

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Matemática Financeira

Marcelo Gorges

Porcentagem

Vamos iniciar nosso estudo relembrando um importante conceito: A porcentagem.

O símbolo % remete a uma fração cujo denominador é 100.

Assim, veja os exemplos abaixo:

a) 30 por cento =
$$30\% = \frac{30}{100} = 0.30$$

b) 45 por cento =
$$45\% = \frac{45}{100} = 0.45$$

c) 6,9 por cento = 6,9% =
$$\frac{6,9}{100}$$
 = 0, 069

d) 64,3 por cento = 64,3% =
$$\frac{64,3}{100}$$
 = 0, 643

Porcentagem de uma quantia

Para determinar uma porcentagem de uma quantidade devemos multiplicar a taxa percentual por esta quantia.

Exemplos:

1. Quanto representa 20% de 90?

$$20\% \text{ de } 90$$

$$\frac{20}{100} \cdot 90 =$$

$$= 0.20 \cdot 90 = 18$$

Resposta: 20% de 90 é 18.

2. Oual é o valor de 75% de 1 800?

75% de 1 800 $\frac{75}{100} \cdot 1800 = 0.75 \cdot 1800 = 1350$

Resposta: 75% de 1 800 é 1 350.

Porcentagem de um número em relação a outro

A porcentagem de um número a em relação a outro b é dada pela razão $\frac{a}{b}$.

Desta maneira, a quantia de R\$46,00 corresponde a quanto por cento de R\$230,00?

Assim:

$$\frac{46}{230} = 0.2 = \frac{20}{100} = 20\%$$

Exercícios

1.	Represente: a) 15% na forma de decimal;
	b) 3,8 na forma de porcentagem;
	c) 62% na forma decimal;
	d) 1% na forma decimal;
	e) 0,85% na forma decimal;
2.	Responda: a) Qual é o valor de 40% de 1 200?

b) R\$92,00 corresponde a quanto por cento de R\$460,00?

Aumento

Observe a seguinte situação:

Uma loja adquiriu uma mercadoria por R\$300,00 e deseja vender obtendo um lucro de 10% sobre o preço de custo. Qual deve ser o preço de venda?

Preço de custo (C) = R\$300,00

Lucro (L) = 10% do preço de custo

Preço de venda (V)

Como neste caso o preço de venda é composto pelo preço de custo acrescido do lucro temos:

V = C + L

Devemos então determinar o valor do lucro. Assim:

10% de 300

10% . 300 =

= 0.10 .300 = 30

O valor do lucro é de R\$30,00.

Portanto o valor de preço de venda é igual a:

V = C + I

V = 300 + 10

O preço de venda será de R\$330,00.

Esta mesma situação poderia ser resolvida utilizando o fator de aumento, da seguinte forma:

 $V = F \cdot C$, sendo que:

V é o preço de venda;

C é o preço de custo;

F é o fator de aumento, onde F = 1 + i.

Determinando o fator de aumento temos:

F = 1 + 10%

F = 1 + 0.10

F = 1,10

Assim temos:

V = F.C

V = 1.10.300

V = 330

O valor do preço de venda é de R\$330,00.

Desconto

Observe a seguinte situação:

Uma loja de roupas, no final da estação, ainda tinha um bom estoque de peças. Como necessitava de dinheiro em caixa para se preparar para a nova estação, decidiu vender as peças em estoque por um valor 10% abaixo do preço de custo. Se uma peça custou R\$200,00 para a loja, qual foi o preço de venda da mercadoria após o desconto?

Preço de Custo (C) = R\$200,00

Prejuízo (Z) = 10 % do preço de custo

Preço de venda (V)

Como neste caso o preço de venda é composto pelo preço de custo, subtraindo o valor do prejuízo, temos:

$$V = C - Z$$

Assim, para determinar o valor do preço de venda, devemos determinar o valor do prejuízo:

Z = 10% de 200

Z = 0.10.200

Z = 20

O prejuízo é de R\$20,00.

