CS7DS3 Applied Statistical Modelling

Assignment 1

Name: Harinath Babu Student ID: 24340502

Course: MSc in Computer Science - Data Science

$\mathbf{Q}\mathbf{1}$

 S_2 fails iff both components fails,

$$P(S_2 \ fails) = P(x_1 \ fails \ and \ x_2 \ fails)$$

Given,

$$P(x_1 \ fails) = P(x_2 \ fails) = \theta$$

Since $x_1 \& x_2$ failing are independent,

$$P(S_2 \ fails) = P(x_1 \ fails) * P(x_2 \ fails)$$

$$\theta_1 = \theta * \theta$$

$$\theta_1 = \theta^2$$

$\mathbf{Q2}$

A -> Total number of observed failures

$$\theta = 0.08; n = 1000$$

Each system follows a bernoulli trial, with the two outcomes; Component failure (success in trial) or Not component failure (failure in trial). The given n systems can thus be modeled with a binomial distribution with a probability of $\theta_1 = \theta^2 = 0.8^2$, and thus $\theta_1 = 0.0064$.

i

As stated in the **Probability Review II** notes under the section **Expectation** and variance of random variables for a binomial distribution,

Expectation,

$$\mathbb{E}[A] = n * \theta_1$$

$$\mathbb{E}[A] = 1000 * 0.0064$$

$$\mathbb{E}[A] = 6.4$$

Variance,

$$\mathbb{Va} [A] = n * \theta_1 * (1 - \theta_1)$$

$$\mathbb{Va} [A] = 1000 * 0.0064 * (1 - 0.0064)$$

$$\mathbb{Va} [A] = 6.35904$$

ii

This was done via R code using the pbinom() function. The value $P(5 \le A \le 10)$ was computed as $P(A \le 10) - P(A \le 5)$ which is the same as $P(A \le 10) - P(A \le 4)$ for our trials using pbinom(10, 1000, 0.0064) - pbinom(4, 1000, 0.0064).

$$P(5 \le A \le 10) = 0.7050234$$

iii

This value was computed using qbinom() function in R. The value of k^* such that $P(A \le k^*) >= 0.95$ was computed as qbinom(0.95, 1000, 0.0064) and the result was checked to be strictly greater than the 95% percentile to satisfy $P(A \le k^*) > 0.95$ and the result was $k^* = 11$ was strictly greater than the 95th percentile.

95th Percentile value for
$$k = 11$$
 P(A \leq 11) = 0.9697557

Q3

i

 S_2 fails if either of the components fail (i.e) works iff both components work,

$$P(S_2 \ works) = (1 - \theta) * (1 - \theta) = (1 - \theta)^2$$

$$P(S_2 \ fails) = \theta_2 = 1 - (1 - \theta)^2$$

$$\theta_2 = 1 - (1 - \theta)^2$$

$$\theta_2 = 1 - (1 + \theta^2 - 2\theta)$$

$$\theta_2 = 2\theta - \theta^2$$

ii

 S_3 fails if both of its parallel components fails, where each parallel component is composed of 2 serial subcomponents x_i ,

 $P(S_3 \ fails) = P(Parellel \ subcomponent \ 1 \ fails \ and \ Parellel \ subcomponent \ 2 \ fails)$

$$\theta_3 = \theta_2 * \theta_2 = \theta_2^2$$

$$\theta_3 = [2\theta - \theta^2]^2$$

$$\theta_3 = 4\theta^2 + \theta^4 - 2\theta^2 * (2\theta)$$

$$\theta_3 = \theta^4 - 4\theta^3 + 4\theta^2$$

 $\mathbf{Q4}$

The experiment can be modeled with a binomial distribution (and likelihood) with probability θ , n=25 experiments and k=3 successes. Expert opinion suggest that there is a 5% to 10% chance each component fails, and that it is highly unusual for this to over 20%. This is the probability of failure of individual components (i.e) θ .

i

The specified prior is Be(3,30) with a=3;b=30. This is the number of expected successes and failures to be observed respectively.

Success here is the component failure and failure is the component non-failure.

- The beta prior is conjugate to the binomial distribution, and leads to a beta posterior (As given in the **Bayesian Inference: beta-binomial model** notes under section **Conjugacy**).
- The mean of the beta distribution is,

$$mean = \frac{a}{a+b} = \frac{3}{3+30}$$

 $mean \approx 0.09091$

This suggests that the expected failure is around 9.1%, which aligns well with the expert opinion that the failure rate is expected to be 5% - 10%.

• The variance is,

$$Var = \frac{ab}{(a+b)^2(a+b+1)}$$

$$Var = \frac{3(30)}{(3+30)^2(3+30+1)} = \frac{90}{(33)^2(34)}$$

$$Var \approx 0.00243$$

This tells us that the values of θ are concentrated around the mean and not too spread out.

• The mode is,

$$mode = \frac{a-1}{a+b-2} = \frac{3-1}{3+30-2}$$

 $mode \approx 0.06452$

This tells us that the most likely value of θ is 6.45% which is consistent with the expert opinion.

