Minimal Background on Hidden Markov Models

Robert W Rankin and Krista E Nicholson

Georgetown University, Murdoch University

October 30, 2017

Hidden Markov Models (HMM)

- provides a unified approach to capture-mark-recapture models
- essential for JAGS CMR models
- widely used framework outside CMR

HMM

- ▶ Hidden: the process model is *latent*, i.e., unobservable
- ▶ Markov: the dependence between states Z_t at t and Z_{t+1} at t+1 has order 1.

Latent States

separate the observed error (Y) from the process model a.k.a, separate the observed event from the latent state

 decomposes the complex product-multinomial distribution of capture histories into a series of simple distributions.

e.g.,

$$p(y_t = \mathsf{capture}|z_t) = \begin{cases} p_t, & \text{if } z_t = \{\mathsf{alive}\}, \\ 0, & \text{if } z_t = \{\mathsf{dead}\} \end{cases}$$
 (1)

ightharpoonup calculate biological (derived) parameters (N_t , births_t, super-population) as simple summaries of latent states

$$\begin{aligned} & \mathcal{N}_t = \sum_{i=1}^M \mathbb{I}[z_t = \{\mathsf{alive}\}] \\ & \mathcal{B}_t = \sum_{i=1}^M \left(\mathbb{I}[z_t = \{\mathsf{alive}\}] \cdot [z_{t-1} = \{\mathsf{unrecruited}\}] \right) \end{aligned} \tag{2}$$

Latent States: Example (CJS)

 \blacktriangleright example capture history (y = {1011000}) and plausible latent state sequence (Z)

(This is the Cormack-Jolly-Seber model)

Latent States: Example (POPAN)

• example capture history ($y = \{0011000\}$) and plausible latent state sequence (Z)

(This could be the POPAN model)

Latent States: Example (PCRD)

 \blacktriangleright example capture history (y = {10100000111100000000}) and plausible latent state sequence

(This is the Pollock's Closed Robust Design model with 3 secondary periods)

Latent States: Example (MSCRD)

• example capture history ($y = \{A0A00000BBBB000000000\}$) and latent state sequence

(This is a Multistate Robust Design Model with 2 strata (A,B) and Temporary Emigration (TE) and 3 secondary periods per primary period

HMM: A Unifying Framework

Many capture-mark-recapture models can be formulated as a type of HMM, e.g.,

- ► Cormack-Jolly-Seber
- ► POPAN
- ▶ Pollock's Closed Robust Design
- Multistate models

Mastering the HMM framework opens-up a lot of possibilities for standard and customized models

Quick Note:

- Latent states are stochastic.
- ▶ They are random variables, like ϕ, p, γ, ψ , etc.

Each capture history has a *distribution* of plausible latent states sequences For example:

$$y = \{1011000\}$$
 could have latent state sequences...
$$\left\{ \begin{cases} \{1111111\} \\ \{111112\} \\ \{1111122\} \end{cases} \right.$$
 (3)
$$\left\{ \begin{cases} \{111122\} \\ \{1111222\} \\ \dots \\ \{1112222\} \\ \{2211111\} \end{cases} \right.$$

... where $1 \equiv \mathsf{alive}, 2 \equiv \mathsf{dead}$

Gibbs Sampling Latent States

- ▶ if we knew the latent states, we could easily estimate survival, births, etc.
- ▶ instead we marginalize over the latent states via Gibbs Sampling

i.e., sample ${\bf Z}$, impute their values and to update ${m heta}$ a.k.a Monte-Carlo integration

Gibbs Sampling HMM

within each j MCMC iteration, we ...

▶ 1) Sample parameters conditional on latent states **Z** and data **Y**

$$oldsymbol{ heta}^{(j+1)} \sim \pi(oldsymbol{ heta}|\mathsf{Z}^{(j)},\mathsf{Y})$$

 \triangleright 2) Sample latent states conditional on parameters $oldsymbol{ heta}$ and data $oldsymbol{ ext{Y}}$

$$\mathbf{Z}^{(j+1)} \sim \pi(\mathbf{Z}|\boldsymbol{\theta}^{(j+1)}, \mathbf{Y})$$
 (5)

▶ 3) repeat for all MCMC iterations

(4)