Agora, para determinar o preço de venda, devemos subtrair do preço de custo o valor do prejuízo, logo:

V = C - Z, então

V = 200 - 20, logo

V = 180

O preço de venda é de R\$180,00.

Este valor também pode ser determinado utilizando o fator de redução. Sendo que:

 $V = F_R \cdot C$, onde:

V é o preço de venda

C é o preço de custo;

 $\boldsymbol{F_{_{R}}}$ é o fator de redução, este fator pode ser calculado da seguinte forma:

 $F_R = 1 - i$

 $F_{_{\rm B}} = 1 - 10\%$

 $F_{R} = 1 - 0.10$

 $F_{R} = 0.90$

Assim o valor do preço de venda é:

 $V = F_R \cdot C$

V = 0.90.200

V = 180

O preço de venda é R\$180,00.

Exercícios

3.	O salário de um estagiário de matemática era de R\$920,00 e passou a ser, de-
	pois de formado e contratado pela empresa, de R\$1.500,00. Qual foi, aproxi-
	madamente, a porcentagem de aumento?

4. Em uma panificadora 63% dos pães são vendidos no período da tarde, sabendo que a panificadora produz 30 000 pães por dia. Quantos pães são vendidos no período da tarde?

5. Um tanque contém 36 litros de combustível, do qual 40% é gasolina e 60% álcool. Quantos litros de gasolina e quantos litros de álcool possui o tanque?

6. Uma loja de camisas aumenta em 25% o preço de uma camisa que custa R\$60,00. Ao entrar em liquidação, essa loja passa a oferecer a mesma camisa com um desconto de 20% para pagamento à vista. Quanto será pago pela mesma camisa em uma compra à vista?

Juro é a importância que se paga pelo empréstimo de certa quantia de dinheiro, chamada de capital, durante algum tempo.

Juros simples

Juros simples: são calculados tendo como base o capital inicial, período a período. O valor do juro é constante nos períodos de tempo considerados.

O valor dos juros simples (J) produzidos por um capital (C) a uma taxa fixa (i) durante um período (n) é dado por:

$$J = C \cdot i \cdot n$$

Exemplos:

1. Qual é o valor dos juros simples pagos pelo empréstimo de R\$650,00 a uma taxa de 2% ao mês, durante 9 meses?

Solução:

```
Sendo:
```

```
C = 650,00 reais;

i = 2\% ao mês = 0,02;

n = 9 meses.
```

Substituindo os valores temos:

```
j = C.i.n

j = 650.0,02.9

j = 117
```

Resposta: O valor a ser pago é R\$117,00.

Mas atenção: A taxa (i) e o número de períodos (n) devem estar na mesma unidade de tempo.

2. Quanto rendeu a quantia de R\$1.500,00, aplicada a juros simples, a uma taxa de 4,5% ao mês, durante 2 anos?

Solução:

```
Sendo:

C = 1.500,00 \text{ reais};

i = 4,5\% \text{ ao mês} = 0,045;

t = 2 \text{ anos} = 24 \text{ meses}.

Como:

j = C \cdot i \cdot t

j = 1.500 \cdot 0,045 \cdot 24

j = 1.620
```

Resposta: O rendimento será de R\$1.620,00.

Mas atenção: A taxa (i) e o número de períodos (n) devem estar na mesma unidade de tempo.

Exercícios

7. Calcule os juros simples referente a um capital de R\$3.500,00 aplicado a uma taxa de 3% ao mês, durante 6 meses.

8. Determine os juros simples referente a um capital de R\$6.000,00 aplicado a taxa de 10% ao ano, durante 6 meses.

9. Um capital aplicado a juros simples rende R\$520,00 de juros em 2 meses, a uma taxa de 4% a.m. Qual é esse capital?

10. Durante quanto tempo um capital de R\$500,00 deve ser aplicado, à uma taxa de juros simples de 12% ao ano, para que se obtenha um juro de R\$300,00?

