Topological Data Analysis

Akhil Lohia

June 8, 2017

Topics to be covered

- Manifold Learning
- Intro to Topology
- Persistent Homology: The tool that takes a heavy duty dataset and gives a topological summary
- Functorality: Very abstract mathematical concept for clustering algorithms
- Hodge Theory (for statistical ranking)
- Mapper Algorithm

Manifold Learning (aka NLDR)

Basic problem: Curse of dimensionality

 $M \subset \mathbb{R}^d$. Here M is a manifold. dim M < d.

Geometry of manifolds

- Metric (Riemmanian)
- Geodesic (Shortest parth between 2 points)

Isomap

 $X \subset \mathbb{R}^d$ our dataset. We want to believe that:

 $P:[0,t] \to M$ paths. Geodesic path is the shortest path.

 $P:[0,t] \to M D(p) = \int_0^t p(t)r(t)dt$. Distance along path

X is actually a manifold with a metric and geodesics in disguise. If we know the distance between $x_1, x_2 \in X$ along a geodesic, then we want to *move* them into $\mathbb{R}^{d_0}(d_0 < d)$ in such a way that we preserve that distance.

C(M) - Continuous functions f:M $\to \mathbb{R}$ S(M) - Simplicial complex. Generalization of a graph.

- 1. Construct a graph (V,E) from X. V = X. $E = \{k-NN \text{ on } X \text{ or } \epsilon\text{-balls.}\}$
- 2. Find the shortest graph distance between any 2 data points x_1, x_2 (Dijkstra's Algorithm)
- 3. "Scale" the data into a smaller \mathbb{R}^d using multidimensional scaling.

Topology

- Qualitative
- Connected? : Topology tries to summarize things.
- Summaries
- Topology doesn't care about your coordinate system. It's coordinate-free
- Metric-free

Homotopy

Homology

M attach to it a sequence algebraic structures. Algebraic structures are called homology groups. Each of which contains info about M.

 H^0 - Number of connected components, ie, Clusters. H^1 - Number of holes . . . H^n - n^{th} dimension connectivity info.

Persistent Homology

1. Data \rightarrow simplical complex

metric spaces, ϵ -balls review, exercises

2. Simplical complex \rightarrow chain complex

ker, Im, quotient space review

3. Homology groups

exercises

4. Persistence

Section 1

Let X be a dataset. What is a simplicial complex?

$$V = \{1,2,3,4\}$$

E = \{(1 2),(2 3),(3 4),(4 2)\}

In a graph, edges have 2 vertices. In a simplicial complex, a k-simplex has k vertices

eg:
$$V = \{1,2,3,4\} = 0$$
-simplicies $\{(1\ 2),(2\ 3),(3\ 4),(4\ 2)\} = 1$ -simplicies $\{(2\ 3\ 4)\} = 2$ -simplicies

If a complex has a k-simplex A, then P(A) must be a subset of the complex.

Čech Complex

k-simplicies are defined by the k+1 points whose $\epsilon/2$ -balls intersect

eg: 0-simplex $\{0,1,2\}$, 1-simplex $\{(1,2)\}$ Two balls (number 1 and 2) of $\epsilon/2$ radius intersecting and another one (number 3) independent.

Rips Complex

k-simplicies are defined by the chain of k+1 data points within ϵ -distance of each other (often some embedding into \mathbb{R}^d)

Lemma:
$$R_{\epsilon} \leftrightarrow \epsilon_{\epsilon\sqrt{2}} \leftrightarrow R_{\epsilon\sqrt{2}}$$

Manifold Learning

Applications

- Numerous
- Feature Engineering

Implementations

• scikit-learn

Simplical complexes

Order matters!! $(1\ 2\ 3) \neq (1\ 3\ 2)$

Persistent Homology

- 1. Data \rightarrow Simplicial Complex
- 2. Complex \rightarrow Chain
- 3. Chain \rightarrow Homology
- 4. Persistence
- 5. Implementation and Applications

Chain Complex

Let X be a dataset. S denotes the Cech ϵ -complex of X S_k is the set of k-simplicies. eg: S_0 = vertices = data points

 $S_1 = edges$

Definition: A k-chain is a function $f: S_k \to \mathbb{Q}$, M looking $C(M) = f: M \to \mathbb{R}$ C_k to denote all k-chains.

