This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11 Veröffentlichungsnummer:

0 091 596

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 83103022.6

(2) Anmeldetag: 26.03.83

(5) Int. Cl.³: C 07 D 235/02

C 07 D 401/04, C 07 D 233/74 C 07 D 233/86, C 07 D 233/76 C 07 D 233/78, A 01 N 43/50 A 01 N 43/52, A 01 N 43/40

(30) Priorităt: 08.04.82 DE 3213140 16.10.82 DE 3238447 14.01.83 DE 3301008

(4) Veröffentlichungstag der Anmeldung: 19.10.83 Patentblatt 83/42

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI NL SE

71 Anmelder: CELAMERCK GmbH & Co. KG Binger Strasse 173 D-6507 Ingelheim am Rhein(DE)

Erfinder: Schröder, Ludwig, Dr. Dipl.-Chem.
Frankenstrasse 7
D-6507 Ingelheim(DE)

(2) Erfinder: Stransky, Werner, Dr. Dipl.-Chem. Im Hippel 24 D-6535 Gau-Algesheim(DE)

(2) Erfinder: Mengel, Rudolf, Dr. Dipl.-Chem. Schützenpfad 22 D-6507 ingelheim(DE)

(72) Erfinder: Lust, Sigmund, Dr. Klappacher Strasse 2f D-6100 Darmstadt(DE)

(2) Erfinder: Linden, Gerbert, Dr. Dipl.-Landwirt Turnierstrasse 44 D-6507 Ingelheim(DE)

(7) Erfinder: Raddatz, Erich, Dr. Carrera 1-Oe No. 5-265 Cali(CO)

(2) Erfinder: Schneider, Gerhard, Dipl.-Bio. Schleifmühlehweg 7a D-6109 Mühltal 1(DE)

(54) Neue Hydantoine, ihre Herstellung und Verwendung.

4

 Die Erfindung betrifft neue Cycloalkan-5'-spirohydantoine der Formel

596

60

A C N X X (I),

die in der Beschreibung erläutert wird. Es werden ferner Verfahren zur Herstellung der neuen Verbindungen beschrieben sowie die Verwendung der Verbindungen zur Bekämpfung unerwünschten Pflanzenwachstums. Die Erfindung betrifft neue Hydantoine, ihre Herstellung nach an sich bekannten Verfahren und ihre Verwendung bei der Bekämpfung unerwünschten Pflanzenwachstums.

Die neuen Verbindungen haben die Formel

in der

A für einen gegebenenfalls ein- oder mehrfach verbrückten Cycloalkanrest der Formel

mit 5 bis 10 C-Atomen oder für den Rest

Q für CH oder N,

- R_1 , R_2 und R_3 , die gleich oder verschieden sein können, für Wasserstoff, für geradkettiges oder verzweigtes C_1 - C_4 -Alkyl oder für geradkettiges oder verzweigtes C_3 - C_4 -Alkenyl,
- R_4 und R_5 , die gleich oder verschieden sein können, für C_1 - C_4 -Alkyl, das auch durch C_1 - C_4 -0- oder C_1 - C_4 -S- oder eine gegebenenfalls substituierte Phenyl-O- oder Phenyl-S-Gruppe substituiert sein kann, Für C_2 - C_4 -Alk nyl, für C_3 - C_6 -Cycloalkyl, das auch niederalkylsubstituiert sein kann, für gegebenenfalls ubstituiertes Ph nyl oder Benzyl,

W für Sauerstoff oder, falls Q CH ist, auch für Schwefel,

X und Y, die gleich oder verschieden sein können, für Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Trifluormethyl, X außerdem auch für Wasserstoff steht.

Diese Verbindungen zeichnen sich durch eine starke Wirkung gegen Unkräuter und Ungräser aus und können in zahlreichen Kulturen als selektive Herbizide eingesetzt werden.

In den obigen Definitionen ist unter Halogen Fluor, Chlor, Brom oder Jod (bevorzugt Chlor) zu verstehen. X steht vor allem für Wasserstoff, Chlor, Brom, Methyl, Methoxy und Trifluormethyl, Y vor allem für Chlor, Brom, Methyl, Methoxy und Trifluormethyl. Die Niederalkylund Niederalkoxyreste sowie die C_1 - C_4 - Alkyl- und -Alkoxyreste sind bzw. umfassen Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl und t-Butyl. R_4 und R_5 sind vor allem Methyl, Ethyl, n-Propyl und i-Propyl. Als Alkenyl ist besonders Allyl zu nennen.

Soweit R_4 und/oder R_5 substituierte Phenyl- oder Benzylreste bedeuten oder enthalten, sind die Substituenten ein oder mehrere C_1 - C_4 -Alkyl- oder C_1 - C_4 -Alkoxyreste, Trifluormethyl oder Halogen, gegebenenfalls in Mischung. Dabei sind Methyl, Methoxy, Chlor und Brom hervorzuheben. Die Gruppe A leitet sich vor allem von Cyclohexan, Cyclopentan oder ihren ein- bis dreifach niederalkyl-, insbesondere methylsubstituierten Homologen ab, etwa Menthan, oder von bi- oder tricyclischen, gegebenenfalls ein- bis dreifach niederalkyl-, insbesondere methylsubstituierten Cycloalkanen, etwa Caran, Pinan.

Die Verbindungen der Formel I können nach an sich bekannten Methoden hergestellt werden, indem man

a) zur Herstellung solcher Verbindungen, in denen Q CH ist, eine Carbonsäure der Formel

worin A, W, X und Y die obige Bedeutung haben, in Gegenwart einer starken Mineralsäure cyclisiert

oder daß man

b) zur Herstellung solcher Verbindungen, in denenQ CH ist, einen Ester der Formel

worin A, W, X und Y die obige Bedeutung haben und Z für einen geradkettigen oder verzweigten, gegebenenfalls substituierten aliphatischen Rest oder einen gegebenenfalls substituierten araliphatischen Rest steht, in Gegenwart einer Base cyclisiert oder daß man

c) zur Herstellung solcher Verbindungen, in denen Q CH ist, eine Aminoverbindung der Formel

worin A, W, X und Y die obige Bedeutung haben und E und E' für Wasserstoff oder NH₂ stehen, wobei mindestens einer dieser beiden Reste NH₂ bedeutet, zur Entfernung von E und/oder E' entaminiert oder daß man

d) zur Herstellung solcher Verbindungen der Formel I, in denen Q für N steht, ein Hydantoin der Formel

$$A = \begin{bmatrix} NH - C = 0 \\ C - NH \\ 0 \end{bmatrix}$$
(VI)

worin A die obige Bedeutung hat, mit einem Pyridin

der Formel

worin X und Y die obige Bedeutung haben und Z für NO₂ oder Halogen steht, unter Zugabe einer basischen Verbindung (z.B. Kalium- oder Natriumcarbonat, Kalium- Natrium- oder Calciumhydroxid) bei Temperaturen zwischen etwa 0°C und etwa 80°C umsetzt.

Die Cyclisierung der Säure gemäß Verfahren a) erfolgt zweckmäßig in wäßriger oder alkoholischer Lösung in Gegenwart einer Säure wie Salzsäure, Schwefelsäure bei erhöhter Temperatur. Am einfachsten ist es, die Mischung einige Zeit auf Siedetemperatur zu erhitzen. Die Cyclisierung der Ester gemäß Verfahren b) erfolgt bevorzugt in einem Alkohol oder einem anderen organischen Lösungsmittel, beispielsweise Dioxan. Als Base wird bevorzugt eine tertiäre organische Base verwendet, z.B. Triethylamin, Tripropylamin. Das Reaktionsgemisch wird erwärmt, im allgemeinne einige Stunden auf Siedetemperatur.

