Slade Brooks

brooksl@mail.uc.edu

02.21.2023

Performance/Design Equation Sheet

Block 1

Atmosphere

Mach number = $M = \frac{TAS}{a}$

True air speed = TAS = $\frac{EAS}{\sqrt{\frac{\rho}{\rho_{SL}}}}$

Aircraft Nomeclature

average chord = c =
$$\frac{c_t + c_r}{2}$$

taper ratio =
$$\lambda = \frac{c_t}{c_r}$$

$$area = S = bc$$

aspect ratio = AR =
$$\frac{b^2}{S} = \frac{b}{c}$$

1/4 chord sweep =
$$\Lambda_{rac{c}{4}}$$
 = $rctan\left[an\Lambda_{LE}-0.25c_rrac{1-\lambda}{rac{b}{2}}
ight]$

mean aerodynamic chord = MAC =
$$\frac{2}{3}c_r\frac{1+\lambda+\lambda^2}{1+\lambda}$$

location of MAC =
$$y_{MAC}$$
 = $\frac{b}{6} \frac{1+2\lambda}{1+\lambda}$

Aerodynamics

coefficient of lift =
$$C_L$$
 = $\frac{nW}{qS}$

coefficient of drag =
$$C_D$$
 = $\frac{D}{qS}$ = $C_{D_o}+KC_L^2$

dynamic pressure = q =
$$\frac{1}{2}
ho V^2$$
 = $(\frac{q}{M^2}) M^2$

$$K = \frac{1}{\pi ARe}$$

wing efficiency factor = e

lift over drag =
$$\frac{L}{D}$$
 = $\frac{C_L}{C_D}$

Propulsion

propulsive power = Fv

propulsive efficiency =
$$\eta_P$$
 = $\frac{P_{avail}}{P_{generated}}$

thrust available = T_A

thrust required = T_R

$$specific \ fuel \ consumption = SFC = c = \frac{\mathit{fuelflow}(lbm/hr)}{\mathit{thrust}(lbf)}$$

fuel flow rate = FFR

c @ altitude =
$$c_{SL} rac{a}{a_{SL}}$$

Piston

$$T_A = SHP_{SL}(\frac{\eta_P}{V})(\frac{\rho}{\rho_{SL}})$$

$$FFR = SHP * c$$

Turboprop

$$T_A$$
 = $ESHP_{SL}(\frac{\eta_P}{V})(\frac{
ho}{
ho_{SL}})$

$$FFR = ESHP * c$$

High Bypass Turbofan

$$T_A = T_{SL}(\frac{0.1}{M})(\frac{
ho}{
ho_{SL}})$$

$$FFR$$
 = $Tc_{SL}(rac{a}{a_{SL}})$

Low/Mid Bypass Turbofan and Turbojet

$$T_A$$
 = $T_{SL}(rac{
ho}{
ho_{SL}})$

$$FFR$$
 = $Tc_{SL}(rac{a}{a_{SL}})$

Afterburner

$$T_A$$
 = $T_{SL}(rac{
ho}{
ho_{SL}})(1+0.7M)$

$$FFR = Tc_{SL}(\frac{a}{a_{SL}})$$

Weight

fuel fraction =
$$\frac{W_{fuel}}{W_{TO}}$$

payload fraction =
$$\frac{W_{payload}}{W_{TO}}$$

empty weight fraction = EWF =
$$\frac{W_{empty}}{W_{TO}}$$

$$\mathsf{takeoff} \ \mathsf{weight} = W_{TO} = W_{crew} + W_{payload} + W_{fuel} + W_{empty} = \frac{W_{crew} + W_{payload}}{1 - fuelfraction - EWF}$$

Block 2a

Flight Envelope

stall speed =
$$V_{stall}$$
 = $\sqrt{\frac{2Wn}{
ho SC_{L_{max}}}}$

max speed =
$$V_{max}$$
 = $\sqrt{rac{2}{
ho}q_{max}}$ = $M_{max}a$

max dynamic pressure =
$$q_{max}$$
 = Maxq = $(\frac{q}{M^2})_{SL}(\frac{maxKEAS}{a_{SL}})^2$

load factor = n =
$$\frac{L}{W}$$

Range and Endurance

minimum thrust required =
$$T_{req_{min}}$$
 = $W\sqrt{4C_{D_o}K}$ = minimum drag = D_{min}

speed for L/D max =
$$V_{\frac{L}{D_{max}}}$$
 = $(\frac{2}{\rho}\sqrt{\frac{K}{C_{D_o}}}\frac{W}{S})^{\frac{1}{2}}$

max L/D =
$$\frac{L}{D_{max}}$$
 = $(\frac{C_L}{C_D})_{max}$ = $\sqrt{\frac{1}{4C_{D_o}K}}$ = max endurance (R=1)

$$V_{\frac{C_L^{\frac{1}{2}}}{C_D}_{max}}$$
 = $V_{D/V_{min}}$ = 1.3161 $V_{L/D_{max}}$

$$\max \frac{C_L^{\frac{1}{2}}}{C_D} = \frac{3}{4} \left(\frac{1}{3KC_{D_0}^3} \right)^{\frac{1}{4}} = \max \text{ range (R=3)}$$

$$\max \frac{C_L^{\frac{3}{2}}}{C_D} = \frac{1}{4} \left(\frac{3}{KC_{D_o}^{\frac{1}{3}}} \right)^{\frac{3}{4}} = (R=1/3)$$

