TD Optique géométrique - Série 1: SMP2, SMC2, SMI2 & SMA2-

Exercice 1: (ASPECT ONDULATOIRE DE LA LUMIÈRE)

On considère une radiation lumineuse émise par une source monochromatique de période $T=1,67.10^{-15}~s.$ Il est à rappeler que la longueur d'onde dans le vide de la lumière visible à l'œil humain varie entre $\lambda_{violet}=400~nm$ et $\lambda_{rouge}=780~nm$.

- 1. Calculer la fréquence ν et l'énergie E de cette radiation ?
- 2. Quelle est sa longueur d'onde λ_o dans le vide ? est–elle visible à l'œil nu ?
- 3. Cette radiation se propage dans un verre d'indice de réfraction relatif à cette radiation n = 1,68.
 - (a) Déterminer sa vitesse de propagation v dans ce milieu?
 - (b) Quelle est la longueur d'onde λ de cette radiation relative à ce milieu? Comparer λ et λ_o ?
 - (c) Sa couleur change-t-elle dans le verre? Expliquer.

Données:

La célérité de la lumière dans le vide: $c=2,998\times10^8~m/s$; la constante de Planck: $h=6,62607004\times10^{-34}~J.s.$

Exercice 2: (Mesure d'indice d'un milieu et Angle limite)

Un rayon lumineux tombe à la surface de séparation entre de deux milieux 1 et 2, d'indices de réfraction respectifs n_1 et n_2 . On a mesuré, pour les angles d'incidence et de réfraction: $i_1 = 20^{\circ}$ et $i_2 = 32^{\circ}$.

- 1. Quel est le milieu de plus grand indice ? Calculer le rapport $\frac{n_2}{n_1}$.
- 2. Si l'un des milieux est l'air d'indice 1. Quel est l'indice de réfraction de l'autre milieu ?
- 3. Quel est l'angle d'incidence maximum, pour que le rayon traverse la surface dans le sens:
 - (a) milieu $1 \mapsto$ milieu 2
 - (b) milieu $2 \mapsto$ milieu 1

Exercice 3: (Bulle d'air immergée dans un liquide)

Une bulle d'air sphérique (n'=1) de rayon R est immergée dans un liquide d'indice n=4/3.

- 1. Quelle est la forme du dioptre dans ce système ? Représenter l'angle d'incidence i que forme un rayon incident parallèle à l'axe et qui arrive sur la face d'entrée de la bulle en un point I.
- 2. Calculer la valeur limite i_0 de l'angle d'incidence i pour laquelle il y a réflexion totale sur la bulle d'air pour un rayon incident parallèle à l'axe optique.
- 3. Quelle est alors la hauteur h_0 du rayon incident par rapport à l'axe de la bulle d'air en fonction de R ?
- 4. Dans le cas où $i > i_0$, donner l'expression de la déviation angulaire D subie par la rayon incident. Faire l'application numérique pour $i = 55^{\circ}$.
- 5. Pour $i \prec i_0$, déterminer l'expression de D en fonction de i et de r (r étant l'angle de réfraction); le rayon incident subit deux réfractions et ressort de la bulle d'air. Faire l'application numérique pour $i = 35^{\circ}$.

Exercice 4: (Prisme: réfraction & dispersion de la lumière)

PARTIE A:

Soit un prisme ABC rectangle en B, d'indice n = 1, 5. Les angles A et C sont respectivement 30° et 60°.

- 1. Tracer la marche d'un rayon lumineux normal à :
 - (a) La face AB
 - (b) La face BC
- 2. Donner les valeurs des angles qui interviennent dans le schéma.

PARTIE B:

On considère un prisme réalisé dans un milieu transparent d'indice n et d'angle au sommet \hat{A} . Ce prisme est \hat{A} plongé dans l'air dont l'indice de réfraction est assimilé à 1 (figure 1).

- 1. Rappeler les lois de Snell-Descartes relatives à la réfraction en I et en J?
- 2. Établir la relation entre \hat{A} , r et r' puis montrer que la déviation D introduite par le prisme s'écrit $D=i+i'-\hat{A}$?
- 3. On éclaire le prisme en faisceau lumineux constitué de la superposition de deux radiations, rouge et bleu. Quelle sera la valeur de l'angle entre les deux rayons à la sortie du prisme pour un même angle d'incidence $i = 30^{\circ}$?

On donne: $n_r = 1, 6, n_b = 1, 7 \text{ et } \hat{A} = 45^{\circ}.$

Phénomène de dispession

Figure 1: La réfraction d'un rayon lumineux par un prisme

Exercice 5: (PRINCIPE DE GUIDAGE DE LA LUMIÈRE PAR UNE FIBRE OPTIQUE)

Une fibre optique à saut d'indice est constituée d'un cylindre (le cœur) d'indice n_c entouré par une enveloppe (la gaine) d'indice n_g (Figure 2). On appelle l'ouverture numérique (ON) de la fibre, le sinus de l'angle d'incidence maximal pour lequel l'énergie transportée par le rayon est confinée dans le cœur.

Figure 2: Fibre optique