

Universidad de Guadalajara, CUCEI

The Empire Strikes Back

Abraham Murillo, Roberto Pino, Uriel Guzmán

\mathbf{C}	ontents	16	6 Dy	namic Programming	16
1	Data structures 2		6.1	Matrix Chain Multiplication	16 16
	1.1 Disjoint set with rollback		6.3	9	16
	1.2 Min-Max queue		6.4	- /	16
	1.3 Sparse table		$6.5 \\ 6.6$. , . , ,	16 16
	1.4 Squirtle decomposition		6.7		17
	1.5 In-Out trick		0.1	$\mathcal{C}(n) \to \mathcal{C}(n) \cdot \dots \cdot \dots$	11
	1.6 Parallel binary search 3 1.7 Mo's algorithm 3	- 1 7	7 Ga	ame Theory	17
	1.7 Mo's algorithm 3 1.8 Static to dynamic 4		7.1	Grundy Numbers	17
				1	-1 =
	1.9 Disjoint intervals		8 Cc 8.1	ombinatorics	17 17
	1.11 Ordered tree		8.1		17 17
	1.12 Unordered tree		8.3		17
	1.13 D-dimensional Fenwick tree		8.4		17
	1.14 Dynamic segment tree		8.5		17
	1.15 Persistent segment tree		8.6	Catalan	18
	1.16 Wavelet tree		8.7	Burnside's lemma	18
	1.17 Li Chao tree		8.8	Prime factors of N!	18
	1.18 Explicit treap		n 18.T	1 70	10
	1.19 Implicit treap		9 Ni 9.1	imber Theory	18 18
	1.20 Splay tree		9.1 9.2	3	18
	- •		9.3		18
2	Graphs 7	'	9.4		18
	2.1 Topological sort		9.5		18
	2.2 Tarjan algorithm (SCC)		9.6	Pollard-Rho	18
	2.3 Kosaraju algorithm (SCC) 8		9.7	Amount of divisors	18
	2.4 Cutpoints and Bridges 8		9.8	v	19
	2.5 Two Sat		9.9		19
	2.6 Detect a cycle			0 LCM	19
	2.7 Euler tour for Mo's in a tree			1 Euclid	19
	2.8 Isomorphism		9.1	2 Chinese remainder theorem	19
	2.9 Dynamic Connectivity 9		10 M	ath	19
3	Tree queries 9			1 Progressions	19
•	3.1 Lowest common ancestor (LCA) 9		10.	2 Fpow	19
	3.2 Virtual tree		10.	3 Fibonacci	19
	3.3 Guni		D.		10
	3.4 Centroid decomposition	1		t tricks 1 Bitset	19
	3.5 Heavy-light decomposition			2 Real	19 19
	3.6 Link-Cut tree		11.	2 Iteal	13
		1	12 Po	oints	19
4	Flows 11		12.	1 Points	19
	4.1 Dinic $\mathcal{O}(min(E \cdot flow, V^2E))$		12.	2 Angle between vectors	20
	4.2 Min cost flow $\mathcal{O}(min(E \cdot flow, V^2 E))$ 11			3 Closest pair of points	20
	4.3 Hopcroft-Karp $\mathcal{O}(E\sqrt{V})$:		4 Projection	20
	4.4 Hungarian $\mathcal{O}(N^3)$		12.	5 KD-Tree	20
_	Ct	. 1	13 Liı	nes and segments	20
5	Strings 12			1 Line	20
	5.1 Hash			2 Distance point line	21
	5.2 KMP			3 Distance point segment	21
	5.4 Z algorithm		13.	4 Segment	21
	5.4 Z algorithm		13.	5 Distance segment segment	21
	5.6 Suffix array		~.	.1	0.7
	5.7 Suffix automaton	"	14 Ci		21
	5.8 Aho corasick			1 Circle	21 22
	5.9 Eertree			3 Minimum enclosing circle	$\frac{22}{22}$
	0.0 ±0.00		14.	o minimum onorosing on ore	22

15 Polygons 2	_ ,
15.1 Area of polygon	1;34m", purple = "\033[3;95m";
15.2 Convex-Hull	2 bool ok = 1;
15.3 Cut polygon by a line 2	2 do { if (s[0] == '\"') ok = 0;
15.4 Perimeter	2 else cout << blue << s[0] << reset;
15.5 Point in polygon	$2 \mid s = s.substr(1);$
15.6 Is convex	2 } while (s.size() && s[0] != ',');
	<pre>if (ok) cout << ": " << purple << h << reset;</pre>
16 Geometry misc 2	1
	2 5
16.2 Sort along a line	$\frac{3}{8}$ Randoms
	mt19937 rng(chrono::steady_clock::now().
	time_since_epoch().count());
Think twice, code once	template <class t=""></class>
Template	T ran(T 1, T r) {
tem.cpp	<pre>return uniform_int_distribution<t>(l, r)(rng);</t></pre>
<pre>#pragma GCC optimize("Ofast,unroll-loops,no-stack-</pre>	}
protector")	Compilation (gedit /.zshenv)
<pre>#include <bits stdc++.h=""></bits></pre>	touch a_in{19} // make files a_in1, a_in2,, a_in9
using namespace std;	tee {am}.cpp < tem.cpp // "" with tem.cpp like base
7101.0	cat > a_in1 // write on file a_in1
#ifdef LOCAL	gedit a_in1 // open file a_in1
<pre>#include "debug.h" #else</pre>	rm -r a.cpp // deletes file a.cpp :'(
#define debug()	
#endif	red='\x1B[0;31m'
	green='\x1B[0;32m' noColor='\x1B[0m'
#define df (b, e) ((b) > (e))	alias flags='-Wall -Wextra -Wshadow -
#define fore(i, b, e) for (auto $i = (b) - df(b, e)$; i	D_GLIBCXX_ASSERTIONS -fmax-errors=3 -02 -w'
!= e - $df(b, e)$; i += 1 - 2 * $df(b, e)$)	go() { g++std=c++11 \$2 \${flags} \$1.cpp && ./a.out }
#define sz(x) int(x.size())	debug() { go \$1 -DLOCAL < \$2 }
<pre>#define all(x) begin(x), end(x) #define f first</pre>	run() { go \$1 "" < \$2 }
#define s second	
#define pb push_back	random() { // Make small test cases!!!
	g++std=c++11 \$1.cpp -o prog g++std=c++11 gen.cpp -o gen
using lli = long long;	g++std=c++11 brute.cpp -o brute
using ld = long double;	for ((i = 1; i <= 200; i++)); do
<pre>using ii = pair<int, int="">;</int,></pre>	<pre>printf "Test case #\$i"</pre>
<pre>using vi = vector<int>;</int></pre>	./gen > in
<pre>int main() {</pre>	<pre>diff -uwi <(./prog < in) <(./brute < in) > \$1_diff</pre>
cin.tie(0)->sync_with_stdio(0), cout.tie(0);	if [[! \$? -eq 0]]; then
// solve the problem here D:	<pre>printf "\${red} Wrong answer \${noColor}\n" break</pre>
return ∅;	else
}	<pre>printf "\${green} Accepted \${noColor}\n"</pre>
debug.h	fi
template <class a,="" b="" class=""></class>	done
ostream & operator << (ostream &os, const pair <a, b=""> &</a,>	}
<pre>p) { return os << "(" << p.first << ", " << p.second << "</pre>	Bump allocator
)";	static char buf[450 << 20];
}	<pre>void* operator new(size_t s) {</pre>
	<pre>static size_t i = sizeof buf; assert(s < i);</pre>
template <class a,="" b,="" c="" class=""></class>	<pre>return (void *) &buf[i -= s];</pre>
<pre>basic_ostream<a, b=""> & operator << (basic_ostream<a, b=""></a,></a,></pre>	
&os, const C &c) {	<pre>void operator delete(void *) {}</pre>
os << "[";	1 Data structures
<pre>for (const auto &x : c) os << ", " + 2 * (&x == &*begin(c)) << x;</pre>	I Dava soracourcs
return os << "]";	1.1 Disjoint set with rollback
}	struct Dsu {
	vi par, tot;
<pre>void print(string s) { cout << endl; }</pre>	<pre>stack<ii> mem;</ii></pre>
template Calego II (1997) - Th	
<pre>template <class class="" h,="" t=""> void print(string s, const H &h, const T& t) {</class></pre>	<pre>Dsu(int n = 1) : par(n + 1), tot(n + 1, 1) { iota(all(par), 0);</pre>
The principal ing o, const in an, const ia t/ 1	. 1000(u11(pui), V),

```
}
  int find(int u) {
   return par[u] == u ? u : find(par[u]);
  void unite(int u, int v) {
    u = find(u), v = find(v);
    if (u != v) {
      if (tot[u] < tot[v])</pre>
        swap(u, v);
      mem.emplace(u, v);
      tot[u] += tot[v];
      par[v] = u;
   }
  }
  void rollback() {
    auto [u, v] = mem.top();
    mem.pop();
    if (u != -1) {
      tot[u] -= tot[v];
      par[v] = v;
    }
  }
};
     Min-Max queue
  // add a element to the right {val, pos}
  void add(lli val, int pos) {
    while (!empty() && back().f >= val)
      pop_back();
    emplace_back(val, pos);
```

1.2

```
struct MinQueue : deque< pair<lli, int> > {
  // remove all less than pos
  void rem(int pos) {
    while (front().s < pos)</pre>
      pop_front();
  }
  1li qmin() { return front().f; }
};
```

1.3Sparse table

```
template <class T, class F = function<T(const T&,
    const T&)>>
struct Sparse {
  int n:
  vector<vector<T>> sp;
  Sparse(vector<T> &a, const F &f) : n(sz(a)), sp(1 +
        _lg(n)), f(f) {
    sp[0] = a;
    for (int k = 1; (1 << k) <= n; k++) {
      sp[k].resize(n - (1 << k) + 1);
      fore (1, 0, sz(sp[k])) {
        int r = 1 + (1 << (k - 1));
        sp[k][1] = f(sp[k - 1][1], sp[k - 1][r]);
      }
   }
  }
  T query(int 1, int r) {
    int k = _{-}lg(r - l + 1);
    return f(sp[k][1], sp[k][r - (1 << k) + 1]);
  }
};
```

Squirtle decomposition

The perfect block size is squirtle of N


```
int blo[N], cnt[N][B], a[N];
void update(int i, int x) {
  cnt[blo[i]][x]--;
  a[i] = x;
  cnt[blo[i]][x]++;
int query(int 1, int r, int x) {
  int tot = 0;
  while (1 \le r)
    if (1 % B == 0 && 1 + B - 1 <= r) {</pre>
      tot += cnt[blo[1]][x];
      1 += B;
    } else {
      tot += (a[1] == x);
  return tot;
```

In-Out trick

```
vector<int> in[N], out[N];
vector<Query> queries;
fore (x, 0, N) {
  for (int i : in[x])
    add(queries[i]);
  // solve
  for (int i : out[x])
    rem(queries[i]);
}
```

Parallel binary search 1.6

```
int lo[0], hi[0];
queue<int> solve[N];
vector<Query> queries;
fore (it, 0, 1 + _{-}lg(N)) {
  fore (i, 0, sz(queries))
    if (lo[i] != hi[i]) {
      int mid = (lo[i] + hi[i]) / 2;
      solve[mid].emplace(i);
    }
  fore (x, 0, n) {
    // simulate
    while (!solve[x].empty()) {
      int i = solve[x].front();
      solve[x].pop();
      if (can(queries[i]))
        hi[i] = x;
      else
        lo[i] = x + 1;
  }
}
```