 W_o = initial weight, W_1 = final weight

Breguet range = R =
$$\frac{V}{c_t} \frac{L}{D} \ln \frac{W_o}{W_1}$$

range factor =
$$\frac{V}{c_t} \frac{L}{D}$$

endurance = E =
$$\frac{1}{c_t} \frac{L}{D} \ln \frac{W_o}{W_1}$$

endurance factor =
$$\frac{1}{c_t} \frac{L}{D}$$

Energy

total energy = E =
$$mgh + \frac{1}{2}mV^2$$

specific energy =
$$E_s$$
 = $h+rac{1}{2g}V^2$

specific excess power =
$$P_s$$
 = \dot{E}_s = $\frac{(T-D)V}{W}$

Min/Max V (possible)

$$T_A$$
 = D = $qS(C_{D_o}+KC_L^2)$

thrust to weight ratio = TWR =
$$\frac{T}{W}$$

wing loading =
$$\frac{W}{S}$$

$$\max \mathsf{V} = V_{max} = \big[\frac{\frac{T}{W}\frac{W}{S} + \frac{W}{S}\sqrt{(\frac{T}{W})^2 - 4C_{Do}K}}{\rho C_{Do}}\big]^{\frac{1}{2}}$$

$$\text{min V} = V_{min} = \big[\frac{\frac{T}{W}\frac{W}{S} - \frac{W}{S}\sqrt{(\frac{T}{W})^2 - 4C_{Do}K}}{\rho C_{Do}}\big]^{\frac{1}{2}}$$

Climb/Descent

Climb

$$\theta$$
 = climb angle, $\sin \theta = \frac{T-D}{W}$, $\cos \theta = \frac{L}{W}$

rate of climb =
$$R/C$$
 = P_s = $\frac{(T-D)V}{W}$ = $V[\frac{T}{W} - \frac{qC_{Do}}{\frac{W}{S}} - \frac{W}{S}\frac{K}{q}]$

max climb angle =
$$heta_{max}$$
, $\sin_{ heta_{max}} = rac{T}{W} - rac{1}{rac{L}{D_{max}}} = rac{T}{W} - \sqrt{4C_{D_o}K}$

speed for max climb angle =
$$V_{\theta_{max}}$$
 = $\sqrt{\frac{2}{
ho}(\frac{K}{C_{D_o}})^{\frac{1}{2}}\frac{W}{S}\cos\theta_{max}}$

$$\text{max rate of climb} = (R/C)_{max} = \big[\frac{W}{S} \, \frac{Z}{3\rho C_{D_o}}\big]^{\frac{1}{2}} \big(\frac{T}{W}\big)^{\frac{3}{2}} \big[1 - \frac{Z}{6} \, - \frac{3}{2Z(\frac{T}{W}^2(\frac{L}{D})_{max}^2)} \big]^{\frac{1}{2}} \big[1 - \frac{Z}{M}\big]^{\frac{1}{2}} \big[1 - \frac{Z}{M}\big]^{\frac$$

$$Z = 1 + \sqrt{1 + \frac{3}{(\frac{T}{W})^2(\frac{L}{D})_{max}^2}}$$

speed for max rate of climb =
$$V_{(R/C_{max})}$$
 = $\left[\frac{T}{W}\frac{W}{S}\frac{Z}{3\rho C_{D_0}}\right]^{\frac{1}{2}}$

time to climb =
$$t_{min}$$
 = $\frac{\Delta h}{(R/C)_{ave}}$

average rate of climb = $(R/C)_{ave}$ = average between R/C @ start and finish heights

Descent

$$heta$$
 = descent angle, $\sin heta = rac{D-T}{W}$, $\cos heta = rac{L}{W}$

rate of descent =
$$R/D$$
 = $V\sin\theta$ = $\frac{DV}{W}$

lift = L =
$$W \cos \theta$$

$$\tan \theta = \frac{1}{(\frac{L}{D})}$$

min descent angle =
$$\theta_{min}$$
, $an \theta_{min} = rac{1}{(rac{L}{D})_{max}}$, $an \theta_{min} = rac{height}{Range}$ for gliding flight

speed for min descent angle =
$$V_{\theta_{min}}$$
 = $\sqrt{\frac{2}{
ho}(\frac{K}{C_{Do}})^{\frac{1}{2}}\frac{W}{S}\cos\theta}$

$$\label{eq:minimum_R/D} \text{minimum R/D} = V_{V_{min}} = \sqrt{\frac{2}{\frac{3}{C_L}} \frac{W}{S}}$$

$$\sqrt{\rho (\frac{C_L^{\frac{3}{2}}}{C_D})^2}$$

speed for minimum R/D =
$$V_{V_{Vmin}}$$
 = $(\frac{2}{\rho}\sqrt{\frac{K}{3C_{D_o}}}\frac{W}{S})^{\frac{1}{2}}$ = $0.7598V_{(\frac{L}{D})_{max}}$

