

Foundation of Machine Learning 5주차

정재헌, 우지수/23.02.17

Computational Data Science LAB

CONTENTS

- 1. Support Vector Machine
- 2. Complementary Slackness: Margin and Support Vectors
- 3. Subgradient
- 4. Subgradient Descent

Margin and hinge loss

The Margin

- ✓ 정의: 예측 score \hat{y} 과 실제 class $y \in \{-1,1\}$ 에 대한 마진은 $y\hat{y}$ 이다.
- \checkmark yf(x), f(x) \(\begin{aligned} \text{score function} \end{aligned} \)
- ✓ 대부분 classification loss는 마진에만 의존

Hinge Loss

- ✓ SVM/Hinge loss: $\ell_{Hinge} = \max\{1 m, 0\} = (1 m)_+$
- ✓ 마진 m=yf(x); "positive part"인 $(x)_+=x1(x\geq 0)$
- ✓ m=1일 때 미분이 불가
- ✓ Margin error

Support Vector Machine

Hypothesis space

$$\checkmark \quad \mathcal{F} = \{ f(x) = w^T \ x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}$$

SVM Optimization Problem

$$\checkmark \quad \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \left| |w| \right|^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [w^T x_i + b])$$

- ✓ Max가 있기에 미분이 불가
 - minimize $\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$
 - subject to $\xi_i \ge \max(0,1-y_i[w^Tx_i+b])$

• minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

• subject to
$$\xi_i \geq (1 - y_i[w^T x_i + b])$$
 for $i = 1, ..., n$

•
$$\xi_i \geq 0$$
 for $i = 1, ..., n$

SVM Optimization Problem

- SVM Optimization Problem
 - ✓ 최종적으로 다음과 같은 식 도출

• minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

• subject to
$$(1 - y_i[w^Tx_i + b]) - \xi_i \le 0$$
 for $i = 1, ..., n$

•
$$-\xi_i \le 0 \quad for \ i = 1, ..., n$$

- ✓ 위 식은 objective function이 이차식이고 제약식이 모두 affine이기에 quadratic program
- ✓ 미분이 가능

SVM Dual Problem

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$\left[\left(1 - y_i \left[w^T x_i + b \right] \right) - \xi_i \leqslant 0 \right]$

- SVM Lagrange Multipliers
 - $L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 y_i [w^T x_i + b] \xi_i) + \sum_{i=1}^n \lambda_i (-\xi_i)$
 - $=\frac{1}{2}w^Tw + \sum_{i=1}^n \xi_i(\frac{c}{n} \alpha_i \lambda_i) + \sum_{i=1}^n \alpha_i(1 y_i[w^Tx_i + b])$
 - $p^* = \inf_{w,\xi,b} \sup_{\alpha,\lambda \geqslant 0} L(w,b,\xi,\alpha,\lambda) \ge \sup_{\alpha,\lambda \geqslant 0} \inf_{w,\xi,b} L(w,b,\xi,\alpha,\lambda) = d^*$
 - ✓ Slater's condition(strong duality 만족)
 - ✓ 따라서, SVM을 Quadratic Program으로 해결이 가능

SVM Dual Function

- SVM Dual Function
 - $g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda) = \inf_{w, b, \xi} \left[\frac{1}{2} w^T w + \sum_{i=1}^n \xi_i \left(\frac{c}{n} \alpha_i \lambda_i \right) + \sum_{i=1}^n \alpha_i (1 y_i [w^T x_i + b]) \right]$
 - ✓ Strong duality를 만족 $(p^* = d^*)$ → KKT condition 만족
 - ✓ KKT condition stationary condition
- SVM Dual Function: First Order Conditions

•
$$\partial_w L = 0 \iff w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \iff w = \sum_{i=1}^n \alpha_i y_i x_i$$

•
$$\partial_b L = 0 \Leftrightarrow -\sum_{i=1}^n \alpha_i y_i = 0 \Leftrightarrow 0 = \sum_{i=1}^n \alpha_i y_i$$

•
$$\partial_{\xi_i} L = 0 \Leftrightarrow \frac{c}{n} - \alpha_i - \lambda_i = 0 \Leftrightarrow \frac{c}{n} = \alpha_i + \lambda_i$$

SVM Dual Function

SVM Dual Function

- ✓ First order condition에 의해서 라그랑지안 primal 문제가 Dual 문제로 바뀜
- \checkmark α_i 에 관한 문제로 단순해짐(primal solution에서의 w를 구할 때, $w = \sum_{i=1}^n \alpha_i y_i x_i$ 이기에)

