ANEXO III DEMANDA ANUAL DE ENERGÍA PARA ACS

Según el Anejo F del documento de Ahorro de Energía HE4, del Código Técnico de la Edificación (2022):

$$D_{ACS} = D_{I/D} \cdot N_P \cdot C_e \cdot 365 \cdot \Delta T$$

Donde:

D _{ACS}	Demanda de energía anual para ACS (kWh/año)
D _{L/D}	Demanda de 21 litros/día por persona (para fábricas y talleres)
NP	Número de personas consideradas
Ce	Calor específico (agua) = 0,001162 kWh / kg °C
ΔΤ	Salto térmico instalaciones con 60°C de acumulación (°C) = = 60 °C – 14 °C¹ = 46 °C

CASO 1: BOMBAS DE CALOR AEROTÉRMICAS Y DEPÓSITO DE ACS, SUMINISTRADOS COMO CONJUNTO

En el caso que el depósito de ACS y la bomba de calor se suministren como conjunto por parte del mismo fabricante, será el fabricante de la bomba de calor el que aporte el dato del SCOP_{dhw} antes indicado, calculado según los reglamentos y normativas indicados en el Anexo IV del presente documento y al menos en las condiciones de clima medio establecidas en los reglamentos de ecodiseño, o en las condiciones climáticas equivalentes a la zona climática del DB-HE del CTE indicadas en la siguiente tabla:

Tabla de equivalencia entre zonas climáticas CTE y reglamentos de ecodiseño:

Zona climática	
DB-HE CTE	Condiciones climáticas equivalentes en ACS
A3	Cálidas
A4	Cálidas
В3	Cálidas
B4	Cálidas
C1	Cálidas
C2	Cálidas

¹ Se unifica la temperatura de agua fría a 14 °C, el técnico responsable puede proponer cálculos alternativos.

C3	Cálidas
C4	Cálidas
D1	Cálidas
D2	Cálidas
D3	Cálidas
E1	medio

En caso de que el depósito de precalentamiento de ACS, y la bomba de calor aerotérmica, se suministren como conjunto por parte del mismo fabricante, y cuando la temperatura de acumulación sea igual a 50 °C, será el fabricante de la bomba de calor el que aporte el dato del SCOP_{dhw} en las condiciones indicadas para bombas de calor recogidas en el reglamento de ecodiseño o reglamento delegado que corresponda, o en la tabla 4 del apartado 6.5 (condiciones de ensayo) de la Norma UNE-EN 16147. Si la temperatura de acumulación es inferior a 50 °C se utilizará la metodología del caso 3.

En el caso de acumuladores finales, la temperatura de acumulación mínima en las aplicaciones objeto de esta ficha será de 60 °C, por lo que se aplicará la metodología del caso 3.

CASO 2: BOMBAS DE CALOR GEOTÉRMICAS O HIDROTÉRMICAS Y DEPÓSITO DE ACS SUMINISTRADOS COMO CONJUNTO

En caso de que el depósito de precalentamiento de ACS, y la bomba de calor geotérmica o hidrotérmica, se suministren como conjunto por parte del mismo fabricante, y cuando la temperatura de acumulación sea igual a 50 °C, será el fabricante de la bomba de calor el que aporte el dato del SCOP_{dhw} en las condiciones indicadas para bombas de calor recogidas en el reglamento de ecodiseño o reglamento delegado que corresponda, o en la tabla 4 del apartado 6.5 (condiciones de ensayo) de la Norma UNE-EN 16147. Si la temperatura de acumulación es inferior a 50 °C se utilizará la metodología del caso 4

En el caso de acumuladores finales, la temperatura de acumulación mínima en las aplicaciones objeto de esta ficha será de 60 °C, por lo que se aplicará la metodología del caso 4.

