QUI212 (T07) - Qu	Pontuação ↓		
Data: 16/10/2024	Questões: 2	Pontos totais: 20	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	10	
2	10	
Total:	20	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.
- 4. Equações:

(a) Média (
$$\bar{x}$$
): $\bar{x} = \frac{1}{n} \times \sum_{i=1}^{n} x_i$

(b) Desvio padrão (
$$\sigma$$
): $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}$

1. (10 pontos) Um aluno foi incumbido de verificar se uma bureta de 25 mL do laboratório estava devidamente calibrada. Para tal, o método gravimétrico foi utilizado. Nesse método, um béquer de 50 mL foi pesado vazio ($m_{\rm vazio}$). Então, 25 mL de água, medidos com a bureta, foram despejados no béquer, ele foi pesado novamente ($m_{\rm cheio}$) e a temperatura (T) foi aferida. Esse procedimento foi repetido mais duas vezes e os resultados obtidos são expressos na **Tabela 1**.

Tabela 1: Valores de massa do béquer vazio (m_{vazio}) , com 25 mL de água (m_{cheio}) e de temperatura (T) para cada uma das medidas.

Medida	$m_{\rm vazio}$ (g)	$m_{\rm cheio}$ (g)	T (°C)
1	47,9439	72,9455	25
2	47,9843	72,9950	25
3	47,9701	72,9671	25

O valor de densidade da água à $25\,^{\circ}$ C é igual a $0.9970~{\rm g\,mL^{-1}}$. Além disso, o limite de tolerância da bureta de $25~{\rm mL}$ é igual a $\pm~0.03~{\rm mL}$. Com base nos dados obtidos e nos valores fornecidos, a bureta está calibrada?

2. (10 pontos) Durante um estudo sobre equilíbrio químico, um aluno dissolveu 10 mg (0,01 g) de sulfato de cobalto(II) (CoSO₄) em água dentro de um tubo de ensaio, observando a formação de uma solução rosa. Então, o aluno adicionou 10 gotas de ácido clorídrico (HCl) ao tubo de ensaio, observando uma gradativa mudança de coloração até um azul intenso. O equilíbrio químico relevante, desconsiderando os íons espectadores, é descrito pela **Equação 1**.

$$[Co(H_2O)_6]_{(aq)}^{2+} + 4 Cl_{(aq)}^- \Longrightarrow [CoCl_4]_{(aq)}^{2-} + 6 H_2O_{(1)}$$
 (1)

- (a) Qual o composto responsável pela coloração rosa? Qual o composto responsável pela coloração azul?
- (b) Considerando que o equilíbrio mostrado é endotérmico ($\Delta H < 0$), qual coloração a solução adotaria caso o tubo de ensaio fosse resfriado em um banho de gelo?

