IN THE CLAIMS:

5

6

7

8

9

10

11

1

2

1

2

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (original) A communication system for transporting Internet protocol2 formatted communications over a Universal Mobile Telecommunications System (UMTS)
 3 wireless communications system, the communication system including a base station and
 4 a radio network controller, the communication system further comprising:
 - an inter-working gateway adapted for interconnection to the radio network controller and the base station, the inter-working gateway being adapted to communicate via Internet transport protocols and UMTS-based transport protocols, the inter-working gateway being further adapted to reformat communications with movable UMTS-based radio-controlled network layer protocols for transport to the radio network controller and to reformat communications with movable Internet radio-controlled network layer protocols for transport to the base station.
- 1 2. (original) The communications system as recited in claim 1, wherein the 2 UMTS communications system exists at an installed site.
 - 3. (original) The communications system as recited in claim 1, wherein the inter-working gateway is supplied as pre-installed with the transport protocols.
- 4. (original) The communications system as recited in claim 1, wherein the inter-working gateway is adapted to receive and download the radio-controlled network layer protocols and the transport protocols from the base station.
 - 5. (original) The communications system as recited in claim 1, wherein the base station and the inter-working gateway are interconnected in a local area network.
- 1 6. (original) The communications system as recited in claim 1, further 2 comprising:
- an SDRAM memory;

one or more channel elements, each comprising a digital signal processor and associated flash memory and an application specific integrated circuit to manage baseband processing; and

a microprocessor for configuring each channel element, storing user data in the SDRAM memory, and exchanging user data with the digital signal processor.

- 7. (original) The communications system as recited in claim 1, wherein an interconnection of the inter-working gateway with the base station carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction.
- 8. (original) The communications system as recited in claim 1, wherein an interconnection of the inter-working gateway with the radio network controller carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction.
- 9. (original) The communications system as recited in claim 1, wherein an interconnection of the inter-working gateway with the base station carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction, and
- an interconnection of the inter-working gateway with the radio network controller carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications formatted with the movable Internet radio-controlled network layer protocols in a second direction.
- 10. (original) The communications system as recited in claim 1, further comprising:
 - a Node-B base station adapted for transmitting and receiving cellular telephone communications, the Node-B base station being interconnected with the radio network controller for exchanging wireless cellular telephone communications.
- 1 11. (original) The communications system as recited in claim 10, wherein the 2 UMTS communications system exists at an installed site.

- 1 12. (original) The communications system as recited in claim 10, wherein the 2 inter-working gateway is supplied as pre-installed with the transport protocols.
 - 13. (original) The communications system as recited in claim 10, wherein the inter-working gateway is adapted to receive and download the radio-controlled network layer protocols and the transport protocols from the base station.
 - 14. (original) The communications system as recited in claim 10, wherein the base station and the inter-working gateway are interconnected in a local area network.
- 1 15. (original) The communications system as recited in claim 10, further 2 comprising:
- an SDRAM memory;
 - one or more channel elements each comprising, a digital signal processor and associated flash memory and an application specific integrated circuit to manage baseband processing; and
 - a microprocessor for configuring each channel element, storing user data in the SDRAM memory, exchanging user data with the digital signal processor, and processing the movable protocols.
 - 16. (original) The communications system as recited in claim 10, wherein an interconnection of the inter-working gateway with the base station carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction.
 - 17. (original) The communications system as recited in claim 10, wherein an interconnection of the inter-working gateway with the radio network controller carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction.
 - 18. (original) The communications system as recited in claim 10, wherein an interconnection of the inter-working gateway with the base station carries the communications reformatted with the movable UMTS-based radio-controlled network layer protocols in a first direction, and the communications reformatted with the movable Internet radio-controlled network layer protocols in a second direction, and

6	an interconnection of the inter-working gateway with the radio network controller
7	carries the communications reformatted with the movable UMTS-based radio-controlled
8	network layer protocols in a first direction, and the communications reformatted with the
9	movable Internet radio-controlled network layer protocols in a second direction.
1	19. (original) An inter-working gateway for wirelessly transporting Internet
2	protocol-formatted communications in a Universal Mobile Telecommunications System
3	(UMTS) communications system, the inter-working gateway comprising:
4	means for communicating via Internet transport protocols and UMTS-based
5	transport protocols;
6	means for reformatting communications using movable UMTS-based transport
7	protocols for transport to a radio network controller; and
8	means for reformatting communications using movable Internet radio-controlled
9	network layer protocols from the radio network controller to the inter-working gateway.
10	20. (withdrawn) A method for transporting Internet protocol-formatted
11	communications over a Universal Mobile Telecommunications System (UMTS) wireless
12	communications system, the method comprising:
13	segmenting Internet-formatted communications into Internet framing protocol-
14	protocol data units (FP-PDUs);
15	multiplexing the FP-PDUs over separate label switched paths via multiple
16	protocol label switching (MPLS); and
17	exchanging the multiplexed FP-PDUs as formatted multiplexed MPLS data
18	segments between a base station and a radio network controller.
1	21. (withdrawn) The method as recited in claim 20, further comprising:
2	installing radio-controlled network protocols in an inter-working gateway
3	interconnected between the base station and the radio network controller.
1	22. (withdrawn) The method as recited in claim 20, further comprising:
2	segmenting the Internet-formatted communications into FP-PDUs of 350 octets
3	maximum length.

(withdrawn) The method as recited in claim 20, further comprising:

formatting the FP-PDUs with UMTS radio-controlled network layer protocols for

3 transport in the UMTS wireless communications system; and

1

2

23.

4	formatting the FP-PDUs with Internet radio-controlled network layer protocols
5	for transmission as wireless Internet communications.
1	24. (withdrawn) The method as recited in claim 21, further comprising:
2	transporting the FP-PDUs formatted with UMTS radio-controlled network layer
3	protocols from the base station in a first direction; and
4	transporting the FP-PDUs formatted with Internet radio-controlled network layer
5	protocols in a second direction.
1	25. (currently amended) A method for transporting Internet protocol-
2	formatted communications over a Universal Mobile Telecommunications System (UMTS)
3	wireless communications system, the UMTS communication system including a base
4	station and a radio network controller, the communication system method comprising:
5	reformatting communications using movable UMTS-based radio-controlled
6	network layer protocols for transport between the base station and the radio network
7	controller; and
8	reformatting communications using movable Internet radio-controlled network
9	layer protocols for transport between the base station and the radio network controller.