1.7Mo's algorithm

```
vector<Query> queries;
// N = 1e6, so aprox. sqrt(N) +/- C
uniform_int_distribution<int> dis(970, 1030);
const int blo = dis(rng);
sort(all(queries), [&](Query a, Query b) {
  const int ga = a.l / blo, gb = b.l / blo;
  if (ga == gb)
    return (ga & 1) ? a.r < b.r : a.r > b.r;
  return a.l < b.l;</pre>
```

```
});
 int 1 = queries[0].1, r = 1 - 1;
 for (Query &q : queries) {
  while (r < q.r)
     add(++r);
   while (r > q.r)
     rem(r--);
   while (1 < q.1)
     rem(1++);
   while (1 > q.1)
     add(--1);
   ans[q.i] = solve();
}
To make it faster, change the order to hilbert(l, r)
11i hilbert(int x, int y, int pw = 21, int rot = 0) {
   if (pw == 0)
     return 0;
   int hpw = 1 << (pw - 1);</pre>
   int k = ((x < hpw ? y < hpw ? 0 : 3 : y < hpw ? 1 :
       2) + rot) & 3:
   const int d[4] = \{3, 0, 0, 1\};
   11i a = 1LL << ((pw << 1) - 2);
   11i b = hilbert(x & (x ^{\circ} hpw), y & (y ^{\circ} hpw), pw - 1
       , (rot + d[k]) & 3);
   return k * a + (d[k] ? a - b - 1 : b);
}
      Static to dynamic
 template <class Black, class T>
struct StaticDynamic {
   Black box[LogN];
   vector<T> st[LogN];
   void insert(T &x) {
     int p = 0;
     fore (i, 0, LogN)
       if (st[i].empty()) {
         p = i;
         break;
       }
     st[p].pb(x);
     fore (i, 0, p) {
       st[p].insert(st[p].end(), all(st[i]));
       box[i].clear(), st[i].clear();
     for (auto y : st[p])
      box[p].insert(y);
     box[p].init();
   }
};
      Disjoint intervals
1.9
```

```
struct Interval {
  int 1, r;
  bool operator < (const Interval &it) const {
    return 1 < it.1;
  }
};

struct DisjointIntervals : set<Interval> {
  void add(Interval it) {
    iterator p = lower_bound(it), q = p;
    if (p != begin() && it.1 <= (--p)->r)
        it.1 = p->1, --q;
    for (; q != end() && q->1 <= it.r; erase(q++))
        it.r = max(it.r, q->r);
    insert(it);
}
```

```
void add(int 1, int r) {
     add(Interval{1, r});
   }
};
1.10
       Interval tree
 struct Interval {
  11i 1, r, i;
 };
 struct ITree {
   ITree *ls, *rs;
   vector<Interval> cur;
   11i m;
   ITree(vector<Interval> &vec, 11i 1 = LLONG_MAX, 11i
       r = LLONG_MIN) : ls(0), rs(0) {
     if (1 > r) { // not sorted yet
       sort(all(vec), [&](Interval a, Interval b) {
         return a.1 < b.1;
       });
       for (auto it : vec)
         1 = min(1, it.1), r = max(r, it.r);
     m = (1 + r) >> 1;
     vector<Interval> lo, hi;
     for (auto it : vec)
       (it.r < m ? lo : m < it.l ? hi : cur).pb(it);
     if (!lo.empty())
       ls = new ITree(lo, 1, m);
     if (!hi.empty())
       rs = new ITree(hi, m + 1, r);
   template <class F>
   void near(lli l, lli r, F f) {
     if (!cur.empty() && !(r < cur.front().1)) {</pre>
       for (auto &it : cur)
         f(it);
     if (ls && 1 <= m)</pre>
       ls->near(1, r, f);
     if (rs && m < r)
       rs->near(1, r, f);
   template <class F>
   void overlapping(lli l, lli r, F f) {
     near(1, r, [&](Interval it) {
       if (1 <= it.r && it.l <= r)</pre>
         f(it);
     });
   template <class F>
   void contained(lli l, lli r, F f) {
     near(l, r, [&](Interval it) {
       if (1 <= it.1 && it.r <= r)</pre>
         f(it);
     });
  }
 };
```

1.11 Ordered tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template <class K, class V = null_type>
using ordered_tree = tree<K, V, less<K>, rb_tree_tag,
```

```
tree_order_statistics_node_update>;
                                                                 }
                                                                 pull();
 // less_equal<K> for multiset, multimap (?
#define rank order_of_key
                                                               }
 #define kth find_by_order
                                                               11i qsum(int 11, int rr) {
1.12 Unordered tree
                                                                 if (rr < l || r < ll || r < l)</pre>
 struct chash {
                                                                   return 0;
  const uint64_t C = uint64_t(2e18 * 3) + 71;
                                                                 if (ll <= l && r <= rr)
   const int R = rng();
                                                                   return sum;
  uint64_t operator ()(uint64_t x) const {
                                                                 int m = (1 + r) >> 1;
    return __builtin_bswap64((x ^ R) * C); }
                                                                 return (ls ? ls->qsum(ll, rr) : 0) +
                                                                        (rs ? rs->qsum(ll, rr) : ∅);
                                                              }
template <class K, class V = null_type>
                                                             };
using unordered_tree = gp_hash_table<K, V, chash>;
                                                            1.15
                                                                    Persistent segment tree
        D-dimensional Fenwick tree
                                                             struct Per {
 template <class T, int ...N>
                                                               int 1, r;
struct Fenwick {
                                                               11i sum = 0;
   T v = 0;
                                                               Per *ls, *rs;
   void update(T v) { this->v += v; }
   T query() { return v; }
                                                               Per(int 1, int r) : l(l), r(r), ls(0), rs(0) {}
};
                                                               Per* pull() {
 template <class T, int N, int ...M>
                                                                 sum = 1s->sum + rs->sum;
 struct Fenwick<T, N, M...> {
                                                                 return this:
   #define lsb(x) (x & -x)
   Fenwick<T, M...> fenw[N + 1];
                                                               void build() {
   template <typename... Args>
                                                                 if (1 == r)
   void update(int i, Args... args) {
                                                                   return;
    for (; i <= N; i += lsb(i))</pre>
                                                                 int m = (1 + r) >> 1;
       fenw[i].update(args...);
                                                                 (ls = new Per(1, m))->build();
   }
                                                                 (rs = new Per(m + 1, r)) -> build();
                                                                 pull();
   template <typename... Args>
   T query(int 1, int r, Args... args) {
    T v = 0;
                                                               Per* update(int p, lli v) {
    for (; r > 0; r -= lsb(r))
                                                                 if (p < 1 || r < p)
      v += fenw[r].query(args...);
                                                                   return this;
    for (--1; 1 > 0; 1 -= 1sb(1))
                                                                 Per* t = new Per(1, r);
      v -= fenw[1].query(args...);
                                                                 if (1 == r) {
    return v;
                                                                   t \rightarrow sum = v;
  }
                                                                   return t;
};
                                                                 }
1.14 Dynamic segment tree
                                                                 t->ls = ls->update(p, v);
                                                                 t->rs = rs->update(p, v);
 struct Dyn {
                                                                 return t->pull();
   int 1, r;
   11i sum = 0;
   Dyn *ls, *rs;
                                                               lli qsum(int ll, int rr) {
                                                                 if (r < ll || rr < l)</pre>
   Dyn(int 1, int r) : l(1), r(r), ls(0), rs(0) {}
                                                                   return 0;
                                                                 if (11 <= 1 && r <= rr)</pre>
   void pull() {
                                                                   return sum;
    sum = (ls ? ls -> sum : 0);
                                                                 return ls->qsum(ll, rr) + rs->qsum(ll, rr);
    sum += (rs ? rs->sum : 0);
                                                              }
   }
                                                            };
   void update(int p, lli v) {
                                                           1.16
                                                                    Wavelet tree
    if (1 == r) {
                                                             struct Wav {
       sum += v;
       return;
                                                               #define iter int* // vector<int>::iterator
                                                               int lo, hi;
    }
    int m = (1 + r) >> 1;
                                                               Wav *ls, *rs;
    if (p <= m) {</pre>
                                                               vi amt;
      if (!ls) ls = new Dyn(1, m);
      ls->update(p, v);
                                                               Wav(int lo, int hi, iter b, iter e) : lo(lo), hi(hi)
    } else {
                                                                    { // array 1-indexed
                                                                 if (lo == hi || b == e)
       if (!rs) rs = new Dyn(m + 1, r);
       rs->update(p, v);
                                                                   return;
```

```
amt.reserve(e - b + 1);
                                                               }
                                                             };
     amt.pb(0);
     int m = (lo + hi) >> 1;
                                                            1.18
                                                                     Explicit treap
     for (auto it = b; it != e; it++)
      amt.pb(amt.back() + (*it <= m));</pre>
                                                              typedef struct Node* Treap;
     auto p = stable_partition(b, e, [&](int x) {
                                                              struct Node {
      return x <= m;</pre>
                                                                Treap ch[2] = \{0, 0\}, p = 0;
     });
                                                                uint32_t pri = rng();
    ls = new Wav(lo, m, b, p);
                                                                int sz = 1, rev = 0;
     rs = new Wav(m + 1, hi, p, e);
                                                                int val, sum = 0;
                                                                void push() {
   int kth(int 1, int r, int k) {
                                                                  if (rev) {
    if (r < 1)
                                                                    swap(ch[0], ch[1]);
      return 0;
                                                                    for (auto ch : ch) if (ch != 0) {
     if (lo == hi)
                                                                      ch->rev ^= 1;
      return lo;
                                                                    }
     if (k <= amt[r] - amt[l - 1])</pre>
                                                                    rev = 0;
       return ls->kth(amt[1 - 1] + 1, amt[r], k);
                                                                  }
     return rs->kth(l - amt[l - 1], r - amt[r], k - amt
                                                                }
         [r] + amt[1 - 1]);
   }
                                                                Treap pull() {
                                                                  #define gsz(t) (t ? t->sz : 0)
   int leq(int 1, int r, int mx) {
                                                                  #define gsum(t) (t ? t->sum : 0)
     if (r < 1 || mx < lo)
                                                                  sz = 1, sum = val;
       return 0;
                                                                  for (auto ch : ch) if (ch != 0) {
     if (hi <= mx)</pre>
                                                                    ch->push();
       return r - 1 + 1;
                                                                    sz += ch->sz;
     return ls->leq(amt[1 - 1] + 1, amt[r], mx) +
                                                                    sum += ch->sum;
            rs->leq(l - amt[l - 1], r - amt[r], mx);
                                                                    ch->p = this;
   }
                                                                  }
};
                                                                 p = 0;
                                                                  return this;
1.17 Li Chao tree
struct Fun {
   lli m = 0, c = inf;
                                                               Node(int val) : val(val) {}
   1li operator ()(lli x) const { return m * x + c; }
                                                             };
};
                                                              pair<Treap, Treap> split(Treap t, int val) {
 struct LiChao {
                                                                // <= val goes to the left, > val to the right
  Fun f;
                                                                if (!t)
   lli 1, r;
                                                                  return {t, t};
  LiChao *ls, *rs;
                                                                t->push();
                                                                if (val < t->val) {
   LiChao(lli l, lli r) : l(l), r(r), ls(0), rs(0) {}
                                                                  auto p = split(t->ch[0], val);
                                                                  t->ch[0] = p.s;
   void add(Fun &g) {
                                                                  return {p.f, t->pull()};
                                                                } else {
     if (f(1) \le g(1) \&\& f(r) \le g(r))
       return;
                                                                  auto p = split(t->ch[1], val);
     if (g(1) < f(1) && g(r) < f(r)) {
                                                                  t->ch[1] = p.f;
      f = g;
                                                                  return {t->pull(), p.s};
       return;
                                                             }
     11i m = (1 + r) >> 1;
     if (g(m) < f(m))
                                                             Treap merge(Treap 1, Treap r) {
      swap(f, g);
                                                                if (!l || !r)
     if (g(1) \le f(1))
                                                                  return 1 ? 1 : r;
     ls = ls ? (ls->add(g), ls) : new LiChao(l, m, g);
                                                                1->push(), r->push();
                                                                if (1->pri > r->pri)
     rs = rs ? (rs - > add(g), rs) : new LiChao(m + 1, r,
                                                                  return l->ch[1] = merge(l->ch[1], r), l->pull();
                                                                else
           g);
   }
                                                                  return r->ch[0] = merge(1, r->ch[0]), r->pull();
                                                             }
  1li query(lli x) {
    if (1 == r)
                                                             Treap kth(Treap t, int k) { // 0-indexed
                                                               if (!t)
      return f(x);
     11i m = (1 + r) >> 1;
                                                                 return t;
                                                                t->push();
     if (x \le m)
       return min(f(x), ls ? ls \rightarrow query(x) : inf);
                                                                int sz = gsz(t->ch[0]);
     return min(f(x), rs ? rs->query(x) : inf);
                                                                if (sz == k)
```

