Manual Técnico

Topología

Composición de las VLANS

HOST	VLAN	Ip	Mascara	Puerto
PC0	14 - Ventas	192.168.14.1	255.255.255.240	Switch0 – Fa0/1
PC1	14 - Ventas	192.168.14.2	255.255.255.240	Switch0 – Fa0/2
PC4	14 - Ventas	192.168.14.3	255.255.255.240	Switch1 – Fa0/1
PC2	24 – Distribución	192.168.14.17	255.255.255.240	Switch0 – Fa0/7
PC3	24 - Distribución	192.168.14.18	255.255.255.240	Switch0 – Fa0/8
PC4	24 - Distribución	192.168.14.19	255.255.255.240	Switch1 – Fa0/2
PC6	34 - Administración	192.168.14.33	255.255.255.240	Switch4 – Fa0/2
PC7	34 - Administración	192.168.14.34	255.255.255.240	Switch5 – Fa0/2
Server0	44 - Servidores	192.168.14.49	255.255.255.240	Switch4 – Fa0/3
Server1	44 - Servidores	192.16814.50	255.255.255.240	Switch5 – Fa0/3

Direcciones de Red

Red única: 192.168.1X.0/24

X: corresponde al número de grupo; grupo 22 al tener dos dígitos, estos se suman

Red única resultante: 192.168.14.0/24

Utilizando VLSM para obtener las subredes:

Vlan	Dirección de Red	Primera dirección	Última dirección	Dirección de	Máscara de
		asignable	asignable	broadcast	subred
14 (Ventas)	192.168.14.0 /28	192.168.14.1	192.168.14.14	192.168.14.15	255.255.255.240
24 (Distribución)	192.168.14.16 /28	192.168.14.17	192.168.14.30	192.168.14.31	255.255.255.240
34	192.168.14.32 /28	192.168.14.33	192.168.14.46	192.168.14.47	255.255.255.240
(Administración)					
44 (Servidores)	192.168.14.48 /30	192.168.14.49	192.168.14.62	192.168.14.63	255.255.255.240
99 (Management	192.168.14.64 /30	192.168.14.65	192.168.14.78	192.168.14.79	255.255.255.240
& Native)					
999 (BlackHole)	192.168.14.80 /30	192.168.14.81	192.168.14.94	192.168.14.95	255.255.255.240

VLSM

El concepto básico de VLSM es muy simple: Se toma una red y se divide en subredes fijas, luego se toma una de esas subredes y se vuelve a dividir en otras subredes tomando más bits del identificador de máquina, ajustándose a la cantidad de equipos requeridos por cada segmento de la red.

Por ejemplo, si una organización usa la dirección de red 192.168.1.0/24 y se subdivide usando una máscara /26 se tendrán 4 subredes (192.168.1.0/26, 192.168.1.64/26, 192.168.1.128/26 y 192.168.1.192/26) con 26 – 2 = 62 direcciones posibles para equipos en cada subred. Suponiendo que se coge una de estas subredes (la subred 192.168.1.0/26) para direccionar un enlace entre dos routers de la red, se estarían desperdiciando 60 direcciones IP. Pero si se aplica VSLM a una de las subredes (por ejemplo, a la subred 192.168.1.0/26) y se toman otros 4 bits más para subred, la subred anterior se divide en otras 64 subredes con máscara /30 (192.168.1.0/30, 192.168.1.4/30, 192.168.1.8/30, 192.168.1.12/30, 192.168.1.16/30 y así sucesivamente hasta la 192.168.1.60/30). Cada una de estas subsubredes tiene 2 direcciones IP posibles para equipos. Cogiendo cualquiera de ellas para direccionar el enlace (por ejemplo, la 192.168.1.4/30 y aplicar las direcciones 192.168.1.5/30 y 192.168.1.6/30 a las interfaces de los routers) no se desperdicia ninguna dirección IP.

Configuraciones Básicas

Asignar IP, Mascara de subred y Gateway a los dispositivos finales. Ejemplos:

El Switch2 actuará como server, para que se repliquen las vlans a los demás switch.

VTP

enable config t vtp domain g22 vtp password g22 vtp mode server exit show vtp status

********vlans config t vlan 14 name Ventas exit vlan 24 name Distribucion vlan 34 name Administracion exit vlan 44 name Servidores exit vlan 99 name Management&Native exit vlan 999 name BlackHole ******* puertos troncales enable config t interface fa0/1 switchport mode trunk exit interface fa0/2 switchport mode trunk exit interface fa0/3 switchport mode trunk exit interface fa0/4 switchport mode trunk

Se va a configurar como vtp client.