•
$$\sup_{\alpha} \sum_{i=0}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_i$$

• s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

•
$$\alpha_i \in \left[0, \frac{c}{n}\right], \quad i = 1, \dots, n$$

02 | Complementary Slackness: Margin and Support Vectors

Insight From Complementary Slackness: Margin and Support Vectors

- The Margin
 - \checkmark $f^*(x) = x^T w^* + b^*$ 이 존재한다고 가정할 때 마진 $yf^*(x)$ 는 다음과 같음

- Support Vectors and The Margin
 - \checkmark "Slack Variable"이라고 부르는 $\xi_i^* = \max(0, 1 y_i f^*(x_i))$ 는 (x_i, y_i) 에서의 hinge loss
 - \checkmark $\xi_i^* = 0$ 이라고 가정하면 그 때의 $y_i f^*(x_i) \ge 1$
 - ✓ 분류가 올바르게 된 $y_i f^*(x_i) \ge 1$ 의 hinge loss 0

02 Complementary Slackness: Margin and Support Vectors

Complementary Slackness

- Complementary Slackness Conditions
 - \checkmark First order condition에서의 $\nabla_{\xi_i} L = 0$ 은 $\lambda_i^* = \frac{c}{n} \alpha_i^*$ 를 도출
 - ✓ Strong duality(KKT condition)에 의해서, complementary slackness를 가짐

•
$$\alpha_i^*(1 - y_i f^*(x_i) - \xi_i^*) = 0$$

•
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$(1-y_if(x_i))-\xi_i\leqslant 0$

- Consequences of Complementary Slackness Conditions
 - \checkmark 만약 $y_i f^*(x_i) > 1$ 이면 그 때의 margin loss는 $\xi_i^* = 0$ 이되고 위의 식에 대입해본다면 $\alpha_i^* = 0$
 - \checkmark 만약 $y_i f^*(x_i) < 1$ 이면 그 때의 margin loss는 $\xi_i^* > 0$ 이되고 위의 식에 대입해본다면 $\alpha_i^* = \frac{c}{n}$
 - \checkmark 만약 $\alpha_i^*=0$ 이면 그 때의 margin loss는 $\xi_i^*=0$ 이되고 이 말인 즉슨 loss가 없다는 것을 의미해 최종적으로 $y_if^*(x_i)\geq 1$
 - \checkmark 만약 $\alpha_i^* \in \left(0, \frac{c}{n}\right)$ 이면 그 때의 margin loss는 $\xi_i^* = 0$ 이되고 $1 y_i f^*(x_i) = 0$.

02 Complementary Slackness: Margin and Support Vectors

Consequences of Complementary Slackness Conditions

•
$$\alpha_i^* = 0 \Rightarrow y_i f^*(x_i) \ge 1$$

•
$$\alpha_i^* \in \left(0, \frac{c}{n}\right) \Rightarrow y_i f^*(x_i) = 1$$

•
$$\alpha_i^* = \frac{c}{n} \Rightarrow y_i f^*(x_i) \le 1$$

•
$$y_i f^*(x_i) < 1 \Rightarrow \alpha_i^* = \frac{c}{n}$$

•
$$y_i f^*(x_i) = 1 \Rightarrow \alpha_i^* \in \left[0, \frac{c}{n}\right]$$

•
$$y_i f^*(x_i) > 1 \Rightarrow \alpha_i^* = 0$$

02 | Complementary Slackness: Margin and Support Vectors Support Vector

- Support Vector
 - \checkmark 만약 α^* 가 dual problem의 해라고 하면, primal의 해는 다음과 같음

$$\checkmark \quad w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
, with $\alpha_i^* \in \left[0, \frac{c}{n}\right]$

- The Bias Term: b
 - ✓ SVM primal에서 complementary slackness condition

•
$$\alpha_i^* (1 - y_i f^*(x_i) - \xi_i^*) = 0$$
 (1)

•
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0 \tag{2}$$

$$\checkmark$$
 $\alpha_i^* \in \left(0, \frac{c}{n}\right)$ 와 같은 i 가 있다고 가정

- \checkmark (2)에 의해서 $\xi_i^* = 0$ 을 만족
- ✓ (1)에 의해서 다음식을 만족

•
$$y_i [x_i^T w^* + b^*] = 1$$

•
$$\Leftrightarrow$$
 $\left[x_i^T w^* + b^*\right] = y_i$ (use $y_i \in \{-1,1\}$)

