Ferienkurs Quantenmechanik – Sommer 2009

Übungsklausur (90 Minuten)

1 δ -Potential (42/88 P, Ring, Semestrale 2002)

In der Mitte eines unendlich hohen Potentialtopfs der Breite 2a befindet sich eine δ -Barriere $V(x) = \lambda \cdot \delta(x)$ mit $\lambda > 0$.

1. Betrachten Sie den Ansatz

$$\psi(x) = A \cdot e^{ikx} + B \cdot e^{-ikx}$$

jeweils in den Gebieten links und rechts von der Barriere.

- 2. Stellen Sie die Randbedingungen bei $x = \pm a$ und die Anschlussbedingungen bei x = 0 auf.
- 3. Bestimmen Sie die Koeffizienten der Wellenfunktion.
- 4. Welche Parität besitzen die Wellenfunktionen?
- 5. Geben Sie die Normierung der Wellenfunktionen an.

2 Starrer Rotator (14/90 P, DVP 2004, Lindner)

Ein starrer Rotator mit Trägheitsmoment ${\cal I}$ wird durch den Hamiltonoperator

$$\mathcal{H}_0 = \frac{1}{2 \cdot I} \vec{L}^2$$

beschrieben. \vec{L} ist der Drehimpulsoperator.

- 1. Welche Werte kann die Energie des Systems annehmen und wie ist der Entartungsgrad der Energieeigenwerte? (4 P)
- 2. Der Rotator besitze nun ein magnetisches Dipolmoment $\vec{\mu}$. In einem äußeren Magnetfeld \vec{B} führt das zu einem Wechselwirkungsterm

$$\mathcal{H}_1 = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \theta$$

 \mathcal{H}_1 soll als Störung behandelt werden. Berechnen Sie die erste nichtverschwindende Korrektur für die Grundzustandsenergie des Rotators. (10 P)

Hinweis: Es gilt für die Kugelflächenfunktionen $Y_{lm}\left(\theta,\phi\right):Y_{00}=\sqrt{\frac{1}{4\pi}},Y_{10}=\sqrt{\frac{3}{4\pi}}\cos\theta$

Drehimpulsoperatoren (4/65 P, Semestrale SS2003, A. Buras) 3

Geben Sie den resultierenden Zustand, sofern er existiert, zu folgenden Operationen an. Die genaue Normierung der rotationssymmetrischen Zustände $|l,m\rangle$ mit den Drehimpulsquantenzahlen l und m ist nicht gefordert. (je 0.5 P)

- a) $L_{+}|1,0\rangle$
- c) $L^2L_+|2,1\rangle$ e) $L_+L^2L_+|7,5\rangle$ g) $L^2L_+|1,-1\rangle$ d) $L_-|1,2\rangle$ f) $L_-L^2|3,-3\rangle$ h) $L_+|0,0\rangle$

- b) $L_{-}L_{+}|1,1\rangle$
- f) $L_{-}L^{2}|3,-3\rangle$ h) $L_{+}|0,0\rangle$

Harmonischer Oszillator mit Störterm (18/65 P, Semestrale SS2003, A. Buras)

Gegeben sei ein harmonischer Oszillator mit einem zu α proportionalen quadratischen Störterm.

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 + \alpha \frac{1}{2}m\omega^2 x^2 \tag{1}$$

$$= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 \quad \text{mit } \omega' = \omega\sqrt{1+\alpha}$$
 (2)

• Drücken Sie (1) durch

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right), \ a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega} \right)$$

aus. (4 P)

- Sei $|n\rangle^{(0)}$ der Eigenzustand des ungestörten harmonischen Oszillators, $H=\frac{p^2}{2m}+\frac{1}{2}m\omega^2x^2$, mit $H|n\rangle^{(0)} = \hbar\omega(n+1/2)|n\rangle^{(0)}$. Beweisen Sie: $a^{\dagger}|n\rangle^{(0)} = \sqrt{n+1}|n\rangle^{(0)}$ und $a|n\rangle^{(0)} = \sqrt{n}|n\rangle^{(0)}$ (5 P)
- Betrachten Sie (1) als gestörten harmonischen Oszillator mit Störparameter α .
 - 1. Berechnen Sie die Energiekorrektur erster Ordnung. (2 P)
 - 2. Berechnen Sie die Zustandsvektoren $|n\rangle^{(1)}$ erster Ordnung. (1 P)
- Fassen Sie nun (2) als harmonischen Oszillator auf und vergleichen Sie die Energieeigenwerte aus der voherigen Aufgabe mit dem exakten Ergebnis, indem Sie ω' nach α entwickeln. (3 P)

5 Variationsmethode (DVP 2008, Schirmacher)

Betrachten Sie ein Teilchen in einem Potentialkasen mit unendlich hohen Wänden

$$V\left(x\right) = 0$$
 für $|x| < L$, $V\left(x\right) = \infty$ für $|x| \ge L$

Wählen Sie die Versuchswellenfunktion für den Grundzustand in diesem Potential in der Form

$$\psi^{var}(x) = A(L - |x|)$$
 für $|x| < L$, $\psi^{var}(x) = 0$ für $|x| \ge L$

Bestimmen Sie die Normierungskonstante A und berechnen Sie den Erwartungswert des Hamiltonoperators.