

Inteligencia Artificial - Curso 2013/2014 Ingeniería Informática en Sistemas de Información EXAMEN - ENERO - 22/01/2014

Valoración: 2 puntos (0.2 puntos por cuestión)

APELLIDOS:	NOMBRE:	D.N.I.:

1.- ¿En cual de las siguientes figuras se identifica un sobreajuste de la hipótesis h al conjunto de entrenamiento? (conocido como overfitting)

2.- Supongamos que entrenas un clasificador con regresión logística y obtienes la hipótesis $h(x) = g(-6 + x_1)$. ¿Cuál de las siguientes figuras es la frontera de decisión encontrada por el clasificador?

3.- Considere la siguiente red neuronal con dos neuronas de entrada x_1 y x_2 binarias, ¿Cuál de las siguientes funciones lógicas aproxima la hipótesis h aprendida en el entrenamiento?

4.- ¿Cuál de las siguientes afirmaciones es verdad? Señale con una X todas las que sean verdaderas.

	Si se detecta overfitting en una red neuronal, una solución sería decrementar el parámetro de regularización λ.	
Χ	Si se detecta overfitting en una red neuronal, una solución sería incrementar el parámetro de regularización λ.	
	Con una red neuronal de dos capas (la capa de entrada y la capa de salida) puede aproximar la función XOR.	
Χ	Los valores de activación de la capa oculta de una red neuronal con la función de activación sigmoide están siempre en el	
	intervalo (0,1)	

5.- Supongamos el problema de regresión de predicción de precios de casas visto en clase de EB. Supongamos que tenemos un conjunto de entrenamiento y queremos encontrar los parámetros θ_0 , θ_1 tal que $J(\theta_0, \theta_1) = 0$ donde J es la función de coste. ¿Cuál de las siguientes afirmaciones es verdad? Señale con una X todas las que sean verdaderas.

	Por la definición de J no es posible encontrar θ_0 , θ_1 tal que $J(\theta_0, \theta_1) = 0$	
Х	Para los valores de θ_0 , θ_1 tal que $J(\theta_0, \theta_1) = 0$, tenemos que $h_0(x^i) = y^i$ para cada ejemplo de entrenamiento (x^i, y^i)	
	Para que eso sea verdad los parámetros θ ₀ y θ ₁ deben valer 0	
	Si tenemos θ_0 , θ_1 tal que $J(\theta_0, \theta_1) = 0$, se puede predecir el precio de una nueva casa de forma exacta	

6.- Supongamos que estamos resolviendo un problema de regresión lineal. Cuáles de las siguientes afirmaciones son razones para hacer un escalado de los atributos? Señale con una X todas las que sean verdaderas.

	Para evitar que el método de descenso del gradiente alcance un mínimo local
Χ	Para que el método de descenso del gradiente converja en un número menor de iteraciones
	Para que el cálculo del gradiente sea menos costoso computacionalmente
	Para evitar que la matriz XtX no tenga inversa

7.- Supongamos que estamos resolviendo un problema de regresión lineal con múltiples variables y tenemos un conjunto de entrenamiento de 50 ejemplos con 200000 atributos, ¿elegirías el método de descenso del gradiente o la ecuación normal para resolverlo?

	La ecuación normal ya que el método de descenso del gradiente sería incapaz de encontrar el óptimo
Χ	El método de descenso del gradiente ya que el cálculo de la inversa de XtX sería demasiado lento
	El método de descenso del gradiente ya que siempre convergerá al óptimo
	La ecuación normal ya que proporciona una forma eficiente para encontrar directamente la solución

- 8.- Representa en lógica de primer orden el conocimiento siguiente: Frodo es un hobit. Todos los hobits viven en la Comarca. Todos los que viven en la Comarca son leales a Sauron o lo odian. Frodo no es leal a Sauron.
- 1) hobit(Frodo)
- 2) \forall x hobit(x) \rightarrow vive_en_Comarca(x)
- 3) \forall x vive_en_Comarca(x) \rightarrow leal(x,Sauron) \lor odia(x,Sauron)
- 4) ¬leal(Frodo,Sauron)
- 9.- Responde mediante el método de resolución a la siguiente query: ¿odia Frodo a Sauron?

¬odia(Frodo,Sauron) (negamos lo que se quiere probar)
vive_en_Comarca(Frodo) (Sustitución {x=Frodo} en 2))
leal(Frodo,Sauron) ∨ odia(Frodo,Sauron) (Sustitucion {x=Frodo} en 3))
odia(Frodo,Sauron) Desde 4) y la sentencia anterior.
Hemos llegado a contradicción. Por tanto ¬odia(Frodo,Sauron) es falso y por tanto queda demostrado odia(Frodo,Sauron)

10.- ¿Cuál de las siguientes afirmaciones es verdad? Señale con una X todas las que sean verdaderas.

	La regresión lineal siempre funciona bien para problemas de clasificación	
	Si para clasificar datos en dos clases se entrena un clasificador para clasificar en 3 clases hay que entrenar dos clasificadores	
Χ	La técnica one-vs-all permite usar regresión logística para clasificación multiclase	
Χ	La función sigmoide nunca es mayor que 1	