DISCML 2013

Novel Sparse Modeling by L2 + L0 Regularization

Hidekazu Oiwa, Issei Sato, Hiroshi Nakagawa The University of Tokyo

Problem

Regularized Empirical Risk Minimization

$$F(\mathbf{w}) = \min_{\mathbf{w}} \sum_{\gamma=1}^{t} \ell_{\gamma}(\mathbf{w}) + r(\mathbf{w})$$

$$\gamma=1 \text{ loss function regularization}$$

- What type of regularization should we use?
 - L1, L0, elastic net, or other structured ones?
 - Sparsity-inducing effect or Grouping effect?

L0 Elastic Net

$$r(\mathbf{w}) = \lambda(\pi \|\mathbf{w}\|_{2}^{2} + (1 - \pi)\|\mathbf{w}\|_{0}^{2})$$

• Pros

- L2 + L0 regularization
- Strong sparsity-inducing ability (by L0)
- Generalization ability (by L2)
- Cons
 - Non-convex problem due to L0 norm
 - NP-hard (from viewpoints of discrete optimization)

Our contributions

$$r(\mathbf{w}) = \lambda(\pi \|\mathbf{w}\|_{2}^{2} + (1 - \pi) \|\mathbf{w}\|_{0})$$

- We develop
 - convex solver for L0 elastic net
 - theoretical guarantee as simultaneous optimization of feature selection and parameter optimization
- Experiment guarantees that L0 elastic net
 - produces more compact and predictive model than conventional ones

Why L0 elastic net?

capture all effective features optimization easier redundant predictive model

construct minimal feature set optimization harder compact predictive model

We will show...

L0 elastic net can produce more compact predictive model than L1 L0 elastic net can be optimized more easily than L0

Comparison of Regularizations

	Our method	COR [10, 12]	Lasso [1]	Group [13]	L_0
Grouping effect					
Noise reduction					
Redundancy reduction					
No prior knowledge					
One-step optimality					

- L0 elastic net
 - has strong noise and redundancy reduction effect
 - does not need prior knowledge
 - has one-step optimality
 Our contribution

Dual Decomposition Solver

Decompose original problem into two sub-problems

$$\min_{\mathbf{u}, \mathbf{v}} \sum_{\gamma=1}^{t} \ell_{\gamma}(\mathbf{u}) + r(\mathbf{v}) \text{ where } \mathbf{u} = \mathbf{v}$$

Lagrange relaxation

$$\begin{split} L(\mathbf{z}) &= \min_{\mathbf{u}, \mathbf{v}} \sum_{\gamma=1}^{t} \ell_{\gamma}(\mathbf{u}) + r(\mathbf{v}) + \mathbf{z}^{T}(\mathbf{u} - \mathbf{v}) \\ &= \min_{\mathbf{u}} \left(\sum_{\gamma=1}^{t} \ell_{\gamma}(\mathbf{u}) + \mathbf{z}^{T}\mathbf{u} \right) + \min_{\mathbf{v}} \left(r(\mathbf{v}) - \mathbf{z}^{T}\mathbf{v} \right) \end{split}$$

each subproblem can be solved efficiently!

Sub-problems

Loss part is similar to risk minimization problem

$$\min_{\mathbf{u}} \left(\sum_{\gamma=1}^{t} \ell_{\gamma}(\mathbf{u}) + \mathbf{z}^{T} \mathbf{u} \right) \quad \text{If loss functions are convex,} \\ \text{it is solvable by GD, SGD, lbfgs...}$$

• Regularization part is...

$$\mathbf{v}_{t} = \underset{\mathbf{v}}{\operatorname{argmin}} \left(\lambda_{2} \| \mathbf{v} \|_{2}^{2} + \lambda_{0} \| \mathbf{v} \|_{0} - \mathbf{z}_{t}^{T} \mathbf{v} \right)$$

$$\lambda_{0} = \lambda(1 - \pi)$$

$$\lambda_{2} = \lambda \pi$$

Fortunately, this problem is solvable by closed form!

