Network QoS 371-2-0213

Lecture 10

Gabriel Scalosub

Outline

- Introduction to Adversarial Queueing Theory
 - Classical Queueing Theory
 - Adversarial Queueing Theory
- Preliminary Observations
 - Stability vs. Delay
 - Traffic Characterization
 - Some Thoughts on Protocol Stability
- Protocols
 - FTG
 - FIFO
 - Epilogue (for now...)

Classical Queueing Theory

- Single M/M/1 queue
 - ullet arrival: Exponential with parameter λ
 - ullet service: Exponential with parameter μ
- Concerns
 - utilization
 - fraction of time server is busy $\rho=\frac{\lambda}{\mu}$
 - stability
 - ullet mean number of customers in system $ar{N}=rac{
 ho}{1ho}$
 - $\lim_{n\to 1} \bar{N} = \infty$
 - tail probability $Pr[N > k] = \rho^{k+1}$
 - delay/response time
 - Little's Law: mean delay $\bar{T} = \lambda^{-1} \bar{N}$
- Lessons learnt
 - overload $\rho \geq 1$ is not manageable
 - stability implies $\rho < 1$
 - stability related to delay

Queuing Networks

- Network of queues
 - open
 - customers arrive from outside
 - potentially to any queue in the network
 - potentially infinite customers population
 - concerns: stability, delay
 - closed
 - customers circulate in the network
 - finitely many customers
 - concerns: delay
 - multi-class
 - probabilistic transitions from queue to queue
 - different customers may follow different paths

System and Traffic Model

- Slotted time
- Directed graph G = (V, E)
 - each link $e \in E$ has rate 1
 - ullet stochastic terms: " $\mu=1$ "
 - ullet single queue Q_e at link tail
 - apriori, unlimited buffer space
 - ullet employs scheduling policy ${\cal P}$
 - d: max path-length in G
 - m: number of edges
- Unit size packets
 - $p = (\pi_p, a_p)$
 - π_p : simple path in G (source routing)
 - a_p : arrival time of p at path source end
 - take a single time slot to traverse a link
- Adversary
 - Injects packets into the various nodes in the network
 - stochastic terms: similar to multi-class open queuing networks

Adversaries and Stability

- Notation:
 - N(e, I): # packets injected during interval I with $e \in path$
 - $Q_e(t)$: queue size at tail of e at time t
- Stability
 - $\sup_t \sum_{e \in E} Q_e(t) < \infty$
- For M/M/1, stability implies $\rho < 1$
- What about adversarial traffic?
 - average injection rate of packets traversing e > 1
 - system unstable
 - what about injection rate = 1? < 1?
- (r, b)-adversary
 - for any time interval I and edge $e \in E$

$$N(e, I) \leq r|I| + b$$

• note: injections made throughout the network!

Elements of the Game

- Topology, traffic (adversary), protocol
- Recall concerns: delay and stability
- Questions we'd like to address
 - how each element affects these concerns
 - relation between stability and delay
 - "equivalent" to Little's Law?
 - identify stable triplets (topology,traffic,protocol)
 - are there protocols that are always stable
 - for any topology and traffic
 - universally stable
 - are there topologies that are always stable
 - for any work-conserving protocol and traffic
 - universally stable
 - are there protocols that are never stable
 - for any traffic (and appropriate topology)
 - for any topology (and appropriate traffic)

Protocols

Work-conserving (WC)

Protocols

Work-conserving (WC)

FIFO	Nearest-to-Go (NTG)	Farthest-to-Go (FTG)	Shortest-in-System (SIS)
LIFO	Farthest-from-Source (FFS)	Nearest-to-Source (NTS)	Longest-in-System (LIS)

Stability and Underload vs. Bounded Delay (r < 1)

Theorem

For any $(1 - \varepsilon, b)$ -adversary and any WC protocol, the system is stable iff it has bounded delay.

Proof.

- Stability: no queue ever holds more than k packets
 - in particular, $b \leq mk$
- Consider $Q_e(t) \neq \emptyset$ and show it empties during $I = [t, t + \frac{2mk}{\varepsilon}]$
 - by contradiction (and WC), $\frac{2mk}{\varepsilon} + 1$ packets traverse e during I
 - however,
 - at t there are $\leq mk$ packets in the system
 - arrivals during I at most $|I|(1-\varepsilon)+b=(\frac{2mk}{\varepsilon}+1)-(2mk+\varepsilon)+b<(\frac{2mk}{\varepsilon}+1)-mk+(b-mk)\leq (\frac{2mk}{\varepsilon}+1)-mk$
 - ullet strictly less than $rac{2mk}{arepsilon}+1$ could have traversed e during I
- ullet Every packet is absorbed in $\frac{2mk}{arepsilon} \cdot d$ time

Stability and Underload vs. Bounded Delay (r < 1)

Theorem

For any $(1 - \varepsilon, b)$ -adversary and any WC protocol, the system is stable iff it has bounded delay.

