<u>Warmup</u>	let D : $F[x]$ to $F[x]$ be $D(p) = dp/dx$
what are son	ne D-stable linear subspaces?

e.g., for all n,

$$P_n = \{p \mid p = 0 \text{ or } deg(p) \le n\} \text{ is D-stable}$$

non-example:

$$\{p \mid p(3) = 0\}$$
 is not D-stable $[why?]$

Q

no: cannot solve
$$D(p) = \lambda p$$
 for polynomial p

does D have eigenvectors in F[x]?

<u>Df</u> a formal power series over F (= R, C) is an infinite sum $f(x) = sum_{k \ge 0} a_kx^k$ with a i in F for all i

$$F[[x]] = \{formal power series f(x)\}$$

the <u>formal derivative</u> on F[[x]] is the F-linear operator D def by

$$D(sum_k a_kx^k) = sum_k ka_kx^{k-1}$$

 \underline{Q} does D have eigenvectors in F[[x]]?

yes: $exp(\alpha x)$ where $exp(x) = sum_k (1/k!)x^k$

Q is F[[x]] iso to a familiar v.s.? [yes: F^N]

(Axler §5C) recap: fix T: V to V

- if $V = R^n$, then T might have no eigenvals [example? any rotation of $\theta \neq 0$, π radians]
- if V = F[x], then T might have no eigenvals
 [multiplication by x gives another example]
- if $V = \{0\}$, then T has no eigenvals by defin

[stated last time:]

Thm if F = C and V is fin. dim. and not {0}
then T must have some eigenval

what does this fact say in terms of matrices?

Lem if V is fin. dim. and T has an eigenline then T has a matrix of the form

* *

0 * ... *

...

0 * ...

Pf suppose v is the eigenvector for T
set v_1 = v
extend to a basis (v_i)_i for V

cor if F = C and n > 0
then any n x n matrix is conjugate to
one of this form

Thm

[something stronger holds:] if F = C and V is fin. dim., then any T has an upper-triangular matrix:

idea: induct on dim V if dim V = 0 then done else T has some eigenvector v with eigenvalue λ [what next?] $Tv = \lambda v$ means v in $ker(T - \lambda)$ so dim $ker(T - \lambda) > 0$ so dim im(T – λ) < dim V so want to apply inductive hypothesis to $im(T - \lambda)$ Stability Lem for any T: V to V and p(z) in C[z], im(p(T)) is T-stable

<u>Pf</u> if w in im(p(T))then w = p(T) v for some v in Vso Tw = T(p(T) v) = p(T)(T v) in im(p(T))

to see the last equality: zp(z) = p(z)z as polynomials so Tp(T) = p(T)T as operators on V

[even though general operators don't commute!]

Pf of Thm let $n = \dim V$; can assume n > 0

suppose $Tv = \lambda v$ where $v \neq 0$ let W = im(T $-\lambda$)

by lem, W is T-stable and dim W < n
by inductive hypothesis,
have ordered basis for W making T|_W triangular:
say, (w_1, ..., w_m)

extend ordered basis from W to V:
say (w_1, ..., w_m, v_1, ..., v_l)
claim that T is triangular wrt this extended basis[!]
suffices to check Tv_i's: for all i,

$$Tv_i = (T - \lambda)v_i + \lambda v_i$$
 in W + Fv_i

<u>Cor</u> any square matrix is conjugate to an upper-triangular matrix

Cor let f: Mat_2 to F be a function def by a polynomial in matrix coords

i.e. f = p(x11, x12, x21, x22) x11 x12 x21 x22

if f is conj-invariant then f is a polynomial in tr and det

<u>Pf Sketch</u> Tri_2 = {upper-triangular matrices}
Diag_2 = {diagonal matrices}

by thm, f is uniq. determ. by $f|_{Tri_2}$ observe: $f|_{Tri_2} = q(x11, x12, x22)$ for some q $tr|_{Tri_2} = x11 + x22$ $det|_{Tri_2} = x11 x22$ want $f|_{Tri_2}$ to be a poly in x11 + x22, x11 x22

```
Claim 1) q is indep of x12
          so q is uniq. determ. by q[_{Diag_2}]
Claim 2) q|_{Diag_2} invariant for x11 \leftrightarrow x22
to finish, use Viète's Thm:
     any poly in X, Y invariant under X \leftrightarrow Y
     is a poly in X + Y and XY
     [look up "elementary symmetric functions"]
shows q[_{Diag_2}] is a poly in x11 + x22, x11 x22
              x11 x12 1/a
                                 = x11 aa x12
   a
          1/a
                    x22
                                             x22
```

so $q(x11, x12, x22) = q(x11, a^2 x12, x22)$ for all a

[exercise:] forces q to be indep of x12

2) 0 1 x11 0 1 = x22 1 0 x11 forces
$$q|_{Diag_2}$$
 invariant under x11 \leftrightarrow x22 \Box return to the triangularity thm:

if $F = C$ and V is fin. dim. then $T = T' + T''$, where T' has a diagonal matrix

T" has a nilp. upper-triangular matrix

[in particular, it has 0's on the diagonal]

<u>Q</u> how block-diagonal can we make T?

next week:

Thm if W fin. dim. and S: W to W nilpotent then S has a matrix where the only nonzero entries are 1's on the "super-diagonal"

problem: in general, T = T' + T''

Q basis where T' is super-diagonal, T" is diagonal simultaneously?