关于实数的补充内容

数学分析的主要概念(如收敛,连续,微分,积分等),必须有精确定义的数为基础.一些实际问题抽象为函数关系,而函数的定义域和值域都是数的集合,因此有必要对最基本的"数"作进一步了解.然而这不是一个简单的问题,事实上随着极限理论的产生,人们才对"实数"有更加深入的了解.

这里仅对"实数"给出大致描述, 有关理论见第三册(第14章).

数的特点大致可有下表给出, 其中的"无限"、"序"、"域"、"有序域"以及"完备"等概念, 将随后解释.

自然数	无限性	序		加法 (不可逆)			
整数	无限性	序	含0和1	加减法	环		乘法(但不可逆)
有理数	无限性	序	含0 和1	加减乘除	域	有序域	不完备(不连续)
实数	无限性	序	含0和1	加减乘除	域	有序域	连续(确界原理)

一、自然数与整数

自然数(暂且不考虑"0",因此也称为正整数):

$$\mathbb{N} = \{1, 2, 3, \cdots\},\$$

- (1) **序** 对任意 $a, b \in \mathbb{N}$, a > b 或 a < b 或 a = b 有且仅有一种成立.
- (2) 加法 对任意 $a,b \in \mathbb{N}, a+b \in \mathbb{N},$ 且 a+b=b+a.

这里序与加法是相融的: $a < b \Longrightarrow a + c < b + c$.

(3) **归纳公理(自然数的无限性):** 设 $S \subseteq \mathbb{N}$, 如果 S 满足 (a) $1 \in S$, (b) 若 $n \in S$, 则 $n + 1 \in S$, 那么 $S = \mathbb{N}$.

由归纳公理,不难得到自然数的最小数原理和数学归纳法.

定理1(最小数原理) 设 $T \in \mathbb{N}$ 且 $T \neq \phi$ (ϕ 表示空集),则 T 中必有最小的整数.

证明 设

$$S = \{s \mid s \in \mathbb{N}, \ s \leq t, \$$
对任意 $t \in T$ 成立 $\}.$

显然, $1 \in S$, $\Longrightarrow S \neq \phi$. 又因为对 $t \in T$, 有 t+1 > t, $\Longrightarrow t+1 \notin S$, 即 $S \neq \mathbb{N}$. 据此推出: 存在 $s_0 \in S$, 而 $s_0 + 1 \notin S$. 否则, 若这样的 s_0 不存在, 就意味着对任意 $s \in S$, 都有 $s+1 \in S$, 根据归纳原理推出 $S = \mathbb{N}$, 这与 $S \neq \mathbb{N}$ 相矛盾.

若 $s_0 \notin T$, 则对任意 $t \in T$, 有 $s_0 < t$, 从而 $s_0 + 1 \le t$, 推出 $s_0 + 1 \in S$, 这与 s_0 选取矛盾. 所以 $s_0 \in T$. 但 $s_0 \in S$, 因此对任意 $t \in T$, 有 $s_0 \le t$, 即 s_0 是 T 的最小数.

说明 这里的"最小数原理"仅是"自然数集的最小数原理". 例如, 对于数集 $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{n}, \cdots\}$ 是没有最小数的.

定理 2 (**数学归纳法**) 设 A_n 是关于正整数的一个命题, 如果

- (1) 当 n=1 时, A_1 成立;
- (2) 对任意的正整数 n > 1, 由 A_n 成立可推出 A_{n+1} 成立. 或由前 n 个 A_1, A_2, \cdots, A_n 成立可推出 A_{n+1} 成立.

那么, A_n 对所有正整数 n 成立.

证明 (反证法) 假设存在一个数 r, 使得命题 A_r 不成立, 记

$$S = \{n \mid A_n$$
 不成立 $\} \neq \phi$,

因此存在最小数 $m \in S$. 根据(1)可知 $1 \notin S$, 所以 m > 1. 又因为 m 是S 中最小数, 所以 $m - 1 \notin S$, 即 A_{m-1} 成立. 但是 $m \in S$, 即 A_m 不成立, 这与条件(2)相矛盾. 矛盾说明假设是错误的, 所以结论是在定理条件下所有 A_n 都成立.

二、无限集合

1、——对应

最形象的例子是小朋友分苹果.

定义 1 设A, B为两个集合, 映射(例:打靶) $f: A \longrightarrow B$ 称为:

单射: 若对任意的 $a, a' \in A$, 只要 $a \neq a'$, 就有 $f(a) \neq f(a')$ (不同子弹打在不同靶上).