CASO 3: BOMBA(S) DE CALOR AEROTÉRMICAS Y DEPÓSITOS NO SUMINISTRADOS COMO CONJUNTO

Para bombas de calor y depósitos no suministrados como conjunto, el dato del SCOP_{dhw} para el cálculo de ahorro de energía final se obtendrá a partir del dato de COP² en condiciones A7/W45, A7/W55 para precalentamiento de acumuladores previos al acumulador final o en condiciones A7/W65 para el acumulador final, y en función de la zona climática establecida en la Tabla a del Anejo B del CTE, a partir de la expresión siguiente³:

SCOP_{dhw}= COP_{A7/Wxx} x F_C

Donde:

SCOP_{dhw} Coeficiente de rendimiento estacional en ACS de la bomba de calor accionada eléctricamente para la zona climática del considerada

COP_{A7/W65} Coeficiente de rendimiento en condiciones de temperatura

exterior de 7°C y temperatura de impulsión de 65 °C, para una acumulación de ACS a 60 °C.

COP Coeficiente de rendimiento en condiciones de temperatura exterior de 7°C y temperatura de impulsión de 55 °C, para una acumulación de ACS a 50 °C.

COP Coeficiente de rendimiento en condiciones de temperatura exterior de 7°C y temperatura de impulsión 45°C, para una

acumulación a ACS a 40 °C.

A7 Temperatura de entrada de aire exterior (7 °C)

_

² Coeficiente de rendimiento de la bomba de calor aerotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

³ Para bombas de calor aerotérmicas cuyo refrigerante es CO₂, la expresión será: SCOP_{dhw} = COPAxx/W10-60, donde el dato de COP se aportará a una temperatura de impulsión de 60 °C, a una temperatura de entrada de agua fría de 10 °C y al menos en condiciones climáticas medias para ACS (7 °C de temperatura exterior media anual), o para las condiciones climáticas cálidas en ACS (14 °C de temperatura exterior media anual), equivalentes a la zona climática del CTE que corresponda según la tabla de este caso. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

 $F_{\mathbb{C}}$ Factor de corrección⁴ Donde el factor de corrección $F_{\mathbb{C}}$ se obtendrá de la tabla siguiente, en función

Donde el factor de corrección F_C se obtendra de la tabla siguiente, en funcion de la temperatura de impulsión requerida para la acumulación deseada.

Temperatura de impulsión	45 °C	55 °C	65 °C
Clima CTE	Fc	Fc	Fc
A3	1,281	1,246	1,197
A4	1,287	1,251	1,196
В3	1,255	1,223	1,179
B4	1,260	1,228	1,178
C1	1,178	1,154	1,137
C2	1,190	1,165	1,142
C3	1,202	1,175	1,144
C4	1,208	1,181	1,143
D1	1,114	1,093	1,094
D2	1,126	1,103	1,099
D3	1,137	1,113	1,101
E1	1,058	1,048	1,038

Tabla de factores para la estimación del SCOPdhw a partir del COP_{A7/W45}, COP_{A7/W55 y} COP_{A7/65}, en condiciones UNE-EN 14511, en función de la variación anual de temperatura de aire exterior de las zonas climáticas indicadas en la tabla a del Anejo B del DB HE del CTE.

⁴ En función de la zona climática establecida en la Tabla A – Anejo B del DB HE del CTE y en función de la temperatura de acumulación de ACS o de inercia (para producción instantánea) prevista.

Para las bombas de calor aerotérmicas que no dispongan de dato del COP en condiciones (A7/W65), pero les sea posible alcanzar dicha temperatura de primario, el cálculo del coeficiente de rendimiento estacional en ACS (SCOP_{dhw}), para una temperatura de acumulación de 60°C, se realizará a partir de la expresión siguiente:

Donde:

SCOP_{dhw} Coeficiente de rendimiento estacional en ACS de la bomba de calor accionada eléctricamente para la zona climática del considerada y 60°C de temperatura de acumulación de ACS.

COP_{A7/W55} Coeficiente de rendimiento de la bomba de calor aerotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta

expresión será el ponderado de las bombas de calor

instaladas, en caso de ser de diferentes características.

