Foundations of Data and Knowledge-based Systems

ATMS – Assumption-based Truth Maintenance Systems

Franz Wotawa

Technische Universität Graz IICM – Software Technology Email: wotawa@ist.tugraz.at

Introduction

- Example
- Basic Definitions
- Algorithm
- Properties
- Extensions
- Bibliography

Example (I)

Propositional Theory Th

$$a,$$
 $c,$ $a \rightarrow b,$ $c \rightarrow d,$ $a \wedge c \rightarrow e,$ $b \wedge d \rightarrow \bot.$

 \perp , \rightarrow , \wedge designate falsity, implication, conjunction

Theory Th is inconsistent!

$$\begin{array}{c|ccc} a, a \to b & \models & b \\ c, c \to d & \models & d \\ a, c, a \land c \to e & \models & e \\ b, d, b \land d \to \bot & \models & \bot \end{array}$$

From \perp follows everything!

Example (II)

Aim: Eliminate inconsistency!

Default Logic (Only normal defaults):

$$\begin{array}{ll} \frac{true \quad A}{A}, & \frac{true \quad C}{C} \\ A \rightarrow b, & C \rightarrow d \\ A \wedge C \rightarrow e, & b \wedge d \rightarrow \bot. \end{array}$$

Compute Extensions

(= Consistent subsets of a theory)

$$\{A,b\}$$
 and $\{C,d\}$

Example (III)

Using the ATMS

ATMS Node: $\langle p, \{CSD_1, \dots, CSD_n\} \rangle$

 CSD_i . . . Consistent set of defaults (ATMS assumptions)

1.
$$A$$
 $\langle A, \{\{A\}\}\} \rangle$
2. C $\langle C, \{\{C\}\}\} \rangle$
3. $A \to b$ $\langle b, \{\{A\}\} \rangle$
4. $C \to d$ $\langle d, \{\{C\}\} \rangle$
5. $A \land C \to e$ $\langle e, \{\{A, C\}\} \rangle$
6. $b \land d \to \bot$ $\langle \bot, \{\{A, C\}\} \rangle$
 $\langle e, \{\} \rangle$

e is no longer supported! b is supported by A and d is supported by C.

Simple TMS System

- Algorithm
 - 1. Let Th be a set of facts and rules.
 - 2. If Th is consistent exit the algorithm.
 - 3. Otherwise, select a fact or rule r from Th.
 - 4. Remove r from Th, i.e., $Th = Th \setminus \{r\}$, and goto step 2.
- Makes no differences between facts and rules
- Makes no differences between different facts.
- Not appropriate in some (important) cases.

Problem-solver Architecture

Problem Solver domain knowledge, inference procedures, sends inferences to ATMS.

ATMS determine what data are believed and disbelieved, use assumptions and justifications

Example:

Multiplier m1 with behavior $\neg ab(m1) \rightarrow out(m1) = in_1(m1) \cdot in_2(m1)$

Problem solver knows that $in_1(m1) = 3$, $in_2(m1) = 3$, and the behavior. Under the assumption that $\neg ab(m1)$ the problem solver can conclude out(m1) = 6.

Problem solver sends justification to ATMS:

$$\Gamma(in_1(m1) = 3) \wedge \Gamma(in_2(m1) = 2) \wedge \Gamma(\neg ab(m1)) \rightarrow \Gamma(out(m1) = 6)$$

The data $\Gamma(\neg ab(m1))$ is an assumption.

Communication with ATMS (D74 Ex.)

Behavior and structure $mult(C) \land \neg ab(C) \rightarrow out(C) = in_1(C)*in_2(C), plus(C) \land \neg ab(C) \rightarrow out(C) = in_1(C) + in_2(C), mult(M1), mult(M2), mult(M3), plus(A1), plus(A2), in_1(M1) = a, in_2(M1) = c, ...$

Assumptions $\neg ab(M1), \neg ab(M2), \neg ab(M3), \neg ab(A1), \neg ab(A2)$ denoted by NAB(M1), NAB(M2), NAB(M3), NAB(M3), NAB(A1), NAB(A2).