```
return t;
                                                               bool isRoot() { return dir() < 0; }</pre>
   return k < sz? kth(t\rightarrow ch[0], k) : kth(t\rightarrow ch[1], k\rightarrow ch[1])
        sz - 1);
                                                               friend void add(Splay u, Splay v, int d) {
                                                                 if (v) v->p = u;
                                                                 if (d \ge 0) u - ch[d] = v;
int rank(Treap t, int val) { // 0-indexed
   if (!t)
                                                               void rotate() {
    return -1;
   t->push();
                                                                 // assume p and p->p propagated
   if (val < t->val)
                                                                 assert(!isRoot());
    return rank(t->ch[0], val);
                                                                  int x = dir();
   if (t->val == val)
                                                                  Splay g = p;
     return gsz(t->ch[0]);
                                                                 add(g->p, this, g->dir());
   return gsz(t->ch[0]) + rank(t->ch[1], val) + 1;
                                                                 add(g, ch[x ^ 1], x);
                                                                 add(this, g, x ^ 1);
}
                                                                 g->pull(), pull();
Treap insert(Treap t, int val) {
   auto p1 = split(t, val);
   auto p2 = split(p1.f, val - 1);
                                                               void splay() {
   return merge(p2.f, merge(new Node(val), p1.s));
                                                                 // bring this to top of splay tree
                                                                 while (!isRoot() && !p->isRoot()) {
                                                                   p->p->push(), p->push(), push();
Treap erase(Treap t, int val) {
                                                                   dir() == p->dir() ? p->rotate() : rotate();
   auto p1 = split(t, val);
                                                                   rotate();
   auto p2 = split(p1.f, val - 1);
                                                                 }
   return merge(p2.f, p1.s);
                                                                 if (!isRoot()) p->push(), push(), rotate();
                                                                 push(), pull();
1.19
        Implicit treap
                                                               void pull() {
 pair<Treap, Treap> splitsz(Treap t, int sz) {
                                                                 #define gsz(t) (t ? t->sz : 0)
   // <= sz goes to the left, > sz to the right
                                                                 sz = 1 + gsz(ch[0]) + gsz(ch[1]);
  if (!t)
     return {t, t};
   t->push();
                                                               void push() {
   if (sz <= gsz(t->ch[0])) {
                                                                 if (rev) {
     auto p = splitsz(t->ch[0], sz);
                                                                    swap(ch[0], ch[1]);
     t->ch[0] = p.s;
                                                                    for (auto ch : ch) if (ch) {
     return {p.f, t->pull()};
                                                                     ch->rev ^= 1;
   } else {
                                                                   }
     auto p = splitsz(t->ch[1], sz - gsz(t->ch[0]) - 1)
                                                                   rev = 0;
                                                                 }
     t->ch[1] = p.f;
                                                               }
     return {t->pull(), p.s};
  }
                                                               void vsub(Splay t, bool add) {}
}
                                                             };
int pos(Treap t) {
                                                            \mathbf{2}
                                                                  Graphs
   int sz = gsz(t->ch[0]);
   for (; t->p; t = t->p) {
                                                            2.1
                                                                   Topological sort
    Treap p = t->p;
     if (p->ch[1] == t)
                                                             vi order;
       sz += gsz(p->ch[0]) + 1;
                                                             int indeg[N];
   return sz + 1;
                                                             void topsort() { // first fill the indeg[]
}
                                                               queue<int> qu;
                                                               fore (u, 1, n + 1)
1.20
        Splay tree
                                                                  if (indeg[u] == 0)
 typedef struct Node* Splay;
                                                                   qu.push(u);
                                                               while (!qu.empty()) {
 struct Node {
   Splay ch[2] = \{0, 0\}, p = 0;
                                                                 int u = qu.front();
   bool rev = 0;
                                                                 qu.pop();
   int sz = 1;
                                                                 order.pb(u);
                                                                  for (int v : graph[u])
                                                                   if (--indeg[v] == 0)
   int dir() {
    if (!p) return -2; // root of LCT component
                                                                     qu.push(v);
    if (p->ch[0] == this) return 0; // left child
                                                               }
    if (p->ch[1] == this) return 1; // right child
                                                             }
     return -1; // root of current splay tree
                                                            2.2
                                                                   Tarjan algorithm (SCC)
   }
                                                             int tin[N], fup[N];
```

```
bitset<N> still;
                                                              if (!p && children > 1) // u is a cutpoint
stack<int> stk;
 int timer = 0;
                                                            }
void tarjan(int u) {
                                                           2.5
                                                                  Two Sat
   tin[u] = fup[u] = ++timer;
                                                            struct TwoSat {
   still[u] = true;
                                                              int n;
   stk.push(u);
                                                              vector<vi> imp;
   for (int v : graph[u]) {
    if (!tin[v])
                                                              TwoSat(int _n) : n(_n + 1), imp(2 * n) {}
      tarjan(v);
    if (still[v])
                                                              void either(int a, int b) {
       fup[u] = min(fup[u], fup[v]);
                                                                 a = max(2 * a, -1 - 2 * a);
                                                                 b = max(2 * b, -1 - 2 * b);
   if (fup[u] == tin[u]) {
                                                                imp[a ^ 1].pb(b);
    int v;
                                                                 imp[b ^ 1].pb(a);
    do {
      v = stk.top();
      stk.pop();
                                                              void implies(int a, int b) { either(~a, b); }
       still[v] = false;
                                                              void setVal(int a) { either(a, a); }
       // u and v are in the same scc
    } while (v != u);
                                                              vi solve() {
   }
                                                                 int k = sz(imp);
}
                                                                 vi s, b, id(sz(imp));
      Kosaraju algorithm (SCC)
2.3
                                                                 function<void(int)> dfs = [&](int u) {
int scc[N], k = 0;
                                                                  b.pb(id[u] = sz(s));
char vis[N];
                                                                   s.pb(u);
vi order;
                                                                   for (int v : imp[u]) {
                                                                    if (!id[v]) dfs(v);
void dfs1(int u) {
                                                                     else while (id[v] < b.back()) b.pop_back();</pre>
  vis[u] = 1;
   for (int v : graph[u])
                                                                   if (id[u] == b.back())
    if (vis[v] != 1)
                                                                     for (b.pop_back(), ++k; id[u] < sz(s); s.</pre>
       dfs1(v);
                                                                         pop_back())
   order.pb(u);
                                                                       id[s.back()] = k;
                                                                 };
void dfs2(int u, int k) {
                                                                 fore (u, 0, sz(imp))
   vis[u] = 2, scc[u] = k;
                                                                  if (!id[u]) dfs(u);
   for (int v : rgraph[u]) // reverse graph
    if (vis[v] != 2)
                                                                 vi val(n);
       dfs2(v, k);
                                                                 fore (u, 0, n) {
                                                                  int x = 2 * u;
                                                                  if (id[x] == id[x ^ 1])
void kosaraju() {
                                                                    return {};
   fore (u, 1, n + 1)
                                                                  val[u] = id[x] < id[x ^ 1];
    if (vis[u] != 1)
                                                                 }
       dfs1(u);
                                                                 return val;
   reverse(all(order));
                                                              }
   for (int u : order)
                                                            };
    if (vis[u] != 2)
                                                           2.6
                                                                 Detect a cycle
       dfs2(u, ++k);
}
                                                            bool cycle(int u) {
                                                              vis[u] = 1;
      Cutpoints and Bridges
                                                              for (int v : graph[u]) {
int tin[N], fup[N], timer = 0;
                                                                 if (vis[v] == 1)
                                                                  return true;
void findWeakness(int u, int p = 0) {
                                                                 if (!vis[v] && cycle(v))
   tin[u] = fup[u] = ++timer;
                                                                   return true;
   int children = 0;
   for (int v : graph[u]) if (v != p) {
                                                              vis[u] = 2;
    if (!tin[v]) {
                                                              return false;
                                                            }
       ++children;
       findWeakness(v, u);
                                                                  Euler tour for Mo's in a tree
                                                           2.7
       fup[u] = min(fup[u], fup[v]);
       if (fup[v] >= tin[u] && p) // u is a cutpoint
                                                           Mo's in a tree, extended euler tour tin[u] = ++timer, tout[u]
                                                           = ++timer
       if (fup[v] > tin[u]) // bridge u -> v
                                                              • u = lca(u, v), query(tin[u], tin[v])
     fup[u] = min(fup[u], tin[v]);
                                                              • u \neq lca(u, v), query(tout[u], tin[v]) + query(tin[lca],
```

```
tin[lca])
                                                                solve(m + 1, r);
                                                                while (sz(dsu.mem) > before)
2.8 Isomorphism
                                                                  dsu.rollback();
11i f(11i x) {
                                                              }
  // K * n <= 9e18
                                                            };
   static uniform_int_distribution<lli> uid(1, K);
   if (!mp.count(x))
                                                           3
                                                                 Tree queries
    mp[x] = uid(rng);
                                                                  Lowest common ancestor (LCA)
   return mp[x];
                                                           3.1
                                                            const int LogN = 1 + __lg(N);
                                                            int par[LogN][N], dep[N];
lli hsh(int u, int p = 0) {
   dp[u] = h[u] = 0;
                                                             void dfs(int u, int par[]) {
   for (int v : graph[u]) {
                                                              for (int v : graph[u])
    if (v == p)
                                                                if (v != par[u]) {
       {\color{red}\textbf{continue}};\\
                                                                  par[v] = u;
    dp[u] += hsh(v, u);
                                                                  dep[v] = dep[u] + 1;
                                                                  dfs(v, par);
   return h[u] = f(dp[u]);
                                                            }
     Dynamic Connectivity
                                                            int lca(int u, int v){
struct DynamicConnectivity {
                                                              if (dep[u] > dep[v])
   struct Query {
                                                                 swap(u, v);
    int op, u, v, at;
                                                               fore (k, LogN, 0)
                                                                 if (dep[v] - dep[u] >= (1 << k))
                                                                  v = par[k][v];
   Dsu dsu; // with rollback
                                                               if (u == v)
   vector<Query> queries;
                                                                return u;
   map<ii, int> mp;
                                                               fore (k, LogN, 0)
   int timer = -1;
                                                                 if (par[k][v] != par[k][u])
                                                                   u = par[k][u], v = par[k][v];
   DynamicConnectivity(int n = 0) : dsu(n) {}
                                                              return par[0][u];
                                                            }
   void add(int u, int v) {
    mp[minmax(u, v)] = ++timer;
                                                             int dist(int u, int v) {
    queries.pb({'+', u, v, INT_MAX});
                                                              return dep[u] + dep[v] - 2 * dep[lca(u, v)];
                                                            }
   void rem(int u, int v) {
                                                            void init(int r) {
    int in = mp[minmax(u, v)];
                                                              dfs(r, par[0]);
    queries.pb(\{'-', u, v, in\});
                                                              fore (k, 1, LogN)
    queries[in].at = ++timer;
                                                                fore (u, 1, n + 1)
    mp.erase(minmax(u, v));
                                                                   par[k][u] = par[k - 1][par[k - 1][u]];
                                                            }
                                                           3.2
                                                                Virtual tree
   void query() {
    queries.push_back({'?', -1, -1, ++timer});
                                                            vi virt[N];
                                                             int virtualTree(vi &ver) {
   void solve(int 1, int r) {
                                                              auto byDfs = [&](int u, int v) {
    if (1 == r) {
                                                                return tin[u] < tin[v];</pre>
       if (queries[1].op == '?') // solve the query
                                                              };
           here
                                                              sort(all(ver), byDfs);
       return;
                                                              fore (i, sz(ver), 1)
    }
                                                                ver.pb(lca(ver[i - 1], ver[i]));
    int m = (1 + r) >> 1;
                                                               sort(all(ver), byDfs);
    int before = sz(dsu.mem);
                                                              ver.erase(unique(all(ver)), ver.end());
     for (int i = m + 1; i <= r; i++) {
                                                              for (int u : ver)
       Query &q = queries[i];
                                                                virt[u].clear();
       if (q.op == '-' && q.at < 1)
                                                              fore (i, 1, sz(ver))
         dsu.unite(q.u, q.v);
                                                                virt[lca(ver[i - 1], ver[i])].pb(ver[i]);
                                                              return ver[0];
     solve(1, m);
                                                            }
    while (sz(dsu.mem) > before)
                                                           3.3 Guni
       dsu.rollback();
     for (int i = 1; i <= m; i++) {</pre>
                                                            int cnt[C], color[N];
       Query &q = queries[i];
                                                            int sz[N];
       if (q.op == '+' && q.at > r)
                                                            int guni(int u, int p = 0) {
         dsu.unite(q.u, q.v);
    }
                                                              sz[u] = 1;
```

