Equivalence of DFA and NFA

- NFA's are usually easier to "program" in.
- Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- This involves the *subset construction*, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that

$$L(D) = L(N)$$

.

The details of the subset construction:

$$\bullet \ Q_D = \{S : S \subseteq Q_N\}.$$

Note: $|Q_D| = 2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

•
$$F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$$

• For every $S \subseteq Q_N$ and $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

Let's construct δ_D from the NFA on slide 27

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_{1}\}$	Ø	$\{q_{2}\}$
★ { <i>q</i> ₂ }	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0,q_2\}$
$\star \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
$\star \{q_1, q_2\}$	Ø	$\{q_{2}\}$
$\star \{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

Note: The states of D correspond to subsets of states of N, but we could have denoted the states of D by, say, A-F just as well.

	0	1
A	A	A
$\rightarrow B$	E	B
C	A	D
$\star D$	A	A
E	E	F
$\star F$	E	B
$\star G$	A	D
$\star H$	E	F

We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state S is accessible, so are the states in $\bigcup_{a \in \Sigma} \{\delta_D(S, a)\}$

Example: The "subset" DFA with accessible states only.

Theorem 2.11: Let D be the "subset" DFA of an NFA N. Then L(D) = L(N).

Proof: First we show by an induction on |w| that

$$\widehat{\delta}_D(\{q_0\}, w) = \widehat{\delta}_N(q_0, w)$$

Basis: $w = \epsilon$. The claim follows from def.

Induction:

$$\begin{split} \widehat{\delta}_D(\{q_0\},xa) &\stackrel{\text{def}}{=} \delta_D(\widehat{\delta}_D(\{q_0\},x),a) \\ &\stackrel{\text{i.h.}}{=} \delta_D(\widehat{\delta}_N(q_0,x),a) \\ &\stackrel{\text{cst}}{=} \bigcup_{p \in \widehat{\delta}_N(q_0,x)} \delta_N(p,a) \\ &\stackrel{\text{def}}{=} \widehat{\delta}_N(q_0,xa) \end{split}$$

Now (why?) it follows that L(D) = L(N).

Theorem 2.12: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The "if" part is Theorem 2.11.

For the "only if" part we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

• If $\delta_D(q,a) = p$, then $\delta_N(q,a) = \{p\}$.

By induction on |w| it will be shown in the tutorial that if $\hat{\delta}_D(q_0,w)=p$, then $\hat{\delta}_N(q_0,w)=\{p\}$.

The claim of the theorem follows.

Exponential Blow-Up

There is an NFA N with n+1 states that has no equivalent DFA with fewer than 2^n states

$$L(N) = \{x1c_2c_3\cdots c_n : x \in \{0,1\}^*, c_i \in \{0,1\}\}\$$

Suppose an equivalent DFA D with fewer than 2^n states exists.

D must remember the last n symbols it has read.

There are 2^n bitsequences $a_1a_2\cdots a_n$

$$\exists q, a_{1}a_{2} \cdots a_{n}, b_{1}b_{2} \cdots b_{n} : q = \widehat{\delta}_{D}(q_{0}, a_{1}a_{2} \cdots a_{n}), q = \widehat{\delta}_{D}(q_{0}, b_{1}b_{2} \cdots b_{n}), a_{1}a_{2} \cdots a_{n} \neq b_{1}b_{2} \cdots b_{n}$$

Case 1:

$$1a_2 \cdots a_n$$
$$0b_2 \cdots b_n$$

Then q has to be both an accepting and a nonaccepting state.

Case 2:

$$a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n$$

$$b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n$$

Now
$$\widehat{\delta}_{D}(q_{0}, a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n} 0^{i-1}) = \widehat{\delta}_{D}(q_{0}, b_{1} \cdots b_{i-1} 0 b_{i+1} \cdots b_{n} 0^{i-1})$$

and
$$\hat{\delta}_D(q_0, a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n 0^{i-1}) \in F_D$$

$$\widehat{\delta}_{\mathbf{D}}(q_0, b_1 \cdots b_{i-1} \mathbf{0} b_{i+1} \cdots b_n \mathbf{0}^{i-1}) \notin F_D$$

FA's with Epsilon-Transitions

An ϵ -NFA accepting decimal numbers consisting of:

- 1. An optional + or sign
- 2. A string of digits
- 3. a decimal point
- 4. another string of digits

E.g. -12.5 +10.00 5. -.6

One of the strings (2) are (4) are optional

Example:

 $\epsilon\text{-NFA}$ accepting the set of keywords $\{\text{ebay}, \text{web}\}$

We can have an ε -moves for each keyword.

