2021-February Session-02-26-2021-shift-1-21-30

AI24BTECH11031 - Shivram S

[Feb 2021]

1) The area bounded by the lines y - |x - 1| = 2 is

1)	The area bounded by the lines $y = x + 1 + 2$ is	[1 00 2	2021
2)	The number of integral values of k for which the equation $3 \sin x + 4 \cos x$	$\cos x =$	k+1
	has a solution, $k \in \mathbb{R}$ is	[Feb 2	2021]
3)	Let $m, n \in \mathbb{N}$ and $gcd(2, n) = 1$. If $30\binom{30}{0} + 29\binom{30}{1} + \dots + 2\binom{30}{28} + 1\binom{30}{29} = 1$	$n \cdot 2^m$, then
	n+m=	[Feb 2	2021]
4)	If $y = y(x)$ is the solution of the equation $e^{\sin y} \cos y \frac{dy}{dx} + e^{\sin y} \cos x = \cos x$	x, y(0))=0;
	then $1 + y\left(\frac{\pi}{6}\right) + \frac{\sqrt{3}}{2}y\left(\frac{\pi}{3}\right) + \frac{1}{\sqrt{2}}y\left(\frac{\pi}{4}\right)$ is equal to	[Feb 2	2021]
5)	The number of solutions of the equation $log_4(x-1) = log_2(x-3)$ is	<u> </u>	[Feb
	2021]		
6)	If $\sqrt{3}(\cos^2 x) = (\sqrt{3} - 1)\cos x + 1$, the number of solutions of the given	en equ	ıation
	when $x \in \left[0, \frac{\pi}{2}\right]$ is	[Feb 2	2021]
7)	Let $(\lambda, 2, 1)$ be a point on the plane which passes through the point $(4, -1)$	-2, 2).	If the
	plane is perpendicular to the line joining the points $(-2, -21, 29)$ and $(-2, -21, 29)$	-1, -16	5, 23),
	then $\left(\frac{\lambda}{11}\right)^2 - \frac{4\lambda}{11} - 4$ is equal to	[Feb 2	2021]
8)	The difference between degree and order of a differential equation that re	presen	ts the
	family of curves given by $y^2 = a\left(x + \frac{\sqrt{a}}{2}\right)$, $a > 0$ is	[Feb 2	2021]
9)	The sum of 162^{th} power of the roots of the equation $x^3 - 2x^2 + 2x - 1 = 160^{th}$	= 0 is	
	·	[Feb 2	2021]
10)	The value of the integral $\int_0^{\pi} \sin 2x dx$ is	[Feb 2	2021]