A7 Temperatura de entrada de aire exterior (7 °C)

W55 Temperatura de impulsión (55 °C) de la bomba de calor

FC Factor único de corrección. Valor FC = 0,9

La temperatura de acumulación en ACS considerada, en la metodología de cálculo, es inferior en 5K a la temperatura de impulsión (T.ª de primario). Todos los depósitos deberán cumplir el reglamento de ecodiseño y/o etiquetado que les sea de aplicación⁵.

⁵ La superficie de intercambio del interacumulador, su geometría, la disposición de las tomas, el dimensionamiento del intercambiador de placas en el caso de acumuladores, el caudal en circulación, su aislamiento, etc. deben ser acordes con las instrucciones y/o recomendaciones del fabricante para su uso con bomba de calor y para las temperaturas y saltos térmicos considerados.

CASO 4: BOMBA(S) DE CALOR GEOTÉRMICAS E HIDROTÉRMICAS Y DEPÓSITOS NO SUMINISTRADOS COMO CONJUNTO.

Para las bombas de calor⁶ geotérmicas e hidrotérmicas combinadas con depósitos⁷ de ACS y que no estén suministrados como conjunto, para el cálculo del coeficiente de rendimiento estacional en ACS (SCOP_{dhw}) se aplicarán las fórmulas siguientes a partir del COP⁸:

Bombas de calor geotérmicas	Bombas de calor hidrotérmicas
SCOP _{dhw} = COP _{B0/xx} x FP	SCOP _{DHW} = COP _{W10/Wxx} x FP

Donde:

SCOP_{dbw} Coeficiente de rendimiento estacional en ACS de la bomba de calor accionada eléctricamente para la zona climática del considerada. COP_{B0/W65} Coeficiente de rendimiento en condiciones de temperatura de captación (0°C) y temperatura de impulsión de 65 °C, para una acumulación de ACS a 60 °C. COP_{B0/W55} Coeficiente de rendimiento en condiciones de temperatura de captación (0°C) y temperatura de impulsión de 55 °C, para una acumulación de ACS a 50 °C. COP_{B0/W45} Coeficiente de rendimiento en condiciones de temperatura de captación (0°C) y temperatura de impulsión de 45 °C, para una acumulación de ACS a 40 °C. COPw10/w65 Coeficiente de rendimiento en condiciones de temperatura de captación (10°C) y temperatura de impulsión de 65 °C, para una acumulación de ACS a 60 °C. COP Coeficiente de rendimiento en condiciones de temperatura

⁶ Sólo podrán considerarse aquellas bombas de calor que puedan alcanzar una temperatura de impulsión de primario mínima de 65°C o superior, sin hacer uso de un generador auxiliar para alcanzar dicha temperatura.

⁷ Se considera que la temperatura de calentamiento del agua ACS es 5 K inferior a la temperatura de impulsión.

⁸ Coeficiente de rendimiento de la bomba de calor geotérmica que relaciona la potencia térmica aportada en calor y la potencia eléctrica efectiva consumida, en las condiciones indicadas en la norma UNE-EN 14511. En los casos de secuencia de varias bombas de calor, el COP utilizado en esta expresión será el ponderado de las bombas de calor instaladas, en caso de ser de diferentes características.

W10/W55	de captación (10°C) y temperatura de impulsión de 55 °C,
	para una acumulación de ACS a 50 °C.
COP	Coeficiente de rendimiento en condiciones de temperatura
W10/W45	de captación (10°C) y temperatura de impulsión de 45 °C,
	para una acumulación de ACS a 40 °C.
B0	Para bombas de calor geotérmicas, temperatura de
	entrada del glicol (Brine) al evaporador.
W10	Para bombas de calor hidrotérmicas, temperatura de
	entrada del agua al evaporador.
FP	Factor de ponderación en función de la zona climática del
	CTE.

