DATA STRUCTURES AND ALGORITHMS

Complexities Analysis

Basics

- Why is analysis of algo important?
- Order of growth:
 - c < loglog n < log n < $n^1/2$ < n < n Log n < n^2 < 2^n < n^n
- Asymptotic analysis
- · Worst, average and best case analysis of algo

Big O Notation

 $O(n!) > O(c^n) > O(n^c) > O(n.logn) > O(n) > O(logn) > O(1)$

Array

- Definition:
 - o collection of items of the same var type
 - stored at contiguous memory locations
- Basic terminologies of Array
 - arr index

- o arr element
- o arr length

```
// declaration of arr
let arr = []
// init arr
let arr = [1, 2, 3]
```

- Why do we need array? The idea of an array is to represent many instances in one variable.
- Types of arr:
 - o basic sized: fixed size arr, dynamic sized arr
 - o basic dimensions: one-dimensional arr, multi-dimensional arr

Operations on Array

- 1. array traversal
- 2. insertion
- 3. deletion
- 4. searching
 - 4.1. linear search
 - 4.2. binary search

Applications of Array

```
- Storing and accessing data ~ O(1)
- Searching ~ O(logn)
- Matrices: 2-D array
- Implementing other data structures: stacks, queues
- Dynamic programing
- Data buffers
**2. Advantages**
- Efficient and fast access
- Memory efficiency: store elemens in contiguous memory
- Versatility: can store many type of data
- Compatibility with hardware
**3. Disadvantages**
```

1. Application

- Fixed size
- Memory allocation issues
- Insertion and deletion challenges: requiers shifting subsequent elements
- Limited data type support: limiting use with complex data types
- Lack of flexibility: < liked lists, trees

Searching Algo

Linear Search ~ O(n)

Binary Search ~ O(logn)

Sorting Algo

Intro

- Why sorting algo are important? reduces complexity of a problem → application: searching algo, data algo, divide and conquer methods, and dsa
 - print big dataset (want to arrange them)
 - ∘ data sorted, can get max-item, min-item ~ O(1)
 - binary search
- Sorting basics
 - In-place sorting
 - Internal sorting
 - External sorting
 - Stable sorting
 - Hybrid sorting
- Types of sorting techniques

- Some of the most common sorting algo: Selection sort, Bubble sort, Insertion Sort, Cycle Sort,
 Merge Sort, 3-way Merge Sort, Quick sort, Heap sort and Counting sort
- Some other: (read more here)

Comparison of Complexity Analysis of Sorting Algorithms

Sorting Algorithm	Best Case	Average Case	Worst Case	Memory	Stable	Method Used
Quick Sort	O(n log n)	O(n log n)	O(n²)	log n	No	Partitioning
Merge Sort	O(n log n)	O(n log n)	O(n log n)	n	Yes	Merging

Sorting Algorithm	Best Case	Average Case	Worst Case	Memory	Stable	Method Used
Heap Sort	O(n log n)	O(n log n)	O(n log n)	1	No	Selection
Insertion Sort	O(n)	O(n²)	O(n²)	1	Yes	Insertion
Tim Sort	O(n)	O(n log n)	O(n log n)	n	Yes	Insertion & Merging
Selection Sort	O(n²)	O(n²)	O(n²)	1	No	Selection
Shell Sort	O(n log n)	O(n ⁴ / ⁸)	O(n³⁄²)	1	No	Insertion
Bubble Sort	O(n)	O(n²)	O(n²)	1	Yes	Exchanging
Tree Sort	O(n log n)	O(n log n)	O(n log n)	n	Yes	Insertion
Cycle Sort	O(n²)	O(n²)	O(n²)	1	No	Selection
Strand Sort	O(n)	O(n²)	O(n²)	n	Yes	Selection
Cocktail Shaker Sort	O(n)	O(n²)	O(n²)	1	Yes	Exchanging
Comb Sort	O(n log n)	O(n²)	O(n²)	1	No	Exchanging
Gnome Sort	O(n)	O(n²)	O(n²)	1	Yes	Exchanging
Odd-even Sort	O(n)	O(n²)	O(n²)	1	Yes	Exchanging

Application

```
**1. Application**
- Quick finding k-th smallest or largest: ~ O(1)
- Searching algo: binary search, ternary search
- Data management: sorted data → ez to search, retrieve, analyze
- Database optimization: improvees query performance
- Machine learning: prepare data for training models
- Data analysis
- Operating system
**2. Advantages**
- Efficiency: easier and faster to search, retrieve, and analyze info
- Improved performance: algo↑ → performance↑
- Simplified data analysis
- Reduced memory consumption
- Improved data visualization
**3. Disadvantages**
- Insertion
- Algo selection
- For some problems, hasing > sorting
```

Sorting Algo (~detail)

Hashing

This is a technique that efficiently stores and retrieves data for quick access

- using hash func for mapping data to index in hash table → fast retrive info based on key
- achieve 3 operations (search, insert, delete) ~ O(1)
- distinct items(keys) and dictionaries (key value pairs)

Intro

General

- 3 operations (search, insert, del) ~ O(1) → better than arr, linked list
- app: dictionaries, frequency counting, maintaining data
- · Situation where hash is not used?
 - when data needs to be sorted for operation (search, insert, del) → using BST
 - when keys are strings and need prefix op (like autocomplete or dictionary lookups) → using a
 trie
 - when op (like floor and ceiling) are required → using BST
 - \rightarrow if ur app depends on the **order of elements** or involves **string manipulation** \rightarrow hash table is NOT the optimal solution
- Component of Hashing: key, hash func, hash table
- How does hashing work? b/c key ---hash-func---> index(in-hash-table)
 - → ez to find location that value be stored in
 - → good to store (key, value) pair
- What is hash func?
- Collision in hashing? conflix when many keys have same hash value (read more: collision techniques)
- Load Factor in hashing? Load Factor = Total elements in hash table/ Size of hash table
- Rehashing? the load factor > predefinded value → hashs again AND stores value in the new hash table

Applications

```
Hashing is a powerful technique that enables search, insert, and delete operations in average co
**1. Common use cases:**
- Database indexing: data retrieval↑
- Dictionaries: word lookup↑
- Password storage: store hashed passwords (NOT plain text)
- Network routing: determines *optimal paths* for data packets
- Bloom Filters: appications in spam filtering, recommendation sys
- Cryptography: digital signatures, MACs, key derivation functions

    Load balancing: distributes network requests (~via consistent hashing)

- Blockchain
- Image processing
- File comparison: verifies file integrity (e.g: MD5, SHA-1)
- Fraud detection: detects malicious activity in cybersecurity tools.
- Caching
- Symbol tables
- Associative arrays: fast key-based lookup (in SQL)
**2. More specialized applications:**
- Message Digest: using hash func (like SHA-256) → verifies the integrity
- Password Verification
- Data Structures: HashMap, dict, uncordered_map
- Compiler Operations
- Rabin-Karp Algorithm
- Mapping file name to path: `file_name → file_path`
- Graphics
```

Separate Chaining

This is collision handling technique. Multiple keys have same hash value \rightarrow be stored in linked list(/dynamic arr) at same index of table.

Advantages

- ez to implement
- hash table NEVER fill up
- less depend on hash func or load factor
- good when number of key, frequency of key insert(del) is unknown

Disadvantages

- cache performance (b/c using linked list)
- some slot in hash table unused → memory waste
- chain(~too long) → search time ~O(n)
- · extra memory for storing links

Performance

- Load factor: If = no of keys / no slots in table
- Search/Del ~ O(If)
- Insert ~ O(1)

Data Structures for Chains

Below are the common data structures used to store chains in separate chaining:

Structure	Search	Delete	Insert	Cache Friendly
Linked List	O(len)	O(len)	O(1)	NO
Dynamic Array	O(len)	O(len)	O(1)*	OK
Self-Balancing BST	O(log(len))	O(log(len))	O(log(len))	NO

^{*}Insert in dynamic arrays is generally O(1), unless resizing occurs.