******* vtp enable config t vtp domain g22 vtp password g22 vtp mode client

*********** puertos troncales enable config t interface fa0/3 switchport mode trunk exit interface fa0/4 switchport mode trunk exit interface fa0/5 switchport mode trunk exit interface fa0/5 switchport mode trunk exit interface fa0/6 switchport mode trunk

******* modo acceso enable config t interface fa0/1 switchport mode access switchoport access vlan 14

enable config t interface fa0/2 switchport mode access switchoport access vlan 14

enable config t interface fa0/7 switchport mode access switchoport access vlan 24

enable config t interface fa0/8 switchport mode access switchoport access vlan 24

******** vtp enable config t vtp domain g22 vtp password g22 vtp mode client

********* puertos troncales enable config t interface fa0/3 switchport mode trunk exit interface fa0/4 switchport mode trunk exit interface fa0/5 switchport mode trunk exit interface fa0/5 switchport mode trunk exit interface fa0/6 switchport mode trunk

******* modo acceso enable config t interface fa0/1 switchport mode access switchoport access vlan 14

enable config t interface fa0/2 switchport mode access switchoport access vlan 24

******** vtp enable config t vtp domain g22 vtp password g22 vtp mode server exit show vtp status

****** puertos troncales enable config t interface fa0/1 switchport mode trunk exit interface fa0/2 switchport mode trunk exit interface fa0/3 switchport mode trunk exit interface fa0/4 switchport mode trunk exit interface fa0/4 switchport mode trunk

******** vtp enable config t vtp domain g22 vtp password g22 vtp mode client

******* puertos troncales enable config t interface fa0/1 switchport mode trunk exit

******* modo acceso enable config t interface fa0/2 switchport mode access switchoport access vlan 34

enable config t interface fa0/3 switchport mode access switchoport access vlan 44

********* vtp enable config t vtp domain g22 vtp password g22 vtp mode client

******* puertos troncales enable config t interface fa0/1 switchport mode trunk exit

******* modo acceso enable config t interface fa0/2 switchport mode access switchport access vlan 34

enable config t interface fa0/3 switchport mode access switchport access vlan 44

InterVLAN

Método seleccionado: Router on a Stick

Configuraciones del Router0

Top

Physical Config CLI Attributes IOS Command Line Interface Router(config-subif)#ip add Router(config-subif) #ip address 192.168.14.17 255.255.255.240 Router(config-subif)# Router(config-subif)#exit Router(config)# Router(config)#int fa0/0.34 Router(config-subif)# %LINK-5-CHANGED: Interface FastEthernet0/0.34, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.34, changed state to up Router(config-subif)# Router(config-subif) #en Router(config-subif) #encapsulation do Router(config-subif) #encapsulation dot1Q 34 Router(config-subif) #ip add Router(config-subif) #ip address 192.168.14.33 255.255.255.240 Router(config-subif)# Router(config-subif) #exit Router(config)# Router(config) #int fa0/0.44 Router(config-subif)# %LINK-5-CHANGED: Interface FastEthernet0/0.44, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.44, changed state to up Router(config-subif) #enca Router(config-subif) #encapsulation do Router(config-subif) #encapsulation dot1Q 44 Router(config-subif) #ip ad Router(config-subif) #ip address 192.168.14.49 255.255.255.240 Router(config-subif)# Router(config-subif) #exit Router(config)# Router(config)# Ctrl+F6 to exit CLI focus Copy Paste

Configuración STP y EtherChannel

Puntos y Conexiones de puertos entre switchs

Po1: Entre SO y S1. f0/5 – f0/3, f0/6 – f0/4 Po2: Entre SO y S2. f0/1 – f0/3, f0/2 – f0/4 Po3: Entre S2 y S3. f0/5 – f0/5, f0/6 – f0/6 Po4: Entre S0 y S3. f0/4 – f0/4, f0/3 – f0/3

Configuración base para EtherChannel con LACP Comandos SO

interface range f0/5-6 channel-protocol lacp channel-group 1 mode active

interface range f0/1-2 channel-protocol lacp channel-group 2 mode active

interface range f0/3-4 channel-protocol lacp channel-group 4 mode active

Comandos S1

interface range f0/3-4 channel-protocol lacp channel-group 1 mode active

Comandos S2

interface range f0/3-4 channel-protocol lacp channel-group 2 mode active

interface range f0/5-6 channel-protocol lacp channel-group 3 mode active

Comandos S3

interface range f0/5-6 channel-protocol lacp channel-group 3 mode active

interface range f0/3-4 channel-protocol lacp channel-group 4 mode active

Para configuración con PAGP

interface range f0/#-# channel-protocol pagp channel-group 3 mode desirable

Configuración para el Spanning-Tree en los diferentes modos

spanning-tree mode rapid-pvst spanning-tree mode pvst

Elección de escenario con la mejor convergencia

Escenario	Tipo Ethernet Channel	Protocolo Spanning-	Tiempo (segundos)
		Tree	
1	Ethernet Channel LACP	PVST	36
2	Ethernet Channel LACP	Rapid PVST	20
3	Ethernet Channel PAgP	PVST	70
4	Ethernet Channel PAgP	Rapid PVST	35

Dada los 4 escenarios y los tiempos, se puedo observar que el modo de protocolo de Spanning-Tree, la mejor opción es el Rapid PVST, pero el tipo de EtherChannel es con método LACP, debido que fue el que presento una convergencia baja de 20 segundos a comparación de las demás combinaciones.

Configuración de Servidores

Esta Configuración se realizo en ambos servidores

