Analisi II - ottava parte

Curve equivalenti

Siano $\gamma_1:I_1\to\mathbb{R}^n$ e $\gamma_2:I_2\to\mathbb{R}^n$. Si dice che γ_1 e γ_2 sono equivalenti se esiste $h:I_2\to I_1$ t.c.

- 1. h è bijettiva
- 2. h è di classe C^1 con h'(s)
 eq 0 in I_2 , ovvero h è solo crescente o decrescente
- 3. $\gamma_1(h(s)) = \gamma_2(s)$, $orall s \in I_2$

Osservazione

Se γ_1 e γ_2 sono equivalenti allora $sost(\gamma_1) = sost(\gamma_2)$

Orientazione di una curva

Siano γ_1 e γ_2 due curve equivalenti.

Si dice che γ_1 e γ_2 hanno la stessa orientazione/sono equiverse se $h'(s)>0 \forall s\in I_2$ e si scrive $\gamma_1\sim\gamma_2$

Si dice che γ_1 e γ_2 hanno orientazione opposte se $h'(s) < 0 orall s \in I_2$ e si scrive $\gamma_1 \sim -\gamma_2$

Osservazione

Siano γ_1,γ_2 due curve **regolari** ($\gamma_1'(t) \neq 0$ e $\gamma_2'(t) \neq 0$, $\forall t$) equivalenti. Si ha:

- ullet se γ_1 e γ_2 hanno la stessa orientazione, allora $au_1(h(s))= au_2(s)$ in I_2
- ullet altrimenti ($\gamma_1 \sim -\gamma_2$), allora $au_1(h(s)) = - au_2(s)$ in I_2 Infatti:

$$au_2(s) = rac{\gamma_2'(s)}{||\gamma_2'(s)||} = rac{rac{d}{ds}\gamma_1(h(s))}{||rac{d}{ds}\gamma_1(h(s))||} = rac{\gamma_1'(h(s))\cdot h'(s)}{||\gamma_1'(h(s))\cdot h'(s)||} = rac{\gamma_1'(h(s))\cdot h'(s)}{||\gamma_1'(h(s))\cdot h'(s)||} = egin{cases} au_1(h(s)) & ext{set} & au_1 \sim \gamma_2 \ - au_1(h(s)) & ext{set} & au_1 \sim -\gamma_2 \end{cases}$$

Integrazione su curve

Integrazione di linea di un campo scalare

Siano $\gamma:I=[a,b] o\mathbb{R}^n$ una curva regolare e $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ un campo scalare (---...? ----)

Si definisce integrale di f su $\gamma \int_{\gamma} f ds = \int_a^b f(\gamma(t)) ||\gamma'(t)|| dt$

Osservazione

Se
$$f=1$$
 in E allora $\int_{\gamma}1ds=\int_{a}^{b}||\gamma'(t)||dt=l(\gamma)$

Proposizione

Se γ_1 e γ_2 sono curve regolari equivalenti e f è un campo scalare continuo $\int_{\gamma_1}fds=\int_{\gamma_2}fds$

(si verifica tramite la funzione $h:I_2 o I_1$ e cambio di variabile integrazione unidimensionale)

Integrali di linea di campi vettoriali

Siano $\gamma:I=[a,b]\to\mathbb{R}^n$ una curva regolare e $g:E(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$ un campo vettoriale continuo, con $\gamma(I)\subseteq E$. Si definisce integrale di linea di g su $\gamma\int_{\gamma}< g, \tau>ds=\int_a^b< g(\gamma(t)), \gamma'(t)>dt$

Osservazione

$$\int_a^b < g(\gamma(t)), \gamma'(t) > dt) = \int_a^b < g(\gamma(t)), \underbrace{rac{\gamma'(t)}{||\gamma'(t)||}}_{ au(t)} > \cdot ||\gamma'(t)||dt = \int_a^b < g(\gamma(t)), au(t) > ||\gamma'(t)||dt = \int_\gamma < g, au > dt$$

