

VT82C693A

Apollo Pro133

66 / 100 / 133 MHz
Single-Chip Slot-1 / Socket-370 North Bridge
for Desktop and Mobile PC Systems
with AGP 2x and PCI
plus Advanced ECC Memory Controller
supporting SDRAM, VCM, EDO, and FPG DRAM

Revision 1.0 July 22, 1999

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. All RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8501, VT82C585, VT82C586B, VT82C587, VT82C590, VT82C595, VT82C596B, VT82C597, VT82C598, VT82C680, VT82C685, VT82C686B, VT82C687, VT82C691, VT82C692, VT82C693, VT82C693A, VT82C694, VT82C694A, VT82C694X, VT8601, Mobile South, Super South, Apollo VP, Apollo VPX, Apollo VP2, Apollo VP3, Apollo MVP3, Apollo P6, Apollo Pro, Apollo Pro133, Apollo Pro133A and Apollo ProMedia may only be used to identify products of VIA Technologies.

PS/2™ is a registered trademark of International Business Machines Corp.

Pentium[™], Celeron[™], MMX[™], and Intel[™] are registered trademarks of Intel Corp.

Cyrix6_x86[™] is a registered trademark of Cyrix Corp.

AMD5_k86[™], AMD6_k86[™], AMD-K5[™], and AMD-K6[™] are registered trademarks of Advanced Micro Devices Corp.

Windows 95[™] and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCl™ is a registered trademark of the PCl Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 1045 Mission Court Fremont, CA 94539

USA

Tel: (510) 683-3300 Fax: (510) 683-3301 Taipei Office:

8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Online Services:

Home Page: http://www.via.com.tw (Taiwan) -or- http://www.viatech.com (USA)

FTP Server: ftp.via.com.tw (Taiwan)

BBS: 886-2-2185208

REVISION HISTORY

Document Release	Date	Revision	Initials						
0.1	12/9/98	Initial internal release as VT82C694	EC						
0.2	12/31/98	Changed part number to VT82C693A							
		Fixed definition of strapping option on MAB8#							
		Fixed pin numbers of RESET#, PREQ#, and REQ0#							
		Updated register definitions: Device 0 Rx68[1-0], Rx69[5], Rx50[3-1],							
		Rx53[5], Rx69[6-5,1], Rx7A[4-1], RxF8-F9, RxAD, Device 1 Rx2 (Device							
		ID=8691), Rx4[5], Rx41[0], Rx42[0]							
0.21	1/6/99	Fixed minor typo in AGP feature bullets	DH						
0.22	1/13/99	Fixed placement diagram in pin descriptions	DH						
0.3	4/1/99	Fixed typo in pinout section footer	DH						
		Changed pin AC4 from SUSCLK to PCKRUN#							
		Added DCLKRD function to pin AB22 (MAA14)							
		Updated function 0 registers Rx50[5,3-1], 51[5,2-1], 53[5-3, 67-64[2], 69[7-							
		5,1], 6B[5,3-1], 6C[4], 73[4], 76[7], 7A[3], AD[4], F9, FC							
0.4	5/26/99	Updated & fixed typos in feature bullets and intro	DH						
		Modified device 0 Rx6[6], 8 default, 68[1-0], 69[7-6], 70[3], 72[7], 76[5-4],							
		A7 readback value, FC[1-0], FD[2-0]							
		Modified device 1 Rx2-3 and added 1B and F0-F7							
0.5	7/13/99	Added SDRAM AC Timing	DH						
		Fixed AGPREF pin description							
0.51	7/15/99	Fixed CPURST# and CPURSTD# pin descriptions and pin directions	DH						
		Added Host CPU Interface AC Timing							
1.0	7/22/99	Product announced so "NDA Req'd" watermark removed (content unchanged)	DH						

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	III
LIST OF TABLES	IV
APOLLO PRO133	1
OVERVIEW	4
PINOUTS	6
PIN DESCRIPTIONS	9
REGISTERS	17
REGISTER OVERVIEW	17
MISCELLANEOUS I/O	20
CONFIGURATION SPACE I/O	20
REGISTER DESCRIPTIONS	21
Device 0 Header Registers - Host Bridge	21
Device 0 Configuration Registers - Host Bridge	23
Host CPU Control	23
DRAM Control	
PCI Bus Control	
GART / Graphics Aperture Control	
AGP Control	
Device 1 Header Registers - PCI-to-PCI Bridge	
Device 1 Configuration Registers - PCI-to-PCI Bridge	
AGP Bus Control	
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	44
DC CHARACTERISTICS	
AC TIMING SPECIFICATIONS	44
MECHANICAL SPECIFICATIONS	46

LIST OF FIGURES

FIGURE 1.	APOLLO PRO133 SYSTE	EM BLOCK DIAGRAM	I USING THE VT82C59	96B MOBILE SOUTH BRID	GE 4
FIGURE 2.	VT82C693A BALL DIAG	RAM (TOP VIEW)			(
FIGURE 3.	VT82C693A PIN LIST (N	UMERICAL ORDER)	•••••		
FIGURE 4.	VT82C693A PIN LIST (A	LPHABETICAL ORDI	ER)		8
			· ·	•••••	
FIGURE 6.	MECHANICAL SPECIFI	CATIONS - 492-PIN B	ALL GRID ARRAY PA	CKAGE	40

LIST OF TABLES

TABLE 1. VT82C693A PIN DESCRIPTIONS	
TABLE 2. VT82C693A REGISTERS	
TABLE 3. RX50 PROGRAMMING CONSTRAINTS	
TABLE 4. SYSTEM MEMORY MAP	
TABLE 5. MEMORY ADDRESS MAPPING TABLE	
TABLE 6. VGA/MDA MEMORY/IO REDIRECTION	
TABLE 7. AC TIMING MIN / MAX CONDITIONS	
TABLE 8. AC CHARACTERISTICS – HOST CPU INTERFACE TIMING	
TABLE 9. AC CHARACTERISTICS - SDRAM TIMING	

VIA VT82C693A APOLLO PRO133

66 / 100 / 133 MHz Single-Chip Slot-1 / Socket-370 North Bridge for Desktop and Mobile PC Systems with AGP 2x and PCI plus Advanced ECC Memory Controller supporting SDRAM, VCM, EDO, and FPG

• AGP / PCI / ISA Mobile and Deep Green PC Ready

- GTL+ compliant host bus supports write-combine cycles
- Supports separately powered 3.3V (5V tolerant) interface to system memory, AGP, and PCI bus
- Modular power management and clock control for mobile system applications
- Combine with VIA VT82C596B south bridge chip for state-of-the-art system power management

• High Integration

- Single chip implementation for 64-bit Slot-1/Socket-370 CPU, 64-bit system memory, 32-bit PCI and 32-bit AGP interfaces
- Apollo Pro133 Chipset: VT82C693A system controller and VT82C596B PCI to ISA bridge
- Chipset includes UltraDMA-33/66 EIDE, USB, and Keyboard / PS2-Mouse Interfaces plus RTC / CMOS on chip

• High Performance CPU Interface

- Supports Slot-1 and Socket-370 (Intel Pentium II™, Pentium III™ and Celeron™) processors
- 66 / 100 / 133 MHz CPU Front Side Bus (FSB)
- Built-in PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Five outstanding transactions (four In-Order Queue (IOQ) plus one input latch)
- Supports WC (Write Combining) cycles
- Dynamic deferred transaction support
- Sleep mode support
- System management interrupt, memory remap and STPCLK mechanism

• Full Featured Accelerated Graphics Port (AGP) Controller

Synchronous and pseudo-synchronous with the host CPU bus with optimal skew control

<u>PCI</u>	<u>AGP</u>	<u>CPU</u>	<u>Mode</u>
33 MHz	66 MHz	133 MHz	4x synchronous
33 MHz	66 MHz	$100 \mathrm{MHz}$	3x synchronous
33 MHz	66 MHz	66 MHz	2x synchronous

- AGP v2.0 compliant
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- Supports 133MHz 2X mode for AD and SBA signaling
- Pipelined split-transaction long-burst transfers up to 533 MB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport driver support

Concurrent PCI Bus Controller

- PCI buses are synchronous / pseudo-synchronous to host CPU bus
- 33 MHz operation on the primary PCI bus
- 66 MHz PCI operation on the AGP bus
- PCI-to-PCI bridge configuration on the 66MHz PCI bus
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec
- PCI master snoop ahead and snoop filtering
- Two lines of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Forty-eight levels (double-words) of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Delay transaction from PCI master accessing DRAM
- Read caching for PCI master reading DRAM
- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.2 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

• Advanced High-Performance DRAM Controller

- DRAM interface synchronous with host CPU (66/100/133 MHz) or AGP (66MHz) for most flexible configuration
- DRAM interface may be <u>faster</u> than CPU by 33 MHz to allow use of PC100 with 66 MHz Celeron or use of PC133 with 100 MHz Pentium II or Pentium III
- DRAM interface may be slower than CPU by 33 MHz to allow use of older memory modules with a new CPU
- Concurrent CPU, AGP, and PCI access
- Supports FP, EDO, SDRAM and VCM SDRAM memory types
- Different DRAM types may be used in mixed combinations
- Different DRAM timing for each bank
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16M / 32MxN DRAMs
- 8 banks up to 1.5 GB DRAMs (256Mb DRAM technology)
- Flexible row and column addresses
- 64-bit data width only
- 3.3V DRAM interface with 5V-tolerant inputs
- Programmable I/O drive capability for MA, command, and MD signals
- Dual copies of MA signals for improved drive
- Optional bank-by-bank ECC (single-bit error correction and multi-bit error detection)
 or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultaneously); banks are allocated based on LRU
- Independent SDRAM control for each bank
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-2-2-2-2-2 back-to-back accesses for EDO DRAM from CPU or from DRAM controller
- x-1-1-1-1-1 back-to-back accesses for SDRAM
- BIOS shadow at 16KB increment
- Decoupled and burst DRAM refresh with staggered RAS timing
- CAS before RAS or self refresh

Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- EDO self-refresh and SDRAM self-refresh power down
- 8 bytes of BIOS scratch registers
- Low-leakage I/O pads
- Built-in NAND-tree pin scan test capability
- 3.3V, 0.35um, high speed / low power CMOS process
- 35 x 35 mm, 492 pin BGA Package

OVERVIEW

The *Apollo Pro133* is a high performance, cost-effective and energy efficient chip set for the implementation of AGP / PCI / ISA desktop personal computer systems from 66 MHz, 100 MHz and 133 MHz based on 64-bit Socket-370 and Slot-1 (Intel Pentium-II, Pentium III, and Celeron) super-scalar processors.

Figure 1. Apollo Pro133 System Block Diagram Using the VT82C596B Mobile South Bridge

The Apollo Pro133 chip set consists of the VT82C693A system controller (492 pin BGA) and the VT82C596B PCI to ISA bridge (324 pin BGA). The system controller provides superior performance between the CPU, DRAM, AGP bus, and PCI bus with pipelined, burst, and concurrent operation.

The VT82C693Asupports eight banks of DRAMs up to 1.5GB. The DRAM controller supports standard Fast Page Mode (FPM) DRAM, EDO-DRAM, Synchronous DRAM (SDRAM) and Virtual Channel SDRAM (VC SDRAM), in a flexible mix / match manner. The Synchronous DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 66/100/133 MHz. The eight banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32MxN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability separately selectable on a bank-by-bank basis. The DRAM controller can run at either the host CPU bus frequency (66 /100 /133 MHz) or at the AGP bus frequency (66 MHz) with built-in PLL timing control.

The VT82C693A system controller also supports full AGP v2.0 capability for maximum bus utilization including 2x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported for interoperability with major AGP-based 3D and DVD-capable multimedia accelerators.

The VT82C693A supports two 32-bit 3.3 / 5V system buses (one AGP and one PCI) that are synchronous / pseudo-synchronous to the CPU bus. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and PCI operation. For PCI master operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent PCI bus and DRAM/cache accesses. The chip also supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post

write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 324-pin Ball Grid Array VT82C596B PCI to ISA bridge supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.2 compliant). The VT82C596B also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66 for 33/66 MB/sec transfer rate, integrated USB interface with root hub and two function ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the Apollo Pro133 provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT82C596B south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

The Apollo Pro133 chipset is ideal for high performance, high quality, high energy efficient and high integration desktop and notebook AGP / PCI / ISA computer systems.