满射: 若对任意的 $b \in B$, 至少存在 $a \in A$, 使得 f(a) = b (每个靶子至少被一颗子弹击中).

1-1 **映射**: 即是单射又是满射(或称A 和 B 1-1 对应) (每个靶子只被一颗子弹 击中).

2、可数集合

定义 2 设 A, B 为两个集合, \mathbb{N} 为自然数集合.

- (1) 若 A 和 B 1-1 对应,则称A 和 B 有相同的基数,或者等势.
- (2) 若存在 $A \rightarrow B$ 的满射, 但不存在 $A \rightarrow B$ 的单射, 则称A比B具有**更大的基**数.
- (3) 若存在自然数n, 使得A与 $\{1,2,\cdots,n\}$ 1-1对应, 则称A为**有限集合**, n 称为A 的基数; 否则称A为无限集合.
- (4) 自然数 \mathbb{N} 的基数称为**可数的**, 与 \mathbb{N} 1-1对应的集合A 的基数是可数的, 称为可数集合.

对于有限集合 A, 设 n 是它的基数, 则

或看成是A 中元素可进行一种不重复的排列(或者说编号), 当然, 排列方式不唯一. 显然, 一个有限集合, 去掉一个元素, 或增加一个元素, 都不可能与原集合一一对应, 也就是不可能有相同的基数.

对于可数集合 A, 则

因此通常记可数集合为

$$A = \{a_1, a_2, \cdots, a_n, \cdots\}.$$

对于可数集、增加或减少有限个(甚至是无限个)元素、仍是可数集、

例如偶数与自然数的——对应:

因此自然数中偶数集合也是可数的, 虽然它是自然数的真子集.

可见, 无限集合具有一些独特的性质. 可数集合的部分性质罗列如下.

性质1 设 U 是无限集合, 若存在满射:

$$f: \mathbb{N} \longrightarrow U$$
,

则U 可数. 特别, \mathbb{N} 的任何无限真子集一定可数.也就是在 \mathbb{N} 中去掉有限个数, 或去掉无限个数, 只要剩余的数仍然是无限集合, 那么基数不变.

这里就不再证明了.

性质2 有限集合与可数集合的并集是可数集合. 有限个可数集合的并集仍然是可数集合, 可数个可数集合的并集还是可数集,

证明 这里只讨论第三种情形. 设 A_1, A_2, \cdots 为可数个可数集. 记

$$A_k = \{a_{k1}, a_{k2}, \cdots, a_{kn}, \cdots\}, k = 1, 2, 3, \cdots$$

那么并集 $\bigcup_{k=1}^{\infty} A_k$ 里的所有元素可以表示为如下无穷矩阵,

$$a_{11}$$
 a_{12} a_{13} \cdots
 a_{21} a_{22} a_{23} \cdots
 a_{31} a_{32} a_{33} \cdots
 \cdots \cdots \cdots \cdots

顺时针方向旋转45°,沿着箭头我们得到元素的一个排列

$$a_{11} \rightarrow \\ \rightarrow a_{21} \rightarrow a_{12} \rightarrow \\ \rightarrow a_{31} \rightarrow a_{22} \rightarrow a_{13} \rightarrow \\ \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow$$

因此给出了N到并集的一个满射,但不一定是单射(元素 a_{ij} 可能有重复),利用性质1, 结论成立.

性质3 整数集合

$$\mathbb{Z} = \mathbb{Z}_{-} \cup \{0\} \cup \mathbb{Z}_{+} = \{0, \pm 1, \pm 2, \pm 3, \cdots, \pm n, \cdots\}$$

是可数集, 因此与自然数集 № 有相同的基数, 其中

$$\mathbb{Z}_{+} = \mathbb{N} = \{1, 2, 3, \dots, n, \dots\},\$$

 $\mathbb{Z}_{-} = \{-1, -2, -3, \dots, -n, \dots\},\$

性质 4 两个可数集合A,B的直积 (或者笛卡尔积)

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

是可数集,有限个可数集的直积也是可数集.

记 $a_{ij} = (a_i, b_j), \ a_i \in A, \ b_j \in B$, 因此证明与性质 2类似.

问题:是否存在基数大于可数集的无限集合?