Im Verfahren c)erfolgt die Entfernung der Aminogruppe(n) in an sich bekannter Weise über die Diazonium-Verbindungen, indem man z.B. die Diazotierung in Gegenwart von siedendem Ethanol vornimmt (Houben-Weyl, Bd. 10/3 (1965), Seite 116 ff) oder die Suspension bzw. Lösung des Diazoniumsalzes in eine wäßrige Lösung von unterphosphoriger Säure einträgt (a.a.0, S. 131 ff.) oder die Diazotierung mit Alkylnitriten in Gegenwart von Derivaten der Ameisensäure, etwa Dimethylformamid, durchführt (a.a.0, S. 137 ff.).

Verfahren d) kann durch Zugabe eines Phasentransferkatalysators (z.B. Kronenether, Tetraalkylammoniumsalze, Tetraalkylphosphoniumsalze) günstig beeinflußt werden.

Die erfindungsgemäßen Verbindungen können z.T. in Form von cis-/trans-Isomeren und/oder in enantiomeren Formen vorliegen. Die Zuordnung zur cis- bzw. trans-Reihe ist nach Cahn-Ingold-Prelog vorgenommen worden. Erfindungsgemäß erhaltene Gemische geometrischer Isomerer können gewünschtenfalls nachträglich aufgetrennt werden, z.B. durch fraktionierte Kristallisation, ebenso Racemate.

Verwendet man zur Herstellung der Ausgangsstoffe (VIII, X) unsymmetrisch substituierte Ketone, können je nach den Synthesebedingungen unterschiedliche geometrische Isomere gebildet werden. Entsprechend werden daraus schließlich die isomeren Cycloalkan-spirohydantoine I gebildet (vgl. z.B. L. Hoyer, Chem.Ber. 83, S. 491 (1950)).

Die Ausgangsstoffe III bis VII sind bekannt oder können nach üblichen Verfahren analog bekannten Verbindungen hergestellt werden.

Zur Herstellung der Verbindungen der Formel III setzt man beispielsweise eine 1-Aminocycloalkancarbonsäure der Formel

worin A die obige Bedeutung hat, mit einem Isocyanat bzw. Isothiocyanat der Formel

worin W, X und Y die obige Bedeutung haben, in wäßriger oder alkoholischer Lösung bei niedrigen Temperaturen, vorzugsweise O - 10°C, in Gegenwart einer basischen Substanz (z.B. Natronlauge, Kalilauge, Kaliumcarbonat, Natriummethylat) um und fällt mit einer geeigneten Säure (z.B. Salzsäure, Schefelsäure, Essigsäure) die Verbindung der Formel III aus.

Die Ausgangsstoffe der Formel IV können durch Umsetzung von Estern der Formel

worin A und Z die obige Bedeutung haben, mit einem Isocyanat bzw. Isothiocyanat der Formel IX erhalten werden. Man bringt die Reaktionspartner IX und X in einem inerten Lösungsmittel /z.B. Ether, Methylenchlorid, Toluol, Essigester) bei niedrigen Temperaturen, vorzugsweise 10 - 20°C, zur Reaktion.

Der Rest Z bedeutet im allgemeinen einen niederen bis mittleren Alkylrest oder einen gegebenenfalls substituierten Benzylrest. Seine Art ist im allgemeinen unkritisch, d.h. sofern er nicht wegen ungünstiger Struktur oder wegen reaktionsfähiger Substituenten zu Nebenreaktionen oder einer Hemmung der Reaktion führt.

Die Ausgangsstoffe für das Verfahren c) können z.B. wie folgt erhalten werden:

Man setzt ein Spirohydantoin der Formel

$$A = \begin{pmatrix} NH - C = W \\ CO - NH \end{pmatrix}$$
 (XI),

worin A und W die obige Bedeutung haben, mit einem Halogennitrobenzol der Formel

Hal
$$NO_2$$
 oder Hal NO_2 (XIIb)

(Hal: Fluor oder Chlor in 2- oder 4-Stellung, Y in der obigen Bedeutung) in Gegenwart einer Base (z.B. K₂CO₃, Na₂CO₃, KOH, NaOH, etc.) in einem geeigneten Lösungsmittel (z.B. Dimethylsulfoxid, Acetonitril, Aceton), gegebenenfalls unter Zusatz eines Phasentransferkatalysators (Kronenether, Tetraalkylammoniumsalze, Tetraalkylphosphoniumsalze) bei Temperaturen zwischen O°C und 150°C zu Verbindungen der formel

$$A \longrightarrow CO - N \longrightarrow D,$$
(XIII)

(A, W, Y in der obigen Bedeutung; D, D' H oder NO_2 , jedoch mindestens eins von beiden NO_2) um.

Die Verbindungen XIII werden zu den entsprechenden Aminoverbindungen der Formel

$$A = \begin{pmatrix} A & A & B \\ CO & -A & B \\ CO & -A & CO \end{pmatrix}$$

$$(Va)$$

(A, W, Y in der obigen Bedeutung; E, E' H oder NH_2 , jedoch mindestens eines von beiden NH_2) reduziert. Diese Aminoverbindungen selbst oder ihr Halogenierungsprodukt (nach Halogenierung mit z.B. Cl_2 , $\mathrm{SO}_2\mathrm{Cl}_2$, Br_2), Verbindungen der Formel V mit X gleich Chlor oder Brom werden dann gemäß Verfahren c) entaminiert.

Die erfindungsgemäßen Verbindungen zeichnen sich durch eine starke Wirkung gegen zahlreiche, insbesondere monokotyle Unkräuter aus. Die Anwendung erfolgt bevorzugt vor dem Auflaufen. Die gute Verträglichkeit der erfindungsgemäßen Wirkstoffe ermöglicht den Einsatz in zahlreichen Kulturen, z.B. in Soja, Mais, Reis, Baumwolle, Gerste, Rüben, Kartoffeln, Tomaten, Zwiebeln.

Die Aufwandmengen können je nach Substanz, Unkraut und äußeren Bedingungen zwischen 0,1 und 10 kg/ha, insbesondere zwischen 0,3 und 3kg/ha schwanken.

Häufig erweist es sich als vorteilhaft, Kombinationen von Verbindungen der Formel I und bekannten Herbiziden anzuwenden. Zu nennen sind hier Kombinationen mit Harnstoff-Derivaten (z.B. Chlortoluron), Triazin-Derivaten (z.B. Atrazin, Simazin), Dinitroanilin-Derivaten (z.B. Trifluralin), Chloracetanilid-Derivaten (z.B. Alachlor), Thiocarbamaten (z.B. Benthiocarb), Diphenylether (z.B. Acifluorfen).

Die Wirkstoffe der Formel I können für die Anwendung in gebräuchlicher Weise zu üblichen Formulierungen verarbeitet werden, z.B. zu Granulaten, Stäubemitteln, Suspensionspulvern bzw. -konzentraten, wasserdispergierbaren Granulaten.

Diese Formulierungen werden hergestellt durch Vermischen bzw. Vermahlen der Wirkstoffe mit Streckmitteln, z.B. Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Zusatz oberflächenaktiver Mittel (Emulgatoren, Dispergiermitteln) und/oder stabilisierender und/oder schaumverhindernder Mittel sowie gegebenenfalls weiterer Zusätze.