Theorem: C_k is a finite dimensional vector space in rational numbers.

example:

$$f \in C_2$$
, $f(1\ 2\ 3) = 1/2$
 $f(\sigma) = 1/2$ if $\sigma = (1\ 2\ 3)$, 0 elsewhere

Proof: Let $\sigma \in 1_k$

$$f_{\sigma}(\delta) = \begin{cases} 1 & \delta = \sigma \\ 0 & \text{elsewhere} \end{cases}$$

$$g \in C_k g = \Sigma_{\sigma \in S_k} g(\sigma) f_{\sigma} g(\delta) = \Sigma_{\sigma \in S_k} g(\sigma) f_{\sigma}(\delta) = g(\delta) f_{\sigma}(\delta) \qquad \delta = \sigma = g(\delta)$$

$$n = n(S_k), S_k = \{\sigma_1, \dots, \sigma_n\}$$

 $x_1, \dots, x_n \in \mathbb{Q}$

$$x_1, \ldots, x_n \in \mathcal{Q}$$

$$f = \sum_{i=1}^{n} x_i f_{\sigma_n} = \{x_1, x_2, \dots, x_n\} \in \mathbb{Q}^n$$

 \mathbb{R}^n basis e_1, \ldots, e_n

$$x_1,\ldots,x_n\in\mathbb{R}$$

$$V = \sum_{i=1}^{n} x_i e_i = \{x_1, x_2, \dots, x_n\}$$

$$\begin{split} &\partial_k: C_k \to C_{k-1} \\ &\sigma = (v_0, v_1, \dots, v_k) \\ &\partial_k(f_\sigma)(v_0, v_1, \dots, v_i, \dots, v_k) = (-1)^i \\ &\text{Let } [v_0, v_1, \dots, v_k] \text{ denote } f_{(v_0, \dots, v_n)} \\ &\sigma = (1 \ 2 \ 3) \\ &\partial_k(f_\sigma)(1 \ 2) = 1 \\ &\partial_k(f_\sigma)(1 \ 3) = -1 \\ &\partial_k[v_0, v_1, \dots, v_k] = \sum_{r=0}^{k-1} (-1)^r [v_0, \dots, v_r, \dots, v_k] \end{split}$$

The chain in chain complex:

$$\ldots \to C_k \xrightarrow{\partial_k} C_{k-1} \to \ldots \to C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$
Theorem $\partial_{k-1} \circ \partial_k = 0$

$$\partial_{k-1} \circ \partial_k(x) = \partial_{k-1}(\partial_k(x)) = 0 \quad \forall x$$

Aside

Let V, W be vector spaces. $T: V \to W$ linear. $\ker(T) := \{v \in V: Tv = 0\}$ $T = [1\ 2\ , 0\ 3]$ $[x,\ y]$ $T \cdot [x,\ y] = 0 = [x + 2y,\ 3y]$ $\ker(T) = \{[x,\ y]: x = y = 0\}$ $\ker(T) \subset V$ Image $(T) = \operatorname{Im}(T) = \{w \in W: \exists v \ Tv = w\}$. Also called column space.

Quotient Space

$$\begin{split} V, W \subset V, V/W, V &= W \oplus W^{\perp}. \\ \text{Let } v \in V \\ v &= v_0 + w_0, \quad w_0 \in W, \quad v_0 \in W^{\perp} \\ V/W \text{ is all } v_0 s \end{split}$$

k-Homology

$$H^k(S) = \frac{ker\partial_k}{Im\partial_{k+1}}$$

Day 2

TDA

- Persistent Homology
- Funtors
- Hodge theory and ranking
- Mapper
- The End

1.

$$X$$
 dataset. $X \leftrightarrow \mathbb{R}^d$
 $X = 0$ -simplex S_0

Simplicial complexes

Two ways

Cech - C_{ϵ}

 $S_k = k + 1$ points whose $\epsilon/2$ -balls intersect.

Rips - R_{ϵ}

 $S_k = k + 1$ points within ϵ -distance pairwise.