Justifications $NAB(M1), in_1(M1) = 2, in_2(M1) = 3 \rightarrow out(M1) = 6, NAB(M1), out(M1) = 6, in_1(M1) = 2 \rightarrow in_2(M1) = 3, ...$

ATMS - Data as Graph (D74 Example)

Justifications send to the ATMS (only partially for forward propagation)

Definitions (I)

Node An ATMS node corresponds to a problem-solver datum.

Assumption A special node.

Justification Describes how nodes are derived from other nodes.

$$X_1, \ldots, X_n \Rightarrow X_{n+1}$$

where X_i are nodes and X_1, \ldots, X_n is the antecedence and X_{n+1} the consequent.

Justifications are Horn Clauses!

Environment Is a set of assumptions.

Context Is formed by a consistent environment and all nodes derived from it.

Characterizing environment Minimal consistent environment from which a context can be derived.

Definitions (II)

- A node n holds in an environment E iff n can be derived from E and the current theory Th, i.e., $E \cup T \models n$.
- An environment E is inconsistent if the **false** node (\perp) can be derived, i.e., $E \cup Th \models \perp$.
- Every node n has assigned labels. A label (for n) is a set of consistent environments from which n can be derived.
- Task of the ATMS: Compute node labels.

Definitions (III) - Label Properties

Consistent A label L for node n is consistent if all of its environments are consistent.

Sound A label L for node n is sound iff n is derivable from every environment E from L.

$$E \cup Th \models n$$

Complete A label L for node n is complete iff every consistent environment $E \not\in L$ for which $E \cup Th \models n$ is a superset of some E'inL, i.e, $E' \subset E$.

Minimal A label L for node n is minimal iff for every element E of L there exists no subset $E' \subset E$ from which n can be derived $E' \cup Th \models n$.

Consequences

- Task of the ATMS: Compute minimal, consistent, sound, and complete labels for every node.
- A node n is derivable from an environment E if
 E is element of the label or E is a superset of
 any element of the label.
- A node has an empty label iff it is not derivable from a consistent set of assumptions.
- Contexts are determined by node labels.
- ATMS can handle multiple contexts at the same time.

Coffee Machine Example

 $Request
ightarrow request \ Water
ightarrow water \ Beans
ightarrow beans \ request \land water \land beans
ightarrow coffee \ coffee
ightarrow water \ coffee
ightarrow water \ coffee
ightarrow beans$

Coffee Machine (II)

Model (cont.)

```
no\_coffee \land request \land water \rightarrow no\_beans
no\_coffee \land request \land beans \rightarrow no\_water
no\_coffee \land water \land beans \rightarrow no\_request
beans \land no\_beans \rightarrow \bot
request \land no\_request \rightarrow \bot
water \land no\_water \rightarrow \bot
coffee \land no\_coffee \rightarrow \bot
```

Observations

 no_coffee

Coffee Machine (III)

Coffee Machine (IV)

Add the fact water to the ATMS

Only missing Beans or Request remains as source of the misbehavior, i.e., no_coffee.

What means no_beans {{Request}}? Under the assumption that Request is true no_beans must be valid.

Robotics

- ATMS for representing the state of the world.
- Different kind of 'Facts': (1) Real facts, (2) Currently valid assumptions

The sun and moon exists vs. a specific door is open.

Corresponds to probability of change.

• Example: Passing a door

 $Open
ightarrow open \ open
ightarrow can_pass \ Closed
ightarrow closed \ closed
ightarrow can_not_pass \ can_pass \land can_not_pass
ightarrow \bot \ open \land closed
ightarrow \bot$

Basic Data Structure

Node

 γ_{datum} : $\langle datum, label, justificiations \rangle$

where datum is send by the problem solver.

- Premise, e.g., $\langle p, \{\{\}\}, \{()\} \rangle$
- Assumption, e.g., $\langle A, \{\{A\}\}, \{(A)\}\rangle$
- Assumed nodes, e.g., $\langle a, \{\{A\}\}, \{(A)\}\rangle$
- Derived nodes, e.g., $\langle can_pass, \{\{Open\}\}\}, \{(open)\}\rangle$
- Falsity, $\langle \perp, \ldots, \ldots \rangle$. Inconsistent environments are called NOGOODS.

