Submitted by:

Ketaki Sahasrabudhe MDS202422 Sampriti Mahapatra MDS202433

Report on DMML Assignment 3: Semi-Supervised Learning with Clustering

Objective

This assignment explores how to enhance classification performance in scenarios with limited labeled data using **semi-supervised learning** techniques. Specifically, it leverages **K-Means clustering** to propagate labels to unlabeled samples and assesses different propagation strategies.

Dataset and Setup

- Fashion MNIST and Overhead MNIST (OMNIST) datasets were used.
- All images were normalized to a [0, 1] pixel range.
- A small set of labeled examples was used to bootstrap learning.
- **K-Means** clustering with varying numbers of clusters (k = 50, 100, 200) was applied.
- Three label propagation strategies were evaluated:
 - Representatives Only: Only cluster centers are labeled.
 - Full Propagation: All samples in a cluster inherit the label of the closest representative.
 - Partial Propagation: Labels are propagated to a subset (likely based on confidence or proximity).

Fashion MNIST Results

Accuracy vs. Number of Clusters

Number of Clusters (k)	Representatives Only	Full Propagation	Partial Propagation
50	~0.675	~0.672	~0.671
100	~0.700	~0.698	~0.695
200	~0.760	~0.761	~0.748

Observations

- All three strategies showed **consistent improvements** in accuracy as k increased.
- Full propagation slightly outperformed other methods at k=200.
- Partial propagation lagged behind both other methods slightly at all cluster sizes.

Overhead MNIST (OMNIST) Results

Accuracy vs. Number of Clusters

Number of Clusters (k)	Representatives Only	Full Propagation	Partial Propagation
50	~0.245	~0.270	~0.450
100	~0.325	~0.320	~0.440
200	~0.375	~0.335	~0.447

Observations

- Partial propagation significantly outperformed the other two methods across all cluster sizes.
- Representatives only showed improvement with increasing k, but accuracy remained modest.
- **Full propagation** was consistently lower than partial propagation and similar to or slightly below the representatives-only approach.

Conclusions

- Label propagation using clustering is effective in low-label settings.
- For **Fashion MNIST**, **full propagation** at high cluster granularity (k=200) provides the best results.
- For **OMNIST**, **partial propagation** clearly leads in performance, suggesting the nature of the data benefits from more conservative or selective labeling.
- The optimal label propagation strategy may depend on dataset complexity and intra-class variance.