3、不可数集合

定义 3 无限集合称为**不可数**, 是指不存在它与 \mathbb{N} 之间的1-1 对应. 换而言之, 它有比 \mathbb{N} 更大的基数.

构造一个不可数集合的思路 一个非空集合A的**幂集** 是它的所有子集构成的集合, 记为

$$2^A = \{X \mid X \subset A\}.$$

例如

$$2^A = \{\phi, \{a\}, \{b\}, \{a, b\}\}.$$

当 $A = \{x, y, z\}$ 时

$$2^{A} = \{\phi, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, \{x,y,z\}\}.$$

不难看出, 当 A 的基数(个数)为2 时, 2^A 的基数为 $2^2 = 4$, 当 A 的基数为3 时, 2^A 的基数为 $2^3 = 8$.

若有限集合 $A = \{a_1, a_2, \dots, a_n\}$, 则 A 的幂集 2^A 中元素的个数为

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n$$

因此对对基数是 n 的有限集合, 其幂集的基数是 2^n :

$$2^{A}$$
的基数 = $2^{(A}$ 的基数).

定理 1 ((Cantor **康托**) $2^{\mathbb{N}} = \{X \mid X \subseteq \mathbb{N}\}$ 是不可数集合.

此处不再讨论、结论: 实数集合是不可数集合, 无理数集合也是不可数集合.

三、有理数

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, \ q \neq 0 \right\},\,$$

- 1、**算术** $0,1 \in \mathbb{Q}$, 且对加、减(加法的逆运算)、乘、除(乘法的逆运算)运算封闭, 因此也称 \mathbb{Q} 为**有理数域**.
 - 2、序 对任意的 $x, y \in \mathbb{Q}$, x < y, x = y, y < x有且仅有一种成立.
 - 3、基数 有理数集合是可数集.

证明 作映射

$$f_1: (p,q) \longmapsto \frac{p}{q}, \quad (p,q) \in \mathbb{Z} \times \mathbb{Z}_+,$$

那么 f_1 是满射. 因为 $\mathbb{Z} \times \mathbb{Z}_+$ 与自然数集合 \mathbb{N} 1-1 对应:

$$f_2: \mathbb{N} \longrightarrow \mathbb{Z} \times \mathbb{Z}_+,$$

所以复合映射

$$f = f_1 \circ f_2 : \mathbb{N} \longrightarrow \mathbb{Q}$$

是满射, 所以有理数集 ℚ 是可数的. 通常把有理数集排序为

$$\mathbb{Q} = \{r_1, r_2, \cdots, r_n, \cdots\}.$$

- 4、**稠密性** 任何两个有理数 a < b 之间, 存在有理数 c: a < c < b. 例如 $c = \frac{a+b}{2}$, 因此也存在无限多个有理数.
 - 5、与数轴上点的对应 任意有理数可对应数轴上一个点.对应的点称为有理点.
- 6、**不完备性(或不连续性)**: 但是数轴上以边长为 1 的正方形的对角线长度的 点不可能对应有理数. 也就是**不存在满足** $a^2 = 2$ **的有理数**.

反证法:假如存在有理数 a 满足 $a^2 = 2$, 设

$$a = \frac{q}{p}, \ (q, p) = 1.$$

代入 $a^2 = 2$ 推得

$$\left(\frac{q}{p}\right)^2 = 2, \implies q^2 = 2p^2$$

因此 q 是偶数, q=2m, $\Longrightarrow 4m^2=2p^2$, $\Longrightarrow p$ 也是偶数. 这与 (q,p)=1 矛盾,所以a不是有理数.

这个问题说明数轴上与有理数对应的点虽然是稠密的, 但是不"连续"(也称不"完备"), 也就是数轴上除了有理点外, 还存在很多空隙.

进一步分析会发现:

例1 若把有理数 ◎ 分成两组

$$X = \{x \mid x \in \mathbb{Q}, x^2 < 2, x > 0, \ \vec{\boxtimes} \ x < 0\},\$$
$$Y = \{y \mid y \in \mathbb{Q}, y^2 > 2, y > 0\}$$

则, X 中无最大有理数, Y 中无最小有理数.

证明 设 $a \in \mathbb{Q}$, 且 a > 0, 令

$$a' = a - \frac{a^2 - 2}{a + 2} = \frac{2a + 2}{a + 2},$$

于是

$$a^{\prime 2} - 2 = \frac{2(a^2 - 2)}{a + 2}.$$

若 $a \in X$, 则 $a^2 - 2 < 0$, 因此 a' > a, 且 $a'^2 - 2 < 0$, 即 $a' \in X$. 也就是任何 X 中的数 a, 在 X 中存在比 a 大的数 $a' \in X$.