Logical interpretations of

$$\langle n, \{\{A_1, \ldots, A_n\}, \{B_1, \ldots, B_m\}, \ldots\}, \{(x_1, \ldots, x_k), (y_1, \ldots, y_j), \ldots\} \rangle$$

$$(A_1 \wedge \ldots \wedge A_n) \vee (B_1 \wedge \ldots \wedge B_m) \vee \ldots \to n$$

$$(x_1 \wedge \ldots \wedge x_k) \vee (y_1 \wedge \ldots \wedge y_j) \vee \ldots \to n$$

ATMS Algorithm (I)

- Central task is do maintain node labels
- Only necessary when justification added
- J is supplied \Rightarrow **PROPAGATE** $(J, \Phi, \{\{\}\})$ is called. Φ indicates the absence of an optional antecedence node.
- Only incremental changes are propagated through the ATMS

ATMS Algorithm (II)

ALGORITHM **PROPAGATE** $((x_1, \ldots, x_n \to x_{n+1}), a, I)$

- 1. [Compute the incremental update] $L = \text{WEAVE}(a, I, \{x_1, \dots, x_n\})$. If L is empty, return.
- 2. [Update label and recur] **UPDATE** (L,x_{n+1}) .

ALGORITHM **UPDATE**(L,n)

- 1. [Detect nogoods] If $n = \bot$ then call **NOGOOD**(E) on each $E \in L$ and return $\{\}$.
- 2. [Update *n*'s label ensuring minimality]
 - (a) Delete every environment from L which is a superset of some label environment of n.
 - (b) Delete every environment from the label of n which is a superset of some element of L.
 - (c) Add every remaining environment of L to the label of n.
- 3. [Propagate the incremental change to n's label to its consequences] For every justificiation J in which n is mentioned as an antecedent call **PROPAGATE**(J,n,L).

ATMS Algorithm (III)

ALGORITHM **WEAVE**(a,I,X)

- 1. [Termination condition] If X is empty, return I.
- 2. [Iterate over the antecedent nodes] Let *h* be the first node of the list *X* and *R* the rest.
- 3. [Avoid computing the full label] If h = a, return **WEAVE**(Φ, I, R).
- 4. [Incrementally construct the incremental label] Let I' be the set of all environments formed by computing the union of an environment of I and an environment of h's label.
- 5. [Ensure that I' is minimal and contains no known inconsistency] Remove from I' all duplicates, nogoods, as well as any environment subsumed by any other.
- 6. Return **WEAVE**(a, I', R).

ALGORITHM NOGOOD(E)

- 1. Mark E as nogood.
- 2. Remove E and any superset from every node label.

Example

Consider the Coffee Machine Example before adding the fact no_coffee .

And add the fact no_coffee by calling **PROPAGATE**(($\rightarrow no_coffee$), Φ ,{{}}).

Example (cont.)

```
PROPAGATE((\rightarrow no\_coffee), \Phi, \{\{\}\})
    L = WEAVE(\Phi, \{\{\}\}, \{\}) = \{\{\}\}\}
    \mathsf{UPDATE}(\{\{\}\}, no\_coffee)
        \langle no\_coffee, \{\{\}\}, \ldots \rangle
        PROPAGATE((coffee \land no\_coffee \rightarrow \bot), no\_coffee, \{\{\}\})
            L = WEAVE(no\_coffee, \{\{\}\}, \{coffee, no\_coffee\})
                h = coffee, R = \{no\_coffee\}
                I' = \{\{Water, Beans, Request\}\}
                WEAVE(no_coffee,
                         \{\{Water, Beans, Request\}\}, \{no\_coffee\}
                     h = no\_coffee, R = \{\}
                     WEAVE(\Phi, \{\{Water, Beans, Request\}\}, \{\})
            L = \{\{Water, Beans, Request\}\}
            UPDATE(\{\{Water, Beans, Request\}\}, \bot)
                 NOGOOD(\{Water, Beans, Request\}) (*)
Labels at position (*):
                           \{\{\mathsf{Water}\}\}
           water
                           \{\{Beans\}\}
           beans
           request
                           {{Request}}
           coffee
           no_coffee
           no_beans
           no_water
           no_request
                          {{Water, Beans, Request}}
           \perp
```

Some other Examples

• Multiple environments

$$\begin{array}{ll} A \rightarrow a & B \rightarrow b \\ a \rightarrow c & b \rightarrow c \\ c, d \rightarrow \bot & d \end{array}$$

• Multiple environments II

$$\begin{array}{lll} A \rightarrow a & B \rightarrow b \\ C \rightarrow c & D \rightarrow d \\ a, b \rightarrow e & a, c \rightarrow e \\ a, d \rightarrow e & b, c \rightarrow e \\ b, d \rightarrow e & c, d \rightarrow e \\ e, f \rightarrow \bot & f \end{array}$$

Properties of ATMS

- If there are n assumptions, then there are potentially 2^n contexts.
- There are $\binom{n}{k}$ environments having k assumptions.
- Label update for the ATMS is NP-complete.