Als Lösungsmittel wird Wasser bevorzugt; als feste Trägerstoffe eignen sich beispielsweise Gesteinsmehle (z.8. Kaoline, Tonerden, Talkum, Kreide, Quarz, hochdisperse Kieselsäure, Aluminiumoxid, Silikate).
Für Granulate geeignete Träger sind einerseits gebrochene und fraktionierte Gesteine (z.8. Calcit, Marmor, Bims), andererseits Granulate aus organischem Material (z.8. aus Sägemehl, Kokosnußschalen, Mais-kolben).

Als Emulgatoren eignen sich nichtionogene und anionische Verbindungen, etwa Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate und Eiweißhydrolysate.

Als Dispergiermittel kommen z.B. Sulfitablaugen aus der Holzverarbeitung oder Methylzellulose in Betracht, als schaumverhindernde Mittel verzweigte höhere Alkohole. Aus den konzentrierten Zubereitungen, die im allgemeinen zwischen 0,1 und 95 Gewichtsprozent, vorzugsweise zwischen 0,5 und 90 Gewichtsprozent Wirkstoff
enthalten, werden gegebenenfalls durch Verdünnen mit
Wasser Spritz- oder Gießbrühen gewünschter Konzentration
hergestellt.

Die Anwendung erfolgt je nach der Zubereitung durch Gießen, Spritzen, Streuen oder Stäuben.

Formulierungsbeispiele

a) Suspensionspulver

- 25 Gew.-% einer Verbindung der Formel I
 - 55 Gew.-% Kaolin
 - 10 Gew.-% kolloidale Kieselsäure
 - 9 Gew.-% Ligninsulfonat
 - 1 Gew.-% Natriumtetrapropylenbenzolsulfonat

b) Suspensionspulver

- 80 Gew.-% einer Verbindung der Formel I
 - 8 Gew.-% Calciumligninsulfonat
 - 5 Gew.-% kolloidale Kieselsäure
 - 5 Gew.-% Natriumsulfat
 - 2 Gew.-% Natriumdiisobutylnaphthalinsulfonat

Beispiel 1

Cyclohexan-5'-spiro-3'-(3,5-dichlorphenyl)-hydantoin

171 g (1 mol) 1-Amino-cyclohexan-carbonsäure-ethylester, hergestellt durch Veresterung (mit HC1/EtOH) von 1-Amino-cyclohexan-carbonsäure, werden in 500 ml Ether gelöst. Man läßt unter Eiskühlung eine Lösung von 188,5 g (1 mol) 3,5-Dichlorphenylisocyanat in 500 ml Ether innerhalb von 15 Minuten einfließen. Nach beendeter Zugabe wird noch 30 Minuten bei Raumtemperatur gerührt und danach abgesaugt.

Der Nutschenrückstand wird nun in 500 ml Ethanol suspendiert und nach Zugabe von 10,1 g (0,1 mol) Triethylamin 3 Stunden unter Rückfluß gekocht. Danach gießt man auf 2 Ltr. Eiswasser und saugt den entstandenen Niederschlag ab. Man wäscht gründlich mit Wasser und trocknet im Umluftschrank.

Man erhält ca. 280 g (89 % d.Th.) der Titelverbindung. Fp. 210° - 211°C (aus Ethanol).

Beispiel 2

cis-2-Methylcyclohexan-5'-spiro-3'-(3,5-dichlorphenyl)2'-thio-hydantoin

Man löst 11,5 g (0,5 mol) Natrium in 500 ml Ethanol und trägt in die Lösung 79 g (0,5 mol) cis-l-Amino-2-methyl-cyclohexancarbonsäure ein. Zu der erhaltenen Suspension gibt man nun innerhalb von 30 Minuten fein gepulvertes 3,5-Dichlorphenylisothiocyanat. Die nun klare Lösung wird 3 Stunden bei Raumtemperatur gerührt und anschließend 3 Stunden unter Rückfluß gekocht. Man gießt nun auf 2 Ltr-Eiswasser, saugt den ausgefallenen Niederschlag ab und wäscht gründlich mit Wasser.

Nach dem Trocknen verbleiben 140 g (82 % d.Th.) der Titelverbindung.

Fp. 237 - 239°C (aus Ethanol)

Die stereochemische Zuordnung (cis bzw. trans) erfolgte entsprechend den Regeln nach Cahn-Ingold-Prelog).

AUSECHARDS OUTTO WELL PURMET 1 (1 1100 1V)	Ausgangsstoffe	der	Formel	TTT	und	TV-
--	----------------	-----	--------	-----	-----	-----

Aus	gangsstolle	der Formel	JII u	nd IV:	:		ı
Nr.	A		W	х	Y	Z	Fp. [°C]
1	\bigcirc X		0	Cl	Cl	C2H5	178–179
2	\bigcirc		. 0	Cl	Cl	н	195-197
3	\bigcirc		0	CH ₃	CH ₃	H	186-188
4	\bigcirc	•	0	Cl	Cl	н	163-164
5	\bigcirc		0	н	CF ₃	С ₂ Н ₅	131-132
6	\bigcirc	•	0	н	ĊH ²	C ₂ H ₅	135-136
7	CH3	(2-cis)	0	Cl	Cl	н	175-177
8	CH3	(2-cis)	0	Cl	Cl	С ₂ н ₅	188-189
9	CH3	(2-cis)	0	CH ₃	CH ₃	H	188-190
10	S		0	Cl	Cl	н	238-240
11	\bigcirc		0	Cl	Cl	с ₂ н ₅	186-187
12	CH3	2-d(cis, rans-Ge- isch)	0	Cl	Cl	н	172-174
5-4		_		•			

Entsprechend den Beispielen werden die Verbindungen der Formel I der nachstehenden Tabelle erhalten:

<u>Tabelle I</u>

Nr.	A		W	x	Y	Fp. [°c]
1	\bigcirc	:	0	CH ₃	CH ₃	
2	\bigcirc	*	. S	Cl	Cl	225-227
3	\bigcirc	•	0	н	CH ₃	198-199
4			0	Н	CF ₃	222-223
5	\Diamond		0	Cl	Cl	134-135
6	CH3	(2-cis)	0	CI.	Cl	205–206
7.	Снз	(2-cis)	0	CH ₃	снз	202–203
8	\bigcirc		0	Cl	Cl	258–263
9	43c - X	(4-cis)	0	Cl	Cl	253-255
10	CH ₃	2-d- (cis, trans- Gemisch)	0	Cl	Cl	207–208
11	C2H5	(cis/trans)	0	Cl	Cl	
12	C2H5	(cis/trans).	0	CH ₃	Cl	

Nr.	A	ય	х	Y	Fp. [°C]
13	C ₂ H ₅ (cis)	0	Br	Cl	
14	C ₂ H ₅ (cis)	0	CF ₃	CF ₃	
15	(cis)	0	OCH-	OCH	3
16	C2H5 (trans)	s	CI	Cl	
17	C ₂ H ₅ (cis)	s	CH ₃	CH:	5
18	CH(CH3)2 (cis/trans)	0	Cl	Cl	
19	CH(CH3)T	s	Br	Br	
2	(trans)	O	CH	3 00	CH ₃
2	CH(CH3)2 (trans)		s O	CH ₃	CH ₃
	22 CH(CH3)2 (cis)		s C	F3 (CF ₃

