A Top-Down Methodology for Global Urban Air Mobility Demand Estimation

Authors:

Akshay Anand (Presenter), Madhukar Mayakonda, Dr. Cedric Justin, Colby Weit, Jiajie Wen, Dr. Turab Zaidi, Prof. Dimitri Mavris

Organization:

Centre National de la Recherche Scientifique (CNRS) and Georgia Tech at Lorraine's Aerospace Systems Design Laboratory

AIAA AVIATION Forum, 15 – 19 June 2020

Copyright © by Madhukar P. Mayakonda, Cedric Y. Justin, Akshay Anand, Colby J. Weit, Jiajie (Terry) Wen, Turab A. Zaidi, Dimitri N. Mavris Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Acknowledgements

This project has received funding from the Clean Sky 2 (CS2)
Joint Undertaking (JU) under grant agreement No. 864521. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

These results reflect only the author's/Consortium view and Clean Sky is not responsible for any use that may be made of the information it contains.

This funding is supporting the "OASyS" project in the CS2 JU

OASyS: **O**verall **A**ir Transport **Sy**stem Vehicle **S**cenarios

Research Objective

INTRODUCTION BACKGROUND METHODOLOGY IMPLEMENTATION CONCLUSION

Urban Air Mobility (UAM): An air transportation system transporting people directly above populated areas

The methodology must be capable of estimating demand at the city level across global markets

Develop a methodology capable of generating demand estimations for urban air mobility operations across global cities

The Business Case of Urban Air Mobility

BACKGROUND

7,		111	Br (citalities)		WETTIODOLOGI	111	VII EEIVIEN II VII ON	201122031011
	RANK BY FILTER	WORLD RANK	CITY	COUNTRY	CONGESTION LEVEL		<u> </u>	d rising levels of congestion is
	1	0	Bengaluru	■ India	71%	>	driving the r	need for a new of transport
	2	2	Manila	Philippines	71%	>	• In 2017, road	dway
	3	3	Bogota	Colombia	68%	>	congestion of	•
	4	4	Mumbai	India	65% 0%	>	commuters	and
	5	5	Pune	 India	59%	>	•	an estimated ktra time and
	6	6	Moscow region (oblast)	Russia	59%	>	wasted fuel	tira tirric aria
	7	7	Lima	Peru	57% ↓ 1%	>	Source: TAMU M	lobility Report
	8	8	New Delhi	■ India	56% ↓ 2%	>	9	level indicates
	9	9	Istanbul	Turkey	55% <u>↑ 2%</u>	>		me spent per
	10	10	Jakarta	Indonesia	53% 0%	>	trip, respecti uncongested	

METHODOLOGY

IMPLEMENTATION

CONCLUSION

for a new,

INTRODUCTION

Over 70 Manufacturers Worldwide are Developing Urban Air Mobility Concepts

Joby Aviation

Airbus A³ Vahana

Boeing PAV

Volocopter VoloCity

Bell Nexus

Lilium

Many Barriers Towards UAM Viability Exist

BACKGROUND

INTRODUCTION

Battery Air Traffic Noise and Technology Regulatory Visual Management Requirements Disruption Communications Infrastructure **UAM Autonomous** Flight **Proven Safety** Viability **Technology** Record Vehicle Certification Performance Standards Vertiport & Reliability **Environmental** Infrastructure Restrictions Source: Crown Consulting Inc Non-exhaustive list

METHODOLOGY

IMPLEMENTATION

CONCLUSION

Current Demand Estimates

INTRODUCTION BACKGROUND METHODOLOGY IMPLEMENTATION CONCLUSION

Market studies by consulting companies:

Company	Scope	Timeframe	Passenger Trips	Aircraft	Flight Hours
Roland Berger	Global	2035	383 M*	28 k	38 M†
Horvath & Partners	125 global cities	2035	150 M†	11 k*	15 M
KPMG	31 global cities	2030	12 M	876*	1 M†
Porsche Consulting	Global	2035	205 M*	15 k	21 M†

^{*}Assuming an aircraft makes 15 trips per day, with 2.5 passengers per trip, on average †Assuming 15 flight minutes per trip, on average

NASA-sponsored market reports:

Company	Scope	Timeframe	Passenger Trips	Aircraft
Crown Consulting Inc.	15 US cities	2030	740 M	23 k
Booz Allen Hamilton	All 484 US cities	Near-term	30 M	4.1 k

Limited available literature regarding global UAM demand estimation methodologies