Proposizione

Se γ_1 e γ_2 sono curve regolari equivalenti con la stessa orientazione, allora $\int_{\gamma_1} < g, au>$ $ds=\int_{\gamma_2} < g, au> ds$

Se γ_1 e γ_2 sono curve regolari equivalenti con orientazione opposta, allora $\int_{\gamma_1} < g, au>$ $ds=-\int_{\gamma_2} < g, au>ds$

Intepretazione fisica

Sia g un campo di forze: $\int_{\gamma} < g, au > ds$ è il lavoro che il campo g compie per portare un punto dalla posizione $\gamma(a)$ alla posizione $\gamma(b)$ lungo il percorso γ

Notazione

$$\begin{array}{l} \bullet \quad N=2 \text{, } g(x,y)=(X(x,y),Y(x,y))^T \text{ e } \gamma(t)=(x(t),y(t))^T \\ \int_{\gamma} < g, \tau > ds = \int_a^b < g(\gamma(t)), \gamma'(t) > dt = \int_a^b (X(\gamma(t))x'(t) + t)^T dt \\ \end{array}$$

$$Y(\gamma(t))y'(t))dt=$$
 $=\int_{\gamma}Xdx+Ydy o$ forma differenziale $egin{pmatrix}x(t)dt=dx\\y(t)dt=dy\end{pmatrix}$
 $ullet$ $N=3$, $g(x,y,z)=(X(z,y,z)+Y(z,y,z)+Z(z,y,z))^T$ $\gamma(t)=(x(t),y(t),z(t))^T$ $\int_{\gamma}< g, au>ds=\int_a^b < g(\gamma(t)), \gamma'(t)>dt=\int_a^b < g(\gamma(t)), \gamma'(t)>dt=\int_a^b (X(\gamma(t)x'(t)+Y(\gamma(t))y'(t)+Z(\gamma(t))z'(t))dt$ $\int_{\gamma}Xdx+Ydy+Zdz o$ forma differenziale

Problemi

Siano $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2 o 3) un campo vettoriale continuo, con A aperto e $\gamma:[a,b] o A$ una curva regolare

- 1. Quando $\int_{\gamma} < g, au > ds$ dipende dal punto iniziale $\gamma(a)$ e dal punto terminale $\gamma(b)$, ma non dal percorso?
- 2. Quando esiste un campo scalare $f:A o\mathbb{R}$ differenziale tale che abla f=g in A?

Campi vettoriali conservativi

Si dice che $g:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$, con A aperto è conservativo in A se esiste $f:A\to\mathbb{R}$ differenziabile in A e si dice che f è un potenziale di g su A

NB

Se N=1:

- 1. g conservativo $\Leftrightarrow g$ primitivabile
- 2. q continua $\Rightarrow q$ primitivabile \Rightarrow conservativa

Proposizione

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$, A aperto connesso, è conservativo in A e $f_1,f_2:A o\mathbb{R}$ sono potenziali di g in A, allora esiste $c\in\mathbb{R}$ t.c. $f_1(x)=f_2(x)+c$ in A

Dimostrazione

Poniamo

$$h=f_1-f_2$$
. Si ha che $abla h(\underline{x})=
abla f_1(\underline{x})-
abla f_2(\underline{x})=g(\underline{x})-g(\underline{x})=0$ in A . Poichè A è aperto e connesso si conclude che esiste $c\in\mathbb{R}$ t.c. $h(\underline{x})=c$ in A .

Teorema (di Torricelli per campi vettoriali conservativi)

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ è continuo e conservativo in A e $\gamma:[a,b] o A$ è una curva regolare, allora si ha $\int_\gamma < g, au>ds=f(\gamma(b))-f(\gamma(a))$ dove f è un potenziale di g su A.

