Rotational Momentum

AP Physics C: Mr. Perkins

Denny Cao

Due: January 11, 2023

1 Introduction

2 Data

Measurement	Variable	Value
Moment of Inertia of Windmill	I	$0.10066\mathrm{kgm^2}$
Mass of Car 1	m_1	$0.284\mathrm{kg}$
Mass of Car 2	m_2	$0.534\mathrm{kg}$
Distance Traveled	d	$0.5\mathrm{m}$
Radius of Windmill	r	$0.325\mathrm{m}$

Table 1: Measured Constants

Mass of Car (kg): 0.284			
Trial	Time from Release to Impact (s)	Period (s/rev)	
1	0.68	12.99	
2	0.81	11.74	
3	0.81	12.16	
Average	0.767	12.297	

Table 2: Car 1 Data

Mass of Car (kg): 0.534			
Trial	Time from Release to Impact (s)	Period (s/rev)	
1	1.01	9.51	
2	1.01	9.43	
3	1.03	8.26	
Average	1.017	9.067	

Table 3: Car 2 Data

3 Analysis

Let variables with subscript 1 denote the first car and variables with subscript 2 denote the second car.

3.1 Observational Windmill Speed

The rotational speed of the windmill, ω , is given by:

$$\omega_1 = \frac{2\pi}{T} = \frac{2\pi}{12.297} = 0.511 \frac{\text{rad}}{\text{s}}$$
 $\omega_2 = \frac{2\pi}{9.067} = 0.693 \frac{\text{rad}}{\text{s}}$
(1)

3.2 Theoretical Windmill Speed

We assume the car is moving on a frictionless surface. Therefore, the acceleration is constant meaning the velocity is given by:

$$v_1 = \frac{\Delta d}{\Delta t} = \frac{0.5}{0.767} = 0.652 \frac{\text{m}}{\text{s}}$$
 $v_2 = \frac{\Delta d}{\Delta t} = \frac{0.5}{1.017} = 0.492 \frac{\text{m}}{\text{s}}$ (2)

The linear momentum of the car is given by:

$$p_1 = m_1 v_1 = 0.284(0.652) = 0.185 \,\text{N s}$$
 $p_2 = m_2 v_2 = 0.534(0.492) = 0.263 \,\text{N s}$ (3)

The angle the car makes with the horizontal is $\theta = 90^{\circ}$. The angular momentum of the car is given by:

$$L_1 = p_1 r \sin \theta = 0.185(0.325) = 0.060 \,\text{N m s}$$

$$L_2 = p_2 r \sin \theta = 0.263(0.325) = 0.085 \,\text{N m s}$$
(4)

We assume that momentum is conserved in the system. Thus, after impact and coming to a complete stop, the momentum from the car is transferred to the windmill:

$$L_{\rm car} = L_{\rm windmill} = I\omega \tag{5}$$

We can solve for ω :

$$\omega_1 = \frac{L_1}{I} = \frac{0.060}{0.10066} = 0.59606 \frac{\text{rad}}{\text{s}}$$

$$\omega_2 = \frac{L_2}{I} = \frac{0.085}{0.10066} = 0.84442 \frac{\text{rad}}{\text{s}}$$
(6)

4 Conclusion

The percent loss of momentum from the car to the windmill is given by:

$$\delta = \frac{|L_{\text{car}} - L_{\text{windmill}}|}{L_{\text{car}}} \times 100 \tag{7}$$

where L_{windmill} is the angular momentum using the observational windmill speed from Equation 1.

$$\delta_1 = \frac{|L_1 - I\omega_1|}{L_1} \times 100 = \frac{|0.060 - 0.10066(0.511)|}{0.060} \times 100 = 14.27\%$$

$$\delta_2 = \frac{|L_2 - I\omega_2|}{L_2} \times 100 = \frac{|0.085 - 0.10066(0.693)|}{0.085} \times 100 = 17.93\%$$
(8)