Top Down Methodology

- UAM will likely serve intracity and intercity regions, competing with traditional ground transport modes
- Thus, UAM <u>passenger kilometers traveled (PKM)</u> may be estimated as a portion of the total PKM across all modes of ground transport
- Traffic forecasting typically conducted using four-step transportation model
 - Infeasible to implement due to data availability, effort required, and computational expense

Estimating the value of travel time savings is a possible solution

INTRODUCTION BACKGROUND METHODOLOGY IMPLEMENTATION CONCLUSION

• A binary choice model considering value of travel time savings (VTTS) offers a solution [1]

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

- $Cost_{UAM}$ is the cost of a specific trip using UAM
- $Cost_m$ is the cost of a specific trip using an alternate mode m
- VTTS is the dollar value an individual places per unit time saved
- $Time_m$ is the trip time of a specific trip using alternate mode m
- $Time_{UAM}$ is the trip time of a specific trip using UAM
- Has been implemented in past UAM studies for local areas [1, 2]
- Can be expanded to consider global cities without high data requirements

Concept of Operations (CONOPS)

INTRODUCTION BACKGROUND **METHODOLOGY** IMPLEMENTATION CONCLUSION

- Vertiport density, D, fixed: D = vertiport/area
- Average distance to vertiport:

$$d_v = s * 2/3$$

• UAM trip distance (conservative):

$$d_{UAM} = 2 * d_v + d_t,$$

 $d_t = nominal \ trip \ distance$

Estimating Market Share – UAM Trip Cost

INTRODUCTION BACKGROUND METHODOLOGY IMPLEMENTATION CONCLUSION

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

 UAM is a multi-modal trip option; cost of UAM trip is the sum of costs of all trip segments

$$Cost_{UAM} = Cost_{access}(d_v) + Cost_{flight}(d_t) + Cost_{egress}(d_v)$$

- Cost_{access}, Cost_{egress}:
 - CONOPS assumes access and egress is completed using a rideshare option across equivalent distances, d_{v}
- Cost_{flight}:
 - leverage existing studies to estimate UAM ticket costs, or evaluate a range and identify sensitivity
 - BAH Estimates ~\$3.88/km for a 5-seat eVTOL, near term
 - Other studies suggest \$0.55/km to \$1.65/km by 2030 [1] and ~\$0.43/km in the long term [2]

Estimating Market Share – Alternate Mode Trip Cost

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

- Estimating the cost for alternate modes of transport is much simpler
 - Organizations across many areas publish average cost per distance for owning personal vehicles (\$0.37/km in the US, according to AAA)
 - Public transit ticket costs can also be identified on the city level

Public Transit

INTRODUCTION BACKGROUND **METHODOLOGY** IMPLEMENTATION CONCLUSION

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

- VTTS is typically a function of income and trip purpose [1]
 - 35% to 60% of hourly rate earnings for personal trips
 - 80% to 120% of hourly rate earnings for business trips

Can be further disaggregated:

- Work
- Education
- Shopping/Leisure
- Vacation
- Other

[1] "Revised Departmental Guidance on Valuation of Travel," U.S. Department of Transportation, Washington, DC, 2011.

INTRODUCTION BACKGROUND METHODOLOGY IMPLEMENTATION CONCLUSION

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

- Door-to-door travel time for personal vehicles and public transit is heavily route and time of day dependent
- Performing an origin-destination (OD) level evaluation is too computationally expensive; average speeds across all routes and times will be sufficient
 - For higher fidelity, build a regression across average speeds by trip distance

Logarithmic fit to randomly sampled routes in Paris using passenger vehicle

INTRODUCTION

BACKGROUND

METHODOLOGY

IMPLEMENTATION

CONCLUSION

$$Cost_{UAM} \le WTP = Cost_m + VTTS * (Time_m - Time_{UAM})$$

 UAM is a multi-modal trip option; UAM trip time can be broken down as:

$$Time_{UAM} = t_{access} + t_{boarding} + t_{flight} + t_{deboarding} + t_{egress}$$

Rideshare Trip Time (avg vertiport distance)

Constant cruise speed

Rideshare Trip Time (avg vertiport distance)

Walking, ticket purchase, wait time, boarding, safety check

Deboarding, exiting

Final Demand Estimation

Estimating PKM Across Viable UAM Trips

- Assume mode share, trip purpose, trip distance distribution, and traveler income distributions are all independent of each other
 - i.e.: a traveler earning \$50k is just as likely to take a 10 km trip as a traveler earning \$200k
- Calculate UAM PKM as:

$$PKM_{UAM} = PKM_{tot} * s_m * s_p * (CDF_{TD}(d_2) - CDF_{TD}(d_1)) * (CDF_{inc}(i_2) - CDF_{inc}(i_1))$$

