Principal component analysis II: the top *k* directions

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 Projecting onto multiple directions
- 2 Principal component analysis
- 3 Reconstruction from projections

Projection onto multiple directions

Projecting $x \in \mathbb{R}^d$ into the k-dimensional subspace defined by vectors $u_1, \ldots, u_k \in \mathbb{R}^d$.

This is easiest when the u_i 's are **orthonormal**:

- They have length one.
- They are at right angles to each other: $u_i \cdot u_i = 0$ when $i \neq j$

The projection is a k-dimensional vector:

$$(x \cdot u_1, x \cdot u_2, \dots, x \cdot u_k) = \underbrace{\begin{pmatrix} \longleftarrow & u_1 & \longrightarrow \\ \longleftarrow & u_2 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & u_k & \longrightarrow \end{pmatrix}}_{\text{call this } U^T} \begin{pmatrix} \uparrow \\ x \\ \downarrow \end{pmatrix}$$

U is the $d \times k$ matrix with columns u_1, \ldots, u_k .

Projection onto multiple directions: example

E.g. project data in \mathbb{R}^4 onto the first two coordinates.

Take vectors
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 (notice: orthonormal)

Write $U^T = \begin{pmatrix} \longleftarrow & u_1 & \longrightarrow \\ \longleftarrow & u_2 & \longrightarrow \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

The projection of
$$x \in \mathbb{R}^4$$
 is $U^T x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

The best *k*-dimensional projection

Let Σ be the $d \times d$ covariance matrix of X. In $O(d^3)$ time, we can compute its **eigendecomposition**, consisting of

- real **eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- corresponding **eigenvectors** $u_1, \ldots, u_d \in \mathbb{R}^d$ that are orthonormal (unit length and at right angles to each other)

Fact: Suppose we want to map data $X \in \mathbb{R}^d$ to just k dimensions, while capturing as much of the variance of X as possible. The best choice of projection is:

$$x \mapsto (u_1 \cdot x, u_2 \cdot x, \dots, u_k \cdot x),$$

where u_i are the eigenvectors described above.

This projection is called **principal component analysis** (PCA).

Example: MNIST

Contrast coordinate projections with PCA:

Applying PCA to MNIST: examples

Reconstruct this original image from its PCA projection to k dimensions.

k = 200

k = 150

k = 100

k = 50

How do we get these **reconstructions**?

Reconstruction from a 1-d projection

Projection onto ℝ:

Reconstruction in \mathbb{R}^2 :

Reconstruction from projection onto multiple directions

Projecting into the *k*-dimensional subspace defined by **orthonormal** $u_1, \ldots, u_k \in \mathbb{R}^d$.

The projection of x is a k-dimensional vector:

$$(x \cdot u_1, x \cdot u_2, \dots, x \cdot u_k) = \underbrace{\begin{pmatrix} \longleftarrow & u_1 & \longrightarrow \\ \longleftarrow & u_2 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & u_k & \longrightarrow \end{pmatrix}}_{\text{call this } U^T} \begin{pmatrix} \uparrow \\ \chi \\ \downarrow \end{pmatrix}$$

The reconstruction from this projection is:

$$(x \cdot u_1)u_1 + (x \cdot u_2)u_2 + \cdots + (x \cdot u_k)u_k = UU^T x.$$

MNIST: image reconstruction

Reconstruct this original image x from its PCA projection to k dimensions.

$$k = 200$$
 $k = 150$ $k = 100$ $k = 50$

Reconstruction UU^Tx , where U's columns are top k eigenvectors of Σ .