PINOUTS

Figure 2. <u>VT82C693A</u> Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	GND	AD20	REQ0#	AD25	AD29	RESET#	HD56#	HD62#	HD55#	HD54#	HD49#	HD47#	HD40#	GND	HD33#	HD31#	HD27#	HD19#	HD20#	HD10#	HD6#	HD3#	HA29#	HA24#	HA22#	GND
В	VCC	PCLK	AD22	AD27	AD28	PREQ#	HD50#	HD61#	HD63#	HD53#	HD48#	HD42#	HD36#	HD43#	HD32#	HD29#	HD25#	HD21#	HD18#	HD12#	HD8#	HD0#	CPU RST#	HA27#	HA20#	BREQ 0#
С	AD19	PCIREF	AD21	CBE3#	GND	AD31	REQ1#	HD52#	GND	HD60#	HD59#	HD51#	HD44#	HD37#	HD28#	HD26#	HD22#	GND	HD17#	HD7#	HD5#	GND	HA26#	HA28#	HA23#	HA21#
D	AD16	AD18	AD17	AD23	AD26	PGNT#	GNT1#	REQ3#	HD58#	REQ4#	HD46#	HD41#	HD39#	HD34#	HD35#	HD30#	HD24#	HD16#	HD15#	HD14#	HD4#	HD1#	HA31#	HA25#	HA18#	HA19#
Е	FRM#	IRDY#	GND	CBE2#	AD24	AD30	GNT0#	GNT3#	GNT4#	GNT2#	HD57#	GND	HD45#	HD38#	GND	GTL REF	HD23#	HD13#	HD11#	HD9#	HD2#	HA30#	HA15#	GND	HA17#	HA16#
F	SERR#	LOCK#	DEV SEL#	STOP#	TRDY#	GND	VCC	GND	VCC	REQ2#	11	12	13	14	15	16	VTT	VCC	GND	VCC	GND	HA11#	HA12#	HA13#	HA14#	HA8#
G	AD13	AD14	CBE1#	AD15	PAR	VCC	G7	8	9	10							17	18	19	G20	VCC	HA10#	HA5#	HA7#	HA3#	HA9#
Н	AD8	AD7	AD10	AD12	AD11	GND	н		9											Н	GND	HA4#	HA6#	BNR#	H TRDY#	BPRI#
J	AD5	AD6	GND	CBE0#	AD9	VCC	J	PCI											CPU	J	VCC	HREQ 0#	HREQ	GND		DEFER#
K	SBA0	AD1	AD3	AD2	AD4	AD0	K	Pins		K10	11	12	13	14	15	16	K17		Pins	K	ADS#	HLOCK#	1	HREQ 2#	HREQ 3#	RS0#
L	ST2	ST1	GGNT#	ST0	GREQ#	L	<u>l</u>		l	L	VCC	GND	VCC	VCC	GND	VCC	L	ļ		l l	L	HITM#	DBSY#	HIT#	RS2#	RS1#
M	SBA2	SBA1	GPIPE#	GRBF#	GND	M				M	GND	VCC	GND	GND	VCC	GND	M				M	GNDA	GTL REF	VTT	TEST IN#	CPU RSTD#
N	GND	SBA3	SBS#	AGP REF	GCLK	N				N	VCC	GND	GND	GND	GND	VCC	N				N	VCCA	HCLK	GND	MD63	VCC
P	VCC	SBA4	SBA6	SBA5	GCLKO	P				P	VCC	GND	GND	GND	GND	VCC	P				P	NC	MD62	MD30	MD31	GND
R	SBA7	GD31	GD29	GD30	GND	R				R	GND	VCC	GND	GND	VCC	GND	R				R	GND	MD28	MD60	MD61	MD29
Т	GD27	GD26	GD24	GD25	GDS1#	T				T	VCC	GND	VCC	VCC	GND	VCC	T				T	MD57	MD58	MD25	MD26	MD59
U	GD23	GBE3#	GD22	GD21	GD19	GD28	U	AGP		U10	11	12	13	14	15	16	U17		DRAM	U	MD27	MD22	MD56	MD55	MD23	MD24
v	GD20	GD17	GND	GBE2#	G IRDY#	VCC	v	Pins											Pins	v	VCC	MD19	MD20	GND	MD21	MD54
w	GD16	GD18	GFRM#	G TRDY#	GDEV SEL#	GNDA	W		l									ļ		w	GNDA	MD18	MD50	MD51	MD53	MD52
Y	G STOP#	GPAR	GD15	GBE1#	GD14	VCCA	Y7	8	9	10							17	18	19	Y20	VCCA	MECC3	MD16	MD48	MD49	MD17
AA		GD12	GD10	GD11	GD9	GND	VCC	GND	VCC	MECC5	11	12	13	14	15	16	SRAS B#	VCC	GND	VCC	GND	CAS A2#	MECC6	CAS	MECC2	MECC7
AB	GD8	GBE0#	GND	GD7	GD0	MD2	MD37	MD40	MD41	MD44	MD14	GND	SCAS B#	RAS A0#	GND	MA A1	MA B3#	MA B6#	MA B7#	MA B10	DCLK O	MA A14	RAS B5#	GND	GND	CAS A7#
AC	GD6	GDS0#	GD5	PCK RUN#	MD0	MD3	MD38	MD7	MD42	MD45	MD15	SWEB#	CAS A5#	CAS A1#	RAS A3#	MA B1#	MA A3	MA A7	MA A8	MA B9#	MA A12	CKE0#	CKE4#	RAS B3#	CAS A6#	RAS B4#
AD	GD4	GD3	GD2	SU STAT#	GND	MD35	MD5	MD8	GND	MD12	MD47	MECC1	CAS A4#	CAS B1#	RAS A4#	MA B0#	MA B2#	GND	MA B5#	MA A10	MA B12#	GND	CKE3#	RAS B1#	DCLK WR	RAS B2#
AF	VCC	GD1	WSC#	MD33	MD1	MD36	MD6	MD10	MD43	MD13	MECC4	SWEA#	CAS B5#	CAS A0#	RAS A2#	RAS A5#	MA A2	MA B4#	MA A5	MA A9	MA B11#	NC	NC	CKE2#	RAS B0#	VCC
AF	GND	VCC	PWR OK	MD32	MD34	MD4	MD39	MD9	MD11	MD46	MECC0	SCAS	GND	VCC	RAS A1#	SRAS A#	MA A0	MA A4	MA A6	MA B8#	MA All	MA B13#	CKE1#	CKE5#	MA A13	GND

Figure 3. <u>VT82C693A</u> Pin List (<u>Numerical</u> Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01 A02	P IO	GND AD20	D05 D06	O	AD26 PGNT#	H03 H04	IO IO	AD10 AD12	P01 P02	P I	VCC SBA4	W25 W26	IO IO	MD53 MD52	AC23 AC24	00	CKE4# RASB3# / CSB3#
A03	I	REO0#	D07	o	GNT1#	H05	IO	AD12 AD11	P03	I	SBA6	Y01	IO	GSTOP#	AC25	0	CASA6# / DOM6#
A04	IO	AD25	D08	I	REQ3#	H06	P	GND	P04	I	SBA5	Y02	IO	GPAR	AC26	0	RASB4# / CSB4#
A05 A06	IO I	AD29 RESET#	D09 D10	IO I	HD58# REQ4#	H21 H22	P IO	GND HA04#	P05 P11	O P	GCLKO VCC	Y03 Y04	IO IO	GD15 GBE1#	AD01 AD02	IO IO	GD04 GD03
A07		HD56#	D11	Ю	HD46#	H23	IO	HA06#	P12	P	GND	Y05	IO	GD14		ΙΟ	GD02
A08 A09		HD62# HD55#	D12 D13	IO IO	HD41# HD39#	H24 H25	IO IO	BNR# HTRDY#	P13 P14	P P	GND GND	Y06 Y21	P P	VCCA VCCA	AD04 AD05	I P	SUSTAT# GND
A10	Ю	HD54#	D14	Ю	HD34#	H26	Ю	BPRI#	P15	P	GND	Y22	Ю	MECC3	AD06	Ю	MD35
A11 A12	IO	HD49# HD47#	D15 D16	IO IO	HD35# HD30#	J01 J02	IO IO	AD05 AD06	P16 P22	P	VCC NC	Y23 Y24	IO IO	MD16 MD48	AD07 AD08	IO	MD05 MD08
A13	Ю	HD40#	D17	Ю	HD24#	J03	P	GND	P23	Ю	MD62	Y25	Ю	MD49	AD09	P	GND
A14		GND	D18 D19		HD16#	J04 J05	IO IO	CBE0# AD09	P24	IO		Y26 AA01	IO	MD17 GD13		IO IO	MD12 MD47
A15 A16		HD33# HD31#	D19	IO IO	HD15# HD14#	J05	P	VCC	P25 P26	IO P	MD31 GND	AA01 AA02	IO	GD13 GD12	AD11 AD12		MECC1
A17	IO	HD27# HD19#	D21 D22		HD04#	J21 J22	P	VCC	R01	I	SBA7	AA03	IO	GD10	AD13	0	CASA4# / DOM4#
A18 A19		HD20#	D22	IO IO	HD01# HA31#	J23	IO IO	HREQ0# HREQ1#	R02 R03	IO IO	GD31 GD29	AA04 AA05	IO IO	GD11 GD09	AD14 AD15	0	CASB1# RASA4# / CSA4#
A20	Ю	HD10#	D24	Ю	HA25#	J24	P	GND	R04	Ю	GD30	AA06	P	GND	AD16	O	MAB0#
A21 A22		HD06# HD03#	D25 D26		HA18# HA19#	J25 J26	IO IO	HREQ4# DEFER#	R05 R11	P P	GND GND	AA07 AA08	P P	VCC GND	AD17 AD18	O P	MAB2# GND
A23	Ю	HA29#	E01	Ю	FRAME#	K01	I	SBA0	R12	P	VCC	AA09	P	VCC	AD19	О	MAB5#
A24 A25		HA24# HA22#	E02 E03	IO P	IRDY# GND	K02 K03	IO IO	AD01 AD03	R13 R14	P P	GND GND	AA10 AA17	IO O	MECC5 SRASB#	AD20 AD21	0	MAA10 MAB12# / strap
A26		GND	E03	IO	CBE2#	K03	IO	AD03 AD02	R15	P	VCC	AA18	P	VCC	AD21 AD22	P	GND
B01	P	VCC	E05	IO	AD24	K05	IO	AD04	R16	P	GND	AA19	P	GND	AD23	0	CKE3#
B02 B03	I	PCLK AD22	E06 E07	IO O	AD30 GNT0#	K06 K21	IO IO	AD00 ADS#	R22 R23	P IO	GND MD28	AA20 AA21	P P	VCC GND	AD24 AD25	O	RASB1# / CSB1# DCLKWR
B04	Ю	AD27	E08	О	GNT3#	K22	I	HLOCK#	R24	Ю		AA22	О	CASA2# / DQM2#	AD26	0	RASB2# / CSB2#
B05 B06	IO I	AD28 PREQ#	E09 E10	0	GNT4# GNT2#	K23 K24	IO IO	DRDY# HREQ2#	R25 R26	IO IO		AA23 AA24	IO O	MECC6 CASA3# / DQM3#	AE01 AE02	P IO	VCC GD01
B07	Ю	HD50#	E11	Ю	HD57#	K25	Ю	HREO3#	T01	Ю	GD27	AA25	Ю	MECC2	AE03	О	WSC#
B08 B09	IO IO	HD61# HD63#	E12 E13	P IO	GND HD45#	K26 L01	O	RS0# ST2	T02 T03	IO IO		AA26 AB01	IO	MECC7 GD08	AE04 AE05	IO IO	MD33 MD01
B10	IO	HD53#	E14	Ю	HD38#	L02	O	ST1	T04	IO	GD25	AB02	Ю	GBE0#		IO	MD36
B11 B12	IO IO	HD48# HD42#	E15 E16	P I	GND GTLREF	L03 L04	0	GGNT# ST0	T05 T11	IO P	GDS1# VCC	AB03 AB04	P IO	GND GD07	AE07 AE08	IO IO	MD06 MD10
B13		HD42# HD36#	E17	Ю	HD23#	L04	I	GREQ#	T12	P	GND	AB05	Ю	GD00	AE09	IO	MD43
B14		HD43# HD32#	E18	IO	HD13# HD11#	L11 L12	P P	VCC	T13	P P	VCC	AB06		MD02 MD37		IO	MD13
B15 B16		HD32# HD29#	E19 E20	IO IO	HD11# HD09#	L12 L13	P P	GND VCC	T14 T15	P P	VCC GND	AB07 AB08	IO IO	MD40	AE11 AE12	IO O	MECC4 SWEA# / MWEA#
B17		HD25#	E21	IO	HD02#	L14	P	VCC	T16	P	VCC	AB09	IO	MD41	AE13	0	CASB5#
B18 B19		HD21# HD18#	E22 E23	IO IO	HA30# HA15#	L15 L16	P P	GND VCC	T22 T23	IO IO	MD57 MD58	AB10 AB11	IO IO	MD44 MD14	AE14 AE15	0	CASA0# / DQM0# RASA2# / CSA2#
B20	Ю	HD12#	E24	P	GND	L22	I	HITM#	T24	Ю	MD25	AB12	P	GND	AE16	О	RASA5# / CSA5#
B21 B22	IO	HD08# HD00#	E25 E26		HA17# HA16#	L23 L24	IO IO	DBSY# HIT#	T25 T26	IO IO		AB13 AB14	0	SCASB# RASA0# / CSA0#	AE17 AE18	0	MAA2 MAB4#
B23	О	CPURST#	F01	Ю	SERR#	L25	Ю	RS2#	U01	IO	GD23	AB15	P	GND	AE19	o	MAA5
B24 B25		HA27# HA20#	F02 F03	IO IO	LOCK# DEVSEL#	L26 M01	IO I	RS1# SBA2	U02 U03	IO IO	GBE3# GD22	AB16 AB17	0	MAA1 MAB3#	AE20 AE21	0	MAA9 MAB11# / strap
B25 B26	0	BREQ0#	F04	IO	STOP#	M02	I	SBA1	U04	IO	GD22 GD21	AB17 AB18	ŏ	MAB6# / strap	AE21 AE22	-	NC
C01 C02	IO P	AD19 PCIREF	F05 F06	IO P	TRDY#	M03 M04	I I	GPIPE# GRBF#	U05 U06	IO IO	GD19 GD28	AB19 AB20	0	MAB7# / strap	AE23 AE24	ō	NC CKE2#
C02	IO	AD21	F07		GND VCC	M05	P	GND GND	U21	IO	MD27	AB21	О	MAB10 / strap DCLKO	AE25	О	RASB0# / CSB0#
C04		CBE3#	F08	P	GND	M11		GND	U22			AB22		MAA14 / DCLKRD	AE26	P	VCC
C05 C06		GND AD31	F09 F10	P I	VCC REQ2#	M12 M13		VCC GND	U23 U24	IO	MD56 MD55	AB23 AB24		RASB5# / CSB5# GND	AF01 AF02	P	GND VCC
C07	I	REQ1#	F17	P	VTT	M14	P	GND	U25	Ю	MD23	AB25	P	GND	AF03		PWROK
C08 C09		HD52# GND	F18 F19	P P	VCC GND	M15 M16	P P	VCC GND	U26 V01		MD24 GD20	AB26 AC01	O	CASA7# / DQM7# GD06			MD32 MD34
C10	Ю	HD60#	F20	P	VCC	M22	P	GNDA	V02	Ю	GD17	AC02	Ю	GDS0#	AF06	Ю	MD04
C11 C12	IO IO	HD59# HD51#	F21 F22		GND HA11#	M23 M24	I P	GTLREF VTT	V03 V04		GND GBE2#	AC03 AC04		GD05 PCKRUN#	AF07 AF08	IO IO	MD39 MD09
C13	IO	HD44#	F23	Ю	HA12#	M25	I	TESTIN#	V05	Ю	GIRDY#	AC05	Ю	MD00	AF09	Ю	MD11
C14 C15		HD37# HD28#	F24 F25		HA13# HA14#	M26 N01	O P	CPURSTD# GND	V06 V21		VCC VCC			MD03 MD38			MD46 MECC0
C15		HD26#	F25 F26		HA08#	NO2	I	SBA3	V21 V22		MD19	AC08	Ю	MD07	AF11		SCASA#
C17		HD22#	G01		AD13 AD14	N03 N04	I P	SBS#	V23 V24		MD20	AC09	IO	MD42	AF13	P	GND
C18 C19	Ю	GND HD17#	G02 G03	Ю	CBE1#	N05	I	AGPREF GCLK	V25	Ю	GND MD21	AC11	Ю	MD45 MD15	AF14 AF15	P O	VCC RASA1# / CSA1#
C20	Ю	HD07#	G04		AD15	N11	P	VCC	V26		MD54	AC12		SWEB# / MWEB#	AF16		SRASA#
C21 C22		HD05# GND	G05 G06	P	PAR VCC	N12 N13	P P	GND GND	W01 W02	Ю	GD16 GD18	AC13 AC14	0	CASA5# / DOM5# CASA1# / DQM1#	AF17 AF18	0	MAA0 MAA4
C23	Ю	HA26#	G21	P	VCC	N14	P	GND	W03	Ю	GFRM#	AC15	O	RASA3# / CSA3#	AF19	О	MAA6
C24 C25		HA28# HA23#	G22 G23		HA10# HA05#	N15 N16	P P	GND VCC	W04 W05		GTRDY# GDSEL#	AC16 AC17		MAB1# MAA3	AF20 AF21	0	MAB8# / strap MAA11
C26	IO	HA21#	G24	Ю	HA07#	N22	P	VCCA	W06	P	GNDA	AC18	O	MAA7	AF22	О	MAB13#
D01 D02	IO IO		G25 G26		HA03# HA09#	N23 N24	I P	HCLK GND	W21 W22		GNDA MD18	AC19 AC20	0	MAA8 MAB9# / strap	AF23 AF24	0	CKE1# CKE5#
D03	Ю	AD17	H01	Ю	AD08	N25	Ю	MD63	W23	Ю	MD50	AC21	О	MAA12	AF25	О	MAA13
D04	IO	AD23	H02		AD07	N26	P	VCC			MD51	AC22		CKE0#	AF26		GND

