Trabalho e energia

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

26 de Maio de 2021

Sumário

- 1 Energia
- 2 Trabalho
- 3 Potência
- Casos especiais
- 6 Apêndice

O que é energia

Todo fenômeno da natureza está associado a uma energia, onde à partir do trabalho podemos transformar um tipo de energia em outro tipo de energia.

Tipos de energia e suas relações com trabalho.

Corollary

No SI a unidade de medida de energia é Joule (J).

Energia cinética

Energia

- ✓ A energia cinética é a energia associada ao estado de movimento de um obieto;
- ✓ Quanto mais depressa o objeto se move, maior será a sua energia cinética.
- ✓ Como será mostrado mais a frente, para um objeto de massa m cuja velocidade \vec{v} é muito menor que a velocidade da luz, a energia cinética é dado por

$$K=\frac{1}{2}mv^2.$$

Corollary

$$1 J = 1 kgm^2/s^2$$

- ✓ Energia transferida para um objeto ou de um objeto por meio de uma força;
- ✓ Capacidade de transformar algum tipo de energia em energia de movimento;
- ✓ Para calcular o trabalho que uma força resultante realiza sobre um objeto quando este sofre um deslocamento usamos apenas a componente da força paralela ao deslocamento.

Pela definição de trabalho podemos considerar que o trabalho W realizado por uma força resultante \vec{F} é igual a variação da energia cinética ΔK , onde

$$W = \Delta K,$$

$$W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2.$$

Se a força for constante, poderemos dizer que a aceleração também será constante.

Multiplicando ambos os lados da equação $v_f^2 = v_i^2 + 2a\Delta x$ por $\frac{m}{2}$ teremos

$$rac{m}{2}v_f^2=rac{m}{2}v_i^2+rac{m}{2}(2a\Delta x), \ rac{m}{2}v_f^2-rac{m}{2}v_i^2=ma\Delta x.$$

mas $\vec{F} = m\vec{a}$, portanto

$$W = \Delta K = \vec{F} \cdot \Delta \vec{x}$$
.

Corollary

Trabalho é um grandeza escalar assim como a energia cinética.

O trabalho da força \vec{F} em um deslocamento Δx é a área do retângulo de base Δx e altura F. podemos dizer que o trabalho total durante a trajetória de i a f é a soma dos trabalhos individuais ΔW .

$$\Delta W = \sum F \Delta x.$$

Se $\Delta x \rightarrow 0$ podemos aproximar a área abaixo da curva como se fosse a soma dos retângulos, portanto

$$W = \lim_{\Delta x \to 0} \Delta W = \int_{x_i}^{x_f} F(x) dx.$$

Força em função da posição.

Cada deslocamento $d\vec{r}$ que a partícula realiza, a componente da força \vec{F} paralela ao deslocamento realiza trabalho dW, onde

$$dW = \vec{F} \cdot d\vec{r}$$
.

Para determinar o trabalho total realizado por \vec{F} durante a trajetória da partícula ao longo do caminho c, somamos cada contribuição dW na forma de integral,

$$W = \int_{C} \vec{F} \cdot d\vec{r}.$$

Sentido do trabalho e deslocamento infinitesimal de uma partícula de massa m.

Substituindo $\vec{F} = m \frac{d\vec{v}}{dt}$ na expressão do trabalho temos

$$W = \int_{c} \vec{F} \cdot d\vec{r},$$

$$W = m \int_{c} \frac{d\vec{v}}{dt} \cdot d\vec{r}.$$

No entanto, sabemos que $d\vec{r} = \frac{d\vec{v}}{dt}dt$. Substituindo temos

$$W = \int_{c} \left(rac{d ec{v}}{dt}
ight) \cdot \left(rac{d ec{r}}{dt}
ight) dt.$$

Mas podemos perceber também que $d\vec{v} = \frac{d\vec{v}}{dt}dt$.

$$W=m\int_{c} \vec{v}\cdot d\vec{v}.$$

Além disso, podemos dizer que $\vec{v} \cdot d\vec{v} \equiv$ vdv, portanto

$$\frac{W = m \int_{c} v dv,}{1 + \frac{1}{2} + \frac{1}{2}}$$

$$W = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2.$$

IFPR-Irati

Potência média e potência instantânea

Definimos como potência instantânea gerada por uma força F como a taxa de variação do trabalho realizado por essa força no instante de tempo t.

$$P(t)=\frac{dW}{dt}.$$

Calculando dW/dt teremos

$$\frac{dW}{dt} = \frac{d}{dt} \left(\vec{F} \cdot d\vec{r} \right).$$

Para uma força \vec{F} constante no tempo podemos dizer que

$$\frac{dW}{dt} = \vec{F} \cdot \frac{dr}{dt},$$
$$P(t) = \vec{F} \cdot \vec{v}(t).$$

Corollary

No SI a unidade de medida de potência é J/s ou Watt (W).

Trabalho realizado pela força gravitacional

Considerando a orientação do eixo y como mostra a figura, o sentido da força gravitacional é dado por $\vec{F} = -mg\hat{j}$. Portanto, o trabalho realizado pela gravidade pode ser representado por

$$W = mg \Delta y cos \theta$$
.

Durante a subida podemos dizer que $\theta=180^\circ$, e no caso da descida teremos $\theta=0^\circ$, portanto

$$W = \Delta K = -mg\Delta y cos\theta < 0,$$
 (subida),
 $W = \Delta K = +mg\Delta y cos\theta > 0,$ (descida).

Subida de um objeto de massa m com velocidade inicial \vec{v}_0 até a uma altura Δy .

Trabalho realizado para levantar ou abaixar um objeto

Para levantar um objeto de massa m é necessário aplicar uma força \vec{F} equivalente a força de gravidade \vec{F}_g . No caso o objeto sobe com velocidade constante, onde $\Delta K = 0$. Sabendo que $W = \Delta K$ temos

$$\Delta K = W_F + W_{Fg} = 0,$$

$$W_F = -W_{Fg}.$$

Deslocamento para cima.

Deslocamento para baixo.

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)