Exercise 2.

- (a) Let J and E be well-ordered sets; let $h: J \to E$. Show the following two statements are equivalent:
 - (i) h is order-preserving and its image is E or a section of E.
 - (ii) $h(\alpha) = \text{smallest of } [E h(S_{\alpha})] \text{ for all } \alpha.$

[Hint: Show that each of these conditions implies that $h(S_{\alpha})$ is a section of E; conclude that it must be the section by $h(\alpha)$.]

(b) If E is a well-ordered set, show that no section of E has the order type of E, nor do two different sections of E have the same order type. [Hint: Given J, there is at most one order-preserving map of J into E whose image is E or a section of E.]

Lemma 1. Let W be a nonempty well-ordered set, and let $\alpha \in W$. If α has an immediate successor β , then $S_{\alpha} \cup \{\alpha\} = S_{\beta}$. Otherwise, $\alpha = \max W$ and $S_{\alpha} \cup \{\alpha\} = W$.

Proof. If $\alpha = \max W$, then for all $x \in W$, either $x = \alpha$ or $x < \alpha$, and thus $W = S_{\alpha} \cup \{\alpha\}$. Otherwise, since α is not the largest element of W, it has an immediate successor β , and $S_{\alpha} \cup \{\alpha\} \subset S_{\beta}$. Conversely, for all $x \in S_{\beta}$, if $x > \alpha$, then $\alpha < x < \beta$, so that β is not the immediate successor of α , a contradiction. Therefore either $x < \alpha$ or $x = \alpha$, and $S_{\beta} \subset S_{\alpha} \cup \{\alpha\}$.

Lemma 2. Let W be a well-ordered set, and let I be a subset of W. Then $\bigcup_{\alpha \in I} S_{\alpha}$ is either W or a section of W.

Proof. Let $U = \bigcup_{\alpha \in I} S_{\alpha}$. If $W = \emptyset$, then $U = \emptyset = W$. Let us suppose then that $W \neq \emptyset$.

Suppose that U has un upper bound $\beta \in W$, and let m be the smallest such upper bound. We have $U \subset S_m$. Suppose there exists $x \in S_m - U$. If there exists $\alpha \in I$ such that $x < \alpha$, then $x \in S_\alpha \subset U$, a contradiction; therefore x is an upper bound for U in W. Since m is the smallest such upper bound, we have x > m or x = m, which contradicts $x \in S_m$. Therefore $U = S_m$.

Otherwise, U does not have an upper bound in W. Let $x \in W$, there exists $\alpha \in I$ such that $x \in S_{\alpha}$, so that $W \subset U$, and U = W.

Proof.

(a) If J is empty, then there is only one function from J to E and it vacuously satisfies both conditions. In the rest of the proof, we suppose

then that J is nonempty. We will show that both propositions are equivalent to

$$\forall \alpha \in J, \quad h(S_{\alpha}) = S_{h(\alpha)} \tag{1}$$

 $(i) \implies (1)$

Suppose that (i) holds. Let $\alpha \in J$; for all $\beta \in J$ such that $\beta < \alpha$, we have $h(\beta) < h(\alpha)$, so $h(\beta) \in S_{h(\alpha)}$. Conversely, for all $\beta > \alpha$, $h(\beta) > h(\alpha)$, so $h(\beta) \notin S_{h(\alpha)}$. Therefore

$$\forall \beta \in J, \quad \beta < \alpha \iff h(\beta) \in S_{h(\alpha)}$$
 (2)

Suppose that $h(S_{\alpha}) \neq S_{h(\alpha)}$, and let $z \in S_{h(\alpha)} - h(S_{\alpha})$. If there exists $x \in J$ such that h(x) = z, then from (2) we deduce that $x < \alpha$, so that $h(x) = z \in h(S_{\alpha})$, which is absurd. Therefore $z \notin h(J)$.

- if h(J) = E, then from the above $z \notin E$, which is absurd.
- otherwise, $h(J) = S_m$ for some $m \in E$, and since $h(\alpha) \in S_m$, we have $h(\alpha) < m < z$. This contradicts the fact that $z \in S_{h(\alpha)}$.

Therefore z does not exist, and we conclude that (1) is true.

 $(1) \implies (i)$

Suppose that (1) holds. For all $x, y \in J$ such that x < y, we have $x \in S_y$ and therefore $h(x) \in h(S_y) = S_{h(y)}$. From this we deduce that h(x) < h(y), so h is increasing.