Figure 4. <u>VT82C693A</u> Pin List (<u>Alphabetical</u> Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
K06	Ю	AD00	AA03	Ю	GD10	AB24	P	GND	A17	Ю	HD27#	AD07	Ю	MD05	AE16	О	
K02	IO	AD01	AA04		GD11	AB25	P	GND	C15	Ю	HD28#	AE07	Ю	MD06	AE25	0	RASB0# / CSB0#
K04 K03	IO IO	AD02	AA02	IO	GD12	AD05	P	GND	B16 D16	IO	HD29#	AC08	IO	MD07 MD08	AD24	0	RASB1# / CSB1#
K05	IO	AD03 AD04	AA01 Y05	IO IO	GD13 GD14	AD09 AD18	P P	GND GND	A16	IO	HD30# HD31#	AD08 AF08	IO IO	MD09	AD26 AC24	0	RASB2# / CSB2# RASB3# / CSB3#
J01	IO	AD05	Y03	Ю	GD15	AD22	P	GND	B15	IO	HD32#	AE08	IO	MD10	AC26	ŏ	RASB4# / CSB4#
J02	Ю	AD06	W01	Ю	GD16	AF01	P	GND	A15	Ю	HD33#	AF09	Ю	MD11	AB23	0	RASB5# / CSB5#
H02	IO	AD07	V02	IO	GD17	AF13	P	GND	D14	IO	HD34#	AD10	IO	MD12	A03	Î	REQ0#
H01	IO	AD08	W02	IO	GD18	AF26	P	GND	D15	IO	HD35#	AE10	IO	MD13	C07	I	REQ1#
J05 H03	IO IO	AD09 AD10	U05 V01	IO IO	GD19 GD20	M22 W06	P P	GNDA GNDA	B13 C14	IO	HD36# HD37#	AB11 AC11	IO IO	MD14 MD15	F10 D08	I	REQ2# REQ3#
H05	Ю	AD11	U04	Ю	GD21	W21	P	GNDA	E14	Ю	HD38#	Y23	Ю	MD16	D10	I	REQ4#
H04	Ю	AD12	U03	Ю	GD22	E07	О	GNT0#	D13	Ю	HD39#	Y26	Ю	MD17	A06	I	RESET#
G01	IO	AD13	U01	IO	GD23	D07	0	GNT1#	A13	IO	HD40#	W22	IO	MD18	K26	IO	RS0#
G02 G04	IO IO	AD14 AD15	T03 T04	IO	GD24 GD25	E10 E08	0	GNT2# GNT3#	D12 B12	IO	HD41# HD42#	V22 V23	IO IO	MD19 MD20	L26 L25	IO	RS1# RS2#
D01	IO	AD16	T02	Ю	GD26	E09	o	GNT4#	B14	Ю	HD43#	V25	IO	MD21	K01	I	SBA0
D03	Ю	AD17	T01	Ю	GD27	Y02	Ю	GPAR	C13	Ю	HD44#	U22	Ю	MD22	M02	I	SBA1
D02	IO	AD18	U06	IO	GD28	M03	I	GPIPE#	E13	IO	HD45#	U25	IO	MD23	M01	I	SBA2
C01 A02	IO IO	AD19 AD20	R03 R04	IO IO	GD29 GD30	M04 L05	I	GRBF# GREQ#	D11 A12	IO IO	HD46# HD47#	U26 T24	IO IO	MD24 MD25	N02 P02	I	SBA3 SBA4
C03	IO	AD21	R02	Ю	GD30 GD31	Y01	Ю	GSTOP#	B11	Ю	HD48#	T25	IO	MD26	P04	I	SBA5
B03	Ю	AD22	AC02	Ю	GDS0#	M23	I	GTLREF	A11	Ю	HD49#	U21	Ю	MD27	P03	Ι	SBA6
D04	IO	AD23	T05	IO	GDS1#	E16	I	GTLREF	B07	IO	HD50#	R23	Ю	MD28	R01	I	SBA7
E05	IO	AD24	W05	IO	GDSEL#	W04	IO	GTRDY#	C12	IO	HD51#	R26	IO	MD29	N03	I	SBS#
A04 D05	IO IO	AD25 AD26	W03 L03	IO O	GFRM# GGNT#	G25 H22	IO IO	HA03# HA04#	C08 B10	IO IO	HD52# HD53#	P24 P25	IO IO	MD30 MD31	AF12 AB13	0	SCASA# SCASB#
B04	IO	AD27	V05	Ю	GIRDY#	G23	Ю	HA05#	A10	Ю	HD54#	AF04	Ю	MD32	F01	Ю	
B05	Ю	AD28	A01	P	GND	H23	Ю	HA06#	A09	Ю	HD55#	AE04	Ю	MD33	AF16	0	SRASA#
A05	IO	AD29	A14	P	GND	G24	IO	HA07#	A07	IO	HD56#	AF05	IO	MD34	AA17	0	SRASB#
E06 C06	IO IO	AD30 AD31	A26 C05	P P	GND GND	F26 G26	IO IO	HA08# HA09#	E11 D09	IO IO	HD57# HD58#	AD06 AE06	IO IO	MD35 MD36	L04 L02	0	ST0 ST1
K21	IO	ADS#	C09	P	GND	G22	Ю	HA10#	C11	Ю	HD59#	AB07	IO	MD37	L01	0	ST2
N04	P	AGPREF	C18	P	GND	F22	Ю	HA11#	C10	Ю	HD60#	AC07	IO	MD38	F04	Ю	
H24	IO	BNR#	C22	P	GND	F23	IO	HA12#	B08	IO	HD61#	AF07	IO	MD39	AD04	I	SUSTAT#
H26 B26	IO O	BPRI# BREQ0#	E03 E12	P P	GND GND	F24 F25	IO	HA13# HA14#	A08 B09	IO IO	HD62# HD63#	AB08 AB09	IO IO	MD40 MD41	AE12 AC12	0	SWEA# / MWEA# SWEB# / MWEB#
AE14	0	CASA0# / DQM0#	E15	P	GND	E23	Ю	HA15#	L24		HIT#	AC09	IO	MD42	M25	I	TESTIN#
AC14	ō	CASA1# / DQM1#	E24	P	GND	E26	IO	HA16#	L22	Ĭ	HITM#	AE09	Ю	MD43	F05	Ю	
AA22	0	CASA2# / DQM2#	F06	P	GND	E25	Ю	HA17#	K22	I	HLOCK#	AB10	IO	MD44	B01	P	VCC
AA24 AD13	0	CASA3# / DQM3# CASA4# / DQM4#	F08 F19	P P	GND GND	D25 D26	IO IO	HA18# HA19#	J22 J23	IO	HREQ0# HREQ1#	AC10 AF10	IO IO	MD45 MD46	F07 F09	P P	VCC VCC
AC13	o	CASA5# / DQM5#	F21	P	GND	B25	Ю	HA20#	K24	IO	HREQ1# HREQ2#	AD11	IO	MD47	F18	P	VCC
AC25	ō	CASA6# / DQM6#	H06	P	GND	C26	Ю	HA21#	K25	Ю	HREQ3#	Y24	Ю	MD48	F20	P	VCC
AB26	0	CASA7# / DQM7#	H21	P	GND	A25	Ю	HA22#	J25		HREQ4#	Y25	Ю	MD49	G06	P	VCC
AD14 AE13	0	CASB1# CASB5#	J03 J24	P P	GND GND	C25 A24	IO IO	HA23# HA24#	H25 E02	IO IO	HTRDY# IRDY#	W23 W24	IO IO	MD50 MD51	G21 J06	P P	VCC VCC
J04	Ю	CBE0#	L12	P	GND	D24	Ю	HA25#	F02	Ю	LOCK#	W24 W26	IO	MD52	J21	P	vcc
G03	IO	CBE1#	L15	P	GND	C23	Ю	HA26#	AF17	0	MAA0	W25	IO	MD53	L11	P	VCC
E04	IO	CBE2#	M05	P	GND	B24	IO	HA27#	AB16	0	MAA1	V26	IO	MD54	L13	P	VCC
C04 AC22	IO O	CBE3# CKE0#	M11	P	GND	C24	IO	HA28# HA29#	AE17	0	MAA2 MAA3	U24 U23	IO IO	MD55 MD56	L14	P P	VCC
AF23	ŏ	CKE0# CKE1#	M13 M14	P P	GND GND	A23 E22	Ю	HA30#	AC17 AF18	ő	MAA4	T22	IO	MD57	L16 M12	P	VCC VCC
AE24	Õ	CKE2#	M16	P	GND	D23	Ю	HA31#	AE19	ō	MAA5	T23	IO	MD58	M15	P	VCC
AD23		CKE3#	N01	P	GND	N23	I	HCLK			MAA6	T26		MD59	N11	P	VCC
AC23		CKE4#	N12		GND	B22			AC18			R24		MD60	N16		VCC
AF24 B23		CKE5# CPURST#	N13 N14	P P	GND GND	D22 E21	IO IO	HD01# HD02#	AC19 AE20	0	MAA8 MAA9	R25 P23		MD61 MD62	N26 P01	P P	VCC VCC
M26		CPURSTD#	N15	P	GND	A22		HD03#	AD20	ŏ	MAA10	N25		MD63	P11	P	VCC
L23		DBSY#	N24	P	GND	D21	Ю		AF21	0	MAA11	AF11	IO	MECC0	P16	P	VCC
AB21	O	DCLKWP	P12 P13	P P	GND GND	C21	IO IO	HD05# HD06#	AC21	0	MAA12 MAA13	AD12 AA25	IO	MECC1 MECC2	R12 R15	P P	VCC VCC
J26		DCLKWR DEFER#	P13	P	GND	A21 C20	Ю	HD06# HD07#	AF25 AB22	0	MAA14/DCKR	Y22	IO	MECC2 MECC3	T11	P	VCC
F03		DEVSEL#	P15	P	GND	B21		HD08#	AD16	0	MAB0#	AE11		MECC4	T13	P	VCC
K23	Ю	DRDY#	P26	P	GND	E20	Ю	HD09#	AC16	О	MAB1#	AA10	Ю	MECC5	T14	P	VCC
E01	IO	FRAME#	R05	P	GND	A20		HD10#	AD17	0	MAB2#	AA23		MECC6 MECC7	T16	P	VCC
AB02 Y04	IO IO	GBE0# GBE1#	R11 R13	P P	GND GND	E19 B20	IO IO	HD11# HD12#	AB17 AE18	0	MAB3# MAB4#	AA26 P22	IO -	MECC/ NC	V06 V21	P P	VCC VCC
V04	IO	GBE1# GBE2#	R14	P	GND	E18	IO		AD19	ŏ	MAB5#	AE22	-	NC NC	AA07	P	VCC
U02	IO	GBE3#	R16	P	GND	D20		HD14#	AB18	0	MAB6# / strap	AE23		NC	AA09	P	VCC
N05	I	GCLK	R22	P	GND	D19		HD15#	AB19	0	MAB7# / strap	G05	IO		AA18	P	VCC
P05 AB05	O IO	GCLKO GD00	T12 T15	P P	GND GND	D18 C19	IO	HD16# HD17#	AF20 AC20	0	MAB8# / strap MAB9# / strap	C02 AC04	<u>Р</u>	PCIREF PCKRUN#	AA20 AE01	P P	VCC VCC
AE02	IO	GD00 GD01	V03	P	GND	B19	Ю	HD17# HD18#	AB20	ő	MAB10 /strap	B02	I	PCLK	AE01 AE26	P	VCC
AD03	Ю	GD02	V24	P	GND	A18	Ю	HD19#	AE21	0	MAB11# / strap	D06	Ō	PGNT#	AF02	P	VCC
AD02	IO	GD03	AA06	P	GND	A19	IO		AD21	0	MAB12# / strap	B06	I	PREQ#	AF14	P	VCC
AD01 AC03	IO IO	GD04 GD05	AA08 AA19	P P	GND GND	B18 C17	IO IO	HD21# HD22#	AF22 AC05	O IO	MAB13# MD00	AF03 AB14	О	PWROK RASA0# / CSA0#	N22 Y06	P P	VCCA VCCA
AC01		GD05 GD06	AA21	P	GND	E17	IO	HD23#		IO	MD01	AF15	ŏ	RASA1# / CSA1#	Y21	P	VCCA
AB04	IO	GD07	AB03	P	GND	D17		HD24#	AB06		MD02	AE15	0	RASA2# / CSA2#	M24	P	VTT
AB01		GD08 GD09	AB12 AB15	P P	GND GND	B17 C16	IO	HD25# HD26#		IO	MD03 MD04	AC15 AD15	0	RASA3# / CSA3# RASA4# / CSA4#	F17 AE03	P	VTT WSC#
111103	10	CDC/	TUDIO	ı í	UND	U10	2	111/4011	711.00	1	TILDUT	לועני	J	TOTAL / COLAH	41100)	115011