Dimostrazione

Si ha
$$\int_{\gamma} < g, au > ds = \int_a^b \underbrace{< g(\gamma(t)), \gamma'(t) >}_{\frac{d}{dt}f(\gamma(t))} dt = \int_A^b < \nabla f(\gamma(t)), \gamma'(t) > dt = f(\gamma(b)) - f(\gamma(a))$$

Intepretazione fisica

Siano

- p punto materiale di massa m
- $\gamma(t)$ legge oraria
- $g(\underline{x})$ campo di forze conservativo (stazionario)
- $f(\underline{x})$ potenziale di g

e quindi
$$\frac{1}{2}m||\gamma'(t_1)||^2-\frac{1}{2}m||\gamma'(t_2)||^2=f(Y(t_2))-f(\gamma(t_1)), \text{ cioè}\\ \frac{1}{2}m||\gamma'(t_2)||^2-\underbrace{f(\gamma(t_2))}_{\text{Energia potenziale}}=\frac{1}{2}m||\gamma'(t_1)||^2-f(\gamma(t_1))\\ \underbrace{\text{Energia cinetica}}_{\text{Energia meccanica}}$$

Conclusione

Energia meccanica+Energia potenziale=Energia meccanica Si conserva nel tempo (teorema di conservazione dell'energia)

Caratterizzazione dei campi conservativi

Curva regolare a tratti

Si dice che una curva $\gamma:I=[a,b] o\mathbb{R}^n$ continua è regolare a trattise esiste una decomposizione $\delta\in\Delta(I)$, individuata dai nodi $a=t_0< t_1< ...< t_n=b$ t.c. $\gamma_{|_{[t_{i-1}-t_i]}}$ è una curva regolare per i=1,...,n Sia $A\in\mathbb{R}^n$ aperto e connesso. $\forall \underline{x},y\in A$ poniamo

 $\Gamma(\underline{x},\underline{y}))=\{\gamma:[a,b] o A|\gamma$ è una curva regolare a tratti e $\gamma(a)=\underline{x}$ e $\gamma(b)=\underline{y}\}$ $\Gamma(\underline{x},\overline{y})\neq\emptyset$ poichè A è connesso

Caratterizzazione dei campi conservativi

Sia $g:A(ackslash \mathbb{R}^n) o \mathbb{R}^n$ un campo vettoriale continuo con A aperto connesso. Si ha che g è conservativo in A se e solo se

(c)
$$orall \underline{x}, \underline{y} \in A$$
 e per ogni $\gamma_1, \gamma_2 \in \Gamma(\underline{x}, \underline{y})$, $\int_{\gamma_1} < g, au > ds = \int_{\gamma_2} < g, au > ds$

Dimostrazione (idea)

- g conservativo \Rightarrow (c) (segue dal teorema di Torricelli)
- $ullet \ int_{\gamma_1} < g, au > ds = f(\underline{y}) f(\underline{x}) = \int_{\gamma_2} < g, au > ds$ con f è un potenziale di g in A
- (c) $\Rightarrow g$ conservativo Fissiamo $\underline{x}^0 \in A$ generico Poniamo $f(\underline{x}) \int_{\gamma} < g, \tau > ds$, dove $\gamma \in \Gamma(\underline{x}^0, \underline{x})$. Per (c) il valore $f(\underline{x})$ non dipende da γ si verifica che f è differenziabile e $\nabla f = g$ in A.

Notazione

Per ogni $\underline{x},\underline{y}\in A$ e $\forall \gamma_1,\gamma_2\in \Gamma(\underline{x},\underline{y})$ indichiamo con $-\gamma_2$ la curva equivalente a γ_2 orientata in senso opposto e con γ la curva chiusa individuata da γ_1 e $-\gamma_2$

