TOC Question Bank

a. Construct DFA

- 1. $\Sigma = \{0,1\}$ and strings that have an odd number of 1's and any number of 0's.
- 2. for $\Sigma = \{a, b, c\}$ that accepts any string with aab as a substring
- 3. $\Sigma = \{x, y\}$, where if a substring yy is present, then it has to be followed by an x.
- 4. {0,1} in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not.
- 5. Over {a, b}, all strings with atleast one a.
- 6. Over {a, b}, strings except those ends with abb
- 7. Over {a, b}, all strings with b as a second letter.
- 8. Over $\{0,1\}$ all strings ending with 00
- 9. Over $\{0,1\}$ detects even number of 0's
- 10. Over $\{a, b\}$, $L = \{w | n_a(w) > 1\}$, where $n_a(w)$ is the number of a's in w
- 11. $L = \{w \text{ denotes an odd binary number}\}$
- 12. Over $\{a, b\}$, $L = \{awa\}$
- 13. $L=\{w_1aw_2 | w_1, w_2 \in \{a, b\} *, |w_I| \le 2, |w_2| \ge 2\}$
- 14. $L = \{w \in (0, 1) * | w \text{ contains at least two 0s, or exactly two1s} \}$
- 15. $w \in (0, 1)*|$ w contains 101 as a substring
- 16. $w \in (0, 1)*|w|$ has equal occurrences of 01 and 10 as substrings
- 17. $w \in (0, 1)*|$ value of w is a multiple of 4
- 18. $w \in (0, 1)*|$ w begins with a 1 and ends with a 0
- 19. $w \in (0, 1)*|$ w starts and ends with the same symbol
- 20. $w \in (0, 1)*|$ Every odd position of w is a 1
- 21. $w \in (0, 1)*| w$ does not contain the substring 110
- 22. $w \in (0, 1)*| w$ contains an even number of 0s and contains the pattern 101
- 23. $w \in (0, 1)*|$ each 0 is immediately followed by three 1's
- 24. $w \in (0, 1)*|$ w has a number of 1's that is multiple of three
- 25. $w \in (0, 1)*|$ strings of length 3 at least, where the third symbol from right is an 0
- 26. $w \in (0, 1)*|$ strings that have an odd number of 1's and any number of 0's.
- 27. $w \in (0, 1)*|$ w contains at least two 0s, or exactly two1s
- 28. $w \in (0, 1)*|$ All strings whose number of 0's is divisible by three
- 29. $w \in (0, 1)*|$ All strings with no more than three 0's.
- 30. Binary strings, which when interpreted as numbers are not divisible by 3.

b. What is the language of below DFA?

- c. Show that the string ababa is accepted for DFA of a.13
- d. Check whether the language $L = \{a^{2n}b^{3m}c|n \ge 1, m \ge 0\}$ is regular.
- e. Define NFA
 - 1. Over $\{a, b\}$, L = (a + b) * b (a + b)
 - 2. Over $\{a, b\}$, $L = \{w \mid w \text{ belongs to abab}^n \text{ or aba}^n \}$
 - 3. Over {a, b}, all strings ending with aba
 - 4. Over {a, b}, all strings ending with ab or ba
 - 5. recognizes the language where w contains the substring 0101
 - 6. $L = \{(10)^n 1^m \mid n \ge 1 \text{ is odd and } m \ge 0 \text{ is even} \}$
- f. Show that strings abab is accepted for NFA of e.2