The prove is done by (1) showing that the ATMS is in NP, and (2) find a polynomial reduction from a known NP-hard problem.

ad (1): ATMS must be in NP. Given a particular input, we can guess a set S of propositions of size k-1, set them to TRUE and run the Horn clause deduction in linear time to confirm that no contradiction arises.

ad (2) Reduction from the Max Clique Problem (MCP): Given an instance graph G, and an integer k, we want to find out if G contains as a subgraph a clique of size k-1 or more.

Prove (cont.) ATMS is NP-complete

Polynomial reduction from MCP to ATMS: n be the number of nodes in G. For every $v \in G$ let y_v be a proposition saying v is in the clique. The y_v 's are in the set of assumptions A and propositions X. Formula F is a conjunction of clauses: For every pairs $\langle v, w \rangle$ of nodes in G which are not adjacent, add the rule $y_v \wedge y_w \to \bot$. This means v and w does not belong to the same clique.

Claim G contains a clique of size k-1 or more iff there exists a set S of assumptions of size k-1, that, if all set to TRUE will leave F satisfiable.

Prove (Claim):

 (\Rightarrow) G contains a clique V of size k-1. Let all $y_v \in S$ where $v \in V$ be TRUE and the rest to FALSE. It is trivial to see that no rule in F fires. Thus, F is satisfiable.

Prove (cont. (II)) ATMS is NP-complete

(\Leftarrow) S is a set of k-1 assumptions that, if all set to TRUE, will leave F satisfiable. Let V_S be the set of corresponding nodes v, for which $y_v \in S$. We claim that V_S is a clique. Suppose the converse. Then there must be nodes v and w in V_S that are not adjacent in G. But then $y_v \land y_w \to \bot$ must be in F. Hence, F cannot be satisfiable, contradicting our initial assumptions. ■

The ATMS is NP-complete

Extensions - Hyper-resolution

Problem: Horn clauses cannot encode every propositional formula.

Solution: Extent the ATMS to accept positive clauses of assumptions A_1, \ldots, A_n .

$$choose \{A_1, \ldots, A_n\}$$

represents

$$A_1 \vee \ldots \vee A_n$$

All propositional formulas can be expressed using horn clauses and positive clauses.

The basic ATMS algorithm no longer ensures label consistency or completeness!

Hyper-resolution (II)

Example:

$$choose\{A, B\}$$
$$A \land C \to \bot$$
$$B \land C \to \bot$$

The basic ATMS algorithm does not find the nogood $\{C\}$. It does find $\{A,C\}$ and $\{B,C\}$!

Hyper-resolution Rule:

$$\frac{choose\{A_1,\ldots,A_n\}}{nogood\ \alpha_i \text{ where } A_i\in\alpha_i \text{ and } A_j\not\in\alpha_i, i\neq j, \text{ for all } 1\leq i,j\leq n}{nogood\bigcup_i [\alpha_i\setminus\{A_i\}]}$$

Example (cont.):

$$\begin{array}{ccc} choose\{A,B\} & A \lor B \\ nogood\{A,C\} & \neg A \lor \neg C \\ nogood\{B,C\} & \neg B \lor \neg C \\ \hline nogood\{C\} & \neg C \end{array}$$

The NATMS

Negated Assumptions ATMS (NATMS) allows negated assumption in the antecedents of justifications.

- Label consistency
- No hyper-resolution rule needed
- Produces more complete node labels
- Better encoding
- The negation of assumption A is a non-assumption node $(\neg A)$.
- Choose can be represented by the NATMS. For example

$$choose\{A, B, C\}$$

is expressed by

$$\neg A \land \neg B \land \neg C \to \bot$$
.

