Lezione del 2 ottobre del prof. Frigerio

Definizione 0.1 (Omeomorfismo).

Una funzione $f: X \to Y$ tra spazi topologici è un omeomorfismo se è continua e se esiste $g: Y \to X$ continua tale che $f \circ g = Id_y$, $g \circ f = Id_X$.

In modo equivalente: f è continua, bigettiva e f^{-1} è continua

Definizione 0.2. Due spazi legati da un omeomorfismo si dicono omeomorfi

Osservazione 1.

- 1. Composizione di omeomorfismi è un omeomorfismo
- 2. Essere omeomorfi è una relazione di equivalenza
- 3. L'insime degli omeomorfismi da (X, τ) in se è un gruppo con la composizione

Osservazione 2. Se $f: X \to Y$ è continua e bigettiva, non è detto che sia un omeomorfismo ovvero f^{-1} può non essere continua.

Prendiamo come esempio $X=Y=\mathbb{R}$ allora le seguenti mappe sono continue

- $Id: (\mathbb{R}, \tau_D) \to (\mathbb{R}, \tau_E)$ $\forall A \in \tau_E \quad Id^{-1}(A) = A \in \tau_c$ infatti ogni sottoinsieme è un aperto nella topologia discreta
- $Id: (\mathbb{R}, \tau_E) \to (\mathbb{R}, \tau_C)$ $\forall A \in \tau_C$ allora $A = \mathbb{R} \setminus \{$ insieme finito $\}$ che è un aperto nella topologia euclidea
- $Id: (\mathbb{R}, \tau_C) \to (\mathbb{R}, \tau_I)$ $\forall A \in \tau_I \text{ allora } A = \emptyset \text{ oppure } A = \mathbb{R} \text{ ed in entrambi i casi } A \in \tau_C$

Nessuna delle seguenti mappe é continua

- $Id: (\mathbb{R}, \tau_E) \to (\mathbb{R}, \tau_D)$ {0} ùn aperto in τ_D ma $Id^{-1}(\{0\})$ non é un aperto della topologia euclidea
- $Id: (\mathbb{R}, \tau_C) \to (\mathbb{R}, \tau_E)$ B(0,1) è un aperto nella topologia euclidea ma non in quella cofinita $(\mathbb{R} \setminus B(0,1)$ è infinito)
- $Id: (\mathbb{R}, \tau_I) \to (\mathbb{R}, \tau_C)$ $X \setminus \{0\}$ è un aperto nella topologia cofinita ma non è un aperto in quella indiscreta

0.1 Finitezza

Definizione 0.3. Date τ e τ' topologie su un insieme X si dice che τ è **meno fine** di τ' se $\tau \subseteq \tau'$ (ogni aperto di τ è un aperto di τ'). In modo equivalente

$$\tau$$
è meno fine di τ' \Leftrightarrow $Id: (X,\tau') \to (X,\tau)$ è continua

In questo caso scriveremo $\tau < \tau'$

Osservazione 3. Essere meno fini è una relazione di ordine parziale. In generale τ_D è la più fine, mentre τ_I é la meno fine.

Su \mathbb{R} vale $\tau_I < \tau_C < \tau_E < \tau_D$

Lemma 0.1. Un intersezione arbitaria di topologie su X è una topologia su X

Dimostrazione. Sia τ_I con $i \in I$ topologie su X e sia $= \bigcap_{i \in I} \tau_i$.

Mostriamo che τ è una topologia

- Poichè $\emptyset, X \in \tau_i \, \forall i \text{ allora } \emptyset, X \in \tau$
- Se $A, B \in \tau$ allora $A, B \in \tau_i \, \forall i$ ed essendo τ_i una topologia $A \cap B \in \tau_i \, \forall i$ quindi $A \cap B \in \tau$
- Se $A_j \in \tau \, \forall j \in J$ allora $A_j \in \tau_i \, \forall i \, \forall j$ ed essendo τ_i una topologia $\left(\bigcup_{j \in J} A_j\right) \in \tau_i \, \forall i$ quindi $\left(\bigcup_{j \in J} A_j\right) \in \tau$

Corollario 0.2. Data una famiglia $\{\tau_i\}_{i\in I}$ di topologie su X esiste la più fine tra le topologie meno fini di ogni τ_i

$$\tau = \bigcap_{i \in I} \tau_i$$

Dimostrazione. Poicè au deve essere la meno fine ovviamente

$$\tau \subseteq \tau_i \, \forall i \quad \Rightarrow \quad \tau \subseteq \bigcap_{i \in I} \tau_i$$

Ogni altra topologia meno fine di tutte le τ_i deve essere contenuta nell'intersezione, dunque, volendo la più fine (più grande rispetto l'inclusione) deve essere proprio l'intersezione la topologia voluta infatti essa è una topologia per il lemma precedente

Corollario 0.3. Sia X un insieme, $S \subseteq \mathcal{P}(X)$.

