Corrigés des exercices Suites et limites

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Suites

Exercice 1. Calculs de termes (*)

Calculer les quatre premiers termes des suites suivantes.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array} \qquad v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n+1 \end{array}$$

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & (-1)^n \end{array} \qquad z: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & (-1)^n \cdot n \end{array}$$

Solution de l'exercice 1.

$$u_0 = 3,$$
 $v_0 = 3 \times 0 + 1 = 1,$ $w_0 = (-1)^0 = 1,$ $z_0 = (-1)^0 \times 0 = 0,$ $u_1 = 3,$ $v_1 = 3 \times 1 + 1 = 4,$ $w_1 = (-1)^1 = -1,$ $z_1 = (-1)^1 \times 1 = -1,$ $u_2 = 3,$ $v_2 = 3 \times 2 + 1 = 7,$ $w_2 = (-1)^2 = (-1) \times (-1) = 1,$ $z_2 = (-1)^2 \times 2 = 2,$ $u_3 = 3,$ $v_3 = 3 \times 3 + 1 = 10,$ $w_3 = (-1)^3 = (-1)^2 \times (-1) = -1,$ $z_3 = (-1)^3 \times 3 = -3.$

Exercice 2. Des propriétés classiques (*)

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite réelle. On dit que :

- u est croissante si pour tous entiers $n \leq m$, on a $u_n \leq u_m$,
- u est décroissante si pour tous entiers $n \leq m$, on a $u_n \geq u_m$,
- u est minorée s'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- u est majorée s'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$.
- u n'est pas minorée si pour tout $m \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n < m$.
- u n'est pas majorée si pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n > M$.
- 1. Donner un exemple de suite croissante.
- 2. Donner un exemple de suite majorée et un de suite non majorée.
- 3. Donner un exemple de suite non majorée et non croissante.
- 4. Mêmes questions en remplaçant croissante par décroissante et majorée par minorée.
- 5. Donner un exemple de suite qui n'est ni croissante, ni décroissante.

^{1.} vadim.lebovici@ens.fr

6. Dire si les suites suivantes sont croissantes/décroissantes, majorées ou non, minorées ou non :

$$u: \begin{array}{cccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & (-1)^n \end{array} \qquad v: \begin{array}{cccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & (-1)^n \cdot n \end{array}$$

Solution de l'exercice 2.

1. La suite identité

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

est croissante. Montrons-le. Soit $n \in \mathbb{N}$ et $m \in \mathbb{N}$ tels que $n \leq m$. Alors $u_n = n \leq m = u_m$. Donc, u est croissante.

2. La suite constante égale à 1, que l'on notera ici v, est majorée. On peut prendre M=1 dans la définition et vérifier que pour tout $n \in \mathbb{N}$, $v_n=1 \le 1=M$.

La suite identité n'est pas majorée. Notez que si u était majorée par un $M' \in \mathbb{R}$ qui soit négatif (i.e. $M' \leq 0$), alors 1 majorerait aussi u. Ainsi, si u est majorée par un nombre négatif, elle l'est aussi par un nombre strictement positif. C'est pourquoi, pour montrer que u n'est pas majorée, il suffit de montrer qu'elle n'est pas majorée par des réels strictement positifs M > 0. Soit donc un réel M > 0. Comme \mathbb{R} est archimédien (voir le théorème du cours) et que M > 0 et 1 > 0, il existe $n \in \mathbb{N}$ tel que $M < n \times 1 = n = u_n$. On a donc bien montré que u n'est pas majoré.

3. La suite x définie par :

$$x: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ x: & & \\ n & \mapsto & \begin{cases} n & si \ n \ est \ impair, \\ 0 & si \ n \ est \ pair, \end{cases}$$

(Tracer le graphe de cette suite pour comprendre son fonctionnement) n'est ni majorée, ni croissante. Elle n'est pas croissante, i.e il existe $n \leq m$ tels que $u_n > u_m$. Par exemple, $u_1 = 1 > 0 = u_2$ alors que $1 \leq 2$. Elle n'est pas majorée, comme le montre la preuve suivante. Soit M > 0 (regarder la discussion de la question 2). Comme \mathbb{R} est archimédien, il existe $n' \in \mathbb{N}$ tel que M < n'. Si n' est impair, alors on a bien $M < n' = x'_n$ et on peut poser n = n'. Si n' est pair, alors n' + 1 est impair et $M < n' < n' + 1 = v_{n'+1}$ et on peut poser n = n' + 1. On a bien montré que x n'était pas majorée.

- **4.** Multiplier les suites précédentes par -1 et montrer qu'une suite u est croissante (resp. majorée) si, et seulement si, 2 -u est décroissante (resp. minorée).
- **5.** Vérifier que la suite x n'est ni croissante (déjà montré à la question 3), ni décroissante (s'inspirer de la question 3).

^{2.} Cette formule signifie que qu'il y a équivalence entre les assertions qui l'encadrent.

6. La suite u n'est ni croissante, ni décroissante, mais elle est majorée (par 1) et minorée (par -1). La suite v n'est ni croissante, ni décroissante, ni majorée, ni minorée. S'inspirer des questions précédentes pour le montrer, les preuves sont similaires.

2 Limites

Exercice 3. Quelques exemples (*)

1. Montrer que la suite suivante converge et donner sa limite.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array}$$

2. Montrer que la suite suivante converge et donner sa limite. ³

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & \frac{1}{n+1} \end{array}$$

3. Montrer que la suite suivante diverge.

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n \end{array}$$

Solution de l'exercice 3.

1. Adapter la preuve du cours (voir polycopié) pour la suite constante égale à 1, en remplaçant 1 par 3. Ne regardez la preuve du cours que si c'est vraiment nécessaire.

2. Montrons que $v_n \xrightarrow[n \to +\infty]{} 0$.

Soit $\varepsilon > 0$. Comme \mathbb{R} est archimédien, $\varepsilon > 0$ et 1 > 0, il existe un entier $N \geq 1$ tel que $1 < N\varepsilon$. Soit $n \geq N$. On a alors $(n+1)\varepsilon = n\varepsilon + \varepsilon$ et de plus :

$$n\varepsilon + \varepsilon \ge N\varepsilon + \varepsilon \ge N\varepsilon > 1$$
,

 $car \ n \ge N \ et \ \varepsilon > 0$. Ainsi, pour tout $n \ge N$, on a $(n+1)\varepsilon > 1$, i.e $\varepsilon > 1/(n+1)$. De plus, on a $1/(n+1) > 0 > -\varepsilon$.

<u>Conclusion</u>: pour tout $\varepsilon > 0$, il existe $N \in N$ tel que pour tout $n \ge N$, on $a - \varepsilon < v_n < \varepsilon$, i.e v converge vers 0.

3. Idem, adapter la preuve du cours (voir polycopié) pour la suite identité, en remplaçant n par 3n. Ne regardez la preuve du cours que si c'est vraiment nécessaire.

Exercice 4. Unicité de la limite (*)

Soit $u: \mathbb{N} \to \mathbb{R}$. On souhaite montrer que si u converge, sa limite est unique ⁴, i.e:

^{3.} Notez que ce cas est légèrement plus simple que la preuve faite en cours.

^{4.} C'est d'ailleurs ce qui nous autorise à parler de la limite d'une suite u lorsqu'elle existe.

pour tout $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$, si $u_n \xrightarrow[n \to +\infty]{} \ell$ et $u_n \xrightarrow[n \to +\infty]{} \ell'$, alors $\ell = \ell'$.

Soient $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ deux réels tels que $u_n \xrightarrow[n \to +\infty]{} \ell$ et $u_n \xrightarrow[n \to +\infty]{} \ell'$. Supposons par l'absurde que $\ell \neq \ell'$.

- 1. Supposons dans un premier temps que $\ell < \ell'$.
 - (a) Montrer qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > (\ell + \ell')/2$ (un indice⁵).
 - (b) Montrer qu'il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $u_n < (\ell + \ell')/2$.
 - (c) Conclure à une absurdité dans le cas où $\ell < \ell'$.
- 2. Conclure à une absurdité dans le cas où $\ell > \ell'$.
- 3. Conclure.

Solution de l'exercice 4.

1.(a) On pose $\varepsilon = (\ell' - \ell)/2$. Comme $\ell' > \ell$, on a que $(\ell' - \ell) > 0$ donc aussi $\varepsilon = (\ell' - \ell)/2 > 0$. Ainsi, on peut appliquer la définition de la convergence de u vers ℓ' pour obtenir qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, $\ell' - \varepsilon < u_n$. On peut alors calculer:

$$\ell' - \varepsilon = \ell' - \frac{\ell' - \ell}{2}$$

$$= \frac{2\ell'}{2} - \frac{\ell' - \ell}{2}$$

$$= \frac{2\ell' - (\ell' - \ell)}{2}$$

$$= \frac{2\ell' - \ell' + \ell}{2}$$

$$= \frac{\ell' + \ell}{2}.$$

Ainsi, on a bien qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, $u_n > (\ell + \ell')/2$.

1.(b) On pose $\varepsilon = (\ell' - \ell)/2$. A nouveau, on a bien $\varepsilon = (\ell' - \ell)/2 > 0$ car $\ell < \ell'$. Ainsi, on peut appliquer la définition de la convergence de u vers ℓ pour obtenir qu'il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, $u_n < \ell + \varepsilon$. On peut alors calculer:

$$\ell + \varepsilon = \ell + \frac{\ell' - \ell}{2}$$

$$= \frac{2\ell}{2} + \frac{\ell' - \ell}{2}$$

$$= \frac{2\ell + \ell' - \ell}{2}$$

$$= \frac{\ell' + \ell}{2}.$$

^{5.} Poser $\varepsilon = (\ell' - \ell)/2$ et appliquer la définition de la convergence vers ℓ' .

Ainsi, on a bien qu'il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, $u_n < (\ell + \ell')/2$.

1.(c) Dans le cas où $\ell < \ell'$ on a montré aux questions précédentes qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > (\ell + \ell')/2$ et qu'il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $u_n < (\ell + \ell')/2$. Ainsi, en posant $n = \max(N', N'')$, on a que :

$$\frac{\ell'+\ell}{2} < u_n < \frac{\ell'+\ell}{2},$$

 $car \ n \ge N' \ et \ n \ge N'', \ ce \ qui \ est \ absurde.$

- **2.** Le cas $\ell' < \ell$ est symétrique du précédent cas, on a donc bien une absurdité dans ce cas équlement.
- **3.** Dans tous les cas, l'hypothèse $\ell \neq \ell'$ mène à une absurdité, donc $\ell = \ell'$. Ainsi, on a bien montré que la limite d'une suite convergente est unique.

Exercice 5. Toute suite convergente est bornée. $(\star\star)$

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite convergente vers un réel $\ell \in \mathbb{R}$.

- 1. Montrer que u est majorée, i.e qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n < M$. Voici un indice ⁶ pour vous aider.
- 2. En déduire 7 que u est minorée, i.e qu'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- 3. Donner un exemple de suite bornée (i.e. majorée et minorée) qui ne converge pas.

Solution de l'exercice 5.

1. Comme u converge⁸, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $\ell - 1 < u_n < \ell + 1$. On pose alors $M = \max(\max\{u_0, ..., u_N\}, \ell + 1)$. Soit $n \in \mathbb{N}$. Si $n \leq N$, alors:

$$u_n \le \max\{u_0, ..., u_N\} \le M,$$

par définition du maximum, et si n > N, alors

$$u_n < \ell + 1 \le M$$
,

par définition du maximum. Ainsi, dans tous les cas $u_n \leq M$.

^{6.} Le maximum d'un ensemble fini non-vide de nombres réels est bien défini. Ainsi, pour un certain $N \in \mathbb{N}$, vous pouvez par exemple considérer le nombre $\max\{u_0, ..., u_N\}$. C'est le plus petit nombre réel qui est plus grand que tous ceux de l'ensemble $\{u_0, ..., u_N\}$.

^{7.} Noter que si u converge, alors -u aussi et appliquer la question 1. Ne pas oublier que $x \leq y$ est équivalent à $-y \leq -x$.

^{8.} On applique la définition avec $\varepsilon = 1$ ici.

- **2.** Comme $u_n \underset{n \to +\infty}{\longrightarrow} \ell$, on applique la propriété du cours sur la multiplication d'une suite convergente par un nombre $\lambda \in \mathbb{R}$ avec $\lambda = -1$ pour obtenir que $-u_n \underset{n \to +\infty}{\longrightarrow} -\ell$. Comme -u converge, elle est majorée par la question 1, i.e. il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on $a u_n \leq M$, i.e $u_n \geq -M$. On pose alors m = -M et on a que pour tout $n \in \mathbb{N}$, $u_n \geq m$. On a donc bien montré qu'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $u_n \geq m$, i.e. u est minorée.
- **3.** La suite w de l'exercice 1 est bornée (majorée par 1 et minorée par -1) mais ne converge pas. Vous pouvez l'admettre ici, mais pour le montrer, il y a plusieurs solutions :
 - 1. on peut le montrer à la main "avec des ε " en utilisant la définition de la convergence : d'abord utiliser le théorème d'encadrement des limites et la convergence de la suite constante égale à 1 et de celle constante égale à -1 pour montrer que $-1 \le \ell \le 1$ puis utiliser la définition de la convergence avec $\varepsilon = 1/3$ mène à une absurdité, u_n ne peut rester dans $\ell \varepsilon < u_n < \ell + \varepsilon$.
 - 2. on peut le montrer en utilisant l'exercice 6 : la suite w est à valeurs entières ⁹ et n'est pas stationnaire, elle ne converge donc pas.

Exercice 6. Suites convergentes d'entiers $(\star\star\star)$

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite telle que pour tout $n \in \mathbb{N}$, on a $u_n \in \mathbb{N}$. Montrer que :

u converge si, et seulement si 10 , u est stationnaire.

On dit qu'une suite est stationnaire si elle est constante à partir d'un certain rang, i.e s'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n = u_N$. Voici un indice ¹¹ pour vous aider.

Solution de l'exercice 6.

Tout d'abord, le cas facile : supposons que u est stationnaire et montrons que u converge. Comme u est stationnaire, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n \geq u_N$. Montrons que $u_n \xrightarrow[n \to +\infty]{} u_N$. Soit $\varepsilon > 0$ et soit $n \geq N$ (il est déjà posé, il existe par la stationnarité de u). On a que :

$$u_N - \varepsilon < u_N = u_n = u_N < u_N + \varepsilon$$
,

 $car \ \varepsilon > 0$. On a donc bien montré que $u_n \underset{n \to +\infty}{\longrightarrow} u_N$. Ainsi, si u est stationnaire, u converge. Supposons maintenant que u converge vers une limite $\ell \in \mathbb{R}$. Comme 1/2 > 0, il existe alors $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $\ell - 1/2 < u_n < \ell + 1/2$. Soit $n \ge N$. Notons d'abord que u_N est entier et que $u_N \in E = \{x \in \mathbb{R} \mid \ell - 1/2 < x < \ell + 1/2\}$. Comme également $u_n \in E$ et u_n est entier, c'est que $u_n = u_N$. Ainsi, pour tout $n \ge N$, on a $u_n = u_N$. On a donc bien montré que u est stationnaire.

Conclusion: on a bien montré que u est stationnaire si, et seulement si, u converge.

^{9.} i.e. pour tout $n \in \mathbb{N}$, $w_n \in \mathbb{N}$.

^{10.} i.e si u converge alors u est stationnaire et réciproquement si u est stationnaire alors u converge.

^{11.} Vous pouvez admettre qu'il y a au plus un entier dans l'ensemble $E = \{x \in \mathbb{R} \mid \ell - 1/2 < x < \ell + 1/2\}$, i.e. si $k \in E$ et $l \in E$ sont entiers, alors k = l.