

OUTLINE

- About Kidneys
- Challenge overview
- Data pre-processing
- Model description implementation
- Result analysis
- Conclusion
- References

ABOUT KIDNEYS

HOW KIDNEY WORKS?

- Kidneys: 2 located at either side of spine at the lowest level of rib cage.
- Building block of Kidney:
 - Nephron (about 1 million in each kidney), decreases with age or disease.
- A nephron consists of a filtering unit of tiny blood vessels called a glomerulus attached to a tubule.

CHRONIC KIDNEY DISEASE (CKD)

Chronic kidney disease is defined as having some type of kidney abnormality, which decreases Kidney's function.

Some causes of CKD:

- Other diseases such as Diabetes, High Blood Pressure, etc. (most common type)
- Hereditary
- Congenital
- Use of drugs and toxins

DETECTION OF CKD

Early detection and treatment of chronic kidney disease are the keys to keeping kidney disease from progressing to kidney failure.

Laboratory Tests:

- Albumin to Creatinine Ratio (ACR), estimates the amount of albumin that is in your urine.
- Test for blood Ceratinine
- Blood Pressure
- estimated glomerular filtration rate

Many forms of kidney disease do not produce symptoms until late in the course of the disease.

TO PREDICT WHETHER A PATIENT WILL PROGRESS IN CKD STAGING BASED ON THE PATIENT'S PAST ELECTRONIC HEALTH RECORD INFORMATION.

DATA AVAILABLE

Dataset available for 300 patients

Personal data for each patient -

Stage progress

Race

Gender

Age

Time dependent electronic health record (EHR) information –

Creatinine

Glucose

Diastolic blood pressure

Haemoglobin

Systolic blood pressure

LDL cholesterol

Time period of medicine administered by each patient

PATIENT'S PROFILE

CKD strongly depends on race, sex and age

Men and patient's in the age bracket of 60-80 are more prone to CKD

Important to add patient's profile to time series classification

EHR

Test

Normal Range

Multiple ways to test (home kits)

 ${\tt A1c--Glycosylated\ hemoglobin\ test\ used\ for\ CKD}$

3.9 to 7.1 mmol/L (70 to 130 mg/dL for non diabatic (with fasting)

Creatinine	A chemical waste product of normal muscle function, in the passes through the kidneys to be filtered and eliminated in	
Dependent on	 Gender Body Size Activity Level Medication 	3.0 gender 0.93 - 0.92 - 0.91 - 0.91 -
Relation to CKD	Due to CKD, Creatinine level rises in blood while decreases in uring	e = 0.90 - 0.89 - 0.88
Tests	Blood: Serum Creatinine Urine: Creatinine clearance	0.87
Normal Range	0.8 to 1.4 milligrams per deciliter (mg/dl).	0.5 False True 0 100 200 300 400 500 600 days
Glucose	When blood sugar levels get too high, the condition is call hyperglycemia. If it gets too low, it is called hypoglycemia	
Dependent on	 Eating habits Physical activity Medications 	Glucose value vs time 7.2 Male Female Female
Relation to CKD	High blood sugar from diabetes can cause damage inside kidneys CKD and diabetes together, increase the risk of low blood sugar	S 12

6.0 -5.8 -

5.6

True

False

Stage_Progress

EHR

SBP Systolic blood pressure measures the pressure that blood exerts on vessels while the heart is beating. **DBP** Diastolic blood pressure measures the pressure between heartbeats. Renin (hormones) Dependent on Stress Exercise **Eating habits** Relation to CKD High blood pressure (BP) can lead to slow damage in the blood vessels and capillary in the Kidney Once a person has CKD, there will be increased renin in blood, which increases BP Test A blood Pressure cuff around patient's arm Normal Range The optimal systolic blood pressure is 120 mmHg. The optimal diastolic blood pressure is 80 mmHg.

EHR

Low-density lipoprotein	LDL cholesterol is often called the "bad" cholesterol beca the walls of your blood vessels.	use it collects in		
Dependent on	 Amount of LDL produced by body, impacted by diet, medicat Rate at which LDL is sent back to liver to be destroyed 	ion 200 - 175 -	gender Male	LDL value vs time
Relation to CKD	LDL cholesterol plaque can also clog the renal arteries and cut off blood flow to the kidneys, resulting in loss of kidney function.	150 - 125 - 100 -		135 - 130 - 125 -
Test	Testing for LDL-C involves calculating of LDL-C amount in blood based on results of a lipid panel.	75 - 50 - 25 -		120 -
Normal Range	Less than 100 milligrams per deciliter (mg/dL): Optimal	False Stage_Prog	True press	0 100 200 300 400 500 600 days
Haemoglobin	Anaemia (low haemoglobin) is a condition in which the boblood cells than normal.	dy has fewer red		
Dependent on	GenderAgeAltitudeSmoking Habits	gender Male Female	• T	Haemoglobin value vs time 13.2 13.0
Relation to CKD	CKD cause decrease in erythropoietin (EPO) by the Kidney EPO prompts the bone marrow to make red blood cells The bone marrow makes fewer red blood cells, causing anaemia	일 14 - 일 12 -		12.8 - 12.6 - 9 12.4 - 12.2 - 12.0 -

11.8

False

Stage_Progress

Test

Normal Range

Routine blood count

In an adult, 12 to 18 grams per deciliter of blood.