Gibbs Sampling Latent States in JAGS

for JAGS scripts, we must:

specify Priors (like before)

```
# priors
p ~ dbeta(a,b)
```

 specify the Conditional Data Likelihood (like before, but conditional on the latent states)

```
# likelihood
y[t] ~ dbern(p * equals(z[t],1))
```

AND specify the Markov latent state process (new)

```
# latent state process
z[t] ~ dcat(transition.matrix[,z[t-1]])
```

To understand HMM models, you must master the matrix

Transition Matrix

ightharpoonup governs the probabilistic transition: $z_t
ightharpoonup z_{t+1}$

		Unborn		Α	Alive Dea		ac	d	
	Unborn	1	.7	(0	()	1	
$\Phi =$	Alive		.3		9	()		
	Dead		0		1		1		

- read: from columns (t) to rows (t+1)
- columns sum to 1

Emission Matrix

• governs capture process $p(y_t|z_t)$ (i.e., probability of a capture, given each latent state)

$$\Psi = egin{pmatrix} extstyle{ Capture} & extstyle{ Unborn} & extstyle{ Alive} & extstyle{ Dead} \ & 0 & .5 & .0 \ & 1 & .5 & 1 \ \end{pmatrix}$$

- read: from columns (z at t) to row (y at t)
- columns sum to 1

HMM is a Bunch of Matrices

How to Read Transition and Emission Matrices

- Read: FROM columns TO rows
- example: Let's say $z_{t-1} = \{Unborn\}$ at t-1

What is
$$p(z_t = \{Alive\} | z_{t-1} = \{Unborn\}, \Phi)$$
?
$$\Phi = \begin{array}{c} Unborn & Alive & Dead \\ Unborn & .7 & 0 & 0 \\ Alive & .3 & .9 & 0 \\ Dead & 0 & .1 & 1 \end{array}$$

What is
$$p(y_t = \{\text{Capture}\} | z_t = \{\text{Alive}\}, \boldsymbol{\Psi})$$
?
$$\boldsymbol{\Psi} = \begin{array}{c|c} & \textit{Unborn} & \textit{Alive} \\ & \text{Oo Capt} & 0 & .5 \\ & & \text{No Capt} & 1 & .5 \\ & & & 1 \end{array}$$

The matrices merely codify the conditional probabilities of the HMM processes

Understanding Transition and Emission Matrices (2)

▶ Likewise, let's say $z_t = \{A | ive\}$ at t

	Unborn	Alive	Dead
Unbor	n / .7	0	0
$\Phi = Alive$.3	.9	0
Dead	\ 0	.1	1

0 chance of returning to {Unborn},
0.9 chance of staying {Alive},
0.1 chance of going to {Dead}

time t, then there is:

$$\Psi = \begin{array}{c|cccc} & \textit{Unborn} & \textit{Alive} & \textit{Dead} \\ \hline W = \begin{array}{c|cccc} \textit{Capture} & 0 & .5 & .0 \\ \textit{No Capt} & 1 & .5 & 1 \\ \hline \end{array}$$

Translation: IF z_t is in state {Alive} at

Translation: IF z_t is in state {Alive} at

Let's do a worked example!

A demonstration of the data-generating process for a POPAN-like recruitment model $\,$

3 latent states:

- ▶ $1 \equiv \text{unborn (or pre-immigrant)},$
- $ightharpoonup 2 \equiv a | ive (and marked),$
- 3 ≡ dead (or permanent-emigrant)

1 capture history to generate

7 primary periods

time-invariant recruitment¹, survival and capture-probabilities

¹In practise, the recruitment parameters are ALWAYS time-varying ⊕ → ← 章 → ← 章 → □ ● → ○ ○

Generative Model for POPAN (2)

```
Initialize: z_0=1 at t=0 ({unborn}). No captures in t=0 done!
```


to dummy state

Generative Model for POPAN (3)

		CIIDCIII	, ,,,,,,	Dead	
Sample: $z_1 z_0$ at $t=1$.	Unborn	.7	0	0	
Use column 1 from $\Phi[,1]$ (because $z_0=1$) $\Phi=$	Alive	.3	.9	0	
Use the Multinomial distribution (a.k.a categorical)	Dead	0	.1	1	

Unborn Alive Dead

Generative Model for POPAN (4)

We got
$$z_1 = 1!$$
 (unborn)!

