Deep learning in Time Series Signal

What is 1D Signal?

A 1D "Signal" describes how some physical quantity varies over time or space.

Examples of Signals

- Sound pressure
- Radio broadcast
- Songs
- Electrocardiogram

What is 1D Signal Processing?

Manipulating a signal to change its characteristics or extract information

Performed by:

- Computer
- Special purpose integrated circuits
- Analog electrical circuits

Applications

- Consumer electronics like HDTV, cell phones,...
- Transportation like GPS, engine control, tracking...
- Medical Monitoring like(EEG, ECG, EMG,...)
- Military like Target tracking, surveillance,...
- Remote sensing like Astronomy, climate monitoring, weather forecasting,...

PCM in Signal

Analog Signal

Sampled Signal

Quantized Signal

Time: 1sec Sampling rate: 9 Bitpersample:8

PCM in Signal

Typical 1D Signal Processing Problems

- 1. Signal Filtering
- 2. Signal Analysis
- 3. Extracting an indirect quantity from measured signal

Typical 1D Signal Processing Problems

1. Signal Filtering

2. Signal Analysis

3. Extracting an indirect quantity from measured signal

E.g. Determining the aircraft position and velocity from radar signal

Signal Processing Philosophy

- 1. Model plays a fundamental role
 - Characterize "signal" and "noise"
 - Relate desired quantity to measured data
- 2. Model derives from prior knowledge
 - > Physics, biology, etc.
- 3. Processing procedure based on models
- 4. Modeling issues
 - ➤ Poor model Poor performance
 - Model complexity vs performance

1D Signal Processing

1D Signal Filtering

Represents the graph of Aortic Stenosis cardiac PCG signals amplitude with respect to time-domain before and after filtering. Also, it represents these signals with discriminating elements in a different colour. In these cardiographs, red colour denotes noise in these cardio signals, green colour denotes the extracted cardio signals after filtering and blue represents the peaks in the signals.

Original PCG signals

Fig.: Represents the graph of PCG signals amplitude with respect to time-domain. (a) Graph of Aortic Stenosis cardiac PCG signal (b) Graph of Mitral Regurgitation cardiac PCG signal (c) Graph of Mitral Stenosis cardiac PCG signal (d) Graph of Mitral valve prolapse cardiac PCG signal (e) Graph of Normal cardiac PCG signal.

Filtered PCG signals

Fig: Represents the graph of PCG signals amplitude with respect to time-domain after signal processing. Also, it represents these signals with discriminating elements in a different colour. In these cardiographs, red colour denotes noise in these cardio signals, green colour denotes the extracted cardio signals after signal-processing and blue represents the peaks in the signals. (a) Graph of Aortic Stenosis cardiac PCG signal (b) Graph of Mitral Regurgitation cardiac PCG signal (c) Graph of Mitral Stenosis cardiac PCG signal (d) Graph of Mitral valve prolapse cardiac PCG signal (e) Graph of Normal cardiac PCG signal.

1D Signal Augmentation

Data augmentation is a strategy that enables practitioners to significantly increase the diversity of **data** available for training models, without actually collecting new **data**

Major Types of 1D Data augmentation

- 1. Noise Injection
- 2. Shifting Time
- 3. Changing Pitch
- 4. Changing Speed

Noise Injection

Represents the graph of 1D signals amplitude with respect to time-domain.

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$

Same dimension of noise (random values) is selected

Represented as $\theta = (\theta_1, \theta_2, \theta_3, ..., \theta_n)$

Then, Augmentation signal α is calculated

and their relation is $\alpha = I + \theta * \lambda$.

Where, deformations control parameter is represented as λ

1. Noise Injection

Represents the graph of 1D signals amplitude with respect to time-domain before and after noise injection.

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length n. Here the same dimension of background deformations is randomly selected and represented as $\beta=(\beta_1, \beta_2, \beta_3, ..., \beta_n)$ and deformations control parameter is represented as λ . From these audio deformations, α is calculated and their relation is $\alpha=I+\beta*\lambda$. Where, background deformations β belong to the interval (0,1) and deformations control parameter λ is taken as 1000 Hz to convert the deformation value into three-digit value.

2. Shifting Time

Represents the graph of 1D signals amplitude with respect to time-domain before and after shifting time

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length n. Here the randomly selected and represented as $\theta = (\theta_1, \theta_2, \theta_3, ..., \theta_n)$ of maximum time shift * sampling rate and From these time shifted signal , α is calculated and their relation is $\alpha = I + \theta$ for left shift.

3. Changing Pitch

Represents the graph of 1D signals amplitude with respect to time-domain before and after changing pitch

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length n. Here the pitch control parameter is represented as λ and sampling rate as s. From these time shifted signal , α is calculated and their relation is $\alpha = fx$ $(I, s, \lambda,)$.

