Ch. 4: Causation Can We Say What Caused the Effect?

1/19

Navigation

By Date

By Section

- March 3rd: start end
 March 5th: start end
- 4.1: start end4.2: start end

2 / 19

4.1: Association and Confounding

Introduction: Association vs. Causation

- Association (correlation): Two variables are associated, or related, if the value of one variable gives you information about the value of the other variable.
 - When comparing groups, this means that the proportions or means take on different values in the different groups.
 - $\circ~$ Or as one variable decreases, the other variable may decrease too. We'll see other examples in chapter 10.

4/19

We Record Two Variables Now

- Explanatory Variable(s): variable(s) that may explain the change in the variable of interest.
 - o Called the independent variable.
- Response Variable(s): variable(s) of interest we measure on observational units
 - o Called the dependent variable.
 - Chapter 1 and 2, we did hypothesis tests about the response variable. In chapter 3, we estimated the response variable.
- We hope that changes in the explanatory variable will affect the response variable => cause-and-effect relationship
 - End goal = find cause-and-effect relationships

5 / 19

Association vs. Causation

- Often in scientific studies, we see associations.
- Association, alone, is not enough to prove cause-and-effect relationships

See more spurious correlations here

6/19

Try to Explain This Association

• For example, try to explain to your group how this association could be a cause-and-effect relationship.

Why Can't Associations Determine Cause-And-Effect?

- Confounding Variable(s) affect both the explanatory and response variables enough to make cause-and-effect impossible to determine.
 - o These are other variables that you may not know about, or aren't
 - measured in your study.
 What are possible confounding variables in the association between ice cream sales and shark attacks?

8 / 19

Another Example

Phil Sokolof, an Omaha native, caused McDonalds to change their french fries. http://revisionisthistory.com/episodes/19-mcdonalds-broke-my-heart

Possible Confounding Variables Phil Could Have Considered

10 / 19

4.2: Observational Studies Vs. Experiments

11 / 19

Observational Study

- The values of the explanatory variable are simply observed. Researchers cannot change or assign them to observational units. Examples are:
 - o Does your child sleep with a night light?
 - Which NBA team does a player play for?
 - Which country were you born in?
 - o An animal's gender
 - Number of social media profiles
 - o Amount of video games a person owns
 - Commute to work in minutes

Experiment

- · Researchers can assign the values of the explanatory variable to observational units.
 - o In experiments, we can say observational units are called experimental units
- · Examples:

 - Treatment vs. Control (do nothing or give a placebo)
 Did you use the internet to play a game or pencil and paper?
 - Amount of days a plant doesn't have any water

13 / 19

Setting Up a Good Experiment

- We want to avoid two things:
 - Sampling Bias
 - Confounding Variables

We use two strategies in STAT 218

- Simple Random Sampling
- Random Assignment: Use a random/chance device to assign values of the explanatory variable to experimental units
 Randomly assign groups (categorical explanatory variable)
 Randomly assign a measurement (quantitative explanatory variable)

14 / 19

Random Sampling and Random Assignment

• You can use neither, one of them, or both to do your experiment.

15 / 19

Example and Benefits

- · I need some random students from the class...
- · I will randomly assign them a group
- · Benefits:
 - Random sampling gets rid of sampling bias. We can generalize our conclusions to the whole population.
 - Random assignment removes the effect of confounding variables. We can determine cause-and-effect if we have enough evidence to reject Ho.

16 / 19

Types of Experiments

- · No random assignment
 - o quasi-experiment (observational study)
- · Random assignment
 - o randomized experiment
- Random assignment and neither the researcher or experimental unit know what group or measurement they have
 - o double-blind experiment

17 / 19

Answer These Questions with your Group

Suppose you want to measure the average daily weight gain of steers. You assigned each steer dry-rolled corn or wet (fermented) corn. Then, you measured their average daily weight gain. You gathered a sample of 60 steers.

- What is the explanatory variable?
- What is the response variable?
- · How could you gather a random sample of steers?
- How would you do random assignment in this study?
- Can you identify a confounding variable?

Exploration 4.2

• Do questions 1 through 11 with your group

19 / 19