HP97 1

adasdf / F

HP0

SSM

The Filter of Hodrick and Prescott (1997, HP-Filter) can be expressed as an SSM following

emobremed component (cec) model **W** UC model structure as:

 $y_t = y_t^* + y_t^c$ (1a) HP0a

$$\Delta^2 y_t^* = \varepsilon_{1t}$$
 (1b) HPOb

$$y_t^c = \phi \varepsilon_{2t}$$
, (1c) HPOc

where y_t is (generally 100 times) the log of GDP, and ε_{1t} and ε_{2t} are N(0,1). The standard deviation ϕ is the (square root of the) smoothing parameter, generally set to 40, implying a for questy lata value of ' λ ' of 1600.

The number shock to named shock mapping is:

 $\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} = \begin{bmatrix} \varepsilon_t^* \\ \varepsilon_t^c \end{bmatrix}, \quad \text{where} \quad$ (2)

2: is the total as perment shot

and ze is the cycle or

transitory shoch.

Shock recovery SSM 2

2.1 SSM with lagged states

Kurz's (2018) SSM has the following general from:

Measurement : $Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$ (3a) ssm1

> State: $X_t = AX_{t-1} + C\varepsilon_t$, (3b) ssm2

where $\varepsilon_t \sim MN(0, I_m)$, D_1 , D_2 , A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable.

2.2 **HP97 SSM for shock recovery**

To assess recovery, re-write the model in (1) in 'shock recovery' State Space Form (SSF). That is, collect all observables in Z_t and all shocks (and other state variables) in X_t to yield:

ou the LHS in $\frac{2}{\Delta^2}y_t = \Delta^2 y_t^* + \Delta^2 y_t^c$ $= \varepsilon_{1t} + \phi \Delta^2 \varepsilon_{2t}$ $= \varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2}$ (4) z

where $\Delta^2 y_t$ $\nearrow \mathcal{D}_t$ is the only observed variable.

Note: The estimates of the shocks from the Kalman Filter $E_t X_t = E_t \begin{bmatrix} \varepsilon_t & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}$ will

more his down

be linked by the identity:

$$E_t \varepsilon_{2t} = \phi E_t \varepsilon_{1t}$$

and from the Kalman Smoother $E_T X_t = E_T \begin{bmatrix} \varepsilon_t & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}'$ by the identity:

$$\Delta^2 E_T \varepsilon_{1t} = \frac{1}{\phi^2} E_T \varepsilon_{2t-2}. \tag{5}$$

With $\varepsilon_{1t} = \Delta^2 y_t^*$ and $\varepsilon_{2t} = \frac{1}{\phi^2} y_t^c$, this means that the output from the standard HP–Filter will give the identity:

$$\Delta^4 y_t^* = rac{1}{\phi^2} y_{t-2}^c$$
 $\Delta^4 ext{HP-trend}_t = rac{1}{\phi^2} ext{HP-cycle}_{t-2}.$

Indeed, running a regression of Δ^4 HP-trend_t on HP-cycle_{t-2} (without an intercept) yields a regression coefficient of 0.000625 = 1/1600 when applied to US-GDP data that was HP-Filtered with the smoothing parameter set to $\lambda = 1600 = 40^2$. The regression fit is perfect, with an R^2 of 1 and a residual sum of squares of 0.

The Measurement and State equations corresponding to (4) are:

KOSSM

Measurement :
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$

= $\varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2}$ (6a)

$$Z_{t} = \underbrace{\begin{bmatrix} 1 & \phi & 0 \end{bmatrix}}_{D_{1}} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_{t}} + \underbrace{\begin{bmatrix} 0 & -2\phi & \phi \end{bmatrix}}_{D_{2}} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 0 & 0 \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{R}$$
 (6b)

State: $X_t = AX_{t-1} + C\varepsilon_t$,

$$\underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_t} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{\varepsilon_t}.$$
(6c)