QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH MID-SEMESTER EXAMINATION OF SECOND SEMESTER - SECOND YEAR HTM SEMESTER) 2022, 20 BATCH, BLE (ES)

SUBJECT: INTEGRATED ELECTRONICS

Dated: 25.11.2022 Maximum Marks: 20 Time Allowed: 01 Hour,

NOTE: ATTEMPT ANY TWO (02) QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No	_	QUESTIONS	CLO	Taxonomy Level	PLO	Marks
01	(a)	Compare Integrated circuits over discrete circuits? Describe the types of IC's based on its manufacturing.		C_2	PLO_I	[05]
	(b)	to evolution of IC technology. Classify the types of IC's based on its applications.	Cro_I	C_2	PLO_I	[05]
02	(a)	Identify digital logic families based on their characteristics.	Cro ⁻ 1	C_2	PLO_I	[05]
	(в)	Transistor Logic (TTL) and Direct Coupled Transistor logic (DCTL) with circuit diagram and truth table.	Cro ⁻ 1	C_2	PLO_I	[05]
03	(a)	process.	CLO_I	C_2	PLO_I	[05]
	(ъ)	How ideal and practical Op-amp differ to each other? What is the use of differential amplifier at the input stage of Op-amp	Cro_i	C_2	PLO_I	[05]

The End

QUAID-E-AWAM UNIVERSITY OF ENGINEERING SCIENCE AND TECHNOLOGY, NAWABSHAII

MID SEMESTER EXAMINATION 2021 OF FIRST SEMESTER THIRD YEAR (20-BATCH) OF B.E. (ELECTRONICS ENGINEERING)

SUBJECT: COMPLEX VARIABLE AND TRANSFORMS

Dated: 22-11-2022 Time Allowed: I Hour (3 C.H) Max: Marks: 20

NOTE: ATTEMPT ANY TWO QUESTIONS.

Q. No		CLO	Tasonomy	Marks
l(a)	State and Prove De Moivre's theorem. Using De Moivre's theorem convert the following in to polar form: $\left(\frac{1}{2} - \frac{\sqrt{3}}{2}t\right)'$	1	Ci	6
l(a)	Simplify: i) log(1+√2/) ii) (1+1) ⁽¹⁻⁴⁾	1	C2	4
2	State and Prove Cauchy Riemann (C-R) Equation. Using C-R equation check the following functions are analytic or not. i) $f(z) = \sin(z)$ ii) $f(z) = \frac{z}{ z }$	1	Cı	10
	Define Harmonic function and conjugate harmonic function. Let $f(z)=u+iv$ is an analytic function then find the Harmonic Conjugate function v such that $f(x,y) = 2x(1-y)$.	ī	CI	10

Name of Subject Teacher: Mr. Mehboob Ali Jatoi

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH MID SEMESTER REGULAR EXAMNATION OF SECOND SEMESTER - SECOND YEAR 2022 OF 20-BATCH, B.E.(ES)

SUBJECT: ELECTRICAL MACHINES

Dated: 24.11.2022 Maximum Marks: 20 Time Allowed: 01 Hours.

Q. Ha.	QUESTION	(101	Tarasamy Level	rioi	Marks
Q. 01(a)	Why transformer rating in KVA? Also Explain an ideal transformer on No load condition.	CI	2	P1	05
Q. 01(b)	Derive an Expression of E.M.F equation of a transformer.	æ	4	P2	05
Q. 02(a)	Define the following 1. Mutual Induction 2. Magnet circuit 3. Reluctance. 4. D.C motor	cı	2	PI	04
Q. 02(b)	A 25KVA single phase transformer has 240 turns on the primary and 50 turns on the secondary winding. The primary is connected to 1500 Volts, 50Hz mains. Calculate i. primary and secondary current on full load ii. secondary e.m.f iii. maximum flux in the core.	æ	1	P2	06
Q.3(a)	Define working principle of D.C generator. With the help of sketch diagram, discuss the constructional parts of d.c Machines	CI	2	P1	os
Q.3(b)	A 4 pole lap wound d.c Generator has 400 conductors on its armature. The flux per pole is 0.03Wb. Calculate (i) The speed at which the Generator must be run to generate 200V.		1	PZ	05
	(2) What would be the speed if the Generator were Wave wound?		1		

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH FINAL SEMESTER REGULAR EXAMINATION OF SECONO SEMESTER - SECONO YEAR 2073 OF 20 BATCH BE (ES)

SUBJECT: ELECTROMAGNETIC FIELD THEORY

Dated: 16.01,2023 Maxim

Maximum Marks: 69 Time Allowed: 3 Hours.