Next: Sample a capture $y_1 | z_1$ Use column 1 from $\Psi[, 1]$ (because $z_1 = 1$) Use the Multinomial Distribution

Unborn Alive Dead

$$\begin{array}{c} ? \\ y_1 | z_1 \sim \mathsf{Mult}([0,1]) \\ \\ \\ \mathsf{unborn} \end{array}$$

to dummy state

 t_1

Generative Model for POPAN (5)

Generative Model for POPAN (6)

Generative Model for POPAN (7)

Generative Model for POPAN (n)

• Generated capture history: $\{0,0,1,0,1,0,0\}$

Generative Model for POPAN (in R)

```
conceptually simple generative HMM
in R, it would look like:
z<-numeric(7)
y<-numeric(7)
z[1]<-rmultinom(n=1,size=1,prob=PHI[,1]) # first primary
y[1]<-rmultinom(n=1,size=1,prob=PSI[,z[1]]) # first capture
for(t in 2:7){
    z[t]<-rmultinom(n=1,size=1,prob=PHI[,z[t-1]])
    y[t]<-rmultinom(n=1,size=1,prob=PSI[,z[t]])
}</pre>
```

Generate Model for POPAN

conceptually simple generative HMM

ightharpoonup generate: $m y^*$ given $m \Phi$ (transition matrix) and $m \Psi$ (emission matrix) (via z)

BUT What about inference about Φ and Ψ for a given (y)?

- ► Real Answer: Forwards-Backwards algorithm²
- Quick Answer JAGS will take care of it for us...

so long as we specify:

- priors
- conditional data likelihood
- ▶ |atent state process

How to specify the emission and transition matrices for a CMR model? Each cell in the matrices are parameterized by products of CMR parameters Example in Cormack Jolly Seber:

Transition Matrix

from t-1 to t

$$oldsymbol{\Phi}_t = egin{array}{ccc} ext{Alive} & ext{Dead} \ oldsymbol{\Phi}_{t-1} & 0 \ 1-\phi_{t-1} & 1 \ \end{array}$$

where:

 ϕ_{t-1} is the apparent survival between t-1 and t

Emission Matrix

capture at t

$$oldsymbol{\Psi}_t = rac{ extsf{Capture}}{ extsf{No Capture}} \left(egin{array}{cc} p_t & 0 \ 1-p_t & 1 \end{array}
ight)$$

where

 $ightharpoonup p_t$ is the capture-probability at t

HMM Matrices: Connection with CMR (POPAN)

How to specify the emission and transition matrices for a CMR model?

Each cell in the matrices are parameterized by products of CMR parameters Example in POPAN:

Transition Matrix

from t-1 to t

		Unborn	Alive	Dead
	Unborn	$\int 1 - \psi_t$	0	0 \
$\Phi_t =$	Alive	ψ_t	ϕ_{t-1}	0
	Dead	0	$1 - \phi_{t-1}$	1 /

where:

- $ightharpoonup \phi_t$ is the apparent survival at t
- $\blacktriangleright \psi_t$ are *related* to the POPAN pent

Emission Matrix

capture at t

$$oldsymbol{\Psi}_t = rac{ extsf{Capture}}{ extsf{No Capture}} \left(egin{array}{ccc} 0 & p_t & 0 \ 1 & 1-p_t & 1 \end{array}
ight)$$

 \triangleright p_t is the capture-probability at t

HMM Matrices: Connection with CMR (PCRD)

Example in the Pollock's Closed Robust Design (conditioning on first capture):

Transition Matrix

from t-1 to t

$$\mathbf{\Phi}_t = \begin{array}{ccc} & \text{Onsite} & \text{TE} & \text{Dead} \\ & \text{Onsite} & \begin{pmatrix} \phi_{t-1}(1-\gamma_t'') & \phi_{t-1}(1-\gamma_t') & 0 \\ \phi_{t-1}\gamma_t'' & \phi_{t-1}\gamma_t' & 0 \\ & 1-\phi_{t-1} & 1-\phi_{t-1} & 1 \\ \end{pmatrix}$$

- lacktriangledown ϕ_{t-1} is the apparent survival between primary periods t-1 and t
- $ightharpoonup \gamma''_{\star}$ is the probability of becoming a temporary emigrant between t-1 and t
- $ightharpoonup \gamma_t'$ is the probability of staying as a temporary emigrant between t-1 and t