PIN DESCRIPTIONS

Table 1. VT82C693A Pin Descriptions

			CPU Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
HA[31:3]#	(see pinout tables)	Ю	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by the VT82C693A during cache snooping operations.
HD[63:0]#	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.
ADS#	K21	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
BNR#	H24	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	H26	Ю	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The VT82C693A drives this signal to gain control of the processor bus.
DBSY#	L23	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	J26	IO	Defer . The VT82C693A uses a dynamic deferring policy to optimize system performance. The VT82C693A also uses the DEFER# signal to indicate a processor retry response.
DRDY#	K23	IO	Data Ready. Asserted for each cycle that data is transferred.
HIT#	L24	IO	Hit . Indicates that a cacheing agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	L22	Ι	Hit Modified . Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.
HLOCK#	K22	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
HREQ[4:0]#	J25, K25, K24, J23, J22	Ю	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.
BREQ0#	B26	О	Bus Request 0. Bus request output to CPU.
HTRDY#	H25	Ю	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.
RS[2:0]#	L25, L26, K26	Ю	Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type O00 Idle State O01 Retry Response O10 Defer Response O11 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data
CPURST#	B23	О	CPU Reset. Reset output to CPU.
CPURSTD#	M26	О	CPU Reset Delayed. Reset output to CPU delayed by 2T.

Note: Clocking of the CPU and cache interfaces is performed with HCLK. See the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

The VT82C693A pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

		D	RAM Interface
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pinout tables)	IO	Memory Data. These signals are connected to the DRAM data bus.
			Note: MD0 is internally pulled up for use in EDO memory type detection.
MECC[7:0]	AA26, AA23, AA10, AE11, Y22, AA25, AD12, AF11	Ю	DRAM ECC or EC Data (Rx78[0]=0)
MAA[14] / DCLKRD, MAA[13:0]	AB22, AF25, AC21, AF21, AD20, AE20, AC19, AC18, AF19, AE19, AF18, AC17, AE17, AB16, AF17	0/I 0	Memory Address A. DRAM address lines (two sets for better drive). There are 15 address lines to provide support for 256Mb SDRAMs.
MAB[13]#, MAB[12]# / strap, MAB[11]# / strap, MAB[10] / strap, MAB[9]# / strap, MAB[8]# / strap, MAB[7]# / strap, MAB[6]# / strap, MAB[5:0]#	AF22, AD21, AE21, AB20, AC20, AF20, AB19, AB18, AD19, AE18, AB17, AD17, AC16, AD16	O	Memory Address B. DRAM address lines (two sets for better drive). Note that this set of memory address pins is opposite polarity from the "A" set (except for MAB10 which must be positive polarity because it is used for the SDRAM Precharge command). Selected pins are also used for strap options: MAB12# CPU Bus Frequency Select 0 Rx68[0] PD MAB11# In-Order Queue Depth Enable Rx50[7] PU MAB10 Quick Start Select Rx52[5] PD MAB9# AGP Disable RxAC[7] PD MAB8# CPU Bus Frequency Select 1 Rx68[1] PD MAB7# Memory Module Configuration Rx6B[4] PD MAB6# GTL I/O Buffer Pullup Rx52[7] PD
RASA[5:0]# / CSA[5:0]#	AE16, AD15, AC15, AE15, AF15, AB14	О	Multifunction Pins (two sets for better drive) 1. FPG/EDO DRAM: Row Address Strobe of each bank. 2. Synchronous DRAM: Chip select of each bank
RASB[5:0]# / CSB[5:0]#	AB23, AC26, AC24, AD26, AD24, AE25	О	Multifunction Pins (two sets for better drive) 1. FPG/EDO DRAM: Row Address Strobe of each bank. 2. Synchronous DRAM: Chip select of each bank.
CASA[7:0]# / DQMA[7:0]#	AB26, AC25, AC13, AD13, AA24, AA22, AC14, AE14	0	Multifunction Pins 1. FPG/EDO DRAM: Column Address Strobe of each byte lane. 2. Synchronous DRAM: Data mask of each byte lane.
CASB5# / DQMB5#, CASB1# / DQMB1#	AE13, AD14	О	Multifunction Pins 1. FPG/EDO DRAM 2. Synchronous DRAM
SRASA#, SRASB#	AF16, AA17	О	Row Address Command Indicator. (two sets for better drive)
SCASA#, SCASB#	AF12, AB13	О	Column Address Command Indicator. (two sets for better drive)
SWEA# / MWEA#, SWEB# / MWEB#	AE12, AC12	О	Write Enable Command Indicator. (two sets for better drive)
CKE0# / FENA, CKE1# / GCKE#, CKE2# / CSB6#, CKE3# / CSB7#, CKE4# / CSA6#, CKE5# / CSA7#	AC22, AF23, AE24, AD23, AC23, AF24	O	Clock Enables. Clock enables for each DRAM bank (Rx78[0]=1) for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control for reducing power usage and for reducing heat/temperature in high-speed memory systems. Alternate functions: FENA = FET Enable, GCKE# = Global CKE.

			PCI Bus Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
AD[31:0]	(see pinout tables)	Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.
CBE[3:0]#	C4, E4, G3, J4	IO	Command/Byte Enable. Commands are driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
FRAME#	E1	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
IRDY#	E2	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.
TRDY#	F5	IO	Target Ready. Asserted when the target is ready for data transfer.
STOP#	F4	IO	Stop. Asserted by the target to request the master to stop the current transaction.
DEVSEL#	F3	IO	Device Select. This signal is driven by the VT82C693A when a PCI initiator is attempting to access main memory. It is an input when the VT82C693A is acting as a PCI initiator.
PAR	G5	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0].
SERR#	F1	IO	System Error. VT82C693A will pulse this signal when it detects a system error condition.
LOCK#	F2	IO	Lock. Used to establish, maintain, and release resource lock.
PREQ#	В6	I	South Bridge Request. This signal comes from the South Bridge. PREQ# is the South Bridge request for the PCI bus.
PGNT#	D6	О	South Bridge Grant. This signal driven by the VT82C693A to grant PCI access to the South Bridge.
REQ[4:0]#	D10, D8, F10, C7, A3	I	PCI Master Request. PCI master requests for PCI.
GNT[4:0]#	E9, E8, E10, D7, E7	О	PCI Master Grant. Permission is given to the master to use PCI.
WSC#	AE03	О	Write Snoop Complete. Sideband PCI signal (used on the planar only in multiprocessor configurations) asserted to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to send an APIC interrupt message. Basically this signal is always active except when PCI master write data is not flushed.

Note: Clocking of the PCI interface is performed with PCLK; see the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

			AGP Bus Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
GD[31:0]	(see pinout tables)	IO	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.
GDS0#	AC2	IO	Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.
GDS1#	T5	Ю	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GBE[3:0]#	U2, V4, Y4, AB2	Ю	Command/Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GFRM#	W3	IO	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	V5	Ю	Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	W4	Ю	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	Y1	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDSEL#	W5	IO	Device Select (PCI transactions only). This signal is driven by the VT82C693Awhen a PCI initiator is attempting to access main memory. It is an input when the VT82C693Ais acting as PCI initiator. Not used for AGP cycles.

Note: Clocking of the AGP interface is performed with GCLK; see the clock pin group for descriptions of the clock input pins. Note: PCB Layout Guidelines (reference from AGP specification)

- 1. Total motherboard trace length 10" max, trace impedance = 65 ohms \pm 15 ohms, minimize signal crosstalk
- 2. Trace lengths within groups matched to within 2 inches or better

Groups are:

- a. GDS0#, GD15-0, GBE1-0#
- b. GDS1#, GD31-16, GBE3-2#
- c. SBS#, SBA7-0
- 3. Ground isolation should be provided around GDS0# and GDS1# to prevent crosstalk with GD[31:0]. Ideally ground traces should be provided adjacent to GDSn# on the same signal layer, but at a minimum wider spaces should be provided on either side (e.g., 16 mil spaces on either side of GDSn# if GDSn# signal traces are 8 mil).

			AGP Bus Interface (continued)		
Signal Name	<u>Pin #</u>	<u>10</u>	Signal Description		
GPIPE#	M3	I	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-width request is to be enqueued by the target VT82C693A. The master enqueues one request each rising edge of GCLK while PIPE# is asserted. When PIPE# is deasserted no new requests are enqueued across the AD bus.		
GRBF#	M4	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When RBF# is asserted, the VT82C693Awill not return low priority read data to the master.		
SBA[7:0]	R1, P3, P4, P2, N2, M1, M2, K1	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (the VT82C693A). These pins are ignored until enabled.		
SBS#	N3	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)		
ST[2:0]	L1, L2, L4	0	Chese pins are ignored until enabled. Sideband Strobe. Provides timing for SBA[7:0] (driven by the master) Status (AGP only). Provides information from the arbiter to a master to indicate what may do. Only valid while GGNT# is asserted. O00 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). O01 Indicates that previously requested high priority read data is being returned to the master. O10 Indicates that the master is to provide low priority write data for a previously enqueued write command. O11 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always		
GREQ#	L5	I	outputs from the VT82C693Aand inputs to the master. Request. Master request for AGP.		
GGNT#	L3	О	Grant. Permission is given to the master to use AGP.		
GPAR / GCKRUN#	Y2	IO O	Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0]. Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage.		

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT82C693A has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

	Clock / Reset Control					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
HCLK	N23	I	Host Clock. This pin receives the host CPU clock (66 / 100 MHz). This clock is used by all VT82C693A logic that is in the host CPU domain. The memory interface logic will also use this clock if selected (memory system timing can alternately be selected to use the AGP bus clock). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.			
PCLK	B2	I	PCI Clock. This pin receives a buffered host clock divided-by-2 or 3 to create 33 MHz. This clock is used by all of the VT82C693A logic that is in the PCI clock domain. This clock input must be 33 MHz maximum to comply with PCI specification requirements and must be synchronous with the host CPU clock, HCLK, with an HCLK:PCLK frequency ratio of 2:1 or 3:1 as shown in the table below. The host CPU clock must lead the PCI clock by 1.5 ± 0.5 nsec.			
			Typical Clock Frequency Combinations Rx68[1:0] Mode Host Clock AGP Clock PCI Clock 00 2x 66 MHz 66 MHz 33 MHz 01 3x 100 MHz 66 MHz 33 MHz 10 4x 133 MHz 66 MHz 33 MHz 11 Reserved			
GCLK	N5	I	AGP Clock. This pin receives the AGP bus clock (66 MHz). This clock is used by all VT82C693A logic that is in the AGP clock domain. The AGP clock must be synchronous / pseudo-synchronous to the host CPU clock (selectable as shown in the table below). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.			
GCLKO	P5	О	AGP Clock Feedback.			
DCLKO	AB21	О	DRAM Clock. Output from internal clock generator to the external clock buffer.			
DCLKWR	AD25	I	DRAM Clock Input. Input from the external clock buffer.			
DCLKRD / MAA14	AB22	I/O	DRAM Clock Input. No function (used for chip test). MAA14 if Rx69[5]=1			
RESET#	A6	I	Reset. Input from south bridge chip. When asserted, this signal resets the VT82C693A and sets all register bits to the default value. The same signal that connects to this pin may also be used (connected through an external inverter) to reset the ISA bus (if implemented). The rising edge of this signal is used to sample all power-up strap options (see HA25-27).			
PWROK	AF3	I	Power OK.			
CPURST#	B23	О	CPU Reset. CPU Reset output to the CPU.			
CPURSTD#	M26	О	CPU Reset Delayed. Reset output delayed 2T from CPURST#. Used to enable an external LV244 buffer for fraction / ratio selection.			
SUSTAT#	AD4	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.			
PCKRUN#	AC4	0	PCI Clock Run. Used to stop the PCI bus clock to reduce bus power usage.			
GCKRUN# / GPAR	Y2	O / IO	Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage. Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].			