•
$$\Leftrightarrow b^* = y_i - x_i^T w^*$$

02 | Complementary Slackness: Margin and Support Vectors Support Vector

- Support Vector
 - \checkmark 만약 α^* 가 dual problem의 해라고 하면, primal의 해는 다음과 같음
 - $\checkmark \quad w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$, with $\alpha_i^* \in \left[0, \frac{c}{n}\right]$
- The Bias Term: b
 - ✓ SVM primal에서 complementary slackness condition

•
$$\alpha_i^*(1 - y_i f^*(x_i) - \xi_i^*) = 0$$

•
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$
 (2)

$$\checkmark$$
 $\alpha_i^* \in \left(0, \frac{c}{n}\right)$ 와 같은 i 가 있다고 가정

- \checkmark (2)에 의해서 $\xi_i^* = 0$ 을 만족
- ✓ (1)에 의해서 다음식을 만족

•
$$y_i [x_i^T w^* + b^*] = 1$$

•
$$\Leftrightarrow$$
 $\left[x_i^T w^* + b^*\right] = y_i$ (use $y_i \in \{-1,1\}$)

•
$$\Leftrightarrow b^* = y_i - x_i^T w^*$$

03 | Subgradient REVIEW

Support Vector

- ✓ SVM의 목적은 마진을 최대화하는 것
- ✓ SVM에서는 비용 함수가 다른 대부분의 머신 러닝 알고리즘들과 달리 매끄럽지 않은 형태(미분불가)
- ✓ 경사하강법을 이용한 알고리즘이 아닌 다른 형태의 알고리즘

Convex Sets

- ✓ 어떤 집합이 주어져 있다고 할 때, 이 집합의 원소인 두 점을 잇는 선분이 이 집합이 포함 될 때 우리는 이 집합을 convex set이라 함
- ✓ 두 점을 잇는 선분이 그래프 위에 있다면 convex하다고 하고 -f가 convex하다면 f는 concave하다고 함

Convex Optimization Problem: Standard Form

- Convex Optimization Problem: Standard Form
 - minimize $f_0(x)$
 - subject to $f_i(x) \le 0$, i = 1, ..., m
 - ✓ 이 때, $f_0, ..., f_m$ 은 모두 convex 함수
- Level Sets and Sublevel Sets
 - ✓ $f: \mathbb{R}^d \to \mathbb{R}$ 인 함수
 - f(x) = c에 대해서 $x \in \mathbb{R}^d$ 에 모든 점들의 집합을 value c에 대한 level set 혹은 contour line이라 함
 - ✓ $f(x) \le c$ 에 대해서 $x \in \mathbb{R}^d$ 에 모든 점들의 집합을 value c에 대한 sublevel set이라 함
 - ✓ $f: \mathbb{R}^d \to \mathbb{R}$ 함수가 convex하다면 그 때의 sublevel set도 convex하다고 함

Level Sets and Sublevel Sets: convex

- Level Sets and Sublevel Sets
 - ✓ 이러한 convex function이 있다고 하자, 이때 floor는 domain으로서 2차원이고 그래프는 3차원
 - ✓ 중간에 평면으로 자른 지점이 level set이고 그 아랫부분이 sublevel set

- Level Sets and Sublevel Sets(contour plot)
 - ✓ 그리고 이걸 단면으로 봤을 때 중간에 있는 부분이 sublevel set이라고 할 수 있음

Level Sets and Sublevel Sets: non-convex

- Level Sets and Sublevel Sets
 - ✓ 3차원 그래프에서 non-convex함을 볼 수 있음

- Level Sets and Sublevel Sets(contour plot)
 - ✓ contour plot으로 봤을 때 sublevel set에서 중간점을 이어보면 non-convex함을 알 수 있음

Level Sets and Sublevel Sets

- Level Sets and Sublevel Sets
 - ✓ Convex set의 특징으로는 convex set들의 교집합 또한 convex set 이라는 성질을 가진다는 점
 - ✓ 또 다른 특징으로는 그냥 level set이나 superlevel set(f(x)>-1인 부분)은 일반적으로 convex set이 아닐 수도 있다는 특징이 있음
 - ✓ 결과적으로 *C*를 convex set이라고 했을 때 우리는 Convex Optimization Problem을 다음과 같이 쓸 수 있음
 - $minimize f_0(x)$
 - subject to $x \in C$
 - ✓ 이때 f는 convex 함수이고 C는 convex set