Emission Matrix

capture at st

$$oldsymbol{\Psi}_{s,t} = rac{oldsymbol{\mathsf{Capture}}}{oldsymbol{\mathsf{No Capture}}} \left(egin{array}{ccc} p_{s,t} & 0 & 0 \ 1-p_{s,t} & 1 & 1 \end{array}
ight)$$

p_{s,t} is the capture-probability at secondary period s_t

U / 10 / 1 = / 1 = / 2 €

HMM Matrices: Connection with CMR (PCRD)

Example in the Pollock's Closed Robust Design (full capture model):

Transition Matrix

from t-1 to t

$$\boldsymbol{\Phi}_t = \begin{bmatrix} \textbf{Unborn} & \textbf{Onsite} & \textbf{TE} & \textbf{Dead} \\ \textbf{Unborn} & \begin{pmatrix} 1-\psi_t & 0 & 0 & 0 \\ \psi_t & \phi_{t-1}(1-\gamma_t'') & \phi_{t-1}(1-\gamma_t') & 0 \\ 0 & \phi_{t-1}\gamma_t'' & \phi_{t-1}\gamma_t' & 0 \\ \textbf{Dead} & 0 & 1-\phi_{t-1} & 1-\phi_{t-1} & 1 \end{bmatrix}$$

- lacktriangledown ϕ_{t-1} is the apparent survival between primary periods t-1 and t
- $ightharpoonup \gamma_t''$ is the probability of becoming a temporary emigrant between t-1 and t
- $ightharpoonup \gamma_t'$ is the probability of staying as a temporary emigrant between t-1 and t
- lacksquare $\psi_{m{t}}$ are "recruitment" parameters between t-1 and t

Emission Matrix

$$oldsymbol{\Psi}_{s,\,t} = rac{oldsymbol{\mathsf{Capture}}}{oldsymbol{\mathsf{No Capture}}} \left(egin{array}{cccc} 0 & p_{s,\,t} & 0 & 0 \ 1 & 1-p_{s,\,t} & 1 & 1 \end{array}
ight)$$

HMM Matrices: Connection with CMR (MSCRD)

Example in the Multi-State Closed Robust Design with 3 strata and TE (first-capture conditioning):

Transition Matrix

from t-1 to t

		Strata A	Strata B	Strata C	TE	Dead
	Strata A	$\int \phi_{t-1} \gamma_t^{aa}$	$\phi_{t\!-\!1}\gamma_t^{ba}$	$\phi_{t\!-\!1}\gamma_t^{ca}$	$\phi_{t\!-\!1}\gamma_t^{ta}$	0 \
	Strata B	$\phi_{t-1}\gamma_t^{ab}$	$\phi_{t-1}\gamma_t^{bb}$	$\phi_{t\!-\!1}\gamma_t^{cb}$	$\phi_{t\!-\!1}\gamma_t^{tb}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$\Phi_t =$	Strata C	$\phi_{t-1}\gamma_t^{ac}$	$\phi_{t-1}\gamma_t^{bc}$	$\phi_{t-1}\gamma_t^{cc}$	$\phi_{t-1}\gamma_t^{tc}$	0
	TE	$\phi_{t-1}\gamma_t^{at}$	$\phi_{t-1}\gamma_t^{bt}$	$\phi_{t-1}\gamma_t^{ct}$	$\phi_{t-1}\gamma_t^{tt}$	0
	Dead	$\int 1 - \phi_{t-1}$	$1 - \phi_{t-1}$	$1-\phi_{t-1}$	$1 - \phi_{t-1}$	1 /

- $lackbox{} \phi_{t-1}$ is the apparent survival between primary periods t-1 and t
- γ_t^{xy} are the probability of moving from strata X to Y between t-1 and t, and $\gamma_t^{xa} + \gamma_t^{xb} + \gamma_t^{xc} + \gamma_t^{xt} = 1$

HMM Matrices: Connection with CMR (MSCRD, Emission)

Example in the Multi-State Closed Robust Design with 3 strata and TE (first-capture conditioning):

MSCRD Emission Matrix

$$\Psi_{s,t} = \begin{bmatrix} \text{Capture A} & \text{Strata B} & \text{Strata C} & \text{TE} & \text{Dead} \\ \text{Capture B} & 0 & 0 & 0 & 0 \\ \text{Capture C} & 0 & p_{s,t}^b & 0 & 0 & 0 \\ 0 & 0 & p_{s,t}^c & 0 & 0 & 0 \\ 1 - p_{s,t}^a & 1 - p_{s,t}^b & 1 - p_{s,t}^c & 1 & 1 \end{bmatrix}$$