MEDICINE

Cholesterol:

Atorvastatin, Rosuvastatin, Pravastatin, Simvastatin, Lovastatin, Pitavastatin

Blood Sugar:

Metformin, Canagliflozin, Dapagliflozin

Blood Pressure:

Losartan, Carvedilol, Valsartan, Metoprolol, Bisoprolol, Atenolol, Olmesartan, Irbesartan, Telmisartan, Labetalol, Nebivolol, Propranolol

DATA PRE-PROCESSING

Dividing dataset into train, valuation and test dataset

Train 60% Valid 20% Test 20%

- ightharpoonup Removing $1/4^{th}$ of EHR data points at to produce augmented dataset
- Linearly interpolating data across 700 days

DATA PRE-PROCESSING

Creating one hot vectors for race and gender

Vectorization and normalization of age

```
for num, race in enumerate(['Unknown', 'White', 'Black', 'Asian', 'Hispanic']):
    if (T_demo[(T_demo['id']==idx1)]['race']==race).bool():
        Demo[idx1,num]=1
if (T_demo[(T_demo['id']==idx1)]['gender']=='Male').bool():
    Demo[idx1,5] = 1
Demo[idx1,6] = (T_demo[(T_demo['id']==idx1)]['age']-min_age)/del_age
```

Vectorization of medicine dosage

MinMaxScaler to normalize the data

MODEL

MODEL1: GRU+DENSE

MODEL2: CNN+GRU+DENSE

MODEL3: INCEPTIONTIME

InceptionTime: Finding AlexNet for Time Series Classification, Fawaz et.al., arXiv:1909.04939 (2019)

MODEL3: INCEPTIONTIME (MODIFIED)

MODEL COMPILATION

MODEL:3 MODEL: 1 MODEL:2

Total params: 69,601 Trainable params: 69,601 Non-trainable params: 0

Total params: 134,561 Trainable params: 134,561 Non-trainable params: 0

Total params: 248,897 Trainable params: 247,873 Non-trainable params: 1,024

```
model.compile(loss='binary crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy', f1 factor])
reduce lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5, patience=50, min lr=0.001)
model checkpoint = tf.keras.callbacks.ModelCheckpoint('model', monitor='loss', restore best weights=True)
callbacks = [reduce lr, model checkpoint]
```

Optimizer: Adam + ReduceLROnPlateau (callback)

ReduceLROnPlateau monitors 'loss' over a 'patience' number of epochs by reducing learning rate by a 'factor'

ModelCheckpoint saves checkpoints with the epoch number and the validation loss in the filename.

LOSS FUNCTION AND METRICS

Loss function used:

Binary Cross Entropy =
$$-(ylog(p) - (1 - y)log(1 - p))$$

y is true label and p is predicted label

Metrics used:

Accuracy =
$$\frac{TP+TN}{TP+FN+FP+TN}$$
F1 score =
$$\frac{2\times Prec\times Recall}{Prec+Recall}$$
Prec =
$$\frac{TP}{TP+FP}$$
Recall =
$$\frac{TP}{TP+FN}$$

Confusion Matrix

	Class 1 Predicted	Class 2 Predicted
Class 1 Actual	TP	FN
Class 2 Actual	FP	TN

RESULTS AND ANALYSIS

RESULTS AND ANALYSIS

Without Data Augmentation

MODEL:1

	loss	accuracy	FI
Train	0.5887	0.7500	0.6045
Valid.	0.6027	0.7167	0.6771

CKD Staging	Predicted Yes	Predicted No
Actual Yes	10	6
Actual No	13	31

MODEL:2

loss	accuracy	F1
0.9436	0.7444	0.6718
0.8853	0.8000	0.7233

CKD Staging	Predicted Yes	Predicted No
Actual Yes	10	6
Actual No	21	23

MODEL:3

loss	accuracy	FI
0.3351	0.9111	0.8624
0.7325	0.6500	0.5298

CKD Staging	Predicted Yes	Predicted No
Actual Yes	12	4
Actual No	20	24

RESULTS AND ANALYSIS

With Data Augmentation

MODEL:1

	loss	accuracy	F1
Train	0.4744	0.7854	0.5906
Valid.	0.7143	0.6838	0.5689

CKD Staging	Predicted Yes	Predicted No
Actual Yes	47	51
Actual No	80	198

MODEL:2

loss	accuracy	F1
0.7153	0.7996	0.6651
2.1166	0.6812	0.6052

CKD Staging	Predicted Yes	Predicted No
Actual Yes	73	25
Actual No	109	169

MODEL:3

loss	accuracy	FI
0.3717	0.8362	0.7109
0.7550	0.6812	0.4917

CKD Staging	Predicted Yes	Predicted No
Actual Yes	52	46
Actual No	109	169

CONCLUSION

- Model 1 shows best per performance for without AD on test dataset (F1 = 0.512)
- Model 2 shows best per performance for with AD on test dataset (F1 = 0.521)
- Data Augmentation degrades the performance of models on validation sets
- Model 3 shows large over fitting

Scope of improvement:

- Increase in number of datapoints can improve the performance of the models
- Results have shown overfitting optimising of regularizing parameters
- Improve the method for data augmentation

REFERENCES

https://kidneyfailurerisk.com/

www.kidney.org

https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.119.13422

https://www.diabetes.co.uk/blood-glucose/what-affects-blood-glucose-levels.html