#### 1.10 The Vector Model of the Atom

## **Classical Physics:**

If you go back to your first year physics textbook, you will find momentum  $\mathbf{p}$  (= m  $\mathbf{v}$ ) has an angular counterpart, angular momentum  $\mathbf{l}$  (=  $\mathbf{r}$  x  $\mathbf{p}$ ), as shown in the diagram below.

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{L} = \vec{r} \times \vec{p} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ r_x & r_y & r_z \\ p_x & p_y & p_z \end{vmatrix} = |r||p| \sin \Theta$$



(Recall: Right-hand rule!)

 In classical physics two angular momenta can combine in any way to give a total angular momentum:

$$\vec{L} = \vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \dots$$

# Classical angular momentum of a circulating electron

- A simple classical "cartoon" of electronic angular momentum in the context of the Bohr model:
- An electron "orbiting" a nucleus results in an orbital angular momentum *l*.



- Because the electron has a charge, there also arises a magnetic moment  $\mu_l$  (=  $\gamma_e l$ ), where  $\gamma_e$  is a constant called the "magnetogyric ratio" of an electron. ( $\gamma_e$  = -e/2m<sub>e</sub> where e is the charge and m<sub>e</sub> is the mass of an electron.)
- Note: This is a very simple and ultimately wrong image originating from the *Bohr Atom Model*, but serves its purpose in the context of the *vector model*.

(Source: P.W. Atkins, Physical Chemistry, 3<sup>rd</sup> edition, 1987.)

#### Quantum Mechanics:

- Angular momenta can only have discrete orientations relative to each other, i.e. they are *spatially quantized* (**I** = 0, 1, 2, 3 ... = s, p, d, f, ...), and if in any kind of force field (magnetic, electrostatic) *energy quantized*.
- The magnitude and relative orientation of the angular momentum vector **l** (for orbital angular momentum or **s** (for spin angular momentum) are described using quantum numbers and systematic combinations/sums of these numbers.

In the following text, all **vector** quantities will be either set in **bold** or have an arrow above them, all scalar quantities (i.e. quantum numbers) in regular script.

| Symbol     | Name                            |            |             | Va                        | ilues          | Role                                                                                               |
|------------|---------------------------------|------------|-------------|---------------------------|----------------|----------------------------------------------------------------------------------------------------|
| n          | n Principal  l Angular momentum |            |             | 1, 2, 3,                  |                | Determines the major part of the energy Describes angular dependence and contributes to the energy |
| l          |                                 |            |             | 0, 1, 2,                  | , <i>n</i> -1  |                                                                                                    |
| $m_l$      | Magnetic                        |            |             | $0, \pm 1, \pm 2,, \pm l$ |                | Describes orientation in space                                                                     |
| $m_s$      | Spin                            |            |             | $\pm \frac{1}{2}$         |                | Describes orientation of the electror spin in space                                                |
| Orbitals v | vith differe                    | ent l valu | es are knov | vn by the fo              | llowing labels | , derived from early terms for different                                                           |
| families o | f spectros                      | copic line | es:         |                           |                |                                                                                                    |
| l = 1      | 0                               | 1          | 2           | 3                         | 4              | 5,                                                                                                 |
| Label      | S                               | p          | d           | f                         | g              | continuing alphabetically                                                                          |

(Source: Tarr & Miessler, Inorganic Chemistry, 3<sup>nd</sup> Edition, 2004)

#### Single Electron Atoms: Angular Momentum in Hydrogenic Orbitals

### Electronic Orbital Angular Momentum

• The orbital angular momentum vector of a single electron is given by:

$$\vec{l} = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \times units$$

 The orbital angular momentum I can actually be measured using the influence of magnetic fields on electrons.

(see e.g. http://www.chemistry.mcmaster.ca/esam/Chapter 3/section 3.html)

 With respect to an arbitrary reference direction (commonly one uses the principal = z axis of the laboratory or molecular reference frame) the angular momentum vector I can only have certain *quantized* orientations.

#### Example for l = 2 (i.e., d orbital) is shown:

Notice that I gives the <u>magnitude</u> (i.e. length of the vector arrow). The magnitude of the vector is:

$$\vec{l} = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{2(2+1)} \frac{h}{2\pi} = \sqrt{6} \frac{h}{2\pi}$$

 $m_l$  gives the possible <u>orientations</u> ( $m_l = 0, \pm 1, \pm 2$ ) of the vector as the vector's projections along the z-axis have quantized magnitudes of  $m_l(h/2\pi)$ .

