Suzie Brown

2 November 2018

Genealogies of Sequential Monte Carlo Algorithms

Adam Johansen

Paul Jenkins

Hidden Markov model

- \blacktriangleright { $X_1, X_2, ...$ } hidden Markov states
- \triangleright Y_i noisy observation of X_i
- ► Markov transition kernel f
- 'emission distribution' g

Inference on a HMM

- filtering distribution $p(x_T \mid y_{1:T})$
- ▶ **smoothing distribution** $p(x_{1:T} | y_{1:T})$ 'trajectory of all previous states'

Sequential Monte Carlo

- ► Approximate these distributions using *N* particles
- Initialise, then iterate the steps:
 - 1. **propagate:** update positions of particles by applying the Markov kernel f
 - 2. **calculate weights:** weight the particles according to how well they agree with the observations
 - resample resample particles proportionally to their weights ('good' particles multiply, 'bad' particles die out)

- ▶ Resampling step induces a genealogical (family tree) structure
- ► Ancestral degeneracy: genealogies of all current particles necessarily coalesce at some past time step
- ▶ Bad news for estimating smoothing distribution!

lacktriangle How many particles do I need to ensure n distinct lineages remain in generation T-t with probability greater than 1-lpha ?

- How many particles do I need to ensure n distinct lineages remain in generation T-t with probability greater than $1-\alpha$?
- ► Easiest case (multinomial resampling) addressed in Koskela, Jere, et al. "Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo." arXiv preprint arXiv:1804.01811 (2018).
- Next: relax assumptions, generalise to other resampling schemes and conditional SMC