Power, Ground, No Connects, and Test				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description	
VCC	(see pin list)	P	Power for Internal Logic (3.3V ±5%).	
GND	(see pin list)	P	Ground	
VCCA	N22, Y6, Y21	P	Analog Power (3.3V ±5%). For internal clock logic.	
GNDA	M22, W6, W21	P	Analog Ground. For internal clock logic. Connect to main ground plane.	
VTT	F17, M24	P	CPU Interface Termination Voltage (1.5V ±10%).	
GTLREF	E16, M23	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2%	
AGPREF	N4	P	AGP Voltage Reference. 0.39 VCC to 0.41 VCC. Typical value is 1.32V	
			(0.40 times 3.3V). This can be provided with a resistive divider on VCC	
			using 270 ohm and 180 ohm (2%) resistors.	
PCIREF	C2	P	PCI Voltage Reference. Reference voltage for 5V input tolerance.	
NC	P22, AE22, AE23	-	No Connect.	
TESTIN#	M25	I	Test Input. NAND tree / tristate mode test select.	

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT82C693A. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 2. VT82C693A Registers

VT82C693A I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
	Configuration Data	0000 0000	RW

VT82C693A Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0691	RO
5-4	Command	0006	\mathbf{RW}
7-6	Status	0290	WC
8	Revision ID	40	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	\mathbf{RW}
14-27	-reserved-	00	_
28-2B	-reserved-	00	_
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Capability Pointer	0000 00A0	RO
38-3F	-reserved-	00	_

Device-Specific Registers

Offset	Host CPU Protocol Control	Default	Acc
50	Request Phase Control	00	RW
51	Response Phase Control	00	RW
52	Dynamic Defer Timer	10	RW
53	Miscellaneous	10	RW
55-54	-reserved-	00	

Offset	DRAM Control	Default	Acc
59-58	MA Map Type	0040	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[30:23])	01	RW
5B	Bank 1 Ending (HA[30:23])	01	RW
5C	Bank 2 Ending (HA[30:23])	01	RW
5D	Bank 3 Ending (HA[30:23])	01	RW
5E	Bank 4 Ending (HA[30:23])	01	RW
5F	Bank 5 Ending (HA[30:23])	01	RW
56	Bank 6 Ending (HA[30:23])	01	RW
57	Bank 7 Ending (HA[30:23])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for Banks 0,1	EC	RW
65	DRAM Timing for Banks 2,3	EC	RW
66	DRAM Timing for Banks 4,5	EC	RW
67	DRAM Timing for Banks 6,7	EC	RW
68	DRAM Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	01	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Device-Specific Registers (continued)

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control 1	00	RW
72	CPU to PCI Flow Control 2	00	RW
73	PCI Master Control 1	00	RW
74	PCI Master Control 2	00	RW
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77	Chip Test (do not program)	00	RW
78	PMU Control 1	00	RW
79	PMU Control 2	00	RW
7A	Miscellaneous Control	00	RW
79-7D	-reserved-	00	_
7E-7F	PLL Test Mode (do not program)	00	RW

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved-	00	
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-9F	-reserved-	00	

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	00	RO
A2	AGP Specification Revision	10	RO
A3	-reserved-	00	
A7-A4	AGP Status	0700 0203	RO
AB-A8	AGP Command	0000 0000	\mathbf{RW}
AC	AGP Control	08	RW
AD	AGP Latency Timer	02	RW
AF-AE	-reserved-	00	

Offset	Miscellaneous Control	Default	Acc
B0-EF	-reserved-	00	_
F7-F0	BIOS Scratch Registers	00	RW
F8	DRAM Arbitration Timer	00	RW
F9-FB	-reserved-	00	_
FC	Back-door Control	00	RW
FD	-reserved-	00	_
FF-FE	Back-door Device ID	0000	RW

VT82C693A Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8698	RO
5-4	Command	0007	RW
7-6	Status	0220	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
C	-reserved-	00	_
D	Latency Timer	00	RW
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
10-17	-reserved-	00	_
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	-reserved-	00	_
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
3D-28	-reserved-	00	
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Control	<u>Default</u>	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	00	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	00	RW
44	Back-Door Register Control	00	RW
45	-reserved-	00	_
47-46	P2P Bridge Device ID	0000	RW
48-7F	Reserved	00	
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	Reserved	00	_

Miscellaneous I/O

One I/O port is defined in the VT82C693A: Port 22.

Port 22	2 – PCI / AGP Arbiter DisableRW
7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals, including
	PREQ#

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

Configuration Space I/O

All registers in the VT82C693A (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CE	FB-CF8 - Configuration AddressRW
31	Configuration Space Enable
-	0 Disabled default
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
	(devices 0 and 1 are defined for the VT82C693A)
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions (only function 0 is
	defined for the VT82C693A).
7-2	Register Number (also called the "Offset")
	Used to select a specific DWORD in the
	VT82C693A configuration space
1-0	Fixedalways reads 0
Port CF	FF-CFC - Configuration DataRW

Refer to PCI Bus Specification Version 2.2 for further details on operation of the above configuration registers.

Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and $\underline{\text{device number}}$ equal to $\underline{\text{zero}}$.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device (0 Offs	et 3-2 - Device ID (0691h)RO
15-0	ID C	ode (reads 0691h to identify the VT82C693A)
Device (0 Offs	et 5-4 -Command (0006h)RW
15-10	Reser	rved always reads 0
9	Fast 1	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8	SERI	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report parity errors if bit-6 is set).
7	Addr	ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4	Mem	ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	Speci	al Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	Bus N	MasterRO
	0	Never behaves as a bus master
	1	Can behave as a bus masterdefault
1	Mem	ory SpaceRO
	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space

Device (Offse	et 7-6 – Status (0290h)RWC
15	Detec	cted Parity Error
	0	No parity error detected default
	1	Error detected in either address or data phase.
		This bit is set even if error response is disabled
		(command register bit-6)write one to clear
14	Signa	nled System Error (SERR# Asserted)
		always reads 0
13	_	aled Master Abort
	0	No abort received default
	1	Transaction aborted by the master
		write one to clear
12		ived Target Abort
	0	No abort receiveddefault
	1	Transaction aborted by the target
11	a.	write one to clear
11		aled Target Abortalways reads 0
10.0	0	Target Abort never signaled SEL# Timing
10-9		SEL# Timing Fast
	01	Mediumalways reads 01
	10	Slow
	11	Reserved
8		Parity Error Detected
o	0	No data parity error detected default
	1	Error detected in data phase. Set only if error
	1	response enabled via command bit- $6 = 1$ and
		VT82C693A was initiator of the operation in
		which the error occurredwrite one to clear
7	Fast	Back-to-Back Capablealways reads 1
6		Definable Features always reads 0
5		Hz Capablealways reads 0
4		orts New Capability listalways reads 1
3-0	Reser	_ · · · · · · · · · · · · · · · · · · ·
		•
Device (et 8 - Revision ID (4nh)RO
7-0	VT82	2C693A Chip Revision Code
Dovino) Offa	et 9 - Programming Interface (00h)RO
7-0	inter	face Identifieralways reads 00
Device (0 Offs	et A - Sub Class Code (00h)RO
7-0		Class Codereads 00 to indicate Host Bridge
7-0	Sub (Substitute The Principle of the Indicate Trest Bridge
Device (Offse	et B - Base Class Code (06h)RO
7-0	Base	Class Code reads 06 to indicate Bridge Device
		•
		et D - Latency Timer (00h)RW
Specifie	s the la	atency timer value in PCI bus clocks.
7-3	Guar	ranteed Time Slice for CPUdefault=0
2-0		rved (fixed granularity of 8 clks) always read 0
		2-1 are writeable but read 0 for PCI specification
		atibility. The programmed value may be read
		in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E - Header Type (00h)RO
7-0	Header Type Codereads 00: single function
Device	0 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supported reads 0: no supported functions
6-0	Reserved always reads 0
ъ.	0.000 412.10 C I' A A D

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits...... def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 1 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) <u>6</u> <u>5</u> <u>4</u> <u>3</u> <u>2</u> <u>1</u> (Gr Aper Size) 0 RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 2MRWRWRWRWRW 0 4M RWRWRWRW 0 8M RWRWRWRW 0 0 O 16M RWRWRW 0 0 0 32M RWRW 0 0 0 0 64M 0 0 RW = 00 0 0 0 0 0 128M 0 0 0 0 256M

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID.....default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h).....R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)RW

7 CPU Hardwired IOQ (In Order Queue) Size Default per strap on pin MAB11#During reset. This register can be written 0 to restrict the chip to one

- level of IOQ.

 0 1-Level
 - 1 4-Level

6 Read-Around-Write

- 0 Disabledefault
 1 Enable
- 5 Reserved always reads 0

4 Defer Retry When HLOCK Active

- 0 Disabledefault
- 1 Enable

Note: always set this bit to 1

- 0 CPU / PCI Master Read DRAM Timing
 - 0 Start DRAM read <u>after</u> snoop complete def
 - 1 Start DRAM read <u>before</u> snoop complete

Table 3. Rx50 Programming Constraints

Bit-5	Bit-3	Bit-2	Remark
0	1	0	CPU-to-PCI Read Retry Only
0	1	1	CPU-to-PCI Read Retry / Defer
1	1	0	CPU-to-PCI Read / Write Retry
1	1	1	CPU-to-PCI Read Retry / Defer
			(normal operation mode)

Device 0 Offset 51 – Response Phase Control (00h)...... RW

- 7 CPU Read DRAM 0ws for Back-to-Back Read Transactions
 - 0 Disable......default
 - l Enable

Setting this bit enables maximum read performance by allowing continuous 0 wait state reads for pipelined line reads. If this bit is not set, there will be at least 1T idle time between read transactions.

- 6 CPU Write DRAM 0ws for Back-to-Back Write Transactions
 - 0 Disable default
 - 1 Enable

Setting this bit enables maximum write performance by allowing continuous 0 wait state writes for pipelined line writes ands sustained 3T single writes. If this bit is not set, there will be at least 1T idle time between write transactions.

- 5 Reservedalways reads 0
- 4 Fast Response (HIT/HITM sample 1T earlier)
 - 0 Disable.....default
 - 1 Enable
- 3 Non-Posted IOW
 - 0 Disable.....default
 - 1 Enable
- **2-1 Reserved**always reads 0
- 0 Concurrent PCI Master / Host Operation
 - 0 Disable the CPU bus will be occupied (BPRI asserted) during the entire PCI operation..... def
 - 1 Enable the CPU bus is only requested before ADS# assertion

Device	0 Offset 52 – Dynamic Defer Timer (10h)RW	Device	e 0 Offset 53 – Misc. (10h)RW
7	GTL I/O Buffer Pullup default = MAB6# Strap 0 Disable 1 Enable	7	HREQ enable 0 Disable default 1 Enable
	The default value of this bit is determined by a strap on the MAB6# pin during reset.	6	DRAM Frequency Greater Than CPU FSB Freq. 0 DRAM Frequency ≤ CPU FSB Freq default
6	RAW: Write retire policy, after 2 writes 0 Disable		1 DRAM Frequency > CPU FSB Frequency Setting this bit enables the DRAM subsystem to run at a higher frequency than the CPU FSB frequency.
5	Quick Start Selectdefault = MAB10 Strap 0 Disable 1 Enable The default value of this bit is determined by a strap on the MAB10 pin during reset.	5	When setting this bit, Rx69[6] must also be set and only SDRAM memory type DIMM modules may be installed. A mix of EDO and SDRAM modules is not supported in this case. PCI/AGP Master-to-CPU / CPU-to-PCI/AGP
4-0	Snoop Stall Count 00 Disable dynamic defer 01-1F Snoop stall count default = 10h		Slave Concurrency 0 Disable default 1 Enable
	•	4	HPRI Function Enable 0 Disable default 1 Enable
		3	P6Lock Function Enable 0 Disable default

1

2-0 Reserved

Enable

.....always reads 0

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT82C693A BIOS porting guide for details).

