Duração total: 2 horas 30 minutos

Esta prova é constituída por 8 questões. A <u>questão 8</u> deve ser respondida no próprio enunciado e entregue com as restantes folhas de resposta.

1. (40 pts) Considere a função definida por

$$f(x) = \arcsin(1 - e^x).$$

- (a) Determine o domínio e o contradomínio de f.
- (b) Calcule a derivada da função f e estude f quanto a intervalos de monotonia.
- (c) A função f admite máximo absoluto? E mínimo absoluto? Justifique a sua resposta.
- (d) A função f admite assíntotas? Em caso afirmativo, determine-as.
- (e) Determine a inversa da função f, indicando expressão analítica, domínio e contradomínio.
- 2. (20 pts) Seja $f: I \subseteq \mathbb{R} \to \mathbb{R}$ uma função.
 - (a) Defina função estritamente decrescente em I.
 - (b) Prove o seguinte resultado válido para qualquer função definida e contínua em [a,b] e derivável em [a,b]:

Se f' assume valores estritamente negativos em]a,b[então f é estritamente decrescente em [a,b].

- 3. (20 pts) Seja f uma função racional definida em \mathbb{R}^+ .
 - (a) Supondo que

$$f(x) = \frac{x^3 + x^2 + 18}{x^2(x^2 + 9)^2},$$

decomponha a função em elementos simples, sem efetuar os cálculos para determinar os coeficientes.

(b) Supondo que

$$f(x) = \frac{2}{x^2} - \frac{x+1}{x^2+9},$$

determine $\int f(x) dx$.

4. (15 pts) Fazendo uma substituição adequada, determine $\int_{1}^{8} \frac{\sqrt{\sqrt[3]{x} - 1}}{\sqrt[3]{x^2}} dx.$

vire se faz favor

5. (30 pts) Considere a função q definida em \mathbb{R} por

$$g(x) = \begin{cases} \operatorname{sen} x \cos^2 x & \operatorname{se} & x < 0 \\ \frac{\sqrt{x}}{2} & \operatorname{se} & x \ge 0 \end{cases}.$$

(a) Determine as famílias de primitivas

(i)
$$\int \operatorname{sen} x \cos^2 x \, dx$$
; (ii) $\int \frac{\sqrt{x}}{2} \, dx$.

- (b) Justifique que a função g é integrável em qualquer intervalo $[a,b] \subset \mathbb{R}$ com b > a.
- (c) Calcule a área da região do plano limitada pelo gráfico de g, pelo eixo Ox e pelas retas de equação $x=-\frac{\pi}{2}$ e x=2.
- 6. (25 pts) Seja $f: [2, +\infty[\to \mathbb{R} \text{ a função definida por } f(x) = \frac{1}{x \ln x}]$.
 - (a) Estude a natureza do integral impróprio $\int_2^{+\infty} \frac{1}{x \ln x} dx$ e, em caso de convergência, indique o seu valor.
 - (b) Enuncie o Critério do Integral para séries numéricas e utilize-o para determinar a natureza da série $\sum_{n=2}^{+\infty} \frac{1}{n \ln(n)}$.
- 7. (30 pts) Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica.
 - (a) Defina série convergente.
 - (b) Mostre que a série $\sum_{n=1}^{+\infty} (e^{-n} e^{-n-2})$ é convergente e indique a sua soma.
 - (c) Determine a natureza da série $\sum_{n=1}^{+\infty} \frac{\cos n}{n!}$ e, em caso de convergência, indique se a convergência é simples ou absoluta.

Universidade de Aveiro

23 de janeiro de 2023Exame Final de Cálculo I - Agrupamento 2 Duração total: 2 horas 30 minutos

