NAME: SHUVAM JENA

REG:21BAI1131

[1]:

#####1. penguins_size.csv is downloaded

#####2. Load the dataset into the tool.

[2]:

[2]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	\
	•	Adelie	Torgersen	39.1	18.7	181.0	
	•	Adelie	Torgersen	39.5	17.4	186.0	
	•	Adelie	Torgersen	40.3	18.0	195.0	
	•	Adelie NaN	Torgersen	NaN	NaN		
	•	Adelie	Torgersen	36.7	19.3	193.0	

body_mass_g sex
0 3750.0 MALE
• 3800.0 FEMALE
• 3250.0 FEMALE
• NaN NaN
• 3450.0 FEMALE

#####3.1. Perform Univariate Analysis

[3]:

[4]:

<ipython-input-4-176964dae727>:1: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.body_mass_g)

: <Axes: xlabel='body_mass_g', ylabel='Density'>

#####3.2. Perform Bivariate Analysis

: <seaborn.axisgrid.JointGrid at 0x7c313325c6a0>

#####3.3. Perform Multi-Variate Analysis

[6]:

• : <seaborn.axisgrid.PairGrid at 0x7c31298f71f0>

#####4. Perform descriptive statistics on the dataset.

[7]:

[7]:	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000

mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

#####5. Check for Missing values and deal with them.

[8]:

```
[8]: species
                               False
island
                          False
culmen_length_mm
                          True
         culmen depth mm
                                   True flipper length mm
                                                            True body mass g
                                                                                   True
                                   True
         sex
         dtype: bool
  [9]:
   [9]: species
                                   0
         island
                                   0
         culmen_length_mm
                                   2
                                   2
         culmen_depth_mm
                                   2
         flipper_length_mm
                                   2
         body_mass_g
         sex
                                  10
         dtype: int64
# Code to replace null values in numerical columns with MEDIAN
df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)
# Code to replace null values in categorical column with MODE
df['sex'].fillna(df['sex'].mode().iloc[0],inplace=True)
 [25]:
```

[26]:

[26]: species False
island False

culmen_length_mm False culmen_depth_mm False flipper_length_mm False body_mass_g False
sex False
dtype: bool

#####6. Find the outliers and replace the outliers

[29]:

[30]:

: <Axes: >

[31]:

• : <Axes: >

[32]:

• : <Axes: >

#####Hence there are no outliers in the dataset.

#####7. Check for Categorical columns and perform encoding.

[37]:

[37]:	species \		island	d culmen_length_mm		culmen_depth_mm		flipper_length_mm	
	0	0	2		39.10		18.7		181.0
	1	0	2		39.50		17.4		186.0
	2	0	2		40.30		18.0		195.0
	3	0	2		44.45		17.3		197.0
	4	0	2		36.70		19 3		193.0

	body_mass_g	sex
0	3750.0	2
1	3800.0	1
2	3250.0	1
3	4050.0	2

[38]:

4 3450.0 1

#####8. Check the correlation of independent variables with the target (TARGET IS SPECIES and remaining are independent)

[38]: species	1.000000
flipper_length_mm	0.850819
body_mass_g	0.747547
culmen_length_mm	0.728706
sex	-0.003823
island	-0.635659
culmen_depth_mm	-0.741282

Name: species, dtype: float64

#####9. Split the data into dependent and independent variables

[40]:

[40]: island culmen_length_mm culmen_depth_mm flipper_length_mm

	body	_mass_g	\			
0		2	39.10	18.7	181.0	3750.0
1		2	39.50	17.4	186.0	3800.0
2		2	40.30	18.0	195.0	3250.0
3		2	44.45	17.3	197.0	4050.0
4		2	36.70	19.3	193.0	3450.0
	sex					
0	2					
1	1					
2	1					

4	1	
	-	

[41]:

[41]:	0	0
	1	0
	2	0
	3	0
	4	0

Name: species, dtype: int64

#####10. Scaling the data

[42]:

[42]: island culmen_length_mm culmen_depth_mm flipper_length_mm

	body_mass_g	\			
0	1.0	0.254545	0.666667	0.152542	0.291667
1	1.0	0.269091	0.511905	0.237288	0.305556
2	1.0	0.298182	0.583333	0.389831	0.152778
3	1.0	0.449091	0.500000	0.423729	0.375000
4	1.0	0.167273	0.738095	0.355932	0.208333

sex

0 1.0

1 0.5

2 0.5

3 1.0

4 0.5

#####11. Split the data into training and testing

[48]:

#####12. Check the training and testing data shape.

[49]:

[49]: (275, 6)

[50]:

```
[50]: (69, 6)
[51]:
[51]: (275,)
[52]:
[52]: (69,)
```

#The End!!!