NATMS Algorithm

 Observation: Any negative clause of size k is equivalent to any of k implications.

$$\neg A \lor \neg B \lor \neg C$$

is equivalent to any of:

$$A \wedge B \to \neg C$$

$$A \wedge C \to \neg B$$

$$B \wedge C \to \neg A$$

• NATMS has new inference rule:

$$\frac{nogood\{A_1,\ldots,A_n,A_{n+1}\}}{A_1,\ldots,A_n \to \neg A_{n+1}}$$

NATMS Algorithm (II)

Example: The NATMS discovers new nogood

$$nogood\{A, B, C\}$$

and produces the following labels:

$$\langle \neg A, \{\{B, C\}\} \rangle$$

$$\langle \neg B, \{\{A, C\}\} \rangle$$

$$\langle \neg C, \{\{A, B\}\} \rangle$$

representing the following justifications

$$B \wedge C \rightarrow \neg A$$
$$A \wedge C \rightarrow \neg B$$
$$A \wedge B \rightarrow \neg C$$

Note, it is not necessary to really install the justifications.

NATMS Algorithm (III)

The basic algorithm remains except the following.

ALGORITHM **NOGOOD**'(E)

3. [Handle negated assumptions] For every $A \in E$ for which $\neg A$ appears in some justification call **UPDATE**($\{E \setminus \{A\}\}, \neg A$).

Example:

$$\begin{array}{c} choose\{A,B\} \text{ represented by:} \\ \neg A \land \neg B \to \bot \\ A \land C \to \bot \\ B \land C \to \bot \end{array}$$

produces 2 nogoods $\{A, C\}$ and $\{B, C\}$.

$$\langle \neg A, \{C\} \rangle$$

 $\langle \neg B, \{C\} \rangle$

which when propagated to $\neg A \land \neg B \rightarrow \bot$ produces the nogood $\{C\}$.

Completeness of the NATMS?

The NATMS algorithm ensures label soundness, consistency, minimality but NOT completeness.

Example:

$$A \to b$$
$$\neg A \to b$$

Assuming no other justifications the NAMTS computes the label $\langle b, \{\{A\}\} \rangle$ which is incomplete! (b holds universally).

In most cases completeness not necessary \Rightarrow therefore omitted in the algorithm.

Encoding Tricks

 [Negated non-assumptions] For every negated non-assumption node n appearing in the antecedents of a justification define a new Assumption A and add two justifications:

$$\begin{array}{c} A \to n \\ \neg A \to \neg n \end{array}$$

Example:

$$\neg a \land B \to c$$
$$a \land D \to \bot$$

The encoding provides $\langle c, \{\{B, D\}\}\rangle$.

• [Negated assumptions as assumptions] Assume an assumption A. $\neg A$ is not seen as assumption. Create new assumption \sqrt{A} which should be the negated A. The following justifications must be added:

$$\begin{array}{c}
A \land \sqrt{A} \to \bot \\
\neg A \land \neg \sqrt{A} \to \bot
\end{array}$$

Now \sqrt{A} appears in the labels (while $\neg A$ doesn't).

Other Extensions

- Focusing the ATMS
 - Avoid label explosion
 - Restrict labels to subsets of a focus set
 - Restrict labels to an element of a fixed set of environments
- Integrating probability into the ATMS
 - Dempster-Shafer theory
 - Possibilistic theory
 - Certainty factors
 - Fuzzy Logic

Possibilistic ATMS (□-ATMS)

Possibilistic Logic(Dubois and Prade)

Logical sentences = *conjunctions* of possibilistic propositional clauses.

- Possibility measure $\Pi \in [0, 1]$:
 - 1. $\Pi(\bot) = 0, \Pi(\top) = 1$
 - 2. $\forall p, \forall q, \Pi(p \lor q) = \max \Pi(p), \Pi(q)$
 - 3. but $\Pi(p \wedge q) \leq \min \Pi(p), \Pi(q)$
- Necessity measure $N \in [0, 1]$:
 - 1. $N(p) = 1 \Pi(\neg p)$
 - 2. it follows $\forall p, \forall q, N(p \land q) = \min N(p), N(q)$
 - 3. and $N(p \vee q) \geq \max N(p), N(q)$

 \sqcap and N are dual

□-ATMS: Possibilistic Logic

- N(p) = 1 means that, given the available knowledge, p is certainly true.
- 1 > N(p) > 0 means that, p is somewhat certain and $\neg p$ not certain at all.
- $N(p) = N(\neg p) = 0 (= \Pi(p) = \Pi(\neg p) = 1)$ is the case of total ignorance. Nothing is known about the truth value of p.
- $0 < \Pi(p) < 1 (= 1 > N(p) > 0)$ means that p is somewhat impossible.
- $\Pi(p) = 0$ means that p is certainly false.

