17. Особенности работы на двухшпиндельном станке

Второй шпиндель позволяет изготавливать сложные детали без перестановки. Точность перехвата обеспечивает отсутствие погрешности выставления детали по углу и полное совпадение обработки с обработкой в первом шпинделе. Длинные детали можно обрабатывать зажатыми сразу двумя патронами вращающимися синхронно.

17.1 Блок выбора токарного патрона (НЕАD)

Если станок оснащен вторым шпинделем, то перед началом программирования обработки необходимо задать в каком шпинделе будет производиться обработка.

(1) МОДЕЛЬ (ТАРЕ) — тип работы токарного патрона.

одиноч	н синхрон				
	- N				

ОДИНОЧНЫЙ (SINGLE) – работает один патрон.

СИНХРОННЫЙ (SYNCH.) – работают два патрона в синхронном режиме. Синхронный режим для фрезерной обработки – это отдельная опция.

(2) ШП ББ (НЕАД) — номер активного шпинделя.

БАБКА 1	БАБКА 2				

17.2 Блок передачи заготовки (TRANSFER)

(1) МОДЕЛЬ (РАТ) — тип операции.

V 25%	<u>S1</u>)	0min ⁻¹	/ √/\ 37ı	mm/min	режим г	ІЕРЕХВАТА «	МЕНЮ> ?	
ЭАГО-	ПЕРЕДАЧА ПРУТКОВ ЗАГОТОВК	ПЕРМЕЩ ТОКАРН ШПИНДЕЛЯ						

 патрон заго-товка
 Цикл передачи детали из патрона в патрон.

 передача прутков заготовк
 Выдвигание прутковой заготовки из шпинделя с помощью контршпинделя.

 пермещ токарн шпинделя
 Перемещение контршпинделя в определенную позицию для дальнейшей работы.

(2) WII BB (HEAD).

При выборе цикла передачи детали из патрона в патрон (**ПАТРОН ЗАГОТОВКА**) в этом пункте указывается направление перехвата.

<u> </u>	0min ⁻¹ ∖	────────────────────────────────────	направлени	ИЕ ПЕРЕХВАТА «МЕНЮ	> ?
БАБКА 1 БАБКА ->БАБК 2 ->БАБК	***				

При выборе выдвигания прутковой заготовки из шпинделя с помощью контршпинделя здесь выбирается, в каком шпинделе останется зажатым пруток после выдвижения.

∼ 25%	<u>S1</u>	Omin ⁻¹	//// 37 1	mm/min	БАБКА (С незажаты	и патр ⊲мен	но> з	
шп бб 1	шп бб 2								

(3) ШПИНД (SPDL) — тип ориентации патронов при перехвате детали.

∼ 25%	<u>S1</u>)	0min ⁻¹	.//\/\ 37ı	nm/min	реж рб	г шп при пі	рдч згт⊲мен	H0> ?	
0 шпиндель стоп	1 ВПЕРЕД	2 назад	3 о риент	4 ОСЬ-С ВИДИК ОП	5 ДЕРЖАТЬ				

Цикл происходит при остановленных патронах (патроны не ориентированы и шпиндель находятся в токарном режиме) СТОП 1 Патроны вращаются по М03 с частотой, предварительно заданной параметром ТС58. ВПЕРЕП 2 Патроны вращаются по М04 с частотой, предварительно заданной параметром ТС58. назал 3 Цикл происходит при остановленных патронах, патроны сориентированы в ориент "ноль". Цикл происходит при остановленных патронах, патроны сориентированы в ось-с заданные позиции С1 и С2. позиция Шпиндели в состоянии после выполнения предыдущего блока. ДЕРЖАТЬ

(4) **НАЖИМ (PUSH)** – с поджимом или без выполняется перехват.

(5) **ПАТРОН (CHUCK)** — при выборе выдвигания прутковой заготовки из шпинделя указываем зажать патрон, указанный в пункте (1) после перемещения прутка или нет.

(6) **W1 (ПАТРОН ЗАГОТОВКА)** — позиция перехвата заготовки по оси W (устанавливается при наладке станка)

W1 (ПЕРЕДАЧА ПРУТКОВОЙ ЗАГОТОВКИ) — позиция захвата прутка по оси W (устанавливается при наладке станка)

(7) **W2 (ПАТРОН ЗАГОТОВКА)** – позиция возврата шпинделя по оси W (обычно "0")

W2 (ПЕРЕДАЧА ПРУТКОВОЙ ЗАГОТОВКИ) — позиция выдвижения прутка по оси W (**W1+**"величина выдвижения прутка")

W2 (перемещение токарного шпинделя) — позиция в которую должен переместится шпиндель по оси W.

(8) **Z-HOЛЬ** (**Z-OFFSET**) — позиция ноля детали после её перемещения (Рассчитывается).

- (9) С1 позиция по оси С при перехвате первого шпинделя.
- (10) С2 позиция по оси С при перехвате второго шпинделя.
- (11) С-НОЛЬ (С-ОFFSET) позиция ноля детали по оси С после её перемещения.

Рассмотрим пример: Необходимо по программе в автоматическом режиме выдвигать пруток для обработки следующей детали.

Рассмотрим каждую секцию отдельно:

• Отрезка детали. Отрезка происходит не полностью, так чтобы потом можно было бы отломать деталь.

Захват детали с прутком вторым патроном.