Osservazione

Si ha
$$\int_{\gamma_1} < g, au > ds = \int_{\gamma_2} < g, au > ds \Leftrightarrow 0 = \int_{\gamma_1} < g, au > ds - \int_{\gamma_2} < g, au > ds = \int_{\gamma_1} < g, au > ds + \int_{-\gamma_2} < g, au > ds = \int_{\gamma} < g, au > ds$$
 La condizione (c) è equivalente a (D) per ogni curva chiusa regolare a tratti, $\gamma:[a,b] \to A$, $\oint_{\gamma} < g, au > ds = 0$

Circuitazione o circotazione di g su γ

Problema

trovare condizioni più agevoli da verificare di (c) o (D)

Operatori differenziali

Gradiente, rotore, divergenza

Sia $A\subseteq \mathbb{R}^3$ un aperto

L'operatore gradiente associa ad ogni campo scalare $f:A \to \mathbb{R}$ differenziabile. Il campo vettoriale $gradf = \nabla f: A(\subseteq \mathbb{R}^3) \to \mathbb{R}^3$ con $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})^T$, si ha gradf:

Campo scalare \mapsto Campo Vettoriale

L'operatore rotore associa a ogni campo vettoriale $g:A o\mathbb{R}^3$ differenziabile, il campo vettoriale $rotg=
abla imes g:A o\mathbb{R}^3$, con

$$rotg = det egin{pmatrix} rac{e_1}{\partial} & rac{e_1}{\partial} & rac{e_1}{\partial} \ rac{\partial}{\partial x} & rac{\partial}{\partial z} \end{pmatrix} = \left(rac{\partial z}{\partial y} - rac{\partial y}{\partial z}
ight) \underline{e}_1 - \left(rac{\partial z}{\partial x} - rac{\partial x}{\partial z}
ight) \underline{e}_2 + rac{\partial z}{\partial z} + rac{\partial$$

$$\left(rac{\partial y}{\partial x}-rac{\partial x}{\partial y}
ight)\underline{e}_{3}=\left(rac{\partial z}{\partial y}-rac{\partial y}{\partial z},rac{\partial z}{\partial x}-rac{\partial x}{\partial z},rac{\partial y}{\partial x}-rac{\partial x}{\partial y}
ight)^{T}$$

Dove $g(x,y,z)=(X(z,y,z),Y(x,y,z),Z(x,y,z))^T$

L'operatore divergenza associa ad ogni campo vettoriale $g:A \to \mathbb{R}^3$ differenziabile. Il campo scalare $divg=<\nabla,g>:A \to \mathbb{R}$ con $divg=\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}$

• Caso N=2 Sia $g:A(\subseteq \mathbb{R}^2) o \mathbb{R}^2$ un campo vettoriale differenziabile in A Si pone $\tilde{g}(x,y,z)=(X(x,y),Y(x,y),0)^T$, dove $g(x,y)=(X(x,y),Y(x,y))^T$ e si definiscono $rotg=rot\tilde{g}=\left(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y}\underline{e}_3\right)$

Campi vettoriali irrotazionali

Si dice che $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2 o 3) differenziabile in A aperto è irrotazionale se $rot g(\underline{x})=\underline{0}$ in A

Osservazione

$$\bullet \quad N = 3, \, rotg = \begin{pmatrix} \frac{\partial z}{\partial y} - \frac{\partial y}{\partial z}, \frac{\partial x}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} \end{pmatrix}^T = \underline{0} \Leftrightarrow Jg = \begin{pmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \end{pmatrix} \ \, \text{è simmetrica}$$

Un campo vettoriale è irrotazione se la matrice Jacobiana del campo è simmetrica

Teorema (condizione necessaria affinchè un campo vettoriale sia conservativo)

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2,3) è un campo vettoriale conservativo allora è irrotazionale (Jg è simmetrica)

Se g è conservativo e differenziabile, allora esiste un campo scalare f t.c. $\nabla f=g$, con f due volte differenziabile.