Table 4. System Memory Map

Space	Start	<u>Size</u>	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB	—	00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFEFFF	
Init	4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Device 0 Offset 59-58 - DRAM MA Map Type (0040h).RW

15-13 Bank 5/4 MA Map Type (see below)

Reserved (Bank 5/4 Virtual Channel Enable) ... def=0 12

11-9 Bank 7/6 MA Map Type (see below)

Reserved (Bank 7/6 Virtual Channel Enable) ... def=0

Bank 1/0 MA Map Type

000 8-bit Column Address

001 9-bit Column Address

010 10-bit Column Addressdefault

011 11-bit Column Address

100 12-bit Column Address (64Mb)

101 Reserved

11x Reserved

Bank 0/1 MA Map Type (SDRAM)

000 16Mbit SDRAM.....default

100 64Mbit SDRAM

101 Reserved

11x Reserved

Reserved (Bank 1/0 Virtual Channel Enable) ... def=0

Bank 3/2 MA Map Type (see above)

Reserved (Bank 3/2 Virtual Channel Enable) ... def=0

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5B - Bank 1 Ending (HA[30:23]) (01h) RW Offset 5C – Bank 2 Ending (HA[30:23]) (01h).......... RW Offset 5D – Bank 3 Ending (HA[30:23]) (01h)......... RW Offset 5E - Bank 4 Ending (HA[30:23]) (01h) RW Offset 5F - Bank 5 Ending (HA[30:23]) (01h) RW

BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 - DRAM Type (00h).....RW

DRAM Type for Bank 7/6

00 Fast Page Mode DRAM (FPG)..... default

01 EDO DRAM (EDO)

10 Reserved

11 SDRAM

5-4 DRAM Type for Bank 5/4.....default=FPG

DRAM Type for Bank 3/2.....default=FPG

1-0 DRAM Type for Bank 1/0.....default=FPG

Table 5. Memory Address Mapping Table

EDO/FP DRAM

MA:	<u>13</u>	<u>12</u>	11	10	9	8	7	<u>6</u>	<u>5</u>	4	3	2	1	0	
8-bit Col		23	22	21	11	20	19	18	17	16	15	14	13	12	Row Bits
(000)							10	9	8	7	6	5	4	3	Col Bits
9-bit Col		<u>24</u>	23	22	21	20	19	18	17	16	15	14	13	12	Row Bits
(001)						11	10	9	8	7	6	5	4	3	Col Bits
10-bit Col		<u>25</u>	24	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(010)					22	11	10	9	8	7	6	5	4	3	Col Bits
11-bit Col		26	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(011)				24	22	11	10	9	8	7	6	5	4	3	Col Bits
12-bit Col		27	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(100)			26	24	22	11	10	9	8	7	6	5	4	3	Col Bits

SDRAM

MA:	14	<u>13</u>	<u>12</u>	11	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	<u>4</u>	3	2	1	0	
16Mb				11	22	21	20	19	18	17	16	15	14	13	12	Row Bits
(0xx)				11	PC	24	23	10	9	8	7	6	5	4	3	Col Bits
64Mb	25/	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x4: 10 col
(100)	26/															x8: 9 col
2/4 bank	27															x16: 8 col
x4, x8,		24	13	12	PC	26	25	10	9	8	7	6	5	4	3	x32: 8 col
x16;																
4-bank x32																

"PC" = "Precharge Control" (refer to SDRAM specifications)

16Mb 11x10, 11x9, and 11x8 configurations supported

64Mb x4: 12x10 4bank, 13x10 2bank

x8: 12x9 4bank, 13x9 2bank

x16: 12x8 4bank. 13x8 2bank

x32: 11x8 4bank

Device	0 Offse	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow RAM	Control 3 ((00h)R	W
7-6	CC00	00h-CFFFFh	7-6	E000	0h-EFFFFh			
	00	Read/write disabledefault		00	Read/write disable		defa	ult
	01	Write enable		01	Write enable			
	10	Read enable		10	Read enable			
	11	Read/write enable		11	Read/write enable			
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh			
	00	Read/write disabledefault		00	Read/write disable		defa	ult
	01	Write enable		01	Write enable			
	10	Read enable		10	Read enable			
	11	Read/write enable		11	Read/write enable			
3-2		0h-C7FFFh	3-2	Mem	ory Hole			
	00	Read/write disabledefault			None		defa	ult
	01	Write enable		01	512K-640K			
	10	Read enable		10	15M-16M (1M)			
	11	Read/write enable			14M-16M (2M)			
1-0		0h-C3FFFh	1-0	SMI	Mapping Control			
	00	Read/write disabledefault			SMM	Non-Sl	MM	
	01	Write enable			Code Data	Code	Data	
	10	Read enable		00	DRAM DRAM	PCI	PCI	
	11	Read/write enable		01	DRAM DRAM	DRAM I	DRAM	
				10	DRAM PCI	PCI	PCI	
		et 62 - Shadow RAM Control 2 (00h)RW		11	DRAM DRAM	DRAM I	DRAM	
7-6		00h-DFFFFh						
		Read/write disabledefault						
		Write enable						
		Read enable						
		Read/write enable						
5-4		0h-DBFFFh						
		Read/write disabledefault						
		Write enable						
		Read enable						
		Read/write enable						
3-2		0h-D7FFFh						
		Read/write disabledefault						
		Write enable						
		Read enable						
		Read/write enable						
1-0		0h-D3FFFh						
		Read/write disabledefault						
		Write enable						
	10	Read enable						

11 Read/write enable

Device 0 Offset 64 - DRAM Timing for Banks 0,1 (ECh)RW

Device 0 Offset 65 - DRAM Timing for Banks 2,3 (ECh)RW

Device 0 Offset 66 - DRAM Timing for Banks 4,5 (ECh)RW

Device 0 Offset 67 - DRAM Timing for Banks 6,7 (ECh)RW

FPG/	EDO Settings	for Registers 67-64			
7	RAS Precharge Time				
	0 3T				
	1 4T	default			
6	RAS Pulse Width				
	0 4T				
	1 5T	default			
5-4	CAS Read I	Pulse Width			
	00 1T				
	01 2T				
	10 3T	default			
	11 4T				
	Note: EDC	will not automatically reduce the CAS			
	pulse width.	For EDO type DRAMs, use 00 if CAS			
	width $= 1$ is	to be used.			
3	CAS Write	Pulse Width			
	0 1T				
	1 2T	default			
2	MA-to-CAS	S Delay			
	0 1T				
	1 2T	default			
1	RAS to MA				
	0 1T	default			
	1 2T				
0	Reserved	always reads 0			

SDRA	M Setti	ngs for Registers 67-64		
7	Precharge Command to Active Command Period			
	0	$T_{RP} = 2T$		
	1	Trp = 3Tdefault		
6	Activ	e Command to Precharge Command Period		
	0	$T_{RAS} = 5T$		
	1	$T_{RAS} = 6T$ default		
5-4	CAS	Latency		
	00	1T		
	01	2T		
	10	3Tdefault		
	11	reserved		
3	DIM	М Туре		
	0	Standard		
	1	Registereddefault		
2	ACT	IVE Command to CMD Command Period /		
	VCM	Prefetch Read Latency		
	0	2T / 3T		
	1	3T / 4T default		
1-0	Bank	Interleave		
	00	No Interleavedefault		
	01	2-way		
	10	4-way		
	11	Reserved		

Device	e 0 Offset 68 - DRAM Control (00h)RW	Device	0 Offset 69	– DRAM Clo	ock Select (00h	ı) RW
7	SDRAM Open Page Control	7	DRAM O	perating Fred	quency <u>Slower</u>	Than CPU
	0 Always precharge SDRAM banks when					U default
	accessing EDO/FPG DRAMsdefault				nan CPU by 33	
	1 SDRAM banks remain active when accessing	6			uency <u>Faster</u>	
	EDO/FPG banks					U default
6	Bank Page Control		1 DR	AM Faster Th	an CPU by 33 1	MHz
	O Allow only pages of the same bank active def.				•	
	1 Allow pages of different banks to be active		Rx68[1-0]	Rx69[7-6]	CPU / DRAM	<u>M</u>
5	Reserved always reads 0		00	00	66 / 66	(def)
4	DRAM Data Latch Delay for EDO/FPG DRAM		00	01	66 / 100	
	0 Latch DRAM data at CCLK rising edge def.		01	10	100 / 66	
	1 Delay latch of DRAM data by ½ CCLK		01	00	100 / 00	
3	EDO Test Mode		01	01	100 / 100	
	0 Disabledefault		01	01	100 / 133	
	1 Enable		10	10	133 / 100	
2	Burst Refresh		10	00	133 / 133	
	0 Disabledefault					
	1 Enable (burst 4 times)	5				RW
1	System Frequency DividerRO					default
	This bit is latched from MAB8# at the rising edge of		1 Enable (DCLKRD becomes output)			
	RESET# (see table below).	4			gister Output	
0	System Frequency DividerRO		0 Disa	able		default
	This bit is latched from MAB12# at the rising edge of		1 Ena			
	RESET#.	3			for Different	
	00 CPU Frequency = 66 MHz				•••••	default
	01 CPU Frequency = 100 MHz		1 Ena			
	10 CPU Frequency = 133 MHz	2			e (for 64Mbit	
	11 Reserved					default
Note:	See also Rx69[7-6]	_	1 Ena			F
Note: MD0 is internally pulled up for EDO detection.		1	DIMM R	egister Suppo	rt	RW
						default
		•	1 Ena			1 10
		0	Reserved	•••••	•••••	always reads 0

Device 0 Offset 6A - Refresh Counter (00h) RW 7-0 Refresh Counter (in units of 16 CPUCLKs) 00 DRAM Refresh Disabled default 01 32 CPUCLKs 02 48 CPUCLKs 03 64 CPUCLKs 04 80 CPUCLKs 05 96 CPUCLKs

The programmed value is the desired number of 16-CPUCLK units minus one.

vice	0 Offse	et 6B - DRAM Arbitration Control (01h) RW
7-6	Arbit	ration Parking Policy
	00	Park at last bus owner default
	01	Park at CPU side
	10	Park at AGP side
	11	Reserved
5	Fast 1	Read to Write turn-around
	0	Disabledefault
	1	Enable
4	Mem	ory Module ConfigurationRO
	0	Normal Operation default
	1	Unused Outputs Tristated (RASB#, CASB#,
		CKE, MAB, DCLKO)
	This 1	bit is latched from MAB7# at the rising edge of
	RESE	ET#.
3	MD I	Bus Second Level Strength Control
	0	Normal slew ratedefault
	1	More slew rate
2	CAS	Bus Second Level Strength Control
	0	Normal slew ratedefault
	1	More slew rate
1	VC-L	DRAM
	0	Disabledefault
	1	Enable
0	Multi	i-Page Open
	0	Disable (page registers marked invalid and no
		page register update which causes non page-
		mode operation)
	1	Enabledefault

Device	0 Offse	et 6C - SDRA	M Control (00h)	RW
7-5	Reser	ved	always	reads 0
4	CKE	Configuratio	•	
	0	Rx6B[4]=0	RASA = CSA, RASB = 0	CSB,
			CKE0=CKE0, $CKE1=0$	CKE1
	X	Rx6B[4]=1	RASA = CSA, RASB = 1	Float,
			CASB = Float, MAB = F	₹loat,
			CKE0 = CKE0, CKE1 =	CKE0
	1	Rx6B[4]=0	RASA = CSA, RASB = 0	CSB,
			CKE3-2 = CSA7-6	
			CKE5-4 = CSB7-6	
			CKE1 = GCKE (Global	CKE)
			CKE0 = FENA (FET En	able)
3	Fast 7	TLB Lookup		
	0	Disable		default
	1	Enable		
2-0			n Mode Select	
	000	Normal SDR	AM Mode	default
	001	NOP Comma	and Enable	
	010		echarge Command Enable	;
		*	AM cycles are converted	
		to All-Banks-	-Precharge commands).	
	011	MSR Enable		
			AM cycles are conver	
			nd the commands are dr	
			The BIOS selects an app	
		host address	for each row of memory s	uch that
		the right	commands are generat	ted on
		MA[14:0].		
	100		Enable (if this code is s	
		CAS-before-	RAS refresh is used; if i	it is not
		selected, RAS	S-Only refresh is used)	
	101	Reserved		
	11x	Reserved		

Device	0 Offse	t 6D - I	ORAM Driv	ve Strength (00h) RW
7	Reser	ved			always reads 0
6-5	Delay	DRAM	I Read Late	ch	•
	00	No Del	lay		default
	01	0.5 ns	_		
	10	1.0 ns			
	11	1.5 ns			
4	Memo	ory Dat	a Drive (MI	D, MECC)	
	0	6 mA			default
	1	8 mA			
3	SDRA	M Cor	nmand Driv	ve (SRAS#, So	CAS#, SWE#)
	0	16mA			default
	1	24mA			
2	Memo	orv Add	dress Drive	(MA, WE#)	
	0				default
	1	24mA			
1	CAS#	Drive			
	0	8 mA			default
	1	12 mA			
0	RAS#	Drive			
-	0	16mA			default
	1	24mA			

Device	0 Offset 6E - ECC Control (00h)RW
7	ECC / ECMode Select
	0 ECC Checking and Reportingdefault
	1 ECC Checking, Reporting, and Correcting
6	Reserved always reads 0
5	Enable SERR# on ECC / EC Multi-Bit Error
	0 Don't assert SERR# for multi-bit errors def
	1 Assert SERR# for multi-bit errors
4	Enable SERR# on ECC / EC Single-Bit Error
	0 Don't assert SERR# for single-bit errors def
	1 Assert SERR# for single-bit errors
3	ECC / EC Enable - Bank 7/6 (DIMM 3)
	0 Disable (no ECC or EC for banks 7/6)default
	1 Enable (ECC or EC per bit-7)

- 2 ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	<u>RMW</u>	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Device	0 Offset 6F - ECC Status (00h)	RWC
7	Multi-bit Error Detected	write of '1' resets
6-4	Multi-bit Error DRAM Bank	default=0
	Encoded value of the bank with the	e multi-bit error.
3	Single-bit Error Detected	write of '1' resets
2-0	Single-bit Error DRAM Bank	default=0
	Encoded value of the bank with the	e single-bit error.

<u>PCI Bus Control</u>
These registers are normally programmed once at system initialization time.