```
for (int &v : graph[u]) if (v != p) {
                                                              head[u] = h, pos[u] = ++timer, who[timer] = u;
    sz[u] += guni(v, u);
                                                              for (int &v : graph[u])
                                                                if (v != par[u])
    if (sz[v] > sz[graph[u][0]] || p == graph[u][0])
      swap(v, graph[u][0]);
                                                                  hld(v, v == graph[u][0] ? h : v);
                                                            }
  return sz[u];
                                                            template <class F>
}
                                                            void processPath(int u, int v, F f) {
void add(int u, int p, int x, bool skip) {
                                                              for (; head[u] != head[v]; v = par[head[v]]) {
                                                                if (dep[head[u]] > dep[head[v]]) swap(u, v);
  cnt[color[u]] += x;
  for (int i = skip; i < sz(graph[u]); i++) // don't</pre>
                                                                f(pos[head[v]], pos[v]);
       change it with a fore!!!
                                                              if (dep[u] > dep[v]) swap(u, v);
    if (graph[u][i] != p)
                                                              if (u != v) f(pos[graph[u][0]], pos[v]);
      add(graph[u][i], u, x, 0);
}
                                                              f(pos[u], pos[u]); // only if hld over vertices
                                                            }
void solve(int u, int p, bool keep = 0) {
  fore (i, sz(graph[u]), 0)
                                                            void updatePath(int u, int v, lli z) {
    if (graph[u][i] != p)
                                                              processPath(u, v, [&](int 1, int r) {
      solve(graph[u][i], u, !i);
                                                                tree->update(1, r, z);
  add(u, p, +1, 1); // add
                                                              });
  // now cnt[i] has how many times the color i appears
       in the subtree of u
  if (!keep) add(u, p, -1, 0); // remove
                                                            11i queryPath(int u, int v) {
}
                                                              11i sum = 0;
                                                              processPath(u, v, [\&](int 1, int r) {
     Centroid decomposition
                                                                sum += tree->qsum(1, r);
int cdp[N], sz[N];
                                                              });
bitset<N> rem;
                                                              return sum;
int dfsz(int u, int p = 0) {
  sz[u] = 1;
                                                           3.6
                                                                Link-Cut tree
  for (int v : graph[u])
                                                            void access(Splay u) {
   if (v != p && !rem[v])
                                                              \ensuremath{//} puts u on the preferred path, splay (right
      sz[u] += dfsz(v, u);
                                                                  subtree is empty)
  return sz[u];
                                                              for (Splay v = u, pre = NULL; v; v = v -> p) {
                                                                v->splay(); // now pull virtual children
                                                                if (pre) v->vsub(pre, false);
int centroid(int u, int n, int p = 0) {
                                                                if (v->ch[1]) v->vsub(v->ch[1], true);
  for (int v : graph[u])
                                                                v \rightarrow ch[1] = pre, v \rightarrow pull(), pre = v;
    if (v != p && !rem[v] && 2 * sz[v] > n)
                                                              }
      return centroid(v, n, u);
                                                              u->splay();
  return u;
                                                            }
}
                                                            void rootify(Splay u) {
void solve(int u, int p = 0) {
                                                              // make u root of LCT component
  cdp[u = centroid(u, dfsz(u))] = p;
                                                              access(u), u->rev ^= 1, access(u);
  rem[u] = true;
                                                              assert(!u->ch[0] && !u->ch[1]);
  for (int v : graph[u])
    if (!rem[v])
      solve(v, u);
                                                            Splay lca(Splay u, Splay v) {
}
                                                              if (u == v) return u;
     Heavy-light decomposition
                                                              access(u), access(v);
int par[N], dep[N], sz[N], head[N], pos[N], who[N],
                                                              if (!u->p) return NULL;
    timer = 0;
                                                              return u->splay(), u->p ?: u;
Lazy* tree;
                                                            }
int dfs(int u) {
                                                            bool connected(Splay u, Splay v) {
  sz[u] = 1, head[u] = 0;
                                                              return lca(u, v) != NULL;
  for (int &v : graph[u]) if (v != par[u]) {
                                                            }
    par[v] = u;
    dep[v] = dep[u] + 1;
                                                            void link(Splay u, Splay v) { // make u parent of v
    sz[u] += dfs(v);
                                                              if (!connected(u, v)) {
   if (sz[v] > sz[graph[u][0]])
                                                                rootify(v), access(u);
      swap(v, graph[u][0]);
                                                                add(v, u, ∅), v->pull();
  }
                                                              }
                                                            }
  return sz[u];
                                                            void cut(Splay u) {
void hld(int u, int h) {
                                                              // cut u from its parent
```

```
access(u);
                                                                     int u = qu.front();
   u \rightarrow ch[0] \rightarrow p = u \rightarrow ch[0] = NULL;
                                                                     qu.pop();
   u->pull();
                                                                     for (Edge &e : g[u]) if (dist[e.v] == -1)
                                                                       if (e.cap - e.flow > eps) {
                                                                         dist[e.v] = dist[u] + 1;
 void cut(Splay u, Splay v) { // if u, v are adjacent
                                                                          qu.push(e.v);
                                                                       }
     in the tree
   cut(depth(u) > depth(v) ? u : v);
                                                                   }
                                                                   return dist[t] != -1;
 int depth(Splay u) {
   access(u);
                                                                 F dfs(int u, F flow = numeric_limits<F>::max()) {
   return gsz(u->ch[0]);
                                                                   if (flow <= eps || u == t)</pre>
                                                                     return max<F>(0, flow);
                                                                   for (int &i = ptr[u]; i < sz(g[u]); i++) {</pre>
 Splay getRoot(Splay u) { // get root of LCT component
                                                                     Edge &e = g[u][i];
                                                                     if (e.cap - e.flow > eps && dist[u] + 1 == dist[
   access(u):
   while (u->ch[0]) u = u->ch[0], u->push();
                                                                          e.v]) {
                                                                      F pushed = dfs(e.v, min<F>(flow, e.cap - e.flow
   return access(u), u;
                                                                           ));
                                                                        if (pushed > eps) {
 Splay ancestor(Splay u, int k) {
                                                                         e.flow += pushed;
   // get k-th parent on path to root
                                                                          g[e.v][e.inv].flow -= pushed;
   k = depth(u) - k;
                                                                          return pushed;
   assert(k >= 0);
                                                                       }
   for (;; u->push()) {
                                                                     }
     int sz = gsz(u->ch[0]);
                                                                   }
     if (sz == k) return access(u), u;
                                                                   return 0;
     if (sz < k) k = sz + 1, u = u - ch[1];
     else u = u - ch[0];
                                                                 F maxFlow() {
                                                                   F flow = 0;
   assert(₀);
                                                                   while (bfs()) {
                                                                     fill(all(ptr), 0);
 Splay query(Splay u, Splay v) {
                                                                     while (F pushed = dfs(s))
   return rootify(u), access(v), v;
                                                                       flow += pushed;
 }
                                                                   return flow;
     Flows
4
                                                                 }
                                                               };
4.1
       Dinic \mathcal{O}(min(E \cdot flow, V^2E))
                                                              4.2
                                                                     Min cost flow \mathcal{O}(min(E \cdot flow, V^2E))
If the network is massive, try to compress it by looking for
                                                              If the network is massive, try to compress it by looking for
patterns.
                                                              patterns.
 template <class F>
 struct Dinic {
                                                               template <class C, class F>
                                                               struct Mcmf {
   struct Edge {
                                                                 struct Edge {
     int v, inv;
                                                                   int u, v, inv;
     F cap. flow:
     Edge(int v, F cap, int inv) : v(v), cap(cap), flow
                                                                   F cap, flow;
          (0), inv(inv) {}
                                                                   C cost:
                                                                   Edge(int u, int v, C cost, F cap, int inv) : u(u),
                                                                         v(v), cost(cost), cap(cap), flow(∅), inv(inv
   F eps = (F) 1e-9;
                                                                        ) {}
   int s, t, n, m = 0;
                                                                 };
   vector< vector<Edge> > g;
                                                                 F eps = (F) 1e-9;
   vi dist, ptr;
                                                                 int s, t, n, m = 0;
   Dinic(int n) : n(n), g(n), dist(n), ptr(n), s(n - 2)
                                                                 vector< vector<Edge> > g;
        , t(n - 1) {}
                                                                 vector<Edge*> prev;
                                                                 vector<C> cost;
   void add(int u, int v, F cap) {
                                                                 vi state:
     g[u].pb(Edge(v, cap, sz(g[v])));
     g[v].pb(Edge(u, 0, sz(g[u]) - 1));
                                                                 Mcmf(int n) : n(n), g(n), cost(n), state(n), prev(n)
```

m += 2;

}

s(n - 2), t(n - 1)

void add(int u, int v, C cost, F cap) {

g[u].pb(Edge(u, v, cost, cap, sz(g[v])));

g[v].pb(Edge(v, u, -cost, 0, sz(g[u]) - 1));

m += 2;

bool bfs() {

dist[s] = 0;

fill(all(dist), -1);

queue<int> qu({s});

while (sz(qu) && dist[t] == -1) {

}