• The distribution Be(3,30) is highly skewed towards lower values of θ (since a << b). The plot was created by generating the distribution using dbeta(x, 3, 30) with x ranging from 0 to 1 and plotting the results using plot().

Beta(3, 30) Distribution

• The probabilty of the value being over 20% (stated to be highly unlikely) under this prior is,

$$P(\theta >= 0.20) \approx 0.03169$$

The value was computed using pbeta() as 1 - pbeta(0.20, 3, 30). This gives approximately a 3.2% chance for θ values over 20% and is thus consistent with expert opinion.

The chosen prior is thus a good match and is consistent with the expert opinion. Thus it can be used as the prior to model the parameter distribution.

ii

Under the Beta-Binomial model, for the prior Be(a, b) the posterior can be constructed (with $k = \Sigma x_i$) as $Be(a_n, b_n)$ where $a_n = k + a$; $b_n = n - k + b$ (As stated in the **Bayesian Inference: beta-binomial model** notes under section **Beta-binomial model**).

$$a_n = k + a = 3 + 3$$

$$a_n = 6$$

$$b_n = n - k + b = 25 - 3 + 30$$

$$b_n = 52$$

Thus the posterior distribution is $\theta|x\sim Be(6,52)$ - The mean of the beta distribution is,

$$mean = \frac{a}{a+b} = \frac{6}{6+52}$$
$$mean \approx 0.1035$$

This suggests that the expected failure is around 10.35%, which is a bit higher due to observed failures but aligns well with the expert opinion.

• The variance is,

$$Var = \frac{ab}{(a+b)^2(a+b+1)}$$

$$Var = \frac{6(52)}{(6+52)^2(6+52+1)} = \frac{312}{(58)^2(59)}$$

$$Var \approx 0.00157$$

The extimate is now more confident and the variance has decreased.

• The mode is,

$$mode = \frac{a-1}{a+b-2} = \frac{6-1}{6+52-2}$$

 $mode \approx 0.0893$

This tells us that the most likely value of θ is 8.93% which has also increased due to the observed failures.

The distribution Be(6,52) is also highly skewed towards lower values of θ (since a << b). The plot was created by generating the distribution using dbeta(x, 6, 52) with x ranging from 0 to 1 and plotting the results using plot().

Beta(6, 52) Distribution

iii

- The prior mean was $0.09091(\sim9\%)$ and mode was $0.06452(\sim6.45\%)$, both of which which increased a bit in the posterior to $0.1035(\sim10.4\%)$ and $0.0893(\sim8.93\%)$.
- The variance has decreased from $0.00243(\sim0.24\%)$ to $0.00157(\sim0.15\%)$, which shows an increase in our certainty.
- While both the distributions are skewed towards lower values, the posterior is narrower. The plot was created by generating the distribution using dbeta(x, 3, 30) & dbeta(x, 6, 52) with x ranging from 0 to 1 and plotting the results using plot().

Prior and Posterior Distributions

- The prior was strong, but not too strong as the observed data was still able to influence the posterior in a non-insignificant way.
- Since the data consisted only of 25 observations, a bit less the number of pseudo-observations in the prior (33), the selected prior is slightly more informative than the data alone in the construction of the prior but not by a huge margin as seen by the data's ability to influence the posterior

iv

The posterior distributions $P(\theta_1|x,\theta)$, $P(\theta_2|x,\theta)$, $P(\theta_3|x,\theta)$ are constructed by Monte-Carlo sampling of θ from the posterior distribution $P(\theta|x)$ and transformation of the sampled values in terms of θ_1 , θ_2 , and θ_3 - 100000 values from the posterior of θ_1 are sampled using rbeta(1e5, 6, 52). All the plots in this section are made using hist(freq=False) to plot the densities histogram.

- The sampled values are transformed into θ_1 as mc_post_theta_1 <- mc_post_theta ^ 2 since $\theta_1=\theta^2$
- The sampled values are transformed into θ_2 as mc_post_theta_2 <- (2

- * mc_post_theta) (mc_post_theta ^ 2) since $\theta_2 = 2\theta \theta^2$
- The sampled values are transformed into θ_3 as mc_post_theta_3 <- (mc_post_theta ^ 4) (4 * mc_post_theta ^ 3) + (4 * mc_post_theta^2) since $\theta_3 = \theta^4 4\theta^3 + 4\theta^2$

Posterior Distributions by Monte Carlo Sampling of θ Posterior Distribution of θ 1 Posterior Distribution of θ 1

Posterior Distribution of $\theta 2$

Posterior Distribution of θ3

• The mean, variance and the 95% interval for the posteriors of $\theta_1, \theta_2, \theta_3$ are computed from the derived values by using mean(), var(), quantile(c(0.025, 0.975))