Regularization part solution

L0 elastic net case

$$v_t^{(i)} = \begin{cases} 0 & (z_t^{(i)})^2 \le 4\lambda_0\lambda_2 \\ \frac{z_t^{(i)}}{2\lambda_2} & \text{otherwise} \end{cases}$$

- This technique can be applied to other regularizations
 - L1 regularization, elastic net, etc.
 - Unfortunately, L0 regularization is not solvable :-(

Algorithm Description

- Algorithm
 - Iterative update of primal and dual parameters
 - 1. Update primal parameters $\mathbf{u}_t, \mathbf{v}_t$
 - 2. Update dual parameter z_t by subgradient method
 - Convergence is guaranteed
- Optimality Condition

Theorem 1 (Koo et al. [17]) If $\mathbf{u}_k = \mathbf{v}_k$ is satisfied at some k, $\mathbf{u}_k = \mathbf{v}_k = \mathbf{w}_k$ is a solution of formula (2). That is,

$$L(\mathbf{z}_k) = F(\mathbf{w}_k) = F(\mathbf{w}^*) , \qquad (8)$$

is satisfied.

Theoretical Guarantee

Theorem 2 Let us assume that \mathbf{w}^* is an optimal weight vector for the problem with L_0 elastic net.

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ F(\mathbf{w}) = \sum_{\tau=1}^t \ell_{\tau}(\mathbf{w}) + r(\mathbf{w}) \right\}$$
$$r(\mathbf{w}) = \lambda \left(\pi \|\mathbf{w}\|_2^2 + (1 - \pi) \|\mathbf{w}\|_0 \right) . \tag{12}$$

Let us define S_0 as the index set where the component value is 0 in \mathbf{w}^* . In this case, \mathbf{w}^* is one of the most compact optimal weight vectors for the following problem.

$$G(\mathbf{w}) = \sum_{\tau=1}^{t} \ell_{\tau}(\mathbf{w}) + \lambda \pi \|\mathbf{w}\|_{2}^{2}$$

$$s.t. \quad \forall i \in S_{0} \quad \hat{w}^{(i)} = 0.$$
(13)

- This Theorem guarantees
 - feature subset is minimal to predict as same accuracy
 - parameters are optimal and no need to re-estimate

Experiments

- Synthetic Regression Data
 - 6 features, 2 groups
 - Feature are highly correlated in same group
 - Best feature subset: x_1, x_4

Input

$$Z_1, Z_2 \sim U(0, 20)$$
 $\epsilon_i \sim \mathcal{N}(0.0, 0.05)$ $x_1 = Z_1 + \epsilon_1, \quad x_2 = -0.7Z_1 + \epsilon_2,$ $x_3 = 0.5Z_1 + \epsilon_3, \quad x_4 = Z_2 + \epsilon_4,$ $x_5 = -0.7Z_2 + \epsilon_5, \quad x_6 = 0.5Z_2 + \epsilon_6,$

<u>Output</u>

$$y_i \sim \mathcal{N}(Z_1 - 0.6Z_2, 1.0)$$

 L_1 elastic net L_0 elastic net (Dual Decomposition) 1.0 0.25 w_1 8.0 0.20 w_1 0.6 0.15 w_5 w_3 0.4 0.10 w_3 0.2 0.05 w_6 w_5 0.0 0.00 w_6 w_4 -0.2-0.05 w_2 w_2 -0.4-0.10 w_4 -0.6-0.15-0.8-0.20Weak $L_0 \leftarrow Strong L_0$ Weak $L_1 \leftarrow Strong L_1$ -0.25-1.0 L_1 elastic net Lasso (FOBOS) 0.25 1.0 0.20 0.8 w_1 w_1 0.15 0.6 0.10 0.4 w_3 w_3 0.05 0.2 w_5 w_5 0.00 0.0 w_4 w_4 w_6 -0.05-0.2 w_6 -0.10-0.4 w_2 w_2 -0.15-0.6-0.20-0.8Weak $L_1 \leftarrow$ Strong L_1 -0.25 Weak L_1 <----- Strong L_1

Result and Future Work

- Experiment guarantees
 - L0 elastic net outperforms conventional regularization methods in both feature selection and parameter estimation
- Future Work
 - How to determine hyperparameters?
 - More convincing experiments

$$r(\mathbf{w}) = \lambda(\pi \|\mathbf{w}\|_{2}^{2} + (1 - \pi) \|\mathbf{w}\|_{0})$$