

OVERVIEW

EXPLODED VIEW

80T GEAR ASSEMBLY

REMOVE FLANGE

Use pliers to gently remove the top flange of the GT2 pulley. Most kits either provide the pulley pre-deflanged, or even better, a whole metal gear!

Place the GT2 pulley into the 80T_Cog_Guide.

Insert the M4_80T_Wheel onto the GT2 pulley and press it flat to the guide.

Add 5 M3x8 BHCS to secure the wheel in place. Gently tighten the screws in a star pattern (skipping every other screw) until the hub is snug. Don't overtighten, you'll strip the plastic, or worse, the pulley!

Set the M4_80T_Wheel aside for now.

[a]_M4_80T_Wheel †

M3x8 BHCS

GEARED MOTOR MOUNT PREPARATION

GEARED MOTOR MOUNT SUPPORTS

This step is only necessary for the alternative Geared Motor Mounts.

Take a small flathead screwdriver or Allen wrench, and remove the print-in-place supports out of the dovetail of the Motor_Mount.

You may need to use a file or hobby knife to clean up any remaining residue from the print-in-place supports on the roof and floor, so that the dovetail is smooth. Or just YOLO it in the next step.

Shown: an alternative NEMA14 Motor Mount for a Metal 80T gear.

GEARBOX PREPARATION

2.1 MOTOR MOUNT MESHING

Take your choice of Motor_Mount and carefully mate the dovetail on the Gearbox to the slot in the Motor_Mount. If it is a tight fit, take sandpaper, a file, or a hobby knife to the parts that are rubbing so that it meshes and unmeshes without too much force. We want this dovetail to mesh with little effort so that later assembly steps are easy.

If the fit between these parts is too tight to put together or pull apart, it's a good sign that you either need to reprint the parts, or possibly tune your printer more, especially the Extrusion Multiplier. The parts are designed to fit together and come apart with your hands alone, and without straining. It is normal for the first 3-4 times fitting together to be "sticky," but simply meshing and remeshing the dovetail several times should smooth things out. It is also normal for the area around the dovetail to wear!

Unmesh and set aside the Motor_Mount for now.

Shown: an alternative NEMA17 Motor Mount for a Metal 60T gear.

Motor_Mount_NEMA14_Printed_80T

LOGO PLATE

2.2 INSTALLING THE LOGO PLATE

The Logo_Plate interlocks with the LED_Diffuser and Diffuser_Mask, so it must be installed first.

Align the Logo_Plate with the slot in the bottom of the Motor_Mount, and slide it upwards until it clips into place.

LED DIFFUSER

LED_Diffuser

Insert the LED_Diffuser into the Diffuser_Mask, so that the carrot logo pokes through the Diffuser_Mask.

Insert the combined part into the Motor_Mount from the bottom. Once the combined part is as far up as it can go, use an Allen key or screwdriver to push it into the Logo_Plate.

LED CARRIER

LED_Carrier

2.2 INSTALLING THE LED CARRIER

Insert the LED PCB into the LED_Carrier, so that the edges of the PCB clip into the LED_Carrier. Check the front of the LED_Carrier ro make sure the LED is aligned with the window. The wires are omitted from the images for clarity.

Insert the combined part into the Motor_Mount from the bottom. Use an Allen key or screwdriver to push the combined part up as far as it can go.

If you need to recover the LED for any reason, insert an Allen key into the hole in the roof of the Motor_Mount to push the LED_Carrier back out of the bottom.

MOTOR PREPARATION

MOTOR VARIATIONS

While the NEMA 17 motor is what is called for in the BOM, we also support NEMA 14 motors for those who are sourcing their own parts or upgrading from a previous version. NEMA 17 motors tend to have more torque but need to run at lower speeds compared to NEMA 14 motors, so NEMA 17 motors are preferred.

SET SCREWS

Insert both M3 set screws and use thread locker on them.

Use the appropriate pulley tool to install the pulley at the correct height on the motor shaft.

PULLEY HEIGHT

Use the Pulley_Tool_NEMA17 † to set the correct height of the GT2 20T gear.

If you are using a NEMA 17 motor for the gear axis, assembly is the same but you'll need to use Pulley_Tool_NEMA14 † and print a different Motor Arm to mount it.

Pulley_Tool_NEMA17 †

MOTOR MOUNT

ALTERNATIVE MOTOR MOUNTS

If you look in the User Mods on Github, there is a version for every combination of: Motor type (NEMA 14 and NEMA 17), Gear type (Printed and metal), and gear ratio (gears with 60 teeth and 80 teeth). Assembly uses identical parts.