Open Addressing (or Closed Hashing)

It is collision resolution technique. All elements are stored directly inside the table itself. When collision occurs \rightarrow look for the next available slot (probing)

Basic Operations

- Insert(k)
- Search(k)
- Delete(k): NOT deleteing → mark as 'deleted' (search logic: unaffected)

Probing Methods

```
**1. Linear Probing**
```

- Checks the next sequential slot: `(hash(x) + i) % tableSize`
- adv: simple, cache friendly
- dis: clustering

**2. Quadratic Probing **

- Checks increasingly spaced slots: `(hash(x) + i²) % tableSize`
- adv: reduce clustering (< linear probing)</pre>
- dis: might skip over some slots

3. Double Hashing

- Uses a second hash function: $(hash1(x) + i \times hash2(x))$ % tableSize
- adv: spreads keys and avoids clustering
- dis: cache↓, computation cost↑

Comparison Between Separate Chaining and Open Addressing

No.	Criteria	Separate Chaining	Open Addressing
1	Implementation Complexity	Simpler to implement	Requires more computation
2	Table Capacity	Hash table never fills up — chains can grow indefinitely	Table may become full
3	Sensitivity to Hash Function	Less sensitive	More sensitive to clustering and load factor
4	Suitability Based on Key Frequency	Good when key frequency is unknown	Best when key frequency and volume are known
5	Cache Performance	Poor (keys stored via linked list)	Better (data stored within one array)
6	Space Utilization	May waste space (some slots never used)	Utilizes all slots regardless of hash matches
7	Extra Memory Usage	Requires extra space for links	No additional memory for links

Note: Chaining suffers from poor cache performance because linked lists require memory jumps, making it harder for the CPU to predict and cache access. Open addressing benefits from contiguous memory access.

Performance of Open Addressing

- Load factor: If = no-of-keys/ table-size
- Expected time (search, insert, del): O\left(\frac{1}{1 \alpha}\right)

Note: If approaches 1 → performance↓

Two Pointer Technique

Window Sliding Techique

Prefix Sum Technique

String

Intro

- It is a sequence of characters. In languages(Java, Python, JS), strings are generally immutable
- Strings are stored in contiguous memory blocks like arrays.

Common String Operation

- · string length
- character search
- substring check
- insert char
- del char
- string equality
- string cancatenation
- string reversal
- string rotation
- palindrome check

Applications

```
**1. Applications**
**Common Applications**
- Plagiarism Detection
- Encoding/Decoding (Ciphering)
- Information Retrieval
- Approximate Suffix-Prefix Overlap
- Network Communication
- File Handling
- Text Analysis
**Real-time Applications**
- Spam Filtering
- Bioinformatics
- Intrusion Detection
- Search Engines
**2. Advantages**
- Text Processing: search, format, replace, manipulate text ez.
- Data Representation: encode (numbers, dates, times) as strings.
- Ease of Use: simple syntax
- Cross-Language Support
- Memory Efficient: ez allocation
**3. Disadvantages**
- High Memory Consumption: with large strings.
- Immutability: leading to overhead.
- Performance Bottlenecks: slower than another data structures
- Encoding/Decoding Issues: encodings can be complex.
- Security Risks: vulnerable to injection attacks or buffer overflows if misused
```

Subsequence and Substring

Substring

- A substring is a part of a string consisting of contiguous characters.
- For a string of length n, the number of non-empty subsequences is: \frac{n(n+1)}{2}

Subsequence

- A subsequence is a sequence that can be formed from the original string by removing zero or more characters while preserving the original order.
- For a string of length n, the number of non-empty subsequences is: 2^n 1

Key diff

- Substring → characters must be adjacent
- Subsequence → characters can be non-adjacent, but must maintain original order

Some sus content about String

Can see that sus shit on the bottom at Geek4geek
Click → here ← to start getting headaches x.x

Recursion

Matrix/Grid

Linked List

Comparison: Linked List vs Array

Feature	Linked List	Array
Data Structure	Non-contiguous	Contiguous
Memory Allocation	Allocated one by one per element	Allocated as a block for entire array
Insertion/Deletion	Efficient (constant time at ends)	Inefficient (may require shifting)
Access	Sequential (must traverse from head)	Random (direct index access possible)

Both structures are used to implement abstract data types like stacks, queues, and deques, but they differ significantly in performance and memory behavior.

Single Linked List

It i a basic data structure consisting of nodes. Each node has 2 comps:

- Data: Store value
- Pointer: References the next node in the sequence
 - ~ final node has a pointer set to null (end of the list)

```
struct Node{
  int data;
  Node* next;
  Node(int data){
    this->data = data;
    this->next = nullptr;
  }
};
```

Common Operations

- 1. Traversal
- init pointer at head
- loop while pointer is not null
- process data and move to next node
- 2. Searching
- start at head → compare data of each node
- return true if found; else continue.
- return false if not found
- 3. Length
- set counter to 0
- traverse the list, incrementing for each node
- return counter when traversal ends
- 4. insertion
- 4.1. at beginning: create new node, points its next to current head, update head to the new node
- 4.2. at end: create new node, traverse to last node, set current last node's next to new node
- 4.3. at specific pos: traverse to the target pos → insert by updating next pointer (validate pos
- 5. deletion
- 5.1. at beginning: check if list is empty, mode head to second node, delete original head node
- 5.2. at end: traverse to second-last node, set its next to null, delete the last node
- 5.3. at specific pos: validate pos, traverse to node before target, update pointer to bypass the
- 6. modification: traverse to the desired pos → validate bounds → update the node's data fielde
- 7. reversal: use 3 pointer (~prev, cur, next), reverse links bewwen nodes, after traversal update

Doubly Linked List

It is data structures where each node contains:

- · data field
- a pointer to the next node
- a pointer to the previous node

This allows traversal in both forward and backward directions, and supports efficient insertion and deletion.

```
struct Node {
    int data;
    Node* prev;
    Node* next;

    Node(int d) {
        data = d;
        prev = next = nullptr;
    }
};
```

Operations

```
**1. Traversal**
Forward Traversal:
- Start from head
- While current is not NULL:
- Process data
- Move to current->next
Backward Traversal (Optional):
- Start from tail
- While current is not NULL:
- Process data
- Move to current->prev
**2. Finding Length**
- Initialize counter to 0
- Start from head node
- Traverse using next pointers
- Increment counter for each node
- Return final count
**3. Insertion**
3.1. At Beginning
- Create a new node
- Set newNode->next = head
- If head exists, set head->prev = newNode
- Update head = newNode
3.2. At End
- Create a new node
- If list is empty, set head = newNode
- Else, traverse to tail
- Set tail->next = newNode
- Set newNode->prev = tail
3.3. At Specific Position
- Traverse to target position
- Link newNode between previous and next nodes
- Update surrounding pointers accordingly
**4. Deletion**
4.1. At Beginning
- If list is empty, return
```

- Store head in temp
- Move head to head->next
- If head exists, set head->prev = NULL
- Delete temp

4.2. At End

- Traverse to last node
- Update second-last->next = NULL
- Delete last node

4.3. At Specific Position

- Traverse to node to be deleted
- Update previous->next and next->prev to skip the node
- Delete the node

Applications

- 1. Advantages
- Bi-directional traversal
- Easier insertion/deletion
- Useful in implementing stacks, queues, deques
- 2. Disadvantages
- More complex structure
- Higher memory usage (extra pointers)
- Applications
- Undo/redo functionality in editors
- Browser history navigation
- Playlist management in music apps
- Caching systems
- Implementing deque (double-ended queue)

Circular Linked List

A **circular linked list** is a data structure where the last node links back to the first, forming a loop. This structure enables uninterrupted traversal and is especially useful for tasks like scheduling and playlist management.

What is circular linked list? In a circular linked list, all nodes are connected in a circle. Unlike traditional linked lists, which end with a NULL reference, the last node in a circular list points back to the first node. This allows continuous navigation through the list.

Types of Circular Linked Lists

There are two main types based on the kind of linked list used:

Circular Singly Linked List

- Each node contains a single pointer called next.
- The next of the last node points to the first node.
- Traversal is possible in only one direction.

Circular Doubly Linked List

- Each node contains two pointers: next and prev.
- The next pointer connects to the next node; prev connects to the previous node.
- The last node points back to the first, and the first points to the last.
- Allows bidirectional traversal.

Node Structure in C++

```
struct Node {
   int data;
   Node* next;

   Node(int value) {
      data = value;
      next = nullptr;
   }
};
```

Why Use a Pointer to the Last Node?

Using a pointer to the last node improves efficiency:

- Insertion at the beginning and insertion at the end can both be done in constant time (~O(1)).
- This avoids the need to traverse the entire list for each insertion.