11. Qual é o montante de um capital de R\$800,00 aplicado à taxa de 2,5% ao mês pelo prazo de 10 meses? Sendo que montante (M) = C + J.

12. Que montante receberá um aplicador que tenha investido à taxa de juros simples de 0,64% ao mês, um capital de R\$ 2.000,00, durante 3 anos? Sendo que montante (M) = C + J.

Juros compostos

Um capital está aplicado a juros compostos quando, após cada período préfixado do prazo do investimento, os juros são incorporados ao capital, passando a render juros.

O valor do montante (M) produzido por um capital (C) aplicado a uma taxa (i) de juros compostos, durante um período (n) é dado por:

```
M = C \cdot (1+i)^n

Em que:

M \in O montante;

C \in O capital;

i \in A taxa;

n \in O número de períodos.

Como o montante M \in O igual ao capital acrescido dos juros temos que:

M = C + J, assim:

J = M - C
```

Exemplos:

1. Qual é o montante produzido pelo capital de R\$1.900,00, aplicado a uma taxa de juros compostos de 2% ao mês, durante 6 meses?

Solução:

```
Sendo:

C = 1.900,00 \text{ reais};

i = 2\% \text{ ao mês} = 0,02;

t = 6 \text{ meses}.

Como:

M = C \cdot (1+i)^t

M = 1.900 \cdot (1+0,02)^6

M = 1.900 \cdot (1,02)^6

M = 1.900 \cdot 1,126162

M = 2.139,70
```

Resposta: O montante produzido será de aproximadamente R\$ 2.139,70.

Exercícios

13.	Qual é o montante produzido pelo capital de R\$800,00, aplicado a uma taxa de juros compostos de 9% ao mês, durante 3 meses?
14.	Um capital de R\$5.000,00 foi investido numa caderneta de poupança, em regime de juros compostos, que paga um juro mensal de 0,72%. Qual o valor que o investidor encontrará ao final de 3 anos?
15.	Calcule o montante produzido por R\$8.000,00 aplicado à taxa de 4% ao trimestre, após um ano, no sistema de juros compostos?
16.	Determine o capital que, investido a juros compostos de 0,25% ao mês, du-

rante 4 meses, produziu um montante de R\$8.585,32.

17.	Qual é o capital que, investido durante 6 anos, produziu um montante de
	R\$39.476,45, aplicado à uma taxa de juros compostos de 12% ao ano?

18. Um investidor aplicou R\$15.000,00 em um banco que paga à taxa de juros compostos, 15% ao ano. Após certo tempo, ele recebeu um montante no valor de R\$19.837,50. Quanto tempo o dinheiro ficou aplicado?

19. Uma quantia x é aplicada em um fundo de investimento que rende a uma taxa de 15% a.a., com juros capitalizados ao final de cada ano. Após quanto tempo essa quantia será dobrada? Dados: $\log 115 \cong 2,0607$ e $\log 2 \cong 0,3010$.

20. A tabela abaixo mostra a variação mensal dos juros de certa aplicação bancária no 1.º trimestre de determinado ano:

Janeiro	Fevereiro	Março
1,01%	0,94%	1,08%

Considerando que o banco cobra uma taxa de manutenção de 1% do capital inicial na entrada e mais 10% do lucro obtido em todos os meses, quanto você poderá resgatar após o mês de março se você aplicar R\$1.000,00 em janeiro?