Ceilings

Ceiling Type	R/C Capability	P_s Capability
absolute	0 fpm	0 fps
service	100 fpm	1.67 fps
cruise	300 fpm	5 fps
combat	500 fpm	8.33 fps

Block 2b

Time/Fuel/Dist to Climb/Descend/Accel/Decel

Climb

minimum time to climb = t_{min} = $\frac{\Delta h}{(\frac{R}{C})_{ave}}$

fuel to climb = W_{fuel} = $\dot{W}_{ave}\Delta t$

average fuel flow rate = FFR = \dot{W}

distance to climb = s = $V_{ave}\Delta t$

$$\mathsf{velocity} = V = V_{\left(\frac{R}{C}\right)_{max}}$$

Descent

minimum time to descend = t_{min} = $\frac{\Delta h}{(\frac{R}{D})_{ave}}$

fuel to descend = 0

distance to descend = R = $\frac{\Delta h}{\tan \theta_{min}}$

Accelerate

acceleration =
$$\dot{V} = \frac{(T-D)g}{W}$$

time to accelerate =
$$t_{accel}$$
 = $\frac{\Delta V}{\dot{V}_{ave}}$

fuel to accelerate =
$$W_{fuel}$$
 = $\dot{W}_{ave}\Delta t$

distance to accelerate = s =
$$V_{ave}\Delta t$$

Decelerate

deceleration =
$$\dot{V}$$
 = $\frac{-Dg}{W}$

time to decelerate =
$$t_{decel}$$
 = $\frac{\Delta V}{\dot{V}_{ave}}$

fuel to decelerate = 0

distance to decelerate = s = $V_{ave}\Delta t$

Maneuvering

Level Turn

bank angle =
$$\phi$$
, $\cos\phi = \frac{W}{L}$, $\phi = \cos^{-1}\left(\frac{1}{n}\right)$

load factor =
$$n = \frac{L}{W}$$

turn radius =
$$R = \frac{mV^2}{L\sin\phi} = \frac{V^2}{q\sqrt{n^2-1}} = \frac{V}{\omega}$$
 (ft)

turn rate =
$$\omega$$
 = $\frac{V}{R}$ = $\frac{g\sqrt{n^2-1}}{V}$ (rad/s, expr as deg/s)

Sustained Turn (sus)

$$\text{max sustained load factor} = (n_{max})_{sust} = \sqrt{\frac{q}{K(\frac{W}{S})} \big[\frac{T}{W} - \frac{qC_{D_0}}{\frac{W}{S}}\big]} = \big(\frac{T}{W}\big) \big(\frac{L}{D}\big)_{max}$$

velocity for max sustained load factor =
$$V_{(n_{max})_{sust}}$$
 = $(\frac{2}{\rho}\sqrt{\frac{K}{C_{D_0}}}\frac{nW}{S})^{\frac{1}{2}}$

$$(n_{max})_{C_{L_{max}}} = \frac{qC_{L_{max}}}{(\frac{W}{S})}$$

Instantaneous Turn

corner velocity =
$$V_{corner}$$
 = $\sqrt{rac{2n_{max}(rac{W}{S})}{
ho C_{L_{max}}}}$

Takeoff and Landing

Takeoff

rotation speed = V_R = $1.05 V_{stall}$

liftoff speed = V_{LO} = $1.1V_{stall}$

obstacle speed = V_O = $1.2 V_{stall}$

rolling resistance = R = $\mu_r(W-L)$, L typically 0

coef of rolling resistance = μ_r , [0.02 ightarrow 0.08], typically 0.025

ground roll =
$$s_g$$
 = $\frac{V_{TO}^2}{2a}$

average acceleration during ground roll = a = $\frac{T-D-R}{\frac{W}{g}}$, typically @ $V=0.7V_{TO}$

drag during ground roll = D = $(C_{D_0} + \Delta C_{D_0})(\frac{1}{2}\rho(0.7V_{TO})^2S_{ref})$

Landing

approach speed = V_{app} = $1.2V_{stall}$ (1.3 for commercial)

touchdown speed = V_{TD} = $1.1V_{stall}$ (1.15 for commercial)

transition distance = s_{TR} = $3V_{TD}$

braking distance = s_{brake} = $\frac{V_{TD}^2}{2g\mu_b}$

coeff of braking = μ_b , [0.12 ightarrow 0.38]

landing ground roll = s_g = $s_{TR} + s_{brake}$