Лабораторная работа №7

Эффективность рекламы

Кувшинова К.О. группа НФИ-02-19

Содержание

1	Цель работ	Ы															4
2	З адание ра 2.0.1	боты Вариант 36				•				•	•	•			•	•	5
3	Теоретичсе	кое введение															6
4	Выполнени	е лабораторно	ой ра	боті	ol												9
	4.0.1	Решение															9
	4.0.2	Случай 1															9
	4.0.3	Случай 2															10
	4.0.4	Случай 3					 •							•			11
5	Вывод																12
6	Библиограф	рия															13

List of Figures

3.1	График решения уравнения модели Мальтуса	7
	График логистической кривой	
4.1	Код программы	ç
4.2	График распространения информации о товаре, где $lpha_1(t) = 0.94$	
	и $\alpha_2(t)=0.000094$	10
4.3	График распространения информации о товаре, где $lpha_1(t) =$	
	0.000094 и $lpha_2(t) = 0.94$	10
4.4	График распространения информации о товаре, где $lpha_1(t) =$	
	$0.94sin(t)$ и $\alpha_2(t) = 0.94sin(t)$	11

1 Цель работы

Рассмотреть модель рекламной компании.

2 Задание работы

2.0.1 Вариант 36

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.94 + 0.000094 n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000094 + 0.94 n(t))(N-n(t))$$

3.
$$\frac{dn}{dt} = (0.94 sin(t) + 0.94 sin(t)n(t))(N - n(t))$$

При этом объем аудитории N=1040, в начальный момент о товаре знает 9 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретичсекое введение

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\tfrac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1(t) \gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (fig. 3.1):

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой [^1] (fig. 3.2):

Figure 3.2: График логистической кривой

4 Выполнение лабораторной работы

4.0.1 Решение

Начальные условия:

N=1040 - максимальное количество людей, которых может заинтересовать товар

 $n_0 = 9$ - количество людей, знающих о товаре в начальный момент времени Код программы в OpenModelica (fig. 4.1):

```
model Adv1

parameter Real N=1040;// максимальное количество людей, которых может заинтересовать товар parameter Real n0=9; // количество людей, знающих о товаре в начальный момент времени parameter Real alpha1=0.94; parameter Real alpha2=0.000094;

Real n(start=n0);
equation

der(n)=(alpha1+alpha2*n)*(N-n); //случай1
der(n)=(alpha2+alpha1*n)*(N-n); //случай2
der(n)=(alpha1*sin(time)+alpha1*sin(time)*n)*(N-n); //случай3

end Adv1;
```

Figure 4.1: Код программы

4.0.2 Случай 1

```
rac{dn}{dt} = (0.94 + 0.000094 n(t))(N-n(t)) lpha_1 = 0.94 - характеризует интенсивность рекламной кампании lpha_2 = 0.000094 - сарафанное радио
```

График распространения информации о товаре с учетом платной рекламы и сарафанного радио (fig. 4.2):

Figure 4.2: График распространения информации о товаре, где $\alpha_1(t)=0.94$ и $\alpha_2(t)=0.000094$

4.0.3 Случай 2

 $\tfrac{dn}{dt} = (0.000094 + 0.94n(t))(N-n(t))$

 $\alpha_1 = 0.000094$ - характеризует интенсивность рекламной кампании

 $lpha_2=0.94$ - сарафанное радио

График распространения информации о товаре с учетом платной рекламы и сарафанного радио (fig. 4.3):

Figure 4.3: График распространения информации о товаре, где $\alpha_1(t)=0.000094$ и $\alpha_2(t)=0.94$

В случае 2 скорость распространения рекламы будет иметь максимальное значение в момент времени t=0.01.

4.0.4 Случай 3

$$\frac{dn}{dt}=(0.94sin(t)+0.94sin(t)n(t))(N-n(t))$$
 $\alpha_1=0.94sin(t)$ - характеризует интенсивность рекламной кампании $\alpha_2=0.94sin(t)$ - сарафанное радио

График распространения информации о товаре с учетом платной рекламы и сарафанного радио (fig. 4.4):

Figure 4.4: График распространения информации о товаре, где $\alpha_1(t)=0.94sin(t)$ и $\alpha_2(t)=0.94sin(t)$

5 Вывод

В ходе выполнения работы мы рассмотрели и построили модель рекламной компании.

6 Библиография

1. Кулябов, Д.С. Эффективность рекламы [Текст] / Д.С.Кулябов. - Москва: - 5 с. [^1]: Кулябов, Д.С. Эффективность рекламы.