(Source: "Physical Chemistry", Atkins, 1990)





Fig. 12.17 (a) A summary of Fig. 12.15. However, since the azimuthal angle of the vector is indeterminate a better representation is as in (b), where each vector lies at an unspecified azimuth on its cone.

• The projections of I onto the reference direction are integral multiples of  $h/2\pi$  described by the quantum number  $m_l$ , with

$$m_l = l, l - 1, ..., 0, ..., -(l - 1), -l$$

i.e. for any given 1 there 2l + 1 possible  $m_l$  values.

• In the absence of a (magnetic or chemical) field, all 2l + 1 values of  $m_l$  correspond to quantum states that are energetically degenerate

e.g., 
$$p_x$$
  $(l = 1, m_l = 1)$ ,  $p_y$   $(l = 1, m_l = 0)$  and  $p_z$   $(l = 1, m_l = -1)$ , all have the same energies.

• The degeneracy can be lifted by an external field: Magnetic (Zeeman effect)

Electrostatic (other atoms)

### Electronic Spin Angular Momentum



- Electrons are *Fermions* with a half-integral spin, where the spin is an internal degree of freedom of the electron *with no classical equivalent*.
- In <u>classical model</u> we can describe the spin with the aid of the "cartoon" on the left.

(Source: P.W. Atkins, Physical Chemistry, 3<sup>rd</sup> edition, 1987.)

- In this classical model the rotation of the electron around its axis ("spin") sets up a spin angular momentum s and a spin magnetic moment  $\mu_s$ 
  - The electron spin can either be "up" or "down" and is described by:

$$\vec{s} = \sqrt{s(s+1)} \frac{h}{2\pi} = \sqrt{\frac{1}{2}(\frac{1}{2}+1)} \times units = \sqrt{\frac{1}{2} \times \frac{3}{2}} = \frac{1}{2}\sqrt{3} \times units$$

• The projections of s onto the reference direction are integral multiples of  $h/2\pi$  and described by the quantum number  $m_s$ , with

$$m_s = \frac{1}{2}, (\frac{1}{2} - 1) = -\frac{1}{2}$$

# Spin Orbit Coupling and Total Angular Momentum

• As we have seen in the above "cartoons", both the electronic and spin angular momenta result in magnetic moments:

$$\mu_l = \gamma_e \times l$$
 and  $\mu_s = 2\gamma_e \times s$ 

- The two angular momenta will interact resulting in energetically different relative orientations. This is referred to as *spin-orbit coupling* and described by a total angular momentum **j**.
- Because we are dealing with quantum phenomena, relative orientations of j are quantized, i.e. only certain values are allowed (given by m<sub>i</sub>.)
- Spin-Orbit coupling  $\propto Z^4$  (Z = nuclear charge). The spin-orbit coupling then results in a splitting of the atomic energy levels <u>beyond</u> that of the energies denoted by the quantum numbers n, l, and m<sub>L</sub>





Fig. 15.18. The spin-orbit coupling is a magnetic interaction between spin and orbital magnetic moments. When the angular momenta are parallel, as in (a), the magnetic moments are aligned unfavourably; when they are opposed, as in (b), the interaction is favourable. This is the cause of the splitting of a configuration into levels.

(Source: P.W. Atkins, Physical Chemistry, 3<sup>rd</sup> edition, 1987.)

- In fact, many advanced textbooks list the quantum numbers as n, l,  $m_l$  and  $m_j$ .
- Only four quantum numbers are needed to totally describe an electron, but more than four exist!

• In order to describe spin-orbit coupling we need to define a new *total angular momentum* **j** by adding the orbital and spin vectors.

$$\vec{j} = \vec{l} + \vec{s} = \sqrt{j(j+1)} \frac{h}{2\pi} = \sqrt{j(j+1)} \times units$$

where 
$$m_j = j, (j-1), (j-2), ..., -(j-1), -j$$
.