Proof.

- Assume every packet is absorbed in T time
- If $|Q_e(t)| > T$, the last packet would have delay > T
- Hence, network load < mT

What If r = 1?

- WC + Bounded delay implies stability?
 - proof unaffected
- WC + Stability implies bounded delay?

Traffic Characterization

Theorem

Given G = (V, E), if traffic σ can be made stable by protocol \mathcal{P} then σ is generated by an $(r \leq 1, b \geq 0)$ -adversary

Proof.

- Stability: $\exists B \text{ s.t. network load under } \mathcal{P} \text{ is always} \leq B$
- Show that for every $e \in E$ and interval I

$$N(e, I) \leq |I| + B$$

- By contradiction, N(e, I) > |I| + B
 - during I at most |I| packets traverse e
 - by end of I we have > B packets pending for e. Contradiction.
- By definition, σ is generated by a (1, B)-adversary.

\mathcal{P} Is Stable iff All WC Protocols Are?

- Why should it matter which packets we forward?
 - any WC protocol forwards the same amount on any link
 - stability is determined by quantity, not "quality"

It matters!!

- Why?
 - local scheduling decisions affect load downstream
- Is there a good way to tell if a protocol is stable?
- Is it intuitive?

Protocol	Universally Stable?
FIFO	
LIFO	
Nearest-to-Go (NTG)	
Farthest-from-Source (FFS)	
Farthest-to-Go (FTG)	
Nearest-to-Source (NTS)	
Shortest-in-System (SIS)	
Longest-in-System (LIS)	

Farthest-To-Go (FTG)

Theorem (FTG stability)

For any G = (V, E) and any $(r \le 1, b)$ -adversary, FTG is stable

- Notation
 - Recall: $d = \max \text{ path-length in } G, m = |E|$
 - $X_e^i(t)$: number of packets in $Q_e(t)$ with target-distance $\geq i$
 - sequence k_i :

$$k_i = \begin{cases} 0 & i > d \\ m \cdot k_{i+1} + b & 0 \le i \le d \end{cases}$$

- non-increasing: $k_i \ge k_{i+1}$
- $k_d = b$, $k_{d-1} = (m+1)b$, $k_{d-2} = (m(m+1)+1)b$
- Plan
 - Show $X_e^i(t) \leq k_i$
 - network load $\leq \sum_{e} X_{e}^{1}(t) \leq m \cdot k_{1} = O(m^{d}b)$

Farthest-To-Go is Universally Stable

Lemma

For any $e \in E$, time t and $0 \le i \le d$, $X_e^i(t) \le k_i$

Proof (by reverse induction on i).

- Assume for simplicity system is empty at time 0
- i > d: trivial (no such packets in $Q_e(t)$)
- Assume true for j > i and consider i (and some $e \in E$ and t)
- $t' = \arg\max\{t'' \le t \mid X_e^i(t'') = 0\}$
 - X_e^i is "reset" at t'
 - exists since system is empty at time 0
- Consider packets "in" $X_e^i(t)$
 - ullet some injected after t'
 - at most (t t') + b injected during [t' + 1, t]

Farthest-To-Go is Universally Stable

Lemma

For any $e \in E$, time t and $0 \le i \le d$, $X_e^i(t) \le k_i$

Proof (by reverse induction on i).

- \bullet some in system at t'
 - none in $Q_e(t')$
 - all at target-distance $\geq i + 1$
 - at most $m \cdot k_{i+1}$ (by I.H.)
- e delivers target-distance $\geq i$ packets throughout [t'+1,t]
 - $X_e^i > 0$ throughout by choice of t' + WC + FTG criteria
- Hence

$$\begin{array}{ll} X_e^i(t) & = & X_e^i(t') + \text{type } 1 + \text{type } 2 - \text{departures} \\ & \leq & 0 + \overbrace{(t-t') + b} + \overbrace{m \cdot k_{i+1}} - \overbrace{(t-t')} \\ & = & m \cdot k_{i+1} + b = k_i \end{array}$$

Theorem

FIFO is unstable against (r, b)-adversaries, for r > 0.85

Proof.

