Oversampling $\Delta\Sigma$ DA Converters

u: digital signal (1/T [Hz] and b [bits])

 $\uparrow N$: upsampler

K(z): interpolation filter to be designed

 $\Delta\Sigma$: $\Delta\Sigma$ modulator

 $\mathcal{H}_{T/N}$: hold device with sampling time T/N [sec]

P(s): analog lowpass filter

 z_c : reconstructed analog signal

Our objective here is to design the interpolation filter K(z) to interpolate samples taking account of the analog performance.

Interpolator Design

 w_c : analog signal in L^2

F(s): frequency characteristic of analog input signal

Design Problem

Given a stable, strictly causal F(s), stable, causal P(s), stable, strictly causal R(z), upsampling factor N, delay d, sampling time T, find K(z) which minimizes

$$\|\mathcal{E}\|_{\infty} := \sup_{w_c \in L^2} \frac{\|e_c\|_{L^2}}{\|w_c\|_{L^2}}.$$

The optimal filter K(z) can be obtained via sampled-data H^{∞} optimization.

Design Example

Design Parameters

sampling time: T = 1

upsampling ratio: N = 8

reconstruction delay: d = 8

analog filters:

$$P(s) = \frac{1}{\{(T/\pi)s + 1\}^2}$$

$$F(s) = \frac{1}{\{(T_F/\pi)s + 1\}\{(0.1T_F/\pi)s + 1\}}, \quad T_F = 22.05$$

quantizer:

$$Q(\psi) = \operatorname{sgn}(\psi) = \begin{cases} 1, & \psi \ge 0, \\ -1 & \psi < 0. \end{cases}$$

Interpolation filter K(z) (solid: sampled-data H^{∞} optimal, dotted: equiripple design)

Time response against a sinusoidal wave $u[k] = \sin(0.1\pi k)$ (left: proposed, right: conventional)

Absolute error (solid: proposed, dotted: conventional)

Conparison of error

Comparison of circl			
		Proposed design	Conventional design
	$ e_c _{\infty}$	2.08×10^{-1}	2.67×10^{-1}
	$ e_c _2$	5.68×10^{-1}	7.21×10^{-1}
	$\overline{\mathrm{RMS}(e_c)}$	6.34×10^{-2}	8.06×10^{-2}

In the table, RMS is the root-mean-square values defined as follows: For fixed $T_f>0$, $\mathrm{RMS}(e_c):=\left\{\tfrac{1}{T_f}\int_0^{T_f}|e_c(t)|^2dt\right\}^{\frac{1}{2}}.$

Conclusion

We have proposed a new design method for $\Delta\Sigma$ modulators and oversampling $\Delta\Sigma$ DA converters via H^∞ optimization. We have presented design examples and shown the advantages of the present method.