ACH2011 - Cálculo I

Lista 4: Regras de Diferenciação

1. Diferencie a função:

(a)
$$f(x) = 5x - 1$$
.

(b)
$$f(x) = x^2 + 3x - 4$$
.

(c)
$$f(x) = x^{-2/5}$$
.

(d)
$$f(x) = \frac{x^2 + 4x + 3}{\sqrt{x}}$$
.

(e)
$$f(x) = 3x + e^x$$
.

(f)
$$f(x) = \sqrt[3]{x^2} + 2\sqrt{x^3}$$
.

(g)
$$f(x) = e^{x+1} + 1$$
.

(h)
$$f(x) = x\sqrt{x} + \frac{1}{x^2\sqrt{x}}$$
.

2. Ache os pontos sobre a curva $y=x^3-x^2-x+1$ onde a tangente é horizontal.

3. Mostre que a curva $y = 6x^3 + 5x - 3$ não tem reta tangente com inclinação 4.

4. Use a definição de uma derivada para mostrar que se f(x) = 1/x, então $f'(x) = -1/x^2$.

5. (a) Para quais valores de x a função $f(x) = |x^2 - 9|$ é diferenciavel? Ache uma fórnula para f'.

(b) Esboce os gráficos de f e f'.

6. Encontre a derivada de $y = (x^2 + 1)(x^3 + 1)$ de duas formas: usando a Regra do Produto e fazendo primeiro a multiplicação. As respostas são iguais?

7. Encontre a derivada de

$$F(x) = \frac{x - 3x\sqrt{x}}{\sqrt{x}}$$

de duas formas: usando a Regra do Quociente e simplificando primeiro. As respostas são iguais? Qual método você prefere?

1

8. Diferencie a função:

(a)
$$f(x) = x^2 e^x.$$

(b)
$$f(x) = \frac{e^x}{x^2}$$
.

(c)
$$f(x) = \frac{x+2}{x-1}$$

(d)
$$f(x) = \frac{1-x^2}{1+x^2}$$
.

- (e) $f(x) = (x^3 x + 1)(x^{-2} + 2x 3)$.
- (f) $f(x) = \sqrt{x}e^x$.
- (g) $f(x) = \frac{e^x}{x + e^x}$.
- (h) $f(x) = \frac{x}{x + \frac{c}{x}}$.
- 9. Encontre a reta tangente à curva em o ponto dado.
 - (a) $f(x) = \frac{2x}{x+1}$, (1,1).
 - (b) $f(x) = \frac{e^x}{x}$, (1, e).
- 10. Suponha que f(5) = 1, f'(5) = 6, g(5) = -3, g'(5) = 2. Encontre os valores para (fg)'(5), (f/g)'(5), (g/f)'(5).
- 11. Suponha que f(3) = 4, f'(3) = -6, g(3) = 2, g'(3) = 5. Encontre os valores para (f+g)'(3), (fg)'(5), (f/g)'(5), (f/(f-g))'(5).
- 12. Se f for uma função diferenciável, encontre uma expressão para a derivada de cada uma das seguintes funções:
 - (a) $y = x^2 f(x)$.
 - (b) $y = \frac{1 + xf(x)}{\sqrt{x}}$.
- 13. Diferencie a função:
 - (a) $f(x) = x 3 \sin x$.
 - (b) $f(x) = \sin x + \cos x$.
 - (c) $f(x) = \frac{\operatorname{tg} x}{x}$.
 - (d) $f(x) = \frac{x}{\operatorname{Sen} x + \cos x}$.
 - (e) $f(x) = x \operatorname{sen} x \cos x$.
 - (f) $f(x) = e^x \operatorname{sen} x$.
 - (g) $f(x) = \frac{\operatorname{tg} x}{\operatorname{Sec} x}$.
- 14. Provar usando a definição de derivada, que se $f(x) = \cos x$, então $f'(x) = -\sin x$.
- $15.\,$ Encontre a reta tangente à curva em o ponto dado.
 - (a) $f(x) = \operatorname{tg} x, (\pi/4, 1).$
 - (b) $f(x) = \frac{1}{\operatorname{sen} x + \cos x}$, (0, 1).
- 16. Prove que
 - (a) $\frac{d}{dx}(\csc x) = -\csc x \cot x$.
 - (b) $\frac{d}{dx}(\sec x) = \sec x \, \operatorname{tg} x$.

(c)
$$\frac{d}{dx}(\cot gx) = -\csc^2 x$$
.

17. Encontre o limite

(a)
$$\lim_{x\to 0} \frac{\operatorname{sen} 5x}{x}$$
.

(b)
$$\lim_{x\to 0} \frac{\text{sen } 8x}{\text{sen } 9x}$$
.

(c)
$$\lim_{x\to 0} \frac{\cos x-1}{\operatorname{Sen} x}$$
.

(d)
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{4x}$$
.

18. Escreva na forma f(g(x)) a função composta. Encontre a derivada.

(a)
$$y = (x^2 + 4x + 5)^6$$
.

(b)
$$y = \cos(tgx)$$
.

(c)
$$y = \operatorname{tg}(3x)$$
.

(d)
$$y = e^{\sqrt{x}}$$
.

19. Diferencie a função:

(a)
$$f(x) = (x^3 + 4x)^7$$
.

(b)
$$f(x) = \sqrt{x^2 - 7x}$$
.

(c)
$$f(x) = \frac{1}{(x^2 - 2x - 5)^4}$$
.

(d)
$$f(x) = \sqrt[4]{\frac{x^3+1}{x^3-1}}$$
.

(e)
$$f(x) = a^3 + \cos^3 x$$
.

(f)
$$f(x) = \cos(a^3 + x^3)$$
.

(g)
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

(h)
$$f(x) = \frac{\operatorname{sen}^2 x}{\cos x}$$
.

(i)
$$f(x) = \operatorname{sen}(\operatorname{sen}(x))$$
.

20. Encontre a reta tangente à curva em o ponto dado.

(a)
$$f(x) = \text{sen}(\text{sen}(x)), (\pi, 0).$$

(b)
$$f(x) = \frac{8}{\sqrt{4+3x}}$$
, (4,2).

21. Encontre as coordenadas x de todos os pontos sobre a curva $y = \sin 2x - 2 \sin x$ em que a reta tangente é horizontal.

22. Suponha
$$F(x) = f(g(x))$$
 e $g(3) = 6$, $g'(3) = 4$, $f'(3) = 2$, $f(3) = 4$, $f'(6) = 7$ e $f(6) = 8$. Encontre $F(3)$ e $F'(3)$.

3