Mr.	А		W	х	Υ.	Fp.	[°c]
23	Çų Hg	(cis)	0	Cl	Cl		
24	- F4H9	(trans)	0	CF ₃	CF ₃		
25	C4+H9	(cis/trans)	0	CH ₃	CH ₃		
26	Ct+ H3	(cis/trans)	0	och ₃	осн ₃		
27	Ç4H9	(cis)	S	CH ₃	OCH ₃		
28	Ch Ha	(cis)	s	Cl	Cl		
29	CH2-CH=CH2	(cis)	0	Cl	Cl		
30	CH2-CH=CH2	(cis)	0	CH ₃	Cl		
31	CH2-CH=CH2	(trans)	0	CF ₃	Cl		
32	CH2-CH=CH2	(trans)	S	OCH ₃	OCH ₃	5	
33	CH2-CH=CH2	(cis)	S	CF ₃	CF ₃		
			•	2.0			

	. 18	_			
Wr.	A	ч	х	Y	₹p. [°C]
34	CH2-CH=CH2 (2-trans)	0	Cl	Cl ,	
35	CH1-CH=CH2 (2-trans) CH1-CH=CH2	0	Br	Br	
36	CH1-CH = CH2 (2-cis) CH1-CH=CH2	s	CF ₃	CF ₃	
37	CH2-CH = CH2 (2-cis) CH2-CH = CH2	s	Cl	Cl	
38	ty (trans)	0	Cl	C1	
39	CH ₃ (cis)	0	Cl	C1.	
40	CH ₃ (cis)	s	Cl	Br	
41	CH ₃ (cis)	s	CH ₃	CH ₃	
42	CH3	o	снз	Cl	

Ñr.	A		W	х	Y	Fp. [°C]
43	H ₃ C CH ₃	(cis)	0	och ₃	OCH ₃	
44	Hac CH3	(trans)	O	CF ₃	CF ₃	
45	CH3	(trans)	0	Br -	Br	
46	Ctt ₃	(cis)	0	CH ₃	СН ₃	
47	CHP	(cis)	0	CF ₃	CF ₃	
. 48	CH3	(trans)	0	OCH ₃	och ₃	
49	CH3.	(cis)	S	Cl	Cl	
50	CH ₃	(trans)	S	Cl	Br	·

Beispiel 3 cis-4-Methylcyclohexan-5'-spiro-3'-(3,5-dibromphenyl) hydantoin

a) cis-4-Methylcyclohexan-5'-spiro-3'-(2-nitrophenyl)hydantoin
18,2 g (0,1 mol) cis-4-Methylcyclohexan-5'-spirohydantoin, 18 g (0,1 mol) 2-Nitro-chlorbenzol und
41,4 g (0,3 mol) Kaliumcarbonat werden in 100 ml
Dimethylformamid gelöst bzw. suspendiert und 5 Stunden
bei ca. 120°C gerührt.
Man gießt die Mischung anschließend auf Eis, saugt den
ausgefallenen Niederschlag ab, wäscht gründlich mit
Wasser und kristallisiert aus Acetonitril.
Ausbeute: 15,5 g (51 % d.Th.)
Fp.: 227°C - 229°C.

b) cis-4-Methylcyclohexan-5'-spiro-3'-(2-aminophenyl)hydantoin

15,2 g (0,05 mol) cis-4-Methylcyclohexan-5'-spiro-3'-(2-nitrophenyl)-hydantoin werden in 200 ml Methylalkohol und 5 ml konz. Salzsäure gelöst und nach Zugabe von 4 g Katalysator (Pd/C 10 %ig) bei max. 40°C und einem Druck von 5 bar hydriert. Nach beendeter H₂-Aufnahme wird der Katalysator abgesaugt und die Mutterlauge eingeengt. Man nimmt den Rückstand in Wasser auf und neutralisiert mit Bicarbonat. Der entstandene Feststoff wird abgesaugt, mit Wasser gewaschen und aus Isopropanol kristallisiert. Ausbeute: 11,5 g (84 % d.Th.)

c) cis-4-Methylcyclohexan-5'-spiro-3'-(2-amino-3,5-dibromphenyl)-hydantoin

27,33 g (0,1 mol) cis-4-Methyl-cyclohexan-5'-spiro-3'-(2-amino-phenyl)-hydantoin werden in 200 ml Eisessig gelöst. Dazu tropft man bei Raumtemperatur eine Lösung von 32 g (0,2 mol) Brom in 50 ml Eisessig · innerhalb von 30 Minuten ein. Man rührt ca. 30 Minuten nach, verdünnt dann mit l Ltr. Wasser, saugt den Niederschlag ab, wäscht mit Wasser und kristallisiert aus Acetonitril.

Ausbeute: 35,4 g (82 % d.Th.)

Fp. 264 - 266°C

d) cis-4-Methylcyclohexan-5'-spiro-3'-(3,5-dibromphenyl)hydanto<u>in</u>

21,6 g (0,05 mol) cis-4-Methyl-5'-spiro-3'-(2-amino-3,5-dibromphenyl)-hydantoin werden in 300 ml Ethanol und 10 ml konz. Schwefelsäure gelöst, und die Mischung wird zum Sieden erhitzt. Dazu gibt man innerhalb von ca. 20 Minuten portionsweise 3,8 g (0,055 mol) Natriumnitrit und rührt dann eine weitere Stunde unter Rückfluß. Nach dem Abkühlen wird mit 1 Ltr. Eiswasser verdünnt, der entstandene Niederschlag abgesaugt, mit Wasser gewaschen und aus Acetonitril kristallisiert. Ausbeute: 12,3 g (59 % d.Th.) Fp. 247-249°C.

Beispiel 4

cis-2-Ethylcyclohexan-5'-spiro-3'-(3,5-dibromphenyl)hydantoin

a) cis-2-Ethylcyclohexan-5'-spiro-3'-(2,4-dinitrophenyl)hydantoin_

39 g (0,2 mol) cis-2-Ethylcyclohexan-5'-spiro-hydantoin, 40,4 g (0,2 mol) 1-Chlor-2,4-dinitro-benzol, 83 g (0,6 mol) Kaliumcarbonat und 1 g Tetrabutylammonium-hydrogensulfat werden in 200 ml Dimethylsulfoxid bei 10°C 6 Stunden gerührt. Danach verdünnt man mit 500 ml Wasser, saugt ab, wäscht mit Wasser und kaltem Methanol und trocknet.

Ausbeute: 62,4 g (86 %d.Th.)