Per il teorema di Young si ha che Hf=Jg è simmetrica ossita $rotg=\underline{0}$ in A

Problema

Un campo vettoriale è conservativo? In generale, no

Insieme stellato

Sia $A\subseteq\mathbb{R}^n$ un aperto. Si dice che A è stellato se $\exists \underline{x}^0\in A$ t.c. $\forall \underline{x}\in A$ (il segmento) $\sigma(t)=\underline{x}^0+t(\underline{x}-\underline{x}^0)\in A$, $\forall t\in[0,1]$ cioè il segmento che congiunge \underline{x}^0 e \underline{x} è interamente contenuto in A.

Osservazione

 $A \text{ convesso} \Rightarrow A \text{ stellato} \Rightarrow A \text{ connesso}$

Teorema di Poincarrè

Sia $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2,3) un campo vettoriale di classe C^1 e sia A aperto e stellato. Si ha che g è conservativo in $A\Leftrightarrow rot g=\underline{0}$ in A

Dimostrazione (Idea)

- ullet g è conservativo $\Rightarrow rotg = \underline{0}$ in A
- $rotg = \underline{0} \Rightarrow g$ è conservativo in A Si definisce $F: A \to \mathbb{R}$, ponendo $\forall x \in A$ $f(\underline{x}) = \int_{\sigma} < g, \tau > ds = \int_{0}^{1} < g(\underline{x}^{0} + t(\underline{x} \underline{x}^{0})), \underline{x} \underline{x}^{0} > dt$ Dove $\sigma(t) = \underline{x}^{0} + t(\underline{x} \underline{x}^{0})$ e \underline{x}^{0} è un punto rispetto al quale A è stellato

Misure e integrazioni su superfici

Premessa

Siano $\underline{a},\underline{b}\in\mathbb{R}^3$ linearmente indipendenti, cioè $\underline{a}\times\underline{b}\neq\underline{0}$ $\sigma:K=[0,1]\times[0,1]\to\mathbb{R}$ $\sigma(u,v)=\underline{a}u+\underline{b}v.$

$$\sigma_u = \underline{a}$$
, $\sigma_v = \underline{b}$, $\sigma_u imes \sigma_v = \underline{a} imes \underline{b}
eq 0$

Superficie regolare semplice

Questa formula, valida per i parallelogrammi, si estende ad una generica superficie regolare semplice

Area di una superficie

Sia $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ con K=clA(=frA), A aperto misurabile in \mathbb{R}^2 , una superficie regolare semplice

Si definisce
$$A(\Sigma)=\iint_K ||\sigma_u(u,v) imes\sigma_v(u,v)||dudv$$
, con $\Sigma=\sigma(K)$

Superficie in forma cartesiana

Sia $f:K(\subseteq\mathbb{R}^2) o\mathbb{R}$ di classe C^1 . La superficie in forma cartesiana $\sigma:K(\subseteq\mathbb{R}^2) o\mathbb{R}^3$, con $\sigma(u,v)=(u,v,f(u,v))^T$, è t.c. $\Sigma=\sigma(K)=G(f)$

Si ha
$$\sigma_u imes \sigma_v = det egin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ 1 & 0 & f_u \\ 0 & 1 & f_v \end{pmatrix} = (-f_u, -f_v, 1)^T \ \mathrm{e} \ ||\sigma_v imes \sigma_u|| = (-f_u, -f_v, 1)^T \$$

$$\sqrt{1+(f_u)^2+(f_v)^2} = \sqrt{1+||
abla f||^2} \ A(G(f)) = \iint_K \sqrt{1+||
abla f||^2} dxdy$$