Applications

- # Circular Linked List: Advantages, Disadvantages, and Applications
 1. Advantages
- No null references
- Traversal flexibility: You can begin traversing from any node and loop back to it without rest
- Efficient for circular tasks: Ideal for implementing circular queues, scheduling systems, or p
- Memory-efficient: Although there's no direct reference to the previous node (as in doubly link
- **2. Disadvantages**
- More complex implementation: > single linked list
- Risk of infinite loops
- Difficult debugging
- **3. Applications**
- Round-Robin scheduling
- Multiplayer games
- Buffer systems: Common in streaming platforms where data is continuously produced and consumed
- Media players: Allows playlists to cycle through songs endlessly.
- Browser history caches: Supports efficient backward navigation

Operations

```
**1. Insertion**
**1.1. Insertion into an Empty List**
- Create a new node.
- Point its `next` to itself to form a loop.
- Update the `last` pointer to this new node.
**1.2. Insertion at the Beginning**
- Create a new node.
- If the list is empty, let it point to itself.
- Otherwise, set its `next` to the current head (`last->next`).
- Update `last->next` to the new node, ensuring the circular structure remains intact.
**1.3. Insertion at the End**
- If the list is empty, the new node points to itself.
- Otherwise:
  - Set `last->next` to the new node.
  - Make the new node's `next` point to the head.
  - Update `last` to the new node.
**1.4. Insertion at a Specific Position**
- Validate position:
  - If the list is empty and position ≠ 1: invalid.
  - For valid positions:
    - Traverse to the desired location.
    - Adjust `next` pointers to insert the new node.
    - If added after the last node, update `last`.
**2. Deletion**
**2.1. Delete the First Node**
- **Empty list**: Output message and return `nullptr`.
- **Only one node**: Delete and set `last = nullptr`.
- **Multiple nodes**: Update `last->next` to skip head and delete original head.
**2.2. Delete a Specific Node**
- Handle empty list and single node edge cases.
- Traverse with two pointers (prev and curr) to find the target.
- If found:
 + Update prev->next to skip curr
 + Delete curr
```

- + Update last if deleting the tail.
- If not found, display appropriate message.
- 2.3.Delete the Last Node
- Empty list: Return nullptr.
- Single node: Delete and return nullptr.
- Multiple nodes:
 - + Traverse to find second-to-last node.
 - + Update its next pointer to head.
 - + Delete the tail node and update last.

3. Searching

Searching is similar to traditional lists but requires circular-aware traversal:

- Start from any node (commonly last->next)
- Loop until:
 - + Value is found
 - + You return to the start node (to avoid infinite loop)
- Use conditional checks and breaks to control flow.

Linked List vs Array Comparision

Feature	Array	Linked List
Memory Structure	Contiguous	Non-contiguous
Random Access	O(1)	O(n)
Insertion/Deletion (Middle)	O(n)	O(1) (with pointer)
Cache Friendly	Yes	No
Space Flexibility	Fixed/Resized allocations	Dynamic as needed
Use in Queue/Deque	Complex (circular logic)	Simple and direct
Overhead	Minimal (no extra pointers)	Requires pointer for each node

Stack

A **stack** is a linear data structure that follows the **LIFO** (**Last In, First Out**) principle: the last item added is the first one removed. Both insertion and deletion happen at the **top** end of the stack.

Intro To Stack

Stack Representation

Stack operates in LIFO order:

- push() inserts at the top
- pop() removes from the top

Types of Stack

Fixed Size Stack

- · Stack has a predefined capacity.
- Overflow error when trying to add beyond capacity.
- Underflow error when removing from an empty stack.

Dynamic Size Stack

- Grows and shrinks automatically.
- Often implemented using a **linked list**.
- More flexible for dynamic data requirements.

Basic Operations

Operation	Description
push()	Insert an element at the top
pop()	Remove the top element
top()	View the top element without removing
isEmpty()	Check if stack is empty
isFull()	Check if stack is full (relevant to fixed size)

Algorithms Explained

```
**1. Push Operation**
If (top == capacity - 1):
  Stack Overflow
Else:
  top = top + 1
  stack[top] = value
**2. Pop Operation**
If (top == -1):
 Stack Underflow
Else:
  value = stack[top]
 top = top - 1
**3. Top/Peek Operation**
If (top == -1):
  Stack is empty
Else:
  return stack[top]
4. isEmpty: return (top == -1)
5. isFull: return (top == capacity - 1)
```

Complexity Analysis

```
push(), pop(), top(), isEmpty(), isFull(): \sim O(1)
```

Stack Array Implementation

Stacks are linear data structures that follow the **LIFO** (**Last In First Out**) principle. The last element inserted is the first to be removed. This implementation uses an array, treating its **end** (**last element of arr**) as the top of the stack

Implementation Steps

- 1. Initialize an array to represent the stack.
- 2. Use the end of the array as the stack's top.
- 3. Implement these core operations:
 - push: insert at the top

- pop : remove from the top
- peek: view the top item
- isEmpty: check if the stack is empty
- isFull: check if the stack is full

Stack Operations

```
**Push**
- Checks if the stack is full.
- On success, adds the element at the top.
- If full, triggers an **overflow** error.

**Pop**
- Checks if the stack is empty.
- On success, removes and returns the top element.
- If empty, triggers an **underflow** error.

**Peek / Top**
- Returns the current top element without removing it.
- If empty, reports "Stack is empty."

**isEmpty**
- Returns `true` if `top == -1`.

**isFull**
- Returns `true` if `top == capacity - 1`.
```

Complexity Analysis of All Operations

• Time complexity: O(1)

• Space complexity: O(n)

Implementations

Fixed-Sized Array

- Stack size is defined during creation.
- Fast and efficient when element count is predictable.

Dynamic-Sized Array

Uses structures like vector, ArrayList, list, etc.

- Automatically resizes as elements are added or removed.
- May incur performance costs during resizing.

Comparison

Aspect	Fixed-Sized Array	Dynamic-Sized Array
Size flexibility	No	Yes
Performance (avg)	O(1)	O(1) amortized
Memory efficiency	High	May need reallocation
Ease of use	Simple	Very simple
Worst-case behavior	Predictable	May vary with resizing

Advantages of Array-Based Stack

- Easy to implement.
- Fast access using indexing.
- Memory-efficient (no pointers needed).

Disadvantages

- Fixed size (in static implementation).
- Not suitable for highly dynamic usage unless using dynamic arrays.
- Can incur resizing overhead in dynamic versions.

Stack Linked List Implementation

This implementation uses a **singly linked list**, where each node contains data and a link to the next node.

Structure Overview

- The top pointer (or head) always points to the most recent element.
- All operations— push, pop, and peek—are done via the top node.
- Stack grows or shrinks dynamically as new nodes are added or removed.

Stack Operations

push(data)

- · Creates a new node with the given value.
- Links new node to current top.
- Updates top to point to this new node.

pop()

- · Checks if stack is empty.
- Removes top node and updates top to the next node.

peek()

- Returns the data value at the top node.
- If stack is empty, returns a message indicating that.

display()

Iterates from top to the end (NULL) and prints values sequentially.

Complexity Analysis of All Operations

• Time complexity: O(1)

Space complexity: O(n)

Benefits of Linked List Implementation

- · Dynamic Memory Allocation: Stack grows/shrinks as needed without fixed capacity.
- Efficient Memory Usage: Uses less space compared to doubly linked list.
- Straightforward Code: Simple implementation with minimal code.
- Versatile: Can be used to build other data structures like queues or trees.

Real-World Applications of Stacks

- Function Call Stack: Manages return addresses during function execution.
- Undo/Redo Operations: Tracks user actions in editors.
- Browser History Navigation: Back/forward operations use stack logic.
- Expression Evaluation: Used in compilers for parsing and evaluating expressions.
- Recursive Function Handling: Each call is pushed onto the stack until base condition is met.

Stack Implementation using Deque

A **deque** (**double-ended queue**) is a linear data structure that allows insertion and deletion at both ends. This flexibility makes it an ideal choice for implementing a **stack**, which requires insertion and deletion from **only one end**—following the **LIFO** (**Last In First Out**) principle.

Why Use Deque for Stack?

- In stack operations, both push and pop occur at the same end.
- A deque supports O(1) time complexity for both insertions and deletions at front and back.
- To simulate stack behavior, we use **one end** of the deque—typically the **back** (also called **rear**).

Preferred Usage by Language ~ Java, Python

Benefits of Using Deque for Stack

- Efficient operations: All key stack methods (push , pop , peek) are optimized.
- Simple syntax and reliable performance across programming languages.
- Avoids limitations of fixed-size arrays or legacy stack implementations.

Applications of Stack

Application

Function Calls

Tracks return addresses for nested function executions, allowing the program to resume correctly after each call.

Recursion

Stores local variables and return addresses of recursive functions.

Expression Evaluation

Used to evaluate expressions in postfix notation (Reverse Polish Notation).

Syntax Parsing

Validates syntax structure in programming languages and compilers.

Memory Management

Helps manage memory allocation and deallocation in operating systems and some languages.