Fp. 231 - 232°C

b) cis-2-Ethylcyclohexan-5'-spiro-3'-(2,4-diaminophenyl)hydantoin

36,2 g (0,1 mol) cis-2-Ethylcyclohexan-5'-spiro-3'-(2,4-dinitrophenyl)-hydantoin werden in 500 ml Methanol und 20 ml konz. Salzsäure gelöst. Dazu gibt man 10 g Katalysator (Pd/C 10 %ig) und hydriert unter 5 bar bei einer Temperatur von max. 65°C. Danach wird vom Katalysator abgesaugt, eingeengt und in Wasser aufgenommen. Man neutralisiert mit Bicarbonat, saugt den ausgefallenen Niederschlag ab, wäscht mit Wasser und kristallisiert aus Isopropanol. Ausbeute: 25,4 g (84 % d.Th.) Fp. 183 - 185°C.

c) cis-2-Ethylcyclohexan-5'-spiro-3'-(2,4-diamino-3,5-dibromphenyl)-hydantoin

15 g (0,05 mol) cis-2-Ethylcyclohexan-5'-spiro-3'-(2,4-diaminophenyl)-hydantoin werden in 100 ml Eisessig gelöst. Dazu tropft man bei Raumtemperatur eine Lösung von 5,06 g (0,1 mol) Brom in 20 ml Eisessig innerhalb von 10 Minuten ein. Man rührt ca. 20 Minuten nach, versetzt dann mit 300 ml Eiswasser, saugt den Feststoff ab, wäscht mit Wasser gründlich nach und trocknet im Vakuum. Ausbeute: 18 g (78,3 % d.Th.) Fp. 263 - 265°C.

d) cis-2-Ethylcyclohexan-5'-spiro-3'-(3,5-dibromphenyl)-hydantoin

Man erwärmt eine Lösung von 3,5 g (0,03 mol)
Isoamylnitrit in 50 ml Dimethylformamid auf 55°C und tropft dazu bei dieser Temperatur eine Lösung von 6,9 g (0,015 mol) cis-2-Ethyl-cyclohexan-5'-spiro-3'-(2,4-diamino-3,5-dibrom-phenyl)-hydantoin in 20 ml Dimethylformamid innerhalb einer Stunde ein. Man erhöht anschließend die Temperatur bis zum Ende der N₂-Entwicklung auf 70 - 80°C. Dann wird im Vakuum eingeengt und der dunkle Rückstand säulen-chromatographisch (Kieselgel/Essigester) gereinigt. Ausbeute: 3,9 g (59 % d.Th.)
Fp. 213 - 215°C.

Entsprechend erhält man die Verbindungen der Tabelle II.

Tabelle II

		1			,	
Nr.	A		W	X	<u> </u>	Fp °C ·
1	CH ₃	(cis)	0	Br	CH3	193 – 195
2		(cis)	O	Cl	СН3	202-203
3	Ç2 ^H 5	(cis)	0	Cl	Cl	193-195
4	H ₃ C CH ₃		0	Cl	Cl	212-213
5	C ₂ H ₅	(cis)	Ō	СН3	CH ₃	162-163
6	H3C		0	СН3	ÇН _З .	208-211
7	CH ₃	(trans)	0	C1	Cl	188-189
8	CH ₃	(cis)	0	осн ₃	осн ₃	177-179
9	\$ 1.00 miles	(cis)	.0	CF ₃	CF ₃	179-181
	ļ				1	•

Beispiel 5

cis-2-Methylcyclohexan-5'-spiro-3'-(2,6-dichlorpyridyl-4)-hydantoin

192 g (1 mol) cis-2-Methylcyclohexan-5'- spiro-hydantoin, 194 g (1 mol) 2,6-Dichlor-4-nitro-pyridin, 207 g (1,5 mol) Kaliumcarbonat und 3,4 g (0,01 mol) Tetrabutylammonium-hydrogensulfat werden in 1000 ml Dimethylsulfoxid bei Raumtemperatur gelöst bzw. suspendiert. Danach wird das Gemisch weitere ca. 16 Stunden bei 15°C - 20°C gerührt.

Man läßt nun ca. 5000 ml Eiswasser zulaufen, saugt den gebildeten Niederschlag ab, wäscht gründlich mit Wasser nach und kristallisiert aus Acetonitril um.

Ausbeute: 250 g (79 %d.Th.)

Fp. 227 - 229°C.

Entsprechend werden die Verbindungen der Tabelle III erhalten.

Tabelle III

Nr.	Α	x	Y	Fp °C
1	C(CH ₃) ₃ - cis -	Cl	Cl	216-218
2	CH(CH ₃) ₂ - cis -	Cl	Cl	190-191
3	CH ₂ -CH=CH ₂ - cis -	Cl	C1	138-140
4	C ₂ H ₅ - cis -	C1	C1	191-193
5	CH ₂ -CH=CH ₂ - cis - CH ₂ -CH=CH ₂	C1	Cl	125-127
6	CH ₃ Isomerengemisch	C1	Cl	238-242

Beispiel 6 5-Methyl-5-cyclopropyl-3-[4 -(2 ,6 -dichlorpyridyl)]hydantoin

Eine Suspension, bestehend aus 3,1 g 5-Methyl-5-cyclo-propyl-hydantoin, 3,86 g 2,6-Dichlor-4-nitropyridin und 5,6 g Kaliumcarbonat in 10 ml Dimethylformamid, wird 18 Stunden bei 20°C gerührt und anschließend auf 100 ml Wasser gegeben. Nach 30 Minuten Rühren wird der entstandene Niederschlag abgesaugt und in Methylenchlorid aufgenommen. Nach dem Trocknen und Abziehen des Lösungsmittels erhält man 3,2 g 5-Methyl-5-cyclopropyl-3-[4 -(2 ,6 -dichlorpyridyl)]-hydantoin, Fp. 160°C (Umfällung aus Toluol/Petrolether). Ausbeute 64% d.Th.

Beispiel 7 5-Methyl-5-cyclopropyl-3-(3 ,5 -dimethylphenyl)-hydantoin

Zu einer Lösung von 0,8 g l-(3,5-Dimethylphenyl)-3- [2-(2-cyclopropyl)-propansäuremethylester]-harnstoff in 30 ml Methanol gibt man 0,3 g Triethylamin und erhitzt 12 Stunden zum Rückfluß. Nach dem Abziehen des Lösungsmittels wird der Rückstand mit Petrolether verrieben und der erhaltene kristalline Niederschlag abgesaugt.

Fp. 121°C, Ausbeute 0,6 g (85 % d.Th.).

Beispiel 8 5-n-Propyl-5-(1-methylethyl)-3-(3,5-dichlorphenyl)-2thio-hydentoin

Zu einer Lösung von 1,7 g 2-Amino-2-(1-methylethyl)pentansäuremethylester in 10 ml absolutem Tetrahydrofuran tropft man bei 20 °C eine Lösung von 2,0 g
3,5-Dichlorph nylisothiocyanat in 10 ml absolutem
Tetrahydrofuran zu, rührt noch 4 Stunden bei 20°C

weiter und zieht anschließend das Lösungsmittel ab. Der Rückstand wird aus Diisopropylether umkristallisiert.

Fp. 160°C, Ausbeute 1,6 g (46 % d.Th.).

Analog den Beispielen erhält man die Verbindungen der Tabelle IV.

