

From Data Science to Space

Mario Mompean Herrero Marzo 2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Data Collection:
 - With API
 - With Web Scraping
- Data Wrangling
- Data Analysis
 - With SQL
 - With Data Visualization
- Folium for Interactive Visual Analytics
- Predictions with ML

INTRODUCTION

- En este proyecto hablamos sobre el rol de un científico de datos en una compañia de lanzamientos de cohetes.
- Analizaremos el trabajo de SPACE X.
- A partir del analisis de SPACE X buscaremos las prestaciones más rentables.
- Estudiaremos si los cohetes pasan la primera fase y utilizaremos modelos de ML para predecir posibles perspectivas futuras

METHODOLOGY

- Data Collection
- Data Wrangling
- EDA and interactive visual analytics methodology
- EDA with Data Visualization
- EDA with SQL
- Predictive Analysis

Data Collection

With API

- 1. Tomamos el correspondiente archivo de formato JSON
- 2. Lo convertimos a un DF con Pandas
- 3. Construimos el Dataset

Pinche aquí

With Web Scrapping

1. Extraemos los datos del HTML

- 2. Lo convertimos a un diccionario
- 3. Lo devolvemos a un CSV

Data Wrangling

- 1. Calculamos los lanzamientos en cada lugar
- 2. Calculamos el número de veces de una órbita dada

3. Creamos la etiqueta para cada salida

Gráficos usados:

1. Dispersión

2. Líneas

3. Barras

EDA with SQL

1. Cargamos el paquete SQL en Python

Exploramos los datos con sentencia SQL

EDA and interactive visual analytics

1. Utilizamos las marcas del paquete 'Folium' de Python

2. Rojo representa fallo en lanzamiento

3. Verde representa éxito en el lanzamiento

Predictive Analytics

1. Utilizamos el paquete 'Scikitlearn' de Python para usar algoritmos de ML

2. Comparamos la precisión de varios modelos de ML

RESULTS

• En esta sección analizamos los resultados de los datos tras aplicarles nuestras técnicas explicadas en la metodología

EDA with SQL

Task 1

Display the names of the unique launch sites in the space mission

Out[11]: Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Task 2

Display 5 records where launch sites begin with the string 'CCA'

In [12]: %sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;

* sqlite:///my_data1.db

Out[12]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	01-03-			CCAES I.C.			LEO			

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

In [31]: %sql select sum(payLoad_mass_kg_) from spacextbl where customer = 'Nasa (crs)';

* sqlite:///my_data1.db Done.

Out[31]: SUM(PAYLOAD_MASS_KG_)

4559

Task 4

Display average payload mass carried by booster version F9 v1.1

" [14]: %sql SELECT AVG(PAYLOAD_MASS_KG_) FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1'

* sqlite:///my_data1.db

Out[14]: AVG(PAYLOAD_MASS_KG_)

2928.4

Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

In [51]: %sql select min(DATE) from SPACEXTBL where "Landing_Outcome" = "Success (ground pad)";

* sqlite:///my_data1.db Done.

ut[51]: min(DATE)

None

EDA with SQL

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 %sql SELECT BOOSTER VERSION from SPACEXTBL WHERE 'LANDING OUTCOME' = 'Success (drone ship)' and PAYLOAD MASS KG >4000 and PAYLOAD MASS KG <6000 * sqlite:///my_data1.db Out[26]: Booster_Version Task 7 List the total number of successful and failure mission outcomes %sql select count(MISSION OUTCOME) from SPACEXTBL where MISSION OUTCOME = 'Success' or MISSION OUTCOME = 'Failure (in flight)' * sqlite:///my_data1.db Out[19]: count(MISSION_OUTCOME) Task 8 List the names of the booster_versions which have carried the maximum payload mass. Use a subquery %sql SELECT BOOSTER VERSION FROM SPACEXTBL WHERE PAYLOAD MASS KG = (SELECT max(PAYLOAD MASS KG) FROM SPACEXTBL); * sqlite:///my_data1.db Out[47]: Booster_Version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4

```
F9 B5 B1060.2
F9 B5 B1051.6
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

Task 9
List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7,4)='2015' for year.

In [62]: 
** sql_te:///my_datal.db
Done.

Out[62]: 
** Booster_Version_Launch_Site "Landing_Outcome"

Task 10

Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
```

%sql select * from SPACEXTBL where Landing Outcome = 'Success (ground pad)' or and (DATE between '2010-06-04' and '2017-03-20') order by date desc

[SQL: select * from SPACEXTBL where Landing_Outcome = 'Success (ground pad)' or and (DATE between '2010-06-04' and '2017-03-20') order by date desc]

* sqlite:///my data1.db

(sqlite3.OperationalError) near "and": syntax error

(Background on this error at: http://sqlalche.me/e/e3q8)

F9 B5 B1048.5

Interactive map with Folium

Interactive map with Folium

Visualization Dashboard

Correlation between Payload Mass and Launch Success for All Sites for Payload Mass(kg) Between 2000 and 4000

Results for predictive analysis

Regresión logística

SVM

Results for predictive analysis

• Decisión de árbol

K-vecinos

Accuracy for diferent models

	Method	Accuracy Score (%)
0	Support Vector Machine	83.333333
1	Logistic Regression	83.333333
2	K Nearest Neighbour	83.333333
3	Decision Tree	83.333333

DISCUSSION

 Vemos que los diferentes métodos nos dan la misma precisión

• Elegiremos el modelo más simple computacionalmente

 En este caso nos podemos quedar con la regresión logística

CONCLUSION

- Respecto a Space X, el punto de mayores lanzamientos con éxito es KSC-LC-39A
- A partir de 2015 el porcentaje de lanzamientos con éxito creció bastante
- Los lanzamientos se realizan casi siempre cerca de la costa ya que se pueden realizar pruebas de testeo de los propios cohetes con menos riesgo