Algorithmic Problems

Efficiently solves problems like:

- Next Greater / Smaller Element
- Previous Greater / Smaller Element

- Largest Rectangle in Histogram
- Stock Span Problem

Advantages of Stack

Feature	Benefit
Simplicity	Easy to understand and implement
Efficiency	push and pop operations are O(1)
LIFO Nature	Ideal for managing nested operations
Memory Efficiency	Stores only active elements

Disadvantages of Stack

Limitation	Description
Limited Access	Can only access the top element
Potential Overflow	Exceeding capacity causes data loss
No Random Access	Not suitable for ordered element access
Fixed Capacity	Size must be known or dynamically managed

Queue

Intro

A **queue** is a linear data structure that follows the **FIFO** (**First In, First Out**) principle. The first element inserted is the first to be removed or processed. It's like a line of customers waiting for service—first come, first served.

FIFO Principle

- The **front** of the queue holds the element to be removed next.
- The **rear** of the queue is where new elements are added.
- Queue operates just like a ticket line, maintaining fairness through order.

Key Terminologies

Term	Description
Front	Element next in line to be removed (head of the queue)
Rear	Most recently added element (tail of the queue)
Size	Current number of elements in the queue
Capacity	Maximum number of elements the queue can hold

Core Operations ~ Time Complexity O(1)

Operation	Description
enqueue()	Adds an element at the rear
dequeue()	Removes an element from the front
peek()	Returns the front element without removing it
size()	Returns the number of elements in the queue
isEmpty()	Returns true if queue is empty
isFull()	Returns true if queue is full

Implementation Methods

- Simple Array Implementation
- Circular Array Implementation (for improved efficiency)
- Linked List Implementation

Type of Queue

- 1. Simple Queue
- Follows basic FIFO logic.
- Insert at rear, remove from front.
- 2. Double-Ended Queue (Deque)
- Supports insertion and deletion from both ends.
- Input Restricted Queue
 - Insert at one end only

- Remove from both ends.
- Output Restricted Queue
 - o Insert at both ends.
 - Remove from one end only.

3. Priority Queue

- Elements are processed based on priority values.
- Ascending Priority Queue: Smaller priority values are processed first.
- · Descending Priority Queue: Larger priority values are processed first.

Applications of Queue

- Operating Systems: Task scheduling, printer queues, disk access management.
- Producer-Consumer Scenarios: Queues buffer data between slow producer and fast consumer.
- Networking: Queues are used in routers, switches, and mail servers.
- Algorithms: Widely used in BFS (Breadth First Search), Topological Sorting, etc.

Basic Operations for Queue Data Structure

Core Queue Operations

Operation	Description
enqueue(data)	Inserts an element at the rear end of the queue
dequeue()	Removes the front element from the queue
getFront()	Retrieves (without removing) the element at the front
getRear()	Retrieves (without removing) the element at the rear
isEmpty()	Returns true if queue is empty, else false
isFull()	Returns true if queue is full (if fixed capacity)
size()	Returns the total number of elements in the queue

How Each Operation Works

- enqueue(data)
 - o Check if queue is full.

- If yes → report overflow.
- o If not:
 - Move rear pointer forward.
 - Insert data at rear position.
- dequeue()
 - o Check if queue is empty.
 - If yes → report underflow.
 - If not:
 - Access element at front.
 - Move front pointer forward.
- getFront()
 - \circ If queue is empty \rightarrow return -1.
 - Else → return element at front.
- getRear()
 - \circ If queue is empty \rightarrow return -1.
 - Else → return element at rear .
- isEmpty(): Return true if len(queue) == 0.
- size(): Return len(queue) number of elements currently in the queue.

Array Implementation of Queue

Key Concepts

- Insertion (enqueue) happens at the rear of the queue.
- **Deletion (dequeue)** happens from the **front** of the queue.
- The main distinction from a stack is that the oldest item is removed first, whereas a stack removes the newest.

Simple Array Implementation

- Tracking Variables: front and size, with rear = front + size 1.
- Enqueue:
 - o Insert at the end (rear).
 - Time Complexity: O(1)
- Dequeue:
 - Remove from the beginning (front).
 - All other elements must shift one position forward.
 - Time Complexity: O(n)

All operations (exept Dequeue) ~ O(1)

Circular Array Implementation

Key Idea

- Wrap around the array using modulo arithmetic.
- Insert: Move rear forward using (rear + 1) % capacity
- **Delete**: Move front forward using (front + 1) % capacity

Complexity of All Operation ~ O(1)

Linked List Implementation

Core Concepts

- front points to the first node in the queue.
- rear points to the last node in the queue.
- Each operation updates one or both pointers depending on whether the queue is empty or active.

Operations Decription

- enqueue(x) Insert Element
- Creates a new node with value x.
- If the queue is empty:
 - Set both front and rear to the new node.
- Otherwise:
 - Set rear.next to the new node.
 - Move rear to the new node.
- 2. dequeue() Remove Element
- If the queue is empty:
 - Do nothing or return error.
- Otherwise:
 - Move front to front.next.
 - If front becomes None, set rear to None.
- 3. isEmpty() Check Empty

- Returns True if front is None.
- 4. printQueue() Display Queue Contents
- Traverse from front to the end.
- Print data from each node.
- If queue is empty, print "Queue is empty".

Complexity Analysis: All operations work in constant time by updating pointers only—no traversal required. ~ **O(1)**

Application

A **Queue** is a linear data structure that follows the **FIFO** (**First In First Out**) principle. The first element added is the first to be removed. Insertion occurs at the **rear end**, and deletion occurs at the **front** end.

Core Queue Operations ~ time complexity: O(1)

Operation	Description
enqueue(x)	Adds an element to the rear of the queue
dequeue()	Removes and returns the front element
front()	Returns the front element without removing it
rear()	Returns the rear element without removing it
isEmpty()	Checks whether the queue is empty
size()	Returns the total number of elements

Types of Queues

- **Simple Queue**: Basic linear queue; insert at rear, delete from front.
- Circular Queue: Efficient memory use by connecting rear back to front.
- Priority Queue: Elements are processed based on priority level.
 - Ascending → lowest value is served first.
 - $\circ \ \ \text{Descending} \rightarrow \text{highest value is served first}.$
- Deque (Double Ended Queue): Elements can be inserted and removed at both ends; may not follow strict FIFO.

Queue Implementation Methods

- Array (Sequential Allocation): Fixed-size queue using arrays.
- Linked List Allocation: Dynamic-sized queue using pointers.

Applications of Queue

- Multiprogramming Systems: Manage multiple programs in memory.
- Networking Devices: Routers, switches, and mail servers use queues.
- Job Scheduling: Assign and execute tasks sequentially.
- Shared Resources: Waitlist management for common resources.

Real-Time Examples

- Buffering between fast and slow devices (e.g., keyboard vs CPU).
- ATM booth lines and ticket counters.
- · CPU task scheduling.
- Call center wait-time queues.

Advantages of Queue

- Efficiently handles large volumes of sequential data.
- Simplifies insertion/deletion through FIFO logic.
- Supports multi-consumer systems using shared services.
- Fast and reliable for inter-process communication.
- Useful in designing other data structures and algorithms.

Disadvantages of Queue

- Inserting/removing elements in the middle is inefficient.
- Classical queues restrict new insertions when full (array-based).
- Searching is slow takes O(n) time.
- Maximum size must be pre-defined in static array

Deque

Array Implementation of Deque

A **Deque (Double Ended Queue)** is an extension of the standard queue data structure that allows insertion and deletion from **both ends**—front and rear.

Using a **circular array** makes the implementation more space-efficient and all operations run in **O(1)** time.

Supported Operations ~ compex: **O(1)**

Operation	Description
insertFront()	Add an element at the front of deque
insertRear()	Add an element at the rear of deque
deleteFront()	Remove an element from the front
deleteRear()	Remove an element from the rear
frontEle()	Get the element at the front
rearEle()	Get the element at the rear

How Circular Array Works

- Array arr of size n stores the elements.
- Two variables are maintained:
 - front: index of the front element
 - size: current number of elements in the deque
- Rear index is computed as (front + size 1) % capacity.

Inserting Elements

```
**1.`insertRear(key)`**
   If size == capacity:
        deque is full

Else:
        rear = (front + size) % capacity
        arr[rear] = key
        size += 1

**2.`insertFront(key)`**
   If size == capacity:
        deque is full

Else:
        front = (front - 1 + capacity) % capacity
        arr[front] = key
        size += 1
```

Deleting Elements

```
**1. deleteRear() **
If size == 0:
    deque is empty

Else:
    rear = (front + size - 1) % capacity
    res = arr[rear]
    size -= 1
    return res

**2. deleteFront() **
If size == 0:
    deque is empty

Else:
    res = arr[front]
    front = (front + 1) % capacity
    size -= 1
    return res
```

Complexity: time~O(1), space~O(n)

Linked List Implementation of Deque

A **Deque (Double-Ended Queue)** is a linear data structure that allows insertion and deletion at **both** the front and rear ends. Implementing a deque using a **doubly linked list** ensures that these operations are performed in constant time **O(1)** due to bidirectional node access.