Allora esiste la topologia meno fine tra quelle che contengono S

Dimostrazione. Sia Ω l'insieme delle topologie che contengono S. $\Omega \neq \emptyset$ infatti la topologia discreta vi appartiene dunque esiste $\bigcap_{i=0}^{\infty} \tau_i$

L'intersezione è una topologia per il lemma precedente ed ovviamente è la meno fine possibile

Definizione 0.4. Sia X un insieme e $S \subseteq \mathcal{P}(X)$.

La topologia meno fine tra quelle che contengono S si dice generate da S e S viene chiamata **prebase**

Definizione 0.5 (Base di una topologia).

Sia (X, τ) uno spazio topologico.

Una base di τ è un sottoinsieme $\mathfrak{B} \subseteq \tau$ tale che

$$\forall A \in A \quad \exists B_i \in \mathfrak{B}, \ i \in I \quad A = \bigcup_{i \in I} B_i$$

Definizione 0.6. X si dice a base numerabile oppure che X soddisfa il secondo assioma di numerabilità se ammette una base numerabile

Proposizione 0.4 (Criterio per una base).

Sia X un insieme (senza topologia).

$$\mathfrak{B} \subseteq \mathcal{P}(X) \text{ \'e una base di una topologia su } X \Leftrightarrow \begin{cases} (i)X = \bigcup_{B \in \mathfrak{B}} B \\ (ii) \forall A, A' \in \mathfrak{B} \quad \exists B_i \in \mathfrak{B}, \ i \in I \quad A \cap A' = \bigcup_{i \in I} B_i \end{cases}$$

 $Dimostrazione. \Rightarrow Discende direttamente dagli assiomi di topologia infatti supponendo che <math>\mathfrak{B}$ sia una base di τ topologia:

- (i) $X \in \tau$ quindi si esprime come unione di $B \in \mathfrak{B}$
- (ii) Se $A, A' \in \mathfrak{B}$ allora essi sono aperti di τ , anche $A \cap A'$ è un aperto della topologia e quindi anche $A \cap A'$ si esprime come unione di $B \in \mathfrak{B}$

 \Leftarrow Definiamo τ nell'unico modo possibile

$$A \in \tau \quad \Leftrightarrow \quad A = \bigcup_{i \in I} B_i \text{ per qualche } B_i \in \mathfrak{B}, \ i \in I$$

Verifichiamo che τ è una topologia

- $\emptyset \in \tau$ perchè τ contiene l'unione nulla $X \in \tau$ per la propietà (i)
- Se $A, A' \in \tau$ allora per definizone

$$A = \bigcup_{i \in I} B_i \quad A' = \bigcup_{j \in J} B_j \quad \Rightarrow \quad A \cap A' = \left(\bigcup_{i \in I} B_i\right) \cap \left(\bigcup_{j \in J} B_j\right) = \bigcup_{\substack{i \in I \\ j \in J}} (B_i \cap B_j)$$

Ciascun $B_i \cap B_j$ è unione di elementi di \mathfrak{B} per (ii) dunque $A \cap A'$ è unione di elementi di \mathfrak{B} come voluto

• Se $A_i \in \tau \ \forall i \in I$ allora A_i si scrive come unione di elementi di $\mathfrak B$ dunque $\bigcap_{i \in I} A_i$ è unione di unione di elementi di $\mathfrak B$

Proposizione 0.5. Siano X un insieme $e S \subseteq \mathcal{P}(X)$ prebase di τ , allora

- 1. Le intersezione finite di elementi di $S \cup \{X\}$ sono una base di τ
- 2. $A \in \tau \Leftrightarrow A$ è unione arbitraria di intersezioni finite di elementi di $S \cup \{X\}$

Dimostrazione. Mostriamo 1.

• Verifichiamo innanzitutto che $\mathfrak{B} = \{$ intersezione finita di elementi di $S \cup \{X\}\}$ è una base di qualche topologia utilizzando il criterio precedente

- X è banalmente unione di elementi di ${\mathfrak B}$
- Se $B_1, B_2 \in \mathfrak{B}$ allora sia B_1 che B_2 sono intersezione finita di elementi di $S \cup \{X\}$ dunque anche $B_1 \cap B_2$ lo è

Poichè sono verificate entrambe le propietà \mathfrak{B} è base di una topologia τ'

Mostriamo che τ = τ'
Per costruzione τ' contiene S dunque essendo τ la meno fine topologia che contiene S τ < τ'.
D'altronte una qualsiasi topologia che contiene S deve contenere τ' (intersezione finita e unione arbitraria di elementi di S) quindi τ' < τ

2. segue da 1. per definizione di base $\hfill\Box$