

Sifat Context Free Language (Closure, DCFL)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Sifat-sifat Closure pada CFL

- Sifat closure **op** adalah "Jika L_1 **op** L_2 adalah CFL jika L_1 dan L_2 keduanya CFL"
- CFL Closure dalam operasi union, konkatenasi, Kleene Star, Reverse, dan letter substitution
 - Union: Dua CFG dengan start symbol S_1 dan S_2 , buat start symbol baru S dan rule $S \rightarrow S_1 \mid S_2$
 - Konkatenasi: Dua CFG dengan start symbol S_1 dan S_2 , buat start symbol baru S dan rule $S \rightarrow S_1 S_2$
 - Kleene-star: CFG dengan start symbol S_1 , buat start symbol baru S dan rule $S \to S_1 S / \varepsilon$
 - Reverse: setiap RHS rule direverse
 - Letter substitution: substitusi a dengan a' adalah a menjadi nonterminal dan menambahkan a \rightarrow a'

Sifat-sifat Nonclosure pada CFL

- CFL tidak closure dalam operasi irisan, komplemen, dan different (tidak closure berarti BELUM TENTU).
 - Irisan: $\{a^nb^nc^m\} \cap \{a^mb^nc^n\} = A^nB^nC^n$
 - Komplemen: misalkan L_1 dan L_2 CFL, jika komplemen CFL adalah CFL maka $\neg L_1$ dan $\neg L_2$ CFL. Selanjutnya, $\neg L_1 \cup \neg L_2$ juga CFL dan $\neg (\neg L_1 \cup \neg L_2)$ juga CFL, padahal $\neg (\neg L_1 \cup \neg L_2) = L_1 \cap L_2$ belum tentu CFL.
 - Different: jelas, karena $L_1 L_2 = L_1 \cap \neg L_2$
- Catatan: perbedaan penting dibanding bahasa reguler (semua operasi di atas closure untuk bahasa reguler)
- **Kecuali**: CFL closure dalam <u>operasi irisan/different</u> dengan bahasa reguler.

Penggunaan Teorema Pumping dalam konjungsi dengan Sifat Closure

- Pembuktian teorema pumping terhadap L_1 dapat dilakukan pembuktian pada L_2 jika
- L_1 op $L_3 = L_2$
- Jika diketahui L_3 adalah CFL dan **op** adalah operasi yang bersifat closure dalam CFL
- L_2 adalah CFL jika L_1 CFL, tetapi jika terbukti L_2 bukan CFL maka L_1 bukan CFL.

Contoh 4

- Bahasa $L = \{w \in \{a,b,c\}^*: \#_a(w) = \#_b(w) = \#_c(w)\}$ akan dibuktikan bukan CFL
 - Tidak terlihat region-region pada string-stringnya sehinga teorema pumping tidak dapat digunakan langsung
- Memanfaatkan sifat closure CFL thd operasi irisan dengan Bahasa regular.
 - Dengan asumsi L CFL, maka $L' = L \cap a^*b^*c^* = A^nB^nC^n$ seharusnya CFL.
- Dalam pembuktian sebelumnya bahwa AⁿBⁿCⁿ bukan CFL
 - Berarti asumsi salah, L bukan CFL.

CFL Deterministik (DCFL)

- Ingat bahwa suatu PDA M deterministik jika
 - Δ_M tidak memiliki lebih dari satu pilihan transisi dari setiap konfigurasi.
 - Jika q accepting state dalam M, maka tidak ada transisi $(q, \varepsilon, \varepsilon), (p, a)$.
- Bahasa *L* adalah CFL deterministik **iff** *L*\$ dapat diterima oleh PDA deterministik.
 - L\$ = {w\$: $w \in L$, dan \$ adalah simbol end-of-string}

Contoh:

- $L = a^* \cup \{a^n b^n : n > 0\}$
- L diterima dengan nondeterminism untuk membedakan deretan a saja atau yang diikuti oleh deretan b.
- L\$ dapat diterima secara deterministik dengan adanya \$ di akhir string.

NPDA untuk L

DPDA untuk L\$

- Setiap CFL deterministik (DCFL) adalah CFL
- Jika L\$ diterima oleh $M = (K, \Sigma, \Gamma, \Delta, s, A)$, maka M' dapat dibangun dari \underline{M} sehingga L(M') = L.
- Ide: apa yang dilakukan *M* saat membaca \$, *M*' melakukan pembaaan ε (dengan dugaan keberadaan di akhir input), kemudian tidak dapat membaca input berikutnya.