若 $a \in Y$, 则 $a^2 - 2 > 0$, 因此 a' < a, 且 $a'^2 - 2 > 0$, 即 $a' \in Y$.

四、实数(抽象定义)

为了弥补有理数的不连续性或不完备性,需要将有理数进行扩充. 使得扩充后的数集不但保持有理数的特性,还具有完备性的特点. 为此抽象地给出如下定义.

(-) 有序集的定义 设 S 是一个集合, 若在其元素之间可定义一种序关系:

- (1) 对任意的 $x, y \in S$ x < y, x = y, y < x 有且仅有一种成立.
- (2) 对任意的 $x, y, z \in S$, 如果 x < y, y < z, 那么 x < z.

则称 S 为**有序集**. 有时也用 y > x 代替 x < y, 用 $x \le y$ 表示x < y 或 x = y, 也就是 对 y < x 的否定.

显然,有理数集 ◎ 是有序集.

有了"序"的概念, 就可以定义"界"的概念:

有界的定义 设 S 是有序集, $E \subset S$, 若存在 $\beta \in S$, 使得对每个 $x \in E$, 有 $x \leq \beta$, 则称 E 有上界, β 为 E 的一个上界. 同理定义下界. 同时有上下界的集合 E称为有界集合.

确界的定义 设 S 是有序集, $E \subset S$ 有界, 若 $\alpha \in S$, 满足

- (a) α 是 E 的上界;
- (b) 对任何 $\gamma < \alpha$, 那么 γ 就不是 E 的上界.

则称 α 是 E 的**上确界**, 也就是 E 的最小上界. 记为 $\alpha = \sup E$. 由 (b) 不难得到如果上确界存在,则一定是**唯一的**.

同理定义 E 的下确界 α , 记为 $\alpha = \inf E$

例 2
$$S=\mathbb{Q}, E=\left\{1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots\right\}$$
, 则 $\sup E=1\in S, \ \inf E=0\in S$

但是 $1 \in E$ 而 $0 \notin E$, 所以称 E 达到上确界, 但没有达到下确界.

例 3 集合

$$X = \{x \mid x \in \mathbb{Q}, x^2 < 2, x > 0\}, \quad Y = \{y \mid y \in \mathbb{Q}, y^2 > 2, y > 0\}$$

都是 \mathbb{Q} 的子集, 显然 Y 中的数都是X 在 \mathbb{Q} 中的上界, X 中的数都是 Y 在 \mathbb{Q} 中的下界. 因为 Y 中没有最小数, 所以X 在 \mathbb{Q} 中没有最小的上界, 即在 \mathbb{Q} 中不存在上确界. 同理 Y 在 \mathbb{Q} 中没有下确界, 即在 \mathbb{Q} 中不存在下确界.

定义 1 **(确界原理)** 设 S 是有序集, 若 S 的任何非空、有上(下)界的子集, 在 S 中必有上(下)确界. 则称 S 满足**确界原理**.

例 3 说明, ◎ 不满足确界原理!

定理 1 设 S 是有序集, 则 S 有上确界当且仅当 S 有下确界.

证明 不妨设 S 有上确界, 要证 S 中任意有下界的子集 E, 在S 中有下确界.

记E 所有下界的集合为

$$E' = \{x \mid x \in S, x \not\in E \text{ bib}\}$$

则, E 中的元素都是 E' 的上界, 因此 E' 有上确界: $\alpha = \sup E' \in S$. 也就是最小上界. 所以对任意的 $x \in E$, 有 $\alpha < x$, 所以 α 是E 的一个下界.

设 $\beta \in S$ 是E 的任意一个下界, 则 $\beta \in E'$, 推出 $\beta \leq \alpha$, 所以 α 是E 的最大下界: $\alpha = \inf E$.

(二)域的定义 若集合 F 具有加法 和 乘法运算,且这些运算满足下列公理,则称 F 为域

加法公理: 对任意的 $x, y \in F$, 可定义 $x + y \in F$.加法运算满足

- 1、零元:存在 $0 \in F$:使得x + 0 = 0 + x = x,对任意的 $x \in F$ 成立.
- 2、负元: 对每个 $x \in F$, 存在 $y \in F$, 使得 x + y = y + x = 0, 记 y = -x, 称为 x 的负元.
 - 3、交换律: x + y = y + x.
 - 4、结合律: x + (y + z) = (x + y) + z.