4. Changing Speed

Represents the graph of 1D signals amplitude with respect to time-domain before and after changing speed.

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length n. Here the speed control parameter is represented as λ . From these time shifted signal , α is calculated and their relation is $\alpha = fx$ $(I, \lambda,)$.

1D Signal Features extraction

Feature extraction is used to find important points for discriminating the data among the different classes from the input data.

Feature extraction increases the accuracy of learned models by extracting features from the input data.

Statistical-based feature extraction

- 1. Spectral Centroid
- 2. Energy Entropy
- 3. Spectral Roll off
- 4. Spectral Flux
- 5. Volume
- 6. Zero Crossing Rate

1. Spectral Centroid

Centroid =
$$\frac{\sum_{n=0}^{N-1} f(n) x(n)}{\sum_{n=0}^{N-1} x(n)}$$

x (n) is the weighted frequency of bin number f (n) is the center frequency of bin

Spectral Centroid: (a) Normal heart sound (b) Abnormal heart Sound

2. Energy Entropy

$$I_j = -\sum_{i=1\dots k} \sigma_i^2 \log_2 \sigma_i^2$$

Energy Entropy: (a) Normal heart sound (b) Abnormal heart Sound

3. Spectral Roll off

$$\sum_{n=1}^{R_t} M_t[n] = 0.85 \sum_{n=1}^{N} M_t[n]$$

Spectral Roll off: (a) Normal heart sound (b) Abnormal heart Sound

4. Spectral Flux

$$F_j = \sum_{k=0...S-1} (N_{j,k} - N_{j-1,k})^2$$

Spectral Flux: (a) Normal heart sound (b) Abnormal heart Sound

5. Volume

$$volume = 10 * \log_{10} \sum_{i=1}^{n} s_i^2$$

Spectral Flux: (a) Normal heart sound (b) Abnormal heart Sound

6. Zero Crossing Rate

$$Z_{j} = \frac{1}{2S} \sum_{i=1...S} |sgn(x_{i}) - sgn(x_{i-1})|$$

Zero Crossing Rate: (a) Normal heart sound (b) Abnormal heart Sound

Other types of features used in 1D signal

- 1. Fourier transform
- 2. Spectrogram
- 3. Sort-Time Fourier Transform
- 4. Mel Filter Bank
- 5. Mel Frequency Cepstral Coefficients

Deep learning in 1D

Classification Model

Convolution in Time Series Signal

Convolution in Time Series Signal

Max Pooling in Time Series Signal

Max Pooling in Time Series Signal

Time Series Signal Classifications using CNN

Deep learning for Signal Classifications using CNN

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length 20000. It is classified into 5 classes.

Layer (type)	Output	Shape	Param #
convid_38 (ConviD)	(None,	8666, 8)	32
conv1d_39 (Conv1D)	(None,	2222, 16)	488
conv1d_40 (Conv1D)	(None,	740, 32)	1568
convid_41 (ConviD)	(None,	246, 64)	6208
convid_42 (ConviD)	(None,	82, 128)	24794
max_pooling1d_8 (MaxPooling1	(None,	41, 128)	e
dropout_9 (Oropout)	(None,	41, 128)	6
flatten_8 (Flatten)	(None,	5248)	9
dense_15 (Dense)	(None,	128)	671872
dense_16 (Dense)	(None,	5)	645
Total params: 705,429 Trainable params: 705,429 Non-trainable params: 0		***************************************	

Deep learning for Signal Classifications using RNN

There is a given signal represented as $I=[i_1, i_2, i_3, ..., i_n]$ where i is the amplitude of the signal with the dimension of signal length 20000. It is classified into 5 classes.

```
def rnn_model(size):
    n = Sequential()
    n.add(LSTM(128,return_sequences=True,input_shape=size))
    n.add(LSTM(128,return_sequences=True))
    n.add(Dropout(0.5))
    n.add(TimeDistributed(Dense(128, activation='relu')))
    n.add(TimeDistributed(Dense(16, activation='relu')))
    n.add(Flatten())
    n.add(Dense(128, activation='relu'))
    n.add(Dense(128, activation='relu'))
    n.add(Dense(5, activation='softmax'))
    n.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])
    n.summary()
    return n

model=rnn_model((20000,1))
```

Layer (type)	Output	Shape	Param #
Istm_9 (LSTM)	(None,	20000, 128)	66568
lstm_10 (LSTM)	(None,	20000, 128)	131584
dropout_14 (Dropout)	(None,	20000, 128)	8
time_distributed_8 (TimeOist	(None,	20000, 128)	16512
time_distributed_9 (TimeDist	(None,	20000, 16)	2064
flatten_12 (Flatten)	(None,	320000)	9
dense_30 (Dense)	(None,	128)	40960128
dense_31 (Dense)	(None,	5)	645
Total params: 41,177,493 Trainable params: 41,177,493 Non-trainable params: 0			