Examen 7 mai 2008

Durée : 3h. Aucun document autorisé. Toute réponse doit être soigneusement justifiée.

Dans toute la suite, D désignera le disque unité $\{z \in \mathbb{C} : |z| < 1\}$.

- 1. On considère l'ensemble \mathcal{E} des fonctions holomorphes $f:D\to\mathbb{C}$ telles que |f(z)|<1 pour tout $z\in D$ et $f(0)=\frac{1}{2}$. Calculer $\sup_{f\in\mathcal{E}}|f'(0)|$, et montrer qu'il est atteint par un élément de \mathcal{E} . Décrire le plus spécifiquement possible les éléments de \mathcal{E} qui maximisent |f'(0)|.
- 2. Soit U un ouvert connexe qui contient un disque fermé $\overline{D}(a,r)$. Soit $f:U\to\mathbb{C}$ une fonction holomorphe telle que |f| est constante sur $\partial D(a,r)$. Montrer que f a au moins un zéro dans D.
 - Indication: pour un $z_0 \in D$ fixé, on pourra considérer la fonction $g(z) = f(z) f(z_0)$.
- 3. Soit U un ouvert contenant 0, et $f:U\setminus Z\to \mathbb{C}$ une fonction holomorphe, où $Z=\{z_n,n\in\mathbb{N}\}\cup\{0\}$ et $z_n\to 0$ quand $n\to\infty$. On suppose que f a un pôle en chaque z_n (noter que la singularité de f en 0 n'est alors pas isolée). Montrer que f(U) est dense dans \mathbb{C} . Indication: supposer, comme dans la preuve du théorème de Casatori-Weierstrass que $|f(z)-w|>\delta$ et considérer la fonction g(z)=1/(f(z)-w).
- 4. On considère la fonction méromorphe $f(z) = \frac{e^{i\pi z^2}}{\sin \pi z}$ sur \mathbb{C} . Calculer l'intégrale de f sur le bord du parallélogramme de sommets $\pm Re^{i\pi/4} \pm \frac{1}{2}$ et en déduire $\int_{-\infty}^{+\infty} e^{-x^2} dx$.
- 5. Soit $U = \mathbb{C} \setminus \mathbb{R}_-$, sur lequel on note L la détermination du logarithme qui vérifie L(1) = 0. Pour tout $z \in \mathbb{C}$, on note $u^{-z} = e^{-zL(u)}$.

 Pour $0 < \alpha < \pi/2$ et r > 0, on considère le chemin $\gamma_{\alpha,r}$ défini par concaténation des chemins $t \mapsto te^{i\alpha}$, $t \in]-\infty, -r]$; $t \mapsto re^{it}$, $t \in [\alpha \pi, \pi \alpha]$; $t \mapsto te^{i(\pi \alpha)}$, $t \in [r, +\infty[$.
 - (a) Montrer que l'intégrale $\int_{\gamma_{\alpha,r}} u^{-z} e^u du$ définit une fonction entière, notée $F_{\alpha,r}(z)$.
 - (b) Montrer que $F_{\alpha,r}$ ne dépend pas de α (0 < α < $\pi/2$), ni de de r > 0.
 - (c) Montrer que si $\Re \mathfrak{e}(1-z) > 0$, alors $F_{\alpha,r}(z) = 2i\sin(\pi z)\int_0^\infty t^{-z}e^{-t} dt$.
 - (d) En déduire que pour tout $z \in \mathbb{C}$,

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{\gamma_{\alpha,r}} u^{-z} e^u \ du$$