MOTOR WIRES

Make sure the wires of the motor come out on this side.

Align the motor to the Motor_Mount with the wires or connector facing left. Start by adding the M3x12mm bolt. Leave the bolt loose enough to use as a hinge.

Next add the M3x16 bolts, adding an M3 washer to each. Leave these loose enough to allow the motor to rotate easily.

DRIVE SHAFT AND KNOB

2.3 INSTALLING THE KNOB

Insert the 5mm D-cut shaft into the Knob. You may want to use a hammer on the Knob to ensure a snug fit. You don't want the Knob to come off later!

Channels	N	4	5	6	7	8	9	10	11	12	13	14	15
D-Cut Rod Length (mm)	72 + 23N	164	187	210	233	256	279	302	325	348	371	394	417

DRIVE SHAFT ASSEMBLY

ADDING THE GEAR

Turn the Motor_Mount assembly on its' side so that the Drive Shaft points up in the air. Add the following parts:

- -Bearing_Spacer_x2 (flat side up)
- -M4_80T_Wheel (screw side down)
- -Bearing_Spacer_x2 (flat side down)
- -MR85ZZ Bearing
- -MR85ZZ Bearing

If your D-Cut Shaft is rough or at-spec (4.98-5.00mm), it will be difficult to insert and move the bearings. It is important that we be able to move the shaft along its axis during assembly, so if this is a problem for you, this must be addressed.

For many D-cut shafts, degreasing them with your favorite household cleaner can make the difference between a too-tight fit and a snug fit. If that doesn't work, follow up with a light-duty abrasive pad.

If you still find that your D-Cut Shaft is too tight on the bearings, take a high-grit sandpaper (at least 300 grit) and sand the shaft. Use a light oil, wear gloves and take appropriate precautions while sanding. You barely want to take any material away at all.

DRIVE SHAFT ASSEMBLY

2.3 SNUG UP THE GEAR

Push the M4_80T_Wheel to the end of its' travel, making sure the Knob is snug against the Motor_Mount. Make sure that the Bearing_Spacer_x2 is against the metal pulley part of the M4_80T_Wheel.

Leave some space between the two MR85ZZ bearings.

Metal wheels do not use the Bearing_Spacer_x2, they are only for the printed gears.

PREP TO ADD THE BELT LOOP

Twist the motor clockwise so that the GT2 Pulley is as close to the M4_80T_Wheel as possible.

14 — 14

DRIVE SHAFT ASSEMBLY

2.3 ADD THE BELT LOOP

Add the 188mm GT2 belt loop to the M4_80T_Wheel. It is usually easiest to start by putting the belt loop on the gear first, then the motor pulley.

With the belt installed, lightly twist the motor counter-clockwise to tension the belt loop. Then snug the screws that mount the motor. Do not tighten them yet - we will adjust the belt tension soon. We just need the motor to stay in place to keep the belt attached for the next steps.

15 — 15

INSTALLING MOTOR MOUNT

2.1 PREP TO INSTALL THE MOTOR MOUNT

Take the Gearbox assembly and open the Side_Latch_v2 on the side that shares a hinge with the Hatch. Next, flip open the Hatch.

INSTALL THE MOTOR MOUNT

Mate the slot on the Motor_Mount to the dovetail on the Gearbox. Just get it started, then proceed to the next page.

16 — 16

INSTALLING MOTOR MOUNT

2.1 INSTALLING THE MOTOR MOUNT

Press down on the Motor_Mount. It should be a snug fit. As you come to the last ~5mm of travel, double-check to make sure that the MR85ZZ bearings are aligned to their slots.

Keep going until the bottom of the Motor_Mount is flush with the bottom of the Gearbox.

FINISHING THE MOTOR MOUNT

Close the Hatch and Side_Latch_v2. Install an M3x8mm bolt to hold the Hatch shut. It doesn't need to be tight - it just holds the MR85ZZ bearings in place.

Then, make sure that the grub screws on the pulley part of the M4_80T_Wheel are fully tightened, with one to the flat of the Drive Shaft.

Next, tension the 188mm GT2 belt loop by lightly twisting the motor counter-clockwise, and give the screws going into the Motor a final tighten. Triple-check that the Drive Shaft spins freely and smoothly.

If the Drive Shaft isn't running smoothly at any point, undo your most recent assembly step and try again. It is normal for the motor and gear to add some drag.

Finally, install an M3x20mm bolt to hold the Motor_Mount to the Gearbox.