Superfici cilindriche

Sia $\gamma:[a,b]\to\mathbb{R}^2$ una curva regolare semplice e siano $f,g:E(\subseteq\mathbb{R}^2)\to\mathbb{R}$, con $sost(\gamma)\subseteq E$ e f(x,y)< g(x,y) in E. Sia $\Sigma=\{(x,y,z)^T:(x,y)^T\in sost(\gamma),f(x,y)\leq z\leq g(x,y)\}$ Σ è il sostegno della superficie regolare semplice $\sigma(u,v)=x(u),y(u),v)^T$, con $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ e $K=\{(u,v):a\leq u\leq b,f(\gamma(u))\leq v\leq g(\gamma(u))\}$ dove $(x(u),y(u))^T=\gamma(u). \text{ Si ha } \sigma_u\times\sigma_v=\det\begin{pmatrix}\frac{\underline{e}_1}{x'(u)}&\frac{\underline{e}_2}{y'(u)}&\frac{\underline{e}_3}{0}\\0&0&1\end{pmatrix}=(\underline{e}_1\cdot y'(u)-\underline{e}_2\cdot x'(u)+0\cdot\underline{e}_3)=(y'(u),-x'(u),0)^T\\||\sigma_u\times\sigma_v||\to \text{ norma del vettore normale}\\||\gamma'(u)||\to \text{ norma del vettore tangente}\\|\gamma(u)=(x'(u),y'(u),0)^T\\|\int_K||\sigma_u\times\sigma_v||dudv=\int_K||\gamma'(u)||dudv=\int_a^b(\int_{f(\gamma(u))}^{g(\gamma(u))}||\gamma'(u)||dv)du=\int_a^b(g(\gamma(u))-f(\gamma(u)))\cdot||\gamma'(u)||du=\int_\gamma(g-f)ds$

Superfici di rotazione

Sia $\gamma:[a,b] o \mathbb{R}^2$ una curva regolare semplice, con $\gamma(u)=(x(u),z(u))^T$. x(u)>0 in]a,b[.

Facendo ruotare $sost(\gamma)$ intorno all'asse z si 2π si ottiene il sostegno Σ di una superficie regolare semplice $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$, con $\sigma(u,v)=(x(u)cosv,x(u)sinv,z(u))^T$ e

$$K = [a,b] \times [0,2\pi]. \text{ Si ha } \sigma_u \times \sigma_v = det \begin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ x'(u)cosv & x^(u)sinv & z' \\ -x(u)sinv & x(u)cosv & 0 \end{pmatrix} = \begin{pmatrix} (-x(u)z(u)cosv, -x(u)z'(u)sinv, x(u)x'(u))^T \\ e \mid |\sigma_u \times \sigma_v| \mid = [(x(u)z'(u)cosv)^2 + (x(u)z'(u)sinv)^2 + (x(u)x'(u))^2]^{\frac{1}{2}} = \begin{pmatrix} (x(u)z(u))^2 + (x(u)x'(u))^2 \\ \hline (x(u)z(u))^2 + (x(u)x'(u))^2 \\ \hline |x(u)|\sqrt{x'(u)+z'(u)} \end{pmatrix} = x(u) \cdot ||\gamma'(u)||$$
 Quindi $A(\Sigma) = \iint_K x(u)||\gamma'(u)||dudv \stackrel{Fubini}{=} \int_a^b (\int_0^{2\pi} x(u)||\gamma'(u)||dv)du = \begin{pmatrix} (x_0 + x_0) & (x_0$

Quindi
$$A(\Sigma)=\iint_K x(u)||\gamma'(u)||dudv\stackrel{Funn}{=}\int_a^b (\int_0^{2\pi}x(u)||\gamma'(u)||dv)du=2\pi\int_a^b x(u)||\gamma'(u)||du=2\pi\underbrace{\int_\gamma xds}_{baricentro}l(\gamma)=2\pi x_Bl(\gamma)$$
, II teorema di Pappo-Guldino

Integrale di superficie del campo scalare

Sia $\gamma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ con K=clA, A aperto misurabile una superficie regolare semplice Sia $f:E(\subseteq\mathbb{R}^3)\to\mathbb{R}$ un campo scalare continuo con $\Sigma=\sigma(K)\subseteq E$. Si definisce

integrale di superficie di f su E: $\iint_\Sigma f \cdot \sigma = \iint_K f(\gamma(u,v)) \cdot \sigma_u(u,v) imes \sigma_v(u,v) ||du dv|$