First-Order Approximation

- First-Order Approximation(1차 근사)
 - ✓ $f: \mathbb{R}^d \to \mathbb{R}$ 가 미분 가능하다고 가정
 - ✓ y를 추정하기 위해 1차 선형근사를 시키는 것을 알 수 있음
 - $\checkmark f(y) \approx f(x) + \nabla f(x)^T (y x)$
 - ✓ 만약 함수 f 가 미분 가능하고, convex function 이라면 이것을 global underestimator이라 함
 - $\checkmark f(y) \ge f(x) + \nabla f(x)^T (y x)$
 - \checkmark $\nabla f(x) = 0$ 이라면 그 때 x = f의 global minimizer

03 | Subgradient Subgradient

Subgradients

- $\checkmark f(z) \ge f(x) + g^T(z x)$
- ✓ 이 때 g를 subgradient라고 함
- ✓ 이 때 빨간선들은 앞서 살펴봤던 global underestimator이고 그
 안에 *g*가 subgradient

Subdifferential

- \checkmark 만약 x에서 subgradient가 적어도 하나라도 존재한다면 $f \vdash x$ 에서의 subdifferentiable
- \checkmark x에서의 모든 subgradient의 집합은 $\partial f(x)$ 인 subdifferential이라고 부름
- ✓ 만약 f가 convex하고 미분 가능하다면 $\rightarrow \partial f(x) = \{\nabla f(x)\}$
- \checkmark 만약 $\partial f(x) = \emptyset \rightarrow f$ 는 convex하지 않다

Global Optimality Condition

- Global Optimality Condition
 - \checkmark vector $g \in \mathbb{R}^d$ 는 모든 z에 대해 x에서 $f: \mathbb{R}^d \to \mathbb{R}$ 의 subgradient
 - \checkmark $f(z) \ge f(x) + g^T(z x)$
 - \checkmark 만약 $0 \in \partial f(x)$ 이면 그때의 $x \vdash f$ 의 global minimizer

Subdifferential of Absolute Value

- Subdifferential of Absolute Value
 - $\checkmark \quad f(x) = |x|$
 - $\checkmark \{(x,g)|x \in \mathbb{R}, g \in \partial f(x)\}$

$$f(x_1, x_2) = |x_1| + 2|x_2|$$

- Subgradients of $f(x_1, x_2) = |x_1| + 2|x_2|$
 - ✓ $f(x_1, x_2) = |x_1| + 2|x_2|$ 에서 (3, 0)지점의 subdifferential
 - ✓ $|x_1|$ 의 subgradient는 $1(x_1 = 3)$
 - ✓ $|x_2|$ 의 subgradient는 $[-2,2](x_2=0)$
 - \checkmark $h(x_1, x_2) = f(3,0) + g^T(x_1 3, x_2 0)$
 - ✓ 이때, h는 초평면이자 $f(x_1, x_2)$ 의 global underestimate
 - $\checkmark \quad g = (g_1, g_2)$
 - \checkmark $g_1 = 1$, $g_2 = [-2,2]$

$$f(x_1, x_2) = |x_1| + 2|x_2|$$

- Underestimating Hyperplane to $f(x_1, x_2) = |x_1| + 2|x_2|$
 - ✓ $f(x_1, x_2) = |x_1| + 2|x_2|$ 에서 (3, 0)지점의 subdifferential
 - ✓ $|x_1|$ 의 subgradient는 $1(x_1 = 3)$
 - ✓ $|x_2|$ 의 subgradient는 $[-2,2](x_2=0)$
 - \checkmark $h(x_1, x_2) = f(3,0) + g^T(x_1 3, x_2 0)$
 - ✓ 이때, h는 초평면이자 $f(x_1, x_2)$ 의 global underestimate
 - $\checkmark \quad g = (g_1, g_2)$
 - \checkmark $g_1 = 1$, $g_2 = [-2,2]$