Key Operations ~ complex: **O(1)**

Operation	Description
insertFront()	Adds an element to the front of the deque
insertRear()	Adds an element to the rear of the deque
deleteFront()	Removes the element from the front
deleteRear()	Removes the element from the rear
getFront()	Retrieves the front element without removing it
getRear()	Retrieves the rear element without removing it
isEmpty()	Returns true if deque is empty
size()	Returns the number of elements in the deque
erase()	Clears all elements from the deque

Working Mechanism

- A doubly linked list node contains:
 - o data: The value
 - o prev: Pointer to the previous node
 - o next: Pointer to the next node
- Two pointers are used:
 - o front: Points to the first node
 - o rear: Points to the last node

```
**1. Inserting at Front**
  If front is NULL:
    Set front and rear to newNode
  Flse:
      Link newNode in front of the current front
      Update front to newNode
**2.Inserting at Rear**
  If rear is NULL:
      Set front and rear to newNode
  Else:
      Link newNode after the current rear
      Update rear to newNode
**3. Deleting from Front**
  If deque is empty:
      Output Underflow
  Else:
     Move front to next node
      If front is NULL:
          Set rear to NULL
      Else:
          Set front.prev to NULL
**4. Deleting from Rear**
  If deque is empty:
     Output Underflow
  Else:
     Move rear to previous node
      If rear is NULL:
          Set front to NULL
      Else:
          Set rear.next to NULL
```

Tree

A **Tree** is a non-linear data structure composed of elements called **nodes**, connected by **edges**. It organizes data hierarchically and ensures there is **exactly one unique path** between any two nodes in the tree.

Core Concepts

- Root: The topmost node of the tree, serving as the entry point.
- Node: Each element in a tree, which may contain child nodes.
- Edge: The connection between two nodes.
- Parent / Child: A relationship where one node directly connects to a lower-level node.
- Leaf: A node that has no children.

Types of Trees

Tree Type	Description
Binary Tree	Each node has at most 2 children
Ternary Tree	Each node has at most 3 children
N-ary Tree	Each node has at most n children , for any n

Why Use Trees?

- Efficient search and sorting operations (especially with balanced trees)
- Hierarchical modeling (e.g. file systems, XML)
- Basis for traversal algorithms like DFS and BFS
- Structure for many advanced data types (Binary Search Tree, AVL, Heap, etc.)

Intro

A **Tree** is a hierarchical, non-linear data structure that represents data in the form of a parent-child relationship. It consists of nodes connected by edges, and each node may have multiple children

Real-World Examples

- Folder structure in an operating system
- DOM structure in HTML or XML documents

Key Terminology

Term	Description
Root Node	The topmost node without a parent
Parent Node	A node that has one or more children

Term	Description
Child Node	A node that descends directly from a parent node
Leaf Node	A node with no children
Internal Node	A node with at least one child
Ancestor	Any node in the path from root to a specific node
Descendant	Any node that lies below a given node
Sibling	Nodes that share the same parent
Level	The number of edges from the root to a node (root is level 0)
Neighbor	A node's immediate parent or children
Subtree	Any node along with all its descendants

Why Is a Tree Non-Linear?

Unlike arrays or linked lists, tree nodes are **not stored sequentially**. Instead, they are arranged in hierarchical levels, which makes the structure non-linear.

Tree Representation

A tree is made up of nodes, each containing:

- A data field
- References to its children

Types of Tree Structures

Binary Tree

Each node has at most 2 children. Variants include:

- Full Binary Tree
- Complete Binary Tree
- Balanced Binary Tree
- Binary Search Tree (BST)
- Binary Heap

Ternary Tree: Each node has at most 3 children—typically labeled left, middle, and right.

N-ary Tree / Generic Tree Each node can have n children, stored as a list. Children must be unique.

Basic Tree Operations

Create: Build a new treeInsert: Add a new node

Search: Find a node

• Traversal Techniques:

DFS (Depth First Search)

BFS (Breadth First Search)

Tree Properties

Property	Definition
Edges	Connection between two nodes; a tree with N nodes has N - 1 edges
Depth of Node	Path length from root to that node (number of edges)
Height of Node	Longest path from that node to a leaf
Height of Tree	Length of the longest path from root to a leaf
Degree of Node	Number of child nodes a node has; leaf node has degree @
Degree of Tree	Maximum degree among all nodes in the tree

Types of Trees in Data Structures

A **tree** is a hierarchical data structure consisting of nodes connected by edges, used to model parentchild relationships among elements.

Binary Tree

Each node has at most 2 children (left and right).

Common Variants:

Туре	Description
Complete Binary Tree	All levels (except possibly the last) are fully filled, with left alignment
Full Binary Tree	Each node has 0 or 2 children

Туре	Description
Degenerate Tree	Each parent has only one child; resembles a linked list
Perfect Binary Tree	All internal nodes have 2 children; all leaf nodes are at the same level
Balanced Binary Tree	Height difference between subtrees is minimal (≤ 1), e.g., AVL, Red- Black
Binary Search Tree	Left child < Node < Right child; supports variations like AVL, Splay, RBT
Segment Tree	Efficient range queries (sum, min, max)
Fenwick Tree	Computes prefix sums efficiently

Ternary Tree

Each node has at most 3 children, commonly referred to as left, middle, and right.

Examples:

- Ternary Search Tree: A trie variant with ordered children (like a BST)
- **Ternary Heap**: A heap with up to 3 children per node (less common)

N-ary Tree / Generic Tree

Each node may have multiple children with no predefined limit.

Key Characteristics:

- Nodes store a list of references to their children
- Children must be unique
- The root node is stored separately

Examples:

Туре	Description
B-Tree	Self-balancing search tree used in databases; supports many children per node
B+ Tree	Variant of B-Tree; stores data only in leaf nodes for efficient range queries
Trie	Prefix tree; nodes represent characters and paths form strings

Summary

Tree structures are fundamental in organizing hierarchical data, enabling efficient search, traversal, and storage mechanisms. Whether working with binary trees in algorithms or B-trees in databases, understanding these types unlocks powerful solutions.

Applications of tree data structure

General Use Cases

Hierarchical Modeling

- Folder structure in operating systems
- DOM structure in HTML/XML
- DNS hierarchy
- Organizational charts

Efficient Search & Sorting

- Binary Search Tree: O(log n) search, insert, delete
- Balanced trees: AVL, Red-Black, Splay trees

Dynamic Data Representation

- Can expand/shrink easily for real-time applications
- Flexible insertion and deletion

Ease of Implementation

- Simpler than graph structures for hierarchical data
- Powerful despite relatively simple logic

Specific Applications

Domain	Example Use Case
File System	Files and directories organized as tree structure
Web	HTML/XML documents parsed as DOM tree
Database Systems	B-Trees and B+ Trees for indexing
Compilers	Syntax tree, expression evaluation
Memory Heaps	Priority queues via binary heap
Trie Structures	Dictionaries and prefix-based searches

Domain	Example Use Case
Suffix Tree	Fast pattern matching in strings
Al & Machine Learning	Decision trees, game trees, expert systems
Networking	Spanning trees, routing trees in routers/switches
Computer Graphics & UI	Tree-based scene graphs and component hierarchy
XML Parser	Parsing nested tags and elements
Chess Engines	Storing and evaluating moves
JVM / Runtime Systems	Expression trees and bytecode parsing
Routing Algorithms	Topology modeling and routing table construction

Advantages

- 1. Efficient Searching
- Trees like AVL and Red-Black enable searching in O(log n) time.
- Offers sorted structure and supports advanced queries (e.g., floor, ceiling).
- 2. Fast Insertion and Deletion
- Self-balancing trees allow insert and delete in O(log n) time.
- More efficient than arrays and linked lists for dynamic updates.
- 3. Hierarchical Organization
- Ideal for representing structures such as file systems, company org charts, and taxonomies.
- 4. Recursive Elegance
- Trees can be traversed and manipulated using recursive algorithms.
- Supports intuitive design and clear logic.
- 5. Flexible Size
- Unlike arrays, trees can grow or shrink dynamically with inserted or deleted nodes.
- Great for real-time and variable-size applications.