Posterior for θ : Mean: 0.1034516

Variance: 0.001584095

95% Interval: 0.03957243 0.1940732

Posterior for θ1: Mean: 0.0122863

Variance: 9.221551e-05

95% Interval: 0.001565977 0.03766439

Posterior for $\theta2$: Mean: 0.1946168

Variance: 0.004945259

95% Interval: 0.07757889 0.3504819

Posterior for θ3: Mean: 0.04282091

Variance: 0.000951169

95% Interval: 0.006018484 0.1228376

- The posterior of θ_1 is highly right-skewed distribution with a mean much smaller than that of θ (0.0123 < 0.104), the variance is also smaller (9.17307e 05 < 0.0016) so the values are highly concentrated around the mean
- The posterior of θ_2 stretches the distribution distribution resulting in a increase of mean θ (0.195 > 0.104), the variance is also higher (0.0049 > 0.0016) as the values are more spread out.
- The transformations of θ_3 is is a combination of the transformations from θ_1 & θ_2 resulting in a right-skewed posterior distribution like that of θ_1 but more stretched out than θ_1 similar to θ_2 and a decrease of mean from that of θ (0.0.0429 < 0.104), the variance is lower (0.0009 < 0.0016) as the values are more concentrated but is higher than that of θ_1 .

Q_5

i

The probability of failure of a S_3 system is given by the posterior $P(\theta_3|x)$. The $1000\ S_3$ systems can be modeled as a binomial distribution with n=1000 and probability $P(\theta_3|x)$. - Monte Carlo samples (100000) are drawn from this distribution using the rbinom() function each sample simulating the failures from n=1000 trials with the probabilities taken from the θ_3 estimated from Monte Carlo samples of θ with each sample from the binomial distribution using one of the probabilities from the θ_3 distribution. - The simulated failures are used to find the expected payments using ifelse() conditions for all the samples. - The Expected price can be computed as the average price over the samples,

$$E[Price] = \frac{1}{N} \sum_{i=1}^{N} Price_i$$

and is computed as sum(mc_post_payments) / length((mc_post_payments)) and the result expected payments is 924.81 (approx).

ii

- If the non-informative prior $\theta \sim Be(1,1)$ was used under the same conditions, the posterior distribution is then given by Be(4,23).
- θ_3 is sampled from this new posterior, and rbinom() is used to simulate the trials with the sampled probabilities.
- The Expected price is computed the same way as in Q5(i) and the result expected payments is **656.76** (approx).
- The expected price decreases significantly when using a non-informative prior.
- Thus the results are sensitive to the expert prior used
- Using a non-informative prior significantly increases the chances of failure and consequently reduces the expected price.

Q6

Given there are n systems with k failures and the probability of each S_1 system failing is given by θ_1 . The observed data follow a Binomial distribution $y = y_1, y_2, ..., y_n \sim Binom(n, \theta_1)$.

i

The lieklihood function is,

$$L(\theta_1|y) = P(y|\theta_1) = \binom{n}{k} \theta_1^k (1 - \theta_1)^{n-k}$$

In terms of θ (since $\theta_1 = \theta^2$),

$$L(\theta|y) = P(y|\theta) = \binom{n}{k} (\theta^2)^k (1 - \theta^2)^{n-k}$$

$$L(\theta|y) = \binom{n}{k} \theta^{2k} (1 - \theta^2)^{n-k}$$

ii

The likelihood function is,

$$L(\theta|y) = \binom{n}{k} \theta^{2k} (1 - \theta^2)^{n-k}$$

Taking the log likelihood,

$$l = log(L) = log \binom{n}{k} + log \ \theta^{2k} + log \ (1 - \theta^2)^{n-k}$$

The term $log \binom{n}{k}$ is a constant with respect to θ ,

$$l = 2k \log(\theta) + (n - k) \log(1 - \theta^2) + c$$

Taking the derivative of l with respect to θ ,

$$\frac{dl}{d\theta} = \frac{2k}{\theta} + \frac{n-k}{1-\theta^2}(-2\theta)$$

Setting $\frac{dl}{d\theta} = 0$,

$$\frac{2k}{\theta} + \frac{n-k}{1-\theta^2}(-2\theta) = 0$$
$$\frac{2k}{\theta} = \frac{n-k}{1-\theta^2}(2\theta)$$

$$2k - 2k\theta^2 = 2n\theta^2 - 2k\theta^2$$

On simplifying,

$$n\theta^2 = k$$
$$\theta^2 = \frac{k}{n}$$

Thus,

$$\hat{\theta} = \sqrt{\frac{k}{n}}$$

where; $\hat{\theta}$ is the Maximum Likelihood estimate for θ .

iii

• The system failure is given by θ_1 which is a non-linear transformation of $\theta(\theta_1 = \theta^2)$, and the likelihood (in terms of θ) is given by,

$$L(\theta|y) = \binom{n}{k} \theta^{2k} (1 - \theta^2)^{n-k}$$

- The likelihood in terms of θ_1 is binomial and the parameter can be modeled with a beta distribution by the beta-binomial conjugacy.
- But the likelihood in terms of θ is non-linear in θ and using a beta prior (Be(a,b)) for θ results in the posterior distribution,

$$P(\theta|y, a, b) \propto \theta^{2k} (1 - \theta^2) \theta^{a-1} \theta^{b-1}$$

- The posterior is not in the form of a beta distribution and thus the conjugacy is lost.
- Thus a closed-form solution is not possible, and although Monte-Carlo methods can still be used to estimate the posterior, it is relatively difficult to estimate θ using a Bayesian approach.