

دانشگاه تهران پردیس دانشکده های فنی، دانشکده مهندسی برق و کامپیوتر ریاضیات مهندسی، پاییز ۱۳۹۹

تاریخ: ۲۷ آذر ۹۹

آزمون پایان نیمسال

مدت آزمون: ۱۰۰ دقیقه

غيرحضوري

نمره	لطفا خوانا و مرتب بنویسید.	شماره
۴	سری فوریه ی تابع $g(heta)= \cos heta $ را محاسبه کنید و با استفاده از این سری، سری تابع $g(heta)= \cos heta $ را محاسبه کنید. $g(heta)=\begin{cases} \cos heta \ ; \ ext{if} \ heta <rac{\pi}{2} \end{cases}$ $g(heta)=\begin{cases} \cos heta \ ; \ ext{if} \ heta <\pi \end{cases}$	١
k	ابتدا سری فوریه ی تابع $f(x) = Ax^2 + Bx + C$ را برای $f(x) = Ax^2 + Bx + C$ را نوشته، سپس نشان دهید: ضرایب فقط می توانند $f(x) = Ax^2 + Bx + C$ دهید: ضرایب فقط می توانند $f(x) = Ax^2 + Bx + C$ را برای $f(x) = Ax^2 + Bx + C$ دهید: ضرایب فقط می توانند $f(x) = Ax^2 + Bx + C$ را برای $f(x) = Ax^2 + Bx + C$ را نوشته، سپس نشان $f(x) = Ax^2 + Bx + C$ دهید: ضرایب فقط می توانند $f(x) = Ax^2 + Bx + C$ را نوشته، سپس نشان $f(x) = Ax^2 + Bx + C$ را نوشته، سپس نشان $f(x) = Ax^2 + Bx + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای می توانند $f(x) = Ax^2 + Ax + C$ د برای	۲
۴	معادله دیفرانسیل زیر را به کمک تبدیل فوریه حل نمایید: $-rac{d^2u}{dx^2}+K^2u=e^{- x }\;;\;-\infty< x<\infty$ که در معادله ی فوق k عدد ثابت است و همچنین به عنوان شرط مرزی $u(x) o 0$ وقتی که $u(x) o 0$	٣
۴	مقدار A را به گونه ای بیابید که تساوی زیر برقرار باشد. $\int_0^\infty \frac{\cos\frac{\omega\pi}{2}\cos\omega x}{1-\omega^2}d\omega = \begin{cases} A\cos x \; ; x < \frac{\pi}{2} \\ 0 \qquad ; x > \frac{\pi}{2} \end{cases}$	۴
۴	معادله با مشتقات جزیی زیر را حل کنید: $u_{tt} - 25u_{xx} = x + \frac{25}{2}\pi; 0 < x < 1, t > 0$ $u(x,0) = \left(\frac{1}{2} - \frac{\pi}{4}\right)x^2; 0 \le x \le 1$ $u_t(x,0) = 1 + x; 0 \le x \le 1$ $u_x(0,t) = \frac{\pi}{2}; t \ge 0$ $u_x(1,t) = 1; t \ge 0$	۵