Disadvantages

- 1. Memory Overhead
- Tree nodes require extra space for pointers and metadata.
- Large trees may consume significant memory.
- 2. Imbalanced Trees
- Poorly balanced trees lead to degraded performance (e.g., linear search time).
- Balancing logic can be complex.
- 3. Implementation Complexity
- Trees are more difficult to understand and implement than arrays or linked lists.
- Requires good knowledge of tree algorithms.
- 4. Hash Table Supremacy
- For pure search, insert, and delete operations without needing order or hierarchy,
 Hash Tables are faster and simpler.
- 5. Algorithmic Depth
- Designing and manipulating trees demands deeper algorithmic expertise.

Heap

A **Heap** is a specialized tree-based data structure that satisfies the **heap property**. It is usually implemented as a **complete binary tree**, where each node maintains a specific ordering relationship with its children.

Heap Property

- For Min Heap: the value of each parent node is less than or equal to its children.
- For Max Heap: the value of each parent node is greater than or equal to its children.
 This guarantees that:
- The **minimum element** is at the root in a Min Heap.
- The maximum element is at the root in a Max Heap.

Applications

• Priority Queue Implementation:

Heaps allow quick access to the highest (or lowest) priority element, enabling efficient task scheduling and data retrieval.

Heap Sort Algorithm:

Utilizes heap to sort elements in O(n log n) time complexity.

Real-Time Systems:

Useful for dynamic allocation where priority-based selection is critical.

Dijkstra's Algorithm:

Uses Min Heap for selecting the next shortest path node.

Characteristics

- A Heap is a complete binary tree: all levels are fully filled except possibly the last, which is filled from left to right.
- Efficient operations:

o Insert: O(log n)

Delete Root: O(log n)

Access Root: O(1)

Intro

A **Heap** is a special tree-based data structure that satisfies key properties for organizing data efficiently. Most commonly, we're referring to **Binary Heaps**, which are complete binary trees with ordering constraints.

What is a Heap?

- A complete binary tree: all levels are fully filled except possibly the last, which is filled left to right.
- Maintains heap property:

o Max-Heap: Parent ≥ children

o Min-Heap: Parent ≤ children

 Other heaps like Fibonacci Heap and Binomial Heap also maintain heap properties but may not be binary or complete trees.

Properties of Binary Heap

Property	Description
Root Value	Always holds min or max element based on type

Property	Description	
Array Storage	Index relationships: left child \rightarrow 2*i+1 , right child \rightarrow 2*i+2 , parent \rightarrow (i-1)/2	
Level Filling	Tree is balanced and filled in level order, left to right	

Supported Operations

Heapify

- Rearranges elements to restore heap property.
- · Used after deletion or during heap construction.
- Time Complexity: O(log n)

Insertion

- Insert at the last slot.
- Restore heap property via upward comparison.
- Time Complexity: O(log n)

Deletion

- Remove root → replace with last node.
- Restore order using heapify.
- Time Complexity: O(log n)

getMin / getMax

Returns root value in O(1) time.

removeMin / removeMax

- Deletes root and restores heap structure.
- Efficient for priority-based removal.

Summary

- Heap is ideal for fast priority access.
- Supports efficient insertions, deletions, and retrievals.
- Backbone of algorithms like Heap Sort, Priority Queues, and Graph Shortest Path methods.

Binary Heap

What is a Binary Heap?

- A **complete binary tree** where all levels are fully filled except possibly the last, filled from left to right.
- Heap Property:
 - **Min Heap**: Parent ≤ Children → the root is the minimum element.
 - **Max Heap**: Parent ≥ Children → the root is the maximum element.
- Every subtree also follows this property recursively.

Array Representation

Binary Heaps are commonly implemented using arrays with Level Order Traversal.

Node Index	Relationship
arr[0]	Root element
arr[(i-1)//2]	Parent of i
arr[2*i + 1]	Left child of i
arr[2*i + 2]	Right child of i

Basic Operations (Min Heap Example)

Operation	Description	Time Complexity
insertKey(k)	Inserts a new element into the heap	O(log n)
extractMin()	Removes and returns the smallest element	O(log n)
decreaseKey(i,x)	Updates index i with smaller value x	O(log n)
deleteKey(i)	Deletes key at index i via decrease + extract	O(log n)
getMin()	Returns the smallest element (heap root)	O(1)

Applications of Binary Heap

Application Area	Description
Heap Sort	Utilizes binary heap to sort arrays in O(n log n) time

Application Area	Description	
Priority Queue	Maintains highest/lowest priority element at the root for fast retrieval	
Graph Algorithms	Supports Dijkstra's shortest path & Prim's minimum spanning tree	
Kth Largest Element	Efficiently finds the Kth largest/smallest element in an array	
Almost Sorted Array	Sorts nearly sorted arrays faster by leveraging heap properties	
Merging Sorted Arrays	Merges K sorted arrays using min-heap or max-heap logic	
Task Scheduling	Assigns and executes jobs based on priority in real-time systems	
Memory Management	Helps in allocating resources with priority queues	

Applications of Heap

While Heap is often introduced alongside **Heapsort**, its real-world impact extends far beyond sorting. The Heap data structure underpins many performance-critical systems, especially those involving priority-based processing and dynamic scheduling.

Key Applications of Heap

Application Area	Description
Priority Queues	Efficiently extract highest/lowest priority items; widely used in schedulers, event handling, OS interrupts
Heap Sort	Comparison-based sorting algorithm with O(n log n) time complexity; useful for large datasets
Graph Algorithms	Powers shortest path and MST algorithms such as Dijkstra , Prim , and A*
Lossless Compression	Used in Huffman Coding , where a min-heap builds optimal prefix codes based on frequency
Medical Systems	Patient data prioritized by critical metrics (e.g., vitals, diagnostics) using heaps
Load Balancing	Assigns tasks to servers based on current load levels (lowest-load first) via min-heap

Application Area	Description
Order Statistics	Efficient retrieval of Kth smallest/largest elements in a dataset
Resource Allocation	Prioritized assignment of memory, CPU time, or I/O bandwidth
Job Scheduling	Schedules jobs based on priority or deadline; heap maintains quick access to next task

Why Heaps Matter

Heaps excel at maintaining dynamic ordering with fast access to extremal values (min/max). Their efficiency in **insert**, **delete**, and **decreaseKey** operations makes them ideal for systems that continuously evolve — from routing decisions to task queues.

Advantages of Heap

Advantage	Description
Time Efficient	Insert and delete in O(log n); heapify an array in O(n); access min/max in O(1)
Space Efficient	Stored in arrays without wasted space due to its complete tree nature
Dynamic Structure	Automatically resizes as elements are added or removed
Priority-based Access	Ideal for applications needing prioritized processing (e.g., load balancing, medical systems, stock analysis)
In-place Rearrangement	Supports in-place operations like Heap Sort without extra memory

Disadvantages of Heap

Disadvantage	Description	
Limited Flexibility	Designed to maintain strict order—less adaptable for complex data relationships	
Inefficient Searching	No direct search mechanism; requires traversal of entire tree (O(n))	

Disadvantage	Description
Not Stable	Equal elements may change order during heapification or updates
Complexity	Worst-case total operation cost is O(n log n); not optimal for some cases
Algorithmic Understanding Needed	Requires knowledge of heap properties and manipulation for correct implementation

Summary: Heaps are ideal when you need to process data based on priority with fast access to minimum or maximum values. While not suitable for searching or preserving element order, their **logarithmic time complexity**, **space efficiency**, and **dynamic sizing** make them a powerful tool in real-world systems.

Time Complexity of Building a Heap

Building a heap efficiently from an input array is a fundamental step in many algorithms such as Heap Sort and Priority Queues. While it may seem to take $O(n \log n)$ time, a more careful analysis shows the actual complexity is O(n).

Naive Estimation

A quick look at the Build-Heap procedure suggests:

• Heapify cost per node: O(log n)

Number of nodes: O(n)

• Initial estimate: T(n) = O(n × log n)

Refined Analysis

The key insight lies in observing that:

- Most nodes are near the bottom of the tree and have small heights.
- Heapify time for node depends on its height h.
- A node at height h contributes O(h) time.

Time Complexity of Building a Binary Heap: O(n) — linear in the number of elements

Why It Matters

This optimized complexity allows:

- Efficient preprocessing for Heap Sort
- Fast initialization for Priority Queues
- Better performance in graph algorithms like Dijkstra's and Prim's

Comparison Between Heap and Tree Data Structures

This document highlights the differences between **Heap** and **Tree**, including their definitions, types, characteristics, and typical applications.

What is a Heap?

- A Heap is a specialized complete binary tree that satisfies the heap property.
- Types:
 - Max-Heap: Root node is greater than or equal to its children.
 - Min-Heap: Root node is less than or equal to its children.
- The heap property must be recursively valid for every subtree.