Q.N	ła.	QUESTION	aoı	Taxonomy Level	PLO:	
Q. 61	8	Describe the concept of an electrostatic field as a conservative field.	1	2	1	5
	ΟV	If A = ρ cos φ a, + sin φ a, solve to find ∮A . dl around the path shown in Figure. Confirm the result using Stokes's theorem.	2	3	2	7
Q. %		Consider a parallel plate capacitor having $d = 5 \text{ mm}$, $S = 80 \text{ cm}^2$, and $r_0 = 10$. Solve to: V. If a dc source of 50 V is now placed across the capacitor, calculate E, D, Q and the total stored energy. VI. The source is now disconnected and the dielectric is carefully removed from between the plates. Find Q, D, E, and the total stored energy. VI. Find the new potential between the plates fall.	2	3	2	12
2-0/3	જ	Explain Biot-Savart's law with an example of a straight current carrying filamentary conductor of finite length AB.	1	2	1	6
		A circular loop located on $x^2 + y^2$ = 9, z = 0 carries a direct current of 10 A along a ₊ as shown in Figure. Solve to determine H at (0, 0, 4) and (0, 0, -4). Sketch the flux lines due to the circular current loop.	2	3	2	6

Q. 04	N	The magnetostatic fields have no sources and sinks.	1	2	1	6
	(M	A conducting bar can slide freely over two conducting rails as shown in the figure below. Calculate the induced voltage in the bar If the bar is stationed at y = 8 cm and B = 4 cos 10 ⁴ f as mWb/m ² If the bar slides at a velocity u = 20 a, m/s and B = 4 as mWb/m ²	2	3	2	6
Q:QS	બ	Explain the inadequacy of Ampere's law for time-varying conditions. How this inconsistency was addressed by Maxwell?	1	2	1	8
	(b)	In free space, E = 20 cos (est - 50x) a, V/m. Solve to find: i. Displacement current density, Ja = 50/2 ii. Magnetic field intensity, II	2	3	2	4

The End

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH

FINAL SEMESTER REGULAR EXAMINATION OF SECOND SEMESTER - SECOND YEAR 2023 OF 20-BATCH BLE (ES)

SUBJECT: MICROPROCESSORS AND MICROCONTROLLERS

Dated: 09.01.2023

Maximum Marks: 60

Time Allowed: 3 Hou

Q. No		QUESTIONS	CLO	Tasonomy Level	PLO.	Mari
01		Describe and draw the pin diagram of an 8085 microprocessor. Explain the functions of the following pins in detail 1. SID and SOD 2. INTR and INTA 3. RESET IN and RESET OUT 4. SO, S1 and IO/M' 5. HOLD and IILDA		C_3	PLO_1	12
02	(a)	Build a microprocessor program for 8085 MP to find the 2's complement of your ROLL NUMBER. Your roll number is already in hex format. Store the result at memory location 20FO _H . Add 05 _H to the result and store it in the next location 20FI _H .		C_6	PLO_4	06
	(b)	Create a microprocessor program for 8085 MP that compares two numbers (0FH and 11H), already stored at memory locations 2050H and 2051H respectively. Store the larger number at memory location 2080H		C_6	FLO_4	**
03		Hulld a microprocessor program for 8085 MP, that sum the following series up to 90 places. The series is available at memory locations starting from 2070s. The series is given as follows 01ss, 02ss, 03ss, 09ss. Store the result at the memory location at 2050s. The program starts from 2150s memory locations.		C.6	PLO_4	13
04	(a)	Build a microprocessor program that interchange (swap) the		C_6	PLO_4	06
	(b)	What is the machine cycle for the 8051 Microcontroller? Evaluate the Machine cycle for an 8051 microcontroller working at 28 MHz. What is the time required to execute multiplication instructions for this microcontroller? Multiplication instructions required 12 MC.		C_6	PI.O_4	06
05	(a)	Describe and draw the pin diagram of the 8051 microcontroller. Explain the functions of the following pins in detail, 1. Port 1 and Port 3 2. PSEN' 3. EA'		C ³	P1.O_1	06
	(b)	The state of the s	CLO_I	C.3	PLO_I	04

