Transformers 2

Frederick Vandermoeten

Overview

- Multi-Head Attention
- Complete Transformer Model
- Cross-Attention
- Training
- Transformer Variants
- Optimizations

Multi-Head Attention

many Attention Heads in parallel create one Layer

$$\operatorname{MultiHead}(Q, K, V) = \operatorname{Concat}(\operatorname{head}_1, \dots, \operatorname{head}_h)W^O$$

each head uses a linear transformation on Q, K and V

$$\mathrm{head}_i = \mathrm{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$

3

Ouput Matrix Splitting - Example GPT3

$$ext{MultiHead}(Q,K,V) = ext{Concat}(ext{head}_1,\ldots, ext{head}_h)W^O$$
 $ext{head}_i = ext{Attention}(QW_i^Q,KW_i^K,VW_i^V)$

$$egin{aligned} d_{Embedding} &= d_E = 12,\!288; d_k = 128 \ W_i^Q ext{ and } W_i^K \in \mathbb{R}^{d_E imes d_k} \ d_e * d_k = 12,\!288 * 128 = 1,\!572,\!864 \ W_{i,pre}^V \in \mathbb{R}^{d_E imes d_E} \ d_e * d_e = 12,\!288 * 12,\!288 = 150,\!994,\!944 \end{aligned}$$

4

Ouput Matrix Splitting - Example GPT3

$$ext{MultiHead}(Q, K, V) = ext{Concat}(ext{head}_1, \dots, ext{head}_h)W^O$$
 $ext{head}_i = ext{Attention}(QW_i^Q, KW_i^K, VW_i^V)$

$$W_i^Q$$
 and $W_i^K \in \mathbb{R}^{d_E imes d_k}$ $d_e*d_k=12{,}288*128=1{,}572{,}864$ $W_{i,pre}^V \in \mathbb{R}^{d_E imes d_E}$

$$d_e * d_e = 12,288 * 12,288 = 150,994,944$$

We split $W_{i,pre}^V$ into $W_i^V \in \mathbb{R}^{d_E imes d_v}$ and $W_i^O \in \mathbb{R}^{d_v imes d_E}$ with $W_{i,pre}^V = W_i^V W_i^O$

If we use $d_v=d_k$, we get the same amount of parameters for W_i^V and W_i^O as for W_i^Q and W_i^K

$$W^O = \operatorname{Vertcat}(W_1^O, \dots, W_h^O)$$

5

Multi-Head Attention 2

Complete Transformer Model

- Encoder-Decoder architecture
- Embedding
- Positional Encoding
- Multi-Head Attention
- Feed Forward Network
- Skip Connections
- Layer Normalization
- Cross-Attention

Cross-Attention

- Enables interaction between encoder and decoder
- Decoder uses encoder output as input
- Query comes from the decoder, key and value from the encoder
- Encoder and decoder could be from different modals (text, image, video)

RAS2024 (modified)

Training

Parallelization

- Unlike RNNs, no sequential dependencies between inputs
- Just a bunch of matrix multiplications that can be parallelized very well with modern hardware (GPUs, TPUs)
- We still get order information due to the positional encoding
- Efficient use of training data

Training: Example GPT-2 vs GPT-3

GPT-2

• 1.5B parameters

• 40 Gb of data

GPT-3

• 176B parameters

• 570 Gb of data

Transformer Variants

Transformer Variants

Transformers were initially designed for NLP, but have since been applied to other tasks as well.

Text Transformers

GPT - Generative Pre-trained Transformer

- Decoder-only Transformer
- Used for text generation, summarization, question answering, etc.

BERT - Bidirectional Encoder Representations from Transformers

- Encoder-only Transformer
- Used for text classification, sentiment analysis, etc.

T5 - Text-to-Text Transfer Transformer

- Encoder-Decoder Transformer
- Less specialized so it needs fine-tuning, useful for e.g. translation

Vision Transformers

ViT - Vision Transformer

- Images are encoded in patches, then the patches are fed into the Transformer
- Self-Attention is used to learn the global relationships
- Used for image classification, object detection, etc.

Stable Diffusion

- Diffusion models are encoder-decoder models that use noise for the hidden state
- Cross-Attention is used to integrate text prompts
- Used for image generation, image inpainting, etc.

Audio Transformers

Wav2Vec

- Operates directly on waveforms
- Speech recognition, especially for low-resource languages

Audio Spectrogram Transformer

- Uses ViT on spectrograms
- Audio classification (genre, instrument, etc.), speech emotion recognition, etc.

Optimizations

Sparse Transformers

- Attention Layers grow $O(n^2)$ for the context size n
- most results of $\operatorname{softmax}(\frac{Q^TK}{\sqrt{d_k}})$ are close to zero
- different ways to reduce the scaling by only considering close values or random feature attention

Model Distillation

- Train a smaller, faster model with data generated by a larger, slower model
- Teacher/ Student Model

Conclusion

- Transformers revolutionized NLP
- Attention is what drives their success
- They are versatile and can be used for many different tasks
- They scale well to large datasets
- Work in progress

Image Sources

All not locally credited images are from dvgodoy: Deep Learning Visuals CC BY

Main Conceptual Sources

- Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).
- Raschka: Understanding and coding self-attention
- 3Blue1Brown: Neural Networks Playlist
- SBert Wiki