Determining the magnitude of **j** and values of j and  $m_i$  can be done in a numbers of ways:

a) By vector addition (only viable for a single electron), e.g. for l = 1 (i.e., p orbital)  $l = \sqrt{2}$  and  $s = \frac{1}{2}$  thus  $s = \frac{1}{2}\sqrt{3}$ 



Figure 5.5 The two energy states having different total angular momentum which can arise as a result of the vector addition of  $\mathbf{l} = \sqrt{2}$  and  $\mathbf{s} = \frac{1}{2}\sqrt{3}$ .

Source: "Fundamentals of Molecular Spectroscopy". C.N. Banwell and E.M. McCash, McGraw-Hill, 1994.

As stated above, j must be half-integral for a one-electron system, therefore  $\mathbf{j}$  can be:

 $\mathbf{j} = (\frac{1}{2}\sqrt{3}), (\frac{1}{2}\sqrt{15}), (\frac{1}{2}\sqrt{35})$  by the formula given above for  $\mathbf{j}$ ; with  $j = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots$ 

b) By summation of quantum numbers  $m_l$  and  $m_s$  (i.e. the possible values of the z-component of l and s). This method is generally applicable.

$$j = l + s$$
 with  $m_l = \pm 1, \pm 1-1, \pm 1-2, ..., 0$   
 $m_s = \pm \frac{1}{2}$ 

Example: One electron in an atomic p orbital

• All possible vector sums of l = 1 and  $s = \frac{1}{2}$  can be found by deriving all possible values of  $m_i$  (i.e., taking all combinations of  $m_l$  and  $m_s$ .)

For 
$$l = 1$$
,  $m_l = +1$ ,  $0 - 1$   
For  $s = \frac{1}{2}$ ,  $m_s = +\frac{1}{2}$ ,  $-\frac{1}{2}$ 

There are six possible combinations: 
$$m_j = 1 + \frac{1}{2}, 1 - \frac{1}{2}, 0 + \frac{1}{2}, 0 - \frac{1}{2}, -1 + \frac{1}{2}, -1 - \frac{1}{2}$$
  
= 3/2, 1/2, 1/2, -1/2, -3/2

Thus there are TWO possible values for j (two possible vector sums of l = 1 and  $s = \frac{1}{2}$ ):  $j = \frac{3}{2}$  accounts for these four combinations:  $m_j = \frac{3}{2}$ ,  $\frac{1}{2}$ ,  $-\frac{1}{2}$ ,  $-\frac{3}{2}$   $j = \frac{1}{2}$  accounts for the remaining two combinations:  $m_j = \frac{1}{2}$ ,  $-\frac{1}{2}$ 

• **Meaning**: A single electron in an orbital can have slightly different energies depending on its particular *l* & s combination. The orbital angular momentum and the spin angular momentum vectors can either "reinforce" or "oppose" each other.

#### **HOMEWORK:**

What are the possible values of j arising from one electron in an f orbital?

How does this play out in terms of measurable properties?

e.g., The first excited state of a sodium atom in the gas phase

Ground state Na: [Ne]3s<sup>1</sup>
First excited state of Na: [Ne]3s<sup>0</sup>3p<sup>1</sup>

A single electron in a p orbital: l = 1 and  $s = \frac{1}{2}$   $\rightarrow$  j = 3/2, 1/2

*i.e.* an np<sup>1</sup> electron configuration will split into **two different energy levels**:

As a consequence, the emission spectrum of gaseous atomic sodium shows **two lines**:



Na 589 nm emission (orange) is actually 589.8 nm and 589.2 nm

We use **term symbols** to convey the *l*, *s*, and *j* value information more succinctly.

A term symbol conveys three pieces of info:

- 1) The letter (e.g., S, P, D, etc.) indicates the orbital angular momentum *L*.
- 2) The left superscript indicates the **multiplicity** = (2S + 1) where S is the spin angular momentum.





**Fig. 13.21** The energy-level diagram for the formation of the D lines of sodium. The splitting of the spectral lines (by 17 cm<sup>-1</sup>) reflects the splitting of the levels.

- 3) The right subscript indicates the total angular momentum quantum number J.
- Note: Capital letters (S, L, J) are used for term symbols and multi-electron systems. Lower case letters (s, l, j) are used to describe individual electrons.

Note: You will learn how to derive term symbols for multi-electron systems in CHEM 3650.

Source: P.W. Atkins, Physical Chemistry, 4<sup>th</sup> edition, 1990.