- 1. Перемещение второго шпинделя для захвата детали.
- 2. Зажим детали вторым шпинделем.
- Проверка прутка на окончание и возможность зажима остатка.

- 1. Разжим детали первым шпинделем.
- 2. Выдвижение прутка на расстояние L, где L=Длина детали + Минимальная длина зажима прутка.
- 3. Зажим детали первым шпинделем. Если патрон ничего не зажмет, следовательно, остаток прутка меньше минимальной длины зажима и станок будет остановлен по ошибке.

• Установка прутка на длину необходимую для изготовления детали.

- 1. Разжим детали первым шпинделем.
- 2. Пруток задвигается на рабочую длину.
- 3. Зажим детали первым шпинделем.
- Отделение детали от прутка.

1. Второй патрон во фрезерном режиме проворачивается и ножка, на которой оставалась деталь отламывается.

Возврат второго патрона с деталью в ноль по W.

17.3 Передача заготовки в формате IEA/ISO.

O1234(Example) G53.5 #101=124.750 (SP1 COF) #102=10.664 (SP2 COF) (MAIN SPINDLE SIDE) M901 G50S3000 M202 G00B0 G00G28U0V0W0 T0101 N101(EDG-R) G96M3S200 G00X110.0Z0.1 G99G01X22.0F0.3 G00Z0.8 N102(OUT-R)	Включение системы координат MAZATROL Задание угла по оси С первого шпинделя при перехвате Задание угла по оси С второго шпинделя при перехват Часть программы обработки в первом шпинделе Режим обработки в первом шпинделе Ограничение частоты вращения Токарный режим в первом шпинделе Возврат второго шпинделя по оси В в 0 (W-ось) Вывод револьверной головы в нулевую точку (X, Y, Z) Вызов инструмента Подрезка торца детали в первом шпинделе Задание постоянной скорости резания. Позиционирование Обработка на рабочей подаче Позиционирование Наружная обработка детали в первом шпинделе
(TRS CHK) G28U0V0W0 M902 M302 M200 (MAIN C-ON) G00C#101 M300(SUB C-ON) G110C2 G00C#102 G111 M306 M540 G00B-686.345 M508 G31B-3.F50 M202 M509	Часть программы перехвата во второй шпиндель Вывод револьверной головы в нулевую точку (X, Y, Z) Режим обработки во втором шпинделе Токарный режим во втором шпинделе Фрезерный режим в первом шпинделя по оси С Фрезерный режим во втором шпинделя по оси С Фрезерный режим во втором шпинделя по оси С Фрезерный режим во втором шпинделя Позиционирование второго шпинделя по оси С Отмена выбора оси С2 (отмена G110) Открытие кулачков второго патрона Режим передачи заготовки из шпинделя в шпиндель. Позиционирование второго шпинделя по оси В (W-ось) Включение поджима детали по торцу вторым шпинделем Поджим детали по торцу Токарный режим в первом шпинделе Отмена М508

M541	Отмена режима передачи заготовки
M307	Закрытие кулачков во втором патроне
M206	Открытие кулачков первого патрона
M302	Токарный режим во втором шпинделе
G00B0.	Позиционирование второго шпинделя по оси В (W-ось)
#3024=-686.345	Задание смещения заготовки для отрисовки
(SUB SPINDLE SIDE)	
N301(SP2 DRL)	Часть программы обработки во втором шпинделе
M902	Режим обработки во втором шпинделе
T0303	Вызов инструмента
G98G97	Включение ввода минутной подачи
M300	Фрезерный режим во втором шпинделе
M203S3184	Включение вращения фрезерного инструмента
G110C2	Включение оси С2 – ось второго шпинделя
G00C#102	Позиционирование второго шпинделя по оси С
M310	Фиксация оси С
G00X25.Z-5.	Позиционирование
G87Z-5.X5.Q5000P0.2F200	Цикл глубокого сверления
M312	Расфиксация оси С
G80	Отмена цикла сверления
G00C[#102+180.]	Позиционирование шпинделя по оси С - поворот на 180°
M310	Фиксация оси С
G87Z-5.X5.Q5000P0.2F200	Цикл глубокого сверления
M312	Расфиксация оси С
G80	Отмена цикла сверления
G111	Отмена выбора оси С2 (отмена G110)
G28G0U0V0W0	Вывод револьверной головы в нулевую точку (X, Y, Z)
M30	Конец программы

17.4 Величина передачи заготовки (#3024)

Переменная под номером #3024 используется для задания величины перемещения заготовки, которая осуществляется в программе EIA/ISO. Выполнение кадра с переменой #3024 не вызывает каких-либо перемещений по осям. УЧПУ информируется о передаче заготовки, чтобы для следующего технологического перехода программа в формате MAZATROL могла отчертить траекторию перемещения инструмента со стороны токарного шпинделя № 2 во избежание неправильной трактовки столкновения инструмента с перехваченной заготовкой.

17.5 Режим отрезки детали в двух шпинделях - М724.

Для отрезки детали зажатой одновременно в двух шпинделях необходимо задать М-команду: М724 (отмена М725). Эта М-команда обеспечивает работу патронов для зажима детали и предварительную нагрузку для оптимальной работы отрезного лезвия.

Параметры для	[
работы М724:	

RB14 bit $0 \rightarrow 1$	Включение команды М724
SV14(W) →50	Нагрузка по оси W во время отрезки при M724

Пример использования команды М724:

