CS330 - Computer Organization and Assembly Language Programming

Lecture 15

-Review -

Professor: Mahmut Unan – UAB CS

Agenda

Review

You responsible for all the topics This is a rough review

Midterm Exam

October 1st, 2021 Friday Lecture Time

Exam structure

- Multiple choice questions: ~20
- Conversions(binary,decimal,hex,mb,tb..etc), calculations (Amdahl's law)
- Open ended questions

Hello World!

A typical *C program* basically consists of the following parts;

- Preprocessor Commands
- Functions
- Variables
- Statements & Expressions
- Comment

```
#include <stdio.h>
int main()
{
    /* the first program in CS330 */
    printf("hello, world\n");
    return 0;
}
```

Information is Bits + Context

- "hello.c" is a source code
 - Sequence of bits (0 or 1)
 - 8-bit data chunks are called bytes
 - Each byte represents some text character in the program

Figure 1.2 The ASCII text representation of hello.c.

Programs translated by other programs

• unix> gcc -o hello hello.c

Compilation System

Pre-processing

- E.g., #include<stdio.h> is inserted into hello.i
- Compilation (.s)
 - Each statement is an assembly language program
- Assembly (.o)
 - A binary file whose bytes encode mach. language instructions
- Linking
 - Get printf() which resides in a separate precompiled object file

Virtual memory

- Illusion that each process has exclusive use of a large main memory
 - Example: Virtual address space for Linux
- Files: A sequence of bytes

Kernel virtual memory

User stack (created at runtime)

Memory invisible to

user code

Amdahl's Law

- Effectiveness of improving the performance of one part of system
- Speed up one part

 Effect on the overall system performance?

•
$$T_{new} = (1 - \alpha)T_{old} + \frac{\alpha T_{old}}{k}$$

•
$$= T_{old}[(1-\alpha) + \frac{\alpha}{k}]$$

•
$$S = \frac{T_{old}}{T_{new}}$$

•
$$S = \frac{1}{((1-\alpha)+(\alpha/k))}$$

Unan - UAB - CS330

- Consider a system;
 - A part of the system initially consumed 60% of the time (α = 0.6)
 - It is sped up by a factor of 3 (k=3)
- Overall improvement ?

- Consider a system;
 - A part of the system initially consumed 60% of the time (α = 0.6)
 - It is sped up by a factor of 3 (k=3)
- Overall improvement ?

•
$$S = \frac{1}{((1-\alpha)+(\alpha/k))}$$

• = 1/[0.4 + 0.6/3] = 1.67 times

- Calculate the following improvements on a current system and decide which one is better
- 1) if we make 90% of a program run 10 times faster.

• 2) if we make 80% of a program run 20% faster

• 1) if we make 90% of a program run 10 times faster.

$$S = \frac{1}{((1-\alpha)+(\alpha/k))} = \frac{1}{((1-0.9)+(0.9/10))} = 5.26$$

• 2) if we make 80% of a program run 20% faster

$$S = \frac{1}{((1-\alpha)+(\alpha/k))} = \frac{1}{((1-0.8)+(0.8/1.2))} = 1.153$$

Data Measurement Chart

Data Measurement Size

Bit Single Binary Digit

(1 or 0)

Byte 8 bits

Kilobyte (KB) 1,024 Bytes

Megabyte (MB) 1,024 Kilobytes

Gigabyte (GB) 1,024 Megabytes

Terabyte (TB) 1,024 Gigabytes

Petabyte (PB) 1,024 Terabytes

Exabyte (EB) 1,024 Petabytes

Unan - UAB - CS330 14

The Decimal System

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers
- For example the number 83 means eight tens plus three:

$$83 = (8 * 10) + 3$$

 The number 4728 means four thousands, seven hundreds, two tens, plus eight:

$$4728 = (4 * 1000) + (7 * 100) + (2 * 10) + 8$$

The decimal system is said to have a base, or radix, of 10.
 This means that each digit in the number is multiplied by 10 raised to a power corresponding to that digit's position:

$$83 = (8 * 10^{1}) + (3 * 10^{0})$$
$$4728 = (4 * 10^{3}) + (7 * 10^{2}) + (2 * 10^{1}) + (8 * 10^{0})$$

The Binary System

- Only two digits, 1 and 0
- Represented to the base 2
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_2 = 0_{10}$$

 $1_2 = 1_{10}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

$$10_2 = (1 * 2^1) + (0 * 2^0) = 2_{10}$$

$$11_2 = (1 * 2^1) + (1 * 2^0) = 3_{10}$$

$$100_2 = (1 * 2^2) + (0 * 2^1) + (0 * 2^0) = 4_{10}$$

For representing numbers in base 2, there are two possible digits (0, 1) in which column values are a power of two:

0	1	1	0	0	0	1	1	
128	64	32	16	8	4	2	1	
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	2 ⁰	

Although values represented in base 2 are significantly longer than those in base 10, binary representation is used in digital computing because of the resulting simplicity of hardware design

0 +

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

_	Hex Decili, Binary				
He	, Oe.	Binary			
0	0	0000			
1	1	0001			
2	2	0010			
1 2 3 4 5 6 7	1 2 3 4 5	0011			
4	4	0100			
5	5	0101			
6	6	0110			
7	7	0111			
8	8	1000			
9	9	1001			
A	10	1010			
В	11	1011			
B C	12	1100			
D	13	1101			
E	14	1110			
F	15	1111			

all of

1100 1001 0111 1011 \rightarrow 0xC97B

Machine Words

- Machine has "word size"
 - Nominal size of integer-valued data
 - More importantly a virtual address is encoded by such a word
 - Hence, it determines max size of virtual address space
 - Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - Newer systems are 64 bits (8 bytes)
 - Potentially address ≈ 1.84 X 10^19 bytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Data Sizes

- Each computer has a word size
 - For a machine with w-bit word size
 - The virtual address can range from 0 to 2^w -1
 - The program access to at most 2^w bytes

• 32 bit vs 64 bit

Addressing and Byte Ordering

- For objects that span multiple bytes (e.g. integers), we need to agree on two things
 - what would be the address of the object?
 - how would we order the bytes in memory?

Byte Ordering

- How to order bytes within multi-byte word in memory
- Conventions
 - (most) Sun's, IBMs are "Big Endian" machines
 - Least significant byte has highest address (comes last)
 - (most) Intel's are "Little Endian" machines
 - Least significant byte has lowest address (comes first)
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100 0x100 0x101

Boolean Variables and Operations

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0
 - $\langle \{0,1\}, |, \&, \sim, 0, 1 \rangle$
 - | is "sum" operation, & is "product" operation
 - ~ is "complement" operation (not additive inverse)
 - 0 is identity for sum, 1 is identity for product
- Makes use of variables and operations
 - Are logical
 - A variable may take on the value 1 (TRUE) or 0 (FALSE)
 - Basic logical operations are AND, OR, XOR and NOT

Boolean Variables and Operations / 2

– AND

- Yields true (binary value 1) if and only if both of its operands are true
- In the absence of parentheses the AND operation takes precedence over the OR operation
- When no ambiguity will occur the AND operation is represented by simple concatenation instead of the dot operator

- OR

Yields true if either or both of its operands are true

NOT

Inverts the value of its operand

Table: Boolean Operators

(a) Boolean Operators of Two Input Variables

P	Q	NOT P	P AND Q	P OR Q	P NAND Q	P NOR Q	P XOR Q
		(\overline{P})	(P • Q)	(P+Q)	$(\overline{P \cdot Q})$	$(\overline{P+Q})$	$(P \oplus Q)$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation	Expression	Output = 1 if
AND	A • B •	All of the set $\{A, B,\}$ are 1.
OR	A + B +	Any of the set {A, B,} are 1.
NAND	<u>A•B•</u>	Any of the set {A, B,} are 0.
NOR	A+B+	All of the set $\{A, B,\}$ are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

Table: Basic Identities of Boolean Algebra

Basic Postulates					
$\mathbf{A} \bullet \mathbf{B} = \mathbf{B} \bullet \mathbf{A}$	A + B = B + A	Commutative Laws			
$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$	$A + (B \bullet C) = (A + B) \bullet (A + C)$	Distributive Laws			
1 • A = A	0 + A = A	Identity Elements			
$A \bullet \overline{A} = 0$	$A + \overline{A} = 1$	Inverse Elements			

Other Identities

$$0 \cdot A = 0$$
 $1 + A = 1$
 $A \cdot A = A$ $A + A = A$
 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $A + (B + C) = (A + B) + C$ Associative Laws
 $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$ DeMorgan's Theorem

Exercise 1

Evaluate the following expression when A = 0, B = 1, and C = 1

$$F = B + \overline{C}A + B\overline{A} + A\overline{B}$$

Simplify the following functions;

$$F = AB + BC + \overline{B}C$$

$$F = A + \overline{A} B$$

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A———F	F = A • B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow F$	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A—F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A—————————————————————————————————————	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A———F	F = A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0

General Boolean Algebras

- Boolean operations can be extended to work on bit vectors
 - Operations applied bitwise

- All of the properties of Boolean algebra apply
- Now, Boolean |, & and ~ correspond to set union, intersection and complement

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0 \times 41 \rightarrow 0 \times BE$
 - $\sim 010000012 \rightarrow 101111102$
 - $\sim 0 \times 00 \rightarrow 0 \times FF$
 - $\sim 0000000002 \rightarrow 1111111112$
 - $0x69 \& 0x55 \rightarrow 0x41$
 - $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
 - $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

Contrast: Logic Operations in C

Contrast to Logical Operators

```
-&&, ||, !
```

- View 0 as "False"
- Anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Examples (char data type)

```
- !0x41 \rightarrow 0x00
```

- $!0x00 \rightarrow 0x01$
- $!!0x41 \rightarrow 0x01$
- 0x69 && 0x55 → 0x01
- $0x69 \parallel 0x55 \rightarrow 0x01$
- p && *p (avoids null pointer access)

```
Watch out for && vs. & (and || vs. |)...
one of the more common oopsies
in C programming
```

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with o's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with o's on left
 - Arithmetic shift
 - Replicate most significant bit on left
 - Useful in two's compliment
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Boolean Algebra ≈ **Integer Ring**

Commutative	A B = B A A&B = B&A	A+B = B+A A*B = B*A
Associativity	(A B) C = A (B C) (A & B) & C = A & (B & C)	(A + B) + C = A + (B + C) (A * B) * C = A * (B * C)
Product distributes over sum	A & (B C) = (A & B) (A & C)	A*(B+C) = A*B+B*C
Sum and product identities	A 0 = A A & 1 = A	A + 0 = A A * 1 = A
Zero is product annihilator	A & 0 = 0	A*0 = 0
Cancellation of negation	~ (~ A) = A	-(-A) = A

Boolean Algebra ≠ Integer Ring

Boolean: Sum distributes over product	A (B & C) = (A B) & (A C)	A + (B * C) ≠ (A + B) * (B + C)
Boolean: Idempotency	A A = A A & A = A	A + A ≠ A A * A ≠ A
Boolean: Absorption	A (A & B) = A A & (A B) = A	A + (A * B) ≠ A A * (A + B) ≠ A
Boolean: Laws of Complements	A ~A = 1	A + –A ≠ 1
Ring: Every element has additive inverse	A ~A ≠ 0	A + -A = 0

Properties of & and ^

- Boolean ring
 - $\langle \{0,1\}, ^, \&, I, 0, 1 \rangle$
 - Identical to integers mod 2
 - I is identity operation: I (A) = A
 - A ^ A = 0
- Property: Boolean ring
 - Commutative sum
 - Commutative product
 - Associative sum
 - Associative product
 - Prod. over sum
 - 0 is sum identity
 - 1 is prod. identity
 - 0 is product annihilator
 - Additive inverse

$$A \wedge B = B \wedge A$$

$$A \& B = B \& A$$

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \& B) \& C = A \& (B \& C)$$

$$A \& (B \land C) = (A \& B) \land (B \& C)$$

$$A \wedge 0 = A$$

$$A \& 1 = A$$

$$A \& 0 = 0$$

$$A \wedge A = 0$$

Unsigned Encodings

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$
(Binary To Unsigned)

e.g. B2U ([1011]) =
$$1 * 2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 11$$

- C short 2 bytes long

short int x = 15213;

	Decimal	Hex	Binary	
Х	15213	3B 6D	00111011 01101101	

Examples

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
Sign Bit

$$-$$
 e.g. B2T ([1011]) = -1 * 2³ + 0*2² + 1*2¹+ 1*2⁰ = -5

C short 2 bytes long

short int
$$y = -15213$$
;

	Decimal	Hex	Binary			
X	15213	3B 6D	00111011 01101101			
У	-15213	C4 93	11000100 10010011			

Sign bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative; 1 for negative

Two's Compliment

Invert and add one

Suppose we're working with 8 bit quantities and suppose we want to find how **-28** would be expressed in two's complement notation.

- First we write out 28 in binary form.
 00011100
- Then we **invert the digits**. 0 becomes 1, 1 becomes 0. 11100011
- Then we add 1.
 11100100

That is how one would write -28 in 8 bit binary.

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary			
UMax	65535	FF FF	11111111 11111111			
TMax	32767	7F FF	01111111 11111111			
TMin	-32768	80 00	10000000 00000000			
-1	-1	FF FF	11111111 11111111			
0	0	00 00	00000000 00000000			

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix0U, 4294967259U

Casting

 Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

• Rule:

– Make k copies of sign bit:

Unan - UAB - CS330

Truncating Numbers

- Reduce the number of bits representing the number
- Truncating w-bit number to a k bit number, we drop the high order w-k bits
 - Can alter its value
 - A form of overflow

Summary: Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior

OVERFLOW RULE:

 If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Binary Multiplication

Figure 10.7 Multiplication of Unsigned Binary Integers

Power-of-2 Multiply with Shift

Operation

• $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$

True Product: w+k bits

Discard k bits: w bits

Both signed and unsigned

Operands: w bits

Examples

$$u << 5$$
 - $u << 3$ == $u * 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate,
 same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 **101.11**₂

2 7/8 **10.111**₂

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

```
Value Representation
```

- 1/3 0.01010101[01]...2
- 1/5 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s exp frac

Precision options

Single precision: 32 bits

Double precision: 64 bits

- The value encoded by a given bit representation can be divided into three different cases, depending on the value of exp.
- Case 1: Normalized Values
- Case 2: Denormalized Values
- Case 3: Special Values

Case 1: "Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Case 2: Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $\exp = 000...0, frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Case 3: Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: **exp** = **111**...**1**, **frac** ≠ **000**...**0**
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
- Round down ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

FP Multiplication

- $(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$ -Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - –Sign s, significand M:
 - Result of signed align & add
 - -Exponent E: E1

Fixing

- -If M ≥ 2, shift M right, increment E
- -if M < 1, shift M left k positions, decrement E by k
- –Overflow if E out of range
- -Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?

Yes

Yes

- Every element has additive inverse?
- **Almost**
- Yes, except for infinities & NaNs
- Monotonicity

Almost

- a ≥ b \Rightarrow a+c ≥ b+c?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

– Closed under multiplication?

Yes

But may generate infinity or NaN

– Multiplication Commutative?

Yes

– Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

– 1 is multiplicative identity?

Yes

– Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

• 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

 $- a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Floating Point in C

- C Guarantees Two Levels
 - -float single precision
 - **-double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - -double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - $-int \rightarrow double$
 - Exact conversion, as long as int has ≤ 53 bit word size
 - $-int \rightarrow float$
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
* x == (int)(float) x

* x == (int)(double) x

* f == (float)(double) f

* d == (double)(float) d

* f == -(-f);

* 1.0/2 == 1/2.0

* d * d >= 0.0

* (d+f)-d == f
```

Intel x86 Processors

- Dominate laptop/desktop/server market
- Evolutionary design
 - Backwards compatible up until 8086, introduced in 1978
 - Added more features as time goes on
- Complex instruction set computer (CISC)
 - Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
 - Hard to match performance of Reduced Instruction Set Computers (RISC)
 - But, Intel has done just that!
 - In terms of speed. Less so for low power.

Our Coverage

- IA32
 - The traditional x86
 - For ???: RIP, Fall 2018
- x86-64
 - The standard
 - moat.cis.uab.edu
 - gcc hello.c
 - gcc -m64 hello.c
- Presentation
 - Book covers x86-64
 - So, we will cover x86-64

C, assembly, machine code

Definitions

- Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand or write assembly/machine code.
 - Examples: instruction set specification, registers.
- Microarchitecture: Implementation of the architecture.
 - Examples: cache sizes and core frequency.
- Code Forms:
 - Machine Code: The byte-level programs that a processor executes
 - Assembly Code: A text representation of machine code
- Example ISAs:
 - Intel: x86, IA32, Itanium, x86-64
 - ARM: Used in almost all mobile phones

Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Indicates the address of next instruction
 - Called "%rip" (x86-64)
- Register file
 - Heavily used program data
 - 16 named locations storing 64bit values
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

– Memory

- Byte addressable array
- Code and user data
- Stack to support procedures

Turning C into Object Code

- -Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use basic optimizations (-Og) [New to recent versions of GCC]
 - Put resulting binary in file p

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
  pushq %rbx
  movq %rdx, %rbx
  call plus
  movq %rax, (%rbx)
  popq %rbx
  ret
```

Obtain (on shark machine) with command

```
gcc -Og -S sum.c
```

Produces file sum.s

Warning: This is the output of the textbook. We will get very different results on our machines due to different versions of gcc and different compiler settings.

Vulcan server output

```
.file
               "longplus.c"
        .text
        .globl sumstore
               sumstore, Ofunction
        .type
sumstore:
.LFB0:
        .cfi_startproc
       pushq
               %rbx
        .cfi_def_cfa_offset 16
        .cfi_offset 3, -16
               %rdx, %rbx
       movq
       call plus
       movq %rax, (%rbx)
               %rbx
       popq
        .cfi_def_cfa_offset 8
       ret
        .cfi_endproc
.LFE0:
        .size
               sumstore, .-sumstore
        .ident "GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-28)"
                        .note.GNU-stack,"",@progbits
        .section
```