Analysis 1 – Tutorium 7 robin.mader@campus.lmu.de 18.12.2020

Aufgabe 1 (Komposition stetiger Funktionen). Es seien $M, N, L \subseteq \mathbb{C}$ und $x \in M$. Angenommen, $f: M \to N$ ist stetig in x und $g: N \to L$ ist stetig in f(x).

Zeige: $g \circ f : M \to L$ ist stetig in x. Verwende hierbei die ε - δ -Definition der Stetigkeit in einem Punkt.

Aufgabe 2 (Pasting lemma). Es seien $A, B \subseteq \mathbb{R}$ offen. Setze $X := A \cup B$. Angenommen, $f: X \to \mathbb{R}$ ist eine Funktion, sodass $f|_A: A \to \mathbb{R}$ und $f|_B: B \to \mathbb{R}$ stetig sind. Zeige: f ist stetig.

Aufgabe 3 (Pathologisches Beispiel). Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} 1 & \text{falls } x = 0, \\ \frac{1}{q} & \text{falls } x = \frac{p}{q}, \text{ wobei } p \text{ und } q \text{ teilerfremd sind,} \\ 0 & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Zeige:

- (1) f ist periodisch: $\forall x \in \mathbb{R} \ \forall n \in \mathbb{Z} : f(x+n) = f(x)$.
- (2) f ist stetig in allen $x \in \mathbb{R} \setminus \mathbb{Q}$, aber unstetig in allen $x \in \mathbb{Q}$.

Abbildung 1: Thomaes Funktion f auf [0,1]

Aufgabe 4 (Leibniz-Kriterium, Gegenbeispiel zur Umordnung von Reihen). (a) Es sei $(a_n)_{n\in\mathbb{N}}\in(\mathbb{R}_0^+)^{\mathbb{N}}$ eine nichtnegative, monoton fallende Folge reeller Zahlen mit $a_n\xrightarrow{n\to\infty}0$. Dann konvergiert die Reihe $\sum_{n=1}^{\infty}(-1)^{n+1}a_n$.

(b) Betrachte nun $a_n = \frac{1}{n}$. Es sei $S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Betrachte die Umordnung $\sum_{n=1}^{\infty} (-1)^{\sigma(n)+1} \frac{1}{\sigma(n)}$ dieser Reihe, wobei

$$\sigma: \mathbb{N} \to \mathbb{N}, \quad \sigma(3n-2) = 2n-1, \quad \sigma(3n-1) = 4n-2, \quad \sigma(3n) = 4n, \quad n \in \mathbb{N}.$$

(Warum ist σ bijektiv?) Zeige, dass $\sum_{n=1}^{\infty} (-1)^{\sigma(n)+1} \frac{1}{\sigma(n)} = \frac{1}{2}S$.

Aufgabe 5 (Topologischer Beweis der Unendlichkeit der Primzahlen, Fürstenberg 1955). Für natürliche Zahlen $a, b \in \mathbb{N}_0$ sei $S(a, b) = a\mathbb{Z} + b = \{an + b \mid n \in \mathbb{Z}\}$. Setze

$$\mathcal{T} = \left\{ \bigcup_{(a,b)\in I} S(a,b) \mid I \subseteq \mathbb{N}_0 \times \mathbb{N}_0 \right\} \subseteq \mathcal{P}(\mathbb{Z}).$$

Zeige:

- (1) $(\mathbb{Z}, \mathcal{T})$ ist ein topologischer Raum.
- (2) Endliche offene Mengen sind leer.
- (3) Für alle $a, b \in \mathbb{N}_0$ ist S(a, b) offen und abgeschlossen.
- (4) Folgere die Unendlichkeit der Primzahlen aus

$$\mathbb{Z} \setminus \{\pm 1\} = \bigcup_{p \text{ Primzahl}} S(p, 0).$$