乘法公理: 对任意的 $x, y \in F$, 可定义 $x \cdot y \in F$ 且满足

- 1、单位元:存在 $1 \in F$,使得 $1 \cdot x = x \cdot 1 = x$,对任意 $x \in F$ 成立.
- 2、逆元: 对任意的 $x \neq 0$, $x \in F$, 存在 $x^{-1} \in F$, 使得 $x \cdot x^{-1} = x^{-1} \cdot x = 1$.
- 3、交换律: $x \cdot y = y \cdot z$.
- 4、结合律: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- 5、分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$.
- (三)有序域的定义 设 F 即是有序集, 又是域. 若还满足如下条件, 则称为有序域
 - 1、当 $x, y, z \in F$, 且 y < z 时, 有 x + y < x + z;

显然, ℚ 是有序域.

(四)实数域

定义2 满足确界原理的有序域,而且包含有理数域 $\mathbb Q$ 作为子集. 称为实数域,其中的元素称为实数.

定理 3 实数域是存在的.

证明思路是构造出满足定理条件的集合,构造的方法有Cantor 的有理数基本列方法,Dedekind 分割方法,十进制小数方法等.

实数的特点:

- (1) 实数与数轴上的点 1-1 对应. 因此"实数"和"点"不再区分, 或称数是点的坐标. 整数、有理数、无理数对应的点分别称为"整数点"、"有理点"和"无理点".
 - (2) ℝ 的基数大于 ℚ 的基数, 因此是不可数的(见第三册).

定理 4 实数域 ℝ 满足

(i) Archimedes 性: 若 $x, y \in \mathbb{R}, x > 0$, 则存在正整数 n, 使得

$$nx > y \ge (n-1)x$$
.

(ii) 有理数在实数中的稠密性: 若 $x, y \in \mathbb{R}$ 且 x < y, 则一定存在 $c \in \mathbb{Q}$, 使得

$$x < c < y$$
.

证明 对任意 x > 0, 设 $E = \{nx \mid n \in \mathbb{Z}\}$, 假如 $y \in E$ 上界, 那么 E 在 \mathbb{R} 中一定有上确界 $\alpha = \sup E \in \mathbb{R}$. 因为 x > 0, 所以 $\alpha - x$ 不是 E 的上界, 也就是存在整数 m, 使得 $mx \in E$, $\alpha - x < mx$, 这样就有 $\alpha < (m+1)x \in E$, 这与 α 是上确界矛盾. 推得 y 不是 E 的上界, 推因此一定存在 $n_1 \in \mathbb{Z}$, 使得 $n_1x > y$.

将上述结果应用到 x>0 和 $-y\in\mathbb{R}$ 上, 则存在 $n_2\in\mathbb{Z}$, 使得 $n_2x>-y$. 两者结合起来, 就是存在 $n_1,n_2\in\mathbb{Z}$, 使得

$$-n_2x < y < n_1x.$$

记

$$S = \{k \mid k \in \mathbb{Z}, \ kx > y\},\$$

则 S 包含 n_1 因此非空, 同时对 $k \in S$, 有

$$k > \frac{y}{x} > -n_2,$$

即 $-n_2$ 是 S 的一个下界. 这里要用到一个事实: **有下界整数集必有最小数**, 这个结论可以从自然数的最小数原理推导出来. 设n 是 S 中最小整数, 使得

$$(n-1)x \le y < nx.$$

关于(ii) 的证明如下, 由于 x < y, 得 y - x > 0, 对 y - x 和 1, 根据(i), 存在整数 n, 使得

$$n(y-x) > 1$$
, 或 $ny > nx + 1$.

因 y-x>0, 所以 n>0 是正整数. 再对 1 和 nx 利用 (i), 存在整数 m 使得

$$m - 1 \le nx < m$$
.

综合上述不等式,有

$$nx < m \le nx + 1 < ny.$$

因 n > 0, 从而

$$x < \frac{m}{n} < y$$
.

(五)十进制小数

设 \mathbb{R} 是实数域. 对任意的 x>0, 根据Archimedes 性, 存在非负整数 $a_0\geq 0$, 使得

$$a_0 \le x < a_0 + 1$$
.