- Example WTP analysis found that a viable space of UAM travel occurs on trips of:
 - Mode: personal vehicle 75% of all trips
 - Purpose: business 17% of all trips
 - Trip Distance: 20 to 40 km 42% of all traffic
 - Annual Income: \$140k to \$150k 2% of all travelers
- For a city with 100 billion annual PKM, we identify: $100 \ billion \ PKM * 0.75 * 0.17 * 0.42 * 0.02$ $= 107 \ million \ PKM$

Final Demand Estimation

Scope of Cities for Implementation

- KPMG suggests UAM will likely target high-density business travel routes used by a relatively price-insensitive customer base, and has identified 31 cities to see initial operations [1]
- This implementation will consider the same set of cities, during year 2035

Tokyo	Shanghai	New York	
Beijing	Seoul	Los Angeles	
Osaka	Guangzhou	Tianjin	
Mexico City	Shenzhen	Sao Paulo	
London	Paris	Chicago	
Bangkok	Jakarta	Wuhan	
Kuala	Dallas	Hong Kong	
Toronto	Madrid	Houston	
San	Melbourne	Sydney	
Washington DC	Phoenix	Taipei	
Dubai			

Results

INTRODUCTION BACKGROUND METHODOLOGY **IMPLEMENTATION** CONCLUSION

UAM Share of Total PKM						
			Vertiport Density			
			(area, km², per vertiport)			
			150	300	450	
km)	\$	0.30	8.51%	4.74%	3.21%	
/\$)	\$	0.60	2.62%	1.54%	1.06%	
Cost	\$	0.90	1.27%	0.75%	0.53%	
cket	\$	1.20	0.72%	0.42%	0.30%	
JAM Ticket Cost (\$/km)	\$	1.50	0.43%	0.25%	0.18%	
N	\$	1.80	0.28%	0.16%	0.12%	

	Annual UAM Pax Trips (Million)							
		Vertiport Density						
		(area, km², per vertiport)						
		150	300	450				
km)	\$ 0.30	6,355	2,645	1,607				
/\$) :	\$ 0.60	2,313	1,065	635				
Cost	\$ 0.90	1,207	541	327				
JAM Ticket Cost (\$/km)	\$ 1.20	708	306	185				
Ĭ	\$ 1.50	437	182	112				
NAI	\$ 1.80	287	119	71				

	Annual UAM Utilization (Million hrs)						
			Vertiport Density				
			(area, km², per vertiport)				
			150	300	450		
km)	\$	0.30	1,505	839	567		
/\$) :	\$	0.60	464	272	188		
Cost	\$	0.90	225	133	94		
cket	\$	1.20	128	75	53		
JAM Ticket Cost (\$/km)	\$	1.50	77	45	32		
UAI	\$	1.80	49	29	21		

• For reference:

- UAM Cost: \$0.93/km (2030), CCI; \$1.30/km (initial) and \$0.43/km (near-term), Uber
- 300 km²/vertiport equates to ~21 vertiports in Los Angeles
- Range of estimates by consulting companies:
 - Pax Trips: 12 M 740 M
 - Flight hours: 1 M 123 M

- Passenger trips increase exponentially with decreasing UAM ticket costs
- Faster than exponential increase at \$0.30/km
 - Assumed cost for passenger vehicle is \$0.37/km

- Strong market demand exists for a range of UAM ticket costs and vertiport densities, ranging from 70 million annual pax trips globally up to 6.3 billion pax trips
- Demand expands exponentially with decreases in ticket cost and area/vertiport
- Manufacturers may leverage these results to identify and plan for an optimal production rate
- City planners must focus on developing vertiport infrastructure quickly and efficiently
- By 2035, air traffic management systems should have the capability to handle mature operations
- Regulators must move quickly to outline vehicle certifications and flying regulations

Acknowledgments

In addition to the Clean Sky 2 Joint Undertaking, the authors would like to thank the following entities and people for their contributions:

- German Aerospace Center (DLR)
 - Ralf Berghof
 - Nico Flüthmann
- Aerospace Systems Design Laboratory OASyS Advisory Board
 - Dimitri Mavris
 - Holger Pfaender
 - Elena Garcia
- Georgia Tech Lorraine / Centre National de la Recherche Scientifique
 - Abdallah Ougazzaden
 - Jean-Paul Salvestrini
 - Alexandre Locquet
 - Nadege Werkle-Dastillung

AMERICAN INSTITUTE OF **AERONAUTICS AND ASTRONAUTICS** Thank you!

Questions?

Akshay Anand Research Enginner, Georgia Tech Lorraine / CNRS aanand@georgiatech-metz.fr

