_n \text{ such that } t = r_n \text{ so } \sqrt{|t - r_n|} = 0 \text{ and } \frac{a_n}{\sqrt{|t - r_n|}} = \infty \implies h(t) = \infty$.

However, $Q \cap [0,1]$ is countable so $\mu\{t : t \in \mathbb{Q} \cap [0,1] \land h(t) = \infty\} = 0$.

CASE 2. $t \in [0,1] \setminus \mathbb{Q}$. Let $\varepsilon > 0$.

Define

$$E_n(\varepsilon) = \left\{ t \in [0,1] \setminus \mathbb{Q} \middle| \frac{a_n}{\sqrt{|t - r_n|}} > \varepsilon \right\}$$

We WTS that $\mu(E_n(\varepsilon)) = 0$.

Certainly, if $t \in E_n(\varepsilon)$, then $|t - r_n| < (\frac{a_n}{\varepsilon})^2$. By the faithfulness of the Lebesgue measure, $\mu(E_n(\varepsilon)) \le 2(\frac{a_n}{\varepsilon})^2$.

We know that $\lim_{\varepsilon\to\infty} 2(\frac{a_n}{\varepsilon})^2 = 0$ so $\frac{a_n}{\sqrt{|t-r_n|}} < \infty$ a.e.

It only remains to show that $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{|t-r_n|}} < \infty$ a.e.

Let

$$E(\varepsilon) = \{t \in [0,1] \setminus \mathbb{Q} \mid h(t) > \varepsilon\}$$

Then, $E(\varepsilon) \subseteq \bigcup_n E_n(\varepsilon)$, so

$$\mu(E(\varepsilon)) \le \mu\left(\bigcup_{n} E_{n}(\varepsilon)\right)$$

$$\le \sum_{n} \mu(E_{n}(\varepsilon))$$

$$\le \sum_{n} 2\left(\frac{a_{n}}{\varepsilon}\right)^{2}$$

$$= 2\varepsilon^{-2} \sum_{n} a_{n}^{2}$$

Lemma: $\sum_n a_n^2 \le (\sum_n a_n)^2$

Proof:

$$\left(\sum_{n} a_{n}\right)^{2} = \sum_{n} \sum_{m} a_{n} a_{m} = \sum_{n} a_{n}^{2} + \sum_{n} \sum_{n \neq m} a_{n} a_{m} \ge \sum_{n} a_{n}^{2}$$

So $\mu(E(\varepsilon)) \leq 2\varepsilon^{-2} \left(\sum_n a_n\right)^2 < \infty$ for all fixed $\varepsilon > 0$. And indeed,

$$\lim_{\varepsilon \to \infty} \mu\{t \in [0,1] \setminus \mathbb{Q} \mid h(t) > \varepsilon\} = \mu(E(\varepsilon)) = 0$$

so $h(t) < \infty$ a.e.

(b) If g = h a.e., prove that g is unbounded in every subinterval of [0, 1].

Suppose g = h a.e. and let $I \subseteq [0, 1]$ be a subinterval.

Suppose g is bounded on I. Then, $\exists M \in \mathbb{R} \text{ s.t. } \forall t \in I, \ g(t) \leq M.$

Once again, we proceed by cases.

CASE 1. $\{t \in I \cap \mathbb{Q} : h(t) = g(t)\} \neq \emptyset$. Then, we can take $t = r_n \in I \cap \mathbb{Q}$ such that $h(t) = g(t) = \infty$ which is a contradiction.

CASE 2. $\{t \in I \setminus \mathbb{Q} : h(t) = g(t)\} \neq \emptyset$.

By the density of \mathbb{Q} in \mathbb{R} , $\exists r_n \in I \cap \mathbb{Q}$ such that $|t - r_n| < \delta$ for some $\delta > 0$.

But then, for all $t \in I \setminus \mathbb{Q}$, $\frac{a_n}{\sqrt{|t-r_n|}} > \frac{a_n}{\sqrt{\delta}}$ so by taking $\delta \to 0$, we have $\frac{a_n}{\sqrt{|t-r_n|}} \to \infty$. But this implies that $h(t) = \infty$ which is a contradiction of Part 1.

- 4. Assume $f_n \stackrel{\mu}{\longrightarrow} f$.
 - Prove that $\liminf_n \int |f_n| \ d\mu \ge \int |f| \ d\mu$ Since $f_n \stackrel{\mu}{\longrightarrow} f$, we have (by a Theorem from class), that there exists a subsequence $f_{n_k} \to f$ a.e. Then, $|f_{n_k}| \to |f|$ a.e. so by Fatou's lemma,

$$\liminf_{n} \int |f_{n_k}| \ d\mu \ge \int \liminf_{n} |f_{n_k}| \ d\mu = \int |f| \ d\mu$$

By monotonicity of the integral, we also have

$$\liminf_{n} \int |f_n| \ d\mu \ge \liminf_{n} \int |f_{n_k}| \ d\mu$$

Therefore,

$$\liminf_{n} \int |f_n| \ d\mu \ge \int |f| \ d\mu$$

• Further assume $|f_n| \leq g \in \mathcal{L}^1$. Prove that $f_n \to f$ in \mathcal{L}^1 . As before, we have that $f_{n_k} \to f$ a.e. and in particular, $|f_{n_k} - f| \to 0$ a.e. By assumption, $|f_{n_k}| \leq g \in \mathcal{L}^1$ so by the Dominated Convergence Theorem,

$$\lim \int |f_{n_k} - f| \ d\mu = \int \lim |f_{n_k} - f| \ d\mu = \int 0 \ d\mu = 0$$

Therefore, $f_{n_k} \to f$ in \mathcal{L}^1 .

Suppose now that $f_n \not\to f$ in \mathcal{L}^1 . Then, $\forall \varepsilon > 0$, $\exists f_{n_i}$ for infinitely many n_i such that

$$\int |f_{n_i} - f| \ d\mu \ge \varepsilon$$

But $f_{n_i} \stackrel{\mu}{\longrightarrow} f$ so it also has a subsequence $f_{n_{i_j}} \to f$ in \mathcal{L}^1 . But then $\left| f_{n_{i_j}} - f \right| \to 0$ a.e. and $\left| f_{n_{i_j}} \right| \leq g \in \mathcal{L}^1$ so $\left| f_{n_{i_j}} - f \right| \leq 2g$, hence

$$\liminf \left| f_{n_{i_j}} - f \right| \ d\mu = 0$$

which is a contradiction.