

Bone Doctor

Team Bravo

Ane Espeseth, Juraj Micko, Kwot Sin Lee, Leon Mlodzian, Nicole Joseph, Shehab Alshehab

Problem background

- Assist clinicians with analysing X-rays in hospitals
- Often untrained staff

X-ray	Bone doctor	Review by a clinician
Patient comes X-ray is taken	Produce information useful for the clinician	Decide on next steps

Features

Features

Refine the X-ray

Make the X-ray more readable for the clinician

Results

The MURA Dataset

- Classified body parts
- Classified normal / abnormal

Refining the X-ray

Refining the X-ray

Features

Find a fracture

Classify normal / abnormal, highlight abnormalities

Refine the X-ray

Make the X-ray more readable for the clinician

Classification of Normal/Abnormal

• A binary classification model to distinguish between normal and abnormal X-ray images.

Difference Highlighting

- We use our matched image in order to highlight abnormalities in the original image.
- In order to do this, we found a way to encode each pixel in a training image into a hashset so that the highlighter only has to do a lookup to determine if a pixel is abnormal.

Features

Find a fracture

Classify normal / abnormal, highlight abnormalities

Compare with similar cases

Use X-rays with similar views of the same body part to compare differences

Refine the X-ray

Make the X-ray more readable for the clinician

Clustering of Images

• Different views of each bone

- Unsupervised learning
- X-rays in dataset → feature vectors
- Input X-rays are assigned to pre-computed clusters
- Cluster quality evaluated by silhouette score ($\sim+0.1$)

Clustering of Images

Clustering of Images

Searching for Matching Images

- Using image hashing to locate the most similar subset of images.
- Given an input image, choose the most similar image from the subset by computing the cosine similarity of the images' feature vectors.
- Higher cosine similarity = greater visual similarity

Input Image

High Score

Low Score

Image hashing

- 40,000 images
- Searching all would be impossible in real time
- We instead use a hash function in order to compress the images
- A perceptual hash is one where visually similar images hash to the same thing or almost the same thing

Found similar images

Overlaying of Images

Results

Connecting the components

The User Interface

Bone Condition: negative Confidence: High

Add to dataset Enhance image

Bone Doctor

... taking healthcare three steps further

Team Bravo

Ane Espeseth, Juraj Micko, Kwot Sin Lee, Leon Mlodzian, Nicole Joseph, Shehab Alshehab

Bone Doctor is released under the MIT License.

The MURA dataset is released under <u>Stanford University School of Medicine MURA Dataset Research Use Agreement</u> Icons made by <u>Gregor Cresnar</u> and <u>Freepik</u> from <u>Flaticon</u> are licensed by <u>CC 3.0 BY</u>