Predicting Sepsis using various machine learning algorithms

Yannick Müller

T-SNE Map

Preprocessing

- 1. Sorted by Patient ID so that no two patients can be in two different sets
- 2. Factorized all text entries in the dataset
- 3. Deleted rows where the target value was NaN
- 4. Filled missing values with 0
- 5. Created new features using the 0/1 Encoding for different percentiles

What does not work: Standardization, Normalization, Feature Operations

Minimal Example

```
25 kf = KFold(n splits=5)
26 roc auc list = []
27 roc auc list int = []
28 f1 list = []
29
30 for train_index, test_index in kf.split(X, y):
31
          X train, X test = X.iloc[train index], X.iloc[test index]
          y train, y test = y.iloc[train index], y.iloc[test index]
32
33
          y flatten = y train.values.flatten()
34
          bin count = np.bincount(y flatten)
          class weight = bin count[0]/bin count[1] - 1
35
          clf = Ridge()
36
37
          clf.fit(X_train, y_train, sample_weight=class_weight*y_flatten+1)
          y pred = clf.predict(X test)
38
          y pred int = list(map(minmaxint, y pred))
39
          roc auc list.append(roc auc score(y test, y pred))
40
          roc auc list int.append(roc auc score(y test, y pred int))
41
42
          f1 list.append(f1 score(y test, y pred int))
43
44 <print("This model: ", np.mean(roc_auc_list), np.mean(roc_auc_list_int), np.mean(f1_list))</pre>
45 print("Current Best: 0.7183366311037686 0.6764051644236325 0.45046285449129")
```

Features

Lactat	0.166	Respir. r. f. 30% 0/1 Enc	0.100	EOS	-0.045
Lactat 70% - 0/1 Enc	0.165	THZ 30% 0/1 Enc	-0.097	Diastolic Bp first	-0.041
Harnstoff 30% - 0/1 Enc	0.164	Lvl consc alert	0.088	Systolic Bp 40% 0/1 Enc	-0.041
INRiH 50 - 0/1 Enc	0.155	THZ	-0.088	Spo2 first	-0.035
CRP	0.142	Hb	-0.075	Triage	-0.034
BIC_st	0.138	Leuk inf 0.5	0.065	Temp Low 90% 0/1 Enc	0.034
ASAT 30% - 0/1 Enc	0.129	Leuk sup 10	0.060	Gcs inf first	0.024
Zuhause/Altersheim/etc	0.128	EOS 60% 0/1 Enc	-0.059	Inselklinik	-0.015
GGT	0.126	EOS 80% 0/1 Enc	-0.053	Kalium	0.005
Age	0.110	Leuk inf 4	0.050	Referral	-0.003

Results

Method	AUC ROC	F1 Score	Recall	Precision	Accuracy
Linear Regression	0.72	0.45	0.68	0.34	0.67
Ridge Regression	0.72	0.45	0.68	0.34	0.67
Dense NN 1 Neuron	0.72	0.44	0.68	0.33	0.67
XGBoost Regressor	0.68	0.41	0.51	0.34	0.71
Random Forest	0.68	0.14	0.08	0.50	0.80
Gaussian NB	0.65	0.43	0.56	0.34	0.70
SVC RBF	0.64	0.41	0.56	0.32	0.68
Lasso	0.67	0.40	0.58	0.31	0.67
MLP Classifier	0.54	0.29	0.37	0.26	0.63
Decision Tree	0.54	0.26	0.26	0.26	0.70

AUC ROC Curve

Recall / Precision Curve

With emojis

Questions |

- 1. Combining the data of different time samples of the same patient improved the model just a bit, dismiss it?
- Is 0.72 ROC_AUC score high enough to be helpful?
- 3. Papers that perform better have more than twice as many patients and more features, specifically to predict sepsis. Can we enrich this dataset?
- 4. In papers, so many things seem to work, like Ensemble learning. Am I doing something wrong, or is it the dataset?
- In papers, they predict whether the patient has sepsis in four hours. Would that kind of prediction be helpful for you?