同理对 $0 \le 10(x - a_0) < 10$, 存在非负整数 a_1 , 使得

$$a_1 \le 10(x - a_0) < a_1 + 1$$
 $\not \exists a_0 + \frac{a_1}{10} \le x < a_0 + \frac{a_1}{10} + \frac{1}{10}.$

显然 $0 \le a_1 < 10$ 或 $0 \le a_1 \le 9$.

若存在 0 和 9 之间的非负整数 a_1, a_2, \dots, a_n 使得

$$a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}$$

对 n 成立, 则对

$$0 \le 10^{n+1} \left(x - a_0 - \frac{a_1}{10} - \frac{a_2}{10^2} - \dots - \frac{a_n}{10^n} \right) < 10$$

存在非负整数 $0 \le a_{n+1} \le 9$, 使得上式对 n+1 也成立.

令 E 是按上述步骤得到的数

$$a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}, \ n = 0, 1, 2, \dots,$$

所组成的集合. 因此, x 是 E 在 $\mathbb R$ 中的一个上界, 因此 E 在 $\mathbb R$ 中有上确界. 下面要说明 $x=\sup E$.

若不然, 令 $x' = \sup E < x$, 那么

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le x' < x < a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n}$$
$$\implies 0 < x - x' < \frac{1}{10^n}, \ n = 1, 2, \dots,$$

这是不可能的. 因此 $x = \sup E$.

反之,对任何无限小数

$$a_0.a_1a_2.\cdots.a_n\cdots = a_0 + \frac{a_1}{10} + \cdots + \frac{a_n}{10^n} + \cdots$$

其中 $0 \le a_1, a_2, \dots, a_n, \dots \le 9$.

$$a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} < a_0 + \frac{10}{10} + \frac{10}{10^2} + \dots + \frac{10}{10^n} < a_0 + 2$$

有界, 所以有上确界 x, 记

$$x = a_0.a_1a_2.\cdots.a_n \cdots = a_0 + \frac{a_1}{10} + \cdots + \frac{a_n}{10^n} + \cdots$$

在十进制小数中 $a_1, a_2, \cdots, a_n, \cdots$ 都是介于 0 和 9 之间的非负整数. 这就产生了三种可能.

1°有限小数

若 $a_1, a_2, \cdots, a_n, \cdots$ 中只有有限项非零, 不妨设 $a_j = 0, j > m$, 则

$$x = a_0.a_1a_2\cdots a_m = a_0 + \frac{a_1}{10} + \cdots + \frac{a_m}{10^m}.$$

通分后有限的小数表示成分数形式 $x = \frac{p}{q}$, 其中 $q = 10^m$.

反之不然. 例如 5 是不能表示为有限小数的. 这是因为假如

$$\frac{5}{11} = \frac{b}{10^n}$$

则 $5 \cdot 10^n = 11 \cdot b$, 推出 11 能整除 10^n . 这显然是不可能的.

2° 无限循环小数

若 $a_1, a_2, \cdots, a_n, \cdots$ 中出现无限循环情况, 记为

$$x = a_0.a_1a_2\cdots a_n\dot{a}_{n+1}\cdots\dot{a}_{n+k}$$

那么

$$10^{n}(x - a_0.a_1a_2\cdots a_n) = 0.\dot{a}_{n+1}\cdots\dot{a}_{n+k}$$

所以

$$10^{n+k}(x - a_0.a_1a_2 \cdots a_n) = a_{n+1} \cdots a_{n+k} + 0.\dot{a}_{n+1} \cdots \dot{a}_{n+k}$$
$$= a_{n+1} \cdots a_{n+k} + 10^n(x - a_0.a_1a_2 \cdots a_n)$$

解得

$$x = a_0.a_1a_2\cdots a_n + \frac{a_{n+1}\cdots a_{n+k}}{10^{n+k} - 10^n}$$

所以无限循环小数也是有理数.

反之,任意有理数, 如果不是有限小数, 则一定是无限循环小数. 例如, $\frac{5}{11} = 0.\dot{45}$.

一般情况下, 设 $\frac{q}{p}$ 是有理数,其中 0 < q < p, (q,p) = 1, 用 q 除以 p, 则余数 q_1 满

足 $0 \le q_1 < p$, 继续除以p, 得余数 q_2 , 一直下去. 的余数 $0 \le q_1, q_2, \cdots, q_r, \cdots < p$. 若某个余数为零 $q_r = 0$, 则除法终止, $\frac{q}{p}$ 是有限小数, 若不存在为零的余数, 则必 有两个余数相等, 因此随后的除法余数出现重复, 出现无限循环小数.