• Consider the "baseball" graph

- Assume s packets with path e0 in B at t
 - all other queues empty
- Adversary forces s' > s packets with path e_1 in C at t' > t
 - all other queues empty

Theorem

FIFO is unstable against (r, b)-adversaries, for r > 0.85

Proof.

- Phase 1 (s time):
 - rs packets with path $e_0 f_0' e_1$ (set W)
 - end of phase 1: W in B
 - recall we start with s packets with path e_0 in B

Theorem

FIFO is unstable against (r, b)-adversaries, for r > 0.85

Proof.

- Phase 2 (rs time):
 - r^2s packets with path $e_0f_0e_1$ (set X)
 - r^2s packets with path f'_0 (set Y)
 - end of phase 2: X in B
 - since W are forwarded before

• serviced at rate
$$\frac{1}{r+1}$$
 by f_0'

•
$$rs - rs \frac{1}{r+1} = \frac{r^2s}{r+1}$$
 packets of W remain in A

Y arrive at rate r to A

• serviced at rate
$$\frac{r}{r+1}$$
 by f_0'

$$r^2s$$
 waiting at f_0' tail

•
$$r^2s - r^2s\frac{r}{r+1} = \frac{r^3s}{r+1}$$
 packets of Y remain in A

Theorem

FIFO is unstable against (r, b)-adversaries, for r > 0.85

Proof.

- Phase 3 (r^2s time):
 - r^3s packets with path e_1 (set Z)
 - remaining W arrive at rate $\frac{1}{r+1}$ to C
 - slowed down by remaining Y on f'_0
 - all $\frac{r^2s}{r+1}$ remaining packets arrive
 - X arrive at rate 1 to C
 - flow freely through f_0
 - all r^2s packets arrive
 - Total arrivals to C(W,X,Z): $\frac{r^2s}{r+1} + r^2s + r^3s$
 - packets served on e_1 : r^2s (FIFO is WC)

Theorem

FIFO is unstable against (r, b)-adversaries, for r > 0.85

Proof.

• Pending packets for e₁ after phase 3

$$\phi(r,s) = \frac{r^2s}{r+1} + r^3s$$

Requirement:

$$\phi(r,s) > s$$

- $\phi(1,s) = \frac{3}{2}s$
- $\phi(0,s) = \bar{0}$
- Satisfied for r > 0.85
- Initialization: burst b

FIFO Instability (only for large enough r?)

Rate	Reference	
> 0.85	Andrews et al. (2001)	
> 0.8357	Díaz et al. (2001)	
> 0.749	Koukopoulos et al. (2002)	
> 0.5	Lotker et al. (2002)	
any $\varepsilon>0$	Bhattacharjee et al. (2003)	

FIFO Instability (only for large enough r?)

Rate	Reference	
> 0.85	Andrews et al. (2001)	
> 0.8357	Díaz et al. (2001)	
> 0.749	Koukopoulos et al. (2002)	
> 0.5	Lotker et al. (2002)	
any $\varepsilon > 0$	$\operatorname{iny} \varepsilon > 0 \qquad \operatorname{Bhattacharjee} \operatorname{et} \operatorname{al.} \left(2003 \right)$	

Universal Stability of WC Protocols

Protocol	Universally Stable?
FIFO	No
LIFO	
Nearest-to-Go (NTG)	
Farthest-from-Source (FFS)	
Farthest-to-Go (FTG)	Yes
Nearest-to-Source (NTS)	
Shortest-in-System (SIS)	
Longest-in-System (LIS)	

Towards Universally Stable Topologies

(or, Is FIFO Never Stable?)

- Next week
 - Alternative adversarial models
 - Easy traffic
 - are there rates for which any WC protocol is stable?
 - depends on topology?
 - Universally stable topologies
 - are there topologies for which any WC protocol is stable?
 - at any rate ≤ 1 ?

References

- Borodin, Kleinberg, Raghavan, Sudan and Williamson. Adversarial Queueing Theory, Journal of the ACM 48(1):13–38 (2001)
- Andrews, Awerbuch, Fernández, Leighton, Liu, Kleinberg.
 Universal-Stability Results and Performance Bounds for Greedy
 Contention-Resolution Protocols, Journal of the ACM 48(1):39–69 (2001)
- Cholvi and Echagüe. Stability of FIFO networks under adversarial models:
 State of the art, Computer Networks 51(15):4460-4474 (2007)