```
bool bfs() {
                                                                 }
                                                                 return dist[0] != -1;
     fill(all(state), 0);
     fill(all(cost), numeric_limits<C>::max());
                                                               }
     deque<int> qu;
                                                               bool dfs(int u) {
     qu.push_back(s);
     state[s] = 1, cost[s] = 0;
                                                                  for (int v : g[u])
     while (sz(qu)) {
                                                                    if (!match[v] || (dist[u] + 1 == dist[match[v]]
       int u = qu.front(); qu.pop_front();
                                                                        && dfs(match[v]))) {
                                                                      match[u] = v, match[v] = u;
       state[u] = 2;
       for (Edge &e : g[u]) if (e.cap - e.flow > eps)
                                                                      return 1;
         if (cost[u] + e.cost < cost[e.v]) {</pre>
           cost[e.v] = cost[u] + e.cost;
                                                                 dist[u] = 1 << 30;
           prev[e.v] = &e;
                                                                 return 0;
           if (state[e.v] == 2 \mid | (sz(qu) \&\& cost[qu.
               front()] > cost[e.v]))
                                                               int maxMatching() {
             qu.push_front(e.v);
           else if (state[e.v] == 0)
                                                                 int tot = 0:
             qu.push_back(e.v);
                                                                 while (bfs())
           state[e.v] = 1;
                                                                    fore (u, 1, n)
                                                                     tot += match[u] ? 0 : dfs(u);
    }
                                                                  return tot;
     return cost[t] != numeric_limits<C>::max();
   }
                                                             };
                                                            4.4
                                                                   Hungarian \mathcal{O}(N^3)
   pair<C, F> minCostFlow() {
                                                            n jobs, m people
     C cost = 0; F flow = 0;
                                                             template <class C>
     while (bfs()) {
                                                             pair<C, vi> Hungarian(vector< vector<C> > &a) {
       F pushed = numeric_limits<F>::max();
                                                               int n = sz(a), m = sz(a[0]), p, q, j, k; // n \le m
       for (Edge* e = prev[t]; e != nullptr; e = prev[e
                                                              vector<C> fx(n, numeric_limits<C>::min()), fy(m, 0);
                                                               vi x(n, -1), y(m, -1);
         pushed = min(pushed, e->cap - e->flow);
                                                               fore (i, 0, n)
       for (Edge* e = prev[t]; e != nullptr; e = prev[e
                                                                  fore (j, 0, m)
           ->u]) {
                                                                    fx[i] = max(fx[i], a[i][j]);
         e->flow += pushed;
         g[e->v][e->inv].flow -= pushed;
                                                                fore (i, 0, n) {
                                                                  vi t(m, -1), s(n + 1, i);
         cost += e->cost * pushed;
                                                                  for (p = q = 0; p \le q && x[i] \le 0; p++)
       }
                                                                    for (k = s[p], j = 0; j < m && x[i] < 0; j++)
       flow += pushed;
                                                                      if (abs(fx[k] + fy[j] - a[k][j]) < eps && t[j]</pre>
     return make_pair(cost, flow);
                                                                           < 0) {
                                                                        s[++q] = y[j], t[j] = k;
   }
                                                                        if (s[q] < 0) for (p = j; p >= 0; j = p)
};
                                                                          y[j] = k = t[j], p = x[k], x[k] = j;
4.3
      Hopcroft-Karp \mathcal{O}(E\sqrt{V})
                                                                     }
 struct HopcroftKarp {
                                                                  if (x[i] < 0) {
   int n, m = 0;
                                                                   C d = numeric_limits<C>::max();
   vector<vi> g;
                                                                    fore (k, 0, q + 1)
   vi dist, match;
                                                                      fore (j, 0, m) if (t[j] < 0)</pre>
                                                                        d = min(d, fx[s[k]] + fy[j] - a[s[k]][j]);
   HopcroftKarp(int _n) : n(_n + 5), g(n), dist(n),
                                                                    fore (j, 0, m)
       match(n, 0) {} // 1-indexed!!
                                                                     fy[j] += (t[j] < 0 ? 0 : d);
                                                                    fore (k, 0, q + 1)
   void add(int u, int v) {
                                                                     fx[s[k]] -= d;
     g[u].pb(v), g[v].pb(u);
    m += 2;
                                                                 }
   }
                                                               }
                                                               C cost = 0;
   bool bfs() {
                                                               fore (i, 0, n) cost += a[i][x[i]];
     queue<int> qu;
                                                               return make_pair(cost, x);
     fill(all(dist), -1);
                                                             }
     fore (u, 1, n)
                                                            5
                                                                  Strings
       if (!match[u])
         dist[u] = 0, qu.push(u);
                                                            5.1
                                                                 Hash
     while (!qu.empty()) {
                                                             vi mod = {999727999, 999992867, 1000000123, 10000002193
       int u = qu.front(); qu.pop();
                                                                  , 1000003211, 1000008223, 1000009999, 1000027163,
       for (int v : g[u])
         if (dist[match[v]] == -1) {
                                                                   1070777777};
           dist[match[v]] = dist[u] + 1;
           if (match[v])
                                                             struct H : array<int, 2> {
                                                               #define oper(op) friend H operator op (H a, H b) { \
             qu.push(match[v]);
                                                                fore (i, 0, sz(a)) a[i] = (1LL * a[i] op b[i] + mod[
         }
```

```
i]) % mod[i]; \
                                                                return tot;
   return a; }
                                                             }
   oper(+) oper(-) oper(*)
                                                            5.3
 } pw[N], ipw[N];
                                                             int go[N][A];
 struct Hash {
   vector<H> h;
                                                                s += "$";
   Hash(string \&s) : h(sz(s) + 1) {
     fore (i, 0, sz(s)) {
      int x = s[i] - 'a' + 1;
       h[i + 1] = h[i] + pw[i] * H(x, x);
                                                                    else
   }
                                                                  }
   H cut(int 1, int r) {
                                                                s.pop_back();
     return (h[r + 1] - h[l]) * ipw[l];
                                                             }
   }
 };
 int inv(int a, int m) {
   return a == 1 ? 1 : int(m - lli(inv(m, a)) * lli(m)
                                                                  if (i <= r)
       / a);
 }
                                                                    ++z[i];
 const int P = uniform_int_distribution<int>(MaxAlpha +
      1, min(mod[0], mod[1]) - 1)(rng);
 pw[0] = ipw[0] = \{1, 1\};
                                                                }
 H Q = \{inv(P, mod[0]), inv(P, mod[1])\};
                                                                return z;
 fore (i, 1, N) {
                                                              }
   pw[i] = pw[i - 1] * H{P, P};
   ipw[i] = ipw[i - 1] * Q;
 // Save len in the struct and when you do a cut
 H merge(vector<H> &cuts) {
   F f = \{0, 0\};
   fore (i, sz(cuts), 0) {
     F g = cuts[i];
     f = g + f * pw[g.len];
   }
   return f;
 }
      KMP
5.2
period = n - p[n - 1], period(abcabc) = 3, n \mod period \equiv 0
                                                                  }
 vi lps(string &s) {
                                                                }
   vi p(sz(s), 0);
                                                                return pal;
   int j = 0;
                                                              }
   fore (i, 1, sz(s)) {
     while (j && s[i] != s[j])
                                                            5.6
       j = p[j - 1];
     j += (s[i] == s[j]);
     p[i] = j;
   }
   return p;
 // how many times t occurs in s
 int kmp(string &s, string &t) {
   vi p = lps(t);
                                                                int n;
   int j = 0, tot = 0;
                                                                string s;
   fore (i, 0, sz(s)) {
                                                                vi sa, lcp;
     while (j && s[i] != t[j])
       j = p[j - 1];
     if (s[i] == t[j])
                                                                    lcp(n) {
      j++;
     if (j == sz(t))
       tot++; // pos: i - sz(t) + 1;
   }
```

```
KMP automaton
void kmpAutomaton(string &s) {
  vi p = lps(s);
  fore (i, 0, sz(s))
    fore (c, 0, A) {
      if (i && s[i] != 'a' + c)
        go[i][c] = go[p[i - 1]][c];
        go[i][c] = i + ('a' + c == s[i]);
    Z algorithm
vi zf(string &s) {
  vi z(sz(s), 0);
  for (int i = 1, l = 0, r = 0; i < sz(s); i++) {
      z[i] = min(r - i + 1, z[i - 1]);
    while (i + z[i] < sz(s) \&\& s[i + z[i]] == s[z[i]])
    if (i + z[i] - 1 > r)
      1 = i, r = i + z[i] - 1;
     Manacher algorithm
vector<vi> manacher(string &s) {
  vector<vi> pal(2, vi(sz(s), 0));
  fore (k, 0, 2) {
    int 1 = 0, r = 0;
    fore (i, 0, sz(s)) {
      int t = r - i + !k;
      if (i < r)
        pal[k][i] = min(t, pal[k][l + t]);
      int p = i - pal[k][i], q = i + pal[k][i] - !k;
      while (p >= 1 \& q + 1 < sz(s) \& s[p - 1] == s[
          q + 1])
        ++pal[k][i], --p, ++q;
      if (q > r)
        1 = p, r = q;
    Suffix array
 • Duplicates \sum_{i=1}^{n} lcp[i]
 • Longest Common Substring of various strings
   Add not Used characters between strings, i.e. a+\$+b+\#+c
   Use two-pointers to find a range [l, r] such that all not Used
   characters are present, then query(lcp[l+1],..,lcp[r]) for
   that window is the common length.
struct SuffixArray {
  SuffixArray(string &s): n(sz(s) + 1), s(s), sa(n),
    vi top(max(256, n)), rk(n);
    fore (i, 0, n)
      top[rk[i] = s[i] & 255]++;
    partial_sum(all(top), top.begin());
```

```
fore (i, 0, n)
      sa[--top[rk[i]]] = i;
    vi sb(n);
    for (int len = 1, j; len < n; len <<= 1) {</pre>
      fore (i, 0, n) {
        j = (sa[i] - len + n) % n;
        sb[top[rk[j]]++] = j;
      sa[sb[top[0] = 0]] = j = 0;
      fore (i, 1, n) {
        if (rk[sb[i]] != rk[sb[i - 1]] || rk[sb[i] +
            len] != rk[sb[i - 1] + len])
          top[++j] = i;
        sa[sb[i]] = j;
      }
      copy(all(sa), rk.begin());
      copy(all(sb), sa.begin());
      if (j >= n - 1)
        break;
    for (int i = 0, j = rk[lcp[0] = 0], k = 0; i < n - 0
         1; i++, k++)
      while (k >= 0 && s[i] != s[sa[j - 1] + k])
        lcp[j] = k--, j = rk[sa[j] + 1];
  }
  char at(int i, int j) {
    int k = sa[i] + j;
    return k < n ? s[k] : 'z' + 1;</pre>
  int count(string &t) {
    ii lo(0, n - 1), hi(0, n - 1);
    fore (i, 0, sz(t)) {
      while (lo.f + 1 < lo.s) {
        int mid = (lo.f + lo.s) / 2;
        (at(mid, i) < t[i] ? lo.f : lo.s) = mid;
      while (hi.f + 1 < hi.s) {</pre>
        int mid = (hi.f + hi.s) / 2;
        (t[i] < at(mid, i) ? hi.s : hi.f) = mid;
      int p1 = (at(lo.f, i) == t[i] ? lo.f : lo.s);
      int p2 = (at(hi.s, i) == t[i] ? hi.s : hi.f);
      if (at(p1, i) != t[i] || at(p2, i) != t[i] || p1
           > p2)
        return 0:
      lo = hi = ii(p1, p2);
    return lo.s - lo.f + 1;
  }
};
```

5.7Suffix automaton

- sam[u].len sam[sam[u].link].len = distinct strings
- Number of different substrings (dp)

$$diff(u) = 1 + \sum_{v \in trie[u]} diff(v)$$

• Total length of all different substrings (2 x dp)

$$totLen(u) = \sum_{v \in trie[u]} diff(v) + totLen(v)$$

- Leftmost occurrence trie[u].pos = trie[u].len 1if it is **clone** then trie[clone].pos = trie[q].pos
- All occurrence positions
- Smallest cyclic shift Construct sam of s + s, find the lexicographically smallest path of sz(s)