Tabe	11e	IV					R ₄	
Endp	prod	ukte	de	r Fo	rmel I (A	gleich	R_{5} $> c - 1$	
Nr.	Ú	W	X	Y	R _{.4}	R ₅		. Fb[oC]
1	N	0	Cl	Cl	CH ₃	i-C ₃ H ₇		129
2	N	0	Cŀ	Cl	i-C ₃ H ₇	i-C ₃ H ₇		157-159
3	N	0	Cl	Cl	CH ₃	t-C ₄ H ₉		167-170
4	N	. 0	Cl	C1	n-C ₃ H ₇	i-C ₃ H ₇		91-93
5	N	0	Cl	Cl	CH ₃		2-CH=CH ₂	76-81
6	N	0	C1	Cl	C ₂ H ₅	i-C ₃ H ₇		97-103
7	N	0	Cl	Cl	C ₆ H ₅	C6H5		190-194
8	N	0	Cl	Cl	CH ₃	C6H5	•	167-170
9	N	0	Cl	Cl	CH ₃	n-C4H9		
10	N	0	Cl	Cl	CH ₃	- ⊚		161-163
						CH ₃		
11	N	0	Cl	, C1	СНЗ	C2H5		
12	N	0	Cl	CL	сн ₃	i-C ₄ H ₉		133-138
13	N	0	Cl	Cl	СН3	s-C ₄ H ₉		105-112
14	N	0	Cl	C1	C ₂ H ₅	t-C ₄ H ₉		
15	C t	1 0	C1	. C1	CH ₃	CH3		159-161
10	5 CI	н О	. C1	C1	CH ₃	i-C ₃ H ₇		124
1	7 CI	н 5	C I	L C	L CH ₃	i-C ₃ H ₇		168
1	B C	н () CI	1 ₃ CI	H ₃ CH ₃	i-C ₃ H ₇	,	134-136
1	9 C	н 9	s CI	H ₃ CI	H ₃ CH ₃	i-C ₃ H ₇	7	150
2	o C	н (•	1 CH ₃	$\overline{}$		145
- 2		н :	s C	 1 C	 1 CH ₃	- <		121
					H ₃ CH ₃	$\overline{}$		175
				•	1 CH ₃	t-C4H	9	230

Nr.	Q	W	x	Y	R 4	R 5	Fp/ºC/
24	СН	0	CH ₃	CH ₃	CH ₃	t-C ₄ H ₉	153
25	СН	S	Cl	Cl	CH ₃	t-C ₄ H ₉	207
26	СН	0.	Cl	C1	n-C ₃ H ₇	i-C ₃ H ₇	140-145
27	СН	0	CH ₃	CH ₃	n-C ₃ H ₇	i-C ₃ H ₇	110
28	СН	0	Cl	Cl.	СН3	-CH ₂ -CH ₂ -CH=CH ₂	80
29	СН	 0	Cl	C1	CH ₃	n-C4H ₉	100
30	СН	0	CH ₃		сн ₃	n=C ₄ H ₉	122 ·
31	СН	0		CH ₃	сн ₃	-CH ₂ -CH ₂ -CH=CH ₂	90
32	СН	S	C1	C1	CH ₃	-CH ₂ -CH ₂ -CH=CH ₂	157
. 33	СН	S	Cl		CH ₃	n=C ₄ H ₉	168
						4_7	
. 34	СН	0	C1	Cl	CH ₃	^C 6 ^H 5	158
35	СН	0	CH ₃	CH ₃	CH ₃	^C 6 ^H 5	168
36	CH	0	Ci.	CL	^C 6 ^H 5	^C 6 ^H 5	136
37	CH	0	CH ₃	CH.3	C6H5	C6H5	
38	СН	S 	C1	C1	CH ₃	C ₆ H ₅	190
39	СН	5	Cl	Cl	C ₆ H ₅	C ₆ H ₅	
40	СН	0	Cl	Cl	CH ₃	- ©	205
					,	сн ³	
41	СН	0	СН3	CH ₃	сн ₃	$-\!$	
						ĊH ₃	
42	СН	S	C1	Cl	CH ₃	CH ₃	
43	СH	n		C1	i-C ₃ H ₇	,	210
					37	37	210
44	СН	0	CH ₃	CH ₃	i-C ₃ H ₇	i-C ₃ H ₇	
45	СН		CJ.		i-C ₃ H ₇		amorph
46	СН	0	Cl	Cl	CH ₃	^C 2 ^H 5	

Nr.	Q	W	X	Y	R 4	R ₅	Fp_°C/
47	СН	0		CH ₃	CH ₃	C ₂ H ₅	
48	СН	S	C1	C1	сн ₃	C ₂ H ₅	
49	СН	0	Cl	C1	CH ₃		
50	СН	0	CH ₃			i-C ₄ H ₉	
51	СН	S	C1	CH ₃	CH ³	i-C ₄ H ₉	144
					СН ₃	i-C ₄ H ₉	144
52	СН	0	Cl	Cl	с ₂ н ₅	i-C ₃ H ₇	
53	СН	0	CH ₃	СН3	C2H5	i-C ₃ H ₇	•
54	СН	5	Cl	Cl.	C ₂ H ₅	i-C ₃ H ₇	
55	CH	0	Cl	Cl -	CH ₃	s-C ₄ H ₉	130
56	СН	0	CH ₃	CH ₃	CH ₃	s-C ₄ H ₉ .	
57	СН	5	Cl	C1	СН3	e_C H	142
58	СН		Cl	Cl	с ₂ н ₅	s-C ₄ H ₉	142
59	СН	0		CF ₃	CH ₃	t-C4H9	124
60	СН	0	_	OCH ₃		i-C ₃ H ₇	124
61	CH	0	Br	Br		1-C ₃ H ₇	129-130
					CH ₃	i-C ₃ H ₇	140
62	CH	0	Cl	CH ₃	CH ₃	i-C ₃ H ₇	120
63	·CH	0	Br	CH ₃	CH ₃	i-C ₃ H ₇	135
64	СН	S	OCH ₃	Cl	CH ₃	i-C ₃ H ₇	
65	СН	0	Cl	Br	^С 2 ^Н 5	\rightarrow	•
66	N	S	Cl	CH ₃	C2H5	t-C ₄ H ₉	
67	N	0	ncu.		: r u	: C 11	
68	СН	0	-	Cl		i-C ₃ H ₇	
69			CF ₃		,	- ⊲	
	CH	5	C1	CH ₃	•	i-C ₃ H ₇	
70	N	S	C1	-	i-C ₃ H ₇	i-C ₃ H ₇	
71	CH	S 	C1	C1	$\neg \triangleleft$	^C 6 ^H 5	146

Nr.	Q	W	X	Y	R ₄	R ₅	Fp[°C]		
72	СН	5	Cl	C1	СН3	CH2-0-CH3	164		
73	СН	0	Cl	Cl	CH ₃	CH2-0-CH3	. 134		
74	СН	0	Cl	Cl	СНЗ	──H .	185		
75	СН	0	Cl	- C1	с ₂ н ₅	i-C ₄ H ₉	140		
76	СН	0	Cl	Cl	CH ₃	CH2-C6H5 .	142		
77	N	0	Cl	Cl	C6H5.	\prec	137-140		
78	N	0	Cl	Cl .	$\overline{\bigcirc}$	— сн ₃	228-233		
OCH ₃									
							157 150		
79	N	0	Cl	C1	CH ₃	-сн-о-сн ₃	. 156-158		
80	N	. 0	Cl	Cl	CH ₃	— (н)	148-155		
81	N	0	Cl	Cl	\prec	. —	195-199		
82	N	0	Cl	Cl	CH ₃	-CH ₂ -0-C ₆ H ₅	128-135		

Ausgangs- bzw.Zwischenprodukte zu Tabelle IV

Tabelle V

Hydantoine der Formel

Nr.	R ₄	R 5	Fp [°C]
1	i-C ₃ H ₇	. сн ³	176 - 177
2	t-C4H9	CH ₃	220
3	-	CH ₃	149 - 150
4	CH2=CH-CH2-CH2	CH ₃	117
5	n-C ₃ H ₇	i-C ₃ H ₇	188
6	i-C ₃ H ₇	i-C ₃ H ₇	210 - 212
7	n-C ₄ H ₉	CH ₃	105 - 106
8	с ₆ н ₅	CH ₃	200
9	^C 6 ^H 5	C6H5	300
10	C ₃ H ₇	CH ₃	124-126
11	i-C ₄ H ₉	сн3	147
12	i-C ₃ H ₇	с ₂ н ₅	
13	t-C4H9	С ₂ Н ₅	
14	s-C ₄ H ₉	CH3	179-189
1,5	- ⊚	CH ₃	158
	CH ₃		