Lemma : $R_{\epsilon} \leftrightarrow C_{\epsilon\sqrt{2}} \leftrightarrow R_{\epsilon\sqrt{2}}$

2.

Definition: k-chain $f: S_k \to \mathbb{Q}$ (\mathbb{F}_2)

 $C_k = \text{set of all k-chains.}$

 $f_{\sigma}(\delta)$ as defined earlier are basis elements for $C_k \Rightarrow C_k$ is a vector space over \mathbb{Q} . $\dim C_k = n(S_k)$

Example: S is a set.

 $S_0 = \{1, 2, 3, 4\}$

 $S_1 = \{(1\ 2), (2\ 3), (3\ 4), (4\ 2)\}$

 $C_0 = \langle f_1, f_2, f_3, f_4 \rangle_{\mathbb{Q}} = \text{all linear combinations of } f_1, f_2, f_3, f_4 = \mathbb{Q}^4$

 $C_1 = \langle f_{(1\ 2)}, f_{(2\ 3)}, f_{(3\ 4)}, f_{(4\ 2)} \rangle \cong \mathbb{Q}^4$

 $f_1 = [1], f_{(2 \ 4)} = [2 \ 4].$ Square brackets means the basis elements.

 $[2\ 4] = -[4\ 2]$ because $(2\ 4) = -(4\ 2)$. Also, $f_{4}(4\ 2)$ because $(2\ 4) = -f_{4}(4\ 2)$ because $(2\ 4) = -1$

k-Homology

$$\begin{split} H^k(S) &= \frac{ker\partial_k}{Im\partial_{k+1}} \\ H^0 &= \frac{ker\partial_0}{Im\partial_1} = \frac{C_0}{Im\partial_1} \\ H^1 &= \frac{ker\partial_{d_1}}{Im\partial_2} \end{split}$$

 $\beta_k := dim(H^k(S))$ - this is k-th Betti number.

Theorem

 β_0 = Number of connected components.

 $\beta_1 = \text{Number of "holes"}.$

 β_2 = Number of "cavaties".

 β_n = Number of "k-dim holes". We never go beyond β_2 .

3.

Example of computing $H^*(S)$. H^* refers to all H^0 's.

 $S = \text{graph with } 3 \text{ connected vertices } 1,2 \text{ and } 3. S_0 = \{1,2,3\}.$

$$\begin{split} S_1 &= \{(1\ 2), (2\ 3), (3\ 1)\} \qquad H^0(S) = \frac{\ker \partial_0}{Im\partial_1} = \frac{\mathbb{Q}^3}{Im\partial_1} \\ 0 &\xrightarrow{\partial_2} C_1 \cong \mathbb{Q}^3 \xrightarrow{\partial_1} C_0 \cong \mathbb{Q}^3 \xrightarrow{\partial_0} 0 \\ \partial_1[1\ 2] &= [2] - [1] \\ \partial_1[2\ 3] &= [3] - [2] \\ \partial_1[3\ 1] &= [1] - [3] \\ [\partial_1] &= \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \text{ The dimension of this is 2 because one linear dependent column.} \\ Im\partial_1 &\cong \mathbb{Q}^2 &\Rightarrow H^0(S) \cong \frac{\mathbb{Q}^3}{\mathbb{Q}^2} \cong \mathbb{Q} \\ \beta_0 &= 1 \end{split}$$
 Now try to get H^1 :
$$H^1 = \frac{\ker \partial_1}{Im\partial_2} \\ \Rightarrow H^1 &= \ker \partial_1 \\ &\Rightarrow H^1 = \ker \partial_1 \\ &\Rightarrow H^1 = \ker \partial_1 \\ &\Rightarrow H^1 = \ker \partial_1 \\ &\Rightarrow \mathbb{Q} \\ \end{pmatrix} \cong \mathbb{Q} \\ \ker \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cong \mathbb{Q} \\ \beta_1 &= \dim H^1(S) = 1 \\ H^2 &= \frac{\ker \partial_2}{Im\partial_3} \end{split}$$

Example of computing a homology group

 $_{\rightarrow}\Delta$ - Vertices of triangle are 2,3 and 4. First one is 1. Find H^0,\ldots,H^1 .