```
    Shortest non-appearing string

        nonAppearing(u) = \min_{v \in trie[u]} nonAppearing(v) + 1
struct SuffixAutomaton {
  struct Node : map<char, int> {
    int link = -1, len = 0;
  vector<Node> trie;
  int last;
  SuffixAutomaton() { last = newNode(); }
  int newNode() {
    trie.pb({}):
    return sz(trie) - 1;
  void extend(char c) {
    int u = newNode();
    trie[u].len = trie[last].len + 1;
    int p = last;
    while (p != -1 && !trie[p].count(c)) {
      trie[p][c] = u;
      p = trie[p].link;
    if (p == -1)
      trie[u].link = 0;
    else {
      int q = trie[p][c];
      if (trie[p].len + 1 == trie[q].len)
        trie[u].link = q;
      else {
        int clone = newNode();
        trie[clone] = trie[q];
        trie[clone].len = trie[p].len + 1;
        while (p != -1 \&\& trie[p][c] == q) {
          trie[p][c] = clone;
          p = trie[p].link;
        }
        trie[q].link = trie[u].link = clone;
      }
    }
    last = u:
  string kthSubstring(lli kth, int u = 0) {
    // number of different substrings (dp)
    string s = "";
    while (kth > 0)
      for (auto &[c, v] : trie[u]) {
        if (kth <= diff(v)) {</pre>
          s.pb(c), kth--, u = v;
          break:
        }
        kth -= diff(v);
      }
    return s;
  void occurs() {
    // trie[u].occ = 1, trie[clone].occ = 0
    vi who:
    fore (u, 1, sz(trie))
      who.pb(u);
    sort(all(who), [&](int u, int v) {
      return trie[u].len > trie[v].len;
    for (int u : who) {
      int 1 = trie[u].link;
```

```
trie[l].occ += trie[u].occ;
    }
                                                                }
  }
  1li queryOccurences(string &s, int u = 0) {
    for (char c : s) {
      if (!trie[u].count(c))
        return 0;
      u = trie[u][c];
    return trie[u].occ;
  }
  int longestCommonSubstring(string &s, int u = 0) {
    int mx = 0, clen = 0;
    for (char c : s) {
      while (u && !trie[u].count(c)) {
        u = trie[u].link;
        clen = trie[u].len;
      if (trie[u].count(c))
        u = trie[u][c], clen++;
     mx = max(mx, clen);
    }
                                                                  }
    return mx;
                                                                }
  }
                                                              }
  string smallestCyclicShift(int n, int u = 0) {
    string s = "";
    fore (i, 0, n) {
      char c = trie[u].begin()->f;
      s += c;
      u = trie[u][c];
    }
    return s;
  }
                                                                }
  int leftmost(string &s, int u = 0) {
    for (char c : s) {
     if (!trie[u].count(c))
        return -1;
      u = trie[u][c];
                                                              }
    }
                                                           };
    return trie[u].pos - sz(s) + 1;
  }
  Node& operator [](int u) {
    return trie[u];
  }
                                                              };
};
     Aho corasick
struct AhoCorasick {
  struct Node : map<char, int> {
    int link = 0, out = 0;
    int cnt = 0, isw = 0;
  }:
  vector<Node> trie;
  AhoCorasick() { newNode(); }
  int newNode() {
    trie.pb({});
                                                              }
    return sz(trie) - 1;
  }
  void insert(string &s, int u = ∅) {
    for (char c : s) {
      if (!trie[u][c])
                                                              }
        trie[u][c] = newNode();
```

```
u = trie[u][c];
     trie[u].cnt++, trie[u].isw = 1;
   int go(int u, char c) {
     while (u && !trie[u].count(c))
       u = trie[u].link;
     return trie[u][c];
   void pushLinks() {
     queue<int> qu;
     qu.push(∅);
     while (!qu.empty()) {
       int u = qu.front();
       qu.pop();
       for (auto &[c, v] : trie[u]) {
         int 1 = (trie[v].link = u ? go(trie[u].link, c
             ):0);
         trie[v].cnt += trie[l].cnt;
         trie[v].out = trie[l].isw ? l : trie[l].out;
         qu.push(v);
   int match(string &s, int u = 0) {
     int ans = 0;
     for (char c : s) {
       u = go(u, c);
       ans += trie[u].cnt;
       for (int x = u; x != 0; x = trie[x].out)
         // pass over all elements of the implicit
             vector
     return ans;
   Node& operator [](int u) {
     return trie[u];
5.9 Eertree
 struct Eertree {
   struct Node : map<char, int> {
     int link = 0, len = 0;
   vector<Node> trie;
   string s = "$";
   int last;
   Eertree() {
     last = newNode(), newNode();
     trie[0].link = 1, trie[1].len = -1;
   int newNode() {
     trie.pb({});
     return sz(trie) - 1;
   int go(int u) {
     while (s[sz(s) - trie[u].len - 2] != s.back())
       u = trie[u].link;
     return u;
```

```
void extend(char c) {
     s += c;
     int u = go(last);
     if (!trie[u][c]) {
       int v = newNode();
       trie[v].len = trie[u].len + 2;
       trie[v].link = trie[go(trie[u].link)][c];
       trie[u][c] = v;
    last = trie[u][c];
   Node& operator [](int u) {
    return trie[u];
   }
 };
6
     Dynamic Programming
      All submasks of a mask
6.1
 for (int B = A; B > 0; B = (B - 1) & A)
      Matrix Chain Multiplication
 int dp(int 1, int r) {
   if (1 > r)
     return OLL;
   int &ans = mem[1][r];
   if (!done[1][r]) {
     done[l][r] = true, ans = inf;
     fore (k, 1, r + 1) // split in [1, k] [k + 1, r]
       ans = min(ans, dp(1, k) + dp(k + 1, r) + add);
   return ans;
 }
      Digit DP
6.3
Counts the amount of numbers in [l, r] such are divisible by k.
(flag nonzero is for different lengths)
It can be reduced to dp(i, x, small), and has to be solve like
f(r) - f(l-1)
 #define state [i][x][small][big][nonzero]
 int dp(int i, int x, bool small, bool big, bool
     nonzero) {
   if (i == sz(r))
     return x % k == 0 && nonzero;
   int &ans = mem state;
   if (done state != timer) {
     done state = timer;
     ans = 0;
     int lo = small ? 0 : 1[i] - '0';
     int hi = big ? 9 : r[i] - '0';
     fore (y, lo, max(lo, hi) + 1) {
       bool small2 = small | (y > 1o);
       bool big2 = big | (y < hi);
       bool nonzero2 = nonzero | (x > 0);
       ans += dp(i + 1, (x * 10 + y) % k, small2, big2,
            nonzero2);
    }
   }
   return ans;
 }
6.4
     Knapsack 0/1
 for (auto &cur : items)
   fore (w, W + 1, cur.w) // [cur.w, W]
     umax(dp[w], dp[w - cur.w] + cur.cost);
      Convex Hull Trick \mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)
dp[i] = \min_{j < i} (dp[j] + b[j] * a[i])
```

 $dp[i][j] = \min_{k < j} (dp[i-1][k] + b[k] * a[j])$

```
b[j] \ge b[j+1] optionally a[i] \le a[i+1]
 // for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a / b
 struct Line {
   mutable lli m, c, p;
   bool operator < (const Line &1) const { return m < 1</pre>
   bool operator < (lli x) const { return p < x; }</pre>
   lli operator ()(lli x) const { return m * x + c; }
 struct DynamicHull : multiset<Line, less<>>> {
   lli div(lli a, lli b) {
     return a / b - ((a ^ b) < 0 && a % b);
   bool isect(iterator x, iterator y) {
     if (y == end())
       return x->p = inf, 0;
     if (x->m == y->m)
       x->p = (x->c > y->c ? inf : -inf);
       x->p = div(x->c - y->c, y->m - x->m);
     return x->p >= y->p;
   void add(lli m, lli c) {
     auto z = insert(\{m, c, \emptyset\}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
     if (x != begin() && isect(--x, y))
       isect(x, y = erase(y));
     while ((y = x) != begin() && (--x)->p >= y->p)
        isect(x, erase(y));
   lli query(lli x) {
     if (empty()) return OLL;
     auto f = *lower_bound(x);
     return f(x);
   }
 };
       Divide and conquer \mathcal{O}(kn^2) \Rightarrow \mathcal{O}(k \cdot nlogn)
6.6
Split the array of size n into k continuous groups. k \leq n
cost(a, c) + cost(b, d) \le cost(a, d) + cost(b, c) with a \le b \le c \le d
 void dc(int cut, int 1, int r, int optl, int optr) {
   if (r < 1)
     return;
   int mid = (1 + r) / 2;
   pair<lli, int> best = {inf, -1};
   fore (p, optl, min(mid, optr) + 1) {
     11i nxt = dp[\sim cut \& 1][p - 1] + cost(p, mid);
     if (nxt < best.f)</pre>
       best = {nxt, p};
   dp[cut & 1][mid] = best.f;
   int opt = best.s;
   dc(cut, 1, mid - 1, optl, opt);
   dc(cut, mid + 1, r, opt, optr);
 fore (i, 1, n + 1)
   dp[1][i] = cost(1, i);
 fore (cut, 2, k + 1)
   dc(cut, cut, n, cut, n);
```

6.7 Knuth optimization $O(n^3) \Rightarrow O(n^2)$

```
dp[l][r] = \min_{l \le k \le r} \{dp[l][k] + dp[k][r]\} + cost(l, r)
 fore (len, 1, n + 1)
   fore (1, 0, n) {
     int r = 1 + len - 1;
     if (r > n - 1)
       break;
     if (len <= 2) {</pre>
       dp[1][r] = 0;
       opt[1][r] = 1;
       continue;
     dp[1][r] = inf;
     fore (k, opt[l][r - 1], opt[l + 1][r] + 1) {
       11i cur = dp[1][k] + dp[k][r] + cost(1, r);
       if (cur < dp[l][r]) {</pre>
          dp[1][r] = cur;
          opt[1][r] = k;
       }
     }
   }
```

7 Game Theory

7.1 Grundy Numbers

If the moves are consecutive $S = \{1, 2, 3, ..., x\}$ the game can be solved like $stackSize \pmod{x+1} \neq 0$

```
int mem[N];
int mex(set<int> &st) {
  int x = 0;
  while (st.count(x))
    x++;
  return x;
int grundy(int n) {
  if (n < 0)
    return inf;
  if (n == 0)
    return 0;
  int &g = mem[n];
  if (g == -1) {
    set<int> st;
    for (int x : {a, b})
     st.insert(grundy(n - x));
    g = mex(st);
  }
  return g;
}
```

8 Combinatorics

Combinatorics table					
Number	Factorial	Catalan			
0	1	1			
1	1	1			
2	2	2			
3	6	5			
4	24	14			
5	120	42			
6	720	132			
7	5,040	429			
8	40,320	1,430			
9	362,880	4,862			
10	3,628,800	16,796			
11	39,916,800	58,786			
12	479,001,600	208,012			
13	6,227,020,800	742,900			

8.1 Factorial

```
fac[0] = 1LL;
fore (i, 1, N)
  fac[i] = 1li(i) * fac[i - 1] % mod;
ifac[N - 1] = fpow(fac[N - 1], mod - 2);
fore (i, N - 1, 0)
  ifac[i] = 1li(i + 1) * ifac[i + 1] % mod;
```

8.2 Factorial mod smallPrime

```
lli facMod(lli n, int p) {
    lli r = 1LL;
    for (; n > 1; n /= p) {
        r = (r * ((n / p) % 2 ? p - 1: 1)) % p;
        fore (i, 2, n % p + 1)
            r = r * i % p;
    }
    return r % p;
}
```

8.3 Lucas theorem

Changes $\binom{n}{k}$ mod p, with $n \geq 2e6, k \geq 2e6$ and $p \leq 1e7$

8.4 Stars and bars

Enclosing n objects in k boxes

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

8.5 N choose K

8.7 Burnside's lemma

```
|classes| = \frac{1}{|G|} \cdot \sum_{x \in G} f(x)
```

8.8 Prime factors of N!

