The patterns and forecasting analysis of grocery sales for Corporación Favorita retailer

Dr. Xuezhi Zeng

Content

- Problem summary
- Exploratory Data Analysis
- > Forecasting of grocery sales
- What customer insights are provided by the analysis
- > Future improvement

About the retail company

Corporacion Favorita is a grocery chain in Ecuador with over 100 stores. They are holding a Kaggle competition to develop a model for predicting unit sales of items for each of their stores to improve inventory management

Problem summary

They encounter the following two problems:

- Stocking-out: A situation in which an item is out of stock
 - popular items quickly sell out, leaving money on the table and customers fuming
 - causes an increased risk of lost sales, since customers are more likely to look elsewhere for the necessary items, which in-turn can be a huge opportunity loss and customer retain for the retailer
- Overstocking: A situation in which an item is present in more quantity than is necessary or required
 - potentially cost drastic amounts of money as products just sit on shelves where they are not being utilized
 - depending on their type (e.g., perishable or fragile) they can get spoiled and damaged which would cause management cost and a total loss for the retailer

Data model

Exploratory data analysis: Overall sales varying across years, months, day of week, and day of month

month

sales per day of month

Exploratory data analysis: the sales categorized under items, stores, and locales

Comparing the trends between oil price and overall sale over years

Example case: Sales of item 502231 from store 44 between 2013 and 2017

Example case: Autocorrelation test

Example case: Decomposing trend, seasonality and noise

Example case: Stationarity test

	Value	module
name	Item 502331 in Store 2	nan
ADF_Statistic	-5.105800	adfuller
p-value	0.000014	adfuller
num_lags_used	22	adfuller
n_observations_used	1664	adfuller
IC_for_best	14861.128981	adfuller
1%	-3.434286	adfuller
5%	-2.863278	adfuller
10%	-2.567696	adfuller
likely stationary	True	p-value < 0.05

Pre-processing

- Selected train data with month in August and day > 15
- Introduced extra features (year, month, day of month, day of week)
- Filled in missing values for onpromotion with -1
- Filled in missing values for oil price using moving average

Feature representation

- Continuous features:
 - unit_sales
 - dcoilwtico
- Categorical features:
 - store_nbr
 - item_nbr
 - onpromotion
 - family
 - class
 - perishable
 - city
 - state
 - store_type
 - cluster
 - year
 - month
 - dayofmonth
 - dayofweek

Label encoding

Correlation matrix between these features

Evaluation metrics

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \binom{\hat{y}_i - y_i}{N}}{N}}$$

$$MAE = \frac{\sum_{i=1}^{N} \binom{\hat{y}_i - y_i}{N}}{N}$$

$$R^2 = \frac{\sum_{i=1}^{N} \binom{\hat{y}_i - \bar{y}}{N}^2}{\sum_{i=1}^{N} \binom{y_i - \bar{y}}{N}^2}$$

$$NWRMSE = \sqrt{\frac{\sum_{i=1}^{n} weights_i * \left(\hat{y}_i - y_i\right)^2}{\sum_{i=1}^{n} weights_i}}$$

$$NWRMSLE = \sqrt{\frac{\sum_{i=1}^{n} weights_i * \left(\log(\hat{y}_i + 1) - \log(y_i + 1)\right)^2}{\sum_{i=1}^{n} weights_i}}$$

Model evaluation (1)

Forecasting models	Metrics					
	RMSE	MAE	R^2	NWRMSE	NWRMSLE	
Linear regression	Train:16.745 Test: 16.534	Train:6.972 Test: 6.961	Train:0.03 Test: 0.03	Train:17.059 Test:16.814	Train:0.948 Test: 0.948	
XGBRegression	Train:12.640 Test: 12.471	Train:5.150 Test: 5.162	Train: 0.447 Test: 0.448	Train:12.856 Test: 0.6515	Train:0.734 Test: 0.736	
Random Forest regression (estimators = 10, 'max_depth = 5, min_samples_leaf = 3)	Train:16.255 Test: 16.074	Train:6.707 Test: 6.695	Train: 0.086 Test: 0.083	Train:16.541 Test: 16.331	Train:0.906 Test: 0.906	

Model interpretability

Embedding representation

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gerder	- (1	-0.95	0.97	0.00	0.01
Royal	0.01	0.62	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	6.09	0.01	0.02	0.01	0.95 Ac	tivate 0/97 lo to Settings to act

Source: from Andrew Ng's AI course

Amazing results using embedding in text

Rome - Italy + Australia = ?

Rome: Italy = Canberra: Australia

Women - Breast cancer + Men = ?

Women: Breast cancer = Men: Prostate cancer

Embedding neural network structure

Layer (type)	Output	Shape	Param #	Connected to
store_embedding (InputLayer)	[(None	, 1)]	0	
item_embedding (InputLayer)	[(None	, 1)]	0	
family_embedding (InputLayer)	[(None	, 1)]	0	
embedding_3 (Embedding)	(None,	1, 20)	1080	store_embedding[0][0]
embedding_4 (Embedding)	(None,	1, 100)	410000	item_embedding[0][0]
embedding_5 (Embedding)	(None,	1, 15)	495	family_embedding[0][0]
concatenate_1 (Concatenate)	(None,	1, 135)	0	embedding_3[0][0] embedding_4[0][0] embedding_5[0][0]
flatten_1 (Flatten)	(None,	135)	0	concatenate_1[0][0]
batch_normalization_2 (BatchNor	(None,	135)	540	flatten_1[0][0]
dense_3 (Dense)	(None,	100)	13600	batch_normalization_2[0][0]
batch_normalization_3 (BatchNor	(None,	100)	400	dense_3[0][0]
dropout_2 (Dropout)	(None,	100)	0	batch_normalization_3[0][0]
dense_4 (Dense)	(None,	50)	5050	dropout_2[0][0]
dropout_3 (Dropout)	(None,	50)	0	dense_4[0][0]
dense_5 (Dense)	(None,	1)	51	dropout_3[0][0]