3°无限不循环小数

除了前两种情况之外, $a_1, a_2, \dots, a_n, \dots$ 中既不是有限个非零, 也不出现循环, 因 此称为无限不循环小数,它正是我们构造的无理数.

五、绝对值和区间:实数的绝对值定义为,对任意的 $a \in \mathbb{R}$,

$$|a| = \begin{cases} a & \text{if } a \ge 0; \\ -a, & \text{if } a < 0. \end{cases}$$

绝对值满足

1° |a| > 0, 等号成立当且仅当 a = 0, 即正定性;

 $2^{\circ} |a-b| = |b-a|$, 即对称性;

 3° |a+b| < |a| + |b|, 即三角不等式.

因此两个数差的绝对值给出对应数轴上点的距离.

区间是一种特殊的实数集。

开区间: $(a,b) = \{x \in \mathbb{R} | a < x < b\}$

闭区间: $[a,b] = \{x \in \mathbb{R} | a < x < b\}$

其他区间:

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}, \quad [a,b) = \{x \in \mathbb{R} \mid a \le x < b\}.$$

$$(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}, \quad (-\infty, a] = \{x \in \mathbb{R} \mid x \le a\},\$$

$$(a, +\infty) = \{x \in \mathbb{R} \mid x > a\}, \quad [a, +\infty) = \{x \in \mathbb{R} \mid x \ge a\}.$$

邻域或"附近": $(a - \delta, a + \delta) = \{x \mid |x - a| < \delta\}$ 表示 a 的邻域, $\{x \mid 0 < |x - a| < \delta\}$ 表示去心邻域,有时也称"点 a 的**附近**".

设 I 是区间(闭、开或半开半闭), $x_0 \in I$, 若存在 x_0 的一个邻域 $(x_0 - \delta, x_0 + \delta) \in I$, 则称 x_0 是I 的**内点**, 区间的端点也称**边界点**.

六、几个常用不等式

1、Bernoulii **不等式** 设 $x \ge -1$, $n \ge 1$ 是正整数, 则有

$$(1+x)^n \geqslant 1+nx$$
. 归纳法可证

该式一个推广形式为: 若 $A \ge 0$, $A + B \ge 0$, 则

$$(A+B)^n \geqslant A^n + nA^{n-1}B.$$

不妨设 A > 0 (否则结论显然成立), 因此

$$(A+B)^n = A^n \left(1 + \frac{B}{A}\right)^n \ge A^n \left(1 + n\frac{B}{A}\right) = A^n + nA^{n-1}B.$$

2**、平均不等式** 设 a_1, a_2, \dots, a_n 是 n 个正实数, 则有

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

证明(归纳法)当 n=2 显然成立,若 n 时成立,则当 n+1 时,不妨设 a_{n+1} 是 a_1,\cdots,a_{n+1} 中最大者. 因此

$$na_{n+1} \ge a_1 + \dots + a_n = S,$$

所以

$$\left(\frac{a_1 + a_2 + \dots + a_n + a_{n+1}}{n+1}\right)^{n+1} = \left(\frac{S}{n} + \frac{na_{n+1} - S}{n(n+1)}\right)^{n+1}$$

$$= \left(\frac{S}{n}\right)^{n+1} + (n+1)\left(\frac{S}{n}\right)^n \frac{na_{n+1} - S}{n(n+1)}$$

$$= \left(\frac{S}{n}\right)^n a_{n+1} \ge a_1 \cdots a_n a_{n+1}.$$

3、 Cauchy **不等式** 设 x_1, x_2, \dots, x_n ; y_1, y_2, \dots, y_n 是两组实数,则有

$$\left(\sum_{i=1}^n x_i y_i\right)^2 \leqslant \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right).$$

证明 对任意实数 λ 有

$$0 \leqslant \sum_{i=1}^{n} (x_i \lambda + y_i)^2 = \left(\sum_{i=1}^{n} x_i^2\right) \lambda^2 + 2\left(\sum_{i=1}^{n} x_i y_i\right) \lambda + \sum_{i=1}^{n} y_i^2.$$

右边这个关于 λ 的一元二次式总非负, 因此其判别式非正, 从而可得 Cauchy 不等式.