P C	
DATE:	PAGE NO. Lab Program - 8
	Weite a perogram to Implement K-nearest neighbours algorithm to classify. Tois dataset Brint both correct & corrors predication using phython machine learning.
Throay!	K-nearest neighbours algorithm (K-NN) is a non-parametric method used for classification of regression. In both and the input consist of K closest training examples in the feature space. The output defends on whether K-NN is used for classification or requision.
	K-NN is a type of instance based leavining and lary leavining where the function is only approximated locally & all computation is defended until classification. The K-Nh algorithm is among the simplest of all machine leavining algorithm.
	The kNh task can be broken down into waiting 3 painary functions!
L.	Calculate the distance blu any two points.
2-	Find the neasest neighbour based on these poise wise distances
3-	Majority vote on class labels based on the market neighbour list
acher's Rem	arks Teacher's Signature

1

PAGE NO.	
	PROG
	impo
	impoo
	impos
	impo:
let, towning Set=[], test Set=[]).	def loo
ne) as csv file:	
uadea (csv-fde)	
(lines)	
(len (dataset)-1):	
Mange (4):	
[x] [y] = float (dataset [x][y])	
· Handom () < splet:	
Set append (dataset[x])	
t. append (dataset [x])	
inclence 2 levell)!	
tance 1, instance 2, length):	- dief eu
length):	
Length): = pow ((instance 1 [x] - instance 2 [x])	
rt (distance)	

E:	PAGE NO.
	def get Neighbons (twaining Set, testinstance K):
	distances = []
	length = len (testInstance) - 1
	for x in range (len (training Set)):
	dist = endidoan Distance (testinetance, training Set [x]
_	, length)
-	distances append ((toraining Set [x] dist))
$-\parallel$	distances sout (Key = operator, itemgetter (1))
	neighbors = []
	for x in stange (K):
-	neighbors append (distances [x][0]).
	return neighbors
	1 1 1 1 1
	ef get Response (neighbors):
	class Votes = {}
	for x in storage (len (neighbors)):
	response = neighbors [x][-1]
	if susponse in dass Votes!
	class Votes [rusponse] + = 1
	elu:
	class Notes [suponse] = 1 souted Votes = souted (class Notes items (), Key = operators
	control Votes = souted (class Votes, items (), Key = oboxotox
	itemgetten (1), neverce = Tome)
	return sorted votes [0][0]
+	

TE:	PAGE NO.
	print (In The Accuracy is: + ropor (accuracy)+'%)
	- / \
mai	n()
Ou	itput-
T.	D
17	is Data set loaded ataset is split into training and testing
Si	ze of training data and its label (135, 4) (135,)
	ze of training data and its label (15, 4) (15,) abel 0 - setosa
H	abel 1 - versicolor
11	abel 2 - virginica
Re	esults of Classification using K-nn with K=1
	ample: [5.8 4. 1.2 0.2] Actual-label: 0 Predicted-label: 0
	ample: [6.4 3.2 4.5 1.5] Actual-label: 1 Predicted-label: 1 ample: [5.6 3. 4.1 1.3] Actual-label: 1 Predicted-label: 1
	ample: [5.8 2.7 5.1 1.9] Actual-label: 2 Predicted-label: 2
S	ample: [6.7 3.1 4.7 1.5] Actual-label: 1 Predicted-label: 1
	ample: [6.7-3.1 4.4 1.4] Actual-label: 1 Predicted-label: 1
S	ample: [6.8 3.2 5.9 2.3] Actual-label: 2 Predicted-label: 2 ample: [5. 3.3 1.4 0.2] Actual-label: 0 Predicted-label: 0
	ample: [6.8 3. 5.5 2.1] Actual-label: 2 Predicted-label: 2
	ample: [6.1 2.8 4.7 1.2] Actual-label: 1 Predicted-label: 1
S	ample: [4.9 3. 1.4 0.2] Actual-label: 0 Predicted-label: 0
	ample: [5.5 3.5 1.3 0.2] Actual-label: 0 Predicted-label: 0
$\frac{1}{S}$	ample: [5.8 2.7 5.1 1.9] Actual-label: 2 Predicted-label: 2
	ample: [6.3 2.3 4.4 1.3] Actual-label: 1 Predicted-label: 1 ample: [6.5 3. 5.8 2.2] Actual-label: 2 Predicted-label: 2
	lassification Accuracy: 1.0