Method and Results of Experiments

Rachel Rosenberg

https://github.com/rrosenb1/rrosenb1_msia490_2019/tree/project

The method I took for picking the best type of model to use was characterized by attempting to build several different kinds of models and then pick the best-performing one to further tune. In this paper, I will discuss specific pre-processing methodology, feature creation, multi-modeling methods, and tuning methods.

Preprocessing

For the initial modeling phase, where I built several kinds of models, I used the exact same dataset each time. This is a corpus of 600,000 blog posts from 20,000 different blogger.com authors in 2004. It is labelled with, and I am predicting with, each author's zodiac sign.

To clean for modeling, I manipulated the data to have one row per post (rather than one row per author), created the label as a category, and then performed standard NLP preprocessing steps of stripping, converting to lowercase, removing numbers, removing stop words, and lemmatizing. I originally stemmed words, but found that I could train much faster and without performance loss if I lemmatized with the NLTK package instead.

Feature Creation

I used TF-IDF word vectors as features for these models, as is standard practice in text classification modeling. A large part of the experimentation I did involved manipulating TF-IDF parameters; I manipulated min_df, the normalization method (L1 or L2), and ngram_range, keeping a constant max_df of 0.8. I also scaled the

Multi-Modeling

For the initial modeling phase, I used about 140,000 rows of this dataset, vectorized with min_df = 100, unigrams only, balanced datasets, and L2 regularization, in order to keep everything constant. I split into training and testing sets, with 33% of the data going to testing, and built each type of model once. Results seen below:

Model Name	Accuracy	F1-Score	Notes
Logistic Regression	0.371	0.370	
Decision Tree Classifier	0.314	0.314	
Random Forest	0.321	0.319	Very long training time
Classifier			
Support Vector Machine	0.368	0.367	Standard for NLP applications
K Nearest Neighbors	0.267	0.257	
MLPC Classifier	0.265	0.105	SKLearn built-in neural network model

I also investigated confusion matrices for each model type to ensure that there were no concerning patterns or model behaviors. For each model type, these came out fairly homogeneous, with a large number of misclassified samples evenly distributed. However, the MLPC Classifier (the Sklearn-based Neural Network) classified everything as Type 2 (the Earth type), because classes were imbalanced and there was no class-balance parameter. It is important

to make sure that misclassified samples are evenly distributed to rule out unbalanced class errors. Unbalanced classes are also the reason that I tracked F1-Score in addition to accuracy.

Overall, the **logistic regression** model performed the best of these 6 types. I moved forward with this model for parameter tuning.

Final Model Tuning

To tune the logistic regression model, I first manipulated TF-IDF parameters of min_df, ngram_range, and regularization type. Results below (green denotes accuracy > 40%, orange denotes accuracy < 35%):

Model	Accuracy	F1-Score
{'min_df': 25, 'ngram_range': (1, 1), 'penalty': '11'}	0.360	0.358
{'min_df': 25, 'ngram_range': (1, 1), 'penalty': '12'}	0.404	0.404
{'min_df': 25, 'ngram_range': (1, 2), 'penalty': '11'}	0.353	0.345
{'min_df': 25, 'ngram_range': (1, 2), 'penalty': '12'}	0.400	0.400
{'min_df': 25, 'ngram_range': (1, 3), 'penalty': '11'}	0.363	0.354
{'min_df': 25, 'ngram_range': (1, 3), 'penalty': '12'}	0.403	0.403
{'min_df': 50, 'ngram_range': (1, 1), 'penalty': '11'}	0.356	0.351
{'min_df': 50, 'ngram_range': (1, 1), 'penalty': '12'}	0.391	0.390
{'min_df': 50, 'ngram_range': (1, 2), 'penalty': '11'}	0.355	0.349
{'min_df': 50, 'ngram_range': (1, 2), 'penalty': '12'}	0.395	0.394
{'min_df': 50, 'ngram_range': (1, 3), 'penalty': '11'}	0.351	0.344
{'min_df': 50, 'ngram_range': (1, 3), 'penalty': '12'}	0.392	0.391
{'min_df': 75, 'ngram_range': (1, 1), 'penalty': '11'}	0.350	0.347
{'min_df': 75, 'ngram_range': (1, 1), 'penalty': '12'}	0.382	0.382
{'min_df': 75, 'ngram_range': (1, 2), 'penalty': '11'}	0.349	0.344
{'min_df': 75, 'ngram_range': (1, 2), 'penalty': '12'}	0.383	0.382
{'min_df': 75, 'ngram_range': (1, 3), 'penalty': '11'}	0.350	0.344
{'min_df': 75, 'ngram_range': (1, 3), 'penalty': '12'}	0.381	0.381
{'min_df': 100, 'ngram_range': (1, 1), 'penalty': '11'}	0.350	0.346
{'min_df': 100, 'ngram_range': (1, 1), 'penalty': '12'}	0.375	0.374
{'min_df': 100, 'ngram_range': (1, 2), 'penalty': '11'}	0.348	0.343
{'min_df': 100, 'ngram_range': (1, 2), 'penalty': '12'}	0.380	0.379
{'min_df': 100, 'ngram_range': (1, 3), 'penalty': '11'}	0.351	0.347
{'min_df': 100, 'ngram_range': (1, 3), 'penalty': '12'}	0.378	0.377

The pattern here is that lower min_df, bigrams or trigrams, and L2 regularization make the best combinations. There are a few cases here where bigrams outperform trigrams.

Knowing this, I moved into the final tuning step to tune the model parameters. Keeping previous best parameters of min_df = 25, ngram_range = (1,3), and penalty = L2, I now manipulated max_iterations, C (regularization strength), and multi-class solution method. I varied max_iterations at values of 100, 200, and 500, C at values of 0.5, 1, and 5, and multi-class methods of 'ovr' and 'auto'. The best combination was max_iterations = 100, C = 1, and multi-

class method = 'ovr'. The accuracy of this model was 0.405 and the F1-Score was 0.405. The confusion matrix was as follows:

[[4596 2177 1997 2438] [2336 4970 2227 2602] [1987 2003 3990 2183] [2377 2400 2142 4743]]

Conclusion

Overall, the best model to fit this dataset is a Logistic Regression with TF-IDF parameters $min_df = 25$, $ngram_range = (1,3)$, and $regularization penalty = 'L2' and model parameters <math>max_iterations = 100$, C = 1, and method = 'one-versus-rest'. This is the model that is used in predictions and for determining feature importances.