Gabarito

Matemática Financeira

1.

a)
$$15\% = \frac{15}{100} = 0.15$$

b)
$$3.8 = \frac{380}{100} = 380\%$$

c)
$$62\% = \frac{62}{100} = 0.62$$

2.

a)
$$40\%$$
 de 1 $200 = \frac{40}{100}$ de 1 $200 = \frac{40}{100} \cdot 1200 = 480$

b)
$$\frac{92}{460} = 0.2 = \frac{20}{100} = 20\%$$

3.
$$\frac{920}{1500} \cong 0,6133 \cong \frac{61,33}{100} \cong 61,33\%$$

4. 63% de 30 000 =
$$\frac{63}{100}$$
 de 30 000 = $\frac{63}{100} \cdot 30 000 = 18 900 pães$

5. Gasolina: 40% de 36 litros =
$$\frac{40}{100}$$
 de $36 = \frac{40}{100} \cdot 36 = 14,4$ litros

Álcool: 60% de 36 litros =
$$\frac{60}{100}$$
 de 36 = $=\frac{60}{100} \cdot 36 = 21,6$ litros

6. Aumento de 25%: 25% de $60 = \frac{25}{100}$ de $60 = \frac{25}{100} \cdot 60 = 15$ Com um aumento de 25% a camisa passa a custar R\$75,00.

Desconto de 20%
20% de 75 =
$$\frac{20}{100}$$
 de 75 = $\frac{20}{100} \cdot 75 = 15$

Com um desconto de 20% a camisa volta a custar R\$60,00, para pagamento à vista.

7. Sendo: C = 3.500,00 reais; i = 3% ao mês e n = 6 meses.

Como:

$$j = C.i.n$$

$$j = 3500.0,03.6$$

$$i = 630,00$$

O valor dos juros é de R\$630,00.

8. Sendo: C = 6.000,00 reais; i = 10% ao ano e n = 0,5 ano.

Como:

$$i = C. i. n$$

$$i = 6000.0, 1.0, 5$$

$$i = 300$$

O valor dos juros é de R\$300,00.

9. Sendo: j = 520,00 reais; i = 4% ao mês e n = 2 meses.

Como:

$$i = C.i.n$$

$$520 = C.0,04.2$$

$$520 = C.0,08$$

$$C = 6500.00$$

O valor do capital é de R\$6.500,00.

10. Sendo: C = 500,00 reais; i = 12% ao ano e j = 300,00 reais.

Como:

$$j = C.i.n$$

$$300 = 500.0.12.n$$

$$300 = 60 . n$$

$$n = 5$$
 anos.

11. Sendo: C = 800,00 reais; i = 2,5% ao mês e n = 10 meses.

Como:

$$j = C.i.n$$

$$j = 800.0,025.10$$

$$j = 200,00$$
 reais

Como: M = C + j, então:

$$M = 800 + 200$$

$$M = 1000,00$$

O valor do montante é de R\$1.000,00.

12. Sendo: C = 2.000,00 reais; i = 0,64% ao mês e n = 36 meses.

Como:

$$i = C.i.n$$

$$j = 2000.0,0064.36$$

$$i = 460.80$$

Como: M = C + j, então:

$$M = 2000 + 460,80$$

$$M = 2460,80$$

O valor do montante é de R\$2.460,00.

13. Sendo: C = 800,00 reais; i = 9% ao mês e n = 3 meses.

Como:

$$M = C \cdot (1 + i)^n$$

$$M = 800 \cdot (1 + 0.09)^3$$

$$M = 800 \cdot (1,09)^3$$

$$M = 800.1,295029$$

$$M = 1036,02$$

O valor do montante é de R\$1.036,02.

14. Sendo: C = 5.000,00 reais; i = 0,72% ao mês e n = 36 meses.

Como:

$$M = C \cdot (1 + i)^n$$

$$M = 5000 \cdot (1 + 0.0072)^{36}$$

$$M = 5000 \cdot (1,0072)^{36}$$

$$M = 5000 . 1,294690066$$

$$M = 6473,45$$

O valor do montante é de R\$6.473,00.

15. Sendo: C = 8.000,00 reais; i = 4% ao trimestre e n = 4 trimestres.

Como:

$$M = C \cdot (1 + i)^n$$

$$M = 8000 \cdot (1 + 0.04)^4$$

$$M = 8000 \cdot (1,04)^4$$

M = 8000 . 1,16985856

$$M = 9358,86$$

O valor do montante é de R\$9.358.86.