Suppose that $h(J) \neq E$, and let m be the smallest element of E - h(J). If there exists $z \in J$ such that h(z) > m, then $m \in S_{h(z)} = h(S_z)$, contradicting the existence of m. Therefore for all $z \in J$, $h(z) \in S_m$, and for all $y \in S_m$, there exists $x \in J$ such that h(x) = y by definition of m. From this we conclude that $h(J) = S_m$, so that $h(J) \implies h(J) \implies$

 $(1) \implies (ii)$

Let $\alpha \in J$, from (1) we have $h(\alpha) \notin h(S_{\alpha})$. For all $y \in E$, $y < h(\alpha)$ implies $y \in h(S_{\alpha})$, so $h(\alpha)$ is the smallest element of $E - h(S_{\alpha})$, and (1) \Longrightarrow (ii).

 $(ii) \implies (1)$

Suppose that condition (ii) holds, and let J_0 be the subset of J such that for all $\alpha \in J_0$, $h(S_{\alpha}) = S_{h(\alpha)}$. For all $\beta \in J$ such that $S_{\beta} \subset J_0$:

• If β has an immediate predecessor u, then $S_{\beta} = S_u \cup \{u\} \subset J_0$, and $u \in J_0$. Furthermore,

$$h(S_{\beta}) = h(S_u \cup \{u\}) = h(S_u) \cup \{h(u)\} = S_{h(u)} \cup \{h(u)\}$$

since $u \in J_0$. And since $h(\beta)$ exists for all $\beta \in J$ and is an element of $E - h(S_{\beta})$, we do not have $h(S_{\beta}) = E$, and from lemma 1 we deduce that h(u) has an immediate successor s in E. Since $h(\beta) = \min(E - h(S_{\beta})) = \min\{x \in E \mid x > h(u)\}$, we deduce that $s = h(\beta)$, and $h(S_{\beta}) = S_{h(\beta)}$, so that $\beta \in J_0$.

• If β does not have an immediate predecessor, then $S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$. Since $S_{\beta} \subset J_0$, we have $\alpha \in J_0$ for all $\alpha < \beta$, and

$$h(S_{\beta}) = h\left(\bigcup_{\alpha < \beta} S_{\alpha}\right) = \bigcup_{\alpha < \beta} h(S_{\alpha}) = \mathscr{S}$$

From lemma 2, we deduce that \mathscr{S} is either E or a section of E. And since $h(\beta) \in E - h(S_{\beta})$ exists for all $\beta \in J$, $\mathscr{S} = S_m$ for some $m \in E$. The element m is the smallest upper bound for $h(S_{\beta})$ in E, and therefore $m = h(\beta)$, and $\beta \in J_0$.

From the above, we deduce that J_0 is an inductive subset of J, and therefore $J_0 = J$.

(b) If $E = \emptyset$, then for all J section of E there is no function from J to E, so J cannot have the same order type as E. Suppose therefore that $E \neq \emptyset$.

Suppose that $h, k : J \to E$ both satisfy (i). From (a) we deduce that h and k both satisfy (ii). Suppose that there exists $\alpha \in J$ such that $h(\alpha) \neq k(\alpha)$; let m be the smallest such element of J. For all $\beta < m$, $h(\beta) = k(\beta)$, so $h(S_m) = k(S_m)$. From this we deduce that

$$h(m) = \min (E - h(S_m)) = \min (E - k(S_m)) = k(m)$$

which contradicts the existence of m. Therefore h = k, and there is at most one order-preserving function from J to E whose image is E or a section of E.

Lemma 3. Let J be a section of E; then J and E do not have the same order type.

Proof. As a section of E, $J = S_{\alpha}$ for some $\alpha \in E$. Suppose that there exists an order-preserving bijection $f: J \to E$, then f satisfies the properties shown in (a). From this we deduce that $E = f(S_{\alpha}) = S_{f(\alpha)}$, which contradicts the fact that $f(\alpha) \in E$. Therefore, f does not exist, and J does not have the same order type as E.

Let S_{α} and S_{β} for $\alpha, \beta \in E$ be two different sections of E. Since E is well-ordered, the elements α and β are comparable. Swapping the

roles of α and β , we can suppose that $\alpha < \beta$. Then $S_{\alpha} \subset S_{\beta}$ and $S_{\alpha} = \{x \in E \mid x < \alpha\} = \{x \in S_{\beta} \mid x < \alpha\}$ is a section of S_{β} .

By applying lemma 3, we deduce that S_{α} and S_{β} have different order types.