Osservazione

Se
$$f=1$$
 allora $\iint_{\Sigma}1d\sigma=\iint_{K}||\sigma_{u} imes\sigma_{v}||dudv=A(\Sigma)$

Applichiamo il calcolo di massa, baricentro, momento d'inerzia di una lamina piana di densità di massa $\mu(x,y,z)$, appoggiata sul $sost\Sigma$ di una superficie regolare semplice

Sia $\gamma:K(\subseteq\mathbb{R}^2) o\mathbb{R}^3$ con K=clA, A aperto misurabile una superficie regolare semplice.

Sia $g:E(\subseteq\mathbb{R}^3)\to\mathbb{R}^3$ un campo vettoriale continuo con $\Sigma\subseteq E$ si definisce integrale di superficie di g su Σ

$$\iint_{\Sigma} \langle g,v
angle ds = \iint_{K} \langle g(\sigma(u,v)), \sigma_{u}(u,v) imes \sigma_{v}(u,v)
angle dudv$$

Giustificazione della rotazione

$$\iint_K < g(\sigma(u,v)), \sigma_u(u,v) imes \sigma_v(u,v) > dudv$$
 $\iint_K < g(\sigma(u,v)), rac{\sigma_u(u,v) imes \sigma_v(u,v)}{||\sigma_u(u,v) imes \sigma_v(u,v)||} > \cdot ||\sigma_u(u,v) imes \sigma_v(u,v)||dudv =$ $= \iint_K < g(\sigma(u,v)),
u(u,v) imes ||\sigma_u(u,v) imes \sigma_v(u,v)||dvdu = \iint_\Sigma < g,
u > ds$, dove $u = rac{\sigma_u imes \sigma_v}{||\sigma_u imes \sigma_v||}$

Intepretazione fisica

Sia g un campo di velocità di un fluido in movimento $\iint_K < g,
u > ds$ ha il significato di flusso attraverso Σ

Dominio generalmente regolare in \mathbb{R}^2

Un aperto limitato e connesso $D\subseteq\mathbb{R}^2$ si dice (generalmente) regolare se esiste una curva γ regolare $\gamma:[a,b]\to\mathbb{R}$ regolare (a tratti) semplice e chiusa t.c. $frD=sost(\gamma)$ γ orienta positivamente frD e in tal caso γ si indica con +frD, se al crescere di $t\in[a,b]$. Il punto $\gamma(t)$ percorre frD in verso antiorario

Si ha
$$\underbrace{\tau(t)}_{ ext{Vettore tangente}} = \frac{(x'(t),y'(t))^T}{||\gamma'(t)||}$$
, dove $\gamma = (x(t),y(t))^T$ $\nu(t) = \frac{(y'(t)-x'(t))^T}{||\gamma'(t)||}$, versore normale esterno

Osservazione

frD misurabile $\Rightarrow D$ misurabile, sia $\sigma:B(\subseteq\mathbb{R}^2) o\mathbb{R}^3$, B aperto, t.c.

1.
$$\sigma$$
 è di classe C^1 in B

2.
$$\sigma_u imes \sigma_v
eq 0$$
 in B

3. σ è iniettiva

Sia D un dominio generalmente regolare $(D\subseteq B)$, t.c. $clD\subseteq B\Rightarrow \sigma_{|_{clD}}$ è una superficie regolare semplice

Sia $\gamma:[a,b] o B$ regolare a tratti semplice e chiusa che orienta positivamente frD, cioè $\gamma=+frD$

Indichiamo con $+\partial\Sigma$ regolare a tratti $\sigma\circ\gamma:[a,b] o\mathbb{R}^3$ si dice **bordo** di Σ

Teorema di Stokes (del rotore)

