- 一个新的页面的时候换出最旧的页面。换出的页面进入后备或者已修改链表。
 - 3) 内存紧缺:消滅(也即减小)工作集,通过移除最旧的页面从而降低工作集的最大值。

平衡集管理器(balance set manager)线程调用工作集管理器,使得其每秒都在运行。工作集管理器抑制一定数量的工作从而不会使得系统过载。它同时也监控要写回磁盘的已修改链表上的页面,通过唤醒ModifiedPageWriter线程使得页面数量不会增长得过快。

3. 物理内存管理

上面提到了物理页面的三种不同链表,空闲链表、后备链表和已修改链表。除此以外还有第四种链表,即全部被填零的空闲页面。系统会频繁地请求全零的页面。当为进程提供新的页面,或者读取一个文件的最后部分不足一个页面时,需要全零页面。将一个页面写为全零是需要时间的,因此在后台使用低优先级的线程创建全零页是一个较好的方式。另外还有第五种链表存放有硬件错误的页面(即通过硬件错误检测)。

系统中的所有页面要么由一个有效的页表项索引,要么属于以上五种链表中的一种,它们的全体称为页框号数据库(PFN数据库)。图11-35表明PFN数据库的结构。该表格由物理页框号索引。表项都是固定长度的,但是不同类型的表项使用不同的格式(例如共享页面相对于私有页面)。有效的表项维护页面的状态以及指向该页面数量的计数。工作集中的页面指出哪个表项索引它们。还有一个指向该页的进程页表的指针(非共享页),或者指向原型页表的指针(共享页)。

此外还有一个指向链表中下一个页面的指针(如果有的话),以及其他的若干诸如正在进行读和写的域以及标志位等。这些链表链接在一起,并且通过下标指向下一个单元,不使用指针,从而达到节省存储空间的目的。另外用物理页面的表项汇总在若干指向物理页面的页表项中找到的脏位(即由于共享页面)。表项还有一些别的信息用来表示内存页面的不同,以便访问那些内存速度更快的大型服务器系统上(即NUMA-非均衡存储器访问的机器)。

图 11-35 一个有效的页面在页框数据库上的一些主要域

工作集管理器和其他的系统线程控制页面在工作集和不同的链表间移动。下面对这些转变进行研究。 当工作集管理器将一个页面从某个工作集中去掉,则该页面按照自身是否修改的状态进入后备或已修改 链表的底部。这一转变在图11-36的(1)中进行了说明。

这两个链表中的页面仍然是有效的页面,当页面失效发生的时候需要它们中的一个页,则将该页移回工作集而不需要进行磁盘UO操作(2)。当一个进程退出,该进程的非共享页面不能通过异常机制回到以前的工作集,因此该进程页表中的有效页面以及挂起和已修改链表中的页面都移入空闲链表(3)。任何该进程的页面文件也得到释放。

其他的系统调用会引起别的转变。平衡集管理器线程每4秒运行一次来查找那些所有的线程都进入 空闲状态超过一定秒数的进程。如果发现这样的进程,就从物理内存去掉它们的内核栈,这样的进程的