An ϵ -NFA is a quintuple $(Q, \Sigma, \delta, q_0, F)$ where δ is a function from $Q \times \Sigma \cup \{\epsilon\}$ to the powerset of Q.

Example: The ϵ -NFA from the previous slide

$$E = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, 1, \dots, 9\} \ \delta, q_0, \{q_5\})$$

where the transition table for δ is

	ϵ	+,-	•	0,,9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_{1}	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_{4}	Ø	Ø	$\{q_3\}$	$\mid \emptyset$
⋆ q ₅	$\mid \emptyset$	$\mid \emptyset$	Ø	$\mid \emptyset$

ECLOSE or ε-closure

We close a state by adding all states reachable by a sequence $\epsilon\epsilon\cdots\epsilon$

Inductive definition of ECLOSE(q)

Basis:

 $q \in \mathsf{ECLOSE}(q)$

Induction:

$$p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p, \epsilon) \Rightarrow r \in \mathsf{ECLOSE}(q)$$

Example of ϵ -closure

For instance,

$$ECLOSE(1) = \{1, 2, 3, 4, 6\}$$

• Inductive definition of $\hat{\delta}$ for ϵ -NFA's

Basis:

$$\hat{\delta}(q,\epsilon) = \text{ECLOSE}(q)$$

Induction:

$$\widehat{\delta}(q,xa) = \bigcup_{p \in \delta(\widehat{\delta}(q,x),a)} \mathrm{ECLOSE}(p)$$
 where $\delta(\widehat{\delta}(q,x),a) = \bigcup_{r \in \widehat{\delta}(q,x)} \delta(r,a)$

Let's compute on the blackboard in class $\widehat{\delta}(q_0,5.6)$ for the NFA on slide 43

$$\begin{split} & \overset{\wedge}{\delta}(q_0, \epsilon) = ECLOSE(q_0) = \{q_0, q_1\} \\ & \overset{\wedge}{\delta}(q_0, 5) = ECLOSE(\{q_1, q_4\}) = \{q_1, q_4\}, \quad \text{because } \delta(q_0, 5) \text{ U } \delta(q_1, 5) = \{q_1, q_4\} \\ & \overset{\wedge}{\delta}(q_0, 5.) = ECLOSE(\{q_2, q_3\}) = \{q_2, q_3, q_5\} \\ & \overset{\wedge}{\delta}(q_0, 5.6) = ECLOSE(\{q_3\}) = \{q_3, q_5\} \end{split}$$

Given an ϵ -NFA

$$E = (Q_E, \Sigma, \delta_E, q_0, F_E)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

such that

$$L(D) = L(E)$$

Details of the construction:

- $Q_D = \{S : S \subseteq Q_E \text{ and } S = \mathsf{ECLOSE}(S)\}$
- $q_D = ECLOSE(q_0)$
- $F_D = \{S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset\}$
- $\delta_D(S,a) =$ $\bigcup \{ \mathsf{ECLOSE}(p) : p \in \delta_{\!_F}(t,a) \text{ for some } t \in S \}$

Example: ϵ -NFA E

$\label{eq:defDFA} \mbox{DFA } D \mbox{ corresponding to } E$

Theorem 2.22: A language L is accepted by some ϵ -NFA E if and only if L is accepted by some DFA.

Proof: We use D constructed as above and show by induction that $\hat{\delta}_D(q_D, w) = \hat{\delta}_E(q_0, w)$

Basis: $\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}(q_D, \epsilon)$

Induction:

$$\begin{split} \widehat{\delta}_E(q_0,xa) & \stackrel{\mathrm{DEF}}{=} \bigcup_{p \in \delta_E(\widehat{\delta}_E(q_0,x),a)} \mathrm{ECLOSE}(p) \\ & \stackrel{\mathrm{I.H.}}{=} \bigcup_{p \in \delta_E(\widehat{\delta}_D(q_D,x),a)} \mathrm{ECLOSE}(p) \\ & \stackrel{p \in \delta_E(\widehat{\delta}_D(q_D,x),a)}{=} \delta_{\mathrm{D}}(\widehat{\delta}_{\mathrm{D}}(q_D,x),a) \end{split}$$

Regular expressions

An FA (NFA or DFA) is a "blueprint" for contructing a machine recognizing a regular language.

A regular expression is a "user-friendly," declarative way of describing a regular language.

Example: $01^* + 10^*$

Regular expressions are used in e.g.

1. UNIX grep command

grep PATTERN FILE

2. UNIX Lex (Lexical analyzer generator) and Flex (Fast Lex) tools.

Operations on languages

Union:

$$L \cup M = \{w : w \in L \text{ or } w \in M\}$$

Concatenation:

$$L.M = \{w : w = xy, x \in L, y \in M\}$$

Powers:

$$L^0 = \{\epsilon\}, \ L^1 = L, \ L^{k+1} = L.L^k$$

Kleene Closure:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Question: What are \emptyset^0 , \emptyset^i , and \emptyset^*

Building regex's

Inductive definition of regex's:

Basis: ϵ is a regex and \emptyset is a regex.

$$L(\epsilon) = \{\epsilon\}, \text{ and } L(\emptyset) = \emptyset.$$

If $a \in \Sigma$, then a is a regex.

$$L(a) = \{a\}.$$

Induction:

If E is a regex's, then (E) is a regex. L((E)) = L(E).

If E and F are regex's, then E+F is a regex. $L(E+F)=L(E)\cup L(F)$.

If E and F are regex's, then E.F is a regex. L(E.F) = L(E).L(F).

If E is a regex's, then E^* is a regex. $L(E^*) = (L(E))^*$.

Example: Regex for

$$L = \{w \in \{0,1\}^* : 0 \text{ and } 1 \text{ alternate in } w\}$$

$$(01)^* + (10)^* + 0(10)^* + 1(01)^*$$

or, equivalently,

$$(\epsilon+1)(01)^*(\epsilon+0)$$

Order of precedence for operators:

- 1. Star
- 2. Dot
- 3. Plus

Example: $01^* + 1$ is grouped $(0(1^*)) + 1$

Equivalence of FA's and regex's

We have already shown that DFA's, NFA's, and ϵ -NFA's all are equivalent.

To show FA's equivalent to regex's we need to establish that

- 1. For every DFA A we can find (construct, in this case) a regex R, s.t. L(R) = L(A).
- 2. For every regex R there is an ϵ -NFA A, s.t. L(A) = L(R).

Theorem 3.4: For every DFA $A = (Q, \Sigma, \delta, q_0, F)$ there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be $\{1, 2, ..., n\}$, with 1 being the start state.

• Let $R_{ij}^{(k)}$ be a regex describing the set of labels of all paths in A from state i to state j going through intermediate states $\{1,\ldots,k\}$ only. Note that, i and j don't have to be in $\{1,\ldots,k\}$.

 $R_{ij}^{\left(k
ight)}$ will be defined inductively. Note that

$$L\left(\bigoplus_{j\in F} R_{1j}^{(n)}\right) = L(A)$$

Basis: k = 0, i.e. no intermediate states.

• Case 1: $i \neq j$ i.e., arc i -> j

$$R_{ij}^{(0)} = \bigoplus_{\{a \in \Sigma : \delta(i,a) = j\}} a$$

• Case 2: i = j i.e., arc i -> i or ε

$$R_{ii}^{(0)} = \left(\bigoplus_{\{a \in \Sigma : \delta(i,a) = i\}} a\right) + \epsilon$$

Induction:

$$R_{ij}^{(k)}$$

$$=$$

$$R_{ij}^{(k-1)} \qquad \text{does not go through k}$$

$$+$$

$$R_{ik}^{(k-1)} \left(R_{kk}^{(k-1)}\right)^* R_{kj}^{(k-1)} \qquad \text{goes through k}$$
at least once

Example: Let's find R for A, where $L(A) = \{x0y : x \in \{1\}^* \text{ and } y \in \{0,1\}^*\}$

$R_{11}^{(0)}$	$\epsilon + 1$
$R_{12}^{(0)}$	0
$R_{21}^{(0)}$	Ø
$R_{22}^{(0)}$	$\mid \epsilon + 0 + 1 \mid$