□-ATMS: Possibilistic Logic

 Clause attached with a lower bound of its necessity measure

$$(f \ \alpha)$$
 where $\alpha \in [0, 1], N(f) \ge \alpha$

Resolution rule

$$\frac{(c \ \alpha) \ (c' \ \beta)}{(\mathsf{Resolvent}(c,c') \ \mathsf{min} \ \alpha,\beta)}$$

• Example:

C1
$$(\neg a \lor \neg b \lor \neg c \ 0.7)$$

C2 $(\neg d \lor c \ 0.4)$

From C1 and C2 the clause $(\neg a \lor \neg b \lor \neg d \ 0.4)$ can be derived.

□-ATMS: Principles

- Each clause has a weight, i.e., the lower bound of its necessity degree.
- Assumptions may also be weighted.
- A Π-ATMS should answer the following:
 - Under what configuration of assumptions is the proposition p certain to a degree α ?
 - What is the inconsistency degree of a given configuration of assumptions?
 - In a given configuration of assumption, to what degree is each proposition certain?
- Note, the Π-ATMS in its original form is more general than the NATMS.

□-ATMS: Definitions

- [Environment] $[E \ \alpha]$ is an environment of the proposition p iff $N(p) \geq \alpha$ is a logical consequence of $E \cup Th$ when all assumptions in E are set to TRUE with degree 1.
- [α -Environment] [E α] is an α -environment of p iff [E α] is an environment of p and $\forall \alpha' > \alpha$, [E α'] is not an environment of p.
- [α -Nogood] [E α] is a α -nogood iff $E \cup Th$ is α -inconsistent, i.e., $E \cup Th \models (\perp \alpha)$. A α -nogood is minimal if there is no other nogood [E', β] such that $E \subset E'$ and $\alpha \leq \beta$

□-ATMS: Definitions (II)

Labels (only using non-weighted assumptions)

- [(weak) consistency] \forall [$E_i \ \alpha_i$] \in L(p), $E_i \cup Th$ is β -inconsistent with $\beta < \alpha_i$. β ensures that only formulas with weights $> \beta$, and from which p can be deduced, are member of the p's label.
- [soundness] L(p) is sound iff $\forall [E_i \ \alpha_i] \in L(p)$ we have $E_i \cup Th \models (p \ \alpha_i)$.
- [completeness] L(p) is complete iff for every environment E' such that $E' \cup Th \models (p \ \alpha')$ then $\exists [E_i \ \alpha_i] \in L(p)$ such that $E_i \subset E$ and $\alpha_i \geq \alpha'$.
- [minimality] L(p) is minimal iff it does not contain two environments $[E, \alpha]$, $[E', \alpha']$ such that $E \subset E'$ and $\alpha > \alpha'$.

□-ATMS: Remarks

- Inconsistent environments can be element of a node label.
- Subset minimality of labels is not required.
- Solutions can be ranked.

Bibliography

- **kle86** Johan de Kleer. An assumption-based TMS. *Artificial Intelligence*, 28:127–162, 1986.
- **kle86d** Johan de Kleer. Extending the ATMS. *Artificial Intelligence*, 28:163–196, 1986.
- **kle86c** Johan de Kleer. Problem solving with the ATMS. *Artificial Intelligence*, 28:197–224, 1986.
- **kle88** Johan de Kleer. A general labeling algorithm for assumption-based truth maintenance. In *Proceedings AAAI*, pages 188–192, Saint Paul, Minnesota, August 1988. Morgan Kaufmann.
- **for88** Kenneth D. Forbus and Johan de Kleer. Focusing the ATMS. In *Proceedings AAAI*, pages 193–198, Saint Paul, Minnesota, August 1988. Morgan Kaufmann.
- **ruten91** Vladislav Rutenburg. Complexity classification of truth maintenance systems. In *STACS*, pages 372 382, 1991.