

MACHINE LEARNING CLASSIFICATION PROJECT

CREDIT RISK PREDICTION

BHAVAN'S VIVEKANANDA COLLEGE | BSC HONS DATA SCIENCE

MACHINE LEARNING PROJECT STAGES

ABOUT THE DATA:

The task here is to build a classification model to predict "TARGET_credit_risk".

OBJECTIVE:

The original dataset contains 1000 entries with 20 categorial/symbolic attributes. Each person is classified as good or bad credit risks according to the set of attributes. We have to predict the credit risk of a person.

THE PATH:

Implementing different classification models to fit the best one to the dataset. We followed a traditional approach with dummy variable encoding

DATA AND DATA QUALITY CHECK:

INTRODUCTION

Brief about the instances and attributes

VARIABLES

Detailed description about variables

DATA PRE PROCESSING

Data Cleaning, Data Transformation etc

INTRODUCTION:

Number of instances	1000
Number of Attributes	21
Attribute breakdown	20 quantitative input variables, and 1 quantitative output variable
Missing Attribute Values	None

VARIABLES:

TARGET_creditrisk	Has the credit contract been complied with (good) or not (bad)	
status	status of the debtor's checking account with the bank	
duration	duration in months	
credit_history	history of compliance with previous or concurrent credit contracts	
purpose	purpose for which the credit is needed	
saving	debtor's savings	
employment_duration	duration of debtor's employment with current employer	

DATA PRE-PROCESSING:

1. There are few columns in the dataset which are categorical but they're coded as 0's and 1's.

2. There are no null values in the data set.

3. There are No duplicate values in the dataset.

DUMMY VARIABLE ENCODING:

- 1. Before dummy variable encoding, there were 21 columns
- 2. After dummy variable encoding, resultant obtained to 35 columns

3. Categorical columns are status, credit history, personal status sex, other debtors, purpose etc.

categorical columns like these have been dummified, which resulted in increasing to 35 columns

EXPLORATORY DATA ANALYSIS:

Graph represents the unique values of each variable

- Heatmap represents the correlation between different variables.
- There is a positive correlation between duration and amount

• Box Plot to represent outliers.

• **Pie Chart** representing the 700 good and 300 bad credits with 20 predictor variables.

VARIANCE INFLATION FACTOR MULTICOLINEARITY ANALYSIS

Variables with Low VIF:

purpose_1 to purpose_10, telephone, other_debtors_2,
 other_debtors_3, other_installment_plans_2,
 other_installment_plans_3, housing_3, etc. (VIF values less
 than 5)

VARIABLES	VIF
duration	8.121870
amount	5.747600
savings	3.163318
employment_duration	11.026173
installation_rate	11.056842
present_residence	9.727082
property	9.850866
age	13.796849
number_credits	10.236151

MODEL BUILDING:

1. DECISION TREE CLASSIFIER:

TRAIN_TEST RATIO	ACCURACY
65-35	69%
70-30	68%
75-25	71.2%
80-20	71.5%

2. K NEIGHBORS CLASSIFIER:

TRAIN_TEST RATIO	ACCURACY
65-35	88%
70-30	86%
75-25	87%
80-20	85%

3. SUPPORT VECTOR CLASSIFIER:

TRAIN_TEST RATIO	ACCURACY
65-35	94%
70-30	94.3%
75-25	94.8%
80-20	95%

4. GRADIENT BOOSTING:

TRAIN_TEST RATIO	ACCURACY
65-35	89%
70-30	87%
75-25	90%
80-20	91%

5. NAIVE BAYES CLASSIFIER:

TRAIN_TEST RATIO	ACCURACY
65-35	94%
70-30	95%
75-25	96.4%
80-20	96%

6. RANDOM FOREST CLASSIFIER:

TRAIN_TEST RATIO	N_ESTIMATORS	ACCURACY
65-35	100	97.4%
70-30	100	98.6%
75-25	100	98.8%
80-20	100	97.5%

7. NEURAL NETWORK:

TRAIN_TEST RATIO	ARCHITECTURE	OPTIMIZER	ACCURACY	EPOCHS
65-35	128-64-1	Adam	98.2%	100
70-30	128-64-1	Adam	97%	100
75-25	128-64-1	Adam	96%	100
80-20	128-64-1	Adam	96.2%	100

COMPARISON OF MODELS:

MODEL	ACCURACY(Test Size 75-25)
Decision Tree Classifier	71.2%
K Neighbors Classifier	87%
Support Vector Classifier	94.8%
Gradient Boosting	90%
Naive Bayes	96.4%
Random Forest Classifier	98.8%
Neural Network	96%

CONCLUSION:

- 1. For this Credit dataset, we applied 7 algorithms. Decision Tree, K Neighbors, Support Vector, Gradient Boosting, Random Forest, Naive Bayes, Neural Network.
- 2. Among all the important variables, Credit_History is the most impactful to the target variable Credit_Risk. (Based on the past credit history, we can predict potential risks which may occur in near future by deploying different classification models)
- 3. Here, we conclude that Random Forest Classifer is the best model for Credit Dataset with 98.8% accuracy, test size of 75-25 ratio

credit

THANK YOU

G. MADHU KIRAN
CHIRAMJEEVI
P. SHRAVANI
SATHVIKA REDDY

APPENDIX

TRAINING AND TESTING:

```
# Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3)
```

CHECKING ACCURACY:

```
print("accuracy",metrics.accuracy_score(y_test,y_pred))
```

DUMMY VARIABLE ENCODING:

DECISION TREE CLASSIFIER:

```
model=DecisionTreeClassifier()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
y_pred
```

K NEIGHBORS CLASSIFIER:

```
clf=KNeighborsClassifier(n_neighbors=5)
clf.fit(X_train,y_train)
```

▼ KNeighborsClassifier

KNeighborsClassifier()

SUPPORT VECTOR CLASSIFIER:

```
cls=SVC(kernel='linear')

cls.fit(X_train,y_train)

v         SVC
SVC(kernel='linear')
```

GRADIENT BOOSTING:

NAIVE BAYES:

```
# Initialize the Gaussian Naive Bayes classifier
naive_bayes_classifier = GaussianNB()
naive_bayes_classifier.fit(X_train,y_train)

v GaussianNB
GaussianNB()
```

RANDOM FOREST CLASSIFIER:

```
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train,y_train)
```

RandomForestClassifier

RandomForestClassifier(random_state=42)

NEURAL NETWORK:

```
# Define the ANN model
model = Sequential()
model.add(Dense(128, activation='relu', input_dim=X_train.shape[1]))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])
# Train the model
model.fit(X_train, y_train, epochs=100, batch_size=32)
# Evaluate the model on the test set
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:',score[0])
print('Test accuracy:',score[1])
```

VARIANCE INFLATION FACTOR:

```
# Import library for VIF
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(df):
    vif = pd.DataFrame()
    vif["variables"] = df.columns
    vif["VIF"] = [variance_inflation_factor(df.values,i) for i in range((df).shape[1])]
    return(vif)
calc_vif(df)
```

28	purpose_9	1.609290	
29	purpose_10	1.169066	
30	personal_status_sex_2	6.417080	
31	personal_status_sex_3	11.066844	
32	personal_status_sex_4	2.647124	
33	other_debtors_2	1.121344	
34	other_debtors_3	1.180528	
35	other_installment_plans_2	1.390659	
36	other_installment_plans_3	7.620601	
37	housing_2	5.969744	
38	housing_3	2.305738	