Nr.	R ₄	R ₅	Fp [c]	
16		\neg	199-200	
17	сн ₂ -о-сн ₃	CH ₃	170-173	
18	$\overline{}$	-c ₆ H ₅	214	
19	CH ₃	C1	226-228	
20	c ₆ H ₅	$\overline{\Diamond}$	> 250	

Tabelle VI

Aminocarbonsäure -hydrochloride der Formel

HOOC -
$$\frac{R_4}{C_{R_3}}$$
 - NH₂. HC1

Nr.	R ₄	R 5	Fp. <u> </u>
1	t-C ₄ H ₉	CH ₃	250
2	i-C ₃ H ₇	CH ₃	250
3	$\overline{}$	CH ₃	ca.255
4	сн ₂ =сн-сн ₂ -сн ₂	СНЗ	250
5	сн ₃ -сн ₂ -сн ₂	i-C ₃ H ₇	ca.230
6	i-C ₃ H ₇	i-C ₃ H ₇	
7	n-C ₄ H ₉	CH ₃	230
8	^C 6 ^H 5	СН3	> 250
.9	C6H5	C6H5	> 250
10		CH ₃	amorph
	CH ₃		
11	с ₃ н ₇	CH ₃	215
12	i-C ₄ H ₉	CH ₃	
13	i-C ₃ H ₇	C ₂ H ₅	
14	t-C ₄ H ₉	С ₂ Н ₅	
15	s-C ₄ H ₉	CH ₃	
16	- <	C ₆ H ₅	240
17	CH ₃	$-\!\!\langle\!\!\!\langle$	7 2 2 0
18	→	→ och3	> 250

	<u>le VII</u> carbonsäurederiva	te 20	00C - C - NH ₂	
Nr.	R ₄	R ₅	-	kalische Daten
1	i-C ₃ H ₇	сн ₃	сн ₃	Kp.69-70°C/ 21 mbar
2	t-C ₄ H ₉	CH ₃	CH ₃	
3		CH ₃	сн ₃ .	•
. 4	CH2=CH-CH2-CH2	CH3	CH ₃	•
5	n-C ₃ H ₇	1-C3H7	CH ₃	
6	n-C4H9	СН ₃	C2H5	
7	с ₆ н ₅ .	CH ₃	CH ₃	
8	C ₆ H ₅	C6H5	CH ₃	
9.	$-\bigcirc$	CH ₃	CH ₃	
	Ċн _З			
10	i-C ₃ H ₇	CH ₃	^C 2 ^H 5	
11	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇	
12	i-C ₃ H ₇	CH ₃	CH2=CH-CH2	
13	i-C ₃ H ₇	CH ₃	C ₆ H ₅	
14	^C 2 ^H 5	CH ₃	CH3	
15	i-C ₄ H ₉	СНЗ	CH ₃	
16	i-C ₃ H ₇	^C 2 ^H 5	CH ₃	
17	s-C ₄ H ₉	CH ₃	CH ₃	
18	t-C4H9	^C 2 ^H 5	CH ₃	
19	СН ₃	i-C ₃ H ₇	n-C ₄ H ₈ -OCH ₃	i e
20	CH ₃	i-C ₃ H ₇	C2H4-0C2H5	

Die Verbindungen der vorstehenden Tabelle wurden durch MNR- und IR-Spektrum charakterisiert.

<u>Tabelle VIII</u>

Verbindungen der Formel

Nr.	x	Y	R ₄	R ₅	Z	Fp <i>[</i> °C <i>]</i>
1	Cl	Cl	CH ₃	CH ₃	С ₂ Н ₅	172
2	Cl	Cl	CH ₃	i-C ₃ H ₇	CH ₃	172
3	Cl	C1	CH ₃	. √	CH ₃	168
4	Cl	Cl	CH ₃	t-C ₄ H ₉	CH ₃	194
5	C1 ·	Cl	n-C ₃ H ₇	i-C ₃ H ₇	CH ₃	145
6	Cl	Cl	CH ₃	CH2=CH-CH2-CH2	н	amorph
7	CH ₃	CH3	CH ₃	i-C ₃ H ₇	CH ₃	182
8	CH ₃	CH ₃	CH ₃	\dashv	CH ₃	161
9	CH ₃	CH3	СНЗ	t-C4H9	CH ₃	20.6
10	Cl	Cl	CH ₃	i-C ₃ H ₇	C ₂ H ₅	155-158
11	Cl	Cl	CH ₃	i-C ₃ H ₇	i-C ₃ H ₇	85-90
12	Cl	Cl	CH ₃	i-C ₃ H ₇	СН ₂ =СН-СН ₂	144
13	Cl	Cl	CH ₃	i-C ₃ H ₇	C ₆ H ₅	•
14	Cl	Cl	CH ₃	n-C ₄ H ₉	C ₂ H ₅	138-140
15	CH ₃	СН3	CH ₃	n-C ₄ H ₉	С ₂ Н ₅	134
16	CH ₃	CH ₃	CH ₃	CH ₂ =CH-CH ₂ -CH ₂	Н	
17	Cl	Cl	сн ₃ ·	C6H5	С ₂ Н ₅	180
18	CH ₃	CH ₃	CH ₃	C ₆ H ₅	C ₂ H ₅	185
19	C1	C1	C ₆ H ₅	C ₆ H ₅	^C 2 ^H 5	200
20	СНЗ	CH ₃	С ₆ Н ₅	C ₆ H ₅	CH ₃	
21	Cl	Cl	сн3	→	C ₂ H ₅	223
22	СН3	СНЗ	CH3	сн ₃ —© сн ₄	н	205

Nr.	Χ .	Υ	R 4	R ₅	Z	Fp <i>Z</i> ° c <u>7</u>
23	Cl	. C1	i-C ₃ H ₇	i-С ₃ н ₇	н ,	75-80
24	CH ₃	CH ₃	i-C ₃ H ₇	i-C ₃ H ₇	н .	
25	Cl	Cl	CH ₃	С ₂ н ₅	CH ₃	
26	CH ₃	CH ₃	CH3	C2H5	CH ₃	
27	Cl	Cl	^{CH} 3.	i-C ₄ H ₉	СНЗ	
28	CH ₃ .	CH ₃	CH ₃	i-C ₄ H ₉	сн ₃	
29	C1	C1	С ₂ Н ₅	i-C ₃ H ₇	снз	185
30	CH3	CH ₃	С ₂ Н ₅	i-C ₃ H ₇	CH ₃	
31	Cl	Cl	CH ₃	s-C ₄ H ₉	CH ³	174-176
32	CH ₃	CH ₃	CH ₃	s-C ₄ H ₉	CH ₃	•
33	Cl	Cl	С ₂ Н ₅	t-C ₄ H ₉	CH ₃	·
34	CF ₃	CF ₃	CH ₃	i-C ₃ H ₇	C ₂ H ₅	160 .
35	осн3	OCH ₃	СН3	i-C ₃ H ₇	C ₂ H ₅	160
36	Br	Br	CH ₃	i-C ₃ H ₇	C ₂ H ₅	190
37	CH3	CI	CH ₃	$\overline{}$	C2H4-0CH3	
38	CH3	Cl	CH ₃	i-C ₃ H ₇	n-C ₄ H ₉	•
39`	C1 .	OCH ₃	CH3	i-C ₃ H ₇	n-C4H8-OCH3	
40	Cl	CF ₃	CH ₃	i-C ₃ H ₇	. C2H4-0-C2H5	
41	Cl	СН3	СН3	i-C ₃ H ₇	C2H5	165
42	Br	CH ₃	CH ₃	i-C ₃ H ₇	C ₂ H ₅	172
43	CH ₃	CH ₃	i-C ₃ H ₇	n-C ₄ H ₉	CH ³	123
44	Cl	Cl	CH ₃	CH2-0-CH3	СН3	145-148
45	Cl	Cl	СН3 -	—(н)	CH ₃	200-205
46	CH3	CH ₃	СН3	CH2-CH2-CH=CH2	C2H5	130
47	C1	Cl	СНЗ	CH2-CH2-CH=CH2	С ₂ Н ₅	140