03 Subgradient Subdifferential on Contour Plot

• Subdifferential on Contour Plot

Contour Line and Gradient

- Contour Line and Gradient
 - \checkmark $f: \mathbb{R}^d \to \mathbb{R}$ 에서 함수의 그래프는 \mathbb{R}^{d+1} 차원에서 존재
 - ✓ f의 gradient나 subgradient는 \mathbb{R}^d 차원에 존재
 - \checkmark 또한 등고선, level set그리고 sublevel set모두 \mathbb{R}^d 에 존재
 - ✓ $f: \mathbb{R}^d \to \mathbb{R}$ 이 연속적으로 미분이 가능하고 $\nabla f(x_0) \neq 0$
 - ✓ 그 때 $\nabla f(x_0)$ 은 level set S에 대해서 수직이라고 할 때
 - \checkmark Level sets: $S = \{x \in \mathbb{R}^d | f(x) = f(x_0)\}$

Contour Line and Subgradients

- Contour Line and Subgradients
 - ✓ $f: \mathbb{R}^d \to \mathbb{R}$, 점 x_0 에서 subgradient g가 존재
 - ✔ g에 직교하는 초평면 H level set $S = \{x \in \mathbb{R}^d | f(x) = f(x_0)\}$ 를 support (S에서 모든 점들이 H의 한쪽에 위치한다는 뜻)
- Proof:
 - ✓ 임의의 y에서 $f(y) \ge f(x_0) + g^T(y x_0)$
 - ✓ 만약 y가 g가 양수인 방향에 위치한다면, $y x_0$ 는 g와 평행하지 않으며 두 vector의 내역은 0보다 큼
 - ✓ 그렇다면 f(y)는 $f(x_0)$ 의 값보다 커짐, 즉 y는 S에 포함되지 않음
 - \checkmark 따라서 모든 S의 원소들은 H위나 H의 −g 방향에 존재

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$
 - ✓ 증명에 의해 g가 가리키는 방향에 위치한 점들은 함수 f보다 큰 값을 가짐
 - ✓ 즉, 이 점들은 함수 f를 더 크게 만드는 방향
 - ✓ 반면 g의 반대 방향은 함수 f보다 작을수도 있고 같을 수도 있음
 - ✓ 이러한 이유로 항상 -g가 감소하는 방향이 아닐 수 있음

04 | Subgradient Descent

Subgradient Descent

- Subgradient Descent
 - ✓ f가 convex하고 x_0 가 최적화 시작점이라 가정
 - ✓ 음수의 subgradient 방향에서의 step: $x = x_0 tg$, t > 0 and $g \in \partial f(x_0)$
- Subgradient Gets Us Closer To Minimizer
 - ✓ z가 임의의 점에서 $f(z) < f(x_0)$ 을 만족
 - ✓ 그렇다면 충분히 작은 t>0에 대해서 || x-z || $_2<$ || x_0-z || $_2$ 또한 만족
 - $z = x^* \in \operatorname*{argmin}_x f(x)$ 로 적용한다면 음수의 subgradient 방향에서의 step은 최소화에 더 가깝게 만들어줌

04 | Subgradient Descent

Subgradient Gets Us Closer To Minimizer

- Subgradient Gets Us Closer To Minimizer(Proof)
 - $||x-z||_2^2 = ||x_0 tg z||_2^2$
 - $\checkmark = ||x_0 z||_2^2 2 \operatorname{tg}^T(x_0 z) + t^2 ||g||_2^2$
 - $\checkmark \le ||x_0 z||_2^2 2t[f(x_0) f(z)] + t^2 ||g||_2^2$
- $-2t[f(x_0)-f(z)]+t^2||g||_2^2$
 - ✓ Convex quadratic 문제이다.
 - ✓ t = 0이고 $t = 2(f(x_0) f(z))/||g||_2^2 > 0$ 일 때 0을 갖게 됨
 - ✓ 그러므로, 이는 임의의 $t \in \left(0, \frac{2(f(x_0) f(z))}{||g||_2^2}\right)$ 에서 음수

04 | Subgradient Descent

Convergence Theorem

- \checkmark $f: \mathbb{R}^d \to \mathbb{R}$ 가 convex하고, f가 G>0제약조건을 가진 Lipschiz 연속일 때
- \checkmark | f(x) f(y)| $\leq G \mid |x y||$, for all x, y
- Fixed Step Size
 - ✓ 고정된 step size t에서, $\lim_{k\to\infty} f(x_{best}^k) \le f(x^*) + G_{\frac{t}{2}}^2$
- Decreasing Step Sizes
 - ✓ 로빈스-몬로 조건과 관련된 step size의 경우, $\lim_{k\to\infty} f(x_{best}^k) \le f(x^*)$

Q&A

감사합니다.