

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Números e Funções Reais — Avaliação AV2 Prof. Adriano Barbosa

PROFMAT	06/07/2018
PRUEMIAI	106/11//2018

1	
2	
3	
4	
5	
6	
Nota	
•	

Aluno(a):....

- 1. Dada a função quadrática $f(x) = ax^2 + bx + c$, consideremos as funções afins g(x) = mx + t, onde m é fixo e t será escolhido convenientemente. Prove que existe uma única escolha de t para a qual a equação f(x) = g(x) tem uma, e somente uma, raiz x. Interprete este fato graficamente em termos dos gráficos de f e g.
- 2. Seja p(x) um polinômio do sétimo grau tal que p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = p(7) = 10. Sabendo que p(8) = 30, determine p(-3).
- 3. (a) Usando o gráfico com o qual se define geometricamente o logaritmo natural, mostre que $\ln(1+x) < x$ para todo x > 0. Conclua que $\ln x < x$.
 - (b) Tomando \sqrt{x} em vez de x nesta última desigualdade, prove que para todo x suficientemente grande, o quociente $\frac{\ln x}{x}$ pode tornar-se tão pequeno quanto desejemos.
 - (c) Prova ainda que essa conclusão é válida para logaritmos em qualquer base a>1.
- 4. Sabendo que os ângulos $C\hat{A}D$ e $C\hat{B}D$ medem, respectivamente, α e β radianos, determine a altura CD em função da medida de AB e dos ângulos α e β .

- 5. A expressão $M(t)=200~e^{-(t\ln 2)/30}$ dá a massa em gramas do césio 137 que restará de uma quantidade inicial após t anos de decaimento radioativo.
 - (a) Quantos gramas havia inicialmente?
 - (b) Quantos gramas permanecem depois de 10 anos? Use, caso seja necessário, $\frac{1}{\sqrt[3]{2}} \approx 0.8$.
 - (c) Quantos anos levará para reduzir pela metade a quantidade inicial de césio 137?
- 6. Um fazendeiro tem 2400m de cerca para cercar uma área retangular que margeia um rio reto. Quais devem ser as dimensões da região para que se tenha a maior área possível?