Device	0 Offse	et 70 - PCI Buffer Control (00h)RW
7	CPU 1	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	PCI N	Master to DRAM Post-Write
	0	Disabledefault
	1	Enable
5	Reser	vedalways reads 0
4	PCI N	Master to DRAM Prefetch
	0	Disabledefault
	1	Enable
3	Enha	nce CPU-to-PCI Write
	0	Normal operationdefault
	1	Reduce 1 cycle when the CPU-to-PCI buffer
		becomes available after being full (applies to
		both PCI and AGP buses)
2		Master Read Caching
	0	Disabledefault
	1	Enable
1	•	Transaction
	0	Disabledefault
	1	Enable
0		Device Stopped Idle Cycle Reduction
	0	Normal Operationdefault
	1	Reduce 1 PCI idle cycle when stopped by a
		slave device (PCI and AGP buses)

Device	0 Offs	et 71 - CPU to PCI Flow Control 1 (00h). RW			
7	Dyna	amic Burst			
	0	Disable default			
	1	Enable (see note under bit-3 below)			
6	Byte	Merge			
	0	Disabledefault			
	1	Enable			
5	Reser	rvedalways reads 0			
4	PCI I	I/O Cycle Post Write			
	0	Disabledefault			
	1	Enable			
3	PCI I	Burst			
	0	Disable default			
	1	Enable (bit7=1 will override this option)			
<u>bit-</u> ′	7 <u>bit-3</u>	<u>Operation</u>			
0	0	Every write goes into the write buffer and no			
		PCI burst operations occur.			
0	1	If the write transaction is a burst transaction,			
		the information goes into the write buffer and			
	burst transfers are later performed on the PCI				
		bus. If the transaction is not a burst, PCI write			
		occurs immediately (after a write buffer flush).			
1	X	Every write transaction goes to the write			
		buffer; burstable transactions will then burst			
		on the PCI bus and non-burstable won't. This			
2	DOI 1	is the normal setting. Fast Back-to-Back Write			
2	PCI 1	Disabledefault			
	1	Enable default			
1	-	k Frame Generation			
1	Quici	Disabledefault			
	1	Enable			
0	-	nit State PCI Cycles			
U	1 vv a	Disable default			
	U	Dibuoicuclauit			

1 Enable

Jevice	U OHS	et 72 - CPU to PCI Flow Control 2 (00h) RWC	<u>Device</u>	U Offset 73 - PCI Master Control I (UUh) RW
7	Retry	y Status	7	Reserved always reads 0
		No retry occurreddefault	6	PCI Master 1-Wait-State Write
	1	Retry occurred write 1 to clear		0 Zero wait state TRDY# response default
6	Retry	y Timeout Action		1 One wait state TRDY# response
	0	Retry Forever (record status only)default	5	PCI Master 1-Wait-State Read
	1	Flush buffer for write or return all 1s for read		0 Zero wait state TRDY# response default
5-4		y Limit		1 One wait state TRDY# response
		Retry 2 timesdefault	4	Disable Prefetch when Delay Transaction Enabled
		Retry 16 times		0 Disabledefault
		Retry 4 times		1 Enable
		Retry 64 times	3	Assert STOP# after PCI Master Write Timeout
3		r Failed Data and Continue Retry		0 Disabledefault
	0	Flush the entire post-write bufferdefault		1 Enable
	1	When data is posting and master (or target)	2	Assert STOP# after PCI Master Read Timeout
		abort fails, pop the failed data if any, and keep		0 Disabledefault
		posting		1 Enable
2	_	Backoff on PCI Read Retry Failure	1	LOCK# Function
	0	Disabledefault		0 Disabledefault
	1	Backoff CPU when reading data from PCI and		1 Enable
		retry fails	0	PCI Master Broken Timer Enable
1		ice 1T for FRAME# Generation		0 Disabledefault
	0	Disabledefault		1 Enable. Force into arbitration when there is no
	1	Enable		FRAME# 16 PCICLK's after the grant.
0		ice 1T for CPU read PCI slave	Device	0 Offset 74 - PCI Master Control 2 (00h)RW
	0	DisableDefault	7	PCI Master Read Prefetch by Enhance Command
	1	Enable	,	0 Always Prefetch
				1 Prefetch only if Enhance command
			6	PCI Master Write Merge
			v	0 Disabledefault
				1 Enable
			5	Reservedalways reads 0
			4	Dummy Request default = 0
			3	PCI Delay Transaction Timeout
			•	0 Disabledefault
				1 Enable
			2	Backoff CPU Immediately on CPU-to-AGP
				0 Disable default

1 Enable

CPU/PCI Master Latency Timer Control

11 Reserved (do not program)

OO AGP master reloads MLT timer default
 O1 AGP master falling edge reloads MLT timer
 10 AGP master rising edge resets timer to 00 and AGP master falling edge reloads MLT timer

1-0

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW	Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	Arbitration Mechanism	7	CPU-to-PCI Post-Write Retry Failed
	0 PCI has prioritydefault		0 Continue retry attemptdefault
	1 Fair arbitration between PCI and CPU		1 Go to arbitration
6	Arbitration Mode	6	CPU Latency Timer Bit-0RO
	0 REQ-based (arbitrate at end of REQ#)default		0 CPU has at least 1 PCLK time slot when CPU
	1 Frame-based (arbitrate at FRAME# assertion)		has PCI bus
5-4	Latency Timerread only, reads Rx0D bits 2:1		1 CPU has no time slot
3-0	PCI Master Bus Time-Out	5-4	Master Priority Rotation Control
	(force into arbitration after a period of time)		0x Grant to CPU after every PCI master grant
	0000 Disabledefault		default = 00
	0001 1x32 PCICLKs		10 Grant to CPU after every 2 PCI master grants
	0010 2x32 PCICLKs		11 Grant to CPU after every 3 PCI master grants
	0011 3x32 PCICLKs		With setting 01, the CPU will always be granted
	0100 4x32 PCICLKs		access after the current bus master completes, no
			matter how many PCI masters are requesting. With
	1111 15x32 PCICLKs		setting 10, if other PCI masters are requesting during
			the current PCI master grant, the highest priority
			master will get the bus after the current master
			completes, but the CPU will be guaranteed to get the
			bus after that master completes. With setting 11, if
			other PCI masters are requesting, the highest priority
			will get the bus next, then the next highest priority
			will get the bus, then the CPU will get the bus. In
			other words, with the above settings, even if multiple
			PCI masters are continuously requesting the bus, the
			CPU is guaranteed to get access after every master
			grant (01), after every other master grant (10) or after
			every third master grant (11).
		3-2	REQn to REQ4 Mapping
			00 REQ4
			01 REQ0
			10 REQ1
			11 REQ2
		1	CPU-to-PCI QW High DW Read Access to Allow
			Backoff of PCI Slave
			0 Disabledefault
			1 Enable
		0	REQ4 is High Priority Master
			0 Disabledefault
			1 Enable

7 6-0

Device 0 Offset 77 - Chip Test Mode (00h).....RW

Reserved (no function).....always reads 0

Reserved (do not use).....default=0

Device	0 Offset 78 - PMU Control 1 (00h)RW	Device	0 Offset 7A - Miscellaneous ControlRW
7	I/O Port 22 Access	7	No Time-Out Arbitration for Consecutive Frame
	0 CPU access to I/O address 22h is passed on to		Accesses
	the PCI busdefault		0 Enabledefault
	1 CPU access to I/O address 22h is processed		1 Disable
	internally	6-4	Reservedalways reads 0
6	Suspend Refresh Type	3	Background PCI-to-PCI Write Cycle Mode
	0 CBR Refreshdefault		0 Enabledefault
	1 Self Refresh		1 Disable
5	Reserved always reads 0	2-1	Reserved always reads 0
4	Dynamic Clock Control	0	South Bridge PCI Master Force Timeout When
	0 Normal (clock is always running)default		PCI Master Occupancy Timer Is Up
	1 Clock to various internal functional blocks is		0 Disabledefault
	disabled when those blocks are not being used		1 Enable
3	Reserved always reads 0		
2	GSTOP# Assertion		
	0 Disable (GSTOP# is always high)default		<u>0 Offset 7E – PLL Test Mode (00h) RW</u>
	1 Enable (GSTOP# could be low)	7-6	Reserved (status)RO
1	Reserved always reads 0	5-0	Reserved (do not use)default=0
0	Memory Clock Enable (CKE) Function	Domino	0 Officed TE DLI Tood Mode (00b) DW
	0 CKE Function Disabledefault		0 Offset 7F – PLL Test Mode (00h)RW
	1 CKE Function Enable	7-0	Reserved (do not use)default=0
Device 7	0 Offset 79 - PMU Control 2 (00h)RW KCTL module CLOCK dynamic stop enable		
,	0 Disabledefault		
	1 Enable		
6	DRAMC module CLOCK dynamic stop enable		
U	0 Disabledefault		
	1 Enable		
5	AGPC module CLOCK dynamic stop enable		
J	0 Disabledefault		
	1 Enable		
4	PCIC module CLOCK dynamic stop enable		
-	0 Disabledefault		
	1 Enable		
3	Pseudo Power Good enable		
	0 Disabledefault		
2			
_	1 Enable		
	1 Enable Indicate SIO's request to DRAM controller		
1-0	1 Enable Indicate SIO's request to DRAM controller 0 Disabledefault		

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the VT82C693A.

This scheme is shown in the figure below.

Figure 5. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the VT82C693A contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device (0 Offset 83-80 - GART/TLB Control (00000000h) RW	Device	0 Offset 84 - Graphics Aperture Size (00h) RW
31-16	Reserved always reads 0	7-0	Graphics Aperture Size
15-8	Reserved (test mode status)RO		11111111 1M
			11111110 2M
7	Flush Page TLB		11111100 4M
	0 Disabledefault		11111000 8M
	1 Enable		11110000 16M
			11100000 32M
6-4	Reserved (always program to 0)RW		11000000 64M
			10000000 128M
3	PCI Master Address Translation for GA Access		00000000 256M
	0 Addresses generated by PCI Master accesses		
	of the Graphics Aperture will not be translateddefault	t	
	1 PCI Master GA addresses will be translated	Offset 8	BB-88 - GA Translation Table Base (00000000h) RW
2	AGP Master Address Translation for GA Access	31-12	Graphics Aperture Translation Table Base.
	0 Addresses generated by AGP Master accesses		Pointer to the base of the translation table in system
	of the Graphics Aperture will not be translateddefault	t	memory used to map addresses in the aperture range
	1 AGP Master GA addresses will be translated		(the pointer to the base of the "Directory" table).
1	CPU Address Translation for GA Access	11-3	Reserved always reads 0
	0 Addresses generated by CPU accesses of the	2	PCI Master Directly Accesses DRAM if in GART
	Graphics Aperture will not be translated def		Range
	1 CPU GA addresses will be translated		0 Disabledefault
0	AGP Address Translation for GA Access		1 Enable
	0 Addresses generated by AGP accesses of the	1	Graphics Aperture Enable
	Graphics Aperture will not be translated def		0 Disabledefault
	1 AGP GA addresses will be translated		1 Enable
Note: F	For any master access to the Graphics Aperture range,		Note: To disable the Graphics Aperture, set this bit
	ill not be performed.		to 0 and set all bits of the Graphics Aperture Size to
shoop w	in not be performed.		0. To enable the Graphics Aperture, set this bit to 1
			and program the Graphics Aperture Size to the
			desired aperture size.
		0	Reservedalways reads 0

AGP Control

<u>Device 0 Offset A3-A0 - AGP Capability Identifier</u>			
(000100	0002h)RO		
31-24	Reserved always reads 00		
	Major Specification Revision always reads 0001		
	Major revision # of AGP spec device conforms to		
19-16	Minor Specification Revision always reads 0000		
	Minor revision # of AGP spec device conforms to		
15-8	Pointer to Next Item always reads 00 (last item)		
7-0	AGP ID (always reads 02 to indicate it is AGP)		
Device (Offset A7-A4 - AGP Status (07000203h)RO		
31-24	Maximum AGP Requests always reads 07†		
	Max # of AGP requests the device can manage (8)		
	(†see RxFC[1] and RxFD[2-0] for optional		
	modification of readback value)		
23-10	Reserved always reads 0s		
9	Supports SideBand Addressing always reads 1		
8-2	Reserved always reads 0s		
1	2X Rate Supported		
	Value returned can be programmed by writing to		
	RxAC[3]		
Λ	1X Rate Supported always reads 1		

Device	0 Offset AB-A8 - AGP Command (00000000h) . RW
31-24	Request Depth (reserved for target) always reads 0s
23-10	Reserved always reads 0s
9	SideBand Addressing Enable
	0 Disabledefault
	1 Enable
8	AGP Enable
	0 Disabledefault
	1 Enable
7-2	Reserved always reads 0s
1	2X Mode Enable
	0 Disable default
	1 Enable
0	1X Mode Enable
	0 Disabledefault
	1 Enable

Device	0 Offset AC - AGP Control (08h)RW	Device	0 Offset F7-F0 – BIOS Scratch RegistersRW
7	AGP DisableRO	7-0	No hardware function default = 0
	0 Disabledefault	Darrias	0 Officed EQ DD AM Auditoration Timor (00h) DW
	1 Enable		0 Offset F8 – DRAM Arbitration Timer (00h) RW
	This bit is latched from MAB9# at the rising edge of	7-4	AGP Timer default = 0
	RESET#.	3-0	Host CPU Timer default = 0
6	AGP Read Synchronization	Device	0 Offset FC - Back-Door Control 1 (00h)RW
	0 Disabledefault		Priority Timer default = 0
_	1 Enable	3-2	Reserved (Do Not Program) default = 0
5	AGP Read Snoop DRAM Post-Write Buffer	1	Back-Door Max # of AGP Requests default = 0
	0 Disabledefault	1	0 Read of RxA7always returns a value of 7 def
	1 Enable		1 Read of RxA7 areturns the value programmed
4	GREQ# Priority Becomes Higher When Arbiter is		in RxFD[2-0]
	Parked at AGP Master 0 Disabledefault	0	Back-Door Device ID Enable default = 0
	0 Disabledefault 1 Enable	U	0 Use Rx3-2 value for Rx3-2 readback default
2			1 Use RxFE-FF Back-Door Device ID for Rx3-2
3	2X Rate Supported (read also at RxA4[1]) 0 Not supported		read
2	1 Supporteddefault LPR In-Order Access (Force Fence)	Device	0 Offset FD - Back-Door Control 2 (00h)RW
2	0 Fence/Flush functions not guaranteed. AGP	7-3	Reservedalways reads 0
	read requests (low/normal priority and high	2-0	Max # of AGP Requestsdefault = 0
	priority) may be executed before previously		(see also RxA7 and RxFC[1])
	issued write requestsdefault	ъ.	0.000 (FF FF B I B B I B (0.000) BW
	1 Force all requests to be executed in order		<u>0 Offset FF-FE – Back-Door Device ID (0000h) RW</u>
	(automatically enables Fence/Flush functions).	15-0	Back-Door Device IDdefault = 0
	Low (i.e., normal) priority AGP read requests		
	will never be executed before previously		
	issued writes. High priority AGP read requests		
	may still be executed prior to previously issued		
	write requests as required.		
1	AGP Arbitration Parking		
	0 Disabledefault		
	1 Enable (GGNT# remains asserted until either		
	GREQ# de-asserts or data phase ready)		
0	Arbitration Priority Between CPU-to-PCI Post		
	Write and PCI Master Request After PCI Master		
	Access		
	0 CPU-to-PCI write buffer has prioritydefault		
	1 PCI master has priority		
Device	0 Offset AD – AGP Latency TimerRW		
7-5	Reserved always reads 0		
4	Choose First or Last ready of DRAM		
	0 Last ready chosendefault		
	1 First ready chosen		
3-0	AGP Data Phase Latency Timer default = 02h		

Device 1 Header Registers - PCI-to-PCI Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u>.