Nr.	x	Y	R ₄	R ₅	Z .	Fp °C
48	Cl	Cl	с ₂ н ₅	t-C ₄ H ₉	с ₂ н ₅	140
49	Cl	Cl	CH ₃	-CH ₂ -C ₆ H ₅	C2H5	180
50	Cl	C1	СН3		н	167
51	СН3	CH ₃	сн ₃	$ \longrightarrow $	н	159
52	СН3	снз	CH ₃	i-C ₃ H ₇	н	185
53	C1	Cl	CH ₃	i-C ₃ H ₇	н	188
54	CH ₃	СН3	сн ₃	i-C ₃ H ₇	°2 ^H 5	145-147

Wirkung und Verträglichkeit der erfindungsgemäßen Verbindungen wurden in Gewächshausversuchen geprüft. Bei der Bonitierung wurde ein zehnstufiger Bonitierungs-schlüssel angewendet, wobei 1 100 % Wirkung, 10 keine Wirkung bedeutet. Die Pflanzen I bis III sind Unkräuter, IV bis VI Nutzpflanzen.

 Wirkstoff nach	Aufwand- menge kg/ha	I	II	III	IV	V	VI	
Beisp. 1	1 0,5	1	1	1	10 10	10 10	10 10	
Tab. I Nr. 6	1 0,5	1	1	1	- -	10 10	10 10	

I: Echinocloa crus-galli
II: Cynodon dactylon

III: Digitaria sanguinalis

IV: Oryza sativa

V: Gossypium hirsutum

VI: Glyzine max.

Wie die Tabelle zeigt, verbinden die erfindungsgemäßen Wirkstoffe sehr gute Wirkung (weit überwiegend Bonitierungsnote 1) mit ausgezeichneter Verträglichkeit (in allen Fällen Bonitierungsnote 10).

Patentansprüche

1. Verbindungen der Formel

in der

A für einen gegebenenfalls ein- oder mehrfach verbrückten Cycloalkanrest der Formel

mit 5 bis 10 C-Atomen oder für den Rest = CR_4R_5 , für CH oder N,

- R_1 , R_2 und R_3 , die gleich oder verschieden sein können, für Wasserstoff, für geradkettiges oder verzweigtes C_1 - C_4 -Alkyl oder für geradkettiges oder verzweigtes C_3 - C_4 -Alkenyl,
- R_4 und R_5 , die gleich oder verschieden sein können, für C_1 - C_4 -Alkyl, das auch durch C_1 - C_4 -0-oder C_1 - C_4 -S- oder eine gegebenenfalls substituierte Phenyl-O- oder Phenyl-S-Gruppe substituiert sein kann, für C_2 - C_4 -Alkenyl, für C_3 - C_6 -Cycloalkyl, das auch niederalkylsubstituiert sein kann, für gegebenenfalls substituiertes Phenyl oder Benzyl,

- W für Sauerstoff oder falls Q CH ist, auch Schwefel.
- X und Y, die gleich oder verschieden sein können, für Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Trifluormethyl, X außerdem für Wasserstoff steht.
- Verbindungen nach Anspruch 1, wobei X für Wasserstoff, Chlor, Brom, Methyl, Methoxy oder Trifluormethyl, Y für Chlor, Brom, Methyl, Methoxy oder Trifluormethyl steht.
- 3. Herbizide Mittel, gekennzeichnet durch einen Gehalt an einer Verbindung nach Anspruch 1 oder 2, neben üblichen Hilfs- und/oder Trägerstoffen.
- 4. Herbizide Mittel, dadurch gekennzeichnet, daß sie neben einem Wirkstoff nach Anspruch 1 oder 2 einen weiteren herbiziden Wirkstoff aus der Gruppe der Harnstoff-Derivate, Triazin-Derivate, Dinitroanilin-Derivate, Chloracetanilid-Derivate oder der Thiocarbamate enthält.
- 5. Verwendung von Verbindungen der Formel I bei der Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzen-Kulturen, insbesondere in Soja, Mais, Reis, Baumwolle, Gerste, Rüben, Kartoffeln, Hirse, Tomaten, Zwiebeln.
- 6. Verfahren zur Herstellung von Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß man

·a) eine Carbonsäure der Formel

worin A, W, X und Y die obige Bedeutung haben, in Gegenwart einer starken Mineralsäure cyclisiert oder daß man

b) einen Ester der Formel

worin A, W, X und Y die obige Bedeutung haben und Z für einen geradkettigen oder verzweigten, gegebenenfalls substituierten aliphatischen Rest oder einen gegebenenfalls substituierten araliphatischen Rest steht, in Gegenwart einer Base cyclisiert, oder daß man

c) eine Aminoverbindung der Formel

worin A, W, X und Y die obige Bedeutung haben und E und E' für Wasserstoff oder NH_2 stehen, wobei mindestens einer dieser beiden Reste NH_2 ist, entaminiert

oder daß man

d) ein 💢 Hydantoin der Formel

$$A = \begin{bmatrix} NH - C = 0 \\ C - NH \end{bmatrix}$$
 (VI)

in der A die obige Bedeutung hat,

mit einem Pyridin der Formel

in der X und Y die obige Bedeutung haben und Z^I die Nitrogruppe oder Halogen bedeutet, in Gegenwart einer basischen Verbindung zwischen etwa 0°C und etwa 80°C umsetzt, und gegebenenfalls die erhaltenen Verbindungen in die cis- und trans-Form und/oder in die Enantiomeren auftrennt.

in der A, W, X und Y die obige Bedeutung haben, und ihre Salze.

8. Verbindungen der Formel

in der A, W, X, Y und Z die obige Bedeutung haben.

9. Verbindungen der Formel

in der A, W, X, Y, E und E' die obige Bedeutung haben.

10. Abwandlung der Verfahren nach Anspruch 6 a) und b), dadurch gekennzeichnet, daß man zur Herstellung von Thiohydantoinen der Formel I aus Aminocarbonsäuren der Formel

$$H_2N - CR_4R_5 - COOH$$

bzw. aus entsprechenden Estern der Formel

worin Z, R_4 und R_5 die obige Bedeutung haben, und Isothiocyanaten der Formel

worin X und Y die obige Bedeutung haben, die Verbindungen der Formel III bzw. IV in situ erzeugt und diese ohne Zwischenisolierung in die En&produkte überführt.