Contoh DCFL

Given a PDA M, we want to:

- Complete *M*.
- PDA M' untuk menerima $\{a^ib^jc^k: i, j, k \ge 0$ dan $i = j\}$

DCFL Closure terhadap Komplemen

- Setelah CFL diketahui tidak closure terhadap operasi komplemen, bagaimana dengan DCFL? YA!
- Bukti: jika L adalah DCFL, maka ada mesin M deterministic yang menerima L\$. Mesin M yang menerima $(\neg L)$ \$ dapat dibangun dari M sbb.
- Mengubah setiap status menerima *M* menjadi tidak menerima, dan menambahkan status menerima baru q'.
- Jika *M* gagal menerima *w* akibat:
 - crash sebelum habis membaca w atau stack tidak kosong, maka M'bertransisi ke q'membaca habis w, dan/atau mepop semua isi stack, dan menerima.
 - Infinite-loop di status a, maka *M*' bertransisi dari *a* ke *q*' kemudian menghabiskan input dan stack untuk menerima.
- Jika M menerima w di status menerima q (stack kosong dan input habis) maka karena dalam M' status q bukan menerima maka M' tidak menerima.

DCFL Tidak Closure Terhadap Union

- L_1 dan L_2 berikut ini adalah DCFL (Ingat dengan PDA untuk kasus $\{a^mb^n : m \neq n\}$?).
 - $L_1 = \{a^i b^j c^k : i, j, k \ge 0, i \ne j\}$
 - $L_2 = \{a^i b^j c^k : i, j, k \ge 0, j \ne k\}$
- $L' = L_1 \cup L_2 = \{a^i b^j c^k : i, j, k \ge 0, i \ne j \text{ atau } j \ne k\}$
- $L'' = \neg L' = \{a^i b^j c^k : i, j, k \ge 0, i = j = k\} \cup \{w \in \{a, b, c\}^* : w \text{ bukan } a^* b^* c^*\}.$
- $L''' = L'' \cap a*b*c* = \{a^nb^nc^n, n \ge 0\}$
 - L''' bukan CFL, jadi jelas bukan DCFL
 - Karena DCFL closure thd komplemen dan CFL juga closure thd irisan dengan bahasa reguler, maka *L*" bukan CFL, selanjutnya *L*' bukan CFL.

DCFL Tidak Closure Terhadap Irisan

- L_1 dan L_2 berikut ini adalah DCFL
 - $L_1 = \{a^i b^j c^k : i, j, k \ge 0, i = j\}$
 - $L_2 = \{a^i b^j c^k : i, j, k \ge 0, j = k\}$

$$L' = L_1 \cap L_2 = \{a^i b^j c^k : i, j, k \ge 0, i = j = k\}$$

= $\{a^n b^n c^n : n \ge 0\}$, bukan CFL.

Bahasa regular dan DCFL

- Setiap bahasa reguler adalah DCFL
 - Jika L reguler maka L\$ juga reguler. Karena terdapat PDA deterministik untuk menerima L\$, maka L juga adalah DCFL.

DCFL dengan Unambiguous CFL

- Dalam pembahasan mengenai CFG, CFL terbagi dua dalam Kelas Bahasa yang Unambiguous dan Kelas Bahasa yang Inherently Ambiguous.
- Bahasa CFL yang Unambiguous bisa dibuatkan grammar yang tidak ambiguous.
- Setiap bahasa DCFL adalah subset dari Unambiguous karena
 - terdapat bahasa yang bisa dibuatkan grammar yang tidak ambiguous bukan DCFL.
 - Contohnya bahasa apakah itu? Even-Palindrom!
 - Dan, setiap DCFL dapat dibuat grammar yang tidak ambiguous (menggunakan algoritma konversi DPDA ke grammar).

Hirarki dalam CFL

Sifat Closure dari Bahasa-bahasa

Bahasa	Operasi	Closure?
Reguler	Union, Irisan, Kleene star	Ya
Reguler	Irisan, komplemen, diff	Ya
CFL	union, konkatenasi, Kleene Star, Reverse, dan letter substitution	Ya
CFL	Irisan, komplemen, dan different	Tidak
DCFL	Komplemen	Ya
DCFL	Union dan irisan	Tidak
Dst Dst		