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$0 \to C_2 \cong \mathbb{Q} \xrightarrow{\partial_2} C_1 \cong \mathbb{Q}^4 \xrightarrow{\partial_1} C_0 \cong \mathbb{Q}^4 \xrightarrow{\partial_0} 0$$

$$C_2 = \langle (2\ 3\ 4) \rangle_{\mathbb{Q}}. \qquad (2\ 3\ 4) \mapsto [1].$$

$$\partial_2[2\ 3\ 4] = [3\ 4] - [2\ 4] + [2\ 3]$$

$$Im\partial_2 \cong \mathbb{Q} \qquad ker\partial_2 = 0$$

$$[1\ 2] \mapsto \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[\partial_2]_m = \begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix}$$

$$C_{1} = \langle [1 \ 2], [2 \ 3], [3 \ 4], [4 \ 2] \rangle_{\mathbb{Q}}$$

$$\partial_{1}[1 \ 2] = [2] - [1]$$

$$\partial_{1}[2 \ 3] = [3] - [2]$$

$$\partial_{1}[3 \ 4] = [4] - [3]$$

$$\partial_{1}[4 \ 2] = [2] - [4]$$

$$Im\partial_{1} = \mathbb{Q}^{3} \qquad ker\partial_{1} = \mathbb{Q}$$

$$\begin{array}{l} H^0 = \frac{\mathbb{Q}^4}{Im\partial_1} = \mathbb{Q} \\ H^1 = \frac{ker\partial_1}{Im\partial_2} = 0 \end{array}$$

$$\begin{split} H^2 &= \frac{ker\partial_2}{Im\partial_3} = 0 \\ H^3 &= \frac{ker\partial_3}{Im\partial_4} = 0 \end{split}$$

4. Persistence

 $Lemma: R_{\epsilon} \leftrightarrow C_{\epsilon\sqrt{2}} \leftrightarrow R_{\epsilon\sqrt{2}}$

Also, $H^{\star}(R_{\epsilon}) \xrightarrow{LinComb} H^{\star}(C_{\epsilon\sqrt{2}}) \leftrightarrow H^{\star}(R_{\epsilon\sqrt{2}})$ Incresing dimensions in this direction ->

X dataset.

 $\epsilon_1, \dots, \epsilon_n, \ \epsilon_i > 0 \quad \forall i \qquad \epsilon_i < \epsilon_j \ \text{if} \ i < j.$

 $S_i := \text{Simplicial complex } R_{\epsilon_i}(X).$

i < j

 $S_i \leftrightarrow S_j$ with X on top of the arrow.

 $S_i \to H^{\star}(S_i) \xrightarrow{X^{\star}} H^{\star}(S_i) \leftarrow S_i$

 $H^{\star}(X) =: X^{\star}$

definition: For i < j, the (i - j) persistent homology is:

 $H^{\star}(X)(H^{\star}(S_i)) = X^{\star}(H^{\star}(S_i))$

 $H^0(S_i) \xrightarrow{X^*} H^0(S_j)$

 $ImX^{\star} = X^{\star}(H^{\star}(S_i))$

X carries every k-simplex. So then every k-chain, so then every $Im\partial_0, ker\partial_0$, etc.. So then $X^*: H^*(S_i) \to H^*(S_j)$

4. Barcodes

We are interested in basis elements that survive $X^* = H^*(X)$.

5. Implementation/Application

C++ : P.H. (Persistent Homology) Alg. Toolbox (2017) - Also has a python binding - does stuff over field of 2 elements \mathbb{F}_2 .

R: phom(2014), TDA (2017)

1. Time Series Classification via TDA (2017)

Feature Engineering PH(chaotic timeseries) \rightarrow CNN.

2. PH analysis of protein structure, flexibility & folding (2014)

Predicting protein folding

3. Topology of viral evolution (2013)

Virus mutations appear on barcodes

4. Persistent Homology of Syntax (2015)

Language \mapsto All binary features.

Language \rightarrow PCA \rightarrow PH.

They did this process on 2 sets of languages: Indo-European and Niger-Congo

IE: H^0 2 persistent basis elements. 1 if you add Hellenic.

NC: H^0 has 1, H^1 has lots.