OKI Semiconductor

This version: Nov. 1997 Previous version: Mar. 1996

MSM6775

1/3, 1/4, 1/5 DUTY LCD DRIVER WITH 5-DOT COMMON DRIVER AND 80-DOT SEGMENT DRIVER

GENERAL DESCRIPTION

The MSM6775 is an LCD driver for dynamic display providing 3-duty-switchable pins (1/3, 1/4 and 1/5 duty). It can directly drive LCDs of up to 400, 320 and 240 segments when 1/5, 1/4 and 1/3 duty are selected, respectively.

FEATURES

• Operating range

 $\begin{array}{lll} \text{Supply voltage (V}_{DD}) & : 2.7 \text{ to } 5.5 \text{V} \\ \text{Operating temperature (T}_{op}) & : -40 \text{ to } +85^{\circ}\text{C} \\ \text{LCD driving voltage (V}_{DD}\text{-V}_{LC3}) & : 3.5 \text{ to } 5.5 \text{V} \\ \bullet \text{ Segment output} & : 80 \text{ pins} \\ \end{array}$

1/5 duty : Up to 400 segments can be displayed.
1/4 duty : Up to 320 segments can be displayed.
1/3 duty : Up to 240 segments can be displayed.

• Serial transfer clock frequency : 4MHz

• Serial interface with CPU : Through three input pins (DATA, LOAD, and

CLOCK)

One-to-one correspondence between input data and its output When input data is at "H" level
 Display goes on.
 When input data is at "L" level
 Display goes off.

• Built-in oscillator circuit for COMMON signals

• The entire display can be turned off. (BLANK pin)

Package:

100-pin plastic TQFP (TQFP100-P-1414-0.50-K) (Product name: MSM6775TS-K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

NC: No connection

100-Pin Plastic TQFP

PIN DESCRIPTIONS

Symbol	Туре			Description	n				
OSC-IN OSC-C OSC-R	0 0	resistors and a ca	Pins for oscillation. The oscillator circuit is configured by externally connecting two resistors and a capacitor. Make the wiring length as short as possible, because the resistor connected to the OSC-IN pin has a higher value and the circuit is susceptible to external noise.						
DATA	I		Serial data input pin. The display goes on when input data is at "H" level, and it goes off when input data is at "L" level.						
CLOCK	ı	1	Shift clock input pin. Data from the DATA pin is transferred in synchronization with the rising edge of the shift clock. (Built-in Schmitt circuit is used.)						
LOAD	I	Load signal input pin. Serially input data is transferred to the 80-bit latch at "H" level of this load signal, then held at "L" level.							
BLANK	I	Input pin that turns off all segments. The entire display goes off when "L" level is applied to this pin. The display returns to the previous state when "H" level is applied.							
DSEL1	I	Input pins to select 1/3, 1/4, or 1/5 duty. Following shows how each duty is selected.							
DSEL2	1	_	DSEL2	DSEL1	Duty selected	-			
		-	L	L	1/3	-			
		_	L	Н	1/4	-			
			Н	Χ	1/5	-			
		_		X: Don't care		•			
COM1 to	0	Display output pir	Display output pins for LCD. These pins are connected to the COMMON side on the LCD panel.						
SEG1 to SEG80	0	Display output pins for LCD. These pins are connected to the SEGMENT side on the LCD panel. For the correspondence between the output of these pins and input data, see Section, "Data Structure".							
V _{LC1} V _{LC2} V _{LC3}	_	Bias pins for LCD drive. Through these pins, bias voltages for the LCD are externally supplied. The bias potential must meet the following condition: $V_{DD}>V_{LC1}\geq V_{LC2}>V_{LC3}$							
V _{DD} V _{SS}	_	Supply voltage pir							

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V_{DD}	Ta=25°C	-0.3 to +6.0	V
Input Voltage	VI	Ta=25°C	-0.3 to V _{DD} +0.3	V
Storage Temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit	Applicable pin
Supply Voltage	V_{DD}	_	2.7 to 5.5	V	V _{DD}
LCD Driving Voltage	$V_{DD} - V_{LC3}$	_	3.5 to 5.5	V	V _{DD} , V _{LC1} , V _{LC2} , V _{LC3}
Operating Temperature	T _{op}	_	-40 to +85	°C	_

Oscillator Circuit

Parameter	Symbol	Condition	Min	Max	Unit	Applicable pin
Oscillation Resistance	R ₀	_	20	120	kΩ	OSC-R
Oscillation Capacitance	C ₀	_	0.00047	0.01	μF	OSC-C
Current Limiting Resistance	R ₁	_	62	360	kΩ	OSC-IN
COMMON Cinnel Francisco			0.5	050	11-	COM1 to
COMMON Signal Frequency	†COM		25	250	Hz	COM5

Note: See Section, "Reference Data," for the resistor and capacitor values in the table.