. Meencale .	. Op to		Macanais	Cip seds (Sent)		Marganir	Op sode (hes)	Ш	Maracek	Op sed
ADD A	(hes)	10	DCX IP	13	-	MOVEA	. 97	1├─	INZ	1 0
ADD E		ΙĿ	Dt .	· n	M	MOV LA	ű.	Ш	17	∵ R
ADD D	. 4		. 11	70		MOV E.C	29	Ш	, iii	R
VDD E .	- 8	H	PUT	76		MOY E.D	. W	н.	, ic	D8
ADD II	, ŭ	11	N.			MOV ET	S S	П	INC .	00
ADD M ·	· ti	ш	DOLA	DB				11 J	. 336	
ADI e		11	100	×	1	MOV E.M	2	11	110	
		11	INR C	œ.	1	NOV M.A	0	11. 1	857.0	
ADC A		1!	ba D.	14.	1	MOV H.S	. 61	1	RTI	8
ADC C			DOL H	N K	1	MOV N.D	à.	1	RST 2	
. ADC D			DOLL	£.	l	3.M VOM	6		ří i	DF.
ADC H		1.	M AM	. 34	l	MOV M.L	es :	1 -	BTI	0
ADC L	#C		. DC(3		١.	M,H YOM		11 -	257.5	v:
ADC M	· 44	1.	DCC D	. 13	l	ALL YOM	· a		1571	. 77.
ACI +	CZ	1	DCC N		ı	. NOV L.E	. 4		RST 1	T.
AMA A	A	_	MP at	- B	1	MON LC	. .		234 ·	. 70
WAY S	. 4		20	0		MOV LE				
ANA D	A3		DQ.	ä		MOV L.W	κ.	1 - 1	DAT.	
ANA E	. 23		IT as	n	l	MCA T'N	a	1 1	EED #	Д.
ANA L	AS	٠.	Na ·	!A		A.M YOM	77	1. [ZZV m	2
· W AKA		1	NC.	. 84	! :	MOY M.C	70	1 1	EXX I	. a
· ANI p	EA		17E as	· E4	II .	MOV M.D	n l	1.1	STAX D	ü
CALL	9	_	IPO at		11	S, M YOM M, M YOM	n	1 . F		
CZ	23		LDA	м		MOV MI	1 71	1 1	nc ·	37
Crist an	. 2		LDAX 8	O.	1	MIA	. 16	1 1	A EER	97 :
. 01.	IC.	L	LDAX D	и.	1	MI La	â .	1 1	Ka J	90
. 000	. DO		O(D) ##	24 .		M1 C.	. at :	I. I	RB C	11
CTTO	EC.		100 8,00	a		ML	36 C	ו יו	RB D	12
CPO m	, .64		פקל מלו מכא מלו	· 11		MAI NO	34 (1 1	1 EX	, N
CHI	1 . W		LXI D.m	×	1	MIL	12	11	RD L	1 € .
D4P A	. 91	_	MOVAS	78	-	· MINA ·	. H .	ł		
OIF #	- D6		JA YOM	. 79	<u> </u>	NOP .		I L	RIB N	. %
CHE	P1		LA VOM	1A.		CRA A	311	ΙL	MI.	Δ.
CHE K	20		NA VOM	. 79 70		ORAC	31	ΙГ	N CCI	W
Off #	BC BD	•	MOV A,L	10		CEA B	21	1 1	1331 .	· Ü.
CMP II	36		· MAN VOM ·	π'_		CEA E	23 34	l I.	DB C	. 10
	· /2		MOV S.A	σ.	0	CRAL	E	l ł	233 D	M
CH	n		MOV B.C	4		CRA M	34	1 1	1 02	13
DAA		×	D.E VOM	9	1 1	CRI p	N	ľ	223 //	KC.
DAD # ··	. ;;		MOV B.H	44		OUT .	~ 'D3	·	7 813	10
DAD # ·	. 20	l	MOV B.L	4		KOE.	D .	L	223 N.	. 12
DAD SP	30	- 1	MOV B.M	4	1 1	for a	a	ΙГ	m, .	DE
DCR #		. [MOV CA	•	l ·l	POP B	Dt		XCHO	B
DCK C		- 1	MOA C'B			FOF FEW	D I	I -		
DCR E	. IS	- 1	HOYCE	4	1.0	PUBL 8		L	XTHE	. n .
DCR //	23	- 1	MOYCH	· 4C	- 1	COM D	a		DL A	. N :
DCR L	. 20	L	MOACT		: 1	TUBE #	25		TAA S	M.
DCR M	25	- [MOV C.M	4	-	I USH YE	_^	. 1	XXA C	N.
DCX 9 ·	60		A.G YOM	57		RAL RAR	17	X	XXA D	W
· 500 %	10		MOV D.B	*		RIC .	11.		3 ACK	A)
	_=		MOV D.C.	SI D	L	REC .	ä		DA F	· AC
	- 1	- 1	MOV D.M	34	٠. [RM :	20	L	MIL	· AD .
	ı	L	MOA D'T	35		RET ·	0		XXA W	17.
	- 1	Г	MOY D.M	34	R	11	ä		771.	
									~~ 7	