What is a Tree?

- A Tree is a non-linear hierarchical structure consisting of nodes linked via parent-child relationships.
- A tree node stores data and references to its child nodes.
- Common types:
 - Binary Tree: Each node has at most 2 children.
 - Binary Search Tree (BST): Left child < parent < right child. Includes AVL Tree, Red-Black Tree.

Heap vs Tree: Comparison Table

No.	Feature	Heap	Tree
1	Relationship	Heap is a type of tree	Tree is a more general structure; not necessarily a heap
2	Variants	Max-Heap, Min-Heap	Binary Tree, BST, AVL, Red-Black Tree, etc.
3	Order	Always ordered (heap property)	Binary Tree: unordered; BST: ordered

No.	Feature	Неар	Tree
4	Insert/Delete Performance	O(log n) in worst case	O(n) in worst case if unbalanced/skewed
5	Min/Max Access	O(1) in respective heap types	BST: O(log n); Binary Tree: O(n)
6	Alternate Interpretation	Priority Queue	Undirected connected acyclic graph
7	Build Time Complexity	Heap: O(n)	BST: O(n log n); Binary Tree: O(n)
8	Applications	Dijkstra's, Prim's Algorithms	Spanning Trees, Trie, B+ Tree, BST, Heap itself

Summary

- Heap focuses on maintaining a priority-based structure, ideal for fast retrieval of minimum or maximum values.
- **Tree** represents general hierarchical data and supports a broader range of operations and variants.
- Use Heap when you need optimized access to priority data.
- Use **Tree** when you need flexible hierarchical representation or ordered searching.

Properties of Heap

- 1. Structural Property
- The heap must be a **complete binary tree** filled from top to bottom and left to right without gaps.
- Guarantees the tree is balanced and can be efficiently stored in arrays.
- 2. Ordering Property

• **Min Heap**: Parent node ≤ children

• Max Heap: Parent node ≥ children

• Heap property is recursively applied to all levels of the tree.

Heap Structure is Not Unique: For a given set of values, many valid heap arrangements exist.

- Bottom-level nodes may appear in different positions, as long as heap rules are preserved.
- The order depends on insertion/removal logic or the initial array used for heap construction.

Heap as an Array

In array-based representation (0-indexed):

Relationship	Formula
Parent of index i	(i - 1) / 2
Left child of i	2 * i + 1
Right child of i	2 * i + 2
Efficient for space and traversal operations.	

Key Benefits & Usage

- Min/Max Access: Constant-time access to root element.
- Heap Maintenance: Property restored via "bubble up" (insert) or "sink down" (remove).
- Algorithms: Core structure for Heap Sort, Priority Queues, and Graph Algorithms.

Conclusion

- The structure of a heap is not unique, but every valid heap maintains either Min Heap or Max
 Heap properties.
- This flexibility in arrangement makes heaps both efficient and versatile for multiple use cases.

Graph

A **Graph** is a non-linear data structure consisting of **vertices (nodes)** and **edges** that connect pairs of vertices. Formally, a graph is defined as G(V, E). where v is the set of vertices and E is the set of edges.

Intro

Key Components

• Vertex (Node): Fundamental unit of a graph. Can be labeled or unlabeled.

• Edge (Arc): Connection between two vertices. Can be directed or undirected, weighted or unweighted.

Graph Types

Туре	Description
Null Graph	No edges
Trivial Graph	Only one vertex
Undirected Graph	Edges have no direction
Directed Graph	Edges have a direction (source → destination)
Connected Graph	Every node can reach every other node
Disconnected Graph	At least one node is unreachable
Regular Graph	All vertices have the same degree
Complete Graph	Every vertex connects to every other vertex
Cycle Graph	Each vertex has degree ≥ 2 and forms a loop
Cyclic Graph	Contains at least one cycle
Directed Acyclic Graph (DAG)	Directed graph with no cycles
Bipartite Graph	Vertices can be split into 2 sets with no internal edges
Weighted Graph	Edges carry weights; may be directed or undirected

Graph Representations

Adjacency Matrix

- 2D matrix of size n x n (n = number of vertices)
- Entry matrix[i][j] = 1 if edge exists between i and j
- Works best for dense graphs

Adjacency List

- Array of lists where list[i] contains neighbors of vertex i
- Efficient for sparse graphs

Comparison

Operation	Adjacency Matrix	Adjacency List
Add Edge	O(1)	O(1)
Remove Edge	O(1)	O(n)
Initialization	O(n²)	O(n)

Basic Operations

- Add/Delete Vertex
- Add/Delete Edge
- Search for a node
- Graph Traversal (DFS, BFS)

Tree vs Graph

- A Tree is a restricted form of graph:
 - Acyclic
 - Hierarchical
 - Connected
- All trees are graphs, but not all graphs are trees.

Real-World Applications

- Social Networks: Users as nodes, relationships as edges
- Computer Networks: Devices as vertices, connections as edges
- Transportation Systems: Cities/locations connected by routes
- Neural Networks: Neurons as vertices, synapses as edges
- **Compilers:** Data flow analysis, type inference, query optimization
- Robot Planning: States and transitions modeled as graphs
- Project Dependencies: Tasks and prerequisites using topological sort
- Network Optimization: Use MST to minimize connection cost

Advantages

- Models complex relationships beyond linear or hierarchical structures
- Enables analysis via powerful algorithms: DFS, BFS, Dijkstra, MST, etc.
- Intuitive for representing relational data across domains

Disadvantages

- Can be difficult to understand for newcomers to graph theory
- High memory and processing cost for large graphs
- Algorithms can be tricky and error-prone
- Visualization challenges for dense or massive graphs

Graph and its representations

1. Adjacency Matrix

- Uses a 2D matrix adjMat[n][n] for a graph with n vertices.
- Undirected Graph:
 - \circ If edge exists between i and j \rightarrow adjMat[i][j] = adjMat[j][i] = 1
- Directed Graph:
 - \circ If edge from i to j \rightarrow adjMat[i][j] = 1

2. Adjacency List

- Uses an array of lists where adj[i] holds all neighbors of vertex i.
- · Efficient for sparse graphs.

Adjacency Matrix vs. Adjacency List

Representation	Advantages	Disadvantages
Adjacency Matrix	Fast edge lookup (O(1))	High memory usage in sparse graphs
Adjacency List	Space-efficient for sparse graphs	Slower edge lookup, may require traversal

Type Of Graph

Based on Size

Туре	Description
Finite Graph	Has a finite number of vertices and edges; commonly used in real-world problems.

Туре	Description
Infinite Graph	Contains infinite vertices and edges; often theoretical.

Based on Structure

Туре	Description
Trivial Graph	A graph with one vertex and no edges; also called singleton graph.
Simple Graph	No loops or multiple edges between vertices.
Multigraph	Allows multiple (parallel) edges but not self-loops.
Null Graph	Only vertices, no edges; also called edgeless or discrete graph.
Pseudo Graph	Includes loops and multiple edges.
Regular Graph	Every vertex has the same degree.
Complete Graph	Each vertex is connected to every other vertex.
Sparse Graph	Few edges compared to vertices.
Dense Graph	Many edges relative to vertex count.
Labeled Graph	Vertices/edges are labeled with names, weights, or dates.

Based on Directionality and Weight

Туре	Description
Directed Graph (Digraph)	Edges have direction (ordered pairs).
Undirected Graph	Edges have no direction; bidirectional connections.
Weighted Graph	Each edge has a weight (e.g., cost, distance, time).
Unweighted Graph	All edges are treated equally without weights.

Based on Connectivity & Cycles

Туре	Description
Connected Graph	Path exists between every pair of vertices.
Disconnected Graph	At least one vertex is unreachable from others.
Cyclic Graph	Contains at least one cycle.
Cycle Graph	All vertices connected in a single cycle.
Directed Acyclic Graph (DAG)	Directed with no cycles; used in dependency modeling.
Tree	Connected acyclic graph; common for hierarchical data.

Based on Vertex Sets

Туре	Description
Bipartite Graph	Vertices divided into two sets; edges only connect vertices across sets.
Subgraph	A graph formed from a subset of another graph's vertices and edges.
Spanning Subgraph	Includes all vertices of the original graph; edges form a subset.
Vertex/Edge Disjoint Subgraph	Subgraphs sharing no common vertices or edges.

Advantages of Graphs

- Ideal for modeling complex relationships.
- Useful for visualizing data.
- Broad applicability: networks, logistics, machine learning, etc.
- Rich set of algorithms for analysis (DFS, BFS, Dijkstra, MST, etc.)

Disadvantages of Graphs

- Large graphs are hard to visualize.
- Processing and memory usage can be expensive.
- Interpretation often requires domain expertise.