```
vector< pair<lli, int> > factorialFactors(lli n) {
    vector< pair<lli, int> > fac;
    for (lli p : primes) {
        if (n < p)
            break;
        lli mul = 1LL, k = 0;
        while (mul <= n / p) {
            mul *= p;
            k += n / mul;
        }
        fac.emplace_back(p, k);
    }
    return fac;
}</pre>
```

9 Number Theory

9.1 Goldbach conjecture

- All number ≥ 6 can be written as sum of 3 primes
- All even number > 2 can be written as sum of 2 primes

9.2 Prime numbers distribution

Amount of primes approximately $\frac{n}{\ln(n)}$

9.3 Sieve of Eratosthenes

fore (i, 2, N) if (isPrime[i])

isPrime[j] = (i == j);

for (int j = i; j < N; j += i) {

To factorize divide x by factor[x] until is equal to 1

```
void factorizeSieve() {
  iota(factor, factor + N, 0);
  for (int i = 2; i * i < N; i++) if (factor[i] == i)
    for (int j = i * i; j < N; j += i)
      factor[j] = i;
}
Use it if you need a huge amount of phi[x] up to some N
void phiSieve() {
  isPrime.set(); // bitset<N> is faster
  iota(phi, phi + N, 0);
```

9.4 Phi of euler

phi[j] /= i; phi[j] *= i - 1;

```
lli phi(lli n) {
  if (n == 1)
    return 0;
  lli r = n;
```

}

}

```
if (n % i == 0) {
       while (n % i == 0)
         n \neq i;
       r -= r / i;
     }
   if (n > 1)
     r = r / n;
   return r;
9.5
      Miller-Rabin
 bool miller(lli n) {
   if (n < 2 || n % 6 % 4 != 1)
     return (n \mid 1) == 3;
   int k = __builtin_ctzll(n - 1);
   11i d = n >> k;
   auto compo = [&](lli p) {
     11i x = fpow(p % n, d, n), i = k;
     while (x != 1 && x != n - 1 && p % n && i--)
       x = mul(x, x, n);
     return x != n - 1 && i != k;
   };
   for (11i p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
       , 37}) {
     if (compo(p))
       return 0;
     if (compo(2 + rng() % (n - 3)))
       return 0:
   return 1;
 }
     Pollard-Rho
9.6
 lli rho(lli n) {
   while (1) {
     11i x = 2 + rng() \% (n - 3), c = 1 + rng() \% 20;
     auto f = [\&](11i \ x) \{ return (mul(x, x, n) + c) \% \}
         n; };
     11i y = f(x), g;
     while ((g = \_gcd(n + y - x, n)) == 1)
       x = f(x), y = f(f(y));
     if (g != n) return g;
   }
   return -1;
 }
 void pollard(lli n, map<lli, int> &fac) {
   if (n == 1) return;
   if (n % 2 == 0) {
     fac[2]++;
     pollard(n / 2, fac);
     return;
   }
   if (miller(n)) {
     fac[n]++;
     return;
   11i x = rho(n);
   pollard(x, fac);
   pollard(n / x, fac);
 }
9.7
      Amount of divisors
 1li divs(lli n) {
   11i cnt = 1LL;
   for (lli p : primes) {
     if (p * p * p > n)
       break;
     if (n % p == 0) {
       11i k = 0;
```

for (11i i = 2; i * i <= n; i++)

```
while (n > 1 && n % p == 0)
    n /= p, ++k;
    cnt *= (k + 1);
}
lli sq = mysqrt(n); // A binary search, the last x *
    x <= n
if (miller(n))
    cnt *= 2;
else if (sq * sq == n && miller(sq))
    cnt *= 3;
else if (n > 1)
    cnt *= 4;
return cnt;
}
```

9.8 Bézout's identity

```
a_1 * x_1 + a_2 * x_2 + ... + a_n * x_n = g

g = \gcd(a_1, a_2, ..., a_n)
```

9.9 GCD

 $a \le b$; gcd(a+k, b+k) = gcd(b-a, a+k)

9.10 LCM

```
x = p * lcm(a_1, a_2, ..., a_k) + q, 0 \le q \le lcm(a_1, a_2, ..., a_k)
 x \pmod{a_i} \equiv q \pmod{a_i} as a_i \mid lcm(a_1, a_2, ..., a_k)
```

9.11 Euclid

```
pair<lli, lli> euclid(lli a, lli b) {
  if (b == 0)
    return {1, 0};
  auto p = euclid(b, a % b);
  return {p.s, p.f - a / b * p.s};
}
```

9.12 Chinese remainder theorem

```
pair<lli, lli> crt(pair<lli, lli> a, pair<lli, lli> b)
    {
    if (a.s < b.s)
        swap(a, b);
    auto p = euclid(a.s, b.s);
    lli g = a.s * p.f + b.s * p.s, l = a.s / g * b.s;
    if ((b.f - a.f) % g != 0)
        return {-1, -1}; // no solution
    p.f = a.f + (b.f - a.f) % b.s * p.f % b.s / g * a.s;
    return {p.f + (p.f < 0) * l, l};
}</pre>
```

10 Math

10.1 Progressions Arithmetic progressions

$$a_n = a_1 + (n-1) * diff$$

$$\sum_{i=1}^{n} a_i = n * \frac{a_1 + a_n}{2}$$

Geometric progressions

$$a_{n} = a_{1} * r^{n-1}$$

$$\sum_{k=1}^{n} a_{1} * r^{k} = a_{1} * \left(\frac{r^{n+1}-1}{r-1}\right) : r \neq 1$$
10.2 Fpow

lli fpow(lli x, lli y, lli mod) {
 lli r = 1;
 for (; y > 0; y >>= 1) {
 if (y & 1) r = mul(r, x, mod);
 x = mul(x, x, mod);
 }
 return r;
}

10.3 Fibonacci

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} fib_{n+1} & fib_n \\ fib_n & fib_{n-1} \end{bmatrix}$$

11 Bit tricks

Bits++		
Operations on <i>int</i>	Function	
x & -x	Least significant bit in x	
lg(x)	Most significant bit in x	
c = x&-x, r = x+c;	Next number after x with same	
(((r^x) » 2)/c) r	number of bits set	
builtin_	Function	
popcount(x)	Amount of 1's in x	
clz(x)	0's to the left of biggest bit	
ctz(x)	0's to the right of smallest bit	

11.1 Bitset

Bitset <size></size>		
Operation	Function	
_Find_first()	Least significant bit	
_Find_next(idx)	First set bit after index idx	
any(), none(), all()	Just what the expression says	
set(), reset(), flip()	Just what the expression says x2	
to_string('.', 'A')	Print 011010 like .AA.A.	

11.2 Real

```
const ld eps = 1e-9;
#define eq(a, b) (abs((a) - (b)) <= +eps)
#define neq(a, b) (!eq(a, b))
#define geq(a, b) ((a) - (b) >= -eps)
#define leq(a, b) ((a) - (b) <= +eps)
#define ge(a, b) ((a) - (b) > +eps)
#define le(a, b) ((a) - (b) < -eps)</pre>
```

12 Points

12.1 Points

```
int sgn(ld a) { return (a > eps) - (a < -eps); }</pre>
struct Pt {
  ld x, y;
  explicit Pt(ld x = 0, ld y = 0) : x(x), y(y) {}
  Pt operator + (Pt p) const { return Pt(x + p.x, y +
      p.y); }
  Pt operator - (Pt p) const { return Pt(x - p.x, y -
      p.y); }
  Pt operator * (ld k) const { return Pt(x * k, y * k)
      ; }
  Pt operator / (ld k) const { return Pt(x / k, y / k)
      ; }
  ld dot(Pt p) const {
    // 0 if vectors are orthogonal
    // - if vectors are pointing in opposite
        directions
    // + if vectors are pointing in the same direction
    return x * p.x + y * p.y;
  ld cross(Pt p) const {
   // 0 if collinear
    // - if b is to the right of a
   // + if b is to the left of a
    // gives you 2 * area
    return x * p.y - y * p.x;
  1d norm() const { return x * x + y * y; }
  ld length() const { return sqrtl(norm()); }
```

```
ld angle() const {
    1d ang = atan2(y, x);
    return ang + (ang < 0 ? 2 * acos(-1) : 0);</pre>
   }
   Pt perp() const { return Pt(-y, x); }
   Pt unit() const { return (*this) / length(); }
   Pt rotate(ld angle) const {
    // counter-clockwise rotation in radians
     // degree = radian * 180 / pi
    return Pt(x * cos(angle) - y * sin(angle), x * sin
         (angle) + y * cos(angle));
   int dir(Pt a, Pt b) {
    return sgn((a - *this).cross(b - *this));
   int cuad() const {
    if (x > 0 \& y >= 0) return 0;
    if (x \le 0 \& y > 0) return 1;
    if (x < 0 && y <= 0) return 2;
    if (x \ge 0 \& y < 0) return 3;
    return -1;
   }
12.2
        Angle between vectors
 double angleBetween(Pt a, Pt b) {
   double x = a.dot(b) / a.length() / b.length();
   return acosl(max(-1.0, min(1.0, x)));
12.3
        Closest pair of points
pair<Pt, Pt> closestPairOfPoints(Poly &pts) {
   sort(all(pts), [&](Pt a, Pt b) {
    return le(a.y, b.y);
   }):
   set<Pt> st;
   ld ans = inf;
   Pt p, q;
   int pos = 0;
   fore (i, 0, sz(pts)) {
    while (pos < i && geq(pts[i].y - pts[pos].y, ans))</pre>
      st.erase(pts[pos++]);
     auto lo = st.lower_bound(Pt{pts[i].x - ans - eps,
         -inf});
    auto hi = st.upper_bound(Pt{pts[i].x + ans + eps,
         -inf});
     for (auto it = lo; it != hi; ++it) {
      ld d = (pts[i] - *it).length();
      if (le(d, ans))
        ans = d, p = pts[i], q = *it;
    st.insert(pts[i]);
   }
   return {p, q};
12.4 Projection
ld proj(Pt a, Pt b) {
   return a.dot(b) / b.length();
}
12.5 KD-Tree
 struct KDTree {
   // p.pos(0) = x, p.pos(1) = y, p.pos(2) = z
   #define iter Pt* // vector<Pt>::iterator
   KDTree *ls, *rs;
   Pt p;
   ld val;
```

```
int k;
  KDTree(iter b, iter e, int k = 0) : k(k), ls(0), rs(
      0) {
    int n = e - b;
    if (n == 1) {
      p = *b;
      return;
    nth_element(b, b + n / 2, e, [&](Pt a, Pt b) {
      return a.pos(k) < b.pos(k);</pre>
    val = (b + n / 2) - pos(k);
    ls = new KDTree(b, b + n / 2, (k + 1) % 2);
   rs = new KDTree(b + n / 2, e, (k + 1) % 2);
  pair<ld, Pt> nearest(Pt q) {
    if (!ls && !rs) // take care if is needed a
        different one
      return make_pair((p - q).norm(), p);
    pair<ld, Pt> best;
    if (q.pos(k) <= val) {
      best = ls->nearest(q);
      if (geq(q.pos(k) + sqrt(best.f), val))
        best = min(best, rs->nearest(q));
    } else {
      best = rs->nearest(q);
      if (leq(q.pos(k) - sqrt(best.f), val))
        best = min(best, ls->nearest(q));
    return best;
};
```

13 Lines and segments

13.1 Line