Se $g:A(\subseteq\mathbb{R}^3) o\mathbb{R}^3$ è un campo vettoriale di classe C^1 con $\Sigma\subset A$, allora $\underbrace{\iint_\Sigma < rotg, \nu>d\sigma}_{\text{Flusso del rotore}} = \underbrace{\int_{+\partial\Sigma} < g, \tau>ds}_{\text{Circolazione del campo}}$

Caso particolare

Se
$$\sigma(u,v)=(u,v,0)^T$$
 , si ha che $\Sigma=clD$ e quindi $\iint_{clD} < rotg$, $\underbrace{e_3}_{ ext{Normale a }clD} > d\sigma \iint (Y_x-X_y) dx dy \stackrel{ ext{Stokes}}{=} \int_{+frD} < g, au > ds$

Dominio regolare nello spazio \mathbb{R}^3

Sia $D\subseteq\mathbb{R}^3$ un aperto limitato e connesso. Si dice che D è un dominio regolare in \mathbb{R}^3 se esiste $\varphi:\mathbb{R}^3\to\mathbb{R}$ di classe C^1 t.c. $D=\{\underline{x}\in\mathbb{R}^3:\varphi(\underline{x})=0\}$. $frD=\{\underline{x}\in\mathbb{R}^3,\varphi(\underline{x})=0\}$ = D e una superficie regolare in forma implicita). Il versore D0 e una superficie regolare in forma implicita).

Teorema della divergenza (di Gauss)

Se $g:A(\subseteq\mathbb{R}^3) o\mathbb{R}^2$, di classe C^1 e D è un dominio regolare in \mathbb{R}^3 con $clD\subseteq A$, allora $\iiint_D divg(x,y,z)dxdydz=\iint_{frD} < g, \nu>d\sigma$

Osservazione

frD è trascurabile $\Rightarrow D$ è misurabile

Significato del rotore e della divergenza in \mathbb{R}^2

Sia $g:A(\subseteq\mathbb{R}^2) o\mathbb{R}^2$ un campo vettoriale di classe C^1A aperto, che interpretiamo come un campo di velocità

Per ogni arepsilon>0 sono

$$D_arepsilon = \{(x,y)^T: (x-x^0)+(y-y^0)$$

$$C_arepsilon=frD_arepsilon$$
 e $\gamma_arepsilon=(x^0+arepsilon cost,y^0+arepsilon sint)^T$, $T\in[0,2\pi]$ Si ha $\gamma_arepsilon=+frD_arepsilon$

Scomponiamo g lungo τ e ν :

$$g = < g, \tau > \tau + < g, \nu > \nu$$

Rotore, per il teorema di Stokes si ha:

$$\iint_{D_{arepsilon}} < rotg, \underline{e}_3 > dxdy = \int_{+frD_{arepsilon}} < g, au > ds.$$

Per il teorema della media integrale si ha:

$$2\piarepsilon^2 < rotg, x^arepsilon, y^arepsilon, \underline{e}_3> = rac{1}{arepsilon^2} \int_{+frD_arepsilon} < g, au > ds$$

Se
$$e o 0^+$$
: $2\pi < rotg(x^0,y^0), \underline{e}_3> = lim_{arepsilon o 0^+} \int_{+frD_arepsilon} < g, au > ds$

Identificando D_{ε} con una rotellina centrata in $(\underline{x}^0,\underline{y}^0)^T$ di raggio $\varepsilon>0$, si ha per ε sufficientemente piccolo, $< rotg(x^0,y^0),\underline{e}_3>>0 \Rightarrow \int_{+frD_{\varepsilon}} < g,\tau>ds>0 \Rightarrow$ la rotellina ruota in senso antiorario attorno a $(x^0,y^0)^T$

 $< rotg(x^0,y^0),\underline{e}_3> <0 \Rightarrow \int_{+frD_{arepsilon}} < g, au> ds <0 \Rightarrow$ la rotellina ruota in senso orario attorno a $(x^0,y^0)^T$