Key points lecture o	75/02/2022	
	If at a given time t	
gas satisfies the	assumption of molecular	- 16405
(i.e., 7 ⁽²⁾ (7, p, , p, t) =		
	hn correlated	two particles are
I then we have at t+ s	E (E>8 and E->0):	V
W(L) - (160 1) 1	(162 1) 13 2 13 2	at to if and only it f(7, p, t) is there
H(t) =] (Gp, t) log ((45,p,t)) of poly	nexwell-Boltmann distribution
H-fet. folipends	Jimpalies .	endropy never
	/ decrease	dynamics)
this of satisfies the	ne Boltzmann	
transport equation the assumption chaos happens	of molecular to be valid.	
	nation leads to conservat	ion laws. E.g.,
continuity equation for	the mass: 2 P(2, t) + 7.	(g(7,t) ~(7,t)) = 0
	g = m n = mass · den sity	< F(2, t)>
	= mass · den sity	= 1 Sf(7, p,t) F(7,t) d3p
		(n(=,t)= [[(=,p,t)d]p)
Energy of classical Is	sing model (energy for spe	ific arrangement
E(si3 = -] 5 (ib)=	Si Si - (13) Z Si nearest neighbors	s: (4,+1)