Введение в теорию меры. Семинар 13.05.2020

Задача 5

1. Пусть \aleph_B σ -алгебра борелевских множеств на отрезке $[0,1], \aleph_\mu$ σ -алгебра измеримых множеств [0,1].

Докажем, что $\aleph_B \subset \aleph_\mu$. Всякое открытое множество на прямой $\mathbb R$ является объединением конечного или счетного числа попарно непересекающихся интервалов (Теорема 5, гл. II, параграф 2). Каждое открытое множество на отрезке [0,1]является пересечением некоторого открытого множества на $\mathbb R$ с [0,1] (оба множества (1/2,1), (1/2,1] открыты в [0,1], хотя первое открыто на $\mathbb R$, а второе множество общего вида на $\mathbb R!!$). Интервал—элементарное измеримое множетво. Поэтому открытое множество $A \subset [0,1]$ — элементарное измеримое. σ -алгебра \aleph_B порождена открытыми множествами относительно операций дополнения, пересечения, объединения. Следовательно, $\aleph_B \subset \aleph_\mu$.

Обратно, \aleph_{μ} порождена элементарными измеримыми (по Теореме 5 открытыми на $\mathbb{R} \cap [0,1]$). Следовательно, $\aleph_{\mu} \subset \aleph_{B}$.

2. Пусть \aleph_B σ -алгебра борелевских множеств на квадрате $[0,1] \times [0,1]$, \aleph_{μ} σ -алгебра измеримых множеств на $[0,1] \times [0,1]$. Включение $\aleph_{\mu} \subset \aleph_B$ доказывается как в случае 1 (как именно?).

Включение $\aleph_B \subset \aleph_\mu$ выполнено потому, что каждое открытое множество $A \subset [0,1] \times [0,1]$ есть счетное объединение открытых прямоугольников. Это (не элементарное множество) измеримо, поскольку \aleph_μ σ -алгебра.

Задача 6

Это Теорема 9, гл. V, параграф 1.

$$A_1 \supset A_2 \supset \cdots \supset, \quad \cap_i A_i = A.$$

Требуется доказать, что

$$\mu(A) = \lim_{n \to +\infty} \mu(A_n).$$

Достаточно рассмотреть случай $A = \emptyset$. Поскольку в общем случае A– измеримо, это множество можно вычесть из каждого множества убувающей фильтрации и воспользоваться свойством аддитивности меры (каким образом?).

Выполнено:

$$A_1 = (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \dots,$$

слагаемые дизъюнктны. По свойству σ -аддитивности

$$\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1}.$$

Ряд сходится, по необходимому условию сходимости ряда, при $i \to +\infty$:

$$\mu(A_i) \to 0 + . \quad \Box$$

Задача 8

Обозначим через A_s — множество точек, которые не имеют 100 нулей подряд, начиная с s. Тогда $\mu(A_s)=0$ (ограничения накапливаются на хвосте через каждые 100 разрядов, с мерой $\frac{2^{100}-1}{2^{100}}<1$ независимо. Но

$$A = \bigcup_{s=1}^{\infty} A_s$$
.

Поэтому $\mu(A) = 0$.

Задача 10

Речь идет о мере Стилтьеса на прямой \mathbb{R} с дискретной мерой в точках $\mathbb{N} \subset \mathbb{R}$. Поскольку

$$\sum_{i=0}^{\infty} 2^{-i} = 1,$$

то мера всей прямой равна 1. Функция F(x)—это функция геометрического распределения вероятности события $\xi=i,\quad i\in\mathbb{N}.$ Функция вероятности σ —аддитивная.

Задача 11

$$F(x) = 0, x \le 0, \quad F(x) = x + 1, 0 < x \le 1, \quad F(x) = (x + 1)^2, 1 < x.$$

F(x) — неубывающая, непрерывна слева (почему?). Поэтому $\mu((a,b))=F(b)-F(a+0),$ $\mu([a,b])=F(b+0)-F(a),$ $\mu((a,b])=F(b+0)-F(a+0),$ $\mu([a,b))=F(b)-F(a),$ гл. V, параграф 3, раздел 3.

1.
$$\mu([0,1]) = F(1+0) - F(0) = 4 - 0 = 4$$
.

2.
$$\mu((0,1]) = F(1+0) - F(0+0) = 4-1 = 3.$$

3.
$$\mu((1/2,3/2)) = F(3/2) - (1/2) = \frac{25}{4} - \frac{9}{2} = \frac{7}{4}$$
.

4.
$$\mu([1,2)) = F(2) - F(1) = 9 - 2 = 7.$$

5.
$$\mu(\mathbf{Q}) = \mu(1+0) - m(1-0) + \mu(0+0) - \mu(0-0) = 4 - 2 + 1 - 0 = 3$$
.

Д.З. к понедельнику 18 мая. Решать листок "Измеримые функции" (начнем на лекции).

- 4. Мера μ называется полной, если для $A' \subset A$ из $\mu(A) = 0$ вытекает, что $\mu(A') = 0$. Мера Лебега является полной (почему?).
- 2. Выберем на отрезке неизмеримое (по Лебегу) множество $A \subset [0,1]$. Характеристическая функция множества A неизмерима (докажите!).