Device	1 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	1 Offs	et 3-2 - Device ID (8698h)RO
15-0	\mathbf{D}	Code (reads 8698h to identify the VT82C693A
		o-PCI Bridge device)
Device	1 Offs	et 5-4 – Command (0007h)RW
15-10		
9	Fast	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8	SER	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
		R# is used to report parity errors if bit-6 is set).
7	Addı	ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette Snoop (Not Supported)RO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette writes on PCI bus
		(10-bit decode of I/O addresses 3C6-3C9 hex)
4		ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3		ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
	_ 1	Monitors special cycles
2		MasterRW
	0	Never behaves as a bus master
	1	Enable to operate as a bus master on the
		primary interface on behalf of a master on the
4	N. f	secondary interfacedefault
1	_	ory SpaceRW
	0	Does not respond to memory space
0	1	Enable memory space accessdefault
0	I/O S	
	0	Does not respond to I/O space
	1	Enable I/O space accessdefault

Device	1 Offset 7-6 - Status (Primary Bus) (0220h) RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#) always reads 0
13	Signaled Master Abort
	0 No abort receiveddefault
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort receiveddefault
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
0	11 Reserved
8	Data Parity Error Detectedalways reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capablealways reads 1
4 3-0	Supports New Capability list always reads 0 Reserved always reads 0
3-0	Reserved aiways reads 0
Device	1 Offset 8 - Revision ID (00h)RO
7-0	VT82C693A Chip Revision Code (00=First Silicon)
Device	1 Offset 9 - Programming Interface (00h)RO
	gister is defined in different ways for each Base/Sub-
	ode value and is undefined for this type of device.
7-0	Interface Identifieralways reads 00
7-0	interface identifierarways feads 00
Device	1 Offset A - Sub Class Code (04h)RO
7-0	Sub Class Code .reads 04 to indicate PCI-PCI Bridge
Device	1 Offset B - Base Class Code (06h)RO
7-0	
, 0	Base Class Code reads 00 to marcate Bridge Bevice
Device	1 Offset D - Latency Timer (00h)RO
7-0	Reserved always reads 0
Device :	1 Offset E - Header Type (01h)RO
7-0	Header Type Codereads 01: PCI-PCI Bridge
_	1 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supported reads 0: no supported functions
6	Start Test write 1 to start but writes ignored
5-4	Reserved always reads 0
3-0	Response Code 0 = test completed successfully

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device	1 Offset 3F-3E - PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)	RW
This register is read write, but internally the chip always uses bus 0 as the primary.	15-4 3	Reserved always reads 0 VGA-Present on AGP 0 Forward VGA accesses to PCI Bus #1 default
Device 1 Offset 19 - Secondary Bus Number (00h)RW		1 Forward VGA accesses to PCI Bus #2 / AGP
7-0 Secondary Bus Number		Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h)RW		B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number		BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh
Device 1 Offset 1B - Secondary Latency Timer (00h)RO		memory space; if not, the VGA will use those
7-0 Reservedalways reads 0	2	addresses to emulate MDA modes. Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (F0h) RW 7-4 I/O Base AD[15:12] default = 1111b 3-0 I/O Addressing Capability default = 0		O Forward all I/O accesses to the AGP bus if they are in the range defined by the I/O Base and I/O Limit registers (device 1 offset 1C-1D)
Device 1 Offset 1D - I/O Limit (00h) RW 7-4 I/O Limit AD[15:12] default = 0 3-0 I/O Addressing Capability default = 0		1 Do not forward I/O accesses to the AGP bus that are in the 100-3FFh address range even if they are in the range defined by the I/O Base and I/O Limit registers.
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	1-0	Reservedalways reads 0
15-0 Reserved always reads 0000		·
Device 1 Offset 21-20 - Memory Base (FFF0h)RW		
15-4 Memory Base AD[31:20] default = FFFh 3-0 Reserved always reads 0		
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW		
15-4 Memory Limit AD[31:20]		
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW 15-4 Prefetchable Memory Base AD[31:20]def = FFFh 3-0 Reserved always reads 0		
<u>Device 1 Offset 27-26 - Prefetchable Memory Limit</u> (0000h)RW		

Reserved

15-4 Prefetchable Memory Limit AD[31:20] def = 0

..... always reads 0

<u>Device 1 Configuration Registers - PCI-to-PCI Bridge</u>

AGP Bus Control

7	CPU-to-AGP Post Write
-	0 Disabledefault
	1 Enable
6	CPU-to-AGP Dynamic Burst
	0 Disabledefault
	1 Enable
5	CPU-to-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4	AGP to DRAM Prefetch
	0 Disabledefault
	1 Enable
3	CPU to AGP Posting Write
	0 Disabledefault
	1 Enable
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
	1 Enable
0	AGP Delay Transaction
	0 Disabledefault
	1 Enable

Table 6. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	3Bx
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offset 41 - CPU-to-AGP Flow Control 2 (00h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPUdefault
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	Post Write Data on Abort
	0 Flush entire post-write buffer on target-abort
	or master abortdefault
	1 Pop one data output on target-abort or master-
	abort
2	CPU Backoff on AGP Read Retry Timeout
	0 Disabledefault
	1 Enable
1-0	Reservedalways reads 0
	,,
Device	1 Offset 42 - AGP Master Control (00h)RW
7	Read Prefetch for Enhance Command
	0 Always Perform Prefetchdefault
	1 Prefetch only if Enhance Command
6	AGP Master One Wait State Write
	0 Disable default
	1 Enable
5	AGP Master One Wait State Read
	0 Disable default
	1 Enable
4	Extend AGP Internal Master for Efficient
	Handling of Dummy Request Cycles
	0 Disabledefault
	1 Enable
	This bit is normally set to 1.
3	AGP Delay Transaction Timeout
	0 Disabledefault
	1 Enable
2	Prefetch Disable When Delay Transaction Occurs
	0 Normal operationdefault
	1 Disable prefetch when doing fast response to
	the previous delay transaction or doing read
	caching
1	Reserved always reads 0
0	Reserved (do not use) default = 0

Device	1 Offset 43 - AGP Master Latency Timer (00h) RW	Device 1 Offset 80 - Capability ID (01h)RO
7-4	01 0 10 1101 11110 5101	7-0 Capability IDalways reads 01h
	0 Disable (no timer)default 1 16 GCLKs	Device 1 Offset 81 – Next Pointer (00h)RO
	2 32 GCLKs	7-0 Next Pointer: Nullalways reads 00h
	 F 128 GCLKs	
3-0	AGP master Time slot	D 1 Offers 92 December 1 (021) DO
	0 Disable (no timer)default	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
	1 16 GCLKs	7-0 Power Mgmt Capabilitiesalways reads 02h
	2 32 GCLKs	Device 1 Offset 83 - Power Mgmt Capabilities 2 (00h) RO
	 F 128 GCLKs	7-0 Power Mgmt Capabilities always reads 00h
		Davido 1 Offact 94 Davida Manut Ctul/Status (00h) DW
<u>Device</u> 7-1 0	1 Offset 44 – Backdoor Device ID Control (00h)RW Reserved Back Door Device ID 0 Disable	Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW 7-2 Reserved always reads 0 1-0 Power State default 00 D0 default 01 -reserved- 10 -reserved- 11 D3 Hot
7-1 0	Reserved Back Door Device ID 0 Disable	7-2 Reserved
7-1 0 Device	Reserved Back Door Device ID 0 Disable	7-2 Reserved
7-1 0 Device	Reserved Back Door Device ID 0 Disable	7-2 Reserved
7-1 0 Device	Reserved Back Door Device ID 0 Disable	7-2 Reserved

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Ambient operating temperature	0	70	oC
Storage temperature	-55	125	oC
Input voltage	-0.5	5.5	Volts
Output voltage ($V_{CC} = 3.1 - 3.6V$)	-0.5	$V_{CC} + 0.5$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

 $\frac{DC\ Characteristics}{TA\text{-}0\text{-}70^{0}\text{C},\ V_{CC}\text{=}5V\text{+}/\text{-}5\%,\ GND\text{=}0V}$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.50	0.8	V	
V_{IH}	Input high voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V_{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
$I_{\rm IL}$	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-		mA	

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 7. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power (VCC, VCCI, VTT, AVCC, HVCC)	3.135	3.465	Volts
5V Reference (5VREF)	4.75	5.25	Volts
Temperature	0	70	oC

Drive strength for each output pin is programmable. See Rx6D for details.

Table 8. AC Characteristics – Host CPU Interface Timing

Symbol	Setup and Hold	Setup	Hold	Unit	Comment
Thds / Thdh	HD[63:0]# Bus	1.5	0.5	ns	85 Degrees F.
Thas / Thah	HA[31:3]# Bus	1.5	0.5	ns	85 Degrees F.
Tads / Tadh	ADS#	1.5	0.5	ns	85 Degrees F.
Tdbs / Tdbh	DBSY#	1.5	0.5	ns	85 Degrees F.
Tdrs / Tdrh	DRDY#	1.5	0.5	ns	85 Degrees F.
This / Thih	HIT#	1.5	0.5	ns	85 Degrees F.
Thms / Thmh	HITM#	1.5	0.5	ns	85 Degrees F.
THLS / THLH	HLOCK#	1.5	0.5	ns	85 Degrees F.
Thrs / Thrh	HREQ[4:0]# Bus	1.5	0.5	ns	85 Degrees F.
Symbol	Min / Max Delay	Min	Max	Unit	Comment
Thdn / Thdx	HD[63:0]# Bus	1.4	4.10	ns	85 Degrees F.
Than / Thax	HA[31:3]# Bus	1.4	3.90	ns	85 Degrees F.
Tadn / Tadx	ADS#	1.4	3.85	ns	85 Degrees F.
Tdbn / Tdbx	DBSY#	1.4	3.85	ns	85 Degrees F.
TDRN / TDRX	DRDY#	1.4	3.85	ns	85 Degrees F.
Thin / Thix	HIT#	1.4	3.85	ns	85 Degrees F.
Thmn / Thmx	HITM#	1.4	3.85	ns	85 Degrees F.
Thrn / Thrx	HREQ[4:0]# Bus	1.4	3.85	ns	85 Degrees F.
TBNN / TBNX	BNR#	1.4	3.85	ns	85 Degrees F.
TDEN / TDEX	DEFER#	1.4	3.85	ns	85 Degrees F.
Thtn/Thtx	HTRDY#	1.4	3.85	ns	85 Degrees F.
Trsn / Trsx	RS[2:0]# Bus	1.4	3.85	ns	85 Degrees F.
TBPN / TBPX	BPRI#	1.4	3.85	ns	85 Degrees F.
TBRN / TBRX	BREQ0#	1.4	3.85	ns	85 Degrees F.
TCPN / TCPX	CPURST#	1.4	3.85	ns	85 Degrees F.
TCDN / TCDX	CPURSTD#	1.4	3.85	ns	85 Degrees F.

Table 9. AC Characteristics – SDRAM Timing

Symbol	Setup and Hold	Setup	Hold	Unit	Comment
Tmds / Tmdh	MD Bus	0.5	1.5	ns	85 Degrees F.
TMECCS / TMECCH	MECC Bus	0.5	1.5	ns	85 Degrees F.
Symbol	Min / Max Delay	Min	Max	Unit	Comment
Tmdn / Tmdx	MD Bus	0.6	3.8	ns	85 Degrees F.
TMEN / TMEX	MECC Bus	0.6	3.8	ns	85 Degrees F.
Tman / Tmax	MAA Bus	1.4	4.5	ns	85 Degrees F.
Tmbn / Tmbx	MAB Bus	1.4	4.5	ns	85 Degrees F.
Tran / Trax	RASA Bus	0.0	4.2	ns	85 Degrees F.
Trbn / Trbx	RASB Bus	0.0	4.2	ns	85 Degrees F.
TCAN / TCAX	CASA Bus	0.8	4.2	ns	85 Degrees F.
TCBN / TCBX	CASB Bus	0.8	4.2	ns	85 Degrees F.
Tswn / Tswx	SWE Bus	0.0	4.2	ns	85 Degrees F.
Tscn / Tscx	SCAS Bus	0.8	4.2	ns	85 Degrees F.
TSRN / TSRX	SRAS Bus	0.0	4.2	ns	85 Degrees F.

MECHANICAL SPECIFICATIONS

Figure 6. Mechanical Specifications - 492-Pin Ball Grid Array Package