Introduction to Probability

Contents

Pı	refac	e	5
1	Fun	ndamentals of Probability and its Axioms	7
	1.1	Combinations and Permutations	7
		1.1.1 Permutations	7
		1.1.2 Combinations	7
		1.1.3 Worked Examples	7
	1.2	Review of Set Theory	7
	1.3	Laws of Set Theory	7
	1.4	Axioms of Probability	7
		1.4.1 Sample spaces with equally likely outcomes	7
		1.4.2 Worked Examples	7
2	Cor	nditional Probability and Independence	9
	2.1	Conditional Probability	9
	2.2	The Multiplication Rule	9
	2.3	Independence of Events	9
	2.4	The Law of Total Probability	9
	2.5	Bayes' Theorem	9
	2.6	Applications	9
3	Dis	crete Random Variables and Distributions	11
	3.1	Random Variables	11
	3.2	Probability Mass Functions (PMFs)	11
	3.3	Cumulative Distribution Functions (CDFs)	11
	3.4	Expected Value and Properties	11
	3.5	Variance and Standard Deviation	11
	3.6	Common Discrete Distributions: Binomial, Geometric, Poisson, Negative Binomial, multinomial	11
4	Cor	ntinuous Random Variables and Distributions	13
	4.1	Continuous Random Variables	13

4		Cont	ents
4.2	Probability Density Functions (PDFs)		13
4.3	Cumulative Distribution Functions (CDFs)		13
4.4	Expected Value and Variance (Continuous Case)		13
4.5	Uniform, Exponential, and Normal Distributions		13
4.6	Change of Variables and Applications		13
5 Jo	int Distributions and Independence		15
5.1	Joint Discrete Distributions		15
5.2	2 Joint Continuous Distributions		15
5.3	Marginal and Conditional Distributions		15
5.4	Independence of Random Variables		15
5.5	Covariance and Correlation		15
5.6	Sums of Random Variables		15
6 Li	mit Theorems		17
6.1	Sequences of Random Variables		17
6.2	Convergence in Probability and Distribution		17
6.3	The Law of Large Numbers (LLN)		17
6.4	Central Limit Theorem (CLT)		17
6.5	Applications of the CLT		17
6.6	Approximations Using the Normal Distribution		17
Арре	ndix		19

Preface

Placeholder

Fundamentals of Probability and its Axioms

Placeholder

- 1.1 Combinations and Permutations
- 1.1.1 Permutations
- 1.1.2 Combinations
- 1.1.3 Worked Examples
- 1.2 Review of Set Theory
- 1.3 Laws of Set Theory
- 1.4 Axioms of Probability
- 1.4.1 Sample spaces with equally likely outcomes
- 1.4.2 Worked Examples

Conditional Probability and Independence

- 2.1 Conditional Probability
- 2.2 The Multiplication Rule
- 2.3 Independence of Events
- 2.4 The Law of Total Probability
- 2.5 Bayes' Theorem
- 2.6 Applications

Discrete Random Variables and Distributions

- 3.1 Random Variables
- 3.2 Probability Mass Functions (PMFs)
- 3.3 Cumulative Distribution Functions (CDFs)
- 3.4 Expected Value and Properties
- 3.5 Variance and Standard Deviation
- 3.6 Common Discrete Distributions: Binomial, Geometric, Poisson, Negative Binomial, multinomial

Continuous Random Variables and Distributions

- 4.1 Continuous Random Variables
- 4.2 Probability Density Functions (PDFs)
- 4.3 Cumulative Distribution Functions (CDFs)
- 4.4 Expected Value and Variance (Continuous Case)
- 4.5 Uniform, Exponential, and Normal Distributions
- 4.6 Change of Variables and Applications

Joint Distributions and Independence

- 5.1 Joint Discrete Distributions
- 5.2 Joint Continuous Distributions
- 5.3 Marginal and Conditional Distributions
- 5.4 Independence of Random Variables
- 5.5 Covariance and Correlation
- 5.6 Sums of Random Variables

Limit Theorems

- 6.1 Sequences of Random Variables
- 6.2 Convergence in Probability and Distribution
- 6.3 The Law of Large Numbers (LLN)
- 6.4 Central Limit Theorem (CLT)
- 6.5 Applications of the CLT
- 6.6 Approximations Using the Normal Distribution

Appendix

Algebra Review

Calculus Review

Bibliography

- Sheldon, Ross. \boldsymbol{A} First Course in Probability. Pearson, 2016.

_