RC Values in Oscillator Circuit

Parameter	Symbol	1/3 duty	1/4 duty	1/5 duty	Unit	Applicable pin
Oscillation Resistance	R ₀	68	51	43	$k\Omega$	OSC-R
Oscillation Capacitance	C ₀	0.001	0.001	0.001	μF	OSC-C
Current Limiting Resistance	R ₁	220	160	130	kΩ	OSC-IN

Example of an oscillator circuit

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $(V_{DD}=2.7 \text{ to } 5.5V, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Cor	dition		Min	Max	Unit
"H" Input Voltage 1	V _{IH1}			*1	0.85V _{DD}	V_{DD}	٧
"L" Input Voltage 1	V _{IL1}			*1	V _{SS}	0.15V _{DD}	V
"H" Input Voltage 2	V _{IH2}			*2	0.8V _{DD}	V_{DD}	V
"L" Input Voltage 2	V _{IL2}			*2	V _{SS}	0.2V _{DD}	٧
"H" Input Current	V _{IH}	V_{DD} =5.5V, V_{I} = V_{DD}	1	*3	_	10	μА
"L" Input Current	V _{IL}	V_{DD} =5.5V, V_{I} =0V		*3	_	-10	μА
	V _{OC0}		I ₀ =-100μA		V _{DD} -1	_	V
COMMON	V _{OC1}	V _{DD} =4.0V *4	I ₀ =±100μA	*6	V _{LC1} -1	V _{LC1} +1	V
Output Voltage	V _{OC2}		I ₀ =±100μA	*7	V _{LC2} -1	V _{LC2} +1	٧
	V _{OC3}		I ₀ =+100μA	*8	_	V _{LC3} +1	٧
	V _{OS0}		I ₀ =-10μA		V _{DD} –1	_	٧
Segment	V _{OS1}	V _{DD} =4.0V *5	$I_0=\pm 10 \mu A$	*6	V _{LC1} -1	V _{LC1} +1	V
Output Voltage	V _{0S2}		$I_0=\pm 10 \mu A$	*7	V _{LC2} -1	V _{LC2} +1	V
	V _{OS3}		I ₀ =+10μA	*8	_	V _{LC3} -1	V
Supply Current	I _{DD}	V _{DD} =5.0V, no load	b	*9	_	0.5	mA

^{*1} Applies to the CLOCK and OSC-IN.

^{*2} Applies to all input pins excluding the CLOCK and OSC-IN.

^{*3} Applies to all input pins.

^{*4} Applies to COM1 to COM5.

^{*5} Applies to SEG1 to SEG80.

^{*6} V_{LC1}=3.0V

^{*7} V_{LC2}=2.0V

^{*8} V_{LC3}=1.0V

^{*9} $R_0=51k\Omega$ $R_1=160k\Omega$ $C_0=0.001\mu F$

AC Characteristics

 $(V_{DD}=2.7 \text{ to } 5.5V, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Min	Max	Unit	Applicable pin
Clock Frequency	f _{CP}	_	_	4.0	MHZ	
Clock "H" Time	t _{WHC}	_	70	_	ns	CLOCK
Clock "L" Time	t _{WLC}	_	70	_	ns	
Data Set-up Time	t _{DS}	_	50	_	ns	DATA
Data Hold Time	t _{DH}	_	50	_	ns	CLOCK
Load "H" Time	t _{WHL}	_	100	_	ns	LOAD
Clock-to-load Time	t _{CL}		100	_	ns	CLOCK
Load-to-clock Time	t _{LC}	_	100	_	ns	LOAD
Rise time, Fall Time	t _{r1} , t _{f1}	_	_	50	ns	CLOCK
OSC-IN Input Frequency	fosc	_	_	20	kHz	
OSC-IN "H" Time	t _{WHO}	_	20	_	μS	000 IN
OSC-IN "L" Time	t _{WLO}	_	20	_	μS	OSC-IN
Rise Time, Fall Time	t _{r2} , t _{f2}	_		100	ns	

FUNCTIONAL DESCRIPTION

Operation

As shown in "Data Structure" (next section), the display data consists of the data field corresponding to the output for turning the segments on or off and the select field that selects the input block of data. Data input to the DATA pin is loaded into the 88-bit shift register at the rising edge of the CLOCK signal, transferred to the 80-bit latch while the load signal is at "H" level, and then output via the 80-dot segment driver.

Data Structure

Correspondence between select bits and COM1 to COM5

C ₅	C ₄	C ₃	C ₂	C ₁	Description
0	0	0	0	1	Display data corresponding to COM1
0	0	0	1	0	Display data corresponding to COM2
0	0	1	0	0	Display data corresponding to COM3
0	1	0	0	0	Display data corresponding to COM4
1	0	0	0	0	Display data corresponding to COM5

Notes: 1. Arbitrary data can be set for the dummy bits.

2. Select bits C_1 to C_5 select 80-bit latches that correspond to COM1 to COM5, respectively. Therefore, if "1" is set for more than one select bit, data is set to all the corresponding 80-bit latches.

Example:

If "1" is set to all the select bits C_1 to C_5 , the display data of D_1 to D_{80} is set to all the 80-bit latches that correspond to COM1 to COM5.

APPLICATION CIRCUITS (For 1/4 duty)

REFERENCE DATA

The data shown in this section is for reference (a metal film resistor and a film capacitor are used). Resistor and capacitor values must be determined based on experiments. Use the following expression to convert oscillation frequency to COMMON frame frequency (or vice versa):

 $f_{COM} = f_{OSC} \times Duty/16$

 $f_{\mbox{COM}}:\mbox{ COMMON}$ frame frequency

f_{OSC}: Oscillation frequency Duty: e.g., 1/4 for 1/4 duty

For example, if f_{COM} =100Hz at 1/5 duty, the oscillation frequency is f_{OSC} =8000Hz.

COMMON Frame Frequency vs. V_{DD} (The resistor and capacitor values used are their recommended values.)

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).