We will need the following simplification rules:

•
$$(\epsilon + R)^* = R^*$$
 $(\epsilon + R)R^* = R^*$

•
$$R + RS^* = RS^*$$
 $\epsilon + R + R^* = R^*$

•
$$\emptyset R = R\emptyset = \emptyset$$
 (Annihilation)

•
$$\emptyset + R = R + \emptyset = R$$
 (Identity)

$$egin{array}{|c|c|c|c|c|} \hline R_{11}^{(0)} & \epsilon + 1 \\ R_{12}^{(0)} & 0 \\ R_{21}^{(0)} & \emptyset \\ R_{22}^{(0)} & \epsilon + 0 + 1 \\ \hline \end{array}$$

$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$

	By direct substitution	Simplified
$R_{11}^{(1)}$	$\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$	1*
$R_{12}^{(1)}$	$0+(\epsilon+1)(\epsilon+1)^*0$	1*0
$R_{21}^{(1)}$	$\emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1)$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1 + \emptyset(\epsilon + 1)*0$	$\epsilon + 0 + 1$

$$egin{array}{c|c} & {\sf Simplified} \\ \hline R_{11}^{(1)} & {\bf 1}^* \\ R_{12}^{(1)} & {\bf 1}^*{\bf 0} \\ R_{21}^{(1)} & \emptyset \\ R_{22}^{(1)} & \epsilon + 0 + 1 \\ \hline \end{array}$$

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

By direct substitution $\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline R_{11}^{(2)} & 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset \\ R_{12}^{(2)} & 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \\ R_{21}^{(2)} & \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset \\ R_{22}^{(2)} & \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \\ \hline \end{array}$

By direct substitution
$$R_{11}^{(2)} \quad 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset$$

$$R_{12}^{(2)} \quad 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$$

$$R_{21}^{(2)} \quad \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset$$

$$R_{22}^{(2)} \quad \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$$

	Simplified	
$R_{11}^{(2)}$	1*	
$R_{12}^{(2)}$	1*0(0+1)*	
$R_{21}^{(2)}$	Ø	
$R_{22}^{(2)}$	$(0+1)^*$	

The final regex for A is

$$R_{12}^{(2)} = 1*0(0+1)*$$

Observations

There are n^3 expressions $R_{ij}^{(k)}$

Each inductive step grows the expression 4-fold

 $R_{ij}^{(n)}$ could have size $\mathbf{4}^n$

For all $\{i,j\}\subseteq\{1,\ldots,n\}$, $R_{ij}^{(k)}$ uses $R_{kk}^{(k-1)}$ so we have to write n^2 times the regex $R_{kk}^{(k-1)}$ but most of them can be removed by annihilation!

We need a more efficient approach: the state elimination technique

The state elimination technique

Let's label the edges with regex's instead of symbols

Now, let's eliminate state s.

For each accepting state q eliminate from the original automaton all states exept q_0 and q.

For each $q \in F$ we'll be left with an A_q that looks like

that corresponds to the regex $E_q = (R + SU^*T)^*SU^*$ or with A_q looking like

corresponding to the regex $E_q = R^*$

• The final expression is

$$\bigoplus_{q \in F} E_q$$

Note that the algorithm also works for NFAs.

Example: \mathcal{A} , where $L(\mathcal{A})=\{W:w=x1b, \text{ or } w=x1bc, x\in\{0,1\}^*,\{b,c\}\subseteq\{0,1\}\}$

We turn this into an automaton with regex labels

Let's eliminate state B

Then we eliminate state ${\it C}$ and obtain ${\it A}_{\it D}$

Start
$$A$$
 $1(0+1)(0+1)$

with regex (0+1)*1(0+1)(0+1)

From

we can eliminate D to obtain \mathcal{A}_C

with regex (0+1)*1(0+1)

• The final expression is the sum of the previous two regex's:

$$(0+1)^*1(0+1)(0+1) + (0+1)^*1(0+1)$$

From regex's to ϵ -NFA's

Theorem 3.7: For every regex R we can construct an ϵ -NFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for ϵ , \emptyset , and a.

ε-NFAs with properties:

* unique start and final states

* no arcs into the start state

* no arcs out of the final state

Induction: Automata for R+S, RS, and R^*

Example: We convert (0+1)*1(0+1)

