Assignment -2

Assignment Date	17 September 2022
Team ID	PNT2022TMID38845
Project Name	AI Based Discourse for Banking Industry
Student Name	Charulatha S
Student Roll Number	421219104003
Maximum Marks	2 Marks

IMPORT LIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns

LOADING THE DATASET

 $df = pd.read_csv('Churn_Modelling.csv', \ encoding='latin-1')df$

	RowNumber	CustomerId	Surname	CreditScore	e Geography	Gender
Age 0	1	15634602	Hargrave	619	9 France	Female
42 1	2	2 15647311	Hill	608	8 Spain	Female
41 2	3	3 15619304	Onio	502	2 France	Female
42 3	4	15701354	Boni	699	9 France	Female
39 4	5	5 15737888	Mitchell	850	0 Spain	Female
43				••		
 9995	9996	15606229	Obijiaku	77	1 France	Male
39 9996	9997	15569892	Johnstone	510	6 France	Male
35 9997	9998	15584532	Liu	709	9 France	Female
36 9998	9999	15682355	Sabbatini	772	2 Germany	Male
42 9999	10000	15628319	Walker	792	2 France	Female
28	_					
0	Tenure		NumOfProducts 1	HasCrCard	IsActiveMember	,
0	2	0.00	1	1		1
1	1	83807.86	1	0		1
2		59660.80	3	1		0
3 4	1 2 1	0.00 .25510.82	2	0 1		0 1
4		23310.02		-		
 9995	 5	0.00	2			0
9996	10	57369.61	1	1		1
		· 	-	-		

9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	•••	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

VISUALIZATIONS

#visualization of categorical features

```
fig, ax = plt.subplots(3, 2, figsize = (15, 12))plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0][0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0][1],palette='spring') sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1][0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1][1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2][0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2][1],palette='spring')
```

ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15)ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15)ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)

plt.tight_layout()plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

DN1	:
RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember int64E	EstimatedSalary
float64Exited	int64
dtype: object	

$$\label{eq:condition} \begin{split} df_num &= df[['RowNumber', 'Tenure', 'CustomerId', 'CreditScore', 'Age', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'Exited']] \end{split}$$

 $df_cat = df[['Surname', 'Geography', 'Gender']]df_num.head()$

	RowNumber Tenure C	ustome	rId CreditScore Age NumO	fProduct	tsHasCrCard \	
0	1	2	15634602	619	42	1
1						
1	2	1	15647311	608	41	1
0						
2	3	8	15619304	502	42	3
1						
3	4	1	15701354	699	39	2
0						
4	5	2	15737888	850	43	1
1						
	IsActiveMember	Exite	d			
0	1		1			
1	1		0			
2	0		1			
3	0		0			
4	1		0			

df_cat.head()

Surname Geography Gender	Surname	Geography	Gender
--------------------------	---------	-----------	--------

0	Hargrave	France Female
1	Hill	Spain Female
2	Onio	France Female
3	Boni	France Female
4	Mitchell	Spain Female

df_num.describe()

	RowNumber	Tenure	CustomerId	CreditScore
Age \				
count 100	000.00000 10000.0000	000 1.0000	00e+04 10000.000000	
10000.0000	000			
mean	5000.50000	5.012800	1.569094e+07	650.528800
38.921800				
std	2886.89568	2.892174	7.193619e+04	96.653299
10.487806				
min	1.00000	0.000000	1.556570e+07	350.000000
18.000000				
25%	2500.75000	3.000000	1.562853e+07	584.000000
32.000000				
50%	5000.50000	5.000000	1.569074e+07	652.000000
37.000000				
75%	7500.25000	7.000000	1.575323e+07	718.000000
44.000000				
max	10000.00000	10.000000	1.581569e+07	850.000000

92.000000

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

df_cat.describe(exclude = ['int64','float64'])Surname Geography Gender

count	10000	10000	10000	
unique	2932	3	2	
top	Smith	France	Male	
FIANDLE THE MASSING VALUE S 5457				

Column	Missing values
RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

print(f"Our target variable is Exited. We can observe that it has onlytwo possible variables: {df['Exited'].unique().tolist()}")

Our target variable is Exited. We can observe that it has only twopossible variables: [1, 0] df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)

df.rename(columns=new_names, inplace=True)df.head()

'n	credit_score umber_products		country	gender	age	tenure	balance
0	amoei_products	619	France	Female	42	2	0.00
1 1		608	Spain	Female	41	1	83807.86
1 2		502	France	Female	42	8	159660.80
3		699	France	Female	39	1	0.00
2		850	Spain	Female	43	2	125510.82
1			-Pulli			_	==3010.02

	owns_credit_card	is_active_member	estimated_salary exi	ited0	1
		1	101348.88	1	
1		0	1	112542.58	0
2		1	0	113931.57	1
3		0	0	93826.63	0
4		1	1	79084.10	0

REPLACE OUTLIERS

```
def detect_outlier(df):
  outlier = [] threshold =
  3 mean = np.mean(df)std =
  np.std(df) for i in df:
        z_score = (i - mean)/std
  if np.abs(z_score)>threshold:
      outlier.append(i)
  return outlier
  CreditScore_list = df['CreditScore'].tolist()Balance_list =
  df['Balance'].tolist()
```

```
EstimatedSalary_list = df_cat['EstimatedSalary'].tolist()CreditScore_outlier =
 detect_outlier(CreditScore_list) CreditScore_outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance_outlier = detect_outlier(Balance_list)Balance_outlier
 EstimatedSalary_outlier = detect_outlier(EstimatedSalary_list)
 EstimatedSalary_outlier
print("Shape of Data before removing outliers: {}".format(df.shape))Shape of Data before removing
outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables# One Hot Encoding
x = pd.get\_dummies(x)x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIALBLES
# splitting the dataset into x(independent variables) and y(dependent variables)
x = df.iloc[:,0:10]
y = df.iloc[:,10]
print(x.shape)
print(y.shape)
print(x.columns)
#print(y)
```

'number_products', 'owns_credit_card', 'is_active_member', 'estimated_salary'],

SCALE THE INDEPENDENT VARIABLES

dtype='object')

(10000, 10) (10000,)

from sklearn.preprocessing import StandardScalersc = StandardScaler()

Index(['credit_score', 'country', 'gender', 'age', 'tenure', 'balance',

$$\begin{split} x_train &= pd.DataFrame(x_train) \\ x_train.head() \end{split}$$

1	credit_score er_products \	count	ry gender	age tenure		balance		
2967		579	Germany	Female	39	5 117833.30		
3 700		750	France	Female	32	5 0.00		
2 3481		729	Spain	Female	34	9 53299.96		
2 1621		689	Spain	Male	38	5 75075.14		
1 800		605	France	Male	52	7 0.00		
2								
	owns_credit_	_card	is_active_member		estimated_salary			
2967			0		0	5831.00		
700			1		0	95611.47		
3481			1		1	42855.97		
1621			1		1	8651.92		

173952.50

SPLIT THE DATA INTO TRAINING AND TESTING

1

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.25, random_state = 0)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

(7500, 10) (7500,) (2500, 10) (2500,)

800