Tomando el factor⁹ de ponderación de la tabla siguiente:

Fa	ctor de	Ponde	raciór	1
(FP)				
А3 а	B1 a	C1 a	D1	E1
A4	B2	C3	а	
			D3	
0,99	0,96	0,92	0,86	0,80
1,05	1,01	0,97	0,90	0,85
1,24	1,23	1,18	1,11	1,03
1,31	1,30	1,23	1,17	1,09
	A3 a A4 0,99 1,05	(I A3 a B1 a A4 B2 0,99 0,96 1,05 1,01 1,24 1,23	(FP) A3 a B1 a C1 a A4 B2 C3 0,99 0,96 0,92 1,05 1,01 0,97 1,24 1,23 1,18	A3 a B1 a C1 a D1 A4 B2 C3 a D3 0,99 0,96 0,92 0,86 1,05 1,01 0,97 0,90 1,24 1,23 1,18 1,11

Factor de ponderación para bombas de calor geotérmicas e hidrotérmicasPara las bombas de calor geotérmicas o hidrotérmicas que sólo dispongan de dato del COP en condiciones¹⁰ (B0/W55) O (W10/W55), pero les sea posible alcanzar 65 °C de temperatura de primario¹¹, para calcular su coeficiente de rendimiento

⁹ Los factores para bombas de calor geotérmicas e hidrotérmicas de la tabla se han obtenido del documento "Prestaciones medias estacionales de las bombas de calor para producción de calor en edificios, de IDAE".

¹⁰ Obtenido en las condiciones indicadas en la norma UNE-EN 14511.

¹¹ Sólo podrán considerarse aquellas bombas de calor que puedan alcanzar una temperatura de impulsión de primario mínima de 65°C o superior, sin hacer uso de un generador auxiliar para alcanzar dicha temperatura.

estacional en ACS (SCOP_{dhw}) a una temperatura de acumulación de 60°C (acumulador final) se utilizará la expresión siguiente:

Bombas de calor geotérmicas

SCOPdhw= COPB0/W55 x FP x FC

Bombas de calor hidrotérmicas

SCOP_{dhw}= COP_{W10/W55} x FP x FC

Donde:

SCOP_{dhw} Coeficiente de rendimiento estacional en ACS de la bomba de

calor accionada eléctricamente para la zona climática del

considerada.

COP_{B0/W65} Coeficiente de rendimiento de la bomba de calor geotérmica

que relaciona la potencia térmica aportada en calor y la

potencia eléctrica efectiva consumida, en las condiciones

indicadas en la norma UNE-EN 14511. . En los casos de

secuencia de varias bombas de calor, el COP utilizado en esta

expresión será el ponderado de las bombas de calor

instaladas, en caso de ser de diferentes características.

COP_{W10/W65} Coeficiente de rendimiento de la bomba de calor hidrotérmica

que relaciona la potencia térmica aportada en calor y la

potencia eléctrica efectiva consumida, en las condiciones

indicadas en la norma UNE-EN 14511. En los casos de

secuencia de varias bombas de calor, el COP utilizado en esta

expresión será el ponderado de las bombas de calor

instaladas, en caso de ser de diferentes características.

B0 Para bombas de calor geotérmicas, temperatura de entrada del

glicol (Brine) al evaporador.

W10 Para bombas de calor hidrotérmicas, temperatura de entrada

del agua al evaporador.

W55	Temperatura de impulsión (55 °C) de la bomba de calor ¹² .
FP	Factor de ponderación en función de la zona climática del CTE.

FC Factor de corrección en función de la temperatura de impulsión. Valor FC = 0,9.

Todos los depósitos deberán cumplir el reglamento de ecodiseño y/o etiquetado que les sea de aplicación¹³.

_

¹² Se considera que la temperatura de calentamiento del agua (ACS) es 5 K inferior a la temperatura de impulsión.

¹³ La superficie de intercambio del interacumulador, su geometría, la disposición de las tomas, el dimensionamiento del intercambiador de placas en el caso de acumuladores, el caudal en circulación, su aislamiento, etc. deben ser acordes con las instrucciones y/o recomendaciones del fabricante para su uso con bomba de calor y para las temperaturas y saltos térmicos considerados.