16. Sendo: i = 0,25% ao mês; n = 4 meses e M = 8.585,32 reais.

Como:

$$M = C \cdot (1 + i)^n$$

$$8585,32 = C.(1 + 0,0025)^4$$

$$8585,32 = C.(1,0025)^4$$

$$8585,32 = C.1,010037563$$

$$C = 8500,00$$

O valor do capital é de R\$8.500,00.

17. Sendo: i = 12% ao ano; n = 6 anos e M = 39.476,45 reais.

Como:

$$M = C \cdot (1 + i)^n$$

$$39476,45 = C.(1 + 0,12)^6$$

$$39476,45 = C.(1,12)^6$$

$$39476,45 = C.1,97382268$$

$$C = 20\ 000,00$$

O valor do capital é de R\$20.000,00.

18. Sendo: C = 15.000,00 reais; i = 15% ao ano e M = 19.837,50 reais.

Como:

$$M = C \cdot (1 + i)^n$$

$$19837,50 = 15000.(1 + 0,15)^n$$

$$19837,50 = 15000.(1,15)^n$$

$$(1,15)^{\rm n} = \frac{19\,837,50}{15\,000}$$

$$(1,15)^n = 1,3225$$

Aplicando logaritmo em ambos os lados da igualdade, teremos:

$$\log (1,15)^n = \log 1,3225$$

$$n \cdot \log (1,15) = \log 1,3225$$

$$n = \frac{\log 1,3225}{\log 1,15}$$

$$n = \frac{0,12139568}{0,06069784}$$

$$n = 2$$
 anos

19. Como os juros são capitalizados, trata-se de juros compostos. Utilizando a fórmula do montante temos:

$$M = C \cdot (1 + i)^n$$
 com:

$$M = 2C$$

$$i = 15\%$$

Substituindo na fórmula do montante temos:

$$M = C \cdot (1+i)^n$$

$$2C = C \cdot (1 + 0.15)^n$$

$$2 = (1 + 0.15)^n$$

Aplicando logaritmo nos dois membros da equação anterior temos:

$$log 2 = (1 + 0.15)^n$$

$$log 2 = n \cdot log 1,15$$

$$\log 2 = n \cdot \log \frac{115}{100}$$

$$\log 2 = n \cdot (\log 115 - \log 100)$$

Substituindo os valores dos logaritmos temos:

$$n = 4.958$$

Aproximadamente 5 anos.

20. C = 1000

Primeiro mês:

$$C_1 = 1000 - 1\% . 1000$$

$$C_1 = 990$$

$$M_1 = 990 \cdot (1 + 1,01\%)$$

$$M_1 = 990 \cdot (1,0101)$$

$$M_1 = 999,99$$

Retirando os 10% do banco temos:

$$R = 999,99.(0,1)$$

$$R = 1$$

Portanto o montante ao final do primeiro mês é:

$$M = 1000 - 1$$

$$M = 999$$

$$C_{2} = 999$$

$$M_3 = 999 \cdot (1 + 0.94\%)$$

$$M_3 = 999 \cdot (1,0094)$$

$$M_{2} = 1008,4$$

Retirando os 10% do banco temos:	
R = 9,94 . (0,1)	
R =0,99	
Portanto o montante ao final do segundo mês é:	
M = 1 008,4 – 0,99	
M = 1 007,41	
3.º mês:	
C ₃ = 1 007,41	
$M_3 = 1 007,41 \cdot (1 + 1,08\%)$	
M ₃ =1 007,41 . (1,0108)	-
$M_3 = 1 \ 018,29$	
Retirando os 10% do banco temos:	
R = 10,88 . (0,1)	
R =1,09	
Portanto o montante ao final do segundo mês é:	
M = 1 018,29 - 1,09	
M = 1 017,2	
Portanto ao final de março poderá ser resgatada a quantia de R\$1.017,20	