Nome:_	N° Mec.:
Classificação Questão:	
8. (20 pts) Para cada uma das questões se	guintes, assinale a opção correta.
(a) Sabendo que $\sum_{n=1}^{+\infty} a_n = 1 \text{ e } \sum_{n=1}^{+\infty} b_n = -1$	-1 e ainda que $a_1 = 2$ e $b_1 = -3$, podemos afirmar que
n=1	
n=1	
n=1	
(D) $\sum_{n=0}^{+\infty} (a_{n+1} + b_{n+1}) = 2. \dots$	
(b) Suponha que h é uma função satisf	azendo as condições $h(1)=-2,\ h'(1)=2,\ h''(1)=3,$ é uma função contínua em \mathbb{R} . Então,
(A) $\int_{1}^{2} h''(u) du = 3$	
(B) $\int_{1}^{2} h''(u) du = 8$	
(C) $\int_{1}^{2} h''(u) du = 10$	
(D) $\int_{0}^{2} h''(u) du = -3$	
(c) Se f é uma função contínua em $\mathbb R$ to	al que $\int_0^x f(t) dt = xe^{2x} - \int_0^x e^{-t} f(t) dt$, então
(A) $f(x) = \frac{e^{3x}(2x+1)}{e^x+1}$	
(B) $f(x) = \frac{e^{2x}(2x+1)}{e^x+1}$	
•	
(D) $f(x) = \frac{2xe^{2x}}{e^x + 1}$	
C 1	ível em \mathbb{R} satisfazendo as condições $f(1)=2, f(2)=1,$
\mathcal{L}	
(C) $(f^{-1})'(2) = \frac{1}{4}$	
(D) $(f^{-1})'(2) = 4. \dots$	

Fórmulas trigonométricas
$$\sec u = \frac{1}{\cos u}; \csc u = \frac{1}{\sin u}; \cot u = \frac{\cos u}{\sin u}; 1 + tg^2 u = \sec^2 u; 1 + \cot^2 u = \csc^2 u$$

$$\sec^2 u = \frac{1 - \cos(2u)}{2}; \cos^2 u = \frac{1 + \cos(2u)}{2}; \cos^2(\arcsin u) = 1 - u^2 = \sin^2(\arccos u)$$

$$\cos(u + v) = \cos u \cos v - \sin u \sin v; \sin(u + v) = \sin u \cos v + \sin v \cos u$$

$$\sin u \sin v = \frac{\cos(u - v) - \cos(u + v)}{2}; \cos u \cos v = \frac{\cos(u - v) + \cos(u + v)}{2};$$

$$\sin u \cos v = \frac{\sin(u - v) + \sin(u + v)}{2};$$

Funções hiperbólicas

$$\sinh(u) = \frac{e^{u} - e^{-u}}{2}; \cosh(u) = \frac{e^{u} + e^{-u}}{2}; \cosh^{2}(u) - \sinh^{2}(u) = 1$$

Progressão aritmética de razão r

Termo geral: $u_n = u_1 + (n-1)r$; Soma dos n primeiros termos: $S_n = \frac{u_1 + u_n}{2}n$

Progressão geométrica de razão $r \neq 1$

Termo geral: $u_n = u_1 r^{n-1}$; Soma dos n primeiros termos: $S_n = u_1 \frac{1 - r^n}{1 - r}$

Formulário de Derivadas						
Função	Derivada	Função	Derivada	Função	Derivada	
$Ku \ (K \in \mathbb{R})$	K u'	$\ln u $	$\frac{u'}{u}$	u^r	$r u^{r-1} u'$	
$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$	e^u	$u'e^u$	$\operatorname{sen} u$	$u'\cos u$	
$a^u(a>0 e a \neq 1)$	$a^u \ln a u'$	$\cos u$	$-u' \operatorname{sen} u$	$\operatorname{tg} u$	$u'\sec^2 u$	
$\cot g u$	$-u'\csc^2 u$	$\sec u$	$\sec u \operatorname{tg} u u'$	$\csc u$	$-\operatorname{cosec} u \operatorname{cotg} u u'$	
rcsen u	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$	$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	
$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$	$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$	

Primitivas:

$$\int u' \sec u = \ln|\sec u + \operatorname{tg} u| \quad e \quad \int u' \operatorname{cosec} u = -\ln|\operatorname{cosec} u + \operatorname{cotg} u|$$

$$\int \frac{1}{(x^2+a)^n} \, dx = \frac{1}{a} \left(\frac{x}{2(n-1)(x^2+a)^{n-1}} + \frac{2n-3}{2n-1} \int \frac{1}{(x^2+a)^{n-1}} \, dx \right), \ a \neq 0, \ n \neq 1.$$