16/11/2017 HackerRank

Sherlock's Array Merging Algorithm ■

Watson gave Sherlock a collection of arrays V. Here each V_i is an array of variable length. It is guaranteed that if you merge the arrays into one single array, you'll get an array, M, of n distinct integers in the range [1, n].

Watson asks Sherlock to merge $m{V}$ into a sorted array. Sherlock is new to coding, but he accepts the challenge and writes the following algorithm:

- $M \leftarrow []$ (an empty array).
- $k \leftarrow$ number of arrays in the collection V.
- While there is at least one non-empty array in ${m V}$:
 - $T \leftarrow [\]$ (an empty array) and $i \leftarrow 1$.
 - While $i \leq k$:
 - If V_i is not empty:
 - Remove the first element of V_i and push it to T.
 - $i \leftarrow i + 1$.
 - While T is not empty:
 - Remove the minimum element of $m{T}$ and push it to $m{M}$.
- Return ${\it M}$ as the output.

Let's see an example. Let V be $\{[3,5],[1],[2,4]\}$.

The image below demonstrates how Sherlock will do the merging according to the algorithm:

Sherlock isn't sure if his algorithm is correct or not. He ran Watson's *input*, V, through his pseudocode algorithm to produce an *output*, M, that contains an array of n integers. However, Watson forgot the contents of V and only has Sherlock's M with him! Can you help Watson reverse-engineer M to get the original contents of V?

Given m, find the number of different ways to create collection V such that it produces m when given to Sherlock's algorithm as *input*. As this number can be quite large, print it modulo $10^9 + 7$.

Notes:

- Two collections of arrays are different if one of the following is true:
 - Their sizes are different.
 - Their sizes are the same but at least one array is present in one collection but not in the other.
- Two arrays, \boldsymbol{A} and \boldsymbol{B} , are different if one of the following is true:
 - Their sizes are different.
 - Their sizes are the same, but there exists an index i such that $a_i \neq b_i$.

Input Format

The first line contains an integer, n, denoting the size of array M.

The second line contains n space-separated integers describing the respective values of $m_0, m_1, \ldots, m_{n-1}$.

Constraints

- $1 \le n \le 1200$
- $1 \leq m_i \leq n$

Output Format

Print the number of different ways to create collection \emph{V} , modulo 10^9+7 .

Sample Input 0

3 1 2 3

Sample Output 0

4

Explanation 0

There are four distinct possible collections:

1.
$$V = \{[1, 2, 3]\}$$

2.
$$V = \{[1], [2], [3]\}$$

3.
$$V = \{[1,3],[2]\}$$

16/11/2017 HackerRank

```
4. V = \{[1], [2, 3]\}.
```

Thus, we print the result of $4 \mod (10^9 + 7) = 4$ as our answer.

Sample Input 1

2 1

Sample Output 1

1

Explanation 1

1 Upload Code as File

The only distinct possible collection is $V = \{[2,1]\}$, so we print the result of $1 \mod (10^9 + 7) = 1$ as our answer.

f in Submissions:104 Max Score:60 Difficulty: Hard Rate This Challenge: ☆☆☆☆☆

Run Code

Submit Code

```
Current Buffer (saved locally, editable) &
                                                                                         Java 7
1 ▼ import java.io.*;
2 import java.util.*;
3 import java.text.*;
4 import java.math.*;
   import java.util.regex.*;
7 ▼ public class Solution {
8 ▼
        public static void main(String args[] ) throws Exception {
            /* Enter your code here. Read input from STDIN. Print output to STDOUT */
9 ▼
10
11
   }
12
                                                                                                                  Line: 1 Col: 1
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

☐ Test against custom input