 $ightharpoonup p_{s,t}^{x}$ is the capture probability per secondary period <u>conditional</u> on being in strata X at t

```
A POPAN (unrealistic<sup>3</sup>) Example: making a matrix in JAGS
```

```
# FROM unborn (col1) to...
tr[1,1] <- 1-psi # unborn to unborn</pre>
tr[2,1] <- psi # unborn to alive
tr[3,1] <- 0 # (illegal)
# FROM alive (col2) to...
tr[1,2] <- 0 # (illegal)
tr[2,2] <- phi # alive to alive
tr[3,2] <- 1-phi # alive to dead
# FROM dead (col3) to...
tr[1,3] <- 0 # (illegal)
tr[2,3] <- 0 # (illegal)
tr[3,3] <- 1 # dead to dead
Note: matrix[r. c]:
```

- - ▶ 1st integer is the row.
 - \triangleright 2nd is the column (like R)

³in practise, the recruitment parameters are always time-varying> ← 🗗 > ← 📱 > ← 📱 → 💂 💮 🔾 🧇

Let's do a simple HMM in JAGS

Parameters:

- $\blacktriangleright \phi$ time-constant survival (phi)
- $ightharpoonup \psi$ time-constant "recruitment" (psi)
- p time-constant capture probability (p)

Goal:

- ▶ inferencce about phi, psi
- ▶ demonstrate the latent states posterior distribution z

Inputs

- One capture history: y<-c(0,0,0,0,1,0,1,1,0,0,0)</p>
- ► T=11 capture periods
- prior parameters: pr.phi, pr.psi, pr.p

► In JAGS:

```
# specify the priors
p ~ dbeta(pr.p[1], pr.p[2]) # prior on capture history
phi ~ dbeta(pr.phi[1], pr.phi[2]) # prior on survival
psi ~ dbeta(pr.psi[1], pr.psi[2]) # prior on recruitment
```

► On the R side:

```
jags.data<-list(
   pr.p=c(1,1), # flat prior on capture probability
   pr.phi=c(1,1),# flat prior on survival
   pr.psi=c(1,1) # flat prior on recruitment
)</pre>
```

► Qu: why beta?⁴

⁴reasonable distribution for probability parameters

JAGS HMM Demo: STEP 2: Conditional Data Likelihood

```
# specify the conditional data likelihod
for(t in 1:length(y)){ # loop through capture periods
   y[t] ~ dcat(em[,z[t]])
}
```

- ... where em is the emission matrix
 - Qu: Why dcat and not dbern? 5
 - QU: Why is it called the "conditional" likelihood? 6

⁵We could use dbern . The Multinoulli distribution (dcat) generalizes the Bernoulli for more than 2 outcomes

⁶Conditional on the value of z[t]

```
# specify the latent state process (for t=1)
z[1] ~ dcat(tr[,1])
# specify the latent state process (for t>1)
for(t in 2:length(y)){
   z[t] ~ dcat(tr[,z[t]])
}
```

... where tr is the transition matrix

 $ightharpoonup ext{Qu: why is } t\!=\!1 ext{ handled differently from } t>1$

⁷The latent state process is Markovian, depends on values one-step-back. For t=1, there is no one-step-back with observation information.

Transition Matrix

```
# Build the Transition Mat
# state 1
tr[1,1]<-1-psi
tr[2,1]<-psi
tr[3,1]<-0
# state 2
tr[1,2]<-0
tr[2,2]<-phi
tr[3,2]<-1-phi
# state 3
tr[1,3]<-0
tr[2,3]<-0
tr[3,3]<-1
```

Emission Matrix

```
# Build the Emission Mat
# state 1: unborn (100% no capture)
em[1,1]<-1
em[2,1]<-0
# state 2: alive
em[1,2]<-1-p
em[2,2]<-p
# state 3: dead (100% no capture)
em[1,3]<-1
em[2,3]<-0
```

where $y=1 \equiv no$ -capture and $y=2 \equiv capture$

JAGS HMM Demo

Time to open up JAGS!

open the file PART4_introHMM/R_hmm_intro.R and see exercise 1