- 7. В ходе горения смеси простого вещества A и оксида C образуются металл B и оксид D той же суммарной массы, что и масса исходные вещества. Валентности элементов в оксидах C и D одинаковы. Массовая доля кислорода в исходной стехиометрической смеси равна 22.43%.
 - 1) Определите вещества **A D**, ответ подтвердите расчётом. Учтите, что **A** проявляет во всех своих соединениях постоянную степень окисления.
 - 2) Запишите уравнение реакции горения смеси.
 - Тривиальное название этой смеси берёт своё начало от греческого θερμά тепло, жар. Оно также созвучно с названием вида насекомых, обитающих в южных широтах и питающихся древесиной. Приведите это тривиальное название.

№ 7

- 1) Поскольку масса продуктов меньше массы реагентов, то можно сделать вывод, что кислород в данной реакции участия не принимает.
- Из описания реакции следует, что \mathbf{C} оксид металла \mathbf{B} , \mathbf{D} оксид элемента, соответствующего простому веществу \mathbf{A} . Формулы оксидов можно записать в общем виде следующим образом (x степень окисления элементов \mathbf{A} и \mathbf{B}):

$$C = B_2^{+x}O_x^{-2}$$
; $D = A_2^{+x}O_x^{-2}$

2) Тогда реакция горения будет выглядеть следующим образом:

$$2A + B_2O_x = 2B + A_2O_x$$

По условию задачи смесь является стехиометричной; это означает, что весь **A** прореагировал, а **B** выделился в эквивалентном количестве таким образом, что не осталось непрореагировавшего вещества C, т.е. n(A)/n(B) = 2/2 = 1.

Тогда массовая доля кислорода в исходной смеси равна:

$$\omega(0) = \frac{m(0)}{m(\text{смеси})} = \frac{16x}{2M(A) + 2M(B) + 16x} = \frac{8x}{M(A) + M(B) + 8x} = 0.2243$$

Откуда:

$$M(A) + M(B) = 8\left(\frac{1}{\omega(0)} - 1\right) = 27.67x$$
 г/моль

Теперь, перебирая целочисленные степени окисления x, можно найти сумму молярной массы элемента A и металла B. Так как сумма молярных масс, скорее всего, является целым числом, то нужно подобрать степень окисления так, чтобы 27.67x было целым числом. Это выполняется при x = 3, 6, ..., однако химический смысл имеет только степень окисления 3. Таким образом:

$$M(A) + M(B) = 27.67 \cdot 3 = 83$$
 г/моль

3) Будем перебирать металлы В и искать из этого уравнения молярную массу А:

В	Li	Be	Na	Mg	Al	K	Ca	Sc	Ti
<i>M</i> (B)	6.94	9.01	22.99	24.31	26.98	39.10	40.08	44.96	47.88
83									
-M(B)	76.06	73.99	60.01	58.69	56.02	43.9	42.92	38.04	35.12
A	*	*	*	Ni	Fe	*	*	*	≈ Cl

В	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga
<i>M</i> (B)	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.37	69.72
83									
-M(B)	32.06	31	28.06	27.15	24.07	24.29	19.45	17.63	13.28
A	S	P	Si	Al	Mg	Mg	≈ F	*	*

- * нет элемента с такой молярной массой
- Ni, Ti, S, Si, Mg, F не проявляют степень окисления +3, поэтому остаются только пары Fe Al, P - Cr, Al - Fe. В условии сказано, что A проявляет постоянную степень окисления, поэтому пары Fe – Al, P – Cr не подходят, т.к. железо и фосфор проявляют несколько степеней окисления. Остается единственная пара A - B: Al – Fe.

Единственным устойчивым оксидом алюминия является оксид Al₂O₃, значит железо в оксиде С тоже трехвалентно.

A	В	C	D	
Al	Fe	Fe ₂ O ₃	Al ₂ O ₃	

4) Уравнение реакции горения смеси:

$$2Al + Fe_2O_3 = 2Fe + Al_2O_3$$

5) Насекомые, о которых идет речь в условии, называются термитами, а смесь, о которой идет речь в данной задаче – термитной. Несмотря на созвучность, эти названия имеют разное происхождение. Смесь именуется так от греческого $\theta \epsilon \rho \mu \dot{\alpha}$ (терма) – тепло, жар, а муравьи получили свой название от латинского tarmes - древоточец, измененного под влиянием латинского же *terere* (тереть, носить, разъедать)

Рекомендации к оцениванию:

1.	Вывод, что С – оксид металла В, а D – оксид А (явно или неявно)	1 балл
2.	Определение суммы молекулярных масс А и В	1 балл
3.	Определение неизвестных веществ A – D по 1 баллу	4 балла
4.	Уравнение реакции горения	2 балла
	если реакция не уравнена – 1 балл	
5.	Указание тривиального названия смеси	2 балла

ИТОГО: 10 баллов