```
struct Line {
  Pt a, b, v;
  Line() {}
  Line(Pt a, Pt b) : a(a), b(b), v((b - a).unit()) {}
  bool contains(Pt p) {
    return eq((p - a).cross(v), 0);
  int intersects(Line 1) {
    if (eq(v.cross(l.v), 0)) // -1: infinite
        intersection, 0: none
      return eq((1.a - a).cross(v), 0) ? -1 : 0;
    return 1; // 1 point intersection
  int intersects(Seg s) {
    if (eq(v.cross(s.v), 0)) // -1: infinite
        intersection, 0: none
      return eq((s.a - a).cross(v), 0) ? -1 : 0;
    return sgn(v.cross(s.a - a)) != sgn(v.cross(s.b -
        a));
  bool parallel(Line 1) {
    return eq(v.cross(1.v), 0);
  template <class Line>
  Pt intersection(Line 1) { // can be a segment too
    return a + v * ((1.a - a).cross(1.v) / v.cross(1.v
```

```
));
                                                              Pt o;
   }
                                                              ld r;
                                                              Cir() {}
   Pt projection(Pt p) {
                                                              Cir(ld x, ld y, ld r) : o(x, y), r(r) {}
                                                              Cir(Pt o, ld r) : o(o), r(r) {}
    return a + v * proj(p - a, v);
   }
                                                              int inside(Cir c) {
  Pt reflection(Pt p) {
                                                                // -1: internally, 0: overlap, 1: inside
    return a * 2 - p + v * 2 * proj(p - a, v);
                                                                1d 1 = c.r - r - (o - c.o).length();
                                                                return ge(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
   }
};
13.2
        Distance point line
                                                              int outside(Cir c) {
ld distance(Pt p, Line 1) {
                                                                // -1: externally, 0: overlap, 1: outside
   Pt q = 1.projection(p);
                                                                1d 1 = (o - c.o).length() - r - c.r;
   return (p - q).length();
                                                                return ge(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
}
        Distance point segment
                                                              int contains(Pt p) {
ld distance(Pt p, Seg s) {
                                                                // -1: perimeter, 0: outside, 1: inside
   if (le((p - s.a).dot(s.b - s.a), ∅))
                                                                ld 1 = (p - o).length() - r;
    return (p - s.a).length();
                                                                return le(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
   if (le((p - s.b).dot(s.a - s.b), 0))
     return (p - s.b).length();
   return abs((s.a - p).cross(s.b - p) / (s.b - s.a).
                                                              Pt projection(Pt p) {
       length());
                                                                return o + (p - o).unit() * r;
}
13.4 Segment
                                                              vector<Pt> tangency(Pt p) {
struct Seg {
                                                                // point outside the circle
   Pt a, b, v;
                                                                Pt v = (p - o).unit() * r;
                                                                1d d2 = (p - o).norm(), d = sqrt(d2);
   Seg() {}
                                                                if (leq(d, 0)) return {}; // on circle, no tangent
   Seg(Pt a, Pt b) : a(a), b(b), v(b - a) {}
                                                                Pt v1 = v * (r / d), v2 = v.perp() * (sqrt(d2 - r
                                                                     * r) / d);
   bool contains(Pt p) {
                                                                return {o + v1 - v2, o + v1 + v2};
    return eq(v.cross(p - a), 0) && leq((a - p).dot(b
                                                              }
         - p), 0);
                                                              vector<Pt> intersection(Cir c) {
                                                                ld d = (c.o - o).length();
   int intersects(Seg s) {
                                                                if (eq(d, 0) \mid\mid ge(d, r + c.r) \mid\mid le(d, abs(r - c.
     int t1 = sgn(v.cross(s.a - a)), t2 = sgn(v.cross(s.a - a))
                                                                     r))) return {}; // circles don't intersect
         .b - a));
                                                                Pt v = (c.o - o).unit();
    if (t1 == t2) // -1: infinite intersection, 0:
                                                                1d a = (r * r + d * d - c.r * c.r) / (2 * d);
                                                                Pt p = o + v * a;
       return t1 == 0 && (contains(s.a) || contains(s.b
                                                                if (eq(d, r + c.r) \mid\mid eq(d, abs(r - c.r))) return
           ) || s.contains(a) || s.contains(b)) ? -1 :
                                                                     {p}; // circles touch at one point
            0;
                                                                1d h = sqrt(r * r - a * a);
    return sgn(s.v.cross(a - s.a)) != sgn(s.v.cross(b
                                                                Pt q = v.perp() * h;
         - s.a)); // 1 or none intersection
                                                                return {p - q, p + q}; // circles intersects twice
   template <class Seg>
                                                              template <class Line>
   Pt intersection(Seg s) { // can be a line too
                                                              vector<Pt> intersection(Line 1) {
     return a + v * ((s.a - a).cross(s.v) / v.cross(s.v
                                                                // for a segment you need to check that the point
         ));
                                                                     lies on the segment
   }
                                                                1d h2 = r * r - l.v.cross(o - l.a) * l.v.cross(o -
};
                                                                      1.a) / 1.v.norm();
                                                                Pt p = 1.a + 1.v * 1.v.dot(o - 1.a) / 1.v.norm();
        Distance segment segment
                                                                if (eq(h2, 0)) return {p}; // line tangent to
ld distance(Seg a, Seg b) {
   if (a.intersects(b))
                                                                if (le(h2, 0)) return {}; // no intersection
     return 0.0:
                                                                Pt q = 1.v.unit() * sqrt(h<sub>2</sub>);
   return min({distance(a.a, b), distance(a.b, b),
                                                                return {p - q, p + q}; // two points of
       distance(b.a, a), distance(b.b, a)});
                                                                     intersection (chord)
}
14
       Circles
                                                              Cir(Pt a, Pt b, Pt c) {
                                                                // find circle that passes through points a, b, c
14.1 Circle
                                                                Pt mab = (a + b) / 2, mcb = (b + c) / 2;
 struct Cir {
```

```
Seg ab(mab, mab + (b - a).perp());
                                                                low.pb(pts[i]);
    Seg cb(mcb, mcb + (b - c).perp());
    o = ab.intersection(cb);
                                                              fore (i, sz(pts), ∅) {
                                                                while(sz(up) \ge 2 \& (up.end()[-1] - up.end()[-2])
    r = (o - a).length();
                                                                    .cross(pts[i] - up.end()[-1]) \le 0)
   }
                                                                  up.pop_back();
   ld commonArea(Cir c) {
                                                                up.pb(pts[i]);
    if (le(r, c.r))
      return c.commonArea(*this);
                                                              low.pop_back(), up.pop_back();
     ld d = (o - c.o).length();
                                                              low.insert(low.end(), all(up));
     if (leq(d + c.r, r)) return c.r * c.r * pi;
                                                              return low;
     if (geq(d, r + c.r)) return 0.0;
     auto angle = [&](ld a, ld b, ld c) {
                                                           15.3
                                                                   Cut polygon by a line
      return acos((a * a + b * b - c * c) / 2 / a / b)
                                                            Poly cut(const Poly &pts, Line 1) {
                                                              Poly ans;
    };
                                                              int n = sz(pts);
    auto cut = [&](ld a, ld r) {
                                                              fore (i, 0, n) {
      return (a - sin(a)) * r * r / 2;
                                                                int j = (i + 1) \% n;
                                                                if (geq(1.v.cross(pts[i] - 1.a), 0)) // left
    ld a1 = angle(d, r, c.r);
    ld a2 = angle(d, c.r, r);
                                                                  ans.pb(pts[i]);
                                                                Seg s(pts[i], pts[j]);
     return cut(a1 * 2, r) + cut(a2 * 2, c.r);
   }
                                                                if (1.intersects(s) == 1) {
};
                                                                  Pt p = 1.intersection(s);
                                                                  if (p != pts[i] && p != pts[j])
14.2
       Distance point circle
                                                                    ans.pb(p);
ld distance(Pt p, Cir c) {
                                                                }
   // distancePointCircle
   return max(ld(0), (p - c.o).length() - c.r);
                                                              return ans;
14.3
       Minimum enclosing circle
                                                           15.4
                                                                   Perimeter
Cir minEnclosing(vector<Pt> &pts) { // a bunch of
                                                            ld perimeter(const Poly &pts){
     points
                                                              1d \text{ sum} = 0;
   shuffle(all(pts), rng);
                                                              fore (i, 0, sz(pts))
   Cir c(0, 0, 0);
                                                                sum += (pts[(i + 1) % sz(pts)] - pts[i]).length();
   fore (i, 0, sz(pts)) if (!c.contains(pts[i])) {
                                                              return sum;
    c = Cir(pts[i], 0);
                                                            }
     fore (j, 0, i) if (!c.contains(pts[j])) {
                                                                   Point in polygon
       c = Cir((pts[i] + pts[j]) / 2, (pts[i] - pts[j])
           .length() / 2);
                                                            int contains(const Poly &pts, Pt p) {
       fore (k, 0, j) if (!c.contains(pts[k]))
                                                              int rays = 0, n = sz(pts);
        c = Cir(pts[i], pts[j], pts[k]);
                                                              fore (i, 0, n) {
    }
                                                                Pt a = pts[i], b = pts[(i + 1) % n];
  }
                                                                if (ge(a.y, b.y))
   return c;
                                                                  swap(a, b);
                                                                if (Seg(a, b).contains(p))
                                                                  return -1; // lies on the perimeter
                                                                rays ^= (leq(a.y, p.y) && le(p.y, b.y) && ge((a -
      Polygons
15
                                                                    p).cross(b - p), ∅));
       Area of polygon
15.1
ld area(const Poly &pts) {
                                                              return rays & 1; // odd: inside, even: out
   1d \text{ sum} = 0;
                                                            }
   fore (i, 0, sz(pts))
                                                           15.6
                                                                   Is convex
    sum += pts[i].cross(pts[(i + 1) % sz(pts)]);
   return abs(sum / 2);
                                                            bool isConvex(const Poly &pts) {
                                                              int n = sz(pts);
                                                              bool pos = 0, neg = 0;
15.2
       Convex-Hull
                                                              fore (i, 0, n) {
 Poly convexHull(Poly pts) {
                                                                Pt a = pts[(i + 1) % n] - pts[i];
   Poly low, up;
                                                                Pt b = pts[(i + 2) % n] - pts[(i + 1) % n];
   sort(all(pts), [&](Pt a, Pt b) {
                                                                int dir = sgn(a.cross(b));
    return a.x == b.x ? a.y < b.y : a.x < b.x;
                                                                if (dir > 0) pos = 1;
                                                                if (dir < 0) neg = 1;
   pts.erase(unique(all(pts)), pts.end());
   if (sz(pts) <= 2)
                                                              return !(pos && neg);
    return pts;
                                                            }
   fore (i, 0, sz(pts)) {
    while(sz(low) \ge 2 \& (low.end()[-1] - low.end()[-1]
```

}

2]).cross(pts[i] - low.end()[-1]) <= 0)

low.pop_back();

16

16.1

Geometry misc

Radial order

```
struct Radial {
   Pt c;
   Radial(Pt c) : c(c) {}
   bool cmp(Pt a, Pt b) {
     if (a.cuad() == b.cuad())
        return a.y * b.x < a.x * b.y;
     return a.cuad() < b.cuad();</pre>
   bool operator()(Pt a, Pt b) const {
     return cmp(a - c, b - c);
   }
 };
16.2 Sort along a line
 void sortAlongLine(vector<Pt> &pts, Line 1){
   \mathsf{sort}(\mathsf{all}(\mathsf{pts}), \ [\&](\mathsf{Pt} \ \mathsf{a}, \ \mathsf{Pt} \ \mathsf{b})\{
     return a.dot(1.v) < b.dot(1.v);</pre>
   });
 }
```


The end...