

CLOUD Analytics in the Cloud: Rise and Fall of Datacubes
COMPUTING Prof. Reza Farivar
APPLICATIONS

Datacube vs. Columnar RDBMS

- OLAP cubes traditionally known for extreme performance advantage over row-oriented RDBMS
 - Less important with recent advances in computers and columnar storage
- OLAP cubes demand that you load a subset of the dimensions you're interested in into the cube
- Columnar databases allow performing similar OLAPtype workloads at equally good performance levels without the requirement to extract and build new cubes
- Note: OLAP Datacubes typically offer richer analysis capabilities than RDBMSs, which are limited by the constraints of SQL
 - The main justification Datacubes are still relevant

Current state

- Smaller companies are less likely to consider data-cube-oriented tools or workloads, and strict dimensional modeling has become less important over time
- Large tech giants (Google, Facebook, Amazon) have chosen columnar stores
 - · Big Query, Redshift
- → One of the biggest shifts in data analytics over the past decade (2010 to 2020) is the move away from building Datacubes, to running OLAP workloads directly on columnar databases

Datacubes in the Future

- OLAP Datacubes typically offer richer analysis capabilities than RDBMSs, which are limited by the constraints of SQL
 - The main justification Datacubes are still relevant
 - OLAP cubes are being pushed upmarket
 - We may return to them in the future
- Example: Apache Kylin
 - Contributed by eBay in 2015
 - Build Datacubes on Hadoop and Spark
 - Utilizing HBase as Storage
 - Query billions of rows at sub-second latency
 - Identify a Star/Snowflake Schema on Hadoop
 - Build Cube from the identified tables
 - Query using ANSI-SQL and get results in sub-second, via ODBC, JDBC or RESTful API
- Druid, Apache Pinot (from Linkedin)
- Uber building a solution on Pinot + Presto