Embedding visualization in Tensorboard

Model evaluation (2)

Forecasting models	Metrics					
	RMSE	MAE	R^2	NWRMSE	NWRMSLE	
Linear regression	Train:16.745	Train:6.972	Train:0.03	Train:17.059	Train:0.948	
	Test: 16.534	Test: 6.961	Test: 0.03	Test:16.814	Test: 0.948	
XGBRegression	Train:12.640	Train:5.150	Train: 0.447	Train:12.856	Train:0.734	
	Test: 12.471	Test: 5.162	Test: 0.448	Test: 0.6515	Test: 0.736	
Random Forest regression (estimators = 10, 'max_depth = 5, min_samples_leaf = 3)	Train:16.255 Test: 16.074	Train:6.707 Test: 6.695	Train: 0.086 Test: 0.083	Train:16.541 Test: 16.331	Train:0.906 Test: 0.906	
Embedding	Train: 10.994	Train: 4.222	Train: 0.585	Train: 11.118	Train: 0.626	
	Test: 11.148	Test: 4.248	Test: 0.559	Test: 11.270	Test: 0.628	

The embedding result of store_nbr

The embedding result of item_nbr

The embedding result of item's family

Model evaluation (3)

Forecasting			Metrics		
models	RMSE	MAE	R2	NWRMSE	NWRMSLE
Linear regression	Train:16.745	Train:6.972	Train:0.03	Train:17.059	Train:0.948
	Test: 16.534	Test: 6.961	Test: 0.03	Test:16.814	Test: 0.948
XGBRegression	Train:12.640	Train:5.150	Train: 0.447	Train:12.856	Train:0.734
	Test: 12.471	Test: 5.162	Test: 0.448	Test: 0.6515	Test: 0.736
Random Forest regression (estimators = 10, 'max_depth = 5, min_samples_leaf = 3)	Train:16.255 Test: 16.074	Train:6.707 Test: 6.695	Train: 0.086 Test: 0.083	Train:16.541 Test: 16.331	Train:0.906 Test: 0.906
Embedding	Train: 10.994	Train: 4.222	Train: 0.585	Train: 11.118	Train: 0.626
	Test: 11.148	Test: 4.248	Test: 0.559	Test: 11.270	Test: 0.628
Linear Regression using embedding features	Train: 10.637	Train: 4.214	Train: 0.609	Train: 10.722	Train: 0.617
	Test: 11.058	Test: 4.250	Test: 0.566	Test: 11.182	Test: 0.620
XGBRegression using embedding features	Train: 9.692	Train: 4.071	Train: 0.675	Train: 9.714	Train: 0.608
	Test: 10.551	Test: 4.128	Test: 0.605	Test: 10.634	Test: 0.611
Random Forest regression (estimators = 10, 'max_depth = 5, min_samples_leaf = 3) using embedding features	Train: 10.518	Train: 4.232	Train: 0.617	Train: 10.601	Train: 0.621
	Test: 10.982	Test: 4.270	Test: 0.572	Test: 11.103	Test: 0.623

The prediction outcome for XGBRegression using embedding features

y_test_prediction

What customer insights are provided by this analysis (1)

- > The highest sale month of the year is December
- > The lowest sale month of the year is February
- Sunday has the highest sale of the week, followed by Saturday
- > Thursday has the least sale
- > There is no relation between unit_sales and oil price
- ➤ A clear weekly periodicity of unit_sales time series for item 502231 from store 44 between 2013 and 2017 is observed
- ➤ The stationarity test (p value < 0.05) indicating the unit_sales time series for item 502231 and store 44 between 2013 and 2017 is stationary

What customer insights are provided by this analysis (2)

- Forecasting model using random forest indicates transaction, family, class, and item_nbr are most important predicting features
- Forecasting model using embedding representation achieves a decent performance
- Embedding feature (i.e., item_nbr and family embedding) can capture the hidden relationship between different items
- A large number of items with high item_nbr which are all unlikely to have a high unit sales. However, for all items with moderate item_nbr, they are more likely to have a high unit_sales
- Promotion has positive impact on predicted unit_sales

Future improvements (1)

Data engineering

- Spark/GPU
- Elastic search
- Knowledge graph

> Feature engineering

- To include and construct complicated features such as mean, min, max, skewness, rolling over a sliding window, time series lags etc.,
- To introduce more features such as unit_price of each item and product review/comments (e.g., positive, neural, or negative)

Future improvements (2)

- Forecasting models
 - Sequence model (e.g., LSTM), time series forecasting techniques (ARIMA, SARIMA, SARIMAX, Prophet etc.,)
- > A new evaluation metric
 - Formula

$$\mathit{Mfinancialloss} = \frac{\sum_{i=1}^{N} \left[R_i * |\hat{y}_i - y_i|_{(\hat{y_i} < y_i)} + C_i * |\hat{y}_i - y_i|_{(\hat{y_i} > y_i)} \right]}{N}$$

• where R_i denotes revenue loss per unit per item when underestimating (stocking-out), and C_i denotes management cost incurred per unit per item when over-estimating (over-stocking)

Thank You!