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH

FINAL SEMESTER REGULAR EXAMINATION OF SECOND SEMESTER - SECOND YEAR 2023 OF 20 BATCH, BLE (ES)

SUBJECT: ELECTRICAL MACHINES

Dated: 19.01.2023 Maximum Marks: 60 Time Allowed: 3 Hours,

Q. No.		QUESTION	aoı	Taxonomy Level	rios	Mark
į. ∀ i	(4)	Define transformer. State and explain efficiency of transformer.	1	CZ	1	064
	P	A 40 KVA transformer has Iron loss of 400W and full load copper loss of 840W. If the power factor of the load is 0.8 lagging, Calculate (i) full load efficiency (ii) the load at which maximum efficiency occurs and (iii) the maximum efficiency.		C4	2	06,
Q. YQZ	~	State and explain back E.M.F of DC motor. What is importance of back E.M.F.	1	a	1	06
	(4)	Derive an expression of Armature Torque Equation of D.C. Motor.	2	C4	2	064
Q. 96	1	State and explain flux Speed Control method of D.C. Shunt Motor. Also enlist its advantages and disadvantages.	1	æ	1	06
	or	A 230V motor has an armature circuit resistance of 0.4Ω. If the full load armature current is 30A and no load armature current is 4A. Find the change in back e.m.f from no load to full load.	2	C4	2	06
Q. 4 /4	~	Define synchronous speed. Discuss construction, Principle operation of three phase induction motor.	1	a	1	06
	M	A 6-pole alternator running at 1000 r.p.m. supplies an 8- pole induction motor. Find the actual speed of the motor if the slip is 2.5%.		CI	2	06
	Ġ	Why synchronous motor is not self start? Discuss construction, operating principle of synchronous motor. What is difference between induction motor and synchronous motor?		a	1	06,
		A 3-phase synchronous motor has 4 poles and operates from 440V, 50HZ supply. Calculate its speed. If it takes a line current of 100A at 0.8 power factor. What torque the motor will be developing? Neglect losses.		C4	2	06,

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH

FINAL SEMESTER REGULAR EXAMPLATION OF SECOND SEMESTER - SECOND YEAR 2003 OF 20-BATCH, B.E. (ES)

SUBJECT: INTEGRATED ELECTRONICS

Dated: 12.01.2023 Maximum Marks: 60 Time Allowed: 3 Hours,

Q. No.	QUESTIONS	CT0	Taxonomy Level	PLO	Marks
Q:01 (y)	Describe Differential amplifier in DC conditions and its single ended operation. CMOS logic and CMOS Inverter. SSS Timer IC as an astable multivibrator. Gain Bandwidth product.	1	α	1	(08)
10	Calculate close loop gain and output voltage for applied 20mv peak input signal.	3	C	2	(04)
Q:02 (🗳	Compare the op-amp connected in close loop as linear amplifier in Inverting and Non Inverting configurations. Derive the voltage gain expression of Inverting amplifier.	2	C4	1	(06)
€>	amp having open loop gain of 106dB. Show effect of Negative feedback on close loop bandwidth.		C4	1	(06)
Ø:03 €€	Perform the operational Analysis on Op-amp as Differentiator and Non zero level detector with the use of input and output waveforms of output voltage.		C4	1	(06)
~	Compare the application of op-amp as summer with its types. Show how the op amp is connected in 4 bit binary weighted Digital to Analog converter.		CA	1	(06)
Q:04 (p)	Consider an op-amp in Inverting amplifier configuration having Rf=220KΩ, Ri=3.3KΩ, Aol= 100dB and Unity gain Bandwidth of 3Mhz. Solve the close loop BW (cl).		G	2	(06)
R)	Consider an op-amp integrator having a capacitor of 0.01 uF and input resistor 10KΩ with applied square wave input of +2.5V for 100 us. Determine ΔVout for applied square wave. Draw the output waveform which starts at 0V.	r इ		2	(06)
Q:05 (4)	Consider a comparator with Hysteresis having both resistors o 2KΩ in positive feedback loop. Calculate V _{VTF} and V _{LTF} and V _{PTF} .	┸		2	(06)
e¥	Determine the weight of each input voltage for scaling adder and find the output voltage for the applied input voltages of $V_1 = 1 \text{ k}\Omega$ $R_2 = 2 \text{ k}\Omega$ $R_3 = 4 \text{ k}\Omega$ $R_3 = 4 \text{ k}\Omega$ $R_2 = 2 \text{ k}\Omega$ $R_3 = 4 \text{ k}\Omega$	- 3	G		2 (06