Applications

Terminologies in Graphs

- Edge: Connects two vertices.
- Adjacent vertices: Two vertices connected by an edge.
- Outgoing edges: Directed edges from a vertex.
- Incoming edges: Directed edges to a vertex.
- **Degree**: Total number of edges incident to a vertex.
- Source vertex: In-degree is zero.
- Sink vertex: Out-degree is zero.
- Path: A sequence of alternating vertices and edges.
- Cycle: Path beginning and ending at the same vertex.
- Simple path: Path with no repeated vertices.
- Spanning tree: A spanning subgraph that is a tree.
- Connected component: Most connected subgraph of a disconnected graph.
- **Bridge**: Edge whose removal increases number of components.
- Forest: A graph with no cycles.

Graph Representations

Set Representation

- Composed of two sets:
 - Vertex Set: V = {V1, V2, V3, V4}
 - o Edge Set: E = {{V1, V2}, {V2, V3}, {V3, V4}, {V4, V1}}
- Memory-efficient, but does not support parallel edges.

Sequential Representations

Representation	Description
Adjacency Matrix	Matrix of size $V \times V$; $a[i][j] = 1$ if edge exists from Vi to Vj, else \emptyset .
Incidence Matrix	Matrix of size $V \times E$; $a[i][j] = 1$ if edge Ej is incident on vertex Vi.
Path Matrix	Reachability matrix; p[i][j] = 1 if a simple path exists between Vi and Vj.

Representation	Description
Linked Representation	

- Uses adjacency lists to link each vertex with its connected vertices.
- Built using arrays and linked lists; great for representing sparse graphs.

Real-Time Applications of Graphs

Domain	Use Case Description
Social Media	Identifying trends, sentiment, influencers for marketing and analysis
Network Monitoring	Analyzing traffic, detecting bottlenecks or threats
Financial Trading	Studying market data for high-frequency decision-making
IoT Management	Monitoring large-scale device networks and detecting anomalies
Autonomous Vehicles	Mapping sensor data for real-time navigation
Disease Surveillance	Tracking outbreaks and containment strategies
Web Applications	Modeling hyperlinks and crawling logic as directed graphs
Operating Systems	Using resource allocation graphs to detect deadlocks

Advantages of Graph Data Structure

- Flexible Representation: Ideal for complex, relational data.
- Efficient Algorithms: Supports BFS, DFS, Dijkstra, MST, and more.
- Network Analysis: Helpful for discovering central nodes and connections.
- Shortest Path Calculation: Crucial for logistics and route optimization.
- Intuitive Visualization: Easily conveys relationships and structure.
- Machine Learning Applications: Used in fraud detection, recommendation systems.
- Graph Databases: Enable structured querying over connected data.

Disadvantages of Graph Data Structure

Issue	Description	
Limited Representation Lacks ability to model object properties without extensions		

Issue	Description	
Interpretation Difficulty	Complex graphs may require domain knowledge to analyze	
Scalability	Processing time and memory usage grow with graph size	
Data Quality Dependency	Inaccurate or missing data affects graph integrity	
Lack of Standardization	Variety of graph types can hinder comparisons or best-fit decisions	
Privacy Concerns	May expose sensitive relationships in social or organizational networks	

Transpose Graph

The transpose of a directed graph G is a new graph G^t with the same vertices as G, but with all edge directions

Definition

- For each edge (u, v) in G, the transpose graph G^t will contain edge (v, u).
- Transpose is also referred to as **reverse** or **converse** of a graph.
- Useful in algorithms such as Kosaraju's for strongly connected components.

How It Works (Adjacency List)

- 1. Traverse the adjacency list of graph G.
- 2. For every edge $(u \rightarrow v)$, add edge $(v \rightarrow u)$ in the transpose graph G^t .
- 3. The overall time complexity is O(V + E).

Complexity Analysis

Component	Description	Time Complexity
addEdge()	Adds one edge to adjacency list	O(1)
displayGraph()	Prints adjacency list for all vertices	O(V + E)
transposeGraph()	Traverses original graph and builds reverse	O(V + E)
Overall Program	Combines traversal and display logic	O(V + E)

Component	Description	Time Complexity
Space Complexity	Stores two adjacency lists and helper data	O(V + E)

Difference Between Graph and Tree

What Is a Graph?

- A **Graph** is a collection of **nodes (vertices)** and **edges** that connect them.
- Nodes represent entities such as people, places, or systems.
- Edges represent relationships or connections between nodes.
- Can be directed or undirected.
- Commonly used in modeling **networks**, such as social media, transportation, and communication systems.

What Is a Tree?

- A Tree is a hierarchical structure where each node has exactly one parent (except the root).
- The topmost node is the **root**.
- Each node can have multiple child nodes.
- Trees are acyclic and connected.
- Widely used for representing hierarchical data, such as file systems, XML, and organizational charts.

Comparison Table

Feature	Graph	Tree
Definition	Nodes and edges, with arbitrary relationships	Hierarchical structure with parent- child relationships
Structure	May contain cycles and disconnected components	Acyclic and always connected
Root Node	No root; nodes may have multiple or no parents	Single designated root node with no parent
Node Relationships	Arbitrary and flexible	Strict parent-child relationship

Feature	Graph	Tree
Number of Edges	Varies	Exactly n - 1 edges for n nodes
Traversal Complexity	Can be complex due to cycles and disconnected subgraphs	Straightforward and typically linear
Common Applications	Social networks, road maps, computer networks	File systems, organizational charts, XML/HTML DOM
Examples	Facebook graph, Internet topology, airline routes	Family trees, folder hierarchy, DOM structure

Key Differences

- Cycles: Graphs can have cycles; trees cannot.
- Connectivity: Graphs can be disconnected; trees are always connected.
- **Hierarchy**: Trees have a clear top-down hierarchy (root to leaves); graphs do not.
- Applications:
 - Graphs: Best for modeling connections and networks.
 - Trees: Ideal for organizing hierarchical information.

Basic Properties of a Graph

A **graph** is a non-linear data structure consisting of a set of **vertices (nodes)** and **edges** that connect pairs of nodes. Graphs can be directed or undirected, weighted or unweighted, and are widely used to represent complex relationships.

Core Properties

Property	Description	
Vertex	Fundamental unit in a graph; represents an object or concept	
Edge	Connection between two vertices; may be directed or undirected	
Weight	Value assigned to edges indicating cost, distance, or time	
Degree	Number of edges incident to a vertex	
In-Degree / Out-Degree	Number of incoming/outgoing edges for directed graphs	

Property	Description
Path	Sequence of connected vertices via edges
Cycle	A path that starts and ends at the same vertex
Connectedness	A graph is connected if all vertices are reachable from one another
Planarity	A graph is planar if it can be drawn without edge crossings
Bipartite	Vertices can be split into two disjoint sets with no internal connections

Distance & Measurement Metrics

Distance Between Two Vertices

• Notation: d(A, B)

• Represents the number of edges in the **shortest path** between vertex A and vertex B.

Example:

Several paths from vertex b to d exist.

The shortest path $b \rightarrow c \rightarrow d$ has length $2 \rightarrow d(b, d) = 2$.

Eccentricity of a Vertex

• Notation: e(V)

• The **maximum distance** from vertex v to all other vertices in the graph.

Example:

If the distances from vertex b to all others are [1, 1, 2, 3, 2, 2], then e(b) = 3.

Radius of a Connected Graph

• **Notation:** r(G)

• The minimum eccentricity among all vertices in graph G.

Example:

If eccentricities are [2, 3, 3, 2, 3], then r(G) = 2.

Diameter of a Connected Graph

• Notation: d(G)

• The **maximum eccentricity** among all vertices in graph G.

Example:

If eccentricities are [2, 3, 3, 2, 3], then d(G) = 3.

Central Point and Centre of a Graph

- A central point is a vertex where: e(V) = r(G)
- The centre is the set of all such vertices.

Example: If e(f) = r(G) = 2, then vertex f is the central point and also the centre of the graph.

Greedy Algo

Dynamic Programming

Advanced DSA

Other Algo

Bitwise Algo

Backtracking Algo

Divide and Conquer

Branch and Bound

Geometric Algo

Randomized Algo

Read more about:

- Hashing vs BST
- Hashing vs Trie

Missing content:

- Searching Algo
- Sorting Algo ~ Detail

- Two Pointer Technique
- Window Sliding Technique
- Prefix Sum Technique
- Detail Tree ~ (Binary Tree, Binary Search Tree, AVL Tree, Red Black Tree, Ternary Search Tree, n-ary/Generic Tree, B Tree, B+ Tree)